Geometria e Algebra - MIS-Z

Settimo appello - Marzo - Soluzioni 13/03/2023

Nome e Cognome:		
Corso di laurea:		
Matricola:		

Informazioni

Questo appello contiene 5 esercizi per un totale di 34 punti. Il punteggio ottenuto x sarà convertito in 30esimi nella maniera seguente:

- se $x \leq 30$, allora x sarà il voto in 30esimi;
- se $30 < x \le 34$, allora il voto sarà 30 e Lode.

Le risposte devono essere opportunamente giustificate per ottenere il punteggio massimo. Le risposte indecifrabili non verranno valutate.

Il tempo a disposizione è di 3 ore. È vietato l'utilizzo di ogni tipo di calcolatrice.

Esercizio	Punteggio
1	
2	
3	
4	
5	

TOTALE

ESERCIZIO 1 [6 punti]. Vero o Falso?

Per ciascun asserto si stabilisca se è vero o falso, motivando in modo conciso ed esauriente la risposta.

- (a) I vettori $(0, 1, 3, -1), (1, 1, -1, -1), (3, 2, -1, 2) \in \mathbb{R}^4$ sono linearmente indipendenti.
 - VERO
 - ☐ FALSO

Giustificazione

Consideriamo la matrice

$$\begin{pmatrix} 0 & 1 & 3 & -1 \\ 1 & 1 & -1 & -1 \\ 3 & 2 & -1 & 2 \end{pmatrix}.$$

Effettuando nell'ordine le operazioni $R_1 \leftrightarrow R_2$, $R_3 \leftarrow R_3 - 3R_1$ e $R_3 \leftarrow R_3 + R_2$, otteniamo la matrice

$$\begin{pmatrix} 1 & 1 & -1 & -1 \\ 0 & 1 & 3 & -1 \\ 0 & 0 & 5 & 4 \end{pmatrix},$$

che ha rango 3. Ne deduciamo che i vettori (0,1,3,-1),(1,1,-1,-1),(3,2,-1,2) sono linearmente indipendenti.

- (b) Il triangolo nel piano \mathbb{E}^2 di vertici A(1,0), B(-1,0) e C(0,1) è equilatero.
 - \square VERO
 - FALSO

Giustificazione

Un triangolo \overrightarrow{ABC} è equilatero se e solo se $\|\overrightarrow{AB}\| = \|\overrightarrow{AC}\| = \|\overrightarrow{BC}\|$. Nel nostro caso abbiamo $\overrightarrow{AB} = (-2,0), \overrightarrow{AC} = (-1,1)$ e $\overrightarrow{BC} = (1,1)$, quindi $\|\overrightarrow{AB}\| = 2, \|\overrightarrow{AC}\| = \sqrt{2}$ e $\|\overrightarrow{BC}\| = \sqrt{2}$. In particolare $\|\overrightarrow{AB}\| \neq \|\overrightarrow{AC}\|$, quindi il triangolo \overrightarrow{ABC} non è equilatero.

(c) Per ogni $k \in \mathbb{R}$, la matrice

$$A_k = \begin{pmatrix} 1 & k & -1 \\ k & 0 & 2 \\ 1 & 2 & 1 \end{pmatrix}$$

è invertibile.

- VERO
- \square FALSO

Giustificazione

Abbiamo

$$\det(A_k) = \begin{vmatrix} 1 & k & -1 \\ k & 0 & 2 \\ 1 & 2 & 1 \end{vmatrix} = -k^2 - 4.$$

Poiché l'equazione $-k^2-4=0$ non ha soluzioni reali, concludiamo che $\det(A_k)\neq 0$ per ogni $k\in\mathbb{R}$, e quindi che la matrice A_k è invertibile per ogni $k\in\mathbb{R}$.

- (d) Sia V uno spazio vettoriale su un campo K e sia $f: V \to V$ un endomorfismo. Se v_1, v_2 sono due autovettori relativi all'autovalore $\lambda \in K$ allora anche $v_1 + v_2$ è un autovettore relativo all'autovalore λ .
 - VERO
 - \square FALSO

Giustificazione

Se v_1 , v_2 sono due autovettori relativi all'autovalore λ , allora $f(v_1) = \lambda v_1$ e $f(v_2) = \lambda v_2$. Ma allora

$$f(v_1 + v_2) = f(v_1) + f(v_2) = \lambda v_1 + \lambda v_2 = \lambda (v_1 + v_2),$$

ossia anche $v_1 + v_2$ è un autovettore relativo all'autovalore λ .

