MS BGD SD 204: Lasso

Joseph Salmon

http://josephsalmon.eu Télécom Paristech, Institut Mines-Télécom

Syllabus

Reminders

Variable selection and sparsity

The ℓ_0 penalty and its limits The ℓ_1 penalty Sub-gradient / sub-differential

Improvement and extensions for the Lasso

LSLasso / Elastic-Net Non-convex penalties / Adaptive Lasso Support structure Stabilisation Least squares / Lasso extensions

Reminding the model

$$\mathbf{y} = X\boldsymbol{\theta}^{\star} + \boldsymbol{\varepsilon} \in \mathbb{R}^n$$

$$X = \begin{bmatrix} \mathbf{x}_1, \dots, \mathbf{x}_p \end{bmatrix} = \begin{pmatrix} x_{1,1} & \dots & x_{1,p} \\ \vdots & \ddots & \vdots \\ x_{n,1} & \dots & x_{n,p} \end{pmatrix} \in \mathbb{R}^{n \times p}, \boldsymbol{\theta}^{\star} \in \mathbb{R}^p$$

Motivation

Estimators of $\hat{\theta}$ with many zero coefficient are useful:

- for interpretation
- ightharpoonup for computational efficiency if p is huge

Underlying idea: variable selection

Rem: also useful if θ^* has few non-zero coefficients

Variable selection overview

- "Screening" methods: one removes the \mathbf{x}_j 's whose correlation with observation \mathbf{y} is weak
 - pros: fast (+++), cost: p inner product of size n, intuitive (+++)
 - ullet cons: neglect variables interactions ${f x}_j$, weak theoretical results (- -)
- Greedy methods aka stagewise / stepwise
 - pros: fast (++), intuitive (++)
 - cons: propagates wrong selection forward; weak theoretical results(-)
- Sparsity enforcing penalized method (e.g., Lasso)
 - pros: better theory (++)
 - cons: can be still slow (-),

The ℓ_0 pseudo-norm

Definition

The **support** of a vector θ is the set of indexes of non-zero coordinates:

$$\operatorname{supp}(\boldsymbol{\theta}) = \{ j \in [1, p], \theta_j \neq 0 \}$$

The ℓ_0 **pseudo-norm** of a vector $\boldsymbol{\theta} \in \mathbb{R}^p$ is the number of non-zero coordinate:

$$\|\boldsymbol{\theta}\|_{0} = \operatorname{card}\{j \in [[1, p]], \theta_{j} \neq 0\}$$

<u>Rem</u>: $\|\cdot\|_0$ is not a norm, $\forall t \in \mathbb{R}^*, \|t\boldsymbol{\theta}\|_0 = \|\boldsymbol{\theta}\|_0$

 $\underline{\mathsf{Rem}} \colon \| \cdot \|_0 \text{ it is not even convex, } \boldsymbol{\theta}_1 = (1,0,1,\dots,0)$

$$\pmb{\theta}_2 = (0,1,1,\dots,0) \text{ and } 3 = \|\frac{\pmb{\theta}_1 + \pmb{\theta}_2}{2}\|_0 \geqslant \frac{\|\pmb{\theta}_1\|_0 + \|\pmb{\theta}_2\|_0}{2} = 2$$

Syllabus

Reminders

Variable selection and sparsity The ℓ_0 penalty and its limits

The ℓ_1 penalty Sub-gradient / sub-differential

Improvement and extensions for the Lasso

LSLasso / Elastic-Net Non-convex penalties / Adaptive Lasso Support structure Stabilisation Least squares / Lasso extensions

The ℓ_0 penalty

First try to get a sparsity enforcing penalty: use ℓ_0 as a penalty (or regularization)

$$\hat{\boldsymbol{\theta}}_{\lambda} = \operatorname*{arg\,min}_{\boldsymbol{\theta} \in \mathbb{R}^p} \quad \left(\quad \underbrace{\frac{1}{2} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2}_{\text{data fitting}} \quad + \quad \underbrace{\lambda \|\boldsymbol{\theta}\|_0}_{\text{regularization}} \right)$$

Combinatorial problem!!!

An exact resolution requires to consider all sub-models, *i.e.*, compute estimators for all possible support; there are 2^p , meaning one needs 2^p least squares computation!

Exemple:

 $\overline{p} = 10$ possible: $\approx 10^3$ least squares p = 30 impossible: $\approx 10^{10}$ least squares

<u>Rem</u>: problem "NP-dur", can be solved for small problems by mixed integer programming.

Syllabus

Reminders

Variable selection and sparsity

The ℓ_0 penalty and its limits The ℓ_1 penalty

Improvement and extensions for the Lasso

LSLasso / Elastic-Net Non-convex penalties / Adaptive Lasso Support structure Stabilisation Least squares / Lasso extensions

Le Lasso: penalty point of view

Lasso: Least Absolute Shrinkage and Selection Operator Tibshirani (1996)

$$\hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{Lasso}} = \operatorname*{arg\,min}_{\boldsymbol{\theta} \in \mathbb{R}^p} \quad \left(\quad \underbrace{\frac{1}{2} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2}_{\text{data fitting}} \quad + \quad \lambda \|\boldsymbol{\theta}\|_1 \right)$$

où
$$\|oldsymbol{ heta}\|_1 = \sum_{j=1}^p | heta_j|$$
 sum of absolute values of the coefficients)

