CS 2601 Linear and Convex Optimization

4. Convex functions (part 1)

Bo Jiang

John Hopcroft Center for Computer Science Shanghai Jiao Tong University

Fall 2022

Outline

Convex functions

• First-order condition for convexity

Second-order condition for convexity

Convex functions

A function $f:S\subset\mathbb{R}^n\to\mathbb{R}$ is convex if

- 1. its domain dom f = S is a convex set
- 2. for any $x, y \in S$ and $\theta \in [0, 1]$, Jensen's inequality holds,

$$f(\theta x + \bar{\theta} y) \le \theta f(x) + \bar{\theta} f(y)$$

Note. Condition 1 guarantees $\theta x + \bar{\theta} y$ is in the domain.

Note. We only need to check Condition 2 for $x \neq y$ and $\theta \in (0,1)$.

Geometrically, the line segment between (x, f(x)) and (y, f(y)) lies above the graph of f.

Convex functions (cont'd)

A function $f:S\subset\mathbb{R}^n\to\mathbb{R}$ is strictly convex if

- 1. its domain dom f = S is a convex set
- 2. for any $x \neq y \in S$ and $\theta \in (0, 1)$,

$$f(\theta x + \bar{\theta} y) < \theta f(x) + \bar{\theta} f(y)$$

Proposition. Let f be convex and $x, y \in \text{dom } f$. Exactly one of the following holds,

- 1. $f(\theta x + \bar{\theta} y) = \theta f(x) + \bar{\theta} f(y)$ for all $\theta \in [0, 1]$
- 2. $f(\theta x + \bar{\theta} y) < \theta f(x) + \bar{\theta} f(y)$ for all $\theta \in (0, 1)$

Strict convexity says the restriction of f to any line segment in S is not an affine function.

A function f is (strictly) concave if -f is (strictly) convex.

An affine function $f(x) = w^T x + b$ is both convex and concave, but not strictly convex or strictly concave.

Convex functions (cont'd)

Examples

Example. Univariate functions

- $f(x) = e^{ax}$ ($a \in \mathbb{R}$) is convex, and strictly convex for $a \neq 0$
- $f(x) = \log x$ is strictly concave over $(0, \infty)$
- $f(x) = x^a$ is convex over $(0, \infty)$ for $a \ge 1$ or $a \le 0$
- $f(x) = x^a$ is concave over $(0, \infty)$ for $0 \le a \le 1$

Example. Any norm $\|\cdot\|:\mathbb{R}^n\to\mathbb{R}$ is convex,

$$\|\theta \mathbf{x} + \bar{\theta} \mathbf{y}\| \le \|\theta \mathbf{x}\| + \|\bar{\theta} \mathbf{y}\| = \theta \|\mathbf{x}\| + \bar{\theta} \|\mathbf{y}\|$$

But not strictly convex (why?)

generator母线是直的,所以都不是严格的

Restriction to lines

Proposition. f is convex iff for any $x \in \text{dom } f$ and any direction d, the function g(t) = f(x + td) is convex on $\text{dom } g = \{t : x + td \in \text{dom } f\}$.

Proof. " \Rightarrow ". Assume f is convex. Fix an arbitrary $x \in \text{dom} f$ and direction d. Need to show g(t) = f(x + td) is convex.

Let $t_1, t_2 \in \text{dom } g, \theta \in [0, 1]$.

- 1. Note $x + (\theta t_1 + \bar{\theta} t_2)d = \theta(x + t_1d) + \bar{\theta}(x + t_2d)$. Let $x_i = x + t_id$.
- $2. t_i \in \operatorname{dom} g \implies x_i \in \operatorname{dom} f$
- 3. dom f is convex $\implies x + (\theta t_1 + \bar{\theta} t_2)d = \theta x_1 + \bar{\theta} x_2 \in \text{dom } f$ $\implies \theta t_1 + \bar{\theta} t_2 \in \text{dom } g \implies \text{dom } g \text{ is convex}$
- 4. Since *f* is convex,

$$g(\theta t_1 + \bar{\theta}t_2) = f(\theta x_1 + \bar{\theta}x_2) \le \theta f(x_1) + \bar{\theta}f(x_2) = \theta g(t_1) + \bar{\theta}g(t_2)$$

so g is convex.

