1-Bandits with Delayed Feedback

Jingqi Fan

November 13, 2023

- Setting
 - Setting about Bandits
 - Setting about Delay

- Algorithm
- 3 Technique

- stochastic
- adversarial
- linear
- two-player
- best-of-both-worlds
- combinatorial semi-bandit

- best-of-both-worlds
 - A Best-of-Both-Worlds Algorithm for Bandits with Delayed Feedback (2022)
 - 2 An Improved Best-of-both-worlds Algorithm for Bandits with Delayed Feedback (2023)

A Best-of-Both-Worlds Algorithm for Bandits with Delayed Feedback

Prelimilaries:

- at time t = 1, 2, ..., the learner chooses an arm I_t among K arms
- it suffers a loss ℓ_{t,l_t} from a loss vector $\ell_t \in [0,1]^K$ generated by the environment but does not observe it
- After d_t , the learner observed the pair (t, ℓ_{t,l_t}) at the end of round $t+d_t$
- w.l.o.p. assume $t + d_t \leq T$ for all t
- consider two regimes, oblivious adversarial and stochastic

A Best-of-Both-Worlds Algorithm for Bandits with Delayed Feedback

Pseudo-regret

$$\bar{Reg}_{T} = \mathbb{E}\left[\sum_{t=1}^{T} (\ell_{t,l_{t}} - \ell_{t,i_{T}^{*}})\right]$$
(1)

where
$$i_T^* \in \operatorname{arg\,min}_{i \in [K]} \mathbb{E}\left[\sum_{t=1}^T \ell_{t,i}\right]$$

Algorithm(FTRL):

Algorithm 1: FTRL with advance tuning for delayed bandit

```
Input: Learning rate rule \overline{\eta_t} and \gamma_t
Initialize \mathcal{D}_0 = 0 and \hat{L}_1^{obs} = \mathbf{0}_K (where \mathbf{0}_K is a zero vector in \mathbb{R}^K)
for t = 1, \ldots, n do
      determine \gamma_t
        Set \sigma_t = \sum_{s=1}^{t-1} \mathbb{1}(s + d_s > t)
Update \mathcal{D}_t = \mathcal{D}_{t-1} + \sigma_t
      Set x_t = \arg\min_{x \in \Delta^{K-1}} \langle \hat{L}_t^{obs}, x \rangle + F_t(x)
      Sample I_t \sim x_t
      for s: s+d_s=t do
            Observe (s, \ell_{s,I_s})
          Construct \hat{\ell}_s and update \hat{L}_t^{obs}
```

- $\sigma_t = \sum_{s=1}^{t-1} \mathbb{I}(s + d_s \ge t)$ is the number of outstanding observations and $\mathcal{D}_t = \sum_{t=1}^t \sigma_t$
- we set $\eta_0=10d_{\mathsf{max}}+rac{d_{\mathsf{max}}^2}{(K^{1/3}\log(K))^2}$ and $\gamma_0=24^2d_{\mathsf{max}}^2K^{2/3}\log(K)$
- similar hybrid regularizer $F_t(x)$ as Zimmert and Seldin (2020)

A Best-of-Both-Worlds Algorithm for Bandits with Delayed Feedback

Regret Bound:

Setting	Assumption	Regret Bound
stochastic	fixed delay	$O\left(\sum_{i \neq i^*} \left(\frac{\log T}{\Delta_i} + \frac{d}{\Delta_i \log K}\right) + dK^{1/3} \log K\right)$
adversarial	fixed delay	$O\left(\sqrt{KT} + \sqrt{dT\log K}\right)$
stochastic	arbitrary delay with known d_{\max}	$O\left(\sum_{i \neq i^*} \left(\frac{\log T}{\Delta_i} + \frac{\sigma_{max}}{\Delta_i \log K}\right) + d_{max} K^{1/3} \log K\right)$
adversarial	arbitrary delay with known d _{max}	$O\left(\sqrt{KT} + \sqrt{D\log K} + d_{max}K^{1/3}\log K\right)$

An Improved Best-of-both-worlds Algorithm for Bandits with Delayed Feedback

- similar setting and algorithm with the former paper
- remove the assumption of known d_{max} by using skipping trick to leave out too large delay

