Lecture 11: Adversarial Games

- Full-information setting
- Adversarial bandits
- Exp3/Exp3.P/Exp3-IX
- Lower bounds (if we have time)

Recall: Stochastic bandit setting

- Set $\mathcal{K} = \{1, 2, \dots, K\}$ of K actions (arms, machines)
- You are facing a tuple of distributions $\nu = (P_1, P_2, \dots, P_K)$

• Identify the best action by interacting with the environment

What if we are wrong?

All models are wrong, but some are useful. - George E. P. Box

- Stochastic bandit model assumes that rewards are generated at random from a distribution that depends only on the chosen action, i.e. $r_t \sim P_{k_t}$
- What is *truly* stochastic?
- Are distributions always stationary?

Adversarial games

- Remove assumptions about how rewards are generated
- → The 'environment' becomes an 'adversary'
- \rightarrow The adversary has access to the code of your algorithm!

Example: Simple game with two actions on horizon T=1

- 1. You tell your friend your strategy for choosing an action
- 2. Your friend secretly chooses outcomes $x_1 \in \{0,1\}$ and $x_2 \in \{0,1\}$
- 3. You implement your strategy to select $k_t \in \{1,2\}$ receive reward x_{k_t}
- 4. The regret is $R = \max\{x_1, x_2\} x_{k_t}$

Analyzing the game

Example: Simple game with two actions on horizon T=1

- 1. You tell your friend your strategy for choosing an action
- 2. Your friend secretly chooses outcomes $x_1 \in \{0,1\}$ and $x_2 \in \{0,1\}$
- 3. You implement your strategy to select $k_t \in \{1,2\}$ receive reward x_{k_t}
- 4. The regret is $R = \max\{x_1, x_2\} x_{k_t}$
- What happens if your friend chooses $x_1 = x_2$?
- What happens if you have a deterministic strategy?
- What if you have a randomized strategy

s.t.
$$\Pr[k_t = x_1] = \Pr[k_t = x_1] = 1/2$$
?

Adversarial setting

- Set $\mathcal{K} = \{1, 2, \dots, K\}$ of K > 1 actions (arms, machines)
- You are facing a tuple of vectors $\nu = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_T)$ where $\mathbf{x}_t = (x_{1,t}, x_{2,t}, \dots, x_{K,t}) = [0,1]^K$ for each $t = 1 \dots T$

For each round t:

- You select action $k_t \in \mathcal{K}$ using policy $\pi_t(\cdot|k_1, r_1, k_2, r_2, \dots, k_{t-1}, r_{t-1})$
- You observe reward $r_t = x_{k_t,t}$

Measuring the performance

 Recall that in the stochastic bandit setting we tried to minimize the cumulative (expected) regret:

$$\sum_{t=1}^{T} \left(\mu_{\star} - \mu_{k_t} \right)$$

- $\rightarrow \mu_{\star} = \max_{k \in \mathcal{K}} \mu_k$
- $\rightarrow \mu_k = \mathbb{E}[r_t|k_t=k]$, i.e. expectation of P_k
- → Benchmark against 'always play the arm with highest expected reward'

Does that make any sense in an adversarial setting?

A different notion of regret

- Goal: Pull the arm with the highest reward at every step
- Future rewards have no relationship with previous ones
- Minimize cumulative random regret:

$$\hat{R}_T = \max_{k \in \mathcal{K}} \sum_{t=1}^T x_{t,k} - \sum_{t=1}^T x_{k_t,t}$$

- → Actual deficit of the learner relative to the best arm in hindsight
- → Compete with the strategy that always picks a single arm
- \rightarrow Learn over time which is the best single arm

Full-information setting

At each round *t*:

- You select action $k_t \in \mathcal{K}$
- You receive a reward $r_t = x_{k_t,t}$
- You observe $\mathbf{x}_t \leftarrow$ rewards associated with all arms at this round!
- This is also known has experts problem

Experts problem

- Set of available *experts*
- On each round:
 - 1. You receive a question to answer/problems to solve
 - 2. Each expert gives you a recommendation
 - 3. You select an expert to follow
 - 4. You receive the answer to the question/problem
- Which expert's advice should you follow?

