Audio Filter

EE23BTECH11010 - Venkatesh Bandawar*

I. DIGITAL FILTER

I.1 Download the sound file from

https://github.com/venkatesh11010/Audio-filtering-11010/blob/main/audio%20filter/Audio-files/Venkatesh-singing.wav

I.2 Below is the Python Code to perform the Audio Filtering:

import soundfile as sf from scipy import signal

Order of the filter order = 3

Cutoff frequency 3kHz cutoff freq = 3000.0

Digital frequency Wn = 2 * cutoff freq / fs

b and a are numerator and denominator polynomials, respectively

b, a = signal.butter(order, Wn, 'low')

output_signal = signal.lfilter(b,a,
 input_signal)

Write the output signal into a .wav file sf.write('filteredsong18.wav', output_signal, fs)

I.3 The audio file is analyzed using spectrogram using the online platform https://academo.org/demos/spectrum-analyzer.

The orange and yellow areas represent frequencies that have high intensities in the sound. Also, the signal is blank for frequencies above 5.1 kHz.

Fig. 1: Spectrogram of Input Audio Signal

Fig. 2: Spectrogram of Filtered Output Audio Signal

II. DIFFERENCE EQUATION

II.1 Let

$$x(n) = \left\{ 1, 2, 3, 4, 2, 1 \right\} \tag{1}$$

Sketch x(n).

II.2 Let

$$y(n) + \frac{1}{2}y(n-1) = x(n) + x(n-2),$$

$$y(n) = 0, n < 0 \quad (2)$$

Sketch y(n). Solve

Solution: The C code calculates y(n) and Python plots the graph.

https://github.com/venkatesh11010/Audio-filtering-11010/blob/main/audio%20filter/codes/x_n-y_n.c

Below are the plots of the x(n) and y(n):

https://github.com/venkatesh11010/Audio-filtering-11010/blob/main/audio%20filter/codes/x n-y n.py

Fig. 3: Plot of x(n) and y(n)

III. Z-Transfrm

III.1 The Z-transform of x(n) is defined as

$$X(z) = Z\{x(n)\} = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
 (3)

Show that

$$\mathcal{Z}\{x(n-1)\} = z^{-1}X(z)$$

and find

$$\mathcal{Z}\{x(n-k)\}\tag{5}$$

Solution: From (3),

$$\mathcal{Z}\{x(n-1)\} = \sum_{n=-\infty}^{\infty} x(n-1)z^{-n}$$

$$= \sum_{n=-\infty}^{\infty} x(n)z^{-n-1} = z^{-1} \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
(6)

resulting in (4). Similarly, it can be shown that

$$\mathcal{Z}\{x(n-k)\} = z^{-k}X(z) \tag{8}$$

III.2 Find

$$H(z) = \frac{Y(z)}{X(z)} \tag{9}$$

from (2) assuming that the Z-transform is a linear operation.

Solution: Applying (8) in (2),

$$Y(z) + \frac{1}{2}z^{-1}Y(z) = X(z) + z^{-2}X(z)$$
 (10)

$$\implies \frac{Y(z)}{X(z)} = \frac{1 + z^{-2}}{1 + \frac{1}{2}z^{-1}} \tag{11}$$

III.3 Find the Z transform of

$$\delta(n) = \begin{cases} 1 & n = 0 \\ 0 & \text{otherwise} \end{cases}$$
 (12)

and show that the Z-transform of

$$u(n) = \begin{cases} 1 & n \ge 0 \\ 0 & \text{otherwise} \end{cases}$$
 (13)

is

$$U(z) = \frac{1}{1 - z^{-1}}, \quad |z| > 1$$
 (14)

Solution: It is easy to show that

$$\delta(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} 1 \tag{15}$$

and from (13),

$$U(z) = \sum_{n=0}^{\infty} z^{-n} \tag{16}$$

$$=\frac{1}{1-z^{-1}}, \quad |z| > 1 \tag{17}$$

using the formula for the sum of an infinite geometric progression.

III.4 Show that

(4)

$$a^n u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{1}{1 - az^{-1}} \quad |z| > |a| \tag{18}$$

Solution:

$$a^n u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \sum_{n=0}^{\infty} \left(a z^{-1} \right)^n$$
 (19)

$$= \frac{1}{1 - az^{-1}} \quad |z| > |a| \tag{20}$$

III.5 Let

$$H(e^{j\omega}) = H(z = e^{j\omega}). \tag{21}$$

Plot $|H(e^{j\omega})|$. Comment. $H(e^{j\omega})$ is known as the *Discrete Time Fourier Transform* (DTFT) of h(n).

