(2)

EUROPEAN PATENT APPLICATION

- Application number: 90201334.1
- 22 Date of filing: 23.05.90

(61) Int. Cl.5: C07D 239/34, C07D 239/60, C07D 251/26, C07D 251/30, A01N 43/54, A01N 43/66

- Priority: 02.06.89 GB 8912700
- Date of publication of application: 05.12.90 Bulletin 90/49
- **@** Designated Contracting States: AT BE CH DE DK ES FR GB GR IT LI LU NL SE
- 71 Applicant: SHELL INTERNATIONALE RESEARCH MAATSCHAPPIJ B.V. Carel van Bylandtlaan 30 NL-2596 HR Den Haag(NL)
- 2 Inventor: Astles, David Philip 32 The Goldings, Rainham Kent ME8 0AX(GB) ·Inventor: Flood, Andrew, Brook House, Watlington Road, Cowley Oxford OX4 5LY(GB) Inventor: McArthur, Alastair,

Vondelingenweg 601, 3196 KK Rotterdam/Pernis(NL) Inventor: Newton, Trevor William, 54 Northwood Drive, Sittingbourne

Kent(GB)

Inventor: Spencer, John Eric

Woodward Road Kirkby Industrial Estate,

Liverpool L33(GB)

inventor: Hunter, David Calum,

85 Woodberry Drive Sittingbourne Kent(GB)

Inventor: Hopwood, William John, "Worschach" Hearts Delight Road,

Tunstall, Kent ME9 8JA(GB)

Representative: Bennett, David Arthur Horder

4, York Road

London SE1 7NA(GB)

- Herbicidal compounds.
- Compounds of formula I

Zum Verbleib

Bitte nicht zurücksenden

am

6. SEP. 1995

Erledigt

Patentschriftensammlung

(I)

wherein

A is nitrogen or a group CR5;

each of R1, R2 and R5 is, independently, hydrogen, halogen, formyl, cyano, carboxy, azido or optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, alkoxy, alkenyloxy, alkynyloxy, aryloxy, alkylthio, alkenylthio, alkynylthio, arylthio, alkylcarbonyl, alkoxycarbonyl, amino, aminoxy or dialkyliminoxy; and R is

741 400 日日 **>** '

in which R³ is hydrogen, optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic or aryll, or COR³, R³ being hydroxy, alkoxy, carboxy, alkoxycarbonyl, amino or mono- or di- alkylamino: and R⁴ is a group COR⁵ wherein R⁵ is hydrogen, halogen, hydroxy, or optionally substituted alkoxy, alkenyloxy, alkynyloxy, cycloalkoxy, aryloxy, alkylthio, alkenylthio, alkynylthio, arylthio, aminoxy, dialkyliminoxy or amino, or R⁵ is a group OR³ in which R³ is an optionally substituted heterocyclic ring; or

each of R⁹ and R^{*3} being, independently, hydrogen or alkyl: or a carboxylic acid salt of a compound with an equivalent amount of an inorganic or organic cation: have herbicidal properties. The invention also provides processes for their preparation and their use as herbicides.

HERBICIDAL COMPOUNDS

The present invention is concerned with triazine/pyrimidine derivatives, processes for their preparation and their use as herbicides.

In the art a number of pyrimidine and triazine compounds are known to have herbicidal and plant growth regulatory activity.

Certain substituted pyrimidine compounds are described in East German Patent Specification No. 109170 as useful plant growth regulants, being able to regulate metabolic and growth process, for example promoting root formation and growth, encouraging fruit release and giving rise to dwarf features in plants.

Herbicidal compounds comprising a 2.4.6-substituted-1,3.5-triazine ring are well known, for example UK Patent No. 814947, which describes herbicidal compositions comprising certain 6-chloro-1,3,5-triazine-2,4-diamines and UK Patent No. 1132306 which describes certain 6-substituted 1,3,5-triazine 2,4-diamines, one of the amino groups having cyanoalkylamino substitution.

As part of a three part series of investigations on herbicides, the herbicidal and fungicidal properties of an extensive number of 2-substituted 4,6 dichloro-1,3,5-triazines were reviewed by H. Koopman et al in Rec. Trav. Chim. 78, 967, (1959). Some 61 compounds were prepared and tested including methyl 2-(4,6-dichloro-1,3,5-triazin-2-yl)oxy-2-methyl acetic acid. The conclusion of the authors is that 2-alkoxy and 2-alkylthio 4,6-dichloro-1,3,5-triazines having 3-6 carbon atoms in the alkyl group have the most activity of all the compounds assessed, corresponding compounds having substituents in the alkyl group have nearly the same activity, and 2-aryloxy and 2-arylthio dichlorotriazines generally have no phytotoxic properties. The authors selected the 2-butoxy and 2-butylthio dichlorotriazine derivatives for field trials and examined the properties of various related 2-alkoxy and 2-alkylthio chlorotriazine compounds in later investigations reported in Rec. Trav. Chim. 79, 83, (1960).

EP-0 038 138 discloses the use of ethyl 2-[(4-amino-6-methyl-1,3,5-triazin-2-yl)oxy]propanoate in the preparation of certain herbicidal sulphonamides, but gives no indication of biological activity for that or related compounds.

A group of 2-(substituted methoxy)triazine/pyrimidine compounds has now been found which have a particularly useful herbicidal activity.

The present invention provides a compound of the general formula I

in which

30

35

50

A represents a nitrogen atom or a group CR5;

R¹, R² and R⁵ each independently represents a hydrogen or halogen atom, a formyl, cyano, carboxy or azido group, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, alkoxy, alkenyloxy, alkynyloxy; aryloxy, alkylthio, alkynylthio, arylthio, alkylcarbonyl, alkoxycarbonyl, or dialkyliminoxy group, an unsubstituted aminoxy group or an amino or aminoxy group substituted by an alkyl group, itself optionally substituted by halogen, alkoxy, hydroxy or carboxy, an alkenyl group, an aryl group, a hydroxy group, as cyano group, an alkoxy group or an amino group itself optionally mono- or di- substituted by alkyli, anyli or alkylcarbonyl or which forms part of a heterocyclic ring; and R represents a group

in which

R3 represents a hydrogen atom, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic or aryl group, or a group COR8 in which R8 represents a hydroxy, alkoxy, carboxy, alkoxycarbonyl, amino or mono- or di- alkylamino group;

and

15

35

50

7

R4 represents a group COR6 wherein R6 represents a hydrogen or halogen atom, a hydroxy group, and optionally substituted alkoxy, alkenyloxy, alkynyloxy, cycloalkoxy, aryloxy, alkylthio, alkenylthio, alkynylthio, arylthio or dialkyliminoxy group or an amino or aminoxy group optionally substituted by an alkyl group, itself optionally substituted by halogen, alkoxy, hydroxy or carboxy, an alkenyl group, an aryl group, a hydroxy group, a cyano group, an alkoxy group or an amino group itself optionally mono- or di- substituted by alkyl. aryl or alkylcarbonyl or which forms part of a heterocyclic ring; or Ro represents a group OR7 in which R7 represents an optionally substituted heterocyclic nng;

or R represents a group

in which R4 is as defined above and R9 and R9 each independently represents a hydrogen atom or an alkyl group;

provided that when A represents a nitrogen atom, then R' and or R2 do not represent a chlorine atom; or a carboxylic acid salt of a compound of general formula I with an equivalent amount of an inorganic or organic cation.

An alkyl, alkenyl or alkynyl radical or moiety may be a straight or branched chain group. Generally an alkyl radical or moiety has from 1 to 12 carbon atoms, preferably from 1 to 6, especially from 1 to 4, carbon atoms. Alkenyl and alkynyl radicals or moieties suitably have from 2 to 12 carbon atoms, preferably from 2 to 6, especially from 2 to 4, carbon atoms. Cycloalkyl groups suitably have from 3 to 8 carbon atom ring members.

An aryl radical, or an aryl moiety in an aralkyl, aryloxy or arylthic radical, may be a single or fused 30 carbocyclic ring system having from 6 to 10 ring members. Suitably an aryl radical or moiety comprises a single ring system and preferably is a phenyl ring.

A heterocyclic radical is suitably a single or fused, saturated or unsaturated ring system having from 5 to 10, preferably 5 or 6, ring members of which from 1 to 3 ring members may be hetero atoms selected: from oxygen, nitrogen and sulphur atoms.

Radicals represented by the symbols R', R², R³, R⁵, R⁶ and R⁷ may be unsubstituted or substituted. Where substituents are present, the substituent groups may be any of those customarily employed in the modification and or development of pesticidal compounds and are especially substituents that maintain or enhance the herbicidal activity associated with the compounds of the present invention, or influence persistence of action, soil or plant penetration, or any other desirable property of such herbicidal compounds. There may be one or more of the same or different substituents present in each radical.

