

Insight into the origin of sulfur tolerance of Ag/Al₂O₃ in the H₂-C₃H₆-SCR of NO_x

Guangyan Xu^a, Jinzhu Ma^{a,b,c}, Lian Wang^a, Wen Xie^{a,c}, Jingjing Liu^{a,c}, Yunbo Yu^{a,b,c,*}, Hong He^{a,b,c,*}

^a State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China

^b Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China

^c University of Chinese Academy of Sciences, Beijing, 100049, China

ARTICLE INFO

Keywords:
HC-SCR
Ag/Al₂O₃
Sulfur tolerance
DRIFTS-MS
DFT calculations

ABSTRACT

The sulfur tolerance of Ag/Al₂O₃ catalysts in H₂-assisted C₃H₆-SCR was investigated by UV-vis, TPR, TPSR, DRIFTS-MS, and DFT calculations. Ag/Al₂O₃ with higher silver loadings exhibited better deNO_x performance and sulfur tolerance, especially the 4% Ag/Al₂O₃ catalyst. UV-vis and H₂-TPR revealed that highly dispersed Ag⁺ cations were predominant on 2% Ag/Al₂O₃, while more metallic Ag clusters with large sizes were present on the 4% Ag/Al₂O₃. After exposure to SO₂, large amounts of sulfates were adsorbed on the Ag sites and Al sites of the Ag/Al₂O₃ surface. The sulfates were reduced to H₂S and SO₂ in a reducing atmosphere, while they showed little decomposition under real SCR reaction conditions. DRIFTS-MS experiments showed that sulfate species transferred rapidly between Ag sites and Al sites on the Ag/Al₂O₃ catalysts with higher amounts of Ag clusters. DFT calculations revealed that Ag₁ cations show stronger affinity for sulfate species than Ag clusters, thus resulting in blockage by sulfates at the Ag-O-Al interface. Such blocking by sulfates suppressed the activation of C₃H₆ as well as the formation of -NCO species, and thus severely inhibited the deNO_x performance of 2% Ag/Al₂O₃. In contrast, the rapid mobility of sulfate species on 4% Ag/Al₂O₃ made more active sites available for the formation of key intermediates of HC-SCR, finally contributing to its excellent sulfur tolerance.

1. Introduction

NO_x emission reduction for diesel engines is an important task for environmental protection. For this application, selective catalytic reduction of NO_x utilizing on-board diesel or its additives as reductants (HC-SCR) exhibits unique advantages for NO_x removal compared to the commercial application of NH₃-SCR [1–4]. Among the catalysts employed for the HC-SCR process, alumina-supported silver (Ag/Al₂O₃) is one of the most promising catalysts [4–14]. Moreover, a small amount of hydrogen addition significantly enhances the low-temperature activity of Ag/Al₂O₃ in HC-SCR, which is beneficial for its practical application [15–24].

As diesel engine exhaust contains a certain amount of SO₂, development of catalysts with high sulfur resistance is important for their practical application [1,2,25–27]. Therefore, several researchers have investigated the SO₂ poisoning mechanism of Ag/Al₂O₃ during HC-SCR [28–35]. Generally, the deactivation induced by SO₂ is mainly due to

the generation of thermodynamically stable sulfate species, which reduce the active sites available for NO_x reduction [29,31,32,35]. Meunier et al. [29] found that pretreatment of 1.2% Ag/Al₂O₃ with SO₂ (100 ppm) resulted in rapid and permanent deactivation for C₃H₆-SCR, due to the formation of two sulfate species interacting with Al₂O₃ and silver species, respectively. In contrast, Houel et al. [34] found that sulfur-poisoned 4 wt% Ag/Al₂O₃ could be regenerated in n-octane-SCR at 600 °C. During C₃H₆-SCR at 500 °C, similarly, Park et al. reported that the deNO_x performance of 2 wt% Ag/Al₂O₃ was completely recovered after the removal of SO₂ [31]. Over an 8 wt% Ag/Al₂O₃ catalyst, interestingly, the addition of SO₂ improved the NO_x reduction due to the formation of active Ag₂SO₄. Furthermore, the sulfur resistance of Ag/Al₂O₃ is closely related to the nature of the reductant, and oxygenated hydrocarbons were found to be more advantageous for achieving high SO₂ tolerance [32].

Compared with Ag/Al₂O₃, Ag/TiO₂-Al₂O₃ catalysts synthesized by a sol-gel method exhibited superior deNO_x activity and SO₂ resistance

* Corresponding authors at: State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.

E-mail addresses: ybyu@rcees.ac.cn (Y. Yu), honghe@rcees.ac.cn (H. He).

due to a lower rate of sulfate accumulation [36]. Similarly, Umbarkar et al. [33] found that magnesia doping decreased the total acidity of Ag/Al₂O₃ and thus prevented the formation of sulfates, finally contributing to excellent low-temperature catalytic performance and sulfur resistance. Meanwhile, it was reported that H₂ addition improved the SO₂ tolerance of Ag/Al₂O₃ by cleaning off the sulfates adsorbed on silver-containing sites [28,32].

The results mentioned above show that the deactivation of Ag/Al₂O₃ induced by SO₂ is related to the catalyst formulation, gas mixture composition, and reaction temperature [32,33,36,37]. Under real conditions of HC-SCR, the sulfate species were hard to decompose or reduce [29,31,34], while the activity of Ag/Al₂O₃ was completely regenerated once SO₂ was removed [31]. Hence, not only the decomposition and/or reduction behavior of sulfates, but also other factors govern the SO₂ tolerance of Ag/Al₂O₃, which have not yet been fully clarified. To this aim, Ag/Al₂O₃ catalysts were prepared and carefully characterized, and the behaviors of sulfates on the surface of Ag/Al₂O₃ were investigated by TPSR, DRIFTS-MS, and DFT calculations. It was found that sulfate species transferred rapidly at the Ag-O-Al interface of Ag/Al₂O₃ catalysts with greater proportions of Ag clusters, which showed excellent sulfur resistance during H₂-C₃H₆-SCR. This investigation provides a clue for the development of Ag/Al₂O₃ catalysts with excellent sulfur tolerance in HC-SCR.

2. Materials and methods

2.1. Materials and catalytic performance studies

Ag/Al₂O₃ catalysts were prepared by an impregnation method, as reported in our previous works [7,38]. After impregnation, these samples were further calcined in flowing air at 600 °C for 3 h. A sample with x wt% silver loading is hereafter named x% Ag/Al₂O₃. For comparison, an Al₂O₃ sample without silver loading was prepared via the same process. In the SO₂ poisoning studies, the samples (2 g) were poisoned in a SO₂-containing gas flow (50 ppm SO₂ + 10% O₂, 1000 mL/min) at 400 °C for 12 h [35], and thus described as x% Ag/Al₂O₃-S.

To study the influence of the nature of the silver species on the sulfur tolerance of Ag/Al₂O₃ catalysts, a 2% Ag/Al₂O₃ sample was synthesized and calcined in air at 900 °C for 3 h, and thereafter named 2%Ag/Al₂O₃-900 [38]. In addition, another 2% Ag/Al₂O₃ sample was synthesized and calcined at 600 °C, with Al₂O₃ pre-calcined at 900 °C as the precursor, and thereafter named 2%Ag/(Al₂O₃-900). The Al₂O₃ sample pre-calcined at 900 °C is named Al₂O₃-900.

The catalytic measurements were carried out in a fixed-bed reactor with inner diameter of 7 mm as reported in our previous works [7,38]. The gas flow (1000 mL/min) consisted of 800 ppm NO, 1714 ppm C₃H₆, 1% H₂, 10% O₂, and 3% H₂O, with N₂ balance. 300 mg catalyst samples (20–40 mesh) were used, thus corresponding to a GHSV of 100 000 h⁻¹. The reactants and products (NO, NO₂, NH₃, N₂O, and C₃H₆) were monitored by a FTIR spectrometer (Nicolet iS10). The NO_x and C₃H₆ conversions and N₂ yield were calculated by the following equations:

$$\text{NO}_x \text{ conversion} = \left(1 - \frac{[\text{NO}_x]_{\text{out}}}{[\text{NO}_x]_{\text{in}}} \right) \times 100\% \quad (1)$$

$$\text{C}_3\text{H}_6 \text{ conversion} = \left(1 - \frac{[\text{C}_3\text{H}_6]_{\text{out}}}{[\text{C}_3\text{H}_6]_{\text{in}}} \right) \times 100\% \quad (2)$$

$$\text{N}_2 \text{ yield} = \left(\frac{[\text{NO}_x]_{\text{in}} - [\text{NO}_x]_{\text{out}} - [\text{NH}_3]_{\text{out}} - 2 * [\text{N}_2\text{O}]_{\text{out}}}{[\text{NO}_x]_{\text{in}}} \right) \times 100\% \quad (3)$$

where NO_x = NO + NO₂

2.2. Catalyst characterization

BET analysis and X-ray powder diffraction (XRD) measurements

were carried out according to our previous works [7,38]. UV-vis measurements were carried out in absorption mode with alumina as reference (Shimadzu, UV3600Plus, Japan). H₂-TPR experiments were carried out on a chemical adsorption instrument (AutoChem II 2920, Micromeritics) equipped with a TCD detector. Before each experiment, the samples (100 mg) were pretreated in 20% O₂/N₂ at 350 °C for 30 min, and subsequently cooled down to 50 °C. The TPR experiments were then performed in 10% H₂/Ar at a rate of 10 °C/min.