▶ We recover the limiting cases:

$$\lim_{\lambda \to 0} \hat{\boldsymbol{\theta}}_{\lambda}^{\text{Lasso}} = \hat{\boldsymbol{\theta}}^{\text{MCO}}$$
$$\lim_{\lambda \to +\infty} \hat{\boldsymbol{\theta}}_{\lambda}^{\text{Lasso}} = 0 \in \mathbb{R}^{p}$$

Beware: the Lasso estimator is not always **unique** for a fixed λ (consider cases with two equals columns in X)

Constraint point of view

The following problem:

$$\hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{Lasso}} = \operatorname*{arg\,min}_{\boldsymbol{\theta} \in \mathbb{R}^p} \quad \left(\quad \underbrace{\frac{1}{2} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2}_{\text{data fitting}} \quad + \quad \underbrace{\lambda \|\boldsymbol{\theta}\|_1}_{\text{regularization}} \right)$$

share the same solutions as the constraints formulation:

$$\begin{cases} \underset{\boldsymbol{\theta} \in \mathbb{R}^p}{\min} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2 \\ \text{t.q. } \|\boldsymbol{\theta}\|_1 \leqslant T \end{cases}$$

for some T > 0.

<u>Rem</u>: unfortunately the link $T \leftrightarrow \lambda$ is not explicit

- If $T \to 0$ one recovers the null vector: $0 \in \mathbb{R}^p$
- ▶ If $T \to \infty$ one recovers $\hat{m{ heta}}^{ ext{MCO}}$ (unconstrained)

Zeroing coefficients

Optimization under ℓ_2 constraint : non sparse solution

Zeroing coefficients

Optimization under ℓ_1 constraint : sparse solution

Syllabus

Reminders

Variable selection and sparsity

The ℓ_0 penalty and its limits The ℓ_1 penalty Sub-gradient / sub-differential

Improvement and extensions for the Lasso

LSLasso / Elastic-Net Non-convex penalties / Adaptive Lasso Support structure Stabilisation Least squares / Lasso extensions

Definitions

For a convex function $f: \mathbb{R}^n \to \mathbb{R}$, $u \in \mathbb{R}^n$ is a sub-gradient of f at x^* , if for any $x \in \mathbb{R}^n$,

$$f(x) \geqslant f(x^*) + \langle u, x - x^* \rangle$$

The sub-differential is the set

$$\partial f(x^*) = \{ u \in \mathbb{R}^n : \forall x \in \mathbb{R}^n, f(x) \geqslant f(x^*) + \langle u, x - x^* \rangle \}.$$

Definitions

For a convex function $f: \mathbb{R}^n \to \mathbb{R}$, $u \in \mathbb{R}^n$ is a sub-gradient of f at x^* , if for any $x \in \mathbb{R}^n$,

$$f(x) \geqslant f(x^*) + \langle u, x - x^* \rangle$$

The sub-differential is the set

$$\partial f(x^*) = \{ u \in \mathbb{R}^n : \forall x \in \mathbb{R}^n, f(x) \geqslant f(x^*) + \langle u, x - x^* \rangle \}.$$

Definitions

For a convex function $f: \mathbb{R}^n \to \mathbb{R}$, $u \in \mathbb{R}^n$ is a sub-gradient of f at x^* , if for any $x \in \mathbb{R}^n$,

$$f(x) \geqslant f(x^*) + \langle u, x - x^* \rangle$$

The sub-differential is the set

$$\partial f(x^*) = \{ u \in \mathbb{R}^n : \forall x \in \mathbb{R}^n, f(x) \geqslant f(x^*) + \langle u, x - x^* \rangle \}.$$

Definitions

For a convex function $f: \mathbb{R}^n \to \mathbb{R}$, $u \in \mathbb{R}^n$ is a sub-gradient of f at x^* , if for any $x \in \mathbb{R}^n$,

$$f(x) \geqslant f(x^*) + \langle u, x - x^* \rangle$$

The sub-differential is the set

$$\partial f(x^*) = \{ u \in \mathbb{R}^n : \forall x \in \mathbb{R}^n, f(x) \geqslant f(x^*) + \langle u, x - x^* \rangle \}.$$

Fermat's Rule

Theorem

A point x^* is a minimum of a convex function $f:\mathbb{R}^n\to\mathbb{R}$ if an only if $0\in\partial f(x^*)$

Proof: use the sub-gradient definition:

▶ 0 is a sub-gradient of f at x^* is and only if $\forall x \in \mathbb{R}^n, f(x) \ge f(x^*) + \langle 0, x - x^* \rangle$

Fermat's Rule

Theorem

A point x^* is a minimum of a convex function $f: \mathbb{R}^n \to \mathbb{R}$ if an only if $0 \in \partial f(x^*)$

Proof: use the sub-gradient definition:

▶ 0 is a sub-gradient of f at x^* is and only if $\forall x \in \mathbb{R}^n, f(x) \ge f(x^*) + \langle 0, x - x^* \rangle$

Rem: Visually, it corresponds to a horizontal tangent

Function (abs):

$$f: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto |x| \end{cases}$$

$$\partial f(x^*) = \begin{cases} \{-1\} & \text{if } x^* \in]-\infty, 0[\\ \{1\} & \text{if } x^* \in]0, \infty[\\ [-1,1] & \text{if } x^* = 0 \end{cases}$$

