

Distributed ML Training

Speed up ML training convergence by parallelizing it across multiple devices (e.g., GPUs)

Distributed ML Training

Weak scaling

- ► Fix the batch size per device (e.g., GPU)
- ► As we add more devices, the total batch size increases
- ► To mitigate communication overheads, weak scaling is typically used, but it requires hyperparameter tuning

Strong scaling

- Fix the total batch size for all devices
- ► As we add more devices, the batch size per device decreases

MEMO

Cluster for Distributed ML Training

Cluster for Distributed ML Training

Distributed ML job example

- ► Facebook used 256 NVIDIA P100 GPUs to train ImageNet in 1 hour (CVPR 2017)
- ► Fast.ai trained ImageNet in 18 minutes using 16 AWS P3 instances, each with 8 NVIDIA V100 GPUs (http://www.fast.ai/2018/08/10/fastai-diu-imagenet/, August 10, 2018)

Cluster for Distributed ML Training

Cluster for big data processing

- ► Lots of machines, each of which has tens of CPU cores
- ► Lots of storage: HDDs for big data
- ► Medium-speed networking: 10Gbps Ethernet

Distributed training issues

Parallelism

data parallelism, model parallelism, hybrid parallelism

Model parameter synchronization

synchronous, asynchronous, bounded synchronous

Training architecture

parameter server architecture, Allreduce/Allgather architecture

MEMO

- Data Parallelism
- Model Parallelism
- Hybrid Parallelism

MEMO

Data Parallelism

- D = D1 U D2 U ··· U Dn
- Each worker i processes M with Di.

Model Parallelism

- M = M1 U M2 U ··· U Mn
- Each worker i processes Mi with D.

D

Hybrid Parallelism

- Synchronous training
- Asynchronous training
- Bounded-synchronous training

Synchronous training

- Each worker computes gradients with the up-to-date model parameters
- Gradients from all workers are aggregated
- Model parameters are updated with the aggregated gradients
- There is a barrier to update model parameters

Asynchronous training

- Each worker computes gradients with the current model parameters
- Each worker updates model parameters with the gradients computed independently
- Each worker executes as fast as it can, but it uses a model that does not reflect gradients aggregated from all workers
- Statistical efficiency vs. training throughput tradeoffs

MEMO

Bounded synchronous training

 Limit the difference between the version of the global model and the version of the model stored at each worker

Summary

- Distributed ML training
- Distributed ML training issues: parallelism, synchrony

Distributed ML Training Architecture

Allreduce/Allgather architecture

Parameter server architecture

Collective Communication

MEMO

Collective Communication

Allgather - Gather + Broadcast Allreduce - Reduce + Broadcast

Allreduce/Allgather synchronous training

Step 1

► Workers compute gradients with training data

Step 2

- Workers run Allreduce (or Allgather) to aggregate them and apply the sums to update the model parameters
- The above steps iterate until training converges

MEMO

Allreduce/Allgather synchronous training

Server

- ► Maintains a partition of the globally shared parameters
- ► Performs global aggregation steps

Worker

- Performs computation with (a portion of) training data communicates with servers
- ► Updating and retrieving the shared parameters

Synchronous Training

- ► Step 1
 - Workers compute gradients with training data and push them to servers
- ► Step 2
 - Each Server receives gradients from Workers, aggregates them, and applies the sums to update the model parameters
- ► Step 3
 - Workers pull the new model parameters
- ► The above steps iterate until training converges

Data parallel training

Server M2 M1 Mn machines Worker Copy of Copy of Copy of machines M M M D2 D1 Dn

TensorFlow Graph Transformation

Single-GPU graph

Machine

TensorFlow Graph Transformation: Allreduce Architecture

TensorFlow Graph Transformation: Parameter Server Architecture

TensorFlow Graph Transformation

- Dense model (e.g., Resnet50)
 - ▶ dense parameters → Allreduce architecture
- Sparse model (e.g., Language Model, Neural Machine Translation)
 - sparse parameters + dense parameters
 - → Parameter server architecture

MEMO

TensorFlow Graph Transformation: Parallax Hybrid Architecture

Sparse Variable

Sparse Grads

Dense Variable

Dense Grads

Summary

- Distributed ML training architecture
- Allreduce architecture
- Parameter server architecture
- TensorFlow graph transformation

