SLT coding exercise #1

${\color{red} \textbf{Locally Linear Embedding}}_{\color{blue} \textbf{https://gitlab.vis.ethz.ch/vwegmayr/slt-coding-exercises}}$

Due on Monday, March 6th, 2017

Michael Schürch 13-916-614

Contents

The Model	
The Questions - solved	
(a) Get the data	
(b) Locally linear embedding	
(c) Cluster structure	
(d) Nearest Neighbors	
(e) Linear manifold interpolation	
The Implementation	
Your Page	

The Model

The LLE algorithm is a method for dimensionality reduction in an unsupervised manner. Thus for some data matrix $\mathcal{X} \in \mathbf{R}^{nxD}$ with n data points of size D we seek a new matrix $\mathcal{Y} \in \mathbf{R}^{nxd}$ with d < D thus reducing the dimension of each data point.

The objective of LLE is to minimize the following reconstruction error:

$$\mathcal{E}(W) = \sum_{i} \left| X_i - \sum_{j} W_{ij} X_j \right|^2$$

where we have the constraint that $\sum_{j} W_{ij} = 1$ and $W_{ij} = 0$ if X_{j} isn't one of the K closest neighbors of X_{i} .

In a final step we use found W and map every high dimensional observation X_i to a low dimensional vector Y_i . This is done by minimizing the embedding cost function:

$$\Phi(Y) = \sum_{i} |Y_i - \sum_{j} W_{ij} Y_j|^2 = \sum_{ij} M_{ij} (Y_i \cdot Y_j)$$

with the constraint that $\sum_i Y_i = 0$ and $\frac{1}{N} \sum_i Y_i Y_i^T = I$

This information was gathered from https://www.cs.nyu.edu/roweis/lle/papers/lleintro.pdf.

The Questions - solved

(a) Get the data

I got the data from http://yann.lecun.com/exdb/mnist/ and uncompressed it into the folder ./data.

(b) Locally linear embedding

For the 2D embedding space we can observe that the numbers 1 and 0 form a cluster and all other numbers seem to be scrambled into a third cluster in the middle. The 3D embedding space additionally manages to distinguish between numbers 6,2 and 7,4.

Figure 1

(c) Cluster structure

The matrix M, see Fig. 2a, is very sparse. It also has most of its non-zero entries on its diagonal and is symmetric. But I cannot see any form of a block structure. The singular values of M can be seen in Fig. 2b. As of determining the optimal embedding dimension we can basically read off the reconstruction error by summing up the last d eigenvalues. Therefore we can estimate the error easily and choose a certain threshold.

Figure 2

(d) Nearest Neighbors

As can be seen in the following illustrations Fig 3, 4 the choice of K and the metric can have a big effect on the quality of the solution.

Figure 4: Chebyshev metric

(e) Linear manifold interpolation

See the Reconstruction algorithm in the section implementation for details. We can see in Fig. 5 that the reconstruction is possible for some numbers like 0 and can be hard for numbers like 7. Interpolating between these two numbers in the embedded space also translates to an interpolation in the original space.

Figure 6: Interpolation in original space from 7 to 0

The Implementation

13-916-614/1_locally_linear_embedding

The implementation can be seen in src/code.ipynb. I mostly used the LocallyLinearEmbedding implementation from scikit learn or adapted it. Further I will describe issues I encountered as I worked through the project:

- 1. chosen Parameters
 - b) I chose n_neighbors = 30
- 2. Efficiency problems (task b) Because the LLE algorithm has a complexity of $\mathcal{O}(N^2)$ I could not use the full dataset and restricted it to 1200 data points.

Reconstruction algorithm

Given original data matrix $\mathcal{X} \in \mathbf{R}^{nxD}$, embedded space $\mathcal{Y} \in \mathbf{R}^{nxd}$ and a new data point $y_{new} \in \mathbf{R}^{1xd}$ in the embedded space. We reconstruct the point in the original space by the following procedure:

- 1. Find the K nearest neighbors of y_{new} . Let's denote them as $NB \in \mathbf{R}^{Kxd}$
- 2. Solve the following using a Least Squares approach: $uNB = y_{new}$
- 3. For all neighbors in NB find the corresponding points $NB_{orig} \in \mathbf{R}^{KxD}$ in the original space
- 4. Reconstruction: $x_{new} = uNB_{orig}$

Your Page

I want cookie. - cookie monster

Your Answer

13-916-614/1_locally_linear_embedding