EE5110: Probability Foundations for Electrical Engineers July - November 2024, Axioms of Probability Theory

1 References

- See Chapter 1: Foundations, Bruce Hajek for a review of the axioms of the probability theory and for practice problems.
- See Chapter 2: Probability, from Gray and Davisson, for an elementary measure theoretic introduction to probability theory.
- See Chapter 1: Sample Space and Probability, Bertsekas and Tsitsiklis, for a discussion on Bertrand's paradox, Cantor's diagonalization argument and inclusion-exclusion principle.

2 Solved Problems

1. If A_1, A_2, \cdots are events in \mathcal{F} , then

$$\mathsf{P}\left(\bigcup_{i=1}^{\infty} A_i\right) \le \sum_{i=1}^{\infty} \mathsf{P}(A_i)$$

Let A_1, A_2, \cdots be events in \mathcal{F} . Define

$$B_1 = A_1, B_2 = A_2 - A_1, B_3 = A_3 - (A_1 \cup A_2)$$

and in general,

$$B_n = A_n - \left(\bigcup_{i=1}^{n-1} A_i\right)$$

We note that that B_1, B_2, \cdots are disjoint sets in \mathcal{F} and

$$\bigcup_{i=1}^{n} A_i = \bigcup_{i=1}^{n} B_i$$

and

$$\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} B_i$$

From the countable additivity axiom of the probability measure (p3), we have,

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = P\left(\bigcup_{i=1}^{\infty} B_i\right)$$
$$= \sum_{i=1}^{\infty} P(B_i)$$
$$= \lim_{n \to \infty} \sum_{i=1}^{n} P(B_i)$$

Now, $B_i \subset A_i$, and from the monotonicity property of the probability measure, $P(B_i) \leq P(A_i)$. Upper bounding the partial sum in the previous expression, we get,

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \lim_{n \to \infty} \sum_{i=1}^{n} P(B_i)$$

$$\leq \lim_{n \to \infty} \sum_{i=1}^{n} P(A_i)$$

$$= \sum_{i=1}^{\infty} P(A_i)$$

(Result: Let $\{s_n\}$ and $\{r_n\}$ be monotone increasing sequences in \mathbb{R} such that $s_n \leq r_n$. Then, $\lim_{n \to \infty} s_n \leq \lim_{n \to \infty} r_n$.)

- 2. Consider a probability space $(\Omega, \mathcal{F}, \mathsf{P})$. Show that the countable additivity axiom implies the following statements.
 - (a) Let B_1, B_2, \cdots be events in \mathcal{F} . Then,

$$\mathsf{P}\left(\bigcup_{i=1}^{\infty}B_{i}\right)=\lim_{n\to\infty}\mathsf{P}\left(\bigcup_{i=1}^{n}B_{i}\right)$$

(b) Let $C_1 \supset C_2 \supset \cdots$ be events in \mathcal{F} . Then,

$$\mathsf{P}\left(\bigcap_{i=1}^{\infty} C_i\right) = \lim_{n \to \infty} \mathsf{P}\left(C_n\right)$$

(a) Let B_1, B_2, \cdots be events in \mathcal{F} . Define $A_1 = B_1, A_2 = B_2 - B_1, \cdots, A_n = B_n - (B_1 \cup \cdots \cup B_{n-1}), \cdots$. We note that A_1, A_2, \cdots are a disjoint collection of events in \mathcal{F} . Further, we note that

$$\bigcup_{i=1}^{n} B_i = \bigcup_{i=1}^{n} A_i$$

and

$$\bigcup_{i=1}^{\infty} B_i = \bigcup_{i=1}^{\infty} A_i$$

From the countable/finite additivity axiom of the probability measure, we have,

$$P\left(\bigcup_{i=1}^{\infty} B_i\right) = P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} P(A_i)$$

$$= \lim_{n \to \infty} P\left(\bigcup_{i=1}^{n} A_i\right)$$

$$= \lim_{n \to \infty} P\left(\bigcup_{i=1}^{n} B_i\right)$$

which is our desired result.

