VLSI Design Verification and Testing

Built-In Self-Test (BIST)

Mohammad Tehranipoor

Electrical and Computer Engineering

University of Connecticut

15 April 2007

Overview

- Motivation and economics
- Definitions
- Built-in self-testing (BIST) process
- BIST pattern generation (PG)
- BIST response compaction (RC)
- Aliasing definition and example
- Summary

15 April 2007

BIST Motivation

- Useful for field test and diagnosis (less expensive than a local automatic test equipment)
- Software tests for field test and diagnosis:
 - Low hardware fault coverage
 - Low diagnostic resolution
 - Slow to operate
- Hardware BIST benefits:
 - Lower system test effort
 - Improved system maintenance and repair
 - Improved component repair
 - Better diagnosis at component level

15 April 2007

3

Costly Test Problems Alleviated by BIST

- Increasing chip logic-to-pin ratio harder observability
- Increasingly dense devices and faster clocks
- Increasing test generation and application times
- Increasing size of test vectors stored in ATE
- Expensive ATE needed for GHz clocking chips
- Hard testability insertion designers unfamiliar with gate-level logic, since they design at behavioral level
- Shortage of test engineers
- Circuit testing cannot be easily partitioned

15 April 2007

.

Benefits and Costs of BIST with DFT

Level	Design and test	Fabri- cation	Manuf. Test	Maintenance test	Diagnosis and repair	Service interruption
Chips	+/-	+	-			
Boards	+/-	+	-		-	
System	+/-	+	-	-	-	-

- + Cost increase
- Cost saving
- +/- Cost increase may balance cost reduction

15 April 2007

5

Economics – BIST Costs

- Chip area overhead for:
 - Test controller
 - Hardware pattern generator
 - Hardware response compacter
 - Testing of BIST hardware
- Pin overhead -- At least 1 pin needed to activate BIST operation
- Performance overhead extra path delays due to BIST
- Yield loss due to increased chip area or more chips In system because of BIST
- Reliability reduction due to increased area
- Increased BIST hardware complexity happens when BIST hardware is made testable

BIST Benefits

Faults tested:

- Single combinational / sequential stuck-at faults
- Delay faults
- Single stuck-at faults in BIST hardware

BIST benefits

- Reduced testing and maintenance cost
- Lower test generation cost
- Reduced storage / maintenance of test patterns
- Simpler and less expensive ATE
- Can test many units in parallel
- Shorter test application times
- Can test at functional system speed

15 April 2007

7

Definitions

- BILBO Built-in logic block observer, extra hardware added to flip-flops so they can be reconfigured as an LFSR pattern generator or response compacter, a scan chain, or as flipflops
- Concurrent testing Testing process that detects faults during normal system operation
- CUT Circuit-under-test
- Exhaustive testing Apply all possible 2ⁿ patterns to a circuit with n inputs
- LFSR Linear feedback shift register, hardware that generates pseudo-random pattern sequence

15 April 2007

.

More Definitions

- Primitive polynomial Boolean polynomial p (x) that can be used to compute increasing powers n of xⁿ modulo p (x) to obtain all possible non-zero polynomials of degree less than p (x)
- Pseudo-exhaustive testing Break circuit into small, overlapping blocks and test each exhaustively
- Pseudo-random testing Algorithmic pattern generator that produces a subset of all possible tests with most of the properties of randomly-generated patterns
- Signature Any statistical circuit property distinguishing between bad and good circuits
- TPG Hardware *test pattern generator*

15 April 2007

9

BIST Process

- Test controller Hardware that activates self-test simultaneously on all PCBs
- Each board controller activates parallel chip BIST Diagnosis effective only if very high fault coverage

15 April 2007

Complex BIST Architecture

- Testing epoch I:
 - LFSR1 generates tests for CUT1 and CUT2
 - BILBO2 (LFSR3) compacts CUT1 (CUT2)
- Testing epoch II:
 - BILBO2 generates test patterns for CUT3
 - LFSR3 compacts CUT3 response

