Problem Set 4

Warren Kim

May 8, 2023

Question 1

- (a) Let (x_n) , (y_n) and (z_n) be sequences such that $y_n \leq x_n \leq z_n$ for every $n \in \mathbb{N}$ and satisfying $y_n \to x$ and $z_n \to x$ as $n \to \infty$. Show that $x_n \to x$ as $n \to \infty$. (This is known as the squeeze theorem. Why?)
- (b) Let S be a non-empty subset of \mathbb{R} which is bounded above. Show that there exists a sequence (x_n) of points in S such that $x_n \to \sup S$ as $n \to \infty$. (Hint: You may find HW3 helpful.)

Once you have an argument for the supremum, do the same for the infimum. That is, if S is a non-empty set in \mathbb{R} which is bounded below, show that there exists a sequnce (y_n) in S such that $y_n \to \inf S$.

Response

- (a) Proof. Let $\varepsilon > 0$. Then, we have that $|y_n x| < \varepsilon$ for all $n > N_1$ and $|z_n x| < \varepsilon$ for all $n > N_2$ since both (y_n) and (z_n) converge. That is, we have that $x \varepsilon < y_n < x + \varepsilon$ for every $n > N_1$ and $x \varepsilon < z_n < x + \varepsilon$ for every $n > N_2$. Let $N_3 = \max\{N_1, N_2\}$. Since $y_n \le x_n \le z_n \ \forall n \in \mathbb{N}$, we have that for all $n > N_3$, $x \varepsilon < y_n \le x_n \le z_n < x + \varepsilon \implies x \varepsilon < x_n < x + \varepsilon \implies |x_n x| < \varepsilon \ \forall n > N_3$. Therefore, $x_n \to x$ as $n \to \infty$.
 - This is called the *squeeze theorem* since a function is essentially being "squeezed" between two other functions that converge to the same limit x, forcing the limit of the squeezed function to also be x *assuming the conditions described in (a) are met*.
- (b) Proof. By LUBP, since S is a non-empty subset of $\mathbb R$ that is bounded above, $\sup S$ exists. By definition, $\sup S$ is the least upper bound of S, so for all $\varepsilon > 0$, $\exists N \in \mathbb N : \forall n > N$, $\sup S \varepsilon \le \sup S$. Then, there exists some $(x_n) \in S$ such that $\sup S \varepsilon \le x_n$. Let $y_n := \sup S \frac{1}{n}$. Then, clearly, $y_n \le x_n \le \sup S$ for all n > N. Let $a_n = \sup S$ and $b_n = \frac{1}{n}$. Clearly, $a_n \to \sup S$ as $n \to \infty$ since it is a constant sequence. From lecture, we have that $b_n \to 0$ as $n \to \infty$. Then, since both a_n and b_n converge, by the Algebraic Limit Theorem, $\lim_{n\to\infty} y_n = \lim_{n\to\infty} a_n \lim_{n\to\infty} b_n = \sup S 0 = \sup S$ Then we have that $y_n \le x_n \le a_n$ where $y_n \to \sup S$ and $a_n \to \sup S$ as $n \to \infty$. From (a), the squeeze theorem says that $x_n \to \sup S$ as $n \to \infty$.

Proof. By GLBP, since S is a non-empty subset of $\mathbb R$ that is bounded below, inf S exists. By definition, inf S is the greatest lower bound of S, so for all $\varepsilon > 0$, $\exists N \in \mathbb N : \forall n > N$, inf $S \leq \inf S + \varepsilon$. Then, there exists some $(y_n) \in S$ such that $y_n \leq \inf S + \varepsilon$. Let $x_n := \inf S + \frac{1}{n}$. Then, clearly, $\inf S \leq y_n \leq x_n$ for all n > N. Let $a_n = \inf S$ and $b_n = \frac{1}{n}$. Clearly, $a_n \to \inf S$ as $n \to \infty$ since it is a constant sequence. From lecture, we have that $b_n \to 0$ as $n \to \infty$. Then, since both a_n and b_n converge, by the Algebraic Limit Theorem, $\lim_{n\to\infty} y_n = \lim_{n\to\infty} a_n + \lim_{n\to\infty} b_n = \inf S + 0 = \inf S$ Then we have that $a_n \leq y_n \leq x_n$ where $x_n \to \inf S$ and $a_n \to \inf S$ as $n \to \infty$. From (a), the squeeze theorem says that $x_n \to \inf S$ as $n \to \infty$.

