Batched Recursive Neural Networks

Kushal Arora arorak@amazon.com

Abstract

In this article, I propose a novel way to do a batch implementation of the recursive neural network models.

1 General Formulation

Figure 1: Composition tree for sentence 'My dog like eating Pizza.'

Let D be a dataset containing tokenized sentences. Let $W=w_1w_2..w_n$ be a sentence of length n in this data set. Let t(W) be the tree structured associated with the sentence W. Figure 1 depicts one such tree for a sentence W_{12345} . Let R(t,W) be the set of binary rules and leaf nodes used in the derivation of sentence W. Equation 1 depicts the rule set $R(t,W_{12345})$ for the sentence W_{12345} shown in Figure 1.

$$R(t, W_{12345}) = \{ w_{12} \leftarrow w_1 w_2, \\ w_{34} \leftarrow w_3 w_4, \\ w_{345} \leftarrow w_3 w_{45}, \\ w_{12345} \leftarrow w_{12} w_{345}, \\ w_1, w_2, w_3, w_4, w_5 \}$$
 (1)

1.1 Recurrent Neural Network Scoring Equation

Let d be the dimensions of the embedding space and $X_{i..k}$, $X_{k+1..j}$ be the $d \times 1$ embedding vector corresponding to sequences $w_{i..k}$ and $w_{k+1..j}$ respectively. Using standard recursive neural network composition function, $X_{i..j}$ can be computed as

$$X_{i..j} = f\left(H\left[\begin{array}{c} X_{i..k} \\ X_{k+1..j} \end{array}\right]\right)$$

f here is a non linearity like tanh and H is a $d \times 2d$ composition matrix. The score for the node $X_{i...i}$ can calculated as

$$s(w_{i..j} \leftarrow w_{i..k} w_{k+1..j}) = s(w_{i..j}) = g(UX_{i..j})$$

For example, let's consider sentiment classification task with recursive neural network architecture [1]. Let K be the caridinality of the target classes.

$$s(w_{i..j}) = softmax(UX_{i..j})$$

U in this case is a $K \times d$ sentiment classification matrix. Let $T(w_{i...j})$ be a one-hot vector with sentiment label for node $w_{i...j}$, the likelihood for the node $\mathcal{L}(w_{i...j}, T)$ will be

$$\mathcal{L}(w_{i...j}, T) = T(w_{i...j})^T s(w_{i...j})$$

The likelihood for the whole sentence $\mathcal{L}(W;t,T)$ can now be calculated as

$$\mathcal{L}(W,T;t) = \prod_{w_{i...j} \leftarrow w_{i...k} w_{k+1...j} \in R(t,W)} \mathcal{L}(w_{i...j},T)$$

1.2 An Alternate formulation

Let $\theta(W)^1$ be a $n \times n \times n$ sparse tensor such that

$$\theta(W,t)[i,j,k] = \begin{cases} 1 & w_{i...j} \leftarrow w_{i..k} w_{k+1..j} \in R(t,W) \\ 0 & otherwise \end{cases}$$
 (2)

¹For simplicity, we index all our matrices starting at 1, so first element of matrix $\theta(i, j, k)$ would be $\theta[1, 1, 1]$.

Let $\pi(w_{i...j})$ be the inside score of the sequence $w_{i...j}$. The inside score is defined recursively as:

$$\pi(w_{ii}) = \mathcal{L}(w_{ii}, T)$$

and

$$\pi(w_{i..j}; \theta) = \sum_{k=i+1}^{j-1} \theta(W, t)[i, j, k] \mathcal{L}(w_{i..j}, T) \pi(w_{i..k}) \pi(w_{k+1..j})$$
(3)

