Bases and Dimension

Textbook: Section 1.6

Definition 1.6.1

A family of vectors \mathcal{B} in a vector space V is called a basis of V if

- 1. \mathcal{B} spans V
- 2. \mathcal{B} is linearly independent

Examples

- 1. $\{\vec{e}_1, \dots, \vec{e}_n\}$ is a basis of \mathbb{R}^n .
- 2. We have seen last week that $\left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right\}$ is a basis of \mathbb{R}^2
- 3. Which of families of polynomials we have seen before is a basis of $\mathcal{P}_2(\mathbb{R})$? Can you write down a basis of $\mathcal{P}_2(\mathbb{R})$ that does not contain any monomials?

Theorem 1.6.3

A family of vectors \mathcal{B} is a basis of V if and only if every vector $\vec{v} \in V$ can be written uniquely as a linear combination of vectors in \mathcal{B} .

Proof.

Remark

1. A vector space does not have just one unique basis as we can easily verify.

Theorem 1.6.6

Let V be a vector space with a finite spanning set. For every linearly independent family S in V, there is a basis \mathcal{B} containing S.

Why do we need a finite spanning set for V? Some vector spaces, such as $\mathcal{P}(\mathbb{R})$ can not be spanned by finitely many polynomials. Can you show why?

Observe that a basis hits a sweet spot of a family that is not too large as that it would contain redundant vectors, but also not too small of a family that it couldn't span the vector space.

The Extend and Reduce theorems from last week give us the following:

A family of vectors that is linearly independent, but not a spanning set can be enlagred to a basis, a family that spans V, but is linearly dependent, can be cut down to form a basis.

Even though a basis is not unique to a vector space, we would like to extract an invariant, a label, something that characterizes the vectors space. This invariant is motivated by the Corollary following below.

Theorem 1.6.10

If V is spanned by a family S with m elements, then no linearly independent family R in V can have more than m elements.

Proof.

Corollary 1.6.11

Any two bases \mathcal{B} and \mathcal{B}' of V have the same number of elements

Definitions

- 1. If a vector space V has a finite basis, we say that V is finite dimensional.
- 2. For a finite dimensional vector space V, the dimension of V

 $\dim(V)$

is the number of elements of a basis of V.

Discussion

What is the dimension of

$$\dim(\mathbb{R}) = \dim(\mathcal{P}_n(\mathbb{R})) = \dim(\operatorname{Mat}_2(\mathbb{R})) = \dim(\operatorname{Mat}_2^{\operatorname{sym}}(\mathbb{R})) = \dim(\operatorname{Mat}_2^{\operatorname{anti}}(\mathbb{R})) = \dim(\operatorname{Mat}_2^{\operatorname{anti}}(\mathbb{R}))$$

Remember that a matrix A is symmetric if $A^T = A$ and antisymmetric if $A^T = -A$.

Discussion

- Can you argue that if $U \subseteq V$ is a subspace then $\dim(U) \leq \dim(V)$?
- Is it on the contrary true that for every subspace $U \subseteq V \dim(U) = \dim(V)$ implies U = V?

The following result is very useful when we are looking for a basis of space that we already know the dimension of.

Proposition

Let V be a vector space of dimension n with a family S containing n vectors, then the following are equivalent.

- (a) S is a basis of V
- (b) S is linearly independent
- (c) S spans V

Since subspaces are vector spaces too, all constructions above apply, to subspaces.

Discussion

Let U and W be subspaces in V, can the sum $\dim(U) + \dim(W)$ be greater than $\dim(V)$? Argue why it might be true or find a counter example.

Example (continued)

Consider again the subspaces of symmetric and anti symmetric 2×2 matrices, $\operatorname{Mat}_2^{\operatorname{sym}}(\mathbb{R})$ and $\operatorname{Mat}_2^{\operatorname{anti}}(\mathbb{R})$ respectively, in the vector space of all 2×2 matrices $\operatorname{Mat}_2(\mathbb{R})$. Compute the intersection $\operatorname{Mat}_2^{\operatorname{sym}}(\mathbb{R}) \cap \operatorname{Mat}_2^{\operatorname{anti}}(\mathbb{R})$.

As a final result, we will state without proof

Theorem 1.6.18

Let U and W be finite dimensional subspaces of a vector space V, then

$$\dim(U+W) = \dim(U) + \dim(W) - \dim(U \cap W)$$

Proof. Read the proof in the textbook (voluntarily).

Corollary

Every finite dimensional vector space has basis.

Textbook: Section 2.1

Linear Transformatoins

Definition 2.1.1

A function $V \xrightarrow{T} W$ between vector spaces $(V, +_V, \bullet_V)$ and $(W, +_W, \bullet_W)$ is called *linear* if

- 1. $T(\vec{u} +_V \vec{v}) = T(\vec{v}) +_W T(\vec{v})$ for all $\vec{u}, \vec{v} \in V$
- 2. $T(\alpha \bullet_V \vec{u}) = \alpha \bullet_W T(\vec{v})$ for all $\vec{u} \in V$ and $\alpha \in \mathbb{R}$.

Remark

- We usually use the expression linear transformation or short transformation and not linear function.
- Notice that the operations + and · are exactly what distinguishes vector spaces from sets. The requirements for a function to be linear guarantee that it mediates between the operations on the domain and the target.

Examples

1. ...tbd

Discussion

Given a transformation $V \xrightarrow{T} W$, is it true that

$$T\left(\sum_{i=1}^{k} \alpha_i \vec{v}_i\right) = \sum_{i=1}^{k} \alpha_i T(\vec{v}_i) \qquad ?$$

Discussion

Which of the following functions are linear transformations?

1. The derivative of a polynomial $\mathcal{P}_n(\mathbb{R}) \to \mathcal{P}_n(\mathbb{R}) \ p(x) \mapsto \frac{d}{dx} p(x)$

Proposition

For any linear transformation $V \xrightarrow{T} W$, $T(\vec{0}_V) = \vec{0}_W$.

Proposition

A transformation $V \xrightarrow{T} W$ is uniquely specified by its values on elements of a basis on V.

Recall that a basis in a vector space enhales us to write every vector uniquely as a linear combination. Since a linear combination is determined by its coefficients, all we need to remember for a fixed basis is the n-tuple of coefficients. To formalize this, we define...

Definition

Let V be a vector space with a basis $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_n\}$ and for $\vec{v} \in V$

$$\vec{v} = v_1 \cdot \vec{b}_1 + \dots + v_n \cdot \vec{b}_n$$

the unique representation in this basis. We call $[\vec{v}]_{\mathcal{B}} = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$ the coordinate vector of \vec{v} in the basis \mathcal{B} .

Proposition

Given an *n*-dimensional vector space V with a basis \mathcal{B} . The assignment of its coordinate vector $[\vec{v}]_{\mathcal{B}}$ to every vector $\vec{v} \in V$ is a linear transformation

$$V \xrightarrow{\gamma^{\mathcal{B}}} \mathbb{R}^n$$