Question 4

Give an example of each of the following, or argue that such a request is impossible.

- (a) A sequence that does not contain 0 or 1 as a term but contains subsequences converging to each of these values.
- (b) A monotone sequence that diverges but has a convergent subsequence.
- (c) A sequence that contains subsequences converging to every point in the infinite set $(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots)$.
- (d) An unbounded sequence with a convergent subsequence.
- (e) A sequence that has a subsequence that is bounded but contains no subsequence that converges.
- (f) A Cauchy sequence that is not montone.
- (g) A Cauchy sequence with a divergent subsequence.
- (h) An unbounded sequence containing a subsequence that is Cauchy.

Response

- (a) $x_n = \begin{cases} \frac{1}{n} & n \text{ is even} \\ 1 + \frac{1}{n} & n \text{ is odd} \end{cases}$. Clearly, neither $\frac{1}{n}$ nor $1 + \frac{1}{n}$ contain 0 or 1 as a term but the subsequence where n is even converges to 0 and the subsequence where n is odd converges to 1.
- (b) This is impossible. Assume by contradiction there exists a monotone sequence (x_n) that diverges but has a convergent subsequence. Then, (x_n) must be bounded (either above, below, or both). By the Monotone Convergence Theorem, since (x_n) is monotone and bounded, (x_n) must converge, which is a contradiction to the statement that (x_n) is divergent.
- (c) $x_n = (1, 1, \frac{1}{2}, 1, \frac{1}{2}, \frac{1}{3}, \dots)$
- (d) This is impossible since by the Bolzano-Weirstrauss Theorem, every bounded sequence has a convergent subsequence.
- (e) This is impossible. Assume by contradiction there exists a sequence that has a bounded subsequence but contains no subsequence that converges. Then, by the Bolzano-Weirstrauss Theorem, every bounded sequence has a convergent subsequence. So, there exists subsequence of the bounded subsequence that converges. Since a subsubsequence is a subsequence of the original sequence, there is at least one subsequence that converges, a contradiction to our assumption.
- (f) $x_n = \frac{(-1)^n}{n}$ converges to 0 but is not monotone.
- (g) This is impossible since all Cauchy sequences are bounded, and by Bolzano-Weirstrauss, every bounded sequence has a subsequence that converges. Therefore, all subsequences also converge.
- (h) $x_n = \begin{cases} 0 & n \text{ is even} \\ n & n \text{ is odd} \end{cases}$. Then, (x_n) is unbounded but the subsequence x_{2n} is Cauchy.

Question 6

Let (x_n) be a Cauchy sequence. Show that the sequence (x_n^{2022}) converges.

Response

Proof. Note that since (x_n) is Cauchy, it converges. Let $x_n \to x$ as $n \to \infty$. Then, for $\varepsilon_0 = 1$, put $N \in \mathbb{N}$ such that for all n > N, $|x_n - x| < \varepsilon_0 = 1$. Let $N_1 = \max\{|x_1|, \ldots, |x_{N-1}|, |x| + 1\}$. Then, for all $n \le N - 1$, $|x_n| \le N_1$. and for all $n \ge N$, $|x_n| = |x_n - x + x| \le |x_n - x| + |x| = 1 + |x| \le N_1$. Taking the extremes of the inequality, we get that $|x_n| \le N_1$. So, $|x_n| \le N_1$ for all $n \ge N_1$. Then,

$$|x_n^{2022} - x^{2022}| = |(x_n - x)(x_n^{2021} + x^{2020}x + x^{2019}x^2 + \dots + x^{2021})|$$

