Bachelorarbeit

Explizite Berechnung der Levelt-Turrittin-Zerlegung für spezielle D-Moduln

vorgelegt von Maximilian Huber

am Institut für Mathematik der Universität Augsburg

betreut durch Prof. Dr. Marco Hien

abgegeben am 04.07.2013

Inhaltsverzeichnis

Ei	inleitung	V					
0	0 Mathematische Grundlagen						
1	Moduln über \mathcal{D}_k						
	1.1 Weyl-Algebra und der Ring \mathcal{D}_k	5					
	1.1.1 Alternative Definition / Sichtweise	6					
	1.2 (Links) \mathcal{D} -Moduln	7					
	1.2.1 Holonome \mathcal{D} -Moduln	7					
	1.3 Lokalisierung eines \mathcal{D} -Moduls	8					
2	Meromorphe Zusammenhänge						
	2.1 Systeme von ODEs und Meromorphe Zusammenhänge	9					
	2.1.1 Meromorphe Zusammenhänge	9					
	2.2 Eigenschaften / Äquivalenz zu holonomen lokalisierten \mathcal{D} -Moduln	11					
	2.3 Newton Polygon	13					
	2.3.1 Die Filtrierung ${}^{\ell}V\mathcal{D}_{\widehat{K}}$ und das ℓ -Symbol	16					
	2.4 Formale Struktur regulärer Zusammenhänge	17					
	2.5 pull-back und push-forward	18					
	2.6 Fouriertransformation	22					
3	Elementare Meromorphe Zusammenhänge	23					
	3.1 Definition in $[Sab07]$	27					
	3.2 Twisten von Meromorphen Zusammenhängen	27					
4	Levelt-Turrittin-Theorem						
	4.1 Klassische Version	28					
	4.2 Sabbah's Refined version	30					
5	DIE Klasse der Fourier-Transformationen	31					
	5.1 Rezept für allgemeine φ	31					
	5.2 Spezialfall $\varphi_1 := \frac{a}{x}$	35					
	5.2.1 Konvergenz der Potenzreihen	42					
Αı	nhang	43					
Α	Aufteilung von $t\varphi'(t)$						
	B Genaueres zu $(x^2\partial_x)^k$						
_		46					

C Numerische berechnung der Koeffizienten

Abbildungsverzeichnis

2.1	Newton-Polygon zu $P_1 = x \partial_x^2 \dots \dots \dots \dots \dots \dots \dots$	15
2.2	Newton-Polygon zu P_2	
2.3	Newton Polygon zu $P = x(x\partial_x)^2 + x\partial_x + \frac{1}{2}$	16
2.4	Newton Polygon zu	
	$P = x^3 \partial_x^2 - 4x^2 \partial_x - 1 \dots \dots \dots \dots \dots$	2
2.5	Newton Polygon zu	
	$\rho^{+}P = \frac{1}{4}t^{4}\partial_{t}^{2} - \frac{1}{2}t^{3}\partial_{t} - 1 \dots \dots$	2
5.1	Newton-Polygon zu P_{φ}	33
5.2	Newton Polygon zu P_{φ_1}	36
5.3	Newton Polygon zu $\rho^*P_{\varphi_1}$	36
5.4	· =	38
5.5	Newton-Polygon zu Q_1	39
5.6	Newton-Polygon zu Q_2	
		44

Tabellenverzeichnis

Einleitung

0 Mathematische Grundlagen

Wir betrachten \mathbb{C} hier als Complexe Mannigfaltigkeit mit der Klassischen Topologie. In dieser Arbeit spielen die folgenden Funktionenräume eine große Rolle:

- $\mathbb{C}[x] := \{\sum_{i=1}^N a_i x^i | N \in \mathbb{N} \}$ die einfachen Potenzreihen
- $\mathbb{C}\{x\} := \{\sum_{i=1}^{\infty} a_i x^i | \text{pos. Konvergenz radius} \}$ ([HTT07, Chap 5.1.1])
- $\mathbb{C}[\![x]\!] := \{\sum_{i=1}^{\infty} a_i x^i\}$ die formalen Potenzreihen
- $K := \mathbb{C}(\{x\}) := \mathbb{C}\{x\}[x^{-1}]$ der Ring der Laurent Reihen.
- $\widehat{K} := \mathbb{C}((x)) := \mathbb{C}[x][x^{-1}]$ der Ring der formalen Laurent Reihen.
- $\tilde{\mathcal{O}}$ als der Raum der Keime aller (möglicherweise mehrdeutigen) Funktionen. (bei [HTT07] mit \tilde{K} bezeichnet)

Wobei offensichtlich die Inclulsionen $\mathbb{C}[x]\subsetneq\mathbb{C}\{x\}\subsetneq\mathbb{C}[\![x]\!]$ und $K\subsetneq\widehat{K}$ gelten.

Für $v = (v_1, \dots, v_n)$ ein Vektor, bezeichnet

$${}^tv := \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$

den Transponierten Vektor. Es bezeichnet $M(n \times m, k)$ die Menge der n mal m Dimensionalen Matritzen mit Einträgen in k.

Sei R ein Ring, dann bezeichnet R^{\times} die Einheitengruppe von R.

Definition 0.1 (Direkte Summe). [Sta12, 4(Categories).5.1] Seien $x, y \in \text{Ob}(\mathcal{C})$, eine *Direkte Summe* oder das *coprodukt* von x und y ist ein Objekt $x \oplus y \in \text{Ob}(\mathcal{C})$ zusammen mit Morphismen $i \in \text{Mor}_{\mathcal{C}}(x, x \oplus y)$ und $j \in \text{Mor}_{\mathcal{C}}(y, x \oplus y)$ so dass die folgende universelle Eigenschaft gilt: für jedes $w \in Ob(\mathcal{C})$ mit Morphismen $\alpha \in \text{Mor}_{\mathcal{C}}(x, w)$ und $\beta \in \text{Mor}_{\mathcal{C}}(y, w)$ existiert ein eindeutiges $\gamma \in \text{Mor}_{\mathcal{C}}(x \oplus y, w)$ so dass das Diagram

kommutiert.

Definition 0.2 (Tensorprodukt). [Sta12, 3(Algebra).11.21]

$$M \times N \longrightarrow M \otimes_R N$$

$$\downarrow \exists ! \gamma$$

$$T$$

Für eine Abbildung $f:M\to M'$ definiere das Tensorprodukt davon über R mit N als

$$\operatorname{id}_N \otimes f: N \otimes_R M \to N \otimes_R M'$$

 $n \otimes m \mapsto n \otimes f(m)$

Bemerkung 0.3. Hier ein paar Rechenregeln für das Tensorprodukt,

$$(M \otimes_R N) \otimes_S L \cong M \otimes_R (N \otimes_S L) \tag{0.1}$$

$$M \otimes_R R \cong M \tag{0.2}$$

Sei $f: M' \to M$ eine Abbildung, so gilt

$$N \otimes_R (M/\operatorname{im}(f)) \cong N \otimes_R M/\operatorname{im}(\operatorname{id}_R \otimes f)$$

$$\tag{0.3}$$

Definition 0.4 (Exacte Sequenz). Eine Sequenz

$$\cdots \longrightarrow M_{i-1} \xrightarrow{f_{i-1}} M_i \xrightarrow{f_i} M_{i+1} \longrightarrow \cdots$$

heißt exact, wenn für alle i gilt, dass $\operatorname{im}(f_{i-1}) = \ker f_i$.

Definition 0.5 (Kurze exacte Sequenz). Eine kurze exacte Sequenz ist eine Sequenz

$$0 \longrightarrow M' \stackrel{f}{\longrightarrow} M \stackrel{g}{\longrightarrow} M'' \longrightarrow 0$$

welche exact ist.

2

Definition 0.6 (Kokern). Ist $f: M' \to M$ eine Abbildung, so ist der *Kokern* von f definiert als $\operatorname{coker}(f) = M/\operatorname{im}(f)$.

Proposition 0.7. Ist $f: M' \to M$ eine injektive Abbildung, so ist

$$0 \longrightarrow M' \stackrel{f}{\longrightarrow} M \stackrel{\pi}{\longrightarrow} M/f(M') \longrightarrow 0$$
$$m \longmapsto m \mod f(M')$$

11. Mai 2013

eine kurze exacte Sequenz und $M/f(M') = \operatorname{coker}(f)$ ist der Kokern von f.

Beweis.
$$\Box$$

Definition 0.8 (Filtrierung). [Sta12, Def 10.13.1.] [Ell10, Rem 2.5.] Eine aufsteigende Filtrierung F von einem Objekt (Ring) A ist eine Familie von $(F_iA)_{i\in\mathbb{Z}}$ von Unterobjekten (Unterring), so dass

$$0 \subset \cdots \subset F_i \subset F_{i+1} \subset \cdots \subset A$$

und definiere weiter $gr_i^FA:=F_iA/F_{k-1}A$ und damit das zu A mit Filtrierung F assoziierte $graduierte\ Modul$

$$gr^F A := \bigoplus_{k \in \mathbb{Z}} gr_i^F A$$
.

Definition 0.9. [Ayo09] [Sab90, Def 3.2.1] Eine Filtrierung heißt gut, falls ...

1 Moduln über \mathcal{D}_k

Ich werde hier die Weyl Algebra, wie in [Sab90, Chapter 1], in einer Veränderlichen einführen. Wir werden als k immer ein Element aus $\{\mathbb{C}[x], \mathbb{C}[x], \mathbb{C}[x], K, \widehat{K}\}$ betrachten.

Definition 1.1 (Kommutator). Sei R ein Ring. Für $a, b \in R$ wird

$$[a, b] = a \cdot b - b \cdot a$$

als der Kommutator von a und b definiert.

Proposition 1.2. Sei $k \in \{\mathbb{C}[x], \mathbb{C}\{x\}, \mathbb{C}[x], K, \widehat{K}\}$. Sei $\partial_x : k \to k$ der gewohnte Ableitungs-operator nach x, so gilt

1.
$$[\partial_x, x] = \partial_x x - x \partial_x = 1$$

2. $f\ddot{u}r \ f \in k \ ist$

$$[\partial_x, f] = \frac{\partial f}{\partial x}.$$

3. Es gelten die Formeln

$$[\partial_x, x^k] = kx^{k-1} \tag{1.1}$$

$$[\partial_x^j, x] = j\partial_x^{j-1} \tag{1.2}$$

$$[\partial_x^j, x^k] = \sum_{i>1} \frac{k(k-1)\cdots(k-i+1)\cdot j(j-1)\cdots(j-i+1)}{i!} x^{k-i} \partial_x^{j-i}$$
(1.3)

Beweis. 1. Klar.

2. Für ein Testobjekt $g \in k$ ist

$$[\partial_x, f] \cdot g = \partial_x (fg) - f \partial_x g = (\partial_x f)g + \underbrace{f(\partial_x g) - f(\partial_x g)}_{=0} = (\partial_x f)g$$

3. Siehe [AV09, ???]

1.1 Weyl-Algebra und der Ring \mathcal{D}_k

Sei dazu $\frac{\partial}{\partial x} = \partial_x$ der Ableitungsoperator nach x und sei $f \in k$. Man hat die folgende Kommutations-Relation zwischen dem Ableitungsoperator und dem Multiplikations Operator f:

$$\left[\frac{\partial}{\partial x}, f\right] = \frac{\partial f}{\partial x} \tag{1.4}$$

wobei die Rechte Seite die Multiplikation mit $\frac{\partial f}{\partial x}$ darstellt. Dies bedeutet, für alle $g \in \mathbb{C}[x]$ hat

$$\left[\frac{\partial}{\partial x}, f\right] \cdot g = \frac{\partial fg}{\partial x} - f\frac{\partial g}{\partial x} = \frac{\partial f}{\partial x} \cdot g.$$

Definition 1.3. Definiere nun den Ring \mathcal{D}_k als die Quotientenalgebra der freien Algebra, welche von dem Koeffizientenring in k zusammen mit dem Element ∂_x , erzeugt wird, Modulo der Relation (1.4). Wir schreiben diesen Ring auch als

- $A_1(\mathbb{C}) := \mathbb{C}[x] < \partial_x > \text{falls } k = \mathbb{C}[x], \text{ und nennen ihn die Weyl Algebra}$
- $\mathcal{D} := \mathbb{C}\{x\} < \partial_x > \text{falls } k = \mathbb{C}\{x\}$
- $\widehat{\mathcal{D}} := \mathbb{C}[x] < \partial_x > \text{falls } k = \mathbb{C}[x]$
- $\mathcal{D}_K := \mathbb{C}(\{x\}) < \partial_x > \text{falls } k = K \stackrel{\text{def}}{=} \mathbb{C}\{x\}[x^{-1}]$
- $\mathcal{D}_{\widehat{K}} := \mathbb{C}((x)) < \partial_x > \text{falls } k = \widehat{K} \stackrel{\text{def}}{=} \mathbb{C}[x][x^{-1}]^{[1]}.$

Bemerkung 1.4. • Es gilt $\mathcal{D}[x^{-1}] = \mathcal{D}_K$ und $\widehat{\mathcal{D}}[x^{-1}] = \mathcal{D}_{\widehat{K}}$

- Offensichtlich erhält \mathcal{D}_k in kanonischer weiße eine Ringstruktur, dies ist in [AV09, Kapittel 2 Section 1] genauer ausgeführt.
- \mathcal{D}_k ist offensichtlich nichtkommutativ.

Proposition 1.5. [Sab90, Proposition 1.2.3] Jedes Element in \mathcal{D}_k kann auf eindeutige weiße als $P = \sum_{i=0}^{n} a_i(x) \partial_x^i$, mit $a_i(x) \in k$, geschrieben werden.

Beweis. Siehe [Sab90, Proposition 1.2.3]

Definition 1.6. Sei $P = \sum_{i=0}^{n} a_i(x) \partial_x^i$, wie in Proposition 1.5, gegeben, so definiere

$$\deg P := \max\{i | a_i \neq 0\}$$

als den Grad (oder den ∂_x -Grad) von P.

In natürlicher Weise erhält man die aufsteigende Filtrierung $F_N \mathcal{D} := \{P \in \mathcal{D} | \deg P \leq N\}$ mit

$$\cdots \subset F_{-1}\mathcal{D} \subset F_0\mathcal{D} \subset F_1\mathcal{D} \subset \cdots \subset \mathcal{D}$$

und erhalte $gr_k^F \mathcal{D} \stackrel{\text{def}}{=} F_N \mathcal{D} / F_{N-1} \mathcal{D} = \{ P \in \mathcal{D} | \deg P = N \} \cong \mathbb{C} \{ x \}.$

 $^{^{[1]} \}text{Wird mit } \widehat{\mathcal{D}}_{\widehat{K}} \text{ bezeichnet, in [AV09]}.$

Beweis. Sei $P \in F_N \mathcal{D}$ so betrachte den Isomorphismus:

$$F_N \mathcal{D}/F_{N-1} \mathcal{D} \to \mathbb{C}\{x\}; [P] = P + F_{N-1} \mathcal{D} \mapsto a_n(x)$$

Proposition 1.7. Es gilt:

$$gr^F \mathcal{D} := \bigoplus_{N \in \mathbb{Z}} gr_N^F \mathcal{D} = \bigoplus_{N \in \mathbb{N}_0} gr_N^F \mathcal{D} \cong \bigoplus_{N \in \mathbb{N}_0} \mathbb{C}\{x\} \cong \mathbb{C}\{x\} [\xi] = \bigoplus_{N \in \mathbb{N}_0} \mathbb{C}\{x\} \cdot \xi^N$$

$$isomorph \ als \ grad. \ Ringe$$

also $gr^F \mathcal{D} \cong \bigoplus_{N \in \mathbb{N}_0} \mathbb{C}\{x\} \cdot \xi^N$ als graduierte Ringe.

Beweis.
$$TODO$$

1.1.1 Alternative Definition / Sichtweise

[Kas03, Chap 1.1.] Sei X eine 1-Dimensionale complexe Mannigfaltigkeit und \mathcal{O}_X die Garbe der holomorphen Funktionen auf X. Ein (holomorpher) differenzial Operator auf X ist ein Garben-Morphismus $P: \mathcal{O}_X \to \mathcal{O}_X$, lokal in der Koordinate x und mit holomorphen Funktionen $a_n(x)$ als

$$(Pu)(x) = \sum_{n>0} a_n(x)\partial_x^n u(x)$$

geschrieben (für $u \in \mathcal{O}_X$). Zusätzlich nehmen wir an, dass $a_n(x) \equiv 0$ für fast alle $n \in \mathbb{N}$ gilt. Wir setzten $\partial_x^n u(x) = \frac{\partial^n u}{\partial x^n}(x)$. Wir sagen ein Operator hat höchstens Ordnung m, falls $\forall n \geq m : \alpha_n(x) \equiv 0$.

Definition 1.8. Mit \mathcal{D}_X bezeichnen wir die Garbe von Differentialoperatoren auf X.

Die Garbe \mathcal{D}_X hat eine Ring Struktur mittels der Komposition als Multiplikation und \mathcal{O}_X ist ein Unterring von \mathcal{D}_X . Sei Θ_X die Garbe der Vektorfelder über über X. Es gilt, dass Θ_X in \mathcal{D}_X enthalten ist. Bemerke auch, dass Θ_X ein links \mathcal{O}_X -Untermodul, aber kein rechts \mathcal{O}_X -Untermodul ist.

Proposition 1.9. [Ark12, Exmp 1.1] Sei $X = \mathbb{A}^1 = \mathbb{C}$, $\mathcal{O}_X = \mathbb{C}[t]$ und $\Theta_X = \mathbb{C}[x]\partial_x$. Wobei ∂_x als $\partial_x(x^n) = nx^{n-1}$ wirkt. Dann sind die Differentialoperatoren

$$\mathcal{D}_X = \mathbb{C}[x, \partial_x],$$
 mit $\partial_x x - x \partial_x = 1.$

Somit stimmt die Alternative Definition schon mal mit der Einfachen überein.

