_	- .		, 1		- 1	٦.
ι	Jnı	versit	ė de	Mor	itnel	liei

HLIN502

juin 2018

Numéro d'anonymat:

Durée: 2 heures

Examen de langages formels (première session)

Seule, une feuille A4 recto-verso est autorisée Interdiction de communiquer tout document.

REMPLIR LES CADRES ET RENDRE CE DOCUMENT AINSI COMPLÉTÉ UN EXCÈS DE REPONSES FAUSSES SERA SANCTIONNÉ PAR DES POINTS NÉGATIFS

TOUTES LES PROPRIETES PRESENTEES EN COURS POURRONT ETRE UTILISEES

Rappel: le mot f est un facteur du mot m s'il existe deux mots p et s tel que m=p.f.s

Exercice 1:

Soit l'expression régulière e=(a+b)*(bb)(a+b)*b, et soit L1 = L(e) le langage associé à l'expression régulière e. Soit L2 l'ensemble de tous les mots sur l'alphabet $\{a,b\}$ qui contiennent le facteur bb et qui terminent par b. Trouver un mot de moins de trois lettres qui contredise l'égalité L1=L2. Justifier votre réponse.

 $L1 \neq L2$ car bb contient le facteur bb et termine par b mais n'est pas un élément de L1(e). Les éléments de L1 doivent contenir le facteur bb PUIS doivent terminer par la lettre b.

Exercice 2:

Soit $A = (\Sigma = \{a, b\}, E, i, F, \delta)$ un automate fini déterministe. On note L_A l'ensemble des mots reconnus par l'automate A. Soit $A' = (\Sigma, E, i, F, \delta')$ l'automate qui ne diffère de A que par sa fonction de transition δ' qui est définie par : $\forall e \in E, \delta'(e, a) = \delta(e, b)$ $\forall e \in E, \delta'(e, b) = \delta(e, a)$

a) Indiquer le plus simplement possible par une phrase en français quelle est la relation entre les mots reconnus par l'automate A et les mots reconnus par l'automate A'.

Les mots de L_A sont les mots de L_A où on a remplacé les « a » par des « b » et inversement.

b) On note m^{-1} le mot m où les occurrences de la lettre « a » sont remplacées par la lettre « b », et les occurrences de la lettre « b » sont remplacées par la lettre « a ». Exemple, $(abaa)^{-1}=babb$, $(\varepsilon)^{-1}=\varepsilon$. Formellement, on admettra que m^{-1} peut se définir par :

$$a^{-1} = b$$
 $b^{-1} = a$
 $\varepsilon^{-1} = \varepsilon$
et $\forall \alpha \in \Sigma, \forall m \in \Sigma^*, (\alpha.m)^{-1} = \alpha^{-1}.m^{-1}$

Si nécessaire, on admettra que $(m^{-1})^{-1}=m$

Prouver, en faisant un raisonnement par induction que : $\forall m_1$, $m_2 \in \Sigma^*$, $(m_1, m_2)^{-1} = m_1^{-1}, m_2^{-1}$

$$\Pi(n) = |m_1| \le n \Rightarrow (m_1, m_2)^{-1} = m_1^{-1} \cdot m_2^{-1}$$

$$\Pi(0) \text{ est vrai car} \quad |m_1| \le 0 \quad \Rightarrow \quad m_1 = \epsilon \quad \Rightarrow \quad (m_1.m_2)^{-1} = (\epsilon.m_2)^{-1} = m_2^{-1} = (\epsilon)^{-1}.m_2^{-1} = m_1^{-1}.m_2^{-1}$$

Hypothèse : $\Pi(n)$ vrai et $n \ge 0$. Montrons que $\Pi(n+1)$ est vrai :

Soit m₁ tel que $|m_1| = n+1$, alors posons m₁ = α . m₁' et on a:

$$\begin{aligned} (m_1, m_2)^{-1} &= (\alpha . m'_1 . m_2)^{-1} \\ &= (\alpha)^{-1} . (m'_1 . m_2)^{-1} \\ &= (\alpha)^{-1} . (m'_1)^{-1} . m_2^{-1} \\ &= (\alpha . m'_1)^{-1} . m_2^{-1} \\ &= m_1^{-1} . m_2^{-1} \end{aligned}$$

c) Montrer pourquoi on a : $\forall e \in E, \forall \alpha \in \Sigma, \delta'(e, \alpha^{-1}) = \delta(e, \alpha)$

On le vérifie pour les deux lettres a et b de l'alphabet :

$$\delta'(e,a^{-1})=\delta'(e,b)=\delta(e,a)$$

$$\delta'(e,b^{-1})=\delta'(e,a)=\delta(e,b)$$

d) Prouver, par un raisonnement par induction que :

$$\forall e \in E, \delta'^*(e, m^{-1}) = \delta^*(e, m)$$

Faisons un raisonnement par récurrence sur m.

$$\Pi(\mathbf{n}) = |m| \le n \Rightarrow \delta'^*(e, m^{-1}) = \delta^*(e, m)$$

 $\Pi(0)$ est vrai car :

$$|m| \le 0 \Rightarrow m = \epsilon \Rightarrow \delta'^*(e, \epsilon^{-1}) = \delta'^*(e, \epsilon) = e = \delta^*(e, \epsilon)$$

Supposons que $\Pi(n)$ est vrai et $n \ge 0$

Montrons que $\Pi(n+1)$ est vrai. Prenons un mot m de longueur n+1.