Optional substituents for alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, alkynyloxy, alkylthio, alkenylthio, alkynylthio, alkylcarbonyl or alkoxycarbonyl groups may be independently selected from one or more of halogen atoms and alkoxy, alkenyloxy, aryloxy, hydroxy, alkylthio, arylthio, aryl, alkylsulphonyl, alkylsulphinyl, alkylenedioxy. alkylenedithio, haloalkyl and alkoxycarbonyl groups, heterocyclic groups, and dialkyliminoxy, optionally substituted amino, trialkylsilyl, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, carboxy, cyano, thiocyanato and optionally substituted aminocarbonyl groups.

Optional substituents for aryl, cycloalkyl aryloxy or arylthio groups or heterocyclic rings may be independently selected from one or more of halogen atoms and nitro, cyano, alkyl, hydroxyalkyl, haloalkyl, alkoxy, alkylthio, aryloxy, alkoxycarbonyl and aralkoxycarbonyl groups.

Optional substituents for an amino group or for an amino moiety in an aminocarbonyl group, suitably may be independently selected from alkyl, alkenyl, aryl, alkoxy, amino, mono- or di-alkylamino, arylamino, alkoxyalkyl, haloalkyl, hydroxy. hydroxyalkyl, cyano, carboxyalkyl or alkylcarbonylamino, or the amino group may form part of a heterocyclic ring.

An alkyl radical or moiety when present as a substituent or as part of a substituent group, preferably has from 1 to 4 carbon atoms, especially 1 or 2 carbon atoms. A haloalkyl radical suitably has from 1 to 3 halogen atoms and a preferred haloalkyl radical is a trifluoromethyl group. As a substituent an alkenyl moiety suitably has from 2 to 4 carbon atoms. An aryl radical when present as a substituent is preferably a phenyl group. A halogen atom as a substituent is suitably a fluorine, chlorine or bromine atom.

Carboxylic acid salts of the compounds of general formula I include salts with inorganic cations derived from alkali metals, alkaline earth metals such as, for example, sodium, potassium, calcium and magnesium, and transition metals, for example copper, and with organic cations such as alkylammonium and alkylsul-phonium cations. A preferred carboxylic acid salt is a sodium salt.

A is preferably a nitrogen atom or a group CH.

Suitable examples of the radicals R^1 and R^2 include halogen atoms, C_{1-4} alkyl groups, C_{1-4} alkylthio groups, and mono- and di- (C_{1-4}) alkylamino groups. Preferably R^1 and R^2 are independently selected from chlorine atoms, methyl groups, methoxy groups, methylthio groups, methylamino groups and dimethylamino groups.

The group R may be a group of the formula

B

or

In the latter group one of R⁹ and R¹⁰ is suitably a hydrogen atom and the other a C₁₋₄ alkyl group, preferably a methyl group. Preferably R represents a group of the formula -CHR³R⁴.

Suitable examples of the radical R^3 include optionally substituted C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-6} cycloalkyl, phen(C_{1-4})alkyl, phenyl groups and 5 or 6 membered heterocyclic groups, for example derived from thiophene. The radical R^3 may suitably represent a hydrogen atom; a C_{1-6} alkyl group optionally substituted by a C_{1-4} alkylthio group; a cyclohexyl group; a benzyl group; a phenyl group optionally substituted by one or more substituents independently selected from halogen atoms, trifluoromethyl groups, C_{1-4} alkyl groups and $(C_{1-4}$ alkoxy)carbonyl groups; a thienyl group; a carboxy group; a $(C_{1-4}$ alkoxy)carbonyl group or a di(C_{1-4} alkyl)carbamoyl group.

Preferably the radical R^3 is selected from C_{2-6} alkyl groups, especially C_2-C_4 alkyl groups, benzyl groups and unsubstituted phenyl groups. Especially preferred compounds are those in which the group R^3 is an isopropyl, n-propyl, i-butyl, n-butyl, s-butyl, t-butyl, benzyl or phenyl group.

As suitable examples of the radical R^2 , there may be mentioned groups COR⁶ in which R⁶ represents a hydrogen atom, a halogen atom, for example chlorine, a hydroxy group or an optionally substituted C₁₋₆ alkoxy, C₂₋₆ alkenyloxy, C₂₋₆ alkynyloxy, C₃₋₆ cycloalkyloxy, C₁₋₆ alkylthio, C₂₋₆ alkenylthio, C₂₋₆ alkynylthio, phenyl, phenoxy, phenylthio, di(C₁₋₄alkyl)aminoxy, di(C₁₋₄alkyl)iminoxy or amino groups, and groups COOR⁷ in which R⁷ represents an optionally substituted 5 or 6 membered heterocyclic ring having from 1 to 3 hetero atoms in the ring.

The radical R^4 may suitably represent a group COR^6 in which R^6 represents a hydroxy group; a C_{1-4} alkoxy group optionally substituted by a halogen atom or a C_{1-4} alkoxy, C_{1-4} alkylthio, phenyl, benzyl itself optionally substituted on the phenyl ring by one or more substituents independently selected from halogen atoms and C_{1-4} alkoxy groups, furyl, tetrahydrofuryl or thienyl group; a C_{1-4} alkylthio group; a C_{2-4} alkynyloxy group; a phenoxy group optionally substituted by one or more substituents independently selected from C_{1-4} alkyl groups, nitro groups and hydroxy(C_{1-4})alkyl groups; a phenylthio group; an amino group optionally substituted by an amino group, a di (C_{1-4})alkylamino group or a phenyl group optionally substituted by a carboxy or (C_{1-4} alkoxy)carbonyl group; or a di(C_{1-4})alkylaminoxy group. In the case of a phenoxy group R^6 the phenyl ring may also be substituted by a group

5

10

15

25

R⁴ preferably represents the group COR⁶ in which R⁶ represents a hydroxy group or a C₁₋₄ alkoxy group.

It will be appreciated that the compounds of the present invention in which R³ is other than a hydrogenatom have an asymmetric carbon atom and will therefore exist in different stereoisomeric forms. The present invention is to be understood to include all the various isomeric forms of the compounds of general formula I and mixtures thereof in whatever proportion. Thus the R- and S-enantiomers of the compound of general formula IA

25

30

35

20

5

in which R3 is other than a hydrogen atom, and mixtures thereof are included within the present invention.

The present invention further provides a process for the preparation of a compound of the present invention, which process comprises

a) reacting a compound of the general formula II

II

in which R¹, R² and A are as defined above and L represents a leaving group, with a compound of the general formula III

45

in which R³ and R⁴ are as defined above. or

b) for compounds in which A represents CR5, reacting a compound of the general formula IV

in which R1, R2 and R5 are as defined above, with a compound of the general formula V

5

10

15

30

45

in which R3 and R4 are as defined above, and X represents a leaving group,

and, if required or desired, converting a compound of general formula I into another compound of general formula I, or converting a carboxylic acid of general formula I into a salt thereof, or converting a carboxylic acid salt of a compound of general formula I into the free acid or into another salt.

A leaving group is any group that will, under the reaction conditions, cleave from the starting material thus promoting reaction at a specified site.

The leaving group L in a compound of general formula II is conveniently a halogen atom, for example a bromine, chlorine or iodine atom, or, especially for the pyrimidine starting materials, an alkanesulphonyl group, for example methanesulphonyl.

The leaving group X in a compound of general formula V is suitably a halogen atom or a sulphonyloxy group, for example a methanesulphonyloxy or tosyloxy group. Halogen atoms represented by X include, conveniently, chlorine, bromine or iodine atoms. X is, however, preferably a bromine atom.

It is preferred that reaction (a) or reaction (b) is carried out under basic conditions. The basic conditions may suitably be provided, for example, by an alkali metal hydride, such as sodium or potassium hydride, an alkali metal carbonate or bicarbonate, such as sodium or potassium carbonate or sodium bicarbonate, an alkali metal alkoxide, such as potassium to butoxide, an alkali metal hydroxide, such as sodium or potassium hydroxide, or a tertiary amine, such as triethylamine, pyridine or 1,8-diazabicyclo[5.4.0]undec-7-ene.

The reaction (a) or (b) is suitably carried out in an inert organic solvent such as a hydrocarbon solvent, eg. benzene or toluene, a chlorinated hydrocarbon, eg. dichloromethane or chloroform, an alcohol, eg. methanol or ethanol, an ether, eg. diethyl ether, tetrahydrofuran, 1,4-dioxane, a ketone, eg. acetone or methyl ethyl ketone, an ester, eg. ethyl acetate, an aprotic polar solvent, eg. dimethylformamide, dimethylacetamide or dimethylsulphoxide or a nitrile, eg. acetonitrile, or in water, with appropriate selection of the agent generating the basic conditions for the reaction.

The reaction (a) or (b) may be used to prepare compounds of the formula I for both meanings of R. Compounds in which R is of formula B are suitably prepared using a starting material of formula III or V in which R³ is an alk-1-enyl group.

