ENV 710: Lecture 19

binomial logistic regression

generalized linear models

binomial logistic regression

learning goals

- binomial logistic regression
 - grouped responses and modeling proportions
 - odds, log-odds, probabilities
 - what is it? when to use it?
 - how does it work?
 - interpretation of coefficients

stuff you should know

logistic regression

- binary response variable
 - success or failure (1 or 0)
 - model the probability of success (π)

$$\pi = \beta_0 + \beta_1 X_1$$

• model log odds $logit(\pi) = log[\pi/(1-\pi)]$ $logit(\pi) = \beta_0 + \beta_1 X_k + ... + \beta_k X_k$

calculate probabilities

$$\pi = \frac{exp(\beta_0 + \beta_1 X_k + \dots + \beta_k X_k)}{1 + exp(\beta_0 + \beta_1 X_k + \dots + \beta_k X_k)}$$

goal is to model the probability of 'success'

transform response to be linearly related to the IV's through the logit transform

back transform to probability using the inverse logit

logistic regression for binomial counts

- binomial count = sum of independent binary responses
- $Y \sim \text{binomial}(n, \pi)$, with population proportion, π , and n trials
- observed proportion of I's is Y/n binomial proportion
- continuous proportions of amounts cannot be modeled
 - e.g., the proportion of fat that is saturated fat
 - numerator and denominator are not integers, and no n is involved
 - when response variable is a continuous proportion, use ordinary regression methods

 model how population proportion depends on the explanatory variables through a nonlinear link function

$$logit(\pi) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

 interpretation of model is same as for binary logistic regression, which is a special case of the binomial model in which all n_i's are I

beetles

Beetles are exposed to different doses of carbon disulphide (mf/L) for 5 hours. Does dosage level affect mortality?

dose-response curve

Dose	# Exposed	# Killed	Proportion	
49.1	59	6	0.102	
53.0	60	13	0.217	
56.9	62	18	0.290	
60.8	56	28	0.500	
64.8	63	52	0.825	
68.7	59	53	0.898	
72.6	62	61	0.985	
76.5	60	60	1.000	

- lowest dose, n = 59 beetles, k = 6
- for each beetle, outcome is death or survival
 - death = success
 - p = probability that an individual beetle will die after the dose
 - probability that y assumes a value k is given by:

$$P(y=k) = \binom{n}{k} p^k (1-p)^{n-k}$$

beetles

```
b1 <- glm(cbind(killed, exposed - killed) ~ dose,
      family = binomial)
 summary(b1)
glm(formula = cbind(killed, alive) ~ dose,
family = binomial)
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) -14.82300
                        1.28959 -11.49
                                          <2e-16 ***
dose
             0.24942
                        0.02139 11.66 <2e-16 ***
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 284.2024 on 7 degrees of freedom
Residual deviance: 7.3849 on 6 degrees of freedom
AIC: 37.583
```


beetles

```
b1 <- glm(cbind(killed, exposed - killed) ~ dose,
      family = binomial)
plot(dose, killed/exposed, xlab="Dose, mf/L",
     ylab="Probabilty of beetle mortality",
      ylim=c(0,1),
       pch = 21, bq = "black")
x \leftarrow seg(min(dose), max(dose), length = 100)
lines(x, predict(b1, data.frame(dose=x),
      type="response"), lwd = 2, type = "1",
       col = "red")
# predict specific values
predict(b1, data.frame(dose = c(50, 65, 75)), type =
"response")
           2
                       3
0.08688964 0.80043514 0.97982979
```


beetles

goodness-of-fit

deviance test for lack-of-fit

- significant p-value suggests that a residual deviance as large or larger than that observed under the model is highly unlikely
 - model is not adequate or lack of fit
- deviance: -2 log(likelihood) evaluated at the maximum likelihood of the parameters
- change in deviance has a Chi-squared distribution with df's equal to the change in number of parameters in the model

```
1-pchisq(b1$dev, b1$df.resid)
[1] 0.2867122

pchisq(b1$dev, b1$df.resid, lower.tail = F)
[1] 0.2867122
```

pseudo-R²

Krunnit Island Archipelago

	Island	Area	AtRisk	Extinct
1	Ulkokrunni	185.8	75	5
2	Maakrunni	105.8	67	3
3	Ristikari	30.7	66	10
4	Isonkivenletto	8.5	51	6
5	Hietakraasukka	4.8	28	3
6	Kraasukka	4.5	20	4

- logit of the probability of extinctions is assumed to be linear in X = log(Area)
- logistic regression on binary responses is a special case of the binomial model in which all n_i's are 1

```
proportionExtinct <- Extinct/AtRisk
oddsExtinct <- proportionExtinct/(1 - proportionExtinct)
logitExtinct <- log(oddsExtinct)  # Logit = Log Odds</pre>
```


Krunnit Island Archipelago

```
betas <- coef(k2)
odds <- exp(betas)
odds
(Intercept) log(Area)
0.3023423 0.7429670</pre>
```

for every I unit increase in log(Area), odds of extinction is 74.2% that of the previous area, or a reduction of 25.8% in odds of extinction

goodness of fit

```
Residuals
pchisq(k2$deviance, k2$df.residual, lower.tail = F)
 [1] 0.7397351
pR2(k2)[4]
                                                                        Predicted values
fitting null model for pseudo-r2
 McFadden
                                                                        Scale-Location
0.3179176
                                                               /Std. Pearson resid.
                                                                  0.8
knull <- update(k2, .~.-log(Area))</pre>
                                                                  0.4
 lrtest(knull, k2)
                                                                  0.0
Likelihood ratio test
                                                                        Predicted values
Model 1: cbind(Extinct, AtRisk - Extinct) ~ 1
Model 2: cbind(Extinct, AtRisk - Extinct) ~ log(Area)
       LogLik Df Chisq Pr(>Chisq)
     1 - 52.335
     2 - 35.697
                 1 33.276 7.994e-09 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' 1
```


Krunnit Island,

- with each doubling of island area, there is a ~ 19% reduction in the odds of extinction
- each halving of area is associated with a 23% increase in extinction

