CÁLCULO

FICHA 6 2011/2012

Integração usando substituição

1. Calcule as seguintes primitivas, usando a substituição aconselhada em cada caso.

a)
$$\int_0^{\frac{1}{2}} \frac{x^2}{\sqrt{1-x^2}} dx$$
. Substituição aconselhada: $x = \sin t$.

b)
$$\int_{-3}^{0} x (x+3)^{\frac{1}{3}} dx$$
. Substituição aconselhada: $x+3=t^3$.

c)
$$\int_{2}^{8} \frac{\sqrt{x}}{x - \sqrt[3]{x}} dx$$
. Substituição aconselhada: $x = t^{6}$.

d)
$$\int_0^1 \frac{3^x}{3^{2x}-3^x-2} \ dx$$
. Substituição aconselhada: $3^x=t$.

e)
$$\int_0^1 \frac{dx}{\sqrt{x^2+9}}.$$
 Substituição aconselhada: $x=3\sinh t.$

2. Usando o método de substituição da variável, calcule os integrais indicados.

(a)
$$\int_{-1}^{-\frac{1}{2}} \frac{1}{x^2 \sqrt{4 - x^2}} dx;$$
 (b) $\int_{0}^{1} \frac{3e^u}{1 + e^{2u}} du;$

(c)
$$\int_0^{\frac{\pi}{4}} \frac{\sin x}{\cos^2 x + \cos x} dx;$$
 (d) $\int_{-1}^0 t \sqrt{1+t} dt;$

(e)
$$\int_{1}^{2} \sin \sqrt{x+1} \, dx$$
; (f) $\int_{0}^{\sqrt{2}} \frac{1}{(t^2+2)^2} \, dt$;

Consulte a tabela de primitivas por substituição para verificar que a substituição aconselhada, em cada caso, é a definida por:

(a)
$$x = 2\cos t$$
; (b) $e^u = t$; (c) $t = \operatorname{tg} \frac{x}{2}$; (d) $1 + t = u^2$; (e) $x = t^2 - 1$; (f) $\frac{t}{\sqrt{2}} = \operatorname{tg} u$.

Soluções:

1

(a)
$$\frac{2\pi - 3\sqrt{3}}{24}$$
 (b) $\frac{-81\sqrt[3]{3}}{28}$ (c) (d) $-\frac{1}{3}\frac{\ln 2}{\ln 3}$ (e) $\ln (1 + \sqrt{2})$

2. (a)
$$\frac{\sqrt{15}}{4} - \frac{\sqrt{3}}{4}$$
 (b) $3\operatorname{arctg}(e) - \frac{3}{4}\pi$ (c) (d) $-\frac{4}{15}$ (e) (f) $\frac{\sqrt{2}}{32}\pi + \frac{\sqrt{2}}{16}$