Федеральное государственное автономное образовательное учреждение высшего образования

«Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

Факультет Программной Инженерии и Компьютерной Техники

Дисциплина: Информатика

Лабораторная работа №2

Выполнил: Кудрявцева Р.С.

Группа: Р3117 Вариант: 466380 = 68

Преподаватель: Марухленко Д.С.

Оглавление

Задание	. 3
Основные этапы вычисления	. 4
Задание 1 - №50	. 4
Задание 2 - №87	. 4
Задание 3 - №12	
Задание 4 - №91	. 5
Задание 5 - №68	. 5
Задание 6 — (50+87+12+91+68) * 4 = 1232	. 6
Задание 7 — Дополнительное	. 6
Вывод	. 7
Список литературы	. 7

Задание

- 1. Определить свой вариант задания с помощью номера в ISU (он же номер студенческого билета). Вариантом является комбинация 3-й и 5-й цифр. Т.е. если номер в ISU = 123456, то вариант = 35.
- 2. На основании номера варианта задания выбрать набор из 4 полученных сообщений в виде последовательности 7-символьного кода.
- 3. Построить схему декодирования классического кода Хэмминга (7;4), которую представить в отчёте в виде изображения.
- 4. Показать, исходя из выбранных вариантов сообщений (по 4 у каждого часть №1 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение.
- 5. На основании номера варианта задания выбрать 1 полученное сообщение в виде последовательности 11-символьного кода.
- 6. Построить схему декодирования классического кода Хэмминга (15;11), которую представить в отчёте в виде изображения.
- 7. Показать, исходя из выбранного варианта сообщений (по 1 у каждого часть №2 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение.
- 8. Сложить номера всех 5 вариантов заданий. Умножить полученное число на 4. Принять данное число как число информационных разрядов в передаваемом сообщении. Вычислить для данного числа минимальное число проверочных разрядов и коэффициент избыточности.
- 9. Дополнительное задание №1 (позволяет набрать от 86 до 100 процентов от максимального числа баллов БаРС за данную лабораторную). Написать программу на любом языке программирования, которая на вход получает набор из 7 цифр «0» и «1», записанных подряд, анализирует это сообщение на основе классического кода Хэмминга (7,4), а затем выдает правильное сообщение (только информационные биты) и указывает бит с ошибкой при его наличии.

Основные этапы вычисления

Задание 1 - №50

	7					
r1	r2	i1	r3	i2	i3	i4
1	0	0	1	0	1	1

$$s1 = r1 \oplus i1 \oplus i2 \oplus i4 = 1 \oplus 0 \oplus 0 \oplus 1 = 0$$

$$s2 = r2 \oplus i1 \oplus i3 \oplus i4 = 0 \oplus 0 \oplus 1 \oplus 1 = 0$$

$$s3 = r3 \oplus i2 \oplus i3 \oplus i4 = 1 \oplus 0 \oplus 1 \oplus 1 = 1$$

	1	2	3	4	5	6	7	
2 ^x	\mathbf{r}_1	\mathbf{r}_2	\mathbf{i}_1	r ₃	\mathbf{i}_2	i 3	i 4	S
1	X	-	X	-	X	-	X	s_1
2	-	X	X	-	-	X	X	S 2
4	-	-	-	X	X	X	X	S ₃

$$s = (s_1, s_2, s_3) = 001 \Rightarrow$$
 ошибка в символе r_3

Правильное сообщение: 0011

Задание 2 - №87

r1	r2	i1	r3	i2	i3	i4	
0	0	1	1	1	1	0	

 $s1 = r1 \oplus i1 \oplus i2 \oplus i4 = 0 \oplus 1 \oplus 1 \oplus 0 = 0$

 $s2 = r2 \oplus i1 \oplus i3 \oplus i4 = 0 \oplus 1 \oplus 1 \oplus 0 = 0$

 $s3 = r3 \oplus i2 \oplus i3 \oplus i4 = 1 \oplus 1 \oplus 1 \oplus 0 = 1$

	1	2	3	4	5	6	7	
2 ^x	\mathbf{r}_1	\mathbf{r}_2	\mathbf{i}_1	<u>r</u> 3	i_2	i 3	i 4	S
1	X	-	X	-	X	-	X	s_1
2	-	X	X	-	-	X	X	S ₂
4	-	-	-	X	X	X	X	S 3

