Mathematical Proof of Feedback Decoupling and Singularity Classification in Amplification Dynamics

Harrison D. Fletcher

harrisondfletcher@gmail.com

Repository: github.com/harrisondfletcher/amplification-dynamics

Working Paper — October 2025

Abstract

We provide a complete mathematical characterization of dynamical systems with observable amplification ratio $R_A(t)$ and time-varying feedback coupling L(t). Under explicit regularity conditions, we prove that finite-time singularities cannot occur when external resources grow sublinearly, classify long-term asymptotic behavior based on the amplification ratio, and derive sharp sufficient conditions for global boundedness. We distinguish coordinate singularities—where efficiency E(t) = 1/L(t) diverges as $L(t) \to 0$ —from state-space singularities, where the system state S(t) itself blows up. The former represent asymptotic feedback decoupling: points where intrinsic time halts, the system becomes purely resource-driven, and internal amplification ceases to contribute. These results formalize how bounded resources and vanishing coupling yield measurable regimes of divergent efficiency without physical blow-up, unifying amplification, stability, and singularity within a single observable framework.

Contents

1	Introduction and Mathematical Framework	4
	1.1 The System	4
	1.2 Drift Parameter	4
	1.3 Standing Assumptions	4
	1.4 Physical Interpretation	5
2	Foundational Lemmas	6
3	Well-Posedness Theory	7
4	Intrinsic Time Reparametrization	8
5	Main Results: No Finite-Time Blow-Up	10
6	Coordinate Degeneracy and Feedback Decoupling	13

7	Global Boundedness via Dissipativity	14
8	Asymptotic Convergence	16
9	Counterexample: Superlinear Resources	16
10	Complete Classification Theorem	17
11	Empirical Implications of Observable R_A	18
12	Extensions and Open Questions	19
	12.1 Stochastic Observable R_A 12.2 Adaptive Amplification 12.3 Multi-Dimensional Systems 12.4 Delay Effects	. 20 . 20
13	Summary	21
	13.1 Key Results Proven 13.2 Physical Insights	. 21 . 21
A	Notation Summary	24
В	Key Assumptions Reference	24
\mathbf{C}	Proof Techniques Summary	24
	C.1 Carathéodory Theory	. 25
	C.2 Comparison Principles	. 25
	C.3 Grönwall's Inequality	. 25
	C.4 Lyapunov Methods	. 25
	C.5 Time Reparametrization	. 25
D	Examples and Applications	26
	D.1 Economic Growth Model	. 26
	D.2 Technology Development	. 26
	D.3 AI Development with Safety Constraints	
${f E}$	Numerical Methods	27
	E.1 Standard Solvers	. 28
	E.2 Intrinsic Time Integration	. 28
	E.3 Detecting Regime Transitions	. 28
	E.4 Sample Code Structure	
\mathbf{F}	Relationship to Existing Literature	29
	F.1 Classical Dynamical Systems	. 29
	F.2 Growth Theory	
	F.3 Control Theory	
	F.4 Blow-Up Theory	29

\mathbf{G}	Open Problems	30
	G.1 Sharp Thresholds	30
	G.2 Optimal Resource Allocation	30
	G.3 Stochastic Amplification	30
	G.4 Network Amplification	30
	G.5 Partial Observability	31
\mathbf{H}	Concluding Remarks	31

1 Introduction and Mathematical Framework

1.1 The System

We study feedback-coupled dynamical systems governed by:

$$\frac{dS}{dt} = L(t)(R_A(t) - 1)S + \Sigma(S) \tag{1}$$

where:

- $S(t) \ge 0$: system state (capacity, capability, resources) with dimension [S]
- $t \ge 0$: time with dimension [T]
- $L(t) \ge 0$: time-varying feedback coupling strength with dimension $[T]^{-1}$
- $R_A(t) \ge 0$: observable dimensionless amplification ratio (empirically measurable)
- $\Sigma(S) \geq 0$: external resource input with dimension [S]/[T]

Dimensional consistency: All terms have dimension [S]/[T].

1.2 Drift Parameter

Define:

$$\omega(t) := L(t)(R_A(t) - 1) \tag{2}$$

This determines the instantaneous feedback tendency:

- $\omega(t) > 0$: amplification (when $R_A > 1$)
- $\omega(t) < 0$: damping (when $R_A < 1$)
- $\omega(t) = 0$: neutral equilibrium (when $R_A = 1$)

1.3 Standing Assumptions

Assumption 1 (Regularity of External Resources). $\Sigma : \mathbb{R}_{\geq 0} \to \mathbb{R}$ is locally Lipschitz continuous.

Assumption 2 (Non-negativity). $\Sigma(s) \geq 0$ for all $s \geq 0$ and $\Sigma(0) \geq 0$.

Assumption 3 (Growth Control). Σ satisfies one of:

- (a) Sublinear: $\limsup_{s\to\infty} \Sigma(s)/s < \infty$
- (b) **Bounded:** $\sup_{s\geq 0} \Sigma(s) =: M < \infty$
- (c) **Affine:** $\Sigma(s) \leq a + bs$ for some $a, b \geq 0$

Assumption 4 (Observable Amplification Ratio). $R_A:[0,\infty)\to\mathbb{R}_{\geq 0}$ is measurable and piecewise continuous.

Assumption 5 (Local Boundedness of Amplification). For each $T < \infty$:

$$R_{\max}(T) := \sup_{t \in [0,T]} R_A(t) < \infty$$

Assumption 6 (Time-Varying Feedback Coupling). $L:[0,\infty)\to\mathbb{R}_{\geq 0}$ is measurable and locally integrable:

- $\int_0^T L(s) ds < \infty$ for each $T < \infty$
- L(t) > 0 for all t > 0

We distinguish:

- Non-degenerate: $\int_0^\infty L(u) du = \infty$ (unbounded cumulative coupling)
- **Degenerate:** $\int_0^\infty L(u) du =: \varepsilon_\infty < \infty$ (finite total coupling)

Assumption 7 (Initial Condition). $S(0) = S_0 \ge 0$.

1.4 Physical Interpretation

This model captures systems where:

- Current state S generates feedback at rate $L(t)(R_A(t)-1)S$
- External resources $\Sigma(S)$ may depend on system state
- Feedback coupling strength L(t) can vary, decay, or vanish over time
- Amplification ratio $R_A(t)$ is empirically observable at each time

Examples:

- Economic growth: S = capital, $R_A = \text{return}$ on investment, L = reinvestment rate, $\Sigma = \text{external}$ investment
- Technological progress: S = capability, $R_A = \text{efficiency of self-improvement}$, L = resource allocation to R&D
- AI development: $S = \text{intelligence/capability}, R_A = \text{recursive self-improvement factor}, L = \text{training efficiency}$

Perfect efficiency: When $L(t) \to 0$ under finite S, the efficiency parameter $E(t) = 1/L(t) \to \infty$, marking a feedback decoupling regime where external resources dominate.

