3. Design and Troubleshooting of Clippers and Clampers

Course: ECE1008 – Electronic Hardware Troubleshooting LAB

-Dr Richards Joe Stanislaus

Assistant Professor - SENSE

Email: 51749@vitstudent.ac.in

1. Introduction to Clippers

 Circuit designed to prevent a signal from exceeding a predetermined reference voltage level

When will the diode be forward biased?

- In diode forward bias: (Diode conducts)
- $V_{SQ} = V_{in} V_R > V_D$ $V_{in} > V_R + V_D$

- In diode forward bias: (Diode conducts)
- $V_{SQ} = V_{in} V_R > V_D$ $V_{in} > V_R + V_D$

$$V_{out} = V_{PQ} + V_R$$

$$= V_D + V_R$$

- In diode forward bias: (Diode conducts)
- In diode reverse bias (I=0)

•
$$V_{SO} = V_{in} - V_R > V_D$$

$$V_{in} > V_R + V_D$$

•
$$V_{SQ} = V_{in} - V_R > V_D$$
 $V_{in} > V_R + V_D$ • $V_{SQ} = V_{in} - V_R < V_D$ $V_{in} < V_R + V_D$

•
$$V_{out} = V_{PQ} + V_R$$

= $V_D + V_R$

When will the diode be forward biased? $V_{SO} > V_D$

- In diode forward bias: (Diode conducts)
- $V_{SO} = V_{in} V_R > V_D$ $V_{in} > V_R + V_D$ $V_{SQ} = V_{in} V_R < V_D$ $V_{in} < V_R + V_D$
- $V_{out} = V_{PO} + V_R$ $=V_D+V_R$

• In diode reverse bias (I = 0)

•
$$V_{SO} = V_{in} - V_R < V_D$$
 $V_{in} < V_R + V_D$

•
$$V_{out} = V_{in} - IR$$

= V_{in}

- In diode forward bias: (Diode conducts)
- $V_{SQ} = V_{in} V_R > V_D$ $V_{in} > V_R + V_D$ $V_{SQ} = V_{in} V_R < V_D$ $V_{in} < V_R + V_D$
- $V_{out} = V_{PO} + V_R$ $=V_D+V_R$

- In diode reverse bias (I = 0)
- $V_{out} = V_{in} IR$ $=V_{in}$

- In diode forward bias: (Diode conducts)
- $V_{SO} = V_{in} V_R > V_D$ $V_{in} > V_R + V_D$ $V_{SQ} = V_{in} V_R < V_D$ $V_{in} < V_R + V_D$
- $V_{out} = V_{PQ} + V_R$ $= V_D + V_R$

- In diode reverse bias (I = 0)
- $V_{out} = V_{in} IR$ $=V_{in}$

- In diode forward bias: (Diode conducts)
- $V_{in} > V_R + V_D$ $V_{out} = V_D + V_R$

- In diode reverse bias (I = 0)
- $V_{in} < V_R + V_D$ $V_{out} = V_{in}$

$$V_{out} = V_{in}$$

D1

2.2 Steps in LT Spice

.tran 0 100m 0.1m 1

.tran 0 100m 0.1m 1

Output:

3. General Negative clipper circuit

- In diode forward bias: (Diode conducts)
- $V_{SO} = V_{in} + V_R > V_D$ $V_{in} > -V_R + V_D$ $V_{SQ} = V_{in} + V_R < V_D$ $V_{in} < V_R + V_D$
- $V_{out} = V_{PS} + V_{SG}$ $=-V_D+V_{in}$

- In diode reverse bias (I = 0)
- $V_{out} = V_{PQ} + V_{QG}$ $=0-V_R$

3. General Negative clipper circuit

- In diode forward bias: (Diode conducts)
- $V_{SO} = V_{in} + V_R > V_D$ $V_{in} > -V_R + V_D$ $V_{SQ} = V_{in} + V_R < V_D$ $V_{in} < V_R + V_D$
- $V_{out} = V_{PS} + V_{SG}$ $=-V_D+V_{in}$

- In diode reverse bias (I = 0)
- $V_{out} = V_{PQ} + V_{QG}$ $=0-V_R$

4. About Clampers

- Clamper circuit: A Circuit that fixes the positive or negative peaks of a signal (generally sine or square waves) at a required voltage level.
- A prescribed level of DC voltage is introduced at the output of the clamper circuit.

