Curso Estruturas de Dados e Algoritmos Expert

Prof. Nelio Alves

Grafos (parte 1)

1

Por que estudar grafos?

https://devsuperior.com.br

Prof. Dr. Nelio Alves

Motivação

- Programação é central na Computação
 - O Estruturas de dados são centrais na Programação
- Já estudamos diversas estruturas de dados
 - O Listas estáticas e dinâmicas, sequenciais e encadeadas
 - o Pilhas, filas, deques
 - Árvores
- Como modelar estruturas mais complexas e sofisticadas?
 - o Grafos!

3

Intuitivamente, o que é um grafo?

É uma rede que ajuda a definir e visualizar relações entre vários componentes.

Onde estão os grafos?

Simulação em rede da difusão da epidemia de SARS em 2003 (Brokmann e Helbing, 2013)

9

Onde estão os grafos?

Spilberg et al., 2016

Padrão de conectividade de um grupo de pacientes com transtorno bipolar nas duas fases do transtorno.

Onde estão os grafos?

Mapa mostrando cabos submarinos que formam a internet

11

Por que estudar grafos?

São estruturas presentes em toda a computação!

- Modelar relações e processos em sistemas:
 - O Físicos, biológicos, sociais, de informação
- Redes de
 - O Comunicação (Facebook, Instagram, Twitter, etc...)
 - O Organização de dados
 - O Dispositivos computacionais
- Sistemas de recomendação (Amazon, Netflix)
- Otimização de caminhos (Google Maps)

Modelos de grafos

- Sintaxe de linguagem natural
- Estudo de átomos e moléculas
- Medir prestígio/importância
- Espalhamento de rumor
- Amizades entre pessoas
- Padrões de reprodução de animais
- Espalhamento de doenças
- Relação entre genes
- •

13

Breve História dos Grafos

https://devsuperior.com.br

Prof. Dr. Nelio Alves

Leonhard Paul Euler (1707-1783)

- Considerado "pai" da teoria dos grafos
 - Matemático e físico
 - O Viveu na Rússia e na Alemanha
 - Ficou parcialmente cego aos 28 anos e totalmente cego nas 2 últimas décadas de vida
 - Resolveu o problema das 7 pontes na cidade de Konigsberg em 1735

Leonhard Euler, quadro a óleo por Johann Georg Brucker

15

As 7 Pontes de Konigsberg

- Na antiga cidade prussiana de Konigsberg havia 7 pontes que conectavam 2 ilhas.
- Os moradores se perguntavam: é possível fazer um caminho por todas as pontes passando somente uma vez por cada uma?

Cidade de Konigsberg na Idade Média. Imagem de Alarmy Stock Photo

A solução

- Euler publica um artigo em 26 de Agosto de 1735 resolvendo o problema
- Critério
 - Todos os vértices intermediários devem ter número par de arestas
 - O Para os vértices de chegada e saída não importa

Todos têm número de arestas ímpar! Logo, não existe tal caminho.

Definição de grafos

https://devsuperior.com.br

Prof. Dr. Nelio Alves

19

Definição

Um grafo G = (V, A) é um conjunto de vértices V e arestas A onde cada aresta (u, v) é uma conexão entre vértices. $u, v \in V$.

Um grafo G = (V, A) é um conjunto de vértices V e arestas A onde cada aresta (u, v) é uma conexão entre vértices. $u, v \in V$.

Q: Quais são os vértices?

$$V = \{0, 1, 2, 3, 4\}$$

21

Definição

Um grafo G = (V, A) é um conjunto de vértices V e arestas A onde cada aresta (u, v) é uma conexão entre vértices. $u, v \in V$.

Um grafo G = (V, A) é um conjunto de vértices V e arestas A onde cada aresta (u, v) é uma conexão entre vértices. $u, v \in V$.

23

Definições básicas

https://devsuperior.com.br

Prof. Dr. Nelio Alves

25

Definição

Grau de um vértice (degree): número de arestas ligadas a um vértice

Multigrafo: grafo que possui mais de uma aresta ligando os mesmos dois vértices, possui arestas múltiplas (ou arestas paralelas)

• Caso contrário: é chamado grafo simples

27

Definições

Ordem: dada pela cardinalidade do conjunto de vértices |V(G)|, ou seja, o número de vértices distintos

• Número de arestas de um grafo é dado por |A(G)|

29

Definições

Grafo Trivial: grafo de ordem 1, sem arestas

Grafo Vazio: não possui vértices, então $G = (\emptyset, \emptyset)$. Geralmente usado como passo inicial em provas por indução ou como contra exemplo

Laço: aresta a de um grafo G que tem o mesmo vértice como extremos, ou seja, a = (x, x)

31

Definição

Vértices adjacentes: vértices x e y são adjacentes (ou vizinhos) se uma aresta (x, y) os conecta

A é adjacente a E E é vizinho a A A NÃO é adjacente a C

Arestas adjacentes: duas arestas são adjacentes (ou vizinhas) se possuem um mesmo vértice extremo

(A, B) é adjacente a (B, E)