ESERCIZIO 2 [6 punti]. Sistema con parametro.

Al variare di $k \in \mathbb{R}$ si discuta la compatibilità del sistema

$$\begin{cases} X_1 + kX_3 = 1 \\ kX_1 + X_3 = -1 \\ -X_2 + kX_4 = -1 \\ kX_2 + X_4 = 1 \end{cases}$$

e, quando il sistema è compatibile, se ne determinino il "numero" delle soluzioni e l'insieme delle soluzioni. Si riassuma quanto trovato nella tabella seguente:

k	Compatibile?	Numero di soluzioni	Insieme delle soluzioni
$k \in \mathbb{R} \setminus \{-1, 1\}$	SI	1	$\left\{ \left(\frac{1}{1-k}, \frac{1+k}{1+k^2}, -\frac{1}{1-k}, \frac{1-k}{1+k^2} \right) \right\}$
k = -1	SI	∞^1	$\{\{(1+t,0,t,1): t \in \mathbb{R}\}$
k = 1	NO	0	-

Svolgimento

Consideriamo la matrice dei coefficienti A e la matrice orlata (A|b) associate al sistema:

$$A = \begin{pmatrix} 1 & 0 & k & 0 \\ k & 0 & 1 & 0 \\ 0 & -1 & 0 & k \\ 0 & k & 0 & 1 \end{pmatrix}, \qquad (A|b) = \begin{pmatrix} 1 & 0 & k & 0 & 1 \\ k & 0 & 1 & 0 & -1 \\ 0 & -1 & 0 & k & -1 \\ 0 & k & 0 & 1 & 1 \end{pmatrix}.$$

Determiniamo innanzitutto i valori di k tali che $det(A) \neq 0$. Infatti per tali valori avremo rg(A) = rg(A|b) = 4 e quindi, per Rouché-Capelli, il sistema sarà compatibile ed ammetterà un'unica soluzione che determineremo con il metodo di Cramer.

Abbiamo

$$det(A) = 1 - k^4 = (1 + k^2)(1 + k)(1 - k) = 0 \Leftrightarrow k = 1 \text{ o } k = -1.$$

CASO 1. Sia dunque $k \in \mathbb{R} \setminus \{1, -1\}$. Applicando il metodo di Cramer otteniamo:

$$X_{1} = \frac{\begin{vmatrix} 1 & 0 & k & 0 \\ -1 & 0 & 1 & 0 \\ -1 & -1 & 0 & k \\ 1 & k & 0 & 1 \end{vmatrix}}{\det(A)} = \frac{k^{3} + k^{2} + k + 1}{1 - k^{4}} = \frac{(k+1)(k^{2}+1)}{(1+k^{2})(1+k)(1-k)} = \frac{1}{1-k}.$$

$$X_{2} = \frac{\begin{vmatrix} 1 & 1 & k & 0 \\ k & -1 & 1 & 0 \\ 0 & -1 & 0 & k \\ 0 & 1 & 0 & 1 \end{vmatrix}}{\det(A)} = \frac{-k^{3} - k^{2} + k + 1}{1 - k^{4}} = \frac{(1-k)(1+k)^{2}}{(1+k^{2})(1+k)(1-k)} = \frac{1+k}{1+k^{2}}.$$

$$X_{3} = \frac{\begin{vmatrix} 1 & 0 & 1 & 0 \\ k & 0 & -1 & 0 \\ 0 & -1 & -1 & k \\ 0 & k & 1 & 1 \end{vmatrix}}{\det(A)} = \frac{-k^{3} - k^{2} - k - 1}{1 - k^{4}} = \frac{-(1+k)(k^{2}+1)}{(1+k^{2})(1+k)(1-k)} = -\frac{1}{1-k}.$$

$$X_{4} = \frac{\begin{vmatrix} 1 & 0 & k & 1 \\ k & 0 & 1 & -1 \\ 0 & -1 & 0 & -1 \\ 0 & k & 0 & 1 \end{vmatrix}}{\det(A)} = \frac{k^{3} - k^{2} - k + 1}{1 - k^{4}} = \frac{(1-k)^{2}(k+1)}{(1+k^{2})(1+k)(1-k)} = \frac{1-k}{1+k^{2}}.$$