2 Foundational Lemmas

Lemma 2.1 (Variation of Constants Formula). For the ODE $\frac{dS}{dt} = \omega(t)S + \Sigma(S(t))$, the solution satisfies:

$$S(t) = e^{\Phi(t)} \left[S_0 + \int_0^t e^{-\Phi(\tau)} \Sigma(S(\tau)) d\tau \right]$$

where $\Phi(t) := \int_0^t \omega(s) \, ds = \int_0^t L(s) (R_A(s) - 1) \, ds$.

Proof. Define $\mu(t) := e^{-\Phi(t)}$. Then:

$$\frac{d\mu}{dt} = -\omega(t)e^{-\Phi(t)} = -\omega(t)\mu(t)$$

Multiply the ODE by $\mu(t)$:

$$\mu(t)\frac{dS}{dt} = \mu(t)\omega(t)S + \mu(t)\Sigma(S)$$

$$\frac{d}{dt}[\mu(t)S(t)] = \mu(t)\Sigma(S(t))$$

Integrate from 0 to t:

$$\mu(t)S(t) - \mu(0)S_0 = \int_0^t \mu(\tau)\Sigma(S(\tau)) d\tau$$

Since $\mu(0) = 1$:

$$e^{-\Phi(t)}S(t) = S_0 + \int_0^t e^{-\Phi(\tau)}\Sigma(S(\tau)) d\tau$$

Multiply both sides by $e^{\Phi(t)}$.

Lemma 2.2 (Comparison Principle). Suppose f(s,t) is continuous in s and measurable in t. If:

- 1. $\frac{dS}{dt} \leq f(S,t)$ almost everywhere
- 2. $\bar{S}(t)$ satisfies $\frac{d\bar{S}}{dt} = f(\bar{S}, t)$ with $S(0) = \bar{S}(0)$

Then $S(t) \leq \bar{S}(t)$ for all $t \geq 0$ in the domains of both solutions.

Proof. Standard comparison theorem for ODEs (see Khalil, *Nonlinear Systems*, Theorem 3.4). The conditions on measurability and local Lipschitz continuity are satisfied by F(S,t) under Assumptions [1]-6].

Lemma 2.3 (Blow-Up Alternative). Let S(t) be the maximal solution on $[0, T_{\text{max}})$. Then either:

- 1. $T_{\text{max}} = \infty$ (global solution), or
- 2. $\lim_{t\to T_{\text{max}}} S(t) = \infty$ (finite-time blow-up)

Proof. Suppose $T_{\max} < \infty$ and $\limsup_{t \to T_{\max}^-} S(t) =: M < \infty$.

Then S(t) remains in the compact set [0, M+1] for all $t \in [0, T_{\text{max}})$.

Since $F(S,t) = L(t)(R_A(t) - 1)S + \Sigma(S)$ is locally Lipschitz in S and locally integrable in t, the Carathéodory theorem guarantees that the solution can be extended beyond T_{max} , contradicting maximality.

Therefore, if $T_{\text{max}} < \infty$, we must have $\lim_{t \to T_{\text{max}}} S(t) = \infty$.

Lemma 2.4 (Positivity Invariance — Nagumo Condition). Under Assumptions [1-7], if $S_0 \ge 0$, then $S(t) \ge 0$ for all $t \in [0, T_{\text{max}})$.

Proof. At the boundary S = 0:

$$F(0,t) = L(t)(R_A(t) - 1) \cdot 0 + \Sigma(0) = \Sigma(0) \ge 0$$

The vector field points into (or tangent to) the non-negative orthant $\mathbb{R}_{\geq 0}$.

By the Nagumo tangency condition, the set $\mathbb{R}_{\geq 0}$ is positively invariant. Therefore, if $S_0 \geq 0$, then $S(t) \geq 0$ for all $t \in [0, T_{\text{max}})$.

3 Well-Posedness Theory

Theorem 3.1 (Existence and Uniqueness). Under Assumptions [1-7], for any initial condition $S_0 \geq 0$, there exists a unique maximal solution $S: [0, T_{\max}) \to \mathbb{R}_{\geq 0}$ satisfying:

$$\frac{dS}{dt} = L(t)(R_A(t) - 1)S + \Sigma(S), \quad S(0) = S_0$$

Moreover, by Lemma 2.3, either $T_{\text{max}} = \infty$ or $\lim_{t \to T_{\text{max}}} S(t) = \infty$.

Proof. Define $F(S,t) := L(t)(R_A(t) - 1)S + \Sigma(S)$.

Step 1: Carathéodory conditions

Measurability in t: For fixed S, the map $t \mapsto F(S,t) = L(t)(R_A(t) - 1)S + \Sigma(S)$ is measurable since L(t) and $R_A(t)$ are measurable (Assumptions [4], [6]).

Local Lipschitz in S: Fix $T < \infty$ and compact $K \subset \mathbb{R}_{\geq 0}$.

Let $M_T := \sup_{t \in [0,T]} |R_A(t)| < \infty$ (by Assumption 5) and $L_T := \sup_{t \in [0,T]} L(t) < \infty$ (by local boundedness).

For $S_1, S_2 \in K$:

$$|F(S_1,t) - F(S_2,t)| = |L(t)(R_A(t) - 1)(S_1 - S_2) + \Sigma(S_1) - \Sigma(S_2)|$$

$$\leq L(t)|R_A(t) - 1||S_1 - S_2| + |\Sigma(S_1) - \Sigma(S_2)|$$

$$\leq L_T(M_T + 1)|S_1 - S_2| + L_K|S_1 - S_2|$$

$$= |L_T(M_T + 1) + L_K||S_1 - S_2|$$

Local integrability: For $S \in K$ and $t \in [0, T]$:

$$\int_0^T |F(S,t)| \, dt \le \int_0^T [L(t)|R_A(t) - 1| ||K||_{\infty} + M_{\Sigma}] \, dt$$

where $M_{\Sigma} := \sup_{s \in K} \Sigma(s) < \infty$ (by continuity of Σ on compact sets).

Since L is locally integrable (Assumption 6) and R_A is locally bounded (Assumption 5):

$$\leq (M_T + 1) ||K||_{\infty} \int_0^T L(t) dt + T M_{\Sigma} < \infty$$

Step 2: Apply Carathéodory Existence Theorem

Since F satisfies all Carathéodory conditions, there exists a unique maximal solution S(t) on $[0, T_{\text{max}})$.

Step 3: Positivity preservation

By Lemma 2.4,
$$S(t) \geq 0$$
 for all $t \in [0, T_{\text{max}})$.

4 Intrinsic Time Reparametrization

Lemma 4.1 (Time-Change to Intrinsic Coupling Scale). Define the cumulative coupling function:

$$\varepsilon(t) := \int_0^t L(u) \, du$$

Assumption: L(t) > 0 almost everywhere, so $\varepsilon(t)$ is strictly increasing and absolutely continuous.

Case I (Non-degenerate: $\varepsilon(t) \to \infty$ as $t \to \infty$):

- 1. $\varepsilon:[0,\infty)\to[0,\infty)$ is continuous, strictly increasing, and surjective
- 2. There exists an inverse $t:[0,\infty)\to [0,\infty)$ with $\varepsilon(t(\varepsilon))=\varepsilon$
- 3. Define the efficiency parameter:

$$E(\varepsilon) := \frac{1}{L(t(\varepsilon))}$$
 (well-defined a.e.)

