

A Machine Learning Framework to Identify Students at Risk of Adverse Academic Outcomes

Presented by: Amjad Alqahtani

Interventions to address adverse academic outcomes

- Goal:
 - Graduating high school on time

- Challenges:
 - Lack of skills, motivations, health, economical, personal, and various other factors

- Solution:
 - Provide appropriate interventions

Traditional way of Identify Students At-Risk

- Schools relied on feedback from instructors
- GPAs
- Absence rates
- tardiness
- Cansolar discuss with students
- Report Cards
- etc

All these methods(involved human judgments) for assessing risk are expensive, time consuming and error prone.

Alternative way of Identify Students At-Risk

- Rule based System using ML such as:
 - Logistic Regression
 - Decision Trees
 - Random Forests.

Age	Gender	Absence rate	GPA	No-grad
15	F	8%	3.8	0
14	F	9%	2.6	0
16	M	19%	2.8	1

Evaluating Learning Algorithm

- AUC of the ROC
- Precision
- Recall
- Accuracy

School Settings

• Resources for intervention are limited and vary highly with time.

Predicting risk as early as possible.

• School administrators want to know what kind of risk and mistake that learning algorithm have

Dataset

• Datasets from two different school districts

Districts	Students	Grades	Attributes	
District A District B	150,000+(mid-atlantic region, 40 schools) 30,000+(east coast,39)	6th - 12th 8th - 12th	Gender, Age, Ethnicity, City, School Absence Rate, Cumulative GPA, English Proficiency,	
			Disability Status, Retained Status, Did not Graduate on time?	

• Multiple cohorts of students used as train and test sets

Approach 1: Risk Score: Predicting At-Risk Students

- A probabilistic estimate indicating the likelihood that a student will not graduate on time, generated by machine learning models.
- Models like Random Forest, Logistic Regression, and others calculate risk scores based on students attributes like GPA
- Two metrics:
 - Empirical Risk Curves: Evaluates how well the risk scores rank students.
 - Precision and Recall at top k: Measures accuracy when selecting the top at-risk students for intervention.

Approach 1: Risk Score: Predicting At-Risk Students

Figure 2: Empirical Risk Curves. The ranking quality of an algorithm is good if this curve is monotonically non-decreasing.

Approach 2: Evaluation of Timely Risk Detection

- Identifying Risk Early:
 - Detecting student risk by the end of middle school is preferred over detecting it during the final year of high school.
 - Plot Precision at 5%: Use data collected up until the end of various grades to plot Precision at Top 5%, helping track the accuracy of early predictions.
- Identifying Risk Before Students Go Off-Track:
 - Detecting risk before a student starts failing grades allows for more effective interventions.
 - Key Metric:
 - Ratio: Number of at-risk students identified before failing grades, compared to the total number of students who did not graduate on time.

Approach 2: Evaluation of Timely Risk Detection

Figure 8: Identification before Off-track

Approach 3: Characterizing Patterns of Mistakes

• Identify **frequent itemsets** of triples (attribute, relation, value) using the **FP-Growth algorithm**.

• Rank students based on their **risk scores** and set the predicted value of **no_grad** (not graduating on time) to 1 for the top K high-risk students.

• Create a new field called **mistake**. Set this field to **1** if the predicted value of **no_grad** does not match the actual value (i.e., the prediction was wrong).

• For each frequent pattern, compute the probability of a mistake.

• Rank the patterns based on these **mistake probabilities**, prioritizing those with the highest likelihood of error

Qualitative Analysis of Mistake Pattern

Pattern mistake	Description	
High GPA but High Absence Rate	• Random Forest misclassified students with GPA > 3.0 and absence rate > 30% as low-risk.	
Disability, Female, GPA ≥ 3.5	Decision Tree misclassified female students with a disability and GPA ≥ 3.5 as low-risk.	

4. Features used for Risk Assessment

- Logistic Regression:
 - Features are ranked based on the magnitude of the coefficients.
 - Key Feature: Gender (Male) and Absence Rate (Grade 8) are heavily used in predicting risk.
- Decision Trees:
 - Features are ranked based on Information Gain.
 - Key Features:
 - GPA (Grade 8)
 - GPA (Grade 7).
- Random Forest:
 - Features are ranked based on Information Gain, averaged over all the trees in the ensemble.
 - Key Features:
 - GPA (Grade 7)
 - Absence Rate (Grade 7).

Conclusions

• An exhaustive analysis bridges the gaps between evaluations meaningful to educators and traditional machine learning metrics.

• Outlined several metrics catering to various aspects such as reliable risk estimation, early prediction, and interpretability.

• Evaluation framework has been very useful in deploying machine learning solutions for both school districts