

Sep 06, 2022

Sample preparation for aCGH karyotyping

Hanqin Li¹, Dirk Hockemeyer¹

¹University of California, Berkeley

1 Works for me

dx.doi.org/10.17504/protocols.io.kxygxzdrov8j/v1

ABSTRACT

This protocol describes the standard procedure preparing cell pellets from human pluripotent stem cells (hPSCs) cultured on MEFs for outsourced aCGH karyotyping.

General Notes:

1. Throughout these protocols, the term hPSC is used to collectively refer to both hiPSCs and hESCs. All described procedures have been tested and work equally well for hiPSCs and hESCs.

DOI

dx.doi.org/10.17504/protocols.io.kxygxzdrov8j/v1

PROTOCOL CITATION

Hanqin Li, Dirk Hockemeyer 2022. Sample preparation for aCGH karyotyping. **protocols.io**

https://protocols.io/view/sample-preparation-for-acgh-karyotyping-cd2us8ew

FUNDERS ACKNOWLEDGEMENT

Į

Aligning Science Across Parkinson's

Grant ID: ASAP-000486

LICENSE

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

CREATED

Jul 23, 2022

1

LAST MODIFIED

Sep 06, 2022

PROTOCOL INTEGER ID

67380

MATERIALS TEXT

Α	В	С
Item	Vendor	Catalog #
DMEM/F12	Thermo	11320082
	Fisher	
Knockout Serum Replacement	Thermo	10828-028
	Fisher	
Newborn Calf Serum	Sigma	N4762
L-Glutamine	Sigma	G8540
Penicillin & Streptomycin (100X)	Thermo	15140163
	Fisher	
MEM Non-Essential Amino Acids	Thermo	11140050
(100X)	Fisher	
Collagenase type IV	Thermo	17104019
	Fisher	
40 micron Cell Strainer	Corning	352340
DPBS w/o	Corning	MT21031CV
Calcium and magnesium (DPBS)		

Collecting hPSCs colonies from MEFs 30m

- 1 Use one, almost confluent, 6-well plate of hPSCs to prepare cell pellet
- Wash once with DPBS
- Add 1 ml of 1 mg/ml collagenase solution into each well to separate hPSC colonies from MEFs. Incubate © 00:30:00 at § 37 °C.

3.1 Collagenase solution

Collagenase type IV	10 mg
KSR medium	10 ml

1 mg/ml Final volume: 10 ml

KSR medium

DMEM/F12	385 ml
Knockout Serum Replacement	100 ml
L-Glutamine (200 mM)	5 ml
Penicillin & Streptomycin (100X)	5 ml
MEM Non-Essential Amino Acids	5 ml
(100X)	

Final volume: 500 ml

Add 2 ml Wash Medium to each well

4.1 Wash Medium

DMEM/F12	470 ml
Newborn Calf Serum	25 ml
Penicillin & Streptomycin (100X)	5 ml

Final volume: 500 mL

- 5 Pipette repeatedly with 5 ml pipette to lift colonies. Be careful not to carry over too many MEFs
- Transfer all colonies into a 15 ml tube
- Add 7 ml Wash Medium into the 15 ml tube. Pipette with 10 ml Stripette for 5 times to separate MEFs that are attached to hPSCs colonies
- Place the 15 ml tubes on a tube rack and gravity settle colonies at & Room temperature for **© 00:05:00** .

9	Aspirate supernatant and add 10 ml Wash Medium. Invert the tube 3 times to mix.
10	Gravity settle at & Room temperature for © 00:05:00.
11	Aspirate supernatant and re-suspend colonies in 10 ml Wash Medium
12	Place a 40 μm cell strainer onto a 50 ml tube
13	Strain the colony suspension from step 11. Keep the strainer since colonies are trapped on it.
14	Wash the strainer with 10 ml Wash Medium (x2)
15	Revert the strainer and place it in a 6-well plate, bottom-up
16	Apply 5 ml Wash Medium to the bottom of the strainer, twice. This will separate colonies from the strainer and wash them into the 6-well plate.
17	Collect colonies from the 6-well plate to a new 15 ml tube
18	Centrifuge the 15 ml tube at 300 x g, 00:05:00
	Aspirate most of the medium. Leave 1 ml of medium

Citation: Hanqin Li, Dirk Hockemeyer Sample preparation for aCGH karyotyping https://dx.doi.org/10.17504/protocols.io.kxygxzdrov8j/v1

- 20 Re-suspend colonies in the remaining medium, then transfer them to a 1.8 ml Eppendorf tube
- 21 Centrifuge the 1.8 ml tube at **300 x g, 00:05:00**

5m

- 22 Remove the supernatant and cap the tube
- 23 Snap freeze the 1.8 ml tube by placing it in liquid nitrogen for more than 5 min.
- 24 Store the snap frozen samples at $\, \delta \, -80 \, ^{\circ} C$, and ship it to Cell Line Genetics on dry ice