Notation

Rubem Vasconcelos Pacelli rubem.engenharia@gmail.com

Department of Teleinformatics Engineering, Federal University of Ceará. Fortaleza, Ceará, Brazil. Version: March 1, 2023

1 Font notation

$a, b, c, \ldots, A, B, C, \ldots$	$\operatorname{Scalars}$
a, b, c, \dots	Vectors
A, B, C, \dots	Matrices
$\mathcal{A},\mathcal{B},\mathcal{C},\dots$	Tensors
$A, B, C, \ldots, A, B, C, \ldots, A, B, C, \ldots$	Sets

2 Signals and functions

2.1 Time indexing

x(t)	Continuous-time t
$x[n], x[k], x[m], x[i], \dots$	Discrete-time n, k, m, i, \dots (parenthe-
$x_n, x_k, x_m, x_i, \dots$	sis should be adopted only if there
$x(n), x(k), x(m), x(i), \dots$	are no continuous-time signals in the
	context to avoid ambiguity)

2.2 Common functions

$x_I(t)$ or $x_I[n]$	Real or in-phase part of $x(t)$ or $x[n]$
$x_Q(t)$ or $x_Q[n]$	Imaginary or quadrature part of $x(t)$
	or $x[n]$
$\delta(t)$	Delta function
$\delta[n], \delta_{i,j}$	Kronecker function $(n = i - j)$
h(t), h[n]	Impulse response (continuous and
	discrete time)

$\tilde{x}[n], \tilde{x}(t)$	Periodic discrete- or continuous-time
	signal
$\hat{x}[n], \hat{x}(t)$	Estimate of $x[n]$ or $x(t)$
$\dot{x}[m]$	Interpolation of $x[n]$

2.3 Operations and symbols

$f:A\to B$	A function f whose domain is A and
	codomain is B
$f^n, x^n(t), x^n[k]$	nth power of the function f , $x[n]$ or
	x(t)
$f^{(n)}, x^{(n)}(t)$	nth derivative of the function f or
	x(t)
$f', f^{(1)}, x'(t)$	1th derivative of the function f or
J 7 J 7 1 (1)	x(t)
$f'', f^{(2)}, x''(t)$	2th derivative of the function f or
f^{\prime} , f^{\prime} , χ^{\prime} (t)	
	x(t)
$\inf_{\mathbf{y} \in \mathcal{A}} g(\mathbf{x}, \mathbf{y})$	Infimum
	Cummorous
$\sup_{\mathbf{y} \in \mathcal{A}} g(\mathbf{x}, \mathbf{y})$	Supremum
$f \circ g$	Composition of the functions f and
	g
*	Convolution
$\circledast, (N)$	Circular convolution
$x\left[\left((n-m)\right)_{N}\right],x\left((n-m)\right)_{N}$	Circular shift in m samples within a
•	N-samples window

2.4 Transformations

$\mathcal{F}\left\{ \cdot ight\}$	Fourier transform
$\mathcal{L}\left\{ \cdot ight\}$	Laplace transform
$\mathcal{Z}\left\{ \cdot ight\}$	z-transform
$\hat{x}(t), \hat{x}[n]$	Hilbert transform of $x(t)$ or $x[n]$
X(s)	Laplace transform of $x(t)$
X(f)	Fourier transform (FT) (in linear fre-
	quency, Hz) of $x(t)$
$X(j\omega)$	Fourier transform (FT) (in angular
	frequency, rad/sec) of $x(t)$
$X(e^{j\omega})$	Discrete-time Fourier transform
	(DTFT) of $x[n]$
$X[k], X(k), X_k$	Discrete Fourier transform (DFT) or
	fast Fourier transform (FFT) of $x[n]$,
	or even the Fourier series (FS) of the
	periodic signal $x(t)$

$\tilde{X}[k]$,	$\tilde{X}(k)$,	\tilde{X}_k
X(z)		

Discrete Fourier series (DFS) of $\tilde{x}[n]$ z-transform of x[n]

