

Vandana M L

Department of Computer Science & Engineering

DESIGN AND ANALYSIS OF ALGORITHMS

Asymptotic Notations

Slides courtesy of **Anany Levitin**

Vandana M L

Department of Computer Science & Engineering

Asymptotic Notations

Order of growth of an algorithm's basic operation count is important

How do we compare order of growth??

Using Asymptotic Notations

A way of comparing functions that ignores constant factors and small input sizes

O(g(n)): class of functions f(n) that grow <u>no faster</u> than g(n)

 $\Omega(g(n))$: class of functions f(n) that grow <u>at least as fast</u> as g(n)

 Θ (g(n)): class of functions f(n) that grow <u>at same rate</u> as g(n)

o(g(n)): class of functions f(n) that grow <u>at slower rate</u> than g(n)

 $\omega(g(n))$: class of functions f(n) that grow <u>at faster rate</u> than g(n)

O-notation

Figure 2.1 Big-oh notation: $t(n) \in O(g(n))$

O-notation

PES UNIVERSITY

Formal definition

A function t(n) is said to be in O(g(n)), denoted $t(n) \in O(g(n))$, if t(n) is bounded above by some constant multiple of g(n) for all large n,

i.e., if there exist some positive constant c and some nonnegative integer n_0 such that

$$t(n) \le cg(n)$$
 for all $n \ge n_0$

Example: $100n+5 \in O(n)$

Design and Analysis of Algorithms Ω -notation

Fig. 2.2 Big-omega notation: $t(n) \in \Omega(g(n))$

Design and Analysis of Algorithms Ω -notation

Formal definition

A function t(n) is said to be in $\Omega(g(n))$, denoted $t(n) \in \Omega(g(n))$, if t(n) is bounded below by some constant multiple of g(n) for all large n,

i.e., if there exist some positive constant c and some nonnegative integer n_0 such that

$$t(n) \ge cg(n)$$
 for all $n \ge n_0$

Example: $10n^2 \in \Omega(n^2)$

Θ-notation

Figure 2.3 Big-theta notation: $t(n) \in \Theta(g(n))$

Θ-notation

Formal definition

A function t(n) is said to be in $\Theta(g(n))$, denoted $t(n) \in \Theta(g(n))$, if t(n) is bounded both above and below by some positive constant multiples of g(n) for all large n,

i.e., if there exist some positive constants c_1 and c_2 and some nonnegative integer n_0 such that

$$c_2 g(n) \le t(n) \le c_1 g(n)$$
 for all $n \ge n_0$

Example: $(1/2)n(n-1) \in \Theta(n^2)$

Little-o Notation

Formal Definition:

A function t(n) is said to be in Little-o(g(n)), denoted $t(n) \in o(g(n))$, if for any positive constant c and some nonnegative integer n_0

$$0 \le t(n) < cg(n)$$
 for all $n \ge n_0$

Example: $n \in o(n^2)$

Little Omega Notation

Formal Definition:

A function t(n) is said to be in Little- $\omega(g(n))$, denoted $t(n) \in \omega(g(n))$, if for any positive constant c and some nonnegative integer n_0 $t(n) > cg(n) \ge 0$ for all $n \ge n_0$

Example: $3 n^2 + 2 \in \omega(n)$

Theorems

- > If $t_1(n) \in O(g_1(n))$ and $t_2(n) \in O(g_2(n))$, then $t_1(n) + t_2(n) \in O(\max\{g_1(n), g_2(n)\})$. For example, $5n^2 + 3nlogn \in O(n^2)$
- ▶ If t1 (n) ∈ Θ (g1 (n)) and t2 (n) ∈ Θ (g2 (n)), then t1 (n) + t2 (n) ∈ Θ(max{g1 (n), g2 (n)})
- > $t1(n) \in \Omega(g1(n))$ and $t2(n) \in \Omega(g2(n))$, then $t1(n) + t2(n) \in \Omega(\max\{g1(n), g2(n)\})$

Implication: The algorithm's overall efficiency will be determined by the part with a larger order of growth, I.e., its least efficient part.

THANK YOU

Vandana M L
Department of Computer Science & Engineering
vandanamd@pes.edu