ZBIORY Z POWTÓRZENIAMI

W zbiorze z powtórzeniami ten sam element może występować kilkakrotnie.

Liczbę wystąpień nazywamy krotnością tego elementu w zbiorze

$$X = \{x_1, ..., x_n\}$$
 - zbić

$$k_1, ..., k_n$$
 - krotności elementów

$$A = \langle k_1 * x_1, ..., k_n * x_n \rangle$$
 - zbiór z powtórzeniami

Przykład zbioru z powtórzeniami

$$X = \{ a, b, c \}$$
 $k_a = 2, k_b = 1, k_c = 3$

Zbiór z powtórzeniami:
$$A = \langle 2*a, 1*b, 3*c \rangle = \langle a, a, b, c, c, c \rangle$$

Liczność zbioru z powtórzeniami:

$$|A| = k_1 + ... + k_n$$

<u>Podzbiór zbioru z powtórzeniami</u> jest wyznaczany przez wektor n-elementowy $(m_1, ..., m_n)$, w którym

$$0 \le m_1 \le k_1, \qquad \dots, \qquad 0 \le m_n \le k_n$$

Liczba podzbiorów zbioru z powtórzeniami o krotnościach

 $k_1, k_2, ..., k_n$ jest równa

$$(k_1 + 1) \cdot (k_2 + 1) \cdot ... \cdot (k_n + 1)$$

Twierdzenie

Liczba k-elementowych podzbiorów zbioru z powtórzeniami

 $< k*x_1, ..., k*x_n > jest równa$

$$\frac{[n]^k}{k!} = \binom{n+k-1}{k}$$

Dowód

Rozważmy rozmieszczenie uporządkowane k obiektów w n pudełkach. Liczba takich rozmieszczeń jest równa

$$[n]^k = n \cdot (n+1) \cdot ... \cdot (n+k-1).$$

Każde takie rozmieszczenie wyznacza wektor *n*-elementowy $(r_1, ..., r_n)$, dla którego zachodzi $r_1 + ... + r_n = k$;

 r_i jest liczbą obiektów w pudełku i.

Wektor $(r_1, ..., r_n)$ odpowiada k-elementowemu podzbiorowi $< r_1 * x_1, ..., r_n * x_n > \subseteq < k * x_1, ..., k * x_n >$ Ponadto k! rozmieszczeń wyznacza ten sam podzbiór k-elementowy, a zatem liczba różnych podzbiorów k-elementowych zbioru z powtórzeniami o wszystkich krotnościach równych k wynosi

$$\frac{[n]^k}{k!} = \frac{n \cdot (n+1) \cdot ... \cdot (n+k-1)}{k!} = \frac{(n+k-1)!}{k! \cdot (n-1)!} = \binom{n+k-1}{k}$$

PODZIAŁY ZBIORU

Podziałem zbioru n-elementowego X na k bloków nazywamy dowolną rodzinę zbiorów $\pi = \{B_1, ..., B_k\},$

taką że
$$B_1 \cup ... \cup B_k = X$$
, $B_i \cap B_j = \emptyset$ dla $1 \le i \le j \le k$ oraz $B_i \ne \emptyset$, $1 \le i \le k$

 $B_1, ..., B_k$ - bloki podziału π

 $\Pi_k(X)$ - zbiór wszystkich podziałów zbioru X na k bloków

$$\Pi(X)$$
 - zbiór wszystkich podziałów zbioru X ; $\Pi(X) = \Pi_1(X) \cup ... \cup \Pi_n(X)$

Przykład zbioru podziałów

 $X = \{a, b, c, d\}$ $\Pi_{3}(X):$ $\pi^{1} = \{\{a\}, \{b\}, \{c, d\}\}$ $\pi^{3} = \{\{a, b\}, \{c\}, \{d\}\}$ $\pi^{5} = \{\{a\}, \{b, d\}, \{c\}\}$ $\pi^{6} = \{\{a, d\}, \{b\}, \{c\}\}$

ZWIĄZKI POMIĘDZY PODZIAŁAMI ZBIORU I RELACJAMI

• każdemu podziałowi $\pi \in \Pi(X)$ można przyporządkować relację równoważności $E(\pi)$ na zbiorze X, definiując ją jako

$$E(\pi) = \bigcup_{B \in \pi} B \times B$$

tzn. dwa elementy $x, y \in X$ są w relacji $E(\pi)$ wtedy i tylko wtedy, gdy należą do tego samego bloku podziału.