Hedge algorithm

- Based on multiplicative weights update
- Weights accumulate the rewards of actions:

$$w_{k,t} = \exp\left(\eta \sum_{s=1}^{t} x_{k,t}\right)$$

- Initially $w_{k,0} = 1$ for all $k \in \mathcal{K}$
- Compute selection probability for each action k: $p_{k,t} = \frac{w_{k,t-1}}{\sum_{k' \in \mathcal{K}} w_{k',t-1}}$
- Select action k_t at random (given action selection probabilities)
- Receive reward $r_t = x_{k_t,t}$
- ullet Observe \mathbf{x}_t
- \rightarrow This is called a *soft max*

What happens if $\eta \to \infty$? What if $\eta \to 0$?

Hedge algorithm guarantees

Theorem 1. Assume $x_{k,t} \in [0,1]$ for all $k \in \mathcal{K}$ and for all $t \geq 1$. Then

$$\mathbb{E}[\hat{R}_T] = \max_{k \in \mathcal{K}} \sum_{t=1}^T x_{t,k} - \mathbb{E}\left[\sum_{t=1}^T x_{k_t,t}\right] \le 2\eta \max_{k \in \mathcal{K}} \sum_{t=1}^T x_{t,k} + \frac{\ln K}{\eta}$$

for any choice of $\eta \in [0,1]$.

- We know that $\max_{k \in \mathcal{K}} \sum_{t=1}^{T} x_{t,k} \leq T$
- If we let $\eta = \sqrt{\frac{\ln K}{T}} \le 1$ we get $\mathbb{E}[R_T] \le 3\sqrt{T \ln K}$
- ightarrow This requires observing \mathbf{x}_t (i.e. rewards of non-chosen actions)

Adversarial bandit setting

For each round *t*:

- You select action $k_t \in \mathcal{K}$ using policy $\pi_t(\cdot|k_1, r_1, k_2, r_2, \dots, k_{t-1}, r_{t-1})$
- You observe reward $r_t = x_{t,k_t}$
- \rightarrow You **do not** observe rewards for actions $k \neq k_t$

How should we estimate the weights in the Hedge algorithm then?

Importance sampling

- ullet When we can sample from one distribution p(x)
- ullet ...but we are interested in the expectation when we sample with respect to another distribution q(x)
- Simple idea: take samples x from p(x) and modify them:

$$\hat{x} = \frac{xq(x)}{p(x)}$$

$$\rightarrow \mathbb{E}_{x \sim p}[\hat{x}] = \mathbb{E}_{\hat{x} \sim q}[x]$$

How we can use this:

$$\hat{x}_{k,t} = \frac{x_{k,t} \mathbb{I}\{k_t = k\}}{p_{k,t}} = \frac{r_t \mathbb{I}\{k_t = k\}}{p_{k,t-1}}$$

Importance sampling: Expectation

Recall:
$$\hat{x}_{k,t} = \frac{\mathbb{I}\{k_t = k\}}{p_{k,t}} x_{k,t} = \frac{\mathbb{I}\{k_t = k\}}{p_{k,t-1}} r_t$$

- Let $\mathbb{E}_t[\cdot] = [\cdot | k_1, r_1, k_2, r_2, \dots, k_{t-1}, r_{t-1}]$
- Expectation of estimator:

$$\mathbb{E}[\hat{x}_{k,t}|k_1,r_1,k_2,r_2,\ldots,k_{t-1},r_{t-1}] = \mathbb{E}_t \left[\frac{\mathbb{I}\{k_t=k\}}{p_{k,t}} x_{k,t} \right]$$

$$(p_{k,t} \text{ is a function of } k_1,r_1,\ldots,k_{t-1},r_{t-1}) = \frac{x_{k,t}}{p_{k,t}} \mathbb{E}_t[\mathbb{I}\{k_t=k\}]$$

$$= \frac{x_{k,t}}{p_{k,t}} p_{k,t}$$

$$= x_{k,t}$$

Importance sampling: Variance

Recall:
$$\hat{x}_{k,t} = \frac{\mathbb{I}\{k_t = k\}}{p_{k,t}} x_{k,t} = \frac{\mathbb{I}\{k_t = k\}}{p_{k,t-1}} r_t$$

$$\mathbb{E}_t[\hat{x}_{k,t}] = x_{k,t}$$

- Let $\mathbb{V}_t[\cdot] = [\cdot | k_1, r_1, k_2, r_2, \dots, k_{t-1}, r_{t-1}]$
- Variance of estimator:

