2007-MA-1-17

EE24BTECH11066 - YERRA AKHILESH

- 1) Consider \mathbb{R}^2 with the usual topology. Let $S = \{(x, y) \in \mathbb{R}^2 : x \text{ is an integer}\}$. Then S is
 - a) open but NOT closed
 - b) both open and closed
 - c) neither open nor closed
 - d) closed but NOT open
- 2) Suppose $X = \{\alpha, \beta, \delta\}$. Let

$$\mathcal{T}_1 = \{\phi, X, \{\alpha\}, \{\alpha, \beta\}\} \text{ and } \mathcal{T}_2 = \{\phi, X, \{\alpha\}, \{\beta, \delta\}\}.$$

Then

- a) both $\mathcal{T}_1 \cap \mathcal{T}_2$ and $\mathcal{T}_1 \cup \mathcal{T}_2$ are topologies
- b) neither $\mathcal{T}_1 \cap \mathcal{T}_2$ nor $\mathcal{T}_1 \cup \mathcal{T}_2$ is a topology
- c) $\mathscr{T}_1 \cup \mathscr{T}_2$ is a topology but $\mathscr{T}_1 \cap \mathscr{T}_2$ is NOT a topology
- d) $\mathcal{I}_1 \cap \mathcal{I}_2$ is a topology but $\mathcal{I}_1 \cap \mathcal{I}_2$ is NOT a topology
- 3) For a positive integer n, let $f_n : \mathbb{R} \to \mathbb{R}$ be defined by

$$f_n(x) = \begin{cases} \frac{1}{4n+5}, & \text{if } 0 \le x \le n, \\ 0, & \text{otherwise.} \end{cases}$$

Then $\{f_n(x)\}$ converges to zero

- a) uniformly but NOT in L^1 norm
- b) uniformly and also in L^1 norm
- c) pointwise but NOT uniformly
- d) in L^1 norm but NOT pointwise
- 4) Let P_1 and P_2 be two projection operators on a vector space. Then
 - a) $P_1 + P_2$ is a projection if $P_1P_2 = P_2P_1 = 0$
 - b) $P_1 P_2$ is a projection if $P_1P_2 = P_2P_1 = 0$
 - c) $P_1 + P_2$ is a projection
 - d) $P_1 P_2$ is a projection
- 5) Consider the system of linear equations

$$x + y + z = 3$$
$$x - y - z = 4$$
$$x - 5y + kz = 6$$

Then the value of k for which this system has an infinite number of solutions is

			2
a) $k = -5$	b) $k = 0$	c) $k = 1$	d) $k = 3$
6) Let			
$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 3 \\ x & y & z \end{pmatrix}$			
and let $V = \{(x, y, z) \in \mathbb{R}^3 : det(A) = 0\}$. Then the dimension of V equals			
a) 0	b) 1	c) 2	d) 3
7) Let $S = \{0\} \cup \left\{\frac{1}{4n+7} : n = 1, 2,\right\}$. Then the number of analytic functions which vanish only on S is			
a) infinite	b) 0	c) 1	d) 2
8) It is given that $\sum_{n=0}^{\infty} a_n z^n$ converges at $z=3+i4$. Then the radius of convergence of the power series $\sum_{n=0}^{\infty} a_n z^n$ is			
a) ≤ 5	b) ≥ 5	c) < 5	d) > 5
9) The value of α for which $G = \{\alpha, 1, 3, 9, 19, 27\}$ is a cyclic group under multiplication modulo 56 is			
a) 5	b) 15	c) 25	d) 35
10) Consider \mathbb{Z}_{24} as the additive group modulo 24. Then the number of elements of order 8 in the group \mathbb{Z}_{24} is			
a) 1	b) 2	c) 3	d) 4

11) Define $f: \mathbb{R}^2 \to \mathbb{R}$ by

$$f(x,y) = \begin{cases} 1, & \text{if } xy = 0, \\ 2, & \text{otherwise.} \end{cases}$$

If $S = \{(x, y) : f \text{ is continuous at the point } (x, y)\}$, then

a) S is open c) $S = \phi$

d) S is closed b) S is connected

12) Consider the linear programming problem,

$$Max.z = c_1x_1 + c_2x_2, c_1, c_2 > 0$$
, subject to

$$x_1 + x_2 \le 3$$
$$2x_1 + 3x_2 \le 4$$
$$x_1, x_2 \ge 0.$$

Then,

- a) the primal has an optimal solution but the dual does NOT have an optimal solution
- b) both the primal and the dual have optimal solutions
- c) the dual has an optimal solution but the primal does NOT have an optimal solution
- d) neither the primal nor the dual have optimal solutions
- 13) Let $f(x) = x^{10} + x 1$, $x \in \mathbb{R}$ and let $x_k = k, k = 0, 1, 2, ..., 10$. Then the value of the divided difference $f[x_0, x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_10]$ is
 - a) -1 b) 0 c) 1 d) 10
- 14) Let *X* and *Y* be jointly distributed random variables having the joint probability density function

$$f(x,y) = \begin{cases} \frac{1}{\pi}, & \text{if } x^2 + y^2 \le 1, \\ 0, & \text{otherwise.} \end{cases}$$

Then P(Y > max(X, -X)) =

- a) $\frac{1}{2}$ b) $\frac{1}{3}$ c) $\frac{1}{4}$ d) $\frac{1}{6}$
- 15) Let X_1, X_2, \ldots be a sequence of independent and identically distributed chi-square random variables, each having 4 degrees of freedom. Define $S_n = \sum_{i=1}^n X_i^2, n = 1, 2, \ldots$ If $\frac{S_n}{n} \stackrel{P}{\to} \mu$, as $n \to \infty$, then $\mu =$
 - a) 8 b) 16 c) 24 d) 32
- 16) Let $\{E_n: n=1,2,\ldots\}$ be decreasing sequence of Lebesgue measurable sets on $\mathbb R$ and let F be a Lebesgue measurable set on $\mathbb R$ such that $E_1\cap F=\mu$. Suppose that F has Lebesgue measure 2 and the Lebesgue measure of E_n equals $\frac{2n+2}{3n+1}, n=1,2,\ldots$. Then the Lebesgue measure of the set $\left(\bigcap_{n=1}^{\infty} E_n\right) \cup F$ equals
 - a) $\frac{5}{3}$ b) 2 c) $\frac{7}{3}$ d) $\frac{8}{3}$
- 17) The extremum for the variational problem

$$\int_{0}^{\frac{\pi}{8}} \left((y')^{2} + 2yy' - 16y^{2} \right) dx, y(0) = 0, y\left(\frac{\pi}{8} \right) = 1,$$

occurs for the curve

a)
$$y = \sin(4x)$$

b) $y = \sqrt{2}\sin(2x)$

c)
$$y = 1 - \cos(4x)$$

d) $y = \frac{1 - \cos(8x)}{2}$