LOGISTIC REGRESSION

A Powerful Tool for Classification

BASICS OF LOGISTIC REGRESSION

Classification Algorithm:

- Two categories for the outcome variable (analysed in what follows): e.g. Unemployed true or false
- Multiple categories for the outcome variable (not covered here)
 - unordered logistic regression
 - ordered logistic regression »

A MOCK-UP EXAMPLE TO INTRODUCE THE IDEA

Income	and	Yacht	Owne	rshin
	alla	IGCIIC		ין יוע י

Name	Income	Yacht
Jack	45	1
Sarah	50	0
Carl	55	0
Eric	60	0
Zoe	67	0
James	250	1
Enrico	280	1
Erica	320	1
Stephanie	370	1
Susan	500	1

USING OLS IS A TEMPTING (BUT BAD) IDEA

USING OLS IS A TEMPTING (BUT BAD) IDEA

QUICK WAY TO FIND A DECISION BOUNDARY

- 1. Find the intersection point between the prediction line and the horizontal 0.5 probability line.
- 2. Draw a vertical line through the intersection point. This line is called a **decision boundary**.
- 3. All incomes left of the *decision boundary* (income smaller than 158) are predicted as "no". All incomes right of the *decision boundary* (income greater than 158) are predicted as "yes".»

WHY OLS FOR CLASSIFICATION IS A BAD IDEA

Note, incomes > \$370,000 are predicted with a probability > 100% to be yacht owners(?) E.g. probability of owning a yacht for an income of \$500,000 is 125% (?)

A similar problem can occur with negative probabilities!

A STEP-FUNCTION AS AN ALTERNATIVE TO OLS

POPULAR STEP-FUNCTIONS (SIGMOID FUNCTION)

- The **Hyperbolic Tangent function**.
- The Arc Tangent function.
- The **Logistic function** (confusingly sometimes also called the *sigmoid function*).

$$y_i = rac{1}{1+e^{-x_i}}$$

>>

THE LOGISTIC FUNCTION

 The Logistic function (confusingly sometimes also called the sigmoid function):

$$y_i = rac{1}{1+e^{-x_i}}$$

We use: $y_i = P_{ues,i}^{rob}$ and $x_i = eta_1 Inc_i + eta_2$ which gives us:

$$P_{yes,i}^{rob} = rac{1}{1+e^{-(eta_1 Inc_i+eta_2)}}$$

 β_1 and β_2 change slope and position $eta_1=1$ and $eta_2=0$ gives the org. logistic function. ${\it constant}$

WHAT MAKES THE LOGISTIC FUNCTION SO SPECIAL?

- COMPARED TO OTHER SIGMOID (STEP) FUNCTIONS -

Time for some mathematical magic:

Logistic function $P_{yes,i}^{rob}$:= probability for positive event (e.g. yacht ownership: yes):

$$P_{yes,i}^{rob} = rac{1}{1+e^{-(eta_1\cdot x_i+eta_2)}}$$

Take the inverse on both sides of the equation:

$$rac{1}{P_{yes,i}^{rob}} = 1 + e^{-(eta_1 \cdot x_i + eta_2)}$$

$$rac{1}{P_{yes,i}^{rob}}-1=e^{-(eta_1\cdot x_i+eta_2)}$$

Consider that $-1=-rac{P_{yes,i}^{rob}}{P_{yes,i}^{rob}}$ and substitute -1 accordingly, we get after simplification:

$$rac{1-P^{rob}_{yes,i}}{P^{rob}_{yes,i}}=e^{-(eta_1\cdot x_i+eta_2)}$$

 $1-P_{yes,i}^{rob}$ equals by definition $P_{no,i}^{rob}$:

$$rac{P_{no,i}^{rob}}{P_{yes,i}^{rob}} = e^{-(eta_1 \cdot x_i + eta_2)}$$

Take again the inverse ontboth sides in the inverse ontboth

$$rac{P_{yes,i}^{rob}}{P_{no,i}^{rob}} = e^{eta_1 \cdot x_i + eta_2}$$

Take the logarithm on both sides:

$$\ln\left(rac{P_{yes,i}^{rob}}{P_{no,i}^{rob}}
ight) = eta_1 \cdot x_i + eta_2$$

ONE MORE STEP — ODDS VS PROBABILTIES

- The fraction of the yes/no probabilities can be interpreted as Odds as they are often used in betting.
- ullet Example: The probability of getting two heads when flipping two coins is is $P_{yes,i}^{rob}=0.25.$
- Consequently, the probability of **not** getting two heads when flipping two coins is $P_{no,i}^{rob}=0.75$.
- *Odds* for 2 Heads compared to **not** 2 heads is 1 to 3 or 33%:

$$O^{dds} = rac{P^{rob}_{yes,i}}{P^{rob}_{no,i}} = rac{0.25}{0.75} = rac{1}{3} = 0.33$$

