2.

polynucleotide is incorporated into a genetic vaccine vector.

1

1

2

3

1

2

3

4

1

2

3 4

5

6

1	1. A method for obtaining a polynucleoxide that has a modulatory effect on
2	an immune response, or encodes a polypeptide that has a modulatory effect on an immune
3	response, that is induced by a genetic vaccine vector, the method comprising:
4	creating a library of recombinant polynucleotides; and
5	screening the library to identify an optimized recombinant
6	polynucleotide that has, or encodes a polypeptide that has, a modulatory effect on an
7	immune response induced by a genetic vaccine ector;
8	wherein the optimized recombinant polynucleotide or the polypeptide
9	encoded by the recombinant polynucleotide exhibits an enhanced ability to modulate an
0	immune response compared to a non-recombinant polynucleotide from which the library was
1	created.

The method of claim 1, wherein the optimized recombinant 3. polynucleotide, or a polypeptide incoded by the optimized recombinant polynucleotide, is administered in conjunction with a genetic vaccine vector.

The method of claim 1, wherein the optimized recombinant

- The method of claim 1, wherein the library of recombinant 4. polynucleotides is created by a process selected from the group consisting of DNA shuffling, error-prone PCR, oligonucleotide-directed mutagenesis, uracil-mediated mutagenesis, and repair-deficient host mutagenesis.
- 5. The method of claim 1, wherein the polynucleotide that has a modulatory effect on an immune response is obtained by:
- (1) recombining at least first and second forms of a nucleic acid that is, or encodes a molecule that is, involved in modulating an immune response, wherein the first and second forms differ from each other in two or more nucleotides, to produce a library of recombinant polynu¢leotides; and

7	(2) screening the library to identify at least one optimized recombinant
8	polynucleotide that exhibits, either by itself or through the encoded molecule, an enhanced
9	ability to modulate an immune response than a form of the nucleic acid from which the
10	library was created.
1	6. The method of claim 5, wherein the method further comprises the steps
2	of:
3	(3) recombining at least one optimized recombinant polynucleotide
4	with a further form of the nucleic acid, which is the same or different from the first and
5	second forms, to produce a further library of recombinant polynucleotides;
6	(4) screening the further library to identify at least one further
7 7 8 9	optimized recombinant polynucleotide that exhibits an enhanced ability to modulate an
.E 8	immune response than a form of the nucleic acid from which the library was created.; and
9	(5) repeating (3) and (4), as necessary, until the further optimized
¹ºº10	recombinant polynucleotide exhibits an further enhanced ability to modulate an immune
==11 -==	response than a form of the nucleic acid from which the library was created.
1 1 2 2	7. The method of claim 1, wherein the optimized recombinant
2	polynucleotide encodes a peptide or polypeptide that can interact with a cellular receptor
3	involved in mediating an invalue response, wherein the peptide or polypeptide acts as an
4	agonist or antagonist of the receptor.
. 1	8. The method of eaim 7, wherein the cellular receptor is a macrophage
2	scavenger receptor.
1	9. The method of claim 7, wherein the cellular receptor is selected from
2	the group consisting of a cytokine receptor and a chemokine receptor.
1	10. The method of claim 9, wherein the chemokine receptor is CCR6.

1	11. The method of claim 7, wherein the peptide or polypeptide mimics the
2	activity of a natural ligand for the receptor but does not induce immune reactivity to the
3	natural ligand.
1	12. The method of claim 7, wherein the library is screened by:
2	expressing the recombinant polynucleotides so that the encoded
3	peptides or polypeptides are produced as fusions with a protein displayed on the surface of a
4	replicable genetic package;
5	contacting the replicable genetic packages with a plurality of cells that
6	display the receptor; and
7	identifying cells that exhibit a modulation of an immune response
8	mediated by the receptor.
1	13. The method of claim 12, wherein the replicable genetic package is
2	selected from the group consisting of a bacteriophage, a cell, a spore, and a virus.
1	14. The method of claim 13, wherein the replicable genetic package is an
2	M13 bacteriophage and the protein is encoded by geneIII or geneVII.
1	15. The method of claim 7, which method further comprises introducing the
2	optimized recombinant polynucleotide into a genetic vaccine vector and administering the
3	vector to a mammal, wherein the peptide or polypeptide is expressed and acts as an agonist
4	or antagonist of the receptor.
1	16. The method of claim , which method further comprises producing the
2	peptide or polypeptide encoded by the optimized recombinant polynucleotide and
3	introducing the peptide or polypeptide into a mammal in conjunction with a genetic vaccine
4	vector.
1	17. The method of claim 7, wherein the optimized recombinant
2	polynucleotide is inserted into an antigen-encoding nucleotide sequence of a genetic vaccine
3	vector.

