CS 480

Introduction to Artificial Intelligence

March 29, 2022

Announcements / Reminders

- Final Exam: April 28th!
 - Ignore Registrar date for CS 480
- Programming Assignment #02:
 - Posted
- Quiz #03: due on Sunday
- Written Assignment #03:
 - This week

Grading TA assignment:

https://docs.google.com/spreadsheets/d/1Cav_GBTGC7fLGzxuBCAUmEuJYPeF-HMLCYvwPbq8Fus/edit?usp=sharing

Plan for Today

- Quantifying and dealing with uncertainty
- Bayesian Networks

Bayesian (Belief) Network: Example

Random Variables (Propositions):

- Tampering: true if the alarm is tampered with
- Fire: true if there is a fire
- Alarm: true if the alarm sounds
- Smoke: true if there is smoke
- Leaving: true if people leaving the building at once
- Report: true if someone who left the building reports fire

Domain for all variables: {true, false}

NOTE: RVs don't have to be Boolean

H: grad	e: female	$P(H, e) = P(H \land e)$: $P(grad \land female)$	Conditional probabilities
true	true	$P(H \mid e)*P(e)\approx 0.074$	$P(H \mid e) = \frac{P(e \mid H) * P(H)}{P(e)} = \frac{6 / 18 * 18 / 81}{13 / 81} \approx 0.462$
true	false	$P(H \mid \neg e) * P(\neg e) \approx 0.148$	$P(H \mid \neg e) = \frac{P(\neg e \mid H) * P(H)}{P(\neg e)} = \frac{12 / 18 * 18 / 81}{68 / 81} \approx 0.176$
false	true	$P(\neg H \mid e)*P(e)\approx 0.086$	$P(\neg H \mid e) = \frac{P(e \mid \neg H) * P(\neg H)}{P(e)} = \frac{7 / 63 * 63 / 81}{13 / 81} \approx 0.538$
false	false	$P(\neg H \mid \neg e) * P(\neg e) \approx 0.691$	$P(\neg H \mid \neg e) = \frac{P(\neg e \mid \neg H) * P(\neg H)}{P(\neg e)} = \frac{56 / 63 * 63 / 81}{68 / 81} \approx 0.824$
		SUM = 1	

Joint probabilities calculated using the Product Rule:

$$P(A \wedge B) = P(A \mid B) * P(B)$$

Conditional probabilities calculated using Bayes' Rule:

$$P(A \mid B) = \frac{P(B \mid A) * P(A)}{P(B)}$$

Agents and Belief State

Assume: $D_c = \{0,1,2,3\}$

General Inference Procedure

Given:

- a query involving a single variable X (in our example: Cavity),
- a <u>list</u> of evidence variables E (in our example: just Toothache),
- a <u>list</u> of observed values e for E,
- a list of remaining unobserved variables Y (in our example: just Catch),

where X, E, and Y together are a COMPLETE set of variables for the domain, the probability $P(X \mid E)$ can be evaluated as:

$$P(X \mid e) = \alpha * P(X, e) = \alpha * \sum_{v} P(X, e, y)$$

where ys are all possible values for Ys, α - normalization constant.

P(X, e, y) is a subset of probabilities from the joint distribution

Complex Joint Distributions

Consider a complex joint probability distribution involving N random variables P_1 , P_2 , P_3 , ..., P_{N-1} , Pp_N .

			N Rai	ndom Variables			Joint	
	\mathbf{P}_1	P_2	P_3		P_{N-1}	P_{N}	Probability	
(5	true	true	true		true	true	false	
del	true	true	true		true	false	true	
™	true	true	false		false	true	false	
Possible Worlds (Models)				•••				2 ^N values
SSÍ	false	false	true	•••	true	false	true	
PC	false	false	true		false	true	true	
2^{N}	false	false	false		false	false	false	

Non-binary / Non-Boolean RVs

Some Random Variables are going to have more than two possible, discrete, values:

- height -> short, average, tall
- size -> **S**, **M**, **L**, **XL**
- streetLight -> green, orange, red
- vision -> 20/20, 15/15, etc.
- continent -> Africa, Antarctica, Asia, Australia,
 Europe, North America, South America
- Non-binary RVs increase the complexity.