Przykład relacji definiowanej podziałem

$$X = \{ a, b, c, d \}$$

$$E(\pi^{5}) = \{ (a, a), (b, b), (b, d), (d, b), (d, d), (c, c) \}$$

$$| \qquad | \qquad |$$

$$\{a\} \times \{a\} \qquad \{b, d\} \times \{b, d\} \qquad \{c\} \times \{c\}$$

ullet każdej relacji równoważności E na zbiorze X można przyporządkować podział zbioru X na bloki, definiując go jako

$$X|E = \{ x|E : x \in X \},$$

gdzie pojedynczy blok $x|E = \{ y \in X : xEy \}$ nazywany jest **klasą abstrakcji** elementu x

Przykład podziału na klasy abstrakcji

$$X=$$
 $xEy \Leftrightarrow x+y$ jest liczbą parzystą podział $|E=\{\ 1|E,2|E\ \}$ $1|E=\{\ y\in\ : y \text{ jest nieparzysta}\ \}$, $2|E=\{\ y\in\ : y \text{ jest parzysta}\ \}$

• w zbiorze wszystkich podziałów zbioru $\Pi(X)$ można wprowadzić relację porządkującą: rozważmy dwa podziały $\pi, \sigma \in \Pi(X)$;

mówimy, że podział π jest *rozdrobnieniem* podziału σ , jeśli każdy blok B podziału σ jest sumą mnogościową pewnej liczby bloków podziału π ;

zapisujemy ten fakt w postaci

 $\pi \leq \sigma$

Powyższa relacja \leq jest relacją porządku na zbiorze $\Pi(X)$!

Przykład relacji pomiędzy podziałami zbioru na bloki

$$X = \{ a, b, c, d, e \}$$

$$\{ \{a, c\}, \{b\}, \{d\}, \{e\} \} \le \{ \{a, b, c\}, \{d, e\} \}$$

Ile jest podziałów zbioru *n*-elementowego na *k* bloków?

Przykład

$$X = \{ a, b, c, d \}$$
 $|X| = 4$ $k = 3$
 $\Pi_3(X) = \{ \pi^1, \pi^2, ..., \pi^6 \}$ $|\Pi_3(X)| = 6$

LICZBY STIRLINGA (drugiego rodzaju)

$$S(n, k) = |\Pi_k(X)|$$
 dla $|X| = n$
 $S(n, k) = 0$ dla $k > n$

dodatkowo przyjmujemy, że S(0, 0) = 1

Wyznaczanie liczb Stirlinga drugiego rodzaju:

$$S(n, n) = 1$$
 dla $n \ge 0$
 $S(n, 0) = 0$ dla $n > 0$

Twierdzenie

$$S(n, k) = S(n-1, k-1) + k S(n-1, k)$$
 dla $0 < k < n$

Dowód

Rozważmy zbiór wszystkich podziałów zbioru $X = \{1, 2, ..., n\}$ na k bloków. Dla dowolnego podziału $\pi \in \Pi_k(X)$ zachodzi jeden z dwóch przypadków: π zawiera blok jednoelementowy $\{n\}$ albo n jest elementem bloku co najmniej dwuelementowego

Liczba podziałów w $\Pi_k(X)$, dla których zachodzi przypadek pierwszy, jest równa liczbie podziałów zbioru n-1 elementowego na k-1 bloków, czyli wynosi S(n-1, k-1).

Liczba podziałów, dla których zachodzi przypadek drugi, jest równa k S(n-1, k), ponieważ podziały te otrzymujemy z podziałów zbioru $\{1, 2, ..., n-1\}$ na k bloków poprzez dodawanie elementu n kolejno do każdego z bloków takiego podziału.

Oba przypadki są rozłączne, a zatem

$$|\Pi_k(X)| = S(n-1, k-1) + k S(n-1, k)$$

Ile jest wszystkich podziałów zbioru n-elementowego?

$$B_n = |\Pi(X)|$$
 dla $|X| = n$; $B_n = \sum_{k=0}^n S(n,k)$; B_n - liczba Bella

Tablica liczb Stirlinga drugiego rodzaju i liczb Bella:

	B_n	B_n $S(n, k)$												
		k = 0	1	2	3	4	5	6	7	8	9	10		
n = 0	1	1	0	0	0	0	0	0	0	0	0	0		
1	1	0	1	0	0	0	0	0	0	0	0	0		
2	2	0	1	1	0	0	0	0	0	0	0	0		
3	5	0	1	3	1	0	0	0	0	0	0	0		
4	15	0	1	7	6	1	0	0	0	0	0	0		
5	52	0	1	15	25	10	1	0	0	0	0	0		
6	203	0	1	31	90	65	15	1	0	0	0	0		
7	877	0	1	63	301	350	140	21	1	0	0	0		
8	4140	0	1	127	966	1701	1050	266	28	1	0	0		
9	21147	0	1	255	3025	7770	6951	2646	462	36	1	0		
10	115975	0	1	511	9330	34105	42525	22827	5880	750	45	1		

Tożsamości dla liczb Stirlinga i Bella:
$$S(n,k) = \sum_{i=k-1}^{n-1} \binom{n-1}{i} S(i,k-1)$$
 dla $k \ge 2$; $B_{n+1} = \sum_{i=0}^{n} \binom{n}{i} B_i$

Związek pomiędzy liczbami Stirlinga drugiego rodzaju i funkcjami z X na Y

Ile jest funkcji ze zbioru *n*-elementowego *X* na zbiór *k*-elementowy *Y*?