Either reaction may be carried out over a wide temperature range, for example from 0°C to the reflux temperature of the solvent employed.

The amounts of reactants II and III may vary suitably within the range of 0.1 to 10 moles of II per mole of III. However substantially equimolar amounts of II and III are preferably employed. Similarly the amount of reactants IV and V may be in the range of from 0.1 to 10 moles of IV per mole of V, but preferably equimolar amounts of IV and V are used.

The enantiomers of the compounds of general formula I may, of course, be prepared from the corresponding optically active enantiomer starting material of general formula III or V by either process of the present invention, or by resolution of a mixture of optical isomers. In the preparation of enantiomers of compounds I in which R³ is aryl, it is most advantageous to employ optically active starting materials III or V which are in the form of an acid, i.e. in which R⁴ is COOH, and, if desired, converting the resulting optically active compound I into the corresponding ester derivative.

The compound of general formula I obtained by either of the methods (a) or (b) may readily be converted to a further compound of general formula I by methods known to those skilled in the art. Thus for

example, a compound of general formula I where R¹ and or R² represents a halogen atom, suitably chlorine, may be transformed into other derivatives by nucleophilic displacement, for example by reaction with an amine, such as dimethylamine, to give the corresponding compound of general formula I in which R¹ and or R² represents a substituted amino group. Likewise a compound of general formula I in which R¹ and or R² represents a halogen atom, may be reacted with an alkylthio organo-metallic compound, for example sodium methanethiolate, to yield the corresponding compound of general formula I in which R¹ and or R² represents an alkylthio group such as methylthio, or may be hydrogenated to yield the corresponding compound in which R¹ and/or R² is a hydrogen atom. Compounds of general formula I in which R⁴ represents an ester group may be hydrolysed by methods well known in the art to yield acids of formula I. Alternatively, hydrogenation of, for example, the benzyl ester of formula I can be employed to yield acids of formula I.

Acid and salt conversion reactions may be carried out using conventional methods as appropriate.

15

35

The prepared compounds of general formula I may, if desired, be isolated and purified using conventional techniques.

The starting triazine compounds of general formula II (i.e. in which A is a nitrogen atom) are either known or can be prepared using techniques described in the literature. For example such compounds may be prepared from 2,4,6-trichlorotriazine by methods such as those described by Dudley et al. J. Am. Chem. Soc., 73, 2986. (1951), Koopman et al, Rec. Trav. Chim., 79, 83, (1960), Hirt et al. Helv. Chim. Acta. 33, 1365. (1950). Kobe et al. Monatshefte fur Chemie, 101, 724, (1970) and Ross et al, US Patent Specification No. 3 316 263.

The starting pyrimidines of general formulae II and IV may be prepared by conventional techniques, for example those described in Heterocyclic Compounds, 16 "The Pyrimidines", edited by D.J. Brown, Interscience, 1962.

The compounds of general formula III are either known compounds or may be prepared by conventional procedures. Compounds in which R³ represents an aryl group may for example be prepared by treating the corresponding aldehyde. R³CHO, with a suitable cyanide compound, for example potassium cyanide or trimethylsilylcyanide with, respectively, zinc iodide or sodium bisulphite, followed by conversion of the cyano substituent to a group R⁴, see, for example, Schnur and Morville, J.Med. Chem. 29, 770 (1986) and U.S. Patent Specification No. 4537623. Compounds in which R³ represents an alkyl group may, for example, be prepared by the method of Kolasa and Miller, J. Org. Chem. 52, 4978, (1987), starting from a suitable amino acid with a 2 stage conversion.

The compounds of general formula V may be prepared by conventional techniques, for example by halogenating a corresponding compound, for example by the procedure of Epstein et al. J.Med. Chem., 24. 481, (1981).

Compounds of the general formula I have been found to have interesting activity as herbicides having a wide range of pre- and post-emergence activity against undesirable species.

The present invention therefore provides a herbicidal composition which comprises a compound of the present invention in association with a carrier.

Preferably there are at least two carriers in a composition of the present invention, at least one of which is a surface-active agent.

The present invention further provides the use of a compound according to the invention as a herbicide. Further, in accordance with the invention there is provided a method of combating undesired plant growth at a locus by treating the locus with a composition or compound according to the invention. The locus may, for example, be the soil or plants in a crop area. Application to the locus may be pre-emergence or post-emergence. The dosage of active ingredient used may, for example, be from 0.01 to 10kg.ha, preferably 0.05 to 4kg.ha.

A carrier in a composition according to the invention is any material with which the active ingredient is formulated to facilitate application to the locus to be treated, which may for example be a plant, seed or soil, or to facilitate storage, transport or handling. A carrier may be a solid or a liquid, including a material which is normally gaseous but which has been compressed to form a liquid, and any of the carriers normally used in formulating herbicidal compositions may be used. Preferably compositions according to the invention contain 0.5 to 95% by weight of active ingredient.

Suitable solid carriers include natural and synthetic clays and silicates, for example natural silicas such as diatomaceous earths; magnesium silicates, for example talcs; magnesium aluminium silicates, for example attapulgites and vermiculites; aluminium silicates, for example kaolinites, montmorillonites and micas; calcium carbonate; calcium sulphate; ammonium sulphate; synthetic hydrated silicon oxides and synthetic calcium or aluminium silicates; elements, for example carbon and sulphur; natural and synthetic resins, for example coumarone resins, polyvinyl chloride, and styrene polymers and copolymers; solidi

polychlorophenols; bitumen; waxes; and solid fertilisers, for example superphosphates.

Suitable liquid carriers include water; alcohols, for example isopropanol and glycols; ketones, for example acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; ether; aromatic or araliphatic hydrocarbons, for example benzene, toluene and xylene; petroleum fractions, for example kerosine and light mineral oils; chlorinated hydrocarbons, for example carbon tetrachloride, perchloroethylene and trichloroethane. Mixtures of different liquids are often suitable.

Agricultural compositions are often formulated and transported in a concentrated form which is subsequently diluted by the user before application. The presence of small amounts of a carrier which is a surface-active agent facilitates this process of dilution. Thus preferably at least one carrier in a composition according to the invention is a surface-active agent. For example, the composition may contain at least two carriers, at least one of which is a surface-active agent.

A surface-active agent may be an emulsifying agent, a dispersing agent or a wetting agent; it may be nonionic or ionic. Examples of suitable surface-active agents include the sodium or calcium salts of polyacrylic acids and lignin sulphonic acids; the condensation of fatty acids or aliphatic amines or amides containing at least 12 carbon atoms in the molecule with ethylene oxide and or propylene oxide; fatty acid esters of glycerol, sorbitol, sucrose or pentaerythritol; condensates of these with ethylene oxide and/or propylene oxide; condensation products of fatty alcohol or alkyl phenols, for example p-octylphenol or poctylcresol, with ethylene oxide and/or propylene oxide; sulphates or sulphonates of these condensation products; alkali or alkaline earth metal salts, preferably sodium salts, of sulphuric or sulphonic acid esters containing at least 10 carbon atoms in the molecule, for example sodium lauryl sulphate, sodium secondary alkyl sulphates, sodium salts of sulphonated castor oil, and sodium alkylaryl sulphonates such as dodecylbenzene sulphonate; and polymers of ethylene oxide and copolymers of ethylene oxide and propylene oxide.

The compositions of the invention may also contain other ingredients, for example other compounds possessing herbicidal properties or compounds possessing fungicidal or insecticidal properties.

The following Examples illustrate the invention.

Example 1

30

55

Methyl 2-(4,6-dimethylpyrimidin-2-yl)oxy-3-methyl butanoate

s a) 2-Acetoxy-3-methylbutanoic acid

Into 300ml of glacial acetic acid there was stirred 11.7g (0.1 moles) of dl-valine. 13.8g of sodium nitrite was added, with stirring, over the duration of 1 hour and the temperature of the reaction medium maintained at room temperature by means of a water bath. After the mixture had been stirred overnight at room temperature, the acetic acid was evaporated off and water (50ml) added. Solvent extraction using diethyl ether then followed. The diethyl ether portion was washed with water, dried over anhydrous magnesium sulphate and the ether evaporated off to yield 12.2g of the title product as a colourless oil.

45 b) Methyl 2-hydroxy-3-methylbutanoate

11.2g (0.09 moles) of the product of (a) was introduced into 160ml of absolute methanol and the solution cooled to -40° C. 5.7ml (0.099 moles) of thionyl chloride was added dropwise in the course of 30 minutes whilst stirring at -40° C and allowed to warm to room temperature overnight. After evaporating the reaction mixture to dryness, the title product was obtained (7.7g; yield 65%) as a pale oil.

c) Methyl 2-(4,6-dimethylpyrimidin-2-yl)oxy-3-methylbutanoate

1.5g of the product of (b) and 2.11g (0.011 moles) of 4,6-dimethyl-2-methanesulphonyl pyrimidine were dissolved in 20ml acetone. 1.6g of potassium carbonate were added and the reaction mixture refluxed for 4 hours. Following thin layer chromatography to establish that the reaction had reached completion, the mixture was evaporated to dryness and 10ml water added. Solvent extraction using chloroform followed and

the chloroform extracts were dried over anhydrous sodium sulphate and the solvent evaporated off. The gill resulting was subjected to flash column chromatography using ethyl acetate: hexane (1:1) as eluant to yield 1.1g (yield 42%) of the title compound as a colourless oil.