(b) Let $C_1 \supset C_2 \supset \cdots$ be events in \mathcal{F} . Define $B_i = C_i^c$ for all $i = 1, 2, \cdots$. Then, $B_1 \subset B_2 \cdots$ are events in \mathcal{F} and

$$\bigcup_{i=1}^{n} B_i = B_n$$

From the continuity property of the probability measure (or, part (a) of the problem), we have

$$P\left(\bigcup_{i=1}^{\infty} B_i\right) = \lim_{n \to \infty} P\left(\bigcup_{i=1}^{n} B_i\right)$$
$$= \lim_{n \to \infty} P\left(B_n\right)$$

The probabilities of the complements can be computed as follows.

$$1 - P\left(\bigcup_{i=1}^{\infty} B_i\right) = 1 - \lim_{n \to \infty} P(B_n)$$

$$= \lim_{n \to \infty} 1 - P(B_n)$$

$$= \lim_{n \to \infty} P(B_n^c)$$

$$= \lim_{n \to \infty} P(C_n)$$

Also,

$$1 - \mathsf{P}\left(\bigcup_{i=1}^{\infty} B_i\right) = \mathsf{P}\left(\left(\bigcup_{i=1}^{\infty} B_i\right)^c\right) = \mathsf{P}\left(\bigcap_{i=1}^{\infty} B_i^c\right) = \mathsf{P}\left(\bigcap_{i=1}^{\infty} C_i\right)$$

Thus,

$$\mathsf{P}\left(\bigcap_{i=1}^{\infty} C_i\right) = \lim_{n \to \infty} \mathsf{P}\left(C_n\right)$$

which is our desired result.

- 3. Consider the following valid probability space
 - $\Omega = \mathbb{R}$
 - $\mathcal{F} = \mathcal{B}(\mathbb{R})$ (Borel sigma-algebra on \mathbb{R})
 - for $[a, b] \in \mathcal{F}$, define P([a, b]) as

$$P([a,b]) = \int_{[a,b] \cap [0,1]} 1 \, dx$$

Compute $P(\Omega)$, $P(\{0.5\})$ and $P(\mathbb{Q})$.

 $\Omega = \mathbb{R} = (-\infty, \infty)$. We note that $\Omega \in \mathcal{B}(\mathbb{R})$. Hence, $\mathsf{P}(\Omega)$ is well defined.

$$P(\Omega) = P(\mathbb{R}) = \int_{(-\infty,\infty)\cap[0,1]} 1 \, dx = \int_0^1 1 \, dx = 1$$

Define $A_n = \left[0.5 - \frac{1}{2n}, 0.5 + \frac{1}{2n}\right]$ for $n = 1, 2, \cdots$. Note that $A_1 \supset A_2 \supset \cdots$ are events in $\mathcal{B}(\mathbb{R})$, and,

$$\bigcap_{i=1}^{\infty} A_i = \bigcap_{i=1}^{\infty} \left[0.5 - \frac{1}{2n}, 0.5 + \frac{1}{2n} \right] = \{0.5\}$$

 $(A = B \text{ if } A \subset B \text{ and } B \subset A)$

The probability of the event A_n can be computed as follows.

$$P(A_n) = P\left(\left[0.5 - \frac{1}{2n}, 0.5 + \frac{1}{2n}\right]\right) = \int_{\left[0.5 - \frac{1}{2n}, 0.5 + \frac{1}{2n}\right] \cap [0,1]} 1 \, dx$$

$$= \int_{0.5 - \frac{1}{2n}}^{0.5 + \frac{1}{2n}} 1 \, dx$$

$$= \frac{1}{n}$$

From the monotonicity property of the probability measure, we have,

$$\mathsf{P}(\{0.5\}) = \mathsf{P}\left(\bigcap_{i=1}^{\infty} A_i\right) = \lim_{n \to \infty} \mathsf{P}(A_n) = \lim_{n \to \infty} \frac{1}{n} = 0$$

which is our desired result. (In fact, we can show that $P(\{x\}) = 0$ for all $x \in \mathcal{R}$.)

