Chapter 3 Arithmetic for Computers

Chulyun Kim

^{*} This material is based on the lecture slides provided by Morgan Kaufmann

Outline

- Introduction
- Addition and Subtraction
- Multiplication
- Division
- Floating Points
- Concluding Remarks

§3.1 Introduction

Arithmetic for Computers

- Operations on integers
 - Addition and subtraction
 - Multiplication and division
 - Dealing with overflow
- Floating-point real numbers
 - Representation and operations

Integer Addition

• Example: 7 + 6

- Overflow if result out of range
 - Adding +ve and –ve operands, no overflow
 - Adding two +ve operands
 - Overflow if result sign is 1
 - Adding two –ve operands
 - Overflow if result sign is 0

Integer Subtraction

- Add negation of second operand
- Example: 7 6 = 7 + (-6)

```
+7: 0000 0000 ... 0000 0111

-6: 1111 1111 ... 1111 1010

+1: 0000 0000 ... 0000 0001
```

- Overflow if result out of range
 - Subtracting two +ve or two –ve operands, no overflow
 - Subtracting +ve from –ve operand
 - Overflow if result sign is o
 - Subtracting –ve from +ve operand
 - Overflow if result sign is 1

Multiplication

Start with long-multiplication approach

Length of product is the sum of operand lengths

$$\rightarrow$$
 $(2^m-1)*(2^n-1) < 2^{m+n}$

Multiplication Hardware

Optimized Multiplier

Perform steps in parallel: add/shift

- One cycle per partial-product addition
 - That's ok, if frequency of multiplications is low

MIPS Multiplication

- Two 32-bit registers for product
 - HI: most-significant 32 bits
 - LO: least-significant 32-bits
- Instructions
 - mult rs, rt / multu rs, rt
 - 64-bit product in HI/LO
 - mfhi rd / mflo rd
 - Move from HI/LO to rd
 - Can test HI value to see if product overflows 32 bits
 - mul rd, rs, rt
 - Least-significant 32 bits of product -> rd

Division

n-bit operands yield *n*-bit quotient and remainder

- Check for 0 divisor
- Long division approach
 - If divisor ≤ dividend bits
 - 1 bit in quotient, subtract
 - Otherwise
 - o bit in quotient, bring down next dividend bit
- Restoring division
 - Do the subtract, and if remainder goes < 0, add divisor back
- Signed division
 - Divide using absolute values
 - Adjust sign of quotient and remainder as required

Division Hardware

Optimized Divider

- One cycle per partial-remainder subtraction
- Looks a lot like a multiplier!
 - Same hardware can be used for both

MIPS Division

- Use HI/LO registers for result
 - HI: 32-bit remainder
 - LO: 32-bit quotient
- Instructions
 - -div rs, rt / divu rs, rt
 - No overflow or divide-by-o checking
 - Software must perform checks if required
 - Use mfhi, mflo to access result

Floating Point

- Representation for non-integral numbers
 - Including very small and very large numbers
- Like scientific notation

$$-2.34 \times 10^{56}$$
 normalized $-+0.002 \times 10^{-4}$ not normalized $-+987.02 \times 10^{9}$

- In binary
 - $-\pm 1.xxxxxxx_2 \times 2^{yyyy}$
- Types float and double in C

Floating Point Standard

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - Single precision (32-bit)
 - Double precision (64-bit)

IEEE Floating-Point Format

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S Exponent Fraction

$$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$$

- S: sign bit (0 \Rightarrow non-negative, 1 \Rightarrow negative)
- Normalize significand: 1.0 ≤ |significand| < 2.0
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1203

Floating-Point Example

- Represent –0.75
 - $-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$
 - -S = 1
 - Fraction = 1000...00₂
 - Exponent = -1 + Bias
 - Single: -1 + 127 = 126 = 01111110,
 - Double: $-1 + 1023 = 1022 = 011111111110_2$
- Single: 1011111101000... 00
- Double: 1011111111101000...00

Floating-Point Example

 What number is represented by the singleprecision float

11000000101000...00

- -S = 1
- Fraction = 01000... 00₂
- Exponent = 10000001, = 129

•
$$X = (-1)^{1} \times (1 + 01_{2}) \times 2^{(129 - 127)}$$

= $(-1) \times 1.25 \times 2^{2}$
= -5.0

Interpretation of Data

- Bits have no inherent meaning
 - Interpretation depends on the instructions applied
- Computer representations of numbers
 - Finite range and precision
 - Need to account for this in programs

Concluding Remarks

- ISAs support arithmetic
 - Signed and unsigned integers
 - Floating-point approximation to reals
- Bounded range and precision
 - Operations can overflow and underflow
- MIPS ISA
 - Core instructions: 54 most frequently used
 - 100% of SPECINT, 97% of SPECFP
 - Other instructions: less frequent