ESPACES VECTORIELS

I. Généralités

1. \mathbb{R} -espaces vectoriels

Définition 11.1

Soit *E* un ensemble non vide, muni d'une loi de composition interne + :

$$\begin{array}{cccc} +: & E \times E & \longrightarrow E \\ & (u, v) & \longmapsto & u + v \end{array}$$

et d'une loi de composition externe · :

$$\begin{array}{cccc} \cdot \colon & \mathbb{R} \times E & \longrightarrow E \\ & (\lambda, u) & \longmapsto & \lambda \cdot u \end{array}$$

On dit que le triplet $(E, +, \cdot)$ **est un** \mathbb{R} -**espace vectoriel** si :

- L'addition + vérifie les règles suivantes :
 - i) $\exists v \in E$ tel que $\forall u \in E$, u + v = v + u = u. v est alors unique et on note $v = 0_E$ (0_E est **l'élément neutre** pour l'addition, 0_E est appelé **vecteur nul de** E).
 - ii) $\forall u \in E, \exists v \in E, u + v = v + u = 0_E$, on note alors v := -u (tout élément de
 - iii) $\forall u, v, w \in E$, (u + v) + w = u + (v + w) (l'addition est **associative**)
 - iv) $\forall u, v \in E, u + v = v + u$ (l'addition est **commutative**). *E* admet un opposé).
- La multiplication · vérifie les règles suivantes :
 - i) $\forall \lambda, \mu \in \mathbb{R}, \forall u \in E, \lambda \cdot (\mu \cdot u) = (\lambda \mu) \cdot u$ (associativité)
 - ii) $\forall \lambda, \mu \in \mathbb{R}, \forall u \in E, (\lambda + \mu) \cdot u = \lambda \cdot u + \mu \cdot u$ (distributivité 1)
 - iii) $\forall \lambda \in \mathbb{R}, \forall u, v \in E, \lambda \cdot (u + v) = \lambda \cdot u + \lambda \cdot v$ (distributivité 2)
 - iv) $\forall u \in E, 1 \cdot u = u$ (1 est l'élément neutre pour la multiplication externe).

Les éléments de E s'appellent alors des vecteurs et les éléments de $\mathbb R$ s'appellent des scalaires.

Remarque

Il existe aussi des \mathbb{C} -espaces vectoriels dans lesquels les scalaires sont les nombres complexes, et plus généralement pour un corps \mathbb{K} quelconque on parle de \mathbb{K} -espace vectoriel. Le programme de BL se limite aux \mathbb{R} -espaces vectoriels.

Remarque

La définition d'espace vectoriel est très générale et ne correspond pas seulement à la notion géométrique de vecteur. La notion d'espace vectoriel sert à étudier les propriétés commune de tous les ensembles pour lesquels il existe une manière naturelle d'additionner ses éléments et de les multiplier par un réel.

Propriété 11.1 ———

Soit E un \mathbb{R} -espace vectoriel. Alors :

- $\forall u \in E, 0 \cdot u = 0_E$
- $\forall u \in E, (-1) \cdot u = -u$
- $\forall \lambda \in \mathbb{R}, \forall u \in E, \lambda \cdot u = 0 \iff \lambda = 0 \text{ ou } u = 0_E.$

2. Exemples d'espaces vectoriels

a. Structure d'espace vectoriel de \mathbb{R}^n

Proposition 11.2 -

Soit $n \in \mathbb{N}^*$ et soit $E = \mathbb{R}^n = \underbrace{\mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R}}_{n \text{ fois}}$. Les opérations suivantes font de $(\mathbb{R}^n, +, \cdot)$ un \mathbb{R} -espace vectoriel

• Addition: pour tout $x = (x_1, ..., x_n) \in \mathbb{R}^n$ et tout $y = (y_1, ..., y_n) \in \mathbb{R}^n$, on définit x + y par

$$x + y := (x_1 + y_1, ..., x_n + y_n)$$

• **Produit par un réel**: pour tout $x = (x_1, ..., x_n) \in \mathbb{R}^n$ et tout $\lambda \in \mathbb{R}$, on définit $\lambda \cdot x$ par

$$\lambda \cdot \mathbf{x} := (\lambda x_1, \cdots, \lambda x_n)$$

Remarque

On peut penser à \mathbb{R}^2 comme à l'ensemble des vecteurs d'un plan et à \mathbb{R}^3 comme à l'ensemble des vecteurs d'un espace en 3 dimensions. L'intuition géométrique en dimension 2 et 3 peut souvent se généraliser à la dimension n.

b. Espace vectoriel $\mathbb{R}_n[X]$

Proposition 11.3

Pour tout $n \in \mathbb{N}$, l'ensemble $\mathbb{R}_n[X]$ muni de la somme et du produit habituels est un \mathbb{R} -espace vectoriel. L'ensemble $\mathbb{R}[X]$ muni des opérations habituelles est aussi un \mathbb{R} -espace vectoriel.

Remarque

Le vecteur nul de $\mathbb{R}_n[X]$ est le polynôme nul.

c. Espace vectoriel $\mathcal{M}_{n,m}(\mathbb{R})$

Proposition 11.4

Pour tout $(n, m) \in (\mathbb{N}^*)^2$, l'ensemble $\mathcal{M}_{n,m}(\mathbb{R})$ muni de la somme et du produit habituel est un \mathbb{R} -espace vectoriel.

Remarque

Le produit évoqué ici est le produit d'une matrice par un réel, pas le produit de deux matrice entre elles. Il n'y a pas de notion de produit de deux vecteurs entre eux dans la définition d'espace vectoriel.

Remarque

Le vecteur nul de $\mathcal{M}_{n,m}(\mathbb{R})$ est la matrice nulle de taille $n \times m$.

d. Espaces de fonctions

Proposition 11.5 —

Soit $A \subset \mathbb{R}$, et soit $E = \mathcal{F}(A, \mathbb{R})$ l'ensemble des fonctions A dans \mathbb{R} , muni de la somme et du produit habituel. Alors E est un \mathbb{R} -espace vectoriel.

