Quiz - 1 [rerun]

Instructions

- The following questions may have more than one correct answers.
- There is no negative marking for wrong answers.
- Correct answers are worth one point. Partially correct answers are worth half a point.
- 'i' represents the imaginary number, $i^2 = -1$.
- \bullet $\,\mathbb{C}$ is the set of all complex numbers. \mathbb{R} is the set of all real numbers.

Questions

- 1. The state vector of a single qubit system belongs to which of the following spaces?
 - a. $\mathbb{C} \times \mathbb{C}$
 - b. $\mathbb{C}^2 \times \mathbb{C}^2$
 - c. \mathbb{R}^3
 - d. \mathbb{C}
- 2. The norm of a single qubit state vector is _____.
 - a. *n*
 - b. 2^{n}
 - c. 1
 - d. 0
- 3. Which of the following is/are valid state vector(s) of a quantum bit?
 - a. $\frac{1}{9}|0\rangle + \frac{2\sqrt{10}}{9}|1\rangle$
 - b. |1>
 - c. $\sqrt{\frac{2}{3}} |0\rangle + \sqrt{\frac{1}{3}} |1\rangle$
 - d. $\frac{2}{3}|0\rangle + \frac{1}{3}|1\rangle$

- 4. Which of the following is/are valid single qubit transformation(s)?
 - a. $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
 - b. $\begin{pmatrix} \frac{1}{\sqrt{2}} & 0\\ 0 & \frac{1}{\sqrt{2}} \end{pmatrix}$
 - c. $\begin{pmatrix} 0 & \frac{1+i}{\sqrt{2}} \\ \frac{1-i}{\sqrt{2}} & 0 \end{pmatrix}$
 - d. $\begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix}$
- 5. A single qubit state vector is of the form

$$|\psi\rangle = \frac{\sqrt{3}}{2} |0\rangle + x |1\rangle$$

Which of the following is an allowed value of x?

- a. $\frac{1}{2}$
- b. $\frac{1}{\sqrt{2}}$
- c. $\frac{1}{2\sqrt{2}} + i\frac{1}{2\sqrt{2}}$
- d. None of the above
- 6. If a qubit in the state, $|\psi\rangle = \frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle)$ is measured in the Hadamard basis. What is the probability that the resultant state is $|+\rangle$?
 - a. 1
 - b. 0.25
 - c. 0
 - d. 0.5
- 7. The action of a Unitary transformation U, on the single qubit standard basis is given by:

$$U\left|0\right\rangle = \frac{2\sqrt{2}}{3}\left|0\right\rangle + \frac{i}{3}\left|1\right\rangle$$

$$U\left|1\right\rangle = x\left|0\right\rangle + \frac{2\sqrt{2}}{3}\left|1\right\rangle$$

What is the value of x?

- a. $\frac{1}{3}$
- b. $-\frac{i}{3}$
- c. $\frac{i}{3}$
- d. $-\frac{1}{3}$

8. Given two state vectors,

$$|\psi\rangle = \frac{1}{\sqrt{2}} |0\rangle + x |1\rangle$$

and

$$|\phi\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$

such that, $\langle \phi | \psi \rangle = -\frac{i}{\sqrt{2}}$. What is the value of x?

- a. $\frac{1}{\sqrt{2}}$
b. $\frac{1-i}{\sqrt{2}}$
- c. $\frac{1+i}{\sqrt{2}}$
- d. $\frac{i}{\sqrt{2}}$
- 9. The number of allowed single qubit bases is _____.
 - a. 1
 - b. ∞
 - c. 2
 - d. none of the above.
- 10. Which of the following vectors form an orthonormal basis?
 - a. $\{|0\rangle, |+\rangle\}$
 - b. $\{\left|-\right\rangle,\left|1\right\rangle\}$
 - c. $\left\{\frac{|0\rangle+|1\rangle}{\sqrt{2}}, \frac{|0\rangle+i|1\rangle}{\sqrt{2}}\right\}$
 - d. none of the above.