

Available online at www.sciencedirect.com

ScienceDirect

Nuclear Data Sheets

Nuclear Data Sheets 124 (2015) 157-412

www.elsevier.com/locate/nds

Nuclear Data Sheets for A = 112*

S. LALKOVSKI

Faculty of Physics University of Sofia 5 James Bourchier Blvd 1164 Sofia, Bulgaria

and

F.G. KONDEV

Nuclear Engineering Division Argonne National Laboratory 9700 South Cass Avenue Argonne, Illinois 60439, USA

(Received September 30, 2013; Revised October 14, 2014)

Abstract: Evaluated nuclear structure and decay data for all nuclei within the A=112 mass chain are presented. The experimental data are evaluated and best values for level and gamma-ray energies, quantum numbers, lifetimes, gamma-ray intensities, and other nuclear properties are recommended. Inconsistencies and discrepancies that exist in the literature are noted. This work supersedes the earlier evaluation by D.De Frenne and E.Jacobs (1996De55), published in Nuclear Data Sheets 79, 639 (1996).

Cutoff Date: All data received by August 2014 have been compiled and evaluated.

 $\textbf{General Policies and Organization of Material:} \ see \ \ http://www.nndc.bnl.gov/nds/NDSPolicies.pdf.$

Acknowledgments: The authors express their gratitude to Dr. J.K. Tuli, Mrs. J. Totans and Mrs. M. Blennau for their assistance during the evaluation process and the preparation of the manuscript. The authors are thankful to Dr. E.A. McCutchan for her critical reading of the manuscript and many useful comments.

^{*} This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract No. DE-AC02-06CH11357. SL acknowledges support from the Nuclear Data Section, IAEA under contract 15994/RO.

NUCLEAR DATA SHEETS

Index for A = 112

Skeleton Scheme for A=112 160 $^{112}\mathrm{Sn}$ $^{100}\mathrm{Mo}(^{16}\mathrm{O},4\mathrm{n}\gamma),^{98}\mathrm{Mo}(^{16}\mathrm{O},4\mathrm{n}\gamma)$ $^{112}\mathrm{Zr}$ Adopted Levels 163 $^{100}\mathrm{Mo}(^{20}\mathrm{Ne},\alpha4\mathrm{n}\gamma)$	338 339
$^{112}\mathrm{Zr}$ Adopted Levels 163 $^{100}\mathrm{Mo(^{20}Ne,\alpha 4n\gamma)}$	
148	550
112 Nb Adopted Levels 164 103 Rh(12 C,p2n γ)	341
$^{238}{\rm U}(^{9}{\rm Be},{\rm X}\gamma)$ 164 $^{110}{\rm Cd}(^{3}{\rm He},{\rm n})$	341
¹¹² Mo Adopted Levels 164 ¹¹⁰ Cd(³ He,nγ), ¹¹² Cd(³ He	,3ηγ) 342
¹¹² Tc Adopted Levels, Gammas 165 110 Cd $(\alpha,2n\gamma)$	342
112 Tc IT Decay 165 $^{112}{\rm Sn}(\gamma,\gamma')$	344
$^{238}\text{U}(p,X),^{136}\text{Xe}(^{9}\text{Be},X)$ 166 $^{112}\text{Sn}(n,n'\gamma)$	347
112Ru Adopted Levels, Gammas 167 112Sn(p,p')	350
112Tc β – Decay 173 112 Sn(p,p'γ)	352
²⁴⁸ Cm SF Decay 174 112Sn(d,d')	352
$^{252}{\rm Cf}$ SF Decay 175 $^{112}{\rm Sn}(\alpha,\alpha')$ $^{197}{\rm Au}(^{19}{\rm F},{\rm F}\gamma),^{232}{\rm Th}(^{18}{\rm O},{\rm F}\gamma)$ 178 Coulomb Excitation	352
200	353
$^{238}{ m U}(\alpha,{ m F}\gamma)$ 179 $^{113}{ m In}({ m p},2{ m n}\gamma)$ $^{112}{ m Rh}$ Adopted Levels, Gammas 181 $^{114}{ m Sn}({ m p},{ m t})$	354 354
112 Ru β ⁻ Decay 183 112 Sb Adopted Levels, Gamm	
252 Cf SF Decay 184 112 Sb IT Decay (0.56 μ	
$^{208}\text{Pb}(^{18}\text{O},\text{F}\gamma)$ 185 $^{112}\text{Te }\epsilon$ Decay	368
112Pd Adopted Levels, Gammas 187 $89Y(29Si, \alpha 2n\gamma)$, $88Sr(28Si$	
¹¹² Rh β ⁻ Decay (3.6 s) 195 103 Rh(12 C,3nγ), 90 Zr(31 P	
¹¹² Rh β^- Decay (6.76 s) 198 112 Sn(p,n γ)	375
252 Cf SF Decay 203 112 Sn(3 He,t)	377
¹¹⁰ Pd(t,p) 204 ¹¹² Te Adopted Levels, Gamm	as 378
$^{110}\mathrm{Pd}(\mathrm{t,p\gamma})$ 205 $^{112}\mathrm{I}~\epsilon~\mathrm{Decay}$	387
$^{208}{\rm Pb}(^{18}{\rm O},{\rm X}\gamma)$ 206 $^{113}{\rm Xe}~\beta^+{\rm p}~{ m Decay}$	387
112Ag Adopted Levels, Gammas 208 ⁵⁸ Ni(⁵⁸ Ni, ⁴ pγ),(⁶⁰ Ni,α2]	γ) 388
112 Pd β ⁻ Decay 209 112 Sn(α,4nγ)	392
$^{176}{ m Yb}(^{28}{ m Si},{ m X}\gamma)$ 210 $^{112}{ m I}$ Adopted Levels, Gamm	as 393
112Cd Adopted Levels, Gammas 211 ⁵⁸ Ni(⁵⁸ Ni, ³ pnγ)	395
112 Ag β^- Decay (3.130 h) 239 112 Xe Adopted Levels, Gamm	
112In ε Decay (14.88 min) 247 113Cs p Decay (18.3 μs	
$^{110}\text{Pd}(^{3}\text{He,n})$ 249 $^{58}\text{Ni}(^{58}\text{Ni},2\text{p2n}\gamma)$	400
110 Pd(α,2nγ) 249 112 Cs Adopted Levels, Gamm	
$^{110}\text{Cd}(t,p)$ 256 $^{58}\text{Ni}(^{58}\text{Ni},p3n\gamma)$	402
111Cd(n,γ) E=th: Primary 256 111Cd(n,γ) E=th: Secondary 258	
111Cd(n,γ) E=th: Secondary 258 111Cd(d,p) 262	
$\begin{array}{c} \operatorname{Cd}(\mathbf{d},\mathbf{p}) \\ \operatorname{111Cd}(\mathbf{d},\mathbf{p}\gamma) \end{array} \qquad \qquad 263$	
$^{112}\mathrm{Cd}(\gamma,\gamma')$ 264	
112Cd(γ,pol γ') 265	
¹¹² Cd(e,e') 266	
$^{112}\mathrm{Cd}(\pi^-,\mathrm{X})$ 266	
$^{112}Cd(n,n'\gamma)$ 267	
$^{112}Cd(p,p')$ 277	
$^{112}\mathrm{Cd}(\mathrm{p},\mathrm{p'}\gamma)$ 279	
¹¹² Cd(pol p,p') 279	
112Cd(d,d') 280	
112Cd(pol d,d') 281	
$^{112}\mathrm{Cd}(\alpha,\alpha')$ 283	
Coulomb Excitation 284	
113Cd(pol d,t) 285	
114Cd(p,t) 286 112In Adopted Levels, Gammas 287	
¹¹² In IT Decay (20.67 min) 301 ¹⁰⁰ Μο(¹⁶ Ο,p3nγ) 301	
$^{100}{ m Mo}(^{16}{ m O},{ m p}3{ m n}\gamma)$ 301 $^{109}{ m Ag}(lpha,{ m n}\gamma)$ 303	
110 Pd $^{(7}$ Li,5n $\gamma)$ 306	
$^{110}\mathrm{Cd}(\alpha,\mathrm{np}\gamma)$ 309	
$^{110}\mathrm{Cd}(\alpha,\mathrm{d})$ 309	
¹¹¹ Cd(³ He,d) 310	
$^{112}\mathrm{Cd}(\mathbf{p},\mathbf{n}\gamma)$ 310	
$^{112}\mathrm{Cd}(\mathrm{d},2\mathrm{n}\gamma)$ 313	
$^{113} \mathrm{In}(\gamma, \mathrm{xn})$ 314	
113In(p,d) 315	
¹¹³ In(d,t) 315	
¹¹² Sn Adopted Levels, Gammas 316	
¹¹² In β ⁻ Decay 331	
¹¹² Sb ε Decay 332	

Skeleton Scheme for A=112

Skeleton Scheme for A=112 (continued)

Skeleton Scheme for A=112 (continued)

			Ground-State	e and Isomeric-Level Properties
Nuclide	Level	Jπ	T _{1/2}	Decay Modes
$^{112}{ m Zr}$	0.0	0+	>400 ns	$\%\beta^{-}=100; \%\beta^{-}n=?; \%\beta^{-}2n=?$
$^{112}{ m Nb}$	0.0		33 ms +9-6	$\%\beta^{-}=100$
$^{112}{ m Mo}$	0.0	0+	120 ms +13-11	$\%\beta^{-}=100$
$^{112}{ m Tc}$	0.0	(2+)	271 ms 15	%β ⁻ =100; %β ⁻ n=1.5 2
112 Ru	0.0	0+	1.75 s 7	$\%\beta^{-}=100$
$^{112}\mathrm{Rh}$	0.0	(1+)	3.6 s 3	%β ⁻ =100
	0.0 + y	(6+)	6.76 s 12	%β ⁻ =100
$^{112}\mathrm{Pd}$	0.0	0+	21.04 h 17	%β ⁻ =100
$^{112}\mathrm{Ag}$	0.0	2(-)	3.130 h 8	%β ⁻ =100
$^{112}\mathrm{Cd}$	0.0	0+	stable	
112 In	0.0	1+	14.88 min 15	$\%\beta^{-}=42.6\ 48;\ \%\epsilon+\%\beta^{+}=57.4\ 48$
	156.592	4+	20.67 min 8	%IT=100
	350.80	(7)+	0.69 µs 5	
	613.82	(8)-	2.81 µs 3	
$^{112}\mathrm{Sn}$	0.0	0+	stable	
$^{112}\mathrm{Sb}$	0.0	(3+)	53.5 s 6	$\%\epsilon + \%\beta^+ = 100$
$^{112}{ m Te}$	0.0	0+	2.0 min 2	$\%\epsilon + \%\beta^+ = 100$
$^{112}{ m I}$	0.0	(1+)	3.34 s 8	%ε+%β ⁺ ≈100; %α≈0.0012; %εp=0.88 10; %εα=0.104 12
$^{112}\mathrm{Xe}$	0.0	0+	2.7 s 8	$\%\epsilon + \%\beta^+ = 98.8 \ 8; \ \%\alpha = 1.2 \ 8$
$^{112}\mathrm{Cs}$	0.0	(1+)	0.49 ms 3	$%p=100; %\alpha < 0.26$
$^{113}\mathrm{Xe}$	0.0	(5/2+)	2.74 s 8	$\%\beta^{+}p=7$ 4;
$^{113}\mathrm{Cs}$	0.0	(3/2+)	18.3 μs 3	%p=100

Adopted Levels

 $Q(\beta^{-})=10500 SY; S(n)=-4300 SY 2012Wa38.$

2010Oh02: ¹¹²Zr nuclide identified in Be(²³⁸U,F) and Pb(²³⁸U,F) reactions with a ²³⁸U⁸⁶⁺ beam energy of 345 MeV/nucleon produced by the cascade operation of the RBIF accelerator complex at RIKEN. Identification of ¹¹²Zr nuclei was made on the basis of magnetic rigidity, time-of-flight and energy loss of the fragments using BigRIPS fragment separator. 1 count was associated with ¹¹²Zr, based on Z versus A/Q identification.

¹¹²Zr Levels

E(level) $J\pi$ $T_{1/2}$ Comments

0.0 0 + >400 ns % β^- =100; % β^- n=?; % β^- 2n=?

Measured σ =7 pb (20100h02), systematic uncertainty=40%. $T_{1/2}$: lower limit from time-of-flight in 20100h02. The actual half-life is expected to be much longer, =15 ms (from systematics). A value of =43 ms is predicted in 2003Mo09.

% β^- n,% β^- 2n: Calculated % β^- n=26.3 and % β^- 2n=0.47 in 2003Mo09.

Adopted Levels

 $Q(\beta^-) = 13200 \ 400; \ S(n) = -3.5 \times 10^3 \ 4; \ Q(\alpha) = -9.4 \times 10^3 \ 7 \ 2012 Wa38.$

¹¹²Nb Levels

Cross Reference (XREF) Flags

$A^{238}U(^{9}Be,X\gamma)$

	E(level)	XREF	T _{1/2}	Comments
0	. 0		33 ms +9-6	%β ⁻ =100.
U	. 0	A	33 ms +3-0	$T_{1/2}$: using maximum-likelihood analysis of HI- $\beta(t)$ data in $^{238}U(^{9}Be,X\gamma)$ (2011Ni01). A value of
				≈75 ms is predicted in 2003Mo09. %β ⁻ n,%β ⁻ 2n: Calculated %β ⁻ n=61.2 and %β ⁻ 2n=1.7 in 2003Mo09.

²³⁸U(⁹Be,Χγ) 2011Ni01

2011Ni01: 112 Nb nuclide produced in Be(238 U,F) reactions at E=345 MeV/nucleon produced by the cascade operation of the RBIF complex of accelerators at RIKEN. Target=550 mg/cm². Identification of 112 Nb made on the basis of magnetic rigidity, time-of-flight and energy loss. The separated nuclei were implanted in a nine-layer double-sided silicon-strip detector (DSSSD). Correlations were recorded between the heavy ions and β rays. The half-life of 112 Nb isotope was measured from the correlated ion- β decay curves and maximum likelihood analysis technique. In the analysis of the decay curve, β -detection efficiency, background rate, daughter and granddaughter (including those populated in delayed neutron decays) half-lives, and β -delayed neutron emission probabilities were considered.

¹¹²Nb Levels

E(level)	T _{1/2}	Comments
0 0	33 ms +9-6	T. ω: using maximum-likelihood analysis of HI-β(t) data in 2011Ni01.

 $^{112}_{42}{
m Mo}_{70}$

 $^{112}_{42}{
m Mo}_{70}$

Adopted Levels

 $Q(\beta^-) = 7791 \ SY; \ S(n) = 5598 \ SY; \ S(p) = 15877 \ SY; \ Q(\alpha) = -8536 \ SY \ \ 2012 Wa38.$

Produced at the BigRIPS facility at RIKEN (2011Ni01). A mass separated source produced in the 238 U+Be reaction; Beam: $E(^{238}$ U)=345 MeV/u, 0.3 pnA; Target: 550 mg/cm² Be; Detectors: BigRIPS, DSSD; Measured: implant- β (t); Also, from the same collaboration: 2011NiZY.

¹¹²Mo Levels

E(level)	$J\pi$	T _{1/2}	Comments
0.0	0+	120 ms +13-11	%β-=100. T _{1/2} : from implant-β(t) using maximum-likelihood analysis (2011Ni01). A value of ≈103 ms is predicted in 2003Mo09. %β-n: Calculated %β-n=4.4 in 2003Mo09.

Adopted Levels, Gammas

 $^{112}_{\ 43}{\rm Tc}_{69}{-1}$

 $Q(\beta^-) = 10374 \ 11; \ S(n) = -4304 \ 12; \ S(p) = -12606 \ 14; \ Q(\alpha) = -8134 \ 10 \ \ 2012Wa38.$

¹¹²Tc Levels

Cross Reference (XREF) Flags

A ¹¹²Tc IT Decay B ²³⁸U(p,X), ¹³⁶Xe(⁹Be,X)

E(level) [†]	_Jπ	XREF	$\underline{\hspace{1cm}} T_{1/2}$	Comments
0.0	(2+)	AB	271 ms 15	$\%\beta^{-}=100;\ \%\beta^{-}n=1.5\ 2\ (1999Wa09).$
				$\%\beta$ -n: Other: 4 1 (2009Pe06) and 2.6 5 (1996Me09); calculated value of 0.9 in (2003Mo09).
				J π : Significant direct feeding to 2+ levels in 112 Ru, following 112 Tc β^- decay could be misleading given that the decay scheme is incomplete (pandemonium); expected configuration from systematics. The proposed assignment is tentative.
				T _{1/2} : Weighted average of 290 ms 20 (2009Pe09), 290 ms 20 (1999Wa09), 230 ms 20 (1996Me09), and 280 ms 30 (1990Ay02). A value of ≈135 ms is calculated in 2003Mo09. configuration: π5/2+[422]⊗v1/2+[411]; Kπ=2+ is favored by the Gallagher-Moszkowski rule.
				The assignment is tentative. It should be noted that $v5/2+[402]$ orbital is a ground state in 111 Ru, while the $v1/2+[411]$) one is located at 9.7 keV. The $\pi5/2+[422]$ orbital is assigned to the ground state of 111 Tc.
258.0 10	(3+)	A		J π : 258 γ to (2+); expected configuration from systematics.
				configuration: $\pi5/2+[422]\otimes v1/2+[411];~K\pi=3+.$ The assignment is tentative.
350.0 15	(5+)	Α	150 ns 17	J π : 92 γ to (3+); non-observation of 350 γ to (2+) in 2010Br15. However, J π =4- assignment cannot be unambiguously excluded.
				$T_{1/2}$: From 258 γ (t) in 2010Br15. Others: 218 ns +60-43 in (2012Ka36) and <500 ns using 258 γ (t) in 2009Fo05.
				configuration: $\pi 5/2 + [422] \otimes v 5/2 + [402]$; $K\pi = 5 + is$ favored by the Gallagher-Moszkowski rule. The assignment is tentative.

 $[\]dagger$ From Ey. The level energies are tentative and depend on the relative placement of the two γ -rays observed in coinc. in 2010Br15.

$\gamma(^{112}{ m Tc})$

E(level)	$_{\rm E\gamma^{\dagger}}$	$I\gamma^{\dagger}$	Mult.	α	Comments
258.0	258 1	100			
350.0	92 1	100	[E2]	1.69 8	$B(E2)(W.u.)=6.6 \ 8.$

 $^{^{\}dagger}$ From 2010Br15. The relative placement of the two transitions in the cascade is tentative.

¹¹²Tc IT Decay 2010Br15,2012Ka36

Parent $^{112}Tc\colon$ E=350.0 15; J\pi=(5+); $T_{1/2}\!=\!150$ ns 17; %IT decay=100.

2010Br15: Facility: GSI-Darmstadt; Target: 1 g/cm² thick ⁹Be; Beam: ²³⁸U, E(²³⁸U)=750 MeV/A; Detectors: Fragment Separator, scintillator detectors, ionization chambers, multiwire ionization chambers, RISING γ-ray array; Measured: Εγ, Ιγ, Τ_{1/2}; Deduced: level scheme.

2012Ka36: Facility: RIBF at RIKEN; Beam: $E(^{238}U)=345$ MeV/nucleon; Detectors: BigRIPS, ZeroDegree spectrometer, energy degraders, particle detectors, aluminium stopper, three clover-type HPGe detectors; Measured: ToF, γ , γ - γ , $E\gamma$, $I\gamma$; Deduced: Z, A/Q, 112 Tc level energies, $T_{1/2}$.

 $Others:\ 2009 Fo 05.$

$^{112}\mathrm{Tc}$ Levels

E(level) [†]	$J\pi^{\dagger}$	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	Comments
0.0	(2+)	271 ms 15	
258.0 10	(3+)		
350.0 15	(5+)	150 ns 17	$T_{1/2}$: From 258 γ (t) in 2010Br15. Others: 218 ns +60-43 in (2012Ka36) and <500 ns using 258 γ (t) in
			2009Fo05.

 $^{^{\}dagger}$ From the adopted levels.

112Tc IT Decay 2010Br15,2012Ka36 (continued)

 $\gamma(^{112}{
m Tc})$

$E\gamma^{\dagger}$	E(level)	Ιγ†	Mult.‡
92 1	350.0	100	[E2]
258 1	258.0	91 9	[M1]

- † From 2010Br15. The relative placement of the two transitions, observed in coinc., is tentative.
- \ddagger From the proposed decay scheme.

$^{238}\rm{U}(p,X),^{136}\rm{Xe}(^9\rm{Be},X) \\ 2009\rm{Pe}09, 2007\rm{Ha}20, 1999\rm{Wa}09$

2009Pe09: Facility: Superconducting Cyclotron Laboratory at Michigan State University; Beam: 136 Xe at 120 MeV/a, I=1.5 pnA; Target: 1242 mg/cm² 9 Be; Detectors: fragment separator, three plastic scintillator detectors, degraders, four silicon PIN detector, 40x40 pixel double-sided silicon strip detector, 10 mm Ge detector, neutron detector (NERO) comprising 16 3 He and 44 8 Be proportional gas counters; Measured: Time-of-flight, energy loss, HI positions, mass-to-charge ratio, HI- 6 B and HI- 6 B-n(t) correlations; Deduced: 6 Denote 10 mg/cm² of natural uranium; Detectors: JYFLTRAP Penning trap, consisting of radiofrequency cooler, two Penning traps, superconducting magnet, microchannel plate detector; Measured: Time-of-flight, mass excess; Mass excess: 65 250 6 keV (2007Ha20) differs from the AME03 by 750 units which might be explained with a possible feeding of excited states in 112 Tc.

1999Wa09: Facility: IGISOL at Jyvaskyla; Beam: E(p)=50 MeV, I=10 μA ; Target: 238 U; Detectors: collection tape, Mainz $^{4\pi}$ neutron counter consisting of 42 3 He ionization chambers, plastic scintillator, 23% HPGe; Measured: β , η , β - η (t); Deduced: β - η ; Also, from the same authors: 1996Me09, 1990AyZX, 1990AyZY, 1990AyZZ, 1990JoZY, 1989TaZW. Others: 2008Su19, 2000Lh02, 1990Ay02.

¹¹²Tc Levels

E(level) † Jπ † T_{1/2} Comments

0.0 (2+) 271 ms 15 %β-n=4 1 (2009Pe06), 1.5 2 (1999Wa09), and 2.6 5 (1996Me09).

T_{1/2}: Weighted average of 290 ms 20 (2009Pe09) 280 ms 30 (1990Ay02), 290 ms 20 (1999Wa09) and 230 ms 20 (1996Me09).

[†] From the adopted levels.

Adopted Levels, Gammas

 $Q(\beta^-)=4100\ 50;\ S(n)=6917\ 13;\ S(p)=13895\ 14;\ Q(\alpha)=-7291\ 14\ 2012Wa38.$

$^{112}\mathrm{Ru}$ Levels

Cross Reference (XREF) Flags

A ^{112}Tc β^- Decay B $^{197}Au(^{19}F,F\gamma),^{232}Th(^{18}O,F\gamma)...$

C ²⁵²Cf SF Decay

D ²³⁸U(α,Fγ)

E ²⁴⁸Cm SF Decay

E(level) [†]	Jπ [‡]	XREF	§	Comments
0.0#	0+	ABCDE	1.75 s 7	$\%\beta^{-}=100.$
				$T_{1/2}$: from 327.0 γ (t), following 112 Ru β -decay using a mass separated source (1991Jo11,1988Pe13,1988AyZZ). Others: 2.6 s 1, deduced from the growth and decay of 348 γ in 112 Pd (1987GiZW), 4.65 s 14 (1970WiZN), 4.1 s 3 (1976MaYL), and 3.6 s 5 (1978Fr16), but some of these activities probably belong to 112 Rh.
236.69# 16	2+	ABCDE	0.32 ns 3	J π : 236.8 γ E2 to the g.s. $T_{1/2}$: from recoil-distance Doppler-shift method (1974JaZN,1974JaYY). Other: 0.16 ns 4 (1970Ch11).
				μ : +0.88 18, deduced from g=+0.44 9 (2004Sm04, 2005Sm08) using the time-integral correlation technique.
523.51@16	2+	A CDE		$J\pi\colon 523.4\gamma$ to 0+; 287γ M1+E2 to 2+; band member.
644.97# 20	4+	ABCDE		$J\pi$: 408.2 γ E2 to 2+; band assignment.
747.48@ 18	3+	A CDE		$J\pi \colon\thinspace 224.0\gamma$ to 2+; 510.8γ to 2+; absence of 747γ to 0+; band assignment.
980.68@ 18	4+	CDE		$J\pi$: 233.2 γ to 3+; 457.2 γ to 2+; band assignment.
026.7 5		A		
179.4 5		A		
189.79# 24	6+	BCDE		$J\pi$: 544.7 γ (E2) to 4+; band assignment.
$235.34^{@}21$	5+	CDE		$J\pi\colon487.9\gamma$ to 3+; 590.5γ to 4+; band assignment.
413.6& 3	(4+)	C		$J\pi\colon$ 666.3 γ to 4+; 890.0 γ to 2+; band assignment.
$570.2^{@}3$	6+	CDE		$J\pi\colon334.8\gamma$ to 5+; 589.3γ to 3+; band assignment.
649.5 ^{&} 4	(5+)	C		$J\pi\colon\thinspace 235.9\gamma$ to (4+), 902.1 γ to 3+; band assignment.
839.7# 3	8+	BCDE	1.84 ps 28	$J\pi$: 650.0 γ (E2) to 6+; band assignment.
				$T_{1/2}$: Other: 1.7 ps +13-5 in ^{252}Cf SF decay (2013Sn01) using DSAM.
841.1@3	7+	CDE	2.50 ps 35	$J\pi$: 270.8 γ to 6+; 605.7 γ (E2) to 5+; band assignment.
				$T_{1/2}$: Other: 2.2 ps +7-14 in $^{252}{ m Cf}$ SF decay (2013Sn01) using DSAM.
955.7& 4	(6+)	C		$J\pi$: 542.0γ to $(4+)$, 720.5γ to $(5+)$; band assignment.
995.1 3	(4-)	С		$J\pi$: 1014.4 γ to 4+, 1247.5 γ to 3+.
003.3 ^a 3	(5-)	С	<1 ns	J π : 1022.5 γ to 4+; 768.0 γ to 5+; band assignment. T $_{1/2}$: From 252 Cf SF decay (2009Lu01).
2147.9 4	(5-)	C		$J\pi$: 1502.9 γ to 4+.
230.3a 3	(6-)	C		$J\pi$: 235.1 γ to (4-), 1040.6 γ to 6+; band assignment.
231.3& 5	(7+)	\mathbf{c}		$J\pi$: 581.9γ to (5+); band assignment.
263.5@ 5	8+	CDE		$J\pi$: 693.3 γ to 6+; band assignment.
334.3b 4	(6-)	С	<1 ns	Jπ: 1098.8γ to 5+, 331.0γ to (5-); band assignment. T _{1/2} : From ²⁵² Cf SF decay (2009Lu01).
392.0 5		C		
489.3 ^a 3	(7-)	C		$J\pi\colon\thinspace 259.0\gamma$ to (6-), 341.4γ to (5-),1299.6 γ D to 6+; band assignment.
534.2@4	9+	CDE	1.23 ps 18	J π : 694.4 γ (E2) to 7+; band assignment. $T_{1/2}$: Other: 1.3 ps +7-6 in 252 Cf SF decay (2013Sn01) using DSAM.
2563.0# 4	10+	BCDE	1.05 ps 16	J π : 723.3 γ (E2) to 8+; band assignment. T _{1/9} : Other: 1.4 ps 3 in 252 Cf SF decay (2013Sn01) using DSAM.
574.3b 4	(7-)	C		$J\pi$: 426.3 γ to (5-), 733.1 γ to 7+,1384.6 γ D to 6+; band assignment.
574.6 6	(8+)	C		$J\pi$: 618.9 γ to (6+); band assignment.
771.8a 4	(8-)	C		$J\pi$: 282.5 γ to (7-), 541.5 γ to (6-); band assignment.
829.4 ^b 5	(8-)	C		$J\pi$: 255.1 γ to (7-), 495.1 γ to (6-); band assignment.
899.9 5		C		
909.2 7	(9+)	C		$J\pi$: 677.9 γ to (7+); band assignment.
033.6@ 7	10+	$^{\mathrm{CD}}$		$J\pi$: 770.1 γ to 8+; band assignment.
076.6ª 4	(9-)	C		$J\pi$: 304.8 γ to (8-), 587.3 γ to (7-); band assignment.
3094.2 ^b 4	(9-)	C		$J\pi \colon\thinspace 264.8\gamma$ to (8-), 519.8γ to (7-); band assignment.
$3290.5^{@}$ 7	11+	CDE	0.78 ps 11	$J\pi$: 756.3 γ (E2) to 9+; band assignment.
				$T_{1/2}$: Other: 0.9 ps 5 in 252 Cf SF decay (2013Sn01) using DSAM.

¹¹²Ru Levels (continued)

E(level) [†]	Jπ [‡]	XREF	${\color{red} \underline{\hspace{0.5cm}}} T_{1/2} \S$	Comments
3326.2# 6	12+	CDE	0.93 ps 9	$J\pi$: 763.2 γ (E2) to 10+; band assignment.
				$T_{1/2}$: weighted average of 0.80 ps 12 in $^{248}\mathrm{Cm}$ SF decay (2012Sm02)
				(Doppler-broadened lineshape technique) and $1.12~{ m ps}$ +15-14 in $^{252}{ m Cf}$ SF decay (2013Sn01) (DSAM).
3379.9 ^b 5	(10-)	C		$J\pi$: 285.6 γ to (9-), 550.6 γ to (8-); band assignment.
3420.9a 5	(10-)	\mathbf{C}		$J\pi\colon344.3\gamma$ to (9-), 649.0γ to (8-); band assignment.
3519.8 7		\mathbf{C}		
3711.7 ^b 5	(11-)	C		$J\pi$: 331.7 γ to (10-), 617.4 γ to (9-); band assignment.
3768.7ª 5	(11-)	\mathbf{C}		$J\pi\colon347.8\gamma$ to (10-), 692.0γ to (9-); band assignment.
$3870.9^{@}9$	12+	$^{\text{CD}}$		J π : 837.3 γ to (10+); band assignment.
4032.6 ^b 7	(12-)	C		$J\pi$: 321.0 γ to (11-), 652.7 γ to (10-); band assignment.
$4095.4^{@}8$	13+	$^{\text{CD}}$		$J\pi$: 804.9 γ to 11+; band assignment.
4118.4 # 8	14+	$^{\text{CD}}$	1.6 ps 3	Jπ: 792.2γ to 12+; band assignment.
				$ m T_{1/2}$: from $^{252}{ m Cf}$ SF decay (2013Sn01) using DSAM.
4198.8ª 6	(12-)	C		$J\pi$: 430.1 γ to (11-), 778.0 γ to (10-); band assignment.
4213.4 9		C		
4428.5 ^b 7	(13-)	\mathbf{c}		J π : 716.8 γ to (11-); band assignment.
4561.8a 7	(13-)	C		J π : 793.1 γ to (11-); band assignment.
$4764.2^{@}10$	14+	C		J π : 893.3 γ to 12+; band assignment.
4769.7? ^b 6	(14-)			
4788.9 13	(14+)	D		$J\pi$: 918 γ to (12+); band assignment.
$4950.7^{@}10$	15+	$^{\text{CD}}$		J π : 855.3 γ to 13+; band assignment.
4954.6 # 10	16+	$^{\mathrm{CD}}$		J π : 836.2 γ to 14+; band assignment.
5072.9a 8	(14-)	C		J π : 874.1 γ to (12-); band assignment.
5228.0 ^b 9	(15-)	\mathbf{c}		J π : 799.5 γ to (13-); band assignment.
5700.8? [@] 7	(16+)			
5830.0# 11	18+	$^{\mathrm{CD}}$		J π : 875.4 γ to 16+; band assignment.
5857.4@ 11	17+	$^{\mathrm{CD}}$		J π : 902.8 γ to 15+; band assignment.
6725.4 # 12	(20+)	$^{\text{CD}}$		$J\pi$: 895.4 γ to 18+; band assignment.
6800.4 [@] 15	(19+)	D		$J\pi$: 943 γ to 17+; band assignment.
7749.3# 13	(22+)	D		$J\pi$: 1023.8 γ to (20+); band assignment.

 $^{^{\}dagger}$ From a least-squares fit to Ey.

$\gamma(^{112}Ru)$

E(level)	$\underline{\hspace{1cm} E\gamma^{\dagger}}$	Ιγ [†]	Mult.@	α	Comments
236.69	236.8 \$ 2	100\$	E2	0.0602	Mult.: From the ce measurement in ^{112}Tc β^- decay (1990Ay02) and $\gamma(\omega)$ in ^{248}Cm SF decay (1994Sh26).
		8			B(E2)(W.u.)=70 7.
523.51	287.0 \$ 2	100 \$ 12	M1+E2	0.0183	Mult.: From ce measurements in ¹¹² Tc β ⁻ decay.
	523.4 \$ 2	73 \$ 15	[E2]	0.00467	Iγ: Other: 91.8 14 in 252 Cf SF decay and 82 16 in 248 Cm SF decay.
644.97	408.2 \$ 2	1008	E2	0.00988	Mult.: From γ(ω) in ²⁴⁸ Cm SF decay (1994Sh26).
747.48	224.0 2	38 8			Iy: Other: 35.1 6 in ^{252}Cf SF decay and =100 in 1990Ay02 (^{112}Tc β^- decay).
	510.8 2	100 3			Iγ: Other: ≈87 in 1990Ay02 (¹¹² Tc β decay).
980.68	233.2 2	7.1 14			Iγ: Other: 5.6 6 in ²⁵² Cf SF decay.
	335.6 2	$20 ext{ } 4$			Iy: Other: 22.0 10 in 252 Cf SF decay.
	457.2 2	100 20			
	744.0 2	7.1 14			Iγ: Other: 3.6 3 in ²⁵² Cf SF decay.
1026.7	381.7 \$ 5	1008			•
1179.4	152.7 \$ 2	1008			

 $[\]dot{\ddagger}$ From the deduced $\gamma-ray$ transition multipolarities and the apparent band structures.

 $[\]S$ From ^{248}Cm SF decay (2012Sm02) using Doppler-broadened lineshape technique, unless otherwise stated.

^{# (}A): $K\pi=0+$, g.s. band.

^{@ (}B): $K\pi=2+,\gamma-vibrational$ band.

[&]amp; (C): Rotational band built on the 1413.6 keV level.

a (D): $K\pi=4-v^{1/2}[411]\otimes v^{7/2}[523]$ band. The experimental $ABS(g_{K}-g_{R})=0.185$ 17 deduced from the cascade-to-crossover branching ratios agrees well with theoretical value of 0.186 for this configuration, using $Q_0=3.4$ 3 eb.

 $[^]b$ (E): Likely $K\pi{=}6-$ band. The assignment is tentative.

$\gamma(^{112}Ru)$ (continued)

E(level)	$\underline{\hspace{1cm}} E\gamma^{\dagger}$	$\underline{\hspace{1cm}} I\gamma^{\dagger}$	Mult.@	α	Comments
1179.4	432.0 10				Eγ: From ¹¹² Tc β ⁻ decay.
1189.79	544.92	100	(E2)	0.00416	Mult.: From $\gamma(\omega)$ in ²⁴⁸ Cm SF decay (1994Sh26).
1235.34	$254.7^{\ddagger}5$	5.70 ± 20			
	487.9 2	100 3			
	590.32	8.1 14			
1413.6	666.3 [‡] 5	15.4 7			
	890.0 ‡ 5	100‡			
1570 . 2	334.8	2.6 † 3			
	380.3 7 5	1.20 ‡ 20			
	589.3	100‡			
1649.5	235.9 5	100‡			
	668.9‡ 5	5.6 ‡ 4			
	902.1 5	$22.2^{\ddagger}11$			
1839.7	650.0 2	100	(E2)	0.00256	Mult.: From $\gamma(\omega)$ in 248 Cm SF decay (1994Sh26). B(E2)(W.u.)=82 13.
1841.1	270.8	$4.1^{\ddagger}5$	[M1]	0.0213	B(M1)(W.u.)=0.017 4.
	605.7 ‡ 5	100‡	(E2)	0.00310	Mult.: From γ(ω) in ²⁴⁸ Cm SF decay (1994Sh26). B(E2)(W.u.)=83 12.
	651.2 5		[M1]	0.00250	Eγ: From ²⁵² Cf SF decay.
1955.7	542.0 † 5	100‡			
	720.5 ‡ 5	12.5 † 7			
	975.0	63‡ 3			
1995.1	1014.4 ‡ 5	33.3			
	1247.5 \$ 5	100‡			
	1350.2	16.7 [‡] 21			
2003.3	589.7 [‡] 5	<38.7‡	[E1]	1 . $14\!\times\!10^{-3}$	$B(E1)(W.u.) > 1.8 \times 10^{-7}$.
	768.0 5		[E1]	6 . 41×10^{-4}	Eγ: From ²⁵² Cf SF decay.
	$1022.5^{\ddagger}5$	100‡	[E1]	3.63×10^{-4}	$B(E1)(W.u.)>1.8\times10^{-7}$.
	1358.3 5	33 [‡] 7	[E1]	3.55×10^{-4}	$B(E1)(W.u.)>2.5\times10^{-8}$.
2147.9	1167.2 ‡ 5	20 ‡ 5			
	1502.9 ‡ 5	100‡			
2230 . 3	226.9 5	6.7 † 17			
	235.1 5	9.2 † 17			
	660.1 ‡ 5	13.5‡ 23			
	994.9 5	42 † 6			
0001 0	1040.6 ‡ 5	100‡			
2231.3	581.9 ± 5 995.8 ± 5	100 [‡] 68 [‡] 4			
0000 5	693.3 [‡] 5	100 [‡]			
2263.5 2334.3	331.0 ‡ 5	12.1‡	[M1]	0.01278	$B(M1)(W.u.)>3.9\times10^{-5}$.
2334.3	764.1 5	34 [‡] 5	[E1]	6.48×10^{-4}	$B(E1)(W.u.)>1.2\times10^{-7}$.
	1098.8‡ 5	100‡	[E1]	3.17×10^{-4}	$B(E1)(W.u.)>1.2\times10^{-7}$.
	1144.6‡ 5	40‡ 10	[E1]	3.09×10^{-4}	$B(E1)(W.u.)>1.2\times10^{-8}$.
2392.0	1156.6 ‡ 5	100‡	1		Control of the contro
2489.3	259.0 ‡ 5	12.3 † 12			
	341.4 ‡ 5	12.7 ‡ 20			
	486.0	4.8 ‡ 12			
	919.1	17‡ 3			
	1299.6 ‡ 5	100‡	D		Mult.: from $(1299.6\gamma)(544.7\gamma)(\theta)$: $A_2=-0.090$ 35, $A_4=-0.02$ 6 in $^{252}{\rm Cf}$ SF decay. The predicted values are $a_2=-0.071$, $a_4=0$ (for a dipole-quadrupole cascade and $A_2=-0.102$ and $A_4=-0.051$ for a
					quadrupole-quadrupole cascade.
2534.2	694.4 2	100	(E2)	0.00215	Mult.: From $\gamma(\omega)$ in ^{248}Cm SF decay (1994Sh26). B(E2)(W.u.)=89 13.
2563 . 0	723.3 2	100	(E2)	0.00193	Mult.: From γ(ω) in ²⁴⁸ Cm SF decay (1994Sh26). B(E2)(W.u.)=85 13.
2574.3	240.0 ^a 5				Eγ: From ²⁵² Cf SF decay.
	426.3 ‡ 5	10 ‡ 4			
	733.1 ‡ 5	4.2 ‡ 2			
	1004.1^{\ddagger} 5	11.8 [‡] 15			

$\gamma(^{112}Ru)$ (continued)

E(level)	Εγ [†]	Ιγ†	Mult.@	α	Comments		
2574.3	1384.6 † 5	100‡	D		Mult.: from $(1384.6\gamma)(544.7\gamma)(\theta)$: $A_2=-0.07$ 6, $A_4=-0.05$ 9 in 252CF SF DECAY. The predicted values are $A_2=-0.071$, $A_4=0$ for a for dipole-quadrupole cascade and $A_2=-0.102$ and $A_4=-0.051$ for a quadrupole-quadrupole cascade.		
2574.6	618.9 [‡] 5	100‡					
2771.8	282.5 ‡ 5	24 † 5					
	541.5 ‡ 5	100‡					
	930.7	7.0					
	932.0 ‡ 5	3.5					
2829.4	255.1	100.0 ‡ 24			Iγ: 100.22.4 in table 3 of 2009Lu18 seems a misprint.		
	340.0 ^{‡a} 5	4.5^{\ddagger}					
	495.1a 5				Eγ: From ²⁵² Cf SF decay.		
2899.9	507.9 5				Eγ: From ²⁵² Cf SF decay.		
	1058.8 ‡ 5	100‡					
2909.2	677.9 [‡] 5	100‡					
3033.6	770.1	100‡					
3076.6	304.8 † 5	$11.0^{\ddagger} 23$					
	587.3 [‡] 5	100‡					
	1237 . 0^{\ddagger} 5	40 ‡ 4					
3094.2	264.8 5	9 . 3 ‡ 7					
	519.8 ‡ 5	100‡					
	830.7 ‡ 5	23 ‡ 8					
	1254.5 5	35 [‡] 6			212		
3290.5	756.3 [‡] 5	100‡	(E2)	1.73×10 ⁻³	Mult.: From γ(ω) in ²⁴⁸ Cm SF decay (1994Sh26). B(E2)(W.u.)=91 13.		
3326.2	763.2 [‡] 5	100‡	(E2)	1.69×10 $^{-3}$	Mult.: From γ(ω) in ²⁴⁸ Cm SF decay (1994Sh26). B(E2)(W.u.)=73 7.		
3379.9	285.6	17.4					
	550.6^{\pm} 5	100‡					
3420.9	344.3 ‡ 5	14 ‡ 3					
	649.0 ‡ 5	100‡					
3519.8	619.9 [‡] 5	100^{\ddagger}					
3711.7	331.7 [‡] 5	14.8 † 13					
	617.4 ‡ 5	100‡					
	1148.8‡ 5	26 ‡ 3					
3768.7	347.8 ‡ 5	17 [‡] 5					
	692.0 5	100					
3870.9	837.3 ‡ 5	100‡			050		
4032.6	321.0a 5	4			Eγ: From ²⁵² Cf SF decay.		
	652.7‡ 5	100‡					
4095.4	$804.9^{\ddagger}5$ $792.2^{\ddagger}5$	100 [‡] 100 [‡]	F. E. O. 1	1 54 10-3	D/DOV/W \ OF F		
4118.4	430.1 7 5	20 ‡ 6	[E2]	1.54×10^{-3}	B(E2)(W.u.)=35 7.		
4198.8	778.0 [‡] 5	100‡					
4213.4	693.6 [‡] 5	100 ‡					
4428.5	716.8‡ 5	100					
4561.8	793.1 [‡] 5	100					
4764.2	893.3 ‡ 5	100					
4769.7?	737.1 ^{‡a} 5	100‡					
4788.9	918# 1	100					
4950.7	855.3 ‡ 5	100‡					
4954.6	836.2	100‡					
5072.9	874.1 5	100‡					
5228.0	799.5 ‡ 5	100‡ †	From ²⁴⁸ Cm	SF decay, unle	ess otherwise stated.		
5700.8?	936.6 [‡] a 5		From ²⁵² Cf				
5830.0	875.4 ‡ 5		From ¹¹² Tc				
5857.4	902.8	100‡ #					
6725.4	895.4 ‡ 5		_		easurements in $^{252}\mathrm{Cf}$ SF decay and $^{248}\mathrm{Cm}$ SF decay, and the		
6800.4	943# 1	100			unless otherwise stated.		
7749.3	$1023.8 ^{\#} 5$	100 a	a Placement of transition in the level scheme is uncertain.				

(E) Likely $K\pi=6-$ band. The assignment is tentative.

¹¹²Tc β- Decay 1990Ay02

Parent 112 Tc: E=0.0; J $_{\pi}$ =(2+); T $_{1/2}$ =271 ms 15; Q(g.s.)=10374 11; % β^- decay=100. 1990Ay02: Facility: IGISOL at Jyvaskyla; Source: mass separated from 238 U(p,F); Beam: E(p)=20 MeV, Ic=1 μ A; Target: 10-20 mg/cm² natural uranium; Detectors: two intrinsic Ge, one planar Ge, one surface barrier ΔE detector, one plastic NE102 E-detector, ELLI detector comprising magnetic transport system, Si(Li); Measured: E $_{\gamma}$, I $_{\gamma}$, Ice, $_{\gamma}$, $_{\gamma}$; Deduced: $_{112}^{112}$ Ru level scheme; Also from the same team: 1991Jo11, 1988AyZZ. Others: 2009Pe06.

¹¹²Ru Levels

E(level) [†]	$\frac{J\pi^{\ddagger}}{}$	$\underline{\qquad T_{1/2}^{\ddagger}}$
0.0	0+	1.75 s 7
236.64 17	2+	
523.56 17	2+	
644.9 3	4+	
747.6 4	3+	
1026.6 5		
1179.3 6		

- \dagger From a least-squares fit to Ey.
- ‡ From the adopted levels.

 $\gamma(^{112}\mathrm{Ru})$

Iy normalization: from I(γ +ce)(236.8 γ)+I(γ +ce)(523.5 γ) \leq 100. The decay scheme is incomplete (pandemonium) and no log ft values are given. The Iy normalization is an upper limit.

$\underline{\hspace{1cm} E\gamma^{\dagger}}$	E(level)	$I\gamma^{\dagger \ddagger}$	Mult.	α	Comments
152.7 2	1179.3	6 3			
224 . 0 2	747.6	8 3	[M1 + E2]	0.054 20	Eγ: From adopted gammas. Eγ=223.5 keV 5 in 1990Ay02.
236.8 2	236.64	100	E2	0.0602	Mult.: From ce measurements in 1990Ay02.
287.0 2	523.56	33 4	M1+E2	0.025 7	Mult.: From ce measurements in 1990Ay02.
381.7 5	1026.6	9 4			
$408.2\ 2$	644.9	15 5	[E2]	0.00988	
432.0 10	1179.3				
510.82	747.6	21 9	[M1 + E2]	0.0047 3	E γ ,I γ : From adopted gammas. E γ =511.5 keV 5 and I γ =7 7 in 1990Ay02.
523.4 2	523.56	24 5	[E2]	0.00467	

- † From 1990Ay02, unless otherwise stated. Δ E γ estimated by the evaluators (1996De55) after discussion with the authors.
- ‡ For absolute intensity per 100 decays, multiply by ≤0.799.

²⁴⁸Cm SF Decay 1994Sh26,2012Sm02

Parent $^{248} Cm\colon$ E=0.0; J\pi=0+; $T_{1/2} = 3.48 \times 10^5$ y 6; %SF decay=8.39 16.

 $^{248}\mathrm{Cm-T}_{1/2}$: From $^{248}\mathrm{Cm}$ Adopted Levels in ENSDF database.

1994Sh26: Source: 2 μCi ²⁴⁸Cm in a KCl pellet; Detectors: EUROGAM array; Measured: γ-γ-γ, γγ(θ), Εγ, Ιγ; 2x10⁹ triple-γ coincidence events; Deduced: level scheme; Other from the same group: 2003Du25.

2012Sm02: Source: 5 mg ²⁴⁸Cm oxide in a KCl pellet; Detectors: EUROGAM-2 array; Measured: triple-γ and higher coincidences, Eγ, Iγ, Doppler-broadened lineshapes; 2.5x10⁹ triple-γ and higher coincidence events; Deduced: level lifetimes.

¹¹²Ru Levels

E(level) [†]	_Jπ [‡]	${\tt T}_{1/2} \S$	Comments
0.0#	0+		
236.80# 16	2+		
$523.60^{@}16$	(2+)		
645 . $20^{\#}$ 20	4+		
747.60 2 19	(3+)		
$980.80^{@}18$	(4+)		
1190.1# 3	6+		
1235.50 23	(5+)		
$1570.5^{@}$ 3	(6+)		
1840.1# 4	8+	1.84 ps 28	$ m T_{1/2}$: statistical uncertainty=0.20 ps and systematic uncertainty=0.19 ps taken in quadrature.
1841.4 8 3	(7+)	2.50 ps 35	$ m T_{1/2}$: statistical uncertainty=0.25 ps and systematic uncertainty=0.25 ps taken in quadrature.
2263.8@4	(8+)		
2534.5& 4	(9+)	1.23 ps 17	$ m T_{1/2}$: statistical uncertainty=0.12 ps and systematic uncertainty=0.12 ps taken in quadrature.
2563 . $4^{\#}$ 4	10+	1.05 ps 16	$ m T_{1/2}$: statistical uncertainty=0.12 ps and systematic uncertainty=0.10 ps taken in quadrature.
3290.5 % 7	(11+)	0.78 ps 11	$T_{1/2}$: statistical uncertainty=0.08 ps and systematic uncertainty=0.08 ps taken in quadrature.
3326.5 # 7	12+	0.80 ps 12	$T_{1/2}$: statistical uncertainty=0.09 ps and systematic uncertainty=0.08 ps taken in quadrature.

 $^{^{\}dagger}$ From least-squares fit to Ey's.

 $\gamma(^{112}Ru)$

$\underline{\hspace{1cm} E\gamma^{\dagger}}$	E(level)	$\underline{\hspace{1.5cm}}^{\dagger}$	Mult.§	Comments
224.0 2	747.60	9.1 18		
233 . 2 2	980.80	0.70 14		
236.8 2	236.80	100 3	E 2	
286.8 2	523.60	11.2 3		
335.6 2	980.80	2.04		
408.4 2	645.20	55.5 17	E2	
457.2 2	980.80	9.8 20		
487.9 2	1235.50	21.1 6		
510.8 2	747.60	24.0 7		
523.6 2	523.60	9.2 18		
544.9 2	1190.1	40.8 12	(E2)	
589.7 2	1570.5	6.4 13		
590.3 2	1235.50	1.7 3		
605.9 2	1841.4	10.9 3	(E2)	Eγ: 605.3 in 2012Sm02.
650.0 2	1840.1	15.2 5	(E2)	Εγ: 649.7 in 2012Sm02.
693.3 2	2263.8	2.0 4	(E2)	·
694.4 2	2534.5	3.1 6	(E2)	Eγ: 693.8 in 2012Sm02.
723.3 2	2563.4	4.1 8	(E2)	Eγ: 722.6 in 2012Sm02.
744.0 2	980.80	0.70 14		•
756.0 ‡ 5	3290.5		(E2)	

 $^{^{\}ddagger}$ From the deduced $\gamma\text{--ray}$ transition multipolarities and the apparent band structures.

[§] From 2012Sm02 using Doppler-broadened lineshape technique.

 $^{^{\#}}$ (A): $K\pi \text{=} 0 \text{+}, \text{ g.s. band}.$

^{@ (}B): $K\pi=2+,\gamma-vibrational$ band, $\alpha=0$.

[&]amp; (C): $K\pi=2+,\gamma-vibrational$ band, $\alpha=1$.

²⁴⁸Cm SF Decay 1994Sh26,2012Sm02 (continued)

$\gamma(^{112}Ru)$ (continued)

$\mathbf{E}\gamma^{\dagger}$	E(level)	Mult.	
763.1 [‡] .5	3326.5	(E2)	

- † From 1994Sh26, unless otherwise stated. Ey are from the reported level energy differences with $\Delta E\gamma$ =0.2 keV. $\Delta I\gamma$ =20% for Iy < 10 and $\Delta I\gamma$ =3 % for Iy > 10.
- $\dot{\ddagger}$ From 2012Sm02; $\Delta E \gamma \text{=} 0.5$ keV were estimated by the evaluators.
- \S From angular correlation measurements in 1994Sh26 and the apparent band structures.

²⁵²Cf SF Decay 2009Lu18,2009Zh24,2013Sn01

Parent $^{252}{\rm Cf}{:}~E=0.0;~J\pi=0+;~T_{1/2}=2.645~y~8;~\%{\rm SF}~decay=3.092~8.$

2009Lu18,2009Zh24: Facility: LBNL; Source: 62 μCi ²⁵²Cf placed between two Fe foils of 10 mg/cm² thickness; Detectors: GAMMASPHERE; Measured: γ-γ-γ coin., γγ(θ), Εγ, Ιγ; Deduced: level scheme; Also, from the same group: 2010Ha16, 2009Lu01, 2009Zh50, 2007Go21, 2007ChZZ, 2006Ch07, 2004Ha19, 2002Ha46, 1997Ha64, 1995Lu10.

2013Sn01: Facility: ANL; Source: 230 μ Ci 252 Cf, covered with 240 μ g/cm 2 of Au, on a Pt backing of thickness of 440 mg/cm 2 ; Detectors: GAMMASPHERE and HERCULES array of 64 fast-plastic detectors; Measured: γ - γ - γ coin., E γ , I γ and $T_{1/2}$ (using DSAM).

Others: 2004Sm04, 2005Sm08, 1974JaZN, 1974JaYY, 1970Ch11.

¹¹²Ru Levels

E(level) [†]	_Jπ [‡]	$T_{1/2}$	Comments
0.0@	0+		
236.8@ 4	2+	0.32 ns 3	${ m T_{1/2}}$: from recoil-distance Doppler-shift method (1974JaZN,1974JaYY). Other: 0.16 ns 4 (1970Ch11).
			μ: +0.88 18, deduced from g=+0.44 9 (2004Sm04, 2005Sm08), using the time-integral correlation technique.
523.6 4	2+		
$645.0^{@}5$	4+		
747.6 ^a 5	3+		
980.8 5	4+		
1189.8 [@] 5	6+		
1235.4a 5	5+		
1413.7 \$ 5	(4+)		
1570.2	6+		
1649.6# 5	(5+)		
1839.7 [@] 6	8+	1.7 ps +13-5	$T_{1/2}$: using DSAM for 650.0 γ in 2013Sn01.
1841.1 ^a 5	7+	2.2 ps +7-14	$T_{1/2}$: using DSAM for 605.7 γ in 2013Sn01, but the branching intensities for the 270.8 γ and 605.7 γ were not taken into account.
1955.8 \$ 5	(6+)		
1995.2 5	(4-)		
2003.4 ^d 5	(5-)	<1 ns	T _{1/2} ; From 2009Lu01.
2148.0 5	(5-)		
2230.3° 5	(6-)		
2231 . $4^{\#}$ 6	(7+)		
2263.5 6	8+		
2334.3° 5	(6-)	<1 ns	T _{1/2} : From 2009Lu01.
2392.0f6			
2489.3d 5	7 –		
2534.7a 7	(9+)	1.3 ps +7-6	$T_{1/9}$; using DSAM for 693.6 γ in 2013Sn01.
2562.7@7	10+	1.4 ps 3	$T_{1/2}$: using DSAM for 723.0 γ in 2013Sn01.
2574.3b 5	7 –		
2574.7 8	(8+)		
2771.8° 6	(8-)		
2829.3° 6	(8-)		
2899.9f 7			
2909.3#8	(9+)		
3033.6 8	(10+)		
3076.6 ^d 6	(9-)		
3094.2^{b} 6	(9-)		
			Continued on next page (footnotes at end of table)

²⁵²Cf SF Decay 2009Lu18,2009Zh24,2013Sn01 (continued)

$^{112}\mathrm{Ru}$ Levels (continued)

3291.0 a 9 (11+) 0.9 ps 5 $T_{1/2}$: using DSAM for 756.0 γ in 2013Sn01. 3325.9 e 9 12+ 1.12 ps +15-14 $T_{1/2}$: using DSAM for 763.4 γ in 2013Sn01. 3379.9 c 7 (10-) 3420.9 e 6 (10-) 3519.8 f 8 3711.6 b 7 (11-) 3768.7 d 7 (11-) 3870.9 e 10 (12+) 4032.6 c 8 (12-) 4095.9 a 10 (13+) 4118.1 e 10 14+ 1.6 ps 3 $T_{1/2}$: using DSAM for 791.9 γ in 2013Sn01. 4198.8 e 7 (12-) 4213.4 f 10 428.4 b 8 (13-) 4561.8 d 9 (13-) 4764.2 e 11 (14+) 4769.7 c 6 (14-) 4951.2 a 12 (15+) 4954.3 e 11 16+ 1.32 ps +24-19 $T_{1/2}$: using DSAM for 836.0 γ in 2013Sn01. 5072.9 e 9 (14-) 5072.9 e 9 (14-) 5072.9 e 9 (14-) 5072.9 e 9 (14-)	E(level) [†]	Jπ [‡]	T _{1/2}	Comments
3379.9° 7 (10-) 3420.9° 6 (10-) 3519.8° 8 3711.6° 7 (11-) 3768.7° 7 (11-) 3870.9° 10 (12+) 4032.6° 8 (12-) 4095.9° 10 (13+) 4118.1° 10 14+ 1.6° ps 3 T _{1/2} : using DSAM for 791.9γ in 2013Sn01. 4198.8° 7 (12-) 4213.4° 10 4428.4° 8 (13-) 4561.8° 9 (13-) 4764.2° 11 (14+) 4769.7° 6 (14-) 4954.3° 11 16+ 1.32 ps +24-19 T _{1/2} : using DSAM for 836.0γ in 2013Sn01.		(11+)	0.9 ps 5	T _{1/2} : using DSAM for 756.0γ in 2013Sn01.
3420.9° 6 (10-) 3519.8f 8 3711.6b 7 (11-) 3768.7d 7 (11-) 3870.9& 10 (12+) 4032.6c 8 (12-) 4095.9a 10 (13+) 4118.1@ 10 14+ 1.6 ps 3 $T_{1/2}$: using DSAM for 791.9 γ in 2013Sn01. 4198.8e 7 (12-) 4213.4f 10 4428.4b 8 (13-) 4561.8d 9 (13-) 4764.2& 11 (14+) 4769.7c 6 (14-) 4951.2a 12 (15+) 4954.3@ 11 16+ 1.32 ps +24-19 $T_{1/2}$: using DSAM for 836.0 γ in 2013Sn01.	$3325.9^{@}9$	12+	1.12 ps +15-14	$T_{1/2}$: using DSAM for 763.4 γ in 2013Sn01.
3519.8f 8 3711.6b 7 (11-) 3768.7d 7 (11-) 3870.9& 10 (12+) 4032.6c 8 (12-) 4095.9a 10 (13+) 4118.1@ 10 14+ 1.6 ps 3 $T_{1/2}$: using DSAM for 791.9 γ in 2013Sn01. 4198.8e 7 (12-) 4213.4f 10 4428.4b 8 (13-) 4561.8d 9 (13-) 4764.2& 11 (14+) 4769.7c 6 (14-) 4951.2a 12 (15+) 4954.3@ 11 16+ 1.32 ps +24-19 $T_{1/2}$: using DSAM for 836.0 γ in 2013Sn01.	3379.9° 7	(10-)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3420.9 ^e 6	(10-)		
3768.7^{d} 7 (11-) $3870.9 \& 10$ (12+) 4032.6^{c} 8 (12-) 4095.9^{a} 10 (13+) $4118.1 @ 10$ 14+ 1.6 ps 3 $T_{1/2}$: using DSAM for 791.9γ in $2013 Sn01$. $4198.8 e$ 7 (12-) 4213.4^{f} 10 4428.4^{b} 8 (13-) 4561.8^{d} 9 (13-) $4764.2 \& 11$ (14+) 4769.7^{c} 6 (14-) 4951.2^{a} 12 (15+) $4954.3 @ 11$ 16+ 1.32 ps $+24-19$ $T_{1/2}$: using DSAM for 836.0γ in $2013 Sn01$. 5072.9^{e} 9 (14-)	3519.8 f 8			
$3870.9 \& 10$ (12+) $4032.6 c 8$ (12-) $4095.9 a 10$ (13+) $4118.1 @ 10$ 14+ 1.6 ps 3 $T_{1/2}$: using DSAM for 791.9 γ in 2013Sn01. $4198.8 c 7$ (12-) $4213.4 c 10$ $428.4 c 8$ 8 (13-) $4561.8 c d 9$ (13-) $4561.8 c d 9$ (13-) $4764.2 \& 11$ (14+) $4769.7 c 6$ (14-) $4951.2 a 12$ (15+) $4954.3 @ 11$ 16+ 1.32 ps +24-19 $T_{1/2}$: using DSAM for 836.0 γ in 2013Sn01. $5072.9 c 9$ (14-)	3711.6 ^b 7	(11-)		
4032.6° 8 (12-) 4095.9° 10 (13+) 4118.1° 10 14+ 1.6 ps 3 $T_{1/2}$: using DSAM for 791.9γ in 2013Sn01. 4198.8° 7 (12-) 4213.4° 10 4428.4° 8 (13-) 4561.8° 9 (13-) 4764.2° 11 (14+) 4769.7° 6 (14-) 4951.2° 12 (15+) 4954.3° 11 16+ 1.32 ps +24-19 $T_{1/2}$: using DSAM for 836.0γ in 2013Sn01. 5072.9° 9 (14-)	3768.7 ^d 7	(11-)		
4095.9^{a} 10 (13+) $4118.1^{@}$ 10 14+ 1.6 ps 3 $T_{1/2}$: using DSAM for 791.9γ in 2013Sn01. 4198.8^{e} 7 (12-) 4213.4^{f} 10 428.4b 8 (13-) 4561.8^{d} 9 (13-) $4764.2^{\&}$ 11 (14+) 4769.7^{c} 6 (14-) 4951.2^{a} 12 (15+) $4954.3^{@}$ 11 16+ 1.32 ps +24-19 $T_{1/2}$: using DSAM for 836.0γ in 2013Sn01. 5072.9^{e} 9 (14-)	3870.9 2 10	(12+)		
4118.1 10 14+ 1.6 ps 3 $T_{1/2}$: using DSAM for 791.9 γ in 2013Sn01. 4198.8 7 4213.4 10 4428.4 8 8 (13-) 4561.8 9 9 9 14-) 4764.2 11 16+ 1.32 ps +24-19 17/2: using DSAM for 791.9 γ in 2013Sn01.	4032.6° 8	(12-)		
4198.8e 7 (12-) 4213.4f 10 4428.4b 8 (13-) 4561.8d 9 (13-) 4764.2& 11 (14+) 4769.7c 6 (14-) 4951.2a 12 (15+) 4954.3@ 11 16+ 1.32 ps +24-19 $T_{1/2}$: using DSAM for 836.0 γ in 2013Sn01.	4095.9 ^a 10	(13+)		
4213.4 f 10 4428.4 b 8 (13-) 4561.8 d 9 (13-) 4764.2 & 11 (14+) 4769.7 c 6 (14-) 4951.2 a 12 (15+) 4954.3 l 11 16+ 1.32 ps +24-19 $T_{1/2}$: using DSAM for 836.0 γ in 2013Sn01. 5072.9 e 9 (14-)	$4118.1^{@}10$	14+	1.6 ps 3	$T_{1/2}$: using DSAM for 791.9 γ in 2013Sn01.
$4428.4^{\rm b}$ 8 (13-) $4561.8^{\rm d}$ 9 (13-) $4764.2^{\rm b}$ 11 (14+) $4769.7^{\rm c}$ 6 (14-) $4951.2^{\rm a}$ 12 (15+) $4954.3^{\rm @}$ 11 16+ 1.32 ps +24-19 $T_{1/2}$: using DSAM for 836.0 γ in 2013Sn01. $5072.9^{\rm e}$ 9 (14-)	4198.8e 7	(12-)		
4561.8d 9 (13-) 4764.2& 11 (14+) 4769.7c 6 (14-) 4951.2a 12 (15+) 4954.3 [®] 11 16+ 1.32 ps +24-19 T _{1/2} : using DSAM for 836.0γ in 2013Sn01. 5072.9e 9 (14-)	4213 . 4^{f} 10			
$4764.2 \& 11$ (14+) $4769.7 ^{\circ} 6$ (14-) $4951.2 ^{\circ} 12$ (15+) $4954.3 ^{\circ} 11$ 16+ 1.32 ps +24-19 $T_{1/2}$: using DSAM for 836.0 γ in 2013Sn01. $5072.9 ^{\circ} 9$ (14-)	4428.4 ^b 8	(13-)		
4769.7° 6 (14-) 4951.2ª $I2$ (15+) 4954.3 $^{@}$ II 16+ 1.32 ps +24-19 $I_{1/2}$: using DSAM for 836.0 γ in 2013Sn01. 5072.9 e 9 (14-)	4561.8d 9	(13-)		
4951.2a 12 (15+) 4954.3 [®] 11 16+ 1.32 ps +24-19 $T_{1/2}$: using DSAM for 836.0 γ in 2013Sn01. 5072.9 ^e 9 (14-)	4764.2 411	(14+)		
4954.3 $^{\textcircled{@}}$ 11 16+ 1.32 ps +24-19 $\text{T}_{1/2}$: using DSAM for 836.0 γ in 2013Sn01. 5072.9 $^{\textcircled{e}}$ 9 (14-)	4769.7° 6	(14-)		
5072.9° 9 (14-)	4951.2a 12	(15+)		
	4954.3@ 11	16+	1.32 ps +24-19	$T_{1/2}$: using DSAM for 836.0 γ in 2013Sn01.
5997 ab 10 (15)	5072.9 ^e 9	(14-)		
0441.7" 10 (10-)	5227.9b 10	(15-)		
5700.8& 7 (16+)	5700.8 % 7	(16+)		
$5829.7^{@}$ 12 $18+$	$5829.7^{@}12$	18+		
5854.0ª <i>13</i> (17+)	5854.0ª 13	(17+)		
$6725.2^{@}$ 13 $20+$	$6725.2^{@}13$	20+		

- † From least-squares fit to Ey's.
- $\dot{\ddagger}$ From 2009Lu18 and 2009Zh24 based on $\gamma\gamma(\theta)$ for selected cascades and the observed band structures.
- $\$ (A): Possible two-phonon $\gamma-vibrational$ band, $\alpha=0$.
- $^{\#}$ (B): Possible two-phonon $\gamma-vibrational$ band, $\alpha \text{=}1.$
- @ (C): $K\pi=0+$, g.s. band.
- & (D): $K\pi=2+,\gamma-vibrational\ band,\alpha=0$.
- a (E): $K\pi\text{=}2\text{+},\gamma\text{-}vibrational band},\alpha\text{=}1.$
- b (F): likely $K\pi\text{=}6\text{-}$ band ($\alpha\text{=}1).$ The assignment is tentative.
- c (G): likely Kx=6- band ($\alpha {=}0).$ The assignment is tentative.
- d (H): $K\pi = 4 , v1/2[411] \otimes v7/2[523]$ band, $\alpha = 1$.
- e (I): $K\pi = 4 v^{1/2}[411] \otimes v^{7/2}[523]$ band, $\alpha = 0$.
- f (J): $\gamma\text{--ray}$ cascade built on the top of the 2392 keV level.

 $\gamma(^{112}Ru)$

$\underline{\hspace{1cm} E\gamma^{\dagger}}$	$\underline{\hspace{1cm} I\gamma^{\dagger}}$
236.8 5	100
286.8 5	100
523.6 5	91.8 14
408.2 5	100
224.05	35.1 6
510.8 5	100
233.2 5	5.6 6
335.6 5	22.9 10
457.2 5	100
744.1 5	3.6 3
544.7 5	100
254.7 5	5.7 2
487.8 5	100
590.5 5	6.9 4
666.3 5	15.4 7
890.0 5	100
334.8 5	2.6 3
380.3 5	1.2 2
589.3 5	100
	236.8 5 286.8 5 523.6 5 408.2 5 224.0 5 510.8 5 233.2 5 335.6 5 457.2 5 744.1 5 544.7 5 254.7 5 487.8 5 590.5 5 666.3 5 890.0 5 334.8 5

²⁵²Cf SF Decay 2009Lu18,2009Zh24,2013Sn01 (continued)

$\gamma(^{112}Ru)$ (continued)

E(level)	$\underline{\hspace{1cm} E\gamma^{\dagger}}$	$\underline{\hspace{1cm}}^{\dagger}$	Mult.	Comments
1649.6	235.9 5	100		
	668.9 5	5.6 4		
	902.1 5	22.2 11		
1839.7	650.0 5	100	[E2]	Iγ: 100 in 2013Sn01.
1841.1	270.8 5	4.1 5		
	605.7 5	100	[E2]	Iγ: 44.5 in 2013Sn01.
	$651.2\ 5$			
1955.8	542 . 0 5	100		
	720.55	12.5 7		
	975.0 5	63 3		
1995.2	1014.4 5	33.3 24		
	1247.5 5	100		
	1350.2 5	16.7 21		
2003.4	589.7 5	< 38.7		
	768.0 5			
	1022.5 5	100		
24.0	1358.3 5	33 7		
2148.0	1167.2 5	20 5		
0000	1502.9 5	100		
2230.3	226.9 5	6.7 17		
	235.15 660.15	9.2 17		
		13.5 23		
	994.95 1040.65	$\begin{array}{cc} 42 & 6 \\ 100 \end{array}$		
2231.4	581.9 5	100		
2201.4	995.8 5	68 4		
2263.5	693.3 5	100		
2334.3	331.0 5	12.1		
2001.0	764.1 5	34 5		
	1098.8 5	100		
	1144.6 5	40 10		
2392.0	1156.6 5	100		
2489.3	259.0 5	12.3 12		
	341.4 5	12.7 20		
	486.0 5	4.8 12		
	919.1 5	17 3		
	1299.6 5	100	D	Mult.: from $(1299.6\gamma)(544.7\gamma)(\theta)$: $A_2=-0.090$ 35, $A_4=-0.02$ 6. The predicted values for dipole-quadrupole cascade are: $A_2=-0.071$, $A_4=0$; and for quadrupole-quadrupole cascade are: $A_2=-0.102$ and $A_4=-0.051$.
2534.7	693.6 5	100	[E2]	Iγ: 26.5 in 2013Sn01.
2562.7	723.0 5	100	[E2]	Iγ: 55.9 in 2013Sn01.
2574.3	240.0 ‡ 5		-	Eγ: from Figure 3 of 2009Lu18.
	426.3 5	10 4		
	733.1 5	4.2 2		
	1004.1 5	11.8 15		
	1384.6 5	100	D	Mult.: from $(1384.6\gamma)(544.7\gamma)(\theta)$: $A_2=-0.07$ 6, $A_4=-0.05$ 9. The predicted values for dipole-quadrupole cascade are: $A_2=-0.071$, $A_4=0$; and for quadrupole-quadrupole cascade are: $A_2=-0.102$ and $A_4=-0.051$.
2574.7	618.9 5	100		
2771.8	282.5 5	24 5		
	541.5 5	100		
	930.7 5	7.0 18		
0000	932.0 5	3.5 8		T 100 00 4 1 4 11 0 1 0000T 10
2829.3	255.15 340.0	100.2 24		Iγ: 100.22.4 in table 3 of 2009Lu18 seems a misprint.
	$340.0 \div 5$ $495.1 \div 5$	4.5		
2200 0	495.1* 5 507.9 5			
2899.9	1058.8 5	100		
2909.3	677.9 5	100 100		
3033.6	770.1 5	100		
3076.6	304.8 5	11.0 23		
	587.3 5	100		
	1237.0 5	40 4		
			Cont	inued on next page (footnotes at end of table)

²⁵²Cf SF Decay 2009Lu18,2009Zh24,2013Sn01 (continued)

$\gamma(^{112}Ru)$ (continued)

E(level)	$\underline{\hspace{1cm}} E\gamma^{\dagger}$		Mult.	Comments
2004 0	0.64 0 7	0 2 7		
3094.2	264.8 5	9.3 7		
	519.8 5 830.7 5	$\begin{array}{cc} 100 \\ 23 & 8 \end{array}$		
	1254.5 5	35 6		
3291.0	756.3 5	100	[E2]	Ιγ: 10.2 in 2013Sn01.
3325.9	763.2 5	100	[E2]	Τγ: 10.2 in 2013Sn01. Τγ: 31.3 in 2013Sn01.
3379.9	285.6 5	17.4 22	[12]	1). 01.0 Ht 20100H01.
3373.3	550.6 5	100		
3420.9	344.3 5	14 3		
3420.3	649.0 5	100		
3519.8	619.9 5	100		
3711.6	331.7 5	14.8 13		
0.11.0	617.4 5	100		
	1148.8 5	26 3		
3768.7	347.8 5	17 5		
	692.0 5	100		
3870.9	837.3 5	100		
4032.6	321.0 ‡ 5			Eγ: Reported only in 2010Ha16.
	652.7 5	100		
4095.9	804.9 5	100		
4118.1	792.2 5	100	[E2]	Iγ: 12.3 in 2013Sn01.
4198.8	430.1 5	20 6		
	778.0 5	100		
4213.4	693.6 5	100		
4428.4	716.8 5	100		
4561.8	793.1 5	100		
4764.2	893.3 5	100		
4769.7	737.1 ‡ 5	100		
4951.2	855.3 5	100		
4954.3	836.2 5	100	[E2]	Ιγ: 7.1 in 2013Sn01.
5072.9	874.1 5	100		
5227 . 9	799.5 5	100		
5700.8	936.6 5	100		
5829.7	875.4 5	100		
5854 . 0	$902.8\ 5$	100		
6725.2	895.4 5	100		

 $^{^\}dagger$ From 2009Lu18 and 2009Zh24, unless otherwise noted. $\Delta E \gamma$'s were assigned by the evaluators. The I γ values quoted from 2013Sn01 have uncertainties of 3 % for the strong transitions up to 40 % for the weak ones.

$^{197}\mathrm{Au}(^{19}\mathrm{F,F}\gamma),^{232}\mathrm{Th}(^{18}\mathrm{O,F}\gamma),^{238}\mathrm{U}(^{7}\mathrm{Li,F}\gamma)$ 1990DuZW

Facilities: ANL and Daresbury; Measured: E\gamma, $\gamma\gamma,~\gamma\gamma\gamma;$ Deduced: level scheme.

¹¹²Ru Levels

E(leve	$J\pi^{\ddagger}$	
0.0		0+
236.0	10	2+
644.0	15	4+
1188.0	18	6+
1837.0	20	8+
2550 0	23	10+

 $^{^{\}dagger}$ From a least-squares fit to Ey. $\Delta \text{Ey=1}$ keV assumed by the evaluators.

[†] Placement of transition in the level scheme is uncertain.

[‡] From adopted levels.

¹⁹⁷Au(¹⁹F,Fγ),²³²Th(¹⁸O,Fγ),²³⁸U(⁷Li,Fγ) 1990DuZW (continued)

 $\gamma(^{112}\mathrm{Ru})$

$\mathbf{E} \gamma^{\dagger}$	E(level)
236	236.0
408	644.0
544	1188.0
649	1837.0
722	2559.0

[†] From 1990DuZW.

$^{238}U(\alpha ,F\gamma)\qquad 2006Wu01,2003Hu05$

 $2003 Hu05, 2006 Wu01: \ Facility: \ 88-inch \ cyclotron \ at \ LBNL; \ Beam: \ E(\alpha)=30 \ MeV; \ Target: \ 300 \ \mu g/cm^2 \ ^{238}U \ on \ a \ 30 \ \mu g/cm^2 \ carbon \ backing; \ Detectors: \ CHICO \ and \ GAMMASPHERE; \ Measured: particle-\gamma-\gamma \ coin; \ Deduced: level \ scheme.$

$^{112}\mathrm{Ru}$ Levels

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	E(level) [†]	$J\pi^{\#}$	Comments
236.6 † 5	0.0‡	0.	
523.7\$ 5 2+ 645.0\$ 6 4+ 747.6\$ 8 3+ 980.6\$ 7 4+ 1189.9\$ 8 6+ 1235.6\$ 13 5+ 1570.6\$ 12 6+ 1839.4\$ 10 8+ 1840.6\$ 16 7+ 2263.6\$ 16 8+ 2534.6\$ 19 9+ 2562.7\$ 11 10+ 3032.6\$ 19 10+ 3032.6\$ 19 10+ 3325.8\$ 12 12+ 405.6\$ 24 13+ 4117.7\$ 13 14+ 4786.7\$ 24 14+ 4786.7\$ 24 14+ 4786.7\$ 24 14+ 4786.7\$ 24 14+ 486.7\$ 24 14+ 486.7\$ 24 14+ 486.7\$ 24 14+ 486.7\$ 24 14+ 486.7\$ 24 14+ 486.7\$ 24 16+ 5827.0\$ 15 18+ 5857\$ 3 17+ 6722.6\$ 16 20+ 6800\$ 3 19+			
645.0 † 6			
747.6 8 8 3+ 980.6 7 4+ 189.9 8 6+ 1235.6 8 13 5+ 1570.6 12 6+ 1839.4 10 8+ 1840.6 16 7+ 2263.6 16 8+ 2534.6 19 9+ 2562.7 11 10+ 3290.6 22 11+ 3325.8 19 10+ 3290.6 22 11+ 3325.8 12 12+ 4095.6 24 13+ 4117.7 13 14+ 4186.7 8 24 14+ 486.7 8 24 14+ 8 14+ 486.7 8 24 14+ 486.7 8 24 14+ 486.7 8 24 14+ 486.7 8 24 14+ 486.7 8 24 14+ 486.7 8 24 14+ 486.7 8 24 14+ 486.7 8 24 14+ 486.7 8 24 14+ 486.7 8 24 14+ 486.7 8 24 14+ 486.7 8 24 14+ 486.7 8 24 14+ 486.7 8 24 14+ 486.7 8 24 14+ 486.7 8 24 14+ 486.7 8 24 14+ 486.7 8 24 14+ 486.7 8 14+ 48			
980.6\$ 7 $4+$ 1189.9 8$ $6+$ 1235.6 13$ $5+$ 1570.6 12$ $6+$ 1839.4 10$ $8+$ 1840.6 16$ $7+$ 2263.6 16$ $8+$ 2534.6 19$ $9+$ 2562.7 11$ $10+$ 3032.6 19$ $10+$ 3290.6 22$ $11+$ 3390.6 22$ $11+$ 33868.6 21$ $12+$ 4095.6 24$ $13+$ 4117.7 13$ $14+$ 4786.7 24$ $14+$ 4786.7 24$ $14+$ 4953.8 14$ $16+$ 5827.0 15$ $18+$ 5857 3$ $17+$ 6722.6 16$ $20+$ 6800 3$ $19+$	747 68 8		
1189.9 $\stackrel{?}{*}$ 8 6+ 1235.6 $\stackrel{§}{*}$ 13 5+ 1570.6 $\stackrel{§}{*}$ 12 6+ 1839.4 $\stackrel{?}{*}$ 10 8+ 1840.6 $\stackrel{§}{*}$ 16 7+ 2263.6 $\stackrel{§}{*}$ 16 8+ 2534.6 $\stackrel{§}{*}$ 19 9+ 2562.7 $\stackrel{?}{*}$ 11 10+ 3032.6 $\stackrel{§}{*}$ 19 10+ 3290.6 $\stackrel{§}{*}$ 22 11+ 3325.8 $\stackrel{?}{*}$ 12 12+ 4095.6 $\stackrel{§}{*}$ 24 13+ 4117.7 $\stackrel{?}{*}$ 13 14+ 4786.7 $\stackrel{§}{*}$ 24 14+ 4786.7 $\stackrel{§}{*}$ 24 14+ 4786.7 $\stackrel{§}{*}$ 24 14+ 4785.8 $\stackrel{?}{*}$ 15+ 4953.8 $\stackrel{?}{*}$ 16+ 5827.0 $\stackrel{?}{*}$ 15 18+ 5857 $\stackrel{§}{*}$ 3 17+ 6722.6 $\stackrel{?}{*}$ 16 20+ 6800 $\stackrel{§}{*}$ 3 19+	980 68 7		
1235.6 \(\frac{8}{13} \) 5 + 1570.6 \(\frac{8}{12} \) 6 + 1839.4 \(\frac{1}{7} \) 0 8 + 1840.6 \(\frac{8}{7} \) 10 8 + 2263.6 \(\frac{8}{7} \) 16 8 + 2534.6 \(\frac{8}{7} \) 19 9 + 2562.7 \(\frac{7}{7} \) 11 10 + 3032.6 \(\frac{8}{7} \) 19 10 + 3290.6 \(\frac{8}{2} \) 2 11 + 3325.8 \(\frac{7}{7} \) 12 12 + 4095.6 \(\frac{8}{2} \) 2 1 12 + 4095.6 \(\frac{8}{2} \) 2 13 14 + 4786.7 \(\frac{8}{2} \) 2 14 14 E(level): 4749.1 keV in 2006Wu01 probably is missprint. Does not fit with 918γ to 3869-keV level. 4953 \(\frac{8}{7} \) 17 + 6722.6 \(\frac{7}{7} \) 16 16 20 + 6800 \(\frac{8}{3} \) 19 +			
1570.6 $\frac{\$}{12}$ 6+ 1839.4 $\frac{\$}{1}$ 10 8+ 1840.6 $\frac{\$}{8}$ 16 7+ 2263.6 $\frac{\$}{8}$ 16 8+ 2534.6 $\frac{\$}{8}$ 19 9+ 2562.7 $\frac{\$}{1}$ 11 10+ 3032.6 $\frac{\$}{8}$ 19 10+ 3290.6 $\frac{\$}{8}$ 22 11+ 3325.8 $\frac{\$}{1}$ 12 12+ 4095.6 $\frac{\$}{8}$ 24 13+ 4117.7 $\frac{\$}{1}$ 3 14+ 4786.7 $\frac{\$}{8}$ 24 14+ 4786.7 $\frac{\$}{8}$ 24 14+ 4786.7 $\frac{\$}{8}$ 24 14+ 4953.8 $\frac{\$}{8}$ 15+ 4953.8 $\frac{\$}{1}$ 16+ 5827.0 $\frac{\$}{1}$ 18+ 5857 $\frac{\$}{3}$ 17+ 6722.6 $\frac{\$}{1}$ 16 20+ 6800 $\frac{\$}{3}$ 19+			
$1839.4^{\ddagger}10$			
1840.6 § 16 7+ 2263.6 § 16 8+ 2534.6 § 19 9+ 2562.7 † 11 10+ 3032.6 § 19 10+ 3290.6 § 22 11+ 3325.8 † 12 12+ 4095.6 § 21 12+ 4095.6 § 21 13+ 4117.7 † 13 14+ 4786.7 § 24 14+ 4786.7 § 24 14+ 4786.7 § 24 14+ 4786.7 § 24 15+ 4786.7 § 24 16+ 4786.7 § 24 16+ 4786.7 § 24 16+ 4786.7 § 24 17+ 4786.7 § 24 18+ 4786.7 § 24 18+ 4786.7 § 24 19+ 4786.7 § 24 19+ 4786.7 § 24 19+ 4786.7 § 24 10+ 4786.7			
2534.6 § 19 9+ 2562.7 ‡ 11 10+ 3032.6 § 19 10+ 3290.6 § 22 11+ 3325.8 ‡ 12 12+ 3868.6 § 21 12+ 4095.6 § 24 13+ 4117.7 ‡ 13 14+ 4786.7 § 24 14+ 4953 § 3 15+ 4953.8 ‡ 14 16+ 5827.0 ‡ 15 18+ 5857 § 3 17+ 6722.6 ‡ 16 20+ 6800 § 3 19+			
2562.7^{\ddagger} 11 10+ $3032.6^{\$}$ 19 10+ $3290.6^{\$}$ 22 11+ 3325.8^{\ddagger} 12 12+ $3868.6^{\$}$ 21 12+ $4095.6^{\$}$ 24 13+ 4117.7^{\ddagger} 13 14+ $4786.7^{\$}$ 24 14+ $4786.7^{\$}$ 24 14+ $4786.7^{\$}$ 24 14+ $4786.7^{\$}$ 24 15+ 4953.8^{\ddagger} 16+ 4953.8^{\ddagger} 16+ 4953.8^{\ddagger} 17+ 4953.8^{\ddagger} 17+ 4953.8^{\ddagger} 18+ 4953.8^{\ddagger} 14 16+ 4953.8^{\ddagger} 17+ 4953.8^{\ddagger} 17+ 4953.8^{\ddagger} 17+ 4953.8^{\ddagger} 18+ 4953.8^{\ddagger} 19+ 49	2263.6 \$ 16	8+	
3032.6 § 19 10+ 3290.6 § 22 11+ 3325.8 ‡ 12 12+ 3868.6 § 21 12+ 4095.6 § 24 13+ 4117.7 ‡ 13 14+ 4786.7 § 24 14+ 4783 § 3 15+ 4953 § 3 15+ 4953.8 ‡ 14 16+ 5827.0 ‡ 15 18+ 5857 § 3 17+ 6722.6 ‡ 16 20+ 6800 § 3 19+	2534.6 \$ 19	9+	
$3290.6\$$ 22 $11+$ $3325.8\ddagger 12$ $12+$ $3868.6\$ 21$ $12+$ $4095.6\$ 24$ $13+$ $4117.7\ddagger 13$ $14+$ $4786.7\$ 24$ $14+$ $4786.7\$ 24$ $14+$ $4953\$ 3$ $15+$ $4953\$ 3$ $15+$ $4953.8\ddagger 14$ $16+$ $5827.0\ddagger 15$ $18+$ $5827.0\ddagger 15$ $18+$ $5827.0\ddagger 16$ $20+$ $6800\$ 3$ $19+$	2562.7 † 11	10+	
3325.8 [‡] 12 12+ 3868.6 [§] 21 12+ 4095.6 [§] 24 13+ 4117.7 [‡] 13 14+ 4786.7 [§] 24 14+ E(level): 4749.1 keV in 2006Wu01 probably is missprint. Does not fit with 918γ to 3869-keV level. 4953 § 3 15+ 4953.8 [‡] 14 16+ 5827.0 [‡] 15 18+ 5827.0 [‡] 15 18+ 5857 [§] 3 17+ 6722.6 [‡] 16 20+ 6800 [§] 3 19+	3032.6 \$ 19	10+	
3868.6 § 21 12+ 4095.6 § 24 13+ 4117.7 ‡ 13 14+ 4786.7 § 24 14+ 4786.7 § 24 14+ 4953 § 3 15+ 4953 § 3 15+ 4953 § 3 15+ 4953 § 3 17+ 6722.6 ‡ 16 20+ 6800 § 3 19+	3290.6 \$ 22	11+	
4095.6 § 24 13+ 4117.7 ‡ 13 14+ 4786.7 § 24 14+ 4953 § 3 15+ 4953 § 8 ‡ 14 16+ 5827.0 ‡ 15 18+ 5857 § 3 17+ 6722.6 ‡ 16 20+ 6800 § 3 19+	3325.8 12	12+	
4117.7 [‡] 13 14+ 4786.7 [§] 24 14+ 4953 [§] 3 15+ 4953.8 [‡] 14 16+ 5827.0 [‡] 15 18+ 5857 [§] 3 17+ 6722.6 [‡] 16 20+ 6800 [§] 3 19+	3868.6 \$ 21	12+	
4786.7 § 24 14+ E(level): 4749.1 keV in 2006Wu01 probably is missprint. Does not fit with 918γ to 3869 -keV level. 4953 § 3 15+ 4953.8 † 14 16+ 5827.0 † 15 18+ 5857 § 3 17+ 6722.6 † 16 20+ 6800 § 3 19+		13+	
$4953 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		14+	
$4953.8^{\ddagger} 14$ $16+$ $5827.0^{\ddagger} 15$ $18+$ $5857^{\S} 3$ $17+$ $6722.6^{\ddagger} 16$ $20+$ $6800^{\S} 3$ $19+$			E(level): 4749.1 keV in 2006Wu01 probably is missprint. Does not fit with 918γ to 3869-keV level.
$5827 \cdot 0^{\ddagger} 15$ $18+$ $5857^{\S} 3$ $17+$ $6722 \cdot 6^{\ddagger} 16$ $20+$ $6800^{\S} 3$ $19+$			
$5857 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$			
$6722.6^{\ddagger}16$ 20+ $6800^{\$}3$ 19+			
6800 [§] 3 19+			
$7746.5^{\mp} 17 22+$			
	7746.5 ‡ 17	22+	

- † From a least-squares fit to Ey.
- ‡ $K\pi\text{=}0\text{+},$ g.s. band.
- $\$ Km=2+, \gamma-vibrational band. # From 2006Wu01, based on the observed band structures.

 $\gamma(^{112}Ru)$

Εγ [†]	E(level)	Comments
$2\ 2\ 4$ 1	747.6	
236.6 ‡ 5	236 . 6	
287.1 7	523.7	Eγ: Deduced by the evaluators from the level-energy differences in Fig.7 (2006Wu01).
335.6 8	980.6	Eγ: Deduced by the evaluators from the level-energy differences in Fig.7 (2006Wu01).
		Continued on next page (footnotes at end of table)

$^{238}\mathrm{U}(\alpha,\mathrm{F}\gamma)$ 2006Wu01,2003Hu05 (continued)

$\gamma(^{112}Ru)$ (continued)

$\mathbf{E}\gamma^{\dagger}$	E(level)	Comments
408.4 5	245.0	
	645.0	
457 1	980.6	
488 1	1235.6	
510.9 8	747.6	Eγ: Deduced by the evaluators from the level-energy differences in Fig.7 (2006Wu01).
523.7 5	523.7	Eγ: Deduced by the evaluators from the level-energy differences in Fig.7 (2006Wu01).
544.9 ‡ 5	1189.9	
590 1	1570.6	
605 1	1840.6	
649.5 ‡ 5	1839.4	
693 1	2263.6	
694 1	2534.6	
723.3 ‡ 5	2562.7	
744.0 8	980.6	Eγ: Deduced by the evaluators from the level-energy differences in Fig.7 (2006Wu01).
756 1	3290.6	
763.1 ‡ 5	3325.8	
769 1	3032.6	
791.9 [‡] 5	4117.7	
805 1	4095.6	
836 1	3868.6	
836.1 † 5	4953.8	
857 1	4953	
873.2 ‡ 5	5827.0	Eγ: 875 keV in 2006Wu01.
895.6 ‡ 5	6722.6	
904 1	5857	
918 1	4786.7	
943 1	6800	
1023.8 ‡ 5	7746.5	Eγ: 1026 keV in 2006Wu01.

 $^{^{\}dagger}$ From 2006Wu01, unless otherwise stated. $\Delta E \gamma$ were estimated by the evaluators. \ddagger From 2003Hu05.

Adopted Levels, Gammas

 $Q(\beta^-) = 6590\ 40;\ S(n) = 5500\ 40;\ S(p) = 10240\ 50;\ Q(\alpha) = -6240\ 40\ 2012Wa38.$

$^{112}{ m Rh}$ Levels

Cross Reference (XREF) Flags

- $A^{-112}Ru~\beta^-$ Decay $B^{-252}Cf~SF~Decay$
- C ²⁰⁸Pb(¹⁸O,Fγ)

E(level) [†]	Jπ	XREF	$___$	Comments
0.0	(1+)	A	3.6 s 3	 %β-=100. Jπ: Direct β- decay feeding to the 0+ and 2+ states in ¹¹²Pd; systematics of known Jπ and configurations in neighbouring nuclei. T_{1/2}: weighted average of 3.5 s 4 (1999Lh01) and 3.8 s 6 (1988Ay02); Others: 2.1 s 3 (1991Jo11), 1.2 s 6 (1987GiZW), 0.8 s I (1976MaYL), 5.17 s 7 (1969WiZX), <1.5 s (1978Fr16), 0.7 s 3 (1985Bu05). configuration: π7/2+[413] w5/2+[413] and prolate deformation from systematics of known orbitals in neighbouring nuclei (π7/2+[413] in even-Z ¹¹¹Ru and ¹¹³Pd nuclei and v5/2+[413] in even-n ¹⁰⁷⁻¹¹¹Rh nuclei); the assignment is supported by the Gallagher-Moszkowski rule.
82.27 17	(1+,2+)	A		$J\pi$: 82.3 γ M1+E2 to (1+).
327.03 17	(1+)	A		Jπ: 327.0γ M1+E2 to (1+), 244.8γ M1(+E2) to (1+,2+); possible direct feeding in 112 Ru (Jπ=0+) β ⁻ decay.
$542.0\ 5$	(1, 2)	A		$J\pi$: 459.5 γ to (1,2)+.
670.2 5	(1)	A		J π : 128.0 γ to (1,2), 588.1 γ to (1,2)+; possible direct feeding in 112 Ru (J π =0+) β^- decay.
0.0+y	(6+)	BC	6.76 s <i>12</i>	%β ⁻ =100. Jπ: direct β ⁻ feeding to 5+ and 6+ states in ¹¹² Pd; systematics of known Jπ and configurations in neighbouring nuclei. T _{1/2} : weighted average of 6.73 s 15 (1999Lh01) and 6.8 s 2 (1988Ay02). configuration: π7/2+[413]⊗v5/2+[413] and prolate deformation from systematics of known orbitals in neighbouring nuclei (π7/2+[413] in even-Z ¹¹¹ Ru and ¹¹³ Pd nuclei and v5/2+[413] in even-n ¹⁰⁷⁻¹¹¹ Rh nuclei); the assignment is supported by the Gallagher-Moszkowski rule.
60.58+y [‡] 10	(7-)	BC		$J\pi$: 60.58 γ (E1) to (6+).
219.86+y § 13	(8-)	BC		$J\pi$: 159.16 γ (M1+E2) to (7-); band member.
402.89+y [‡] 13	(9-)	BC		$J\pi\colon$ 183.03 γ (M1+E2) to (8-), 342.42 γ to (7-); band member.
557.7+y# 3	(9-)	В		$J\pi$: 337.9 γ to (8-), 497.2 γ to (7-).
671.45+y § 14	(10-)	BC		$J\pi \colon\thinspace 268.55\gamma$ to (9-), 451.46γ to (8-); band member.
802.6+y [#] 3	(10-)	В		$J\pi \colon\thinspace 244.9\gamma$ to (9-), 582.8γ to (8-); band member.
$913.45 + y^{\ddagger}15$	(11-)	BC		$J\pi \colon\thinspace 241.98\gamma$ to(10-), 510.7γ to (9-); band member.
1230.2+y# 4	(11-)	В		$J\pi \colon$ 427.6γ to (10-), 672.5γ to (9-); band member.
1241.41+y § 15	(12-)	BC		$J\pi$: 327.96 γ to (11-), 569.86 γ to (10-); band member.
1515.1+y# 5	(12-)	В		$J\pi$: 284.9 γ to (11-), 712.5 γ to (10-); band member.
1603.90+y [‡] 16	(13-)	BC		$J\pi\colon$ 362.43γ to (12-), 690.56γ to (11-); band member.
1938.0+y# 7	(13-)	В		$J\pi \colon$ 422.9 γ to (12-), 707.8 γ to (11-); band member.
1947.55+y § 17	(14-)	BC		$J\pi\colon 343.68\gamma$ to (13-), 706.08γ to (12-); band member.
2433.99+y [‡] 17	(15-)	В		$J\pi \colon$ 486.47γ to (14-), 830.10γ to (13-); band member.
2769.36+y § 18	(16-)	В		$J\pi\colon 335.4\gamma$ to (15-), 821.77γ to (14-); band member.

- † From a least-squares fit to Ey.
- $^{\frac{\tau}{2}}$ (A): Member of the $\pi7/2 + [413] \otimes v7/2 [523], \alpha \text{=}1$ band.
- $\$ (B): Member of the $\pi7/2+[413]\otimes\nu7/2-[523],\alpha=0$ band.
- $^{\#}$ (C): Rotational band built on the (9-) state at 557.7+y keV.

$\gamma(^{112}Rh)$

E(level)	$\underline{\hspace{1cm}} E\gamma^{\dagger}$	$\underline{\hspace{1.5cm}}^{} I \gamma^{\dagger}$	Mult.§	δ\$	α	Comments
82.27	82.3 ‡ 2	100‡	M1+E2	0.45 +20-24	1.0 3	Mult., δ : from $\alpha(K)$ exp=0.77 19 in 1991Jo11. Other: $\alpha(K)$ exp=0.45 from KX/γ -ray ratio (1991Jo11).
327.03	244.8 ‡ 2	32 ‡ 2	M1(+E2)	0.3 3	0.033 5	Mult., δ : from $\alpha(K)$ exp=0.028 9 in 1991Jo11. $\alpha(K)$ exp=0.053 14 from KX/γ -ray ratio (1991Jo11).
	327.0 ‡ 2	100 ‡ 7	M1+E2	≈ 1 . 9	0.0197	Mult., 8: from $\alpha(K)$ exp=0.017 5 in 1991Jo11.

$\gamma(^{112}{\rm Rh})$ (continued)

E(level)	$\underline{\hspace{1cm} E\gamma^{\dagger}}$	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	Mult.§	Comments
542.0	459.5‡ 5	100‡		
670.2	128.0 [‡] 5	11‡ 3		
	588.1 [‡] 5	100 ‡ 12		
60.58+y	60.58 10	100	(E1)	Mult.: Assumed assignment from similarities with $^{110}\mathrm{Rh}$ in $^{252}\mathrm{Cf}$ SF decay (2004Lu03).
219.86+y	159.16 10	100	(M1+E2)	Mult.: $\alpha(\exp)=0.10$ 4 in $^{252}\mathrm{Cf}$ SF decay (2004Lu03), assuming 60.58 γ is E1.
402.89 + y	183.03 10	100	(M1+E2)	Mult.: $\alpha(\exp)=0.06$ 3 in $^{252}\mathrm{Cf}$ SF decay (2004Lu03), assuming 60.58 γ is E1.
	342.42 10	6.6		
557.7+y	154.75			
	337.9 5			
	497.2 5			
671.45+y	268.55 10	100		
	451.46 10	17		
802.6 + y	244.95			
	399.6 5			
	582.8 5			
913.45 + y	241.98 10	100 11		Iy: From 208 Pb(18 O,Fy).
	510 . 7 1	29 7		Iy: From 208 Pb(18 O,Fy).
1230.2 + y	427.65			
	$672.5\ 5$			
1241.41+y	327.96 10	67		
	569.86 10	100		
1515.1+y	284.9 5			
	$712.5\ 5$			
1603.90 + y	362.43 10	61		
	690.56 10	100		
1938.0+y	$422.9\ 5$			
	707.8# 5			
1947.55 + y	343.68 10	46		
	706.08 10	100		
2433 . $99+y$	486.47 10			
	830.10 10			
$2769 \cdot 36 + y$	335.4 1			
	821.77 10			

- $^{\dagger}~$ From $^{252}{\rm Cf}$ SF decay, unless otherwise noted.
- $\prescript{\ddagger From}\ ^{112}Ru\ \beta^-\ decay.$
- $\$ From $\alpha(K) exp$ in $^{112} Ru$ β^- decay (1991Jo11), unless otherwise noted.
- $\mbox{\#}$ Placement of transition in the level scheme is uncertain.

¹¹²Ru β- Decay 1991Jo11

Parent 112 Ru: E=0.0; J $_{\pi}$ =0+; $T_{1/2}$ =1.75 s 7; Q(g.s.)=4104 45; % $_{\beta}$ decay=100. 1991Jo11: Facility: IGISOL at Jyvaskyla; Source: Mass separated from 238 U(p,F). E(p)=20 MeV: Detectors: $_{\Delta}$ E-E telescope comprising one Si(Au) surface barrier detector and one plastic scintillator, two HPGe, CE spectrometer ELLI; Measured: Q $_{\beta}$, E $_{\gamma}$, I $_{\gamma}$, CE, $_{\gamma}$, Peduced: level scheme, J $_{\pi}$, log $_{\gamma}$; Also from the same group: 1990AyZX, 1990JoZY, 1990JoZS.

¹¹²Rh Levels

E(level) [†]	Jπ [‡]	$\underline{\hspace{1cm}} T_{1/2}\underline{\hspace{1cm}}$	Comments
0.0	(1+)	2.1 s 3	$T_{1/2}$: From 1991Jo11 using a two component fit to 777.5 γ - β (t) (112Pd), one associated with decay from ¹¹² Ru (1.75 s 7) and the other with a direct population of ¹¹² Rh in fission.
82.27 17	(1+,2+)		
327.03 17	(1+)		
$542.0\ 5$			
$670.2\ 5$	(1)		

 $^{^{\}dagger}$ From a least-squares fit to Ey.

β^- radiations

Εβ-	E(level)	Ιβ-†‡	Log ft [†]	Comments
(3430 50)	670.2	≈1.9	≈5.5	
(3560 50	542.0	$\approx 0 \cdot 2$	≈ 6.5	
(3780 50	327.03	$\approx 2~4$. 4	≈ 4.5	Eβ-: 4190 keV 80 using a sum gates on 245γ and 327γ (1991 Jo 11).
(4020 50	82.27	≈ 3 . 5	≈ 5 . 5	
(4100 50	0.0	≈ 7.0	$\approx 4 \cdot 2$	Iβ ⁻ : 70 +15-70 in 1991Jo11 using a fit to 777.5γ-β(t) (112 Pd).

 $^{^{\}dagger}\,$ The decay scheme is incomplete, the quoted values are approximate.

$\gamma(^{112}Rh)$

Iy normalization: From $I(\gamma+ce)(82.3\gamma)+I(\gamma+ce)(327.0\gamma)=30$. The decay scheme is incomplete and the quoted value is approximate.

$\underline{\hspace{1cm}} \mathbf{E} \gamma^{\dagger} \underline{\hspace{1cm}}$	E(level)	Ιγ†\$	Mult.‡	δ	α	Comments
82.3 2	82.27	320 20	M1+E2	0.45 +20-24	1.0 3	Mult., δ : from $\alpha(K)$ exp=0.77 19 in 1991Jo11. $\alpha(K)$ exp=0.45 from KX/γ -ray ratio (1991Jo11).
128.0 5	670.2	10 3				
244.8 2	327.03	320 20	M1(+E2)	0.3 3	0.033 5	Mult.,δ: from α(K)exp=0.028 9 in 1991Jo11. α(K)exp=0.053 14 from KX/γ-ray ratio (1991Jo11).
327.0 2	327.03	1000 70	M1+E2	≈1.9	0.0197	Mult., δ : from $\alpha(K)$ exp=0.017 5 in 1991Jo11.
x 4 2 9						
459.5 5	542.0	20 6				
588.1 5	670.2	94 11	[M1]		$0\;.\;0\;0\;3\;4\;7$	

[†] From 1991Jo11.

[‡] From Adopted levels.

[‡] Absolute intensity per 100 decays.

 $^{^\}ddagger$ From $\alpha(K) exp$ in 1991Jo11.

 $[\]mathsection$ For absolute intensity per 100 decays, multiply by $\approx\!0.018.$

 $^{^{\}boldsymbol{x}}$ $\ \gamma$ ray not placed in level scheme.

¹¹²Ru β⁻ Decay 1991Jo11 (continued)

²⁵²Cf SF Decay 2004Lu03,2013Li23

Parent 252 Cf: E=0; J π =0+; T $_{1/2}$ =2.645 y 8; %SF decay=3.086 8. 2004Lu03,2013Li23, : Source: 62 μ Ci 252 Cf, placed between 10 mg/cm 2 thick Fe foils; Detectors: GAMMASPHERE array consisting of 102 Compton-suppressed Ge detectors; Measured $\gamma\gamma$, $\gamma\gamma\gamma$, E γ , I γ ; Deduced: 112 Rh level scheme. Others: 1972Ho08, 1971Ho29, 1974ClZX, 1970Jo20, 1969WiZX.

¹¹²Rh Levels

E(level) [†]	_Jπ [‡]	Comments
у	(6+)	
y+60.58\§ 10	(7-)	$T_{1/2}$: 24 ns 6 for 60.3 γ originating from a nuclide with A=112 1 in 1970Jo20; 45 ns 3 for 60.6 γ in 1974ClZX, assigned to ¹¹¹ Rh by the authors.
y+219.86# 13	(8-)	
y+402.88 \$ 13	(9-)	
y+557.8@ 4	(9-)	
y+671.44# 14	(10-)	
y+802.7@ 4	(10-)	
y+913.45 § 15	(11-)	
y+1230.3 [@] 5	(11-)	
y+1241.41# 15	(12-)	
y+1515.2@ 6	(12-)	
y+1603.90 § 16	(13-)	
y+1938.1@8	(13-)	
y+1947.55# 17	(14-)	
y+2433.99 § 17	(15-)	
y+2769.36# 18	(16-)	

 $\gamma(^{112}{\rm Rh})$

$\mathrm{E}\gamma^{\dagger}$	E(level)		Mult.§	Comments
$60.58 \ 10$ $154.7 \stackrel{\div}{.} 5$	y+60.58 y+557.8	> 200	(E1)	Mult.: Assumed assignment from similarities with $^{110}\mathrm{Rh}.$
159.16 <i>10</i> 183.03 <i>10</i>	y+219.86 y+402.88	100 55.9	(M1+E2) (M1+E2)	Mult.: $\alpha(\exp)=0.10$ 4, assuming 60.58 γ is E1. Mult.: $\alpha(\exp)=0.06$ 3, assuming 60.58 γ is E1.

 $[\]mbox{$\stackrel{\div}{\scriptscriptstyle{+}}$}$ From 2004Lu03 and 2013Li23.

 $[\]$ (A): $\pi g_{9/2} \otimes \nu h_{11/2}, \ \alpha \text{=} 1$ rotational band.

^{# (}B): member of $\pi g_{9/2} \otimes \nu h_{11/2}, \ \alpha \text{=}0$ rotational band.

[@] (C): rotational band built on the (9-) state at y+557.8 keV.

²⁵²Cf SF Decay 2004Lu03,2013Li23 (continued)

$\gamma(^{112}Rh)$ (continued)

$\underline{\hspace{1cm} \mathbf{E} \gamma^{\dagger}}$	E(level)	$\underline{\hspace{1.5cm}}^{\hspace{1.5cm} 1\gamma^{\dagger}}$	Comments
*189.5			Ey: from 1970Jo20, originating from a nuclide with A=112 I , but not seen in 2004Lu03. It is probably the 111 Rh γ ray depopulating the $^{1/2}$ - level at 492.7 keV. The γ (t) analysis in 1970Jo20 gives $T_{1/2}$ =7 ns 2; Others: 5.7 ns 12 in 1974ClZX, but no mass assignment was made.
241.98 10	y+913.45	8.4	made.
244.9 \$ 5	y+802.7		
268.55 10	y+671.44	29.5	
284.9	y+1515.2		
327.96 10	y+1241.41	6.9	
335.4 1	y + 2769.36		
337.9 5	y + 557.8		
342.42 10	y + 402.88	3.7	Eγ: 342.3 in figure 7 of 2004Lu03.
343.68 10	y + 1947.55	2.0	
362.43 10	y + 1603.90	3.1	
399.6 ‡ 5	y + 802.7		
$422.9^{\pm}5$	y + 1938.1		
427.6	y + 1230.3		
451.46 10	y + 671.44	5.1	
486.47 10	y + 2 4 3 3 . 9 9	1.6	
$497.2^{\ddagger}5$	y + 557.8		
510 . 7 1	y + 9 1 3 . 4 5		Eγ: 510.6 in figure 7 of 2004Lu03.
569.86 10	y + 1241.41	10.3	
$582.8^{\ddagger} 5$	y + 802.7		
672.5 [‡] 5	y + 1230.3		
690.56 10	y + 1603.90	5.1	
706.08 10	y + 1947.55	4.4	
707.8‡# 5	y + 1938.1		
712.5 ± 5	y + 1515.2		
821.77 10	y + 2769.36		
830.10 10	y + 2 4 3 3 . 9 9		

- † From 2004Lu03, unless otherwise noted.
- ‡ From 2013Li23. Uncertainties were estimated by the evaluators.
- § From the intensity imbalances and α in 2004 Lu03.
- $\ensuremath{^{\#}}$ Placement of transition in the level scheme is uncertain.
- $^{\boldsymbol{x}}$ $\,\gamma$ ray not placed in level scheme.

²⁰⁸Pb(¹⁸O,Fγ) 2003Po11,2003Fo09

- 2003Po11: Facility: IReS Vivitron accelerator; Beam: E(18O)=85 MeV; Target: 20 mg/cm² ²⁰⁸Pb; Detectors: EUROBALL IV consisting of 15 Cluster, 26 Clover and 30 single HPGe detectors; Measured: γγ, γγγ, Εγ, Ιγ; Deduced: ¹¹²Rh level scheme.
- 2003Fo09: Facility: 88-inch cyclotron at LBNL and Gammasphere. In addition to the 208 Pb(18 O,F γ) reaction (91 MeV beam energy with a 45 mg/cm 2 thick target and 100 detectors), the 173 Yb(24 Mg,F γ) (134.5 MeV, 1 mg/cm 2 thick target on a 7 mg/cm 2 thick Au backing and 92 detectors) and 173 Yb(23 Na,F γ) (129 MeV, 1 mg/cm 2 thick target on a 10 mg/cm 2 thick Au backing and 100 detectors) were used. Measured: 3- and 4-fold γ -ray coincidences; E γ , I γ ; Deduced: level scheme.

¹¹²Rh Levels

E(level) [†]	$J\pi^{\ddagger}$									
у	(6+)									
y+59.7\\$ 4	(7-)									
y+218.3 5	(8-)									
y+400.6# 5	(9-)									
y+668.8 § 6	(10-)									
y+910.4# 6	(11-)									
y+1238.4 § 6	(12-)									
y+1600.7# 7	(13-)									
			Contin	ued on	next	page	(footnotes	at en	d of t	able)

$^{208}{\rm Pb}(^{18}{\rm O,F}\gamma)$ 2003Po11,2003Fo09 (continued)

¹¹²Rh Levels (continued)

E(level)[†] Jπ‡ y+1943.9\§ 7

- † From least-squares fit to Ey's.
- ‡ From the adopted levels.
- § (A): member of $\pi g_{9/2} \otimes vh_{11/2}$, $\alpha = 1$ rotational band. # (B): member of $\pi g_{9/2} \otimes vh_{11/2}$, $\alpha = 0$ rotational band.

$\gamma(^{112}Rh)$

$\underline{\hspace{1cm}} E\gamma^{\dagger}$	E(level)	$\underline{\hspace{1cm} I\gamma^{\dagger}}$	Comments
59.7 [‡] 4	v+59.7		Eγ: Not reported in 2003Fo09.
158.6 ‡ 2	v+218.3		Ey: 159.8 in 2003F009.
182.4 2	y+400.6	100 10	E ₁ ,I ₂ : E ₂ =182.8 and I ₂ =100 in 2003Fo09.
241.52	y + 910.4	45 5	$\text{E}_{\gamma}\text{I}_{\gamma}$: $\text{E}_{\gamma}=241.7$ and $\text{I}_{\gamma}=50.3$ 5 in 2003Fo09.
268.2 2	y + 668.8	52 5	Ey,Iy: Ey= 268.3 and Iy= 55.4 5 in 2003 Fo09.
327.8 4	y + 1238.4	$20 \ 5$	Ey,Iy: Ey=327.8 and Iy=23.9 3 in 2003Fo09.
343.5 5	y + 1943.9	5 2	
362.24	y + 1600.7	9 3	Ey,Iy: Ey=362.1 and Iy=11.9 2 in 2003Fo09.
449.9 7	y + 668.8	10 3	$\text{E}_{\gamma}\text{I}_{\gamma}$: E_{γ} =451.2 and I_{γ} =10.3 2 in 2003Fo09.
510.0 5	y + 9 10 . 4	13 3	$\text{E}_{\gamma}\text{I}_{\gamma}$: E_{γ} =510.2 and I_{γ} =19.7 3 in 2003Fo09.
569.7 5	y + 1238.4	8 2	Ey,Iy: Ey=569.7 and Iy=6.0 8 in 2003Fo09.
690.5 5	y + 1600.7	11 3	E γ ,I γ : E γ =690.2 and I γ =5.6 5 in 2003Fo09.
705.3 5	y + 1943.9	4 2	

[†] From 2003Po11.

[†] The ordering of the 59.7-keV and 158.6-keV transitions in 2003Poll is reversed by the evaluators in the adopted level scheme, based on the ²⁵²Cf SF decay data.

Adopted Levels, Gammas

 $Q(\beta^-) = 262 \ 7; \ S(n) = -8407 \ 7; \ S(p) = -11306 \ 9; \ Q(\alpha) = -5087 \ 11 \ 2012Wa38.$

¹¹²Pd Levels

Cross Reference (XREF) Flags

A ¹¹² Rh β ⁻ Decay (3.6 s)	$D^{-110}Pd(t,p)$
B 112 Rh β^- Decay (6.76 s)	$E^{-110}Pd(t,p\gamma)$
C ²⁵² Cf SF Decay	$F^{208}Pb(^{18}O,X\gamma)$

E(level) [†]	$J\pi^{\ddagger}$	XREF	$T_{1/2}$	Comments
0.0\$	0+	ADCDEE	21.04 h 17	Ø 9- 100
0.03	0+	ABCDEF	21.04 h 17	%β ⁻ =100. $T_{1/2}: \mbox{ Weighted average of } 21.045 \mbox{ h } +29-65 \mbox{ (1977Gi11), } 21.12 \mbox{ h } 8 \mbox{ (1974Ro18),}$
				20.12 h 6 (1971Ba28), 21.0 h 5 (1959Gi66) and 21.02 h 2 (1957Me49).
348.66 \$ 13	2+	ABCDEF	84 ps 14	XREF: D(351).
			•	J π : L=2 in ¹¹⁰ Pd(t,p) (1972Ca10); 348.7 γ to 0+.
				$ m T_{1/2}$: from recoil-distance Doppler-shift method in $^{252}{ m Cf}$ SF decay
				(1986Ma22) Other: <1 ns from $^{252}\mathrm{Cf}$ SF decay (1970Ch11); Also: $\mathrm{T}_{1/2}$ might
,,				be overestimated according to $B(E2)$ systematics in 2011Ki17.
736.72 # 14	2+	ABCDEF		J π : 388.0 γ E2(+M1) to 2+ and 736.7 γ (E2) to 0+; systematics of the second
000 008 10		4 D C D E E		2+ states; Other: (4+) from L(t,p)=(4) in ¹¹⁰ Pd(t,p) (1972Ca10).
882.96 \$ 16	4+	ABCDEF		XREF: D(882). $J\pi$: 534.3 γ E2 to 2+; band member; Other: (2+) from L=(2) in 110 Pd(t,p) (1972Ca10).
923.7 7	1,2+	DE		XREF: D(928).
	-,-:			$J\pi$: 924.4 γ to 2+, 574.4 γ to 0+.
1096.27# 16	3+	ABC EF		$J\pi$: 359.6 γ E2(+M1) to 2+, 213.3 γ to 4+; band member.
1125.48^{c} 21	0+	A DE		XREF: D(1123).
				J π : L=0 in 110 Pd(t,p); 1125.3 γ E0 to 0+.
1139.83 21	(0, 1, 2) +	A		$J\pi\colon$ 791.27 E2 to 2+; Direct feeding from $J\pi\text{=}(1\text{+})$ in ^{112}Rh β^- decay (3.6 s).
1362.37# 17	(4+)	BC EF		$J\pi \colon \ 625.7 \gamma \ \text{to} \ 2+, \ 479.4 \gamma \ \text{to} \ 4+;$ band member.
1402.64 17	2+	A		$J\pi\colon$ 519.8γ to $4+,\ 1402.6\gamma$ to $0+.$
1422.68° 15	2+	AB F		$J\pi$: 539.7 γ to 4+, 1422.6 γ to 0+; band member.
1550.47 \$ 19	6+	BC EF		J π : 667.3 γ E2 to 4+; band member.
1714.87 17	(3,4+)	BC F		J π : 978.2 γ to 2+ and 831.9 γ to 4+; near-yrast state populated in 252 Cf SF
				decay (1999Bu32); not observed in ^{112}Rh β^- decay (3.6 s), (1+) (1999Lh01).
1747.5? 5	(1,2+)	Α		Jm: 1398.8 γ to 2+; observation in ¹¹² Rh β^- decay (3.6 s), Jm=(1+).
1758.97# 19	(5+)	BC F		J π : 662.7 γ to 3+, 876.0 γ to 4+; no observation γ rays to 2+ states; observation in 112 Rh β^- decay (3.76 s), J π =(6+); band member.
1774.4? 5	(1,2+)	Α		J π : 1425.7 γ to 2+; observation in ¹¹² Rh β ⁻ decay (3.6 s), J π =(1+).
1887.4° 3	(4+)	B F		XREF: F(1886.4).
				Jπ: 464.7γ to 2+, 791.1γ M1+E2 to 3+, a tentative 1004.7γ to 4+; observation in 112 Rh β ⁻ decay (3.76 s), Jπ=(6+); band member.
1951.6 4	(3,4+)	В		$J\pi$: 1069.2 γ to 4+ and 1214.8 γ to 2+; not observed in ¹¹² Rh β ⁻ decay
1001.0 1	(0,41)	D		(3.6 s), (1+) (1999Lh01).
2002.73# 23	(6+)	BC EF		$J\pi$: 640.4 γ to (4+); band member.
2036.47 25	(2-,3,4+)	В		$J\pi$: 1687.8 γ to 2+; 158.1 γ from (4)
2107.4 4	(1,2+)	A		Jm: 1758.7 γ to 2+, a tentative 2106.6 γ to 0+; direct feeding in ^{112}Rh β^-
				decay (3.6 s), $J\pi = (1+)$.
2158.04	(3,4,5+)	В		$J\pi$: 1061.7 γ to 3+; observation in ^{112}Rh β^- decay (3.76 s), $J\pi$ =(6+).
2194.57 17	(4)-	BC F		$J\pi$: 1098.6 γ E1(+M2) to 3+, 1311.6 γ E1+M2 to 4+; 435.6 γ to (5+).
2200.59 18	(5,6+)	B F		XREF: F(2199.6).
				$J\pi\colon1317.6\gamma$ to 4+ and 650.1 γ to 6+; observation in ^{112}Rh β^- decay (3.76 s), $J\pi=(6+).$
$2269.38^{@}21$	(5-)	BC F		$J\pi$: 1386.4 γ to 4+.
2318.3 \$ 4	8+	C EF		Jπ: 767.8γ E2 to 6+; band member.
2334.14	(5,6+)	В		J π : 1451.1 γ to 4+; observation in ^{112}Rh β^- decay (3.76 s), J π =(6+).
2354.47 19	(4,5+)	BC F		Jπ: 159.9γ to (4)-, 1471.5γ to 4+, 1258.2γ to 3+. No transitions to 2+; observation in 112 Rh β^- decay (3.76 s), Jπ=(6+).
2356.7 7	(1,2+)	A		$J\pi$: 2008.1 γ to 2+; observation in ^{112}Rh β^- decay (3.6 s), $J\pi$ =(1+).
2395.17 22	(5+)	В		J π : 1298.9 γ to 3+ and 1512.1 γ to 4+; observation in ^{112}Rh β^- decay (3.76 s), J π =(6+).
2430 . 8 5	(5,6+)	В		$J\pi\colon1547.8\gamma$ to 4+; observation in ^{112}Rh β^- decay (3.76 s), $J\pi\text{=}(6\text{+}).$
2432 . 5 ? 5	(1,2+)	A		$J\pi$: 2432.7 γ to 0+; observation in ^{112}Rh β^- decay (3.6 s), $J\pi$ =(1+).

112Pd Levels (continued)

```
J\pi^{\ddagger}
                                         XREF
    E(level)†
                                                                                                              Comments
                                                       J\pi: 726.5\gamma to (3,4+) and 890.9\gamma to 6+; observation in ^{112}Rh \beta^- decay (3.76 s), J\pi=(6+).
2441.4 3
                     (5,6+)
                                         В
                                                       J\pi: 2117.4\gamma to 2+; direct feeding in <sup>112</sup>Rh \beta<sup>-</sup> decay (3.6 s), J\pi=(1+).
2466.1? 6
                     (1,2+)
                                        Α
2482.9# 5
                                           C
                                                       J\pi: 724.0\gamma to (5+); band member.
                      (7+)
2496.87 24
                     (0+,1,2)
                                                       J\pi: 1760.17 to 2+; direct feeding in <sup>112</sup>Rh \beta<sup>-</sup> decay (3.6 s), J\pi=(1+).
                                        Α
                                                       J\pi: 2161.1\gamma to 2+, 2511.2\gamma to 0+; direct feeding in ^{112}Rh \beta^- decay (3.6 s), J\pi=(1+).
2509.8 6
                      (1,2+)
                                        Α
2540.5 5
                                                       J\pi: 1803.87 to 2+; direct feeding in <sup>112</sup>Rh \beta- decay (3.6 s), J\pi=(1+).
                      (0+.1.2)
                                        Α
                                                       J\pi: 1446.9\gamma to 3+ and 1660.3\gamma to 4+; direct feeding in <sup>112</sup>Rh \beta<sup>-</sup> decay (3.76 s), J\pi=(6+).
2543.2 3
                     (5+)
                                         В
2578.7& 4
                     (6-)
                                         BC F
                                                       J\pi\colon\,1028.3\gamma to 6+, 309.2\gamma to (5-). No \gamma transitions to 4+ states; band member.
2603.9 5
                      (0+,1,2)
                                        Α
                                                       Jm: 1867.2\gamma to 2+; direct feeding in ^{112}Rh \beta^- decay (3.6 s), Jm=(1+).
2614.5a 8
                     (6-)
                                                       J\pi: 855\gamma to (5+); band member.
2629.7 6
                     (5,6,7)
                                         В
                                                       J\pi: 1079.2\gamma to 6+; direct feeding in <sup>112</sup>Rh \beta- decay (3.76 s), J\pi=(6+).
2638.6# 6
                     (8+)
                                                       J\pi: 1088\gamma to 6+; band member.
                                                       J\pi: 2316.8\gamma to 2+, 2664.7\gamma to 0+; direct feeding in ^{112}Rh \beta^- decay (3.6 s), J\pi =(1+).
2665 5 5
                     (1 \ 2+)
                                        Α
2688.14 24
                      (0+,1,2)
                                                       J\pi\colon 2339.7\gamma to 2+; direct feeding in ^{112}Rh \beta^- decay (3.6 s), J\pi\text{=}(1\text{+}).
2691.2 4
                     (8+)
                                           С
                                                F
                                                       Jπ: 1140.3γ to 6+.
2704.5@4
                                                       J\pi\colon\,1153.9\gamma to 6+, 434.8\gamma to (5-); band member.
                     (7-)
                                           C
                                               F
2711.4<sup>b</sup> 5
                     (7-)
                                           \mathbf{C}
                                                F
                                                       J\pi: 1161.5\gamma to 6+; band member.
                                                       J\pi: 2746.7\gamma to 0+; direct feeding in <sup>112</sup>Rh \beta- decay (3.6 s), J\pi=(1+).
2747.3 3
                     (1,2+)
                                        Α
                                                       J\pi: 1204.37 M1+E2 to 6+,1658.57 to 3+; direct feeding in ^{112}Rh \beta^- decay (3.76 s), J\pi=(6+);
2754.78 17
                                         BC
                                              F
                     5+
                                                          Others: J=4 in ^{252}\mathrm{Cf} SF decay (1999Bu32) and ^{208}\mathrm{Pb}(^{18}\mathrm{O}, \mathrm{X}\gamma) (2001Kr08).
2770.0 7
                                                       Jm: 2421.3\gamma to 2+; direct feeding in ^{112}Rh \beta^- decay (3.6 s), Jm=(1+).
                     (0+,1,2)
                                        Α
                                                       J\pi: 2447.1\gamma to 2+; direct feeding in <sup>112</sup>Rh \beta<sup>-</sup> decay (3.6 s), J\pi=(1+).
2795.8? 6
                     (0+,1,2)
                                        Α
                                                       J\pi: 2488.2\gamma to 2+; direct feeding in ^{112}Rh \beta^- decay (3.6 s), J\pi=(1+).
2836.4 5
                     (0+,1,2)
2898.9& 4
                                           \mathbf{C}
                     (8-)
                                                       J\pi: 320.2\gamma to (6-); band member.
                                                       J\pi: 1604.2\gamma to (4+), 1416.1\gamma to 6+; direct feeding in ^{112}Rh \beta^- decay (3.76 s), J\pi =(6+).
2966.60 23
                     (5.6+)
                                         BC
                                                       J\pi\colon 2628.67 to 2+; direct feeding in ^{112}Rh \beta^- decay (3.6 s), J\pi\text{=}(1\text{+}).
2977.2? 6
                     (0+,1,2)
                                        Α
                                                       J\pi\colon 2665.07 to 2+; direct feeding in ^{112}Rh \beta^- decay (3.6 s), J\pi\text{=}(1+).
3013.8 5
                     (0+.1.2)
                                        Α
3043.3 4
                     (5,6)
                                         В
                                                       J\pi: 1493.1\gamma to 6+; direct feeding in <sup>112</sup>Rh \beta- decay (3.76 s), J\pi=(6+).
3045.5ª 13
                     (8-)
                                                       J\pi: 431\gamma to (6-); band member.
3050.18 6
                                           C
                                              F
                                                       J\pi: 731.9\gamma E2 to 8+; band member.
                     10 +
3084.7# 6
                      (9+)
                                           C
                                               F
                                                       J\pi\text{: }393\gamma\text{ to }(8+)\text{, }601.9\gamma\text{ to }(7+)\text{; band member.}
3137.3@4
                     (9-)
                                           C F
                                                       J\pi: 432.9\gamma to (7-), 819.0\gamma to 8+; band member.
3175 3 11
3225.5 6
                     (0+,1,2)
                                                       J\pi: 2876.6\gamma to 2+; direct feeding in ^{112}Rh \beta^- decay (3.6 s), J\pi=(1+).
3260.9 11
3265.2b 6
                                           C F
                     (9-)
                                                       XREF: C(3266 0)F(3263 4)
                                                       J\pi: 554.1\gamma to (7-), 946\gamma to 8+; band member.
3327.0 # 7
                     (10+)
                                                       J\pi: 689\gamma to (8+); band member.
                                                       J\pi \colon 2989.27 to 2+; direct feeding in ^{112}Rh \beta^- decay (3.6 s), J\pi\text{=}(1\text{+}).
3337.9? 9
                     (0+,1,2)
3447.2 6
                                           \mathbf{C}
                     (10-)
                                                       J\pi: 548.0\gamma to (8-); band member.
3597.9 8
                     (12+)
                                           C
                                                       J\pi: 547.8\gamma to 10+: band member.
3625.7# 12
                     (11+)
                                                F
                                                       J\pi: 541\gamma to (9+); band member.
3654.5a 16
                     (10-)
                                                F
                                                       J\pi\colon\,609\gamma to (8-); band member.
3744.7@6
                                           C F
                     (11-)
                                                       J\pi: 297\gamma to (10-), 607.7\gamma to (9-); band member.
                                                       J\pi: 2208.9\gamma to 6+, 2397.6\gamma to (4+); direct feeding in ^{112}Rh \beta^- decay (3.76 s), J\pi=(6+).
3759.6 5
                     (5,6+)
                                         В
3772.0 8
                     (5,6+)
                                         В
                                                       J\pi: 2409.6\gamma to (4+); direct feeding in ^{112}Rh \beta^- decay (3.76 s), J\pi=(6+).
                                                       J\pi: 2911.3\gamma to 4+; direct feeding in <sup>112</sup>Rh \beta<sup>-</sup> decay (3.76 s), J\pi=(6+).
3794.3 9
                     (5,6+)
                                         В
                                                       J\pi \colon \, 3057.3 \gamma to 4+; direct feeding in ^{112}Rh \beta^- decay (3.76 s), J\pi \text{=}(6+).
3940.3 9
                     (5,6+)
3951.2b 12
                                                       J\pi: 686\gamma to (9-); band member.
                     (11-)
4046 3 15
                                                F
4086.3 15
                                                F
4117.0  9
                     (12-)
                                                F
                                                       J\pi: 373\gamma to (11-), 669\gamma to (10-); band member.
4321.98 9
                                           \mathbf{C}
                     (14+)
                                                F
                                                       J\pi: 724.0\gamma to (12+); band member.
4327.7# 16
                     (13+)
                                                       J\pi: 702\gamma to (11+); band member.
4391.5a 19
                                                F
                     (12-)
                                                       J\pi: 737\gamma to (10-); band member.
4477.7@ 12
                     (13-)
                                                F
                                                       J\pi\colon\,733\gamma to (11-); band member.
4748.2<sup>b</sup> 16
                     (13-)
                                                       J\pi \colon\thinspace 797\gamma to (11-); band member.
4931.3 18
                                                F
5221.9 $ 14
                     (16+)
                                                F
                                                       J\pi\colon\,900\gamma to (14+); band member.
```

Footnotes continued on next page

 $^{^{\}dagger}$ From a least squares fit to γ ray energies.

[‡] Based on the band structure, unless otherwise noted.

 $[\]S$ (A): Member of $\Delta J=2$ ground-state band.

¹¹²Pd Levels (continued)

- # (B): Member of the quasi-gamma band.
- @ (C): Member of $\Delta J=2$ band built on the (5-) state; configuration=vh $_{11/2}\otimes (g_{7/2},d_{5/2}),\ \alpha=1.$
- & (D): Member of $\Delta J = 2$ band built on the (6-) state; configuration=vh $_{11/2} \otimes (g_{7/2}, d_{5/2}), \ \alpha = 0.$
- a (E): Member of $\Delta J=2$ band built on the (6-) state; configuration=vh $_{11/2} \otimes (s_{1/2}, d_{3/2}), \ \alpha=0.$ b (F): Member of $\Delta J=2$ band built on the (7-) state; configuration=vh $_{11/2} \otimes (s_{1/2}, d_{3/2}), \ \alpha=1.$
- c (G): Probable member of $\Delta J{=}2$ intruder band (1999Lh01).

$\gamma(^{112}\mathrm{Pd})$

E(level)	$\underline{\hspace{1cm}} E\gamma^{\dagger}$	$\underline{\hspace{1cm}}^{\dagger}$	Mult.	δ†&	α	Comments
348.66	348.7 2	100	(E2)		0.0181	B(E2)(W.u.)=40 7.
736.72	388.0 2	100 7	E2(+M1)	-4.7 +17-35	0.01276 23	Mult.: A_2 =0.08 4; A_4 =0.28 5, gated on 388.0 γ and 348.8 γ in 252 Cf SF decay (1999Bu32); A_{22} =0.089 34 gated on 348.7 γ and 388.0 γ in 1999Lh01.
	736.7 2	31 4	(E2)		0.00209	Mult.: A_{22} =-0.208 41 gated on 359.6 γ and 736.7 γ in 1999Lh01.
882.96	534.3 2	100	E2		0.00494	Mult.: A_2 =0.14 2; A_4 =-0.01 2, gated on 534.3 γ and 348.8 γ in 252 Cf SF (1999Bu32); A_{22} =0.105 34 gated on 348.7 γ and 534.3 γ in 1999Lh01.
923.7	574.4‡	100‡				
	924.4‡	19‡				
1096.27	213 . 3 2	3.6 6				
	359.6 2	100 8	M1+E2		0.01252	Mult.: A_2 =-0.16 7; A_4 =-0.06 8, gated on 359.4 γ and 736.8 γ in 252 Cf SF (1999Bu32); A_{22} =0.041 35 gated on 348.7 γ and 359.6 γ in 1999Lh01.
	747.6 2	79 8	E2(+M1)	-1.65 10	0.00205	Mult.: A ₂₂ =-0.485 47 gated on 348.7γ and 747.6γ in 1999Lh01.
1125.48	386.2	100	E o		0.00100	Eγ: from ¹¹⁰ Pd(t,pγ).
	776.9 2	100	E2		0.00183	Mult.: A_{22} =0.493 66 gated on 348.7 γ and 776.9 in 112 Rh β^- decay (1999Lh01).
	1125.3		E0			Eγ: from ¹¹⁰ Pd(t,pγ). Mult.: from I(E0,K)/I(tot)>58×10 ⁶ (1987Es01) and I(ce(K) 1125)/Iγ(777γ)=1.26×10 ⁻⁴ in 110Pd(t,pγ) (1987Es01,1986HeZT).
1139.83	402.8@ 4	31@ 7				
	791.2 [@] 2	100 [@] 14	E 2		1.75×10 ⁻³	Mult.: A_{22} =0.34 8 in 112 Rh β^- decay (3.6 s) (1999Lh01).
1362.37	$479.4\ 2$	$25 ext{ } 4$				
	625.7 2	100 9				
1402.64	1013.9a 4 519.8 [@] 5	4.7 25 9.3 [@] 23				
1402.64	665.8 [®] 5	30 [@] 12				
	1054.0@ 2	100@ 14				
	1402.6@ 3	67 [@] 9				
1422.68	297.1@4	14@3				
	326.6@3	28@ 6				
	539.7@3	25 [@] 6				
	$686.0^{@}$ 2	$100^{@}$ 11				
	1074.0@2	56@ 11				
	1422.6@3	81@ 17				
1550.47	667.5 2	100	E2		0.00269	Mult.: A_2 =0.13 2; A_4 =-0.03 3, gated on 667.3 γ and 534.3 in 252 Cf SF (1999Bu32); A_{22} =0.097 45 gated on 348.7 γ and 667.5 γ in 112 Rh β ⁻ decay (6.76 s) (1999Lh01).
1714.87	$618.6\ 2$	100 11				
	831.9 2	26 5				
	978.2 5	53 5				
	1366.2ª 4	11 5				
1747.5?	1398.8 [@] a 4	100@				
1758.97	396.6 ^a 4 662.7 2	5.2 17 $100 10$				
	002.1 2	100 10				

$\gamma(^{112}\text{Pd})$ (continued)

E(level)	$\mathrm{E}\gamma^{\dagger}$	Ιγ [†]	Mult.	δ†&	α	Comments
1758.97	876.0 4	3.5 17				
1774.4?	1425.7 ^{@a} 4	100@				
1887.4	464.7 4	50 17				
	791.1 3	100 33	M1+E2		0.00191	Mult.: A_{22} =0.339 77 gated on 348.7 γ and 791.1 γ in 112 Rh β^- decay (6.76 s) (1999Lh01).
	1004.7a 5	23 10				
1951.6	855.1 5	80 20				
	1069.2 6	42 10				
	1214.8 5	100 40				
2002.73	453.8 [‡] a	45‡				
	$640.4\ 2$	100				
2036.47	1687.8 5	100				
2107 . 4	1758.7@3	100@ 21				
	2106.6 [@] a 5	19 [®] 5				
2158 . 0	1061.7 3	100				
2194 . 57	158.1 2	0.18 6				
	435.6 2	0.8 2				
	479.7 2	3.4 4				
	832.2 2	0.28 6				
	1098.3 2	100 10	E1(+M2)	-0.43 32	0.0006 4	Mult.: A_2 =0.07 5; A_4 =0.03 6, gated on 1098.6 γ and 359.4 γ in 252 Cf SF (1999Bu32); A_{22} =0.014 40 gated on 359.6 γ and 1098.3 γ in 112 Rh β^- decay (6.76 s) (1999Lh01).
	1311.6 2	17.2 22	E1+M2	-0.43 32	0.00053 21	Mult.: A_{22} =0.169 52 gated on 348.7 γ and 1311.6 γ in ¹¹² Rh β ⁻ decay (6.76 s) (1999Lh01).
	1457.9a 2	0.4 4				
	1845.9 5	1.0 4				
2200 . 59	441.3 ^a 4	25 13				
	485.7 2	100 13				
	$650.1\ 2$	50 13				
	838.2 2	100 25				
	1317.6 3	63 25				
2269.38	1386.4 2	100	7.0			
2318.3	767.8 \$ 3	1008	E2		0.00188	Mult.: A_2 =0.16 5; A_4 =-0.01 6, gated on 767.8 γ and 667.3 γ in 252Cf SF (1999Bu32).
2334.1	1451.1 3	100				
2354.47	159.9 3	7.4 18				
	993.3ª 6	2.1 9				
	1258.22 1471.52	$ \begin{array}{ccc} 29 & 6 \\ 100 & 15 \end{array} $	M1		5.57×10^{-4}	Mult.: A ₂₂ =0.188 65 gated on 348.7γ and
2356.7	2008.1 [@] a 6	100 13	1411		<i>3.37</i> ×10	1471.5γ in 1999Lh01; δ:-0.017 in 1999Lh01.
2395.17	1298.9 3	100 17				
	1512.1 5	83 17				
2430.8	1547.8 4	100				
2432.5?	2083.4 ^a 7	100				
	2432.7 ^a 6	100				
2441 . 4	726.5 3	100 25				
	890.9 3	58 13				
2466.1?	2117.4 ^{@a} 5	$100^{@}$				
2482 . 9	724.0 \$ 5	1008				
2496.87	1074.3@3	54@ 13				
	1094.2@4	50@ 17				
	1760.1@4	100@ 17				
	2147.7@7	25 [@] 13				
2509.8	2161.1@5	100@ 33				
05:0 =	2511.2 [@] a 7	25@ 8				
2540.5	1803.8@ 4	100@				
2543 . 2	1446.9 3	100 15				
2579 7	1660.3 5	38 8				Eγ: From ²⁵² Cf SF decay.
2578.7	309.25 1028.34	100				Eq. From Cr Sr decay.
			Continued	l on next page (f	ootnotes at end of	table)

190

$\gamma(^{112}Pd)$ (continued)

E(level)	$\underline{\hspace{1cm}} E\gamma^{\dagger}$	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	Mult.	α	Comments
2603.9	1867.2@4	$100^{@}$			
2614.5	855# 1	100#			
2629.7	1079.2 5	100			
2638.6	636# 1	#			
	1088# 1	#			
2665.5	2316.8@ 4	$100^{@}$ 25			
	2664.7 [@] a	69 [@] 50			
2688.14	$1265.5^{@}4$	31@9			
	1285.2 % 5	28@9			
	$1951.3^{@}4$	41@9			
	$2339.7^{@}4$	100 [®] 16			
2691.2	688.5\\$ 5	100\$			0.00
	1140.3 5				Eγ: from ²⁵² Cf SF decay.
2704.5	434.8 ^a 5	\$			Eγ: from 252 Cf SF decay.
0.511	1153.9 \$ 5	1008			
2711.4	1161.5 § 5 1344.8 [@] 3	100 § 25 [@] 6			
2747.3	1344.8° 3 1607.3 [@] 4	19@ 4			
	2398.7 [@] 5	100@ 13			
	2746.6 [@] a 5	21@ 4			
2754.78	359.6 2	0.48 16			
	400.3 2	6.6 8			
	485.4 2	1.9 3			
	$554.2\ 2$	1.61 16			
	$560.2\ 2$	100 10	D		Mult.: A_2 =0.14 3; A_4 =-0.02 4, gated on 560.5 γ and 1098.6 γ in
					²⁵² Cf SF (1999Bu32).
	802.9a 4	0.32 16			
	995.8 2	3.7 5			
	1039.9 2	1.9 3	MI EO	T 00 10-4	M 1
	1204.3 2	4.3 7	M1+E2	7 . 60×10 ⁻⁴	Mult.: $\rm A_{22}{=}0.078$ 73 gated on 348.7γ and 1204.3γ in $^{112}\rm Rh$ β^- decay (6.76 s) (1999Lh01).
	1392.43 1658.53	0.81 <i>16</i> 5.5 <i>8</i>	(F2)	4.98×10^{-4}	Mult. A = 0.105 80 goted on 250 6v and 1658 5v in 1000I h01
			(E2)	4.96×10	Mult.: A_{22} =-0.105 89 gated on 359.6 γ and 1658.5 γ in 1999Lh01 would suggest D, but the level scheme requires ΔJ =2.
2770.0	1871.8 4 $2421.3 6$	$3.7.7$ $100^{@}$			
2795.8?	2447.1@a 6	100@			
2836.4	1413.5@ 5	$100^{@}\ 27$			
	2488.2@ 7	64 [@] 27			
2898.9	188# 1	#			
	194# 1	#			
	284# 1	#			
	320.2\$ 5	100\$			
	416# 1	#			
2966.60	963.9 2	86 14			
	1416.1 2 $1604.2 5$	100 14			
2977.2?	2628.6 [@] a 5	$\begin{smallmatrix}43&14\\100^{@}\end{smallmatrix}$			
3013.8	1611.2@ 5	48@ 11			
	2665.0 [®] 7	100@ 19			
3043.3	842.4 5	100 33			
	1493.1 4	100 33			
3045.5	431# 1	100#			
3050.1	411# 1	#			
	731.9 \$ 5	100\$	E2	0.00212	Mult.: A_2 =0.14 5; A_4 =0.02 5, gated on 731.9 γ and 767.8 γ in 252Cf SF (1999Bu32).
3084.7	393 1				Eγ: From ²⁰⁸ Pb(¹⁸ O, Xγ).
9197 9	601.9 5 239# 1	#			Eγ: From ²⁵² Cf SF decay.
3137.3	239# 1 426# 1	#			
	432.9 \$ 5	100\$			
	819.0 \$ 5	398			
3175.3	857# 1	100#			
			Continue	d on next page (fe	potnotes at end of table)

$\gamma(^{112}Pd)$ (continued)

E(level)	$\underline{\hspace{1cm}} E\gamma^{\dagger}$	$\underline{\hspace{1cm}} I\gamma^{\dagger}$	Comments
3225.5	1823.1 [@] 8	56 [@] 31	
3223.3	2876.6 [@] 7	100@ 31	
3260.9	778# 1	#	
3265.2	554.1 5		Eγ: from ²⁵² Cf SF decay.
0200.2	560# 1	#	El. Home of Si decay.
	946# 1	#	
3327.0	635# 1	#	
0021.0	689# 1	#	
	1009# 1	#	
3337.9?	2989.2@a 9	100@	
3447.2	310# 1	#	
	548.0 \$ 5	§	
3597.9	547.8 \$ 5	1008	
3625.7	541 # 1	100#	
3654.5	609# 1	100#	
3744.7	297# 1	#	
	607.7 \$ 5	1008	
3759.6	2208 . 9 5	100 33	
	2397.6 8	50 17	
3772 . 0	2409.67	100	
3794.3	2911.3 8	100	
3940.3	3057.3 8	100	
3951 . 2	686# 1	100#	
4046.3	871# 1	100#	
4086.3	911# 1	100#	
4117.0	373# 1	#	
	669# 1	#	
4321.9	724.0 \$ 5	100\$	
4327.7	702# 1	100#	
4391.5	737# 1	100#	
4477.7	733# 1	100#	
4748.2	797# 1	100#	
4931.3	885# 1	100# 100#	
5221.9	900# 1	100#	

[&]amp; If no value given it was assumed δ =0.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities. a Placement of transition in the level scheme is uncertain.

- (E) Member of $\Delta J=2$ band built on the (6-) state;
- (F) Member of ΔJ=2 band built on the (7-) state;
- (G) Probable member of ΔJ=2 intruder band (1999Lh01)

$^{112}Rh \beta^{-} Decay (3.6 s) 1999Lh01$

Parent $^{112}{\rm Rh}\colon$ E=0.0; J \pi=(1+); T $_{1/2}$ =3.6 s 3; Q(g.s.)=6589 44; % β^- decay=100.

1999Lh01: Facility: IGISOL at Jyvaskyla; Source: mass separated fission products from 238 U(p,F). E(p)=25 MeV. Detectors: four Ge detectors from EUROGAM I, plastic scintillators; Measured: β -ce and γ - γ coinc, γ (θ), β - γ (t), E γ , I γ ; Deduced: 112 Pd level scheme, I β (g.s.), log ft, upper limit of 0.5 ns for $T_{1/2}$ for all states from centroid

Others: 1998Lh04, 1988AyZZ, 1988Ay02, 1985Bu05, 1976MaYL, 1970WiZN.

¹¹²Pd Levels

E(level) [†]		E(level) [†]	Jπ‡	E(level) [†]	Jπ [‡]
0.0	0+	1774.4? 5	(1,2+)	2688.11 24	(0+,1,2)
348.63 13	2+	2107.3 4	(1,2+)	2747.18 23	(1,2+)
736.68 14	2+	2356.8 6	(1,2+)	2770.0 7	(0+,1,2)
882.92 18	4+	2432.5? 5	(1,2+)	2795.8? 6	(0+,1,2)
1096.22 17	3+	2466.1? 6	(1,2+)	2836.4 5	(0+,1,2)
1125.54 22	0+	2496.83 23	(0+,1,2)	2977.3? 6	(0+,1,2)
1139.71 21	(0,1,2)+	2509.7 6	(1,2+)	3013.8 5	(0+,1,2)
1402.59 16	2+	2540.55	(0+,1,2)	3225.5 6	(0+,1,2)
1422.66 15	2+	2603.9 5	(0+,1,2)	3337.9? 9	(0+,1,2)
1747 59 5	(1 2+)	2665 5 5	(1 2+)		

 $^{^{\}dagger}$ From a least squares fit to Ey.

shift measurements.

β^- radiations

The level scheme is incomplete (pandemonium), and hence, $I\beta^-$ and $log\ ft$ values should be considered as approximate.

Εβ-		E(level)	Ιβ-†	Log ft	Comments
(3360	50)	3225.5	0.75 22	6.17 14	
(3580	50)	3013.8	1.20 18	6.08 8	
(3750	50)	2836.4	0.54 13	6.52 12	
(3820	50)	2770.0	0.39 12	6.70 14	
(3840	50)	2747.18	3.1 3	5.81 6	
(3900	50)	2688.11	1.92 22	6.04 7	
(3920	50)	2665.5	0.48 12	6.66 12	
(3990	50)	2603.9	1.17 18	6.30 8	
(4050	50)	2540.5	0.27 6	6.97 11	
(4080	50)	2509.7	0.36 12	6.86 15	
(4090	50)	2496.83	1.65 22	6.20 8	
(4480	50)	2107 . 3	1.3 3	6.48 11	
(5170	50)	1422 . 66	$2.3 \ 3$	6.50 7	
(5190	50)	1402.59	0.8 4	6.97 22	
(5450	50)	1139.71	1.23 22	6.88 9	
(5460	50)	1125 . 54	2.8 3	6.526	
(5850	50)	736.68	5 3	6.4 3	
(6240	50)	348.63	10 6	6.2 3	
(6590	50)	0.0	≈ 6.5	≈ 5 . 5	$Iβ^-$: From 65 +11-29 in 1999Lh01.

