Dimostrazioni per l'esame orale di Analisi Matematica A

Filippo L. Troncana

A.A. 2023/2024

Indice

1	Mod	dulo 1
	1.1	Irrazionalità della radice di 2
	1.2	Radici n-esime di un numero complesso
	1.3	Esistenza del limite per funzioni monotone
	1.4	Esistenza degli zeri
	1.5	Teorema dei valori intermedi
	1.6	Teorema di Fermat
	1.7	Teorema di Lagrange (formulazione che comprende il teorema di Rolle)
	1.8	Taylor con resto di Peano
	1.9	Condizione necessaria per la convergenza di una serie
	1.10	Criteri per convergenza di serie a termini non negativi
	1.11	Teorema della media integrale
		Teorema di Torricelli-Barrow
	1.13	Teorema fondamentale del calcolo integrale
	1.14	Risoluzione equazioni differenziali del primo ordine a variabili separabili
2	N / L	11. 0
4		dulo 2
	2.1	Disuguaglianza di Cauchy-Schwarz
	2.2	Caratterizzazione dei chiusi nello spazio euclideo
	$\frac{2.3}{2.4}$	Teorema di Bolzano-Weierstrass
		Teorema di Heine-Borel
	2.5	Condizione di Cauchy
	2.6	Definizione e caratterizzazione di Continuità nello spazio euclideo
	2.7	Esistenza degli zeri su connessi per archi
	2.8	Teorema di Weierstrass
	2.9	Teorema di Heine Cantor
		Derivabilità e continuità delle funzioni differenziabili
		Teorema del differenziale totale
		Derivazione delle funzioni composte
	2.13	Teorema di Lagrange Super Saiyan
		Teorema di Fermat Super Saiyan
	2.15	Condizioni sufficienti per estremi locali
	2.16	Teorema del Dini in due variabili

1 Modulo 1

1.1 Irrazionalità della radice di 2

Teorema 1.1.1

Non esiste $q \in \mathbb{Q}$ tale che $q^2 = 2$.

Siano $a, b \in \mathbb{Z} \times \mathbb{Z} \setminus \{0\}$ tali che $\operatorname{mcd}(a, b) = 1$ e $\left(\frac{a}{b}\right)^2 = 2$. Abbiamo automaticamente che $a^2 = 2b^2$, dunque $2|a^2$ e in quanto 2 è un numero primo, 2|a, ovvero $a^2 = 4n$ per un qualche $n \in \mathbb{Z}$.

Allora possiamo scrivere $4n = 2b^2 \Rightarrow b^2 = 2n$, ma allora analogamente a quanto scritto sopra, 2|b.

Pertanto, $mcd(a, b) \ge 2$, ma questo porta a una contraddizione, dunque non esistono tali $a, b \in \mathbb{Z} \times \mathbb{Z} \setminus \{0\}$.

Radici n-esime di un numero complesso 1.2

Teorema 1.2.1

Sia $z \in \mathbb{C}$ scritto come $z = \rho \cos(\theta) + i\rho \sin(\theta) \cos \rho, \theta \in \mathbb{R}_{>0} \times \mathbb{R}$. Allora $\forall n \in \mathbb{Z}^+$, si ha $z = (\rho^{1/n} \cos(\theta/n) + i\rho^{1/n} \sin(\theta/n))^{n}$.

Segue direttamente dall'identità di Eulero, ovvero $e^{\theta i} = \cos(\theta) + i \sin(\theta)$

1.3 Esistenza del limite per funzioni monotone

Teorema 1.3.1

Sia $X \subset \mathbb{R}$ e sia $f: X \to \mathbb{R}$ una funzione monotona crescente (decrescente) e $x \in \mathbb{R}$. Se x_0 è un punto di accumulazione sinistro ((destro)) per X, allora

$$\exists \lim_{x \to x_0^-} f(x) = \sup_{X \cap]-\infty, x_0[} f \quad \left(\left(\lim_{x \to x_0^+} f(x) = \inf_{X \cap]x_0, +\infty[} f \right) \right)$$

Se $x_0 = \pm \infty$ Allora

$$\lim_{x \to +\infty} f(x) = \sup_X f \quad \lim_{x \to -\infty} f(x) = \inf_X f$$

Dimostrazione

Sia f crescente e dimostriamo il caso finito, il resto è analogo.

Sia $l = \sup_{X \cap]-\infty, x_0[} f$, che esiste per la completezza di \mathbb{R} .

Allora abbiamo che per ogni $\varepsilon > 0$ esiste $x_{\varepsilon} \in X \cap]-\infty, x_0[$ tale che $l-\varepsilon < f(x_{\varepsilon}) \le l$ e per qualsiasi $x \in]x_{\varepsilon}, x_0[$ abbiamo $l - \varepsilon < f(x_{\varepsilon}) \le f(x) \le l < l + \varepsilon$.

1.4Esistenza degli zeri

Teorema 1.4.1

Sia $f:[a,b]\to\mathbb{R}$ una funzione $\mathcal{C}^0([a,b])$ tale che f(a)f(b)<0. Esiste $c \in]a, b[$ tale che f(c) = 0.

Assumiamo f(a) < 0 (il caso contrario è analogo) e definiamo tre successioni in questo modo.

$$\begin{cases} a_0, b_0 = a, b \\ c_n = \frac{b_n - a_n}{2} \quad \forall n \in \mathbb{N} \\ a_{n+1} = c_n \quad \text{se } f(c_n) < 0, \quad a_{n+1} = a_n \quad \text{altrimenti.} \\ b_{n+1} = c_n \quad \text{se } f(c_n) > 0, \quad b_{n+1} = b_n \quad \text{altrimenti.} \end{cases}$$

Abbiamo che $|c_n - c_{n+1}| = \frac{b-a}{2^{n+1}}$, quindi è una successione di Cauchy contenuta in]a,b[e in quanto tale converge a $c \in]a,b[$, dobbiamo solo dimostrare che f(c)=0.

Notiamo che a_n e b_n sono due successioni monotone la cui differenza è uguale a $\frac{b-a}{2^n}$, quindi hanno entrambe un limite e questo è lo stesso, ovvero c (è abbastanza semplice vederlo).