15 April 2007

Bus-Based BIST Architecture

13

- Self-test control broadcasts patterns to each CUT over bus
 parallel pattern generation
- Awaits bus transactions showing CUT's responses to the patterns: serialized compaction

Pattern Generation

- Store in ROM too expensive
- Exhaustive
- Pseudo-exhaustive
- Pseudo-random (LFSR) Preferred method
- Binary counters use more hardware than LFSR
- Modified counters
- Test pattern augmentation
 - LFSR combined with a few patterns in ROM
 - Hardware diffracter generates pattern cluster in neighborhood of pattern stored in ROM

15 April 2007

Exhaustive Pattern Generation (A Counter)

- Shows that every state and transition works
- For *n*-input circuits, requires all 2ⁿ vectors
- Impractical for large n (> 20)

Pseudo-Random Pattern Generation

- Standard Linear Feedback Shift Register (LFSR)
 - Normally known as External XOR type LFSR
 - Produces patterns algorithmically repeatable
 - Has most of desirable random # properties
- Need not cover all 2ⁿ input combinations
- Long sequences needed for good fault coverage

15 April 2007

Theory: LFSRs

- **Galois field (mathematical system):**
 - Multiplication by x same as right shift of LFSR
 - Addition operator is XOR (\oplus)
- $T_{\rm c}$ companion matrix for a standard (external XOR type) LFSR:
 - 1st column 0, except nth element which is always 1 $(X_0 \text{ always feeds } X_{n-1})$ Rest of row n – feedback coefficients h_i

 - Rest is identity matrix *I* means a right shift
- **Near-exhaustive (maximal length) LFSR**
 - Cycles through 2ⁿ − 1 states (excluding all-0)
 - 1 pattern of n 1's, one of n-1 consecutive 0's

Standard *n*-Stage LFSR

■ If h_i = 0, that XOR gate is deleted

15 April 2007

21

Matrix Equation for Standard LFSR

$$\begin{bmatrix} X_0 & (t+1) \\ X_1 & (t+1) \\ \vdots \\ X_{n-3} & (t+1) \\ X_{n-2} & (t+1) \\ X_{n-1} & (t+1) \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & 0 & \dots & 0 & 1 \\ 1 & h_1 & h_2 & \dots & h_{n-2} & h_{n-1} \end{bmatrix} \begin{bmatrix} X_0 & (t) \\ X_1 & (t) \\ \vdots \\ X_{n-3} & (t) \\ X_{n-2} & (t) \\ X_{n-1} & (t) \end{bmatrix}$$

$$X(t+1) = T_s X(t)$$
 (T_s is companion matrix)

LFSR Theory (contd.)

- Cannot initialize to all 0's hangs
- If X is initial state, progresses through states X, T_S X, T_S² X, T_S³ X, ...
- Matrix period:
 Smallest k such that T_s^k = I
 k ≡ LFSR cycle length
- Described by characteristic polynomial:

$$f(x) = |T_s - IX|$$

= 1 + h₁ x + h₂ x² + ... + h_{n-1} xⁿ⁻¹ + xⁿ

15 April 2007

23

Example External XOR LFSR

$$F(x) = 1 + x + x^3$$

15 April 2007

Example: External XOR LFSR (contd.)

