2.20 - Marine Hydrodynamics, Spring 2005 Lecture 5

Prototype

2.20 - Marine Hydrodynamics Lecture 5

Chapter 2 - Similitude (Keyword: EQUAL RATIOS)

Similarity of behavior for different systems with equal similarity parameters.

Model

(real world)	(physical/ analytical/ numerical experiments)
Similitude	Similarity Parameters (SP's)
Geometric Similitude	Length ratios, angles
Kinematic Similitude	Displacement ratios, velocity ratios
Dynamic Similitude	Force ratios, stress ratios, pressure ratios
÷	
Internal Constitution Sim	ilitude ρ, ν
Boundary Condition Simi	litude

For similarity parameters SP's (eg. **angles**, length **ratios**, velocity **ratios**, etc) are equal for the model and the real world.

- Example 1 Two similar triangles have equal **angles** or equal **length ratios**. In this case the two triangles have *geometric similitude*.
- Example 2 For the flow around a model ship to be similar to the flow around the prototype ship, both model and prototype need to have equal **angles** and equal **length** and **force ratios**. In this case the model and the prototype have *geometric* and dynamic similitude.

2.1 Dimensional Analysis (DA) to Obtain SP's

2.1.1 Buckingham's π theory

Reduce number of variables \rightarrow derive dimensionally homogeneous relationships.

- 1. Specify (all) the (say N) <u>relevant</u> variables (dependent or independent): $x_1, x_2, \ldots x_N$ e.g. time, force, fluid density, distance... We want to relate the x_i 's to each other $\mathcal{I}(x_1, x_2, \ldots x_N) = 0$
- 2. Identify (all) the (say P) relevant basic physical units ("dimensions") e.g. M,L,T (P = 3) [temperature, charge, ...].
- 3. Let $\pi = x_1^{\alpha_1} x_2^{\alpha_2} \dots x_N^{\alpha_N}$ be a dimensionless quantity formed from the x_i 's. Suppose

$$x_i = C_i M^{m_i} L^{l_i} T^{t_i}, i = 1, 2, \dots, N$$

where the C_i are dimensionless constants. For example, if $x_1 = KE = \frac{1}{2}MV^2 = \frac{1}{2}M^1L^2T^{-2}$ (kinetic energy), we have that $C_1 = \frac{1}{2}, m_1 = 1, l_1 = 2, t_1 = -2$. Then

$$\pi = (C_1^{\alpha_1} C_2^{\alpha_2} \dots C_N^{\alpha_N}) M^{\alpha_1 m_1 + \alpha_2 m_2 + \dots + \alpha_N m_N} L^{\alpha_1 l_1 + \alpha_2 l_2 + \dots + \alpha_N l_N} T^{\alpha_1 t_1 + \alpha_2 t_2 + \dots + \alpha_N t_N}$$

For π to be dimensionless, we require

$$P\left\{\begin{array}{c} \overbrace{\alpha_{i}m_{i}=0}^{N} \\ \alpha_{i}l_{i}=0 \\ \underbrace{\alpha_{i}t_{i}=0}_{\Sigma \text{ notation}} \end{array}\right\} \quad \text{a}P \times N \text{ system of Linear Equations} \tag{1}$$

Since (1) is homogeneous, it always has a trivial solution,

$$\alpha_i \equiv 0, i = 1, 2, \dots, N$$
 (i.e. π is constant)

There are 2 possibilities:

- (a) (1) has no nontrivial solution (only solution is $\pi = \text{constant}$, i.e. independent of x_i 's), which implies that the N variable x_i , i = 1, 2, ..., N are Dimensionally Independent (DI), i.e. they are 'unrelated' and 'irrelevant' to the problem.
- (b) (1) has J(J > 0) nontrivial solutions, $\pi_1, \pi_2, \dots, \pi_J$. In general, J < N, in fact, J = N K where K is the <u>rank</u> or 'dimension' of the system of equations (1).

2.1.2 Model Law

Instead of relating the N x_i 's by $\mathcal{I}(x_1, x_2, \dots x_N) = 0$, relate the J π 's by

$$F(\pi_1, \pi_2, \dots \pi_J) = 0$$
, where $J = N - K < N$

For similitude, we require

$$(\pi_{\text{model}})_j = (\pi_{\text{prototype}})_j \text{ where } j = 1, 2, \dots, J.$$

If 2 problems have all the same π_j 's, they have similarity ensures), so π 's serve as similarity parameters.

Note:

- If π is dimensionless, so is $\pi \times const$, π^{const} , $1/\pi$, etc...
- If π_1 , π_2 are dimensionless, so is $\pi_1 \times \pi_2$, $\frac{\pi_1}{\pi_2}$, $\pi_1^{const_1} \times \pi_2^{const_2}$, etc...

In general, we want the set (not unique) of independent π_j 's, for e.g., π_1 , π_2 , π_3 or π_1 , $\pi_1 \times \pi_2$, π_3 , but not π_1 , π_2 , $\pi_1 \times \pi_2$.