Restriction to lines (cont'd)

Proof (cont'd). " \Leftarrow ". Assume g(t) = f(x + td) is convex for any $x \in \text{dom} f$ and any direction d. Need to show f is convex.

Fix $x, y \in \text{dom} f$, $\theta \in [0, 1]$.

- 1. Note $\theta x + \bar{\theta} y = y + \theta(x y)$. Let d = x y, and g(t) = f(y + td)
- 2. $x, y \in \text{dom} f \implies 1, 0 \in \text{dom} g$ 用这一步构造theta
- 3. $\operatorname{dom} g$ is convex $\implies \theta \in \operatorname{dom} g \implies \theta x + \bar{\theta} y = y + \theta d \in \operatorname{dom} f \implies \operatorname{dom} f$ is convex.
- 4. Since g is convex and $\theta = \theta \times 1 + \bar{\theta} \times 0$,

$$f(\theta \mathbf{x} + \bar{\theta} \mathbf{y}) = g(\theta) \le \theta g(1) + \bar{\theta} g(0) = \theta f(\mathbf{x}) + \bar{\theta} f(\mathbf{y})$$

so f is convex.

Note. The same proof shows that f is strictly convex iff for any $x \in \text{dom} f$ and any direction $d \neq 0$, the function g(t) = f(x + td) is strictly convex on $\text{dom} g = \{t : x + td \in \text{dom} f\}$.

Extended-value Extension

Given $f: S \subset \mathbb{R}^n \to \mathbb{R}$, its extended-value extension $\tilde{f}: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is defined by

$$ilde{f}(m{x}) = egin{cases} f(m{x}), & m{x} \in S \ \infty, & m{x}
otin S \end{cases}$$
 如果要证明concave,

The (effective) domain of \tilde{f} , also the domain of f, is

$$\mathrm{dom}\tilde{f} = \mathrm{dom}f = S = \{x : \tilde{f}(x) < \infty\}$$

Proposition. f is convex iff \tilde{f} is convex, i.e. $\forall x, y \in \mathbb{R}^n$ and $\theta \in [0, 1]$,

$$\tilde{f}(\theta \mathbf{x} + \bar{\theta} \mathbf{y}) \le \theta \tilde{f}(\mathbf{x}) + \bar{\theta} \tilde{f}(\mathbf{y}),$$

with the usual extended arithmetic and ordering

$$a + \infty = \infty$$
 for $a > -\infty$; $a \cdot \infty = \infty$ for $a > 0$; $0 \cdot \infty = 0$

Note. We can similarly extend a concave function by $f(x) = -\infty$ for $x \notin \text{dom } f$.

就把正无穷变成负无穷

Outline

Convex functions

First-order condition for convexity

Second-order condition for convexity

First-order condition for convexity

Theorem. A differentiable f with an open convex domain dom f is convex iff

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}), \quad \forall \mathbf{x}, \mathbf{y} \in \text{dom} f$$

Note. First-order Taylor approximation underestimates a convex function. Geometrically, all tangent "planes" lie below the graph.

Example.
$$e^x \ge e^0 + e^0(x - 0) = 1 + x$$
.

First-order condition for convexity (cont'd)

Proof. " \Rightarrow ". Assume f is convex. Let d = y - x. By convexity of f,

$$f(\mathbf{x} + t\mathbf{d}) = f(t\mathbf{y} + \bar{t}\mathbf{x}) \le tf(\mathbf{y}) + \bar{t}f(\mathbf{x}), \quad t \in (0, 1)$$

Rearranging,

$$\frac{f(\mathbf{x} + t\mathbf{d}) - f(\mathbf{x})}{t} \le f(\mathbf{y}) - f(\mathbf{x})$$
 方向导数

Letting $t \to 0$,

$$\nabla f(\mathbf{x})^T(\mathbf{y} - \mathbf{x}) = \nabla f(\mathbf{x})^T \mathbf{d} \le f(\mathbf{y}) - f(\mathbf{x})$$

Note. $\frac{f(x+td)-f(x)}{t||d||}$ is the slope of the secant line through x and x+td.

First-order condition for convexity (cont'd)

Proof (cont'd). "←". Assume the first-order condition holds.

