Práctica #05: Autómatas finitos en JFLAP

Entrega Online

Rodrigo García Jiménez (<u>alu0101154473@ull.edu.es</u>)

3/10/2022

DFA's

1. Diseñar un autómata finito determinista que reconozca cadenas binarias que contengan un número impar de unos y un número impar de ceros.

a. A la hora de plantear el ejercicio intenté hacer un NFA que aceptara la cadena y hacer construcción de subconjuntos. Pero luego me fijé que realmente hay cuatro estados posibles:

0P1P

0I1P

0P1I

0111

Donde I es impar y P es par, a la derecha del simbolo correspondiente. Entonces en base a esto construí los cuatro estados y le asigné cada una de las cuatro etiquetas anteriores a cada uno de los estados.

b.

C.

·	
Input	Result
01	Accept
10	Accept
1101	Accept
011	Reject
1100	Reject
1101 011 1100 1010	Reject

2. Diseñar un autómata finito determinista que reconozca cadenas binarias de longitud par.

a. Ejercicio trivial que hemos planteado de una manera u otra en clase

C.

Input		Result
-	Accept	
10	Accept	
111000	Accept	
0	Reject	
101	Reject	
101111000	Reject	

3. Diseñar un autómata finito determinista que reconozca cadenas sobre el alfabeto $\Sigma = \{a, b, c\}$ que no contengan la subcadena abc.

a. Para este ejercicio utilicé el "truco" de hacer un DFA que **solo** acepte cadenas que contengan la subcadena abc. Una vez hecho esto, cambiamos los estados de aceptación por no aceptación y viceversa.

b.

C.

Input	Re		
aabbcc	Accept		
ab	Accept		
bacabacaabbac	Accept		
abc	Reject		
ababccb	Reject		
cabcabcaacabc	Reject		

4. Diseñar un autómata finito determinista que acepte números reales. El alfabeto que usa el aut´omata se define como $\Sigma = \{+, -, ., E, e, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ y las cadenas a aceptar se definen de la siguiente forma:

La cadena comienza opcionalmente por el s'imbolo "+" o "-"

A continuación la cadena contiene uno o varios s´ımbolos en el rango [0 – 9] Posteriormente, y de forma opcional, aparece en la cadena el símbolo ".". Si aparece este s´ımbolo, la cadena debe continuar con uno o m´as s´ımbolos entre el rango [0 – 9].

Opcionalmente la cadena puede ir seguida del s'imbolo "E" o "e" para indicar un n'umero en notaci'on cient'ifica. En este caso, tender'a que ir seguido de un s'imbolo "+" o "-" (opcional) y una cadena de uno o m'as s'imbolos entre el rango [0-9] que representan el exponente.

Algunas cadenas aceptadas por este aut´omata ser´ıan: 009, -78, -78.7, +78.7E-5, -7.876e+56, -78.87E56, etc.

Algunas cadenas no aceptadas por este autómata ser´ıan: .90, +78., +78.90E, etc.

NFA's

- 1. Diseñar un autómata finito no determinista que reconozca cadenas sobre el alfabeto $\Sigma = \{a, b\}$ que tengan un número de a's múltiplo de tres o longitud par. A partir del NFA diseñado, obtenga un DFA mínimo equivalente.
 - a. Mi manera de plantearlo es hacer dos NFA's por separado donde uno acepte cadenas que tuviera un número par de a's y otro independiente donde se aceptaran cadenas donde el número de a's fuera múltiplo de 3. Una vez hecho esto unir estos dos NFA's con una epsilon-transición a un estado inicial de arranque y que con epsilon se puede transitar a cualquiera de los dos.

b.

C.

Res
1100
Accept
Accept
Accept
Accept
Reject
Reject
Reject
Reject

Hice el algoritmo de construcción de subconjuntos y dibujé el DFA resultante. Se puede intuir que es mínimo, por varios motivos(que no siempre se cumplen): -En el NFA se realizan transiciones para todos los símbolos del alfabeto, y además

las epsilon-transiciones
-El DFA contiene 6 estados, y no es casualidad ya que 2(longitud par de a)
multiplicado por 3(a múltiplo de 3) da como resultado 6. A partir de 6 carácteres el

autómata "trabaja" en bucle, y no se dará una situación que quede fuera de este bucle. Veamos cómo se comporta el autómata en JFLAP:

NFA->DFA:

JFLAP genera un estado más del que yo he propuesto como DFA mínimo. Veamos ahora el DFA mínimo del DFA generado a partir del NFA: **DFA->DFA(min):**

La minimización del DFA hecha por JFLAP y mi DFA resultante coinciden, y obviamente son mínimos.

2.Diseñar un autómata finito no determinista que reconozca cadenas sobre el alfabeto Σ = {0, 1} tales que contengan la subcadena 0110. A partir del NFA diseñado, obtenga un DFA mínimo equivalente.

a.

b.

c.

· · · · · · · · · · · · · · · · · · ·	
Input	Result
0110	Accept
01010101010000000	Accept
11011011	Accept
1010101	Reject
010	Reject
0111	Reject

d.

impulsado por CamScanner

*Faltan por hacer el ejercicio 4 de DFA's y el 2 de NFA's minimizacion y comprobacion JFLAP. Me despisté con hora y día de la entrega y no me ha dado tiempo a hacer más.