- combinatorial semi-bantit
 - Non-stationary Delayed Combinatorial Semi-Bandit with Causally Related Rewards (2023)
 - ② A Unified Analysis of Nonstochastic Delayed Feedback for Combinatorial Semi-Bandits, Linear Bandits, and MDPs (2023)

A Unified Analysis of Nonstochastic Delayed Feedback for Combinatorial Semi-Bandits, Linear Bandits, and MDPs

Prelimilaris:

- ullet In each round $t \in [T]$ the learner chooses an action $oldsymbol{a}_t \in \mathcal{A} \subseteq \{0,1\}^K$
- ullet it suffers loss $oldsymbol{a}_t^ op \ell_t$, where $\ell_t \in \mathbb{R}^K$
- then the learner observes $\{\mathcal{L}(\ell_{\tau}, \mathbf{a}_{\tau}) : \tau + d_{\tau} = t\}$, defined as $\mathcal{L}(\ell_{\tau}, \mathbf{a}_{\tau}) = \mathbf{a}_{\tau} \odot \ell_{\tau}$
- delay $d_1,...,d_T$ and loss $\ell_1,...,\ell_T$ ar both generated by an oblivious adversary
- $o_t = \{\tau : \tau + d_\tau < t\}$ is the set of indices of observed losses at t-1 and $m_t = [t-1] \setminus o_t$ not be observed

A Unified Analysis of Nonstochastic Delayed Feedback for Combinatorial Semi-Bandits, Linear Bandits, and MDPs

Assumption:

- $d_{\max} = \max_{t \in [T]} d_t \ge 1$ is known to the learner
- $\sum_{t=1}^{T} |m_t| = D$ and T is known to the learner

pseudo-regret

$$\mathcal{R}_{T} = \mathbb{E}\left[\sum_{t=1}^{T} (\boldsymbol{a}_{t} - \boldsymbol{a}^{*})^{\top} \boldsymbol{\ell}_{t}\right]$$
 (2)

A Unified Analysis of Nonstochastic Delayed Feedback for Combinatorial Semi-Bandits, Linear Bandits, and MDPs

Algorithm(FTRL):

$$\mathbf{w}_{t} = \arg\min_{\mathbf{w} \in \mathcal{W}} \sum_{\tau \in o_{t}} \hat{\ell}_{\tau}^{\top} \mathbf{w} + R(\mathbf{w})$$
 (3)

where $o_t = \{\tau : \tau + d_\tau < t\}$ is observed index set and

$$R(\mathbf{w}) = \sum_{i=1}^{K} \left(\frac{1}{\eta} \mathbf{w}(i) \log(\mathbf{w}(i)) - \frac{1}{\eta} \log(\mathbf{w}(i)) \right)$$
(4)

Regret Bound:

$$O(\sqrt{B(KT + BD)\log(K)})$$
 (5)

where $D = \sum_{t=1}^{T} d_t$ and $\max_{\boldsymbol{a} \in \mathcal{A}} \|\boldsymbol{a}\|_1 \leq B$

A Unified Analysis of Nonstochastic Delayed Feedback for Combinatorial Semi-Bandits, Linear Bandits, and MDPs

Handling unkonwn d_{max} : Double Trick

- $\mathcal{T}_e = \{t : 2^{e-1} \leq \max_{j \in o_t} d_j \leq 2^e\}$ is the set of indices of epoch e
- $\tilde{\mathcal{T}}_e = \{t \in \mathcal{T}_e : d_t \leq 2^e\}$ is the indices of epoch e with delay $\leq 2^e$
- Then $R_{T,D}(2^e) \le R_{T,D}(2d_{\text{max}})$
- ullet the regret in $\mathcal{T}_eackslash ilde{\mathcal{T}}_e$ is at most $Md_{\sf max}$ since $|\mathcal{T}_ackslash ilde{\mathcal{T}}_e| \leq d_{\sf max}$

see Bistritz et al.(2019) handling unknown T and D

- fixed delay
- d_{max} known, T known (for parameter)
- unbounded delay
- composite anonymous delay
- arm-dependent delay
- reward-dependent delay
- instant reward combined with delay

Unbounded delay \rightarrow count outstanding delay

- doubling trick: Online EXP3 Learning in Adversarial Bandits with Delayed Feedback (2019)
- skipping technique: An Optimal Algorithm for Adversarial Bandits with Arbitrary Delays (2020)