Quindi per ogni $k \in \mathbb{R} \setminus \{-1, 1\}$ l'insieme delle soluzioni è

$$S_k = \left\{ \left(\frac{1}{1-k}, \frac{1+k}{1+k^2}, -\frac{1}{1-k}, \frac{1-k}{1+k^2} \right) \right\}.$$

CASO 2. Se k = -1 allora la matrice orlata è

$$\begin{pmatrix} 1 & 0 & -1 & 0 & 1 \\ -1 & 0 & 1 & 0 & -1 \\ 0 & -1 & 0 & -1 & -1 \\ 0 & -1 & 0 & 1 & 1 \end{pmatrix}.$$

Effettuando nell'ordine le operazioni seguenti:

- 1. $R_2 \leftarrow R_2 + R_1$,
- 2. $R_2 \leftrightarrow R_4$,
- 3. $R_3 \leftarrow R_3 R_2$,

si ottiene la matrice a scalini:

$$\begin{pmatrix} 1 & 0 & -1 & 0 & 1 \\ 0 & -1 & 0 & -1 & -1 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

In tal caso abbiamo quindi $\operatorname{rg}(A)=3=\operatorname{rg}(A|b)$. Dal teorema di Rouché–Capelli segue che il sistema è compatibile ed ammette $\infty^{4-3}=\infty^1$ soluzioni. Scegliendo X_3 come variabile libera otteniamo l'insieme di soluzioni

$$S_{-1} = \{(1+t, 0, t, 1), t \in \mathbb{R}\}.$$

CASO 3. Se k = 1 allora la matrice orlata è

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & -1 \\ 0 & -1 & 0 & 1 & -1 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}.$$

Effettuando nell'ordine le operazioni seguenti:

1.
$$R_2 \leftarrow R_2 - R_1$$

$$2. R_2 \leftrightarrow R_4$$

1.
$$R_2 \leftarrow R_2 - R_1$$
,
2. $R_2 \leftrightarrow R_4$,
3. $R_3 \leftarrow R_3 + R_2$,

si ottiene la matrice a scalini:

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & -2 \end{pmatrix}.$$

In tal caso abbiamo quindi rg(A) = 3 e rg(A|b) = 4. Dal teorema di Rouché-Capelli segue che il sistema è incompatibile.

ESERCIZIO 3 [8 punti]. Rango e sottospazi vettoriali.

(a) Si definisca il rango di un insieme finito di vettori di uno spazio vettoriale. Si definisca quindi il rango di una matrice.

Definizione

Il rango di un sottoinsieme finito $\{v_1, \ldots, v_n\}$ di V è la dimensione del sottospazio generato da $\{v_1, \ldots, v_n\}$. Il rango di una matrice $A \in \mathcal{M}_{m,n}(\mathbb{R})$ è definito come il rango dell'insieme dei vettori riga (o, equivalentemente dei vettori colonna) di A.

(b) Si dimostri che se $A \in \mathcal{M}_n(\mathbb{R})$ è invertibile, allora A ha rango massimo, richiamando eventualmente le opportune proprietà del rango che vengono usate.

Dimostrazione

Sia $A \in \mathcal{M}_n(\mathbb{R})$ una matrice invertibile. Allora, per definizione, esiste $A^{-1} \in \mathcal{M}_n(\mathbb{R})$ tale che $AA^{-1} = I_n$, dove I_n è la matrice identità di ordine n. Ma allora

$$rg(A) = rg(AA^{-1}) = rg(I_n) = n,$$

dove nella prima uguaglianza abbiamo utilizzato il fatto che il rango di A non cambia se si moltiplica A per una una matrice invertibile e nell'ultima uguaglianza il fatto che la matrice identità ha rango massimo. Quindi A ha rango massimo.

(c) Sia $h \in \mathbb{R}$ e sia

$$W_h = Span\{(-1,0,h,1), (3,1,1,-1), (h,1,3,0), (-4,-1,1,h)\} \subseteq \mathbb{R}^4.$$

Al variare di h si determini la dimensione di W_h .