 $^{^{\}dagger}$ From intensity imbalances.

$\gamma(^{112}\mathrm{Pd})$

 $I\gamma \ normalization: \ from \ (100-I\beta(g.s.))/\Sigma \ I(\gamma+ce)(g.s.) \ and \ I\beta(g.s.)\approx 65, \ based \ on \ 65 \ + 11-29 \ estimate \ in \ 1999Lh01.$

$\mathbf{E}\gamma^{\dagger}$	E(level)	Iγ [†] §	Mult.	α	Comments
213.3 2	1096.22	0.022 8	[M1+E2]	0.0479	Ey, Iy: From adopted gammas with Iy(213.3y)/Iy(359.6y)=0.036 7.
297.1 4	1422.66	0.5 1	[E2]	0.0306	
326.6 3	1422.66	1.0 2	[M1 + E2]	0.01594	
348.7 2	348.63	100 15	(E2)	0.0181	
$359.6\ 2$	1096 . 22	0.62	M1+E2	$0\;.\;0\;1\;2\;5\;2$	Mult.: $A_{22}\text{=}0.041\ 35$ gated on 348.7γ and 359.6γ in 1999Lh01.

 $[\]ddagger$ From the adopted levels.

^{112}Rh β^{-} Decay (3.6 s) $\,$ 1999Lh01 (continued)

$\gamma(^{112}Pd)$ (continued)

$\underline{\hspace{1cm}} E\gamma^{\dagger}$	E(level)	Ιγ†\$	Mult.	䆇	α	Comments
388.0 2	736.68	23 8	E2(+M1)	-4.7 +17-35	0.01276 23	Mult., δ : A_{22} =0.089 34 gated on 348.7 γ and 388.7 γ in 1999Lh01.
402.8 4	1139.71	1.3 3	[E2]		0.01145	·
519.8 5	1402.59	0.4 1	[E2]		0.00534	
534.3 2	882.92	1.3 2	E 2		0.00494	Mult.: A_{22} =0.105 34 gated on 348.7γ and 534.3γ in 1999Lh01.
539.7 3	1422.66	0.9 2	[E2]		0.00480	
665.8 5	1402.59	1.3 5	[M1 + E2]		0.00283	
686.0 2	1422.66	3.6 4	[M1+E2]		$0\;.\;0\;0\;2\;6\;4$	
736.7 2	736.68	7.3 25	(E2)		0.00209	
747.6 2	1096.22	0.47 17	E2(+M1)	-1.65 10	0.00205	Iγ: From adopted gammas using $I\gamma(747.6\gamma)/I\gamma(359.6\gamma)=0.79~10.$
						Mult.: A_{22} =-0.485 47 gated on 348.7 γ and 747.6 γ in 1999Lh01.
776.9 2	1125.54	9.9 10	E 2		0.00183	Mult.: A ₂₂ =0.493 66 gated on 348.7γ E2 and 776.9 in 1999Lh01.
$791.1\ 2$	1139.71	4.2 6	E 2		1 . $75\!\times\!10^{-3}$	Mult.: A ₂₂ =0.34 8 in 1999Lh01.
$1054.0\ 2$	1402 . 59	4.3 6	[M1 + E2]		1 . $01\!\times\!10^{-3}$	
1074.02	1422.66	2.04	[M1 + E2]		9.65×10^{-4}	
1074.3 3	2496.83	1.3 3				
1094.24	2496.83	1.24				
1265.54	2688.11	1.0 3				
1285.25	2688.11	0.9 3				
$1344.8 \ 3$	2747.18	1.8 4				
$1398.8 ^{\#} 4$	1747.5?	1.6 4				
$1402.6\ 3$	1402.59	2.94	[E2]		5.40×10^{-4}	
1413.55	2836.4	1.1 3				
$1422.6\ 3$	1422 . 66	2.9 6	[E2]		5 . 32×10^{-4}	
$1425.7^{\#}4$	1774.4?	1.9 5				
1607.3 4	2747.18	1.4 3				
1611.2 5	3013.8	1.3 3				
1758.7 3	2107.3	4.2 9				
1760.14	2496.83	2.44				
1803.8 4	2540.5	0.9 2				
1823.1 8	3225 . 5	0.9 5				
1867.2 4	2603.9	3.9 6				
1951.3 4	2688.11	1.3 3				
2008.1# 6	2356.8	0.7 3				
2083.4# 7	2432.5?	0.9 3				
2106.6# 5	2107.3	0.8 2				
2117.4 # 5	2466.1?	0.7 3				
2147.7 7	2496.83	0.6 3				
2161.1 5	2509.7	1.2 4				
2316.8 4	2665.5	1.6 4				
2339.7 4	2688.11	3.2 5				
2398.7 5	2747.18	7.2 9				
2421.3 6	2770.0	1.3 4				
2432.7# 6	2432.5?	0.9 3				
2447.1# 6	2795.8?	0.9 4				
2488.2 7	2836.4	0.7 3				
2511.2# 7	2509.7	0.3 1				
2628.6# 5	2977.3?	1.4 4				
2664.7#	2665.5	1.1 8				
2665.0 7	3013.8	2.7 5				
2746.6 5	2747.18	1.5 3				
2876.6 7	3225.5	1.6 5				
2989.2#9	3337.9?	0.5 2				

[†] If no value given it was assumed δ =0.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities. § For absolute intensity per 100 decays, multiply by \approx 0.30. # Placement of transition in the level scheme is uncertain.

 $^{112}{
m Rh}$

β

Decay

(3.6

 \mathbf{s}

1999Lh01 (continued)

Decay Scheme 0.0 3.6 s (1+)Intensities: I(γ+ce) per 100 parent decays $^{112}_{45}\mathrm{Rh}_{67}$ $\%\beta^{-}=100$ $Q^- = 6589^{44}$ (0+,1,2)Iβ-Log ft (0+,1,2)0.75 6.17 (0+,1,2)1.20 6.08 (0+,1,2)(0+,1,2)0.546.52(0+,1,2)(0+,1,2)0.39 6.70 (1,2+)3.1 5.81 (0+,1,2)1.92 6.04 (1,2+) 0.48 6.66 1.17 6.30 (0+,1,2)(0+,1,2) 0.276.97 2706 1786 (1,2+) 0.36 6.86 (0+,1,2)1.65 6.20 (1,2+)(1,2+)(1,2+)

197

$^{112}Rh \beta^{-} Decay (6.76 s) 1999Lh01$

Parent $^{112}Rh;~E=y;~J\pi=(6+);~T_{1/2}=6.76~s~12;~Q(g.s.)=6589~44;~\%\beta^-~decay=100.$

1999Lh01: Facility: IGISOL at Jyvaskyla; Source: mass-separated fission products from 238 U(p,F); Beam: E(p)=25 MeV;

 $Detectors: \ four \ Ge \ from \ EUROGAM \ I, \ plastic \ scintillators; \ Measured: \ \gamma-\gamma \ and \ \beta-ce \ coinc., \ E\gamma, \ I\gamma, \ \beta-\gamma(t); \ Deduced: \ Argument \ Argu$

 ^{112}Pd level scheme, I β (g.s.), log ft.

Others: 1998Lh04, 1988Ay02, 1985Bu05, 1976MaYL, 1970WiZN.

¹¹²Pd Levels

E(level) [†]	Jπ [‡]	E(level)	Jπ [‡]	E(level) [†]	Jπ [‡]
0.0	0+	1951.7 4	(3,4+)	2441.4 3	(5,6+)
348.70 16	2+	2002.76 25	(6+)	2543.2 3	(5+)
736.70 16	2+	2036.5 3	(2-,3,4+)	2578.8 5	(6-)
882.99 18	4+	2158.0 4	(3,4,5+)	2629.7 11	(5,6,7)
1096.31 18	3+	2194.61 19	(4)-	2754.81 19	5+
1362.39 19	(4+)	2200.62 20	(5,6+)	2966.64 24	(5,6+)
1422.7 6	2+	2269.40 23	(5-)	3043.4 4	(5,6)
1550.50 20	6+	2334.1 4	(5,6+)	3759.6 5	(5,6+)
1714.91 18	(3,4+)	2354.51 20	(4,5+)	3772.0 8	(5,6+)
1759.00 21	(5+)	2395.20 24	(5+)	3794.3 9	(5,6+)
1887.4 4	(4+)	2430.8 5	(5,6+)	3940.3 9	(5,6+)

 $^{^{\}dagger}$ From a least squares fit to Ey.

β^- radiations

The level scheme is incomplete (pandemonium), and hence, $I\beta^-$ and $log\ ft$ values should be considered as approximate.

Εβ-	E(level)	Ιβ-†‡	Log ft	Εβ-	E(level)	<u>Ιβ-†‡</u>	Log ft
(2650+y 50)	3940.3	0.53 18	6.16	(4150+y 50)	2441.4	0.56 10	6.97
(2790+y 50)	3794.3	0.45 18	6.33	(4160+y 50)	2430.8	0.62 18	6.93
(2820+y 50)	3772.0	0.45 9	6.34	(4190+y 50)	2395.20	0.71 16	6.89
(2830+y 50)	3759.6	0.80 20	6.10	(4230+y 50)	2354.51	<1.2	>7.1
(3550+y 50)	3043.4	0.53 13	6.70	(4320+y 50)	2269.40	0.7 4	6.95
(3620+y 50)	2966.64	1.42 16	6.31	(4390+y 50)	2200.62	1.1 3	6.78
(3830+y 50)	2754.81	72 6	4.71	(4590+y 50)	2002.76	1.07 20	6.88
(3960+y 50)	2629.7	0.24 7	7.25	(4830+y 50)	1759.00	2.9 7	6.54
(4010+y 50)	2578.8	0.11 4	7.61	(5040+y 50)	1550.50	3.7 10	6.52
(4050+v 50)	2543 2	1 60 20	6 47				

 $^{^{\}dagger}$ From intensity imbalances.

$\gamma(^{112}{\rm Pd})$

Iy normalization: from Σ I(\gamma+ce)(g.s.)=100%.

$\underline{\hspace{1cm}} \mathbf{E} \gamma^{\dagger}$	E(level)	Iγ [†] §	Mult.	䆇	α	Comments
158.1 2	2194.61	0.09 3				
159.9 3	2354 . 51	0.256	[E1]		0.0398	
213 . 3 2	1096.31	1.3 2	[M1+E2]		0.0479	
348.7 2	348.70	100	(E2)		0.0181	
359.6 2	1096.31	36.5 28	M1+E2		0.01252	Mult.: A_{22} =0.041 35 gated on 348.7 γ and 359.6 γ in 1999Lh01.
	2754.81	0.3 1	[E2+M1]		0.01252	
388.0 2	736.70	33.7 23	E2(+M1)	-4.7 +17-35	0.01276 23	Mult.,δ: A ₂₂ =0.089 <i>34</i> gated on 348.7γ and 388.7γ in 1999Lh01.
396.6# 4	1759.00	0.3 1	[M1+E2]		0.00981	
400.3 2	2754.81	4.1 5	M1+E2		0.00959	Mult.: A ₂₂ =-0.131 <i>54</i> gated on 400.3γ and 534.3γ in 1999Lh01.
435.6 2	2194.61	0.4 1	[E1]		0.00265	
441.3# 4	2200.62	0.2 1				
464.7 4	1887.4	0.3 1	[E2]		0.00741	
479.4 2	1362.39	1.4 2	[M1+E2]		0.00617	

 $[\]ddagger$ From the adopted levels.

[‡] Absolute intensity per 100 decays.

^{112}Rh β^- Decay (6.76 s) $\,$ 1999Lh01 (continued)

$\gamma(^{112}Pd)$ (continued)

Εγ†	E(level)	Ιㆧ	Mult.	䆇	α	Comments
479.7 2	2194.61	1.7 2	[E1]		0.00210	
485.4 2	2754.81	1.2 2	[E1]		0.00204	
485.7 2	2200.62	0.8 1				
534.3 2	882.99	37 3	E 2		0.00494	Mult.: A ₂₂ =0.105 34 gated on 348.7γ and 534.3γ in 1999Lh01.
554 . 2 2	2754 . 81	1.0 1				
560.2 2	2754.81	62 6	[E1]		1.45×10^{-3}	Mult.: A_{22} =0.013 35 gated on 359.6 γ and 560.2 γ in 1999Lh01.
618.6 2	1714.91	3.8 4				
625.72	1362.39	5.7 5	[E2]		0.00319	
640 . 4 2	2002 . 76	1.8 2	[E2]		0.00300	
$650.1\ 2$	2200 . 62	0.4 1				
662.7 2	1759.00	5.8 6	[E2]		0.00274	
667.5 2	1550.50	9.2 10	E2		0.00269	Mult.: A_{22} =0.097 45 gated on 348.7 γ and 667.5 γ in 1999Lh01.
726 . 5 3	2441 . 4	0.4 1				
736.7 2	736.70	10.6 12	(E2)		0.00209	Mult.: A_{22} =-0.208 41 gated on 359.6 γ and 736.7 γ in 1999Lh01.
747.6 2	1096.31	29 3	E2(+M1)	-1.65 10	0.00205	Mult.: A ₂₂ =-0.485 47 gated on 348.7γ and 747.6γ in 1999Lh01.
791.1 3	1887.4	0.6 2	M1+E2		0.00191	Mult.: A_{22} =0.339 77 gated on 348.7 γ and 791.1 γ in 1999Lh01.
802.9 # 4	2754.81	0.2 1				
831.9 2	1714.91	1.0 2				
832.2 2	2194 . 61	0.14 3	[E1]		6.17×10^{-4}	
838.2 2	2200 . 62	0.8 2				
842.4 5	3043.4	0.3 1				
855.1 5	1951.7	0.4 1				
876.0 4	1759.00	0.2 1	[M1 + E2]		1.51×10^{-3}	
890.9 3	2441 . 4	0.23.5				
963.9 2	2966.64	0.6 1				
$978.2\ 2$	1714.91	2.02				
993.3# 6	2354 . 51	0.07 3	[M1 + E2]		1.14×10^{-3} 2	
995.8 2	2754 . 81	2.3 3	[M1 + E2]		1.14×10^{-3}	
004.7# 5	1887.4	0.14 6	[M1+E2]		1.12×10^{-3}	
013.9# 4	1362.39	0.27 14	[E2]		9.76×10 ⁻⁴	
028.3 4	2578.8	0.124	[E1]		4.07×10 ⁻⁴	
039.9 2	2754.81	1.2 2	[M1,E2]		1.04×10^{-3}	
061.7 3	2158.0	0.4 1				
069.2 6	1951.7	0.21 5				
079.2	2629.7	0.27 7			,	
098.3 2	2194.61	50 5	E1(+M2)	-0.03 5	3.62×10 ⁻⁴ 11	Mult.: A_{22} =0.014 40 gated on 359.6 γ and 1098.3 γ in 1999Lh01.
204.3 2	2754.81	2.5 4	M1+E2		7 . 60×10^{-4}	Mult.: A_{22} =0.078 73 gated on 348.7 γ and 1204.3 γ in 1999Lh01.
214.8 5	1951.7	0.5 2				
258.2 2	2354 . 51	1.0 2	[E2]		6 . 28×10 ⁻⁴	
298.9 3	2395.20	0.6 1	[E2]		5 . 9 7×10 ⁻⁴	* 1
311.6 2	2194.61	8.6 11	E1+M2	-0.43 32	0.00053 21	Mult.: A_{22} =0.169 52 gated on 348.7 γ and 1311.6 γ in 1999Lh01.
1317.6 3	2200.62	0.5 2				
366.2# 4	1714.91	0.4 2				
386.4 2	2269.40	2.0 3	[E1]		3.91×10 ⁻⁴	
392.4 3	2754.81	0.5 1	[M1+E2]		5.95×10^{-4}	
416.1 2	2966.64	0.7 1	. FRO ?		F 04 10-4	
446.9 3	2543.2	1.3 2	[E2]		5 . 24×10^{-4}	
1451.1 3	2334.1	0.5 1	IMO 1		1 10 10-9	
1457.9# 2	2194.61	0.2 2	[M2]		1.10×10 ⁻³	W 10 A 0 100 05 1 2 2 2 2
1471.5 2	2354.51	3.4 5	M1		5 . 57×10 ⁻⁴	Mult.: A ₂₂ =0.188 65 gated on 348.7γ and 1471.5γ in 1999Lh01; δ:-0.017 in 1999Lh01.
1493.1 4	3043.4	0.3 1				
512.1 5	2395 . 20	0.5 1	[M1+E2]		5.43×10^{-4}	
1547.8 4	2430.8	0.7 2				

^{112}Rh $\beta^{\text{-}}$ Decay (6.76 s) $\,$ 1999Lh01 (continued)

$\gamma(^{112}Pd)$ (continued)

$\underline{\hspace{1cm} E\gamma^{\dagger}}$	E(level)	Ιㆧ	Mult.	α	Comments
1604.2 5	2966.64	0.3 1			
1658.5 3	2754.81	3.4 5	(E2)	4.98×10 ⁻⁴	Mult.: A ₂₂ =-0.105 89 gated on 359.6γ and 1658.5γ in 1999Lh01 would suggest D, but the level scheme requires ΔJ=2.
1660.3 5	2543 . 2	0.5 1	[M1+E2]	5 . $16\!\times\!10^{-4}$	
1687.8 5	2036.5	0.3 1			
1845.9 5	2194.61	0.5 2	[M2]	7 . 24×10^{-4}	
1871.8 4	2754.81	2.34	[M1+E2]	5.24×10^{-4}	
2208.9 5	3759.6	0.6 2			
2397.6 8	3759.6	0.3 1			
2409.6 7	3772.0	0.5 1			
2911.3 8	3794.3	0.5 2			
3057.3 8	3940.3	0.6 2			

 $^{^{\}dagger}$ From 1999Lh01.

 $^{^{\}pm}$ If no value given it was assumed δ =0.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.

 $[\]mbox{\$}$ For absolute intensity per 100 decays, multiply by 0.890 9.

[#] Placement of transition in the level scheme is uncertain.

^{112}Rh β^- Decay (6.76 s) $\,$ 1999Lh01 (continued)

Decay Scheme

Intensities: I(γ+ce) per 100 parent decays

^{112}Rh $\beta^{\text{-}}$ Decay (6.76 s) $\,$ 1999Lh01 (continued)

Decay Scheme (continued)

$$\begin{array}{c}
(6+) & y \\
112 \\
45 \\
Rh_{67}
\end{array}$$
6.76 s
$$\%\beta^{-}=100$$

$$Q^{-}(g.s.)=6589^{44}$$

Intensities: $I(\gamma+ce)$ per 100 parent decays

Ιβ-	Log ft		
0.53	6.16	\(\sqrt{(5,6+)}\)	3940.3
0.00	6.10	W(5.6+)	3759 6

²⁵²Cf SF Decay 1999Bu32,1993Ar05,1986Ma22

Parent $^{252}{\rm Cf}{:}~E=0.0;~J\pi=0+;~T_{1/2}=2.645~y~8;~\%{\rm SF}~decay=3.092~8.$

1999Bu32, 1993Ar05: Facility: Holifield Heavy Ion (HI) Research Facility, Oak Ridge National Laboratory; Source: 0.1 μ g thick 252 Cf source of 6 μ Ci activity, placed behind a 250 μ m thick Be window; Detectors: Gammasphere array, 2.5 cm³ LEPS, 25% n-type Ge, 5 cm x 5 cm liquid scintillator (BC-501); Measured: $\gamma-\gamma-\gamma$ coinc., X-rays, HI- γ -n, E γ , $\gamma(\theta)$, I γ ; Deduced: 112 Pd level scheme, band structure, J π .

1986Ma22: Source: 252 Cf on 100 µg/cm 2 Ni foil; Detectors: one Ge(Li), stopper consisting of 20 µg/cm 2 C foil, one surface barrier detector; Measured: HI- γ coinc., HI- γ (t), E γ , I γ ; Deduced: T_{1/2} from RDM. Others: 2002Ha46, 1998JoZX, 1998SiZW, 1997Ha64, 1993Ar05, 1990DuZW, 1970Ch11, 1971Ch44.

¹¹²Pd Levels

E(level) [†]	Jπ [‡]	T _{1/2}	Comments
0.0\$	0+		
348.8 \$ 3	2+	84 ps 14	T _{1/9} ; from recoil-distance measurements in 1986Ma22; Other: <0.1 ns (1970Ch11).
736.8# 3	2+		
883.1 8 4	4+		
1096.2# 4	3+		
1362.1# 5	(4+)		
1550.4 \$ 4	6+		
1715.3 4	(3-,4+)		
1758.5# 5	(5+)		
$2002.2^{\#}6$	(6+)		
2194.8 4	(4)-		
$2269.5^{\tiny{\textcircled{0}}}$ 5	(5-)		
2318.2 \$ 5	8+		
2355 . 1 $$ $$			
2482.5# 7	(7+)		
2578.7 6	(6-)		
$2690.7 ^{\#} 6$	(8+)		
$2704.3^{@}6$	(7-)		
2711.9ª 7	(7-)		
2755.3 4	(4)		$J\pi$: (4+,5+) in the adopted levels.
2898.9& 8	(8-)		
2966.0 6			
3050.1 \$ 7	10+		
3084.4#9	(9+)		
$3137.2^{@}6$	(9-)		
3266.0a 9	(9-)		
3446.9 9	(10-)		
3597.9 9	(12+)		
3744.9@8	(11-)		
4321.9 9 10	(14+)		

- † From a least-squares fit to Ey.
- \ddagger From 1999Bu32, based on angular correlation measurements and observed band structure.
- $\$ (A): Member of $\Delta J{=}2$ ground-state band.
- # (B): Member of $\Delta J=1$ quasi-gamma band.
- @ (C): Member of $\Delta J = 2$ band based on (5-); configuration=vh _{11/2} \otimes (g_{7/2} d_{5/2}), \; \alpha = 1.
- & (D): Member of $\Delta J=2$ band based on (6-); configuration=vh $_{11/2}\otimes (g_{7/2}d_{5/2}),~\alpha=0.$
- a (E): Member of $\Delta J = 2$ band based on (7-); configuration=vh $_{11/2} \otimes (s_{1/2} d_{3/2}), \ \alpha = 1.$

$\gamma(^{112}\mathrm{Pd})$

 $I\gamma$ normalization: from 1971Ch44.

$\underline{\hspace{1cm}} E\gamma^{\dagger}$	E(level)	$\underline{\hspace{1.5cm} I\gamma^{\dagger\ddagger}}$	Mult.†	Comments
213.1 5	1096.2	2.8		
309.2 5	2578.7			
320.2 5	2898.9	1.1		
348.8 3	348.8	100	(E2)	
359.4 3	1096.2	14	M1+E2	Mult.: $A_9 = -0.16$ 7; $A_4 = -0.06$ 8, gated on 359.4 γ and 736.8 γ in 1999Bu32.
388.0 3	736.8	22	M1+E2	Mult.: $A_2 = 0.08 \ 4$; $A_4 = 0.28 \ 5$, gated on 388.0 γ and 348.8 γ in 1999Bu32.
$400.2\ 5$	2755.3			
432.9 5	3137 . 2	2.8		
434.8 \$ 5	2704.3			
434.8 \$ 5	2704.3			

²⁵²Cf SF Decay 1999Bu32,1993Ar05,1986Ma22 (continued)

$\gamma(^{112}Pd)$ (continued)

$\underline{\hspace{1cm}} E\gamma^{\dagger}$	E(level)	Ιㆇ	Mult.†	Comments
436.3 5	2194.8			
479.0 5	1362.1	4.8		
479.5 5	2194.8			
485.8 5	2755.3			
534.3 3	883.1	64	E2	Mult.: A_2 =0.14 2; A_4 =-0.01 2, gated on 534.3 γ and 348.8 γ in 1999Bu32.
547.8 5	3597.9	3.5		
548.0 5	3446.9	0.8		
554.1 5	3266.0	1.3		
560.55	2755.3		D	Mult.: A_2 =0.14 3; A_4 =-0.02 4, gated on 560.5 γ and 1098.6 γ in 1999Bu32.
601.9 5	3084.4			
607.7 5	3744.9			
619.1 5	1715.3			
625 . 3 5	1362 . 1	3.5		
$640.1\ 5$	2002 . 2	1.3		
$662.3\ 5$	1758.5	2.1		
667.3 3	1550.4	35	E 2	Mult.: A_2 =0.13 2; A_4 =-0.03 3, gated on 667.3 γ and 534.3 in 1999Bu32.
688.5 5	2690.7	0.8		
724.0 5	2482 . 5	0.4		
	4321 . 9	0.8		
731.9 5	3050 . 1	5.3	E 2	Mult.: A_2 =0.14 5; A_4 =0.02 5, gated on 731.9 γ and 767.8 γ in 1999Bu32.
736.8 5	736.8	7.2		
747.4 3	1096.2	12		
767.8 3	2318 . 2	11	E 2	Mult.: A_2 =0.16 5; A_4 =-0.01 6, gated on 767.8 γ and 667.3 γ in 1999Bu32.
819.0 5	3137 . 2	1.1		
832.2 5	1715.3			
963.8 5	2966.0	0.4		
978.5 5	1715.3			
996.8 5	2755.3			
1028.3 5	2578.7	2.0		
1040.0 5	2755.3			
1098.6 5	2194 . 8		E 1	Mult.: A_2 =0.07 5; A_4 =0.03 6, gated on 1098.6 γ and 359.4 γ in 1999Bu32.
1140.3 5	2690.7			
1153.9 5	2704.3	4.3		
1161.5 5	2711.9	3.0		
1204.9 5	2755.3			
1311.7 5	2194.8			
1386.4 5	2269.5	5.0		
1415.6 5	2966.0	2.6		
1472.0 5	2355.1			
1659.1 5	2755.3			
1872.2 5	2755.3			

- † From 1999Bu32. ΔE_{γ} =0.3 for Iy>10 and 0.5 for Iy<10 set by the evaluators. ‡ For intensity per 100 fissions, multiply by 0.0077 19.
- \S Placement of transition in the level scheme is uncertain.

¹¹⁰Pd(t,p) 1972Ca10

1972Ca10: Facility: Los Alamos Van de Graaff; Beam: E(t)=15 MeV; Target: 125 $\mu g/cm^2$ enriched to 97.4% in ^{110}Pd ; $Detectors:\ Elbek-type\ magnetic\ spectrograph,\ nuclear\ emulsions;\ Measured:\ E(p),\ FWHM\approx15\ keV,\ \sigma(E,\theta),\ Q\ -\ value;$ Deduced: ^{112}Pd level scheme, L, J π , DWBA.

¹¹²Pd Levels

E(level) [†]	Jπ [‡]	L§
0.0	0+	0
351 5	9 +	9

110Pd(t,p) 1972Ca10 (continued)

¹¹²Pd Levels (continued)

E(level) [†]	$J\pi^{\ddagger}$		Comments
736 8	(4+)	(4)	J π : 2+ in the adopted levels. L: 20° data contains impurities, which leads to an ambiguous L-value; $d\sigma/d\Omega$ analysis in 1972Ca10 favors rather L=4 than L=0 or 2.
882 8	(2+)	(2)	$J\pi$: 4+ in the adopted levels.
928 8			
1123 8	0+	0	

- † From 1972Ca10.
- \ddagger Based on L.
- § From DWBA analysis in 1972Ca10.

$^{110}Pd(t,p\gamma) \\ 1987Es01, 1986HeZT$

1987Es01, 1986HeZT: Facility: Van de Graaff accelerator at Los Alamos; Beam: E(t)=16 MeV; Target: self-supporting 0.5 mg/cm² enriched to 97.7% in 110 Pd; Detectors: solenoid spectrometer, plastic scintillators, HPGe detector, aluminium absorbers; Measured: ce, p- γ , and ce- γ coinc. E γ , I γ ; Deduced: 112 Pd level scheme, E0 transitions, J π , intensity branching ratios, E0/E2 branching.

¹¹²Pd Levels

E(level) [†]	Jπ‡	Comments
0.0	0+	
349.0 6	2+	
737.4 7	2+	
883.4 10	4+	
923.9 8	1, 2 +	
1096.7 9	3+	
1125.0 7	0+	$B(E0; 1123\gamma)/B(E2; 774\gamma)=0.016 9 (1987Es01).$
		$B(E0; 1123\gamma)/B(E2; 386\gamma) > 0.0005 (1987Es01).$
1362.9 9	(4+)	
1550.8 14	6+	
2003.3 13	(6+)	
2318.5?	8+	

- † From a least-squares fit to Ey. $\Delta E\gamma \text{=}1~keV$ assumed by the evaluators.
- ‡ From the adopted levels.

$\gamma(^{112}\mathrm{Pd})$

E(level)	$\underline{\hspace{1.5cm} E\gamma^{\dagger}}$	Ιγ‡	Mult.	I(γ+ce)	Comments
349.0	348.7	100			
737 . 4	388.0	82			
	736.8	18			
883.4	534 . 2	100			
923.9	574.4	84			
	924.4	16			
1096.7	359.6	57			
	747.5	43			
1125 . 0	386.2				$I\gamma/I\gamma(777\gamma)$ <1.04 from the two ratios relative to $I(ce(K)\ 1125)$.
	777.0	100			
	1125.3		ΕO	0.014	Mult.: Based on ce measurements (1987Es01,1986HeZT). $I(E0,K)/I(tot) > 58 \times 10^6 \ (1987Es01). \ I(ce(K) \ 1125)/I\gamma(777\gamma) = 1.26 \times 10^{-4}.$
1362.9	479.2	19			
	625.5	77			
	1014.2	4			
1550.8	667.4	100			
2003 . 3	453.88	31			
				Continue	d on next page (footnotes at end of table)

$^{110}Pd(t,p\gamma) \qquad 1987Es01, 1986HeZT \ (continued)$

γ(¹¹²Pd) (continued)

E(level)	$\mathbf{E}\gamma^{\dagger}$	Ιγ‡	
2003.3	640.4	69	
2318.5?	768.28	100	

- † From 1986HeZT.
- ‡ Branching ratios from 1986HeZT.
- § Placement of transition in the level scheme is uncertain.

²⁰⁸Pb(¹⁸O,Xγ) 2001Kr08

2001Kr08: Facility: 88-inch cyclotron at LBNL; Target: 45mg/cm² ²⁰⁸Pb; Beam: E(¹⁸O)=91 MeV; Detectors: Gammasphere array consisting of 100 Compton- suppressed Ge detectors; Measured: γ-γ-γ coinc., Εγ, Ιγ; Deduced: ¹¹²Pd level scheme, rotational bands; Also from the same group: 2000KrZX.

Others: 1999Ho25: $^{238}\text{U}(^{12}\text{C},\text{F}\gamma)$ induced fission at $E(^{12}\text{C})$ =90 MeV; Detectors: Euroball III; Measured: $\gamma-\gamma-\gamma$ coinc., E γ ; Also from the same group: 2000LuZY, 1990DuZW.

¹¹²Pd Levels

E(level) [†]	‡	E(level) [†]	$J\pi^{\ddagger}$	E(level)†	Jπ [‡]
0.0\$ $348.0$$ 8 $736.0#$ 8 $882.5$$ 9	0+ 2+ (2+) (4+)	2482.1# 12 2577.7& 12 2613.6a 12 2637.9# 12	(7+) (6-) (6-) (8+)	3446.7& 13 3597.2\$ 17 3625.3# 17 3653.6a 19	(10-) (12+) (11+) (10-)
1095.6# 9 1361.8# 10 1422.2 12 1550.0 \$ 11	(3+) (4+) (6+)	2691.4 12 2703.4 [@] 11 2710.1 ^b 12 2754.4 10	(7-) (7-)	3743.4 [@] 14 3949.4 ^b 16 4045.5 18 4085.5 18	(11-)
1714.6 10 1758.4# 10 1886.4 12 2001.7# 11	(5+) (6+)	2897.7& 11 3044.6a 16 3049.2\$ 13 3084.3# 13	(8-) (8-) (10+) (9+)	4116.0\& 15 4321.2\\$ 19 4327.3\# 19 4390.6\alpha 22	(12-) $(14+)$ $(13+)$ $(12-)$
2194.3 10 2199.6 14 2268.5 [@] 11 2317.5 [§] 12 2354.4 12	(5-) (8+)	3136.5 [@] 12 3174.5 15 3260.1 16 3263.4 ^b 12 3326.6 [#] 12	(9-) (10+)	$4476.4^{@}17$ $4746.4^{b}19$ 4930.521 $5221.2^{§}22$	(13-) (13-) (16+)

- † From a least-squares fit to Ey, assuming $\Delta\text{E}\gamma\text{=}1.$
- $^{\frac{1}{2}}$ From 2001 Kr08 based on the observed band structures.
- $\$ (A): Member of $\Delta J{=}2$ yrast band.
- $^{\#}$ (B): Member of $\Delta J \! = \! 1$ quasi-gamma band.
- @ (C): Member of $\Delta J = 2$ band built on (5-) state; configuration=vh _{11/2} \otimes (g_{7/2}d_{5/2}), \; \alpha = 1.
- & (D): Member of ΔJ =2 band built on (6-) state; configuration=vh $_{11/2}\otimes (g_{7/2}d_{5/2}), \ \alpha$ =0.
- a (E): Member of $\Delta J = 2$ band built on (6-) state; configuration=vh $_{11/2} \otimes (s_{1/2} d_{3/2}), \; \alpha = 0.$
- b (F): Member of $\Delta J=2$ band built on (7-) state; configuration=vh $_{11/2}\otimes (s_{1/2}d_{3/2}), \ \alpha=1.$

 $\gamma(^{112}\text{Pd})$

$\underline{\hspace{1.5cm} E\gamma^{\dagger}}$	E(level)	$ E\gamma^{\dagger}$	E(level)	$\underline{\hspace{1cm}}^{\hspace{1cm}} \underline{\hspace{1cm}}^{\hspace{1cm}} \underline{\hspace{1cm}}^{\hspace{1cm}}$	E(level)
188	2897.7	348	348.0	431	3044.6
194	2897.7	359	1095.6	433	3136.5
213	1095.6	373‡	4116.0	435	2703.4
239	3136.5	388	736.0	464	1886.4
284	2897.7	393	3084.3	479	1361.8
297	3743.4	400	2754.4		2194.3
309	2577.7	411	3049.2	485	2199.6
310	3446.7	416	2897.7	486	2754.4
320	2897.7	426	3136.5	534	882.5

²⁰⁸Pb(¹⁸O,Χγ) 2001Kr08 (continued)

$\gamma(^{112}Pd) \ (continued)$

$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	E(level)	$-\frac{E\gamma^{\dagger}}{}$	E(level)	$\underline{\hspace{1.5cm} E\gamma^{\dagger}}$	E(level)
541	3625.3	702	4327.3	946	3263.4
548	3597.2	724	2482 . 1	979	1714.6
549	3446.7		4321 . 2	996	2754.4
553	3263.4	732	3049.2	1009	3326.6
560	2754.4	733	4476.4	1014	1361.8
	3263.4	736	736.0	1028	2577.7
602	3084.3	737	4390.6	1074	1422 . 2
607	3743.4	748	1095.6	1088	2637.9
609	3653.6	768	2317.5	1099	2194.3
618	1714.6	778	3260 . 1	1141	2691.4
626	1361.8	791	1886.4	1153	2703.4
635	3326.6	797	4746.4	1160	2710.1
636	2637.9	819	3136.5	1204	2754.4
640	2001.7	855	2613.6	1312	2194.3
663	1758.4	857	3174.5	1386	2268.5
667	1550.0	871	4045.5	1472	2354 . 4
669	4116.0	876	1758.4	1659	2754.4
686	3949.4	885	4930.5		
689	3326.6	900	5221 . 2		
690	2691.4	911	4085 . 5		

 $[\]dot{\dagger}$ From 2001Kr08. $\dot{\ddagger}$ Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

 $Q(\beta^-) = 3992.1 \ 25; \ S(n) = -6439 \ 3; \ S(p) = -7886 \ 3; \ Q(\alpha) = -3977 \ 14 \ \ 2012Wa38.$

¹¹²Ag Levels

Cross Reference (XREF) Flags

A ¹¹²Pd β- Decay B ¹⁷⁶Yb(²⁸Si,Xγ)

E(level) [†]	<u></u> Jπ	$\frac{XREF}{}$	T _{1/2}	Comments
0.0	2 (-)	AB	3.130 h 8	$\%\beta^{-}=100$.
				$J\pi\colon$ J=2 from atomic beam (1964Ch06); similarities to $^{110}Ag.$ Given the known proton
				and neutron orbitals near the Fermi surface, no intrinsic state with π =+ and J=2 can be expected at low energy.
				μ=0.0547 5 (1964Ch06), using atomic-beam magnetic-resonance method.
				T _{1/2} : Weighted average of 3.14 h 2 (1972Wa03), 3.12 h 1 (1968RoZZ), 3.14 h 5 (1962In01) and 3.16 h 2 (1969Sa09).
				configuration: $\pi p_{1/2} \otimes v(d_{5/2}/g_{7/2})$.
18.5 5	(1+)	A		J π : direct feeding in ¹¹² Pd β ⁻ decay (J π =0+); similarities to ¹¹⁰ Ag.
				configuration: πg _{9/2} ⊗vg _{7/2} .
x	(6+)	В		E(level): $X \approx 137$ keV, using E(6+)=118 keV for the same configuration in 110 Ag.
				Probably a long-lived isomeric state.
				$J\pi$: 97.5 γ from (6-); similarities to ^{110}Ag .
				$T_{1/2}$: possibly a long-lived isomeric state.
				configuration: πg _{9/2} ⊗vg _{7/2} .
$x + 97.5^{\ddagger}3$	(6-)	В		$J\pi$: from 2011Po11, based on systematics and similarities to ^{110}Ag .
y §	(7-)	В		$J\pi$: 74.6 γ from (8-); band member.
y + 74.6 [‡] 5	(8-)	В		$J\pi$: based on systematics.
y+178.1 § 6	(9-)	В		$J\pi$: 103.5 γ to (8-); band member.
y + 565.1 † 6	(10-)	В		$J\pi$: 387.0 γ to (9-); band member.
y+889.8§ 7	(11-)	В		$J\pi$: 711.8 γ to (9-), 324.7 γ to (10-); band member.
y+1337.9 [‡] 7	(12-)	В		$J\pi$: 448.1 γ to (11-); band member.
y+1818.9\\$ 10	(13-)	В		$J\pi \colon$ 929 γ to (11-), 481 γ to (12-); band member.

$\gamma(^{112}\mathrm{Ag})$

E(level)	$\underline{\hspace{1cm} E\gamma^{\dagger}}$	$\underline{\hspace{1.5cm}} I\gamma^{\dagger}$	Comments
18.5	18.5 5	100	Eγ,Iγ: From ¹¹² Pd β-decay.
x + 97.5	97.5 3	100	
y + 74.6	74.6 5	100	
y+178.1	103.5 2	100	
y+565.1	387.0 2	100	
y+889.8	324.7 3	100 15	
	711.8 5	89 15	
y+1337.9	448.1 3	100	
y+1818.9	481 1	67 22	
-	929 1	$100 \ 22$	

 $^{^{\}dagger}$ From $^{176}Yb(^{28}Si,X\gamma)$ (2002Po11), unless otherwise stated.

 $[\]begin{array}{lll} \dot{\uparrow} & From \ a \ least-squares \ fit \ to \ E\gamma. \\ \\ \dot{\dot{\tau}} & (A): \ Member \ of \ \pi g_{9/2} \nu h_{11/2}, \ \alpha \text{=+}1/2 \ band. \\ \\ \dot{\$} & (B): \ Member \ of \ \pi g_{9/2} \nu h_{11/2}, \ \alpha \text{=-}1/2 \ band. \\ \end{array}$

(A) Member of $\pi g_{9/2} \nu h_{11/2}$, α =+1/2 band

(B) Member of $\pi g_{9/2}vh_{11/2}$, α =-1/2 band

¹¹²Pd β- Decay 1955Nu11,1953Nu04

Parent $^{112} Pd\colon$ E=0.0; J\pi=0+; $T_{1/2} = 21.04$ h 17; Q(g.s.)=262 7; % β^- decay=100.

1955Nu11,1953Nu04: Facility: Synchrocyclotron at IKO, Amsterdam; Source: ¹¹²Pd from D induced U fission, E(D)=28 MeV; Detectors: one alcohol-argon end-window counter, three argon-hydrogen counters, one NaI(Tl); Measured: βγ, Εγ, Ιγ, Εβ. Deduced: ¹¹²Ag levels, log ft. β-feeding is determined by the assumption of no ground-state branch. Iβ- to g.s. <0.006% for log ft>8.5.

Others: 1977Gill, 1974Roll, 1971Ba28.

¹¹²Ag Levels

E(level) [†]	$J\pi^{\ddagger}$	$\underline{\hspace{1cm} T_{1/2}^{\hspace{1cm} \ddagger}}$
0.0 18.5 5	(2)- (1+)	3.130 h 8

[†] From Eγ.

 β^- radiations

Εβ-	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
(244 7)	18.5	100	4.32 9	Eβ ⁻ : 280 20 (1955Nu11).

[†] Absolute intensity per 100 decays.

$\gamma(^{112}Ag)$

 $I\gamma$ normalization: Based on the assumption that there is no direct ground state feeding. The decay scheme is incomplete.

$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	E(level)	Ιγ‡	Mult.	α.	<u>Ι(γ+ce)</u> ‡	Comments
18.5 5	18.5	27.0 17	[E1]	2.71 23	100	Iγ: from I(γ+ce) and α =2.71. Iγ: =0.08 photons per 617γ in ¹¹² Ag reported by 1955Nu11 corresponds to Iγ(18.5γ)=3.4 which is much smaller than the value of 27 obtained with the assumption of a pure E1. I(γ+ce): from the assumption that 100% of the decay of ¹¹² Pd passes through the 18.5-keV level.

[†] From 1955Nu11.

[‡] From adopted levels.

[‡] Absolute intensity per 100 decays.

¹¹²Pd β⁻ Decay 1955Nu11,1953Nu04 (continued)

$^{176}{ m Yb}(^{28}{ m Si},{ m Xy})~~2002{ m Po}11$

Facility: VIVITRON; Beam: ²⁸Si, E=145 MeV; Target: 1.5 mg/cm² of ¹⁷⁶Yb with 15 mg/cm² Au backing; Detectors: Eurogam² array consisting of 30 HPGe and 24 Clover detectors; Measured: γγ, γγγ, Εγ, Ιγ; Deduced: level scheme.

¹¹²Ag Levels

E(level)		Jπ‡
0.0		2 (-)
x		(6+)
x+97.5	3	(6-)
y@		(7-)§
y + 74.6	5	(8-)
y+178.1@	6	(9-)§
y+565.1#	6	(10-)
$y + 889.8^{@}$	7	(11-)§
y+1337.9#	7	(12-)
y+1818.9@	10	(13-)§

- † From a least-squares fit to Ey.
- ‡ From 2002Poll, unless otherwise stated.
- § From adopted levels.
- $^{\#}$ (A): Member of $\pi g_{9/2} \nu h_{11/2}, \ \alpha \text{=+1/2 band}.$
- @ (B): Member of $\pi g_{9/2}vh_{11/2}$, $\alpha = -1/2$ band.

 $\gamma(^{112}{
m Ag})$

$E\gamma^{\dagger}$		E(level)	Ιγ	†
74.6	5	y + 74.6	70	20
97.5	3	x + 97.5	120	15
103.5	2	y + 178.1	100	10
324 . 7	3	y + 889.8	26	4
387.0	2	y + 565.1	50	5
448.1	3	y+1337.9	19	4
481 1		y + 1818.9	6	2
711.8	5	y+889.8	23	4
929 1		v+1818.9	9	3

[†] From 2002Poll. Data collected with the requirement that at least 5 Ge detectors were in prompt coincidences.

Adopted Levels, Gammas

 $Q(\beta^-) = -2585 \ \ 4; \ \ S(n) = -9394.0 \ \ 5; \ \ S(p) = -9648.5 \ \ 14; \ \ Q(\alpha) = -3476.4 \ \ 12 \ \ \ \ 2012Wa38.$

¹¹²Cd Levels

Cross Reference (XREF) Flags

A ¹¹² Ag β ⁻ Decay (3.130 h)	I ¹¹² Cd(γ,pol γ')	¹¹⁰ Pd(³ He,n)
B ¹¹² In ε Decay (14.88 min)	$J^{-112}\mathrm{Cd}(\gamma,\gamma')$	$^{110}\mathrm{Cd}(\mathrm{t,p})$
C Coulomb Excitation	$K^{-111}Cd(d,p\gamma)$	¹¹³ Cd(pol d,t)
$D^{-110}Pd(\alpha,2n\gamma)$	L ¹¹² Cd(pol d,d')	$^{112}\mathrm{Cd}(lpha,lpha')$
$E^{-112}Cd(n,n'\gamma)$	$M^{-112}Cd(d,d')$	¹¹¹ Cd(d,p)
$F^{-112}Cd(p,p'\gamma)$	$N^{-112}Cd(\pi^-,X)$	¹¹² Cd(pol p,p')
G ¹¹¹ Cd(n,γ) E=th: Primary	O Others:	¹¹² Cd(p,p')
H ¹¹¹ Cd(n,γ) E=th: Secondary	¹¹² Cd(e,e')	¹¹⁴ Cd(p,t)

11 ($\mathcal{L}_{\mathbf{d}}(\mathbf{n},\gamma)$ E=tn: S	econdary	Ca(e,e)	Ca(p,t)	
E(level) [†]	Jπ	XREF	$\mathbf{T}_{1/2}^{\ddagger}$	Comments	
0.0 [§] 617.518 [§] 3	0 + 2 +	ABCDEFGHI JKLMNO ABCDEFGHI JKLMNO	stable 6.46 ps 4	XREF: O(618)O(616)O(619). Jπ: L(p,p')=2; 617.52γ E2 to 0+. T _{1/2} : from B(E2)↑(617.52γ)=0.486 3; weighted average of 0.486 5 (1985Si01), 0.524 50 from ¹¹² Cd(e,e') in (1977Gi13), 0.484 4 (1976Es02), 0.478 33	
				(1970St17), 0.524 21 (1969Mi07), 0.514 60 (1965Mc05) and 0.546 39 (1962Ec03). Q: -0.38 3; weighted average of -0.37 4 (1977Gi13), -0.39 8 (1976Es02), -0.42 8 (1976Es01), -0.38 11 (1977Ma41). Others: -0.40 +13-20 (1971Ha47), -0.15 7 (1970St17).	
				 μ: +0.71 3; weighted average of +0.71 5 (conventional kinematics in 2011Ch33), +0.73 4 (inverse kinematics in 2011Ch33), 0.60 12 (1970St17), 0.72 22 via IMPAC (1974Hu01), 0.74 22 (1978BrZX) and 0.64 16 (1980Br01) from γγ(θ,H,t). β₂=0.173 11 (1968Ma34), 0.20 1 (1968St18) and 0.19 	
1224.341# 7	0+	ABCDEFGH JKLM O	4.2 ps 11	(1967BaZV). XREF: J(1223.2)O(1250)O(1223)O(1228). Jπ: L(p,p')=0; 606.84γ Ε2 to 2+; 1223.9ce Ε0 to 0+.	
1312.390 [@] 8	2+	ABCDEFGH JKLM O	1.9 ps 3	$T_{1/2}$: from B(E2)(W.u.)=51 13 in 1980Ju05. XREF: O(1314)O(1310)O(1313). J π : 694.87 γ E2+M1 to 2+; 1312.41 γ E2 to 0+; L(p,p')=2. $T_{1/2}$: from B(E2)(\downarrow)=0.0021 3 in Coulomb excitation (1969Mi07). Other: 1.5 ps +22-5 from DSAM in $^{112}Cd(n,n'\gamma)$ (2007Ga22).	
1415.480 [§] 25	4+	A CDEF H KLM O	0.87 ps 10	XREF: M(1416)O(1414)O(1417)O(1414)O(1416). $J\pi$: 798.04 γ E2 to 2+; $L(p,p')$ =4; band assignment. $T_{1/2}$: from B(E2) \uparrow =0.36 4, weighted average of 0.34 5 (1978Jo07), 0.356 42 (1965Mc05), and 0.41 8 (1962Ec03); Others: 0.7 ps +7-2 from DSAM in $^{112}Cd(n,n'\gamma)$ (2007Ga22). B(E4) \uparrow =0.09 1 W.u. (1992Pi08).	
1433.27 3	0+	AB DEFGH JKL O	1.9 ns <i>1</i>	XREF: B(1431.5)J(1429)O(1431)O(1436). J π : 815.79 γ E2 to 2+; 1433.27 E0 to 0+; L(d,p)=0. $T_{1/2}$: from RF-ce(t) in 111 Cd(d,p γ) (1979Lu10,1980Ju05). Others: 2.9 ps 9 using B(E2)(W.u.)(120.68 γ)=66 20 and 1.4 ps 3 using B(E2)(W.u.)(815.79 γ)=0.017 4. Ice(K)(1433.27):Ice(K)(815.79):Ice(K)(208.93):Ice(K) (120.68)= 0.79 8: 0.10 3: 2.5 4: 11 2 (1980Ju05) and Ice(K)(1433.27):Ice(K)(815.79)=19.0 17,	
				Ice(K)(1433.27):Ice(K)(120.68)= 0.051 7, Ice(K)(208.93):Ice(K)(815.79)=45 5 and Ice(K)(208.93):Ice(K)(120.68)=0.13 2 in 1997Dr03.	

¹¹²Cd Levels (continued)

E(level) [†]	Jπ	XREF	T _{1/2} ‡	Comments
1468.822# 14	2+	ABCDEFGH JKLM O	2.7 ps 5	XREF: M(1469)O(1467)O(1470)O(1470)O(1474)O(1469). J π : 1468.836 γ E2 to 0+; L(p,p')=2; band member. T _{1/2} : from B(E2) \uparrow =0.0055 10 in Coulomb excitation (1969Mi07); Other: 1.4 ps +30-6 ¹¹² Cd(n,n' γ)
1870.68# 4	4+	A DEF		(2007Ga22). Jπ: 1253.31γ E2 to 2+; 455.14γ M1+E2 to 4+; band
1870.96 5	0 +	AB DEFGH J LM O		member. XREF: J(1869.7)O(1873)O(1872)O(1876).
2005.200	3 –	A CDEF H J LM O	0.26 ps 5	$J\pi$: 1253.49γ E2 to 2+; L(pol d,t)=0. XREF: J(2000)O(2006)O(2003)O(2009). $J\pi$: 1387.68γ E1 to 2+; L(p,p')=3.
				B(E3)=0.0207 (1985De57) in ¹¹² Cd(p,p') and 0.114 9 (1985Fe05), 0.158 27 (1978Jo07), 0.106 22 (1965Mc05) and 0.37 18 (1963Ha20) in Coulomb excitation.
				eta_3 =0.164 11 (1968Ma34), 0.15 2 (1968St18), 0.049 5 (1985De57) and 0.147 (1984Pi01) from $^{112}\text{Cd}(p,p')$, 0.146 (1965Mc05) in Coulomb excitation, 0.15 (1967BaZV) from $^{112}\text{Cd}(\alpha,\alpha')$.
2064.53 [@] 3	3+	A DEFGH L O	0.47 ps 13	XREF: L(2064)O(2065). Jπ: 1447.00γ M1+E2 to 2+, 648.91γ M1+E2 to 4+; band member.
2081.64 [@] 4	4+	DEF H J L O	0.35 ps 10	XREF: J(2082)O(2085)O(2082). J π : 1464.04 γ E2 to 2+, 666.15 γ M1+E2 to 4+; L(p,p')=4; band member. B(E4) \uparrow =8.2 10 W.u. (1992Pi08).
2121.62 4	2+	B DE GH J LM O	0.51 ps 14	XREF: B(2124.7)J(2120.2)L(2122)O(2123)O(2123). $J\pi$: 2121.49 γ E2 to 0+; L(p,p')=2.
2156.18 5	2+	AB DE GH J LM O	0.2 ps 2	XREF: J(2155.2)O(2162)O(2155)O(2159). Jπ: 2156.20γ E2 to 0+; L(p,p')=2.
2167.76 \$ 5	6+	DE L		XREF: L(2167).
2231.12 5	2+	A DE GH J LM O	0.15 ps 14	Jπ: 752.14γ E2 to 4+; band member. XREF: J(2229.2)O(2230)O(2235).
2300.68 7	0+	B E GH J LM O	>623 fs	$J\pi$: 1006.81 γ E2 to 0+; $L(p,p')$ =2. XREF: $J(2295)M(2299)O(2306)O(2299,2305)O(2302)O(2299)$.
2373.19 5	5 –	DE LM O	0.4 ps +6-2	Jπ: 1683.22γ E2 to 2+; L(p,p')=0. Jπ: 957.72γ E1 to 4+ and 367.9γ E2 to 3-; L(p,p')=5; band member.
				$\beta_5{=}0.048$ or 0.044 if two-step contributions through 2+ and 3- states are included (1984Pi01).
2402.98 5	3+	DE GH O	0.24 ps +10-6	XREF: O(2402). Jπ: 987.89γ M1+E2 to 4+, 1785.48γ to 2+; 6991.18γ
2416.00 ^b 5	3 –	A DE H LM O	0.15 ps 3	from (1+) in ¹¹¹ Cd(n,γ) E=th:primary (1997Dr03). XREF: O(2414). Jπ: 946.92γ E1 to 2+; L(p,p')=3.
				B(E3)=0.0019 (1985De57). $\beta_3=0.0148$ 17 (1985De57), and 0.035 or 0.038 if two-step contributions via the 2+ and 3- states are included (1984Pi01).
2418.0 10	(1,2+)	I O	1.29 ps 3	XREF: $O(2420)O(2424)$. $J\pi$: 2418γ to $0+$; $L(d,p)=(0,1)$.
2454.51 8	4+	DE LM O	0.35 ps +9-6	$T_{1/2}$: from $^{112}Cd(\gamma, pol \ \gamma')$ and by assuming J=1. XREF: O(2457)O(2453). J π : 1142.21 γ E2 to 2+, 1038.93 γ M1+E2 to 4+; L(p,p')=4.
2493.15 6	4+	DE H LM O	0.4 ps +4-1	B(E4)↑: 8.4 8 W.u. (1992Pi08). XREF: M(2492)O(2491)O(2492). Jπ: 1875.70γ E2 to 2+, 1077.60γ M1+E2 to 4+; L(p,p')=4. R(E4)↑: 8.2.0 W.m. (1002Pi08)
2506.36 7	(2)+	A DE HJL O	0.21 ps 3	B(E4)↑: 8.2 9 W.u. (1992Pi08). XREF: L(2507)O(2505)O(2505)O(2507). Jπ: 1888.79γ M1+E2 to 2+; L(pol d,t)=2.

¹¹²Cd Levels (continued)

E(level) [†]	Jπ	XREF	T _{1/2} ‡	Comments
2506.70 6	1-	A E GHIJ M O	36.6 fs 19	XREF: O(2507). $J\pi$: 2506.70 γ E1 to 0+, 1037.8 γ E1 to 2+ and $L(p,p')$ =(1). $T_{1/2}$: from $^{112}Cd(\gamma,pol\ \gamma')$. Other: 44 fs 8 in
2532.20 12	2+	D GH L O		¹¹² Cd(n,n'γ) (2007Ga22). XREF: L(2533). Jπ: 1116.83γ to 4+, 1099.0γ to 0+; 6862.10γ from
2561.27 16	(1,2+)	GH		(1+) in ¹¹¹ Cd(n,γ) E=th:primary (1997Dr03). Jπ: 2561.13γ to 0+, 1248.92γ to 2+.
2570.21 ^a 6	5-	DE O	>693 fs	XREF: O(2569). $J\pi \colon 1154.75\gamma \ E1 \ to \ 4+ \ and \ 565.10\gamma \ E2 \ to \ 3-; \ band member.$ configuration: possible $v(s_{1/2},h_{11/2}).$ The
2571.47# 6	6+	DE LM O	>693 fs	assignment is tentative. XREF: L(2570)M(2569)O(2570)O(2570)O(2569). Jπ: 1156.21γ E2 to 4+ and 403.55γ M1+E2 to 6+;
2591.05b 5	4 –	DE H LM O	>693 fs	L(p,p')=6; band member. XREF: H(2590)L(2589)M(2590)O(2589)O(2590). Jπ: 526.52γ E1 to 3+, 585.78γ M1+E2 to 3-; band member.
2632 5	(5)-	МО		$J\pi$: from $L(p,p')=5$.
2634.99 5	3+	DE H L O		XREF: O(2637). $J\pi$: 629.80 γ E1 to 3-, 1322.59 γ M1+E2 to 2+, 1219.4 γ M1+E2 to 4+.
2650.15 8	0+	E L O	0.23 ps +12-6	XREF: L(2649)O(2640)O(2649). Jπ: 2032.62γ E2 to 2+, no γ rays were observed to the 0+ levels; L(pol d,t)=0.
2657 1	1-	LM O		XREF: L(2653).
2665.64 [@] 6	5+	DE L	>208 fs	Jπ: L(p,p')=1. XREF: L(2667). Jπ: 601.01γ E2 to 3+ and 583.92γ M1+E2 to 4+; band member.
2668.92 6	(2)=	A DE GH M O	0.21 ps 3	Table 1. The second state of the second sec
2674.00 10	2+	A DE GH L O	35 fs 3	XREF: $D(2673)G(2673.0)L(2673)O(2673)O(2678)$. J π : 2056.48 γ M1+E2 to 2+ and L(pol d,t)=2. configuration: possible $v(s_{1/2},d_{3/2})$. The assignment is tentative.
2694.0 <i>10</i> 2711.19 <i>8</i>	(1) 4+	DE LM O	0.72 ps ^d 14 0.26 ps +15-7	Jm: 2694 γ to 0+; observation in $^{112}Cd(\gamma,pol~\gamma').$ XREF: O(2710).
2723.96 7	2+	A DE HJLMO	159 fs 24	Jπ: 705.95γ E1 to 3-,1295.74γ M1+E2 to 4+; $L(p,p')$ =4. B(E4)↑: 3.6 4 W.u. (1992Pi08). XREF: $L(2722)M(2724)O(2718)O(2724)O(2725)O(2724)$.
2765.72 5	2+	A E GH LM O	34 fs 3	J π : 718.89 γ E1 to 3-, 1501 γ to 0+; L(p,p')=2. XREF: L(2763)O(2763)O(2770).
2773.08 8	(0)+	E L	>693 fs	J π : 2765.7 γ E2 to 0+,1296.9 γ M1+E2 to 2+; L(p,p')=2. XREF: L(2775).
2791.79 11	(4)-	E LM O	>97 fs	Jπ: 1460.83γ E2 to 2+. XREF: L(2793).
2793.80 ^{&} 6 2816.71 7	7 – 4 +	DE E LM O	>416 fs	Jπ: 786.59γ M1(+E2) to 3-; L(p,p')=5. Jπ: 420.68γ E2 to 5-, 625.97γ E1 to 6+; band member. XREF: M(2815)O(2799)O(2815). Jπ: 811.3γ E1 to 3-, 1401.3γ M1+E2 to 4+; L(p,p')=4.
2817.74 ^b 9	6 –	DE L O		$B(E4)\uparrow$: 2.6 3 W.u. (1992Pi08). XREF: L(2819)O(2818)O(2820)O(2822).
2829.19 6	1-	A E GHI	27 fs 3	Jπ: 444.54γ M1+E2 to 5-; band member. Jπ: 2829.20γ E1 to 0+.
2834.27 7	0+	E GH J L O	>347 fs	$T_{1/2}$: Other: 21.0 fs 16 in 112 Cd(γ ,pol γ). XREF: J(2832.2)L(2832)O(2829). J π : 2216.74 γ E2 to 2+; L(pol d,t)=0.

¹¹²Cd Levels (continued)

E(level) [†]	Jπ	XREF		${ m T}_{1/2}^{\ \ \ddagger}$	Comments
2840.22 11	(4)+	DE	LM O	>485 fs	XREF: L(2835)M(2836)O(2840)O(2836). B(E4)^: 1.8 4 W.u. (1992Pi08). Jm: 1424.73 \(M1+E2 \) to 4+; L(p,p')=4.
2852.90 5	2+	ЕНЈ	L O	0.44 ps +21-10	XREF: J(2850.1)L(2850). Jπ: 2852.87γ E2 to 0+; L(pol d,t)=0.
2866.75 6	3 –	A DE H	LM O	0.6 ps +8-2	3. 2632.07 12 to 0+, 1(p) 1 (t, t)=0. XREF: L(2867)M(2866)O(2865)O(2866). Jπ: 1451.30γ E1 to 4+; L(p,p')=3.
					B(E3)=0.00123 and β_3 =0.0122 11 (1985De57).
2867.48 6	(3)+	A E	L O	0.09 ps +8-3	XREF: A(2866.0)L(2877)O(2868)O(2875). Jπ: 2249.91γ M1+E2 to 2+; assignment in ¹¹³ Cd(pol d,t) (1990Bl10).
2881.02 \$ 8	8+	D			Jπ: 713.23γ E2 to 6+; band member.
2882.82 8	0+	E	L O	>693 fs	J π : 1570.51 γ E2 to 2+; L(pol d,t)=0.
2893.51 6	4+	E	LM O	>416 fs	XREF: $L(2892)M(2895)O(2894)O(2895)$. $J\pi$: 2276.07γ E2 to 2+, 811.9γ M1+E2 to 4+; $L(p,p')=4$. $B(E4)\uparrow$: 4.7 5 W.u. (1992Pi08).
2899.02 5	(3-,5-)	DE	L	0.13 ps 3	XREF: L(2897). Jπ: 1483.53γ (E1) to 4+.
2921.53@9	6+	DE	L O		XREF: L(2916)O(2901).
2924 29	0+		0		Jπ: 1505.5γ E2 to 4+; band member. Jπ: L(pol d, t)=0.
2924.83 5	4 –	E	L	>139 fs	XREF: L(2926).
2928 5	(5)-		LM O		Jπ: 551.63γ M1+E2 to 5- and 919.58γ M1+E2 to 3 XREF: L(2922).
					$J\pi$: $L(p,p')=5$.
2931.46 6	1+	E GHI	0	17 fs 4	XREF: G(2930.2)I(2931)O(2931). Jπ: 2931.42γ M1 to 0+, 2314.12γ M1+E2 to 2+. T _{1/9} : Other: 12.3 fs 7 in ¹¹² Cd(γ,pol γ').
2931.97 ^a 8	6 –	DE	L		1/2. Otter 12.5 15 / 11 Cu(γ, pot γ / XREF: L(2932). Jn: 558.7γ M1+E2 to 5-; band member.
2935.50a 6	7 –	D			Jπ: 767.65γ E1 to 6+, 365.38γ E2 to 5-; band member.
2944.94 7	2+	E GH	LM O	0.4 ps + 3 - 1	XREF: L(2942)M(2942)O(2936)O(2942). Jπ: 2944.78γ E2 to 0+; L(p,p')=2.
2947.76 10	(2,3)+	E	L O	83 fs 24	XREF: L(2946,2949)O(2946). Jπ: 2330.22γ M1+E2 to 2+.
2961.92 6	4 –	E	О		Jπ: 588.83γ M1+E2 to 5-; 956.7γ M1+E2 to 3
2962.0 7	2+	Α	LM O		XREF: L(2967)M(2969)O(2965)O(2969). Jπ: 2961.7γ to 0+, 957.1γ to 3-; L(p,p')=2.
2970.02 10	(4,5)+	DE			Jπ: 1554.49γ M1+E2 to 4+, 398.57γ to 6+.
2972.45 7	5+	DE		0.6 ps + 11 - 2	$J\pi\colon1556.8\gamma$ M1+E2 to 4+, 804.89 γ M1+E2 to 6+.
2980.85 9	2+	E	L O	0.14 ps 3	XREF: L(2976,2980)O(2974)O(2988). Jπ: 2363.274γ M1+E2 to 2+; L(pol d,t)=2.
3002.06 6	3+	E	O	0.19 ps + 12 - 6	$J\pi\colon\thinspace 2384.54\gamma\ M1{+}E2$ to 2+ and 1586.57 $\gamma\ M1{+}E2$ to 4+.
3011.08 11	(4,5,6)-	E	L		XREF: L(3022).
3027.97 10	6+	DE	О		Jπ: 637.89γ M1+E2 to 5 XREF: O(3026).
					$J\pi\colon946.39\gamma$ E2 to 4+ and 859.83 γ M1+E2 to 6+.
3046 5	1-		M O		$J\pi$: $L(p,p')=1$.
3049.08 8	(4+)	E	L	0.08 ps +12-3	XREF: L(3046,3050). Jπ: 1633.39 γ to 4+; Jπ=4+,1- in ¹¹² Cd(pol d,d').
3051.19 11	(5)+	E	L		XREF: L(3058). Jπ: 1635.70γ M1+E2 to 4+.
3066.23 10	(2,3)-	E G	L	>207 fs	XREF: G(3065.4)L(3065). Jπ: 2448.76γ E1 to 2+; ¹¹² Cd(pol d,d') (1994He22) and ¹¹² Cd(n,n'γ) (2001Ga44) support 3- assignment.
3068.62 6	4+	A E	o	>555 fs	XREF: O(3071)O(3069)o(3071)o(3072). Jπ: 1756.30γ E2 to 2+, 1653.09γ M1+E2 to 4+. B(E4)↑: 4.6 8 W.u. (1992Pi08) (unresolved doublet).
3071.46 8	(4)+	E	Мо	>249 fs	XREF: $M(3072)o(3071)o(3072)$. $J\pi$: 1006.9γ to $3+$, 1066.28γ to $3-$; $L(p,p')=4$. $B(E4)\uparrow$: $4.6~8~W.u.~(1992Pi08)~(unresolved~doublet)$.
3071.74 5	(1,2+)	E			Jπ: 3071.2γ to 0+, 949.65γ to 2+.

¹¹²Cd Levels (continued)

E(level) [†]	Jπ	XRE	F	T _{1/2} ‡	Comments
3075.19 11	(4,5)+	DE	L	0.3 ps +5-1	XREF: D(3075.65)L(3074,3080).
					Jπ: 1659.70γ M1+E2 to 4+.
3081.65 19	2+	E	L O		XREF: L(3091)O(3085).
					$J\pi$: 3081.60 γ E2 to 0+.
3093.02 ^a 8	8-	D			Jπ: 299.19γ M1+E2 to 7-; band member.
		Б	TM O		
3102° 5	4+		LM O		XREF: L(3100).
					$J\pi$: $L(p,p')=4$.
					B(E4)↑: 0.68 13 W.u. (1992Pi08).
3102.15° 10	(2)+	E	O	21 fs 6	XREF: O(3101).
					$J\pi$: 3102.10 γ to 0+; L(pol d,t)=2.
3102.59 8	(4,5)	E	L		XREF: L(3104).
	(- , - /	_	_		Jπ: 729.41γ to 5-, 1687.08γ to 4+.
2105 50 5	(9).	E	0	0.3 ps +5-1	
3105.50 5	(2)+	£	0	0.3 ps +5-1	XREF: O(3108)O(3109).
					$J\pi$: L(t,p)=2; 2488.14 γ to 2+,1690.1 γ to 4+.
3109.98 7	(2)+	E G	J O	0.13 ps +6-3	XREF: G(3111.3)J(3110)O(3113).
					$J\pi$: 3110.01 γ to 0+; $L(d,p)=2$.
3130.83 7	5 –	A E	LM O		XREF: L(3124,3131)M(3131)O(3128)O(3131).
· · ·		=	-		Jπ: 1125.78γ E2 to 3-; 1715.08γ E1 to 4+; Other:
				a= a =	L(p,p')=3.
3133.42 9	1 –	A E GHI	0	27 fs 5	J π : 3133.21 γ E1 to 0+; Other: L(t,p)=(2).
					$T_{1/2}$: Other: 10.7 fs 5 in112CD(γ ,pol γ) (2005Ko32).
3135.84 6	(2,3+)	E GH		0.3 ps + 3 - 1	$J\pi\colon\thinspace 2518.43\gamma$ to 2+, 1071.26γ to 3+; 6258.35γ from
					(1+) in $^{111}Cd(n,\gamma)$ E=th:primary.
3145.28 8	3+,4+,5+	E	О	0.13 ps +5-3	XREF: O(3146).
	,,	=	_	F	Jπ: 1729.82γ M1+E2 to 4+.
0100 51 0	0	D. CIII		0.00 10.7	
3163.51 9	2+	E GH		0.26 ps + 12 - 7	J π : 3163.4 γ E2 to 0+, 656.74 γ E1 to 1
3165.46 11	4-,5-,6-	E	L		XREF: L(3168).
					J π : 792.27 γ M1+E2 to 5-; Other: (4+) in 112 Cd(pol
					d,d') (1994He22).
3169.46 6	2+	A E GH		146 fs <i>14</i>	$J\pi$: 1945.14 γ E2 to 0+, 1164.2 γ E1 to 3
3175 4	(3)-		0		$J\pi$: L(t,p)=3.
		D	O		· · · · · · · · · · · · · · · · · · ·
3176.47 8	8+	D			J π : 604.98 γ E2 to 6+, 295.19 γ M1+E2 to 8+.
3176.83 13	(4)+	E			$J\pi$: 2559.28 γ E2 to 2+.
3178.79 7	2+	E	LM O	104 fs 24	XREF: $L(3177)M(3176)O(3177)O(3184)O(3176)$.
					$J\pi$: 3178.76 γ E2 to 0+; $L(p,p')=2$.
3189.82 9	4+,5,6+	E		>354 fs	$J\pi$: 1022.09 γ to 6+, 1774.30 γ to 4+.
3190.06 9	0+,1,2,3+	E GH	JL	22.2 fs 14	XREF: G(3189.93)L(3188).
	,-,-,-				J π : 2572.51 γ to 2+; 6203.94 γ from (1+) in 111 Cd(n, γ)
		_	_		E=th:primary (1997Dr03).
3194.46 6	(2)+	E	J O	0.10 ps 4	XREF: J(3193).
					$J\pi$: 1189.41 γ to 3-, 2576.72 γ to 2+; $L(pol\ d,t)$ =2.
3201.32 10	5 –	E		0.5 ps + 5-2	$J\pi\colon1196.21\gamma$ E2 to 3-; 1785.8γ E1 to 4+.
3203.25 10	(2,3) +	E	0	0.12 ps +9-4	XREF: O(3204).
				r	Jπ: 2585.70γ (M1+E2) to 2+.
2205 74 10	9 . 9 .4	T.		>111 fa	
3205.74 12	2+,3,4	Е	T35 0	>111 fs	Jπ: 1736.90γ to 2+; 1790.2γ to 4+.
3206.48 8	(4)+	E	LM O	76 fs 24	XREF: M(3204)O(3204).
					$J\pi$: 1084.93 γ to 2+; $L(p,p')=4$.
					B(E4)↑: 1.27 24 W.u. (1992Pi08).
3206.71 3	2+, 3, 4	E		0.4 ps + 3 - 1	$J\pi$: 1792.1 γ to 4+; 1894.30 γ to 2+.
3230.29 9	8+	D		-	Jπ: 658.83γ E2 to 6+; 349.26γ M1+E2 to 8+.
3231.59 6	1+	A E GHI	. 0	35 fs 4	XREF: I(3231)O(3230).
5251.00 0	± 1	a is chili	. 0	00 ID T	
					Jπ: 3231.35γ M1 to the 0+, 2614.02γ M1+E2 to 2+.
					$T_{1/2}$: Other: 26.7 fs 16 in $^{112}Cd(\gamma,pol \gamma')$.
3239.04@7	7+	D			$J\pi \colon 573.31 \gamma$ E2 to 5+, 1071.24γ M1+E2 to 6+; band
					member.
3242.64 6	2+	E GH	L O	0.2 ps +3-1	XREF: L(3246)O(3240).
			-		$J\pi$: 3242.49 γ E2 to the g.s.; L(pol d,t)=2.
3246.86 8	(1.9)	T.	т	0 16 2	
υ <u>⊿</u> 4υ.ου δ	(1,2)+	E	J	0.16 ps 3	J π : 2629.34 γ to 2+; 4385 γ E1 from 1- in $^{112}\text{Cd}(\gamma, \gamma')$
					(1971Mo31).
3247.17 11	(6+)	E	M O		XREF: M(3244)O(3244).
					$J\pi$: 1831.67 γ to 4+; $L(p,p')=(6)$.
3248.25 ^b 8	7 –	D			Jπ: 155.21γ M1+E2 to 8-; 316.19γ M1+E2 to 6-; band

¹¹²Cd Levels (continued)

E(level) [†]	Jπ	XREF		T _{1/2} ‡	Comments
3251.86 13	(0)+	E	О	<0.8 ps	XREF: O(3252).
					$J\pi$: 2634.31 γ E2 to 2+.
3252.55 12	(6,7,8)-	D			$J\pi$: 458.75 γ M1(+E2) to 7
3254 . 21 7	(0+,1,2)	E GH		0.2 ps + 8 - 1	J π : 1942.01 γ to 2+; 6140.26 γ from (1+) in $^{111}Cd(n,\gamma)$
9974 99 9	(9.4).	T.		F. G	E=th:primary.
3254.30 8	(3,4)+	E		57 fs 17	Jπ: 1249.01γ E1 to 3- and 1838.89γ M1+E2 to 4+.
3258.01 11	(3,4+)	E		0.10.5	J π : 1252.8 γ to 3-; assignment in ¹¹³ Cd(pol d,t).
3266.54 11	4+	E	LM O	0.19 ps 5	XREF: L(3265)M(3265)O(3259)O(3265).
					Jπ: 1851.04γ to 4+; $L(p,p')=4$. B(E4)↑: 2.5 5 W.u. (1992Pi08).
3269.50 8	2+,3,4,5-	E		0 17 191 7	
3290.40 12	(2+)	E		0.17 ps +21-7	Jπ: 1264.25γ to 3-, 1854.04γ to 4+. Jπ: 1419.43γ to 0+.
3291.13 7	2+,3,4,5-		LM O	0.2 ps +5-1	XREF: L(3293)M(3292)O(3302)O(3292).
3231.13 7	2+,0,4,0-	ь	LIVI O	0.2 ps +0-1	Jπ: 1875.7γ to 4+, 1285.95γ to 3
3291.17 9	7 –	D			Jπ: 917.73γ E2 to 5-, 1123.96γ E1 to 6+.
3297.01 8	(2,3)+	E	0	0.38 ps +24-11	XREF: O(3296).
5257.01 6	(2,5)+	ь	O	0.50 ps +24-11	$J\pi$: 2679.46 γ to 2+, 1881.5 γ to 4+; L(pol d,t)=2.
3300.99 16	(1)	E I		0.10 ps +12-4	J π : 3300.94 γ to 0+; population in 112 Cd(γ ,pol γ).
0000.00 10	(1)	L I		0.10 ps 112 4	$T_{1/2}$: Other: 40.6 fs 22 in 112 Cd(γ , pol γ).
3303.24 11	(2,3)+	A E GH	О	173 fs 24	XREF: O(3304).
0000.24 11	(2,0)1	n E dii	Ü	110 13 24	$J\pi$: 2685.78 γ to 2+; 886.99 γ to 3-; $L(d,p)$ =2.
3312.24 6	(1-,2)	E J	L O	76 fs 17	XREF: J(3309)L(3309).
3012.21	\ - , - /	2 0	_ 0		Jπ: 2694.56γ to 2+; 1306.97γ to 3-; 4323γ from 1- in
					$^{112}\mathrm{Cd}(\gamma,\gamma')$.
3318.09 8	9 –	D			Jπ: 524.28γ E2 to 7-; band member.
3319.83 6	1-,2,3,4+	E		0.17 ps 3	Jπ: 2702.24γ to 2+ and 1314.6γ to 3
3322.40 10	10+	D		7.2. P	J π : 441.45 γ E2 to 8+; band member.
3325.96 11	(3)-	E	O		XREF: O(3326).
					B(E3)↑=0.00045 (1985De57).
					$\beta_3 = 0.0073 \ 20 \ (1985 De 57).$
					$J\pi$: 734.91 γ to 4-; $L(p,p')=3$.
3329.17 11	(5-)	E	LM O		XREF: M(3327)O(3327).
					$J\pi$: 1913.67 γ to 4+; $L(p,p')=(5)$.
3332.11 8	2+,3,4,5-	E	O	0.12 ps 3	XREF: O(3335)O(3330).
					$J\pi$: 1326.83 γ to 3-, 1916.72 γ to 4+.
3332.46 10	1, 2, 3, 4+	E		97 fs 24	$J\pi$: 2714.91 γ to 2+.
3336.03 10	(2)+	E	O	0.10 ps 3	XREF: O(3340).
					$J\pi$: 2718.48 γ to 2+; $L(pol \ d,t)=2$.
3341.86 10	(3)+	E	O	37 fs 4	XREF: O(3344)O(3344).
					$J\pi\colon\thinspace 2724.31\gamma\ E2+M1$ to 2+. Note, that $L(p,p')\text{=}3.$
3353.36 10	0+	E	L O	0.13 ps 4	XREF: L(3350)O(3352).
					$J\pi$: 2735.81 γ to 2+; $L(pol\ d,t)=0$.
3363.55 7	2+	E G	LM O	0.24 ps + 10 - 6	$XREF:\ L(3366)M(3359)O(3365)O(3361)O(3359).$
					$J\pi$: 3363.67 γ E2 to 0+; $L(p,p')$ =2.
3363.99 13	2+,3,4,5,6+	E		0.2 ps + 7 - 1	$J\pi$: 909.48 γ to 4+.
3369.62 7	2+ , 3 , $4+$	A E	L	35 fs 3	XREF: L(3372).
					$J\pi\colon\thinspace 2752.08\gamma$ to 2+, 1952.9γ to 4+.
3375.45 12	(6,7,8)	D			Jπ: 439.95γ D to 7
3375.50 9	(1)	E I		52 fs 8	Jπ: 3375.40γ to 0+, 2758.02 to 2+; population in
					¹¹² Cd(γ,pol γ').
	_	_			$T_{1/2}$: Other: 87 fs 13 in $^{112}Cd(\gamma,pol\ \gamma')$.
3376.46 11	7 –	D	_		Jπ: 283.40γ M1+E2 to 8-; 444.53γ M1+E2 to 6
3378.52 8	(2)+	E G	L O	0.4 ps + 3 - 1	XREF: L(3380)O(3381).
0000 5: -		-		0 = 4 :=	$J\pi$: 1909.63 γ to 2+; $L(pol d,t)=2$.
3383.71 9	0+ to 4+	E		97 fs 17	Jπ: 2766.05γ to 2+.
3392.78 12	1,2+	E		>693 fs	Jπ: 3392.72γ to 0+.
3393.39 4	0+ to 4+	E	^	>970 fs	Jπ: 2775.83γ to 2+.
3393.45 10	(1,2+)	A E GH	О		XREF: O(3393).
0000 60 7	1 4	P		0.0 - 0.1	Jπ: 3392.72γ to 0+, 2775.78 to 2+.
3393.60 7	1- to 5-	E		0.2 ps +3-1	Jπ: 3392.72γ to 3
3398.88# 8	8+	D			Jπ: 827.54γ E2 to 6+; 517.99γ M1+E2 to 8+; band
3400.35 10	0+ to 4+	E			member. $J\pi$: 2087.94γ to $2+$.

¹¹²Cd Levels (continued)

E(level) [†]	Jπ	XREF		T _{1/2} ‡	Comments
3402.93 10	1+,2+,3+	E	0	>527 fs	XREF: O(3402).
3402.93 10	1+,2+,3+	ь	U	>021 1s	
2499 55 0	(4):	E	LM O		Jπ: 2785.37γ M1+E2 to 2+.
3422.55 9	(4)+	£	LM O		XREF: L(3417,3422)M(3417)O(3415)O(3417).
					Jπ: 1953.71γ to 2+; $L(p,p')=4$.
					B(E4)↑: 3.1 4 W.u. (1992Pi08).
3425.60 5	0+ to 4+	E		0.09 ps 3	$J\pi$: 2113.19 γ to 2+.
3426.32 14	0+ to 4+	E		33 fs + 17 - 10	$J\pi$: 2113.19 γ to 2+.
3428.87 7	2+	E GH		0.08 ps + 5 - 3	$J\pi\colon\thinspace 2811.2\gamma$ M1+E2 to 2+, 3428.71γ E2 to 0+.
3429.6 3		E			
3429.98 16	(5,6,7)	D			$J\pi$: 1262.21 γ d(+Q) to 6+.
3433.73 11	(2+ to 6+)	E	O	0.11 ps +6-3	XREF: O(3433).
	(=: -: -: /			7.112 ps	$J\pi$: 2018.23 γ to 4+.
3451.97 8	(0+)	E			Jπ: 945.26γ to 1
		E	M O		
452 5	6 (+)		мо		$J\pi$: $L(p,p')=6$.
452.47 7	2+	E GH		0.2 ps +4-1	XREF: G(3451.9).
					$J\pi$: 3452.1 γ to 0+, 2037.4 γ to 4+.
453.8 3	0+ to 4+	E			$J\pi$: 1985.0 γ to 2+.
455.48 9	0+, 1, 2	E GH	L	0.3 ps +3-1	XREF: L(3457).
					J π : 2837.85 γ to 2+; 5938.41 γ from (1+) in 111 Cd(n, γ)
					E=th:primary 1997Dr03.
470.3 12	0+ to 4+	A			$J\pi$: 2852.7 γ to 2+.
	2+ to 6+	E			Jπ: 2055.8γ to 4+.
471.32 22				0.0 - 7.1	•
478.58 7	0+,1,2+	E GH		0.2 ps + 7 - 1	J π : 2166.06 γ to 2+; 5914.9 γ from (1+) in 111 Cd(n, γ)
					E=th:primary 1997Dr03.
478.7 9	0+ to 4+	A			Jπ: 1322.0 to 2+.
487 5	(6+)		O		$J\pi$: from $L(p,p')=(6)$.
487.55 10	(4)+	E	0	83 fs 17	XREF: O(3489).
					$J\pi$: 2869.99 γ E2 to 2+; 4+ in $^{112}Cd(p,p')$.
3489.85 <i>6</i>	2+,3,4+	E	L	68 fs 13	XREF: L(3492).
100.00	21,0,41	ь	-	00 15 10	$J\pi$: 1368.12 γ to 2+; 2074.36 γ to 4+.
400 00 10	(C = T)	D			
1493.92 13	(6,7)	D			Jπ: 1326.15γ D(+Q) to 6+.
5500.45 8	0+ to 3+	E GH		0.15 ps 3	J π : 2882.85 γ to 2+; 5893.51 γ from (1+) in 111 Cd(n, γ)
					E=th:primary (1997Dr03).
3511.6 3	3- to 7-	E		>485 fs	Jπ: 1138.4γ to 5
3512.97 10	(1, 2, 3) +	E G		0.10 ps 3	Jπ: 2895.23γ M1+E2 to 2+.
3522.51 10	0+ to 4+	E		33 fs 3	$J\pi$: 2904.95 γ to 2+.
528.92b 9	7 –	D			$J\pi$: 593.45 γ M1+E2 to 7-; band member.
530.90 5		E			,
531.32 7	4+	E	LM O	76 fs 24	XREF: L(3543).
1001.02 /	4.7	Ľ	LWI O	70 IS 24	
					J π : 2913.77 γ M1+E2 to 2+; L(p,p')=4.
					B(E4)↑: 0.00 1 W.u. (1992Pi08).
540.24 9	1,2+	E GH		15.3 fs 21	$J\pi$: 3539.8 γ to 0+, 2922.72 γ to 2+.
542.84@ 10	8+	D			$J\pi\colon1375.02\gamma$ E2 to 6+; band member.
556.88 10	(1,2+)	E G I		48 fs 4	Jπ: 3556.78γ to 0+.
					$T_{1/2}$: Other: 0.52 ps 13 in $^{112}Cd(\gamma,pol \gamma')$
					(2005Ko32).
557.33 10	(3)-	Е Н	LM O	0.07 ps 3	XREF: L(3560)M(3557)O(3557).
	\ - /	2 11		PC 0	$J\pi$: 2939.77 γ to 2+; $L(p,p')$ =3.
569 05 6	9.1	E CIII		69 fo 10	
568.05 6	2+	E GHI		62 fs 10	Jπ: 3568.00γ E2 to 0+.
	_	_			$T_{1/2}$: Other: 60 fs 15 in $^{112}Cd(\gamma,pol\ \gamma')$.
5571.05 ^a 10	9 –	D			$J\pi\colon777.36\gamma$ E2 to 7-; 252.887 M1+E2 to 9-; band
					member.
572.28 20	(1,2+)	GH			$J\pi$: 3572.37γ to 0+.
574.49 9	0+ to 4+	E		$\leq 2.5 \text{ ps}$	$J\pi$: 2956.96 γ to 2+.
577.2 3	0+ to 4+	E		-	$J\pi$: 2264.8 γ to 2+.
577.55 11	2+	GH			Jπ: 3577.53γ to 0+, 2352.94γ to 4+.
				0 19 20 9	
579.44 7	0+ to 4+	E		0.13 ps 3	Jπ: 2961.69γ to 2+.
583.80 24	5,6,7	D			J π : 1416.03 γ D(+Q) to 6+.
586 5	3 –		МО		$J\pi: L(p,p')=L(d,d')=3.$
594.64 9	1, 2 +	E I	L	76 fs 14	XREF: L(3590).
					$J\pi\colon3594.49\gamma$ to 0+, 2977.24γ to 2+.
					$T_{1/2}$: Also: 0.153 ps 25 in $^{112}Cd(\gamma,pol \gamma')$
					(2005Ko32).

¹¹²Cd Levels (continued)

3608.91 10	1+, 2+, 3+ 0+, 1, 2, 3+ 1+, 2+, 3+ 3- 0+ to 4+ 2+ to 6+ 0+, 1, 2, 3+ 1, 2+ 8- 3- 0+ to 4+ 1, 2+ 10+ 6-, 7-, 8-	E G E G D E	LM O	31 fs 8 0.12 ps 3 0.10 ps +6-3 0.06 ps +6-2 0.033 ps 10 0.24 ps +8-5 0.12 ps 4	$\begin{split} &J\pi\colon 2981.25\gamma\ M1+E2\ to\ 2+,\\ &J\pi\colon 2991.30\gamma\ to\ 2+;\ 5784.3\gamma\ from\ (1+)\ in\ ^{111}Cd(n,\gamma)\\ &E=th:primary\ (1997Dr03).\\ &J\pi\colon 2995.85\gamma\ M1+E2\ to\ 2+,\\ &XREF:\ L(3616)M(3614)O(3614).\\ &J\pi\colon 2202.7\gamma\ to\ 4+,\ 3000.83\gamma\ to\ 2+;\ L(p,p')=3.\\ &J\pi\colon 3004.62\gamma\ to\ 2+,\\ &XREF:\ L(3625).\\ &J\pi\colon 2212.1\gamma\ to\ 4+;\ (6+)\ in\ ^{112}Cd(pol\ d,d')\\ &(1994He22).\\ &J\pi\colon 3028.88\gamma\ to\ 2+;\ 5746.95\gamma\ from\ (1+)\ in\ ^{111}Cd(n,\gamma)\\ &E=th:primary\ (1997Dr03). \end{split}$
3608.91 10	0+,1,2,3+ 1+,2+,3+ 3- 0+ to 4+ 2+ to 6+ 0+,1,2,3+ 1,2+ 8- 3- 0+ to 4+ 1,2+ 10+	E G E E C C C C C C C C C C C C C C C C C	L	0.12 ps 3 0.10 ps +6-3 0.06 ps +6-2 0.033 ps 10 0.24 ps +8-5	$J\pi \colon 2991.30 \gamma \text{ to } 2+; 5784.3 \gamma \text{ from } (1+) \text{ in } ^{111}\text{Cd}(n,\gamma)$ $E=\text{th:primary } (1997\text{Dr}03).$ $J\pi \colon 2995.85 \gamma \text{ M}1+E2 \text{ to } 2+.$ $XREF \colon L(3616)\text{M}(3614)\text{O}(3614).$ $J\pi \colon 2202.7 \gamma \text{ to } 4+, 3000.83 \gamma \text{ to } 2+; \text{L}(p,p')=3.$ $J\pi \colon 3004.62 \gamma \text{ to } 2+.$ $XREF \colon L(3625).$ $J\pi \colon 2212.1 \gamma \text{ to } 4+; (6+) \text{ in } ^{112}\text{Cd}(\text{pol } d,d')$ $(1994\text{He}22).$ $J\pi \colon 3028.88 \gamma \text{ to } 2+; 5746.95 \gamma \text{ from } (1+) \text{ in } ^{111}\text{Cd}(n,\gamma)$ $E=\text{th:primary } (1997\text{Dr}03).$
3618.48 14 3 3622.18 11 3 3627.6 3 2 3646.54 10 3 3652.18 9 3 3658.74 11 8 3665.78 10 3 3676.73 8 3 3682.83 12 12 3684.02\stress{12} 12 3685.55 15 6 3687.93 10 3690.68 13 3 3690.68 13 10 31 3697.74 12 11	3- 0+ to 4+ 2+ to 6+ 0+,1,2,3+ 1,2+ 8- 3- 0+ to 4+ 1,2+ 10+	E E E G D E E	L	0.06 ps +6-2 0.033 ps 10 0.24 ps +8-5	$\begin{split} &J\pi\colon 2995.85\gamma\ M1+E2\ to\ 2+.\\ &XREF\colon L(3616)M(3614)O(3614).\\ &J\pi\colon 2202.7\gamma\ to\ 4+,\ 3000.83\gamma\ to\ 2+;\ L(p,p')=3.\\ &J\pi\colon 3004.62\gamma\ to\ 2+.\\ &XREF\colon L(3625).\\ &J\pi\colon 2212.1\gamma\ to\ 4+;\ (6+)\ in\ ^{112}Cd(pol\ d,d')\\ &(1994He22).\\ &J\pi\colon 3028.88\gamma\ to\ 2+;\ 5746.95\gamma\ from\ (1+)\ in\ ^{111}Cd(n,\gamma)\\ &E=th:primary\ (1997Dr03). \end{split}$
3618.48 14 3 3622.18 11 3 3627.6 3 2 3646.54 10 3 3652.18 9 3 3658.74 11 8 3665.78 10 3 3676.73 8 3 3682.83 12 12 3684.02\stress{12} 12 3685.55 15 6 3687.93 10 3690.68 13 3 3690.68 13 10 31 3697.74 12 11	3- 0+ to 4+ 2+ to 6+ 0+,1,2,3+ 1,2+ 8- 3- 0+ to 4+ 1,2+ 10+	E E E G D E E	L	0.06 ps +6-2 0.033 ps 10 0.24 ps +8-5	XREF: L(3616)M(3614)O(3614). $J\pi$: 2202.7 γ to 4+, 3000.83 γ to 2+; L(p,p')=3. $J\pi$: 3004.62 γ to 2+. XREF: L(3625). $J\pi$: 2212.1 γ to 4+; (6+) in 112 Cd(pol d,d') (1994He22). $J\pi$: 3028.88 γ to 2+; 5746.95 γ from (1+) in 111 Cd(n, γ) E=th:primary (1997Dr03).
3622.18 11	2+ to 6+ 0+,1,2,3+ 1,2+ 8- 3- 0+ to 4+ 1,2+ 10+	E G E G D E		0.033 ps 10 0.24 ps +8-5	$\begin{array}{l} J\pi\colon 3004.62\gamma\ to\ 2+.\\ XREF\colon L(3625).\\ J\pi\colon 2212.1\gamma\ to\ 4+;\ (6+)\ in\ ^{112}Cd(pol\ d,d')\\ (1994He22).\\ J\pi\colon 3028.88\gamma\ to\ 2+;\ 5746.95\gamma\ from\ (1+)\ in\ ^{111}Cd(n,\gamma)\\ E=th:primary\ (1997Dr03). \end{array}$
3627.6 3 2 3646.54 10 0 3652.18 9 1 3658.74 11 8 3665.78 10 8 3676.73 8 0 3676.73 8 3682.83 12 1 3684.02 \$ 12 1 3685.55 15 6 3687.93 10 0 3690.68 13 0 3697.74 12 1	2+ to 6+ 0+,1,2,3+ 1,2+ 8- 3- 0+ to 4+ 1,2+ 10+	E G E G D E		0.24 ps +8-5	XREF: L(3625). $J\pi$: 2212.1 γ to 4+; (6+) in 112 Cd(pol d,d') (1994He22). $J\pi$: 3028.88 γ to 2+; 5746.95 γ from (1+) in 111 Cd(n, γ) E=th:primary (1997Dr03).
3646.54 10 (3652.18 9 13658.74 11 8 3665.78 10 8 3676.73 8 3682.83 12 13684.02	0+,1,2,3+ 1,2+ 8- 3- 0+ to 4+ 1,2+ 10+	E G E G E		•	XREF: L(3625). $J\pi$: 2212.1 γ to 4+; (6+) in 112 Cd(pol d,d') (1994He22). $J\pi$: 3028.88 γ to 2+; 5746.95 γ from (1+) in 111 Cd(n, γ) E=th:primary (1997Dr03).
3652.18 9 1 3658.74 11 8 3665.78 10 8 3676.73 8 6 3682.83 12 1 3684.02 § 12 1 3685.55 15 6 3687.93 10 6 3690.68 13 6 3696.15 11 6 3697.74 12 1	1,2+ 8- 3- 0+ to 4+ 1,2+	E G D E	LM O	•	(1994He22). $J\pi:~3028.88\gamma~to~2+;~5746.95\gamma~from~(1+)~in~^{111}Cd(n,\gamma)$ E=th:primary~(1997Dr03).
3652.18 9 1 3658.74 11 8 3665.78 10 8 3676.73 8 6 3682.83 12 1 3684.02 12 1 3685.55 15 6 3687.93 10 6 3690.68 13 6 3690.71 12 1	1,2+ 8- 3- 0+ to 4+ 1,2+	E G D E	LM O	•	E=th:primary (1997Dr03).
3658.74 11 8 8 3665.78 10 3 8 9 3 6 9 3 6 8 13 12 13 8 6 9 7 7 4 12 13 3 7 0 3 . 8 1 10 10	8- 3- 0+ to 4+ 1,2+	D E E	LM O	0.12 ps 4	
3665.78 10	3- 0+ to 4+ 1,2+	E E	LM O		$J\pi$: 3652.07 γ to 0+, 3034.60 γ to 2+.
3676.73 8 6 6 6 6 8 7 8 8 7 9 8 12 13 6 8 6 7 9 3 10 6 6 8 13 6 6 9 6 . 15 11 6 6 6 7 7 4 12 13 6 6 9 7 . 7 4 12 13 6 9	0+ to 4+ 1,2+	E	LM O		$J\pi$: 410.55 γ M1+E2 to 7-; 340.50 γ M1+E2 to 9
3682.83 12 12 3684.02\(\) 12 3685.55 15 63687.93 10 (3690.68 13 (697.74 12 13 3703.81 10 11	1,2+			132 fs 24	XREF: M(3664)O(3664).
3682.83 12 12 3684.02\(\) 12 3685.55 15 63687.93 10 (3690.68 13 (697.74 12 13 3703.81 10 11	1,2+				$J\pi$: 3048.22 γ to 2+; $L(p,p')=3$.
3684.02\\$ 12	10+			0.09 ps 3	$J\pi$: 3059.00 γ to 2+.
3685.55 15 6 3687.93 10 (3690.68 13 (3696.15 11 (3697.74 12 1 3703.81 10 1		E I		32 fs 8	$J\pi$: 3682.76 γ to 0+.
3685.55 15 6 3687.93 10 (3690.68 13 (3696.15 11 (3697.74 12 1 3703.81 10 1					$T_{1/2}$: Other: 88 fs 14 in $^{112}\mathrm{Cd}(\gamma,\mathrm{pol}\ \gamma')$.
3690.68 13 (0 3690.68 13 (0 3696.15 11 (0 3697.74 12 1	6-,7-,8-	D			Jπ: 802.98γ E2 to 8+.
3690.68 13 (3696.15 11 (3697.74 12 1 3703.81 10 1		D			$J\pi: 309.09\gamma \text{ M1+E2 to (7-)}.$
3696.15 <i>11</i> (3697.74 <i>12</i> 13703.81 <i>10</i> 1	(1,2+)	E		0.13 ps 5	$J\pi$: 3687.86 γ to 0+.
3697.74 <i>12</i> 1	(4)+	E	LM O	0.10 ps + 11-4	XREF: L(3691)M(3691)O(3691).
3697.74 <i>12</i> 1					$J\pi$: 3073.12 γ to 2+; $L(p,p')=4$.
3697.74 <i>12</i> 1					B(E4)↑: 2.2 4 W.u. (1992Pi08).
3703.81 <i>10</i>	0+,1,2,3+	GH			J π : 2383.81 γ to 2+; 5423.9 γ from (1+) in $^{111}Cd(n,\gamma)$ E=th:primary (1997Dr03).
	1-,2,3,4+	E	L	0.3 ps + 10 - 1	XREF: L(3700).
					$J\pi\colon3080.13\gamma$ to 2+; 1692.8 γ to 3-; (5-) in $^{112}Cd(pol$
					d,d') (1994He22).
3707.45 9	1, 2 +	E I		22 fs 4	$J\pi$: 3703.74 γ to 0+.
3707.45 9					$T_{1/2}$: Other: 65 fs 6 in $^{112}\mathrm{Cd}(\gamma,\mathrm{pol}\ \gamma')$ (2005Ko32).
	1-,2,3+	E GH		36 fs 8	J π : 3090.04 γ to 2+; 840.71 γ to 3-; 5686.66 γ from (1+) in ¹¹¹ Cd(n, γ) E=th:primary (1997Dr03).
3719.75 20 ((2+,3+)	E G	L		J π : 2305.1 γ to 4+; 5674.88 γ from (1+) in $^{111}Cd(n,\gamma)$ E=th:primary.
3723.25 17	0+,1,2,3+	E G		16 fs +12-8	J π : 3105.13 γ to 2+; 5670.24 γ from (1+) in 111 Cd(n, γ) E=th:primary (1997Dr03).
	0+ to 4+	E		0.125 ps + 9-4	$J\pi$: 3114.39 γ to 2+.
	8+	D			$J\pi$: 1165.0 γ E2 to 6+.
3739.55 10	(1, 2, 3) +	E	L	66 fs 20	XREF: L(3740).
					$J\pi: 3121.99\gamma M1+E2 \text{ to } 2+.$
	(1,2,3)+	E G		54 fs 8	$J\pi$: 3126.22 γ M1+E2 to 2+; 5650.8 γ from (1+) in $^{111}Cd(n,\gamma)$ E=th:primary (1997Dr03).
3746.8 3	(4)+	E	МО		XREF: M(3748)O(3748).
					Jπ: 2331.3γ to 4+; L(p,p')=4.
0.77	0 4 0	-		410 6	B(E4)↑: 1.0 3 W.u. (1992Pi08).
	2+ to 6+	E		>416 fs	Jπ: 2338.58γ to 4+.
	(2+)	E	L	28 fs 9	Jπ: 3755.39γ to 0+.
3763.95 10	(4)+	E	мо	104 fs 14	XREF: M(3764)O(3764).
					$J\pi: 3146.38\gamma \text{ to } 2+; L(p,p')=4 (1992Pi08).$
0.000 AU 10 :	0	P		20 6 2	B(E4)↑: 0.68 16 W.u. (1992Pi08).
	0+ to 4+	E		26 fs 6	Jπ: 3152.90γ to 2+.
	(1,2,3)+	E		0.2 ps + 4 - 1	Jπ: 3165.631γ M1+E2 to 2+.
	9 –	D F.C			Jπ: 692.67γ to 8-; band member.
3787.3 3 2	2+	E G			XREF: G(3795).
2001 0 2	(4):	E	мо		Jπ: 3787.2γ E2 to 0+.
3801.2 3	(4)+	E	мо		XREF: M(3800)O(3800).
					$J\pi$: 2385.7 γ to 4+; $L(p,p')=4$.
2004 07 14	0	173		0.07 1	B(E4)↑: 1.3 3 W.u. (1992Pi08).
		E		0.2 ps + 5 - 1	Jπ: 3187.30γ to 2+.
3809.39 ^a 9 1	0+ to 4+ 10-	D			Jπ: 716.376γ E2 to 8-; 491.30γ M1+E2 to 9-; band

¹¹²Cd Levels (continued)

E(level)†	Jπ	XREF		${ m T}_{1/2}^{\ \ \sharp}$	Comments
3810.04 10	1,2+	E I		9.7 fs 21	Jπ: 3809.97γ to 0+.
					$T_{1/2}$: Other: 17 fs 3 from $^{112}Cd(\gamma,pol \gamma')$.
3810.88 10	(3-)	E	мо	0.07 ps +3-2	XREF: M(3815)O(3815).
	,				J π : 3193.317 γ to 2+; L(p,p')=3 (1992Pi08).
3832.66 11	(4+)	E	мо	22 fs 7	XREF: M(3835)O(3835).
0002.00 11	(47)	ь	M O	22 18 /	
					Jπ: 3215.09γ to $2+$; $L(p,p')=4$ (1992Pi08).
					B(E4)↑: 1.0 3 W.u. (1992Pi08).
3838.85 <i>23</i>	(1,2+)	GH			$J\pi$: 3838.84 γ to 0+.
8844.25 10	0+ to 4+	E		263 fs	$J\pi$: 3226.68 γ to 2+.
8846.48 10	(1,2+)	E GHI		40 fs 9	Jπ: 3846.41γ to 0+.
					$T_{1/2}$: Other: 0.20 ps 3 in $^{112}\mathrm{Cd}(\gamma,\mathrm{pol}\ \gamma')$.
3854.4 3	2+	E			Jπ: 3854.3γ E2 to 0+.
864.51 11	(4)+	E	мо		XREF: M(3863)O(3863).
					J π : 2449.0 γ to 4+; L(p,p')=4 (1992Pi08).
					$B(E4)\uparrow$: 1.37 23 W.u. (1992Pi08).
0.00 00 10	(1.0.)	т. т		10 6 9	
869.00 10	(1,2+)	E I		13 fs 3	Jπ: 3868.93γ to 2+.
					$T_{1/2}$: Other: 20 fs 5 in $^{112}Cd(\gamma,pol \gamma')$.
878.62 13	0+ to 4+	E		53 fs 24	Jπ: 3261.05γ to 2+.
892.48 14	0+,1,2,3+	GH	M O		$J\pi\colon\thinspace 2579.77\gamma$ to 2+; 5501.62γ from (1+) in $^{111}Cd(n,\gamma)$
					E=th:primary (1997Dr03).
913.69@ 9	9+	D			Jπ: 674.713γ E2 to 7+; 514.75γ M1+E2 to 8+; band
					member.
929.21 21	(0)+	E	О	≤0.9 ps	XREF: O(3920).
	(-,-				$J\pi$: 3311.64 γ to 2+; L(3 He,n)=0.
930.78 17	12+	D			Jπ: 608.5γ E2 to 10+; band member.
				0 00	
932.18 12	0+ to 4+	E		0.09 ps +6-3	Jπ: 3314.61γ to 2+.
1933.07 13	(1,2+)	E I		12 fs 4	$J\pi$: 3933.00 γ to 0+.
					$T_{1/2}$: Other: 76 fs 10 in $^{112}Cd(\gamma,pol \gamma')$.
3939.27 14	(4)+	E	мо	0.05 fs + 3 - 2	XREF: M(3945)O(3945).
					$J\pi$: 3321.70 γ to 2+; $L(p,p')=4$ (1992Pi08).
					B(E4)↑: 0.43 14 W.u. (1992Pi08).
951.57 13	1,2+	E GH		43 fs 6	XREF: E(3952.25)G(3951.43)H(3951.50).
					$J\pi$: 3951.4 γ to 0+, 3333.9 γ to 2+.
3963.8 4	(1,2+)	E		0.03 ps +4-2	Jπ: 3963.7γ to 0+.
966.44 14	(9,10,11)+	D		P	Jπ: 644.04γ M1+E2 to 10+.
970.08 19	(1,2+)	E GH		0.05 ps +7-2	XREF: E(3969.28).
310.06 13	(1,2+)	E GII		0.03 ps +7-2	
		_			Jπ: 3970.0γ to 0+.
990.40 11	10+	D			Jπ: 591.57γ E2 to 8+; 306.23γ M1+E2 to 10+.
997.75 14	1,2+	GHI		2.4 fs ^d 6	XREF: G(3996.1).
					$J\pi$: 3997.6 γ to 0+, 2685.83 γ to 2+.
003.9 3	(3-)	GH	M O		XREF: M(4010)O(4010).
					$J\pi$: 3386.50 γ to 2+; $L(p,p')$ =3 (1992Pi08).
033.88 20	(3-)	E	мо	0.06 ps + 5 - 2	XREF: M(4034)O(4034).
				•	J π : 3416.31 γ to 2+; L(p,p')=3 (1992Pi08).
060 5	(4+)		мо		$J\pi$: $L(p,p')=4$.
	· • • /		0		B(E4)↑: 0.84 16 W.u. (1992Pi08).
090 5	(3-)		мо		
					$J\pi$: $L(p,p')=3$.
118 5	(4+)		МО		$J\pi: L(p,p')=4.$
		_			B(E4)↑: 0.01 3 W.u. (1992Pi08).
125.91 13	10+	D			$J\pi \colon\thinspace 949.44\gamma$ E2 to 8+; assumed yrast state.
172 5	(3-)		M O		$J\pi$: $L(p,p')=3$ (1992Pi08).
174.50 13	10+	D			$J\pi\colon\thinspace856.41\gamma$ E1 to 9-; assumed yrast state.
221 5	(7-)		M O		$J\pi$: $L(p,p')=7$ (1992Pi08).
248 5	(3-)		мо		$J\pi$: $L(p,p')=3$ (1992Pi08).
279 5	(3-)		мо		$J\pi$: $L(p,p')=3$ (1992Pi08).
283.47@ 14	10+	D	-		$J\pi$: 740.63 γ E2 to 8+; band member.
284.76 15	(9)-	D			$J\pi$: 908.29 γ E2 to 67, band member.
284.76 <i>15</i> 285.20& <i>13</i>					•
	11-	D	M 0		J π : 967.10 γ E2 to 9-; band member.
320 5	(4+)		мо		$J\pi$: $L(p,p')=4$ (1992Pi08).
					B(E4)↑: 0.71 22 W.u. (1992Pi08).
338 5	(7-)		мо		$J\pi$: L(p,p')=7 (1992Pi08).
	(4.)		M O		$J\pi$: L(p,p')=4 (1992Pi08).
364 5	(4+)		M O		3π. L(p,p)=4 (13921100).

$^{112}\mathrm{Cd}$ Levels (continued)

E(level) [†]	Jπ	XREF	$T_{1/2}^{\ddagger}$	Comments
4383.05 14	11+	D		$J\pi\colon1060.63\gamma$ M1+E2 to 10+; 452.27 γ M1(+E2) to 12+.
4385 5	(3-)	M O		$J\pi$: $L(p,p')=3$ (1992Pi08).
4385.16 ^b 13	10-	D		$J\pi\colon1067.06\gamma$ M1+E2 to 9-; band member.
4419 5	(4+)	M O		$J\pi$: L(p,p')=(4) (1992Pi08).
				B(E4)↑: 0.83 17 W.u. (1992Pi08).
4467.74a 14	11-	D		$J\pi$: 896.683 γ E2 to 9-; band member.
4468 5	3	M O		$J\pi$: From $^{112}Cd(d,d')$ and $^{112}Cd(p,p')$.
4499 5	(3-)	M O		$J\pi$: From $^{112}Cd(d,d')$ and $^{112}Cd(p,p')$.
4546 5	(2+)	O		$J\pi$: From $^{112}Cd(p,p')$.
4587.15 \$ 16	12+	D		$J\pi$: 903.121 γ E2 to 10+; band member.
4687.17@ 13	11+	D		Jπ: 773.48γ E2 9+; band member.
4720	0+,2+	O		$J\pi: L(^{3}He,n)=0,2.$
4871.47 20	14+	D		$J\pi$: 940.680 γ E2 to 12+; band member.
5106.22 20	(13)-	D		$J\pi$: 1175.431 γ E1 to 12+; assumed yrast state.
7633.0 5	1 –	J	5.3 fs 9	$J\pi$: 7632γ E1 to 0+.
				$T_{1/2}$: from Γ _γ =0.086 eV 15 (1970Mo26). Other: 0.6 eV +2-1 (1966Mi13).
(9394.20 3)	(1)+	G		$J\pi$: s-wave capture on $J\pi$ =1/2+ in ^{111}Cd suggests 0+,1+; 9393.63 γ to the g.s. and other decay branches to 0+ states support 1+ assignments.

d From 112 Cd(γ ,pol γ ').

				γ(¹¹² Cd)	_
E(level)	$E\gamma^{\dagger}$	Ιγ [†]	Mult.†	α	Comments
617.518	617.517 ^e 3	100	E 2	0.00371	Mult.: $\alpha(K)\exp=0.00317$ 16, $\alpha(L)\exp=0.00039$ 4, and $\alpha(M)\exp=0.000138$ 15 in $^{111}\mathrm{Cd}(n,\gamma)$ E=th:secondary (1997Dr03); $\alpha(K)\exp=0.0038$ 7 in $^{112}\mathrm{In}$ ϵ decay (14.88 min) (1962Ru05); $A_2=+0.44$ 2, $A_4=-0.05$ 2 from $\gamma\gamma(\theta)$ in $^{110}\mathrm{Pd}(\alpha,2n\gamma)$ (1997Dr03). B(E2)(W.u.)=30.31 19.
1224.341	606.821 6	100	E2	0.00388	Mult.: α(K)exp=0.0034 3 in ¹¹¹ Cd(n,γ) E=th:secondary (1997Dr03); A ₂ =-0.02 7; A ₄ =-0.08 10 in ¹¹⁰ Pd(α,2nγ) (1992Ku01). B(E2)(W.u.)=51 14.

 $^{^{\}dagger}$ From a least-squares fit to Ey. ‡ From DSAM in $^{112}Cd(n,n'\gamma)$ (2007Ga22), unless otherwise stated.

[§] Member of the gsb.

 $^{^{\#}\,}$ Member of the band based on the 0+ state at 1224 keV.

[@] Member of the band based on the 2+ state at 1312 keV.

[&]amp; Member of the band based on the 3- state at 2005 keV.

 $^{^{\}rm a}$ Member of the band based on the 5- state at 2570 keV.

 $^{^{\}mbox{\scriptsize b}}$ Member of the band based on the 3- state at 2415 keV.

 $^{^{}c} \ \ Unresolved \ multiplet \ in \ (p,p') \ and \ (pol \ d, \ t).$

$\gamma(^{112} Cd)$ (continued)

E(level)	$\underline{\hspace{1cm}} \mathbf{E} \gamma^{\dagger}$	$\underline{\hspace{1cm}} I\gamma^{\dagger}$	Mult.†	$-\delta^{\dagger}h$	α	Comments
1224.341	1224.341 7		EO			I(γ+ce): 0.090 7. Eγ: transition energy from level energy differences. Mult.: from ce measurements 1979Gi05, 1980Ju05 and 1997Dr03; Ice(K)(1224.341γ)/Ice(K)(606.821γ)= 0.300 22, weighted average of 0.30 4 (1979Gi05), 0.33 5 (1980Ju05) and 0.29 3 (1997Dr03). I(γ+ce): from Ice(K)(1224.341γ)/Ice(K) (606.821γ)=0.300 22 α(K)(606.84γ)=0.00336 5 and
1312.390	694.872° 7	100 [§] 3	E2+M1	-4.0 7	0.00274	$\begin{split} &\Omega_{K}/\Omega_{T}{=}0.8961~(2008\text{Ki}07).\\ &\text{Mult.:}~~\alpha(\text{K})\text{exp}{=}0.00242~18~\text{in}\\ &^{111}\text{Cd}(n,\gamma)~\text{E}{=}\text{th:secondary}\\ &(1997\text{D}703);~\text{A}_{2}{=}{-}0.224~7;\\ &\text{A}_{4}{=}0.008~10~\text{from}~\gamma\gamma(\theta)~\text{in}\\ &^{110}\text{Pd}(\alpha,2n\gamma)~(1993\text{De}09).\\ &\delta:~\text{From}~\gamma\gamma(\theta)~\text{in}\\ &^{112}\text{Ag}~\beta^{-}~\text{decay}\\ &(1972\text{Wa}03);~\text{Others}~(\gamma(\theta)):\\ &-1.6~+5{-}8~(1997\text{D}703),~-2.6~+4{-}3\\ &\text{in}~(2001\text{Ga}44),~-0.77~6~\text{in}\\ &^{111}\text{Cd}(d,p\gamma)~\text{and}~-0.87~10~\text{or}\\ &-3.5~9~(1969\text{Mi}07) \end{split}$
	1312.36 4	37.7 [§] 4	E2		6 . 64×10 ⁻⁴	B(M1)(W.u.)=0.0015 6; B(E2)(W.u.)=39 7. Mult.: α(K)exp=0.00052 6 in 111 Cd(n,γ) E=th:secondary (1997Dr03); A_2 =+0.46 2, A_4 =-0.04 3 from γγ(θ) in
1415.480	798.04 10	100	E2		0.00193	$^{110} Pd(\alpha, 2n\gamma) \ (1997 Dr 03).$ B(E2)(W.u.)=0.65 11. Mult.: $\alpha(K) exp=0.00155 \ 15$ in $^{111} Cd(n,\gamma) \ E=th: secondary$ (1997 Dr 03); $A_2=+0.58 \ 4$, $A_4=-0.15 \ 5 \ from \ \gamma\gamma(\theta) \ in$ $^{110} Pd(\alpha, 2n\gamma) \ (1997 Dr 03).$
1433.27	120.68 \$ 10	58# 7	E2		0.766	B(E2)(W.u.)=63 8. Iy: Others: 61 10 in 112 Cd(p,p'y), but 27 4 in 110 Pd(α ,2ny).
	208.93 3		EO			B(E2)(W.u.)=99 16. I(γ+ce): 6.4 10. Ey: transition energy from level energy differences. Mult.: from α measurements in 1980Ju05 and 1997Dr03. I(γ+ce): from Ice(K)(208.93γ):Ice(K) (815.79γ)=45 5 (1997Dr03), α(K)(815.79γ)=0.001589 23, Iγ(815.79γ)=100 11 and $\Omega_{\rm K}'\Omega_{\rm T}=0.8941$ (2008Ki07); Other: Ice(K)(208.93γ):Ice(K)(815.79γ)=25 9 (1980Ju05), is probably affected by the uncertainties in the ce spectrum around the 183-keV line.
	815.79 ^e 3	100# 10	E2		0.00183	Ey: B(E2)(\downarrow)=0.017 4 (1980Ju05). B(E2)(W.u.)=0.0121 17.

$\gamma(^{112}{\rm Cd})$ (continued)

E(level)	$E\gamma^{\dagger}$	$\underline{\hspace{1.5cm}}^{\dagger}$	Mult.†	δ†h	α	Comments
1433.27 1468.822	1433.27 3 244.86\\$ 23	1.0 3	E0		0.0641	I(γ+ce): 2.7 4. Eγ: transition energy from level energy differences. Mult.: from α measurements in 1980Ju05 and 1997Dr03. I(γ+ce): from Ice(K)(1433.27γ):Ice(K) (815.79γ)=19.0 17 (1997Dr03), α(K)(815.57γ)=0.001589 23, Iγ(815.57γ)=100 11 and $\Omega_{\rm K}/\Omega_{\rm T}$ =0.8962 (2008Ki07) Other: Ice(K)(1433.27γ):Ice(K)(815.79γ)= 7.9 25 (1980Ju05), but the value is probably affected by the weak population of this level. Mult.: from γγ(θ) in $^{110}{\rm Pd}(\alpha,2n\gamma)$
						(1997Dr03). B(E2)(W.u.)=120 50.
	851.285° 15	100.0 10	M1+E2+E0	+0.050 18	0.00195	I(γ+ce): 4. Mult.: from $\alpha(K)\exp{-0.00235}$ 18 in $^{111}\text{Cd}(\mathbf{n}, \gamma)$ E=th (1997Dr03) and $\alpha(K)\exp{-0.00234}$ 12 in ^{112}In ε decay (14.88 min) (1991Gi05); A_2 =0.50 2 from $\gamma\gamma(\theta)$ in $^{110}\text{Pd}(\alpha,2n\gamma)$ (1997Dr03); Others: A_2 =0.07 7 and A_4 =0.03 16 in ^{112}Ag β ⁻ decay (3.130 h) (1972Wa03). δ: Weighted average of 0.053 30 in 1997De03 and 0.048 22 in 1991Gi05. Others: +0.14 5 from $\gamma(\theta)$ in $^{112}\text{Cd}(n,n'\gamma)$ (2001Ga44), +0.23 13 or +1.4 5 from $\gamma\gamma(\theta)$ in $^{110}\text{Pd}(\alpha,2n\gamma)$ (1997Dr03), +0.10 7 (1973Gr16); 0.05 or +2.0 +7-5 (1969Mi07) in Coulomb excitation; +0.22 5 in ^{112}Ag β ⁻ decay (3.130 h) (1972Wa03). α: 0.00195 4, using q^2 =9.7 35, weighted average of 9.4 54 (1997Dr03) and 9.9 46(1991Gi05), and α from 2008Ki07.
	1468.84 10	58.3 8	E2		5.79×10^{-4}	B(M1)(W.u.)=2.1×10 ⁻⁶ 16. Mult:: α(K)exp=0.00050 7 in 111 Cd(n,γ) E=th (1997Dr03). Mult:: a ₀ =15.6 2; A ₂ =0.210 13; A ₄ =-0.036 19 from γγ(θ) in 110 Pd(α,2nγ) (1993De09). B(E2)(W.u.)=0.88 17.
1870.68	401.88 13	58 3	E 2		0.01277	Mult.: A_2 =+0.60 2, A_4 =-0.10 2 in 110 Pd(α ,2n γ) (1997Dr03).
	455.26 13	32.0 17	M1+E2	+2.7 +4-3	0.00871	Mult.: A_2 =0.06 23, A_4 =-0.41 24 fror γγ(θ) in ¹¹⁰ Pd(α,2nγ) (1997Dr03). δ: Other: 2.43 15 or -0.45 14 from γγ(θ) in ¹¹⁰ Pd(α,2nγ) (1997Dr03).
	558.39 11	100.0 25	E 2		0.00487	Mult.: $A_2 = +0.64$ 3, $A_4 = -0.12$ 4 from $\gamma\gamma(\theta)$ in $^{110}\mathrm{Pd}(\alpha,2n\gamma)$ (1997Dr03).
	1253.16 12	89 3	E2		7 . 17×10 ⁻⁴	Mult.: $A_2 = +0.52$ 4, $A_4 = -0.15$ 6 from $\gamma\gamma(\theta)$ in $^{110}Pd(\alpha,2n\gamma)$ (1997Dr03).

$\gamma(^{112} Cd)$ (continued)

E(level)	$\underline{\hspace{1cm} E\gamma^{\dagger}}$	$\underline{\hspace{1cm} I\gamma^{\dagger}}$	Mult.†		α	Comments
1870.96	402.50 16	11.2 12	E2		0.01271	Mult.: A_2 =+0.60 2, A_4 =-0.10 2 from $\gamma\gamma(\theta)$ in $^{110}Pd(\alpha,2n\gamma)$ (1997Dr03).
	558.7	3.5#9	E2		0.00487	
	1253.56 12	100.0 12	E 2		7 . 16×10^{-4}	Mult.: A_2 =0.218 42 and A_4 =0.990 51 in 112 In ϵ decay (14.88 min) (1972Ka34).
2005.200	536.31 10	1.11 12	E1		0.00181	Mult.: A_2 =-0.17 15 from $\gamma\gamma(\theta)$ in 110 Pd($\alpha, 2n\gamma$) (1997Dr03). B(E1)(W.u.)=6.5×10 ⁻⁵ 15.
	692.82 ^e 3	22.2 6	E1		1.02×10 $^{-3}$	Mult.: $A_2/A_0=-0.046$ 17 in 110PD(A,2NG) (1993De09). B(E1)(W.u.)=0.00061 12.
	1387.68 10	100.0 6	E1		4.19×10 ⁻⁴	Mult.: $A_2=-0.07$ 6 from $\gamma\gamma(\theta)$ in $^{110}\text{Pd}(\alpha,2n\gamma)$ (1997Dr03); Also, $A_2=-0.11$ 3 and $A_4=-0.02$ 5 in ^{112}Ag β^- decay (3.130 h) (1972Wa03). Possible M2 admixture; $\delta=-0.06$ 2 from ^{112}Ag β^- decay (3.130 h) B(E1)(W.u.)=0.00034 7.
2064.53	648.91 10	28.3 7	M1+E2	-1.20 +20-15	0.00338 6	Mult.: $A_2 = +0.45$ 7 from $\gamma\gamma(\theta)$ in $^{110}\text{Pd}(\alpha, 2n\gamma)$ (1997Dr03). δ : Also: -1.6 3 or -0.50 15 from $\gamma\gamma(\theta)$ in $^{110}\text{Pd}(\alpha, 2n\gamma)$ (1997Dr03). B(M1)(W.u.) = 0.009 4;
	752.14 ^e 3	100.0 13	M1+E2	-2.75 +23-17	0.00227	B(E2)(W.u.)=25 8. Mult.: A_2 =0.303 6; A_4 =-0.092 8 from $\gamma\gamma(\theta)$ in 110 Pd(α ,2n γ) (1993De09). δ: Also: -1.5 5 from $\gamma\gamma(\theta)$ in
	1447.00 10	87.7 13	M1+E2	-1.70 +10-12	6.04×10^{-4}	$ \begin{array}{c} ^{110}{\rm Pd}(\alpha,2n\gamma) \ (1997{\rm Dr}03). \\ \\ {\rm B}({\rm M1})({\rm W.u.}) = 0.0059 \ 19; \\ \\ {\rm B}({\rm E2})({\rm W.u.}) = 64 \ 18. \\ \\ {\rm Mult.} \ A_2 = -0.47 \ 6, \ A_4 = +0.10 \ 10 \ {\rm from} \\ \\ \gamma\gamma(\theta) \ {\rm in} \ ^{110}{\rm Pd}(\alpha,2n\gamma) \\ \\ (1997{\rm Dr}03). \\ \\ \delta: \ {\rm Also:} \ -1.24 \ 15 \ {\rm from} \ \gamma\gamma(\theta) \ {\rm in} \\ \\ ^{110}{\rm Pd}(\alpha,2n\gamma) \ (1997{\rm Dr}03). \\ \\ {\rm B}({\rm M1})({\rm W.u.}) = 0.0016 \ 5; \end{array} $
						B(E2)(W.u.)=1.8 5.
2081.64	211.0\\$ 3 612.88 25	4.9\$ 7 23 4	[M1] E2		0.0597 0.00378	B(M1)(W.u.)=0.14 5. Mult.: A_2 =+0.51 18, A_4 =-0.12 10 from $\gamma\gamma(\theta)$ in 110 Pd(α ,2n γ) (1997Dr03). B(E2)(W.u.)=59 20.
	666.17 ^e 6	100.0 22	M1+E2	-0.41 3	0.00331	Mult.: A_2 =+0.36 2 from $\gamma\gamma(\theta)$ in $^{110}\text{Pd}(\alpha,2n\gamma)$ (1997Dr03). δ: Also: -0.47 5 from $\gamma\gamma(\theta)$ in $^{110}\text{Pd}(\alpha,2n\gamma)$ (1997Dr03). B(M1)(W.u.)=0.080 24; B(E2)(W.u.)=24 8.
	769.36 10	70.4 18	E 2		0.00211	Mult.: A_2 =+0.34 16 from $\gamma\gamma(\theta)$ in $^{110}\text{Pd}(\alpha, 2n\gamma)$ (1997Dr03). B(E2)(W.u.)=58 17.
	1464.04 10	27.7 9	E2		5.81×10 ⁻⁴	Mult.: A_2 =0.11 6; A_4 =0.05 8 from $\gamma\gamma(\theta)$ in $^{110}\mathrm{Pd}(\alpha,2n\gamma)$ (1993De09). B(E2)(W.u.)=0.9 3.
2121.62	688.23 10	14.9 9	E2		0.00279	B(E2)(W.u.)=0.9 3. Mult.: $A_2=+0.52$ 19 from γγ(θ) in $^{110}Pd(\alpha,2n\gamma)$ (1997Dr03). B(E2)(W.u.)=25 7.

$\gamma(^{112}\text{Cd})$ (continued)

E(level)	$\underline{\hspace{1cm}} E\gamma^{\dagger}$	$\underline{\hspace{1cm}} I\gamma^{\dagger}$	Mult. [†]	$\delta^{\dagger h}$	α	Comments
2121.62	808.82 19	3.73 12	M1+E2		0.00215	
	897.07 10	11.9 3	E2		1.46×10 ⁻³	B(E2)(W.u.)=5.3 15.
	1504.04 10	100.0 9	M1+E2	+1.36 7	5.88×10 ⁻⁴	Eγ: seen as 1507.3 keV 3 in 112 In ε decay (14.97 min). Mult.: α (K)exp=0.00030 10 in 111 Cd(n,γ) E=th (1997Dr03); A_2 =0.16 4 from γγ(θ) in (1993De09).
						δ: Also: $+0.15$ 5 or $+1.6$ 3 from $\gamma\gamma(\theta)$ in $^{110}\mathrm{Pd}(\alpha,2\mathrm{n}\gamma)$ $(1997\mathrm{Dr}03)$. $\mathrm{B}(\mathrm{M1})(\mathrm{W.u.}) = 0.0033$ 10; $\mathrm{B}(\mathrm{E2})(\mathrm{W.u.}) = 2.2$ 6.
	2121.49 13	2.80 13	E2		6 . 14×10^{-4}	B(E2)(W.u.)=0.017 5.
2156.18	687.41 10	5.6 8	M1+E2	-2.3 19	0.00285 24	B(M1)(W.u.)=0.003 +5-3; B(E2)(W.u.)=23 +25-23.
	842.8 # 15	2.5# 7	[M1]		0.00195	B(M1)(W.u.)=0.004 4.
	1538.68 ^e 10	100	M1+E2	+0.085 +25-22	6.11×10 ⁻⁴	Mult.: A_2 =-0.02 7 from γγ(θ) in 110 Pd(α,2ηγ) (1993De09). δ: Also: -0.33 15 from γγ(θ) in 110 Pd(α,2ηγ) (1997Dr03).
						$B(M1)(W.u.)=0.03 \ 3;$ B(E2)(W.u.)=0.06 +8-6.
	2156.20 10	8.8 3	E 2		6.23 \times 10 ⁻⁴	B(E2)(W.u.)=0.14 +15-14.
2167.76	297.29 \$ 12	0.58\$ 9	E2		0.0334	Mult.: A_2 =0.37 7; A_4 =0.02 10 from $\gamma\gamma(\theta)$ in $^{10}\text{Pd}(\alpha,2n\gamma)$ (1993De09).
	752.14 \$ 10	100 § 3	E 2		0.00223	Mult.: A_2 =+0.41 5, A_4 =-0.11 7 from $\gamma\gamma(\theta)$ in $^{110}{\rm Pd}(\alpha,2n\gamma)$ (1997Dr03).
2231.12	226.0# 3	0.61# 15	[E1]		0.01665	B(E1)(W.u.)=0.0009 9.
	762.41 10	2.07 11	M1+E2	-1.4 +8-34	0.00226 13	B(M1)(W.u.)=0.0021 +26-21; B(E2)(W.u.)=6 6.
	918.72 10	2.72 11	M1+E2	+0.21 +20-13	0.00160 4	B(M1)(W.u.)=0.005 5; B(E2)(W.u.)=0.19 +39-19.
	1006.81 10	4.03 11	E 2		1.12×10^{-3}	Mult.: A_2 =0.14 14 from $\gamma\gamma(\theta)$ in 110 Pd(α ,2n γ) (1997Dr03). B(E2)(W.u.)=4 4.
	1613.66 10	100.0 2	M1+E2	-0.020 +20-27	5 . 90×10 ⁻⁴	Mult.: $A_2 = -0.05 \ 3$ from $\gamma\gamma(\theta)$ in $^{110}\text{Pd}(\alpha, 2n\gamma)$ (1993De09).
						δ: Also: $-0.6 + 2 - 4$ from $\gamma\gamma(\theta)$ in $^{110}\text{Pd}(\alpha, 2n\gamma)$ (1997Dr03).
						$B(M1)(W.u.)=0.03 \ 3;$ $B(E2)(W.u.)=0.004 \ +9-4.$
2300.68	831.79 10	48.4 12	E 2		1.75×10 ⁻³	B(E2)(W.u.)<23.
	1683.22 10	100.0 12	E 2		5.45×10^{-4}	B(E2)(W.u.)<1.4.
2373.19	291.5 1	1.08 11	E1		0.00834	Mult.: A_2 =-0.16 $I3$ from $\gamma\gamma(\theta)$ in 110 Pd(α ,2n γ) (1997Dr03). B(E1)(W.u.)=0.00031 +16-31.
	367.9 1	0.98 20	E 2		0.01681	Mult.: A_2 =0.38 4; A_4 =-0.09 5 from $\gamma\gamma(\theta)$ in $^{110}{\rm Pd}(\alpha,2n\gamma)$ (1993De09).
	957.72 10	100	E1		$5.28{ imes}10^{-4}$	B(E2)(W.u.)=60 +40-60. Mult.: A_2 =-0.233 7 from γγ(θ) in 110 Pd(α,2nγ) (1993De09).
						B(E1)(W.u.)=0.0008 +4-8.
2402.98	531.89 10	10.4 12	M1+E2	-0.6 +4-25	0.00569 13	B(M1)(W.u.)=0.016 +7-9; B(E2)(W.u.)=16 +17-16.

$\gamma(^{112} Cd)$ (continued)

E(level)	$\mathbf{E}\gamma^{\dagger}$	Ιγ†	Mult.†	δ†h	α	Comments
2402.98	934.19 10	61.2 12	M1+E2	-4.0 6	1.34×10 ⁻³ 2	Mult.: A_2 =0.09 5 from $\gamma\gamma(\theta)$ in $^{110}\text{Pd}(\alpha,2n\gamma)$ (1993De09). δ: Also: 0.33 10 from $\gamma\gamma(\theta)$ in 1997Dr03. B(M1)(W.u.)=0.0014 +6-7;
	987.89 10	100	M1(+E2)	-0.025 +27-36	$1.37\!\times\!10^{-3}$	B(E2)(W.u.)=20 +5-9. δ: Also: -6.2 +10-17 from 2001Ga44 B(M1)(W.u.)=(0.032 +8-14); B(E2)(W.u.)=(0.02 +4-2).
	1090.56 10	57.7 12	M1+E2	+0.099 +27-36	1.10×10 $^{-3}$	B(B2)(W.u.)=(0.02 + 4-2). B(M1)(W.u.)=0.014 + 4-6; B(E2)(W.u.)=0.09 + 6-7.
	1785.48 10	66.6 15	M1+E2	-0.107 +36-43	5 . 71×10 ⁻⁴	Mult.: A_2 =-0.26 4 from $\gamma\gamma(\theta)$ in 110 Pd(α ,2n γ) (1993De09). δ : -0.25 20 from $\gamma(\theta)$ in 1997Dr03. B(M1)(W.u.)=0.0036 +9-15;
2416.00 411	411.39 23	12.9 14	M1+E2	-0.35 +18-23	0.01087 23	B(E2)(W.u.)=0.010 8. Ιγ: From 112 Ag β ⁻ decay (3.130 h). Mult.: A ₂ =0.46 9; A ₄ =0.19 13 from γγ(θ) in 110 Pd(α,2nγ) (1993De09). δ: Also: +4.2 +∞-20 from γγ(θ) in 112 Cd(n,n'γ) (2001Ga44); 0.50 25 or 2.7 10 from γγ(θ) in 110 Pd(α,2nγ) (1993De09). B(M1)(W.u.)=0.14 4;
	946.92 10	9.5 12	E1		5.39×10^{-4}	B(E2)(W.u.)=80 80. B(E1)(W.u.)=0.00012 3.
	983.8# 3 1103.58 <i>10</i>	5.7 [#] 3 47.0 14	E1		4.08×10^{-4}	Mult.: A_2 =+0.31 14 from $\gamma\gamma(\theta)$ in $^{110}{\rm Pd}(\alpha,2n\gamma)$ (1997 ${\rm Dr}03$).
	1798.50 10	100.0 17	E1		6 . 36×10^{-4}	B(E1)(W.u.)=0.00039 8. Mult.: A_2 =-0.20 3 from γγ(θ) in 110 Pd(α,2nγ) (1993De09). B(E1)(W.u.)=0.00019 4.
2418.0 2454.51	2418 ^a 1 1038.93 10	100 100.0 3	M1+E2	-0.27 18	1.21×10 ⁻³ 3	Mult.: A_2 =+0.40 9 from $\gamma\gamma(\theta)$ in $^{110}\mathrm{Pd}(\alpha,2n\gamma)$ (1997Dr03). B(M1)(W.u.)=0.048 +10-14;
	1142.21 10	8.7 3	E2		8.55×10^{-4}	B(E2)(W.u.)=3 +4-3. B(E2)(W.u.)=2.1 +4-6.
2493.15	1024.29 10	13.7 5	E 2		$1 \; . \; 0 \; 8 \! \times \! 1 \; 0^{ -3}$	B(E2)(W.u.)=4.5 +12-45.
	1077.60 10	100.0 6	M1+E2	+0.13 +6-5	1.12×10 ⁻³	Mult.: A_2 =+0.47 23 from γγ(θ) in 110 Pd(α ,2nγ) (1997Dr03). δ: Also: -0.03 25 from γγ(θ) in 110 Pd(α ,2nγ) (1997Dr03). B(M1)(W.u.)=0.036 +9-36; B(E2)(W.u.)=0.4 4.
	1875.70 10	5.6 5	E2		5 . $60\!\times\!10^{-4}$	B(E2)(W.u.)=0.089 +24-89.
2506.36	1194.00 10	17.9 5	M1+E2	+0.20 +16-12	9.01×10 ⁻⁴ 16	Mult.: A_2 =-0.18 17 from $\gamma\gamma(\theta)$ in 110 Pd(α ,2n γ) (1997Dr03). B(M1)(W.u.)=0.0090 15;
	1888.79 10	100.0 5	M1+E2	-0.18 6	5.76×10^{-4}	B(E2)(W.u.)=0.20 +32-20. δ: Also: +4.2 +15-8 from γ(θ) in 2001Ga44. B(M1)(W.u.)=0.0128 19; B(E2)(W.u.)=0.09 7.
2506.70	1037.9# 3	6.8# 7	E 1		$4\;.\;5\;3\!\times\!10^{-4}$	B(E1)(W.u.)=0.00041 5.
	1073.32# 17	4.8# 5	E1		4 . $25\!\times\!10^{-4}$	B(E1)(W.u.)=0.00026 3.
	1282.29 10	5.5 5	E1		3.90×10^{-4}	B(E1)(W.u.)=0.000177 19.
	2506.70 10	100.0 6	E 1		1.04×10 ⁻³	Mult.: ϵ =-0.10 8 from polarization measurements in $^{112}\text{Cd}(\gamma,\text{pol }\gamma')$ (2005Ko32).

$\gamma(^{112}\text{Cd})$ (continued)

E(level)	$\underline{\hspace{1cm}} E\gamma^{\dagger}$	$\underline{\hspace{1cm}} \text{I} \gamma^{\dagger}$	Mult.†	δ [†] h	α	Comments
2532.20	1063.56 ^b 22	76 ^b 12				
	1099.0 ^b 3	45b 12				
	1116.83 ^b 20	100b 15				
2561.27	1248.92 ^b 24	61 ^b 11				
	2561.13 ^b 22	100 ^b 11				
2570.21	197.03 10	95 9	M1		0.0717	Iγ: 100 in 110 Pd(α ,2nγ) (1997Dr03). Mult.: A_2 =+0.61 $I3$ from γγ(θ) in 110 Pd(α ,2nγ) (1993De09); possible E2 admixture with δ =0.00 $I5$ in 110 Pd(α ,2nγ) (1997Dr03). B(M1)(W.u.)<1.3.
	565.10 20	31 3	E 2		0.00472	Mult.: A_2 =0.26 7 from $\gamma\gamma(\theta)$ in $^{110}\text{Pd}(\alpha,2n\gamma)$ (1993De09). B(E2)(W.u.)<45.
	699.59 10	71 4	E1		1.00×10^{-3}	Mult.: A_2 =-0.21 5 from $\gamma\gamma(\theta)$ in $^{110}\text{Pd}(\alpha,2n\gamma)$ (1993De09); possible M2 admixture with δ =0.02 5 in $^{110}\text{Pd}(\alpha,2n\gamma)$ (1993De09).
						B(E1)(W.u.)<0.00029.
	1154.75 10	100	E1		3.88×10^{-4}	Mult.: $A_2=-0.35$ 10 from $\gamma\gamma(\theta)$ in $^{110}{\rm Pd}(\alpha,2n\gamma)$ (1993De09); Possible M2 admixture with $\delta=-0.13$ 13 in $^{110}{\rm Pd}(\alpha,2n\gamma)$
						(1993De09).
2571.47	403.55 \$ 10	5.98 7	M1+E2‡	-0.57 [‡] 6	0.01159	B(E1)(W.u.)<9.0×10 ⁻⁵ . Mult.,δ: A_2 =0.048 22; A_4 =-0.3 3 from γγ(θ) in ¹¹⁰ Pd(α,2nγ)
						(1993De09). δ: Others: +1.8 8 from γγ(θ) in ¹¹⁰ Pd(α,2nγ) (1997Dr03). B(M1)(W.u.)<0.012; B(E2)(W.u.)<20.
	700.89 \$ 10	100 \$ 3	E2		0.00266	Mult.: A_2 =+0.13 54 from $\gamma\gamma(\theta)$ in $^{110}\text{Pd}(\alpha,2n\gamma)$ (1997Dr03). B(E2)(W.u.)<77.
	1156.21 \$ 10	89\$ 5	E2		8.34×10^{-4}	Mult.: A ₂ =+0.68 22 from γγ(θ) in ¹¹⁰ Pd(α,2nγ) (1997Dr03). B(E2)(W.u.)<5.6.
2591.05	526.52 10	48.0 11	E1		0.00189	Mult.: $A_2=-0.13\ 3$ from $\gamma\gamma(\theta)$ in $^{110}{\rm Pd}(\alpha,2n\gamma)$ (1993De09); possible M2 admixture with $\delta=0.03\ 5$ (1993De09).
						B(E1)(W.u.)<0.00076.
	585.78 10	23.0 7	M1+E2	+0.47 +8-7	0.00450	Mult.: A_2 =0.09 6 from γγ(θ) in 110 Pd(α,2nγ) (1993De09). δ: Other: +0.27 15 from γγ(θ) in 110 Pd(α,2nγ) (1993De09). B(M1)(W.u.)<0.017; B(E2)(W.u.)<11.
	720.44 10	11.7 7	E1		9.39×10^{-4}	B(E1)(W.u.)<7.2×10 ⁻⁵ .
	1175.50 10	100.0 11	E 1		3 . 8 4×10 ⁻⁴	Mult.: A_2 =0.334 18 ; A_4 =0.111 25 from $\gamma\gamma(\theta)$ in $^{110}{\rm Pd}(\alpha,2n\gamma)$ (1993De09).
			164 F-		0.0045-	B(E1)(W.u.) < 0.00014.
2634.99	570.5 1	10.15 16	M1+E2		0.00485	
	629.80 10	38.1 8	E1		1.26×10 ⁻³	
	1219.4 1	100 0 7	M1+E2	1 05 40 45	8.69×10 ⁻⁴	
	1322.59 10	100.0 5	M1+E2	-1.37 +16-15	6.88×10 ⁻⁴ 11	
0050 15	2017.5 1	8.67 16	M1+E2		5 . 9 4×10 ⁻⁴	P/Po//W) o o . 5 to
2650.15	1337.75 11	14.2 17	E2		6 . 46×10 ⁻⁴	B(E2)(W.u.)=2.2 +7-12.
0005 01	2032.62 10	100	E2	0.00.	5.92×10 ⁻⁴	B(E2)(W.u.)=1.9 +5-11.
2665.64	583.92 10	100	M1+E2	+0.30 4	0.00456	B(M1)(W.u.)<0.19; B(E2)(W.u.)<48.

$\gamma(^{112} Cd)$ (continued)

E(level)	Eγ [†]	$\underline{\hspace{1.5cm}} \hspace{1.5cm} I \hspace{0.5cm} \gamma^{\dagger} \hspace{1.5cm}$	Mult.†	$\delta^{\dagger h}$	α	Comments
2665.64	601.01 10	60 4	E2		0.00399	Mult.: A_2 =0.32 6 ; A_4 =-0.11 9 from $\gamma\gamma(\theta)$ in $^{110}{\rm Pd}(\alpha,2n\gamma)$ (1993De09).
						B(E2)(W.u.)<240.
	795.08 <i>13</i> 1250.17 <i>10</i>	40 3 65.6 24	M1 (+E2) M1+E2	+0.14 +18-17 -0.12 +6-5	0.00223 8.26×10 ⁻⁴	B(M1)(W.u.)<0.033?; B(E2)(W.u.)<2.7? Mult.: $A_2=-0.58$ 5; $A_4=0.19$ 6 from $\gamma\gamma(\theta)$ in $^{110}\mathrm{Pd}(\alpha,2n\gamma)$ (1993De09). &: Other: -2.0 5 or -0.30 $I2$ in 1997Dr03.
2668.92	663.59 15	6.47 25	M1+E2	+1.3 +23-8	0.00319 15	B(M1)(W.u.)<0.013; B(E2)(W.u.)<0.19. B(M1)(W.u.)=0.007 +16-7; B(E2)(W.u.)=21 +29-21.
	1356.52 10	100	E1		$4\;.\;0\;8{\times}10^{-4}$	Mult.: $A_2 = 0.05$ 4 from $\gamma\gamma(\theta)$ in $^{110}\text{Pd}(\alpha, 2n\gamma)$ (1993De09).
						B(E1)(W.u.)=0.00045 7.
	2051.50 10	17.9 8	E1		7.86×10 ⁻⁴	$B(E1)(W.u.)=2.3\times10^{-5}$ 4.
2674.00	2056.48 10	100	M1 (+E2)	+0.05 +7-8	6.01×10 ⁻⁴	B(M1)(W.u.)=(0.072 7); B(E2)(W.u.)=(0.03 +10-3).
2694.0	2694 ^a 1	100	M1		7 . 88×10^{-4}	B(M1)(W.u.)=0.0016 3.
2711.19	705.95 10	6.3 9	E 1		9 . 80×10^{-4}	B(E1)(W.u.)=0.00019 +6-12.
	1295.74 10	100	M1+E2	-0.08 6	7 . 7 4×10^{-4}	Mult.: $A_2 = 0.09 \ 3 \ \text{from} \ \gamma \gamma(\theta) \ \text{in}$ $^{110}\text{Pd}(\alpha, 2n\gamma) \ (1993\text{De}09).$
						δ: Other: -0.33 9 from γγ(θ) in 110 Pd(α,2nγ) (1997Dr03). B(M1)(W.u.)= 0.036 + $10-21$;
2723.96	718.89 10	7.0# 7	E 1		9 . 43×10^{-4}	B(E2)(W.u.)=0.11 +17-11. Iy: 11.5 6 in 112 Cd(n,n'y).
			me no.			B(E1)(W.u.)=0.00031 6.
	1411.8# 8 2106.31 10	1.4# 4 100.0 6	[M1+E2] M1(+E2)	+0.05 +6-5	$6.75 \times 10^{-4} 6.12 \times 10^{-4}$	δ: Other: 2.0 +3-2 from $\gamma(\theta)$ in 2001Ga44.
						$B(M1)(W.u.)=(0.0131 \ 20);$ $B(E2)(W.u.)=(0.006 \ +15-6).$
	2723.6# 3	4.1 # 4	[E2]		8.09×10^{-4}	B(E2)(W.u.)=0.027 5.
2765.72	894.5 1	7.2 10	E2		1 . 47×10^{-3}	B(E2)(W.u.)=47 8.
	1296.9 1	16 4	M1+E2		7 . 74 \times 10 $^{-4}$	Iy: from 110 Cd(n,y) E=th.
	1453.4 1	8.9 5	M1+E2		6 . 50×10^{-4}	
	2148.21 10	100 4	M1(+E2)	+0.06 +7-6	$6 . 2 2 \times 1 0^{-4}$	δ: Other: $+1.9 +3-2$ from $\gamma(\theta)$ in 2001 Ga44.
						B(M1)(W.u.)=(0.047 5); B(E2)(W.u.)=(0.03 +7-3).
	2765.7 3	5.85 24	E2		8 . 23×10^{-4}	B(E2)(W.u.)=0.136 15.
2773.08	541.80 10	19.2 10	E 2		0.00530	B(E2)(W.u.)<88.
	1460.83 10	100.0 10	E2		5.82×10^{-4}	B(E2)(W.u.) < 3.2.
2791.79	786.59 10	100	M1+E2	+0.038 +49-14	0.00229	B(M1)(W.u.)<0.47; B(E2)(W.u.)<3.1.
2793.80	222.17 \$ 10	3.2 \ 4	(E1)		0.01746	Mult.: $A_2 = -0.32$ 22 from $\gamma\gamma(\theta)$ in $^{110}Pd(\alpha, 2n\gamma)$ (1997Dr03).
	420.68 19	63 4	E2		0.01110	Mult.: A_2 =0.323 7; A_4 =-0.112 10 from $\gamma\gamma(\theta)$ in $^{110}Pd(\alpha,2n\gamma)$ (1993De09).
	625.97 10	100 4	E 1		1 . 27×10 $^{-3}$	Mult.: $A_2 = -0.250$ 6 from $\gamma\gamma(\theta)$ in $^{110}\text{Pd}(\alpha, 2n\gamma)$ (1993De09).
2816.71	735.20 10		M1+E2	+4.0 +39-13	0.00238	δ: Also: $-0.65 + 16 - 20$ from $\gamma(\theta)$ in 2001Ga44.
	811.3 1		E1		7 . $33\!\times\!10^{-4}$	
	1401.3 1		M1+E2		6 . 82×10^{-4}	
2817.74	247.54 \$ 10	10.6 \$ 9	M1(+E2)	+0.03 3	0.0392	Mult.: $A_2 = -0.18$ 4 from $\gamma\gamma(\theta)$ in $^{110}\text{Pd}(\alpha, 2n\gamma)$ (1993De09).

