Luyang Han & Janosch Ott

Coordinat Descent

Least Angle Regression

Optimization

Recall: Duality

ADMM

Rules

Minor-Max Algorithms

Alternating Minimizations

Computation & optimization for Lasso - part 2

Luyang Han & Janosch Ott

ETH Zürich

22 October 2018

Luyang Han & Janosch Ott

- 1. Coordinate Descent
- 2. Least Angle Regression
- 3. Comparison of Optimization Methods
- 4. Recall: Duality
- 5. ADMM
- 6. Screening Rules

Luyang Han & Janosch Ott

Coordinate Descent

Least Angle Regression

Optimization
Methods

Recall: Duality

ADMM

Screenin Rules

Minor-Max Algorithms

Alternating Minimizations

Coordinate Descent Algorithm

What is the Coordinate Descent (CD) Algorithm?

$$\beta_k^{t+1} = \underset{\beta_k}{\operatorname{argmin}} \ f(\beta_1^t \ , \beta_2^t \ , \dots, \beta_k \ , \beta_{k+1}^t \ , \dots, \beta_p^t)$$
 and $\beta_j^{t+1} = \beta_j^t \text{ for } j \neq k$

• An iterative algorithm that updates from β^t to β^{t+1} by choosing a single coordinate, and minimizing over this coordinate.

Luyang Han & Janosch Ott

Coordinate Descent

Least Angle Regression

Optimization Methods

Recall: Duality

ADMN

Screenii Rules

Minor-Max Algorithms

Alternating Minimizations

Separability Condition

Motivation

Does CD procedure converge to the global minimum of a convex function?

- **Sufficient Condition:** the function is continuously differentiable and strictly convex in each coordinate.
- ⇒ restrictive

Luyang Han & Janosch Ott

Coordinate Descent

Least Angle Regression

Optimization Methods

Recall: Duality

ADMN

Rules

Minor-Max Algorithms

Alternating Minimizations

Separability Condition

Suppose the cost function f has the additive decomposition:

$$f(\beta_1,...,\beta_p) = g(\beta_1,...,\beta_p) + \sum_{j=1}^p h_j(\beta_j)$$

where $g: \mathbb{R}^p \to \mathbb{R}$ is differentiable and convex, and the univariate functions $h_j: \mathbb{R} \to \mathbb{R}$ are convex.

• <u>Lasso</u>: $g(\beta) = \frac{1}{2N} ||\mathbf{y} - \mathbf{X}\beta||_2^2$ and $h_j(\beta_j) = \lambda |\beta_j|$ satisfies the condition

Luyang Han & Janosch Ott

Coordinate Descent

Least Angle Regression

Comparison of Optimization Methods

Recall: Duality

A D I A I

Screeni

Minor-Ma:

Alternating Minimizations

Separability Condition: Example

An Example of failure of Coordinate Descent

$$\underset{\beta \in \mathbb{R}^p}{\operatorname{argmin}} \ \frac{1}{2N} \|\mathbf{y} - \mathbf{X}\beta\|_2^2 + \ \lambda_1 \sum_{j=1}^p |\beta_j| + \ \lambda_2 \sum_{j=2}^p |\beta_j - \beta_{j-1}|$$

- $h(\beta)$ is not separable
- Fused Lasso: coordinate descent procedure is not guaranteed to find the global minimum

Luyang Han & Janosch Ott

Coordinate Descent

Least Angle Regression

Optimization
Methods

Recall:

ADMN

Screenii Rules

Minor-Ma Algorithm

Alternating Minimizations

Separability Condition: Example

Figure: Fused Lasso: CD fails to reach the global minimum from Trevor Hastie, Robert Tibshirani, and Martin Wainwright (2015), Statistical learning with sparsity: the Lasso and generalizations, p111.

Luyang Han & Janosch Ott

Coordinate Descent

Least Angle Regression

Optimization Methods

Recall: Duality

ADMN

Rules

Minor-Max Algorithms

Alternating Minimizations

Lasso & Coordinate Descent

Optimality Condition:

$$-\frac{1}{2N} \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{k=1}^{p} x_{ik} \beta_k) x_{ij} + \lambda s_j = 0$$

where $s_j \in sign(\beta_j)$ for j = 1, 2, ..., p

- Define the **partial residual**: $r_i^{(j)} = y_i \sum_{k \neq j} x_{ik} \hat{\beta}_k$
- Then the solution for $\hat{\beta}_j$ satisfies:

$$\hat{\beta}_j = \frac{S_{\lambda}(\frac{1}{N}\sum_{i=1}^N r_i^{(j)} x_{ij})}{\frac{1}{N}\sum_{i=1}^N x_{ij}^2}$$

where
$$S_{\lambda}(\theta) = sign(\theta)(|\theta| - \lambda)_{+}$$

Luyang Han & Janosch Ott

Coordinate Descent

Least Angle Regression

Comparison of Optimization Methods

Recall: Duality

ADMN

Rules

Algorithm:

