

Agenda

- Building A Production Container Environment: What's involved
- Challenges: Day 1, Day 2, Day 3
- The DIY Container Stack
- Openshift + VM Reference Architecture
- Openshift + Bare-Metal + HCI Reference Architecture
- A Look At The Diamanti Bare Metal Container Platform, With OpenShift Support

Building A Production Container Environment: Day 1

- Hardware requirements
- Multi-Zone environment
- Hybrid Cloud
- VM Tax (Hypervisor) or Baremetal
- Network requirements
 - Which CNI to use? How does it fit in with existing network standards?

Storage requirements

- Which CSIs to use? (NFS, iSCSI, Dynamic Provisioning??)

Kubernetes Distribution

- OpenShift, Diamanti, DIY, Rancher

Monitoring/Security

 Integrating with existing enterprise products, standards and policies

Building A Production Container Environment: Day 2

Setup:

- Hardware

Install:

- OS
- Kubernetes Distribution
- CNI Plugins
- CSI Plugins
- Monitoring Agents
- Security Agents

Configure:

- Components and Software
- Role Based Access Control (RBAC)

Building A Production Container Environment: Day 3

- Backup/restore
- Health monitoring (e.g. Splunk/SNMP)
- Support
 - Hardware replacement
 - Multiple vendors? (CSI, CNI, etc.)
- Training

- Upgrades
- Platform optimization and container sizing

Hardware requirements

- Supported APIs for infrastructure automation
- External SAN/NAS

VMs or bare metal infrastructure

- Hypervisor (licensing, maintenance, administration, under utilized resources, performance)
 - Overlay network on top of overlay network

- Run containers on bare metal

- No Licensing
- Optimized resource utilization
- Simple orchestrator
- High performance

Network Requirements

- Which CNI to use?
 - Flannel
 - Calico
 - Etc
- Does it fit with corporate standards?
 - Firewall
 - Load Balancers
- Ingress/egress control

Multi-zoned installs

- Failure domains for cluster and applications
- How far are your data centers from each other?

Storage

- Which CSIs to use?
 - Each SAN/NAS vendor has its own implementation
- Hyperconverged
 - Hyperconvergence using Software
 - Scalability and performance concerns
 - Host Resource overhead
 - Hardware accelerated Hyperconvergence
 - Storage is high performance
 - Scalable and no host resource

SAN/NAS

- has scalability problems with exponential microservice deployments, furthest from compute

Kubernetes Distribution

- Full stack solution (Kube, Docker, CNI, CSI, etc is bundled)
 - Diamanti

- OpenShift
- Do-It-Yourself
 - Hello World! vs Real World! Challenges
 - Scalability
 - Upgrades
 - Maintenance
 - Support
 - User Adoption
 - overhead

Monitoring

- Integrating with existing products
- Alerting
- Capacity planning
- Debugging: performance and failures

Security

- Integrating with existing policies and products
- Enforcement of policies
- Certificate management
- Access controls

Setup

- VM Tax
 - Do we need more hypervisor nodes?

Install

- How do I install base OS and keep it updated?
- Kubernetes Distribution
 - How do I install?
 - Possible to install across Multi-zone environment?
 - Air gapped installs

- Install CNI

- Does it integrate with my existing network?
- Network resource provisioning: IP address allocation and management
- Load Balancer integration
- Firewall integration

CSI

- Do I have a driver for my existing storage infrastructure?
- Storage ACLs & RBAC
- Setup performance policies
- Extend SAN/NAS environments

Monitoring/Security Agents

- Are they able to provide the necessary information and control?
- Agents for existing monitoring solutions?
- Install monitoring and security agents
- Install and configure policies

Configuration

- Check everything is healthy and communicating
- Are you able to provision storage?
- Are containers able to communicate outside of the cluster?
- Are things able to reach containers inside the cluster?

- Are the proper RBAC controls in place to allow
- Multi-tenancy
 - Noisy neighbor problem?
 - Workload isolations

Backup/restore

- Cluster configuration
- Workload data
- Health monitoring & alerting
 - SNMP

Support

- How do you replace hardware?
- Multiple vendors for each component (CSI, CNI, etc)
- Debugging platform issues

Training

- End user
- On-boarding existing applications

Upgrades

- What is the proper "Recipe" to ensure successful upgrade?
 - OS, Docker, Kubernetes, CSI, CNI?
 - Docker, Kubernetes, CSI, CNI, OS?

Platform optimization and container sizing

Resource utilization granularity

DIY: Reference Architecture

TOTAL COST	16x \$ 6-9 mos.
Network switches	\$\$
Storage arrays	\$\$\$
x86 20-core servers	\$\$
Hypervisor licensing	\$\$\$
SDS / CSI licensing & support	\$\$
SDN / CNI licensing & support	\$\$
Orchestrator and runtime licensing & support	\$\$

RESOURCES

OpenShift + VM - Reference Architecture

TIMELINE	6-9 mos.
TOTAL COST	16x \$
Network switche	s \$\$
Storage arrays	\$\$\$
x86 20-core servers	\$\$
Hypervisor licensing	\$\$\$
SDS / CSI licensing & support	\$\$
SDN / CNI licensing & support	
Orchestrator and runtime licensing & support	

RESOURCES

Openshift + Bare-metal + HCI - Reference Architecture

Orchestrator and runtime licensing & support	\$\$\$	EASY	DAY 1
Appliance	\$\$		
Support	\$	EASY	DAY 2

TOTAL COST

RESOURCES

TIMELINE

6x \$

1 mo.

DAY 3

Openshift + Bare-metal + HCI - Reference Architecture

Diamanti Bare Metal Container Platform + OpenShift

Complete turnkey container stack

- Hyperconverged 1U appliance built on x86 architecture
- Features container-optimized networking and storage models
- Entire solution is fully supported by Diamanti
- Best developer experience via OpenShift

Built for cloud

- Manage multiple on-prem clusters and hybrid-cloud deployments through single UI
- Enterprise DP/DR features: mirroring/synchronous replication, snapshots/asynchronous replication
- Burst production workloads to the cloud

Benefits:

- High performance
- Efficient
- Secure
- Installs in minutes
- Low TCO

Diamanti Bare Metal Container Stack

Single management pane

- Campus cluster
- Multi-cluster
- Data protection (DP) and disaster recovery (DR)
- Hybrid-cloud and multi-cloud
- Security, monitoring, logging

Red Hat OpenShift

Bare metal

Hypervisor

Container-optimized I/O

- PCle network virtualization
- PCle storage virtualization

Next Steps

- Resources
 - Datasheet: <u>Diamanti D10</u>
 - Analyst report: <u>ESG Review of Diamanti D10</u>
 - Customer reviews: Gartner Peer Insights
 - White paper: <u>Five Reasons To Run Containers on</u> <u>Bare Metal, Not VMs</u>

