컴퓨터구조 HW2

중요!

제출 파일중 202002398lru.c는 lru 알고리즘을 적용한 코드이고, 202002398radom.c는 랜덤 알고리즘을 적용한 코드입니다.

202002398 이도환

2.1

캐시 블록 구조체(CacheBlock) 정의

valid: 캐시 블록이 유효한지 여부를 나타냅니다.

tag: 태그 비트로, 메모리 주소의 일부분을 저장합니다.

timestamp: LRU(Least Recently Used) 알고리즘을 구현하기 위한 시간 값을 저장합니다.

dirty: 쓰기 동작이 발생했는지 여부를 나타냅니다.

글로벌 변수 정의

time_count: LRU 알고리즘을 구현하기 위한 시간 카운터.

total_set: 캐시의 세트 수.

i_total, i_miss: instruction 캐시의 총 접근 횟수 및 miss 횟수.

d total, d miss, d write: data 캐시의 접근 횟수, miss 횟수 및 메모리 쓰기 횟수.

trace: 메모리 접근 트레이스를 저장하는 배열.

trace_length: 트레이스 길이.

instruction_cache, data_cache: instruction 캐시 및 data 캐시 배열.

main 함수

입력으로부터 트레이스를 읽어와 trace 배열에 저장합니다.

다양한 캐시 크기, 블록 크기, 연관도 조합에 대해 캐시 시뮬레이션을 수행합니다.

각 조합에 대해 solution 함수를 호출하여 결과를 출력합니다.

solution 함수

캐시 크기, 블록 크기, 연관도를 매개변수로 받아 캐시를 초기화합니다.

트레이스의 각 접근에 대해 읽기(read_op), 쓰기(write_op), 인스트럭션 페치(fetch_inst)를 수행합니다.

각 동작이 끝난 후 miss rate와 메모리 쓰기 횟수를 계산하여 출력합니다.

시뮬레이션이 끝난 후 캐시 메모리를 해제합니다.

read_op 함수

주어진 주소에 대해 데이터 캐시에서 읽기 동작을 수행합니다.

캐시 히트 시 타임스탬프를 업데이트하고, miss 시 LRU 알고리즘을 사용하여 교체 블록을 결정합니다.

write_op 함수

주어진 주소에 대해 데이터 캐시에서 쓰기 동작을 수행합니다.

캐시 히트 시 타임스탬프를 업데이트하고, miss 시 LRU 알고리즘을 사용하여 교체 블록을 결정합니다.

쓰기 동작의 경우 해당 블록을 dirty 상태로 설정합니다.

fetch inst 함수

주어진 주소에 대해 인스트럭션 캐시에서 페치 동작을 수행합니다.

캐시 히트 시 타임스탬프를 업데이트하고, miss 시 LRU 알고리즘을 사용하여 교체 블록을 결정합니다.

find Iru block 함수

LRU 알고리즘에 따라 가장 오랫동안 사용되지 않은 블록을 찾습니다.

update_timestamp 함수

주어진 블록을 제외한 모든 블록의 타임스탬프를 증가시키고, 사용된 블록의 타임스탬프 를 0으로 설정합니다.

2.2 결과 표

Trace1.txt 결과 표

he size	block size	ass ass	ociative u-iniss	rate i-miss rate	men
1024	16	1	0.2376 0.2133	2636	
1024	16	2	0.1625 0.2064	1623	
1024	16	4	0.1503 0.2101	1461	
1024	16	8	0.1445 0.2118	1409	
1024	64	1	0.2731 0.0941	2856	
1024	64	2	0.1936 0.0920	1916	
1024	64	4	0.1670 0.0917	1467	
1024	64	8	$0.1649\ 0.0924$	1436	
2048	16	1	$0.1928\ 0.1704$	2080	
2048	16	2	0.1219 0.1579	1126	
2048	16	4	0.1122 0.1518	1008	
2048	16	8	0.1095 0.1517	998	
2048	64	1	0.2189 0.0738	2368	
2048	64	2	0.1329 0.0715	1140	
2048	64	4	0.1159 0.0713	847	
2048	64	8	0.1080 0.0734	778	
4096	16	1	0.1064 0.1304	902	
4096	16	2	0.0904 0.1136	728	
4096	16	4	0.0829 0.1075	660	
4096	16	8	0.0810 0.1012	651	
4096	64	1	0.1048 0.0575	831	
4096	64	2	0.0876 0.0502	578	
4096	64	4	0.0752 0.0480	461	
4096	64	8	0.0712 0.0469	425	
8192	16	1	0.0773 0.1087	536	
8192	16	2	0.0611 0.0832	288	
8192	16	4	0.0544 0.0783	244	
8192	16	8	0.0506 0.0766	217	
8192	64	1	0.0701 0.0488	507	
8192	64	2	0.0537 0.0359	281	
8192	64		0.0490 0.0330	239	
8192	64	8		230	
16384	16	1		191	
16384	16	2		107	
16384	16	4		31	
16384	16	- 8		21	
16384	64	1		213	
16384	64	2		115	
16384	64	4		85	
16384	64	-	0.0201 U.0234	0.5	

Trace2.txt 결과 표

che size	block size	e ass	ociative d-miss	rate i-mis	s rate mem w
1024	16	1	0.1335 0.0937	1177	
1024	16	2	0.0596 0.0941	531	
1024	16	4	0.0482 0.0790	398	
1024	16	8	0.0467 0.0776	379	
1024	64	1	0.1378 0.0521	1305	
1024	64	2	0.0662 0.0536	674	
1024	64	4	0.0504 0.0438	489	
1024	64	8	0.0503 0.0451	430	
2048	16	1	0.0445 0.0583	315	
2048	16	2	0.0362 0.0527	253	
2048	16	4	0.0359 0.0398	253	
2048	16	8	0.0353 0.0378	241	
2048	64	1	0.0314 0.0353	220	
2048	64	2	0.0250 0.0305	183	
2048	64	4	0.0234 0.0247	170	
2048	64	8	0.0193 0.0216	126	
4096	16	1	0.0310 0.0421	152	
4096	16	2	0.0214 0.0294	87	
4096	16	4	0.0172 0.0272	56	
4096	16	8	0.0165 0.0275	49	
4096	64	1	0.0229 0.0200	151	
4096	64	2	0.0135 0.0150	69	
4096	64	4	0.0144 0.0109	78	
4096	64	8	0.0137 0.0111	81	
8192	16	1	0.0229 0.0249	77	
8192	16	2	0.0162 0.0210	19	
8192	16	4	0.0145 0.0188	4	
8192	16	8	0.0145 0.0195	3	
8192	64	1	0.0144 0.0116	79	
8192	64	2	0.0077 0.0096	19	
8192	64	4	0.0062 0.0081	11	
8192	64	8	0.0057 0.0082	3	
16384	16	1	0.0172 0.0158	36	
16384	16	2		9	
16384	16	4		0	
16384	16	8		0	
16384	64	1	0.0075 0.0068	24	
16384	64	2		9	
16384	64	4		0	
16384	64	8		0	

2.3 캐시 크기가 증가할수록 missrate는 감소합니다. 또한 연관도가 높을수록 miss rate가 낮아지는 경향을 파악할 수 있습니다.

LRU 알고리즘

I cache 16byte

I cache 64byte

D cache 16byte

D cache 64byte

랜덤 알고리즘

I cache 16byte

I cache 64byte

D cache 16byte

D cache 64byte

