VC Dimension

Lecture 12

Last Time

• Agnostic probably approximately correct (PAC) learning is a property of a hypothesis class $\mathcal H$. If it holds, there's a function $m_{\mathcal H}:(0,1)^2\to\mathbb N$ and an algorithm such that if we have m i.i.d. examples where $m\geq m_{\mathcal H}(\epsilon,\delta)$, then with probability at least $1-\delta$ the algorithm returns h such that

$$L_{\mathcal{D}}(h) \le \min_{h' \in \mathcal{H}} L_{\mathcal{D}}(h') + \epsilon$$

• We've shown *any finite hypothesis class is agnostic PAC learnable* via ERM with respect to a loss function with range [0,1], with sample complexity

$$m_{\mathcal{H}}(\epsilon, \delta) \le \left\lceil \frac{2\log(2|\mathcal{H}|/\delta)}{\epsilon^2} \right\rceil$$

Textbook: chapter 4

This Class

- Our final tool of learning theory: what makes a hypothesis class learnable?
 Can infinite hypothesis classes ever be learnable?
- Textbook: chapters 6.0, 6.1, 6.2, 6.3, 6.4, 9.1.3

An Infinite Example

Example: Can Cats Have Salami?

- Let's say we randomly sample cats and measure
 - O What fraction of their diet is salami?
 - O Does their vet say they're healthy?

 What fraction can be salami and the cat still be healthy? 10%? 20%? 30%?

Example: 1-D Threshold Functions

Like a 1-D halfspace, except assume that lower values get positive label:

ullet Assume we're in the realizable setting and $\,a^{\,ullet}$ is the true threshold

• But, as usual in distribution-free learning, no additional assumptions on \mathcal{D}_x , the marginal distribution over the attribute \boldsymbol{x}

ERM for 1-D Threshold Functions

How do we choose $oldsymbol{a}$ for a sample S?

Which sample below would you rather have?

Analyzing ERM for 1-D Threshold Functions

Call the largest $oldsymbol{x}$ observed to be positive b_0 and the smallest observed negative b_1

Denote the endpoint of the ϵ probability mass to the left of a^\star as a_0 and the endpoint of another ϵ mass to the right as a_1 , where the mass is according to \mathcal{D}_x

Question

What is the Probability of Failure?

We've defined our learning problem as follows:

Which of the following is an upper bound on the probability that learning fails,

i.e.,
$$\mathcal{D}^m(\{S: L_{\mathcal{D}}(h_S) > \epsilon\})$$
 ?

A:
$$\mathcal{D}^m(\{S: b_0 < a_0 \lor b_1 > a_1\})$$

B:
$$\mathcal{D}^m(\{S: b_0 > a_0 \land b_1 < a_1\})$$

C:
$$\mathcal{D}^m(\{S: b_0 > a_0 \lor b_1 < a_1\})$$

$$\mathbb{D} : \mathcal{D}^m(\{S : b_0 < a_0 \land b_1 > a_1\})$$

Answer

Answer: probability that b₀ or b₁ is too far from a* (A)

- If we choose a between a_0 and a_1 then the maximum error is ϵ
- We will choose such an a if $b_0 > a_0$ and $b_1 < a_1$
- Therefore $\mathcal{D}^m(\{S: L_{\mathcal{D}}(h_S) > \epsilon\}) \leq \mathcal{D}^m(\{S: b_0 < a_0 \lor b_1 > a_1\})$

Finishing our Analysis

$$\mathcal{D}^m(\{S: L_{\mathcal{D}}(h_S) > \epsilon\})$$

$$\leq \mathcal{D}^m(\{S: b_0 < a_0 \lor b_1 > a_1\})$$

$$\leq \mathcal{D}^m(\{S:b_0 < a_0\}) + \mathcal{D}^m(\{S:b_1 > a_1\})$$

$$=\mathcal{D}^m(\{S: \nexists x_i \in (a_0,a^\star)\}) + \mathcal{D}^m(\{S: \nexists x_i \in (a^\star,a_1)\}) \quad \text{(definition of b}_0 \text{ and b}_1)$$

$$= (1 - \epsilon)^m + (1 - \epsilon)^m$$

$$\leq 2e^{-\epsilon m}$$

(previous slide)

(union bound)

(definition of ϵ)

$$(1 - \epsilon \le e^{-\epsilon})$$

Conclusions

• For any δ in (0, 1), if we choose

$$m \geq \left\lceil rac{\log(2/\delta)}{\epsilon}
ight
ceil$$
 , then with probability

at least
$$1-\delta$$
 , $L_{\mathcal{D}}(h_S) \leq \epsilon$

It is not necessary for hypothesis classes to be finite in order to be learnable!

Intuition

- What made it so we could pick an €-accurate hypothesis out of an infinitely large set?
- Could we use the same argument for an arbitrary function in 1-d?
- We're using the fact that the hypothesis class is highly structured. There's really one degree of freedom a and the data we get helps us narrow it down
- Intuitively, the *dimension* of the hypothesis space is important

Shattering

Shattering

Intuitively:

Every possible true labeling of a set of points can be classified with zero training error

Formally:

A hypothesis class \mathcal{H} shatters a finite set $C \subset \mathcal{X}$ if, for every possible assignment of outputs to the points in C, there's some $h \in \mathcal{H}$ that induces it

Example for threshold hypothesis class:

Shattering Example: 1-d

Does our threshold hypothesis class shatter this data?

