Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs

NIPS 2020

2020-12

1 Introduction

- 这篇文章主要是探究graph中的异质偏好Heterophily和同质偏好 Homophily
- Homophily: 同质偏好, 指个体更倾向于与相似的个体建立链结 (即"物以类聚, 人以群分")
- Heterophily:异质偏好,指个体倾向于和相异的个体链接("异性相吸")
- 上面这两点特性体现在graph上,就是单个edge链接的两个node,是倾向于属于同一类node还是不同类node。比如在citing network中,paper和paper都是同一类,甚至是同一area;但是在dating network中,主要是不同性别的node相连。

1 Introduction

- 在GCN等很多GNN中,实际上假设了graph是倾向于同质偏好的,以GCN举例,它通过邻居信息的加权求和得到新的表示,这一机制的背后本质是对于不同的邻居都进行了相同的处理。
- 作者发现GCN, GAT这些GNN, 擅长处理具有高homophily的graph, 但是在高heterophily的graph下, 性能甚至可能不如直接基于特征 的MLP

1 Introduction

- 辨析Heterophily与Heterogeneity
- 同质(Homogeneity)与异质(Heterogeneity)是一对科学与统计学中常用的对物质的均匀性进行描述的概念。
- 如果一种材料或一幅图像具有同质性(或者说是同质的),那么它就是由同样的单元堆砌而成的。相对的,如果一种物质至少一种特征的分布明显不均匀,那么它就具有异质性。
- 在graph中,如果node和edge各自具有不同的类型,那么就可以说是具有Heterogeneity。在一个异质图中,异质偏好可能高也可能低。而如果具有了异质偏好,那首先肯定是异质图。

2 Learning Over Networks with Heterophily

- •本文作者在前面研究的基础上,综合了几种不同的设计思路,提出了3种有助于建模异质偏好的设计模式。
- Design 1: Ego- and Neighbor-embedding Separation

$$\mathbf{r}_v^{(k)} = egin{bmatrix} exttt{COMBINE} & \left(\mathbf{r}_v^{(k-1)}, \ exttt{AGGR}(\{\mathbf{r}_u^{(k-1)}: u \in ar{N}(v) \ \})
ight) \end{aligned}$$

- 自身信息与邻居信息分离。COMBINE是一种不mixing邻居信息和自身信息的操作,最简单的是concat,这一设计方案已在 GraphSAGE中采用。AGGR可以是GCN中的加权求和。
- Intuition: 如果是异质偏好很高的网络,那么一个node和邻居node的特征大概率是不同的,那么直接相加相当于混淆了自身的特性

2 Learning Over Networks with Heterophily

• Design 2: Higher-order Neighborhoods

$$\mathbf{r}_v^{(k)} = \mathtt{COMBINE}\left(\mathbf{r}_v^{(k-1)}, \ \mathtt{AGGR}(\{\mathbf{r}_u^{(k-1)} : u \in \boxed{N_1(v)}\}), \ \mathtt{AGGR}(\{\mathbf{r}_u^{(k-1)} : u \in \boxed{N_2(v)}\}), \ldots\right)$$

- 在前面设计的基础上,在一次信息聚合的过程中,同时聚合多阶 邻居信息。这个设计在MixHop和GCN-Cheby中采用。
- Intuition: 一个图涉及到的不同order的邻居提供的异质/同质信息是不同的,对于同质性强的graph,不同阶的邻居都能够为中心节点提供同质的信息;对于异质性强的graph,1阶邻居倾向于是异质的,而2阶邻居倾向于提供同质信息,这种同质信息就能够帮助进行中心节点的预测任务。
- Theorem:实际在论文中,作者证明了在一种理想的情况下,2阶邻居总是倾向于同质的。

