Лабораторная работа №1

Тема: «Определение механических характеристик материалов при растяжении-сжатии»

<u>Щель работы</u>: исследование поведения материалов в процессе растяжениясжатия, определение их механических характеристик, построение диаграмм растяжения-сжатия.

Приборы и материалы:

- 1. Универсальная разрывная машина P-10 с гидравлическим приводом и диаграммным аппаратом.
- 2. Линейка металлическая.
- 3. Штангенциркуль.
- 4. Образцы различных материалов.

Теоретическая часть:

При одноосном растяжении-сжатии внутренняя сила в сечении N=F . Сила N распределяется по площади поперечного сечения равномерно.

Отношение $\sigma=\frac{N}{A}$ называется *нормальным напряжением*, имеющим размерность $\left|\Pi a=\frac{H}{M^2}\right|$.

При выполнении эксперимента диаграммным аппаратом регистрируется зависимость $F = f(\Delta l)$, которую в дальнейшем перестраивают в координатах $\sigma - \varepsilon$. Величину нормального напряжения определяют по формуле:

$$\sigma = \frac{F}{A_0}$$
,

где $A_{_{0}}=\frac{\pi d^{^{2}}}{4}$ - начальная площадь поперечного сечения;

d - диаметр образца.

					Лабораторная работа №1					
Изм.	Лист	№ докум.	Подпись	Дата						
Разраб.		Петров И.И.						Лист	Листов	
Прове	≘р.	Чаус В.П.			Определение механических			1	7	
Реценз.					характеристик материалов	ГГТУ им. П.О. Сухого, гр. С-2				
Н. Контр.					при растяжении-сжатии			ого, гр. С-21		
Утве	рд.				, ,					

Рисунок 1. Диаграммы для малоуглеродистой стали:

- а) диаграмма растяжения в координатах $F \Delta l$;
- б) диаграмма растяжения в координатах $\sigma \varepsilon$.

Зона OA носит название *зоны упругости*. Здесь наблюдается прямая пропорциональность между силой и удлинением (рисунок 1a) и соответственно между напряжением и относительной деформацией (рисунок 1б). Уравнение прямой носит название закона Гука: $\sigma = E\varepsilon$.

Зона *АВ* называется *зоной общей текучести*, а отрезок *АВ* диаграммы- *площадкой текучести*. Здесь происходит существенное изменение длины образца без заметного увеличения нагрузки.

Зона BC называется *зоной упрочнения*. Здесь удлинение образца сопровождается возрастанием нагрузки, но более медленным, чем на упругом участке.

В стадии упрочнения на образце намечается место будущего разрыва и начинает образовываться так называемая *шейка* - местное сужение образца (рисунок 2).

Рисунок 2. Образование шейки в месте будущего разрыва.

Зона *CD* называется *зоной местной текучести*. Здесь удлинение образца происходит с уменьшением силы, хотя среднее напряжение в поперечном сечении шейки возрастает.

						Лист
					Лабораторная работа №1	2
Изм.	Лист	№ докум.	Подпись	Дата		2

Рисунок 3. Схема разгрузки образца.

По диаграмме растяжения в координатах $\sigma - \varepsilon$ можно определить следующие механические характеристики материалов: $\sigma_{_{\it IIII}}$, $\sigma_{_{\it T}}$, $\sigma_{_{\it B}}$, E, δ . где $\sigma_{_{\it IIII}}$ - предел пропорциональности;

 $\sigma_{_T}$ - условный предел текучести. Обычно его определяют при остаточной деформации равной 0,002 или $\Delta l=0.2\% l_{_0}$ (рисунок 4). Тогда вводят обозначение $\sigma_{_T}=\sigma_{_{0,2}}$.

 $\sigma_{\scriptscriptstyle B}$ - временное сопротивление разрыву или предел прочности (максимальное напряжение, которое выдерживает образец перед разрушением);

 $\delta = \frac{l_{_{1}} - l_{_{0}}}{l_{_{0}}} 100\%$ - относительное удлинение образца после разрыва,

где $l_{\scriptscriptstyle 1}$ - расстояние между фиксированными точками после разрыва.

Рисунок 4. Диаграмма растяжения высокоуглеродистой и легированной стали.

						Лист
					Лабораторная работа №1	5
Изм.	Лист	№ докум.	Подпись	Дата	, ,	

Испытание на сжатие проводят на коротких цилиндрических образцах, располагаемых между параллельными плитами. Для пластичного материала (сталь, медь и т.п.) диаграмма сжатия образца имеет вид кривой, показанной на рисунке ба. Здесь образуется площадка текучести с последующим переходом к зоне упрочнения. В результате увеличения поперечного сечения нагрузка резко возрастает, и образец принимает бочкообразную форму (рисунок 5).

Рисунок 5. Деформация и разрушение пластичного материала.

а) сталь (медь); б) чугун; в) дерево вдоль волокон; г) дерево поперек волокон.

						Лист
					Лабораторная работа №1	,
Изм.	Лист	№ докум.	Подпись	Дата	, ,	

Практическая часть:

Для испытания на растяжение применяются (согласно ГОСТ 1497-73) цилиндрические образцы диаметром d>3 мм с начальной расчетной длиной $l_0=11,3\sqrt{A_0}$ (рисунок 7).

