1)- a-.Dibujar la curva paramétrica

 $\times = 1/(1+t^2), y = t/(1+t^2), (-\infty < t < \infty)$, mostrando su dirección con una flecha. Eliminar el paramétro para obtener una ecuación cartesiana en $x \in y$ cuya gráfica sea la curva paramétrica. (v. 1p).

b-.¿Cómo se puede calcular la longitud de una curva en polares? (v. 1p)

- 2)- Calcular las coordenadas de todos los puntos de la superficie $z=x^4+4xy^3+6y^2-2$ donde dicha superficie tiene un plano tangente horizontal. (v. 2p)
- 3)- Calcular los valores máximo y mínimo de $f(x,y)=xy-y^2$ en el disco $x^2+y^2\leq 1$. (v. 2p)
- 4)- Calcular $\iint_S x dA$, siendo S el segmento del disco $x^2 + y^2 \le 2, x \ge 1$. (v.2p)
- 5)- Calcular si el campo $\vec{F}(x,y,z) = (2xy-z^2)\vec{i} + (2yz+x^2)\vec{j} (2zx-y^2)\vec{k}$ es conservativo, y si lo es calcular una función potencial. (v. 2p)

- 1)- a-. Dibujar la curva paramétrica
- $\times = \cos(\sin(s)), y = \sin(\sin(s)), (-\infty < s < \infty)$, mostrando su dirección con una flecha. Eliminar el paramétro para obtener una ecuación cartesiana en x e y cuya gráfica sea la curva paramétrica. (v. 1p).
- b-.¿Cómo se puede calcular la pendiente en un punto de una curva paramétrica? (v. 1p)
- 2)- Calcular $\nabla f(a,b)$ para la función diferenciable f(x,y), dadas las derivadas direccionales

$$D_{(i+j)/\sqrt{2}}f(a,b) = 3\sqrt{2}$$
 y $D_{(3i-4j)/5}f(a,b) = 5$. (v. 2p)

- 3)- La temperatura de todos los puntos del disco $x^2 + y^2 \le 1$ está dada por $T = (x + y)e^{-x^2 y^2}$. Calcular la temperatura máximas y mínima en los puntos del disco. (v. 2p)
- 4)- Calcular $\iiint\limits_D (3+2xy)dV$ sobre la semiesfera sólida $D=\{(x,y,z)\mid x^2+y^2+z^2\leq 4\ \ \text{y}\ \ z\geq 0.\ \ \text{(v. 2p)}$
- 5)- Calcular el trabajo realizado por el campo vectorial $\vec{F}(x,y,z)=(x+y)\vec{i}+(x-z)\vec{j}-(z-y)\vec{k}$. Al mover un objeto desde (1,0,-1) hasta (0,-2,3), siguiendo una curva suave. (v. 2p)

1.

a. Si una función f(x,y) tiene la propiedad $\frac{\partial f}{\partial x}(x,y) = 0$, para todo x e y, ¿entonces f es la función constante? Responder a la pregunta razonadamente.

(v. 1p)

b. Si C es una parte de una curva de nivel de la función f(x,y) y $\overrightarrow{F} = \overrightarrow{\nabla f}$, ¿entonces $\int_{C} \overrightarrow{F} \cdot \overrightarrow{dr} = 0$? Razonar la respuesta.

(v. 1p)

2. Calcular el área de la superficie $r(u,v) = (u^3, v^3, u^3 - v^3)$ parametrizada por (u,v) que pertenece al disco unidad, $u^2+v^2 \le 1$.

(v. 2p)

3. Un objeto se mueve por la curva $y=x^2$, $z=x^3$, con velocidad constante dz/dt=3. Calcular el vector velocidad y la aceleración del objeto cuando está en el punto (2,4,8).

(v. 2p)

4. Si f y g son funciones de una variable, diferenciables dos veces, demuestresé que w = f(x - ct) + g(x + ct) satisfacen la ecuación $\frac{\partial^2 w}{\partial t^2} = c^2 \frac{\partial^2 w}{\partial x^2}$

(v. 2p)

5. Si T es el tetraedro cuyos vertices son (0,0,0),(1,0,0),(0,1,0) y (0,0,1), calcular $I=\iiint y dV$.

(v. 2p)