This May Be Impossible to Manage!

			N Rai	ndom Variables			Joint	
	\mathbf{P}_1	P_2	P_3		P_{N-1}	P_{N}	Probability	
(5	true	true	true		true	true	false	
del	true	true	true		true	false	true	
Mo	true	true	false		false	true	false	
Possible Worlds (Models)		•••	•••	•••	•••			2 ^N values
SSi	false	false	true		true	false	true	
l Pc	false	false	true		false	true	true	
2^{N}	false	false	false	•••	false	false	false	

Independent Variable

		Toot	hache	¬Toothache		
Cloudy		Catch	¬Catch	Catch	¬Catch	
-CIc	Cavity	0.108	0.012	0.072	0.008	
'	¬Cavity	0.016	0.064	0.144	0.576	
		Toot	hache	¬Too	thache	
udy		Catch	¬Catch	Catch	¬Catch	
Cloudy	Cavity	0.108	0.012	0.072	0.008	
	¬Cavity	0.016	0.064	0.144	0.576	

Let's introduce another random variable Cloudy representing some weather conditions. It is difficult to imagine the other random variables here (Toothache, Cavity, Catch) being dependent on Cloudy and vice versa.

Independent Variable

		Toot	hache	¬Toothache		
Cloudy		Catch	¬Catch	Catch	¬Catch	
ļ Ģ	Cavity	0.108	0.012	0.072	0.008	
'	¬Cavity	0.016	0.064	0.144	0.576	
		Toot	hache	¬Too	thache	
udy		Catch	¬Catch	Catch	¬Catch	
Cloudy	Cavity	0.108	0.012	0.072	0.008	
	¬Cavity	0.016	0.064	0.144	0.576	

Let's try to calculate the following probability:

P(Toothache, Catch, Cavity, Cloudy)

using the Product Rule:

P(Toothache, Catch, Cavity, Cloudy) == P(Cloudy | Toothache, Catch, Cavity) * P(Toothache, Catch, Cavity)

Independent Variable

		Toot	hache	¬Toothache		
Cloudy		Catch	¬Catch	Catch	¬Catch	
	Cavity	0.108	0.012	0.072	0.008	
'	¬Cavity	0.016	0.064	0.144	0.576	
		Toot	hache	¬Too	thache	
Cloudy		Catch	¬Catch	Catch	¬Catch	
Clo	Cavity	0.108	0.012	0.072	0.008	
	¬Cavity	0.016	0.064	0.144	0.576	

It's hard to imagine Cloudy influencing other variables, so:

 $P(Cloudy \mid Toothache, Catch, Cavity) = P(Cloudy)$

and then:

$$P(Toothache, Catch, Cavity, Cloudy) =$$

= $P(Cloudy) * P(Toothache, Catch, Cavity)$

Independent Variable / Factoring

		Toot	hache	¬Toothache		
Cloudy		Catch	¬Catch	Catch	¬Catch	
	Cavity	0.108	0.012	0.072	0.008	
,	¬Cavity	0.016	0.064	0.144	0.576	
		Toot	hache	¬Too	thache	
udy		Catch	¬Catch	Catch	¬Catch	
Cloudy	Cavity	0.108	0.012	0.072	0.008	
	¬Cavity	0.016	0.064	0.144	0.576	

It's hard to imagine Cloudy influencing other variables, so:

P(Toothache, Catch, Cavity, Cloudy) == P(Cloudy) * P(Toothache, Catch, Cavity)

This shows that Cloudy is INDEPENDENT of other variables and factoring can be applied.

