MC448 — Análise de Algoritmos I

Cid Carvalho de Souza Cândida Nunes da Silva Orlando Lee

24 de agosto de 2009

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MC448 — Análise de Algoritmos

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MC448 — Análise de Algoritmos

Notação Assintótica

- Vamos expressar complexidade através de funções em variáveis que descrevam o tamanho de instâncias do problema. Exemplos:
 - Problemas de aritmética de precisão arbitrária: número de bits (ou bytes) dos inteiros.
 - Problemas em grafos: número de vértices e/ou arestas.
 - Problemas de ordenação de vetores: tamanho do vetor.
 - Busca em textos: número de caracteres do texto ou padrão de busca.
- Vamos supor que funções que expressam complexidade são sempre positivas, já que estamos medindo número de operações.

WC448 — Analise de Algorith

Comparação de Funções

 Vamos comparar funções assintoticamente, ou seja, para valores grandes, desprezando constantes multiplicativas e termos de menor ordem.

Crescimento de funções

	<i>n</i> = 100	<i>n</i> = 1000	$n = 10^4$	$n = 10^6$	$n = 10^9$
log n	2	3	4	6	9
n	100	1000	10 ⁴	10 ⁶	10 ⁹
n log n	200	3000	4 · 10 ⁴	6 · 10 ⁶	9 · 10 ⁹
n ²	10 ⁴	10 ⁶	10 ⁸	10 ¹²	10 ¹⁸
$100n^2 + 15n$	1,0015 · 10 ⁶	1,00015 · 10 ⁸	$\approx 10^{10}$	$\approx 10^{14}$	$\approx 10^{20}$
2 ⁿ	$\approx 1,26\cdot 10^{30}$	$\approx 1,07\cdot 10^{301}$?	?	?

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MC448 — Análise de Algoritmos

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MC448 — Análise de Algoritmos

Classe O

 $O(g(n)) = \{f(n) : \text{ existem constantes positivas } c \in n_0 \text{ tais } \}$ que $0 \le f(n) \le cg(n)$, para todo $n \ge n_0$.

Informalmente, dizemos que, se $f(n) \in O(g(n))$, então f(n)cresce no máximo tão rapidamente quanto g(n).

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee MC448 — Análise de Algoritmos

Classe Ω

 $\Omega(g(n)) = \{f(n) : \text{ existem constantes positivas } c \in n_0 \text{ tais } \}$ que $0 \le cg(n) \le f(n)$, para todo $n \ge n_0$.

Informalmente, dizemos que, se $f(n) \in \Omega(g(n))$, então f(n)cresce no mínimo tão lentamente quanto g(n).

Classe O

 $O(g(n)) = \{f(n) : \text{ existem constantes positivas } c \in n_0 \text{ tais } \}$ que $0 \le f(n) \le cg(n)$, para todo $n \ge n_0$.

Informalmente, dizemos que, se $f(n) \in O(g(n))$, então f(n)cresce no máximo tão rapidamente quanto g(n).

Exemplo:

$$\frac{1}{2}n^2 - 3n \in O(n^2)$$

Valores de c e n_0 que satisfazem a definição são

$$c = \frac{1}{2} e n_0 = 7.$$

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MC448 — Análise de Algoritmos

Classe Ω

 $\Omega(g(n)) = \{f(n) : \text{ existem constantes positivas } c \in n_0 \text{ tais } \}$ que 0 < cq(n) < f(n), para todo $n > n_0$.

Informalmente, dizemos que, se $f(n) \in \Omega(g(n))$, então f(n)cresce no mínimo tão lentamente quanto g(n).

Exemplo:

$$\frac{1}{2}n^2-3n\in\Omega(n^2)$$

Valores de c e n_0 que satisfazem a definição são

$$c = \frac{1}{14} e n_0 = 7.$$

Classe ⊖

 $\Theta(g(n)) = \{f(n) : \text{ existem constantes positivas } c_1, c_2 \in n_0\}$ tais que $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$, para todo $n \ge n_0$ }.

