TRANSITIONING TO A QUANTUM-RESISTENT PUBLIC KEY INFRASTRUCTURE

Cryptography for the IoT+Cloud Bochum, Germany 11/06/2017 Nina Bindel
Udyani Herath
Matthew McKague
Douglas Stebila

BIT-HARDNESS ESTIMATIONS WITH LWE-ESTIMATOR [APS15]

Difference of ~20 bit in 2.5 years

LWE Instance - Regev(128) n=128, q=16411, $\sigma=29.6$

CURRENT SITUATION

Quantum threat against RSA- and discrete log

Unstable hardness estimations of "PQ assumptions"

NOT ENOUGH TO CARE ABOUT THE PRIMITIVES...

CHALLENGES DURING TRANSITION

- Security
- Compatibility

HYBRID SIGNATURE SCHEMES

Given: Σ_1 and Σ_2

Construct: Σ_C s.t. Σ_C is secure if Σ_1 or Σ_2 secure

Example:

- Σ_1 PQ scheme and Σ_2 classical scheme
- 2 PQ schemes based on different assumptions

- What means "secure"?
- How to construct Σ_C ?
- Can we use hybrids in current protocols and standards?

SECURITY DEFINITION

Intuition:

- eUF-CMA with 2-stage adversary $A = (A_1, A_2)$
- A_1, A_2 different access to quantum computer
- A_1 classical/quantum access to sign oracle

$EXPT_{\Sigma}^{EUF-CMA}(A)$:

$EXPT_{\Sigma}^{EUF-CMA}(A_1, A_2):$ $q_s \leftarrow 0$ (sk, vk) Σ. KeyGen() 010…1/ 🕲 ś $A_1(vk)$ st* $(m_1, \sigma_1), \dots, (m_{q_s+1}, \sigma_{q_s+1}) \leftarrow$ $A_2(st)$ If Σ . Verify(vk, m_i , σ_i) = 1 Return 1 Else

Return 0

ADVERSARY MODEL

- C^cC Fully classical (eUF-CMA)
- C^cQ Future quantum
- Q^cQ Quantum adversary
- $\mathbf{Q^qQ}$ Fully quantum (also in [BZ13]) +

- A_1 :
- *A*₂:
- Access O_S :

THEOREM

EXAMPLES OF HYBRID SIGNATURES

 $\Sigma_1 X^y Z$ -secure $\Sigma_2 U^v W$ -secure

Combiner	$\sigma = (\sigma_1, \sigma_2)$	Unforgeability	Non-separability
$C_{ }$	$\sigma_1 \leftarrow Sign_1(m)$ $\sigma_2 \leftarrow Sign_2(m)$	$\max\{X^yZ,U^vW\}$	No
C_{nest}	$\sigma_1 \leftarrow Sign_1(m)$ $\sigma_2 \leftarrow Sign_2(m, \sigma_1)$	$\max\{X^yZ,U^vW\}$	Depending on U ^v W
C _{dual-nest}	$\sigma_1 \leftarrow \operatorname{Sign}_1(m_1)$ $\sigma_2 \leftarrow \operatorname{Sign}_2(m_1, \sigma_1, m_2)$	X ^y Z wrt to m ₁ , U ^v W	Depending on U ^v W

APPLICABLE TO CURRENT PKI?

• Certificates: X.509v3

• Secure channels: TLS (not in this talk)

Secure email: S/MIME

- (1) How can hybrid combiners be used in current standards?
- (2) What about backwards-compatibility?
- (3) Do large key and siganture size raise problems?

HYBRID SIGNATURE IN S/MIME EMAIL

Idea:

- Use concatenation combiner
- S/MIME data structures allow multiple parallel signatures
- Disadvantage: Verification of all signatures
 - → backwards-compatibility?

2nd Idea:

- Use nested combiner
- Use optional attributes

HYBRID SIGNATURES IN X.509V3 CERT

ldea:

- Use dual nested combiner
- PQ cert = extension of RSA cert
- Hybrid software recognizes and processes PQ cert and RSA cert
- Older softeware ignores non-critical ext.

```
\begin{split} & \big( sk_{PQ}^{CA}, vk_{PQ}^{CA} \big), \big( sk_{RSA}^{CA}, vk_{RSA}^{CA} \big) \leftarrow \text{KeyGen}_{\text{dual-nest}} \\ & \big( sk_{PQ}^{Sub}, vk_{PQ}^{Sub} \big), \big( sk_{RSA}^{Sub}, vk_{RSA}^{Sub} \big) \leftarrow \text{KeyGen}_{\text{dual-nest}} \end{split}
```

```
Certificate C<sub>2</sub>
                                                                       (RSA)
tbsCertificate m<sub>2</sub>:
       CA, subject, VKRSA
       c_2 = \operatorname{Sign}_{RSA}(\operatorname{sk}_{RSA}^{CA}, (m_2, vk_{RSA}^{Sub}, c_1, m_1))
Extensions:
       Ext. id. = non-critical
                                                                   (PQ)
       Certificate C<sub>1</sub>
        tbsCertificate m<sub>1</sub>:
            CA, subject, vk<sub>PO</sub>
            c_1 = \operatorname{Sign}_{PO}(\mathbf{sk_{PO}^{CA}}, (m_1, \mathbf{vk_{PO}^{Sub}}))
```

COMPATIBILITY OF HYBRID X.509V3 CERTS

	Application	Extension size [KB]					
		1.5	3.5	9.0	43.0	1333.0	
Libraries	GnuTLS	\checkmark	✓	✓	✓	×	
	Java SE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
	mbedTLS	\checkmark	✓	\checkmark	×	×	
	NSS	\checkmark	\checkmark	\checkmark	\checkmark	×	
	OpenSSL	✓	✓	✓	✓	×	
Web browsers	Apple Safari	✓	✓	\checkmark	\checkmark	\checkmark	
	Google Chrome	\checkmark	✓	✓	✓	×	
	MS Edge	\checkmark	✓	\checkmark	×	×	
	MS IE	\checkmark	\checkmark	✓	*	×	
	Mozilla Firefox	\checkmark	\checkmark	\checkmark	\checkmark	×	
	Opera	✓	✓	✓	✓	×	

SUMMARY

- 2-stage adversary
- Adversary model wrt quantum power
- Construction hybrid signatures
- Compatibility of with current PKI:
 - Nested single message in S/MIME
 - Nested dual message in X.509 cert

OPEN QUESTIONS

- Our combiners used in PKI still either secure or compatible
 - Better combiners/application in PKI?
 - Change protocols?
 - No compatibility ?
- Define other hybrids (work in progress)

IACR ePrint Archive: Report 2017/460