$\gamma(^{112}\mathrm{Cd})$ (continued)

E(level)	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	Ιγ [†]	Mult.†	δ [†] h	α	Comments
2817.74	444.54 10	100.0 28	M1+E2	-0.29 +5-7	0.00891	Mult.: A_2 =-0.73 2; A_4 =0.05 2 from $\gamma\gamma(\theta)$ in $^{110}\mathrm{Pd}(\alpha,2n\gamma)$ (1993De09). δ : Other: -0.45 18 from $\gamma(\theta)$ in
2829.19	957.80 19	8.0# 10	E1		5.28×10^{-4}	1997Dr03. B(E1)(W.u.)=0.00051 9.
2029.19	1604.6 4	5.0 [#] 14	E1 [E1]		5.28×10^{-4} 5.24×10^{-4}	$B(E1)(W.u.)=6.8\times10^{-5} 21.$
	2211.65 10	100.0 21	E1		8.80×10 ⁻⁴	B(E1)(W.u.)=0.00052 6.
	2829.20 10	78.6 21	E 1		1.22×10^{-3}	B(E1)(W.u.)=0.000195 23.
2834 . 27	712.68 10	19 4	E 2		$0\;.\;0\;0\;2\;5\;5$	B(E2)(W.u.)<36.
	1521.82 12	26.2 19	E 2		5.64×10^{-4}	B(E2)(W.u.)<1.1.
	2216.74 10	100	E2		6.40×10 ⁻⁴	B(E2)(W.u.) < 0.65.
2840.22	1424.73 10	100	M1+E2	-1.28 +18-24	6.23×10 ⁻⁴ 11	Mult.: A_2 =-0.33 2 from $\gamma\gamma(\theta)$ in 110 Pd(α ,2n γ) (1993De09). δ : Other: -0.11 8 $\gamma\gamma(\theta)$ in 110 Pd(α ,2n γ) in 1997Dr03.
						B(M1)(W.u.)<0.0070; B(E2)(W.u.)<4.3.
2852 . 90	850& 2					
	1419.6 1	12.2 4	E2		5.99×10 ⁻⁴	B(E2)(W.u.)=0.42 +10-21.
	1540.4 1	52.8 22 $34.8 8$	M1+E2 M1+E2	0.20 .20 25	6.11×10^{-4} 6.44×10^{-4}	P(M1)(W)=0.00000 10.04
	2235.46 10			-0.39 +20-25		B(M1)(W.u.)=0.00068 +18-34; B(E2)(W.u.)=0.017 +16-17.
	2852.87 10	100 3	E2		8.54×10 ⁻⁴	B(E2)(W.u.)=0.106 +25-51.
2866.75	450.75 10	16.5 7	M1+E2	+0.73 +69-71	0.00873 20	B(M1)(W.u.)=0.020 +15-20; B(E2)(W.u.)=40 +60-40.
	784.91 10	18.3 15	E1		7.85×10 ⁻⁴	$B(E1)(W.u.) = 9.\times10^{-5} + 3-9.$
	802.3# 4 861.68 10	14# 4	[E1] M1(+E2)	+0.069 +89-69	7.50×10^{-4} 0.00186	$B(E1)(W.u.)=6.\times10^{-5} +3-6.$ B(M1)(W.u.)=(0.027 +9-27);
	861.68 10	100.0 11	M1(+E2)	+0.069 +89-69	0.00186	B(M1)(W.u.)=(0.027 +9-27); B(E2)(W.u.)=(0.1 +4-1).
	1451.30 10	64.7 13	E 1		4.45×10^{-4}	$B(E1)(W.u.)=4.8\times10^{-5} +16-48.$
2867.48	1398.64 10		M1+E2		6.84 \times 10 ⁻⁴	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	1555.1 1		M1+E2		6 . 0.6×1.0^{-4}	
	2249.91 10	100	M1+E2		6 . 48×10^{-4}	
2881.02	713.23 10	100\$	E2		0.00255	Mult.: A_2 =0.341 9; A_4 =-0.121 13 from $\gamma\gamma(\theta)$ in $^{110}Pd(\alpha,2n\gamma)$ (1993De09).
2882.82	726.79 14	36 5	E 2		$0\ .\ 0\ 0\ 2\ 4\ 3$	B(E2)(W.u.)<27.
	1413.86 10	100 5	E2		6 . 02×10^{-4}	B(E2)(W.u.) < 2.7.
	1570.51 14	28.5 25	E 2		5.54×10^{-4}	B(E2)(W.u.)<0.46.
2893.51	771.76 10	37 4	E2		0.00209	B(E2)(W.u.)<42.
	811.9 1	100 4	M1+E2		0.00213 6.58×10^{-4}	P(P0)(W) -0 51
2899.02	2276.07 10 1483.53 4	100 4	E2 (E1)		4.60×10 ⁻⁴	B(E2)(W.u.)<0.51. Mult.: A_2 =-0.29 3; A_4 =0.07 4 from $\gamma\gamma(\theta)$ in 110 Pd(α ,2n γ) (1993De09). Mult.: stretched transition;
						δ =+0.014 +33-30 from $\gamma(\theta)$ in 2001Ga44.
2921.53	840.00 10	100 \$ 8	E2		$1\;.\;70\!\times\!10^{-3}$	B(E1)(W.u.)=0.00069 16. Mult.: A_2 =0.28 3; A_4 =-0.12 4 from $\gamma\gamma(\theta)$ in 110 Pd(α ,2n γ) (1993De09).
	1505.5 \$ 3	40 \$ 5	E2		5.68×10^{-4}	(1993De09). Mult.: $A_2 = 0.13$ 12 from $\gamma\gamma(\theta)$ in $^{110}\text{Pd}(\alpha, 2\pi\gamma)$ (1993De09).
2924.83	333.72 10	60 3	M1+E2	-0.21 +18-17	0.0184 5	δ: Other: $+1.4 + 7-5$ from $\gamma\gamma(\theta)$ in $2001Ga44$.
	EE1 CO 10	00 0	M1 . E9		0.00585	B(M1)(W.u.)<0.80; B(E2)(W.u.)<630.
	551.63 10	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M1+E2 M1+E2	-0.22 10	0.00525 1.59×10^{-3} 3	B(M1)(W.u.)<0.062; B(E2)(W.u.)<5.1.
	919.58 <i>10</i> 1054.24 <i>10</i>	62 3	M1+E2 E1	-0.22 10	1.59×10^{-3} 4.40×10^{-4}	B(M1)(W.u.)<0.062; B(E2)(W.u.)<5.1. B(E1)(W.u.)<0.00034.
	1509.36 10	75.9 23	E1		4.73×10^{-4}	B(E1)(W.u.)<0.00014.
2931.46	1618.84 11	47.5 20	M1+E2		5.89×10 ⁻⁴	
	2314.12 10	53 3	M1+E2		6 . 66×10 ⁻⁴	
		(Continued on ne	ext page (footnotes at	end of table)	

$\gamma(^{112} Cd)$ (continued)

E(level)	$\mathrm{E}\gamma^{\dagger}$	$\underline{\hspace{1.5cm} I\gamma^{\dagger}}$	Mult.†	$\delta^{\dagger h}$	α	Comments
2931.46	2931.42 10	100 3	M1		8.72×10^{-4}	Mult.: ϵ =+0.08 10 from polarization measurements in $^{112}\mathrm{Cd}(\gamma,\mathrm{pol}\ \gamma')$ (2005Ko32).
2931.97	361.80 \$ 20		M1+E2		0.01480	B(M1)(W.u.)=0.026 7. Mult.: A_2 =-0.20 17 from $\gamma\gamma(\theta)$ in 110 Pd(α ,2n γ) (1993De09).
	558.7 1	100	M1+E2		0.00510	Mult.: A_2 =+0.64 3, A_4 =-0.12 4 from $\gamma\gamma(\theta)$ in $^{110}\text{Pd}(\alpha,2n\gamma)$ (1997Dr03).
2935.50	141.69 \$ 11	5.6 \$ 14	M1+E2‡	-0.52 [‡] 9	0.230 16	(10072100).
	365.38 10	3.9 \$ 16	E2		0.01718	Mult.: A_2 =0.63 10; A_4 =-0.15 12 from $\gamma\gamma(\theta)$ in $^{110}{\rm Pd}(\alpha,2n\gamma)$ (1993De09).
	562.39 10	100 8 3	(E2)		0.00478	Mult.: A ₂ =+0.24 8 (1997Dr03).
	767.65 \$ 10	61 § 3	E1		8.22×10 ⁻⁴	Mult.: A_2 =-0.249 <i>14</i> from $\gamma\gamma(\theta)$ in 110 Pd($\alpha,2n\gamma$) (1993De09).
2944.94	2327.44 10	100 4	M1+E2	+1.4 +11-14	6.73×10 ⁻⁴	B(M1)(W.u.)=0.0009 +10-9; B(E2)(W.u.)=0.25 +15-23.
0045 56	2944.78 10	73 4	E2 M1+E2	9 6 . 10 16	8.87×10^{-4} 6.75×10^{-4}	B(E2)(W.u.)=0.084 +22-64.
2947.76 2961.92	2330.22 <i>10</i> 370.86 <i>10</i>	100 37.1 22	M1+E2 M1(+E2)	-3.6 +10-16 +0.06 +15-10	0.01392 22	B(M1)(W.u.)=0.0015 9; B(E2)(W.u.)=2.9 9.
2301.32	588.83 10	60.2 24	M1+E2	+0.00 +15-10	0.01332 22	
	956.7 1	00.2 21	M1+E2		1 . 47×10 ⁻³	
	1546.35 10	100 3	E1		4.92×10^{-4}	
2962.0	957.1 # 10	50# 25				
	2961.7# 10	100# 25				
2970.02	398.57 10	75§ 5				
	1554.49 [§] 16	100 § 11	M1+E2 [‡]	+0.42 † 12	5.99×10^{-4} 10	Mult.: A_2 =0.27 3 from $\gamma\gamma(\theta)$ in $^{110}{\rm Pd}(\alpha,2n\gamma)$ (1993De09).
2972.45	804.89 10	32.3 17	M1+E2	-2.5 +7-12	0.00193 4	B(M1)(W.u.)=0.0020 +12-20; B(E2)(W.u.)=15 +6-15.
	890.77 10	25 3	M1+E2	+0.17 +7-6	1.72×10 ⁻³ 3	Mult.: A_2 =-0.55 8 from γγ(θ) in 110 Pd(α,2nγ) (1993De09). δ: Other: -0.33 15 from γγ(θ) in 110 Pd(α,2nγ) (1997Dr03). B(M1)(W.u.)=0.008 +3-8; B(E2)(W.u.)=0.23 +21-23.
	1556.8 1	100 3	M1+E2 [‡]	+0.42 [‡] 12	5.98×10 ⁻⁴ 10	Mult.: A_2 =0.02 δ from $\gamma\gamma(\theta)$ in 110 Pd(α ,2 γ) (1993De09). B(M1)(W.u.)=0.0053 $+19$ -53; B(E2)(W.u.)=0.31 $+18$ -31.
2980.85	1512.13 17	15 3	M1+E2		6 . $22\!\times\!10^{-4}$	
	1668.4	9.6 23	M1+E2		5 . $80\!\times\!10^{-4}$	
	2363.27 10	100 4	M1 (+E2)	-0.01 6	6.81×10 ⁻⁴	δ: Other: +2.3 +5-4 from γ(θ) in 2001Ga44. B(M1)(W.u.)=(0.0096 22); B(E2)(W.u.)=(0.00014 +165-14).
3002.06	996.75 14	37 6	E 1		4 . 89×10^{-4}	B(E1)(W.u.)=0.00026 +10-18.
	1586.57 10	79 3	M1+E2	+0.12 6	5.96×10^{-4}	B(M1)(W.u.)=0.010 +4-7; B(E2)(W.u.)=0.05 5.
	1689.7 1		M1+E2		5 . $77\!\times\!10^{-4}$	
	2384.54 11	100 4	M1+E2	+8.3 +44-20	6.93×10 ⁻⁴	δ: Other: +0.33 +5-6 from $γ(θ)$ in 2001Ga44. B(M1)(W.u.)=6.×10 ⁻⁵ +7-6; B(E2)(W.u.)=0.55 +18-35.
3011.08	637.89 10	100	M1+E2	+3.5 +27-14	0.00342 6	δ: Other: +0.36 +25-17 from $\gamma(\theta)$ in 2001Ga44.
3027.97	859.83 [§] 25	45 \$ 9	M1+E2 [‡]	-0.39‡ 9	0.00183	Mult.: A_2 =0.15 5; A_4 =0.10 8 from $\gamma\gamma(\theta)$ in $^{110}Pd(\alpha,2n\gamma)$ (1993De09). δ : Also: +1.3 2 from $\gamma(\theta)$ in

$\gamma(^{112}\text{Cd})$ (continued)

E(level)	$\underline{\hspace{1cm}}^{\hspace{1cm}} {}^{\hspace{1cm}} {}^{\hspace{1cm}} {}^{\hspace{1cm}} {}^{\hspace{1cm}} {}^{\hspace{1cm}} {}^{\hspace{1cm}}$	Ιγ [†]	Mult.†	δ [†] h		Comments
3027.97	946.39 \$ 10	100 \$ 7	E 2		$1.29{\times}10^{-3}$	Mult.: A_2 =0.16 2; A_4 =-0.08 3 from $\gamma\gamma(\theta)$ in $^{110}\mathrm{Pd}(\alpha,2n\gamma)$ (1993De09).
3049.08	967.63 10	28.4 22	[M1]		1.43×10^{-3}	B(M1)(W.u.)=0.07 +3-7.
	1633.39 10	100.0 22	[M1]		5.86 \times 10 ⁻⁴	B(M1)(W.u.)=0.049 +19-49.
3051.19	1635.70 10	100.0 22	M1+E2	+0.35 +14-9	5.81×10 ⁻⁴	B(M1)(W.d.)=0.010 110 10.
3066.23	1753.8	56.3 23	E1	10.00 111 0	6.09×10^{-4}	$B(E1)(W.u.) < 9.4 \times 10^{-5}$.
3000.23	2448.76 10				1.01×10^{-3}	$B(E1)(W.u.)<6.1\times10^{-5}$.
0000 00		100.0 23	E1			
3068.62	1063.49 10	100.0 19	E1		4.32×10 ⁻⁴	B(E1)(W.u.)<0.00016.
	1599.70 10	93.4 22	E2		5.50×10 ⁻⁴	B(E2)(W.u.)<1.0.
	1653.09 10	44.8 17	M1+E2	-0.54 21	5.74×10 ⁻⁴ 10	B(M1)(W.u.)<0.0013; B(E2)(W.u.)<0.15.
	1756.30 14	36.5 22	E 2		5.47×10^{-4}	B(E2)(W.u.)<0.25.
3071.46	1006.9 1	100 4				
	1066.28 10	39 4				
3071.74	840.613 10					
	949.65 11					
	1638.4 10					
	3071.2 10					
2075 10		100	M1.E0	.0.12.7	5.81×10^{-4}	Mult. A = 0.90 C from m(0)
3075.19	1659.70 10	100	M1+E2	+0.13 5	5.81×10 ⁻⁴	Mult.: $A_2 = -0.20$ 6 from $\gamma\gamma(\theta)$ in $^{110}\text{Pd}(\alpha, 2n\gamma)$ (1993De09).
						B(M1)(W.u.)=0.016 +6-16;
						B(E2)(W.u.)=0.08 +7-8.
3081.65	3081.60 19	100	E2		9.35×10^{-4}	
3093.02	157.50 10	16.0 9	M1+E2 [‡]	-0.59 [‡] 18	0.174 20	Mult.: A ₂ =-1.01 2; A ₄ =0.13 3 from
						$\gamma\gamma(\theta)$ in $^{110}\mathrm{Pd}(\alpha,2n\gamma)$ (1993De09).
	299.19 \$ 10	100 \$ 11	M1+E2‡	+0.55 † 6	0.0260 5	(10002000).
3102.15	3102.10 10	100	[E2]	10.00.0	9.42×10 ⁻⁴	B(E2)(W.u.)=2.9 9.
	729.41 10	26.7 25	[E2]		9.42×10	B(E2)(W.u.)=2.9 9.
3102.59						
	1687.08 10	100.0 25			.	
3105.50	1636.7 1		[M1]		5.85×10 ⁻⁴	
	1690.1 1		[E2]		5 . 45×10^{-4}	
	1792.77 10	50 3	[M1]		5 . 72×10^{-4}	B(M1)(W.u.)=0.0042 +15-42.
	2488.14 10	100 3	[M1]		$7.19{ imes}10^{-4}$	B(M1)(W.u.)=0.0032 +11-32.
3109.98	1641.14 10	84.0 20	[M1]		5 . 84×10^{-4}	B(M1)(W.u.)=0.015 +4-7.
	2492.24 10	100.0 22	[M1]		7 . 20×10^{-4}	B(M1)(W.u.)=0.0049 +12-23.
	3110.01 16	37.7 18	[E2]		9.45×10^{-4}	B(E2)(W.u.)=0.079 +19-37.
3130.83	714.84 10	30.0 21	E2		0.00253	
	1125.78 10	100	E2		8.81×10 ⁻⁴	
	1715.08 12	23.0 12	E1		5.86×10 ⁻⁴	
3133.42	1909.53 ^b 17	38.7 ^b 16	[E1]		7.02×10 ⁻⁴	B(E1)(W.u.)=0.00043 9.
3133.42	3133.21 ^b 10	100b 5	E1		1.35×10 ⁻³	Mult.: $\epsilon = -0.13$ 6 from polarization
	3133.21- 10	100~ 5	EI		1.30×10	measurements in $^{112}Cd(\gamma,pol~\gamma')$ 2005Ko32.
						B(E1)(W.u.)=0.00025 5.
3135.84	1071.26 10	28 3				Iy: 96 6 in $^{111}Cd(n,\gamma)$
		_				E=th:secondary (1997Dr03).
	1667.01 ^b 25	27b 5				
	1823.39 10	100 5				
	2518.43 10	68 6				
3145.28	1063.6 1		M1+E2		1.16×10^{-3}	
	1729.82 10	100	M1+E2	-0.43 +11-12	5.69×10 ⁻⁴ 9	δ: Also: $+3.0 +15-7$ from $\gamma(\theta)$ in
	1,20.02 10	100		0.10 111 12	0.0001	2001Ga44. B(M1)(W.u.)=0.028 +7-11; B(E2)(W.u.)=1.4 +7-8.
3163.51	656.74 ^b 10	100b	E1		1.15×10^{-3}	B(E1)(W.u.)=0.0025 +7-12.
	3163.4b 3	58b g	E2		9.64×10^{-4}	Iγ: 100 in ¹¹² Cd(n,n'γ) (2001Ga44)
	= 00 c= ···		164 5-			B(E2)(W.u.)=0.079 +25-39.
9165 46	792.27 10	100	M1+E2		0.00225	
3165.46	1101 0 1		E 1		3.86×10^{-4}	
3169.46	1164.2 1 1945.14 17	74 3	E2		5 . 72×10^{-4}	B(E2)(W.u.)=1.80 20.

$\gamma(^{112} Cd)$ (continued)

E(level)	$\underline{\hspace{1cm}} \mathbf{E} \gamma^{\dagger}$	$\underline{\hspace{1cm}} I\gamma^{\dagger}$	Mult.†	$\delta^{\dagger h}$	α	Comments
3169.46	2552.01 10	100 3	M1+E2	-0.68 +13-20	7 . 43×10^{-4}	δ: Other: $-4.8 +19-58$ from $\gamma(\theta)$ in 112 Cd(n,n'γ) (2001Ga44).
						B(M1)(W.u.)=0.0035 6;
						B(E2)(W.u.)=0.20 6.
	3170.0# 15	4 #	[E2]		9 . 66×10^{-4}	B(E2)(W.u.)=0.0085 9.
3176.47	295.19 \$ 14	8.2 \$ 20	M1+E2 [‡]	-0.14 [±] 10	0.0250 5	Mult.: A_2 =0.36 3; A_4 =-0.02 2 from $\gamma\gamma(\theta)$ in 110 Pd(α ,2n γ) (1993De09).
	382.37 \ 13	10.6 \$ 23				Mult.: A_2 =+0.07 2 from γγ(θ) in 110 Pd(α,2nγ) (1993De09).
	604.98 10	100 \$ 5	E2		0.00392	Mult.: A_2 =0.334 12; A_4 =-0.12 2 from $\gamma\gamma(\theta)$ in $^{110}Pd(\alpha,2n\gamma)$ (1993De09).
3176.83	2559.28 13	100	E2		7 . 52×10^{-4}	
3178.79	2561.23 10	100.0 15	M1+E2		7 . 43×10^{-4}	
	3178.76 10	35.7 15	E2		9.70 \times 10 ⁻⁴	B(E2)(W.u.)=0.14 4.
3189.82	1022.09 13	83 4			0	B(B2)(a.)=0.11 1.
0100.02	1774.30 10	100 4				
3190.06	2572.51 10	100				
3194.46			[17:1]		3.83×10^{-4}	P(F1)(W) = 0.0006 2
3194.46	1189.41 10	59.0 18	[E1]		5.76×10^{-4}	B(E1)(W.u.)=0.0006 3.
	1882.1 1	100 0 10	[M1]			D/M1)/W) 0 000 4
	2576.72 10	100.0 18	[M1]		7.48×10 ⁻⁴	B(M1)(W.u.)=0.008 4.
3201.32	1196.21 19	100	E2		7.80×10 ⁻⁴	B(E2)(W.u.)=14 +6-14.
	1785.8 1		E1		6.28×10 ⁻⁴	
3203.25	2585.70 10	100	(M1+E2)	-0.10 +5-6	7.51×10 ⁻⁴	B(M1)(W.u.)=(0.011 +4-8); B(E2)(W.u.)=(0.013 +14-13).
3205.74	1736.90 <i>12</i> 1790.2	100				
3206.48	1084.93 10	76 4	[E2]		9.5 3×10^{-4}	B(E2)(W.u.)=67 22.
3200.40	2588.85 10	100	[E2]		7.62×10^{-4}	B(E2)(W.u.)=0.7-22. B(E2)(W.u.)=1.1-4.
2206 71	1792.1	100	[15 2]		1.02×10	B(E2)(W.u.)=1.1 4.
3206.71		100				
3230.29	$1894.30 \ 3$ 349.26 § 10	100 27\$ 4	M1+E2 [‡]	+0.42 + 20	0.0167 6	Mult.: A_2 =0.42 3; A_4 =-0.03 4 from $\gamma\gamma(\theta)$ in $^{110}Pd(\alpha,2n\gamma)$ (1993De09).
						δ: Also: -0.09 12 from $\gamma\gamma(\theta)$ in $^{110}\text{Pd}(\alpha,2n\gamma)$ in 1997Dr03.
	436.92 ^{§ i} 6	§	E 1		0.00295	Mult.: $A_0=3.3$ 1; $A_2/A_0=0.02$ 10 (1993De09).
	658.83 10	100 \ 14	E2		$0\;.\;0\;0\;3\;1\;2$	Mult.: A ₂ =+0.43 6 (1997Dr03).
3231.59	1919.4 1		M1+E2		5 . 80×10^{-4}	Iγ: 100 in 112 Ag β ⁻ decay (3.130 h) (1970Ma45).
	2614.02 14	38.9 22	M1+E2		7 . 61×10 ⁻⁴	
	3231.35 10	100.0 22	M1		9.79×10 ⁻⁴	Mult.: ϵ =+0.27 12 from polarization measurements in 112 Cd(γ ,pol γ') (2005Ko32). B(M1)(W.u.)=0.0134 16.
3239.04	573.31 \$ 10	100 \ 4	E 2		0.00453	Mult.: $A_2=0.34$ 2 from $\gamma\gamma(\theta)$ in $^{110}\text{Pd}(\alpha,2n\gamma)$ (1993De09).
	668.18 [§] 18	35 4	M1+E2 [‡]	+2.6 † 10	0.00305 7	Mult.: A_2 =+0.68 4 from $\gamma\gamma(\theta)$ in 110 Pd(α ,2n γ) (1993De09). δ : Also: +0.54 +30-15 from $\gamma\gamma(\theta)$ in
	1071.24 \$ 10	54§ 6	E2(+M1) [‡]	-7.2 [‡] 25	9.83 \times 10 ⁻⁴ 15	¹¹⁰ Pd(α,2nγ) (1993De09).
	1071.24 10	34 0	E2(+WII).	-1.2. 20	9.03×10 13	Mult.: A_2 =-0.26 2; A_4 =0.28 3 from $\gamma\gamma(\theta)$ in $^{110}\text{Pd}(\alpha,2n\gamma)$ (1993De09).
3242.64	1161.08 12	100 8	E2		8.27×10^{-4}	B(E2)(W.u.)=16 +9-16.
	2625.07 10	92 6	M1+E2	+1.9 +15-9	7.72×10 ⁻⁴ 12	δ: Also: +0.10 +35-22 (2001Ga44). B(M1)(W.u.)=0.0005 +7-5;
9942 02	3242.49 10	64 5	E2		9 . 9 2×10^{-4}	B(E2)(W.u.)=0.20 +13-20. B(E2)(W.u.)=0.06 +4-6.
3246.86	1778.0 <i>1</i> 2629.34 <i>10</i>	100				

$\gamma(^{112}{\rm Cd})$ (continued)

E(level)	${f E}\gamma^{\dagger}$	Ιγ [†]	Mult. [†]	$\delta^{\dagger h}$	α	Comments
3247.17	1831.67 10	100				
3248.25	155.21 \$ 10	1.02 \$ 23	M1+E2 [‡]	+0.18 [‡] 12	0.142 10	Mult.: a_0 =0.96 6 ; A_2 =-0.40 10 ; A_4 =0.15 16 from $\gamma\gamma(\theta)$ in 110 Pd(α ,2n γ) (1993De09). δ: Other: +7 4 from $\gamma\gamma(\theta)$ in
	312.94 [§] 10	9.9 \$ 5	M1(+E2) [‡]	-0.1 [‡] 1	0.0214 4	$^{110}\mathrm{Pd}(\alpha,2\mathrm{n}\gamma)$ (1993De09). Mult.: $\mathrm{A_2}{=}0.34\ I$; $\mathrm{A_4}{=}{-}0.01\ I$ from $\gamma\gamma(\theta)$ in $^{110}\mathrm{Pd}(\alpha,2\mathrm{n}\gamma)$ (1993De09).
	316.19 \$ 10	100\$	M1+E2 [‡]	+0.28‡ 4	0.0213 4	Mult.: $A_2 = 0.19$ 2; $A_4 = -0.02$ 2 from $\gamma\gamma(\theta)$ in $^{110}\mathrm{Pd}(\alpha,2n\gamma)$ (1993De09).
3251.86	2634.31 13	100	E2		7 . $77\!\times\!10^{-4}$	B(E2)(W.u.)>0.17.
3252 . 55	458.75 10	1008	M1 (+E2) ‡	$-0.02^{\ddagger}5$	$0\;.\;0\;0\;8\;2\;1$	Mult.: $A_2 = +0.39 22 (1997 Dr 03)$.
3254 . 21	1785.2					
	1942.01 10	100 3				111
	2636.62 11	70 3				Iy: $100 \text{ in } ^{111}\text{Cd}(n,\gamma)$ E=th:secondary (1997Dr03).
3254.30	1249.01 10	100 3	E1		3.86×10^{-4}	B(E1)(W.u.)=0.0017 5.
	1838.89 10	57 3	M1+E2	+3.1 +30-11	5 . 57×10 ⁻⁴	δ: Also: $-0.45 +30-25$ from $\gamma(\theta)$ in $2001 Ga 44$.
						B(M1)(W.u.)=0.0021 +38-21; B(E2)(W.u.)=4.8 18.
3258 . 01	1252 . 8 1	100				
3266 . 54	1851.04 10	100	[M1]		5 . 74×10^{-4}	B(M1)(W.u.)=0.018 5.
3269.50	1264 . 25 10	$100.0\ 25$				
	1854.04 10	44.3 25				
3290.40	1419.43 10	100				
3291.13	1209.4 1 $1285.95 10$	100				
	1875.7 1	100				
3291.17	917.73 \$ 10	100 \$ 8	E2		1.39×10^{-3}	Mult.: A ₂ =+0.07 2 (1997Dr03).
	1123.96 \$ 15	95 \$ 10	E1		3.98×10^{-4}	Mult.: $A_2 = -0.23$ 2 from $\gamma\gamma(\theta)$ in $^{110}Pd(\alpha,2n\gamma)$ (1993De09).
3297 . 01	1881.5 1	100.0 20				
	2679.46 10	31.2 20				
3300.99	3300.94 16	100.0 4				
3303.24	629.2 [#] 4 886.99 ^b 23	6.8 [#] 17 17 ^b 3				
	2685.83 ^b 17	100b 5				
3312.24	1306.97 10	46.9 13				
	2000.01 10	43.8 19				
	2694.56 10	100.0 21				
3318.09	382.37	148 3	E2		$0\;.\;0\;1\;4\;8\;9$	
	524.28 9 10	1008	E 2		0.00581	
						from $\gamma\gamma(\theta)$ in $^{110}\mathrm{Pd}(\alpha,2n\gamma)$ (1993De09).
3319.83	1314.6 1					(
	1851.04 10	100 3				
	2702.24 10	62 3				
3322 . 40	145.87 \$ 10	11.8 \$ 10	E2		0.390	M. I. A. 0.70.00 (1007) 05:
2225 06	441.45 \$ 10	100 \$ 5	E 2		0.00960	Mult.: A ₂ =+0.72 23 (1997Dr03).
3325.96 3329.17	734.91 <i>10</i> 1913.67 <i>10</i>	100 100				
3332.11	1326.83 10	100				
	1916.72 12	54 8				
3332.46	2714.91 10	100				
3336.03	2718.48 10	100	[M1+E2]		7 . 9 $7\!\times\!10^{-4}$	
3341.86	2724.31 10	100	E2+M1	+7.4 +17-16	8 . 09×10^{-4}	B(M1)(W.u.)=0.00053 25;
3353.36	2735.81 10	100	[E2]		$8.13{ imes}10^{-4}$	$B(E2)(W.u.)=3.1 \ 4.$ $B(E2)(W.u.)=0.9 \ 3.$
3363.55	2745.86 10	100 3	M1+E2	-0.49 +15-17	8.08 \times 10 ⁻⁴	B(M1)(W.u.)=0.0023 +7-10;

$\gamma(^{112} Cd)$ (continued)

E(level)	$\underline{\hspace{1cm}} E\gamma^{\dagger}$	Ιγ [†]	Mult.†	$\delta^{\dagger}h$	α	Comments
3363.55	3363.67 10	58 3	E2		1.03×10^{-3}	B(E2)(W.u.)=0.063 +16-27.
3363.99	909.48 10	100				
3369.62	1900.77 10	26.9 14				
	1952.9# 10	50#				
	2752.08 10	100.0 14				
3375.45	439.95 10	100\$	D_{\ddagger}	‡		Mult.: $A_2 = -0.281$ 12 from $\gamma\gamma(\theta)$ in $^{110}\text{Pd}(\alpha, 2n\gamma)$ (1993De09).
3375.50	2758.02 14	95 3				$\operatorname{Fd}(\alpha,2\pi\gamma)$ (1993De09).
	3375.40 10	100 3				
3376.46	283.40 \$ 12	4.7 \$ 10	M1+E2 [‡]	-2.2 [‡] 7	0.0372 17	Mult.: A_2 =0.32 6; A_4 =0.17 8 from $\gamma\gamma(\theta)$ in 110 Pd(α ,2n γ) (1993De09). δ: Also: -0.42 +15-40 from $\gamma(\theta)$ in 1997Dr03.
	444.53 \$ 10	100 § 3	M1+E2‡	-0.37 [‡] 13	0.00894 14	Mult.: A_2 =-0.73 2; A_4 =0.05 2 from $\gamma\gamma(\theta)$ in 110 Pd(α ,2n γ) (1993De09).
3378.52	1909.63 10	100.0 21	[M1]		5.79 \times 10 ⁻⁴	B(M1)(W.u.)=0.0059 +15-45.
20.0.02	2761.18 14	33.9 21	[M1]		8.12×10^{-4}	B(M1)(W.u.)=0.00066 + 18-50.
3383.71	1227.70 13	30 3	[]		0.12/10	
	2766.05 10	100				
3392.78	3392.72 12	100				
3393.39	2775.83 4	100				
3393.45	2775.78b 18	100b				
	3393.35 ^b 20	31 ^b 4				
3393.60	977.59 5	100				
3398.88	222.17 10	28 \$ 4	(M1)		0.0521	Mult.: $A_2 = -0.32$ 22 from $\gamma\gamma(\theta)$ in $^{110}\text{Pd}(\alpha, 2n\gamma)$ (1997Dr03).
	517.99 § 12	51 8 9	M1+E2 [‡]	-0.16 [‡] 14	0.00611	Mult.: A_2 =+0.23 5from $\gamma\gamma(\theta)$ in 110 Pd($\alpha,2$ n $\gamma)$ (1997Dr03). 8: Other: +0.62 12 in 110 Pd($\alpha,2$ n $\gamma)$
	827.54 § 10	100\$ 9	E2		1 . 77×10 $^{-3}$	(1997dr3). Mult.: A_2 =0.316 9; A_4 =-0.111 12 from $\gamma\gamma(\theta)$ in $^{110}{\rm Pd}(\alpha,2n\gamma)$ (1993De09).
3400 . 35	2087.94 10	100				
3402.93	2785.37 10	100	M1+E2	-1.8 +3-4	$8.28{ imes}10^{-4}$	<pre>6: Also: -0.34 +10-13 from G(THETA) in 2001GA44. B(M1)(W.u.)<0.00057; B(E2)(W.u.)<0.16.</pre>
3422.55	1953.71 16	100.0 24				B(E2)(W.u.)<0.10.
3422.00	2805.0 1	35.7 24				
3425.60	2113.19 5	100				
3426.32	2808.76 14	100				
3428.87	2811.2 1	100.0 16	M1+E2		8.30×10^{-4}	
	3428.71 14	14.2 16	E2		1.06×10^{-3}	B(E2)(W.u.)=0.058 +23-37.
3429.6	$2014.1\ 3$	100				
3429.98	1262.21 8 15	100\$	D(+Q) ‡	$-0.04^{1\over 2}5$		Mult.: $A_2 = -0.30$ 6 from $\gamma\gamma(\theta)$ in $^{110}\text{Pd}(\alpha, 2n\gamma)$ (1993De09).
3433.73	2018.23 10	100				() (- 0 0 2 0 0 0).
3451.97	945.26 5	100	E1		5 . 41×10^{-4}	
3452 . 47	2037.4 3	59 8	[E2]		5.93×10^{-4}	B(E2)(W.u.)=0.9 +5-9.
	2835.33 10	100 8	[M1]		8.38×10^{-4}	B(M1)(W.u.)=0.0030 +16-30.
	3452.1 4		[E2]		1 . 0.6×10^{-3}	Ey: from ce in $^{111}Cd(n,\gamma)$ E=th:secondary (1997Dr03).
3453.8	1985.0 3	100				(100.2100).
	2837.85 10	100				
3455 . 48	2852.7# 12	100#				
3470 . 3		100				
	1389.7 3	100				
3470.3 3471.32	2055.8 3	100				
3470 . 3	2055.8 3 2166.06 10	$\begin{matrix}1&0&0\\1&0&0\end{matrix}$				
3470.3 3471.32	2055.8 3	100				

$\gamma(^{112}Cd)$ (continued)

E(level)	$\underline{\hspace{1cm} E\gamma^{\dagger}}$	$\underline{\hspace{1cm}} I\gamma^{\dagger}$	Mult.†	$\delta^{\dagger h}$	α	Comments
3478.7	1322.0# 10	100# 17				
	2863.0 # 20	33# 17				
3487.55	2869.99 10	100	E2		8 . 60×10 ⁻⁴	B(E2)(W.u.)=1.09 23.
3489.85	1368.12 10	39 4				
	2074.36 10	100 4				
	2872.4 1	55.8 10				
3493.92	1326.15 [§] 12	100 §	D(+Q) ‡	+0.02		Mult.: $A_2 = -0.21$ 3 from $\gamma\gamma(\theta)$ in $^{110}{\rm Pd}(\alpha, 2n\gamma)$ (1993De09).
3500.45	2882.85 10	100				
511.6	1138.4 3	100			4	
512.97	2895.23 10	100	M1+E2	-0.18 6	8.60×10 ⁻⁴	B(M1)(W.u.)=0.009 3; B(E2)(W.u.)=0.027 20.
3522.51	2904.95 10	100				
528.92	593.45 [§] 10	82 \$ 11	M1+E2 [‡]	+1.0 † 5	0.00427 11	Mult.: $A_2 = +0.51 \ 13 \ \text{from } \gamma\gamma(\theta) \ \text{in}$ $^{110}\text{Pd}(\alpha, 2n\gamma) \ (1997\text{Dr}03).$
	735.08 10	100\$	M1+E2 [‡]	-0.11 [‡] 6	0.00267	Mult.: A_2 =+0.12 7 from $\gamma\gamma(\theta)$ in 110 Pd(α ,2n γ) (1997Dr03).
3530.90	1525.69 4	100				
531.32	2218.9 1					
	2913.77 10	100	M1+E2	-0.18 + 10-9	8 . 66×10^{-4}	$B(M1)(W.u.)=0.011 \ 4;$ $B(E2)(W.u.)=0.03 \ +4-3.$
3540.24	2922.72 10	100 7				
	3539.8 ^b 4	24 ^b 6				
542.84	621.41 \$ 15	78\$ 8	E 2		0.00364	Mult.: A_2 =0.26 10; A_4 =-0.26 13 fro $\gamma\gamma(\theta)$ in 110 Pd($\alpha,2n\gamma$)
						(1993De09).
	1375.02 10	100 \$ 6	E 2		6 . 22×10^{-4}	Mult.: A_2 =0.31 3; A_4 =-0.07 4 from $\gamma\gamma(\theta)$ in $^{110}{\rm Pd}(\alpha,2n\gamma)$
						(1993De09).
556.88	3556.78 12	100				
557.33	2939.77 10	100	[E1]		1 . 27 \times 10 $^{-3}$	B(E1)(W.u.)=0.00016 7.
568.05	2099.17 10	100 5	M1+E2	≤+0.29	6.10×10 ⁻⁴	δ: Other: $+2.3 +29-9$ from $\gamma(\theta)$ in $^{112}\text{Cd}(n,n'\gamma)$ (2001Ga44).
	2050 52 12	94 4	M1+E2	.1 6 .10 0	8.86×10^{-4}	B(M1)(W.u.)>0.011; B(E2)(W.u.)<0.2
	2950.52 <i>12</i>	94 4	MII+EZ	+1.6 +12-8	6.80×10	δ: Other: $+0.15 + 40-20$ from $\gamma(\theta)$ ir $^{112}\text{Cd}(n,n'\gamma)$ 2001Ga44. B(M1)(W.u.)=0.0014 $+15-14$;
						B(E2)(W.u.)=0.32 15.
	3568.00 10	75 5	E2		1.10×10^{-3}	B(E2)(W.u.)=0.137 25.
571.05	252.88 10	100 \$ 6	M1+E2 [‡]	+0.82 † 13	0.0453 18	Mult.: A_2 =0.28 4; A_4 =-0.11 5 from $\gamma\gamma(\theta)$ in 110 Pd(α ,2n γ)
						(1993De09).
						δ: Other: -0.33 14 in 110 Pd($\alpha, 2$ n γ)
	478.22 ^{§ i} 4	§	M1+E2	-0.10 6	$0\ .\ 0\ 0\ 7\ 4\ 2$	(1997Dr03). Eγ: transition seen only in
						1993De09. Mult.: A_0 =3.74 15; A_2/A_0 =-0.43 8
		\$				(1993De09).
	635.7 \$ 3	51 [§] 17	E2		0.00343	Mult.: A_2 =0.34 3; A_4 =-0.12 5 from $\gamma\gamma(\theta)$ in 110 Pd(α ,2n γ)
	777.36 \$ 15	76 \$ 13	E2		0.00206	(1993De09). Mult.: A ₂ =0.352 10; A ₄ =-0.120 14
	111.30 • 13	100 15	E Z		0.00200	from $\gamma\gamma(\theta)$ in $^{110}\mathrm{Pd}(\alpha,2n\gamma)$
572.28	3572.37b 23	100b				(1993De09).
574.49	2262.06 10	57 4				
U17.47	2956.96 18	100 4				
577.2	2264.8 3	100 4				
577.55	2352.94 ^b 19	21.9b 19				
00	2960.13 ^b 16	100 ^b 4				
	3577.53 ^b 18	18.1 ^b 19				
579.44	2267.21 10	40 3				
		100				
	2961.69 10	100				

$\gamma(^{112} Cd)$ (continued)

E(level)	$\mathrm{E}\gamma^{\dagger}$	Ιγ†	Mult.†	$\delta^{\dagger h}$	α	Comments
3583.80	1416.03 \$ 23	100 §	D(+Q) ‡	$-0.06^{1\over 2}$ 4		Mult.: $A_2 = -0.13$ 26 from $\gamma\gamma(\theta)$ in $^{110}\text{Pd}(\alpha, 2n\gamma)$ (1997Dr03).
3594.64	2977.24 14	43 4				
	3594.49 10	100				
3598.81 3608.91	2981.25 <i>10</i> 2991.30 <i>10</i>	100	M1+E2	-0.16 +8-10	8.90×10^{-4}	δ: Other: -2.8 +6-11 from G(THETA in 2001GA44. B(M1)(W.u.)=0.026 7; B(E2)(W.u.)=0.06 6.
3613.26	2143.97 19	96 6				
	2995.85 11	100	M1+E2	+2.0 +21-15	9.03×10^{-4} 14	B(M1)(W.u.)=0.0008 +15-8; B(E2)(W.u.)=0.30 +16-22.
3618.48	1613.8 3 $2202.7 3$					
	3000.83 18	100	[17:1]		1.29×10^{-3}	B(E1)(W.u.)=0.00018 +6-18.
3622.18	3004.62 11	100	[E1]		1.29×10 °	B(E1)(W.u.)=0.00018 +0-18.
3627.6	2212.1 3	100				
3646.54	3028.88 10	100				
3652.18	3034.60 10	100				
3032.18	3652.07 23	19 4				
3658.74	340.50 \$ 15	100\$	M1+E2 [‡]	-0.18 [±] 4	0.0174 3	Mult.: $A_2 = 0.09$ 4 from $\gamma \gamma(\theta)$ in $^{110}\text{Pd}(\alpha, 2n\gamma)$ (1993De09).
	410.55 \$ 10		M1+E2 [‡]	0.50 ‡ 25	0.01103 25	Mult.: A_2 =0.46 9; A_4 =0.19 13 from $\gamma\gamma(\theta)$ in 110 Pd(α ,2n γ) (1993De09). δ : from 110 Pd(α ,2n γ) (1993De09);
						Other: 2.7 10 in $^{110}\text{Pd}(\alpha,2n\gamma)$ (1993De09).
3665.78	3048.22 10	100	[E1]		1 . 3 2×10^{-3}	$B(E1)(W.u.)=7.8\times10^{-5}$ 15.
3676.73	2208.09 11	$100 \ 4$				
	3059.00 10	75 4				
3682.83	3682.76 12	100				
3684.02	802.98 10	100\$	E 2		0.00190	Mult.: A_2 =+0.53 16, A_4 =-0.48 20 from $\gamma\gamma(\theta)$ in $^{110}Pd(\alpha,2n\gamma)$ (1997Dr03).
3685.55	309.09 \$ 10	100\$	M1+E2 [‡]	-0 . 29 $\stackrel{\div}{=}$ 9	0.0226 5	(1937bHo): Mult.: A_2 =0.24 2; A_4 =-0.04 3 from $\gamma\gamma(\theta)$ in $^{110}\mathrm{Pd}(\alpha,2\mathrm{n}\gamma)$ (1993De09).
3687.93	3687.86 10	100				
3690.68	3073.12 13	100	[E2]		9 . 32×10^{-4}	B(E2)(W.u.)=0.6 +3-6.
3696.15	2383.81 ^b 17	100 ^b				
3697.74	1692.8 3					
0700 01	3080.13 <i>12</i> 3703.74 <i>10</i>	100				
3703.81 3707.45	840.71 ^b 18	100 40 ^b 4				
5707.45	2395.00 ^b 18	57b 4				
	3090.04 ^b 18	100b 6				
3719.75	2305.1 3	100				
3713.75	3105.13 24	100				
3731.95	3114.39 10	100				
3736.5	1165.0 \$ 3	100 \$	E 2		8.21×10^{-4}	Mult.: $A_2 {=} 0.36$ 7; $A_4 {=} {-} 0.04$ 9 from $\gamma\gamma(\theta)$ in $^{110}Pd(\alpha,2n\gamma)$
3739.55	3121.99 10	100	M1+E2	-0.32 +14-20	9 . 41×10^{-4}	(1993De09). B(M1)(W.u.)=0.010 4;
3743.76	3126.22 10	100	M1+E2	-12 +4-20	9 . 51×10^{-4}	B(E2)(W.u.)=0.08 8. B(M1)(W.u.)=9.×10 ⁻⁵ 7; B(E2)(W.u.)=1.09 16.
3746.8	2331.3 3	100				3(22)()-1.00 10.
3754.09	2338.58 10	100				
3755.46	3755.39 13	100	[E2]		1.17×10^{-3}	B(E2)(W.u.)=0.8 3.
3763.95	3146.38 10	100	[E2]		9 . 58×10 ⁻⁴	B(E2)(W.u.)=0.55 8.
	3152.90 10					

$\gamma(^{112}\text{Cd})$ (continued)

E(level)	$\underline{\hspace{1cm}} \mathbf{E} \gamma^{\dagger}$	$\underline{\hspace{1cm}} \text{I} \gamma^{\dagger}$	Mult. [†]	$^{-\delta^{\dagger h}}$	α	Comments
3783.197	3165.631 10	100	M1+E2	-2.7 +10-14	9.64×10 ⁻⁴	δ: Other: $-0.23 + 14 - 20$ from $γ(θ)$ in $2001Ga44$. $B(M1)(W.u.) = 0.0004$ 4; $B(E2)(W.u.) = 0.24 + 13 - 24$.
3785.69	692.67 § 10	1008				
3787.3	3787.2 3	100	E2		1.18×10^{-3}	
3801 . 2	2385.7 3	100				
3804.87	3187.30 14	100				
3809.39	238.32 9 10		M1+E2		0.0433	
	491.30 10		M1+E2	-0.78 35	0.00697	Mult.,8: A_2 =-1.23 5; A_4 =0.06 5 from $\gamma\gamma(\theta)$ in $^{110}\mathrm{Pd}(\alpha,2n\gamma)$ (1993De09).
	716.38 \$ 10		E2		0.00252	Mult.: A_2 =0.445 24; A_4 =-0.139 33 from $\gamma\gamma(\theta)$ in $^{110}\mathrm{Pd}(\alpha,2n\gamma)$ (1993De09).
3810.04	3809.97 10					
3810.88	3193.31 10	100	[E1]		1.38×10 ⁻³	B(E1)(W.u.)=0.00013 +4-6.
3832.66	3215.09 11	100	[E2]		9 . 83×10^{-4}	B(E2)(W.u.)=2.3 8.
3838.85	3838.84 ^b 24	100 ^b				
3844.25	3226.68 10	100				
3846.48	3846.41 10	100				
3854.4	3854.3 3	100	E2		1 . 20×10^{-3}	
3864.51	2449.0 1	100				
3869.00	3868.93 10	100 11				
3878.62	3261.05 13	100				
3892.48	2579.77 ^b 23	100 ^b				
3913.69	514.75 10		M1+E2	0.31 7	0.00620	Mult., δ : A_2 =0.26 6 from $\gamma\gamma(\theta)$ in 110 Pd(α ,2n γ) (1993De09).
	674.71 9 10		E2		0.00294	Mult.: A_2 =0.322 14; A_4 =-0.15 2 from $\gamma\gamma(\theta)$ in $^{110}\mathrm{Pd}(\alpha,2n\gamma)$ (1993De09).
	1032.66 \$ 10		M1(+E2)	0.09 7	$1.24{ imes}10^{-3}$	Mult.,8: A_2 =-0.09 4; A_4 =0.17 5 from $\gamma\gamma(\theta)$ in $^{110}\mathrm{Pd}(\alpha,2n\gamma)$ (1993De09).
3929.21	3311.64 21	100	[E2]		1.02×10^{-3}	B(E2)(W.u.) > 0.049.
3930.78	608.5 \$ 4	100\$	E2		0.00385	Mult.: A_2 =0.340 16 ; A_4 =-0.139 22 from $\gamma\gamma(\theta)$ in $^{110}Pd(\alpha,2n\gamma)$ (1993De09).
3932.18	3314.61 12	100				
3933.07	3933.00 13	100				
3939.27	3321.70 14	100				
3951.57	3333.9 ^b 10	100 ^b 5				Ey: a rounded off value and Δ Ey=1.0 keV set by the evaluators.
2062 0	3951.4 ^b 10	12.5 ^b 18				Ey: a rounded off value and Δ Ey=1.0 keV set by the evaluators.
3963.8 3966.44	644.04 \$ 10	100	M1+E2	-0.16 2	0.00363	Mult., δ : A ₂ =0.07 3 from $\gamma\gamma(\theta)$ in $^{110}\text{Pd}(\alpha, 2n\gamma)$ (1993De09).
3970.08	3352.4 ^b 4 3970.0 ^b 3	44 ^b 11 100 ^b 9				Ey: 3351.72 20 in $^{112}Cd(n,n'\gamma)$.
3990.40	306.23 \$ 25	21 5	M1+E2 ‡	-0.50 [‡] 10	0.0241 6	Mult.: $A_2 = 0.17$ 2 from $\gamma \gamma(\theta)$ in $^{110}\text{Pd}(\alpha, 2n\gamma)$ (1993De09).
	591.57 \$ 10	§	E2		0.00416	Mult.: A_2 =0.397 24; A_4 =-0.22 4 from $\gamma\gamma(\theta)$ in 110 Pd($\alpha,2n\gamma$) (1993De09).
	813.86 \$ 15	100 \$ 12	(E2)		0.00184	Mult.: A_2 =+0.25 22 from $\gamma\gamma(\theta)$ in $^{110}{\rm Pd}(\alpha,2n\gamma)$ (1997 ${\rm Dr}03$).
3997.75	2685.83 ^b 17 3997.6 ^b 3	100b 5 27b 3				
4003.9	3386.50 ^b 31	100b				
4033.88	3416.31 20	100	[E1]		1.49×10^{-3}	B(E1)(W.u.)=0.00012 +4-11.

$\gamma(^{112} Cd)$ (continued)

E(level)	$\underline{\hspace{1cm}} \mathbf{E} \gamma^{\dagger}$	Ιγ [†]	Mult.†	$\delta^{\dagger}h$	α	Comments
4125.91	949.44 § 10	100\$	E2		$1.28\!\times\!10^{-3}$	Mult.: A_2 =0.33 5; A_4 =-0.17 7 from $\gamma\gamma(\theta)$ in $^{110}{\rm Pd}(\alpha,2n\gamma)$ (1993De09).
4174.50	856.41 8 10	100 §	E1		6 . 57×10 ⁻⁴	Mult.: $A_2 = -0.39 \ 5 \ \text{from } \gamma \gamma(\theta) \ \text{in}$ $^{110}\text{Pd}(\alpha, 2\text{n}\gamma) \ (1993\text{De}09).$
						δ: possible M2 admixture of δ =-0.08 5 110 Pd(α ,2n γ)
4283.47	740.63 \$ 10	100\$	E2		0.00232	(1993De09). Mult.: A_2 =0.43 4; A_4 =-0.08 6 from $\gamma\gamma(\theta)$ in $^{110}{\rm Pd}(\alpha,2n\gamma)$ (1993De09).
4284.76	908.29 \$ 10	100\$	E 2		$1 \; . \; 4 \; 2 \! \times \! 1 \; 0^{ -3}$	Mult.: A_2 =0.27 7; A_4 =-0.13 10 from $\gamma\gamma(\theta)$ in $^{110}\text{Pd}(\alpha,2n\gamma)$ (1993De09).
4285.20	967.10	100\$	E 2		1 . 2 3×10^{-3}	Mult.: A_2 =0.285 39; A_4 =-0.13 6 from $\gamma\gamma(\theta)$ in ¹¹⁰ Pd(α ,2n γ) (1993De09).
4383.05	452.27 10		M1(+E2)	0.05 3	0.00850	Mult.: $a_0/A_2 = -0.28$ 10 from $\gamma\gamma(\theta)$ in $^{110}\text{Pd}(\alpha, 2n\gamma)$ (1993De09).
	1060.63 \$ 10		M1+E2	0.75 30	0.00111 4	Mult., δ : A ₂ =0.67 5; A ₄ =0.16 6 from $\gamma\gamma(\theta)$ in ¹¹⁰ Pd(α , 2n γ) (1993De09).
4385.16	1067.06 \$ 10	100\$	M1+E2	0.38 10	1.13×10^{-3} 2	Mult., δ : A ₂ =0.35 10; A ₄ =0.17 12 from $\gamma\gamma(\theta)$ in ¹¹⁰ Pd(α ,2n γ) (1993De09).
						δ: Other: 3.6 +20-10 from $γγ(θ)$ in $^{110}Pd(α,2nγ)$ (1993De09).
4467.74	896.68 10	100\$	E2		1 . 46×10^{-3}	Mult.: A_2 =0.364 23; A_4 =-0.06 3 from $\gamma\gamma(\theta)$ in $^{110}\mathrm{Pd}(\alpha,2n\gamma)$ (1993De09).
4587.15	903.12 \$ 10	100\$	E2		1 . 44×10^{-3}	Mult.: A_2 =0.367 $I9$; A_4 =-0.124 28 from $\gamma\gamma(\theta)$ in $^{110}Pd(\alpha,2n\gamma)$ (1993De09).
4687.17	773.48 \$ 10	100\$	E 2		0.00208	Mult.: A_2 =0.31 6 ; A_4 =-0.09 8 from $\gamma\gamma(\theta)$ in $^{110}\mathrm{Pd}(\alpha,2n\gamma)$ (1993De09).
4871.47	940.68 10	100\$	E 2		$1 . 3 1 \! \times \! 1 0^{ -3}$	Mult.: A_2 =0.35 3; A_4 =-0.14 4 from $\gamma\gamma(\theta)$ in 110 Pd($\alpha,2n\gamma$) (1993De09).
5106.22	1175.43 \$ 10	100\$	E 1		3.84×10^{-4}	Mult.: A_2 =0.334 18 ; A_4 =0.111 25 from $\gamma\gamma(\theta)$ in $^{110}{\rm Pd}(\alpha,2n\gamma)$ (1993De09).
7633.0	4323& 6 4385& 6	0.36 <i>18</i> 0.91 <i>18</i>	E 1		0.00186	Mult.: A_2 =0.4 I (1971Mo31). $B(E1)(W.u.)=3.3\times10^{-6}$ 9 .
	4439& 6	0.36 18	E1 (+M2)	≤0.6	0.00177 11	Mult.: A ₂ =0.16 17 (1971Mo31). B(E1)(W.u.)>4.4×10 ⁻⁷ ?; B(M2)(W.u.)<0.12?
	4522&	0.91 18	E1(+M2)	>-0.28	0.0015 4	Mult.: A ₂ =0.04 <i>18</i> (1971Mo31). B(E1)(W.u.)<3.5×10 ⁻⁶ ?; B(M2)(W.u.)>0.036?
	4782& 3	3.5 4	E1(+M2)	≤+0.21	0.00197 4	Mult.: A_2 =0.11 8 (1971Mo31). B(E1)(W.u.)>7.4×10 ⁻⁶ ?; B(M2)(W.u.)<0.10?
	4800& 3	3.09 18	E 1		0.00199	$B(M2)(W.u.) < 0.107$ $Mult.: A_2 = 0.5 \ 1 \ (1971Mo31).$ $B(E1)(W.u.) = 8.6 \times 10^{-6} \ 16.$
	4909& 2	0.36 18	[E1]		0.00203	$B(E1)(W.u.)=9.\times10^{-7}$ 5.
	5126& 2	0.73 18	[E1]		0.00209	$B(E1)(W.u.)=1.7\times10^{-6}$ 5.
	5337& 4	0.91 18	[E1]		0.00215	$B(E1)(W.u.)=1.8\times10^{-6}$ 5.
	5403 & 2	0.36 18	[E1]		$0\;.\;0\;0\;2\;1\;7$	$B(E1)(W.u.)=7.\times10^{-7}$ 4.
	5477& 2	0.73 18	[E1]		0.00219	$B(E1)(W.u.)=1.4\times10^{-6}$ 5.
	5512 & 2	1.27 18	[E1]		$0\;.\;0\;0\;2\;2\;0$	$B(E1)(W.u.)=2.3\times10^{-6}$ 6.
	5551& 4	0.91 18	[E3]		1.40×10^{-3}	B(E3)(W.u.)=10 3.

$\gamma(^{112}\text{Cd})$ (continued)

E(level)	$\underline{\hspace{1cm} E\gamma^{\dagger}}$	$\underline{\hspace{1.5cm}}^{\hspace{1.5cm} 1\gamma^{\dagger}}$	Mult.†	$\delta^{\dagger}h$	α	Comments
7633.0	5763& 2	21.1 16	E1		0.00226	Mult.: A ₂ =0.51 2 (1971Mo31).
	6164& 2	3.5 4	E1(+M2)	≤0.15		$\begin{split} & \text{B(E1)(W.u.)=}3.4\times10^{-5}\ 7. \\ & \text{Mult.:}\ \text{A}_2\text{=}0.08\ 7\ (1971\text{Mo}31). \\ & \text{B(E1)(W.u.)>}3.5\times10^{-6}?; \end{split}$
	6203& 3	4.0 4	E1			B(M2)(W.u.)<0.015? Mult.: A ₂ =0.57 7 (1971Mo31).
	6409 2	14.6 11	E1			B(E1)(W.u.)=5.1×10 ⁻⁶ 11. Mult.: A_2 =0.52 4 (1971Mo31). B(E1)(W.u.) 1.7×10 ⁻⁵ 4.
	7015 2	21.3 16	E1+M2	0.06 2		$\begin{array}{l} {\rm B(E1)(W.u.)}{\rm =}1.7{\times}10^{-5}~4.\\ {\rm Mult.:}~~A_2{\rm =}0.09~2~(1971{\rm Mo}31).\\ {\rm B(E1)(W.u.)}{\rm =}1.9{\times}10^{-5}~4;\\ {\rm B(M2)(W.u.)}{\rm =}0.006~5. \end{array}$
	7632 ^{&} 1	100 7	E1			Mult.: from $\gamma(\theta)$ and $\gamma(pol)$ (1970Mo26). Mult.: A_2 =0.51 I (1971Mo31).
(9394.20)	5390.5° 5	2.9° 6				$B(E1)(W.u.)=6.9\times10^{-5}$ 13.
(9394.20)	5397.8° 3	5.5° 9				
	5423.9° 3	4.4° 6				
	5442.48° 13	62.3° 16				
	5498.9° 6	4.3° 12				
	5501.62° 17	24.5° 19				
	5547.5° 4	5.3° 8				
	5555.6° 6	2.6° 6				
	5650.8° 5	3.4° 8				
	5670 . 24^{c} 24	6.2° 7				
	5674.88° 25	5.9° 7				
	5686.66° 14	62.6° 19				
	5697.93° 13	58.7° 19				
	5741.76° 18	14.3° 8				
	5746.95° 24	7.5° 7				
	5784.3° 4	4.5° 8				
	$5822.2^{\circ}4$ $5825.99^{\circ}20$	4.7° 7				
	5825.99° 20 5837.08° 18	11.3° 9 11.0° 7				
	5853.86° 21	13.6° 13				
	5879.4° 3	4.4° 6				
	5893.51 ^c 13	30.5° 10				
	5914.9° 3	5.7° 7				
	5938.41° 14	35.6° 13				
	5942.00° 10	8.7° 11				
	5965.00° 10	3.9° 5				
	6000.49 ^c 13	28.8° 10				
	6015.63° 15	25 . 7^{c} 10				
	6030.58° 16	$12.1^{\circ}7$				
	6090.77° 16	22.3° 13				
	6140.26° 16	14.5° 8				
	6150.4° 4	2.9° 5				
	6162.45° 16	13.0° 7				
	6203.94 ^c 15 6224.68 ^c 15	18.8° 9				
	6224.68° 15 6230.36° 14	20.1° 9 27.7° 11				
	6258.35° 19	41° 5				
	6260.63° 25	29° 5				
	6282.6° 3	8.7° 8				
	6328.5° 3	6.4° 8				
	6448.4° 3	2.7° 4				
	6463.7° 6	1.4° 3				
	6559.8° 6	2.7° 6				
	6564.67° 13	85° 3				
	6627.97° 15	3.0° 7				
	6720.8 ^c 6 6725.22 ^c 15	3.0° 7 38.1° 19				

$\gamma(^{112}Cd)$ (continued)

E(level)	$\underline{\hspace{1cm} E\gamma^{\dagger}}$	$\underline{\hspace{1cm}}^{\hspace{1cm}} I\gamma^{\dagger}$	E(level)	$\underline{\hspace{1cm} E\gamma^{\dagger}}$	Ιγ†
(9394.20)	6832.3° 5	3.4° 5	(9394.20)	7328.6° 7	1.5° 5
	6862.10° 21	9.5° 7		7522.80° 25	5.9° 6
	6887.26° 13	100° 4		7924.8° 4	1.9° 3
	6991.18° 23	6.1° 6		7961.03° 11	0.45° 19
	7093.29° 17	10.3° 7		8081.34° 14	16.8° 12
	7162.1° 5	2.3° 5		8169.41° 23	8.8° 8
	7237.56° 23	6.1° 6		8776.11° 14	25.8° 3
	7272.28° 17	12.7° 8		9393.63° 18	4.1° 5

- † From $^{112}Cd(n,n'\gamma)$, unless otherwise stated. Ey's were rounded off by the evaluators and $\Delta E\gamma$ =0.10 was set by the evaluators in cases where the authors quoted $\Delta E\gamma$ <0.10 keV.
- ‡ From $\gamma\gamma(\theta)$ in $^{110}Pd(\alpha,2n\gamma)$ (1997Dr03).
- $\$ From $^{110}Pd(\alpha,2n\gamma)$. $\Delta E\gamma$ =0.10 was set by the evaluators in cases where the authors quoted $\Delta E\gamma$ <0.10 keV.
- $^{\#}$ From $^{112}Ag~\beta^{-}$ decay (3.130 h).
- & From $^{112}\mathrm{Cd}(\gamma,\gamma')$; Mult and δ based on $\gamma(\theta)$ in 1971Mo31, where applicable.
- a From $^{112}\mathrm{Cd}(\gamma,\ \mathrm{pol}\ \gamma').$
- b From $^{111}Cd(n,\gamma)$ E=th:secondary. $\Delta E \gamma = 0.10$ was set by the evaluators in cases where the authors quoted $\Delta E \gamma < 0.10$ keV, unless value measured with a curved crustal spectrometer.
- c From $^{111}Cd(n,\gamma)$ E=th:primary.
- e From curved crustal spectrometer measurements in $^{111}Cd(n,\gamma)$ E=th:secondary (1997Dr03).
- h If no value given it was assumed δ =0.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.
- i Placement of transition in the level scheme is uncertain.

$^{112}Ag~\beta^{-}~Decay~(3.130~h)~~1972Wa03,1970Ma45,1968Li13$

Parent 112 Ag: E=0.0; J π =2(-); $T_{1/2}$ =3.130 h 8; Q(g.s.)=3992.1 25; % β - decay=100.

- 1972Wa03: Facility: INS (New Zealand) Van de Graaff accelerator; Sources: produced in $^{112}\text{Cd}(n,p)$ and $^{115}\text{In}(n,\alpha)$ reactions. Neutrons generated in $^{3}\text{H}(d,n)$ reaction. Natural Cd and In targets. Chemically separated activity; Detectors: one Ge(Li), two NaI(Tl); Measured: E γ , I γ , γ - γ , γ - γ (θ) coinc.; Deduced: ^{112}Cd levels, J π , δ , Branching, log ft.
- 1970Ma45: Facility: McMaster University reactor; Source: chemically separated 112 Pd from 300 mg U_3O_8 irradiated with 2.5×10^{13} N.cm $^{-2}$.sec $^{-1}$; Detectors: two Ge(Li) and one NaI(Tl); Measured: γ , γ - γ coinc., E γ , I γ ; Deduced: 112 Cd level scheme, J π .
- 1968Li13: Facility: IKO (Amsterdam) synchrotron; Source: chemically separated 112 Ag from Th+d reaction with E(d)=25 MeV. 112 Ag in equilibrium with 112 Pd; Detectors: one Ge(Li); Measured: γ , I γ , E γ ; Deduced: 112 Cd level scheme. I π
- 1962InO1: Facility: Osaka University cyclotron; Source: chemically separated ¹¹²Ag produced in ¹¹⁴Cd(d,α) reaction with E(d)=11 MeV; Detectors: β-spectrometer, Geiger-Muller counter, two NaI(Tl); Measured: β, γ, β-γ, γ-γ, γ-γ(θ) coinc., Εβ, Ιβ, Ιγ, Εγ; Deduced: ¹¹²Cd level scheme, Jπ, log ft.

Others: 2011Ga10, 2009Gr10, 1970Ma45, 1969Sa09, 1957Je07.

¹¹²Cd Levels

E(level)	Jπ [‡]	Comments
0.0	0+	
617.519 3	2+	
1224 . 344 5	0+	
1312.391 8	2+	
1415.57 5	4+	
1433.280 17	0+	
1468.819 15	2+	
1870.75 6	4+	E(level): Level observed only in 2009Gr10.
1871.23 7	0+	
2005.18 3	3 –	
2064.53 3	3+	Ey=2066.0 16 with Iy=0.030 8 is tentatively reported in 1972Wa03, but it was not adopted.
2081.74 5	4+	
2156 . 22 6	2+	
2231.17 5	2+	
2416 . 01 5	3 –	
		Continued on next page (footnotes at end of table)

¹¹²Cd Levels (continued)

E(level) [†]	Jπ [‡]	E(level) [†]	Jπ [‡]	E(level) [†]	Jπ [‡]
2506.36 7	(2)+	2866.79 8 6	3 –	3231.60 7	1+
2506.68 7	1-	2867.47 \$ 6	(3)+	3303.25 14	(2,3)+
2668.94 7	(2)-	2962.0 7	2+	3369.62 7	(0+ to 4+)
2674.04 18	2+	3068.64 6	4+	3393.3 10	(1,2+)
2723.95 7	2+	3130.85 7	5 –	3470.3 12	2+,3,4+
2765.75 6	2+	3133.42 \$ 9	1-	3478.7 9	0+ to 4+
2829.19 7	1-	3169.48 7	2+		

 $^{^{\}dagger}$ From a least-squares fit to Ey.

β- radiations

Εβ-	_	E(level)	Ιβ-†	Log ft	Comments
(510	9.\	0.470 7	0.004.7	7 01 0	
(513		3478.7	0.034 7	7.91 9	
(522		3470.3	0.0170 19	8.23 5	
(599		3393.3	0.0170 23	8.44 6	
(622		3369.62	0.161 20	7.52 6	
(689		3303.25	0.31 5	7.39 7	
(761		3231.60	0.0059 7	9.27 6	
(823		3169.48	0.19 3	7.88 7	
(859		3133.42	0.0059 7	9.46 6	
(861		3130.85	0.27 4	7.80 7	
(923		3068.64	0.23 3	8.47 ¹ u 6	
(1030		2962.0	0.026 7	9.10 12	
(1125		2867.47	0.043 10	9.03 11	
(1125		2866.79	0.46 6	8.00 6	
(1163		2829.19	0.82 11	7.80 6	
(1226		2765.75	0.135 18	8.67 6	
(1268		2723.95	2.8 4	7.41 7	
(1318		2674.04	0.58 9	8.16 7	
(1323		2668.94	0.58 8	8.17 6	
(1485		2506.68	1.25 19	8.03 7	
(1486		2506.36	0.37 5	8.56 6	
(1576	3)	2416.01	1.43 19	8.07 6	
(1761		2231 . 17	3.1 5	7.927	
(1836	3)	2156 . 22	0.57 8	8.73 7	
(1928	3)	2064.53	0.053 16	9.85 14	
(1987	3)	2005 . 18	5.6 9	7.88 7	
(2121	3)	1871 . 23	0.38 6	10.27 ¹ u 7	
(2523	3)	1468.819	$2.3 \ 3$	8.69 6	
(2559	3)	1433 . 280	0.18 3	11.08 ¹ u 8	
(2577	3)	1415.57	0.236	10.99 ¹ u <i>12</i>	
(2680	3)	1312.391	1.6 4	8.96 11	
(2768	3)	1224 . 344	2.4 5	10.16 ¹ u 9	
(3375	3)	617.519	20.023	8.28 5	
3940	40	0.0	54 5	$9.78^{1u} 4$	$I\beta^-$: from 1962In01, but the uncertainty was assigned by the evaluators.

 $^{^{\}dagger}$ Absolute intensity per 100 decays.

γ(¹¹²Cd)

Iy normalization: from Σ Iy (to g.s.)+I β ⁻(to g.s.)=100 with I β ⁻(g.s.)=54 5 (1962In01), but the 10% uncertainty was assumed by the evaluators.

Εγ [†]	E(level)	$\underline{\hspace{1cm}}_{I\gamma^{\dagger}a}$	Mult. [†]	α
120.68 10	1433.280	0.18 \$ 2	E 2	0.766
x147.9 2		0.030 8		
x 1 5 9 . 5 3		0.030 8		

[‡] From the adopted levels.

[§] Unresolved doublet in 1972Wa03 and 1970Ma45.

¹¹²Ag β⁻ Decay (3.130 h) 1972Wa03,1970Ma45,1968Li13 (continued)

$\gamma(^{112}Cd)$ (continued)

Εγ†	E(level)	Iγ†a	Mult.†	δ†&	α	I(γ+ce) ^a	Comments
208.93 3	1433.280	@	E0			0.020 4	
211.0 3	2081.74		[M1]		0.0597		
226.0 3	2231.17	0.040 \$ 11	[E1]		0.01665		
244.86 23	1468.819	1.0 \ 3	(E2)		0.01003		
244.86 23 (278.3 [‡] 10	1400.019	0.08‡	(E2)		0.0641		
x342.3 3		0.04 1					
401.88 13	1870.75		E2		0.01277		
402.50 16	1871.23	0.097@ 15	E2		0.01271		Iγ: 0.10 2 in 1972Wa03.
411.39 23	2416.01	0.27 \ 3	M1+E2	-0.35 +18-23	0.01087 23		1012 (1000.
450.75 10	2866.79	0.084@9	M1+E2	+0.73 +69-71	0.00873 20		Iγ: 0.08 2 in
							1972Wa03.
455.26 13	1870.75		M1+E2	+2.7 +4-3	$0\;.\;0\;0\;8\;7\;1$		
x528.9 [‡] 10		0.04‡					
536.31 10	2005.18	0.139@ 21	E1		0.00181		Iγ: 0.120 <i>12</i> in 1972Wa03.
558.39 11	1870.75		E2		0.00487		
558.7 5	1871.23	0.030 \$ 8	E2		0.00487		
569.8 3	10.1.20	0.100 25			0.0010.		
585.4 3		0.090 20					
606.821‡ 6	1004 044		TI O		0.00000		
	1224.344	7.2 ‡ 7	E 2		0.00388		
612.88 25	2081.74	e	E 2		0.00378		
617.517 3	617.519	100§	E2		0.00371		
629.2 4	3303.25	0.04 \ 1					
648.91 † 10	2064.53	0.026‡@ 6	M1+E2	-1.20 +20-15	0.00338 6		Iγ: 0.05 <i>1</i> in 1972Wa03.
662.9 ‡ 10		0 . 1 [‡]					
663.59 15	2668 . 94	0.071@7	M1+E2	+1.3 +23-8	0.00319 15		Iγ: 0.07 2 in 1972Wa03.
666.17 6	2081.74		M1+E2	-0.41 3	0.00331		1372 W a03.
687.41 10	2156.22	0.067@ 11	M1+E2	-2.3 19	0.00381		I. 0 10 9 :
				-2.5 19			Iγ: 0.10 2 in 1972Wa03.
692.82 3	2005.18	2.8 [@] 3	E1		1.02×10 $^{-3}$		Iγ: 2.5 3 in 1972Wa03.
694.872 7	1312.391	6.9 7	E2+M1	-4.0 7	0.00274		Mult., 8: A ₂ =0.13 4, A ₄ =0.31 8 (1972Wa03).
714.84 10	3130.85	$0.126^{@}$ 15	E2		0.00253		Iy: $0.12\ 2$ in
							1972Wa03.
718.89 10	2723.95	0.64 8	E1		9 . 43×10^{-4}		
752.14 3	2064.53	0.09\$ 2	M1+E2	-2.75 + 23 - 17	0.00227		
762.41 10	2231.17	0.137@ 16	M1+E2	-1.4 +8-34	0.00226 13		Iγ: 0.12 2 in 1972Wa03.
769.36 10	2081.74		E 2		0.00211		
784.91 10	2866.79	0.093@ 12	E1		7.85 \times 10 ⁻⁴		Eγ: Not observed in
704.01 10	2000.75	0.000 12	11		1.00×10		1972Wa03 and 1970Ma45. Iy: 0.04 in 1968Li1
798.04 10	1415.57	1.20 \$ 12	E2		0.00193		11. 0.04 III 1000LII
802.3 4	2866.79	0.07 \$ 2					
		0.078 2	[E1]		7.50×10 ⁻⁴		
815.79 3	1433.280		E2		0.00183		
842.8 ‡ 15	2156.22	0.030‡ 8	[M1]		0.00195		
851.285 15	1468.819	2.4 \$ 3	M1+E2+E0	+0.050 18	0.00195	4	Mult.,8: A_2 =0.07 7, A_4 =0.03 16 and δ =+0.22 5 (1972Wa03). α : 0.00195 4 from
							adopted gammas
	2866.79	0.51 \$ 5	M1(+E2)	+0.069 +89-69	0.00186		- 0
861.68 10		0.100@ 20	/				
861.68 <i>10</i> 886.99 <i>23</i>	3303.25						

 $^{112}Ag~\beta^{-}~Decay~(3.130~h)~~1972Wa03,1970Ma45,1968Li13~(continued)$

$\gamma(^{112}\text{Cd})$ (continued)

$\underline{\hspace{1cm}} \mathbf{E} \gamma^{\dagger}$	E(level)	Ιγ†α	Mult. [†]	δ†&	α	I(γ+ce) ^a	Comments
918.72 10	2231.17	0.180@ 20	M1+E2	+0.21 +20-13	0.00160 4		Iγ: 0.16 2 in 1972Wa03.
946.92 10	2416.01	0.20@3	E1		5 . 39×10^{-4}		1972Wa03. Iγ: 0.19 2 in 1972Wa03.
957.1 10	2962.0	0.02 \$ 1	[E1]		5.28×10^{-4}		
957.80	2829.19	0.080 \$ 10	E 1		$5.28{ imes}10^{-4}$		
983.8 3	2416.01	0.12 \$ 2	[E3]		0.00249		
1006.81 10	2231 . 17	0.27@3	E 2		$1.12\!\times\!10^{-3}$		Iγ: 0.24 3 in 1972Wa03.
1037.9 3	2506.68	0.17 \$ 2	E1		4.53×10^{-4}		101211400.
1063.49 10	3068.64	0.28	E 1		4.32×10^{-4}		
x1063.7 3		0.18 18					
x1070.7 [‡] 10		0.08‡					
1073.32 17	2506.68	0.120 \$ 19	E 1		4.25×10^{-4}		
1103.58 10	2416.01	0.99@ 10	E 1		4.08×10^{-4}		Iγ: 0.98 <i>10</i> in 1972Wa03.
1125.78 10	3130.85	0.42 \$ 4	E2		8.81×10^{-4}		
1164.2 1	3169.48		E1		3.86×10^{-4}		
1194.00 10	2506 . 36	0.131@ 13	M1+E2	+0.20 +16-12	9.01 \times 10 ⁻⁴ 16		Iγ: 0.07 2 in 1972Wa03.
1224.341 7	1224.344		ΕO			0.065 8	I(γ+ce): From adopted gammas branching ratios and Iγ(606.821γ)=
							7.2 7.
1253.16 12	1870.75		E2		7.17×10 ⁻⁴		
1253.56 12	1871.23	0.87 9	E 2		7 . 16×10 ⁻⁴		
1282.29 10	2506.68	0.138@ 21	E1		3.90×10^{-4}		Iγ: 0.09 2 in 1972Wa03.
1296.9 1	2765.75	0.037@ 10	M1+E2		7 . 7 4×10^{-4}		Iγ: 0.037 <i>10</i> in 1970Ma45.
1312.36 4	1312.391	2.6 @ 3	E2		6 . 6 4×10^{-4}		Iγ: 2.8 3 in 1972Wa03.
1322.0 10	3478.7	0.06# 1					
1356.52 10	2668.94	1.1 \$ 1	E1		4.08×10^{-4}		
1387.68 10	2005.18	12.5 \$ 13	E 1		4.19×10^{-4}		Mult.: A_2 =-0.11 3, A_4 =-0.02 5 (1972Wa03).
1398.64 10	2867.47	0.07 \$ 2	M1+E2		6.84 \times 10 ⁻⁴		(131211403).
1411.8 8	2723.95	0.08 \$ 2	[M1+E2]		6.75×10 ⁻⁴		
1433.27 3	1433.280	@	E0		00/10	0.0084 15	
1447.00 ‡ 10	2064.53	0.079‡@ 18	M1+E2	-1.70 +10-12	6 . 04×10^{-4}		Iγ: 0.10 2 in 1972Wa03.
1451.30 10	2866.79	0.33@3	E 1		$4.45\!\times\!10^{-4}$		Iγ: 0.35 4 in
1453.4 1	2765.75	0.0205@ 21	M1+E2		6 . 50×10^{-4}		1972Wa03. Ιγ: 0.020 <i>3</i> in
X1460 0 15		0.00#					1972Wa03.
x1462.0 15	9091 74	0.02#	FO		E 01.10-4		
1464.04 10	2081.74	1.40@ 18	E2		5.81×10^{-4} 5.79×10^{-4}		Inc. 1 5 9 :
1468.84 10	1468.819		E2		9.19XIU ,		Ιγ: 1.5 2 in 1972Wa03.
x1503.9 3		0.38 4					
1538.68 10	2156.22	1.2 1	M1+E2	+0.085 +25-22	6.11×10 ⁻⁴		_
1555.1 1	2867.47		M1+E2		6.06×10 ⁻⁴		Eγ: weak transition in 1970Ma45.
1599.70 10	3068.64	0.187@6	E 2		5.50×10^{-4}		$I\gamma{:}$ 0.15 in 1968Li13.
1604.6 4	2829.19	0.050 \$ 14	[E1]		5.24×10^{-4}		
1613.66 10	2231.17	6.6 \$ 7	M1+E2	-0.020 + 20 - 27	5 . 90×10 ⁻⁴		Mult.: Other: δ =0.00 6 in
1653.09 10	3068.64	0.090@ 4	M1+E2	-0.54 21	5.74×10 ⁻⁴ 10		1972Wa03. Ιγ: 0.07 2 in
x1683.7 7		0.10 1					1972Wa03.
		Con	tinued on nex	t page (footnotes at e	nd of table)		

 $^{112}Ag~\beta^{-}~Decay~(3.130~h)~~1972Wa03,1970Ma45,1968Li13~(continued)$

$\gamma(^{112}Cd)$ (continued)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2Wa03.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Li13.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
x 1909.2 6 0.100 25 1909.53 17 3133.42 0.00387 $^{@}$ 16 [E1] 7.02×10 ⁻⁴ Iγ: 0.10 1 in 197 1919.4 1 3231.60 $^{@}$ M1+E2 5.80×10 ⁻⁴ Iγ: 0.04 in 1970 1945.14 17 3169.48 0.185 $^{@}$ 23 E2 5.72×10 ⁻⁴ Iγ: 0.20 2 in 197 1952.9 10 3369.62 0.11 $^{#}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
1919.4 1 3231.60 [@] M1+E2 5.80×10^{-4} Iy. 0.04 in 1970M 1945.14 17 3169.48 $0.185^{@}$ 23 E2 5.72×10^{-4} Iy. 0.20 2 in 197 1952.9 10 3369.62 $0.11^{\#}$	
1945.14 17 3169.48 0.185 [@] 23 E2 5.72×10 ⁻⁴ Iγ: 0.20 2 in 197 1952.9 10 3369.62 0.11 [#]	'2Wa03.
1952.9 10 3369.62 0.11#	Ma45.
	'2Wa03.
0051 50 10 0050 04 0 105@ 00 E1	
$2051.50 \ 10 \ 2668.94 \ 0.197^{@} \ 20 \ E1 $	'2Wa03.
2056.5 2 2674.04 1.40 14 $M1(+E2)$ $+0.05$ $+7-8$ 6.01×10^{-4}	
2106.31 10 2723.95 5.6 § 6 M1(+E2) +0.05 +6-5 6.12×10 ⁻⁴ Mult.,δ: Also: δ= (1972Wa03).	-18.5 +95-Infinity
$2148.21\ 10$ 2765.75 0.23 2 $M1(+E2)$ $+0.06+7-6$ 6.22×10^{-4}	
2156.20 10 2156.22 0.110 [®] 10 E2 6.23×10 ⁻⁴ Iy: 0.16 2 in 197	2Wa03.
2211.65 10 2829.19 1.00\\$ 10 E1 8.80×10 ⁻⁴	
2249.91 10 2867.47 0.03 [#] M1+E2 6.48×10 ⁻⁴	
*2330 [‡] 10 0.01 [‡]	
x2362.4 6 0.090 20	
$2506.70 \ 10$ 2506.68 2.5 § 3 E1 1.04×10^{-3}	
$2552.01\ 10$ 3169.48 0.25 3 $M1+E2$ $-0.68+13-20$ 7.43×10^{-4}	
*2576.7 [‡] 8 0.08 [‡]	
$2614.02 \ 14 \ 3231.60 \ 0.0039^{@} \ M1+E2 \ 7.61\times10^{-4} \ I\gamma: 0.01 in 1970M$	Ma45.
$2685.83 \ 17 \ 3303.25 \ 0.59 $	
$2723.6\ 3$ 2723.95 0.23 2 [E2] 8.09×10^{-4}	
$2752.08 \ 10 \ 3369.62 \ 0.21$ § 2	
$2765.7~3~2765.75~0.0135^{@}~13~$ E2 $8.23 \times 10^{-4}~$ Iy: 0.013 2 in 19	72Wa03.
2776.0 15 3393.3 0.03 [#] [M1+E2] 8.17×10 ⁻⁴	
*2803.5 [‡] 15 0.02 [‡]	
2829.20 10 2829.19 0.79 [@] 8 E1 1.22×10 ⁻³ Iγ: 1.0 1 in 1972	2Wa03.
$^{x}2839.0^{\ddagger}15$ 0.03 ‡	
2852.7 12 3470.3 0.04#	
$2863.0 \ 20 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
$^{x}2884.0^{\ddagger}10$ 0.04 ^{\dagger}	
x2921.2 [‡] 10 0.03 [‡]	
$2961.7 \ 10$ 2962.0 $0.04 \ 1$ [E2] 8.93×10^{-4}	
$^{x}3091.0^{\ddagger} \ 15$ 0.01^{\ddagger}	
x3113 3 0.01#	
3133.2110 3133.42 $0.01^{\#}$ [E1] 1.35×10^{-3}	
3170.0 15 3169.48 $0.01^{\#}$ [E2] 9.66×10^{-4}	
*3178.0 [‡] 15 0.01 [‡]	
$3231.35 \ 10 \ 3231.60 \ 0.01^{\#} \ M1 \ 9.79 \times 10^{-4}$	
x3244.0 [‡] 20 0.01 [‡]	
x3375.0 [‡] 15 0.03 [‡]	
$3393.0 \ 12 \qquad 3393.3 \qquad 0.010 \ 3 \qquad [M1,E2] \qquad \qquad 1.04 \times 10^{-3}$	

 $^{^{\}dagger}$ From adopted gammas, unless otherwise stated.

[‡] From 1968Li13. It is not reported in 1972Wa03, but the placement is consistent with the adopted levels, gammas.

[§] From 1972Wa03.

[#] From 1970Ma45.

 $^{^{} ext{@}}$ From adopted gammas branching ratios and I γ for the strongest transition that depopulates the level.

[&]amp; If no value given it was assumed δ =0.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.

a For absolute intensity per 100 decays, multiply by 0.425 46.

 $^{^{}x}$ γ ray not placed in level scheme.

Decay Scheme

Intensities: I(γ+ce) per 100 parent decays

Decay Scheme (continued)

Intensities: I(γ+ce) per 100 parent decays

Decay Scheme (continued)

$$\begin{array}{c|c} 2(-) & 0.0 \\ \hline 1_{47}^{12} {\rm Ag}_{65} \\ \\ \% \beta^- = 100 \\ Q^- = 3992.1^{25} \end{array}$$
 Intensities: I(\gamma+ce) per 100 parent decays

¹¹²In ε Decay (14.88 min) 1983Ry03,1962Ru05,1972Ka34

Parent 112 In: E=0.0; J π =1+; $T_{1/2}$ =14.88 min 17; Q(g.s.)=2585 4; % ϵ +% β + decay=57.4 48.

1962Ru05: Facility: Osaka University cyclotron; Source: 112In from 112Cd(d,2n) and 109Ag(a,n) reactions at E(d)=11 MeV and E(α)=15-16 MeV, respectively; Targets: 2.7 mg/cm² enriched in ¹¹²Cd and 5 mg/cm² enriched to 99.2% in 109Ag; Detectors: two mushroom β-spectrometers, one NaI(Tl) scintillator; Measured: Ιβ-, Ιβ+, Εβ+; Deduced: 112Cd level scheme, $I_{R+g}(g.s.)$.

1972Ka34: Source: ¹¹²In produced in ¹¹³In(γ,n) reaction. ¹¹³In irradiated with γ-rays for 15 min. γ-flux=1.0x10⁶ $R.min^{-1}; \ Detectors: \ one \ Ge(Li), \ one \ NaI(Tl); \ Measured: E\gamma, \ I\gamma, \ \gamma-\gamma, \ \gamma-\gamma(\theta) \ coinc.; \ Deduced: \ \gamma-mult., \ \delta, \ ^{112}Cd$ levels, $J\pi$, $\log ft$.

1983Ry06: Facility: SAMES at National Physics Laboratory, Teddington, UK; Source: from (n,2n) reaction with E(n)=14.3~MeV on 37 or 187 mg/cm² thick natural In targets; Detectors: one HPGe detector, one 4π proportional $counter; \ Measured: \ \gamma, \ E\gamma, \ \gamma(t), \ \sigma(^{112m}In), \ \sigma(^{112}In), \ Isomeric \ Ratio; \ Deduced: \ ^{112}Cd \ level \ scheme, \ I_{8}+(g.s.).$

1991Gi05: Facility: Van de Graaff accelerator at LNL (Italy); Source: 112In activated in (p,n) reaction. E(p)=6.8 MeV; Target enriched to 94% in 112Cd. Carbon backing; Detectors: one HPGe, one Si(Li), magnetic transport system; Measured: $\alpha(K)\exp(851\gamma)$. Deduced B(E0)/B(E2) and B(E0)/B(M1); Also, from the same collaboration: 1979Gi05.

2009Gr10: Facility: TRIUMF cyclotron; Detectors: ISAC, TRILIS, 8π γ-array comprising 20 Compton-suppressed HPGe detectors; Measured: $\gamma,~\gamma - \gamma$ coinc., E $\!\gamma,~I\gamma.$

Others: 1986Ho12, 1979OhZV, 1975GaZB, 1972Yo06, 1971It01, 1965Fu07, 1959Gi51, 1953Bl44.

$^{112}\mathrm{Cd}$ Levels

E(level) [†]	$J\pi^{\ddagger}$	E(level) [†]	$J\pi^{\ddagger}$
0.0	0+	1468.811 15	2+
617.519 3	2+	1871.17 10	0+
1224 . 345 5	0+	2121.48 6	2+
1312.394 8	2+	2156.22 6	2+
1433.282 17	0+	2300.66 7	0+

- † From a least-squares fit to Ey.
- ‡ From the adopted levels.

β⁺,ε Data

Εε	E(level)	Ιβ+	Ιε	Log ft	Ι(ε+β+)	Comments
(284 4)	2300.66		0.005 3	6.5 3	0.005 3	
, - ,						
$(429 \ 4)$	2156 . 22		0.0030 17	7.0725	0.0030 17	
$(464 \ 4)$	2121.48		0.012 5	$6.54\ 19$	0.012 5	
(714 4)	1871.17		$0.051\ 21$	6.30 19	$0.051\ 21$	
(1116 4)	1468.811		0.039 16	6.82 19	0.039 16	
(1152 4)	1433 . 282		0.008 5	7.5 3	0.008 5	
(1361 4)	1224 . 345	0.0007 3	0.23 9	$6.22\ 18$	0.239	
(1967 4)	617.519	0.07 4	0.5 3	6.19 22	0.6 3	
$2582 \ 20$	0.0	23.3 19	32 3	4.64 6	55.7 46	Eε: From 1962Ru05.

 $I\beta^+\!\!:$ from $I\beta^+(tot)\!=\!24\%$ 2 in 1983Ry06, deduced from $I\gamma(511\gamma)$, and $I\beta^+(g.s.)/I\beta^+(617.37)=0.6/21=0.029$ (1962Ru05), and by assuming that the $I\beta^+$ feedings to the higher-lying levels were negligible. Others: I β +(tot)=21 (1962Ru05) and 24 (1953Bl44)

IE: from I β^+ and IE/I β^+ =1.392 18.

$\gamma(^{112}Cd)$

Iy normalization: from $((I\beta^+(tot)+I\epsilon(tot))-(I\beta^+(g.s.)+I\epsilon(g.s.)))/\Sigma$ $I(\gamma+ce)(g.s.)$, where $I\beta^+(g.s.)+I\epsilon(g.s.)=55.7$ 46.

Εγ [†]	E(level)	Ιγ∓&	Mult.	α	Comments	
120.68 10	1433.282	< 0.5	E2	0.766	Iγ: from 1972Yo06.	
208.93 3	1433.282		ΕO		$I(\gamma + ce)^{\dagger \&}$: ≤ 0.074 .	
244.86 \$ 23	1468.811	0.031 10	(E2)	0.0641	Iy: From Iy(233.86y)/Iy(851.285y)=0.010 3 and Iy(851.285y) from from 112 In ϵ decay (14.88 min).	
402.50 16	1871.17	0.53 7	E 2	0.01271	Eγ: From 2009Gr10. Iγ: from the adopted Iγ branching ratio and Iγ(1253.56γ)=4.7 3.	
					1/(1200.007)-4.7 0.	

¹¹²In ε Decay (14.88 min) 1983Ry03,1962Ru05,1972Ka34 (continued)

γ(¹¹²Cd) (continued)

Εγ†	E(level)	Ιγ‡&	Mult.†	δ†@	α	Comments
558.7 5	1871.17	0.16 4	E2		0.00487	Ey: From 2009Gr10; ΔE estimated by the evaluators.
						Iy: from the adopted Iy branching ratio and Iy(1253.56y)=4.7 3.
606.821 6	1224 . 345	23.94	E 2		0.00388	
617.517 3	617.519	100	E2		0.00371	Mult.: A_2 =0.208 22; A_4 =0.904 30 (1972Ka34); α (K)exp=0.0038 7 (1962Ru05).
687.41 10	2156.22	0.015 7	M1+E2	-2.3 19	0.00285 24	Iγ: from the adopted Iγ branching ratio and Iγ(1538.68γ)=0.27 12.
688.23 10	2121.48	0.142 16	E 2		0.00279	Iγ: from the adopted Iγ branching ratio and Iγ(1504.04γ)=0.95 9.
694.872 7	1312 . 394	$0.24\ 15$	E2+M1	-4.07	$0\;.\;0\;0\;2\;7\;4$	
808.82 19	2121.48	0.035 4	M1+E2		0.00215	Iγ: from the adopted Iγ branching ratio and $I\gamma(1504.04\gamma)=0.95$ 9.
815.79 3	1433.282	≤1	E 2		0.00183	Eγ: Transition observed only in 1975GaZB.
831.79 8	2300.66	0.18 7	E2		1 . 75×10^{-3}	Iγ: from the adopted Iγ branching ratio and Iγ(1683.22γ)=0.37 14.
842.8 15	2156.22	0.007 4	[M1]		0.00195	Iγ: from the adopted Iγ branching ratio and Iγ(1538.68γ)=0.27 12.
851.285 15	1468.811	3.1 3	M1+E2+E0	+0.050 18	0.00195 4	Mult.: $\alpha(K)\exp = 2.34 \times 10^{-3}$ 12 (1991Gi05); $A_2 = 0.086$ 45; $A_4 = -0.081$ 100 (1972Ka34). δ : Other: 0.048 22 from $\gamma(\omega)$ in 1991Gi05, -0.21 +5-6 in $\gamma\gamma(\omega)$ in 1972Ka34.
						Ice(K)(E0,2+ to 2+)/Ice(K)(M1,2+ to 2+)=0.41 7, B(E0)/B(E2)=2.7 13, B(E0)/B(M1)=2555 472 and ρ^2 (E0)=0.031 20 (1991Gi05). α : From adopted gammas.
897.07 10	2121.48	0.113 11	E 2		$1\;.\;46\!\times\!10^{-3}$	Iγ: from the adopted Iγ branching ratio and Iγ(1504.04γ)=0.95 9.
1224.341 7	1224.345		ΕO			$I(\gamma+ce)^{\dagger}$ $\stackrel{\&}{\sim}$ 0.00215 17. $I(\gamma+ce)$: From adopted levels $I(\gamma+ce)(1224\gamma)/I(\gamma+ce)(607\gamma)$ and $I\gamma(606\gamma)=23.9$ 4.
1253.56 12	1871.17	4.7 3	E2		7 . 16×10 ⁻⁴	Mult.: A ₂ =0.218 42; A ₄ =0.990 51 (1972Ka34).
1312.36 4	1312.394	0.10 9	E2		6 . 6 4×10^{-4}	
1433.27 3	1433 . 282		E 0			I(γ+ce) [†] &: ≤0.031.
1468.84 10	1468.811	1.7 2	E2		5.79×10^{-4}	
1504.04 10	2121 . 48	0.959	M1+E2	+1.36 7	$5.88{ imes}10^{-4}$	Eγ: 1507.3 keV 3 in 1972Ka34.
1538.68 10	2156 . 22	0.27 12	M1+E2	+0.085 +25-22	6 . 11×10^{-4}	
1683.22 10	2300.66	0.37 14	E2		5 . $45\!\times\!10^{-4}$	
2121.49 13	2121.48	0.027 3	E2		6 . 14×10 ⁻⁴	Iy: from the adopted Iy branching ratio and Iy(1504.04y)=0.95 9.
2156.20 10	2156.22	0.024 11	E 2		6 . $23\!\times\!10^{-4}$	Iy: from the adopted Iy branching ratio and Iy(1538.68y)=0.27 12.

 $^{^{\}dagger}$ $\,$ From the adopted gammas, unless otherwise noted.

 $^{^{\}ddagger}$ From 1972Ka34, unless otherwise noted.

[§] Only observed by 1975GaZB.

[@] If no value given it was assumed δ =0.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.

[&]amp; For absolute intensity per 100 decays, multiply by 0.010 4.

¹¹²In ε Decay (14.88 min) 1983Ry03,1962Ru05,1972Ka34 (continued)

¹¹⁰Pd(³He,n) 1977Fi04

1977Fi04: Facility: Univ.Colorado; Beam: $E(^3He)=25.4$ MeV; Target: self-supporting, 0.5 - 2 mg/cm thick, enriched in ^{110}Pd ; Measured: $d\sigma/d\Omega$, DWBA analysis; Deduced: E_{level} , J π . FWHM \approx 400 keV. Others: 1986Ve02.

¹¹²Cd Levels

E(level)	$J\pi^{\ddagger}$	_L§	Comments
0.0	0+	0	
1250	0+	0	
2640	0+	0	
3920	0+	0	
4720	0+ , $2+$	0, 2	L: Unresolved multiplet.

- † From 1977Fi04.
- ‡ From 1977Fi04, based on the deduced L values.
- § From 1977Fi04, based on DWBA analysis.

$^{110}\mathrm{Pd}(\alpha,2\mathrm{n}\gamma)$ 1997Dr03,1993De09

1997Dr03,1993De09: Facility: Paul Scherrer Institut cyclotron, Switzerland; Beam: $E\alpha$ =12-30 MeV; Target: 10 mg/cm² self-supporting enriched to 98.9% in ¹¹⁰Pd; Detectors: three anti-Compton shielded intrinsic Ge detectors; Measured: excitation function, Ey, Iy, y-y coinc. and $\gamma(\theta)$; Deduced: y-ray Mult., J π , ¹¹²Cd level scheme; Also: From the same collaboration: 1993De01.

 $Others:\ 1992Ku01,\ 1990KuZD,\ 1982Fi02,\ 1981FiZZ,\ 1974Ge13,\ 1969HaZU.$

¹¹²Cd Levels

E(level) [†]	$J\pi^{\ddagger}$
0.0#	0+
617.518 ^{#d} 23	2+
$1224.32^{@}$ 7	0+
1312.37 ^{&e} 3	2+
1415.59 ^{#e} 3	4+

¹¹²Cd Levels (continued)

E(level) [†]	Jπ [‡]	E(level) [†]	Jπ [‡]	E(level) [†]	Jπ [‡]
1433.10 ^e 4	0+	2793.96 ^a 4	7 –	3529.06° 7	7 –
1468.85@3	2+	2817.87° 5	6 –	3543.04&i 8	8+
1870.75f 3	0+	2840.24 6	5	3571.14 ^b 6	9 –
1870.78@3	4+	2866.71 19	(3,4)	3584.04 24	7 (+)
2005 . 27^{a} 5	3 –	2881.23 ^{#h} 5	8+	3658.83 6	8 –
2064.63&f 4	3+	2899.04 9	5	3684.23#i 8	10+
2081.74&f 4	4+	2921.65&h 9	6+	3685.57 10	7 –
2121 . 40^{f} 5	2+	2931.94 ^b 5	6 –	3736.7 3	8+
2156.18 8	2+	2935.62b 4	7 –	3785.81° 7	9(-)§
2168.00#f 4	6+	2970.24 6	5+	3809.51 ^b 5	10-8
2231.61 9	2+	2972.35 11	5+	3913.90 5	9+
2373.35ag 4	5 –	3028.11 8	6+	3931.01 8	12+
2403.28 5	3+	3075.65 21	5	3966.68 6	9 + §
2416.01 ^{cg} 7	3 –	3093.13 ^b 5	8-	3990.65 9	10+
2454.59h 6	4	3176.71 5	8+	4126.16 6	10+8
2493.44 8	4	3230.50 7	8+	4174.64 6	10+8
2506.81 7	3,4,5+j	3239.19&i 5	7+	4283.67 8 9	10+§
2532.9h 3	2+	3248.29° 5	7 –	4284.77 6	9 – §
2570.29b 4	5 –	3252.71 10	6 , 7 –	4285.33 ^a 6	11-8
2571.68@ 4	6+	3291.32 9	7 –	4383.28 6	11+8
2591.17cg 5	4 (-)	3318.23a 5	9 –	4385.29° 6	10-8
2634.86 11	3,4	3322.64 6	10+	4467.82 ^b 6	11-8
2665.87&h 5	5+	3375.58 5	(6-),8	4587.35# 9	12+8
2669.15g 14	2 –	3376.47 6	(7-)	4687.38 6	11+8
2673.5 4	1,2,3+	$3399.12^{@}5$	8+	4871.69 8	14+§
2711.42h 10	4+	3430.22 16	5+,(7)	5106.45 8	
2723.69 24	1,2(+),3	3494.16 13	7		

- † From a least-squares fit to Ey.
- $\dot{\tau}$ From 1997Dr03, based on $\gamma(\theta)$, excitation function measurements and side feeding evaluations in 1993De09, unless otherwise noted. The authors also consider the $^{111}Cd(Nth,\gamma)$ data.
- \S From 1993De09, based on $\gamma(\theta)$, excitation function measurements and side feeding evaluation.
- $^{\#}\,$ (A): Probable member of the g.s. band (1993De09).
- @ (B): Probable member of the intruder band based on 0+ state (1993De09).
- & (C): Probable member of the quasi- γ band based on 2+ state (1993De09).
- a (D): Probable member of the octupole band based on 3- state (1993De09).
- b (E): Probable member of a 2-qp band based on 5- state (1993De09).
- c (F): Probable member of a quadrupole-octupole band based on 3- state (1993De09).
- d Quadrupole one-phonon excitation (1997 $\mathrm{Dr}03$).
- $^{\mbox{\scriptsize e}}$ Probable member of the quadrupole two-phonon multiplet (1997Dr03).
- f Probable member of the quadrupole three-phonon multiplet (1997Dr03).
- g Probable member of the 2+ $\otimes 3-$ quadrupole-octupole multiplet (1997Dr03).
- h Probable member of the four-phonon multiplet (1997Dr03).
- $^{i} \ \ Probable \ member \ of \ the \ five-phonon \ multiplet \ (1997Dr03).$
- $^{
 m j}$ 3 is supported by the sidefeeding intensity balance, while 4 and 5+ by the excitation function analysis (1993De09).

γ(¹¹²Cd)

$E\gamma^{\dagger}$	E(level)	Ιγ [†]	Mult. [†]	δ [†]	Comments
120.68 ‡ 3	1433.10	0.96 14			placed in the level scheme in 1992Ku01.
					Iy: from 1992Ku01 and normalized using RI(815,57 γ)=3.5.
					Mult.: $A_0=1.2$ 1; $A_2/A_0=0.02$ 2 (1993De09).
×139.72‡ 3					Mult.: $A_0=3.1$ 1; $A_2/A_0=0.30$ 2 (1993De09).
141.69 11	2935.62	1.02 25	M1+E2	-0.529	
145.87 5	3322.64	0.91 8	E 2		
155.21 10	3248.29	0.39 9	M1+E2	+0.18 12	$\begin{array}{llllllllllllllllllllllllllllllllllll$
					δ: Also: +7 4 (1997Dr03).
157.50 4	3093.13	1.54 9	M1+E2	-0.59 18	Mult.: $A_0=9.3$ 2; $A_9/A_0=-1.01$ 2; $A_4/A_0=0.13$ 3 (1993De09).

$\gamma(^{112} Cd)$ (continued)

Εγ†	E(level)	Ιγ [†]	Mult.†	δ†	Comments
161.156 ^{‡&} 17	3093.13		E2		Eγ: observed only in 1993De09.
					Mult.: A_0 =6.8 1; A_2/A_0 =0.350 14; A_4/A_0 =-0.11 2 (1993De09).
196.92 3	2570.29	18.5 3	M1		Mult.: A ₂ =+0.61 13 (1997Dr03).
					possible E2 admixture; δ=0.00 <i>15</i> (1997Dr03).
198.26 3		6.57 16			Mult.: $A_2 = +0.34 \ 3 \ (1997 Dr 03)$.
\$204.95 [‡] 4	2021 74	1 00 04			F 1 1 1 1 1000K 01
211.0 % 3	2081.74	1.60 24			Eγ: observed only in 1992Ku01.
222.17# 9	2793.96	0.98# 13	(E1)		Iγ: from 1992Ku01; normalized by using RI(612.82γ)=5.4. Mult.: A_9 =-0.32 22 (1997Dr03).
	3399.12	0.98# 13	(E1)		Mult.: $A_2 = -0.32$ 22 (1997Dr03).
224.90 ‡ & 7	3318.23		M1+E2	0.30 9	Eγ,Mult.,δ: reported only in 1993De09.
238.32	3809.51		M1+E2		Mult.: A ₀ =0.4 1 (1993DE09).
244 . 86 23	1468 . 85	1.0 5	(E2)		
247.54 5	2817.87	1.50 \$ 12	D		Mult.: $A_0=2.95$ 6; $A_2/A_0=-0.18$ 4 (1993De09).
0.50 60 4	0.5.5.5.5	0.00	361 720	0.00.15	possible quadrupole admixture; $\delta = +0.03$ 3 (1997Dr03).
252.88 4	3571.14	2.36 14	M1+E2	+0.82 13	Mult.: $A_0=2.32$ 5; $A_2/A_0=0.28$ 4; $A_4/A_0=-0.11$ 5
					(1993De09).
270.05 [‡] 4					δ: Also: -0.33 14 (1997Dr03).
275.52‡& 3	3093.13		E 2		Transition reported only in 1993De09.
- · · · · · · · ·					Mult.: A_2 =2.75 5; A_2/A_0 =0.33 2; A_4/A_0 =-0.06 4 (1993De09).
283.40 12	3376.47	0.67 14	M1+E2	-2.2 7	Mult.: A_0 =1.12 5; A_2/A_0 =0.32 6; A_4/A_0 =0.17 8 (1993De09). δ : Also: -0.42 +15-40 (1997Dr03).
291.54 6	2373.35	1.54 16	E1		Mult.: A_2 =-0.16 13 (1997Dr03). possible M2 admixture; δ =-0.06 4 (1993De09).
295.19 14	3176.71	0.77 9 19	M1+E2	$-0.14\ 10$	$Mult.: \ A_0 = 4.1 \ 1; \ A_2/A_0 = 0.36 \ 3; \ A_4/A_0 = -0.02 \ 2 \ (1993 De 09)$
297.21 11	2168.00	1.06 17	E 2		Mult.: $A_0=3.9$ 1; $A_2/A_0=0.37$ 7; $A_4/A_0=0.02$ 10 (1993De09)
299.19 5	3093.13	9.6 11	M1+E2	+0.55 6	Mult.: A_0 =43.3 3; A_2/A_0 =0.556 6; A_4/A_0 =0.056 9 (1993De09).
306.23 25	3990.65	0.68 18	M1+E2	-0.50 10	Mult.: A ₀ =2.8 1; A ₂ /A ₀ =0.17 2 (1993De09).
309.09 8	3685.57	1.64 § 21 3.80 § 18	M1+E2	-0.29 9	Mult.: $A_0=2.6$ 1; $A_2/A_0=0.24$ 2; $A_4/A=-0.04$ 3 (1993De09).
312.94 <i>4</i> 316.19 <i>3</i>	3248.29 3248.29	38.3 \$ 4	M1 (+E2) M1+E2	-0.1 <i>1</i> +0.28 <i>4</i>	Mult.: A_0 =6.9 1; A_2/A_0 =0.34 1; A_4/A =-0.01 1 (1993De09). Mult.: A_0 =5.3 1; A_2/A =0.19 2; A_4/A_0 =-0.02 2 (1993De09).
340.50 15	3658.83	0.85 \$ 20	M1+E2	-0.18 4	Mult.: $A_0=0.05$ 1, $A_2/A_0=0.05$ 2, $A_4/A_0=-0.02$ 2 (1333Be03). Mult.: $A_0=2.81$ 5; $A_2/A_0=0.09$ 4 (1993De09).
349.26 9	3230.50	1.56 21	M1+E2	+0.42 20	Mult.: $A_0=6.8$ 1; $A_2/A_0=0.42$ 3; $A_4/A_0=-0.03$ 4 (1993De09) δ : Also: -0.09 12 (1997Dr03).
361.80 ‡ 20	2931.94		M1+E2		transition reported only in 1993De09. Mult.: A ₀ =0.4 1; A ₂ /A ₀ =-0.20 17 (1993De09).
365.38 5	2935.62	0.71 30	E2		Mult.: $A_0=1.3$ 1; $A_2/A_0=0.63$ 10; $A_4/A_0=-0.15$ 12 (1993De09).
367.88 10	2373.35	1.4 3	E2		$\begin{array}{llllllllllllllllllllllllllllllllllll$
382.37 # 13	3176.71	1.00# 22	E 1		Mult.: A_2 =+0.07 2 (1997Dr03).
	3318.23	1.00# 22	E 2		Mult.: $A_2 = +0.07 \ 2 \ (1997 Dr 03)$.
398.57 5	2970.24	3.37 23	7.0		** 1
401.88 3	1870.78	20.8 § 4 1.89 § 23	E2 M1+F2	-0.57 6	Mult.: $A_2 = +0.60 \ 2$, $A_4 = -0.10 \ 2$ (1997Dr03).
403.55 9	2571.68	1.898 23	M1+E2	-U. 07 6	Mult.: A_0 =3.7 1; A_2/A_0 =0.048 22; A_4/A_0 =-0.3 3 (1993De09). δ : Also: +1.8 8 (1997Dr03).
410.55‡ 4	3658.83		M1+E2	0.50 25	0: Also: +1.8 δ (1997/D703). Mult.: A ₀ =1.9 1; A ₂ /A ₀ =0.46 9; A ₄ /A ₀ =0.19 13 (1993De09). δ: from 1993De09; Also: 2.7 10 (1993De09).
410.69 16	2416.01	1.80 \$ 25	M1+E2	0.50 25	Mult., $\delta: \ a_0=1.9 \ I; \ A_2/A_0=0.46 \ 9; \ A_4/A_0=0.19 \ I3$ (1993 De09).
×416.00 [‡] 6					δ: Also: 2.7 10 (1993De09).
*416.00+ 6 420.62 3	2793.96	17.2 3	E2		Mult.: $A_0=56.3$ 3; $A_2/A_0=0.323$ 7; $A_4/A_0=-0.112$ 10 (1993De09).
435.28‡& 9	3529.06		M1+E2	-0.3 1	(1993De09). transition reported only in 1993De09. Mult.: A_0 =3.9 1; A_2/A_0 =0.25 4 (1993De09). δ : from 1993De09.
436.92‡& 6	3230.50		E1		o: from 1993De09. Mult.: A ₀ =3.3 1; A ₂ /A ₀ =0.02 10 (1993De09).
-30.02	3200.00				

$\gamma(^{112}{\rm Cd})$ (continued)

Εγ†	E(level)	Ιγ†	Mult. [†]	δ [†]	Comments
436.92‡& 6	3318.23		E1		Mult.: $A_0=3.3$ 1; $A_2/A_0=0.02$ 10 (1993De09).
439.95 3	3375.58	19.1 4	D		${\rm Mult.:}\ {\rm A_0}{=}12.0\ 20;\ {\rm A_2/A_0}{=}{-}0.281\ 12\ (1993{\rm De}09).$
441 45 4	3322.64	7 7 4	Eo		possible quadrupole admixture; δ =-0.2 3 (1997Dr03).
$441.45 ext{ } 4$ 444.53 $^{\#}$ 3	2817.87	7.74 $14.2^{\#}4$	E2 M1+E2	-0.45 18	Mult.: A ₂ =+0.72 23 (1997Dr03). Mult.: A ₀ =26.6 5; A ₂ /A ₀ =-0.73 2; A ₄ /A ₀ =0.05 2
444.00 0					(1993De09).
	3376.47	14.2# 4	M1+E2	-0.37 13	Mult.: A_0 =26.6 5; A_2/A_0 =-0.73 2; A_4/A_0 =0.05 2 (1993De09). δ : from 1993De09.
452.27	4383.28		M1(+E2)	0.05 3	Mult.: $A_0=1.3$ 1; $A_0/A_2=-0.28$ 10 (1993De09).
455.14 3	1870.78	12.3 3	M1+E2	+2.43 15	Mult.: $A_2 = +0.06$ 23, $A_4 = -0.41$ 24 (1997Dr03).
					δ: Also: -0.45 14 (1997Dr03).
458.75 9	3252 . 71	1.82 25	M1(+E2)	-0.025	Mult.: A ₂ =+0.39 22 (1997Dr03).
478.22 ‡ & 4	3571.14		M1+E2	-0.106	transition seen only in 1993De09.
					Mult.: A_0 =3.74 15; A_2/A_0 =-0.43 8 (1993De09). δ : from 1993De09.
491.30 † 3	3809.51		M1+E2	-0.78 35	$\begin{array}{llllllllllllllllllllllllllllllllllll$
					δ: from 1993De09.
×497.68‡ 4					
×507.42‡ 5					
514.75‡ 4	3913.90		M1+E2	0.31 7	Mult.: A_0 =1.48 5; A_2/A_0 =0.26 6 (1993De09). δ : from 1993De09.
517.99 12	3399.12	1.8 § 3	M1+E2	-0.16 14	Mult.: a ₂ =+0.23 5 (1997Dr03).
					δ: Also: +0.62 12 (1997dr3).
524.28 4	3318.23	7.1 3	E 2		Mult.: A_0 =52.0 3; A_2/A_0 =0.340 10; A_4/A_0 =-0.132 14 (1993De09).
526.65 7	2591.17	4.9 3	E 1		Mult.: A_0 =3.6 2; A_2/A_0 =-0.13 3 (1993De09). possible M2 admixture; δ =0.03 5 (1993De09).
536.00 19	2005 . 27	1.6 4	E 1		Mult.: A ₂ =-0.17 15 (1997Dr03).
558.42 # 3	1870.78	48.4# 7	E 2		Mult.: A_2 =+0.64 3, A_4 =-0.12 4 (1997Dr03).
	2931 . 94	48.4 7	E 2		Mult.: A_2 =+0.64 3, A_4 =-0.12 4 (1997Dr03).
562.39 3	2935 . 62	18.3 § 6	(E2)		Mult.: A ₂ =+0.24 8 (1997Dr03).
$565.10\ 20$	2570.29	3.8 8	E 2		Mult.: $A_0 = 2.3 1$; $A_2/A_0 = 0.26 7 (1993 De09)$.
573.31 4	3239.19	6.8 3	E 2		Mult.: $A_0=12.2$ 2; $A_2/A_0=0.34$ 2 (1993De09).
585.7 3	2591.17	1.4 5	M1+E2	+0.27 15	Mult.: A ₀ =1.9 1;A ₂ /A ₀ =0.09 6 (1993De09).
591.57‡ 8	3990.65		E 2		Mult.: A_0 =4.8 2; A_2/A_0 =0.397 24; A_4/A_0 =-0.22 4 (1993De09).
593.45 7	3529.06	3.6 5	M1+E2	+1.05	Mult.: A ₂ =+0.51 13 (1997Dr03).
601.23 11	2665.87	11.18 14	E 2		Mult.: $A_0 = 6.8 \ 2$; $A_2/A_0 = 0.32 \ 6$; $A_4/A_0 = -0.11 \ 9 \ (1993 De 09)$.
604.98 5	3176.71	9.4 5	E 2		Mult.: A_0 =40.6 3; A_2/A_0 =0.334 12; A_4/A_0 =-0.12 2 (1993De09).
606.95 11	1224.32	9.9 \$ 13	E 2		${\rm Mult.:\ A_{22}\text{=-}0.02\ 7;\ A_{44}\text{=-}0.08\ 10\ (1992{\rm Ku}01)}.$
608.5 4	3931.01	8.9 5	E 2		Mult.: A_0 =38.2 3; A_2/A_0 =0.340 16; A_4/A_0 =-0.139 (22) (1993De09).
612.82 16	2081 . 74	5.4 10	E 2		${\rm Mult.:\ A_2 = +0.51\ 18,\ A_4 = -0.12\ 10} (1997 {\rm Dr}03).$
617.52 3	617.518	1000 130	E 2		Mult.: $A_2 = +0.44 \ 2$, $A_4 = -0.05 \ 2 \ (1997 Dr 03)$.
621.41 15	3543.04	3.1 \$ 3	E 2		Mult.: A_0 =7.2 5; A_2/A_0 =0.26 10; A_4/A_0 =-0.26 13 (1993De09).
625.94 4	2793.96	30.3 8	E1		Mult.: A_0 =106.05; A_2/A_0 =-0.250 6 (1993De09). stretched E1 transition; δ =-0.008 12 (1993De09).
635.7 3	3571.14	1.2 4	E 2		Mult.: $A_0=5.4$ 2; $A_2/A_0=0.34$ 3; $A_4/A_0=-0.12$ 5 (1993De09).
644.04‡ 3	3966.68		M1+E2	-0.16 2	Mult.: $A_0=3.6$ 2; $A_2/A_0=0.07$ 3 (1993De09). δ : from 1993De09.
648.81 10	2064 . 63	6.8 8	M1+E2	-1.6 3	Mult.: A ₂ =+0.45 7 (1997Dr03). δ: Also: -0.50 15 (1997Dr03).
658.83 7 ×661.53‡ 8	3230.50	5.7 \$ 8	E 2		Mult.: A ₂ =+0.43 6 (1997Dr03).
666.17 6	2081.74	32.98 6	M1+E2	-0.47 5	Mult.: A ₂ =+0.36 2 (1997Dr03).
668.18 18	3239.19	2.4 3	M1+E2	+2.6 10	Mult.: $A_2 = +0.68 \ 4 \ (1997 Dr 03)$.
674.713 [‡] 19	2012 00		E 9		δ: Also: +0.54 +30-15 (1997Dr03). Mult: A =10.7 2: A /A =0.322 14: A /A ==0.15 2
014.110* 19	3913.90		E 2		Mult.: A_0 =10.7 2; A_2/A_0 =0.322 14; A_4/A_0 =-0.15 2 (1993De09).

$\gamma(^{112}Cd)$ (continued)

Εγ†	E(level)	Ιγ [†]	Mult.†	δ [†]	Comments
*682.88 [‡] 9					
687.77 10	2121.40	3.3 \$ 4	(E2)		Mult.: A ₂ =+0.52 19 (1997Dr03).
692.67 10	2005.27	12.1 9	E1		Mult.: $A_0=16.3 \ 2$; $A_2/A_0=-0.046 \ 17 \ (1993De09)$.
692.67 5	3785.81	12.1 0	L1		$n_0 = 10.0 2, n_2/n_0 = 0.040 17 (1000 000).$
694.87 4	1312.37	116 9	M1.F0	-1.6 +5-8	Mark A -67 5 2. A /A - 0.224 7. A /A -0.000 10
		116 3	M1+E2	-1.6 +5-8	Mult.: A_0 =67.5 3; A_2/A_0 =-0.224 7; A_4/A_0 =0.008 10 (1993De09).
699.41 10	2570.29	10.1 10	E1		Mult.: $A_0=8.8$ 3; $A_2/A_0=-0.21$ 5 (1993De09).
					possible M2 admixture; MR:-0.02 5 (1993De09).
700.894	2571.68	32.3 11	E2		Mult.: $A_2 = +0.13 \ 54 \ (1997 Dr 03)$.
713.23 4	2881.23	39.2 7	E2		Mult.: A_0 =171.2 8; A_2/A_0 =0.341 9; A_4/A_0 =-0.121 13 (1993De09).
716.376 † 16	3809.51		E2		Mult.: $A_0=20.2$ 3; $A_2/A_0=0.445$ 24; $A_4/A_0=-0.139$ 33 (1993De09).
x723.23 [‡] 4					
735.08 7	3529.06	4.4 \$ 4	D(+Q)	-0.11 6	Mult.: A ₂ =+0.12 7 (1997Dr03). Mult.: D in 1997Dr03.
740.63	4283.67		E2		Mult.: $A_0=3.3$ 5; $A_2/A_0=0.43$ 4; $A_4/A_0=-0.08$ 6 (1993De09)
×749.67‡ 3	4200.01		114		Main. A ₀ -0.0 0, A ₂ /A ₀ -0.40 4, A ₄ /A ₀ =-0.00 0 (1995De09)
752.43 [@] 4	2064 62	21.5@ 30	M1 · Eo	1 = =	Mult. A =411 4 15, A /A =0.202 6, A /A =0.002 0
102.45 4	2064.63		M1+E2	-1.5 5	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	2168.00	183 [®] 6	E 2		Mult.: A ₂ =+0.41 5, A ₄ =-0.11 7 (1997Dr03).
767.65 6	2935.62	11.28 5	E1		Mult.: $A_0 = 26.3 \ 2$; $A_2/A_0 = -0.249 \ 14 \ (1993 De 09)$.
					possible M2 admixture; MR=-0.01 2 (1993De09).
769.36 5	2081.74	21.4 \$ 6	(E2)		Mult.: A ₂ =+0.34 16 (1997Dr03).
773.48	4687.38		E 2		$Mult.:\ A_0 = 2.2\ 1;\ A_2/A_0 = 0.31\ 6;\ A_4/A_0 = -0.09\ 8\ (1993 De 09)$
777.36 15	3571.14	1.8 3	E2		$\label{eq:Mult:A0=15.2 2; A2/A0=0.352 10; A4/A0=-0.120 14} \end{subseteq}$ (1993De09).
×790.37‡ 9					
794.90 10	2665.87	6.9 6	M1+E2		$A_0 = 8.0 \ 10 \ (1993 De09).$
798.05 4	1415.59	631 8	E2		Mult.: $A_2 = +0.58 \ 4$, $A_4 = -0.15 \ 5 \ (1997 Dr 03)$.
802.98 7	3684.23	12.0 7	E2		Mult.: $A_2 = +0.53$ 16, $A_4 = -0.48$ 20 (1997Dr03).
x811.77 13		4.2 5			Mult.: $A_2 = +0.06$ 15 (1997Dr03).
813.86 15	3990.65	3.3 4	(E2)		Mult.: A ₂ =+0.25 22 (1997Dr03).
815.57 12	1433.10	3.5 4	(E2)		2
827.54 8	3399.12	3.5 3	E2		Mult.: $A_0=15.1$ 1; $A_2/A_0=0.316$ 9; $A_4/A_0=-0.111$ 12 (1993De09).
x831.70 22		1.28 4			
x834.50 6		8.1 4			Mult.: A ₂ =+0.33 9 (1997Dr03).
839.96 9	2921.65	13.7 11	E2		
	2921.03		EZ		$\begin{aligned} \text{Mult.: } & \text{A_0=$12.5 2; A_2/A_0=$0.28 3; A_4/A_0=$-0.12 4$} \\ & \text{(1993De09)}. \end{aligned}$
x849.51 16		3.5 4	164		15 1
851.30 4	1468.85	47.7 8	M1+E2+E0	+0.23 13	Mult.: A ₂ =0.50 2 (1997Dr03).
					δ: Also: +1.4 5 (1997Dr03).
856.41 3	4174.64		E1		Mult.: $A_0=2.6$ 1; $A_2/A_0=-0.39$ 5 (1993De09).
					possible M2 admixture; MR=-0.08 5 (1993De09).
859.83 25	3028.11	1.9 4	M1+E2	-0.39 9	$\begin{aligned} & \text{Mult.: A}_0 \text{=} 1.8 \ 1; \ A_2/A_0 \text{=} 0.15 \ 5; \ A_4/A_0 \text{=} 0.10 \ 8 \ (1993\text{De}09). \\ & \delta \text{: Also: } +1.3 \ 2 \ (1997\text{Dr}03). \end{aligned}$
861.44 18	2866.71	2.5 5			
×862.57‡ 7					
x868.54 9		3.0 3			
x888.49 21		1.4 3			
890.82 13	2972.35	2.4 3	M1+E2	-0.3315	Mult.: $A_0=2.1$ 1; $A_2/A_0=-0.55$ 8 (1993De09).
x895.59 18		3.8 8			0 4 0
896.683 ‡ 18	4467.82		E2		Mult.: $A_0=8.8$ 2; $A_2/A_0=0.364$ 23; $A_4/A_0=-0.06$ 3 (1993De09).
896.85 10	2121.40	7.8 \$ 10	(E2)		· · · · · · · · · · · · · · · · · · ·
903.121 [‡] 18	4587.35	10	E2		Mult.: $A_0=9.0$ 3; $A_2/A_0=0.367$ 19; $A_4/A_0=-0.124$ 28 (1993De09).
x903.39 10		2.9 3			(2000).
908.29‡ 3	4284.77	2.9 3	E2		$Mult.:\ A_0 {=} 3.6\ 2;\ A_2/A_0 {=} 0.27\ 7;\ A_4/A_0 {=} {-} 0.13\ 10$
4.					(1993De09).
YOAO OOT A					
x910.02 [‡] 6 917.73 9	3291.32	4.0 3	E2		Mult.: A ₂ =+0.07 2 (1997Dr03).

$\gamma(^{112}{\rm Cd})$ (continued)

	E(level)	Ιγ [†]	Mult.†	δ†	Comments
x922.67 [‡] 9 x924.69 [‡] 6					
934.49 7	2403 . 28	4.5 3	M1+E2	0.33 10	Mult.: A_0 =3.3 1; A_2/A_0 =0.09 5 (1993De09). δ: from 1993De09.
940.680 † 24	4871.69		E 2		Mult.: $A_0=6.6$ 1; $A_2/A_0=0.35$ 3; $A_4/A_0=-0.14$ 4 (1993De09).
946.39 7	3028.11	4.2 3	E2		Mult.: $A_0=5.4$ 1; $A_2/A_0=0.16$ 2; $A_4/A_0=-0.08$ 3 (1993De09).
949.44 ‡ 3	4126 . 16		E 2		Mult.: $A_0=4.1$ 1; $A_2/A_0=0.33$ 5; $A_4/A_0=-0.17$ 7 (1993De09).
957.74 4	2373.35	142.3 15	E1		$\begin{aligned} & \text{Mult.: A}_0 \! = \! 213.4 \ 10; \ A_2/A_0 \! = \! -0.233 \ 7 \ (1993\text{De}99). \\ & \text{possible M2 admixture; MR} \! = \! -0.02 \ 2 \ (1993\text{De}99). \end{aligned}$
x962.17 12		$2.5 \ 3$			
967.10 ‡ 3	4285.33		E 2		Mult.: A_0 =10.1 4; A_2/A_0 = 0.285 39; A_4/A_0 =-0.13 6 (1993De09).
×970.51 [‡] 7 ×983.03 [‡] 8					
983.2 3	2416 . 01	$0.91\ 23$			${\rm Mult.:\ A_2 = +0.25\ 14,\ A_4 = -0.12\ 11\ (1997{\rm Dr}03)}.$
987.66 7	2403 . 28	4.55 24			
991.82					
1007.71 12	2231.61	1.4 3	D, (E2)		Mult.: A ₂ =0.14 14 (1997Dr03). Mult.: D ₂ (E2) sin 1997Dr03 in contradiction with adopted value. Level energy difference=1007.21.
1032.66‡ 3	3913.90		M1(+E2)	0.09 7	Mult.: A_0 =3,4 1; A_2/A_0 =-0.09 4; A_4/A_0 =0.17 5 (1993De09). δ : from 1993De09.
1039.00 5	2454.59	19.0 12	D		Mult.: A ₂ =+0.40 θ (1997Dr03). δ: 0.00 <i>15</i> (1997Dr03).
1049.80					
1060.63‡ 3	4383.28		M1+E2	0.75 30	Mult.: A_0 =6.1 1; A_2/A_0 =0.67 5; A_4/A_0 =0.16 6 (1993De09). δ: from 1993De09.
1067.06 ‡ 3	4385.29		M1+E2	0.38 10	$\label{eq:Mult:A0=0.17} \begin{split} \text{Mult.: } A_0 = &4.3 \ 1; \ A_2 / A_0 = 0.35 \ 10; \ A_4 / A_0 = 0.17 \ 12 \\ &(1993 De 09). \end{split}$
					δ: from 1993De09; Also: 3.6 +20-10 (1993De09).
1071.24 10	3239.19	3.7 4	E2+(M1)	-7.225	Mult.: $A_0=8.3$ 3; $A_2/A_0=-0.26$ 2; $A_4/A_0=0.28$ 3 (1993De09).
1077.84 7	2493.44	15.1 9	M1+E2	-0.03 25	Mult.: $A_2 = +0.47 23 (1997 Dr 03)$.
1090.86 11	2403.28	3.2 3			
1091.29 ^{‡&} 7	2506.81		D		Eγ: ambiguous transition, reported only in 1993De09. It is not reported in the following paper 1997Dr03 and not confirmed in $(n,n'\gamma)$ 2001Ga44. Instead, it was suggested to de-excite the 2403.28-keV level. Mult.: A_0 =3.1 1; A_2/A_0 =0.24 (1993De09). possible Q admixture; δ =0.05 25 (1993De09).
1103.57 8	2416.01	4.6 3	E1		Mult.: A ₂ =+0.31 14 (1997Dr03).
1117.34 25	2532.9	1.3 3			-
1123.96 15	3291.32	3.8 4	E1		Mult.: A_0 =6.0 1; A_2/A_0 =-0.23 2 (1993De09); pure E1 transition; δ =0.00 2 (1993De09).
1142.09 <i>16</i> 1151.22 [‡] 8	2454.59	2.1 3			
1154.86 9	2570.29	14.8 13	E1		Mult.: A_0 =11.4 5; A_2/A_0 =-0.35 10 (1993De09) Possible M2 admixture; δ =-0.13 13 (1993De09).
1156.21 <i>6</i> 1158.98 [‡] <i>5</i>	2571.68	28.9 17	E2		Mult.: A ₂ =+0.68 22 (1997Dr03).
1165.0 3 1172.59 [‡] 4	3736.7	1.3 3	E2		Mult.: A ₀ =5.8 2; A ₂ /A ₀ =0.36 7; A ₄ /A ₀ =-0.04 9 (1993De09).
1175.431‡ 22	5106.45		E1		$\begin{array}{llllllllllllllllllllllllllllllllllll$
1175.52 5	2591.17	11.2 4	E1		$\begin{array}{llllllllllllllllllllllllllllllllllll$
1194.22 <i>26</i> 1204.51 <i>15</i>	2506.81	1.3 3 1.9 3			Mult.: A ₂ =-0.18 17 (1997Dr03).
1204.31 <i>13</i> 1230.26‡ <i>8</i>		1.3 3			
1250.26+ 8	2665.87	7.3 3	M1+E2	-2.0 5	Mult.: A_0 =6.9 2; A_2/A_0 =-0.58 5; A_4/A_0 =0.19 6 (1993De09). δ: Also: -0.30 12 (1997Dr03).
1253.31 4	1870.78	41.3 5	E2		Mult.: $A_2 = +0.52 \ 4$, $A_4 = -0.15 \ 6 \ (1997 Dr 03)$.

$\gamma(^{112}Cd)$ (continued)

$\mathbf{E}\gamma^{\dagger}$	E(level)	$\underline{\hspace{1.5cm}}^{\dagger}$	Mult.†	δ [†]	Comments
x1294.13 18		3.7 5			
1295.82 9	2711.42	8.9 7	M1+E2	-0.33 9	Mult.: A ₀ =6.0 1; A ₂ /A ₀ =0.09 3 (1993De09).
1312.41 4	1312.37	43.7 5	E2	0.00	Mult.: $A_2 = +0.46$ 2, $A_4 = -0.04$ 3 (1997Dr03).
1322.48 10	2634.86	3.9 3	D		
1326.15 12	3494.16	2.9 3	D(+Q)	+0.02 3	Mult.: $A_0=4.6$ 1; $A_2/A_0=-0.21$ 3 (1993De09).
x1332.39‡ 4	0101.10	2.0 0	2(.4)	.0.02 0	11410.110 1, 119.110 0.21 0 (1000000).
x1337.37 [‡] 3					
1356.82 24	2669.15	3.4 10	D		Mult.: A ₀ =2.8 4; A ₂ /A ₀ =0.05 4 (1993De09).
x1368.2 4	2000.10	0.9 3	Б		$MattM_0=2.04, M_2/M_0=0.004$ (1000D000).
×1370.60‡ 5					
1375.02 8	3543.04	3.96 24	E2		Mult.: $A_0=9.2$ 2; $A_2/A_0=0.31$ 3; $A_4/A_0=-0.07$ 4 (1993De09).
x1386.126 21	5015.51	4.7 9			114/110 0101 1 (1000000).
1387.77 5	2005.27	42.3 12	E1		Mult.: A ₂ =-0.07 6 (1997Dr03).
1001.11	2000.21	12.0 12			possible M2 admixture; δ =-0.09 5 (1993De09).
x1392.42 22		1.7 3			Mult.: A ₂ =-0.10 22 (1997Dr03).
x1401.30 19		2.0 3			Matt 112 - 0.10 22 (1001D100).
1416.03 23	3584.04	1.7 3	D(+Q)	-0.06 4	Mult.: A ₂ =-0.13 26 (1997Dr03).
×1419.10 18	0004.04	2.2 3	D(Q)	0.00 4	Huit 112 - 0.10 20 (1001D100).
1424.64 5	2840.24	10.8 3	M1+E2	-0.11 8	Mult.: $A_0=7.5$ 1; $A_2/A_0=-0.33$ 2 (1993De09).
x1444.1 4	2040.24	1.2 4	MITTE	0.11 0	$MattM_0 = 1.0 1, M_2/M_0 = 0.00 2 (1000 D 000).$
1446.95 5	2064.63	19.9 5	M1+E2	-1.24 15	Mult.: A ₂ =-0.47 6, A ₄ =+0.10 10 (1997Dr03).
x1454.24 23	2001.00	1.9 3		1.21 10	1141011 119 - 01111 0, 114-10110 10 (10012100).
1464.16 21	2081.74	2.1 3	E2		Mult.: $A_0=2.0$ 2; $A_2/A_0=0.11$ 6; $A_4/A_0=0.05$ 8 (1993De09).
1468.79 4	1468.85	31.0 5	E2		Mult.: $A_0=2.0$ 2; $A_2/A_0=0.210$ 13; $A_4/A_0=-0.036$ 19
1400.70 4	1400.00	01.00	22		(1993De09).
1483.44 8	2899.04	8.4 4	D		Mult.: $A_0=6.2$ 2; $A_2/A_0=-0.29$ 3; $A_4/A_0=0.07$ 4 (1993De09).
			_		possible quadrupole admixture; $\delta = -0.07$ 11 (1997Dr03).
1504.06 5	2121.40	13.0 4	M1+E2	+0.15 5	Mult.: A ₀ =3.8 2; A ₂ /A ₀ =0.16 4 (1993De09).
					δ: Also: +1.6 2 (1997Dr03).
1505.5 3	2921.65	5.5 7	E2		Mult.: $A_0=2.4$ 2; $A_2/A_0=0.13$ 12 (1993De09).
1538.64 7	2156.18	10.9 5	M1+E2	-0.33 15	Mult.: $A_0 = 3.2 \ 1$; $A_2/A_0 = -0.02 \ 7 \ (1993De09)$.
x1546.84 [‡] 9					0 , 2 0
1554.49 16	2970.24	4.5 5	M1+E2	+0.42 12	Mult.: $A_0=4.2$ 1; $A_2/A_0=0.27$ 3 (1993De09).
1556.47 15	2972.35	5.1 6	M1+E2	+0.17 5	Mult.: $A_0 = 3.8 \ 2$; $A_2/A_0 = 0.02 \ 6 \ (1993De09)$.
x1586.7 3		1.4 3			0 2 0
1613.73 11	2231.61	9.7 3	M1+E2	-0.6 +2-4	Mult.: $A_0=3.7$ 2; $A_2/A_0=-0.05$ 3 (1993De09).
1660.04 20	3075.65	4.9 3	D		Mult.: $A_0=3.2$ 1; $A_2/A_0=-0.20$ 6 (1993De09).
					possible quadrupole admixture; δ=0.00 6 (1997Dr03).
x1663.63 17		4.1 3			
x1690.46 20		3.2 3			
x1712.1 4		1.0 3			
1785.65 15	2403.28	5.4 3	M1+E2	-0.2520	Mult.: $A_0=2.3$ 1; $A_2/A_0=-0.26$ 4 (1993De09).
1798.60 12	2416.01	11.1 3	E 1		Mult.: $A_0=4.2$ 1; $A_2/A_0=-0.20$ 3 (1993De09).
1875.9 3	2493.44	1.7 3	E 2		Mult.: A ₀ =1.0 1 (1993De09).
1888.70 21	2506.81	4.4 3			-
x1888.92 [‡] 19					
2051.59 17	2669.15	3.0 \$ 3			
2056.0 4	2673.5	1.9 3			
2106.15	2723.69		M1+E2		Mult.: A ₀ =0.9 2 (1993De09).
2156 . 4 4	2156.18	1.2 3	E 2		-

 $^{^{\}dagger}$ from 1997Dr03, unless otherwise noted.

[‡] From 1993De09.

 $[\]$ Contaminated transition. The total intensity is given.

[#] Multiply placed; undivided intensity given.

[@] Multiply placed; intensity suitably divided.

[&]amp; Placement of transition in the level scheme is uncertain.

 $^{^{\}boldsymbol{x}}$ $\,\gamma$ ray not placed in level scheme.

¹¹⁰Cd(t,p) 1987Me19

Facility: Univ.Pennsylvania tandem accelerator; Beam: E(t)=15 MeV; Target: 100 $\mu g/cm^2$ enriched to 97.2% in ^{110}Cd and backed on Au; Detectors: multiangle magnetic spectrograph, FWHM=25 keV; Measured: $d\sigma/d\Omega$; Deduced: ^{112}Cd levels, L from DWBA analysis with DWUCK, $J\pi$.

¹¹²Cd Levels

E(level) [†]	_Jπ [‡]	L§	Comments
0.0	0+	0	
617 4	2+	2	
1223 4	0+	0	
1312 4	2+	2	
1414 4	(4)	(4)#	
1431 4	(0)	(0)#	
1467 4	2+	2	
1873 4	0+	0	
2006 4	3 –	3	
2085 4	4+	4	
2123		_	
2162 4	2+	2	
2231 4	(2+)	(2)	L: contaminated transition.
2306 4	0+	0	
2375 4	5 –	5	
2457 4	4+	4	
2505 4		2,4#	L: L=1 can not be also excluded.
2570 4		(0,2,6)#	
2671 4		(2,6)#	
2718 4		(0,2,6)#	
2763 4	2+	2	
2829 4	0+	0	
2865 4		(1,4)#	
29744		(2,4)#	
3071 4		$(1,2,4)^{\#}$	
3108 4	2+	2	
3133 4	(2+)	(2)	
3175 4	3 –	3	
32424		$(0, 2, 3)^{\#}$	
3302 4	(6+)	(6)	
3335 4		(0,1,4)#	
3365 4			
3393 4			
3415 4	4+	4	

- † From 1987Me19.
- \ddagger From 1987Me19, based on L.
- § From 1987Me19, based on $d\sigma/d\Omega$ and DWBA analysis.
- # Unresolved multiplet.

¹¹¹Cd(n,γ) E=th: Primary 1997Dr03

Facility: ILL Grenoble; Targets: 47 mg enriched to 90% in ¹¹¹Cd; 0.46 mg/cm² and 1.2 mg/cm² Cd oxide evaporated on Al foil; Detectors: one composite detector, comprising one Ge(Li) detector working in coinc. or anti-coinc. with an annulus NaI(Tl), BILL β- spectrometer and multi-wire proportional counter: Measured: Εγ, Ιγ; Deduced: ¹¹²Cd level scheme, Jπ, Q_n; Also, from the same collaboration: 1993De01.

¹¹²Cd Levels

E(level) [†]	Jπ [‡]
0.0	0+
617.57 23	2+
1224 . 3 3	0 +
1312.40 23	2+
1432.72 21	0+

¹¹¹Cd(n,γ) E=th: Primary 1997Dr03 (continued)

¹¹²Cd Levels (continued)

E(level) [†]	Jπ‡	Comments
1469.0 5	2+	
1871.0 3	0+	
2065.2 8	3+	
2121.52 25	2+	
2156.2 3	2+	
2231.7 6	2+	
2300.52 25	0 +	
2402.6 3	3+	
2506.57 23	1-	E(level): ambiguous final level. A doublet in the adopted levels.
2531.7 3	2+	
2561.56	(1,2+)	
2668.62 24	(2)-	
2673.0 7	2+	
2765.87 24	2+	
2829.18 23	1-	
2834.0 7	0+	
2930.2# 7	1+	
2945.5 4	2+	
3065.4 \$ 4	(2,3)-	
3111.3 ^{§#} 4 3133.2 3	(2)+ 1-	
3135.5 3	(2,3+)	
3163.51 23	2+	
3169.19 24	2+	
3189.93 24	0+,1,2,3+	
3231.42 24	1+	
3243.5 5	2+	
3253.61 24	(0+,1,2)	
3303.11 24	(2,3)+	
3363.30 24	2+	
3378.25 \$ 24	(2)+	
3393.39 23	(1,2+)	
3428.9 \$ 4	2+	
3451.9 4	2+	
3455.47 23	0+,1,2	
3479.0 <i>4</i> 3500.38 <i>23</i>	0+,1,2+ 0+,1,2,3+	
3514.5 \\$# 4	(1,2,3)+	
3540.0 3	1,2+	
3556.8 3	(1,2+)	
3567.9 3	2+	
3571.7 5	(1,2+)	
3577.56 23	2+	
3609.6 \$ 5	0+,1,2,3+	
3646.98 3	0+,1,2,3+	
3652.1 \ 3	1,2+	
3695.97 23	0+,1,2,3+	
3707.24 23	1-, 2, 3+ $(2+, 3+)$	
3719.0 § 3 3723.7 § 3	(2+,3+) 0+,1,2,3+	
3723.7° 3 3743.1 [§] 6	(1,2,3)+	
3838.3 7	(1,2,3)+ (1,2+)	
3846.4 5	(1,2+)	
3892.29 25	0+,1,2,3+	
3951.43 23	1,2+	
3970.0 4	(1,2+)	
3996.1 4	1 , $2+$	
4003.4 6	(3)+	
(9394.0 3)	(1+)	

 $[\]dot{\dagger}$ From a least-squares fit to Ey. $\dot{\pm}$ From the adopted levels.

Footnotes continued on next page

¹¹¹Cd(n,γ) E=th: Primary 1997Dr03 (continued)

¹¹²Cd Levels (continued)

- \S No secondary γ -rays from this level were observed in 1997Dr03. The level is deduced by the evaluators from the E(resonance level)-E γ (Primary) energy difference and the adopted levels.
- # Level energy deviate by more than 1 keV from the adopted level.

$\gamma(^{112}Cd)$

$\underline{\hspace{1cm}} E\gamma^{\dagger}$	E(level)	Ιγ‡	Εγ [†]	E(level)	Ιγ‡	$\underline{\hspace{1cm} E\gamma^{\dagger}}$	E(level)	Ιγ‡
5390.5 5	(9394.0)	0.45 9	5825.99 20	(9394.0)	1.75 14	6448.4 3	(9394.0)	0.41 6
5397.8 3	(9394.0)	0.85 14	5837.08 18	(9394.0)	1.70 11	6463.7 6	(9394.0)	$0.21\ 5$
5423.9 3	(9394.0)	0.68 9	5853.86 21	(9394.0)	2.10 20	6559.8 6	(9394.0)	0.429
5442.48 13	(9394.0)	9.66 24	x5879.4\$ 3		0.68 9	6564.67 13	(9394.0)	13.1 4
x5448.04 § 13		4.92 16	5879.4 3	(9394.0)	0.68 9	6627.97 15	(9394.0)	0.46 10
x5454.38		2.72 12	5893.51 13	(9394.0)	4.73 16	6720.8 6	(9394.0)	0.46 10
x5498.9\$ 6		0.66 19	5914.9 3	(9394.0)	0.89 10	6725.22 15	(9394.0)	5.9 3
5501.62 17	(9394.0)	3.8 3	5938.41 14	(9394.0)	5.52 20	6832.3 5	(9394.0)	0.52 8
5547.5 4	(9394.0)	0.82 12	5942.0 3	(9394.0)	1.35 17	6862.10 21	(9394.0)	1.47 11
5555.6 6	(9394.0)	0.40 9	5965.0 3	(9394.0)	0.60 8	6887.26 13	(9394.0)	15.5 6
x5572.3 § 4		0.51 8	6000.49 13	(9394.0)	4.47 15	6991.18 23	(9394.0)	0.95 9
x5598.6 § 4		0.53 9	6015.63 15	(9394.0)	3.98 16	7093.29 17	(9394.0)	1.60 10
x5628.71 § 20		1.14 11	6030.58 16	(9394.0)	1.87 10	7162.1 5	(9394.0)	0.35 7
x5645.1 § 3		0.77 9	6090.77 16	(9394.0)	3.45 20	7237.56 23	(9394.0)	0.95 9
5650.8 5	(9394.0)	0.53 12	6140.26 16	(9394.0)	2.24 12	7272.28 17	(9394.0)	1.97 12
5670.24 24	(9394.0)	0.96 10	6150.4 4	(9394.0)	0.45 8	7328.6 7	(9394.0)	0.23 7
5674.88 25	(9394.0)	0.92 11	6162.45 16	(9394.0)	2.01 11	7522.80 25	(9394.0)	0.91 9
5686.66 14	(9394.0)	9.7 3	6203.94 15	(9394.0)	2.92 14	7924.8 4	(9394.0)	0.29 4
5697.93 13	(9394.0)	9.1 3	6224.68 15	(9394.0)	3.12 14	7961.03 11	(9394.0)	0.07 3
x5736.3 § 6		0.66 19	6230.36 14	(9394.0)	4.30 17	8081.34 14	(9394.0)	2.60 18
5741.76 18	(9394.0)	2.22 13	6258.35 19	(9394.0)	6.3 7	8169.41 23	(9394.0)	1.36 13
5746.95 24	(9394.0)	1.16 11	6260.63 25	(9394.0)	4.5 8	8776.11 14	(9394.0)	4.00 4
5784.3 4	(9394.0)	0.70 12	x6277.5 § 4		0.54 9	9393.63 18	(9394.0)	0.63 8
5816.33 13	(9394.0)	9.1 3	6282.6 3	(9394.0)	1.35 13			
5822.2 4	(9394.0)	0.72 11	6328.5 3	(9394.0)	0.99 12			

 $^{^{\}dagger}$ From 1997Dr03.

