47/18

FACULTY OF COMPUTING SEMESTER 1 2023/2024

SECI1013 - DISCRETE STRUCTURE

SECTION 3

ASSIGNMENT 1 - CHAPTER 1

LECTURER: DR. NOR HAIZAN BT MOHAMED RADZI

STUDENT NAME	MATRIC NO
LAU YEE WEN	A23CS0099
GUI KAH SIN	A23CS0080

Assignment

1. a) i)

F = students have Facebook account

I = students have Instagram account

T = students have Twitter account

2

Total students = 150

Total Facebook users = 65

Total Instagram users = 58

Total Twifter users = 50

ii) students do not have an account in any three social networks

2

iii) students have exactly two social networks

1

iv) students have social media account other than Facebook

2

i)
$$A = \{3, 5, 7, 9\}$$
 $B = \{2, 3, 5, 7\}$
 $C = \{3, 6, 9\}$
 $|A| = 4$
 $|B| = 4$
 $|C| = 3$

$$C \times B = \{ (3,2), (3,3), (3,5), (3,7), (6,3), (6,5), (6,5), (6,1), (9,2), (9,3), (9,5), (9,1) \}$$

Truth table:

TIVITI	1 table					1
P	9	~(pva)	(~ paq)	~ (pvq)v(~pnq)	~p	
Т	Т	F	F	F	F	
Т	F	F	Ľ.	F	F	/
F	Т	F	T	T	۲/	
F	F	, T	F	٦.	A	

Logic property law:

~
$$(pvq)v(\sim pAq) = (\sim pA\sim q)v(\sim pAq)$$
 De Morgan's Laws
= $\sim pA(\sim qvq)$ Distributive Laws
= $\sim pAU$
= $\sim p$
 $\therefore \sim (pvq)v(\sim pAq) \equiv \sim p$

(iii)
$$\sim p \rightarrow \sim (r \vee q)$$

 $\equiv \sim p \rightarrow (\sim r \wedge \sim q)$

(c) Negation of
$$\forall n (n^2 + 2n - 3 = 0) = \exists n (\sim (n^2 + 2n - 3 = 0))$$

The domain of discourse is integer x & Z

If
$$n=2$$
 , $n^2+2x-3 = (2)^2+2(2)-3$
= 5 (+0)
(shown)

- The statement $\exists x (\sim (x^2+2n-3=0))$ is TRUE.

(d) Let
$$P(x)$$
: x is student who can speak Rusian.

Q(X): 2 is student who know C++.

The domain of discourse consist of all students at school.

3-(a) For all integer, if a^2-3b is even, then a is even and b is even.

let P(x): a2-3b is even.

a(a): a is even and b is even

 $\forall n (P(x) \rightarrow Q(x))$

V

$$P(n) \rightarrow Q(n) \equiv \sim Q(n) \rightarrow \sim P(n)$$

Assume $\sim Q(n)$ is true, if a is odd or b is odd, then a^2-3b is odd.

- Case 1: a is even and b is odd

- Case 2: a is odd and b is even

-Case 3: a is odd and b is odd

ase 1 = if a is even and b is odd, let a = 2k, b=2n+1

$$q^2-3b = (2k)^2 - 3(2n+1)$$

$$=4k^2-6n-3$$

$$=4k^2-6n-4+1$$

$$= 2(2k^2-3n-2)+1$$

let m = 2k2-3n-2

$$a^2 - 3b = 2m + 1$$
 (odd)

: Since 2m+1 is an odd integer, thus the statement is true. $\sim Q(x)$ is true, $\sim P(x)$ is true.

se $2 = if \ a$ is odd and b is even, let a = 2n+1, b = 2k

$$q^{2}-3b = (2n+1)^{2}-3(2k)$$

= $4n^{2}+4n+1-6k$
= $2(2n^{2}+2n-3k)+1$
Let $m = 2n^{2}+2n-3k$

$$a^2 - 3b = 2m + 1$$
 (odd)

-: Since a^2-3b is an odd integer, thus the statement is true. $\sim Q(x)$ is true, $\sim P(x)$ is true.

Case 3: if a is odd and b is odd, let a = 2k+1, b=2m+1

$$a^{2}-3b = (2k+1)^{2} - 3(2m+1)$$

$$= 4k^{2} + 4k + 1 - 6m - 3$$

$$= 4k^{2} + 4k - 6m - 2$$

$$= 2(2k^{2} + 2k - 3m - 1)$$

$$let m = 2k^{2} + 2k - 3m - 1$$

$$q^{2}-3b = 2m \text{ (even)}$$

: Since q^2-3b is an even integer, thus the statement is false. $\sim Q(n)$ is true, $\sim P(n)$ is false, $\sim Q(n) \Rightarrow \sim P(n)$ is talse.

.. The theorem is FALSE.