Рисунок 7. Эскиз образца.

Результаты опытов на растяжение и сжатие

		Параметры образца								
Материалы	Вид испытаний		Д	(о опыта			После опыта			
Материалы		$d_{_0}$,	$l_{_0}$,	A_0 , mm ²	<i>b</i> ,	<i>h</i> ,	$d_{\scriptscriptstyle 1}$,	l_1 ,	A_1 , mm ²	$F_{ m max}$, $\kappa { m H}$
Сталь	растяжение	6	135	28,26			4,8	150	18,1	16
Медь	сжатие	8	ı	50,24	ı	-	ı	ı	ı	ı
Чугун	сжатие	7,5	-	44	-	-	-	-	-	17,5
Дерево вдоль волокон	сжатие	32	32	1024	32	32				35,5
Дерево поперек волокон	сжатие	32	32	1024	32	32				4

Обработка результатов измерений

1. Определяем масштабные коэффициенты по осям диаграммы растяжения:

$$\mu_F = \frac{F_{\text{max}}}{y_{\text{max}}} = \frac{16}{182} = 0.09 \text{ H/mm}; \ \mu_{\Delta l} = \frac{l_1 - l_0}{OD'} = \frac{150 - 135}{332} = 0.045 \text{ mm/mm}.$$

- 2. Используя масштаб по оси ординат, устанавливаются величины нагрузок соответствующие:
- а) пределу пропорциональности $F_{_{\Pi U}}$: $F_{_{\Pi U}} = \mu_{_F} \cdot y_{_A} = 0.09 \cdot 59 = 5.31 \,\mathrm{kH};$

						Лист
					Лабораторная работа №1	_
Изм.	Лист	№ докум.	Подпись	Дата	, ,	

- б) пределу текучести F_T : $F_T = \mu_F \cdot y_B = 0.09 \cdot 65 = 5.85 кH;$
- в) пределу прочности F_B : $F_B = F_{\text{max}} = 16 \,\text{кH};$
- г) разрушению F_P : $F_P = \mu_F \cdot y_D = 0.09 \cdot 93 = 8.37 кH,$

где $y_{\scriptscriptstyle A}$, $y_{\scriptscriptstyle B}$, $y_{\scriptscriptstyle D}$ - расстояние от оси абсцисс до точек A , B , D .

- 3. Находим искомые характеристики материала:
- а) предел пропорциональности $\sigma_{_{\Pi I\!I}}=\frac{F_{_{\Pi I\!I}}}{A_{_{0}}}=\frac{5{,}31}{28{,}26}=0{,}19\frac{\kappa H}{_{MM}{^{2}}};$
- б) предел текучести $\sigma_{\scriptscriptstyle T} = \frac{F_{\scriptscriptstyle T}}{A_{\scriptscriptstyle 0}} = \frac{5,85}{28,26} = 0,2 \frac{\kappa H}{M M^2};$
- в) предел прочности $\sigma_{\scriptscriptstyle B} = \frac{F_{\scriptscriptstyle B}}{A_{\scriptscriptstyle 0}} = \frac{16}{28,26} = 0,6 \frac{\kappa H}{{\scriptscriptstyle MM}^2};$
- г) напряжение в момент разрыва $\sigma_p = \frac{F_p}{A_1} = \frac{8,37}{18,1} = 0,5 \frac{\kappa H}{MM^2}$
 - 4. Находим дополнительные механические характеристики материала:
- а) остаточное удлинение $\Delta l_{ocm} = l_{\scriptscriptstyle 1} l_{\scriptscriptstyle 0} = 150 135 = 15$ мм;
- б) упругая деформация $\Delta l_{ynp} = \mu \Delta l \cdot D' \cdot D'' = 0,045 \cdot 26 = 1,17$ мм;
- в) относительное удлинение образца

$$\delta = \frac{l_1 - l_0}{l_0} \cdot 100\% = \frac{150 - 135}{135} \cdot 100\% = 11,1\%$$

г) относительное поперечное сужение

$$\Psi = \frac{A_0 - A_1}{A_0} \cdot 100\% = \frac{28,26 - 18,1}{28,26} \cdot 100 = 36\%$$

Эскизы образцов до и после опытов

Моториол	Эскиз о	бразца	Пиотроми ожотия	
Материал	До опыта	После опыта	Диаграмма сжатия	
Медь	F		F Fnu - A	

·				
Изм.	Лист	№ докум.	Подпись	Дата

Лабораторная работа №1

Лист

Вывод: 1) В результате растяжения стали установили, что материал обладает следующими механическими характеристиками: предел пропорциональности, предел текучести, предел прочности, модуль продольной упругости первого рода, относительное поперечное сужение.

2) При испытании материала на сжатие установили: а) пластичный материал под действием сжимающей нагрузки принимает бочкообразную форму, деформируясь уменьшается по высоте и увеличивается в диаметре, такой образец разрушить нельзя, а следовательно предел прочности для пластичного материала найти нельзя; б) хрупкий материал при сжатии характеризуется малой величиной остаточной деформации разрушается с образованием трещин; в) дерево, как представитель анизотропного материала воспринимает большую нагрузку вдоль волокон, чем поперек.

Изм.	Лист	№ докум.	Подпись	Дата