Proposition 11.6

Soit I un intervalle, et soit $E = \mathcal{C}(I,\mathbb{R})$ l'ensemble des fonctions continues de I dans \mathbb{R} , muni de la somme et du produit habituel. Alors E est un \mathbb{R} -espace vectoriel.

Remarque

Le vecteur nul de ces deux espaces vectoriels est la fonction nulle $A \to \mathbb{R}$, $x \mapsto 0$

e. Contre-exemples

Exemple 11.1

 \mathbb{N} et \mathbb{Z} , muni des opérations habituels, ne sont pas des \mathbb{R} -espaces vectoriels. En effet, si $n \in \mathbb{Z}$ et $\lambda \in \mathbb{R}$, on n'a pas nécessairement $\lambda n \in \mathbb{Z}$.

Exemple 11.2

L'ensemble des polynômes à coefficients réels de degré n muni des opérations habituelles n'est pas un \mathbb{R} -espace vectoriel. En effet, si P et Q sont deux polynômes de degré n, P+Q n'est pas nécessairement de degré n (mais $\deg(P+Q) \leq n$).

II. Sous-espaces vectoriels

1. Combinaison linéaire

Définition 11.2

Soit $(E, +, \cdot)$ un \mathbb{R} -espace vectoriel et soient u et v deux vecteurs. On dit que u et v sont colinéaires s'il existe $\lambda \in \mathbb{R}$ tel que $u = \lambda \cdot v$ ou $v = \lambda \cdot u$.

Exemple 11.3

Dans $E = \mathbb{R}^3$, les vecteurs u = (3, -9, 6) et v = (-2, 6, -4) sont colinéaires, en effet $u = -\frac{3}{2} \cdot v$.

Exemple 11.4

Si E est l'ensemble des fonction continues de $\mathbb R$ dans $\mathbb R$, alors exp et sin ne sont pas colinéaires. En effet, s'il existait $\lambda \in \mathbb R$ tel que $\forall x \in \mathbb R$, $\exp(x) = \lambda \cdot \sin(x)$, alors on aurait $\exp(0) = \lambda \times \sin(0) = 0$, or $\exp(0) > 0$ contradiction. S'il existait $\lambda \in \mathbb R$ tel que $\forall x \in \mathbb R$, $\sin = \lambda \cdot \exp(x)$, on aurait $\lambda \exp(0) = \lambda = \sin(0) = 0$, donc $\forall x \in \mathbb R$, $\sin(x) = 0 \cdot \exp(x) = 0$. Or \sin n'est pas la fonction nulle, contradiction.

Remarque

Le vecteur nul 0_E est colinéaire avec tous les vecteurs de E, en effet pour tout $u \in E$ on a $0_E = 0 \cdot u$.

Définition 11.3

Soit $(E, +, \cdot)$ un \mathbb{R} -espace vectoriel et soit $(u_1, ..., u_p)$ est une famille de p vecteurs de E. On dit qu'un vecteur v est une **combinaison linéaire des vecteurs** $u_1, ..., u_p$ s'il existe des réels $\lambda_1, ..., \lambda_p$ tels que

$$\nu = \sum_{k=1}^{p} \lambda_k u_k = \lambda_1 \cdot u_1 + \dots + \lambda_p \cdot u_p$$

Définition 11.4

On note Vect $(u_1, ..., u_p)$ l'ensemble de toutes les combinaisons linéaires de la famille $(u_1, ..., u_p)$:

$$\operatorname{Vect}(u_1, u_2, \dots, u_p) = \{\lambda_1 \cdot u_1 + \dots + \lambda_p \cdot u_p \mid (\lambda_1, \dots, \lambda_p) \in \mathbb{R}^p\}$$

De façon plus générale, si $A \subset E$, on note Vect (A) l'ensemble de toutes les combinaisons linéaires d'éléments de A:

$$\operatorname{Vect}(A) = \left\{ \sum_{i=1}^{n} \lambda_i \cdot u_i \mid n \in \mathbb{N}^*, (u_1, \dots, u_n) \in A^n, (\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n \right\}$$

- → Exercice de cours nº 1.
- → Exercice de cours nº 2.

2. Sous-espace vectoriel

a. Généralités

Définition 11.5

Soit $(E, +, \cdot)$ un \mathbb{R} -espace vectoriel et soit $F \subset E$ une partie de E. On dit que F est un sous-espace vectoriel de E si

- F est non vide.
- $\forall u, v \in F, u + v \in F$
- $\forall \lambda \in \mathbb{R}, \forall u \in F, \lambda \cdot u \in F$

Dans ce cas, F hérite des lois de E et $(F, +, \cdot)$ est aussi un \mathbb{R} -espace vectoriel.

Proposition 11.7 -

Si E est un \mathbb{R} -espace vectoriel et F une partie non vide de E, alors F est un sous-espace vectoriel de E si

$$\forall (u, v) \in F^2, \ \forall (\lambda, \mu) \in \mathbb{R}^2, \ \lambda \cdot u + \mu \cdot v \in F$$

On dit dans ce cas que F est **stable par combinaison linéaire**.

Remarque

Pour prouver que quelque chose est un \mathbb{R} -espace vectoriel, il est souvent plus simple de montrer que c'est un sous-espace vectoriel d'un \mathbb{R} -espace vectoriel connu (2 conditions à vérifier) plutôt que de montrer qu'il respecte les 8 conditions de la définition.

Exemples 11.5

- Si $(E, +, \cdot)$ est un \mathbb{R} -espace vectoriel, $\{0_E\}$ et E sont des sous-espace vectoriel de E. Un espace vectoriel qui ne contient que le vecteur nul est appelé l'**espace vectoriel trivial**.
- L'ensemble des matrices diagonales, des matrices triangulaires supérieures et des matrices triangulaires inférieures de taille n sont des sous-espace vectoriels de $\mathcal{M}_n(\mathbb{R})$
- Si n < m, $\mathbb{R}_n[X]$ est un sous-espace vectoriel de $\mathbb{R}_m[X]$.
- L'ensemble $\mathcal{C}(\mathbb{R},\mathbb{R})$ des fonctions continues de \mathbb{R} dans \mathbb{R} est un sous-espace vectoriel de $\mathcal{F}(\mathbb{R},\mathbb{R})$, l'ensemble des fonctions définies sur \mathbb{R} à valeurs dans \mathbb{R} .