Example: Force on a smooth circular cylinder in steady, incompressible flow Application of Buckingham's π Theory.

Figure 1: Force on a smooth circular cylinder in steady incompressible fluid (no gravity)

A Fluid Mechanician found that the relevant dimensional quantities required to evaluate the force F on the cylinder from the fluid are: the diameter of the cylinder D, the fluid velocity U, the fluid density ρ and the kinematic viscosity of the fluid ν . Evaluate the non-dimensional independent parameters that describe this problem.

$$x_i: F, U, D, \rho, \nu \to N = 5$$
$$x_i = c_i M^{m_i} L^{l_i} T^{t_i} \to P = 3$$

		N=5				
		\overline{F}	U	D	ρ	$\overline{\nu}$
P = 3	m_i	1	0	0	1	0
	l_i	1	1	1	-3	2
	t_i	-2	-1	0	0	-1

$$\pi = F^{\alpha_1} U^{\alpha_2} D^{\alpha_3} \rho^{\alpha_4} \nu^{\alpha_5}$$

For π to be non-dimensional, the set of equations

$$\alpha_i m_i = 0$$

$$\alpha_i l_i = 0$$

$$\alpha_i t_i = 0$$

has to be satisfied. The system of equations above after we substitute the values for the m_i 's, l_i 's and t_i 's assume the form:

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & -3 & 2 \\ -2 & -1 & 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \\ \alpha_5 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

The rank of this system is K=3, so we have j=2 nontrivial solutions. Two families of solutions for α_i for each fixed pair of (α_4, α_5) , exists a unique solution for $(\alpha_1, \alpha_2, \alpha_3)$. We consider the pairs $(\alpha_4 = 1, \alpha_5 = 0)$ and $(\alpha_4 = 0, \alpha_5 = 1)$, all other cases are linear combinations of these two.

1. Pair $\alpha_4 = 1$ and $\alpha_5 = 0$.

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = \begin{pmatrix} -1 \\ 4 \\ 2 \end{pmatrix}$$

which has solution

$$\begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ 2 \end{pmatrix}$$

$$\therefore \pi_1 = F^{\alpha_1} U^{\alpha_2} D^{\alpha_3} \rho^{\alpha_4} \nu^{\alpha_5} = \frac{\rho U^2 D^2}{F}$$

Conventionally, $\pi_1 \to 2\pi_1^{-1}$ and $\pi_1 = \frac{F}{\frac{1}{2}\rho U^2 D^2} \equiv C_d$, which is the Drag coefficient.

2. Pair $\alpha_4 = 0$ and $\alpha_5 = 1$.

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = \begin{pmatrix} 0 \\ -2 \\ -1 \end{pmatrix}$$

which has solution

$$\begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \\ -1 \end{pmatrix}$$

$$\therefore \pi_2 = F^{\alpha_1} U^{\alpha_2} D^{\alpha_3} \rho^{\alpha_4} v^{\alpha_5} = \frac{\nu}{UD}$$

Conventionally, $\pi_2 \to \pi_2^{-1}$, $\therefore \pi_2 = \frac{UD}{\nu} \equiv R_e$, which is the Reynolds number.

Therefore, we can write the following equivalent expressions for the *non-dimensional* independent parameters that describe this problem:

$$F(\pi_1, \pi_2) = 0 \qquad \text{or} \qquad \pi_1 = f(\pi_2)$$

$$F(\mathcal{C}_d, \mathcal{R}_e) = 0 \qquad \text{or} \qquad \mathcal{C}_d = f(\mathcal{R}_e)$$

$$F(\frac{F}{1/2 \rho U^2 D^2}, \frac{UD}{\nu}) = 0 \qquad \text{or} \qquad \frac{F}{1/2 \rho U^2 D^2} = f(\frac{UD}{\nu})$$

Appendix A

Dimensions of some fluid properties

Quantities	Dimensions		
		(MLT)	
Angle	θ	none $(M^0L^0T^0)$	
Length	L	L	
Area	A	L^2	
Volume	\forall	L^3	
Time	t	T	
Velocity	V	LT^{-1}	
Acceleration	\dot{V}	LT^{-2}	
Angular velocity	ω	T^{-1}	
Density	ρ	ML^{-3}	
Momentum	\mathcal{L}	MLT^{-1}	
Volume flow rate	Q	L^3T^{-1}	
Mass flow rate	Q	MT^{-1}	
Pressure	p	$ML^{-1}T^{-2}$	
Stress	τ	$ML^{-1}T^{-2}$	
Surface tension	Σ	MT^{-2}	
Force	F	MLT^{-2}	
Moment	M	ML^2T^{-2}	
Energy	E	ML^2T^{-2}	
Power	P	ML^2T^{-3}	
Dynamic viscosity	μ	$ML^{-1}T^{-1}$	
Kinematic viscosity	ν	L^2T^{-1}	