Matrix equation:

$$\begin{bmatrix} X_0 & (t+1) \\ X_1 & (t+1) \\ X_2 & (t+1) \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} X_0 & (t) \\ X_1 & (t) \\ X_2 & (t) \end{bmatrix}$$

Companion matrix:

$$T_s = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

Characteristic polynomial:

$$f(x) = 1 + x + x^3$$
(read taps from right to left)

Always have 1 and xⁿ terms in polynomial

15 April 2007

25

External XOR LFSR

Pattern sequence for example LFSR (earlier):

 Never repeat an LFSR pattern more than 1 time –Repeats same error vector, cancels fault effect

15 April 2007

Modular Internal XOR LFSR

- Described by *companion matrix* $T_m = T_S^T$
- Internal XOR LFSR XOR gates in between D flip-flops
- Equivalent to standard External XOR LFSR
 - · With a different state assignment
 - Faster usually does not matter
 - · Same amount of hardware

$$X(t+1) = T_m \times X(t)$$

$$f(x) = |T_m - IX|$$

$$= 1 + h_1 x + h_2 x^2 + \dots + h_{n-1} x^{n-1} + x^n$$

 Right shift – equivalent to multiplying by x, and then dividing by characteristic polynomial and storing the remainder

15 April 2007 28

Modular LFSR Matrix

$$\begin{bmatrix} X_0 & (t+1) \\ X_1 & (t+1) \\ X_2 & (t+1) \\ \vdots \\ X_{n-3} & (t+1) \\ X_{n-2} & (t+1) \\ X_{n-1} & (t+1) \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & \dots & 0 & 0 & 1 \\ 1 & 0 & 0 & \dots & 0 & 0 & h_1 \\ 0 & 1 & 0 & \dots & 0 & 0 & h_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & 0 & h_{n-3} \\ 0 & 0 & 0 & \dots & 1 & 0 & h_{n-2} \\ 0 & 0 & 0 & \dots & 0 & 1 & h_{n-2} \\ 0 & 0 & 0 & \dots & 0 & 1 & h_{n-1} \end{bmatrix} \begin{bmatrix} X_0 & (t) \\ X_1 & (t) \\ X_2 & (t) \\ \vdots \\ X_{n-3} & (t) \\ X_{n-2} & (t) \\ X_{n-1} & (t) \end{bmatrix}$$

15 April 2007

29

Example Modular LFSR

- $f(x) = 1 + x^2 + x^7 + x^8$
- Read LFSR tap coefficients from left to right

15 April 2007

Primitive Polynomials

- Want LFSR to generate all possible 2ⁿ − 1 patterns (except the all-0 pattern)
- Conditions for this must have a *primitive* polynomial:
 - Monic coefficient of xⁿ term must be 1
 - Modular LFSR all D FF's must right shift through XOR's from X_0 through X_1 , ..., through X_{n-1} , which must feed back directly to X_0
 - Standard LFSR all D FF's must right shift directly from X_{n-1} through X_{n-2} , ..., through X_0 , which must feed back into X_{n-1} through XORing feedback network

15 April 2007 31

Weighted Pseudo-Random Pattern Generation

• If p(1) at all PIs is 0.5, $p_F(1) = 0.5^8 = \frac{1}{256}$

$$p_F(0) = 1 - \frac{1}{256} = \frac{255}{256}$$

- Will need enormous # of random patterns to test a stuck-at 0 fault on F-- LFSR p(1) = 0.5
 - We must not use an ordinary LFSR to test this
- IBM holds patents on weighted pseudorandom pattern generator in ATE

Weighted Pseudo-Random Pattern Generator

- LFSR p(1) = 0.5
- Solution:
 - Add programmable weight selection and complement LFSR bits to get p(1)'s other than 0.5
- Need 2-3 weight sets for a typical circuit
- Weighted pattern generator drastically shortens pattern length for pseudo-random patterns

15 April 2007 33

Test Pattern Augmentation

- Secondary ROM to get LFSR to 100% SAF coverage
 - Add a small ROM with missing test patterns
 - Add extra circuit mode to *Input MUX* shift to ROM patterns after LFSR done
 - Important to compact extra test patterns
- Use diffracter:
 - Generates cluster of patterns in neighborhood of stored ROM pattern
- Transform LFSR patterns into new vector set
- Put LFSR and transformation hardware in full-scan chain

