Отчёт по лабораторной работе № 4.7.2 Эффект Поккельса.

Плюскова Н.А. Б04-004

17 января 2024 г.

1. Аннотация

В данной работе будет исследована интерференция рассеянного света, прошедшего кристалл, а также пронаблюдаем изменение характера поляризации света при наложении на кристалл электрического поля.

2. Теоретические сведения

Эффект Поккельса – изменение показателя преломления света в кристалле под действием электрического поля.

Рассмотрим кристалл ниобата лития LiNbO₃ с центральноосевой симметрией вдоль оси Z. Для световой волны с \mathbf{E} перпендикулярно Z показатель преломления будет n_o , а для волны с \mathbf{E} вдоль $Z-n_e$. В случае, когда луч света идёт под углом θ к оси, есть два значение показателя преломления n_1 и n_2 : $n_1=n_o$ для волны с \mathbf{E} перпендикулярным плоскости (\mathbf{k} , \mathbf{Z}) (обыкновенная волна) и n_2 для волны с \mathbf{E} в этой плоскости (необыкновенная волна). В последнем случае:

$$\frac{1}{n_2^2} = \frac{\cos^2 \theta}{n_0^2} + \frac{\sin^2 \theta}{n_e^2}.\tag{1}$$

Рис. 1: Схема для наблюдения интерференционной картины

Если перед кристаллом, помещённым между поляроидами, расположить линзу или матовую пластинку, то на экране за поляроидом мы увидим тёмные концентрические окружности — результат интерференции обыкновенной и необыкновенной волн. При повороте выходного поляроида на 90° картина меняется с позитива на негатив (на месте светлых пятен тёмные и наоборот). В случаи, когда разрешённое направление анализатора перпендикулярно поляризации лазерного излучения, радиус тёмного кольца с номером m равен

$$r_m^2 = \frac{\lambda}{l} \frac{(n_o L)^2}{n_0 - n_e} m,\tag{2}$$

где L – расстояние от центра кристалла до экрана, l – длина кристалла.

Теперь поместим кристалл в постоянное электрическое поле $E_{\text{эл}}$, направленное вдоль оси X, перпендикулярной Z. Показатель преломления для луча, распространяющего вдоль Z, всегда n_o . В плоскости (X,Y) возникают два главных направления под углами 45° к X и Y с показателями преломления $n_0 - \Delta n$ и $n_o + \Delta n$ (быстрая и медленная ось), причём $\Delta n = AE_{\text{эл}}$. Для поляризованного вертикально света и анализатора, пропускающего горизонтальную поляризацию, на выходе интенсивность на выходе будет иметь вид

$$I_{\text{Bbix}} = I_0 \sin^2 \left(\frac{\pi}{2} \frac{U}{U_{\lambda/2}} \right), \tag{3}$$

где $U_{\lambda/2} = \frac{\lambda}{4A} \frac{d}{l}$ – полуволновое напряжение, d – поперечный размер кристалла. При напряжении $U = E_{\text{эл}} d$ равном полуволновому сдвиг фаз между двумя волнами равен π , а интенсивность света на выходе максимальна.

Рис. 2: Схема установки

На Рис. 2 представлена схема всей установки (оптическая часть изображена на Рис. 1). Свет лазера, проходя через сквозь пластину, рассеивается и падает на двояко преломляющий кристалл. На экране за поляроидом видна интерференционная картина. Убрав рассеивающую пластину и подавая на кристалл постоянное напряжение, можно величиной напряжения влиять на поляризацию луча, вышедшего из кристалла. Заменив экран фотодиодом и подав на кристалл переменное напряжение, можно исследовать поляризацию с помощью осциллографа.

3. Ход работы

3.1 Параметры установки

- Размер кристалла: $3 \times 3 \times 26$ мм
- $\lambda = 0.63 \text{ MKM}$
- $n_0 = 2.29$

3.2 Измерение радиусов темных колец

Измерим радиусы темных колец r(m) и расстояние $L=78,30\pm0,01$ см от середины кристалла до экрана. Полученные данные занесем в таблицу 1:

r, cm	2,75	3,95	4,85	5,6	6,25	6,85	7,4	7,95	8,45	8,85	9,35
r^2 , cm	7,56	15,60	23,52	31,36	39,06	46,92	54,76	63,20	71,40	78,32	87,42
σ_{r^2} , CM	0,28	0,40	0,49	0,56	0,63	0,69	0,74	0,80	0,85	0,89	0,94
m	1	2	3	4	5	6	7	8	9	10	11

Таблица 1: Измерение радиусов темных колец

Построим график $r^2 = f(m)$.

Рис. 3: График зависимости $r^2 = f(m)$

По углу наклона прямой определим двулучепреломление $(n_0 - n_e)$ ниобата лития, пользуясь формулой 2:

$$n_0 - n_e = \frac{\lambda (n_0 L)^2}{lk} = (98.2 \pm 0.1) \cdot 10^{-3},$$
 (4)

где k - коэффициент наклона графика $r^2 = f(m)$, l - длина кристалла

3.3 Нахождение полуволнового напряжения с помощью интенсивности

Подключив разъем блока питания на постоянное напряжение и увеличивая напряжение, пронаблюдаем за изменением интенсивности картины. Максимум достигается при $U=U_{\lambda/2}$, а минимум - при $U=U_{\lambda}$. Зафиксируем данные напряжения: $U=U_{\lambda/2}=(0.45\pm0.02)~\mathrm{kB},~U=U_{\lambda}=(0.90\pm0.02)~\mathrm{kB}$

3.4 Нахождение полуволнового напряжения с помощью фигур Лиссажу

Установив вместо экрана фотодиод и подключив его и блок питания к осциллографу, получим на экране прибора фигуры Лиссажу. Отъюстировав кристалл, добъемся симметричного изображения на экране осциллографа (рис.4).

Рис. 4: Фигуры Лиссажу

Определим по фигурам Лиссажу полуволновое напряжение $U_{\lambda/2}$ как ΔU , соответствующее переходу от максимума к минимуму сигнала на осциллограмме: $U=U_{\lambda/2}=(0.42\pm0.02)~\mathrm{kB}, U=U_{\lambda}=(0.87\pm0.02)\mathrm{kB}, U=U_{\lambda/2}=(1.35\pm0.02)~\mathrm{kB}.$ Отметим, что данные, полученные разными способами, сходятся в пределах σ

3.5 Переход к параллельной поляризации

Пронаблюдаем, как изменится картина при параллельной поляризации, т.е. главная ось поляроида ориентирована вертикально: картина зеркально отобразится относительно оси ${\bf X}$

4. Выводы

В работе изучена интерференция рассеянного света, прошедшего кристалл ниобата лития: получена зависимость квадрата радиуса темного кольца интерференционной картины от номера минимума $r_m^2(m)$. Двулучепреломление кристалла n_o-n_e составляет $(98.2\pm0.1)\cdot 10^{-3}$, это значение соответствует литиевым кристаллам. Рассмотрен эффект Поккельса: несколькими способами определено полуволновое напряжение, оно совпадает в пределах погрешности и равно $U_{\lambda/2}\approx 440$ В. Получены фигуры Лиссажу, отражающие зависимость интенсивности выходного сигнала от подаваемой амплитуды напряжения I(U) при скрещенных и параллельных поляризациях.