2 Learning Over Networks with Heterophily

Design 3: Combination of Intermediate Representations

$$\mathbf{r}_v^{ ext{(final)}} = \mathtt{COMBINE}\left(egin{array}{c} \mathbf{r}_v^{(1)}, \mathbf{r}_v^{(2)}, \ldots, \mathbf{r}_v^{(K)} \end{array}
ight)$$

- 多次聚合结果联合。在Design 2的基础上,每轮round的传播结果都提供到最终的表示上。这种设计方案在Jumping Knowledge Network中提出。
- Intuition: 每一轮的消息传播,得到的是不同range的局部信息,传播次数越多,看到的"视野"越大。收集不同轮的传播结果,然后拼接起来产生最终的输出。
- Theorem:对于GCN来说,每一次的传播是不同pass的信息处理过程,不同的传播过程得到不同frequency的结果。

 $r_9^{(0)}$ $r_{9,1}^{(1)}$ $r_{9,2}^{(1)}$ $r_{9,1}^{(2)}$ $r_{9,2}^{(2)}$

 $= (r_v^{(0)}||r_v^{(1)}||r_v^{(2)})$

 $r_{8,1}^{(2)}$ $r_{8,2}^{(2)}$

r_{9,1}⁽²⁾ r_{9,2}⁽²⁾

 $r_{v,2}^{(2)}$ = weighted_avg({ $r_u^{(1)}$: $u \in N_2(v)$ })

 $r_v^{(2)} = (r_{v,1}^{(2)}||r_{v,2}^{(2)})$

结合起来, 得到本文用 作实验对比 的模型

3 Empirical Evaluation

- 两大方面的实验
 - Evaluation on Synthetic Benchmarks
 - Evaluation on Real Benchmarks
- 在人造的数据集上,构造了不同edge homophily比例的数据集

$$h = \frac{|\{(u,v):(u,v)\in\mathcal{E}\wedge y_u=y_v\}|}{|\mathcal{E}|}$$

Benchmark Name	#Nodes $ \mathcal{V} $	#Edges $ \mathcal{E} $	#Classes $ \mathcal{Y} $	#Features F	Homophily h	#Graphs	
syn-cora	$1,490 \\ 10,000$	2, 965 to 2, 968	5	cora [30] 39]	$[0, 0.1, \ldots, 1]$	33 (3 per h)	
syn-products		59, 640 to 59, 648	10	ogbn-products [13]	$[0, 0.1, \ldots, 1]$	33 (3 per h)	

3.1 Evaluation on Synthetic Benchmarks

- 在syn-cora数据集上,评估不同的GNN
- 结果:
 - 在异质偏好高h=0.1的情况下,GCN这些方法甚至不如MLP
 - 在异质偏好低h=0.7的情况下,GCN表现出了较好的performance
 - 作者的模型总能取得较好的结果

	h = 0.1	h = 0.7
GCN [17]	$37.14{\pm}4.60$	$84.52{\pm0.54}$
GAT [36]	$33.11{\scriptstyle\pm1.20}$	$84.03{\pm}0.97$
GCN-Cheby [7]	$68.10{\scriptstyle\pm1.75}$	$84.92{\pm}1.03$
GraphSAGE [11]	$72.89{\scriptstyle\pm2.42}$	$85.06{\pm0.51}$
MixHop [1]	$58.93{\pm}2.84$	$84.43{\scriptstyle\pm0.94}$
MLP	$74.85{\scriptstyle\pm0.76}$	$71.72{\pm0.62}$
H ₂ GCN (ours)	$76.87 {\pm 0.43}$	88.28 ± 0.66

3.1 Evaluation on Synthetic Benchmarks

- 在syn数据集上,随着异质偏好程度降低的变化
- 结果:
 - 随着异质程度降低,模型效果逐渐提升;对应的MLP不变化

(b) syn-products (Table G.3). Mix-Hop acc < 30%; GAT acc < 50% for h < 0.4.