In particolare $f(a_n) \leq 0$ e $f(b_n) \geq 0$, dunque passando al limite (cosa che possiamo fare grazie alla continuità di f) abbiamo $0 \leq f(c) \leq 0$, quindi f(c) = 0.

1.5 Teorema dei valori intermedi

Teorema 1.5.1

Sia $f:[a,b] \to \mathbb{R}$ una funzione $\mathcal{C}^0([a,b])$ con f(a) < f(b) (analogo per il caso contrario). Si ha $f([a,b]) \supseteq [f(a),f(b)]$.

Dimostrazione

Consideriamo per $k \in [f(a), f(b)]$ la funzione $x \mapsto f(x) - k$ definita sull'intervallo [a, b]. Essa soddisfa abbastanza evidentemente le ipotesi del teorema di esistenza degli zeri, segue la tesi.

1.6 Teorema di Fermat

Teorema 1.6.1

Sia $f:[a,b]\to\mathbb{R}$ una funzione $\mathcal{C}^0([a,b])$ e $\mathcal{D}^1(]a,b[)$. Se per un qualche $x_0\in]a,b[$ si ha un punto di massimo/minimo locale di f, allora $f'(x_0)=0$.

Dimostrazione

Assumiamo che $x_0 \in]a, b[$ sia un punto di massimo locale (analogo per un minimo). Significa che esiste $\delta > 0$ tale che:

$$\frac{f(x_0 - \delta) - f(x_0)}{\delta} \le 0 \le \frac{f(x_0 + \delta) - f(x_0)}{\delta}$$

Ma in quanto f è derivabile, mandando $\delta \to 0$ i limiti destro e sinistro devono coincidere e si ha $f'(x_0) \le 0 \le f'(x_0)$, da cui segue la tesi.

1.7 Teorema di Lagrange (formulazione che comprende il teorema di Rolle)

Teorema 1.7.1

Sia $f:[a,b]\to\mathbb{R}$ una funzione $\mathcal{C}^0([a,b])$ e $\mathcal{D}^1(]a,b[)$. Allora esiste $c\in]a,b[$ tale che f'(c)(b-a)=f(b)-f(a)

Consideriamo il caso in cui f(b) = f(a). Per il teorema di Weierstrass, la funzione ha un massimo e un minimo, dunque esiste $c \in]a, b[$ tale che f'(c) = 0 e segue la tesi.

Altrimenti consideriamo la funzione $\hat{f}: x \mapsto f(x) - \frac{f(b) - f(a)}{b - a}x$. Questa soddisfa le nostre ipotesi e ricade nel caso precedente, quindi esiste $c \in [a, b[$ tale che:

$$\hat{f}'(c)(b-a) = \left(f'(x) - \frac{f(b) - f(a)}{b-a}\right)(b-a) = 0 \Rightarrow f'(c)(b-a) = f(b) - f(a)$$

1.8 Taylor con resto di Peano

Teorema 1.8.1

Sia A un aperto di \mathbb{R}^m e sia $f: A \to \mathbb{R}$ una funzione di classe $C^n(A)$. Allora per $x_0 \in A$ si ha che $f(x) = P_{n,x_0}(x) + o(||x - x_0||^n)$, dove:

$$P_{n,x_o}(x) := \sum_{i=0}^{n} \frac{D_{x_0}^i(x - x_0)}{i!}$$

Dove $D_{x_0}^i:A\to\mathbb{R}$ è la forma di ordine i associata al tensore (∂_α) delle derivate i-esime con multi-indice α di lunghezza i.

Se m=1 allora abbiamo più semplicemente:

$$P_{n,x_0}(x) = \sum_{i=0}^{n} \frac{d^i f}{dx^i}(x_0) \frac{(x-x_0)^i}{i!}$$

Dimostrazione

Dimostriamo solo il caso m = 1, inoltre possiamo assumere $x_0 = 0$ a meno di traslazioni. Procediamo per induzione su n:

- Se n = 0 abbiamo f(x) = f(0) + o(1), vero per definizione di continuità.
- Se n=1 abbiamo f(x)=f(0)+f'(0)x+o(x), vero per definizione di derivata.
- Assumiamo che valga il teorema per n-1 e $f \in \mathcal{C}^n(A)$. Abbiamo

$$\lim_{x \to 0} \frac{f(x) - P_n(x)}{x^n} = \frac{0}{0} \Rightarrow \lim_{x \to 0} \frac{f(x) - P_n(x)}{x^n} = \lim_{x \to 0} \frac{f'(x) - P'_n(x)}{(x^n)'}$$

Sia $Q_k(x)$ il polinomio di Taylor di ordine k associato a f', e abbiamo che $P'_n(x) = nQ_{n-1}(x)$, quindi per ipotesi induttiva arriviamo alla nostra tesi:

$$\lim_{x \to 0} \frac{f(x) - P_n(x)}{x^n} = \lim_{x \to 0} \frac{f'(x) - P'_n(x)}{(x^n)'} = \lim_{x \to 0} \frac{n}{n} \frac{f'(x) - Q_{n-1}(x)}{x^{n-1}} = 0$$

1.9 Condizione necessaria per la convergenza di una serie

Teorema 1.9.1

Sia $\{a_n\}_{\mathbb{N}}$ una successione tale che $\sum_{\mathbb{N}} a_n = l \in \mathbb{R}$. Allora si ha $\lim_{n \to +\infty} a_n = 0$.

Sia $\{S_n\}_{\mathbb{N}}$ la successione delle somme parziali. In convergente, essa deve essere di Cauchy, quindi per ogni $\varepsilon > 0$ deve esistere $N \in \mathbb{N}$ tale che per ogni i, j > N si ha $|S_i - S_j| < \varepsilon$.

In particolare allora, per ogni $\varepsilon > 0$ deve esistere $N \in \mathbb{N}$ tale che per ogni i > N si ha $|S_{i+1} - S_i| = |a_{i+1}| < \varepsilon$, che per definizione vuol dire che $\{a_n\}_{\mathbb{N}}$ è infinitesima.

