UNIVERSITY of WASHINGTON

Introduction to Machine Learning MLEARN 510A – Lesson 4

Recap of Lesson 3

- Introduction to Classification
- Logistic Regression and Maximum Likelihood
- Logistic Regression Extensions
- Linear Discriminant Analysis (LDA)
- Quadratic Discriminant Analysis (QDA)
- Comparison of Various Algorithms

Outline for Lesson 4

- Data Preprocessing
- Dealing with Missing Data
- Detection of Outliers
- Exploratory Data Analysis
- Data Transformations
- Data Splitting

Data Preprocessing

- Data preprocessing is an important step in the data mining and machine learning process
- Includes
 - Data cleaning
 - Data transformation
 - Feature extraction
- Output of data preprocessing step is the final training set
- Requires experience and practice!

Why Data Preprocessing?

- Data in real world is "dirty":
 - > Incomplete
 - Noisy
 - Inconsistent

Garbage in → Garbage out

Image from: Dilbert.com

- Without quality data, there are no quality models
- Data quality is described in terms of:
 - Accuracy
 - Completeness
 - Conformity
 - Consistency
 - Integrity
 - Timeliness

Major Tasks in Data Preprocessing

- Data cleaning
 - Fill in missing values, smooth noisy data, identify & remove outliers, resolve inconsistencies etc.
- Data integration
 - Integrate with other sources of data
- Data transformation
 - Normalize and aggregate
- Data reduction
 - Reduce volume, while keeping most of the information

Missing Values in Data

- Defined as the data value that is not stored for a variable in the observation of interest
- Common in almost all research and can have a significant effect on the conclusions that can be drawn from the data
- Missing data
 - Reduces statistical power of a test
 - Can cause bias in the estimation of parameters
 - Complicates later analysis

Types of Missing Values

Missing Completely at Random (MCAR)

> The probability that a variable value is missing does not depend on the observed data values nor on the missing data values

Missing at Random (MAR)

➤ The probability that a variable value is missing partly depends on other observed data, but does not depend on any of the values that are missing

Missing Not at Random (MNAR)

The probability that a variable value is missing depends on the missing data values themselves

An Example

- Imagine two variables X and Y, where some of the data on Y are missing
- Now imagine a dummy variable miss(y), which is coded as 0 when Y is observed and coded as 1 when Y is missing
- MCAR: miss(y) is not related to Y or to X
- ➤ MAR: miss(y) is related to X (i.e., one can predict whether Y is missing based on observed values of X), but miss(y) is not related to Y after X is controlled
- MNAR: miss(y) is related to Y itself (i.e., related to the missing values of Y), even after X is controlled

Techniques for Handling Missing Data

Listwise Deletion:

- Removes all data for a case that has one or more missing values
- W/O MCAR, it is biased

Pairwise Deletion:

Maximizes all data available by retaining data which is required for an analysis

Variable Deletion:

Discard variable which is missing values

Listwise Deletion

		Survi F	clas		SibS					
F	PID	ved	S	Age	р	Parch	Ticket	Fare	Cabin I	Emb.
_	1	0	3	22	1	0	A/5 21171	7.25	X	<u>—</u> -s
	2	1	1	38	1	0	PC 17599	71.2833	C85	С
_	3	1	- 3	26	0	0	STON/O2.	7.925	Х	<u> </u>
	4	1	1	35	1	0	113803	53.1	C123	S
	5	0	3	35	0		373450	8.05	Х	<u> </u>
_	6	U	3	X	U	U	3308//	8.4583	Х	Q

Pairwise / Variable Deletion

	Survi F	clas		SibS						
PID	ved	S	Age	р	Parch	Ticket	Fare	Cab	n En	nb.
1	0	3	22	1	0	A/5 21171	7.25		X	S
2	1	1	38	1	0	PC 17599	71.2833	C	5	С
3	1	3	26	0	0	STON/O2.	7.925	_	X	S
4	1	1	35	1	0	113803	53.1	C12	.3	S
5	0	3	35	0	0	373450	8.05		X	S
6	0	3	×	- 0	0	330877	8.4583		X	Q

