Peking University Dr. Jin Qin

Intermediate Microeconomics (Fall 2023) Lecture 3 Preference, Utility and Indifference Curve

Part I

TA /	r •	1	D 4 1	D 1 .
- IV	aroin	and	Rational	Behavior
TAT	iai Siii	umu	Ranoma	Denavior

•	Marginal Benefit (MB) – An increase (or decrease) in	
	that is caused by a	in the level of that activity,
	all other factors remaining constant.	
•	Marginal Cost (MC) – An increase (or decrease) in	
	that is caused by a	in the level of that activity,
	all other factors remaining constant.	
•	Rational Behavior	
	For each additional unit	
	o If MB MC,	
	Go for it! (Consume this extra unit)	
	o If MB MC,	
	Avoid it! (Do not consume this extra unit)	
	o Thus, keep consuming until MB MC.	
	 Optimal behavior for a rational person: MB 	MC.

Peking University

Part II

Pr	efer	ence –				
*	Bu	ndle of	goods:		aı	nd
*	No	tation:				
	>		::			
	>		::			
						between the two bundles of goods
		i.e., th	e consumer would be	be just		
		⇒ •				: the consumer
						: the consume
			or is			
						, then
•	Ba	sic Pro _l	perties of Preference	ce Ordering		
	1					For any 2 bundles A and B, either
						r, i.e., eithe
	2					
						:
	3					
		if				, then
	4					
		• Fo	r any 3 bundles, if _		_ and	, then
		■ Fo	r any 3 bundles, if _		_ and	, then

Part III

Utility – A		representing the
	that a	
	, which is to describe	e .

Example 1: Like an orange better than an apple

•	Utility Function – A	(of
	of	to	
	such that		

Example 2

Utility function for food (F) and clothing (C) is given by u(F, C) = F + 2C.

- ① Bundle A with 8 units of food and 3 units of clothing generates a utility level of
- ② Bundle B with 6 units of food and 4 units of clothing generates a utility level of
- ③ Bundle C with 4 units of food and 4 units of clothing generates a utility level of

0

Ordinal Utility – A theory of	that emp	hasizes on
bundles o	f goods: the	
of the		
is only important insofar as it		the
		; the
of the		
	way of	
	the	
, represer	nted by a	
that		
in the sense that		·
❖ The rate of change in f (u) as u	changes can be measured by:	
⇒ For a monotonic transform	ation,	
always has the	as	
⇒ A monotonic function always	ays has a	
of		·
⇒ The graph of a monotonic	function will always have a	
	· ———	

Example 3: A positive monotonic transformation

- ② Panel B illustrates a function that is _______, since it sometimes ______ and sometimes ______.

o Cardinal Utility – A theory of _______ that attach a _____ to the _____ of _____ of the _____ of the _____ between two bundles of goods is supposed to have some sort of ______ .

- · · · · · · · · · · · · · · · · · · ·		obtained
from		of a good
MU =		
Law of Diminishing MU – As		
is	, the	o
		wil
Marginal Rate of Substitution (MRS) –	
_		
		to
		to
	_ of the	to
Mathematically defined as a	_ of the	to
Mathematically defined as a	_ of the is the	to whose at which
Mathematically defined as a	of the is the	to whos
Mathematically defined as a	of the is the	t whos

Part IV

• Draw the IC

- O Given a utility function, $u(x_1, x_2)$, plot all the points (x_1, x_2) such that $u(x_1, x_2)$ equals
- o For each ______ of the ______, there is a ______.

• The Slope of the IC – The _____

o Monotonicity implies that the ICs have a ______ slope.

o Think of the IC as being described by a function ______, such that

Example 4: Clothing and food per week

Law of diminishing MU

 $\Rightarrow \underline{\hspace{1.5cm}} : As we move along an IC$ $A \rightarrow B \rightarrow C, \underline{\hspace{1.5cm}} : Because as \underline{\hspace{1.5cm}} : of one good$ is consumed, consumers would prefer to $\underline{\hspace{1.5cm}} : of the \underline{\hspace{1.5cm}} : of the \underline{\hspace{1.5cm}$

o Law of Diminishing MRS – The ________ of ______ that a person is willing to ______ of _____ of _____ as the ______ of _____ .

o Implications of Convexity – ______ are _____ to _____.

