Санкт-Петербургский Политехнический университет Петра Великого Институт прикладной математики и механики

Высшая школа прикладной математики и вычислительной физики

Отчёт о летней производственной практике практика по получению профессиональных умений и опыта в профессиональной деятельности на тему:

"Метод разностной эволюции: псевдоотражение как метод мутации"

Место выполнения: НИЛ "Математическая биология и биоинф	рорматика"
Студентка группы 3630102/80401: Е. А	А . Гришина
Оценка научного руководителя: К.	. Н. Козлов
лопент. к.б.н. ВШПМиВФ. ИПМ	ім. спбпу

Санкт-Петербург 2021 г.

Оглавление

зностная эволюция. Псевд Описание метода		_	_							-			
Тестовые функции						٠			٠	٠		٠	٠
DREAM6													
Постановка задачи													
Параметры генных сетей	ί.												
Уравнения генных сетей													
Результаты													

Список таблиц

1	Сравнение ReSHADE и ReDE	8
2	Полученные параметры для модели М1	14
3	Модуль разности исходной матрицы концентраций DREAM6	
	и матрицы концентраций, полученной ReSHADE методом для	
	модели M1	15
4	Полученные параметры для модели М2	16
5	Модуль разности исходной матрицы концентраций DREAM6	
	и матрицы концентраций, полученной ReSHADE методом для	
	модели М2	17
6	Полученные параметры для модели МЗ	19
7	Модуль разности исходной матрицы концентраций DREAM6	
	и матрицы концентраций, полученной ReSHADE методом для	
	модели M3	19

Введение

Решение задач оптимизации является открытым вопросом, поскольку не существует единого метода, который бы одинаково хорошо решал задачи с различными ограничениями и разного вида.

Метод разностной (дифференциальной) эволюции - это простой и мощный эволюционный алгоритм для задач численной оптимизации, предложенный в 1997 году. Алгоритм состоит из четырех основных частей: инициализация, мутация, кроссовер и селекция. Наиболее часто предметом изменения метода является мутация. В рассматриваемой модификации метода разностной эволюции изменению так же подвергся модуль, связанный с мутацией. Суть данного метода мутации в разностной эволюции в том, чтобы генерировать точку отражения в направлении лучшего решения.

В этой работе будет рассмотрена модификация метода разностной эволюции под названием ReSHADE (ReDE 1 + SHADE 2 [3]). В этой вариации мутация происходит как в методе ReDE, а масштабирующий фактор (scaling factor) F и скорость кроссовера (crossover rate) CR выбираются как в ReSHADE.

Производственная практика проходилась на базе НИЛ "Математическая биология и биоинформатика" располагающейся в СПБПУ. Основное внимание в работе лаборатории уделяется количественному анализу биологических процессов. Используется математическое моделирование и методы анализа больших данных, а также проводятся биологические эксперименты для изучения механизмов регуляции генов, механизмов взаимодействия организма - хозяина с патогеном, механизмов развития и эпигенетики. Кроме того, НИЛ работает над анализом геномных и транскриптомных данных растений, а также разрабатываются новые биоинформатические и статистические методы и программы для ускорения селекции растений и создания новых сортов.

Целью данной работы является является разработка модификации метода разностной эволюции и применение его к имеющимся биоинформатическим данным.

Задачи:

• Разработка метода ReDE

¹DE with quasi-reflection-based mutation

²Success-History Based Parameter Adaptation for Differential Evolution

- Разработка метода ReSHADE
- Сравнение методов ReSHADE и ReDE на тестовых функциях из статьи [1]
- Применение ReSHADE к поиску оптимальных параметров в генных сетях (DREAM6) [2]

Разностная эволюция. Псевдоотражение как метод мутации

Описание метода

Изначально необходимо сгенерировать множество векторов. Это множество будет популяцией, а каждый вектор - особью. На каждой итерации алгоритм генерирует новое поколение векторов, случайным образом комбинируя векторы из предыдущего поколения. Число векторов в каждом поколении одно и то же и является одним из параметров метода.