Posons $m = \alpha$. m' avec α la première lettre de m.

$$\delta'^{*}(e, m^{-1}) = \delta'^{*}(e, (\alpha.m')^{-1})$$

$$= \delta'^{*}(e, \alpha^{-1}.m'^{-1})$$

$$= \delta'^{*}(\delta'(e, \alpha^{-1}), m'^{-1})$$

$$= \delta'^{*}(\delta(e, \alpha), m'^{-1})$$

$$= \delta^{*}(\delta(e, \alpha), m')$$

$$= \delta^{*}(e, \alpha.m')$$

$$= \delta^{*}(e, m)$$

e) En déduire que : $m^{-1} \in L_A$, $\Leftrightarrow m \in L_A$

$$m^{-1} \in L_A$$
, $\Leftrightarrow \delta'^*(i, m^{-1}) \in F \Leftrightarrow \delta^*(i, m) \in F \Leftrightarrow m \in L_A$

Exercice 3:

a) Définir une grammaire G dont le langage associé soit les mots construits sur l'alphabet {a, b} qui ont au moins un facteur bb. Cette grammaire devra avoir deux non terminaux, dont l'un sera l'axiome S.

```
S \rightarrow S' bb S'
S' \rightarrow aS \mid bS \mid \epsilon
```

b) Soit la grammaire G d'axiome S, de terminaux « a » et « b » et de productions :

$$S \rightarrow \epsilon |b| a S |b a S$$

On notera L_G le langage associé à cette grammaire G.

Prouver que l'on a :

 $S \rightarrow m \Rightarrow m$ ne contient pas le facteur bb

 $\Pi(n) = S \stackrel{\leq n}{\to} m \Rightarrow m$ ne contient pas le facteur *bb*

 $\Pi(1)$ est vrai car $S \stackrel{\leq 1}{\to} m \Rightarrow m = \epsilon$ ou m = b et ces deux mots ne contiennent pas le facteur bb

Supposons que $\Pi(n)$ soit vrai et $n \ge 1$. Montrons $\Pi(n+1)$.

$$S \xrightarrow{r} m$$
ou
$$S \xrightarrow{r} m$$

Les deux premiers cas sont impossibles car $n \ge 1$.

Traitons le 3^e cas :

$$S \rightarrow a S \stackrel{n}{\rightarrow} m \Rightarrow m = a.m'et S \stackrel{n}{\rightarrow} m'$$

Par Hypothèse de récurrence, m' ne contient pas de facteurs bb. Il en sera de même de m=a.m' De même pour le 4e cas :

$$S \rightarrow baS \xrightarrow{n} m \Rightarrow m = ba.m'etS \xrightarrow{n} m'$$

De même, que pour le 3^e cas, m' est sans facteur bb et il en sera de même pour ba.m' =m

c) Une analyse du début d'un mot m qui ne contient pas de facteurs bb conduit au résultat suivant :

```
m = \epsilon
ou
m = a.m' et m' est sans facteur bb
ou
m = b.m' et m' = \epsilon
ou
m = a.m' et m' = \epsilon
ou
m' = a.m'' et m'' est sans facteur bb
```

Prouver que : m est sans facteurs bb $\Rightarrow S \rightarrow m$

 $\Pi(n) = m$ est sans facteurs bb et $|m| \le n \implies S \xrightarrow{*} m$

 $\Pi(0)$ est vrai car le mot vide est le seul mot de 0 sans facteurs bb et on a $S \stackrel{*}{\rightarrow} \epsilon$

 $\Pi(1)$ est vrai car les mots de longueur 1, a et b, sont dérivables à partir de $S: S \rightarrow aS$ -a et $S \rightarrow b$

Supposons que $\Pi(n)$ soit vrai avec $n \ge 1$. Montrons alors que $\Pi(n+1)$ est vrai :

Soit m un mot sans facteurs bb de longueur |m|=n+1. Notons $m=\alpha$. m' (où α est une lettre).

Si α = a , alors m = a . m' et m' est sans facteurs bb.

Il en découle par hypothèse de récurrence que $S \xrightarrow{*} m'$ et $S \xrightarrow{*} a m' = m$, ce qui établit la conclusion recherchée.

Si $\alpha = b$, alors m = b ou m = bam'. Le premier cas a déjà été traité avec $\Pi(1)$. Le cas m = bam' avec bam' sans facteur bb implique que m' est aussi sans facteurs bb et par conséquent, l'hypothèse de récurrence implique que $S \xrightarrow{*} m'$ et il en découle $S \xrightarrow{*} b a m' = m$

Ce qui établit $\Pi(n+1)$.

d) Montrer que le langage L_G n'est pas fermé pour la concaténation

Les mots de L_G sont ceux qui ne contiennent pas de facteurs bb, comme par exemple ab et ba.

Or ab.ba contient un facteur bb, ce n'est pas un mot de L_G . La concaténation de deux mots de L_G n'est pas toujours un mot de L_G .

e) Trouver un automate déterministe à deux états qui reconnaissent les mots de $\ L_{G}$

Les mots de L_G sont ceux qui ne contiennent pas de facteurs bb