Let $z = \theta x + \theta y$. The first-order condition implies

$$f(x) \ge f(z) + \nabla f(z)^{T} (x - z) \tag{1}$$

$$f(\mathbf{y}) \ge f(\mathbf{z}) + \nabla f(\mathbf{z})^T (\mathbf{y} - \mathbf{z})$$
 (2)

 $\theta \times (1) + \bar{\theta} \times (2)$ yields

$$\theta f(\mathbf{x}) + \bar{\theta} f(\mathbf{y}) \ge f(\mathbf{z}) = f(\theta \mathbf{x} + \bar{\theta} \mathbf{y})$$

Note. Alternatively, using g(t) = f(x + td), we can reduce the entire proof to the 1D case $g(t) \ge g(0) + g'(0)t$.

First-order condition for strict convexity

Theorem. A differentiable f with an open convex domain $\mathrm{dom}f$ is strictly convex iff

$$f(\mathbf{y}) > f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}), \quad \forall \mathbf{x} \neq \mathbf{y} \in \text{dom} f$$

Proof. Essentially the same proof with inequalities being strict. The proof of " \Rightarrow " requires a further modification. Fix x and d = y - x.

Add an intermediate point x + sd between x + td and x + d. For 0 < t < s < 1,

$$\frac{f(\boldsymbol{x} + t\boldsymbol{d}) - f(\boldsymbol{x})}{t} < \frac{f(\boldsymbol{x} + s\boldsymbol{d}) - f(\boldsymbol{x})}{s}$$
$$< f(\boldsymbol{x} + \boldsymbol{d}) - f(\boldsymbol{x}),$$

Now letting $t \to 0$ yield

$$\nabla f(\mathbf{x})^T \mathbf{d} \le \frac{f(\mathbf{x} + s\mathbf{d}) - f(\mathbf{x})}{s} < f(\mathbf{x} + \mathbf{d}) - f(\mathbf{x}) = f(\mathbf{y}) - f(\mathbf{x})$$

First-order condition for univariate convex functions

Corollary. A differentiable $f: I \to \mathbb{R}$ defined on an open interval $I \subset \mathbb{R}$ is (strictly) convex iff f' is (strictly) increasing on I. 大于等于就行

Proof. We prove the convex case. The strictly convex case can be proved by replacing the inequalities by strict inequalities.

" \Leftarrow ". Assume f' is increasing. Let $x, y \in I$ and x < y.

- By Mean Value Theorem, $\exists c \in (x, y) \text{ s.t. } f(y) f(x) = f'(c)(y x)$
- f' is increasing $\implies f'(c) \ge f'(x) \implies f(y) f(x) \ge f'(x)(y x)$
- The case x > y is similar. By the first-order condition, f is convex.

" \Rightarrow ". Assume f is convex. Let $x, y \in I$ and x < y. By the first-order condition,

$$f(y) \ge f(x) + f'(x)(y - x), \quad f(x) \ge f(y) + f'(y)(x - y)$$

Rearranging,

$$f'(x) \le \frac{f(y) - f(x)}{y - x} \le f'(y)$$

Corollary. If $\nabla f(x^*) = \mathbf{0}$ for a convex function f, then x^* is a global minimum. If f is strictly convex, then x^* is the unique global minimum.

Proof. By the first-order condition and the assumption $\nabla f(x^*) = 0$,

$$f(\mathbf{x}) \ge f(\mathbf{x}^*) + \nabla f(\mathbf{x}^*)^T (\mathbf{x} - \mathbf{x}^*) = f(\mathbf{x}^*), \quad \forall \mathbf{x} \in \text{dom} f$$

so x^* is a global minimum.

Similarly, if f is strictly convex,

$$f(\mathbf{x}) > f(\mathbf{x}^*) + \nabla f(\mathbf{x}^*)^T (\mathbf{x} - \mathbf{x}^*) = f(\mathbf{x}^*), \quad \forall \mathbf{x}^* \neq \mathbf{x} \in \text{dom} f$$

so x^* is the unique global minimum.

Note. For concave functions, similar results hold with all inequalities reversed, and min replaced by max.

Outline

Convex functions

First-order condition for convexity

Second-order condition for convexity

Second-order condition for convexity

Theorem. A twice differentiable $f: I \to \mathbb{R}$ defined on an open interval $I \subset \mathbb{R}$ is convex iff $f''(x) \geq 0$ for all $x \in I$.