Svolgimento

Il sottospazio W_h ha dimensione 4 se e solo se la matrice

$$A_h = \begin{pmatrix} -1 & 0 & h & 1\\ 3 & 1 & 1 & -1\\ h & 1 & 3 & 0\\ -4 & -1 & 1 & h \end{pmatrix}$$

ha determinante non nullo. Utilizzando Laplace troviamo

$$\det(A) = -h^3 + 4h^2 - 4h = -h(h^2 - 4h + 4) = -h(h - 2)^2.$$

Quindi $\dim(W_h) = 4$ se e solo se $h \in \mathbb{R} \setminus \{0, 2\}$.

Non rimane che determinare la dimensione di W_h nei casi h=0 e h=2.

• Caso h = 0. Per h = 0 otteniamo la matrice

$$A_0 = \begin{pmatrix} -1 & 0 & 0 & 1\\ 3 & 1 & 1 & -1\\ 0 & 1 & 3 & 0\\ -4 & -1 & 1 & 0 \end{pmatrix}$$

Effettuando nell'ordine le operazioni seguenti:

- 1. $R_2 \leftarrow R_2 + 3R_1$,
- 2. $R_4 \leftarrow R_4 4R_1$,
- 3. $R_3 \leftarrow R_3 R_2$,
- 4. $R_4 \leftarrow R_4 + R_2$,
- 5. $R_4 \leftarrow R_4 R_3$,

si ottiene la matrice a scalini $\begin{pmatrix} -1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 2 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$

Pertanto $\dim(W_0) = \operatorname{rg}(A_0) = 3$.

• Caso h = 2. Per h = 2 otteniamo la matrice

$$A_2 = \begin{pmatrix} -1 & 0 & 2 & 1 \\ 3 & 1 & 1 & -1 \\ 2 & 1 & 3 & 0 \\ -4 & -1 & 1 & 2 \end{pmatrix}$$

Effettuando nell'ordine le operazioni seguenti:

- 1. $R_2 \leftarrow R_2 + 3R_1$,
- 2. $R_3 \leftarrow R_3 + 2R_1$,
- 3. $R_4 \leftarrow R_4 4R_1$,
- 4. $R_3 \leftarrow R_3 R_2$,
- 5. $R_4 \leftarrow R_4 + R_2$,

si ottiene la matrice a scalini $\begin{pmatrix} -1 & 0 & 2 & 1 \\ 0 & 1 & 7 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$

Pertanto $\dim(W_2) = \operatorname{rg}(A_2) = \hat{2}$.

(d) Sia h_0 uno dei valori per cui W_{h_0} ha dimensione minima e sia

$$U = Span\{(1, 1, 1, 1), (5, 3, 11, 1)\}.$$

Si determini la dimensione e una base di $W_{h_0} + U$ e $W_{h_0} \cap U$.

Svolgimento

Abbiamo visto nel punto (c) che W_h ha dimensione minima per h=2. Infatti $\dim(W_2)=2$ e una base di W_2 è data da $\{(-1,0,2,1),(3,1,1,-1)\}$. Determiniamo la dimensione e una base di W_2+U e $W_2\cap U$.

• Il sottopazio $W_2 + U$ è generato dall'unione delle basi di W_2 e di U, ovvero $W_2 + U = Span\{(-1,0,2,1),(3,1,1,-1),(1,1,1,1),(5,3,11,1)\}.$

Per calcolare la dimensione di $W_2 + U$ basterà calcolare il rango della matrice

$$M = \begin{pmatrix} -1 & 0 & 2 & 1 \\ 3 & 1 & 1 & -1 \\ 1 & 1 & 1 & 1 \\ 5 & 3 & 11 & 1 \end{pmatrix}.$$

Effettuando nell'ordine le operazioni seguenti:

- 1. $R_2 \leftarrow R_2 + 3R_1$,
- 2. $R_3 \leftarrow R_3 + R_1$,
- 3. $R_4 \leftarrow R_4 + 5R_1$,
- 4. $R_3 \leftarrow R_3 R_2$,
- 5. $R_4 \leftarrow R_4 3R_2$,

si ottiene la matrice a scalini $\begin{pmatrix} -1 & 0 & 2 & 1 \\ 0 & 1 & 7 & 2 \\ 0 & 0 & -4 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$

Quindi $W_2 + U$ ha dimensione 3 e una base è $\{(-1,0,2,1), (0,1,7,2), (0,0,-4,0)\}.$

• Consideriamo ora $W_2 \cap U$. Innanzitutto, dalla formula di Grassmann abbiamo $\dim(W_2 \cap U) = \dim(W_2) + \dim(U) - \dim(W_2 + U) = 2 + 2 - 3 = 1$.