$$\mathbb{V}[\hat{x}_{k,t}|k_1, r_1, k_2, r_2, \dots, k_t, r_t] = \mathbb{E}_t[\hat{x}_{k,t}^2] - \mathbb{E}_t[\hat{x}_{k,t}]^2$$

$$= \mathbb{E}_t \left[\frac{\mathbb{I}\{k_t = k\}}{p_{k,t}^2} x_{k,t}^2 \right] - x_{k,t}^2$$

$$= x_{k,t}^2 \frac{1 - p_{k,t}}{p_{k,t}}$$

Exp3 algorithm

- 'Exponential-weight algorithm for Exploration and Exploitation'
- Weights accumulate the rewards of actions:

$$w_{k,t} = \exp\left(\eta \sum_{s=1}^t \hat{x}_{k,s}\right)$$
 with $\hat{x}_{k,s} = \frac{\mathbb{I}\{k_s = k\}}{p_{k,s}}r_s$

- Initially $w_{k,0} = 1$ for all $k \in \mathcal{K}$
- Compute selection probability for each action *k*:

$$p_{k,t} = \frac{w_{k,t-1}}{\sum_{k' \in \mathcal{K}} w_{k',t-1}}$$

- Select action k_t at random (given action selection probabilities)
- Receive reward $r_t = x_{k_t,t}$
- η is called *learning rate* \to Link to the exploration/exploitation tradeoff?

Exp3 guarantees

Theorem 2. With learning rate $\eta = \sqrt{\frac{\ln K}{TK}}$, then

$$\hat{R}_T \le 2\sqrt{TK\ln K}.$$

- ullet We lose a factor \sqrt{K} compared with the full-information case
- \rightarrow Price to pay for missing information

Reducing variance: High rewards → **Low losses**

Recall:
$$w_{k,t} = \exp\left(\eta \sum_{s=1}^t \hat{x}_{k,s}\right)$$
 with $\hat{x}_{k,s} = \frac{\mathbb{I}\{k_s = k\}}{p_{k,s}} x_{k,s}$

What happens if $x_{k,s}$ is bounded away from 0?

- Recall: rewards $\mathbf{x}_{k,t} \in [0,1]$ for all $k \in \mathcal{K}$, for all $t \geq 1$
- Loss: $y_{k,t} = 1 x_{k,t}$, $\ell_t = 1 r_t$

$$\hat{y}_{k,t} = \frac{\mathbb{I}\{k_t = k\}}{p_{k,t}} y_{k,t}$$

$$\to \mathbb{V}[\hat{y}_{k,t}|k_1, r_1, k_2, r_2, \dots, k_t, r_t] = y_{k,t}^2 \frac{1 - p_{k,t}}{p_{k,t}}$$

How would you rewrite the random regret in terms of losses?

Random regret with losses

$$\begin{split} \hat{R}_T &= \max_{k \in \mathcal{K}} \sum_{t=1}^T x_{k,t} - \sum_{t=1}^T x_{k_t,t} \\ &= -\min_{k \in \mathcal{K}} \sum_{t=1}^T -x_{k,t} - \sum_{t=1}^T x_{k_t,t} \\ &= -\min_{k \in \mathcal{K}} \sum_{t=1}^T -x_{k,t} - T + T - \sum_{t=1}^T x_{k_t,t} \\ &= -(T + \min_{k \in \mathcal{K}} \sum_{t=1}^T -x_{k,t}) + T - \sum_{t=1}^T x_{k_t,t} \\ &= -\min_{k \in \mathcal{K}} \sum_{t=1}^T (1 - x_{k,t}) + \sum_{t=1}^T (1 - x_{k_t,t}) = \sum_{t=1}^T y_{k_t,t} - \min_{k \in \mathcal{K}} \sum_{t=1}^T y_{k,t} \end{split}$$

How would you rewrite Exp3 with losses?

Exp3 with losses

Weights accumulate the losses of actions:

$$w_{k,t} = \exp\left(-\eta \sum_{s=1}^t \hat{y}_{k,s}\right) \qquad \text{with} \quad \hat{y}_{k,s} = \frac{\mathbb{I}\{k_s = k\}}{p_{k,s}} \ell_s$$

- Initially $w_{k,0} = 1$ for all $k \in \mathcal{K}$
- Compute selection probability for each action *k*:

$$p_{k,t} = \frac{w_{k,t-1}}{\sum_{k' \in \mathcal{K}} w_{k',t-1}}$$

- Select action k_t at random (given action selection probabilities)
- Receive loss $\ell_t = y_{k_t,t}$

Increasing stability

Recall:
$$w_{k,t} = \exp\left(-\eta \sum_{s=1}^t \hat{y}_{k,s}\right)$$
 with $\hat{y}_{k,s} = \frac{\mathbb{I}\{k_s = k\}}{p_{k,s}}\ell_s$

What happens if $p_{k,t}$ becomes very small?