Analysis (%):	Calc.	C 60.5	H 7.6	N 11.8
·	Found	C 60.3	H 7.9	N 11.7

O NMR δ(CDCl₃): 6.65 (1H,s), 5.01 (1H.d), 3.7 (3H.s), 2.46 (6H,s), 2.40 (1H,m), 1.10 (6H.dd) ppm.

Example 2

15

5

2-(4.6-Dimethylpyrimidin-2-yl)oxy.3-methylbutanoic acid

0.8g (3.36mmol) of the butanoate prepared in Example 1, was dissolved in 8ml of absolute methanol to which 8ml of an aqueous solution (10% by volume) of sodium hydroxide was then added. The reaction mixture was stirred overnight at room temperature. Thin layer chromatography confirmed that the reaction was complete. The methanol was then evaporated off and 5ml water added. Concentrated hydrochloric acid was added to the mixture, whilst cooling, to bring the solution to a pH of 2. Two aliquots of chloroform were used to extract the product of the reaction. The extracts were dried over anhydrous sodium sulphate and then subjected to evaporation to yield 0.7g of an oily solid. Following trituration with 5ml of diethyl ether, 0.5g (yield 66% by weight) of a colourless solid was obtained.

Melting point: 131.8°C

Analysis (%):	Calc.	C 58.9	H 7.1	N 12.5
	Found	C 59.1	H 7.2	N 12.7

30

Example 3

Methyl 2-(4,6-dimethoxypyrimidin-2-yl)oxy.2-phenyl acetate

A mixture of 4.6-dimethoxy-2-methanesulphonylpyrimidine (4.3g, 20mmol), methyl mandelate (3.3g, 20mmol) and potassium carbonate (2.76g, 20mmol) in 100ml methyl ethyl ketone was refluxed for 3 hours. After evaporating off the methyl ethyl ketone solvent, 200ml of water were added to the mixture and a precipitate formed. 5.02g (yield 83% by weight) of the title compound were obtained following filtration and drying of the precipitate.

⁴⁵ Melting point: 100.6 °C

Analysis (%):	Calc.	C 59.2	H 5.3	N 9.2
		C 58.6		

50

55

Example 4

A mixture of 1.22g (4mmol) of the ester prepared in Example 3 and 0.16g (4mmol) of sodium hydroxide in 20 ml methanol was stirred for 2 hours at 0°C and then overnight at room temperature. Thin layer chromatography indicated the reaction to be virtually complete. The methanol was then evaporated off in vacuo and an additional 50ml of water was added. The aqueous phase was made slightly acidic with dilute hydrochloric acid and the resulting precipitate was filtered off and dried. Following purification by recrystallisation from ethyl acetate/hexane, 0.65g (yield 56% by weight) of the title compound was obtained. Melting point: 159.0°C

Melting point: 159.0 C

Analysis (%):	Calc.	C 57.9	H 4.8	N 9.7
	Found	C 58.4	H 4.9	N 10.0

15 Example 5

10

20

25

30

Methyl 2-(4.6-dimethoxy-1,3,5-triazin-2-yl)oxy,3-methylbutanoate

2.00g (0.011mol) of 2-chloro-4,6-dimethoxytriazine, 1.5g of methyl 2-hydroxy-3-methyl butanoate, 1.73g (0.013mol) of potassium carbonate in 50ml of methyl ethyl ketone wer refluxed overnight. When the reaction was complete, as determined by thin layer chromatography, the potassium carbonate was filtered off and the solvent evaporated off to leave a yellow solid (2.38g). Flash column chromatography yielded the pure product as a pale yellow oil (1.93g, yield 65% by weight).

				السيسان والمساور	
A	nalysis (%):	Calc.	C 48.7	H 6.3	N 15.5
			C 47.1		

NMR δ(CDCl₃): 5.08 (1H,d), 3.98 (6H,s), 3.72 (3H,s), 2.30 (1H,m), 1.07 (6H,dd) ppm

35 Example 6

Ethyl 2-(4,6-dimethoxytriazin-2-yl)oxy,2-phenyl acetate

2-Chloro-4,6-dimethoxytriazine (1.75g), ethyl mandelate (1.8g) and potassium carbonate (1.5g) in methyl ethyl ketone (75ml) were stirred and heated at reflux overnight. The reaction mixture was cooled to room temperature, concentrated and the residue poured into water. The precipitated product was filtered off; washed with water and then dried to give 2.6g (81.5% by weight yield) of the title compound.

Melting point: 92 °C

Analysis (%):	Calc.	C 56.4	H 5.4	N 13.2
	Found	C 57.0	H 5.4	N 13.0

Example 7

55

50

45

Ethyl 2-(4,6-dimethylpyrimidin-2-yl)oxyacetate

bromoacetate (13.5g, 0.08 mol) was added and also, subsequently, 11.lg of potassium carbonate. The reaction mixture was refluxed overnight. A precipitate had formed which was filtered off and the solvent was then evaporated off from the filtrate to form a crude oily product. Following purification by flash chromatography, 4.5g of the title product were obtained in the form of a red oil.

Analysis (%): Calc. C 57.1 H 6.7 N 13.3 Found C 56.9 H 6.9 N 13.0

NMR δ(CDCl₃): 6.68 (1H,s), 4.87 (2H.s), 4.20 (2H,q), 2.37 (6H,s), 1.22 (3H.t) ppm.

Example 8

5

10

15

25

30

2-(4.6-Dimethylpyrimidin-2-yl)oxyacetic acid

2g (9.5mmol) of the ethyl ester prepared in Example 7 were dissolved in 20ml of ethanol. 25ml of an aqueous solution (10% by vol) of sodium hydroxide were then added to the solution. The reaction mixture was refluxed for 4 hours. After the reaction was complete, as confirmed by thin layer chromatography, the ethanol was evaporated off, the aqueous residue cooled, acidified to a pH of 2 and the product extracted into chloroform. Following drying first over anhydrous sodium sulphate and then by evaporation, 0.6g (yield 35% by weight) of a reddish oil were obtained which oil crystallised on standing.

Melting point: 72°C

Analysis (%):	Calc.	C 52.7	H 5.5	N 15.4
	Found	C 48.6	H 5.6	N 13.4

NMR δ (CDCl₃): 6.70 (1H.s), 6.51 (1H, broad s), 4.93 (2H,s), 2.48 (6H.s) ppm

35 Example 9

Ethyl 2-(4.6-dimethylpyrimidin-2-yloxy).2-phenyl acetate

A mixture of 2-hydroxy-4,6-dimethylpyrimidine (5.60g, 50mmol), ethyl 2-bromo,2-phenylacetate (12.15g, 50mmol) and potassium carbonate (6.90g, 50 mmol) in 250 ml of methyl ethyl ketone was refluxed overnight. The solvent was evaporated off, water was added to the remaining mixture and the whole extracted into diethyl ether. Following drying over anhydrous magnesium sulphate and evaporation, the crude product was purified by flash column chromatography to give 4.8 g (34% by weight yield) of the title compound in the form of an oil.

Analysis (%):	Calc.	C 67.1	H 6.3	N 9.8
	Found	C 67.4	H 6.5	N 9.4

Example 10

65

50

2-(4,6-Dimethylpyrimidin-2-yl)oxy.2-phenylacetic acid

3.60g (12.6mmol) of the ethyl ester prepared in Example 9 were added to a stirred solution of sodium hydroxide (0.504g, 12.6mmol) in a mixture of ethanol (20ml) and water (20ml) at 0 °C. After stirring for 2-3 hours at 0 °C, the mixture was allowed to warm gradually to room temperature and then stirred overnight. Approximately 300ml of water was added and the mixture was made slightly acidic with dilute hydrochloric acid. The precipitate that formed was filtered off and dried by suction. 2.4g (74% by weight yield) of the title compound was obtained following recrystallisation from hexane/ethyl acetate.

Melting point: 148.4 °C

Analysis (%):	Calc.	C 65.1	H 5.4	N 10.9
	Found			

Example 11

2-(4,6-Dimethoxytriazin-2-yl)oxy,2-phenylacetic acid

1.22g (4.0mmol) of the ester methyl 2-(4,6-dimethoxytriazin-2-yl)oxy, 2-phenyl acetate (prepared: in analogous manner to the corresponding ethyl ester as described in Example 6) was added to a stirred solution of 0.16g (4.0mmol) of sodium hydroxide in a mixture of water (20ml) and methanol (20ml). The mixture was refluxed for 1 hour after which time the reaction was complete, as confirmed by thin layer chromatography. The methanol was removed from the solution by evaporation in vacuo and 50ml water added to the remaining liquid. A precipitate formed which was filtered off, washed and dried to give 0.73g (yield 63% by weight) of the title compound.

