Отчёт по лабораторной работе №1

Основы информационной безопасности

Бызова М.О.

13 февраля 2025

Российский университет дружбы народов, Москва, Россия

Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

Задание

- 1. Установка и настройка операционной системы.
- 2. Найти следующую информацию:
 - 2.1 Версия ядра Linux (Linux version).
 - 2.2 Частота процессора (Detected Mhz processor).
 - 2.3 Модель процессора (CPU0).
 - 2.4 Объем доступной оперативной памяти (Memory available).
 - 2.5 Тип обнаруженного гипервизора (Hypervisor detected).
 - 2.6 Тип файловой системы корневого раздела.

Я выполняю лабораторную работу на домашнем оборудовании, поэтому создаю новую виртуальную машину в VirtualBox, выбираю имя, местоположение и образ ISO, устанавливать будем операционную систему Rocku DVD (рис. 1).

Рис. 1: Окно создания виртуальной машины

Предварительно выбираю имя пользователя и имя хоста (рис. 2).

Рис. 2: Окно установки гостевой ОС

Выставляю основной памяти размер 2048 Мб, выбираю 2 процессора, чтобы ничего не висло (рис. 3).

Рис. 3: Окно выбора основных характеристик для гостевой ОС

Выделаю 40 Гб памяти на виртуальном жестком диске (рис. 4).

Рис. 4: Окно выбора объема памяти

Соглашаюсь с проставленными настройками (рис. 5).

Рис. 5: Итоговые настройки

Начинается загрузка операционной системы (рис. 6).

Рис. 6: Загруза операционной системы Rocky

При этом должен быть подключен в носителях образ диска! (рис. 7).

Рис. 7: Подключенные носители

Выбираю язык установки (рис. 8).

Рис. 8: Выбор языка установки

В обзоре установки будем проверять все настройки и менять на нужные (рис. 9).

Рис. 9: Окно настроек

Язык раскладки должен быть русский и английский (рис. 10).

Рис. 10: Выбор раскладки

Часовой пояс поменяла на московское время (рис. 11).

Рис. 11: Изменение часового пояса

Установила пароль для администратора (рис. 12).

Рис. 12: Настройка аккаунта root

Для пользователя так же сделала пароль и сделала этого пользователя администратором (рис. 13).

Рис. 13: Настройка пользователя

В соответствии с требованием лабораторной работы выбираю окружение сервер с GUB и средства разработки в дополнительном программном обеспечении (рис. 14).

Рис. 14: Выбор окружения

Отключаю kdump (рис. 15).

Рис. 15: Отключение kdump

Проверяю сеть, указываю имя узла в соответствии с соглашением об именовании (рис. 16).

Рис. 16: Выбор сети

Начало установки (рис. 17).

Рис. 17: Установка

После заврешения установки образ диска сам пропадет из носителей (рис. 18).

Рис. 18: Проверка носителей

После установки при запуске операционной системы появляется окно выбора пользователя (рис. 19).

Рис. 19: Окно входа в операционную систему

Открываю терминал, в нем прописываю dmesg | less (рис. 20).

Рис. 20: Окно терминала

Версия ядра 5.14.0-362.8.1.el9_3.x86_64 (рис. 21).

```
[mobihzova@mobihzova ~]$ dmesg [ grep -1 "Linux version" [ 0.000000] Linux version 5.14,0-05.31.41,1-10_5.88_04 (mockbuild@iadl-prod-build@01.bld.equ.rockylinux.org) (gcc (GCC) 11.5.0 20240719 (Red Hat 11.5.0-2), GNU ld version 2.35.2-54.el9) #1 SMP PREEMPT_DYNAMIC Fri Nov 15 12:04:32 UTC 2024 [mobihzova@mobihzova ~]$
```

Рис. 21: Версия ядра

Частота процессора 1993 МГц (рис. 22).

```
[mobihzova@mobihzova ~]$ dmesg | grep -i "Detected"
[ 0.000000] Hypervisor <mark>detected:</mark> KVM
[ 0.000007] tsc: <mark>Detected</mark> 2688.004 MHz processor
```

Рис. 22: Частота процессора

Модель процессора Intel Core i7-8550U (рис. 23).

```
[mobihzova@mobihzova ~]$ dmesg | grep -i "CPU0"
[ 0.137261] smpboot: CPU0: 12th Gen Intel(R) Core(TM) i7-12650H (family: 0x6, model: 0x9a, stepping: 0x3)
[mobihzova@mobihzova ~]$
```