3 Probability, statistics, and stochastic processes

3.1 Operators and symbols

$E\left[\cdot\right]$	Statistical expectation
$E_u\left[\cdot\right]$	Statistical expectation with respect
	to u
$\mu_{\scriptscriptstyle X}$	Mean of the random variable x
μ_x, m_x	Mean vector of the random variable
	X
μ_n	nth-order moment of a random vari-
	able
\mathcal{K}_x, μ_4	Kurtosis (4th-order moment) of the
	random variable x
$VAR[\cdot]$	Variance operator
$VAR_u[\cdot]$	Variance operator with respect to u
κ_n	nth-order cumulant of a random vari-
	able
σ_x , κ_2	Variance of the random variable x
$\rho_{x,y}$	Pearson correlation coefficient be-
	tween x and y
$a \sim P$	Random variable a with distribution
	P

3.2 Stochastic processes

$r_{X}(\tau), R_{X}(\tau)$	Autocorrelation function of the sig-
	$\operatorname{nal} x(t) \text{ or } x[n]$
$S_x(f), S_x(j\omega)$	Power spectral density (PSD) of $x(t)$
	in linear (f) or angular (ω) frequency
$S_{x,y}(f), S_{x,y}(j\omega)$	Cross PSD of $x(t)$ and $y(t)$ in linear
	or angular (ω) frequency
$\mathbf{R}_{\mathbf{x}}$	(Auto)correlation matrix of $\mathbf{x}(n)$
$r_{x,d}(\tau), R_{x,d}(\tau)$	Cross-correlation between $x[n]$ and
	d[n] or $x(t)$ and $d(t)$
$\mathbf{R}_{\mathbf{x}\mathbf{y}}$	Cross-correlation matrix of $\mathbf{x}(n)$ and
•	$\mathbf{y}(n)$
$\mathbf{p}_{\mathbf{x}d}$	Cross-correlation vector between
	$\mathbf{x}(n)$ and $d(n)$

$$c_x(\tau), C_x(\tau)$$

 C_x, K_x, Σ_x $c_{xy}(\tau), C_{xy}(\tau)$

 $C_{xy}, K_{xy}, \Sigma_{xy}$

Autocovariance function of the signal x(t) or x[n]

(Auto)covariance matrix of **x**

Cross-covariance function of the sig-

nal x(t) or x[n]

Cross-covariance matrix of \mathbf{x} and \mathbf{y}

3.3 Functions

 $Q(\cdot)$

 $\operatorname{erf}(\cdot)$

 $\operatorname{erfc}(\cdot)$

P[A]

 $p(\cdot), f(\cdot)$

 $p(x \mid A)$ $F(\cdot)$

 $\Phi_x(\omega), M_x(j\omega), E\left[e^{j\omega x}\right]$

 $M_x(t), \Phi_x(-jt), E[e^{tx}]$

 $\Psi_X(\omega), \ln \Phi_X(\omega), \ln E \left[e^{j\omega x}\right]$ $K_X(t), \ln E \left[e^{tx}\right], \ln M_X(t)$ *Q*-function, i.e., $P[\mathcal{N}(0,1) > x]$

Error function

Complementary error function i.e.,

 $\operatorname{erfc}(x) = 2Q(\sqrt{2}x) - \operatorname{erf}(x)$

Probability of the event or set A

Probability density function (PDF) or probability mass function (PMF)

Conditional PDF or PMF

Cumulative distribution function (CDF)

(CDF)

First characteristic function (CF) of

л - -

Moment-generating function (MGF)

of x

Second characteristic function

Cumulant-generating function

(CGF) of x

3.4 Distributions

 $\mathcal{N}(\mu, \sigma^2)$

 $\mathcal{CN}(\mu, \sigma^2)$

 $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

 $\mathcal{CN}(\mu, \Sigma)$

 $\mathcal{U}(a,b)$ $\chi^2(n), \chi_n^2$ Gaussian distribution of a random variable with mean μ and variance σ^2 Complex Gaussian distribution of a random variable with mean μ and variance σ^2

