章 宇 ZHANG Yu y.zhang@swufe.edu.cn

- Various Combinatorial Optimization Problems (COP) in industry
 - -TSP
 - VRP
 - Scheduling
 - Packing
 - Location
 - Course timetabling
 - Portfolio optimization

— ...

- Bad news: COP is generally NP-hard
 - Can be solved to optimality
 - Solution time increases exponentially
 - May not be practical
 - E.g.: solve VRP with 1000+ nodes within 5 minutes

- Good news: compromised solution
 - Solve for suboptimal solution quickly
 - How? Heuristic algorithms!
- Heuristic: a procedure that determines near-optimal solutions to an optimization problem.
 - Sometimes can find optimal solution, but cannot prove its optimality
 - Widely used in industry!

- JD
 - https://jdata.jd.com/html/detail.html?id=5

- Huawei
 - https://www.noahlab.com.hk/logisticsranking/#/competition_details
 - https://competition.huaweicloud.com/information/1000041601/circumstance

 Problem: finding a shortest circle visiting each node exactly once.

• E.g.:

Mona Lisa Instance

- 100,000 nodes
- Best known solution by heuristics:
 - Dist = 5,757,191
- Best known lower bound
 - Dist = 5,757,084
- Gap = 0.0019%
- \$1,000 for finding better
 - http://www.math.uwaterloo.ca/tsp/

How to solve it? Brain storming...

- Idea 1: Enumeration
- # feasible routes?
 - (#nodes 1)!
- E.g.:
 - -101 nodes; # routes = $100! \approx 10^{158}$
 - Super powerful computer
 - # CPUs is $10^{80} \approx$ # atoms in the universe
 - 5.39×10^{-44} seconds (Planck time) per operation
 - $\sim 5.39 \times 10^{34}$ seconds to enumerate
 - Compare to 4.33×10^{17} s. \approx age of universe

- Idea 2: Greedy Algorithm
 - Iteratively select the shortest arc

- Idea 3: Nearest neighbor
 - Iteratively select the nearest unvisited node

- Idea 4: Cheapest insertion
 - Iteratively insert a node to a subtour in a shortest possible way.

- Idea 5: Random insertion
 - Iteratively insert a random node to current subtour

- Guess: which performs better?
 - 1. Nearest neighbor

2. Cheapest insertion

- <u>Idea 6</u>: 2-opt
 - Swap two edges

- <u>Idea 7</u>: 3-opt
 - Swap three edges

- Summary
- 1. Construction heuristics
 - Nearest neighbor
 - Cheapest insertion
 - -
- 2. Improvement heuristics (local search)
 - 2-opt
 - 3-opt
 - _

Key idea:

construct, then improve

Common wisdom:

Solution quality depends largely on improvement heuristics!

- Improvement
 - Solution representation (node sequence)
 - Definition of neighbor (2-opt)
 - Search strategy (optimal neighbor)

How to escape from local minimum?

- Main idea: introduce randomness
 - Permits worse movement with some probability
 - Probability decreases with time
 - tends to stability
 - analogy with physical annealing

- How to define the probability
 - law of thermodynamics
 - Probability is

$$p = e^{\frac{\Delta E}{kT}}$$

- ΔE : difference of objective values
- k: a positive constant
- T: current temperature
- Hence, $p \in (0,1)$ when $\Delta E < 0$

- Analogy
 - Tour distance ⇔ energy level
 - Feasible solution ⇔ system state
 - Neighbore solution ⇔ change of state
 - Control parameter ⇔ temperature
 - Final solution ⇔ status when solid


```
Select an initial solution \omega \in \Omega
Select the temperature change counter k = 0
Select a temperature cooling schedule, t_k
Select an initial temperature T = t_0 \ge 0
Select a repetition schedule, M_k, that defines the number of iterations executed at
each temperature, t_k
Repeat
      Set repetition counter m = 0
      Repeat
                                                                       "Metropolis Criterion"
          Generate a solution \omega' \in N(\omega)
          Calculate \Delta_{\omega,\omega'} = f(\omega') - f(\omega)
          If \Delta_{\omega,\omega'} \leq 0, then \omega \leftarrow \omega'
          If \Delta_{\omega,\omega'} > 0, then \omega \leftarrow \omega' with probability exp(-\Delta_{\omega,\omega'}/t_k)
          m \leftarrow m + 1
      Until m = M_k
      k \leftarrow k+1
Until stopping criterion is met
```

Pseudo-code: A.G. Nikolaev and S. H. Jacobson, Simulated annealing. in Handbook of Metaheuristics, 2nd Ed.

Illustration

Image: E. K. Burke and G. Kendall, Search
Methodologies,
Introductory Tutorials in
Optimization and Decision
Support Techniques.
Springer, 2014.

Facility Location

 Problem: Determine the facilities to open and assign customer to facilities to minimize the fixed and variable costs

Facility Location

Question: Design a heuristic algorithm

