Лабораторная работа №4 по математическому моделированию

Модель гармонических колебаний

Хусайнова Фароиз Дилшодовна

Содержание

1 Цель работы	5
2 Задание	6
3 Теоретическое введение	7
4 Выполнение лабораторной работы	8
5 Выводы	13

Список таблиц

Список иллюстраций

3.1	Код программы для первого случая	8
3.2	График для первого случая	8
3.3	Код программы для второго случая	ç
3.4	График для второго случая	ç
3.5	Код программы для третьего случая	10
3.6	График для второго случая	11

1 Цель работы

Ознакомление с моделью линейного гармонического осциллятора и ее построение с помощью языка программирования Modelica.

2 Задание

Построить фазовый портрет гармонического осциллятора и решить уравнения гармонического осциллятора для следующих случаев:

- 1. Колебания гармонического осциллятора без затуханий и без действий внешней силы \ddot{x} + 12x = 0
- 2. Колебания гармонического осциллятора с затуханием и без действий внешней силы $\ddot{x} + 10\dot{x} + 5x = 0$
- 3. Колебания гармонического осциллятора с затуханием и под действием внешней силы $\ddot{x} + 7\dot{x} + 7x = 7sin(3t)$

На интервале $t \in [0; 60]$ (шаг 0.05) с начальными условиями $x_0 = 1, y_0 = 2$

3 Теоретическое введение

Уравнение свободных колебаний гармонического осциллятора имеет следующий вид:

$$\ddot{x} + 2\gamma \dot{x} + \omega_0^2 x = f(t)$$

х — переменная

t — время

 ω_0 — частота колебаний

 γ — параметр, характеризующий потери энергии

В свою очередь:

$$\ddot{x} = \frac{\partial^2 x}{\partial t^2}, \ \dot{x} = \frac{\partial x}{\partial t}$$

4 Выполнение лабораторной работы

Данную лабораторную работу я выполняла на языке программирования Modelica. Ниже представлен программный код для первого случая: колебания гармонического осцилляторабез затуханий и без действий внешней силы (рис. @fig:001)

Рис. 3.1: Код для первого случая

При запуске данного кода был выведен график (рис. @fig:002)

Рис. 3.2: График для первого случая

Программный код для второго случая: колебания гармонического осциллятора с затуханием и без действий внешней силы (рис. @fig:001)

Рис. 3.3: Код для второго случая

При запуске данного кода был выведен график (рис. @fig:001)

Рис. 3.4: График для второго случая

Программный код для третьего случая: колебания гармонического осциллятора с затуханием и без действий внешней силы (рис. @fig:001)

Рис. 3.5: Код для третьего случая

График для третьего случая выглядит следующим образом (рис. @fig:001)

Рис. 3.6: График для третьего случая

5 Выводы

При выполнении данной лабораторной работы я познакомилась с моделью гармонических коллебаний, научилась выводить ДУ, а также построила фазовый портрет гармонического осциллятора, решила уравнения гармонического осциллятора:

- Колебания гармонического осциллятора без затуханий и без действий внешней силы.
- Колебания гармонического осциллятора с затуханием и без действий внешней силы.
- Колебания гармонического осциллятора с затуханием и под действием внешней силы.

.