Factoring / Decomposition

Use Chain Rule To Decompose

		N Ra	ndom Variables			Joint
P_1	\mathbf{P}_2	\mathbf{P}_3		P_{N-1}	\mathbf{P}_{N}	Probability
true	true	true	***	true	true	false
true	true	true	•••	true	false	true
true	true	false	***	false	true	false
***		•••	***			
false	false	true		truo	false	true
			***	true		
false	false	true		false	true	true
false	false	false	•••	false	false	false
laise	Taise	laise		laise	laise	laise
			~			
	,					

Chain Rule

Conditional probabilities can be used to decompose conjunctions using the chain rule. For any propositions f_1, f_2, \ldots, f_n :

$$P(f_1 \wedge f_2 \wedge \ldots \wedge f_n) = \prod_{i=1}^n P(f_i \mid f_1 \wedge \ldots \wedge f_{i-1})$$

H: grad	e: female	$P(H, e) = P(H \land e)$: $P(grad \land female)$
true	true	$P(grad = true \land female = true) = P(H, e) = P(H \land e) = P(H) * P(e \mid H) \approx 0.074$
true	false	$P(grad = true \land female = false) = P(H, \neg e) = P(H) * P(\neg e \mid H) \approx 0.148$
false	true	$P(grad = false \land female = true) = P(\neg H, e) = P(\neg H) * P(e \mid \neg H) \approx 0.086$
false	false	$P(grad = false \land female = false) = P(\neg H, \neg e) = P(\neg H) * P(\neg e \mid \neg H) \approx 0.691$
		SUM = 1

Joint probabilities calculated using the Chain Rule:

$$P(f_{1} \wedge f_{2}) = \prod_{i=1}^{2} P(f_{i} | f_{1} \wedge ... \wedge f_{i-1})$$

$$P(f_{1} \wedge f_{2}) = P(f_{1}) * P(f_{2} | f_{1})$$

$$so: P(grad \wedge female) = P(H \wedge e) = P(H) * P(e | H)$$

H: grad	e: female	$P(H, e) = P(H \land e)$: $P(grad \land female)$
true	true	$P(H, e) = P(H \land e) = P(H) * P(e \mid H) = 18 / 81 * 6 / 18 \approx 0.074$
true	false	$P(H, \neg e) = P(H) * P(\neg e \mid H) = 18 / 81 * 12 / 18 \approx 0.148$
false	true	$P(\neg H, e) = P(\neg H) * P(e \mid \neg H) = 63 / 81 * 7 / 63 \approx 0.086$
false	false	$P(\neg H, \neg e) = P(\neg H) * P(\neg e \mid \neg H) = 63 / 81 * 56 / 63 \approx 0.691$
		SUM = 1

Joint probabilities calculated using the Chain Rule:

$$P(f_{1} \wedge f_{2}) = \prod_{i=1}^{2} P(f_{i} | f_{1} \wedge ... \wedge f_{i-1})$$

$$P(f_{1} \wedge f_{2}) = P(f_{1}) * P(f_{2} | f_{1})$$

$$so: P(grad \wedge female) = P(H \wedge e) = P(H) * P(e | H)$$

H: grad	e: female	$P(H, e) = P(H \land e)$: $P(grad \land female)$
true	true	$P(H, e) = P(H \land e) = P(H) * P(e \mid H) = 18 / 81 * 6 / 18 \approx 0.074$
true	false	$P(H, \neg e) = P(H) * P(\neg e \mid H) = 18 / 81 * 12 / 18 \approx 0.148$
false	true	$P(\neg H, e) = P(\neg H) * P(e \mid \neg H) = 63 / 81 * 7 / 63 \approx 0.086$
false	false	$P(\neg H, \neg e) = P(\neg H) * P(\neg e \mid \neg H) = 63 / 81 * 56 / 63 \approx 0.691$
		SUM = 1

Joint probabilities calculated using the Chain Rule:

$$P(f_{1} \wedge f_{2}) = \prod_{i=1}^{2} P(f_{i} | parents(f_{i}))$$

$$P(f_{1} \wedge f_{2}) = P(f_{1}) * P(f_{2} | parents(f_{i}))$$
so: $P(H \wedge e) = P(H) * P(e | parents(e)) = P(H) * P(e | H)$

