Introdução

- Aplicação da Estatística
- Conceitos básicos
- Síntese histórica
- Classificação de variáveis
- Método científico e a Estatística

FOLHA DE S.PAULO Para 83%, Dilma vai ser igual ou melhor que Lula

FOLHA DE S.PAULO

16% dos adolescentes bebem demais

Emprego negativo no setor confeccionista

Vestuário fechou com queda no número de contratações no acumulado do ano

FOLHA DE S.PAULO

Aprovação de Lula bate novo recorde

Parte de perguntas/desafios do mundo real

- Um político quer saber qual é o percentual de eleitores que pretende votar nele nas próximas eleições.
- Cientistas querem verificar se uma nova vacina contra a dengue faz efeito.
- Uma montadora de automóveis quer verificar a qualidade de um lote inteiro de peças fornecidas através de uma pequena amostra.

Matéria-prima da Estatística → variabilidade

É "difícil" encontrar duas coisas exatamente iguais

Objetivo da Estatística → A Estatística desenvolve métodos para descobrir e expor os padrões de comportamento (regularidade) que estão escondidos nos dados.

Definição de Estatística

- A estatística engloba um conjunto de métodos científicos para:
 - coleta, organização, resumo e análise de dados.
 - obtenção de conclusões (suporte à tomada de decisão)

Alguns conceitos básicos:

- População
- > Amostra
- Amostragem

População: é o conjunto de todas as unidades (elementos) de interesse que têm pelo menos uma característica em comum. Pode ser finita ou infinita.

Exemplo: Pesquisas eleitorais no RS

Característica definidora \rightarrow votar no RS População \rightarrow conjunto de todos os eleitores que votam no RS Unidade \rightarrow o eleitor Amostra é parte de uma população, convenientemente escolhida, que tem a finalidade de representá-la.

Deve apresentar as mesmas características da população.

Amostragem é a metodologia de obtenção das amostras.

Exemplos

- Antes da **eleição** diversos órgãos de pesquisa e imprensa ouvem um conjunto selecionado de eleitores para ter uma ideia do desempenho dos vários candidatos nas futuras eleições.
- Uma empresa metal-mecânica toma uma amostra do produto fabricado em intervalos de tempo especificados para verificar se o processo está sob controle e evitar a fabricação de itens defeituosos.
- > O IBGE faz **levantamentos periódicos** sobre emprego, desemprego, inflação, etc.
- Redes de rádio e TV se utilizam constantemente dos índices de popularidade dos programas para fixar valores da propaganda ou então modificar ou eliminar programas com audiência insatisfatória.

Por que fazer amostragem?

- população infinita
- diminuir custo
- aumentar velocidade na caracterização (medidas que variam no tempo)
- minimizar perdas por medidas destrutivas

Quanto amostrar? depende:

- → da variabilidade original dos dados (maior variabilidade → maior n)
- ▶ da precisão requerida na estimação (maior precisão → maior n)
- → do tempo disponível (menor o tempo → menor n)
- → do custo da amostragem (maior o custo → menor n)

Probabilística:

Todos os elementos da população têm probabilidade conhecida e diferente de zero de participar da amostra. A realização deste tipo de amostragem só é possível se a população for finita e totalmente acessível.

Amostragem

Não probabilística: Presença dos elementos na amostra deve-se a outros critérios. Por exemplo, quando somos obrigados a colher a amostra na parte da população a que temos acesso.

A amostragem probabilística é a mais recomendável porque garante a imparcialidade da amostra.

Amostragem probabilística:

- Amostragem aleatória simples
- Amostragem aleatória estratificada
- Amostragem aleatória por conglomerados
- Amostragem aleatória sistemática

Amostragem não probabilística:

- Amostragem intencional
- Amostragem por quota
- Amostragem a esmo

Amostragem probabilística – aleatória simples

- É equivalente a um sorteio de loteria;
- Considera a população homogênea;
- Cada elemento da população tem a mesma oportunidade de ser escolhido;
- ➤ Utilizam-se números aleatórios, programas computacionais, calculadoras, bolinhas numeradas, etc.

Exemplo: Imagine que você queira amostrar um número de pessoas que estão fazendo um determinado concurso com N inscritos. Devemos enumerar cada um dos N candidatos e sortear n deles.