6 11. Mai 2013

1.2 (Links) \mathcal{D} -Moduln

Da \mathcal{D} ein nichtkommutativer Ring ist, muss man vorsichtig sein und zwischen links unr rechts \mathcal{D} -Moduln unterschiden. Wenn ich im folgendem von \mathcal{D} -Moduln rede, werde ich mich immer auf links \mathcal{D} -Moduln beziehen.

Beispiel 1.10 (links \mathcal{D} -Moduln). [Ark12, Exmp 2.2]

- 1. \mathcal{D} ist ein links und rechts \mathcal{D} -Modul
- 2. $\mathcal{M} = \mathbb{C}[x]$ oder $\mathcal{M} = \mathbb{C}[x, x^{-1}]$ jeweils durch $x \cdot x^m = x^{m+1}$ und $\partial(x^m) = mx^{m-1}$
- 3. [Ark12, Exmp 2.2] Führe formal, also ohne analytischen Hintergurnd, ein Symbol $\exp(\lambda x)$ ein, mit $\partial(f(x)\exp(\lambda x)) = \frac{\partial f}{\partial x}\exp(\lambda x) + f\lambda\exp(\lambda x)$. So ist $\mathcal{M} = \mathscr{O}_X\exp(\lambda x)$ ein \mathcal{D} -Modul.
- 4. [Gin98, Exmp 3.1.4] Führe formal ein Symbol $\log(x)$ mit den Eigenschaften $\partial_x \log(x) = \frac{1}{x}$ ein. Erhalte nun das \mathcal{D} -Modul $\mathbb{C}[x] \log(x) + \mathbb{C}[x, x^{-1}]$. Dieses Modul ist über \mathcal{D} erzeugt durch $\log(x)$ und man hat

$$\mathbb{C}[x]\log(x) + \mathbb{C}[x, x^{-1}] = \mathcal{D} \cdot \log(x) = \mathcal{D}/\mathcal{D}(\partial_x x \partial_x).$$

1.2.1 Holonome \mathcal{D} -Moduln

Definition 1.11. [Sab90, Def 3.3.1.] Sei \mathcal{M} lineares Differentialsystem (linear differential system) . Man sagt, \mathcal{M} ist holonom, falls $\mathcal{M} = 0$ oder falls $\operatorname{Car} \mathcal{M} \subset \{x = 0\} \cup \xi = 0$.

Lemma 1.12. [Sab90, Lem 3.3.8.] Ein \mathcal{D} -Modul ist holonom genau dann, wenn $\dim_{gr^F\mathcal{D},0} gr^F\mathcal{M} = 1$.

Beweis. Siehe [Sab90, Lem 3.3.8.]

Alternative Definition A

Definition 1.13 (Holonome \mathcal{D} -Moduln). [Cou95, Chap 10 §1] Ein endlich genertierter \mathcal{D} -Modul \mathcal{M} ist *holonom*, falls $\mathcal{M} = 0$ gilt, oder falls es die Dimension 1 hat.

Bemerkung 1.14. [Cou95, Chap 10 §1] Sei $\mathfrak{a} \neq 0$ ein Links-Ideal von \mathcal{D} . Es gilt nach [Cou95, Corollary 9.3.5], dass $d(\mathcal{D}/\mathfrak{a}) \leq 1$. Falls $\mathfrak{a} \neq \mathcal{D}$, dann gilt nach der Bernstein's inequality [Cou95, Chap 9 §4], dass $d(\mathcal{D}/\mathfrak{a}) = 1$. Somit ist \mathcal{D}/\mathfrak{a} ein holonomes \mathcal{D} -Modul.

Bemerkung 1.15. [Cou95, Prop 10.1.1]

- ullet Submoduln und Quotienten von holonomen \mathcal{D} -Moduln sind holonom.
- ullet Endliche Summen von holonomen \mathcal{D} -Moduln sind holonom.

Alternative Definition B

 $\textbf{Definition 1.16.} \ \ \text{Ein lokalisiertes \mathcal{D}-Modul \mathcal{M} heißt $holonom$, falls es ein $\mathfrak{a} \lhd \mathcal{D}$ gibt, so dass$

$$\mathcal{M}\cong\mathcal{D}/\mathfrak{a}$$
.

Bemerkung 1.17. In [Cou95] wird dies über die Dimension definiert, und bei [Sab90] über die Carakteristische Varietät.

1.3 Lokalisierung eines \mathcal{D} -Moduls

[Sab90, Chap 4.2.] Sei \mathcal{M} ein links \mathcal{D} -Modul. Betrachte \mathcal{M} als $\mathbb{C}\{x\}$ -Modul und definiere darauf

$$\mathcal{M}[x^{-1}] := \mathcal{M} \otimes_{\mathbb{C}\{x\}} K$$

als die Lokalisierung von \mathcal{M} .

Proposition 1.18. [Sab90, Prop 4.2.1.] $\mathcal{M}[x^{-1}]$ erhält in natürlicher Weise eine \mathcal{D} -Modul Struktur.

Beweis. [Sab90, Prop 4.2.1.] mit:

$$\partial_x(m\otimes x^{-k})=((\partial_x m)\otimes x^{-k})-km\otimes x^{-k-1}$$

Korollar 1.19. [Sab90, Cor 4.2.8.] Sei \mathcal{M} ein holonomes Modul. Dann ist die lokalisierung von \mathcal{M} isomorph zu $\mathcal{D}/\mathcal{D} \cdot P$ für ein $P \in \mathcal{D}/\{0\}$

11. Mai 2013

2 Meromorphe Zusammenhänge

Sei \mathcal{M} ein \mathcal{D} -Modul ungleich Null von endlichem Typ. Falls die links-Multiplikation mit x bijektiv ist, so nennen wir \mathcal{M} einen Meromorphen Zusammenhang. [Sab90, Chap 4]

2.1 Systeme von ODEs und Meromorphe Zusammenhänge

[HTT07, Chap 5.1.1] Für eine Matrix $A(x) = (a_{ij}(x))_{ij} \in M(n \times n, K)$ betrachten wir das System von gewöhnlichen Differentialgleichungen (kurz ODEs)

$$\frac{d}{dx}u(x) = A(x)u(x) \tag{2.1}$$

wobei $u(x) = {}^t(u_1(x), \ldots, u_n(x))$ ein Spaltenvektor von unbekannten Funktionen. Wir werden (2.1) immer in einer Umgebung um $x = 0 \in \mathbb{C}$ betrachten. Als Lösungen von (2.1) betrachten wir Keime von holomorphen (aber möglicherweise mehrdeutigen) Funktionen an x = 0 (geschrieben als $\tilde{\mathcal{O}}$). Wir sagen $v(x) = {}^t(v_1(x), \ldots, v_n(x))$ ist eine Lösung von (2.1), falls $v_i \in \tilde{\mathcal{O}}$ für alle $i \in \{1, \ldots, n\}$ und v die Gleichung (2.1), auf einer Umgebung um die 0, erfüllt.

Alternativer Zugang

[Sab90, 3.1.1] Sei \mathcal{F} ein Funktionenraum, auf dem die Differentialoperatoren \mathcal{D} wirken. Ein Element $u \in \mathcal{F}$ ist Lösung von $P \in \mathcal{D}$ falls $P \cdot u = 0$ gilt.

Falls u ein Lösung von P ist, so ist u auch Lösung von $Q \cdot P$ mit $Q \in \mathcal{D}$. Also hängt die Lösung nur vom Links Ideal $\mathcal{D} \cdot P \lhd \mathcal{D}$ ab.

2.1.1 Meromorphe Zusammenhänge

Nun wollen wir dieses Klassische Gebilde nun in die moderne Sprache der Meromorphen Zusammenhänge übersetzen.

Definition 2.1 (Meromorpher Zusammenhang). Ein Meromorpher Zusammenhang (bei x = 0) ist ein Tuppel $(\mathcal{M}_K, \partial)$ und besteht aus folgenden Daten:

• \mathcal{M}_K , ein endlich dimensionaler K-Vektor Raum

• einer C-linearen Abbildung $\partial: \mathcal{M}_K \to \mathcal{M}_K$, genannt Derivation oder Zusammenhang, welche für alle $f \in K$ und $u \in \mathcal{M}_K$ die Leibnitzregel

$$\partial(fu) = f'u + f\partial u \tag{2.2}$$

erfüllen soll.

Bemerkung 2.2 (Formaler Meromorpher Zusammenhang). Analog definiert man einen formalen Meromorphen Zusammenhang $(\mathcal{M}_{\widehat{K}}, \partial)$ bestehend, analog wie in Definition 2.1, aus folgenden Daten:

- $\mathcal{M}_{\widehat{K}}$, ein endlich dimensionaler \widehat{K} -Vektor Raum
- einer \mathbb{C} -linearen Derivation $\partial: \mathcal{M}_{\widehat{K}} \to \mathcal{M}_{\widehat{K}}$, welche die Leibnitzregel (2.2) erfüllen soll.

Definition 2.3. Seien $(\mathcal{M}_K, \partial_{\mathcal{M}})$ und $(\mathcal{N}_K, \partial_{\mathcal{N}})$ zwei Meromorphe Zusammenhänge. Eine Klineare Abbildung $\varphi : \mathcal{M} \to \mathcal{N}$ heißt Morphismus von Meromorphen Zusammenhängen, falls
sie $\varphi \circ \partial_{\mathcal{M}} = \varphi \circ \partial_{\mathcal{N}}$ erfüllt. In diesem Fall schreiben wir auch $\varphi : (\mathcal{M}_K, \partial_{\mathcal{M}}) \to (\mathcal{N}_K, \partial_{\mathcal{N}})$.

Definition 2.4. Wir erhalten damit die Kategorie dier meromorphen Zusammenhänge über \widehat{K} mit

Objekte: ()

Bemerkung 2.5. 1. Später wird man auf die Angabe von ∂ verzichten und einfach \mathcal{M}_K als den Meromorphen Zusammenhang bezeichnen, auch wird manchmal auf die Angabe von K verzichtet.

2. [HTT07, Rem 5.1.2.] Die Bedingung (2.2) ist zur schwächeren Bedingung

$$\partial(fu) = f'u + f\partial u,$$

welche für alle $f \in \tilde{\mathcal{O}}$ und für alle $u \in \mathcal{M}_K$ erfüllt sein muss, äquivalent.

Definition 2.6 (Zusammenhangsmatrix). [HTT07, Seite 129] Sei $(\mathcal{M}_K, \partial)$ ein Meromorpher Zusammenhang so wähle eine K-Basis $\{e_i\}_{i\in\{1,\dots,n\}}$ von \mathcal{M} . Dann ist die $Zusammenhangsmatrix\ bzgl.\ der\ Basis\ \{e_i\}_{i\in\{1,\dots,n\}}$ die Matrix $A(x)=(a_{ij}(x))\in M(n\times n,K)$ definiert durch

$$a_{ij}(x) = -^t e_i \partial e_j$$
.

Also ist, bezüglich der Basis $\{e_i\}_{i\in\{1,\ldots,n\}}$, die Wirkung von ∂ auf $u=:{}^t(u_1,\ldots,u_n)$ beschrieben durch

$$\partial(u) = \partial\Big(\sum_{i=1}^n u_i(x)e_i\Big) \stackrel{??}{=} \sum_{i=1}^n \Big(u_i'(x) - \sum_{j=1}^n a_{ij}u_j(x)\Big)e_i.$$

Einfache Umformungen zeigen, dass die Bedingung $\partial u(x) = 0$, für $u(x) \in \sum_{i=1}^{n} u_i e_i \in \tilde{\mathcal{O}} \otimes_K \mathcal{M}$, äquivalent zu der Gleichung

$$u'(x) = A(x)u(x)$$

11. Mai 2013

für $u(x) = {}^t(u_1(x), \ldots, u_n(x)) \in \tilde{\mathcal{O}}^n$. Damit haben wir gesehen, dass jeder Meromorphe Zusammanhang (\mathcal{M}, ∂) ausgestattet mit einer K-Basis $\{e_i\}_{i \in \{1, \ldots, n\}}$ von \mathcal{M} zu einem ODE zugeordnet werden kann.

Umgekehrt können wir für jede Matrix $A(x) = (a_{ij}(x))$ den assoziierten Meromorphen Zusammenhang $(\mathcal{M}_A, \partial_A)$ angeben, durch

$$\mathcal{M}_A := \bigoplus_{i=1}^n Ke_i$$
, $\partial_A e_i := -\sum_{i=1}^n a_{ij}(x)e_i$.

2.2 Eigenschaften / Äquivalenz zu holonomen lokalisierten \mathcal{D} -Moduln

Lemma 2.7 (Lemma vom zyklischen Vektor). [Sab90, Thm 4.3.3] [AV09, Satz 4.8] Sei \mathcal{M}_K ein Meromorpher Zusammenhang. Es Existiert ein Element $m \in \mathcal{M}_K$ und eine ganze Zahl d so dass $m, \partial_x m, \ldots, \partial_x^{d-1} m$ eine K-Basis von \mathcal{M}_K ist.

Beweis. [AV09, Satz 4.8]
$$\Box$$

Satz 2.8. [Sab90, Thm 4.3.2] Ein Meromorpher Zusammenhang bestimmt ein holonomes lo-kalisiertes \mathcal{D}_K -Modul und andersherum.

Beweis. [Sab90, Thm
$$4.3.2$$
]

Lemma/Definition 2.9. [AV09, Satz 4.12] [Sab90, Thm 4.3.2] Ist \mathcal{M}_K ein Meromorpher Zusammenhang, dann existiert ein $P \in \mathcal{D}_K$ so dass $\mathcal{M}_K \cong \mathcal{D}_K/\mathcal{D}_K \cdot P$. So ein P heißt dann Minimalpolynom von \mathcal{M}_K .

Beweis. [AV09, Satz 4.12]
$$\Box$$

Satz 2.10. [AV09, Seite 64] Ist $P = P_1 \cdot P_2$ mit $P_1, P_2 \in \mathcal{D}_K$ so gilt

$$\mathcal{D}_K/\mathcal{D}_K \cdot P \cong \mathcal{D}_K/\mathcal{D}_K \cdot P_1 \oplus \mathcal{D}_K/\mathcal{D}_K \cdot P_2$$
.

Beweis. [AV09, Seite 57-64]

Korollar 2.11. Sei $P = P_1 \cdot P_2$ mit $P_1, P_2 \in \mathcal{D}_K$ wie in Satz 2.10 so gilt

$$\mathcal{D}_K/\mathcal{D}_K \cdot (P_1 \cdot P_2) \cong \mathcal{D}_K/\mathcal{D}_K \cdot (P_2 \cdot P_1)$$

Beweis.

$$\mathcal{D}_{K}/\mathcal{D}_{K} \cdot P = \mathcal{D}_{K}/\mathcal{D}_{K} \cdot (P_{1} \cdot P_{2})$$

$$\cong \mathcal{D}_{K}/\mathcal{D}_{K} \cdot P_{1} \oplus \mathcal{D}_{K}/\mathcal{D}_{K} \cdot P_{2}$$

$$= \mathcal{D}_{K}/\mathcal{D}_{K} \cdot P_{2} \oplus \mathcal{D}_{K}/\mathcal{D}_{K} \cdot P_{1}$$

$$\cong \mathcal{D}_{K}/\mathcal{D}_{K} \cdot (P_{2} \cdot P_{1})$$

Lemma 2.12. Sei $(\mathcal{M}_K, \partial)$ ein gegebener Meromorpher Zusammenhang, und φ ein Basisisomorphismus von K^r nach \mathcal{M}_K , also in der Situation

$$\begin{array}{ccc} \mathcal{M}_K & \stackrel{\partial}{\longrightarrow} \mathcal{M}_K \\ \uparrow & \uparrow \\ \cong \varphi & \varphi \cong \\ \mid & \varphi^{-1} \circ \partial \circ \varphi & \mid \\ K^r & \stackrel{\varphi^{-1} \circ \partial \circ \varphi}{\longrightarrow} K^r \end{array}$$

gilt: $(K^r, \varphi^{-1} \circ \partial \circ \varphi)$ ist ebenfalls ein Meromorpher Zusammenhang.

Beweis. TODO, (3. Treffen) \Box

Lemma 2.13. Sei \mathcal{M}_K ein endlich dimensionaler K-Vektor Raum mit ∂_1 und ∂_2 zwei darauf definierte Derivationen. So gilt, die differenz zweier Derivationen ist K-linear.

Beweis. Seien ∂_1 und ∂_2 zwei Derivationen auf \mathcal{M}_K . Da ∂_1 und ∂_2 \mathbb{C} -linear, ist $\partial_1 - \partial_2$ \mathbb{C} -linear, also muss nur noch gezeigt werden, dass $(\partial_1 - \partial_2)(fu) = f \cdot (\partial_1 - \partial_2)(u) \ \forall f \in K$ und $u \in \mathcal{M}_K$ gilt.

$$(\partial_1 - \partial_2)(fu) = \partial_1(fu) - \partial_2(fu)$$

$$= f'u + f\partial_1 u - f'u - f\partial_2 u$$

$$= \underbrace{f'u - f'u}_{=0} + f \cdot (\partial_1 u - \partial_2 u)$$

$$= f \cdot (\partial_1 - \partial_2)(u)$$

Korollar 2.14. Für (K^r, ∂) ein Meromorpher Zusammenhang existiert ein $A \in M(r \times r, K)$, so dass $\partial = \frac{d}{dx} - A$.

Beweis. Es sei (K^r, ∂) ein Meromorpher Zusammenhang. So ist $\frac{d}{dx} - \partial : K^r \to K^r$ K-linear, also lässt sich durch eine Matrix $A \in M(r \times r, K)$ darstellen , also ist, wie behauptet, $\partial = \frac{d}{dx} - A$.

Proposition 2.15 (Transformationsformel). [HTT07, Chap 5.1.1] In der Situation

 $mit\ arphi, \psi\ und\ T\ K$ -Linear und $\partial, (\frac{d}{dx}+A)\ und\ (\frac{d}{dx}+B)\ \mathbb{C}$ -Linear, gilt: Der Meromorphe Zusammenhang. $\frac{d}{dx}+A\ auf\ K^r\ wird\ durch\ Basiswechsel\ T\in GL(r,K)\ zu$

$$\frac{d}{dx} + (T^{-1} \cdot T' + T^{-1}AT) = \frac{d}{dx} + B$$

Definition 2.16 (Differenziell Äquivalent). Man nennt A und B differenziell Äquivalent ($A \sim B$) genau dann, wenn es ein $T \in GL(r,K)$ gibt, mit $B = T^{-1} \cdot T' + T^{-1}AT$.