Function (abs):

$$f: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto |x| \end{cases}$$

$$\partial f(x^*) = \begin{cases} \{-1\} & \text{if } x^* \in]-\infty, 0[\\ \{1\} & \text{if } x^* \in]0, \infty[\\ [-1,1] & \text{if } x^* = 0 \end{cases}$$

Function (abs):

$$f: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto |x| \end{cases}$$

$$\partial f(x^*) = \begin{cases} \{-1\} & \text{if } x^* \in]-\infty, 0[\\ \{1\} & \text{if } x^* \in]0, \infty[\\ [-1,1] & \text{if } x^* = 0 \end{cases}$$

Function (abs):

$$f: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto |x| \end{cases}$$

$$\partial f(x^*) = \begin{cases} \{-1\} & \text{if } x^* \in]-\infty, 0[\\ \{1\} & \text{if } x^* \in]0, \infty[\\ [-1, 1] & \text{if } x^* = 0 \end{cases}$$

Function (abs):

$$f: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto |x| \end{cases}$$

$$\partial f(x^*) = \begin{cases} \{-1\} & \text{if } x^* \in]-\infty, 0[\\ \{1\} & \text{if } x^* \in]0, \infty[\\ [-1,1] & \text{if } x^* = 0 \end{cases}$$

Function (abs):

$$f: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto |x| \end{cases}$$

$$\partial f(x^*) = \begin{cases} \{-1\} & \text{if } x^* \in]-\infty, 0[\\ \{1\} & \text{if } x^* \in]0, \infty[\\ [-1,1] & \text{if } x^* = 0 \end{cases}$$

Function (abs):

$$f: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto |x| \end{cases}$$

$$\partial f(x^*) = \begin{cases} \{-1\} & \text{if } x^* \in]-\infty, 0[\\ \{1\} & \text{if } x^* \in]0, \infty[\\ [-1,1] & \text{if } x^* = 0 \end{cases}$$

Function (abs):

$$f: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto |x| \end{cases}$$

$$\partial f(x^*) = \begin{cases} \{-1\} & \text{if } x^* \in]-\infty, 0[\\ \{1\} & \text{if } x^* \in]0, \infty[\\ [-1, 1] & \text{if } x^* = 0 \end{cases}$$

Fermat's rule for the Lasso

$$\hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{Lasso}} = \operatorname*{arg\,min}_{\boldsymbol{\theta} \in \mathbb{R}^p} \quad \left(\quad \underbrace{\frac{1}{2} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2}_{\text{data fitting}} \quad + \quad \lambda \|\boldsymbol{\theta}\|_1 \right)$$

Necessary and sufficient optimality (Fermat):

$$\forall j \in [p], \ \mathbf{x}_j^\top \left(\frac{y - X \hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{Lasso}}}{\lambda} \right) \in \begin{cases} \{ \mathrm{sign}(\hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{Lasso}})_j \} & \mathrm{si} \quad (\hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{Lasso}})_j \neq 0, \\ [-1, 1] & \mathrm{si} \quad (\hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{Lasso}})_j = 0. \end{cases}$$

$$\underline{\mathsf{Rem}} \colon \mathsf{si} \ \lambda > \lambda_{\max} := \max_{j \in \llbracket 1, p \rrbracket} |\langle \mathbf{x}_j, \mathbf{y} \rangle|, \ \mathsf{then} \ \hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{Lasso}} = 0$$

Orthogonal case: soft thresholding

The simple case of orthogonal design:
$$X^{\top}X = \mathrm{Id}_p$$

$$\|\mathbf{y} - X\boldsymbol{\theta}\|_2^2 = \|X^{\top}\mathbf{y} - X^{\top}X\boldsymbol{\theta}\|_2^2 = \|X^{\top}\mathbf{y} - \boldsymbol{\theta}\|_2^2$$

cause X is an isometry in such a case, the Lasso objective become:

$$\frac{1}{2} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2 + \lambda \|\boldsymbol{\theta}\|_1 = \sum_{j=1}^p \left(\frac{1}{2} (\mathbf{x}_j^\top \mathbf{y} - \theta_j)^2 + \lambda |\theta_j| \right)$$

Separable problem: problem that can be reduced to minimizing coordinate by coordinate (independently)

One needs to minimize: $x \mapsto \frac{1}{2}(z-x)^2 + \lambda |x|$ for $z = \mathbf{x}_i^{\top} \mathbf{y}$

Rem: this function is called the **proximal operator** at z of the function $x \mapsto \lambda |x|$ (cf. Parikh and Boyd (2013), for more details on proximal methods)

1D Regularization: Ridge

Solve:
$$\eta_{\lambda}(z) = \operatorname*{arg\,min}_{x\in\mathbb{R}} x\mapsto \frac{1}{2}(z-x)^2 + \frac{\lambda}{2}x^2$$

$$\eta_{\lambda}(z) = \frac{z}{1+\lambda}$$

 ℓ_2 shrinkage : Ridge

1D Regularization: Lasso

Solve:
$$\eta_{\lambda}(z) = \operatorname*{arg\,min}_{x \in \mathbb{R}} x \mapsto \frac{1}{2}(z-x)^2 + \lambda |x|$$
 $\eta_{\lambda}(z) = \operatorname{sign}(z)(|z| - \lambda)_+$ (Exercise)