As $\theta(W, t)$ is an indicator tensor, we can write score of the sentence W, $\mathcal{L}(W, t)$ in terms of π as:

$$\mathcal{L}(W,t) = \pi(w_{1..n};\theta)$$

1.3 A Matrix Formulation for Inside Score.

Now, let $\Pi(W)^2$ be a $n \times n$ matrix of inside scores whose rows are starting index and columns are the span sizes i.e. index [i,j] would correspond to inside score $\pi(w_{i..(i+j)})$. First row of this matrix would be inside scores of all the leaf nodes $\pi(w_{ii})$ and each row would contain n-i entries. Equation 4 shows an example matrix for $\Pi(W_{12345})$.

$$\Pi(W_{12345}) = \begin{bmatrix}
\pi(w_1) & \pi(w_{12}) & \pi(w_{123}) & \pi(w_{1234}) & \pi(w_{12345}) \\
\pi(w_2) & \pi(w_{23}) & \pi(w_{234}) & \pi(w_{2345}) & 0 \\
\pi(w_3) & \pi(w_{34}) & \pi(w_{345}) & 0 & 0 \\
\pi(w_4) & \pi(w_{45}) & 0 & 0 & 0 \\
\pi(w_5) & 0 & 0 & 0 & 0
\end{bmatrix}$$
(4)

Let Π_l^i be a $l \times l$ sub-matrix starting at row i+1. \bar{I}_l is the reflection of identity matrix I_l , $\Pi[i]_l$ is first l elements of ith row of matrix $\Pi(W)$. Let j=i+l, \mathcal{L}_{ij} is a length l row vector such that element k, i < k < j, is $\mathcal{L}(w_{i..j} \leftarrow w_{i..k}w_{k+1..j})$. [i,l]th index of matrix Π can be calculated as follows

$$\Pi[i, l] = \pi(w_{i..j}) = (\theta[i, j, 1: l] \circ \mathcal{L}_{ij}) (\bar{I}_l \circ \Pi_l^i) \Pi[i]_l^T$$
(5)

Here, \circ is a element wise multiplication.

Let's try to compute $\pi(w_{12345})$ for sentence W_{12345} from Figure 1. In this case, i=1, j=5, and l would be j-i=4. \mathcal{L}_{ij} and $\theta[i,j,1:l]$ in this case will be

$$\mathcal{L}_{15} = [\mathcal{L}(w_{12345}, T), \mathcal{L}(w_{12345}, T), \mathcal{L}(w_{12345}, T), \mathcal{L}(w_{12345}, T)]$$

and

$$\theta[1,5,1:4] = [0,1,0,0]$$

²In similar vein, the first element of matrix $\Pi(W)$ would be indexed at [1, 1].

Now, $(\theta[ij] \circ S_{ij})$ will be

$$(\theta[i,j] \circ S_{ij}) = [0, \mathcal{L}(w_{12345}, T), 0, 0]$$

 $\bar{I}_l \circ \Pi_l$, $\Pi[i]_l^T$ and $(\bar{I}_l \circ \Pi_l^i)\Pi[i]_l^T$ then would be

$$ar{I}_l \circ \Pi_l = \left[egin{array}{cccc} \pi(w_{2345}) & 0 & 0 & 0 \ 0 & \pi(w_{345}) & 0 & 0 \ 0 & 0 & \pi(w_{45}) & 0 \ 0 & 0 & 0 & \pi(w_5) \end{array}
ight],$$

$$\Pi[i]_l^T = \begin{bmatrix} \pi(w_1) \\ \pi(w_{12}) \\ \pi(w_{123}) \\ \pi(w_{1234}) \end{bmatrix},$$

and

$$(\bar{l}_l \circ \Pi_l^i) \Pi[i]_l^T = \begin{bmatrix} \pi(w_1) \pi(w_{2345}) \\ \pi(w_{12}) \pi(w_{345}) \\ \pi(w_{123}) \pi(w_{45}) \\ \pi(w_{1234}) \pi(w_5) \end{bmatrix}$$

Finally, $\pi(w_{12345})$ would be

$$\pi(w_{12345}) = \mathcal{L}(w_{12345}, T)\pi(w_{12})\pi(w_{345})$$

In the formulation above, the tree structure is codified in tensor θ and doesn't need a dynamic network to compute $\mathcal{L}(W,T;t)$, hence this formulation can be used for batch computation.

