Calcul trigonométrique

Formules de transformations

Activité D:

Le plan(P) est rapporté à un repère orthonormé direct $(0; \vec{i}; \vec{j})$ et (C) le cercle trigonométrique qui lui est associé.

Soient a et b deux réels. \vec{u} et \vec{v} sont deux vecteurs non nuls tels que $||\vec{u}|| = ||\vec{v}|| = 1$ et $(\vec{i}; \vec{u}) \equiv b[2\pi] \text{ et } (\vec{i}; \vec{v}) \equiv a[2\pi].$

- **1.** Déterminer la mesure de l'angle orientée $(\vec{u}; \vec{v})$ en fonction de a et b.
- **2.** Calculer par deux méthodes le produit scalaire $\vec{u} \cdot \vec{v}$.
- **3.** En déduire que cos(a b) = cos a cos b + sin a sin b.
- **4.** Montrer que cos(a + b) = cos a cos b sin a sin b.
- **5.** En remarquant que $\cos\left(\frac{\pi}{2} x\right) = \sin(x)$. Montrer que $\sin(a b) = \sin a \cos b$ $\cos a \sin b$ et $\sin(a+b) = \sin a \cos b + \cos a \sin b$.

🖊 Propriété :

Soient a et b deux réels, on a :

- cos(a b) = cos a cos b + sin a sin b;
- cos(a + b) = cos a cos b sin a sin b;
- sin(a b) = sin a cos b cos a sin b;
- sin(a + b) = sin a cos b + cos a sin b.

Application @:

- **1.** Sachant que $\frac{5\pi}{12} = \frac{\pi}{4} + \frac{\pi}{6}$ et $\frac{\pi}{12} = \frac{\pi}{3} \frac{\pi}{4}$, calculer $\cos \frac{5\pi}{12}$, $\sin \frac{5\pi}{12}$, $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$
- **2.** Soit *x* un réel. Montrer que
 - $\sin x = \sin(x + \frac{\pi}{3}) \sin(\frac{\pi}{3} x) .$
 - $\cos x = \cos(x + \frac{\pi}{3}) + \cos(\frac{\pi}{3} x).$

Soient a et b deux réels tels que $0 < a < \frac{\pi}{2}$, $0 < b < \frac{\pi}{2}$ et $sin(a) = cos(b) = \frac{1}{3}$. Déterminer a + b.

🗷 Activité @:

Soient a et b deux réels tels que $a \neq \frac{\pi}{2} + k\pi$ et $b \neq \frac{\pi}{2} + k\pi$ pour tout $k \in \mathbb{Z}$.

- **1.** Montrer que si : $a b \neq \frac{\pi}{2} + k\pi$, alors $tan(a b) = \frac{tan a tan b}{1 + tan a \ tan b}$. **2.** Montrer que si : $a + b \neq \frac{\pi}{2} + k\pi$, alors $tan(a + b) = \frac{tan a + tan b}{1 tan a \ tan b}$.

Propriété :

Soient a et b deux réels tels que $a \neq \frac{\pi}{2} + k\pi$ et $b \neq \frac{\pi}{2} + k\pi$ pour tout $k \in \mathbb{Z}$.

- Si $a b \neq \frac{\pi}{2} + k\pi$ pour tout $k \in \mathbb{Z}$, alors $tan(a b) = \frac{tan a tan b}{1 + tan a \ tan b}$
- Si $a + b \neq \frac{\pi}{2} + k\pi$ pour tout $k \in \mathbb{Z}$, alors : $tan(a + b) = \frac{tan a + tan b}{1 tan a \ tan b}$

Application 2:

Soit x un réel tel que $x \neq \frac{\pi}{2} + k\pi$ et $x \neq \frac{\pi}{4} + k\pi$ et $x \neq \frac{\pi}{4} + k\pi$ pour tout $k \in \mathbb{Z}$. Simplifier l'expression $tan\left(\frac{\pi}{4} - x\right) \times tan\left(\frac{\pi}{4} + x\right)$.

Propriété :

Soit a un réel, on a :

- $\cos 2a = \cos^2 a \sin^2 a = 2\cos^2 a 1 = 1 2\sin^2 a$.
- $\sin 2a = 2\sin a\cos a$.
- $\cos^2 a = \frac{1 + \cos 2a}{1 + \cos 2a}$

Application 3:

- 1. Sachant que $\frac{\pi}{4} = 2 \times \frac{\pi}{8}$, calculer $\cos \frac{\pi}{8}$, $\sin \frac{\pi}{8}$ et $\tan \frac{\pi}{8}$.
- **2.** Soit x un réel. Montrer que $1 + \cos x + 2 \sin^2 \left(\frac{x}{2}\right) = 2$.
- **3.** Soit x un réel tel que $x \neq k\pi$ pour tout $k \in \mathbb{Z}$. Montrer que $\frac{1-\cos(x)}{\sin(x)} = \tan\left(\frac{x}{2}\right)$.

II. Transformation de produits en sommes et de sommes en produits

1. Transformation de produits en sommes

Activité 3:

Soient a et b deux réels.