TPSR experiments were performed on the Micromeritics AutoChem 2920 apparatus using a MS detector (Cirrus 2, MKS). The poisoned samples (150 mg) were pretreated in Helium at 300 °C for 60 min and then cooled to 50 °C. Then the samples were further heated up (20 °C/min) in a flow of 10%H₂/Ar and 1%H₂/10%O₂/Ar (30 mL/min), respectively.

The amounts of residual sulfates adsorbed on the Ag/Al₂O₃ catalysts after catalytic test were analyzed by ion chromatography. The samples were diluted with ultrapure water to 25 mL and then extracted by sonication for 30 min. The solution was then analyzed using Wayee IC-6200 ion chromatography equipped with a TSKgel Super IC-CR cationic analytical column.

2.3. In situ DRIFTS studies

In situ DRIFTS experiments were performed on a FT-IR spectrometer (Nexus 670, Thermo Nicolet) equipped with an MCT/A detector. The samples were pretreated at 350 °C for 30 min in 10%O₂/N₂ (300 mL/min) and cooled to the desired temperature to collect spectra for reference [7,38]. The concentration of SO₂ in the outlet was monitored by a mass spectrometer (InProcess Instruments, GAM 200).

2.4. DFT calculations

DFT calculations were performed using the Materials Studio (MS) Modeling CASTEP package from Accelrys (Materials Studio 7.0, 2013). Based on previous works [7,11,39,40], the dehydrated (100) and (110) surfaces of γ-Al₂O₃ were modeled. For the Ag ion, AgO units adsorbed on the Al₂O₃ (100) and (110) surfaces were established and relaxed (Fig. S1). For the Ag_n cluster, Ag₃ units adsorbed on the Al₂O₃ (100) and (110) surfaces were established and relaxed (Fig. S2) according to our previous work [11]. Detailed information about the DFT calculations has been provided in the supplementary materials.

The adsorption energies of sulfate (SO₄²⁻) on the Ag/Al₂O₃ surface were calculated as follows:

$$E_{\text{ad}} = E_{\text{adsorbate} + \text{surface}} - (E_{\text{surface}} + E_{\text{adsorbate}}), \text{ where } E_{\text{ad}} \text{ indicates the adsorption stability of sulfate on the surface of Ag/Al}_2\text{O}_3.$$

3. Results

3.1. DeNO_x performance and sulfur tolerance

The deNO_x performance of fresh and poisoned Ag/Al₂O₃ samples was examined in H₂-C₃H₆-SCR (Fig. 1). Except for 1% Ag/Al₂O₃, other fresh samples obtained ~100% NO_x conversion at ~320 to ~500 °C. Notably, the Ag/Al₂O₃ samples with higher silver loading exhibited better low-temperature deNO_x performance, especially 4% Ag/Al₂O₃. Furthermore, as the silver loading increased, the light-off temperature of C₃H₆ conversion gradually decreased, consistent with the change in NO_x conversion (Fig. S3). In our previous works, it was found that increasing the silver loading of Ag/Al₂O₃ usually resulted in a decrease in water tolerance due to the formation of large metallic silver species [7,38]. In the present work, the 4% Ag/Al₂O₃ catalyst showed excellent deNO_x performance, possibly due to the lower concentration of water vapor (3%), which showed a significant effect on NO_x reduction in HC-SCR [14]. In addition, the 2% Ag/Al₂O₃-900 and 2% Ag/(Al₂O₃-900) samples exhibited worse water tolerance than that of 2% Ag/Al₂O₃ (not shown), consistent with our previous work [38]. Meanwhile, it was

Fig. 1. NO_x conversions on the Ag/Al₂O₃ (A) and Ag/Al₂O₃-S (B) during the H₂-C₃H₆-SCR. Feed composition: 800 ppm NO, 1714 ppm C₃H₆, 1% H₂, 10% O₂, 3% H₂O, N₂ balance. GHSV: 100 000 h⁻¹.

found that the addition of a low amount of H₂ (2000 ppm) also significantly improved the deNO_x performance of Ag/Al₂O₃ in C₃H₆-SCR [38]. On the poisoned Ag/Al₂O₃ samples, the deNO_x performance of all samples was suppressed to some extent (Fig. 1B), particularly for those with low silver loadings. For example, the NO_x conversion decreased from 100% to 61% over 2% Ag/Al₂O₃ after SO₂ poisoning. In contrast, 4% Ag/Al₂O₃-S exhibited excellent deNO_x performance, achieving > 95% NO_x conversion in the range of ~300 – ~500 °C.

To further investigate the sulfur tolerance of the Ag/Al₂O₃ catalysts, step-response experiments were performed at 400 °C (Fig. 2). In this case, the 1% Ag/Al₂O₃ sample was not measured due to its poor deNO_x performance. In the initial stage under SO₂-free conditions, all samples achieved 100% NO_x conversion. After the introduction of SO₂, the deNO_x performance of 2% Ag/Al₂O₃ catalyst was severely suppressed and the NO_x conversion decreased to ~30% after 4 h of SO₂ exposure. Such suppression was also observed over 3% Ag/Al₂O₃, which achieved NO_x conversion of ~75% after SO₂ exposure. In contrast, 4% Ag/Al₂O₃ exhibited excellent sulfur tolerance and achieved ~93% NO_x conversion even after 30 h of SO₂ exposure (Fig. S5). Notably, the C₃H₆ conversion exhibited a similar trend as the NO_x reduction (Fig. S4), revealing the crucial role of C₃H₆ activation in NO_x reduction.

Meanwhile, the sulfur tolerance of Ag/Al₂O₃ catalysts has been investigated in the H₂-C₃H₆-SCR at a high GHSV of 300 000 h⁻¹ at various temperatures (Fig. S6). At 300 °C, the 2% Ag/Al₂O₃ and 3% Ag/Al₂O₃ were almost completely deactivated in the presence of SO₂ with

Fig. 2. The effect of SO₂ on the NO_x conversion over Ag/Al₂O₃ catalysts with different silver loadings (A) and 2%Ag/Al₂O₃ calcined at different temperatures (B) during the H₂-C₃H₆-SCR at 400 °C. Feed composition: 800 ppm NO, 1714 ppm C₃H₆, 1% H₂, 10% O₂, 3% H₂O, 20 ppm SO₂ (when added), N₂ balance. GHSV: 100 000 h⁻¹.

NO_x conversions of less than 5%. Under the same reaction conditions, although the NO_x conversion of 4% Ag/Al₂O₃ decreased from 80% to 23%, this sample was still the best among these catalysts. At 400 °C, the decrease in NO_x conversion for 2% Ag/Al₂O₃ was 69% (from 94% to 25%) after exposure to SO₂, while the corresponding values for 3% Ag/Al₂O₃ and 4% Ag/Al₂O₃ were 25% (from 87% to 62%) and 15% (from 83% to 68%), respectively. At 500 °C, the NO_x conversion of 2% Ag/Al₂O₃ and 3% Ag/Al₂O₃ decreased by 41% and 13% after exposure to SO₂, respectively. In contrast, the addition of SO₂ increased the NO_x conversion of 4% Ag/Al₂O₃ from 47% to 59% at 500 °C. Similar phenomenon has also been found in the work of Angelidis et al [30], in which this enhancement was attributed to the suppression on direct combustion of reductant. Obviously, the sulfur tolerance of these catalysts enhanced as the reaction temperature increased. From overall view, the Ag/Al₂O₃ samples with higher silver loading exhibited better sulfur tolerance at various temperatures.

Interestingly, the 2% Ag/Al₂O₃-900 and 2% Ag/(Al₂O₃-900) samples also exhibited excellent sulfur tolerance in the above step-response experiments, obtaining NO_x conversion of 80% and 85% in the presence of SO₂, respectively (Fig. 2B). The N₂ yield and C₃H₆ conversion exhibited the same trend as the NO_x conversion (Fig. S7). Hence, both the silver loading and the state of silver species affected the sulfur tolerance of Ag/Al₂O₃. Considering the difference in sulfur tolerance

Fig. 3. UV-vis spectra of fresh and SO_2 poisoned 2% $\text{Ag}/\text{Al}_2\text{O}_3$ and 4% $\text{Ag}/\text{Al}_2\text{O}_3$.

shown by $\text{Ag}/\text{Al}_2\text{O}_3$ with 2 and 4 wt% silver loadings, the following investigation focused on these samples.

