Funktionenfolsea & - reihen

CIR: (f.) eine Folge von Funktionen f: D-

Sei
$$\emptyset \neq 0 \subseteq \mathbb{R}$$
; (f_n) eine Folse von Funktionen $f_n: D \to \mathbb{R}$ uncl $s_n:=f_n:f_n+f_n$ $(n\in\mathbb{N})$

Ochn ist
$$f(x) := \lim_{n\to\infty} f_n(x)$$
 $(x \in D)$
die Grenz funktion von (f_n) .

Dan ist
$$f(x) := \sum_{n=1}^{\infty} f_n(x)$$
 (xe0)
die Summenfunktion von (f_n) .

 $D = \begin{bmatrix} 0.1 \end{bmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} n \\ 1 \end{pmatrix} \qquad \begin{pmatrix} n$

Beispiel:

D = [0,1];
$$f_n(x) = x^n$$
 $(n \in \mathbb{N})$. Es gilt:
$$f(x) := \begin{cases} 0, & 0 \le x < 1 \\ 1, & x = 1 \end{cases}$$

$$f_n$$
 konvergiert auf [0,1] punktweise gegen f .

Bemerkung: Punktweise Konvergenz von (f_n) auf D gegen f bedeutet:

$$\forall x \in D \quad \forall \varepsilon > 0 \quad \exists n_0 = n_0(\varepsilon, x) \in \mathbb{N} \quad \forall n \ge n_0 : |f_n(x) - f(x)| < \varepsilon.$$

$$\sum_{n=1}^{\infty} f_n \quad \text{konveyie t} \quad \text{cent} \quad 0 \quad \text{gleichmitpig} \quad \text{gegen} \quad f: D \to \mathbb{R}$$

$$\iff \forall f > 0 \quad \exists n = n \ (\xi) \in \mathbb{N} \quad \forall n \geq n \quad \forall x \in \mathbb{R}; \quad | (x) - f(x) = f(x$$

$$(\exists) \ \forall \varepsilon > 0 \ \exists n_o = n_o(\varepsilon) \in \mathbb{N} \quad \forall n \ge n_o \quad \forall x \in D: \quad |s_n(x) - f(x)| < \varepsilon$$

Kriterieu Folge (f_n) konvegier aut 0 pullebreise gegen $f: D \rightarrow \mathbb{R}$, Folge (α_n) mit $\alpha_n \rightarrow 0$, m $\in \mathbb{N}$ and es selfe $\forall n \geq m \ \forall x \in D: \ |f_n(x) - f(x)| \leq \alpha_n$ Och konvesiat (dn) aut D gleichmißig gegen f. Kriteium von Weierstraß Sei m & N (Cn) eine Folse in [0, 00), Z Cn leonusent und $\forall n \geq m \quad \forall x \in 0: \quad |f_n(x)| \leq c_n$ Dan konveriet of for aut O gleichmißig Sei $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ eine Potenzreik mit Konvegerzredius r>0, $D:=(x_0-r,x_0+r)$. Falls [a,b] [0, so lonvegint die Potenneile auf [a,b] skichmifis. (fu) / Efu leonveriere sleichmifts segn f:0-> 1R: Sind alle for in x o EO statis, so ist fin x o statis Sind able $f_n \in C(0)$, so is $f \in C(0)$. Falls (f,) punktuise some f konveyient und the N: f, EC(D): f \$ ((D) => fn konveyor t nicht sktig Falls Xo ein Hautusspunlet ist: (im ((im fn(x)) = lim ((im fn(x)))

Identifätssatz für Potenzreihen

$$= \left(\begin{array}{c} x_0 - x_0 \end{array} \right) \quad \text{eise Potentreile mit Kongantradius } > 0$$

$$= \left(\begin{array}{c} x_0 - r \\ x_0 - r \end{array} \right)$$

$$f(x) := \sum_{n=0}^{\infty} a_n (x - x_0)^n (x \in \mathbb{D})$$

$$(x_{ii}) \text{ Folse in } \mathbb{D} \setminus \{x_0\} \text{ mit } x_{ii} - x_0 \text{ und } f(x_{ii}) = 0 \text{ ($k \in \mathbb{N}$)}.$$

$$(x_{ik}) \text{ tolge in } D \setminus \{x_0\} \text{ mit } x_{ik} - x_0 \text{ und } f(x_{ik}) = 0 \text{ (keW)}$$

$$Dann:$$

$$\forall n \in \mathbb{N}_0: \quad \alpha_n = 0$$

$$\forall n \in N_0$$
: $\alpha_n = 0$

	ANEWS:	$\alpha_n = 0$			
:	.h.,		6/4/50	IN C D	

ONEWO.	ah - 0			
inspeco de		1 8/11-0	/veD	

insbesonder;	r = ∞	und f(x) = 0	(× ∈ R	
V W C/V D	och -			

	V V		י י		١ .													
						'												
ius	beso	Lde	11.	r:	: ∞)	uru	lı	f [x	() =	0	1	XE	R				