Simplifier les exressions suivantes :

a.
$$sin(a + b) + sin(a - b)$$

$$b.\underline{sin}(a+b) - sin(a-b)$$

$$c. cos(a+b) + cos(a-b)$$

$$d_{-}cos(a+b) - cos(a-b)$$

Propriété :

Soient a et b deux réels, on a :

- $\sin a \cos b = \frac{1}{2} [\sin(a+b) + \sin(a-b)].$
- $\cos a \sin b = \frac{1}{2} [\sin(a+b) \sin(a-b)].$
- $\cos a \cos b = \frac{1}{2} [\cos(a+b) + \cos(a-b)].$
- $\sin a \sin b = \frac{1}{2} [\cos(a+b) \cos(a-b)].$

Application 4:

- **1.** Calculer $cos\left(\frac{\pi}{12}\right)cos\left(\frac{5\pi}{12}\right)$ et $cos\left(\frac{\pi}{12}\right)sin\left(\frac{5\pi}{12}\right)$.
- 2. Soit x un réel. Montrer que $sin\left(x+\frac{\pi}{6}\right)sin\left(x-\frac{\pi}{6}\right)=-\frac{1}{2}cos(2x)+\frac{1}{4}$.

2. Transformation de sommes en produits :

Soient a et b deux réels, on Pose x = a + b et y = a - b. On a : $a = \frac{x+y}{2}$ et $b = \frac{x-y}{2}$.

On remplace a et b respectivement par $\frac{x+y}{2}$ et $\frac{x-y}{2}$ dans la propriété précédente, on trouve la propriété suivante :

Propriété:

Soient x et y deux réels, on a :

- $\sin x + \sin y = 2 \sin \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)$.
- $\sin x \sin y = 2\cos\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)$
- $\cos x + \cos y = 2\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)$.
- $\cos x \cos y = -2\sin\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)$.

Application 5:

- 1. Montrer que $sin\left(\frac{\pi}{12}\right) + sin\left(\frac{5\pi}{12}\right) = \frac{\sqrt{6}}{2}$.
- **2.** Soit x un réel. Montrer que $\cos 6x \cos 2x = -4\sin^2 2x \cos 2x$.

III. Transformation de l'expression $a\cos x + b\sin x$:

Préliminaire:

Soient a et b deux réels tels que $(a; b) \neq (0; 0)$.

On a
$$a \cos x + b \sin x = \sqrt{a^2 + b^2} \left(\frac{a}{\sqrt{a^2 + b^2}} \cos x + \frac{b}{\sqrt{a^2 + b^2}} \sin x \right)$$
.

Or puisque
$$\left(\frac{a}{\sqrt{a^2+b^2}}\right)^2 + \left(\frac{b}{\sqrt{a^2+b^2}}\right)^2 = 1.$$

Donc
$$(\exists \alpha \in \mathbb{R})$$
:
$$\begin{cases} \cos \alpha = \frac{a}{\sqrt{a^2 + b^2}} \\ \sin \alpha = \frac{b}{\sqrt{a^2 + b^2}} \end{cases}$$

D'où $a \cos x + b \sin x = \sqrt{a^2 + b^2} (\cos x \cos \alpha + \sin x \sin \alpha)$.

Par suite $a \cos x + b \sin x = \sqrt{a^2 + b^2} \cos(x - \alpha)$.

Propriété :

Soient a et b deux réels tels que $(a; b) \neq (0; 0)$, on a : $a\cos x + b\sin x = \sqrt{a^2 + b^2}\cos(x - \alpha)$ avec $\cos \alpha = \frac{a}{\sqrt{a^2 + b^2}}$ et $\sin \alpha = \frac{b}{\sqrt{a^2 + b^2}}$

Application 6:

Ecrire sous la forme $r \cos(x - \alpha)$ les expressions suivantes :

$$A(x) = \cos x + \sin x$$
; $B(x) = \sqrt{3}\cos x - \sin x$; $C(x) = \sqrt{3}\cos\left(2x - \frac{\pi}{3}\right) - \sin(2x - \frac{\pi}{3})$.

O Exercice 2:

- On pose $A = \frac{\cos\frac{\pi}{12} + \sin\frac{\pi}{12}}{\cos\frac{\pi}{12} \sin\frac{\pi}{12}}$. **1.** Montrer que $\cos\frac{\pi}{12} + \sin\frac{\pi}{12} = \sqrt{2}\sin\frac{\pi}{3}$. **2.** Montrer que $\cos\frac{\pi}{12} \sin\frac{\pi}{12} = \sqrt{2}\sin\frac{\pi}{6}$.
- **3.** En déduire la valeur du nombre A.
- **4.** Déterminer la valeur du nombre $tan\frac{\pi}{12}$

IV. Equations et inéquations trigonométriques :

Propriété :

Application 2:

- **1.** Résoudre dans *I* les équations suivantes :
- a. $2\cos x \sqrt{3} = 0$; $I = [-\pi, 2\pi]$.
- b. $\sqrt{2}\sin x + 1 = 0$; $I = [0,2\pi]$.
- c. $tan x = \sqrt{3}$; $I = [-\pi, \pi]$.
- d. $\sqrt{3}\cos x \sin x = \sqrt{2}$; $I = [-\pi, \pi]$.
- **2.** Résoudre dans $\left[-\pi, \frac{\pi}{2}\right]$ l'équation $\sqrt{3} \cos x \sin x > \sqrt{2}$.

O Exercice 3:

Soit x un réel. On pose : $A(x) = 2\sqrt{3} \sin^2 x - \sin 2x - \sqrt{3} \sin x + \cos x$.

- **1.** Calculer $A\left(\frac{\pi}{6}\right)$ et $A\left(\frac{\pi}{3}\right)$.
- **2.** Montrer que $(\forall x \in \mathbb{R})$: $A(x) = 2\cos\left(x + \frac{\pi}{2}\right)(1 2\sin x)$.
- **3.** a. Résoudre dans \mathbb{R} l'équation A(x) = 0.
- b. En déduire les solutions de l'équation A(x) = 0 sur $[0,2\pi]$ puis représenter les solutions sur un cercle trigonométrique.
- **4.** Résoudre dans $[0,2\pi]$ l'équation A(x) > 0.