- Trick: Ensure that $p_{k,t} \ge$ something
- Two approaches:
 - 1. Mix the sampling probabilities with a uniform distribution
 - 2. Be optimistic

Increasing stability: Blending with uniform distribution

Recall:
$$w_{k,t} = \exp\left(-\eta \sum_{s=1}^t \hat{y}_{k,s}\right)$$
 with $\hat{y}_{k,s} = \frac{\mathbb{I}\{k_s = k\}}{p_{k,s}}\ell_s$

• Let $\gamma \in (0,1)$, redefine

$$p_{k,t} = (1 - \gamma) \frac{w_{k,t-1}}{\sum_{k' \in \mathcal{K}} w_{k',t-1}} + \frac{\gamma}{K}$$

ightarrow This ensures that $p_{k,t} \geq \frac{\gamma}{K}$

Exp3.P algorithm

Weights accumulate the losses of actions:

$$w_{k,t} = \exp\left(-\eta \sum_{s=1}^t \hat{y}_{k,s}\right) \qquad \text{with} \quad \hat{y}_{k,s} = \frac{\mathbb{I}\{k_s = k\}}{p_{k,s}} \ell_s$$

- Initially $w_{k,0} = 1$ for all $k \in \mathcal{K}$
- Compute selection probability for each action *k*:

$$p_{k,t} = (1 - \gamma) \frac{w_{k,t-1}}{\sum_{k' \in \mathcal{K}} w_{k',t-1}} + \frac{\gamma}{K} \quad \text{for} \quad \gamma \in (0,1)$$

- Select action k_t at random (given action selection probabilities)
- Receive loss $\ell_t = y_{k_t,t}$

Exp3.P guarantees

Theorem 3. There exists a universal constant C > 0 such that for any $\delta \in (0,1)$ and an appropriate choice of η and γ , it holds that

$$\hat{R}_T \le C\sqrt{TK\ln(K/\delta)}$$

with probability at least $1 - \delta$.

Increasing stability: Being optimistic

• Let $\gamma > 0$, redefine

$$\hat{y}_{k,t} = \frac{\mathbb{I}\{k_t = k\}}{p_{k,t} + \gamma} y_{k,t}$$

 \rightarrow Bias/variance tradeoff:

$$\mathbb{E}[\hat{y}_{k,t}|k_1, r_1, k_2, r_2, \dots, k_{t-1}, r_{t-1}] = \mathbb{E}_t \left[\frac{\mathbb{I}\{k_t = k\}}{p_{k,t} + \gamma} y_{k,t} \right] = \frac{y_{k,t}}{p_{k,t} + \gamma} p_{k,t}$$

$$\leq y_{k,t}$$

How about variance?

Exp3-IX algorithm

- Exp3 with Implicit eXploration
- Weights accumulate the rewards of actions:

$$w_{k,t} = \exp\left(-\eta \sum_{s=1}^t \hat{y}_{k,t}\right) \qquad \text{with} \quad \hat{y}_{k,s} = \frac{\mathbb{I}\{k_s = k\}}{p_{k,s} + \gamma} (1 - r_s) \quad \text{for} \quad \gamma > 0$$

- Initially $w_{k,0} = 1$ for all $k \in \mathcal{K}$
- Compute selection probability for each action k:

$$p_{k,t} = \frac{w_{k,t-1}}{\sum_{k' \in \mathcal{K}} w_{k',t-1}}$$

- Select action k_t at random (given action selection probabilities)
- Receive reward $r_t = x_{k_t,t}$

Exp3-IX guarantees

Theorem 4. Let $\delta \in (0,1)$ and define

$$\eta_1 = \sqrt{\frac{2\ln(K+1)}{TK}}$$
 and $\eta_2 = \sqrt{\frac{\ln K + \ln \frac{K+1}{\delta}}{TK}}$.