Online EXP3 Learning in Adversarial Bandits with Delayed Feedback

Prelimilaries:

- \bullet at each round t a player picks one out of K arms, denoted as a_t
- the cost at round t from arm i is $l_t^{(i)} \in [0,1]$ and $\boldsymbol{I}_t = \left(l_t^{(1)},...,l_t^{(K)}\right)$ is the cost vector
- Cost and delay are both chosen adversarially
- ullet \mathcal{S}_t is the set of costs received at round t
- \mathcal{M}_t is the set of missing samples s.t. $t + d_t > T$
- the vector of probabilities of the player for choosing arms at t is $\mathbf{p}_t \in \Delta^K$

Online EXP3 Learning in Adversarial Bandits with Delayed Feedback

Algorithm 1 EXP3 with delays

Initialization: Let $\{\eta_t\}$ be a positive non-increasing sequence, and set $\tilde{L}_1^{(i)}=0$ and $p_1^{(i)}=\frac{1}{K}$ for i=1,...,K.

For t = 1, ..., T do

- 1. Choose an arm a_t at random according to the distribution p_t .
- 2. Obtain a set of delayed costs $l_s^{(a_s)}$ for all $s \in \mathcal{S}_t$, where a_s is the arm played at round s.
- 3. Update the weights of arm a_s for all $s \in \mathcal{S}_t$, using

$$\tilde{L}_{t}^{(a_{s})} = \tilde{L}_{t-1}^{(a_{s})} + \eta_{s} \frac{l_{s}^{(a_{s})}}{p_{s}^{(a_{s})}}.$$
(3)

4. Update the mixed strategy

$$p_{t+1}^{(i)} = \frac{e^{-\tilde{L}_t^{(i)}}}{\sum_{j=1}^n e^{-\tilde{L}_t^{(j)}}}.$$
 (4)

End

Online EXP3 Learning in Adversarial Bandits with Delayed Feedback

Use double trick to handle unknown D and T

- idea: start a new epoch every time $\sum_{\tau}^{t} m_{\tau}$ doubles, where m_{t} is the number of missing feedback samples at t
- define the e-epoch as

$$\mathcal{T}_{e} = \left\{ t | 2^{e-1} \le \sum_{\tau=1}^{t} m_{\tau} \le 2^{e} \right\} \tag{6}$$

• Then the sum of delays is within a given interval and in every epoch e, set $\eta_e = \sqrt{\frac{\ln K}{2^e}}$ to get adaptive algorithm

Online EXP3 Learning in Adversarial Bandits with Delayed Feedback

Analysis about Double Trick:

- Define \mathcal{M}_e as the set of feedback for costs in epoch e that are not received within epoch e
- $T_e = \max T_e$ is the last round in T_e

$$\sum_{t \in \mathcal{T}_e, t \notin \mathcal{M}_e} d_t \le \sum_{\tau = \mathcal{T}_{e-1} + 1}^{\mathcal{T}_e} m_\tau \le 2^{e-1} \tag{7}$$

• Then apply the regret of algorithm1 separately on every epoch and yield:

$$R_e \triangleq E^{\boldsymbol{a}} \left\{ \sum_{t \in \mathcal{T}_e} l_t^{(a_t)} - \min_i \sum_{t \in \mathcal{T}_e} l_t^{(i)} \right\} \leq \frac{\ln K}{\eta_e} + \eta_e \left(\frac{K}{2} \left| \mathcal{T}_e \right| + 4 \sum_{t \in \mathcal{T}_e, t \notin \mathcal{M}_e} d_t \right) + \left| \mathcal{M}_e \right|$$

Online EXP3 Learning in Adversarial Bandits with Delayed Feedback

• the "cheapest" way to increase $|\mathcal{M}_e|$ is when the feedback from T_e is delayed by 1, from $T_e - 1$ delayed by 2 and so on

$$\sum_{i=1}^{|\mathcal{M}_e|} i = \frac{|\mathcal{M}_e(|\mathcal{M}_e| + 1)|}{2} \le 2^{e-1}$$
 (8)

Finally the regret bound is:

$$O\left(\sqrt{\ln K\left(KT + \sum_{t=1}^{T} d_t\right)}\right) \to O\left(\sqrt{\ln K\left(K^2T + \sum_{t=1}^{T} d_t\right)}\right) \quad (9)$$