(A, B) NÃO é adjacente a (E, F)

A aresta a = (E, F) é dita incidente a E e F

33

Definição

Grafo completo: grafo simples cujos vértices são todos adjacentes

V = {1, 2, 3, 4, 5} A = {(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)} |V| = 5 e |A| = 10

Grafo K₅

Grafos Completos - Mais exemplos

35

Grafos Completos

Questão

- Quantas arestas possui um grafo completo?
 - Suponha que tenhamos n vértices
 - Então temos n² arestas possíveis, incluindo laços
 - Como o grafo é simples
 - removemos os laços (um para cada vértices)
 - $n^2 n$
 - removemos arestas duplicadas (u, v) e (v, u)
 - $(n^2 n) / 2 = n (n 1) / 2;$

Portanto, um grafo completo K_n possui **n(n-1)/2** arestas

Exercícios de Fixação

- Qual a ordem e o número de arestas de cada grafo?
- Quais dos grafos acima são completos?
- Quais dos grafos acima são simples?
- No grafo (a), quais vértices são adjacentes a N?
- No grafo (a), quais arestas são adjacentes a (N, B)?

Tipos de grafos

https://devsuperior.com.br

Prof. Dr. Nelio Alves

39

Definição

Grafo orientado/dirigido: grafo G = (V, A) que consiste de um conjunto V de vértices e de um conjunto A de arestas de <u>pares</u> <u>ordenados</u> de vértices distintos. Isto é, cada aresta tem uma única direção.

$$V(G) = \{0, 1, 2, 3\}$$

$$A(G) = \{(0, 1), (0, 2), (0, 3), (1, 3), (2, 3)\}$$

._

Graus em grafos orientados

Grau de Entrada (in-degree): d_{in}(v), número de arestas que <u>entram</u> em um vértice v

Grau de Saída (out-degree): d_{out}(v), número de arestas que <u>saem</u> de um vértice

Grau (geral): $d_{in}(v) + d_{out}(v)$

Ex:

$$d_{in}(3) = 3$$
, $d_{in}(0) = 0$

$$d_{out}(0) = 3$$
, $d_{out}(2) = 1$

Graus em grafos orientados

Sumidouro: vértice com grau de saída nulo

Fonte: vértice com grau de entrada nulo

Grafo regular: grafo no qual todos seus vértices têm o mesmo grau

Ex:

3 é um **sumidouro** 0 é uma **fonte**

43

Definição

Grafo valorado: grafo G = (V, A) constituído de V vértices conectados por um conjunto de arestas com **pesos** A.

• Arestas agora são representadas por triplas (u, v, w), em que v e w são vértices de V e w é o peso.

$$V(G) = \{0, 1, 2, 3\}$$

$$A(G) = \{(0, 1, 2), (0, 2, -1), (0, 3, 5), (1, 3, 2), (2, 3, 3)\}$$

Exemplo

Qual o nível de amizade entre um grupo de pessoas?

• O peso das arestas pode representar a força da relação entre os vértices.

Ex:

-10: inimigo0: indiferente

5: colega

10: muito amigo

45

Exercícios de Fixação

(b) 6 7 5

(a)

- O grafo (a) é regular? Por quê?
- Existe em alguma fonte ou sumidouro no grafo (b)?
- E no grafo (c)?

Caminhos em grafos

https://devsuperior.com.br

Prof. Dr. Nelio Alves

47

Definição

Caminho: sequência de vértices conectados por arestas

 $0 \longrightarrow 1 \longrightarrow 4 \longrightarrow 6 \longrightarrow 5$ é um caminho

Tamanho de um caminho: número de arestas em um caminho

 $0 \rightarrow 1 \rightarrow 4 \rightarrow 6 \rightarrow 5 \text{ tem tamanho } 4$

49

Definição

Caminho simples: caminho composto por vértices distintos

- 1 → 4 → 6 → 5 é um caminho simples
- $1 \longrightarrow 4 \longrightarrow 5 \longrightarrow 1$ NÃO é simples

Ciclo: caminho no qual o vértice inicial e final são iguais

- Um grafo é dito cíclico se apresentar ao menos um ciclo

$$1 \longrightarrow 4 \longrightarrow 5 \longrightarrow 1$$
 é um ciclo

51

DAGs (Directed Acyclic Graphs)

São grafos direcionados que não possuem ciclos.

Definições

Caminho euleriano: caminho que passa por cada e toda <u>aresta</u> do grafo exatamente uma vez

- Pode formar ciclo euleriano
- Grafo é euleriano se possui ciclo euleriano

$$1 \longrightarrow 2 \longrightarrow 3 \longrightarrow 4 \longrightarrow 6 \longrightarrow 5 \longrightarrow 4 \longrightarrow 1$$
 é um ciclo euleriano
Portanto, este grafo é euleriano

Critério de existência de caminho euleriano

Um grafo possui Caminho euleriano se atender a uma das duas condições:

- Todos os vértices do grafo têm grau par
- Todos os vértices (ignorando os de grau zero) tem grau par, exceto dois vértices que possuem grau ímpar.
 Nesse caso, os dois vértices de grau ímpar são o início e o fim.