Proposition 2.17. [Sch, Prop 4.1.1] Seien $(\mathcal{M}, \partial_{\mathcal{M}})$ und $(\mathcal{N}, \partial_{\mathcal{N}})$ Meromorphe Zusammenhänge. Durch setzten von

$$\partial(m\otimes n) = \partial_{\mathcal{M}}(m)\otimes n + m\otimes\partial_{\mathcal{N}}(n)$$

als die Wirkung von ∂ auf das K-Modul $\mathcal{M} \otimes_K \mathcal{N}$, wird $(\mathcal{M} \otimes_K \mathcal{N}, \partial)$ zu einem Meromorphen Zusammenhang.

Lemma 2.18. [Sab90, Ex 5.3.7] Falls \mathcal{N} regulär und nicht Null, dann ist die Menge der Slopes von $\mathcal{M} \otimes \mathcal{N}$ genau die Menge der Slopes von \mathcal{M} .

Beweis.
$$TODO$$

2.3 Newton Polygon

Jedes $P \in \mathcal{D}_{\widehat{K}}$, also insbesondere auch jedes $P \in \mathcal{D}_K$, lässt sich eindeutig als

$$P = \sum_{k=0}^{n} a_k(x) \partial_x^k = \sum_{k=0}^{n} \left(\sum_{l=-N}^{\infty} \alpha_{kl} x^l \right) \partial_x^k$$

mit $\alpha_{ml} \in \mathbb{C}$ schreiben. Betrachte das zu P dazugehörige

$$H(P) := \bigcup_{m,l \text{ mit } \alpha_{ml} \neq 0} \left((m,l-m) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0} \right) \subset \mathbb{R}^2$$
$$= \bigcup_{m \text{ mit } a_m \neq 0} \left((m,deg(a_m) - m) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0} \right) \subset \mathbb{R}^2.$$

Definition 2.19. Das Randpolygon der konvexen Hülle conv(H(P)) von H(P) heißt das Newton Polygon von P und wird als N(P) geschrieben.

Bemerkung 2.20. Claude Sabbah definiert das Newton-Polygon in [Sab90, 5.1] auf eine andere Weiße. Er schreibt

$$P = \sum_{k} a_k(x) (x \partial_x)^k$$

mit $a_k(x) \in \mathbb{C}\{x\}$ und definiert das Newton-Polygon als das Randpolygon der konvexe Hülle von

$$H'(P) := \bigcup_{m \text{ mit } a_m \neq 0} \left((m, deg(a_m)) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0} \right) \subset \mathbb{R}^2.$$

Definition 2.21. Die Menge slopes(P) sind die nicht-vertikalen Steigungen von N(P), die sich echt rechts von $\{0\} \times \mathbb{R}$ befinden.

- Schreibe $\mathcal{P}(\mathcal{M})$ für die Menge der zu \mathcal{M} gehörigen slopes.
- P heißt regulär oder regulär singulär : \Leftrightarrow slopes $(P) = \{0\}$ oder deg P = 0, sonst irregulär singulär.
- Ein meromorpher Zusammenhang $\mathcal{M}_{\widehat{K}}$ (bzw. \mathcal{M}_K) heißt regulär singulär, falls es ein regulär singuläres $P \in \mathcal{D}_{\widehat{K}}$ (bzw. $P \in \mathcal{D}_K$) gibt, mit $\mathcal{M}_{\widehat{K}} \cong \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P$ (bzw. $\mathcal{M}_K \cong \mathcal{D}_K/\mathcal{D}_K \cdot P$).

Beispiel 2.22. 1. Ein besonders einfaches Beispiel ist $P_1 = x^1 \partial_x^2$. Es ist leicht abzulesen, dass

$$m=2$$
 $l=1$

so dass

$$H(P_1) = ((2, 1-2) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0}) = \{(u, v) \in \mathbb{R}^2 | u \leq 2, v \geq -1\}.$$

In Abbildung 2.1 ist $H(P_1)$ (blau) sowie das Newton Polygon eingezeichnet. Offensichtlich ist slopes $(P_1) = \{0\}$ und damit ist P_1 regulär singulär.

2. [AV09, Bsp 5.3. 2.] Sei $P_2 = x^4(x+1)\partial_x^4 + x\partial_x^2 + \frac{1}{x}\partial_x + 1$ so kann man das entsprechende Newton Polygon konstruieren. Das Newton Polygon wurde in Abbildung 2.2 visualisiert. Man erkennt, dass $\mathcal{P}(P_2) = \{0, \frac{2}{3}\}$ ist.

Bemerkung 2.23. [AV09, Bem 5.4] Für alle $f \in \mathbb{C}(\{x\}) \setminus \{0\}$ gilt allgemein, dass das zu $P \in \mathcal{D}_{\widehat{K}}$ gehörige Newton Polygon, bis auf vertikale Verschiebung mit dem von $f \cdot P$ übereinstimmt.

Beweis.
$$TODO$$

14 11. Mai 2013

Abbildung 2.1: Newton-Polygon zu $P_1 = x\partial_x^2$

Abbildung 2.2: Newton-Polygon zu P_2

Damit Lässt sich das Newton Polygon, durch ein f, immer so verschieben, dass $(0,0) \in N(f \cdot P)$, und es gilt, dass

$$\mathcal{D}_K \cdot P = \mathcal{D}_K \cdot (f \cdot P) \lhd \mathcal{D}_K$$

ist.

Lemma 2.24. [Sab90, Seite 26] Das Newton-Polygon hängt, bis auf vertikales verschieben, nur von dem assoziierten Meromorphen Zusammenhang ab.

Lemma 2.25. [Sab90, 5.1]

- 1. $\mathcal{P}(\mathcal{M}_K)$ ist nicht Leer, wenn $\mathcal{M}_K \neq \{0\}$
- 2. Wenn man eine exacte Sequenz $0 \to \mathcal{M}'_K \to \mathcal{M}_K \to \mathcal{M}''_K \to 0$ hat, so gilt $\mathcal{P}(\mathcal{M}_K) = \mathcal{P}(\mathcal{M}'_K) \cup \mathcal{P}(\mathcal{M}''_K)$.

Satz 2.26. [Sab90, Thm 5.3.1] [AV09, 5.15] Sei $\mathcal{M}_{\widehat{K}}$ ein formaler Meromorpher Zusammenhang und sei $\mathcal{P}(\mathcal{M}_{\widehat{K}}) = \{\Lambda_1, \ldots, \Lambda_r\}$ die Menge seiner slopes. Es exisitiert eine (bis auf Permutation) eindeutige Zerlegung

$$\mathcal{M}_{\widehat{K}} = \bigoplus_{i=1}^r \mathcal{M}_{\widehat{K}}^{(i)}$$

in formale Meromorphe Zusammenhänge mit $\mathcal{P}(\mathcal{M}_{\widehat{K}}^{(i)}) = \{\Lambda_i\}.$

Beweis. [Sab90, Thm 5.3.1] oder [AV09, 5.15]

Beispiel 2.27. [Sab90, Ex 5.3.6] Sei $P = x(x\partial_x)^2 + x\partial_x + \frac{1}{2}$. So sieht das Newton-Polygon wie folgt aus

Abbildung 2.3: Newton Polygon zu $P = x(x\partial_x)^2 + x\partial_x + \frac{1}{2}$

mit den Slopes $\mathcal{P}(P) = \{0,1\} =: \{\Lambda_1, \Lambda_2\}$. Nach dem Satz 2.26 existiert eine Zerlegung $P = P_1 \cdot P_2$ mit $\mathcal{P}(P_1) = \{\Lambda_1\}$ und $\mathcal{P}(P_2) = \{\Lambda_2\}$. Durch scharfes hinsehen erkennt man, dass

$$P = x(x\partial_x)^2 + x\partial_x + \frac{1}{2}$$
...
$$= (x(x\partial_x) + \dots) \cdot (x\partial_x + \dots)$$
...
$$= P_1 \cdot P_2$$

Korollar 2.28. [Sab90, Cor 5.2.6] Falls $\mathcal{M}_{\widehat{K}}$ ein regulärer formaler Meromorpher Zusammenhang ist, dann ist $\mathcal{M}_{\widehat{K}}$ isomorph zu einer direkten Summe von elementaren formalen Zusammenhängen. Wobei die elementaren formalen Zusammenhänge die sind, die zu passendem $\mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot (x\partial_x - \alpha)^p$ isomorph sind.

2.3.1 Die Filtrierung ${}^\ell V\mathcal{D}_{\widehat{K}}$ und das $\ell ext{-Symbol}$

Sei $\Lambda = \frac{\lambda_0}{\lambda_1} \in \mathbb{Q}_{\geq 0}$ vollständig gekürtzt, also mit λ_0 und λ_1 in \mathbb{N} relativ prim Definiere die Linearform $\ell(s_0, s_1) = \lambda_0 s_0 + \lambda_1 s_1$ in zwei Variablen, Sei $P \in \mathcal{D}_{\widehat{K}}$. Falls $P = x^a \partial_x^b$ mit $a \in \mathbb{Z}$ und $b \in \mathbb{N}$ setzen wir

$$\operatorname{ord}_{\ell}(P) = \ell(b, b - a)$$

und falls $P = \sum_{i=0}^{d} b_i(x) \partial_x^i$ mit $b_i \in \widehat{K}$ setzen wir

$$\operatorname{ord}_{\ell}(P) = \max_{\{i \mid a_i \neq 0\}} \ell(i, i - v(b_i)).$$

Definition 2.29 (Die Filtrierung ${}^{\ell}V\mathcal{D}_{\widehat{K}}$). [Sab90, Seite 25] Nun können wir die aufsteigende Filtration ${}^{\ell}V\mathcal{D}_{\widehat{K}}$, welche mit $\mathbb Z$ indiziert ist, durch

$${}^{\ell}V_{\lambda}\mathcal{D}_{\widehat{K}} := \{ P \in \mathcal{D}_{\widehat{K}} \mid \operatorname{ord}_{\ell}(P) \leq \lambda \}$$

definieren.

Bemerkung 2.30. Man hat $\operatorname{ord}_{\ell}(PQ) = \operatorname{ord}_{\ell}(P) + \operatorname{ord}_{\ell}(Q)$ und falls $\lambda_0 \neq 0$ hat man auch, dass $\operatorname{ord}_{\ell}([P,Q]) \leq \operatorname{ord}_{\ell}(P) + \operatorname{ord}_{\ell}(Q) - 1$.

16 11. Mai 2013

Definition 2.31 (ℓ -Symbol). [Sab90, Seite 25] Falls $\lambda_0 \neq 0$ ist der graduierte Ring $gr^{\ell V}\mathcal{D}_{\widehat{K}} \stackrel{\text{def}}{=} \bigoplus_{\lambda \in \mathbb{Z}} gr_{\lambda}^{\ell V}\mathcal{D}_{\widehat{K}}$ ein kommutativer Ring. Bezeichne die Klasse von ∂_x in dem Ring durch ξ , dann ist der Ring isomorph zu $\widehat{K}[\xi]$. Sei $P \in \mathcal{D}_{\widehat{K}}$, so ist $\sigma_{\ell}(P)$ definiert als die Klasse von P in $gr_{\operatorname{ord}_{\ell}(P)}^{\ell V}\mathcal{D}_{\widehat{K}}$. σ_{ℓ} wir hierbei als das ℓ -Symbol Bezeichnet.

Zum Beispiel ist $\sigma_{\ell}(x^a \partial_x^b) = x^a \xi^b$.

Bemerkung 2.32. Bei [Sab90] wird der Buchstabe L anstatt ℓ für Linearformen verweden, dieser ist hier aber bereits für $\mathbb{C}[\![t]\!]$ reserviert. Dementsprechend ist die Filtrierung dort als ${}^LV\mathcal{D}_{\widehat{K}}$ und das ℓ -Symbol als L-Symbol zu finden.

Bemerkung 2.33. Ist $P \in \mathcal{D}_{\widehat{K}}$ geschrieben als $P = \sum_{i} \sum_{j} \alpha_{ij} x^{j} \partial_{x}^{i}$. So erhält man $\sigma_{\ell}(P)$ durch die Setzung

$$\sigma_{\ell}(P) = \sum_{\{(i,j)|\ell(i,i-j) = \operatorname{ord}_{\ell}(P)\}} \alpha_{ij} x^{j} \xi^{i}.$$

Beweis. \Box

Definition 2.34 (Stützfunktion). Die Funktion

$$\omega_P: [0,\infty) \to \mathbb{R}, \omega_P(t) := \inf\{v - tu \mid (u.v) \in N(P)\}$$

heißt Stützfunktion und wird in [AV09] als alternative zu dieser Ordnung verwendet.

Bemerkung 2.35. Wenn $\ell(x_0, s_1)$ wie oben aus Λ entstanden ist, so gilt

$$\omega_P(\Lambda) = ord_\ell(P)$$
.

2.4 Formale Struktur regulärer Zusammenhänge

[Sab90, Chap 5.2] Sei $\mathcal{M}_{\widehat{K}}$ ein regulärer formaler Meromorpher Zusammenhang.

Lemma 2.36. [Sab90, Lem 5.2.1.] Es existiert eine Basis von $\mathcal{M}_{\widehat{K}}$ über \widehat{K} mit der Eigenschaften, dass die Matrix, die $x\partial_x$ beschreibt, nur Einträge in $\mathbb{C}[\![x]\!]$ hat.

Beweis. Wähle einen zyklischen Vektor $m \in \mathcal{M}_{\widehat{K}}$ und betrachte die Basis $m, \partial_x m, \dots, \partial_x^{d-1} m$ (siehe Lemma 2.7). Schreibe $\partial_x^d m = \sum_{i=0}^{d-1} (-b_i(x)) \partial_x^i m$ in Basisdarstellung mit Koeffizienten $b_i \in \widehat{K}$. Also erfüllt m die Gleichung $\partial_x^d m + \sum_{i=0}^{d-1} b_i(x) \partial_x^i m = 0$.

Tatsächlich kann man $b_i(x) = x^i b_i'(x)$ mit $b_i' \in \mathbb{C}[x]$ schreiben (wegen Regularität).

Dies impliziert, dass $m, x\partial_x m, \ldots, (x\partial_x)^{d-1}m$ ebenfalls eine Basis von $\mathcal{M}_{\widehat{K}}$ ist.

Die Matrix von $x\partial_x$ zu dieser neuen Basis hat nur Einträge in $\mathbb{C}[\![x]\!]$.

Lemma 2.37. [Sab90, Lem 5.2.2.] Es existiert sogar eine Basis von $\mathcal{M}_{\widehat{K}}$ über \widehat{K} so dass die Matrix zu $x\partial_x$ konstant ist.

Beweis. TODO \Box

2.5 pull-back und push-forward

Nach [Sab07, 1.a] und [HTT07, 1.3]. Sei

$$\rho: \mathbb{C} \to \mathbb{C}, t \mapsto x := \rho(t) \qquad \in t\mathbb{C}[\![t]\!]$$

mit Bewertung $p \geq 1$. Hier werden wir immer $\rho(t) = t^p$ für ein $p \in \mathbb{N}$ betrachten. Diese Funktion induziert eine Abbildung

$$\rho^*: \mathbb{C}\{x\} \hookrightarrow \mathbb{C}\{t\}, f \mapsto f \circ \rho$$
 bzw. $\rho^*: \mathbb{C}[\![x]\!] \hookrightarrow \mathbb{C}[\![t]\!], f \mapsto f \circ \rho$

analog erhalten wir

$$\rho^*: K \hookrightarrow L := \mathbb{C}(\{t\}), f \mapsto f \circ \rho$$
 bzw. $\rho^*: \widehat{K} \hookrightarrow \widehat{L} := \mathbb{C}((t)), f \mapsto f \circ \rho$

wobei L (bzw. \widehat{L}) eine enldiche Körpererweiterung von K (bzw. \widehat{K}) ist. Sei $\mathcal{M}_{\widehat{K}}$ ein endlich dimensionaler $\mathbb{C}((t))$ Vektorraum ausgestattet mit einem Zusammenhang ∇ .

Definition 2.38 (pull-back). [Sab07, 1.a] und [Sab90, Page 34] Der *pull-back* oder das *Inverses* Bild $\rho^+\mathcal{M}_{\widehat{K}}$ von $(\mathcal{M}_{\widehat{K}}, \nabla)$ ist der Vektorraum

$$\rho^*\mathcal{M}_{\widehat{K}}:=\widehat{L}\otimes_{\widehat{K}}\mathcal{M}_{\widehat{K}}\stackrel{\mathrm{def}}{=}\mathbb{C}(\!(t)\!)\otimes_{\mathbb{C}(\!(x)\!)}\mathcal{M}_{\mathbb{C}(\!(x)\!)}$$

mit dem pull-back Zusammenhang $\rho^* \nabla$ definiert durch

$$\partial_t(1\otimes m) := \rho'(t)\otimes \partial_x m. \tag{2.3}$$

Für ein allgemeines $\varphi \otimes m \in \rho^* \mathcal{M}_{\widehat{K}}$ gilt somit

$$\partial_t(\varphi \otimes m) := \rho'(t)(\varphi \otimes \partial_x m) + \frac{\partial \varphi}{\partial t} \otimes m. \tag{2.4}$$

Wie sieht die Wirkung der Derivation auf dem pull-back Zusammenhang aus? Betrachte ein Element der Form $f(t)m = f(\rho(u))m \in \rho^*\mathcal{M}_{\widehat{K}}$ dann gilt

$$\partial_t(f(t)m) = \partial_{\rho(u)}(f(\rho(u))m)$$

$$= f'(\rho(u)) \cdot \underbrace{\frac{\partial(f(u))}{\partial(f(u))}}_{-1} m + f(\rho(u)) \underbrace{\partial_{\rho(u)} m}_{=\partial_t} = (\star)$$

$$\rho'(u)^{-1}\partial_u(f(t)m) = \frac{1}{pu^{p-1}}\partial_u(f(u^p)m)$$
$$= f'(u^p)m + f(u^p)\frac{1}{pu^{p-1}}\partial_u m = (\star)$$

Also gilt $\partial_t(f(t)m) = \rho'(u)^{-1}\partial_u(f(t)m)$ und somit lässt sich vermuten, dass die Wirkung von ∂_t gleich der Wirkung von $\rho'(u)^{-1}\partial_u$ ist. In der Tat stimmt diese Vermutung, wie das folgende Lemma zeigt.