Propriété 11.8

Si *F* est un sous-espace vectoriel de *E*, alors $0_E \in F$ et on a $0_F = 0_E$.

Remarque

 $0_E \in F$ est une condition nécessaire mais non suffisante pour que F soit un sous-espace vectoriel de E, cette condition est parfois utile pour montrer rapidement qu'un ensemble n'est pas un sous-espace vectoriel.

- → Exercice de cours nº 3.
- → Exercice de cours nº 4.
- → Exercice de cours nº 5.

Propriété 11.9

Soit $(E, +, \cdot)$ un \mathbb{R} -espace vectoriel et F et G deux sous-espace vectoriel de E. Alors

- $F \cap G$ est un sous-espace vectoriel de E
- $F \cup G$ n'est en général pas un sous-espace vectoriel de E
- → Exercice de cours nº 6.

b. Espaces vectoriels engendrés

Propriété 11.10

Soit E un espace vectoriel et F un sous-espace vectoriel de E.

- Si $u_1, \ldots, u_p \in F$, alors $Vect(u_1, u_2, \ldots, u_p) \subset F$.
- Si $A \subset F$, alors Vect $(A) \subset F$.

Propriété 11.11

Soit $(E, +, \cdot)$ un espace vectoriel. Soient $u_1, ..., u_p \in E$ et soit $A \subset E$. Alors,

- Vect $(u_1,...,u_p)$ est un sous-espace vectoriel de E appelé sous-espace vectoriel engendré par $u_1,...,u_p$
- Vect(A) est un sous-espace vectoriel de E appelé sous-espace vectoriel engendré par A

c. Solutions d'un système homogène

Propriété 11.12

L'ensemble des solutions d'un système homogène S_0 de n équations à p inconnues est un sous-espace vectoriel de \mathbb{R}^p .

Remarque

Si S_0 est un système homogène à p inconnues, qu'on note S l'ensemble des solutions de S_0 et qu'on note $S_1, S_2, ..., S_n$ l'ensemble des solutions de chaque ligne du système dans \mathbb{R}^p , alors $\forall k \in [1, n]$, S_k est un sous-espace vectoriel de \mathbb{R}^p et $S = \bigcap_{k=1}^n S_k$ est une intersection de s-e.v. donc est un s-e.v.

Remarque

Les sous-espaces vectoriels de \mathbb{R}^n peuvent souvent s'écrire ou bien comme solutions d'un système d'équations, ou bien comme sous-espace vectoriel engendré par une famille de vecteurs. Dans l'exercice suivant, on apprend à passer de l'un à l'autre.

→ Exercice de cours nº 7.

d. Droites vectorielles

Définition 11.6

Soit $(E, +, \cdot)$ un \mathbb{R} -espace vectoriel, une droite vectorielle de E est un sous espace vectoriel D de E tel qu'il existe un vecteur $u \in E$ non nul vérifiant $D = \mathrm{Vect}(u)$. On dit que x **dirige** la droite D. Une droite vectorielle de E est un sous-espace vectoriel de E de la forme $\{t \cdot u \mid t \in R\}$ où u est un vecteur fixé non nul.

3. Sous-espace vectoriels de \mathbb{R}^2

Proposition 11.13 -

Les seuls sous-espaces vectoriels de $E = \mathbb{R}^2$ sont $\{0_{\mathbb{R}^2}\}$, \mathbb{R}^2 et les droites vectorielles de \mathbb{R}^2 .

Propriété 11.14

On considère l'espace vectoriel $E = \mathbb{R}^2$. Soit $(a, b) \in \mathbb{R}^2 \setminus \{(0, 0)\}$ et soit D = Vect((a, b)).

1. Une représentation paramétrique de D est le système $\begin{cases} x = ta \\ y = tb \\ t \in \mathbb{R} \end{cases}$, c'est à dire que $(x, y) \in D$ si et seulement si $t \in \mathbb{R}$

il existe $t \in \mathbb{R}$ tel que (x, y) est solution du système $\begin{cases} x = ta \\ y = tb \end{cases}$

2. Une **équation cartésienne de** D est bx - ay = 0, c'est à dire que $\forall (x, y) \in \mathbb{R}^2$, $(x, y) \in D \iff bx - ay = 0$.

Remarque

La droite vectorielle d'équation cartésienne ax + by = 0 est engendré par le vecteur (-b, a).

III. Dimension

1. Famille génératrice

Définition 11.7

Soit E un \mathbb{R} -espace vectoriel et soit (e_1, \dots, e_p) une famille finie de vecteurs de E. On dit que (e_1, \dots, e_p) est une **famille génératrice de** E si

$$\forall u \in E, \exists (\lambda_1, \dots, \lambda_p) \in \mathbb{R}^p, \ u = \sum_{k=1}^p \lambda_k e_k = \lambda_1 \cdot e_1 + \dots + \lambda_p \cdot e_p$$

Remarque

- $(e_1,...,e_p)$ est une famille génératrice de E si et seulement si $E = \text{Vect}(e_1,...,e_p)$
- Si on rajoute un vecteur quelconque à une famille génératrice, elle reste une famille génératrice.

Exemple 11.6

On considère $E = \mathbb{R}^n$ et la famille $(e_1, ..., e_n)$ définie par

$$e_1 = (1,0,0,\ldots,0)$$
 , $e_2 = (0,1,0,\ldots,0)$, $e_3 = (0,0,1,0,\ldots,0)$, \cdots , $e_n = (0,0,\ldots,0,1)$

Alors $(e_1, e_2, ..., e_n)$ est une famille génératrice de \mathbb{R}^n . En effet, pour tout vecteur $u = (x_1, x_2, ..., x_n)$ on a

$$u = x_1 \cdot e_1 + x_2 \cdot e_2 + \cdots + x_n \cdot e_n$$

→ Exercice de cours nº 8.

Propriété 11.15

Soit $(e_1, e_2, ..., e_p)$ une famille génératrice de vecteurs de \mathbb{R}^n . Alors $p \ge n$.