3.2 Evaluation on Real Benchmarks

• 在实际数据集上的表现

Hom. ratio h #Nodes $ \mathcal{V} $ #Edges $ \mathcal{E} $ #Classes $ \mathcal{Y} $	Texas 0.11 183 295 5	Wisconsin 0.21 251 466 5	Actor 0.22 7,600 26,752 5	Squirrel 0.22 5,201 198,493 5	Chameleon 0.23 2,277 31,421 5	Cornell 0.3 183 280 5	Cora Full 0.57 19,793 63,421 70	Citeseer 0.74 3,327 4,676 7	Pubmed 0.8 19,717 44,327 3	Cora 0.81 2,708 5,278 6
H ₂ GCN-1 H ₂ GCN-2 GraphSAGE GCN-Cheby MixHop	$82.16{\pm}5.28 \\ 82.43{\pm}6.14 \\ 77.30{\pm}4.07$	$79.41{\scriptstyle\pm4.46}$	$35.62\pm1.30 \ 34.23\pm0.99 \ 34.11\pm1.09$	$37.90\pm2.02\ 41.61\pm0.74\ 43.86\pm1.64$	$55.24{\pm}2.76$	$82.16{\pm}6.00 \\ 75.95{\pm}5.01 \\ 74.32{\pm}7.46$	$69.05{\pm}0.37 \\ 65.14{\pm}0.75 \\ 67.41{\pm}0.69$	$76.88{\scriptstyle\pm1.77\atop 76.04{\scriptstyle\pm1.30\atop 75.82{\scriptstyle\pm1.53}}}$	$89.59{\scriptstyle\pm0.33}$	87.81 ± 1.35 86.90 ± 1.04 86.76 ± 0.95
GraphSAGE+JK Cheby+JK GCN+JK	$78.38{\scriptstyle\pm6.37}$	$82.55{\scriptstyle\pm4.57}$	$35.14{\scriptstyle\pm1.37}$		58.11 ± 1.97 63.79 ± 2.27 63.42 ± 2.00	$74.59{\scriptstyle\pm7.87}$	$66.87{\pm0.29}$	$74.98{\scriptstyle\pm1.18}$		$85.49{\scriptstyle\pm1.27}$
GCN GAT GEOM-GCN*	59.46 ± 5.25 58.38 ± 4.45 67.57		$30.26{\pm}0.79 \\ 26.28{\pm}1.73 \\ 31.63$	$36.89{\scriptstyle\pm1.34\atop30.62{\scriptstyle\pm2.11\atop38.14}}$	$59.82{\pm}2.58$ $54.69{\pm}1.95$ 60.90		00.00		$87.38 {\pm} 0.66 \\ 84.68 {\pm} 0.44 \\ 90.05$	0.1-01-0
MLP	81.89 ± 4.78	$85.29{\pm}3.61$	$35.76{\scriptstyle\pm0.98}$	$29.68{\scriptstyle\pm1.81}$	$46.36{\pm}2.52$	81.08 ± 6.37	$58.76{\scriptstyle\pm0.50}$	$72.41{\scriptstyle\pm2.18}$	$86.65{\scriptstyle\pm0.35}$	$74.75{\pm}2.22$

4 Conclusion

- 这篇文章研究的3中设计都是已经在之前的论文提出。但是没有理论分析。这篇文章集中在研究异质偏好性,讨论了不同的设计方法导致的GNN的学习异质偏好性能力的偏差
- 工作很充实(10页正文+17页附录)
- 这三种设计方案实际有一个本质的思想,不盲目的混合输入,将 能够收集的所有信息直接拼接起来,得到输出
- 缺点在于,由于仍然是直接加权求和邻居,无法分辨邻居之间的区别

个人实验计划

- ✓基础代码结构
- ✓ 原始R-GCN的实现
- o 分batch训练graph,并且修改评估打分方法
- 设计更加复杂的消息函数,让不同的邻居进行不同的消息构造方式,考虑先统一将邻居投影到不同的关系空间中,然后进行卷积等操作,再投影到消息空间进行聚合