Рис. 23: Модель процессора

Доступно 260860 Кб из 2096696 Кб (рис. 24).

```
nobihzova@mobihzova ~l$ dmesg | grep -i "Memory"
   0.000554] ACPI: Reserving FACP table memory at [mem 0x7fff00f0-0x7fff01e3]
   0.000555] ACPI: Reserving DSDT table memory at [mem 0x7fff0610-0x7fff2962]
   0.000555] ACPI: Reserving FACS table memory at [mem 0x7fff0200-0x7fff023f]
   0.000556] ACPI: Reserving FACS table memory at [mem 0x7fff0200-0x7fff023f]
   0.000556] ACPI: Reserving APIC table memory at [mem 0x7fff0240-0x7fff029b]
   0.0005561 ACPI: Reserving SSDT table me
                                                v at [mem 0x7fff02a0-0x7fff060b]
   0.0009011 Early memory node ranges
   0.001621] PM: hibernation: Registered nosave memory: [mem 0x00000000-0x00000fff]
   0.001622] PM: hibernation: Registered nosave memory: [mem 0x0009f000-0x0009ffff]
0.001622] PM: hibernation: Registered nosave memory: [mem 0x000a0000-0x000effff]
   0.001623] PM: hibernation: Registered nosave memory: [mem 0x000f0000-0x000fffff]
   0.007531] Memory: 260860K/2096696K available (16384K kernel code, 5685K rwdata, 12904K rodata, 3976K init, 5672
bss, 148336K reserved, 0K cma-reserved)
   0.033971] Freeing SMP alternatives memory: 40K
   0.143875] x86/mm; Memory block size: 128MB
   0.2105051 Non-volatile memory driver v1.3
   0.689543] Freeing initrd memory: 57788K
   0.7834781 Freeing unused decrypted memory: 2028K
   0.783870] Freeing unused kernel image (initmem) memory: 3976K
   0.784229] Freeing unused kernel image (rodata/data gap) memory: 1432K
   1.809112] vmwgfx 0000:00:02.0: [drm] Legacy memory limits: VRAM = 16384 kB, FIF0 = 2048 kB, surface = 507904 kB
   1.809117] vmwgfx 0000:00:02.0: [drm] Maximum display memory size is 16384 kiB
mobihzova@mobihzova ~l$
```

Рис. 24: Объем доступной оперативной памяти

Обнаруженный гипервизор типа KVM (рис. 25).

```
[mobihzova@mobihzova ~]$ dmesg | grep -i "Hypervisor"
[ 0.000000] Hypervisor detected: KVM
```

Рис. 25: Тип обнаруженного гипервизора

sudo fdish -l показывает тип файловой системы, типа Linux, Linux LVM (рис. 26).

```
[mobihzova@mobihzova ~1$ sudo fdisk -1
Мы полагаем, что ваш системный администратор изложил вам основы
безопасности. Как правило, всё сводится к трём следующим правилам:
    №1) Уважайте частную жизнь других.
    №2) Думайте, прежде что-то вводить.
    №3) C большой властью приходит большая ответственность.
[sudo] пароль для mobihzova:
Диск /dev/sda: 40 GiB. 42949672960 байт. 83886080 секторов
Disk model: VBOX HARDDISK
Единицы: секторов по 1 * 512 = 512 байт
Размер сектора (логический/физический): 512 байт / 512 байт
Размер I/O (минимальный/оптимальный): 512 байт / 512 байт
Тип метки диска: dos
Идентификатор диска: 0xfecc2ed7
Устр-во
           Загрузочный начало
                                  Конец Секторы Размер Идентификатор Тип
 /dev/sda1 *
                          2048 2099199 2097152
                                                                   83 Linux
/dev/sda2
                       2099200 83886079 81786880
                                                                   8e Linux LVM
```

Рис. 26: Тип файловой системы

Далее показана последовательно монтирования файловых систем (рис. 27).

```
mobihzova@mobihzova ~]$ dmesg | grep -i "Mount"
   0.034242] Mount-cache hash table entries: 4096 (order: 3, 32768 bytes, linear)
   0.034247] Mountpoint-cache hash table entries: 4096 (order: 3, 32768 bytes, linear)
   2.7639061 XFS (dm-0): Mounting V5 Filesystem 9ffe3d69-046d-4b48-ad92-0302cle30880
   2.782312] XFS (dm-0): Ending clean
   3.454163] systemd[1]: Set up automount Arbitrary Executable File Formats File System Automount Point.
    3.468591] systemd[1]: Mounting Huge Pages File System...
   3.469689] systemd[1]: Mounting POSIX Message Queue File System...
   3.470487] systemd[1]: Mounting Kernel Debug File System...
   3.471654] systemd[1]: Mounting Kernel Trace File System...
   3.496145] systemd[1]: Starting Remount Root and Kernel File Systems...
   3.507727] systemd[1]: Nounted Huge Pages File System.
3.508095] systemd[1]: Nounted POSIX Message Queue File System.
   3.508222] systemd[1]: Mounted ForsiA Message Queue File
3.508226] systemd[1]: Mounted Kernel Trace File System.
                            Mounting FUSE Control File System...
   3.515114] systemd[1]:
                                 ting Kernel Configuration File System...
   3.516467] systemd[1]:
   4.523918] XFS (sdal): Mounting V5 Filesystem b8c050b0-fd85-4b09-ab84-733598402289
   4.854010] XFS (sda1): Ending clean
 obihzova@mobihzova ~1¢
```

Рис. 27: Последовательность монтирования файловых систем

Выводы

Я приобрела практические навыки установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.