2. Famille libre

Définition 11.8

Soit E un \mathbb{R} -espace vectoriel. Une famille $(e_1, e_2, ..., e_p)$ de p vecteurs de E est dite **libre** si

$$\forall (\lambda_1,...,\lambda_p) \in \mathbb{R}^p, \quad \lambda_1 \cdot e_1 + \cdots + \lambda_p \cdot e_p = 0_E \Longrightarrow \lambda_1 = \lambda_2 = \cdots = \lambda_p = 0$$

Dans le cas contraire, on dit que la famille $(e_1, ..., e_n)$ est **liée**.

Remarque

La famille (e_1,e_2,\ldots,e_p) est liée s'il existe un p-uplet de réels $\lambda_1,\lambda_2,\ldots,\lambda_p$ non tous nuls tels que

$$\lambda_1 \cdot e_1 + \lambda_2 \cdot e_2 + \cdots + \lambda_p \cdot e_p = 0_E$$

On peut alors exprimer au moins un des vecteurs de cette famille comme une combinaison linéaire des autres : si $\lambda_i \neq 0$ on a

$$e_i = -\frac{\lambda_1}{\lambda_i}e_1 - \frac{\lambda_2}{\lambda_i}e_2 - \dots - \frac{\lambda_{i-1}}{\lambda_i}e_{i-1} - \frac{\lambda_{i+1}}{\lambda_i}e_{i+1} - \dots - \frac{\lambda_n}{\lambda_i}e_n$$

Ainsi, une famille liée est une famille dans laquelle l'un des vecteurs peut s'exprimer comme combinaison linéaire des autres. Une famille libre est donc **une famille dans laquelle aucun vecteur ne peut s'exprimer comme combinaison linéaire des autres.** En particulier dans une famille libre aucun vecteur n'est nul.

Exemple 11.7

Dans $E = \mathbb{R}^n$, la famille (e_1, e_2, \dots, e_n) définie par

$$e_1 = (1,0,0,\ldots,0)$$
 , $e_2 = (0,1,0,\ldots,0)$, $e_3 = (0,0,1,0,\ldots,0)$, \cdots , $e_n = (0,0,\ldots,0,1)$

est libre. En effet, soient $(\lambda_1, ..., \lambda_n) \in \mathbb{R}^n$ tel que $\lambda_1 e_1 + \cdots + \lambda_n e_n = 0_{\mathbb{R}^n} = (0, ..., 0)$, alors $(\lambda_1, 0, ..., 0) + (0, \lambda_2, 0, ..., 0) + \cdots + (0, 0, ..., 0, \lambda_n) = 0_{\mathbb{R}^n}$ donc $(\lambda_1, \lambda_2, ..., \lambda_n) = 0_{\mathbb{R}^n}$ et finalement $\lambda_1 = \lambda_2 = \cdots = \lambda_n$.

→ Exercice de cours nº 9.

→ Exercice de cours nº 10.

Remarque

- Une famille de 1 vecteur est libre si et seulement si ce vecteur est non nul.
- Une famille de 2 vecteurs non nuls est libre si et seulement si ils sont non colinéaires.
- Dans \mathbb{R}^3 identifié à l'espace muni d'un repère, une famille de 3 vecteurs est libre si et seulement si ils sont non coplanaires.
- Si on enlève un vecteur à une famille libre, elle reste libre.

Proposition 11.16 ———

Soit $(e_1, e_2, ..., e_p)$ une famille libre de \mathbb{R}^n , alors $p \le n$.

Proposition 11.17

Soit E un \mathbb{R} -espace vectoriel quelconque. Une famille génératrice de E a au moins autant d'éléments qu'une famille libre de E. Autrement dit, si $(e_1, e_2, ..., e_p)$ est une famille génératrice de E et que $(f_1, f_2, ..., f_r)$ est une famille libre de E, alors $r \leq p$.

3. Base

Définition 11.9 -

Soit E un \mathbb{R} -espace vectoriel. Une **base** de E est une famille de vecteurs qui est à la fois **génératrice** de E et **libre**.

Exemple 11.8

Dans $E = \mathbb{R}^n$, la famille $(e_1, e_2, ..., e_n)$ définie par

$$e_1 = (1,0,0,\ldots,0)$$
 , $e_2 = (0,1,0,\ldots,0)$, $e_3 = (0,0,1,0,\ldots,0)$, \cdots , $e_n = (0,0,\ldots,0,1)$

est une base de \mathbb{R}^n appelée **base canonique de** \mathbb{R}^n . En effet, on a vu dans les exemples 1 et 2 que c'était une famille génératrice de \mathbb{R}^n et qu'elle était libre.

→ Exercice de cours nº 11.

Propriété 11.18

Soit E un \mathbb{R} -espace vectoriel et soit $\mathcal{B} = (e_1, \dots, e_n)$ une base de E. Alors tout vecteur u de E peut s'écrire de façon unique comme une combinaison linéaire d'éléments de \mathcal{B} :

$$\forall u \in E, \exists! (x_1, ..., x_n) \in \mathbb{R}^p, \quad u = \sum_{k=1}^n x_k \cdot e_k = x_1 \cdot e_1 + \dots + x_n \cdot e_n$$

on dit alors que $(x_1, ..., x_n)$ sont les coordonnés de u dans la base \mathcal{B} .

4. Dimension

Théorème 11.19 (de la base incomplète) -

Soit E un \mathbb{R} -espace vectoriel. Soit $\mathcal{L} = (e_1, \dots, e_p)$ une famille libre de E qui n'est pas génératrice et soit $\mathcal{G} = (f_1, f_2, \dots, f_r)$ une famille génératrice de E. Alors, on peut ajouter certain vecteurs de la famille \mathcal{G} à la famille \mathcal{L} de sorte que \mathcal{L} devienne une base de E.

Remarque

On déduit de ce théorème que dans un R-espace vectoriel engendré par une famille finie,

- Toute famille libre peut être complétée en une base.
- De toute famille génératrice on peut extraire une base.

La propriété suivante est une conséquence du théorème de la base incomplète (mais pas seulement).

