Sudoku is Hard

Eve Routledge

Complexity Theory

- This puzzle is hard, even for computers to solve.
- We judge difficulty on the time taken for an algorithm to solve a puzzle in relation to it's input, we can quantify this using big o notation and we classify them into sets
- P are 'easy' and can be solved in O(nc)
- NP are 'difficult' and cannot be solved in O(n^c)
- To show sudoku is hard we must show it belongs to NP, in order to do this we can reduce a known NP problem (in our case SAT) to sudoku in polynomial time.

SAT

$$(a \lor b) \land (\neg a \lor \neg b)$$

а	b	(aVb)	$(\neg a \lor \neg b)$	$(a \lor b) \land (\neg a \lor \neg b)$
F	F	F	T	F
F	Т	Т	T 3	т 4
Т	F	Т	T	T
Т	Т	Т	F 6	F 7

Defⁿ: **SAT** is the decision problem determining whether a boolean expression is satisfiable or not. Cook Levin Theorem proves this is in NP.

Triangulating a Tripartite Graph

Def^{n:}

A graph G = (V, E) is **Tripartite** if a partition V_1, V_2, V_3 exists such that the vertices are split into three sets with no edges between vertices that belong to the same set, i.e for all $(v_i, v_j) \in E$ if $v_i \in V_i$ then $v_j \in V_i$. A **Triangulation** T of a graph G is a way to divide all edges into disjoint subsets T_i , each forming a triangle $(T_i = \{(v_1, v_2), (v_2, v_3), (v_3, v_1)\})$.

Latin Square

Defⁿ: A valid **Latin Square** puzzle is a function L: i,j \rightarrow x for values i,j \in {1, ..., D} and x \in {0, ..., D} satisfying the following:

- for all a, b, c ∈ {1, ..., D} with L(a, b) ≠ 0 and L(a, c) ≠ 0 then L(a, b) ≠ L(a, c)
- for all a, b, c ∈ {1, ..., D} with L(a, b) ≠ 0 and L(c, b) ≠ 0 then L(a, b) ≠ L(c, b)

It is complete or solved if for all i, $j \in \{1, ..., D\}$, $L(i, j) \neq 0$

Α	В	С
В	С	Α
С	А	В

Sudoku

Defⁿ: A valid **Sudoku** puzzle is a function S : i, j \rightarrow x for values i, j \in {1, ..., D²} and x \in {0, ..., D²} satisfying the following:

- for all a, b, c ∈ {1, ..., D2} with S(a, b) ≠ 0 and S(a,c) ≠ 0, then S(a, b) ≠ S(a,c)
- for all a, b, c ∈ {1, ..., D²} with S(a,b) ≠ 0 and S(c,b) ≠ 0, then S(a, b) ≠ S(c,b)
- for all a, b, c, d ∈ {1, ..., D²} with a mod D = c mod D, b mod D = d mod D, S(a,b) ≠ 0 and S(c,d) ≠ 0, then S(a,b) ≠ S(a,c)

1	2	3	4	5	6	7	8	9
4	5	6	7	8	9	1	2	3
7	8	9	1	2	3	4	5	6
2	3	4	5	6	7	8	9	1
5	6	7	8	9	1	2	3	4
8	9	1	2	3	4	5	6	7
3	4	5	6	7	8	9	1	2
6	7	8	9	1	2	3	4	5
9	1	2	3	4	5	6	7	8

 $(a \lor b \lor c) \land (\neg a \lor b \lor d)$

Triangulating a Tripartite Graph -> Latin Square

- Each row/column contain each element only once.
- If (r_i, c_j) ∈ E then LF(i,j)=empty else LF(i,j) ≠ k, k ∈ [1, ..., t]
- If $(r_i, e_k) \in E$ then for constant i, $LF(i,j) \neq k$
- If $(c_i, e_k) \in E$ then for constant j, $LF(i,j) \neq k$

А	В	С
В	С	Α
С	Α	В

^{*} Framework may only give a r by s array with values 1...t but this can be expanded to n by n dimensions

Latin Square -> Sudoku

Lemma: Let S be a Sudoku problem with construction

		7 L						
1	2	3		5	6		8	9
4	5	6	7	8	9		2	3
	8	9		2	3		5	6
2	3	4	5	6	7	8	9	1
5	6	7	8	9	1	2	3	4
8	9	1	2	3	4	5	6	7
3	4	5	6	7	8	9	1	2
6	7	8	9	1	2	3	4	5
9	1	2	3	4	5	6	7	8

Assume we have a quick algorithm for solving sudoku then we can solve SAT with a quick algorithm, contradiction.

Sudoku \leq_p Latin Square \leq_p Triangulating a Tripartite Graph \leq_p SAT