4. For $\tilde{S}(\varepsilon) := S(t(\varepsilon))$, the ODE transforms to:

$$\frac{d\tilde{S}}{d\varepsilon} = (R_A(\varepsilon) - 1)\tilde{S} + E(\varepsilon)\Sigma(\tilde{S})$$
(3)

where $R_A(\varepsilon) := R_A(t(\varepsilon))$

Case II (Degenerate: $\varepsilon_{\infty} := \int_0^{\infty} L(u) du < \infty$):

- 1. $\varepsilon:[0,\infty)\to[0,\varepsilon_\infty)$ is continuous and surjective onto $[0,\varepsilon_\infty)$
- 2. The inverse $t:[0,\varepsilon_{\infty})\to[0,\infty)$ exists with $t(\varepsilon)\to\infty$ as $\varepsilon\to\varepsilon_{\infty}^-$
- 3. The transformed ODE exists on $\varepsilon \in [0, \varepsilon_{\infty})$:

$$\frac{dS}{d\varepsilon} = (R_A(\varepsilon) - 1)\tilde{S} + E(\varepsilon)\Sigma(\tilde{S})$$

4. As $t \to \infty$, we have $\varepsilon(t) \to \varepsilon_{\infty} < \infty$ (intrinsic time freezes)

Proof. Step 1: Properties of $\varepsilon(t)$

Since $L \ge 0$ is locally integrable and positive a.e., $\varepsilon(t)$ is well-defined, continuous, strictly increasing, and differentiable a.e. with $\varepsilon'(t) = L(t) > 0$ a.e.

Step 2: Existence of inverse

In the non-degenerate case, $\varepsilon(t) \to \infty$ implies ε is surjective. Since ε is continuous and strictly increasing, it has a continuous inverse $t(\varepsilon)$.

In the degenerate case, $\varepsilon(t) \to \varepsilon_{\infty} < \infty$ as $t \to \infty$, so ε is surjective onto $[0, \varepsilon_{\infty})$.

Step 3: Chain rule transformation (valid a.e. for absolutely continuous functions)

By the chain rule:

$$\frac{d\tilde{S}}{d\varepsilon} = \frac{dS}{dt}\bigg|_{t=t(\varepsilon)} \cdot \frac{dt}{d\varepsilon}$$

From the original ODE:

$$\frac{dS}{dt} = L(t)(R_A(t) - 1)S + \Sigma(S)$$

Since $\frac{d\varepsilon}{dt} = L(t) > 0$ a.e., we have $\frac{dt}{d\varepsilon} = \frac{1}{L(t(\varepsilon))} = E(\varepsilon)$. Substituting:

$$\frac{d\tilde{S}}{d\varepsilon} = [L(t(\varepsilon))(R_A(t(\varepsilon)) - 1)S(t(\varepsilon)) + \Sigma(S(t(\varepsilon)))] \cdot E(\varepsilon)$$

$$= [L(t(\varepsilon))(R_A(\varepsilon) - 1)\tilde{S} + \Sigma(\tilde{S})] \cdot \frac{1}{L(t(\varepsilon))}$$

$$= (R_A(\varepsilon) - 1)\tilde{S} + E(\varepsilon)\Sigma(\tilde{S})$$

Note on measurability: When L=0 on sets of positive measure, we interpret the chain rule in the sense of Lebesgue integration and absolutely continuous functions. The key is that $\varepsilon(t)$ remains absolutely continuous, allowing the transformation to be well-defined almost everywhere.

Remark 4.2 (Physical Interpretation). • Intrinsic time ε : Measures cumulative feedback coupling, not calendar time

- Efficiency $E(\varepsilon)$: Ratio of external resource impact to feedback strength
- When $L(t) \to 0$: $E(\varepsilon) \to \infty$ (coordinate singularity), but S may remain bounded
- Degenerate case: Total feedback coupling is finite; system asymptotically decouples

5 Main Results: No Finite-Time Blow-Up

Theorem 5.1 (Damped Regime — No Finite-Time Blow-Up). Assume:

- 1. $\sup_{t>0} R_A(t) \le 1$ (damped regime)
- 2. Σ satisfies Assumption $\mathfrak{F}(b)$: $\sup_{s>0} \Sigma(s) =: M < \infty$

Then $T_{\max} = \infty$ and $S(t) < \infty$ for all finite $t < \infty$.

Proof. Since $R_A(t) \leq 1$:

$$\frac{dS}{dt} = L(t)(R_A(t) - 1)S + \Sigma(S) \le 0 \cdot S + M = M$$

By comparison with the ODE $\frac{d\bar{S}}{dt} = M$, $\bar{S}(0) = S_0$:

$$S(t) \leq S_0 + Mt < \infty$$

for all finite t. Therefore, $T_{\text{max}} = \infty$ by Lemma 2.3

Remark 5.2. This theorem establishes no finite-time blow-up but does NOT guarantee $\sup_{t\geq 0} S(t) < \infty$ (uniform boundedness). For that, see Theorem 5.3.

Theorem 5.3 (Strict Damping — Global Boundedness). Assume:

- 1. $\inf_{t\geq 0} R_A(t) \leq 1 \delta$ for some $\delta > 0$ (strict damping)
- 2. Σ satisfies Assumption 3(b): $\sup_{s\geq 0} \Sigma(s) =: M < \infty$
- 3. $\inf_{t \in [0,T]} L(t) \ge \ell_T > 0$ for each $T < \infty$ (non-vanishing on finite intervals)

Then $\sup_{t>0} S(t) < \infty$ (global boundedness).

Proof. From the ODE:

$$\frac{dS}{dt} = L(t)(R_A(t) - 1)S + \Sigma(S) \le L(t)(1 - \delta - 1)S + M = -L(t)\delta S + M$$

Since $L(t) \ge \ell_T > 0$ on [0, T]:

$$\frac{dS}{dt} \le -\ell_T \delta S + M$$

This is a linear ODE. By comparison:

$$S(t) \le \left(S_0 - \frac{M}{\ell_T \delta}\right) e^{-\ell_T \delta t} + \frac{M}{\ell_T \delta}$$

As $t \to \infty$, if $\ell_{\infty} := \inf_{t \ge 0} L(t) > 0$:

$$S(t) \to \frac{M}{\ell_{\infty}\delta}$$

For global boundedness when L may vanish, we require dissipativity (see Theorem 7.1).

Theorem 5.4 (Amplified Regime with Sublinear Resources). Assume:

- 1. $\inf_{t>0} R_A(t) \ge 1 + \delta$ for some $\delta > 0$ (amplified regime)
- 2. R_A satisfies Assumption 5: $R_{\max}(T) := \sup_{t \in [0,T]} R_A(t) < \infty$ for each $T < \infty$
- 3. Σ satisfies Assumption $\underline{\mathfrak{Z}}(c)$: $\Sigma(s) \leq a + bs$ with $b < \delta \inf_{t \geq 0} L(t)$ if $\inf L > 0$

Then $T_{\max} = \infty$ and $S(t) < \infty$ for all finite $t < \infty$.