 $s=(s_1,\,s_2,\,s_3)=001\Rightarrow$ ошибка в символе r_3 Правильное сообщение: 1110

Задание 3 - №12

r1	r2	i1	r3	i2	i3	i4
1	1	0	0	0	0	0

 $s1 = r1 \oplus i1 \oplus i2 \oplus i4 = 1 \oplus 0 \oplus 0 \oplus 0 = 1$

 $s2 = r2 \oplus i1 \oplus i3 \oplus i4 = 1 \oplus 0 \oplus 0 \oplus 0 = 1$

 $s3 = r3 \bigoplus i2 \bigoplus i3 \bigoplus i4 = 0 \bigoplus 0 \bigoplus 0 \bigoplus 0 = 0$

	1	2	3	4	5	6	7	
2 ^x	\mathbf{r}_1	\mathbf{r}_2	i 1	r ₃	i_2	i 3	i 4	S
1	X	-	X	-	X	-	X	s_1
2	-	X	X	-	-	X	X	S ₂
4	-	-	_	X	X	X	X	S 3

 $s=(s_1,\,s_2,\,s_3)=110\Rightarrow$ ошибка в символе i_1 Правильное сообщение: 1000

Задание 4 - №91

r1	r2	i1	r3	i2	i3	i4
0	1	1	1	1	1	0

 $s1 = r1 \oplus i1 \oplus i2 \oplus i4 = 0 \oplus 1 \oplus 1 \oplus 0 = 0$

 $s2 = r2 \oplus i1 \oplus i3 \oplus i4 = 1 \oplus 1 \oplus 1 \oplus 0 = 1$

 $s3 = r3 \oplus i2 \oplus i3 \oplus i4 = 1 \oplus 1 \oplus 1 \oplus 0 = 0$

1 2 3 4 5 6 7

2 ^x	\mathbf{r}_1	\mathbf{r}_2	i_1	\mathbf{r}_3	\mathbf{i}_2	<mark>i</mark> 3	i 4	S
1	X	1	X	-	X	_	X	S ₁
2	-	X	X	-	-	X	X	S ₂
4	-	-	-	X	X	X	X	S 3

 $s = (s_1, s_2, s_3) = 010 \Rightarrow$ ошибка в символе i_3 Правильное сообщение: 1100

Задание 5 - №68

r1	r2	i1	r3	i2	i3	i4	r4	i5	i6	i7	i8	i9	i10	i11
0	0	1	1	1	0	0	0	1	0	0	0	1	0	0

```
\begin{array}{c} s1=r1\ \oplus\ i1\ \oplus\ i2\ \oplus\ i4\ \oplus\ i5\ \oplus\ i7\ \oplus\ i9\ \oplus\ i11=0\ \oplus\ 1\ \oplus\ 1\ \oplus\ 0\ \oplus\ 1\ \oplus\ 0\ \oplus\ 1\ \oplus\ 0\ =\ 0\\ s2=r2\ \oplus\ i1\ \oplus\ i3\ \oplus\ i4\ \oplus\ i6\ \oplus\ i7\ \oplus\ i10\ \oplus\ i11=0\ \oplus\ 1\ \oplus\ 0\ =\ 1\\ s3=r3\ \oplus\ i2\ \oplus\ i3\ \oplus\ i4\ \oplus\ i8\ \oplus\ i9\ \oplus\ i10\ \oplus\ i11=1\ \oplus\ 1\ \oplus\ 0\ \oplus\ 0\ \oplus\ 0\ \oplus\ 0\ \oplus\ 1\ \oplus\ 0\ \oplus\ 0\ =\ 0\\ s4=r4\ \oplus\ i5\ \oplus\ i6\ \oplus\ i7\ \oplus\ i8\ \oplus\ i9\ \oplus\ i10\ \oplus\ i11=0\ \oplus\ 1\ \oplus\ 0\ \oplus\ 0\
```

