Statistical Inference Project 2

by EricRybicki

Basic inferential data analysis

In this case we will explore the effect of Vitamin C on tooth growth in Guinea Pig.

Load and Exploratory Analysis

```
library(datasets)
?ToothGrowth
```

Description

The response is the length of odontoblasts (teeth) in each of 10 guinea pigs at each of three dose levels of Vitamin C (0.5, 1, and 2 mg) with each of two delivery methods (orange juice or ascorbic acid).

Format

A data frame with 60 observations on 3 variables.

```
[,1] len
          numeric Tooth length
[,2] supp factor Supplement type (VC or OJ).
[,3] dose numeric Dose in milligrams.
tooth <- ToothGrowth
str(tooth)
## 'data.frame': 60 obs. of 3 variables:
## $ len : num 4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7 ...
## $ supp: Factor w/ 2 levels "OJ", "VC": 2 2 2 2 2 2 2 2 2 2 ...
## $ dose: num 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ...
head(tooth)
     len supp dose
## 1 4.2
          VC 0.5
## 2 11.5 VC 0.5
## 3 7.3 VC 0.5
## 4 5.8 VC 0.5
## 5 6.4 VC 0.5
## 6 10.0
         VC 0.5
```

Provide a basic summary of the data.

dose

```
library(knitr)
kable(summary(tooth))
```

len

1011	o app	4000
Min.: 4.20	OJ:30	Min.:0.500
1st Qu.:13.07	VC:30	1st Qu.:0.500
Median :19.25	NA	Median :1.000
Mean :18.81	NA	Mean :1.167
3rd Qu.:25.27	NA	3rd Qu.:2.000
Max.:33.90	NA	Max.:2.000

supp

```
library(ggplot2)
g <- ggplot(tooth, aes(as.factor(dose), len, fill = supp))
g <- g + geom_bar(stat="identity", position = "dodge") + theme_bw()
g <- g + scale_fill_manual("Teams",values = c("#ff6666", "#33cc33"),
guide = guide_legend(title = "Supplement"))
g <- g + xlab("Dose in milligrams") + ylab("Tooth Length")</pre>
```


Use confidence intervals and hypothesis tests to compare tooth growth by supp and dose.

```
t.test(len ~ supp, data = tooth)

##

## Welch Two Sample t-test

##

## data: len by supp

## t = 1.9153, df = 55.309, p-value = 0.06063

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -0.1710156 7.5710156

## sample estimates:

## mean in group OJ mean in group VC

## 20.66333 16.96333
```

From confidence intervals containing zero and p-value of 0.06, we cannot assume that there are differences in tooth growth due to OJ and VC supplements.

```
tooth_0.5_1.0 <- subset(tooth, dose %in% c(0.5, 1.0))
t.test(len ~ supp, tooth_0.5_1.0)
##
##
  Welch Two Sample t-test
##
## data: len by supp
## t = 3.0503, df = 36.553, p-value = 0.004239
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 1.875234 9.304766
## sample estimates:
## mean in group OJ mean in group VC
##
             17.965
                              12.375
tooth_0.5_2.0 <- subset(tooth, dose %in% c(0.5, 2.0))
t.test(len ~ supp, tooth_0.5_2.0)
```

```
Welch Two Sample t-test
##
## data: len by supp
## t = 0.9216, df = 35.105, p-value = 0.363
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -3.10849 8.27849
## sample estimates:
## mean in group OJ mean in group VC
             19.645
                              17.060
tooth_1.0_2.0 <- subset(tooth, dose %in% c(1.0, 2.0))
t.test(len ~ supp, tooth_1.0_2.0)
##
##
   Welch Two Sample t-test
##
## data: len by supp
## t = 1.8397, df = 31.273, p-value = 0.07533
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.3166175 6.1666175
## sample estimates:
## mean in group OJ mean in group VC
                              21.455
##
             24.380
```

From the selection of t.tests on dosage pairs we can note the low p-values and non-zero confidence values. As a consequence we can confirm that the key component of tooth growth, with regard to supplements, is dosage.

Conclusion

To recap, based on the analysis above, we can conclude that across both supplements a higher dosage will have a higher tooth growth rate. However, we cannot say that orange juice and vitamin C have obvious different impact on tooth growth.