Alternating Minimizations

Lasso & Coordinate Descent

Illustration of Coordinate Descent in R

Strategies to make the operation efficient:

Naive Updating

$$r_i^{(j)} = y_i - \sum_{k \neq j} x_{ik} \hat{\beta}_k = r_i + x_{ij} \hat{\beta}_j$$

$$\frac{1}{N} \sum_{i=1}^{N} x_{ij} r_i^{(j)} = \frac{1}{N} \sum_{i=1}^{N} x_{ij} r_i + \hat{\beta}_j$$

Covariance Updating

$$\sum_{i=1}^{N} x_{ij} r_i = \langle x_j, y \rangle - \sum_k \langle x_j, x_k \rangle \beta_{\hat{k}}$$

Warm Starts: For a decreasing sequence of values $\{\lambda_0^L\}$, $\hat{\beta}(\lambda_l)$ is typically a very good warm start for the solution $\hat{\beta}(\lambda_{l+1})$. We set $\lambda_0 = \frac{1}{N} \max |\langle x_i, y \rangle|$ and $\lambda_L \approx 0$.

Luyang Han & Janosch Ott

Coordinate Descent

Least Angle Regression

Comparison o Optimization Methods

Recall: Duality

ADMN

Rules
Minor-Ma

Algorithms

Alternating Minimizations

Lasso & Coordinate Descent

Active-set Convergence: Define the active set A and iterate the algorithm using only variables in A.

Strong-set Convergence: Define the strong set S and iterate the algorithm using only variables in S.

Sparsity: Sparsity of the design matrix X makes the operation of inner product efficient.

Details in page 113 and page 114 of Trevor Hastie, Robert Tibshirani, and Martin Wainwright (2015) Statistical learning with sparsity: the Lasso and generalizations.

Luyang Han & Janosch Ott

Coordinate Descent

Least Angle Regression

Comparison of Optimization Methods

Recall:

Duality

ADMIN

Rules

Minor-Max Algorithms

Alternating Minimizations

Elastic Net & Coordinate Descent

$$minimize_{\beta_0,\beta} \frac{1}{2} \sum_{i=1}^{N} (y_i - \beta_0 - x_i^T \beta)^2 + \lambda \left[\frac{1}{2} (1-\alpha) ||\beta||_2^2 + \alpha ||\beta||_2 \right]_1$$

- Combination of L1 and L2 penalty
- Satisfy the separability condition
- The solution satisfies:

$$\hat{\beta}_{j} = \frac{S_{\alpha\lambda}(\frac{1}{N}\sum_{i=1}^{N}r_{i}^{(j)}x_{ij})}{\frac{1}{N}\sum_{i=1}^{N}x_{ij}^{2} + (1-\alpha)\lambda}$$

Luyang Han & Janosch Ott

Coordinate Descent

Least Angle Regression

Optimization Methods

Recall:

ADMN

Screeni Rules

Minor-Ma Algorithm

Alternating Minimizations

Logistic Regression & Coordinate Descent

Background

• Class Label G: Take values 1 and -1

Denote
$$p(x_i; \beta_0, \beta) = Pr(G = 1|x_i)$$

Define log odds:
$$\log \frac{Pr(G=-1|x)}{Pr(G=1|x)} = \beta_0 + x^T \beta$$

Maximize penalized log-likelihood:

$$\frac{1}{N} \sum_{i=1}^{N} \{ I(g_i = 1) \cdot \log(p(x_i; \beta_0, \beta)) \\
+ I(g_i = -1) \cdot \log(1 - p(x_i; \beta_0, \beta)) \} - \lambda ||\beta||_1$$
Denote $y_i = I(g_i = -1)$

Explicit form of log likelihood (without penalty):

$$L(\beta_0, \beta) = \frac{1}{N} \sum_{i=1}^{N} \left[y_i \cdot (\beta_0 + x_i^T \beta) - \log(1 + e^{\beta_0 + x_i^T \beta}) \right]$$

Luyang Han & Janosch Ott

Coordinate Descent

Regression

Optimization
Methods

Recall: Duality

ADMIN

Screenir Rules

Minor-Max Algorithms

Alternating Minimizations

Logistic Regression & Coordinate Descent

Background

• Form a quadratic objective function using Taylor expansion about current estimates $(\tilde{\beta}_0, \tilde{\beta})$: Idea of Newton method, Iterated Weighted Least Square problem

$$L_Q(\beta_0, \beta) = -\frac{1}{2N} \sum_{i=1}^{N} w_i (z_i - \beta_0 - x_i^T \beta)^2 + C(\tilde{\beta_0}, \tilde{\beta})$$

• Use Coordinate Descent to solve the problem $minimize_{(\beta_0,\beta)} \{ -L_Q(\beta_0,\beta) + \lambda ||\beta||_1 \}$

