Personalized Biopsy Schedules using Joint Models

Anirudh Tomer, Dimitris Rizopoulos, Ewout Steyerberg, Monique Roobol October 25, 2017

Active Surveillance

To avoid over-treatment men with low grade cancers are advised to enroll AS programs

- Decision to start active treatment is based on biopsies
 - reliable
 - painful \Rightarrow cause anxiety
 - complications (inflammation, hematuria)

High non-compliance rates ⇒ compromised effectiveness of AS

Active Surveillance (cont'd)

- · Currently, AS programs primarily use fixed schedules
 - yearly (aggressive)
 - every 3 years
 - ...

Unnecessary biopsies in patients who progress slowly

PRIAS Study

- AS program in which men with early prostate cancer are managed by a followup strategy
 - 5267 patients
 - biopsies at baseline, 1, 4, 7 and 10 years
 - or yearly after PSA doubling within a year

- Outcomes of interest:
 - time to Gleason score reclassification (from 6 to \geq 7)
 - longitudinal PSA measurements

PRIAS Study (cont'd)

PRIAS Study (cont'd)

How to better plan biopsies?

- · In steps:
 - How the longitudinal PSA is related to Gleason reclassification?
 - How to combine previous PSA measurements and biopsies to predict reclassification?
 - When to plan the next biopsy?

Time-varying Covariates

- To answer these questions we need to link
 - the time to Gleason reclassification (survival outcome)
 - the PSA measurements (longitudinal outcome)

- Biomarkers are endogenous time-varying covariates
 - their future path depends on previous events
 - standard time-varying Cox model not appropriate

Time-varying Covariates (cont'd)

To account for endogeneity we use the framework of

Joint Models for Longitudinal & Survival Data

The Basic Joint Model

- We need some notation
 - T_i^* the true reclassification time
 - T_i^L last biopsy time point Gleason Score was < 7
 - T_i^R first biopsy time point Gleason Score was ≥ 7
 - $T_i^R = \infty$ for patients who haven't been reclassified yet
 - \mathbf{y}_i vector of longitudinal PSA measurements
 - $\mathcal{Y}_i(t) = \{y_i(s), 0 \leq s < t\}$

Formally, we have

$$egin{cases} h_i(t) &= h_0(t) \exp\{ \gamma^ op \mathbf{w}_i + lpha \eta_i(t) \} \ y_i(t) &= \eta_i(t) + arepsilon_i(t) \ &= \mathbf{x}_i^ op (t) eta + \mathbf{z}_i^ op (t) \mathbf{b}_i + arepsilon_i(t) \ &\mathbf{b}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{D}), \quad arepsilon_i(t) \sim \mathcal{N}(0, \sigma^2) \end{cases}$$

The longitudinal and survival outcomes are jointly modeled

$$p(y_i, T_i^L, T_i^R) = \int p(y_i \mid b_i) imes \left\{ S(T_i^L \mid b_i) - S(T_i^R \mid b_i)
ight\} imes p(b_i) \; db_i$$

- the random effects b_i explain the interdependencies

- Estimation of joint models is based on either
 - Maximum likelihood (requires numerical integration)
 - Bayesian approaches (e.g., MCMC or HMC)

- · Here, we follow a Bayesian approach
 - more on this later...

Functional Form

- Biomarker's rate of change
 - fast increasing PSA indicative of progression

$$h_i(t) = h_0(t) \exp\{ \gamma^ op \mathbf{w}_i + lpha_1 \eta_i(t) + lpha_2 \eta_i'(t) \}$$

where
$$\eta_i'(t) = rac{d}{dt} \eta_i(t)$$

Functional Form (cont'd)

PRIAS Study Analysis

PSA growth

$$egin{cases} \log_2(PSA) &= \eta_i(t) + arepsilon_i(t) \ &= eta_0 + \sum_{k=1}^3 eta_k \mathrm{NS}_k(t,
u) + eta_4 \mathrm{Age} + eta_5 \mathrm{Age}^2 \ &+ b_{i0} + \sum_{k=1}^2 b_{ik} \mathrm{NS}_k(t,
u) + arepsilon_i(t) \ &\mathbf{b}_i \sim \mathcal{N}(\mathbf{0},\mathbf{D}), \qquad arepsilon_i(t) \sim \mathcal{N}(0,\sigma^2) \end{cases}$$

PRIAS Study Analysis (cont'd)

· Risk of reclassification

$$h_i(t) = h_0(t) \exp\Bigl\{ \gamma_1 \mathrm{Age} + \gamma_2 \mathrm{Age}^2 + lpha_1 \eta_i(t) + lpha_2 rac{d\eta_i(t)}{dt} \Bigr\}$$

where

- $\eta_i(t)$ log2(PSA) current value
- $\frac{d\eta_i(t)}{dt}$ log2(PSA) velocity

PRIAS Study Analysis (cont'd)

Results

Info From a New Patient

• Suppose a new patient j comes in

- · What is the available information
 - last biopsy: $T_j^* > t$
 - PSA measurements: $\mathcal{Y}_j(s) = \{y_j(t_{jl}); 0 \leq t_{jl} \leq s, l = 1, \dots, n_j\}$
 - typically $s \geq t$
 - \mathcal{D}_n sample on which the joint model was fitted

Info From a New Patient (cont'd)

• Aim: We want to combine all this information into a single tool to predict Gleason upgrade

Posterior Predictive Distribution (PPD)

$$pig\{T_j^* \mid T_j^* > t, \mathcal{Y}_j(s), \mathcal{D}_nig\}$$

Two Avenues to Plan Biopsies

What is the best guess on when Gleason upgrade will occur?

- Option 1: Theory and intuition suggest a measure of central tendency, e.g.,
 - u = mean of PPD
 - u = median of PPD

• Option 2: Risk-based approach, select u>t such that

$$\Pr(T_i^* < u \mid T_i^* > t, \mathcal{Y}_j(s), \mathcal{D}_n) = \kappa, \quad 0 \leq \kappa \leq 1$$

Two Avenues to Plan Biopsies (cont'd)

• Selection of κ for **Option 2**

- Risk urologists are willing to take
 - e.g., risk of reclassification should be less than 10%
 - often no clear consensus

- · Data-driven approach based on ROC analysis in \mathcal{D}_n
 - F1 score (https://en.wikipedia.org/wiki/F1_score), Youden's J (https://en.wikipedia.org/wiki/Youden%27s_J_statistic), ...
 - time-varying thresholds $k(t), \;\; 0 \leq t \leq t_{max}$

Simulations - Design

· We evaluated both approaches in simulations

- Data were simulated from the model fitted to PRIAS
 - value + velocity of PSA
 - 3 subgroups, early, mid and late progression

Simulations - Design (cont'd)

- Objective evaluation each simulated dataset split in two parts
 - training: to fit the model
 - *test*: to apply the procedure for selecting biopsy times

- Performance judged based on
 - effort required to find reclassification ⇒ # Biopsies
 - how much we overshoot ⇒ Offset

Simulation - Results

Online App

We have created an online app to facilitate the whole procedure:

https://emcbiostatistics.shinyapps.io/Dynamic_Predictions/ (https://emcbiostatistics.shinyapps.io/Dynamic_Predictions/)

Discussion

- Things to improve
 - account for miss-classification
 - include DRE

- · Software: available in **JMbayes** on CRAN & GitHub
 - https://cran.r-project.org/package=JMbayes (https://cran.r-project.org/package=JMbayes)
 - https://github.com/drizopoulos/JMbayes (https://github.com/drizopoulos/JMbayes)

Thank you for your attention!

http://www.drizopoulos.com/ (http://www.drizopoulos.com/)