Per determinare una base di $\dim(W_2 \cap U)$ basterà allora determinare un vettore non nullo appartenente all'intersezione.

Sia $v \in \dim(W_2 \cap U)$. Allora esistono $\lambda, \mu, \gamma, \delta$ tali che

$$v = \lambda(-1, 0, 2, 1) + \mu(3, 1, 1, -1) = \gamma(1, 1, 1, 1) + \delta(5, 3, 11, 1),$$

da cui otteniamo il sistema:

$$\begin{cases} -\lambda + 3\mu - \gamma - 5\delta = 0\\ \mu - \gamma - 3\delta = 0\\ 2\lambda + \mu - \gamma - 11\delta = 0\\ \lambda - \mu - \gamma - \delta = 0. \end{cases}$$

Risolvendo il sistema con il metodo di eliminazione di Gauss–Jordan otteniamo le infinite soluzioni $\lambda=4\delta, \mu=3\delta, \gamma=0$. In particolare, ponendo $\delta=1$, otteniamo $\lambda=4, \mu=3$ (o, equivalentemente $\gamma=0, \delta=1$) che restituiscono l'elemento

$$v = 4(-1,0,2,1) + 3(3,1,1,-1) = 0 \cdot (1,1,1,1) + (5,3,11,1) = (5,3,11,1).$$

Quindi $W_2 \cap U = Span\{(5,3,11,1)\}$

ESERCIZIO 4 [7 punti]. Una famiglia di endomorfismi di \mathbb{R}^3 .

Per $k \in \mathbb{R}$ si consideri l'endomorfismo

$$f_k: \mathbb{R}^3 \to \mathbb{R}^3$$

 $(x,y,z) \mapsto (kx+y+z,x+ky+z,x+y+kz).$

(a) Si determinino tutti i valori di $k \in \mathbb{R}$ per cui f_k non è suriettiva e per ciascuno di essi si determini una base di $\text{Im}(f_k)$.

Svolgimento

Sia A_k la matrice associata a f_k rispetto alla base canonica \mathcal{B} di \mathbb{R}^3 . Dall'espressione di f_k abbiamo

$$A_k = \begin{pmatrix} k & 1 & 1 \\ 1 & k & 1 \\ 1 & 1 & k \end{pmatrix}.$$

Allora f_k non è suriettiva se e solo se $\operatorname{rg}(A_k) < 3$, ovvero se e solo se $\det(A_k) = 0$. Abbiamo

$$\det(A_k) = k^3 - 3k + 2 = (k-1)^2(k+2),$$

quindi f_k non è suriettiva se e solo se $k \in \{-2, 1\}$.

• Per k = -2 abbiamo

$$Im(f_{-2}) = Span\{(-2, 1, 1), (1, -2, 1), (1, 1, -2)\} = Span\{(-2, 1, 1), (1, -2, 1)\},$$
in quanto $(1, 1, -2) = -(-2, 1, 1) - (1, -2, 1).$

• Per k = 1 abbiamo

$$\operatorname{Im}(f_1) = \operatorname{Span}\{(1, 1, 1), (1, 1, 1), (1, 1, 1)\} = \operatorname{Span}\{(1, 1, 1)\}.$$

(b) Per k=1, si determini se f_1 è diagonalizzabile e in caso affermativo si trovi una base diagonalizzante.

