CPE301 – SPRING 2019

Design Assignment 4B

Student Name: Ron Joshua Recrio

Student #: 5003825419

Student Email: recrio@unlv.nevada.edu

Primary Github address: https://github.com/recrio/submissions

Directory: /DesignAssignments/DA4A

Submit the following for all Labs:

1. In the document, for each task submit the modified or included code (only) with highlights and justifications of the modifications. Also, include the comments.

- Use the previously create a Github repository with a random name (no CPE/301, Lastname, Firstname). Place all labs under the root folder ESD301/DA, sub-folder named LABXX, with one document and one video link file for each lab, place modified asm/c files named as LabXX-TYY.asm/c.
- 3. If multiple asm/c files or other libraries are used, create a folder LabXX-TYY and place these files inside the folder.
- 4. The folder should have a) Word document (see template), b) source code file(s) and other include files, c) text file with youtube video links (see template).

1. COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS

List of Components used:

ATmega328p Xplained Mini Multifunction Shield 28BYJ-48 (Stepper Motor) ULN2003A (Unipolar Stepper Motor Driver)

Block diagram with pins used in the Atmega328P

Task 1:

Task 2:

2. INITIAL CODE OF TASK 1/B

```
#define F CPU 1600000UL
#define CONVERSION 10
#include <avr/io.h>
#include <avr/interrupt.h>
#include <util/delay.h>
void TIMER init(void);
void ADC_init(void);
volatile int ADCvalue; // holds the value of ADC
int main(void)
{
       DDRB = 0x0F; // PORTB[3:0] set to output
       PORTB = 0; // Initially set output to 0
       ADC init(); // initializes ADC
       TIMER_init(); // initializes TIMER
       while (1)
       {
              ADCSRA |= (1<<ADSC); // Start conversion
              while((ADCSRA&(1<<ADIF))==0); // while not done converting do nothing</pre>
              ADCSRA |= (1<<ADIF); // reset converter
              ADCvalue = ADC; // store ADC to ADCvalue for debugging
              OCR1A = CONVERSION*ADCvalue; // 224/1024 is the ratio of the speed so that
max speed is 95% of the pwm
              // Sequence
              PORTB = 0x09;
              while(!(TIFR1 & (1<<OCF1A))); // Delays using CTC</pre>
              TIFR1 |= (1 << OCF1A);
                                                         // Resets
              PORTB = 0x03;
              while(!(TIFR1 & (1<<OCF1A)));</pre>
              TIFR1 |= (1 << OCF1A);
              PORTB = 0x06;
              while(!(TIFR1 & (1<<OCF1A)));</pre>
              TIFR1 |= (1 << OCF1A);
              PORTB = 0 \times 0 C;
              while(!(TIFR1 & (1<<OCF1A)));</pre>
              TIFR1 = (1 << OCF1A);
       }
}
void TIMER_init(void) {
       TCCR1B = (1 << WGM12) | // CTC mode
                      (1<<CS11); // Prescaler 8
}
void ADC init(void) {
       DDRC &= (0<<PORTC0); // PC0 as input
       PORTC |= (1<<PORTC1); // Pull up resistor
       ADMUX |= (1<<REFS0); // REFERENCE VOLTAGE AT AREF
       ADCSRA =
       (1<<ADEN) | // ADC enable
```

```
(1<<ADPS2)| // ADC
(1<<ADPS1)| // Prescaler
(1<<ADPS0); // 128
sei();
}</pre>
```

3. INITIAL CODE FOR TASK 2/B

```
#define F_CPU 1600000UL
#include <avr/io.h>
#include <util/delay.h>
void TIMER_init(void);
void ADC_init(void);
int main(void)
{
      ADC_init(); // initialize ADC settings
      TIMER_init(); // initialize TIMER1
      while(1)
      {
             ADCSRA |= (1 << ADSC);
                                       // Starts conversion
             while((ADCSRA&(1<<ADIF))==0); // wait for conversion</pre>
             ADCSRA |= (1<<ADIF); // reset converter
             ICR1 = 4999; // fPWM = 50Hz
             DDRB |= (1<<PB1); // Set PB1 as output
             OCR1A = ADC; // Adjusts pulse width range
             _delay_ms(100);
                              // Short Delay
      }
}
void TIMER_init(void)
{
      //Timer1
      TCCR1A = (1<<COM1A1) | // Clear OC1A on Compare non-inverting
                      (1<<COM1B1) | //
                      (1<<WGM11) ; // Fast
      TCCR1B = (1<<WGM13) | // PWM
                      (1 < WGM12) \mid // TOP = ICR1
                      (1<<CS11) | // Prescaler
                                   // 64
                      (1<<CS10);
}
void ADC_init (void)
      ADMUX = (1 << REFS0);
      // Set Aref
      // right-justified data
      ADCSRA |= (1<<ADEN) |
                                  // ADC enable
                       (1<<ADSC) | // AD start conversion
                      (1<<ADPS2) | // ADC
                      (1<<ADPS1) // Prescaler
                       (1<<ADPS0); // 128
}
```

4. SCHEMATICS

Task 1:

^{*}not exact models

Task 2:

5. SCREENSHOTS OF EACH TASK OUTPUT (ATMEL STUDIO OUTPUT)

Task1:

Before

OCR1A	0x127a
ADCvalue	0x01d9

After

OCR1A	0x0de8
ADCvalue	0x0164

Task2:

Before

Nume	value
OCR1A	0x0176
ADC	0x0176

After

OCR1A	0x01d9
ADC	0x01d9

6. SCREENSHOT OF EACH DEMO (BOARD SETUP)

Task 1:

7. VIDEO LINKS OF EACH DEMO

Task 1:

https://youtu.be/ouQdYaP1QoE

Task 2:

https://youtu.be/pdVJZYORRas

8. GITHUB LINK OF THIS DA

https://github.com/recrio/submissions/tree/master/DesignAssignments/DA4B

Student Academic Misconduct Policy

http://studentconduct.unlv.edu/misconduct/policy.html

"This assignment submission is my own, original work".

Ron Joshua Recrio