Gaussian distribution of a vector random variable with mean μ and covariance matrix Σ

Complex Gaussian distribution of a vector random variable with mean μ and covariance matrix Σ

Uniform distribution from a to b Chi-square distribution with n degree of freedom (assuming that the Gaus-

sians are $\mathcal{N}(0,1)$

$\operatorname{Exp}(\lambda)$	Exponential distribution with rate parameter λ
$\Gamma(lpha,eta)$	Gamma distribution with shape parameter α and rate parameter β
$\Gamma(lpha, heta)$	Gamma distribution with shape parameter α and scale parameter $\theta = 1/\beta$
$\operatorname{Nakagami}(m,\Omega)$	Nakagami-m distribution with shape parameter m and spread parameter Ω
$\operatorname{Rayleigh}(\sigma)$	Rayleigh distribution with scale parameter σ
$\operatorname{Rayleigh}(\Omega)$	Rayleigh distribution with the second moment $\Omega = E[x^2] = 2\sigma^2$
$\mathrm{Rice}(s,\sigma)$	Rice distribution with noncentrality parameter (specular component) s and σ
$\mathrm{Rice}(A,K)$	Rice distribution with Rice factor $K=s^2/2\sigma^2$ and scale parameter $A=s^2+2\sigma^2$

4 Statistical signal processing

$\mathbf{\nabla} f, \mathbf{g}$	Gradient descent vector
$\nabla_x f, \mathbf{g}_x$	Gradient descent vector with respect
	x
\mathbf{g} (or $\hat{\mathbf{g}}$ if the gradient vector is \mathbf{g})	Stochastic gradient descent (SGD)
$J(\cdot), \mathcal{E}(\cdot)$	Cost-function or objective function
$\Lambda(\cdot)$	Likelihood function
$\Lambda_l(\cdot)$	Log-likelihood function
$\hat{x}(t)$ or $\hat{x}[n]$	Estimate of $x(t)$ or $x[n]$
$\hat{\boldsymbol{\mu}}_{x},\hat{\mathbf{m}}_{x}$	Sample mean of $x[n]$ or $x(t)$
$\hat{\boldsymbol{\mu}}_{\mathbf{x}},\hat{\mathbf{m}}_{\mathbf{x}}$	Sample mean vector of $\mathbf{x}[n]$ or $\mathbf{x}(t)$
$\hat{r}_{\scriptscriptstyle X}(au),\hat{R}_{\scriptscriptstyle X}(au)$	Estimated autocorrelation function
	of the signal $x(t)$ or $x[n]$
$\hat{S}_{x}(f), \hat{S}_{x}(j\omega)$	Estimated power spectral density
	(PSD) of $x(t)$ in linear (f) or angular
	(ω) frequency
$\hat{\mathbf{R}}_{\mathbf{x}}$	Sample (auto)correlation matrix
$\hat{r}_{x,d}(au), \hat{R}_{x,d}(au)$	Estimated cross-correlation between
	x[n] and $d[n]$ or $x(t)$ and $d(t)$
$\hat{S}_{x,y}(f), \hat{S}_{x,y}(j\omega)$	Estimated cross PSD of $x(t)$ and $y(t)$
	in linear or angular (ω) frequency