Svolgimento

Per k = 1 abbiamo

$$f_1: \mathbb{R}^3 \rightarrow \mathbb{R}^3$$

 $(x, y, z) \mapsto (x + y + z, x + y + z, x + y + z).$

Sia \mathcal{B} la base canonica di \mathbb{R}^3 . La matrice associata a f_1 rispetto a \mathcal{B} è

$$A_1 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

Per determinare se f_1 è diagonalizzabile, cominciamo con il determinare gli autovalori di f_1 , trovando le radici del polinomio caratteristico:

$$\begin{vmatrix} 1 - T & 1 & 1 \\ 1 & 1 - T & 1 \\ 1 & 1 & 1 - T \end{vmatrix} = -T^3 + 3T^2 = -T^2(T - 3).$$

Pertanto gli autovalori di f_1 sono 0 e 3 con molteplicità algebrica rispettivamente 2 e 1. Per ognuno di essi determiniamo l'autospazio corrispondente:

•
$$V_0(f_1) = \left\{ (x, y, z) \in \mathbb{R}^3 : \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\} = Span\{(-1, 1, 0), (-1, 0, 1)\}.$$

•
$$V_3(f_1) = \left\{ (x, y, z) \in \mathbb{R}^3 : \begin{pmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\} = Span\{(1, 1, 1)\}.$$

Poiché dim $(V_0(f_1)) = 2$, la moltiplicità algebrica e geometrica di 0 coincidono. Ne segue che l'operatore f è diagonalizzabile e l'unione delle basi dei due autospazi $V_0(f_1)$ e $V_3(f_1)$

$$\mathcal{B}' = \{(-1, 1, 0), (-1, 0, 1), (1, 1, 1)\}$$

è una base diagonalizzante per f_1 .

(c) Per ogni $k \in \mathbb{R}$ si mostri che k-1 è un autovalore di f_k e se ne determini l'autospazio corrispondente.

Svolgimento

Per mostrare che k-1 è un autovalore di f_k per ogni $k \in \mathbb{R}$, basterà far vedere che k-1 è una radice del polinomio caratteristico, ossia che la matrice $A_k - (k-1)I_3$ ha determinante nullo:

$$\det(A_k - (k-1)I_3) = \begin{vmatrix} k - (k-1) & 1 & 1 \\ 1 & k - (k-1) & 1 \\ 1 & 1 & k - (k-1) \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = 0.$$

Inoltre abbiamo che l'autospazio corrispondente all'autovalore k-1 è

$$V_{k-1}(f_k) = \left\{ (x, y, z) \in \mathbb{R}^3 : \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\} = Span\{(-1, 1, 0), (-1, 0, 1)\}.$$

ESERCIZIO 5 [7 punti]. Geometria nello spazio.

Si consideri lo spazio \mathbb{E}^3 con il riferimento cartesiano standard.

(a) Si scrivano le equazioni parametriche e un'equazione cartesiana del piano π passante per i punti A(1,1,4), B(-1,-2,0) e C(1,0,2) di \mathbb{E}^3 .

Svolgimento

Per scrivere le equazioni parametriche di π abbiamo bisogno di un punto del piano e di due vettori non collineari della giacitura. Scegliamo:

- Punto: C(1,0,2);
- Vettori non collineari della giacitura: $\overrightarrow{AB} = (-2, -3, -4)$ e $\overrightarrow{AC} = (0, -1, -2)$.

Quindi

$$\pi : \begin{cases} x = -2s + 1 \\ y = -3s - t \\ z = -4s - 2t + 2 \end{cases}, \quad s, t \in \mathbb{R}.$$

Per ottenere un'equazione cartesiana di π ricaviamo s e t dalle prime due equazioni e le sostituiamo nell'ultima:

$$\begin{cases} s = \frac{1-x}{2} \\ t = \frac{-3+3x}{2} - y \\ z = -4\frac{1-x}{2} - 2\left(\frac{-3+3x}{2} - y\right) + 2 \end{cases} \Rightarrow \begin{cases} s = \frac{1-x}{2} \\ t = \frac{-3+3x}{2} - y \\ z = 2x - 2 + 3 - 3x + 2y + 2 \end{cases} \Rightarrow \begin{cases} s = \frac{1-x}{2} \\ t = \frac{-3+3x}{2} - y \\ z = 2x - 2 + 3 - 3x + 2y + 2 \end{cases} \Rightarrow \begin{cases} s = \frac{1-x}{2} \\ t = \frac{-3+3x}{2} - y \\ z = -x + 3 + 2y \end{cases} \Rightarrow x - 2y + z - 3 = 0.$$

Un'equazione cartesiana di π è quindi:

$$\pi: X - 2Y + Z - 3 = 0.$$

(b) Al variare di $h \in \mathbb{R}$ si determini la posizione reciproca della retta r_h e del piano π , dove r_h è definita dalle equazioni cartesiane

$$r_h: \left\{ \begin{array}{l} X + Y - h = 0 \\ 3X + hZ - 5 = 0 \end{array} \right.$$

Per i valori di h per cui r_h e π sono incidenti si determini il punto di intersezione.

