# Link State Routing Algorithm

Kameswari Chebrolu

### Idea

- Two Phases
- Phase 1: Reliable flooding
  - Initial State: Each node knows the cost to its neighbors
    - Final State: Each node knows the entire graph (network topology)
- Phase 2: Route calculation
  - Each node uses Dijkstra's algorithm on the graph to calculate optimal routes to all nodes

### **Reliable Flooding**

• Each node sends its link-state (neighborhood information) to all nodes in the topology reliably



#### **Features and Solutions**

- Reliability: Employ a reliable protocol to transfer information between neighbors
- Avoid loops and minimize message exchange: Need to detect duplicates
  - Packets need unique 'ids'
  - For a given id, maintain state (Send flags) to determine on which interface to send

- New information should precede older information
  Use sequence no (also uniquely
  - identifies a packet)
  - At a node, increment sequence no for each new message flooded
- What about sequence number wrap around?

  2 wc Atol

 Use a very large sequence number space (e.g. 32 bits)



A to B = 3

- Corruption of sequence number?
  - Use checksums
- Each entry stored at node is 'aged'
- What if a router crashed and came back up? What sequence number should it use?
  - Start with sequence no 0, if heard 'your own' packet, increment sequence number (within) and use
  - Packets are associated with TTL, discard packets when
     TTL hits zero → removes old information

### Putting it all together

- What message to send? Link-state packet (LSP)
- What to do when you receive an LSP? Action at a node
- When to send LSPs? Updates

#### **Link State Packet**

- The id of node sending the packet
- The link-state of the node: neighborhood information (list of neighbors and cost to each)
- Sequence number

Solv

• Time-To-Live (TTL)

#### Action at a node

- Suppose a node X receives an LSP generated by node Y (Y need not be X's neighbor)
- Did I (i.e. X) hear from Y before?
  - No: Store the link-state information. Start an ageing timer.
  - Yes: Compare sequence number of this packet (Seq\_new) with stored information (Seq\_old).
    - If Seq\_new > Seq\_old, overwrite old link-state information, refresh ageing timer, forward to 'required' neighbors
    - If Seq\_old >= Seq\_new, discard received packet

### **Updates**

- Flooding leads to lot of traffic
  - Avoid to the extent possible
- Triggered updates
  - A node floods the network whenever its link-state information changes
- Periodic updates
  - Need not be sent often, use long timers (order of hours)

#### **Route Calculation**

- Once a node has a LSP packet from every node, it has complete graph information
- Use Dijkstra's algorithm to calculate shortest paths to nodes

#### **Points to Note**

- No problem of looping since each node has global information
  - Transient loops still possible
- Fast convergence
- But, scaling problems due to:
  - Flooding, computation, amount of information storage required at each node
  - Can reduce overhead by setting period update timer to hours

#### **Break**



OSPF

## PF

Routing domain

189-> OSPF

- · Very widely used interior gateway protocol
- Operates at the network layer
  - Encapsulated within <u>IP datagrams</u> with protocol number of 89 (demux key)
- OSPF implements reliability itself via checksum and in-built ACKs
- Has many features
  - Supports authentication; Additional hierarchy; Load balancing

**Routing Areas** 



- Link state advt. of a non-area border router don't leave area
- Area border routers summarize area advertisements and advertise it to other areas

#### **OSPF Common Header Format**

| Version No (=2)         | Type | Packet Length (including header) |  |  |
|-------------------------|------|----------------------------------|--|--|
| Router ID -> I Paddress |      |                                  |  |  |
| Area ID                 |      |                                  |  |  |
| Checksum                |      | Authentication Type              |  |  |
| Authentication          |      |                                  |  |  |
| Message Body            |      |                                  |  |  |

| Type Value | Message Type                | Authentic |
|------------|-----------------------------|-----------|
| 1          | Hello —                     | Type Va   |
| 2          | Database Description        | 0 ~       |
| 3          | Link State Request          | 1         |
| 4          | Link State Update           | 2         |
| 5          | 5 Link State Acknowledgment |           |
|            |                             |           |

| Authentication Type Value | Authentication<br>Type         |
|---------------------------|--------------------------------|
| 0 /                       | No Authentication              |
| 1                         | Simple Password Authentication |
| 2                         | Cryptographic Authentication   |

### **OSPF Link State Update Packet**

| Number of Link State Advertisements |  |  |  |  |
|-------------------------------------|--|--|--|--|
| Link State Advertisement #1         |  |  |  |  |
|                                     |  |  |  |  |
|                                     |  |  |  |  |
| •                                   |  |  |  |  |
| •                                   |  |  |  |  |
| •                                   |  |  |  |  |
| Link State Advertisement #N         |  |  |  |  |
|                                     |  |  |  |  |
|                                     |  |  |  |  |

#### Link State Advertisement Header

| LS Age             | Options | LS Type houte |  |
|--------------------|---------|---------------|--|
| Link State ID      |         |               |  |
| Advertising Router |         |               |  |
| LS Sequence Number |         |               |  |
| LS checksum        |         | Length        |  |
| LSA Body           |         |               |  |

### Distance Vector vs Link State Algorithm

- DV: Each node talks only with directly connected neighbors but tells everything it has learned
  - Loops, slow <u>convergence</u>
- Link State: Each node talks to all nodes, but only state of directly connected node
  - Fast convergence but scalability concerns

### Summary

- Link State routing: Another approach based on reliable flooding
- Provides fast convergence, but can pose scalability problems
- OSPF: a popular standard based on link state routing (RIP and OSPF fall under the category of interior gateway protocols)
- Ahead: Inter-domain routing (exterior gateway protocol)