H: grad	e: female	$P(H, e) = P(H \land e)$: $P(grad \land female)$
true	true	$P(H, e) = P(H \land e) = P(H) * P(e \mid H) = 18 / 81 * 6 / 18 \approx 0.074$
true	false	$P(H, \neg e) = P(H) * P(\neg e \mid H) = 18 / 81 * 12 / 18 \approx 0.148$
false	true	$P(\neg H, e) = P(\neg H) * P(e \mid \neg H) = 63 / 81 * 7 / 63 \approx 0.086$
false	false	$P(\neg H, \neg e) = P(\neg H) * P(\neg e \mid \neg H) = 63 / 81 * 56 / 63 \approx 0.691$
		SUM = 1

$$P(H \wedge e) = P(H) * P(e \mid parents(e)) = P(H) * P(e \mid H)$$

H:	¬H:	
grad	−grad	4
18 / 81 ≈ 0.22	63 / 81 ≈ 0.78	

H: grad	e: female	P(e H)
true	true	6 / 18 ≈ 0.333
true	false	12 / 18 ≈ 0.667
false	true	7 / 63 ≈ 0.111
false	false	56 / 63 ≈ 0.889

Bayesian (Belief) Network

A Bayesian belief network describes the joint probability distribution for a set of variables.

A Bayesian network is an acyclic, directed graph (DAG), where the nodes are random variables (propositions). There is an edge (arc) from each elements of $\operatorname{parents}(X_i)$ into X_i . Associated with the Bayesian network is a set of conditional probability distributions - the conditional probability of each variable given its parents (which includes the prior probabilities of those variables with no parents).

Consists of:

- a graph (DAG) with nodes corresponding to random variables
- a domain for each random variable
- a set of conditional probability distributions $P(X_i | parents(X_i))$

Building Bayesian (Belief) Network

- 1. Order Random Variables (ordering matters!)
- 2. Create network nodes for each Random Variable
- 3. Add edges between parent nodes and children nodes
 - For every node node X_i:
 - lacktriangle choose a minimal set S of parents for X_i
 - for each parent node Y in S add an edge from Y to X_i
- 4. Add Conditional Probability Tables

Make it compact / sparse: choose your Random Variable ordering wisely.

Ordering Matters!

Create Vertices / Node / Random Vars

Add Edges

Add Conditional Probability Tables

Create Vertices / Node / Random Vars

Create Vertices / Node / Random Vars

Add Edges

Add Conditional Probability Tables

H:	¬H:
grad	⊣grad
18 / 81 ≈ 0.22	63 / 81 ≈ 0.78

H: grad	e: female	P(e H)
true	true	6 / 18 ≈ 0.333
true	false	12 / 18 ≈ 0.667
false	true	7 / 63 ≈ 0.111
false	false	56 / 63 ≈ 0.889

Bayesian Network: Car Insurance

Factoring / Decomposition

Add Conditional Probability Tables

Bayesian Network: Car Insurance

Add Conditional Probability Tables

Inference by Enumeration: Example

Query:

 $P(Burglary | JohnCalls = true \land MaryCalls = true)$

General Inference Procedure

Given:

- a query involving a single variable X (in our example: Cavity),
- a <u>list</u> of evidence variables E (in our example: just Toothache),
- a <u>list</u> of observed values e for E,
- a list of remaining unobserved variables Y (in our example: just Catch),

where X, E, and Y together are a COMPLETE set of variables for the domain, the probability $P(X \mid E)$ can be evaluated as:

$$P(X \mid e) = \alpha * P(X, e) = \alpha * \sum_{y} P(X, e, y)$$

where ys are all possible values for Ys, α - normalization constant.