Amostragem probabilística – estratificada

➤ Quando a variável de interesse apresenta heterogeneidade na população e esta heterogeneidade permite a identificação de grupos homogêneos, divide-se a população em grupos (estratos) e faz-se uma amostragem dentro de cada estrato, garantindo, assim, a representatividade de cada estrato na amostra.

Exemplo: Podemos verificar que pesquisas eleitorais apresentam uma grande heterogeneidade em relação à intenção de votos, quando consideramos, por exemplo, a faixa salarial ou o nível de escolaridade.

Amostragem probabilística – por conglomerados

- ➤ A população já é dividida em diferentes conglomerados (grupos), extraindo-se uma amostra apenas dos conglomerados selecionados, e não de toda a população. O ideal é que cada conglomerado represente tanto quanto possível o total da população.
- ➤ Os conglomerados são definidos em função da experiência do pesquisador. Geralmente, podemos definir os conglomerados por fatores geográficos, como por exemplo, bairros e quarteirões.

Exemplo: este tipo de amostragem é muito útil quando a população é grande, por exemplo, no caso de uma pesquisa em nível nacional.

Amostragem probabilística – sistemática

- Quando os elementos da população se apresentam ordenados e a retirada dos elementos da amostra é feita periodicamente, temos uma amostragem sistemática.
- ➤ É de fundamental importância que a variável de interesse não apresente ciclos de variação coincidente com os ciclos de retirada, pois este fato tornará a amostragem não aleatória.

Exemplo: em uma linha de produção, podemos, a cada dez itens produzidos, retirar um para avaliar a qualidade da produção.

Amostragem não probabilística – intencional

- > A amostra pesquisada muitas vezes está disponível no local e no momento onde a pesquisa está sendo realizada.
- ➤ A seleção das unidades amostrais é deixada a cargo do pesquisador. Com base em seu julgamento, o pesquisador seleciona os elementos que julga mais representativos da população.

Exemplos:

- Para saber a preferência por determinado cosmético, o pesquisador entrevista os frequentadores de um grande salão de beleza.
- Para saber a aceitação em relação a uma nova marca de whisky a ser inserida no mercado, farão parte da amostra pessoas que façam uso da bebida e que tenham condições financeiras de comprar esta nova marca.

Amostragem não probabilística – por quota

- ➤ A população é dividida em grupos, e seleciona-se uma cota proporcional ao tamanho de cada grupo. Entretanto, dentro de cada grupo não é feito sorteio, e sim os elementos são procurados até que a cota de cada grupo seja cumprida.
- ➤ As quotas asseguram que a composição da amostra seja a mesma da população com relação às características escolhidas.

Exemplo: Em pesquisas eleitorais, a divisão de uma população em grupos (ex. sexo, escolaridade, idade e renda) pode servir de base para a definição dos grupos, partindo da suposição de que estas variáveis definem grupos com comportamentos diferenciados no processo eleitoral. Para saber o tamanho destes grupos, pode-se recorrer a pesquisas feitas anteriormente pelo IBGE.

Amostragem não probabilística – a esmo

- ➤ É a amostragem em que o pesquisador, para simplificar o processo, procura ser aleatório sem, no entanto, realizar propriamente o sorteio usando algum dispositivo aleatório confiável.
- ➤ Os resultados da amostragem a esmo são, em geral, equivalentes aos da amostragem probabilística se não existir a possibilidade de o pesquisador ser inconscientemente influenciado por alguma característica da população.

Exemplo: Se desejarmos retirar uma amostra de 100 parafusos de uma caixa contendo 10.000, evidentemente não faremos uma AAS, pois seria muito trabalhosa a tarefa de enumeração destes parafusos. Então retiramos simplesmente a esmo (sem regra) nossa amostra.

Riscos da amostragem: o processo de amostragem envolve riscos, pois toma-se decisões sobre toda a população com base em apenas uma parte dela.

A teoria da probabilidade pode ser utilizada para fornecer uma ideia do risco envolvido, ou seja, do erro que se comete ao utilizar uma amostra ao invés de toda a população.

Divisão da Estatística

- Descritiva
- Inferência

Estatística Descritiva

- É a parte da estatística que cuida:
 - da apresentação de dados através de tabelas e gráficos
 - do resumo ou descrição de dados através de medidas descritivas
- Em geral, não tem por objetivos tirar conclusões.