3.2. Structural properties of $\text{Ag}/\text{Al}_2\text{O}_3$

BET analysis (Table S1) showed that the specific surface areas of $\text{Ag}/\text{Al}_2\text{O}_3$ catalysts calcined at 600 °C are similar to that of the pure Al_2O_3 (237 m²/g). However, calcination at 900 °C caused a decrease in BET surface area of Al_2O_3 -900 (163 m²/g), 2% $\text{Ag}/\text{Al}_2\text{O}_3$ -900 (167 m²/g), and 2% $\text{Ag}/(\text{Al}_2\text{O}_3\text{-}900)$ (152 m²/g). XRD measurements revealed that only the $\gamma\text{-Al}_2\text{O}_3$ phase existed in the Al_2O_3 and $\text{Ag}/\text{Al}_2\text{O}_3$ catalysts calcined at 600 °C (Fig. S8). In contrast, the $\delta\text{-Al}_2\text{O}_3$ phase was also detected for the samples calcined at high temperature, together with the presence of $\gamma\text{-Al}_2\text{O}_3$ phase. Therefore, calcination at 900 °C induced the phase transition of $\gamma\text{-Al}_2\text{O}_3$ to $\delta\text{-Al}_2\text{O}_3$, which further led to the reduction of surface area [38,41]. Furthermore, XRD measurements did not detect any crystal phase of silver species on any of the samples.

Fig. 3 exhibits the UV-vis spectra of fresh and SO_2 -poisoned $\text{Ag}/\text{Al}_2\text{O}_3$ samples. To eliminate interference from the absorption of the support, the spectrum of pure Al_2O_3 was subtracted from the spectra of the $\text{Ag}/\text{Al}_2\text{O}_3$ samples. For these samples, five adsorption peaks at 230, 260, 290, 350, and 450 nm were observed. According to previous literature [42,43], the peaks located at 230 and 260 nm are commonly attributed to dispersed Ag cations (Ag^+) and oxidized Ag clusters ($\text{Ag}_n\delta^+$), respectively. In addition, the peaks at 290 and 350 nm are generally due to small metallic Ag clusters (Ag_n^0), and the broad peak at 450 nm is attributed to metallic Ag clusters with large sizes [43–45].

In order to quantitatively compare different silver species, the spectra of $\text{Ag}/\text{Al}_2\text{O}_3$ catalysts were fitted and deconvoluted to constituent peaks (Fig. S9 and Table S2) [38,42]. Over the fresh samples, dispersed Ag^+ species were predominant, along with some metallic Ag clusters (Ag_n^0) of different sizes. Notably, the amount of large metallic Ag clusters on 4% $\text{Ag}/\text{Al}_2\text{O}_3$ (22%) was significantly higher than on 2% $\text{Ag}/\text{Al}_2\text{O}_3$ (6.6%). The spectrum of $\text{Ag}/\text{Al}_2\text{O}_3$ calcined at 900 °C is shown in Fig. S9. Compared with 2% $\text{Ag}/\text{Al}_2\text{O}_3$ (6.6%), there are more metallic Ag clusters with large sizes on 2% $\text{Ag}/\text{Al}_2\text{O}_3$ -900 (35%) and 2% $\text{Ag}/(\text{Al}_2\text{O}_3\text{-}900)$ (21%). On the poisoned samples, the peaks at 350 and 450 nm almost disappeared, while the intensities of bands with lower wavelengths (260 and 290 nm) increased. This result revealed that SO_2 poisoning induced the transition of metallic silver species to

Fig. 4. H_2 -TPR profiles of the Al_2O_3 and $\text{Ag}/\text{Al}_2\text{O}_3$ catalysts.

oxidized ones via the following reaction [29]:

H_2 -TPR profiles showed that a minuscule H_2 consumption between 250 and 300 °C occurred on the pure Al_2O_3 (Fig. 4), which may be caused by the baseline [46]. Only a strong H_2 consumption peak centered at ~270 °C was observed over for 2% $\text{Ag}/\text{Al}_2\text{O}_3$. This peak also appeared for 4% $\text{Ag}/\text{Al}_2\text{O}_3$, accompanied by a low-temperature shoulder at ~100 – ~200 °C. Clearly, both $\text{Ag}/\text{Al}_2\text{O}_3$ samples contain reducible species (Ag_2O and/or Ag^+), while those on 4% $\text{Ag}/\text{Al}_2\text{O}_3$ can be reduced at lower temperatures [45–47]. Quantitative data on the H_2 consumption of $\text{Ag}/\text{Al}_2\text{O}_3$ samples are provided in Table S3. The reduction degree is calculated based on the stoichiometry, such that reduction of 1 mol Ag^+ requires 1/2 mol H_2 [46]. The reduction degrees for 2% $\text{Ag}/\text{Al}_2\text{O}_3$ and 4% $\text{Ag}/\text{Al}_2\text{O}_3$ are 64.8% and 46.4%, respectively, indicating that the proportion of non-reducible metallic silver on 4% $\text{Ag}/\text{Al}_2\text{O}_3$ is higher than on 2% $\text{Ag}/\text{Al}_2\text{O}_3$. Besides, there are also two H_2 consumption peaks observed on 2% $\text{Ag}/\text{Al}_2\text{O}_3$ -900 and 2% $\text{Ag}/(\text{Al}_2\text{O}_3\text{-}900)$, the reduction degrees for which are 55.9% and 56.6%, respectively (Fig. S10). Obviously, the proportions of non-reducible metallic silver on these two samples are also higher than on 2% $\text{Ag}/\text{Al}_2\text{O}_3$. The results of H_2 -TPR were consistent with the UV-vis results, further confirming that there were more metallic Ag clusters with large sizes on 4% $\text{Ag}/\text{Al}_2\text{O}_3$, 2% $\text{Ag}/\text{Al}_2\text{O}_3$ -900, and 2% $\text{Ag}/(\text{Al}_2\text{O}_3\text{-}900)$ than 2% $\text{Ag}/\text{Al}_2\text{O}_3$.

To further investigate the adsorption of sulfate species on these samples, TPSR experiments were performed in different atmospheres (Fig. 5). In a reducing atmosphere of 10% H_2/Ar , H_2S ($m/z = 34$) and SO_2 ($m/z = 64$) were detected over all poisoned samples (Fig. 5A). On the $\text{Al}_2\text{O}_3\text{-S}$ sample, SO_2 appeared at temperatures above 500 °C, while the signal of H_2S emerged at 550–750 °C. Notably, two peaks of SO_2 centered at ~550 °C and ~650 °C were observed, the latter of which emerged simultaneously with the signal of H_2S . The peak at ~550 °C can be attributed to direct desorption of weakly adsorbed SO_2 , and the peak at ~650 °C is assigned to the reduction of sulfates. Over the poisoned $\text{Ag}/\text{Al}_2\text{O}_3$, it should be noted that H_2S and SO_2 appeared simultaneously at temperatures above 400 °C.

To quantitatively investigate the formation of the above species, all spectra in Fig. 5A were integrated, with the results shown in Table S4. The SO_2 profile of $\text{Al}_2\text{O}_3\text{-S}$ was fitted and deconvoluted into constituent peaks (Fig. S11), which were further integrated. For these samples, the

Fig. 5. TPSR spectra of SO_2 poisoned Al_2O_3 and $\text{Ag}/\text{Al}_2\text{O}_3$ in a flow of 10% H_2/Ar (A) and 1% $\text{H}_2/10\%\text{O}_2/\text{Ar}$ (B). Before measurement, the samples were pre-treated in a flow of He at $300\ ^{\circ}\text{C}$ for 30 min.

amount of desorbed species could be arranged in descending order as follows: $2\% \text{Ag}/\text{Al}_2\text{O}_3\text{-S} > 4\% \text{Ag}/\text{Al}_2\text{O}_3\text{-S} > \text{Al}_2\text{O}_3\text{-S}$. Notably, the proportion of the desorbed amounts of these species was almost the same over all samples, approximately equal to 0.15: 1 ($\text{SO}_2/\text{H}_2\text{S}$), revealing the same mechanism for sulfate reduction on all samples.

The TPSR measurements were also performed in a flow of 1% $\text{H}_2/10\%\text{O}_2/\text{Ar}$, which is closer to practical reaction conditions. In this situation, however, only SO_2 ($m/z = 64$) was detected over all samples, giving a strong peak centered at $\sim 950\ ^{\circ}\text{C}$ with almost the same intensity in all cases. The absence of H_2S confirmed that decomposition of sulfates rather than reduction took place during this process. It should be noted that the desorption of sulfur species was much less than that obtained in the reducing atmosphere, revealing that the sulfates showed little decomposition under real reaction conditions. In addition, a weak peak at $\sim 250 - \sim 400\ ^{\circ}\text{C}$ was observed over $2\% \text{Ag}/\text{Al}_2\text{O}_3\text{-S}$, the occurrence of which possibly explained the improvement of deNOx performance at $200 - 400\ ^{\circ}\text{C}$ on this sample (Fig. 1B).