$\hat{\mathbf{R}}_{\mathbf{x}\mathbf{y}}$	Sample cross-correlation matrix of
$\hat{ ho}_{x,y}$	\mathbf{R}_{xy} Estimated Pearson correlation coefficient between x and y
$\hat{c}_x(au), \hat{C}_x(au)$	Estimated autocovariance function of the signal $x(t)$ or $x[n]$
$\hat{\mathbf{C}}_{\mathbf{x}},\hat{\mathbf{K}}_{\mathbf{x}},\hat{\mathbf{\Sigma}}_{\mathbf{x}}$	Sample (auto)covariance matrix
$\hat{c}_{xy}(\tau), \hat{C}_{xy}(\tau)$	Estimated cross-covariance function
	of the signal $x(t)$ or $x[n]$
$\hat{ extbf{C}}_{ ext{xy}}, \hat{ extbf{K}}_{ ext{xy}}, \hat{ extbf{\Sigma}}_{ ext{xy}}$	Sample cross-covariance matrix
$\mathbf{w}, \mathbf{\theta}$	Parameters, coefficients, or weights vector
$\mathbf{w}_o, \mathbf{w}^{\star}, \mathbf{\theta}_o, \mathbf{\theta}^{\star}$	Optimum value of the parameters, coefficients, or weights vector
\mathbf{W}	Matrix of the weights
J	Jacobian matrix
H	Hessian matrix
$\hat{\mathbf{H}}$	Estimate of the Hessian matrix

5 Linear Algebra

5.1 Common matrices and vectors

\mathbf{W}, \mathbf{D}	Diagonal matrix
P	Projection matrix; Permutation ma-
	trix
J	Jordan matrix
\mathbf{L}	Lower matrix
\mathbf{U}	Upper matrix
\mathbf{C}	Cofactor matrix
$\mathbf{C}_{\mathbf{A}}, \operatorname{cof}\left(\mathbf{A}\right)$	Cofactor matrix of A
S	Symmetric matrix
Q	Orthogonal matrix
\mathbf{I}_N	$N \times N$ -dimensional identity matrix
$0_{M imes N}$	$M \times N$ -dimensional null matrix
0_N	N-dimensional null vector
$1_{M imes N}$	$M \times N$ -dimensional ones matrix
1_N	N-dimensional ones vector
0	Null matrix, vector, or tensor (di-
	mensionality understood by context)
1	Ones matrix, vector, or tensor (di-
	mensionality understood by context)

5.2 Indexing

$x_{i_1,i_2,\ldots,i_N}, [\boldsymbol{\mathcal{X}}]_{i_1,i_2,\ldots,i_N}$	Element in the position (i_1, i_2, \ldots, i_N) of the tensor \mathcal{X}
$\mathcal{X}^{(n)}$	nth tensor of a nontemporal sequence
$\mathbf{x}_n, \mathbf{x}_{:n}$	nth column of the matrix X
\mathbf{x}_{n} :	nth row of the matrix X
$\mathbf{X}_{i_1,,i_{n-1},:,i_{n+1},,i_N}$	Mode- n fiber of the tensor $\boldsymbol{\mathcal{X}}$
$\mathbf{X}_{:,i_2,i_3}$	Column fiber (mode-1 fiber) of the
	thrid-order tensor $\boldsymbol{\mathcal{X}}$
$\mathbf{x}_{i_1,:,i_3}$	Row fiber (mode-2 fiber) of the thrid-
	order tensor $\boldsymbol{\mathcal{X}}$
$\mathbf{x}_{i_1,i_2,:}$	Tube fiber (mode-3 fiber) of the
	thrid-order tensor $\boldsymbol{\mathcal{X}}$
$\mathbf{X}_{i_1,:,:}$	Horizontal slice of the thrid-order
	tensor $\boldsymbol{\mathcal{X}}$
$\mathbf{X}_{:,i_2,:}$	Lateral slices slice of the thrid-order
, 2,	tensor $\boldsymbol{\mathcal{X}}$
$\mathbf{X}_{i_3},\mathbf{X}_{:,:,i_3}$	Frontal slices slice of the thrid-order
.0 77.0	tensor \mathcal{X}

5.3 Operations with tensors

 $\mathbf{X}_{(n)}$ $n ext{-mode matricization of the tensor } \boldsymbol{\mathcal{X}}$