If ______, then

- _____
- ______

for ______ such that _____.

Peking University Dr. Jin Qin

Exercise 1

Refer to the figure.

The figure shows the indifference curve for car consumers A and B. Compared with Consumer B, Consumer A

- A. cares more about acceleration than space.
- B. cares more about space than acceleration.
- C. is indifferent between acceleration and space.
- D. prefers more expensive rather than less expensive cars.
- E. None of the above.

• Indifference Map – A graph ______ a person's ______.

• ICs ______!

⇒ _____ of _____

and _____.

Part V

Examples of Preferences

- Cobb-Douglas Preferences
 - **Outline Service :** Utility Function of the Cobb-Douglas Preferences

where ____ and ___ are ____ that ___ of the consumer.

Example 5: Cobb-Douglas ICs

- 1) Panel A shows the case where $c = \frac{1}{2}$ and $d = \frac{1}{2}$
- 2) Panel B shows the case where $c = \frac{1}{5}$ and $d = \frac{4}{5}$

Monotonic Transformation of the Cobb-Douglas Utility Fo ❖	
*	
Define	
⇒	
⇒ Always take a monotonic transformation of the Confunction that make the	
MRS for the Cobb-Douglas Utility Function	
❖ The Exponent Representation:	
❖ The Log Representation:	
⇒ The as the	
⇒ A monotonic transformation would	the
➤ It is customary to have	anc

____ and ____

• Perfect Substitutes – The consumer is willing to ______ at a _____.

Example 6: Entirely indifferent between one glass of apple juice and one glass of orange juice

Apple juice and orange juice are perfect substitutes.

⇒ ______ is a ______.

⇒ ______ have a ______.

⇒ _____ are ____.

Peking University Dr. Jin Qin

$\circ \quad \textbf{Utility Function of Perfect Substitutes} \\$

who	ere and are
that	the
of (Good 1 and Good 2 to the consumer.
⇒]	Put x_1 on the horizontal axis and x_2 on the vertical axis, then the
	of a typical indifference curve is given by
•	Any of
	will also represent the perfect-substitutes preferences.
>	If the consumer is willing to substitute Good 1 for Good 2 at a rate of one-to-one
	⇒
>	If the consumer would require two units of Good 2 to compensate for giving up
	one unit of Good 1
	\Rightarrow Good 1 is to the
	consumer as Good 2
	⇒
	\Rightarrow Put x_1 on the horizontal axis and x_2 on the vertical axis, then the
	of the indifference curve is

Perfect Complements – Goods that are always ______
in _____.

Example 7: Left shoe and right shoe

Peking University Dr. Jin Qin

$\circ \quad \textbf{Utility Function of Perfect Complements} \\$

whe	ere and are
that	the
in v	which Good 1 and Good 2 are consumed.
•	Any monotonic transformation of u (x_1 , x_2) will also represent the perfect-complements preferences.
>	If the consumer wants to consume Good 1 and Good 2 in a proportion of one-to-one
	⇒ <u></u>
>	If the consumer would require two units of Good 2 for each unit of Good 1
	⇒
	⇒ By

Peking University

Dr. Jin Qin • Economic Bad – Items of which _____ is ____ to _____, i.e., commodities that the consumer _____. Example 8: Class time Leisure time: economic good Class time: economic bad **Class Time Leisure Time** has higher utility. ② At t₂: _____ time, _____ time

has higher utility.

• Economic Neuter – Items that the consumer _____

Example 9: Time with Dr. J

Time with Dr. J does not contribute to anything, only leisure time contributes to a higher utility.

Leisure Time Time with Dr. J

where the utility function is ______ in Good 2, but _____ in Good 1, e.g.,