P(X, e, y) is a subset of probabilities from the joint distribution

Query:

 $P(Burglary | JohnCalls = true \land MaryCalls = true)$

Given:

- a query involving a single variable X
- a <u>list</u> of evidence variables K,
- a list of observed values k for K,
- a list of remaining unobserved variables Y

the probability $P(X \mid \mathbf{K})$ can be evaluated as:

$$P(X \mid \mathbf{k}) = \alpha * P(X, \mathbf{k})$$
$$= \alpha * \sum_{\mathbf{v}} P(X, \mathbf{k}, \mathbf{y})$$

where ys are all possible values for Ys, α -normalization constant.

Query:

 $P(Burglary | JohnCalls = true \land MaryCalls = true)$

Given:

- a query involving a single variable X:
 Burglary
- a <u>list</u> of evidence variables K: *JohnCalls*, *MaryCalls*
- a <u>list</u> of observed values k for
 K: johnCalls, maryCalls
- a list of remaining unobservedvariables Y: Earthquake, Alarm

the probability $P(X \mid \mathbf{K})$ can be evaluated as:

$$P(X \mid k) = \alpha * \sum_{y} P(X, k, y)$$

where ys are all possible values for Ys, α -normalization constant.

Query:

 $P(Burglary | JohnCalls = true \land MaryCalls = true)$

Given:

- a query involving a single variable X:
 B
- a <u>list</u> of evidence variables K: *J*, *M*
- a <u>list</u> of observed values k for K: j, m
- a list of remaining unobserved variables Y: E, A

the probability $P(X \mid K)$ can be evaluated as:

$$P(X \mid k) = \alpha * \sum_{y} P(X, k, y)$$

where ys are all possible values for Ys , α -normalization constant.

Query:

 $P(Burglary | JohnCalls = true \land MaryCalls = true)$

Given:

- a query involving a single variable B
- a <u>list</u> of evidence variables K: *J*, *M*
- a <u>list</u> of observed values k for K: j, m
- a list of remaining unobserved variables Y: E, A

the probability $P(B \mid J, M)$ can be evaluated as:

$$P(B \mid j, m)$$
= $\alpha * \sum_{e} \sum_{a} P(B, j, m, e, a)$

where ys are all possible values for Ys , α -normalization constant.

Query (let's change it a bit for simplicity):

 $P(Burglary = true | JohnCalls = true \land MaryCalls = true)$

Given:

- a query involving a single variable B
- a <u>list</u> of evidence variables K: *J*, *M*
- a <u>list</u> of observed values k for K: j, m
- a list of remaining unobserved variables Y: E, A

the query can be evaluated as:

$$P(b \mid j, m) = \alpha * \sum_{e} \sum_{a} P(b, j, m, e, a)$$

By Chain rule:

$$P(b, j, m, e, a)$$

= $P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$

Query (let's change it a bit for simplicity):

 $P(Burglary = true \mid JohnCalls = true \land MaryCalls = true)$

Given:

- a query involving a single variable B
- a <u>list</u> of evidence variables K: *J*, *M*
- a <u>list</u> of observed values k for K: j, m
- a list of remaining unobserved variables Y: E, A

the query can be evaluated as:

$$P(b \mid j, m)$$

$$= \alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$$

Query (let's change it a bit for simplicity):

 $P(Burglary = true \mid JohnCalls = true \land MaryCalls = true)$

Given:

- a query involving a single variable B
- a list of evidence variables K: /, M
- a <u>list</u> of observed values k for K: j, m
- a list of remaining unobserved variables Y: E, A

the query can be evaluated as:

$$P(b | j, m)$$
= $\alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b, e) * P(j|a) * P(m|a)$
= $\alpha * P(b) * \sum_{e} P(e) * \sum_{a} P(a|b, e) * P(j|a) * P(m|a)$

Query (let's change it a bit for simplicity):

 $P(Burglary = true \mid JohnCalls = true \land MaryCalls = true)$

$$P(b | j, m)$$
= $\alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b, e) * P(j|a) * P(m|a)$
= $\alpha * P(b) * \sum_{e} P(e) * \sum_{a} P(a|b, e) * P(j|a) * P(m|a)$

