Fondamenti di Comunicazioni

Corso: Fondamenti di comunicazioni e Internet (canale I e II) E Telecomunicazioni

Argomento 9: Teorema del campionamento

Tiziana Cattai email: tiziana.cattai@uniroma1.it

Ci occupiamo di capire come passare da un segnale continuo x(t) ad uno discreto x_n senza perdita di informazioni. Questo ci permette di ritornare dal segnale campionato x_n a quello iniziale x(t).

Consideriamo un generico segnale x(t)

 $\lim_{n \to \infty} f_m$

Che sia limitato in banda: banda finita B Con una componente di frequenza massima f_m

Questo segnale viene fatto passare in un campionatore, che è un sistema misto che prende in ingresso un segnale continuo e dà in uscita un segnale discreto

Il segnale in uscita dal campionatore, entra in un formatore di impulsi. Un sistema misto che prende in ingresso un segnale discreto e dà in uscita un segnale continuo, in cui in ogni campione discreto c'è un impulso matematico con area pari al valore che la sequenza x assume in quel punto

Il segnale $\tilde{x}(t)$ passa infine in un filtro passa basso con banda B', ed esce il segnale y(t). Sotto le ipotesi del teorema del Campionamento il segnale y(t)=x(t)

$$\frac{\hat{\chi}(\xi) \longrightarrow [H(\xi)] \longrightarrow \mathcal{J}(\xi)}{H(\xi)} = \frac{1}{6}, \text{ for } (\frac{1}{6})$$

$$\frac{1}{2}, \text{ for } (\frac{1}{6})$$

$$\frac{-6}{2}, \text{ for } \xi$$

Teorema del Campionamento

Teorema del campionamento. Se il segnale tempo continuo di ingresso x(t) e' limitato in banda con frequenza massima f_m e se la frequenza di campionamento F_s e' $F_s \ge 2f_m$, allora y(t)=x(t)

Teorema del campionamento

La moltiplicazione nel tempo del segnale per un treno di impulsi

Teorema del campionamento

Vediamo con le formule

$$\tilde{x}(t) = \sum_{n} x_{n} \cdot \delta(t - nTs) = \sum_{n} x(nT_{s}) \cdot \delta(t - nTs) = \sum_{n} x(t) \cdot \delta(t - nTs)$$

$$= x(t) \sum_{n} \delta(t - nTs) = x(t) \cdot \Gamma_{T_{s}}(t)$$

Ora facciamone la trasformata di Fourier CTFT:

$$\tilde{X}(f) = FT\{\tilde{x}(t)\} = FT\{x(t) \cdot \Gamma_{T_s}(t)\} = FT\{x(t)\} * FT\{\Gamma_{T_s}(t)\} = X(f) * F_s\Gamma_{F_s}(f)$$

$$= X(f) * \Gamma_s \sum_n \delta(f - nFs) = F_s \sum_n X(f) * \delta(f - nFs) = Fs \sum_n X(f - nFs)$$

Questo significa che ho infinite repliche della trasformata di Fourier del segnale in ingresso centrate nei multipli della frequenza di campionamento F_s

Teorema del campionamento

Teorema del campionamento ipotesi del teorema del campionamento

$$\tilde{X}(f) = F_s \sum_{n} X(f - nFs)$$

$$-f_m \qquad f_m \qquad F_s + f_m$$

$$-F_s \qquad B \qquad F_s - f_m$$

Se $F_s - f_m \ge f_m \to F_s \ge 2f_m = B$ allora riesco a ricostruire correttamente. Altrimenti no.

Vediamo caso $F_s < 2f_m$

Teorema del campionamento ipotesi del teorema del campionamento

$$\tilde{X}(f) = F_s \sum_{n} X(f - nFs)$$

$$-f_m \qquad f_m \qquad F_s + f_m$$

$$-F_s \qquad B \qquad F_s - f_m$$

Se $F_s - f_m \ge f_m \to F_s \ge 2f_m = B$ allora riesco a ricostruire correttamente. Altrimenti no.

Vediamo caso $F_s < 2f_m$

In questo caso non è possibile ricostruire il segnale di partenza perché le repliche sono sovrapposte \rightarrow quando si fa passare il segnale in un filtro passa basso non si recupera una replica

Utilizzo del campionamento

$$\frac{\chi(t)}{\chi(n\tau)} \xrightarrow{\chi(t) = \sum_{i=1}^{n} \chi(m)\delta(t-n\tau)} \frac{\chi(t)}{\chi(t)} \xrightarrow{\chi(t) = \sum_{i=1}^{n} \chi(m)\delta(t-n\tau)} \frac{\chi(t)}{\chi(t)}$$

$$\frac{\chi(t)}{\chi(n\tau)} \xrightarrow{\chi(t) = \sum_{i=1}^{n} \chi(m)\delta(t-n\tau)} \frac{\chi(t)}{\chi(t)}$$

Teorema del campionamento: ricostruzione del segnale x(t)

Seguendo tutti gli step che abbiamo presentato

Teorema del campionamento: ricostruzione del segnale x(t)

Ingresso: x(t)

Campionatore a passo T_s : $x_n = x(nT_s)$

Formatore di impulsi: $\tilde{x}(t) = \sum_{n} x_n \cdot \delta(t - nT_s)$

Uscita del filtro: $x(t) = \tilde{x}(t) * h(t) =$

$$\sum_{n} x_{n} \cdot \delta(t - nT_{S}) * sinc\left(\frac{t}{T_{S}}\right) = \sum_{n} x_{n} \cdot sinc\left(\frac{t - nT_{S}}{T_{S}}\right)$$

Filtro anti-aliasing

Si tratta di un filtro passa basso $\left[-\frac{F_s}{2}, \frac{F_s}{2}\right]$ che taglia la banda del segnale x(t) in ingresso. Viene applicato nella maggior parte dei sistemi reali direttamente al segnale x(t)

Esercizi

Un segnale x(t) ha una frequenza massima di 20kHz.

Determinare il massimo intervallo di campionamento per avere una perfetta ricostruzione del segnale.

To Massins: o. 25 ms

Esercizi

Dato il segnale $x(t)=3\cos(2\pi 4t)-\sin(2\pi 3t)$ quanti campioni devono essere presi su un intervallo di 5 s per soddisfare il teorema del campionamento?