Proposition 11.20 (admise)

Tout \mathbb{R} -espace vectoriel E non trivial admet une base.

Proposition 11.21 —

Soit E un \mathbb{R} -espace vectoriel. Toutes les bases de E ont le même nombre d'éléments. Autrement dit, si (e_1, e_2, \dots, e_p) et (f_1, f_2, \dots, f_r) sont deux bases de E, alors p = r.

Définition 11.10

Soit E un \mathbb{R} -espace vectoriel. On appelle **dimension** de E et on note $\dim(E)$ le cardinal d'une base de E.

Remarque

Ce nombre est bien défini et ne dépend pas de la base choisie d'après les propositions précédente.

Propriété 11.22

- Pour tout entier $n \in \mathbb{N}^*$, $\dim(\mathbb{R}^n) = n$.
- Les sous-espaces vectoriels de \mathbb{R}^n de dimension 1 sont les droites vectorielles.
- Une base de l'espace vectoriel trivial $\{0\}$ est la famille vide \emptyset , donc dim $(\{0\}) = 0$.

Proposition 11.23

Soit E un \mathbb{R} -espace vectoriel et soit $n = \dim(E)$. Soit $\mathcal{B} = (e_1, ..., e_p)$ une famille de vecteurs de E.

- Si \mathcal{B} est libre alors $p \le n$ avec égalité si et seulement si \mathcal{B} est une base de E.
- Si \mathcal{B} est génératrice de E, alors $p \ge n$ avec égalité si et seulement si \mathcal{B} est une base de E.

On en déduit la proposition suivante :

Proposition 11.24

Soit E un \mathbb{R} -espace vectoriel. Si $n = \dim(E)$ et que \mathcal{B} est une famille de n vecteurs de E:

- Si \mathcal{B} est libre, alors c'est une base de E
- Si \mathcal{B} est génératrice, alors c'est une base de E.

Propriété 11.25

Soit E un \mathbb{R} -espace vectoriel et soit F un sous-espace vectoriel de E. Alors $\dim(F) \leq \dim(E)$.

Proposition 11.26 -

Si F est un sous-espace vectoriel de E et que $\dim(E) = \dim(F)$, alors E = F.

5. Bases de $\mathbb{R}_n[X]$ et $\mathcal{M}_{n,m}(\mathbb{R})$

Propriété 11.27 –

Soit $n \in \mathbb{N}$. La famille $(1, X, X^2, ..., X^n)$ est une base de $\mathbb{R}_n[X]$.

Remarque

On a donc dim($\mathbb{R}_n[X]$) = n + 1.

Définition 11.11 -

Une famille $(P_1, P_2, ..., P_n)$ de polynômes de $\mathbb{R}[X]$ est dite **échelonnée en degré** si $\deg(P_1) < \deg(P_2) < \cdots < \deg(P_n)$

Proposition 11.28 -

Si une famille $(P_1, P_2, ..., P_n)$ de polynômes non nuls de $\mathbb{R}[X]$ est échelonnée en degré, alors elle est libre.

→ Exercice de cours nº 12.

Propriété 11.29

Soit $(n, m) \in (\mathbb{N}^*)^2$. Si pour tout $(i, j) \in [1, n] \times [1, m]$ on note $E_{i, j}$ la matrice de $\mathcal{M}_{n, m}(\mathbb{R})$ dont tous les coefficients sont

nuls sauf celui de la i-ème ligne et j-ème colonne qui vaut 1, alors $(E_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq m}}$ est une base de $\mathcal{M}_{n,m}(\mathbb{R})$.

Remarque

On a donc dim $(\mathcal{M}_{n,m}(\mathbb{R})) = nm$ et dim $(\mathcal{M}_n(\mathbb{R})) = n^2$.

Remarque

La base $(1,X,...,X^n)$ de $\mathbb{R}_n[X]$ et la base $(E_{i,j})_{\substack{1\leq i\leq n\\1\leq j\leq m}}$ de $\mathcal{M}_{n,m}(\mathbb{R})$ s'appellent aussi **bases canoniques** de leurs espaces vectoriels respectifs.

Définition 11.12 -

Soit $n \in \mathbb{N}^*$ et soit $A \in \mathcal{M}_n(\mathbb{R})$. On dit que

- A est **symétrique** si ${}^tA = A$, c'est à dire si $\forall (i, j) \in [1, n]^2$, $a_{i,j} = a_{j,i}$
- A est antisymétrique si ${}^tA = -A$, c'est à dire si $\forall (i,j) \in [1,n]^2$, $a_{i,j} = -a_{j,i}$.
- → Exercice de cours nº 13.

IV. Applications linéaires.

1. Généralités

Définition 11.13

Soient E et F deux \mathbb{R} -espaces vectoriels. Une application $f: E \longrightarrow F$ est dite **linéaire** si

- $\forall (u,v) \in E^2$, f(u+v) = f(u) + f(v)
- $\forall \lambda \in \mathbb{R}, \forall u \in E, f(\lambda \cdot u) = \lambda \cdot f(u)$

On note $\mathcal{L}(E, F)$ l'ensemble des applications linaires de E dans F.

Proposition 11.30

Soient E et F deux \mathbb{R} -espaces vectoriels. Une application $f:E\longrightarrow F$ est linéaire si et seulement si

$$\forall (\lambda, \mu) \in \mathbb{R}^2, \forall (u, v) \in E^2, \quad f(\lambda \cdot u + \mu \cdot v) = \lambda \cdot f(u) + \mu \cdot f(v)$$

ou de façon équivalente si et seulement si

$$\forall \mu \in \mathbb{R}, \forall (u, v) \in E^2, \quad f(u + \mu \cdot v) = f(u) + \mu \cdot f(v)$$

Exemples 11.9

- L'application $f: \mathbb{R}_n[X] \longrightarrow \mathbb{R}_n[X]$ est linéaire.
- L'application $f: \mathcal{M}_{n,m}(\mathbb{R}) \longrightarrow \mathcal{M}_{m,n}(\mathbb{R})$ est linéaire.
- L'application $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ $(x,y) \longmapsto (x+y,x-y)$ est linéaire

Propriété 11.31 –

Si $f: E \longrightarrow F$ est une application linéaire, alors $f(0_E) = 0_F$.