1.10 Criteri per convergenza di serie a termini non negativi

Teorema 1.10.1

Sia $\{a_n\}_{\mathbb{N}}$ una successione tale che $\forall n \in \mathbb{N}, a_n \geq 0$. Valgono le seguenti:

- 1. Se esiste una successione $\{b_n\}_{\mathbb{N}}$ a termini non negativi tale che eventualmente si abbia $b_n \geq a_n$, allora si ha
 - $\{b_n\}_{\mathbb{N}} \in l^1(\mathbb{N}) \Rightarrow \{a_n\}_{\mathbb{N}} \in l^1(\mathbb{N}).$
 - $\sum_{\mathbb{N}} a_n = +\infty \Rightarrow \sum_{\mathbb{N}} b_n = +\infty.$
- 2. Se $\lim_{n\to+\infty} \sqrt[n]{a_n} = k$ si ricade in uno dei seguenti casi:
 - Se k < 1, allora $\{a_n\}_{\mathbb{N}} \in l^1(\mathbb{N})$.
 - Se k > 1, allora $\sum_{\mathbb{N}} a_n = +\infty$.
 - Se k = 1, chi può dire.
- 3. TODO: Confronto asintotico

Dimostrazione

Sia $\{a_n\}_{\mathbb{N}}$ come da ipotesi e sia $\{A_n\}_{\mathbb{N}}$ la successione delle sue somme parziali:

- 1. Sia $\{b_n\}_{\mathbb{N}}$ come da ipotesi, sia $\{B_n\}_{\mathbb{N}}$ la successione delle sue somme parziali e sia $N \in \mathbb{N}$ il primo indice tale che $\forall n > N, a_n \leq b_n$. Allora abbiamo:
 - Assumiamo $\{b_n\}_{\mathbb{N}} \in l^1(\mathbb{N})$ e consideriamo la successione $\{\hat{B}_n := B_n B_N\}_{n>N}$. Abbiamo dunque:

$$0 \le A_n \le \hat{B}_n + A_N \le B_n + A_N \to l + A_N \in \mathbb{R}$$

1.11 Teorema della media integrale

Teorema 1.11.1

Sia $f: [a,b] \to \mathbb{R}$ con $f \in \mathcal{C}^0([a,b])$. Allora esiste $c \in [a,b]$ tale che:

$$f(c)(b-a) = \int_{a}^{b} f(x)dx$$

Per il teorema di Weierstrass, f([a,b]) = [m,M], dunque definiamo le funzioni costanti su [a,b] $x \mapsto m$ e $x \mapsto M$. Per la monotonia dell'integrale di Riemann abbiamo:

$$m(b-a) = \int_a^b m dx \le \int_a^b f(x) dx \le \int_a^b M dx = M(b-a)$$

dunque

$$m \le \frac{1}{b-a} \int_a^b f(x) dx \le M$$

Segue la tesi.

1.12 Teorema di Torricelli-Barrow

Teorema 1.12.1

Sia $g:[a,b]\to\mathbb{R}$ una funzione in $\mathcal{R}([a,b])$ tale che esista una funzione $G:[a,b]\to\mathbb{R}$ che sia continua su [a,b] e sia sua primitiva su [a,b]. Allora vale:

$$\int_{a}^{b} g(x)dx = G(b) - G(a)$$

Dimostrazione

Suddividiamo l'intervallo [a, b] in sottointervalli della forma $[x_i, x_{i+1}]$ con $i \in \{0, ..., I\}$ dove $x_0 = a$ e $x_I = b$. Abbiamo allora

$$G(b) - G(a) = G(x_I) - G(x_{I-1}) + G(x_{I-1}) - \dots - G(x_1) + G(x_1) - G(x_0)$$

Su ciascun intervallo $[x_i, x_{i+1}]$ possiamo usare il teorema di Lagrange e trovare un c_i tale che $G(x_{i+1}) - G(x_i) = G'(c_i)(x_{i+1} - x_i) = g(c_i)(x_{i+1} - x_i)$. Abbiamo dunque

$$G(b) - G(a) = \sum_{0 \le i < I} g(c_i)(x_{i+1} - x_i)$$

Che con il tendere di I all'infinito corrisponde alla definizione di integrale di Riemann.

1.13 Teorema fondamentale del calcolo integrale

Teorema 1.13.1

Sia $f:[a,b]\to\mathbb{R}$ una funzione in $\mathcal{R}([a,b])$ e sia $F:[a,b]\to\mathbb{R}$ definita come

$$F(x) := \int_{a}^{x} f(x)dx$$

Allora $F \in \mathcal{C}^0([a,b])$, e se $f \in \mathcal{C}^0([a,b])$ si ha $F \in \mathcal{C}^1(]a,b[)$ e vale F'(x)=f(x)

In quanto continua, abbiamo f([a,b]) = [m,M]. Per la formula di spezzamento, con $x_0, x_1 \in [a,b]$ abbiamo:

$$|F(x_1) - F(x_0)| = \left| \int_a^{x_1} f(x) dx - \int_a^{x_0} f(x) dx \right| \le \left| \int_{x_0}^{x_1} f(x) dx \right| \le |M(x_1 - x_0)|$$

Allora con $x_1 \to x_0$ abbiamo $F(x_1) \to F(x_0)$, dunque è continua.

Ora assumiamo che anche f sia continua.

Prendiamo $x_0 \in [a, b]$ e h > 0 (con h < 0 è analogo). Per il teorema della media integrale esiste un $c_h \in [x_0, x_0 + h]$ tale che:

$$\frac{F(x_0 + h) - F(x_0)}{h} = \frac{1}{h} \int_{x_0}^{x_0 + h} f(x) dx = f(c_h)$$

Facendo tendere $h \to 0$ abbiamo quindi $F'(x_0) = f(x_0)$.

1.14 Risoluzione equazioni differenziali del primo ordine a variabili separabili

Teorema 1.14.1

Sia $\varphi: f'=g(f)$ un'equazione differenziale con $g\in\mathcal{C}^0(\mathbb{R})$ tale che g=G' con G invertibile e $g\circ f\neq 0$ in qualche aperto reale.

Allora l'integrale generale di φ è $f(x) = G^{-1}(ke^x)$.

