SIN 252 – Arquitetura de computadores (2021-2)

[Aula 07] Caminho de dados e controle 1

Prof. João F. Mari joaof.mari@ufv.br

Roteiro

- Introdução
- Sinopse da implementação
- Visão abstrata da implementação do subconjunto MIPS mostrando as unidades funcionais principais e as conexões principais
- Implementação básica do subconjunto MIPS incluindo as linhas de controle e os multiplexadores necessários
- Métodos de temporização (clocking)
- CONSTRUINDO O CAMINHO DE DADOS

INTRODUÇÃO

Introdução

- O desempenho de um programa depende:
 - Número de instruções (depende do conjunto de instruções)
 - Velocidade de clock (depende da implementação)
 - CPI Número de ciclos gastos por instrução (depende da implementação do ISA)
- Implementação do MIPS simplificada:
 - Instruções de referência à memória: lw, sw
 - Instruções lógicas e aritméticas: add, sub, and, or, slt
 - Instruções de controle de fluxo (saltos): beq, j
- Implementação geral
 - BUSCA a instrução no endereço e memória apontado pelo contador de programa (PC). Atualiza o PC (PC=PC+4)
 - DECODIFICA a instrução. Lê os registradores
 - EXECUTA a instrução
- Todas as instruções (exceto j) usam a ULA após a leitura dos registradores.

Introdução

- Implementação simplificada
 - Diretrizes:
 - Torne o caso comum mais rápido
- A simplicidade favorece a regularidade
 - As demais instruções podem ser implementadas com princípios semelhantes
 - A arquitetura do conjunto de instruções influencia os aspectos de implementação:
 - Instruções mais simples necessitam de uma implementação também mais simples
- Memória
 - Inicialmente as memórias de programa e controle separadas

Sinopse da implementação

- Todas as instruções do conjunto de instruções têm os dois primeiros passos idênticos:
 - Enviar o valor armazenado no PC para a memória de programa e buscar a instrução dessa memória
 - Ler um ou dois registradores, usando os campos de instrução para selecionar os registradores a serem lidos.
 - Para a instrução load word, precisamos ler apenas um registrador, mas a maioria das outras instruções exige a leitura de dois registradores
- Mesmo entre diferentes classes de instruções, há algumas semelhanças:
 - Todas as classes utilizam a UAL após a leitura dos registradores:
 - Instruções de referência à memória: efetuar o cálculo do endereço
 - Instruções aritméticas e lógicas: efetuar a operação
 - Desvios condicionais: efetuar comparação (subtração)
- Após usar a UAL, as ações necessárias diferem
 - Referência a memória: escreve dado na memória
 - Instrução aritmética: escreve dado no registrador

Visão abstrata da implementação do subconjunto MIPS mostrando as unidades funcionais principais e as conexões principais

Implementação básica do subconjunto MIPS incluindo as linhas de controle e os multiplexadores necessários

Métodos de temporização (clocking)

- Define quando os sinais podem ser lidos e quando podem ser escritos
 - Evita circunstâncias onde um sinal é lido ao mesmo tempo que o mesmo sinal foi escrito;
 - A leitura pode retornar o valor antigo, o valor recente ou uma combinação entre os dois
- Sincronização acionada por transição
 - Significa que quaisquer valores armazenados em um elemento lógico sequencial são atualizados apenas em uma transição de clock
 - Permite que um elemento de estado seja lido e escrito no mesmo ciclo de clock
 - Não cria disputa que poderia levar a valores de dados indeterminados.
 - O período de clock necessita ser longo o suficiente para que os valores de saída estabilizem.
- Apenas os elementos de estado podem armazenar valores de dados,
 - Qualquer coleção de lógica combinatória precisa ter suas entradas vindo de um conjunto de elementos de estado
 - Suas saídas são escritas em um conjunto de elementos de estado.

CONSTRUINDO O CAMINHO DE DADOS

Busca de instruções

- Lê a instrução da memória de instruções
 - Atualiza o PC para guardar o endereço da próxima instrução

- PC é atualizado a cada, por isso não precisa de um sinal de controle de escrita.
- A memória de instruções é lida a cada ciclo, por isso não precisa de um sinal de controle de leitura.