Melting point: 128.2 C

30

35

40

45

50

10

15

20

Analysis (%):	Calc.	C 53.6	H 4.5	N 14.4
	Found	C 53.2	H 4.6	N 14.5

Examples 12 to 163

Further compounds of the general formula

 \mathbb{R}^2 \mathbb{R}^3 \mathbb{R}^4

were prepared in analogous manner to the procedures described in Examples 1 to 11 above except for the compounds of Examples Nos. 159 to 162 which were prepared from the corresponding benzyl esters (the compounds of Examples 155 to 158) by the conventional procedure of hydrogenation at room temperature and pressure using palladium charcoal powder and ethanol as solvent. Details of the compounds prepared are given in Table I below. In the Table, the designation "N/A" stands for "not available".

5	Calc Found N	13.8	8.4	13.0	8.6	11.3	7.5	
	sis (%) F	4.9	5.3	4.4	4.8	3.8	4.1	5.5
10	Analysis	55.1	59.9	52.0	55.9	48.3	51.6	61.8
15	Melting Point (°C)	91.5	72-75	93	90-92	oil	66-96	oil
20	8	СО2СН3	CO2C2H5	CO2CH3	CO ₂ CH ₃	co ₂ cH ₃	co2cH3	co ₂ cH ₃
25	Table 1					. 4	_ 4	6H4
30	eil Ca	C ₆ H ₅	2-c1c ₆ H ₄	2-FC ₆ H ₄	2-FC ₆ H ₄	3-CF3C6H	3-CF3C6H4	2-(co ₂ cH ₃)c ₆ H ₄
35						·		
40	8 2	OCH ₃	CH ₃	осн	OCH ₃	OCH ₃	OCH ₃	E H J
45	T &	OCH ₃	CH ₃	OCH ₃	OCH ₃	OCH ₃	OCH ₃	CH 3
50	~	Z	3	Z	Ħ	Z	CH	B
55	Example A R ¹ R ²	12	13	14	15	16	17	18