Important: This guarantees no finite-time blow-up but permits $S(t) \to \infty$ as $t \to \infty$ (asymptotic blow-up).

Proof. For large S, using $\Sigma(s) \leq a + bs$:

$$\frac{dS}{dt} = L(t)(R_A(t) - 1)S + \Sigma(S) \le L(t)(R_{\text{max}}(T) - 1)S + a + bS$$

For $t \in [0, T]$:

$$\frac{dS}{dt} \le [L(t)(R_{\max}(T) - 1) + b]S + a$$

Let $\mu_T := \sup_{t \in [0,T]} L(t)(R_{\max}(T) - 1) + b < \infty$. By Grönwall's inequality:

$$S(t) \le S_0 e^{\mu_T t} + a \int_0^t e^{\mu_T (t-s)} ds = S_0 e^{\mu_T t} + \frac{a}{\mu_T} (e^{\mu_T t} - 1)$$

For finite $t \leq T$:

$$S(t) \le \left(S_0 + \frac{a}{\mu_T}\right) e^{\mu_T T} < \infty$$

Therefore, $T_{\rm max} = \infty$ by Lemma 2.3.

Theorem 5.5 (Robustness to Time-Varying L). Assume:

- 1. $L(t) \ge 0$ satisfies Assumption 6 (locally integrable, may vanish)
- 2. $R_A(t)$ satisfies Assumptions $\boxed{4}$ and $\boxed{5}$ (measurable, locally bounded)
- 3. $\Sigma(s) \le a + bs$ for some $a, b \ge 0$ (affine growth)
- 4. One of:
 - $Damped: \sup_{t\geq 0} R_A(t) \leq 1$
 - Amplified with sublinear resources: $\inf_{t\geq 0} R_A(t) \geq 1 + \delta$ with $\delta > b$

Then $T_{\max} = \infty$ and $S(t) < \infty$ for all finite t, regardless of whether L(t) is constant, vanishing, or oscillating.

Proof. Case A: Non-degenerate coupling $(\int_0^\infty L = \infty)$

Step 1: Transform to ε -time

By Lemma 4.1, the system becomes:

$$\frac{d\tilde{S}}{d\varepsilon} = (R_A(\varepsilon) - 1)\tilde{S} + E(\varepsilon)[a + b\tilde{S}]$$

Rearranging:

$$\frac{d\tilde{S}}{d\varepsilon} = [(R_A(\varepsilon) - 1) + bE(\varepsilon)]\tilde{S} + aE(\varepsilon)$$

Step 2: Damped subcase

If $R_A(\varepsilon) \leq 1$:

$$\frac{d\tilde{S}}{d\varepsilon} \le bE(\varepsilon)\tilde{S} + aE(\varepsilon)$$

By Grönwall's inequality:

$$\tilde{S}(\varepsilon) \leq \tilde{S}(0) \exp\left(\int_0^\varepsilon bE(u) \, du\right) + \int_0^\varepsilon aE(s) \exp\left(\int_s^\varepsilon bE(u) \, du\right) \, ds$$

Key observation:

$$\int_0^{\varepsilon} E(u) \, du = \int_0^{\varepsilon} \frac{d\varepsilon/dv}{1} \bigg|_{v=t(u)} du = \int_0^{t(\varepsilon)} 1 \, dv = t(\varepsilon)$$

Therefore:

$$\exp\left(\int_0^\varepsilon bE(u)\,du\right) = e^{bt(\varepsilon)}$$

For any finite t, letting $\varepsilon = \varepsilon(t)$:

$$S(t) = \tilde{S}(\varepsilon(t)) \le S_0 e^{bt} + \frac{a}{b} (e^{bt} - 1) < \infty$$

Step 3: Amplified subcase

Similar analysis using $R_{\text{max}}(T) < \infty$ for each $T < \infty$.

Case B: Degenerate coupling $(\varepsilon_{\infty} := \int_0^{\infty} L < \infty)$

From Case A, $\tilde{S}(\varepsilon)$ remains bounded on $[0, \varepsilon_{\infty})$ by the Grönwall bound applied on this finite interval. Specifically, since $\varepsilon_{\infty} < \infty$, we have:

$$\int_0^{\varepsilon_\infty} E(u) \, du = \lim_{t \to \infty} t(\varepsilon(t)) = \infty$$

but ε itself is bounded. The transformed system evolves on a bounded intrinsic time interval, so boundedness in ε implies boundedness in t. Since $\varepsilon_{\infty} < \infty$, $S(t) = \tilde{S}(\varepsilon(t))$ remains bounded for all $t \geq 0$.

Corollary 5.6. The behavior of L(t)—whether constant, decaying, oscillating, or vanishing—does not affect whether finite-time blow-up occurs, only the rate of evolution and whether feedback decoupling arises.

6 Coordinate Degeneracy and Feedback Decoupling

Remark 6.1 (Classification of Singularities). We distinguish three types of singularities:

Singularity Type Comparison

Type 1: State-Space Singularity

- Definition: $\lim_{t\to T^-} S(t) = \infty$ for some $T < \infty$
- Interpretation: Finite-time blow-up of the system state itself
- Physical meaning: System diverges in finite time
- Status: Ruled out by Theorems 5.1 5.5 under sublinear Σ

Type 2: Coordinate Singularity (Generic)

- Definition: $\lim_{t\to t_*} L(t) = 0$, implying $E(t) = 1/L(t) \to \infty$
- Interpretation: Efficiency parameter diverges; artifact of time parametrization
- Physical meaning: Change of variables produces apparent singularity
- Status: S(t) may be bounded or unbounded independently

Type 3: Feedback Decoupling (Special Case)

- Definition: $L(t) \to 0$ AND S(t) remains bounded, with $\int_0^\infty L < \infty$
- Interpretation: Intrinsic time freezes at ε_{∞} ; feedback ceases
- Physical meaning: System transitions to purely resource-driven dynamics
- Observable transition: Internal amplification becomes negligible; evolution proceeds only through $\Sigma(S)$

Definition 6.2 (Feedback-Decoupling Point). A feedback-decoupling point occurs when $L(t) \to 0$ and S(t) remains finite, so that intrinsic time $\varepsilon(t) = \int_0^t L(u) du$ converges to a finite limit $\varepsilon_{\infty} < \infty$ and feedback ceases to contribute to evolution.

In this regime, internal amplification no longer contributes; evolution proceeds only through external forcing $\Sigma(S)$.

Remark 6.3 (Physical Interpretation). If feedback coupling vanishes $(L \to 0)$, the system decouples and evolves purely under external resources $\Sigma(S)$. If Σ is bounded or sublinear, S remains bounded even as efficiency $E \to \infty$.

Feedback decoupling is a coordinate singularity with specific physical interpretation: it marks the analytical boundary between internally self-amplifying and externally driven dynamics, not a new singularity class.

Example 6.4 (Feedback Decoupling with Finite State). Let $L(t) = \frac{1}{1+t^2}$, $R_A = 2$, $\Sigma(S) = 1$ (constant external forcing).

