Laplace transformation

Harry Chen

April, 2021

Laplace transformation

Def. At points of convergence, the Laplace transformation of function f(t) is the Laplace integral

$$F(s) = \int_0^\infty e^{-st} f(t) \, \mathrm{d}t$$

on parameter $s \in \mathbb{C}$, and t is a dummy variable. Write

$$\mathfrak{L}{f(t)} = F(s)$$
 or $f(t) \hookrightarrow F(s)$

In general, only consider where f is defined for $0 \le t < \infty$.

$$\int_0^\infty e^{-st} f(t) \, \mathrm{d}t$$

Question: where does the Laplace integral converge?

Convergence of the Laplace integral

Theorem (1)

A Laplace integral which converges at some point β , converges in the closed right half-plane: $\Re s > \Re \beta$.

$$\int_0^\infty e^{-st} f(t) dt$$
. Examples

1. $f(t) \equiv e^{at}$ (a arbitrary, complex). Then

$$F(s) = \int_0^\infty e^{-(s-a)t} dt = \frac{1}{s-a}$$

for $\Re s > \Re a$.

$$\int_0^\infty e^{-st} f(t) dt$$
. Examples

1. $f(t) \equiv e^{at}$ (a arbitrary, complex). Then

$$F(s) = \int_0^\infty e^{-(s-a)t} dt = \frac{1}{s-a}$$

for $\Re s > \Re a$.

2. $f(t) \equiv \cosh(kt) \equiv \frac{e^{kt} + e^{-kt}}{2}$. Then

$$F(s) = \frac{s}{s^2 - k^2}$$

for $\Re s > |\Re k|$.

3. $f(t) \equiv \sinh(kt) \equiv \frac{e^{kt} - e^{-kt}}{2}$. Then

$$F(s) = \frac{k}{s^2 - k^2}$$

for $\Re s > |\Re k|$.

Properties of Laplace transformation

Theorem (2.1)

Laplace transformations have unique inverse.

Integration of the original function

Theorem (2.2)

Define

$$\phi(t) = \int_0^t f(\tau) \, \mathrm{d}\tau.$$

Then if $F \equiv \mathfrak{L}\{f\}$ converge for some real $s = x_0 > 0$, then $\Phi \equiv \mathfrak{L}\{\phi\}$ converges for $s = x_0$, and

$$\Phi(s) = \frac{1}{s}F(s).$$

Differentiation of the original function

$$\int_0^t f'(\tau) d\tau = f(t) - f(0^+).$$

Therefore

$$\mathfrak{L}\{f'(t)\} = s \cdot (F(s) - \mathfrak{L}\{f(0^+)\}) = sF(s) - f(0^+).$$

Theorem (2.3)

If f(t) is differentiable n times for t > 0, and $\mathfrak{L}\{f^{(n)}\}$ converges for some $x_0 > 0$; then

$$\mathfrak{L}\{f^{(n)}\} = s^n F(s) - f(0^+) s^{n-1} - f'(0^+) s^{n-2} \cdots - f^{(n-1)}(0^+).$$

Admissible functions

Def. Class \Im_0 includes absolutely integrable piece-wise continuous functions, which are bounded in every finite interval that does not includes the origin.

Convolution of the original function

Theorem (2.4)

If F_1 and F_2 converge absolutely for $s=s_0$, and if $f_1,f_2\in \mathfrak{I}_0$, then $\mathfrak{L}\{f_1*f_2\}$ converge absolutely for $s=s_0$, and

$$\mathfrak{L}\{f_1*f_2\}=F_1\cdot F_2.$$

ODE w/ boundary value

Suppose that we are given the problem:

$$y'' - \alpha^2 y = f(t) \ (\alpha \neq 0, \text{complex})$$

with f(t) continuous, and boundary values y(0), y(l) specified.

$$y'' - \alpha^2 y = f(t)$$

Proceed as if y'(0) is given, then

$$\mathfrak{L}\{y''\} - \alpha^2 \mathfrak{L}\{y\} = F(s) \Leftrightarrow s^2 Y - y(0)s - y'(0) - \alpha^2 Y = F(s).$$

Therefore

$$Y(s) = \frac{F(s)}{s^2 - \alpha^2} + y(0)\frac{s}{s^2 - \alpha^2} + y'(0)\frac{1}{s^2 - \alpha^2}.$$

$$y^{\prime\prime} - \alpha^2 y = f(t)$$

$$Y(s) = \frac{F(s)}{s^2 - \alpha^2} + y(0) \frac{s}{s^2 - \alpha^2} + y'(0) \frac{1}{s^2 - \alpha^2}.$$

