Лекция 3 Эволюция архитектуры ЭВМ

Ефимов Александр Владимирович E-mail: alexandr.v.efimov@sibguti.ru

Курс «Архитектура вычислительных систем» СибГУТИ, 2020

Понятие архитектуры

Архитектура ЭВМ — совокупность свойств и характеристик ЭВМ, призванных удовлетворить потребности пользователей

Архитектура вычислительного средства — это совокупность его свойств и характеристик

Архитектура вычислительного средства — это концепция взаимосвязи и функционирования его аппаратурных (Hardware) и программных (Software) компонентов

Модель вычислителя

$$c = < h, a >$$

h – конструкция вычислителя

а – алгоритм его работы

D – исходные данные

p – программа

$$h = \langle U, g \rangle$$

 $U = \{u_i\}$ — множество устройств u_i , i = 1, k

g – структура сети связи между устройствами

Конструкция вычислителя

1. Последовательная обработка информации

2. Фиксированность структуры

3. Неоднородность составляющих устройств и связей между ними

Каноническая ЭВМ Дж. фон Неймана соответствует модели вычислителя

Принципы организации ЭВМ Дж. фон Неймана

- Программное управление работой ЭВМ
- > Условный переход

1903 - 1957

- Принцип хранимой программы
- > Использование двоичной системы счисления
- Иерархичность запоминающих устройств

Функциональная структура ЭВМ Дж. фон Неймана

Поколения ЭВМ

Эффективность

$$E = \{\omega, \nu, \vartheta, \sigma\},$$

- показатель производительности (в опер./с) или среднее число операций, выполняемых в секунду ЭВМ (процессором при работе с оперативной памятью);
- v емкость оперативной памяти (в битах);
- среднее время безотказной работы ЭВМ (или средняя наработка до отказа, в часах);
- σ «цена операций», определяемая как отношение цены ЭВМ к ее показателю производительности (измеряется в долларах, отнесенных к опер./с).

Архитектурные свойства ЭВМ

- способы и режимы обработки информации;
- конструктивные особенности (составы устройств и структуры);
- алгоритмы управления вычислительными процессами или алгоритмы функционирования машин;
- возможности программного обеспечения (языки, ОС и т.п.);
- свойства элементной базы, характер проектирования и производства ЭВМ.

1-е поколение (до 1950-х гг.)

- ✓ Операционные системы отсутствовали
- ✓ Механические реле → электронные лампы
- ✓ Коммутационные панели → перфокарты

Первое поколение ЭВМ (1949 – 1951)

Показатели эффективности

```
\omega = 10 опер./с

\nu = 10 бит

\vartheta = 1–10 ч

\sigma = 10 дол./опер.· c^{-1}
```

Архитектурные свойства

- Последовательная обработка информации в монопрограммном режиме
- Состав вычислительных устройств и структура канонические
- Алгоритм управления вычислительными процессами универсальный и последовательный, адаптирован под фиксированную структуру ЭВМ
- Возможности программного обеспечения ЭВМ первого поколения: машинные языки (двоичные коды) для записи алгоритмов обработки информации и стандартные подпрограммы (например, для вычисления элементарных функций)
- Элементную базу составляли электронные лампы.
- Проектирование машин было «ручным», а их производство индивидуальным.

2-ое поколение (1950 - сер. 1960-х гг.)

- ✓ Системы пакетной обработки
- ✓ Электронные лампы → транзисторы
- ✓ OC: FMS (Fortran Monitor System) IBSYS (для IBM 7094)

Electronic Delay Storage Automatic Calculator (EDSAC)

Малая Электронная Счётная Машина (МЭСМ)

Сергей Алексеевич Лебедев

Морис Уилкс

10

Второе поколение ЭВМ (1955 – 1960)

Показатели эффективности

```
\omega = 10^6 опер./с

v = 10^7 бит

\vartheta = 10^2 ч

\sigma = 10 дол./опер.· c^{-1}
```

Архитектурные свойства

- Последовательная обработка информации
- *Мультипрограммирование* режим обработки данных, при котором ресурсы ЭВМ одновременно используются более чем одной программой
- В процессор введены структурные решения, ускорившие процесс реализации арифметических операций, а также схемы прерывания, обеспечившие работу ЭВМ в реальном масштабе времени
- Возможность подключения каналов связи для обеспечения теледоступа
- Универсальный алгоритм управления вычислительными процессами стал последовательно-параллельным
- Программное обеспечение: диспетчеры, языки для записи алгоритмов обработки информации (АЛГОЛ 60, ФОРТРАН) и соответствующие трансляторы
- Основы элементной и логико-конструктивной баз ЭВМ второго поколения составляли соответственно полупроводниковые приборы и вентили
- Мелкосерийное производство

Система пакетной обработки

Ранняя система пакетной обработки: a — программист приносит карты для IBM 1401; δ — IBM 1401 записывает пакет заданий на магнитную ленту; a — оператор приносит входные данные на ленте к IBM 7094; r — IBM 7094 выполняет вычисления; d — оператор переносит ленту с выходными данными на IBM 1401; e — IBM 1401 печатает выходные данные

3-е поколение (1965 - 1980)

- ✓ Транзисторы → интегральные микросхемы
- ✓ Системы разделения времени
- ✓ OC: OS /360, CTSS, MULTICS

