Proportional Control

Teng-Jui Lin
Department of Chemical Engineering, University of Washington
Process Dynamics and Control

Basic components in a control loop

- Process being controlled <
 - System of interest
- Sensor-transmitter combination

- o Composition analyzer-transmitter (AT) measure composition and transmits electrical signal
- Feedback controller

- Current-to-pressure transducer
 - Current-to-pressure transducer (I/P) converts electrical signal to pneumatic (air) signal
- Final control element adjusts manipulated variable
 - Control valve takes in electrical or pneumatic signal and changes flow rate
- Transmission lines between instruments
 - Electrical cables

Proportional controller has output proportional to the error signal

- Objective: deviation (error) from set point is 0
 - Error signal = Set point Measured controlled variable

$$e(t) = y_{sp}(t) - y_m(t)$$
set pt. - preset
Const.

$$p(t) = \overline{p} + K_c e(t)$$

(bias)

controller

Treitin feltz) tow

Controller gain could be positive or negative <- sign

• Want to maintain constant flow rate $w_{\rm s}$ to tank

• Want to maintain constant composition x in tank

$$20$$
 ? 20 $P(t) = P + K_c e(t)$ $C > 0$ $K_c > 0$ is positive

Transfer function for proportional controller is the controller gain

Ex. Show that the proportional controller transfer function is

$$rac{P'(s)}{E(s)} - K_s$$

Proportional controller:

$$p(t) = \overline{p} + K_c e(t) \qquad \text{original}$$

$$p'(t) = p(t) - \overline{p}$$

$$= \overline{p}' + K_c e(t) - \overline{p}$$

$$= p'(t) = K_c e(t)$$

$$C(s) = \frac{0}{in} = \frac{p'(s)}{E(s)} = K_c = controller gain$$

Proportional band can be used instead of controller gain

Proportional band

$${
m PB}\equiv rac{1}{K_c} imes 100\%$$
 prop, band controller gain

Advantages and disadvantages of proportional controllers

- Advantage
 - ∘ Simple *↓*/
 - Great if exact value of controlled value is not important: prevent overflow/empty

crude estimate

- Disadvantage
 - Offset steady-state error

