

Università degli Studi dell'Aquila

Seconda Prova Parziale di Algoritmi e Strutture Dati con Laboratorio

Martedì 3 Febbraio 2015 – Prof. Guido Proietti (Modulo di Teoria)

Scrivi i tuoi dati \Longrightarrow	Cognome:	Nome:	Matricola:	PUNTI
ESERCIZIO 1	Risposte Esatte:	Risposte Omesse:	Risposte Errate:	

ESERCIZIO 1: Domande a risposta multipla

Premessa: Questa parte è costituita da 10 domande a risposta multipla. Per ciascuna domanda vengono fornite 4 risposte, di cui soltanto una è corretta. Per rispondere utilizzare la griglia annessa, barrando con una \times la casella corrispondente alla risposta prescelta. È consentito omettere la risposta. In caso di errore, contornare con un cerchietto la \times erroneamente apposta (ovvero, in questo modo \otimes) e rifare la \times sulla nuova risposta prescelta. Se una domanda presenta più di una risposta, verrà considerata omessa. Per tutti i quesiti verrà attribuito un identico punteggio, e cioè: risposta esatta 3 punti, risposta omessa 0 punti, risposta sbagliata -1 punto. Il voto relativo a questa parte è ottenuto sommando i punti ottenuti e normalizzando su base 30. Se tale somma è negativa, verrà assegnato 0.

- 1. Siano $h_1(\cdot), h_2(\cdot)$ due funzioni hash. Quale delle seguenti funzioni descrive il metodo di scansione con hashing doppio in una tabella hash di dimensione m per l'inserimento di un elemento con chiave k dopo l'i-esima collisione: a) $c(k,i) = (h_1(k) + m \cdot h_2(k)) \mod i$ b) $c(k,i) = (h_1(k) + h_2(k)) \mod m$
 - a) $c(k,i) = (h_1(k) + m \cdot h_2(k)) \mod i$ b) $c(k,i) = (h_1(k) + h_2(k)) \mod m$ c) $c(k,i) = (h_1(k) + h_2(k)) \mod m$ d) $c(k,i) = (h_1(k) + h_2(k)) \mod i$
- 2. Dato un grafo completo con n vertici, quale delle seguenti classi caratterizza meglio la memoria utilizzata per la sua rappresentazione tramite liste di adiacenza: a) $O(n^2)$ b) $\Theta(n^2)$ c) $\Omega(n)$ d) $\Theta(n)$
- 3. L'albero DFS (ovvero ottenuto mediante una visita in profondità) di un grafo completo di n vertici ha altezza: a) n-1 b) O(1) c) $O(\log n)$ d) 1

- 4. Si consideri il grafo e e si costruisca l'albero dei cammini minimi radicato in a. Quale tra i seguenti rappresenta il vettore delle distanze finali da a (le distanze appaiono secondo l'ordine alfabetico dei nodi):
 - a) $\{0,4,6,7,17,20,21\}$
- b) {0,4,6,17,20,21,7}
- c) $\{0,4,2,11,3,11,1\}$
- d) {0,1,2,3,4,5,2}
- 5. Quale tra i seguenti rappresenta lo pseudocodice dell'algoritmo di Bellman & Ford:

```
B&F(G = (V, A, w), s \in V)

D_{sv} = +\infty \text{ per } v \neq s, D_{ss} = 0

for i = 1 to n - 1 do

for each (u, v) \in A do

if D_{su} + w(uv) > D_{sv} then

D_{sv} = D_{su} + w(uv)

return D
```

```
b) B&F(G=(V,A,w),s\in V) D_{sv}=+\infty per v\neq s,D_{ss}=0 for i=1 to n-1 do for each (u,v)\in A do if D_{su}+w(uv)< D_{sv} then D_{su}=D_{sv}+w(uv) return D
```

c)
$$B\&F(G = (V, A, w), s \in V)$$

$$D_{sv} = +\infty \text{ per } v \neq s, D_{ss} = 0$$
for $i = 1$ to $n - 1$ do
for each $(u, v) \in A$ do
if $D_{su} + w(uv) < D_{sv}$ then
$$D_{sv} = D_{su} + w(uv)$$
return D

- d) B&F($G=(V,A,w),s\in V$) $D_{sv}=+\infty$ per $v\neq s,D_{ss}=0$ for i=1 to n-1 do for each $(u,v)\in A$ do if $D_{su}+w(uv)=D_{sv}$ then $D_{sv}=D_{su}+w(uv)$ return D
- 6. Dato un grafo pesato con n vertici ed $m = \Theta(n \log n)$ archi, l'algoritmo di Dijkstra realizzato con heap binomiali costa: a) $\Theta(n^2)$ b) $\Theta(n+m)$ c) O(m) d) $O(n \log^2 n)$
- 7. Si consideri il grafo di domanda 4, si enumerino i vertici in ordine alfabetico, da $v_1 = a$ fino a $v_7 = g$, e si orientino gli archi da vertice con numero inferiore a vertice con numero superiore. Quanto è lungo il cammino minimo 2-vincolato tra $a \in g$?
 - a) 10 b) 2 c) $+\infty$ d) 7
- 8. Quali tra le seguenti caratteristiche sono possedute dal minimo albero ricoprente del grafo di domanda 4?
 - a) Pesa 22 ed ha grado 3 b) Pesa 22 ed ha 4 foglie c) Pesa 27 ed ha 3 foglie d) Pesa 22 e contiene un cammino semplice con 6 archi
- 9. Si consideri il grafo di domanda 4, e si applichi l'algoritmo di Prim con nodo sorgente c. Qual è la sequenza di vertici aggiunti alla soluzione?
 - a) $\{c, b, g, a, d, e, f\}$ b) $\{c, g, b, a, d, e, f\}$ c) $\{c, g, b, d, a, e, f\}$ d) $\{c, d, e, f, g, b, a\}$
- 10. Dato un grafo connesso di n nodi ed m archi, per quale valore (asintotico) di m si ha che l'implementazione di Kruskal con alberi QuickFind bilanciati ha la stessa complessità temporale dell'algoritmo di Borůvka?
 - a) sempre b) solo per $m = \Theta(n^2)$ c) solo per $m = \Theta(n \log n)$ d) ma

Griglia Risposte

			_		•					
	Domanda									
Risposta	1	2	3	4	5	6	7	8	9	10
a										
b										
c										
d										