Then:

$$\varepsilon(t) = \int_0^t \frac{du}{1+u^2} = \arctan(t) \to \frac{\pi}{2} \quad as \ t \to \infty$$

So $\varepsilon_{\infty} = \pi/2 < \infty$ (degenerate case).

The efficiency parameter:

$$E(t) = \frac{1}{L(t)} = 1 + t^2 \to \infty \quad as \ t \to \infty$$

This is a coordinate singularity. However, the state S(t) satisfies:

$$\frac{dS}{dt} = \frac{1}{1+t^2} \cdot (2-1) \cdot S + 1 = \frac{S}{1+t^2} + 1$$

For large t, $\frac{dS}{dt} \approx 1$, so $S(t) \sim t$ grows linearly, remaining finite for all finite t.

Interpretation: This is a feedback decoupling regime. Intrinsic time freezes at $\varepsilon_{\infty} = 1$ $\pi/2$, efficiency diverges $(E \to \infty)$, yet the state remains bounded (grows only linearly). The system transitions from feedback-dominated (early times) to resource-dominated (late times) evolution.

7 Global Boundedness via Dissipativity

Theorem 7.1 (Dissipativity Condition). Suppose there exist $S_* < \infty$ and $\kappa_0 > 0$ (dimensionless) such that:

$$L(t)(R_A(t) - 1)S + \Sigma(S) \le -\kappa_0 L(t)S \quad \forall S \ge S_*, \, \forall t \ge 0$$
 (D)

Equivalently:

$$R_A(t) \le 1 - \kappa_0 - \frac{\Sigma(S)}{L(t)S} \quad \forall S \ge S_*$$

Assume additionally that L(t) > 0 on a set of positive measure within each bounded interval.

Then:

- 1. $\sup_{t>0} S(t) \leq \max\{S_0, S_*\}$ (global boundedness)
- 2. If $S_0 > S_*$, then S(t) enters $[0, S_*]$ in finite time
- 3. $[0, S_*]$ is positively invariant

Proof. Step 1: Trajectories decrease beyond S_*

For $S(t) > S_*$, condition (D) gives:

$$\frac{dS}{dt} = L(t)(R_A(t) - 1)S + \Sigma(S) \le -\kappa_0 L(t)S < 0$$

(assuming L(t) > 0 on a set of positive measure).

Therefore, S(t) is strictly decreasing whenever $S(t) > S_*$ and L(t) > 0.

Step 2: Upper bound

If $S_0 \leq S_*$: By Step 1, S cannot increase beyond S_* . Thus $S(t) \leq S_*$ for all $t \geq 0$.

If $S_0 > S_*$: Since $\frac{dS}{dt} < 0$ for $S > S_*$, we have $S(t) \le S_0$ for all $t \ge 0$. Step 3: Finite-time entry

Suppose $S_0 = S(0) > S_*$. For $S(t) \in [S_*, S(0)]$:

$$\frac{dS}{dt} \le -\kappa_0 L(t)S \le -\kappa_0 L(t)S_*$$

Integrating from 0 to t:

$$S(t) - S_0 \le -\kappa_0 S_* \int_0^t L(u) \, du = -\kappa_0 S_* \varepsilon(t)$$

The trajectory reaches S_* when:

$$\varepsilon(t_{\text{entry}}) = \frac{S(0) - S_*}{\kappa_0 S_*}$$

If $\int_0^\infty L = \infty$ (non-degenerate), there exists finite t_{entry} such that $\varepsilon(t_{\text{entry}})$ equals the above value.

Step 4: Positive invariance

By Step 1, any trajectory starting in $[0, S_*]$ cannot exit, since $\frac{dS}{dt} < 0$ at $S = S_*$ prevents upward crossing.

Corollary 7.2 (Constructive Examples). Condition (D) holds under:

1. Resource depletion with maintenance:

$$\Sigma(S) = \Sigma_0 \left(1 - \frac{S}{S_{phys}} \right)_+ - \alpha S$$

For $S \geq S_* := \Sigma_0/\alpha$:

$$\Sigma(S) \le -\alpha S$$

If $R_A(t) \leq 1$, taking $\kappa_0 = \alpha/L_{\min}$ with $L_{\min} := \inf_t L(t)$ satisfies (D).

2. Negative feedback domination:

$$\Sigma(S) = -\varsigma S \quad \text{for } S \ge S_*$$

with $\varsigma > L_{\max}(R_{\max} - 1)$ where $L_{\max} := \sup_t L(t)$.

8 Asymptotic Convergence

Theorem 8.1 (Convergence in Strictly Damped Regime). Assume:

- 1. $R_A(t) \le 1 \delta$ for some $\delta > 0$ and all $t \ge 0$ (strict damping)
- 2. L(t) is Lipschitz continuous: $|L(t_1) L(t_2)| \le M_L |t_1 t_2|$
- 3. $R_A(t)$ is Lipschitz continuous: $|R_A(t_1) R_A(t_2)| \le M_R|t_1 t_2|$
- 4. Σ is bounded: $\Sigma(s) \leq M$ for all $s \geq 0$
- 5. $\Sigma(s) \to 0$ as $s \to \infty$ (eventually vanishing external input)
- 6. $\inf_{t\geq 0} L(t) \geq \ell_{\infty} > 0$ (non-vanishing coupling)

Then $\lim_{t\to\infty} S(t)$ exists and equals 0.

Proof. Via Lyapunov Function:

Step 1: Let $V(S) := \frac{1}{2}S^2$. Then:

$$\frac{dV}{dt} = S\frac{dS}{dt} = S[L(t)(R_A(t) - 1)S + \Sigma(S)]$$

Since $R_A(t) \leq 1 - \delta$:

$$\frac{dV}{dt} \le S[-L(t)\delta S + \Sigma(S)] = -L(t)\delta S^2 + S\Sigma(S)$$

Step 2: For large $S, \Sigma(S) \to 0$. For any $\epsilon > 0$, there exists S_{ϵ} such that $\Sigma(S) \leq \epsilon S$ for $S \geq S_{\epsilon}$.

For $S \geq S_{\epsilon}$:

$$\frac{dV}{dt} \le -L(t)\delta S^2 + \epsilon S^2 = -(L(t)\delta - \epsilon)S^2$$

Choose $\epsilon < \delta \ell_{\infty}$ (where $\ell_{\infty} := \inf_{t \geq 0} L(t) > 0$). Then:

$$\frac{dV}{dt} \le -cS^2 = -2cV$$

for some c > 0, giving exponential decay: $V(t) \leq V(0)e^{-2ct} \to 0$.

Therefore, $S(t) \to 0$ as $t \to \infty$.

9 Counterexample: Superlinear Resources

Theorem 9.1 (Superlinear Resources Cause Finite-Time Blow-Up). Assume:

- 1. $\Sigma(S) \ge \phi S^{1+\varsigma}$ for some $\phi, \varsigma > 0$ and all $S \ge S_1 > 0$ (superlinear growth for large S)
- 2. $L(t) \ge 0$ arbitrary (possibly constant, vanishing, or oscillating)

3. $R_A(t) \ge R_{\min} > -\infty$ (bounded below)

Then finite-time blow-up occurs: $T_{\max} < \infty$ and $\lim_{t \to T_{\max}^-} S(t) = \infty$. Moreover, the blow-up time satisfies:

$$T_{\max} \le T_{blow-up} := \frac{1}{\varsigma \phi S_1^{\varsigma}}$$

Crucially: This bound is independent of L(t) and $R_A(t)$ —the superlinear external resources dominate all feedback dynamics.