¹¹¹Cd(n,γ) E=th: Secondary 1997Dr03

1997Dr03: Facility: the high-flux reactor of ILL Grenoble; Targets: 47 mg enriched to 90% in 111 Cd and two 0.46 mg/cm² and 1.2 mg/cm² thick Cd oxide evaporated on Al foil; Detectors: a composite detector comprising one Ge(Li) detector working in coinc. or anti-coinc. with an annulus NaI(Tl) scintillator, BILL β - spectrometer ($\Delta p/p=5x10^{-4}$), multi-wire proportional counter and curved crustal spectrometer; Measured: E γ with Ge(Li) and curved crustal spectrometer (100-1600 keV), I γ , ce; Also from the same collaboration: 1993De01 Others: 1991NeZX, 1987AlZE, 1987AlZH.

¹¹²Cd Levels

E(level) [†]	Jπ [‡]	E(level) [†]	Jπ‡	E(level)	Jπ‡
0.0	0+	2081.78# 6	4+	2532.39 [@] 14	2+
617.519 3	2+	2121.50# 10	2+	2561.23@ 17	(1,2+)
1224.341 7	0+	2156.28# 8	2+	2590.98 4 19	4 –
1312.391 8	2+	2231.27 11	2+	2635.09 17	3+
1415.596 \$ 14	4+	2301.07 16	0+	2668.89	(2)-
1433.32 \$ 3	0+	2403.09 9	3+	2674.09 16	2+
1468.808 15	2+	2416.16 8	3 –	2723.95 13	2+
1871.03# 9	0+	2493.27@ 18	4+	2765.89 13	2+
2005.19 3	3 –	2506.36 ^a 12	(2) + a	2829.17 10	1-
2064 . $52^{\#}$ 3	3+	2506.74 ^{&a} 12	1 – a	2834.7@3	0 +

 $^{^{\}ddagger}$ Absolute intensities per 10^5 neutron captures (1997Dr03).

 $[\]$ No final level is associated with this transition.

 $^{^{\}boldsymbol{x}}$ $\;\gamma$ ray not placed in level scheme.

¹¹¹Cd(n,γ) E=th: Secondary 1997Dr03 (continued)

$^{112}\mathrm{Cd}$ Levels (continued)

E(level) [†]	Jπ [‡]	E(level) [†]		E(level) [†]	Jπ [‡]
2853.05 [@] 14	2+	3303.30 14	(2,3+)	3696.23 17	0+,1,2,3+
$2866.86^{@}$ 11	(3)+	3393.37 14	0+ to 4+	3707.53 11	1-,2,3+
2931.54 13	1+	3429.25 5		3838.91 24	(1,2+)
2944.99 14	2+	3452.2 4	(0+)	3846.3 4	(1,2+)
3133.79 12	1-	3455.70 22	0+, 1, 2	3892.19 23	0+,1,2,3+
3135.72 11	(2,3+)	3479.3 3	0+, 1, 2+	3951.50 15	1, 2 +
3163.48 14	2+	3500.55 19	0+ to 3+	3970.04 24	(1,2+)
3169.46 12	2+	3540.36 18	1,2+	3998.12 15	1,2+
3190.17 16	0+,1,2,3+	3557.29 23	(1,2+)	4004.1 4	(3-)
3231.24 16	1+	3567.82 22	2+		
3243.4 3	2+	3572.43 23	(1,2+)		
3253.55 24	(0+,1,2)	3577.55 11	2+		

 $^{^{\}dagger}$ From a least squares fit to Ey.

 $\gamma(^{112}\mathrm{Cd})$

$\underline{\hspace{1cm}} E \gamma^{\dagger}$	E(level)	$\underline{\hspace{1cm}} \text{I} \gamma^{\dagger}$	Mult.§	δ	Comments
121.06 10	1433.32				
402.14 19	1871.03	3.6 6			
410.86 21	2416.16	2.9 6			
536.22 23	2005.19	1.3 3			
558.42 17	1871.03	6.3 5			
x560.96 22		2.2 4			
606.821 [‡] 6	1224.341	47.2 18	E2,M1		Mult.: $\alpha(K)\exp=0.0034$ 3 (1997Dr03).
612.9 3	2081.78	1.9 10	,		
617.517‡ 3	617.519	910 30	E2		Mult.: α(K)exp=0.00317 16 (1997Dr03); α(L)exp=0.00039 4 (1997Dr03); α(M)exp=0.000138 15 (1997Dr03).
648.76	2064.52	4.8 3			
x651.223 [‡] 10		1.4 4			
656.74	3163.48	4.5 3			
663.5 3	2668.89	0.8 3			
666.17 [‡] 6	2081.78	4.6 3			
688.03 17	2121.50	5.6 4			
692.82	2005.19	12.8 5			
694.872 7	1312.391	161 5	M1+E2		Mult.: $\alpha(K)\exp=0.00242$ 18 (1997Dr03).
x699.46 24		1.81 37			
718.98 22	2723.95	1.6 3			
752.14	2064 . 52	16.2 5			
762.6 6	2231.27	0.4 3			
769.54 17	2081.78	3.4 3			
798.072	1415.596	55.2 16	E2		Mult.: $\alpha(K)\exp=0.00155$ 15 (1997Dr03).
x811.7 [‡] 3		6.8 14			
815.79 3	1433 . 32	$11.2 \ 5$			
x831.50‡ 4		6.0 3			
x834.93 20		2.0 3			
840.71 18	3707.53	2.7 3			
844.14 18	2156 . 28	2.8 3			
851.285 † 15	1468.808	68.1 19	M1+E2+E0	0.053 30	Mult.: $\alpha(K)\exp=0.00235$ 18 (1997Dr03). δ : From $\gamma(\omega)$ in 1997Dr03. Other solution: $\delta=1.96$ 70. Ice(K)(E0,2+ to 2+)/Ice(K)(M1,2+ to 2+)=0.43 11, B(E0)/B(E2)=2.6 15, and B(E0)/B(M1)=2700 700 (1991Gi05).
861.74 17	2866.86	3.6 3			
886.99 23	3303.30	1.48 25			
897.15 17	2121.50	3.6 3			

[‡] From adopted levels.

 $[\]$ Probable member of the two-phonon multiplet.

[#] Probable member of the three-phonon multiplet.

[@] Probable member of the four-phonon multiplet.

[&]amp; Probable member of the 2+ $\otimes 3-$ quadrupole-octupole multiplet.

a Unresolved doublet in 1997Dr03.

$^{111}Cd(n,\gamma)~E=th:~Secondary~~1997Dr03~(continued)$

$\gamma(^{112}\text{Cd})$ (continued)

${}_{}^{} E\gamma^{\dagger}$	E(level)	Ιγ [†]	Mult.§	Comments
x912.93 19		2.2 3		
918.0 3	2231.27	0.84 25		
934.43 16	2403.09	2.1 3		
x945.37 17		4.4 3		
947.54 19	2416.16	2.4 3		
$^{x}953$. 37 20		$2.1\ 3$		
957.80 19	2829.17	2.4 3		
x962.39 25		$1.25 \ 25$		
983.00 15	2416.16	1.3 3		
987.70 17	2403.09	4.9 3		
1007.26 17	2231.27	2.98 23		
x1034.46 22	2506 74	1.43 22		
$1037.8 \ 3$ $1063.56 \ 22$	2506.74 2532.39	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
1071.13 17	3135.72	4.5 3		
1077.67 18	2493.27	2.61 24		
x1086.5 3		1.6 3		
1090.64 17	2403 . 09	3.94 25		
$^{x}1093.12\ 22$		1.53 24		
1099.0 3	2532 . 39	$0.91\ 24$		
1103.46 16	2416.16	6.6 3		
*1110.47 24		2.0 3		
*1112.1 4	0500 00	1.0 4		
1116.83 20	2532.39	2.0 3		
1175.38 <i>19</i> ×1186.9 <i>4</i>	2590.98	2.3 3		
x1189.66 20		$\begin{array}{ccc} 1 & 0 & 3 \\ 2 & 7 & 3 \end{array}$		
1193.94 18	2506.36	3.9 3		
1224.41	1224.341	0.0	(E0)	
1248.92 24	2561.23	1.7 3	, , ,	
1253.53 16	1871.03	8.8 5		
$^{x}1268.08 22$		1.9 3		
1282 . 4 3	2506 . 74	1.8 5		
x1293.74 19		2.20 20		
1297.5 3	2765.89	1.3 3		
*1307.62 25	1010 001	1.22 21	T.O.	Multi
$1312.36^{\ddagger} 4$ $1322.69 17$	1312.391 2635.09	54.5 12 4.06 24	E 2	Mult.: $\alpha(K)\exp=0.00052$ 6 (1997Dr03).
1356.55 16	2668.89	15.2 4		
x1368.9 3	2000.00	1.4 3		
1387.63 5	2005.19	44.9 10		
1433.35	1433.32		E 0	
x1444.2 5		$0.52\ 25$		
1447.02 16	2064.52	15.0 4		
$1451.21\ 18$	2866.86	3.1 3		
x1460.90 17		4.79 24		
1468.91 9	1468.808	40.2 9	E 2	Mult.: $\alpha(K)\exp=0.00050$ 7 (1997Dr03).
^x 1484.82 <i>16</i> 1504.11 <i>16</i>	9191 50	6.4 3	E9 MH	Mult : a(K)ovn=0.00020 10 (1007D=02)
$1504.11 16$ $1538.68^{\ddagger} 10$	2121.50 2156.28	29.37 32.48	E2+M1	Mult.: α(K)exp=0.00030 10 (1997Dr03).
1540.44 20	2853.05	4.5 5		
x1555.52 20	2000.00	3.6 4		
x1586.6 3		1.19 25		
1604.6 4	2829.17	0.95 25		
1613.67 16	2231 . 27	28.1 7		
x 1619.77 22		2.4 3		
x 1642.15 19		3.0 3		
x1653.94 19		2.25 23		
*1663.8 3	0167 5-	1.04 22		
1667.01 25	3135.72	1.26 22		
1683.54 <i>16</i> x1690.56 <i>19</i>	2301.07	7.3 3		
x1712.0 3		2.26 22 $1.3 3$		
1,12.0 0		1.00		
			Continued on 1	next page (footnotes at end of table)

$^{111}Cd(n,\gamma)~E=th:~Secondary~~19\underline{97}Dr03~(continued)$

$\gamma(^{112}\mathrm{Cd})$ (continued)

$\underline{\hspace{1cm}} E\gamma^{\dagger}$	E(level)	Ιγ [†]
1785.28 16	2403.09	4.3 4
1798.60 16	2416 . 16	13.8 5
x1807.16 17		4.0 3
1823.32 17	3135.72	4.71 25
1888.84 <i>16</i> ×1894.74 <i>20</i>	2506.36	17.94 2.2822
1909.53 17	3133.79	5.80 24
1945.12 17	3169.46	4.61 21
x1996.24 21		3.3 4
x 1999.84 20		2.12 25
x 2 0 1 1 . 9 6 2 0		$2.4 \ 3$
2051.34 23	2668.89	2.9 4
2056.55 16	2674.09	12.3 4
2106.29 <i>16</i> 2148.18 <i>16</i>	2723.95 2765.89	13.1 5 8.1 3
2156.25 17	2156.28	1.9 5
x2166.09 21		3.0 3
x2189.71 25		1.7 3
$^{x}2208$. 26 25		2.3 3
2211.72 16	2829.17	18.5 5
2217.2 3	2834.7	2.6 5
2235.7 <i>21</i> 2314.13 <i>19</i>	2853.05 2931.54	2.4 3
2314.13 19	2944.99	4.73 4.73
x2329.89 18	2344.33	6.2 3
x2340.12 21		2.59 25
2352.94 19	3577.55	3.4 3
x2363.14 17		6.6 3
2383.81 17	3696.23	5.35 25
2395.00 18	3707.53	3.8 3
x2443.22 20 x2449.09 22		3.2 3
x2449.09 22		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2506.76 16	2506.74	55.3 12
2551.89 17	3169.46	9.1 4
2561.13 22	2561.23	2.8 3
$2572.62\ 16$	3190.17	$10.1\ 4$
2579.77 23	3892.19	4.0 4
2613.56 25	3231.24	2.6 3
2625.83 26 $2636.00 24$	3243.4 3253.55	3.34 3.74
2685.83# 17	3303.30	8.5 [#] 4
2000.00 1,	3998.12	8.5# 4
x 2 6 9 2 . 1 3		2.1 4
x 2 6 9 4 . 5 1 1 9		5.9 5
2766.0 3	2765.89	1.8 3
2775.78 18	3393.37	6.1 4
2829.30 16	2829.17	19.0 6
x2835.47 51 2838.14 22	3455.70	1.4 <i>4</i> 4.5 <i>5</i>
2853.17 18	2853.70	5.4 4
2882.99 19	3500.55	4.7 4
2922.92 20	3540.36	4.1 3
2931.39 17	2931.54	7.8 4
x2940.17 20		4.8 4
2945.20 20	2944.99	4.6 4
2950.26 22 2960.13 16	3567.82 3577.55	3.8 4 15.5 6
3090.04 18	3577.55 3707.53	15.56 6.74
3133.65 16	3133.79	15.0 7
3163.4 3	3163.48	2.6 4
3231.27 19	3231 . 24	6.3 5
x3238.51 24		$3.5 ext{ } 4$

$^{111}Cd(n,\gamma)\ E=th:\ Secondary \qquad 1997Dr03\ (continued)$

$\gamma(^{112}\text{Cd})$ (continued)

$\mathbf{E}\gamma^{\dagger}$	E(level)	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	Comments
x3300.70 23		3.4 4	
3333.94 17	3951.50	11.2 6	
3352.4 4	3970.04	0.73 18	
3386.50 31	4004.1	1.11 22	
3393.35 20	3393.37	1.89 23	
3452.1 4	3452 . 2	1.7 3	
3479.2 3	3479.3	0.94 20	
3539.8 4	3540.36	0.97 23	
3557.23 23	3557.29	0.97 20	
3572.37 23	3572.43	1.81 24	
3577.53 18	3577.55	2.8 3	
3838.84 24	3838.91	1.66 22	
3846.2 4	3846.3	1.15 23	
3951.4 3	3951.50	1.40 20	$\mathrm{E}\gamma,\Delta\mathrm{E}\colon$ not consistent with level energy difference.
3970.0 3	3970.04	1.66 15	
3997.6 3	3998.12	2.33 23	

[†] From 1997Dr03.

¹¹¹Cd(d,p) 1967Ba15

1967Ba15: Facility: MIT-ONR Van de Graaff accelerator; Beam E(d)=7.7 MeV; Targets: 20 $\mu g/cm^2$ enriched to 89.9% in ^{111}Cd evaporated on 100 $\mu g/cm^2$ Au, natural Cd. $J\pi(^{111}Cd\ g.s.)=1/2+$; Detectors: MIT spectrograph, 50- μ NTA photoemulsions, shielded by Ta and Al foils to suppress heavier than proton particles; Measured: $d\sigma/d\Omega(E,\theta)$. FWHM=20 keV; Deduced: levels, L, S, DWBA, JULIE code.

Others: 1960Co10.

¹¹²Cd Levels

E(level)†	$J\pi^{\ddagger}$	t [†]	(2J+1)S [†]	Comments
0.0	0+	0	0.28	
619 8	2+	2	0.36	
1228 8	0+	0	0.051	
1436 8	0+	0	0.078	
1474 8	2+	2	0.095	
1876 8	0+	0	0.11	
2009 8	(2+,3)	(2, 3)	0.033,0.06	
2087 8				
2123 8	2+	2	0.13	
2159 8	2+	2	0.089	
2235 8	(2+,3)	(2, 3)	0.042,0.067	
2302 8	0+	0	0.22	
2374 8				
2424 8	(0+,1)	(0,1)		
2507 8	2+	2	0.38	
2573 8				
2637 8	2+	2	0.24	
2657 8				
2678 8	2+	2	0.35	
2725 8	2+	2	0.32	
2770 8	2+	2	0.39	
2822 8				L: L=0,2 for the doublet 2822+2840.
2840 8				L: L=0,2 for the doublet 2822+2840.
2875 8				
2901 8				

 $^{^{\}ddagger}$ Measured with a curved crustal spectrometer (1997Dr03).

 $[\]$ From 1997Dr03, based on ce measurements.

[#] Multiply placed; undivided intensity given.

 $^{^{}x}$ γ ray not placed in level scheme.

111Cd(d,p) 1967Ba15 (continued)

¹¹²Cd Levels (continued)

E(level) [†]	Jπ [‡]	t	$(2J+1)S^{\dagger}$
2936 8	2+	2	0.27
2965 8	2+	2	0.30
2988 8			
3071 8			
3113 8	2+	2	1.45
3184 8	2+	2	0.83
3240 8			
3304 8	2+	2	0.32
3344 8			

 $^{^{\}dagger}$ From 1967Ba15.

¹¹¹Cd(d,pγ) 1980Ju05,1979Lu10

Facility: Jyvaskyla 90 cm cyclotron; Beam: pulsed, E(d)=9 MeV; Target: 0.8 mg/cm 2 111Cd; Detectors: magnetic lens, Si(Li), Si(Au), planar Ge; Measured: γ , ce, E(p), γ -p coinc., E γ , I γ , ce(t); Deduced: levels, T $_{1/2}$, E0/E2 ratios; ρ^2 and B(E2)(W.u.).

¹¹²Cd Levels

E(level)	$J\pi^{\ddagger}$	$T_{1/2}$	Comments
0.0	0 +		
617.24	2+		
1223.94	0 +		
1311.9 5	2+		
1415.06	4+		
1432.8 4	0+	1.9 ns 1	T _{1/2} : from RF-ce(t) (1979Lu10,1980Ju05).
			$Ice(K)(1432): Ice(K)(815\gamma): Ice(K)(209): Ice(K)(120) = 0.79 \ 8:0.10 \ 3:2.5 \ 4:11 \ 2.$
1468.4 6	2+		

 $^{^{\}dagger}$ From a least-squares fit to Ey.

$\gamma(^{112}\mathrm{Cd})$

$\underline{\hspace{1cm} E\gamma^{\dagger}}$	E(level)	Ιγ	Mult.‡	Comments
120.9 5	1432.8	30 10	E2	Iγ: from Iγ(120γ)/Iγ(815γ)=0.3 1 (1980Ju05). B(E2)(W.u.): 66 20 (1980Ju05).
208.9 5	1432.8		E0	$\rho^2 = 0.0081 \ 19 \ (1980 Ju05).$
606.7 5	1223.9		E 2	B(E2)(W.u.): 51 13 (1980Ju05).
617.2 5	617.2			
694.7 5	1311.9			
797.8 5	1415.0			
815.6 5	1432.8	100	E2	Iγ: from Iγ(120 γ)/Iγ(815 γ)= 0.3 1 (1980 Ju 05).
				B(E2)(W.u.): 0.017 4 (1980Ju05).
851.2 5	1468.4			
1223.9 5	1223.9		E0	$\rho^2 = 0.037$ (11) (1980Ju05).
$1432.8\ 5$	1432.8		ΕO	$\rho^2 = 0.00048 \ 11 \ (1980 Ju 05).$

 $^{^{\}dagger}$ From 1980Ju05. $\Delta E \gamma \text{=} 0.5$ keV assumed by the evaluators.

[‡] From 1967Ba15, based on L.

[‡] From the adopted levels.

 $^{^{\}ddagger}$ From α measurements in 1980Ju05.

$^{112}Cd(\gamma,\gamma') \qquad 1971Mo31$

1971Mo31: Facility: Israel Research Reactor-2; Beam: monochromatic collimated γ from Fe(n, γ) reaction; Targets: 14 g/cm² and 2 g/cm² natural Cd; Detectors: two Ge(Li), one Nai(Tl); Measured: γ , γ - γ , γ - γ (θ) coinc., E γ , I γ ; Deduced: 112 Cd levels, J π , δ , Γ ; Also, from the same collaboration: 1970Mo26. Others: 1973Ar02, 1971Mo31, 1970Es01, 1969Ce02, 1969Mi13, 1968Mo06, 1967Pr15, 1967St33, 1966Mi13,.

¹¹²Cd Levels

E(level) [†]	Jπ [‡]	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	Comments
0.0	0+		
617.2 8	2+		
1223.2 12	0+		
1311.5 17	2+		
14298 3	0+		
1467.8 13	2+		
1869.7 16	0+		
2000? 3	3-		
2081 \$ 4	4+		
2120.2 16	2+		
2155.2 16	2+		
2229.2 16	2+		
2295 4	0+		
2506.2 13	1 –		$J\pi$: doublet in the adopted levels.
$2723.2\ 16$	2+		
2832.2 23	0+		
2850.1 18	2+		$J\pi$: from $\gamma(\theta)$ and γ decay to 0+ and 3- levels.
3110 8 6	(2)+		
3193 8 6	(2)+		
3247 8 6	(1,2)+		
3309§ 6	(1-,2)		
7632.3 8	1-	5.3 fs 9	E(level): Possible doublet structure with $J\pi=1+$ for the second state (1973Ar02).
.002.00	-	0 .0 0	$T_{1/2}$: from Γ_{γ} =0.086 eV 15 (1970Mo26). Others: 0.6 eV +2-1 (1966Mi13).
			1 _{1/2} . from 1 _γ =0.000 ev 15 (1570M020). Others. 0.0 ev +2=1 (1500M115).

- † From a least-squares fit to Ey.
- \ddagger From the adopted levels.
- $\$ No secondary $\gamma\text{-rays}$ from this level are reported in 1971Mo31.

$\gamma(^{112}\mathrm{Cd})$

${\bf E}\gamma^{\dagger}$	E(level)	Iγ‡	Mult.§	δ§	Comments			
606 1	1223.2							
617 1	617.2							
694@2	2000?							
850# 2	1467.8							
	2850.1							
1253 2	1869.7							
1311 2	1311.5							
$1386^{@}$ 2	2000?							
1468 2	1467.8							
1503 2	2120 . 2							
1538# 2	2155 . 2							
	2850.1							
1612 2	2229.2							
1888 2	2506.2							
2106 2	2723.2							
x2210 4								
2215 3	2832.2							
2507 2	2506.2							
2851 3	2850.1							
x2935 4	2000.1							
4323 6	7632.3	0.2 1						
4385 6	7632.3	0.5 1	E 1		Mult.: A ₂ =0.4 1 (1971Mo31).			
4439 6	7632.3	0.2 1	E1(+M2)	0.1 5	Mult.: A ₂ =0.16 17 (1971Mo31).			
4522 6	7632.3	0.5 1	E1(+M2)	-0.01 27	Mult.: A ₂ =0.04 18 (1971Mo31).			
4782 3	7632.3	1.9 2	E1(+M2)	+0.09 12	Mult.: A ₂ =0.11 8 (1971Mo31).			
1.02 3	.002.0	1.0 2						
	Continued on part page (feetpetes at and of table)							

$^{112}\mathrm{Cd}(\gamma,\gamma')$ 1971Mo31 (continued)

γ(¹¹²Cd) (continued)

$\underline{\hspace{1cm} E\gamma^{\dagger}}$		E(level)	Ιγ‡	Mult.§	δ§	Comments
4800	3	7632.3	1.7 1	E1		Mult.: A ₂ =0.5 1 (1971Mo31).
4909	2	7632.3	0.2 1	[E1+M2]		
5126	2	7632.3	0.4 1			
5337	4	7632.3	0.5 1	[E1]		
5403	2	7632.3	0.2 1	[E1+M2]		
5477	2	7632.3	0.4 1	[M1+E2]		
5512	2	7632.3	0.7 1	[M1+E2]		
5551	4	7632.3	0.5 1	[E3]		
5763	2	7632.3	11.6 9	E1		Mult.: $A_9=0.51 \ 2 \ (1971Mo31)$.
6164	2	7632.3	1.9 2	E1(+M2)	0.05 10	Mult.: $A_0 = 0.08 \ 7 \ (1971 \text{Mo} 31)$.
6203	3	7632.3	$2.2\ 2$	E1		Mult.: $A_2=0.57 \ 7 \ (1971\text{Mo}31)$.
x 6 3 4 5	4					Ey: no final level exists for this primary transition reported in $1971Mo31$.
6409	2	7632.3	8.0 6	E1		Mult.: $A_2=0.52$ 4 (1971Mo31).
7015	2	7632.3	11.7 9	E1+M2	0.06 2 Mult.: A ₂ =0.09 2 (1971Mo31).	
7632	1	7632.3	55 4	E1	Mult.: A ₂ =0.51 1 (1971Mo31).	

[†] From 1971Mo31.

¹¹²Cd(γ,pol γ') 2005Ko32,1999Le31

2005Ko32,1999Le31: Facility: Stuttgart Dynamotron; Beam: Bremsstrahlung at 3.15, 4.0, 4.1 MeV; Target: CdO enriched to 98.17% in 112 Cd and sandwiched between 27 Al disks; Detectors: four HP Ge detectors, one of which Compton-suppressed with BGO, and two segmented Ge polarimeters; Measured: γ , γ - γ coinc, γ - $\gamma(\theta)$, $\gamma(\text{lin pol})$, E γ , I γ ; Deduced: E(level), J π , Γ , BR, B($\sigma\lambda$). FWHM is 2 keV for 1.3 MeV γ and 3 keV for 3 MeV γ -rays; Also, from the same collaboration: 2001Ko49, 2000Ko47.

¹¹²Cd Levels

E(level) [†]	Jπ [‡]	§	I _{s,0} [eV.b]#	Comments
0.0	0+			
617	2+			
2418.0 10	(1, 2+)	1.29 ps 3	0.7 1	T _{1/2} : assuming J=1.
2506.0 10	1-	36.6 fs 19	16.7 8	-/-
2694.0 10	(1)	0.72 ps 14	1.0 2	
2829.0 10	1-	21.0 fs 16	4.5 3	
2931.0 10	1+	12.3 fs 7	12.4 6	
3133.0 10	1-	10.7 fs 5	26.1 11	
3231.1 10	1+	26.7 fs 16	9.8 5	
3300.1 10	(1)	40.6 fs 22	7.5 4	
3375.1 10	(1)	87 fs 13	1.4 2	
3557.1 10	(1, 2+)	0.52 ps 13	0.8 2	
3568.1 10	2+	60 fs 15	0.9 2	
3594.1 10	1,2+	0.153 ps 25	1.3 2	
3683.1 10	1,2+	88 fs 14	4.4 7	I _{s 0} [eV.b]: Value corrected for a small ¹³ C contamination of the target.
3704.1 10	1,2+	65 fs 6	5.9 5	a, v
3810.1 10	1,2+	17 fs 3	17.3 11	
3846.1 10	(1,2+)	0.20 ps 3	1.8 3	
3869.1 10	(1,2+)	20 fs 5	11.3 9	
3933.1 10	(1,2+)	76 fs 10	4.5 6	
3997.1 10	1,2+	2.4 fs 6	6.3 10	

 $^{^{\}dagger}$ From a least-squares fit to Ey.

Footnotes continued on next page

[‡] Branching ratios for the primary transitions in 1971Mo31; ΔΙγ=8% is quoted by the authors, but rounded to 1 by the evaluators for the cases where the the quoted uncertainty has higher precision than the given Iγ value.

[§] From 1971Mo31, based on $\gamma\gamma(\theta)$.

[#] Multiply placed.

[@] Placement of transition in the level scheme is uncertain.

 $^{^{}x}$ γ ray not placed in level scheme.

¹¹²Cd(γ,pol γ') 2005Ko32,1999Le31 (continued)

¹¹²Cd Levels (continued)

- ‡ From the adopted levels.
- $\mbox{\$}$ Calculated by the evaluators from ${\rm I}_{{\rm s},0}$ in 1999Le31 and Branching from adopted gammas.
- $^{\#}$ Integrated cross section from 1999Le31.

$\gamma(^{112}\mathrm{Cd})$

E(level)	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	$\Gamma_0/\Gamma^{\ddagger}$	Mult.	Comments
2418.0	2418 1	100		
2506.0	2506 1	85.4 8	E 1	Mult.: $\epsilon = -0.10$ 8 from polarization measurements in $^{112}\text{Cd}(\gamma, \text{pol } \gamma')$ (2005Ko32).
2694.0	2694 1	100		
2829.0	2829 1	37.9 7		
2931.0	2931 1	49.9 9	M1	Mult.: ϵ =+0.08 10 from polarization measurements in $^{112}\text{Cd}(\gamma,\text{pol }\gamma')$ (2005Ko32). Γ_0/Γ : 70 4 in 1999Le31.
3133.0	3133 <i>1</i>	72.1 8	E1	Mult.: ε =-0.13 6 from polarization measurements in 112 Cd(γ ,pol γ') (2005Ko32).
3231.1	3231 1	72.1 8	M1	Mult.: $\varepsilon = +0.27$ 12 from polarization measurements in $^{112}\text{Cd}(\gamma,\text{pol }\gamma)$ (2005Ko32).
			MII	
3300.1	3300 1	$79.4\ 3$		Γ_0/Γ : 74 5 in 1999Le31.
3375.1	3375 1	51.38		
3557.1	3557 1	100		
3568.1	3568 1	27.9 14		
3594.1	3594 1	70.0 20		
3683.1	3683 1	100		
3704.1	3704 1	100		
3810.1	3810 1	90 8		Γ_0/Γ : From 1999Le31.
3846.1	3846 1	100		
3869.1	3869 1	80 9		Γ_0/Γ : From 1999Le31.
3933.1	3933 1	100		
3997.1	3997 1	21.3 19		

 $^{^{\}dagger}$ From 1999Le31, $\Delta E \gamma$ deduced by the evaluators.

¹¹²Cd(e,e') 1977Gi13

1977Gi13: Facility: Glasgow 130 MeV linear accelerator; Beam: E(e)=68,112 MeV; Target: self supporting metallic foil enriched to 96% in 112 Cd; Measured: form factors; Deduced: B(E2) and Q.

¹¹²Cd Levels

E(level) [†]	$J\pi^{\dagger}$	Comments	
0.0	0+		
617.48 3	2+	Q=-0.37 4 (1977Gi13). $B(E2)\uparrow=0.524$ 50 (1977Gi13).	

 $[\]dagger$ From the adopted levels.

$^{112}\text{Cd}(\pi^-, X)$ 1978Ba15

Facility: Rutherford Laboratory; Beam: $E(\pi)=200$ MeV/c, produced from 7 GeV protons; Detectors: Ge(Li), Cherenkov counter, scintillation counters, magnets, electrostatic mass separator, degraders; Measured: γ , x-rays, E γ , E $_x$. Others: J.N.Bradbury et al, Phys.Rev.Lett.34 (1975) 303.

$^{112}\mathrm{Cd}$ Levels

E(level) [†]	$\frac{J\pi^{\ddagger}}{}$	† From Eγ. ‡ From the adopted levels.	
0.0	0+		
617.49 10	2+		

[‡] From adopted gammas.

112Cd(π-,X) 1978Ba15 (continued) γ(112Cd)

$^{112}Cd(n,n'\gamma) \quad \ 2001Ga44,2007Ga22$

2007Ga22, 2001Ga44: Facility: University of Kentucky Van de Graaf accelerator; Beam: pulsed, E(n)=1.8 to 4.2 MeV from 3 H(p,n) 3 He reaction, FWHM=1 ns, neutron flux =5x10 7 ; Target: 52.5g CdO enriched to 98.18% in 112 Cd; Detectors: three Compton-suppressed HPGe; Measured: γ , γ (0), γ - γ coinc., I γ , E γ , T_{1/2}; Deduced: γ -ray Mult., 112 Cd level scheme; From the same collaboration: 2009Gr10, 2000Ga22, 1999Ga20, 1999Ga15, 1999Mc03, 1997LeZZ, 1997YaZZ, 1996Ga26, 1996Le19.

Others: 2010Sc13, 1990Ar20, 1976De23.

¹¹²Cd Levels

E(level) [†]	$J\pi^{\ddagger}$	T _{1/2} §	Comments
0.0	0+		
617.527# 12	2+		
1224.422 20	0+		
1312.394@ 13	2+	1.5 ps $+22-5$	
1415.562@ 16	4+	0.7 ps + 7 - 2	
1433.318@ 22	0+	•	
1468.839 14	2+	1.4 ps +30-6	
1870.910 20	4+	•	
1871.19 10	0+		
2005.200b 16	3 –	0.26 ps 5	
2064.537& 17	3+	0.47 ps 13	
2081.699 19	4+	0.35 ps 10	
2121.555 19	2+	0.51 ps 14	
2156.191 19	2+	0.21 ps 24	
2167.730 25	6+		
2231.215 19	2+	0.15 ps 14	
2300.749 25	0+	>623 fs	
2373.269° 23	5 –	0.4 ps $+6-2$	
2403.019 21	3+	0.24 ps + 10 - 6	
2416 . 04^{c} 3	3 –	0.15 ps 3	
2454.53 ^a 4	4+	0.35 ps + 9 - 6	
2493.172a 22	4+	0.4 ps + 4 - 1	
2506 . 338 . 24	2+	0.21 ps 3	
2506.731° 23	1-	44 fs 8	
2570 . 351 . 25	5 –	>693 fs	configuration: $vs_{1/2} \otimes vh_{11/2}$.
2571.91 7	6+	>693 fs	
2591.079° 19	4 –	>693 fs	
2634.996 22	3+		
2650.17 4	0+	0.23 ps + 12 - 6	
2665.63 3	5+	>208 fs	
2668.937° 24	2-	0.21 ps 3	
2674.03 5	2+	35 fs 3	
2711.29 3	4+	0.26 ps + 15 - 7	
2723.89 3	2+	159 fs 24	
2765.76 4	2+	34 fs 3	
2773.15 4	0+	>693 fs	
2791.79 7	(4-)	>97 fs	
2793.73 4	7 –	440.0	
2816.90 3	4+	>416 fs	
2817.81 4	6 –	27 6 2	
2829.22 3	1-	27 fs 3	
2834.25 6	0+	>347 fs	
2840.31 3	4+	>485 fs	
2852.92 3	2+	0.44 ps +21-10	
2866.858 23	3 –	0.6 ps + 8-2	

Continued on next page (footnotes at end of table)

¹¹²Cd Levels (continued)

E(level) [†]	Jπ [‡]	$\mathbf{T}_{1/2} \S$	Comments
2867.48 6	(3+)	0.09 ps +8-3	
2882.76 5	0+	>693 fs	
2893.57 4	4+	>416 fs	
2899.10 5	(5-)	0.13 ps 3	
2921.83 10	6+		
2924.892 24	4 –	>139 fs	
2931.504	1+	17 fs 4	
2932.0 10	6 –		
2944.86 4	2+	0.4 ps +3-1	
2947.77 5	3+	83 fs 24	
2961.96 3	4 –		
2969.85 9 2972.51 6	5+ 5+	0.6 ps +11-2	
2980.83 3	2+	0.0 ps +11-2 0.14 ps 3	
3002.13 4	(3+)	0.14 ps b 0.19 ps +12-6	
3011.16 8	6-		
3028.2 10	6+		
3049.21 6	2 to 6	0.08 ps + 12 - 3	
3051 . 28 13	5+		
3066.31 10	(3-)	>207 fs	
3068.68 3	4+	>555 fs	
3071.22 11	(1,2)+		
3071.49 5	(3,4)+	>249 fs	
3075.28 4	5(+)	0.3 ps +5-1	
3081.65? 19	(2+)	01 6 6	
3102.15? 9	(1) 5	21 fs 6	
3102.67 6 3105.48 5	(2),3	0.3 ps +5-1	
3109.87 5	(2)+	0.3 ps + 3 - 1 0.13 ps + 6 - 3	Jπ: from the adopted levels; J=1 in 2001Ga44.
3130.95 3	5 –	0.10 ps .0 0	on from the adopted ferring of the gooddarf.
3133.26 6	1	27 fs 5	
3135.85 4	(2,3)	0.3 ps +3-1	
3145.40 5	4+	0.13 ps +5-3	
3163.03 5	2+	0.26 ps + 12 - 7	
3165.54 5	(6-)		
3169.57 4	2+	146 fs <i>14</i>	
3176.84 13	4+		
3178.80 5	2+	104 fs 24	
3189.87 6	4,5,6	>354 fs	
3190.07 <i>4</i> 3194.55 <i>4</i>	2,(3) 2+,(3)+	22.2 fs <i>14</i> 0.10 ps <i>4</i>	
3201.42 19	5-	0.10 ps $+5-2$	
3203.26 8	3 (+)	0.12 ps +9-4	
3205.75 12	2,3,4	>111 fs	
3206.47 6	2,3,4	76 fs 24	
3206 . 71 4	2, 3, 4	0.4 ps + 3 - 1	
3231 . 41 4	1+	35 fs 4	
3242.64 6	2+	0.2 ps + 3 - 1	
3246.90 5	(2,3)	0.16 ps 3	
3247.25 5	4,5,6		
3251.87 13	0+	0.2 ps +6-8	
3254.347 3254.477	2,3,4 4+	0.2 ps +8-1	
3254.47 7 3258.0 10	4.7	57 fs 17	
3266.62 4	3,4,5	0.19 ps 5	
3269.49 4	4	0.17 ps +21-7	
3290.63 13			
3291.16 5		0.2 ps + 5 - 1	
3297.02 4	3	0.38 ps +24-11	
3300.99 16	1	0.10 ps + 12 - 4	
3303 . 34 4	2, 3	173 fs 24	
3312 . 21 4	1, 2, 3	76 fs 17	
3319.88 3		0.17 fs 3	
		Continue	d on next page (footnotes at end of table)

¹¹²Cd Levels (continued)

E(level) [†]	Jπ [‡]	§	Comments
3325.99 6			
3329.25 5	3,4,5		
3332.05 4	3,4,5	0.12 ps 3	
3332.47 6	1,2,3	97 fs 24	
3336.04 7	2,3	0.10 ps 3	
3341.87 5	3+	37 fs 4	
3353.37 6	0 to 3	0.13 ps 4	
3363.60 5	2+	0.24 ps +10-6	
3364.01 7	2 to 6	0.2 ps +7-1	
3369.64 3	2,3	35 fs 3	
3375.47 6	1	52 fs 8	
3378.50 4	2, 3, 4	0.4 ps +3-1	
3383.64 4	(3)	97 fs 17	
3392.78 12	1	>693 fs	
3393.39 5	1,2,3	>970 fs	
3393.64 6	-,-,-	0.2 ps +3-1	
3400.35 9		0.2 ps .0 1	
3402.93 6	3+	>527 fs	
3422.57 16	0 to 4	. 02. 10	
3425.61 6	2,3	0.09 ps 3	
3426.32 14	0 to 4	33 fs +17-10	
3428.77 14	2+	0.08 ps +5-3	
3429.7 3	2.	0.00 ps то-о	
3433.81 7	3,4,5	0.11 ps +6-3	
3452.00 6	(0+)	0.11 ps +0-5	
3452.90 8		0.2 ng 14.1	
	3+,(2)	0.2 ps +4-1	
3453.9 3	0 0	0 2 1 2 1	
3455.42 7	2,3	0.3 ps +3-1	
3471.40 22	1 0 0	0 9 7 1	
3478.48 8	1,2,3	0.2 ps +7-1 83 fs 17	In face the educted levels In 2001Codd seems to be a missonist since
3487.56 7	(4)+	85 IS 17	J π : from the adopted levels. J π =3+ in 2001Ga44 seems to be a missprint since
2400 00 4	9 5	60 f. 12	2869.99γ is claimed to be a stretched E2 transition to 2+.
3489.88 <i>4</i> 3500.42 <i>5</i>	3, 5	68 fs 13	
	1,2,3	0.15 ps 3	
3511.7 <i>3</i> 3512.80 <i>7</i>	3 to 6 3+	>485 fs 0.10 ps 3	
3522.52 5	1,2,3	33 fs 3	
3530.90 5	0.	7.6 f = 0.4	
3531.34 8	3+	76 fs 24	
3540.29 5	1, 2, 3	15.3 fs 21	
3556.84 <i>12</i>	1	48 fs 4	
3557.34 4	1, 2, 3	0.07 ps 3	
3568.05 5	2+	62 fs 10	
3574.49 9	2,3	0.1 ps +24-5	
3577.2 3	0 to 4	0 19 2	
3579.36 5	2,3	0.13 ps 3	
3594.59 6	1	76 fs 14	
3598.82 8	3(+)	31 fs 8	
3608.87 6	1,2,3	0.12 ps 3	
3613.27 10	3+	0.10 ps +6-3	
3618.50 14	2,3,4	0.06 ps + 6-2	
3622.19 11	1,2,3	0.033 ps 10	
3627.7 3	4,5,6	0.04	
3646.45 5	1,2,3	0.24 ps +8-5	
3652.17 6	1	0.12 ps 4	
3665.79 5	3,(2)	132 fs 24	
3676.74 8	2,3	0.09 ps 3	
3682.83 12	1	32 fs 8	
3687.93 9	1	0.13 ps 5	
3690.69 13	2,3	0.10 ps + 11 - 4	
3697.75 12	2, 3, 4	0.3 ps + 10 - 1	
3703.81 9	1	22 fs 4	
3707.40 9	1, 2, 3	36 fs 8	

Continued on next page (footnotes at end of table)

¹¹²Cd Levels (continued)

E(level) [†]	Jπ [‡]	T _{1/2} §	E(level) [†]	Jπ [‡]	T _{1/2} §
3720.7 3	2 to 6		3832.67 11	1,2,3	22 fs 7
3722.70 24	0 to 4	16 fs + 12 - 8	3844.26 10	0 to 4	263 fs
3731.96 10	1, 2, 3	0.125 ps +9-4	3846.48 10	1	40 fs 9
3739.56 8	3+	66 fs 20	3854.4 3	2+	
3743.79 6	3+	54 fs 8	3864.6 10		
3746.9 3	2 to 6		3869.00 10	1	13 fs 3
3754.17 6	2 to 6	>416 fs	3878.63 13	1, 2, 3	53 fs 24
3755.46 13	1	28 fs 9	3929.22 21	0 to 4	0.1 ps + 8 - 1
3763.95 5	1, 2, 3	104 fs 14	3932.19 12	0 to 4	0.09 ps +6-3
3770.47 8	2,3	26 fs 6	3933.07 13	1	12 fs 4
3783.206 15	3+	0.2 ps + 4 - 1	3939.28 14	1, 2, 3	0.05 fs +3-2
3787.3 3	2+		3952.27 7	1, 2, 3	43 fs 6
3801.3 3	2 to 6		3963.8 4	1,2	0.03 ps +4-2
3804.88 14	0 to 4	0.2 ps + 5 - 1	3969.30 20	0 to 4	0.05 ps + 7 - 2
3810.04 7	1	9.7 fs 21	4033.89 20	0 to 4	0.06 ps + 5 - 2
3810.89 10	1, 2, 3	0.07 ps + 3-2			

- † From a least-squares fit to Ey.
- $\dot{\bar{\tau}}$ From 2001Ga44, based on γ -ray Mult., observed decay branches and excitation function measurements, unless otherwise stated.
- § From DSAM in 2007Ga22.
- # Quadrupole one-phonon level.
- @ Probable member of the two-phonon multiplet.
- $\&\ Probable\ member$ of the three-phonon multiplet.
- a Probable member of the four-phonon multiplet.
- $b \quad Octupole \ one-phonon \ level.$
- c Probable member of the quadrupole-octupole multiplet.

γ(¹¹²Cd)

E(level)	$\mathrm{E}\gamma^{\dagger}$	Ιγ†	Mult.@	δ@	Comments
E(level)	Εγι				Comments
	x903.69 11				
	×907.21 5				
	×909.48 6				
	×928.3 5				
	x1066.28 4				
	x1157.06 6				
	*1171.27 6				
	x1230.75 14				
	*1243.57 6				
	*1272.51 7				
	*1490.87 7				
	x1517.68 9				
	x1548.04 9				
	x1562.30 9				
	x1590.61 11				
	x1608.04 15				
	x1659.5 5				
	x1757.15 20				
	x2109.55 9				
	x2176.20 6				
	x2183.31 9				
	x2334.41 17				
617.527	617.516 21	100	E2		
1224 . 422	606.842 25	100	E2		
1312.394	694.841 21	74.3 5	M1+E2	-2.6 +4-3	δ: Also -1.00 +9-17 (2001Ga44).
	1312.390 21	25.7 5	E 2		
1415.562	798.037 20	100	E2		
1433.318	121.08		E2		
	815.786 20		E2		
1468.839	244.8 §	0.62			
	851.274 20	62.8 6	M1+E2	+0.14 5	
			Continued on	next page (footnotes	at end of table)

¹¹²Cd(n,n'γ) 2001Ga44,2007Ga22 (continued)

E(level)	$\underline{\hspace{1cm}} E\gamma^{\dagger}$	Ιγ†	Mult.@	δ@	Comments
1468.839	1468.836 21	36.6 <i>5</i>	E2		
1870.910	401.88# 13	20.7#9	E2		
	455.26# 13	11.5# 6	M1+E2	+2.7 +4-3	
	558.39# 11	35.9#9	E2		
	1253.487# 21	31.8 # 10	E2		
1871.19	402.50# 16	10.1# 11	E2		
	558.7#	<0.05#	E2		
	1253.56# 12	89.9# 11	E2		
2005.200	536.31 8	0.9 1	E1		Ey: Misprint in Table 1 (1999Ga20): Ey assigned to
	692.787 23	18.0 5	E1		$3_1^> 2_2^+$ transition.
	1387.676 21	81.1 5	E1		
2064.537	648.91 3	13.1 3	M1+E2	-1.20 +20-15	
	752.139 21	46.3 6	M1+E2	-2.75 +23-17	Iγ: From adopted gammas.
	1447.000 21	40.6 6	M1+E2	-1.70 + 10 - 12	-1.
2081.699	612.88 25	10.5 17	E2		
	666.154 21	45.2 10	M1+E2	-0.41 3	
	769.36 3	31.8 8	E2		
	1464.04 3	12.5 4	E2		
121.555	688.23 5	11.2 7	E2		
	808.82 19	2.8 1	M1+E2		
	897.068 24	8.9 2	E2		
	1504.040 21	75.0 7	M1+E2	+1.36 7	
	2121.49 13	2.1 1	E2		
2156.191	687.41 9	4.9 7	M1+E2	-2.3 19	
	1538.645 21	87.4 7	M1+E2	+0.085 +25-22	
	2156.20 3	7.7 3	E2		
2167.730	297.29 12		E2		
	752.139 21		E2		
2231.215	762.41 5	1.9 1	M1+E2	-1.4 +8-34	
	918.72 4	2.5 1	M1+E2	+0.21 +20-13	
	1006.81 3	3.7 1	E 2		
	1613.661 22	91.8 2	M1+E2	-0.020 +20-27	
2300.749	831.79 8	32.6 8	E 2		
	1683.218 23	67.4 8	E 2		
2373.269	291.5		E 1		
	367.9		E 2		
	957.719 22	98.0 2	E 1		
2403.019	531.89 6	3.5 4	M1+E2	-0.6 + 4 - 25	
	934.193 24	20.74	M1+E2	-4.06	
	987.89 10	33.8 5	M1+E2	-0.025 + 27 - 36	Eγ: Uncertainty increased by evaluators.
	1090.56 6	19.5 4	M1+E2	+0.099 +27-36	δ: Also: -6.2 +10-17 (2001Ga44).
	1785.48 3	22.5 5	M1+E2	-0.107 +36-43	
2416.04	411.39 23		M1+E2	-0.35 +18-23	δ: Also: +4.2 +∞-20 (2001Ga44).
	946.92 8	5.6 7	E1		•
	1103.58 10	27.8 8	E1		
	1798.50 4	59.1 10	E1		
2454.53	1038.93 4	92.0 3	M1+E2	-0.27 18	
	1142.21 7	8.0 3	E2		
2493.172	1024.29 4	11.5 4	E2		
	1077.602 21	83.8 5	M1+E2	+0.13 +6-5	
	1875.70 5	4.7 4	E2		
2506.338	1194.00 7	15.2 4	M1+E2	+0.20 +16-12	
	1888.787 22	84.8 4	M1+E2	-0.18 6	δ: Also: +4.2 +15-8 (2001Ga44).
2506.731	501.5&				Eγ: Not reported in 2001Ga44. Table 1, transition $1_1^- > 3^+_1$.
	1037.8 3		E1		
	1073.32 17	4.1 4	E1		
	1282.29 9	4.7 4	E1		
	2506.704 24	85.4 5	E 1		
2570.351	197.03 3	32 3	M1+E2		
	565.10 20	10.4 10	E2		
	565.10 20			next page (footnotes a	at end of table)

E(level)	Εγ [†]	Ιγ [†]	Mult.@	δ@	Comments
2570.351	699.59 4	23.8 13	E1		
2010.001	1154.75 3	33.7 16	E1		
2571.91	701.00 6	100	E2		
2591.079	509.2&				Eγ: Observed only in 1999Ga20. Could be a misprint in 4_1^- > 4_3^+ in Table 1.
	526.522 22	26.3 6	E 1		Eγ: The final level of 526.5γ in Table 1 of 1999Ga15 seems to be a misprint.
	585.78 3	12.6 4	M1+E2	+0.47 +8-7	beems to be a misprime.
	720 . 44 9	6.4 4	E 1		
	1175.500 22	54.8 6	E 1		
2634.996	570.5 [‡]	6.2 1	M1+E2		
	629.80 3	23.3 5	E1		
	1219.4		M1+E2		
	1322.590 22 2017.5 [‡]	61.1 3	M1+E2	-1.37 +16-15	
2650.17	1337.75 11	5.3.1 $12.4.15$	M1+E2 E2		
2000.17	2032.62 4	87.6 <i>15</i>	E2		
2665.63	583.92 3	37.5 11	M1+E2	+0.30 4	
2000.00	601.01 5	22.8 14	E2	, 0.00 I	
	795.08 13	15.0 13	M1+E2	+0.14 +18-17	
	1250.17 7	24.6 9	M1+E2	-0.12 +6-5	
2668.937	663.59 15	5.2 2	M1+E2	+1.3 +23-8	
	1356.522 22	80.4 6	E 1		
	2051.506	14.46	E 1		
2674 . 03	2056.484	100	M1+E2	+0.05 +7-8	
2711.29	705.95 8	5.9 8	E 1		
	1295.735 25	94.1 8	M1+E2	-0.08 6	
2723.89	718.89 7	10.3 5	E1		2 11 22 2 2 2 (2224 2 11)
0.000 0.0	2106.31 3	89.7 5	M1+E2	+0.05 +6-5	δ: Also: 2.0 +3-2 (2001Ga44).
2765.76	894.5 [‡] 1296.9 [‡]	5.9 8	E2		
	1453.4‡	7.3 4	M1+E2 M1+E2		
	2148.21 3	82.0 11	M1+E2 M1+E2	+0.06 +7-6	δ: Also: +1.9 +3-2 (2001Ga44).
	2765.7‡ 3	4.8 2	E2	+0.00 +7-0	0. Also. 71.0 70-2 (2001Ga44).
2773.15	541.80 5	16.1 8	E2		
	1460.83 4	83.9 8	E 2		
2791.79	786.59 6	100	(M1+E2)	+0.038 +49-14	
2793.73	420.68 8	38.6 22	E 2		
	625.97 3	$61.4\ 22$	E 1		
2816.90	735.195 23		M1+E2	+4.0 +39-13	δ: Also: -0.65 +16-20 (2001Ga44).
	811.3‡		E1		
0015 01	1401.3‡	100	M1+E2	0.00 7.7	
2817.81	444.537 25	100	M1+E2	-0.29 + 5 - 7	
2829.22	957.0‡	EC 0 10	E1		
	$2211.65 ext{ } 4 $ $2829.20 ext{ } 4$	56.0 12 44.0 12	E1		
2834.25	712.68 8	44.0 12 $13 3$	E1 E2		
2004.20	1521.82 12	18.1 13	E2		
	2216.74 10	69 3	E2		
2840.31	1424.734 24	100	M1+E2	-1.28 +18-24	
2852.92	1419.6‡	6.1 2	E2		
	1540 . 4^{\ddagger}	26.4 11	M1+E2		
	2235 . 46 8	17.4 4	M1+E2	-0.39 + 20 - 25	
	$2852.87 \ 3$	50.0 17	E2		
2866.858	450.75 6	9.1 4	M1+E2	+0.73 +69-71	
	784.91 8	10.1 8	E1	0.0	
	861.678 24	55.2 6	M1+E2	+0.069 +89-69	
0005 10	1451.30 3	35.7 7	E1		
2867.48	1398.646 1555.1		M1+E2		
	2249.91 10	100	M1+E2 M1+E2		
2882.76	726.79 14	22 3	E2		
	1413.86 5	61 3	E2		
		-			
			Continued on	next page (footnotes a	at end of table)

E(level)	$_{-}$ $_{\mathrm{E}\gamma^{\dagger}}$	Ιγ [†]	Mult.@	δ@	Comments
2882.76	1570.51 14	17.4 15	E 2		
2893.57	771.76 9	27 3	E 2		
	811.9‡		M1+E2		
	2276.07 4	73 3	E 2		
2899.10	1483.53 4	100	(E1)		Mult.: Stretched transition; $\delta = +0.014 + 33 - 30$.
2921.83	840.13 9	100	E2	0 01 .10 17	S. Alamania 4 . 7 . 7 (2001G-44)
2924.892	333.72 3 $551.63 6$	18.4 10 8.7 8	M1+E2 M1+E2	-0.21 +18-17	δ: Also: +1.4 +7-5 (2001Ga44).
	919.58 6	30.7 10	M1+E2	-0.22 10	
	1054.24 5	19.0 9	E1	0.22 10	
	1509.36 4	23.3 7	E1		
2931.50	1618.84 11	23.7 10	M1+E2		
	2314.126	26.3 14	M1+E2		
	2931 . 42 4	49.9 15	M1		
2932.0	558.7 [‡]	100	M1+E2		
2944.86	2327.44 7	57.7 20	M1+E2	+1.4 +11-14	δ: Also: +0.24 +240-25 (2001Ga44).
	2944.78 4	42.3 20	E 2		
2947.77	2330.22 4	100	M1+E2	-3.6 +10-16	
2961.96	370.86 3	18.8 11	M1+E2	+0.06 +15-10	
	588.83 5	30.5 12	M1+E2		
	956.7‡	50 7 14	M1+E2		
2969.85	1546.354 1554.288	50.7 <i>14</i> 100	E1 M1+E2		
2969.85	804.89 10	20.5 11	M1+E2 M1+E2	-2.5 +7-12	
2012.01	890.77 6	16.1 21	M1+E2	+0.17 +7-6	
	1556.8‡	63.4 19	M1+E2		
2980.83	1512.13 17	11.9 25	M1+E2		
	1668.4‡	7.7 18	M1+E2		
	2363.274 25	80 3	M1+E2	-0.016	δ: Also: +2.3 +5-4 (2001Ga44).
3002.13	996.75 14	17 3	E 1		
	1586.57 3	36.6 14	M1+E2	+0.12 6	
	1689.7‡		M1+E2		
	2384.54 11	46.5 17	M1+E2	+8.3 +44-20	δ: Also: +0.33 +5-6 (2001Ga44).
3011.16	637.89 7	100	M1+E2	+3.5 +27-14	δ: Also: +0.36 +25-17 (2001Ga44).
3028.2 3049.21	946.5^{\ddagger} 967.63 7	22.1 17	E2		
3049.21	1633.39 10	77.9 17			
3051.28	1635.70 13	100	M1+E2	+0.35 +14-9	
3066.31	1753.8‡	36.0 15	E1		
	2448.76 10	64.0 15	E1		
3068.68	1063.49 3	36.4 7	E1		
	1599.70 8	34.0 8	E2		
	1653.09 6	16.3 6	M1+E2	-0.5421	
	1756.30 14	13.3 8	E 2		
3071.22	840.13‡& 9				
	949.65 11				
	1638.4‡				
2071 40	3071.2 [‡]	79 9			
3071.49	1006.9^{\ddagger} 1066.28 4	$\begin{array}{cc} 72 & 3 \\ 28 & 3 \end{array}$			
3075.28	1659.70 3	100	M1+E2	+0.13 5	
3075.28	3081.60 19	100	E2	TU. 10 U	
3102.15?	3102.10 9	100			
3102.67	729.41 9	21.1 20			
	1687.08 7	78.9 20			
3105.48	1636.7‡				
	1690.1‡				
	1792.77 7	33.4 18			
	2488 . 14 6	66.6 18			
3109.87	1641.14 10	37.9 9			
	2492.24 6	45.1 10			
	0 4 4 0 0 4 4 0	17.0 8			
3130.95	3110.01 <i>16</i> 714.84 <i>5</i>	19.6 14	E2		

E(level)	$E\gamma^{\dagger}$	Ιγ†	Mult.@	δ@	Comments
3130.95	1125.78 3	65.4 13	E2		
0100.00	1715.08 12	15.0 8	E1		
3133.26	3133.21 6	100			
3135.85	1071.26 10	14.3 13			
	1667.0 ‡				
	1823.39 4	$51.2\ 23$			
	2518.43 6	35 3			
3145.40	1063.6‡		M1+E2		
	1729.82 4	100	M1+E2	-0.43 +11-12	δ: Also: +3.0 +15-7 (2001Ga44).
3163.03	656.3‡		E1		
0105 54	3162.98 5	100	E2		
3165.54 3169.57	$792.27 4$ 1164.2^{\ddagger}	100	M1+E2 E1		
3109.37	1945.14 17	42.4 15	E2		
	2552.01 3	57.6 15	M1+E2	-0.68 +13-20	δ: Also: -4.8 +19-58 (2001Ga44).
3176.84	2559.28 13	100	E2		,
3178.80	2561.23 9	73.7 11	M1+E2		
	3178.76 6	26.3 11	E2		
3189.87	1022.09 13	45.5 23			
	1774.306	54.5 23			
3190.07	$2572.51\ 3$	100			
3194 . 55	1189.41 4	37.1 11			
	1882.1‡				
0001 40	2576.72 8	62.9 11	T.O.		
3201.42	1196.21 19	100	E2		
3203.26	1785.8^{\ddagger} 2585.70 8	100	E1 (M1+E2)	-0.10 +5-6	
3205.75	1736.90 12	100	(MI+E2)	-0.10 +5-0	
3203.73	1790.2‡	100			
3206.47	1084.93 6	43.2 22			
	2588.85 9	56.8 22			
3206 . 71	1792.1‡				
	1894.30 3	100			
3231 . 41	1919.4‡		M1 + E2		
	2614.02 14	28.0 16	M1+E2		
	3231.354	72.0 16	M1		
3242.64	1161.08 12	39 3	E2		
	2625.07 8	35.9 23	M1+E2	+1.9 +15-9	δ: Also: +0.10 +35-22 (2001Ga44).
3246.90	3242.49 <i>10</i> 1778.0 [‡]	24.8 19	E2		
3240.90	2629.34 4	100			
3247.25	1831.67 4	100			
3251.87	2634.31 13	100	E2		
3254.34	1785.2‡				
	1942.01 8	58.8 17			
	2636.62 11	41.2 17			
3254.47	1249.01	63.5 22	E1		Eγ: as per e-mail reply (Aug 14/01) from the lead author (P. Garrett) of 2001Ga44, listed experimental energy of 1248.14 12 should be replaced by level-energy difference. Since this peak lies on the tail of a strong 1253 peak, experimental energy is
					not reliable.
	1838.89 6	36.5 22	M1+E2	+3.1 +30-11	δ: Also: -0.45 +30-25 (2001Ga44).
3258.0	1252.8‡				
3266.62	1851.04 3	100			
3269.49	1264.25 4	69.3 17			
2200 62	1854.04 8	30.7 17			
3290.63	1419.43 8 1209.4 [‡]	100			
3291.16	1209.4+ 1285.95 4	100			
	1875.7 [‡]	100			
3297.02	1881.5‡	76.2 15			
	2679.46 3	23.8 15			
			Continued on	next page (footnotes	at end of table)

¹¹²Cd(n,n'γ) 2001Ga44,2007Ga22 (continued)

E(level)	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	Ιγ [†]	Mult.@	δ@	Comments
3300.99	3300.94 16	100			
3303.34	2685.78 3	100			
3312.21	1306.97 5	24.6 7			
	2000.01 8	23.0 10			
	2694.566	52.5 11			
3319.88	1314.6‡				
	1851.04 3	61.7 18			
	2702 . 24 7	38.3 18			
3325.99	734.915	100			
3329.25	1913.67 4	100			
3332.05	1326.83 3	65 <i>5</i>			
	1916.72 12	35 <i>5</i>			
3332.47	2714.91 5	100			
3336.04	2718.48 6	100	354 FIG.		
3341.87	2724.31 4	100	M1+E2	+7.4 +17-16	
3353.37	2735.81 5	100	354 FO		
3363.60	2745.86 7	63.2 18	M1+E2	-0.49 +15-17	
0004 01	3363.67 6	36.8 18	E2		
3364.01	909.48 6	$\begin{array}{ccc} 100 \\ 21.2 & 11 \end{array}$			
3369.64	1900.777 2752.083	78.8 11			
3375.47	2758.02 14	48.8 14			
3373.47	3375.40 6	51.2 14			
3378.50	1909.63 3	74.7 16			
0010.00	2761.18 14	25.3 16			
3383.64	1227.70 13	23.0 22			
0000.04	2766.05 4	77.0 22			
3392.78	3392.72 12	100			
3393.39	2775.83 4	100			
3393.64	977.59 5	100			
3400.35	2087.94 8	100			
3402.93	2785.37 5	100	M1+E2	-1.8 +3-4	δ: Also: -0.34 +10-13 (2001Ga44).
3422.57	1953.71 16	73.7 18			
	2805.0‡	26.3 18			
3425 . 61	2113 . 19 5	100			
3426 . 32	2808.76 14	100			
3428.77	2811.2‡	87.6 14	M1+E2		
	3428.71 14	12.4 14	E 2		
3429.7	2014.1 3	100			
3433.81	2018.23 6	100			
3452.00	945.26 5	100	E1		
3452.90	2037.4 3	37 5			
0.450.0	2835.33 8	63 5			
3453.9	1985.0 ‡ 3	100			
3455.42 3471.40	2837.856 1389.7 ± 3	100 100			Ey: 1398.7 in table 1 of 2001Ga44 is a misprint (as
3471.40		100			per e-mail reply Aug 14/01 from the lead author (P. Garrett)).
	2055.8 ‡ 3	100			
3478.48	2166.06 7	73 4			
	2861.0 ‡	27 4			
3487.56	2869.99 6	100	E2		
3489.88	1368.12 7	19.8 19			
	2074.36 4	51.4 20			
9500 49	2872.4	28.7 5			
3500.42	2882.85 4	100			
3511.7 3512.80	1138.4 3 $2895.23 7$	100 100	M1+E2	-0.18 6	
3522.52	2904.95 4	100	W11 T L' 2	-0.10 0	
3530.90	1525.69 4	100			
3531.34	2218.9‡	100			
=	2913.77 8	100	M1+E2	-0.18 +10-9	
3540.29	2922.72 4	100			
			Continued on	next page (footnotes	at end of table)

$\gamma(^{112}{\rm Cd})$ (continued)

E(level)	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	Ιγ [†]	Mult.@	δ@	Comments
3556.84	3556.78 12	100			
3557.34	2939.77 3	100			
3568.05	2099.17 7	37.3 17	M1+E2	+0.01 +28-22	δ: Also: +2.3 +29-9 (2001Ga44).
	2950.52 12	34.9 16	M1+E2	+1.6 +12-8	δ: Also: +0.15 +40-20 (2001Ga44).
	3568.00 8	27.8 19	E2		
3574 . 49	2262 . 06 10	36.5 23			
	2956.96 18	$63.5\ 23$			
3577.2	2264.8 3	100			
3579.36	2267.21 8	28.7 19			
	2961.69 5	71.3 19			
3594.59	2977.24 14	30 3			
3598.82	3594.49 6 2981.25 8	$70 \ 3$ 100	M1+E2	-0.16 +8-10	δ: Also: -2.8 +6-11 (2001Ga44).
3608.87	2991.30 5	100	WII+EZ	-0.10 +8-10	0. AISO2.0 +0-11 (2001Ga44).
3613.27	2143.97 19	49 3	E2		
0010.21	2995.85 11	51 3	M1+E2	+2.0 +21-15	
3618.50	1613.8‡ 3				
	2202.7				
	3000.83 18	100			
3622.19	3004.62 11	100			
3627.7	2212 . 1 3	100			
3646 . 45	3028.88 4	100			
3652 . 17	3034.60 6	84 3			
	3652.07 23	16 3			
3665.79	3048.22 4	100			
3676.74	2208.09 11	57.3 24			
	3059.00 10	42.7 24			
3682.83	3682.76 12	100			
3687.93 3690.69	3687.86 9 3073.12 <i>13</i>	100 100			
3690.69	1692.8 [‡] 3	100			
3001.10	3080.13 12	100			
3703.81	3703.74 9	100			
3707.40	3089.83 9	100			
3720.7	2305.1 3	100			
3722.70	3105.13 24	100			
3731 . 96	3114.39 10	100			
3739.56	3121.99 8	100	M1+E2	-0.32 + 14 - 20	
3743.79	3126.22 5	100	M1+E2	-12 + 4 - 20	
3746.9	2331.3 3	100			
3754.17	2338.58 5	100			
3755.46	3755.39 13	100			
3763.95 3770.47	3146.38 <i>4</i> 3152.90 <i>8</i>	100 100			
3770.47	3152.90 8 3165.631 <i>10</i>	100	M1+E2	-2.7 +10-14	δ: Also: -0.23 +14-20 (2001Ga44).
3787.3	3787.2 3	100	E2	2.1 710-14	o. 11100. U.BU IIT DU (BUULGATT).
3801.3	2385.7 3	100			
3804.88	3187.30 14	100			
3810.04	3809.97 7	100			
3810.89	3193.31 10	100			
3832.67	3215.09 11	100			
3844 . 26	3226.68 10	100			
3846.48	3846.41 10	100			
3854.4	3854.3 3	100	E2		
3864.6	2449.0	100			
3869.00	3868.93 10	100			
3878.63 3929.22	3261.05 13	100			
3929.22	3311.64 <i>21</i> 3314.61 <i>12</i>	100 100			
3933.07	3933.00 13	100			
3939.28	3321.70 14	100			
3952.27	3334.69 6	100			
3963.8	3963.7 4	100			
			Continued on	next page (footnotes	at end of table)

112Cd(n,n'γ) 2001Ga44,2007Ga22 (continued)

γ (112Cd) (continued)

E(level)	$\mathrm{E}\gamma^{\dagger}$	Ιγ [†]
3969.30	3351.72 20	100
4033.89	3416.31 20	100

- † From 2001Ga44. $\Delta E \gamma$ represent only the statistical uncertainty.
- ‡ From level-energy differences in 2001Ga44.
- § Weak γ ray.
- # From 2009Gr10.
- @ From $\gamma(\theta)$ in 2001Ga44 and the observed multiple $\gamma\text{-ray}$ branches.
- & Placement of transition in the level scheme is uncertain.
- x γ ray not placed in level scheme.

$^{112}{\rm Cd}(p,p') \qquad 1992{\rm Pi}08, 1990{\rm Pi}14$

1990Pi14,1990Pi08: Facility: KVI cyclotron; Beam: E(p)=34.9 MeV; Target: 1 mg/cm² enriched to 98% in 112 Cd; Detectors: KVI QMG/2 magnetic spectrograph, multiwhire drift chamber, scintillator counter. FWHM=15 MeV; Measured: $d\sigma/d\Omega$, coupled-channel calculations; Deduced: 112 Cd levels, J π , $\beta(\lambda)$; Spectroscopic data, presented in 1992Pi08 and 1990Pi14 is a combination from (p,p) and (d,d) data sets.

Also, from the same collaboration: 1989De40, 1988Pi04, 1985De57, 1984Pi01.

Others: 1965Co04, 1967Ko07, 1968Ma34, 1968St18, 1969Lu02, 1976De28.

¹¹²Cd Levels

 $BE\lambda$ and β_{λ} were deduced from comparison of DWBA calculations with $d\sigma/d\Omega.$

E(level) [†]	Jπ‡	_L§	Comments
0.0	0+		
617 2	2+	2	β_2 =0.173 11 (1968Ma34). Other: β_2 =0.20 1 (1968St18).
1224 2	0+	0	12
1312 2	2+	2	
1416 2	4+	4	B(E4) [†] : 0.09 1 W.u. (1992Pi08).
1436? 10			
1469 2	2+	2	
1871 2	0+		
2005 1	3 –	3	$B(E3)\uparrow=0.0207 (1985De57).$
			β_3 =0.164 11 (1968Ma34); 0.15 2 (1968St18); 0.049 5 (1985De57); 0.147 (1984Pi01).
2081 2	4+	4	B(E4)↑: 8.2 10 W.u. (1992Pi08).
2121 2	2+	2	= (= -7, 1, 0.1 = 0, 1.1 = 1, 0
2156 2	2+	2	
2231 2	2+	2	
2299 2	0+	0	
2373 2	5 –	5	β_5 =0.048 or 0.044 if two-step contributions through 2+ and 3- states are included (1984Pi01).
2416 2	3 –	3	$B(E3)\uparrow=0.0019$ (1985De57).
			β_3 =0.0148 17 (1985De57); 0.035 or 0.038 if two-step contributions through 2+ and 3- states are included (1984Pi01).
2454 2	4+	4	B(E4) [†] : 8.4 8 W.u. (1992Pi08).
2492 2	4+	4	B(E4) [†] : 8.2 9 W.u. (1992Pi08).
2506 5	(1-)	(1)	
2569 5	6+	6	
2584?	1 –	1	level reported only in 1984Pi01.
2590 5	4 –		
2632 5	5 –	5	
2644? 5	3 –	3	level reported only in 1985De57.
			$B(E3)\uparrow=0.000172$ (1985De57).
			$\beta_3 = 0.0045 \ II \ (1985 De 57).$
2657 3	1 –	1	E(level): 2647 in 1990Pi14.
2667 5	2-		
2711 5	4+	4	$B(E4)^{\uparrow}$: 3.6 4 W.u. (1992Pi08).
2724 5	2+	2	
2765 5	2+	2	
2791 5	5 –	5	

¹¹²Cd(p,p') 1992Pi08,1990Pi14 (continued)

¹¹²Cd Levels (continued)

E(level) [†]	$J\pi^{\ddagger}$		Comments
2815 5	4+	4	B(E4)↑: 2.6 3 W.u. (1992Pi08).
2836 5	4+	4	B(E4)↑: 1.8 4 W.u. (1992Pi08).
2866 2	3 –	3	E(level): 2863 keV in 1990Pi14.
			B(E3) \uparrow =0.00123 (1985De57). β_3 =0.0122 11 (1985De57).
2895 5	4+	4	B(E4) [†] : 4.7 5 W.u. (1992Pi08).
2928 5	5 –	5	E(level): 2923 in 1990Pi14.
2942 5	2+	2	
2962? 4	3 –	3	level reported only in 1985De57. $B(E3) \hat{1}=0.00022$ (1985De57). $\beta_3=0.0051$ 13 (1985De57).
2969 5	2+	2	
3046 5	1 –	1	
3072 5	4+	4	E(level): probably identical with the 3069 level in 1967Ko07. B(E4) \uparrow : 4.6 8 W.u. (1992Pi08).
3102 5	4+	4	B(E4) [↑] : 0.68 13 W.u. (1992Pi08).
3131 5	3 –	3	E(level): 3130 in 1990Pi14.
3176 5	2+	2	
3185? 5	3 –		Level reported only in 1989De40.
3204 5	4+	4	B(E4) [†] : 1.27 24 W.u. (1992Pi08).
3244 5	(6+)	(6)	
3265 5	4+	4	B(E4) [↑] : 2.5 5 W.u. (1992Pi08).
3290? 5	(4+)		level reported only in 1989De40.
3292 5	(6+)	(6)	
3325? 5	4+		reported only in 1989De40.
3326? 2	3 –	3	level reported only in 1985De57.
			$B(E3)$ $^{\circ}=0.00045$ (1985De57). $\beta_3=0.0073$ 20 (1985De57).
3327 5	(5-)	(5)	
3344? 1	3 –	3	B(E3) \uparrow =0.00044 (1985De57). β_3 =0.0072 15 (1985De57).
3359 5	2+	2	
3417 5	4+	4	$B(E4)^{\uparrow}$: 3.1 4 W.u. (1992Pi08).
3452 5	6+	6	
3487 5	(6+)	(6)	
3489? 5	4+		level reported only in 1989De40.
3534 5	4+	4	$B(E4)^{\uparrow}$: 0.00 I W.u. (1992Pi08).
3557 5	3 –	3	
3586 5	3 –	3	E(level): 3583 in 1990Pi14.
3614 5	3 –	3	F(11), 2002 in 1000P14
3664 5	3 –	3	E(level): 3663 in 1990Pi14.
$3691 5 \\ 3748 5$	4+ 4+	4 4	B(E4) [↑] : 2.2 4 W.u. (1992Pi08). B(E4) [↑] : 1.0 3 W.u. (1992Pi08).
3764 5	4+	4	B(E4): 1.0 3 W.u. (1992F108). B(E4): 0.68 16 W.u. (1992F108).
3800 5	4+	4	$B(E4)^{\uparrow}$: 1.3 3 W.u. (1992Pi08).
3815 5	3-	3	2,25, 2.0 0
3835 5	4+	4	B(E4)↑: 1.0 3 W.u. (1992Pi08).
3863 5	4+	4	B(E4)î: 1.37 23 W.u. (1992Pi08).
3892 5	(3-)		E(level): 3889 in 1989De40.
			Jπ: reported only in 1989De40.
3945 5	4+	4	B(E4) [†] : 0.43 14 W.u. (1992Pi08).
4010 5	3 –	3	
40345	3 –	3	
4060 5	4+	4	B(E4)↑: 0.84 16 W.u. (1992Pi08).
4090 5	3 –	3	
4118 5	4+	4	B(E4) [↑] : 0.01 3 W.u. (1992Pi08).
4172 5	3 –	3	
4221 5	7 –	7	
4248 5	3 –	3	
4279 5	3 –	3	
4320 5	4+	4	$B(E4)^{\uparrow}$: 0.71 22 W.u. (1992Pi08).
43385 43645	7 – 4 +	7 4	B(E4) [†] : 0.62 17 W.u. (1992Pi08).
			Continued on next page (footnotes at end of table)

¹¹²Cd(p,p') 1992Pi08,1990Pi14 (continued)

¹¹²Cd Levels (continued)

E(level) [†]	$J\pi^{\ddagger}$	L§	Comments
4385 5	3 –	3	
4419 5	(4+)	(4)	B(E4)↑: 0.83 17 W.u. (1992Pi08).
4468 5	3 –		
4499 5	3 –		
4546 5	(2-)		

[†] From 1992Pi08.

¹¹²Cd(p,p'γ) 1992Ku01

1992Ku01: Beam: E(p)=7-9 MeV; Target: 1-2 mg/cm² enriched to 96% in 112 Cd; Detectors: one 19% Ge, four Si(Li), magnetic lens; Measured: p- γ coinc., I γ , E γ ; Deduced: 112 Cd level scheme, J π , γ -ray Mult.; Also, from the same collaboration: 1990KuZD, 1990KuZY, 1990KuZZ.

¹¹²Cd Levels

E(level) [†]	$\frac{J\pi^{\ddagger}}{}$	E(level)†	$\frac{J\pi^{\ddagger}}{}$	E(level) [†]	$\frac{J\pi^{\ddagger}}{}$
0.0	0+	1415.37 25	4+	1870.71 25	0+
617.42 19	2+	1433.3 3	0 +	2005.1 3	3 –
1224.0 3	0+	1468.71 20	2+	2064.3 3	3+
1312.39 20	2+	1870.48 23	4+	2081.51 24	4+

 $^{^{\}dagger}$ From a least-squares fit to Ey.

$\gamma(^{112}\text{Cd})$

$\underline{\hspace{1cm} E\gamma^{\dagger}}$	E(level)	$\underline{\hspace{1cm}}^{\dagger}$	$\underline{\hspace{1cm}}^{} E \gamma^{\dagger}$	E(level)	$\underline{\hspace{1cm}}^{\hspace{1cm}} I\gamma^{\dagger}$	Εγ [†]	E(level)	$\underline{\hspace{1cm}} I\gamma^{\dagger}$
121.0 3	1433.3	2.5 4	612.8 3	2081.51		815.8 3	1433.3	4.1 6
211.0 3	2081.51		617.4 3	617.42	1000	851.2 3	1468.71	8.0 12
244.8 3	1468.71	< 0 . 4	649.0 3	2064.3		1253.0 3	1870.48	
401.9 3	1870.48		666.0 3	2081.51	< 0.7	1253.6 3	1870.71	4.9 7
402.0 3	1870.71	< 0.2	692.7 3	2005.1	11 2	1312.3 3	1312.39	7.8 12
455.1 3	1870.48		694.8 3	1312.39	24 4	1387.7 3	2005.1	18 3
558.0 3	1870.48		751.8 3	2064.3	1.6 2	1446.8 3	2064.3	1.3 2
	1870.71	< 0.3	769.3 3	2081.51		1468.8 3	1468.71	3.8 6
606 7 3	1224 0	19 9	797 9 3	1415 37	17 3			

[†] From 1992Ku01.

¹¹²Cd(pol p,p') 1994Pe23

1994Pe23: Facility: Eindhoven University of Technology cyclotron; Beam: E(pol p)=22.3 MeV; Target: $600-1000~\mu g/cm^2$ enriched to 112 Cd to 96-98%; Detectors: Si(Li); Measured: $\sigma(\theta)$, $d\sigma/d\Omega(E,\theta)$, FWHM=38-47 keV; Deduced: levels, optical model parameters, deformation strength, coupled channel calculations in vibrational model. Others: 1994He22, 1989Wa05.

 $^{^{\}ddagger}$ From 1992Pi08, based on the deduced L values.

[§] From 1992Pi08, based on comparison of DWBA calculations with $d\sigma/d\Omega.$

[‡] From the adopted levels.

¹¹²Cd(pol p,p') 1994Pe23 (continued)

$^{112}\mathrm{Cd}$ Levels (continued)

E(level) [†]	Jπ‡
0.0	0+
617	2+
1224	0+
1312	2+
1415	4+
2005	3 –
2373	5 –
2507	1 –

- † From 1994Pe23.
- $\ensuremath{^\ddagger}$ From the adopted levels.

¹¹²Cd(d,d') 1990Pi14,1990Pi08

1990Pi14,1990Pi08: Facility: KVI cyclotron; Beam: E(d)=50.4 MeV; Target: 1 mg/cm² enriched to 98% in 112 Cd; Detectors: KVI QMG/2 magnetic spectrograph, multiwhire drift chamber, scintillator counter. FWHM=15 MeV; Measured: $d\sigma/d\Omega$, coupled-channel calculations; Deduced: 112 Cd levels, J π , $\beta(\lambda)$.

Others: 1966Ki04: Beam: E(d)=15 MeV; Measured: $\sigma(E,\theta)$; $FWHM\approx40-50$ keV; Deduced: ^{112}Cd levels.

E(level) [†]	$J\pi^{\ddagger}$	Comments
0.0	0+	
617 2	2+	
1224 2	0+	
1312 2	2+	
1416 2	4+	
1469 2	2+	
1871 2	0+	
2005 2	3-	
2121 2	2+	
2156 2	2+	
2231 2	2+	
2299 2	0+	
2373 2	5 –	
2416 2	3-	
2454 2	4+	
2492 2	4+	
2506 5	(1-)	
2569 5	6+	
2590 5	4 –	
2632 5	5 –	
2657 5	1-	E(level): 2647 in 1990Pi14.
26675	2-	
2711 5	4+	
2724 5	2+	
2765 5	2+	
2791 5	5 –	
2815 5	4+	
2836 5	4+	
2866 5	3 –	
2895 5	4+	
2928 5	5 –	E(level): 2923 keV in 1990Pi14.
2942 5	2+	
2969 5	2+	
3046 5	1-	
3072 5	4+	
3102 5	4+	
3131 5	3 –	E(level): 3130 keV in 1990Pi14.
		Continued on next page (footnotes at end of table)

112Cd(d,d') 1990Pi14,1990Pi08 (continued)

¹¹²Cd Levels (continued)

E(level) [†]	Jπ [‡]	Comments
3176 5	2+	
3204 5	4+	
3244 5	(6+)	
3265 5	4+	
3292 5	(6+)	
3327 5	(5-)	
3359 5	2+	
3417 5	4+	
3452 5	6+	
3534 5	4+	
3557 5	3 –	
3586 5	3 –	E(level): 3583 keV in 1990Pi14.
3614 5	3 –	
3664 5	3 –	E(level): 3663 keV in 1990Pi14.
3691 5	4+	
3748 5	4+	
3764 5	4+	
3800 5	4+	
3815 5	3 –	
3835 5	4+	
3863 5	4+	
3892 5		
3945 5	4+	
$4010 \ 5$	3 –	
4034 5	3 –	
4060 5	4+	
4090 5	3 –	
4118 5	4+	
$4172 \ 5$	3 –	
4221 5	7 –	
4248 5	3 –	
4279 5	3 –	
4320 5	4+	
4338 5	7 –	
4364 5	4+	
4385 5	3 –	
4419 5	(4+)	
4468 5	3 –	
4499 5	3 –	

[†] From 1990Pi08. Note, that one 2- and two 4- levels were reported in 1990Pi14, but there is no information on their energies.

¹¹²Cd(pol d,d') 1994He22

Facility: Garching Tandem; Beam: E(pol d)=20 MeV; Targets: $107~\mu g/cm^2$ to $2.4mg/cm^2$ enriched to 98% in ^{112}Cd ; Detectors: Q3D magnetic spectrograph, focal plane particle detector, surface barrier detectors; Measured: $d\sigma/d\Omega$. Coupled channel analysis; Deduced: ^{112}Cd levels, $J\pi$.

E(level)	Jπ [‡]	Comments
0.0	0+	
617.5 10	2+	
1224.2 10	0 +	
1312.3 10	2+	
1415 . 3 10	4+	
1433 . 2 10	0 +	
1468.8 10	2+	
		Continued on next page (footnotes at end of table)

 $[\]ddagger$ From 1990Pi08, based on $d\sigma/d\Omega$ and coupled-channel analysis.

112Cd(pol d,d') 1994He22 (continued)

¹¹²Cd Levels (continued)

E(level) [†]	Jπ [‡]	Comments
1870.9 10	4+,0+	
1954.8? 10	2,3	ambiguous level which is not observed in any other data set.
2005 . 1 10	3 –	
2064 1		
2082 1	4+	
2122 1	2+,1-	
2156 1	2+	The state of the state of the state of
2167 1 $2231 1$	6+ 2+	$J\pi$: from the adopted levels; 2+,3- in 1994He22.
2300 1	(0+)	
2373 1	5-	
2416 1	3-	
2454 1	4+	
2493 1	4+	
2507 1	(2+)	
2533 1		
2570 1	(6+)	
2589 1	(6+)	
2635 1	2+,1-	
2649 1	2+,3-	
2653 1	(1-)	T. C. (1. 1. 1. 1. 7. 1. 100/III 00
2667 1	5+	Jn: from the adopted levels; 5- in 1994He22.
2673 1	2+	$J\pi$: from the adopted levels; 4+ in 1994He22.
2711 1 $2722 1$	4+ 2+	
2763 1	2+	
2775 1	0+,4+	Jπ: from the adopted levels; (6+) in 1994He22.
2793 1	(5-)	
2816 1	4+	
2819 1		
2830 1	4+	
2832 1		
2835 1	4+	
2840 1	2+,4+	
2844 1	_	
2850 1	2+	
2867 1	3 –	
2877 1	(2+)	
2882 <i>1</i> 2892 <i>1</i>	(4+)	
2897 1	(4+)	
2916 1	(/	
2922 1	(5-)	
2926 1	4 –	Jπ: from the adopted levels; 2+ in 1994He22.
2932 1	6 –	Jπ: from the adopted levels; (6+) in 1994He22.
2942 1	(2+)	
2946 1	(2+)	
2949 1	2+	
2967 1	(2+)	
2976 1	2+,4+	
2980 1	2+	
3022 1	(3-) (4+)	
3046 1 3050 1	(4+) 4+,1-	
3058 1	2+,3-	
3065 1	3-	
3074 1	5 –	
3080 1		
3091 1	2+	Jπ: from the adopted levels; (6+) in 1994He22.
3100 1	4+	$J\pi$: from the adopted levels; 4+,2+ in 1994He22.
3104 2	(4+)	
3124 2	2+,3-	
3131 2	3 –	
		Continued on next page (footnotes at end of table)

¹¹²Cd(pol d,d') 1994He22 (continued)

$^{112}\mathrm{Cd}$ Levels (continued)

E(level) [†]	Jπ‡	Comments
3168 2	(4+)	
3177 2	2+	
3188 2	2+	
3205 2	4+	
3246 2	2+,4+,5-	
3265 2	4+	
3293 \$ 2	(6+)	
3309 2	(5-)	
3329 2	5 –	
3350 2	0 +	$J\pi$: from the adopted; 2+ in 1994He22.
3366 2	2+	
3372 \$ 2		
3380 2	2+	
3417 8 2	4+	
3422 2	(4+)	
3457 2	(2+)	
3492 2		
3543 2	4+	
3560 2	(3-)	
3590 2	(2+)	
3616 2	(3-)	
3625 2	(6+)	
3667 2	3 –	
3691 2	4+	
3700 2	(5-)	
3717 2	2+	
3740 2	(2+)	
3754 2	(2+)	
3761 2	(2+)	

[†] From 1994He22.

$^{112}{\rm Cd}(\alpha,\alpha')$ 1977Sp05

1977Sp05: E α =17.5 MeV. Measured: $\sigma(E,\theta)$. FWHM \approx 30 keV. Deduced: ^{112}Cd levels. Others: 1967BaZV, 1981Mi08.

E(level) [†]	$J\pi^{\ddagger}$	Comments						
0.0	0+							
616 3	2+	β ₂ : 0.19 (1967BaZV).						
1310 3	2+							
1414 4	4+							
1470 5	2+							
2003 3	3 –	β_{3} : 0.15 (1967BaZV).						
2420 30		E(level): from 1967BaZV; unresolved multiplet.						
2820 30		E(level): from 1967BaZV; unresolved multiplet.						

 $^{^{\}dagger}$ from 1977Sp05.

 $^{^{\}frac{1}{4}}$ Based on $d\sigma/d\Omega$ analysis in 1994He22, unless otherwise noted.

[§] Unresolved multiplet.

[‡] From the adopted levels.

Coulomb Excitation 2011Ch23,1985Fe05,1969Mi07

2011Ch23: Facility: ANU 14UD Pelletron; Beams: $E(^{32}S)=92$ MeV, $E(^{112}Cd)=240$ MeV; Targets: stack of 0.05 mg/cm² natAg, 0.98 mg/cm² natCd, 2.64 mg/cm² Fe, 5.47 mg/cm² Cu. The multilayer target was pressed on 12 μ m Cu; Detectors: ANU Hyperfine spectrometer, 4 HPGe, two NaI, three silicon photodiodes; Measured: γ , charged particles (cp), γ -cp, $E\gamma$, $W(\theta)$; Deduced: γ , $T_{1/2}$.

1985Fe05, 1976Es01, 1976Es02: Facility: ANU 14UD Pelletron accelerator; Beam: $E(^{16}O)=40-44$ MeV FWHM 105 keV, $E(\alpha)=8-17$ MeV FWHM=24 keV; Targets: 3-8 $\mu g/cm^2$ evaporated on 10-15 $\mu g/cm^2$ thick carbon foils; Detectors: annular Si surface barrier detectors; Measured: B(E2), B(E3); Deduced: Q.

1969Mi07: Facility: ORNL Van de Graaff; Beams: E(p)=2.7-3 MeV, $E(\alpha)=10-11$ MeV; Targets: enriched to 98.9% in ^{112}Cd and natural Cd; Detectors: Ge(Li); Measured: γ , γ - γ coinc., γ (θ), $I\gamma$, $E\gamma$.

Others: 1985Si01, 1980Br01, 1980Ju05, 1978Jo07, 1977Ma41, 1973Gr16, 1970St17, 1965Mc05, 1963Ha20, 1962Ec03.

¹¹²Cd Levels

E(level) [†]	$J\pi^{\ddagger}$	‡	Comments
0.0	0+		
617.54 5	2+	6.46 ps 4	$B(E2)^{\uparrow}(617.52\gamma)=0.486\ 5\ (1985Si01),\ 0.524\ 50\ (1977Gi13),\ 0.484\ 4\ (1976Es02),\ 0.478\ 33$ (1970St17), 0.524 21 (1969Mi07), 0.514 60 (1965Mc05) and 0.546 39 (1962Ec03).
			Q: -0.38 3, weighted average of -0.37 4 (1977Gi13), -0.39 8 (1976Es02), -0.42 8 (1976Es01), -0.38 11 (1977Ma41). Others: -0.40 +13-20 (1971Ha47), -0.15 7 (1970St17).
			μ : +0.71 3, weighted average of +0.71 5 (conventional kinematics in 2011Ch23), +0.73 4 (inverse kinematics in 2011Ch23), 0.60 12 (1970St17), 0.72 22 via IMPAC (1974Hu01), 0.74 22 (1978BrZX) and 0.64 16 (1980Br01) from γ - γ (θ,H,t) coinc.
1224.35 11	0 +	4.2 ps 11	B(E2)(W.u.)=51 13 and $Ice(K)(1223.9)/Ice(K)(606.84)=0.33$ 5 in 1980Ju05.
1312.41 4	2+	1.9 ps 3	$B(E2)(\downarrow)=0.0021$ 3 (1969Mi07).
1415.58 11	4+	0.87 ps 10	$B(E2)\uparrow=0.34$ 5 (1978Jo07), 0.356 42 (1965Mc05), and 0.41 8 (1962Ec03).
1468.85 7	2+	2.7 ps 5	$B(E2)\uparrow(1468.84\gamma)=0.0055$ 10 (1969Mi07).
2005.20 7	3 –	0.26 ps 5	B(E3) \uparrow =0.114 9 (1985Fe05), 0.158 27 (1978Jo07), 0.106 22 (1965Mc05), 0.37 18 (1963Ha20). β_3 : 0.146 (1965Mc05).

[†] From a least-squares fit to Εγ.

γ(¹¹²Cd)

$\underline{\hspace{1cm}} E\gamma^{\dagger}$	E(level)	$\underline{\hspace{1cm}} I\gamma^{\dagger}$	Mult. [†]	δ†	α	I(γ+ce) [†]	Comments
244.86 23	1468.85	1.0 3	(E2)		0.0642 10		
536.31 10	2005 . 20	1.11 12	E1				
606.84 10	1224 . 35	100	E 2				
617.52 10	617.54	100	E 2				
692.79 10	2005.20	22.2 6	E1				
694.87 4	1312.41	100 3	M1+E2	-4.07			δ: Others: -0.77 6 (1973Gr16);
							$\delta = -0.87$ 10 or -3.5 9 (1969Mi07).
798.04 10	1415.58	100	E 2				
851.27 10	1468.85	100.0 10	M1+E2+E0	+0.14 5	0.00267 13		α : 0.00267 13, using weighted average of α (K)exp=0.00235 18 (1997Dr03) and 0.00234 12 (1991Gi05), and α /εK=1.143 24 (2008Ki07).
							δ: Others: +0.10 7 (1973Gr16); 0.05 or +2.0 +7-5 (1969Mi07).
1224.33 6	1224.35		E0			0.124 19	
1312.41 4	1312.41	37.7 4	E2				
1387.68 10	2005.20	100 6	E1				
1468.84 10	1468.85	58.3 8	E 2				

[†] From the adopted gammas.

 $[\]ddagger$ From the adopted levels.

113Cd(pol d,t) 1990Bl10

1990Bl10: Facility: Garching-Munich Tandem; Beam: (pol d)=20 MeV; Targets: one 205 $\mu g/cm^2$ thick enriched to 96.3% in 113 Cd with a 10 $\mu g/cm^2$ carbon backing and one 20 $\mu g/cm^2$ thick 113 Cd target; Detectors: Q3D magnetic spectrograph, two single-wire proportional counters, one plastic scintillator; Measured: $E(\theta)$, $d\sigma/d\Omega$; Deduced: 112 Cd levels, $J\pi$, C^2S ; FWHM=5-9 keV depending on target thickness.

¹¹²Cd Levels

 $J\pi(^{113}Cd)=1/2+.$ $^{113}Cd(g.s.)$ configuration= $vs_{1/2}$.

E(level) [†]	Jπ [‡]	<u>L§</u>	C2S#	Comments			
0.0	0.1	0	1.140	C^2Q , for very transfer			
618 6	0 + 2 +	2	0.374	C ² S: for vs _{1/2} transfer.			
1314 13	2+	2	0.374	C^2S : for $vd_{5/2}$ transfer. C^2S : for $vd_{5/2}$ transfer.			
1417 14	4+	4	0.169	0			
1417 14	2+	2	0.103	C^2S : for $vg_{7/2}$ transfer.			
1872 19	0+	0	0.013	C ² S: for vd _{3/2} transfer; Otherwise, 0.02 for vd _{5/2} transfer.			
	3-	3		C^2S : for $vs_{1/2}$ transfer.			
2005 20		ъ	0.014	C^2S : for $vf_{7/2}$ transfer.			
2065 21	3+	4	0.009	C ² S: for vd _{5/2} transfer.			
2082 21	4+	4	0.093	C^2S : for $vg_{7/2}$ transfer.			
2121 21	2+	2	0.012	C ² S: for vd _{3/2} transfer.			
2155 22	2+	2	0.012	C^2S : for $vd_{3/2}$ transfer; Otherwise, 0.002 for $vd_{5/2}$ transfer.			
2230 22	2+	2	0.006	C ² S: for vd _{3/2} transfer.			
2299 23	0+	0	0.133	$\mathrm{C^2S}$: for $\mathrm{vs}_{1/2}$ transfer.			
2305 23	-	-	0 000	C2C for the strength			
2372 24	5 –	5	0.232	C ² S: for vh _{11/2} transfer.			
2402 24	2,3+		0.003	C ² S: for vd _{5/2} transfer.			
2414 24	3,4-		0.006	C ² S: for vf _{7/2} transfer.			
2453 25	3,4+		0.110	C ² S: for vg _{7/2} transfer.			
2491 25	3,4+		0.054	$\mathrm{C}^2\mathrm{S}$: for $\mathrm{vg}_{7/2}$ transfer.			
2501? 25	0+	0	0.010	C ² S: for vs _{1/2} transfer.			
				Not observed in any other data set; In particular, it was not observed in ¹¹² Cd(n,n'γ)			
				(2001Ga44) and hence suggested to be due to ¹¹⁴ Cd presence in the target composition.			
2505 25	2+	2	0.034	C ² S: for vd _{3/2} transfer; Otherwise, 0.011 for vd _{5/2} transfer.			
2517 25				Doublet consisting of $J\pi$ =(1+,2+) and $J\pi$ =5-,6- with C^2S =0.004 and 0.013 for $vh_{11/2}$ and $vd_{3/2}$			
				transfers, respectively.			
2569 26	5,6-		0.098	C ² S: for vh _{11/2} transfer.			
2589 26	3,4-		0.005	C ² S: for vf _{7/2} transfer.			
2634 26	2,3+		0.440	C ² S: for vd _{5/2} transfer.			
2649 26	0 +	0	0.023	C ² S: for vs _{1/2} transfer.			
2673 27	2+	2	0.097	^{2}S : for $vd_{3/2}$ transfer; Otherwise, 0.067 for $vd_{5/2}$ transfer.			
2710 27	3,4+		0.372	C ² S: for vg _{7/2} transfer.			
2724 27	2,3+		0.407	$ m C^2S$: for $ m vd_{5/2}$ transfer.			
2765 28	2+	2	0.057	$ ext{C}^2 ext{S}$: for $ ext{vd}_{3/2}$ transfer; Otherwise, 0.005 for $ ext{vd}_{5/2}$ transfer.			
2799 28	1,2+		0.012	C ² S: for vd _{3/2} transfer.			
2818 28				Doublet consisting of J π =1+,2+ and J π =5-,6- with C ² S=0.038 and 0.562 for vd _{3/2} and vh _{11/2} transfers, respectively.			
2834 28	0 +	0	0.032	$\mathrm{C}^2\mathrm{S}$: for $\mathrm{vs}_{1/2}$ transfer.			
2853 29	0 +	0	0.004	$\mathrm{C^2S}$: for vs $_{1/2}$ transfer.			
2868 29	3+		0.648	C^2S : for $vg_{7/2}$ transfer; Otherwise, 0.013 for $vd_{5/2}$ transfer.			
2882 29	0+	0	0.015	$\mathrm{C}^2\mathrm{S}$: for vs $_{1/2}$ transfer.			
2894 29	3,4+		0.446	C ² S: for vg _{7/2} transfer.			
2924 29	0+	0	0.003	$\mathrm{C^2S}$: for vs $_{1/2}$ transfer.			
2931 29	1 , $2+$		0.014	$\mathrm{C}^2\mathrm{S}\colon$ for $\mathrm{vd}_{3/2}$ transfer.			
2946 30				Doublet consisting of J π =2+,3+ and J π =3+,4+ with C^2S =0.019 and 0.060 for $vd_{5/2}$ and $vg_{7/2}$ transfers, respectively.			
2960 30	4 –			$C^2S: (f7/2+f5/2)=0.012+0.018.$			
2980 30	2+	2	0.013	$ m C^2S$: for ${\rm vd}_{3/2}$ transfer; Otherwise, 0.006 for ${\rm vd}_{5/2}$ transfer.			
3001 30	(3+)	-	0.062	$ m C^2S$: for ${\rm vg}_{7/2}$ transfer; Otherwise, 0.003 for ${\rm vd}_{5/2}$ transfer.			
3026 30	/			9/12			
3069 31				Doublet consisting of J π =1+,2+ and J π =3+,4+ with C ² S=0.016 and 0.043 for vd _{3/2} and vg _{7/2}			
3085 31				transfers, respectively. Doublet consisting of J π =2+,3+ and J π =5-,6- with C ² S=0.004 and 0.015 for vd _{5/2} and			
0101 01	0	0	0.016	vh _{11/2} transfers, respectively.			
3101 31	2+	2	0.016	C ² S: for vd _{5/2} transfer; Otherwise, 0.014 for vd _{3/2} transfer.			
3109 31	2+	2	0.099	C ² S: for vd _{3/2} transfer; Otherwise, 0.018 for vd _{5/2} transfer.			
3128 <i>31</i>				Doublet consisting of J π =1+,2+ and J π =5-,6- with C ² S=0.004 and 0.048 for vd _{3/2} and vh _{11/2} transfers, respectively.			
				Continued on part year (fortunes at and of table)			

Continued on next page (footnotes at end of table)

113Cd(pol d,t) 1990Bl10 (continued)

¹¹²Cd Levels (<u>continued</u>)

E(level) [†]	Jπ [‡]	<u>L§</u>	C2S#	Comments
3146 31	3,4+		0.156	$\mathrm{C}^2\mathrm{S}$: for $\mathrm{vg}_{7/2}$ transfer.
3177 32				Doublet consisting of Jm=1+,2+ and Jm=3+,4+ with C^2S =0.032 and 0.079 for $vd_{3/2}$ and $vg_{7/2}$ transfers, respectively.
3194 32	2+	2	0.073	$\mathrm{C}^2\mathrm{S}$: for vd $_{3/2}$ transfer; Otherwise, 0.023 for vd $_{5/2}$ transfer.
3204 32	(3+)		0.176	C ² S: for vg _{7/2} transfer; Otherwise, 0.014 for vd _{5/2} transfer.
3230 32	1,2+		0.026	$\mathrm{C}^2\mathrm{S}$: for $\mathrm{vd}_{3/2}$ transfer.
3242 32	2+	2	0.013	C^2S : for $vd_{5/2}$ transfer; Otherwise, 0.011 for $vd_{3/2}$ transfer.
3252 32	(0+,3+)		0.033	$\rm C^2S$: for vg_{7/2} transfer; Otherwise, 0.002 for vs_{1/2} and 0.009 for vd_{5/2} transfers, respectively.
3259 33	3,4+		0.068	$\mathrm{C}^2\mathrm{S}$: for $\mathrm{vg}_{7/2}$ transfer.
3296 33	2+	2	0.114	C^2S : for $vd_{5/2}$ transfer; Otherwise, 0.038 for $vd_{3/2}$ transfer.
3312 33				Doublet consisting of $J\pi=1+,2+$ and $J\pi=5-,6-$ with $C^2S=0.014$ and 0.090 for $vd_{3/9}$ and $vh_{11/9}$
				transfers, respectively.
3330 33	2,3+		0.051	C^2S : for $vd_{5/2}$ transfer.
3340 33	2+	2	0.035	C^2S : for $vd_{3/2}$ transfer; Otherwise, 0.006 for $vd_{5/2}$ transfer.
3352 33	0+	0	0.015	C ² S: for vs _{1/2} transfer.
3361 34	2+	2	0.023	$\mathrm{C}^2\mathrm{S}$: for $\mathrm{vd}_{3/2}$ transfer; Otherwise, 0.004 for $\mathrm{vd}_{5/2}$ transfer.
3381 34	2+	2	0.009	C^2S : for vd _{3/2} transfer; Otherwise, 0.004 for vd _{5/2} transfer.
3402 34	2,3+		0.050	level could be unresolved doublet.
				$\mathrm{C}^2\mathrm{S}$: for $\mathrm{vd}_{5/2}$ transfer.
3422 34				Doublet consisting of J==0+ and J==1+,2+ with C^2S =0.005 and 0.007 for $vs_{1/2}$ and $vd_{3/2}$ transfers, respectively.
3433 34				Doublet consisting of Jm=0+ and Jm=1+,2+ with C^2S =0.004 and 0.020 for $vs_{1/2}$ and $vd_{3/2}$ transfers, respectively.

[†] From 1990Bl10.

114Cd(p,t) 1972Co22

Facility: Princeton AVF cyclotron; Beam: E(p)=27.9 MeV; Target: 100μg/cm², carbon backing; Detectors: silicon surface-barrier telescope; Measured: σ(θ), FWHM=30 keV; Deduced: σ(2')/σ(2) ratio.

Others: 1965Ba20, 1982NaZL, 1982Cr01, 1985BaZT, 1986Ba39, 1987Fo07, 1987Na20.

E(level)†	$\frac{J\pi^{\dagger}}{}$	Comments
0.0	0+	
617	2+	
1313	2+	$\sigma/\sigma(619) = 0.25 \ (1972 \text{Co} 22).$
1468	2+	$\sigma/\sigma(619) = 0.10 \ (1972 \text{Co} 22).$

 $^{^{\}dagger}$ From the adopted levels.

[‡] From 1990Bl10, based on the deduced L values.

 $[\]$ From 1990Bl10, based on DWBA analysis with the DWUCK program.

[#] From 1990Bl10, calculated from $C^2S=(1/(2J+1))(d\sigma/d\Omega)/(d\sigma/d\Omega)_{DWBA})/N$, where N=3.33.

Adopted Levels, Gammas

 $Q(\beta^-) = 665\ 4;\ S(n) = -7671\ 6;\ S(p) = -6027\ 4;\ Q(\alpha) = -2809\ 5\ 2012Wa38.$

¹¹²In Levels

Cross Reference (XREF) Flags

B 1: C 1:	$^{09}\mathrm{Ag}(\alpha,\mathrm{n}\gamma)$ $^{12}\mathrm{In}$ IT Decay (20 $^{10}\mathrm{Pd}(^7\mathrm{Li},5\mathrm{n}\gamma)$ $^{10}\mathrm{Cd}(\alpha,\mathrm{np}\gamma)$	1.67 min)	$\begin{array}{ll} E & ^{110}{\rm Cd}(\alpha,d) \\ F & ^{111}{\rm Cd}(^{3}{\rm He,d}) \\ G & ^{112}{\rm Cd}(p,n\gamma) \\ H & ^{112}{\rm Cd}(d,2n\gamma) \end{array}$	$\begin{array}{ccc} I & ^{113}In(p,d) \\ J & ^{113}In(d,t) \\ K & ^{113}In(\gamma,xn) \\ L & ^{100}Mo(^{16}O,p3n\gamma) \end{array}$
E(level) [†]	Jπ	XREF	$T_{1/2}^{b}$	Comments
0.0‡	1+‡	ABCDEFGHI JK	14.88 min <i>15</i>	$%\beta^-=42.6$ 48; %ε+% $\beta^+=57.4$ 48. %ε+% β^+ : from % $\beta^+=24$ 2 (1983Ry06) and Iε/I $\beta^+=1.392$ 18. Jπ: L=4 in ¹¹³ In(p,d) (1978EmZT); Direct feeding of 0+ and 2+ states in ¹¹² Cd following ¹¹² In ε Decay. T _{1/2} : weighted average of 14.97 min 10 (1983Ry06), 14.5 min 1 (1953B144), 14.4 min 4 (1965Fu07), 15.2 min 1 (1980Ad04), 14.5 min 6 (1968Ro03); Other: 13.8 min (1974Ku10) and 14.4 min (1998Ko24).
				μ=+2.82 3; Q=+0.087 5. μ,Q: Using atomic beam magnetic resonance technique in 1968CaZX. configuration: π(1g _{9/2}) ⁻¹ ⊗ν(1g _{7/2}) ⁺¹ .
156.592 \$ 25	4+§	ABCDEFGHI JK	20.67 min 8	XREF: J(147). %IT=100. μ=5.277 4; Q=+0.714 10.
				μ=0.217 4; Q=+0.74 10. μ,Q: Using colinear fast-beam laser spectroscopy technique in 1987Eb02. Jπ: L=0 in ¹¹³ In(d,t) (1967Hj03); 156.56γ M3 to 1+. T _{1/2} : weighted average of 20.56 min 6 (1983Ry06), 20.7 min 3 (1953Bl44), 21.0 min 5 (1962Ru05), 20.9 min 2 (1968Ko25), 20.9 min 1 (1980Ad04); Others: 20.7 min (1974Ku10) and 20.4 min 4 (1968Ro03). configuration: π(1g _{9/2}) ⁻¹ ⊗v(1s _{1/2}) ⁺¹ .
162.89 4 206.717 20	(5)+§ (2)+‡	A CD GH L A D GHI		Jp: 187.93 γ E2 from (7)+; multiplet member. Jp: 206.75 γ M1 to 1+; multiplet member.
350.80# 5	(7)+#	A CDE GHIJ L	0.69 μs <i>5</i>	configuration: $\pi(1g_{9/2}^{-1})v(1g_{7/2}^{+1})$. XREF: E(354)I(356)J(339). $J\pi$: L=2 in 113 In(p,d) (1978EmZT); multiplet member. $T_{1/2}$: from 263.01 γ -187.93 γ (t) in 109 Ag(α ,n γ) (1976Io04); Other: 2.1 µs 2 from 188 γ (t) in 112 Cd(d,2n γ) (1972BrYL) and 1.48 µs from 187 γ (t) in 112 Cd(d,2n γ) (1973FrYM) differ significantly from adopted value. μ : +4.73 4, from g=+0.675 6 in 1976Io04. Q: 1.03 3 from TDPAD in 112 Cd(d,2n γ) (1993Io02); Also from the same group: 0.75 15 from PAD in 109 Ag(α ,n γ)(1981Io07).
456.426 [‡] 24	(3)+ [±]	A E GHIJ		configuration: π(1g _{9/2}) ⁻¹ ⊗ν(2d _{5/2}) ⁺¹ . XREF: E(420)J(447). Jπ: 249.68γ M1 to (2)+; L=2+4 in ¹¹³ In(d,t) (1967Hj03); multiplet member.
562.78 [@] 4	(5)+@	A E G IJ		configuration: $\pi(1g_{9/2})^{-1} \otimes v(1g_{7/2})^{+1}$. XREF: E(560)J(525). Jr.: 399.87 γ M1,E2 to (5)+; 406.20 γ M1,E2 to 4+; L=2 in 113 In(p,d) (1978EmZT); Member of the $\pi g_{9/2} \otimes v d_{3/2}$
592.08‡ 4	(4)+‡	A GH J		multiplet. XREF: J(591). Jπ: 135.64γ M1 to (3)+, 385.5γ to (2)+, 429.17γ to (5)+; L=(2+4) in ¹¹³ In(d,t) (1967Hj03); member of the
594.888# 22	2+#	A GI		$\pi g_{9/2} \otimes v g_{7/2}$ multiplet. J π : 388.20 γ M1 to (2)+, 594.85 γ M1+E2 to 1+; L=2+4 in 113 In(p,d) (1978EmZT); multiplet member. configuration: $\pi (1g_{9/2})^{-1} \otimes v (2d_{5/2})^{+1}$.

¹¹²In Levels (continued)

E(level) [†]	Jπ	XREF	$\underline{\hspace{1cm} T_{1/2}^{b}}$	Comments
613.82 ^{ac} 6	(8)- ^a	A CDE GHI L	2.81 μs <i>3</i>	XREF: E(620)I(622). $J\pi$: 263.01 γ E1+M2 to (7)+; member of the split $\pi g_{9/2} \otimes \nu h_{11/2}$ multiplet. $T_{1/2}$: from 187.93 γ (t) in $^{109} Ag(\alpha, n\gamma)$ (1976Io04); 2.81 μ s 6 in $^{112} Cd(p, n\gamma)$ (1976Io05); Others: 1.6 μ s 2 in $^{110} Cd(\alpha, np\gamma)$ (1972BrYL). μ : +3.08 3 (1976Io02). Q: 0.095 3 from γ (t, θ) in (1993Io02).
624.42 5	(7+)	A CD GH J		configuration: $\pi(1g_{9/2})^{-1} \otimes v(1h_{11/2})^{+1}$. XREF: J(648).
670.23d 5	(8+)	ACE IL		$J\pi$: 273.01 γ to (7)+; $L(p,d)=(2)$. XREF: E(680)I(672).
676.29 6	(6+)	A C E GH		Jπ: 319.41γ M1 to (7)+; band member. XREF: E(680). Let Let 1: 1131((-1) (1072F=777); 51.87; M1.F2.45 (7.)
728.978 25	(1,2)-	A E G J		$J\pi$: L=4 in ¹¹³ In(p,d) (1978EmZT); 51.87 γ M1+E2 to (7+). XREF: J(742).
729.87@ 4	(3)+@	A E G J		$J\pi$: 728.98γ E1 to 1+; 522.29γ to (2)+. XREF: E(730)J(742). $J\pi$: 573.29γ M1+E2 to 4+, 523.13γ to (2)+; Member of the
				split $\pi g_{5/2} \otimes v_{51/2}$ multiplet; However 4+ can not be excluded; L=2 in $^{111}\text{Cd}(^3\text{He,d})$ (1978EmZT).
790.28 5	(6,7,8)+	A E		XREF: E(790). Jπ: 439.49γ M1,E2 to (7)+.
795.25‡ 6	(5)+‡	A G I		Jπ: 203.17 γ M1(+E2) to (4)+; Member of the split $\pi g_{9/2} \otimes v g_{7/2}$ multiplet.
800.56 ^{ac} 7	(9-)a	A C L		$J\pi$: 186.74 γ M1+E2 to (8)-; band member.
822.32 6	(5+)	A C GH		$J\pi$: 146.04 γ M1 to (6+).
833.10 5	(5,6)+	A I J		XREF: J(866). $J\pi$: 670.19 γ M1 to (5)+, 482.31 γ M1,E2 to (7)+; L=2+4 in $^{113} In(p,d)$ (1978EmZT).
883.72# <i>5</i> 918.84 <i>5</i>	3+#	A G I		XREF: I(886). J π : 288.81 γ M1+E2 to 2+ and 727.16 γ to 4+; Member of the split $\pi g_{9/2} \otimes v d_{5/2}$ multiplet. configuration: $\pi (1g_{9/2})^{-1} \otimes v (2d_{5/2})^{+1}$. XREF: E(920)F(915).
				Jπ: 323.87γ E1 to 2+, 918.81γ E1 to 1+; L=1 in $^{111}Cd(^{3}He,d)$ (1978EmZT).
924.66 5	(1,2,3)-	A GI		XREF: I(923). Jπ: 717.90γ E1 to (2)+, 195.73γ M1 to (1)-,2
928.67 5	(0,1,2)-	E G		XREF: E(920). Jπ: 928.59γ E1 to 1+.
955	(2,3)+	F J		XREF: J(963). $J\pi$: L=2 in 111 Cd(3 He,d) (1978EmZT); L=(2) in 113 In(d,t) (1967Hj03).
1003 4	+	IJ		XREF: $J(996)$. $J\pi$: L=2 in ¹¹³ In(p,d).
1007.42 7	(4+)	A C E GH		XREF: E(1005). $ J\pi\colon 185.10\gamma \ M1 \ \text{to (5+)}; \ L=(2) \ \text{in } ^{113} In(d,t) \ (1967 Hj03), $ $ L=2 \ \text{in } ^{113} In(p,d) \ (1978 EmZT). $
1037.78 8	(0,1,2)-	G		$J\pi$: 1037.77 γ E1 to 1+.
1062.90 4	3+	A EFG		XREF: E(1060)F(1056). $J\pi$: 1062.92 γ E2 to 1+; 856.22 M1 to (2)+; L=4 in 111 Cd(3 He,d) (1978EmZT); However, 1+,(2)+ in 109 Ag(α ,n γ) and 112 Cd(p,n γ) (1988Ki04).
1151.26 9	(4,5)+	G IJ		XREF: I(1142)J(1117). $J\pi$: 421.39 γ to (3)+; L=2 in $^{113}In(d,t)$ (1967Hj03); possible L=2(+0) doublet in $^{113}In(p,d)$ (1978EmZT).
1212.16 10	(0-,1-,2-)	FG J		XREF: F(1212)J(1202). possibly unresolved doublet in ¹¹³ In(d,t) and ¹¹¹ Cd(³ He,d). Jπ: 293.32γ E2,M1 to (1,2)-; L=1 in ¹¹¹ Cd(³ He,d) (1978EmZT).

Continued on next page (footnotes at end of table)

¹¹²In Levels (continued)

$E(level)^{\dagger}$ $J\pi$ XREF		XREF	Comments				
1212.25 5	(1+,2+,3+)	G I	XREF: I(1213).				
1212.20 0	(11,21,01)	G I	possibly unresolved doublet in ¹¹³ In(p,d).				
			$J\pi$: L=2(+0) in ¹¹³ In(p,d) (1978EmZT); 149.46 γ to 3+.				
1221.50 5	(3,4)+	A G	Jπ: 765.06γ M1 to (3)+; 214.12γ to (4-).				
1250.89 7	(0 to 3)+	A G I	XREF: I(1249).				
1200.00 /	(0 10 0)1	11 01	$J\pi$: 326.19 γ E1 to (1,2,3)-, 521.94 γ to (1,2)-; L=0+2 in ¹¹³ In(p,d) (1978EmZT).				
1260.47 8	(0,1,2)-	A G	Jπ: 531.44γ M1,E2 to (1,2)-, 1260.51γ to 1+.				
1261.57 8	(0,1,2)- (0 to 4)+	A G	Jπ: 1054.92γ M1,E2 to (2)+.				
1279.67 4	(0 to 4)+	E G	XREF: E(1270).				
1273.07 4	(0 10 3)+	E G	$J\pi$: 1073.01 γ M1,E2 to (2)+, 1279.65 γ to 1+.				
1286.31 7	(3,4)-	G	$J\pi$: 223.51 γ E1 to 3+.				
1286.93 7	(3,4)- (3+,4+,5+)	A C GH	Jπ: 279.51γ M1 to (4+).				
	(0,1)+	EF IJ	XREF: E(1345)I(1340)J(1322).				
1338	(0,1)+	Er 19					
1000 0000 0	(10)9	A C T	Jπ: L=0 in ¹¹¹ Cd(³ He,d) (1978EmZT).				
1388.90ac 8	(10-)a	A C L	Jm: 588.34γ M1,E2 to (9-); Member of the split $\pi g_{9/2} \otimes vh_{11/2}$ multiplet.				
1398	(0 to 3)+	EF I	XREF: E(1395)I(1401).				
1.40	(0 (0)	ъ.	Jπ: L=2 in ¹¹¹ Cd(³ He,d) (1978EmZT).				
1435	(0 to 3)+	F I	XREF: I(1438).				
		775	Jπ: L=2 in ¹¹¹ Cd(³ He,d) (1978EmZT).				
1473	(0 to 3)+	EF	XREF: E(1470).				
		_	$J\pi$: L=2 in ${}^{111}Cd({}^{3}He,d)$ (1978EmZT).				
1488	(0 to 3)+	F	$J\pi$: L=2 in $^{111}Cd(^{3}He,d)$ (1978EmZT).				
1529	(0 to 3)+	F I	XREF: I(1531).				
			$J\pi$: L=2 in $^{111}Cd(^{3}He,d)$ (1978EmZT).				
1554	(0 to 3)+	I	$J\pi$: L=2 in $^{111}Cd(^{3}He,d)$ (1978EmZT).				
1608	(0, 1) +	EF I	XREF: E(1590)I(1593).				
			$J\pi$: L=0 in $^{111}Cd(^{3}He,d)$ (1978EmZT).				
1631		F					
1678	(0 to 3)+	F I	XREF: I(1976).				
			$J\pi$: L=2 in $^{111}Cd(^{3}He,d)$ (1978EmZT).				
1708	(0 to 3)+	F	$J\pi$: L=2 in $^{111}Cd(^{3}He,d)$ (1978EmZT).				
1741	(0 to 3)+	F I	XREF: I(1738).				
			$J\pi$: L=2 in $^{111}Cd(^{3}He,d)$ (1978EmZT).				
1754.90 ^d 21	(9+)	C L	$J\pi$: 1404.0 γ E2 to (7)+; band member.				
1777	(0 to 3)+	EF I	XREF: E(1800)I(1783).				
			$J\pi$: L=2 in $^{111}Cd(^{3}He,d)$ (1978EmZT).				
1872	(0 to 3)+	F	$J\pi$: L=2 in $^{111}Cd(^{3}He,d)$ (1978EmZT).				
1955	(0 to 3)+	F	$J\pi$: L=2 in $^{111}Cd(^{3}He,d)$ (1978EmZT).				
2011.9 4	(10)-	C	$J\pi\colon1398.0\gamma$ (E2) to (8)-; near-yrast state assumed.				
2067	(0 to 3)+	F	$J\pi$: L=2 in $^{111}Cd(^{3}He,d)$ (1978EmZT).				
2070.7 ^m 8	(11-)	C	$J\pi\colon$ 682γ (M1) to (10-), 1270γ (E2) to (9-); band member.				
2113.15° 19	(11-)	\mathbf{C} \mathbf{L}	$J\pi\colon$ 724.3γ M1 to (10-), 1312.5γ to (9-); band member.				
2115.28d 24	(10+)	C L	$J\pi\colon360.4\gamma$ M1 to (9+), 1445.2γ E2 to 8+; band member.				
2172	(0 to 3)+	F	$J\pi$: L=2 in $^{111}Cd(^{3}He,d)$ (1978EmZT).				
2234	(0 to 3)+	F	$J\pi$: L=0+2 in ¹¹¹ Cd(³ He,d) (1978EmZT).				
2374.9 6	(11-,12-)	C	Jπ: 986γ to (10-), 973γ from (13-).				
2441.2 8		C					
2493.2 3	(11-)	C L	$J\pi$: 1104.2 γ M1 to (10-); yrast state assumed.				
2652.7 ^m 13	(13-)	C	Jπ: 582γ E2 to (11-); band member.				
2665.59° 22	(12)-	C L	$J\pi$: 552.4 γ M1 to (11-), 1276.7 γ E2 to (10-); band member.				
2756.1 ^j 7	(12-)	C	$J\pi$: 643 γ to (11-), 1367 γ to (10-); band member.				
2802.05d 25	(11+)	C L	$J\pi$: 686.97 M1 to (10+), 1047.47 E2 to (9+); band member.				
2964.0 6	(12-)	C	$J\pi$: 952 γ to (10-), 1575 γ to (10-).				
3062.6 ^e 4	(12+)	C L	$J\pi$: 260.6 γ M1 to (11+), 947.4 γ (E2) to (10+) band member.				
3102.7° 4	(13)-	C L	$J\pi$: 437.1 γ M1 to (12)-; band member.				
3126.9 4	(13)-	C L	$J\pi$: 461.4 γ M1 to (12)-, 135.3 γ (M1) from 14				
3153.5 3	(12)-	C L	$J\pi$: 660.2 γ M1 to (11-), 487.7 γ to (12)-, 1765 γ to (10-).				
3190.8 5	(13+)	C L	$J\pi$: 128.3 γ (M1) to 12+.				
	(11-,12-)	C	$J\pi$: 1802 γ to (10–).				
	· · · · · · · · · · · · · · · · · · ·	~	J. 100m, 100 (10).				
3191.0 8 3262.3 c 5	(14-)	C L	J π : 159.6 γ (M1) to (13)-; band member.				

Continued on next page (footnotes at end of table)

¹¹²In Levels (continued)

E(level) [†]	J π	XREF		$T_{1/2}^{}^{b}$	Comments
3296.1 ^g 6	(12+)	С			J π : 332 γ to (12-), 1181 γ to 10+; band member.
3327.2 ⁱ 7	(12-)	C			$J\pi$: 363 γ to (12-), 1214 γ to (11-); band member.
3347.7k 3	(13-)	C	L		$J\pi$: 194.2 γ (M1) to (12)-, 681.9 γ (M1) to (12-); band
0041.1	(10)	O			member.
3369.3 ^e 6	(14+)	С	L		Jπ: 178.5γ (M1) to (13+); band member.
3378.0j <i>10</i>	(13-)	C	ь		$J\pi$: 622 γ to (12-), band member.
3391.1 ^h 12	[13+]	C			$J\pi$: 427 γ to (12-); assumed band head in ¹¹⁰ Pd(7 Li,5n γ).
3457.7 ^m 16					• • • • • • • • • • • • • • • • • • • •
	(15-)	C			J π : 805 γ E2 to (13-); band member.
3523.1f <i>12</i>	(13+)	C			$J\pi$: 230 γ to (12+); band member.
3564.3i 9	(13-)	C			$J\pi$: 237 γ to (12-); band member.
3584.1g 12	(13+)	C	_		$J\pi$: 288 γ to (12+); band member.
3606.8° 6	(15-)	C	L		XREF: C(3605).
					$J\pi$: 344.6 γ (M1) to (14-); band member.
3642.0° 6	(15+)	C	L	0.58 ps 11	XREF: C(3641).
					$J\pi$: 272.7 γ M1 to (14+); band member.
3644.7 ^k 4	(14-)	C	L		$J\pi$: 296.9 γ M1 to (13-); band member.
3685.1 ^h <i>15</i>	[14+]	C			$J\pi$: 294 γ to [13+]; probable band member.
3769.7 ⁱ 11	(14-)	C			$J\pi$: 205 γ to (13-); band member.
3853.1 ^f 16	(14+)	C			$J\pi$: 330 γ to (13+); band member.
3854.9 11	(13- to 15-)	C			J π : 477 γ to (13-); 554 γ from (15-).
3862.9j <i>13</i>	(14-)	C			J π : 485 γ to (13-); band member.
3991.8k 5	(15-)	C	L	0.50 ps +25-19	XREF: C(3991).
				•	$J\pi$: 347.1 γ (M1) to (14-); band member.
4035.2e 7	(16+)	\mathbf{C}	L	0.34 ps 7	XREF: C(4034)L(4036).
					J π : 393.3 γ M1 to (15+); band member.
4041.1 ^g 16	(14+)	\mathbf{c}			$J\pi$: 457 γ to (13+); band member.
4064.1h 18	[15+]	C			$J\pi$: 379 γ to [14+]; probable band member.
4105.0 ⁱ 12	(15-)	C			$J\pi$: 335 γ to (14-); band member.
4166.9 ^g 11	(15+)	C			•
4170.1 ^f 19	(15+)	C			J π : 976 γ to (13+); band member.
					J π : 317 γ to (14+); band member.
4203.9j <i>13</i>	(15-)	C			$J\pi$: 341 γ to (14-); band member.
4354.2 ^k 9	(16-)	C	L	<0.42 ps	$J\pi$: 362.4 γ (M1) to (15-); band member.
4390.7 ^m 19	(17-)	C			J π : 933 γ E2 to (15-); band member.
4394.7° 9	(16-)	C	L		XREF: C(4393).
					$J\pi$: 787.9γ M1 to (15-); band member.
4408.8 ¹ 9	(15-)	C			$J\pi$: 764 γ to (14-); band member.
4452.1h 21	(16+)	C			$J\pi$: 388 γ to (15+); probable band member.
4551.1 ^f 21	(16+)	C			$J\pi$: 381 γ to (15+); band member.
4552.4^{1} 12	(16-)	C			$J\pi$: 447 γ to (15-); band member.
4589.4 ^e 8	(17+)	C	L	0.15 ps 4	XREF: C(4588).
					$J\pi$: 554.2γ M1 to (16+); band member.
4678.6 8	(16-)	C			$J\pi$: 1072 γ to (15-), 1416 γ to (14-).
4751.5g 10	(16+)	C			Jπ: 1382γ to (14+); band member.
4758.9 ^k 11	(17-)	C	L		XREF: C(4758).
					$J\pi$: 404.7 γ (M1) to (16-); band member.
4822.81 12	(16-)	C			$J\pi$: 414 γ to (15-); band member.
4917.1 ^h 23	[17+]	C			$J\pi$: 465 γ to [16+]; band member.
5063.7 10	(17-)	C			$J\pi$: 1457 γ to (15-); yrast state assumed.
5073.7g 9	(17+)	C			$J\pi$: 322 γ to (16+), 1432 γ to (15+); band member.
5168.1 ^k 14			т		
	(18-)	С	L		J π : 409.2 γ (M1) to (17-); band member.
5235.7 ^m 22	(19-)	С			J π : 845 γ (E2) to (17-); band member.
5272.8 ¹ 16	(17-)	С		0.15	J π : 450 γ to (16-); band member.
5297.0 ^e 8	(18+)	C	L	<0.17 ps	XREF: C(5295).
_		-			$J\pi$: 707.6 γ to 17+; band member.
5537.0g 10	(18+)	С			J π : 463 γ to (17+), 1502 γ to (16+); band member.
5638.1 ^k 15	(19-)	C	L		XREF: C(5636).
_					$J\pi \colon\thinspace 470.0\gamma$ (M1) to (18-); band member.
5773.8 ¹ 19	(18-)	C			$J\pi$: 501γ to (17-); band member.
6035.1e 10	(19+)	C			$J\pi$: 738.0γ to (18+); band member.
6059.0g 14	(19+)	\mathbf{c}			$J\pi$: 522γ to (18+); band member.
6155.8 ^m 24	(21-)	C			$J\pi$: 920 γ E2 to (19-); band member.
6322.8 ¹ 21	(19-)	C			$J\pi$: 549 γ to (18-); band member.
					•
6373.1 ^k 18	(20-)	C			Jπ: 735γ to (19-); band member.

¹¹²In Levels (continued)

E(level) [†]	Jπ	XREF	Comments
6412.0g 18	(20+)	C	$J\pi$: 353γ to (19+); band member.
6850.0g 20	(21+)	C	$J\pi$: 438 γ to (20+); band member.
6859.81 24	(20-)	C	$J\pi$: 537 γ to (19-); band member.
7148 ^m 3	(23-)	C	$J\pi$: 992 γ to (21-); band member.
8328 ^m 3	(25-)	C	$J\pi$: 1180 γ to (23-); band member.

- † From a least-squares fit to Ey.
- ‡ Member of the $\pi g_{9/2} {\otimes} \nu g_{7/2}$ multiplet.
- § Member of the $\pi g_{9/2} \otimes \nu s_{1/2}$ multiplet.
- # Member of the $\pi g_{9/2} \otimes \nu d_{5/2}$ multiplet.
- @ Member of the $\pi g_{9/2} \! \otimes \! \nu d_{3/2}^{--}$ multiplet.
- a Member of the $\pi g_{9/2} \otimes v h_{11/2}$ multiplet.
- b From $^{100}Mo(^{16}O,p3n\gamma),$ unless otherwise noted.
- c (A): Band based on 614-keV level; configuration= $\pi g_{9/2}^{-1} \otimes v h_{11/2}$; configuration= $\pi g_{9/2}^{-1} \otimes v (h_{11/2}(g_{7/2}/d_{5/2})^2)$ after the back of the back
- 6 (B): Band based on 670-keV level; configuration= $\pi g_{9/2}^{-1} \otimes v g_{7/2}$.

 e (C): band based on 3063-keV level; configuration= $\pi g_{9/2}^{-1} \otimes v (h^2_{-11/2} g_{7/2})$.
- f (D): Band based on 3293-keV level (2010He09).
- g (E): Band based on 3296-keV level (2010He09).
- $h\ \ (F):$ Band based on 3390-keV level (2010He09).
- i (G): Band based on 3327-keV level (2010He09).
- $\dot{J}~$ (H): Band based on 2756-keV~level~(2010He09).
- k (I): Band based on 3154-keV level (2010He09).
- l (J): Band based on 4409-keV level (2010He09).
- m (K): $\Delta J = 2$ band based on (11-) level; configuration= $\pi g_{9/2}^{} ^2 g_{7/2} \otimes v h_{11/2}^{}.$

$\gamma(^{112}In)$

E(level)	$\mathbf{E}\gamma^{\dagger}$	$\underline{\hspace{1cm}} I\gamma^{\dagger}$	Mult.‡	α	Comments
156.592	156.61 3	100	М3	6.50	Mult.: $\alpha(K)\exp=5.4\ 5$ in $^{112}Cd(p,n\gamma)$ (1988Ki04), 5.8 12 in ^{112}In IT decay (20.56 min) (1962Ru05) and 4.8 3 in $^{109}Ag(\alpha,n\gamma)$ (1991Kr14); $\alpha(L)\exp=1.36\ 12$ in $^{112}Cd(p,n\gamma)$ (1988Ki04); $K/LM=3.3\ 7$ (1962Ru05) and 3.7 4 in ^{112}In IT decay (20.5 min) (1953B144). B(M3)(W,u,=0.00511\ 24.
162.89	(6.30 5)	100	[M1]	240 7	Ey: not observed experimentally. Obtained from energy level difference by the evaluators. Mult.: From Jπ difference.
206.717	206.75 3	100	M1	0.0692	Mult: From 3n difference. Mult: A ₂ =-0.130 4; A ₄ =0.022 6 in $^{112}\text{Cd}(p,n\gamma)$ (1983Ko12); $\alpha(\text{K})\text{exp}=0.066$ 5, weighted average of 0.059 7 in $^{109}\text{Ag}(\alpha,n\gamma)$ (1988Ki04) and 0.072 6 in $^{112}\text{Cd}(p,n\gamma)$ (1988Ki04); $\alpha(\text{L})\text{exp}=0.0068$ 7 in $^{109}\text{Ag}(\alpha,n\gamma)$ (1988Ki04) and 0.0075 6 in $^{112}\text{Cd}(p,n\gamma)$ (1988Ki04); $\alpha(\text{M})\text{exp}=0.0015$ 4 in $^{109}\text{Ag}(\alpha,n\gamma)$ (1988Ki04) and 0.0013 1 in $^{112}\text{Cd}(p,n\gamma)$ (1988Ki04).
350.80	187.93 3	100	E 2	0.1663	Mult.: α(K)exp=0.11 1, α(L)exp=0.021 3 and α(M)exp=0.0056 6 (1988Ki04). B(E2)(W.u.)=0.094 7.
456.426	249.68 3	3.0 5	M1	0.0420	Mult.: $A_2=0.203$ 9; $A_4=-0.007$ 11 in $^{112}Cd(p,n\gamma)$ (1983Ko12); $\alpha(K)\exp=0.036$ 4 in $^{109}Ag(\alpha,n\gamma)$ (1988Ki04) and 0.041 3 $^{112}Cd(p,n\gamma)$ (1988Ki04); $\alpha(L)\exp=0.0054$ 10 in $^{112}Cd(p,n\gamma)$ (1988Ki04); $\alpha(M)\exp=0.0013$ 3 in $^{112}Cd(p,n\gamma)$ (1988Ki04)
	400.40 0	ა. 0 ე			

$\gamma(^{112}{\rm In})$ (continued)

E(level)	$\underline{\hspace{1cm}} \mathbf{E} \gamma^{\dagger}$	Ιγ†	Mult.‡	δ&	α	Comments
562.78	399.88 4	50.0 19	M1,E2		0.01260	Mult.: $\alpha(K)\exp=0.0125$ 15 in $^{109}Ag(\alpha,n\gamma)$ (1988Ki04).
	406.18 3	100 3	M1,E2		0.01212	Mult.: $\alpha(K)\exp=0.0123$ 14 in $^{109}Ag(\alpha,n\gamma)$ (1988Ki04).
592.08	135.64 3	100 3	M1		0.218	Mult.: A_2 =-0.287 52; A_4 =0.005 66 in $^{112}\text{Cd}(p,n\gamma)$ (1983Ko12); $\alpha(K)\text{exp}$ =0.18 2 in $^{109}\text{Ag}(\alpha,n\gamma)$ (1988Ki04) and 0.20 4 in $^{112}\text{Cd}(p,n\gamma)$ (1988Ki04); δ =0.01 10 in $^{112}\text{Cd}(p,n\gamma)$ (1983Ko12).
.	385.5 <i>1</i> 429.17 <i>5</i>	6.2 4 9.4 4				
594.888	138.37 § 8 388.20 3	0.96 [§] 8 43 3	M1		0.01357	$\begin{array}{lll} \mbox{Mult.:} & A_2 \! = \! 0.156 \ 25; \ A_4 \! = \! -0.020 \ 30 \ \mbox{in} \\ & \ \ ^{112}\mbox{Cd}(p,n\gamma) \ (1983\mbox{Ko}12). \\ \mbox{Mult.:} & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
	594.85 3	100 4	M1+E2	+0.10 3	0.00478	Mult.: A_2 =-0.082 11; A_4 =0.032 14 in (1983Ko12) and p_{exp} =-0.19 4 in $^{112}Cd(p,n\gamma)$ (1983Ko12); $\alpha(K)$ exp=0.0046 6 in $^{109}Ag(\alpha,n\gamma)$ (1988Ki04) and 0.0045 4 in $^{112}Cd(p,n\gamma)$ (1988Ki04).
613.82	263.01 3	100	E1+M2	0.09 4	0.0129 15	Mult.: DCO=1.17 10 in 100 Mo(16 O,p3n γ) (2012Tr01); α (K)exp=0.015 2 and α (L)exp=0.0015 2 in 109 Ag(α ,n γ) (1988Ki04). δ : from PAC measurements (1987Iw04).
624.42	273.62 3	100				$\begin{array}{cccccccccccccccccccccccccccccccccccc$
670.23	319.41 3	100	M1		0.0222	Mult.: $\alpha(K)\exp=0.022$ 3; $\alpha(L)\exp=0.0019$ 3 in $^{109}\mathrm{Ag}(\alpha, n\gamma)$ (1988Ki04); DCO=0.42 15 in $^{110}\mathrm{Pd}(^7\mathrm{Li}, 5n\gamma)$ (2011He04); Others: DCO=1.06 7 in $^{100}\mathrm{Mo}(^{16}\mathrm{O}, \mathrm{p3n\gamma})$ (2012Tr01); pol=-0.079 28 in $^{100}\mathrm{Mo}(^{16}\mathrm{O}, \mathrm{p3n\gamma})$ (2012Tr01).
676.29	51.87 3	100	M1+E2		3.37	Mult.: A_2 =-0.084 14; A_4 =-0.008 18 in 109 Ag(α ,n γ) (1978EmZT).
728.978	522.29 8	9.5 11				100
	728.98 3	100	E1+M2	+0.13 +5-7	0.00109 11	Mult.: $\alpha(K)\exp=0.00100 \ 9 \ \text{in} \ ^{109}\text{Ag}(\alpha,n\gamma)$ (1988Ki04). δ : from $^{112}\text{Cd}(p,n\gamma)$.
729.87	273.49 8	100.0 16				Iγ: from $(\alpha, n\gamma)$ (1978EmZT).
	523.13 8	32 4				Iy: from $(\alpha, n\gamma)$ (1978EmZT).
	573.29 3	38.3 21	M1+E2	+0.10 5	0.00522	Mult.: $A_2=-0.092$ 18 and $A_4=0.004$ 23 in $^{112}\mathrm{Cd}(p,n\gamma)$ (1983Ko12); Also: $A_2=-0.079$ 7 and $A_4=0.010$ 9 in $^{112}\mathrm{Cd}(p,n\gamma)$ (1983Ko12) pol=-0.10 10 in $^{112}\mathrm{Cd}(p,n\gamma)$ (1983Ko12); $\alpha(\mathrm{K})\exp{-0.042}$ 10 $^{109}\mathrm{Ag}(\alpha,n\gamma)$ (1988Ki04) and 0.00099 15 in $^{112}\mathrm{Cd}(p,n\gamma)$ (1988Ki04). δ : from $^{112}\mathrm{Cd}(p,n\gamma)$ (1983Ko12).
790.28	120.01 4	10 2				
	439.49 3	100 4	M1, E2		0.00997	Mult.: $\alpha(K)\exp=0.0090$ 16 in $^{109}\mathrm{Ag}(\alpha,n\gamma)$ (1988Ki04).
795.25	203.17 4	100	M1 (+E2)	+0.01 11	0.0725 13	Mult.: A_2 =-0.238 69; A_4 =0.033 91 in $^{112}Cd(p,n\gamma)$ (1983Ko12); $\alpha(K)exp$ =0.072 12; $\alpha(L)exp$ =0.0097 10 in $^{109}Ag(\alpha,n\gamma)$ (1988Ki04). δ : from $^{112}Cd(p,n\gamma)$ (1983Ko12).
800.56	186.74 4	100	M1+E2		0.0909	Mult.: A_2 =-0.105 14, A_4 =0.010 20 in $^{109}{\rm Ag}(\alpha, {\rm n}\gamma)$ (1978EmZT).

Continued on next page (footnotes at end of table)

E(level)	${\rm E}\gamma^{\dagger}$	Ιγ [†]	Mult.‡	δ&		Comments
822.32	146.04 3	100	M1		0.1775	Mult.: $\alpha(K)\exp=0.17$ 4; $\alpha(L)\exp=0.022$ 9 in $^{109}Ag(\alpha,n\gamma)$ (1988Ki04).
833.10	270.228 482.313	7.5 <i>17</i> 100 <i>6</i>	M1,E2		0.00793	Mult.: $\alpha(K)$ exp=0.0081 13 in 109 Ag(α ,n γ)
	670.19 13	9.8 12	M1		0.00361	(1988Ki04). Mult.: α(K)exp=0.0036 8 in ¹⁰⁹ Ag(α,nγ) (1988Ki04).
883.72	288.81 [§] 8	100 § 3	M1+E2	+0.05 3	0.0288	(1986Ki04). Mult.: A_2 =-0.171 14; A_4 =0.006 18 in 112 Cd(p,n γ) (1983Ko12); pol=-0.35 6 in 112 Cd(p,n γ) (1983Ko12); α (K)exp=0.024 5 in 112 Cd(p,n γ) (1988Ki04). δ : from 112 Cd(p,n γ).
	291.5 \$ 2	3.2 \$ 16				
	427.29 8	10.3 \$ 10				
	727.16 8	63 § 3				
918.84	189.86 8	22.0 \ 12	7.4			77 1
	323.87 [§] 8	100 [§] 5	E1		0.00666	Mult.: $\alpha(K)\exp=0.0065$ 14, weighted average of 0.007 2 in $^{109}\mathrm{Ag}(\alpha,\mathrm{n}\gamma)$ (1988Ki04) and 0.006 2 in $^{112}\mathrm{Cd}(\mathrm{p},\mathrm{n}\gamma)$ (1988Ki04).
	918.81 8	93.9\$ 25	E1		6 . 07×10 ⁻⁴	Mult.: A_2 =0.086 20; A_4 =0.029 27 in $^{112}Cd(p,n\gamma)$ (1983Ko12); pol=-0.20 10 in $^{112}Cd(p,n\gamma)$ (1983Ko12); $\alpha(K)\exp$ =0.00063 7 in $^{112}Cd(p,n\gamma)$ (1988Ki04); δ =0.00 12 or -0.31 7 in $^{112}Cd(p,n\gamma)$ (1983Ko12).
924.66	195.73 \$ 8	51 § 3	M1		0.0801	Mult.: $\alpha(K)\exp=0.067$ 7, weighted average of 0.060 6 in $^{109}\mathrm{Ag}(\alpha,\mathrm{n}\gamma)$ (1988Ki04) 0.073 6 in $^{112}\mathrm{Cd}(p,\mathrm{n}\gamma)$ (1988Ki04).
	468.15 8	10.9 8				
	717.90 \$ 8	100 \$ 4	E1		1.00×10^{-3}	Mult.: A_2 =0.159 $I9$; A_4 =0.009 25 in $^{112}Cd(p,n\gamma)$ (1983Ko12); pol=-0.24 II in $^{112}Cd(p,n\gamma)$ (1983Ko12); $\alpha(K)\exp$ =0.009 I in $^{112}Cd(p,n\gamma)$ (1988Ki04).
928.67	199.73 8 928.59 8	2.0\\$ 6 100\\$ 3	E 1		5.95×10^{-4}	Mult.: A_2 =0.016 18 ; A_4 =0.028 24 in 112 Cd(p,n γ) (1983Ko12); pol=-0.21 9 in 112 Cd(p,n γ) (1983Ko12); α (K)exp=0.00057 6 in 112 Cd(p,n γ) (1988Ki04).
1007.42	185.10 3	100	M1		0.0931	Mult.: α(K)exp=0.07 <i>I</i> in ¹¹² Cd(p,nγ) (1988Ki04).
1037.78	1037.77 8	100\$	E1		4.81×10^{-4}	Mult.: $\alpha(K)\exp=0.00044$ 6 in $^{112}Cd(p,n\gamma)$ (1988Ki04).
1062.90	333.2 1	7.1 18				
	856.22 6	34 3	M1		0.00205	Mult.: A_2 =0.148 67; A_4 =-0.062 82 in $^{112}Cd(p,n\gamma)$ (1983Ko12); $\alpha(K)$ exp=0.0015 35 in $^{112}Cd(p,n\gamma)$ (1988Ki04).
1151 00	1062.92 7	100 7	E2		1.06×10 ⁻³	Mult.: A_2 =-0.036 14; A_4 =0.023 19 in $^{112}Cd(p,n\gamma)$ (1983Ko12); pol=-0.32 7 in $^{112}Cd(p,n\gamma)$ (1983Ko12); $\alpha(K)$ exp=0.00086 9, weighted average of 0.00083 13 in $^{109}Ag(\alpha,n\gamma)$ (1988Ki04) and 0.00088 12 in $^{112}Cd(p,n\gamma)$ (1988Ki04).
1151.26	421.39 8	100 § 100 §	E 0 341		0 0877	Multi- g/V) and 0.000 5 to 11203/2 and
1212.16 1212.25	293.32\\$ 8	1008	E2,M1		0.0277	Mult.: α(K)exp=0.030 5 in ¹¹² Cd(p,nγ) (1988Ki04).
	283.56 8	24 \$ 3				
	287.54 \$ 8	100 \$ 4				
	483.25 8	678 4				
1221.50	214.12 9	22 7				Iγ: weighted average of 18.0 $I3$ in 109 Ag(α ,nγ) (1988Ki04) and 35.0 25 in 112 Cd(p ,nγ) (1988Ki04).
	765.06 4	100 4	M1		0.00265	Mult.: $\alpha(K)\exp=0.0025$ 4 in $^{109}Ag(\alpha,n\gamma)$ (1988Ki04).
			Continued	on next page (foo	otnotes at end of ta	ble)

$\gamma(^{112}{\rm In})$ (continued)

E(level)	$\underline{\hspace{1cm} E\gamma^{\dagger}}$		Mult.‡	α	Comments
250.89	326.19 10	100 20	E1	0.00653	Iγ: 18% from Iγ(521.94) in ¹¹² Cd(p,nγ) (1988Ki04). Mult.: α(K)exp≤0.012 in ¹¹² Cd(p,nγ) (1988Ki04).
	521.94 8	100 30			
260.47	531.44 11	83 9	M1,E2	0.00627	Mult.: $\alpha(K)\exp=0.006\ 2$ in $^{112}Cd(p,n\gamma)$ (1988Ki04).
	1260.51 11	100 17	,		
261.57	666.6 1	20 5			
201.01	1054.92 10	100 8	M1,E2	1.28×10^{-3}	Mult.: α(K)exp=0.0010 2 in ¹¹² Cd(p,nγ) (1988Ki04).
279.67	823.22 8	88 13	M1 , 112	1.20×10	$\mathbf{Mult.}. \ \mathbf{G}(\mathbf{K}) \in \mathbf{X} \mathbf{p} = 0.0010 \ \mathbf{Z} \ \mathbf{H} \qquad \mathbf{G}(\mathbf{p}, \mathbf{h}) \ \mathbf{(1300 \mathbf{K} 104)}.$
219.01	1073.01 8	100 \ 6	M1 E0	1.23×10^{-3}	Mult.: α(K)exp=0.0011 2 in ¹¹² Cd(p,nγ) (1988Ki04).
		1003 9	M1,E2	1.23×10 °	* * *
	1279.65 5	8			Eγ: from 112 Cd(p,nγ).
286.31	223.51 8	100§ 6	E1	0.0180	Mult.: $\alpha(K)\exp=0.019\ 5$ in $^{112}Cd(p,n\gamma)$ (1988Ki04).
	367.37\\$8	80 \$ 4			100
286.93	279.51 3	100	M1	0.0313	Mult.: $\alpha(K)\exp=0.029 \ 5 \ \text{in} \ ^{109}Ag(\alpha,n\gamma) \ (1988Ki04).$
388.90	588.34 3	100	M1,E2	0.00491	Mult.: DCO=0.62 10 in 110 Pd(7 Li,5n γ) (2011He04) and 0.96 7 in 100 Mo(16 O,p3n γ) (2012Tr01); pol=-0.037 23 in 100 Mo(16 O,p3n γ) (2012Tr01); α (K)exp=0.0046 11 in 109 Ag(α ,n γ) (1988Ki04).
754.90	1084.8# 3	45.0# 3	M1	1 . 20×10^{-3}	Mult.: DCO=1.22 10 in 100 Mo(16 O,p3n γ) (2012Tr01); Also: DCO=0.75 11 in 110 Pd(7 Li,5n γ) (2011He04); pol=-0.10 6 in 100 Mo(16 O,p3n γ) (2012Tr01).
	1404.0# 3	100# 4	E2	6 . 42×10^{-4}	Mult.: DCO=1.96 15 in 100 Mo(16 O,p3n γ) (2012Tr01); Also: DCO=1.60 7 in 110 Pd(7 Li,5n γ) (2011He04); pol=+0.08 3 in 100 Mo(16 O,p3n γ) (2012Tr01).
2011.9	1398.0@5	100	(E2)	6 . 46×10^{-4}	Mult.: DCO=1.7 4 in ¹¹⁰ Pd(⁷ Li,5nγ) (2011He04).
070.7	682@		(M1)	0.00346	Mult.: DCO=1.18 5 in 110 Pd(7 Li,5n γ) (2012Li51).
	1270@		(E2)	7.44×10 ⁻⁴	Mult.: DCO=1.28 25 in ¹¹⁰ Pd(⁷ Li,5nγ) (2012Li51).
113.15	724.3# 3	100# 6	M1	0.00301	Mult.: DCO=1.02 6 in 100 Mo(16O,p3η) (2012Tr01); Also: DCO=0.70 14 in 110 Pd(7Li,5ηγ) (2011He04); pol=-0.057 25 in 100 Mo(16O,p3ηγ) (2012Tr01).
	1312.5# 3	24.8# 4	E2	7 . 05×10^{-4}	Mult.: DCO=1.69 14 in 100 Mo(16 O,p3n γ) (2012Tr01); Also: DCO=1.7 4 in 110 Pd(7 Li,5n γ) (2011He04); pol=+0.24 4 in 100 Mo(16 O,p3n γ) (2012Tr01).
2115.28	360.4 # 7	8.12# 13	M1	0.01635	Mult.: DCO=1.21 11 in 100 Mo(16 O,p3n γ) (2012Tr01); Also: DCO=1.10 15 in 110 Pd(7 Li,5n γ) (2011He04).
	1445.2# 3	100.0# 5	E2	6 . 22×10^{-4}	Mult.: DCO=1.69 12 in 100 Mo(16 O,p3n γ) (2012Tr01); Also: DCO=1.50 4 in 110 Pd(7 Li,5n γ) (2011He04); pol=+0.06 3 in 100 Mo(16 O,p3n γ) (2012Tr01).
2374.9	986@	100			The state of the s
441.2	326@	100			
493.2	1104.2# 3	100#	M1	$1.16\!\times\!10^{-3}$	Mult.: DCO=1.16 9 in 100 Mo(16 O,p3n γ) (2012Tr01) pol=-0.02 in 100 Mo(16 O,p3n γ) (2012Tr01).
652.7 665.59	$582^{@}$ 1 $290^{@}$	100	E2	0.00459	Mult.: DCO=1.52 6 in ¹¹⁰ Pd(⁷ Li,5nγ) (2012Li51).
	552.4# 3	100.0# 7	M1	0.00571	Mult.: DCO=1.02 6 in 100 Mo(16 O,p3n γ) (2012Tr01); Also: 0.98 7 in 110 Pd(7 Li,5n γ) (2011He04); pol=-0.10 4 in 100 Mo(16 O,p3n γ) (2012Tr01).
	1276.7# 3	33.0# 3	E2	7.37×10 ⁻⁴	<pre>Iγ: 45 5 in ¹¹⁰Pd(⁷Li,5nγ). Mult.: DCO=1.85 18 in ¹⁰⁰Mo(¹⁶O,p3nγ) (2012Tr01); Also: 1.46 11 in ¹¹⁰Pd(⁷Li,5nγ) (2011He04); pol=+0.16 7 in ¹⁰⁰Mo(¹⁶O,p3nγ) (2012Tr01).</pre>
756.1	643@				
	1367 [@]				
000 05	361 [@]				
802.05		100 0# 0	3.61	0.00010	M. IV. DOO 1 00 7 : 100M (160 0) (2010M 01) ::
	686.9# 3	100.0# 6	M1	0.00340	Mult.: DCO=1.03 7 in ¹⁰⁰ Mo(¹⁶ O,p3nγ) (2012Tr01); Also: 0.92 5 in ¹¹⁰ Pd(⁷ Li,5nγ) (2011He04); pol=-0.08 3 (2012Tr01).
	790.0 [®] 5	19.2 14	(E1)	8.22×10^{-4}	Mult.: DCO=0.92 18 in 110 Pd(7 Li, 5 n γ) (2011He04).
	1047.4# 7	16.9# 2	E2	1.09×10^{-3}	Iγ: 24.1 19 in 110 Pd(7 Li,5nγ) (2011He04). Mult.: DCO=1.78 13 in 100 Mo(16 O,p3nγ) (2012Tr01); Also: 1.69 14 in 110 Pd(7 Li,5nγ) (2011He04); pol=+0.12 4 in
					100 Mo(16 O,p3n γ) (2012Tr01).
	1412.9@5	4.4 5			$^{100}{ m Mo}(^{16}{ m O},{ m p3n\gamma})$ (2012Tr01).