15 April 2007

Response Compaction

- Severe amounts of data in CUT response to LFSR patterns – example:
 - Generate 5 million random patterns
 - CUT has 200 outputs
 - Leads to: 5 million x 200 = 1 billion bits response
- Uneconomical to store and check all of these responses on chip
- Responses must be compacted

Definitions

- Aliasing Due to information loss, signatures of good and some bad machines match
- Compaction Drastically reduce # bits in original circuit response – lose information
- Compression Reduce # bits in original circuit response
 no information loss fully invertible (can get back original response)
- Signature analysis Compact good machine response into good machine signature. Actual signature generated during testing, and compared with good machine signature
- Transition Count Response Compaction Count # transitions from 0 →1 and 1 → 0 as a signature

15 April 2007 37

Transition Counting 01011 а 11110 00101 00111 11011 00011 01110 10110 11010 11101 (a) Logic simulation of good machine and fault a stuck-at-1. (b) Transition counts of good and failing machines. 15 April 2007 38

Transition Counting Details

Transition count:

$$C(R) = \sum_{i=1}^{m} (r_i \oplus r_{i-1}) \text{ for all } m \text{ primary outputs}$$

- To maximize fault coverage:
 - Make C (R0) good machine transition count – as large or as small as possible

15 April 2007

39

LFSR for Response Compaction

- Use cyclic redundancy check code (CRCC) generator (LFSR) for response compacter
- Treat data bits from circuit POs to be compacted as a decreasing order coefficient polynomial
- CRCC divides the PO polynomial by its characteristic polynomial
 - Leaves remainder of division in LFSR
 - Must initialize LFSR to seed value (usually 0) before testing
- After testing compare signature in LFSR to known good machine signature
- Critical: Must compute good machine signature

15 April 2007

Symbolic Polynomial Division

Remainder matches that from logic simulation of the response compacter!

15 April 2007

43

Multiple-Input Signature Register (MISR)

- Problem with ordinary LFSR response compacter:
 - Too much hardware if one of these is put on each primary output (PO)
- Solution: MISR compacts all outputs into one LFSR
 - Works because LFSR is linear obeys superposition principle
 - Superimpose all responses in one LFSR final remainder is XOR sum of remainders of polynomial divisions of each PO by the characteristic polynomial

15 April 2007

MISR Matrix Equation

 $d_i(t)$ – output response on PO_i at time t

$$\begin{bmatrix} X_0 & (t+1) \\ X_1 & (t+1) \\ \vdots \\ X_{n-3} & (t+1) \\ X_{n-2} & (t+1) \\ X_{n-1} & (t+1) \end{bmatrix} = \begin{bmatrix} 0 & 1 & \dots & 0 & 0 \\ 0 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & \dots & 0 & 1 \\ 1 & h_1 & \dots & h_{n-2} & h_{n-1} \end{bmatrix} \begin{bmatrix} X_0 & (t) \\ X_1 & (t) \\ \vdots \\ X_{n-3} & (t) \\ X_{n-2} & (t) \\ X_{n-1} & (t) \end{bmatrix} + \begin{bmatrix} d_0 & (t) \\ d_1 & (t) \\ \vdots \\ d_{n-3} & (t) \\ d_{n-2} & (t) \\ d_{n-1} & (t) \end{bmatrix}$$

15 April 2007

Multiple Signature Checking

- Use 2 different testing epochs:
 - 1st with MISR with 1 polynomial
 - 2nd with MISR with different polynomial
- Reduces probability of aliasing
 - · Very unlikely that both polynomials will alias for the same fault
- Low hardware cost:
 - A few XOR gates for the 2nd MISR polynomial
 - A 2-1 MUX to select between two feedback polynomials

15 April 2007

Aliasing Probability

- Aliasing when bad machine signature equals good machine signature
- Aliasing: 1/2ⁿ
- Consider error vector e (n) at POs
 - Set to a 1 when good and faulty machines differ at the PO at time t
- P_{al} = aliasing probability p = probability of 1 in e(n)
- Aliasing limits:
 - 0
 - $1/2 \le p \le 1$, $(1-p)^k \le P_{al} \le p^k$

