Badania Operacyjne Informatyka 2024/2025

Antoni Kucharski Piotr Rusak Paweł Prus Kacper Garus

30 maja 2025

Spis treści

1	Wstep	2
2	Opis zagadnienia 2.1 Model matematyczny	2 2 2 2 2 2 2 2
	2.1.5 Funkcja celu	3
3	Opis algorytmu	3
4	Aplikacja	3
5	Eksperymenty	3
6	Podsumowanie	3

1 Wstęp

Celem projektu jest analiza i implementacja algorytmu mrówkowego do rozwiązania problemu znalezienia najlepszej trasy przejazdu z przystanku A do przystanku B w sieci linii komunikacyjnych. Szukanie trasy uwzględnia czasy odjazdu pojazdów z przystanków, czas przejazdu pomiędzy przystankami i możliwość przesiadek. Użytkownik może podać czas, o której chce rozpocząć podróż jak i przystanek początkowy i końcowy.

2 Opis zagadnienia

2.1 Model matematyczny

2.1.1 Mapa

Mapa komunikacyjna jest grafem nieskierowanym G=(V,E), gdzie $V\subset\mathbb{N}^2$ to zbiór wierzchołków reprezentujących punkty na mapie jako para współrzędnych (x,y), a $E\subset\{\{u,v\}:u,v\in V\}$ to zbiór krawędzi. Ponadto zachodzi zależność

$$\forall \{(x_u, y_u), (x_v, y_v)\} \in E ||x_u - x_v| + |y_u - y_v| = 1$$

To oznacza, że sąsiednie wierzchołki różnią się dokładnie o jedną współrzędną, co odpowiada ruchowi w górę, w dół, w lewo lub w prawo.

2.1.2 Zbiór linii komunikacyjnych

Każda linia komunikacyjna jest opisana jako krotka (n, S), gdzie n to numer linii, a $S = \{(v, f) : v \in V, f \in \{0, 1\}\}$ to zbiór par wierzchołków i flagi określające czy dany punkt jest przystankiem czy nie.

2.1.3 Harmonogramy odjazdu

Dla danego przystanku v definiujemy zbiór

$$H_v = \{(n_0, h_0), (n_1, h_1), \dots, (n_n, h_n)\}\$$

określającą harmonogram odjazdu, gdzie n oznacza liczbę odjazdów z przystanku $v,\,l_i$ to numer linii komunikacyjnej, a h_i to czas odjazdu tej linii.

2.1.4 Funkcja trasy

Jeśli przez N oznaczymy liczbę tras z z przystanku v_0 do przystanku v_m , to k-tą z nich definiujemy jako sekwencję

$$P_k = \left\{ (v_0, v_1^k, n_0^k), (v_1^k, v_2^k, n_1^k), \dots, (v_{m-1}^k, v_m, n_{m-1}^k) \right\}$$

gdzie m to liczba przystanków na trasie, $v_0,v_1^k,\ldots,v_{m-1}^kv_m$ to kolejne przystanki, a n_i^k to linia komunikacyjna, którą jedziemy z przystanku v_i do przystanku v_{i+1} . Definiujemy funkcję

$$f(v_0, v_m) = \{P_1, P_2, \dots, P_N\}$$

zwracającą zbiór wszystkich tras z przystanku v_0 do przystanku v_m rozpoczynających się w chwili $t_0. \\$

2.1.5 Funkcja celu

Niech $t(n, v, t_0) = \min(\{h - t_0 : (n, h) \in H_v, h \ge t_0\})$ oznacza czas oczekiwania na linię n będąc na przystanku v w chwili t_0 , a d(n, u, v) oznacza czas przejazdu linią n z przystanku u do przystanku v. Wtedy funkcja celu dla danej trasy jest zdefiniowana jako

$$T(P, t_0) = \sum_{i=0}^{m-1} (t(n_i, v_i, t_i) + d(n_i, v_i, v_{i+1}))$$

gdzie t_i to czas przyjazdu na przystanek \boldsymbol{v}_i oraz

$$P = \{(v_0, v_1, n_0), \dots, (v_{m-1}, v_m, n_{m-1})\} \in f(v_0, v_m)$$

2.2 Szukana wartość

Szukana przez nas wartość to trasa P_{opt} z przystanku v_0 do przystanku v_m zaczynając o godzinie t_0 o minimalnej wartości funkcji celu czyli

$$P_{opt} = \underset{P \in f(v_0, v_m)}{\arg \min} T(P, t_0)$$

- 3 Opis algorytmu
- 4 Aplikacja
- 5 Eksperymenty
- 6 Podsumowanie