Computer Networks-Data Link Layer

Dr. Jiang RuoBing jrb@ouc.edu.cn 信息学院南楼B411房间

第3章数据链路层

- 3.1 使用点对点信道的数据链路层
 - 3.1.1 数据链路和帧
 - 3.1.2 三个基本问题
- 3.2 点对点协议 PPP
 - 3.2.1 PPP 协议的特点
 - 3.2.2 PPP 协议的帧格式
 - 3.2.3 PPP 协议的工作状态

第3章数据链路层(续)

- 3.3 使用广播信道的数据链路层
 - 补充:媒体接入控制典型问题及协议
 - 3.3.1 局域网的数据链路层
 - 3.3.2 CSMA/CD 协议
- 3.4 使用广播信道的以太网
 - 3.4.1 使用集线器的星形拓扑
 - 3.4.2 以太网的信道利用率
 - 3.4.3 以太网的 MAC 层
- 3.5 扩展的以太网
 - 3.5.1 在物理层扩展以太网
 - 3.5.2 在数据链路层扩展以太网

数据链路层

数据链路层使用的信道主要有:

- 点对点信道: 一对一的点对点通信方式。
- -广播信道:一对多的广播通信方式;广播信道 上连接的主机很多,共享信道协议来协调这些 主机的数据发送。

数据链路层的简单模型

主机H₁向H₂发送数据

数据链路层的简单模型(续)

主机H₁向H₂发送数据

3.1 使用点对点信道的数据链路层

3.1.1 数据链路和帧

- 链路(link)是一条无源的点到点的物理线路段, 中间没有任何其他的交换结点。
 - 一条链路只是一条通路的一个组成部分。
- 数据链路(data link) 物理线路+通信协议(硬件和软件)
 - 使用适配器(即网卡)来实现这些协议的硬件和软件。
 - 网卡都包括了数据链路层和物理层这两层的功能。

3.1.2 三个基本问题

(1) 封装成帧 (2) 透明传输 (3) 差错控制

1. 封装成帧

- 封装成帧(framing)——帧定界
 - 数据的前后添加首部和尾部,确定帧的界限。

2. 透明传输

用字节填充法解决透明传输的问题

3. 差错检测

- 在一段时间内,传输错误的比特占所传输比特总数的比率称为误码率 BER (Bit Error Rate)。
- 误码率与信噪比有很大的关系。

帧检验序列 FCS

- 帧检验序列 FCS (Frame Check Sequence): 在数据后面添加上的冗余码(EDC)。
- 循环冗余检验 CRC 和帧检验序列 FCS并不等同。
 - CRC 是一种常用的检错方法,而 FCS 是添加在数据后面的冗余码。
 - FCS 可以用 CRC 这种方法得出,但 CRC 并非用来获得 FCS 的唯一方法。

最直接的校验方法

- 传输两遍
 - -有区别

- 效果:
 - 检错: 1
 - 校错: 0
 - 失效: 2
 - 开销: n

错误检测

EDC= 帧检验序列(冗余码, r bits)

D = 待传送数据 (数据码, d bits)

• 奇偶校验

• 效果:

- 检错: 1

- 校错: 0

- 失效: 2

- 开销: 1

R.W. Hamming (1915-1998)

 Error Detecting and Error Correcting Codes", BSTJ, 1950

 "You and Your Research", 1986

海明距离

- 距离:
 - 从一个序列到另一个序列需要反转的bit数
 - **–** 1:111, 0: 000
 - Distance:3
- Hamming码距
 - Hamming码中任意一对码之间的最短距离
 - 1:111, 0:000, 码距:3
- 检错
 - 码距为d的Hamming码,检错: d-1位。
 - 001,010,100
 - 011,101,110
- 校错:
 - 码距为2d+1的Hamming码, 校错: d位

循环冗余检验的原理

目标:

 $D \cdot 2^r XOR R = mG$ r = G的长度-1

相当于:

 $D \cdot 2^r = mG XOR R$

即:

R = remainder
$$\left[\frac{D \cdot 2^r}{G}\right]$$

冗余码的计算 -- CRC检验

- k = 6, D = 101001.
- 设 n = 3, 除数 G = 1101,
- 被除数是 2ⁿM = 101001000。
- 模 2 运算的结果是:
 - 商 Q = 110101, 余数 R = 001。
- 把余数 *R* 作为冗余码添加在数据 *M* 的后面 发送出去。发送的数据是: 2ⁿM + *R*即: 101001001, 共 (*k* + *n*) 位。

