Modélisation de données

Un modèle relationnel...

en 5 diapositives simples

TMR_02 v250a 2025-01-08

> Christina.Khnaisser@USherbrooke.ca Luc.Lavoie@USherbrooke.ca

© 2018-2025, **Μητις** (http://info.usherbrooke.ca/llavoie) CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Fondements — Attributs

- Un attribut est un couple formé d'un identifiant a et d'un type
 D, noté a:D.
- Par abus de langage, lorsque le contexte le permet, il est usuel de désigner l'attribut par son seul identifiant; ainsi écrit-on l'attribut a.

Fondements — Tuples

• Soit a_i des identifiants distincts et D_j des types, un tuple t est défini comme suit:

```
• t \triangleq (\{a_1:D_1, a_2:D_2, ..., a_n:D_n\}; \{(a_1,v_1), (a_2,v_2), ..., (a_n,v_n)\})
```

• avec \forall i: $1 \le i \le \deg(t) \Longrightarrow val(t, a_i) \in \deg(t, a_i)$

ooù

•
$$def(t) = \{a_1:D_1, a_2:D_2, ..., a_n:D_n\}$$
 entête de t

- $def(t, a_i) = D_i$ type de l'attribut a_i de t
- $val(t) = \{(a_1, v_1), (a_2, v_2), ..., (a_n, v_n)\}$ valeur de t
- $val(t, a_i) = v_i$ valeur de de l'attribut a_i de t
- deg(t) = n degré de t
- $id(t) = \{a_1, a_2, ..., a_n\}$ les identifiants d'attributs de t

Fondements — Relations

• Soit a_i des identifiants distincts, D_j des types et t_k des tuples, une relation R est définie comme suit:

•
$$R \triangleq (\{a_1:D_1, a_2:D_2, ..., a_n:D_n\}; \{t_1, t_2, ..., t_m\})$$

• avec \forall i: $1 \le i \le card(R) \Longrightarrow def(R) = def(t_i)$

o Où

•
$$def(R) = \{a_1:D_1, a_2:D_2, ..., a_n:D_n\}$$
 entête de R

•
$$def(R, a_i) = D_i$$
 type $de a_i de R$

•
$$val(R) = \{t_1, t_2, ..., t_m\}$$
 valeur de R

•
$$deg(R) = n$$
 degré de R

•
$$card(R) = m$$
 cardinalité de R

•
$$id(R) = \{a_1, a_2, ..., a_n\}$$
 identifiants d'attributs de R

Fondements — Illustration

Grâce aux contraintes sur les tuples et les relations, la représentation tabulaire initiale est donc bien fondée.

Quatre tuples (ayant le même entête)

	adresse: Ville	nom: Nom	matricule: Matricule
t1	adresse: >6~のつら	nom: Paul	matricule: 15113150
t2	adresse: Ville	nom: Nom	matricule: Matricule
ιz	adresse: Blanc-Sablon	nom: Éliane	matricule: 15112354
t3	adresse: Ville	nom: Nom	matricule: Matricule
ادا	adresse: Tadoussac	nom: Mohamed	matricule: 15113870
t4	adresse: Ville	nom: Nom	matricule: Matricule
ι4	adresse: Chandler	nom: Sergeï	matricule: 15110132

Une relation comprenant quatre tuples

matricule: Matricule	nom: Nom	adresse: Ville
matricule: Matricule	nom: Nom	adresse: Ville
matricule: 15113150	nom: Paul	adresse: >ል⁵౮ጋ⁵ь
matricule: Matricule	nom: Nom	adresse: Ville
matricule: 15112354	nom: Éliane	adresse: Blanc-Sablon
matricule: Matricule	nom: Nom	adresse: Ville
matricule: 15113870	nom: Mohamed	adresse: Tadoussac
matricule: Matricule	nom: Nom	adresse: Ville
matricule: 15110132	nom: Sergeï	adresse: Chandler

La représentation compacte usuelle de cette même relation

matricule: Matricule	nom: Nom	adresse: Ville
15113150	Paul	>6°G) ⁵⁶
15112354	Éliane	Blanc-Sablon
15113870	Mohamed	Tadoussac
15110132	Sergeï	Chandler

Fondements — raccourcis et notations

- Notations équivalentes à val(t, a_i)
 - t.a_i
 - a_i(t)
 - t(a_i)
 - $t[a_i]$
 - a_i from t
- Nous utiliserons fréquemment
 - t.a_i

Les colles du prof

- Quelles différences existe-t-il entre
 - un type de base et sous-type?
 - un tuple et une relation?
 - une relation et une variable de relation?
 - un modèle logique et une base de données?
 - une théorie et un modèle?
 - un modèle et un langage?
 - une clé candidate et une superclé?
- Quelles sont les opérations de base proprement relationnelles?
- En quoi se distinguent-ils des opérations ensemblistes?

https://fr.wikipedia.org/wiki/Bertrand_Russell

https://fr.wikipedia.org/wiki/Kurt_Gödel

Alan Turing et Noam Chomsky

http://en.wikipedia.org/wiki/Alan_Turing#mediaviewer/File:Alan_Turing_photo.jpg

https://fr.wikipedia.org/wiki/Noam_Chomsky
Par Σ, retouched by Wugapodes — File:Noam_Chomsky_portrait_2017.jpg,
CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=85616571

Edgar Frank «Ted» Codd et Christopher J. Date

https://en.wikipedia.org/wiki/Edgar_F._Codd

Photo of Christopher J. Date by Douglas Robertson, Edinburgh https://en.wikipedia.org/wiki/Christopher_J._Date

Luca Cardelli et Peter Wegner

https://fr.wikipedia.org/wiki/Luca_Cardelli Par Andrej Bauer — http://andrej.com/mathematicians/C/Cardelli_Luca.html CC BY-SA 2.5 si, https://commons.wikimedia.org/w/index.php?curid=15263970

https://en.wikipedia.org/wiki/Peter_Wegner https://cs.brown.edu/news/2017/07/27/memoriam-peter-wegner-1932-2017/

2025-01-08

