Compito di Geometria e Algebra per Ingegneria Meccanica del 18-12-2015-A

1) Siano
$$W = \left\{ ax^2 + bx + c : \begin{cases} a - b + kc = 0 \\ a + b - 5c = 0 \\ b - 3c = 0 \end{cases} \right\} \sqsubseteq P_3(x) , k \in \mathbf{R}$$
 e

 $W_1 = \{(\alpha x + y + 2z, 3y - 2z, 3x - y + 2z) : x, y, z \in \mathbf{R}\} \sqsubseteq \mathbf{R}^3, \ \alpha \in \mathbf{R}.$

- a) Trovare, al variare di $k \in \mathbf{R}$, una base e la dimensione di W.
- b) Trovare, al variare di $\alpha \in \mathbf{R}$ una base e la dimensione di W_1 .
- c) Discutere l'appartenenza di $\mathbf{w} = (2, \beta, 0)$ a W_1 $(\alpha, \beta \in \mathbf{R})$.
- 2) Discutere i seguenti sistemi lineari $(\alpha, \beta \in \mathbf{R})$:

a)
$$\begin{cases} 6x + 2y + z = \beta \\ -2y + 3z = 2 \\ 3x + \alpha y - z = 0 \end{cases}$$
 b)
$$\begin{cases} 6x + 2y + z + \beta t = 0 \\ -2y + 3z + 2t = 0 \\ 3x + \alpha y - z = 0 \end{cases}$$
.

3) Sia
$$A = \begin{pmatrix} \alpha & -1 & 2 \\ 0 & -1 & \beta \\ 0 & 0 & 3 \end{pmatrix}$$
.

- a) Trovarè gli eventuali valori di $\alpha, \beta \in \mathbf{R}$ per i quali A è diagonalizzabile.
- b) Determinare $\alpha, \beta \in \mathbf{R}$ in modo che A sia invertibile e risulti $\det(A^{-1}) = \frac{1}{3} \operatorname{tr}(A)$.
- **4)** Sia T il tensore (simmetrico) in \mathbf{R}^3 così definito: T((x,y,z)) = (2x, y+4z, 4y-14z) e sia A la matrice ad esso associata rispetto alla base canonica di \mathbf{R}^3 .
 - a) Diagonalizzare A con una matrice ortogonale U.
 - b) Trovare la decomposizione spettrale di T.
 - c) Trovare $\alpha \in \mathbf{R}$ in modo che T sia ortogonale a $\mathbf{v} \otimes \mathbf{w}$ con $\mathbf{v} = (1, \alpha, 0), \mathbf{w} = (1, 1, 0).$
- **5)** Determinare:
 - a) le equazioni ridotte della retta passante t passante per P(1,2,3) perpendicolare alla retta $r \equiv \left\{ \begin{array}{l} y = 2x + 4 \\ z = 3x + 7 \end{array} \right.$ e parallela al piano $\pi \equiv x y + 3z + 8 = 0$.
 - b) $\alpha, \beta \in \mathbf{R}$ in modo che la minima distanza tra le rette

$$r_1 \equiv \begin{cases} y = x + 5 \\ z = -5x + 3 \end{cases}$$
 e $r_2 \equiv \begin{cases} y = 4x + \alpha \\ z = -5x + \beta \end{cases}$

sia minore di $2\sqrt{26}$.

c) Trovare l'equazione e classificare il cilindro ${\cal L}$ che proietta la curva

$$\mathcal{C} \equiv \begin{cases} 3x^2 + y^2 - 4 = 0 \\ z = -1 \end{cases} \text{ parallelamente alla retta } r_3 \equiv \begin{cases} x = 2z + 5 \\ y = -3z + 7 \end{cases}.$$

6) Trovare il tensore T in \mathbf{R}^2 sapendo che T((1,4))=(1,1) e che (1,3) è un autovettore di T associato all'autovalore $\lambda=-2$.

N.B. Tutti i passaggi devono essere opportunamente motivati.