Query (let's change it a bit for simplicity):

 $P(Burglary = true \mid JohnCalls = true \land MaryCalls = true)$

$$P(b | j, m) = \alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$$

$$= \alpha * P(b) * \sum_{e} P(e) * \sum_{a} P(a|b,e) * P(j|a) * P(m|a)$$

Query (let's change it a bit for simplicity):

 $P(Burglary = true \mid JohnCalls = true \land MaryCalls = true)$

$$P(b | j, m) = \alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$$

$$= \alpha * P(b) * \sum_{e} P(e) * \sum_{a} P(a|b,e) * P(j|a) * P(m|a)$$

Query (let's change it a bit for simplicity):

 $P(Burglary = true \mid JohnCalls = true \land MaryCalls = true)$

$$P(b | j, m)$$
= $\alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$
= $\alpha * P(b) * \sum_{e} P(e) * \sum_{a} P(a|b,e) * P(j|a) * P(m|a)$

Query (let's change it a bit for simplicity):

 $P(Burglary = true \mid JohnCalls = true \land MaryCalls = true)$

$$P(b | j, m) = \alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$$

$$= \alpha * P(b) * \sum_{e} P(e) * \sum_{a} P(a|b,e) * P(j|a) * P(m|a)$$

Query (let's change it a bit for simplicity):

 $P(Burglary = true \mid JohnCalls = true \land MaryCalls = true)$

$$P(b | j, m)$$
= $\alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$
= $\alpha * P(b) * \sum_{e} P(e) * \sum_{a} P(a|b,e) * P(j|a) * P(m|a)$

Query (let's change it a bit for simplicity):

 $P(Burglary = true \mid JohnCalls = true \land MaryCalls = true)$

$$P(b | j, m) = \alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$$

$$= \alpha * P(b) * \sum_{e} P(e) * \sum_{a} P(a|b,e) * P(j|a) * P(m|a)$$

Query (let's change it a bit for simplicity):

 $P(Burglary = true \mid JohnCalls = true \land MaryCalls = true)$

$$P(b | j, m)$$
= $\alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b, e) * P(j|a) * P(m|a)$
= $\alpha * P(b) * \sum_{e} P(e) * \sum_{a} P(a|b, e) * P(j|a) * P(m|a)$

Query (let's change it a bit for simplicity):

 $P(Burglary = true \mid JohnCalls = true \land MaryCalls = true)$

$$P(b | j, m)$$
= $\alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$
= $\alpha * P(b) * \sum_{e} P(e) * \sum_{a} P(a|b,e) * P(j|a) * P(m|a)$

Query (let's change it a bit for simplicity):

 $P(Burglary = true \mid JohnCalls = true \land MaryCalls = true)$

$$P(b | j, m) = \alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$$

$$= \alpha * P(b) * \sum_{e} P(e) * \sum_{a} P(a|b,e) * P(j|a) * P(m|a)$$

Query (let's change it a bit for simplicity):

 $P(Burglary = true \mid JohnCalls = true \land MaryCalls = true)$

$$P(b | j, m)$$
= $\alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$
= $\alpha * P(b) * \sum_{e} P(e) * \sum_{a} P(a|b,e) * P(j|a) * P(m|a)$

Query (let's change it a bit for simplicity):

 $P(Burglary = true \mid JohnCalls = true \land MaryCalls = true)$

We can now calculate:

$$P(b \mid j, m) = \alpha * 0.00059224$$

And through similar process (not shown):

$$P(\neg b \mid j, m) = \alpha * 0.0014919$$

Query (now we can get joint distribution):

 $P(Burglary | JohnCalls = true \land MaryCalls = true)$

We can now calculate:

$$P(B \mid j, m) = \alpha * < 0.00059224, 0.0014919 >$$

And after normalization:

$$P(B | j, m) \approx < 0.284, 0.716 >$$

