# TEORÍA DE SELECCIÓN DE PORTAFOLIOS Y UN CASO DE APLICACIÓN CON ETFS

Gustavo Amador Fonseca C20451 Fabián Brenes Thomas C21380 Marco Guardia Ortiz C23521 Laura Villacís Delgado C28386

### Introducción

- ¿Qué es un portafolio?
- Uso de ETFs en portafolios
- En la metodología se explica optimización de Markowitz, se da un enfoque de Von Neumann-Morgenstern y se incorpora las preferencias según su aversión al riesgo.
- Se hace uso de las restricciones como límites en activos, ventas en corto y apalancamiento



### METODOLOGÍA

#### Markowitz

Objetivo es encontrar la combinación ideal de activos que maximice el retorno esperado para un nivel dado de riesgo, o, de manera equivalente, que minimice el riesgo para un retorno esperado específico. Esto se logra asignando pesos a cada activo en el portafolio.

#### Definiciones:

- w = Vector pesos de cada activo del portafolio, suman 1.
- $\mu$  = Vector retornos esperados.
- Σ = Matriz de covarianza

$$w = [w_1, \dots, w_n]$$

$$\hat{\mu} = [\hat{\mu}_1, \dots, \hat{\mu}_m]$$

Utilizando los retornos esperados y la matriz de covarianza, se calcula el retorno esperado del portafolio como  $\hat{\mu_w}=w^T\hat{\mu}~$  y su varianza como  $\hat{\sigma_w^2}=w^T\hat{\Sigma}w$ 

#### Markowitz

**Minimizar varianza:** Para un nivel deseado de retornos  $\mu_0$  se plantea

el problema de minimización

min 
$$\hat{\sigma_w^2} = w^T \hat{\Sigma} w$$
  
sujeto a  $w^T R = \mu_0,$   $\sum_{i=1}^m w_i = 1.$ 

**Maximizar retorno:** Para un nivel deseado de varianza se plantea el problema de maximización

$$\max \quad \hat{\mu_w} = w^T \hat{\mu}$$
sujeto a 
$$w^T \hat{\Sigma} w = \sigma_0^2,$$
$$\sum_{i=1}^m w_i = 1.$$

#### Funciones de utilidad

En lugar de maximizar los retornos, se puede maximizar la esperanza de una función de utilidad sobre la riqueza.

Se hace un desarollo de taylor alrededor de la esperanza de la riqueza y posteriormente se saca la esperanza y se maximiza la expresión.

$$u(W) \approx u(w_*) + u'(w_*)(W - w_*) + \frac{1}{2}u''(w_*)(W - w_*)^2 + \cdots$$

#### Coeficiente de aversión al riesgo

$$\lambda_A(W) = -\frac{u''(W)}{u'(W)}$$

$$E[u(W)] \approx E[u(w_*)] + u'(w_*)E[W - w_* - \frac{1}{2}\lambda_A(W - w_*)^2]$$

#### Funciones de utilidad

Maximización de orden 2:

$$\max_{w} \ \left( w^T \hat{\mu} - \frac{1}{2} \lambda_A w^T \hat{\Sigma} w \right)$$

Maximización de orden 3:

$$\max_{w} \left( w^{T} \hat{\mu} - \frac{1}{2} \lambda_{A} w^{T} \hat{\Sigma} w - \frac{1}{6} \beta_{A} w^{T} \cdot S + 3 \cdot w^{T} \cdot \hat{\Sigma} \cdot w \right)$$

### Restricciones

#### Venta en corto

Un peso positivo significa que se está comprando una parte del activo. En cambio, un peso negativo implica que el inversionista está vendiendo en corto. Por ende si no se permite la venta en corto se debe asegurar:

$$w_i \geq 0 \quad \forall i$$

#### **Apalancamiento**

Permite a un inversor aumentar la cantidad de capital invertido en un portafolio mediante el uso de deuda o fondos prestados

$$w_2 \leq 0$$

#### Diversificación

Se puede delimitar el peso de cada activo para asegurarnos tener un portafolio diversificado y evitar la dependencia en un activo

$$w_i \leq \alpha \quad \forall i$$

#### Métricas

#### **Sharpe Ratio**

El Sharpe Ratio mide los rendimientos del activo con base al riesgo asociado. La fórmula es:

$$S = \frac{R_p - R_f}{\sigma_p}$$

- $R_p$ : Retorno promedio del portafolio.
- ullet  $R_f$ :Tasa libre de riesgo.
- ullet  $\sigma_p$ : Desviación estándar de los retornos del portafolio

Entre mayor sea el ratio, más se compensa el riesgo

#### Métricas

#### **Roy's Safety First Ratio**

Indica que para cierto nivel de riesgo, se necesita un retorno mínimo garantizado. La fórmula es:

$$SFR = \frac{R_p - R_L}{\sigma_p}$$

- $R_p$ : Retorno promedio del portafolio.
- ullet  $R_L$ :Retorno mínimo aceptable (nivel de seguridad)
- ullet  $\sigma_p$ : Desviación estándar de los retornos del portafolio

Esta métrica permite cuantificar el retorno extra sobre el mínimo establecido

#### Métricas

#### Sortino Ratio

El Sortino Ratio mide el rendimiento adicional con respecto al riesgo negativo incurrido:

$$So = \frac{R_p - R_f}{\sigma_n}$$

- $R_p$ : Retorno promedio del portafolio.
- ullet  $R_f$ :Tasa libre de riesgo.
- ullet  $\sigma_p$ : Desviación estándar de los retornos del portafolio

Más adecuado para evaluar activos que tienen distribución asimétrica de retornos.

