

WELLCOME

STATISTIC WITH PYTHON

EMBARKING ON A JOURNEY
INTO DATA SCIENCE

YA MANON

THE CENTRAL LIMIT THEOREM

THE CENTRAL LIMIT THEOREM

In this section we'll cover **the central limit theorem** (CLT), which will allow us to apply the concepts we learned on the normal distribution to populations that follow any distribution

TOPICS WE'LL COVER:

CLT Basics

Standard Error

GOALS FOR THIS SECTION:

- Understand the concept of a sampling distribution,
 and its relationship with the central limit theorem
- Identify the impact of the sample size on the normality
 & variability of the sampling distribution
- Calculate the standard error of a sampling distribution

SAMPLING DISTRIBUTION OF THE MEAN

The **sampling distribution of the mean** is obtained by taking many samples from a population, calculating the mean for each, and plotting their frequencies

CLT Basics

Standard Error

THE CENTRAL LIMIT THEOREM

The **central limit theorem** states that the means of large enough samples of *any* population will be normally distributed around the population mean

• A sample size of **30** or more is typically required (n > 30)

CLT Basics

Standard Error

SAMPLING DISTRIBUTION (100 samples):

n = 10

HEY THIS IS IMPORTANT!

As sample size increases, the sampling distribution approximates a normal distribution

STANDARD ERROR

As you know, normal distributions are described by their mean & standard deviation For the normal distribution of the sample means, the mean is the same as its population's mean, but the standard deviation is known as the **standard error**

• The standard error is the standard deviation of the sample means around the population mean

$$SE = \frac{\sigma}{\sqrt{n}}$$
To calculate the standard error, simply divide the standard deviation of the population by the square root of the sample size

HEY THIS IS IMPORTANT!

As sample size increases, the standard error decreases

CLT Basics

Standard Error