Мутация происходит по следующим образом: генерируются 4 числа - номера особей. Из этих 4 особей выбирается лучшая (x_b) , худшая (x_w) , две оставшиеся обозначаются x_{t_1}, x_{t_2} . Мутация происходит по формуле[1]:

$$v_{i} = \begin{cases} x_{c} + F \cdot (x_{b} - x_{c}) + F \cdot (x_{r_{0}} - x_{w}), & \text{if } f(x_{r_{0}}) \leq f(x_{x_{w}}) \\ x_{c} + F \cdot (x_{b} - x_{c}) + F \cdot (x_{w} - x_{r_{0}}), & \text{otherwise} \end{cases}$$
(1)

где $x_c = \beta_i \cdot x_{t_1} + (1-\beta_i) \cdot x_{t_2}, \ \beta_i = rndreal(0,1), \ x_{r_0}$ - еще одна случайно выбранная особь из популяции.

Кроссовер происходит по формуле:

$$u_{i,j} = \begin{cases} v_{i,j}, & \text{if } rndreal(0, 1) < Cr \text{ or } j == j_{rand} \\ x_{i/j}, & \text{otherwise} \end{cases}$$
 (2)

Ниже описан алгоритм в больших подробностях.

Algorithm 1: ReSHADE

```
Input: parameters: populationSize, problemSize, NFEs_{max}
   Output: Optimal Solution
 1 Randomly initialize population (used uniform distribution)
 2 Set all values M_F, M_{CR} to 0.5
 з Set NFEs = 0
 4 while The termination criteria is not met do
       S_F = \emptyset, S_{CR} = \emptyset
 5
       for i = \theta to N do do
 6
           r_i = \text{Select from } [1, H] \text{ randomly}
 7
           CR_{i,NFEs} = norm(M_{CR,r_i}, 0.1)
           F_{i,NFEs} = cauchy(M_{F,r_i}, 0.1)
           Generate v_i according (1)
10
           Do crossover according (2). Get u_i vector
11
           NFEs+=1
12
       for i = \theta to N do do
13
           if f(u_i) \leq f(x_i) then
14
15
            x_i = u_i
           if f(u_i) < f(x_i) then
16
            CR_i \rightarrow S_{CR}, F_i \rightarrow S_F
17
           if S_C R \neq \emptyset and S_F \neq \emptyset then
18
               Update M_{CR}, M_F based on S_CR, S_F
19
```

Алгоритм был реализован на языке программирования Python 3.8. Все исследования проводились на этом же языке.

Тестовые функции

Сравнение проводилось на следующих 12 функциях. Для всех исследований размерность особи (n) равнялась 30, размерность популяции 100 особей, а $NFEs_{max}=100,000$. Все функции имеют глобальный минимум в 0.

$$f_1 = \sum_{i=1}^n x_i^2$$
 [-100, 100]ⁿ

$$f_2 = \sum_{i=1}^n |x_i| + \prod_{i=1}^n |x_i|$$
 [-10, 10]ⁿ

$$f_3 = \sum_{i=1}^{n-1} (\lfloor x_i + 0.5 \rfloor)^2$$
 [-100, 100]ⁿ

$$f_4 = \sum_{i=1}^{n} (x_i^2 - 10\cos(2\pi x_i) + 1)$$
 [-5.12, 5.12]ⁿ

$$f_5 = -20\exp(-0.2\sqrt{\frac{1}{n}\sum_{i=1}^n x_i^2}) - (\exp(1/n\sum_{i=1}^n \cos(2\pi x_i))) + 20 + \exp(1)$$
 [-32,32]ⁿ

$$f_6 = \frac{1}{4000} \sum_{i=1}^n x_i^2 - \prod_{i=1}^n \cos(\frac{x_i}{\sqrt{i}}) + 1$$
 [-600, 600]ⁿ

$$f_7 = \sum_{i=1}^n |x_i|^{i+1}$$
 [-100, 100]ⁿ

$$f_8 = \sum_{i=1}^n |x_i \sin x_i + 0.1x_i|$$
 [-100, 100]ⁿ

$$f_9 = 0.1n - 0.1 \sum_{i=1}^{n} \cos(5\pi x_i) + \sum_{i=1}^{n} x_i^2$$
 [-100, 100]ⁿ