Solution: Below is the code which plots the magnitude of Transfer Function:

https://github.com/venkatesh11010/Audio-filtering-11010/blob/main/audio%20filter/codes/H(z).py

Substituting $z = e^{j\omega}$ in (11), we get

$$\left| H\left(e^{j\omega}\right) \right| = \left| \frac{1 + e^{-2j\omega}}{1 + \frac{1}{2}e^{-j\omega}} \right| \qquad (22)$$

$$= \sqrt{\frac{\left(1 + \cos 2\omega\right)^2 + \left(\sin 2\omega\right)^2}{\left(1 + \frac{1}{2}\cos \omega\right)^2 + \left(\frac{1}{2}\sin \omega\right)^2}} \qquad (23)$$

$$= \frac{4|\cos \omega|}{\sqrt{5 + 4\cos \omega}} \qquad (24)$$

$$\left| H\left(e^{j(\omega+2\pi)}\right) \right| = \frac{4|\cos(\omega+2\pi)|}{\sqrt{5+4\cos(\omega+2\pi)}}$$

$$= \frac{4|\cos\omega|}{\sqrt{5+4\cos\omega}}$$
(25)

Therefore, the fundamental period is 2π , which implies that DTFT of a signal is always peri-

odic.

Fig. 4: $\left| H\left(e^{j\omega}\right) \right|$ vs ω

IV. IMPULSE RESPONSE

IV.1 Find an expression for h(n) using H(z), given that

$$h(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} H(z)$$
 (28)

and there is a one to one relationship between h(n) and H(z). h(n) is known as the *impulse response* of the system defined by (2).

Solution: From (11),

$$H(z) = \frac{1}{1 + \frac{1}{2}z^{-1}} + \frac{z^{-2}}{1 + \frac{1}{2}z^{-1}}$$
 (29)

$$\implies h(n) = \left(-\frac{1}{2}\right)^n u(n) + \left(-\frac{1}{2}\right)^{n-2} u(n-2)$$
(30)

using (18) and (8).

IV.2 Sketch h(n). Is it bounded? Convergent? **Solution:** The following code plots h(n)

https://github.com/venkatesh11010/Audio-filtering-11010/blob/main/audio%20filter/codes/h(n).py

Fig. 5: h(n) vs n

IV.3 The system with h(n) is defined to be stable if

$$\sum_{n=-\infty}^{\infty} h(n) < \infty \tag{31}$$

Is the system defined by (2) stable for the impulse response in (28)?

Solution: For stable system (31) should converge.

By using ratio test for convergence:

$$\lim_{n \to \infty} \left| \frac{h(n+1)}{h(n)} \right| < 1 \tag{32}$$

(33)

For large *n*

$$u(n) = u(n-2) = 1$$
 (34)

$$\lim_{n \to \infty} \left(\frac{h(n+1)}{h(n)} \right) = \frac{1}{2} < 1 \tag{35}$$

Hence it is stable.

IV.4 Compute and sketch h(n) using

$$h(n) + \frac{1}{2}h(n-1) = \delta(n) + \delta(n-2),$$
 (36)

This is the definition of h(n).

Solution:

Definition of h(n): The output of the system when $\delta(n)$ is given as input.

The following code plots Fig. 6. Note that this is the same as Fig. 5.

https://github.com/venkatesh11010/Audio-filtering-11010/blob/main/audio%20filter/codes/h(n)def.py

Fig. 6: h(n) vs n using definition

IV.5 Compute

$$y(n) = x(n) * h(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$
 (37)

Comment. The operation in (37) is known as *convolution*.

Solution: Below code plots Fig. 7. Note that this is the same as y(n) in Fig. 3.

https://github.com/venkatesh11010/Audio—filtering—11010/blob/main/audio%20filter/codes/y(n)byconv.py

Fig. 7: y(n) from the definition of convolution

IV.6 Show that

$$y(n) = \sum_{k=-\infty}^{\infty} x(n-k)h(k)$$
 (38)

Solution: In (37), we substitute k = n - k to get

$$y(n) = \sum_{k=-\infty}^{\infty} x(k) h(n-k)$$
 (39)

$$=\sum_{n=-\infty}^{\infty}x(n-k)h(k) \qquad (40)$$

$$=\sum_{k=-\infty}^{\infty}x\left(n-k\right)h\left(k\right)\tag{41}$$

V. DFT AND FFT

V.1 Compute

$$X(k) \stackrel{\triangle}{=} \sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N}, \quad k = 0, 1, \dots, N-1$$
(42)

and H(k) using h(n).

V.2 Compute

$$Y(k) = X(k)H(k) \tag{43}$$

V.3 Compute

$$y(n) = \frac{1}{N} \sum_{k=0}^{N-1} Y(k) \cdot e^{j2\pi kn/N}, \quad n = 0, 1, \dots, N-1$$
(44)

Solution: The above three questions are solved using the code below.

https://github.com/venkatesh11010/Audio-filtering-11010/blob/main/audio%20filter/codes/5sol.py

Fig. 8: y(n) obtained from DFT

V.4 Repeat the previous exercise by computing X(k), H(k) and y(n) through FFT and IFFT. **Solution:** The solution of this question can be found in the code below.

https://github.com/venkatesh11010/Audiofiltering-11010/blob/main/audio%20filter/ codes/y(n) verify.py

V.5 Wherever possible, express all the above equations as matrix equations.