PDP-1

IBM System /360

БЭСМ-6

БЭСМ-1

БЭСМ-4

БЭСМ-1 и БЭСМ-2: 1953 — 1958

M-20: 1957

M-40 и M-50: 1957 – 1959

БЭСМ-4: 1962

EDVAC: 1950 – 1952

MADAM: 1951

JOHNIAC: 1953

EDVAC

Третье поколение ЭВМ (1963 – 1965)

Показатели эффективности

```
\omega = 10^7 опер./с

v = 10^8 бит

\vartheta = 10^3 ч

\sigma = 10^{-1} дол./опер.· c^{-1}
```

Архитектурные свойства

- Последовательная обработка информации
- Мультипрограммные режимы: пакетная обработка и разделение времени.
- Состав вычислительных устройств дополнен спецпроцессорами, оптическими устройствами ввода-вывода информации, накопителями (на магнитных лентах и дисках) большой емкости и др.
- Единый ресурс, через который осуществлялись взаимодействия между процессором и остальными устройствами
- Процедурный и структурный способы вычислений
- Последовательно-параллельный алгоритм управления вычислительными процессами
- Операционные системы и системы автоматизации программирования
- Элементная база опиралась на интегральную технологию (комплекты ИС)
- Серийное и автоматизированное производство

Распределение стоимости между компонентами ЭВМ

Первый процессор Intel 4004

- Первый в мире процессор общего назначения и интегральном исполнении
- 1971 г.
- 740 кГц
- 0,06 MIPS
- 2250 транзисторов
- 12 mm2
- 10 мкм техпроцесс

Функциональная структура Intel 4004

Фон Неймановская модель компьютера

- Разделение программируемой вычислительной машины на компоненты:
 - Центральный обрабатывающий блок (Central Processing Unit, CPU)
 - блок управления (Control Unit) (декодирование инструкций, порядок операций)
 - о тракт данных (Datapath) (регистры, арифметико-логическое устройство, шины)
 - Память: хранение инструкций и их операндов
 - Подсистема ввода/вывода (Input/Output, I/O subsystem): шина I/O, интерфейсы, устройства
- □ Концепция хранения программ: инструкции из набора команд выбираются из общей памяти и исполняются последовательно

Обобщённая функциональная структура

Ограничения?

Обобщённая функциональная структура

- 1. Общая память команд и данных (узкое место).
- 2. Последовательное исполнение инструкций по одной

Этапы исполнения инструкций в ЦП

Выборка инструкции

Загрузить инструкцию программы из памяти в УУ. Программный счетчик указывает на следующую для обработки инструкцию.

Декодирование инструкции

Определить размер инструкции и требуемые действия (управляющие сигналы)

Выборка операндов

Найти и получить данные операндов

Исполнение

Вычислить значение результата или статус

Сохранение результатов

Принцип программного управления

Программа управляет выполнением самой себя.

Структура команд:

1A ~	КОП	A1			
2A ~	КОП	A1	A2		
3A ~	КОП	A1	A2	A3	
БА ~	КОП				
БДС ~	КОП	Адреса	Теги	Дескрипто	ры

Архитектура системы команд

- Организация программируемых мест хранения (память, регистры)
- Типы и структуры данных
- Набор инструкций
- Кодирование инструкций
- Режимы адресации и доступа к элементам данных и инструкциям
- Условия возникновения исключений

Набор инструкций

Тип операции	Примеры		
Арифметико- логический	Операции целочисленной арифметики и логики: Add, Or		
Передача данных	Load/Store/Move		
Управляющий	Ветвление, переход, вызов процедуры и возврат, прерывания		
Вещественный	Операции с плавающей точкой: Add, Multiply		
Системный	Системные вызовы ОС, инструкции по управлению виртуальной памятью		
Десятичный	Десятичные Add, Multiply, перевод десятичных чисел в двоичные или в символы		
Строковый	Строковые move, compare, search		
Векторный	Операции, примененные ко многим данным сразу (Intel MMX/SSE/AVX/)		

Статистика использования инструкций

Amr Hussam Ibrahim, Mohamed Bakr Abdelhalim, Hanadi Hussein, & Ahmed Fahmy "An Analysis of x86-64 Instruction Set for Optimization of System Softwares" International Journal of Advanced Computer Science, Vol. 1, No. 4, Pp. 152-162, Oct. 2011.

Длительность исполнения инструкций

Not all CPU operations are created equal

Distance which light travels while the operation is performed

Роль СО РАН в развитии ВТ

- ✓ 1962 1965 гг. разработка концептуальных основ построения вычислительных средств, базирующихся на новых принципах обработки информации (с нефоннеймановской архитектурой). Эти средства стали называть вычислительными системами (ВС) или параллельными ВС.
- ✓ Первая параллельная ВС (с программируемой структурой) это система «Минск-222». Она была разработана и построена Институтом математики Сибирского отделения АН СССР (г. Новосибирск) совместно с Конструкторским бюро завода им. Г.К. Орджоникидзе (г. Минск) в 1965 1966 гг.
- ✓ Американская система ILLIAC-IV была построена в 1972 г. Реализованная единственная конфигурация ILLIAC-IV многие годы оставалась самой мощной ВС (2 × 10⁸ опер./с), однако она по архитектурным свойствам и функциональной гибкости уступала конфигурациям системы "Минск-222".

Литература

Хорошевский В.Г. Архитектура вычислительных систем.

Учебное пособие. – М.: МГТУ им. Н.Э. Баумана, 2005; 2-е издание, 2008.

Хорошевский В.Г. Инженерные анализ функционирования вычислительных машин и систем. – М.: "Радио и связь", 1987.