$\gamma(^{112}{\rm In})$ (continued)

E(level)	${\bf E}\gamma^{\dagger}$	Ιγ†	Mult.‡	α	Comments
2964.0	1575@				
3062.6	260.6# 3	100.0# 4	M1	0.0376	Mult.: DCO=0.97 7 in 100 Mo(16 O,p3n γ) (2012Tr01); Also: 1.03 6 in 110 Pd(7 Li,5n γ) (2011He04); pol=-0.03 4 in 100 Mo(16 O,p3n γ) (2012Tr01).
	947.4 # 7	7.4# 4	(E2)	1 . $37\!\times\!10^{-3}$	Mult.: DCO=1.32 14 in ¹¹⁰ Pd(⁷ Li,5ny) (2011He04). Iy: 11.8 8 in ¹¹⁰ Pd(⁷ Li,5ny) (2011He04).
	949.1 # 7	12.0 # 5			
3102.7	437.1 # 3	100#	M1	0.01010	Mult.: DCO=0.98 6 in 100 Mo(16 O,p3n γ) (2012Tr01); Also: 1.05 10 in 110 Pd(7 Li,5n γ) (2011He04); pol=-0.01 4 in 100 Mo(16 O,p3n γ) (2012Tr01).
3126.9	461.4# 3	100#	M1	0.00884	Mult.: DCO=0.80 5 in ¹⁰⁰ Mo(¹⁶ O,p3nγ) (2012Tr01); Also: 0.98 7 in ¹¹⁰ Pd(⁷ Li,5nγ) (2011He04); pol=-0.13 3 in ¹⁰⁰ Mo(¹⁶ O,p3nγ) (2012Tr01).
3153 . 5	487.7#7	18.8 # 9			
	660.2# 3	100# 3	M1	0.00374	Mult.: DCO=0.94 9 in 100 Mo(16 O,p3n γ) (2012Tr01); pol=-0.05 5 in 100 Mo(16 O,p3n γ) (2012Tr01).
	779@				
	$1041^{@} \\ 1765^{@}$				
3190.8	128.3# 3	100#	(M1)	0.254	Mult.: DCO; 0.21 13 in ¹⁰⁰ Mo(¹⁶ O,p3nγ) (2012Tr01); Also: 1.03 10 in ¹¹⁰ Pd(⁷ Li,5nγ) (2011He04).
3191.0	1802@	100			1.00 10 11 14(21,011) (201111001).
3262.3	135.3 # 7	22.9# 4	(M1)	0.219 5	Mult.: DCO=1.09 II in 100 Mo(16 O,p3n γ) (2012Tr01); Also: 1.20 $I3$ in 110 Pd(7 Li,5n γ) (2011He04).
	159.6# 3	100.0# 7	(M1)	0.1392	Mult.: DCO=0.97 9 in 100 Mo(16 O,p3n γ) (2012Tr01); Also: 1.23 II in 110 Pd(7 Li,5n γ) (2011He04).
3293 . 1	102@				
	329@				
	491@				
	800@				
3296.1	332@				
	494 [@] 1181 [®]				
	1183@				
3327.2	363 [@]				
0021.2	1214@				
3347.7	194.2# 3	89.3# 8	(M1)	0.0818	Mult.: D from DCO=0.99 9 in ¹⁰⁰ Mo(¹⁶ O,p3nγ) (2012Tr01); (M1) from assumed by the evaluators; band structure.
	681.9# 3	100.0# 16	(M1)	0.00346	Mult.: D from DCO=0.95 6 in 100 Mo(16 O,p3n γ) (2012Tr01); (M1) from assumed by the evaluators; band structure.
	973@	,,			400
3369.3	178.5# 3	100#	(M1)	0.1027	Mult.: D from DCO=1.06 9 in 100 Mo(16 O,p3n γ) (2012Tr01) and 1.00 8 in 110 Pd(7 Li,5n γ) (2011He04); (M1) assumed by the evaluators from the band structure.
3378.0	$622^{@}$	100			
3391 . 1	427@	100			
3457 . 7	805@ 1		E2	$0\;.\;0\;0\;2\;0\;0$	Mult.: DCO=1.86 13 (2012Li51).
3523.1	230@	100			
3564.3	237@				
0.504.4	$808^{@} \\ 288^{@}$	100			
3584.1 3606.8	344.6# 3	100 100#	(M1)	0.0183	Mult.: D from DCO=1.01 9 in ¹⁰⁰ Mo(¹⁶ O,p3nγ) (2012Tr01);
3000.0	344.0 3	100	(MI)	0.0100	Also: $1.068 \text{ in }^{110}\text{Pd}(^7\text{Li},5\text{n}\gamma)$ (2011He04); assumed (M1) by the evaluators from the band structure.
3642.0	272.7# 3	100#	M1	0.0334	Mult.: DCO=0.91 6 in ¹⁰⁰ Mo(¹⁶ O,p3nγ) (2012Tr01); Also: 0.97 7 in ¹¹⁰ Pd(⁷ Li,5nγ)(2011He04); pol=-0.09 4 in ¹⁰⁰ Mo(¹⁶ O,p3nγ) (2012Tr01). B(M1)(W.u.)=1.8 4.
3644.7	296.9# 3	100#	M1	0.0268	Mult.: DCO=0.86 7 in ¹⁰⁰ Mo(¹⁶ O,p3nγ) (2012Tr01); pol=-0.04 4 in ¹⁰⁰ Mo(¹⁶ O,p3nγ) (2012Tr01).
	519@				1
3685.1	294@	100			
3769.7	205 [@]	100			
			Continued o	n next page (footn	notes at end of table)

$\gamma(^{112}{\rm In})$ (continued)

E(level)	$\underline{\hspace{1cm}} E\gamma^{\dagger}$	$\underline{\hspace{1cm}} I\gamma^{\dagger}$	Mult.‡	α	Comments
3853.1	330@	100			
3854.9	477@	100			
3862.9	485@	100			
3991.8	347.1 # 3	100#	(M1)	0.0180	Mult.: DCO=1.01 9 in 100 Mo(16 O,p3n γ) (2012Tr01). B(M1)(W.u.)=1.0 +4-6.
4035.2	393.3# 3	100#	M1	0.01313	Mult.: DCO=1.10 $^{+4}$ -0. Mult.: DCO=1.10 7 in 100 Mo(16 O,p3n γ) (2012Tr01); Also: 0.90 10 in 110 Pd(7 Li,5n γ) (2011He04); pol=-0.14 3 in 100 Mo(16 O,p3n γ) (2012Tr01). B(M1)(W.u.)=1.05 22 .
4041.1	457@	100			
4064.1	379@	100			
4105.0	335@	100			
4166.9	976@	100			
4170.1	317@	100			
4203.9	341@	100			
4354.2	362.4# 7	100#	(M1)	0.01613	B(M1)(W.u.)>1.1. Mult.: DCO=0.91 7 in $^{100}Mo(^{16}O,p3n\gamma)$ (2012Tr01).
4390.7	933@ 1	100	E 2	1.42×10^{-3}	Mult.: DCO=2.01 11 (2012Li51).
4394.7	787.9# 7	100#	M1	0.00248	Mult.: DCO=0.89 7 in ¹⁰⁰ Mo(¹⁶ O,p3nγ) (2012Tr01); Also: 0.54 13 in ¹¹⁰ Pd(⁷ Li,5nγ) (2011He04).
4408.8	$554^{@} $ $764^{@}$				
4452.1	388@	100			
4551.1	381@	100			
4552.4	447@	100			
4589.4	554.2 3	100	M1	0.00567	Mult.: DCO=0.89 6 in 100 Mo(16 O,p3n γ) (2012Tr01); Also: 0.80 II in 110 Pd(7 Li,5n γ) (2011He04); pol=-0.16 II in 100 Mo(16 O,p3n γ) (2012Tr01).
					B(M1)(W.u.)=0.86 23.
4678.6	1072@				B(M1)(W.U.)=0.00 20.
	1416@				
4751.5	$1382^{@}$	100			
4758.9	404.7 7	100	(M1)	0.01223	Mult.: D from DCO=0.74 7 in 100 Mo(16 O,p3n γ) (2012Tr01); (M1) assumed from the band structure.
4822.8	414 [@] 619 [@]				
4917.1	465@	100			
5063.7	385 [@] 1457 [@]				
5073.7	322 [@] 521 [®]				
	1432@				
5168.1	409.2# 7	100#	(M1)	0.01190	Mult.: D from DCO=1.00 9 in ¹⁰⁰ Mo(¹⁶ O,p3nγ) (2012Tr01); (M1) assumed from the band structure.
5235.7	845@ 1	100	(E2)	0.00178	Mult.: DCO=1.29 19 (2011Li51).
5272.8	450@	100			
5297.0	707.6 3	100	[M1]	0.00318	Mult.: DCO=0.88 16 in 110 Pd(7 Li,5n γ) (2011He04). B(M1)(W.u.)>0.36.
5537.0	$463^{@} \\ 1502^{@}$,,			
5638.1	470.0#7	100#	(M1)	0.00845	Mult.: D from DCO=0.92 7; assumed (M1) from the band structure.
5773.8	501@	100			
6035.1	$738.0^{@}5$	100	(M1)	0.00288	Mult.: DCO=0.86 18 in $^{110}\text{Pd}(^{7}\text{Li},5\text{n}\gamma)$ (2011He04).
6059.0	522@	100			
6155.8	920@ 1	100	E2	1 . 46 \times 10 $^{-3}$	Mult.: DCO=2.21 41 (2012Li51).
6322.8	549@	100			
6373.1	735@	100			
6412.0	353@	100			
6850.0	438@	100			
6859.8	537@	100			
7148	992@ 1	100			
8328	1180@ 1	100			
			Foo		and are

 $Footnotes\ continued\ on\ next\ page$

 $\gamma(^{112}In)$ (continued)

 $^{^{\}dagger}$ From $^{109}Ag(\alpha,n\gamma),$ unless otherwise noted.

 $[\]dot{\tau}$ From DCO and γ -ray polarization measurements, unless otherwise noted.

[§] From ¹¹²Cd(p,nγ) (1988Ki04).

[#] From $^{100}\text{Mo}(^{16}\text{O},p3n\gamma)$ (2012Tr01). @ From $^{110}\text{Pd}(^{7}\text{Li},5n\gamma)$.

[&]amp; If no value given it was assumed δ =0.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.

- (A) Band based on 614-keV level; $\pi g_{9/2}^{-1}$ $\otimes v h_{11/2}$;
- (B) Band based on 670-keV level; $\pi g_{9/2}^{}^{-1} \otimes \nu g_{7/2}^{}$
- (C) band based on 3063-keV level;
- (D) Band based on 3293-keV level (2010He09)

- (E) Band based on 3296-keV level (2010He09)
- (F) Band based on 3390-keV level (2010He09)
- (G) Band based on 3327-keV level (2010He09)
- (H) Band based on 2756-keV level (2010He09)

¹¹²In IT Decay (20.67 min) 1983Ry06,1962Ru05,1953B144

Parent 112 In: E=156.61 3; J π =4+; T $_{1/2}$ =20.67 min 8; %IT decay=100. 1983Ry06: Facility: SAMES accelerator at NPL-Teddington; Source: from 113 In(n,2n γ). E(n)=14 MeV from a (d,t) reaction on Ti-T target; Detectors: one coaxial Ge, one gas-flow proportional counter; Measured: γ , ce, E γ , I γ , α (K)exp, α (L)exp; Deduced: level scheme, mult., J π , t, σ (112 In)/ σ (112 In)(n). 1962Ru05: Facility: cyclotron accelerator at Osaka; Sources: from 113 In(γ ,n), 112 Cd(d,2n), 109 Ag(α ,n); Detectors: β -spectrometer, one NaI(Tl); Measured: γ , ce, E γ , I γ , α (K)exp; Deduced: level scheme, γ -ray Mult., J π , T $_{1/2}$. 1953B144: Source: chemically separated from 109Ag(α ,n); Detectors: double-coil lens spectrometer, 180° spectrometer; Measured: β (t) ce(t); Deduced: α (K)exp, K/LM, 112 In level scheme, γ -ray Mult., J π , T $_{1/2}$. Others: 1973FrYM, 1968Ko25, 1968Ro03, 1947Te04, 1942Sm10, 1940La07, 1939Ba03, 1937La05; Also, R.K.Girgis and R.Van Lieshout in Physica 25 (1959) 597.

¹¹²In Levels

E(level) [†]	$J\pi^{\ddagger}$	T _{1/2}	Comments
0.0	1+	14.88 min 15	T _{1/2} : weighted mean of 14.97 min <i>10</i> (1983Ry06), 14.5 min <i>I</i> (1953Bl44), 14.4 min <i>4</i> (1965Fu07), 15.2 min <i>I</i> (1980Ad04), 14.5 min <i>6</i> (1968Ro03); Other: 13.8 min (1974Ku10).
156.61 3	4+	20.67 min 8	T _{1/2} : weighted average of 20.56 min <i>6</i> (1983Ry06), 20.7 min <i>3</i> (1953Bl44), 21.0 min <i>5</i> (1962Ru05), 20.9 min <i>2</i> (1968Ko25), 20.9 min <i>1</i> (1980Ad04); Others: 20.7 min (1974Ku10) and 20.4 min <i>4</i> (1968Ro03).

[†] From Eγ.

$\gamma(^{112}{\rm In})$

E(level)	$\underline{\hspace{1cm}} E\gamma^{\dagger}$	Ιγ‡	Mult.	_α_	Comments
156.61	156.61 3	100	M 3	6.50	Mult.: $\alpha(K)$ exp=5.8 12 and K/LM=3.3 7 (1962Ru05); $\alpha(K)$ exp=3.7 4 (1953Bl44).

 $[\]dagger$ From the adopted gammas.

[‡] For absolute intensity per 100 decays, multiply by 0.1333 16.

¹⁰⁰Mo(¹⁶O,p3nγ) 2012Tr01

Facility: 15-UD Pelletron accelerator at IUAC, New Delhi; Beam: $E(^{18}O)=80$ MeV; Target: 2.7 mg/cm² enriched in 100 Mo and deposited on a 12 mg/cm² Pb backing; Detectors: INGA γ -ray array comprising 18 Compton-suppressed Clover detectors working in add-back mode. The Clovers were also used as Compton polarimeters; Measured: $E\gamma$, $I\gamma$, γ - γ , γ - γ - γ coinc., γ - γ (0), γ - γ (lin pol); Deduced: 112 In level scheme, DCO, γ -polarization asymmetry (pol), $J\pi$, $T_{1/2}$; Also, from the same collaboration: 2012Tr11.

 $[\]ensuremath{^{\ddagger}}$ From the adopted levels.

$^{100}{ m Mo}(^{16}{ m O},{ m p3n\gamma})$ 2012Tr01 (continued)

112 In Levels

E(level) [†]	<u></u> Jπ‡	T _{1/2} §	Comments
162.89@ 4	5+		$E(level)$, $J\pi$: from the adopted levels.
350.82@ 3	7+		
613.9# 3	8-		
670.02@ 24	8+		
801.0# 4	9 –		
1389.2# 5	10-		
1754.82@ 24	9+		
2113.6 # 5	11-		
2115.2@4	10+		
2493.5 5	11-		
2666.0 # 5	12-		
2802.1@4	11+		
3062.7 5	12+		
3103.1 # 6	13-		
3127.46	13-		
3153.7ª 6	12-		
3191.0 6	13 +		
3262 . $7^{\#}$ 6	14-		
3347.9 ^a 6	13-		
3369.5 ^{&} 6	14+		
3607.3# 7	15 -		
3642.2 % 7	15 +	0.58 ps 11	
3644.8 ^a 6	14 -		
3991.9a 7	15-	0.50 ps + 25 - 19	
4035.5 8	16+	0.34 ps 7	
4354.3ª 10	16-	<0.42 ps	
4395.2 # 10	16-		
4589.7 8	17 +	0.15 ps 4	
4759.0ª 12	17-		
5168.2ª 14	18-		
5297.3 9	18+	<0.17 ps	
5638.2ª 16	19-		

- † From a least-squares fit to Ey.
- ‡ From 2012Tr01, based on $\gamma\text{-ray Mult.}$
- § From DSAM measurements in 2012Tr01. Systematic error of 15% as estimated by the authors was taken into account by the
- $^{\#}$ (A): $\Delta J\!=\!1$ structure based on 8-.
- @ (B): $\Delta J \! = \! 1$ structure based on 5+.
- & (C): $\Delta J = 1$ band based on 12+; configuration= $\pi g_{9/2}^{-1} \otimes v(h^2_{-11/2})(g_{7/2}/d_{5/2})$. a (D): $\Delta J = 1$ band based on 12-; configuration= $\pi g_{9/2}^{-1} \otimes v(h^3_{-11/2})$.

$\gamma(^{112}In)$

DCO ratios were obtained by sorting the detectors at 32° on one axis and the detectors at 90° on the other axis, with gate on $\Delta J=1$, dipole transition. Expected values are 2.0 for $\Delta J=2$, quadrupole and 1.0 for $\Delta J=1$, dipole. Polarization asymmetry (pol) is positive for electric and negative for magnetic transitions.

$\underline{\hspace{1cm} E\gamma^{\dagger}}$	E(level)	$\underline{\hspace{1cm} I\gamma^{\dagger}}$	Mult.‡	δ	Comments
128.3 3	3191.0	60.1 2	D		Mult.: DCO=1.21 13 (2012Tr01).
135.3 7	3262.7	6.1 1	D		Mult.: DCO=1.09 11 (2012Tr01).
159.6 3	3262.7	26.72	D		Mult.: DCO=0.97 9 (2012Tr01).
178.5 3	3369.5	59.3 2	D		Mult.: DCO=1.06 9 (2012Tr01).
187.1 3	801.0				
187.93 3	350.82				Eγ: from the adopted gammas.
194.2 3	3347.9	10.8 1	D		Mult.: DCO=0.99 9 (2012Tr01).
260.6 3	3062.7	56.9 2	M1		Mult.: DCO=0.97 7 (2012Tr01); pol=-0.03 4 (2012Tr01).
263.1 3	613.9		E1+M2	0.09 4	Mult.,δ: from the adopted gammas; DCO=1.17 10 (2012Tr01).
272.7 3	3642.2	47.22	M1		Mult.: DCO=0.91 6 (2012Tr01); pol=-0.09 4 (2012Tr01).
296.9 3	3644.8	17.02	M1		Mult.: DCO=0.86 7 (2012Tr01); pol=-0.04 4 (2012Tr01).
319.2 3	670.02	104.3 8	M1		Mult.: DCO=1.06 7 (2012Tr01); pol=-0.079 28 (2012Tr01).
344.6 3	3607.3	20.7 1	D		Mult.: DCO=1.01 9 (2012Tr01).

100 Mo(16 O,p3n γ) 2012Tr01 (continued)

$\gamma(^{112}In)$ (continued)

$\underline{\hspace{1cm}} E\gamma^{\dagger}$	E(level)	$\underline{\hspace{1cm} I\gamma^{\dagger}}$	Mult.‡	Comments
347.1 3	3991.9	10.4 1	(M1)	Mult.: DCO=1.01 9 (2012Tr01).
360.4 7	2115 . 2	6.1 1	D	Mult.: DCO=1.21 11 (2012Tr01).
362.4 7	4354.3	7.8 1	(M1)	Mult.: DCO=0.91 7 (2012Tr01).
393.3 3	4035.5	34.52	M1	Mult.: DCO=1.10 7 (2012Tr01); pol=-0.14 3 (2012Tr01).
404.7 7	4759.0	5.4 1	D	Mult.: DCO=0.74 7 (2012Tr01).
409.2 7	5168.2	3.9 1	D	Mult.: DCO=1.00 9 (2012Tr01).
437.1 3	3103.1	35.6 3	M1	Mult.: DCO=0.98 6 (2012Tr01); pol=-0.01 4 (2012Tr01).
461.4 3	3127.4	30.32	M1	Mult.: DCO=0.80 5 (2012Tr01); pol=-0.13 3 (2012Tr01).
470.0 7	5638.2	2.0 1	D	Mult.: DCO=0.92 7.
487.7 7	3153.7	2.2 1		
552.4 3	2666.0	59.4 4	M1	Mult.: DCO=1.02 6 (2012Tr01); pol=-0.10 4 (2012Tr01).
$554.2\ 3$	4589.7	$20.3\ 2$	M1	Mult.: DCO=0.89 6 (2012Tr01); pol=-0.16 4 (2012Tr01).
588.2 3	1389.2	134.8 9	M1	Mult.: DCO=0.96 7 (2012Tr01); pol=-0.037 23; (2012Tr01).
660.2 3	3153.7	$11.7 \ 3$	M1	Mult.: DCO=0.94 9 (2012Tr01); pol=-0.05 5 (2012Tr01).
681.9 3	3347.9	$12.1\ 2$	D	Mult.: DCO=0.95 6 (2012Tr01).
686.9 3	2802.1	53.9 3	M1	Mult.: DCO=1.03 7 (2012Tr01); pol=-0.08 3 (2012Tr01).
707.6 3	5297.3	15.6 1	[M1]	
724.3 3	2113.6	100 6	M1	Mult.: DCO=1.02 6 (2012Tr01); pol=-0.057 25 (2012Tr01).
787.9 7	4395.2	3.8 1	D	Mult.: DCO=0.89 7 (2012Tr01).
947.4 7	3062.7	$4.2\ 2$		
949.1 7	3062.7	6.8 3		
1047.4 7	2802.1	9.1 1	E 2	Mult.: DCO=1.78 13 (2012Tr01); pol=+0.12 4 (2012Tr01).
1084.8 3	1754.82	13.1 1	M1	Mult.: DCO=1.22 10 (2012Tr01); pol=-0.10 6 (2012Tr01).
1104.2 3	2493.5	$17.2\ 2$	M1	Mult.: DCO=1.16 9 (2012Tr01); pol=-0.02 5 (2012Tr01).
1276.7 3	2666.0	$19.6\ 2$	E 2	Mult.: DCO=1.85 18 (2012Tr01); pol=+0.16 7 (2012Tr01).
1312.5 3	2113.6	24.84	E 2	Mult.: DCO=1.69 14 (2012Tr01); pol=+0.24 4 (2012Tr01).
1404.0 3	1754.82	29.1 13	E 2	Mult.: DCO=1.96 15 (2012Tr01); pol=+0.08 3 (2012Tr01).
1445.2 3	2115 . 2	75.1 4	E 2	Mult.: DCO=1.69 12 (2012Tr01); pol=+0.06 3 (2012Tr01).

[†] From 2012Tr01; ΔE =0.3 keV for intense lines and 0.7 keV for weak lines. The evaluators assign 0.3 keV for I γ <10 and 0.7 keV for I γ <10.

$^{109} Ag (\alpha, n\gamma) \\ \phantom{^{109} Ag (\alpha, n\gamma)} 1988 Ki 04, \\ 1978 Em ZT, \\ 1991 Kr 14$

1988Ki04: Facility: 90-cm Jyvaskyla cyclotron and 103-cm Debrecen cyclotron; Beam: E(α)=17.1 MeV; Target: selfsupporting 0.4-0.8 mg/cm² thick, enriched to 99% in ¹⁰⁹Ag; Detectors: one HPGe, one Si(Li), superconducting magnetic lens; Measured: γ, Iγ, ce; Deduced: ¹¹²In level scheme, Jπ, α, γ-ray mult.

1978EmZT: Beam: $E(\alpha)=16.7$ MeV; Target: 3.3 mg/cm² thick, enriched to 99.3% in 109 Ag; Detectors: two Ge(Li), two HPGe; Measured: γ , $\gamma-\gamma$ $\gamma-\gamma(t)$ coinc., $E\gamma$, $I\gamma$; Deduced: DCO, 112 In level scheme.

1991Kr14: Facility: Variable Energy Cyclotron Center, Calcutta; Beam: E(α)=14 MeV; Target: 4.5 mg/cm² thick natural silver; Detectors: one Si(Li), one HPGe; Measured: x-rays, γ-rays; Deduced: α(K)exp for 156.61γ.

 $Others:\ 1990Io01,\ 1990TuZX,\ 1986Wa10,\ 1984Ba15,\ 1981Io07,\ 1979EmZX,\ 1976Io04,\ 1976Ei04,\ 1965Fu07,\ NP36\ (1962)\ 431.$

¹¹²In Levels

E(level) [†]	$-\!$	T _{1/2}	Comments
0.0\$	1+§		
156.594# 25	4 + #		
162.89# 4	(5)+#		
206.720 \$ 20	2+§		
$350.80^{@}5$	7+@	0.69 µs 5	$J\pi$: 6+ in 1976Io04.
			$T_{1/9}$: from 263.01 γ -187.93 γ (t) in 1976Io04.
			Q: 0.75 15 from PAD in (1981I007).
			configuration: $\pi(1g_{\mathbf{q}/2})^{-1} \otimes \mathbf{v}(2d_{5/2})^{+1}$.
456.41 3	3 + §		92 0/2
562.78 4	5+&		
592.06 § 4	4 + §		
594.896 [@] 23	2+@		
			Continued on next page (footnotes at end of table)

 $[\]dot{\ddagger}$ From 2012Tr01, based on DCO and pol measurements.

109 Ag(α , $\underline{n\gamma}$) 1988Ki04,1978EmZT,1991Kr14 (continued)

$^{112}{ m In}$ Levels (continued)

E(level) [†]	Jπ [‡]	$\underline{\hspace{1cm}}^{T_{1/2}}$	Comments
613.81 ^b 6	(8) = ^b	2.81 μs 3	T _{1/2} : from 187.93γ(t) in 1976IoO4; Other: 2.8 μs (1987IwO4), 1.25 μs (1973FrYM), 1.6 μs 2 (1972BrYL). μ: +3.08 3 from DPAD in 1976IoO4.
624.42 5	7 (+)		
670.23 6	(6,7,8)+		
676.28 6	6 (+)		
728.99 3	(1)-,2-		
729.88 ^a 4	3 + a		
790.27 6	(7,8)+		
795.23 \$ 5	5 + §		
800.55 ^b 7	(9-) ^b		
822.31 6	(5+)		
833.10 5	(6)+		
883.82@4	3+@		
918.82 5	(2)-		
924.72 5	(3)-		
007.41 7	(4+)		
062.96 5	1+,(2)+		
221.48 5	(3,4)+		
250.92 7	(2,3) +		
260.47 8	≤3-		
261.57 8	≤ 4 +		
286.92 7	(3+)		
388.89b 8	$(10-)^{b}$		

 $^{^{\}dagger}$ From a least-squares fit to Ey.

$\gamma(^{112}In)$

$E\gamma^{\dagger}$	E(level)	$\underline{\hspace{1cm}}^{\dagger}$	Mult.‡	Comments
(6.30 5)	162.89			Eγ: from the adopted levels.
51.87 3	676.28	8.2 4	M1+E2	Mult.: $A_2 = -0.084 \ 14$; $A_4 = -0.008 \ 18 \ (1978 Em ZT)$.
x99.66 6		1.3 1		
120.014	790.27	1.7 3		
x 1 3 0 . 4 4 4		1.5 1		
135.64 3	592.06	24.46	M1	Mult.: α(K)exp=0.18 2 (1988Ki04).
				Mult.: $A_2 = -0.184 \ 7$, $A_4 = -0.006 \ 10 \ (1978 Em ZT)$.
$146.04\ 3$	822 . 31	30.5 8	M1	Mult.: $\alpha(K)\exp=0.17$ 4; $\alpha(L)\exp=0.022$ 9 (1988Ki04).
				${\rm Mult.:\ A_2 = -0.104\ 8,\ A_4 = 0.023\ 12\ (1978{\rm EmZT})}.$
$156.61\ 3$	156.594	60 2	M3	Mult.: $\alpha(K)\exp=4.8 \ 3 \ (1991Kr14)$.
$185.10 \ 3$	1007 . 41	17.4 5	M1	Mult.: $\alpha(K)\exp=0.10\ 2\ (1988Ki04)$.
				${\rm Mult.:\ A_2{=}0.126\ 14,\ A_4{=}0.011\ 19\ (1978{\rm EmZT})}.$
186.744	800.55	95 3	M1+E2	${\rm Mult.:\ A_2 = -0.105\ 14,\ A_4 = 0.010\ 20\ (1978{\rm EmZT})}.$
187.93 3	350.80	222 6	E2	Mult.: $\alpha(K)\exp=0.11\ 1$; $\alpha(L)\exp=0.021\ 3$; $\alpha(M)\exp=0.0056\ 6\ (1988Ki04)$.
				Mult.: $A_2=0.073$ 5, $A_4=0.001$ 7 (1978EmZT).
195.74 10	924 . 72	1.9 1	M1	Mult.: $\alpha(K)\exp=0.060\ 6\ (1988Ki04)$.
203.17 3	795.23	11.5 3	M1	Mult.: $\alpha(K)\exp[-0.072\ 12]$; $\alpha(L)\exp[-0.0097\ 10\ (1988Ki04)]$; M1(+E2) with $\delta=-0.01\ 11$ in the adopted gammas.
				Mult.: $A_2 = -0.254 \ 37$, $A_4 = 0.046 \ 49 \ (1978 EmZT)$.
206.75 3	206 . 720	100 3	M1	Mult.: $\alpha(K)\exp=0.059$ 7; $\alpha(L)\exp=0.0068$ 7; $\alpha(M)\exp=0.0015$ 4 (1988Ki04).
				Mult.: A ₂ =-0.105 5, A ₄ =0.004 6 (1978EmZT).
214.129	1221.48	1.4 1		-
x 2 1 5 . 8 5 9		0.9 1		

 $^{^{\}ddagger}$ From 1988Ki04, based on $\gamma\text{--ray}$ multipolarity.

 $[\]$ Member of the $\pi g_{9/2} {\otimes} \nu g_{7/2}$ multiplet.

[%] Member of the $\pi g_{9/2} \otimes v g_{7/2}$ multiplet.

Member of the $\pi g_{9/2} \otimes v s_{1/2}$ multiplet.

@ Member of the $\pi g_{9/2} \otimes v d_{5/2}$ multiplet.

& Member of the $\pi g_{9/2} \otimes v d_{3/2}$ multiplet.

a Member of the $\pi g_{5/2} \otimes v s_{1/2}$ multiplet.

b Member of the $\pi g_{9/2} \otimes v h_{11/2}$ multiplet.

$^{109}\mathrm{Ag}(\alpha,\mathrm{n}\gamma)$ 1988Ki04,1978EmZT,1991Kr14 (continued)

$\gamma(^{112}In)$ (continued)

$\underline{\hspace{1cm} E\gamma^{\dagger}}$	E(level)	Ιγ [†]	Mult.‡	Comments
249.68 3	456.41	56 2	M1	Mult.: α(K)exp=0.036 4 (1988Ki04).
				${\rm Mult.:\ A_2\text{=-}0.131\ 12,\ A_4\text{=-}0.016\ 16\ (1978{\rm EmZT}).}$
263.01 3	613.81	172 10	E1+M2	Mult.: $\alpha(K)\exp=0.015\ 2$; $\alpha(L)\exp=0.0015\ 2\ (1988Ki04)$.
				Mult.: A_2 =0.046 4, A_4 =0.000 8 (1978EmZT).
270.22 8	833.10	1.3 3		
273.49 8	729.88	18.8 3		
273.62 3	624.42	18.8 3	E1+M2	Mult.: A ₂ =0.176 35, A ₄ =-0.019 47 (1978EmZT).
279.51 3	1286.92	2.3 3	M1	Mult.: $\alpha(K)\exp=0.029\ 5\ (1988Ki04)$.
288.92 3	883.82	4.7 4	Mi	M. It., p/II), 0.000 2, p/I), 0.0010 2 (1000II)04)
319.41 3	670.23	27.1 13 $4.1 2$	M1	Mult.: $\alpha(K)\exp=0.022$ 3; $\alpha(L)\exp=0.0019$ 3 (1988Ki04).
323.90 5 326.19 10	918.82 1250.92	1.0 2	E1	Mult.: $\alpha(K)\exp=0.007 \ 2 \ (1988Ki04)$.
333.2 1	1062.96	0.8 2		
x357.1 3	1002.50	0.5 2		
385.5 1	592.06	1.5 1		
388.20 3	594.896	5.0 3	M1,E2	Mult.: α(K)exp=0.0111 11 (1988Ki04).
300.20	301.000	0.00		Mult.: pure M1 in the adopted.
399.88 4	562.78	10.6 4	M1,E2	Mult.: $\alpha(K) \exp = 0.0125 \ 15 \ (1988 \text{Ki} 04)$.
406.18 3	562.78	21.2 7	M1,E2	Mult.: α(K)exp=0.0123 14 (1988Ki04).
x422.29 8		1.4 1	,	,
429.17 5	592.06	2.3 1		
439.49 3	790.27	16.5 4	M1,E2	Mult.: $\alpha(K)\exp=0.0090$ 16 (1988Ki04).
456.40 5	456.41	1.7 3		
482.31 3	833.10	17.3 11	M1,E2	Mult.: α(K)exp=0.0081 13 (1988Ki04).
521.94 8	1250.92	1.0 3		Iγ: From Iγ(521.94)/Iγ(326.19)=0.96 22 in the adopted gammas and Iγ(326.19)=1.0 2 in 1988Ki04.
522.29 8	728.99	1.59 19		Iy: from the Iy(522.29)/Iy(728.98) in the adopted gammas and Iy(728.98)=16.7 in 1988Ki04.
523.13 8	729.88	6.0 8	M1,E2	Iy: from Iy(523.13)/Iy(573.29)=0.83 10 in the adopted and Iy(573.29) in 1988Ki04.
531.44 11	1260 . 47	1.9 2		
573.29 3	729.88	7.2 4	M1,E2	Mult.: α(K)exp=0.0042 10 (1988Ki04).
x581.17 7		2.72	M1,E2	Mult.: α(K)exp=0.0047 12 (1988Ki04).
588.34 3	1388.89	11.6 6	M1, E2	Mult.: α(K)exp=0.0046 11 (1988Ki04).
594.85 3	594.896	11.6 6	M1,(E2)	Mult.: α(K)exp=0.0046 6 (1988Ki04).
x632.47 7		2.6 2		
666.6 1	1261.57	0.8 2		
670.19 13	833.10	1.7 2	M1	Mult.: $\alpha(K)\exp=0.0036 \ 8 \ (1988Ki04)$.
717.99 5	924.72	3.5 2		
727.25 10	883.82	4.4 4	7.4	7. 1. (T)
728.98 3	728.99	16.7 6	E1	Mult.: α(K)exp=0.00100 9 (1988Ki04).
×758.88 3	1001 46	7.8 3	M1	Mult.: α(K)exp=0.0024 5 (1988Ki04).
765.06 4	1221.48	7.8 3	M1	Mult.: $\alpha(K)\exp=0.0025 \ 4 \ (1988Ki04)$.
x824.18 5		3.6 2	M1 (E0)	M-14 . a(V) and 0 0000 5 (1000V:04)
x836.26 4 856.22 6	1062.96	8.75 3.83	M1,(E2)	Mult.: $\alpha(K)\exp=0.0020 \ 5 \ (1988Ki04)$.
918.89 8	918.82	3.8 3		
×930.27 11	310.02	2.7 2		
1054.92 10	1261.57	4.0 3		
1062.92 7	1062.96	11.2 8	E2	Mult.: α(K)exp=0.00083 13 (1988Ki04).
	1260.47	2.3 4		
1260.51 11				

 $[\]begin{tabular}{lll} \dot{T} From 1988Ki04, unless otherwise noted. \\ \dot{T} From $\alpha(K)$ exp in 1988Ki04, unless otherwise noted. \\ x γ ray not placed in level scheme. \\ \end{tabular}$

$^{110} Pd (^{7}Li, 5n\gamma) \\ \phantom{^{110}Pd (^{7}Li, 5n\gamma)} \\ \phantom{$

2012Li51,2011He04,2010He09: Facility: CIAE HI-13 tandem; Beam: $E(^7\text{Li})$ =40-50 MeV; Target: 2.4 mg/cm² enriched to 97.2% in ^{110}Pd , 0.4 mg/cm² Au backing; Detectors: 12 HPGe detectors with anti-Compton shields, two planar HPGe; Measured: γ , γ - γ , γ - γ (θ) coinc. E γ , I γ ; Deduced: γ -ray Mult., J π , level scheme, excitation function. Also, from the same collaboration: 2010He23, 2009Li66.

¹¹²In Levels

E(level) [†]	Jπ [‡]	E(level) [†]	$J\pi^{\ddagger}$	E(level)	$J\pi^{\ddagger}$
0.0	1+@	3191.0 9	(12-)	4393.1& 10	(16-)#
156.61 3	4+@	3261.3 8	(14-)#	4409.1 ⁱ 11	(15-)
162.98 9	(5)+ [@]	3293.1° 7	(12+)	4452.1e 21	(16+)
350.91a 9	(7)+@	3296.1d 7	(12+)	4551.1° 22	(16+)
613.92 10	(8)-@	3327.1f 8	(12-)	4551.6 f 13	(16-)
623.92 10	(7+) [@]	3348.1 ^h 8	(13-)	4587.9 ^b 12	(17+)#
669.9a 4	8 + #	3368.7b 8	(14+)#	4677.4 10	(16-)
675.79 10	(6+) [@]	3378.1g 11	(13-)	4750.7 ^d 11	(16+)
800.8 4	(9-)#	3391.1e 12	(13+)	4758.1h 20	(17-)
821.83 11	(5+) [@]	3457.9 j 17	(15-)§	4823.1 ⁱ 14	(16-)
1006.93 11	(4+)@	3523.1° 12	(13+)	4917.1e 24	(17+)
1286.44 12	$(2,3,4)$ $-^{@}$	3564.2f 9	(13-)	5062.4 12	(17-)
1389.0	(10-)#	3581.1d 12	(13+)	5072.8d 11	(17+)
1754.9 ^a 4	(9+) [#]	3605.3 9	(15-)#	5167.1 ^h 22	(18-)
2012.04	(10-)#	3640.9b 10	(15+) [#]	5235.9 ^j 22	(19-)§
2070.9j 8	(11-)§	3645.1h 9	(14-)	5273.1 ⁱ 17	(17-)
2113.1 6 5	(11-)#	3685.1e 16	(14+)	5295.6 ^b 13	(18+)#
2115.2ª 4	(10+)#	3769.3f 12	(14-)	5535.8 ^d 12	(18+)
2375.1 7	11-	3853.1° 16	(14+)	5636.1h 24	(19-)
2441.1 8		3855.1 12	(14-)	5774.1 i 20	(18-)
2493.1 8	(11-)	3863.1g 13	(14-)	6033.6 ^b 14	(19+)#
2652.9j 13	(13-)§	3991.1 ^h 14	(15-)	6057.8d 16	(19+)
2665.3& 6	(12-)#	4033.9b 11	(16+)#	6155.9 ^j 24	(21-)§
2756.1g 8	(12-)	4038.1 ^d 16	(14+)	6323.1 i 22	(19-)
2802.1a 4	(11+)#	4064.1e 19	(15+)	6371h 3	(20-)
2964.1 6	(12-)	4104.5f 13	(15-)	6410.8d 19	(20+)
3062.2 ^b 5	(12+)#	4166.5 ^d 12	(15+)	6848.8 ^d 21	(21+)
3102.0 % 7	(13-)#	4170.1° 19	(15+)	6860.1 ⁱ 24	(20-)
3126.0 7	(13-)#	4204.1g 14	(15-)	7148 j 3	(23-)§
3154.1 ^h 7	(12-)	4354.1 ^h 17	(16-)	8328 j 3	(25-)§
3190.5 ^b 7	(13+)#	4390.9j 19	(17-)§		

- † From a least-squares fit to Ey, unless otherwise noted.
- ‡ From 2010He09, unless otherwise noted.
- $\$ From 2012Li51, based on $\gamma-ray$ Mult. and the band structure.
- $^{\#}$ From 2011HeO4, based on $\gamma\text{-ray}$ Mult. and the band structure.
- @ From the adopted levels.
- & (A): $\Delta J=1$ band based on 8-; band head configuration= $\pi(1g_{9/2})^{-1}\otimes \nu(1h_{11/2})^{+1}.$
- a (B): $\Delta J=1$ band based on 7+; band head configuration= $\pi(1g_{9/2})^{-1}\otimes v(1g_{7/2})^{+1}$.
- $b \ \ (C): \ \Delta J = 1 \ \ band \ \ based \ \ on \ \ (12+); \ \ band \ \ head \ \ configuration = \pi (1g_{9/2})^{-1} \otimes \nu (1h_{11/2})^{+2} (1g_{7/2})^{+1}.$
- c (D): $\Delta J=1$ band based on (12+).
- d (E): $\Delta J=1$ band based on (12+).
- e (F): $\Delta J=1$ band based on (13+).
- f (G): $\Delta J=1$ band based on (12-). g (H): $\Delta J=1$ band based on (12-).
- b (H): $\Delta J = 1$ band based on (12-)
- h (I): $\Delta J=1$ band based on (12-).
- i (J): ΔJ =1 band based on (15-).
- $\text{$\dot{j}$ (K): $\Delta J=2$ band based on (11-); band head configuration} = \pi (1g_{9/2})^{-2} 1(g_{7/2})^{+1} \otimes \nu (1h_{11/2})^{+1}.$

$\gamma(^{112}\mathrm{In})$

${f E}\gamma^{\dagger}$	E(level)	Ιγ‡	Mult.§	Comments				
(6.30 [@] 5)	162.98	100						
51.87@ 3	675.79							
102	3293.1							
128.3 # 5	3190.5	51 3	(M1)	Mult.: DCO=1.03 10 (2011He04).				
	Continued on next page (footnotes at end of table)							

$^{110}Pd(^{7}Li,5n\gamma) \qquad 2012Li51,2011He04,2010He09 \ (continued)$

$\gamma(^{112}{\rm In})$ (continued)

$\underline{\hspace{1cm}} E\gamma^{\dagger}$	E(level)	$-1\gamma^{\ddagger}$	Mult.§	Comments
135.4 # 5	3261.3	6.7 8	(M1)	Mult.: DCO=1.20 <i>13</i> (2011He04).
146.04 [@] 3	821.83	0.7 8	(MII)	Mult DCO=1.20 13 (2011HeO4).
156.61@ 3	156.61			
159.3 # 5	3261.3	13.6 12	(M1)	Mult.: DCO=1.23 11 (2011He04).
178.3 # 5	3368.7	50.1 19	(M1)	Mult.: DCO=1.00 8 (2011He04).
$185.10^{@}$ 3	1006.93			
186.8 # 5	800.8	135 5		
$187.93^{@}$ 3	350 . 91			
194	3348.1			
205	3769.3			
230	3523.1			
237 260.0# 5	3564.2	50 0 04	(3/51.)	M. I. DOO 1.00 6 (0011H-04)
263.01 [@] 3	3062.2 613.92	50.0 24	(M1)	Mult.: DCO=1.03 6 (2011He04).
272.2# 5	3640.9	52.0 19	(M1)	Mult.: DCO=0.97 7 (2011He04).
273.01@3	623.92	52.0 15	(MII)	Mult.: DOO-0.01 7 (2011He04).
279.51 [@] 3	1286.44			
288	3581.1			
290	2665.3			
294	3685.1			
297	3645.1			
317	4170 . 1			
319.0 # 5	669.9	83 6	M1	Mult.: DCO=0.42 15 (2011He04).
322	5072.8			
326	2441.1			
329	3293.1			
330	3853.1			
332 335	3296.1 4104.5			
341	4204.1			
344.0# 5	3605.3	14.7 10	(M1)	Mult.: DCO=1.06 8 (2011He04).
346	3991.1		(===)	
353	6410.8			
360.1# 5	2115 . 2	5.3 4	(M1)	Mult.: DCO=1.10 15 (2011He04).
361	2802 . 1			
363	3327 . 1			
	4354 . 1			
379	4064.1			
381	4551.1			
385	5062.4			
388 393.0# <i>5</i>	4452.1	99 5	(M1)	Mult.: DCO=0.90 10 (2011He04).
404	4033.9 4758.1	38 5	(M1)	Multo DOG-0.30 10 (2011He04).
409	5167.1			
414	4823.1			
427	3391.1			
436.7 # 5	3102.0	25 3	(M1)	Mult.: DCO=1.05 10 (2011He04).
438	6848.8			
447	4551.6			
450	5273 . 1			
457	4038.1			
460.7# 5	3126.0	22.1 24	(M1)	Mult.: DCO=0.98 7 (2011He04).
463	5535.8			
465	4917.1			
469 477	5636.1 3855.1			
485	3863.1			
491	3293.1			
494	3296.1			
501	5774.1			
519	3645.1			
521	5072.8			
522	6057.8			
			Continue	d on next page (footnotes at end of table)

$^{110}Pd(^{7}Li,5n\gamma) \qquad 2012Li51,2011He04,2010He09 \ (continued)$

$\gamma(^{112}{\rm In})$ (continued)

$\underline{\hspace{1cm} E\gamma^{\dagger}}$	E(level)	Ιγ‡	Mult.§	Comments
537	6860.1			
549	6323 . 1			
552.1# 5	2665.3	41 6	(M1)	Mult.: DCO=0.98 7 (2011He04).
554	4409.1			
554.0# 5	4587.9	8.0 4	(M1)	Mult.: DCO=0.80 11 (2011He04).
582& 1	2652.9		E2&	Mult.: DCO=1.52 6 (2012Li51).
588.2# 5	1389.0	149 9	(M1)	Mult.: DCO=0.62 10 (2011He04).
619	4823.1			
622	3378.1			
643	2756.1			
661	3154.1		(MI) &	Malka DOO 110 5 (00101151)
682&	2070.9		(M1)&	Mult.: DCO=1.18 5 (2012Li51).
683 686.8 [#] 5	3348.1	26 5 14	(M1)	Male . DCO - 0.00 5 (2011Ha04)
707.7# 5	2802.1 5295.6	36.5 14 $9.5 10$	(M1) (M1)	Mult.: DCO=0.92 5 (2011He04). Iγ: uncertainty quoted in 2011He04 is 0.1, which seems unrealistically small.
101.1" 5	3293.0	9.5 10	(WII)	The evaluators assign 1.0.
				Mult.: DCO=0.88 16 (2011He04).
724.1# 5	2113.1	100	(M1)	Mult.: DCO=0.70 14 (2011He04).
735	6371	100	(1111)	Maio BOO=0.70 17 (201111004).
738.0# 5	6033.6	1.0 2	(M1)	Mult.: DCO=0.86 18 (2011He04).
764	4409.1	1.0 2	(1111)	Mate BOO=0.00 10 (201111004).
779	3154.1			
787.8# 5	4393.1	9.6 8	(M1)	Mult.: DCO=0.54 13 (2011He04).
790.0# 5	2802.1	7.0 5	(E1)	Mult.: DCO=0.92 18 (2011He04).
800	3293.1			
805& 1	3457.9		E2&	Mult.: DCO=1.86 13 (2012Li51).
808	3564.2			
845& 1	5235.9		(E2)&	Mult.: DCO=1.29 19 (2011Li51).
920& 1	6155.9		E2&	Mult.: DCO=2.21 41 (2012Li51).
933& 1	4390.9		E2&	Mult.: DCO=2.01 11 (2012Li51).
947.1#5	3062 . 2	5.9 4	(E2)	Mult.: DCO=1.32 14 (2011He04).
949.2 # 5	3062.2			
952	2964.1			
973	3348.1			
976	4166.5			
986	2375 . 1			
992& 1	7148		[E2]&	
1041	3154.1			
1047.4 # 5	2802.1	8.8 7	(E2)	Mult.: DCO=1.69 14 (2011He04).
1072	4677.4			
1084.8# 5	1754.9	13.0 10	(M1)	Mult.: DCO=0.75 11 (2011He04).
1104	2493.1		. Do 18	
1180& 1	8328		[E2]&	
1181 1183	3296.1			
1214	3296.1 3327.1			
1270&	2070.9		(E2)&	Mult.: DCO=1.28 25 (2012Li51).
1276.4# 5	2665.3	18.4 21	(E2)	Mult.: DCO=1.28 25 (2012L151). Mult.: DCO=1.46 11 (2011He04).
1312.2# 5	2113.1	36 4	(E2)	Mult.: DCO=1.7 4 (2011He04).
1367	2756.1	30 T	(==)	
1382	4750.7			
1398.0# 5	2012.0	19 3	(E2)	Mult.: DCO=1.7 4 (2011He04).
1404.1# 5	1754.9	32 3	(E2)	Mult.: DCO=1.60 7 (2011He04).
1412.9# 5	2802.1	1.6 2	•	
1416	4677.4			
1432	5072.8			
1445.4 # 5	2115 . 2	65 4	(E2)	Mult.: DCO=1.50 4 (2011He04).
1457	5062.4			
1502	5535.8			
1575	2964.1			
1765	3154 . 1			
	3191.0			

 $Footnotes\ continued\ on\ next\ page$

¹¹⁰Pd(⁷Li,5nγ) 2012Li51,2011He04,2010He09 (continued)

$\gamma(^{112}In)$ (continued)

† From 2010He09, unless otherwise noted.

 $\ensuremath{^\ddagger}$ From 2011HeO4, unless otherwise noted.

§ From 2011He04, unless otherwise noted; DCO=1.0 or 1.50 for stretched dipole and quadrupole transitions, respectively. Although,

no information on the gating transition is given by the authors.

 $^{\#}$ From 2011HeO4; $\Delta E \gamma$ not given by the authors, but estimated by the evaluators.

@ From the adopted gammas.

& From 2012Li51.

¹¹⁰Cd(α,npγ) 1973FrYM,1972BrYL

Beam: α ; Target: 110 Cd; Measured: γ , $\gamma(t)$, ce; Deduced: γ -ray mult., 112 In level scheme, $T_{1/2}$.

¹¹²In Levels

Wrongly placed γ -rays in 1973FrYM. Level scheme corrected by the evaluators to account for the adopted decay patterns.

E(level) [†]	Jπ [‡]	$T_{1/2}^{\ddagger}$	Comments
0.0	1+		
156.61 3	4+		
162.98 9	(5)+		
206.6 10	(2)+		
350.74	(7) +	$0.69~\mu s~5$	$ m T_{1/2}$: 2.7 μs 2 in 1972BrYL is inconsistent with the adopted half-life.
613.6 11	(8)-	$2.81~\mu s$ 3	$ m T_{1/2}$: $ m 1.6~\mu s~\it 2$ in $ m 1972BrYL$ is inconsistent with the adopted half-life.
691 9 11	(7+)		

 $^{^\}dagger$ From a least-squares fit to Ey; levels energies in 1973FrYM and 1972BrYL corrected by the evaluators.

 $\gamma(^{112}In)$

$\underline{\hspace{1cm}}^{}$	E(level)	Ιγ†	Mult.†	Comments
(6.30 5)	162.98			Eγ: from the adopted gammas.
156.61 3	156.61			Eγ: from the adopted gammas.
187.7 3	350.7	100	E 2	Mult.: $\alpha(K)\exp(187.7\gamma)/\alpha(K)\exp(155.5\gamma)=0.166$ 21 (1973FrYM).
206.6	206.6	8.6 9		
262.9	613.6	203 10	M2	Mult.: $\alpha(K) \exp(262.9\gamma)/\alpha(K) \exp(155.5\gamma) = 0.158$ 12 (1973FrYM).
273.5	624 . 2	14 2		

[†] From 1973FrYM.

¹¹⁰Cd(α,d) 1978SaZL,1978SaZM

 $E(\alpha) {=}\, 35.6$ MeV; Measured: $\sigma(\theta);$ Deduced: ^{112}In levels.

¹¹²In Levels

E(level) [†]	E(level) [†]	E(level)
0.0	680	1270
157	730	1345
354	790	1395
420	920	1470
560	1005	1590
620	1060	1800

 $^{^{\}dagger}~\Delta E$ are not given by the authors.

[‡] From the adopted levels.

¹¹¹Cd(³He,d) 1978EmZT

Beam: $E(^3He)=33.6$ MeV; Target: 50 $\mu g/cm^2$, enriched to 96.5% in ^{111}Cd and evaporated onto 40 $\mu g/cm^2$ carbon foil; Detectors: Colorado energy-loss spectrometer, FWHM=18 keV; Measured: $\sigma(\theta)$; Deduced: ^{112}In level scheme, L, S, DWBA. $J\pi(^{111}Cd)=1/2+$.

¹¹²In Levels

E(level)†#	t	$(2J+1)C^2S^{\S}$	Comments
0.0			
157	4	7.62,3.88	E(level): large (2J+1)C ² S suggests possible doublet structure for this level.
725	2	0.20,0.15	•
915	1	0.43,0.21	
955	2	0.24,0.17	
1056	4	1.44,0.74	
1212	1	0.21,0.10	
1338	0	0.56,0.56	
1398	2	0.27,0.20	
1435	2	2.43,1.78	
1473	2	1.51,1.07	
1488	2, 0+2		S=0.56,0.41 for L=2; S=0.05+0.45, 0.05+0.033 for L=0+2.
1529	2	0.33,0.24	
1608	0	0.18	
1631	0+2 , $0+4$		S=0.04+0.11, 0.04+0.09 for L=0+2, 0.04+1.05, 0.04+0.62 for L=0+4.
1678	2	0.67,0.50	
1708	2	0.45, 0.33	
1741	2	0.13, 0.10	
1777	2	0.18, 0.13	
1872	2	0.15, 0.11	
1955	2	$0\;.\;4\;4\;,\;0\;.\;3\;3$	
2067	2	0.81, 0.60	
2172	2	0.46, 0.34	
2234	0+2		S=0.29+1.13, 0.29+0.93.

- † From 1978EmZT.
- ‡ From 1978EmZT, based on DWBA.
- § Given for J=L-1/2 and J=L+1/2, respectively.
- # $\Delta E {\approx} 5$ keV estimated by the evaluators.

¹¹²Cd(p,nγ) 1988Ki04,1976Io04,1980Ad04

- 1988Ki04: Facility: Jyvaskyla cyclotron; E(p)=4.8 MeV; Target: 1.6 mg/cm²; Detectors: two Ge(Li), one Si(Li), superconducting solenoid magnet; Measured: E γ at $\theta=125^{\circ}$ with respect to the beam axis, I γ , Ice, E(ce); Deduced: 112 In level scheme, $\alpha(K)$ exp, $\alpha(L)$ exp, J π , α , γ -ray Mult.; Also from the same collaboration: 1987KiZX, 1986TiZZ.
- 1976Io04, 1976Io05: Facility: Bucharest Tandem accelerator and cyclotron; Beam: E(p)=5.7-11 MeV; Target: Isotopically enriched in 112 Cd; Detectors: NaI(Tl), Ge(Li), Si(Li); Measured: E γ , I γ (θ ,H,t), γ (t), γ - γ (t); Deduced: 112 In level scheme, J π , mult, g-factor, $T_{1/2}$.
- 1983Ko12, 1980Ad04: Facility: Tokyo Institute of Technology, 4 MV Van de Graaff; Beam: E(p)=3.75-4.75 MeV; Target: self-supported targets, 1.9 mg/cm² and 1.2 mg/cm² enriched to 97% in 112 Cd; Detectors: LEPS, two Ge(Li), Compton polarimeter, consisting of two HPGe detectors; Measured: γ , γ - γ coinc., γ - γ (0), $E\gamma$, $I\gamma$; Deduced: 112 In level scheme, $J\pi$, Q(p,n), linear polarization (p_{exp}), DCO coeff. A_2 and A_4 , δ , $T_{1/2}$.

Others: 1979EmZX, 1978EmZT, 1978SaZM, 1973FrYM, 1972BrYL.

¹¹²In Levels

E(level) [†]	Jπ [‡]	${\tt T_{1/2}} \S$	Comments
0.0#	1+	14.88 min 15	T _{1/2} : From adopted levels.
156.56 6	4+	20.67 min 8	$ ext{T}_{1/2}$: From adopted levels. configuration: $\pi(1g_{9/2})^{-1} \otimes \text{v}(3s_{1/2})^{+1}$.
162.91 7	(5)+		
206.70# 4	2+		
350.84 10	7+	0.69 µs 5	E(level): 343.3 in 1976Io04.
			$J\pi$: 6+ in 1976Io04.
			g: +0.675 6 from DPAD in 1976Io04.

$^{112}\mathrm{Cd}(p,n\gamma)$ 1988Ki04,1976Io04,1980Ad04 (continued)

$^{112}{ m In}$ Levels (continued)

E(level) [†]	$J\pi^{\ddagger}$	T _{1/2} §	Comments
456.44# 4	3+		
562.73 8	5+		
592.11# 7	4+		
594.89 [@] 5	2+		
613.78 2 13	(8)-	2.81 µs 3	E(level): 606.0 in 1976Io04.
			T _{1/2} : 2.81 µs 6 in 1976Io05.
			g: +0.385 4 from DPAD in 1976Io04.
624.45	7 (–)		
676.32	(6)-		
728.95 5	(1) - , 2 -		Jπ: 1+,2 in 1983Ko12.
729.83 5	3+		configuration: $\pi(1g_{9/2})^{-1} \otimes v(2d_{3/2})^{+1}$.
795.27# 11	5+		Jπ: 5(-) in 1983K012.
822.30 4 11	(5-)		
$883.71^{@}6$	3+		
918.83 5	(2)-		Jπ: 1-,2+ in 1983Ko12.
924.65 5	(3)-		
928.65 6	(0)-		
1007.44	(4-)		
1037.78 8	(0)-		
1062.87 5	1+,(2)+		Jπ: 1-,2+ in 1983Ko12.
1150.34 9	≥3		
1212.15 10	≤ 4 —		
1212.236	≤3		
1221 . 61 9	(3, 4) +		
1250.85 7	(2, 3) +		
1260.409	≤3-		
1261.47 7	≤ 4 +		
1279.674	(1, 2, 3) +		
1286.29 7	≤3-		
1286.93& 13	(3-)		

- † From a least-squares fit to Eγ. ‡ From 1988Ki04, unless otherwise noted. § From 1976Io04, unless otherwise noted.

- # Member of the $\pi(1g_{9/2})^{-1}\otimes v(1g_{7/2})^{+1}$ split multiplet.

 @ Member of the $\pi(1g_{9/2})^{-1}\otimes v(2d_{5/2})^{+1}$ split multiplet.

 & Member of the $\pi(1g_{9/2})^{-1}\otimes v(2d_{5/2})^{+1}$ split multiplet.

$\gamma(^{112}{\rm In})$

$\underline{\hspace{1cm}} E\gamma^{\dagger}$	E(level)	$\underline{\hspace{1cm}}_{I\gamma^{\dagger}}$	Mult.‡	δ\$	Comments
(6.30 # 5)	162.91	100			
51.87# 3	676.32	0.94 12			
x99.69 8		0.35 6			
135.63 8	592.11	4.3 1	M1		Mult.: $\alpha(K)\exp=0.20 \ 4 \ (1988Ki04)$.
					Mult.: $A_2 = -0.287 \ 52$; $A_4 = 0.005 \ 66 \ (1983 \ \text{Ko} 12)$.
					Mult.: possible E2 admixture with δ =-0.01 10 (1983Ko12).
138.37 8	594.89	0.36 3			
x142.81 8		0.34 3			
145.99 8	822.30	2.95 10	M1		
149.46 8	1212.23	0.37 3			
156.57 8	156.56	4.2 2	M3		Mult.: $\alpha(K)\exp=5.4\ 5$; $\alpha(L)\exp=1.36\ 12\ (1988Ki04)$.
185.15 8	1007.44	2.4 1	M1		Mult.: $\alpha(K)\exp=0.07 \ 1 \ (1988Ki04)$.
187.95 8	350.84	3.3 2	E 2		Mult.: $\alpha(K)\exp=0.11 \ 1 \ (1988Ki04)$.
					$I(187.8\gamma)/I(262.7\gamma)=1.32$ 4 (1976Io04).
					187.87 decays to 162-keV level and not to 155.5-keV level as stated by 1976Io04.
189.86 8	918.83	1.8 1			
195.73 8	924.65	4.0 2	M1		Mult.: α(K)exp=0.073 6 (1988Ki04).
199.73 8	928.65	0.14 4			
203.16 8	795 . 27	0.89 5	$\mathrm{M1}\left(+\mathrm{E}2\right)$	+0.01 11	${\rm Mult.:\ A_2 = -0.238\ 69;\ A_4 = 0.033\ 91\ (1983 {\rm Ko}12)}.$
			Continued o	n next page (foot	notes at end of table)

¹¹²Cd(p,nγ) 1988Ki04,1976Io04,1980Ad04 (continued)

$\gamma(^{112}{\rm In})$ (continued)

Εγ [†]	E(level)	Ιγ†	Mult.‡	δ§	Comments
206.71 8	206.70	100 4	M1		Mult.: $\alpha(K)\exp=0.072~6$; $\alpha(L)\exp=0.0075~6$; $\alpha(M)\exp=0.0013~1$ (1988Ki04).
					Mult.: $A_2 = -0.130 \ 4$; $A_4 = 0.022 \ 6 \ (1983 \text{Ko} 12)$.
					$\delta :$ possible E2 admixture with $\delta \text{=-}0.03$ 12 or -0.05 5
					(1983Ko12).
214.18 8	1221.61	0.56 4			75 1. (77)
223.51 8	1286.29	1.40 8	E1		Mult: α(K)exp=0.019 5 (1988Ki04).
249.67 8	456.44	25.2 4	M1		Mult.: α(K)exp=0.041 3; α(L)exp=0.0054 10; α(M)exp=0.0013 3 (1988Ki04).
262.94 8	613.78	2.8 1	E1+M2	+0.09 4	Mult.: A_2 =-0.203 9; A_4 =-0.007 11 (1983Ko12). Mult.: $\alpha(K)$ exp=0.014 3 (1988Ki04).
202.94 8	013.76	2.6 1	E 1 +W12	+0.09 4	δ: from PAC data in 1987Iw04.
273.49 8	729.83	1.16 6			
273.62 8	624 . 45	1.16 6			
279.49 8	1286.93	0.78 4	M1		Mult.: from the adopted gammas.
283.56 8	1212.23	0.37 4			
287.54 8	1212.23	1.56 6			
288.81 8	883.71	6.3 2	M1+E2	+0.05 3	Mult.: α(K)exp=0.024 5 (1988Ki04).
					$\begin{aligned} & \text{Mult.: } \text{ A_2=-0.171 } \text{ $I4$; } \text{ A_4=0.006 } \text{ $I8$ } \text{ $(1983$Ko$12)}. \\ & \text{Mult.: } \text{ p_{exp}=-0.35 } \text{ 6 } \text{ $(1983$Ko$12)}. \end{aligned}$
291.5 2	883.71	0.2 1			•
293.32 8	1212 . 15	2.4 1	E2,M1		Mult.: $\alpha(K)\exp=0.030\ 5\ (1988Ki04)$.
323.87 8	918.83	8.2 4	E 1		Mult.: $\alpha(K)\exp=0.006\ 2\ (1988Ki04)$.
326.15 8	1250 . 85	2.0 1	E 1		Mult.: α(K)exp≤0.012 (1988Ki04).
333.11 8	1062.87	0.92 6			
367.37 8	1286.29	1.12 6			
385.5 2	592.11	0.16 5			
388.16 8	594.89	11.4 4	M1		Mult.: $\alpha(K) \exp = 0.0127$ 12 (1988Ki04). Mult.: $A_2 = 0.156$ 25, $A_4 = -0.020$ 30 (1983Ko12) or $A_2 = 0.134$ 10, $A_4 = 0.006$ 13 (1983Ko12).
					Mult.: possible E2 admixture with δ =-0.03 12 or -0.05 5 (1983Ko12).
399.84 8	562.73	0.60 5	M1,E2		
406.15 8	562.73	1.29 6	M1,E2		
421.39 8	1150.34	0.52 5			
427.29 8	883.71	0.65 6			
429.2 1	592.11	0.5 1			
456.45 8	456 . 44	0.39 7			
468.15 8	924 . 65	0.85 6			
483.25 8	1212 . 23	1.04 7			
521.94 8	1250 . 85	11.3 9			
522.29 8	728.95	11.3 9			
523.13 8	729.83	6.1 3			N. 1. (TT)
531.45 8	1260.40	1.2 2	M1, E2	0.10.7	Mult.: α(K)exp=0.006 2.
573.25 8	729.83	63 6	M1+E2	+0.10 5	Mult.: $\alpha(K) \exp = 0.0039$ 15 (1988Ki04). Mult.: $A_2 = -0.154$ 19; $A_4 = 0.056$ 25 (1983Ko12).
F04 0F 0	FO: 00	0.7	M1 70	0.10.0	Mult.: p _{exp} =-0.10 10 (1983Ko12).
594.87 8	594.89	37.4 17	M1+E2	+0.10 3	Mult.: $\alpha(K)\exp[-0.0045 \ 4 \ (1988Ki04)$. Mult.: $A_2=-0.082 \ I1$, $A_4=0.032 \ I4 \ (1983Ko12)$ or $A_2=-0.069 \ 5$,
					A_4 =0.042 6 (1983Ko12). Mult.: p_{exp} =-0.19 4 (1983Ko12).
					Muit.: p _{exp} =-0.19 4 (1983Ko12). δ: Also: 0.09 (1983Ko12).
666.5 1	1261.47	0.47 7			0. 1100. 0.00 (1000H012).
717.90 8	924.65	7.8 3	E1		Mult.: α(K)exp=0.009 1 (1988Ki04).
	221.00				Mult.: $A_2=0.159$ $I9$; $A_4=0.009$ 25 (1983Ko12). Mult.: $p_{exp}=-0.24$ II (1983Ko12).
727.16 8	883.71	4.0 2			• exp
728.96 8	728.95	28.1 10	E1+M2	+0.13 +5-7	Mult.: $\alpha(K) \exp = 0.00099 \ 15 \ (1988 Ki 04)$. Mult.: $A_2 = -0.092 \ 18$, $A_4 = 0.004 \ 23 \ (1983 Ko 12)$ or $A_2 = -0.079 \ 7$,
					A_4 =0.010 9 (1983Ko12). Mult.: p_{exp} =0.21 7 (1983Ko12); Also: 0.11 3 (1983Ko12). δ: Also: 0.11 2 (1983Ko12).
765.15 8	1221.61	1.6 1	M1		Mult.: from the adopted gammas.

¹¹²Cd(p,nγ) 1988Ki04,1976Io04,1980Ad04 (continued)

$\gamma(^{112}In)$ (continued)

$\underline{\hspace{1cm}} E\gamma^{\dagger}$	E(level)	$\underline{\hspace{1cm}} I\gamma^{\dagger}$	Mult.‡	δ\$	Comments
x774.5 1		0.34 6			
823.22 8	1279.67	1.4 2			
856.21 8	1062.87	3.6 2	M1		Mult.: $\alpha(K)\exp=0.002$ 4 (1988Ki04).
					Mult.: A_2 =0.148 67, A_4 =-0.062 82 (1983Ko12); Possible E2 admixture with δ =0.0 -3+95 (1983Ko12).
918.81 8	918.83	7.72	E 1		Mult.: $\alpha(K)\exp=0.00063$ 7 (1988Ki04).
					${\rm Mult.:}\ {\rm A_2=0.086\ 20;}\ {\rm A_4=0.029\ 27\ (1983Ko12)}.$
					Mult.: $p_{exp} = -0.20 \ 10 \ (1983 \text{Ko} 12)$.
					Mult.: possible M2 admixture with δ =0.00 12 (1983Ko12).
928.59 8	928 . 65	$7.1\ 2$	E 1		Mult.: $\alpha(K)\exp=0.00057$ 6 (1988Ki04).
					Mult.: A ₂ =0.016 18; A ₄ =0.028 24 (1983Ko12).
					Mult.: $p_{exp} = -0.21 \ 9 \ (1983 \text{Ko} 12)$.
1037.77 8	1037.78	5.9 2	E 1		Mult.: $\alpha(K)\exp=0.00044$ 6 (1988Ki04).
1054.82 8	1261.47	1.7 1	M1,E2		Mult.: α(K)exp=0.0010 2 (1988Ki04).
1062.94 8	1062.87	20.4 8	M1+E2	+0.16 5	Mult.: $\alpha(K)\exp=0.00088$ 12 (1988Ki04).
					Mult.: A ₂ =-0.036 14; A ₄ =0.023 19 (1983Ko12).
					Mult.: $p_{exp} = -0.32 \ 7 \ (1983 \text{Ko} 12)$.
1073.01 8	1279.67	1.6 1	M1,E2		Mult.: $\alpha(K)\exp=0.0011 \ 2 \ (1988Ki04)$.
x 1 1 3 1 . 7 1		2.3 3			
x1138.62 8		1.1 2			
x1191.31 8		1.1 2			
1260.53@ 5	1260.40				Eγ: from 1983Ko12. Not observed by 1988Ki04.
1279.65 5	1279.67				Eγ: from 1983Ko12. Not observed by 1988Ki04.

 $^{^{\}dagger}$ From 1988Ki04, unless otherwise noted.

¹¹²Cd(d,2nγ) 1973FrYM,1972BrYL,1976Io02

1973FrYM, 1972BrYL: Beam: pulsed, E(d) not given; Measured: γ, γ(t), ce; Deduced: ¹¹²In level scheme, Jπ. 1976Io02: Facility: NIPNE U-120 cyclotron; Beam: E(d)=12 MeV, pulsed; Target: polycrystalline metallic target enriched in ¹¹²Cd; Detectors: two Na(I); Deduced: ¹¹²In level scheme, Q from DPAD analysis, conf.; Also, from the same collaboration: 1993Io02.

¹¹²In Levels

Wrongly placed γ -rays in 1973FrYM. Level scheme corrected by the evaluators to account for the adopted decay patterns.

E(level)	$\underline{\hspace{1cm} J\pi^{\ddagger}}$	T _{1/2} [‡]	Comments
0.0	1+	14.88 min 15	
155.5 10	4+	20.67 min 8	
161.9 10	(5)+		
206.6 10	(2)+		
349.6 15	(7)+	0.69 μs 5	$T_{1/2}{:}~2.1~\mu s~2$ from $188\gamma(t)$ in $1972BrYL$ and $1.48~\mu s$ from $187\gamma(t)$ in $1973FrYM$ differ significantly from the adopted value.
			Q: 1.03 3 from TDPAD in 1993Io02.
$456.2\ 15$	(3)+		
591.8 18	(4)+		
612.5 18	(8)-	2.81 μs 3	$T_{1/2}{:}~1.6~\mu s~2$ from $263\gamma(t)$ in $1972BrYL$ and $1.25~\mu s$ from $263\gamma(t)$ in $1973FrYM$ differ significantly from the adopted value.
			Q: 0.093 6 from DPAD analysis in 1976Io02.
			configuration: $(\pi g_{9/2})^{-1} \otimes (v h_{11/2})^n$ (19761002).
623.1 18	(7+)		
674.9 18	(6+)		
			Continued on next page (footnotes at end of table)

 $^{^{\}ddagger}$ Based on $\alpha(K)exp$ in 1988Ki04 and $A_2,$ and A_4 in 1980Ko12.

 $[\]S$ From 1983Ko12, unless otherwise noted. Note: Rose and Brink phase conversion (PC) was used by the authors. Here, δ correspond to the Steffen's PC, according to the ENSDF policy.

[#] From the adopted gammas.

[@] Placement of transition in the level scheme is uncertain.

 $^{^{}x}$ γ ray not placed in level scheme.

112Cd(d,2nγ) 1973FrYM,1972BrYL,1976Io02 (continued)

¹¹²In Levels (continued)

E(level)†	Jπ‡
820.8 20	(5+)
1006.3 23	(4+)
1285.4 25	(2,3,4)-

 † From a least-squares fit to Ey.

‡ From the adopted levels.

 $\gamma(^{112}In)$

$\underline{\hspace{1cm}} E\gamma^{\dagger}$	E(level)	Ιγ [†]	Mult.‡	Comments
(6.30 5)	161.9			Eγ: From the adopted gammas.
(51.87 3)	674.9			Eγ: From the adopted gammas.
135.6	591.8	15 2		
145.9	820.8	19 2		
155.5	155.5			
185.5	1006.3	9.29		
187.7	349.6	100	E 2	Mult.: $\alpha(K)\exp(187.7\gamma)/\alpha(K)\exp(155.5\gamma)=0.166$ 21 (1973FrYM).
206.6	206.6	75 4		
249.6	456 . 2	34 4		
262.9	612.5	55 6	M2	Mult.: $\alpha(K)\exp(262.9\gamma)/\alpha(K)\exp(155.5\gamma)=0.158$ 12 (1973FrYM).
273.5	623.1	7.5 8		
279.1	1285.4	2.5 3		

† From 1973FrYM.

 $\dot{\bar{\tau}}$ From 1973FrYM, based on $\alpha(K) exp$ measurements.

$^{113}In(\gamma,xn)$ 2010Ra01,1975Ku10

2010Ra01: Facility: Pohlang Accelerator Lab Linac; Beam: $E(\gamma)=40-70$ MeV from pulsed beam of electrons impinging 0.1 mm thick W target with an area of 100 mm x 100 mm; Sample: high-purity ^{nat}In; Detectors: one HPGe; Measured: Ey, Iy, activation; Deduced: Isomeric ratio (IR).

1975Ku10: Facility: Allis-Chalmers betatron at Milwaukee School of Engineering; Beam: Bremsstrahlung from E(e)=25 MeV; Target: In foils, placed 50 cm after the Pt target at the betatron; Detectors: one Ge(Li); Measured: γ , $E\gamma$, $\gamma(t)$; Deduced: IT, Isomeric ratio (IR), $T_{1/2}$.

Others: 2008Ma25, 2008Zh29, 1998Ko24, 1993PaZS, 1983Vi02.

¹¹²In Levels

E(level) [†]	$\frac{J\pi^{\ddagger}}{}$	$T_{1/2}^{\ddagger}$
0.0	1+	14.88 min 15
156 6	4.1	20 67 min 9

 $IR=Y_m/Y_g=3.9\ 3,\ 4.5\ 3\ and\ 4.9\ for\ E(\gamma)=50,\ 60,\ and\ 70\ MeV\ in\ 2010Ra01,\ respectively.\ Here\ Y_m\ and\ Y_g\ are\ the\ isomeric\ and\ the\ ground\ state\ yields,\ respectively.\ Others:\ 0.77\ \emph{1}\ for\ E=16\ MeV\ in\ 2008Ma25.$

Comments

 † From Ey.

‡ From the adopted levels.

 $\gamma(^{112}In)$

 $\frac{E\gamma^{\dagger}}{156.6} \qquad \frac{E(level)}{156.6}$

† From 2010Ra01.

113In(p,d) 1978EmZT

1978EmZT: Beam: E(p)=27.3 MeV; Target: 140 $\mu g/cm^2$ enriched to 96.4% in ^{113}In and evaporated on 40 $\mu g/cm^{12}$ carbon foil; Detectors: Colorado ΔE spectrometer, FWHM=12 keV; Measured: $\sigma(E,\theta)$; Deduced: level scheme, L, S from DWUCK4. $J\pi(^{113}In)=9/2+$.

¹¹²In Levels

0.0 4 0.03,0.05 configuration: $(\pi 1g_{9/2})^{-1} \otimes (v 1g_{7/2})^{-1}$. 157 0 0.39 Unresolved doublet with $J\pi = 4+,5+$ (1978EmZT).	
c: , , , , , , , , , , , , , , , , , , ,	
configuration: $(\pi \lg_{9/2})^{-1} \otimes (v \lg_{1/2})^{-1}$.	
206 $2+4$ C^2S : 0.03 (L=2), 0.10 or 0.15 (L=4).	
356 2 0.54, 0.63	
456 2+4 C^2S : 0.06 (L=2), 0.20 or 0.28 (L=4).	
563 2 $0.11, 0.13$	
595 2(+4) C^2S : 0.295 or 0.366 (L=2), 0.407 or 0.581 (L=4).	
622 4 0.27, 0.39	
672 4 0.48, 0.65	
794 2(+4) 0.04,0.06	
832 2+4 C ² S: 0.39 or 0.49 (L=2), 0.47 or 0.69 (L=4).	
886 2 0.31, 0.40	
923 0+2 C ² S: 0.016 (L=0), 0.07 or 0.09 (L=2).	
1003 2 0.14,0.18	
$C^2S: 0.015 (L=0), 0.42 \text{ or } 0.52 (L=2).$	
1213 2(+0) E(level): possible doublet.	
C^2S : 0.012 (L=0), 0.76 or 0.95 (L=2).	
1249 0+2 C^2S : 0.031 (L=0), 0.26 or 0.32 (L=2).	
1340	
1374	
1401	
1438	
1531	
1554	
1593	
1676	
1738	
1783	

- † From 1978EmZT.
- ‡ From 1978EmZT, based on DWUCK4 analysis of the $d\sigma/d\Omega$ distributions.
- $\$ Given for two possible values: J=L+1/2 and J=L-1/2. C^2S =(1/N)(2J+1) $\sigma_{exp}/\sigma_{DWBA},$ N=2.29.

¹¹³In(d,t) 1967Hj03

Facility: University of Pittsburgh cyclotron; Beam: E(d)=15 MeV; Target: 0.55 mg/cm² thick, enriched to 96% in $^{113}\mathrm{In}$; Detectors: 60° magnetic wedge spectrograph, photographic plates; Measured: $d\sigma/d\Omega$ at 45° ; Deduced: $^{112}\mathrm{In}$ level scheme, DWBA, L, S, J π , reaction Q - value. $J\pi(^{113}\mathrm{In})=9/2+$.

¹¹²In Levels

E(level)		E(level) [†]	L [‡]	E(level) [†]	
0.0	(4)#	648 15	(2)#	1047?	
147 15	0	711?		1117 15	(2)#
339 15	(2)#	742 15	(2)#	1202 15	(2)#
447 9 15	(2)#	866	(2)#	1322 15	(2)#
525?		963 15	(2)#		
501 15	(2+1)#	996 15	(2)#		

- † From 1967Hj03. $\Delta E{\approx}15$ keV for well resolved peaks.
- ‡ From 1967Hj03, based on $d\sigma/d\Omega$ and DWBA analysis.
- $\$ Possible doublet.
- # Discrepant angular distributions data. All curves are alike in 1967Hj03.

Adopted Levels, Gammas

 $Q(\beta^-) = -7057 \ 18; \ S(n) = -10788 \ 5; \ S(p) = -7554 \ 4; \ Q(\alpha) = -1828.3 \ 12 \quad 2012 Wa38.$

BC E

BC E H

BC EFGHI

MNO

MNO

>2.4 ps

0.42 ps 14

LMN

2150.87 5

2476.16 11

2520.70 7

4+

2+

$^{112}\mathrm{Sn}$ Levels

Cross Reference (XREF) Flags

B ¹¹² Si C Coul D ¹¹² Si E ¹¹² Si		H I J K	$\begin{array}{l} 103Rh(^{12}C,p2n\gamma) \\ 100Mo(^{16}O,4n\gamma),^{98}Mo(^{16}O,\\ 100Mo(^{20}Ne,\alpha 4n\gamma) \\ 110Cd(^{3}He,n\gamma),^{112}Cd(^{3}He,3) \\ 113In(p,2n\gamma) \\ 112Sn(p,p'\gamma) \end{array}$	O Others:
E(level) [†]	Jπ	XREF	$T_{1/2}^{\ddagger}$	Comments
0.0\$ 1256.69\$ 4	0+ 2+	ABCDEFGHI JKLMNO BCDEFGHI JKLMNO	stable 0.376 ps 5	XREF: K(1258)O(1250)O(1260). Jπ: L(p,t)=2; 1256.68γ E2 to 0+. $T_{1/2}$: from B(E2)↑ in Coulomb excitation. Others: 0.451 ps 28 from DSAM in 2011Ju01 and 0.37 ps +7-6 in from DSAM in 2007Or04 (note that the value was initially reported as 0.52 ps +9-6, but it was retracted by the authors. B(E2)↑: 0.240 3, weighted average of 0.242 8 (2011Ku05,2010Ku07), 0.240 20 (2007Va22), 0.229 5 (1975Gr30), and 0.256 6 (1970St20). Other: 0.240 14 (1987Ra01), weighted average of the data in 1975Gr30 and 1970St20. β_2 =0.143 5 (for r_0 =1.26 fm) (1980Bl07). Other: 0.152 10

				(1981Jo03).
2190.81 6	0+	C E H LMNO	≥2.7 ps	XREF: H(2186.9)N(2192)O(2200).
				$J\pi$: $L(p,t)=0,L(^3He,n)=0$; 2190.9 E0 transition to 0+,
				934.12γ E2 to 2+.
				$T_{1/2}$: From B(E2) $\uparrow \le 0.029$.
2247.39 8 6	4+	BC EF HIJKLMNO	3.3 ps 5	XREF: K(2251.0)N(2248)O(2260).
				$J\pi$: $L(p,t)=4$; $L(p,p')=4$; 990.69γ E2 to 2+.
				$T_{1/2}$: from B(E2)(2+ to 4+)=0.032 5 in Coulomb
				excitation (1981Jo03).
				μ: +1.5 7 from g-factor=+0.38 18 in 2011Wa15.
2354 . 21 6	3 –	BC EF H LMNO	0.215 ps 14	XREF: B(2355.0)N(2355)O(2360)O(2350).
				$J\pi \colon \ L(p,p') = 3; \ L(p,t) = 3; \ L(\alpha,\alpha') = 3; \ 1097.38\gamma \ E1 \ to \ 2+.$
				$T_{1/2}$: From DSAM in 2011Ju01; Other: 0.35 +14-8 ps from
				DSAM in 112 Sn(n,n' γ) (2005Ku28).
				$\beta_3 {=} 0.146~5$ (for $r_0 {=} 1.26~\text{fm})$ (1980Bl01). Other: 0.203 15
				(1968Ma34).

1.4 ps 4

(1968Ma34).

+0.7 3 in 1980Ha19. Q: -0.09 10 in 1975Gr30.

 $\mu\colon$ +0.21 7 from g-factor=+0.104 35 in 2011Wa15. Other:

 $J\pi\colon$ L(p,p')=2; 2150.9 γ E2 to 0+ and 894.17 γ M1+E2 to 2+.

 $T_{1/2}$: from B(E2) \uparrow =0.00065 20 in Coulomb excitation

B(E3)=0.087 12 (1981Jo03) in Coulomb excitation (1981Jo03) and 0.050 10 in $^{112}Sn(\alpha,\alpha')$ (1970Br07). $\mu\colon -1.4$ 28 from g-factor=-0.48 92 in 2011Wa15.

 $T_{1/2} \colon$ from DSAM in $^{103}Rh(^{12}C,p2n\gamma)$ (1990ViZW). Other:

XREF: H(2474.8)M(2475)O(2500). $J\pi$: L(p,t)=2; 2475.8 γ E2 to 0+.

 $J\pi$: L(p,t)=4; 1264.07 γ E2 to 2+.

>0.8 ps in 112 Sn(n,n' γ) (2005Ku28).

XREF: I(2520.12)O(2530).

¹¹²Sn Levels (continued)

E(level) [†]	Jπ	XRE	F	${ m T}_{1/2}^{\ddagger}$	Comments
2549.22 14	6+	EF HI	JK MN	13.73 ns 8	XREF: K(2553.0)M(2550). $J\pi$: L(p,t)=6; 301.84 γ E2 to 4+. $T_{1/2}$: weighted average of of 13.9 ns 2 (1980Va13), 14.0 ns 4 (1969Ya05), 13.2 ns 4 (1981Go17) and 13.7 ns 1 (1981Va15) in $^{110}\text{Cd}(\alpha,2\pi\gamma)$ and 12.1 ns 15 (1989An14, 1988Pe17) and 13.6 ns 4 (1989An14) in
					 110Cd(³He,nγ), ¹¹²Cd(³He,3nγ). Other >0.5 ps from DSAM in ¹¹²Sn(n,n'γ) (2005Ku28). μ: +0.53 3 (1983Le18), +0.61 5 (1981Go17), and +0.2 2 (1981Va15). Q: 0.29 6 (1975Vi03).
					configuration: most likely a mixture between
2556.6 3	(2+)	В			$(\nu g_{7/2}^{-1}, \nu d_{5/2}^{-1})$ and $(\nu g_{7/2})^{-2}$. $J\pi$: 2556.6 γ to 0+; direct population in 112 Sb ϵ decay $(J\pi=(3+))$.
2617.62 18	0+	E	MN	>0.4 ps	Jπ: L(p,t)=0; 1360.92γ E2 to 2+. T _{1/2} : Other: >0.8 ps from B(E2)(0+ ->2+)<0.016 (1981Ba05).
2721.06 14	2+	в Е	MN	0.8 ps + 10 - 3	XREF: M(2723).
2756.02 9	3+	в Е	М	>0.8 ps	J π : L(p,t)=2; L(p,p')=2; 2721.6 γ E2 to 0+. XREF: M(2760).
2.00.02	0.	2 2	111	, v. o pv	$J\pi$: 1499.5γ M1(+E2) to 2+, 508.8γ M1+E2 to 4+.
2765.2 3	0+ to 4+	E E E E	MNIO	>1.0 ps	VDEE. D/0704 (\M/0506\)\(\O000\)
2783.66 14	4+	B EFGH1	MNO	0.32 ps 7	XREF: B(2784.6)M(2786)O(2800). $J\pi$: L(p,t)=4; L(p,p')=4; 1527.2 γ E2 to 2+.
					T _{1/2} : wt. average of 0.35 ps 14 in $^{103}{\rm Rh}(^{12}{\rm C},{\rm p2n\gamma})$ (1990ViZW) and 0.31 ps $+10-6$ in $^{112}{\rm Sn(n,n'\gamma)}$ (2005Ku28).
2860 2	4	D. E	M	. 0 . 6	VDEE. M(0015)
2913.07 21	4+	В Е	M	>0.6 ps	XREF: M(2915). Jπ: L(p,p')=4; 1656.3γ E2 to 2+.
2917.39 10	2+,3,4+	в Е		>1.1 ps	XREF: B(2918.0).
2926.82 18	6+	EF H	MN	>0.22 ps	$J\pi$: 669.9 γ to 4+, 767.0 γ to 2+. XREF: M(2928).
2020.02 10	0.	21 11		70.22 ps	$J\pi$: L(p,t)=6; 378.6 γ M1 to 6+.
2945.70 13	4+	B EF H	M	>1.1 ps	XREF: M(2947).
2966.63 8	2+	в Е	MN	0.5 ps +8-2	Jπ: L(p,p')=4; 1688.7γ E2 to 2+. XREF: M(2969)N(2966).
					J\pi: L(p,t)=2; 612.4 γ E1 to 3-; 1709.9 γ M1(+E2) to 2+ and 2966.6 γ E2 to 0+.
2969.31 6	0	E	0	0.29 ps +21-9	XREF: O(2970).
2986.4 3	0+	E	MN	>1.7 ps	XREF: $M(2989)N(2988)$. $J\pi$: $L(p,t)=0$; 1729.7 γ E2 to 2+.
3078.53 13	(2,3)+	В Е		>1.2 ps	Jπ: 927.7γ M1+E2 to 2+; 1821.8γ M1+E2 to 2+, and 831.1γ to 4+.
3092.21 10	2+	В Е	M	0.25 ps + 8 - 5	XREF: B(3093.3)M(3095). Jπ: L(p,p')=2; 3092.1γ E2 to 0+.
3113.54 15	0+ to 4+	E	M		XREF: M(3118).
3133.42 11	5 –	Е Н	MN	>1.0 ps	Jπ: 962.67 γ to 2+. XREF: H(3136.5)M(3137)N(3132).
3133.42 11	<i>3</i> –	EII	WIIV	>1.0 ps	J π : L(p,p')=5; L(p,t)=5; 779.3 γ E2 to 3-; 886.0 γ E1 to 4+.
3141.1 4		E			TDD 1/(2-1-2)(2-1-2)
3149.28 21	4+	в Е	МО	0.6 ps + 10 - 2	XREF: M(3152)O(3150). Jπ: L(p,p')=4; 1892.2γ E2 to 2+.
3248.69 10	2+	в Е	MN	>1.1 ps	XREF: M(3253).
3272.31 16	4+	E	MN	0.30 ps +21-10	J π : L(p,t)=2; 3248.1 γ E2 to 0+. XREF: M(3278)N(3275).
3283.60 21	2+	E	n		$J\pi$: $L(p,p')=4$; $L(p,t)=4$; 2016.1 γ E2 to 2+. XREF: $n(3286)$.
					$J\pi$: L(p,t)=2; 1036.2 γ to 4+.

¹¹²Sn Levels (continued)

E(level) [†]	J π	XREF		T _{1/2} ‡	Comments
3286.18 15	(2)+	в Е	n	0.22 ps +15-7	XREF: n(3286).
200.10 10	(2)+	ъ в	11	0.22 ps +10-1	$J\pi$: 2029.4 γ M1(+E2) to 2+ and 3286.2 γ to 0+; direct
					population in ¹¹² Sb ε decay (J π =(3+)).
288.0 3	(1,2+)	E	M		XREF: M(3292).
	. , .				$J\pi$: 1097.2 γ to 0+.
338.3 3	2+	E	N	>0.3 ps	XREF: N(3345).
				•	J π : 2081.6 γ M1+E2 to 2+; L(p,t)=2.
3353.1 4	2+	E		>1.4 ps	Jπ: 2096.4γ M1+E2 to 2+ and 3353.0γ E2 γ to 0+.
3354.38 15	(7)-	F HI	K M		XREF: H(3355.0)K(3360)M(3360).
					Jπ: 805.11γ E1 to 6+; yrast state, but 5- and 6- cannot
					unambiguously be excluded.
					configuration: possible vd _{3/2} h _{11/2} configuration.
378.9 3	0+ to 4+	E			Jπ: 1228.0γ to 2+.
384.30 22	(3)-	в Е	M	0.18 ps +8-5	XREF: M(3387).
				•	Jπ: 2127.50γ E1 to 2+, but 1- and 2- cannot
					unambiguously be excluded.
397.20 12	2-,3-	E		0.23 ps +10-6	J π : 1042.95 γ M1+E2 to 3- and 1246.6 γ to 2+.
400 3	4+		MN	• * * *	XREF: M(3402).
					$J\pi$: $L(p,t)=4$.
413.93# 12	6+#	EFGHI	N	0.6 ps 3	J π : L(p,t)=4,6; 1166.9 γ E2 to 4+; member of Δ J=2
				-	sequence.
					$T_{1/2}$: From DSAM in $^{103}Rh(^{12}C,p2n\gamma)$ (1990ViZW).
3417.41 <i>11</i>	4+	в Е	мо	>0.4 ps	XREF: M(3424)O(3430).
					J π : L(p,p')=4; 2160.7 γ E2 to 2+.
3430.65 22	(8)-	FGHI		0.61 ns 3	J π : 76.3 γ M1+E2 to (7)-; no transitions to the 6+
					states.
					$T_{1/2}$: weighed average of 0.58 ns 6 from $\gamma\gamma(t)$ in
					$^{110}\text{Cd}(\alpha, 2n\gamma)$ (1980Va13) and 0.62 ns 4 from recoil
					distance method in $^{100}\text{Mo}(^{16}\text{O},4\text{n}\gamma)$ (1986Ka25).
3433.9 5	(1-)	DE	M	1.9 fs +11-10	XREF: D(3434)M(3440).
					J π : 3433.3 γ (E1) to 0+; B(E1)=11.5 \times 10 ⁻⁵ 11 (2014Oz03),
					10.7×10^{-5} 12 (2006Py01).
445 3	4+		N		
3456.31 20	2+,3+	в Е		>0.7 ps	Jπ: 2199.6γ M1+E2 to 2+; direct population in $^{112}{\rm Sb}$ ε
					decay (Jπ=(3+)).
3471.7 3	4+	E	MN	>0.23 ps	XREF: M(3477)N(3481).
					$J\pi$: $L(p,t)=4$; 951.0 γ to 4+.
3494.00 21	2+ to 6+	E			Jπ: 1246.6γ to 4+.
499.21 16	5 –	E	MN	0.04 ps +4-2	XREF: M(3502)N(3510).
					$J\pi$: L(p,t)=5; 979.3 γ to 4+, 1144.2 γ to 3
520.45 20	1 to 4+	E	M		XREF: M(3522).
524.54 18	2+	B E		>0.12 ps	$J\pi\colon$ 1277.7 γ E2 to 4+; 3524.2 γ E2 to 0+.
530.15 14	2+,3,4+	B E	M		XREF: M(3532).
					$J\pi\colon380.8\gamma$ to 4+, 1379.6 γ to 2+.
553.7 3	(3)-	в Е	N	0.17 ps +11-6	J π : L(p,t)=3; 2297.0 γ to 2+.
557.29 12		E	M	>0.3 ps	XREF: M(3558).
570	(0)+		О		$J\pi$: $L(^3He,n)=0$.
580 5	(4)+		M		$J\pi$: $L(p,p')=4$.
586 3	(2)+		N		J π : L(p,t)=2.
8604.90 12		E			
610.97 11		E	M	0.8 ps +4-2	XREF: M(3611).
624 3	(2+,4+)		MN	-	$J\pi$: $L(p,p')=(2)$ in 1980Bl01 supports (2+), while
					L(p,t)=4 in (2012Gu10) supports 4(+).
631.03 24		E			
654.34 15	2+	E	MN		XREF: N(3663).
					J π : L(p,p')=2; 2397.6 γ M1+E2 to 2+.
693.68 22	(9)-	FGHI	M	47 ps 7	XREF: M(3695).
				-	J π : 263.03 γ M1+E2 to (8)
					T _{1/2} : From recoil-distance measurements in
					1/2 100Mo(¹⁶ O,4nγ) (1986Ka25); Other: 0.69 ps 14 in
					103 Rh(12 C,p2n γ) (1990ViZW).
726.22 21		E	MN		¹⁰³ Rh(¹² C,p2nγ) (1990ViZW). XREF: M(3737)N(3715).

¹¹²Sn Levels (continued)

	Jπ	XREF		‡	Comments
3782.9 3		E	MN		XREF: M(3773)N(3776).
3813.78 10	(2+,3+,4+)	В	MN		XREF: M(3815)N(3818).
010.70 10	(2+,0+,4+)	ь	MILA		J π : 1566.4 γ to 4+; direct population in ¹¹² Sb ϵ decay
					$(J\pi=(3+)).$
3832 7			M		
3857 7			M		
3877 7			MN		XREF: N(3874).
3914 7			MN		XREF: N(3930).
3988 7			M		
1031 7			MN		XREF: N(4048).
1054 7			M		
1077.59# 14	8+#	FGHI	MN	1.0 ps 4	XREF: M(4078)N(4091).
					$J\pi$: 663.66 γ E2 to 6+; band member.
					$T_{1/2}$: from DSAM in 103 Rh(12 C,p2n γ) (1990ViZW).
1105 7			M		- 1/2· · · · · · · · · · · · · · · · · · ·
141.3 5	(1-)	D	M		XREF: M(4138).
141.5 5	(1-)	Ь	IVI		
					$J\pi$: 4141.2 γ (E1) to 0+.
					$B(E1)=0.7\times10^{-5} \ 2 \ (2014Oz03).$
151 7			M		
162.3 5	(1-)	D	N		XREF: N(4164).
					$J\pi$: 4162.2 γ (E1) to 0+.
					$B(E1)=1.8\times10^{-5} \ 2 \ (2014Oz03).$
171 7	4(+)		M		$J\pi$: $L(p,p')=4$.
193 7			M		
222 7			M		
239 7			MN		XREF: N(4241).
1279 7			MN		XREF: N(4287).
	/ 1	D.			
1330.4 5	(1-)	D	MN		XREF: M(4325)N(4316).
					Jπ: 4330.3γ (E1) to 0+.
					$B(E1)=0.5\times10^{-5} \ 1 \ (2014Oz03).$
364 7			MN		XREF: N(4363).
1402 7			M		
437 7			M		
461 7			MN		XREF: N(4455).
502 7			MN		XREF: N(4486).
544 7			M		
1582.61 25	(10)-	FGHI	MN	0.24 ps 7	XREF: M(4571)N(4576).
.002.01 20	(10)	1 0111		0.21 ps /	Jπ: 1151.94γ E2 to (8)
					$T_{1/2}$: from DSAM in 103 Rh(12 C,p2n γ) (1990ViZW). Other:
					<21 ps from RDDS in ¹⁰⁰ Mo(¹⁶ O,4nγ) (1986Ka25).
610 7			MN		XREF: N(4629).
681.0 3	(10+)	HI	M		XREF: H(4680.2)M(4685).
					$J\pi$: 603.1 γ to 8+, 987.4 γ to (9)
726.5 5	(1-)	D	MN		XREF: M(4738)N(4724).
					$J\pi\colon4726.4\gamma$ (E1) to 0+.
					$B(E1)=0.3\times10^{-5}$ 1 (2014Oz03).
757 7			MN		XREF: N(4740).
794 7			M		
819.37# 22	10+#	FGHI	M	0.14 ps 7	XREF: M(4825).
		1 0111		P	Jπ: 741.8γ E2 to 8+; band member.
					$T_{1/2}$: from DSAM in 103 Rh(12 C,p2n γ) (1990ViZW).
1097 4 7	(1)	D			$T_{1/2}$: from DSAM in 100 Rh(12 C,p2n $^{\circ}$) (1990ViZW). J π : 4837.3 $^{\circ}$ (E1) to 0+.
837.4 5	(1-)	D			
					$B(E1)=0.7\times10^{-5} I (2014Oz03).$
850 7			M		
887 7			M		
928.9 4	(11)-	F HI	M	<21 ps	$J\pi\colon$ 1235.3 γ E2 to (9)-, 345.9 γ M1+E2 to (10)
					$T_{1/2}$: from recoil distance method in $^{100}{ m Mo}(^{16}{ m O},4{ m n\gamma})$
					(1986Ka25).
957 7			M		
057.1 5	(1-)	D	M		XREF: M(5059).
	, - ,	-			$J\pi$: 5057.0 γ (E1) to 0+.
					•
089 7			M		$B(E1)=3.0\times10^{-5} \ 3 \ (2014Oz03).$

¹¹²Sn Levels (continued)

E(level) [†]	Jπ	XRE	F	T _{1/2} ‡	Comments
5199 9 5	(1-)	D	M		XREF: M(5116).
5128.2 5	(1-)	Б	IVI		
					J π : 5128.1 γ (E1) to 0+.
			3.5		$B(E1)=4.2\times10^{-5} \ 4.$
5144 7			M		
5181 7		-	M		T TO 10 1 (T4) 1 0
5246.2 5	(1-)	D			J π : 5246.1 γ (E1) to 0+.
					$B(E1)=3.3\times10^{-5} \ 3 \ (2014Oz03).$
5270 7			M		
5355 7			M		
5480.5 5	(1-)	D			Jπ: 5480.4γ (E1) to 0+.
					$B(E1)=1.2\times10^{-5} \ 2 \ (2014Oz03).$
5502.6 5	(1-)	D			Jπ: 5502.5γ (E1) to 0+.
					$B(E1)=1.5\times10^{-5} \ 2 \ (2014Oz03).$
5564.3 [@] 3	12+	FGH	[0.66 ps 14	$J\pi$: 745.0 γ E2 to 10+; band member.
					$T_{1/2}$: from DSAM in $^{100}Mo(^{20}Ne, \alpha 4n\gamma)$ (2007Ga45). Other:
					$<0.14 \text{ ps in } ^{103}\text{Rh}(^{12}\text{C},p2n\gamma) \text{ (1990ViZW)}.$
5593.7 5	(1-)	D			$J\pi$: 5593.6γ (E1) to 0+.
					$B(E1)=0.7\times10^{-5} \ 1 \ (2014Oz03).$
5617.6 5	(1-)	D			$J\pi\colon5617.4\gamma$ (E1) to 0+.
					$B(E1)=0.6\times10^{-5} \ 1 \ (2014Oz03).$
5649.1 5	(1-)	D			$J\pi$: 5648.9 γ (E1) to 0+.
					$B(E1)=0.7\times10^{-5}$ 1 (2014Oz03).
5666.4 5	(1-)	D			J π : 5666.2 γ (E1) to 0+.
					$B(E1)=0.4\times10^{-5}$ 1 (2014Oz03).
5684.59 24	12+	F H	[Jπ: 865.2γ E2 to 10+.
5699.9 5	(1-)	D			Jπ: 5699.7 γ (E1) to 0+.
	(- /				$B(E1)=0.5\times10^{-5}$ 1 (2014Oz03).
5748.6 5	(1-)	D			$J\pi$: 5748.4 γ (E1) to 0+.
	, ,				$B(E1)=1.0\times10^{-5}$ 1 (2014Oz03).
5812.7 5	(1-)	D			$J\pi$: 5812.5 γ (E1) to 0+.
0012 0	(1)	2			$B(E1)=0.5\times10^{-5}$ 1 (2014Oz03).
5860.7 5	(1-)	D			$J\pi$: 5860.5 γ (E1) to 0+.
0000.1	(1)	Б			$B(E1)=2.3\times10^{-5}$ 4 (2014Oz03).
5884.0 5	(1-)	D			Jπ: 5883.8γ (E1) to 0+.
0001.0	(1)	2			$B(E1)=1.4\times10^{-5}$ 2 (2014Oz03).
5924.1 5	(1-)	D			$J\pi$: 5923.9 γ (E1) to 0+.
					$B(E1)=1.5\times10^{-5} \ 2 \ (2014Oz03).$
5976.6 5	(1-)	D			$J\pi$: 5976.4 γ (E1) to 0+.
	(- /				$B(E1)=1.7\times10^{-5}$ 2 (2014Oz03).
6005.0 10	(1-)	D			$J\pi: 6004.8\gamma \text{ (E1) to 0+.}$
	(- /				$B(E1)=3.2\times10^{-5}$ 3 (2014Oz03).
6059.8 10	(1-)	D			Jπ: 6059.6γ (E1) to 0+.
					$B(E1)=6.1\times10^{-5} \ 6 \ (2014Oz03).$
6080.9 10	(1-)	D			$J\pi$: 6080.7 γ (E1) to 0+.
					$B(E1)=0.9\times10^{-5}$ 2 (2014Oz03).
6096.9 10	(1-)	D			$J\pi$: 6096.7 γ (E1) to 0+.
					$B(E1)=3.6\times10^{-5}$ 2 (2014Oz03).
6129.0 10	(1-)	D			J π : 6128.8 γ (E1) to 0+.
		_			$B(E1)=1.4\times10^{-5}$ 2 (2014Oz03).
6150.4 10	(1-)	D			$J\pi$: 6150.2 γ (E1) to 0+.
					$B(E1)=3.4\times10^{-5}$ 3 (2014Oz03).
6168.3 10	(1-)	D			$J\pi$: 6168.1 γ (E1) to 0+.
	\ = /	-			$B(E1)=1.2\times10^{-5}$ 2 (2014Oz03).
6198.7 10	(1-)	D			Jπ: 6198.5γ (E1) to 0+.
	\ = /	-			$B(E1)=2.2\times10^{-5}$ 2 (2014Oz03).
6224.3 10	(1-)	D			$J\pi$: 6224.1 γ (E1) to 0+.
	\ = /	-			$B(E1)=3.7\times10^{-5}$ 3 (2014Oz03).
6246.4 10	(1-)	D			Jπ: 6246.2γ (E1) to 0+.
0210.T 10	(+)	D			$B(E1)=1.8\times10^{-5} \ 2 \ (2014Oz03).$
6259.1 10	(1-)	D			Jπ: 6259.1γ (E1) to 0+.
J200.1 10	(- /	ь			$B(E1)=1.5\times10^{-5} \ 2 \ (2014Oz03).$
6272.6 10	(1-)	D			$J\pi$: 6272.4 γ (E1) to 0+.
.2.2.0 10	(+)	2			$B(E1)=2.5\times10^{-5}$ 3 (2014Oz03).
					= (=1)-2.00.10 0 (20110200).

¹¹²Sn Levels (continued)

E(level) [†]	Jπ	XREF	‡	Comments
6313.3 10	(1-)	D		Jπ: 6313.1γ (E1) to 0+.
6348.7 10	(1.)	D		$B(E1)=2.9\times10^{-5} \ 3 \ (2014Oz03).$
6348.7 10	(1-)	Д		J π : 6348.5 γ (E1) to 0+. B(E1)=1.5 \times 10 ⁻⁵ 2 (2014Oz03).
6362.9@3	14+	HI	1.2 ps 3	$J\pi$: 798.6 γ E2 to 12+; band member.
			•	$T_{1/2}$: from DSAM in 100 Mo(20 Ne, $\alpha 4$ n γ) (2007Ga45).
6388.1 10	(1-)	D		Jπ: 6387.9γ (E1) to 0+.
6398.3& 5	(13-)	HI		B(E1)= 7.3×10^{-5} 5 (2014Oz03), 5.17×10^{-5} 2 (2008BoZK). XREF: H(6399.5).
				$J\pi$: 1469.4 γ to (11)-; band member.
6404 . 1 10	(1-)	D		$J\pi$: 6403.9 γ (E1) to 0+.
				$B(E1)=18.4\times10^{-5}$ 13 (2014Oz03), $B(E1)=8.47\times10^{-5}$ 3
6428.6 10	(1-)	D		(2008BoZK). Jπ: 6428.4γ (E1) to 0+.
0428.0 10	(1-)	Б		B(E1)=1.2×10 ⁻⁵ 2 (2014Oz03), B(E1)=4.89×10 ⁻⁵ 2
				(2008BoZK).
6450.0 10	(1-)	D		$J\pi\colon$ 6449.8γ (E1) to 0+.
				$B(E1)=1.2\times10^{-5} \ 2 \ (2014Oz03).$
6476.3 15	(1-)	D		Jπ: 6476.1γ (E1) to 0+. B(E1)=7.46×10 ⁻⁵ 4 (2008BoZK).
6520.7 10	(1-)	D		$B(E1)=7.46\times10^{-6}$ 4 (2008BoZK). $J\pi$: 6520.5 γ (E1) to 0+.
0020.1 10	(1)	D		$B(E1)=3.2\times10^{-5}$ 3 (2014Oz03).
6550.1 10	(1-)	D		$J\pi$: 6549.9 γ (E1) to 0+.
				$B(E1)=0.6\times10^{-5} \ 1 \ (2014Oz03).$
6601.0 10	(1-)	D		J π : 6600.8 γ (E1) to 0+.
6679.9 10	(1-)	D		B(E1)= 1.7×10^{-5} 2 (2014Oz03). J π : 6679.7 γ (E1) to 0+.
0079.9 10	(1-)	Б		$B(E1)=0.7\times10^{-5}$ 1 (2014Oz03).
6706.7 10	(1-)	D		J π : 6706.5 γ (E1) to 0+.
				$B(E1)=1.8\times10^{-5} \ 2 \ (2014Oz03).$
6715.0 10	(1-)	D		$J\pi$: 6714.8 γ (E1) to 0+.
6731.9 10	(1-)	D		B(E1)= 1.5×10^{-5} 6 (2014Oz03), 3.03×10^{-5} 1 (2008BoZK). Jπ: 6731.7γ (E1) to 0+.
6751.9 10	(1-)	D		B(E1)=2.7×10 ⁻⁵ 5 (2014Oz03), 2.66×10 ⁻⁵ 1 (2008BoZK).
6795.5 10	(1-)	D		J π : 6795.3 γ (E1) to 0+.
				$\label{eq:B(E1)=1.7} B(E1)=1.7\times 10^{-5}~2~(2014 {\rm Oz}03),~2.01\times 10^{-5}~1~(2008 {\rm BoZK}).$
6818.7 10	(1-)	D		J π : 6818.5 γ (E1) to 0+.
6824.2 10	(1-)	D		B(E1)=1.3×10 ⁻⁵ 2 (2014Oz03), 3.16×10 ⁻⁵ 1 (2008BoZK). J π : 6824.0 γ (E1) to 0+.
0824.2 10	(1-)	Б		$B(E1)=1.7\times10^{-5}$ 3 (2014Oz03).
6855.9 10	(1-)	D		$J\pi$: 6855.7 γ (E1) to 0+.
				$B(E1)=1.5\times10^{-5} \ 2 \ (2014Oz03).$
6871.2 10	(1-)	D		Jπ: 6871.0γ (E1) to 0+.
6941.2 10	(1-)	D		B(E1)= 1.7×10^{-5} 2 (2014Oz03). J π : 6941.0 γ (E1) to 0+.
0341.2 10	(1-)	ь		$B(E1)=3.1\times10^{-5}$ 3 (2014Oz03).
6961.5 10	(1-)	D		$J\pi\colon6961.3\gamma$ (E1) to 0+.
				$B(E1)=3.1\times10^{-5} \ 5 \ (2014Oz03).$
6982.7 10	(1-)	D		Jπ: 6982.5γ (E1) to 0+. B(E1)=2.1×10 ⁻⁵ 3 (2014Oz03).
7009.8 10	(1-)	D		$B(E1)=2.1\times10^{-5} 3 (2014O203).$ $J\pi: 7009.6\gamma (E1) to 0+.$
1000.0 10	(1)	D		$B(E1)=0.5\times10^{-5}$ 1 (2014Oz03).
7018.7 10	(1-)	D		$J\pi\colon\thinspace 7018.5\gamma$ (E1) to 0+.
				$B(E1)=0.7\times10^{-5} \ 1 \ (2014Oz03).$
7025.8 10	(1-)	D		Jπ: 7025.6γ (E1) to 0+. B(E1)=0.7×10 ⁻⁵ I (2014Oz03).
7043.1 10	(1-)	D		B(E1)=0.7×10 ⁻⁶ I (2014Oz03). Jπ: 7042.9 γ (E1) to 0+.
.010.1 10	(- /	2		$B(E1)=2.0\times10^{-5}$ 3 (2014Oz03).
7092.8 10	(1-)	D		$J\pi$: 7092.6 γ (E1) to 0+.
		_		$B(E1)=4.2\times10^{-5} \ 4 \ (2014Oz03).$
7167.2 10	(1-)	D		J π : 7167.0 γ (E1) to 0+. B(E1)=2.8 \times 10 ⁻⁵ 3 (2014Oz03).
				$D(E1)=Z.8\times 10^{-5}$ δ (2014OZ0 δ).

¹¹²Sn Levels (continued)

E(level) [†]	Jπ	XREF	T _{1/2} ‡	Comments
7198.2 10	(1-)	D		Jπ: 7198.0γ (E1) to 0+.
7207.1& 5	(15-)	ні		B(E1)= 4.4×10^{-5} 6 (2014Oz03), 2.66×10^{-5} 1 (2008BoZK). XREF: H(7208.5).
		_		Jπ: 808.8γ to (13-); band member.
7208.1 10	1 –	D		J π : 7207.9 γ (E1) to 0+. B(E1)=1.18×10 ⁻⁵ 1 (2008BoZK).
7214.2@3	16+	HI	0.55 ps 10	XREF: H(7213.0).
				$J\pi$: 851.3 γ E2 to 14+; band member.
7217.8 11	(1-)	D		$T_{1/2}$: from DSAM in 100 Mo(20 Ne, $\alpha 4$ n γ) (2007Ga45). J π : 7217.6 γ (E1) to 0+.
1211.8 11	(1-)	D		B(E1)= 1.89×10^{-5} 1 (2008BoZK).
7228.1 10	(1-)	D		$J\pi$: 7227.8 γ (E1) to 0+.
7040 4 14	(1)	D.		$B(E1)=1.2\times10^{-5}$ 2 (2014Oz03), 2.01×10^{-5} 1 (2008BoZK).
7248.4 14	(1-)	D		J π : 7248.1 γ (E1) to 0+. B(E1)=2.01×10 ⁻⁵ 1 (2008BoZK).
7311.1 10	(1-)	D		Jπ: 7310.8γ (E1) to 0+.
		-		$B(E1)=1.0\times10^{-5} \ 2 \ (2014Oz03).$
7389.9 10	(1-)	D		J π : 7389.6 γ (E1) to 0+. B(E1)=1.3×10 ⁻⁵ 2 (2014Oz03).
7438.6 10	(1-)	D		Jπ: 7438.3γ (E1) to 0+.
				$B(E1)=1.9\times10^{-5} \ 3 \ (2014Oz03).$
7444.1 10	(1-)	D		Jπ: 7443.8γ (E1) to 0+. B(E1)= 1.6×10^{-5} 3 (2014Oz03).
7468.3 10	(1-)	D		$J\pi$: 7468.0 γ (E1) to 0+.
				$B(E1)=1.3\times10^{-5} \ 3 \ (2014Oz03).$
7531.3 10	(1-)	D		$J\pi$: 7531.0 γ (E1) to 0+.
7537.2 10	(1-)	D		$B(E1)=2.9\times10^{-5}$ 4 (2014Oz03). $J\pi$: 7536.9 γ (E1) to 0+.
	(- /			$B(E1)=5.2\times10^{-5}$ 6 (2014Oz03).
7559.1 10	(1-)	D		Jπ: 7558.8γ (E1) to 0+.
7594.5 10	(1-)	D		B(E1)=2.1×10 ⁻⁵ 3 (2014Oz03). J π : 7594.2 γ (E1) to 0+.
7004.0 10	(1)	D		$B(E1)=1.3\times10^{-5}$ 2 (2014Oz03).
7615.3 10	(1-)	D		Jπ: 7615.0γ (E1) to 0+.
7859.5 10	(1-)	D		B(E1)=1.7×10 ⁻⁵ 3 (2014Oz03). J π : 7859.2 γ (E1) to 0+.
1000.0 10	(1-)	Б		$B(E1)=1.2\times10^{-5}$ 2 (2014Oz03).
7904.7 10	(1-)	D		Jπ: 7904.4γ (E1) to 0+.
7936.7 10	(1-)	D		B(E1)=1.1×10 ⁻⁵ 2 (2014Oz03). J π : 7936.4 γ (E1) to 0+.
1936.7 10	(1-)	D		B(E1)= 1.6×10^{-5} 2 (2014Oz03).
7988.2 10	(1-)	D		$J\pi\colon7987.9\gamma$ (E1) to 0+.
2020 7 10	(1)	D		B(E1)=3.4×10 ⁻⁵ 3 (2014Oz03). $J\pi$: 8020.4 γ (E1) to 0+.
8020.7 10	(1-)	D		3π : 8020.47 (E1) to 0+. $B(E1)=2.3\times10^{-5}$ 4 (2014Oz03).
8051.6 10	(1-)	D		Jπ: 8051.3γ (E1) to 0+.
		-		$B(E1)=2.2\times10^{-5} \ 3 \ (2014Oz03).$
8069.6 10	(1-)	D		J π : 8069.3 γ (E1) to 0+. B(E1)=2.6 \times 10 ⁻⁵ 4 (2014Oz03).
8083.0	(17-)	HI		XREF: H(8089.0).
	4.0			Jπ: 875.9γ to (15-); band member.
8147.1@4	18+	HI	0.34 ps +8-10	XREF: H(8145.0). Jπ: 932.9γ E2 to 16+; band member.
				$T_{1/2}$: from DSAM in 100 Mo(20 Ne, $\alpha 4n\gamma$) (2007Ga45).
8194.5 10	(1-)	D		$J\pi$: 8194.2 γ (E1) to 0+.
8218.2 10	(1-)	D		B(E1)=2.7×10 ⁻⁵ 4 (2014Oz03). $J\pi$: 8217.9 γ (E1) to 0+.
0210.2 10	(1-)	D		$B(E1)=1.4\times10^{-5} \ 2 \ (2014Oz03).$
8253.6 10	(1-)	D		$J\pi\colon\thinspace8253.3\gamma$ (E1) to 0+.
8448 6 10	(1)	D		$B(E1)=0.9\times10^{-5}$ 2 (2014Oz03).
8448.6 10	(1-)	D		J π : 8448.3 γ (E1) to 0+. B(E1)=0.7 \times 10 ⁻⁵ 2 (2014Oz03).

$^{112}\mathrm{Sn}$ Levels (continued)

E(level)	Jπ	XREF	‡	Comments
8568.9 10	(1-)	D		$J\pi$: 8568.5γ (E1) to 0+.
				$B(E1)=0.8\times10^{-5} \ 2 \ (2014Oz03).$
8600.4 10	(1-)	D		$J\pi$: 8600.0 γ (E1) to 0+.
				$B(E1)=0.5\times10^{-5} \ 2 \ (2014Oz03).$
8750.2 10	(1-)	D		$J\pi: 8749.8\gamma$ (E1) to 0+.
				$B(E1)=1.1\times10^{-5} 2 (2014Oz03).$
8823.4 10	(1-)	D		$J\pi$: 8823.0 γ (E1) to 0+.
				$B(E1)=1.2\times10^{-5} \ 3 \ (2014Oz03).$
9045.2 6	(19-)	HI		XREF: H(9051).
				$J\pi$: 962.2 γ to (17-); band member.
9050.5 10	(1-)	D		$J\pi$: 9050.1 γ (E1) to 0+.
				$B(E1)=1.6\times10^{-5}$ 4 (2014Oz03).
9095.3 10	(1-)	D		$J\pi$: 9094.9 γ (E1) to 0+.
				$B(E1)=1.0\times10^{-5} \ 2 \ (2014Oz03).$
9150.1 10	(1-)	D		$J\pi$: 9149.7 γ (E1) to 0+.
				$B(E1)=0.9\times10^{-5}$ 3 (2014Oz03).
9186.6@4	20+	HI	0.22 ps 6	XREF: H(9184).
			-	$J\pi$: 1039.5 γ E2 to 18+; band member.
				$T_{1/2}$: from DSAM in 100 Mo(20 Ne, $\alpha 4$ n γ) (2007Ga45).
9329.8 10	(1-)	D		$J\pi$: 9329.4 γ (E1) to 0+.
				$B(E1)=2.1\times10^{-5}$ 5 (2014Oz03).
10076.2 4 12	(21-)	HI		XREF: H(10082).
				$J\pi$: 1031.0 γ to (19-); band member.
10335.7@5	22+	HI	0.14 ps 4	XREF: H(10332).
			-	Jπ: 1149.1γ E2 to 20+; band member.
				T _{1/2} : from DSAM in ¹⁰⁰ Mo(²⁰ Ne,α4nγ) (2007Ga45).
11570.6@7	(24+)	I	<0.35 ps	$J\pi$: 1234.9 γ to 22+; band member.
			•	$T_{1/2}$: from DSAM in 100 Mo(20 Ne, $\alpha 4$ n γ) (2007Ga45).
12965.1?@ 13	(26+)	I		$J\pi$: 1395.0 γ to (24+); band member.
				• • • •

- † From a least-squares fit to Ey.
- $\dot{\ddagger}$ From DSAM in $^{112}Sn(n,n'\gamma)$ (2005Ku28), unless otherwise noted.
- $\$ Ground state band.
- Ground state band.
 Probable member of the ΔJ=2 sequence; configuration=πg_{9/2}⁻²⊗πg_{7/2}².
 (A): Probable member of a ΔJ=2 band on the 5564.3 (Jπ=12+) state; configuration=π[g_{9/2}⁻²g_{7/2}²]⊗νh_{11/2}².
 (B): Probable member of a ΔJ=2 band on the 6398.3 (Jπ=13-) state; configuration=π[g_{9/2}h_{11/2}]⊗νh_{11/2}².

$\gamma(^{112}\mathrm{Sn})$

E(level)	$\underline{\hspace{1cm}} E \gamma^{\dagger}$	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	Mult.§	䇧b	α	Comments
1256.69	1256.68 4	100	E2		8.05×10 ⁻⁴	Mult.: $\alpha(K)\exp = 0.00060~8$ in $^{110}\mathrm{Cd}(\alpha,2n\gamma)$ (1979Br07); $A_2 = 0.64~8$ and $A_4 = -0.82~8$ in Coulomb excitation (2011Wa15); Alternatively, $A_2 = 0.90~6$ and $A_4 = -0.71~6$ in Coulomb excitation (2011Wa15). $A_2 = 0.243~5$ and $A_4 = -0.048~9$ in $^{110}\mathrm{Cd}(\alpha,2n\gamma)$ (1979Br07); DCO=1.01 6 in $^{100}\mathrm{Mo}(^{20}\mathrm{Ne},\alpha 4n\gamma)$ (2007Ga45); Py=0.39 in $^{110}\mathrm{Cd}(\alpha,2n\gamma)$ (1979Br07) and +0.05 2 in $^{100}\mathrm{Mo}(^{20}\mathrm{Ne},\alpha 4n\gamma)$ (2007Ga45).
2150.87	894.17 4	100 1	M1+E2	-0.28 6	0.00199	B(E2)(W.u.)=14.96 20. Mult.: from γ(θ) in ¹¹² Sn(n,n'γ) (2005Ku28). B(M1)(W.u.)=0.017 5; B(E2)(W.u.)=1.4 7.
	2150.9 4	16.7# 11	E2		6 . 53×10^{-4}	Mult.: from γ(θ) in 2005Ku28. B(E2)(W.u.)=0.039 12.
2190.81	934.12 4	100	E2		1.50×10^{-3}	Eγ: 928 in ¹⁰⁰ Mo(¹⁶ O,4nγ), ⁹⁸ Mo(¹⁶ O,2nγ) (1988Ha20). Mult.: from γ(θ) in ¹¹² Sn(n,n'γ) (2005Ku28). B(E2)(W.u.)<9.2.
			Continued or	n next page (foot	tnotes at end of tab	le)

$\gamma(^{112}{\rm Sn})$ (continued)

E(level)	$\underline{\hspace{1cm}} E \gamma^{\dagger}$		Mult.§	䇧b	α	Comments
2190.81	2190.9 5		EO			I(γ+ce): 0.1455 21. Eγ,Mult.: from ce measurements in 112 Sn(p,p'γ) (1981Ba05). I(γ+ce): from Ice(K)(2190.9γ)/Ice(K)(934.12γ)= 0.55 10 in 112 Sn(p,p'γ) (1981Ba05), α(K)(934.12γ)=0.001301 19, Iγ934.12γ)=100 and $\Omega_{\rm K}/\Omega_{\rm T}$ =0.8942
2247.39	990.69 4	100	E2		1.31×10 ⁻³	$\begin{array}{lll} (2008\text{Ki}07). \\ E\gamma: \ 993 \ \ \text{in} & \ ^{113}\text{In}(\text{p},2\text{n}\gamma) & \ (1969\text{Ya}05). \\ \text{Mult.:} & \ \alpha(\text{K})\text{exp}=0.0014 \ \ \text{in} & \ ^{110}\text{Cd}(\alpha,2\text{n}\gamma) \\ & \ (1979\text{Br}07); \ \ A_2=0.236 \ \ 5 \ \ \text{and} \ \ A_4=-0.050 \ \ 9 \\ & \ \text{in} & \ ^{100}\text{Cd}(\alpha,2\text{n}\gamma) & \ (1979\text{Br}07); \ \ \text{DCO}=1.03 \ \ 5 \\ & \ \text{in} & \ ^{100}\text{Mo}(^{20}\text{Ne},\alpha 4\text{n}\gamma) & \ (2007\text{Ga}45); \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
2354 . 21	$203.2\ 2$		[E1]		0.0246	
2476.16	1097.38 7 286	100	E1		4.59×10^{-4}	Mult.: $A_2=-0.21$ 3 and $A_4=0.03$ 4 in $^{110}\mathrm{Cd}(\alpha,2\mathrm{n}\gamma)$ (1980Va13); $\mathrm{P}\gamma=0.34$ 9 in $^{110}\mathrm{Cd}(\alpha,2\mathrm{n}\gamma)$ (1980Va13); $\alpha(\mathrm{K})\mathrm{exp}<0.0005$ in $^{110}\mathrm{Cd}(\alpha,2\mathrm{n}\gamma)$ (1980Va13). B(E1)(W.u.)=0.00102 7. Ey: from $^{98}\mathrm{Mo}(^{16}\mathrm{O},2\mathrm{n}\gamma)$ (2003Wo15).
	1219.34 13	20.5 24	M1+E2	-0.54 7	9.77×10 ⁻⁴ 16	Mult.,δ: from γ(θ) in 112Sn(n,n'γ) (2005Ku28). B(M1)(W.u.)<0.00071; B(E2)(W.u.)<0.13.
	2475.8 3	100.0 24	E2		7 . 48×10^{-4}	Mult.: from $\gamma(\theta)$ in $^{112}\mathrm{Sn}(n,n'\gamma)$ (2005Ku28). B(E2)(W.u.)<0.066.
2520.70	1264.07 7	100	E2		7.96×10 ⁻⁴	Mult.: $\alpha(K)\exp=0.0007\ 2$ in $^{110}Cd(\alpha,2n\gamma)$ (1979Br07); $A_2=0.218\ 11$ and $A_4=-0.07\ 2$ in $^{110}Cd(\alpha,2n\gamma)$ (1979Br07); $P\gamma=0.53\ 8$ in $^{110}Cd(\alpha,2n\gamma)$ (1979Br07). B(E2)(W.u.)=13 5.
2549.22 2556.6	301.84 13	100	E2		0.0348	Mult.: $\alpha(K) \exp = 0.033 \ 5 \ in^{110} Cd(\alpha, 2n\gamma)$ $(1980 Va13); Also, A_2 = 0.220 \ 4 \ and$ $A_4 = -0.04 \ 1 \ in^{110} Cd(\alpha, 2n\gamma)(1980 Va13);$ $DCO = 1.11 \ 6 \ in^{100} Mo(^{20}Ne, \alpha 4n\gamma)$ $(2007 Ga45) \ and \ P\gamma = 0.31 \ 6 \ in^{110} Cd(\alpha, 2n\gamma) \ (1980 Va13) \ and \ +0.06 \ 3 \ in^{100} Mo(^{20}Ne, \alpha 4n\gamma) \ (2007 Ga45).$ $B(E2)(W.u.) = 0.496 \ 3.$
2617.62	2556.6 [#] 3 1360.92 17	100"	E 2		7.08 \times 10 ⁻⁴	Mult.: from $\gamma(\theta)$ in $^{112}Sn(n,n'\gamma)$
						(2005Ku28). B(E2)(W.u.)<9.4.
2721.06	1464.22 15	100# 4	M1+E2	0.17 10	7.38×10 ⁻⁴	Mult.,δ: from γ(θ) in ¹¹² Sn(n,n'γ) (2005Ku28). B(M1)(W.u.)=0.007 +3-7; B(E2)(W.u.)=0.08 +10-8.
	2721.6 3	15.9# 13	E2		8.28×10^{-4}	Mult.: from γ(θ) in ¹¹² Sn(n,n'γ) (2005Ku28). B(E2)(W.u.)=0.020 +8-20.
2756.02	234.8# 3	5.9# 6	[M1+E2]		0.0542	D(DD)(a.)=0.020 10 20.
	279.5# 2	4.0# 4	[M1+E2]		0.0343	
	401.3# 5 508.8° 3	2.6# 6	[E1] M1+E2	0.2 1	0.00406 0.00757	B(E1)(W.u.)<0.00011. Ey: 508.8γ seen in $^{112}{\rm Sn}(n,n'\gamma)$ (2005Ku28) and ${\rm I}\gamma(509)/{\rm I}\gamma(1499)$ =100/18.
	605.1 # 2	21.2 # 13	[M1+E2]		0.00500	
	1499.5# 1	100# 3	M1 (+E2)	≤0.08	7 . 18×10^{-4}	Mult.,δ: from γ(θ) in ¹¹² Sn(n,n'γ) (2005Ku28). B(E2)(W.u.)<0.014?