 ℓ_1 shrinkage: soft thresholding

1D Regularization: ℓ_0

Solve:
$$\eta_{\lambda}(z) = \operatorname*{arg\,min}_{x \in \mathbb{R}} x \mapsto \frac{1}{2} (z-x)^2 + \lambda \mathbb{1}_{x \neq 0}$$

$$\eta_{\lambda}(z) = z \mathbb{1}_{|z| \geqslant \sqrt{2\lambda}}$$

 ℓ_0 shrinkage: hard thresholding

1D Regularization: enet

Solve:
$$\eta_{\lambda}(z) = \operatorname*{arg\,min}_{x \in \mathbb{R}} x \mapsto \frac{1}{2}(z-x)^2 + \lambda(\gamma|x| + (1-\gamma)\frac{x^2}{2})$$
 $\eta_{\lambda}(z) = \mathsf{Exercise}$

$$\ell_1/\ell_2$$

Soft thresholding: closed form solution

$$\eta_{\mathrm{Lasso},\lambda}(z) = egin{cases} z + \lambda & \mathrm{si} \ z \leqslant -\lambda \ 0 & \mathrm{si} \ |z| \leqslant \lambda \ z - \lambda & \mathrm{si} \ z \geqslant \lambda \end{cases}$$

Exo: Use sub-gradients to prove the previous result

Numerical example on simulated data

- $\boldsymbol{\theta}^{\star} = (1, 1, 1, 1, 1, 0, \dots, 0) \in \mathbb{R}^p$ (5 non-zero coefficients)
- $X \in \mathbb{R}^{n \times p}$ has columns drawn according to a Gaussian distribution
- $y = X\theta^* + \varepsilon \in \mathbb{R}^n$ with $\varepsilon \sim \mathcal{N}(0, \sigma^2 \operatorname{Id}_n)$
- \blacktriangleright We use a grid of $50~\lambda$ values

For this example : $n = 60, p = 40, \sigma = 1$

Lasso properties

- Numerical aspect: the Lasso is a convex problem
- Variable selection / sparse solutions: $\hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{Lasso}}$ has potentially many zeroed coefficients. The λ parameter controls the sparsity level: if λ is large, solutions are very sparse.

<u>Exemple</u>: We got 17 non-zero coefficients for LassoCV in the previous simulated example

Rem: RidgeCV has no zero coefficients

Lasso analysis

Theory is more involved for the Lasso than for least squares or Ridge, it can be found in recent references (*cf.* Bühlmann and van de Geer (2011) for an overview)

<u>In a nutshell</u>: we add bias to the standard least square to reduce the variance

Syllabus

Reminders

Variable selection and sparsity The ℓ_0 penalty and its limits The ℓ_1 penalty Sub-gradient / sub-differential

Improvement and extensions for the Lasso LSLasso / Elastic-Net

Non-convex penalties / Adaptive Lasso Support structure Stabilisation Least squares / Lasso extensions

The Lasso bias

The Lasso is biased: it shrinks large coefficients towards 0

The Lasso bias

The Lasso is biased: it shrinks large coefficients towards 0

The Lasso bias: a simple remedy

As large coefficients are often shrunk towards zero, it is possible to use a simple two-stage procedure

LSLasso (Least Square Lasso)

- 1. Lasso : get $\hat{m{ heta}}_{\lambda}^{\mathrm{Lasso}}$
- 2. Perform least squares over selected variables: $\operatorname{supp}(\hat{\boldsymbol{\theta}}_{\lambda}^{\operatorname{Lasso}})$

$$\hat{\boldsymbol{\theta}}_{\lambda}^{\text{LSLasso}} = \underset{\boldsymbol{\theta} \in \mathbb{R}^p}{\operatorname{arg\,min}} \frac{1}{2} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2$$
$$\underset{\operatorname{supp}(\boldsymbol{\theta}) = \operatorname{supp}(\hat{\boldsymbol{\theta}}_{\lambda}^{\text{Lasso}})}{\operatorname{supp}(\hat{\boldsymbol{\theta}}_{\lambda}^{\text{Lasso}})}$$

Rem: CV needs to be done over the whole procedure; choosing the Lasso λ by CV and then performing least squares keeps too many variables

Rem: LSLasso is not necessarily coded in standard packages...

De-biasing

De-biasing

Prediction: Lasso vs. LSLasso

LSLasso evaluation

Pros

- the "true" large coefficients are less shrunk
- using CV we recover less "parasite" variables (improve interpretability)
 - e.g., in the previous example the LSLassoCV recovers exactly the 5 "true" non zero variables, up to a single false positive.

LSLasso: especially useful for estimation

Cons

- the difference in term of prediction is not always obvious
- requires more computation: needs to compute as many least squares than λ parameters (though with smaller dimension, neglecting useless variables)

Elastic-net : ℓ_1/ℓ_2 regularization

The Elastic-Net, introduced by Zou and Hastie (2005) is the (unique) solution of

$$\hat{\boldsymbol{\theta}}_{\lambda} = \operatorname*{arg\,min}_{\boldsymbol{\theta} \in \mathbb{R}^p} \left[\frac{1}{2} \| \mathbf{y} - X \boldsymbol{\theta} \|_2^2 + \lambda \left(\gamma \| \boldsymbol{\theta} \|_1 + (1 - \gamma) \frac{\| \boldsymbol{\theta} \|_2^2}{2} \right) \right]$$

<u>Rem</u>: it has two parameters one for the global regularization level, one trading-off Ridge vs. Lasso

