Nama: Muhammad Rizky Haksono

NIM : 202110370311325

Kelas : Statistika dan Probabilitas C

Pemodelan Regresi Menggunakan Tools Python

1. Source Code

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import sklearn
dataset = pd.read csv('test.csv')
x = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 1].values
dataku = pd.DataFrame(dataset)
plt.scatter(dataku.Umur, dataku.Angkatan)
plt.xlabel("Umur")
plt.ylabel("Angkatan")
plt.title("Masa Umur dan Angkatan Mahasiswa")
plt.show()
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size =
0.2, random_state = 0)
from sklearn.linear model import LinearRegression
regressor = LinearRegression()
regressor.fit(X train, y train)
```

```
plt.figure(figsize = (10, 8))
plt.scatter(X_train, y_train, color = 'blue')
plt.plot(X_train, regressor.predict(X_train), color = 'red')
plt.title('Masa Umur Terhadap Angkatan')
plt.xlabel('Masa Umur')
plt.ylabel('Masa Angkatan')
plt.show()
```

2. Output Program

3. Interpretasi Model, Uji Parsial, Uji Simultan, dan Evaluasi Model dengan R Square

a. Interpretasi Model

Variables Entered/Removeda

Model	Variables Entered	Variables Removed	Method
1	X10, X8, X6, X3, X5, X2, X9, X4, X7, X1 ^b		Enter

- a. Dependent Variable: Y
- b. All requested variables entered.

b. Uji Parsial

Coefficient Correlations^a

Model			X10	X8	X6	Х3	X5	X2	X9	X4	X7	X1
1	Correlations	X10	1.000	.112	.058	042	128	103	381	051	188	.052
		X8	.112	1.000	.072	.029	.024	323	129	246	186	032
		X6	.058	.072	1.000	047	127	165	068	078	347	017
		X3	042	.029	047	1.000	.185	168	.071	175	105	603
		X5	128	.024	127	.185	1.000	.028	064	299	.025	279
		X2	103	323	165	168	.028	1.000	004	.139	.121	.048
		X9	381	129	068	.071	064	004	1.000	.112	.061	094
		X4	051	246	078	175	299	.139	.112	1.000	091	.032
		X7	188	186	347	105	.025	.121	.061	091	1.000	128
		X1	.052	032	017	603	279	.048	094	.032	128	1.000
	Covariances	X10	.272	.025	.016	012	034	021	093	014	051	.016
		X8	.025	.182	.016	.007	.005	055	026	053	041	008
		X6	.016	.016	.277	014	034	034	017	021	095	005
		X3	012	.007	014	.315	.053	037	.019	050	031	201
		X5	034	.005	034	.053	.264	.006	015	078	.007	085
		X2	021	055	034	037	.006	.158	001	.028	.025	.011
		X9	093	026	017	.019	015	001	.217	.026	.015	026
		X4	014	053	021	050	078	.028	.026	.258	024	.010
		X7	051	041	095	031	.007	.025	.015	024	.272	040
		X1	.016	008	005	201	085	.011	026	.010	040	.352

a. Dependent Variable: Y

c. Uji Simultan

ANOVA^a

	Model	Sum of Squares	df	Mean Square	F	Sig.
Γ	1 Regression	13072.870	10	1307.287	53.567	.000 ^b
ı	Residual	2245.247	92	24.405		
L	Total	15318.117	102			

a. Dependent Variable: Y

b. Predictors: (Constant), X10, X8, X6, X3, X5, X2, X9, X4, X7, X1

d. Evaluasi Model (R Square)

Model Summary^b

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin- Watson	
1	.924ª	.853	.837	4.94013	2.262	

a. Predictors: (Constant), X10, X8, X6, X3, X5, X2, X9, X4, X7, X1

b. Dependent Variable: Y

e. Residuals Statistics

Residuals Statistics^a

	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	25.1455	91.1151	70.8058	11.32102	103
Residual	-18.81521	16.56557	.00000	4.69172	103
Std. Predicted Value	-4.033	1.794	.000	1.000	103
Std. Residual	-3.809	3.353	.000	.950	103

a. Dependent Variable: Y