Proof. f convex $\iff f'$ increasing on $I \iff f''(x) \ge 0$ for all $x \in I$.

Theorem. A twice continuously differentiable f with an open convex domain $\mathrm{dom} f$ is convex iff $\nabla^2 f(x) \succeq \mathbf{0}$ is positive semidefinite at every $\mathbf{x} \in \mathrm{dom} f$.

Proof. " \Rightarrow ". Assume f is convex.

- $g(t) = f(\mathbf{x} + t\mathbf{d})$ is convex $\implies g''(0) \ge 0$
- $d^T \nabla^2 f(x) d = g''(0) \ge 0$ for every $d \implies \nabla^2 f(x) \succeq O$.
- " \Leftarrow ". Assume $\nabla^2 f(x) \succeq \mathbf{0}$ for every $x \in \text{dom } f$.
 - Let $g(t) = f(\mathbf{x} + t\mathbf{d})$, with $g''(t) = \mathbf{d}^T \nabla^2 f(\mathbf{x} + t\mathbf{d})\mathbf{d}$
 - $\nabla^2 f(\mathbf{x} + t\mathbf{d}) \succeq \mathbf{0} \implies g''(t) \geq 0$ for all $t \in \text{dom } g \implies g(t)$ convex
 - g(t) = f(x + td) is convex for every $x \in \text{dom} f$ and $d \implies f$ convex

Second-order condition for convexity (cont'd)

Theorem. A twice continuously differentiable f with an open convex domain $\mathrm{dom} f$ is strictly convex if $\nabla^2 f(x)$ is positive definite at every $x \in \mathrm{dom} f$.

Proof. Replace \succeq and \ge by \succ and > respectively in " \Leftarrow " part.

Note. Positive definiteness is sufficient but not necessary.

Example.
$$f(x) = x^4$$
 is strictly convex, but $f''(x) = 0$ at $x = 0$

Example.
$$f(\mathbf{x}) = f(x_1, x_2) = x_1^2 + x_2^4$$
 is strictly convex, but $\nabla^2 f(\mathbf{x}) = \begin{pmatrix} 2 & 0 \\ 0 & 12x_2^2 \end{pmatrix}$ is not positive definite for $x_2 = 0$.

Note. For concave functions, replace "positive (semi)definite" by "negative (semi)definite" in previous theorems.

Examples

Example. Exponential $f(x) = e^{ax}$ is convex for $a \in \mathbb{R}$

Proof.
$$f''(x) = a^2 e^{ax} \ge 0$$

Example. Logarithm $f(x) = \log x$ is strictly concave over $(0, \infty)$

Proof.
$$f''(x) = -x^{-2} < 0$$

Example. Power $f(x)=x^a$ is convex over $(0,\infty)$ for $a\geq 1$ or $a\leq 0$, and concave over $(0,\infty)$ for $0\leq a\leq 1$

Proof.
$$f''(x) = a(a-1)x^{a-2} \ge 0$$
 depending on a

Note. Domain is important. $f(x) = x^{-2}$ is concave over $(-\infty, 0)$ or $(0, \infty)$, but neither convex nor concave over $(-1, 0) \cup (0, 1)$.

Example: Negative entropy

The negative entropy $f(x) = x \log x$ is strictly convex over $(0, \infty)$.

Proof.
$$f'(x) = \log x + 1$$
, $f''(x) = x^{-1} > 0$

Note. We typically extend the definition of f to x = 0 by continuity, i.e.

$$f(0) \triangleq \lim_{x \to 0_+} f(x) = 0$$

f is still strictly convex with this extension.

Example: Quadratic functions

A quadratic function

$$f(\mathbf{x}) = \mathbf{x}^T \mathbf{Q} \mathbf{x} + \mathbf{b}^T \mathbf{x} + \mathbf{c}$$

with symmetric Q is convex iff $Q \succeq O$, and strictly convex iff $Q \succ O$.

Proof. For convexity, $\nabla^2 f(x) = 2Q$ and use second-order condition.

