Série 1

L'exercise 1 sera discuté pendant le cours le lundi 26 septembre. L'exercice 5 (*) peut être rendu le jeudi 29 septembre aux assistants jusqu'à 15h.

Exercice 1 - QCM

Determiner si les énoncés proposés sont vrais ou faux et justifier la réponse.

 a) Un système de deux équations linéaires à deux inconnues peut : n'avoir aucune solution; avoir exactement une solution; avoir exactement deux solutions; avoir une infinité de solutions. 	
Exercice 2 Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ définie par $f(x) = x^2 - 4x$. Répondre à chacune des questions su en cochant la case correcte.	ivantes
 a) Est-ce que la fonction f est injective? Oui. Oui, si on restreint l'ensemble de départ à l'intervalle [0, ∞[. Oui, si on restreint l'ensemble de départ à l'intervalle] - ∞, 0]. b) Est-ce que la fonction f est surjective? Oui. Oui, si on restreint l'ensemble de départ à l'intervalle [0, ∞[. Oui, si on restreint l'ensemble d'arrivée à l'intervalle [-4, ∞[. 	

Exercice 3

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ définie par $f(x) = \sin(\pi x)$. Déterminer $f^{-1}(0), f^{-1}(\frac{1}{2}), f^{-1}(\frac{3}{2})$.

Exercice 4

Soit $f: X \to Y$ une application d'un ensemble X dans un ensemble Y. Soient A et B deux sous-ensembles de X.

- a) Montrer que $f(A \cap B) \subseteq f(A) \cap f(B)$.
- (b) Trouver un exemple pour lequel $f(A \cap B) \neq f(A) \cap f(B)$.
- (c) Montrer que si f est injective, alors $f(A \cap B) = f(A) \cap f(B)$.

Exercice 5 (\star)

Montrer par récurrence sur n que la somme des n premiers nombres entiers impairs est égale à n^2 , c'est-à-dire que

$$1+3+5+\cdots+(2n-1)=n^2$$
.

Exercice 6

On considère les sous-ensembles de \mathbb{R}^2 suivants :

$$A = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 9\}, \qquad B = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 9\},$$

$$C = \{(x, y) \in \mathbb{R}^2 \mid y = \sqrt{2}x\}, \qquad D = \mathbb{Z}^2.$$

- (a) Déterminer $A \cap C$, $A \cap D$, $B \cap C$, $B \cap D$.
- (b) Déterminer $(B \cup C) \cap D$.
- (c) Calculer Card $((B-A) \cap D)$.

Exercice 7

Soit $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x^2 + 1$. Parmi les assertions suivantes lesquelles sont correctes?

- (a) L'application f est injective.
- (b) L'application f est surjective.
- (c) L'application $f|_{\mathbb{N}}: \mathbb{N} \to \mathbb{R}$ est injective.
- (d) Soient A = [-3, 2] et B = [1, 3]. Alors $f(A \cap B) = f(A) \cap f(B)$.

Exercice 8

Soit $f: X \to Y$ une application d'un ensemble X dans un ensemble Y. Soient A et B deux sous-ensembles de X et C et D deux sous-ensembles de Y.

- (a) Montrer que $f(A \cup B) = f(A) \cup f(B)$.
- (b) Montrer que $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$.
- (c) Montrer que $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$.