 $\underline{\mathsf{Rem}} :$ the solution is unique the size of the Elastic-Net support is smaller than $\min(n,p)$

$$\gamma = 1.00$$

$$\gamma = 0.99$$

$$\gamma = 0.95$$

$$\gamma = 0.90$$

$$\gamma = 0.75$$

$$\gamma = 0.50$$

$$\gamma = 0.25$$

$$\gamma = 0.1$$

$$\gamma = 0.05$$

$$\gamma = 0.01$$

$$\gamma = 0.00$$

Syllabus

Reminders

Variable selection and sparsity

The ℓ_0 penalty and its limits

The ℓ_1 penalty

Sub-gradient / sub-differential

Improvement and extensions for the Lasso

LSLasso / Elastic-Net

Non-convex penalties / Adaptive Lasso

Support structure Stabilisation

Least squares / Lasso extensions

Use a (smooth) penalty approximating better $\|\cdot\|_0$, choosing a non-convex $t \to \operatorname{pen}_{\lambda,\gamma}(t)$

$$\hat{\boldsymbol{\theta}}_{\lambda,\gamma}^{\mathrm{pen}} = \underset{\boldsymbol{\theta} \in \mathbb{R}^p}{\mathrm{arg\,min}} \left(\underbrace{\frac{1}{2} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2}_{\text{data fitting}} + \underbrace{\sum_{j=1}^p \mathrm{pen}_{\lambda,\gamma}(|\theta_j|)}_{\text{regularization}} \right)$$

Use a (smooth) penalty approximating better $\|\cdot\|_0$, choosing a non-convex $t \to \text{pen}_{\lambda,\gamma}(t)$

$$\hat{\boldsymbol{\theta}}_{\lambda,\gamma}^{\mathrm{pen}} = \underset{\boldsymbol{\theta} \in \mathbb{R}^p}{\mathrm{arg}\min} \left(\underbrace{\frac{1}{2} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2}_{\text{data fitting}} + \underbrace{\sum_{j=1}^p \mathrm{pen}_{\lambda,\gamma}(|\theta_j|)}_{\text{regularization}} \right)$$

 Adaptive-Lasso Zou (2006) / re-weighted ℓ₁ Candès et al. (2008)

$$pen_{\lambda,\gamma}(t) = \lambda |t|^q$$
 with $0 < q < 1$

Use a (smooth) penalty approximating better $\|\cdot\|_0$, choosing a non-convex $t \to \text{pen}_{\lambda,\gamma}(t)$

$$\hat{\boldsymbol{\theta}}_{\lambda,\gamma}^{\mathrm{pen}} = \operatorname*{arg\,min}_{\boldsymbol{\theta} \in \mathbb{R}^p} \quad \left(\quad \underbrace{\frac{1}{2} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2}_{\text{data fitting}} \quad + \underbrace{\sum_{j=1}^p \mathrm{pen}_{\lambda,\gamma}(|\theta_j|)}_{\text{regularization}} \right)$$

re-weighted
$$\ell_1$$
 Candès *et al.* (2008) $\operatorname{pen}_{\lambda,\gamma}(t) = \lambda \log(1+|t|/\gamma)$

Use a (smooth) penalty approximating better $\|\cdot\|_0$, choosing a non-convex $t \to \text{pen}_{\lambda,\gamma}(t)$

$$\hat{\boldsymbol{\theta}}_{\lambda,\gamma}^{\mathrm{pen}} = \operatorname*{arg\,min}_{\boldsymbol{\theta} \in \mathbb{R}^p} \quad \left(\quad \underbrace{\frac{1}{2} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2}_{\text{data fitting}} \quad + \underbrace{\sum_{j=1}^p \mathrm{pen}_{\lambda,\gamma}(|\theta_j|)}_{\text{regularization}} \right)$$

 \blacktriangleright MCP (minimax concave penalty) Zhang (2010) for $\lambda>0$ and $\gamma>1$

$$pen_{\lambda,\gamma}(t) = \begin{cases} \lambda |t| - \frac{t^2}{2\gamma}, & \text{if } |t| \leq \gamma \lambda \\ \frac{1}{2}\gamma \lambda^2, & \text{if } |t| > \gamma \lambda \end{cases}$$

Use a (smooth) penalty approximating better $\|\cdot\|_0$, choosing a non-convex $t \to \mathrm{pen}_{\lambda,\gamma}(t)$

$$\hat{\boldsymbol{\theta}}_{\lambda,\gamma}^{\mathrm{pen}} = \underset{\boldsymbol{\theta} \in \mathbb{R}^p}{\mathrm{arg\,min}} \left(\underbrace{\frac{1}{2} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2}_{\text{data fitting}} + \underbrace{\sum_{j=1}^p \mathrm{pen}_{\lambda,\gamma}(|\theta_j|)}_{\text{regularization}} \right)$$

SCAD (Smoothly Clipped Absolute Deviation) Fan and Li (2001) for $\lambda>0$ and $\gamma>2$

$$\mathrm{pen}_{\lambda,\gamma}(t) = \begin{cases} \lambda|t|, & \text{if } |t| \leqslant \lambda \\ \frac{\gamma\lambda|t| - (t^2 + \lambda^2)/2}{\gamma - 1}, & \text{if } \lambda < |t| \leqslant \gamma\lambda \\ \frac{\lambda^2(\gamma^2 - 1)}{2(\gamma - 1)}, & \text{if } |t| > \gamma\lambda \end{cases}$$