Luyang Han & Janosch Ott

Coordinate Descent

Regression

Optimization Methods

Recall: Duality

ADMN

Minor-Ma

Algorithms

Alternating Minimizations

Logistic Regression & Coordinate Descent

Algorithm

OUTER LOOP: Decrement λ

MIDDLE LOOP: Update the quadratic approximation L_Q

using the current parameters (β_0, β)

INNER LOOP: Run the coordinate descent algorithm on the

penalized weighted least squares problem

Luyang Han & Janosch Ott

Descent

Least Angle
Regression

Comparison of Optimization

Methods

Duality

ADMN

Minor-Ma

Alternating

Least Angle Regression

Introduction

- Relates to Forward Selection method
- Relates to Lasso method
- Able to deliver the entire solution path of the Lasso problem with squared-error loss as a function of the regularization parameter λ

Luyang Han & Janosch Ott

Coordinate Descent

Least Angle Regression

Comparison o Optimization Methods

Recall: Duality

ADMM

Screenir Rules

Minor-Max Algorithms

Alternating Minimizations

Least Angle Regression: Algorithm

- Start with all coefficients β_j equal to zero
- Find the predictor X_j most correlated with y
- Increase the coefficient β_j in the direction of the sign of its correlation with y
- Take **residuals** $r = y \hat{y}$ along the way; Stop when some other predictor X_k has **as much correlation** with r as X_j has
- Increase β_j, β_k in their joint least squares direction, until some other predictor has as much correlation with the residual r

Continue until: all predictors are in the model

Luyang Han & Janosch Ott

Coordinate Descent

Least Angle Regression

Comparison of Optimization Methods

Recall: Duality

ADMM

Rules

Minor-Max Algorithms

Alternating Minimizations

Least Angle Regression: Algorithm

Algorithm 5.1 Least Angle Regression.

- 1. Standardize the predictors to have mean zero and unit ℓ_2 norm. Start with the residual $\mathbf{r}_0 = \mathbf{y} \bar{\mathbf{y}}, \, \beta^0 = (\beta_1, \beta_2, \dots, \beta_p) = \mathbf{0}$.
- 2. Find the predictor \mathbf{x}_j most correlated with \mathbf{r}_0 ; i.e., with largest value for $|\langle \mathbf{x}_j, \mathbf{r}_0 \rangle|$. Call this value λ_0 , define the active set $\mathcal{A} = \{j\}$, and $\mathbf{X}_{\mathcal{A}}$, the matrix consisting of this single variable.
- 3. For $k = 1, 2, ..., K = \min(N 1, p)$ do:
 - (a) Define the least-squares direction $\delta = \frac{1}{\lambda_{k-1}} (\mathbf{X}_{\mathcal{A}}^T \mathbf{X}_{\mathcal{A}})^{-1} \mathbf{X}_{\mathcal{A}}^T r_{k-1}$, and define the *p*-vector Δ such that $\Delta_{\mathcal{A}} = \delta$, and the remaining elements are zero.
 - (b) Move the coefficients β from β^{k-1} in the direction Δ toward their least-squares solution on $\mathbf{X}_{\mathcal{A}}$: $\beta(\lambda) = \beta^{k-1} + (\lambda_{k-1} \lambda)\Delta$ for $0 < \lambda \leq \lambda_{k-1}$, keeping track of the evolving residuals $\mathbf{r}(\lambda) = \mathbf{y} \mathbf{X}\beta(\lambda) = \mathbf{r}_{k-1} (\lambda_{k-1} \lambda)\mathbf{X}\Delta$.
 - (c) Keeping track of $|\langle \mathbf{x}_{\ell}, \mathbf{r}(\lambda) \rangle|$ for $\ell \notin \mathcal{A}$, identify the largest value of λ at which a variable "catches up" with the active set; if the variable has index j, that means $|\langle \mathbf{x}_{j}, \mathbf{r}(\lambda) \rangle| = \lambda$. This defines the next "knot" λ_{k} .
 - (d) Set $\mathcal{A} = \mathcal{A} \cup \{j\}$, $\beta^k = \beta(\lambda_k) = \beta^{k-1} + (\lambda_{k-1} \lambda_k)\Delta$, and $r_k = \mathbf{y} \mathbf{X}\beta^k$.
- 4. Return the sequence $\{\lambda_k, \beta^k\}_0^K$.

Figure: From Trevor Hastie, Robert Tibshirani, and Martin Wainwright (2015) Statistical learning with sparsity: the Lasso and generalizations, p119, Algorithm 5.1.

Luyang Han & Janosch Ott

Coordinat Descent

Least Angle Regression

Optimization

Recall: Duality

ADMN

Kules

Algorithms

Alternating Minimizations

Least Angle Regression: Geometric Representation

Figure: From Bradely Efron, Trevor Hastie, Iain Johnstone And Robert Tibshirani (2004), Least Angle Regression, The Annual of Statistics, p412, Figure 2.

