Series de Fourier

26/04/2022

Luz Myriam Echeverry N

Series trigonométricas

Conocemos las series de potencias

•
$$\sum_{n=0}^{\infty} a_n (x-a)^n$$

- Se estudió su convergencia y sus propiedades de integrabilidad y derivabilidad.
- Una serie trigonométrica es de la forma

•
$$\frac{a_0}{2} + \sum_{m=0}^{\infty} a_m \cos\left(\frac{m\pi x}{L}\right) + b_m \sin\left(\frac{m\pi x}{L}\right)$$

- En el conjunto de puntos en que la serie converge, define una función f cuyo valor, en un punto, es el límite de la serie en ese punto.
- Por comodidad el primer término se divide por dos.

Periodicidad

• Definición, una función, f, es periódica de período T>0, si

$$\bullet f(x+T) = f(x)$$
 (1)

- Si la función es periódica la propiedad (1) se cumple también para 2T y para cualquier múltiplo entero de T.
- El menor valor de T para el que se cumple (1) es el período fundamental de f.
- Si dos funciones *f,g* tienen período T cualquier combinación lineal de las dos funciones también tiene período T

•
$$F(x) = c_1 f(x) + c_2 g(x) \rightarrow F(x+T) = c_1 f(x+T) + c_2 g(x+T) =$$

•
$$c_1 f(x) + c_2 g(x) = F(x)$$

Para las funciones

•
$$\cos\left(\frac{m\pi x}{L}\right)$$
, $sen\left(\frac{m\pi x}{L}\right)$

- el período es $T_{\rm m}=\frac{2L}{m}$, m=1,2,3,...
- Las funciones $\cos x$, $sen\ x$ tienen período 2π , $y\ \cos\alpha x$, $sen\ \alpha x$ tienen período fundamental $T=2\pi/\alpha$, aquí $\alpha=m\pi/L$ y tenemos el resultado pedido $T_m=\frac{2\pi}{L}=\frac{2L}{m}$.
- Para m=1, tenemos período T=2L, para $m\geq 2$, entero, el período 2L es múltiplo entero de T_m . Todos los elementos de la serie tienen período 2L.
- $\{1, \cos x, \sec x, \cos 2x, \sec 2x, \dots \cos nx, \sec nx \dots \}$ ortogonal con el producto interno

•
$$< f, g > = \int_{-\pi}^{\pi} fg dx$$

- $\{1, cosx, senx, cos 2x, sen 2x, cos nx, sen nx\}$ ortogonal con el producto interno, producto escalar entre dos funciones diferentes es cero
- A ver
- 0=<1, f > = $\int_{-\pi}^{\pi} 1 \cos nx \, dx = 0$, $\int_{-\pi}^{\pi} 1 \sin nx \, dx = 0$, n=1,2,...
- $\int_{-a}^{a} f(x)dx$, f función impar ...
- 1) $\int_{-a}^{a} f(x)dx = ? f(x) = -f(-x), \int_{-a}^{a} f(x)dx = \int_{-a}^{0} f(x)dx + \int_{0}^{a} f(x)dx$
- 2) $\int_{-\pi}^{\pi} \cos mx \cos nx \, dx = 0$, $n \neq m$
- 3) $\int_{-\pi}^{\pi} \operatorname{sen} mx \operatorname{sen} nx \, dx = 0, \, n \neq m$
- 4) $\int_{-\pi}^{\pi} \operatorname{sen} mx \cos nx \, dx = 0$, impar
- cos(A + B) = cosAcosB senAsenB, cos(A B) = cosAcosB + senAsenB

Fórmulas

• Si la serie trigonométrica converge, llamamos ese límite

•
$$f(x) = \frac{a_0}{2} + \sum_{m=1}^{\infty} a_m \cos\left(\frac{m\pi x}{L}\right) + b_m \sin\left(\frac{m\pi x}{L}\right)$$
 (*)

• Los coeficientes a_m , b_m se relacionan con el límite f(x), para ver la relación usamos la ortogonalidad de las funciones

•
$$\cos\left(\frac{m\pi x}{L}\right)$$
, $sen\left(\frac{m\pi x}{L}\right)$

• Primero para un n entero positivo fijo, multiplicamos la ecuación (*) por $\cos\frac{n\pi x}{r}$, e integramos con respecto a x en el intervalo [-L,L].