Example A R ¹ R ² R ³ R ⁴ Point C H Nelting Found 19 CH OCH ₃ OCH ₃ 2,6-diClC ₆ H ₃ CO ₂ CH ₃ 169-170 48.3 3.8 7.5 20 CH OCH ₃ OCH ₃ CH ₂ C ₆ H ₅ CO ₂ CH ₃ 0il 60.4 5.7 8.8 21 N OCH ₃ OCH ₃ CH ₂ C ₆ H ₅ CO ₂ CH ₃ 0il 60.4 5.7 8.8 22 CH OCH ₃ OCH ₃ CH ₂ C ₆ H ₅ CO ₂ CH ₃ 0il 60.4 5.7 13.2 23 N OCH ₃ CH ₂ C ₆ H ₅ CO ₂ CH ₃ 0il 51.0 61.0 61.0 61.0 24 N OCH ₃ CH ₂ C ₆ H ₅ CO ₂ CH ₃ 0il 51.0 61.0 61.0 25 CH OCH ₃ CH ₂ C ₆ H ₅ CO ₂ CH ₃ 0il 61.0 61.0 26 CH OCH ₃ CH ₂ C ₆ H ₅ CO ₂ CH ₃ 0il 61.0 61.0 27 CH ₂ C ₆ H ₅ CO ₂ CH ₃ 0il 61.0 61.0 28 CH ₂ C ₆ H ₅ CO ₂ CH ₃ 0il 61.0 61.0 29 CH ₃ CH ₂ C ₆ H ₅ CO ₂ CH ₃ 0il 61.0 61.0 20 CH ₃ CH ₂ C ₆ H ₅ CO ₂ CH ₃ 0il 61.0 61.0 20 CH ₃ CH ₂ C ₆ H ₅ CO ₂ CH ₃ 0il 61.0 21 CH ₂ C ₆ H ₅ CO ₂ CH ₃ 0il 61.0 22 CH ₃ CH ₂ C ₆ H ₅ CO ₂ CH ₃ 0il 61.0 23 CH ₃ CH ₂ C ₆ H ₅ CO ₂ CH ₃ 0il 61.0 24 N OCH ₃ NICH ₃ CH ₂ C ₆ H ₅ CO ₂ CH ₃ 61.0 25 CH ₃ CH ₂ C ₆ H ₅ CO ₂ CH ₃ 61.0 26 CH ₃ CH ₂ C ₆ H ₅ CO ₂ CH ₃ 61.0 27 CH ₃ CH ₂ C ₆ H ₅ CO ₂ CH ₃ 61.0 28 CH ₃ CH ₂ C ₆ H ₅ CO ₂ CH ₃ 61.0 29 CH ₃ CH ₂ C ₆ H ₅ CO ₂ CH ₃ 61.0 20 CH ₃ CH ₂ C ₆ H ₅ CO ₂ CH ₃ 61.0 20 CH ₃ CH ₂ C ₆ H ₅ CO ₂ CH ₃ 61.0 20 CH ₃ CH ₂ C ₆ H ₅ CO ₂ CH ₃ 61.0 20 CH ₃ CH ₂ C ₆ H ₅ CO ₂ CH ₃ 61.0 20 CH ₃ CH ₂ C ₆ H ₅ CH ₂ C ₆ H ₅ CO ₂ CH ₃ 61.0 20 CH ₃ CH ₂ C ₆ H ₅ CH ₂ C ₆ H ₅ CO ₂ CH ₃ CH ₂ C ₆ C ₆ CH ₂ CH ₂ C ₆ C ₆ CH ₃ CO ₂ CH ₃ CH ₂ C ₆ C ₆ CH ₂ CH ₂ C ₆ C ₆ CH ₃ CH ₂ C ₆ C ₆ C ₆ CH ₂ CH ₂ C ₆ C ₆ C ₆ CH ₂ CH ₂ C ₆	55	50	45	40	35	30	25	20	15	10	5	
Analysis (%) C Melting Rolling Rollin			· •		Tal		inued)					
A R ¹ R ² R ³ R ⁴ Melting (°C) H CH OCH3 2,6-diclC ₆ H ₃ CO ₂ CH ₃ 169-170 48.3 3.8 CH OCH3 2,6-diclC ₆ H ₃ CO ₂ CH ₃ 0il 60.4 5.7 N OCH3 CH ₂ C ₆ H ₅ CO ₂ CH ₃ 0il 60.3 5.8 N OCH3 CH ₂ C ₆ H ₅ CO ₂ CH ₃ 0il 56.4 5.4 N OCH3 CH ₂ C ₆ H ₅ CO ₂ CH ₃ 0il 56.4 5.3 N OCH3 CH ₂ C ₆ H ₅ CO ₂ CH ₃ 0il 56.4 5.3 N OCH3 CH ₂ C ₆ H ₅ CO ₂ CH ₃ 0il 51.3 4.4 N OCH3 N(CH ₃) ₂ CH ₂ C ₆ H ₅ CO ₂ CH ₃ 61-62 57.8 6.0 N OCH3 NHCH ₃ CH ₂ C ₆ H ₅ CO ₂ CH ₃ 61-62 57.8 6.0 N OCH3 NHCH3 CH ₂ C ₆ H ₅ CO ₂ CH ₃ 61-62 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Analys</th> <th></th> <th>Calc</th>										Analys		Calc
A R ¹ R ² R ³ R ⁴ Point C H CH OCH ₃ 2,6-diclc ₆ H ₃ CO ₂ CH ₃ 169-170 48.7 3.8 CH OCH ₃ 2,6-diclc ₆ H ₅ CO ₂ CH ₃ 0il 60.4 5.7 CH OCH ₃ OCH ₃ CH ₂ C ₆ H ₅ CO ₂ CH ₃ oil 56.4 5.3 CH OCH ₃ CH ₂ C ₆ H ₅ CO ₂ CH ₃ oil 56.4 5.3 N OCH ₃ Cl CH ₂ C ₆ H ₅ CO ₂ CH ₃ oil 51.9 4.4 N OCH ₃ Cl CH ₂ C ₆ H ₅ CO ₂ CH ₃ oil 51.9 4.4 N OCH ₃ Cl CH ₂ C ₆ H ₅ CO ₂ CH ₃ 61-62 57.8 6.0 N OCH ₃ NHCH ₃ CH ₂ C ₆ H ₅ CO ₂ CH ₃ 62-64 56.6 5.7 S Ch	•							Me	lting			puno,
CH OCH_3 OCH_3 $2.6-diclC_6H_3$ CO_2CH_3 $169-170$ 48.3 3.8 48.7 3.9 CH OCH_3 OCH_3 OCH_3 $CH_2C_6H_5$ CO_2CH_3 OIl 60.4 5.7 60.3 5.8 60.3 CH OCH_3 $OCH_$	Example	«	T _A	R ²		۳ ₃	₩	д	oint ·c)	U	I	z
CH OCH_3 OCH_3 $CH_2C_6H_5$ CO_2CH_3 OII 60.4 5.7 N OCH_3 OCH_3 $CH_2C_6H_5$ CO_2CH_3 OII 56.4 5.8 CH OCH_3 OCH_3 $CH_2C_6H_5$ $COOH$ 113.5 59.3 5.3 N OCH_3 CI $CH_2C_6H_5$ CO_2CH_3 OII 51.9 4.3 N OCH_3 CI $CH_2C_6H_5$ CO_2CH_3 OII 51.9 4.3 N OCH_3 $CH_2C_6H_5$ CO_2CH_3 OII 51.9 4.3 N OCH_3 $CH_2C_6H_5$ CO_2CH_3 OII 51.9 4.3 N OCH_3 $CH_2C_6H_5$ CO_2CH_3 OII 51.9 6.0 Show that the second is the second in t	19	1 5	OCH	ОСН	2,6-d	iclc,H,	CO,CH,	16	9-170	48.3	3.8	7.5
CH OCCH ₃ OCCH ₃ CH ₂ C ₆ H ₅ CO ₂ CH ₃ OLL 60.4 5.7 N OCCH ₃ OCCH ₃ CH ₂ C ₆ H ₅ CO ₂ CH ₃ OLL 56.4 5.8 CH OCCH ₃ OCCH ₃ CH ₂ C ₆ H ₅ COOH 113.5 59.3 5.3 N OCCH ₃ CL CH ₂ C ₆ H ₅ CO ₂ CH ₃ OIl 51.9 4.3 N OCCH ₃ N(CH ₃) ₂ CH ₂ C ₆ H ₅ CO ₂ CH ₃ 61-62 57.8 6.0 N OCCH ₃ NCH ₃ CH ₂ C ₆ H ₅ CO ₂ CH ₃ 62-64 56.6 57.7	}			(•	า อ	n N			48.7	3.9	7.4
N OCH ₃ OCH ₃ $CH_2C_6H_5$ CO_2CH_3 Oil 56.4 5.8 $CH_2C_6H_5$ CO_2CH_3 Oil 56.4 5.8 $CH_2C_6H_5$ $COOH$ 113.5 59.3 5.3 $CH_2C_6H_5$ CO_2CH_3 Oil 51.9 4.3 $CH_2C_6H_5$ CO_2CH_3 Oil 51.9 4.4 $CH_2C_6H_5$ CO_2CH_3 Oil 51.9 4.4 $CH_2C_6H_5$ CO_2CH_3 $CH_2C_6H_5$ CO_2CH_3 CH_2C_6 57.8 6.0 CH_2 CH_2 CH_2 CH_3 CH_2 CH_3	20	3	OCH	ОСН	E C	C, HE	COCH		oil	60.4	5.7	8.8
N OCH ₃ CH ₂ C ₆ H ₅ CO ₂ CH ₃ oil 56.4 5.4 5.4 CH OCH ₃ OCH ₃ CH ₂ C ₆ H ₅ COOH 113.5 59.3 5.3 N OCH ₃ Cl CH ₂ C ₆ H ₅ CO ₂ CH ₃ Oil 51.9 4.3 N OCH ₃ N(CH ₃) CH ₂ C ₆ H ₅ CO ₂ CH ₃ 61-62 57.8 6.0 N OCH ₃ NHCH ₃ CH ₂ C ₆ H ₅ CO ₂ CH ₃ 62-64 56.6 5.7) 1		M	7		0 9	3			60.3	S. S	8.7
CH OCH ₃ OCH ₃ $CH_2C_6H_5$ $COOH$ 113.5 59.3 5.3 SH_2 SH_3 SH_4 5.3 SH_2 SH_3 SH_4 SH_3 SH_4 SH_3 SH_4 SH_2 SH_3 SH_3 SH_4 SH_3 SH_4 SH_3 SH_4 SH_2 SH_3 SH_4 SH_3 SH_4 SH_4 SH_4 SH_4 SH_4 SH_4 SH_4 SH_4 SH_5 SH_4 SH_5 SH_4 SH_5 SH_5 SH_6	21	Z	OCH	OCH,	CH	C, HE	co, CH,		oil	56.4	5.4	13.2
CH OCH ₃ OCH ₃ $CH_2C_6H_5$ $COOH$ 113.5 59.3 5.3 58.4 5.3 5.3 N OCH ₃ $CH_2C_6H_5$ CO_2CH_3 Oil 51.9 4.3 4.4 N OCH ₃	i i		7)	7		n o	3		,	56.4	5.5	12.8
N OCH ₃ C1 $CH_2C_6H_5$ CO_2CH_3 Oil 51.9 4.3 51.3 4.4 S1 CH ₂ C ₆ H ₅ CO_2CH_3 CO_2CH_3 $CH_2C_6H_5$ CO_2CH_3 $CH_2C_6H_5$ CO_2CH_3 $CH_2C_6H_5$ CO_2CH_3 CO_2C	. 22	Ë	OCH	ОСН	ਝ	LCHE	C00H	~	13.5	59.3	S.	9.5
N OCH ₃ C1 $CH_2C_6H_5$ CO_2CH_3 Oil 51.9 4.3 N OCH ₃ N(CH ₃) ₂ $CH_2C_6H_5$ CO_2CH_3 $61-62$ 57.8 6.0 58.2 6.0 N OCH ₃ NHCH ₃ $CH_2C_6H_5$ CO_2CH_3 62-64 56.6 5.7] }		7	า))				58.4	5.3	9.1
N OCH ₃ N(CH ₃) ₂ $CH_2C_6H_5$ CO_2CH_3 $61-62$ 57.8 6.0 58.2 6.0 5.7 NHCH ₃ $CH_2C_6H_5$ CO_2CH_3 $62-64$ 56.6 5.7 56.0 5.7		z	ОСН	เว	ទី	LCKHE	COCH		oil	51.9	4.3	13.0
N OCH ₃ N(CH ₃) ₂ $CH_2C_6H_5$ CO_2CH_3 61-62 57.8 6.0 58.2 6.0 SH ₂ $CH_2C_6H_5$ CO_2CH_3 62-64 56.6 5.7 56.0 5.7			7)	3			51.3	4.4	12.9
N OCH ₃ NHCH ₃ CH ₂ C ₆ H ₅ CO ₂ CH ₃ 62-64 56.6 5.7 56.0 5.7		z	CHO	N(CH,),	່ວັ	1,C _K H _K	COCH	•	51-62	57.8	0.9	16.9
N OCH ₃ CH ₂ C ₆ H ₅ CO ₂ CH ₃ 62-64 56.6 5.7 56.0 5.7			7	7.6))	3			58.2	0.9	17.1
2.7		Z	OCH.	NHCH	ີວ	1,C_H	COCH		52-64	9.95	5.7	17.6
			7			0	3			56.0	5.7	17.8

	Calc	Found	12.5	9.3	8.7	0.8	9.7	9.5	10.0
5	%		5.1	4 4 4	5.0	4.6	5.6	5.0	4.9
10	Analysis	ပ	53.7	54.5 54.5	56.2	50.3	62.5	57.9	57.9
15	-	Melting Point (°C)	oil	72.4	93.95	118-120	70.7	137-140	133
20			ж Э	ж 3	3H3	ж Э	CH ₃	соон(s)	соон (R)
25	(continued)		CO2CH3	COCH	CO2CH3	CO2CH3	co ₂ cH ₃	600	000
30	Table 1 (c	E _M	CH ₂ C ₆ H ₅	C ₆ H ₅	C ₆ H ₅		C _H ₂	C _H ₅	C ₆ H ₅
35									
40		2 ₈	SCH ₃	OCH ₃	SCH ₃	och ₃	OCH ₃	осн3	осн3
45		٣	OCH ₃	ប	och ₃	OCH ₃	CH ₃	оснз	OCH ₃
		«	z	#5	#5	CH	CH	E	5
50 55		Example A R ¹ R ²	26	27	28	59	30	31	32

5	s (%) Calc	Found H N	5.3 9.2	5.3 9.1	5.3 9.2	5.4 9.1	5.9 10.3	6.1 10.1	5.7 17.6	5.8 17.5	4.2 9.0		4.3 8.9		
10	Analysis	ی	59.2	59.0	59.2	59.4	66.2	66.3	56.6	56.7	53.9	•	52.4	52.4 55.3	52.4 55.3 55.6
15		Melting Point (°C)	95		92-94		68.2		103.5		242-243			112.2	112.2
20	ed)	4	со ₂ сн ₃ (s)		со ₂ сн ₃ (R)	,	co, ch,	1	co, cH,) 1	COO_Na			302CH3	co ₂ cH ₃
25	(continued)		8		8		O		0		O			•	
30	Table 1	۳ «	C _H ₅	•	CeH5	•	CAHS))	CHE		CHE))		C _H S	C ₆ H ₅
35),	3				-ب	e
40		8 2	OCH		OCH		t E	•	N(CH ₁),		OCH	ר		NHCH	NHCH
45		R R	OCH)	OCH		CH	•	OCH	ר	осн	ר		OCH	OCH ₃
50		⋖	ਝ		CH		E		z		£			z	Z
55		Example	33		34		35		3 ė		37			38	æ

