北京科技大学 2016--2017 学年 第一学期

线性代数试卷 (A卷)

院(系)	班级	学号	姓名
1, -1.5.1	-///	, ,	/ hade

- 一、选择题(本题共27分,每小题3分)
 - 1. 设A与B均为n阶方阵,k为常数,则下列说法正确的是

(A)
$$AB = BA$$

(B)
$$|kA| = k|A|$$

(C)
$$(\boldsymbol{A}\boldsymbol{B})^{\mathrm{T}} = \boldsymbol{A}^{\mathrm{T}}\boldsymbol{B}^{\mathrm{T}}$$

(D)
$$|AB| = |BA|$$

2. 设A为3阶矩阵,将A的第2行加到第1行得B, 再将B的第1列的-1倍加到第2列得C,

记
$$\mathbf{P} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
,则有

(A)
$$C = P^{-1}AP$$

(B)
$$C = PAP^{-1}$$

(C)
$$C = P^{T}AP$$
.

(D)
$$C = PAP^{T}$$
.

3. 二次多项式
$$\begin{vmatrix} 2 & 8 & 5 & 7 \\ 5 & 4 & x & 8 \\ 1 & x & 2 & 3 \\ 1 & 4 & 3 & -1 \end{vmatrix}$$
 中 x^2 的系数为 (A) 9 (B) 7 (C) 5 (D) -7

- 4. 设A为三阶方阵,且A=1,则必有

$$(A) \left(2A^*\right)^* = 2A$$

(A)
$$(2A^*)^* = 2A$$
 (B) $(2A^*)^* = \frac{1}{2}A$

$$(C) \left(2A^*\right)^* = 4A$$

(D)
$$(2A^*)^* = 8A$$

- 5. 设向量组 α, β, γ 线性无关, α, β, δ 线性相关, 则必有

 - (A) α 可由 β , γ , δ 线性表出 (B) β 可由 α , γ , δ 线性表出
 - (C) γ 可由 α , β , δ 线性表出 (D) δ 可由 α , β , γ 线性表出
- 6. 已知向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,则下列向量组线性无关的是

(A)
$$\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1$$
 (B) $\alpha_1 - \alpha_2, \alpha_2 - \alpha_3, \alpha_3 - \alpha_1$

(B)
$$\alpha_1 - \alpha_2, \alpha_2 - \alpha_3, \alpha_3 - \alpha_1$$

(C)
$$\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 - \alpha_1$$
 (D) $\alpha_1 + \alpha_2, \alpha_2 - \alpha_3, \alpha_3 + \alpha_1$

(D)
$$\alpha_1 + \alpha_2, \alpha_2 - \alpha_3, \alpha_3 + \alpha_1$$

7. 设 4×5 矩阵 A 的秩为 2,则方程组 Ax = 0 基础解系中解向量的个数为 (A) 1 (C) 3 (B) 2

8. 设 2 为 n 阶可逆矩阵 A 的特征值,则矩阵 $(-3A^{-1})$ 必有一个特征值为

$$(A) \frac{2}{3}$$

(A)
$$\frac{2}{3}$$
 (B) $-\frac{2}{3}$ (C) $\frac{3}{2}$ (D) $-\frac{3}{2}$

(C)
$$\frac{3}{2}$$

(D)
$$-\frac{3}{2}$$

9. 下列矩阵不能相似对角化的是

$$(A) \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

$$(B) \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix}$$

$$\text{(A)} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \qquad \text{(B)} \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix} \qquad \text{(C)} \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \qquad \text{(D)} \begin{pmatrix} 1 & 4 \\ 1 & 1 \end{pmatrix}$$

(D)
$$\begin{pmatrix} 1 & 4 \\ 1 & 1 \end{pmatrix}$$

二、填空题(本题共24分,每小题3分)

1. 设 **A**, **B** 都是 4 阶矩阵且 |**A**| = 2, |**B**| = 3, 则 |3**AB**⁻¹| = ______。

2. 四阶行列式中包含 $a_{21}a_{42}$, 且符号为负的项是_____

4.
$$A = \begin{pmatrix} 2 & -3 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$
, $MA^{-1} = \underline{\hspace{1cm}}$

6. 设n矩阵A 的秩为n-1,非零向量 α_1 , α_2 满足 $A\alpha_1=\frac{1}{2}\alpha_1$, $A\alpha_2=\mathbf{0}$ 。则方程组 $Ax=\alpha_1$ 的通解

7. 与两向量
$$\alpha = (1,2,3)^T$$
、 $\beta = (1,1,1)^T$ 均正交的单位向量为_____。

8. 若二次型
$$f = ax_1^2 + 4x_2^2 + ax_3^2 + 6x_1x_2 + 2x_2x_3$$
 是正定的,则 a 的取值范围是 ______。