Dimostrazione

Manipoliamo un po' questa equazione.

$$f' = G'(f) \Leftrightarrow \frac{f'}{G'(f)} = 1 \Leftrightarrow \frac{d}{dx}\log(G(f)) = 1$$

Passiamo alle primitive

$$\log(G(f(x))) = x + C \Leftrightarrow G(f(x)) = e^{x+C} = ke^x \Leftrightarrow f(x) = G^{-1}(ke^x)$$

2 Modulo 2

2.1 Disuguaglianza di Cauchy-Schwarz

Teorema 2.1.1

Sia (H,\cdot) un \mathbb{R} -spazio vettoriale pre-Hilbertiano con norma indicata con N. Si ha che $|x\cdot y|\leq N(x)N(y).$

Dimostrazione

Escludiamo i casi dove x=0 e y=0 che sono banali, e sia $\lambda \in \mathbb{R}.$ Abbiamo

$$0 < N(x - \lambda y)^2 = (x - \lambda y) \cdot (x - \lambda y) = x \cdot x - \lambda 2(x \cdot y) + \lambda^2(y \cdot y)$$

Dato che questa disequazione deve valere per ogni $\lambda \in \mathbb{R}$, abbiamo $4(x \cdot y)^2 < 4(x \cdot x)(y \cdot y)$ ed estraendo la radice (operazione possibile dato che norma e prodotto scalare sono definiti positivi) segue la tesi.

2.2 Caratterizzazione dei chiusi nello spazio euclideo

Teorema 2.2.1

Un sottoinsieme C di \mathbb{R}^n è chiuso se e solo se:

- 1. ogni successione $\{x_i\}_{\mathbb{N}} \subset C$ convergente converge a un $\hat{x} \in C$.
- 2. $\partial C \subset C$.
- $3.\ C$ contiene tutti i suoi punti di accumulazione.

Dimostrazione

Procederemo circolarmente per dimostrare l'equivalenza, di solito avremo $A = C^c$.

- 1. Assumiamo che C sia chiuso. Per definizione di convergenza, abbiamo che per ogni $\varepsilon > 0$ esiste N > 0 tale che $\{x_i\}_{i>N} \subset B_{\varepsilon}(\hat{x})$, ma quindi per ogni $\varepsilon > 0$ abbiamo $C \cap B_{\varepsilon}(\hat{x}) \neq \emptyset$ e dunque $\hat{x} \in C$.
- 2. Assumiamo C chiuso, dunque A è aperto per definizione; allora per definizione di frontiera, in ogni punto $x \in \partial C$ la pallina centrata in x ha sempre intersezione non vuota con C, dunque $\partial C \cap A = \emptyset$, quindi $\partial C \subset C$. Assumiamo che $\partial C \subset C$; allora per ogni punto in C, o questo sta nei punti interni (dunque la pallina centrata in esso è contenuta in C) o sta nella frontiera (dunque la pallina centrata in esso ha intersezione non vuota con C), dunque ogni punto in A ammette una pallina totalmente esterna a C, quindi A è aperto e C è chiuso.
- 3. Assumiamo che C sia chiuso. Abbiamo che dato C^* l'insieme dei suoi punti di accumulazione, questo è l'insieme dei punti $x \in \mathbb{R}^n$ tali che $B_r(x) \cap C \neq \emptyset$ per qualsiasi r > 0.

Dato che C è chiuso, ogni suo punto esterno ammette una palla completamente nel suo complementare, dunque $C^* \subset C$.

Supponiamo che $C^* \subset C$.

2.3 Teorema di Bolzano-Weierstrass

Teorema 2.3.1

Sia $\{x_i\}_{\mathbb{N}}$ una successione limitata in \mathbb{R}^n .

Essa ammette una sottosuccessione $\{x_{\sigma(i)}\}_{\mathbb{N}}$ convergente a \hat{x} in \mathbb{R}^n .

Dimostrazione

Iniziamo con il caso n = 1 e supponiamo $\{x_i\}_{\mathbb{N}} \subset [a_0, b_0]$.

Definiamo $c_0 := (b_0 - a_0)/2$ come il punto medio dell'intervallo. Dato che $\{x_i\}_{\mathbb{N}}$ ha infiniti termini, almeno uno tra gli intervalli $[a_0, c_0]$ e $[c_0, b_0]$ contiene infiniti termini di $\{x_i\}_{\mathbb{N}}$.

Supponiamo che sia $[a_0, c_0]$, poniamo $a_1 := a_0$ e $b_1 := c_0$ e ripetiamo questo processo con il nuovo $c_1 = (b_1 - a_1)/2$, dimezzando ogni volta l'intervallo e scegliendo la (o una delle) metà in cui giacciono infiniti termini della successione, ottenendo dunque una successione di intervalli $\{[a_j, b_j]\}_{\mathbb{N}}$ ciascuno di ampiezza $(b-a)/2^j$. Notiamo che $\{a_i\}_{\mathbb{N}}$ e $\{b_i\}_{\mathbb{N}}$ sono entrambe monotone (rispettivamente crescente e decrescente) e limitate, dunque convergono rispettivamente a $\alpha \in [a, b]$ e $\beta \in [a, b]$, dove

$$\beta - \alpha = \lim_{i \to +\infty} b_i - a_i = \lim_{i \to +\infty} \frac{b-a}{2^i} = 0 \Rightarrow \alpha = \beta =: \hat{x}$$

Poniamo $\sigma: \mathbb{N} \to \mathbb{N}$ tale che $x_{\sigma(i)} \in [a_i, b_i]$ e abbiamo ottenuto una sottosuccessione $\{x_{\sigma(i)}\}_{\mathbb{N}}$ convergente a \hat{x} . Per i casi n > 1 abbiamo una successione della forma $\{(x^1, ..., x^n)_i\}_{\mathbb{N}}$ che corrisponde a una successione $\{(x^1_i, ..., x^n_i)\}_{\mathbb{N}}$, ovvero una n-upla di successioni $\{x^j_i\}_{\mathbb{N}}$.

Procediamo come sopra sulla successione $\{x_i^1\}_{\mathbb{N}}$ ottenendo la funzione σ_1 , poi procediamo sulla successione $\{x_{\sigma_1(i)}^2\}_{\mathbb{N}}$ ottenendo la funzione $\sigma_{1,2}$ e così via, sulla coordinata m+1-esima procederemo sulla successione $\{x_{\sigma_1,\ldots,m}^{m+1}(i)\}_{\mathbb{N}}$. Arriveremo alla sottosuccessione $\{(x^1,\ldots,x^n)_{\sigma_1,\ldots,n}(i)\}_{\mathbb{N}}$ in cui tutte le coordinate convergono a una qualche $\hat{x}^j \in \mathbb{R}$.