3.3. In situ DRIFTS studies of sulfate species

3.3.1. Sulfate formation and its influence on C_3H_6 oxidation and nitrate formation

In-situ DRIFTS experiment was performed to investigate the adsorption of sulfates on the $\text{Ag}/\text{Al}_2\text{O}_3$ catalysts during SO_2 poisoning

Fig. 6. In situ DRIFTS spectra of adsorbed species over Al_2O_3 and $\text{Ag}/\text{Al}_2\text{O}_3$ in steady states in a flow of $\text{SO}_2 + \text{O}_2$ at $400\ ^{\circ}\text{C}$ for 5 h. Feed composition: SO_2 50 ppm, O_2 10%, N_2 balance.

(Fig. 6). In this case, two peaks at 1365 and 1345 cm^{-1} emerged on the pure Al_2O_3 , indicating the formation of sulfates adsorbed on the Al sites (Al-sulfates) [28,35]. Over $\text{Ag}/\text{Al}_2\text{O}_3$ catalysts, the Al-sulfate species were also produced and exhibited much stronger intensity during the above process. Meanwhile, another two bands at 1316 and 1270 cm^{-1} were observed, suggesting the appearance of sulfates adsorbed on the Ag sites (Ag-sulfates) [32,48].

To further compare the adsorption of sulfate species, the above spectra (Fig. 6) were fitted and deconvoluted into constituent peaks (Fig. S12A) [28]. As shown in Fig. S12B, the amounts of sulfates adsorbed on different samples can be arranged as follows: Al_2O_3 (3.6 a.u.) $<$ $< 4\% \text{Ag}/\text{Al}_2\text{O}_3$ (55.8 a.u.) $< 2\% \text{Ag}/\text{Al}_2\text{O}_3$ (71.3 a.u.), which is consistent with the TPSR results. It is generally recognized that SO_2 reacts with O_2 to form ad- SO_4^{2-} , which is further adsorbed on the $\text{Ag}/\text{Al}_2\text{O}_3$ surface [28,29]. Hence, it could be speculated that the pure Al_2O_3 was inefficient for the oxidation of SO_2 , while the existence of Ag significantly enhanced the oxidation of SO_2 to produce ad- SO_4^{2-} , most of which further migrated to the Al sites [28,35]. The smaller amount of sulfate species on $4\% \text{Ag}/\text{Al}_2\text{O}_3$ may be due to the decrease in acidity of Al_2O_3 with increasing silver loading [49], and/or the decrease in the sites for sulfates adsorption stemmed from the coverage of Al_2O_3 by silver species.

Generally, the activation of hydrocarbons is the initial step of HC-SCR over $\text{Ag}/\text{Al}_2\text{O}_3$ catalysts [1–4]. Hence, the partial oxidation of C_3H_6 was investigated on the fresh and poisoned $\text{Ag}/\text{Al}_2\text{O}_3$ samples (Fig. S13). During this process, large amounts of enolic species (1633, 1406, and 1336 cm^{-1}) and acetate (1576 and 1460 cm^{-1}) were produced on the fresh samples, particularly at temperatures below $350\ ^{\circ}\text{C}$ [7,50,51]. On $2\% \text{Ag}/\text{Al}_2\text{O}_3\text{-S}$, the formation of enolic species was severely suppressed at temperatures below $350\ ^{\circ}\text{C}$, while acetate was hardly affected except at the temperature of $200\ ^{\circ}\text{C}$. In contrast, a considerable amount of enolic species was yielded on the $4\% \text{Ag}/\text{Al}_2\text{O}_3\text{-S}$ at temperatures above $250\ ^{\circ}\text{C}$, while the formation of acetate was slightly enhanced. Furthermore, a weak negative peak at 1365 cm^{-1} attributed to the overlay of sulfates was also observed on the poisoned samples (Fig. S13B and D).

The influence of sulfates on the formation of nitrates was also investigated for these samples (Fig. S14). After exposure to a flow of $\text{H}_2 + \text{NO} + \text{O}_2$, several strong characteristic peaks (1614, 1582, 1560,

Fig. 7. In situ DRIFTS spectra of adsorbed species over $\text{Ag}/\text{Al}_2\text{O}_3$ after exposure to a flow of $\text{H}_2 + \text{NO} + \text{C}_3\text{H}_6 + \text{SO}_2 + \text{O}_2$ at 400°C for 3 h. Before measurement, these samples were pre-exposed to a flow of $\text{H}_2 + \text{NO} + \text{C}_3\text{H}_6 + \text{O}_2$ at 400°C for 1 h. Feed composition: 800 ppm NO, 1714 ppm C_3H_6 , 1% H_2 , 10% O_2 , 20 ppm SO_2 (when added), N_2 balance.

1550, 1530, 1300, and 1245 cm^{-1}) were observed on the fresh samples due to monodentate nitrates ($1560, 1550, 1530$, and 1245 cm^{-1}), bidentate nitrates (1582 and 1300 cm^{-1}), and bridging nitrates (1614 cm^{-1}), respectively [7,38,52]. On the poisoned samples, however, the formation of nitrates was severely suppressed. It is generally recognized that nitrates mainly adsorb on the surface of alumina [1,2], on which sulfates also accumulated seriously during the process of SO_2 poisoning (Fig. 6). Hence, the adsorption of sulfate species reduced the adsorption sites on the $\text{Ag}/\text{Al}_2\text{O}_3$ available for the formation of nitrates [29,35].

3.3.2. The influence of sulfates on $\text{H}_2\text{-C}_3\text{H}_6\text{-SCR}$ over $\text{Ag}/\text{Al}_2\text{O}_3$

The effect of SO_2 on $\text{H}_2\text{-C}_3\text{H}_6\text{-SCR}$ over $\text{Ag}/\text{Al}_2\text{O}_3$ catalysts was further investigated (Fig. 7). In this case, several intermediates emerged on the $\text{Ag}/\text{Al}_2\text{O}_3$ surface, including nitrates ($1540, 1300$, and 1245 cm^{-1}), acetate (1570 and 1460 cm^{-1}), formate ($2997, 2905$, and 1591 cm^{-1}), and $-\text{NCO}$ species (2232 cm^{-1}) [1,2,7]. Among them, the $-\text{NCO}$ species is generally recognized as an important intermediate for NO_x reduction in HC-SCR [1,2,53,54]. The enolic species was not observed under the current conditions, probably due to its higher reactivity at high temperature (400°C) [7].

After introducing SO_2 into the gas feed for 3 h, strong peaks due to sulfate species ($1365, 1345, 1316$, and 1270 cm^{-1}) were observed over both samples. Notably, the intensities of sulfate species were almost the same over these catalysts under the current conditions. Over 2% $\text{Ag}/\text{Al}_2\text{O}_3$, formate ($2997, 2905$, and 1591 cm^{-1}) and nitrate (1540 cm^{-1}) were severely suppressed by SO_2 addition, while the intensity of acetate was increased. Notably, $-\text{NCO}$ species (2232 cm^{-1}) almost completely disappeared after SO_2 addition, suggesting the severe suppression of the de NO_x performance. On 4% $\text{Ag}/\text{Al}_2\text{O}_3$, although the formation of nitrate was severely inhibited, the $-\text{NCO}$ species were hardly affected by SO_2 addition, indicating that this sample exhibited excellent sulfur tolerance, which is consistent with the results in Fig. 2.

The formation of nitrates was severely suppressed by sulfates over both 2% $\text{Ag}/\text{Al}_2\text{O}_3$ and 4% $\text{Ag}/\text{Al}_2\text{O}_3$ catalysts, while these samples showed quite different sulfur tolerance in the $\text{H}_2\text{-C}_3\text{H}_6\text{-SCR}$. Therefore, the suppression of the formation of nitrates could not be the key factor in the deactivation of $\text{Ag}/\text{Al}_2\text{O}_3$. In contrast, sulfates exhibited different

influences on the activation of C_3H_6 on these samples (Fig. 7 and Fig. S13). Though formate shows low reactivity toward NO_x reduction during HC-SCR [7,51], it can serve as a monitor for the activation of C_3H_6 . The oxidation of C_3H_6 on 2% $\text{Ag}/\text{Al}_2\text{O}_3$ was severely suppressed by SO_2 addition, while it was hardly affected on 4% $\text{Ag}/\text{Al}_2\text{O}_3$. Hence, it was speculated that the inhibition of C_3H_6 activation was more likely to be responsible for the suppression of NO_x reduction.

3.3.3. The reduction/desorption of sulfates on $\text{Ag}/\text{Al}_2\text{O}_3$

Although large amounts of sulfates were produced on both samples in the above experiments, they showed markedly different influences on the de NO_x performance of these catalysts (Fig. 7). To highlight this issue, step-response DRIFTS-MS experiments were performed in different atmospheres (Fig. 8). Specifically, after the formation of sulfates in the above experiment (Fig. 7), the samples were further sequentially exposed to N_2 , 1% H_2/N_2 , and 1% $\text{H}_2/10\%\text{O}_2/\text{N}_2$. During this process, the dynamic changes of adsorbed species were measured by in situ DRIFTS (Fig. 8A and C), and the SO_2 in the effluent gas was detected by mass spectrometry ($m/e = 64$) simultaneously (Fig. 8B and D). Furthermore, the corresponding integrated areas of the peaks due to Al-sulfates (1365 and 1345 cm^{-1}) and Ag-sulfates (1316 and 1270 cm^{-1}) were calculated and shown in Fig. 8B and D.