$\gamma(^{112}\mathrm{Sn})$ (continued)

1508.5 3	100				
	100				
					Eγ: from ⁹⁸ Mo(¹⁶ O,2nγ) (2003Wo15).
536 1527.2 2	100	E2		6.25 \times 10 ⁻⁴	Mult.: $A_2 = -0.09$ 3 and $A_4 = 0.7$ 2 in
1921.2 2	100	E 2		6.25×10 -	
					$^{110}\text{Cd}(\alpha, 2\text{n}\gamma) \ (1979\text{Br}07).$
	40.0				B(E2)(W.u.)=6.6 15.
392.8 5	12 3	[M1]		0.01440	Iy: Iy(392.3)/Iy(1656.7)=12.32% in $^{112}\mathrm{Sb}$ ϵ
					decay (1976Wi10,1975WiZX).
					B(M1)(W.u.)<0.049.
665.6 3	100 3	[M1]		0.00399	Eγ: not observed in 112 Sb ε decay
					(1976Wi10,1975WiZX).
					B(M1)(W.u.)<0.084.
1656.3 4	35 3	E2		5.99×10 ⁻⁴	Mult.: from $\gamma(\theta)$ in $^{112}\mathrm{Sn}(n,n'\gamma)$
					(2005Ku28).
	,,				B(E2)(W.u.)<0.56.
378.6 3	100	M1		0.01579	Mult.: $\alpha(K)\exp=0.017$ 3 in $^{110}Cd(\alpha,2n\gamma)$
					(1980Va13); A_2 =0.365 8 and A_4 =0.00 2 i
					$^{110}{ m Cd}(\alpha,2n\gamma)$ (1980Va13); Py=0.67 5 in
					$^{110}\mathrm{Cd}(\alpha,2\mathrm{n}\gamma)$ (1980Va13).
					B(M1)(W.u.)<1.8.
470					Ey: from $^{98}\text{Mo}(^{16}\text{O},2n\gamma)$ (2003Wo15).
794.52		E 2		$0\;.\;0\;0\;2\;1\;9$	Mult.: from $\gamma(\theta)$ in $^{112}Sn(n,n'\gamma)$
					(2005Ku28).
1688.7 3	100	E 2		5.96×10^{-4}	Mult.: $A_2=0.22$ 3 and $A_4=0.5$ 2 in
					$^{110}\mathrm{Cd}(\alpha,2\mathrm{n}\gamma)$ (1979Br07).
					B(E2)(W.u.)<1.2.
612.4 1	28# 2	E 1		1.50×10^{-3}	Iγ: 12 3 in 112 Sn(n,n'γ) (2005Ku28).
					Mult.: from $\gamma(\theta)$ in $^{112}Sn(n,n'\gamma)$
					(2005Ku28).
					B(E1)(W.u.)=0.00039 +16-39.
1709.9 4	100# 4	M1(+E2)	≤0.7	6.36×10^{-4} 12	Iy: 37 9 in 112 Sn(n,n'y) (2005Ku28).
					Mult.: from $\gamma(\theta)$ in $^{112}Sn(n,n'\gamma)$
					(2005Ku28).
					B(M1)(W.u.)>0.0033?; B(E2)(W.u.)<0.44?
2966.6 1	53# 4	E 2			Iy: 100 12 in 112 Sn(n,n'y) (2005Ku28).
					Mult.: from $\gamma(\theta)$ in $^{112}Sn(n,n'\gamma)$
					(2005Ku28).
					B(E2)(W.u.)=0.045 +19-45.
818.43 6					
	100				
		E2		5.94×10^{-4}	B(E2)(W.u.) < 0.67.
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		M1+E2	0.60 + 1 - 2	0 00176 3	Iγ: 100.0 19 in ¹¹² Sn(n,n'γ) (2005Ku28).
0212	0. 0		0.00 .1 2	0.00110	Mult., δ : from $\gamma(\theta)$ in ${}^{112}\mathrm{Sn}(n,n'\gamma)$
					(2005Ku28).
					B(M1)(W.u.)<0.0076; B(E2)(W.u.)<2.6.
1821 8 2	100# 4	M1 + E2	_1 3 +3-5	6 11×10 ⁻⁴ 10	Iy: 88.7 19 in ¹¹² Sn(n,n'y) (2005Ku28).
1021.0 2	100 4	MITEZ	-1.0 +0-0	0.11×10 10	Mult., δ : from $\gamma(\theta)$ in ${}^{112}\mathrm{Sn}(\mathrm{n,n'}\gamma)$
					(2005Ku28).
					(2005Ku28). B(M1)(W.u.)<0.00067; B(E2)(W.u.)<0.25.
1826 0 2	100# 2	M1 · Fo	_1 5 10	6 00 10-4 00	Mult., δ : from $\gamma(\theta)$ in ${}^{112}\mathrm{Sn}(\mathrm{n,n'}\gamma)$
1090.U Q	100 9	W11+E-Z	-1.0 1U	0.05×10 - 20	· · · · · · · · · · · · · · · · · · ·
					(2005Ku28).
2000 1 1	00 0# 10	E O		0 5410=4	B(M1)(W.u.)=0.003 4; $B(E2)(W.u.)=1.9 +9-1$
3092.1 I	26.2 [#] 19	EZ		9.54×10 ⁻⁴	Mult.: from $\gamma(\theta)$ in $^{112}Sn(n,n'\gamma)$
					(2005Ku28).
000 5- ::					B(E2)(W.u.)=0.052 +12-17.
					00 10-
779.3 2	16.3 12	E2		0.00229	Eγ: 782 in 98 Mo(16 O, 2 nγ) (2003Wo15).
					Mult.: from $\gamma(\theta)$ in $^{112}Sn(n,n'\gamma)$
					(2005Ku28). B(E2)(W.u.)<8.6.
	392.8 5 665.6 3 1656.3 4 669.9 1 767.0 2 378.6 3 470 794.5 2 1688.7 3 612.4 1 1709.9 4 2966.6 1 818.43 6 1712.61 6 1729.7 3 557.8 3 831.1 4 927.7 2 1821.8 2 1836.0 3 3092.1 1 962.67 14	392.8 5 12 3 665.6 3 100 3 1656.3 4 35 3 669.9 1 100# 15 767.0 2 11.8# 8 378.6 3 100 470 794.5 2 1688.7 3 100 612.4 1 28# 2 1709.9 4 100# 4 2966.6 1 53# 4 818.43 6 1712.61 6 100 1729.7 3 100 557.8 3 12.0# 8 831.1 4 8.8# 19 927.7 2 97# 3 1821.8 2 100# 4 1836.0 3 100# 3 3092.1 1 26.2# 19 962.67 14 100	392.8 5 12 3 [M1] 665.6 3 100 3 [M1] 1656.3 4 35 3 E2 669.9 1 100# 15 767.0 2 11.8# 8 378.6 3 100 M1 470 794.5 2 E2 1688.7 3 100 E2 612.4 1 28# 2 E1 1709.9 4 100# 4 M1(+E2) 2966.6 1 53# 4 E2 818.43 6 1712.61 6 100 1729.7 3 100 1729.7 3 100 557.8 3 12.0# 8 831.1 4 8.8# 19 927.7 2 97# 3 M1+E2 1821.8 2 100# 4 M1+E2 1836.0 3 100# 3 M1+E2 1836.0 3 100# 3 M1+E2 3092.1 1 26.2# 19 E2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

$\gamma(^{112}{\rm Sn})$ (continued)

E(level)	$\underline{\hspace{1cm} E\gamma^{\dagger}}$	Ιγ [†]	Mult.§	䇧b	α	Comments
3133.42	886.0 1	100.0 12	E1		6 . 91×10^{-4}	Mult., δ : from $\gamma(\theta)$ in $^{112}{\rm Sn}(n,n'\gamma)$ (2005Ku28).
						B(E1)(W.u.)<0.00036.
3141.1	990.24	100				
3149.28	901.8 6	24# 7	[M1+E2]		0.00197	***
	1892.2 5	100# 3	E2		6.03×10 ⁻⁴	Mult.: from $\gamma(\theta)$ in $^{112}\mathrm{Sn}(n,n'\gamma)$ (2005Ku28). B(E2)(W.u.)=1.0 +4-10.
3248.69	772.44 24	25.9# 19	[M1+E2]		0.00282	_(/(// = = =
	894.2 2	27# 19	[E1]		6.79 \times 10 ⁻⁴	$B(E1)(W.u.) < 5.7 \times 10^{-5}$.
	1097.4 2		[M1+E2]		1.27×10^{-3}	
	1992.25 12	22.9# 13	M1+E2		6 . 41×10^{-4}	Mult.: from γ(θ) in ¹¹² Sn(n,n'γ) (2005Ku28).
	3248.8 8	100.0 21	E2		1.01×10 ⁻³	Mult.: from $\gamma(\theta)$ in $^{112}\mathrm{Sn}(n,n'\gamma)$ (2005Ku28).
0050 01	1101 00 15	0.5.0	E.o.		1 00 10-3	B(E2)(W.u.)<0.025.
3272.31	1121.39 15	27 9	E2		1.00×10 ⁻³	Mult.: from $\gamma(\theta)$ in $^{112}\mathrm{Sn}(n,n'\gamma)$ (2005Ku28).
	2012 1 5	100.0	E.o.		0 04 10-4	B(E2)(W.u.)=7 + 4-6.
	2016.1 5	100 9	E2		6 . 24×10^{-4}	Mult.: from $\gamma(\theta)$ in $^{112}\mathrm{Sn}(n,n'\gamma)$ (2005Ku28). B(E2)(W.u.)=1.4 +5-10.
3283.60	1036.2 2	100				B(E2)(W.U.)=1.4 + 0-10.
3286.18	2029.4 2	84 5	M1(+E2)	≤0.4	6.45×10^{-4} 10	Mult.: from $\gamma(\theta)$ in $^{112}\mathrm{Sn}(n,n'\gamma)$ (2005Ku28).
						Iγ: 8 3 in ¹¹² Sn(n,n'γ) (2005Ku28). B(M1)(W.u.)>0.0047?; B(E2)(W.u.)<0.15?
	3286.2 2	100 3				
3288 . 0	1097.2 3	100				
3338.3	2081.6 3	100	M1+E2		6 . 5 4×10^{-4}	Mult.: from $\gamma(\theta)$ in $^{112}{\rm Sn}(n,n'\gamma)$ (2005Ku28).
3353.1	2096.4 4	9 3	M1+E2		6 . 57×10 ⁻⁴	Mult.: from $\gamma(\theta)$ in $^{112}\mathrm{Sn}(\mathrm{n,n'}\gamma)$ (2005Ku28).
	3353.0 5	100 3	E2		1.04×10^{-3}	Mult.: from $\gamma(\theta)$ in $^{112}\mathrm{Sn}(n,n'\gamma)$ (2005Ku28).
						B(E2)(W.u.) < 0.027.
3354.38	427.67@ 10	5.8@ 3	E1		0.00347	Mult.: A_2 =-0.20 2 and A_4 =0.07 4 in (1980Va13); $P\gamma$ =0.38 5 (1980Va13).
	805.11 [@] 7	100 [@] 6	E1		8.38×10 ⁻⁴	Eγ: 807 I in 113 In(p,2nγ) (1969Ya05). Mult.: α (K)exp=0.00070 I 5 in 110 Cd(α ,2nγ) (1980Va13); A_2 =-0.233 S and A_4 =-0.01 I in 110 Cd(α ,2nγ) (1980Va13); P γ=0.37 S in 110 Cd(α ,2nγ) (1980Va13) and +0.06 S in 100 Mo(20 Ne, α 4nγ) (2007Ga45); DCO=0.71 I 3 in 100 Mo(20 Ne, α 4nγ) (2007Ga45).
3378.9	1228.0 3	100				
3384 . 30	$467.2 ^{\#} 3$	16.1# 15				
	2127.3 3	100# 6	E1		8 . 44×10^{-4}	Mult.: from $\gamma(\theta)$ in $^{112}\mathrm{Sn}(n,n'\gamma)$ (2005Ku28).
3397.20	1042.95 11	72.4 17	M1+E2	1.8 12	0.00123 13	B(E1)(W.u.)= $0.00014 + 5-7$. B(M1)(W.u.)= $0.008 + 9-8$; B(E2)(W.u.)= $20 + 9-11$.
	1246.6 3	100 17				
3413.93	468.03@ 13	32 [@] 2	E2		0.00893	Mult.: $\alpha(K)\exp[-0.007\ 2\ in\ ^{110}Cd(\alpha,2n\gamma)$ $(1979Br07);\ A_2=0.32\ 6\ and\ A_4=-0.18\ 10$ $in\ ^{110}Cd(\alpha,2n\gamma)\ (1979Br07);\ P\gamma=0.49\ 8$ $in\ ^{110}Cd(\alpha,2n\gamma)\ (1979Br07).$ $B(E2)(W.u.)=180\ 100.$

$\gamma(^{112}\mathrm{Sn})$ (continued)

E(level)	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	Ιγ [†]	Mult.§	䇧b	α	Comments
3413.93	630.36 [@] 12	56 [@] 2	E2		0.00392	Mult.: $\alpha(K)\exp=0.0038~8$ in $^{110}Cd(\alpha,2n\gamma)$ (1979Br07); $A_2=0.34~2$ and $A_4=0.71~8$ in $^{110}Cd(\alpha,2n\gamma)$ (1979Br07); $P\gamma=0.71~8$ in $^{110}Cd(\alpha,2n\gamma)$ (1979Br07).
	893.2 [@] 2	38@ 12	E2		1 . 66×10^{-3}	B(E2)(W.u.)=70 40. B(E2)(W.u.)=9 6.
	1166.9 [@] 3	100@ 10	E 2		9 . 25×10^{-4}	Mult.: $\alpha(K)\exp=0.0009\ 4$ in $^{110}Cd(\alpha,2n\gamma)$ (1979Br07); $A_2=0.38\ 7$ and $A_4=-0.12\ 13$ in $^{110}Cd(\alpha,2n\gamma)$ (1979Br07); $P\gamma=0.8\ 2$ in $^{110}Cd(\alpha,2n\gamma)$ (1979Br07).
3417.41	2160.7 1	100	E2		6 . 56×10^{-4}	B(E2)(W.u.)=6 3. Mult.: from γ(θ) in ¹¹² Sn(n,n'γ) (2005Ku28). B(E2)(W.u.)<0.94.
3430.65	76.3@2	$100^{@}$	M1+E2	0.04 3	1.221 22	Mult.: A_2 =-0.15 2 (1980Va13); A_4 =-0.01 2 in $^{110}{\rm Cd}(\alpha,2{\rm n}\gamma)$ (1980Va13).
3433.9	3433.8a 5	100	(E1)a		1.50×10^{-3}	B(M1)(W.u.)=0.0365 19; B(E2)(W.u.)=8 +12-8. B(E1)(W.u.)=0.0038 +20-22.
3456.31	700.3# 6	22# 5	(E1)		1.50×10	B(E1)(W.u.)=0.0038 +20-22.
	2199.6#2	100# 6	M1+E2	2.8 10	$6\ .\ 6\ 7\!\times\!10^{-4}$	Mult.,δ: from ¹¹² Sn(n,n'γ) (2005Ku28). B(M1)(W.u.)<0.00045; B(E2)(W.u.)<0.38.
3471 . 7	951.0 3	100	[M1]		$1\;.\;75\!\times\!10^{-3}$	B(M1)(W.u.)<0.11.
3494.00	1246.6 2	100			F 00 10-4	D(D1)(W) 0.0007 14.07
3499.21	979.3 2 $1144.2 2$	54 5 $100 5$	[E1] [E2]		5.69×10^{-4} 9.63×10^{-4}	B(E1)(W.u.)=0.0027 +14-27. B(E2)(W.u.)=150 +80-150.
3520 . 45	1166.3 2 1369.0 6	100 0	[112]		3.00/10	B(B2)(W.a.)=100 100 100.
3524.54	431.9# 6	9.2# 14	[M1]		0.01136	B(M1)(W.u.)<0.16.
0021.01	1277.7# 5	22# 8	E2		7.82×10 ⁻⁴	Mult.: From ¹¹² Sn(n,n'γ) in 2005Ku28. B(E2)(W.u.)<7.2.
	2267.80# 20	100# 8	M1(+E2)	≥-0.5	6.88 \times 10 ⁻⁴ 11	Mult.,8: From 112 Sn(n,n' γ) in 2005Ku28. B(M1)(W.u.)<0.0096?
	3524.2 10		E 2		$1 \;.\; 10 \!\times\! 10^{-3}$, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
3530.15	380.8 2	щ				
	1009.4 [#] 4 1282.4 [#] 4	84 [#] 19 65 [#] 13				
	1379.6# 2	100# 5				
3553.7	2297.0 3	100	[E1]		9.40×10^{-4}	B(E1)(W.u.)=0.00014 +5-10.
3557.29	1036.1 4	16.3 23				
	1203 . 1 1	100.0 23				
3604.90	1357.5 1	100				
3610.97	1460.1 1 $2354.1 5$	100				
3631.03	552.5 2	100				
3654.34	2397.6 2		M1+E2	0.52 6	7 . 28×10^{-4}	
	3654.3 2		E 2		1.14×10^{-3}	Mult.: assigned by the evaluators; M1+E2 with δ =0.48 6 in $^{112}{\rm Sn}(n,n'\gamma)$ (2005Ku28) is not consistent with the $J\pi$ differences.
3693.68	263.03 [@] 7	100@	M1+E2	0.13 1	0.0404	δ: Also 0.12 16 in ¹⁰⁰ Mo(²⁰ Ne,α4nγ) (2007Ga45). B(M1)(W.u.)=0.024 4; B(E2)(W.u.)=4.8 11.
3726.22	2469.5 2	100				B(M1)(W.u.)=0.024 4, B(E2)(W.u.)=4.0 11.
3754.4	1507.0 3	100				
3782 . 9	1632 . 0 3	100				
3813.78	283.8# 2	2.59# 24				
	900.8#5	17# 3				
	1000 6# =					
	1029.6# 7	43# 3				
	1293.6# 7	6# 3				

$\gamma(^{112}{\rm Sn})$ (continued)

	$\underline{\hspace{1.5cm}} E\gamma^{\dagger}$	Ιγ†	Mult.§	α	Comments
4077.59	663.66 [@] 8	100@	E 2	0.00343	Mult.: $\alpha(K)\exp=0.0027\ 4$ in $^{110}Cd(\alpha,2n\gamma)$ (1979Br07); $A_2=0.375\ 9$ and $A_4=-0.11\ 2$ in $^{110}Cd(\alpha,2n\gamma)$ (1979Br07); $DCO=0.93\ 9$ in $^{100}Mo(^{20}Ne,\alpha 4n\gamma)$ (2007Ga45); $P\gamma=0.65\ 6$ in $^{110}Cd(\alpha,2n\gamma)$ (1979Br07) and $+0.11\ 4$ in $^{100}Mo(^{20}Ne,\alpha 4n\gamma)$ (2007Ga45).
4141 0	4141 08 5	100	(E1)8	1 7010-3	B(E2)(W.u.)=140 60.
4141.3	4141.2 ^a 5 4162.2 ^a 5	100	(E1) ^a (E1) ^a	1.78×10 ⁻³	
4162.3	4162.2ª 5 4330.3ª 5	100 100	(E1) ^a	1.78×10 ⁻³ 0.00184	
4582.61	1151.94 [@] 11	100	E2	9.49×10^{-4}	Mult.: $\alpha(K)\exp=0.0007 \ 3 \ in \ ^{110}Cd(\alpha,2n\gamma) \ (1980Val3);$
4502.01	1151.94	1000	E2	9.49×10	A_2 =0.344 15 and A_4 =-0.14 3 in 110 Cd(α ,2n γ) (1980Va13); P γ =0.72 8 in 110 Cd(α ,2n γ) (1980Va13). B(E2)(W.u.)=36 11.
4681.0	603.1 5	25 11			E γ ,I γ : from 100 Mo(20 Ne, α 4n γ) (2007Ga45).
	987.4 3	100 22			E γ ,I γ : from 100 Mo(20 Ne, α 4n γ) (2007Ga45).
4726.5	4726.4a 5	100	(E1)a	0.00197	
4819.37	741.8 [@] 2	100@	E2	0.00259	Mult.: $\alpha(K)\exp=0.0025\ 4$ in $^{110}Cd(\alpha,2n\gamma)$ (1979Br07); $A_2=0.366\ 12$ and $A_4=-0.11\ 2$ in $^{110}Cd(\alpha,2n\gamma)$ (1979Br07); DCO=1.04 10 for 741.7γ+744.6γ in $^{100}Mo(^{20}Ne,\alpha 4n\gamma)$ (2007Ga45); $P\gamma=0.53\ 5$ in $^{110}Cd(\alpha,2n\gamma)$ (1979Br07) and $+0.25\ 11$ in $^{100}Mo(^{20}Ne,\alpha 4n\gamma)$ (2007Ga45). B(E2)(W.u.)=6.×10 ² 3.
4837.4	4837.3 ^a 5	100	(E1)a	$0\;.\;0\;0\;2\;0\;1$	
4928.9	345.98 $1235.3^{@}3$	<8.3 100 [@] 25	M1+E2 E2	0.0198 8.30×10 ⁻⁴	Eγ,Iγ,Mult.: from 100 Mo(20 Ne,α4nγ) (2007Ga45). Mult.: α(K)exp=0.0007 2 in 110 Cd(α,2nγ) (1980Va13); A_2 =0.34 3 and A_4 =-0.13 3 in 110 Cd(α,2nγ) (1980Va13); Pγ=0.72 8 in 110 Cd(α,2nγ) (1980Va13). B(E2)(W,u,)>0.28.
5057.1	5057.0a 5	100	(E1)a	0.00207	D(D2)(11.d.)>0.20.
5128.2	5128.1a 5	100	(E1)a	0.00209	
5246.2	5246.1a 5	100	(E1)a	0.00213	
5480.5	5480.4 ^a 5	100	(E1)a	0.00220	
5502.6	5502.5 ^a 5	100	(E1)a	0.00220	
5564.3	745.0@2	100@ 19	E 2	0.00256	Mult.: $\alpha(K) \exp = 0.0024$ 6 in $^{110} Cd(\alpha, 2n\gamma)$ (1979Br07); $A_2 = 0.27$ 4 and $A_4 = -0.05$ 6 in $^{110} Cd(\alpha, 2n\gamma)$ (1979Br07); DCO=1.04 10 for 741.7+744.6 in $^{100} Mo(^{20}Ne, \alpha 4n\gamma)$ (2007Ga45); $P\gamma = 0.61$ 12 in $^{110} Cd(\alpha, 2n\gamma)$ (1979Br07) and $+0.27$ 11 in $^{100} Mo(^{20}Ne, \alpha 4n\gamma)$ (2007Ga45). B(E2)(W.u.)=80 30.
	883.2 3	40 11	[E2]	1.70×10^{-3}	$E\gamma$, $I\gamma$: from 100 Mo(20 Ne, $α4nγ$) (2007Ga45). B($E2$)(W.u.)=14 6.
5593.7	5593.6a 5	100	(E1)a	$0\;.\;0\;0\;2\;2\;3$	
5617.6	5617.4 ^a 5	100	(E1)a	0.00223	
5649.1	5648.9 ^a 5	100	(E1)a	$0\;.\;0\;0\;2\;2\;4$	
5666.4	5666.2 ^a 5 865.21 [@] 9	100	(E1) ^a	0.00225	M. 1. (T) 0.0004 F : 1100 V 0.0 V (1000 05)
5684.59	865.21 9 1004	100@	E 2	0.00179	Mult.: $\alpha(K)\exp=0.0024$ 7 in $^{110}Cd(\alpha,2n\gamma)$ (1979Br07); $A_2=0.40$ 6 and $A_4=-0.12$ 10 in $^{110}Cd(\alpha,2n\gamma)$ (1979Br07); $P\gamma=0.7$ 2 in $^{110}Cd(\alpha,2n\gamma)$ (1979Br07). Ey: from $^{100}Mo(^{16}O,4n\gamma)$ (1988Ha20).
5699.9	5699.7 ^a 5	100	(E1)a	0.00225	21om mo(0,111/) (100011020).
5748.6	5748.4 ^a 5	100	(E1) ^a	0.00225	
5812.7	5812.5a 5	100	(E1)a	0.00228	
5860.7	5860.5 ^a 5	100	(E1)a	0.00230	
5884.0	5883.8 ^a 5	100	(E1)a	0.00230	
5924.1	5923.9a 5	100	(E1)a	0.00231	
5976.6	5976.4 ^a 5	100	(E1) ^a	0.00233	
6005.0	6004.8ª 10	100	(E1) ^a		
0000.0	6059.6a 10	100	(E1)a		
6059.8	6080.7ª 10	100	(E1)a		
	0000.7 10		(17.1.) 8		
6059.8	6096.7ª 10	100	(E1) ^a		
6059.8 6080.9 6096.9 6129.0	6096.7 ^a 10 6128.8 ^a 10	100	(E1)a		
6059.8 6080.9 6096.9	6096.7 ^a 10				

$\gamma(^{112}\mathrm{Sn})$ (continued)

E(level)	$\underline{\hspace{1cm} E\gamma^{\dagger}}$	$ I\gamma^{\dagger}$	Mult.§	α	Comments
6198.7	6198.5 ^a 10	100	(E1) ^a		
6224.3	6224.1 ^a 10	100	(E1)a		
6246 . 4	6246.2ª 10	100	(E1)a		
6259 . 1	6258.9a 10	100	(E1)a		
6272 . 6	6272.4 ^a 10	100	(E1)a		
6313.3	6313.1ª 10	100	(E1)a		
6348.7	6348.5 ^a 10	100	(E1)a		
6362.9	678.1 8	< 4	[E2]	$0\;.\;0\;0\;3\;2\;4$	E γ ,I γ : from 100 Mo(20 Ne, α 4n γ) (2007Ga45).
					B(E2)(W.u.)=2.0 +21-20.
	798.6 1	100 16	E2	0.00216	Eγ,Iγ: from 100 Mo(20 Ne,α4nγ) (2007Ga45). Mult.: DCO=0.99 12 in 100 Mo(20 Ne,α4nγ) (2007Ga45); Pol _{DCO} =+0.08 3 in 100 Mo(20 Ne,α4nγ) (2007Ga45). B(E2)(W.u.)=44 15.
6388.1	6387.9 ^a 10	100	(E1)a		Ey: Other: 6384.9 keV 4 in 2008BoZK.
6398.3	1469.4 4	100			E $\dot{\gamma}$,I γ : from 100 Mo(20 Ne, $\alpha 4$ n γ) (2007Ga45). 1471 in 100 Mo(16 O,4n γ) (1988Ha20).
6404.1	6403.9 ^a 10	100	(E1)a		Eγ: Other:6402.0 keV 2 in 2008BoZK.
6428.6	6428.4a 10	100	(E1)a		Eγ. Other: 6431.6 keV 8 in 2008BoZK.
6450.0	6449.8 ^a 10	100	(E1)a		L. Cuici. 0401.0 key o in 2000D0LK.
6476.3	6476.1 ^a 15	100	(E1) ^a		
6520.7	6520.5a 10	100	(E1)a		
6550.1	6549.9a 10	100	(E1)a		
6601.0	6600.8ª 10	100	(E1)a		
6679.9	6679.7a 10	100	(E1)a		
6706.7	6706.5 ^a 10	100	(E1) ^a		
6715.0	6714.8 ^a 10	100	(E1) ^a		Eγ: Other: 6718.7 keV 13 in 2008BoZK.
6731.9	6731.7a 10	100	(E1)a		Eγ: Other: 6735.2 keV 14 in 2008BoZK.
6795.5	6795.3ª 10	100	(E1)a		Eγ: Other: 6791.6 keV 23 in 2008BoZK.
6818.7	6818.5 ^a 10	100	(E1) ^a		Eγ: 6819.4 keV 11 in 2008BoZK.
6824.2	6824.0ª 10	100	(E1)a		
6855.9	6855.7ª 10	100	(E1)a		
6871.2	6871.0ª 10	100	(E1)a		
6941.2	6941.0ª 10	100	(E1)a		
6961.5	6961.3ª 10	100	(E1)a		
6982.7	6982.5 ^a 10	100	(E1)a		
7009.8	7009.6a 10	100	(E1)a		
7018.7	7018.5a 10	100	(E1)a		
7025.8	7025.6ª 10	100	(E1)a		
7043.1	7042.9 ^a 10	100	(E1)a		
7092.8	7092.6a 10	100	(E1)a		
7167.2	7167.0a 10	100	(E1)a		
7197.2	7197.04 10 7198.04 10	100	(E1)a		Ey: Other: 7199.6 keV 9 in 2008BoZK.
7198.2	808.8 3	100	(11)		Ey. Other: 7199.6 keV 9 in 2008B0ZK. Ey, Iy: from 100 Mo(20 Ne, α 4ny) (2007Ga45).
7207.1	808.8 3 7207.9 ^a 10	100	(E1)a		21,11. Hom - Mo(Ne,04H) (2007Ga45).
7214.2	851.3 1	100	E2	0.00186	$\begin{split} &\text{E}\gamma, \text{I}\gamma; \text{ from } ^{100}\text{Mo}(^{20}\text{Ne},\alpha4\text{n}\gamma) \text{ (2007Ga45)}. \\ &\text{Mult.: DCO=1.05 } 13 \text{ in } ^{100}\text{Mo}(^{20}\text{Ne},\alpha4\text{n}\gamma) \text{ (2007Ga45)}; \\ &\text{Pol}_{\text{DCO}} = +0.24 \ 14 \text{ in } ^{100}\text{Mo}(^{20}\text{Ne},\alpha4\text{n}\gamma) \text{ (2007Ga45)}. \\ &\text{B(E2)(W.u.)=72 } 13. \end{split}$
7217.8	7217.6ª 11	100	(E1)a		
7228.1	7227.8ª 10	100	(E1) ^a		Eγ: 7229.3 keV 14 in 2008BoZK.
7248.4	7248.1 ^a 14	100	(E1) ^a		
7311.1	7310.8ª 10	100	(E1)a		
7389.9	7389.6ª 10	100	(E1)a		
7438.6	7438.3ª 10	100	(E1) ^a		
7444.1	7443.8ª 10	100	(E1)a		
7468.3	7468.0ª 10	100	(E1)a		
7531.3	7531.0ª 10	100	(E1)a		
7537.2	7536.9a 10	100	(E1)a		
7559.1	7558.8ª 10	100	(E1)a		
7594.5	7594.2ª 10	100	(E1)a		
7615.3	7615.0a 10	100	(E1)a		
.010.0		100	(E1)a		
7850 5					
7859.5 7904.7	7859.2 ^a 10 7904.4 ^a 10	100	(E1)a		

$\gamma(^{112}\mathrm{Sn})$ (continued)

E(level)	$\underline{\hspace{1cm}} E\gamma^{\dagger}$	$\underline{\hspace{1cm}}$	Mult.§	α	Comments
7936.7	7936.4 ^a 10	100	(E1)a		
7988.2	7987.9 ^a 10	100	(E1)a		
8020.7	8020.4a 10	100	(E1)a		
8051.6	8051.3a 10	100	(E1)a		
8069.6	8069.3ª 10	100	(E1)a		
8083.0	868.8 4	38 15	(E1)-		Ey,Iy: from 100 Mo(20 Ne, $\alpha 4$ ny) (2007Ga45).
8083.0	875.9 3	100 30			$E_{\gamma,1\gamma}$. From 100 Mo(20 Ne,α4ηγ) (2007Ga45).
8147.1	932.9 2	100 30	E2	$1.50{\times}10^{-3}$	Eγ,1γ: from 100 Mo(20 Ne,α4ηγ) (2007Ga45). Eγ,1γ: from 100 Mo(20 Ne,α4ηγ) (2007Ga45). Mult.: DCO=1.06 19 in 100 Mo(20 Ne,α4ηγ) (2007Ga45); Pol _{DCO} =+0.22 14 in 100 Mo(20 Ne,α4ηγ) (2007Ga45). B(E2)(W.u.)=73 +22–18.
8194.5	8194.2ª 10	100	(E1)a		
8218.2	8217.9 ^a 10	100	(E1)a		
8253.6	8253.3ª 10	100	(E1)a		
8448.6	8448.3ª 10	100	(E1)a		
8568.9	8568.5ª 10	100	(E1)a		
8600.4	8600.0ª 10	100	(E1)a		
8750.2	8749.8ª 10	100	(E1)a		
8823.4	8823.0ª 10	100	(E1)a		
9045.2	962.2 4	100			$E\gamma$, $I\gamma$, $Mult$: from $^{100}Mo(^{20}Ne, α4n\gamma)$ (2007 $Ga45$).
9050.5	9050.1ª 10	100	(E1)a		
9095.3	9094.9ª 10	100	(E1)a		
9150.1	9149.7 ^a 10	100	(E1)a		
9186.6	1039.5 2	100	E2	$1.18{ imes}10^{-3}$	Eγ,Iγ: from 100 Mo(20 Ne,α4nγ) (2007Ga45). Mult.: DCO=1.00 21 in 100 Mo(20 Ne,α4nγ) (2007Ga45). B(E2)(W.u.)=66 18.
9329.8	9329.4ª 10	100	(E1)a		
10076.2	1031.0 10	100			$Εγ, Ιγ: from ^{100}Mo(^{20}Ne, α4nγ)$ (2007Ga45).
10335.7	1149.1 3	100	E2	9 . 54×10^{-4}	E γ ,I γ : from 100 Mo(20 Ne, α 4n γ) (2007Ga45). Mult.: DCO=1.13 23 in 100 Mo(20 Ne, α 4n γ) (2007Ga45). B(E2)(W.u.)=63 18.
11570.6	1234.9 5	100	[E2]	8 . 30×10^{-4}	Eγ.Ιγ: from ¹⁰⁰ Mo(²⁰ Ne,α4nγ) (2007Ga45). B(E2)(W.u.)>18.
12965.1?	1395.0° 10	100			E γ ,I γ : from 100 Mo(20 Ne, α 4n γ) (2007Ga45).

 $^{^{\}dagger}$ From $^{112}Sn(n,n'\gamma)$ (2005Ku28), unless otherwise noted.

 $[\]ensuremath{^{\ddagger}}$ From $\gamma(\theta)$ in $^{112}Sn(n,n'\gamma)$ (2005Ku28), unless otherwise noted.

 $[\]S$ Based on $\alpha(K) exp,~A_2,~A_4$ in $\gamma(\theta)$ and $\gamma-linear$ polarization, unless otherwise noted. # From $^{112}Sb~\epsilon$ decay (1976Wi10,1975WiZX).

[@] From $^{110}\text{Cd}(\alpha, 2n\gamma)$ (1980Va13,1979Br07).

 $^{^{}a} \ \text{From} \ ^{112}\text{Sn}(\gamma,\gamma').$

b If no value given it was assumed δ =0.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.

c Placement of transition in the level scheme is uncertain.

(A) probable member of a ΔJ =2 band on the 5564.3 (J π =12+) state;

(B) probable member of a ΔJ =2 band on the 6398.3 (J π =13-) state;

 $^{112}_{50}\mathrm{Sn}_{62}$

¹¹²In β⁻ Decay 1962Ru05,1953Bl44

Parent ¹¹²In: E=0.0; J π =1+; T_{1/2}=14.88 min 15; Q(g.s.)=665 4; % β ⁻ decay=42.6 48.

1962Ru05: Facility: Osaka University cyclotron; Source: ¹¹²In from ¹¹²Cd(d,2n) and ¹⁰⁹Ag(α,n), where E(d)=11 MeV and E(α)=22 MeV; Detectors: β-spectrometer of Mushroom type, one NaI(Tl); Measured: Εβ, Ιβ; Deduced: log ft.

1953Bl44: chemically separated In source from α +Ag reaction, where $E(\alpha)$ =20 MeV; Measured: $E\beta$, $I\beta$, $\beta(t)$; Deduced: t, β -decay Branching.

¹¹²Sn Levels

 $\frac{E(level)}{0.0} \frac{J\pi^{\dagger}}{0+}$

† From the adopted levels.

 β^- radiations

 Eβ⁻
 E(level)
 Iβ^{-†}
 Log ft
 Comments

 658 6
 0.0
 100
 4.14 5
 Eβ⁻: wt. average of 656 6 in 1953Bl44 and 670 15 in 1962Ru05.

 Iβ⁻: Iβ⁻/Iβ⁺=1.94 (1953Bl44), 2.04 (1962Ru05).

 † For β^- intensity per 100 decays, multiply by 0.426 48.

¹¹²Sb ε Decay 1976Wi10,1975WiZX,1976Wi10

Parent 112 Sb: E=0.0; J π =(3+); T $_{1/2}$ =53.5 s 6; Q(g.s.)=7057 18; % ϵ +% β ⁺ decay=100. 1975WiZX: Facility: AVF cyclotron at Vrije Universiteit, Amsterdam; Source: mass-separated 112 Sb from 112 Sn(p,n), E(p)=25 MeV, 35 mg/cm² thick target enriched to 87.51% in 112 Sn; Detectors: four coaxial Ge(Li), one planar Ge(Li) and one LEPS, active and passive anti-Compton shielding; Measured: γ , γ - γ , γ (t), E γ , I γ ; Deduced: 112 Sn level scheme, t, J π , log ft; Also, from the same collaboration 1976Wi10.

$^{112}\mathrm{Sn}$ Levels

E(level) [†]	Jπ [‡]	E(level) [†]	Jπ [‡]	E(level)†	Jπ [‡]
0.0	0+	2756.02 9	3+	3248.67 10	2+
1256.69 4	2+	2783.90 20	4+	3286.18 15	(2)+
2150.86 6	2+	2913.14 22	4+	3384.30 22	(3)-
2247.40 6	4+	2917.39 10	2+,3,4+	3417.42 11	4+
2354 . 12 5	3 –	2945.40 17	4+	3456.32 20	(2,3)+
2476.15 11	2+	2966.58 8	2+	3524.55 18	2+
2520.78 8	4+	3078.54 13	(2,3) +	3530.13 14	2+,3,4+
2556.6 3	(2+)	3092.21 10	2+	3553.7 3	(3)-
2721.07 14	2+	3149.27 21	4+	3813.72 10	(2+,3+,4+)

[†] From a least-squares fit to Ey.

β^+,ϵ Data

Εε	E(level)	Ιβ+§	Ιε†\$	Log ft‡	$I(\epsilon+\beta^+)^{\frac{1}{+}}$	Comments
(3243 18)	3813.72	1.94 6	1.09 4	5.163 19	3.03 9	
(3503 18)	3553.7	0.77 5	0.307 21	5.78 3	1.08 7	
(3527 18)	3530.13	0.23 3	0.089 11	6.32 6	0.32 4	
(3532 18)	3524.55	0.32 3	0.12 1	6.19 5	0.44 4	
(3601 18)	3456 . 32	0.259 19	0.092 7	6.33 4	0.351 25	
(3640 18)	3417.42	0.74 5	0.25 2	5.90 3	0.99 6	
(3673 18)	3384.30	0.66 4	0.21 1	5.98 3	0.87 5	
(3771 18)	3286.18	1.01 5	0.293 14	5.864 24	1.30 6	
(3808 18)	3248.67	1.27 15	0.36 4	5.79 6	1.63 19	
(3908 18)	3149.27	0.62 4	0.15 1	6.17 3	0.77 5	
(3965 18)	3092.21	0.95 3	0.226 9	6.020 19	1.18 4	
(3978 18)	3078.54	1.23 3	0.288 9	5.918 17	1.524	
(4090 18)	2966.58	4.29 7	0.895 20	5.450 14	5.18 8	
(4112 18)	2945.40	0.209 8	0.0428 18	6.775 21	0.252 10	
(4140 18)	2917.39	3.3 5	0.65 10	5.60 7	3.9 6	
(4144 18)	2913.14	1.51 14	0.30 3	5.94 5	1.81 17	
(4273 18)	2783.90	≤ 0.10	≤ 0.018	≥7.2	≤ 0.12	
(4301 18)	2756.02	1.48 4	0.253 8	6.043 17	1.73 5	
(4336 18)	2721.07	0.426 17	0.071 3	6.603 21	0.497 20	
(4500 18)	2556.6	0.179 17	0.0257 24	7.07 5	0.205 19	
(4536 18)	2520.78	0.58 12	0.081 17	6.59 10	0.66 14	
(4581 18)	2476 . 15	0.49 5	0.066 7	6.68 5	0.56 6	
(4703 18)	2354 . 12	0.7 3	0.09 3	6.59 17	0.8 3	
(4810 18)	2247 . 40	6.1 6	0.68 7	5.71 5	6.8 7	
(4906 18)	2150.86	1.33 19	0.138 20	6.42 7	1.47 21	
5770 50	1256.69	59.2 5	3.32 5	5.186 10	62.5 5	Eε: From 1972Si28. Others: 5550 50 (1969BoZS),

[†] From $I(\gamma+ce)$ imbalance at each level.

6220 100 (1972Mi27).

 $[\]ensuremath{^\ddagger}$ From the adopted levels.

 $[\]dot{\tau}$ The decay scheme suffer from the pandemonium effect and there are many unplaced γ rays, so the values should be considered as approximate.

[§] Absolute intensity per 100 decays.

¹¹²Sb ε Decay 1976Wi10,1975WiZX,1976Wi10 (continued)

$\gamma(^{112}{\rm Sn})$

 $I(511\gamma\pm)/I(1256\gamma)=1.83$ 9 (1975WiZX,1976Wi10).

Iy normalization: from $\Sigma(I(\gamma+ce)$ to g.s.)=100 and by assuming of no direct ϵ feeding to $^{112}\mathrm{Sn}$ g.s. (J π =0+). The decay scheme suffer from the pandemonium effect and there are many unplaced γ rays, so the normalization should be considered as approximate.

$\underline{\hspace{1cm}} E\gamma^{\S}$	E(level)	Ιγ†@	Mult.§	δ§#	α	Comments
203.2 † 2	2354.12		[E1]		0.0246	$E\gamma$: from the adopted gammas.
234.8 † 3	2756.02	0.85 8	[M1+E2]		0.0240	E7. from the adopted gammas.
279.5 7 2	2756.02	0.57 5	[M1+E2]		0.0343	
283.8 7 2	3813.72	0.43 4	[111 1 1 1 1 1		0.0010	
x301.9 [†] 2	0010.12	1.64 10				
x377.0 [†] 6		0.58 11				
380.8 2	3530.13					
392.8 5	2913.14	0.69 8	[M1]		0.01440	Eγ: 392.3 keV 4 in 1975WiZX,1976Wi10.
401.3 7 5	2756.02	0.37 8	[E1]		0.00406	
431.9 6	3524.55	0.33 5	[M1]		0.01136	
x446.2 [†] 7		0.43 7				
$467.2^{\dagger} 3$	3384 . 30	1.29 12				
470	2945.40		[E2]		0.00882	Ey: not observed in 1976Wi10,1975WiZX, 1976Wi10.
508.8 3	2756.02		M1+E2	0.2 1	0.00757	
536	2783.90		[M1+E2]		0.00669	Eγ: not observed in 1975WiZX,1976Wi10.
557.8 3	3078.54	0.88 6				Eγ: 558.4 keV 2 in 1975WiZX,1976Wi10.
						Eγ: transition placed by the evaluators
						on the basis of the observed γ-ray in
						1975WiZX,1976Wi10 and the adopted gammas.
605.1 † 2	2756.02	3.03 18	[M1+E2]		0.00500	gammas.
612.4 1	2966.58	4.0 3	E1		1.50×10 ⁻³	Eγ: 612.7 keV 2 in 1975WiZX,1976Wi10.
665.6 3	2913.14	16.0 ‡ 17	[M1]		0.00399	Eγ, Ιγ: Not observed in 1975WiZX, 1976Wi10.
669.9 1	2917.39	39 6	[1111]		0.00000	Eγ: 670.0 keV 4 in 1975WiZX,1976Wi10.
700.3 7 6	3456.32	0.67 17				11. 010.0 kev 4 in 1010 W1211,1010 W110.
767.0 2	2917.39	4.6 3				Eγ: 766.8 keV 2 in 1975WiZX,1976Wi10.
772.44 24	3248.67	2.56 19	[M1+E2]		0.00282	Eγ: 772.8 keV 2 in 1975WiZX,1976Wi10.
794.5 2	2945.40	2.00 10	[E2]		0.00219	Eγ: not observed in 1976Wi10,1975WiZX,
						1976Wi10.
x797.8 [†] 3		2.67 19				
831.1 7 4	3078.54	0.66 14				
x868.7 [†] 4		0.50 8				
894.17 4	2150 . 86	27.6 21	M1+E2	-0.286	0.00199	Eγ: 894.6 keV 2 (1975WiZX,1976Wi10).
$894.2\ 2$	3248 . 67	2.7 19	[E1]		6 . 79×10^{-4}	Eγ: 894.1keV 5 in 1975WiZX,1976Wi10.
900.8 † 5	3813.72	2.9 5				
901.8ª 6	3149.27	1.6ª 5	[M1+E2]		0.00197	Eγ: 900.8 keV 5 in 1975WiZX,1976Wi10.
×921.5† 3		0.73 9				
927.72	3078.54	7.3 2	M1+E2	0.60 +1-2	0.00176 3	Eγ: 927.6 keV 2 in 1975WiZX,1976Wi10.
×963.1 [†] 3		1.7 3			4 04 40-3	
990.69 4 1009.4 † 4	2247.40 3530.13	$149 4 \\ 1.3 3$	E 2		1.31×10 ⁻³	Eγ: 990.0 keV 1 (1975WiZX,1976Wi10).
1009.4 7	3813.72	7.1 5				
1097.38 4	2354.12	20 2	E 1		4.59×10^{-4}	Eγ: 1098.0 keV 2 (1975WiZX,1976Wi10).
1097.38 4	3248.67	20 2	[M1+E2]		1.27×10^{-3}	Eγ: transition placed by the evaluators.
×1154.4 [†] 12	0240.01	2.1 6	[111112]		1.21/10	D; transition placed by the evaluators.
×1170.6 [†] 13		2.0 5				
1219.34 13	2476.15	1.56‡ 21	M1+E2	-0.54 7	9.77 \times 10 ⁻⁴ 16	Eγ: 1219.3 keV 2 (1975WiZX,1976Wi10).
1256.68 4	1256.69	1000	E2		8.05×10^{-4}	Eγ: 1257.05 keV 8 (1975WiZX,1976Wi10).
1264.07 7	2520.78	11.8 13	E2		7 . 96 \times 10 $^{-4}$	Eγ: 1264.3 keV 3 (1975WiZX,1976Wi10).
1277.7 5	3524.55	0.8 3	E2		7.82×10 ⁻⁴	
1282.4 † 4	3530.13	1.0 2				
1293.6 7	3813.72	1.0 5				
x 1 3 6 0 . 8 † 2		0.95 5				
x1369.1 [†] 5		0.27 5				
1379.6 † 2	3530.13	1.55 7				
x 1 4 2 1 . 2 † 4		0.29 6				
x 1 4 2 6 . 0 † 3		0.38 6				
1459 . 5^{\dagger} 1	3813 . 72	4.5 2				

¹¹²Sb ε Decay 1976Wi10,1975WiZX,1976Wi10 (continued)

$\gamma(^{112}{\rm Sn})$ (continued)

Εγ§	E(level)	Υ†@	Mult.§	δ§#	α	Comments	
1464.22 <i>15</i> *1477.8 [†] 2	2721.07	4.6 2 2.7 2	M1+E2	0.17 10	7 . 38×10^{-4}	Eγ: 1464.7 keV 1 (1975WiZX,1976Wi10).	
$1477.8^{\dagger} 2$ $1499.5^{\dagger} 1$	2756.02	14.3 4	M1+E2	0.03 5	7.18 \times 10 ⁻⁴		
1527.2 2	2783.90	7.7 3	E2	0.03 3	6.25×10^{-4}	Eγ: 1527.6 keV 2 (1975WiZX,1976Wi10).	
x1534.7 [†] 5	2100.00	0.31 8	112		0.20×10	E7. 1027.0 Rev 2 (1370W12K,1370W110).	
x1555.1 [†] 2		1.22 7					
1566.4 [†] 2	3813.72	16.6 4					
x1582.4 [†] 7	00102	0.20 6					
×1620.7† 6		1.17 8					
x1631.0† 9		0.25 7					
1656.7 6	2913.14	5.6 3	E 2		5.99×10^{-4}	Eγ: 1656.7 keV 6 in 1975WiZX,1976Wi10.	
1688.7 3	2945.40	2.70 10	E 2		5.96×10^{-4}	Eγ: 1689.0 keV 2 in 1975WiZX,1976Wi10.	
1709.9 4	2966.58	$14.1\ 5$	M1(+E2)	≤0.7	6.36 \times 10 ⁻⁴ 12	Eγ: 1710.2 keV 2 in 1975WiZX,1976Wi10.	
x1804.3 [†] 1		0.43 4					
1821.8 2	3078 . 54	7.5.3	M1+E2	-1.3 + 3 - 5	6.11 \times 10 ⁻⁴ 10	Eγ: 1822.2 keV 2 in 1975WiZX,1976Wi10.	
1836.0 3	3092.21	10.3 3	M1+E2	-1.5 10	6.09 \times 10 ⁻⁴ 20	Ey: 1836.5 keV 2 in 1975 WiZX, 1976 Wi10.	
x1879.2 [†] 4		0.244					
1892.2.5	3149.27	6.7 2	[E2]		6.03 \times 10 ⁻⁴	Eγ: 1892.7 keV 2 in 1975WiZX,1976Wi10.	
×1926.1 [†] 1		0.35 12					
x1986.0 [†] 3		0.40 4					
1992.25 12	3248.67	2.27 13	M1+E2		6 . 41×10 ⁻⁴	Ey: 1992.2 keV 2 in 1975WiZX,1976Wi10; transition placed by the evaluators.	
x2016.6 [†] 3		0.88 8					
2029.4 2	3286.18	6.4 4	M1+E2	≤0.4	6.45×10 ⁻⁴ 10	Eγ: 2029.7 keV 2 in 1975WiZX,1976Wi10.	
x2082.3 [†] 2		0.38 3					
×2092.9 [†] 2	9994 90	0.95 7	T2.1		0 4410=4	D. 0107 F L.V. 0 : 1075W:7V 1076W:10	
2127.3 3 $2150.9 4$	3384.30	8.05 4.63	E1 E2		8.44×10^{-4} 6.53×10^{-4}	Eγ: 2127.5 keV 2 in 1975WiZX,1976Wi10. Eγ: 1257.0 keV 2 (1975WiZX,1976Wi10).	
2160.9 4	2150.86 3417.42	10.6 6	E2		6.53×10^{-4} 6.56×10^{-4}	Ey: 2160.9 keV 2 in 1975WiZX,1976Wi10). Ey: 2160.9 keV 2 in 1975WiZX,1976Wi10.	
2199.6 [†] 2	3456.32	3.1 2	M1+E2	2.8 10	6.67×10 ⁻⁴	Eγ: 2160.9 kev 2 in 1975 wizx, 1976 wito.	
x2247.4 [†] 3	3430.32	0.67 6	WITTEL	2.0 10	0.07×10		
2267.8 2	3524.55	3.6 3	M1(+E2)	≥-0.5	6.88×10^{-4} 11		
2297.0 3	3553.7	11.6 7	[E1]		9.40 \times 10 ⁻⁴	Eγ: 2297.1 keV 2 in 1975WiZX,1976Wi10.	
x2398.2 [†] 2		1.88 11				•	
x2449.0 [†] 6		0.28 6					
x2454.8 [†] 6		0.264					
2475.8 3	2476 . 15	7.6 5	E2		7 . 48×10^{-4}	Eγ: 2475.9 keV 2 (1975WiZX,1976Wi10).	
2556 . 6^{\dagger} 3	2556 . 6	$2.2\ 2$	[E2]		7 . 73×10^{-4}		
x2610.7 [†] 3		0.94 7					
x2670.1 [†] 4		$0.12\ 2$					
2721.6 3	2721.07	0.73 6	E2		8.28×10^{-4}	Eγ: 2721.3 keV 7 (1975WiZX,1976Wi10).	
×2737.3 [†] 7		0.40 3					
×2755.2† 9		0.16 3					
×2775.1 [†] 9		0.24 4					
x2781.4 [†] 11 x2830.8 [†] 5		0.15 4					
*2830.81 5 *2887.3 [†] 8		0.21 3					
	2066 50	0.31 3	F9		0 11 > 10 - 4	Fw 2066 3 keV 2 :- 1075W:7V 1076W:10	
2966.6 <i>1</i> ×2976.9 [†] <i>5</i>	2966.58	$egin{array}{cccc} 37.5 & 5 & & & & & & & & & & & & & & & & &$	E2		9.11×10 ⁻⁴	Eγ: 2966.3 keV 3 in 1975WiZX,1976Wi10.	
3092.1 1	3092.21	2.7 2	E2		9.54×10^{-4}	Eγ: 3092.4 keV 3 in 1975WiZX,1976Wi10.	
x3130.4 [†] 6	0002.21	0.16 3			5.51.10		
×3146.8 [†] 7		0.12 3					
3248.8 8	3248.67	9.9 6	E2		1.01×10^{-3}	Eγ: 3248.1 keV 4 in 1975WiZX,1976Wi10.	
3286.2 2	3286.18	7.6 5				Eγ: 3285.6 keV 4 in 1975WiZX,1976Wi10.	
x3351.9 [†] 7		0.54 4				•	
$^{x}3408.4^{\dagger}$ 5		0.19 2					
x3431.7 [†] 5		$0.13\ 2$					
x3455.4 [†] 5		0.13 2					
3524 . 2 10	3524.55					Ey: from the adopted gammas. Not observed in 1976Wi10,1975WiZX,1976Wi10.	
×3653.9 [†] 5		1.95 12					
x3653.9 [†] 5 x3700.6 [†] 15 x3723.8 [†] 1		$egin{array}{cccc} 1.95 & 12 \\ 0.14 & 3 \\ 0.13 & 3 \end{array}$					

¹¹²Sb ε Decay 1976Wi10,1975WiZX,1976Wi10 (continued)

$\gamma(^{112}Sn)$ (continued)

Εγ§	$I_{\gamma^{\dagger}@}$	Εγ§	Ιγ†@	Εγ§	Ιγ†@
*3827.1 [†] 8	0.18 2	×4152.4 [†] 16	0.11 2	^x 4665.4 [†] 17	0.12 2
x3879.4 [†] 6	0.29 3	x4212.0 [†] 9	0.13 2	x4745.4 [†] 27	0.05 2
×3923.8 [†] 6	0.23 3	x4390.1 [†] 1	0.12 2	×4910.8 [†] 25	0.06 2
x 4 0 4 2 . 6 † 7	0.06 2	x4541.2 [†] 14	0.08 2	x5132.9 [†] 34	0.07 2
×4077.3 [†] 9	0.11 3	x4566.9 [†] 15	0.12 2		
x4086.1 [†] 7	0.28 3	×4614.5 [†] 16	0.09 2		

- † From 1975WiZX,1976Wi10, unless otherwise noted.
- $\dot{\bar{\tau}}$ From adopted gammas, normalized to the $I\gamma$ of the strongest decay branch.
- § From adopted gammas, unless otherwise stated.
- $^{\#}$ If no value given it was assumed δ =0.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.
- $^{@}$ For absolute intensity per 100 decays, multiply by 0.09314 $\it 10.$
- & Placement of transition in the level scheme is uncertain.
- a Multiply placed; intensity suitably divided.
- x γ ray not placed in level scheme.

¹¹²Sb ε Decay 1976Wi10,1975WiZX,1976Wi10 (continued)

Decay Scheme

@ Multiply placed; intensity suitably divided Intensities: $I(\gamma + ce)$ per 100 parent decays

$^{112}\mathrm{Sb}$ & Decay $~1976\mathrm{Wi}10,1975\mathrm{Wi}ZX,1976\mathrm{Wi}10$ (continued)

Decay Scheme (continued)

@ Multiply placed; intensity suitably divided Intensities: $I(\gamma + ce)$ per 100 parent decays

$$\sqrt{\frac{3+)}{1\frac{1}{5}1}} \frac{0.0}{53.5} \text{ s}$$
 %\varepsilon \(\frac{112}{51} \text{Sb}_{61} \) \(\partial \text{Q}^+ = 7057^{18} \)

$^{100} Mo(^{16}O, 4n\gamma), ^{98} Mo(^{16}O, 2n\gamma) \\ \phantom{^{100}Mo(^{16}O, 4n\gamma)} 1988 Ha20, 1986 Ka25, 2003 Wo15$

1988Ha20, 1986Ka25: Facility: 160 cm RIKEN cyclotron; Beam: E(\frac{16}{O})=72-76 MeV; Targets: 677 \(\text{µg/cm}^2\), enriched to 94.5% in \(^{110}{Mo}\), supported by thin Au foil and Ta stopper. Also used - a thick target enriched to 96% \(^{100}{Mo}\) on Pb backing; Detectors: BGOACS comprising five HPGe detectors with BGO shield, neutron multiplicity filter; Measured: Eγ, γγ, n-γ; Deduced: \(^{112}{Sn}\) level scheme, τ from recoil-distance measurements; Also, from the same collaboration: 1987HaZA, 1987HaZE, 1987YoZU, 1986HaZD, 1986HaZP, 1986KaZY.

2003Wo15: Facility: HIL cyclotron, Warsaw; Beam: E(¹⁶O)=60-80 MeV; Target: 5.6 mg/cm² enriched in ⁹⁸Mo; Detectors: OSIRIS-II multidetector, comprising 10 HPGe detectors and 48-element BGO multiplicity filter; Measured: γ-γ, Εγ, Ιγ; Deduced: ¹¹²Sn level scheme; Also, from the same collaboration: 2003Wo16.

Other: 1971FoZQ.

¹¹²Sn Levels

E(level) [†]	Jπ [‡]	E(level)	_Jπ [‡]	§	E(level) [†]	$J\pi^{\ddagger}$
0.0	0+	3136.5 17	5 –		5684.0 18	12+
1257.0 10	2+	3355.0 14	(7)-		6362.0# 19	14+
2186.9 13	0 +	3414.3 12	6+		$6399.5^{@}21$	(13-)
2247.5 12	4+	3430.7 16	(8)-	0.62 ns 4	$7208.5^{@}23$	(15-)
2354.5 14	3 –	3693.5 16	(9)-	47 ps 7	7213.0# 21	16+
2474.8 13	2+	4077.6 15	8+		8089.0# 23	(17-)
2521.2 13	4+	4582.7 19	(10)-	<21 ps	8145.0 # 23	18+
2549.8 14	6+	4680.2 17	(10+)	-	9051@3	(19-)
2783.9 13	4+	4818.9 17	10+		9184# 3	20+
2926.9 15	6+	4928.5 19	(11)-	<21 ps	$10082^{@}$ 3	(21-)
2945.4 12	4+	5564.0# 18	12+	-	10332# 3	22+

- † From a least-squares fit to Ey. $\Delta EG=1$ keV was used for the fit by the evaluators.
- ‡ From the adopted levels.
- $\$ From recoil-distance measurements in 1986Ka25.
- $^{\#}$ (A): Probable member of a $\Delta J{=}2$ band on the 5564.0 keV (J $\pi{=}12{+})$ state.
- @ (B): Probable member of a $\Delta J{=}2$ band on the 6399.5 keV (J $\pi{=}13{-})$ state.

$\gamma(^{112}\mathrm{Sn})$

$\mathbf{E}\gamma^{\dagger}$	E(level)	Comments
76.3 2	3430 . 7	
263	3693.5	
286‡	2474.8	
302	2549.8	
377	2926.9	Eγ: 376 in 2003Wo15.
384‡	4077.6	
428	3355.0	
469	3414.3	Eγ: 470 in 2003Wo15.
470‡	2945.4	
536 [‡]	2783.9	
630	3414 . 3	Eγ: 631 in 2003Wo15.
663	4077.6	Eγ: 664 in 2003Wo15.
678	6362.0	
741	4818.9	Εγ: 742 in 2003Wo15.
745	5564.0	
782 [‡]	3136.5	
798	6362.0	
805	3355.0	Eγ: 806 in 2003Wo15.
809	7208.5	
851	7213 . 0	
865	5684.0	
876	8089.0	
884	5564.0	
893	3414.3	Eγ: 894 in 2003Wo15.
928‡	2186.9	Eγ: 934.12 d in the adopted gammas.
932	8145 . 0	
962	9051	
987	4680.2	
990	2247 . 5	Eγ: 991 in 2003Wo15.
1001^{\ddagger}	3355.0	

$^{100} Mo(^{16}O, 4n\gamma), ^{98} Mo(^{16}O, 2n\gamma) \\ \phantom{^{100}Mo(^{16}O, 4n\gamma)} 1988 Ha20, 1986 Ka25, 2003 Wo15 \ (continued)$

$\gamma(^{112}\mathrm{Sn})$ (continued)

$\underline{\hspace{1cm}} \mathbf{E} \gamma^{\dagger}$	E(level)	Comments
1004	7 004 0	
1004	5684.0	
1031	10082	
1039	9184	
1098‡	2354 . 5	
1148	10332	
1152	4582 . 7	
1167	3414.3	
1219^{\ddagger}	2474.8	
1235	4928.5	
1257	1257 . 0	
1264	2521 . 2	
1471	6399.5	Ey: 1469.4 4 in the adopted gammas.
1527	2783.9	
1689	2945.4	Eγ: 1687 in 2003Wo15.

 $^{^{\}dagger}$ From 1988Ha20, unless otherwise noted. $\Delta E \gamma$ not given by the authors.

¹⁰⁰Mo(²⁰Ne,α4nγ) 2007Ga45

Facility: Variable Energy Cyclotron Center, Kolkata; Beam: $E(^{20}\text{Ne})=136$ MeV; Target: 4.7 mg/cm², enriched to 99.54% in ^{100}Mo and evaporated on aluminium backing; Detectors: INGA multidetector array, comprising six Compton-suppressed Clover detectors; Measured: γ - γ , $E\gamma$, $I\gamma$, $\gamma\gamma(\theta)$, γ -polarization; Deduced: ^{112}Sn level scheme, γ -ray multipolarity, τ from DSAM, δ .

¹¹²Sn Levels

E(level) [†]	Jπ [‡]	E(level) [†]	Jπ [‡]	T	<u>/2</u> §
0.0#	0+	4928.3 4	(11)-		
1256.61# 10	2+	5563.74@ 23	12+	0.66 p	s 14
2247.11# 14	4+	5684.4 3	12+		
2520.12 20	4+	6362.34 @ 25	14+	1.21 p	s 28
2548.81# 17	6+	6397.7 5	(13-)		
2783.62 22	4+	7206.5 5	(15-)		
2926.1 3	6+	$7213.6^{@}$ 3	16+	0.55 p	s 10
$2945.62\ 25$	4+	8082.4 4	(17-)		
3353.90 20	(7)-	8146.6@4	18+	0.34 p	s + 8 - 10
3413.82@ 17	6+	9044.6 6	(19-)		
3430 . 19 25	(8)-	9186.1@4	20+	0.22 p	s 6
3693.2 3	(9)-	10075.6 2 12	(21-)		
$4077.43^{@}19$	8+	10335.2@5	22+	0.14 p	s 4
4582.4 5	10-	11570.1@7	(24+)	<0.35 p	s
4680.6 3	(10+)	12965.1?@ 13	(26+)		
4819.13@ 21	10+				

 $^{^{\}dagger}$ From a least-squares fit to Ey's.

[‡] From 2003Wo15.

 $[\]ddagger$ From the adopted levels.

[§] From DSAM in 2007Ga45.

^{# (}A): Yrast sequence.

^{@ (}B): configuration= $\pi g_{9/2}^{-2} \otimes \pi g_{7/2}^{-2}$. Above $J^{\pi}=12^{+}$, configuration= $\pi [g_{9/2}^{-2}g_{7/2}^{-2}] \otimes vh_{11/2}^{-2}$ due to the alignment of a pair of $h_{11/2}$ neutrons at $\hbar \omega = 0.35$ MeV.

[&]amp; (C): $configuration = \pi g_{9/2}^{-1} \otimes \pi h_{11/2}$. Also, possible $configuration = \pi [g_{9/2}^{-1} h_{11/2}] \otimes v h_{11/2}^{-2}$ due to the alignment of $h_{11/2}$ neutrons before J=17.

$^{100}{ m Mo}(^{20}{ m Ne},\!lpha 4{ m n}\gamma)$ 2007Ga45 (continued)

$\gamma(^{112}{\rm Sn})$

$E\gamma^{\dagger}$	E(level)	Ιγ [†]	Mult.‡	δ [†]	Comments
76.3 2	3430.19		M1+E2#		Eγ: from the adopted gammas.
263.0 1	3693.2	25.3 25	M1 (+E2) §	+0.12 16	Mult.: DCO=0.78 11 (2007Ga45).
301.7 1	2548.81	42.1 25	E2	+0.12 10	Mult.: DCO=1.11 6 (2007Ga45); Pol _{DCO} =+0.06 3 (2007Ga45).
345.9 8	4928.3	<1	M1+E2#		Mult DCO=1.11 0 (2007Ga45), 101 _{DCO} =+0.00 3 (2007Ga45).
377.2 3	2926.1	2.7 10	M1 #		
427.8 3	3353.90	2.3 11	E1#		
468.2 2	3413.82	6.2 12	E2#		
	4680.6	2.8 12	E 2		
603.15 630.2	3413.82	10.2 7	E2#		Eγ: uncertainty not listed by 2007Ga45, assumed as 0.3 keV by
030.2	3413.62	10.2 /	E2"		
669 6 1	4077 49	27 9 90	E2		evaluators for least-squares fit procedure.
663.6 1	4077.43	37.2 20	E Z		Mult.: DCO=0.93 9 (2007Ga45); Pol_{DCO} =+0.11 4 (2007Ga45).
678.1 8	6362.34	<1	E O		M. H. DOO 104 10 C. HA1 F. HA4 C (000FC-4F). D.1
741.7 1	4819.13	33 4	E2		Mult.: DCO=1.04 10 for 741.7+744.6 (2007Ga45); Pol _{DCO} =+0.25 11 (2007Ga45).
744.6 1	5563.74	21 4	E2		Mult.: DCO=1.04 10 for 741.7+744.6 (2007Ga45); Pol _{DCO} =+0.27 11 (2007Ga45).
798.6 1	6362.34	25 4	E 2		Mult.: DCO=0.99 12 (2007Ga45); Pol _{DCO} =+0.08 3 (2007Ga45).
805.1 1	3353.90	37 5	E 1		Mult.: DCO=0.71 13 (2007Ga45); Pol _{DCO} =+0.06 3 (2007Ga45).
808.8 3	7206.5	7.7 23			200
851.3 1	7213.6	21.1 22	E 2		Mult.: DCO=1.05 13 (2007Ga45); PolDCO=+0.24 14 (2007Ga45).
865.3 2	5684.4	8.8 24	E 2 #		
868.8 4	8082.4	2.6 10			
875.9 3	8082.4	6.8 18			
883.2 3	5563.74	8.6 23			
893.7 3	3413.82	6.4 21	E 2 #		
932.9 2	8146.6	16 4	E 2		Mult.: DCO=1.06 19 (2007Ga45); PolDCO=+0.22 14 (2007Ga45).
962.2 4	9044.6	4.4 15			
987.4 3	4680.6	11.1 24			
990.5 1	2247.11	71 7	E 2		Mult.: DCO=1.03 5 (2007Ga45); Pol _{DCO} =+0.07 3 (2007Ga45).
1031.0 10	10075.6				
1039.52	9186.1	13.8 18	E2 §		Mult.: DCO=1.00 21 (2007Ga45).
1149.1 3	10335.2	10.8 21	E 2		Mult.: DCO=1.13 23 (2007Ga45).
1152.24	4582.4	5.7 22	E 2 #		
1166.7 1	3413 . 82	16.8 17	E2 §		Mult.: DCO=0.96 9 (2007Ga45).
1234.9 5	11570.1	6.6 15			
1235 . 1 2	4928.3	12 3	E2#		
1256.6 1	1256 . 61	100 3	E2		Mult.: DCO=1.01 6 (2007Ga45); Pol _{DCO} =+0.05 2 (2007Ga45).
1263.5 2	2520 . 12	5.9 16	E2#		
$1395.0^{@}10$	12965.1?				
1469.4 4	6397.7	9.5 19			
1527.02	2783 . 62	11.9 23	E 2 #		
1689.0 6	2945 . 62	5.1 11	E 2 #		

[†] From 2007Ga45, unless otherwise stated. ‡ Based on the DCO and Pol_{DCO} measurements in 2007Ga45, unless otherwise stated. § Based only on DCO measurements in 2007Ga45.

[#] From the adopted gammas.

[@] Placement of transition in the level scheme is uncertain.

¹⁰³Rh(¹²C,p2nγ) 1990ViZW

Beam: $E(^{12}C)=68$ MeV from U-240 cyclotron; Target: 65 mg/cm² enriched in ^{112}Rh ; Detectors: one HPGe; Measured: Ey, DSAM; Deduced: ^{112}Sn level scheme, τ .

Other: 1981Gi13: 112 Sn from 106 Cd(12 C, α 2p) channel.

¹¹²Sn Levels

E(level) [†]	Jπ [‡]	$\underline{\hspace{1cm}} T_{1/2}^{\dagger}$	Comments
0.0	0+		
1256.9	2+		
2520.8	4+	0.42 ps 14	
2783.8	4+	0.35 ps 14	
3414 . 0	6+	0.6 ps 3	
3430.7	(8)-		
3693.8	(9)-	0.69 ps 14	$ m T_{1/2}$: in disagreement with 47 ps 7 from the adopted levels.
4077.7	8+	1.0 ps 4	
4582.3	(10)-	0.24 ps 7	
4819.5	10+	0.14 ps 7	
5564.7	12+	<1.4 ps	

[†] From 1990ViZW.

 $\gamma(^{112}\mathrm{Sn})$

$_{\rm E}\gamma^{\dagger}$	E(level)
263.0	3693.8
663.7	4077.7
741.8	4819.5
745.0	5564.7
893.2	3414 . 0
1151.9	4582 . 3
1264 . 2	2520.8
1527.2	2783.8

[†] From 1990ViZW.

¹¹⁰Cd(³He,n) 1977Fi04

1977Fi04: Facility: Univ.Colorado; Beam: $E(^3He)=25.4$ MeV; Target: self-supporting, 0.5 - 2 mg/cm thick; three liquid scintillators; Measured: neutron TOF, $d\sigma/d\Omega$; Deduced: E_{level} , DWBA analysis, $J\pi$; Also, from the same collaboration: 1977LiZA, 1975FiZQ.

¹¹²Sn Levels

E(level) [†]	$J\pi^{\ddagger}$	L§
0.0	0+	0
2190	0+	0
3570	0(+)	0

 $^{^{\}dagger}$ From 1977Fi04; ΔE not given by the authors.

[‡] From the adopted levels.

 $[\]ensuremath{^\ddagger}$ From the adopted levels.

[§] From 1977Fi04, based on DWBA.

$^{110}\text{Cd}(^{3}\text{He,n}\gamma),^{112}\text{Cd}(^{3}\text{He,3n}\gamma)$ 1989An14

1989An14: Facility: Univ. Cologne Tandem accelerator; Beam E(3 He)=29 MeV; Target: 4 mg/cm 2 enriched to 90.8% in 106 Cd and having 2% 112 Cd admixture; Detectors: two HPGe and two NE213 liquid scintillators; Measured: γ - γ , γ - γ (t), E γ ; Deduced: 112 Sn level scheme, $T_{1/2}$, B(E2); Also, from the same collaboration: 1988Pe17. Other: 1967Be07.

¹¹²Sn Levels

E(level) [†]	$J\pi^{\ddagger}$	$\underline{\hspace{1cm}} T_{1/2}$	Comments
0.0	0+		
1256.6 10	2+		
2247.2 15	4+		
2548.9 18	6+	13.5 ns 4	T _{1/2} : weighted average of 12.1 ns 15 (1989An14,1988Pe17) and 13.6 ns 4 (1989An14) from centroid

 $^{^{\}dagger}$ From a least-squares fit to Ey.

 $\gamma(^{112}\mathrm{Sn})$

$\mathbf{E}\gamma^{\dagger}$		E(level)
301.7	10	2548.9
990.6	10	2247 . 2
1256.6	10	1256.6

 $^{^{\}dagger}$ From 1989An14. ΔE deduced by the evaluators.

¹¹⁰Cd(α,2nγ) 1980Va13,1979Br07

1980Va13, 1979Br07: Facility: Vrije Universiteit cyclotron, Amsterdam; Beam: $E(\alpha)=17-33$ MeV; Targets: 5 mg/cm² thick self-supporting and a thin target with a thickness of 0.5 mg/cm², isotopically enriched in 110 Cd; Detectors: Compton polarimeter comprising one coaxial Ge and two Ge(Li) detectors, one planar, one intrinsic Ge x-ray detector, mini-orange spectrometer; Measured: γ , γ -ce, γ - γ - Δ t, $E\gamma$, $I\gamma$, γ (θ), E_{ce} , I_{ce} , linear polarization (P_{γ}); Deduced: 112 Sn level scheme, $J\pi$, γ -ray multipolarities; Also, from the same collaboration: 1981Va15. Other: 1968Ya04, 1969Lu05, 1969Ya05, 1975Vi03, 1976HeZJ, 1977BrYY, 1978BrZS, 1978BrZU, 1981Go17.

¹¹²Sn Levels

E(level) [†]	_Jπ‡	$\underline{\hspace{1cm}} T_{1/2} \underline{\hspace{1cm}}$	Comments
0.0	0+		
1256.65 8	2+		
2247.24 11	4+		
2353.95 22	3 –		
2520.82 11	4+		
2548.92 13	6+	13.74 ns 8	T _{1/2} : weighted average of 13.9 ns 2 (1980Va13); 14.0 ns 4 (1969Ya05); 13.2 ns 4 (1981Go17) and 13.7 ns 1 (1981Va15). g: +0.097 9 (1981Go17); Other: +0.04 3 from TDPAD in 1981Va15. Q: 0.29 6 (1975Vi03). configuration: vg _{7/2} vd _{5/2} , (vg _{7/2}) ² .
2783.69 14	4+		6/1/2/-6/2/ (16/1/2/ -
2926.41 15	6+		
2945.77 14	4+		
3354.05 14	(7)-		
3413.96 14	6+		
3430.35 25	(8)-	0.58 ns 6	T _{1/2} : from γγ(t) in 1980Va13.
3693.4 3	(9)-		1/2
4077.62 16	8+		
4582.3 3	(10)-		
4819.4 3	10+		
4928.7 4	(11)-		
5564.4 4	12+		
			Continued on next page (footnotes at end of table)

 $[\]ensuremath{^{\ddagger}}$ From the adopted levels.

$^{110}\mathrm{Cd}(\alpha,2\mathrm{n}\gamma)$ 1980Va13,1979Br07 (continued)

 $^{112}\mathrm{Sn}$ Levels (continued)

 $J\pi^{\ddagger}$ E(level)[†] 5684.6 3 12+

 † From a least-squares fit to Ey.

‡ From the adopted levels.

 $\gamma(^{112}\mathrm{Sn})$

$\underline{\hspace{1cm}} E\gamma^{\dagger}$	E(level)	Ιγ†	Mult.‡	$\frac{-\delta^{\dagger}}{}$	α	Comments
76.3 2	3430.35	12.0 8	M1+E2	0.04 3	1.221 22	Mult.: A ₂ =-0.15 2 (1980Va13); A ₄ =-0.01 2 (1980Va13).
263.03 7	3693.4	17.9 5	M1+E2	0.13 1		Mult.: $A_2 = -0.021$ 6 (1980Va13); $A_4 = 0.00$ 1 (1980Va13); $P_7 = -0.43$ 5 (1980Va13); $\alpha(K) \exp = 0.0045$ 7 (1980Va13).
301.68 7	2548.92	60 2	E2		0.0348	Mult.: A ₂ =0.220 4 (1980Va13); A ₄ =-0.04 1 (1980Va13); Pγ=0.31 6 (1980Va13); $\alpha(K)\exp=0.033$ 5 (1980Va13). B(E2)(W.u.)=0.497 3.
377.50 8	2926.41	6.6 8	M1			Mult.: A_2 =0.365 8 (1980Va13); A_4 =0.00 2 (1980Va13); P_7 =0.67 5 (1980Va13); $\alpha(K) \exp = 0.017$ 3 (1980Va13).
427.67 10	3354.05	2.1 1				Mult.: A ₂ =-0.20 2 (1980Va13); A ₄ =0.07 4 (1980Va13); P γ =0.38 5 (1980Va13).
468.03 13	3413.96	1.6 \$ 1	E 2			Mult.: A_2 =0.32 6 (1979Br07); A_4 =-0.18 10 (1979Br07); P γ =0.49 8 (1979Br07); α (K)exp=0.007 2 (1979Br07).
630.36 12	3413.96	2.8 § 1	E 2			Mult.: A_2 =0.34 2 (1979Br07); A_4 =0.71 8 (1979Br07); $P\gamma$ =0.71 8 (1979Br07); $\alpha(K) \exp$ =0.0038 8 (1979Br07).
663.66 [§] 8	4077.62	8.8 3	E 2			Mult.: A_2 =0.375 9 (1979Br07); A_4 =-0.11 2 (1979Br07); P_7 =0.65 6 (1979Br07); $\alpha(K) \exp = 0.0027$ 4 (1979Br07).
741.8 \$ 2	4819.4	5.6 \$ 2	E 2			Mult.: A_2 =0.366 12 (1979Br07); A_4 =-0.11 2 (1979Br07); P_7 =0.53 5 (1979Br07); $\alpha(K) \exp = 0.0025$ 4 (1979Br07).
745.0 \ 2	5564.4	1.6 § 1	E 2			Mult.: A_2 =0.27 4 (1979Br07); A_4 =-0.05 6 (1979Br07); $P\gamma$ =0.61 12 (1979Br07); $\alpha(K)\exp$ =0.0024 6 (1979Br07).
805.11 7	3354.05	36 2	E 1			Mult.: A_2 =-0.233 5 (1980Va13); A_4 =-0.01 1(1980Va13); $P\gamma$ =0.37 5 (1980Va13); α (K)exp=0.00070 15 (1980Va13).
865.21 9	5684.6	1.0 \$ 1	E 2			Mult.: A_2 =0.40 6 (1979Br07); A_4 =-0.12 10 (1979Br07); P_7 =0.7 2 (1979Br07); $\alpha(K)$ exp=0.0024 7 (1979Br07).
893.2 \$ 2	3413.96	1.98 6	E2			
990.60\$ 7	2247.24	75 \$ 2	E2			Mult.: A_2 =0.236 5 (1979Br07); A_4 =-0.050 9 (1979Br07); P_7 =0.37 (1979Br07); $\alpha(K)\exp$ =0.0014 (1979Br07).
1097.3 2	2353.95	2.9 1	E1			Mult.: A ₂ =-0.21 3 (1980Va13); A ₄ =0.03 4 (1980Va13); Pγ=0.34 9 (1980Va13); α(K)exp<0.0005 (1980Va13).
1151.94 11	4582.3	5.1 2	E 2			Mult.: A_2 =0.344 15 (1980Va13); A_4 =-0.14 3 (1980Va13); $P\gamma$ =0.72 8 (1980Va13); α (K)exp=0.0007 3 (1980Va13).
1166.9 \$ 3	3413.96	5.0 \$ 5	E 2			Mult.: A_2 =0.38 7 (1979Br07); A_4 =-0.12 13 (1979Br07); $P\gamma$ =0.8 2 (1979Br07); $\alpha(K)\exp$ =0.0009 4 (1979Br07).
1235.3 3	4928.7	3.8 1	E2			Mult.: A ₂ =0.34 3 (1980Va13); A ₄ =-0.13 3 (1980Va13); Pγ=0.80 10 Pγ=0.72 8 (1980Va13); $\alpha(K)\exp=0.0007$ 2 (1980Va13).
1256.64 8	1256.65	100.0 \$ 1	E 2			Mult.: A_2 =0.243 5 (1979Br07); A_4 =-0.048 9 (1979Br07); P_7 =0.39 (1979Br07); $\alpha(K)\exp$ =0.00060 8 (1979Br07).
1264.17 8	2520.82	7.0 \$ 2	E 2			Mult.: A_2 =0.218 11 (1979Br07); A_4 =-0.07 2 (1979Br07); P_7 =0.53 8 (1979Br07); $\alpha(K) \exp = 0.0007$ 2 (1979Br07).
1527.15 \$ 14	2783.69	5.1 \ 2	E 2			Mult.: A ₂ =-0.09 3 (1979Br07); A ₄ =0.7 2 (1979Br07).
1688.92 \$ 14	2945.77	2.3 § 1	E 2			Mult.: $A_2 = 0.22 \ 3 \ (1979 Br 07); A_4 = 0.5 \ 2 \ (1979 Br 07).$

 $^{^{\}dagger}$ From 1980Va13, unless otherwise noted. ‡ From 1980Va13 and 1979Br07, based on angular correlations, polarization and $\alpha(K)exp$ data.

[§] From 1979Br07.

$^{112}Sn(\gamma\!,\!\gamma') \qquad 2014Oz03,2006Py01,2008BoZK$

2014Oz03: Target of about 2 g of >99% enriched metallic 112 Sn placed between 11 B layers. Incident bremsstrahlung beam with endpoints up 9.5 MeV, produced by S-DALINAC electron linear accelerator at TU-Darmstadt. Measured Ey, Iy, $\gamma(\theta)$ at 90° and 130°. Deduced levels, J, π , multipolarity, B(E1), summed E1 strengths, widths.

2006Py01: Facility: Stuttgart Dynamitron accelerator; Beam: unpolarized bremsstrahlung beam from 3.8 MeV electrons; Target: 1990 mg, enriched to 99.5% in ¹¹²Sn; Detectors: three HPGe, one of which with BGO shield; Measured: Εγ; Deduced: B(E2); Also, from the same collaboration: 2005PyZZ.

2008BoZK: Facility: HI γ S, Duke FEL; Beam: bremsstrahlung from accelerated electrons; Detectors: five HPGe; Measured: γ , γ - γ (θ), lear pol., E γ , I γ ; Deduced: γ -ray Mult., Γ_0 , 112 Sn level scheme.

¹¹²Sn Levels

B(E1) values are listed here in e^2b units.

Summed E1 transition strength, B(E1)=0.00175 e²b 24, with a centroid energy of 6.7 MeV for resolved transitions up to 9.5 MeV excitation.

E(level) [†]	$J\pi^{\S}$	$-\Gamma_{\gamma 0}^2/\Gamma~(\text{eV})$	Comments
0.0	0+		
3433.9 5	1-	0.162 eV 15	$B(E1) \uparrow = 11.5 \times 10^{-5} \ 11.$
			Other: B(E1)=10.7×10 ⁻⁵ 12 (2006Py01).
4141.3 5	1-	0.017 eV 4	$B(E1)\uparrow=0.7\times10^{-5}$ 2.
4162.3 5	1-	0.044 eV 4	$B(E1)\uparrow = 1.8 \times 10^{-5} \ 2.$
4330.4 5	1-	0.015 eV 3	$B(E1) \uparrow = 0.5 \times 10^{-5} I$.
4726.5 5	1-	0.012 eV 3	$B(E1) \uparrow = 0.3 \times 10^{-5} I$.
4837.4 5	1-	0.028 eV 5	$B(E1)\uparrow = 0.7 \times 10^{-5} I$.
5057.1 5	1-	0.134 eV 13	$B(E1) \uparrow = 3.0 \times 10^{-5} \ 3.$
5128.2 5	1-	0.198 eV 20	$B(E1)\uparrow = 4.2 \times 10^{-5} \ 4.$
5246.2 5	1-	0.166 eV 14	$B(E1)^{\dagger} = 3.3 \times 10^{-5} \ 3.$
5480.5 5	1-	0.066 eV 11	$B(E1)^{\dagger} = 1.2 \times 10^{-5} \ 2.$
5502.6 5	1-	0.086 eV 10	$B(E1)^{\frac{1}{2}}=1.5\times10^{-5}$ 2.
5593.7 5	1-	0.043 eV 7	$B(E1)^{\dagger} = 0.7 \times 10^{-5} I$.
5617.6 5	1-	0.039 eV 7	$B(E1)^{\uparrow} = 0.6 \times 10^{-5} I$.
5649.1 5	1-	0.043 eV 7	$B(E1)^{\dagger} = 0.7 \times 10^{-5} I$.
5666.4 5	1-	0.023 eV 6	$B(E1)^{\uparrow} = 0.4 \times 10^{-5} I.$
5699.9 5	1-	0.023 eV 7	$B(E1)^{-0.5\times10^{-5}}$ 1.
5748.6 5	1-	0.066 eV 7	$B(E1)^{\uparrow} = 1.0 \times 10^{-5} I$.
5812.7 5	1-	0.000 eV 7	$B(E1)^{\uparrow}=0.5\times10^{-5}$ 1.
5860.7 5	1-	0.159 eV 27	$B(E1)^{-2.3\times10^{-5}}$ 4.
5884.0 5	1-	0.100 eV 16	$B(E1)^{2}=1.4\times10^{-5} 2.$
5924.1 5	1-	0.100 eV 10 0.112 eV 12	$B(E1)^{-1.4\times10^{-2}}$ 2. $B(E1)^{-1.5\times10^{-5}}$ 2.
5976.6 5	1-	0.112 eV 12 0.128 eV 14	$B(E1)^{-1.3\times10^{-2}}$ 2. $B(E1)^{-1.7\times10^{-5}}$ 2.
6005.0 10	1-	0.128 eV 14 0.244 eV 21	$B(E1)^{-1.7710} = 2.$ $B(E1)^{-3.2 \times 10^{-5}} = 3.$
6059.8 10	1-	0.244 eV 21 0.477 eV 44	$B(E1)^{\dagger} = 6.1 \times 10^{-5} \ 6.$
6080.9 10	1-	0.477 eV 44 0.073 eV 15	$B(E1)^{\dagger} = 0.1 \times 10^{-5} \text{ G}.$ $B(E1)^{\dagger} = 0.9 \times 10^{-5} \text{ 2}.$
6096.9 10	1-	0.075 eV 15 0.385 eV 23	$B(E1)^{1}=0.9\times10^{-5} 2.$ $B(E1)^{1}=3.6\times10^{-5} 2.$
6129.0 10	1-	0.385 eV 23 0.115 eV 13	$B(E1)^{-3.6\times10^{-5}} = 2.$ $B(E1)^{-1.4\times10^{-5}} = 2.$
6150.4 10	1-	0.113 eV 13 0.273 eV 28	$B(E1)^{-1.4 \times 10^{-2}}$ B(E1) $^{-3.4 \times 10^{-5}}$ 3.
6168.3 10	1-	0.273 eV 28 0.098 eV 17	$B(E1)^{-3.4\times10^{-5}}$ 3. $B(E1)^{-1.2\times10^{-5}}$ 2.
6198.7 10	1-	0.038 eV 17 0.179 eV 18	$B(E1)^{-1.2 \times 10^{-5}} 2$. $B(E1)^{-2.2 \times 10^{-5}} 2$.
6224.3 10		0.179 eV 18 0.315 eV 26	$B(E1)^{-2.2\times10^{-5}} = 2.7\times10^{-5} = 3.$
6246.4 10	1 – 1 –	0.315 eV 26 0.152 eV 20	$B(E1)^{1}=5.7\times10^{-5}$ 3. $B(E1)^{1}=1.8\times10^{-5}$ 2.
6259.1 10	1-	0.132 eV 20 0.130 eV 17	$B(E1)^{-1.6\times10^{-5}} = 2.$ $B(E1)^{-1.5\times10^{-5}} = 2.$
6272.6 10	1-	0.130 eV 17 0.220 eV 21	$B(E1)^{-1.3\times10}$ 2. $B(E1)^{-2.5\times10^{-5}}$ 3.
6313.3 10	1-	0.220 eV 21 0.251 eV 23	$B(E1)^{2}=2.9\times10^{-5}$ 3.
6348.7 10	1-	0.231 eV 23 0.134 eV 17	$B(E1)^{2}=1.5\times10^{-5}$ 2.
6388.1 10	1-	0.134 eV 17 0.663 eV 47	$B(E1)^{-1.3\times10^{-5}}$ 5.
0388.1 10	1-	0.003 ev 47	Other: B(E1)= $5.17 \times 10^{-5} \ 2 \ (2008 \text{BoZK})$.
6404.1 10	1-	1.69 eV 12	$B(E1)^{\uparrow}=18.4\times10^{-5}$ 13.
0404.1 10	1-	1.05 ev 12	Other: B(E1)= $8.47 \times 10^{-5} \ 3 \ (2008 \text{BoZK})$.
6428.6 10	1 –	0.114 eV 18	$B(E1)^{-1}=1.2\times10^{-5}$ 2.
0420.0 10	1-	0.114 ev 18	Other: B(E1)= 4.89×10^{-5} 2 (2008BoZK).
6450 0 10	1	0 100 -77 17	Other: $B(E1)=4.89\times10^{-2}$ (2008B62K). $B(E1)^{\uparrow}=1.2\times10^{-5}$ 2.
$6450.0\ 10$ 6476.3 ± 15	1 – 1 –	0.109 eV <i>15</i> 0.7 eV <i>4</i>	$B(E1)=1.2\times10^{-5} 2.$ $B(E1)^{2}=7.46\times10^{-5} 4 (2008BoZK).$
6520.7 10	1-	0.7 eV 4 0.309 eV 33	$B(E1)^{\frac{1}{2}} = 7.2 \times 10^{-5} \ 3.$
6550.1 10	1-	0.309 eV 33 0.054 eV 11	$B(E1)^{1}=3.2\times10^{-5}$ 3. $B(E1)^{1}=0.6\times10^{-5}$ 1.
6601.0 10	1-	0.054 eV 11 0.173 eV 23	$B(E1)^{1}=0.6\times10^{-5}$ 1. $B(E1)^{1}=1.7\times10^{-5}$ 2.
6679.9 10	1-	0.173 eV 23 0.074 eV 14	$B(E1)^{\dagger} = 1.7 \times 10^{-5} \ 2.$ $B(E1)^{\dagger} = 0.7 \times 10^{-5} \ 1.$
6706.7 10	1-	0.074 eV 14 0.187 eV 24	$B(E1)^{1}=0.7\times10^{-5} 1.$ $B(E1)^{1}=1.8\times10^{-5} 2.$
0100.1 10	1-	0.107 EV 24	D(B1):-1.0A10 2.

$^{112}\mathrm{Sn}(\gamma,\gamma')$ 2014Oz03,2006Py01,2008BoZK (continued)

¹¹²Sn Levels (continued)

E(level) [†]	$\frac{J\pi^{\S}}{}$	$\Gamma_{\gamma 0}^2/\Gamma~(\text{eV})$	Comments
6715.0 10	1 –	0.156 eV 67	$B(E1)^{\uparrow}=1.5\times10^{-5}$ 6.
6591 0 10		0.000 .17 51	Other: $B(E1)=3.03\times10^{-5}$ 1 (2008BoZK).
6731.9 10	1 –	0.289 eV 51	$B(E1)^{\uparrow}=2.7\times10^{-5}$ 5. Other: $B(E1)=2.66\times10^{-5}$ 1 (2008BoZK).
0005 5 10		0 105 -17 05	
6795.5 10	1 –	0.185 eV 25	$B(E1)^{\uparrow}=1.7\times10^{-5} 2.$
0010 5 10		0 100 17 00	Other: $B(E1)=2.01\times10^{-5}$ 1 (2008BoZK).
6818.7 10	1 –	0.139 eV 23	$B(E1)^{\uparrow}=1.3\times10^{-5} 2.$
	_		Other: B(E1)=3.16×10 ⁻⁵ 1 (2008BoZK).
6824.2 10	1 –	0.194 eV 32	$B(E1)^{}=1.7\times10^{-5}$ 3.
6855.9 10	1-	0.170 eV 25	$B(E1)^{\uparrow}=1.5\times10^{-5}$ 2.
6871.2 10	1-	0.189 eV 19	$B(E1)^{}=1.7\times10^{-5}$ 2.
6941.2 10	1 –	0.367 eV 41	$B(E1)^{}=3.1\times 10^{-5}$ 3.
6961.5 10	1 –	0.362 eV 53	$B(E1)^{}=3.1\times 10^{-5}$ 5.
6982.7 10	1-	0.246 eV 30	$B(E1)^{\uparrow}=2.1\times10^{-5}$ 3.
7009.8 10	1 –	0.062 eV 15	$B(E1) \uparrow = 0.5 \times 10^{-5} I$.
7018.7 10	1 –	0.082 eV 16	$B(E1) \uparrow = 0.7 \times 10^{-5} I$.
7025.8 10	1 –	0.086 eV 17	$B(E1)^{\uparrow} = 0.7 \times 10^{-5} I.$
7043.1 10	1 –	0.245 eV 42	$B(E1) \uparrow = 2.0 \times 10^{-5} \ 3.$
7092.8 10	1 –	0.524 eV 48	$B(E1)^{\uparrow} = 4.2 \times 10^{-5} 4.$
7167.2 10	1 –	0.363 eV 42	$B(E1)^{2} = 2.8 \times 10^{-5} \ 3.$
7198.2 10	1 –	0.578 eV 75	$B(E1)^{\uparrow}=4.4\times10^{-5} \ 6.$
			Other: $B(E1)=2.66\times10^{-5}$ 1 (2008BoZK).
7208.1 10	1 –	0.15 eV 7	$B(E1)^{\uparrow}=1.18\times10^{-5}$ 1 (2008BoZK).
7217.8 ‡ 11	1 –	0.25 eV 10	$B(E1)^{\uparrow}=1.89\times10^{-5} \ 1 \ (2008BoZK).$
7228.1 10	1 –	0.164 eV 27	$B(E1)^{\uparrow}=1.2\times10^{-5} 2.$
			Other: $B(E1)=2.01\times10^{-5}$ 1 (2008BoZK).
7248.4 [‡] 14	1 –	0.27 eV 11	$B(E1)^{\uparrow}=2.01\times10^{-5}$ 1 (2008BoZK).
7311.1 10	1 –	0.138 eV 28	$B(E1)^{\uparrow}=1.0\times10^{-5}$ 2.
7389.9 10	1 –	0.183 eV 30	$B(E1)^{\uparrow}=1.3\times10^{-5} \ 2.$
7438.6 10	1 –	0.275 eV 42	$B(E1)\uparrow=1.9\times10^{-5}\ 3.$
7444.1 10	1 –	0.233 eV 37	$B(E1)^{\uparrow}=1.6\times10^{-5}$ 3.
7468.3 10	1 –	0.186 eV 45	$B(E1)^{\uparrow}=1.3\times10^{-5}$ 3.
7531.3 10	1 –	0.429 eV 62	$B(E1)^{\uparrow} = 2.9 \times 10^{-5} 4.$
7537.2 10	1 –	0.770 eV 82	$B(E1)^{\uparrow} = 5.2 \times 10^{-5} 6.$
7559.1 10	1 –	0.323 eV 43	$B(E1) \uparrow = 2.1 \times 10^{-5} \ 3.$
7594.5 10	1 –	0.205 eV 31	$B(E1) \uparrow = 1.3 \times 10^{-5} 2.$
7615.3 10	1 –	0.257 eV 41	$B(E1)^{\uparrow}=1.7\times10^{-5}$ 3.
7859.5 10	1 –	0.207 eV 35	$B(E1)^{\uparrow}=1.2\times10^{-5}$ 2.
7904.7 10	1 –	0.196 eV 40	$B(E1)^{\uparrow} = 1.1 \times 10^{-5} 2.$
7936.7 10	1 –	0.272 eV 39	$B(E1) \uparrow = 1.6 \times 10^{-5} 2.$
7988.2 10	1 –	0.606 eV 62	$B(E1) \uparrow = 3.4 \times 10^{-5} \ 3.$
8020.7 10	1 –	0.412 eV 67	$B(E1) \uparrow = 2.3 \times 10^{-5} 4.$
8051.6 10	1 –	0.396 eV 60	$B(E1)^{\uparrow} = 2.2 \times 10^{-5} \ 3.$
8069.6 10	1 –	0.482 eV 65	$B(E1)^{\uparrow} = 2.6 \times 10^{-5} 4.$
8194.5 10	1 –	0.518 eV 75	$B(E1)^{\uparrow}=2.7\times 10^{-5} \ 4.$
8218.2 10	1 –	0.262 eV 48	$B(E1)^{\uparrow}=1.4\times10^{-5}$ 2.
8253.6 10	1 –	0.177 eV 38	$B(E1)^{\uparrow} = 0.9 \times 10^{-5} 2.$
8448.6 10	1 –	0.147 eV 41	$B(E1)\uparrow = 0.7 \times 10^{-5} 2.$
8568.9 10	1 –	0.166 eV 43	$B(E1)^{\uparrow} = 0.8 \times 10^{-5} 2.$
8600.4 10	1 –	0.118 eV 35	$B(E1)^{\uparrow} = 0.5 \times 10^{-5} 2.$
8750.2 10	1 –	0.249 eV 56	$B(E1)^{\uparrow}=1.1\times10^{-5}$ 2.
8823.4 10	1 –	0.278 eV 64	$B(E1)^{\uparrow}=1.2\times10^{-5}$ 3.
9050.5 10	1 –	0.41 eV 11	$B(E1)^{\uparrow} = 1.6 \times 10^{-5} 4.$
9095.3 10	1 –	0.268 eV 65	$B(E1)^{\uparrow} = 1.0 \times 10^{-5} 2.$
9150.1 10	1 –	0.240 eV 75	$B(E1)^{\uparrow}=0.9\times10^{-5}$ 3.
9329.8 10	1 –	0.60 eV 14	$B(E1)^{\uparrow}=2.1\times10^{-5} 5.$

[†] From a least-squares fit to Eγ. ‡ Level observed only in 2008BoZK. § Dipole transition (assumed E1) to 0+.

$^{112}Sn(\gamma,\gamma') \qquad 2014Oz03,2006Py01,2008BoZK \ (continued)$

$\gamma(^{112}{\rm Sn})$

Εγ†	E(level)	Mult.‡	Comments
3433.8 5	3433.9	(E1)	
4141.2 5	4141.3	(E1)	
4162.2 5	4162.3	(E1)	
4330.3 5	4330.4	(E1)	
4726.45	4726.5	(E1)	
4837.3 5	4837.4	(E1)	
5057.0 5	5057.1	(E1)	
5128.1 5	5128.2	(E1)	
5246.1 5	5246.2	(E1)	
5480.4 5	5480.5	(E1)	
5502.5 5 $5593.6 5$	5502.6 5593.7	(E1) (E1)	
5617.4 5	5617.6	(E1)	
5648.9 5	5649.1	(E1)	
5666.2 5	5666.4	(E1)	
5699.7 5	5699.9	(E1)	
5748.4 5	5748.6	(E1)	
5812.5 5	5812 . 7	(E1)	
5860.5 5	5860.7	(E1)	
5883.8 5	5884.0	(E1)	
5923.9 5	5924.1	(E1)	
5976.4 5	5976.6	(E1)	
6004.8 <i>10</i> 6059.6 <i>10</i>	6005.0	(E1)	
6080.7 10	6059.8 6080.9	(E1) (E1)	
6096.7 10	6096.9	(E1)	
6128.8 10	6129.0	(E1)	
6150.2 10	6150.4	(E1)	
6168.1 10	6168.3	(E1)	
6198.5 10	6198.7	(E1)	
6224 . 1 10	6224 . 3	(E1)	
6246 . 2 10	6246 . 4	(E1)	
6258.9 10	6259.1	(E1)	
6272.4 10	6272.6	(E1)	
6313.1 10	6313.3	(E1)	
6348.5 10	6348.7	(E1)	Fr. 6294 0 keV 4 in 2009De7V
6387.9 10 6403.9 10	6388.1 6404.1	(E1) (E1)	Eγ: 6384.9 keV 4 in 2008BoZK. Eγ: 6402.0 keV 2 in 2008BoZK.
6428.4 10	6428.6	(E1)	Eγ: 6431.6 keV 8 in 2008BoZK.
6449.8 10	6450.0	(E1)	2). 51516 25. 5 11 25622221.
6476.1 \$ 15	6476.3	(E1)§	
6520.5 10	6520.7	(E1)	
6549.9 10	6550.1	(E1)	
6600.8 10	6601.0	(E1)	
6679.7 10	6679.9	(E1)	
6706.5 10	6706.7	(E1)	F., 6710 7 b. V 19 '- 0000 P. 777
6714.8 10	6715.0	(E1)	Eγ: 6718.7 keV 13 in 2008BoZK.
6731.7 <i>10</i> 6795.3 <i>10</i>	6731.9 6795.5	(E1) (E1)	Eγ: 6735.2 keV <i>14</i> in 2008BoZK. Eγ: 6791.6 keV <i>23</i> in 2008BoZK.
6818.5 10	6818.7	(E1)	Εγ: 6819.4 keV 11 in 2008BoZK.
6824.0 10	6824.2	(E1)	
6855.7 10	6855.9	(E1)	
6871.0 10	6871.2	(E1)	
6941.0 10	6941.2	(E1)	
6961.3 10	6961.5	(E1)	
6982.5 10	6982.7	(E1)	
7009.6 10	7009.8	(E1)	
7018.5 10	7018.7	(E1)	
7025.6 10	7025.8	(E1)	
7042.9 10	7043.1	(E1)	
7092.6 10 7167.0 10	7092.8 7167.2	(E1) (E1)	
7198.0 10	7197.2	(E1)	Eγ: 7199.6 keV 9 in 2008BoZK.
	· · -	\/	p. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
			Continued on next page (footnotes at end of table)

$^{112}Sn(\gamma\!,\!\gamma\!') \qquad 2014Oz03, 2006Py01, 2008BoZK \ (continued)$

$\gamma(^{112}\mathrm{Sn})$ (continued)

$\underline{\hspace{1cm}} E\gamma^{\dagger}$	E(level)	Mult.‡	Comments
7207.9 \$ 10	7208.1	(E1)§	
7217.6 \$ 11	7217.8	(E1) §	
7227.8 10	7228.1	(E1)	Εγ: 7229.3 keV 14 in 2008BoZK.
7248.18 14	7248.4	(E1)§	E. 1220.0 ket 14 m 2000002K.
7310.8 10	7311.1	(E1)	
7389.6 10	7389.9	(E1)	
7438.3 10	7438.6	(E1)	
7443.8 10	7444.1	(E1)	
7468.0 10	7468.3	(E1)	
7531.0 10	7531.3	(E1)	
7536.9 10	7537.2	(E1)	
7558.8 10	7559.1	(E1)	
7594.2 10	7594.5	(E1)	
7615.0 10	7615.3	(E1)	
7859.2 10	7859.5	(E1)	
7904.4 10	7904.7	(E1)	
7936.4 10	7936.7	(E1)	
7987.9 10	7988.2	(E1)	
8020.4 10	8020.7	(E1)	
8051.3 10	8051.6	(E1)	
8069.3 10	8069.6	(E1)	
8194.2 10	8194.5	(E1)	
8217.9 10	8218.2	(E1)	
8253.3 10	8253.6	(E1)	
8448.3 10	8448.6	(E1)	
8568.5 10	8568.9	(E1)	
8600.0 10	8600.4	(E1)	
8749.8 10	8750.2	(E1)	
8823.0 10	8823.4	(E1)	
9050.1 10	9050.5	(E1)	
9094.9 10	9095.3	(E1)	
9149.7 10	9150.1	(E1)	
9329.4 10	9329.8	(E1)	

[†] From 2014Oz03, corrected for recoil energy. Uncertainties are 0.5 keV below 6 MeV and 1 keV 6 MeV, unless otherwise stated.

¹¹²Sn(n,n'γ) 2005Ku28,2007Or04

2005Ku28,2007Or04: Facility: 7 MV electrostatic accelerator at University of Kentucky; Beam: E(n)=2.5 to 4.5 MeV from 3 H(p,n) 3 He reaction; Target: 4 g enriched to 99.5% in 112 Sn; Detectors: one BGO Compton-suppressed HPGe detector; Measured: Excitation function with neutrons at energies of 2.5 to 4.0 MeV, Ey, Iy, γ (0), τ , n-TOF; Deduced: δ , γ -ray Mult., J π , 112 Sn level scheme; Also, from the same collaboration: 2005Ku37. Other: 1981KuZQ, 1979De37.

 $^{112}\mathrm{Sn}$ Levels

E(level) [†]	Jπ‡	§
0.0	0+	
1256.694	2+	0.37 ps + 7 - 6
2150.87 # 5	2+	
2190.82#6	0+	>0.5 ps
2247.41#6	4+	
2354.197	3 –	0.35 ps + 14 - 8
2476 . 05 12	2+	>2.4 ps
2520.68 8	4+	>0.8 ps
2549 . 25 14	6+	>0.5 ps
2617.62 18	0 +	>0.4 ps

 $^{\ \ ^{\}ddagger}$ D from $\gamma(\theta)$ data in 2014Oz03, but Mult=E1 was assumed for all transitions, unless otherwise stated.

[§] From 2008BoZK.

$^{112}\mathrm{Sn}(\mathbf{n,n'\gamma})$ 2005Ku28,2007Or04 (continued)

¹¹²Sn Levels (continued)

E(level) [†]	Jπ [‡]	T _{1/2} §	Comments
2721.07 14	2+	0.8 ps +10-3	
2756.01 22	3+	>0.8 ps	
2765.2 3	J.	>1.0 ps	
2783.90 21	4+	0.31 ps +10-6	
2913.10 22	4+	>0.61 ps 110 0	
2917.42 11	2+,3,4+	>1.1 ps	
2927.9 4	6+	>0.22 ps	
2945.36 17	4+	>0.22 ps >1.1 ps	
2966.62 8	2+	0.5 ps +8-2	
2969.31 6	2+	0.3 ps +8-2 0.29 ps +21-9	
2986.4 3	0.		
	0+	>1.7 ps	
3078.53 14	(2,3)+	>1.2 ps	
3092.20 10	2+	0.25 ps +8-5	
3113.55 15	0+ to 4+	1 0	
3133.43@ 11	5 –	>1.0 ps	
3141.1 4	4.	0.0	
3149.0 4	4+	0.6 ps +10-2	
3248.68 10	2+	>1.1 ps	
3272.31 16	4+	0.30 ps +21-10	
3283.61 21	2+		
3286.18 15	(2+)	0.22 ps + 15 - 7	
3288.0 3	(1,2+)		
3338.3 3	2+	>0.3 ps	
3353.1 4	2+	>1.4 ps	
3378.9 3	0+ to 4+		
3384.0@3	(3)-	0.18 ps +8-5	T
3397.19@ 12	2-,3-	0.23 ps + 10 - 6	T _{1/2} : 0.13 +13-5 in Table iv in (2005Ku28).
3413.43 18	6+		
3417.42 11	4+	>0.4 ps	
3433.4 [@] 5	(1-)	1.9 fs + 11 - 10	
3456.1 3	2+,3+	>0.7 ps	
3471.7 3	4+	>0.23 ps	
3494.02 21	2+ to 6+		
3499.19 <i>16</i>	5 –	0.04 ps + 4 - 2	
3520.44 20	1 to 4+		
3524.16 <i>18</i>	2+	>0.12 ps	
5529.8 5	2+, 3, 4+		
3553.7 3	(3)-	0.17 ps +11-6	
3557.27 12		>0.3 ps	
604.92 12			
610.97 11		0.8 ps + 4 - 2	
8631.03 24			
654.34 15	2+		
3726.22 21			
3754.4 3			

- ‡ From the adopted levels. § From DSAM measurements in 2005Ku28.
- # Possible member of the two-phonon multiplet.

 @ Possible member of the 2*x3- multiplet.

 $\gamma(^{112}{\rm Sn})$

${\bf E} \gamma^{\dagger}$	E(level)	$\underline{\hspace{1cm}}^{}$	Mult.†	Comments
203.2 2	2354.19			
301.84 13	2549.25	1.00	E2	Mult.: possible admixture; $\delta(D/Q)=-0.2$ 1 (2005Ku28).
378.6 3	2927.9	1.0		
380.8 2	3529.8	1.0		
392.8 5	2913.10	$0.08\ 2$		
			Continu	ned on next page (footnotes at end of table)

¹¹²Sn(n,n'γ) 2005Ku28,2007Or04 (continued)

$\gamma(^{112}{\rm Sn})$ (continued)

468.07 6 508.8 3 552.5 2 557.8 3 612.4 1 665.6 3 669.9 1 767.0 2 772.44 24 779.3 2 794.5 2 818.43 6 886.0 1	3413.43 2756.01 3631.03 3078.53 2966.62 2913.10 2917.42 2917.42 3248.68 3133.43 2945.36 2969.31 3133.43 2150.87	0.85 1 0.08 2 0.68 2 1.0 0.03 4 0.14 1	E2 M1+E2 E1	0.2 1	
552.5 2 557.8 3 612.4 1 665.6 3 669.9 1 767.0 2 772.44 24 779.3 2 794.5 2 818.43 6 886.0 1	3631.03 3078.53 2966.62 2913.10 2917.42 2917.42 3248.68 3133.43 2945.36 2969.31 3133.43	0.08 2 0.68 2 1.0	E1	0.2 1	
557.8 3 612.4 1 665.6 3 669.9 1 767.0 2 772.44 24 779.3 2 794.5 2 818.43 6 886.0 1	3078.53 2966.62 2913.10 2917.42 2917.42 3248.68 3133.43 2945.36 2969.31 3133.43	0.68 2 1.0 0.03 4	E2		
612.4 <i>I</i> 665.6 <i>3</i> 669.9 <i>I</i> 767.0 <i>2</i> 772.44 <i>24</i> 779.3 <i>2</i> 794.5 <i>2</i> 818.43 <i>6</i> 886.0 <i>I</i>	2966.62 2913.10 2917.42 2917.42 3248.68 3133.43 2945.36 2969.31 3133.43	0.68 2 1.0 0.03 4	E2		
665.6 3 669.9 1 767.0 2 772.44 24 779.3 2 794.5 2 818.43 6 886.0 1	2913.10 2917.42 2917.42 3248.68 3133.43 2945.36 2969.31 3133.43	0.68 2 1.0 0.03 4	E2		
669.9 1 767.0 2 772.44 24 779.3 2 794.5 2 818.43 6 886.0 1	2917.42 2917.42 3248.68 3133.43 2945.36 2969.31 3133.43	1.0			
767.0 2 772.44 24 779.3 2 794.5 2 818.43 6 886.0 1	2917.42 3248.68 3133.43 2945.36 2969.31 3133.43	0.03 4			
772.44 24 779.3 2 794.5 2 818.43 6 886.0 1	3248.68 3133.43 2945.36 2969.31 3133.43				
779.3 2 794.5 2 818.43 6 886.0 1	3133.43 2945.36 2969.31 3133.43				
794.5 2 818.43 6 886.0 1	2945.36 2969.31 3133.43	0.14 1			
818.43 <i>6</i> 886.0 <i>1</i>	2969.31 3133.43		TI O		
886.0 1	3133 . 43		E 2		
904 17 4	2150 87	0.86 1	E 1		Mult.: possible admixture; $\delta(D/Q)=-0.02 +1-4$ (2005Ku28).
894.17 4		0.83 1	M1+E2	-0.286	δ: Also: 7 +3-2 (2005Ku28).
894.2 2	3248.68				
901.8 6	3149.0				
927.7 2	3078.53	0.53 1	M1+E2	0.60 +1-2	δ: Also: 3.0 10 (2005Ku28).
934.12 4	2190.82	1.0	E2		Mult.: possible admixture; $\delta(D/Q)=-0.04$ 4 (2005Ku28).
951.0 3	3471.7	1.0			
962.67 14	3113.55	1.0			
979.3 2	3499.19	0.35 3			
990.2 4	3141.1	1.0			
990.69 4	2247.41	1.0	E2		
1036.1 4	3557.27	0.14 2			
1036.2 2	3283.61	1.0			
1042.95 11	3397.19	0.42 1	(M1+E2)	1.8 12	
097.2 3	3288.0	1.0			
1097.38 7	2354.19	1.0	E1		Mult.: possible admixture; $\delta(D/Q)=0.02$ 2 (2005Ku28).
097.4 2	3248.68				
1121.39 15	3272.31	0.21 7	E 2		
1144.2 2	3499.19	0.65 3			
165.33	3413.43		E2		
1166.3 2	3520.44				
1203.1 1	3557.27	0.86 2			
1219.34 13	2476 . 05	0.17 2	M1+E2	-0.547	
1228.0 3	3378.9	1.0			
246.6 3	3397.19	0.58 1			
246.6 2	3494.02	1.0			
256.68 4	1256.69	1.0	E2		
1264.07 7	2520.68	1.00	E2		Mult.: possible admixture; $\delta(D/Q)=-0.04$ 4 (2005Ku28).
276.5 4	3524.16		E2		
357.5 1	3604.92	1.0			
1360.92 17	2617.62	1.0	E2		
1369.0 6	3520 . 44				
1460.1 1	3610.97				
1464.22 15	2721.07	0.73 5	M1+E2	0.17 10	
499.1 3	2756.01	0.15 1	M1(+E2)	0.03 5	
507.0 3	3754.4	1.0			
1508.5 3	2765 . 2	1.0			
527.2 2	2783.90	1.0	E2		Mult.: possible admixture; $\delta(D/Q)=-0.06$ 4 (2005Ku28).
632.0 3	3782.9	1.0			
656.3 4	2913.10	0.242	E 2		Mult.: possible admixture; $\delta(D/Q)=-0.11$ 11 (2005Ku28).
688.7 3	2945.36	1.0	E2		
709.9 4	2966.62	0.25 6	M1(+E2)	0.3 4	
712.61 6	2969.31	1.0			
729.7 3	2986.4	1.0	E2		
1821.8 2	3078.53	0.47 1	M1+E2	-1.3 +3-5	
1836.0 3	3092.20	0.37 10	M1+E2	-1.5 10	
892.2 5	3149.0	1.0	E2		Mult.: possible admixture; $\delta(D/Q)=0.05$ 10 (2005Ku28).
992.25 12	3248.68	0.02 4	M1+E2		
2016.1 5	3272.31	0.79 7	E2		Mult.: possible admixture; $\delta(D/Q)=0.0$ 1 (2005Ku28).
2029.4 2	3286.18	0.07 3	M1(+E2)	0.1 +3-2	δ: Also: 1.8 10 (2005Ku28).
2081.6 3	3338.3	1.00	M1+E2		

$^{112}Sn(n,n'\gamma) \qquad 2005Ku28, 2007Or04 \ (continued)$

$\gamma(^{112}\mathrm{Sn})$ (continued)

$\underline{\hspace{1cm} \mathbf{E} \gamma^{\dagger}}$	E(level)	$\underline{\hspace{1cm} I\gamma^{\dagger}}$	Mult.†	δ [†]	Comments
2096.4 4	3353.1	0.08 3	M1+E2		
2127.3 3	3384.0	1.00	E 1		Mult.: possible admixture; $\delta(D/Q)$ =0.01 5. Also, 0.013 5 in table IV in (2005Ku28).
2150.9 4	2150.87	0.17 1	E 2		
2160.7 1	3417.42	1.0	E 2		Mult.: $\delta = 0.5 + 10-5$ (2005Ku28).
2199.4 3	3456.1	1.0	M1+E2	2.8 10	
2267.5 2	3524.16		M1(+E2)	-0.14	
2297.0 3	3553.7	1.0			
2354 . 1 5	3610.97	1.0			
2397.6 2	3654.34		M1+E2	0.52 6	
2469.5 2	3726.22	1.0			
2475.8 3	2476 . 05	$0.83\ 2$	E 2		
2721.6 3	2721.07	0.27 5	E 2		
2966.6 1	2966.62	0.67 8	E 2		
3092.1 1	3092.20	0.63 10	E 2		
3248.8 8	3248.68	$0.95\ 2$	E 2		
3286.2 2	3286.18	0.93 3			
3353.0 5	3353.1	0.92 3	E 2		
3433.3 5	3433.4	1.0	E 1		
3524.2 10	3524.16		E 2		
3654.3 2	3654.34		E2		Mult.: assigned by the evaluators; Other: M1+E2 with δ =0.48 6 in $^{112}{\rm Sn}(n,n'\gamma)$ (2005Ku28) is not consistent with the J\pi assignments.

 $^{^{\}dagger}$ From 2005Ku28, unless otherwise stated.

¹¹²Sn(p,p') 1980Bl01,1979BlZZ

1980Bl01,1979BlZZ: Facility: AVF cyclotron at the Free University; Beam: E(p)=20.51 and 25.0 MeV; Target: 190 $\mu g/cm^2$ enriched to 87.51% in 112 Sn; Detectors: ENGE split-pole spectrograph, six position-sensitive solid-state detectors; Measured: $E(p)(\theta)$, $d\sigma/d\Omega$; Deduced: 112 Sn levels, L, J π , DWBA analysis.

Others: 1990JoZZ, 1989JoZZ, 1975RaYL, 1975SrZZ, 1974Ka10, 1974SrZZ, 1973De01, 1972DeZU, 1971Ha43, 1971RaZV, 1968Ma34.

¹¹²Sn Levels

E(level) [†]	$J\pi^{\ddagger}$	L§	Comments
0.0	0+		
1257 2	2+	2	β_{0} =0.147 4, weighted average of 0.143 5 and 0.150 5 in 1980Bl01; Other: 0.152 in 1968Ma34.
2151 2	2+	2	
2190 2	0+		
2247 2	4+	4	
2354 2	3 –	3	β_3 =0.152 6, weighted average of 0.146 5 and 0.157 5 in 1980Bl01; Other: 0.203 15 in 1968Ma34.
2475 2	2+		
2521 2	4+		
2550 2	6+		
2618 2	0+		
2723 2	2+	2	
2760 2	(3)+		
2786 2	4+	4	
2860 2			
2915 2	4+	4	Possible doublet structure.
2928 2	6+		
2947 2	4+	4	
2969 2	2+		
2989 2	0+	(0)	
3095 7	2+	2	
3118 7	(0 + to 4 +)		
3137 7	5 –	5	
3152 7	4+	4	
2915 2 2928 2 2947 2 2969 2 2989 2 3095 7 3118 7 3137 7	6+ 4+ 2+ 0+ 2+ (0+ to 4+) 5-	4 (0) 2 5	Possible doublet structure.

¹¹²Sn(p,p') 1980Bl01,1979BlZZ (continued)

¹¹²Sn Levels (continued)

E(level) [†]	Jπ‡	L§	Comments
0.050 7	0.	(0)	
3253 7	2+	(2)	
3278 7 3292 7	4+	4	
3360 7	(1,2+) (7)-		
3387 7	(3)-		
3402 7	4+		
3424 7	4+	4	
3440 7	1-		
3477 7	4(+)		
3502 7	5 (-)		
3522 7			
3532 7	(2+,3,4+)		
3558 7			
3580 7	4(+)	4	
3611 7			
3624 7	(2+,4+)	(2)	$J\pi$: L=(2) in 1980Bl01 supports 2+.
3654 7	2+	2	
3695 7	(9)-		
3737 7			
3756 7			
3773 7			
3815 7			
3832 7			
3857 7			
3877 7			
3914 7			
3988 7			
4031 7			
4054 7	0.		
4078 7 4105 7	8+		
4138 7			
4151 7			
4171 7	4 (+)	4	
4193 7	1(1)	•	
4222 7			
4239 7			
4279 7			
4325 7			
4364 7			
4402 7			
4437 7			
4461 7			
4502 7			
4544 7			
4571 7	10-		
4610 7			
4685 7	(10+)		
4738 7			
4757 7			
4794 7	1.0		
4825 7	10+		
4850 7			
4887 7	(11)		
4928 7	(11)-		
4957 7			
5059 7 5089 7			
5089 7 5116 7			
5116 7 5144 7	† From 1090	0B101 · ∧₽	estimated by the evaluators on the basis of the author's statement that ΔE =2-7 from the
5181 7			gher-lying states.
5270 7	‡ From the	adopted 1	evels.
5355 7	§ From 1980)Bl01 has	sed on DWBA.
	110111100	, Das	

$^{112}Sn(p,p'\gamma) \\ 1981Ba05,1981Jo03$

1981Jo03,1981Ba05: Facility: Uppsala Tandem Accelerator Lab, Univ. Jyvaskyla cyclotron; Beam: E(p)=6-8 MeV; Target: 15 mg/cm² self-supporting, enriched to 80.5% in 112 Sn; Detectors: magnetic lens, one Ge(Li), one surface-barrier Si(Li), one plastic scintillator; Measured: $p-\gamma$, $e-\gamma$, cyclotron RF-e, $p-\gamma(t)$, E γ ; Deduced: level scheme. Others: 1968Ma34, 1977BaXX, 1979BlZZ.

$^{112}\mathrm{Sn}$ Levels

E(level) [†]	$\frac{J\pi^{\ddagger}}{}$	E(level) [†]	$J\pi^{\ddagger}$
0.0	0+	2190.9 4	0+
1256.7 4	2+	2247.9 7	4+
2150.74	2+	2354.3 7	3 –

 † From a least-squares fit to Ey.

‡ From the adopted levels.

$\gamma(^{112}Sn)$

$\underline{\hspace{1cm} E\gamma^{\dagger}}$	E(level)	Ιγ	Mult.	I(γ+ce)	Comments
894.0 5	2150.7				
934.12 4	2190.9	100	E2		Eγ,Mult.: From adopted gammas.
991.2 5	2247.9				
1097.6 5	2354 . 3				
1256.7 5	1256 . 7				
2150.7 5	2150 . 7				
2190 . 9 5	2190 . 9		E 0	$0.1455 \ 21$	Ey,Mult.: from ce measurements in $^{112}{\rm Sn}(p,p'\gamma)$ (1981Ba05).
					$I(\gamma + ce): \ from \ Ice(K)(2190.9\gamma)/Ice(K)(934.12\gamma) = 0.55 \ 10 \ in \ ^{112}Sn(p,p'\gamma)$
					(1981Ba05), $\alpha(K)(934.12\gamma) = 0.001301$ 19, Iy(934.12 $\gamma) = 100$ and $\Omega_{\overline{K}}/\Omega_T = 0.8942$ (2008Ki07).

 $^{^{\}dagger}$ From 1981Jo03, unless otherwise noted.

¹¹²Sn(d,d') 1966Ki04

Facility: Univ. Pittsburgh cyclotron; Beam: E(d)=15 MeV; Target: 2.36 mg/cm² self-supporting, enriched to 74.7% in ¹¹²Sn; Detectors: wedge-shaped magnet, photographic plates; Measured: dσ/dΩ; Other: 1972Wi01, 1974Ch27. Also: (pol d, d') in 1991Er03.

¹¹²Sn Levels

E(level) [†]	$\frac{J\pi^{\ddagger}}{}$	E(level) [†]	$J\pi^{\ddagger}$	
0.0	0+	2800	4+	
1250	2+	2970		
2260	4+	3150	4+	
2360	3 –	3430	4+	
2530	1 ±			

- † From 1966Ki04. ΔE not given by the authors.
- ‡ From the adopted levels.

$^{112}\mathrm{Sn}(\alpha,\alpha')$ 1970Br07

Facility: Saclay cyclotron; Beam: $E(\alpha)=44$ MeV; Target: 0.4 mg/cm², enriched to 70% in $^{112}\mathrm{Sn}$; Detectors: dipole magnet, multidetector array comprising Li drifted E-detectors and surface-barrier ΔE detectors (FWHM=90 keV); Measured: $E(\alpha)$, $\sigma(\theta)$; Deduced: $^{112}\mathrm{Sn}$ level scheme B(E2), B(E3).

Others: 2011Ki15, 2006FuZZ, 2005Ga21, 2003FuZY, 2003Ga30, 2003Ga33, 1978Ba17, 1975Al06, 1975Gr30, 1972BaXP, 1972BaZT, 1972TaYY, 1972TaYX, 1967Br25.

¹¹²Sn Levels

E(level) [†]	$J\pi^{\ddagger}$	<u>L§</u>	Comments
0.0 1260	0+ 2+	2	$\beta_2 = 0.12$.

$^{112}\mathrm{Sn}(\alpha,\alpha')$ 1970Br07 (continued)

¹¹²Sn Levels (continued)

E(level) [†]	$J\pi^{\ddagger}$	<u>L</u> §	Comments
2200?	0+		
2350	3 –	3	$\beta_3 = 0.097.$
2500?	2+		

- † From 1970Br07; ΔE not given by the authors.
- ‡ From the adopted levels.
- § From Austern-Blair model analysis in 1970Br07.

Coulomb Excitation 2011Ju01,2011Wa15,1981Jo03

2011Ju01,2011Wa15: Facility: GSI Unilac accelerator; Beam: $E(^{112}Sn)=448$ MeV; Target: cooled and polarized multilayer target consisting of 0.67 mg/cm² natural carbon, 10.8 mg/cm² natural Gd, 1.0 mg/cm² natural Ta, and a 4.86 mg/cm² natural Cu; Detectors: array of four Si diodes and four EUROBALL Cluster detectors; Measured: C ions, γ , γ -C ions, $E\gamma$, $I\gamma$, $\gamma(\theta)$; Deduced: τ , B(E2), g-factor from the recoil distance transient field (RDTF) technique.

1981Jo03: Facility: Uppsala EN tandem; Beam: E(¹⁶O)=48 MeV; Detectors: one NaI(Tl), one Ge(Li); Measured: γ, γ-γ. Eγ, Iγ; Deduced: ¹¹²Sn level scheme, B(E2).

1975Gr30: Facility: three-stage Van de Graaff accelerator at University of Pittsburgh; Beams: $E(\alpha)=10.6$ MeV and $E(^{16}O)=42$ MeV; Targets: 5 to 40 $\mu g/cm^2$ of SnO_2 , enriched to 87.51% in ^{112}Sn , 15 $\mu g/cm^2$ carbon backing; Detectors: surface-barrier Si detector; Measured: $E(\alpha)$,.

Other: 2011Ku05, 2010Ku07, 2007Va22, 1981Ba05, 1970St20, 1965Ro09.

¹¹²Sn Levels

E(level) [†]	$\frac{J\pi^{\ddagger}}{}$	T _{1/2}	Comments
0.0	0+		
1256.69 4	2+	0.376 ps 5	$T_{1/2}$: from B(E2) \uparrow .
			B(E2)↑: 0.240 3, weighted average of 0.242 8 (2011Ku05,2010Ku07), 0.240 20 (2007Va22),
			0.229 5 (1975Gr30), and 0.256 6 (1970St20). Other: 0.240 14 (1987Ra01), weighted average
			of the data in 1975Gr30 and 1970St20.
			μ: +0.21 7 from g-factor=+0.104 35 in 2011Wa15.
			Q: -0.06 9, weighted average of -0.03 11 (1975Gr30) and -0.15 18 (1970St20).
2150.86 6	2+	1.4 ps 4	$T_{1/9}$: from B(E2)\(\gamma = 0.00065\)\(20\) (1981Jo03).
2190.81 6	0+	≥2.7 ps	$T_{1/9}^{1/2}$: From B(E2) $\uparrow \le 0.029$ (1981Ba05).
2247.38 6	4+	3.3 ps 5	$T_{1/2}$: From B(E2) \uparrow .
			B(E2) 1=0.032 5 (1981Jo03).
			μ: +1.5 7 from g-factor=+0.38 18 in 2011Wa15.
2354.07 8	3 –	0.215 ps 14	T _{1/0} ; from DSAM in 2011Ju01.
		•	$^{1/2}$ $^$
			μ: -1.4 28 from g-factor=-0.48 92 in 2011Wa15.
2476.2 5	2+		
2521.4 5	4+		

- † From a least-squares fit to Ey.
- $\ensuremath{^{\ddagger}}$ From the adopted levels.

 $\gamma(^{112}{
m Sn})$

$\underline{\hspace{1cm} E\gamma^{\dagger}}$	E(level)	Ιγ [†]	Mult.†	δ†	α
203.2 2	2354.07				
286	2476 . 2				
894.17 4	2150.86	100 1	M1+E2	-0.286	
934.124	2190.81		E 2		
990.69 4	2247.38	100			
1097.38 7	2354 . 07	100	E1		
1219.34 13	2476.2	20.5 24	M1+E2	-0.547	9.77 \times 10 ⁻⁴ 16

Coulomb Excitation 2011Ju01,2011Wa15,1981Jo03 (continued)

$\gamma(^{112}\mathrm{Sn})$ (continued)

$\underline{\hspace{1cm}} E \gamma^{\dagger}$	E(level)	$\underline{\hspace{1.5cm}} I\gamma^{\dagger}$	Mult.†	α	I(γ+ce) [†]	Comments
1256.68 4	1256.69	100	E2			Mult.: A_2 =0.64 8 (2011Wa15) and A_4 =-0.82 8 (2011Wa15); Also: A_2 =0.90 6 (2011Wa15) and A_4 =-0.71 6 (2011Wa15).
1264.07 7	2521 . 4	100	E 2	7 . 96 \times 10 $^{-4}$		•
2150.9 4	2150.86	16.7 11	E2			
2190.95	2190 . 81		ΕO		$0.1455\ 21$	
2475 . 8 3	2476 . 2	$100.0\ 24$	E2	7 . 48×10^{-4}		

[†] From the adopted gammas.

¹¹³In(p,2nγ) 1969Ya05

1969Ya05: Facility: LRL Berkeley cyclotron; Beam: E(p)=12,14,16 MeV; Target: 113 In; Detectors: one Ge(Li), one 3mm thick planar detector (FWHM=2.7 nsec); Measured: $E\gamma$; Deduced: 112 Sn level scheme.

¹¹²Sn Levels

E(level) [†]	Jπ‡	Comments
0.0	0+	
1258.0 10	2+	
2251.0 15	4+	
2553.0 18	6+	
3360.0 20	(7)-	configuration: vd _{3/2} h _{11/2} .

 $^{^{\}dagger}$ From a least-squares fit to Ey.

$\gamma(^{112}Sn)$

$\mathbf{E}\gamma^{\dagger}$	E(level)	Comments
0.00 1	0550 0	
302 1	2553.0	
x 3 7 7 1		
807 1	3360.0	Eγ: 805.11 7 in the adopted gammas.
993 1	2251 . 0	Εγ: 990.69 4 in the adopted gammas.
1258 1	1258.0	

 $^{^{\}dagger}$ From 1969YaO5; $\Delta E \gamma$ was estimated by the evaluators.

¹¹⁴Sn(p,t) 2012Gu10,1980Bl01

2012Gu10: Facility: Munich technical university tandem; Beam: E(p)=22 MeV; Target: $113~\mu g/cm^2$ enriched to 71% in ^{114}Sn with 10 $\mu g/cm^2$ carbon backing; Detectors: Munich Q3D spectrograph, focal plane detector comprising a position-sensitive proportional counter and a plastic scintillator (FWHM=8 keV); Measured: E, L; Deduced: level scheme, DWBA, σ , $d\sigma/d\Omega$.

1980Bl01: Facility: Free University AVF cyclotron; Beam: E(p)=27.5 MeV; Targets: 160 and 190 $\mu g/cm^2$ with 1.26% of ^{112}Sn ; Detectors: Enge split-pole spectrograph, six position-sensitive solid-state detectors (FWHM 10-15 keV); Measured: $E(\theta)$, $d\sigma/d\Omega$; Deduced: ^{112}Sn level scheme, L, J π , DWBA; Also, from the same collaboration: 1979BlZZ. Others: 1998GuZW, 1979BlZZ, 1970Fl08.

[‡] From the adopted levels.

 $^{^{}x}$ γ ray not placed in level scheme.

114 Sn(p,t) 2012Gu10,1980Bl01 (continued)

$^{112}\mathrm{Sn}$ Levels

E(level) [†]	Jπ‡	_L§	Comments
0.0	0+	0	
1257 3	2+	2	
2151 3	2+	2	
2192?# 10	0+	0	E(level),L: from 1980Bl01; level not reported in 2012Gu10.
2248 3	4+	4	Dieter/,2. Hom 10005101, level not reported in 2012date.
2355 3	3-	3	
2476 3	2+	2	
2521 3	4+	4	
2549 3	6+	6	
2618 3	0 +	0	
2722 3	2+	2	
2784 3	4+	4	
2927 3	6+	6	
2966 3	2+	2	
2988 3	0+	0	
3132 3	5 –	5	
3248 3	2+	2	
3275 3	4+	4	
3286 3	2(+)	2	
3345 3	2+	2	
3400 3	4+	4	
3414 3	6+	4,6	unresolved doublet in 2012Gu10.
3445 3	4+	4	
3481 3	4 (+)	4	
3510 3	5 (–)	5	
3554 3	3 (–)	3	
3586 3	2 (+)	2	
3624 3	(2+,4+)	4	Jπ: L=4 in 2012Gu10 supports 4+.
3663# 10	2+		
3715# 10			
3776# 10 3818# 10			
3818# 10 3874# 10			
3930# 10			
4048 [#] 10			
4091# 10	8+		
4164# 10	0+		
4241# 10			
4287# 10			
4316# 10			
4363# 10			
4455# 10			
4486# 10			
4576 # 10	10-		
4629# 10			
4724# 10			
4740 # 10			
4740 # 10			

[†] From 2012Gu10, unless otherwise noted.
‡ From the adopted levels.
§ Based on DWBA in 2012Gu10, unless otherwise noted.
From 1980Bl01. ΔE assigned by the evaluators.

Adopted Levels, Gammas

 $Q(\beta^-) = -4031\ 20;\ S(n) = -8834\ 20;\ S(p) = -2948\ 19;\ Q(\alpha) = 96\ 20\ \ 2012Wa38.$

A $^{112}\mathrm{Te}~\epsilon~\mathrm{Decay}$

 $1042.7 \ 4$

1120 30 1169.9 5

1184.3 5

(8-)

(7+)

(1+)&

D

D

DE

 $B^{-112}Sb$ IT Decay (0.56 $\mu s)$

¹¹²Sb Levels

 $D^{-103}Rh(^{12}C,3n\gamma),^{90}Zr(^{31}P,2\alpha n\gamma)$

 ${\rm E}^{-89}{\rm Y}(^{29}{\rm Si},\alpha 2{\rm n}\gamma),^{88}{\rm Sr}(^{28}{\rm Si},p3{\rm n}\gamma)$

 $J\pi\colon\thinspace 216.8\gamma\mbox{ (M1+E2)}$ to (8-), $631.6\gamma\mbox{ (M1+E2)}$ from (7-).

Cross Reference (XREF) Flags

	B ¹¹² Sb IT C ¹¹² Sn(p,	Decay (0.50 nγ)	6 µs)	$ \begin{array}{l} \mathrm{E}^{-89}\mathrm{Y}(^{29}\mathrm{Si},\alpha2\mathrm{n}\gamma),^{88}\mathrm{Sr}(^{28}\mathrm{Si},\mathrm{p}3\mathrm{n}\gamma) \\ \mathrm{F}^{-112}\mathrm{Sn}(^{3}\mathrm{He},\mathrm{t}) \end{array} $
E(level) [†]	Jπ	XREF	T _{1/2}	Comments
0.0‡	(3+)	ABCDE	53.5 s 6	$\%\epsilon + \%\beta^+ = 100$.
0.0	(0.7)	110000	00.0 0	J π : direct feeding of 2+ and 4+ levels in $^{112}{\rm Sb}$ following $\%\epsilon+\%\beta^+$ decay.
				$T_{1/2} \colon \text{weighted average for } 51.4\ 10\ \text{s}\ (1976\text{Wi}10),\ 53.5\ 5\ \text{s} \\ (1972\text{Si}28),\ 56\ 1\ \text{s}\ (1972\text{Mi}27),\ 53\ 1\ \text{s}\ (1970\text{SuZY}),\ 54\ 6\ \text{s} \\ (1959\text{Se}56).$
		_		configuration: πd _{5/2} ⊗νg _{7/2} .
38.40 ‡ 6	(2+)	С		$J\pi \colon 38.3\gamma$ to (3+); 357.54γ M1(+E2) from (3+); assignment is tentative.
60.97 ‡ 16	(1+)	С		J π : Tentative assignment based on the association of this level as a member of the $\pi d_{5/2} \otimes v g_{7/2}$ split multiplet.
103.88 ‡ 6	(4+)	ABCDE		$J\pi$: 103.9 γ M1(+E2) to (3+).
132.37 22	(5+)	BCDE		XREF: C(129.6)D(133.5).
				Jπ: 133.5γ E2 to (3+).
140 30	(1+)&	F		
167.14 \$ 6	(4+)	CDE		$J\pi$: 167.1 γ M1(+E2) to (3+), prompt 37.5 γ to (5+).
236.51 5	(3+)	A CD		J π : 132.59 γ M1+E2 to (4+), 198.08 γ M1(+E2) to (2+).
296.16 \$ 4	(2+)	A C		J π : 296.18 γ M1+E2 to (3+), 257.8 γ M1 to (2+); member of the $\pi d_{5/2} \otimes v d_{5/2}$ split multiplet.
350.90? 20	(1+)	A		J π : 350.9 γ to (3+); probable feeding in 112 Te ϵ decay (J π =0+).
369.2 [‡] 3	(6+)	BCDE		XREF: B(366.3)D(370.1).
				$J\pi$: 236.9 γ M1+E2 to (5+), 976.0 γ M1+E2 from (7+).
372.70 20	(1+)	Α		J π : 372.7 γ to (3+); probable feeding in 112 Te ϵ decay (J π =0+).
395.94 [@] 6	(3+)	C		$J\pi$: 292.1 γ M1(+E2) to (4+), 99.9 γ to (2+).
411.12# 7	(1+,2+)	C		$J\pi$: 372.72 γ M1+E2 to (2+); 350.0 γ to (1+).
501.96\\$ 21	(5+)	CDE		Jπ: 398.2 γ M1+E2 to (4+); member of the $\pi d_{5/2}xvd_{5/2}$ split multiplet.
510.56 6	(2+,3+)	C F		XREF: F(510).
				J π : 274.05 γ M1+E2 to (3+) and 214.4 γ M1 to (2+); Probable member of the $\pi d_{5/2}xvs_{1/2}$ split multiplet; J π =1+ in $^{112}Sn(^3He,t)$, but level not observed in ^{112}Te ϵ decay (J π =0+).
672.84 8	(3+,4+)	С		$J\pi$: 569.05 γ M1 to (4+), 436.8 γ M1+E2 to (3+).
714.68 6	(2+,3+)	A C		Jπ: 418.59γ M1+E2 to (2+), 611.9γ to (4+).
780.97# 7	(1+,2+)	C		$J\pi$: 369.8 γ (M1+E2) to (1+), 742.58 γ M1 to (2+).
788.25# 6	(2+,3+)	C		J π : 749.89 γ M1 to (2+), 684.6 γ to (4+); member of the $\pi d_{5/2}xvd_{3/2}$ split multiplet.
804.37 11	2+,3,4,5+	С		$J\pi$: 637.2 γ to (4+) and 804.6 γ to (3+).
808.18 4	(2+)	C		$J\pi$: 808.17 γ M1+E2 to (3+), 704.3 γ (E2) to (4+).
825.9 4	(8-)	B DE	536 ns 22	XREF: D(826.7).
	** *	·		$J\pi$: 456.4 γ M2+E3 to (6+).
				$T_{1/2} \colon$ from $\gamma(t)$ in 1982Ma29. Other: 0.56 μs 12 from 456.4 $\gamma(t)$ in 1976Ke07.
				μ: +2.19 4 (1976Ke07) using the perturbed angular correlations technique.
				Q: 0.71 8 from $\gamma(\theta,t)$ from abs(Q(¹¹² Sb,8-)/Q(¹²³ Sb,5/2+))=1.958 10 is
				1982Ma29, deduced using the perturbed angular correlations technique, and $Q(^{121}Sb,5/2+)=-0.36$ 4 (1978Bu24).
				configuration: $\pi d_{5/2} \otimes vh_{11/2}$.
844.9? 4		A		3/2 - 11/2
973.4 3	(6+)	CDE		J π : 471.7 γ M1+E2 to (5+), 701.3 γ E1 from (7-).
0.40 7 4	(0)	ъ.		I 010 0 (MI PO) ((0) 001 0 (MI PO) ((7)

XREF: D(1185.2). $J\pi$: 815.1 γ (M1+E2) to (6+).

¹¹²Sb Levels (continued)

E(level) [†]	Jπ	XREF	$\underline{\hspace{1cm}} T_{1/2}$	Comments
1268.0 4	(7-)	DE		Jπ: 441.9γ M1+E2 to (8-).
1340 30	(1+)&	F		5K. 111.5 MITE 60 (6).
1340.3 4	(11)	D		
1344.7 3	(7+)	D		$J\pi$: 976.0 γ M1+E2 to (6+), 1211.9 γ E2 to (5+).
1389.5 3	(6+)	D		$J\pi$: 1285.6 γ E2 to (4+).
1529.8 4	(9-)	D		$J\pi$: 704.0 γ M1+E2 to (8-).
1540 30	1+&	F		5K. 104.0 MI112 00 (0).
1674.4 4	(7-)	DE		$J\pi$: 701.3 γ E1 to (6+) and 848.4 γ M1+E2 to (8-).
1681.5 5	(8+)	D		$J\pi$: 1312.3 γ E2 to (6+).
1690.5 5	(7+)	D		$J\pi$: 1321.3 γ M1+E2 to (6+).
1746.6 ^d 4	(8-)	DE		$J\pi$: 920.8 γ M1+E2 to (8+), 402.0 γ E1 to (7+) and 72.4 γ M1+E2 to
1110.0 1	(0)	DL		(7-).
1830 30	(1+)&	F		(,).
1884.4 4	(10-)	D		XREF: D(1885.2).
1004.4 4	(10)	ь		Jπ: 1058.5γ E2 to (8–) and 355.2γ M1+E2 to (9–).
1948.7d 4	(9-)	DE		$J\pi$: 1122.9 γ M1+E2 to (8-); band member.
2075.0 4	(9-)	D		$J\pi$: 1249.1 γ (M1+E2) to (8-).
2100.0 6	(9+)	D		
2161.5 6	(8+)	D		Jπ: 418.5 γ (M1+E2) to (8+). Jπ: 471.0 γ (M1+E2) to (7+).
2181.3 6	(1+)&	F		on. 111.0 (MITEZ) to (IT).
2274.3d 4	(10-)	DE		J π : 527.7 γ E2 to (8-), 325.5 γ M1+E2 to (9-).
2320.1 5	(11+)	D		Jπ: 435.7γ E1 to (10-).
2410 30	(1+)&	F		σκ. 400.17 E1 to (10-).
2481.8 5	(12-)	D		J π : 161.8 γ (E1) to (11+), 597.5 γ (E2) to (10-).
2492.1 5	(12-)	D		σκ. 101.0γ (Ε1) to (11+), σστ.σγ (Ε2) to (10-).
2547.9 5	(11-)	D		J π : 664.0 γ (M1+E2) to (10-) and 1017.6 γ (E2) to (9-).
2569.8 6	(9+)	D		$J\pi$: 1385.5 γ E2 to (7+).
2581.6 11	(3+)	D		3π. 1303.5γ E2 t0 (7+).
2601.5 5	(12-)	D		Jπ: 717.1γ E2 to (10-).
2628.1d 4	(11-)	DE	0.39 ps +17-18	XREF: E(2626.9).
2020.1 4	(11-)	DE	0.55 ps +17-15	J π : 679.1 γ E2 to (9-) and 353.9 γ M1+E2 to (10-).
9790 20	(1+)&	TP.		$T_{1/2}$: From 354 γ DSAM in 2005De02.
2720 30 2868.25	(12-)	F D		Jπ: 983.8γ E2 to (10-).
2908.1 6	(12-)	D		3π. 363.8γ E2 t0 (10-).
2987.6 4	(12-)	D		J π : 1103.4 γ E2 to (10-), 358.9 γ M1+E2 to (11-).
3008.8d 4	(12-)	DE	0.35 ps +11-12	XREF: E(3007.3).
3000.0- 4	(12-)	DE	0.35 ps +11-12	Jπ: 734.6γ E2 to (10–) and 380.6γ M1+E2 to (11–).
3082.0 5	(12-)	D		$T_{1/2}$: From 380 γ DSAM in 2005De02. J π : 1197.7 γ E2 to (10-), 761.9 γ to (11+).
3100 30	(1+)&	F		3π. 1137.7γ E2 to (10-), 701.5γ to (11+).
3224.0 6	(14-)	D F		J π : 622.6 γ E2 to (12-).
3295.7 5	(12-)	D		J π : 1411.3 γ (E2) to (10-); assumed yrast state.
3380.1 5	(13+)	D		$J\pi$: 1411.5 γ (E2) to (10-); assumed yeast state. $J\pi$: 1060.0 γ E2 to (11+) and 511.8 γ to (12-).
3380.1 5				$J\pi$: 1060.07 E2 to (11+) and 511.87 to (12-). $J\pi$: 754.37 E2 to (11-), 373.57 M1+E2 to (12-).
3401.4d 5	(13-) (13-)	D D	0.35 ps 8	$J\pi$: 773.5 γ E2 to (11-), 373.5 γ M1+E2 to (12-). $J\pi$: 773.5 γ E2 to (11-), 392.4 γ M1+E2 to (12-); band member.
0401.4~ 0	(10-)	ъ	J.JJ ps o	
3403.1 5	(12+)	D		T _{1/2} : From 392γ DSAM in 2005De02.
3403.1 5	(12+) (1+)&	Б F		Jπ: 1083.0γ M1+E2 to (11+).
3420 30		D D		Iπ: 1168 8v M1+F9 to (11:) 1007 4v (F1) to (10.)
	(12+) (14-)	D D		Jπ: 1168.8γ M1+E2 to (11+), 1007.4γ (E1) to (12-).
3622.0 5 3680 30	(14-) (1+)&			$J\pi$: 613.2 γ E2 to (12–).
		F		In. 985 98 (M1:F9) +0 (12)
3686.6 5	(14-)	D		$J\pi$: 285.2 γ (M1+E2) to (13-).
3686.8 6	(14-)	D		$J\pi$: 818.6 γ E2 to (12-); yrast state assumed.
3725.6 7		D		
3730.8 6	(10.)	D		I-, 1100 A. (E0) A. (11)
3747.3 6	(13-)	D		Jπ: 1199.4 γ (E2) to (11–).
3794.1 7	(14.)	D		VDEE. B(2006 0)
3808.3d 5	(14-)	DE		XREF: E(3806.8).
0.045 1 2		ъ		$J\pi$: 799.7 γ E2 to (12-), 425.9 γ M1+E2 to (13-); band member.
3845.1 6	1 . &	D		
3850 30	1+& 1+&	F F		
4050 30				

¹¹²Sb Levels (continued)

E(level) [†]	Jπ	XREF	Comments
4088.9 6	(15+)	D	Jπ: 708.8γ E2 to (13+).
4089.3 7	(15-)	D	$J\pi$: 402.5 γ (M1+E2) to (14-).
4121.3 5	(14+)	D	Jπ: 632.0γ E2 to (12+).
4223.0 6		D	•
4240 30	1+&	F	
4254.8b 6	(14-)	D	$J\pi$: 1653.3 γ E2 to (12-); band member.
4260.5 5	(15-)	DE	XREF: E(4258.7).
		-	Jm: 451.9 γ M1+E2 to (14-); band member.
4276.5 <i>6</i>	(15)	D	VDEE. B(4000.0)
4294.7 ^d 5	(15-)	DE	XREF: E(4293.0). $J\pi$: 893.2 γ E2 to (13-), 486.3 γ M1+E2 to (14-); band member.
4320.26	(15+)	D	$J\pi$: 940.1 γ E2 to (13+); yrast state.
4391.3 7	(16-)	D	$J\pi$: 302.0 γ (M1+E2) to (15-).
4433.4^{a} 6	(15+)	D	J π : 312.1 γ M1+E2 to (14+); band member.
$4600 \ 30$	1+&	F	
4675.7 7	(16+)	D	Jπ: 586.8γ (M1+E2) to (15+).
4797.8 ^d 5	(16-)	DE	XREF: E(4794.9).
,			$J\pi$: 989.8 γ E2 to (14-), 503.0 γ M1+E2 to (15-); band member.
4837.2 ^b 6	(16-)	D	Jπ: 1613.2γ E2 to (14–); band member.
4863.9 6	(16+)	D	Jπ: 742.6 γ E2 to (14+); yrast state.
4880 30	1+&	F	
5161.0ª 6	(17+)	D	J π : 727.7 γ E2 to (15+), 297.0 γ M1+E2 to (16+); band member.
5310 <i>30</i>	(1+)&	F	NDD D(1999 S)
5325.7d 6	(17-)	DE	XREF: E(5320.3).
FFE0 00	&-		J π : 1030.8 γ to (15-), 527.9 γ M1+E2 to (16-); band member.
5570 <i>30</i> 5643.7 ^b 7	(1+)&	F	In. 806 Eu. Eg. 44 (16.)
5717.0 7	(18-)	D D	Jπ: 806.5γ E2 to (16-).
5729.3 7	(18+)	D	Jπ: 865.4γ E2 to (16+).
6002.3ª 7	(19+)	D	$J\pi$: 841.2 γ E2 to (17+), 273.0 γ M1+E2 to (18+); band member.
6544.5b 7	(20-)	D	Jπ: 900.8γ to (18-); band member.
6934.5 ^a 7	(21+)	D	Jπ: 932.2γ E2 to (19+); band member.
7535.3 ^b 8	(22-)	D	$J\pi$: 990.8 γ E2 to (20-); band member.
7937.4a 8	(23+)	D	$J\pi$: 1002.9 γ E2 to (21+); band member.
8615.9 ^b 9	(24-)	D	Jπ: 1080.6γ (22-); band member.
8996.4ª 9	(25+)	D	$J\pi$: 1059.0 γ E2 to (23+); band member.
9784.2b 9	(26-)	D	$J\pi$: 1168.3 γ to (24-); band member.
10113.2ª 10	(27+)	D	$J\pi$: 1116.8 γ E2 to (25+); band member.
11041.2 ^b 10	(28-)	D	$J\pi$: 1257.0 γ to (26-); band member.
11296.4ª 10	(29+)	D	$J\pi$: 1183.2 γ E2 to (27+); band member.
12393.6 ^b 11	(30-)	D	$J\pi$: 1352.4 γ to (28-); band member.
12595.2ª 10	(31+)	D	$J\pi$: 1298.8 γ E2 to (29+); band member.
13839.4 ^b 12	(32-)	D	$J\pi$: 1445.8 γ to (30-); band member.
14088.8 ^a 11	(33+)	D	Jπ: 1493.6 γ to (31+); band member.
15387.6 ^b 13	(34-)	D	$J\pi$: 1548.2 γ to (32-); band member.
15784.3ª 11	(35+)	D	Jπ: 1695.5γ to (33+); band member.
17053.6 ^b 15 17655.6 ^a 12	(36-) (37+)	D D	Jπ: 1666.0γ to (34-); band member. Jπ: 1871.3γ to (35+); band member.
			•
y e	(10+)	D	J π : Possible γ -ray transitions to the (8+) level at 2161.4 keV and the (9+) level at 2569.5 keV. All transitions in the band associated with this level are observed by
			1998La14 in coincidence with the 4717, depopulating the (8+) level at 2161.4 keV and 13857, depopulating the (9+) level at 2569.5 keV.
y+378.09e 24	(11+)	D	Jπ: 378.2γ M1+E2 to (10+); band member.
y+709.4 11	(12+)	D	Jπ: 368.2γ (M1+E2) from (13+).
y+750.72e 24	(12+)	D	$J\pi\colon$ 750.6γ to (10+), 372.6γ M1+E2 to (11+); band member.
y+1077.6° 3	(13+)	D	$J\pi\colon$ 699.7 γ to (11+), 326.8 γ M1+E2 to (12+); band member.
y+1095.45	(13+)	D	Jπ: 277.2γ M1+E2 from (14+).
y + 1372.6e4	(14+)	D	$J\pi\colon$ 621.7 γ to (12+), 294.9 γ M1+E2 to (13+); band member.
y+1690.4e 5	(15+)	D	$J\pi\colon$ 613.07 to (13+), 317.87 M1+E2 to (14+); band member.
y+2046.2e 6	(16+)	D	J π : 673.9 γ to (14+), 355.8 γ M1+E2 to (15+); band member.
y+2437.8e 6	(17+)	D	Jπ: 747γ to (15+), 391.6γ M1+E2 to (16+); band member.
y+2852.1e 7	(18+)	D	Jπ: 414.2γ M1+E2 to (17+); band member.
y+3217.1 8	(19+)	D	Jπ: 365.0γ M1+E2 to (18+); band member.
			Continued on next page (footnotes at end of table)

$^{112}\mathrm{Sb}$ Levels (continued)

E(level) [†]	Jπ	XREF	Comments
y+3284.6 ^e 8	(19+)	D	Jπ: 432.5γ M1+E2 to (18+); band member.
x c	(11-)	D	Jπ: Possible γ-ray transition to the (10-) level at 1884.4 keV. All in-band transitions are observed by 1998La14 to be in coincidence with the 1059γ,depopulating the (10-) level at 1884.4 keV.
x+561.0° 3	(13-)	D	$J\pi$: 561.0 γ to (11-); band member.
x+1216.8° 5	(15-)	D	$J\pi$: 655.8 γ to (13-); band member.
x+1960.5° 6	(17-)	D	$J\pi$: 743.7 γ E2 to (15-); band member.
x+2794.5° 6	(19-)	D	Jπ: 834.0γ E2 to (17-); band member.
x+3718.4° 7	(21-)	D	$J\pi$: 923.9 γ (E2) to (19-); band member.
x+4733.7° 8	(23-)	D	$J\pi$: 1015.3 γ (E2) to (21-); band member.
x+5842.6° 8	(25-)	D	$J\pi$: 1108.9 γ to (23-); band member.
x + 7046.5° 9	(27-)	D	$J\pi$: 1203.9 γ to (25-); band member.
x+8346.3° 9	(29-)	D	$J\pi$: 1299.8 γ to (27-); band member.
x+9733.3° 10	(31-)	D	$J\pi$: 1387.0 γ to (29-); band member.
x+11202.0° 10	(33-)	D	$J\pi$: 1468.6 γ to (31-); band member.
x+12772.6° 11	(35-)	D	$J\pi$: 1570.6 γ to (33-); band member.
x+14480.6° 12	(37-)	D	$J\pi$: 1708.0 γ to (35-); band member.
x+16361.4° 14	(39-)	D	$J\pi$: 1880.8 γ to (37-); band member.
x+18439.4? ^c 17	(41-)	D	$J\pi$: 2078 γ to (39-); band member.

- † From a least squares fit to Ey.
- $\dot{\ddagger}$ Probable member of the $\pi d_{5/2} {\otimes} \nu g_{7/2}$ split multiplet.
- $\$ Probable member of the $\pi d_{5/2} \otimes \nu d_{5/2}$ split multiplet.
- # Probable member of the $\pi d_{5/2} \otimes v d_{3/2}$ split multiplet.
- @ Probable member of the $\pi d_{5/2}^{0.2} \otimes vs_{1/2}^{0.2}$ split multiplet.
- & From $\Delta L=0$ in $^{112}Sn(^{3}He,t)$ in 1995Ph01.
- $^{\rm a}$ (A): $\Delta J\!=\!2$ band based on the 4433.4-keV (15+) state.
- b (B): $\Delta J \! = \! 2$ band based on the $4254.8 \! \! keV$ (14-) state.
- c (C): $\Delta J {=}\, 2$ band based on the (11-) state.
- d (D): ΔJ =1 band, based on the 1746.6-keV (8-) state configuration= $\pi g_{9/2}^{-1} v h_{11/2}$.
- e (E): $\Delta J \! = \! 1$ band, based on the (10+) state.