Osservazione 2.3.1

Nella dimostrazione precedente, quello che stiamo facendo è definire implicitamente una catena di funzioni iniettive

$$\mathbb{N} \xrightarrow{\sigma_1} \mathbb{N} \xrightarrow{\sigma_2} \dots \xrightarrow{\sigma_{n-1}} \mathbb{N} \xrightarrow{\sigma_n} \mathbb{N}$$

Ottenendo esplicitamente la loro composizione $\sigma_{1,...,n} = \sigma_n \circ ... \circ \sigma_1$

2.4 Teorema di Heine-Borel

Teorema 2.4.1

Un sottoinsieme K di \mathbb{R}^n è (sequenzialmente) compatto se e solo se è chiuso e limitato.

Dimostrazione

Consideriamo entrambe le implicazioni.

- 1. Assumiamo che K sia compatto .
 - (a) Supponiamo che K sia illimitato. Allora esiste una successione $\{x_i\}_{\mathbb{N}}$ tale che per ogni i si abbia $||x_i|| \geq i$, ma questa non ammetterebbe sottosuccessioni convergenti, dunque K deve essere limitato.
 - (b) Prendiamo una successione $\{x_i\}_{\mathbb{N}}$ convergente a \hat{x} . Allora tutte le sue sottosuccessioni devono convergere a \hat{x} , ma dato che K è compatto, \hat{x} deve appartenere a K

2. Assumiamo che K sia chiuso e limitato. In quanto limitato, per il teorema di Bolzano-Weierstrass ogni successione contenuta in K deve avere una sottosuccessione convergente, e in quanto chiuso questa deve convergere a un elemento di K.

2.5 Condizione di Cauchy

Teorema 2.5.1

Una successione in \mathbb{R}^n è convergente se e solo se è di Cauchy.

$Dimostrazion\epsilon$

Consideriamo entrambe le implicazioni.

- 1. Assumiamo che una successione $\{x_i\}_{\mathbb{N}}$ sia convergente a \hat{x} . Allora per ogni $\varepsilon/2 > 0$ esiste N > 0 tale che per ogni i, j > N, si abbia $d(x_i, x_j) \le d(x_i, \hat{x}) + d(\hat{x}, x_j) < \varepsilon$, ovvero è di Cauchy.
- 2. Assumiamo che una successione $\{x_i\}_{\mathbb{N}}$ sia di Cauchy.
 - (a) Dimostriamo che è limitata. Noi abbiamo che per ogni $\varepsilon > 0$ esiste N > 0 tale che per ogni i, j > N si abbia $d(x_i, x_j) < \varepsilon$. Poniamo $\varepsilon = 1$ e abbiamo $d(0, x_i) \le d(x_i, x_N) + d(0, x_N) < 1 + d(0, x_N) \le 1 + M$ con $M = \max\{d(0, x_0), ..., d(0, x_N)\}$.
 - (b) In quanto limitata, per il teorema di cui Bolzano-Weierstrass essa ammette sottosuccessioni convergenti a qualche insieme di \hat{x} . Supponiamo che una sottosuccessione $\{x_{\sigma(i)}\}_{\mathbb{N}}$ converga a \hat{x} . Applicando le definizioni di successione di Cauchy e successione convergente abbiamo che per ogni $\varepsilon/2 > 0$ esiste N > 0 tale che per ogni i > N si abbia $d(\hat{x}, x_i) \leq d(\hat{x}, x_{\sigma(i)}) + d(x_{\sigma(i)}, x_i) < \varepsilon$ e quindi tutta la successione converge a \hat{x} .

2.6 Definizione e caratterizzazione di Continuità nello spazio euclideo

Teorema 2.6.1

Una funzione $f: \mathbb{R}^n \to \mathbb{R}^m$ è continua se e solo se la controimmagine di ogni aperto (chiuso) è un aperto (chiuso).

Valutiamo entrambe le implicazioni.

- 1. Sia f continua, ovvero in ogni punto $x \in \mathbb{R}^n$ (con y = f(x)) per ogni $\varepsilon > 0$ esiste $\delta > 0$ tale che $f(B_{\delta}(x)) \subset B_{\varepsilon}(y)$, ovvero che per ogni punto $x \in \mathbb{R}^n$ passando alle controimmagini abbiamo $B_{\delta}(x_0) \subset f^{-1}(B_{\varepsilon}(y))$. Dunque abbiamo dimostrato che una pallina in entrata è sempre contenuta nella controimmagine di una pallina in arrivo, ovvero le controimmagini delle palline in arrivo sono aperti; dato che le palline sono una base della topologia euclidea e la controimmagine commuta con l'unione, abbiamo la tesi.
- 2. Assumiamo che la controimmmagine di ogni aperto sia un aperto e scegliamo un aperto non vuoto A. Abbiamo che per ogni y = f(x), per ogni $\varepsilon > 0$ esiste un $\delta > 0$ tale che $B_{\delta}(x) \subset f^{-1}(B_{\varepsilon}(y))$, che passando alle immagini porta alla tesi.

2.7 Esistenza degli zeri su connessi per archi

Teorema 2.7.1

Sia A un sottoinsieme di \mathbb{R}^n connesso per archi e sia $f:A\to\mathbb{R}$ una funzione $\mathcal{C}^0(A)$. Se esistono $x,y\in A$ tali che f(x)f(y)<0, allora esiste $z\in A$ tale che f(z)=0. In particolare, per ogni $x,y\in A$ con $x\leq y$, si ha che $[f(x),f(y)]\subset f(A)$.

Dimostrazione

Sia $\gamma:[0,1]\to A$ un arco contenuto in A tale che $\gamma(0)=x$ e $\gamma(1)=y$. Allora la funzione $f\circ\gamma:[0,1]\to\mathbb{R}$ soddisfa le ipotesi del teorema di esistenza degli zeri per funzioni continue

su un intervallo, dunque esiste almeno un $t \in [0,1]$ tale che $z = \gamma(t)$ sia uno zero per f.

Per dimentrare il corollario, expere dei valeri intermedi, per qualsicci $k \in [f(x), f(y)]$ consideriome la funzione

Per dimostrare il corollario, ovvero dei valori intermedi, per qualsiasi $k \in [f(x), f(y)]$ consideriamo la funzione f - k.