Luyang Han & Janosch Ott

Coordinate

Least Angle Regression

Comparison of Optimization Methods

Recall: Duality

ADIVIIV

Minor-Ma

Algorithms

Alternating Minimizations

Connection between LAR and Lasso

LAR

Let \mathbb{A} be the active set of variables for the LAR algorithm. $\mathbf{x}_{j}^{T}(\mathbf{y} - \mathbf{X}\beta(\lambda)) = \lambda \cdot s_{j}, \ \forall j \in \mathbb{A}$ where s_{j} is the sign of inner product λ .

LASSO

Let $\mathbb B$ be the active set of variables in the solution for a given value of $\lambda.$

$$R(\beta) = \frac{1}{2}||\mathbf{y} - \mathbf{X}\beta||_2^2 + \lambda||\beta||_1$$

For differentiable $R(\beta)$, the stationary conditions give:

$$\mathsf{x}_{i}^{\mathsf{T}}(\mathsf{y}-\mathsf{X}eta) = \lambda \cdot \mathit{sign}(eta_{j}), orall j \in \mathbb{B}$$

If sign (β_i) matches s_i , the coefficient would be identical.

Luyang Han & Janosch Ott

Coordinat Descent

Regression

Comparison of Optimization Methods

Recall: Duality

ADMN

Screenii Rules

Minor-Max Algorithms

Alternating Minimizations

Connection between LAR and Lasso

- R Example
- LAR algorithm explains that the coefficient paths for the Lasso are piecewise linear
- Coefficient paths differ if $sign(\beta_j)$ is different from s_j
- Modification of LAR for computing Lasso solution:
 If a nonzero coefficient crosses zero before the next variable enters, drop it from A and recompute the current joint least squares direction.

Luyang Han & Janosch Ott

Coordinate

Least Angle Regression

Comparison of Optimization Methods

Recall:

ΔΡΜΜ

Screenir Rules

Minor-Ma

Alternating
Minimizations

Connection between LAR and Lasso

Figure: Cases where signs of λ and β disagree, from Trevor Hastie, Robert Tibshirani, and Martin Wainwright (2015) Statistical learning with sparsity: the Lasso and generalizations, p120, Figure 5.9.

Luyang Han & Janosch Ott

Coordinate Descent

Least Angle Regression

Comparison of Optimization Methods

Recall: Duality

ADMM

Screening Rules

Minor-Max Algorithms

Alternating Minimizations

Algorithm Performance

Simulation: Comparison of computation efficiency between CD and LAR

Set Up: 1

- Generate Gaussian data with N observations and p predictors, with each pair of predictors X_j , X_k having the same population correlation ρ .
- Try different combination of N and p; Range ρ from 0 to 0.95.

$$Y = \sum_{j=1}^{p} X_j \beta_j + kZ$$
 where $\beta_j = (-1)^j exp(\frac{-2(j-1)}{20}), Z \sim N(0,1)$ and k is a constant.

¹Jerome Friedman, Trevor Hastie, and Rob Tibshirani (2010) Regularization Paths for Generalized Linear Models via Coordinate Descent, p12.

Luyang Han & Janosch Ott

Coordinat Descent

Regression

Comparison of Optimization Methods

Recall: Duality

ADMM

Screenin

Minor-Ma

Alternating Minimizations

Algorithm Performance

	L	inear Re	gression	— Dens	e Featur	es	
	Correlation						
	0	0.1	0.2	0.5	0.9	0.95	
		- 6	N = 1000	p = 100)		
glmnet-naive	0.05	0.06	0.06	0.09	0.08	0.07	
glmnet-cov	0.02	0.02	0.02	0.02	0.02	0.02	
lars	0.11	0.11	0.11	0.11	0.11	0.11	
		1	N = 5000	, p = 100)		
glmnet-naive	0.24	0.25	0.26	0.34	0.32	0.31	
glmnet-cov	0.05	0.05	0.05	0.05	0.05	0.05	
lars	0.29	0.29	0.29	0.30	0.29	0.29	
		13	N = 100,	p = 1000)		
glmnet-naive	0.04	0.05	0.04	0.05	0.04	0.03	
glmnet-cov	0.07	0.08	0.07	0.08	0.04	0.03	
lars	0.73	0.72	0.68	0.71	0.71	0.67	
		- 1	N = 100,	p = 5000)		
glmnet-naive	0.20	0.18	0.21	0.23	0.21	0.14	
glmnet-cov	0.46	0.42	0.51	0.48	0.25	0.10	
lars	3.73	3.53	3.59	3.47	3.90	3.52	
		1	V = 100,	p = 2000	0		
glmnet-naive	1.00	0.99	1.06	1.29	1.17	0.97	
glmnet-cov	1.86	2.26	2.34	2.59	1.24	0.79	
lars	18.30	17.90	16.90	18.03	17.91	16.39	
		0	V = 100,	p = 5000	0		

Figure: Comparison of computing time, from Jerome Friedman, Trevor Hastie, and Rob Tibshirani (2010) Regularization Paths for Generalized Linear Models via Coordinate Descent, Appendix 1.