$$f_{10} = -0.0001(|(\prod_{i=1}^{n} \sin x_i) \exp(|100 - \frac{\sqrt{\sum_{i=1}^{n} x_i^2}}{\pi}|)| + 1)^{0.1} + 1.68347744296512 \quad [-10, 10]^n$$

$$f_{11} = \frac{1}{n} \sum_{i=1}^{n} (x_i^4 - 16x_i^2 + 5x_i) + 78.3323314075429$$
 [-5,5]ⁿ

$$f_{12} = x_1^2 + 10^6 \sum_{i=2}^n x_i^2$$
 [-100, 100]ⁿ

В ReDE были использованы параметры F=0.8 И Cr=0.7 как те,

которые дают наилучшие результаты.

function	ReDE	ReSHADE
f_1	3.8416376428097004e-13	1.045319919649688e-15
f_2	1.019014091606685e-06	5.583144208542049e-09
f_3	5.400721260949484e-13	2.6537206726157625e- 15
f_4	193.5248734251602	2.439648483232304e-11
f_5	5.8739822339504144e-08	1.2490886991400885e-08
f_6	4.723998969780041e-13	1.0891287871572786e-13
f_7	$1.9641831728670644\mathrm{e}{+29}$	7.1637503560535515e-28
f_8	1.157410360814311e-15	1.0655927881001955e-22
f_9	2.598423088927497e-11	1.8389956259839438e-13
f_{10}	1.076578475768943	4.0852432547922035e-11
f_{11}	1.149231820818386e-10	1.3358885553316213e-08
f_{12}	5.2674547577558285 e-09	2.1321918949244896e-07

Таблица 1: Сравнение ReSHADE и ReDE

Из таблицы (1) видно, что метод ReDE не сходится на функции f_4 (или очень медленно сходится) и на f_7 . Почти на всех остальных функциях метод ReSHADE дает лучший результат за исключением двух последних. Результаты в том и в другом методе все равно получились менее точными, чем результаты представленные в статье [1].

DREAM6

Проект DREAM предоставляет унифицированные экспериментальные данные для тестирования алгоритмов. Каждое «испытание» — некая формализованная задача, которую предлагается решить.

В рамках этой работы требуется подобрать близкие к оптимальным значения параметров с помощью модификации метода разностной эволюции, используя в качестве тестовых задач результаты DREAM6.

Постановка задачи

Задача принадлежит области обратной инженерии генных регуляторных сетей. Предполагается, что топология генной сети уже определена с достаточным уровнем правдоподобия. Под топологией здесь понимается только структура сети. Задача заключается в подборе параметров (при определении которых будет определена и кинетика) этой сети.

Даны структуры трёх генных регуляторных сетей, требуется разработать и/или применять методы оптимизации, чтобы точно оценить параметры моделей.

Параметры генных сетей

Генная сеть характеризуется топологией (структурой), и набором параметров — скорость трансляции, транскрипции, и параметров, отвечающих за сайты связывания рибосом. Если все эти параметры и начальные данные (начальные концентрации мРНК, белков) определены, рассматривается динамика концентраций мРНК и белков каждого типа.

Таким образом, каждой генной сети с заданными параметрами соответствует ОДУ, решение которого в конкретном интервале времени порождает матрицу, содержащую набор концентраций для фиксированных моментов времени.

Уравнения генных сетей

Все параметры деградации мРНК и белков, имена переменных которых имеют вид: $pp\{...\}_degradation_rate$ было принято считать одинаковыми в рамках проекта DREAM. Поэтому в ОДУ для моделей эти параметры обозначены как degradation rate.

Система ОДУ для модели 1:

$$\begin{split} &\frac{d}{dt}[pp1_mrna] = pro1_strength - [pp1_mrna]; \\ &\frac{d}{dt}[pp2_mrna] = pro2_strength \cdot \frac{(\frac{[p1]}{v2_Kd})^{v2_h}}{1 + (\frac{[p1]}{v2_Kd})^{v2_h}} \cdot \frac{1}{1 + (\frac{[p6]}{v5_Kd})^{v5_h}} \\ &\cdot degradation_rate - [pp2_mrna]; \\ &\frac{d}{dt}[pp3_mrna] = pro3_strength \cdot \frac{(\frac{[p1]}{v3_Kd})^{v2_h}}{1 + (\frac{[p1]}{v3_Kd})^{v3_h}} \cdot \frac{1}{1 + (\frac{[p2]}{v4_Kd})^{v4_h}} \\ &\cdot degradation_rate - [pp3_mrna]; \\ &\frac{d}{dt}[pp4_mrna] = pro4_strength \cdot \frac{(\frac{[p1]}{v1_Kd})^{v2_h}}{1 + (\frac{[p1]}{v1_Kd})^{v1_h}} \cdot \frac{1}{1 + (\frac{[p5]}{v8_Kd})^{v8_h}} \\ &\cdot degradation_rate - [pp4_mrna]; \\ &\frac{d}{dt}[pp5_mrna] = pro5_strength \cdot \frac{1}{1 + (\frac{[p4]}{v6_Kd})^{v6_h}} \cdot degradation_rate \\ &- [pp5_mrna]; \\ &\frac{d}{dt}[pp6_mrna] = pro6_strength \cdot \frac{1}{1 + (\frac{[p4]}{v7_Kd})^{v7_h}} \cdot degradation_rate \\ &- [pp6_mrna]; \\ &\frac{d}{dt}[p1] = rbs1_strength \cdot [pp1_mrna] - degradation_rate \cdot [p1]; \\ &\frac{d}{dt}[p2] = rbs2_strength \cdot [pp2_mrna] - degradation_rate \cdot [p2]; \\ &\frac{d}{dt}[p3] = rbs3_strength \cdot [pp3_mrna] - degradation_rate \cdot [p3]; \\ &\frac{d}{dt}[p4] = rbs4_strength \cdot [pp4_mrna] - degradation_rate \cdot [p4]; \\ &\frac{d}{dt}[p5] = rbs5_strength \cdot [pp5_mrna] - degradation_rate \cdot [p5]; \\ &\frac{d}{dt}[p6] = rbs6_strength \cdot [pp5_mrna] - degradation_rate \cdot [p5]; \\ &\frac{d}{dt}[p6] = rbs6_strength \cdot [pp6_mrna] - degradation_rate \cdot [p6]; \end{aligned}$$

Система ОДУ для модели 2:

$$\frac{d}{dt}[pp1_mrna] = pro1_strength - degradation_rate \cdot [pp1_mrna]; \\ \frac{d}{dt}[pp2_mrna] = pro2_strength \cdot \left(\frac{(\frac{|p1|}{v1_Ka})^{v1_h}}{1 + (\frac{|p1|}{v1_Ka})^{v1_h}} + \frac{(\frac{|p2|}{v3_Ka})^{v3_h}}{1 + (\frac{|p2|}{v3_Ka})^{v3_h}}\right) \\ - degradation_rate \cdot [pp2_mrna]; \\ \frac{d}{dt}[pp3_mrna] = pro3_strength \cdot \left(\frac{(\frac{|p1|}{v2_Ka})^{v0_h}}{1 + (\frac{|p1|}{v0_Ka})^{v0_h}} + \frac{(\frac{|p2|}{v10_Ka})^{v10_h}}{1 + (\frac{|p2|}{v10_Ka})^{v10_h}}\right) \\ - degradation_rate \cdot [pp3_mrna]; \\ \frac{d}{dt}[pp4_mrna] = pro4_strength \cdot \frac{1}{1 + (\frac{|p3|}{v2_Ka})^{v2_h}} \\ - degradation_rate \cdot [pp4_mrna]; \\ \frac{d}{dt}[pp5_mrna] = pro5_strength \cdot \frac{(\frac{|p2|}{v4_Ka})^{v4_h}}{1 + (\frac{|p2|}{v4_Ka})^{v4_h}} \cdot \frac{1}{1 + (\frac{|p5|}{v5_Ka})^{v5_h}} \\ - degradation_rate \cdot [pp5_mrna]; \\ \frac{d}{dt}[pp6_mrna] = pro6_strength \cdot \frac{1}{1 + (\frac{|p4|}{v6_Ka})^{v6_h}} \\ - degradation_rate \cdot [pp6_mrna]; \\ \frac{d}{dt}[pp7_mrna] = pro7_strength \cdot \frac{(\frac{|p7|}{v8_Ka})^{v8_h}}{1 + (\frac{|p7|}{v8_Ka})^{v8_h}} \cdot \frac{1}{1 + (\frac{|p9|}{v7_Ka})^{v7_h}} \\ - degradation_rate \cdot [pp7_mrna]; \\ \frac{d}{dt}[p1] = rbs1_strength \cdot [pp1_mrna] - degradation_rate \cdot [p1]; \\ \frac{d}{dt}[p2] = rbs2_strength \cdot [pp2_mrna] - degradation_rate \cdot [p2]; \\ \frac{d}{dt}[p3] = rbs3_strength \cdot [pp3_mrna] - degradation_rate \cdot [p4]; \\ \frac{d}{dt}[p4] = rbs4_strength \cdot [pp4_mrna] - degradation_rate \cdot [p4]; \\ \frac{d}{dt}[p6] = rbs6_strength \cdot [pp6_mrna] - degradation_rate \cdot [p5]; \\ \frac{d}{dt}[p6] = rbs6_strength \cdot [pp6_mrna] - degradation_rate \cdot [p6]; \\ \frac{d}{dt}[p7] = rbs7_strength \cdot [pp6_mrna] - degradation_rate \cdot [p6]; \\ \frac{d}{dt}[p7] = rbs7_strength \cdot [pp7_mrna] - degradation_rate \cdot [p7]; \\ \frac{d}{dt}[p7] = rbs7_strength \cdot [pp6_mrna] - degradation_rate \cdot [p6]; \\ \frac{d}{dt}[p7] = rbs7_strength \cdot [pp6_mrna] - degradation_rate \cdot [p6]; \\ \frac{d}{dt}[p7] = rbs7_strength \cdot [pp7_mrna] - degradation_rate \cdot [p6]; \\ \frac{d}{dt}[p7] = rbs7_strength \cdot [pp7_mrna] - degradation_rate \cdot [p7]; \\ \frac{d}{dt}[p7] = rbs7_strength \cdot [pp6_mrna] - degradation_rate \cdot [p7]; \\ \frac{d}{dt}[p7] = rbs7_strength \cdot [pp6_mrna] - degradation_rate \cdot [p7]; \\ \frac{d}{dt}[p7] = rbs7_strength \cdot [pp6_mrna] -$$

Система ОДУ для модели 3:

Для $\{i\} = 1, \dots, 9$.