2.8 Teorema di Weierstrass

Teorema 2.8.1

- Forma debole: sia K un sottoinsieme compatto di \mathbb{R}^n e sia $f: K \to \mathbb{R}$ una funzione $\mathcal{C}^0(K)$. Allora esistono minimo m e massimo M di f su K e in particolare se K è connesso per archi, f(K) = [m, M].
- Forma forte: sia K un sottoinsieme compatto di \mathbb{R}^n e sia $f: K \to \mathbb{R}^m$ una funzione $\mathcal{C}^0(K)$ Allora f(K) è un sottoinsieme compatto di \mathbb{R}^m .

La forma forte implica la forma debole nel caso n = 1.

Dimostrazione

Dimostriamo la forma debole dimostrando la limitatezza superiore e l'esistenza del massimo per f, l'esistenza del minimo seguirà dall'applicazione a -f.

Supponiamo che f(K) non sia limitato superiormente. Dunque deve esistere una successione $\{x_i\}_{\mathbb{N}}$ tale che per ogni $i \in \mathbb{N}$ si abbia $f(x_i) > i$ che per via della compattezza di K deve contenere una sottosuccessione con la stessa proprietà che converga a \hat{x} . Ma allora per ogni $i \in \mathbb{N}$ si avrebbe $f(\hat{x}) > i$, perciò $\hat{x} \notin K$, assurdo, dunque f è limitata superiormente.

Sia allora M il minimo maggiorante di f. Per ogni $i \in \mathbb{N}$, sia $M_i = M - 2^{-i}$ e definiamo una successione $\{x_i\}_{\mathbb{N}}$ in K tale che $f(x_i) = M_i$. In quanto successione in K ammette una sottosuccessione convergente a \hat{x} e per continuità di f abbiamo $f(x_{\sigma(i)}) \to f(\hat{x})$ dove $f(\hat{x}) = \lim_{i \to +\infty} M_i = M$, dunque M è il massimo di f su K. Per il teorema precedente, se K è connesso per archi, f contiene tutti i valori intermedi tra m (il suo minimo) e M, dunque f(K) = [m, M].

Dimostriamo ora la forma forte.

Sia $\{y_i\}_{\mathbb{N}} \subset f(K)$ una successione di punti immagine. Allora a questa è associata una successione di fibre $\{f^{-1}(y_i)_{\mathbb{N}}\}\subset \mathcal{P}(K)$.

Usando l'assioma della scelta, per ogni $f^{-1}(y_i)$ possiamo scegliere un x_i tale che $f(x_i) = y_i$ e dunque possiamo considerare la successione $\{x_i\}_{\mathbb{N}} \subset K$. In quanto successione in un compatto, ammette una sottosuccessione $\{x_{\sigma(i)}\}_{\mathbb{N}} \to \hat{x} \in K$, e dunque per continuità di f allora anche $\{f(x_{\sigma(i)})\}_{\mathbb{N}} = \{y_{\sigma(i)}\}_{\mathbb{N}} \to \hat{y} = f(\hat{x})$.

Ponendo m=1 abbiamo che l'immagine di f deve essere chiusa e limitata, dunque un'unione di intervalli chiusi, pertanto ha un massimo b e un minimo a.

Se K è connesso per archi, per il teorema dei valori intermedi abbiamo f(K) = [a, b].

2.9 Teorema di Heine Cantor

Teorema 2.9.1

Sia K un compatto di \mathbb{R}^n e $f: K \to \mathbb{R}^m$ una funzione $\mathcal{C}^0(K)$. f è uniformemente continua su K.

Dimostrazione

Supponiamo per assurdo che f non sia uniformemente continua, ovvero che esista $\varepsilon > 0$ tale che per ogni $\delta > 0$ esista una coppia di punti $x_{\delta}, y_{\delta} \in K$ tale che $||y_{\delta} - x_{\delta}|| < \delta$ ma $||f(y_{\delta}) - f(x_{\delta})|| \ge \varepsilon$, ovvero che la differenza delle loro f non tenda mai a 0.

Definiamo $\{\delta_i\}_{\mathbb{N}} = 2^{-i}$ e consideriamo le successioni $\{x_{\delta_i}\}_{\mathbb{N}}$ e $\{y_{\delta_i}\}_{\mathbb{N}}$. Abbiamo che $||y_{\delta_i} - x_{\delta_i}|| < \delta_i$ per ogni $i \in \mathbb{N}$, dunque deve tendere a 0, ma quindi devono ammettere due sottosuccessioni (determinate da una sottosuccessione $\{\delta_{\sigma(i)}\}_{\mathbb{N}}$) che tendano allo stesso limite $\hat{x} \in K$.

Per la continuità di f, abbiamo che $||f(y_{\delta_{\sigma(i)}}) - f(x_{\delta_{\sigma(i)}})||$ deve tendere a 0, assurdo per ipotesi, dunque segue la tesi.

2.10 Derivabilità e continuità delle funzioni differenziabili

Teorema 2.10.1

Sia $f: A \subset \mathbb{R}^n \to \mathbb{R}$ una funzione differenziabile in $x_0 \in A$. Allora:

- 1. f è continua in x_0 .
- 2. È derivabile lungo ogni direzione e vale $d(x_0) = \nabla f(x_0)$
- 3. Se $v \in \mathbb{S}^{n-1}$ vale $D_v f(x_0) = \langle \nabla f(x_0), v \rangle$.

Dimostrazione

Supponiamo che f sia differenziabile in $x_0 = 0$, che f(0) = 0 e sia d := d(0). Abbiamo che $f(h) = \langle d, h \rangle + o(||h||)$.

- 1. Per Cauchy-Schwarz abbiamo $\langle d, h \rangle \to 0$ quando $h \to 0$, dunque f è continua in 0.
- 2. Sia $d=(d_1,...,d_n)$ e $h_i=te_i$ con t>0. Abbiamo per definizione $f(h_i)=\langle d,te_i\rangle+o(t)=td_i+o(t)$, dunque f è derivabile lungo e_i e $d_i=\partial_i f$. Dato che vale per ogni i, abbiamo $d=\nabla f$.
- 3. Sia $v \in \mathbb{S}^{n-1}$ con $v = (v_1, ..., v_n)$ e sia t > 0. Per linearità abbiamo $f(tv) = \langle d, tv \rangle + o(t) = t \sum_i \sum_j d_i v_j \delta_{i,j} + o(t)$ che come visto sopra è $t \sum_i \sum_j \partial_i f \cdot v_j \delta_{i,j} + o(t) = t \sum_i \partial_i f \cdot v_i + o(t) = t \langle \nabla f, v \rangle + o(t)$, dunque $\partial_v f = \langle \nabla f, v \rangle$.

