

Introduction to River Architect

Sebastian Schwindt

sschwindt@ucdavis.edu | https://sebastian-schwindt.org

Kenneth Larrieu

kglarrieu@ucdavis.edu | https://kglarrieu.github.io

Prof. Gregory B. Pasternack lab - http://pasternack.ucdavis.edu

Department of Land, Air, and Water Resources 239 Veihmeyer Hall, University of California, Davis Davis, CA 95616-8628

Lifespan Mapping

Source: Schwindt, S., Pasternack G. B., Bratovich, P. M., Rabone, G., Simodynes, D., 2019. Hydro-morphological parameters generate lifespan maps for stream restoration management. Journal of Environmental Management 232, 475-489. doi: 10.1016/j.jenvman.2018.11.010

Lifespan Mapping

► River design feature groups

GROUP 1: Berm setback, calm water zones, grading, side channels, bank scalloping

GROUP 2.1: Vegetation plantings & GROUP 2.2: other (soil) bioengineering

GROUP 3 – Longitudinal connectivity: Sediment budget modification, flow regulation, lateral barrier removal (not yet fully considered in River Architect)

► Parametrization: Survival threshold values

Parameter (unit)	Depth to ground water (m)	Dim.less bed shear stress ()	Flow depth (m)	Flow velocity (m/s)	TCD: Fill (m/year)	TCD: Erosion (m/year)
Grading	2 - 4	0.047				0.01
Etc.			 			

► Sustainability Criteria – Thresholds

	VEGETATION PLANTINGS			BIOENGINEERING (OTHER)			
Feature Name	Box Elder	ottonwoo	White Alde	Willow	Streamwood	Angular boulders	Soil stabilization
Critical dimensionless bed shear str	0.047		0.047	0.100		0.047	
Depth to groundwater (min)	3.0	5.0	1.0	1.0			
Depth to groundwater (max)	6.0	10.0	5.0	5.0			12.0
Detrended DEM (min)							
Detrended DEM (max)							
Flow depth	1.0	2.1		2.1	3.4		
Flow velocity		3.0					
Froude number					1.0		
Grain size							
Design map frequency threshold					10.0	20.0	
Safety factor						1.3	
Terrain slope							0.20
Topographic change: fill rate		3.36					
Topographic change: scour rate		1.68	3.00	1.68		3.00	

Source: https://github.com/RiverArchitect/program/blob/master/LifespanDesign/.templates/threshold_values.xlsx

Lifespan Calculation (Raster overlay)

Best Features

Lifespan Mapping

Calculous

Maximum / Best Lifespan Map: Identify most suitable vegetation plantings

Lifespan Mapping

► Design Map: Stable log diameters for streamwood placement

Lifespan Mapping Example

☆ Create Lifespan Maps for Vegetation Plantings

.cache folder deletion sometimes fails – in this case use

Tools > Delete .cache folders

Useful because .cache folders may contains large useless files.

3

Lifespans Activity

Activity

- 1) Add Features > Group layer: Plantings
- 2) Reaches > IGNORE (...)
- 3) Highlight & select remod condition
- 4) Run > Run: Raster Maker

5) Check results (rasters) in /LifespanDesign/Output/Rasters/

Lifespan maps exist now for individual plant species (Box Elder, Cottonwood, White Alder, Willow).

Click on the Modify survival threshold values button to see/change criteria feature properties (threshold_values.xlsx).

What plant species performs best at a given pixel?

 \rightarrow Go to the Max Lifespan tab.

Click on the Refresh list button to show newly created Conditions

Lifespans

Activity

Click on the Refresh list button to show newly created Conditions

- 1) Feature layer > Group layer: Plantings
- 2) Highlight remod ... _lyr20

- 3) Run > Run: Geofile Maker
- 4) Run > Run: Map Maker

ERROR?

https://riverarchitect.github.io/RA wiki/Tr oubleshooting

ERROR: Failed to save PDF map assembly.
 Cause: The make_pdf_maps(self, ...) function of the Mapper() class (.site_packages/riverpy/cMapper.py) raises this error when the map assembly is corrupted.
 Remedy:

 PDF map export of Lifespan maps has troubles at the moment. We recommend to open the automatically created project
 RiverArchitect/02_Maps/CONDITION/maps_CONDITION_lyrXY.aprx and to export PDF maps in ArcGIS Pro: (1) Go to desired layout tab; (2)
 Ensure map layout fits desired export; (3) Go to the Share ribbon and click on the green arrow Layout (export layout).
 Ensure that no other program accesses the LifespanDesign/.cache/, MaxLifespan/.cache/, ModifyTerrain/.cache/, LifespanDesign/Output/, MaxLifespan/Output/, or ModifyTerrain/Output/ directories or their contents (close ArcGIS Pro and verify read/write rights for RiverArchitect/02 Maps/CONDITION/).

Map maker function (PDF export) has troubles with PDF Export \rightarrow Manual export:

- 1) Open RiverArchitect/02_Maps/CONDITION_lyr20/maps_CONDITION_lyr20[...].aprx
- 2) Go to the layout_mlf_plants tab
- 3) Verify layer geofile links: Table of Contents > Layers Map Frame > layer_mlf_plants > Best Lifespans (double-click) > Source > Set Data Source > Select MaxLifespan\Output\Rasters\CONDITION_lyr20\max_lf_plants (Similar for all other layers... Shapefiles folder ... background from 01_Conditions)
- 4) Export: Go to the Ribbon Share > Layout

Detailed documentation & reading for this chapter https://riverarchitect.github.io/RA_wiki/LifespanDesign

