Volumetric Isosurface Rendering with Deep Learning-Based Super-Resolution

Sebastian Weiss, Mengyu Chu, Nils Thuerey and Rüdiger Westermann
Technical University of Munich

Motivation

- isosurface volume ray-casting
 - A efficient rendering method to render isosurface given a viewpoint
 - Workload of ray-casting linear in the number of pixels
 - i.e. Decrease the number of pixles -> decrease workload
 - Visual quality not satisfactory —> super resolution by deep learning.
 - Consider global illumination -> increase visual quality
 - E.g. AO (ambient occlusion)
 - Problem: calculate AO is time-consuming
 - AO can be generated from other stored information (eg. depth and normal maps)

Ambient occlusion

- Ambient light
 - In phong model, a fixed lighting constant to simulate the scattering of light
 - In reality, it should not be consant
 - Eg. darkening creases, holes and surfaces that are close to each other
 - occluded by surrounding geometry -> light rays have less places to escape -> darker

- AO: expensive
 - Reason: take surrounding geometry into account
- Paper: approximate by low-resolution stored information

Contribution

- 1. learning the upscaling of a low resolution sampling of an isosurface -> a higher resolution
 - By reconstruction of spatial detail and shading
 - Why?
 - More information; robust to lighting
- 2. infer AO in the high resolution w/o AO in the low resolution inputs
 - No need to simulate AO
- 3. add a motion loss -> maintain frame-to-frame coherence
- 4. perform a quality evaluation

isosurface

Blue: low resolution inputs green: high resolution outputs Yellow: fixed propressing steps Red: trained network

- Goal: perform 4 upscaling
 - i.e. from input images of size HxW to output images of size 4Hx4W
 - Input: LR depth and normal maps
 - Output: HR depth and normal maps, additional AO map
 - screen-space shading used for generating final color

1

Input data

- Input maps generated via volumetric ray-casting
- low resolution input maps (size HxW)
 - $M_t^{LR} \in [-1, +1]^{H \times W}$: binary input mask
 - Whether the isosurface hit or not
 - network learn continuous value, use these to smoothly blend the final color
 - $N_t^{LR} \in [-1, +1]^{3 \times H \times W}$: normal maps
 - $D_t^{LR} \in [0, 1]^{H \times W}$: depth maps
 - LR input to the network $I_t^{LR} \coloneqq \{M_t^{LR}, N_t^{LR}, D_t^{LR}\} \in R^{5 \times H \times W}$

Input data

- $F_t^{LR} \in [-1, +1]^{2 \times H \times W}$: A map of displacement vectors
 - The screen space-flow from the previous view to current view
 - Goal: minimize the deviation of current inferred HR map from the extrapolated previous one
 - Isosurface from different viewpoints: the same coordinate at world space, different at screen space, denote as x'_t and x'_{t-1}
 - Flow computed by $f_t := x'_t x'_{t-1}$
 - Current flow field, up-scaling via bi-linear interpolation
 - Then use inverse flow vector to determine the target location

Input data

- High resolution input data
 - Used as GT in training process
 - The same as low resolution input + AO map $AO_t^{LR} \in [0, 1]^{4H \times 4W}$
 - in AO map, 0 or 1 -> no or full occlusion
 - GT image
 - $O_t^{GT} := \{M_t^{GT}, N_t^{GT}, D_t^{GT}, AO_t^{GT}\} \in R^{6 \times 4H \times 4W}$

,

Processing stage

- 1. upscaling & warping
- 2. flatten previous map to low resolution by apply space-todepth transformation

$$S_s: \mathbb{R}^{6 \times 4H \times 4W} \to \mathbb{R}^{4^26 \times H \times W}$$

- 3. Super-Resolution:
 - Network receive I_t^{LR} (5 channels) and the flattened, warped prediction from the previous frame O_f (16 * 6 channels), estimate the six-channel output O_t^{est} , (HR mask, normal, depth and AO maps)

- 4. Shading: generate a color image
 - screen-space Phong shading with AO

$$C_{rgb} = \text{Phong}(c_a, c_d, c_s, c_m, N_t^{est}) *AO_t^{est},$$

- Output mask M_t^{est}
 - Clamp first to [-1, +1], rescale to [0, 1], shows smooth fall-of values across edges

$$C_t^{est} = \text{lerp}(c_{\text{bg}}, C_{rgb}, M_t^{\prime est}),$$

Loss functions

• 1. Spatial Loss

$$\mathcal{L}_{X,L_1} = ||X_t^{est} - X_t^{GT}||_{1}, \quad \mathcal{L}_{X,L_2} = ||X_t^{est} - X_t^{GT}||_{2}^{2}.$$