 $\gamma(^{112}{
m Sb})$

E(level)	$\mathbf{E}\gamma^{\dagger}$	Ιγ [†]	Mult.†	δ&	α	Comments
38.40	38.3‡ 4	100‡				
60.97	(22.7 [‡])	100‡				Ey: not measured directly, but inferred from $\gamma-\gamma$ coincidences in $^{112}Sn(p,n\gamma)$ (1997Fa08).
103.88	103.9 3	100	M1(+E2)#	-0.01# 4	0.555 10	Mult.: A_2 =-0.264 86 (1997Fa08); A_4 =-0.042 7. (1997Fa08); A_2 =-0.30 3 and DCO=0.61 6 in $^{103}{\rm Rh}(^{12}{\rm C},3{\rm n}\gamma)$ (1998La14).
132.37	(29.6)					Ey: not measured directly, but inferred from $\gamma - \gamma$ coincidences in 1998La14.
	133.5 3	100 4	E2		0.593 10	Mult.: A_2 =0.18 5 and DCO=1.47 5 in $^{103}{\rm Rh}(^{12}{\rm C}, 3{\rm n}\gamma)$ (1998La14).
167.14	37.5 4	7 ‡ 4				
	167.1 3	100 5	M1(+E2)#	+0.01# 4	0.1482 23	Mult.: $\alpha(K)\exp{0.102}$ 30 (1997Fa08); $A_2=-0.254$ 95 and $A_4=-0.044$ 81 (1997Fa08) $A_2=-0.29$ 4 and DCO=0.98 9 in $^{103}\mathrm{Rh}(^{12}\mathrm{C},3\mathrm{n}\gamma)$ (1998La14).
236.51	69.39‡ 4	22 ‡ 4	M1(+E2)#	+0.02# 8	1.76 5	Mult.: A_2 =-0.145 103 (1997Fa08); A_4 =-0.132 89 (1997Fa08).
	132.59‡ 4	100 ‡ 6	M1+E2 $^{\#}$	-0.07# 6	0.282 6	Mult., δ : α (K)exp=0.225 44, A ₂ =-0.011 107 and A ₄ =0.064 93 (1997Fa08).
	198.08‡ 4	31‡ 3	M1(+E2)#	-0.04# 6	0.0935 14	Mult., δ : $\alpha(K)$ exp=0.075 14, A_2 =-0.243 139 and A_4 =-0.133 121 (1997Fa08).
	236.6	17 [‡] 8	(M1+E2)		0.0582	Mult.: α(K)exp=0.067 18 (1997Fa08); doublet.
296.16	59.7 [‡] 1	8.3				
	257.8 † 1	5.5 † 7	M1 #		0.0464	
	296.18 4	100 ‡ 4	M1 + E2		0.0323	

$\gamma(^{112}{ m Sb})$ (continued)

E(level)	$\underline{\hspace{1cm}}^{\mathrm{E}\gamma^{\dagger}}$	Ιγ [†]	Mult.†	δ&	α	Comments
350.90?	350.98 2	1008				
369.2	236.9 3	100	M1+E2		0.0580	Mult.: A_2 =-0.18 3, DCO=0.55 2 in 103 Rh(12 C,3n γ) (1998La14); α (K)exp=0.067 18 (1997Fa08).
372.70	372.7 \$ 2	100\$				w(11)enp=0.007 10 (10071 000).
395 . 94	99.9‡ <i>3</i>	3.0 ‡ 9				
	159.3 4	18.2 17	M1+E2 #		0.169 3	Mult.: $\alpha(K)\exp=0.158$ 50 (1997Fa08).
	228.8 [‡] 2	$42.9^{\ddagger}22$	(M1)#		0.0636	Mult.: α(K)exp=0.050 5 (1997Fa08).
	292.1 ‡ 1	19.9 ‡ 22	M1(+E2)#	+0.07#9	0.0335	Mult.: α(K)exp=0.048 2 (1997Fa08).
						$\begin{array}{lll} {\rm Mult.:} \ {\rm A_2{=}}{-}0.154 \ (1997{\rm Fa}08); \ {\rm A_4{=}}0.017 \ 111 \\ & (1997{\rm Fa}08). \end{array}$
	357.54	100 ‡ 5	M1(+E2)#	+0.01# 5	0.0199	Mult.: α(K)exp=0.017 2 (1997Fa08);
						A_2 =-0.234 105 (1997Fa08); A_4 =-0.024 89 (1997Fa08).
411.12	350.0 ‡ 4	39‡ 6				
	372.72‡ 4	100‡ 3	M1+E2#	-0.07# 4	0.0179	Mult.: $\alpha(K)\exp[-0.017\ 2\ (1997Fa08);$ $A_2=-0.002\ 81\ (1997Fa08);$ $A_4=-0.001\ 71\ (1997Fa08).$
501.96	335.0 3	42.2 16	M1+E2#	-0.14# 8	0.0236	Mult.: $\alpha(K)\exp=0.029$ 9 and $A_2=-0.229$ 371,
						A_4 =-0.058 311 (1997Fa08); DCO=0.76 4 is 103 Rh(12 C,3n γ) (1998La14).
	398.2 3	100 4	M1+E2#	-0.14# 8	0.01519	Mult.: α(K)exp=0.014 2 and A ₂ =-0.508 218,
						A_4 =-0.010 169 (1997Fa08); DCO=0.70 9 in 103 Rh(12 C, 3 n γ) (1998La14).
510.56	114.9 [‡] 5	24 ‡ 5	M1(+E2)#	+0.07# 15	0.42 3	Mult.: A ₂ =-0.147 135 (1997Fa08);
	214.4 ‡ 1	10 1	M1#	#	0.0556	$A_4 = -0.077 \ 116 \ (1997 = 108)$
	$214.4 \div 1$ $274.05 \ddagger 4$	$16.1^{\ddagger} 23$ $50.6^{\ddagger} 23$		π	0.0756	Mult.: α(K)exp=0.055 8 (1997Fa08).
	274.05+ 4	50.6÷ 23	M1+E2#		0.0395	Mult.: $\alpha(K)\exp=0.038$ 4 (1997Fa08). Mult.: $A_2=-0.276$ 166 (1997Fa08); $A_4=-0.176$ 146 (1997Fa08).
	510.7 [‡] 3	100 ‡ 20				
672.84	436.8	$22.1^{\ddagger} 15$	M1+E2		$0\;.\;0\;1\;2\;0\;6$	Mult.: α(K)exp=0.012 2 (1997Fa08).
	505.7 [‡] 5	$100^{\ddagger} 27$	M1+E2		$0\;.\;0\;0\;8\;4\;0$	Mult.: α(K)exp=0.0075 9 (1997Fa08).
	569.05 \$ 9	26.7 ‡ 15	M1		0.00631	Mult.: $\alpha(K)\exp=0.0062$ 7 (1997Fa08).
	672.7 [‡] .1	25‡ 3				
714.68	418.59‡ 5	100 ‡ 7	M1(+E2)#	+0.28# 56	0.01338 23	Mult.: $\alpha(K) \exp = 0.012 \ 2$, $A_2 = -0.057 \ 100$ and $A_4 = -0.004 \ 87 \ (1997Fa08)$.
	476.9 \$ 2	25 \$ 5				
	611.9 \$ 5	8 \$ 2				
	653.8‡ 2	5.4 ‡ 12				
	714.7 \$ 5	4.2 \$ 16	,,	"		
780.97	369.8‡ 1	24.1‡ 25	(M1+E2)#	-0.02# 14	0.0183	Mult.: $\alpha(K) \exp = 0.016 \ 2$, $A_2 = -0.304 \ 219$ and $A_4 = -0.104 \ 183 \ (1997Fa08)$.
	719.9 † 3	8.9 † 13	354 #			
700 C	742.58‡ 4	100 ‡ 8	M1#		0.00335	Mult.: α(K)exp=0.0040 10 (1997Fa08).
788.25	491.8‡ 4	72‡ 16	(M1+E2)		0.00900	Mult.: α(K)exp=0.0082 18 (1997Fa08).
	551.6 [‡] 5	28 [‡] 6				
	684.6‡ 3	20‡ 3	Mi		0 00222	Mult. a(K)ann 0 0020 C (1007E-00)
	749.89 [‡] 5 788.1 [‡] 1	$100 \stackrel{‡}{-} 6$ $45 \stackrel{‡}{-} 6$	M1		0.00328	Mult.: $\alpha(K)\exp=0.0032$ 6 (1997Fa08).
004 07	788.1÷ 1 637.2‡ 1	45 † 6 100 † 7				
804.37	637.2÷ 1 804.6‡ 3	100÷ 7 85‡ 11				
808.18	804.6÷ 3 641.2 [‡] 2	85÷ 11 7‡ 3				
000.18	641.2+ 2 704.3 [‡] 2	7+ 3 79‡ 9	(E2)#		0 00211	Mult : a(K)orp=0.0021 2 (1007E-00)
	808.17 [‡] 4	100 ‡ 23	M1+E2#	+0.25# 11	0.00311 0.00272 5	Mult.: $\alpha(K)\exp=0.0031\ 3\ (1997Fa08)$. Mult.: $\alpha(K)\exp=0.0027\ 4$ and $A_2=0.022\ 396$, $A_4=-0.179\ 342\ (1997Fa08)$.
825.9	456.4 3	100	M2(+E3)		0.034 4	Mult.: A ₂ =0.28 3 in ¹⁰³ Rh(¹² C,3nγ) (1998La14); DCO=0.75 3 in ¹⁰³ Rh(¹² C,3nγ) (1998La14); K/L=5.6 13 in 1976Ka19. δ: 2.5 20 from K/L=5.6 13 in 1976Ka19. However, the deduced E3 transition strength of B(E3)(W.u.)=620 140 exceeds

$\gamma(^{112}{\rm Sb})$ (continued)

E(level)	Eγ [†]	Ιγ [†]	Mult.†	α	Comments
844.9?	494.0 \ 3	100\$			
973.4	471.7 3	100	M1+E2	0.00997	Mult.: $\alpha(K)\exp=0.010$ 2 (1997Fa08); A ₂ =-0.17 3 and DCO=0.77 2 in $^{103}Rh(^{12}C,3n\gamma)(1998La14)$.
1042.7	216.8 3	100	(M1+E2)	$0\;.\;0\;7\;3\;4$	Mult.: DCO=1.52 12 in $^{103}{\rm Rh}(^{12}{\rm C},3n\gamma)$ (1998La14).
1169.9 1184.3	196.5 3 815.1 3	100	(M1+E2)	0.00270	Mult.: from DCO=0.44 6 in 103 Rh(12 C, 3 n γ) (1998La14). Other: Mult.=(E2) in 89 Y(29 Si, $^{\alpha}$ 2n γ) (1997MoO1), but no
					arguments were given.
1268.0	441.9 3	100	M1+E2	0.01171	Mult.: DCO=0.94 3 in 103 Rh(12 C,3n γ) (1998La14).
1340.3	513.9 3	100			102
1344.7	976.0 3	100 5	M1+E2	0.00179	Mult.: DCO=0.56 6 in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
1200 5	1211.9 3	100 5	E 2 E 2	9.13×10^{-4} 8.21×10^{-4}	Mult.: DCO=1.95 16 in ¹⁰³ Rh(¹² C,3ny) (1998La14). Mult.: DCO=1.76 21 in ¹⁰³ Rh(¹² C,3ny) (1998La14).
1389.5 1529.8	1285.63 704.03	100	E2 M1+E2	8.21×10 - 0.00380	Mult.: $A_2 = -0.585$ in $A_2 = -0.585$ in $A_3 = -0.585$ in $A_4 = -0.585$ in A_4
1929.6	704.0 3	100	W1+E2	0.00380	in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
1674.4	406.2 3	17.5 9	M1+E2	0.01445	Mult.: DCO(406.2+406.9)=1.14 4 in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
	631.6 3	13.1 7	(M1+E2)	$0\;.\;0\;0\;4\;9\;1$	Mult.: DCO=0.94 14 in 103 Rh(12 C, 3 n γ) (1998La14).
	701.3 3	81 3	E 1	1.18×10^{-3}	Mult.: A_2 =0.10 2 in 103 Rh(12 C,3n γ) (1998La14); DCO=0.98 3 in 103 Rh(12 C,3n γ) (1998La14).
	848.4 3	100 4	M1+E2	0.00246	Mult.: A ₂ =0.42 5 in ¹⁰³ Rh(¹² C,3nγ) (1998La14); DCO=1.39 5 in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
1681.5	1312.3 3	100	E2	7 . 93×10^{-4}	Mult.: A_2 =0.7 3 in 103 Rh(12 C,3n γ) (1998La14); DCO=2.05 12 in 103 Rh(12 C,3n γ) (1998La14).
1690.5	1321.3 3	100	M1+E2	9 . $37\!\times\!10^{-4}$	Mult.: DCO=0.69 6 in 103 Rh(12 C,3n γ) (1998La14).
1746.6	$72.4\ 3$	85 3	M1+E2	1.56 3	Mult.: DCO=0.97 3 in 103 Rh(12 C,3n γ) (1998La14).
	$402.0\ 3$	21 1	E 1	$0\;.\;0\;0\;4\;2\;6$	Mult.: DCO=0.87 5 in 103 Rh(12 C,3n γ) (1998La14).
	478.5 3	100 4	M1+E2	0.00962	Mult.: A_2 =-0.45 5 in 103 Rh(12 C,3n γ) (1998La14); DCO=0.55 in 103 Rh(12 C,3n γ) (1998La14).
	920.8 3	14 1	M1+E2	$0\;.\;0\;0\;2\;0\;4$	Mult.: DCO=1.44 17 in 103 Rh(12 C, 3 n γ) (1998La14).
1884.4	355.2 3	4.90 20	M1+E2	0.0203	Mult.: A_2 =-0.03 3 in 103 Rh(12 C,3n γ) (1998La14); DCO=0.40 in 103 Rh(12 C,3n γ) (1998La14).
	1058.5 3	100	E2	1 . 21×10^{-3}	Mult.: A_2 =0.40 3 in $^{103}Rh(^{12}C,3n\gamma)$ (1998La14); DCO=1.01 2 for 1058.5+1060.0 in $^{103}Rh(^{12}C,3n\gamma)$ (1998La14).
1948.7	202.2 3	100 3	M1+E2	0.0884	Mult.: A_2 =-0.15 3 in 103 Rh(12 C,3n γ) (1998La14); DCO=0.86 in 103 Rh(12 C,3n γ) (1998La14).
	607.9 3	2.2 3			
	1122.9 3	28.8 9	M1+E2	1.31×10 ⁻³	Mult.: A_2 =0.37 5 in 103 Rh(12 C,3n γ) (1998La14); DCO=1.34 1 in 103 Rh(12 C,3n γ) (1998La14).
2075.0	1249.1 3	100	(M1+E2)	1.04×10^{-3}	Mult.: DCO=0.32 10 in 103 Rh(12 C,3n γ) (1998La14).
2100.0	418.5 3	100	(M1+E2)	0.01341	Mult.: DCO=0.91 6 in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
2161 . 5	471.0 3	100	(M1+E2)	$0\;.\;0\;1\;0\;0\;0$	Mult.: DCO=0.84 7 in 103 Rh(12 C,3n γ) (1998La14).
2274 . 3	$199.3 \ 3$	$2.61 \ 15$	(M1+E2)	0.0919 14	Mult.: DCO=1.33 24 in 103 Rh(12 C,3n γ) (1998La14).
	325.5 3	100 4	M1+E2	0.0253	Mult.: A_2 =-0.05 3 in 103 Rh(12 C,3n γ) (1998La14); DCO=0.92 in 103 Rh(12 C,3n γ) (1998La14).
	527 . 7 3	3.4 4	E 2	$0\;.\;00667$	Mult.: From 103 Rh(12 C, 3 n $^{\gamma}$) (1998La14).
2320.1	435.7 3	100	E1	0.00350	Mult.: A_2 =-0.25 3 in 103 Rh(12 C,3n γ) (1998La14); DCO=0.49 in 103 Rh(12 C,3n γ) (1998La14); Pol=+0.19 7.
2481.8	161.8 3	28.4 15	(E1)	0.0486	Mult.: DCO=0.67 11 in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
	597.5 3	100 6	(E2)	$0\;.\;0\;0\;4\;7\;6$	Mult.: DCO=1.24 14 in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
2492 . 1	607.7 3	100			
2547 . 9	$664.0\ 3$	19 4	(M1+E2)	0.00436	Mult.: DCO=0.61 5 in 103 Rh(12 C,3n γ) (1998La14).
	1017.6 3	$100 \ 4$	(E2)	1.31×10 ⁻³	Mult.: $A_2=0.28$ 3 in ${}^{103}Rh({}^{12}C,3n\gamma)$ (1998La14).
2569.8	1385.5 3	100	E2	7 . 32×10^{-4}	Mult.: A_2 =0.37 9 in 103 Rh(12 C,3n γ) (1998La14); DCO=2.2 4 in 103 Rh(12 C,3n γ) (1998La14).
2581.6	1397.3 10	100			${\rm A_2=0.47}~10~{\rm in}~^{103}{\rm Rh}(^{12}{\rm C,3n\gamma})~(1998{\rm La}14);~{\rm DCO=1.25}~13~{\rm in}\\ ^{103}{\rm Rh}(^{12}{\rm C,3n\gamma})~(1998{\rm La}14).$
2601.5	717.1 3	100	E2	0.00298	Mult.: DCO=0.92 6 for 717.1+718.2 γ in $^{103}{\rm Rh}(^{12}{\rm C}, 3{\rm n}\gamma)$ (1998La14).
2628.1	353.9 3	100 3	M1+E2		Mult.: A_2 =-0.06 3 in 103 Rh(12 C,3n γ) (1998La14); DCO=0.91 in 103 Rh(12 C,3n γ) (1998La14).
	$679.1\ 3$	14.1 6	E2	$0\;.\;0\;0\;3\;4\;1$	Mult.: DCO=1.71 8 in 103 Rh(12 C,3n γ) (1998La14). B(E2)(W.u.)=39 +18-17.

$\gamma(^{112}{ m Sb})$ (continued)

E(level)	Εγ [†]	Ιγ†	Mult.†	α	Comments
2868.2	983.8 3	100	E2	$1.42\!\times\!10^{-3}$	Mult.: A_2 =0.41 5 in 103 Rh(12 C,3n γ) (1998La14); DCO=0.97 4 in 103 Rh(12 C,3n γ) (1998La14).
2908.1	416.0 3	100			
2987.6	358.9 3	$65.9\ 25$	M1+E2	0.0197	Mult.: DCO=0.79 3 in $^{103}{\rm Rh}(^{12}{\rm C}, 3{\rm n}\gamma)$ (1998La14).
	1103.4 3	100 5	E 2	1.10×10^{-3}	Mult.: DCO=1.02 7 in 103 Rh(12 C,3n γ) (1998La14).
3008.8	380.6 3	100 3	M1+E2		$\begin{aligned} & \text{Mult.: A}_2\text{=-}0.13 \ \textit{3} \ \text{in} \ ^{103}\text{Rh}(^{12}\text{C}, 3\text{n}\gamma) \ (1998\text{La}14); \\ & \text{DCO=}0.95 \ \textit{14} \ \text{in} \ ^{103}\text{Rh}(^{12}\text{C}, 3\text{n}\gamma) \ (1998\text{La}14). \end{aligned}$
	734.6 3	18.9 8	E2	0.00280	Mult.: DCO=1.51 8 in 103 Rh(12 C,3n γ) (1998La14). B(E2)(W.u.)=37 +13-12.
3082.0	761.9 3	36 3			
	1197.7 3	100 9	E 2	9.33×10 ⁻⁴	Mult.: DCO=1.01 12 for $1197.7+1199.4\gamma$ in $^{103}\text{Rh}(^{12}\text{C},3\text{n}\gamma)$ (1998La14).
$3\ 2\ 2\ 4\ .\ 0$	$622.6\ 3$	100	E2	$0\;.\;0\;0\;4\;2\;7$	Mult.: DCO=1.01 14 in 103 Rh(12 C, 3 n γ) (1998La14).
3295.7	1411.3 3	100	(E2)	7.15×10 ⁻⁴	Mult.: A ₂ =0.40 9 in $^{103}{\rm Rh}(^{12}{\rm C},3{\rm n}\gamma)$ (1998La14); DCO=1.0 2 in $^{103}{\rm Rh}(^{12}{\rm C},3{\rm n}\gamma)$ (1998La14).
3380.1	511.8 3	23.0 9			100 10
	1060.0 3	100 3	E 2	1.20×10 ⁻³	Mult.: A_2 =0.40 3 for 1058.5+1060.0 γ in 103 Rh(12 C,3n γ) (1998La14); DCO=1.01 2 for 1058.5+1060.0 γ in 103 Rh(12 C,3n γ) (1998La14).
3382.3	373.5 3	100 3	M1+E2	0.0178 3	Mult.: DCO=0.89 3 in 103 Rh(12 C,3n γ) (1998La14).
	$394.4\ 3$	45.7 18	M1+E2	$0\;.\;0\;1\;5\;5\;6$	Mult.: DCO=0.61 8 in 103 Rh(12 C, 3 n γ) (1998La14).
	754.3 3	37.2 18	E 2	0.00263	Mult.: DCO=1.39 10 in 103 Rh(12 C, 3 n γ) (1998La14).
3401.4	392.4 3	100 3	M1+E2	$0.01576\ 23$	Mult.: DCO=0.86 2 in 103 Rh(12 C, 3 n γ) (1998La14).
	773.5 3	23.8 12	E2	0.00247	Mult.: DCO=1.55 10 in ¹⁰³ Rh(¹² C,3nγ) (1998La14). B(E2)(W.u.)=35 9.
3403.1	1083.0 3	100	M1+E2	1.41×10 ⁻³	Mult.: DCO=0.54 3 in ¹⁰³ Rh(¹² C,3nγ) (1998La14); Pol=-0.3 3.
3489.1	1007.4 3	93 5	(E1)	5.71×10 ⁻⁴	Mult.: DCO=1.08 14 in 103 Rh(12 C,3n γ) (1998La14).
	1168.8 3	100 5	M1+E2	1.20×10 ⁻³	Mult.: DCO=0.47 5 in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
3622.0	613.2 3	100	E2	0.00444	Mult.: DCO=1.51 14 in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
3686.6 3686.8	285.23 818.63	100 100	(M1+E2) E2	0.0356 0.00216	Mult.: DCO=0.86 7 in ¹⁰³ Rh(¹² C,3nγ) (1998La14). Mult.: DCO=1.14 11 in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
3725.6	501.6 3	100	E Z	0.00216	Muit.: DCO=1.14 11 inκn(C,5nγ) (1998La14).
3730.8	1238.7 3	100			
3747.3	1199.4 3	100	(E2)	9 . 31×10^{-4}	Mult.: DCO=1.01 12 for $1197.7+1199.4\gamma$ in $^{103}{\rm Rh}(^{12}{\rm C},3n\gamma)$ (1998La14).
3794.1	570.1 3	100			
3808.3	406.9 3	100 3	M1+E2	0.01439	Mult.: DCO=1.14 4 for 406.2+406.9 γ in $^{103}{\rm Rh}(^{12}{\rm C}, 3n\gamma)$ (1998La14).
	425.9 3	64.7 22	M1+E2	0.01284 19	Mult.: DCO=0.46 9 in 103 Rh(12 C, 3 n γ) (1998La14).
	799.7 3	50.722	E2	$0\;.\;0\;0\;2\;2\;8$	Mult.: DCO=1.43 9 in 103 Rh(12 C, 3 n γ) (1998La14).
3845.1	$356.2\ 3$	100			
4088.9	708.8 3	100	E2	0.00306	Mult.: DCO=1.07 5 in 103 Rh(12 C, 3 n γ) (1998La14).
4089.3	$402.5\ 3$	100	(M1+E2)	0.01479	Mult.: DCO=0.28 7 in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
4121.3	632.0 3	100 4	E2	0.00410	Mult.: DCO=1.13 8 in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
4000	718.2 3	45.5 18	E2	0.00296	Mult.: DCO=0.92 6 for 717.1+718.2 γ in 103 Rh(12 C,3n γ) (1998La14); Pol=+0.12 19.
4223.0 4254.8	842.9 3 $1653.3 3$	100 100	E2	6 . 27×10^{-4}	Mult.: A_2 =0.4 1 in 103 Rh(12 C,3n γ) (1998La14); DCO=0.85 18 in 103 Rh(12 C,3n γ) (1998La14).
4260.5	451.9 3	100	M1+E2	0.01108	Mult.: DCO=0.32 6 in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
4276.5	896.4 3	100	W11 + E Z	0.01100	maio DOO=0.02 0 in ton(Ο,δηγ) (1990L814).
4294.7	486.3 3	100 3	M1+E2	0.00925	Mult.: DCO=0.78 5 in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
	893.2 3	32.1 22	E2	1.76×10 ⁻³	Mult.: DCO=2.1 5 in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
4320.2	940.1 3	100	E2	1.57×10^{-3}	Mult.: DCO=1.09 7 in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
4391.3	302.0 3	100	(M1 + E2)	0.0307	Mult.: DCO=0.76 7 in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
4433 . 4	312.1 3	100 6	M1+E2	0.0282	Mult.: DCO=0.33 6 in ¹⁰³ Rh(¹² C,3nγ) (1998La14); Pol=0.5 2.
	588.5 3	80 6			
4675.7	586.8 3	100	(M1+E2)	0.00586	Mult.: DCO=0.16 8 in $^{103}{\rm Rh}(^{12}{\rm C}, 3{\rm n}\gamma)$ (1998La14).
4797.8	503.0 3	100 4	M1+E2	$0\;.\;0\;0\;8\;5\;1$	Mult.: DCO=0.87 7 in $^{103}{\rm Rh}(^{12}{\rm C}, 3{\rm n}\gamma)$ (1998La14).
	537.0 3	43 3	M1+E2	$0\;.\;0\;0\;7\;2\;6$	Mult.: DCO=0.86 8 in $^{103}{\rm Rh}(^{12}{\rm C},3n\gamma)$ (1998La14).
	989.8 3	53 4	E2	1 . $40\!\times\!10^{-3}$	Mult.: DCO=1.62 9 in 103 Rh(12 C,3n γ) (1998La14).
4837.2	582.3 3	26.7 23			

$\gamma(^{112}{\rm Sb})$ (continued)

E(level)	$\underline{\hspace{1cm} E\gamma^{\dagger}}$	$\underline{\hspace{1.5cm}}^{\dagger}$	Mult.†	α	Comments
4837.2	1613.2 3	100 5	E 2	6 . 34×10^{-4}	Mult.: A_2 =0.36 5 in 103 Rh(12 C,3n γ) (1998La14); DCO=1.01 16 in 103 Rh(12 C,3n γ) (1998La14).
4863.9	742.6 3	100	E2	0.00273	Mult.: DCO=1.00 10 in ¹⁰³ Rh(¹² C,3nγ) (1998La14) for 742.6+743.7γ; Pol=+0.21 18.
5161.0	297.0 3	71 4	M1+E2	0.0321	Mult.: DCO=0.57 8 in ¹⁰³ Rh(¹² C,3nγ) (1998La14); Pol=-0.15 20.
	727.7 3	100 5	E2	0.00287	Mult.: DCO=1.35 18 in ¹⁰³ Rh(¹² C,3nγ) (1998La14); Pol=+0.55 10.
5325.7	527.9 3 1030.8 10	100 5 <4.5	M1+E2	0.00757	Mult.: DCO=0.75 6 in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
5643.7	806.5 3	100	E2	0.00224	Mult.: DCO=0.85 8 in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
5717.0	1041.3 3	100	152	0.00224	Mult DCO=0.65 6 III KII(C,5II) (1990La14).
	865.4 3	100	E2	0.00189	Mult.: DCO=1.00 8 in ¹⁰³ Rh(¹² C,3nγ) (1998La14); Pol=+0.2 3
5729.3					Mult.: DCO=1.00 8 in $^{-10}$ Rn($^{-10}$ C,3n γ) (1998La14); Pol=+0.2 3 Mult.: DCO=0.50 16 in 103 Rh(12 C,3n γ) (1998La14);
6002.3	273.0 10	8.4 15	M1+E2	0.0399 7	Pol=-0.3 3.
	841.2 3	100 5	E2	0.00202	Mult.: DCO=0.98 7 in 103 Rh(12 C,3n γ) (1998La14), 0.97 5 in 90 Zr(31 P,2 α n γ) (1998La14); Pol=+0.41 8.
6544.5	900.8 3	100			400 40
6934.5	932.2 3	100	E 2	1.60×10 ⁻³	Mult.: DCO=0.98 16 in 103 Rh(12 C,3n γ) (1998La14), 1.21 11 in 90 Zr(31 P,2 α n γ) (1998La14); Pol=+0.67 11.
7535.3	990.8 3	100	E 2	1.39×10^{-3}	Mult.: DCO=0.91 7 in 103 Rh(12 C,3n γ) (1998La14).
7937.4	1002.9 3	100	E 2	1.36×10 ⁻³	Mult.: DCO=0.98 7 in ⁹⁰ Zr(³¹ P,2αnγ) (1998La14); Pol=+0.52 <i>11</i> .
8615.9	1080.6 3	100			
8996.4	1059.0 5	100	E2	1 . 20×10^{-3}	Mult.: DCO=0.99 5 in ⁹⁰ Zr(³¹ P,2αnγ) (1998La14); Pol(1059+1059+1060)=+0.46 11.
9784.2	1168.3 3	100			
10113.2	1116.8 2	100	E2	1 . 07 \times 10 $^{-3}$	Mult.: DCO=1.27 20 in $^{90}{\rm Zr}(^{31}{\rm P},2\alpha{\rm n}\gamma)$ (1998La14); Pol=+0.76 18.
11041.2	1257.0 4	100			
11296.4	1183.2 2	100	E 2	9.55×10^{-4}	Mult.: DCO=1.2 3 in $^{90}{\rm Zr}(^{31}{\rm P},2\alpha n\gamma)$ (1998La14); Pol=+0.6 3.
12393.6	1352.4 4	100			
12595.2	1298.8 2	100	E 2	8 . 07×10 ⁻⁴	Mult.: DCO=1.06 22 in $^{90}{\rm Zr}(^{31}{\rm P},2\alpha n\gamma)$ (1998La14); Pol=+0.3 3.
13839.4	1445.8 5	100			
14088.8	1493.6 3	100			
15387.6	1548.2 6	100			
15784.3	1695.5 3	100			
17053.6	1666.0 7	100			
17655.6	1871.3 5	100			
y + 378.09	$378.2\ 3$	100	M1+E2	$0\;.\;0\;1\;7\;2\;9$	Mult.: DCO=1.09 17 in 103 Rh(12 C,3n γ) (1998La14).
y + 750.72	372.6 3	100	M1+E2	0.0180	Mult.: DCO=1.04 5 in 103 Rh(12 C, 3 n γ) (1998La14).
	750.6 3	$42.0\ 20$			
y+1077.6	326.8 3	100	M1+E2	0.0251	Mult.: DCO=0.96 4 in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
	368.2 10	12.9 10	(M1+E2)	0.0185	Mult.: DCO=1.26 25 in 103 Rh(12 C,3n γ) (1998La14).
	699.7 3	21.8 14			100 - 40
y+1372.6	277.2 3	18.9 10	M1+E2	0.0384	Mult.: DCO=0.68 11 in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
	294.9 3	100 3	M1+E2	0.0327	Mult.: DCO=0.51 5 in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
	621.7 10	4.5 7			10301/197
y+1690.4	317.8 3	100	M1+E2	0.0269	Mult.: A_2 =-0.10 3 in 103 Rh(12 C,3n γ) (1998La14); DCO=0.43 5 in 103 Rh(12 C,3n γ) (1998La14).
	613.0 10	0.9 8	Mit. Po	0.0000	Mark A 000 0 for 055 0 055 0 050 0 103pt (190 0)
y + 2 0 4 6 . 2	355.8 3	100	M1+E2	0.0202	Mult.: A_2 =-0.03 3 for 355.2+355.8+356.2 γ in 103 Rh(12 C,3n γ) (1998La14); DCO=0.90 3 in 103 Rh(12 C,3n γ) (1998La14).
	673.9 10	7.09			102
y + 2 4 3 7 . 8	391.6 3	100	M1+E2	0.01584	Mult.: DCO=0.54 7 in 103 Rh(12 C,3n γ) (1998La14).
	747.6 10	100			100=1.10
y+2852.1	414.2 3	100	M1+E2	0.01376	Mult.: DCO=0.91 5 in 103 Rh(12 C,3n γ) (1998La14).
y+3217.1	365.0 3	100	M1+E2	0.0189	Mult.: DCO=1.10 12 in 103 Rh(12 C,3n γ) (1998La14).
y+3284.6	432.5 3	100	M1+E2	0.01236	Mult.: DCO=0.91 8 in 103 Rh(12 C,3n γ) (1998La14).
x + 5 6 1 . 0	561.0 3	100			
x + 1216.8	655.8 3	100			

$\gamma(^{112}{\rm Sb})$ (continued)

E(level)	$\underline{\hspace{1cm}} E \gamma^{\dagger}$	Ιγ [†]	Mult. [†]	α	Comments
x+1960.5	743.7 3	100	E2	0.00272	Mult.: DCO=1.00 10 for 742.6+743.7 γ in 103 Rh(12 C,3n γ) (1998La14).
x + 2794.5	834.0 3	100	E2	0.00206	Mult.: DCO=0.93 10 in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
x + 3718.4	923.9 3	100			
x + 4733.7	1015.3 3	100			
x + 5842.6	1108.9 2	100			
x + 7046.5	1203.9 3	100			
x + 8346.3	1299.8 3	100			
x + 9733.3	1387.0 3	100			
x + 11202.0	1468.6 3	100			
x + 12772.6	1570.6 4	100			
x + 14480.6	1708.0 5	100			
x + 16361.4	1880.8 7	100			
x+18439.4?	2078 1	100			

[†] From $^{103}\text{Rh}(^{12}\text{C},3n\gamma)$ (1998La14), unless otherwise noted. ‡ From $^{112}\text{Sn}(p,n\gamma)$ (1997Fa08). § From $^{112}\text{Te}\ \epsilon\ \text{decay}$ (1976Wi11, 1975WiZX).

[#] From $^{112}\mathrm{Sn}(p,n\gamma)$ (1997Fa08). & If no value given it was assumed δ =0.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.

- (A) $\Delta J=2$ band based on the 4433.4-keV (15+) state
- (B) ΔJ=2 band based on the 4254.8-keV (14-) state
- (C) ΔJ=2 band based on the (11-) state

(41-)	[x+18439.4
(39-)	<u> </u>	x+16361.4
(37-)	<u> </u>	x+14480.6
(35-)	<u> </u>	x+12772.6
(33-)	<u> </u>	x+11202.0
(31-)	+	x+9733.3
(29-)	<u> </u>	x+8346.3
(27-)	<u> </u>	x+7046.5
(25-)	<u>, </u>	x+5842.6
(23-)	<u>, </u>	x+4733.7
(21-)		x+3718.4
(19-)	<u>, </u>	x+2794.5
(17-)	V	x+1960.5
(15-)		x+1216.8
(13-)	V	x+561.0
(11-)	V	х

(37+)	176	655.6			
			(36-)		17053.6
(35+)	157	784.3			
			(34-)	Ψ.	15387.6
(33+)	140	088.8	(32-)	V	13839.4
				Ť	
(31+)	12	595.2	(00.)		10000 0
(021)			(30-)	Ψ	12393.6
(29+)	119	296.4			
(201)	1		(28-)	Ψ.	11041.2
(27+)	10	113.2			
(25+)	899	96.4	(26-)	Ψ.	9784.2
(23+)	793	37.4			
(21+)	698	34.5	(24-)	Ψ.	8615.9
(19+)	v //		(22-)		7535.3
(18+)			(22-)	Ť	7000.0
(17+)	T / 516	61.0	(20-)	V	6544.5
(16+)	¥		(18-)		5643.7
(15+)	/ / 445	33.4		Ť	
(14+)	<u> </u>		(16-)	ψ_	4837.2
	<u> </u>		(14-)	<u> </u>	4254.8
\			(14-) v		
			(12-) V		
			(12-) ¥		

- (D) $\Delta J = 1$ band, based on the 1746.6-keV (8-) state
- (E) $\Delta J=1$ band, based on the (10+) state.

 $^{112}_{\ 51}\mathrm{Sb}_{61}$

¹¹²Sb IT Decay (0.56 μs) 1976Ke07,1976Ka19,1982Ma29

Parent $^{112}{\rm Sb}\colon\thinspace \text{E=826.8}\ 6;\ J\pi\text{=(8-)};\ T_{1/2}\text{=}536\ \text{ns}\ 22;\ \%\text{IT decay=100}.$

1976Ke07: Facility: Natuurkunding Laboratorium van de Vrije Universiteit, Amsterdam; Beam: E(p)=17MeV; Measured: $\gamma(t) \text{ and } \mu; \text{ Deduced: } T_{1/2} \text{ and } \mu.$ 1976Ka19: Facility: IKO cyclotron, Amsterdam; Beam: $E(^3\text{He})=72$ MeV; Detectors: electron spectrometer; Measured:

E(ce), Ice; Deduced: 112 Sb level scheme, $\alpha(K) exp/\alpha(L) exp$ ratio, $\gamma-ray$ mult., $J\pi$, $T_{1/2}$.

1982Ma29: Facility: Stony Brook FN Tandem; Beam: $E(^{12}C)=50$ MeV, pulsed. Pulse width FWHM=5 ns and 2 μ s repetition time; Target: $0.8~mg/cm^2~Rh$ foil; Detectors: NaI(Tl); Measured: $\gamma,~\gamma(\theta,t),~I\gamma,~E\gamma;$ Deduced: Q.

$^{112}{ m Sb}$ Levels

E(level) [†]	Jπ [‡]	$T_{1/2}$	Comments
0.0	(3+)		
103.9 3	(4+)		
133.5 3	(5+)		
370.4 5	(6+)		
826.8 6	(8-)	536 ns 22	E(level): 796 4 keV in 1976Ka19.
			$T_{1/2}$: from $\gamma(t)$ in 1982Ma29. Other: 0.56 μs 12 from 456.4 $\gamma(t)$ in 1976Ke07.
			μ: +2.19 4 (1976Ke07).
			Q: $0.71~8~\text{from}~\gamma(\theta,t)~\text{from abs}(Q(^{112}\text{Sb},8-)/Q(^{123}\text{Sb},5/2+))=1.958~10~\text{in }1982\text{Ma}29,~\text{deduced using}$
			the perturbed angular correlations technique, and $Q(^{121}Sb, 5/2+)=-0.36$ 4 (1978Bu24).
			configuration: $\pi d_{5/2} \otimes v h_{11/2}$.

 $^{^{\}dagger}$ From a least-squares fit to Ey.

$\gamma(^{112}{\rm Sb})$

$\underline{\hspace{1cm} E\gamma^{\dagger}}$	E(level)	Mult.	δ	Comments
29.6	133.5			
103.9 3	103.9			
133.5 3	133.5			
236.9 3	370.4			
456.4 3	826.8	M2+E3	2.5 20	Mult.,δ: from K/L=5.6 13 in 1976Ka19.

 $^{^{\}dagger}$ From the adopted levels.

%IT=100

[‡] From the adopted levels.

¹¹²Te ε Decay 1976Wi11,1975WiZX

Parent 112 Te: E=0.0; J π =0+; T $_{1/2}$ =2.0 min 2; Q(g.s.)=4032 20; % ϵ +% β ⁺ decay=100. 112 Te-% ϵ +% β ⁺ decay: The decay scheme is incomplete, so I γ normalization and log ft are not given. 1975WiZX: Facility: AVF cyclotron at Vrije Universiteit, Amsterdam; Source: mass-separated 112 Te from 112 Sn(3 He,3n) reaction at E(3 He)=35-40; Target: 35 mg/cm² thick target enriched to 87.51% in 112 Sn; Detectors: four coaxial Ge(Li), one planar Ge(Li) and one LEPS, active and passive anti-Compton shielding; Measured: γ , γ - γ , γ (t), E γ , I γ ; Deduced: 112 Sn level scheme, t, J π , log ft; Other: from the same collaboration: 1976Wi10.

$^{112}{ m Sb}$ Levels

E(level) [†]	Jπ‡
0.0	(3+)
$103.92\ 21$	(4+)
236.90 18	(3+)
296.22 17	(2+)
350.90? 20	(1+)
$372.70\ 20$	(1+)
$714.57\ 20$	(2+,3+)
844.9? 4	

- † From a least-squares fit to Ey.
- ‡ From the adopted levels.

$\gamma(^{112}{ m Sb})$

$\underline{\hspace{1cm}} E\gamma^{\dagger}$	E(level)	$\underline{\hspace{1cm}}^{\hspace{1cm}} I\gamma^{\dagger}$	$\underline{\hspace{1cm}}^{\mathbf{E}\gamma^{\dagger}}$	E(level)	$\underline{\hspace{1cm}}^{}$	Εγ [†]	$\underline{\hspace{1cm} I\gamma^{\dagger}}$
x38.6 3		16 5	x357.7 3		6 2	×797.3 2	24 7
x 5 2 . 1 5		5 2	372.7 2	372.70	100	x807.4 4	9 4
59.92	296.22	4.5 12	418.9 2	714.57	57 5	x820.1 2	17 4
x70.0 8		5 2	476.9 2	714.57	14 3	x881.9 3	10 4
104.2 3	103.92	27 5	494.0 3	844.9?	30 10	x924.8 6	11 5
132.9 2	236.90	23 4	x 5 8 4 . 4 5		8 3	x928.4 4	11 5
x 1 6 7 . 4 2		7 2	x598.5 7		6 3	x971.3 2	23 6
236.4 4	236.90	9 2	611.9 5	714.57	4.3 14	x1282.4 9	17 7
x274.2 4		5 2	x690.4 4		10 3	x1287.2 8	10 4
x 2 8 0 . 4 5		3 2	x698.5 3		12 3	x1502.6 6	15 4
296.2 2	296.22	86 8	714.7 5	714.57	2.4 9	x1657.6 3	14 5
350.9 2	350.90?	36 3	x743.0 2		11 3	x1963.7 4	17 5

[†] From 1975WiZX.

Decay Scheme

 $^{^{\}boldsymbol{x}}$ $\,\gamma$ ray not placed in level scheme.

$^{89}Y(^{29}\mathrm{Si},\alpha 2n\gamma),^{88}\mathrm{Sr}(^{28}\mathrm{Si},p3n\gamma) \\ \phantom{^{1997}M001,2005De02}$

1997MoO1: Facility: 12UD Pelletron Tandem accelerator at the University of Tsukba; Beams: E(²⁹Si)=108 MeV and E(²⁸Si)=120 MeV; Targets: a 6.4 mg/cm² thick ⁸⁹Y target and a 9 mg/cm² thick ⁸⁸Sr target; Detectors: seven HPGe detectors with BGO anti-Compton shield; Measured: γ, γ-γ, particle-γγ, and DCO ratios; Deduced: level scheme, band structure, configuration assignments.

Also from the same collaboration: 1996MoZY, 1995MoZW.

2005De02: Facility: 12UD Pelletron at NSC New Delhi; Beam: E(²⁹Si)=120 MeV; Target: 500 μg/cm² of ⁸⁹Y on 10 mg/cm²
Au backing; Detectors: five Clover detectors; Measured: γ-γ, γ-γ(θ); Deduced: level scheme, Doppler broadening, τ, B(M1) and B(M2).

The level scheme of 1997Mo01 differs by the adopted one from $^{103}{\rm Rh}(^{12}{\rm C},3n\gamma)$ (1998La14), mainly by the assignment of J\pi and the excitation energies of the excited band levels.

¹¹²Sb Levels

E(level) [†]	Jπ [‡]	§	Comments
0.0	(3+)	53.5 s 6	T _{1/9} : From adopted levels.
103.4 4	(4+)	33.3 8 0	1/2. From adopted levels.
133.0 4	(5+)		
167.8 5	(4)		
369.5 6	(6+)		
502.4 5	(5)		
806.2# 7	(7+)		
826.1 6	(8-)	536 ns 22	T _{1/2} : From adopted levels.
973.7 6	(6)		1/2
1183.8# 7	(8+)		
1267.7 7	(8-)		
1556.4 # 7	(9+)		
1674.5 7	(8)		
$1746.2^{@}$ 7	(9-)		
1882.7# 7	(10+)		
1948.0@7	(10-)		
2177.2#8	(11+)		
$2273.4^{@}8$	(11-)		
2494.4 # 8	(12+)		
2626.9 8	(12-)	0.39 ps + 17 - 18	
2849.8 # 8	(13+)		
$3007.3^{@}8$	(13-)	0.35 ps + 11 - 12	
3241.5#9	(14+)		
3381.3@9	(14-)		
3399.9@9	(14-)	0.35 ps 8	
3621.1# 10	(15+)		
3772.8 10	(15-)		
3806.8@9	(15-)		
4010.8# 11	(16+)		
4133.1 11	(16-)		
4258.7@9	(16-)		
4293.0@9 $4424.4#12$	(16-)		
	(17+)		
4534.9 12 $4794.9 9$	(17-)		
4794.9° 9 4855.9# 13	(17-)		
4855.9" 13 5320.3 [@] 11	(18+) (18-)		
5320.3° II	(10-)		

- † From a least-squares fit to Ey.
- ‡ From 1997Mo01.
- $\$ From DSAM in 2005De02, unless otherwise stated.
- $^{\#}$ (A): $\Delta J = 1$ band, built on a (7+) level; configuration= $\pi g_{9/2}^{} ^{-1} \otimes v g_{7/2}^{} .$
- @ (B): ΔJ =1 band, built on the (9-) level; configuration= $\pi g_{9/2}^{-1} \otimes \nu h_{11/2}$.

 $\gamma(^{112}{
m Sb})$

$\mathbf{E}\gamma^{\dagger}$	E(level)
$29.6\ 5$	133.0
71.75	1746.2
103.4 5	103.4

$^{89}Y(^{29}Si,\alpha 2n\gamma),^{88}Sr(^{28}Si,p3n\gamma) \\ \phantom{^{89}Y(^{29}Si,\alpha 2n\gamma),^{88}Sr(^{28}Si,p3n\gamma)} \\ \phantom{^{89}Y(^{29}Si,\alpha 2n\gamma),^{89}Si,$

$\gamma(^{112}{\rm Sb})$ (continued)

$\underline{\hspace{1cm}} E\gamma^{\dagger}$	E(level)	Εγ [†]	E(level)	Εγ [†]	E(level)	Mult.‡
133.0 5	133.0	392.6 5	3399.9	620.8 5	2177.2	
167.8 5	167.8	399.0 5	502.4	672.6 5	2849.8	
201.8 5	1948.0	401.8 5	4534.9	678.9 5	2626.9	(E2)
236.5 5	369.5	406.7 5	1674.5	698.9 5	1882.7	
294.5 5	2177 . 2	406.9 5	3806.8	700.8 5	1674.5	
317.2 5	2494.4	413.6 5	4424 . 4	733.9 5	3007.3	(E2)
325 . 4 5	2273.4	425.5 5	3806.8	747.1 5	3241 . 5	
326.3 5	1882.7	431.5 5	4855.9	750.2 5	1556.4	
334.6 5	502.4	436.7 5	806.2	754.4 5	3381.3	
353.5 5	2626.9	441.6 5	1267 . 7	769.3 \$ 5	4010.8	
355.4 5	2849.8	452.0 5	4258.7	771.3 \$ 5	3621.1	
360.3 5	4133.1	456.6 5	826.1	773.0 5	3399.9	
372.6 5	1556.4	471.3 5	973.7	799.5 5	3806.8	
372.9 5	3772.8	478.5 5	1746.2	814.3 5	1183.8	(E2)
374.0 5	3381.3	486.2 5	4293.0	848.4 5	1674.5	
377.6 5	1183.8	501.8 5	4794.9	893.1 5	4293.0	
379.6 5	3621.1	525.4 5	5320.3	920.1 5	1746.2	
380.4 5	3007.3	527.2 5	2273 . 4	988.0 5	4794.9	
389.7 5	4010.8	536.3 5	4794.9	1056.6 5	1882.7	
391.7 5	3241.5	611.7 5	2494.4	1121.9 5	1948.0	(E2)

- † From 1997MoO1. $\Delta E \gamma$ were not given by the authors and those were estimated by the evaluators.
- ‡ From 1997MoO1, based on the DCO analysis, but values were not provided by the authors.
- § Placement of transition in the level scheme is uncertain.

¹⁰³Rh(¹²C,3nγ), ⁹⁰Zr(³¹P,2αnγ) 1998La14,1982Ma29

1998La14: Facility: Stony Brook FN tandem/superconducting LINAC; Beam: $E(^{12}C)=60$ MeV; Target: thick target of natural rhodium; Detectors: six Compton-suppressed HPGe detectors and multiplicity filter comprising 14 BGO detectors; Measured: $\gamma-\gamma$, $\gamma-\gamma(t)$, E γ , I γ , $\gamma\gamma(\theta)$; Deduced: DCO ratios, level scheme, band structures.

1998La14: Vivitron accelerator; Beam: $E(^{31}P)=150$ MeV; Target: two stacked self-supporting foils each with thickness of 440 $\mu g/cm^2$ and enriched to 97 % in ^{90}Zr ; Detectors: EUROGAM-II multidetector array; Measured: $\gamma-\gamma-\gamma$, E γ , I γ ; Deduced: Doppler corrections, DCO ratios, linear polarization, level scheme, band structures.

Other: 1996Si15; Facility: 15UD Pelletron Accelerator of the Nuclear Science Center, New Delhi; Beam: E(\frac{12}{C})=75 MeV; Target: self-supporting, =25 mg/cm^2; Detectors: nine Compton suppressed HPGe and a multiplicity filter comprising 14 BGO crystals; Measured: γ-γ, γ(θ), Εγ, Ιγ; Deduced: level scheme, DCO ratios.

Also from the same collaboration: 1998LaZT.

1982Ma29: Facility: Stony Brook FN Tandem; Beam: E(\frac{12}{C})=50 MeV, pulsed. Pulse width FWHM=5 ns and 2 μs repetition time; Target: 0.8 mg/cm² Rh foil; Detectors: NaI(Tl); Measured: γ, γ(θ, t), Ιγ, Εγ; Deduced: Q. Other: 1983VaZM, 1983Se21.

¹¹²Sb Levels

E(level) [†]	$J\pi^{\ddagger}$	T _{1/2}	Comments
0.0	3+		
103.90 25	4+		
133.5 3	5+		
167.1 3	4+		
236.4 4	3+		
370.1 4	6+		
502.1 3	5+		
826.7 4	8-	536 ns 22	$T_{1/2}$: from γ(t) in 1982Ma29. μ: +2.19 4 (1976Ke07). Q: 0.071 7 from γ(θ,t) in 1982Ma29 (perturbed angular correlations technique). configuration: $\pi d_{\pi/9} \otimes \nu h_{11/2}$.
973.8 4	6+		
1043.5 4	(8-)		
1170.3 5	/		
1185.2 5	7 (+)		
			Continued on next page (footnotes at end of table)

$^{103}Rh(^{12}C, 3n\gamma), ^{90}Zr(^{31}P, 2\alpha n\gamma) \qquad 1998La14, 1982Ma29 \ (continued)$

$^{112}\mathrm{Sb}$ Levels (continued)

E(level) [†]	<u>Jπ‡</u>	E(level) [†]	$J\pi^{\ddagger}$	E(level) [†]	$J\pi^{\ddagger}$
1268.8 4	7 –	3726.4 7		12596.0 % 10	(31+)
1341.2 4		3731.6 6		13840.3 ^a 12	(32-)
1345.7 4	7+	3748.1 6	(13-)	14089.6 % 10	(33+)
1389.5 4	6+	3794.9 7		15388.5 ^a 14	(34-)
1530.6 4	9 –	3809.2 \$ 5	14-	15785.1 4 10	(35+)
1675.1 4	7 –	3845.9 6		17054.5ª <i>15</i>	(36-)
1682.4 5	8+	4089.7 6	15+	17656.5 2 12	(37+)
1691.4 5	7+	4090.1 7	(15-)	18865.7? ^a 18	(38-)
1747.5 \$ 4	8 –	$4122.1\ 5$	14+	19703.2? 4 15	(39+)
1885.2 4	10-	4223.8 6		x #	(11-)
1949.6 \$ 4	9 –	4255.7 ^a 6	14-	x+561.0# 3	(13-)
2075.8 4	(9-)	4261.3 5	15-	x+1216.8# 5	(15-)
2100.9 6	9 (+)	4277.3 6		x+1960.5# 6	(17-)
2162.4 6	8 (+)	4295.5 \$ 5	15-	x+2794.5# 7	(19-)
2275.1 \$ 4	10-	4321.06	15+	x+3718.4# 8	(21-)
2320.9 5	11+	4392.1 7	(16-)	x+4733.7# 8	(23-)
2482.6 5	(12-)	4434.3 6	15+	x+5842.6# 8	(25-)
2492.9 5		4676.5 7	(16+)	x+7046.5#9	(27-)
2548.7 5	(11-)	4798.6 \$ 5	16-	x+8346.3# 10	(29-)
2570.8 6	9 (+)	4838.0ª 6	16-	x+9733.3# 10	(31-)
2582.6 11		4864.8 6	(16+)	x+11202.0# 10	(33-)
2602.3 5	12-	5161.9 6	17+	x+12772.6# 11	(35-)
2629.0 \$ 4	11-	5326.5 [§] 6	17-	x+14480.6# 12	(37-)
2869.0 5	12-	5644.5a 7	18-	x+16361.4# 14	(39-)
2908.9 6		5717.8 8		x+18439?# 17	(41-)
2988.4 5	12-	5730.2 7	18+	y@	(10+)
3009.6 \$ 5	12-	6003.1 6	19+	y+378.09@ 24	(11+)
3082.9 5	12-	6545.3ª 8	(20-)	y+709.4 11	(12+)
3224.8 6	14-	6935.3 % 7	21+	y+750.72 [@] 24	(12+)
3296.5 5	(12-)	7536.1ª 8	(22-)	y+1077.6@3	(13+)
3380.9 5	13+	7938.2 7	(23+)	y+1095.4 5	(13+)
3383.1 5	13-	8616.7 ^a 9	(24-)	y+1372.6 [@] 4	(14+)
3402.3 \$ 5	13-	8997.2 9	(25+)	y+1690.5 [@] 5	(15+)
3403.9 5	12+	9785.0a 9	(26-)	y+2046.3 [@] 5	(16+)
3489.9 5	12+	10114.0 9	(27+)	y+2438.0 [@] 6	(17+)
3622.8 6	14-	11042.0a 10	(28-)	y+2852.2@ 7	(18+)
3687.5 6	14(-)	11297.2 9	(29+)	y+3217.2 7	(19+)
3687.6 6	14-	12394.4 ^a 11	(30-)	v+3284.7 [@] 7	(19+)

 $^{^{\}dagger}$ From a least-squares fit to Ey.

$\gamma(^{112}{ m Sb})$

Εγ [†]	E(level)	Ιγ [†]	Mult.‡	Comments
(29.6)	133.5			Eγ: required from γγ data.
$72.4\ 3$	1747.5	11.7 4	M1+E2	Mult.: DCO=0.97 3 in 103 Rh(12 C,3n γ) (1998La14).
103.9 3	103.90	45.2 18	M1+E2	Mult.: A ₂ =-0.30 3 in $^{103}{\rm Rh}(^{12}{\rm C},3{\rm n}\gamma)$ (1998La14); DCO=0.61 6 in $^{103}{\rm Rh}(^{12}{\rm C},3{\rm n}\gamma)$ (1998La14).
132.5 3	236.4	1.37 16	M1+E2 §	
133.5 3	133.5	1.68 7	E 2	Mult.: A_2 =0.18 5 in 103 Rh(12 C,3n γ) (1998La14); DCO=1.47 5 in 103 Rh(12 C,3n γ) (1998La14).
161.8 3	2482.6	2.90 15	(E1)	Mult.: DCO=0.67 11 in 103 Rh(12 C,3n γ) (1998La14).
167.1 3	167.1	4.4 15	M1+E2	Mult.: $A_2=-0.29$ 4 in $^{103}{\rm Rh}(^{12}{\rm C},3{\rm n}\gamma)$ (1998La14); DCO=0.98 9 in $^{103}{\rm Rh}(^{12}{\rm C},3{\rm n}\gamma)$ (1998La14).

[‡] From 1998La14.

 $[\]$ (A): $\Delta J = 1$ band, based on the 8-, 1747.5-keV level; configuration= $\pi g_{9/2}^{}^{}^{}^{} - 1 \otimes \nu h_{11/2}^{}$.

 $^{^{\#}}$ (B): $\Delta J {=} 2$ band, based on the (11-) state.

^{@ (}C): ΔJ =1 band, based on the (10+) state.

[&]amp; (D): $\Delta J = 2$ band, based on the 15+ state.

 $^{^{}a}$ (E): $\Delta J\!=\!2$ band, based on the 14- state.

$^{103}Rh\underline{(^{12}C,3n\gamma),^{90}}Zr(^{31}P,2\alpha n\gamma) \\ \hspace*{0.5in} 1998La14,1982Ma29 \ (continued)$

$\gamma(^{112}{\rm Sb})$ (continued)

$\underline{\hspace{1cm} E\gamma^{\dagger}}$	E(level)	Ιγ [†]	Mult.‡	Comments
196.5 3	1170.3	1.18 11		
199.3 3	2275.1	2.22 13	(M1+E2)	Mult.: DCO=1.33 24 in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
202.2 3	1949.6	66 2	M1+E2	Mult.: A_2 =-0.15 3 in 103 Rh(12 C,3n γ) (1998La14); DCO=0.86 5 in 103 Rh(12 C,3n γ) (1998La14).
216.8 3	1043.5	4.4 7	(M1 + E2)	Mult.: DCO=1.52 12 in 103 Rh(12 C, 3 n γ) (1998La14).
236.9 3	370.1	48.7 16	M1+E2	Mult.: A $_2$ =-0.18 3 in 103 Rh(12 C,3n γ) (1998La14); DCO=0.55 2 in 103 Rh(12 C,3n γ) (1998La14).
$273.0\ 10$	6003.1	0.519	M1+E2	Mult.: DCO=0.50 16 in 103 Rh(12 C, 3 n γ) (1998La14); Pol=-0.3 3 .
277.23	y + 1372.6	3.04 16	M1+E2	Mult.: DCO=0.68 11 in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
$285.2\ 3$	3687.5	3.94 16	(M1+E2)	Mult.: DCO=0.86 7 in 103 Rh(12 C,3n γ) (1998La14).
294.9 3	y + 1372.6	16.1 5	M1+E2	Mult.: DCO=0.51 5 in 103 Rh(12 C,3n γ) (1998La14).
297.0 3	5161.9	2.35 13	M1+E2	Mult.: DCO=0.57 8 in ¹⁰³ Rh(¹² C,3nγ) (1998La14); Pol=-0.15 20.
302.0 3	4392.1	1.28 18	(M1+E2)	Mult.: DCO=0.76 7 in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
312.1 3	4434.3	2.35 15	M1+E2	Mult.: DCO=0.33 6 in 103 Rh(12 C,3n γ) (1998La14); Pol=0.5 2. Mult.: A_9 =-0.10 3 in 103 Rh(12 C,3n γ) (1998La14); DCO=0.43 5 in 103 Rh(12 C,3n γ)
317.8 3	y+1690.5	14.2 5	M1+E2	Mult.: $A_2 = -0.10 \text{ 3 In}$ $Kin(-0.5in\gamma)$ (1998La14); $DCO = 0.43 \text{ 3 In}$ $Kin(-0.5in\gamma)$ (1998La14).
325.5 3	2275.1	85 3	M1+E2	Mult.: A $_2$ = -0.05 3 in $^{103}{\rm Rh}(^{12}{\rm C},3{\rm n}\gamma)$ (1998La14); DCO=0.92 2 in $^{103}{\rm Rh}(^{12}{\rm C},3{\rm n}\gamma)$ (1998La14).
326 . 8 3	y + 1077.6	$5.1\ 2$	M1+E2	Mult.: DCO=0.96 4 in 103 Rh(12 C, 3 n $^{\gamma}$) (1998La14).
335.0 3	502.1	8.1 3	M1+E2	Mult.: DCO=0.76 4 in 103 Rh(12 C,3n γ) (1998La14).
353.9 3	2629.0	71 2	M1+E2	Mult.: A $_2$ = -0.06 3 in $^{103}{\rm Rh}(^{12}{\rm C},3{\rm n}\gamma)$ (1998La14); DCO=0.91 2 in $^{103}{\rm Rh}(^{12}{\rm C},3{\rm n}\gamma)$ (1998La14).
355.2 3	1885.2	4.9 2	M1+E2	Mult.: A_2 =-0.03 3 in 103 Rh(12 C,3n γ) (1998La14); DCO=0.40 5 in 103 Rh(12 C,3n γ) (1998La14).
355.8 3	y+2046.3	12.7 4	M1+E2	Mult.: A_2 =-0.03 3 for 355.2+355.8+356.2 γ in 103 Rh(12 C,3n γ) (1998La14); DCO=0.90 3 in 103 Rh(12 C,3n γ) (1998La14).
356.2 3	3845.9	4.0 4	(D)	Mult.: A_2 =-0.03 3 for 355.2 γ +355.8 γ +356.2 γ in 103 Rh(12 C,3n γ) (1998La14).
358.9 3	2988.4	10.6 4	M1+E2	Mult.: DCO=0.79 3 in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
365.0 3	y+3217.2	2.00 11	M1+E2	Mult.: DCO=1.10 12 in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
368.2 10	y+1077.6	0.66 5	(M1+E2)	Mult.: DCO=1.26 25 in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
372.6 3 $373.5 3$	y+750.72 3383.1	5.52 16.45	M1+E2 M1+E2	Mult.: DCO=1.04 5 in ¹⁰³ Rh(¹² C,3nγ) (1998La14). Mult.: DCO=0.89 3 in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
378.2 3	y+378.09	6.0 3	M1+E2 M1+E2	Mult.: DCO= 1.09 17 in 103 Rh(12 C,3n γ) (1998La14).
380.6 3	3009.6	48.8 15	M1+E2	Mult: $A_2=-0.13$ 3 in $^{103}Rh(^{12}C,3n\gamma)$ (1998La14); DCO=0.95 <i>14</i> in $^{103}Rh(^{12}C,3n\gamma)$ (1998La14).
391.6 3	y+2438.0	6.8 3	M1+E2	Mult.: DCO=0.54 7 in 103 Rh(12 C,3n γ) (1998La14).
392.4 3	3402.3	25.2 8	M1+E2	Mult.: DCO=0.86 2 in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
394.4 3	3383.1	7.5 3	M1+E2	Mult.: DCO=0.61 8 in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
398.2 3	502.1	19.2 7	M1+E2	Mult.: DCO=0.70 9 in 103 Rh(12 C, 3 n $^{\gamma}$) (1998La14).
402.03	1747.5	2.91 13	E1	Mult.: DCO=0.87 5 in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
$402.5\ 3$	4090.1	3.6 2	(M1+E2)	Mult.: DCO=0.28 7 in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
406.2 3	1675.1	4.0 2	M1+E2	Mult.: DCO(406.2+406.9)=1.14 4 in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
406.9 3	3809.2	13.6 4	M1+E2	Mult.: DCO=1.14 4 for 406.2+406.9γ in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
414.2 3	y+2852.2	7.6 3	M1+E2	Mult.: DCO=0.91 5 in 103 Rh(12 C,3n γ) (1998La14).
416.0 3 $418.5 3$	2908.9 2100.9	3.9 2 3.17 <i>18</i>	(M1+E2)	Mult.: DCO=0.91 6 in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
425.9 3	3809.2	8.8 3	M1+E2	Mult.: DCO=0.46 9 in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
432.5 3	y+3284.7	3.15 13	M1+E2	Mult.: DCO=0.91 8 in 103 Rh(12 C,3n γ) (1998La14).
435.7 3	2320.9	54.8 18	E1	Mult.: A_2 =-0.25 3 in 103 Rh(12 C,3n γ) (1998La14); DCO=0.49 2 in 103 Rh(12 C,3n γ) (1998La14); Pol=+0.19 7.
441.9 3	1268.8	24.9 14	M1+E2	Mult.: DCO=0.94 3 in 103 Rh(12 C,3n γ) (1998La14).
451.9 3	4261.3	6.3 2	M1+E2	Mult.: DCO=0.32 6 in 103 Rh(12 C,3n γ) (1998La14).
456.4 3	826.7	32.7 10	M2	Mult.: A_2 =0.28 3 in 103 Rh(12 C,3n γ) (1998La14); DCO=0.75 3 in 103 Rh(12 C,3n γ) (1998La14).
471.0 3	2162 . 4	1.46 15	(M1+E2)	Mult.: DCO=0.84 7 in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
471.7 3	973.8	25.0 8	M1+E2	Mult.: $A_2=-0.17$ 3 in $^{103}Rh(^{12}C,3n\gamma)$ (1998La14); DCO=0.77 2 in $^{103}Rh(^{12}C,3n\gamma)$ (1998La14).
478.5 3	1747.5	13.7 5	M1+E2	Mult.: A $_2$ =-0.45 5 in 103 Rh(12 C,3n γ) (1998La14); DCO=0.55 2 in 103 Rh(12 C,3n γ) (1998La14).
486.3 3	4295.5	6.7 2	M1+E2	Mult.: DCO=0.78 5 in 103 Rh(12 C,3n γ) (1998La14).
501.6 3	3726.4	3.17 16	361 720	M 1
503.0 3 $511.8 3$	4798.6 3380.9	4.74 18 9.9 4	M1+E2 E1	Mult.: DCO=0.87 7 in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
				on next page (footnotes at end of table)

$^{103}Rh(^{12}C,3n\gamma),^{90}Zr(^{31}P,2\alpha n\gamma) \\ \hspace{0.5in} 1998La14,1982Ma29 \ (continued)$

$\gamma(^{112}{\rm Sb})$ (continued)

Εγ [†]	E(level)	$\underline{\hspace{1cm} I\gamma^{\dagger}}$	Mult.‡	Comments
513.9 3	1341.2	7.2 10		
527.7 3	2275 . 1	2.9 3	E28	
527.93	5326.5	3.37 18	M1+E2	Mult.: DCO=0.75 6 in 103 Rh(12 C, 3 n γ) (1998La14).
537.0 3	4798.6	2.02 13	M1+E2	Mult.: DCO=0.86 8 in 103 Rh(12 C,3n γ) (1998La14).
561.0 3	x + 561.0	1.04 13	(E2)§	
570.1 3	3794.9	1.93 13		
582.3 3	4838.0	1.04 9	E2 §	400 40
586.8 3	4676.5	4.4 2	(M1+E2)	Mult.: DCO=0.16 8 in 103 Rh(12 C,3n γ) (1998La14).
588.5 3	4434.3	1.88 13		100 10
597.5 3	2482.6	10.2 6	(E2)	Mult.: DCO=1.24 14 in 103 Rh(12 C,3n γ) (1998La14).
607.7 3	2492.9	4.3 5		
607.9 3	1949.6	1.48 18	8	
613.0 10	y + 1690.5	0.13 11	E2 §	100 - 10 -
613.2 3	3622.8	1.9 2	E2	Mult.: DCO=1.51 14 in 103 Rh(12 C,3n γ) (1998La14).
621.7 10	y + 1 3 7 2 . 6	0.73 11	E2§	102
622.6 3	3224.8	9.9 4	E 2	Mult.: DCO=1.01 14 in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
631.6 3	1675.1	2.99 15	(M1+E2)	Mult.: DCO=0.94 14 in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
632.0 3	4122.1	11.2 4	E2	Mult.: DCO=1.13 8 in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
655.8 4	x+1216.8	4.8 3	(E2)§	$I\gamma(656)/I\gamma(841.3)=0.68$ 10.
664.0 3	2548.7	2.7 5	(M1+E2)	Mult.: DCO=0.61 5 in 103 Rh(12 C,3n γ) (1998La14).
673.9 3	y+2046.3	0.89 11	E2§	Male - DGO 1 71 0 :- 103Db (12G 2) (10CCL 14)
679.1 3	2629.0	10.0 4	E2	Mult.: DCO=1.71 8 in 103 Rh(12 C,3n γ) (1998La14).
699.73 701.33	y+1077.6 1675.1	1.11 7 $18.4 6$	E2 § E1	Mult.: A_2 =0.10 2 in 103 Rh(12 C, 3 n γ) (1998La14); DCO=0.98 3 in 103 Rh(12 C, 3 n γ)
				(1998La14).
704.0 3	1530.6	21.9 13	M1+E2	Mult.: A ₂ =-0.58 5 in $^{103}{\rm Rh}(^{12}{\rm C},3{\rm n}\gamma)$ (1998La14); DCO=0.39 9 in $^{103}{\rm Rh}(^{12}{\rm C},3{\rm n}\gamma)$ (1998La14).
708.8 3	4089.7	16.5 6	E 2	Mult.: DCO=1.07 5 in 103 Rh(12 C, 3 n γ) (1998La14).
$717.1\ 3$	2602.3	10.6 6	E 2	Mult.: DCO=0.92 6 for 717.1+718.2 γ in 103 Rh(12 C, 3 n γ) (1998La14).
718.2 3	4122.1	5.1 2	E 2	Mult.: DCO=0.92 6 for 717.1+718.2γ in ¹⁰³ Rh(¹² C,3nγ) (1998La14); Pol=+0.12 19.
727.7 3	5161.9	3.32 16	E 2	Mult.: DCO=1.35 18 in 103 Rh(12 C,3n γ) (1998La14); Pol=+0.55 10.
$734.6 \ 3$	3009.6	9.24	E 2	Mult.: DCO=1.51 8 in 103 Rh(12 C,3n γ) (1998La14).
742.6 3	4864.8	11.6 5	E2	Mult.: DCO=1.00 10 in ¹⁰³ Rh(¹² C,3nγ) (1998La14) for 742.6+743.7γ; Pol=+0.21 18.
743.7 3	x + 1960.5	5.7 3	E2	$ \begin{split} & \text{I}\gamma(744)/\text{I}\gamma(841.3) = 0.97 \ 6. \\ & \text{Mult.: DCO} = 1.00 \ 10 \ \text{for } 742.6 + 743.7\gamma \ \text{in } ^{103}\text{Rh}(^{12}\text{C}, 3\text{n}\gamma) \ (1998\text{La}14). \end{split} $
747.6 10	y+2438.0	0.71 9	E2 §	
750.6 3	y+750.72	2.31 11	E2§	
754.3 3	3383.1	6.1 3	E2	Mult.: DCO=1.39 10 in 103 Rh(12 C,3n γ) (1998La14).
761.9 3	3082.9	2.1 2	E 1	• •
773.5 3	3402.3	6.0 3	E 2	Mult.: DCO=1.55 10 in 103 Rh(12 C, 3 n γ) (1998La14).
799.7 3	3809.2	6.9 3	E2	Mult.: DCO=1.43 9 in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
806.5 3	5644.5	4.7 7	E2	$I\gamma(806)/I\gamma(841.3)=0.66$ 5.
				Mult.: DCO=0.85 8 in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
815.1 3	1185 . 2	8.5 4	(M1+E2)	Mult.: from DCO=0.44 6 in 103 Rh(12 C,3n γ) (1998La14).
818.6 3	3687.6	9.2 4	E2	Mult.: DCO=1.14 11 in 103 Rh(12 C,3n γ) (1998La14).
834.0 3	x + 2794.5	4.2 2	E2	$I\gamma(833)/I\gamma(841.3)=0.91$ 6. Mult.: DCO=0.93 10 in 103 Rh(12 C,3n γ) (1998La14).
841.2 1	6003.1	6.1 3	E2	Mult.: DCO=0.98 7 in ¹⁰³ Rh(¹² C,3nγ) (1998La14), 0.97 5 in ⁹⁰ Zr(³¹ P,2αnγ) (1998La14); Pol=+0.41 8.
842.9 3	4223.8	5.4 3		
848.4 3	1675.1	22.8 8	M1+E2	Mult.: A_2 =0.42 5 in 103 Rh(12 C,3n γ) (1998La14); DCO=1.39 5 in 103 Rh(12 C,3n γ) (1998La14).
865.4 3	5730.2	2.40 16	E2	Mult.: DCO=1.00 8 in ¹⁰³ Rh(¹² C,3nγ) (1998La14); Pol=+0.2 3.
893.2 3	4295.5	2.15 15	E2	Mult.: DCO=2.1 5 in 103 Rh(12 C,3n γ) (1998La14).
896.4 3	4277.3	3.1 2		
900.8 3	6545.3	3.08 16	(E2)	$I\gamma(901)/I\gamma(841.3)=0.76$ 5.
920.8 3	1747.5	1.97 13	M1+E2	Mult.: DCO=1.44 17 in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
923.9 3	x+3718.4	1.64 13	(E2)§	$I\gamma(924)/I\gamma(841.3)=0.91$ 6.
932.2 2	6935.3	3.26 18	E 2	Iγ: Iγ(932)/Iγ(841.3)=0.96 6 in 90 Zr(31 P,2αηγ) (1998La14). Mult.: DCO=0.98 16 in 103 Rh(12 C,3ηγ) (1998La14), 1.21 11 in 90 Zr(31 P,2αηγ)
				(1998La14); Pol=+0.67 11.

$^{103}Rh(^{12}C,3n\gamma),^{90}Zr(^{31}P,2\alpha n\gamma) \\ \hspace*{0.5in} 1998La14,1982Ma29 \ (continued)$

$\gamma(^{112}{\rm Sb})$ (continued)

$\underline{\hspace{1cm}} E\gamma^{\dagger}$	E(level)	Ιγ [†]	Mult.‡	Comments
940.1 3	4321.0	12.0 5	E2	Mult.: DCO=1.09 7 in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
976.0 3	1345.7	4.4 2	M1+E2	Mult.: DCO=0.56 6 in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
983.8 3	2869.0	28.1 11	E2	Mult.: A_2 =0.41 5 in 103 Rh(12 C,3n γ) (1998La14); DCO=0.97 4 in 103 Rh(12 C,3n γ) (1998La14).
989.8 3	4798.6	2.5 2	E2	Mult.: DCO=1.62 9 in 103 Rh(12 C,3n γ) (1998La14).
990.8 3	7536.1	1.8 9	E 2	$I\gamma(991)/I\gamma(841.3)=0.81$ 5. Mult.: DCO=0.91 7 in 103 Rh(12 C,3n γ) (1998La14).
1002.9 3	7938.2	1.11 13	E2	Iy: Iy(1003)/Iy(841.3)=0.89 8 in $^{90}{\rm Zr}(^{31}{\rm P},2\alpha {\rm n}\gamma)$ (1998La14).
1005 4 0	0.4.0.00		(B1)	Mult.: DCO=0.98 7 in ${}^{90}\text{Zr}({}^{31}\text{P},2\alpha\eta\gamma)$ (1998La14); Pol=+0.52 11.
1007.4 3	3489.9	6.2 3	(E1) (E2)§	Mult.: DCO=1.08 14 in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
1015.3 3 $1017.6 3$	x+4733.7 2548.7	1.58 13 14.26		I _γ (1016)/I _γ (841.3)=0.86 5.
			(E2)	Mult.: $A_2=0.28$ 3 in $^{103}Rh(^{12}C,3n\gamma)$ (1998La14).
1030.8 10	5326.5	<0.15	E2	Mult.: DCO=0.79 8 in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
1041.3 3 $1058.5 3$	5717.8 1885.2	2.64 16 100	E 2	Mult.: A_2 =0.40 3 in 103 Rh(12 C,3n γ) (1998La14); DCO=1.01 2 for 1058.5+1060.0 in 103 Rh(12 C,3n γ) (1998La14).
1059.0 5	8997.2	5.3 6	E2	Iy: from Iy(1059)/Iy(841.3)=0.87 9 in $^{90}{\rm Zr}(^{31}{\rm P},2\alpha n\gamma)$ (1998La14).
1060.0 3	3380.9	43.1 14	E2	Mult.: DCO=0.99 5 in 90 Zr(31 P,2 α n γ) (1998La14); Pol(1059+1059+1060)=+0.46 11. Mult.: A ₂ =0.40 3 for 1058.5+1060.0 γ in 103 Rh(12 C,3n γ) (1998La14); DCO=1.01 2
				for $1058.5 + 1060.0\gamma$ in $^{103}{\rm Rh}(^{12}{\rm C}, 3n\gamma)$ (1998La14).
1080.6 3	8616.7	0.209	(E2)	$I\gamma(1081)/I\gamma(841.3)=0.82$ 5.
1083.0 3	3403.9	6.7 3	M1+E2	Mult.: DCO=0.54 3 in 103 Rh(12 C,3n γ) (1998La14); Pol=-0.3 3.
1103.4 3	2988.4	16.1 8	E2	Mult.: DCO=1.02 7 in 103 Rh(12 C,3n γ) (1998La14).
1108.9 2	x + 5842.6	4.9 4		Iγ: from $I\gamma(1109)/I\gamma(841.3)=0.80$ 6 in $^{90}Zr(^{31}P, 2\alpha n\gamma)$ (1998La14).
1116.8 2	10114.0	4.9 3	E2	Iy: from Iy(1117)/Iy(841.3)=0.81 4 in 90 Zr(31 P,2 α ny) (1998La14).
				Mult.: DCO=1.27 20 in ⁹⁰ Zr(³¹ P,2αηγ) (1998La14); Pol=+0.76 18.
1122.9 3	1949.6	19.0 6	M1+E2	Mult.: A ₂ =0.37 5 in $^{103}{\rm Rh}(^{12}{\rm C},3{\rm n}\gamma)$ (1998La14); DCO=1.34 10 in $^{103}{\rm Rh}(^{12}{\rm C},3{\rm n}\gamma)$ (1998La14).
1168.3 3	9785.0			$I\gamma(1168)/I\gamma(841.3)=0.78$ 6.
1168.8 3	3489.9	6.7 3	M1+E2	Mult.: DCO=0.47 5 in ¹⁰³ Rh(¹² C,3nγ) (1998La14).
1183.2 2	11297.2	5.3 6	E2	Iy: from Iy(1183)/Iy(841.3)=0.58 4 in 90 Zr(31 P,2 α n γ) (1998La14). Mult.: DCO=1.2 3 in 90 Zr(31 P,2 α n γ) (1998La14); Pol=+0.6 3.
1197.7 3	3082.9	5.9 5	E2	Mult.: DCO=1.01 12 for 1197.7+1199.4 γ in 103 Rh(12 C,3n γ) (1998La14).
$1199.4\ 3$	3748.1	1.8 2	(E2)	Mult.: DCO=1.01 12 for 1197.7+1199.4 γ in $^{103}{\rm Rh}(^{12}{\rm C}, 3{\rm n}\gamma)$ (1998La14).
$1203.9 \ 3$	x + 7046.5	4.4 4		Iy: $I\gamma(1204)/I\gamma(841.3)=0.72\ 5\ in\ ^{90}Zr(^{31}P,2\alpha n\gamma)\ (1998La14).$
1211.9 3	1345.7	4.4 3	E2	DCO=1.95 16 in 103 Rh(12 C, 3 n γ) (1998La14).
$1238.7 \ 3$	3731.6	1.5 2		
1249.1 3	2075.8	4.1 8	(M1+E2)	Mult.: DCO=0.32 10 in 103 Rh(12 C,3n γ) (1998La14).
1257 . 0 4	11042 . 0	3.9 4		Iy: from Iy(1257)/Iy(841.3)=0.64 5 in $^{90}{\rm Zr}(^{31}{\rm P},2\alpha n\gamma)$ (1998La14).
1285.6 3	1389.5	2.3 3	E2	Mult.: DCO=1.76 21 in 103 Rh(12 C, 3 n $^{\gamma}$) (1998La14).
1298.8 2	12596.0	2.99 23	E2	Iy: from Iy(1299)/Iy(841.3)=0.49 3 in 90 Zr(31 P,2 α ny) (1998La14). Mult.: DCO=1.06 22 in 90 Zr(31 P,2 α ny) (1998La14); Pol=+0.3 3.
1299.8 3	x + 8346.3	4.1 4		Iγ: from $I_{\gamma}(1300)/I_{\gamma}(841.3)=0.67$ 5 in $^{90}Zr(^{31}P,2\alpha n\gamma)$ (1998La14).
1312.3 3	1682.4	6.1 3	E2	Mult.: A_2 =0.7 3 in 103 Rh(12 C,3n γ) (1998La14); DCO=2.05 12 in 103 Rh(12 C,3n γ) (1998La14).
1321.3 3	1691.4	2.72	M1+E2	Mult.: DCO=0.69 6 in 103 Rh(12 C, 3 n γ) (1998La14).
1352 . 4 4	12394 . 4	$2.1 \ 3$		Iy: $I\gamma(1352)/I\gamma(841.3)=0.35$ 4 in $^{90}Zr(^{31}P,2\alpha n\gamma)$ (1998La14).
1385.5 3	2570.8	1.15 13	E2	Mult.: A_2 =0.37 9 in 103 Rh(12 C,3n γ) (1998La14); DCO=2.2 4 in 103 Rh(12 C,3n γ) (1998La14).
1387.0 3	x + 9733.3	3.7 3		Iy: from Iy(1387)/Iy(841.3)=0.61 4 in $^{90}{\rm Zr}(^{31}{\rm P},2\alpha n\gamma)$ (1998La14).
1397.3 10	2582.6	0.86 13		$\rm A_2$ =0.47 10 in $^{103}\rm Rh(^{12}C, 3n\gamma)$ (1998La14); DCO=1.25 13 in $^{103}\rm Rh(^{12}C, 3n\gamma)$ (1998La14).
1411.3 3	3296.5	3.4 4	(E2)	Mult.: A_2 =0.40 9 in 103 Rh(12 C,3n γ) (1998La14); DCO=1.0 2 in 103 Rh(12 C,3n γ) (1998La14).
1445.8 5	13840.3	$1.77\ 20$		Iy: I $\gamma(1446)/I\gamma(841.3)=0.29$ 3 in $^{90}{\rm Zr}(^{31}{\rm P},2\alpha n\gamma)$ (1998La14).
1468.6 3	x + 1 1 2 0 2 . 0	2.26 21		Iy: from Iy(1469)/Iy(841.3)=0.37 3 in $^{90}{\rm Zr}(^{31}{\rm P},2\alpha n\gamma)$ (1998La14).
1493.6 3	14089.6	1.95 16		Iy: I γ (1494)/I γ (841.3)=0.32 2 in 90 Zr(31 P,2 α n γ) (1998La14). DCO=0.83 27 in 90 Zr(31 P,2 α n γ) (1998La14).
1548.2 6	15388.5	1.53 20		Ιγ: $I\gamma(1548)/I\gamma(841.3)=0.25$ 3 in $^{90}Zr(^{31}P, 2αnγ)$ (1998La14).
1570.6 4	x + 12772.6	2.0 21		Iy: from Iy(1571)/Iy(841.3)=0.33 3 in $^{90}{\rm Zr}(^{31}{\rm P},2\alpha n\gamma)$ (1998La14).
1613.2 3	4838.0	3.9 2	E 2	Mult.: A ₂ =0.36 5 in $^{103}{\rm Rh}(^{12}{\rm C},3{\rm n}\gamma)$ (1998La14); DCO=1.01 16 in $^{103}{\rm Rh}(^{12}{\rm C},3{\rm n}\gamma)$ (1998La14).

$^{103}Rh(^{12}C,3n\gamma),^{90}Zr(^{31}P,2\alpha n\gamma) \\ \hspace{0.5in} 1998La14,1982Ma29 \ (continued)$

$\gamma(^{112}{\rm Sb})$ (continued)

$\underline{\hspace{1cm} E\gamma^{\dagger}}$	E(level)	Ιγ [†]	Mult.‡	Comments
1653.3 3	4255.7	1.18 16	E2	Mult.: A_2 =0.4 I in 103 Rh(12 C,3n γ) (1998La14); DCO=0.85 $I8$ in 103 Rh(12 C,3n γ) (1998La14).
1666.0 7	17054.5	1.28 14		Iy: from Iy(1666)/Iy(841.3)=0.21 2 in 90 Zr(31 P,2 α ny) (1998La14).
1695.5 3	15785.1	1.59 14		Iy: from $I\gamma(1695)/I\gamma(841.3)=0.26\ 2$ in $^{90}Zr(^{31}P,2\alpha n\gamma)$ (1998La14).
1708.0 5	x + 14480.6	0.98 13		Iy: from $I\gamma(1708)/I\gamma(841.3)=0.16\ 2$ in $^{90}Zr(^{31}P,2\alpha n\gamma)$ (1998La14).
1810# 1	18865.7?	0.85 13		Iy: from $I\gamma(1810)/I\gamma(841.3)=0.14\ 2$ in $^{90}Zr(^{31}P,2\alpha n\gamma)$ (1998La14).
1871.3 5	17656.5	0.98 13		Iy: from Iy $(1871)/Iy(841.3)=0.16\ 2$ in $^{90}Zr(^{31}P,2\alpha n\gamma)$ (1998La14).
1880.8 7	x + 16361.4	0.67 13		Iy: from Iy $(1881)/Iy(841.3)=0.11\ 2$ in $^{90}Zr(^{31}P,2\alpha n\gamma)$ (1998La14).
2047# 1	19703.2?	0.37 6		Iy: from $I\gamma(2047)/I\gamma(841.3)=0.06\ 1$ in $^{90}Zr(^{31}P,2\alpha n\gamma)$ (1998La14).
2078 1	x + 18439?	0.31 12		Iy: from $I_{\gamma}(2078)/I_{\gamma}(841.3)=0.05\ 2$ in $^{90}Zr(^{31}P,2\alpha n\gamma)$ (1998La14).

- † From $^{103}\text{Rh}(^{12}\text{C},3\text{n}\gamma)$ (1998La14), unless otherwise noted. $\Delta\text{E}\gamma\text{=}0.3$ keV for I γ >1 and $\Delta\text{E}\gamma\text{=}1$ keV for I γ <1, based on a general statement in 1998La14.
- ‡ From $^{103}\text{Rh}(^{12}\text{C}, 3n\gamma)$ (1998La14), based on the DCO ratios, polarization and the apparent band structures.
- $\$ Assignment made in $^{103}Rh(^{12}C,3n\gamma)$ (1998La14), but no DCO or A_2 values were given.
- # Placement of transition in the level scheme is uncertain.

¹¹²Sn(p,nγ) 1997Fa08

Facility: Debrecen 103 cm isochronous cyclotron; Beam: E(p)=8.5 to 9.3 MeV; Targets: 0.5 and 2.5 mg/cm² enriched to 81% in ¹¹²Sn; Detectors: two HPGe, one planar HPGe, LEPS, SMLS superconducting magnetic lens spectrometer, Si(Li) detectors; Measured: γ , ce, $E\gamma$, γ , γ - γ , γ - γ (θ), α ; Also, from the same collaboration: 1997FaZY, 1993GuZX. Others: 1976Ka19, 1976Ke07, 1977KeZY.

 $^{112}\mathrm{Sb}$ Levels

E(level) [†]	_Jπ [‡]	E(level)†	_Jπ [‡]	E(level)†	<u></u> Jπ [‡]
0.08	3+	296.17# 4	2+	714.76 6	1+
38.34 \$ 5	2+	366.3 [§] 5	6	780.92 [@] 6	2+
60.99 16	(1+)	395.88 5	3+	788.21 6	3+
103.83 \$ 5	4+	411.07@6	1+	804.31 10	3,4
129.6 \$ 4	5	502.10# 6	5+	808.19 4	4+
167.07# 4	4+	510.51 5	2,3+		
236 . $44^{\#}$ 4	3+	672.82 7	3+		

- † From a least-squares fit to Ey.
- ‡ From 1997Fa08.
- $\$ Probable member of the $\pi d_{5/2} \otimes \nu g_{7/2}$ split multiplet.
- $^{\#}$ Probable member of the $\pi d_{5/2} \otimes \nu d_{5/2}$ split multiplet.
- @ Probable member of the $\pi d_{5/2} \otimes v d_{3/2}$ split multiplet.
- & Probable member of the $\pi d_{5/2} \otimes vs_{1/2}$ split multiplet.

 $\gamma(^{112}Sb)$

$\underline{\hspace{1cm}} E\gamma^{\dagger}$	E(level)	$\underline{\hspace{1cm} I\gamma^{\dagger}}$	Mult.†	$\underline{\hspace{1cm}\delta^{\dagger}}$	Comments
(22.7)	60.99				
(25.8)	129.6				
37.5 4	167.07	28 15			
38.3 4	38.34	113 60			
59.7 1	296.17	51 9			
69.39 4	236 . 44	77 15	M1(+E2)	+0.028	Mult.: $A_2 = -0.145$ 103 and $A_4 = -0.132$ 89 (1997Fa08).
99.9 3	395.88	7 2			
103.8 1	103.83	1000 70	M1(+E2)	-0.014	Mult.: $A_2 = -0.264$ 86 and $A_4 = -0.042$ 73 (1997Fa08).
114.9 5	510.51	42 9	M1(+E2)	+0.07 15	Mult.: $A_2 = -0.147$ 135 and $A_4 = -0.077$ 116 (1997Fa08).
x 1 2 2 . 1 1		24 4			
132.59 4	236 . 44	351 20	M1+E2	-0.07 6	Mult.: $\alpha(K)\exp=0.225$ 44, $A_2=-0.011$ 107 and $A_4=0.064$ 93 (1997Fa08).
159.3 4	395.88	42 4	M1+E2		Mult.: α(K)exp=0.158 50 (1997Fa08).

$^{112}\mathrm{Sn}(p,n\gamma)$ 1997Fa08 (continued)

$\gamma(^{112}{\rm Sb})$ (continued)

187. 0	$\underline{\hspace{1cm}} E\gamma^{\dagger}$	E(level)	Ιγ [†]	Mult. [†]	δ†	Comments
198. 08	167.10 4	167.07	409 21	M1(+E2)	+0.01 4	Mult.: $\alpha(K)\exp=0.102$ 30, $A_2=-0.254$ 95 and $A_4=-0.044$ 81 (1997Fa08).
236. 8 205. 88 99 6 (M1)		236 . 44			-0.046	
230. 7 3	214.41	510 . 51	$28 ext{ } 4$	M1		Mult.: $\alpha(K)\exp=0.055 \ 8 \ (1997Fa08)$.
237. 8	228.8 2	395.88	99 5	(M1)		Mult.: $\alpha(K)\exp=0.050 \ 5 \ (1997Fa08)$.
	236.6 3	236 . 44	60 27	(M1+E2)		Mult.: $\alpha(K)\exp=0.067$ 18 (1997Fa08); doublet.
1979 1979	236.7 3	366.3	39 18	(M1+E2)		Mult.: α(K)exp=0.067 18 (1997Fa08); doublet.
1						
292.1 1 35.88		510.51				
292.1 1 395.88 46 5 M1 (+B2) -0.07 9 Mult: α(K)exp-0.048 2, Ag=-0.164 and Ag=-0.07 III (1097Fa08). 335.1 1 502.10 45 9 M1+F2 -0.14 8 Mult: α(K)exp-0.028 3, Ag=-0.028 I and Ag=-0.088 II (1997Fa08). 335.0 4 395.88 231 II M(+E2) -0.01 5 Mult: α(K)exp-0.028 Ag=-0.028 I and Ag=-0.008 II (1997Fa08). 336.8 I 760.92 38 4 Mult: α(K)exp-0.01 2, Ag=-0.284 III and Ag=-0.01 381 (1997Fa08). 337.72 5 8 8	*279.8 1		30 9	M1+E2		
395.1 3	000 1 1	005 00	40.5	M1(.E0)	. 0 07 0	
361. 1					+0.07 9	
367.0 4 11.07 123 18 18 37.5 18 395.88 231 11 M1(+E2) -0.01 5 Mult: α(K)exp=0.017 2, A_2=-0.234 105 and A_4=-0.024 89 (1997Fa08). 369.8 7 780.92 38 4 (M1+E2) -0.07 4 Mult: α(K)exp=0.016 2, A_2=-0.304 219 and A_4=-0.104 183 (1997Fa08). 377.1 5 7 4 11.07 7 7 7 7 7 7 7 7 7					_0 14 8	
Section Sec				MITEZ	-0.14 0	$Matt \ u(\mathbf{R}) \in \mathbf{Ap} = 0.023 \ J, \ \mathbf{A}_2 = -0.223 \ J/1 \ and \ \mathbf{A}_4 = -0.000 \ J/1 \ (133/1 a00).$
368				M1(+E2)	+0.01.5	Mult.: $\alpha(K) \exp(0.017/2)$, $A_0 = -0.234/105$ and $A_0 = -0.024/89$ (1997Fa08).
371 2 5 3 2 3 3 3 3 3 3 3 3						
377.1 3				(/		
337.1 5		411.07		M1+E2	-0.074	Mult.: $\alpha(K)\exp=0.017$ 2, $A_2=-0.002$ 81 and $A_4=-0.001$ 71 (1997Fa08).
39.9. 9 3 502.10 75 11 M1+E2 Mult: α(K)exp=0.012 I (1997Fa08), 418.50 5 714.76 259 18 M1 (+22) +0.28 56 Mult: α(K)exp=0.012 2, λ_2=-0.058 2IS and Λ_1=-0.004 87 (1997Fa08), 436.8 4 672.82 3 5 5 1 1 19 7 M1+E2 Mult: α(K)exp=0.012 2, Λ_2=-0.057 100 and Λ_1=-0.004 87 (1997Fa08), 448.0 1 19 7 M1+E2 Mult: α(K)exp=0.012 1 (1997Fa08), 448.0 1 19 7 M1+E2 Mult: α(K)exp=0.010 2 (1997Fa08), 449.8 4 788.2 1 3 3 1 M1+E2 Mult: α(K)exp=0.008 2 IS (1997Fa08), 449.8 4 788.2 1 3 3 1 M1+E2 Mult: α(K)exp=0.008 2 IS (1997Fa08), 449.8 4 788.2 1 3 3 4 4 788.2 1 3 3 4 4 788.2 1 3 3 4 4 788.2 1 3 4 4 788.2 1 3 4 4 788.2 1 3 4 4 788.2 1 3 4 4 788.2 1 3 4 4 788.2 1 3 4 4 788.2 1 3 4 4 788.2 1 3 4 4 788.2 1 3 4 4 788.2 1 3 4 4 788.2 1 3 4 4 788.2 1 3 4 4 788.2 3 4 788.2 3						- <u>-</u> <u>+</u>
436.8 4 672.8 29 2 29 2 29 2 29 2 2				M1+E2		Mult.: α(K)exp=0.012 1 (1997Fa08).
4448.2 4 672.82 29 2 2 35 5 4448.2 1 19 7 4148.2 19 7 4148.2 19 7 4148.2 19 7 4148.2 19 7 4148.2 19 7 4148.2 19 7 4148.2 19 7 4148.2 19 7 4148.2 19 7 4148.2 19 7 4148.2 19 7 4148.2 19 7 4148.2 19 7 4148.2 19 19 7 4148.2 19 19 19 19 19 19 19 1	398.25 4	502.10	75 11	M1+E2	-0.148	Mult.: $\alpha(K)\exp=0.014$ 2, $A_2=-0.508$ 218 and $A_4=-0.010$ 169 (1997Fa08).
Haraba 1	418.59 5	714.76	259 18	M1 (+E2)	+0.28 56	Mult.: $\alpha(K)\exp=0.012$ 2, $A_2=-0.057$ 100 and $A_4=-0.004$ 87 (1997Fa08).
Mail: α(K)exp=0.010 1 (1997Fa08).		672.82	29 2	M1+E2		Mult.: $\alpha(K)\exp=0.012$ 2 (1997Fa08).
1	x448.2 1		35 5			
*491.8	x 4 5 0 . 1 1		19 7	M1+E2		Mult.: α(K)exp=0.010 1 (1997Fa08).
491.8 4 788.21 50 11 (M1+E2 Mult.: α(K)exp=0.0082 18 (1997Fa08).			12 2			
Name						
Sol. 7		788.21		(M1+E2)		
Silor 1		450 00		MI DO		
\$\frac{8}{1} \ \ \ 8 \ 2 \ \ \ \ \ \ \ \ \ \ \ \ \ \				M1+E2		Mult.: $\alpha(K)\exp=0.0075 \ 9 \ (1997Fa08)$.
*534.56 9 *539.1 2 *539.1 2 *558.9 1 *57.6 M1 Mult: α(K)exp=0.0065 8 (1997Fa08). *588.0 4 *		510.51				
Section Sec						
551.6 5 788.21 19 4 x553.9 1 47 5 569.05 9 672.82 35 2 M1 Mult.: α(K)exp=0.0062 7 (1997Fa08). x584.0 4 57 6 M1 Mult.: α(K)exp=0.0057 7 (1997Fa08). x589.3 3 3 3 1 3 3 3 3 3 4 6 6 1 4 6 1 4 6 1 4 6 1 4 7 6 6 1 4 6 1 4 7 6 6 1 4 6 1 4 7 6 6 1 4 6 1 4 7 6 6 1 4 6 1 4 7 6 6 1 4 6 1 4 7 6 6 1 4 6 1 4 7 6 6 1 4 6 1 4 7 6 6 1 4 6 1 4 7 6 6 1 4 6 1 4 7				M1(+E2)		$Mult : \alpha(K) = 0.0065.8.(1997F = 0.8)$
x553.9 1		788 21		MII (122)		Hate ((1)02p=0.0000 0 (10071 a00).
S69.05 9						
X 58 4 . 0		672.82		M1		Mult.: $\alpha(K)\exp=0.0062$ 7 (1997Fa08).
X						
637.2 1 804.31 61 4 641.2 2 808.19 5 2 653.8 2 714.76 14 3 ×661.2 4 21 4 672.7 1 672.82 33 4 684.6 3 788.21 14 2 ×696.4 1 17 4 M1+E2 Mult.: α(K)exp=0.0031 3 (1997Fa08). 719.9 3 780.92 14 2 ×731.0 5 15 2 742.58 4 780.92 158 12 M1 Mult.: α(K)exp=0.0032 6 (1997Fa08). ×768.5 2 64 7 M1+E2 Mult.: α(K)exp=0.0032 6 (1997Fa08). ×770.14 8 39 8 ×881.1 788.21 31 4 ×793.7 4 68 2 M1 Mult.: α(K)exp=0.0032 7 (1997Fa08). ×797.16 4 808.19 67 15 M1+E2 +0.25 11 Mult.: α(K)exp=0.0031 8 (1997Fa08). ×820.98 4 13 1 4 12	x598.3 3		31 3			
641.2 2 808.19 5 2 653.8 2 714.76 14 3 2 4 672.7 1 672.82 33 4 684.6 3 788.21 14 2 808.19 53 6 (E2) Mult.: α(K)exp=0.0031 3 (1997Fa08). **703.8 3 780.92 14 2 808.19 53 6 (E2) Mult.: α(K)exp=0.0031 3 (1997Fa08). **731.0 5 15 2 742.58 4 780.92 158 12 M1 Mult.: α(K)exp=0.0040 10 (1997Fa08). **749.89 5 788.21 69 4 M1 Mult.: α(K)exp=0.0032 6 (1997Fa08). **750.14 8 39 8 788.1 1 788.2 1 31 4 879.1 4 888.1 1 788.2 1 31 4 879.1 6 4 88.1 1 5 2 7 888.1 1 6 7 15 8 16 8 2 8 10 8 16 8 16 8 16 8 16 8 16 8 16 8 16	x609.5 1		32 14	E2		Mult.: α(K)exp=0.0034 9 (1997Fa08).
653.8 2 714.76 14 3 x661.2 4 21 4 672.7 1 672.82 33 4 684.6 3 788.21 14 2 x696.4 1 17 4 M1+E2 Mult.: α(K)exp=0.0031 3 (1997Fa08). x703.8 3 16 5 Mult.: α(K)exp=0.0031 3 (1997Fa08). 719.9 3 780.92 14 2 x731.0 5 15 2 Mult.: α(K)exp=0.0040 10 (1997Fa08). 742.58 4 780.92 158 12 M1 Mult.: α(K)exp=0.0040 10 (1997Fa08). x768.5 2 64 7 M1+E2 Mult.: α(K)exp=0.0025 3 (1997Fa08). x770.14 8 39 8 788.1 1 788.21 31 4 x793.7 4 68 2 M1 Mult.: α(K)exp=0.0032 7 (1997Fa08). x797.16 4 125 18 M1 Mult.: α(K)exp=0.0031 8 (1997Fa08). 804.6 3 804.31 52 7 808.17 4 808.19 67 15 M1+E2 +0.25 11 Mult.: α(K)exp=0.0027 4, A₂=0.022 396 and A₄=-0.179 342 (1997Fa08). x820.98 4 133 14 E2 Mult.: α(K)exp=0.0019 2 (1997Fa08).	637.2 1	804.31	61 4			
X	641.2 2	808.19	5 2			
672.7 1 672.82 33 4 684.6 3 788.21 14 2 x696.4 1 17 4 M1+E2 Mult.: α(K)exp=0.0031 3 (1997Fa08). x703.8 3 16 5 704.3 2 808.19 53 6 (E2) Mult.: α(K)exp=0.0031 3 (1997Fa08). x731.0 5 15 2 x42.58 4 780.92 158 12 M1 Mult.: α(K)exp=0.0040 10 (1997Fa08). x749.89 5 788.21 69 4 M1 Mult.: α(K)exp=0.0032 6 (1997Fa08). x768.5 2 64 7 M1+E2 Mult.: α(K)exp=0.0025 3 (1997Fa08). x70.14 8 39 8 x88.1 1 788.21 31 4 x793.7 4 68 2 M1 Mult.: α(K)exp=0.0032 7 (1997Fa08). x797.16 4 12 13 14 x797.16 4 12 13 14 x797.16 4 808.19 67 15 M1+E2 +0.25 11 Mult.: α(K)exp=0.0027 4, A₂=0.022 396 and A₄=-0.179 342 (1997Fa08). x820.98 4 13 3 14 E2 Mult.: α(K)exp=0.0019 2 (1997Fa08). x841.1 2 2 9 9	653.8 2	714.76				
684.6 3 788.21 14 2 ×696.4 I 17 4 M1+E2 Mult.: α(K)exp=0.0031 3 (1997Fa08). ×703.8 3 16 5 Mult.: α(K)exp=0.0031 3 (1997Fa08). 704.3 2 808.19 53 6 (E2) Mult.: α(K)exp=0.0031 3 (1997Fa08). ×731.0 5 15 2 42.58 4 780.92 158 12 M1 Mult.: α(K)exp=0.0040 10 (1997Fa08). ×42.58 4 780.92 158 12 M1 Mult.: α(K)exp=0.0032 6 (1997Fa08). ×768.5 2 64 7 M1+E2 Mult.: α(K)exp=0.0025 3 (1997Fa08). ×770.14 8 39 8 Mult.: α(K)exp=0.0032 7 (1997Fa08). ×793.7 4 68 2 M1 Mult.: α(K)exp=0.0032 7 (1997Fa08). ×797.16 4 125 18 M1 Mult.: α(K)exp=0.0031 8 (1997Fa08). 804.6 3 804.31 52 7 808.17 4 808.19 67 15 M1+E2 +0.25 11 Mult.: α(K)exp=0.0027 4, A2=0.022 396 and A4=-0.179 342 (1997Fa08). ×820.98 4 133 14 E2 Mult.: α(K)exp=0.0019 2 (1997Fa08).						
x696.4 1 17 4 M1+E2 Mult.: α(K)exp=0.0031 3 (1997Fa08). x703.8 3 16 5 704.3 2 808.19 53 6 (E2) Mult.: α(K)exp=0.0031 3 (1997Fa08). x719.9 3 780.92 14 2 x731.0 5 15 2 742.58 4 780.92 158 12 M1 Mult.: α(K)exp=0.0040 10 (1997Fa08). x768.5 2 64 7 M1+E2 Mult.: α(K)exp=0.0025 3 (1997Fa08). x770.14 8 39 8 788.1 1 788.21 31 4 x793.7 4 68 M1 Mult.: α(K)exp=0.0032 7 (1997Fa08). x797.16 4 804.6 3 804.31 52 7 808.17 4 808.19 67 15 M1+E2 +0.25 11 Mult.: α(K)exp=0.0027 4, A₂=0.022 396 and A₄=-0.179 342 (1997Fa08). x820.98 4 808.19 67 15 M1+E2 +0.25 11 Mult.: α(K)exp=0.0019						
*703.8 3		788.21		M Fo		M 1 (W) 0.0001 0.(100FF 00)
704.3 2 808.19 53 6 (E2) Mult.: α(K)exp=0.0031 3 (1997Fa08). 719.9 3 780.92 14 2 *731.0 5 15 2 742.58 4 780.92 158 12 M1 Mult.: α(K)exp=0.0040 10 (1997Fa08). 749.89 5 788.21 69 4 M1 Mult.: α(K)exp=0.0032 6 (1997Fa08). **768.5 2 64 7 M1+E2 Mult.: α(K)exp=0.0025 3 (1997Fa08). **770.14 8 39 8 **788.1 1 788.21 31 4 **793.7 4 68 2 M1 Mult.: α(K)exp=0.0032 7 (1997Fa08). **797.16 4 125 18 M1 Mult.: α(K)exp=0.0031 8 (1997Fa08). **841.1 2 29 9				M1+E2		Muit.: $\alpha(K)\exp=0.0031 \ 3 \ (1997Fa08)$.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		202 10		(F9)		Mult. a(K)ovn=0.0021.2 (1007Fo02)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				(E2)		muit α(α)exp=0.0001 θ (199/1800).
742.58 4 780.92 158 12 M1 Mult.: α(K)exp=0.0040 10 (1997Fa08). 749.89 5 788.21 69 4 M1 Mult.: α(K)exp=0.0032 6 (1997Fa08). ×768.5 2 64 7 M1+E2 Mult.: α(K)exp=0.0025 3 (1997Fa08). ×770.14 8 39 8 788.1 1 788.21 31 4 ×793.7 4 68 2 M1 Mult.: α(K)exp=0.0032 7 (1997Fa08). ×797.16 4 125 18 M1 Mult.: α(K)exp=0.0031 8 (1997Fa08). ×891.1 4 808.19 67 15 M1+E2 +0.25 11 Mult.: α(K)exp=0.0027 4, Λ₂=0.022 396 and Λ₄=-0.179 342 (1997Fa08). ×820.98 4 133 14 E2 Mult.: α(K)exp=0.0019 2 (1997Fa08).		100.92				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		780.92		М1		Mult.: α(K)exp=0.0040 10 (1997Fa08).
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		– –				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		788.21				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				M1		Mult.: α(K)exp=0.0032 7 (1997Fa08).
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						Mult.: α(K)exp=0.0031 8 (1997Fa08).
x820.98 4 133 14 E2 Mult.: α(K)exp=0.0019 2 (1997Fa08). x841.1 2 29 9	804.6 3	804 . 31	52 7			
^x 841.1 2 29 9	808.17 4	808.19	67 15	M1+E2	+0.25 11	Mult.: $\alpha(K)\exp=0.0027$ 4, $A_2=0.022$ 396 and $A_4=-0.179$ 342 (1997Fa08).
	$^{x}820$. 98 4			E2		Mult.: $\alpha(K)\exp=0.0019$ 2 (1997Fa08).
$^{x}842.4 \ 5$ 56 6						
	x842.4 5		56 <i>6</i>			

¹¹²Sn(p,nγ) 1997Fa08 (continued)

$\gamma(^{112}{ m Sb})$ (continued)

$\underline{\hspace{1cm} E\gamma^{\dagger}}$	Ιγ [†]	$\underline{\hspace{1cm}}^{}^{}$	$\underline{\hspace{1cm} I\gamma^{\dagger}}$	$ E\gamma^{\dagger}$	$\underline{\hspace{1cm}}^{\hspace{1cm}\dagger}$
x 8 4 6 . 4 5	49 4	x880.6 5	17 2	×933.6 3	100 10
x864.2 3	$21 \ 3$	x897.7 1	35 2	x968.1 1	46 5
x870.8 5	10 2	x904.5 3	32 3	×970.7 1	41 4
x 874.4 2	21 7	x924.5.5	53 7		

[†] From 1997Fa08.

¹¹²Sn(³He,t) 1995Ph01

Facility: Indiana University Cyclotron; Beam: $E(^3He)=200$ MeV; Target: 2.5 mg/cm² enriched to 98.9% in ^{112}Sn ; Detectors: K600 magnetic spectrometer, two multiwire drift chambers and two scintillation detectors. FWHM=80 keV; Measured: E, Γ , $d\sigma/d\Omega$.

$^{112}{ m Sb}$ Levels

E(level) [†]	$J\pi^{\ddagger}$	E(level)†	$J\pi^{\ddagger}$	E(level) [†]	Jπ‡
140 30	1+	2180 30	1+	4050 30	1+
510 30	1+	2410 30	1+	4240 30	1+
850 30	1+	2720 30	1+	4600 30	1+
1120 30	1+	3100 30	1+	4880 30	1+
1340 30	1+	3420 30	1+	5310 30	1+
1540 30	1+	3680 30	1+	5570 30	1+
1830 30	1+	3850 30	1+		

[†] From 1995Ph01.

 $^{^{}x}$ γ ray not placed in level scheme.

 $[\]ensuremath{^{\ddagger}}$ From $\Delta L{=}0$ in 1995Ph01.

Adopted Levels, Gammas

 $Q(\beta^-) = -10504 \ \textit{13}; \ S(n) = -12051 \ \textit{11}; \ S(p) = -4020 \ \textit{12}; \ Q(\alpha) = 2078 \ \textit{10} \quad 2012Wa38.$

¹¹²Te Levels

Cross Reference (XREF) Flags

- $\begin{array}{lll} A & ^{112}I & \epsilon & Decay \\ B & ^{113}Xe & \beta^+p & Decay \\ C & ^{112}Sn(\alpha,4n\gamma) \\ D & ^{58}Ni(^{58}Ni,4p\gamma),(^{60}Ni,\alpha2p\gamma) \end{array}$

E(level) [†]	$-\!$	$\frac{XREF}{}$	§	Comments
0.0#	0+	AB D	2.0 min 2	$\%\epsilon+\%\beta^+=100$.
				$T_{1/2}$: From 372.7 β - γ (t) in 112 Te ϵ decay (1976Wi11).
689.00# 20	2+	AB D		$J\pi$: 689.0 γ E2 to 0+; band member.
1476.1 # 3	4+	AB D		$J\pi$: 787.1 γ E2 to 2+; band member.
1483.6 6	(2+)	В		J π : 794.6 γ to 2+; direct feeding from the beta-delayed proton decay of 113 Xe (J π =(5/2+)) in 2005Ja10, 1985Ti02.
2261.7 4	(5)	D		$J\pi$: 784.8 γ to 4+, 357.2 γ from 6+.
2297.6# 4	6+	D		$J\pi$: 821.3 γ E2 to 4+; band member.
2619.7 4	6+	D		$J\pi$: 1144.5 γ E2 to 4+; no decay branch to the 2+ state.
2839.0 4		D		
3362.3# 4	8+	D		J π : 1064.5 γ E2 to 6+; band member.
3454.3@4	(8-)	D		$J\pi$: 175.7 γ d from (9-), 91.9 γ to 8+; band member.
3512.1 4		D		
$3629.8^{@}4$	(9-)	D		Jπ: 267.5γ D to 8+, 479.8γ from (10-).
3785.6 4		D		
3959.1 4	(9-)	D		$J\pi$: 266.6 γ (E1) from 10+, 596.5 γ to 8+.
$4109.5^{@}4$	(10-)	D		$J\pi$: 655.1 γ E2 from (8-); band member.
4225 . $9^{\#}$ 4	10+	D		$J\pi$: 863.8 γ E2 to 8+; band member.
4239 . 4 5		D		
$4329.1^{@}5$	(11-)	D		$J\pi$: 699.3 γ E2 to (9-).
4425 . 3 5		D		
4460.3& 4	10+	D		$J\pi$: 1098.0 γ E2 to 8+; band member.
4827.0 # 5	12+	D		$J\pi$: 601.2 γ E2 to 10+; band member.
$4864.9^{@}5$	(12-)	D		J π : 755.4 γ E2 to (10-); band member.
5040.95		D		
5124.0@5	(13-)	D		$J\pi$: 794.9γ E2 to (11-); band member.
5212.1 6 5	12+	D		$J\pi$: 751.8 γ E2 to 10+; band member.
5432.7@5	(14-)	D		$J\pi$: 567.8γ E2 to (12-); band member.
$5540.0^{\#}5$	14+	D		$J\pi$: 713.0 γ E2 to 12+; band member.
5753.1 6		D		
5874.4@5	(15-)	D		$J\pi$: 750.5 γ E2 to (13-); band member.
5970.8 5	14+	D		Jπ: 758.7γ E2 to 12+; band member.
6294.4# 5	16+	D		Jπ: 754.4γ E2 to 14+; band member.
6439.1@5	(16-)	D		J π : 1006.4 γ E2 to (14-); band member.
6709.49	(17+)	D		$J\pi$: 415 γ to 16+, 925 γ from 18+.
6772.4 6	16+	D		J π : 801.6 γ E2 to 14+; band member.
6904.7? 6	(17-)	D		Jπ: 465.6γ D to (16-).
6951.1@5	(17-)	D		J π : 1076.7 γ E2 to (15-); band member.
7029.0? 5	(17-)	D		$J\pi$: 1154.6 γ to (15–).
7251.8# 6 7565.1 [@] 11	18+	D		J π : 957.4 γ E2 to 16+; band member.
7634.4& 6	(18-)	D	0.01 7.4	J π : 1126 γ to (16-); band member.
7634.42 6	18+	D D	0.21 ps +7-4	$J\pi$: 862.0 γ E2 to 16+; band member.
7857.97 6 7911.7a 6	(10)			I 050 0. D 4. 10. 000 5. E0 6 (01) hard market
7911.7ª 6 8117.1 [@] 12	(19-)	D		Jπ: 659.8γ D to 18+, 992.5γ E2 from (21-); band member.
8117.1° 12 8168.2# 6	(19-) 20+	D D		Jπ: 1166γ to (17-); band member. Jπ: 916.4γ E2 to 18+; band member.
8211.6 6	20+	D D		$J\pi$: 916.4 γ E2 to 18+; band member. $J\pi$: 959.8 γ E2 to 18+, 979.7 γ E2 from 22+.
8491.0 6		D D		Jπ: 959.8γ E2 to 18+, 979.7γ E2 from 22+. Jπ: 279.4γ D to 20+.
8491.0 6 8563.2& 6	(21) 20+	D D	0.14 ps +4-3	$J\pi$: 279.4 γ D to 20+. $J\pi$: 928.7 γ to 18+; band member.
8904.3a 6	(21-)	D	0.14 ps +4-3	$J\pi$: 736.2 γ D to 20+; band member.
9087.5 ^b 8	20+	D		Jπ: 1835γ to 18+; band member.
9191.2# 6	22+	D		$J\pi$: 1023.0 γ E2 to 20+; band member.
9493.2b 8	21+	D		$J\pi$: 406 γ to 20+, 1325 γ to 20+; band member.
9561.4& 7	22+	D	101 fs +31-21	$J\pi$: 998.2 γ to 20+; band member.
5501.4- /	44+	Б	101 18 +01-21	on. 330.27 to 20+, band member.

¹¹²Te Levels (continued)

E(level) [†]	Jπ [‡]	XREF	T _{1/2} §	Comments
9710.7a 6	(23-)	D		$J\pi$: 806.3 γ E2 to (21-).
9754.5° 6	(23-)	D		Jπ: 563.3γ D to 22+.
9958.4 ^b 8	22+	D		$J\pi$: 465.1 γ to 21+, 870.8 γ to 20+; band member.
10054.2? 6		D		
10393.3 # 10	24+	D		$J\pi$: 1202 γ to 22+; band member.
10434.6 ^b 8	23+	D		J π : 476.4 γ to 22+, 941.5 γ to 21+; band member.
10618.1 ^a 6	(25-)	D		$J\pi$: 907.4 γ to (23-); band member.
10633.2 % 7	24+	D	70 fs $+21-15$	Jπ: 1071.8γ to 22+; band member.
10930.6b 8	24+	D		J π : 495.9 γ to 23+, 972.1 γ to 22+; band member.
11023.4° 10	(25-)	D		Jπ: 630γ to 24+, 1269γ to (23-); band member.
11438.7 ^b 8	25+	D		Jπ: 507.9γ to 24+, 1004.4γ to 23+; band member.
11657.3 [#] 12 11779.7 ^{&} 8	26+	D	50 f 15 10	Jπ: 1264γ to 24+; band member.
11779.70 8 11968.9 ^b 8	26+ 26+	D	50 fs + 15 - 10	Jπ: 1146.4γ to 24+; band member.
11968.9" 8 11990.2a 11	(27-)	D D		Jπ: 530.4γ to 25+, 1038.1γ to 24+. Jπ: 1372γ to (25-); band member.
12276.3° 11	(27-)	D		$J\pi$: 619 γ to 26+, 1253 γ to (25-); band member.
12517.8 ^b 8	27+	D		$J\pi$: 548.8 γ to 26+, 1079.2 γ to 25+; band member.
12997.4& 8	28+	D	37 fs +11-8	$J\pi$: 1217.7 γ to 26+; band member.
13080.9 ^b 8	28+	D		$J\pi$: 563.1 γ to 27+, 1112.0 γ to 26+; band member.
13455.3ª 12	(29-)	D		$J\pi$: 1179 γ to (27-); band member.
13667.0 ^b 8	29+	D		$J\pi$: 586.0 γ to 28+, 1149.1 γ to 27+; band member.
13878.2 15		D		
13969.2 15		D		
14265.0 ^b 8	30+	D		$J\pi \colon\thinspace 597.8\gamma$ to $29+,\ 1184.3\gamma$ to $28+;$ band member.
14288.6 ^{&} 8	30+	D	27 f s +8-6	$J\pi$: 1291.2 γ to 28+; band member.
14909.0 ^b 8	31+	D		J π : 644.3 γ to 30+, 1242.1 γ to 29+; band member.
14996.3ª 16	(31-)	D		J π : 1541 γ to (29-); band member.
15333.2 18		D		
15408.2 18		D		Jπ: (31-) assumed in 2007Pa07.
15564.1 ^b 8	32+	D		Jπ: 655.2γ to 31+, 1298.9γ to 30+; band member.
15652.4& 8	32+	D	21 fs + 6 - 4	J π : 1363.8 γ to 30+; band member.
16274.2 ^b 8	33+	D		J π : 710.1 γ to 32+, 1365.2 γ to 31+; band member.
16998.4 ^b 9 17153.2& 9	34+	D		Jπ: 724.2γ to 33+, 1434.2γ to 32+; band member.
17786.5b 9	34+	D		Jπ: 1500.8γ to 32+; band member.
18587.2b 9	35+ 36+	D D		Jπ: 788γ to 34+, 1512.4γ to 33+; band member. Jπ: 801γ to 35+, 1588.7γ to 34+; band member.
18778.1& 10	36+	D		$J\pi$: 1624.8 γ to 34+; band member.
19515.8 ^b 9	37+	D		$J\pi$: 928 γ to 36+, 1729.4 γ to 35+; band member.
20442.2 ^b 14	38+	D		$J\pi$: 1855 γ to 36+; band member.
20499.1& 10	38+	D		$J\pi$: 1721.0 γ to 36+; band member.
21523.9 ^b 14	39+	D		J π : 2008 γ to 37+; band member.
22305.8	40+	D		$J\pi$: 1806.7 γ to 38+; band member.
22556.2 ^b 17	40+	D		$J\pi$: 2114 γ to 38+; band member.
24248.3 4 11	42+	D		$J\pi$: 1942.5 γ to 40+; band member.
26353.3 4 15	44+	D		$J\pi$: 2105 γ to 42+; band member.
28646.4& 18	46+	D		$J\pi$: 2293 γ to 44+; band member.
x f	(21+)	D		$J\pi$: tentative assignment based on the observed feeding to the 20+ yrast states and band interpretation.
$966.0 + x^{f}$ 10	(23+)	D		$J\pi$: 966 γ to (21+); band member.
1985.0+x ^f 15	(25+)	D		$J\pi$: 1019 γ to (23+); band member.
3099.0+xf 18	(27+)	D		$J\pi$: 1114 γ to (25+); band member.
4317.9+xf 18	(29+)	D		$J\pi$: 1218.9 γ to (27+); band member.
5649.0+xf 18	(31+)	D		J π : 1331.1 γ to (29+); band member.
7119.4+xf 18	(33+)	D		$J\pi$: 1470.4 γ to (31+); band member.
8732.1+xf 19	(35+)	D		J π : 1612.6 γ to (33+); band member.
10509.7+x f 19	(37+)	D		J π : 1777.6 γ to (35+); band member.
12430.5+x f 19	(39+)	D		J π : 1920.8 γ to (37+); band member.
14501.5+xf 19 ye	(41+)	D		J π : 2071.0 γ to (39+); band member.
ус	(21-)	D		$J\pi$: tentative assignment, based on the observed feeding to the (20+) yrast state and band interpretation.
860.0+ye 10	(23-)	D		$J\pi$: 860 γ to (21-); band member.
1451.2+y 15	(20-)	D		
1793.5+ye 11	(25-)	D		$J\pi$: 933.5 γ to (23-); band member.
			Continue	
			Continued o	n next page (footnotes at end of table)

¹¹²Te Levels (continued)

E(level) [†]	Jπ [‡]	XREF	Comments
2802.2+ye 11	(27-)	D	Jm: 1008.7γ to $(25-)$; band member.
3926.2+ye 12	(29-)	D	$J\pi$: 1124.0 γ to (27-); band member.
5096.0+y 16		D	
5138.3+ye 12	(31-)	D	$J\pi$: 1212.1 γ to (29-); band member.
6449.0+ye 12	(33-)	D	$J\pi$: 1310.7γ to $(31-)$, band member.
7843.0+ye 13	(35-)	D	$J\pi$: 1394.0 γ to (33-); band member.
9361.6+ye 13	(37-)	D	$J\pi$: 1518.5 γ to (35-); band member.
1037.7+ye 14	(39-)	D	$J\pi$: 1676.1 γ to (37-); band member.
2913.5+ye 14	(41-)	D	Jπ: 1875.8 γ to $(39-)$; band member.
5019.0+ye 14	(43-)	D	$J\pi$: 2105.5 γ to (41-); band member.
7346.0+ye 17	(45-)	D	$J\pi$: 2327 γ to (43-); band member.
z d	(18-)	D	$J\pi$: tentative assignment, based on the observed feeding to the (20+) yrast state and band
			interpretation.
867.0+zd 10	(20-)	D	$J\pi$: 867 γ to (18-); band member.
1807.0+zd 15	(22-)	D	$J\pi$: 940γ to $(20-)$; band member.
2828.0+zd 18	(24-)	D	$J\pi$: 1021 γ to (22-); band member.
3930.0+zd 20	(26-)	D	J π : 1102 γ to (24-); band member.
5136.3+zd 21	(28-)	D	$J\pi$: 1206.3 γ to (26-); band member.
6427.5+zd 21	(30-)	D	$J\pi$: 1291.2 γ to (28-); band member.
7785.8+zd 21	(32-)	D	$J\pi$: 1358.3 γ to (30-); band member.
9187.7+zd 21	(34-)	D	$J\pi$: 1401.8 γ to (32-); band member.
0688.5+zd 21	(36-)	D	$J\pi$: 1500.8 γ to (34-); band member.
2328.7+zd 22	(38-)	D	$J\pi$: 1640.2 γ to (36-); band member.
4138.4+zd 22	(40-)	D	$J\pi$: 1809.7 γ to (38-); band member.
6133.2+zd 22	(42-)	D	$J\pi$: 1994.8 γ to (40-); band member.
8318.2+zd 24	(44-)	D	J π : 2185 γ to (42-); band member.

- † From a least-squares fit to Ey.
- From 1994Pa22 and 2007Pa07, based on deduced transition multipolarities and the apparent band structures.
- § From DSAM (centoid shift) in 2007Pa07.
- # (A): g.s. band.
- @ (B): $\pi\text{=-}$ band based on the (8-) state.
- & (C): $\Delta J\!=\!2,~\pi\!=\!+$ intruder band based on the 10+ state.
- a (D): $\Delta J\!=\!2,~\pi\!=\!-$ band based on the (19-) state.
- b (E): $\Delta J \! = \! 1, \ \pi \! = \! +$ band based on the 20+ state.
- $^{\text{C}}$ (F): $\Delta J\!=\!2,~\pi\!=\!-$ band based on the (23-) state.
- d (G): $\Delta J\!=\!2,~\pi\!=\!-$ band based on the (18-) state.
- e (H): $\Delta J\!=\!2,~\pi\!=\!-$ band based on the (21-) state.
- f (I): $\Delta J {=}\, 2,~\pi {=} {+}~band~based~on~the~(21{+})~state.$

$\gamma(^{112}{ m Te})$

E(level)	$\underline{\hspace{1cm}} E\gamma^{\dagger}$	$\underline{\hspace{1cm}}^{\hspace{1cm}} I\gamma^{\dagger}$	Mult.‡	Comments
689.00	689.0 2	100	E2	Mult.: DCO=1.00 2 from (58Ni,4pγ) in 1994Pa22.
1476.1	787.1 2	100	E 2	Mult.: DCO=1.01 2 from (⁵⁸ Ni,4pγ) in 1994Pa22.
1483.6	794.6 5	100		Eγ: From 1985TI02. Other: 794.5 keV 2 (1980GoZX).
2261.7	784.8 2	100		
2297.6	821.3 2	100	E 2	Mult.: DCO=0.98 2 from (⁵⁸ Ni,4pγ) in 1994Pa22.
2619.7	357.2 2	37 5		
	1144.5 2	100 5	E2	Mult.: DCO=1.05 20 from (⁵⁸ Ni,4pγ) in 1994Pa22.
2839.0	219.5 2	100		Mult.: DCO 1.31 21 from (⁵⁸ Ni,4pγ) in 1994Pa22.
3362.3	1064.5 2	100	E 2	Mult.: DCO=0.96 4 from (⁵⁸ Ni,4pγ) in 1994Pa22.
3454.3	91.9 2	100 5		
	615.5 2	8.9		
3512.1	673.1 2	100		
3629.8	175.7 2	35.0 8	D	Mult.: DCO=0.85 7 from (58Ni,4pγ) in 1994Pa22.
	267.5 2	100 5	D	Mult.: DCO=0.61 2 from (⁵⁸ Ni,4pγ) in 1994Pa22 for the 266-keV doublet.
3785.6	423.4 2	100		
3959.1	173.7 2	35 5		
	596.5 2	100 20		
4109 . 5	479.82	7.7 7		

$\gamma(^{112}\text{Te})$ (continued)

E(level)	$\underline{\hspace{1cm}} E \gamma^{\dagger}$	$\underline{\hspace{1cm}} I\gamma^{\dagger}$	Mult.‡	Comments
4109.5	655.1 2	100 5	E2	Mult.: DCO=1.05 5 from (⁵⁸ Ni,4pγ) in 1994Pa22.
4225.9	266.6 2	4.47 21	D	Mult.: DCO=0.61 2 from (58Ni,4pγ) in 1994Pa22 for the 266-keV doublet.
	440 . 2 2	2.77 21		
	863.8 2	$100 \ 4$	E 2	Mult.: DCO=0.95 4 from (⁵⁸ Ni,4pγ) in 1994Pa22.
4239 . 4	727.32	100		
4329.1	699.3 2	100	E 2	Mult.: DCO=1.11 6 from $(^{58}Ni, 4p\gamma)$ in 1994Pa22.
4425.3	639.7 2	100	7.0	V 1. DOO 000 to 0 . (58V) to 1 to 0 D 00
4460.3	1098.0 2	100	E2	Mult.: DCO=0.99 13 from (⁵⁸ Ni,4pγ) in 1994Pa22. Mult.: DCO=1.02 3 from (⁵⁸ Ni,4pγ) in 1994Pa22.
4827.0 4864.9	601.22 755.42	100 100	E2 E2	Mult.: DCO=1.02 3 from (*SN1,4pγ) in 1994Pa22. Mult.: DCO=1.03 6 from (*SN1,4pγ) in 1994Pa22.
5040.9	615.6 2	100	E 2	Mult.: $DCO=1.05$ 6 from ($-N1,4p\gamma$) in 1994ra22.
5124.0	794.9 2	100	E2	Mult.: DCO=1.02 7 from (⁵⁸ Ni,4pγ) in 1994Pa22.
5212.1	751.8 2	100	E2	
	986 § 1			
5432 . 7	308.6 2	6.7 7		
	567.8 2	100 7	E 2	Mult.: DCO=1.11 5 from (⁵⁸ Ni,4pγ) in 1994Pa22.
5540.0	$713.0\ 2$	100	E2	Mult.: DCO=1.05 4 from (⁵⁸ Ni,4pγ) in 1994Pa22.
5753.1	712.2 2	100		
5874.4	441.6 2	21.8 13		
* o = -	750.5 2	100 5	E2	Mult.: DCO=1.02 6 from (⁵⁸ Ni,4ργ) in 1994Pa22.
5970.8	758.7 2	100 3	E2	Mult.: DCO=0.95 14 from (⁵⁸ Ni,4pγ) in 1994Pa22.
6294.4	754.4 2	100	E2	Mult.: DCO=0.99 3 from (58Ni,4pγ) in 1994Pa22.
6439.1	1006.4 2 415 § 1	100	E2	Mult.: DCO=1.11 11 from (⁵⁸ Ni,4pγ) in 1994Pa22.
6709.4 6772.4	801.6 2	100 100	E2	Mult.: DCO 1.06 14 from (58Ni,4py) in 1994Pa22.
6904.7?	465.6# 2	100	D	Ey: observed only in 1994Pa22; not confirmed in 2007Pa07.
0304.7.	400.0 2	100	Ь	Mult.: DCO=0.52 3 from (⁵⁸ Ni,4pγ) in 1994Pa22.
6951.1	1076.7 2	100	E2	Mult.: DCO=0.97 14 from (⁵⁸ Ni,4pγ) in 1994Pa22.
7029.0?	1154.6# 2	100	(E2)	Ey: observed only in 1994Pa22; not confirmed in 2007Pa07.
				Mult.: DCO=1.07 21 from (⁵⁸ Ni,4pγ) in 1994Pa22.
7251 . 8	$957.4\ 2$	100	E 2	Mult.: DCO=0.92 7 from (⁵⁸ Ni,4pγ) in 1994Pa22.
7565 . 1	1126 § 1	100		
7634.4	862.0 2 925§ 1	100	E2	Mult.: DCO=0.98 16 from $(^{58}{\rm Ni}, 4{\rm p}\gamma)$ in 1994Pa22. B(E2)(W.u.)=180 40 .
7857.9?	953.2# 2	100		Eγ: observed only in 1994Pa22; not confirmed in 2007Pa07.
7911.7	659.8 2	100	D	Mult.: DCO=0.58 4 from (⁵⁸ Ni,4pγ) in 1994Pa22.
8117.1	1166 § 1	100	_	
8168.2	916.4 2	100	E2	Mult.: DCO=0.96 5 from (⁵⁸ Ni,4pγ) in 1994Pa22.
8211.6	959.8 2	100	E 2	Mult.: DCO=1.18 21 from (⁵⁸ Ni,4pγ) in 1994Pa22.
8491.0	$279.4\ 2$	100	D	Mult.: DCO=0.62 7 from (⁵⁸ Ni,4pγ) in 1994Pa22.
8563 . 2	928.7 \ 3	100	[E2]	B(E2)(W.u.)=180 +50-40.
8904.3	$736.2\ 2$	$51.1\ 21$	D	Mult.: DCO=0.69 9 from (⁵⁸ Ni,4pγ) in 1994Pa22.
	992.5 2	100 4	E2	Mult.: DCO=1.12 8 from (⁵⁸ Ni,4pγ) in 1994Pa22.
9087.5	1836 § 1	100	7.0	V 1. DGO 007 40 0 (50V)
9191.2	979.7 2	54.6 23	E2	Mult.: DCO=0.97 12 from (⁵⁸ Ni,4pγ) in 1994Pa22.
0.400 0	1023.0 2	100 5	E2	Mult.: DCO=0.97 14 from (⁵⁸ Ni,4pγ) in 1994Pa22.
9493.2	406 § 1 1325 § 1			
9561.4	998.2\$ 3	100	[E2]	B(E2)(W.u.)=180 +40-40.
9710.7	519.6 2	40.3 16	[11 11]	Distriction (TO TO)
0.10.1	806.3 2	100 5	E2	Mult.: DCO=0.88 8 from (⁵⁸ Ni,4pγ) in 1994Pa22.
9754.5	563.3 \$ 2	100	D	Mult.: DCO=0.63 6 from $(^{58}\text{Ni}, 4\text{p}\gamma)$ in 1994Pa22.
9958.4	465.18 3			• • •
	870.8 \$ 3			
10054.2?	862.7# 2	100		Ey: transition observed only in 1994Pa22 and not confirmed in 2007Pa07.
10393.3	1202 \$ 1	100		
10434.6	476.4 \$ 3			
	941.5 \$ 3			
10618.1	907.4 2	100		P(To)/W) 100 W 10
10633.2	1071.8 \$ 3	100	[E2]	B(E2)(W.u.)=180 +50-40.
10930.6	495.9 3 972.1 3			
	914.10 3			
			Continue	d on next page (footnotes at end of table)
			Convinue	F-8- (1000m0000 at one of sauto)

$\gamma(^{112}{\rm Te})$ (continued)

E(level)	$\underline{\hspace{1cm}} E\gamma^{\dagger}$	$\underline{\hspace{1cm}} I\gamma^{\dagger}$	Mult.‡	Comments	
11023.4	630 \$ 1				
11438.7	$1269 \ 1$ $507.9 \ 3$				
	1004.4 \$ 3				
11657.3	1264 \$ 1	100			
11779.7	1146.4 \$ 3	100	[E2]	$B(E2)(W.u.)=180 \ 40.$	
11968.9	530.4\§ 3 1038.1\§ 3				
11990.2	1372 § 1	100			
12276.3	619 \$ 1	100			
	1253 § 1				
12517.8	548.8 \$ 3				
	1079.28 3				
12997 . 4	1217.7 § 1	100	[E2]	B(E2)(W.u.)=180 +50-40.	
13080.9	563.1 \$ 3				
13455.3	1112.0\\$3 1179\\$1				
15455.5	1465 \$ 1				
13667.0	586.0 8 3				
	1149.1 8 3				
13878 . 2	1888 \$ 1	100			
13969 . 2	1979 \$ 1	100			
14265.0	597.8 \$ 3				
	1184.3\§ 3 1268\§ 1				
14288.6	1207 \$ 1		[E2]		
	1291.28 3	100	[E2]	$B(E2)(W.u.)=180 \ 40.$	
14909.0	6198 1				
	644.3 § 3				
	1242.1 8 3				
14996.3 15333.2	1541\§ 1 1455\§ 1	100 100			
15408.2	1439\$ 1	100			
15564.1	655.28 3	100			
	1298.98 3				
15652 . 4	1363.8 \$ 3	100	[E2]	$B(E2)(W.u.)=180 \ 40.$	
16274.2	710.1 \$ 3				
16998.4	1365.2 § 3 724.2 § 3				
10990.4	1434.2 \$ 3				
17153.2	1500.88 3	100			
17786.5	788 \$ 1				
	1512.4 \$ 3				
18587.2	801 \$ 1				
18778.1	1588.7 [§] 3 1624.8 [§] 3	100			
19515.8	928 1	100			
	1729.48 3				
$2\ 0\ 4\ 4\ 2\ .\ 2$	1855 \$ 1	100			
20499.1	1721.0 8 3	100			
21523.9	2008 § 1 1806.7 § 3	100			
22305.8 22556.2	1806.78 3 2114§ 1	100 100			
24248.3	1942.5 \$ 3	100			
26353.3	2105 \$ 1	100			
28646 . 4	2293 § 1	100			
966.0+x	966 \$ 1				
1985.0+x	1019				
3099.0+x 4317.9+x	11148 I 1218.9 § 3				
5649.0+x	1331.1 \$ 3				
7119.4 + x	1470.4 8 3				
8732.1+x	1612.6 § 3				
Continued on next page (footnotes at end of table)					

$\gamma(^{112}\text{Te})$ (continued)

E(level)	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	E(level)	$\underline{\hspace{1cm}} E \gamma^{\dagger}$	E(level)	$\underline{\hspace{1cm}} E \gamma^{\dagger}$
10509.7+x	1777.6§ 3	6449.0+y	1353 § 1	3930.0+z	1102 \$ 1
12430.5+x	1920.8 \$ 3	7843.0+y	1394.0 8 3	5136.3+z	1206.3 8 3
14501.5+x	2071.0 8 3	9361.6+y	1518.5\§ 3	6427.5+z	1291.28 3
860.0 + y	860 \$ 1	11037.7+y	1676.1 [§] 3	7785.8+z	1358.3 8 3
1793.5+y	933.5 \$ 3	12913.5+y	1875.8 [§] 3	9187.7+z	1401.8 8 3
2802.2+y	1008.7 \$ 3	15019.0+y	2105.5 \$ 3	10688.5+z	1500.8 \$ 3
	1351 § 1	17346.0+y	2327 \$ 1	12328.7+z	1640.28 3
3926.2 + y	1124.0 \$ 3	867.0+z	867§ 1	14138.4+z	1809.7 \$ 3
5138.3+y	1212.1 \$ 3	1807.0+z	940 \$ 1	16133.2+z	1994.8 \$ 3
6449.0+y	1310.7 8 3	2828.0+z	1021 § 1	18318.2+z	2185 \$ 1

 $^{^{\}dagger}$ From 1994Pa22, unless otherwise noted.

 $[\]dot{\bar{\tau}}$ From DCO ratios in 1994Pa22 and the apparent band structures in 1994Pa22 and 2007Pa07.

[§] From 2007Pa07.

 $^{^{\#}}$ Placement of transition in the level scheme is uncertain.

- (E) $\Delta J=1$, $\pi=+$ band based on the 20+ state
- (F) $\Delta J=2$, $\pi=-$ band based on the (23-) state
- (G) $\Delta J=2$, $\pi=-$ band based on the (18-)
- (H) $\Delta J=2$, $\pi=-$ band based on the (21-) state

(I) $\Delta J=2$, $\pi=+$ band based on the (21+) state

(41+)	14501.5+x
(39+)	v 12430.5+x
(881)	12400.011
(37+)	v 10509.7+x
(35+)	8732.1+x
(33+)	7119.4+x
(31+)	5649.0+x
(29+)	4317.9+x
(27+)	3099.0+x
(25+)	1985.0+x
(23+)	966.0+x
(21+)	у х

¹¹²Ι ε Decay 1977Ki11

Parent 112 I: E=0.0; J π =(1+); T $_{1/2}$ =3.34 s 8; Q(g.s.)=10504 13 ; % ϵ +% β * decay=100. 1977Ki11: Facility: GSI; Source: mass-separated 112 I from 58 Ni(58 Ni(58 Ni(63 Cu, 2an); Beam: E(58 Ni)=290 MeV; Targets: 3 mg/cm 2 58 Ni and 63 Cu; Detectors: GSI Fragment separator, mylar tape, one plastic scintillator, one Ge(Li), one x-ray detector, one telescope; measured: β , γ , x-rays, E γ , $T_{1/2}$.

The decay scheme is incomplete (Q(ϵ)=10504 13 keV).

$^{112}\mathrm{Te}$	Levels
16	Leveis

E(level) [†]	Jπ‡
0.0	0 +
688.9 6	2+
1475.8 9	4+

- † From a least-squares fit to Ey.
- ‡ From the adopted levels.

 $\gamma(^{112}\text{Te})$

EγŤ		E(level)
688.9	6	688.9
786.9	6	1475.8

† From 1977Kill.

Decay Scheme

¹¹³Xe β⁺p Decay 2005Ja10

Parent $^{113}Xe\colon\thinspace E=0.0;\ J\pi=(5/2+);\ T_{1/2}=2.74\ s\ 8;\ Q(g.s.)=8075\ 11;\ \%\beta^+p\ decay=7\ 4.$

 113 Xe: Q(g.s.)=Q(ϵ p) from 2012Wa38.

2005Ja10: Facility: GSI; Source: mass-separated 113 Xe from 58 Ni(58 Ni,2pn); Beam: E(58 Ni)=275 MeV; Target: 3.7 mg/cm² thick 58 Ni; Detectors: Nb/Ta catcher, ion source, transport tape, total absorption spectrometer comprising one large-volume NaI(Tl) crystal, one germanium x-ray detector, one $600-\mu m$ thick silicon β -particle counter and one telescope for β -delayed particles; Measured: γ , p, β , β -p.

Others: 1985Ti02, 1981TiZY, 1980GoZX.

¹¹²Te Levels

E(level) [†]	Jπ‡
0.0	0+
688.7 5	2+
1475.3 7	4+
1483.3 7	(2 +

- † From a least-squares fit to Ey.
- ‡ From the adopted levels.

$^{58}Ni(^{58}Ni,4p\gamma),(^{60}Ni,\alpha2p\gamma)$ 1994Pa22,2007Pa07

1994Pa22: Facility: Daresbury Nuclear Structure Facility; Beam: $E(^{58}Ni)$ =240 MeV; Target: 440 μ g/cm² self-supporting ^{58}Ni ; Detectors: EUROGAM array, comprising 45 Compton-suppressed HPGe detectors, Daresbury recoil separator; Measured: $\gamma-\gamma-\gamma$, E γ , I γ ; Facility: TASCC Facility at Chalk River; Beam: $E(^{58}Ni)$ =250 MeV; Targets: stack of two 450- μ g/cm² thick self-supporting ^{60}Ni foils. One 1 mg/cm² ^{58}Ni with 10 mg/cm² Au backing; Detectors: 8 π spectrometer, comprising 20 HPGe detectors, and 71-element inner-ball calorimeter; Measured: $\gamma-\gamma$, $\gamma-\gamma(\theta)$, E γ , I γ ; Deduced: level scheme. Also, from the same collaboration: 1993PaZX.

2007Pa07: Facility: 88-inch cyclotron at LBNL; Beam: $E(^{58}Ni)$ =240 and 250 MeV; Targets: one thin target and one 1 mg/cm² on 15 mg/cm² 208Pb backing; Detectors: GAMMASPHERE, Microball charged-particle detector, and array of 15 neutron detectors; Measured: $\gamma-\gamma-\gamma-$ charged particle coinc., E γ , I γ ; Deduced: level scheme, band structure, Doppler corrections, $T_{1/2}$; Also, from the same collaboration: 2006Ev01.

Other: 1998St77

¹¹²Te Levels

E(level) [†]	Jπ [‡]	T _{1/2} §	Comments
0.0#	0+		
689.00# 20	2+		
1476.1# 3	4+		
2261.7 4	(5)		$J\pi$: From adopted levels.
2297.6# 4	6+		on. From adopted levers.
2619.7 4	6 +		
2839.0 4	01		
3362.3# 4	8+		
3454.3@ 4	8-		
3512.1 4			
3629.8@4	9 –		
3785.6 4	Ü		
3959.1 4	9 –		
4109.5@4	10-		
4225.9# 4	10+		
4239.4 5			
4329.1@5	11-		
4425.3 5			
4460.3& 4	10+		
4827.1 # 5	12+		
4864.9@5	12-		
5040.9 5			
$5124.0^{@}5$	13-		
5212.1	12+		
5432.7@5	14-		
5540.1 # 5	14+		
5753.1 6			
5874.4@ 5	15-		
5970.8 ^{&} 5	14+		
6294.5 # 5	16+		
$6439.1^{@}5$	16-		
6709.4 9	(17+)		
6772.4 ^{&} 6	16+		
6904.7? 6	17-		
$6951.1^{@}5$	17-		
7029.0? 5	17-		
7251.9# 6	18+		
7565.1@ 11	18-		
7634.4 & 6	18+	0.21 ps + 7 - 4	
7857.9? 6			
7911.8ª 6	19-		
8117.1@ 12	19-		
8168.2#6	20+		
8211.6 6	20+		
8491.0 6	21		
8563.1& 7	20+	0.14 ps + 4 - 3	
8904.4 ^a 6	21-		
9087.2 ^b 9	20+		
9191.2# 6 9492.9 ^b 9	22+		
9492.95 9 9561.3& 7	21+	101 f 01 01	
9961.30 7	22+	101 fs +31-21	

$^{58}Ni(^{58}Ni,4p\gamma),(^{60}Ni,\alpha2p\gamma) \\ \hspace*{0.2in} 1994Pa22,2007Pa07 \; (continued) \\$

¹¹²Te Levels (continued)

E(level) [†]	_Jπ [‡]	T _{1/2} §	E(level) [†]	Jπ [‡]
9710.8 ^a 6	23-		24248.1& 12	42+
9754.2° 10	23-		26353.2 46	44+
9958.1 ^b 9	22+		28646.2 49	46+
10054.2? 6			_x f	(21+)
10393.2 # 10	24+		966.0+xf 10	(23+)
10434.3b 9	23+		1985.0+xf 15	(25+)
10618.2 ^a 7	25-		3099.0+xf 18	(27+)
10633.1 8	24+	70 f s + 21 - 15	4317.9+xf 18	(29+)
10930.4b 9	24+		5649.0+xf 18	(31+)
11023.2° 11	25-		7119.4+xf 18	(33+)
11438.4 ^b 9	25+		8732.1+xf 19	(35+)
11657.2# 12	26+		10509.7+xf 19	(37+)
11779.5 8	26+	50 fs + 15 - 10	12430.5+xf 19	(39+)
11968.7 ^b 9	26+		14501.5+xf 19	(41+)
11990.2a 11	27-		y e	(21-)
12276 . 2^{c} 12	27-		860.0+ye 10	(23-)
12517.6 ^b 9	27+		1451.2+y 15	
12997.2 9	28+	37 fs + 11 - 8	1793.5+ye 11	(25-)
13080.6 ^b 9	28+		2802.2+ye 11	(27-)
13455.2ª 12	29-		3926.2+ye 12	(29-)
13666.7 ^b 9	29+		5096.0+y 16	
13878.2 15			5138.3+ye 12	(31-)
13969.2 15			6449.0+ye 12	(33-)
14264.7b 9	30+		7843.0+ye 13	(35-)
14288.5 4 10	30+	27 f s +8-6	9361.6+y ^e 13	(37-)
14908.8 ^b 9	31+		11037.7+y ^e 14	(39-)
14996.2ª 16	31-		12913.5+ye 14	(41-)
15333.2 18			15019.0+ye 14	(43-)
15408.2 18	31-		17346.0+ye 17	(45-)
15563.8 ^b 9	32+		z d	(18-)
15652.3 4 10	32+	21 fs +6-4	867.0+zd 10	(20-)
16273.9 ^b 9	33+		1807.0+zd 15	(22-)
16998.1 ^b 9	34+		2828.0+zd 18	(24-)
17153.1& 10	34+		3930.0+zd 20	(26-)
17786.2 ^b 10	35+		5136.3+zd 21	(28-)
18586.9b 10	36+		6427.5+zd 21	(30-)
18777.9& 11	36+		7785.8+zd 21	(32-)
19515.6 ^b 10	37+		9187.7+z ^d 21	(34-)
20441.9 ^b 14	38+		10688.5+zd 21	(36-)
20498.9& 11	38+		12328.7+zd 22	(38-)
21523.6 ^b 14	39+		14138.4+zd 22	(40-)
22305.6 22	40+		16133.2+zd 22	(42-)
22556.0 ^b 17	40+		18318.2+zd 24	(44-)

 $^{^{\}dagger}$ From a least-squares fit to Ey.

[‡] From 1994Pa22 and 2007Pa07, based on deduced transition multipolarities and the apparent band structures.

 $[\]$ From DSAM (centoid shift) in 2007Pa07.

^{# (}A): g.s. band.

^{@ (}B): $\pi\text{=-}$ band based on the 8- state.

[&]amp; (C): $\Delta J\!=\!2,~\pi\!=\!+$ intruder band based on the 10+ state.

 $[^]a$ (D): $\Delta J{=}2,~\pi{=}{-}$ band based on the 18- state.

 $^{^{}b}$ (E): $\Delta J \! = \! 1, \ \pi \! = \! +$ band based on the 20+ state.

 $^{^{\}text{C}}$ (F): $\Delta J\!=\!2,~\pi\!=\!-$ band based on the 23- state.

d (G): $\Delta J\!=\!2,~\pi\!=\!-$ band based on the (18-) state.

e (H): $\Delta J=2$, $\pi=-$ band based on the (21-) state.

f (I): $\Delta J \! = \! 2,~\pi \! = \! +$ band based on the (21+) state.