Missing Data Techniques – Single Imputation

- Substitute missing value with:
 - Single value (e.g., mean, median, worst case, best case)
 - Values dynamically from the dataset (e.g., nearest value)
- Single value (especially mean) is often a bad estimate

		Survi	Pclas							
ı	PID	ved	S	Age	SibSp	Parch	Ticket	Fare	Cabin	Emb.
	1	0	3	22	1	0	A/5 21171	7.25	Х	S
	2	1	1	38	1	0	PC 17599	71.2833	C85	С
	3	1	3	26	0	0	STON/O2.	7.925	Х	S
	4	1	1	35	1	0	113803	53.1	C123	S
	5	0	3	35	0	0	373450	8.05	С	S
	6	0	3	33	0	0	330877	8.4583	D	Q

Missing Data Techniques – Multiple Imputation

- > Imputation: Create *n* sets of imputations for the missing values
- Analysis: Use standard statistical methods to fit the model of interest to each of the imputed datasets
- Pooling: Combine results, calculating the variation in parameter estimates.

Missing Data Techniques

	Missingness Mechanism						
Missing Data Technique	MCAR	MAR	MNAR Biased; Large Std. Errors (Low Power)				
Listwise Deletion	Unbiased; Large Std. Errors (Low Power)	Biased; Large Std. Errors (Low Power)					
Pairwise Deletion	Unbiased; Inaccurate Std. Errors	Biased; Inaccurate Std. Errors	Biased; Inaccurate Std. Errors				
Single Imputation	Often Biased; Inaccurate Std. Errors	Often Biased; Inaccurate Std. Errors	Biased; Inaccurate Std. Errors				
Maximum Likelihood (ML)	Unbiased; Accurate Std. Errors	Unbiased; Accurate Std. Errors	Biased; Accurate Std. Errors				
Multiple Imputation (MI)	Unbiased; Accurate Std. Errors	Unbiased; Accurate Std. Errors	Biased; Accurate Std. Errors				

Note. Recommended techniques are in boldface. Adapted from Newman (2009).

Dealing With Outliers

- Handling outliers is dependent on the nature of data
- If a small fraction of data points are outliers, we can consider dropping those data points
- In a different scenario, outliers might be invaluable signals for one of the classes
- Choose algorithms that robust to outliers

Dealing With Class Imbalance

- Collect more data
- > Try resampling your dataset
- Generate synthetic samples (SMOTE)
- Change performance metric
- Use a different algorithm
- Use penalized models

Exploratory Data Analysis (EDA)

- Used by data scientists to analyze and investigate data sets
- Often the first step in an ML project
- Makes it easier to discover patterns, spot anomalies, test a hypothesis, or check assumptions
- Enables preliminary selection of appropriate models
- Complements inferential statistics

Types of EDA

- First categorization: Graphical or non-graphical
- Second categorization: Univariate or multivariate
- Therefore, we have four types of EDA
 - Univariate non-graphical
 - Multivariate non-graphical
 - Univariate graphical
 - Multivariate graphical

Univariate Non-graphical EDA

- Simplest form of data analysis, where the data being analyzed consists of just one variable
- Goal is to better appreciate the "sample distribution"
- Make some tentative conclusions about what population distribution(s) is/are compatible with the sample distribution
- Outlier detection is also a part of this analysis
- Different methods for categorical and continuous variables

Univariate Non-graphical EDA – Categorical Variables

- Look at the range of values and the frequency (or relative frequency) of occurrence for each value
- ➤ A simple tabulation of the frequency of each category is the best univariate non-graphical EDA for categorical data

Statistic/College	H&SS	MCS	SCS	other	Total
Count	5	6	4	5	20
Proportion	0.25	0.30	0.20	0.25	1.00
Percent	25%	30%	20%	25%	100%

Univariate Non-graphical EDA – Continuous Variables

- Make preliminary assessments about the population distribution of the variable using the data of the observed sample
- Our observed data represent just one sample out of an infinite number of possible samples
- Look for 'sample statistics'
 - > Sample mean
 - Sample variance
 - Sample standard deviation
 - Sample skewness and
 - Sample Kurtosis

Univariate Non-graphical EDA – Continuous Variables

- Central tendency or location" of a distribution has to do with typical or middle values
 - Mean: This is the most often used measure
 - Median: Robust to outliers. Used when the distribution is skewed
 - Mode: Most frequent value. Not used very often
- Spread is an indicator of how far away from the center we are still likely to find data values
 - Standard deviation/Variance
 - Quantiles
 - Inter-quartile range (IQR) → IQR = Q3 Q1. More robust measure than variance

Other Measure of Spread

Skewness: a measure of asymmetry

Kurtosis: a measure of "peakedness" relative to a Gaussian shape

Skewness

The coefficient of Skewness is a measure for the degree of symmetry in the variable distribution.