5.4 Operations with matrices

\mathbf{A}^{-1}	Inverse matrix
$\mathbf{A}^+,\mathbf{A}^\dagger$	Moore-Penrose pseudoinverse
\mathbf{A}^{\top}	Transpose
$\mathbf{A}^{- op}$	Transpose of the inverse
\mathbf{A}^*	Complex conjugate
\mathbf{A}^H	Hermitian
$\ \mathbf{A}\ _{\mathrm{F}}$	Frobenius norm
$\ \mathbf{A}\ $	Matrix norm
$ \mathbf{A} , \det{(\mathbf{A})}$	Determinant
$\operatorname{diag}\left(\mathbf{A}\right)$	The elements in the diagonal of ${\bf A}$
$\text{vec}(\mathbf{A})$	Vectorization: stacks the columns of
	the matrix A into a long column vec-
	tor
$\operatorname{vec}_{\operatorname{d}}\left(\mathbf{A}\right)$	Extracts the diagonal elements of a square matrix and returns them in a
	column vector

$\operatorname{vec}_{\operatorname{l}}\left(\mathbf{A}\right)$	Extracts the elements strictly below
	the main diagonal of a square matrix
	in a column-wise manner and returns
	them into a column vector
$\operatorname{vec}_{\mathrm{u}}\left(\mathbf{A}\right)$	Extracts the elements strictly above
	the main diagonal of a square matrix
	in a column-wise manner and returns
	them into a column vector
$\operatorname{vec_b}\left(\mathbf{A}\right)$	Block vectorization operator: stacks
	square block matrices of the input
	into a long block column matrix
$\operatorname{unvec}\left(\mathbf{A}\right)$	Reshapes a column vector into a ma-
	trix
$\mathrm{tr}\left(\mathbf{A} ight)$	trace
\otimes	Kronecker product
\odot	Hadamard (or Schur) (elementwise)
	product
$\mathbf{A}^{\odot n}$	nth-order Hadamard power of the
	matrix A
$\mathbf{A}^{\odot \frac{1}{n}}$	nth-order Hadamard root of the ma-
	trix A
Ø	Hadamard (or Schur) (elementwise)
	division
♦	Khatri-Rao product
⊗	Kronecker Product
\times_n	<i>n</i> -mode product
n	" mode product

5.5 Operations with vectors

$\ \mathbf{a}\ $	l_1 norm, 1-norm, or Manhatan norm
$\ \mathbf{a}\ ,\ \mathbf{a}\ _2$	l_2 norm, 2-norm, or Euclidean norm
$\ \mathbf{a}\ _p$	l_p norm, p -norm, or Minkowski norm
$\ \mathbf{a}\ _{\infty}^{\cdot}$	l_{∞} norm, ∞ -norm, or Chebyshev
	norm
$\operatorname{diag}\left(\mathbf{a}\right)$	Diagonalization: a square, diagonal
	matrix with entries given by the vec-
	tor a
$\langle \mathbf{a}, \mathbf{b} angle$	Inner product, i.e., $\mathbf{a}^{T}\mathbf{b}$
$\mathbf{a} \circ \mathbf{b}$	Outer product, i.e., $\mathbf{a}\mathbf{b}^{T}$

5.6 Decompositions

Λ

Eigenvalue matrix

Q	Eigenvectors matrix; Orthogonal ma-
R	trix of the QR decomposition Upper triangular matrix of the QR decomposition
U	Left singular vectors
\mathbf{U}_r	Left singular nondegenerated vectors
Σ	Singular value matrix
Σ_r	Singular value matrix with nonzero
	singular values in the main diagonal
Σ^+	Singular value matrix of the pseu-
	doinverse
Σ_r^+	Singular value matrix of the pseu-
	doinverse with nonzero singular val-
	ues in the main diagonal
V	Right singular vectors
\mathbf{V}_r	Right singular nondegenerated vec-
• (4)	tors
$\operatorname{eig}\left(\mathbf{A}\right)$	Set of the eigenvalues of A
$[\![\mathbf{A},\mathbf{B},\mathbf{C},\ldots]\!]$	CANDECOMP/PARAFAC (CP) de-
	composition of the tensor \mathcal{X} from the
	outer product of column vectors of A ,
$[\![\boldsymbol{\lambda};\mathbf{A},\mathbf{B},\mathbf{C},\ldots]\!]$	B, C, Normalized CANDE-
$[\mathbf{A}, \mathbf{A}, \mathbf{D}, \mathbf{C}, \ldots]$	CANDE- COMP/PARAFAC (CP) decom-
	position of the tensor \mathcal{X} from the
	outer product of column vectors of
	A, B, C,
	<u> </u>