1.4 Batched Recursive Neural Network

Let B be the batch of size b, N be the length of the longest sentence in batch B. Let $\tilde{\theta}$ be a 4 dimensional tensor with dimensions $b \times N \times N \times N$ and $\tilde{\Pi}$ be a $b \times N \times N$ tensor.

Let W_m be the mth sentence in batch B and let the length of W_m be n, we define $\tilde{\theta}$ as $\tilde{\theta}[m,1:n,1:n,:] = \theta(W_m)$ and $\tilde{\Pi}$ as $\tilde{\Pi}[m,1:n,1:n] = \Pi(W_m)$. Let l=j-i and \tilde{I}_l is a $b\times l\times l$ tensor with $\tilde{I}_l[m,:,:] = \bar{I}_l$, we can compute $\tilde{\Pi}[:,i,j]$ as:

$$\tilde{\Pi}[:,i,j] = (\tilde{\theta}[:,i,j,1:l] \circ \tilde{\mathcal{L}}_{ij}[:])(\tilde{I}_l[:] \circ \tilde{\Pi}_l^i[:])\tilde{\Pi}[:,i]_l^T$$
(6)

Here, $\tilde{\mathcal{L}}_{ij}$ is a $l \times b$ matrix such that $\tilde{\mathcal{L}}_{ij}[m] = \mathcal{L}_{ij}(W_m)$. Figure 2 shows the Equation 6.

Similarly, we can compute $\tilde{\mathcal{L}}_{ij}$ in the batched manner. Let $\tilde{X}_{i.k.j}$ is a $b \times 2d$ matrix defined as

$$\tilde{X}_{i.k.j}[m,:] = \begin{bmatrix} X_{i..k}^m \\ X_{k+1-i}^m \end{bmatrix}$$

Figure 2: Computation of $\tilde{\Pi}[:,i,j]$

Here, $X_{i..k}^m$, $X_{k+1..j}^m$ are the embedding of $w_{i..k}^m$, $w_{k+1..j}^m$ which are span [i,k] and [k+1,j] of sentence W_m . Also, such that $w_{i..j}^m \leftarrow w_{i..k}^m w_{k+1..j}^m \in R(W_m)$. Let \tilde{H} be a $b \times 2d \times d$ matrix such that $\tilde{H}[m,:,:] = H$. The $\tilde{X}_{i..j}$ will be

$$\tilde{X}_{i..j}[:] = f\left(\tilde{H}[:]\tilde{X}_{i.k.j}[:]\right)$$

Let \tilde{U} be a $b \times K \times d$ matrix such that $\tilde{U}[m,:,:] = U$, let $w_{i..j}^m$ be the i,jth span of sentence W_m . Let \tilde{T} is a $b \times N \times N \times K$ matrix such that $\tilde{T}[m,i,j,:] = T(w_{i..j}^m)$. Now, we can compute $\tilde{\mathcal{L}}_{ij}$ as

$$\tilde{\mathcal{L}}_{ij}[:] = \tilde{T}[:, i, j, :] softmax(\tilde{U}[:]X_{i..j}[:])$$

1.5 Implementation Details

Let's start by computing $(\tilde{I}_l[:] \circ \tilde{\Pi}_l^i[:]) \tilde{\Pi}[i,:]_l^T$. Let $\tilde{\Pi}_l^i$ be $b \times l \times l$ tensor such that $\tilde{\Pi}_l^i = \tilde{\Pi}[:, i+1:(i+1+l), 1:l]$, $\tilde{\Pi}_i$ be $b \times l$ matrix such that $\tilde{\Pi}_i = \tilde{\Pi}[:, i, 1:l]$ and Π_{out} be a b length vector that contains the output of $(\tilde{I}_l[:] \circ \tilde{\Pi}_l^i[:]) \tilde{\Pi}[i,:]_l^T$ operation.