Negatively skewed distribution or Skewed to the left Skewness <0

Normal distribution Symmetrical Skewness = 0

Positively skewed distribution or Skewed to the right Skewness > 0

Kurtosis

The coefficient of Kurtosis is a measure for the degree of peakedness/flatness in the variable distribution.

Platykurtic distribution Low degree of peakedness Kurtosis <0

Normal distribution Mesokurtic distribution Kurtosis = 0

Leptokurtic distribution High degree of peakedness Kurtosis > 0

Quiz

Can you think of a distribution for which the mean, median and mode are all equal? Give at least two examples

Quiz

Can you think of a distribution for which the mean, median and mode are all equal?

Univariate Graphical EDA

- Histograms: show central tendency, spread, modality, shape and outliers
- Boxplots: show robust measures of location and spread as well as providing information about symmetry and outliers

Multivariate Non-graphical EDA

- Shows the relationship between two or more variables in the form of either cross-tabulation or statistics
- Cross-tabulation: the basic bivariate non-graphical EDA technique
 - Making a two-way table with column headings that match the levels of one variable and row headings that match the levels of the other variable
 - > Fill in the counts of all subjects that share a pair of levels

Age Group / Sex	Female	Male	Total
young	2	3	5
middle	2	1	3
old	3	0	3
Total	7	4	11

Multivariate Non-graphical EDA

Correlation

Covariance

- ➤ Positive covariance → when one measurement is above the mean the other will probably also be above the mean
- ➤ Negative covariances → when one variable is above its mean, the other is below its mean

Multivariate Graphical EDA

Scatter plots

Wrapping Up EDA

- Perform appropriate EDA before further analysis of your data
- Perform whatever steps are necessary to become more familiar with your data
- Check for obvious mistakes, learn about variable distributions, and learn about relationships between variables
- EDA is not an exact science it is a very important art!
- Get better with practice and experience

Quiz

- ➤ Which graphical method do you prefer for EDA?
- ➤ Which non-graphical method do you prefer for EDA?

Data Transformation

- Data transformation processes transform raw variables into meaningful variables
- > Relevant
 - Provide useful information to discriminate between categories
- Discriminative
 - There is enough variability between training examples of different classes
- Non-redundant
 - Unlike already developed features

Feature Engineering

- Feature transformation
 - Transforming existing feature into one with a specific function
- Feature construction
 - > Turning raw data into informative features that algorithm can understand
- Dimensionality reduction
 - Reduce number of features, while preserving overall information content

Encoding Categorical Target Variable

- Categorical target variables need to be transformed to numerical values for use in ML models
- ➤ Label Encoding: normalize labels such that they contain only values between 0 and n_classes-1

from sklearn.preprocessing import LabelEncoder

If used with feature variables, it introduces ordinal structure which may not be suitable

Encoding Categorical Features

- Categorical variables need to be transformed to numerical values for use in ML models
- One-hot Encoding: features are encoded using a one-hot (aka 'one-of-K' or 'dummy') encoding scheme. This creates a binary column for each category

from sklearn.preprocessing import OneHotEncoder

Can quickly grow in size if variable takes on many unique values

One-hot vs. Label Encoding

- ➤ Label Encoding: normalize labels such that they contain only values between 0 and n_classes-1
- One-hot Encoding: features are encoded using a one-hot (aka 'one-of-K' or 'dummy') encoding scheme. This creates a binary column for each category

Label Encoding

Food Name	Categorical #	Calories
Apple	1	95
Chicken	2	231
Broccoli	3	50

One Hot Encoding

Apple	Chicken	Broccoli	Calories
1	0	0	95
0	1	0	231
0	0	1	50

Quiz

- Can you think of a feature that should not be encoded using onehot encoding?
- Can you think of a feature that can be modeled using label encoding?