1	18. The method of claim 17, wherein the optimized recombinant
2	polypeptide is introduced into a nucleotide sequence that encodes an M-loop of an HBsAg
3	polypeptide.
1	19. The method of claim 1, wherein the optimized recombinant
2	polynucleotide comprises a nucleotide sequence rich in unmethylated CpG.
1	20. The method of claim 1, wherein the optimized recombinant
2	polynucleotide encodes a polypeptide that inhibits an allergic reaction.
1	21. The method of claim 20, wherein the polypeptide is selected from the
2	group consisting of interferon-α, interferon-γ, IL-10, IL-12, an antagonist of IL-4, an
3	antagonist of IL-5, and an antagonist of IL-13.
1	22. The method of 1, wherein the optimized recombinant polynucleotide
2	encodes an antagonist of II-10.
1	23. The method of claim 22, wherein the antagonist of IL-10 is soluble or
2	defective IL-10 receptor or IL-20/MDA-7.
1	24. The method of claim 1, wherein the optimized recombinant
2	polynucleotide encodes a costimulator
1	25. The method of claim 24, wherein the costimulator is B7-1 (CD80) or
2	B7-2 (CD86) and the screening step involves selecting variants with altered activity through
3	CD28 or CTLA-4.
1	26. The method of claim 24, wherein the costimulator is CD1, CD40,
2	CD154 (ligand for CD40) or CD150 (SLAM).
1	27. The method of claim 24, wherein the costimulator is a cytokine.

		· · · · · · · · · · · · · · · · · · ·
	1	28. The method of claim 27, wherein the cytokine is selected from the
	2	group consisting of IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12,
	3	IL-13, IL-14, IL-15, IL-16, IL-1 $$, IL-18, GM-CSF, G-CSF, TNF- α , IFN- α , IFN- γ , and IL-
	4	20 (MDA-7).
	1	29. The method of 28, wherein the library of recombinant polynucleotides
	2	is screened by testing the ability of cytokines encoded by the recombinant polynucleotides to
	3	activate cells which contain a receptor for the cytokine.
dining.	1	30. The method of claim 29, wherein the cells contain a heterologous
Your flow Your	2	nucleic acid that encodes the receptor for the cytokine.
H H H	1	31. The method of 28, wherein the cytokine is interleukin-12 and the
int the	2	screening is performed by:
.	3	growing mammalian cells which contain the genetic vaccine vector in a
L	4	culture medium; and
	5	detecting whether T cell proliferation or T cell differentiation is induced
dint this	6	by contact with the culture/medium.
	1	32. The method of 28 wherein the cytokine is interferon-α and the
	2	screening is performed by:
	3	expressing the recombinant polynucleotides so that the encoded
	4	peptides or polypeptides are produced as fusions with a protein displayed on the surface of a
	5	replicable genetic package;
	6	contacting the replicable genetic packages with a plurality of B cells;
	7	and
	8	identifying phage library members that are capable of inhibiting
	9	proliferation of the B cells.
	1	33. The method of claim 28, wherein the immune response of interest is
	2	differentiation of T cells to T _H 1 cells and the screening is performed by contacting a

1

2

3

response.

39.

population of T cells with the cytokines encoded by the members of the library of 3 recombinant polynucleotides and identifying library members that encode a cytokine that 4 induces the T cells to produce IL-2 and interferon-y. 5 1 The method of claim 27, wherein the cytokine encoded by the optimized 2 recombinant polynucleotide exhibits reduced immunogenicity compared to a cytokine encoded by a non-optimized polynucleotide, and the reduced immunogenicity is detected by 3 4 introducing a cytokine encoded by the recombinant polynucleotide into a mammal and determining whether an immune response is induced against the cytokine. 5 35. The method of claim 24, wherein the costimulator is B7-1 (CD80) or 1 B7-2 (CD86) and the cell is tested for ability to costimulate an immune response. 2 The method of daim, 1, wherein the optimized recombinant 1 2 polynucleotide encodes a cytokine antagonist. The method of claim 36, wherein the cytokine antagonist is selected 1 from the group consisting of a soluble cytokine receptor and a transmembrane cytokine 2 3 receptor having a defective signal sequence. The method of claim 36, wherein the cytokine antagonist is selected 1 38. 2 from the group consisting of ΔIL -10R and ΔIL -4R.

1 40. The method of claim 1, wherein the optimized recombinant
2 polynucleotide encodes a polypeptide capable of inducing a predominantly T_H2 immune
3 response.

polynucleotide encodes a polypeptide capable of inducing a predominantly T_H1 immune

The method of claim 1, wherein the optimized recombinant

1	41. A method for obtaining a polyhodieotide that encodes an accessory
2	molecule that improves the transport or presentation of antigens by a cell, the method
3	comprising:
4	creating a library of recombinant polynucleotides by subjecting to
5	recombination nucleic acids that encode all or part of the accessory molecule; and
6	screening the library to identify an optimized recombinant
7	polynucleotide that encodes a recombinant accessory molecule that confers upon a cell an
8	increased or decreased ability to transport or present an antigen on a surface of the cell
9	compared to an accessory molecule encoded by the non-recombinant nucleic acids.
1	42. The method of claim 41, wherein the screening involves:
2	introducing the library of recombinant polynucleotides into a genetic
3	vaccine vector that encodes an antigen to form a library of vectors;
4	introducing the library of vectors into mammalian cells; and
5	identifying maminalian cells that exhibit increased or decreased
6	immunogenicity to the antigen
1	43. The method of claim 41, wherein the accessory molecule comprises a
2	proteasome or a TAP polypeptide.
1	44. The method of claim 41, wherein the accessory molecule comprises a
2	cytotoxic T-cell inducing sequence.
1	45. The method of claim 44, wherein the cytotoxic T-cell inducing
2	sequence is obtained from a hepatitis B surface antigen.
1	46. The method of claim 4, wherein the accessory molecule comprises an
2	immunogenic agonist sequence.