

Contrastive learning

Background

Presenter: Changyu Deng February 2020

Scope: self-supervised representation learning

- No labels
- To extract features (representations)

Why?

Labeled data

Unlabeled data

How? Let us classify the following images into 2 categories

- Every instance image has its own feature/representation
- Can we learn representation by discriminating instances?

https://billsberryfarm.com/produce/peaches/ https://www.applesfromny.com/varieties/jonagold/ https://www.heb.com/static-page/apple-varieties

A naïve idea: train a classifier to classify N images into N categories.

Impractical, too many categories.

Memory bank

Non-Parametric Instance Discrimination

We reduce the dimension of classifications

We want to learn $\mathbf{v} = f_{\boldsymbol{\theta}}(x)$ subject to $\|\mathbf{v}\| = 1$

Non-parametric softmax
$$P(i|\mathbf{v}) = \frac{\exp\left(\mathbf{v}_i^T\mathbf{v}/\tau\right)}{\sum_{j=1}^n \exp\left(\mathbf{v}_j^T\mathbf{v}/\tau\right)}$$

Loss
$$J(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \log P(i|f_{\boldsymbol{\theta}}(x_i))$$

Wu, Zhirong, et al. "Unsupervised feature learning via non-parametric instance discrimination." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.

Can we incorporate more semantic info? Let us classify the following images into 2 categories

What are the attributes to distinguish between these two types of objects

- Shape? Yes
- Texture? Yes
- Color? Maybe
- Orientation? No
- Image size? No
- Location? No

The *views* are generated from 2 *images* by **data augmentation**

- Know the "category" of views without label
- Train the network to discard unneeded attributes

Another naïve idea: train a classifier to classify *N* images (unlimited views) into *N* categories.

Michigan Engineering

SimCLR

SimCLR

- Use data augmentation to generate views
- Measure the distance between representations
- Cluster representations of views

SimCLR

First define distance by inner product

$$\operatorname{sim}(\boldsymbol{u}, \boldsymbol{v}) = \boldsymbol{u}^{\top} \boldsymbol{v} / \|\boldsymbol{u}\| \|\boldsymbol{v}\|$$

Then define loss function by distance

For a positive pair of views i,j (from the same image)

$$\ell_{i,j} = -\log rac{\exp(\sin(\boldsymbol{z}_i, \boldsymbol{z}_j)/ au)}{\sum_{k=1}^{2N} \mathbbm{1}_{[k \neq i]} \exp(\sin(\boldsymbol{z}_i, \boldsymbol{z}_k)/ au)}$$
 InfoNCE

To make this work, we need

- Large batch size (256-8192 in the paper)
- Various data augmentation techniques

Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." International conference on machine learning. PMLR, 2020.

SimCLR

Data augmentation used in SimCLR

SwAV

SwAV: use given number of clusters/categories

Swapping Assignments between Views (Ours)

$$\mathsf{Loss} \qquad -\frac{1}{N} \sum_{n=1}^{N} \sum_{s,t \sim \mathcal{T}} \left[\frac{1}{\tau} \mathbf{z}_{nt}^{\top} \mathbf{C} \mathbf{q}_{ns} + \frac{1}{\tau} \mathbf{z}_{ns}^{\top} \mathbf{C} \mathbf{q}_{nt} - \log \sum_{k=1}^{K} \exp \left(\frac{\mathbf{z}_{nt}^{\top} \mathbf{c}_{k}}{\tau} \right) - \log \sum_{k=1}^{K} \exp \left(\frac{\mathbf{z}_{ns}^{\top} \mathbf{c}_{k}}{\tau} \right) \right]$$

To avoid trivial solution, Q is regularized by complicated constraints

- High entropy
- Equal partition of images by prototypes (clusters)

A large batch size or memory bank is needed

Caron, Mathilde, et al. "Unsupervised learning of visual features by contrasting cluster assignments." arXiv preprint arXiv:2006.09882 (2020)

Brief summary

Memory bank

Needs to store all features

End-to-end

Needs a large batch size

↓ High GPU memory

Clustering

Needs a large batch size or memory bank

12

Thank you