SPATIAL AUTORESONANCE ACCELERATION OF ELECTRONS BY AN AXISYMMETRIC TRANSVERSE ELECTRIC FIELD

Oswaldo Otero Olarte Eduardo A. Orozco Ospino

Universidad Industrial de Santander fitek@uis.edu.co

May 16, 2021

Electron Dynamics

Classical Cyclotron Motion

$$rac{dec{v}}{dt} = -rac{e}{m_e}\,ec{v} imesec{B} \quad \Rightarrow \quad \Omega_{c0} = rac{e\,B_0}{m_e}$$

Resonant Interaction

$$rac{d}{dt}\left(\gamma\,ec{v}
ight) = -rac{e}{m_e}\Big[\,ec{E}\,+\,ec{v} imesec{B}\Big] \;\Rightarrow\; \Omega_c = rac{e\,B_0}{m_e\,\gamma}$$

ECR Condition: $\Omega_c = \omega \ \Rightarrow \ \text{Acceleration Band:} \ \frac{\pi}{2} \leq \varphi \leq \frac{3\pi}{2}$

Spatial Autoresonance

$$\omega = \Omega_c = \frac{e\,B(z)}{\gamma m_e}$$

$$\vec{B} = B_z \hat{k}$$
 and $\vec{E} = E_0 \cos(\omega t) \hat{j}$

Spatial Autoresonance Acceleration (SARA)

SARA Model

Considering:

$$\vec{E} = \vec{E}^{\,\text{hf}}$$
 and $\vec{B} = \vec{B}^{\,\text{hf}} + \vec{B}^{\,\text{c}}$

where \vec{E}^{hf} and \vec{B}^{hf} (Cylindrical Mode TE_{11p})

$$\begin{split} \vec{E}^{\,\,\mathrm{hf}} & \approxeq E_0 \left[\sin \left(\varphi \right) \hat{\mathbf{r}} + \cos \left(\varphi \right) \hat{\theta} \right] \, \sin \left(\frac{\rho \pi z}{d} \right) \\ \vec{E}^{\,\,\mathrm{hf}} & \approxeq - E_0 \left(\frac{\rho \pi z}{d \,\,\omega} \right) \left[\sin \left(\varphi \right) \hat{\mathbf{r}} + \cos \left(\varphi \right) \hat{\theta} \right] \, \cos \left(\frac{\rho \pi z}{d} \right) + B_z^{\,\,\mathrm{hf}} \, \, \hat{\mathbf{k}} \end{split}$$

and the extern magnetic field: $B_z^c(z) = B_0 \left[\gamma_0 + b(z) \right]$ where $B_0 = \frac{\omega m_e}{e}$

Cylindrical Mode TE₀₁₁

$$\vec{E}^{\,\,\mathrm{hf}}\left(\vec{r},t\right) = \frac{E_0}{J_1(\rho_{01})}J_1\left(\frac{q_{01}}{R}r\right)\sin\left(\frac{\pi}{L}z\right)\cos\left(\omega t\right)\hat{\theta}$$

$$\vec{B}^{\,\,\mathrm{hf}}\left(\vec{r},t\right) = \frac{E_0}{J_1(\rho_{01})}\left[\frac{\pi}{L\,\omega}J_1\left(\frac{q_{01}}{R}r\right)\cos\left(\frac{\pi}{L}z\right)\sin\left(\omega t\right)\hat{r} - \frac{q_{01}}{R\,\omega}J_0\left(\frac{q_{01}}{R}r\right)\sin\left(\frac{\pi}{L}z\right)\sin\left(\omega t\right)\hat{k}\right]$$

where $q_{01}=3,83171$, $p_{01}=1,84118$, R=7,84 cm, L=20 cm, $E_0=14$ kV/cm and f=2,45 GHz.

Electromagnetic Field

Cylindrical Mode
$$\mathsf{TE}_{011}$$
 \Rightarrow $\vec{E} = \vec{E}^{\,\mathsf{hf}} \; \mathsf{y} \; \vec{B} = \vec{B}^{\,\mathsf{hf}} + \vec{B}^{\mathsf{ext}}$

Simulation Model

- Three Coil System: \vec{B}^{ext} (Biot-Savart Law Integral Form).
- Interpolation Bilinear: $\vec{B}^{ext}(\vec{r}_p)$.
- 3D Relativistic Newton-Lorentz equation: Boris integrator.

Physical scheme: (1) Electron injection points, (2)

Cylindrical Cavity and (3) Longitudinal electric field profile.

Numerical experiments

- 1. An electron injected longitudinally at points $P=\{R/2,\,3R/8,\,9R/16\}$ with an energy of 1 keV.
- 2. An electron injected longitudinally at point $P_1 = R/2$ with different energies (3 and 5 keV).

Results

15.0 Fig 1: Helical trajectory of the electron injected at P_1 with an energy of 4 keV.

20.0-1.5

10.0 ≥[cm]

Fig 2: XY view of the trajectory.

Fig 3: YZ view of the trajectory.

Results

Conclusions

- It was showed by numerical experiments that it is possible to accelerate electrons under electron cyclotron resonance conditions in inhomogeneus magnetostatic fields using the TE_{011} cylindrical mode.
- It was found an inhomogeneous magnetostatic field which maintains the electron acceleration regime close to the exact resonance condition along almost its entire trajectory.

Future Works

We will study this acceleration scheme by using other TE_{01p} cylindrical mode (p=2,3).

References

- V P Milant'ev.
 - Cyclotron autoresonance—50 years since its discovery. *Physics-Uspekhi*, 56(8):823, 2013.
- Valeriy D. Dugar-Zhabon and Eduardo A. Orozco. Cyclotron spatial autoresonance acceleration model. *Phys. Rev. ST Accel. Beams*, 12:041301, 2009.
- J.M.M. Pantoja.

 Ingeniería de microondas: técnicas experimentales.

 Prentice práctica. Pearson Educación, 2002.
- C.K. Birdsall and A.B. Langdon.

 Plasma Physics via Computer Simulation.

 Series in Plasma Physics and Fluid Dynamics. Taylor & Francis, 2004.