

Ţ <u>Help</u>

sandipan_dey >

Discussion <u>Syllabus</u> laff routines **Community** <u>Progress</u> <u>Outline</u> <u>Course</u> <u>Dates</u>

☆ Course / Week 9: Vector Spaces / 9.4 Vector Spaces

(

< Previous

Next >

9.4.4 The Null Space

☐ Bookmark this page

■ Calculator

Week 9 due Dec 9, 2023 18:12 IST Completed

9.4.4 The Null Space

Video

Start of transcript. Skip to the end.

Robert van de Geijn: The second really important subspace of Rn

is known as the null space.

Recall.

We're interested in the solution of Ax equals b.

You've seen that if we have a specific solution

▶ 0:00 / 0:00

▶ 2.0x

▲ Download video file

Transcripts

Reading Assignment

0 points possible (ungraded) Read Unit 9.4.4 of the notes. [LINK]

Done

Submit

✓ Correct

Discussion

Topic: Week 9 / 9.4.4

Hide Discussion

by recent activity >

Add a Post

Show all posts

There are no posts in this topic yet.

×

⊞ Calculator

Homework 9.4.4.1

1/1 point (graded)

Let $A \in \mathbb{R}^{m imes n}$. The null space of A , $\mathcal{N}\left(A
ight)$, is a subspace

TRUE ✓ ✓ Answer: TRUE

- $0 \in \mathcal{N}(A)$: A0 = 0.
- If $x,y\in\mathcal{N}\left(A\right)$ then $x+y\in\mathcal{N}\left(A\right)$: Let $x,y\in\mathcal{N}\left(A\right)$ so that Ax=0 and Ay=0. Then $A\left(x+y\right)=Ax+Ay=0+0=0$ which means means that $x+y\in\mathcal{N}\left(A\right)$.
- If $lpha\in\mathbb{R}$ and $x\in\mathcal{N}\left(A\right)$ then $lpha x\in\mathcal{N}\left(A\right)$: Let $lpha\in\mathbb{R}$ and $x\in\mathcal{N}\left(A\right)$ so that Ax=0. Then $A\left(lpha x
 ight)=Alpha x=lpha Ax=lpha 0=0$ which means means that $lpha x\in\mathcal{N}\left(A\right)$.

Hence $\mathcal{N}\left(A\right)$ is a subspace.

Submit

Answers are displayed within the problem

Homework 9.4.4.2

8/8 points (graded)

Note: This exercise (and some in future units) does not seem to render right in Chrome. You may want to try another browser.

For each of the matrices on the left match the set of vectors on the right that describes its null space. (You should be able to do this "by examination.")

8.
$$\begin{pmatrix} 2 & -4 \end{pmatrix}$$

✓ Answer: i

$$\text{(h)}\left\{\alpha\left(\frac{1}{2}\right)\middle|\alpha\in\mathbb{R}\right\}$$

$$\text{(i)}\left\{\alpha\left(\frac{2}{1}\right)\middle|\alpha\in\mathbb{R}\right\}$$

(Recall that V is the logical "or" operator.)

1.
$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
 Answer: (a) Any vector in \mathbb{R}^2 maps to the zero vector.

2.
$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 Answer: (c) $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \chi_0 \\ \chi_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ means $\chi_1 = 0$ with no restriction on χ_0 .

3.
$$\begin{pmatrix} 0 & -2 \\ 0 & 0 \end{pmatrix}$$
 Answer: (c) $\begin{pmatrix} 0 & -2 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} \chi_0 \\ \chi_0 \end{pmatrix}$ = $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ means $-2\chi_1 = 0$ with no restriction on χ_0 .

Previous Next >

© All Rights Reserved

edX

About

<u>Affiliates</u>

edX for Business

Open edX

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Cookie Policy

Your Privacy Choices

Connect

<u>Idea Hub</u>

Contact Us

Help Center

Security

Media Kit

© 2023 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>