Remarque

Cette propriété fournit une condition facile à vérifier, nécessaire (mais non suffisante) pour qu'une application soit linéaire.

→ Exercice de cours nº 14.

2. Opérations

Propriété 11.32

Soient E et F deux \mathbb{R} -espaces vectoriels. Soient f et g deux applications linéaires de E vers F et soit k un réel.

- On définit f + g sur E par $\forall x \in E$, (f + g)(x) = f(x) + g(x).
- On définit $k \cdot f$ sur E par $\forall x \in E$, $(k \cdot f)(x) = k \cdot f(x)$.

Alors f + g et $\lambda \cdot f$ sont des applications linéaires de E vers F.

Proposition 11.33

Soient E et F deux \mathbb{R} -espaces vectoriels. Alors $\mathcal{L}(E,F)$ muni des opérations + et \cdot définie dans la propriété ci-dessus est un \mathbb{R} -espace vectoriel.

De même, la composée de deux applications linéaires, si elle est bien définie, est une application linéaire :

Propriété 11.34

Soient *E*, *F* et *G* trois espaces vectoriels, et soient $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$. Alors $g \circ f \in \mathcal{L}(E, G)$.

Définition 11.14

Soit E un \mathbb{R} -espace vectoriel. On appelle **formes linéaires** les éléments de $\mathcal{L}(E,\mathbb{R})$.

Remarque

On rappelle que \mathbb{R} est un \mathbb{R} -espace vectoriel de dimension 1.

Exemple 11.10

L'application $\varphi: \mathbb{R}^3 \longrightarrow \mathbb{R}$, $(x, y, z) \mapsto x - 2y + 3z$ est une forme linéaire.

Exemple 11.11

L'application $\mathbb{R}[X] \longrightarrow \mathbb{R}$, $P \longmapsto P(0)$ est une forme linéaire.

Exemple 11.12

L'application $\mathcal{M}_n(\mathbb{R}) \longrightarrow \mathbb{R}$, $M \longmapsto \operatorname{tr}(M)$ est une forme linéaire.

3. Image et noyau

Définition 11.15 —

Soient E et F deux \mathbb{R} -espaces vectoriels et soit $f \in \mathcal{L}(E, F)$.

- On appelle **noyau de** f et on note $\mathrm{Ker}(f)$ l'ensemble des antécédents de 0_F par f :

$$Ker(f) := \{x \in E \mid f(x) = 0_F\} = f^{-1}(\{0_F\})$$

- On appelle $\mathbf{image} \ \mathbf{de} \ f$ et on note $\mathrm{Im}(f)$ l'ensemble image de E par f :

$$Im(f) := \{ f(x) \mid x \in E \} = \{ y \in F \mid \exists x \in E, y = f(x) \} = f(E)$$

Propriété 11.35

Soient E et F deux \mathbb{R} -espace vectoriel et soit $f \in \mathcal{L}(E, F)$. Alors

- Ker(f) est un sous-espace vectoriel de E
- Im(f) est un sous-espace vectoriel de F
- → Exercice de cours nº 15.

4. Injection, surjection, bijection

Propriété 11.36

Soient E et F deux \mathbb{R} -espaces vectoriels et soit $f \in \mathcal{L}(E, F)$. Alors f est injective si et seulement si $Ker(f) = \{0_E\}$

→ Exercice de cours nº 16.

Propriété 11.37

 $f \in \mathcal{L}(E, F)$ est une surjection si et seulement si $\mathrm{Im}(f) = F$

Définition 11.16

Soient E et F deux \mathbb{R} -espaces vectoriels et soit $f \in \mathcal{L}(E,F)$. Si f est bijective, alors $f^{-1} \in \mathcal{L}(F,E)$. On dit alors que f est un **isomorphisme** de E vers F, et on dit que E et F sont **isomorphes**.

Remarque

Si $f \in \mathcal{L}(E, F)$ est injective, alors f est une bijection de E vers f(E). En effet, f est une surjection de E vers f(E) par définition, donc il suffit qu'elle soit injective pour que ce soit une bijection.

Propriété 11.38

Si $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$ sont deux isomorphismes, alors $g \circ f$ est un isomorphisme. Son isomorphisme réciproque est $f^{-1} \circ g^{-1}$.

5. Endomorphismes

Dans toute cette section E désigne un \mathbb{R} -espace vectoriel.

Définition 11.17

Un **endomorphisme** de E est une application linéaire de E dans E (*endo* = dans, à l'intérieur). On note $\mathcal{L}(E) := \mathcal{L}(E, E)$ l'ensemble des endomorphismes de E.

Remarque

En plus des opérations + et ·, on a $\forall (f,g) \in (\mathcal{L}(E))^2, f \circ g \in \mathcal{L}(E)$ et $g \circ f \in \mathcal{L}(E)$. On dit que f et g commutent si $f \circ g = g \circ f$

Définition 11.18

On note Id_E l'endomorphisme **identité**, défini sur E par

$$\begin{array}{cccc} \operatorname{Id}_E & :E & \longrightarrow & E \\ & x & \longmapsto & x \end{array}$$

qui est trivialement une application linéaire de *E* vers *E*.

Définition 11.19

Si $f \in \mathcal{L}(E)$ est bijective, on dit que f est un **automorphisme** de E.

Exemple 11.13

- L'application id_E est un automorphisme de E, son automorphisme réciproque est elle-même.
- L'application $f: E \to E, x \mapsto -x$ est un automorphisme de E, son automorphisme réciproque est elle même.

Propriété 11.39

Si $f, g \in \mathcal{L}(E)$ sont deux automorphismes de E, alors $g \circ f$ est un automorphisme de E, et $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Définition 11.20

Soit $f \in \mathcal{L}(E)$. On note par convention $f^0 = \mathrm{id}_E$, et pour on définit par récurrence f^p par $f^p = f \circ f^{p-1}$ pour tout $p \in \mathbb{N}^*$.