In the first stage of N_2 purging, the amount of Al-sulfates increased slowly, accompanied by a decrease of Ag-sulfates over both samples, indicating that the sulfates adsorbed on Ag sites slowly transferred to Al sites. When switching to 1% H_2/N_2 , the sulfate species on 2% $\text{Ag}/\text{Al}_2\text{O}_3$ decreased very slowly. On 4% $\text{Ag}/\text{Al}_2\text{O}_3$, in contrast, the Ag-sulfates decreased rapidly in the initial 5 min, accompanied by a slow decrease in the next 25 min (Fig. 8D), and the Al-sulfates rapidly increased in the first minute. Furthermore, a rapid release of SO_2 ($m/e = 64$) was detected in the effluent gas within the initial 5 min. In the reducing atmosphere, the sulfates adsorbed on Ag sites rapidly transferred to Al sites over 4% $\text{Ag}/\text{Al}_2\text{O}_3$, while this was hardly observed on 2% $\text{Ag}/\text{Al}_2\text{O}_3$.

When switching to a flow of 1% $\text{H}_2/10\%\text{O}_2/\text{N}_2$, which is closer to practical reaction conditions, the sulfates on Al sites rapidly migrated to Ag sites, accompanied with release of SO_2 in the gas phase. Notably, such migration was much more remarkable on 4% $\text{Ag}/\text{Al}_2\text{O}_3$ than 2%

Fig. 8. Dynamic change in the DRIFTS spectra of adsorbed species on 2% Ag/Al₂O₃ (A) and 4% Ag/Al₂O₃ (C) at 400 °C during the gas mixture switching from H₂/NO/C₃H₆/O₂/SO₂ (−30–0 min) to N₂ (0–30 min), H₂/N₂ (30–60 min), and H₂/O₂/N₂ (60–90 min), continuously. Before measurement, the samples were pre-exposed to a flow of H₂/C₃H₆/NO/SO₂/O₂ at 400 °C for 3 h. The integrated areas of the peaks (1270 and 1316 cm^{−1}) due to Ag-sulfates and the peaks (1345 and 1365 cm^{−1}) due to Al-sulfates over 2%Ag/Al₂O₃ (B) and 4%Ag/Al₂O₃ (D), together with MS signal of SO₂ (*m/e* = 64). The feed composition was the same as Fig. 7.

Ag/Al₂O₃. In fact, the amount of SO₂ released in the gas phase from 4% Ag/Al₂O₃ was almost three times that from 2% Ag/Al₂O₃, indicating that more active sites are released for NOx reduction. Clearly, the sulfates on 4% Ag/Al₂O₃ were more mobile between Ag sites and Al sites, and were also more easily decomposed and released from the surface. As the sulfur tolerance of 4%Ag/Al₂O₃ was significantly different with the change of reaction temperature, the mobility of sulfate species on this catalyst was further investigated at 300 °C and 500 °C (Fig. S15). In this experiment, the mobility of sulfate species between Ag sites and Al sites was slower at 300 °C if compared with that at 500 °C. This result further confirmed the critical effect of mobility of sulfate species on the sulfur tolerance of Ag/Al₂O₃ catalysts. At 300 °C, notably, the amount of sulfate species adsorbed on the 4% Ag/Al₂O₃ was smaller than that at 400 °C and 500 °C. This may be attributed to the competitive adsorption of oxygenated hydrocarbons at lower temperature [35].

To further investigate the mobility of sulfate species, similar experiments were performed on the 2% Ag/Al₂O₃-900 and 2% Ag/(Al₂O₃-900) samples. After exposure to H₂/SO₂/O₂ at 400 °C for 3 h, large

amounts of sulfate species adsorbed on these samples (Fig. S16). The amounts of Al-sulfate on 2% Ag/Al₂O₃-900 and 2% Ag/(Al₂O₃-900) were lower than that on 2% Ag/Al₂O₃, possibly due to the lower BET surface area of the former samples. Afterwards these samples were further sequentially exposed to N₂, 1%H₂/N₂, and 1%H₂/10%O₂/N₂ as described above (Fig. 9 and Fig. S17). On the 2% Ag/Al₂O₃ sample calcined at 600 °C, the sulfates transferred slowly during the above process, accompanied by a low release of SO₂ (Fig. S17). On the 2% Ag/Al₂O₃-900 and 2% Ag/(Al₂O₃-900) samples, in contrast, the Ag-sulfates rapidly transferred to Al sites in the reducing atmosphere, and then quickly migrated to Ag sites after switching to a flow of H₂/O₂/N₂ (Fig. 9). Obviously, the mobility of sulfates on 2% Ag/Al₂O₃-900 and 2% Ag/(Al₂O₃-900) was also greater than that on 2% Ag/Al₂O₃.

3.4. DFT calculations of sulfate adsorption energy

The in-situ DRIFTS experiments showed that the mobility and desorption of sulfates on 4% Ag/Al₂O₃ was much greater than on 2% Ag/

Fig. 9. Dynamic change in the DRIFTS spectra of adsorbed species on the 2%Ag/Al₂O₃-900 (A) and 2%Ag/(Al₂O₃-900) (B) at 400 °C during the gas mixture switching from H₂/SO₂/O₂/N₂ (-30 – 0 min) to N₂ (0–30 min), H₂/N₂ (30–60 min), and H₂/O₂/N₂ (60–90 min), continuously. Before measurement, the samples were pre-exposed to a flow of H₂+SO₂+O₂ at 400 °C for 3 h (Fig. S16).

Al₂O₃. Hence, the adsorption energies of sulfates on the surface of Ag/Al₂O₃ were calculated. UV-vis and H₂-TPR measurements confirmed that dispersed Ag⁺ cations were predominant on 2% Ag/Al₂O₃, while more Ag clusters were present on 4% Ag/Al₂O₃. As a result, Ag₁ cations and Ag₃ clusters supported on the Al₂O₃ (110) and (100) surface were established and relaxed, which are hereafter described as Ag₁-Al₂O₃ and Ag₃-Al₂O₃ (Fig. S1 and S2), corresponding to 2% Ag/Al₂O₃ and 4% Ag/Al₂O₃, respectively [11,55]. The structures of sulfates adsorbed on the Ag and Al sites of the above models were established and relaxed (Fig. S18 and S19).

The DFT calculations showed that the adsorption energies of sulfates are negative, indicating a strong affinity between the sulfates and the catalyst surface (Table 1). Over the Ag₁-Al₂O₃ sample, the adsorption energies of sulfates adsorbed on the Ag₁ sites of (110) and (100) surfaces were 12% and 28% less negative than those on the corresponding Al sites, respectively. Similarly, the adsorption energies of sulfates on the Ag₃ clusters of (110) and (100) surfaces were significantly less negative than those on the Al sites over the Ag₃-Al₂O₃ sample. On both samples, the adsorption energies of sulfates adsorbed on the Ag sites were less negative than those on the Al sites, indicating that desorption of sulfates from the Ag sites was easier than that from Al sites. Furthermore, the adsorption energy of sulfates on the Ag₃ clusters was less negative than for those adsorbed on the Ag₁ cation, especially on the (100) surface. This result revealed that desorption of sulfates from the Ag₃ clusters was more efficient than that from Ag₁ cations.

The above results show that the adsorption energies of sulfates can be arranged as follows: |Ag₃| < |Ag₁| < |Al| sites, consistent with Doronkin's work [56], in which the SO₂ resistance of Ag/Al₂O₃ in H₂-NH₃-SCR was investigated. In that work, the authors calculated the adsorption energies of SO_x species on the surfaces of bulk silver, Al₂O₃, and a single-atom Ag site, and found that SO_x species bind weaker to the bulk silver surface than to Al₂O₃ and the single-atom Ag site. Notably, the adsorption energy of SO₄²⁻ on the Ag (111) surface (-2.65 eV) in that work is consistent with the adsorption energy of sulfates on the Ag₃ clusters of the (110) surface (-2.43 eV). Therefore, the calculations of the adsorption energies of sulfates in the present work are believed to be reliable.

Table 1
DFT-calculated adsorption energies of sulfates on different sites of Ag/Al₂O₃.