$$\begin{split} & \text{insideKernel}(\tilde{\Pi}_l^i, \tilde{\Pi}_i, \Pi_{out}, \ \textbf{1}): \\ & \text{b = blockIdx} \\ & \text{t= threadIdx} \\ & \Pi_{out}[\textbf{b}] + = \tilde{\Pi}_l^i[\textbf{b}, \textbf{t}, \textbf{l-t}] * \tilde{\Pi}_i[\textbf{b}, \textbf{t}] \end{split}$$

Let's define a compacting operation which given a vector of one-hot vectors, returns an array of indexes that were 1 in the input matrix. Let $\tilde{\theta}_{ij}$ be $b \times l$ one hot matrix such that $\tilde{\theta}_{ij} = \theta[:, i, j, 1:l]$ and θ^{out}_{ij} is a length $b \times 2$ matrix for output such that $\theta^{out}_{ij}[:, 1]$ is the batch index and $\theta^{out}_{ij}[:, 2]$ is the split index k, we define an kernel compactIdxKernel as

```
compactIdxKernel(\tilde{\theta}_{ij}, \theta_{ij}^{out}, n)
```

n here is the length of matrix θ_{ij}^{out} .

Let $w_{i..j} \leftarrow w_{i..k}w_{k+1..j} \in R(W_m)$. Let's define a likelihood Kernel which takes in the length d embedding vectors $X_{i..k}$ and $X_{k+1..j}$ corresponding to $w_{i..k}$ and $w_{k+1..j}$, $w_{i..j}$'s label $T_{i..j}$ and return $w_{i..j}$'s embedding vector $X_{i..j}$ and its likelihood $\tilde{\mathcal{L}}_{ij}$.

```
likelihoodKernel(X_{i..k}, X_{k+1..i}, T_{i..i}, X_{i..i}, \tilde{\mathcal{L}}_{ii})
```

Let \tilde{X} be a $b \times N \times N \times d$ tensor such that $\tilde{X}[m,i,j]$ is the embedding vector for span i,j from sentence m in batch B, let \tilde{T} be a $b \times N \times N$ label matrix such that $T[m,i,j] = T^m_{i...j}$ is the label for span i,j from sentence m in batch B and $\tilde{\mathcal{L}}_{ij}$ is a length b vector such that $\tilde{\mathcal{L}}_{ij}[m] = \mathcal{L}_{ij}(W_m)$ i.e. mth index in $\tilde{\mathcal{L}}_{ij}$ is the score of span i,j from sentence m in batch B.

Using these definitions, we now define another kernel scoring KernelBatch which takes as input tensors \tilde{X} , \tilde{T} , θ_{ij}^{out} and returns S_{ij}

```
\begin{split} & \text{scoringKernelBatch}(\tilde{X}, \textbf{i}, \textbf{j}, \tilde{T}, \theta_{ij}^{out}, \ \tilde{\mathcal{L}}_{ij}): \\ & \quad \textbf{i} = \textbf{blockIdx} \\ & \quad \textbf{b} = \theta_{ij}^{out}[\textbf{i}, \textbf{1}] \\ & \quad \textbf{k} = \theta_{ij}^{out}[\textbf{i}, \textbf{2}] \\ & \quad \text{scoringKernel}(\tilde{X}[\textbf{b}, \textbf{i}, \textbf{k}], \tilde{X}[\textbf{b}, \textbf{k+1}, \textbf{j}], \tilde{T}[\textbf{b}, \textbf{i}, \textbf{j}], \tilde{X}[\textbf{b}, \textbf{i}, \textbf{j}], \tilde{\mathcal{L}}_{ij}[\textbf{b}]) \end{split}
```

Finally, we define inside Method that computes $\tilde{\Pi}[:,i,j]$

References

[1] Socher, R., Perelygin, A., Wu, J. Y., Chuang, J., Manning, C. D., Ng, A. Y., and Potts, C. Recursive deep models for semantic compositionality over a sentiment treebank. In *Proceedings of the conference on empirical methods in natural language processing (EMNLP)* (2013), vol. 1631, Citeseer, p. 1642.