循环冗余检验举例

```
110101 ← Q (商)
G(除数)→1101 101001000←2<sup>n</sup>M(被除数)
               <u>1101</u>
1110
                <u>1101</u>
0111
                 0000
                  1110
                  1101
0110
                   0000
                    1100
                     1101
```

接收端对收到的每一帧进行 CRC 检验

- (1) 若得出的余数 R = 0 , 则判定这个帧没有差错 , 就接受(accept)。
- (2) 若余数 $R \neq 0$,则判定这个帧有差错 ,就丢弃。
- 但这种检测方法并不能确定究竟是哪一个或哪几个比特出现了差错。
- 只要经过严格的挑选,并使用位数足够多的除数 G,那么出现检测不到的差错的概率就很小很小。

应当注意

- 仅用循环冗余检验 CRC 差错检测技术只能做到无差错接受(accept)。
 - 凡是接受的帧(即非丢弃的帧,以非常接近于 1 的概率认为在传输过程中没有产生差错
 - 有差错的帧就丢弃而不接受
 - 要做到"可靠传输",即发送什么就收到什么, 必须做到无比特差错&无传输差错,还需再加上确 认和重传机制。

3.2 点对点协议 PPP

- PPP (Point-to-Point Protocol)
 - 使用得最多的数据链路层协议
 - 用户使用拨号电话线接入因特网时,一般都是使用 PPP 协议。

PPP 协议功能

- 简单——首要
- 基本功能
 - 封装成帧
 - 透明性
 - 差错检测
- 兼容
 - 多种网络层协议
 - 多种类型链路
 - 最大传送单元
 - 网络层地址协商
 - 数据压缩协商
- 检测连接状态

- 不具备的功能
 - 纠错
 - 流量控制
 - 序号
 - 多点线路
 - 半双工或单工链 路

PPP 协议的组成

- 制订:1992;修订:1993年、1994年
- RFC 1661_o

- PPP 组成
 - 将 IP 数据报封装到串行链路的方法
 - 链路控制协议 LCP (Link Control Protocol)。
 - 网络控制协议 NCP (Network Control Protocol)。

PPP 协议的帧格式

- PPP 有一个 2 个字节的协议字段。
 - 当协议字段为 0x0021 时, PPP 帧的信息字段就是 IP 数据报。
 - 若为 0xC021, 则信息字段是 PPP 链路控制数据。
 - 若为 0x8021,则表示这是网络控制数据。

3.2.2 PPP 协议的帧格式

• 头部字段:

- 标志字段 F = 0x7E (符号"0x"表示后面的字符 是用十六进制表示。十六进制的 7E 的二进制表示 是 01111110)。
- 地址字段 A 只置为 OxFF。地址字段实际上并不起作用。
- -控制字段 C 通常置为 0x03。
- PPP 是面向字节的, 所有的 PPP 帧的长度都是整数字节。
- 帧结束: F = 0x7E

透明传输

- 异步传输
 - 字符填充法

- 同步传输
 - 硬件完成比特填充

- 字符填充
 - 标志字段0x7E → 2 字节序列(0x7D, 0x5E)。
 - 转义符 0x7D → 2 字节序列(0x7D, 0x5D)。
 - ASCII 码控制字符(小于 0x20 的字符)
 - · → 2 字节序列(0x7D, 原字符加上0x20)。

零比特填充

- 同步传输
 - SONET/SDH 链路(光纤)
 - -一连串的比特连续传送,以帧为单位
- 帧定届:0111110
- 零比特填充
 - 发送端,发现5个连续1,立即填入一个0。
 - -接收端,每当发现5个连续1时,就把这5个连续1后的一个0删除。

零比特填充

信息字段中出现了和 标志字段 F 完全一样 的 8 比特组合

发送端在 5 个连 1 之后 填入 0 比特再发送出去

在接收端把 5 个连 1 之后的 0 比特删除

01001111110001010 会被误认为是标志字段 F

010011111010001010 接收端删除填入的0比特

不使用序号和确认

- PPP 协议不使用序号和确认机制
 - 在数据链路层出现差错的概率不大时,使用比较简单的 PPP 协议较为合理。
 - 在因特网环境下, PPP 的信息字段放入的数据是 IP 数据报。数据链路层的可靠传输并不能够保证网络层的传输也是可靠的。
 - 帧检验序列 FCS 字段可保证无差错接受。

- ■思考
- CSMA/CD 和频分、时分、码分复用的本质区别 在哪里?哪种复用方式使用的范围最广?
- 为什么发现冲突还要进行人工干扰?