	(%) Calc	Found	14.5	14.7	13.3	N/A	14.3	14.3	12.5	12.0	13.3	13.1	11.1	10.7	11.8	12.2
.			5.2	5.2	6.7	N/A	6.1	6.3	7.1	7.2	6.7	6.8	7.9	8.3	7.6	7.5
10	Analysis	ပ	58.1	59.0	57.1	N/A	55.1	46.5	58.9	58.7	57.1	57.1	61.9	63.3	60.5	59.7
15		Melting Point (°C)	72		oil		117		oil		112.5		oil		111.9	,
20			۳. ۳.)	## ")	=		# *	1	==		.)	×	
25	(continued)	4 ₩	CO, CH,	1	COCH	4	H000		COCH	3	СООН		COCH	1	COOH	
30	Table 1 (co	e _K	C, H,))	CH.	1	ĊĦ,	1	C,H _E) 4	C, H _E	1	ic,Ho	•	icAHo	n r
35																
40		22	ОСН	7	CH,	า	CH.	า	CH.	า	CH,	1	CH,	7	CH,	•
45	·	r _æ	CH,	า	£	7	CH,	า	CH,	า	E E	1	ຮັ	า	CHJ	7
		<	z		ਝ		ਝ		E		E		E		CH	
50 55		Example A R ¹ R ²	40		41		42		43		44		45		46	

50	15	0	5	o .		•			
				Table 1 (co	(continued)		Analysis	is (\$)	Calc
«	Example A R ¹	25		س ع	A.	Melting Point (°C)	ပ		Found
₹	47 CH CH ₃	GH3		sc4H ₉	co ₂ CH ₃	0i1	61.9	7.9	11.1
8	CH ₃	CH ₃		sc ₄ H ₉	COOH	115.0	60.5	7.6	11.8
Ë	CH ₃	CH 3		nC ₃ H ₇	co ² cH ₃	oil	60.5 58.8	7.5	11.8
E	CH ₃	ਲ ਤ		tc4H9	co ² cH ³	oil	61.9	7.9	11.1
ਝ	CH ₃	CH ₃		nC ₄ H ₉	CO ₂ CH ₃	oil	61.9 N/A	7.9 N/A	11.1 N/A
E	OCH ₃	OCH ₃		CH ₃	СООН	144	47.4	5.3	12.3
3	ОСНЗ	OCH ₃		C ₂ H ₅	COOH	122	49.6	ໝຸດ.	11.6

				Table		(continued)				
								Analysis		(%) Calc
							Melting		·	Found
A		R ₁	R ²	px,	R ³	4 X	Point	ပ	H	Z
	- 1						(o.)			
0	 	OCH,	ОСН	ic	ic,H,	СООН	133.5	51.6	6.3	10.9
		า	7		· 1			51.6	6.2	11.1
Ö	¥	OCH,	OCH	įC	ic, H	CO, CH,	oil	54.9	7.0	9.9
		า	7) r	2		55.0	7.1	10.0
O	浜	OCH	OCH	ic	ic,H,	co, cH,	48.4	53.3	6.7	10.4
		า	n		-) 1		53.8	7.1	10.8
Q	弄	OCH,	OCH	įĆ	ic,H _o	СООН	116	53.3	6.7	10.4
		า	า		n F			52.9	6.7	10.4
O	Ħ	OCH	OCH,)S	sc, H _o	COCH	42	54.9	7.0	6.6
		7	า		n r)		54.8	7.5	9.5
J	开	ОСН	OCH,	S(sc, H,	H000	96.2	53.3	6.7	10.4
		า	n		n *			53.9	6.9	10.5
J	#5	сн осн	OCH,	ĭ	nC,H,	CO, CH,	60.5	53.3	6.7	10.4
		7			`	1				

50		45	40	35	30	25	20	15	10	5	e
					Table 1 (c	(continued)			Analysis	8	Calc
Example A R ¹ R ²	«	4	8 2		. A	₹		Melting Point (°C)	ပ	# #	Found
61	5	OCH ₃	OCH ₃		nC ₃ H ₇	Н00Э		114	51.6	6.3	10.9
62	3	OCH ₃	OCH ₃		tc4H9	CO2CH3	~	104.5	54.9	7.0	9.6
63	Z	оснз	och ₃		CH ₃	co ₂ cH ₃ (R	(R)	oil	44.4	5.4	17.3
64	Z	OCH ₃	оснз		CH ₃	CO2CH3(S)	(S)	oi1	44.4	5.3	17.3
65	Z	OCH ₃	OCH ₃		C ₂ H ₅	CO ₂ CH ₃	m	oil	46.7	5.8	16.3
99	Z	OCH ₃	осн3		ic4H9	CO ₂ CH ₃	_ m	oil	50.5	6.7	14.7
. 19	Z	оснз	OCH ₃		nC ₃ H ₇	CO ₂ CH ₃	_e	oil	48.8	6.3	15.5

5	(%) Calc	Found	10.4	10.5	6.6	9.4	10.4	10.4	8.8	9.4	8	8.9	13.2	13.3	7.8	8.0	
			6.7	6.8	7.0	9.9	6.7	6.7	5.7	5.7	5.7	0.9	0.9	5.9	3.4	3.4	
10	Analysis	ပ	53.3	53.2	54.9	51.3	53.3	53.6	60.4	59.7	60.4	60.7	9.09	9.09	46.8	47.1	
15	•	Melting Point (°C)	167.5		oil		113.7		122.8		113.8		94.1		246.6		
20						,											
25	(continued)	4	H000		COCH)	C00H	-	COCH	1	COCH		CO2CH3	1	С00Н		
30	Table 1 (co	. ₩	tc4H9	•	nC ₄ H ₉	•	nC ₄ H ₉	,	3-CH3CH4	•	4-CH3CH4		C,H5		2,6-diclc ₆ H ₃		
35												,			7		
40		8 2	осн		OCH ₃		OCH	•	OCH	•	осн	•	$N(CH_3)_2$		OCH		
45		R	OCH ₃)	сн осн)	сн осн)	OCH	•	OCH	•	OCH	•	OCH		
		≪	#5		E		CH		ਝ		E		CH		CH		
50		Example	89		69		70		7.1		72	•	73		74		

50		45	40	3 5	30	25	15 20		10	5
					Table 1 (co	(continued)				
			-	,				Analysis		(%) Calc
	•	7	. 7		۳,	4.	Melting	C	٠	Found
Example	⋖	*			*	*	Foint (°C)	ပ	x	z
75	z	N OCH ₃	ОСН		C _H 5	CO2CH3 (R)	95.0	55.1	5.0	13.8
		•						55.7	2.0	13.7
92	Z	OCH ₃	OCH ₃		C ₆ H ₅	co_2 CH $_3$ (S)	98.0	55.1	5.0	13.8
		l		_		! }		55.1	5.0	14.4
	Z	OCH ₃	och ₃	7		CO2CH3	67.3	46.3	4.2	13.5
					S	•		46.4	4.1	13.2
	Æ	OCH ₃	OCH ₃	- •	ic3H7	COO_NA	196.1	47.5	S. 4	10.1
								46.5	5.4	6.6
42	CH	OCH ₃	OCH ₃	- *	ic3H7	co_2 CH ₃ (S)	41.0	53.3	5.7	10.4
		1				, ,		54.2	9.9	10.5
80	ਝ	OCH ₃	OCH ₃	•	ic3H7	CO ₂ CH ₃	47.0	53.3	6.1	10.4
								53.4	7.1	6.6
81	H	сн осн ₃	OCH ₃	-	ic3H7	COCCHE	45.5-46.0	54.9	7.0	6.6
								53.5	6.9	6.1
	The state of the s	0.00	The second second second	Contraction of the last						