In the previous exercise, we proved that the probability of any singleton set in \mathbb{R} is zero. Now, \mathbb{Q} is a countable set in $\mathcal{B}(\mathbb{R})$ which can be written as a countable union of disjoint singleton sets in $\mathcal{B}(\mathbb{R})$. Using the countable additivity axiom, we have,

$$P(\mathbb{Q}) = P\left(\bigcup_{i=1}^{\infty} \{q_i\}\right) = \sum_{i=1}^{\infty} P(\{q_i\}) = 0$$

which is our desired result. The result implies that there are infinite (countable) events in \mathcal{F} with zero probability. We can also show that $\mathsf{P}(\mathbb{P}) = 1 - \mathsf{P}(\mathbb{Q}) = 1$.

2.1 Examples of Important Probability Distributions

• **Bernoulli** $(p: 0 \le p \le 1)$: $(\{0,1\}, 2^{\Omega}, P)$ where

$$P({0}) = 1 - p$$
, and $P({1}) = p$

• Uniform $(N:N\in\mathbb{N})$: $(\{1,2,\cdots,N\},2^{\Omega},\mathsf{P})$ where

$$P({i}) = \frac{1}{N} \text{ for all } i = 1, 2, \dots, N$$

• Geometric $(p: 0 : <math>(\mathbb{N}, 2^{\Omega}, \mathsf{P})$ where

$$\mathsf{P}(\{i\}) = (1-p)^{i-1}p \text{ for all } i \in \mathbb{N}$$

• Uniform $(a, b : a < b \in \mathbb{R}) : (\mathbb{R}, \mathcal{B}(\mathbb{R}), P)$ where

$$\mathsf{P}([x,y]) = \int_{[x,y] \cap [a,b]} \frac{1}{b-a} \ \mathrm{d} \mathbf{u}$$

• Exponential $(\lambda : \lambda > 0)$: $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mathsf{P})$ where

$$P([x,y]) = \int_{[x,y] \cap [0,\infty)} \lambda e^{-\lambda u} du$$

• Gaussian $(\mu, \sigma^2 : \mu, \sigma \in \mathbb{R})$: $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mathsf{P})$ where

$$P([x,y]) = \int_{x}^{y} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(u-\mu)^2}{2\sigma^2}} du$$

3 **Practice Problems**

- 1. (Gray-Davisson) Given that the discrete sample space Ω has n elements, show that the power set of Ω consists of 2^n elements.
- 2. Consider a sample space Ω (Ω may be finite, countable or uncountable). Show that the power set of Ω (set of all subsets of Ω) is an event space (i.e., the power set is non-empty, closed under complement and countable union).
- 3. Consider a discrete sample space Ω (Ω may be finite or countable). Show that the sigma-algebra generated by the singleton sets is the power set of Ω (i.e., the smallest sigma-algebra containing all the singleton sets is the power set of Ω).
- 4. Consider the Borel sigma-algebra on \mathbb{R} , $\mathcal{B}(\mathbb{R})$, i.e., a sigma-algebra generated by intervals (a, b) where $-\infty < a < b < \infty$. Show that
 - (a) $\{a\} \in \mathcal{B}(\mathbb{R})$
 - (b) $[a, b) \in \mathcal{B}(\mathbb{R})$ for $-\infty < a < b \le \infty$
 - (c) $(a, b] \in \mathcal{B}(\mathbb{R})$ for $-\infty \le a < b < \infty$
 - (d) $[a, b] \in \mathcal{B}(\mathbb{R})$ for $-\infty \le a < b \le \infty$
 - (e) $\bigcup_{i=1}^{\infty} (a_i, b_i) \in \mathcal{B}(\mathbb{R})$ for $-\infty < a_i < b_i < \infty$ for all $i = 1, 2, \cdots$ (f) $\bigcap_{i=1}^{\infty} (a_i, b_i) \in \mathcal{B}(\mathbb{R})$ for $-\infty < a_i < b_i < \infty$ for all $i = 1, 2, \cdots$