4. About Clampers

- <u>Clamper circuit:</u> A Circuit that fixes the positive or negative peaks of a signal (generally sine or square waves) at a required voltage level.
- A prescribed level of DC voltage is introduced at the output of the clamper circuit.
- The DC voltage may be +ve or –ve
- Two types of clamping circuits: 1) Negative clamping circuit, and
 2) Positive clamping circuit

5. Why do you need clamping circuits

 A signal that passes through a capacitive coupling (capacitor allows high frequency signals only), the DC component is lost.

5. Why do you need clamping circuits

- A signal that passes through a capacitive coupling (capacitor allows high frequency signals only), the DC component is lost.
- To restore the DC component, Clamping circuits is necessary
- Other names of Clamper: DC Restorer, DC Reinserter, Baseline stabilizer

V_{in} Sinusoidal input with zero DC level

• Output: V_{out}

Output DC level: $-V_m$

 V_{in} Sinusoidal input with zero DC level

• Output: V_{out}

Output DC level: $-V_m$

Input signal sine wave Consider uncharged capacitor during the start t=0.

When input is applied, V_c does not change instantaneously (Takes time to charge).

Semiconductor diode is forward biased in t = 0 to $\frac{\pi}{2}$: Complete input voltage V_{in} is across the capacitor, and capacitor is charged upto $(V_c = V_m)$ and $V_{out} = 0$.

 V_{in} Sinusoidal input with zero DC level

• Output: V_{out}

Output DC level: $-V_m$

Consider uncharged capacitor during the start t=0.

When input is applied, V_c does not change instantaneously (Takes time to charge).

Semiconductor diode is forward biased in t = 0 to $\frac{\pi}{2}$. Complete input voltage V_{in} is across the capacitor, and capacitor is charged upto $(V_c = V_m)$ and $V_{out} = 0$.

2) At $t = \frac{\pi}{2}$ to $t = \pi$, When capacitor is charged $V_c = V_m$, Output voltage V_{out} which is across the diode is $V_{\text{out}} = -V_c + V_{in} = -V_m + V_{in}$

 V_{in} Sinusoidal input with zero DC level

• Output: V_{out}

Output DC level: $-V_m$

1) Consider uncharged capacitor during the start t=0.

When input is applied, V_c does not change instantaneously (Takes time to charge).

Semiconductor diode is forward biased in t = 0 to $\frac{\pi}{2}$: Complete input voltage V_{in} is across the capacitor, and capacitor is charged upto $(V_c = V_m)$ and $V_{out} = 0$.

2) At $t = \frac{\pi}{2}$ to $t = \pi$, When capacitor is charged $V_c = V_m$, Output voltage V_{out} which is across the diode is $V_{out} = -V_c + V_{in} = -V_m + V_{in}$ Note: $V_{in} \le V_m$ at all times. Then $V_{out} \le 0$. Diode is reverse biased at all times.

 V_{in} Sinusoidal input with zero DC level

• Output: V_{out}

Output DC level: $-V_m$

$$V_{\text{out}} = V_{in} - V_m$$

7. Positive clamping circuit: Basics

Input signal sine wave

• Right click at diode:

• Right click at diode:

Right click at capacitor:

8. Tasks on Clipper: Design the following

- 1) +ve clipper at 2V
- 2) Clip complete +ve cycle
- 3) -ve clipper at -4V
- 4) Clip complete –ve cycle

9. Tasks on Clampers: Design the following clampers

Task	Clamper	+ve Peak of V_{in}	+ve peak of V_{ref}	+ve peak of V_{out}	-ve peak of V_{out}	How much the reference level was shifted (volts)
T1	Negative	5V	0V			
T2	Negative	5V	2V			
T3	Positive	5V	0V			
T4	Positive	5V	2V			

For each task in the record: Paste the circuit, plots with V_{in} , V_{ref} , V_{out}

Important NOTE

 Enter your registration number and Full Name next to

all your circuits and the output plots.

•Keep the background of circuit and plot as white.

LAB record instructions:

For the lab experiment,

- Write the Aim.
- Complete the Software/Hardware components used.
- Obtain the expression for the outputs.
- Place the respective circuits in LT Spice.
- Connect the inputs and outputs. Name them and write the same in the lab copy(inputs and outputs section).
- Use probe in LT spice to plot all possible combinations.
- Write a concluding statement for each circuit.
- Submit the document's soft copy on time in Ims.vit.ac.in when available.