附录 C 硬化混凝土气泡间距系数 检测方法 (直线导线法)

- C.0.1 本方法适用于检验混凝土的气泡参数,也适用于对引气剂品质进行评定。
- C. 0. 2 本方法是在硬化混凝土中取任意直线,某一组分在此直线上所截取的线段长度总和与此直线全长的比值,即为该组分在混凝土中的体积含量。通过测定硬化混凝土中气泡的数量、体积含量,计算混凝土的气泡比表面积、含气量和气泡间距系数等。
- C.0.3 试验设备应符合下列规定:
- 1 测量显微镜:具有目镜测微尺和物镜测微尺,放大倍数为80~128倍。目镜测微尺最小读数为10 μm。载物台能纵、横向移动,移动范围分别不小于50 mm 和100 mm。
 - 2 显微镜照明灯:聚光型灯。
 - 3 切片机、磨片机、抛光机。
- C.0.4 试验数量应符合下列规定:

每组至少三个试件。每组试件的观测总面积和导线总长度应符合表 C. O. 4 的规定。

	The state of the s	
骨料最大粒径 (mm)	最小观测总面积 (mm²)	最小导线长度 (mm)
80	50 000	3 000
40	17 000	2 600
30	11 000	2 500
20	7 000	2 300
10	6 000	1 900

表 C. 0. 4 最小观测总面积及最小导线总长度

注:如混凝土内骨料或大孔隙分布很不均匀,应适当增大观测面积。当在一个混凝土 试样中取几个加工表面时,两加工表面的间距应大于骨料最大粒径的1/2。

C.0.5 试验应按下列步骤进行:

- 1 从硬化混凝土试件上沿垂直于浇筑面方向锯下试样后, 洗刷干净,分别采用 400 号和 800 号金刚砂将试样观测面仔细研 磨 每次磨完后应洗刷干净,再进行下次研磨。最后在抛光机转 盘的呢料上涂刷氧化铬进行抛光,并再次洗刷干净后,在 105 ℃ ±5 ℃的烘箱中烘干,然后置于显微镜下试测。当强光低入射角 照射在观测面上时,若观测到表面除了气泡截面和骨料孔隙外, 视域基本平整,气泡边缘清晰,并能测出尺寸为 10 μm 的气泡 截面,即可认为该观测截面已加工合格。
- 2 正式观测前、用物镜测微尺校准目镜测微尺刻度,并在观测面两端附贴导线间距标志,使选定的导线长度均匀地分布在观测面范围内。调整观测面的位置,使十字丝的横线与导线重合,然后用目镜测微尺进行定量测量。从第一条导线起点开始观察,分别测量并记录视域中气泡个数及测微尺所截取的每个气泡的弦长刻度值。根据需要,也可增测气泡截面直径。第一条导线测试完后再按顺序对第二、三、四……条导线进行观测,直至测完规定的导线长度。
- C.0.6 试验结果计算与处理应符合下列规定:

根据直线导线法观测的数据,按下列公式计算各参数:

1 气泡平均弦长按式 C. O. 5-1 计算:

$$\hat{l} = \frac{\sum l}{N}$$
 (C. 0. 5—1)

2 气泡比表面积按式 C. 0.5-2 计算:

$$a = \frac{4}{\bar{l}}$$
 (C. 0. 5—2)

3 气泡平均半径按式 C. 0.5-3 计算:

$$r = \frac{3}{4}\bar{l}$$
 (C. 0. 5—3)

4 硬化混凝土中的空气含量按式 C. 0.5-4 计算:

$$A = \frac{\sum l}{T}$$
 (C. 0. 5—4)

5 1000 mm 混凝土气泡个数按式 C. 0.5-5 计算:

$$n_v = \frac{3A}{4\pi r^3}$$
 (C. 0. 5—5)

6 每厘米导线切割的气泡个数按式 C. 0.5-6 计算:

$$n_l = \frac{N}{T}$$
 (C. 0. 5—6)

7 气泡间距系数按式 C. 0. 5—7、式 C. 0. 5—8 计算: 当混凝土中浆气比 P/A 大于 4. 33 时:

$$\overline{L} = \frac{3A}{4n_i} \left[1.4 \left(\frac{P}{A} + 1 \right)^{\frac{1}{3}} - 1 \right]$$
 (C. 0.5—7)

当混凝土中浆气比 P/A 小于 4.33 时:

$$\bar{L} = \frac{P}{4n_i}$$
 (C. 0. 5—8)

式中 1---气泡平均弦长 (cm);

 Σl ——全导线所切割气泡弦长总和 (cm);

N---全导线所切割的气泡总个数;

a——气泡比表面积 (cm²/cm³);

r——气泡平均半径 (cm);

 n_{χ} ——1 cm³ 混凝土中的气泡个数;

A---硬化混凝土中的空气含量 (体积比);

T---全导线总长 (cm);

P——混凝土中水泥净浆含量(体积比,不包含空气含量);

n,——平均每1 cm 导线切割的气泡个数;

____气泡间距系数 (cm)。

计算结果取三位有效数字。