EE2015: Electric Circuits and Networks

$\frac{\text{Tutorial 8}}{(4^{th} \text{ and } 11^{th} \text{ October 2024})}$

1. For the circuit shown on the right find $v_C(t)$ for $t \ge 0$. The initial conditions are: (i) $v_C(0^-) = 1 \text{ V}$, and (ii) $i_L(0^-) = 2 \text{ A}$.

2. The circuit (same as Q6 in Tutorial-6) shown below is excited by $v_i(t)$, where $v_i(t) = \sum_{k=0}^{\infty} x(t-kT_0)$. The waveform x(t) is defined as follows:

$$x(t) = \begin{cases} 10 V & 0 < t < T_0/2 \\ -5 V & T_0/2 < t < T_0 \end{cases}$$

where $T_0 = 2s$.

a) Sketch $v_o(t)$ after steady-state has been reached in both circuits and mark the important points. b) Sketch $v_o(t)$, if T_0 is increased or decreased by a factor of 10, keeping the component values the same.

3. a) For the given RLC circuit, determine I_s and $i_s(t)$ if both sources are operating at $\omega = 2 \operatorname{rad/s}$, and $I_C = 2 \angle 28^\circ \,\mathrm{A}$. b) Now let $\omega = 1 \operatorname{rad/s}$, $I_C = 2 \angle 28^\circ \,\mathrm{A}$ and $I_L = 3 \angle 53^\circ \,\mathrm{A}$. Calculate (i) I_s , (ii) V_s , and (iii) $i_{R_1}(t)$. c) Find the Thevenin impedance as seen from the terminals of the current source. What should you assume before proceeding to calculate Z_{Th} ?

4. In the circuit given on the right, $R_1 = 1 \,\mathrm{k}\Omega$ and $C = 2.533 \,\mathrm{pF}$. Determine the inductance value that will make the circuit's resonance frequency as 1 MHz.

5. In the circuit shown on the left, $R = 1 \text{ k}\Omega$ and C = 1 nF. Plot the magnitude and phase of $\frac{\mathbf{V}_o}{\mathbf{V}_i}$ versus frequency. For the magnitude response use a log-log plot, whereas, for the phase plot use a linear scale for y-axis and the log scale for the x-axis.

6. Consider the circuit shown on the right. a) Find the resonant frequency (ω_0) and the half-power frequencies (ω_1, ω_2) . b) Calculate the Q-factor and bandwidth. c) Determine the amplitude of the current at ω_0 , ω_1 , and ω_2 .

7. a) Derive the transfer function of the network whose magnitude Bode plot is shown below. Assume that the poles and zeros are either on the imaginary axis or in the left-half plane. b) Draw the phase Bode plot of the network