	1	2	3	4	5	6	7	8	9	10	11	12	13	1 4	15	
2 ^x	\mathbf{r}_1	\mathbf{r}_2	\mathbf{i}_1	r ₃	i ₂	i 3	i 4	r ₄	i 5	i 6	i ₇	i ₈	i ₉	i ₁₀	i ₁₁	S
1	X	1	X	1	X	_	X	ı	X	•	X	•	X	1	X	S ₁
2	-	X	X	-	-	X	X	-	ı	X	X	-	ı	X	X	S ₂
4	-	-	-	X	X	X	X	1	1	-	-	X	X	X	X	S 3
8	-	-	-	-	-	-	-	X	X	X	X	X	X	X	X	S4

 $s = (s_1, s_2, s_3, s_4) = 0110 \Rightarrow$ ошибка в символе i_3 Правильное сообщение: 11101000100

Задание 6 - (50+87+12+91+68) * 4 = 1232

Информационных разрядов в передаваемом сообщении: 1232

Пусть будет г проверочных разрядов. Тогда всего бит в сообщении: 2^r-1 , а информационных бит (т.е. разрядов) 2^r-r-1 . Найдем г такое, что $2^{r-1}-(r-1)-1<1232\leqslant 2^r-r-1$

Подходит r = 11:

$$211 - 11 - 1 = 2036 > 1232 > 1013 = 210 - 10 - 1$$

Значит, коэффициент избыточности = $r / (i + r) = 11 / (1232 + 11) \approx 0,0088496$

Ответ: r = 11, коэффициент избыточности $\approx 0,0088496$

Задание 7 – Дополнительное

https://gitlab.com/laba9782540/Infa2/-/commit/ef6c9842f6bcb1dcbc11499930be3931ec59ed37

```
def Hamming_code(r1, r2, i1, r3, i2, i3, i4):
    s1 = (r1 + i1 + i2 + i4) %2
```

```
s2 = (r2 + i1 + i3 + i4) %2
    s3 = (r3 + i2 + i3 + i4)%2
    if s1 == 1:
        if s2 == 1:
             if s3 == 1:
                 s = str(i1) + str(i2) + str(i3) + str((i4 + 1) %2)
                 return [s, 'Бит с ошибкой: i4']
             else:
                 s = str((i1 + 1) %2) + str(i2) + str(i3) + str(i4)
                 return [s, 'Бит с ошибкой: i1']
         else:
             if s3 == 1:
                 s = str(i1) + str((i2 + 1) %2) + str(i3) + str(i4)
                 return [s, 'Бит с ошибкой: i2']
             else:
                 s = str(i1) + str(i2) + str(i3) + str(i4)
                 return [s, 'Бит с ошибкой: r1']
    else:
        if s2 == 1:
             if s3 == 1:
                 s = str(i1) + str(i2) + str((i3 + 1) %2) + str(i4)
                 return [s, 'Бит с ошибкой: i3']
                 s = str(i1) + str(i2) + str(i3) + str(i4)
                 return [s, 'Бит с ошибкой: r2']
        else:
             if s3 == 1:
                 s = str(i1) + str(i2) + str(i3) + str(i4)
                 return [s, 'Бит с ошибкой: r3']
             else:
                 s = str(i1) + str(i2) + str(i3) + str(i4)
                 return [s, 'Ошибки нет']
r1, r2, i1, r3, i2, i3, i4 = map(int, [e for e in input()])
print(*Hamming code(r1, r2, i1, r3, i2, i3, i4))
```

Вывод

В процессе выполнения лабораторной работы я научилась работать с кодом Хэмминга, научилась вставлять в Word-файл код с подсветкой синтаксиса (или типа того), воз

Список литературы

- 1. Коды и устройства помехоустойчивого кодирования информации / сост. Королев А.И. Мн.:, 2002. c.286
- 2. Основы цифровой радиосвязи. Помехоустойчивое кодирование: метод. указания / сост. Д. В. Пьянзин. Саранск : Изд-во Мордов. ун-та, 2009. 16 с.