Site	adsorption energy (eV)	
	Ag/Al ₂ O ₃ (110)	Ag/Al ₂ O ₃ (100)
(Ag ₁ -Al ₂ O ₃)-Al	-3.04	-3.58
(Ag ₁ -Al ₂ O ₃)-Ag ₁	-2.69 (-12%)	-2.56 (-28%)
(Ag ₃ -Al ₂ O ₃)-Al	-2.77	-2.80
(Ag ₃ -Al ₂ O ₃)-Ag ₃	-2.43 (-12%)	-1.63 (-42%)

4. Discussion

It is generally recognized that the HC-SCR reaction starts with the activation of HCs to yield reactive oxygenated hydrocarbons such as enolic species and acetates [1,2]. As for H₂-C₃H₆-SCR over Ag/Al₂O₃ catalyst, the activation of reductant involves the activation of C–C bonds and/or C–H bonds, the occurrence of which require O species adsorbed on silver species and/or the electrons provided by silver species [42]. Hence, the activation of C₃H₆ primarily occurs at the Ag sites of the Ag/Al₂O₃ catalyst. The above reactive oxygenated hydrocarbons further react with NO + O₂ and/or nitrate (adsorbed on the Al sites adjacent to the Ag sites) to produce the –NCO species, which is also anchored at the Ag sites or the interface between Ag sites and Al₂O₃ support [53,54,57,58]. Then the –NCO species reacts either directly with NO + O₂ and/or nitrate to produce N₂ or with water vapor to produce NH₃, which further reacts with NO + O₂ and/or nitrate to produce N₂ [53,54]. Clearly, the Ag sites and the interface between Ag sites and Al sites (denoted as Ag-O-Al interface) is critical for NO_x reduction in HC-SCR over Ag/Al₂O₃ [53,54,57].

On Ag/Al₂O₃ catalysts, the formation of sulfates starts with the oxidation of SO₂ on Ag sites, followed by further migration to Al sites [28,35]. UV-vis analysis revealed that adsorption of sulfates induced the transition of metallic silver to oxidized silver on Ag/Al₂O₃. In a reducing atmosphere, H₂ facilitated the reduction of oxidized silver species, providing a driving force for the migration of sulfates from Ag sites to Al sites and the desorption of sulfates to yield SO₂ (Fig. 8). The sulfates adsorbed on the Al sites were further reduced to yield H₂S and SO₂ (Fig. 5A). In a similar reducing atmosphere, Shimizu et al. [32] also observed a migration of sulfates from Ag sites to Al sites and desorption of SO₂ during H₂-C₃H₈-SCR over Ag/Al₂O₃. In that case, it was proposed that H₂ cleaned off the sulfates adsorbed on the Ag sites, and thus enhanced the sulfur tolerance of Ag/Al₂O₃. In the atmosphere of 1%H₂/10%O₂/N₂, which is closer to practical reaction conditions, however, the sulfates cannot actually be reduced to H₂S and SO₂ (Fig. 5B). In contrast, the Al-sulfates rapidly migrated to the Ag sites where they were further decomposed to produce SO₂. Hence, a cyclic pathway of sulfate formation and desorption between Ag sites and Al sites was observed on the surface of Ag/Al₂O₃.

DFT calculations revealed that the adsorption energies of sulfates on different sites of Ag/Al₂O₃ can be arranged as follows: |Ag₃| < |Ag₁| < |Al| sites. Therefore, desorption of sulfates from Ag₃ clusters was more efficient than from Ag₁ cations, while the desorption of sulfates from Al sites was inefficient. UV-vis analysis showed that there were more metallic Ag clusters with large sizes present on 4% Ag/Al₂O₃ compared to 2% Ag/Al₂O₃. Hence, it is reasonable that the desorption of sulfates on 4% Ag/Al₂O₃ surface was more rapid than that on 2% Ag/Al₂O₃. The H₂-TPR experiment revealed that the silver species

on 4% Ag/Al₂O₃ were more easily reduced at lower temperatures than those on 2% Ag/Al₂O₃. Hence, the migration of sulfates from Ag sites to Al sites in a reducing atmosphere on 4% Ag/Al₂O₃ was also more rapid than that on 2% Ag/Al₂O₃. In the flow of 1%H₂/10%O₂/N₂, the rapid migration of sulfates from Al sites to Ag sites on 4% Ag/Al₂O₃ could be attributed to the great difference in adsorption energies of sulfates on Ag clusters and Al₂O₃ surface. In contrast, the Ag⁺ showed strong affinity for sulfate species, resulting in the blockage by sulfates on the 2% Ag/Al₂O₃.

To further investigate the mobility of sulfate species, 2% Ag/Al₂O₃ catalysts were synthesized and calcined at higher temperature. Calcination at 900 °C induced the phase transition of γ-Al₂O₃ to δ-Al₂O₃, which further led to the reduction of surface area for 2% Ag/Al₂O₃-900 and 2% Ag/(Al₂O₃-900). Besides, the formation of δ-Al₂O₃ further induced the aggregation of dispersed Ag⁺ cations to produce large Ag clusters. Hence, the amounts of large Ag clusters on these two samples were significantly greater than that on 2% Ag/Al₂O₃ calcined at 600 °C (Table S2). The DRIFTS-MS experiment shows that the mobility of sulfate species on the samples calcined at high temperature was greater than that on 2% Ag/Al₂O₃ (Fig. 9), further confirming that the mobility of sulfur species was closely related to the state of silver species.

The deNO_x performance of 2%Ag/Al₂O₃ was severely suppressed after exposure to SO₂ for 3 h (Fig. 2), while the 4%Ag/Al₂O₃ catalyst maintained high NO_x conversion even after 30 h of SO₂ exposure (Fig. S5). The results of ion chromatography show that after exposure to 20 ppm SO₂ for 10 h (Fig. 2), the amount of SO₂ deposited on the 2%Ag/Al₂O₃, 3%Ag/Al₂O₃, and 4%Ag/Al₂O₃ were 7.79×10^{-5} mol/g, 9.50×10^{-5} mol/g, and 8.96×10^{-5} mol/g, respectively. This indicates that the amounts of sulfates adsorbed on these catalysts were approximately equal, consistent with the DRIFTS results (Fig. 7). On the 4%Ag/Al₂O₃, the amount of sulfate species adsorbed at 300 °C was even smaller than those at 400 °C and 500 °C (Fig. S15), while this sample exhibited poorer sulfur tolerance at 300 °C. Considering the above results, the amount of sulfate species adsorbed on the surface cannot reasonably explain the different sulfur tolerance of these Ag/Al₂O₃ catalysts. Hence, there are other factors governing the sulfur tolerance of Ag/Al₂O₃ catalysts.

As mentioned above, the H₂-C₃H₆-SCR reaction starts with the activation of C₃H₆ to yield reactive oxygenated hydrocarbons such as enolic species and acetates, which primarily occurs at the Ag sites and the Ag-O-Al interface [7,42]. The adsorption of sulfate species on the Ag/Al₂O₃ catalysts induces the formation of Ag-sulfates and/or Ag₂SO₄ species. In particular, Ag⁺ cations show strong affinity for sulfate species, resulting in the blockage of sulfates on the 2%Ag/Al₂O₃. The formation of Ag-sulfates and/or Ag₂SO₄ species may affect the electron-donating ability of silver species, and thus inhibits the activation of C₃H₆ to produce enolic species on the 2%Ag/Al₂O₃ (Fig. S13). Furthermore, the strong adsorption of sulfate species may hinder the reaction between C₃H₆ and O species on the Ag sites due to a strong steric effect. Afterward, these effects induced by sulfates may further hinder the reaction between enolic species and NO + O₂ (and/or nitrate) to produce -NCO species, finally resulting in the suppression on the deNO_x performance of 2% Ag/Al₂O₃ catalyst (Fig. 7). Besides, the formation of nitrates was severely suppressed due to competitive adsorption of sulfates on Al₂O₃ surface (Fig. S14). However, the adsorption of nitrates on the Al sites far from Ag sites showed little effect on the reduction of NO_x as the reaction primarily occurred at the Ag sites and Ag-O-Al interface [53,54,57,58].

On the Ag/Al₂O₃ catalysts with large amounts of Ag clusters (4% Ag/Al₂O₃, 2% Ag/Al₂O₃-900, and 2% Ag/(Al₂O₃-900)), the sulfates were more mobile between Ag sites and Al sites, and were also more easily decomposed and released from the surface. The rapid mobility of sulfate species at the Ag-O-Al interface provided an opportunity for the reaction between C₃H₆, NO, and O species at the Ag sites. Hence, the above suppression induced by sulfates was weakened due to the rapid

mobility of sulfate species at the Ag-O-Al interface. Over these samples, as a result, more active sites were available for the formation of enolic species, acetates, and -NCO species, which have been observed in Fig. S13 and Fig. 7. Hence, the rapid mobility of sulfate species showed an important effect on the sulfur tolerance of Ag/Al₂O₃ catalysts. At 300 °C, the slow mobility of sulfates induced a poor sulfur tolerance of 4% Ag/Al₂O₃, which in turn confirmed the critical effect of mobility of sulfates on the sulfur tolerance of Ag/Al₂O₃. As mentioned above, the sulfate species transferred rapidly between Ag clusters and Al₂O₃ surface due to the weak affinity of Ag clusters for sulfates. Therefore, increasing the number of Ag clusters on the Ag/Al₂O₃ catalysts helps to enhance the mobility of sulfates at the Ag-O-Al interface, and thus improved the sulfur tolerance of these catalysts.