Rem: algorithmic difficulties (stopping, local minimum, etc.) and theoretical

Several names for the same idea:

- Adaptive-Lasso Zou (2006)
- re-weighted ℓ_1 Candès et al. (2008)
- ► DC-programming approach (for *Difference of Convex Programming*) Gasso *et al.* (2008)

Exemple : take $\operatorname{pen}_{\lambda,\gamma}(t) = \lambda |t|^q$ with q = 1/2

Algorithm: Adaptive Lasso (q = 1/2 case)

Input : X, y, maximum number of iterations K, λ (regularization)

Initialization: $\hat{w} \leftarrow (1, \dots, 1)^{\top}$

Exemple : take $\mathrm{pen}_{\lambda,\gamma}(t) = \lambda |t|^q$ with q=1/2

Algorithm: Adaptive Lasso (q = 1/2 case)

Input : X, y, maximum number of iterations K, λ (regularization)

Initialization: $\hat{w} \leftarrow (1, \dots, 1)^{\top}$

 $\quad \text{for } k=1,\ldots,K \text{ do}$

Exemple: take $pen_{\lambda,\gamma}(t) = \lambda |t|^q$ with q = 1/2

Algorithm: Adaptive Lasso (q = 1/2 case)

Input : X, \mathbf{y} , maximum number of iterations K, λ (regularization)

Initialization: $\hat{w} \leftarrow (1, \dots, 1)^{\top}$

for $k = 1, \dots, K$ do

$$\hat{\boldsymbol{\theta}} \leftarrow \operatorname*{arg\,min}_{\boldsymbol{\theta}} \left(\frac{\|\mathbf{y} - X\boldsymbol{\theta}\|_2^2}{2} + \lambda \sum_{j=1}^p \hat{w}_j |\theta_j| \right)$$

Exemple: take $pen_{\lambda,\gamma}(t) = \lambda |t|^q$ with q = 1/2

Algorithm: Adaptive Lasso (q = 1/2 case)

Input: X, \mathbf{y} , maximum number of iterations K, λ (regularization) Initialization: $\hat{w} \leftarrow (1, \dots, 1)^{\top}$

for $k = 1, \ldots, K$ do

$$\hat{\boldsymbol{\theta}} \leftarrow \underset{\boldsymbol{\theta}}{\operatorname{arg\,min}} \left(\frac{\|\mathbf{y} - X\boldsymbol{\theta}\|_{2}^{2}}{2} + \lambda \sum_{j=1}^{p} \hat{w}_{j} |\theta_{j}| \right)$$
$$\hat{w}_{j} \leftarrow \frac{1}{|\hat{\theta}_{i}|^{\frac{1}{2}}}, \ \forall j \in [1, p]$$

Exemple: take $\operatorname{pen}_{\lambda,\gamma}(t) = \lambda |t|^q$ with q = 1/2

Algorithm: Adaptive Lasso (q = 1/2 case)

Input: X, \mathbf{y} , maximum number of iterations K, λ (regularization) Initialization: $\hat{w} \leftarrow (1, \dots, 1)^{\top}$

for $k = 1, \ldots, K$ do

$$\hat{\boldsymbol{\theta}} \leftarrow \operatorname*{arg\,min}_{\boldsymbol{\theta}} \left(\frac{\|\mathbf{y} - X\boldsymbol{\theta}\|_{2}^{2}}{2} + \lambda \sum_{j=1}^{p} \hat{w}_{j} |\theta_{j}| \right)$$
$$\hat{w}_{j} \leftarrow \frac{1}{|\hat{\theta}_{i}|^{\frac{1}{2}}}, \ \forall j \in [1, p]$$

Rem: in practice few iterations need (about 5/10)

Exemple: take $pen_{\lambda,\gamma}(t) = \lambda |t|^q$ with q = 1/2

Algorithm: Adaptive Lasso (q = 1/2 case)

Input: X, \mathbf{y} , maximum number of iterations K, λ (regularization) Initialization: $\hat{w} \leftarrow (1, \dots, 1)^{\top}$

for $k = 1, \ldots, K$ do

$$\hat{\boldsymbol{\theta}} \leftarrow \underset{\boldsymbol{\theta}}{\operatorname{arg\,min}} \left(\frac{\|\mathbf{y} - X\boldsymbol{\theta}\|_{2}^{2}}{2} + \lambda \sum_{j=1}^{p} \hat{w}_{j} |\theta_{j}| \right)$$
$$\hat{w}_{j} \leftarrow \frac{1}{|\hat{\theta}_{j}|^{\frac{1}{2}}}, \ \forall j \in [1, p]$$

Rem: in practice few iterations need (about 5/10)

Rem: re-use a Lasso solver to update $\hat{m{ heta}}$

Syllabus

Reminders

Variable selection and sparsity The ℓ_0 penalty and its limits The ℓ_1 penalty Sub-gradient / sub-differentia

Improvement and extensions for the Lasso

LSLasso / Elastic-Net Non-convex penalties / Adaptive Lasso Support structure Stabilisation

Least squares / Lasso extensions

Support structure

Here we suppose that we have a known group structure on the variables (prior the experiment) : $[\![1,p]\!] = \bigcup_{g \in \mathcal{G}} g$

Vector and active coordinate (in orange):