Inferência Estatística

Métodos que propiciem a realização das inferências sobre populações a partir de amostras delas retiradas, tendo por base o cálculo das probabilidades

- estimação de parâmetros
- > testes de hipóteses
- modelos de regressão

Informações históricas

- ⇒ Existem indícios de que há mais de 2000 anos a.C. já se faziam censos na Babilônia, na China e no Egito.
- O objetivo do censo era saber o número de pessoas disponíveis para fazer a guerra e para a cobrança de impostos.

- ⇒ A Estatística teve origem na necessidade do Estado Político conhecer os seus domínios.
- ⇒ Sob a palavra Estatística, provavelmente derivada da palavra "status" (estado, em latim), acumularam-se descrições e dados relativos ao Estado. Nas mãos dos governantes, a Estatística passou a constituir-se verdadeira ferramenta administrativa.

⇒ Um grande avanço na teoria das probabilidades se deu, no início do século XIX, através dos estudos de Laplace e Gauss que descreveram a famosa Distribuição Normal

- → A partir das distribuições de probabilidade foi possível a criação de técnicas de amostragem mais adequadas e de formas de relacionar as amostras com as populações.
- ⇒ Outro marco decisivo no desenvolvimento da Estatística foi o advento da computação, ferramenta que permitiu que a Estatística ampliasse seus horizontes.

Classificação de variáveis

Variáveis qualitativas (categóricas) → descrevem qualidades (categorias ou classes)

Nominais → não há um sentido de ordem entre seus níveis

```
Exemplos: sexo (masculino e feminino)

profissão (engenheiro, professor, médico, etc.)

região geográfica (norte, sul, sudeste, etc.)
```

Ordinais → há um sentido de ordem entre seus níveis

Exemplos: faixas de idade (criança, adolescente, adulto, idoso) intensidade de cor (claro, médio, escuro) nível de instrução (fundamental, médio, superior)

Variáveis quantitativas (numéricas) → seus valores são números reais (observados)

Discretas

- → descrevem dados discretos ou de enumeração (geralmente obtidos por processo de contagem)
 - → assumem valores inteiros não negativos (0, 1, 2, 3, ...)

Exemplos: número de carros sinistrados número de pacientes que se recuperam número de filhos de um casal

Continuas

- → descrevem dados contínuos ou de mensuração (geralmente obtidos por processo de medição)
- \rightarrow podem assumir qualquer valor dos reais (-10, 0, π) Exemplos: peso, altura, tempo, velocidade, temperatura

Porque classificar as variáveis

Metodologia
Estatística

Contínua

Discreta

Ordinal

Nominal

A complexidade e a informação aumentam.

É de fundamental importância saber classificar corretamente uma variável porque esta discriminação é que irá indicar a possibilidade e a forma de utilização dos procedimentos estatísticos disponíveis.

Exercício proposto: Classifique as variáveis abaixo.

- a) Religião
- b) Nº de vendas diárias de uma empresa
- c) Distância entre duas cidades
- d) Consumo mensal de energia elétrica
- e) Estado civil
- f) Satisfação com o salário
- g) Temperatura de uma mistura
- h) Estado de nascimento

- i) Idade
- j) Nº de transações financeiras
- k) Velocidade de um carro
- Postos em um exército
- m) Nº de peças com defeito em um lote
- n) Altura de uma pessoa
- o) Classe social
- p) Valor de venda diária de uma empresa

A estatística na pesquisa científica

- Nas pesquisas científicas precisamos coletar dados que possam fornecer informações que respondam nossas indagações
- Para que os resultados da pesquisa sejam confiáveis, tanto a coleta como a análise dos dados devem ser feitas de forma criteriosa e objetiva
- A metodologia estatística deve ser aplicada nas diversas etapas da pesquisa

Principais etapas da pesquisa científica

Arredondamento

Quando o primeiro algarismo a ser abandonado for 0, 1, 2, 3 ou 4, fica inalterado o último algarismo a permanecer.

Exemplo: $48,23 \rightarrow 48,2$

➤ Quando o primeiro algarismo a ser abandonado for 5, 6, 7, 8 ou 9, **aumenta-se** de uma unidade o último algarismo a permanecer.

Exemplo: $23,87 \rightarrow 23,9$