5. Conclusion

The sulfur tolerance of Ag/Al₂O₃ in the H₂-C₃H₆-SCR is governed by the mobility of sulfate species, which is closely related to the state of silver species. Highly dispersed Ag⁺ predominates on 2% Ag/Al₂O₃, while more metallic Ag clusters with large sizes are present on 4% Ag/Al₂O₃. High temperature calcination promoted the transformation of γ-Al₂O₃ into δ-Al₂O₃, which induced the aggregation of dispersed Ag⁺ cations to produce large Ag clusters on 2% Ag/Al₂O₃-900 and 2% Ag/(Al₂O₃-900). DFT calculations reveals that Ag₁ cations show strong affinity for sulfate species, resulting in blockage by sulfates at the Ag-O-Al interface on 2% Ag/Al₂O₃. Such blocking by sulfates suppressed the activation of C₃H₆ and the formation of -NCO species as well as its further transformation, thus severely inhibiting the deNO_x performance of 2% Ag/Al₂O₃. In contrast, the weak affinity of Ag clusters for sulfates led the rapid migration of sulfates between Ag clusters and Al sites. The rapid migration of sulfates at the Ag-O-Al interface had little effect on the formation of enolic species and -NCO species, and thus contributed to the excellent sulfur tolerance observed for 4% Ag/Al₂O₃, 2% Ag/Al₂O₃-900, and 2% Ag/(Al₂O₃-900). Hence, developing Ag/Al₂O₃ catalysts with more Ag clusters is crucial to improve the sulfur tolerance of HC-SCR.

Acknowledgments

This work was supported by the National Key R&D Program of China (2017YFC0211105 and 2017YFC0211101), the National Natural Science Foundation of China (21673277 and 21637005), the K.C.Wong Education Foundation, and the Youth Innovation Promotion Association, CAS (2017064).

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:<https://doi.org/10.1016/j.apcatb.2018.11.050>.

References

- [1] R. Burch, J.P. Breen, F.C. Meunier, A review of the selective reduction of NO_x with hydrocarbons under lean-burn conditions with non-zeolitic oxide and platinum group metal catalysts, *Appl. Catal. B: Environ.* 39 (2002) 283–303.
- [2] H. He, Y.B. Yu, Selective catalytic reduction of NO_x over Ag/Al₂O₃ catalyst: from reaction mechanism to diesel engine test, *Catal. Today* 100 (2005) 37–47.
- [3] K. Shimizu, K. Sawabe, A. Satsuma, Unique catalytic features of Ag nanoclusters for selective NO_x reduction and green chemical reactions, *Catal. Sci. Technol.* 1 (2011) 331–341.
- [4] Z.M. Liu, S.I. Woo, Recent advances in catalytic DeNO_x science and technology, *Catal. Rev.* 48 (2006) 43–89.
- [5] M. Barreau, M.L. Tarot, D. Duprez, X. Courtois, F. Can, Remarkable enhancement of the selective catalytic reduction of NO at low temperature by collaborative effect of ethanol and NH₃ over silver supported catalyst, *Appl. Catal. B: Environ.* 220 (2018) 19–30.
- [6] F. Gunnarsson, J.A. Pihl, T.J. Toops, M. Skoglundh, H. Harelind, Lean NO_x reduction over Ag/alumina catalysts via ethanol-SCR using ethanol/gasoline blends, *Appl. Catal. B: Environ.* 202 (2017) 42–50.
- [7] G.Y. Xu, J.Z. Ma, G.Z. He, Y.B. Yu, H. He, An alumina-supported silver catalyst with