Sparse support: any

Possible penalties: Lasso

$$\|\theta\|_1 = \sum_{j=1}^p |\theta_j|$$

Support structure

Here we suppose that we have a known group structure on the variables (prior the experiment) : $[\![1,p]\!] = \bigcup_{g \in \mathcal{G}} g$

Vector and active coordinate (in orange):

Sparse support: group

Possible penalties: Group-Lasso

$$\|\theta\|_{2,1} = \sum_{g \in G} \|\theta_g\|_2$$

Support structure

Here we suppose that we have a known group structure on the variables (prior the experiment) : $[\![1,p]\!] = \bigcup_{g \in \mathcal{G}} g$

Vector and active coordinate (in orange):

Sparse support: group + sub-groups

Possible penalties: Sparse-Group-Lasso

$$\alpha \|\theta\|_1 + (1-\alpha) \|\theta\|_{2,1} = \alpha \sum_{j=1}^p |\theta_j| + (1-\alpha) \sum_{g \in G} \|\theta_g\|_2$$

Group-Lasso

The ℓ_1 norm penalty ensures that few coefficients are active, but no other structure is enforced

One can aim at:

- ▶ group/block wise sparsity: Group-Lasso Yuan and Lin (2006)
- individual and group wise: Sparse Group-Lasso Simon, Friedman, Hastie and Tibshirani (2012)
- hierarchical structures (for instance with higher order interactions) Bien, Taylor and Tibshirani (2013)
- graph structures, gradients structures, etc.

Syllabus

Reminders

Variable selection and sparsity The ℓ_0 penalty and its limits The ℓ_1 penalty Sub-gradient / sub-differential

Improvement and extensions for the Lasso

LSLasso / Elastic-Net Non-convex penalties / Adaptive Lasso Support structure

Stabilisation

Least squares / Lasso extensions

Lasso stability

The Lasso can be **instable**: when non-unique solutions (e.g., when p>n) depending on the numerical solver and the required precision, there might be errors in the variable selection process. One can limit such drawbacks using re-sampling techniques:

- ▶ Bolasso Bach (2008)
- ► Stability Selection Meinshausen and Buhlmann (2010)

Algorithm: Bootstrap Lasso

Input : X, y, replications number B, λ regularization

Algorithm: Bootstrap Lasso

Input : X, y, replications number B, λ regularization

for $k = 1, \ldots, B$ do

Algorithm: Bootstrap Lasso

Input : X, y, replications number B, λ regularization

for $k = 1, \ldots, B$ do

Draw a bootstrap sample: $X^{(k)}, y^{(k)}$

Algorithm: Bootstrap Lasso

Input : X, y, replications number B, λ regularization

for $k = 1, \dots, B$ do

Draw a bootstrap sample: $X^{(k)}, y^{(k)}$

Compute the Lasso for this sample: $\hat{\boldsymbol{\theta}}_{\imath}^{\mathrm{Lasso},(k)}$

Algorithm: Bootstrap Lasso

Input : X, y, replications number B, λ regularization

for $k = 1, \ldots, B$ do

Draw a bootstrap sample: $X^{(k)}, y^{(k)}$

Compute the Lasso for this sample: $\hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{Lasso},(k)}$

Compute the associated support: $S_k = \operatorname{supp}\left(\hat{\boldsymbol{\theta}}_{\lambda}^{\operatorname{Lasso},(k)}\right)$

Algorithm: Bootstrap Lasso

Input : X, y, replications number B, λ regularization

for $k = 1, \ldots, B$ do

Draw a bootstrap sample: $X^{(k)}, y^{(k)}$

Compute the Lasso for this sample: $\hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{Lasso},(k)}$

Compute the associated support: $S_k = \operatorname{supp}\left(\hat{\boldsymbol{\theta}}_{\lambda}^{\operatorname{Lasso},(k)}\right)$

Compute:
$$S := \bigcap_{k=1}^{B} S_k$$

Algorithm: Bootstrap Lasso

Input : X, y, replications number B, λ regularization

for
$$k=1,\ldots,B$$
 do

Draw a bootstrap sample:
$$X^{(k)}, y^{(k)}$$

Compute the Lasso for this sample:
$$\hat{m{ heta}}_{\lambda}^{\mathrm{Lasso},(k)}$$

Compute the associated support: $S_k = \operatorname{supp}\left(\hat{\boldsymbol{\theta}}_{\lambda}^{\operatorname{Lasso},(k)}\right)$

$$\begin{array}{l} \text{Compute: } S := \bigcap_{k=1}^D S_k \\ \\ \text{Compute: } \hat{\boldsymbol{\theta}}_{\lambda}^{\text{Bolasso}} \in \mathop{\arg\min}_{\substack{\boldsymbol{\theta} \in \mathbb{R}^p \\ \operatorname{supp}(\boldsymbol{\theta}) = S}} \frac{1}{2} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2 \end{array}$$

Algorithm: Bootstrap Lasso

Input : X, y, replications number B, λ regularization

for $k = 1, \dots, B$ do

Draw a bootstrap sample: $X^{(k)}, y^{(k)}$

Compute the Lasso for this sample: $\hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{Lasso},(k)}$

Compute the associated support: $S_k = \operatorname{supp}\left(\hat{\boldsymbol{\theta}}_{\lambda}^{\operatorname{Lasso},(k)}\right)$