2.11 Teorema del differenziale totale

Teorema 2.11.1

Sia $f: A \subset \mathbb{R}^n \to \mathbb{R}$ e $x_0 \in A$. Se $f \in \mathcal{C}^1(U_{x_0})$, allora $f \in \text{differenziabile in } x_0$.

Dimostrazione

Dimostriamo il caso n=2.

Possiamo supporre che $x_0 = 0$ e f(0) = 0 e sia v = (h, k). Abbiamo $f(v) = f(h, k) = f(h, k) - f(0, k) + f(0, k) - f(0) = \emptyset$, che applicando il teorema di Lagrange ci dice che esistono ξ, ζ tali che $\emptyset = f_x(\xi, k)h + f_y(0, \zeta)k$. Ora possiamo dire

$$0 \le \left| \frac{f(v) - \langle \nabla f(0), v \rangle}{||v||} \right| = \left| \frac{f_x(\xi, k)h + f_y(0, \zeta)k - f_x(0)h - f_y(0)k}{||v||} \right|$$

Per la disuguaglianza triangolare abbiamo

$$\leq \frac{h}{||v||}|f_x(\xi,k) - f_x(0)| + \frac{k}{||v||}|f_y(0,\zeta) - f_y(0)| \leq |f_x(\xi,k) - f_x(0)| + |f_y(0,\zeta) - f_y(0)|$$

Mandiamo $v \to 0$ e per la continuità delle derivate quest'ultimo termine va a 0, dunque f è differenziabile.

Osservazione 2.11.1

Le implicazioni vanno così

$$f \in \mathcal{C}^1 \Leftrightarrow f, f_x, f_y \in \mathcal{C}^0 \Rightarrow \forall x \exists a_x : f(x+v) = f(x) + \langle a_x, v \rangle + o(||v||) \Rightarrow a_x = \nabla f(x)$$

2.12 Derivazione delle funzioni composte

Teorema 2.12.1

Siano $\gamma:[0,1]\to\mathbb{R}^n$ e $f:\gamma([0,1])\to\mathbb{R}$ due funzioni \mathcal{C}^1 sui punti interni dei rispettivi domini. Si ha $(f\circ\gamma)'=\langle(\nabla f)\circ\gamma,\gamma'\rangle$.

Dimostrazione

Sia $t \in]0,1[$, un h > 0 tale che $t + h \in]0,1[$ e sia $\Delta_h \gamma(t) := \gamma(t+h) - \gamma(t)$.

In quanto γ è \mathcal{C}^1 , abbiamo $\Delta_h \gamma(t) = \gamma'(t)h + m(h)h$, dove m(h) è una funzione infinitesima per $h \to 0$.

Sia $x \in A$, un $k \in \mathbb{R}^n$ tale che $x + k \in A$ e sia $\Delta_k f(x) := f(x + k) - f(x)$.

In quanto $f \in \mathcal{C}^1$ abbiamo $\Delta_k f(x) = \langle \nabla f(x), k \rangle + M(k) ||k||$, dove M(k) è una funzione infinitesima per $k \to 0$.

Prendiamo $x = \gamma(t)$ e $k = \Delta_h \gamma(t)$ e abbiamo $(\Delta_k f)(\gamma(t)) = \langle (\nabla f)(\gamma(t)), \Delta_h \gamma(t) \rangle + M(\Delta_h \gamma(t)) ||\Delta_h \gamma(t)||$.

Ponendo $\Delta_h(f \circ \gamma)(t) := (\Delta_k f)(\gamma(t))$ e facendo qualche sostituzione otteniamo:

$$\Delta_h(f \circ \gamma)(t) = \langle (\nabla f)(\gamma(t)), \gamma'(t)h + m(h)h \rangle + M(\gamma'(t)h + m(h)h)||\gamma'(t)h + m(h)h||$$

Dividiamo tutto per h e arriviamo a

$$\frac{\Delta_h(f \circ \gamma)(t)}{h} = \langle (\nabla f)(\gamma(t)), \gamma'(t) + m(h) \rangle + M(\gamma'(t)h + m(h)h)||\gamma'(t) + m(h)||$$

E dunque mandando $h \to 0$ otteniamo

$$\frac{d}{dt}(f \circ \gamma)(t) = \langle (\nabla f)(\gamma(t)), \gamma'(t) \rangle$$

2.13 Teorema di Lagrange Super Saiyan

Teorema 2.13.1

Sia A un aperto di \mathbb{R}^n , sia $f: A \to \mathbb{R}$ una funzione $\mathcal{C}^1(A)$ e siano $x, y \in A$ tali che $[x, y] \subset A$. Allora esiste $z \in [x, y]$ tale che $\langle \nabla f(z), y - x \rangle = f(y) - f(x)$.

Dimostrazione

Sia $\gamma:[0,1]\to\mathbb{R}^n$ la combinazione convessa $t\mapsto ty+(1-t)x$ e consideriamo $f\circ\gamma$.

Questa soddisfa le ipotesi del teorema di Lagrange, dunque esiste $l \in [0,1]$ tale che $(f \circ \gamma)'(l) = (f \circ \gamma)(1) - (f \circ \gamma)(0) = f(y) - f(x)$.

Ponendo $z = \gamma(l)$, per le regole di derivazione delle funzioni composte abbiamo

$$\frac{d}{dt}(f\circ\gamma)=\langle(\nabla f)\circ\gamma,\gamma'\rangle\xrightarrow{\varphi_l}\langle\nabla f(z),y-x\rangle$$

Segue la tesi.

2.14 Teorema di Fermat Super Saiyan

Teorema 2.14.1

Sia A un aperto di \mathbb{R}^n e sia $f:A\to\mathbb{R}$ una funzione $\mathcal{C}^1(A)$.