Przyjmijmy oznaczenie:

 $s_{n,k}$ - liczba funkcji z X na Y dla |X| = n, |Y| = k

• każdej funkcji $f: X \xrightarrow{na} Y$ można przyporządkować podział zbioru X na k bloków, definiując go iako

$$N(f) = \{ f^{-1}(\{y\}) : y \in Y \}$$

• każdemu podziałowi $\pi \in \Pi_k(X)$ odpowiada dokładnie k! funkcji z X na Y, dla których $N(f) = \pi$. Każda z tych funkcji przyporządkowuje wzajemnie jednoznacznie blokom podziału π elementy zbioru Y

$$S_{n,k} = k ! S(n,k)$$

Przykład

$$n = 4$$
, $k = 3$, $\Pi_3(X) \ni \pi = N(f) = \{\{1\}, \{2, 3\}, \{4\}\}\}$

GENEROWANIE PODZIAŁÓW ZBIORU (n-elementowego)

Jeśli mamy podział $\sigma = \{B_1, ..., B_k\}$ dla zbioru $\{1, ..., n-1\}$, to możemy utworzyć k+1 podziałów zbioru $X = \{1, ..., n\}$:

$$B_1 \cup \{n\}, B_2, \dots, B_k$$

 $B_1, B_2 \cup \{n\}, \dots, B_k$

 B_1 ,

$$B_2, \qquad ..., \qquad B_k \cup \{n\}$$

$$B_1$$
, B_2 , ..., B_k , $\{n\}$

Przykład generowania podziałów zbioru {1, 2, ..., n}

PODZIAŁY LICZBY

 $n, k \in \{1, 2, ...\}$

Na ile sposobów można zapisać liczbę n w postaci sumy k składników: $n = a_1 + ... + a_k$,

gdzie $a_1 \ge a_2 \ge ... \ge a_k > 0$? Każdy taki ciąg składników $a_1, ..., a_k$ nazywamy podziałem liczby n na k składników

P(n, k)- liczba podziałów liczby n na k składników

P(n)- liczba wszystkich podziałów liczby n

Duraldad - hiomanod-ialón lio-ha 6

Przykład zbior	u podziałów liczby 6	
n = 6	6	P(6,1) = 1
	5 1	P(6,2) = 3
	4 2	P(6,3) = 3
	4 1 1	P(6,4) = 2
	3 3	P(6,5) = 1
	3 2 1	P(6,6) = 1
	3 1 1 1	
	2 2 2	P(6) = 11
	2 2 1 1	
	2 1 1 1 1	
	1 1 1 1 1 1	

Diagram Ferrersa

Dla podziału $n = a_1 + ... + a_k$ tworzymy diagram o k wierszach, który zawiera a_i punktów w i-tym wierszu

Przykład diagramu dla podziału liczby 10

$$10 = 5 + 3 + 2$$

• • • •

Podział sprzężony wynika z transpozycji diagramu Ferrersa

Przykład podziału sprzężonego

$$10 = 3 + 3 + 2 + 1 + 1$$

• • •

Twierdzenie

Liczba podziałów liczby n na k składników jest równa liczbie podziałów liczby n, w których największy składnik równy jest k.

Zależność rekurencyjna dla liczby podziałów liczby n na k składników:

Przyjmujemy, że P(0, 0) = P(0) = 1,

a dla $n \ge k > 0$ zachodzi P(n, k) = P(n-1, k-1) + P(n-k, k)

Tablica liczby podziałów liczby na składniki:

	P(n)	P(n, k)													
		k = 0	1	2	3	4	5	6	7	8	9	10	11	12	
n = 0	1	1	0	0	()	0	0	0	0	0	0	0	0	0	
1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	
2	2	0	1	1	0	0	0	0	()	()	0	()	()	()	
3	3	0	1	1	1	0	0	0	0	0	()	0	0	0	
4	5	0	1	2	1	1	0	0	0	0	0	0	0	0	
5	7	0	1	2	2	1	1	0	0	0	0	0	0	0	
6	11	0	1	3	3	2	1	1	0	0	0	0	0	0	
7	15	0	1	3	4	3	2	1	1	0	0	0	0	0	
8	22	0	1	4	5	5	3	2	1	1	0	()	()	()	
9	30	0	1	4	7	6	5	3	2	1	1	()	0	0	
10	42	0	1	5	8	9	7	5	3	2	1	1	()	0	
11	56	0	1	5	10	11	10	7	5	3	2	1	1	0	
12	77	0	1	6	12	15	13	11	7	5	3	2	1	1	
			I												1