

❖ Arduino Uno-board: Your logic control unit

Schematic in Tinkercad

Motors Setting

Your project coding standard

[Sensors] → [Motors]

White: 0V → Backward

Dark: 5V → Forward

Case	Sensor L	Sensor R	L_DIR	R_DIR	Left Motor	Right Motor
(a)	0V white	0V white	0	0	-ve rpm	-ve rpm
(b)	0V white	5V dark	0	1	-ve rpm	+ve rpm
(c)	5V dark	0V white	1	0	+ve rpm	-ve rpm
(d)	5V dark	5V dark	1	1	+ve rpm	+ve rpm

Sensors Adjustment

Your motor terminals

➤ If not, try <u>reversely</u> connecting the motor terminals to H-bridge (L293).

These are related to the project coding so please follow this standard.

Lab#06: Logic Design

Given the sensor signals L & R, determine the DIR signals and speed signals (PWM_L & PWM_R) for the motors

Sensors		Car	Rotation		Left Motor		Right Motor	
L	R	Action	Left	Right	L_DIR	PWM_L	R_DIR	PWM_R
0	0	Turn left	-ve	+ve				
0	1	Turn left	-ve	+ve				
1	0	Turn right	+ve	-ve				
1	1	Forward	+ve	+ve				

2 sensors: 4 combinations

You decide your own control signals Design your own systems

Lab#06: Example

❖ <u>Direction Control Example</u>

(for your reference)

[Motors Direction]

0V → Backward → "0"

 $5V \rightarrow Forward \rightarrow "1"$

Sensors		Car	Rotation		Left Motor		Right Motor	
L	R	Action	Left	Right	L_DIR	PWM_L	R_DIR	PWM_R
0	0	Turn left	-ve	+ve	0		1	_
0	1	Turn left	-ve	+ve	0	Constant (from your	1	Constant (from your
1	0	Turn right	+ve	-ve	1	Uno-board)	0	Uno-board)
1	1	Forward	+ve	+ve	1		1	

(control signals: change the motor directions)

Pin Assignment

Download the "Lab#06_logic" Arduino sketch, copy & paste into your Tinkercad coding text.

Define Inputs & Outputs

```
// the setup function runs once when you press reset
24
25
   void setup ()
26
27
      // define pins as input_and output.
28
     pinMode (pinLeftSensor, INPUT);
     pinMode (pinRightSensor, INPUT);
29
30
31
     pinMode (pinLdir, OUTPUT);
32
     pinMode (pinRdir, OUTPUT);
33
34
     pinMode (pinPWM L. OUTPUT);
35
     pinMode (pinPWM R, OUTPUT);
36
37
     // initialize output pins.
                                                                                           OUTPUTS
      digitalWrite(pinLdir, HIGH);
38
      digitalWrite(pinRdir, HIGH);
39
                                                                                           D12- R_DIR
40
                                                                                           D10-LPWM
                                                                                           D9-R PWM
                                                  INPUTs
                                               Sensor R - A3
```

Sensor L - A5

Lab#06 Code: Direction Control Signals

```
41
   // the loop function runs over and over again forever
   void loop()
    analogWrite(pinPWM L, 200);
45
46
     analogWrite(pinPWM R, 200);
47
    leftSensor = digitalRead(pinLeftSensor);
     rightSensor = digitalRead(pinRightSensor);
50
51
     if ( leftSensor && rightSensor ) {
       digitalWrite(pinLdir, ???); HIGH
       digitalWrite(pinRdir, ???);
54
                                   HIGH
55
56
     if (!leftSensor && rightSensor) {
       digitalWrite(pinLdir, ???); | OW
58
       digitalWrite(pinRdir, ???);
                                   HIGH
59
60
     if ( leftSensor && !rightSensor ) {
       digitalWrite(pinLdir, ???); HIGH
       digitalWrite(pinRdir, ???);
63
                                   LOW
65
     if (!leftSensor && !rightSensor) {
       digitalWrite(pinLdir, ???);LOW
       digitalWrite(pinRdir, ???);
                                   HIGH
```

Sensors

"!" logic NOT

"&&" logic AND

Sen	sors	DIR		
L	R	L_DIR	R_DIR	
0	0	0	1	
0	1	0	1	
1	0	1	0	
1	1	1	1	

You have learned all the basics.

You are now ready for your project!