Proof. Step 1: For $S(t) \geq S_1$:

$$\frac{dS}{dt} = L(t)(R_A(t) - 1)S + \Sigma(S)$$

For sufficiently large S, the superlinear term dominates. There exists $S_2 \geq S_1$ such that for $S \geq S_2$:

$$\frac{dS}{dt} \ge \frac{\phi}{2} S^{1+\varsigma}$$

Step 2: Once $S(t) \geq S_2$, separating variables:

$$\int_{S_2}^{S(t)} s^{-(1+\varsigma)} ds \le \int_{t_2}^{t} \frac{\phi}{2} du$$
$$-\frac{1}{\varsigma} \left[\frac{1}{S(t)^{\varsigma}} - \frac{1}{S_2^{\varsigma}} \right] \ge \frac{\phi}{2} (t - t_2)$$
$$\frac{1}{S(t)^{\varsigma}} \le \frac{1}{S_2^{\varsigma}} - \frac{\varsigma \phi}{2} (t - t_2)$$

Step 3: The RHS vanishes when:

$$t - t_2 = \frac{2}{\varsigma \phi S_2^{\varsigma}}$$

Therefore:

$$T_{\max} \le t_2 + \frac{2}{\varsigma \phi S_2^{\varsigma}} < \infty$$

The bound depends only on Σ 's growth rate, not on L or R_A .

10 Complete Classification Theorem

Theorem 10.1 (Master Classification). Consider the system:

$$\frac{dS}{dt} = L(t)(R_A(t) - 1)S + \Sigma(S)$$

with observable $R_A(t)$, time-varying $L(t) \geq 0$, and locally Lipschitz $\Sigma \geq 0$ satisfying Assumptions 1.7.

Part I: Finite-Time Behavior

No finite-time blow-up $(T_{\text{max}} = \infty)$ occurs if:

- 1. $R_A(t) \leq 1$ and Σ bounded (Theorem 5.1), or
- 2. $R_A(t) \ge 1 + \delta$ with tail sublinearity and R_A locally bounded (Theorem 5.4), or
- 3. $\Sigma(s) \leq a + bs$ (affine) with either damped or amplified regime (Theorem 5.5) Finite-time blow-up does occur if:
- $\Sigma(S) \ge \phi S^{1+\varsigma}$ for large S (Theorem 9.1)

Part II: Global Boundedness

 $\sup_{t>0} S(t) < \infty$ if:

- Strict damping $R_A \leq 1 \delta$ with bounded Σ and $\inf L > 0$ (Theorem 5.3), or
- Dissipativity (D) holds (Theorem 7.1)

Part III: Asymptotic Convergence

 $\lim_{t\to\infty} S(t)$ exists and is finite if:

• Strict damping $R_A \leq 1 - \delta$, Lipschitz L and R_A , bounded $\Sigma \to 0$, and $\inf L > 0$ (Theorem [8.1])

Part IV: Feedback Decoupling

If $L(t) \to 0$ (efficiency $E = 1/L \to \infty$):

- Non-degenerate ($\int L = \infty$): Intrinsic time extends to infinity; coordinate singularity without state blow-up (Remark $\boxed{6.1}$)
- **Degenerate** ($\int L < \infty$): Intrinsic time freezes at ε_{∞} ; system undergoes feedback decoupling (Definition 6.2)

11 Empirical Implications of Observable R_A

Proposition 11.1 (Real-Time Regime Detection). If $R_A(t)$ is measured empirically at each time t:

1. Instantaneous growth tendency:

$$sgn\left(\frac{dS}{dt}\right) = sgn(L(t)(R_A(t) - 1)S + \Sigma(S))$$

2. Critical transition: System crosses from expansion to contraction when:

$$R_A(t) = 1 - \frac{\Sigma(S(t))}{L(t)S(t)}$$

3. Cumulative amplification factor:

$$\Phi(t) = \int_0^t L(s)(R_A(s) - 1) ds$$

determines exponential scaling: $S(t) \sim e^{\Phi(t)}$ (when Σ negligible)

4. Efficiency monitoring:

$$E(t) = \frac{1}{L(t)}$$

When $E \to \infty$, external resources dominate feedback

Proposition 11.2 (Stability Monitoring). For equilibrium S^* satisfying $L(R_A^* - 1)S^* + \Sigma(S^*) = 0$, the stability margin is:

$$\lambda(t) := L(t)(1 - R_A(t))S^* - \Sigma'(S^*)$$

- $\lambda(t) > 0 \iff stable \ near \ S^*$
- $\lambda(t) < 0 \iff unstable \ near \ S^*$
- Directly computable from observable $R_A(t)$

Note: Requires Σ to be monotonic for equilibrium uniqueness.

Proposition 11.3 (Predictive Power). Given R_A measurements on $[0, t_0]$:

Damped regime $(R_A \leq 1)$: Upper bound on future state:

$$S(t) \le S(t_0) + M(t - t_0)$$

Amplified regime $(R_A \ge 1 + \delta)$: Exponential growth rate:

$$S(t) \ge S(t_0)e^{L\delta(t-t_0)}$$

These bounds enable early warning systems for runaway growth or collapse.

12 Extensions and Open Questions

12.1 Stochastic Observable R_A

If $R_A(t)$ is observed with noise:

$$dS = [L(t)(R_A(t) - 1)S + \Sigma(S)]dt + \sigma(S)dW_t$$

Open questions:

- Almost-sure boundedness conditions
- Moment bounds and tail probabilities
- Optimal control under uncertainty in R_A

12.2 Adaptive Amplification

If $R_A = R_A(S, t)$ depends on state (e.g., diminishing returns):

$$R_A(S,t) = R_0(t) \cdot \frac{K}{K+S}$$

The system becomes fully nonlinear. Analysis requires:

- Phase-plane methods
- Bifurcation theory for varying K
- Multiple equilibria and stability switching

12.3 Multi-Dimensional Systems

Coupled subsystems with different amplification ratios:

$$\frac{dS_i}{dt} = \sum_{i} L_{ij}(t)(R_{A,j}(t) - 1)S_j + \Sigma_i(S_1, \dots, S_n)$$

Challenges:

- Cross-coupling stability
- Emergent collective behavior
- Network effects in amplification

12.4 Delay Effects

Memory in feedback:

$$\frac{dS}{dt} = L(t)(R_A(t) - 1)S(t - \tau) + \Sigma(S(t))$$

Known results:

- Delay can destabilize otherwise stable systems
- Hopf bifurcations and oscillations

13 Summary

13.1 Key Results Proven

Tier 1: Finite-Time Behavior

- 1. No finite-time blow-up under damping or sublinear resources (Theorems 5.1-5.5)
- 2. Finite-time blow-up under superlinear resources (Theorem 9.1)
- 3. Robustness to time-varying L(t), including vanishing coupling (Theorem 5.5)