- 2. Perceptual loss
 - detailed outputs instead of smoothed mean values
 - two images are similar <- have similar activations in the latent space of a pre-trained network

$$\mathcal{L}_{X,P} = ||\phi(X_t^{est}) - \phi(X_t^{GT})||_2^2.$$

VGG-19 can used on shaded images

- Differentiable Phong shading
 - Gradient can flow from loss function to update weight of neural networks
- VGG on other entries, input transformed first
- 3. temporal loss
 - a temporal L2 loss
 - Penalize differences between current HR and previous warped one

$$\mathcal{L}_{X,\text{temp}} = ||X_t^{est} - \tilde{X}_{t-1}^{est}||_{\underline{2}}^2,$$

Loss function (cont'd)

- 4. Loss masking
 - Pixels where the mask is -1 set to the background color
 - Area are masked do not contribute to the final result
 - crucial step simplifies the network's task: network do not need to match masked areas

5. Adversarial Training

- the discriminator is provided with:
 - the high resolution output O_t^{est}
 - The input I_t^{LR} as a conditional input
 - the previous frame I_{t-1}^{LR} , O_{t-1}^{est} , to learn to penalize for temporal coherence

$$\mathcal{L}_{GAN,D} = -\log(D(x)) - \log(1 - D(G(z))).$$

$$\mathcal{L}_{GAN,G} = -\log(D(G(z)))$$

Network architecture

 A fully convolutional frame-recurrent neural network (FRVSR-Net) consisting of a series of residual blocks

Training data

- images of isosurfaces from different timesteps and multi-resolution versions of the Ejecta dataset.
- render 500 sequences, each consisting of 10 frames
 - Each sequence, random select start and end viewpoints
 - Construct a smooth view path
 - Get resolution 128x128
- Crop sub-regions of 32x32
 - R: benefit batch processing

Fig. 5: Example images that are used to train our networks.

- Both LR&HR image directed generated by raycaster
- Initialize previous frame of 1st frame
 - Zeroing all entries

Loss Function Characteristics

geometric surface properties > color images

(a)(c) super-resolusion on depth and normal maps with screen-shading

(b)(d) super-resolusion on color images

Loss Function Characteristics

Network	Losses
Shaded	$\mathcal{L}_{GAN,G} + 0.5\mathcal{L}_{C,P} + 50\mathcal{L}_{C,temp}$ network acts on shaded colors
L_1 -color	$\mathcal{L}_{ML_1} + \mathcal{L}_{AO,L_1} + 10\mathcal{L}_{CL_1} + 0.1\mathcal{L}_{C,\text{temp}}$
L_1 -geometry	$\mathcal{L}_{M,L_1} + \mathcal{L}_{AO,L_1} + 10\mathcal{L}_{N,L_1} + 100\mathcal{L}_{D,L_1} + 0.1\mathcal{L}_{C,\text{temp}}$
Perceptual	$\mathcal{L}_{M,L_1} + \mathcal{L}_{AO,L_1} + \mathcal{L}_{N,L_1} + \mathcal{L}_{D,L_1} + 0.1\mathcal{L}_{C,\text{temp}} +$
GAN	
	$\mathscr{L}_{GAN,G}$

TABLE 1: Networks and their specific loss function configurations.

Fig. 6: Visual comparison of networks with different loss function configurations: (a) Shaded, (b) L_1 -color, (c) L_1 -geometry (our final model), (d) Perceptual, (e) GAN, (f) ground truth

Qualitative Evaluation

Fig. 7: Comparison of upscaling quality: (a) input, (b) bi-linear, (c) our network, (d) ground truth on the Skull, Thorax, Richtmyer-Meshkov and Ejecta dataset (top to bottom).

Quantitative Evaluation

• peak signal-to-noise ratio

$$PSNR(O_t^{est}, O_t^{GT}) = -10\log_{10}(||O_t^{est} - O_t^{GT}||_2^2),$$

Structural similarity index (SSIM)

$$SSIM(O_t^{est}, O_t^{GT}) = \frac{(2\mu_{est}\mu_{GT} + c_1)(2\sigma_{est}, GT + c_2)}{(\mu_{est}^2 + \mu_{GT}^2 + c_1)(\sigma_{est}^2 + \sigma_{GT}^2 + c_2)},$$

Different loss functions

Quantitative Evaluation (PSNR)

Quantitative Evaluation (SSIM)

Evaluation

Evaluation

- Regression Error Characteristic (REC) curves
 - $REC(\tau) = P(|x^{est} x^{GT}| \le \tau)$

Times for rendering

Dataset	High-res (no AO)	High-res (with AO)	Low-res	Super-res
Skull 256 ³	0.057	4.2	0.0077	0.071
Thorax 256 ³	0.069	9.1	0.010	0.071
RM. 1024^3	0.088	14.5	0.014	0.072
Ejecta 1024 ³	0.163	18.6	0.031	0.072

Application (interactive visualization)

Left: full image resolution Middle: 1/4 resolution then upscale Right: half resolution

Application (Foveated rendering)

Conclusion

deep learning technique for isosurface super-resolution with AO

 For me, learning with depth/normal maps is interesting, can be applied to other generative problems too