

What a Load of Barnacles:

A Spatial Population Genomic Simulation Measuring Evolution at Large Scales

Alexandra Bangs¹, Angel Rivera-Colón¹, Jiseon Min¹, Peter Ralph^{1,2}

¹ Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA, ²Department of Mathematics, University of Oregon, Eugene, Oregon, USA

Background

K=3

The Pacific acorn barnacle

- Filter-feeding invertebrate found in intertidal zones
- Undergoes planktonic larval stage, and sessile juveniles and adult stages

The Pacific Coast Range

 We observe population structure across the Pacific Coast²

SLiM simulation of Coos Bay, OR

- SLiM is an evolutionary simulation framework³
- It allows us to simulate individuals, their genomes, and the spatial interactions between the population and their environment

How do we model population genomics for the Pacific acorn barnacle (Balanus glandula)?

Reproduction and life stages

 Brooding occurs seasonally in the late winter, with larvae dispersing during the summer and juveniles settling in the fall

The Effects of Environmental **Variables**

Juvenile (recently settled) barnacles have higher survival at moderate to high salinities^{4,5}

Modeling Population Fitness

- Fitness is the product of densitydependent selection⁷, environmental gradients, and local adaptation
- To see the effects of local adaptation, the model needs to run for much longer than 100 years!

Year

Barnacle Life Stages

Conclusion

- Our model captures the life cycle and reproduction of the Pacific acorn barnacle
- Implemented a population response to environmental variables
- Developed a framework for future research on this biological system

Future Steps

Expanding Environmental Model

- Implementing other environmental conditions that impact barnacles such as temperature and tides⁷
- Add seasonal variation of environmental variables
- Model long-term environmental change

Evolution of Barnacle Populations

- Apply model to study the genomic variation of barnacle populations across the Pacific coast
- What environmental variables are contributing to the population structure?

Acknowledgments

- Thank you to Erin Jesuit of the VonDassow Lab at OIMB for your help collecting and analyzing *B. glandula*
- To Dave Sutherland for providing environmental models of Coos Bay, OR.
- To the Kern Ralph Co-Lab for being a wonderful group to collaborate and learn with.
- To Ben Haller and Philipp Messer for the development of SLiM: An Evolutionary Simulation Framework. To the University of Oregon Summer Program for Undergraduate Research and the Mary G. Alden Fellowship
- for the funding to pursue summer research. And to ASM for providing a travel award to attend ABRCMS 2024

References

- iNaturalist community. Observations of Balanus glandula from Mar del Plata, Provincia de Buenos Aires, Argentina observed on Nov 6, 2021. Exported from
- Haller, B. C. & Messer, P. W. SLiM 4: Multispecies Eco-Evolutionary Modeling. *The American Naturalist* **201**, E127–E139 (2023). Berger, M. S., Darrah, A. J. & Emlet, R. B. Spatial and temporal variability of early post-settlement survivorship and growth in the barnacle Balanus glandula
- along an estuarine gradient. Journal of Experimental Marine Biology and Ecology 336, 74–87 (2006). Conroy, T., Sutherland, D. A. & Ralston, D. K. Estuarine Exchange Flow Variability in a Seasonal, Segmented Estuary. Journal of Physical Oceanography
- 6. Chevy, E. T. *et al.* Population genetics meets ecology: a guide to individual-based simulations in continuous landscapes. Preprint at *bioRxiv* (2024).
 7. Berger, M. Reproduction of the intertidal barnacle Balanus glandula along an estuarine gradient. *Marine Ecology* **30**, 346–353 (2009).