Compléments sur la convexité

Cornou Jean-Louis

28 décembre 2022

I désigne un intervalle non réduit à un point. Il n'est pas nécessairement ouvert. a et b sont deux réels tels que a < b.

Exemple 1 Soit φ : $[a,b] \to \mathbb{R}$ (continue) croissante. Alors sa primitive s'annulant en a est convexe.

Théorème 1 Soit $f: I \to \mathbb{R}$ convexe. Alors f est localement bornée.

Théorème 2 Toute combinaison linéaire à coefficients positifs de fonctions convexes est convexe. Le max d'une famille finie de fonctions convexes est convexe.

Remarque

Le produit et la composée de fonctions convexes ne sont pas nécessairement convexes $x \mapsto x^2$, $x \mapsto -x$, $x \mapsto -x^2$.

Propriété 1 Soit f convexe et φ convexe croissante, alors $\varphi \circ f$ est convexe.

Théorème 3 Soit $f: I \to \mathbb{R}$ convexe. Alors f est Lipschitzienne sur tout segment inclus dans \mathring{l} .

Théorème 4 Soit f continue sur l, convexe sur l. Alors f est convexe sur l.

Exemple 2 Soit f et g convexes telles que f + g est affine. Montrer que f et g sont affines.

Exemple 3 Soit $f: \mathbb{R}^{+*} \to \mathbb{R}$, $g: \mathbb{R}^{+*} \to \mathbb{R}$, $x \mapsto xf(1/x)$. Montrer que f est convexe ssi g est convexe.

Théorème 5 Soit I un intervalle ouvert et $f: I \to \mathbb{R}$. Alors f est convexe si et seulement si f est dérivable à gauche et à droite et f'_g et f'_d sont croissantes.

Exercice 1 Soit $q: \mathbb{R} \to \mathbb{R}^+$ non identiquement nulle et y une solution bornée de l'équation différentielle y'' - qy = 0. Montrer que y = 0.

Exemple 4 Soit $(x_1,...,x_n)$ un n-uplet de réels positifs tels que $\prod_{i=1}^n x_i = 1$. Montrer que

$$\prod_{i=1}^{n} (2 + x_i) \ge 3^n$$

Caractériser les cas d'égalité.

Exemple 5 Déterminer les ellipses de périmètre maximal à surface S > 0 donnée.