$^{58}Ni(^{58}Ni,4p\gamma),(^{60}Ni,\alpha2p\gamma) \\ \hspace{0.5in} 1994Pa22,2007Pa07 \; (continued)$

$\gamma(^{112}{\rm Te})$

$\mathrm{E}\gamma^{\dagger}$	E(level)	$\underline{\hspace{1cm} I\gamma^{\dagger}}$	Mult.‡	Comments
91.9 2	3454.3	10.1 5		
173.7 2	3959.1	0.7 1		
175.7 2	3629.8	4.2 1	(M1)	Mult.: DCO=0.85 7 from (⁵⁸ Ni,4pγ) in 1994Pa22.
219.5 2	2839.0	1.2 6		Mult.: DCO 1.31 21 from (⁵⁸ Ni,4pγ) in 1994Pa22.
266.6 2	4225 . 9	2.1 1	(E1)	Mult.: DCO=0.61 2 from $(^{58}\mathrm{Ni},4\mathrm{p}\gamma)$ in 1994Pa22 for the 266-keV doublet.
267.5 2	3629.8	12.06	(E1)	Mult.: DCO=0.61 2 from $(^{58}\mathrm{Ni},4\mathrm{p}\gamma)$ in 1994Pa22 for the 266-keV doublet.
279.42	8491.0	1.00 5	D	Mult.: DCO=0.62 7 from (⁵⁸ Ni,4pγ) in 1994Pa22.
308.6 2	5432.7	0.9 1		
357.2 2	2619.7	0.7 1		
406 \$ 1	9492.9			
415 § 1	6709.4			
423.4 2	3785.6	2.1 1		
440.2 2	4225 . 9	1.3 1		
441.6 2	5874.4	1.7 1		
465.1 \$ 3	9958.1			
465.6# 2	6904.7?	5.1 3	M1	Eγ: observed only in 1994Pa22; not confirmed in 2007Pa07. Mult.: DCO=0.52 3 from $(^{58}\text{Ni}, 4\text{pγ})$ in 1994Pa22.
476.48 3	10434 . 3			
479.8 2	4109.5	1.1 1		
495.98 3	10930.4			
507.98 3	11438.4			
519.6 2	9710.8	2.5 1		
530.48 3	11968.7			
548.8 3	12517.6			
563.1 [§] 3	13080.6			**
563.3 [§] 2	9754.2	3.2 2	(E1)	Mult.: DCO=0.63 6 from (⁵⁸ Ni,4pγ) in 1994Pa22.
567.8 2	5432.7	13.5 7	E2	Mult.: 1.11 5 from (⁵⁸ Ni,4pγ) in 1994Pa22.
586.0§ 3	13666.7			
596.5 2	3959.1	2.04		
597.8 \$ 3	14264.7			F0
601.2 2	4827.1	48 2	E 2	Mult.: DCO=1.02 3 from (⁵⁸ Ni,4pγ) in 1994Pa22.
615.5 2	3454.3	0.9		
615.6 2	5040.9	0.6 1		
619§ 1	12276.2			
0008 1	14908.8			
630 § 1 639 . 7 2	11023.2	1 0		
644.3 \ 3	4425.3	1.0		
655.1 2	14908.8	14 9 7	EO	Mult.: DCO=1.05 5 from (58Ni,4py) in 1994Pa22.
$655.1\ 2$ 655.2 § 3	4109.5	14.3 7	E2	Muit.: DCO=1.05 5 from (**N1,4pγ) in 1994Pa22.
659.8 2	15563.8	0 2 17	(E1)	Mult.: DCO=0.58 4 from (58Ni,4py) in 1994Pa22.
673.1 2	7911.8	8.3 <i>17</i> 1.0 <i>1</i>	(E1)	Mult.: DCO=0.56 4 from (~N1,4pγ) in 1994Fa22.
689.0 2	3512.1 689.00	1.0 1	E2	Mult.: DCO=1.00 2 from (58Ni,4py) in 1994Pa22.
699.3 2	4329.1	13.2 7	E2	Mult.: DCO=1.00 2 from (-N1,4pγ) in 1994Fa22. Mult.: DCO=1.11 6 from (58Ni,4pγ) in 1994Pa22.
710.18 3	16273.9	10.2 /	112	Maio. 200-1.11 0 110m (111, 191/) in 10041 022.
712.2 2	5753.1	1.1 1		
713.0 2	5540.1	45 2	E2	Mult.: DCO=1.05 4 from (⁵⁸ Ni,4pγ) in 1994Pa22.
724.28 3	16998.1			· · · · · · · · · · · · · · · · · · ·
727.3 2	4239.4	0.4 1		
736.2 2	8904.4	2.4 1	(E1)	Mult.: DCO=0.69 9 from (⁵⁸ Ni,4pγ) in 1994Pa22.
750.5 2	5874.4	7.8 4	E2	Mult.: DCO=1.02 6 from (⁵⁸ Ni,4pγ) in 1994Pa22.
751.8 2	5212.1	7.24	E2	· • ·
754.4 2	6294.5	41 2	E 2	Mult.: DCO=0.99 3 from (⁵⁸ Ni,4pγ) in 1994Pa22.
755.4 2	4864.9	15.4 8	E2	Mult.: DCO=1.03 6 from (⁵⁸ Ni,4pγ) in 1994Pa22.
758.7 2	5970.8	5.7 3	E2	Mult.: DCO=0.95 14 from (⁵⁸ Ni,4pγ) in 1994Pa22.
784.8 2	2261.7	4.52		
787.1 2	1476 . 1	98 5	E2	Mult.: DCO=1.01 2 from (⁵⁸ Ni,4pγ) in 1994Pa22.
788 1	17786.2			
794.9 2	5124 . 0	10.6 5	E2	Mult.: DCO=1.02 7 from (⁵⁸ Ni,4pγ) in 1994Pa22.
801 8 1	18586.9			
801.6 2	6772.4	3.6 2	E2	Mult.: DCO 1.06 14 from (⁵⁸ Ni,4pγ) in 1994Pa22.
806.3 2	9710.8	6.2 3	E2	Mult.: DCO=0.88 8 from (⁵⁸ Ni,4pγ) in 1994Pa22.
821.3 2	2297.6	91 5	E 2	Mult.: DCO=0.98 2 from (⁵⁸ Ni,4pγ) in 1994Pa22.

$^{58}Ni(^{58}Ni,4p\gamma),(^{60}Ni,\alpha2p\gamma) \qquad 1994Pa22,2007Pa07 \ (continued)$

$\gamma(^{112}\text{Te})$ (continued)

Εγ [†]	E(level)	Ιγ [†]	Mult.‡	Comments		
860 \$ 1	860.0+y					
862.0 2	7634.4	3.0 2	E2	Mult.: DCO=0.98 16 from (58Ni,4py) in 1994Pa22.		
862.7# 2	10054.2?	1.0 1		Eγ: transition observed only in 1994Pa22 and not confirmed in 2007Pa07.		
863.8 2	4225 . 9	47 2	E 2	Mult.: 0.95 4 from (⁵⁸ Ni,4pγ) in 1994Pa22.		
867 \$ 1	867.0 + z					
870.8 \$ 3	9958.1					
907.42	10618.2	3.2 2				
916.4 2	8168.2	11.9 6	E 2	Mult.: DCO=0.96 5 from (⁵⁸ Ni,4pγ) in 1994Pa22.		
$925 \ 1$ $928 \ 1$	7634.4					
928 · 7 § 3	19515.6 8563.1					
933.5 \$ 3	1793.5+y					
940 8 1	1807.0+z					
941.5 \$ 3	10434.3					
953.2# 2	7857.9?	2.1 1		Ey: observed only in 1994Pa22; not confirmed in 2007Pa07.		
957.4 2	7251 . 9	31.4 16	E 2	Mult.: DCO=0.92 7 from (⁵⁸ Ni,4pγ) in 1994Pa22.		
959.8 2	8211.6	8.5 4	E 2	Mult.: DCO=1.18 21 from (⁵⁸ Ni,4pγ) in 1994Pa22.		
966 § 1	966.0 + x					
972.1 8 3	10930.4					
979.7 2	9191.2	2.4 1	E2	Mult.: DCO=0.97 12 from (⁵⁸ Ni,4pγ) in 1994Pa22.		
986 \$ 1	5212.1		7.0	V 1 PGO 110 0 0 (50V) 1 1 100 P		
992.5 2	8904.4	4.7 2	E2	Mult.: DCO=1.12 8 from (⁵⁸ Ni,4pγ) in 1994Pa22.		
998.2 § 3 1004.4 § 3	9561.3					
1004.48 3	11438.4 6439.1	7.8 4	E2	Mult.: DCO=1.11 11 from (58Ni,4py) in 1994Pa22.		
1008.4 2	2802.2+v	1.6 4	E 2	Mult.: DCO=1.11 11 from (~N1,4pγ) in 1994Fa22.		
1019 \$ 1	1985.0+x					
1021 § 1	2828.0+z					
1023.0 2	9191.2	4.4 2	E2	Mult.: DCO=0.97 14 from (⁵⁸ Ni,4pγ) in 1994Pa22.		
1038.1 8 3	11968.7					
1064.5 2	3362.3	78 4	E 2	Mult.: DCO=0.96 4 from (⁵⁸ Ni,4pγ) in 1994Pa22.		
1071.8 § 3	10633.1					
1076.7 2	6951.1	2.4 1	E 2	Mult.: DCO=0.97 14 from (⁵⁸ Ni,4pγ) in 1994Pa22.		
1079.28 3	12517.6			70		
1098.0 2	4460.3	4.4 2	E 2	Mult.: DCO=0.99 <i>13</i> from (⁵⁸ Ni,4pγ) in 1994Pa22.		
1102 § 1	3930.0+z					
$1112.0 \ 3$ $1114 \ 1$	13080.6					
1114 * 1	3099.0+x 3926.2+y					
1124.00 3	7565.1					
1144.5 2	2619.7	1.9 1	E2	Mult.: DCO=1.05 20 from (⁵⁸ Ni,4pγ) in 1994Pa22.		
1146.48 3	11779.5					
1149.1 \$ 3	13666.7					
1154.6# 2	7029.0?	1.3 7	(E2)	Eγ: observed only in 1994Pa22; not confirmed in 2007Pa07.		
				Mult.: DCO=1.07 21 from (58 Ni, 4 p γ) in 1994Pa22.		
1166§ 1	8117.1					
1179 [§] 1	13455 . 2					
1184.3 § 3	14264.7					
$1202 \ 1$ $1206.3 \ 3$	10393.2					
1206.38 3 1207§ 1	5136.3+z 14288.5					
1207 \$ 1	14288.5 5138.3+y					
1217.78 1	12997.2					
1218.9 \$ 3	4317.9+x					
1242.18 3	14908.8					
1253 § 1	12276 . 2					
1264 § 1	11657 . 2					
1268 \$ 1	14264 . 7					
1269 \$ 1	11023 . 2					
1291.2 § 3	14288.5					
1000 08 6	6427.5+z					
1298.9 3 1310.7 3	15563.8 6449.0+y					
1910.10 3	0443.U+ÿ					
Continued on next page (footnotes at end of table)						

$^{58}Ni(^{58}Ni,4p\gamma),(^{60}Ni,\alpha2p\gamma) \\ \phantom{^{58}Ni(^{58}Ni,4p\gamma),(^{60}Ni,\alpha2p\gamma)} 1994Pa22,2007Pa07 \; (continued)$

$\gamma(^{112}\text{Te})$ (continued)

$\underline{\hspace{1cm} E\gamma^{\dagger}}$	E(level)	Εγ [†]	E(level)	<u>Ε</u> γ [†]	E(level)
1325 § 1	9492.9	1500.8 \$ 3	10688.5+z	1875.8 \$ 3	12913.5+y
1331.1 [§] 3	5649.0+x	1512.4 \$ 3	17786.2	1888 1	13878.2
1351 § 1	2802.2+y	1518.5 \$ 3	9361.6+y	1920.8 \$ 3	12430.5+x
1353 § 1	6449.0+y	1541 8 1	14996.2	1942.5 \$ 3	24248.1
1358.3 \$ 3	7785.8+z	1588.7 \$ 3	18586.9	1979 \$ 1	13969.2
1363.8 \$ 3	15652.3	1612.6 \$ 3	8732.1+x	1994.8 \$ 3	16133.2+z
1365.28 3	16273.9	1624.8 \$ 3	18777.9	2008 \$ 1	21523.6
1372 § 1	11990.2	1640.28 3	12328.7+z	2071.0 \$ 3	14501.5+x
1394.0 \$ 3	7843.0+y	1676.1 \$ 3	11037.7+y	2105 \$ 1	26353.2
1401.8 \$ 3	9187.7+z	1721.0 \$ 3	20498.9	2105.5 \$ 3	15019.0+v
1434.28 3	16998.1	1729.48 3	19515.6	2114 \$ 1	22556.0
1439 \$ 1	15408.2	1777.6 \$ 3	10509.7+x	2185 \$ 1	18318.2+z
1455§ 1	15333.2	1806.7 \$ 3	22305.6	2293 \$ 1	28646.2
1465§ 1	13455.2	1809.78 3	14138.4+z	2327 \$ 1	17346.0+v
1470.48 3	7119.4+x	1835 \$ 1	9087.2		
1500.8 \$ 3	17153.1	1855 \$ 1	20441.9		

[†] From 1994Pa22, unless otherwise noted.

 $^{112}{\rm Sn}(\alpha,4n\gamma)$ 1970Wa13

Facility: Davis 76-in AVF cyclotron, University of California; Beam: $E(\alpha)=70$ MeV, pulsed; Target: 25 mg of isotopically enriched SnO_2 and glued on a 6.3 μm Mylar; Detectors: Si detector, planar Ge(Li), and co-axial Ge(Li); Measured: γ , $\gamma(t)$, $\gamma(\theta)$, E γ , I γ ; Deduced: $^{112-126}$ Te level schemes.

 $\gamma(^{112}{
m Te})$

Eγ Comment

 $[\]dot{\ddagger}$ From DCO ratios in 1994Pa22 and the apparent band structures in 1994Pa22 and 2007Pa07.

[§] From 2007Pa07.

[#] Placement of transition in the level scheme is uncertain.

 $^{^{}x}720$ Ey: assumed to be the 2+ to 0+ transition in 1970Wal3, but it is in disagreement with the adopted levels.

x 1 0 6 0

 $^{^{\}boldsymbol{x}}$ $\,\gamma$ ray not placed in level scheme.

Adopted Levels, Gammas

 $Q(\beta^-) = -7037 \ 13; \ S(n) = -10181 \ 11; \ S(p) = -765 \ 12; \ Q(\alpha) = 2957 \ 12 \ \ 2012Wa38.$

 $^{112}\mathrm{I}$ Levels

Cross Reference (XREF) Flags

$A^{-58}\mathrm{Ni}(^{58}\mathrm{Ni},3\,\mathrm{pn}\gamma)$

E(level)		XREF	$\underline{\hspace{1cm}} T_{1/2}$	Comments
0.0	(1+)	A	3.34 s 8	%ε+%β ⁺ =100; %α=0.0012; %εp=0.88 10; %εα=0.104 12. %α: from 1978Ro19. %εp,%εα: from %εp/%α=735 80 and %εp/%εα=8.5 2 in 1985Ti02. Jπ: from the predicted π 1/2+[420](d _{5/2}) and v3/2 +[422](g _{7/2}) orbitals near the Fermi surface in 1997Mo25. Note, that Jπ=1/2+ and configuration= π 1/2+[420](d _{5/2}) in 109 I. Assignment is tentative.
				$T_{1/2}$: weighted average of 3.42 s 11 from β+p(t) in 1985TiO2, 2.80 s 25 from β+α(t) in 1985TiO2, 3.3 s 2 from $K_{\alpha}(t)$ in 1977Ki11, 3.3 s 3 from 688.9γ(t) and 786.9γ(t) in 1977Ki11, and 3.7 s 3 from p(t) in 1977Ki11. configuration: probably $\pi 1/2 + [420](d_{5/2}) \otimes v3/2 + [422](g_{7/2})$. The assignment is tentative.
55.0 5		A		
124 . 3 3		A		
188.7 4		Α		
245.95		A		
291.54		A		
296.4? 5		A		
350.7? 4		A		
440.9 4		A		
576.6? 5		A		
643.4 4		A		
853.0 5		A		
1186.0 ‡ 6		A		
1737.7‡ 7		A		
$1841.0 7$ $2380.3^{\ddagger} 7$		A		
3082.9 [‡] 8		A		
3137.2 8		A A		
3816.6 [‡] 9		A		
4665.1 9		A		
4812.5‡ 9		A		
5727.3 9		A		
5799.6 [‡] 9		A		
6625.9‡ 10		A		
7371.8 ‡ 10		A		
7990.6 ‡ 11		A		
8712.2 ‡ 11		A		
x §		A	>25 ps	T _{1/2} : from 1998StZY.
133.0+x § 8		A		12
551.9+x § 9		A		
656.1+x§ 8		A		
1254.6+x§ 12		A		
1310.1+x § 10		A		
1988.6+x§ 14		Α		
2067.4+x§ 12		Α		
2936.5+x§ 14		A		
2984.6+x§ 17		A		
3899.6+x § 20		A		
4899.6+x\\$ 22		A		

 $^{^{\}dagger}$ From a least-squares fit to Ey. ‡ (A): Member of a $\Delta J{=}2$ band. Probable configuration= $\pi g_{7/2} \otimes vh_{11/2}.$ § (B): Member of a $\Delta J{=}2/\Delta J{=}1$ band. Probable configuration= $\pi h_{11/2} \otimes vh_{11/2}.$

$\gamma(^{112}{\rm I})$

E(level)	$\underline{\hspace{1cm}} E\gamma^{\dagger}$	Ιγ [†]	Mult.‡	Comments
124.3	124.3 3	100		
188.7	64.6 3	100		
245.9	190.6 3	100		
291.5	167.0 3	100		
231.5	236.8 3			
296.4?	241.4 3	100		
350.7?	226.4 3	100		
440.9	194.9 3	100		
440.5	252.4 3			
576.6?	280.2 3	100		
643.4	202.6 3	100 10	(D)	Mult.: R _{DCO} =0.77 11 (1995Pa26).
045.4	292.7 3	41 3	(D)	Matt.: N _{DCO} -0.77 17 (1999) 220).
	352.0 3	55 7		
	397.3 3	45 3		
853.0	209.6 3	100	(D)	Mult.: R _{DCO} =0.85 10 (1995Pa26).
000.0	276.4 3	16.3 13	(1)	Mate.: N _{DCO} -0.00 10 (10001 a20).
1186.0	333.0 3	100	(D)	Mult.: R _{DCO} =0.64 7 (1995Pa26).
1737.7	551.7 3	100	E2	Mult.: R _{DCO} =1.03 7 (1995Pa26).
1841.0	655.0 3	100	22	Mate.: N _{DCO} -1.00 / (10001 a20).
2380.3	642.6 3	100	E2	Mult.: R _{DCO} =1.04 8 (1995Pa26).
3082.9	702.6 3	100	E2	Mult.: R _{DCO} =1.04 8 (1995Pa26).
3137.2	756.9 3	100	22	Mate N _{DCO} -1.04 0 (10001 a20).
3816.6	733.7 3	100	E2	Mult.: R _{DCO} =1.13 14 (1995Pa26).
4665.1	848.0 3	100	22	Matt.: N _{DCO} =1.15 17 (15551 425).
4812.5	996.4 3	100	E2	Mult.: R _{DCO} =1.20 21 (1995Pa26).
5727.3	915.2 3	100 7		
0.2	1061.7 3	71 7		
5799.6	987.0 3	100	E2	Mult.: R _{DCO} =0.99 15 (1995Pa26).
6625.9	826.3 3	100		
7371.8	745.9 3	100		
7990.6	618.8 3	100		
8712.2	721.6 3	100		
133.0+x	133 \$ 1	100	(M1+E2)§	
551.9+x	552 \$ 1	100	(E2)§	
656.1+x	523§ 1		(E2)§	
	656§ 1		(M1+E2)§	
1254.6+x	703 \$ 1	100	(E2)§	
1310.1+x	654 [§] 1		(E2)§	
	758 \$ 1		(M1+E2)§	
1988.6+x	734 \$ 1	100	(E2)§	
2067.4+x	757§ 1		(E2)§	
	813		(M1+E2)§	
2936.5+x	869		(E2)§	
	948 1		(M1+E2)§	
2984.6+x	996 § 1	100	(E2)§	
3899.6 + x	915 \$ 1	100	(E2)§	
4899.6+x	1000 \$ 1	100	(E2)§	

[†] From 1995Pa26, unless otherwise noted.

 $^{^{\}ddagger}$ From angular correlations and DCO measurements in 1995Pa26, unless otherwise noted. For the chosen geometry, R_{DCO} approx. equals to 1 for stretched quadrupole transitions and approx. 0.65 for stretched dipole transitions (1995Pa26). \S From 1998StZY. Uncertainty in E γ is estimated by the evaluators.

 $^{112}_{\,53}\mathrm{I}_{59}$

⁵⁸Ni(⁵⁸Ni,3pnγ) 1995Pa26,1998StZY

1995Pa26: Facility: Daresbury Nuclear Structure Facility; Beam: $E(^{58}Ni)$ =240 MeV; Target: 440 $\mu g/cm^2$ ^{58}Ni ; Detectors: EUROGAM array consisting of 45 HPGe detectors, Daresbury recoil separator; Measured: $\gamma-\gamma-\gamma$, $\gamma(\theta)$, E γ , I γ ; Deduced: ^{112}I level scheme, R_{DCO} .

1998StZY: Facility: LBL; Beam: $E(^{58}Ni)=250$ MeV; Target: ^{58}Ni ; Detectors: GAMMASPHERE, comprising 83 HPGe detectors, MICROBALL, and an array of 15 neutron scintillator detectors; Measured: $\gamma-\gamma-\gamma$, $\gamma-\gamma-p(n)$, $\gamma(\theta)$, E γ , I γ ; Deduced: level scheme, band structure, R_{DCO} , $T_{1/2}$.

Other: 1987RuZZ.

$^{112}\mathrm{I}$ Levels

E(level)†	Jπ [‡]	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	Comments
0.0	(1+)	3.34 s 8	$J\pi, T_{1/2}$: From Adopted levels.
55.0 5			
124.3 3			
188.7 4			
245.9 5			
291.5 4			
296.4? 5			
350.7? 4			
440.94			
576.6? 5			
643.4 4			
853.0 5			
1186.0 \$ 6	(7-)		
1737.7 \$ 7	(9-)		
1841.0 7			
2380.3	(11-)		
			Continued on next page (footnotes at end of table)

$^{58}Ni(^{58}Ni,3pn\gamma) \qquad 1995Pa26,1998StZY \ (continued)$

$^{112}\mathrm{I}$ Levels (continued)

E(level) [†]	Jπ‡	$T_{1/2}$	Comments
3082.9 8	(13-)		
3137.2 8			
3816.68 9	(15-)		
4665.1 9			
4812.5 9	(17-)		
5727.3 9			
5799.5 \$ 9	(19-)		
6625.8 \$ 10	(21-)		
7371.8 9 10	(23-)		
7990.6 \$ 11	(25-)		
8712.28 11	(27-)		
x #	(11+)	>25 ps	T _{1/2} : from 1998StZY.
133.0+x# 8	(10+)		-
551.9+x# 9	(13+)		
656.1+x# 8	(12+)		
1254.6+x# 12	(15+)		
1310.1+x# 10	(14+)		
1988.6+x# 14	(17+)		
2067.4+x# 12	(16+)		
2936.5+x# 14	(18+)		
2984.6+x# 17	(19+)		
$3899.6 + x^{\#}20$	(21+)		
4899.6+x [#] 22	(23+)		

 $^{^{\}dagger}$ From a least-squares fit to Ey.

$\gamma(^{112}{ m I})$

${f E}\gamma^{\dagger}$	E(level)	Ιγ†	Mult.‡	Comments
24 2 2	100 5	1.0		
64.6 3	188.7	<10		
124.3 3	124.3	< 10	(MI EQ.) 8	
133 § 1	133.0+x		(M1+E2)§	
167.0 3	291.5	<10		
190.6 3	245.9	12 1		
194.9 3	440.9	<10	(B)	W. V. D
202.6 3	643.4	29 3	(D)	Mult.: R _{DCO} =0.77 11 (1995Pa26).
209.6 3	853.0	80 8	(D)	Mult.: R _{DCO} =0.85 10 (1995Pa26).
226.4 3	350.7?	< 10		
236.8 3	291.5	< 10		
241.4 3	296.4?	14 1		
$252.4\ 3$	440.9	< 10		
276.4 3	853.0	13 1		
280.2 3	576.6?	13 1		
292.7 3	643.4	12 1		
333.0 3	1186.0	100	D	Mult.: R _{DCO} =0.64 7 (1995Pa26).
$352.0\ 3$	643.4	16 2		
397.3 3	643.4	13 1		
523 8 1	656.1 + x		(E2)§	
551.7 3	1737.7	97 10	(E2)	Mult.: R _{DCO} =1.03 7 (1995Pa26).
552 § 1	551.9 + x		(E2)§	
618.8 3	7990.6	17 2		
642.6 3	2380.3	90 10	(E2)	Mult.: R _{DCO} =1.04 8 (1995Pa26).
654 \ 1	1310.1 + x		(E2)§	
655.0 3	1841.0	11 1		
656 1	656.1 + x		(M1+E2)§	
702.6 3	3082.9	81 8	(E2)	Mult.: R _{DCO} =1.04 8 (1995Pa26).
703 \$ 1	1254.6+x		(E2)§	
			Conti	inued on next page (footnotes at end of table)

 $^{^{\}ddagger}$ From the proposed J π =(7-) to the 1186-keV level, the apparent band band structure and the measured γ -ray transition multipolarities in 1995Pa26. The assignment for the π =+ band is from 1998StZY.

 $[\]$ (A): Member of a $\Delta J = 2$ band; Probable configuration= $\pi g_{7/2} \otimes v h_{11/2}.$

^{# (}B): Member of a $\Delta J = 2/\Delta J = 1$ band; Probable configuration= $\pi h_{11/2} \otimes v h_{11/2}$.

$^{58}\mathrm{Ni}(^{58}\mathrm{Ni},3\mathrm{pn}\gamma)$ 1995Pa26,1998StZY (continued)

$\gamma(^{112}I)$ (continued)

$\underline{\hspace{1cm} E\gamma^{\dagger}}$	E(level)		Mult.‡	Comments
721.6 3	8712.2	10 1		
733.7 3	3816.6	65 7	(E2)	Mult.: R _{DCO} =1.13 14 (1995Pa26).
734 \$ 1	1988.6 + x		(E2)§	
745.9 3	7371.8	26 3		
756.9 3	3137 . 2	17 2		
757 \$ 1	2067.4 + x		(E2)§	
758 \$ 1	1310.1+x		(M1+E2) §	
813 [§] 1	2067.4 + x		(M1+E2) §	
826.3 3	6625.8	31 3		
848.0 3	4665.1	15 2		
869 \$ 1	2936.5+x		(E2)§	
915 § 1	3899.6 + x		(E2)§	
915.2 3	5727.3	14 1		
948 \$ 1	2936.5+x		(M1+E2)§	
987.0 3	5799.5	39 4	(E2)	Mult.: R _{DCO} =0.99 15 (1995Pa26).
996 § 1	2984.6+x		(E2)§	
996.4 3	4812.5	53 5	(E2)	Mult.: R _{DCO} =1.20 21 (1995Pa26).
1000\$ 1	4899.6+x		(E2)§	
1061.7 3	5727.3	10 1		

[†] From 1995Pa26, unless otherwise noted.

 $[\]ddagger$ From angular correlations and DCO measurements in 1995Pa26, unless otherwise noted. For the chosen geometry, R_{DCO} approx. equals to 1 for stretched quadrupole transitions and approx. 0.65 for stretched dipole transitions (1995Pa26). § From 1998StZY. Uncertainty in Eγ is estimated by the evaluators.

Adopted Levels, Gammas

 $Q(\beta^-) = -13739 \ 87; \ S(n) = -13705 \ 87; \ S(p) = -2362 \ 10; \ Q(\alpha) = 3330 \ 6 \ 2012Wa38.$

¹¹²Xe Levels

Cross Reference (XREF) Flags

A ${}^{58}{\rm Ni}({}^{58}{\rm Ni}, 2\,{\rm p}\,2\,{\rm n}\gamma)$

B ¹¹³Cs p Decay (18.3 μs)

E(level)	_Jπ [‡]	XREF	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	Comments
0.08	0+	AB	2.7 s 8	$\%\epsilon+\%\beta^*=98.8 \ 8; \ \%\alpha=1.2 \ 8.$
				$\%\alpha\textsc{i}$ symmetrized from $\%\alpha\textsc{=}0.8$ +1.1-0.5 (1994Pa12) using the procedure adopted in
				2012Wa38. Other: \approx 0.84 in 1978Ro19, but this value is tentative.
				$T_{1/2}$: from 3185 α (t) in 1979Sc22. Other: 2.8 s 2 from (ϵ + β +)-delayed α (t) in 1978Ro19,
				but this value is more uncertain given the complexity of the spectra, as discussed in 1979Sc22.
466.00 \$ 20	2+	A		$J\pi$: first-excited member of the g.s. band of an even-even nuclide.
1122.1 8 3	4+	A		J π : 656.1 γ E2 to 2+; band member.
1649.5? # 5	(3-)	A		Jπ: 1183.0γ to 2+; band member; systematics in neighbouring nuclei.
1906.98 4	6+	A		Jπ: 784.8γ E2 to 4+; band member.
2021.9# 4	(5-)	A		$J\pi$: 900.0 γ D to 4+, 372.0 γ to (3-); band member.
2594.1 # 4	(7-)	A		Jπ: 572.2γ E2 to (5-), 687.1γ to 6+; band member.
2777.5 \$ 4	8+	A		J π : 870.6 γ E2 to 6+; band member.
3189.1# 7	(9-)	A		$J\pi$: 595.0 γ to (7-); band member.
3549.6 \$ 5	10+	A		Jπ: 772.1γ to $8+$; band member.
3852.3 # 8	(11-)	A		$J\pi$: 663.2 γ to (9-); band member.
4447.3? # 10	(13-)	A		Jπ: 595γ to (11-); band member.
4469.1 § 5	12+	A		$J\pi$: 919.5 γ to 10+; band member.

- † From a least-squares fit to Ey.
- ‡ From the deduced γ -ray multipolarities, the observed apparent band structures and systematics in neighbouring nuclei in $^{58}\mathrm{Ni}(^{58}\mathrm{Ni},2\mathrm{p}2\mathrm{n}\gamma)$ (2001Sm13).
- § (A): $K\pi=0+$, ground-state band.
- $^{\#}$ (B): $\Delta J {=}\, 2$ negative-parity band.

$\gamma(^{112}Xe)$

E(level)	$\underline{\hspace{1cm}} E\gamma^{\dagger}$	Ιγ	Mult.‡	Comments
466.00	466.0 2	100		
1122.1	656.1 2	100	E 2	Mult.: R _{DCO} =1.33 15 (2001Sm13).
1649.5?	1183.0 6	100		
1906.9	784.8 2	100	E2	Mult.: R _{DCO} =1.3 2 (2001Sm13).
2021 . 9	372.06			
	900.02		D	Mult.: R _{DCO} =0.88 13 (2001Sm13).
2594.1	572.2 2		E 2	Mult.: R _{DCO} =1.3 2 (2001Sm13).
	687.1 2			
2777.5	870.6 2	100	E 2	Mult.: R _{DCO} =1.24 15 (2001Sm13).
3189.1	595.06	100		
3549.6	$772.1\ 2$	100		
3852.3	$663.2\ 2$	100		
4447.3?	595 § 1	100		
4469.1	919.52	100		

 $^{^{\}dagger}$ From $^{58}\mathrm{Ni}(^{58}\mathrm{Ni}, 2p2n\gamma)$ (2001Sm13).

[‡] From the measured asymmetry ratio R_{DCO} =I γ (30°or150°)/I γ (90°) in 58 Ni(58 Ni,2p2n γ) (2001Sm13). A value of R_{DCO} =1.0 would be expected for a stretched-dipole transition and ≈1.4 for a stretched-quadruple transition. Those were confirmed for known Δ J=1 333 γ (R_{DCO} =0.97 7) and Δ J=2 642 γ (R_{DCO} =1.33 10) in 112 I, observed in 58 Ni(58 Ni,2p2n γ) (2001Sm13).

[§] Placement of transition in the level scheme is uncertain.

 $^{112}_{54}$ Xe $_{58}$ -2

(A) $K\pi = 0+$, (B) ΔJ=2 negative-parity band. ground-state band. 4469.1 (13-) 4447.3 3852.3 (11-)3549.6 10+ (9-)3189.1 2777.5 8+ -(7-) 2594.1 2021.9 (5-)1906.9 (A)6+ -- 1649.5 (3-) 4+ 1122.1 (A)4+

 $^{112}_{\,54}\mathrm{Xe}_{58}$

(A)2 +

466.00

0.0

0+

¹¹³Cs p Decay (18.3 μs) 1998GrZZ,1994Pa12

Parent $^{113}\mathrm{Cs}\colon\thinspace E=0;\ J\pi=(3/2+);\ T_{1/2}=18.3\ \mu\mathrm{s}\ 3;\ Q(g.s.)=973.5\ 26;\ \% p\ decay=100.$

¹¹³Cs-T_{1/2}: from 1998GrZZ, based on observed 5500 proton events. Note that 16.7 μs 7 from (1998Ba13), based on observed 600 proton events by the same group. Others: 0.9 μs +1.3-0.4 (1984Fa04), 33 μs 7 (1987Gi07), 22 μs 8 (1993HeZV), and 28 μs 7 (1995Ho26).

 $^{113}\mathrm{Cs} ext{-J}:$ from the proposed $^{\pi3/2[411]}$ configuration, based on a comparison between the measured proton-decay $T_{1/2}$ and theoretical values.

¹¹³Cs-Q(g.s.): from 2012Wa38.

1998GrZZ: ¹¹³Cs produced by ⁵⁸Ni(⁵⁸Kr,p2n) at E=230 MeV. Measured E(p), implant-decay time and spatial correlations, T₁₀₀.

1994Pa12: Facility: Daresbury, UK; Beam: $E(^{58}\text{Ni}) = 529$ MeV; Target: 520 $\mu\text{g/cm}^2$ isotopically enriched in ^{58}Ni ; Detectors: Daresbury Recoil Mass Sseparator, one DSSSD; Measured: E(p), $E(\alpha)$, implant-decay time and spatial correlations, $T_{1/2}$.

Others: 1984Fa04, 1987Gi07, 1993HeZV, 1994Pa12, 1995Ho26, 1998Ba13, 2012Wa10.

¹¹²Xe Levels

 $\frac{E(level)}{0.0} \frac{J\pi}{0}$

Protons

E(p) E(112Xe) Comments

960 3 0.0 E(p): From 1995Ho26. Others: 959 keV 6 (1994Pa12), 980 keV 80 (1987Gi07, 1984Fa04), 974 keV 4 (1993HeZV), and 900 keV (2012Wa10).

⁵⁸Ni(⁵⁸Ni,2p2nγ) 2001Sm13

¹¹²Xe Levels

E(level) [†]	Jπ [‡]	E(level) [†]	Jπ [‡]	E(level)	$-J\pi^{\ddagger}$
0.0\$	0+	2021.9# 4	(5-)	3852.3# 8	(11-)
466.00 \$ 20	2+	2594.1# 4	(7-)	4447.3? # 10	(13-)
1122.1 8 3	4+	2777.5 \$ 4	8+	4469.1 \$ 5	12+
1649.5? # 5	(3-)	3189.1# 7	(9-)		
1906.98 4	6+	3549.68 5	10+		

- † From a least-squares fit to Ey.
- ‡ From the deduced γ -ray multipolarities, the observed apparent band structures and systematics in neighbouring nuclei in 2001Sm13.
- § (A): $K\pi=0+$, ground-state band.
- # (B): ΔJ=2 negative-parity band.

$\gamma(^{112}Xe)$

$\underline{\hspace{1cm} E\gamma^{\dagger}}$	E(level)	Mult.‡	Comments
372.0 6	2021.9		
466.0 2	466.00		
572.2 2	2594.1	E2	Mult.: R _{DCO} =1.3 2 (2001Sm13).
595.0 6	3189.1		Det Communication of the Commu
595 1	4447.3?		
656.1 2	1122.1	E2	Mult.: R _{DCO} =1.33 15 (2001Sm13).
663.2 2	3852.3		200
687.1 2	2594.1		
x722 1			Ey: observed in coincidence with 466.0γ, 656.1γ and 784.8γ, but not placed in the level scheme
			by the authors (2001Sm13).
$772.1\ 2$	3549.6		
$784.8\ 2$	1906.9	E2	Mult.: R _{DCO} =1.3 2 (2001Sm13).
*818 1			Ey: observed in coincidence with the 595.0γ and 900.0γ , but not placed in the level scheme by the authors ($2001Sm13$).
870.6 2	2777.5	E 2	Mult.: R _{DCO} =1.24 15 (2001Sm13).
900.02	2021.9	(E1)	Mult.: R _{DCO} =0.88 13 (2001Sm13).
$919.5\ 2$	4469.1		
x 9 6 4 1			Ey: observed in coincidence with 466.0γ and 572.2γ , but not placed in the level scheme by the authors (2001Sm13).
1183.0 6	1649.5?		

- † From 2001Sm13.
- [‡] From the measured asymmetry ratio $R_{DCO} = I\gamma(30^{\circ} \text{or} 150^{\circ})/I\gamma(90^{\circ})$ in 2001Sm13. A value of $R_{DCO} \approx 1.0$ would be expected for a stretched-dipole transition and ≈ 1.4 for a stretched-quadruple transition. Those were confirmed for known $\Delta J = 1$ 333 γ ($R_{DCO} = 0.97$ 7) and $\Delta J = 2$ 642 γ ($R_{DCO} = 1.33$ 10) in ^{112}I , observed in the same experiment (2001Sm13).
- § Placement of transition in the level scheme is uncertain.
- $^{\boldsymbol{x}}$ $\,\gamma$ ray not placed in level scheme.

Adopted Levels, Gammas

S(p)=816.3 41; Q(α)=3934 123 2012Wa38.

¹¹²Cs Levels

Cross Reference (XREF) Flags

 $A^{-58}\mathrm{Ni}(^{58}\mathrm{Ni},p3n\gamma)$

E(level) [†]	Jπ	XREF	$T_{1/2}$	Comments
0.0	(1+)	A	0.49 ms 3	%p=100; %α<0.26.
	()			J π : Assignment is tentative. The observed $T_{1/2}$ can only be explained with the involvement of the $\pi 3/2[411]$ ($d_{5/2*}$) and $v 3/2[422]$ ($g_{7/2*}$) orbitals (2001Fe05). In accordance with the Gallagher-Moskowski rule, the $K^{\pi}=0^+$ state should be lower in energy compared to the $K^{\pi}=3^+$ one within the $\pi 3/2[411] \otimes v 3/2[422]$ configuration. Given the observed 111 Xe α -decays to the $J^{\pi}=5/2+$ and $7/2+$ states in 107 Te, one would expect $J^{\pi}=5/2^+$ for the 111 Xe ground state, and hence, $J^{\pi}=1^+$ for the 112 Cs parent-decaying state. The assignment is consistent with the proposed configuration, given the expected Newby shift for the $K^{\pi}=0^+$ state, that may favor $J^{\pi}=1^+$ over 0^+ for the bandhead. $T_{1/2}$: weighted average of 0.47 ms 5 (2012Wa10), 0.506 ms 55 (2012Ca03) and 0.50 ms 10 (1994Pa12), adduced from HI(implant)-p(decay)(Δt) spectra. $E(p)=807$ keV 7 (1994Pa12) and 810 keV 5 (2012Wa10). $\otimes \alpha$: No $E\alpha$ was observed in 2012Ca03. The value is an upper limit. configuration: $K^{\pi}=0^+$, $\pi 3/2[411]$ ($d_{5/2}$, δ) $v 3/2[422]$ ($g_{7/2}$).
0 + x		A		J π : a tentative J π =(10+) is proposed in 2012Wa10, but this assignment is unlikely, given the proposed configuration for the band associated with the 272.1+x keV level. It seems possible that this level coincides with the 112 Cs ground state. See the comments for the ground state and the 272.1+x keV level for additional details.
272.1+x [‡] 12		A		J π : a tentative J π =(11+) and configuration= $\pi h_{11/2} \otimes v h_{11/2}$ are proposed in 2012Wa10. Since low- Ω , $h_{11/2}$ orbitals (π 1/2[550] and v1/2[550], and v3/2[541]) are expected at relatively low excitation energies, it is unlikely that the corresponding π 1/2[550] $\otimes v$ 1/2[550] and π 1/2[550] $\otimes v$ 3/2[541] configurations can lead to a bandhead spin of 11+.
707.7+x [‡] 14		A		
1351.4+x [‡] 17		A		
2143.4+x [‡] 20		A		

 $^{^{\}dagger}$ From a least-squares fit to Ey.

 $\gamma(^{112}{
m Cs})$

E(level)	Εγ†	Ιγ [†]	
272.1+x	272.1 12	100	
707.7 + x	435.6 6	100	
1351.4 + x	643.7 10	100	
2143.4+x	792 1	100	

 $^{^{\}dagger}$ From 2012Wa10.

(A) rotational band

 $[\]dot{\ddagger}$ (A): rotational band with a tentative configuration= $\pi h_{11/2} \otimes v h_{11/2}$ assignment.

$^{58}Ni(^{58}Ni,p3n\gamma) \\ \hspace*{0.2in} 2012Wa10,2012Ca03,1994Pa12$

2012Wa10: Facility: ATLAS at ANL; Beam: $E(^{58}Ni)=260$ MeV; Target: $565~\mu g/cm^2$ thick, self-supporting ^{58}Ni ; Detectors: GAMMASPHERE comprising 101 HPGe, FMA, parallel-grid avalanche counter, DSSD; Measured: E(p), $E(\alpha)$, implant-decay time and spatial correlations, $E\gamma$, $I\gamma$, recoil- γ - γ coin, proton- γ - γ coin, $T_{1/2}$.

2012Ca03: Facility: HRIBF facility at ORNL; Beam: E(⁵⁸Ni)=250 MeV; Target: rotating 300 μg/cm² thick ⁵⁸Ni;
Detectors: Recoil Mass Spectrometer, microchannel plate detector, DSSD, Si-box detector consisting of four Si detectors, one 5-mm thick Si(Li) detector; Measured: E(p), E(α), implant-decay time and spatial correlations, T_{1/2}.

1994Pa12: Facility: Daresbury, UK; Beam: E(⁵⁸Ni)=529 MeV; Target: 520 μg/cm² isotopically enriched in ⁵⁸Ni;
Detectors: Daresbury Recoil Mass Sseparator, one DSSSD; Measured: E(p), E(α), implant-decay time and spatial correlations, T_{1/2}.

¹¹²Cs Levels

E(level) [†]	_Jπ [‡]	T _{1/2}	Comments
0.0		0.49 ms 3	%p=100; %α<0.26. T _{1/2} : weighted average of 0.47 ms 5 (2012Wa10), 0.506 ms 55 (2012Ca03) and 0.50 ms 10 (1994Pa12), deduced from HI(implant)-p(decay)(Δt) spectra. E(p)=807 keV 7 (1994Pa12) and 810 keV 5 (2012Wa10). %α: No Eα was observed in 2012Ca03. The value is an upper limit.
$0+x \\ 272.1+x 12 \\ 707.7+x 14 \\ 1351.4+x 17 \\ 2143.4+x 20$	(10+) (11+) (13+) (15+) (17+)		

- † From a least-squares fit to Ey.
- ‡ Tentative assignments from 2012Wa10.
- $\mbox{\S}$ (A): rotational band with a tentative configuration= $\pi h_{11/2} \otimes \nu h_{11/2}$ assignment.

$\gamma(^{112}\mathrm{Cs})$

$\underline{\hspace{1cm}} E \gamma^{\dagger}$	E(level)	$\underline{I\gamma^{\dagger}}$	Comments
*154.6 6		5 2	
272.1 12	272.1+x	9 3	
435.6 6	707.7 + x	7 3	
643.7 10	1351.4+x	5 2	
792 1	2143.4+x	4 2	
x818 1		3 2	Eγ: assignment to ¹¹² Cs is tentative.

[†] From 2012Wa10.

 $^{^{}x}$ γ ray not placed in level scheme.

REFERENCES FOR A=112

```
1937La05
            J.L.Lawson, J.M.Cork - Phys.Rev. 52, 531 (1937)
1939Ba03
             S.W.Barnes - Phys.Rev. 56, 414 (1939)
1940La07
             J.L.Lawson, J.M.Cork - Phys.Rev. 57, 982 (1940)
1942Sm10
             R.N.Smith - Phys.Rev. 61, 389A (1942)
1947Te04
             D.J. Tendam, H.L. Bradt - Phys. Rev. 72, 1118 (1947).
1953B144
             E.Bleuler, J.W.Blue, S.A.Chowdary, A.C.Johnson, D.J.Tendam - Phys.Rev. 90, 464 (1953)
1953Nn04
             R.H.Nussbaum, A.H.Wapstra, N.F.Verster, H.Cerfontain - Physica 19, 385 (1953)
             R.H.Nussbaum, A.H.Wapstra, M.J.Sterk, R.E.W.Kropveld - Physica 21, 77 (1955)
1955Nu11
1957.Je07
             E.N.Jensen - Priv.Comm. (June 1957)
1957Me49
             M.A.Melnick, J.D.Knight - Priv.Comm. (June 1957)
1959Gi51
             R.K.Girgis, R.van Lieshout - Physica 25, 597 (1959)
1959Gi 66
             R.K.Girgis, R.van Lieshout - Physica 25, 1200 (1959)
1959Se56
            I.P.Selinov, Y.A.Grits, Y.P.Kushakevich, Y.A.Bliodze, S.S.Vasilev, T.N.Mikhaleva - Atomnaya Energ. 7, 547 (1959);
              Atomic Energy (USSR)(English Transl.) 7, 1011 (1961)
1960Co10
             B.L.Cohen, R.E.Price - Phys.Rev. 118, 1582 (1960)
1962Ec03
             D.Eccleshall, B.M.Hinds, M.J.L.Yates, N.MacDonald - Nuclear Phys. 37, 377 (1962)
1962In01
             H.Inoue, J.Ruan, S.Yasukawa, Y.Yoshizawa - Nuclear Phys. 38, 50 (1962)
1962Ru05
             J.Ruan, Y.Yoshizawa, Y.Koh - Nuclear Phys. 36, 431 (1962)
1963Ha20
             O Hansen O Nathan - Nucl Phys 42 197 (1963)
1964Ch06
             Y.W.Chan, W.B.Ewbank, W.A.Nierenberg, H.A.Shugart - Phys.Rev. 133, B1138 (1964)
1965Ba20
             G.Bassani, N.M.Hintz, C.D.Kavaloski, J.R.Maxwell, G.M.Reynolds - Phys.Rev. 139, B830 (1965)
1965Co04
             J.A.Cookson, W.Darcey - Nucl. Phys. 62, 326 (1965)
1965Fu07
             S.Fukushima, S.Kume, H.Okamura, K.Otozai, K.Sakamoto, Y.Yoshizawa, S.Hayashi - Nucl. Phys. 69, 273 (1965)
1965Mc05
             F.K.McGowan, R.L.Robinson, P.H.Stelson, J.L.C.Ford, Jr. - Nucl. Phys. 66, 97 (1965)
             R.L.Robinson, P.H.Stelson, F.K.McGowan, J.L.C.Ford, Jr., W.T.Milner - Nucl. Phys. 74, 281 (1965)
1965Ro09
1966Ki04
             Y.S.Kim, B.L.Cohen - Phys.Rev. 142, 788 (1966)
1966Mi13
             K.Min - Phys.Rev. 152, 1062 (1966)
1967Ba15
             P.D.Barnes, J.R.Comfort, C.K.Bockelman - Phys.Rev. 155, 1319 (1967)
1967BaZV
             N.Baron, R.F.Leonard, W.M.Stewart - NASA-TN-D-4256 (1967); Addendum NASA-TN-D-4948 (1968)
1967Be07
             M.G.Betigeri, H.Morinaga - Nucl. Phys. A95, 176 (1967)
1967Br 25
             G.Bruge - Thesis, Univ.Paris (1967); CEA-R 3142
1967Hi03
             S.A.Hjorth, L.H.Allen - Arkiv Fysik 33, 121 (1967)
             M.Koike - Nucl. Phys. A98, 209 (1967)
1967Ko07
1967Pr15
             D.Prosperi, S.Sciuti - Nuovo Cimento Suppl. 5, 1265 (1967)
1967St33
             S.V.Starodubtsev, R.B.Begzhanov, A.A.Islamov - Dokl.Akad.Nauk SSSR 174, 332 (1967); Soviet Phys.Doklady 12, 472
1968CaZX
             B.R.Casserberg - Thesis, Princeton Univ. (1968); PUC-937-321 (1968)
1968Ko25
             T.Kozlowski, Z.Moroz, E.Rurarz, J.Wojtkowska - Acta Phys.Polon. 33, 409 (1968)
1968Li13
             E.W.A.Lingeman, J.Koniin, L.G.R.Mathot - Nucl. Phys. A122, 557 (1968)
1968Ma34
             W.Makofske, W.Savin, H.Ogata, T.H.Kruse - Phys.Rev. 174, 1429 (1968)
1968Mo06
             R.Moreh, M.Friedman - Phys.Letters 26B, 579 (1968); Erratum Phys.Letters 27B, 377 (1968)
1968Ro03
             H.Rotzer - Nucl.Phys. A109, 694(1968)
1968RoZZ
             M.R.Roche - Thesis, Univ.Missouri (1968)
1968St18
             P.H.Stelson, J.L.C.Ford, Jr., R.L.Robinson, C.Y.Wong, T.Tamura - Nucl. Phys. A119, 14 (1968)
1968Va04
             T.Yamazaki, G.T.Ewan, S.G.Prussin - Phys.Rev.Letters 20, 1376 (1968)
1969BoZS
             V.R.Boermistrov, B.G.Kiselev - Program and Theses, Proc.19th Ann.Conf.Nucl.Spectroscopy and Struct.Of At.Nuclei,
              Erevan, p.71 (1969)
1969Ce02
             R.Cesareo, M.Giannini, P.Oliva, D.Prosperi, M.C.Ramorino - Nucl.Phys. A132, 512 (1969)
1969HaZU
             A.Hashizume, T.Inamura, T.Katou, Y.Tendow, T.Yamazaki, T.Nomura - IPCR Cyclotron Rept. 3, 57 (1969); NP-18217
             H.F.Lutz, W.Bartolini, T.H.Curtis - Phys.Rev. 178, 1911 (1969)
1969Lu02
1969Lu05
             A.Luukko, A.Kerek, I.Rezanka, C.J.Herrlander - Nucl. Phys. A135, 49 (1969)
1969Mi07
             W.T.Milner, F.K.McGowan, P.H.Stelson, R.L.Robinson, R.O.Sayer - Nucl. Phys. A129, 687 (1969)
1969Mi13
             V.E.Michalk, J.A.McIntyre - Nucl. Phys. A137, 115 (1969)
1969Sa09
             D.T.Sasaki, J.M.D'Auria, B.D.Pate - Nucl.Phys. A130, 687 (1969)
1969WiZX
             J.B.Wilhelmy - Thesis, Univ.California (1969); UCRL-18978 (1969)
1969Ya05
             T. Yamazaki, G.T. Ewan - Nucl. Phys. A134, 81 (1969)
1970Br07
             G.Bruge, J.C.Faivre, H.Faraggi, A.Bussiere - Nucl. Phys. A146, 597 (1970)
1970Ch11
             E.Cheifetz, R.C.Jared, S.G.Thompson, J.B.Wilhelmy - Phys.Rev.Lett. 25, 38 (1970)
1970Ec01
             G.P.Estes, K.Min - Phys.Rev. C1, 201 (1970)
1970F108
             D.G.Fleming, M.Blann, H.W.Fulbright, J.A.Robbins - Nucl. Phys. A157, 1 (1970)
1970Jo20
             W.John, F.W.Guy, J.J.Wesolowski - Phys.Rev. C2, 1451 (1970)
1970Ma45
             J.A.Macdonald, H.D.Sharma - Nucl. Phys. A156, 321 (1970)
1970Mo26
             R.Moreh, S.Shlomo, A.Wolf - Phys.Rev. C2, 1144 (1970)
1970St17
             S.G.Steadman, A.M.Kleinfeld, G.G.Seaman, J.De Boer, D.Ward - Nucl. Phys. A155, 1 (1970)
1970St20
             P.H.Stelson, F.K.McGowan, R.L.Robinson, W.T.Milner - Phys.Rev. C2, 2015 (1970)
1970SuZY
            J.W.Sunier, M.Singh, R.M.DeVries, G.E.Thompson - Proc.Int.Conf.Prop.Nuclei Far from Region of Beta-Stability,
              Leysin, Switzerland, Vol.2, p.1015 (1970); CERN 70-30
1970Wa 13
             R.A.Warner, J.E.Draper - Phys.Rev. C1, 1069 (1970)
```

NUCLEAR DATA SHEETS

REFERENCES FOR A=112 (CONTINUED)

```
1970WiZN
            J.B.Wilhelmy, S.G.Thompson, J.O.Rasmussen, J.T.Routti, J.E.Phillips - UCRL-19530, p.178 (1970)
1971Ba28
             S.Baba, H.Baba, H.Natsume - J.Inorg.Nucl.Chem. 33, 589 (1971)
1971Ch44
             E.Cheifetz, J.B.Wilhelmy, R.C.Jared, S.G.Thompson - Phys.Rev. C4, 1913 (1971)
1971FoZQ
            J.L.C.Ford, Jr., P.H.Stelson, J.B.Ball, R.L.Hahn, E.Eichler, N.R.Johnson, R.L.Robinson, K.S.Toth - ORNL-4659, p.37
             (1971)
1971Ha43
             A.G.Hardacre, J.F.Turner, J.C.Keri, G.A.Gard, P.E.Cavanagh, C.F.Coleman - Nucl.Phys. A173, 436 (1971)
1971Ha47
             O.Hausser, T.K.Alexander, A.B.McDonald, W.T.Diamond - Nucl. Phys. A175, 593 (1971)
             F.F.Hopkins, G.W.Phillips, J.R.White, C.F.Moore, P.Richard - Phys.Rev. C4, 1927 (1971)
1971Ho 29
1971It01
             S.Itagaki, Y.Takeda, K.Sugiyama - J.Phys.Soc.Jap. 30, 923 (1971)
1971Mo31
             R.Moreh, A.Nof - Phys.Rev. C4, 2265 (1971)
             G.R.Rao, B.L.Cohen, R.Balasubramanian, J.Degnan, C.L.Fink - Bull.Am.Phys.Soc. 16, 536, DF7 (1971)
1971RaZV
1972BaXP
             I.Badawy, P.Charles, M.Dost, B.Fernandez, J.Gastebois - CEA-N-1600, p.46 (1972)
            I.Badawy, P.Charles, M.Dost, B.Fernandez, J.Gastebois - CEA-N-1600, p.46 (1972)
1972BaZT
1972BrVL
             H.F.Brinckmann, W.D.Fromm, C.Heiser, H.Rotter - ZFK-243, p.41 (1972)
1972Ca10
             R.F.Casten, E.R.Flynn, O.Hansen, T.J.Mulligan - Nucl. Phys. A184, 357 (1972)
1972Co22
            J.R. Comfort, W.J. Braithwaite, J.R. Duray, S. Yoshida - Phys. Rev. Lett. 29, 442 (1972)
1972DeZU
            J.H.Degnan, B.L.Cohen, G.R.Rao, K.C.Chan - Bull.Am.Phys.Soc. 17, 468, BH15 (1972)
1972Ho08
             F.F.Hopkins, J.R.White, G.W.Phillips, C.F.Moore, P.Richard - Phys.Rev. C5, 1015 (1972)
             Y.Kawase, K.Okano, S.Uehara, T.Hayashi - Nucl. Phys. A193, 204 (1972)
1972Ka34
1972Mi27
             K.Miyano, C.Gil - J.Phys.Soc.Jap. 33, 1509 (1972)
1972Si28
             M.Singh, J.W.Sunier, R.M.Devries, G.E.Thompson - Nucl. Phys. A193, 449 (1972)
1972TaYT
             S.L. Tabor - Thesis, Stanford Univ. (1972); Diss. Abstr. Int., 33B, 3869 (1973)
1972TaYX
             I.Talmi - Rutherford Centen.Symp.on the Structure of Matter, Univ. Canterbury, Christchurch, New Zealand, July 7-9,
              1971, B.G.Wybourne Eds. (1972)
1972Wa03
             G.Wallace, G.J.McCallum, N.G.Chapman - Nucl. Phys. A182, 417 (1972)
1972Wi01
             L.A.Winsborrow, G.L.Thomas, C.F.Coleman, T.W.Conlon - Nucl. Phys. A180, 19 (1972)
1972Yo06
             N.Yoshikawa, M.Sakai - J.Phys.Soc.Jap. 32, 1462 (1972)
             B.Arad - Phys.Rev. C7, 749 (1973)
1973Ar02
             J.H.Degnan, B.L.Cohen, G.R.Rao, K.C.Chan, L.Shabason - Phys.Rev. C7, 316 (1973)
1973De01
1973FrYM
             W.D.Fromm, H.F.Brinckmann, U.Hagemann, C.Heiser, H.Rotter - ZFK-262, p.59 (1973)
1973Gr16
            Z.W.Grabowski, R.L.Robinson - Nucl. Phys. A206, 633 (1973)
1974Ch27
             J.D.Childs, W.W.Daehnick, M.J.Spisak - Phys.Rev. C10, 217 (1974)
1974C1ZX
             R.G.Clark, L.E.Glendenin, W.L.Talbert, Jr. - Proc.Symp.Phys.Chem.Fission, 3rd, Rochester, N.Y. (1973),
              Int.At.En.Agency, Vienna, Vol.2, p.221 (1974)
1974Ge13
             R.Geiger, P.von Brentano, H.G.Friederichs, B.Heits, W.Schuh, K.O.Zell, H.Weigmann, A.Berinde - Z.Phys. 271, 129
             (1974)
1974Hu01
             G.K.Hubler, H.W.Kugel, D.E.Murnick - Phys.Rev. C9, 1954 (1974)
1974 Jayy
             R.C.Jared, H.Nifenecker, S.G.Thompson - Proc.Symp.Phys.Chem.Fission, 3rd, Rochester, N.Y. (1973);
              Intern.At.En.Agency, Vienna, Vol.2, p.211 (1974)
1974JaZN
             R.C.Jared, H.Nifenecker, S.G.Thompson - LBL-2366, p.38 (1974)
1974Ka10
             C.Kalbach-Cline, J.R.Huizenga, H.K.Vonach - Nucl. Phys. A222, 405 (1974)
1974Kn10
             R.G.Kulkarni, T.D.Nainan - Can.J.Phys. 52, 1676 (1974)
1974Ro18
             S.J.Rothman, N.L.Peterson, W.K.Chen, J.J.Hines, R.Bastar, L.C.Robinson, L.J.Nowicki, J.B.Anderson - Phys.Rev. C9,
             2272 (1974)
1974Sr77
            D.K.Srivastava, S.Mukhopadhyay, S.Pal, N.K.Ganguly - Proc.Nucl.Phys.And Solid State Phys.Symp., Bombay, Vol.17B,
1975A106
             J.E.Alzona, K.C.Chan, L.Shabason, B.L.Cohen - Phys.Rev. C11, 1669 (1975)
            H.W.Fielding, R.E.Anderson, C.D.Zafiratos, D.A.Lind, W.P.alford, F.E.Cecil, H.H.Weiman, S.C.Leth - COO-535-733,
1975FiZQ
              p.76 (1975)
1975GaZB
            Z. Ganzorig, S. Gehrbish, Z. Sehrehehtehr, D. Chultem - Proc. Symp. Nucl. Spectrosc. Nucl. Theory, 14th, Dubna, JINR-D6-8846.
             p.86 (1975)
1975Gr30
             R.Graetzer, S.M.Cohick, J.X.Saladin - Phys.Rev. C12, 1462 (1975)
1975Ku10
             V.Z.Kuttemperoor, R.A.Kobiske - Int.J.Appl.Radiat.Isotop. 26, 138 (1975)
1975RaYL
             G.Ramachandra Rao - Thesis, Diss.Abst.Int. 36B, 1788 (1975)
1975SrZZ
             D.K.Srivastava, S.Mukhopadhyay, S.Pal, N.K.Ganguly - BARC-831, p.3 (1975)
1975Vi03
            R. Vianden, K. Krien, H. U. Schmidt - Nucl. Phys. A243, 29 (1975)
1975WiZX
             R.Wigmans - Thesis, Vrije Universitat, Amsterdam (1975)
1976De23
             A.M.Demidov, L.I.Govor, O.K.Zhuravlev, M.M.Komkov, I.B.Shukalov - Izv.Akad.Nauk SSSR, Ser.Fiz. 40, 157 (1976);
              Bull.Acad.Sci.USSR, Phys.Ser. 40, No.1, 132 (1976)
1976De28
             R.de Swiniarski, G.Bagieu, D.-L.Pham, M.Massaad, J.Y.Grossiord, A.Guichard - J.Phys.(Paris) 37, 1125 (1976)
1976Ei04
             M.Eibert, A.K.Gaigalas, N.I.Greenberg - J.Phys.(London) G2, L203 (1976)
1976Es01
             M.T.Esat, D.C.Kean, R.H.Spear, R.A.I.Bell - Phys.Lett. 61B, 242 (1976)
1976Es02
             M.T.Esat, D.C.Kean, R.H.Spear, A.M.Baxter - Nucl. Phys. A274, 237 (1976)
1976HeZJ
             W.H.A.Hesselink, J.Bron, A.van Poelgeest - Proc.Intern.Conf.Selected Topics in Nucl.Struct., Dubna (1976), Vol.1,
19761002
             M.Ionescu-Bujor, E.A.Ivanov, A.Iordaschescu, D.Plostinaru, G.Pascovici - Phys.Lett. 64B, 36 (1976)
1976Io04
             M.Ionescu-Bujor, E.A.Ivanov, A.Iordachescu, D.Plostinaru, G.Pascovici - Nucl. Phys. A272, 1 (1976)
```

M.Ionescu-Bujor, E.A.Ivanov, A.Iordachescu, D.Plostinaru, G.Pascovici - Hyperfine Interactions 2, 324 (1976)

1976Io05

1976Ka19 R.Kamermans, H.W.Jongsma, T.J.Ketel, R.van der Wey, H.Verheul - Nucl. Phys. A266, 346 (1976) 1976Ke07 T.J.Ketel, R.Kamermans, E.A.Z.M.Vervaet, H.Verheul - Hyperfine Interactions 2, 336 (1976) 1976MaVI. V.Matschoss, K.Bachmann - Proc.Int.Conf.Nuclei Far From Stability, Cargese, Corsica, p.59 (1976); CERN 76-13 (1976) 1976Wi 10 M.E.J.Wigmans, R.J.Heynis, P.M.A.van der Kam, H.Verheul - Phys.Rev. C14, 229 (1976) 1976Wi11 M.E.J. Wigmans, R.J. Heynis, P.M. A. van der Kam, H. Verheul - Phys. Rev. C14, 243 (1976). 1977BaXX A.Backlin, W.Dietrich, N.-G.Jonsson, R.Julin, J.Kantele, M.Luontama, T.Poikolainen, L.Westerberg - JYFL 1976 Ann.Rept., p.49 (1977) 1977BrYY J.Bron, W.H.A.Hesselink, L.K.Peker, A.van Poelgeest, J.Uitzinger, H.Verheul, J.Zalmstra -Proc.Intern.Conf.Nucl.Structure, Tokyo, Vol.1, p.348 (1977) 1977Fi04 H.W.Fielding, R.E.Anderson, C.D.Zafiratos, D.A.Lind, F.E.Cecil, H.H.Wieman, W.P.Alford - Nucl. Phys. A281, 389 (1977) J.E.Gindler, L.E.Glendenin - Inorg.Nucl.Chem.Lett. 13, 95 (1977) 1977Gi11 1977Gi 13 W.A.Gillespie, M.W.S.Macauley, A.Johnston, E.W.Lees, R.P.Singhal - J.Phys.(London) G3, L-169 (1977) 1977KeZY T.J.Ketel - Thesis, Vrije Univ.Amsterdam (1977) 1977Ki11 R.Kirchner, O.Klepper, G.Nyman, W.Reisdorf, E.Roeckl, D.Schardt, N.Kaffrell, P.Peuser, K.Schneeweiss - Phys.Lett. 70B, 150 (1977) 1977LiZA D.A.Lind, C.D.Zafiratos - Intern.Conf.Nucl.Structure, Tokyo.Voll.p338 (1977) 1977Ma41 M.Maynard, D.C.Palmer, J.R.Cresswell, P.D.Forsyth, I.Hall, D.G.E.Martin - J.Phys.(London) G3, 1735 (1977) 1977Sp05 R.H.Spear, J.P.Warner, A.M.Baxter, M.T.Esat, M.P.Fewell, S.Hinds, A.M.R.Joye, D.C.Kean - Aust.J.Phys. 30, 133 (1977) 1978Ba15 C.J.Battv. S.F.Biagi. M.Blecher. R.Kunselman. R.A.J.Riddle. B.I.Roberts. J.D.Davies. G.J.Pvle. G.T.A.Squier -Nucl.Phys. A296, 361 (1978) 1978Ba17 I.Badawy, B.Berthier, P.Charles, M.Dost, B.Fernandez, J.Gastebois, S.M.Lee - Phys.Rev. C17, 978 (1978) 1978BrZS J.Bron, W.H.A.Hesselink, L.K.Peker, A.van Poelgeest, J.Uitzinger, H.Verheul, J.Zalmstra - Pro.Int.Nuclear Structure, Tokyo,1977; J. Phys. Soc. Japan 44 (1978); Suppl. p. 513 1978BrZU J.Bron - Thesis, Vrije Univ.Amsterdam (1978) 1978BrZX M.Brennan, M.Hass, N.Benczer-Koller - Bull, Am. Phys. Soc. 23, No.4, 555, EF6 (1978) 1978Bu24 B.Buchholz, H.-D.Kronfeldt, G.Muller, M.Voss, R.Winkler - Z.Phys. A288, 247 (1978) 1978EmZT R.A.Emigh, R.E.Anderson, L.E.Samuelson - COO-535-766, p.64 (1978) 1978Fr16 G.Franz, G.Herrmann - J.Inorg.Nucl.Chem. 40, 945 (1978) N.-G.Jonsson, J.Kantele, A.Backlin - Nucl.Instrum.Methods 152, 485 (1978) 1978Jo07 1978Ro19 E.Roeckl, R.Kirchner, O.Klepper, G.Nyman, W.Reisdorf, D.Schardt, K.Wien, R.Fass, S.Mattsson - Phys.Lett. 78B, 393 (1978)1978SaZL L.E.Samuelson, R.E.Anderson, R.A.Emigh, P.A.Smith - COO-535-766, p.25 (1978) L.E.Samuelson, R.A.Emigh, R.E.Anderson - Bull.Amer.Phys.Soc. 23, No.7, 962, FD6 (1978) 1978SaZM 1979B1ZZ P.J.Blankert - Thesis, Vrije Univ., Amsterdam (1979) 1979Br07 J.Bron, W.H.A.Hesselink, A.van Poelgeest, J.J.A.Zalmstra, M.J.Uitzinger, H.Verheul, K.Heyde, M.Waroquier, H.Vincx, P.van Isacker - Nucl. Phys. A318, 335 (1979) 1979De37 A.M.Demidov, L.I.Govor, O.K.Zhuravlev, M.M.Komkov, V.A.Kurkin, I.B.Shukalov - Yad.Fiz. 30, 289 (1979); Sov.J.Nucl.Phys. 30, 149 (1979) 1979EmZX R.A.Emigh, R.E.Anderson, L.E.Samuelson, C.A.Fields - COO-535-767, p.82 (1979) 1979Gi05 A.Giannatiempo, G.Liberati, P.Sona - Z.Phys. A290, 411 (1979) 1979Lu10 M.Luontama, J.Kantele, R.Julin, A.Passoja, T.Poikolainen, M.Pylvanainen - Nucl.Instrum.Methods 159, 339 (1979) 1979OhZV S.Ohya, K.Katsumata, K.Iwasawa, K.Miyazawa, N.Mutsuro, T.Tamura - Inst.Nucl.Study, Univ.Tokyo, Ann.Rept., 1978, p.59 (1979) 1979Sc22 D.Schardt, R.Kirchner, O.Klepper, W.Reisdorf, E.Roeckl, P.Tidemand-Petersson, G.T.Ewan, E.Hagberg, B.Jonson, S.Mattsson, G.Nyman - Nucl. Phys. A326, 65 (1979) 1980Ad04 M.Adachi, A.Muroi, T.Matsuzaki, H.Taketani - Z.Phys. A295, 251 (1980) 1980Bl01 P.J.Blankert, H.P.Blok, J.Blok - Nucl. Phys. A333, 116 (1980) G.J.F.Blommestijn, R. Van Dantzig, Y.Haitsma, R.B.M.Mooy, I.Slaus - Nucl.Phys. A345, 157 (1980) 1980B107 1980Br01 J.M.Brennan, M.Hass, N.K.B.Shu, N.Benczer-Koller - Phys.Rev. C21, 574 (1980) G.M.Gowdy, R.Kirchner, O.Klepper, G.Nyman, W.Reisdorf, E.Roeckl, D.Schardt, N.Kaffrell, K.Schneeweiss - Priv.Comm. 1980GoZX (June 1980) 1980Ha19 M.Hass, C.Broude, Y.Niv, A.Zemel - Phys.Rev. C22, 97 (1980) 1980Ju05 R.Julin, J.Kantele, M.Luontama, A.Passoja, T.Poikolainen, A.Backlin, N.-G.Jonsson - Z.Phys. A296, 315 (1980) 1980Ko12 G.V.Kotelnikova, G.N.Lovchikova, O.A.Salnikov, S.P.Simakov, A.M.Trufanov, N.I.Fetisov - Yad.Fiz. 31, 1127 (1980); Sov.J.Nucl.Phys. 31, 582 (1980) 1980Va13 A.Van Poelgeest, J.Bron, W.H.A.Hesselink, K.Allaart, J.J.A.Zalmstra, M.J.Uitzinger, H.Verheul - Nucl.Phys. A346, 70 (1980)1981Ba05 A.Backlin, N.G.Jonsson, R.Julin, J.Kantele, M.Luontama, A.Passoja, T.Poikolainen - Nucl. Phys. A351, 490 (1981) 1981FiZZ C.A.Fields, F.W.N.De Boer, R.A.Ristinen, P.A.Smith, E.Sugarbaker - NPL-883 (1981) 1981Gi13 A.Gizon, J.Genevey, J.Gizon, V.Barci, A.Plochocki, T.Batsch, J.Zylicz, A.Charvet, G.Marguier - Z.Phys. A302, 79 (1981) 1981Go17 B.I.Gorbachev, A.V.Kuznichenko, V.N.Lebedev, A.I.Levon, O.F.Nemets, O.V.Sevastyuk - Izv.Akad.Nauk SSSR, Ser.Fiz. 45, 1981Io07 M.Ionescu-Bujor, A.Iordachescu, E.A.Ivanov, D.Plostinaru - Hyperfine Interactions 11, 71 (1981) 1981Jo03 N.-G.Jonsson, A.Backlin, J.Kantele, R.Julin, M.Luontama, A.Passoja - Nucl. Phys. A371, 333 (1981) 1981KııZQ V.A.Kurkin, L.I.Govor, A.M.Demidov, M.M.Komkov - Program and Theses, Proc. 31st Ann.Conf.Nucl.Spectrosc.Struct.At.Nuclei, Samarkand, p.347 (1981) 1981Mi08 M.Miller, A.M.Kleinfeld, A.Bockisch, K.Bharuth-Ram - Z.Phys. A300, 97 (1981)

NUCLEAR DATA SHEETS

REFERENCES FOR A=112 (CONTINUED)

1981TiZY P.Tidemand-Petersson, R.Kirchner, O.Klepper, E.Roeckl, A.Plochocki, J.Zylicz, D.Schardt - Proc.Int.Conf.Nuclei Far from Stability, Helsingor, Denmark, Vol.1, p.205 (1981); CERN 81-09 (1981) 1981Va15 P.van Nes, K.Allaart, W.H.A.Hesselink, J.Konijn, H.Verheul - Z.Phys. A301, 137 (1981) 1982Cr01 G.M.Crawley, W.Benenson, G.Bertsch, S.Gales, D.Weber, B.Zwieglinski - Phys.Lett. 109B, 8 (1982) 1982Fi02 C.A.Fields, F.W.N.De Boer, R.A.Ristinen, P.A.Smith, E.Sugarbaker - Nucl. Phys. A377, 217 (1982) 1982Ma29 H.-E.Mahnke, E.Dafni, M.H.Rafailovich, G.D.Sprouse, E.Vapirev - Phys.Rev. C26, 493 (1982) 1982NaZL K.Nagano, Y.Aoki, T.Kishimoto, K.Yagi - Proc.Intern.Symp.Dynamics of Nuclear Collective Motion, Yamanishi, Japan, p.54 (1982) 1983Ko12 T.Kohno, M.Adachi, H.Taketani - Nucl. Phys. A398, 493 (1983) 1983Le18 A.I.Levon, O.F.Nemets, O.V.Sevastyuk, V.A.Stepanenko - Yad.Fiz. 37, 1342 (1983) 1983Rv03 P.J.Ryan, R.S.Hicks, A.Hotta, J.Dubach, G.A.Peterson, D.V.Webb - Phys.Rev. C21, 2575 (1983) T.B.Ryves, Ma Hongchang, S.Judge, P.Kolkowski - J.Phys.(London) G9, 1549 (1983) 1983Rv06 W.Semmler, H.Haas, H.-E.Mahnke, R.Sielemann - Hyperfine Interactions 15/16, 219 (1983) 1983Se21 1083Va7M S.Vajda, M.A.Quader, W.F.Piel, Jr., D.B.Fossan - Bull.Am.Phys.Soc. 28, No.7, 976, BC9 (1983) 1983Vi02 S.A.S.Vitiello, I.D.Goldman - Nuovo Cim. 74A, 17 (1983) 1984Ba15 K.A.Baskova, Yu.V.Krivonogov, B.M.Makuni, E.A.Skakun, T.V.Chugai, L.Ya.Shavtvalov - Izv.Akad.Nauk SSSR, Ser.Fiz. 48, 38 (1984) 1984Fa04 T.Faestermann, A.Gillitzer, K.Hartel, P.Kienle, E.Nolte - Phys.Lett. 137B, 23 (1984) 1984Pi01 M.Pignanelli, S.Micheletti, E.Cereda, M.N.Harakeh, S.Y.Van der Werf, R.De Leo - Phys.Rev. C29, 434 (1984) 1985BaZT R.W.Bauer, J.A.Becker, I.D.Proctor, D.J.Decman, R.G.Lanier, J.A.Cizewski - Bull.Am.Phys.Soc. 30, No.8, 1258, BC12 V.P.Bugrov, A.A.Byalko, V.M.Kolobashkin, A.I.Slyusarenko - Izv.Akad.Nauk SSSR, Ser.Fiz. 49, 96 (1985); 1985Bu05 Bull.Acad.Sci.USSR, Phys.Ser. 49, No.1, 99 (1985) 1985De57 R.De Leo, M.Pignanelli, W.T.A.Borghols, S.Brandenburg, M.N.Harakeh, H.J.Lu, S.Y.Van der Werf - Phys.Lett. 165B, 30 1985Fe05 M.P.Fewell, R.H.Spear, G.K.Adam, M.T.Esat - Aust.J.Phys. 38, 555 (1985) 1985Si01 K.P.Singh, D.C.Tayal, G.Singh, H.S.Hans - Phys.Rev. C31, 79 (1985) 1985Ti02 P.Tidemand-Petersson, R.Kirchner, O.Klepper, E.Roeckl, D.Schardt, A.Plochocki, J.Zylicz - Nucl.Phys. A437, 342 1986Ba39 R.W.Bauer, J.A.Becker, I.D.Proctor, D.J.Decman, R.G.Lanier, J.A.Cizewski - Phys.Rev. C34, 1110 (1986) 1986HaZD H.Harada, J.Kasagi, T.Murakami, K.Yoshida, T.Inamura, T.Kubo - Proc.Intern.Nuclear Physics Conference, Harrogate, U.K., p.69 (1986) 1986HaZP H. Harada, T. Murakami, H. Tachibanaki, K. Yoshida, J. Kasagi, T. Kubo, T. Inamura - RIKEN-85, p.20 (1986) 1986HeZT E.A.Henry, R.J.Estep, R.A.Meyer, J.Kantele, D.J.Decman, L.G.Mann, R.K.Sheline, W.Stoffl, L.E.Ussery -Amer.Chem.Soc.Symposium Ser.324 on Nuclei Off the Line of Stability, Chicago, p.190 (1985), R.A.Meyer, D.S.Brenner Eds., Washington, p.190 (1986) 1986Ho12 H.Hofsass, G.Lindner, S.Winter, B.Besold, E.Recknagel, G.Weyer - Nucl.Instrum.Methods Phys.Res., B13, 71 (1986) 1986Ka25 J.Kasagi, H.Harada, T.Murakami, K.Yoshida, H.Tachibanaki, T.Inamura - Phys.Lett. 176B, 307 (1986) 1986KaZY J.Kasagi, H.Harada, T.Murakami, K.Yoshida, H.Tachibanaki, T.Inamura - RIKEN-85, p.22 (1986) 1986Ma22 G.Mamane, E.Cheifetz, E.Dafni, A.Zemel, J.B.Wilhelmy - Nucl. Phys. A454, 213 (1986) 1986TiZZ J.Timar, T.Kibedi, A.Krasznahorkay, T.Fenyes, A.Passoja, V.Paar - JYFL Ann.Rept., 1986, p.50 (1986) 1986Ve02 J. Vervier, P. Mareschal - Z. Phys. A323, 179 (1986) 1986Wa10 C. Wasilevsky, M.de la Vega Vedoya, S.J. Nassiff - Int. J. Appl. Radiat. Isotop. 37, 319 (1986) 1987A1ZE V.P.Alfimenkov, S.B.Borzakov, Yu.D.Mareev, L.B.Pikelner, A.S.Khrykin, Eh.I.Sharapov - JINR-P3-87-117 (1987) 1987A1ZH V.P.Alfimenkov, S.B.Borzakov, Yu.D.Mareev, L.B.Pikelner, A.S.Khrykin, E.I.Sharapov - Program and Theses, Proc.37th Ann.Conf.Nucl.Spectrosc.Struct.At.Nuclei, Yurmala, p.285 (1987) J.Eberz, U.Dinger, G.Huber, H.Lochmann, R.Menges, R.Neugart, R.Kirchner, O.Klepper, T.Kuhl, D.Marx, G.Ulm, K.Wendt, 1987Eb02 and the ISOLDE Collaboration - Nucl. Phys. A464, 9 (1987) 1987Es01 R.J.Estep, R.K.Sheline, D.J.Decman, E.A.Henry, L.G.Mann, R.A.Meyer, W.Stoffl, L.E.Ussery, J.Kantele - Phys.Rev. C35, 1485 (1987) 1987Fo07 H.T.Fortune - Phys.Rev. C35, 2318 (1987) 1987Gi07 C.Giusti, F.D.Pacati - Nucl.Phys. A473, 717 (1987) 1987GiZW H.Gietz, N.Kaffrell, J.Rogowski, H.Tetzlaff, N.Trautmann, M.Skalberg, G.Skarnemark, J.Alstad, W.Talbert -Univ.Mainz, 1986 Ann.Rept., p.9 (1987) 1987HaZA H.Harada, J.Kasagi, T.Murakami, K.Yoshida, T.Inamura, T.Kubo - Proc.Intern.Conf.Nuclear Structure Through Static and Dynamic Moments, Melbourne, Australia, Vol.1, p.52 (1987) 1987HaZE H.Harada, J.Kasagi, T.Murakami, K.Yoshida, T.Inamura, T.Kubo - RIKEN-86, p.6 (1987) 1987Iw04 M.Iwatschenko-Borho, R.Schmitzer - Hyperfine Interactions 35, 1011 (1987) 1987KiZX T.Kibedi, T.Fenyes, A.Krasznahorkay, Zs.Dombradi, J.Timar, Z.Gacsi, A.Passoja, V.Paar, D.Vretenar - JYFL Ann.Rept., 1986-1987, p.67 (1987) L.R.Medsker, H.T.Fortune, J.D.Zumbro, C.P.Browne, J.F.Mateja - Phys.Rev. C36, 1785 (1987) 1987Me19 1987Na20 K.Nagano, Y.Aoki, T.Kishimoto, Y.Tagishi, K.Yagi - J.Phys.Soc.Jpn. 56, 1974 (1987) 1987Ra01 S.Raman, C.H.Malarkey, W.T.Milner, C.W.Nestor, Jr., P.H.Stelson - At.Data Nucl.Data Tables 36, 1 (1987) 1987RuZZ S.L.Rugari, M.Gai, Z.Zhao, D.A.Bromley, P.A.Butler, V.A.Holliday, A.N.James, T.P.Morrison, R.J.Poynter, R.J.Tanner, K.L.Ying, J.Simpson, K.A.Connell - Bull.Am.Phys.Soc. 32, No. 4, 1096, HG10 (1987) K.Yoshida, J.Kasagi, T.Murakami, H.Harada, T.Inamura, T.Kubo - Proc.Intern.Conf.Nuclear Structure Through Static 1987YoZU

and Dynamic Moments, Melbourne, Australia, Vol.1, p.62 (1987)

- 1988Ay02 J.Aysto, C.N.Davids, J.Hattula, J.Honkanen, K.Honkanen, P.Jauho, R.Julin, S.Juutinen, J.Kumpulainen, T.Lonnroth, A.Pakkanen, A.Passoja, H.Penttila, P.Taskinen, E.Verho, A.Virtanen, M.Yoshii Nucl.Phys. A480, 104 (1988)
- 1988AyZZ J.Aysto, P.Jauho, V.Koponen, H.Penttila, K.Rykaczewski, P.Taskinen, J.Zylicz Priv.Comm. (1988)
- 1988Ha20 H.Harada, T.Murakami, K.Yoshida, J.Kasagi, T.Inamura, T.Kubo Phys.Lett. 207B, 17 (1988)
- 1988Ki 04 T.Kibedi, Zs.Dombradi, T.Fenyes, A.Krasznahorkay, J.Timar, Z.Gacsi, A.Passoja, V.Paar, D.Vretenar Phys.Rev. C37, 2391 (1988)
- 1988Pe13 H.Penttila, P.Taskinen, P.Jauho, V.Koponen, C.N.Davids, J.Aysto Phys.Rev. C38, 931 (1988)
- 1988Pe17 P.Petkov, W.Andrejtscheff, L.K.Kostov, L.G.Kostova Nucl.Instrum.Methods Phys.Res. A271, 617 (1988)
- 1988Pi04 M.Pignanelli, S.Micheletti, N.Blasi, R.De Leo, W.T.A.Borghols, J.M.Schippers, S.Y.van der Werf, M.N.Harakeh -Phys.Lett. 202B, 470 (1988)
- 1989An14 W.Andrejtscheff, L.K.Kostov, P.Petkov, Y.Sy.Savane, Ch.Stoyanov, P.von Brentano, J.Eberth, R.Reinhardt, K.O.Zell Nucl.Phys. A505, 397 (1989)
- 1989De40 R.De Leo, N.Blasi, S.Micheletti, M.Pignanelli, W.T.A.Borghols, J.M.Schippers, S.Y.van der Werf, G.Maino, M.N.Harakeh Nucl.Phys. A504, 109 (1989)
- 1989JoZZ M.Jozsa, Z.Mate, Z.Veress, T.Vertse, L.Zolnai ATOMKI 1988 Ann.Rept., p.18 (1989)
- 1989TaZW P.Taskinen, H.Penttila, P.Jauho, R.Beraud, C.N.Davids, P.Dendooven, A.Emsallem, K.Eskola, V.Koponen, M.Leino, N.Redon, J.Aysto JYFL Ann.Rept., 1987-1988, p.65 (1989)
- 1989Wa05 S.D.Wassenaar, P.J.van Hall, S.S.Klein, G.J.Nijgh, J.H.Polane, O.J.Poppema J.Phys.(London) G15, 181 (1989)
- 1990Ar 20 S.Yu.Araddad, A.M.Demidov, M.M.Dyufani, S.M.Zlitni, V.A.Kurkin, I.V.Mikhailov, D.M.Rateb, S.M.Sergiwa Yad.Fiz. 52, 3 (1990); Sov.J.Nucl.Phys. 52, 1 (1990)
- 1990Ay02 J.Aysto, P.P.Jauho, Z.Janas, A.Jokinen, J.M.Parmonen, H.Penttila, P.Taskinen, R.Beraud, R.Duffait, A.Emsallem, J.Meyer, M.Meyer, N.Redon, M.E.Leino, K.Eskola, P.Dendooven Nucl.Phys. A515, 365 (1990)
- 1990AyZX J.Aysto, P.Dendooven, K.Eskola, Z.Janas, P.P.Jauho, A.Jokinen, W.Kurcewicz, M.E.Leino, J.Parmonen, H.Penttila, K.Rykaczewski, P.Taskinen JYFL Ann.Rept., 1989-1990, p.84 (1990)
- 1990AyZY J.Aysto, R.Beraud, P.Dendooven, R.Duffait, A.Emsallem, K.Eskola, Z.Janas, P.P.Jauho, A.Jokinen, M.E.Leino, J.M.Parmonen, H.Penttila, N.Redon, P.Taskinen JYFL Ann.Rept., 1989-1990, p.79 (1990)
- 1990AyZZ J.Aysto, P.P.Jauho, Z.Janas, J.M.Parmonen, H.Penttila, P.Taskinen, R.Beraud, R.Duffait, A.Emsallem, J.Meyer, M.Meyer, N.Redon, M.E.Leino, K.Eskola, P.Dendooven JYFL 7/90 (1990)
- 1990Bl10 N.Blasi, S.Micheletti, M.Pignanelli, R.De Leo, R.Hertenberger, F.J.Eckle, H.Kader, P.Schiemenz, G.Graw Nucl.Phys. A511, 251 (1990)
- 1990DuZW J.L.Durell Proc.Int.Conf. on Spectroscopy of Heavy Nuclei, 1989, Crete, Greece, p.307 (1990)
- 1990Io01 M.Ionescu-Bujor, A.Iordachescu, E.A.Ivanov, G.Pascovici, D.Plostinaru, V.Sabaiduc Z.Phys. A336, 291 (1990)
- 1990JoZS A.Jokinen, J.Aysto, P.Dendooven, K.Eskola, Z.Janas, P.P.Jauho, M.E.Leino, J.M.Parmonen, H.Penttila, K.Rykaczewski, P.Taskinen JYFL 35/90 (1990)
- 1990JoZY A.Jokinen, J.Aysto, C.N.Davids, K.Eskola, P.Jauho, M.Leino, J.M.Parmonen, H.Penttila, P.Taskinen JYFL Ann.Rept., 1989-1990, p.81 (1990)
- 1990JoZZ M.Jozsa, Z.Mate, T.Vertse, L.Zolnai ATOMKI 1989 Ann.Rept., p.12 (1990)
- 1990KuZD J.Kumpulainen Thesis, Univ.Jyvaskyla (1990)
- 1990KuZY J.Kumpulainen Theses, Univ.Jyvaskyla (1990); JYFL 1/90 (1990)
- 1990KuZZ J.Kumpulainen, R.Julin, J.Kantele, A.Passoja, W.H.Trzaska, E.Verho, J.Vaaramaki, D.Cutoiu, M.Ivascu, J.L.Wood JYFL Ann.Rept., 1989-1990, p.89 (1990)
- 1990Pi08 A.E.Pillay, N.Mashilo J.Radioanal.Nucl.Chem. 144, 417 (1990)
- 1990Pi14 M.Pignanelli, N.Blasi, S.Micheletti, R.De Leo, M.A.Hofstee, J.M.Schippers, S.Y.van der Werf, M.N.Harakeh Nucl.Phys. A519, 567 (1990)
- 1990TuZX A.F.Tulinov, O.V.Fotina, T.V.Chuvilskaya, L.Ya.Shavtvalov, A.A.Shirokova Program and Thesis, Proc.40th Ann.Conf.Nucl.Spectrosc.Struct.At.Nuclei, Leningrad, p.344 (1990)
- 1990ViZW I.N.Vishnevsky, Yu.N.Lobach, A.A.Pasternak, V.V.Trishin Program and Thesis, Proc.40th Ann.Conf.Nucl.Spectrosc.Struct.At.Nuclei, Leningrad, p.71 (1990)
- 1991Er03 M.Ermer, H.Clement, G.Holetzke, W.Kabitzke, G.Graw, R.Hertenberger, H.Kader, F.Merz, P.Schiemenz Nucl.Phys. A533, 71 (1991)
- 1991Gi 05 A.Giannatiempo, A.Nannini, A.Perego, P.Sona Phys.Rev. C44, 1844 (1991)
- 1991Jo11 A.Jokinen, J.Aysto, P.Dendooven, K.Eskola, Z.Janas, P.P.Jauho, M.E.Leino, J.M.Parmonen, H.Penttila, K.Rykaczewski, P.Taskinen Z.Phys. A340, 21 (1991)
- 1991Kr14 K.R.Krishna, D.L.Sastry, K.V.Reddy, S.N.Chintalapudi J.Phys.(London) G17, 1727 (1991)
- $1991 Ne\, ZX \qquad Zs. Nemeth\,-\,KFK\,\,4888\,\,(1991)$
- 1992Ku01 J.Kumpulainen, R.Julin, J.Kantele, A.Passoja, W.H.Trzaska, E.Verho, J.Vaaramaki, D.Cutoiu, M.Ivascu Phys.Rev. C45, 640 (1992)
- 1992Pi08 M.Pignanelli, N.Blasi, S.Micheletti, R.De Leo, L.LaGamba, R.Perrino, J.A.Bordewijk, M.A.Hofstee, J.M.Schippers, S.Y.van der Werf, J.Wesseling, M.N.Harakeh Nucl.Phys. A540, 27 (1992)
- 1993Ar05 R.Aryaeinejad, J.D.Cole, R.C.Greenwood, S.S.Harrill, N.P.Lohstreter, K.Butler-Moore, S.Zhu, J.H.Hamilton, A.V.Ramayya, X.Zhao, W.C.Ma, J.Kormicki, J.K.Deng, W.B.Gao, I.Y.Lee, N.R.Johnson, F.K.McGowan, G.Ter-Akopyan, Y.Oganesyan Phys.Rev. C48, 566 (1993)
- 1993De01 M.Deleze, S.Drissi, J.Kern, P.A.Tercier, J.P.Vorlet, J.Rikovska, T.Otsuka, S.Judge, A.Williams Nucl.Phys. A551, 269 (1993)
- 1993De09 M.Deleze, S.Drissi, J.Jolie, J.Kern, J.P.Vorlet Nucl.Phys. A554, 1 (1993)
- 1993GuZX J.Gulyas, I.Danko, J.Kumpulainen, R.Julin ATOMKI 1992 Ann.Rept., p.22 (1993)

- 1993HeZV F.Heine, T.Faestermann, A.Gillitzer, H.J.Korner Proc.6th Intern.Conf.on Nuclei Far from Stability + 9th
 Intern.Conf.on Atomic Masses and Fundamental Constants, Bernkastel-Kues, Germany, 19-24 July, 1992, R.Neugart,
 A.Wohr, Eds., p.331 (1993)
- 1993 I o 0 2 M. Ionescu-Bujor, A. Iordachescu, E.A. Ivanov, G. Pascovici, D. Plostinaru Hyperfine Interactions 77, 111 (1993)
- 1993PaZS S.R.Palvanov, G.Yu.Tadzhibaev, O.Razhabov Program and Thesis, Proc.43rd Ann.Conf.Nucl.Spectrosc.Struct.At.Nuclei, Dubna, p.240 (1993)
- 1993PaZX E.S.Paul, C.W.Beausang, S.A.Forbes, S.J.Gale, A.N.James, P.M.Jones, M.J.Joyce, R.M.Clark, K.Hauschild, I.M.Hibbert, R.Wadsworth, R.A.Cunningham, J.Simpson, D.B.Fossan, D.R.LaFosse, H.Schnare, M.P.Waring, A.Gizon, J.Gizon, T.Davinson, R.D.Page, P.J.Sellin, P.J.Woods Daresbury Lab., 1992-1993 Ann.Rept., Appendix, p.9 (1993)
- 1994He22 R.Hertenberger, G.Eckle, F.J.Eckle, G.Graw, D.Hofer, H.Kader, P.Schiemenz, Gh.Cata-Danil, C.Hategan, N.Fujiwara, K.Hosono, M.Kondo, N.Matsuoka, T.Noro, T.Saito, S.Kato, S.Matsuki, N.Blasi, S.Micheletti, R.de Leo Nucl.Phys. A574, 414 (1994)
- 1994Pa12 R.D.Page, P.J.Woods, R.A.Cunningham, T.Davinson, N.J.Davis, A.N.James, K.Livingston, P.J.Sellin, A.C.Shotter Phys.Rev.Lett. 72, 1798 (1994)
- 1994Pa22 E.S.Paul, C.W.Beausang, S.A.Forbes, S.J.Gale, A.N.James, P.M.Jones, M.J.Joyce, H.R.Andrews, V.P.Janzen, D.C.Radford, D.Ward, R.M.Clark, K.Hauschild, I.M.Hibbert, R.Wadsworth, R.A.Cunningham, J.Simpson, T.Davinson, R.D.Page, P.J.Sellin, P.J.Woods, D.B.Fossan, D.R.LaFosse, H.Schnare, M.P.Waring, A.Gizon, J.Gizon, T.E.Drake, J.DeGraaf, S.Pilotte Phys.Rev. C50, 698 (1994)
- 1994Pe23 R.M.A.L.Petit, B.W.van der Pluym, P.J.van Hall, S.S.Klein, W.H.L.Moonen, G.J.Nijgh, C.W.A.M.van Overveld, O.J.Poppema J.Phys.(London) G20, 1955 (1994)
- 1994Sh26 J.A.Shannon, W.R.Phillips, J.L.Durell, B.J.Varley, W.Urban, C.J.Pearson, I.Ahmad, C.J.Lister, L.R.Morss, K.L.Nash, C.W.Williams, N.Schulz, E.Lubkiewicz, M.Bentaleb Phys.Lett. 336B, 136 (1994)
- 1995Ho26 S.Hofmann Radiochim.Acta 70/71, 93 (1995)
- 1995Lu10 Q.H.Lu, K.Butler-Moore, S.J.Zhu, J.H.Hamilton, A.V.Ramayya, V.E.Oberacker, W.C.Ma, B.R.S.Babu, J.K.Deng, J.Kormicki, J.D.Cole, R.Aryaeinejad, Y.X.Dardenne, M.Drigert, L.K.Peker, J.O.Rasmussen, M.A.Stoyer, S.Y.Chu, K.E.Gregorich, I.Y.Lee, M.F.Mohar, J.M.Nitschke, N.R.Johnson, F.K.McGowan, G.M.Ter-Akopian, Yu.Ts.Oganessian, J.B.Gupta Phys.Rev. C52, 1348 (1995)
- 1995MoZW C.-B.Moon, J.U.Kwon, S.J.Chae, J.C.Kim, C.S.Lee, T.Komatsubara, T.Saitoh, N.Hashimoto, J.Lu, H.Kimura, T.Hayakawa, K.Furuno Univ.Tsukuba, Tandem Accel.Center, Ann.Rept., 1994, p.36 (1995); UTTAC-62 (1995)
- 1995Pa26 E.S.Paul, C.W.Beausang, R.M.Clark, R.A.Cunningham, D.B.Fossan, A.Gizon, K.Hauschild, I.M.Hibbert, A.N.James, D.R.LaFosse, H.Schnare, J.Simpson, R.Wadsworth, M.P.Waring J.Phys.(London) G21, 1001 (1995)
- 1995Ph01 K.Pham, J.Janecke, D.A.Roberts, M.N.Harakeh, G.P.A.Berg, S.Chang, J.Liu, E.J.Stephenson, B.F.Davis, H.Akimune, M.Fujiwara Phys.Rev. C51, 526 (1995)
- 1996De55 D.De Frenne, E.Jacobs Nucl.Data Sheets 79, 639 (1996)
- $1996 Ga \ 26 \qquad P.E. Garrett, \ H. Lehmann, \ C.A. McGrath, \ M. Yeh, \ S.W. Yates Phys. Rev. \ C54, \ 2259 \ (1996)$
- 1996Le19 H.Lehmann, P.E.Garrett, J.Jolie, C.A.McGrath, M.Yeh, S.W.Yates Phys.Lett. 387B, 259 (1996)
- 1996Me09 T.Mehren, B.Pfeiffer, S.Schoedder, K.-L.Kratz, M.Huhta, P.Dendooven, A.Honkanen, G.Lhersonneau, M.Oinonen, J.-M.Parmonen, H.Penttila, A.Popov, V.Rubchenya, J.Aysto Phys.Rev.Lett. 77, 458 (1996)
- 1996MoZY C.-B.Moon, J.U.Kwon, T.Komatsubara, T.Saito, N.Hashimoto, J.Lu, H.Kimura, T.Hayakawa, K.Furuno Univ.Tsukuba, Tandem Accel.Center, Ann.Rept., 1995, p.42 (1996); UTTAC-63 (1996)
- 1996Si15 A.K.Singh, G.Gangopadhyay, D.Banerjee, R.Bhattacharya, R.K.Bhowmik, S.Muralithar, G.Rodrigues, R.P.Singh, A.Goswami, S.Chattopadhyay, S.Bhattacharya, B.Dasmahapatra, S.Sen Nucl.Phys. A607, 350 (1996)
- 1997De03 A.De Pace, C.Garcia-Recio, E.Oset Phys.Rev. C55, 1394 (1997)
- 1997Dr03 S.Drissi, P.A.Tercier, H.G.Borner, M.Deleze, F.Hoyler, S.Judge, J.Kern, S.J.Mannanal, G.Mouze, K.Schreckenbach, J.P.Vorlet, N.Warr, A.Williams, C.Ythier Nucl.Phys. A614, 137 (1997)
- 1997Fa08 M.Fayez-Hassan, J.Gulyas, Zs.Dombradi, I.Danko, Z.Gacsi Phys.Rev. C55, 2244 (1997)
- 1997FaZY M.Fayez Hassan, Zs.Dombradi, J.Gulyas, Z.Gacsi, S.Brant, V.Paar Proc.9th Intern.Symposium on Capture Gamma-Ray Spectroscopy and Related Topics, Budapest, Hungary, October 1996, G.L.Molnar, T.Belgya, Zs.Revay, Eds., Vol.1, p.289 (1997)
- J.H.Hamilton, A.V.Ramayya, J.K.Hwang, J.Kormicki, B.R.S.Babu, A.Sandulescu, A.Florescu, W.Greiner, G.M.Ter-Akopian, Yu.Ts.Oganessian, A.V.Daniel, S.J.Zhu, M.G.Wang, T.Ginter, J.K.Deng, W.C.Ma, G.S.Popeko, Q.H.Lu, E.Jones, R.Dodder, P.Gore, W.Nazarewicz, J.O.Rasmussen, S.Asztalos, I.Y.Lee, S.Y.Chu, K.E.Gregorich, A.O.Macchiavelli, M.F.Mohar, S.Prussin, M.A.Stoyer, R.W.Lougheed, K.J.Moody, J.F.Wild, L.A.Bernstein, J.A.Becker, J.D.Cole, R.Aryaeinejad, Y.X.Dardenne, M.W.Drigert, K.Butler-Moore, R.Donangelo, H.C.Griffin Prog.Part.Nucl.Phys. 38, 273 (1997)
- 1997LeZZ H.Lehmann, J.Jolie, H.G.Borner, C.Doll, M.Jentschel, R.F.Casten, P.E.Garrett, C.A.McGrath, M.Yeh, S.W.Yates, N.V.Zamfir Proc.9th Intern.Symposium on Capture Gamma-Ray Spectroscopy and Related Topics, Budapest, Hungary, October 1996, G.L.Molnar, T.Belgya, Zs.Revay, Eds., Vol.1, p.203 (1997)
- 1997Mo01 C.-B.Moon, J.U.Kwon, T.Komatsubara, T.Saitoh, N.Hashimoto, J.Lu, H.Kimura, T.Hayakawa, K.Furuno Z.Phys. A357, 5 (1997)
- 1997Mo25 P.Moller, J.R.Nix, K.-L.Kratz At.Data Nucl.Data Tables 66, 131 (1997)
- 1997YaZZ S.W.Yates, C.A.McGrath, P.E.Garrett, M.Yeh, T.Belgya Proc.9th Intern.Symposium on Capture Gamma-Ray Spectroscopy and Related Topics, Budapest, Hungary, October 1996, G.L.Molnar, T.Belgya, Zs.Revay, Eds., Vol.1, p.211 (1997)
- 1998Ba13 J.C.Batchelder, C.R.Bingham, K.Rykaczewski, K.S.Toth, T.Davinson, J.A.McKenzie, P.J.Woods, T.N.Ginter, C.J.Gross, J.W.McConnell, E.F.Zganjar, J.H.Hamilton, W.B.Walters, C.Baktash, J.Greene, J.F.Mas, W.T.Milner, S.D.Paul, D.Shapira, X.J.Xu, C.H.Yu Phys.Rev. C57, R1042 (1998)

- 1998GrZZ C.J.Gross, Y.A.Akovali, C.Baktash, J.C.Batchelder, C.R.Bingham, M.P.Carpenter, C.N.Davids, T.Davinson, D.Ellis, A.Galindo-Uribarri, T.N.Ginter, R.Grzywacz, R.V.F.Janssens, J.W.Johnson, F.Liang, C.J.Lister, J.Mas, B.MacDonald, S.D.Paul, A.Piechaczek, D.C.Radford, W.Reviol, K.Rykaczewski, W.Satula, D.Seweryniak, D.Shapira, K.S.Toth, W.Weintraub, P.J.Woods, C.-H.Yu, E.F.Zganjar, J.Uusitalo Contrib. Nuclear Structure '98, Gatlinburg, p.42 (1998)
- 1998GuZW P.Guazzoni, L.Zetta, A.Covello, A.Gargano, G.Graw, R.Hertenberger, A.Metz, B.D.Valnion, F.Nuoffer, G.Staudt, M.Jaskola Beschleunigerlaboratorium Muenchen, Jahresbericht 1997, p.20 (1998)
- 1998JoZX E.F.Jones, P.M.Gore, J.H.Hamilton, A.V.Ramayya, A.P.de Lima, R.S.Dodder, C.J.Beyer, J.K.Hwang, X.Q.Zhang, S.J.Zhu, Q.H.Lu, T.Ginter, B.R.S.Babu, M.G.Wang, J.Kormicki, J.K.Deng, D.Shi, J.D.Cole, R.Aryaeinejad, K.Butler-Moore, M.W.Drigert, W.C.Ma, G.M.Ter-Akopian, Yu.Ts.Oganessian, A.V.Daniel, J.O.Rasmussen, S.J.Asztalos, I.Y.Lee, A.O.Macchiavelli, M.A.Stoyer, R.W.Lougheed, Y.X.Dardenne, S.G.Prussin, R.Donangelo Proc.Intern.Conf.Fission and Properties of Neutron-Rich Nuclei, Sanibel Island, Florida, November 1997, J.H.Hamilton, A.V.Ramayya, Eds., p.280 (1998)
- 1998Ko24 D.Kolev Appl.Radiat.Isot. 49, 989 (1998)
- 1998La14 G.J.Lane, D.B.Fossan, C.J.Chiara, H.Schnare, J.M.Sears, J.F.Smith, I.Thorslund, P.Vaska, E.S.Paul, A.N.Wilson, J.N.Wilson, K.Hauschild, I.M.Hibbert, R.Wadsworth, A.V.Afanasjev, I.Ragnarsson Phys.Rev. C58, 127 (1998)
- 1998LaZT G.J.Lane, D.B.Fossan, C.J.Chiara, H.Schnare, J.M.Sears, J.F.Smith, I.Thorslund, P.Vaska, E.S.Paul, A.N.Wilson, J.N.Wilson, K.Hauschild, I.M.Hibbert, R.Wadsworth, A.V.Afanasjev, I.Ragnarsson Contrib. Nuclear Structure '98, Gatlinburg, p.74 (1998)
- 1998Lh04 G.Lhersonneau, J.C.Wang, S.Hankonen, P.Dendooven, P.Jones, R.Julin, J.Aysto Eur.Phys.J. A 2, 25 (1998)
- 1998SiZW M.W.Simon, C.Y.Wu, D.Cline, R.W.Gray, M.A.Stoyer, K.Vetter, A.Macchiavelli, K.Gregorich, R.W.Macleod, S.Asztalos, J.Gilat, C.T.Zhang, P.Bhattacharyya Proc.Intern.Conf.Fission and Properties of Neutron-Rich Nuclei, Sanibel Island, Florida, November 1997, J.H.Hamilton, A.V.Ramayya, Eds., p.270 (1998)
- 1998SmZY J.F.Smith, C.J.Chiara, D.B.Fossan, G.J.Lane, J.M.Sears, M.Devlin, D.R.LaFosse, D.G.Sarantites, A.J.Boston, E.S.Paul,
 A.T.Semple, I.Y.Lee, A.O.Macchiavelli Contrib. Nuclear Structure '98, Gatlinburg, p.125 (1998)
- 1998StZY K.Starosta, C.J.Chiara, D.B.Fossan, D.R.LaFosse, G.J.Lane, J.M.Sears, J.F.Smith, A.J.Boston, E.S.Paul, M.Devlin, D.G.Sarantites, I.-Y.Lee, A.O.Macchiavelli, S.G.Rohozinski Contrib. Nuclear Structure '98, Gatlinburg, p.127 (1998)
- 1998StZZ K.Starosta, C.J.Chiara, D.B.Fossan, D.R.LaFosse, G.J.Lane, J.M.Sears, J.F.Smith, A.J.Boston, E.S.Paul, M.Devlin, D.G.Sarantites, I.-Y.Lee, A.O.Macchiavelli Contrib. Nuclear Structure '98, Gatlinburg, p.126 (1998)
- 1999Bu32 K.Butler-Moore, R.Aryaeinejad, X.Q.Zhang, B.R.S.Babu, J.H.Hamilton, A.V.Ramayya, J.K.Hwang, V.E.Oberacker, S.J.Zhu, J.Kormicki, L.K.Peker, J.D.Cole, Y.X.Dardenne, W.C.Ma, S.J.Asztalos, S.Y.Chu, K.E.Gregorich, I.Y.Lee, M.F.Mohar, J.O.Rasmussen, R.W.Lougheed, K.J.Moody, M.A.Stoyer, J.F.Wild, S.G.Prussin, G.M.Ter-Akopian, Yu.Ts.Oganessian, A.V.Daniel, J.Kliman, M.Morhac, J.Phys.(London) G25, 2253 (1999)
- 1999Ga15 P.E.Garrett, H.Lehmann, J.Jolie, C.A.McGrath, M.Yeh, S.W.Yates Phys.Rev. C59, 2455 (1999)
- 1999Ga20 P.E.Garrett, H.Lehmann, J.Jolie, C.A.McGrath, M.Yeh, S.W.Yates J.Phys.(London) G25, 823 (1999)
- 1999Ho25 M.Houry, R.Lucas, M.-G.Porquet, Ch.Theisen, M.Girod, M.Aiche, M.M.Aleonard, A.Astier, G.Barreau, F.Becker, J.F.Chemin, I.Deloncle, T.P.Doan, J.L.Durell, K.Hauschild, W.Korten, Y.Le Coz, M.J.Leddy, S.Perries, N.Redon, A.A.Roach, J.N.Scheurer, A.G.Smith, B.J.Varley Eur.Phys.J. A 6, 43 (1999)
- 1999Le31 H.Lehmann, A.Nord, A.E.de Almeida Pinto, O.Beck, J.Besserer, P.von Brentano, S.Drissi, T.Eckert, R.-D.Herzberg, D.Jager, J.Jolie, U.Kneissl, J.Margraf, H.Maser, N.Pietralla, H.H.Pitz Phys.Rev. C60, 024308 (1999)
- 1999Lh01 G.Lhersonneau, J.C.Wang, S.Hankonen, P.Dendooven, P.Jones, R.Julin, J.Aysto Phys.Rev. C60, 014315 (1999)
- 1999Mc03 C.A.McGrath, P.E.Garrett, M.F.Villani, S.W.Yates Nucl.Instrum.Methods Phys.Res. A421, 458 (1999)
- 1999Wa09 J.C.Wang, P.Dendooven, M.Hannawald, A.Honkanen, M.Huhta, A.Jokinen, K.-L.Kratz, G.Lhersonneau, M.Oinonen, H.Penttila, K.Perajarvi, B.Pfeiffer, J.Aysto Phys.Lett. 454B, 1 (1999)
- 2000Ga22 P.E.Garrett, N.Warr, S.W.Yates J.Res.Natl.Inst.Stand.Technol. 105, 141 (2000)
- 2000Ko47 C.Kohstall, D.Belic, P.von Brentano, C.Fransen, R.-D.Herzberg, J.Jolie, U.Kneissl, H.Lehmann, A.Linnemann, P.Matschinsky, A.Nord, N.Pietralla, H.H.Pitz, V.Werner, S.W.Yates Trans.Bulg.Nucl.Soc. 5, 179 (2000)
- 2000KrZX R.Krucken Proc.2nd Intern.Conf Fission and Properties of Neutron-Rich Nuclei, St Andrews, Scotland, June 28-July 3, 1999, J.H.Hamilton, W.R.Phillips, H.K.Carter, Eds., World Scientific, Singapore, p.363 (2000)
- 2000Lh02 G.Lhersonneau, P.Dendooven, G.Canchel, J.Huikari, P.Jardin, A.Jokinen, V.Kolhinen, C.Lau, L.Lebreton, A.C.Mueller, A.Nieminen, S.Nummela, H.Penttila, K.Perajarvi, Z.Radivojevic, V.Rubchenya, M.-G.Saint-Laurent, W.H.Trzaska, D.Vakhtin, J.Vervier, A.C.C.Villari, J.C.Wang, J.Aysto Eur.Phys.J. A 9, 385 (2000)
- 2000LuZY R.Lucas, M.Houry, Ch.Theisen, F.Becker, W.Korten, Y.Le Coz, J.L.Durell, M.J.Leddy, A.A.Roach, A.G.Smith, B.J.Varley, G.Barreau, M.Aiche, M.M.Aleonard, J.F.Chemin, T.P.Doan, J.N.Scheurer, M.-G.Porquet, I.Deloncle, M.Girod, Th.Ethvignot, A.Astier, N.Redon, S.Perries Proc.2nd Intern.Conf Fission and Properties of Neutron-Rich Nuclei, St Andrews, Scotland, June 28-July 3, 1999, J.H.Hamilton, W.R.Phillips, H.K.Carter, Eds., World Scientific, Singapore, p.79 (2000)
- 2001Fe05 L.S.Ferreira, E.Maglione Phys.Rev.Lett. 86, 1721 (2001)
- 2001Ga44 P.E.Garrett, H.Lehmann, J.Jolie, C.A.McGrath, M.Yeh, W.Younes, S.W.Yates Phys.Rev. C64, 024316 (2001)
- 2001Ko49 C.Kohstall, D.Belic, P.von Brentano, C.Fransen, R.-D.Herzberg, J.Jolie, U.Kneissl, H.Lehmann, A.Linnemann, P.Matschinsky, A.Nord, N.Pietralla, H.H.Pitz, M.Scheck, F.Stedile, V.Werner, S.W.Yates Yad.Fiz. 64, No 6, 1217 (2001); Phys.Atomic Nuclei 64, 1141 (2001)
- 2001Kr08 R.Krucken, S.J.Asztalos, R.M.Clark, M.A.Deleplanque, R.M.Diamond, P.Fallon, I.Y.Lee, A.O.Macchiavelli, G.J.Schmid, F.S.Stephens, K.Vetter, J.-Y.Zhang Eur.Phys.J. A 10, 151 (2001)
- 2001Sm13 J.F.Smith, C.J.Chiara, D.B.Fossan, D.R.LaFosse, G.J.Lane, J.M.Sears, K.Starosta, M.Devlin, F.Lerma, D.G.Sarantites, S.J.Freeman, M.J.Leddy, J.L.Durell, A.J.Boston, E.S.Paul, A.T.Semple, I.Y.Lee, A.O.Macchiavelli, P.H.Heenen Phys.Lett. 523B, 13 (2001)

- 2002Ha46 J.H.Hamilton, A.V.Ramayya, J.K.Hwang, X.Y.Luo, J.O.Rasmussen, E.F.Jones, X.Q.Zhang, S.J.Zhu, P.M.Gore, T.N.Ginter, I.Y.Lee, R.V.F.Janssens, I.Ahmed, J.D.Cole, W.Greiner, G.Ter-Akopian, Y.Oganessian Eur.Phys.J. A 15, 175 (2002)
- 2002Poll M.-G.Porquet, Ts.Venkova, P.Petkov, A.Bauchet, I.Deloncle, A.Astier, N.Buforn, J.Duprat, B.J.P.Gall, C.Gautherin, E.Gueorguieva, F.Hoellinger, T.Kutsarova, R.Lucas, M.Meyer, A.Minkova, N.Redon, N.Schulz, H.Sergolle, A.Wilson Eur.Phys.J. A 15, 463 (2002)
- 2003Du25 J.L.Durell, T.J.Armstrong, W.Urban Acta Phys.Pol. B34, 2277 (2003)
- 2003Fo09 N.Fotiades, J.A.Cizewski, R.Krucken, D.P.McNabb, J.A.Becker, L.A.Bernstein, W.Younes, R.M.Clark, P.Fallon, I.Y.Lee, A.O.Macchiavelli Phys.Rev. C 67, 064304 (2003)
- 2003FuZY Zs.Fulop, Gy.Gyurky, E.Somorjai, Z.Mate, L.Zolnai, D.Galaviz, M.Babilon, R.Hillier, P.Mohr, A.Zilges, T.Rauscher ATOMKI 2002 Ann.Rept., p.7 (2003)
- 2003Ga30 D.Galaviz, M.Babilon, Zs.Fulop, Gy.Gyurky, R.Hillier, Z.Mate, P.Mohr, T.Rauscher, E.Somorjai, A.Zilges, L.Zolnai Nucl.Phys. A718, 578c (2003)
- 2003Ga33 D.Galaviz, M.Babilon, Zs.Fulop, Gy.Gyurky, Z.Mate, R.Hillier, P.Mohr, T.Rauscher, E.Somorjai, A.Zilges, L.Zolnai Nucl.Phys. A719, 111c (2003)
- 2003Hu05 H.Hua, C.Y.Wu, D.Cline, A.B.Hayes, R.Teng, R.M.Clark, P.Fallon, A.Goergen, A.O.Macchiavelli, K.Vetter Phys.Lett. B 562, 201 (2003)
- 2003Mo09 P.Moller, B.Pfeiffer, K.-L.Kratz Phys.Rev. C 67, 055802 (2003)
- 2003Poll M.-G.Porquet, Ts.Venkova, A.Astier, A.Bauchet, I.Deloncle, N.Buforn, L.Donadille, O.Dorvaux, B.J.P.Gall, S.Lalkovski, R.Lucas, M.Meyer, A.Minkova, A.Prevost, N.Redon, N.Schulz, O.Stezowski Eur.Phys.J. A 18, 25 (2003)
- 2003Wo15 M.Wolinska-Cichocka, B.Bekman, Ch.Droste, J.Dworski, W.Gast, J.Iwanicki, H.Jager, M.Kisielinski, A.Kordyasz, M.Kowalczyk, J.Kownacki, R.Lieder, W.Meczynski, T.Morek, M.Palacz, J.Perkowski, E.Ruchowska, J.Srebrny, A.Stolarz, J.Styczen Acta Phys.Pol. B34, 2305 (2003)
- 2003Wo16 M.Wolinska-Cichocka, J.Kownacki, E.Ruchowska, and the OSIRIS-II Collaboration Acta Phys.Pol. B34, 2309 (2003)
- 2004Ha19 J.H.Hamilton, S.J.Zhu, A.V.Ramayya, P.M.Gore, J.O.Rasmussen, E.F.Jones, J.K.Hwang, R.Q.Xu, L.Y.Yang, K.Li, Z.Jiang, Z.Zhang, S.D.Ziao, X.Q.Zhang, J.Kormicki, Y.X.Luo, L.Chaturvedi, W.C.Ma, J.D.Cole, M.W.Drigert, I.Y.Lee, P.Fallon, M.A.Stoyer, T.N.Ginter, G.M.Ter-Akopian, A.V.Daniel, Yu.Ts.Oganessian, R.Donangelo, V.Dimitrov, S.Frauendorf Nucl.Phys. A734, 257 (2004)
- 2004Lu03 Y.X.Luo, S.C.Wu, J.Gilat, J.O.Rasmussen, J.H.Hamilton, A.V.Ramayya, J.K.Hwang, C.J.Beyer, S.J.Zhu, J.Kormicki, X.Q.Zhang, E.F.Jones, P.M.Gore, I-Y.Lee, P.Zielinski, C.M.Folden III, T.N.Ginter, P.Fallon, G.M.Ter-Akopian, A.V.Daniel, M.A.Stover, J.D.Cole, R.Donangelo, S.J.Asztalos, A.Gelberg Phys.Rev. C 69, 024315 (2004)
- 2004Sm04 A.G.Smith, D.Patel, G.S.Simpson, R.M.Wall, J.F.Smith, O.J.Onakanmi, I.Ahmad, J.P.Greene, M.P.Carpenter, T.Lauritsen, C.J.Lister, R.V.F.Janssens, F.G.Kondev, D.Seweryniak, B.J.P.Gall, O.Dorvaux, B.Roux Phys.Lett. B 591, 55 (2004)
- 2005De02 A.Y.Deo, S.K.Tandel, S.B.Patel, P.V.Madhusudhana Rao, S.Muralithar, R.P.Singh, R.Kumar, R.K.Bhowmik, Amita Phys.Rev. C 71, 017303 (2005)
- 2005Ga21 D.Galaviz, Zs.Fulop, Gy.Gyurky, Z.Mate, P.Mohr, T.Rauscher, E.Somorjai, A.Zilges Phys.Rev. C 71, 065802 (2005)
- 2005Ja10 Z.Janas, L.Batist, R.Borcea, J.Doring, M.Gierlik, M.Karny, R.Kirchner, M.La Commara, S.Mandal, C.Mazzocchi, F.Moroz, S.Orlov, A.Plochocki, E.Roeckl, J.Zylicz Eur.Phys.J. A 24, 205 (2005)
- 2005Ko32 C.Kohstall, D.Belic, P.von Brentano, C.Fransen, A.Gade, R.-D.Herzberg, J.Jolie, U.Kneissl, A.Linnemann, A.Nord, N.Pietralla, H.H.Pitz, M.Scheck, F.Stedile, V.Werner, S.W.Yates Phys.Rev. C 72, 034302 (2005)
- 2005Ku28 A.Kumar, J.N.Orce, S.R.Lesher, C.J.McKay, M.T.McEllistrem, S.W.Yates Phys.Rev. C 72, 034313 (2005)
- 2005Ku37 A.Kumar, J.N.Orce, S.R.Lesher, C.J.McKay, M.T.McEllistrem, S.W.Yates Eur.Phys.J. A 25, Supplement 1, 443 (2005)
- 2005PyZZ I.Pysmenetska, S.Walter, J.Enders, H.von Garrel, O.Karg, U.Kneissl, C.Kohstall, P.von Neumann-Cosel, H.H.Pitz, V.Yu.Ponomarev, M.Scheck, F.Stedile, S.Volz nucl-ex/0512013,12/8/2005 (2005)
- 2005Sm08 A.G.Smith, R.Orlandi, D.Patel, G.S.Simpson, R.M.Wall, J.F.Smith, O.J.Onakanmi, I.Ahmad, J.P.Greene, M.P.Carpenter, T.Lauritsen, C.J.Lister, R.V.F.Janssens, F.G.Kondev, D.Seweryniak, B.J.P.Gall, O.Dorvaux, B.Roux J.Phys.(London) G31. S1433 (2005)
- 2006Ch07 X.-L.Che, S.-J.Zhu, J.H.Hamilton, A.V.Ramayya, J.K.Hwang, J.O.Rasmussen, Y.X.Luo, Y.-J.Chen, M.-L.Li, H.-B.Ding, Y.-N.U, I.Y.Lee, W.C.Ma Chin.Phys.Lett. 23, 328 (2006)
- 2006Ev01 A.O.Evans, E.S.Paul, A.J.Boston, H.J.Chantler, C.J.Chiara, M.Devlin, A.M.Fletcher, D.B.Fossan, D.R.LaFosse, G.J.Lane, I.Y.Lee, A.O.Macchiavelli, P.J.Nolan, D.G.Sarantites, J.M.Sears, A.T.Semple, J.F.Smith, K.Starosta, C.Vaman, A.V.Afanasjev, I.Ragnarsson Phys.Lett. B 636, 25 (2006)
- 2006FuZZ Z.Fulop, D.Galaviz, G.Gyurky, G.G.Kiss, Z.Mate, P.Mohr, T.Rauscher, E.Somorjai, A.Zilges Proc.Int.Sym.on Origin of Matter and Evolution of Galaxies 2005 (OMEG05):New Horizon of Nuclear Astrophysics and Cosmology, Tokyo, Japan, November 8-11, 2005, S.Kubono, W.Aoki, T.Kajino, T.Motobayashi, K.Nomoto, Eds., p.351 (2006); AIP Conf. Proc 847
- 2006Py01 I.Pysmenetska, S.Walter, J.Enders, H.von Garrel, O.Karg, U.Kneissl, C.Kohstall, P.von Neumann-Cosel, H.H.Pitz, V.Yu.Ponomarev, M.Scheck, F.Stedile, S.Volz Phys.Rev. C 73, 017302 (2006)
- 2006Wu01 C.Y.Wu, H.Hua, D.Cline, A.B.Hayes, R.Teng, D.Riley, R.M.Clark, P.Fallon, A.Goergen, A.O.Macchiavelli, K.Vetter Phys.Rev. C 73, 034312 (2006)
- 2007ChZZ X.-L.Che Priv.Comm. (2007)
- 2007Ga22 P.E.Garrett, K.L.Green, H.Lehmann, J.Jolie, C.A.McGrath, M.Yeh, S.W.Yates Phys.Rev. C 75, 054310 (2007)
- 2007Ga45 S.Ganguly, P.Banerjee, I.Ray, R.Kshetri, R.Raut, S.Bhattacharya, M.Saha-Sarkar, A.Goswami, S.Mukhopadhyay, A.Mukherjee, G.Mukherjee, S.K.Basu Nucl.Phys. A789, 1 (2007)
- 2007Go21 C.Goodin, Y.X.Luo, J.K.Hwang, A.V.Ramayya, J.H.Hamilton, J.O.Rasmussen, S.J.Zhu, A.Gelberg, G.M.Ter-Akopian Nucl.Phys. A787, 231c (2007)
- 2007Ha20 U.Hager, V.-V.Elomaa, T.Eronen, J.Hakala, A.Jokinen, A.Kankainen, S.Rahaman, S.Rinta-Antila, A.Saastamoinen, T.Sonoda, J.Aysto Phys.Rev. C 75, 064302 (2007)

- 2007Or04 J.N.Orce, S.N.Choudry, B.Crider, E.Elhami, S.Mukhopadhyay, M.Scheck, M.T.McEllistrem, S.W.Yates Phys.Rev. C 76, 021302 (2007); Erratum Phys.Rev. C 77, 029902 (2008)
- 2007Pa07 E.S.Paul, K.Starosta, A.O.Evans, A.J.Boston, H.J.Chantler, C.J.Chiara, M.Devlin, A.M.Fletcher, D.B.Fossan, D.R.LaFosse, G.J.Lane, I.Y.Lee, A.O.Macchiavelli, P.J.Nolan, D.G.Sarantites, J.M.Sears, A.T.Semple, J.F.Smith, C.Vaman, A.V.Afanasiev, I.Ragnarsson Phys.Rev. C 75, 014308 (2007)
- 2007Va22 C.Vaman, C.Andreoiu, D.Bazin, A.Becerril, B.A.Brown, C.M.Campbell, A.Chester, J.M.Cook, D.C.Dinca, A.Gade, D.Galaviz, T.Glasmacher, M.Hjorth-Jensen, M.Horoi, D.Miller, V.Moeller, W.F.Mueller, A.Schiller, K.Starosta, A.Stolz, J.R.Terry, A.Volya, V.Zelevinsky, H.Zwahlen Phys.Rev.Lett. 99, 162501 (2007)
- 2008BoZK M.Boswell Thesis, University of North Carolina at Chapel Hill (2008)
- 2008Ki07 T.Kibedi, T.W.Burrows, M.B.Trzhaskovskaya, P.M.Davidson, C.W.Nestor, Jr. Nucl.Instrum.Methods Phys.Res. A589, 202 (2008)
- 2008Ma25 V.M.Mazur, Z.M.Bigan, D.M.Symochko Phys.Part. and Nucl.Lett. 5, 374 (2008); Pisma Zh.Fiz.Elem.Chast.Atom.Yadra
 No.4 [146], 634 (2008)
- 2008Su19 B.Sun, R.Knobel, Yu.A.Litvinov, H.Geissel, J.Meng, K.Beckert, F.Bosch, D.Boutin, C.Brandau, L.Chen, I.J.Cullen, C.Dimopoulou, B.Fabian, M.Hausmann, C.Kozhuharov, S.A.Litvinov, M.Mazzocco, F.Montes, G.Munzenberg, A.Musumarra, S.Nakajima, C.Nociforo, F.Nolden, T.Ohtsubo, A.Ozawa, Z.Patyk, W.R.Plass, C.Scheidenberger, M.Steck, T.Suzuki, P.M.Walker, H.Weick, N.Winckler, M.Winkler, T.Yamaguchi Nucl.Phys. A812, 1 (2008)
- 2008Zh29 V.A.Zheltonozhsky, V.M.Mazur, Z.M.Bigan, D.M.Simochko Bull.Rus.Acad.Sci.Phys. 72, 1548 (2008); Izv.Akad.Nauk RAS, Ser.Fiz. 72, 1634 (2008)
- 2009Fo05 C.M.Folden III, A.S.Nettleton, A.M.Amthor, T.N.Ginter, M.Hausmann, T.Kubo, W.Loveland, S.L.Manikonda, D.J.Morrissey, T.Nakao, M.Portillo, B.M.Sherrill, G.A.Souliotis, B.F.Strong, H.Takeda, O.B.Tarasov Phys.Rev. C 79, 064318 (2009)
- 2009Gr10 K.L.Green, P.E.Garrett, R.A.E.Austin, G.C.Ball, D.S.Bandyopadhyay, S.Colosimo, D.Cross, G.A.Demand, G.F.Grinyer, G.Hackman, W.D.Kulp, K.G.Leach, A.C.Morton, C.J.Pearson, A.A.Phillips, M.A.Schumaker, C.E.Svensson, J.Wong, J.L.Wood, S.W.Yates Phys.Rev. C 80, 032502 (2009)
- 2009Li66 X.-Q.Li, L.-H.Zhu, X.-G.Wu, C.-Y.He, Y.Liu, B.Pan, X.Hao, L.-H.Li, Z.-M.Wang, G.-S.Li, Z.-Y.Li, S.-Y.Wang, Q.Xu, J.-G.Wang, H.-B.Ding, J.Zhai Chin.Phys.C 33, Supplement 1, 209 (2009)
- Y.X.Luo, S.J.Zhu, J.H.Hamilton, J.O.Rasmussen, A.V.Ramayya, C.Goodin, K.Li, J.K.Hwang, D.Almehed, S.Frauendorf,
 V.Dimitrov, Jing-ye Zhang, X.L.Che, Z.Jang, I.Stefanescu, A.Gelberg, G.M.Ter-Akopian, A.V.Daniel, M.A.Stoyer,
 R.Donangelo, J.D.Cole, N.J.Stone Phys.Lett. B 670, 307 (2009); Erratum Phys.Lett. B 691, 285 (2010)
- 2009Lu18 Y.X.Luo, S.J.Zhu, J.H.Hamilton, A.V.Ramayya, C.Goodin, K.J.Li, X.L.Che, J.K.Hwang, I.Y.Lee, Z.Jiang, G.M.Ter-Akopian, A.V.Daniel, M.A.Stoyer, R.Donangelo, S.Frauendorf, V.Dimitrov, J.-Y.Zhang, J.D.Cole, N.J.Stone, J.O.Rasmussen Int.J.Mod.Phys. E18, 1697 (2009)
- 2009Pe06 J.Pereira, S.Hennrich, A.Aprahamian, O.Arndt, A.Becerril, T.Elliot, A.Estrade, D.Galaviz, R.Kessler, K.-L.Kratz, G.Lorusso, P.F.Mantica, M.Matos, P.Moller, F.Montes, B.Pfeiffer, H.Schatz, F.Schertz, L.Schnorrenberger, E.Smith, A.Stolz, M.Quinn, W.B.Walters, A.Wohr Phys.Rev. C 79, 035806 (2009)
- 2009Pe09 D.Peterson, W.Loveland, O.Batenkov, M.Majorov, A.Veshikov, K.Aleklett, C.Rouki Phys.Rev. C 79, 044607 (2009)
- 2009Zh24 S.J.Zhu, Y.X.Luo, J.H.Hamilton, A.V.Ramayya, X.L.Che, Z.Jiang, J.K.Hwang, J.L.Wood, M.A.Stoyer, R.Donangelo, J.D.Cole, C.Goodin, J.O.Rasmussen Int.J.Mod.Phys. E18, 1717 (2009)
- 2009Zh50 S.-J.Zhu, J.H.Hamilton, A.V.Ramayya, J.K.Hwang, J.O.Rasmussen, Y.X.Luo, K.Li, J.-G.Wang, X.-L.Che, H.-B.Ding, S.Frauendorf, V.Dimitrov, Q.Xu, L.Gu, Y.-Y.Yang Chin.Phys.C 33, Supplement 1, 145 (2009)
- 2010Br15 A.M.Bruce, S.Lalkovski, A.M.D.Bacelar, M.Gorska, S.Pietri, Zs.Podolyak, Y.Shi, P.M.Walker, F.R.Xu, P.Bednarczyk, L.Caceres, E.Casarejos, I.J.Cullen, P.Doornenbal, G.F.Farrelly, A.B.Garnsworthy, H.Geissel, W.Gelletly, J.Gerl, J.Grebosz, C.Hinke, G.Ilie, G.Jaworski, I.Kojouharov, N.Kurz, S.Myalski, M.Palacz, W.Prokopowicz, P.H.Regan, H.Schaffner, S.Steer, S.Tashenov, H.J.Wollersheim Phys.Rev. C 82, 044312 (2010)
- 2010Ha16 J.H.Hamilton, S.J.Zhu, Y.X.Luo, A.V.Ramayya, S.Frauendorf, J.O.Rasmussen, J.K.Hwang, S.H.Liu, G.M.Ter-Akopian, A.V.Daniel, Y.Oganessian Nucl.Phys. A834, 28c (2010)
- 2010He09 C.-Y.He, X.-Q.Li, L.-H.Zhu, X.-G.Wu, Y.Liu, B.Pan, X.Hao, L.-H.Li, Z.-M.Wang, G.-S.Li, Z.-Y.Li, S.-Y.Wang, Q.Xu, J.-G.Wang, H.-B.Ding, J.Zhai Nucl.Phys. A834, 84c (2010)
- 2010He23 C.Y.He, X.Q.Li, L.H.Zhu, X.G.Wu, Y.Liu, B.Pan, L.H.Li, Z.M.Wang, G.S.Li, Z.Y.Li, S.Y.Wang, Q.Xu, J.G.Wang, H.B.Ding, J.Zhai Eur.Phys.J. A 46, 1 (2010)
- 2010Ku07 R.Kumar, P.Doornenbal, A.Jhingan, R.K.Bhowmik, S.Muralithar, S.Appannababu, R.Garg, J.Gerl, M.Gorska, J.Kaur, I.Kojouharov, S.Mandal, S.Mukherjee, D.Siwal, A.Sharma, P.P.Singh, R.P.Singh, H.-J.Wollersheim Phys.Rev. C 81, 024306 (2010)
- 20100h02 T.Ohnishi, T.Kubo, K.Kusaka, A.Yoshida, K.Yoshida, M.Ohtake, N.Fukuda, H.Takeda, D.Kameda, K.Tanaka, N.Inabe, Y.Yanagisawa, Y.Gono, H.Watanabe, H.Otsu, H.Baba, T.Ichihara, Y.Yamaguchi, M.Takechi, S.Nishimura, H.Ueno, A.Yoshimi, H.Sakurai, T.Motobayashi, T.Nakao, Y.Mizoi, M.Matsushita, K.Ieki, N.Kobayashi, K.Tanaka, Y.Kawada, N.Tanaka, S.Deguchi, Y.Satou, Y.Kondo, T.Nakamura, K.Yoshinaga, C.Ishii, H.Yoshii, Y.Miyashita, N.Uematsu, Y.Shiraki, T.Sumikama, J.Chiba, E.Ideguchi, A.Saito, T.Yamaguchi, I.Hachiuma, T.Suzuki, T.Moriguchi, A.Ozawa, T.Ohtsubo, M.A.Famiano, H.Geissel, A.S.Nettleton, O.B.Tarasov, D.P.Bazin, B.M.Sherrill, S.L.Manikonda, J.A.Nolen J.Phys.Soc.Jpn. 79, 073201 (2010)
- 2010Ra01 Md.S.Rahman, K.-S.Kim, M.Lee, G.Kim, Y.Oh, H.-S.Lee, M.-Hy.Cho, I.S.Ko, W.Namkung, N.V.Do, P.D.Khue, K.T.Thanh, T.-I.Ro Nucl.Instrum.Methods Phys.Res. B268, 13 (2010)
- 2010Sc13 M.Scheck, P.A.Butler, C.Fransen, V.Werner, S.W.Yates Phys.Rev. C 81, 064305 (2010)
- 2011Ch23 S.K.Chamoli, A.E.Stuchbery, S.Frauendorf, J.Sun, Y.Gu, R.F.Leslie, P.T.Moore, A.Wakhle, M.C.East, T.Kibedi, A.N.Wilson Phys.Rev. C 83, 054318 (2011)
- 2011Ch33 P.Chodash, C.T.Angell, J.Benitez, E.B.Norman, M.Pedretti, H.Shugart, E.Swanberg, R.Yee Appl.Radiat.Isot. 69, 1447 (2011)

- 2011Ga10 P.E.Garrett, K.L.Green, R.A.E.Austin, G.C.Ball, D.S.Bandyopadhyay, S.Colosimo, D.S.Cross, G.A.Demand, G.F.Grinyer, G.Hackman, W.D.Kulp, K.G.Leach, A.C.Morton, C.J.Pearson, A.A.Phillips, M.A.Schumaker, C.E.Svensson, J.Wong, J.L.Wood, S.W.Yates Acta Phys.Pol. B42, 799 (2011)
- 2011He04 C.Y.He, X.Q.Li, L.H.Zhu, X.G.Wu, B.Qi, Y.Liu, B.Pan, G.S.Li, L.H.Li, Z.M.Wang, Z.Y.Li, S.Y.Wang, Q.Xu, J.G.Wang, H.B.Ding, J.Zhai Phys.Rev. C 83, 024309 (2011)
- 2011Ju01 A.Jungclaus, J.Walker, J.Leske, K.-H.Speidel, A.E.Stuchbery, M.East, P.Boutachkov, J.Cederkall, P.Doornenbal, J.L.Egido, A.Ekstrom, J.Gerl, R.Gernhauser, N.Goel, M.Gorska, I.Kojouharov, P.Maier-Komor, V.Modamio, F.Naqvi, N.Pietralla, S.Pietri, W.Prokopowicz, H.Schaffner, R.Schwengner, H.-J.Wollersheim Phys.Lett. B 695, 110 (2011)
- 2011Ki15 G.G.Kiss, P.Mohr, Zs.Fulop, Gy.Gyurky, Z.Elekes, J.Farkas, E.Somorjai, C.Yalcin, D.Galaviz, R.T.Guray, N.Ozkan, J.Gorres Phys.Rev. C 83, 065807 (2011)
- 2011Ki17 S.Kisyov, S.Lalkovski, N.Marginean, D.Bucurescu, L.Atanasova, D.L.Balabanski, Gh.Cata-Danil, I.Cata-Danil, J.-M.Daugas, D.Deleanu, P.Detistov, D.Filipescu, G.Georgiev, D.Ghita, T.Glodariu, J.Jolie, D.S.Judson, R.Lozeva, R.Marginean, C.Mihai, A.Negret, S.Pascu, D.Radulov, J.-M.Regis, M.Rudigier, T.Sava, L.Stroe, G.Suliman, N.V.Zamfir, K.O.Zell, M.Zhekova Phys.Rev. C 84, 014324 (2011)
- 2011Ku05 R.Kumar, P.Doornenbal, A.Jhingan, R.K.Bhowmik, S.Appannababu, P.Bednarczyk, L.Caceres, J.Cederkall, A.Ekstrom, R.Garg, J.Gerl, M.Gorska, H.Grawe, J.Kaur, I.Kojouharov, S.Mandal, S.Mukherjee, S.Muralithar, W.Prokopowicz, P.P.Singh, P.Reiter, H.Schaffner, A.Sharma, R.P.Singh, D.Siwal, H.J.Wollersheim Acta Phys.Pol. B42, 813 (2011)
- 2011Li51 J.Liu, Z.Ren, T.Dong, Z.Sheng Phys.Rev. C 84, 064305 (2011); Erratum Phys.Rev. C 85, 059901 (2012)
- 2011Ni01 S.Nishimura, Z.Li, H.Watanabe, K.Yoshinaga, T.Sumikama, T.Tachibana, K.Yamaguchi, M.Kurata-Nishimura, G.Lorusso, Y.Miyashita, A.Odahara, H.Baba, J.S.Berryman, N.Blasi, A.Bracco, F.Camera, J.Chiba, P.Doornenbal, S.Go, T.Hashimoto, S.Hayakawa, C.Hinke, E.Ideguchi, T.Isobe, Y.Ito, D.G.Jenkins, Y.Kawada, N.Kobayashi, Y.Kondo, R.Krucken, S.Kubono, T.Nakano, H.Sakurai, H.Scheit, K.Steiger, D.Steppenbeck, K.Sugimoto, H.J.Ong, S.Ota, Zs.Podolyak, S.Takano, A.Takashima, K.Tajiri, T.Teranishi, Y.Wakabayashi, P.M.Walker, O.Wieland, H.Yamaguchi Phys.Rev.Lett. 106, 052502 (2011)
- 2011NiZY S.Nishimura, Z.Li, H.Watanabe, K.Yoshinaga, T.Sumikama, K.Yamaguchi, M.Kurata-Nishimura, G.Lorusso, Y.Miyashita, A.Odahara, J.Chiba, H.Baba, J.S.Berryman, N.Blasi, A.Bracco, F.Camera, P.Doornenbal, S.Go, T.Hashimoto, S.Hayakawa, C.Hinke, E.Ideguchi, T.Isobe, Y.Itou, D.G.Jankins, Y.Kawada, N.Kobayashi, Y.Kondo, R.Kruchen, S.Kubono, H.J.Ong, S.Ota, Zs.Podolyak, H.Sakurai, H.Scheit, K.Steiger, D.Steppenbeck, K.Sugimoto, T.Tachibana, A.Takashima, K.Tajiri, T.Teranishi, Y.Wakabayashi, P.M.Walker, O.Wieland, H.Yamaguchi RIKEN Accelerator Progress Report 2010, p.i (2011)
- 2011Po11 G.Potel, F.Barranco, F.Marini, A.Idini, E.Vigezzi, R.A.Broglia Phys.Rev.Lett. 107, 092501 (2011)
- 2011Wal5 J.Walker, A.Jungclaus, J.Leske, K.-H.Speidel, A.Ekstrom, P.Boutachkov, J.Cederkall, P.Doornenbal, J.Gerl, R.Gernhauser, N.Goel, M.Gorska, I.Kojouharov, P.Maier-Komor, V.Modamio, F.Naqvi, N.Pietralla, S.Pietri, W.Prokopowicz, H.Schaffner, R.Schwengner, H.-J.Wollersheim Phys.Rev. C 84, 014319 (2011)
- 2012Ca03 L.Cartegni, C.Mazzocchi, R.Grzywacz, I.G.Darby, S.N.Liddick, K.P.Rykaczewski, J.C.Batchelder, L.Bianco, C.R.Bingham, E.Freeman, C.Goodin, C.J.Gross, A.Guglielmetti, D.T.Joss, S.H.Liu, M.Mazzocco, S.Padgett, R.D.Page, M.M.Rajabali, M.Romoli, P.J.Sapple, J.Thomson, H.V.Watkins Phys.Rev. C 85, 014312 (2012)
- 2012Gu10 P.Guazzoni, L.Zetta, A.Covello, A.Gargano, B.F.Bayman, G.Graw, R.Hertenberger, H.-F.Wirth, T.Faestermann, M.Jaskola Phys.Rev. C 85, 054609 (2012)
- D.Kameda, T.Kubo, T.Ohnishi, K.Kusaka, A.Yoshida, K.Yoshida, M.Ohtake, N.Fukuda, H.Takeda, K.Tanaka, N.Inabe, Y.Yanagisawa, Y.Gono, H.Watanabe, H.Otsu, H.Baba, T.Ichihara, Y.Yamaguchi, M.Takechi, S.Nishimura, H.Ueno, A.Yoshimi, H.Sakurai, T.Motobayashi, T.Nakao, Y.Mizoi, M.Matsushita, K.Ieki, N.Kobayashi, K.Tanaka, Y.Kawada, N.Tanaka, S.Deguchi, Y.Satou, Y.Kondo, T.Nakamura, K.Yoshinaga, C.Ishii, H.Yoshii, Y.Miyashita, N.Uematsu, Y.Shiraki, T.Sumikama, J.Chiba, E.Ideguchi, A.Saito, T.Yamaguchi, I.Hachiuma, T.Suzuki, T.Moriguchi, A.Ozawa, T.Ohtsubo, M.A.Famiano, H.Geissel, A.S.Nettleton, O.B.Tarasov, D.Bazin, B.M.Sherrill, S.L.Manikonda, J.A.Nolen Phys.Rev. C 86, 054319 (2012)
- 2012Li51 X.W.Li, J.Li, J.B.Lu, K.Y.Ma, Y.H.Wu, L.H.Zhu, C.Y.He, X.Q.Li, Y.Zheng, G.S.Li, X.G.Wu, Y.J.Ma, Y.Z.Liu Phys.Rev. C 86, 057305 (2012)
- 2012Sm02 A.G.Smith, J.L.Durell, W.R.Phillips, W.Urban, P.Sarriguren, I.Ahmad Phys.Rev. C 86, 014321 (2012)
- 2012Tr01 T.Trivedi, R.Palit, J.Sethi, S.Saha, S.Kumar, Z.Naik, V.V.Parkar, B.S.Naidu, A.Y.Deo, A.Raghav, P.K.Joshi, H.C.Jain, S.Sihotra, D.Mehta, A.K.Jain, D.Choudhury, D.Negi, S.Roy, S.Chattopadhyay, A.K.Singh, P.Singh, D.C.Biswas, R.K.Bhowmik, S.Muralithar, R.P.Singh, R.Kumar, K.Rani Phys.Rev. C 85, 014327 (2012)
- 2012Tr11 T.Trivedi, R.Palit, J.Sethi, S.Saha, S.Kumar, Z.Naik, V.V.Parkar, B.S.Naidu, A.Y.Deo, A.Raghav, P.K.Joshi, H.C.Jain, S.Sihotra, D.Mehta, A.K.Jain, D.Choudhury, D.Negi, S.Roy, S.Chattopadhyay, A.K.Singh, P.Singh, D.C.Biswas, R.K.Bhowmik, S.Muralithar, R.P.Singh, R.Kumar, K.Rani J.Phys.:Conf.Ser. 381, 012061 (2012)
- 2012Wa10 P.T.Wady, J.F.Smith, E.S.Paul, B.Hadinia, C.J.Chiara, M.P.Carpenter, C.N.Davids, A.N.Deacon, S.J.Freeman, A.N.Grint, R.V.F.Janssens, B.P.Kay, T.Lauritsen, C.J.Lister, B.M.McGuirk, M.Petri, A.P.Robinson, D.Seweryniak, D.Steppenbeck, S.Zhu Phys.Rev. C 85, 034329 (2012)
- 2012Wa38 M.Wang, G.Audi, A.H.Wapstra, F.G.Kondev, M.MacCormick, X.Xu, B.Pfeiffer Chin.Phys.C 36, 1603 (2012)
- 2013Li23 S.H.Liu, J.H.Hamilton, A.V.Ramayya, S.J.Zhu, Y.Shi, F.R.Xu, J.C.Batchelder, N.T.Brewer, J.K.Hwang, Y.X.Luo, J.O.Rasmussen, W.C.Ma, A.V.Daniel, G.M.Ter-Akopian, Yu.Ts.Oganessian Phys.Rev. C 87, 057302 (2013)
- 2013Sn01 J.B.Snyder, W.Reviol, D.G.Sarantites, A.V.Afanasjev, R.V.F.Janssens, H.Abusara, M.P.Carpenter, X.Chen, C.J.Chiara, J.P.Greene, T.Lauritsen, E.A.McCutchan, D.Seweryniak, S.Zhu Phys.Lett. B 723, 61 (2013)
- 2014Oz03 B.Ozel-Tashenov, J.Enders, H.Lenske, A.M.Krumbholz, E.Litvinova, P.von Neumann-Cosel, I.Poltoratska, A.Richter, G.Rusev, D.Savran, N.Tsoneva Phys.Rev. C 90, 024304 (2014)