

Indian Institute of Technology Kharagpur

Mid-Autumn Semester Examination 2023-24

Advanced Macroeconomics (HS60243)

Full Marks: 30

Answer All Questions

- 1. Consider, an Overlapping Generation (OLG) model discussed in the class, where population grows at the rate, 0 < n < 1; and capital fully depreciates in each period; $\delta = 1$. Production function of the economy is, $Y_t = K_t^{\alpha} N_t^{1-\alpha}$; $0 < \alpha < 1$. K_t is the amount of capital at time, t; and N_t is the amount of labour at time, t. An individual is endowed with 1 unit of labour when young, and dies next period as old. Old does not have any endowment of labour. As a result, N_t is also the number of population at time, t. Suppose, the consumption of an individual when young at time t is, c_t^1 ; and when old at time t+1 is, c_{t+1}^2 . Lifetime utility function of an individual is, $u(c_t^1, c_{t+1}^2) = log(c_t^1) + \beta log(c_{t+1}^2)$; $0 < \beta < 1$. β is the discount factor. The wage rate of the economy at time, t is w_t ; and the rental rate at time t is, r_t . (25)
- a) Write down the budget constraint of an individual when young, and also when old. Also, write down the budget constraint in the present discounted value format. (1+1+2)
- b) Using the profit maximization of the firm show that, $\overline{w_t} = (1 \alpha)k_t^{\alpha}$, and $r_t = \alpha k_t^{\alpha-1}$ (1+1)
- c) Set, the relevant Lagrangian and derive the Euler Equation. Derive the demand function for, c_t^1 , c_{t+1}^2 . Also derive the optimal savings scheme of the young at time, t, s_t . (2+1+1+1)
- d) Derive the difference equation of the percapita capital stock at time; k_{t+1} , and calculate the steady state percpita capital stock, k_{ss} when $\alpha = \frac{1}{3}$; n = 0.05; $\beta = 0.99$. (3+2)
 - e) Derive the resource constraint of the economy at the steady state, and calculate the golden rule level of percapita capital stock, k_g when $\alpha = \frac{1}{3}$; n = 0.05; $\beta = 0.99$. (3+2)
 - f) Comment on the dynamic efficiency of the competitive equilibrium when, $\alpha = \frac{1}{3}$; n = 0.05; $\beta = 0.99$. (4)
 - 2. Consider the infinite horizon Neo-classical growth model discussed in the class. Suppose, the utility function is, $u(c_t) = log(c_t)$; where c_t is the percapita consumption. Suppose, the production function in the percapita form is, $y_t =$

 $f(k_t)=k_t^{\alpha}$; $\alpha=\frac{1}{3}$. Suppose, the depreciation of capital stock, $\delta=1$, and the discount factor, $\beta=0.99$. Also assume that, the rate of growth of population is, n=0.05. (5)

- 1. Calculate the steady state real interest rate (1)
- 2. Calculate, the steady state percapita consumption and investment. Calculate the Golden rule level of percapita capital stock, k_g (1+1+2)