Curse of Dimensionality

- Using one-hot encoding of such feature might lead to Curse of Dimensionality
- ➢ If we have more features than observations than we run the risk of massively overfitting our model — this would generally result in terrible out of sample performance

Handling High Cardinality Features

Supervised Ratio

 $v_i = p_i / t_i$ where

 v_i = numerical value for i^{th} value of some categorical attribute

 p_i = number of records with positive class value for the categorical attribute value in question

 t_i = total number of records with the categorical attribute value in question

> Weight of Evidence

 $v_i = log((p_i/p)/(n_i/n))$ where

 p_i = number of records with positive class value for the categorical attribute value in question

 n_i = number of records with negative class value for the categorical attribute value in question

p = total number of records with positive class value

 $n = total\ number\ of\ records\ with\ negative\ class\ value$

Discretization

- > Partitions continuous features into discrete values
- Certain datasets with continuous features may benefit from discretization, because discretization can transform the dataset of continuous attributes to one with only nominal attributes

```
feature 1: [-\infty,-1),[-1,2),[2,\infty) feature 2: [-\infty,5),[5,\infty) feature 3: [-\infty,14),[14,\infty)
```


Correcting Distributions

- Some modelling techniques (e.g., LR) perform better with variables that have been monotonically transformed
- These transformations are divided into:
 - Centering
 - Scaling
 - > Transformation

Centering

- > Shift the 'center' of the feature to 0
- Center can be defined as:
 - Mean
 - Median
 - > Mode

Scaling

Methods:

- Standard (Z) scaling
- Min-Max (range) scaling
- Pareto scaling
- Vast scaling
- Level scaling
- Scaling is important only for some of the algorithms:
 - K-means, K-NN, if you want all features to contribute equally to prediction
 - Regression methods, SVMs, perceptrons, neural networks, to improve performance of gradient-descent based optimizers
 - > LDA, PCA, to ensure that all features contribute equally

Effect of Scaling on Parameter Optimization

Feature Scaling

Idea: Make sure features are on a similar scale.

$$\Rightarrow x_1 = \frac{\text{size (feet}^2)}{2000}$$

$$\rightarrow x_2 = \frac{\text{number of bedrooms}}{5}$$

Transformations

Types:

- Box-cox transform
$$x^* = \begin{cases} \frac{x^{\lambda} - 1}{\lambda} & \text{if } \lambda \neq 0 \\ \log(x) & \text{if } \lambda = 0 \end{cases}$$

Log transforms

 $\widetilde{x}_{ij} = {}^{10} \log(x_{ij})$ $\widetilde{x}_{ij} = \widetilde{x}_{ij} - \overline{\widetilde{x}}_{i}$

Power transforms

$$\widetilde{x}_{ij} = \sqrt{(x_{ij})} \ \widehat{x}_{ij} = \widetilde{x}_{ij} - ar{\widetilde{x}}_i$$

Reasons:

- Make distributions more normal-like (or symmetric)
- Reduce heteroscedasticity
- Convert multiplicative relationships to additive ones

Exercise

Check out sklearn.preprocessing for various preprocessing techniques

Data Splitting in ML

- ➤ The fundamental goal of ML is to *generalize* beyond the data instances used to train models
- Future instances have unknown target values, and we cannot check the accuracy of our predictions for future instances now
- Need to use some of the data that we already know the answer for as a proxy for future data
- Carve out a 'test' dataset

Hold Out Strategy

K-Fold Strategy

K-FOLD STRATEGY

Data Splitting for Time Series

- ➤ Time series data requires careful splitting due to the presence of correlations in data
- Split by time

Jupyter Notebook

Case Study

ON-BRAND STATEMENT

FOR GENERAL USE

> What defines the students and faculty of the University of Washington? Above all, it's our belief in possibility and our unshakable optimism. It's a connection to others, both near and far. It's a hunger that pushes us to tackle challenges and pursue progress. It's the conviction that together we can create a world of good. And it's our determination to Be Boundless. Join the journey at **uw.edu**.