Luyang Han & Janosch Ott

Least Angle

Comparison of Optimization Methods

Recall: Duality

ADMN

Screenin Rules

Minor-Max Algorithms

Alternating Minimizations

Algorithm Performance

Simulation: Comparison of computation efficiency between Coordinate Descent, Proximal Gradient Descent and Nesterov Method

Set Up: 2

- Generated an N × p predictor matrix X with standard Gaussian entries and pairwise correlation 0 or 0.5 between the features.
- $|\beta_j| = exp \left[-0.5(u(j-1))^2 \right]$ and $u = \sqrt{\frac{\pi}{20}}$ and alternating signs -1,+1,-1...

²Trevor Hastie, Robert Tibshirani, and Martin Wainwright (2015) Statistical learning with sparsity: the Lasso and generalizations, p117.

Luyang Han & Janosch Ott

Coordinat Descent

Least Angle Regression

Comparison of Optimization Methods

Recall: Duality

ADMM

Screenii

Minor-Ma: Algorithm

Alternating Minimizations

Algorithm Performance

Table 5.1 Lasso for linear regression: Average (standard error) of CPU times over ten realizations, for coordinate descent, generalized gradient, and Nesterov's momentum methods. In each case, time shown is the total time over a path of 20 λ values.

	N = 10000, p = 100		N = 200, p = 10000		
Correlation	0	0.5	0	0.5	
Coordinate descent	0.110 (0.001)	0.127 (0.002)	0.298 (0.003)	0.513 (0.014)	
Proximal gradient	0.218 (0.008)	$0.671\ (0.007)$	1.207 (0.026)	2.912(0.167)	
Nesterov	0.251 (0.007)	$0.604\ (0.011)$	1.555 (0.049)	$2.914\ (0.119)$	

Figure: Comparison of computing efficiency between 3 methods, from Trevor Hastie, Robert Tibshirani, and Martin Wainwright (2015) Statistical learning with sparsity: the Lasso and generalizations, p117, Table 5.1.

Luyang Han & Janosch Ott

Coordinate Descent

Least Angle Regression

Comparison of Optimization Methods

Recall: Duality

ADMN

Rules

Algorithms

Alternating Minimizations

Recall: Duality in optimization

Primal				
Optimize	$\min f(x)$			
Constraints	$g_i(x) \leq 0, h_j(x) = 0, x \in X$			
Function	$L(x,\lambda,\mu) := f(x) + \sum_{i} \lambda_{i} g_{i}(x) + \sum_{j} \mu_{j} h_{j}(x)$			
Dual				
Function	$q(\lambda,\mu) = \inf_{x \in X} L(x,\lambda,\mu)$			
Constraints	$\lambda \ge 0$			
Optimize	$\max_{\lambda \geq 0, \mu} q(\lambda, \mu)$			

Why though? - Dual problem is always convex!

Luyang Han & Janosch Ott

Coordinate Descent

Comparison of

Optimization Methods

Recall: Duality

ADMM

Rules

Minor-Max Algorithms

Alternating Minimizations

Alternating Direction Method of Multipliers (ADMM)

Problem - decomposable !

$$\min_{\beta \in \mathbb{R}^m, \theta \in \mathbb{R}^n} f(\beta) + g(\theta) \quad \text{subject to } \mathbf{A}\beta + \mathbf{B}\theta - c = 0$$

Lagrangian - decomposable !

$$f(\beta) + g(\theta) + \langle \mu, \mathbf{A}\beta + \mathbf{B}\theta - c \rangle$$

Augmented Lagrangian - NOT decomposable !

$$L_
ho(eta, heta,\mu):=f(eta)+g(heta)+\langle\mu,\mathbf{A}eta+\mathbf{B} heta-c
angle+rac{
ho}{2}||\mathbf{A}eta+\mathbf{B} heta-c||_2^2$$

Luyang Han & Janosch Ott

Coordinate Descent

Least Angle Regression

Comparison o Optimization Methods

Recall: Duality

ADMM

Screening Rules

Minor-Max Algorithms

Alternating Minimizations

Dual Variable Update

Alternating Direction Method of Multipliers

$$\begin{split} \beta^{t+1} &= \operatorname*{arg\,min}_{\beta \in \mathbb{R}^m} L_{\rho}(\beta, \theta^t, \mu^t) \\ \theta^{t+1} &= \operatorname*{arg\,min}_{\theta \in \mathbb{R}^m} L_{\rho}(\beta^{t+1}, \theta, \mu^t) \\ \mu^{t+1} &= \mu^t + \rho(\mathbf{A}\beta^{t+1} + \mathbf{B}\theta^{t+1} - c) \end{split}$$

Figure: Own illustration of the dual ascent step in the ADMM algorithm utilising dual decomposition based on Geoff Gordon and Ryan Tibshirani (2012), Uses of Duality, https://www.cs.cmu.edu/~ggordon/10725-F12/slides/18-dual-uses.pdf.