Prelimilaries:

- At time t = 1, ..., n the learner picks $A_T \in [k]$
- it immediately suffers ℓ_{t,A_t} , where $(\ell_t)_{t=1,\dots,n}$ are vectors in $[0,1]^k$.
- environment chooses a sequence of delay $(d_t)_{t=1,...,n}$
- the player observes the tuples (s, ℓ_{s,A_s}) for each s s.t. $s+d_s=t$ at the end of time t.
- w.l.o.p. assume $t + d_t \le n$ for all t
- focus on oblivious adversarial setting on reward and delay

Regret:

$$\mathcal{R}_n := \mathbb{E}\left[\sum_{t=1}^n \ell_{t,A_t} - \min_{i \in [k]} \sum_{t=1}^n \ell_{t,i}\right]$$
 (10)

Definitions:

- $D = \sum_{t=1}^{n} d_t$ is the total delay
- for a set $S \subset [n] = \{1, ..., n\}$, its complement is $\bar{S} = [n] \backslash S$
- for a convex function F, F^* denotes its convex conjugate, and \bar{F}^* is constrained convex conjugate, defined as

$$F^*(y) = \max_{x \in \mathbb{R}^k} \langle x, y \rangle - F(x) \tag{11}$$

$$\bar{F}^*(y) = \max_{x \in \Delta(\lceil k \rceil)} \langle x, y \rangle - F(x) \tag{12}$$

Algorithm(FTRL):

• hybrid regularizers:

$$F_t(x) = -\sum_{i=1}^k 2\sqrt{t}x_i^{1/2} + \eta_t^{-1} \sum_{i=1}^k x_i \log(x_i)$$
 (13)

- **1** $\frac{1}{2}$ -Tsallis Entropy + negative entropy
- 2 same decomposition as $\Omega(\max\{\sqrt{kn}, \sqrt{dn \log(k)}\})$ (Cesa-Bianchi et al.)
- $oldsymbol{0}$ future tune the learning rate η by skipping trick

Algorithm(FTRL):

- count outstanding delay(tuning learning rate to unknown *D* setting):
 - simple tuning
 - 2 advanced tuning (skipping)

Simple Tuning

- $\mathfrak{d}_t = \sum_{s=1}^{t-1} \mathbb{I}\{s+d_s \geq t\}$ is the number of outstanding observations at round t
- $\mathfrak{D}_t = \sum_{s=1}^t \mathfrak{d}_t$ and $\eta_t^{-1} = \sqrt{\frac{2\mathfrak{D}_t}{\log(k)}}$
- well-defined when $\mathfrak{D}_t = 0$

Advanced Tuning (skipping)

```
Algorithm 2: Advanced tuning of \eta_t for Alg. 1

Initialize \tilde{\mathfrak{D}}_0 = 0 and (a_s^t)_{s=1,\dots,n;t=1,\dots,n} = 1

determine \eta_t

Set \tilde{\mathfrak{d}}_t = \sum_{s=1}^{t-1} \mathbb{I}\{s+d_s \geq t\} a_s^t

Update \tilde{\mathfrak{D}}_t = \tilde{\mathfrak{D}}_{t-1} + \tilde{\mathfrak{d}}_t

Set \eta_t^{-1} = \sqrt{\tilde{\mathfrak{D}}_t/\log(k)}

for s=1,\dots,t-1 do

if \min\{d_s,t-s\} > \eta_t^{-1} then

set (a_s^t)_{t'>t} = 0 (At most one index s satisfies the if-condition, see Lemma 5)
```

- ullet the optimal subset of rounds $ar{S}$ and the remaining rounds $S=[n]ar{S}$
- modify \mathfrak{d}_t by skipping some outstanding observations but still using them to estimate \mathfrak{D}_t
- ullet Hence we define indicator variables $a_s^t \in \{0,1\}$
- $\tilde{\mathfrak{d}}_t = \sum_{s=1}^{t-1} a_s^t \mathbb{I}\{s + d_s \ge t\}$

Advanced Tuning (skipping)

Intuition behind the skipping precedure:

- Cesa-Bianchi et al. (2016) has $O(\sqrt{kn} + \sqrt{D\log(k)})$
- Then $O(\sqrt{kn} + |S| + \sqrt{D_{\bar{S}} \log(k)})$ in delay setting
- $|S| = \sqrt{D_{\bar{S}} \log(k)}$ is the number of skipped rounds
- $D_S = \sum_{t \in S} d_t \ge X|S| \ge D_{\overline{S}}$ and we get threshold X:

$$X \ge \sqrt{\frac{D_{\bar{5}}}{\log(k)}} \tag{14}$$

ullet finally we replace $D_{\widetilde{\mathbf{S}}}$ with $\widetilde{\mathfrak{D}}_t$

Regret Bound of Algorithm1

$$O(\sqrt{kn} + \sqrt{D\log(k)}) \tag{15}$$

Regret Bound of Algorithm2

$$O(\sqrt{kn} + \min_{S}(|S| + \sqrt{D_{\bar{S}}\log(k)}))$$
 (16)

match the lower bound in Cesa-Bianchi et al. (2016) and refine it

Composite Anonymous Delay:

- Nonstochastic Bandits with Composite Anonymous Feedback (2018)
 - oblivious setting
- Bandits with Delayed, Aggregated Anonymous Feedback (2018)
 - stochastic setting
- Adaptive Algorithms for Multi-armed Bandit with Composite and Anonymous Feedback (2020)
 - stochastic setting
 - non-obivious setting
- Bounded Memory Adversarial Bandits with Composite Anonymous Delayed Feedback (2022)
 - oblivious setting

Stochastic Composite Anonymous Delay

Setting:

- the loss observed at the end of each round is a sum of many loss components of previous actions
- In each time a player chooses one arm among $\mathcal{N} = \{1, ..., N\}$.
- ullet the arm i generates an i.i.d. reward vector in \mathbb{R}_+^∞
- $m{r}_{a(t)}(t)=(r_{(t),1}(t),r_{(t),2}(t),...)$, where $m{r}_{a(t), au}(t)$ is the partial reward
- $D_{a(t)}$ is the distribution of $\pmb{r}_{a(t)}$ and define $\pmb{\mu}_{a(t)} := \mathbb{E}_{D_{a(t)}}[\pmb{r}_{a(t)}]$ as its mean
- Then at every time the player receove the aggregated reward from previous arms, i.e. $Y(t) := \sum_{\tau < t-1} r_{a(\tau),t-\tau}(\tau)$

Stochastic MAB with Composite Anonymous Delay

- $s_i := \|\mu_i\|_1$ is the expected total reward of pulling arm i
- w.l.o.p. assume $1 > s_1 > s_2 > ... > s_N > 0$
- denote $\Delta_i := s_1 s_i$ for all i > 2 is the reward gap of arm i

The Cumulative Regret

$$Reg(T) := Ts_1 - \mathbb{E}\left[\sum_{t=1}^{T} s_{a(t)}\right]$$
 (17)

Non-oblivious Adversarial MAB with Composite Anonymous Delay

Setting:

- $\mathcal{N} = \{1,...,N\}$ is the arm set and $\|\boldsymbol{r}_i(t)\|_1 \leq 1$
- non-oblivious delay: the actual reward is oblivious but the spread of reward is non-oblivious as long as $\|\mathbf{r}_i(t)\|_1 = s_i(t)$
- aggregated reward $Z(t) := \sum_{\tau=t-d}^{t-1} r_{\mathsf{a}(\tau),t-\tau}(\tau)$
- $G_i := \sum_{t=1}^{T} \| \mathbf{r}_i(t) \|_1$

The total regret:

$$Reg(T) := \mathbb{E}\left[\max_{i} G_{i}\right] - \mathbb{E}\left[\sum_{t=1}^{T} \|\boldsymbol{r}_{a(t)}(t)\|_{1}\right]$$
(18)

- arm-dependent delay
 - Stochastic bandits with arm-dependent delays (2020) (also heavy-tailed delays)
 - Nonstochastic Bandits and Experts with Arm-Dependent Delays (2021)
- reward-dependent delay
 - Stochastic Multi-Armed Bandits with Unrestricted Delay Distributions (2021)
- both reward and delay
 - A New Framework: Short-Term and Long-Term Returns in Stochastic Multi-Armed Bandit (2023)

Nonstochastic Setting:

- partially-concealed bandit: At the end of round $t + d_t(i_t)$, after pull a arm i_t , the learner receives
 - \bullet loss $\ell_t(i_t)$
 - ② the number of missing observations $\rho_t(i_t) = |\{s : s < t, s + d_s(i_t) \ge t\}|$
- concealed bandit: the learner just receives $\ell_t(i_t)$

Expected Regret

$$\mathbb{E}[\mathcal{R}_{T}(\boldsymbol{u})] = \mathbb{E}\left[\sum_{t=1}^{T} (\ell_{t}(i_{t}) - \langle \boldsymbol{u}, \ell_{t} \rangle)\right]$$
(19)

Why partially-concealed or concealed:

• mild assumptions than other work

Stochastic Setting:

- finite arm set $K \in \mathbb{N}^*$ and $[K] \triangleq \{1, ..., K\}$
- each arm $i \in [K]$ is associated with both
 - **1** an unknown reward distribution V_i in [0,1] with mean μ_i
 - ② an unknown delay distribution \mathcal{D}_i with cumulative distribution function τ_i supported in \mathbb{N} s.t. for any $d \geq 0, t \leq T$, if $D_t \sim \mathcal{D}_i$, then $\mathbb{P}(D_t \leq d) = \tau_i(d)$
- $C_t \sim \mathcal{V}_{I_t}, D_t \sim \mathcal{D}_{I_t}$
- at round t + u for $1 \le u \le T t$, the learner only observes

$$X_{t,u} \triangleq C_t \mathbb{I}\{D_t \le u\} \tag{20}$$

Challenge:

- the ambiguity on either $C_s = 0$ or $t s < D_s$
- i.e. the learner cannot know exactly how much feedback is missing
- after several rounds, the actual reward is scaled:

$$\mathbb{E}\left[X_{u,t-u}|I_u=i\right] = \tau_i(t-u)\mu_i \tag{21}$$

Heavy-tailed Delay

Assumption 1

Let $\alpha > 0$ be some fixed quantity, we assumpe that $\forall m \in \mathbb{N}^*$ and $\forall i \in \{1, ..., K\}$, it holds that

$$|1 - \tau_i(m)| \le m_{-\alpha} \tag{22}$$

the smaller α , the more heavy-tailed the delay distribution

Expected Regret

$$\bar{R}_T = T\mu^* - \mathbb{E}\sum_{t=1}^T C_t = \sum_{i=1}^K \Delta_i \mathbb{E}\left[T_i(T)\right]$$
 (23)

39 / 45

Reward-dependent Delay

- there is no restriction on the joint distribution between $r_t(\cdot)$ and $d_t(\cdot)$ (i.e. remove the assumption of independence)
- Main challenge: the observed emprical mean is no long an unbiased exstimator

Instant Reward Combined with Delay

Setting: The distributions of reward for short-term and longterm rewards are related with a previously **known** relationship. (linear in this paper)

- At each round t, the observer pulls an arm $a \in \{1, ..., K\}$
- it observes an instant reward $f_t(a_t)$ and generates a delayed reward $r_t(a_t)$, which will be observed after $d_t(a_t)$ rounds.
- $r_t(i) \sim R_i$, $f_t(i) \sim F_i$, $d_t(i) \sim D_i$
- $\kappa \in [0,1]$ is transformation factor such that $r_t \in [0,1]$, $f_t(i) \in [0,\kappa]$
- we set the domain of $d_t(i)$ is $\mathbb{N} \cup \{\infty\}$

$$\mathcal{R}_{T} = \max_{i} \mathbb{E}[\Sigma_{t=1}^{T}(r_{t}(i) + f_{t}(i))] - \mathbb{E}[\Sigma_{t=1}^{T}r_{t}(a_{t}) + f_{t}(a_{t})]$$
$$= (1 + \kappa) \times (T\mu_{i^{*}} - \mathbb{E}[\Sigma_{t=1}^{T}\mu_{a_{t}}]) = (1 + \kappa) \times \mathbb{E}[\Sigma_{t=1}^{T}\Delta_{a_{t}}]$$

- Setting
 - Setting about Bandits
 - Setting about Delay

- Algorithm
- Technique

- UCB
- successive elimination
- Exp3
- FTRL
- wrapper

- Setting
 - Setting about Bandits
 - Setting about Delay

- 2 Algorithm
- Technique

- skipping
- double trick
- drift
- intermidiate observation: Delayed Bandits: When Do Intermediate Observations Help? (2023)