$$\begin{split} &\frac{d}{dt}[pp1_mrna] = pro1_strength - degradation_rate \cdot [pp1_mrna]; \\ &\frac{d}{dt}[pp2_mrna] = pro2_strength \cdot \left(\frac{(\frac{[p1]}{v1_Kd})^{v1_h}}{1+(\frac{[p1]}{v1_Kd})^{v1_h}} \cdot \frac{1}{1+(\frac{[p9]}{v13_Kd})^{v13_h}}\right) \\ &- degradation_rate \cdot [pp2_mrna]; \\ &\frac{d}{dt}[pp3_mrna] = pro3_strength \cdot \left(\frac{1}{1+(\frac{[p2]}{v2_Kd})^{v2_h}} \cdot \frac{1}{1+(\frac{[p3]}{v3_Kd})^{v3_h}}\right) \\ &- degradation_rate \cdot [pp3_mrna]; \\ &\frac{d}{dt}[pp4_mrna] = pro4_strength \cdot \left(\frac{1}{1+(\frac{[p3]}{v15_Kd})^{v15_h}} \cdot \frac{1}{1+(\frac{[p2]}{v14_Kd})^{v14_h}}\right) \\ &- degradation_rate \cdot [pp4_mrna]; \\ &\frac{d}{dt}[pp5_mrna] = pro5_strength \cdot \frac{(\frac{[p4]}{v4_Kd})^{v4_h}}{1+(\frac{[p4]}{v5_Kd})^{v5_h}} \\ &- degradation_rate \cdot [pp5_mrna]; \\ &\frac{d}{dt}[pp6_mrna] = pro6_strength \cdot \left(\frac{(\frac{[p5]}{v5_Kd})^{v5_h}}{1+(\frac{[p5]}{v5_Kd})^{v5_h}} + \frac{(\frac{[p6]}{v6_Kd})^{v6_h}}{1+(\frac{[p6]}{v6_Kd})^{v6_h}}\right) \\ &- degradation_rate \cdot [pp6_mrna]; \\ &\frac{d}{dt}[pp7_mrna] = pro7_strength \cdot \left(\frac{(\frac{[p6]}{v8_Kd})^{v8_h}}{1+(\frac{[p6]}{v8_Kd})^{v8_h}} + \frac{(\frac{[p5]}{v9_Kd})^{v9_h}}{1+(\frac{[p5]}{v9_Kd})^{v9_h}}\right) \\ &- degradation_rate \cdot [pp7_mrna]; \\ &\frac{d}{dt}[pp8_mrna] = pro8_strength \cdot \left(\frac{(\frac{[p7]}{v7_Kd})^{v7_h}}{1+(\frac{[p7]}{v7_Kd})^{v7_h}} \cdot \frac{1}{1+(\frac{[p8]}{v11_Kd})^{v11_h}}\right) \\ &- degradation_rate \cdot [pp8_mrna]; \\ &\frac{d}{dt}[pp9_mrna] = pro9_strength \cdot \left(\frac{(\frac{[p7]}{v7_Kd})^{v7_h}}{1+(\frac{[p7]}{v10_Kd})^{v10_h}} \cdot \frac{1}{1+(\frac{[p8]}{v12_Kd})^{v12_h}}\right) \\ &- degradation_rate \cdot [pp9_mrna]; \\ &\frac{d}{dt}[pp1_rate] = pro8_strength \cdot [p91_rate] - degradation_rate \cdot [p91_rate]; \\ &\frac{d}{dt}[p91_rate] = pro9_strength \cdot [p91_rate] - degradation_rate \cdot [p91_rate]; \\ &\frac{d}{dt}[p91_rate] = pro9_strength \cdot [p91_rate] - degradation_rate \cdot [p91_rate]; \\ &\frac{d}{dt}[p91_rate] = pro9_strength \cdot [p91_rate] - degradation_rate \cdot [p91_rate]; \\ &\frac{d}{dt}[p91_rate] = pro9_strength \cdot [p91_rate] - degradation_rate \cdot [p91_rate]; \\ &\frac{d}{dt}[p91_rate] = pro9_strength \cdot [p91_rate] - degradation_rate \cdot [p91_rate] + [p91_rate] - degradation_rate \cdot [p91_rate] - degradation_rate \cdot [p91_rate] - degradation_rate \cdot [p91_rate] - degradation_rate \cdot [p91_rate] - degradati$$

Результаты

Все исследования проводились при следующих параметрах алгоритма: $populationSize=100,\ NFEs_{max}=100,000.$ Минимизирующей функцией являлось расстояние между известной и полученной матрицами концентраций ($\rho=\sum_{i=0}^n\sum_{j=0}^n(M_{i,j}-M_{i,j}^*)^2$)), где M - полученная таблица концентрации, а M^* - известная матрица.

Parameter's name	DREAM6	ReSHADE
pro1_strength	3	3.1773566125597785
pro2_strength	8	1.172776481255643
pro3_strength	6	1.7893843087589967
pro4_strength	8	9.762056766051936
pro5_strength	3	2.4026014610647097
pro6_strength	3	7.5385466172962605
rbs1_strength	3.92	4.3308024546184365
rbs2_strength	5	4.914794436668045
rbs3_strength	5	8.424344183459256
rbs4_strength	1	2.93114695760183
rbs5_strength	5	2.1909840338206763
rbs6_strength	5	8.16130073360782
v1_Kd	1	0.39145160938339196
v1_h	4	8.71797041500235
Kd	1	2.5637233475877452
v2_h	2	1.6598798174224894
v3_Kd	0.1	7.927330450756315
v3_h	2	7.1026478369751
	10	5.584205821387628
v4_h	4	9.08831600860714
v5_Kd	1	2.096014205521901
v5_h	1	4.560513837490685
	0.1	9.477108740981185
v6_h	2	9.00293624905286
v7_Kd	0.1	7.075687624195648
v7_h	2	9.475689015053655
	0.2	4.293375088143886
h	4	7.529382318363048