What about this one?

Shattering Example: 1-d

What if we extend our hypothesis class to 1-d non-homogeneous halfspaces?

And does the set of 1-d non-homogeneous halfspaces shatter this set?

Shattering Example: 2-d

• Any three noncollinear points in \mathbb{R}^2 are shattered by the class of 2-d non-homogeneous halfspaces:

VC Dimension

Vapnik-Chervonenkis Dimension

 $VCdim(\mathcal{H})$: The maximal size set C such that \mathcal{H} shatters C.

Intuitively:

The largest number of distinct points such that every possible labeling of the points can be classified with zero error.

Proving VC Dimension is some integer d:

- 1. There exists a set $\,C$ of size d that is shattered by $\,\mathcal{H}$
- 2. Every set C of size d+1 is not shattered by \mathcal{H}

VC Dimension of Halfspaces

ullet The VC dimension of the class of homogenous halfspaces in \mathbb{R}^d is d

ullet The VC dimension of the class of non-homogeneous halfspaces in \mathbb{R}^d is d+1

Example: Homogeneous Halfspaces in 2D

- ullet Want to show: the VC dimension of homogenous halfspaces in \mathbb{R}^2 is 2
- ullet Step 1: there exists 2 points in \mathbb{R}^2 that are shattered

Example: Homogeneous Halfspaces in 2D

- ullet Want to show: the VC dimension of homogenous halfspaces in \mathbb{R}^2 is 2
- Step 2: there **do not exist** 3 points in \mathbb{R}^2 that are shattered
- Intuition:

Step 2: Formally

- Need to make an argument about any three points
- Sufficient rigor for homework/exams:
 - Pick any two points and their labels
 - Learn a halfspace
 - Add a third point anywhere
 - There is a labeling of the third point that is not realized by that halfspace
- Fully formal:

theorems 9.2 and 9.3

Question

VC Dimension?

Consider the hypothesis class for 1-d data with parameter a:

$$\mathcal{H}: h_a(x) = \begin{cases} 1 & \text{if } |x-a| < 0.2\\ 0 & \text{otherwise} \end{cases}$$

Recall that VC dimension is integer d such that:

- 1. There exists a set C of size d that is shattered by \mathcal{H} .
- 2. Every set d+1 of size C is not shattered by \mathcal{H} .

What is $VCdim(\mathcal{H})$?

A. 1

3. 2

C. 3

D. 4

Answer

Answer: 2 (B)

$$\mathcal{H}: h_a(x) = \begin{cases} 1 & \text{if } |x-a| < 0.2 \\ 0 & \text{otherwise} \end{cases}$$

We can shatter this set of size 2:

But not any set of size 3 (always can set middle to opposite label of others):

The Fundamental Theorem of Statistical Learning

Let H be a hypothesis class of functions from a domain X to {0, 1} and let the loss function be the 0–1 loss. Then, the following are equivalent:

- 1. H has the uniform convergence property
- 2. Any ERM rule is a successful agnostic PAC learner for H
- 3. H is agnostic PAC learnable
- 4. H is PAC learnable
- 5. An ERM algorithm is a successful PAC learner for H
- 6. H has a finite VC-dimension

VC Dimension also Determines Sample Complexity

- Sample complexity of uniform convergence is linear in d
- Sample complexity of agnostic PAC learning is linear in d
- Sample complexity of PAC learning is linear in d

Full details in Theorem 6.8

Other Hypothesis Classes

VC Dimension of Boosting

LEMMA 10.3 Let B be a base class and let L(B,T) be as defined in Equation (10.4). Assume that both T and VCdim(B) are at least 3. Then,

$$VCdim(L(B,T)) \le T(VCdim(B) + 1)(3\log(T(VCdim(B) + 1)) + 2).$$

Decision Trees of Depth T

$$\mathcal{X} = \{0, 1\}^d$$

$$\mathcal{Y} = \{0, 1\}$$

 $\mathcal{H} = \{h : h \text{ is a decision tree with layers } \leq T\}$

Implications

 $VC dim = 2^{T}$

The Most Important Things

- Some infinite hypothesis classes are learnable!
- A necessary and sufficient condition for PAC learnability is finite VC dimension, which is the maximal size of a set shattered by H
- We can prove that a hypothesis class has a VC dimension of *d* by showing:
 - \circ There exists a set C of size d that is shattered by ${\mathcal H}$
 - \circ Every set C of size d+1 is not shattered by ${\mathcal H}$
- Textbook: chapters 6.0, 6.1, 6.2, 6.3, 6.4, 9.1.3

Next Time

- What if we add assumptions about the distribution \mathcal{D} ?
 - A.K.A. What does all this have to do with statistical inference?
- Textbook: chapter 24.0, 24.1