 - (g) $\mathbb{Q}, \mathbb{P}, \mathbb{N}, \mathbb{Z}, \mathbb{R} \in \mathcal{B}(\mathbb{R})$
- 5. (Stark & Woods) What is the smallest sigma-algebra containing the events A and B?
- 6. (Sheldon Ross) Let E,F and G be three events. Find expressions for the events so that, of E,F and G,
 - (a) only E occurs
 - (b) both E and G, but not F, occurs
 - (c) at least one of the event occurs
 - (d) at most two of the event occurs
 - (e) none of the event occurs
- 7. (Gray-Davisson) If $G \subset F$, prove that P(F G) = P(F) P(G).

8. (Gray-Davisson) Let $\{F_i\}$ be a countable partition in \mathcal{F} (i.e., $\{F_i\}$ are disjoint and $\bigcup_{i=1}^{\infty} F_i = \Omega$). Show that for any $A \in \mathcal{F}$,

$$P(A) = \sum_{i=1}^{\infty} P(A \cap F_i)$$

- 9. (Gray-Davisson) Let F, G be events in \mathcal{F} . Show that if $P(F) \geq 1 \delta$ and $P(G) \geq 1 \delta$, then $P(F \cap G) \geq 1 2\delta$. (In other words, if two events have probability nearly one, then their intersection has probability nearly one.)
- 10. (Bertsekas-Tsitsiklis) Out of the students in a class, 60% are geniuses, 70% love chocolate, and 40% fall into both categories. Determine the probability that a randomly selected student is neither a genius nor a chocolate lover.
- 11. (Hajek) What is P(ABC) if P(A) = P(B) = P(C) = 0.5, $P(A \cup B) = 0.55$, $P(A \cup C) = 0.7$, P(BC) = 0.3 and $P(ABC) = 2P(ABC^c)$?
- 12. (Grimmett-Stirzaker) Let A and B be events with probabilities $\mathsf{P}(A) = \frac{3}{4}$ and $\mathsf{P}(B) = \frac{1}{3}$. Show that $\frac{1}{12} \leq \mathsf{P}(A \cap B) \leq \frac{1}{3}$. Find corresponding bounds for $\mathsf{P}(A \cup B)$.
- 13. (Inclusion-Exclusion Principle) If A_1, A_2, \dots, A_n are events in \mathcal{F} , then

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} P(A_{i}) - \sum_{1 \leq i < j \leq n} P(A_{i}A_{j}) + \dots + (-1)^{n-1} P(A_{1} \cdots A_{n})$$

14. Show that the standardized Gaussian probability density function, f(x), integrates to one.

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \quad x \in \mathbb{R}$$

3.1 Associated Problems

- 1. (Gray-Davisson) Describe the sigma-field of subsets of \mathbb{R} generated by the points or singleton sets. Does this sigma-field contain intervals of the form (a,b) for $-\infty < a < b < \infty$?
- 2. (Bertsekas-Tsitsiklis) Show that the unit interval [0,1] is uncountable.

- 3. (Gray-Davisson) Consider the uniform probability measure on [0,1]. Show that there exists an uncountable set in [0,1] with probability zero. (Hint: see Cantor's set)
- 4. An algebra is a collection of subsets closed under complement and finite unions. Show that the algebra made of singleton sets of \mathbb{N} does not contain the set Even = $\{2,4,6,\cdots\}$. (The result implies that countable unions are necessary to define events of interest.)