Таблица 2: Полученные параметры для модели М1

1	1	0.959	0.834	0.811	0.952	
0.229	1.566	2.208	0.742	0.843	0.667	
0.097	0.05	0.173	0.385	0.135	0.047	
0.044	0.043	0.192	0.17	0.019	0.085	
0.0002	0.064	0.718	1.178	0.008	0.009	
0.006	0.142	0.015	0.528	0.001	0.017	
0.043	0.435	0.116	0.035	0.004	0.001	
0.061	0.144	0.641	0.055	0.015	0.009	
0.010	0.073	0.026	0.031	0.009	0.002	
0.030	0.036	0.022	0.040	0.014	0.010	
0.0006	0.036	0.001	0.019	0.010	0.003	

Таблица 3: Модуль разности исходной матрицы концентраций DREAM6 и матрицы концентраций, полученной ReSHADE методом для модели $\rm M1$

Parameter's name	DREAM6	ReSHADE
pro1_strength	1.31	3.84629397185439
pro2_strength	7.79	7.284616090474374
pro3_strength	7.79	4.253219992752646
pro4_strength	4	2.6859093382325474
pro5_strength	5.99	1.4762874523813052
pro6_strength	5	0.38015724713323595
pro7_strength	2.93	4.879429469927555
rbs1_strength	5	3.122813754606417
rbs2_strength	1	3.8703274293673084
rbs3_strength	5	8.790903472191928
rbs4_strength	5	9.655176230910389
rbs5_strength	5	1.4822044072751406
rbs6_strength	5	6.0232549537867355
rbs7_strength	5	1.626103483788025
v1_Kd	10	9.34146774474304
v1_h	1	1.9815061673844625
v2_Kd	2	5.839237097607172
v2_h	2	6.274802383787373
v3_Kd	10	2.095191970324537
v3_h	4	3.154942300990433
v4_Kd	0.001	4.196518738979974
v4_h	1	5.744098853032407
v5_Kd	4.951	6.573962398843874
v5_h	4	6.1166292764459
v6_Kd	0.7093	8.395937268091414
v6_h	2	2.527983422622526
v7_Kd	1	2.037907949248062
v7_h	4	0.6866030379646593
v8_Kd	0.01	1.4664850319947975
v8_h	4	9.967063657211536
v9_Kd	10	8.536740623255987
v9_h	1	3.8278257893812553
v10_Kd	10	1.6864655331728862
v10_h	4	5.819690742364535

Таблица 4: Полученные параметры для модели М2

1	1	0.956	1	1	0.886	1
0.204	0.008	0.072	0.179	0.012	0.031	0.594
0.055	0.008	0.020	0.277	0.303	0.594	0.093
0.060	0.036	0.030	0.611	0.369	0.903	2.008
0.130	0.038	0.003	0.707	0.173	0.098	0.068
0.017	0.002	0.0009	0.845	0.017	0.013	0.088
0.047	0.005	0.030	0.845	0.197	0.015	0.165
0.049	0.0002	0.006	0.979	0.493	0.014	0.082
0.152	0.001	0.025	0.915	0.070	0.003	0.025
0.068	0.012	0.022	0.010	0.092	0.059	0.077
0.048	0.016	0.021	0.009	0.034	0.047	0.24

Таблица 5: Модуль разности исходной матрицы концентраций DREAM6 и матрицы концентраций, полученной ReSHADE методом для модели $\rm M2$

Parameter's name	DREAM6	ReSHADE
pro1_strength	2	5.665048200255392
pro2_strength	4.5077	3.6966221279208575
pro3_strength	5	4.521702585161074
pro4_strength	5	6.659602351259864
pro5_strength	5	2.6350544668963414
pro6_strength	1.31	9.065712441101173
pro7_strength	1.31	2.916189779474249
pro8_strength	5	0.6343513378264864
pro9_strength	5	2.809587515112768
rbs1_strength	0.3668	2.2752942687314004
rbs2_strength	1.4102	5.095259011158433
rbs3_strength	0.8	5.75327457977836
rbs4_strength	2.21	1.9017310287065903
rbs5_strength	0.5	3.9131468984174624
rbs6_strength	2	5.303373490829182
rbs7_strength	5	6.746502597312444
rbs8_strength	3.6377	5.033503473603156
rbs9_strength	8	2.7172915251660337
v1_Kd	11.147	6.714567058586988
v1_h	1	8.079132842739225
v2_Kd	1	2.5355676779855782
v2_h	4	5.950198684475927
v3_Kd	20	2.8458864675571216
v3_h	1	4.0922624126310625
v4_Kd	0.2	5.2301215279813915
v4_h	4	9.311664601818148
v5_Kd	0.2	9.317232336885322
v5_h	4	7.788284952980543
v6_Kd	0.04	2.953209648097208
v6_h	4	3.403460421130405
v7_Kd	0.02	1.048934358671163
v7_h	4	9.998981181999543
	0.04	9.945014641327578
v8_h	4	0.25414846971453353