INTERPRETATION OF THE eta s: Yacht ownership

$$\ln(O^{dds}) = \ln\left(rac{P_{yes,i}^{rob}}{P_{no,i}^{rob}}
ight) = 0.02 \cdot Inc_i + (-2.7)$$

Model results after running and printing the workflow():

Degrees of Freedom: 9 Total (i.e. Null); 8 Residual

Null Deviance: 13.46

INTERPRETATION OF THE eta s: Yacht ownership

$$\ln(O^{dds}) = \ln\left(rac{P^{rob}_{yes,i}}{P^{rob}_{no,i}}
ight) = 0.02 \cdot Inc_i + (-2.7)$$

- If income increases by 1 (\$1,000) the logarithm of the odds increases by 0.02.
- Since change of a logarithm is a relative change (percentage):

If income increases by 1 (\$1,000) the odds increases by 2% (0.02). (careful with the results because data were made up and N is too small!)

CONFUSION MATRIX

Note, in the mockup we did not create training and testing data. Therefore, we use DataYachts (the data we used to fit/train the workflow) here. This is not a proper methodology but good enough for the mock-up:

```
Truth
Prediction 0 1
0 4 1
1 0 5
```

REAL WORLD CHURN ANALYSIS WITH LOGISTIC REGRESSION — THE DATA

We use data (7,043 customers) of the fictional telecommunication company *TELCO*, generated by *IBM* for training purposes:

- The outcome variable Churn indicates, if a customer departed within the last month (Churn = Yes) or not (Churn = No).
- Predictor variables contain:
 - lacktriangleq Customers' Gender (Female or Male),
 - ullet Customers' SeniorCitizen status (0 for no or 1 for yes),
 - ullet Customers' Tenure with TELCO (month of membership), as well as
 - Customers' MonthlyCharges (in US-\$).

REAL WORLD CHURN ANALYSIS WITH LOGISTIC REGRESSION — THE DATA

	Churn	Gender	SeniorCitizen	Tenure	MonthlyCharges
1	No	Female	0	1	29.85
2	No	Male	0	34	56.95
3	Yes	Male	0	2	53.85
4	No	Male	0	45	42.30
5	Yes	Female	0	2	70.70
6	Yes	Female	0	8	99.65

REAL WORLD CHURN ANALYSIS WITH LOGISTIC REGRESSION

- DO IT YOURSELF -

Create the Churn analysis with logistic regression. Click on the link in the footer to get an R-script with a skeleton for the analysis.

RESULTS FROM CHURN ANALYSIS WITH LOGISTIC REGRESSION

Confusion Matrix:

	Yes	No
Yes	239	150
No	322	1403

Accuracy:

.metric	.estimator	.estimate
accuracy	binary	0.7767266

Sensitivity:

.metric	.estimator	.estimate
sensitivity	binary	0.426025

Specificity:

.metric	.estimator	.estimate
specificity	binary	0.9034127

Hint: What do the column sums of the confusion matrix tell you? https://econ.lange-analytics.com/aibook/

PROBLEM: UNBALLANCED TRAINING DATA

Churn	n
Yes	1308
No	3621

Majority Class: Churn = No has 3621 observations in the training dataset.

Minority class Churn = Yes has 1308 observations in the training dataset.

WHAT CAN WE DO?

Churn	n
Yes	1308
No	3621

PERFORMING DOWN-SAMPLING WITH step_downsample()

You need to add the R package themis. Then in your script, you can add step_downsample(Churn) to the recipe (don't forget to execute the following command lines again). As a reminder our original DataTrain had 4,929 observations, $Churn_{Yes}=1308$, $Churn_{No}=3621$:

Code

Churn	n
Yes	1308
No	1308

PERFORMING UP-SAMPLING WITH step_upsample()

You need to add the R package themis. Then in your script, you can add step_upsample(Churn) to the recipe (don't forget to execute the following command lines again). As a reminder our original DataTrain had 4,929 observations, $Churn_{Yes}=1308$, $Churn_{No}=3621$:

Code

Churn	n
Yes	3621
No	3621

Note, the number of observations has increased by 2313. The information in the dataset has not increased!

PERFORMING UP-SAMPLING WITH step_smote(). WHAT IS THE ADVANTAGE

As a reminder our original DataTrain had 4,929 observations, $Churn_{Yes}=1308, Churn_{No}=3621$:

▶ Code

Churn	n
Yes	3621
No	3621

Instead of copying a record from the training dataset, step_smote() finds the Nearest Neighbor to that record and creates a new record that has features generated as a weighted average between the Nearest Neighbor and the original record.