PSAF- Feuille d'exercices 2

Exercice 1.

Dans cet exercice on considère des fonctions définies sur l'espace mesuré ([0, 1], $\mathcal{B}([0, 1]), \lambda$), et à valeurs réelles.

1) On considère la suite de fonctions (f_n) définie par

$$\forall n \in \mathbb{N}^*, \forall x \in [0, 1], \quad f_n(x) = n^2 \left[\frac{1}{n} - |x - \frac{1}{n}| \right]_+.$$

- a) Identifier la limite simple f de la suite (f_n) . Calculer $\int_0^1 f_n d\lambda$ pour tout n, et $\int_0^1 f d\lambda$.
- b) Y a-t-il convergence uniforme de (f_n) vers f? Pourrait-on trouver une fonction positive h mesurable et intégrable qui domine la suite (f_n) (i.e. $|f_n| \le h$ λ -p.p. pour tout n)?
 - 2) On considère maintenant la suite de fonctions (f_n) définie par

$$\forall n \in \mathbb{N}^*, \forall x \in [0, 1], \quad f_n(x) = n \left[\frac{1}{n} - |x - \frac{1}{n}| \right]_+.$$

- a) Identifier la limite simple f de la suite (f_n) . Y a-t-il convergence uniforme?
- b) Montrer sans aucun calcul que $\lim_{n\to\infty}\int_0^1 f_n d\lambda = 0$. Commenter.

Exercice 2. (Dérivation sous le signe somme)

On se propose de montrer le Théorème 1.2.4 du cours (dont on reprend les notations).

- 1) Justifier que pour tout $t \in I$ la fonction $\frac{\partial f}{\partial t}(\cdot,t)$ est intégrable (ce qui donne un sens à la quantité $\int_E \frac{\partial f}{\partial t}(x,t)\mu(dx)$ pour tout $t \in I$).
- 2) Montrer que pour tout $t \in I$ la fonction $f(\cdot,t)$ est intégrable (ce qui donne un sens à la quantité $\int_E f(x,t)\mu(dx)$ pour tout $t \in I$).
 - 3) Montrer alors qu'en tout point $t_0 \in I$ l'application $t \mapsto \int_E f(x,t)\mu(dx)$ est dérivable et que

$$\frac{d}{dt} \Big[\int_E f(x,t) \mu(dx) \Big]_{t=t_0} = \int_E \frac{\partial f}{\partial t}(x,t_0) \mu(dx).$$

Indication: En tout $t_0 \in I$ on pourra considérer une suite quelconque (t_0^n) tendant vers t_0 sans jamais toucher t_0 , et la suite de fonctions (φ_n) définie par

$$\forall n \in \mathbb{N}^*, \forall x \in E, \quad \varphi_n(x) = \frac{f(x, t_0^n) - f(x, t_0)}{t_0^n - t_0}.$$

Exercice 3.

Soit X une variable aléatoire définie sur $(\Omega, \mathcal{F}, \mathbb{P})$, à valeurs dans (E, \mathcal{E}) . On se penche dans cet exercice sur $\sigma(X)$, la plus petite tribu sur Ω qui rend mesurable X.

- 1) Justifier que $\sigma(X)$ existe.
- 2) Vérifier que $\{X^{-1}(B)\}_{B\in\mathcal{E}}$ est une tribu. En conclure que $\sigma(X)$ vaut $\{X^{-1}(B)\}_{B\in\mathcal{E}}$. Noter qu'on a au passage trouvé une autre façon de justifier que $\sigma(X)$ existe.
 - 3) Si $X \equiv c$ est une variable aléatoire constante $(c \in E)$ que vaut $\sigma(X)$?
- **4)** On suppose que $(E, \mathcal{E}) = (\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Si X est mesurable par rapport à $\{\Omega, \emptyset\}$ que peut-on en dire ?

Exercice 4. (Liens entre les modes de convergence)

Dans cet exercice un espace de probabilités $(\Omega, \mathcal{F}, \mathbb{P})$ est donné. Les variables aléatoires rencontrées sont définies sur $(\Omega, \mathcal{F}, \mathbb{P})$ et à valeurs dans $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, pour simplifier.

- 1) Montrer si (X_n) converge en norme L^p vers X alors (X_n) converge en probabilités vers X.
- 2) Montrer que si (X_n) converge p.s. vers X alors (X_n) converge en probabilités vers X.

Indication: Dans le cas $X \equiv 0$ considérer l'ensemble

$$\bigcup_{l\geq 1} \bigcap_{n\geq 1} \bigcup_{k\geq n} \{|X_k| > \frac{1}{l}\}.$$

- 3) On suppose que (X_n) converge en probabilités vers X.
- a) Soit $f: \mathbb{R} \to \mathbb{R}$ continue bornée. Montrer que pour tous $\varepsilon, a > 0$, il existe $0 \le \eta \le 1$ tel que

$$\{|f(X_n) - f(X)| > \varepsilon\} \subset \{|X| > a\} \cup \{|X_n - X| > \eta\}.$$

- b) En choisissant convenablement a, en déduire que $(f(X_n))_{n\in\mathbb{N}}$ converge en probabilités vers X.
- c) Montrer que (X_n) converge en loi vers X.