For strict convexity, note $\nabla f(x) = 2Qx + b$ and

$$f(\mathbf{x} + \mathbf{d}) = f(\mathbf{x}) + \nabla f(\mathbf{x})^T \mathbf{d} + \mathbf{d}^T \mathbf{Q} \mathbf{d}$$

By first-order condition, f is strictly convex iff

$$f(\mathbf{x} + \mathbf{d}) > f(\mathbf{x}) + \nabla f(\mathbf{x})^T \mathbf{d}, \quad \forall \mathbf{d} \neq \mathbf{0} \iff \mathbf{d}^T \mathbf{Q} \mathbf{d} > 0, \quad \forall \mathbf{d} \neq \mathbf{0}$$

 $\iff \mathbf{Q} \succ \mathbf{0}$

Note. Recall in general $\nabla^2 f(\mathbf{x}) \succ \mathbf{0}$ is not a necessary condition for strict convexity, but it is necessary when f is quadratic.

Example: Quadratic functions (cont'd)

Quadratic function $f(x) = x^T Q x$ in \mathbb{R}^2

 $Q = diag\{1, 1\}$ strictly convex

 $\mathbf{Q} = \mathsf{diag}\{0, 1\}$

neither convex nor concave

 $Q = diag\{-1, -1\}$ strictly concave

$$Q = diag\{-1, 0\}$$

Example: Least squares loss

The least squares loss

$$f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2$$

is always convex.

Proof. *f* is a quadratic function,

$$f(\mathbf{x}) = (\mathbf{A}\mathbf{x} - \mathbf{y})^T (\mathbf{A}\mathbf{x} - \mathbf{y}) = \mathbf{x}^T \mathbf{A}^T \mathbf{A}\mathbf{x} - 2\mathbf{y}^T \mathbf{A}\mathbf{x} + \mathbf{y}^T \mathbf{y}.$$

 $A^TA \succ O$ since

$$x^{T}A^{T}Ax = (Ax)^{T}(Ax) = ||Ax||_{2}^{2} \ge 0$$

Question. When is it strictly convex? 与线性方程组联系

Answer. When $A^TA > 0$, which is true iff A has full column rank.

$$\mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x} = 0 \iff \|\mathbf{A} \mathbf{x}\|_2 = 0 \iff \mathbf{A} \mathbf{x} = \mathbf{0}$$

Example: Log-sum-exp function

Log-sum-exp function defined below is convex

$$f(\mathbf{x}) = \log \left(\sum_{i=1}^{n} e^{x_i} \right)$$

Note. Also called "soft max", as it smoothly approximates $\max_{1 \le i \le n} x_i$.

For
$$n = 2$$
, $\Delta = x_2 - x_1$,

$$f(x_1, x_2) = \log(e^{x_1} + e^{x_2}) = \log[e^{x_1}(1 + e^{\Delta})] = x_1 + \log(1 + e^{\Delta})$$

$$\approx x_1 + \max\{0, \Delta\} = \max\{x_1, x_2\}$$

Example: Log-sum-exp function (cont'd)

Proof. Show $\nabla^2 f(x) \succeq \mathbf{0}, \forall x$. Let $s(x) = \sum_{k=1}^n e^{x_k}$, so $f(x) = \log s(x)$.

$$g_i \triangleq \frac{\partial f(\mathbf{x})}{\partial x_i} = \frac{1}{s} \frac{\partial s}{\partial x_i} = \frac{e^{x_i}}{s}$$

$$\frac{\partial^2 f(\mathbf{x})}{\partial x_i \partial x_j} = \frac{\partial g_i}{\partial x_j} = \frac{e^{x_i}}{s} \delta_{ij} - \frac{e^{x_i} e^{x_j}}{s^2} = g_i \delta_{ij} - g_i g_j, \quad \delta_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

For any $d \in \mathbb{R}^n$,

$$\boldsymbol{d}^T \nabla^2 f(\boldsymbol{x}) \boldsymbol{d} = \sum_{i=1}^n \sum_{j=1}^n \frac{\partial^2 f(\boldsymbol{x})}{\partial x_i \partial x_j} d_i d_j = \sum_{i=1}^n g_i d_i^2 - \left(\sum_{i=1}^n g_i d_i\right)^2 \ge 0$$

where the last inequality follows from the fact $\sum_{i=1}^{n} g_i = 1$, and Cauchy-Schwarz inequality (or the convexity of $x \mapsto x^2$)