Session 3: Logical Equivalences

- Showing Logical Equivalence
- Important Logical Equivalences
- Contrapositive, Converse and Inverse
- Equivalence Proofs

Logical Equivalence

Two compound propositions p and q are **logically equivalent** if $p \leftrightarrow q$ is a tautology

We write this as $p \equiv q$ where p and q are compound propositions

Two compound propositions p and q are equivalent if and only if the columns in a truth table giving their truth values agree

Example

Using a truth table we show that $\neg p \lor q \equiv p \rightarrow q$

De Morgan's Laws

$$\neg(p \land q) \equiv \neg p \lor \neg q$$

$$\neg (p \lor q) \equiv \neg p \land \neg q$$

Using a truth table show that De Morgan's Second Law holds

Equivalences with Basic Connectives

Equivalence	Name
$p \wedge \mathbf{T} \equiv p$ $p \vee \mathbf{F} \equiv p$	Identity laws
$p \vee \mathbf{r} = p$	
$p \lor \mathbf{T} \equiv \mathbf{T}$ $p \land \mathbf{F} \equiv \mathbf{F}$	Domination laws
$p \lor p \equiv p$ $p \land p \equiv p$	Idempotent laws
$\neg(\neg p) \equiv p$	Double negation law

$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$	Absorption laws
$p \lor \neg p \equiv \mathbf{T}$ $p \land \neg p \equiv \mathbf{F}$	Negation laws

$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$	Commutative laws
$(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$	Associative laws
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributive laws

Equivalences with Implications

TABLE 7 Logical Equivalences Involving Conditional Statements.

$$p \to q \equiv \neg p \lor q$$

$$p \to q \equiv \neg q \to \neg p$$

$$p \lor q \equiv \neg p \to q$$

$$p \land q \equiv \neg (p \to \neg q)$$

$$\neg (p \to q) \equiv p \land \neg q$$

$$(p \to q) \land (p \to r) \equiv p \to (q \land r)$$

$$(p \to r) \land (q \to r) \equiv (p \lor q) \to r$$

$$(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$$

$$(p \to r) \lor (q \to r) \equiv (p \land q) \to r$$

TABLE 8 Logical Equivalences Involving Biconditional Statements.

$$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$$

$$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$$

$$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$$

$$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$

Contrapositive, Converse and Inverse

$$\neg q \rightarrow \neg p$$
 is the **contrapositive** of $p \rightarrow q$, $p \rightarrow q \equiv \neg q \rightarrow \neg p$

From $p \rightarrow q$ we can form the following conditional statements

- $q \rightarrow p$ is the **converse** of $p \rightarrow q$
- $\neg p \rightarrow \neg q$ is the **inverse** of $p \rightarrow q$ (and the contrapositive of $q \rightarrow p$)

They are equivalent to each other, but not equivalent to $p \rightarrow q$

Applying Logical Equivalences

The propositions in a known equivalence can be replaced by any compound proposition

Example: since we know that

$$p \to q \equiv \neg q \to \neg p$$

we also know that, for example

$$(p_1 \lor p_2) \to (q_1 \land q_2) \equiv \neg (q_1 \land q_2) \to \neg (p_1 \lor p_2)$$

Constructing New Logical Equivalences

- We can show that two expressions are logically equivalent by developing a series of logically equivalent statements
- To prove that A ≡ B we produce a series of equivalences beginning with A and ending with B

This is called an equivalence proof

Example: Equivalence Proofs

Show that is logically equivalent to

$$\neg (p \lor (\neg p \land q))$$
$$\neg p \land \neg q$$

Example: Equivalence Proofs

Example: Show that $(p \land q) \rightarrow (p \lor q)$ is a tautology.

Summary

- Showing Logical Equivalence
- De Morgan's Laws
- Many Logical Equivalences
- Contrapositive, Converse and Inverse
- Equivalence Proofs

Next: Normal Forms