

VALUE STREAM MAPPING

Learning to see

PRESENT STATE

Alberto PORTIOLI STAUDACHER Dipartimento Ing. Gestionale Politecnico di Milano Dep. Management, Economics and Industrial Engineering ouside such context, nor to alberto.portioli@polimi.it

This material and what the Professors say in class are intended for didactical use only and cannot be used imply professors' specific believes or opinion

Identify a family

A Product Family

Focus on main streams only

Different type of TIME

PROCESSING TIME: the active time from the perspective of the piece being processed. From beginning to end

The starting point: the customer

18,400 pcs/mo -12,000 "L" - 6,400 "R"

Tray = 20 pieces

2 Shifts

First view of the VSM

View of the Current-State Map with all Processes

18,400 pcs/mo - 12,000 "L" - 6,400 "R"

Tray = 20 pieces

2 Shifts

Stamping

200T ② 1 S. Weld #1

© 1

S. Weld #2

© 1

Assembly #1

© 1

Assembly #2

© 1

Shipping

Staging

Second view of the VSM

View of the Current-State Map with all Processes and Data Boxes

18,400 pcs/mo - 12,000 "L"

- 6,400 "R"

Tray = 20 pieces

2 Shifts

Stamping

200T ② 1

C/T = 1 sec.

C/O = 1 hour

Uptime = 85%

27,600 sec. avail.

EPE = 2 weeks

S. Weld #1

© 1

C/T = 39 sec.

C/O = 10 minutes

Uptime = 100%

2 Shifts

27,600 sec. avail.

S. Weld #2

© 1

C/T = 46 sec.

C/O = 10 minutes

Uptime = 80%

2 Shifts

27,600 sec. avail.

Assembly #1

© 1

C/T = 62 sec.

C/O = 0

Uptime = 100%

2 Shifts

27,600 sec. avail.

Assembly #2

© 1

Shipping

Staging

C/T = 40 sec.

C/O = 0

Uptime = 100%

2 Shifts

27,600 sec. avail.

Second view of the VSM

View of the Current-State Map with all Processes, Data Boxes, and **Inventory Triangles**

18,400 pcs/mo - 12.000 "L"

- 6,400 "R"

Tray = 20 pieces

2 Shifts

Shipping Staging

C/T = T Sec.
C/O = 1 hour
Uptime = 85%
27,600 sec. avail.
EPE = 2 weeks

C/T = 1 aaa

C/T = 46 sec.
C/O = 10 minutes
Uptime = 80%
2 Shifts
27,600 sec. avail.

C/T = 62 sec.
C/O = 0
Uptime = 100%
2 Shifts
27,600 sec. avail.

C/T = 40 sec.
C/O = 0
Uptime = 100%
2 Shifts
27,600 sec. avail.

Third view of the VSM

Fourth view

Little's law

LT *
$$\lambda$$
 = Q

Lead Time * Demand rate = Queue

$$LT = Q / \lambda$$

Fourth view and the timeline

System performance

Value Added Time/Total Lead Time

Approximated by

Processing time /Total Lead Time

As an alternative indicator

Waiting time = Total lead time - Processing time

Fourth view and the timeline

