

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ: 09.03.01 Информатика и Вычислительная техника

Отчет

по лабораторной работе 6

Дисциплина: языки интернет-программирования

	Вариант №15	
Студент гр. ИУ6-33Б		В.К. Залыгин
	(Подпись, дата)	(И.О. Фамилия)
Преподаватель		В.Д. Шульман
	(Подпись, дата)	(И.О. Фамилия)

Цель

Изучить расширенные возможности языка Ruby (инструменты потоковой обработки, примеси из стандартной библиотеки).

Задание

Задание выполняется как консольное приложение Ruby. Результат следует предоставлять в виде трех отдельных файлов:

- основная программа;
- программа для взаимодействия с пользователем;
- программа для тестирования на основе

MiniTest::Unit::TestCase

Каждое задание сдавать в виде:

- отдельного архива, содержащего указанные файлы;
- pdf-файл с отчётом.

Отчет должен содержать:

- 1. заполненный титульный лист
- 2. текст задания
- 3. тексты программ с подписанными именами файлов
- 4. результаты выполнения
- 5. результаты проверки анализаторами rubocop и reek

ЛР 6

Часть 1

Решить задачу с точностью $\xi=10^{-2},10^{-4},$ организовав итерационный цикл. Найти первый член последовательности $y=\frac{n}{n^2+2},$ для которого у $y<\xi.$ Определить, как изменяется число итераций при изменении точности.

Часть 2

Решить предыдущее задание с помощью Enumerable или Enumerator.

Часть 3

Составить метод minmax, отыскивающую $x \in [a,b]$, для которого функция y=f(x) принимает максимальное и минимальное значение с точностью 0,01. В основной программе использовать метод для функций $y=\frac{x-1}{x+2}, x \in [0,2]$ и $y=\sin(\frac{x}{2}-1), x \in [-1,1]$.

Реализовать вызов метода двумя способами: в виде передаваемого lambda-выражения и в виде блока.

Рисунок 1 - задание для 15 варианта

Выполнение

```
frozen_string_literal: true
require_relative 'task1'
require_relative 'task2'
require relative 'task3'
def nav_to_task
  puts 'select task number'
  case gets.to_i
  when 1
    io_task1
  when 2
    io task2
  when 3
    io_task3
    puts 'unknown task number'
  end
end
nav_to_task
```

```
vzalygin →/workspaces/ipl.labs/lab6 (master) $ rubocop
Inspecting 5 files
CC.CC
Offenses:
main.rb:7:1: C: Metrics/MethodLength: Method has too many lines. [11/10]
def nav to task ...
^^^^^
task1.rb:3:1: C: Metrics/MethodLength: Method has too many lines. [16/10]
def find1(eps) ...
^^^^^
task3.rb:3:1: C: Metrics/MethodLength: Method has too many lines. [17/10]
def minmax(l, r, f) ...
task3.rb:3:12: C: Naming/MethodParameterName: Method parameter must be at least 3 characters long.
def minmax(l, r, f)
task3.rb:3:15: C: Naming/MethodParameterName: Method parameter must be at least 3 characters long.
def minmax(l, r, f)
task3.rb:3:18: C: Naming/MethodParameterName: Method parameter must be at least 3 characters long.
def minmax(l, r, f)
tests.rb:8:1: C: Style/Documentation: Missing top-level documentation comment for class Task1Tests.
class Task1Tests < Minitest::Test</pre>
tests.rb:24:1: C: Style/Documentation: Missing top-level documentation comment for class Task2Tests.
class Task2Tests < Minitest::Test</pre>
^^^^^
tests.rb:40:1: C: Style/Documentation: Missing top-level documentation comment for class Task3Tests.
class Task3Tests < Minitest::Test</pre>
^^^^^
5 files inspected, 9 offenses detected
```

```
    @vzalygin →/workspaces/ipl.labs/lab6 (master) $ ruby tests.rb
    Run options: --seed 18557

# Running:

Finished in 0.007894s, 760.0841 runs/s, 760.0841 assertions/s.
6 runs, 6 assertions, 0 failures, 0 errors, 0 skips
```

Рисунок 3 - ран тестов

Часть 1

Task1.rb

```
# frozen_string_literal: true
def find1(eps)
  func = ->(n) \{ 1.0 * n / ((n**2) + 2) \}
  left = 0
  right = 1
  while func.call(right) >= eps
    left = right
    right *= 2
  while right - left > 1
    cur = (right + left) / 2
    if func.call(cur) < eps</pre>
      right = cur
    else
      left = cur
    end
  end
  right
end
def io_task1
  puts 'enter the eps'
  eps = gets.to_f
  puts "the first element smaller then #{eps} is on #{find1(eps)} place"
end
```

Тестирование:

```
# frozen_string_literal: true

require 'minitest/autorun'
require_relative 'task1'
require_relative 'task2'
require_relative 'task3'

class Task1Tests < Minitest::Test
  def test_big_eps
    eps = 0.01
    expected = 100</pre>
```

```
assert_equal(expected, find1(eps))
end

def test_small_eps
   eps = 0.0001
   expected = 10_000

   assert_equal(expected, find1(eps))
   end
end
```

Часть 2

Task2.rb

```
# frozen_string_literal: true

def find2(eps)
    sequence = Enumerator.new do |y|
    n = 1
    loop do
        y << [1.0 * n / ((n**2) + 2), n]
        n += 1
    end
    end
    end

sequence.take_while { |value_key| value_key[0] >= eps }[-1][1] + 1
end

def io_task2
    puts 'enter the eps'
    eps = gets.to_f
    puts "the first element smaller then #{eps} is on #{find2(eps)} place"
end
```

Тестирование:

```
class Task2Tests < Minitest::Test
  def test_big_eps
    eps = 0.01
    expected = 100

    assert_equal(expected, find2(eps))
end

def test_small_eps
    eps = 0.0001
    expected = 10_000

    assert_equal(expected, find2(eps))
end
end</pre>
```

Часть 3

```
# frozen_string_literal: true

def minmax(l, r, f)
```

```
eps = 0.01
  max_value = -Float::INFINITY
  \max i = 0
  min_value = Float::INFINITY
  min_i = 0
  (0..((r - 1) / eps).to_i).each do |i|
    i = i * eps + 1
    if max_value < f.call(i)</pre>
      max_value = f.call(i)
      max_i = i
    end
    if min_value > f.call(i)
      min_value = f.call(i)
      min_i = i
    end
  end
  [min_i, max_i]
end
def io_task3
  fs = [[0, 2, ->(x) { (x - 1) / (x + 2) }],
        [-1, 1, proc { |x| Math.sin(x / 2 - 1) }]]
  puts 'choose f1 (print 1) or f2 (print 2)'
  min, max = minmax(*fs[gets.to_i - 1])
  puts "min: #{min}, max: #{max}"
end
```

Тестирование:

```
class Task3Tests < Minitest::Test
  def test_real
    f = [0, 2, ->(x) { (x - 1) / (x + 2) }]
    expected = [0, 2]
    assert_equal(expected, minmax(*f))
  end

def test_sin
    f = [-1, 1, proc { |x| Math.sin(x / 2 - 1) }]
    expected = [-1, 1]
    assert_equal(expected, minmax(*f))
  end
end
```

Вывод

Изучены расширенные возможности языка Ruby (инструменты потоковой обработки, примеси из стандартной библиотеки).