5.7 Spaces

$N(\mathbf{A})$, nullspace(\mathbf{A}), kernel(\mathbf{A}) $C(\mathbf{A})$, columnspace(\mathbf{A}), range(\mathbf{A})	Nullspace (or kernel space) Columnspace (or range), i.e., the space span $(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n)$, where \mathbf{a}_i is the ith column vector of the matrix
	A
$\mathrm{span}\left(\mathbf{a}_{1},\mathbf{a}_{2},\ldots,\mathbf{a}_{n}\right)$	Vector space spanned by the argument vectors
$\mathrm{span}\left(\mathbf{A}\right)$	Vector space spanned by the col- umn vectors of A , which gives the columnspace of A
$\operatorname{rank}\left(\mathbf{A} ight)$	Rank, that is, $\dim (\operatorname{span} (\mathbf{A})) = \dim (\mathbf{C} (\mathbf{A}))$
nullity (A)	Nullity of \mathbf{A} , i.e., dim $(N(\mathbf{A}))$
$\mathbf{a} \perp \mathbf{b}$	\mathbf{a} is orthogonal to \mathbf{b}
a ≠ b	${f a}$ is not orthogonal to ${f b}$

5.8 Inequalities

\mathcal{X}	\leq	0
a :	≤ _K	b

 $\mathbf{a} \prec_K \mathbf{b}$

 $\mathbf{a} \leq \mathbf{b}$

 $\mathbf{a} \prec \mathbf{b}$

 $\mathbf{A} \leq_K \mathbf{B}$

 $\mathbf{A} \prec_K \mathbf{B}$

 $A \leq B$

A < B

Nonnegative tensor

Generalized inequality meaning that $\mathbf{b} - \mathbf{a}$ belongs to the conic subset K in the space \mathbb{R}^n

Strict generalized inequality meaning that $\mathbf{b} - \mathbf{a}$ belongs to the interior of the conic subset K in the space \mathbb{R}^n Generalized inequality meaning that $\mathbf{b} - \mathbf{a}$ belongs to the nonnegative orthant conic subset, \mathbb{R}^n_+ , in the space \mathbb{R}^n .

Strict generalized inequality meaning that $\mathbf{b} - \mathbf{a}$ belongs to the positive orthant conic subset, \mathbb{R}^n_{++} , in the space \mathbb{R}^n

Generalized inequality meaning that $\mathbf{B} - \mathbf{A}$ belongs to the conic subset K in the space \mathbb{S}^n

Strict generalized inequality meaning that $\mathbf{B} - \mathbf{A}$ belongs to the interior of the conic subset K in the space \mathbb{S}^n Generalized inequality meaning that $\mathbf{B} - \mathbf{A}$ belongs to the positive semidefinite conic subset, \mathbb{S}^n_+ , in the space \mathbb{S}^n Strict generalized inequality meaning that $\mathbf{B} - \mathbf{A}$ belongs to the positive orthant conic subset, \mathbb{S}^n_{++} , in the space \mathbb{S}^n

6 Sets

A + B
A - B
$A \setminus B, A - B$

 $A \cup B$ $A \cap B$ $A \times B$ A^n

Set addition (Minkowski sum)