Se $x_0 \in A$ è un punto di massimo o minimo per f, si ha $\nabla f(x_0) = 0$.

Dimostrazione

Assumiamo che x_0 sia un punto di massimo (la dimostrazione del minimo è analoga) e consideriamo per $v \in \mathbb{R}^n \setminus \{0\}$ la funzione $f_v : t \mapsto f(x_0 + tv)$.

Abbiamo che t=0 deve essere un punto di massimo per f_v , dunque dobbiamo avere:

$$\frac{df_v}{dt}(0) = \frac{\partial f}{\partial v}(x_0) = \langle \nabla f(x_0), v \rangle = 0$$

Dato che questo deve verificarsi per ogni v, abbiamo $\nabla f(x_0) = 0$.

2.15 Condizioni sufficienti per estremi locali

Teorema 2.15.1

Sia $f: A \subset \mathbb{R}^n \to \mathbb{R}$ tale che $f \in \mathcal{C}^2(A)$ e sia x_0 un suo punto critico.

Se Q_{f,x_0} è definita positiva (negativa), allora x_0 è un punto di massimo (minimo) locale.

Se Q_{f,x_0} è indefinita, allora x_0 è un punto di sella.

Se Q_{f,x_0} è semidefinita, non possiamo dire nulla a priori sulla natura di x_0 .

Dimostrazione

Possiamo supporre $x_0 = 0$ e f(0) = 0 senza perdita di generalità.

Dato che 0 è un punto critico, abbiamo $\nabla f(0) = 0$ e f è approssimata in un intorno di 0 da $Q_{f,0}(x) + o(||x||^2)$. Se $Q_{f,0}$ è definita positiva (negativa), in un intorno di 0 la f è strettamente maggiore (minore) di 0, dunque è un massimo (minimo) locale.

Se $Q_{f,0}$ è indefinita, in un intorno di 0 abbiamo sia punti in cui f > 0 e altri in cui f < 0, dunque è un punto di sella.

Se è semidefinita invece non possiamo dire nulla a priori.

2.16 Teorema del Dini in due variabili

Teorema 2.16.1

Sia A un aperto di \mathbb{R}^2 , sia $f:A\to\mathbb{R}$ una funzione $\mathcal{C}^n(A)$ con n>1 e sia $P_0=(x_0,y_0)\in A$ tale che $f(P_0)=0$. Se $f_y(P_0)\neq 0$ in un intorno di y_0 , esiste un'unica funzione $\varphi:V_{x_0}\to V_{y_0}$ di classe $\mathcal{C}^n(V_{x_0})$ tale che in un intorno $V=V_{x_0}\times V_{y_0}$ di P_0 si abbia $f(x,\varphi(x))=0$ e si abbia:

$$\varphi'(x) = -\frac{f_x(x,\varphi(x))}{f_y(x,\varphi(x))}$$

Dimostrazione

Supponiamo $f \in \mathcal{C}^k$ con $k \ge 1$ e possiamo supporre $P_0 = (0,0)$ e $f_y(0,0) > 0$ senza perdita di generalità.

Esistenza, unicità e continuità.
Dato che f è almeno C¹ e dunque f_y è almeno C⁰, per la permanenza del segno esistono a, b > 0 tali che per ogni x ∈ [-a, a] e y ∈ [-b, b] si abbia f_y(x, y) > 0 e in particolare che f|_x : y → z = f(x, y) sia minore di 0 in -b e maggiore di 0 in b, in quanto (per permanenza del segno) abbiamo che ogni f|_x ha uno zero. In quanto f|_x : [-b, b] → ℝ è strettamente crescente per quanto scritto sopra e continua, è invertibile, dunque ammette un'unica inversa (continua, dato che f|_x è invertibile su un compatto) f|_x¹ : z → y,

In quanto la mappa $x \mapsto f_x(y)$ è continua su [-a,a] per ogni $y \in [-b,b]$, abbiamo che φ è anch'essa continua.

• Formula della derivata e differenziabilità. Abbiamo ottenuto che per ogni $(x,y) \in [-a,a] \times [-b,b]$ si abbia $f(x,y) = 0 \Leftrightarrow y = \varphi(x)$. Fissiamo un $x \in [-a,a]$ e prendiamo h con 0 < h < |a-x|, dunque abbiamo $0 = f(x+h,\varphi(x+h)) - f(x,\varphi(x))$. Per la differenziabilità di f abbiamo che la sua variazione è uguale a (dove w(h) è una funzione infinitesima per $h \to 0$)

$$0 = \langle (\nabla f)(x,\varphi(x)), (h,\varphi(x+h)-\varphi(x)) \rangle + w(h)h = \frac{\partial f}{\partial x}(x,\varphi(x)) \cdot h + \frac{\partial f}{\partial y}(x,\varphi(x)) \cdot (\varphi(x+h)-\varphi(x)) + w(h)h = \frac{\partial f}{\partial x}(x,\varphi(x)) \cdot h + \frac{\partial f}{\partial y}(x,\varphi(x)) \cdot (\varphi(x+h)-\varphi(x)) + w(h)h = \frac{\partial f}{\partial x}(x,\varphi(x)) \cdot h + \frac{\partial f}{\partial y}(x,\varphi(x)) \cdot (\varphi(x+h)-\varphi(x)) + w(h)h = \frac{\partial f}{\partial x}(x,\varphi(x)) \cdot h + \frac{\partial f}{\partial y}(x,\varphi(x)) \cdot h + \frac{\partial f}{\partial y}$$

con un po' di algebra otteniamo

dunque definiamo $\varphi: x \mapsto f|_x^{-1}(0)$.

$$\frac{\varphi(x+h) - \varphi(x)}{h} = -\frac{f_x(x, \varphi(x)) + w(h)}{f_y(x, \varphi(x))}$$

E mandando $h \to 0$ otteniamo

$$\varphi'(x) = -\frac{f_x}{f_y}(x, \varphi(x))$$

Dato che f è \mathcal{C}^k , le sue derivate prime sono \mathcal{C}^{k-1} , dunque φ' è un multiplo scalare di un rapporto di funzioni \mathcal{C}^{k-1} con denominatore non nullo per ipotesi, ovvero è \mathcal{C}^{k-1} e quindi φ è \mathcal{C}^k .