Définition 11.21

Un endomorphisme $f \in \mathcal{L}(E)$ est dit **nilpotent** s'il existe un entier $p \in \mathbb{N}^*$ tel que $f^p = 0$.

Propriété 11.40 –

Soient $f, g, h \in \mathcal{L}(E)$, alors $f \circ (g + h) = f \circ g + f \circ h$ et $(f + g) \circ h = f \circ h + g \circ h$.

Propriété 11.41

Soient $f, g \in \mathcal{L}(E)$. Si f et g commutent, alors pour tout $n \in \mathbb{N}$ on a :

$$(f+g)^n = \sum_{k=0}^n \binom{n}{k} f^k \circ g^{n-k}$$

6. Applications linéaires et dimensions

Remarque

Soit E et F deux \mathbb{R} -espaces vectoriels de dimension finie. Soit (e_1, \ldots, e_n) une base de E.

- Une application linéaire $f \in \mathcal{L}(E, F)$ est **entièrement déterminée** par la donnée de $f(e_1),..., f(e_n)$. En effet, tout vecteur $u \in E$ peut s'écrire $u = x_1 \cdot e_1 + \cdots + x_n \cdot e_n$ où $x_1,..., x_n$ sont des réels, donc $f(u) = x_1 \cdot f(e_1) + \cdots + x_n \cdot f(e_n)$ par linéarité de f.
- On a $\text{Im}(f) = \text{Vect}(f(e_1), ..., f(e_n))$ mais $f(e_1), ..., f(e_n)$ n'est pas nécessairement une base de F (cette famille peut être liée). On a donc $\dim(\text{Im}(f)) \le \dim(E)$ et $\dim(\text{Im}(f)) \le \dim(F)$.

Définition 11.22

Soient E et F deux espaces vectoriels de dimension finie et $f \in \mathcal{L}(E,F)$. On appelle **rang** de f et on note $\operatorname{rg}(f)$ l'entier $\operatorname{rg}(f) = \dim(\operatorname{Im}(f))$.

Remarque

D'après la remarque précédente $rg(f) \le min(dim(E), dim(F))$.

Théorème 11.42 (du rang)

Soient E un \mathbb{R} -espace vectoriel de dimension finie, F un \mathbb{R} -espace vectoriel quelconque, et $f \in \mathcal{L}(E,F)$. Alors

$$\dim(\operatorname{Ker}(f)) + \operatorname{rg}(f) = \dim(E)$$

→ Exercice de cours nº 17.

Propriété 11.43

Soient E et F deux \mathbb{R} -espaces vectoriels de dimension finie et $f \in \mathcal{L}(E,F)$. Alors

- f est injective si et seulement si l'image d'une base de E par f est une famille libre
- f est surjective si et seulement si l'image d'une base de E par f est une famille génératrice de F
- f est bijective si et seulement si l'image d'une base de E par f est une base de F.

Propriété 11.44

Soient E et F deux espaces vectoriels de dimension finie, et soit $f \in \mathcal{L}(E, F)$.

- Si f est injective, alors $\dim(E) \leq \dim(F)$
- Si f est surjective, alors $\dim(E) \ge \dim(F)$

Propriété 11.45

Si E et F sont deux \mathbb{R} -espaces vectoriels de dimension finie, alors $\dim(E) = \dim(F)$ si et seulement si il existe un isomorphisme de E vers F

Remarque

Deux conséquences importantes de cette proposition :

- Tout espace vectoriel de dimension n est donc isomorphe à \mathbb{R}^n .
- Il n'existe pas d'isomorphisme de \mathbb{R}^n dans \mathbb{R}^m si $n \neq m$.

Remarque

 $\mathbb{R}_n[X]$ est isomorphe à \mathbb{R}^{n+1} par l'application

$$\mathbb{R}^{n+1} \longrightarrow \mathbb{R}_n[X]$$

$$(a_0, a_1, ..., a_n) \longmapsto P = \sum_{k=0}^n a_k X^k$$

$$\mathcal{M}_n \dots (\mathbb{R}) \longrightarrow \mathbb{R}^{nm}$$

 $\mathcal{M}_{n,m}(\mathbb{R})$ est isomorphe à \mathbb{R}^{nm} par l'application :

$$A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le m}} \quad \longmapsto \quad (a_{1,1}, ..., a_{1,m}, a_{2,1}, ..., a_{2,m}, ..., a_{n,m})$$

Propriété 11.46 -

Soient E et F deux \mathbb{R} -espaces vectoriels de dimension finie tels que $\dim(E) = \dim(F) = n$. Pour tout $f \in \mathcal{L}(E,F)$, les 6 propositions suivantes sont toutes équivalentes entre elles :

i) *f* est injective

iv) $Ker(f) = \{0_E\}$

ii) f est surjective

v) Im(f) = F

iii) *f* est bijective

vi) rg(f) = n

- → Exercice de cours nº 18.
- → Exercice de cours nº 19.

Propriété 11.47

Soit E et F deux \mathbb{R} -espaces vectoriels de dimension fini.

- Si $f \in \mathcal{L}(E)$, alors f est inversible si et seulement si il existe $g \in \mathcal{L}(E)$ tel que $f \circ g = \mathrm{id}_E$ ou $g \circ f = \mathrm{id}_E$
- Si $f \in \mathcal{L}(E, F)$ et $\dim(E) = \dim(F)$, alors f est inversible si et seulement si il existe $g \in \mathcal{L}(F, E)$ tel que $g \circ f = \mathrm{id}_E$ ou $f \circ g = \mathrm{id}_F$.

Remarque

Cette dernière propriété est fausse si $\dim(E) \neq \dim(F)$. Prenons par exemple

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$
 et $g: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ $(x, y) \longmapsto (x, y, 0)$

f et g sont linéaires et $g \circ f = \mathrm{id}_{\mathbb{R}^2}$ mais f n'est pas surjective et g n'est pas injective.