•
$$\int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx = \int_{-L}^{L} \cos \frac{n\pi x}{L} \left[\frac{a_0}{2} + \sum_{m=1}^{\infty} a_m \cos \left(\frac{m\pi x}{L} \right) + b_m \operatorname{sen} \left(\frac{m\pi x}{L} \right) \right],$$

 Como n está fijo y m recorre todos los enteros positivos el único término no nulo es el correspondiente a n=m es decir

•
$$\int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx = La_n$$

Para los b_n multiplicamos

$$f(x) = \frac{a_0}{2} + \sum_{m=1}^{\infty} a_m \cos\left(\frac{m\pi x}{L}\right) + b_m \operatorname{sen}\left(\frac{m\pi x}{L}\right) (*)$$

por sen $\frac{n\pi x}{I}$, integramos y usamos la ortogonalidad,

•
$$\int_{-L}^{L} f(x) \operatorname{sen} \frac{n\pi x}{L} dx = \int_{-L}^{L} \operatorname{sen} \frac{n\pi x}{L} \left[\frac{a_0}{2} + \sum_{m=1}^{\infty} a_m \cos \left(\frac{m\pi x}{L} \right) + b_m \operatorname{sen} \left(\frac{m\pi x}{L} \right) \right] = \int_{-L}^{L} \operatorname{sen} \frac{n\pi x}{L} \frac{a_0}{2} dx + \int_{-L}^{L} \operatorname{sen} \frac{n\pi x}{L} \frac{a_0}{2} dx + \int_{-L}^{\infty} \operatorname{sen} \frac{n\pi x}{L} \frac{n\pi x}{L} \frac{n\pi x}{L} \frac{n\pi x}{L} + \int_{-L}^{\infty} \operatorname{sen} \frac{n$$

$$\sum_{m=1}^{\infty} \int_{-L}^{L} \frac{dx}{sen} dx \cos\left(\frac{m\pi x}{L}\right) dx + \int_{-L}^{L} \frac{n\pi x}{L} dx + \int_{-L}^{L} \frac{n\pi$$

Es muy fuerte la suposición de poder intercambiar límite de la serie con la integral.

•
$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx$$
, n=0,1,2,...

•
$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx$$

Ejemplo

• Sea la función

$$f(x) = \begin{cases} -x, -2 \le x < 0 \\ x, 0 \le x < 2 \end{cases}$$

$$f(x+4) = f(x)$$

-2 2

- Función periódica de período T=4, L=2.
- Suponemos que la serie de Fourier es convergente, calcular los coeficientes.

•
$$a_0 = \frac{1}{2} \int_{-2}^{0} (-x) dx + \frac{1}{2} \int_{0}^{2} x dx = \frac{1}{2} \left(-\frac{x^2}{2} \Big|_{-2}^{0} + \frac{x^2}{2} \Big|_{0}^{2} \right) = \frac{1}{2} (2+2) = 2$$

• Par m>0, teniendo en cuenta que la función es par y coseno es par

•
$$a_m = \frac{1}{2} \int_{-2}^{2} f(x) \cos \frac{m\pi x}{2} dx = \frac{2}{2} \int_{0}^{2} x \cos \frac{m\pi x}{2} dx$$

Calculando

•
$$a_m = \int_0^2 x \cos \frac{m\pi x}{2} dx$$

• Usamos
$$\int_0^2 x \cos \frac{m\pi x}{2} dx = 2x/m\pi \sin \frac{m\pi x}{2} \Big|_0^2 - \int_0^2 \frac{2}{m\pi} \sin \frac{m\pi x}{2} dx = 1$$

•
$$0 + \frac{4}{(m\pi)^2} \cos \frac{m\pi x}{2} \Big|_0^2 = \frac{4}{(m\pi)^2} (\cos(m\pi) - 1), \cos(m\pi) = (-1)^m,$$

•
$$a_m = \begin{cases} -\frac{8}{m^2\pi^2}, m \ impar \\ 0, m \ par \end{cases}$$

• Los $b_m=0$ porque la función f(x)es par pero $\frac{sen n\pi x}{2}$ es función impar y el intervalo de integración es simétrico con respecto al origen.

•
$$f(x) = \frac{a_0}{2} + \sum_{k=0}^{\infty} a_{2k+1} \cos\left(\frac{(2k+1)\pi x}{2}\right)$$
, $a_{2k+1} = -8/(\pi(2k+1))^2$

Ejercicios

Calcular la serie de Fourier de

• 1)
$$f(x) = -x, -L \le x < L, f(x + 2L) = f(x) L=1$$

• 2)
$$f(x) = \begin{cases} 1, -L \le x \le 0 \\ 0, 0 < x < L \end{cases}$$
 $f(x + 2L) = f(x), L = 1$

• 3)
$$f(x) = \begin{cases} x, -\pi \le x \le 0 \\ 0, 0 < x < \pi \end{cases}$$
 $f(x + 2\pi) = f(x)$

• 4)
$$f(x) = \begin{cases} x + 1, -1 \le x \le 0 \\ 1 - x, 0 < x < 1 \end{cases}$$
 $f(x + 2) = f(x)$

• 5)
$$f(x) = \begin{cases} -1, -2 \le x \le 0 \\ 1, 0 < x < 2 \end{cases}$$
 $f(x+4) = f(x)$

Bibliografia

• W.Boyce, R. DiPrima, "Elementary Differential Equations and Boundary Value Problems" 8Ed