- high water tolerance for H₂ assisted C₃H₆-SCR of NO_x, *Appl. Catal. B: Environ.* 207 (2017) 60–71.
- [8] M. Mannikko, X.T. Wang, M. Skoglundh, H. Harelind, Silver/alumina for methanol-assisted lean NO_x reduction On the influence of silver species and hydrogen formation, *Appl. Catal. B: Environ.* 180 (2016) 291–300.
- [9] P.M. More, D.L. Nguyen, M.K. Dongare, S.B. Umbarkar, N. Nuns, J.S. Girardon, C. Dujardin, C. Lancelot, A.S. Mamede, P. Granger, Rational preparation of Ag and Au bimetallic catalysts for the hydrocarbon-SCR of NO_x: Sequential deposition vs. coprecipitation method, *Appl. Catal. B: Environ.* 162 (2015) 11–20.
- [10] P.M. More, D.L. Nguyen, P. Granger, C. Dujardin, M.K. Dongare, S.B. Umbarkar, Activation by pretreatment of Ag-Au/Al₂O₃ bimetallic catalyst to improve low temperature HC-SCR of NO_x for lean burn engine exhaust, *Appl. Catal. B: Environ.* 174 (2015) 145–156.
- [11] H. Deng, Y.B. Yu, F.D. Liu, J.Z. Ma, Y. Zhang, H. He, Nature of Ag species on Ag/gamma-Al₂O₃: a combined experimental and theoretical study, *ACS Catal.* 4 (2014) 2776–2784.
- [12] T. Chaieb, L. Delannoy, G. Costentin, C. Louis, S. Casale, R.L. Chantry, Z.Y. Li, C. Thomas, Insights into the influence of the Ag loading on Al₂O₃ in the H₂-assisted C₃H₆-SCR of NO_x, *Appl. Catal. B: Environ.* 156 (2014) 192–201.
- [13] T. Chaieb, L. Delannoy, C. Louis, C. Thomas, On the origin of the optimum loading of Ag on Al₂O₃ in the C₃H₆-SCR of NO_x, *Appl. Catal. B: Environ.* 142 (2013) 780–784.
- [14] G.Y. Xu, Y.B. Yu, H. He, A Low-Temperature Route Triggered by Water Vapor during the Ethanol-SCR of NO_x over Ag/Al₂O₃, *ACS Catal.* 8 (2018) 2699–2708.
- [15] S. Satokawa, Enhancing the NO/C₃H₈/O₂ reaction by using H₂ over Ag/Al₂O₃ catalysts under lean-exhaust conditions, *Chem. Lett.* (2000) 294–295.
- [16] S. Satokawa, J. Shibata, K. Shimizu, S. Atsushi, T. Hattori, Promotion effect of H₂ on the low temperature activity of the selective reduction of NO by light hydrocarbons over Ag/Al₂O₃, *Appl. Catal. B: Environ.* 42 (2003) 179–186.
- [17] K. Shimizu, J. Shibata, A. Satsuma, Kinetic and in situ infrared studies on SCR of NO with propane by silver-alumina catalyst: role of H₂ on O₂ activation and retardation of nitrate poisoning, *J. Catal.* 239 (2006) 402–409.
- [18] P.S. Kim, M.K. Kim, B.K. Cho, I.S. Nam, S.H. Oh, Effect of H₂ on deNO_x performance of HC-SCR over Ag/Al₂O₃: Morphological, chemical, and kinetic changes, *J. Catal.* 301 (2013) 65–76.
- [19] J.P. Breen, R. Burch, C. Hardacre, C.J. Hill, C. Rioche, A fast transient kinetic study of the effect of H₂ on the selective catalytic reduction of NO_x with octane using isotopically labelled (NO)-N-15, *J. Catal.* 246 (2007) 1–9.
- [20] C. Thomas, On an additional promoting role of hydrogen in the H₂-assisted C₃H₆-SCR of NO_x on Ag/Al₂O₃: A lowering of the temperature of formation-decomposition of the organo-NO_x intermediates? *Appl. Catal. B: Environ.* 162 (2015) 454–462.
- [21] L. Strom, P.A. Carlsson, M. Skoglundh, H. Harelind, Hydrogen-assisted SCR of NO_x over alumina-supported silver and indium catalysts using C₂-hydrocarbons and oxygenates, *Appl. Catal. B: Environ.* 181 (2016) 403–412.
- [22] Y.B. Yu, Y. Li, X.L. Zhang, H. Deng, H. He, Y.Y. Li, Promotion effect of H₂ on ethanol oxidation and NO reduction with ethanol over Ag/Al₂O₃ catalyst, *Environ. Sci. Technol.* 49 (2015) 481–488.
- [23] F. Gunnarsson, M.Z. Granlund, M. Englund, J. Dawody, L.J. Pettersson, H. Harelind, Combining HC-SCR over Ag/Al₂O₃ and hydrogen generation over Rh/CeO₂-ZrO₂ using biofuels: an integrated system approach for real applications, *Appl. Catal. B: Environ.* 162 (2015) 583–592.
- [24] M.M. Azis, H. Harelind, D. Creaser, On the role of H₂ to modify surface NO_x species over Ag-Al₂O₃ as lean NO_x reduction catalyst: TPD and DRIFTS studies, *Catal. Sci. Technol.* 5 (2015) 296–309.
- [25] P.S. Hammershoi, A.D. Jensen, T.V.W. Janssens, Impact of SO₂-poisoning over the lifetime of a Cu-CHA catalyst for NH₃-SCR, *Appl. Catal. B: Environ.* 238 (2018) 104–110.
- [26] P.S. Hammershoi, Y. Jiangou, W.S. Epling, A.D. Jensen, T.V.W. Janssens, Reversible and irreversible deactivation of Cu-CHA NH₃-SCR catalysts by SO₂ and SO₃, *Appl. Catal. B: Environ.* 226 (2018) 38–45.
- [27] K. Wijayanti, K.P. Xie, A. Kumar, K. Kamasamudram, L. Olsson, Effect of gas compositions on SO₂ poisoning over Cu/SSZ-13 used for NH₃-SCR, *Appl. Catal. B: Environ.* 219 (2017) 142–154.
- [28] K. Shimizu, T. Higashimata, M. Tsuzuki, A. Satsuma, Effect of hydrogen addition on SO₂ tolerance of silver-alumina for SCR of NO with propane, *J. Catal.* 239 (2006) 117–124.
- [29] F.C. Meunier, J.R.H. Ross, Effect of ex situ treatments with SO₂ on the activity of a low loading silver-alumina catalyst for the selective reduction of NO and NO₂ by propene, *Appl. Catal. B: Environ.* 24 (2000) 23–32.
- [30] T.N. Angelidis, S. Christoforou, A. Bongiovanni, N. Kruse, On the promotion by SO₂ of the SCR process over Ag/Al₂O₃: influence of SO₂ concentration with C₃H₆ versus C₃H₈ as reductant, *Appl. Catal. B: Environ.* 39 (2002) 197–204.
- [31] P.W. Park, C.L. Boyer, Effect of SO₂ on the activity of Ag/gamma-Al₂O₃ catalysts for NO_x reduction in lean conditions, *Appl. Catal. B: Environ.* 59 (2005) 27–34.
- [32] K.I. Shimizu, M. Tsuzuki, A. Satsuma, Effects of hydrogen and oxygenated hydrocarbons on the activity and SO₂-tolerance of Ag/Al₂O₃ for selective reduction of NO, *Appl. Catal. B: Environ.* 71 (2007) 80–84.
- [33] P.M. More, N. Jagtap, A.B. Kulal, M.K. Dongare, S.B. Umbarkar, Magnesia doped Ag/Al₂O₃ - Sulfur tolerant catalyst for low temperature HC-SCR of NO_x, *Appl. Catal. B: Environ.* 144 (2014) 408–415.
- [34] V. Houel, P. Millington, S. Pollington, S. Poulsom, R.R. Rajaram, A. Tsolakis, Chemical deactivation of Ag/Al₂O₃ by sulphur for the selective reduction of NO_x using hydrocarbons, *Catal. Today* 114 (2006) 334–339.
- [35] S.X. Xie, J. Wang, H. He, Poisoning effect of sulphate on the selective catalytic reduction of NO_x by C₃H₆ over Ag-Pd/Al₂O₃, *J. Mol. Catal. A: Chem.* 266 (2007) 166–172.
- [36] J.H. Li, Y.Q. Zhu, R. Ke, J.M. Hao, Improvement of catalytic activity and sulfur-resistance of Ag/TiO₂-Al₂O₃ for NO_x reduction with propane under lean burn conditions, *Appl. Catal. B: Environ.* 80 (2008) 202–213.
- [37] Y. Shi, H. Pan, Y.T. Zhang, W. Li, Promotion of MgO addition on SO₂ tolerance of Ag/Al₂O₃ for selective catalytic reduction of NO_x with methane at low temperature, *Catal. Commun.* 9 (2008) 796–800.
- [38] G.Y. Xu, Y.B. Yu, H. He, Silver Valence State Determines the Water Tolerance of Ag/Al₂O₃ for the H₂-C₃H₆-SCR of NO_x, *J. Phys. Chem. C* 122 (2018) 670–680.
- [39] M. Digne, P. Sautet, P. Raybaud, P. Ezuen, H. Toulhoat, Hydroxyl groups on gamma-alumina surfaces: a DFT study, *J. Catal.* 211 (2002) 1–5.
- [40] M. Digne, P. Sautet, P. Raybaud, P. Ezuen, H. Toulhoat, Use of DFT to achieve a rational understanding of acid-basic properties of gamma-alumina surfaces, *J. Catal.* 226 (2004) 54–68.
- [41] D.Y. Yoon, J.H. Park, H.C. Kang, P.S. Kim, I.S. Nam, G.K. Yeo, J.K. Kil, M.S. Cha, DeNO_x performance of Ag/Al₂O₃ catalyst by n-dodecane: Effect of calcination temperature, *Appl. Catal. B: Environ.* 101 (2011) 275–282.
- [42] Y. Yan, Y.B. Yu, H. He, J.J. Zhao, Intimate contact of enolic species with silver sites benefits the SCR of NO_x by ethanol over Ag/Al₂O₃, *J. Catal.* 293 (2012) 13–26.
- [43] J. Shibata, K. Shimizu, Y. Takada, A. Shichi, H. Yoshida, S. Satokawa, A. Satsuma, T. Hattori, Structure of active Ag clusters in Ag zeolites for SCR of NO by propane in the presence of hydrogen, *J. Catal.* 227 (2004) 367–374.
- [44] J. Shibata, Y. Takada, A. Shichi, S. Satokawa, A. Satsuma, T. Hattori, Ag cluster as active species for SCR of NO by propane in the presence of hydrogen over Ag-MFI, *J. Catal.* 222 (2004) 368–376.
- [45] K.A. Bethke, H.H. Kung, Supported Ag catalysts for the lean reduction of NO with C₃H₆, *J. Catal.* 172 (1997) 93–102.
- [46] M. Richter, U. Bentrup, R. Eckelt, M. Schneider, M.M. Pohl, R. Fricke, The effect of hydrogen on the selective catalytic reduction of NO in excess oxygen over Ag/Al₂O₃, *Appl. Catal. B: Environ.* 51 (2004) 261–274.
- [47] T. Furusawa, K. Seshan, J.A. Lercher, L. Lefferts, K. Aika, Selective reduction of NO to N₂ in the presence of oxygen over supported silver catalysts, *Appl. Catal. B: Environ.* 37 (2002) 205–216.
- [48] Q. Wu, H.W. Gao, H. He, Conformational analysis of sulfate species on Ag/Al₂O₃ by means of theoretical and experimental vibration spectra, *J. Phys. Chem. B* 110 (2006) 8320–8324.
- [49] Z.M. Wang, M. Yamaguchi, I. Goto, M. Kumagai, Characterization of Ag/Al₂O₃ deNO_x catalysts by probing surface acidity and basicity of the supporting substrate, *Phys. Chem. Chem. Phys.* 2 (2000) 3007–3015.
- [50] M.K. Kim, P.S. Kim, J.H. Baik, I.S. Nam, B.K. Cho, S.H. Oh, DeNO_x performance of Ag/Al₂O₃ catalyst using simulated diesel fuel-ethanol mixture as reductant, *Appl. Catal. B: Environ.* 105 (2011) 1–14.
- [51] Y.B. Yu, X.P. Song, H. He, Remarkable influence of reductant structure on the activity of alumina-supported silver catalyst for the selective catalytic reduction of NO_x, *J. Catal.* 271 (2010) 343–350.
- [52] Y.B. Yu, H. He, Q.C. Feng, H.W. Gao, X. Yang, Mechanism of the selective catalytic reduction of NO_x by C₂H₅OH over Ag/Al₂O₃, *Appl. Catal. B: Environ.* 49 (2004) 159–171.
- [53] N. Bion, J. Saussey, M. Haneda, M. Daturi, Study by in situ FTIR spectroscopy of the SCR of NO_x by ethanol on Ag/Al₂O₃ - Evidence of the role of isocyanate species, *J. Catal.* 217 (2003) 47–58.
- [54] S. Tamm, H.H. Ingelsten, A.E.C. Palmqvist, On the different roles of isocyanate and cyanide species in propene-SCR over silver/alumina, *J. Catal.* 255 (2008) 304–312.
- [55] H. Deng, Y.B. Yu, H. He, Discerning the Role of Ag-O-Al Entities on Ag/gamma-Al₂O₃Surface in NO_x Selective Reduction by Ethanol, *J. Phys. Chem. C* 119 (2015) 3132–3142.
- [56] D.E. Doronkin, T.S. Khan, T. Bligaard, S. Fogel, P. Gabrielsson, S. Dahl, Sulfur poisoning and regeneration of the Ag/gamma-Al₂O₃ catalyst for H₂-assisted SCR of NO_x by ammonia, *Appl. Catal. B: Environ.* 117 (2012) 49–58.
- [57] F. Thibault-Starzyk, E. Seguin, S. Thomas, M. Daturi, H. Arnolds, D.A. King, Real-Time Infrared Detection of Cyanide Flip on Silver-Alumina NO_x Removal Catalyst, *Science* 324 (2009) 1048–1051.
- [58] S. Chansai, R. Burch, C. Hardacre, J. Breen, F. Meunier, The use of short time-on-stream in situ spectroscopic transient kinetic isotope techniques to investigate the mechanism of hydrocarbon selective catalytic reduction (HC-SCR) of NO_x at low temperatures, *J. Catal.* 281 (2011) 98–105.