18 11. Mai 2013

Lemma 2.39. In der Situation von Lemma 2.38, mit $\mathcal{M}_{\widehat{K}} = \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P(x, \partial_x)$ für ein $P(x, \partial_x) \in \mathcal{D}_{\widehat{K}}$, gilt

$$\rho^* \mathcal{M}_{\widehat{K}} \cong \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot P(\rho(t), \rho'(t)^{-1} \partial_t)$$
.

Für den Beweis von Lemma 2.39 werden zunächst zwei kleine Lemmata bewiesen.

Lemma 2.40. Es gilt $\rho^*\mathcal{D}_{\widehat{K}} = \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \cong \mathcal{D}_{\widehat{L}}$ mittels

$$\Phi: \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \xrightarrow{\cong} \mathcal{D}_{\widehat{L}}$$

$$f(t) \otimes m(x, \partial_x) \longmapsto f(t) m(\rho(t), \rho'(t)^{-1} \partial_t)$$

Beweis. \Box

Lemma 2.41. Sei $P(x, \partial_x) \in \mathcal{D}_K$. In der Situation

$$\begin{array}{ccc} \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \xrightarrow{\operatorname{id} \otimes_{-} \cdot P(t, \partial_{t})} \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \\ \downarrow & & \downarrow \\ \mathcal{D}_{\widehat{L}} \xrightarrow{\alpha} & \mathcal{D}_{\widehat{L}} \end{array}$$

 $mit \ \Phi \ wie \ in \ Lemma \ 2.40 \ macht \ \alpha := \underline{} \cdot P(\rho(t), \rho'(t)^{-1} \partial_t) \ das \ Diagram \ kommutativ.$

Beweis.
$$TODO$$

zu Lemma 2.39. Sei $P \in \mathcal{D}_{\widehat{K}}$ und $\mathcal{M}_{\widehat{K}} := \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P$. Wir wollen zeigen, dass

$$\rho^* \mathcal{M}_{\widehat{K}} \stackrel{!}{\cong} \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot Q$$

für $Q = P(\rho(t), \rho'(t)^{-1}\partial_t)$ gilt. Betrachte dazu die kurze Sequenz

$$0 \longrightarrow \mathcal{D}_{\widehat{K}} \xrightarrow{-\cdot P} \mathcal{D}_{\widehat{K}} \xrightarrow{\pi_{\widehat{K}}} \mathcal{M}_{\widehat{K}} \longrightarrow 0$$

$$u \longmapsto u \cdot P$$

$$u \longmapsto u \mod \mathcal{D}_{\widehat{K}} \cdot P$$

ist **exact**, weil $\mathcal{M}_{\widehat{K}} \cong \mathcal{D}_{\widehat{K}} / \mathcal{D}_{\widehat{K}} \cdot P = \operatorname{coker}(\underline{} \cdot P)$. Weil \widehat{K} flach ist, da Körper, ist auch, nach anwenden des Funktors $\widehat{L} \otimes_{\widehat{K}} \underline{}$, die Sequenz

$$0 \longrightarrow \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \xrightarrow{\operatorname{id} \otimes \underline{\cdot} P} \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \xrightarrow{\operatorname{id} \otimes \pi_{\widehat{K}}} \widehat{L} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}} \longrightarrow 0$$

$$\rho^* \mathcal{M}_{\widehat{K}}$$

exact. Deshalb ist

$$\rho^* \mathcal{M}_{\widehat{K}} \cong \operatorname{coker}(\operatorname{id} \otimes_{-} \cdot P)$$
 (weil exact)
$$\cong \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} / \left((\widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}}) \cdot (\operatorname{id} \otimes_{-} \cdot P) \right)$$
 (nach def. von coker)

Also mit Φ wie in Lemma 2.40 und $Q(t,\partial_t):=P(\rho(t),\rho'(t)^{-1}\partial_t)$ nach Lemma 2.41 ergibt sich

$$0 \longrightarrow \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \xrightarrow{\operatorname{id} \otimes_{\underline{-}} \cdot P} \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \longrightarrow \widehat{L} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}} \longrightarrow 0$$

$$\stackrel{\stackrel{\downarrow}{\cong} \Phi}{\cong \Phi} \qquad \stackrel{\stackrel{\downarrow}{\cong} \Phi}{\cong \Phi} \qquad 0$$

$$\mathcal{D}_{\widehat{L}} \xrightarrow{\stackrel{-\cdot Q}{\longrightarrow}} \mathcal{D}_{\widehat{L}}$$

als kommutatives Diagram. Nun, weil $_\cdot Q$ injektiv ist, lässt sich die untere Zeile zu einer exacten Sequenz fortsetzen

$$0 \longrightarrow \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \xrightarrow{\operatorname{id} \otimes_{-} \cdot P} \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \xrightarrow{\operatorname{id} \otimes \pi_{\widehat{K}}} \widehat{L} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

und damit folgt die Behauptung.

Lemma 2.42. [Sab90, 5.4.3] Sei $\mathcal{P}(\mathcal{M}_{\widehat{K}}) = \{\Lambda_1, \dots, \Lambda_r\}$ die Menge der Slopes von $\mathcal{M}_{\widehat{K}}$ und $\rho: t \mapsto x := t^p$, dann gilt für $\mathcal{P}(\rho^*\mathcal{M}_{\widehat{K}}) = \{\Lambda'_1, \dots, \Lambda'_r\}$, dass $\Lambda'_n = p \cdot \Lambda_n$.

Beweis. Sei $\mathcal{M}_{\widehat{K}} = \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P$ mit $P = \sum a_i(x)\partial_x^i$, dann ist $\rho^*\mathcal{M}_{\widehat{K}} \cong \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot P'$ mit

$$P'(t, \partial_t) = P(\rho(t), \rho'(t)^{-1} \partial_t)$$

$$= \sum_i a_i(\rho(t)) (\rho'(t)^{-1} \partial_t)^i$$

$$= \sum_i a_i(t^p) ((p \cdot t^{p-1})^{-1} \partial_t)^i$$

11. Mai 2013

Beispiel 2.43 (pull-back). Hier nun ein explizit berechneter pull-back. Wir wollen $\mathcal{M}_{\widehat{K}} := \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P$ bzgl. $P := x^3 \partial_x^2 - 4x^2 \partial_x - 1$ betrachten. Unser Ziel ist es hier ganzzahlige slopes zu erhalten. Es gilt slopes $(P) = \{\frac{1}{2}\}$ (siehe Abbildung 2.4) und es ist 2 der Hauptnenner aller Slopes. Wende den pull-back mit $\rho: t \to x := t^2$ an. Zunächst ein paar Nebenrechnungen, damit wir Lemma 2.39 einfacher anwenden können.

$$\begin{split} \partial_x &\to \frac{1}{\rho'(t)} \partial_t = \frac{1}{2t} \partial_t \\ \partial_x^2 &\to (\frac{1}{2t} \partial_t)^2 \\ &= \frac{1}{2t} \partial_t (\frac{1}{2t} \partial_t) \\ &= \frac{1}{2t} (-\frac{1}{2t^2} \partial_t + \frac{1}{2t} \partial_t^2) \\ &= \frac{1}{4t^2} \partial_t^2 - \frac{1}{4t^3} \partial_t \end{split}$$

also ergibt einsetzen

$$\rho^{+}P = t^{6} \left(\frac{1}{4t^{2}}\partial_{t}^{2} - \frac{1}{4t^{3}}\partial_{t}\right) - 4t^{4} \frac{1}{2t}\partial_{t} - 1$$

$$= \frac{1}{4}t^{4}\partial_{t}^{2} - t^{3} \frac{1}{4u^{3}}\partial_{t} - 4t^{3} \frac{1}{2}\partial_{t} - 1$$

$$= \frac{1}{4}t^{4}\partial_{t}^{2} - 2\frac{1}{4}t^{3}\partial_{t} - 1$$

Also ist $\rho^+P=\frac{1}{4}t^4\partial_t^2-\frac{1}{2}t^3\partial_t-1$ mit slopes $(\rho^+P)=\{1\}$ (siehe Abbildung 2.5) und somit $\rho^*\mathcal{M}_{\widehat{K}}=\mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}}\cdot(\frac{1}{4}t^4\partial_t^2-\frac{1}{2}t^3\partial_t-1).$

 $N(\rho^*P)$

Abbildung 2.4: Newton Polygon zu $P = x^3 \partial_x^2 - 4x^2 \partial_x - 1$

Abbildung 2.5: Newton Polygon zu $\rho^+P=\tfrac{1}{4}t^4\partial_t^2-\tfrac{1}{2}t^3\partial_t-1$

Sei $\mathcal{N}_{\widehat{L}}$ ein endlich dimensionaler \widehat{L} -VR mit Verknüpfung, so definiere den push-forward wie folgt.

Definition 2.44 (push-forward). [Sab07, 1.a] Der push-forward oder das Direktes Bild $\rho_+ \mathcal{N}_{\widehat{L}}$ von $\mathcal{N}_{\widehat{L}}$ ist

- der \widehat{K} -VR $\rho_*\mathcal{N}$ ist definiert als der \mathbb{C} -Vektor Raum $\mathcal{N}_{\widehat{L}}$ mit der \widehat{K} -Vektor Raum Struktur durch die skalare Multiplikation $\cdot: \widehat{K} \times \mathcal{N}_{\widehat{L}} \to \mathcal{N}_{\widehat{L}}$ und $(f(x), m) \mapsto f(x) \cdot m := f(\rho(t))m$
- mit der Wirkung ∂_x beschrieben durch $\rho'(t)^{-1}\partial_t$.

Satz 2.45. [Sab07, 1.a] Es gilt die Projektionsformel

$$\rho_{+}(\mathcal{N}_{\widehat{L}} \otimes_{\widehat{L}} \rho^{+} \mathcal{M}_{\widehat{K}}) \cong \rho_{+} \mathcal{N}_{\widehat{L}} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}}. \tag{2.5}$$

Beweis.

$$\rho_{+}(\mathcal{N}_{\widehat{L}} \otimes_{\widehat{L}} \rho^{+} \mathcal{M}_{\widehat{K}}) = \rho_{+}(\mathcal{N}_{\widehat{L}} \otimes_{\widehat{L}} (\widehat{L} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{L}})) \qquad (\text{def von } \rho^{+} \mathcal{M}_{\widehat{K}}) \\
\cong \rho_{+}((\mathcal{N}_{\widehat{L}} \otimes_{\widehat{L}} \widehat{L}) \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}}) \qquad (\text{Rechenregeln Tensorprodukt}) \\
\cong \rho_{+}(\mathcal{N}_{\widehat{L}} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}}) \qquad (\text{Rechenregeln Tensorprodukt}) \\
= \rho_{+} \mathcal{N}_{\widehat{L}} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}} \qquad (?)$$

2.6 Fouriertransformation

Definition 2.46 (Fouriertransformation). [Blo04, Def 3.1] [GL04] [AV09, Def 6.1] Sei $P = \sum_{i=0}^{d} a_i(x) \partial_x^i$. Dann ist die *Fouriertransformierte* von P gegeben durch

$$\mathcal{F}_P := \mathcal{F}_P(z, \partial_z) = \sum_{i=0}^d a_i(\partial_z)(-z)^i$$

Definition 2.47 (Fouriertransformation von lokalisierten holonomen D-Moduln). Ist $\mathcal{M}_{\widehat{K}} = \widehat{K}/\widehat{K} \cdot P$ so ist die Fouriertransformierte davon ${}^{\mathcal{F}}\mathcal{M}_{\widehat{K}} = \widehat{K}/\widehat{K} \cdot \mathcal{F}_P(x, \partial_x)$.

Beispiel 2.48. Sei $P = t^2 \partial_t + 1$ dann ist die Fouriertransformierte davon $\mathcal{F}_P = \dots$

3 Elementare Meromorphe Zusammenhänge

Definition 3.1. [Sab07, 1.a] Sei $\varphi \in \widehat{K}$. Wir schreiben $\mathscr{E}_{\widehat{K}}^{\varphi}$ für den (formalen) Rang 1 Vektorraum $\mathbb{C}(\!(x)\!) \stackrel{\text{def}}{=} \widehat{K}$ ausgestattet mit dem Zusammenhang $\nabla = \partial_x + \partial_x \varphi$, im speziellen also $\nabla_{\partial_x} 1 = \partial_x 1 = \varphi'$.

Bemerkung 3.2. 1. Es für ein allgemeines $f(x) \in \mathscr{E}_{\widehat{K}}^{\varphi}$ gilt $\partial_x f(x) = f'(x) + f(x)\varphi'(x)$.

- 2. Auf die Angabe von des Rang 1 Vektorraums im Subscript wird im folgendem meist verzichtet.
- 3. Offensichtlich ist $\mathscr{E}^{\varphi} \cong \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot (\partial_x \varphi'(x))$, weil für den zyklischen Vektor 1 gilt, dass $\partial_x \cdot 1 = \varphi'(x) \cdot 1$.

Bemerkung 3.3. [Sab07, 1.a] Es gilt $\mathscr{E}^{\varphi} \cong \mathscr{E}^{\psi}$ genau dann wenn $\varphi \equiv \psi \mod \mathbb{C}[\![x]\!]$.

Sei $\rho: t \mapsto x := t^p \text{ und } \mu_{\mathcal{E}}: t \mapsto \xi t.$

Lemma 3.4. [Sab07, Lem 2.4] Für alle $\varphi \in \widehat{L}$ gilt

$$\rho^+ \rho_+ \mathscr{E}^{\varphi} = \bigoplus_{\xi^p = 1} \mathscr{E}^{\varphi \circ \mu_{\xi}}.$$

Beweis. Wir wollen zeigen, dass das folgende Diagram, für einen passenden Isomorphismus, kommutiert:

$$\rho^{+}\rho_{+}\mathscr{E}^{\varphi(u)} \xrightarrow{\cong} \bigoplus_{\xi^{p}=1} \mathscr{E}^{\varphi\circ\mu_{\xi}}$$

$$\downarrow \partial_{t} \qquad \qquad \downarrow \partial_{t}$$

$$\rho^{+}\rho_{+}\mathscr{E}^{\varphi(u)} \xrightarrow{\cong} \bigoplus_{\xi^{p}=1} \mathscr{E}^{\varphi\circ\mu_{\xi}}$$

Es sei oBdA $\varphi \in t^{-1}\mathbb{C}[t^{-1}]$, dies ist nach Bemerkung 3.3 berechtigt. Wir wählen eine \widehat{L} Basis e des Rang 1 \widehat{L} -Vektorraum \mathscr{E}^{φ} und damit erhält man die Familie $e, te, ..., t^{p-1}e$ als \widehat{K} -Basis von $\rho_+\mathscr{E}^{\varphi}$.

Durch die Setzung $e_k := t^{-k} \otimes_{\widehat{K}} t^k e$ wird die Familie $\mathbf{e} := (e_0, ..., e_{p-1})$ eine \widehat{L} -Basis von $\rho^+ \rho_+ \mathscr{E}^{\varphi}$.