Banco de registradores

- Instruções de formato R possuem três operandos de registrador
 - Lê duas palavras de dados do banco de registradores e escrever uma palavra de dados no banco de registradores.
 - 3 entradas de 5 bits (32 registradores):
 - 2 entradas com endereço dos registradores lidos
 - 1 entrada com endereço do registrador escrito
- 2 saídas de 32 bits: operandos para a UAL
- 1 entrada de 32 bits: escrita do resultado
 - As escritas são controladas pelo sinal de controle de escrita, que precisa estar ativo para que um escrita ocorra na transição do clock.

a. Registradores

b. ALU

Instruções do formato R

- Executa a operação (op and funct) utilizando como operandos os valores em rs e rt
- Armazenam o resultado no banco de registradores (no endereço rd)
- Todas as instruções do tipo R precisam
 - Ler dois registradores
 - Realizar uma operação na UAL com os conteúdos dos registradores
 - Escrever o resultado em um registrador
- Instruções aritméticas lógicas: ADD, SUB, AND, OR
 - Ex: add \$t1, \$t2, \$t3

Tipo R	opcode	rs	rt	rd	shamt	funct
	31-26	25-19	20-16	15-11	10-6	5-0

Instruções de load e store

- lw \$t1, offset(\$t2) **e**sw \$t1, offset(\$t2)
- Endereço de memória é calculado somando o registrador base (\$t2 no exemplo) ao número de 16 bits sem sinal estendido
 - sw: o valor a ser armazenado na memória de dados é lido do registrador.
 - lw: o valor é lido da memória de dados e escrito no registrador
- É necessária uma unidade para estender o sinal de 16 para 32 bits e uma memória para ler e escrever os dados.

a. Unidade de memória de dados

b. Unidade de extensão de sinal

A instrução beq

- Possui três operandos
 - Dois registradores utilizados para a comparação
 - Offset indicando o endereço de memória para o deslocamento (PC + offset)
- Instruções de desvio
 - A base para o cálculo do endereço de desvio é o endereço da instrução seguinte ao desvio.
 - Como calculamos PC + 4 no caminho de dados para a busca de instruções, é fácil usar esse valor como a base para calcular o endereço de destino do desvio.
 - O campo offset é deslocado 2 bits para a esquerda de modo que resulte em uma offset de uma palavra;
 - Aumenta a amplitude do salto por um fator igual a 4
- Além de calcular o endereço do desvio, é necessário verificar se o desvio deve ser executado ou não, de acordo com a comparação entre os dois registradores
- Assim, o caminho de dados do desvio precisa de duas operações:
 - Calcular o endereço de destino do desvio
 - Comparar o conteúdo do registrador (sinal zero da UAL)

A instrução beq

Operações lógicas e de acesso à memória

- As instruções lógicas e aritméticas usam a ALU com as entradas vindas de dois registradores;
- As instruções de acesso à memória também podem usar a ALU para fazer o cálculo do endereço
 - Nesse caso, a segunda entrada é o campo offset de 16 bits com o sinal estendido da instrução
- O valor armazenado em um registrador de destino vem da ALU (para um instrução do tipo R) ou da memória (para um load)

Integrando os caminhos de dados

 Os caminhos de dados são unidos e linhas de controle são adicionadas, assim como os multiplexadores necessários

Bibliografia

1. PATTERSON, D.A; HENNESSY, J.L. Organização e Projeto de Computadores: A

Interface Hardware/Software. 3a. Ed. Elsevier, 2005.

- Capítulo 5.
- 2. Notas de aula do prof. Luciano J. Senger:
 - http://www.ljsenger.net/classroom.html
- 3. Notas de aula da Profa. Mary Jane Irwin
 - CSE 331 Computer Organization and Design
 - http://www.cse.psu.edu/research/mdl/mji/mjicourses

FIM

- FIM:
 - Aula 07 Caminho de dados e controle 1
- Próxima aula:
 - Aula 08 Caminho de dados e controle 2 MIPS
 Monociclo