Recall that $\frac{\alpha}{s^2-\alpha^2}$ $\bullet \multimap sinh(\alpha t)$ and $\frac{s}{s^2-\alpha^2}$ $\bullet \multimap cosh(\alpha t)$, hence

$$y(t) = \frac{1}{\alpha} f(t) * \sinh(\alpha t) + y(0) \cosh(\alpha t) + y'(0) \frac{1}{\alpha} \sinh(\alpha t).$$

$$y^{\prime\prime} - \alpha^2 y = f(t)$$

- I. $f(t) \equiv 0$, y(0) and y(l) arbitrary.
- II. $f(t) \not\equiv 0$, y(0) = y(1) = 0.

case I: $f(t) \equiv 0$

$$y(t) = y(0) \cosh(\alpha t) + y'(0) \frac{1}{\alpha} \sinh(\alpha t).$$
At $t = l$,
$$y(l) = y(0) \cosh(al) + \frac{1}{a} y'(0) \sinh(al).$$

$$\Leftrightarrow \frac{1}{a} y'(0) = \frac{y(l) - y(0) \cosh(al)}{\sinh(al)}$$

case II:
$$f(t) \not\equiv 0$$
, $y(0) = y(l) = 0$

Introduce the "Green's Function"

$$\gamma(t,\tau;\alpha) = \begin{cases} -\frac{1}{\alpha} \frac{\sinh \alpha \tau \sinh \alpha (l-t)}{\sinh \alpha l}, & \text{for } 0 \le \tau \le t; \\ -\frac{1}{\alpha} \frac{\sinh \alpha t \sinh \alpha (l-\tau)}{\sinh \alpha l}, & \text{for } t \le \tau \le l. \end{cases}$$

Then the solution is

$$y(t) = \int_0^t \gamma(t, \tau; \alpha) f(\tau) d\tau.$$

$$y'' - \alpha^2 y = f(t)$$
 in unbounded interval

Theorem (3.1)

Given the following boundary value problem in the infinite interval:

$$y'' - \alpha^2 y = f(t) \ (\alpha^2 \in \mathbb{C} \backslash \mathbb{R}_-), \ y(0) \ and \ y(\infty) \ specified;$$

if f(t) is continuous for $t \ge 0$, and $\lim_{t \to \infty} f(t) = f(\infty)$ does exist, then a solution exists iff $y(\infty) = -f(\infty)/\alpha^2$, and is given by:

$$y(t) = y(0)e^{-\alpha t} + \int_0^\infty \gamma_\infty(t, \tau; \alpha)f(\tau) d\tau.$$

wave equation

Given the boundary value problem in interval $(0, \infty)$:

$$\begin{cases} u_{xx} - au_{tt} = 0 \\ \lim_{x \to 0} u(x, t) = a_0(t) \\ \lim_{t \to 0} u(x, t) = 0, \lim_{t \to 0} u_t(x, t) = 0 \end{cases}$$

wave equation

Given the boundary value problem in interval $(0, \infty)$:

$$\begin{cases} u_{xx} - au_{tt} = 0 \\ \lim_{x \to 0} u(x, t) = a_0(t) \\ \lim_{t \to 0} u(x, t) = 0, \lim_{t \to 0} u_t(x, t) = 0 \end{cases}$$

Consider the Laplace transformation on variable t. That is

$$u(x,t) \hookrightarrow U(x,s)$$

Satisfying certain hypothesis, this is in the image space

$$\begin{cases} U_{xx} - as^2 U = 0 \\ \lim_{x \to 0} U(x, s) = A_0(s) \end{cases}$$

$$\begin{cases} U_{xx} - as^2 U = 0 \\ \lim_{x \to 0} U(x, s) = A_0(s) \end{cases}$$

By theorem 3.1, the solution for any fixed s is

$$U(x,s) = A_0(s)e^{-x\sqrt{a}s}$$

$$\begin{cases} U_{xx} - as^2 U = 0 \\ \lim_{x \to 0} U(x, s) = A_0(s) \end{cases}$$

By theorem 3.1, the solution for any fixed s is

$$U(x,s)=A_0(s)e^{-x\sqrt{a}s}$$

Applying the translation theorem, the solution in original space is

$$u(x,t) = \begin{cases} 0 & \text{for } t < \sqrt{a} \\ a_0(t - x\sqrt{a}) & \text{for } t \ge \sqrt{a} \end{cases}$$

Translation

Theorem (Translation)

$$f(t-b)u(t-b) \hookrightarrow e^{-bs}F(s)$$
 for $b > 0$.

where

$$u(t) = \begin{cases} 0, t \leq 0 \\ 1, t > 0. \end{cases}$$

$$\mathfrak{L}\{f_2\} = \int_b^\infty e^{-st} f(t-b) dt = e^{-bs} \int_0^\infty e^{-su} f(u) du = e^{-bs} F(s).$$