Zerlege nun $t\varphi'(t) = \sum_{j=0}^{p-1} t^j \psi_j(t^p) \in t^{-2}\mathbb{C}[t^{-1}]$ mit $\psi_j \in \mathbb{C}[x^{-1}]$ für alle j > 0 und $\psi_0 \in x^{-1}\mathbb{C}[x^{-1}]$ (siehe: Anhang A). Es gilt:

$$t\partial_t e_k = \sum_{i=0}^{p-1-k} t^i \psi_i(t^p) e_{k+1} + \sum_{i=p-k}^{p-1} t^i \psi_i(t^p) e_{k+i-p}$$

denn:

$$t\partial_{t}e_{k} = t\partial_{t}(t^{-k} \otimes_{\widehat{K}} t^{k}e)$$

$$= t(-kt^{-k-1} \otimes_{\widehat{K}} t^{k}e + pt^{p-1} \cdot t^{-k} \otimes_{\widehat{K}} \partial_{x}(\underbrace{t^{k}e}))$$

$$= -kt^{-k} \otimes_{\widehat{K}} t^{k}e + pt^{p-1}t^{-k+1} \otimes_{\widehat{K}} (pt^{p-1})^{-1}(kt^{k-1}e + t^{k}\varphi'(t)e)$$

$$= -kt^{-k} \otimes_{\widehat{K}} t^{k}e + t^{-k+1} \otimes_{\widehat{K}} (kt^{k-1}e + t^{k}\varphi'(t)e)$$

$$= \underbrace{-kt^{-k} \otimes_{\widehat{K}} t^{k}e + t^{-k+1} \otimes_{\widehat{K}} kt^{k-1}e}_{=0} + t^{-k+1} \otimes_{\widehat{K}} t^{k}\varphi'(t)e$$

$$= \underbrace{t^{-k} \otimes_{\widehat{K}} t^{k+1}\varphi'(t)e}_{=0}$$

$$= t^{-k} \otimes_{\widehat{K}} t^{k+1}\varphi'(t)e$$

$$= \sum_{i=0}^{p-1} t^{-k} \otimes_{\widehat{K}} t^{k}t^{i}\underbrace{\psi_{i}(t^{p})e}_{\in \widehat{K}}$$

$$= \sum_{i=0}^{p-1} t^{i}\psi_{i}(t^{p})(t^{-k} \otimes_{\widehat{K}} t^{k}e)$$

$$= \sum_{i=0}^{p-1-k} t^{i}\psi_{i}(t^{p})e_{k+1} + \sum_{i=p-k}^{p-1} t^{i}\psi_{i}(t^{p})e_{k+i-p}$$

Sei

$$V := \begin{pmatrix} 0 & & & 1 \\ 1 & 0 & & & \\ & \ddots & \ddots & & \\ & & 1 & 0 \end{pmatrix}$$

so dass $\mathbf{e} \cdot V = (e_1, ..., e_{p-1}, e_0)$ gilt, so dass gilt:

$$t\partial_t \mathbf{e} = \mathbf{e} [\sum_{j=0}^{p-1} t^j \psi_j V^j]$$

denn:

$$t\partial_{t}\mathbf{e} = (t\partial_{t}e_{0}, ..., t\partial_{t}e_{p-1})$$

$$= \left(\sum_{i=0}^{p-1-k} t^{i}\psi_{i}(t^{p})e_{k+1} + \sum_{i=p-k}^{p-1} t^{i}\psi_{i}(t^{p})e_{k+i-p}\right)_{k\in\{0,...,p-1\}}$$

$$= \mathbf{e} \begin{pmatrix} u^{p-1}\psi_{p-1}(t^{p}) & \cdots & t^{3}\psi_{3}(t^{p}) & t^{2}\psi_{2}(t^{p}) & t^{1}\psi_{1}(t^{p}) \\ t^{1}\psi_{1}(t^{p}) & t^{p-1}\psi_{p-1}(t^{p}) & \ddots & t^{2}\psi_{2}(t^{p}) \\ t^{2}\psi_{2}(t^{p}) & t^{1}\psi_{1}(t^{p}) & \ddots & \vdots \\ t^{3}\psi_{3}(t^{p}) & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & t^{1}\psi_{1}(t^{p}) & t^{p-1}\psi_{p-1}(t^{p}) \\ t^{p-2}\psi_{p-2}(t^{p}) & \cdots & t^{3}\psi_{3}(t^{p}) & t^{2}\psi_{2}(t^{p}) & t^{1}\psi_{1}(t^{p}) & t^{p-1}\psi_{p-1}(t^{p}) \end{pmatrix}$$

$$= \mathbf{e} \left[\sum_{j=0}^{p-1} t^j \psi_j(t^p) V^j \right]$$

Die Wirkung von ∂_t auf die Basis von $\rho^+\rho_+\mathscr{E}^{\varphi(t)}$ ist also Beschrieben durch

$$\partial_t \mathbf{e} = \mathbf{e} \left[\sum_{j=0}^{p-1} t^{j-1} \psi_j V^j \right].$$

Da V das Minimalpolynom $\chi_V(x)=X^p-1$ hat, können wir diese Matrix durch Passendes T auf die Form

$$D := TVT^{-1} = \begin{pmatrix} \xi^0 & & & \\ & \xi^1 & & \\ & & \ddots & \\ & & & \xi^{p-1} \end{pmatrix},$$

mit $\xi^p = 1$, bringen. So dass gilt:

$$\begin{split} T[\sum_{j=0}^{p-1} t^{j-1} \psi_j(t^p) V^j] T^{-1} &= [\sum_{j=0}^{p-1} t^{j-1} \psi_j(t^p) (TVT^{-1})^j] \\ &= [\sum_{j=0}^{p-1} t^{j-1} \psi_j(t^p) D^j] \\ &= \begin{pmatrix} \sum_{j=0}^{p-1} t^{j-1} \psi_j \\ & \sum_{j=0}^{p-1} t^{j-1} \psi_j \left(\xi^1\right)^j \\ & \ddots \\ & & \sum_{j=0}^{p-1} t^{j-1} \psi_j \left(\xi^{p-1}\right)^j \end{pmatrix} \\ &= \begin{pmatrix} \sum_{j=0}^{p-1} t^{j-1} \psi_j \\ & \sum_{j=0}^{p-1} (t\xi^1)^{j-1} \psi_j \xi^1 \\ & \ddots \\ & & \sum_{j=0}^{p-1} (t\xi^{p-1})^{j-1} \psi_j \xi^{p-1} \end{pmatrix} \\ &= \begin{pmatrix} \varphi'(t) \\ & \varphi'(\xi t) \xi^1 \\ & \ddots \\ & & \varphi'(\xi^{p-1} t) \xi^{p-1} \end{pmatrix} \end{split}$$

Damit wissen wir bereits, das im Diagram

$$\rho^{+}\rho_{+}\mathcal{E}^{\varphi(u)} \longleftarrow \cong \widehat{L}^{p} \longleftarrow \stackrel{T}{\cong} \widehat{L}^{p} \longrightarrow \bigoplus_{\xi^{p}=1} \mathcal{E}^{\varphi\circ\mu_{\xi}}$$

$$\downarrow \partial_{t} \qquad \qquad \sum_{j=0}^{p-1} t^{j-1}\psi_{j}V^{j} \qquad \sum_{j=0}^{p-1} t^{j-1}\psi_{j}D^{j} \qquad \qquad \downarrow \partial_{t}$$

$$\downarrow \rho^{+}\rho_{+}\mathcal{E}^{\varphi(u)} \longleftarrow \cong \widehat{L}^{p} \longleftarrow \stackrel{T}{\cong} \widehat{L}^{p} \longrightarrow \bigoplus_{\xi^{p}=1} \mathcal{E}^{\varphi\circ\mu_{\xi}}$$

$$\stackrel{(\star)}{\cong} \xrightarrow{(\star)}$$

der mit (\star) bezeichnete Teil kommutiert. Um zu zeigen, dass alles kommutiert, zeigen wir noch, dass

$$\partial_t(\Phi(x)) = \Phi\left(\sum_{j=0}^{p-1} t^{j-1} \psi_j(x) D^j\right) \qquad \forall x \in \widehat{L}^p$$

gilt. Sei $x = {}^t(x_1, \ldots, x_p) \in \widehat{L}^p$. So ist

$$\partial_t(\Phi(x)) = \partial_t({}^t(\dots))$$

und

$$\Phi\left({}^{t}x\left(\sum_{j=0}^{p-1}t^{j-1}\psi_{j}(t^{p})D^{j}\right)\right) = \Phi\left((x_{1},\ldots,x_{p})\begin{pmatrix}\varphi'(t) & & & \\ & \varphi'(\xi t)\xi^{1} & & & \\ & & \ddots & & \\ & & & \varphi'(\xi^{p-1}t)\xi^{p-1}\end{pmatrix}\right)$$

$$= \Phi\left((x_{1}\varphi'(t),x_{2}\varphi'(\xi t)\xi,\ldots,x_{p}\varphi'(\xi^{p-1}t)\xi^{p-1})\right)$$

Definition 3.5. Ein *Elementarer Meromorpher Zusammenhang* ist ein Zusammenhang \mathcal{M} , für den es $\psi \in \mathbb{C}((x))$, $\alpha \in \mathbb{C}$ und $p \in \mathbb{N}$ gibt, so dass

$$\mathcal{M} \cong \mathscr{E}^{\psi} \otimes R_{\alpha,p}$$
,

mit $R_{\alpha,p} := \mathcal{D}/\mathcal{D}(x\partial_x - \alpha)^p$, ist.

Lemma 3.6. $\mathcal{E}^{\psi} \otimes R_{\alpha,p} \cong \mathcal{D}/\mathcal{D} \cdot (x\partial_x - (\alpha + x\frac{\partial \psi}{\partial x}))^p$

26 11. Mai 2013

3.1 Definition in [Sab07]

Definition 3.7 (Elementarer formaler Zusammenhang). [Sab07, Def 2.1] Zu einem gegebenen $\rho \in t\mathbb{C}[\![t]\!], \varphi \in \widehat{L} \stackrel{\text{def}}{=} \mathbb{C}(\!(t)\!)$ und einem endlich dimensionalen \widehat{L} -Vektorraum R mit regulärem Zusammenhang ∇ , definieren wir den assoziierten Elementaren endlich dimensionalen \widehat{K} -Vektorraum mit Zusammenhang, durch:

$$El(\rho, \varphi, R) = \rho_{+}(\mathscr{E}^{\varphi} \otimes R)$$

[Sab07, nach Def 2.1] Bis auf Isomorphismus hängt $El(\rho, \varphi, R)$ nur von $\varphi \mod \mathbb{C}[\![t]\!]$ ab.

Lemma 3.8. [Sab07, Lem 2.2]

Lemma 3.9. [Sab07, Lem 2.6.] Es gilt $El([t \mapsto t^p], \varphi, R) \cong El([t \mapsto t^p], \psi, S)$ genau dann, wenn

- es ein ζ gibt, mit $\zeta^p = 1$ und $\psi \circ \mu_{\zeta} \equiv \varphi \mod \mathbb{C}[\![t]\!]$
- und $S \cong R$ als \widehat{L} -Vektorräume mit Zusammenhang.

Beweis. [Sab07, Lem 2.6.]

Proposition 3.10. [Sab07, Prop 3.1] Jeder irreduzible endlich dimensionale \widehat{K} -Vektorraum \mathcal{M} mit Zusammenhang ist isomorph zu $\rho_+(\mathscr{E}^{\varphi}\otimes L)$, wobei $\varphi\in t^{-1}\mathbb{C}[t^{-1}]$, $\rho:t\to t^p$ vom Grad $p\geq 1$ und ist minimal unter φ . (siehe [Sab07, Rem 2.8]) und L ist ein Rang 1 \widehat{L} -Vektrorraum mit regulärem Zusammenhang.

Beweis. [Sab07, Prop 3.1]

3.2 Twisten von Meromorphen Zusammenhängen

[Cou95, Chap 5 §2]

4 Levelt-Turrittin-Theorem

Das Levelt-Turrittin-Theorem ist ein Satz, der hilft, Meromorphe Zusammenhänge in ihre irreduziblen Komponenten zu zerlegen.

4.1 Klassische Version

Satz 4.1. [Sab90, Thm 5.4.7] Sie $\mathcal{M}_{\widehat{K}}$ ein formaler Meromorpher Zusammenhang. So gibt es eine ganze Zahl p so dass der Zusammenhang $\mathcal{M}_{\widehat{L}} := \rho^+ \mathcal{M}_{\widehat{K}}$, mit $\rho : t \mapsto x := t^p$, isomorph zu einer direkten Summe von formalen elementaren Meromorphen Zusammenhänge ist.

Der folgende Beweis stammt hauptsächlich aus [Sab90, Seite 35].

Beweis. Zum Beweis wird Induktion auf die Lexicographisch geordnetem Paare $(\dim_{\widehat{K}} \mathcal{M}_{\widehat{K}}, \kappa)$ angewendet. Wobei $\kappa \in \mathbb{N} \cup \{\infty\}$ dem größtem Slope von $\mathcal{M}_{\widehat{K}}$. Es wird $\kappa = \infty$ gesetzt, falls der größte Slope nicht Ganzzahlig ist.

Wir nehmen oBdA an, dass $\mathcal{M}_{\widehat{K}}$ genau einen Slope Λ hat, sonst Teile $\mathcal{M}_{\widehat{K}}$ mittels Satz 2.26 in Meromorphe Zusammenhänge mit je einem Slope und wende jeweils die Induktion an. Mit $\Lambda =: \frac{\lambda_0}{\lambda_1}$ (vollständig gekürtzt) Definieren wir die dem Slope entsprechende Linearform $L(s_0, s_1) := \lambda_0 s_0 + \lambda_1 s_1$. Wir nennen $\sigma_L(P) \in \widehat{K}[\xi]$ die Determinanten Gleichung von P. Da L zu einem Slope von P gehört, besteht $\sigma_L(P)$ aus zumindest zwei Monomen. Schreibe

$$\sigma_L(P) = \sum_{L(i,i-j) = \operatorname{ord}_L(P)} \alpha_{ij} x^j \xi^i$$
$$= \sum_{L(i,i-j) = 0} \alpha_{ij} x^j \xi^i.$$

Sei $\theta := x^{\lambda_0 + \lambda_1} x i^{\lambda_1}$ so können wir

$$\sigma_L(P) = \sum_{k \ge 0} \alpha_k \theta^k$$

schreiben, wobei $\alpha_0 \neq 0$ ist.

Erster Fall: $\lambda_1 = 1$. Das bedeutet, dass der Slope ganzzahlig ist. Betrachte die Faktorisierung

$$\sigma_L(P) = \varepsilon \prod_{\beta} (\theta - \beta)^{\gamma_{\beta}}.$$

Wobei $\varepsilon \in \mathbb{C}$ eine Konstante ist. Sei β_0 eine der Nullstellen. So setze $R(z) := (\beta_0/(\lambda_0+1))z^{\lambda_0+1}$ und betrachte $\mathcal{M}_{\widehat{K}} \otimes \mathcal{F}_{\widehat{K}}^R$.

Lemma 4.2. Falls e ein zyklischer Vektor für $\mathcal{M}_{\widehat{K}}$ ist, so ist $e \otimes e(R)$ ein zyklischer Vektor für $\mathcal{M}_{\widehat{K}} \otimes \mathcal{F}_{\widehat{K}}^R$.

Falls $P(x, \partial_x) \cdot e = 0$ gilt

$$P(x, \partial_x - \frac{\partial R(x^{-1})}{\partial x}) \cdot e \otimes e(R) = 0$$

und hier haben wir

$$\frac{\partial R(x^{-1})}{\partial x} = \frac{\partial (\frac{\beta_0}{\lambda_0 + 1} x^{-(\lambda_0 + 1)})}{\partial x}$$
$$= -\beta_0 z^{-(\lambda_0 + 2)}.$$

Schreibe $P' = P(x, \partial_x + \beta_0 x^{-(\lambda_0 + 2)}).$

Lemma 4.3. Es gilt, dass P' Koeffizienten in $\mathbb{C}[x]$ hat.

Beweis. TODO
$$\Box$$

Des weiteren ist $\sigma_L(P') = \sum_{k>0} \alpha_k (\theta + \beta_0)^k$. Wir unterscheiden nun 2 Unterfälle:

- 1. Die Determinanten Gleichung $\sigma_L(P)$ hat nur eine Nullstelle.
- 2. Die Determinanten Gleichung $\sigma_L(P)$ hat mehrere Nullstellen.

Zweiter Fall: $\lambda_1 \neq 1$. In diesem Fall ist einzige Slope Λ nicht ganzzahlig. Mache deshalb einen pull-back mit λ_1 . Sei $\rho: t \mapsto x := t^{\lambda_1}$ und erhalte P' so dass $\rho^* \mathcal{M}_{\widehat{K}} = \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot P'$. Nach Lemma 2.42 hat P' den einen Slope $\Lambda \cdot \lambda_1 = \lambda_0$. Damit können wir nun die zugehörige Linearform $L' := \lambda_0 s_0 + s_1$ definieren. Es gilt dass

$$\sigma_{L'}(P') = \dots$$

ist, welches zumindest zwei unterschiedliche Nullstellen hat. Nun wendet man den zweiten Unterfall des ersten Fall an.

4.2 Sabbah's Refined version

Proposition 4.4. [Sab07, Prop 3.1] Jeder irreduzible endlich dimensionale formale Meromorphe Zusammenhang $\mathcal{M}_{\widehat{L}}$ ist isomorph zu $\rho_+(\mathscr{E}^{\varphi} \otimes_{\widehat{K}} S)$, wobei $\varphi \in x^{-1}\mathbb{C}[x^-1]$, $\rho: x \mapsto t = x^p$ mit grad $p \geq 1$ minimal bzgl. φ (siehe [Sab07, Rem 2.8]), und S ist ein Rang 1 \widehat{K} -Vektor Raum mit regulärem Zusammenhang.

Beweis. [Sab07, Prop 3.1] \Box

Satz 4.5 (Refined Turrittin-Levelt). [Sab07, Cor 3.3] Jeder endlich dimensionale Meromorphe Zusammenhang $\mathcal{M}_{\widehat{K}}$ kann in eindutiger weiße geschrieben werden als direkte Summe $\bigoplus El(\rho, \varphi, R) \stackrel{def}{=} \bigoplus \rho_{+}(\mathscr{E}^{\varphi}) \otimes R$, so dass jedes $\rho_{+}\mathscr{E}^{\varphi}$ irreduzibel ist und keine zwei $\rho_{+}\mathscr{E}^{\varphi}$ isomorph sind.

Beweis. [Sab07, Cor 3.3]

30 11. Mai 2013

5 DIE Klasse der Fourier-Transformationen

In diesem Kapitel werden Beispiele einer speziellen Klasse von \mathcal{D} -Moduln diskutiert. Dazu wird im folgendem zu einem Beispiel unter anderem explizit der Beweis aus [Sab90] zur Levelt-Turrittin-Zerlegung nachvollzogen.

Es wird zunächst ein allgemeines Rezept gegeben, welches zu gegebenem φ D-Moduln ergibt. Im laufe des Kapitels werden immer speziellere φ betrachtet und zuletzt wird für konkrete Beispiele eine explizite Rechnung gegeben.

5.1 Rezept für allgemeine φ

Hier wollen wir nun eine Spezielle Klasse von Meromorphen Zusammenhängen, die die durch das folgende Rezept entstehen.

- 1. Wähle zunächst ein $\varphi \in \{\varphi = \sum_{k \in I} \frac{a_k}{t^k} | I \subset \mathbb{N} \text{ endlich}, a_k \in \mathbb{C}\}$ aus
- 2. und beginne mit \mathcal{E}^{φ} . Es gilt

$$\mathcal{E}^{\varphi} = \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot (\partial_t - \frac{d}{dt}\varphi(t))$$

$$= \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot (\underbrace{\mathbf{Hauptnenner von} \ \frac{d}{dt}\varphi(t)}_{\in \mathbb{C}[t] \subset \mathcal{D}_{\widehat{L}}^*} \cdot (\partial_t - \frac{d}{dt}\varphi(t)))$$

$$= \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot (\underbrace{t^{\max(I)+1} \cdot (\partial_t - \frac{d}{dt}\varphi(t))}_{=:Q(t,\partial_t)})$$

3. Fourier transformiere \mathcal{E}^{φ} und erhalte

$$\begin{split} {}^{\mathcal{F}}\!\!\mathscr{E}^\varphi &= \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot \mathcal{F}_Q(z,\partial_z) \\ &\stackrel{\mathrm{def}}{=} \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot \underbrace{Q(\partial_z,-z)}_{\in \mathbb{C}[z]<\partial_z>} \end{split}$$

4. Betrachte den Zusammenhang bei Unendlich, also wende den Übergang $x \rightsquigarrow z^{-1}$ an. Was passiert mit der Ableitung ∂_x ? Es gilt

$$\partial_x(f(\frac{1}{x})) = \partial_z(f) \cdot (-\frac{1}{x^2}) = -\partial_z(f) \cdot z^2 = -z^2 \cdot \partial_z(f)$$
also $\partial_x \leadsto -z^2 \partial_z$.
$$P_{\mathcal{O}}(x, \partial_x) := \mathcal{F}_O(x^{-1}, -x^2 \partial_x) \in \mathbb{C}[t] < \partial_t >$$

Im folgendem werden wir den zum Minimalpolynom P_{φ} assoziierten Meromorphen Zusammenhang $\mathcal{M}_{\varphi} := \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P_{\varphi}$ betrachten.

