

Universidad Tecnológica de la Mixteca 00077

Clave DGP: 200089

Ingeniería en Física Aplicada

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA			
Teoría Electromagnética			

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Sexto	172064	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Que el alumno amplíe y profundice sus conocimientos en la teoría de campos electromagnéticos en el vacío y en medios materiales, como dieléctricos en campos electrostáticos. Que aplique sus herramientas matemáticas y conocimientos de fuerza sobre cargas y corrientes, y de voltaje de movimiento por campos alternantes o de magnitud variable en la solución de problemas con aplicaciones tecnológicas. Todo esto necesario para arribar a las ecuaciones de Maxwell, claves en el establecimiento de la luz como una onda electromagnética

TEMAS Y SUBTEMAS

1. Campos electrostáticos en el vacío.

- 1.1. Leyes de Coulomb y de Gauss.
- 1.2. Cálculo de campos electrostáticos y del potencial para distribuciones de carga.
- 1.3. Capacitancia.
- 1.4. El dipolo eléctrico. El cuadrupolo eléctrico lineal.
- 1.5. potencial electrostático en términos de potenciales multipolares.

2. Métodos especiales para la solución de problemas electrostáticos en el vacío.

- 2.1. Ecuaciones de Laplace y de Poisson.
- 2.2. Métodos de los armónicos.
- 2.3. Método de expansión axial.
- 2.4. Método de imágenes.

3. El campo electrostático en medios dieléctricos.

- 3.1. Polarización eléctrica.
- 3.2. El potencial y el campo externo de un medio dieléctrico polarizado. Cargas libres y cargas ligadas.
- 3.3. Ley de Gauss en un dieléctrico. El vector desplazamiento eléctrico.
- 3.4. La susceptibilidad eléctrica y la permitividad relativa.
- 3.5. Condiciones a la frontera de los vectores de campos electrostáticos.
- 3.6. Problemas con valores a la frontera en que intervienen dieléctricos.

4. Energía electrostática.

- 4.1. Energía potencial de un grupo de cargas puntuales.
- 4.2. Energía electrostática de una distribución de cargas: de superficie y de volumen, libres y ligadas, en conductores y dieléctricos
- 4.3. Densidad de energía de un campo electrostático.
- 4.4. Fuerzas y momentos de rotación (en medios conductores y dieléctricos) según el principio del trabajo

5. Conducción eléctrica.

- 5.1. Ley de conservación de la carga.
- 5.2. Conducción: Resistencia, conducción en un campo eléctrico estacionario, la movilidad de electrones de conducción, densidad de carga de volumen en un conductor, el efecto Joule.
- 5.3. La densidad de corriente de desplazamiento en un capacitor con dieléctrico ideal sometido a fuente alternante (estudio con fasores).
- 5.4. Dieléctrico con pérdidas sometido a fuente alternante.

Universidad Tecnológica de la Mixteca 00078

Clave DGP: 200089

Ingeniería en Física Aplicada

PROGRAMA DE ESTUDIOS

6. Campos magnéticos estacionarios en el vacío.

- 6.1. Tipos de materiales magnéticos.
- 6.2. Cálculo de campos magnetostáticos de distribuciones de corriente: Fórmula de Biot-Savart
- 6.3. El potencial vectorial magnético.
- 6.4. El momento dipolar magnético de una distribución de corriente arbitraria.
- 6.5. El laplaciano y el rotacional del potencial vectorial.
- 6.6. El rotacional de la inducción magnética.
- 6.7. Ley circuital de Ampere.

7. Fuerza magnética sobre cargas y corrientes.

- 7.1. La fuerza de Lorentz.
- 7.2. Fuerza magnética sobre un alambre que transporta corriente.
- 7.3. Fuerza magnética entre dos circuitos cerrados.
- 7.4. La fuerza magnética sobre una distribución volumétrica de corriente.

Ley de inducción y ecuaciones de Maxwell.

- 8.1. Ley de inducción de Faraday: Campos de Lorentz.
- 8.2. Ley de Lenz.
- 8.3. Campos eléctricos inducidos.
- 8.4. Ley de inducción de Faraday para inducción magnética dependiente del tiempo.
- 8.5. Campo eléctrico expresado en términos de los potenciales escalar y vectorial.
- 8.6. Generalización de la ley de Ampere. Corriente de desplazamiento.
- 8.7. Ecuaciones de Maxwell.
- 8.8. Energía electromagnética.

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como son la computadora y los proyectores. Asimismo se desarrollarán programas de cómputo sobre los temas y los problemas

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender, al menos tres evaluaciones parciales que tendrán una equivalencia del 50% y un examen final que tendrá 50%. Las evaluaciones serán escritas, orales y prácticas; éstas últimas, se asocian a la ejecución exitosa y a la documentación de la solución de programas asociados a problemas sobre temas del curso; la suma de estos dos porcentajes dará la calificación

Además, se considerará el trabajo extra-clase, la participación durante las sesiones del curso y la asistencia a las

Universidad Tecnológica de la Mixteca 00079

Clave DGP: 200089

Ingeniería en Física Aplicada

PROGRAMA DE ESTUDIOS

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO)

- Fundamentos de la Teoría Electromagnética, Reitz J.R., Milford F.J. y Christy R.W., Adsison-Wesley Iberoamericana, 4ª Ed., (1996).
- Electromagnetic Field and Waves. Lorrain P., Corson D.R. and Lorrain F., Freeman and Company, 3th Ed.,
- Engineering Electromagnetics. Hayt Jr. W.H. and Buck J. A., McGraw Hill, 6th Ed., (2012).
- Fundamentos de Electromagnetismo para Ingeniería, Cheng D.K., Addison-Wesley Iberoamericana, (1998)
- 5. Introduction to Electrodynamics, Griffiths D.J., Pearson, 4a Ed, (2013).

Consulta:

- 1. Teoría Electromagnética: Campos y Ondas. Johnk C.T.A., Limusa, (2001).
- Teoría Electromagnética. Murphy Arteaga R.S., Trillas, (2001).
- Teoría Electromagnética. Zahn M., McGraw Hill, 2nd Ed., (1983).
- Electricity and Magnetism. Jefimenko O.G., Electretec Scientific Company, (1989).
- Classical Electrodynamics, Jackson J.D., Wiley, 2nd Ed, (1975).

PERFIL PROFESIONAL DEL DOCENTE

Maestría en Física y/o Doctorado en Física. Noto G/C4

. Bo JEFATURA DE CARRERA INGENIERIA EN FÍSICA APLICADA

MÓN GONZÁLEZ MARTÍNEZ JEFE DE CARRERA

RECTOR ACADÉMICO

ACADÉMICA