v9_Kd	0.2	4.672506060147943
v9_h	4	3.7485303107001022
v10_Kd	0.02	1.5187034819488676
v10_h	4	4.528598135564733
v11_Kd	0.1	3.2438517930470634
v11_h	2	8.478603819031449
v12_Kd	0.1	2.2650776625528
v12_h	2	4.382724517480004
v13_Kd	0.01	7.077149621597579
v13_h	2	$ \ 3.32775580526342$
v14_Kd	1	0.2806677744559627
v14_h	4	2.0847421434373583
v15_Kd	20	3.4226919327735175
v15_h	1	9.577063403053058

Таблица 6: Полученные параметры для модели М3

0.928	1	0.873	0.926	0.989	1	1	0.920	1
0.070	0.105	1.406	0.573	1.086	0.242	0.628	0.446	1.001
0.004	0.071	0.592	0.086	0.083	0.082	0.012	0.370	0.069
0.086	1.24	0.165	0.019	0.177	0.004	0.007	0.443	0.519
0.153	0.077	0.015	0.032	0.040	0.019	0.004	0.713	0.186
0.035	0.054	0.0005	0.0006	0.0004	0.019	0.033	0.455	0.424
0.005	0.695	0.002	0.009	0.035	0.009	0.054	0.341	0.349
0.044	0.071	0.050	0.002	0.036	0.093	0.003	0.355	0.368
0.042	0.064	0.034	0.192	0.020	0.007	0.014	0.127	0.067
0.100	0.126	0.018	0.004	0.009	0.033	0.049	0.012	0.006
0.036	0.016	0.032	0.011	0.013	0.004	0.041	0.327	0.102

Таблица 7: Модуль разности исходной матрицы концентраций DREAM6 и матрицы концентраций, полученной ReSHADE методом для модели ${\rm M3}$

Заключение

По результатам проведенных исследований можно сделать несколько выводов. Результаты решения тестовых функций в таблице (1) являются удовлетворительными, хотя и не настолько точными, как в статье [1].

Судя по полученным результатам, представленным в таблицах (2), (4), (6), метод разностной эволюции не дает параметры, хоть сколько-то похожие на данные в DREAM6. Но этого и не требуется, поскольку в рамках задачи не стоит вопрос о получении такого же вектора параметров.

Касаемо самих таблиц концентраций, в таблицах (3), (5), (7) видно, что решения отличаются порой значительно. Значит, имеет смысл пробовать решить данную задачу с другими параметрами алгоритма.

В заключении можно сказать, что реализация метода разностной эволюции с пвсевдоотражением как методом мутации и выбором внутренних параметров алгоритма по методу SHADE дает удовлетворительные результаты для исследованных задач.

Литература

- [1] Wei Li, Wenyin Gong. Differential evolution with quasi-reflection-based mutation[J]. Mathematical Biosciences and Engineering, 2021, 18(3): 2425-2441. doi: 10.3934/mbe.2021123
- [2] Steiert B, Raue A, Timmer J, Kreutz C (2012) Experimental Design for Parameter Estimation of Gene Regulatory Networks. PLoS ONE 7(7): e40052. doi:10.1371/journal.pone.0040052
- [3] Tanabe, Ryoji & Fukunaga, Alex. (2013). Success-history based parameter adaptation for Differential Evolution. 2013 IEEE Congress on Evolutionary Computation, CEC 2013. 71-78. 10.1109/CEC.2013.6557555.