Ontexte Objectifs Travail réalisé Bilan

Développement, amélioration et intégration d'outils de génération de code

pour une plateforme de prototypage de fonctions de contrôle moteur.

Mathieu SOUM Université Paul Sabatier Master 2 – Développement Logiciel

Stage réalisé chez Aboard Engineering Maître de stage : Sébastien RICHE Tutrice universitaire : Isabelle FERRANÉ

Année universitaire 2014 - 2015

CONTEXTE

OBJECTIFS

Travail réalisé

BILAN

Automobile, Aéronautique, Marine, Loisir, Industriel de la R&D à la série

Domaines	Connaissances & expérience		
Moteurs thermiques (essence , Diesel)	 Combustion Stratégies de contrôle moteur, incl. dépollution Technologie des capteurs et actionneurs Problématiques de production série (diagnostic, adaptatif) Mise au point moteur / véhicule 		
Machines électriques	 Modélisation et simulation électronique de puissance et machine électrique Commande vectorielle Pilotage de machines électriques Mise au point et calibration 		
Hybrides	Contrôle & supervision d'énergie		
Outils	 Développement d'outils génériques et spécifiques client Instrumentation et essais pour tous les domaines 		

CONTEXT

OBJECTIFS

Travail réalisé

BILAN

Générateur de code embarqué C/Ada depuis Matlab Simulink.

Avantages

- ► Prix
- ▶ Maîtrise

« coopération sur les standards, concurrence sur la mise en œuvre »

ASW

L'application issue du code généré. Contient la glue ansi que la gestion de la communication CAN

RTF

La couche de laison entre le BSW et l'ASW. Lie également les SoftWare Components (SWC) entre eux.

BSW

Le microgiciel embarqué dans le calculateur. Ce sont les pilotes et API pour utiliser les entrées/sorties de la couche HW.

HW

Le matériel du calculateur

CONTROLLER AREA NETWORK

Processus de convertion des fichiers .dbc vers du code source C

OBJECTIFS

QGen

- ► Analyse du code
- ► Identification des problèmes
- ► Collaboration avec AdaCore

Plateforme Orianne

- ► Génération CAN fonctionnelle et viable
- ► Intégration à l'IHM Orianne
- ► Conception des outils manquants

CONTEXTE

OBJECTIFS

Travail réalisé

BILAN

QGEN – ANALYSE

Analyse statique (OCLint)

- Complexité
- Propreté du code

Analyse à l'execution

- Espace de stockage
- ▶ Mémoire
- ► Temps d'execution

QGEN – PREMIERS RÉSULTATS

Analyse statique : codes équivalents

Analyse à l'exécution :

- Moins performant
- ► Plus volumineux

Facteur 2

QGEN – HYPOTHÈSES D'AMÉLIORATIONS

- ► Extrapolation et interpolation
- ► Variables intermédiaires
- ▶ Déclaration des entrée/sorties

QGEN – DERNIÈRES MÉTRIQUES

Résultats équivalents entre QGen et Matlab RTW-EC.

- ► Temps d'execution : $800\mu s \Rightarrow 400\mu s$
- ► Espace de stockage grandement diminué

Résultats très concluants Première version majeure annoncée

Orianne – Découverte de la plateforme

Architecture: Composants OSGi

Non pertinent

- ► Manque de modularité
- ► Redondance
- Linéarité

Orianne – Générateur CAN

Trop de mémoire utilisée \Rightarrow code inutilisable

Étude de l'existant :

- Redondance
- ► Linéarité
- ▶ Complexité

Factorisation, abstraction ⇒ Clarté, maintenabilité

Orianne – Générateur CAN

Adaptation des templates

- Suppression des données inutilisées
- ► Passage en constante des configurations
- ► Factorisation du code généré

```
□ const SGN CFG signals $IDTRAME-0x$ $suffix$[$signal count$] = {/$decl sqn config$/
40
              /* Signal $NomSignal$ */
              &$NomSignal$,
                                          // ASWVariable
              $typeSignal$,
                                          // ASWVariable type
              &StartBit&,
                                          // start bit // Donnee issue de la DBC
              $SignalLength$,
                                          // lenght // Donnee issue de la DBC
              $SignedValueOfSignal$,
                                          // signed value // Donnee issue de la DBC
46
              $EndianessOfSignal$,
                                          // endianess // Donnee issue de la DBC
              $SignalFactor$,
                                          // factor // Donnee issue de la DBC
48
              $SignalOffset$,
                                          // offset // Donnee issue de la DBC
              $SignalInitValue$,
                                          // init value
              $StartBitModulo$,
                                          // StartBit modulo8
              &StartOctet&.
                                          // StartOctet
              SIDTRAMES,
                                          // id
              #OffsetCalcul#
                                           // OffsetSignedValue
          }/$decl sgn config$/
```

ORIANNE – INTÉGRATION À L'IHM

ORIANNE – INTÉGRATION À L'IHM

ORIANNE – BILAN CAN

Objectif de performance atteint

Facteur 7

Code généré testé et validé IHM de configuration complète

ORIANNE – PARTIE RTE

Configuration complète via l'IHM Développement du générateur

Ingine Configuration Fu	unction Configuration OS Configura	ECU configuration CAN Conf	guration			
Sensors Add Edt	Del		Actuators Add Edt	Del		
Name	Description	Type	Name	Description	Туре	
A	A	Analog	A	A	H-Bridge	
В	В	Analog	В	В	H-Bridge	
С	c	Analog	c	c	H-Bridge	
D	D	Frequency	D	D	Logical	
E	E	Frequency	E	E	PWM	
Save Restor						

CONTEXTE

OBJECTIFS

Travail réalisé

BILAN

Bilan

Expérience professionnelle

- ► Découverte du domaine automobile
- ► Expérience en alternance
- ► Atteinte des objectifs

Apports personnels

- ► Intérêt pour l'informatique embarquée
- ► Approfondissement technique
- ► Confort de mes compétences en anglais

Développement, amélioration et intégration d'outils de génération de code

pour une plateforme de prototypage de fonctions de contrôle moteur.

Mathieu SOUM Université Paul Sabatier Master 2 – Développement Logiciel

Stage réalisé chez Aboard Engineering Maître de stage : Sébastien RICHE Tutrice universitaire : Isabelle FERRANÉ

Année universitaire 2014 - 2015

AUTOSAR

ASW

L'application issue du code généré. Contient la glue ansi que la gestion de la communication CAN

RTF

La couche de laison entre le BSW et l'ASW. Lie également les SoftWare Components (SWC) entre eux.

BSW

Le microgiciel embarqué dans le calculateur. Ce sont les pilotes et API pour utiliser les entrées/sorties de la couche HW.

HW

Le matériel du calculateur