Svolgimento

Ricordiamo che una retta e un piano possono essere paralleli (disgiunti o la retta contenuta nel piano) o incidenti. In particolare sono paralleli disgiunti se la loro intersezione è vuota, sono incidenti se la loro intersezione è costituita da un unico punto e la retta è contenuta nel piano se la loro intersezione è costituita da infiniti punti. Studiamo quindi, al variare di h, il numero delle soluzioni del sistema

$$(\star): \left\{ \begin{array}{l} X - 2Y + Z = 3 \\ X + Y = h \\ 3X + hZ = 5 \end{array} \right.,$$

o, equivalentemente, il rango della matrice dei coefficienti A e della matrice orlata (A|b) corrispondenti al sistema (\star) :

$$A = \begin{pmatrix} 1 & -2 & 1 \\ 1 & 1 & 0 \\ 3 & 0 & 1 \end{pmatrix}, \qquad (A|b) = \begin{pmatrix} 1 & -2 & 1 & 3 \\ 1 & 1 & 0 & h \\ 3 & 0 & h & 5 \end{pmatrix}.$$

Effettuando nell'ordine le operazioni seguenti su (A|b):

- 1. $R_2 \leftarrow R_2 R_1$,
- 2. $R_3 \leftarrow R_3 3R_1$,
- 3. $R_3 \leftarrow R_3 2R_2$,

si ottiene la matrice a scalini:

$$\begin{pmatrix} 1 & -2 & 1 & 3 \\ 0 & 3 & -1 & h-3 \\ 0 & 0 & h-1 & -2h+2 \end{pmatrix}.$$

Quindi:

- se $h \neq 1$ abbiamo $\operatorname{rg}(A) = 3 = \operatorname{rg}(A|b)$. Quindi in tal caso il sistema (\star) possiede un'unica soluzione e, equivalentemente, la retta r_h e il piano π sono incidenti. Risolvendo il sistema si ottiene che il punto di intersezione è $(\frac{2h+5}{3}, \frac{h-5}{3}, -2)$, per ogni $h \neq 1$.
- se h = 1 abbiamo $\operatorname{rg}(A) = 2 = \operatorname{rg}(A|b)$. Quindi in tal caso il sistema (\star) possiede ∞^1 soluzioni e, equivalentemente, la retta r_1 è contenuta nel piano π .

(c) Per uno dei valori $h_0 \in \mathbb{R}$ tale che la retta r_{h_0} è parallela a π , si determini il piano π' ortogonale al piano π e passante per la retta r_{h_0}

Svolgimento

Sia $h_0 = 1$. Allora

$$r_1: \left\{ \begin{array}{l} X+Y=1\\ 3X+Z-5=0 \end{array} \right.$$

Per determinare le equazioni parametriche del piano π' basta determinare due vettori non collineari della giacitura e un punto appartenente al piano. Poiché π' è ortogonale a π e passa per la retta r_1 , prendiamo un vettore direttore di r_1 , un vettore normale a π e un punto di r_1 .

Dalle equazioni cartesiane ricaviamo le equazioni parametriche di r_1 , che sono date da

$$r_1: \left\{ \begin{array}{l} x=t \\ y=-t+1 \\ z=-3t+5 \end{array} \right., t \in \mathbb{R}.$$

Quindi un vettore direttore di r_1 è (1,1,-3), e (0,1,5) è un punto di r_1 . Inoltre poiché π ha equazione cartesiana X-2Y+Z-3=0, un vettore normale a π è (1,-2,1). Possiamo quindi scrivere π' in forma parametrica:

$$\pi': \left\{ \begin{array}{l} x=t+s\\ y=-t-2s+1\\ z=-3t+s5 \end{array} \right., \, s,t\in\mathbb{R}.$$