Tier 2: Global Boundedness

- 1. Strict damping with bounded Σ (Theorem 5.3)
- 2. Dissipativity condition (Theorem 7.1)

Tier 3: Asymptotic Convergence

1. Convergence in strictly damped regime with Lipschitz conditions (Theorem 8.1)

Tier 4: Feedback Decoupling

- 1. Classification of state-space vs coordinate singularities (Remark 6.1)
- 2. Time reparametrization and efficiency parameter (Lemma 4.1)
- 3. Feedback decoupling as analytical boundary between self-amplifying and externally driven dynamics (Definition 6.2)

13.2 Physical Insights

Observable R_A provides complete phase-space diagnostic:

- System fate encoded in time-integrated amplification $\Phi(t) = \int L(R_A 1)$
- Coordinate singularities $(E \to \infty)$ distinct from state blow-up $(S \to \infty)$
- Resource boundedness prevents finite-time catastrophe even with $R_A > 1$

Critical thresholds:

- $R_A = 1$: Transition between amplification and damping
- Σ growth rate: Determines whether finite-time blow-up possible
- Dissipativity: Ensures long-term boundedness beyond short-term amplification

Time-varying coupling L(t):

- Does not affect finite-time blow-up existence (only rate)
- Vanishing $L \to 0$ creates feedback decoupling without state singularity
- Intrinsic time $\varepsilon = \int L$ is natural timescale for dynamics

Feedback decoupling marks the analytical boundary between internally selfamplifying and externally driven dynamics, not a new singularity class.

References

- [1] Khalil, H. K. (2002). Nonlinear Systems, 3rd edition. Prentice Hall.
- [2] Perko, L. (2001). Differential Equations and Dynamical Systems, 3rd edition. Springer.
- [3] Teschl, G. (2012). Ordinary Differential Equations and Dynamical Systems. AMS.
- [4] Hartman, P. (2002). Ordinary Differential Equations, 2nd edition. SIAM.
- [5] Coddington, E. A., & Levinson, N. (1955). Theory of Ordinary Differential Equations. McGraw-Hill.

latex

A Notation Summary

Symbol	Meaning	Dimension
S(t)	System state (capacity/capability)	[S]
$\mid t \mid$	Calendar time	$\mid [T] \mid$
ε	Intrinsic time (cumulative coupling)	dimensionless
L(t)	Feedback coupling strength	$[T]^{-1}$
$R_A(t)$	Amplification ratio (observable)	dimensionless
$\omega(t)$	Drift parameter = $L(R_A - 1)$	$[T]^{-1}$
$\Phi(t)$	Cumulative drift = $\int_0^t \omega$	dimensionless
$\Sigma(S)$	External resource input	[S]/[T]
$E(\varepsilon)$	Efficiency parameter = $1/L$	$\mid [T]$
S_*	Dissipativity threshold	S
$arepsilon_{\infty}$	Maximum intrinsic time (degenerate)	dimensionless
$T_{\rm max}$	Maximal existence time	$\mid [T]$
$R_{\max}(T)$	$\sup_{t \in [0,T]} R_A(t)$	dimensionless
δ	Damping/amplification margin	dimensionless
κ_0	Dissipativity rate constant	dimensionless

Table 1: Summary of notation and dimensional analysis

B Key Assumptions Reference

For quick reference, we restate the standing assumptions:

- $\coprod \Sigma : \mathbb{R}_{\geq 0} \to \mathbb{R}$ is locally Lipschitz continuous
- $\Sigma(s) \ge 0$ for all $s \ge 0$ and $\Sigma(0) \ge 0$
- \square Σ satisfies sublinear, bounded, or affine growth
- \square $R_A:[0,\infty)\to\mathbb{R}_{\geq 0}$ is measurable and piecewise continuous
- $[0,\infty) \to \mathbb{R}_{\geq 0}$ is measurable and locally integrable
- $S(0) = S_0 \ge 0$

C Proof Techniques Summary

This paper employs several standard techniques from dynamical systems theory:

C.1 Carathéodory Theory

For ODEs with measurable time dependence:

- Local Lipschitz continuity in state variable
- Measurability in time
- Local integrability ensures existence and uniqueness

C.2 Comparison Principles

Establish bounds via differential inequalities:

- Upper solutions provide upper bounds
- Lower solutions provide lower bounds
- Essential for proving non-blow-up

C.3 Grönwall's Inequality

Standard form:

$$u(t) \le a(t) + \int_0^t b(s)u(s) ds \implies u(t) \le a(t) + \int_0^t a(s)b(s)e^{\int_s^t b(r) dr} ds$$

Linear form:

$$\frac{du}{dt} \le \alpha(t)u + \beta(t) \implies u(t) \le e^{\int_0^t \alpha(s) \, ds} \left[u_0 + \int_0^t \beta(s) e^{-\int_0^s \alpha(r) \, dr} \, ds \right]$$

C.4 Lyapunov Methods

For stability and convergence:

- Choose $V(S) = \frac{1}{2}S^2$ or similar
- Show $\frac{dV}{dt} \le -cV$ for some c > 0
- Implies exponential decay to zero

C.5 Time Reparametrization

Change of variables to intrinsic time:

- $\varepsilon(t) = \int_0^t L(u) \, du$
- Transforms system to eliminate time-varying coupling
- Reveals structure of feedback dynamics

D Examples and Applications

D.1 Economic Growth Model

Consider an economy with capital stock S(t):

- $R_A(t) = \text{return on investment ratio}$
- L(t) = fraction of output reinvested
- $\Sigma(S) = \text{external investment/aid}$

The model becomes:

$$\frac{dS}{dt} = L(t)(R_A(t) - 1)S + \Sigma(S)$$

Scenario 1: Declining reinvestment

Let $L(t) = \frac{L_0}{1+t}$ (declining reinvestment rate as economy matures). If $R_A = 1.5$ (constant 50% returns) and $\Sigma(S) = \Sigma_0$ (constant aid):

- $\varepsilon_{\infty} = L_0 \log(1 + \infty) = \infty$ (non-degenerate)
- No finite-time blow-up by Theorem 5.5
- But S(t) can grow without bound (asymptotic growth)

Scenario 2: Complete decoupling

Let $L(t) = \frac{1}{1+t^2}$ (rapid decline in reinvestment).

Then $\varepsilon_{\infty} = \arctan(\infty) = \pi/2$ (degenerate).

Interpretation: After finite intrinsic time, the economy stops reinvesting its own output and grows only through external aid.