Lemma 5.1. Zu einem $\varphi = \sum_{k \in I} \frac{a_k}{t^k} \in \varphi = \sum_{k \in I} \frac{a_k}{t^k} | I \subset \mathbb{N} \text{ endlich}, a_k \in \mathbb{C} \}$ ist das Minimal-polynom von \mathcal{M}_{φ} explizit gegeben durch

$$P_{\varphi}(x,\partial_x) = (-x^2\partial_x)^{\max(I)}(x\partial_x - 1) + \sum_{k \in I} ka_k(-x^2\partial_x)^{\max(I)-k} \qquad \in \mathbb{C}[x] < \partial_x > 0$$

Beweis. Sei $\varphi = \sum_{k \in I} \frac{a_k}{t^k}$, so ist

$$\begin{split} Q(t,\partial_t) &= t^{\max(I)+1}(\partial_t - \frac{d}{dt}\varphi(t)) \\ &= t^{\max(I)+1}\Big(\partial_t + \sum_{k \in I} k \frac{a_k}{t^{k+1}}\Big) \\ &= t^{\max(I)+1}\partial_t + \sum_{k \in I} k \frac{a_k}{t^{k-\max(I)}} \\ &= t^{\max(I)+1}\partial_t + \sum_{k \in I} k a_k t^{\max(I)-k} \\ &= t^{\max(I)+1}\partial_t + \sum_{k \in I} k a_k t^{\max(I)-k} \\ &\mathcal{F}_Q(z,\partial_z) &= Q(\partial_z,-z) \\ &= -\partial_z^{\max(I)+1} z + \sum_{k \in I} k a_k \partial_z^{\max(I)-k} \end{split}$$

und damit ist

$$\begin{split} P_{\varphi}(x,\partial_x) &= \mathcal{F}_Q(x^{-1},-x^2\partial_x) \\ &= -(-x^2\partial_x)^{\max(I)+1}x^{-1} + \sum_{k\in I} ka_k(-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)}x^2\partial_x x^{-1} + \sum_{k\in I} ka_k(-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)}x^2(x^{-1}\partial_x - x^{-2}) + \sum_{k\in I} ka_k(-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)}(x\partial_x - 1) + \sum_{k\in I} ka_k(-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)}(x\partial_x - 1) + \sum_{k\in I} ka_k(-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)}(x\partial_x - 1) + \sum_{k\in I} ka_k(-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)}(x\partial_x - 1) + \sum_{k\in I} ka_k(-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)}(x\partial_x - 1) + \sum_{k\in I} ka_k(-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)}(x\partial_x - 1) + \sum_{k\in I} ka_k(-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)}(x\partial_x - 1) + \sum_{k\in I} ka_k(-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)}(x\partial_x - 1) + \sum_{k\in I} ka_k(-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)}(x\partial_x - 1) + \sum_{k\in I} ka_k(-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)}(x\partial_x - 1) + \sum_{k\in I} ka_k(-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)}(x\partial_x - 1) + \sum_{k\in I} ka_k(-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)}(x\partial_x - 1) + \sum_{k\in I} ka_k(-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)}(x\partial_x - 1) + \sum_{k\in I} ka_k(-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)}(x\partial_x - 1) + \sum_{k\in I} ka_k(-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)}(x\partial_x - 1) + \sum_{k\in I} ka_k(-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)}(x\partial_x - 1) + \sum_{k\in I} ka_k(-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)}(x\partial_x - 1) + \sum_{k\in I} ka_k(-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)}(x\partial_x - 1) + \sum_{k\in I} ka_k(-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)}(x\partial_x - 1) + \sum_{k\in I} ka_k(-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)}(x\partial_x - 1) + \sum_{k\in I} ka_k(-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)}(x\partial_x - 1) + \sum_{k\in I} ka_k(-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)}(x\partial_x - 1) + \sum_{k\in I} ka_k(-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)}(x\partial_x - 1) + \sum_{k\in I} ka_k(-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)}(x\partial_x - 1) + \sum_{k\in I} ka_k(-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)}(x\partial_x - 1) + \sum_{k\in I} ka_k(-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)}(x\partial_x - 1) + \sum_{k\in I} ka_k(-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)}(x\partial_x - 1) + \sum_{k\in I} ka_k(-x^2\partial_x)^{\max(I)} \\ &= (-x^2$$

Im Anhang B wird das $(x^2\partial_x)^k$ genauer diskutiert. Dies führt aber hier an dieser Stelle nicht mehr weiter in die gewünschte Richtung.

Ab jetzt nur noch für den Spezialfall $\varphi=\frac{a}{t^q}$. Also sei $\mathcal{M}_{\varphi}=\mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}}\cdot P_{\varphi}$ mit

$$P_{\varphi}(x, \partial_x) = (-x^2 \partial_x)^q (x \partial_x - 1) + qa,$$

so dass

Lemma 5.2. Es gilt $\mathcal{P}(\mathcal{M}_{\varphi}) = \{\frac{q}{q+1}\}.$

Beweis. [Sab07, 5.b.] Um zu zeigen, dass die Behauptung gilt, formen wir P_{φ} um und isolieren die Monome, die für das Newton-Polygon von bedeutung sind und vernachlässigt werden können.

$$\begin{split} N\Big(P_{\varphi}(x,\partial_x)\Big) &= N\Big(\underbrace{(-x^2\partial_x)^q(x\partial_x - 1) + qa}\Big) \\ &= N\Big(\underbrace{(-1)^q}_{\text{liefert keinen Beitrag}} (x^{2q}\partial_x^q + \underbrace{\mathbf{T.i.Q.\ von}\ x^{2q}\partial_x^q}_{\text{liefern keinen Beitrag}})(x\partial_x - 1) + qa\Big) \\ &= N\Big(x^{2q}\partial_x^q(x\partial_x - 1) + qa\Big) \\ &= N\Big(x^{2q}\partial_x^qx\,\partial_x - x^{2q}\partial_x^q + qa\Big) \\ &= N\Big(x^{2q}(x\partial_x^q + q\partial_x^{q-1})\,\partial_x - x^{2q}\partial_x^q + qa\Big) \\ &= N\Big(x^{2q}(x\partial_x^q + q\partial_x^{q-1})\,\partial_x - x^{2q}\partial_x^q + qa\Big) \\ &= N\Big(x^{2q+1}\partial_x^{q+1} + \underbrace{qx^{2q}\partial_x^q - x^{2q}\partial_x^q}_{\text{sind also vernachlässigbar}} + qa\Big) \\ &= N\Big(x^{2q+1}\partial_x^{q+1} + qa\Big) \end{split}$$

Wobei hier das **T.i.Q.** eine Abkürzung für *Therme im Quadranten* ist. Hier ist ein Term $\varepsilon x^p \partial_x^q$, mit $\varepsilon \in \mathbb{C}$, $p, q \in \mathbb{Z}$, im Quadranten von $\tilde{\varepsilon} x^{\tilde{p}} \partial_x^{\tilde{q}}$, mit $\tilde{\varepsilon} \in \mathbb{C}$, $\tilde{p}, \tilde{q} \in \mathbb{Z}$, falls $q > \tilde{q}$ und $p - q < \tilde{p} - \tilde{q}$. Anschaulich bedeutet das, dass

$$\left((q, p - q) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0} \right) \supset \left((\tilde{q}, \tilde{p} - \tilde{q}) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0} \right).$$

Offensichtlich ist damit $N(\varepsilon x^p \partial_x^q + \tilde{\varepsilon} x^{\tilde{p}} \partial_x^{\tilde{q}}) = N(\varepsilon x^p \partial_x^q)$, also können Therme, die sich bereits im Quadranten eines anderen Therms befinden, vernachlässigt werden, wenn das Newton-Polygon gesucht ist.

Abbildung 5.1: Newton-Polygon zu P_{φ}

Also ist ein pull-back mit Grad q+1 hinreichend, um einen ganzzahligen Slope zu bekommen. Sei $\rho: t \mapsto x := -(q+1)t^{q+1}$ so ist

$$\begin{split} \rho^{+}\mathcal{M}_{\varphi} &= \rho^{+}(\mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P_{\varphi}(x,\partial_{x})) \\ &= \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot (\rho^{*}P_{\varphi}(x,\partial_{x})) \\ &= \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot (P_{\varphi}(\rho(t),\rho'(t)^{-1}\partial_{t})) \\ &= \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot (P_{\varphi}(-(q+1)t^{q+1},-\frac{1}{(q+1)^{2}t^{q}}\partial_{t})) \\ &= \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot ((-(-(q+1)t^{q+1})^{2}\frac{-1}{(q+1)^{2}t^{q}}\partial_{t})^{q}(-(q+1)t^{q+1}\frac{-1}{(q+1)^{2}t^{q}}\partial_{t}-1) + qa) \\ &= \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot ((-\frac{-(q+1)^{2}}{(q+1)^{2}}t^{2(q+1)-q}\partial_{t})^{q}(\frac{1}{q+1}t\partial_{t}-1) + qa) \\ &= \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot ((t^{q+2}\partial_{t})^{q}(\frac{1}{q+1}t\partial_{t}-1) + qa) \\ &= \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot ((t^{q+2}\partial_{t})^{q}(t\partial_{t}-(q+1)) + (q+1)qa) \end{split}$$

mit $\mathcal{P}(\rho^+\mathcal{M}_{\varphi}) = \{q\} \subset \mathbb{N}$. Definiere mittels $q = \frac{q}{1} =: \frac{\lambda_0}{\lambda_1}$ die Linearform

$$\ell(s_0, s_1) = \lambda_0 s_0 + \lambda_1 s_1 = q s_0 + s_1$$
.

Schreibe $\rho^* P_{\varphi} = \sum_i \sum_j \alpha_{ij} t^j \partial_t^i$ und berechne die *Determinanten Gleichung* $\sigma_{\ell}(\rho^* P_{\varphi}) \in \widehat{L}[\xi]$.

$$\begin{split} \sigma_L(\rho^*P_\varphi) &= \sum_{\{(i,j) \in \mathbb{N} \times \mathbb{Z} | \ell(i,i-j) = 0\}} \alpha_{ij} t^j \xi^i \\ &= \sum_{\{(i,j) \in \mathbb{N} \times \mathbb{Z} | (q+1)i-j = 0\}} \alpha_{ij} t^j \xi^i \end{split}$$

Da $\widehat{L}[\xi]$ kommutativ ist gilt hier, dass $(t^j\xi^i)^k=t^{jk}\xi^{ik}$ ist. Setze $\theta=t^{\lambda_0+\lambda_1}\xi^{\lambda_1}=t^{q+1}\xi$ so können wir

$$\sigma_L(\rho^* P_\varphi) = \sum_{k \ge 0} \alpha_k \theta^k \qquad \alpha_k \in \mathbb{C}$$

schreiben, welches wir als nächsten Schritt faktorisieren

$$\sigma_L(\rho^* P_{\varphi}) = \varepsilon \prod_{\beta} (\theta - \beta)^{\gamma_{\beta}}.$$

Wobei $\varepsilon \in \mathbb{C}^{\times}$ eine Konstante ist. Sei β_0 eine der Nullstellen. Da $\operatorname{ord}_{\ell}(\rho^* P_{\varphi}) = 0$ und der einzige Slope von $\rho^* P_{\varphi}$ nicht gleich 0 ist, gilt offensichtlich, dass $\alpha_0 \neq 0$. Also ist 0 keine Nullstelle von $\sigma_L(\rho^* P_{\varphi})$. Setze $\psi(x) := (\beta_0/\lambda_0)t^{-\lambda_0} = (\beta_0/q)t^{-q}$ und betrachte

$$\mathcal{N} := \rho^+ \mathcal{M}_{\varphi} \otimes \mathscr{E}_{\widehat{I}}^{\psi} = \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot (\rho^* P_{\varphi}) \otimes \mathscr{E}_{\widehat{I}}^{\psi}.$$

Lemma 5.3. Sei e ein zyklischer Vektor zu $\rho^+\mathcal{M}_{\varphi}$, so ist $e\otimes\underbrace{1}_{\in\widehat{L}}\in\mathcal{N}$ ein zyklischer Vektor

$$f\ddot{u}r \mathcal{N} \stackrel{\text{def}}{=} \rho^+ \mathcal{M}_{\varphi} \otimes \mathscr{E}_{\widehat{L}}^{\psi}.$$

Beweis. Es sei e ein zyklischer Vektor von $\rho^+\mathcal{M}_{\varphi_1}$. Da der Grad von ρ^*P_{φ} gleich q+1 ist, ist auch die Dimension von $\rho^+\mathcal{M}$ gleich q+1. Damit ist auch dim $_K\mathcal{N}=q+1$, also reicht zu zeigen, dass $e\otimes 1$, $\partial_t(e\otimes 1)$, $\partial_t^2(e\otimes 1)$, ..., $\partial_t^q(e\otimes 1)$ ein linear unabhängiges System ist. Es gilt

$$\partial_{t}(e \otimes 1) = (\partial_{t}e) \otimes 1 + t \otimes \partial_{t}1$$

$$= (\partial_{t}e) \otimes 1 + e \otimes \psi'(t)$$

$$= (\partial_{t}e) \otimes 1 + \psi'(t)(e \otimes 1)$$

$$\partial_{t}^{2}(e \otimes 1) = \partial_{t}((\partial_{t}e) \otimes 1 + \psi'(t)(e \otimes 1))$$

$$= (\partial_{t}^{2}e) \otimes 1 + (\partial_{t}e) \otimes \psi'(t) + \psi''(t)(e \otimes 1) + \psi'(t)((\partial_{t}e) \otimes 1 + e \otimes \psi'(t))$$

$$= (\partial_{t}^{2}e) \otimes 1 + \psi'(t)(\partial_{t}e) \otimes 1 + \psi''(t)(e \otimes 1) + \psi'(t)(\partial_{t}e) \otimes 1 + \psi'(t)^{2}(e \otimes 1)$$

$$= (\partial_{t}^{2}e) \otimes 1 + 2\psi'(t)(\partial_{t}e) \otimes 1 + (\psi''(t) + \psi'(t)^{2})(e \otimes 1)$$

$$\vdots$$

$$\partial_{t}^{q}(e \otimes 1) = (\partial_{t}^{q}e) \otimes 1 + \lambda_{q-1}(\partial_{t}^{q-1}e) \otimes 1 + \cdots + \lambda_{1}(\partial_{t}e) \otimes 1 + \lambda_{0}(e \otimes 1)$$

und somit ist dann

$$\begin{pmatrix} e \otimes 1 \\ \partial_t(e \otimes 1) \\ \partial_t^2(e \otimes 1) \\ \vdots \\ \partial_t^{q-1}(e \otimes 1) \\ \partial_t^q(e \otimes 1) \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 \\ \psi'(t) & 1 & 0 & & \vdots \\ \star & \star & 1 & 0 & & \vdots \\ \star & \cdots & \cdots & \star & 1 & 0 \\ \lambda_0 & \lambda_1 & \cdots & \cdots & \lambda_{q-1} & 1 \end{pmatrix} \begin{pmatrix} e \otimes 1 \\ (\partial_t e) \otimes 1 \\ (\partial_t^2 e) \otimes 1 \\ \vdots \\ (\partial_t^{q-1} e) \otimes 1 \\ (\partial_t^q e) \otimes 1 \end{pmatrix}$$

Da bekanntlich $e \otimes 1$, $(\partial_t e) \otimes 1$, $(\partial_t^2 e) \otimes 1$,..., $(\partial_t^q e) \otimes 1$ linear unabhängig sind, gilt dies auch für $e \otimes 1$, $\partial_t (e \otimes 1)$, $\partial_t^2 (e \otimes 1)$, ..., $\partial_t^q (e \otimes 1)$. Damit folgt die Behauptung.

Zerlege nun wie in Satz 2.26 den Meromorphen Zusammenhang \mathcal{N} in $\mathcal{N} = \bigoplus_i \mathcal{N}_i$ wobei \mathcal{N}_i Meromorphe Zusammenhänge mit genau einem Slope sind. Twiste die \mathcal{N}_i jeweils mit $\mathscr{E}_{\widehat{L}}^{-\psi}$ und somit ist dann

$$\rho^+ \mathcal{M}_{\varphi} = \bigoplus_{i} \mathcal{N}_i \otimes \mathscr{E}_{\widehat{L}}^{-\psi}.$$

Für jeden Summanten lässt sich nun Induktion anwenden.