#### Métricas

#### **Treynor Ratio**

Calcula el exceso de los retornos sobre la tasa libre de riesgo con respecto al riesgo sistem´atico (riesgo de mercado):

$$T = \frac{R_p - R_f}{\beta_p}$$

- $R_p$ : Retorno promedio del portafolio.
- ullet  $R_f$ :Tasa libre de riesgo.
- $\beta_p$ : Desviación estándar de los retornos del portafolio

Un Treynor Ratio más alto indica un mejor rendimiento ajustado al riesgo de mercado

#### Métricas

#### Jensen's Alpha

Mide el retorno extra sobre el retorno esperado según el nivel de riesgo sistemático, utilizando el modelo de valoración de activos financieros (CAPM):

$$\alpha = R_p - [R_f + \beta_p (R_m - R_f)]$$

- lpha: Jensen's Alpha.
- $ullet R_p$ :Retorno promedio del portafolio.
- ullet  $R_f$ :Tasa libre de riesgo.
- $\beta_p$ : Beta del portafolio.
- $R_m$ :Retorno promedio del mercado.

### DATOS

### Datos

### ETF's

- Tecnología: Technology Select Sector SPDR Fund (XLK), VanEck Semiconductor (SMH).
- Salud: Health Care Select Sector SPDR Fund (XLV), Shares Biotechnology ETF (IBB).
- Finanzas: Financial Select Sector SPDR Fund (XLF)
- Internacional: Vanguard S\&P 500 ETF (VOO)
- Bienes raíces: Vanguard Real Estate ETF (VNQ)
- Energías: iShares US Energy ETF (IYE)
- Materias primas: SPDR Gold Trust (GLD)
- Mercados emergentes: iShares Asia ETF 50 (AIA)
- Tiendas minoristas: SPDR S\&P Retail ETF (XRT)
- Consumo: The Consumer Discretionary Select Sector SPDR (XLY)

### RESULTADOS

### Supuestos

#### Conservador

- Rendimiento esperado: 6%
- No se permite apalancamiento ni ventas en corto
- Diversificación de un 10% por activo

#### Moderado

- Rendimiento esperado: 8%
- No se permite apalancamiento ni ventas en corto
- Diversificación de un 20% por activo

#### Agresivo

- Rendimiento esperado: 12%
- Se permite apalancamiento y ventas en corto (no más de un 15%)
- No hay diversificación máxima

### Pesos del Portafolio

| Portfolio   | Libre   | Prestamo | AIA     | GLD     | IBB     | IYE     | SMH     |
|-------------|---------|----------|---------|---------|---------|---------|---------|
| Conservador | 86.21   | 0        | 0       | 0       | 0       | 0       | 3.62    |
| Moderado    | 69.9    | 0        | 0       | 0       | 0       | 0       | 7.72    |
| Agresivo    | 70.4059 | 0        | -14.997 | 4.28914 | -14.997 | -14.997 | 15.9568 |

| Portfolio   | VNQ     | VOO    | XLF     | XLK     | XLV    | XLY     | XRT      |
|-------------|---------|--------|---------|---------|--------|---------|----------|
| Conservador | 0       | 0      | 0       | 5.59    | 4.58   | 0       | 0        |
| Moderado    | 0       | 0      | 0       | 12.29   | 10.09  | 0       | 0        |
| Agresivo    | -14.997 | 14.777 | 5.81884 | 13.7972 | 29.994 | 12.8874 | -7.93841 |

Table 1: Pesos por activo en porcentajes para cada tipo de portafolio

### Simulaciones

| Portafolio  | Retorno E. | Desviación | Retorno (5%) | Retorno (50%) | Retorno (95%) |
|-------------|------------|------------|--------------|---------------|---------------|
| Conservador | 0.0599     | 2.7168     | 0.0123       | 0.0594        | 0.1032        |
| Moderado    | 0.0799     | 5.9134     | -0.0247      | 0.0779        | 0.1734        |
| Agresivo    | 0.1199     | 8.1047     | -0.0214      | 0.1168        | 0.2498        |

Table 2: Tabla con datos de retorno y desviación esperado.

### Portafolio Conservador



### Portafolio Moderado





### Portafolio Agresivo



### Métricas

| Métrica     | Sharpe    | Roy's Safety First | Sortino | Treynor | Jensen's Alpha |
|-------------|-----------|--------------------|---------|---------|----------------|
| Conservador | 0.0062572 | 0.00368            | 0.62450 | 0.11432 | 0.00690        |
| Moderado    | 0.0062572 | 0.00169            | 1.35883 | 0.24874 | 0.01503        |
| Agresivo    | 0.0094771 | 0.01342            | 2.82857 | 0.51778 | 0.05705        |

Table 3: Métricas para portafolios conservador, moderado y agresivo.

### CONCLUSIONES

## CONCLUSIONES Y RECOMENDACIONES



#### Tasa libre de riesgo elevada:

La alta tasa libre de riesgo permite alcanzar los rendimientos deseados con exposición mínima a activos de alto rendimiento, como los ETF del sector tecnológico.



#### Exploración de funciones de utilidad:

Exploración de funciones de utilidad: Incorporar funciones de utilidad en el modelo de optimización permitiría personalizar las estrategias de inversión, considerando factores como asimetría, kurtosis y preferencias del inversionista.



#### Ventas en corto

El portafolio agresivo aprovecha la alta tasa libre de riesgo y las ventas en corto de activos de bajo rendimiento, maximizando la inversión en instrumentos de ganancia segura.



### Eliminación de activos con bajo rendimiento:

Se recomienda diversificar la cartera de ETF, eliminando aquellos con rendimientos bajos para evitar ventas en corto excesivas y lograr una asignación de capital más equilibrada.

### GRACIAS