D.2 Technology Development

Let S(t) = technological capability level:

- $R_A(t)$ = efficiency of capability improving itself
- L(t) = resources allocated to self-improvement
- $\Sigma(S)$ = external innovations

Scenario: Diminishing returns with constant innovation Let:

$$R_A(S) = 1 + \frac{\delta K}{K + S}$$
 (diminishing returns)

 $L(t) = L_0$ (constant allocation)

 $\Sigma(S) = \sigma_0$ (constant innovation rate)

The system becomes:

$$\frac{dS}{dt} = L_0 \frac{\delta K}{K + S} S + \sigma_0$$

For large S:

$$\frac{dS}{dt} \approx \sigma_0$$
 (linear growth)

Analysis:

- Initially $(S \ll K)$: $R_A \approx 1 + \delta$, exponential growth
- Eventually $(S \gg K)$: $R_A \approx 1$, linear growth from external innovation
- Feedback becomes negligible but remains positive
- No blow-up by Theorem 5.1

D.3 AI Development with Safety Constraints

Let S(t) = AI capability:

- $R_A(t)$ = recursive self-improvement factor
- L(t) = compute/resources allocated to improvement
- $\Sigma(S)$ = human research contributions

Scenario: Safety-constrained development

Implement constraint that reduces L(t) as capability increases:

$$L(t) = L_0 e^{-\alpha S(t)}$$

This creates a state-dependent decoupling where high capability automatically reduces self-improvement allocation.

If $R_A = 2$ (doubling) and $\Sigma(S) = \sigma_0$ (constant research):

$$\frac{dS}{dt} = L_0 e^{-\alpha S} \cdot S + \sigma_0$$

For large S:

$$\frac{dS}{dt} \approx \sigma_0$$
 (safety limit)

Interpretation: The system self-regulates to prevent runaway growth while maintaining progress through external contributions.

E Numerical Methods

For practical implementation, we recommend:

E.1 Standard Solvers

Use adaptive Runge-Kutta methods (e.g., RK45, Dormand-Prince):

- Handle time-varying L(t) and $R_A(t)$ naturally
- Adaptive step size handles rapid changes
- Error control ensures accuracy

E.2 Intrinsic Time Integration

For degenerate systems ($\int L < \infty$), integrate in ε -coordinates:

```
1. Compute (t) = L(u) du numerically
```

- 2. Solve $dS/d = (R_A() 1)S + E()(S)$
- 3. Map back to physical time via t()

E.3 Detecting Regime Transitions

Monitor these quantities in real-time:

- $R_A(t) 1$: sign change indicates amplification/damping transition
- $\Phi(t) = \int_0^t L(R_A 1)$: cumulative amplification
- E(t) = 1/L(t): efficiency (watch for divergence)
- $\varepsilon(t) = \int_0^t L$: intrinsic time (watch for saturation)

E.4 Sample Code Structure

```
def system(t, S, L_func, R_A_func, Sigma_func):
    L = L_func(t)
    R_A = R_A_func(t)
    Sigma = Sigma_func(S)

    dS_dt = L * (R_A - 1) * S + Sigma

    # Monitor diagnostics
    efficiency = 1/L if L > 1e-10 else np.inf
    drift = L * (R_A - 1)

    return dS_dt

# Solve
from scipy.integrate import solve_ivp
```

```
sol = solve_ivp(
    lambda t, S: system(t, S, L_func, R_A_func, Sigma_func),
    t_span=[0, T_max],
    y0=[S_0],
    method='RK45',
    dense_output=True,
    events=lambda t, S: S - S_threshold # Stop at threshold)
```

F Relationship to Existing Literature

F.1 Classical Dynamical Systems

Our results extend classical ODE theory to systems with:

- Time-varying parameters $(L(t), R_A(t))$
- Observable amplification ratio
- Coordinate singularities vs state singularities

F.2 Growth Theory

Connections to:

- Solow-Swan model (exogenous growth)
- Romer model (endogenous growth)
- Distinction: Observable $R_A(t)$ makes amplification measurable

F.3 Control Theory

The parameter L(t) can be viewed as a control variable:

- Optimal control: Choose L(t) to maximize objective
- Safety constraints: Force $L(t) \to 0$ to prevent blow-up
- Adaptive control: Adjust L(t) based on observed $R_A(t)$

F.4 Blow-Up Theory

Our Theorem 9.1 aligns with classical blow-up results:

- Superlinear forcing causes finite-time blow-up
- Blow-up time independent of linear dynamics
- Sublinear forcing cannot cause blow-up

G Open Problems

G.1 Sharp Thresholds

Question: What is the sharp boundary between Σ growth rates that permit vs prevent finite-time blow-up?

We know:

• $\Sigma(S) = O(S)$ (linear): No blow-up

• $\Sigma(S) = S^{1+\epsilon}$ (superlinear): Blow-up

Conjecture: $\Sigma(S) = S \log(S)$ is the critical case.

G.2 Optimal Resource Allocation

Problem: Given target trajectory $S^*(t)$ and control over L(t), find:

$$L^*(t) = \arg\min_{L(\cdot)} \int_0^T [S(t) - S^*(t)]^2 + \lambda L(t)^2 dt$$

subject to the dynamics constraint.

G.3 Stochastic Amplification

Problem: For $R_A(t) = \bar{R}_A + \sigma \xi(t)$ where ξ is white noise:

• Characterize almost-sure behavior

 \bullet Moment explosions vs sample path boundedness

 \bullet Optimal filtering from noisy R_A measurements

G.4 Network Amplification

Problem: For n coupled subsystems:

$$\frac{dS_i}{dt} = \sum_{j=1}^n L_{ij}(t) [R_{A,j}(t) - \delta_{ij}] S_j + \Sigma_i(\mathbf{S})$$

• Network topology effects on stability

 $\bullet\,$ Spectral analysis of coupling matrix

• Emergent collective blow-up vs individual stability

G.5 Partial Observability

Problem: If $R_A(t)$ is only partially observed:

- State estimation from noisy measurements
- Confidence regions for blow-up time
- Adaptive control under uncertainty

H Concluding Remarks

This paper provides a complete mathematical characterization of feedback-amplification systems with time-varying coupling. The key contributions are:

- 1. Observable framework: By making $R_A(t)$ directly measurable, we provide operational definitions that enable empirical testing
- 2. **Singularity classification:** We rigorously distinguish state-space singularities (physical blow-up) from coordinate singularities (feedback decoupling)
- 3. Resource criticality: The growth rate of external resources $\Sigma(S)$ determines finite-time behavior, independent of feedback dynamics
- 4. Coupling invariance: Time-variation in L(t)—including vanishing coupling—affects evolution rate but not blow-up existence
- 5. Complete classification: Theorem [10.1] provides sharp conditions for finite-time blow-up, global boundedness, and asymptotic convergence

Practical implications:

- Real-time monitoring via $R_A(t)$ enables early warning systems
- Safety constraints can be implemented through L(t) control
- Feedback decoupling provides a natural stabilization mechanism

Theoretical implications:

- Intrinsic time $\varepsilon = \int L$ is the natural coordinate for amplification dynamics
- Efficiency parameter E = 1/L reveals regime transitions
- The dichotomy between sublinear (safe) and superlinear (dangerous) resources is fundamental

We hope this framework proves useful for analyzing self-amplifying systems across economics, technology, and other domains where feedback dynamics and resource constraints interact.

END OF PAPER

Repository: github.com/harrisondfletcher/amplification-dynamics

 $Contact: \verb|harrisondfletcher@gmail.com| \\$

Version: October 2025 (Revised)