Informalmente, dizemos que, se $f(n) \in \Theta(g(n))$, então f(n)cresce tão rapidamente quanto g(n).

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee MC448 — Análise de Algoritmos

Classe o

 $o(g(n)) = \{f(n) :$ para toda constante positiva c, existe uma constante $n_0 > 0$ tal que $0 \le f(n) < cg(n)$, para todo $n \ge n_0$ }.

Informalmente, dizemos que, se $f(n) \in o(g(n))$, então f(n)cresce mais lentamente que g(n).

Exemplo:

 $1000n^2 \in o(n^3)$

Para todo valor de c, um n_0 que satisfaz a definição é

$$n_0 = \left\lceil \frac{1000}{c} \right\rceil + 1.$$

Classe ⊖

 $\Theta(g(n)) = \{f(n) : \text{ existem constantes positivas } c_1, c_2 \in n_0\}$ tais que $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$, para todo $n \ge n_0$ }.

Informalmente, dizemos que, se $f(n) \in \Theta(g(n))$, então f(n)cresce tão rapidamente quanto g(n).

Exemplo:

$$\frac{1}{2}n^2 - 3n \in \Theta(n^2)$$

Valores de c_1 , c_2 e n_0 que satisfazem a definição são

$$c_1 = \frac{1}{14}$$
, $c_2 = \frac{1}{2}$ e $n_0 = 7$.

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MC448 — Análise de Algoritmos

Classe ω

 $\omega(g(n)) = \{f(n) : \text{ para toda constante positiva } c, \text{ existe uma } c \in \mathcal{C}\}$ constante $n_0 > 0$ tal que $0 \le cg(n) < f(n)$, para todo $n > n_0$.

Informalmente, dizemos que, se $f(n) \in \omega(g(n))$, então f(n)cresce mais rapidamente que g(n).

Exemplo:

$$\frac{1}{1000}n^2\in\omega(n)$$

Para todo valor de c, um n_0 que satisfaz a definição é

$$n_0 = \lceil 1000c \rceil + 1.$$

Definições equivalentes

$f(n) \in o(g(n))$ se $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$. $f(n) \in O(g(n))$ se $\lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$. $f(n) \in \Theta(g(n))$ se $0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$. $f(n) \in \Omega(g(n))$ se $\lim_{n \to \infty} \frac{f(n)}{g(n)} > 0$. $f(n) \in \omega(g(n))$ se $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$.

Propriedades das Classes

Transitividade:

Se
$$f(n) \in O(g(n))$$
 e $g(n) \in O(h(n))$, então $f(n) \in O(h(n))$.
Se $f(n) \in \Omega(g(n))$ e $g(n) \in \Omega(h(n))$, então $f(n) \in \Omega(h(n))$.
Se $f(n) \in \Theta(g(n))$ e $g(n) \in \Theta(h(n))$, então $f(n) \in \Theta(h(n))$.
Se $f(n) \in o(g(n))$ e $g(n) \in o(h(n))$, então $f(n) \in o(h(n))$.
Se $f(n) \in \omega(g(n))$ e $g(n) \in \omega(h(n))$, então $f(n) \in \omega(h(n))$.

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MC448 — Análise de Algoritmos

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MC448 — Análise de Algoritmos

Propriedades das Classes

Reflexividade:

$$f(n) \in O(f(n)).$$

$$f(n) \in \Omega(f(n)).$$

$$f(n) \in \Theta(f(n))$$
.

Simetria:

 $f(n) \in \Theta(g(n))$ se, e somente se, $g(n) \in \Theta(f(n))$.

Simetria Transposta:

$$f(n) \in O(g(n))$$
 se, e somente se, $g(n) \in \Omega(f(n))$.

$$f(n) \in o(g(n))$$
 se, e somente se, $g(n) \in \omega(f(n))$.

Exemplos

Quais as relações de comparação assintótica das funções:

- 2^π
- log *n*
- n
- nlog n
- n²
- $100n^2 + 15n$
- 2ⁿ