Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-228. Вариант 17

- 1. Пусть $z=2\sqrt{3}-2i$. Вычислить значение $\sqrt[7]{z^2}$, для которого число $\frac{\sqrt[7]{z^2}}{\sqrt{3}-i}$ имеет аргумент $-\frac{31\pi}{42}$.
- 2. Решить систему уравнений:

$$\begin{cases} x(14+9i) + y(-11+i) = -106 - 14i \\ x(-1-7i) + y(-8+2i) = -4 + 196i \end{cases}$$

- 3. Найти корни многочлена $4x^6 + 8x^5 + 4x^4 + 352x^3 + 1372x^2 + 4760x 6500$ и разложить его на множители над $\mathbb R$ и $\mathbb C$, если известны корни $x_1 = 3 4i, \, x_2 = -2 3i, \, x_3 = -5$.
- 4. Даны 3 комплексных числа: 20 + 20i, -21 + 4i, -25 15i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1=-\frac{3\sqrt{3}}{2}+\frac{3i}{2},$ $z_2=-\frac{3}{2}-\frac{3\sqrt{3}i}{2}$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z - 3 + 5i| < 2\\ |arg(z + 1 - 5i)| < \frac{5\pi}{6} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (0, 7, -8), b = (-7, -5, -9), c = (1, 7, -6). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(-7,10,-12) и плоскость P:4x+4y+4z+60=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(6, -1, -10), $M_1(1, 4, 6)$, $M_2(3, -2, 6)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} -14x - 6y + 21z - 236 = 0 \\ -8x - 10y + 3z - 294 = 0 \end{cases}$$

$$L_2: \begin{cases} -6x + 4y + 18z + 1562 = 0 \\ 9x - 20y - 20z - 2245 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.