Luyang Han & Janosch Ott

Coordinat Descent

Regression

Optimization
Methods

Recall: Duality

ADMM

Rules

Algorithms

Alternating Minimization

ADMM - Why?

- convex problems with nondifferentiable constraints
- blockwise computation
 - sample blocks
 - feature blocks

Luyang Han & Janosch Ott

Coordinate

Least Angle Regression

Comparison of Optimization Methods

Recall: Duality

ADMM

Kules

Minor-Max Algorithms

Alternating Minimizations

ADMM for the Lasso - Problem

Problem in Lagrangian form

$$\underset{\beta \in \mathbb{R}^{p}, \theta \in \mathbb{R}^{p}}{\operatorname{minimize}} \left\{ \frac{1}{2} \left\| \mathbf{y} - \mathbf{X} \beta \right\|_{2}^{2} + \lambda \left\| \theta \right\|_{1} \right\} \quad \text{such that } \beta - \theta = 0$$

Augmented Lagrangian

$$L_{\rho}(\beta,\theta,\mu) := \left\{ \frac{1}{2} \left\| \mathbf{y} - \mathbf{X}\beta \right\|_{2}^{2} + \lambda \left\| \theta \right\|_{1} \right\} + \langle \mu,\beta - \theta \rangle + \frac{\rho}{2} ||\beta - \theta||_{2}^{2}$$

Luyang Han & Janosch Ott

Coordinate

Least Angle Regression

Optimization Methods

Recall: Duality

ADMM

Minor Ma

Minor-Max Algorithms

Alternating Minimizations

ADMM for the Lasso - Update

Update

$$\beta^{t+1} = (\mathbf{X}^T \mathbf{X} + \rho \mathbf{I})^{-1} (\mathbf{X}^T \mathbf{y} + \rho \theta^t - \mu^t)$$

$$\theta^{t+1} = S_{\lambda/\rho} (\beta^{t+1} + \mu^t/\rho)$$

$$\mu^{t+1} = \mu^t + \rho (\beta^{t+1} - \theta^{t+1})$$

where $S_{\lambda/\rho}(z) = \operatorname{sign}(z)(|z| - \frac{\lambda}{\rho})_+$.

Luyang Han & Janosch Ott

Coordinat Descent

Comparison o

Recall: Duality

ADMM

Screening Rules

Minor-Max Algorithms

Alternating Minimizations

Screening Rules

- Pre-processing to eliminate features
- Very big data set, esp. large number of predictors
- Maybe too big to load into memory
- Screening rules eliminate predictors with minor calculation
- And very high / safe certainty (i.e. eliminated predictors would not show up in Lasso model based on full data)

They achieve a reduction in the number of variables, typically by an order of magnitude

Luyang Han & Janosch Ott

Coordinate Descent

Least Angle Regression

Optimization Methods

Recall: Duality

ADMN

Screening Rules

Minor-Max Algorithms

Alternating

Alternating Minimizations

What is a good predictor?

correlation is an inner product

high absolute correlation (= large absolute inner product)

- > high predictive power (compare plots)
- $> x_j$ with largest inner product has highest predictive power
- > thus for that j we are most willing to accept some penalty from $\boldsymbol{\lambda}$

Luyang Han & Janosch Ott

Coordinate Descent

Regression

Comparison o Optimization Methods

Recall: Duality

ADMN

Screening Rules

Minor-Max Algorithms

Alternating Minimizations

Lasso - an iterative algorithm

Let $\mathcal A$ be the active set of predictors. Let λ take values on a decreasing sequence.

iterate

- 1. order predictors x_j not in \mathcal{A} by their "effectiveness" using $\left|x_j^T y\right|$ or better $\left|x_j^T (y \hat{y}_{\lambda})\right|$, call the best predictor $x_{j_{\text{max}}}$
- 2. move λ such that the positive effect from the best predictor $x_{i_{\max}}$ compensates the penalty by λ
- 3. calculate solution for chosen λ

Luyang Han & Janosch Ott

Coordinate

Least Angle Regression

Optimization
Methods

Recall:

A DIMIN

Screening Rules

Minor-Ma

Algorithms

Alternating Minimization

Lasso - a visual intepretation

Luyang Han & Janosch Ott

Coordinate Descent

Regression

Comparison o Optimization Methods

Recall: Duality

ДРИМ

Screening Rules

Minor-Max Algorithms

Alternating Minimizations

Back to screening rules

Let λ take values on a decreasing sequence. Let λ_{\max} be the λ where the first predictor has a non-zero coefficient.

$$\lambda_{\max} = \max_{j} \left| x_{j}^{T} y \right|$$

Let A be the active set of predictors.

$$\forall j \in \mathcal{A} \ \lambda = \left| x_j^T (y - \hat{y}) \right|$$

$$\forall j \notin \mathcal{A} \ \lambda > \left| x_j^T (y - \hat{y}) \right|$$

$$\forall j \notin \mathcal{A} \ \lambda > \left| x_j^T (y - \hat{y}) \right|$$

R example

Luyang Han & Janosch Ott

Coordinat Descent

Regression

Optimization Methods

Recall: Duality

ADMN

Screening Rules

Minor-Max Algorithms

Alternating Minimizations

Global vs. Sequential

Global (one-time screening):

Suppose we want to calculate a Lasso solution at $\lambda < \lambda_{\text{max}}$.