Minkowski difference

Set difference or set subtraction, i.e., the set containing the elements

of A that are not in B

Set of union Set of intersection Cartesian product $A \times A \times \cdots \times A$

n times

A^{\perp}	Orthogonal complement of A , e.g., $N(\mathbf{A}) = C(\mathbf{A}^{\top})^{\perp}$
$A \oplus B$	Direct sum, e.g., $C(\mathbf{A}^{\top}) \oplus C(\mathbf{A}^{\top})^{\perp} = \mathbb{R}^{n}$
$A^c,ar{A}$	Complement set (given U)
#A, A	Cardinality
$a \in A$	a is element of A
$a \notin A$	a is not element of A
$\{1,2,\ldots,n\}$	Discrete set containing the integer el-
	ements $1, 2, \ldots, n$
U	Universe
2^A	Power set of A
\mathbb{R}	Set of real numbers
\mathbb{C}	Set of complex numbers
$\mathbb Z$	Set of integer number
$\mathbb{B} = \{0, 1\}$	Boolean set
Ø	Empty set
N	Set of natural numbers
$\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$	Real or complex space (field)
$\mathbb{K}^{I_1 \times I_2 \times \cdots \times I_N}$	$I_1 \times I_2 \times \cdots \times I_N$ -dimensional real (or
	complex) space
\mathbb{K}_{+}	Nonnegative real (or complex) space
\mathbb{K}_{++}	Positive real (or complex) space, i.e.,
	$\mathbb{K}_{++} = \mathbb{K}_{+} \setminus \{0\}$
$\mathbb{S}^n, \mathcal{S}^n$	Conic set of the symmetric matrices
	in $\mathbb{R}^{n \times n}$
$\mathbb{S}^n_+, \mathcal{S}^n_+$	Conic set of the symmetric positive
	semidefinite matrices in $\mathbb{R}^{n \times n}$
$\mathbb{S}^n_{++}, \mathcal{S}^n_{++}$	Conic set of the symmetric positive
	definite matrices in $\mathbb{R}^{n\times n}$, i.e., \mathbb{S}^n_{++} =
	$\mathbb{S}^n_+\setminus\{0\}$
\mathbb{H}^n	Set of all hermitian matrices in $\mathbb{C}^{n\times n}$
[a,b]	Closed interval of a real set from a to
	b
(a,b)	Opened interval of a real set from a
	to b
[a,b),(a,b]	Half-opened intervals of a real set
	from a to b

7 Communication systems

Low-pass equivalent signal or enve s_l lope complex of sGaussian noise η, w Received signal r τ Timming delay Timming error (delay - estimated) $\Delta \tau$ Phase offset φ Phase error (offset - estimated) $\Delta \varphi$ Doppler frequency f_d Received signal amplitude \boldsymbol{A} Combined effect of the path loss and γ antenna gain

8 Other notations

8.1 Mathematical symbols

Ξ There exists ∄ There does not exist ∃! There exist an unique \in Belongs to ∉ Does not belong to Q.E.D. Therefore Because \forall For all **|**,: Such that Logical equivalence Equal by definition ≜,:= Not equal Infinity ∞ $\sqrt{-1}$ j

8.2 Operations

 $\mathrm{Im}\,\{x\}$ Imaginary part of x۷٠ phase (complex argument) $x \mod y$ Remainder, i.e., $x - y \lfloor x/y \rfloor$ $\operatorname{frac}(x)$ Fractional part, i.e., $x \mod 1$ $a \wedge b$ Logical AND of a and b $a \vee b$ Logical OR of a and bLogical negation of a $\neg a$ $\lceil \cdot \rceil$ Ceiling operation Floor operation $\lfloor \cdot \rfloor$

8.3 Functions

 $\begin{array}{ll} \mathcal{O}(\cdot), O(\cdot) & \text{Big-O notation} \\ \Gamma(\cdot) & \text{Gamma function} \end{array}$

9 Abbreviations

wrt. With respect to st. Subject to iff. If and only if EVD Eigenvalue decomposition, or eigendecomposition

SVD Singular value decomposition CP CANDECOMP/PARAFAC