Exercices de cours

	Exercice 1
On pose $E = \mathbb{R}^3$, $u = (1, 1, 3)$, $v = (4, 1, 2)$ et $w = (5, -2, 3)$. Déterminer si le vecteur $x = (-6, -1, 8)$ appartient à V	
	Exercice 2
On considère $E = \mathbb{R}^3$, $u = (2, 1, -1)$, $v = (3, 0, 1)$ et $w =$ Les vecteurs $x = (-1, 1, -2)$ et $y = (4, 1, 2)$ appartienne	
	Exercice 3
Soit $E = \mathbb{R}^3$ et $F = \{(x, y, z) \in \mathbb{R}^3 \mid 4x + 2y - 5z = 0\}$. Montrer que F est un sous-espace vectoriel de E .	
	Exercice 4
On considère E l'espace vectoriel des fonctions cont sous-espace vectoriel de E .	inues de $\mathbb R$ dans $\mathbb R$. Soit $F=\{f\in E\mid f(1)=0\}$. Montrer que F est un
	Exercice 5
Déterminer dans chaque cas si F est un sous-espace	vectoriel de E :
 E = R⁴ et F = {(x₁, x₂, x₃, x₄) ∈ R⁴ x₁ + x₂ + x₃ + E = R² et F = {(x, y) ∈ R² xy = 0} E = R³ et F = {(x, y, z) ∈ R³ x = 3z} E est l'ensemble des fonctions continues de R 	
	Exercice 6
Soit $(E,+,\cdot)$ un \mathbb{R} -espace vectoriel et soient F et G espace vectoriel de E si et seulement si $F \subset G$ ou $G \subset G$	deux sous-espaces vectoriels de E . Montrer que $F \cup G$ est un sous-
	Exercice 7
Soit $E = \mathbb{R}^3$. On considère les sous-espaces vectoriel comme sous-espace vectoriel de E engendré par une	As $F = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y - z = 0\}$ et $G = \text{Vect}((1, -1, 2))$. Écrire F famille de vecteurs, et G comme solution d'un système d'équations.
	Exercice 8
Soit $F = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}.$	
1. Montrer que F est un sous-espace vectoriel de	$\mathbb{R}^3.$
2. On pose $e_1 = (1, -1, 0)$ et $e_2 = (1, 0, -1)$. Montrer	que (e_1,e_2) est une famille génératrice de F .
	Exercice 9
Dans $E = \mathbb{R}^3$, montrer que la famille $((1,2,1),(3,1,2),($	(4, 1, 1)) est libre.
	Exercice 10 —

Soit E l'ensemble des fonctions continues de $\mathbb R$ dans $\mathbb R$, soient $a_1 < a_2 < \cdots < a_n$ des réels et soient $f_1, f_2, ..., f_n$ les fonctions de E définies par $\forall i \in [\![1,n]\!]$, $\forall x \in \mathbb R$, $f_i(x) = \mathrm{e}^{a_i x}$. Montrer que $f_1, f_2, ..., f_n$ est une famille libre de E.

Exercice 11

On considère les parties F et G de \mathbb{R}^4 définies par

$$F = \{(x, y, z, t) \in \mathbb{R}^4 \mid 2x - 6y + 4z - 2t = 0\}$$
 et $G = \text{Vect}((1, 1, 1, 0), (0, 1, 1, -1)) \subset \mathbb{R}^4$

- 1. Montrer que dim(G) = 2
- 2. Montrer que F est un sous-espace vectoriel de \mathbb{R}^4
- 3. Montrer que G est un sous-espace vectoriel de F.

Exercice 12 -

- 1. Soit $n \in \mathbb{N}^*$. Montrer que $(1, X+1, X^2+X+1, \cdots, X^n+X^{n-1}+\cdots+X+1)$ est une base de $\mathbb{R}_n[X]$
- 2. Décomposer le polynôme $X^3 X^2$ dans la base $(X^3 + X^2 + X + 1, X^2 + X + 1, X + 1, 1)$.

Exercice 13 -

Notons $S_n(\mathbb{R})$ (resp. $A_n(\mathbb{R})$) l'ensemble des matrices symétriques (resp. antisymétriques) à coefficients réels.

- 1. Montrer que $S_n(\mathbb{R})$ et $A_n(\mathbb{R})$ sont des sous-espaces vectoriels de $\mathcal{M}_n(\mathbb{R})$
- 2. Montrer que la réunion de la famille $(E_{i,i})_{1 \le i \le n}$ et de la famille $(E_{i,j} + E_{j,i})_{1 \le i < j \le n}$ est une base de $S_n(\mathbb{R})$. En déduire $\dim(S_n(\mathbb{R}))$.
- 3. Montrer que la famille $(E_{i,j} E_{j,i})_{1 \le i < j \le n}$ est une base de $A_n(\mathbb{R})$. En déduire dim $(A_n(\mathbb{R}))$.

Exercice 14 -

On considère l'application φ suivante :

$$\varphi: \quad \mathbb{R}^2 \quad \longrightarrow \quad \mathbb{R}^2$$

$$(x, y) \quad \longmapsto \quad (5x - y, 2x)$$

Montrer que $\varphi \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^2)$.

— Exercice 15

Soit $\varphi : \mathbb{R}^4 \longrightarrow \mathbb{R}^2$ définie par $\varphi(x,y,z,t) = (x+y-t \ , \ y-z+t)$. On admet que φ est linéaire. Déterminer une base de $\operatorname{Ker}(\varphi)$ et de $\operatorname{Im}(\varphi)$.

Montrer que $f: \mathbb{R}^2 \to \mathbb{R}^3$, $(x, y) \mapsto (x + y, x - y, x)$ est une application linéaire injective.

— Exercice 17 -

On considère l'application $f: \mathbb{R}^3 \to \mathbb{R}^4$, $(x, y, z) \mapsto (x + z, 0, y - z, 0)$. En vous aidant du théorème du rang, déterminer Ker(f) puis Im(f).

Montrer que l'application $f: \mathbb{R}^3 \to \mathbb{R}^3$, $(x, y, z) \mapsto (x + y + z, 2x - z, x - y + 2z)$ est un automorphisme de \mathbb{R}^3 .

- Exercice 19 -

Montrer que l'application $\mathbb{R}_2[X] \to \mathbb{R}^3$, $P \mapsto (P(0), P'(0), P''(0))$ est un isomorphisme d'espaces vectoriels.