5.2 Spezialfall $\varphi_1 := \frac{a}{x}$

Als konkreten Fall betrachten wir nun \mathcal{M}_{φ_1} bezüglich $\varphi_1 := \frac{a}{x}$. Es ist das zugehörigen Minimalpolynom gegeben durch

$$P_{\varphi_1}(x,\partial_x) = -x^2 \partial_x (x\partial_x - 1) + a$$

$$= -x^{2} \partial_{x} x \partial_{x} + x^{2} \partial_{x} + a$$

$$= -x^{2} (x \partial_{x} + 1) \partial_{x} + x^{2} \partial_{x} + a$$

$$= -x^{3} \partial_{x}^{2} - x^{2} \partial_{x} + x^{2} \partial_{x} + a$$

$$= -x^{3} \partial_{x}^{2} + a$$

Erhalte nun das Newton-Polygon mit den Slopes $\mathcal{P}(\mathcal{M}_{\varphi_1}) = \{\frac{1}{2}\}.$

Abbildung 5.2: Newton Polygon zu P_{φ_1}

Berechne nun zu $\rho: t \mapsto x := -2t^2$ ein Minimalpolynom $\rho^* P_{\varphi_1}$ zu $\rho^+ \mathcal{M}_{\varphi_1}$:

$$\rho^* P_{\varphi_1}(x, \partial_x) = t^3 \partial_t (t \partial_t - 2) + 2a$$

$$= t^3 \partial_t t \partial_t - 2t^3 \partial_t + 2a$$

$$= t^3 (t \partial_t + 1) \partial_t - 2t^3 \partial_t + 2a$$

$$= t^4 \partial_t^2 + t^3 \partial_t - 2t^3 \partial_t + 2a$$

$$= t^4 \partial_t^2 - t^3 \partial_t + 2a$$

und erhalte einen Meromorphen Zusammenhang $\rho^+ \mathcal{M}_{\varphi_1} = \mathcal{D}_{\widehat{K}} / \mathcal{D}_{\widehat{K}} \cdot \rho^* P_{\varphi_1}$ mit genau dem Slope $1 = \frac{1}{1} =: \frac{\lambda_0}{\lambda_1}$.

Abbildung 5.3: Newton Polygon zu $\rho^*P_{\varphi_1}$

Definiere die Linearform $\ell(s_0, s_1) := \lambda_0 s_0 + \lambda_1 s_1 = s_0 + s_1$. Berechne nun die *Determinanten Gleichung* $\sigma_{\ell}(\rho^* P_{\varphi_1}) \in \widehat{L}[\xi]$ von $\rho^* P_{\varphi_1}$.

$$\sigma_{\ell}(\rho^* P_{\varphi_1}) = \sum_{\{(i,j)|2i-j=0\}} \alpha_{ij} x^j \xi^i$$
$$= t^4 \xi^2 + 2a$$

Setze $\theta := t^{\lambda_0 + \lambda_1} \xi^{\lambda_1} = t^2 \xi$ so erhalten wir

$$\sigma_{\ell}(\rho^* P_{\varphi_1}) = \theta^2 + 2a$$

schreiben, welches wir als nächstes faktorisieren

$$\sigma_L(\rho^* P_{\varphi_1}) = \theta^2 + 2a$$

$$= (\theta - \underbrace{i\sqrt{2a}}_{=:\beta_0})(\theta + i\sqrt{2a})$$

Setze $\psi(x) := (\beta_0/\lambda_0)t^{-\lambda_0} = i\sqrt{2a}t^{-1}$ und betrachte den Twist $\mathcal{N} := \rho^+\mathcal{M}_{\varphi_1} \otimes \mathscr{E}_{\widehat{K}}^{\psi}$ von \mathcal{M} . Es ist $e \otimes 1$ ein zyklischer Vektor, wobei e ein zyklischer Vektor von $\rho^+\mathcal{M}$ ist. Somit existieren $a_0(t)$ und $a_1(t)$ in \widehat{L} , so dass

$$0 = \partial_t^2(e \otimes 1) + (a_1(t)\partial_t + a_0(t))e \otimes 1$$

und damit ist dann $\mathcal{N} = \mathcal{D}/\mathcal{D} \cdot (\partial_t^2 + a_1(t)\partial_t + a_0(t))$. Es ist

$$\begin{split} \partial_t^2(e \otimes 1) &= \partial_t (\partial_t (e \otimes 1)) \\ &= \partial_t ((\partial_t e) \otimes 1 + e \otimes \psi'(t)) \\ &= (\partial_t^2 e) \otimes 1 + (\partial_t e) \otimes \psi'(t) + (\partial_t e) \otimes \psi'(t) + e \otimes \underbrace{((\frac{\partial}{\partial t} + \psi'(t))\psi'(t))}_{\in K} \\ &= \underbrace{((t^{-1}\partial_t - 2at^{-4})e) \otimes 1 + 2\psi'(t)(\partial_t e) \otimes 1 + (\psi''(t) + \psi'(t)^2)e \otimes 1}_{\in K} \\ &= (t^{-1}\partial_t e) \otimes 1 - 2at^{-4}e \otimes 1 + 2\psi'(t)(\partial_t e) \otimes 1 + (\psi''(t)e \otimes 1 + \psi'(t)^2e \otimes 1 \\ &= (t^{-1} + 2\psi'(t)) \underbrace{(\partial_t e) \otimes 1 + (-2at^{-4} + \psi''(t) + \psi'(t)^2)e \otimes 1}_{\in K} \\ &= (t^{-1} + 2\psi'(t)) \underbrace{(\partial_t (e \otimes 1) - e \otimes \psi'(t))}_{\partial_t (e \otimes 1) - (\psi'(t)t^{-1} + 2\psi'(t)^2)e \otimes 1} \\ &= (t^{-1} + 2\psi'(t))\partial_t (e \otimes 1) - (\psi'(t)t^{-1} + 2\psi'(t)^2)e \otimes 1 \\ &= ((t^{-1} + 2\psi'(t))\partial_t - \psi'(t)t^{-1} - 2\psi'(t)^2 - 2at^{-4} + \psi''(t) + \psi'(t)^2)e \otimes 1 \\ &= ((t^{-1} + 2\psi'(t))\partial_t - \psi'(t)t^{-1} - 2at^{-4} + \psi''(t) - \psi'(t)^2)e \otimes 1 \\ &= ((t^{-1} + 2\psi'(t))\partial_t - \psi'(t)t^{-1} - 2at^{-4} + \psi''(t) - \psi'(t)^2)e \otimes 1 \end{split}$$

also

$$0 = \left(\underbrace{\partial_t^2 - (t^{-1} + 2\psi'(t))\partial_t + \psi'(t)t^{-1} + 2at^{-4} - \psi''(t) + \psi'(t)^2}_{=:P'}\right)e \otimes 1$$

und somit mit $\psi(t) = i\sqrt{2a}t^{-1}$ ist $\psi'(t) = -i\sqrt{2a}t^{-2}$ und $\psi''(t) = 2i\sqrt{2a}t^{-3}$. Also durch Einsetzen ergibt sich

$$P' = \partial_t^2 - (t^{-1} + 2\psi'(t))\partial_t + \psi'(t)t^{-1} + 2a - \psi''(t) + \psi'(t)^2$$

$$= \partial_t^2 - (t^{-1} - 2i\sqrt{2a}t^{-2})\partial_t - i\sqrt{2a}t^{-3} + 2a^{-4} - 2i\sqrt{2a}t^{-3} + \underbrace{(-i\sqrt{2a}t^{-2})^2}_{=0}$$

$$= \partial_t^2 - (t^{-1} - 2i\sqrt{2a}t^{-2})\partial_t - 3i\sqrt{2a}t^{-3} + \underbrace{2at^{-4} - 2at^{-4}}_{=0}$$

$$= \partial_t^2 - (t^{-1} - 2i\sqrt{2a}t^{-2})\partial_t - 3i\sqrt{2a}t^{-3}$$

mit, wie gewünscht, mehr als einem Slope.

Abbildung 5.4: Newton Polygon zu \mathcal{N}

Unser nächstes Ziel ist es, $\mathcal{N} = \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P'$ in zwei Meromorphe Zusammenhänge mit nur einem Slope zerlegen. Betrachte hierzu das Minimalpolynom und zerlege dieses in ein Produkt $P'(t, \partial_t) = Q_1(t, \partial_t) \cdot Q_2(t, \partial_t)$.

Da der ∂_t -Grad von P' genau 2 ist, müssen die Q_i jeweils den Grad 1 haben, um eine nichttriviale Zerlegung zu bekommen.

Beobachtung 5.4. Ist Q_1 und Q_2 so ein solches Paar, dann ist für $\sigma \in \widehat{K}$ das Paar $\overline{Q}_1 := Q_1 \cdot \sigma^{-1}$ und $\overline{Q}_2 := \sigma \cdot Q_2$ ebenfalls eine Zerlegung, denn

$$P' = Q_1 \cdot Q_2 = \underbrace{\mathbb{Q}_1 \cdot \sigma}_{\in \mathcal{D}_{\widehat{L}}} \cdot \underbrace{\sigma^{-1} \cdot Q_2}_{\in \mathcal{D}_{\widehat{L}}} = \bar{Q}_1 \cdot \bar{Q}_2.$$

Mit der Beobachtung 5.4 ist klar, dass wir den Faktor vor den ∂_t in Q_2 frei wählen können. Setze diesen also allgemein auf 1 und erhalte

$$Q_1 := \bar{v}(t)\partial_t + v(t) \qquad \qquad Q_2 := \partial_t + u(t) \qquad \qquad \text{mit } \bar{v}(t), v(t), u(t) \in \mathbb{C}[\![t]\!]$$

und somit ist ist das Produkt gegeben durch

$$Q_1 \cdot Q_2 = \bar{v}(t)\partial_t^2 + \bar{v}(t)\partial_t u(t) + v(t)\partial_t + v(t)u(t)$$

$$\stackrel{!}{=} \partial_t^2 - (t^{-1} - 2i\sqrt{2a}t^{-2})\partial_t - 3i\sqrt{2a}t^{-3}$$

$$(5.1)$$

Damit ist ebenfalls $\bar{v}(t) = 1$.

Durch das Wissen über die Slopes der Q_i erhalten wir noch Informationen über die Reihen $v(t) := \sum_n v_n t^n$ bzw. $u(t) := \sum_n u_n t^n$. Die beiden Polynome Q_1 und Q_2 enthalten ∂_t als einziges Monom vom ∂_t -Grad 1, deshalb ist (1,-1) in beiden zugehörigen Newton-Polygonen enthalten. Da Q_1 nur den Slope 0 hat, muss das Newton-Polygon wie in Abbildung 5.5 aussenen und somit wissen wir, dass $v_n = 0$ für alle n < -1. Da Q_2 genau den Slope 1 hat, ist das Newton-Polygon gegeben durch Abbildung 5.6. Damit ist $u_n = 0$ für alle n < -2 und $u_{-2} \neq 0$.

Abbildung 5.5: Newton-Polygon zu Q_1

Abbildung 5.6: Newton-Polygon zu Q_2

Mit diesen Informationen erhalten wir aus (5.1) die Gleichung

$$Q_1 \cdot Q_2 = \partial_t^2 + \partial_t \sum_{n=-2}^{\infty} u_n t^n + \sum_{n=-1}^{\infty} v_n t^n \partial_t + \left(\sum_{n=-1}^{\infty} v_n t^n\right) \left(\sum_{n=-2}^{\infty} u_n t^n\right)$$

$$(5.2)$$

und mit denn Kommutatorregeln gilt

$$\partial_t \sum_{n=-2}^{\infty} u_n t^n = \sum_{n=-2}^{\infty} (u_n t^n \partial_t + [\partial_t, u_n t^n])$$
$$= \sum_{n=-2}^{\infty} (u_n t^n \partial_t + n u_n t^{n-1})$$
$$= \sum_{n=-2}^{\infty} u_n t^n \partial_t + \sum_{n=-2}^{\infty} n u_n t^{n-1}$$

Wenn wir dieses Ergenis nun in (5.2) einsetzen ergibt sich

$$Q_{1} \cdot Q_{2} = \partial_{t}^{2} + \sum_{n=-2}^{\infty} u_{n} t^{n} \partial_{t} + \sum_{n=-2}^{\infty} n u_{n} t^{n-1} + \sum_{n=-1}^{\infty} v_{n} t^{n} \partial_{t} + \left(\sum_{n=-1}^{\infty} v_{n} t^{n}\right) \left(\sum_{n=-2}^{\infty} u_{n} t^{n}\right)$$

$$= \partial_{t}^{2} + \left(\sum_{n=-2}^{\infty} u_{n} t^{n} + \sum_{n=-1}^{\infty} v_{n} t^{n}\right) \partial_{t} + \sum_{n=-2}^{\infty} n u_{n} t^{n-1} + \left(\sum_{n=-1}^{\infty} v_{n} t^{n}\right) \left(\sum_{n=-2}^{\infty} u_{n} t^{n}\right)$$

$$= \partial_{t}^{2} + \sum_{n=-2}^{\infty} (u_{n} + v_{n}) t^{n} \partial_{t} + \sum_{n=-3}^{\infty} (n+1) u_{n+1} t^{n} + \left(\sum_{n=-1}^{\infty} v_{n} t^{n}\right) \left(\sum_{n=-2}^{\infty} u_{n} t^{n}\right)$$

$$= \partial_{t}^{2} + \sum_{n=-2}^{\infty} (u_{n} + v_{n}) t^{n} \partial_{t} + \sum_{n=-3}^{\infty} (n+1) u_{n+1} t^{n} + \left(\sum_{n=-1}^{\infty} v_{n} t^{n}\right) \left(\sum_{n=-2}^{\infty} u_{n} t^{n}\right)$$

$$= \partial_{t}^{2} + \sum_{n=-2}^{\infty} (u_{n} + v_{n}) t^{n} \partial_{t} + \sum_{n=-3}^{\infty} (n+1) u_{n+1} t^{n} + \left(\sum_{n=-1}^{\infty} v_{n} t^{n}\right) \left(\sum_{n=-2}^{\infty} u_{n} t^{n}\right)$$

Betrachte nun das Letzte Glied, auf welches wir die Cauchy-Produktformel anwenden wollen:

$$\left(\sum_{n=-1}^{\infty} v_n t^n\right) \left(\sum_{n=-2}^{\infty} u_n t^n\right) = t^{-3} \left(\sum_{n=0}^{\infty} v_{n-1} t^n\right) \left(\sum_{n=0}^{\infty} u_{n-2} t^n\right)$$

$$= t^{-3} \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} v_{k-1} t^k u_{n-k-2} t^{(n-k)}\right)$$

$$= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} v_{k-1} u_{n-k-2} t^{k+(n-k)-3}\right)$$

$$= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} v_{k-1} u_{n-k-2}\right) t^{n-3}$$

$$= \sum_{n=-3}^{\infty} \left(\sum_{k=0}^{n+3} v_{k-1} u_{n-k+1}\right) t^n$$

Wenn wir auch diese Rechnung in (5.4) integrieren, erhalten wir

$$Q_{1} \cdot Q_{2} = \partial_{t}^{2} + \sum_{n=-2}^{\infty} (u_{n} + v_{n})t^{n}\partial_{t} + \sum_{n=-3}^{\infty} (n+1)u_{n+1}t^{n} + \sum_{n=-3}^{\infty} \left(\sum_{k=0}^{n+3} v_{k-1}u_{n-k+1}\right)t^{n}$$

$$= \partial_{t}^{2} + \sum_{n=-2}^{\infty} (u_{n} + v_{n})t^{n}\partial_{t} + \sum_{n=-3}^{\infty} \left((n+1)u_{n+1} + \sum_{k=0}^{n+3} v_{k-1}u_{n-k+1}\right)t^{n}$$

$$\stackrel{!}{=} \partial_{t}^{2} - (t^{-1} - 2i\sqrt{2a}t^{-2})\partial_{t} - 3i\sqrt{2a}t^{-3}$$

$$(5.4)$$

Nun haben wir ein Ergebnis, das sich Koeffizientenweise mit den gewünschten Ergebnis vergleichen lässt:

$$2i\sqrt{2a}t^{-2} - t^{-1} = \sum_{n=-2}^{\infty} (u_n + v_n)t^n$$
(5.5)

$$-3i\sqrt{2a}t^{-3} = \sum_{n=-3}^{\infty} \left((n+1)u_{n+1} + \sum_{k=0}^{n+3} v_{k-1}u_{n-k+1} \right) t^n$$
 (5.6)

Nun können wir mit (5.5) und (5.6) jeweils nochmals einen Koeffizientenvergleich machen und erhalten zunächst aus (5.5), dass

$$2i\sqrt{2a} = u_{-2} + \underbrace{v_{-2}}_{=0} = u_{-2} \tag{5.7}$$

$$-1 = u_{-1} + v_{-1} \tag{5.8}$$

$$0 = u_n + v_n \qquad \forall n \ge 0 \tag{5.9}$$

Als nächstes wollen wir dieses Ergenis mit (5.6) kombinieren. Betrachte zunächst den Vorfaktor vor t^{-3} :

$$-3i\sqrt{2a} = (-2)u_{-2} + \sum_{k=0}^{0} v_{k-1}u_{-3-k+1}$$

$$= -2u_{-2} + v_{-1}u_{-2}$$

$$\stackrel{(5.7)}{=} -2 \cdot 2i\sqrt{2a} + v_{-1}2i\sqrt{2a}$$

$$\stackrel{a\neq 0}{\Rightarrow} v_{-1} = \frac{4i\sqrt{2a} - 3i\sqrt{2a}}{2i\sqrt{2a}}$$

$$= \frac{1}{2}$$

und somit

$$\stackrel{(5.8)}{\Rightarrow} -1 = u_{-1} + v_{-1}$$

$$= u_{-1} + \frac{1}{2}$$

$$\Rightarrow u_{-1} = -\frac{3}{2}$$

Nun zum allgemeinem Koeffizienten vor t^n mit n > -3:

$$0 = (n+1)u_{n+1} + \sum_{k=0}^{n+3} v_{k-1}u_{n-k+1}$$

$$= (n+1)u_{n+1} + (\sum_{k=0}^{n+2} v_{k-1}u_{n-k+1}) + v_{n+3-1}u_{n-(n+3)+1}$$

$$= (n+1)u_{n+1} + (\sum_{k=0}^{n+2} v_{k-1}u_{n-k+1}) + v_{n+2}u_{-2}$$

$$\Rightarrow v_{n+2}u_{-2} = -(n+1)u_{n+1} - \sum_{k=0}^{n+2} v_{k-1}u_{n-k+1}$$

$$\Rightarrow v_{n+2} = -\frac{1}{u_{-2}}((n+1)u_{n+1} + \sum_{k=0}^{n+2} v_{k-1}u_{n-k+1})$$

also nach passendem Indexshift $n+2 \rightarrow n$ folgt

$$\Rightarrow v_n = -\frac{1}{u_{-2}}((n-1)u_{n-1} + \sum_{k=0}^n v_{k-1}u_{n-k-1})$$

$$\stackrel{(5.7)}{=} -\frac{1}{2i\sqrt{2a}}((n-1)u_{n-1} + \sum_{k=0}^n v_{k-1}u_{n-k-1})$$

$$= \frac{i}{2\sqrt{2a}}((n-1)u_{n-1} + \sum_{k=0}^n v_{k-1}u_{n-k-1})$$

Zusammen mit $u_{-2}=2i\sqrt{2a}$, $u_{-1}=-\frac{3}{2}$ und $v_{-1}=\frac{1}{2}$ sind durch

$$v_n = -u_n = \frac{i}{2\sqrt{2a}}((n-1)u_{n-1} + \sum_{k=0}^n v_{k-1}u_{n-k-1}) \qquad \forall n \ge 0$$
 (5.10)

die Koeffizienten von v und u vollständig bestimmt.