Solution: The DFT matrix is defined as:

$$\mathbf{W} = \begin{pmatrix} \omega^0 & \omega^0 & \dots & \omega^0 \\ \omega^0 & \omega^1 & \dots & \omega^{N-1} \\ \vdots & \vdots & \ddots & \vdots \\ \omega^0 & \omega^{N-1} & \dots & \omega^{(N-1)(N-1)} \end{pmatrix}$$
(45)

where $\omega = e^{-\frac{j2\pi}{N}}$. Now any DFT equation can be written as

$$\mathbf{X} = \mathbf{W}\mathbf{x} \tag{46}$$

Fig. 9: y(n) obtained from IFFT

where

$$\mathbf{x} = \begin{pmatrix} x(0) \\ x(1) \\ \vdots \\ x(n-1) \end{pmatrix}$$
 (47)

$$\mathbf{X} = \begin{pmatrix} X(0) \\ X(1) \\ \vdots \\ X(n-1) \end{pmatrix}$$
 (48)

Thus we can rewrite (43) as:

$$\mathbf{Y} = \mathbf{X} \cdot \mathbf{H} = (\mathbf{W}\mathbf{x}) \cdot (\mathbf{W}\mathbf{h}) \tag{49}$$

The below code computes y(n) by DFT Matrix and then plots it.

https://github.com/venkatesh11010/Audio-filtering -11010/blob/main/audio%20filter/codes/matrix .py

VI. EXERCISES

Answer the following questions by looking at the python code in Problem I.2.

VI.1 The command

in Problem I.2 is executed through the following difference equation

$$\sum_{m=0}^{M} a(m) y(n-m) = \sum_{k=0}^{N} b(k) x(n-k) \quad (50)$$

Fig. 10: y(n) from DFT Matrix

where the input signal is x(n) and the output signal is y(n) with initial values all 0. Replace **signal. Ifilter** with your own routine and verify.

Solution: The below code gives the output of an Audio Filter without using the built in function signal.lfilter.

https://github.com/venkatesh11010/Audio-filtering-11010/blob/main/audio%20filter/codes/lfilter.py

Fig. 11: Both the outputs using and without using function overlap

VI.2 Repeat all the exercises in the previous sections for the above a and b.

Solution: The code in I.2 generates the values of a and b which can be used to generate a difference equation.

And,

$$a = \begin{bmatrix} 1 & -2.21916862 & 1.71511783 & -0.45354593 \end{bmatrix}$$
$$b = \begin{bmatrix} 0.00530041 & 0.01590123 & 0.01590123 & 0.0053004 \end{bmatrix}$$

$$M = 3 \tag{51}$$

$$N = 3 \tag{52}$$

From 50

$$a(0) y(n) + a(1) y(n-1) + a(2) y(n-2) + a(3)$$

$$y(n-3) = b(0) x(n) + b(1) x(n-1)$$

$$+ b(2) x(n-2) + b(3) x(n-3)$$

$$y(n)-2.219y(n-1)+1.715y(n-2)-0.453y(n-3)$$

$$= 0.005x(n) + 0.016x(n-1) + 0.016x(n-2) + 0.005x(n-3)$$

From (50)

$$H(z) = \frac{b(0) + b(1)z^{-1} + b(2)z^{-2} + \dots + b(N)z^{-N}}{a(0) + a(1)z^{-1} + a(2)z^{-2} + \dots + a(M)z^{-M}}$$
(53)

$$H(z) = \frac{\sum_{k=0}^{N} b(k)z^{-k}}{\sum_{k=0}^{M} a(k)z^{-k}}$$
 (54)

Fig. 12: $|H(e^{j\omega})|$

$$H(z) = 0.005 + 0.028z^{-1} + 0.068z^{-2} + 0.112z^{-3} \cdot \dots$$
 (55)

$$h(n) = 0.005\delta(n) + 0.028\delta(n-1) + 0.068\delta(n-2) + 0.112\delta(n-3) \cdot \cdot \cdot \cdot (56)$$

Pole Zero plot:

Fig. 13: polezeroplot

Fig. 14: h(n)

Stability of h(n):

According to (31)

$$H(z) = \sum_{n=0}^{\infty} h(n) z^{-n}$$
 (57)

$$H(1) = \sum_{n=0}^{\infty} h(n) = \frac{\sum_{k=0}^{N} b(k)}{\sum_{k=0}^{M} a(k)} < \infty$$

As both a(k) and b(k) are finite length sequences they converge.

Computing y(n) by convolution:

Fig. 15: y(n)

Computing y(n) by DFT and FFT:

Fig. 16: y(n)

VI.3 What is the sampling frequency of the input signal?

Solution: The Sampling Frequency is 48KHz

VI.4 What is type, order and cutoff-frequency of the above butterworth filter

Solution: The given butterworth filter is low-pass with order = 3 and cutoff-frequency = 3kHz.

(58) VI.5 Modify the code with different input parameters and get the best possible output.

Solution: A better filtering was found when order of the filter is 4.