Homework 4 sample solution

Due 09/10/15

September 3, 2015

1. Use the formal definition of Big-Oh to prove that if f(n) = O(g(n)), then f(n) + g(n) = O(g(n)).

Answer:

Proof. Since f(n) = O(g(n)), there exist positive constants c and n_0 such that $f(n) \leq cg(n)$ for all $n \geq n_0$. As such, $f(n) + g(n) \leq (c+1)g(n)$ for all $n \geq n_0$. Thus, there exist constants c' = c + 1 and n_0 such that $f(n) + g(n) \leq c'g(n)$ for all $n \geq n_0$, so f(n) + g(n) = O(g(n)).

2. Prove that if f(n) is a polynomial of the form $\sum_{i=1}^{d} a_i n^{x_i}$, for some coeffi-

cients a_1, a_2, \ldots, a_d and exponents x_1, x_2, \ldots, x_d , then $f(n) = \Theta(n^{\max\{x_1, x_2, \ldots, x_d\}})$. *Hint*: you may use any property of Big-Oh notation listed in the slides. You may wish to use induction for this problem.

Answer:

Proof. We prove the claim by induction on d.

(Base case) When d=1, $f(n)=a_1n^{x_1}$. There exist constants $c_1=c_2=a_1$ and $n_0=1$ such that $c_1n^{x_1} \leq f(n) \leq c_2n^{x_1}$, so $f(n)=\Theta(n^{x_1})$.

(Inductive step) Suppose that $f(n) = \Theta(n^{\max\{x_1, x_2, \dots, x_d\}})$ for all polynomials f(n) with d terms, and suppose that f(n) is a polynomial with k+1 terms: $f(n) = \sum_{i=1}^{k+1} a_i n^{x_i}$. Note that $f(n) = a_{k+1} n^{x_{k+1}} + g(n)$, where $g(n) = \sum_{i=1}^{k} a_i n^{x_i}$. Since g(n) has d terms, $g(n) = \Theta(n^{x'})$, where $x' = \max\{x_1, x_2, \dots, x_k\}$, by the Inductive Hypothesis. There are two possibilities here: either $x' \geq x_{k+1}$ or $x' < x_{k+1}$. We consider these cases individually.

(Case 1: $x' \ge x_{k+1}$) Since $x' \ge x_{k+1}$, $n^{x'} \le n^{x_{k+1}}$ for all $n \ge 1$, so $n^{x_{k+1}} = O(n^{x'})$. Since $a_{k+1}n^{x_{k+1}} = \Theta(n^{x_{k+1}})$ and $n^{x_{k+1}} = O(n^{x'})$, $a_{k+1}n^{x_{k+1}} + g(n) = \Theta(g(n)) = \Theta(n^{x'})$. Also, $\max\{x_1, x_2, \dots, x_{k+1}\} = x'$ since $x' = \max\{x_1, \dots, x_k\}$ and $x' \ge x_{k+1}$.

(Case 2: $x' < x_{k+1}$) Since $x' < x_{k+1}$, $n^{x_{k+1}} \ge n^{x'}$ for all $n \ge 1$, so $n^{x'} = O(n^{x_{k+1}})$. Since $g(n) = \Theta(n^{x'})$ and $g(n) = O(n^{x_{k+1}})$, $a_{k+1}n^{x_{k+1}} + g(n) = O(n^{x_{k+1}})$

 $\Theta(n^{x_{k+1}})$. Also, $\max\{x_1, \dots, x_{k+1}\} = x_{k+1}$ since $x' = \max\{x_1, \dots, x_k\}$ and $x_{k+1} > x'$.

Thus, in either case, $f(n) = \Theta(n^{\max\{x_1, x_2, \dots, x_{k+1}\}})$. Therefore, the claim holds for all polynomials with 1 or more terms, by induction.

3. (Bonus) Prove that $2^n = \Omega(n^k)$ for all integers $k \ge 1$.

Answer:

Proof. First, we prove that $\lim_{n\to\infty}\frac{2^n}{n^k}=\infty$ for all $k\geq 1$ by induction.

(Base case) Consider $\lim_{n\to\infty}\frac{2^n}{n^1}$. Since both 2^n and n^1 approach ∞ as n approaches ∞ , we can apply L'Hôpital's Rule:

$$\lim_{n \to \infty} \frac{2^n}{n} = \lim_{n \to \infty} \frac{\frac{d}{dn} 2^n}{\frac{d}{dn} n}$$
$$= \lim_{n \to \infty} \frac{2^n \ln 2}{1}$$
$$= \infty$$

(*Inductive step*) Suppose that $\lim_{n\to\infty}\frac{2^n}{n^k}=\infty$, for some $k\geq 1$, and consider $\lim_{n\to\infty}\frac{2^n}{n^{k+1}}$. Since both 2^n and n^{k+1} approach ∞ as n approaches ∞ , we can apply L'Hôpital's Rule:

$$\lim_{n \to \infty} \frac{2^n}{n^{k+1}} = \lim_{n \to \infty} \frac{\frac{d}{dn} 2^n}{\frac{d}{dn} n^{k+1}}$$

$$= \lim_{n \to \infty} \frac{2^n \ln 2}{(k+1)n^k}$$

$$= \frac{\ln 2}{k+1} \lim_{n \to \infty} \frac{2^n}{n^k}$$

$$= \infty$$

(Note that we applied the inductive hypothesis between the last two lines.) Therefore, $\lim_{n\to\infty}\frac{2^n}{n^k}=\infty$ for all $k\geq 1$, by induction. As a result, $2^n=\Omega(n^k)$, for all $k\geq 1$.