三、求解下列行列式(8分)

$$\mathbf{D} = \begin{vmatrix} 1 + a_1 & a_2 & a_3 & \dots & a_n \\ a_1 & 1 + a_2 & a_3 & \dots & a_n \\ a_1 & a_2 & 1 + a_3 & \dots & a_n \\ \dots & \dots & \dots & \dots \\ a_1 & a_2 & a_3 & \dots & 1 + a_n \end{vmatrix}$$

四. (14 分) 设线性方程组
$$\begin{cases} x_1 + x_2 + (1+\lambda) & x_3 = 0, \\ x_1 + (1+\lambda) & x_2 + x_3 = 3, \\ (1+\lambda) & x_1 + x_2 + x_3 = \lambda, \end{cases}$$

问え取何值时,方程组(1)有唯一解;(2)无解;(3)有无穷多个解?并在有无穷多解 时求其通解。

五、(10 分)设向量组
$$\alpha_1 = \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 2 \\ 2 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 1 \\ 0 \\ -4 \end{pmatrix}$, $\alpha_5 = \begin{pmatrix} 4 \\ 3 \\ 2 \end{pmatrix}$, 求此向量组的秩与一个极大无关组,并将其余向量用所求的极大无关组线性表示。

六、(10 分)已知二次型 $f(x_1,x_2,x_3)=3x_1^2+6x_2^2+3x_3^2-4x_1x_2-8x_1x_3-4x_2x_3$ 经正交变换 $\mathbf{x}=\mathbf{Q}\mathbf{y}$,化为标准形 $f=-2y_1^2+7y_2^2+7y_3^2$,求正交矩阵 \mathbf{Q} 。

七、 $(7 \, \mathcal{G})$ 若 n维向量组 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性无关, A为 $m \times n$ 矩阵且 $\mathbf{r}(A) = n$,证明向量组 $A\alpha_1, A\alpha_2, \cdots, A\alpha_s$ 线性无关。

北京科技大学 2016-2017 学年 第 一 学期 线性代数 A 期末试卷 答案

- 选择题(本题共27分,每题3分)
- 1-5 DBACD 6 - 9ACDA
- 二、 填空题(本题共24分,每空3分)

5, 3 6,
$$k\alpha_2 + 2\alpha_1$$
, $k \in \mathbb{R}$ 7, $\pm \left(\frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)^{\mathrm{T}}$ 8, $\left(\frac{5}{2}, +\infty\right)$

三、 计算行列式

答案
$$1+\sum_{i=1}^{n}a_{i}$$

解析 略

对参数分类讨论非齐次线性方程组解的情况并求通解 四、

答案 $(1)\lambda = 0$ 时无解

(2)
$$\lambda = -3$$
 时有无穷个解,通解为 $X = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + k \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, k \in R$.

(3) 其余情况均有唯一解.

解析

五、 求极大无关组并表示其余向量

答案 (1)
$$r = 3$$
, $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ (2) $\boldsymbol{\alpha}_4 = \frac{2}{3}\boldsymbol{\alpha}_1 - \frac{2}{3}\boldsymbol{\alpha}_2 - \boldsymbol{\alpha}_3$, $\boldsymbol{\alpha}_5 = \frac{4}{3}\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 + \frac{2}{3}\boldsymbol{\alpha}_3$

解析

正交变换化二次型为标准型并写正交矩阵或正交变换 六、

答案
$$Q = \begin{pmatrix} \frac{2}{3} & \frac{1}{\sqrt{5}} & -\frac{4}{3\sqrt{5}} \\ \frac{1}{3} & -\frac{2}{\sqrt{5}} & -\frac{2}{3\sqrt{5}} \\ \frac{2}{3} & 0 & \frac{\sqrt{5}}{3} \end{pmatrix}$$

解析 略

七、 证明题

证明
$$(A\alpha_1, A\alpha_2, \cdots, A\alpha_s) = A(\alpha_1, \alpha_2, \cdots, \alpha_s)$$

$$\therefore r(A\alpha_1, A\alpha_2, \cdots, A\alpha_s) \leq \min \{r(A), r(\alpha_1, \alpha_2, \cdots, \alpha_s)\}$$
 则有
$$r(A\alpha_1, A\alpha_2, \cdots, A\alpha_s) \leq n$$
 又由
$$B = A_{m \times r} K_{r \times s} \text{ 时}, \ fr(B) + r \geq r(A) + r(K) \text{ 可知}$$

$$r(A\alpha_1, A\alpha_2, \cdots, A\alpha_s) \geq n$$
 即
$$r(A\alpha_1, A\alpha_2, \cdots, A\alpha_s) = n$$
 则证得
$$(A\alpha_1, A\alpha_2, \cdots, A\alpha_s)$$
 线性无关.