1. If Exp-IX is run with parameters $\eta = \eta_1$ and $\gamma = \eta/2$, then

$$\Pr\left[\hat{R}_T \ge \sqrt{8.5TK \ln(K+1)} + \left(\sqrt{\frac{TK}{2\ln(K+1)}} + 1\right) \ln 1/\delta\right] \le \delta.$$

2. If Exp-IX is run with parameters $\eta = \eta_2$ and $\gamma = \eta/2$, then

$$\Pr\left[\hat{R}_T \ge 2\sqrt{(2\ln(K+1) + \ln(1/\delta)TK} + \ln\frac{TK}{\delta}\right] \le \delta.$$

Summary

- Stochasticity is necessary in the adversarial setting
- Importance sampling allows to extend algorithms from the fullinformation setting to the bandit setting
- We can formulate algorithms in terms of rewards or losses
- We can gain stability/reduce variance by enforcing exploration
- We can gain stability/reduce variance by being optimistic
- Tightness vs generality of the bounds

Lower bounds

- ullet Regret upper bound o control how bad we can perform
- How about the best performance that we can expect?

$$R_T \geq \text{something}$$

- Prove that no algorithm can do better
- Forces people to understand what is hard about the problem
- \rightarrow Derive the right algorithm for the right problem

Worst case regret

"For any policy that you give me, I will give you an instance of a bandit problem ν on which the regret is at least L"

• Worst case regret of policy π on environment class \mathcal{E} :

$$R_T(\pi, \mathcal{E}) = \sup_{\nu \in \mathcal{E}} R_T(\pi, \nu)$$

- Example:
 - Consider Bernoulli rewards
 - $R_T(\pi, \mathcal{E})$ looks for the K-arms Bernoulli bandit that is the most difficult to solve using policy π

Minimax optimality

- Let Π be the set of all policies
- Minimax regret:

$$R_T^*(\mathcal{E}) = \inf_{\pi \in \Pi} R_T(\pi, \mathcal{E}) = \inf_{\pi \in \Pi} \sup_{\nu \in \mathcal{E}} R_T(\pi, \nu)$$

- Compare all possible policies on their most challenging environment
- ullet Small $R_T^*(\mathcal{E}) o underlying bandit problem is less challenging$
- ullet Understand what makes $R_T^*(\mathcal{E})$ large/small
- ullet A policy π is called minimax optimal for ${\mathcal E}$ if

$$R_T(\pi, \mathcal{E}) = R_T^*(\mathcal{E})$$

ullet Minimax optimality is a property of π , ${\mathcal E}$ and T

Game-theoretic interpretation

- Imagine a game between two-players: the protagonist and the antagonist
- For K > 1 and $T \ge K$:
 - The protagonist proposes a policy π
 - The antagonist looks at π and chooses a bandit instance $\nu \in \mathcal{E}$
- Utility for the antagonist: expected regret
- Utility for the protagonist: negation of the expected regret
- \rightarrow Zero-sum game!

Pareto optimality interpretation

- ullet The regret of policies Π on environments in ${\mathcal E}$ is multi-objective
- \rightarrow Some policies are good on some instances, bad on others
 - Policy π is *Pareto optimal* if there does not exist another policy π' that is a strict improvement:

$$R_T(\pi', \nu) \le R_T(\pi, \nu) \quad \forall \nu \in \mathcal{E}$$

and

$$R_T(\pi', \nu) < R_T(\pi, \nu)$$
 for at least one $\nu \in \mathcal{E}$

Deriving lower bounds: Key ideas

Select two bandit problem instances, ν_1 and ν_2 , in such a way that the following conditions hold simultaenously:

Competition: A sequence of actions that is good for ν_1 is not good for ν_2 **Similarity:** ν_1 and ν_2 are *close* enough that the policy interacting with either of the two instances cannot statistically identify the true bandit with reasonable statistical accuracy

Conflict!

→ Lower bound: optimize the tradeoff

Example of results: Adversarial bandits

Theorem 5. Let c, C > 0 be sufficiently small/large universal constants and $K \geq 2$, $n \geq 1$ and $\delta \in (0,1)$ be such that $n \geq CK \ln(1/(2\delta))$. Then there exists a reward sequence $x \in [0,1]^{TK}$ such that

$$\Pr\left[\hat{R}_T(x) \ge c\sqrt{TK\ln\frac{1}{2\delta}}\right] \ge \delta$$

 \rightarrow Pay attention to the inequalities