Compute:
$$S := \bigcap_{k=1}^{B} S_k$$

 $\begin{array}{l} \mathsf{Compute:} \ \hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{Bolasso}} \in \mathop{\arg\min}_{\substack{\boldsymbol{\theta} \in \mathbb{R}^p \\ \mathrm{supp}(\boldsymbol{\theta}) = S}} \frac{1}{2} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2 \end{array}$

Syllabus

Reminders

```
Variable selection and sparsity

The \ell_0 penalty and its limits

The \ell_1 penalty

Sub-gradient / sub-differential
```

Improvement and extensions for the Lasso

LSLasso / Elastic-Net Non-convex penalties / Adaptive Lasso Support structure Stabilisation Least squares / Lasso extensions

Multi-task regression

One aims at jointly solving m linear regression: $Y \approx X\Theta$

with

- $Y \in \mathbb{R}^{n \times m}$: observation matrix
- ▶ $X \in \mathbb{R}^{n \times p}$: design matrix (known)
- $\Theta \in \mathbb{R}^{p \times m}$: coefficient matrix (unknown)

 $\underline{\text{Exemple}}$: several observed signals through time (e.g., several captors for the same phenomenon)

Rem: cf. MultiTaskLasso in sklearn for a solver

Multi-task and regularization

In multi-task settings penalties can also be helpful:

$$\hat{\Theta}_{\lambda} = \mathop{\arg\min}_{\Theta \in \mathbb{R}^{p \times m}} \quad \left(\quad \underbrace{\frac{1}{2} \| \, Y - X\Theta \|_F^2}_{\text{data fitting}} \quad + \underbrace{\lambda \Omega(\Theta)}_{\text{regularization}} \right)$$

where Ω is a penalty / regularization

Rem: the Frobenius norm $\|\cdot\|_F$ is defined for any matrix $A\in\mathbb{R}^{n_1\times n_2}$ by

$$||A||_F^2 = \sum_{j_1=1}^{n_1} \sum_{j_2=1}^{n_2} A_{j_1,j_2}^2$$

Multi-tasks penalties

Vectorial penalties need to be adapted:

Parameter $\Theta \in \mathbb{R}^{p \times m}$

Sparse support: any

Penalty: Lasso

$$\|\Theta\|_1 = \sum_{j=1}^p \sum_{k=1}^m |\Theta_{j,k}|$$

Multi-tasks penalties

Vectorial penalties need to be adapted:

Parameter $\Theta \in \mathbb{R}^{p \times m}$

Sparse support: group

Penalty: Group-Lasso

$$\|\Theta\|_{2,1} = \sum_{j=1}^p \|\Theta_{j:}\|_2$$

where $\Theta_{j,:}$ the *j*-th line of Θ

Multi-tasks penalties

Vectorial penalties need to be adapted:

Parameter $\Theta \in \mathbb{R}^{p \times m}$

Sparse support: group + sub-groups

Penalty: Sparse-Group-Lasso

$$\alpha \|\Theta\|_1 + (1-\alpha) \|\Theta\|_{2,1}$$

References I

▶ F. Bach.

Bolasso: model consistent Lasso estimation through the bootstrap. In *ICML*, 2008.

▶ P. Bühlmann and S. van de Geer.

Statistics for high-dimensional data.

Springer Series in Statistics. Springer, Heidelberg, 2011. Methods, theory and applications.

E. J. Candès, M. B. Wakin, and S. P. Boyd.
 Enhancing sparsity by reweighted l₁ minimization.

J. Fourier Anal. Applicat., 14(5-6):877–905, 2008.

J. Fan and R. Li.

Variable selection via nonconcave penalized likelihood and its oracle properties.

J. Amer. Statist. Assoc., 96(456):1348-1360, 2001.

References II

- ► G. Gasso, A. Rakotomamonjy, and S. Canu. Recovering sparse signals with non-convex penalties and DC programming. *IEEE Trans. Sig. Process.*, 57(12):4686–4698, 2009.
- Bien J, J. Taylor, and R. Tibshirani.
 A lasso for hierarchical interactions.
 Ann. Statist., 41(3):1111–1141, 2013.
- N. Meinshausen and P. Bühlmann.
 Stability selection.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(4):417–473, 2010.

- N. Parikh, S. Boyd, E. Chu, B. Peleato, and J. Eckstein.
 Proximal algorithms.
 Foundations and Trends in Machine Learning, 1(3):1–108, 2013.
- N. Simon, J. Friedman, T. Hastie, and R. Tibshirani.
 A sparse-group lasso.
 - J. Comput. Graph. Statist., 22(2):231-245, 2013.

References III

R. Tibshirani.

Regression shrinkage and selection via the lasso.

J. Roy. Statist. Soc. Ser. B, 58(1):267-288, 1996.

M. Yuan and Y. Lin.

Model selection and estimation in regression with grouped variables.

J. Roy. Statist. Soc. Ser. B, 68(1):49-67, 2006.

H. Zou and T. Hastie.

Regularization and variable selection via the elastic net.

J. Roy. Statist. Soc. Ser. B, 67(2):301-320, 2005.

► C.-H Zhang.

Nearly unbiased variable selection under minimax concave penalty.

Ann. Statist., 38(2):894-942, 2010.

▶ H. Zou.

The adaptive lasso and its oracle properties.

J. Am. Statist. Assoc., 101(476):1418-1429, 2006.