LAMMPS @ SC22 NATIONAL TSING HUA UNIVERSITY @ SC22

OUTLINE

- Running multiple CPU processes per 1 GPU
- Using Intel package on AMD nodes
- Comparison between NGC and Compile from source
- Hyperthreading of AMD vs Intel
- Scalability on Oracle Cloud Infrastructure
- Comparison between GPU acceleration package and KOKKOS package

GPU UNDER UTILIZATION & PROCS PER GPU

Version:	ersion: 450.119.04 CUDA Version: 11.3				
Bus-Id	Disp.A Memory-Usage	:	Uncorr. ECC Compute M. MIG M.		
00000000:3E:00.0 Off 482MiB / 32510MiB		73%	+ 0 Default N/A		

• Use 2 procs per GPU

INTEL PACKAGE @ AMD CLUSTER

- Uses vectorization of Intel (AVX, SSE) to speedup
- AMD also supports vectorization (SSE) for speedups
- Use Intel Package to speedup our AMD cluster

fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat p se36 clflush mmx fxsr sse sse2 nt syscall nx mmxext fxsr_opt pdpe1g b rdtscp lm constant_tsc_rep_good nopl nonstop_tsc cpuid extd_apici d aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1

NGC & COMPILE FROM SOURCE @ CPU

NGC & COMPILE FROM SOURCE @ GPU

STRATEGY & INTERPRETATION

Problem size	Hardware	Software
Small problem	1 GPU	Compile from source
Medium problem	2 GPUs w/ NvLink	NGC
Big problem	4 GPUs w/ NvLink	NGC
All problems	CPU	Compile from source

- NGC incurs overhead due to virtualization
- Compile from source always works better on CPU

HYPERTHREADING @ AMD, INTEL

- Use HT on Intel only
- Intel HT > AMD HT

OCI SCALABILITY

- OCI nodes are connected by ethernet
- Run intranode task for OCI only
- Communication overhead is significant

KOKKOS AND GPU

	GPU	KOKKOS	
Purpose	General purpose	Specific purpose	
Hardware	NV, Intel, AMD, OpenGL	Nvidia, Intel Phi	
Scalability	✓		
Absolute speed		✓	
Special hardware support		✓	

- Personal clusters = Nvidia GPU
- Use KOKKOS

LENNARD JONES & EAM & ML-SNAP

Benchmarks	GPU node	CPU node	Potential model
Lennard Jones			Mathematics
EAM			Mathematics
ML-Snap			Machine Learning

- Machine learning requires tensor operations
 - Better for GPU nodes
 - GPU provides numerous CUDA cores for tensor operations
- Don't put ML-Snap tasks on CPU nodes