$$\leq |x_n - x||x_n^{2021} + x^{2020}x + x^{2019}x^2 + \dots + x^{2021}|$$

Since $|x_n| \leq N_1$ for all $n \in \mathbb{N}$ and $|x| + 1 \leq N_1 \Longrightarrow |x| \leq N_1 - 1 \leq N_1$, we have that $|x_n|^k \leq N_1^k$ and $|x|^k \leq N_1$ for all $n, k \in \mathbb{N}$. So, $|x_n^{2022} - x^{2022}| \leq |x_n - x|(2022)N_1^{2021}$. Let $\varepsilon > 0$. Then, $|x_n - x|(2022)N_1^{2021} < \varepsilon \iff |x_n - x| < \frac{\varepsilon}{2022N_1^{2021}}$. So, for all n > N, we have $|x_n - x| < \frac{\varepsilon}{2022N_1^{2021}} \Longrightarrow |x_n^{2022} - x^{2022}| \leq |x_n - x|(2022)N_1^{2021}$. Therefore, (x_n^{2022}) converges.

Question 7(g)

Let (x_n) be a bounded sequence. Show that $\lim_{n\to\infty} x_n$ exists if and only if $\limsup_{n\to\infty} x_n = \lim\inf_{n\to\infty} x_n$, in which case, $\lim\sup_{n\to\infty} x_n = \lim\inf_{n\to\infty} x_n = \lim\inf_{n\to\infty} x_n$ so they all share the same value.

Response

Proof. $\lim_{n\to\infty} x_n$ exists $\Longrightarrow \lim\sup_{n\to\infty} x_n = x = \liminf_{n\to\infty} x_n$ Since (x_n) is bounded, we have that $\limsup_{n\to\infty}$ and $\liminf_{n\to\infty} x_n$ are finite and exist. From (c), there exists a subsequences (x_{nk}) and (x_{nt}) such that $\lim_{k\to\infty} = \limsup_{n\to\infty} x_n$ and $\lim_{t\to\infty} = \lim\inf_{n\to\infty} x_n$ respectively. Since $x_n\to x$, we have that $x_{nk}\to x \Longrightarrow \limsup_{n\to\infty} x_n$ since $x_n\to x$, we have that $x_{nt}\to x \Longrightarrow \liminf_{n\to\infty} x_n$. Then, we have $\lim\sup_{n\to\infty} x_n \Longrightarrow \lim\sup_{n\to\infty} x_n \Longrightarrow \lim\sup_{n\to\infty} x_n$ and $\lim_{t\to\infty} x_n \Longrightarrow \lim\sup_{n\to\infty} x_n \Longrightarrow \lim\lim_{n\to\infty} x_n \Longrightarrow \lim_{n\to\infty} x_n \Longrightarrow \lim\lim_{n\to\infty} x_n \Longrightarrow \lim_{n\to\infty} x_n \Longrightarrow \lim_{n\to\infty$

 $\lim_{n \to \infty} x_n \text{ exists} \longleftarrow \limsup_{n \to \infty} x_n = x = \lim\inf_{n \to \infty} x_n \\ \text{Assume } \lim\sup_{n \to \infty} x_n = x = \lim\inf_{n \to \infty} x_n. \text{ Let } \varepsilon > 0. \text{ Then, since } \lim\sup_{n \to \infty} = x, \text{ there exists } \\ N_1 \in \mathbb{N} : \forall n > N_1, |x_n - x| < \varepsilon. \text{ Snince } \liminf_{n \to \infty} = x, \text{ there exists } N_2 \in \mathbb{N} : \forall n > N_2, |x_n - x| < \varepsilon. \\ \text{Take } N = \max\{N_1, N_2\}. \text{ Then we have } |x_n - x| < \varepsilon \text{ for all } n > N, \text{ which is the definition of a limit.} \\ \text{Therefore, } \lim_{n \to \infty} x_n = x.$