G-LEAP Journal Experiments Report

2022.1

Jianfeng Hou

houjf@shanghaitech.edu.cn

1 Emoji Prediction Datasets

We train the emoji prediction models using different datasets (at least not one single dataset) for the following two reasons:

- 1. In real-world scenarios, the models have already been pre-trained when deploying our edge-assisted emoji prediction system. The emoji prediction models may be trained by different groups of people using different devices (cloud servers, edge servers, or even end-devices). The collected dataset for training one emoji prediction model probably differ from others.
- 2. Using different training datasets can increase the diversity of our emoji prediction models.

We use the following emoji prediction datasets:

- 1. Celebrity Profiling (Emoji Prediction: Extensions and Benchmarking)
- 2. Twitter (SemEval-2018 Task 2)
- 3. Twitter (Twitter Emoji Prediction | Kaggle)
- 4. Twitter (DeepMoji), TODO

2 Emoji Prediction Models

The emoji prediction models can differ in the following three dimensions:

- 1. Base Model;
- 2. Vectorization Method;

3. Training Dataset.

Thus, the trained emoji prediction models used in our experiments can be listed clearly in Table 1.

Table 1: The trained emoji prediction models used in our experiments.

Index	Base Model	Validation Accuracy	Model Size	File
0	SVM	10462/50000 = 20.92%	768K	statistical/svm.pkl
1	Naïve Bayes	11110/50000 = 22.22%	1.3M	statistical/naive_bayes.pkl
2	Decision Tree	6568/50000 = 13.14%	1.1M	statistical/decision_tree.pkl
3	RNN-1	12781/50000 = 25.56%		neural/rnn/rnn_1.pkl
4	RNN-2	13265/50000 = 26.53%		neural/rnn/rnn_2.pkl
5	LSTM-1	14255/50000 = 28.51%		neural/lstm/lstm_1.pkl
6	LSTM-2	14677/50000 = 29.35%		neural/lstm/lstm_2.pkl
7	Bi-LSTM	15342/50000 = 30.68%		neural/lstm/bi_lstm.pkl
8	BERT	16532/50000 = 33.06%	518M	neural/transformer/bert.pkl
9	RoBERTa	16441/50000 = 32.88%	477M	neural/transformer/roberta.pkl

2.1 Statistical Models

Currently we only use Bag of Words (BoW) as the vectorization method for training all the statistical models.

Table 2: The trained emoji prediction models used in our experiments.

Index	Base Model	Vectorization Method	Training Dataset	Model Size	Test Accuracy	Inference Time
0	Naïve Bayes					
1	SVM					
2	BERT					
3	RoBERTa					
4	MLP					
5	LSTM					
6	Bi-LSTM					
7	RNN					
8	DeepMoji					
9	fastText					

2.1.1 Naïve Bayes

2.1.2 Support Vector Machine (SVM)

2.1.3 Decision Tree

2.2 Neural Models

In our experiments, we use the following vectorization method for training MLP models:

- Word embeddings: GloVe embeddings.
- Sequence embeddings: mean of all words in a sentence. Reference

- 2.2.1 Multi-Layer Perceptron (MLP)
- 2.2.2 Recurrent Neural Network (RNN)
- 2.2.3 Long-Short Term Memory (LSTM)
- 2.2.4 Transformers

2.3 Vectorization

- 1. Bag of Words / Characters
- 2. One-hot encoding
- 3. word embeddings + sequence embeddings

3 Miscellaneous

3.1 Experiments Observations

Neural models with smaller batch size can converge quicker, and produce higher accuracy.