Sequential (iterative screening):

Suppose we have the Lasso solution $\hat{\beta}(\lambda')$ at λ' and want to screen variables for solutions at $\lambda < \lambda'$.

Luyang Han & Janosch Ott

Coordinate Descent

Least Angle Regression

Comparison o Optimization Methods

Recall: Duality

ADMM

Screening Rules

Minor-Max

Alternating Minimizations

Dual Polytope Projection (DPP)

Global DPP Rule

Suppose we want to calculate a Lasso solution at $\lambda < \lambda_{\text{max}}$. The DPP rule discards the i^{th} variable if

$$\left\|\mathbf{x}_{j}^{\mathsf{T}}\mathbf{y}\right\| < \lambda_{\mathsf{max}} - \left\|\mathbf{x}_{j}\right\|_{2} \left\|\mathbf{y}\right\|_{2} \frac{\lambda_{\mathsf{max}} - \lambda}{\lambda}$$

Sequential DPP rule

Suppose we have the Lasso solution $\hat{\beta}(\lambda')$ at λ' and want to screen variables for solutions at $\lambda < \lambda'$. We discard the j^{th} variable if

$$\left|\mathbf{x}_{j}^{T}(\mathbf{y} - \mathbf{X}\hat{eta}(\lambda'))\right| < \lambda' - \left\|\mathbf{x}_{j}\right\|_{2} \left\|\mathbf{y}\right\|_{2} \frac{\lambda_{\mathsf{max}} - \lambda}{\lambda}$$

Luyang Han & Janosch Ott

Coordinate Descent

Least Angle Regression

Comparison o Optimization Methods

Recall: Duality

ADMM

Screening Rules

Minor-Max Algorithms

Alternating Minimizations

Strong Rule

Global Strong Rule

Suppose we want to calculate a Lasso solution at $\lambda < \lambda_{\max}$. The global strong rule discards the j^{th} variable if

$$\left|\mathbf{x}_{j}^{\mathsf{T}}\mathbf{y}\right|<\lambda-\left(\lambda_{\mathsf{max}}-\lambda\right)=2\lambda-\lambda_{\mathsf{max}}$$

Sequential Strong Rule

Suppose we have the Lasso solution $\hat{\beta}(\lambda')$ at λ' and want to screen variables for solutions at $\lambda < \lambda'$. We discard the j^{th} variable if

$$\left|\mathbf{x}_{j}^{T}(\mathbf{y}-\mathbf{X}\hat{eta}(\lambda'))\right|<2\lambda-\lambda'$$

Luyang Han & Janosch Ott

Coordinat Descent

Comparison of Optimization

Methods

Duality

ADMM

Screening Rules

Minor-Max Algorithms

Alternating Minimizations

Screening Rules - Example Setup

- simulated dataset
- N = 200, p = 5000 uncorrelated Gaussian predictor
- 1/4 true non-zero coefficients
- 100 decreassing lambda values equally spaced on the log-scale
- Compare Global DPP, Global Strong, Sequential DDP, Sequential Strong
- no violations for either of the strong rules

Luyang Han & Janosch Ott

Coordinate Descent

Least Angle Regression

Optimization Methods

Recall: Duality

ADMN

Screening Rules

Minor-Max Algorithms

Alternating Minimizations

Figure: From Trevor Hastie, Robert Tibshirani, and Martin Wainwright (2015), Statistical learning with sparsity: the Lasso and generalizations, *CRC Press;* Boca Raton, FL, 12(3), 45 – 678.

Luyang Han & Janosch Ott

Coordinate Descent

Regression

Optimization Methods

Recall: Duality

ADMN

Screening Rules

Minor-Max Algorithms

Alternating Minimizations

Summary I

Coordinate Descent

- An efficient algorithm implemented in glmnet but requires separability condition
- Application: Ridge, Lasso, Elastic Net, Logistic Regression, etc.; Failure: Fused Lasso

Least Angle Regression

- Similar to the idea of Forward Selection
- Computationally efficient but does not scale well to large problems

Connection between LASSO and LAR

- LAR could be modified to obtain Lasso solution
- Explains the fact that Lasso coefficient solution path is piece-wise linear

Luyang Han & Janosch Ott

Coordinate Descent

Comparison

Optimization Methods

Recall: Duality

ADMN

Screening Rules

Minor-Max

Alternating

Summary II

ADMM

- Use duality to your advantage
- Limitations in speed for Lasso, but useful in more complex settings

Screening Rules

- Promising for very large ps
- Difficult to find best rule, field in development

Luyang Han & Janosch Ott

Coordinate Descent

Regression

Optimization
Methods

Recall: Duality

ADMN

Screenir

Minor-Max Algorithms

Alternating Minimizations

Additional slides: Minorization-Maximization Algorithms (MMA)

- Problem: minimize $f(\beta)$ over $\beta \in \mathbb{R}^p$ for f possibly non-convex
- Introduce additional variable heta
- Use θ to majorize (bound from above) the objective function to be minimized

Majorization-Minimization Algorithms work analoguosly.