Transition Counting vs. LFSR LFSR aliases for fsa1, transition counter for *a* sa1 Responses Pattern Good a sa1 f sa1 b sa1 abc Signatures **Transition Count** LFSR 15 April 2007

Summary

- LFSR pattern generator and MISR response compacter – preferred BIST methods
- BIST has overheads: test controller, extra circuit delay, Input MUX, pattern generator, response compacter, DFT to initialize circuit & test the test hardware
- BIST benefits:
 - At-speed testing for delay & stuck-at faults
 - Drastic ATE cost reduction
 - Field test capability
 - Faster diagnosis during system test
 - Less effort to design testing process
 - Shorter test application times

15 April 2007 51

Appendix

15 April 2007 52

LFSR Fault Coverage Projection

Fault detection probability by a random number p(x) dx = fraction of detectable faults with detection probability between x and x + dx

- Mean coverage of those faults is x p (x) dx
- Mean fault coverage y_n of 1st n vectors:

$$I(n) = 1 \int_{0}^{1} (1-x)^{n} \rho(x) dx$$

$$0 y_{n} \quad 1 \equiv I(n) + n$$
(15.6)

15 April 2007

53

LFSR Fault Coverage & Vector Length **Estimation**

- Random-fault-detection (RFD) variable:
 - Vector # at which fault first detected
 - $w_i \equiv \#$ faults with RFD variable i
- So $p(x) = \frac{1}{n_{si}} \sum_{j=1}^{N} w_j p_j(x)$
- n_∈ size of sample simulated: N # test vectors
- w_0 n_s $N\Sigma$ w_i
- Method: = 1
 - Estimate random first detect variables w_i from fault simulator using fault sampling
 - Estimate I(n) using book Equation 15.8
 - Obtain test length by inverting Equation 15.6 & solving numerically

Primitive Polynomials

- Want LFSR to generate all possible 2ⁿ − 1 patterns (except the all-0 pattern)
- Conditions for this must have a primitive polynomial:
 - Monic coefficient of xⁿ term must be 1
 - Modular LFSR all D FF's must right shift through XOR's from X_0 through X_1 , ..., through X_{n-1} , which must feed back directly to X_0
 - Standard LFSR all D FF's must right shift directly from X_{n-1} through X_{n-2} , ..., through X_0 , which must feed back into X_{n-1} through XORing feedback network

15 April 2007 55

Primitive Polynomials (continued)

- Characteristic polynomial must divide the polynomial $1 + x^k$ for $k = 2^n 1$, but not for any smaller k value
- See Appendix B of book for tables of primitive polynomials
- Following is related to aliasing:
 - If p (error) = 0.5, no difference between behavior of primitive & non-primitive polynomial
 - But p (error) is rarely = 0.5 In that case, nonprimitive polynomial LFSR takes much longer to stabilize with random properties than primitive polynomial LFSR

15 April 2007 56

Additional MISR Aliasing

- MISR has more aliasing than LFSR on single PO
 - Error in CUT output d_j at t_i , followed by error in output d_{j+h} at t_{i+h} , eliminates any signature error if no feedback tap in MISR between bits Q_i and Q_{j+h} .

15 April 2007 58

Aliasing Theorems

- Theorem 15.1: Assuming that each circuit PO d_{ij} has probability p of being in error, and that all outputs d_{ij} are independent, in a k-bit MISR, P_{al} = 1/(2^k), regardless of initial condition of MISR. Not exactly true true in practice.
- Theorem 15.2: Assuming that each PO d_{ij} has probability p_j of being in error, where the p_j probabilities are independent, and that all outputs d_{ij} are independent, in a k-bit MISR, $P_{aj} = 1/(2^k), \text{ regardless of the initial condition.}$