Nun lässt sich diese Zerlegung mit $\mathscr{E}^{-\psi(t)}$ zurücktwisten und erhalte damit die Zerlegung

$$\rho^{+}\mathcal{M}_{\varphi_{1}} = \mathcal{N}_{1} \otimes \mathscr{E}^{-\psi(t)} \oplus \mathcal{N}_{2} \otimes \mathscr{E}^{-\psi(t)}$$
$$= (\mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot Q_{1} \otimes \mathscr{E}^{-\psi(t)}) \oplus (\mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot Q_{2} \otimes \mathscr{E}^{-\psi(t)})$$

und, da Q_1 regulär, ist $\mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot Q_1 \otimes \mathscr{E}^{-\psi(t)}$ bereits ein Elementarer Meromorpher Zusammenhang. Betrachte also noch $\mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot Q_2 \otimes \mathscr{E}^{-\psi(t)}$:

$$\mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot Q_{2} \otimes \mathscr{E}^{-\psi(t)} = \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot Q_{2}(t, \partial_{t} - i\sqrt{2a}t^{-2})$$

$$= \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot (\partial_{t} - i\sqrt{2a}t^{-2} + u(t))$$

$$= \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot (\partial_{t} + i\sqrt{2a}t^{-2} + \sum_{n=-1}^{\infty} u_{n}t^{n})$$

$$= \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot (\partial_{t} + \sum_{n=-1}^{\infty} u_{n}t^{n}) \otimes \mathscr{E}^{\psi(t)}$$
regulär

Damit ist der Zweite Summant also auch ein Elementarer Meromorpher Zusammenhang. Also zwelegt sich \mathcal{M} , nach einem pull-back mit $\rho: t \mapsto x = t^2$, in

$$\rho^{+}\mathcal{M}_{\varphi_{1}} = (\mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot Q_{1} \otimes \mathscr{E}^{-\psi(t)}) \oplus (\mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot (\partial_{t} + \sum_{n=-1}^{\infty} u_{n}t^{n}) \otimes \mathscr{E}^{\psi(t)}).$$

Damit ist die Levelt-Turrittin-Zerlegung vollständig gegeben.

5.2.1 Konvergenz der Potenzreihen

Nun wollen wir die Potenzreihen v und u noch genauer betrachten, im besonderen deren konvergenzverhalten.

11. Mai 2013

Aus (5.10) ergeben sich für n=0 die Koeffizienten

$$v_0 = \frac{i}{2\sqrt{2a}}((-1)u_{-1} + \sum_{k=0}^{0} v_{k-1}u_{-k-1})$$

$$= \frac{i}{2\sqrt{2a}}(\frac{3}{2} + v_{-1}u_{-1})$$

$$= \frac{i}{2\sqrt{2a}}(\frac{3}{2} - \frac{3}{4})$$

42

$$=\frac{3i}{8\sqrt{2a}}=-u_0$$

und analog, für n = 1 und n = 2

$$v_1 = \frac{3}{16a} = -u_1$$
 und $v_2 = \frac{-63i}{256a\sqrt{2a}} = -u_2$.

Die letzten zwei Paare sind für die Berechnung nicht von bedeutung und dienen nur dazu, das Programm zu prüfen.

Für n > 0 gilt $v_{n-1} \stackrel{(5.9)}{=} -u_{n-1}$ und damit wollen wir die Formel noch weiter vereinfachen, um eine Version zu bekommen, die sich gut implementieren lässt.

$$v_{n} = \frac{i}{2\sqrt{2a}}((n-1)u_{n-1} + \sum_{k=0}^{n} v_{k-1}u_{n-k-1})$$

$$= \frac{i}{2\sqrt{2a}}((n-1)u_{n-1} + v_{-1}u_{n-1} + (\sum_{k=1}^{n-1} v_{k-1}u_{n-k-1}) + v_{n-1}u_{-1})$$

$$\stackrel{(5.9)}{=} \frac{i}{2\sqrt{2a}}(-(n-1)v_{n-1} + v_{-1}(-v_{n-1}) + (\sum_{k=1}^{n-1} v_{k-1}(-v_{n-k-1}) + v_{n-1}u_{-1})$$

$$= \frac{i}{2\sqrt{2a}}(-(n-1)v_{n-1} - \frac{1}{2}v_{n-1} - \sum_{k=1}^{n-1} v_{k-1}v_{n-k-1} - \frac{3}{2}v_{n-1})$$

$$= -\frac{i}{2\sqrt{2a}}((n-1)v_{n-1} + \sum_{k=1}^{n-1} v_{k-1}v_{n-k-1})$$

$$= -\frac{i}{2\sqrt{2a}}((n+1)v_{n-1} + \sum_{k=1}^{n-1} v_{k-1}v_{n-k-1})$$

In einer geeigneten Programmiersprache ist es nun einfach die v_n und u_n Numerisch zu berechnen. So wird ein geeigneter Quellcode in Anhang C vorgestellt. Mit diesen Programm wurden für verschiedene a numerisch die Beträge der Koeffizienten berechnet und in abhängigkeit von n in Abbildung 5.7 dargestellt.

Abbildung 5.7: Die Beträge der Koeffizienten für unterschiedliche \boldsymbol{a}

A Aufteilung von $t\varphi'(t)$

Sei $\varphi \in t^{-1}\mathbb{C}[t^{-1}]$, so ist $\varphi' \coloneqq \sum_{i=2}^N a_{-i}t^{-i} \in t^{-2}\mathbb{C}[t^{-1}]$ also $u\varphi'(t) = \sum_{i=1}^N a_{-i-1}t^{-i} \in t^{-1}\mathbb{C}[t^{-1}]$, welches wir zerlegen wollen. Zerlege also $t\varphi'(t) = \sum_{j=0}^{p-1} t^j \psi_j(t^p)$ mit $\psi_j \in \mathbb{C}[x^{-1}]$ für alle j > 0 und $\psi_0 \in x^{-1}\mathbb{C}[x^{-1}]$:

also:

$$\psi_0(t^p) = a_{-(p+1)}t^{-p} + a_{-(2p+1)}t^{-2p} + \dots$$

$$\psi_1(t^p) = a_{-p}t^{-p} + a_{-2p}t^{2p} + \dots$$

$$\vdots$$

$$\psi_{p-1}(t^p) = a_{-2}t^p + a_{-(p+2)}t^{2p} + \dots$$

B Genaueres zu $(x^2\partial_x)^k$

Nun wollen wir noch $(x^2\partial_x)^{k+1}$ besser verstehen.

$$(x^{2}\partial_{x})^{k+1} = x^{2} \partial_{x}x^{2} \partial_{x}(x^{2}\partial_{x})^{k-1}$$

$$= x^{2} (2x + x^{2}\partial_{x}) \partial_{x}(x^{2}\partial_{x})^{k-1}$$

$$= (2x^{3}\partial_{x} + x^{4}\partial_{x}^{2})(x^{2}\partial_{x})^{k-1}$$

$$= (2x^{3}\partial_{x} + x^{4}\partial_{x}^{2})(x^{2}\partial_{x})(x^{2}\partial_{x})^{k-2}$$

$$= (2x^{3} \partial_{x}x^{2} \partial_{x} + x^{4} \partial_{x}^{2}x^{2} \partial_{x})(x^{2}\partial_{x})^{k-2}$$

$$= (2x^{3} (2x + x^{2}\partial_{x}) \partial_{x} + x^{4} (2x\partial_{x} + 1 + x^{2}\partial_{x}^{2}) \partial_{x})(x^{2}\partial_{x})^{k-2}$$

$$= (4x^{4}\partial_{x} + 2x^{5}\partial_{x}^{2} + 2x^{5}\partial_{x}^{2} + x^{4}\partial_{x} + x^{6}\partial_{x}^{3})(x^{2}\partial_{x})^{k-2}$$

$$= (5x^{4}\partial_{x} + 4x^{5}\partial_{x}^{2} + x^{6}\partial_{x}^{3})(x^{2}\partial_{x})^{k-2}$$

$$= \sum_{n=1}^{k+1} \binom{k}{n-1} \frac{(k+1)!}{n!} x^{n+k} \partial_{x}^{n}$$

also gilt für spezielle k

$$(x^{2}\partial_{x})^{k+1} = \begin{cases} 2x^{3}\partial_{x} + x^{4}\partial_{x}^{2} & \text{falls } k = 1\\ 5x^{4}\partial_{x} + 4x^{5}\partial_{x}^{2} + x^{6}\partial_{x}^{3} & \text{falls } k = 2\\ \sum_{n=1}^{k+1} {k \choose n-1} \frac{(k+1)!}{n!} x^{n+k} \partial_{x}^{n} \end{cases}$$
 (B.1)

C Numerische berechnung der Koeffizienten

Hier wird nun ein Haskell Programm, dass in der Funktion **main** die Koeffizienten von v und u numerisch berechnet. Wir wählen $a = \frac{1}{8}$, dadurch gilt $u_{-2} = i$.

```
import Data.Complex (Complex((:+)))
   import Data.MemoTrie (memo) -- https://github.com/conal/MemoTrie
   import System.Environment (getArgs)
4
   -- Parameter
5
6 \quad a = 1/8
   -- returns n-th coefficient of v(t)
   vKoeff :: Int -> Complex Double
10 vKoeff = memo vKoeff,
     where vKoeff' :: Int -> Complex Double
11
            vKoeff' n
12
              | n > 0
| n == 0
                           = ((fromIntegral n+1)*(vKoeff (n-1))+summe)/(uKoeff (-2))
13
14
                           = -3/(uKoeff (-2)*4)
               | n == -1 = 1/2
15
16
               | otherwise = 0
17
               where summe = sum [vKoeff (k-1)*(vKoeff (n-k-1))|k <- [1..n-1]]
18
19
   -- returns n-th coefficient of u(t)
   uKoeff :: Int -> Complex Double
20
   uKoeff n | n == -2 \stackrel{\cdot}{} = 0:+(sqrt(8*a))
 | n == -1 = -3/2
21
22
              | otherwise = -(vKoeff n)
23
24
25 main :: IO ()
26 main = do args <- getArgs
               putStrLn ("n \t| v_n
                                      u_n\n----+"++(replicate 70 '-'))
27
              mapM_ (putStrLn . formated) [-2..(read $ head args :: Int)]
28
              \label{eq:mapM_substitute} \verb|mapM_ (putStrLn . formated) $ map (\x -> read x :: Int) (tail args) $ \\
29
      where formated :: Int -> String
30
            formated i = concat [ show i, " \t| " , show $ vKoeff i, "
31
                                                      , show $ uKoeff i ]
```

Ist der Code in einer Datei /Pfad/zu/koeff.hs gespeicher, so lässt er sich in Unix-Artigen Systemen beispielsweise mit den folgenden Befehlen compilieren und ausführen.

```
1 $ ghc /Pfad/zu/koeff.hs
2 $ /Pfad/zu/koeff 15 20 30 40 50 100 150
```

Durch das Ausführen berechnet das Programm die Koeffizienten von v und u bis zum Index 15 sowie einzelne Werte an 20, 30, 40, 50, 100 und 150 und produziert einen Ausgang, der wie folgt aussieht

```
| (-13.5) :+ (-0.0) 13.5 :+ 0.0
9
     | 0.0 :+ 59.34375
               (-0.0) :+ (-59.34375)
     | 324.0 :+ 0.0 (-324.0) :+ (-0.0)
10
     | 0.0 :+ (-2122.98046875)
                   (-0.0) :+ 2122.98046875
11
 6
     12
 7
13
                   (-0.0) :+ (-141115.447265625)
     | 1376311.5 :+ 0.0 (-1376311.5) :+ (-0.0)
14
 9
15
 10
     | 0.0 :+ (-1.4850124677246094e7)
                      (-0.0) :+ 1.4850124677246094e7
     16
 11
17
 12
18
 13
     | 3.1217145174e10 :+ 0.0
                  (-3.1217145174e10) :+ (-0.0)
     19
 14
20
 15
21
 20
     22
 30
     23
 40
 50
     | 0.0 :+ (-5.0878905001062135e65)
                       (-0.0) :+ 5.0878905001062135e65
     25
 100
     26
 150
```

In Haskell ist das :+ ein Infix-Konstruktor der Klasse **Data.Complex**. So erzeugt ein Aufruf der Form \mathbf{a} :+ \mathbf{b} eine Imaginärzahl, die a+ib entspricht.

Übersetzt in unsere Zahlenschreibweise sieht das Ergebnis also wie folgt aus:

n	v_n	u_n
-2	0	i
-1	0,5	-1, 5
0	0,75i	-0,75i
1	1,5	-1, 5
2	-3,9375i	3,9375i
3	-13,5	13, 5
4	59,34375i	-59,34375i
5	324,0	-324,0
6	-2122,98046875i	2122,98046875i
7	-16213, 5	16213, 5
8	141115, 447265625i	-141115, 447265625i
9	1376311,5	-1376311,5
10	$-1,4850124677246094 \cdot 10^{7}i$	$1,4850124677246094 \cdot 10^{7}i$
11	$-1,75490226 \cdot 10^{8}$	$1,75490226 \cdot 10^{8}$
12	$2,2530628205925293 \cdot 10^9 i$	$-2,2530628205925293 \cdot 10^9 i$
13	$3,1217145174 \cdot 10^{10}$	$-3,1217145174 \cdot 10^{10}$
14	$-4,641652455250599 \cdot 10^{11}i$	$4,641652455250599 \cdot 10^{11}i$
15	$-7,3709524476135 \cdot 10^{12}$	$7,3709524476135 \cdot 10^{12}$
:	:	:
	1 779000040090001 1019:	
20	$1.753906248830001 \cdot 10^{19}i$	$-1.753906248830001 \cdot 10^{19}i$
:	:	:
30	$\begin{bmatrix} -2.7520294973343126 \cdot 10^{33}i \end{bmatrix}$	$2.7520294973343126 \cdot 10^{33}i$
00	2.7020234370040120 10 #	2.1020204010040120 10 #
	:	:
40	$1.1055855646065139 \cdot 10^{49}i$	$-1.1055855646065139 \cdot 10^{49}i$
:	:	:
50	$-5.0878905001062135 \cdot 10^{65}i$	$5.0878905001062135 \cdot 10^{65}i$
	:	:
100	$3.045728894141079 \cdot 10^{159}i$	$-3.045728894141079 \cdot 10^{159}i$
:	:	:
150	$\begin{bmatrix} -2.7737283214890534 \cdot 10^{264}i \end{bmatrix}$	$2.7737283214890534 \cdot 10^{264}i$
150	-2.7737203214090334 · 10-* -7	2.1131203214090334 · 10=*=1
	;	;
		· ·

Tabelle C.1: Numerisch berechnete Koeffizienten von u(t) und v(t) für $a=\frac{1}{8}$

Literaturverzeichnis

- [Ara] D. Arapura, Notes on d-modules and connections with hodge theory, Notizen?
- [Ark12] S. Arkhipov, *D-modules*, unpublished lecture notes available online, May 2012.
- [AV09] B. Alkofer and F. Vogl, Lineare differentialgleichungen und deren fouriertransformierte aus algebraischer sicht / lineare differentialgleichungen aus algebraischer sicht, 2009.
- [Ayo09] J. Ayoub, Introduction to algebraic d-modules, Vorlesungsskript, 2009.
- [BD04] A. Beilinson and V.G. Drinfeld, *Chiral algebras*, Colloquium Publications American Mathematical Society, no. Bd. 51, American Mathematical Society, 2004.
- [Blo04] Spencer Bloch, Local fourier transforms and rigidity for d-modules, Asian J. Math (2004), 587–605.
- [Cou95] S.C. Coutinho, A primer of algebraic d-modules, London Mathematical Society Student Texts, Cambridge University Press, 1995.
- [Ell10] C. Elliott, *D-modules*, unpublished notes available online, April 2010.
- [Gin98] V. Ginzburg, Lectures on d-modules, Vorlesungsskript, 1998.
- [GL04] Ricardo García López, Microlocalization and stationary phase, Asian J. Math. 8 (2004), no. 4, 747–768. MR MR2127946 (2005m:32014)
- [Har77] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, Springer, 1977.
- [Hei10] Hedwig Heizinger, Verschwindungszykel regulär singulärer D-Moduln und Fouriertransformation, 2010.
- [HTT07] R. Hotta, K. Takeuchi, and T. Tanisaki, *D-modules, perverse sheaves, and representation theory*, Progress in Mathematics, Birkhäuser Boston, 2007.
- [Hut07] Graham Hutton, Programming in Haskell, Cambridge University Press, January 2007.
- [Kas03] M. Kashiwara, D-modules and microlocal calculus, Translations of Mathematical Monographs, American Mathematical Society, 2003.
- [MR89] H. Matsumura and M. Reid, Commutative ring theory, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1989.
- [Sab90] C. Sabbah, Introduction to algebraic theory of linear systems of differential equations, Vorlesungsskript, 1990.
- [Sab07] ______, An explicit stationary phase formula for the local formal Fourier-Laplace transform, June 2007.

- $[Sch] \ \ J.P. \ Schneiders, \ \textit{An introduction to d-modules}.$
- [Sta12] The Stacks Project Authors, Stacks Project, http://stacks.math.columbia.edu, December 2012.