55

Definições

Caminho hamiltoniano: caminho que passa por cada e todo <u>vértice</u> do grafo exatamente uma vez

- Pode formar ciclo hamiltoniano
- Grafo é hamiltoniano se possui ciclo hamiltoniano

 $6 \rightarrow 5 \rightarrow 1 \rightarrow 4 \rightarrow 3 \rightarrow 2$ é um caminho hamiltoniano

 $5 \rightarrow 6 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 1 \rightarrow 5$ é um ciclo hamiltoniano

Portanto, este grafo é hamiltoniano

Grafo conexo: grafo no qual existe um caminho entre cada par de vértices, caso contrário, é desconexo

Grafo orientado fortemente conexo: grafo orientado no qual existe um caminho entre cada par de vértices (x, y) e também entre (y, x), ou seja, caminho de ida e volta.

*Aqui o grafo é conexo porque, considerando seu equivalente não-direcionado, todos os vértices estão conectados por um caminho.

59

Definição

Componente conexa: subgrafo conexo

Possui 3 componentes conexas

Exercícios de Fixação

a b d h c

- Quais dos grafos acima são cíclicos?
- Indique os grafos conexos.
- Quais dos grafos acima são eulerianos?

(b)

61

Problema do desenho da casa

- Uma criança diz que para fazer o desenho abaixo colocou a ponta do lápis numa das bolinhas e com movimentos contínuos (sem levantar nem retroceder o lápis) traçou as linhas que formam o desenho, cada linha uma única vez. A mãe da criança acha que ela está trapaceando, pois não foi capaz de achar nenhuma sequência que pudesse produzir tal resultado.
- A mãe está certa?

O assassinato

O cenário abaixo é o mapa de uma residência em que ocorreu um assassinato. Um conhecido detetive (que cursou Computação) foi chamado para investigar o caso. O mordomo alega ter visto o jardineiro entrar na sala da piscina (local onde ocorreu o assassinato) e logo em seguida deixar aquela sala pela mesma porta que havia entrado. O jardineiro, contudo, afirma que ele não poderia ser a pessoa vista pelo mordomo, pois ele havia entrado na casa, passado por todas as portas uma única vez e, em seguida, deixado a casa. O detetive avaliou a planta da residência e em poucos minutos declarou solucionado o caso. O que ele concluiu? Que raciocínio ele usou?

63

O problema do caixeiro viajante

 Um caixeiro viajante quer otimizar sua rota e passar pelas cidades de sua região uma única vez, terminando na cidade de origem.
 Considere que ele tem o mapa abaixo em mãos, em que cada vértice representa uma cidade e as arestas as estradas entre elas. É possível satisfazer a vontade do caixeiro?

Estruturas em grafos

https://devsuperior.com.br

Prof. Dr. Nelio Alves

65

Definição

Grafo Bipartido: grafo cujos vértices podem ser divididos em dois conjuntos distintos U e V tais que toda aresta conecta um vértice em U a um vértice em V

Linha divide grafo em dois conjuntos U e V

Outra visualização, cada vértice só se liga a um do outro grupo.

Exemplo prático

Alocação de funcionários em diferentes projetos

- Quantos funcionários estão em um dado projeto?
- Quantos projetos um funcionário tem?
- Existem funcionários sobrecarregados?

0,

Complemento: o complemento de um grafo G = (V, A) é um grafo G' = (V', A') tal que V' = V e A' é <u>complementar</u> a A.

G' tem os mesmos vértices, mas somente arestas que G não tem!

69

Definição

Isomorfismo: dois grafos são **isomorfos** se apresentam as mesmas propriedades estruturais, ou seja, preserva-se as relações de incidência vértice-aresta.

Arvore: grafo conexo e acíclico Raiz Nó interno Não é árvore É árvore

Árvore enraizada em d

Árvore enraizada em e

73

Subgrafo: é um grafo G' = (V', A'), originado de um grafo G = (V, A), tal que $V' \subseteq V$ e $A' \subseteq A$.

75

Definição

Subgrafo gerador: é um grafo G' = (V', A'), originado de um grafo G = (V, A), tal que V' = V e $A' \subseteq A$.

gerador de G

Árvore geradora: subgrafo gerador que é uma árvore

Árvore geradora de G

77

Definição

Subgrafo induzido: é um grafo G' = (V', A'), originado de um grafo G = (V, A), tal que $V' \subseteq V$ e A' contém <u>todas as arestas</u> em A que têm as duas extremidades em V'.

Subgrafo induzido de G

NÃO é subgrafo induzido de G

Pois (b, f) não está em A'

Hipergrafo: grafo em que há arestas que conectam mais de 2 vértices

79

Exercícios de Fixação

- Qual dos três grafos é bipartido?
- Desenhe uma árvore geradora de (c).
- Desenhe um subgrafo induzido de (b).

Exercícios de Fixação

- Qual o complemento do grafo (b)?
- Os grafos (a) e (b) são isomorfos?