Luyang Han & Janosch Ott

Coordinat Descent

Least Angle Regression

Optimization
Methods

Recall:

A D L 4 L 4

Saraani

Minor-Max

Algorithms

Alternating Minimization:

MMA visually

Figure: Figure from Jan De Leeuw (2015), Block Relaxation Methods in Statistics, doi.org/10.13140/RG.2.1.3101.9607 (last accessed: 02.10.18)

Luyang Han & Janosch Ott

Coordinate Descent

Regression Comparison

Optimization Methods

Recall: Duality

ADMM

Screenin Rules

Minor-Max Algorithms

Alternating Minimizations

MMA analytically I

Def. $\Psi : \mathbb{R}^p \times \mathbb{R}^p \to \mathbb{R}$ majorizes f at $\beta \in \mathbb{R}^p$ if

$$\forall \theta \in \mathbb{R}^p \quad \Psi(\beta, \theta) \geq f(\beta)$$

with equality for $\theta = \beta$.

Minor-Max algorithm

- initialize β^0
- update with $eta^{t+1} = rg\min_{eta \in \mathbb{R}^p} \Psi(eta, eta^t)$

Luyang Han & Janosch Ott

Coordinate Descent

Regression

Comparison o Optimization Methods

Recall: Duality

ADMM

Screenir Rules

Minor-Max Algorithms

Alternating Minimizations

MMA analytically II

This scheme generates a sequence of β s for which the cost $f(\beta^t)$ is nonincreasing, because

$$f(\beta^t) \stackrel{(i)}{=} \Psi(\beta^t, \beta^t) \stackrel{(ii)}{\geq} \Psi(\beta^{t+1}, \beta^t) \stackrel{(iii)}{\geq} f(\beta^{t+1})$$

where

- (i) & (iii) Definiton of majorize
 - (ii) β^{t+1} is a minimizer of $\beta \mapsto \Psi(\beta, \beta^t)$

Recall:

ADMM

Minor-Ma:

Alternating Minimizations

Biconvexity

Let's consider an example . . .

convex in both directions.

$$f(\alpha,\beta) = (1 - \alpha\beta)^2$$

Def. A function $f(\alpha, \beta) : \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}$ is biconvex, if for each $\alpha \in \mathbb{R}^m$ the function $\alpha \mapsto f(\alpha, \beta)$ is convex and for each $\beta \in \mathbb{R}^n$ the function $\beta \mapsto f(\alpha, \beta)$ is convex. Analoguosly, a set $\mathcal{C} \subseteq \mathcal{A} \times \mathcal{B}$, for \mathcal{A}, \mathcal{B} convex sets, is called biconvex, if it is

Luyang Han & Janosch Ott

Coordinate

Least Angle Regression

Comparison o Optimization Methods

Recall: Duality

ADMM

Screening Rules

Minor-Max Algorithms

Alternating Minimizations

Alternate Convex Search

Block coordinate descent applied to α and β blocks

- 1. Initialize (α^0, β^0) at some point in the biconvex set to minimize over
- 2. For t = 0, 1, 2, ...
 - (i) Fix $\beta = \beta^t$ and update $\alpha^{t+1} \in \arg\min_{\alpha \in \mathcal{C}_{\beta^t}} f(\alpha, \beta^t)$
 - (ii) Fix $\alpha = \alpha^{t+1}$ and update $\beta^{t+1} \in \operatorname*{arg\,min}_{\alpha \in \mathcal{C}_{\alpha^{t+1}}} f(\alpha^{t+1}, \beta)$

For a function bounded from below, the algorithm converges to a partial optimum (i.e. as biconvexity, only optimal in one coordinate if the other coordinate is fixed).

Luyang Han & Janosch Ott

Coordinat Descent

Least Angle Regression

Comparison o Optimization Methods

Recall: Duality

ADMM

Screening Rules

Minor-Max Algorithms

Alternating Minimizations Comments . . . Questions . . . Suggestions . . .

Luyang Han & Janosch Ott

Coordinat

Least Angle Regression

Comparison of Optimization Methods

Recall: Duality

ADMM

Screening Rules

Minor-Max Algorithms

Alternating Minimizations

That's it. Thanks for listening.