5	(%) Calc Found		o. 0	9.7	9.0	8.7	4.0	8.7	ស . ម	9.4	9.5	8.9	6.1	9.5	8.0	8.1
10	&		7.0	7.2	7.7	7.2	7.4	7.6	6.8	6.7	8.9	6.8	2.6	5.5	4.5	5.0
10	Analysis C H		56.4	56.3	57.7	56.9	56.4	56.8	56.7	55.6	56.7	55.7	45.8	44.5	45.9	43.5
15	Melting	(c.)	46.0-46.5		41.5-42.0		105.6		162.5		152.0		85.6		0.86	
20	4		С ₁ Н7		C ₄ H ₉	\ •	СООН		(R)		(S)		СООН		co, cH,) -
25	(continued)		CO, iC, H,	1	CO nC H	•	8		СООН		СООН		8		တ်	
30	Table 1 (4	ic,H,	1	ic,H,	1	nckH11	2	cyclohexyl		cyclohexyl		(cH,), SCH,	1 4 4	COCO,CH,	n N
35																
40	72		осн		ОСН		ОСН		ОСН		ОСН		OCH,		OCH	
45	£4	4	сн осн,	า	OCH	1	OCH	.	OCH	า	ОСН	7	OCH	7	сн осн	7
			8		CH		CH		Ŧ		Ğ		CH		Ë	
50		Ехашрте	82	<u>-</u>	83		84		80 13		86) }	87	;	88	

Analysis (%) Cal Melting Four Point C H N (°C) 133.0-134.0 48.2 5.7 1 46.4 54.9 7.3 8 55.1 8.2 6.8 1 54.3 6.8 1 54.3 6.8 1 54.3 6.8 1 54.1 5.9 7 78.0 62.4 6.4 6.5 7 57.7 57.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6	50		45	40	35	30	20	15	10	5	
R2 R3 R4 Point C H N (°C) (°C) (°C) (°C) (°C) (°C) (°C) (°C)					E		(continued)		nalysi		Calc
$coN(CH_3)_2 \qquad co_2CH_3 \qquad 133.0-134.0 48.2 5.7 14.2 14.3$	ample	«	4	2 2		_	AA.		ပ		N N
ic_3H_7 $co_2(cH_2)_2oc_2H_5$ 46.4 54.9 7.3 ic_3H_7 $co_2cH_2 < $	89	3	OCH ₃	OCH ₃		CH ₃) 2	co ₂ CH ₃	133.0-134.0	48.2	5.7	14.0
ic_3H_7 $co_2N=C(CH_3)_2$ oil 54.0 6.8 1 ic_3H_7 $co_2CH_2 < S$ 115.2 54.5 5.7 ic_3H_7 $co_2CH_2 c_6H_5$ 78.0 62.4 6.4 ic_3H_7 $co_2CH_2 c=CH$ 75.7 57.1 6.1 ic_3H_7 $co_2CH_2 c=CH$ 75.7 57.1 6.1 ic_3H_7 $co_2CH_2 c=CH$ 6.8	06	ਝ	ОСН	осн		3H7	со ₂ (сн ₂) 20с ₂ н ₅	46.4	54.9	7.3	8.5 8.5
ic_3H_7 co_2cH_2 s 115.2 54.3 6.8 1 ic_3H_7 $co_2cH_2c_6H_5$ 78.0 62.4 6.4 ic_3H_7 $co_2cH_2c=CH$ 75.7 57.1 6.1 ic_3H_7 co_2 s 80.6 62.4 6.4 ic_3H_7 s s 80.6 62.4 6.4 ic_3H_7 s		Ę	ר נכ	ר מ			CO_N=C(CH_)	oil	55.1	8.5	8.4
ic ₃ H ₇ $co_2 cH_2 / s$ 115.2 54.5 5.7 5.9 ic ₃ H ₇ $co_2 cH_2 c_6 H_5$ 78.0 62.4 6.4 ic ₃ H ₇ $co_2 cH_2 c \equiv cH$ 75.7 57.1 6.1 ic ₃ H ₇ $co_2 cH_2 c \equiv cH$ 75.7 57.4 6.8 ic ₃ H ₇ $co_2 - cH$ 80.6 62.4 6.4 62.2 6.9	- 1	5	وروع د	och ₃		3**7	3, 5		54.3	6.8	13.5
ic ₃ H ₇ $co_2 cH_2 c_6 H_5$ 78.0 62.4 6.4 62.3 ic ₃ H ₇ $co_2 cH_2 c = cH$ 75.7 57.1 6.1 57.4 6.8 ic ₃ H ₇ $co_2 cH_2 c = cH$ 80.6 62.4 6.4 62.2 6.9	<u>8</u>	CH	och ₃	OCH ₃		3H7		115.2	54.5	5.7	8.0
ic ₃ H ₇ co_2 CH ₂ C=CH 75.7 57.1 6.1 57.4 6.8 57.4 6.8 57.4 6.8 62.2 6.9	7	3	OCH	OCH		,H,	S CO, CH, C, H,	78.0	62.4	6.4	8.1
ic ₃ H ₇ co ₂ CH ₂ C=CH 75.7 57.1 6.1 57.4 6.8 57.4 6.8 57.4 6.8 52.4 6.4	7	•	3			-	7		62.3	6.5	8.4
$1c_3H_7$ co_2 c_3 80.6 62.4 6.4 62.2 6.9	94	B	OCH	осн		3H7	CO2CH2C≡CH	75.7	57.1	6.1	9.5
$1c_3H_7$ co_2 c_3 c_4 c_5 c_6 c_7			,						57.4	8 · 9	თ - თ
	92	E	OCH ₃	OCH ₃		3H7	CO2 - CH	0.00	62.2	. 0	ω • •

5	Calc	Found	8.9	9.3	8.9	9.1	8.0	8,3	8.9	8.9	7.8	8.0	8.5	8.6	6.9	8
- , .	*	=	7.7	8.1	7.0	7.2	5.7	5.9	7.7	7.5	6.7	6.5	6.7	6.4	0.9	6.1
1 0	Analysis	ပ	57.7	57.8	53.5	53.8	58.6	58.5	57.7	57.5	63.3	63.3	50.9	51.1	48.9	49.3
15		Melting Point (°C)	43.0		52.2		130.7		43.1		oil		47.9		38.5	
20											6H ₅))	CH ₃	•	5	
25	Table 1 (continued)	R4	co2ic4H9)]	COSUC ₃ H ₇		COSCA		CO ₂ SC ₄ H ₉		co ₂ cH(cH ₃)c ₆ H ₅		co ₂ (cH ₂) ₂ scH ₃		$co_2(cH_2)_2cI$	
30	Table 1	ж ₃	ic3H7		icana		ic3H7		ic, H,		ic3H7	•	ic3H7		ic3H7	
35		P4	ic		ic		ic		ic		ic		ic		ic	
40		×2	OCH ₃		OCH		OCH				OCH		OCH		OCH ₃	
45		1 ₂	ОСН		OCH	•	OCH)	сн осн,	•	сн осн	•	OCH		OCH ₃	
		~	8		3		E		E		E		Ë		E	
5 <i>0</i> 55		Example	96		97		86		66		100		101		102	

50		45	40	35	30	20 25	15	10		5
					Table 1 ((continued)		Analysis		(%) Calc
Example	«	R	8 2		E %	A ₩	Melting Point (°C)	ပ	#	Found
103	Æ	OCH ₃	ocH ₃		ic,H7	CO ₂ CH ₂	110.6	57.1 56.8	5.9	8.3
104	3	оснз	OCH ₃		iC ₃ H ₇	CO ₂ CH ₂	oi1	56.5	7.1	8 8 5
105	E	осн	осн3		ic3H7	CO ₂ CH ₂ C1	110.4	52.0	8. 4 . 8	6.4
901	Ë	och ₃	осн		ic3H7	CO ₂ CH ₂ -C1	1 92.9	56.8	5.5 6.5	7.4
101	Ë	och ₃	оснз		ic3H7	CO ₂ CH ₂ CO	H ₃ oil	60.09	6.4 9.0	7.4
108	3	OCH3	OCH3		1C3H7	CONHN (CH ₃) ₂	130.8	52.3 52.2	7.4	18.8

· 475	

5	(%) Calc	Found		7.4	7.3	20.7	19.9	10.8	10.5	11.1	11.1	7.7	7.0	
•		H		6.4	5.9	6.7	6.8	5.9	6.0	5.0	5.3	6.1	6.5	
10	Analysis	ပ		9.09	0.09	48.9	49.1	58.6	58.1	54.1	54.6	59.7	60.3	
15		Melting Point (°C)		49.0		178.1		0.86		172.6		oil		
20			OCH	, ^_					CH.	NO ₂	ı		СН2ОН	•
25	(continued)	R4		CO2CH2		CONHINH		CONH C	\8 \8	00	, 1	CO - CO		
30	Table 1	8 3		ic3H7		ic3H7		ic ₃ H ₇		ic, H,	•	1c3H7		
35				•••		•				~~		•••		
40		8 2		OCH ₃		OCH	•	OCH)	OCH	•	OCH		
45		R		OCH ₃		OCH		ОСН)	ОСН	1	OCH	•	
		<		E		E		픙		3	·	E		
50		xample		109		110		111	•	112		113		

50	60	45	40	35	30	20	15	10		5
				Table		(continued)		Analysís	*	(%) Calc
Example	æ	LA.	2 2	Ex.		R4	Melting Point (°C)	ပ	 #	Found
114	5	OCH ₃	ОСН3	ic ₃ H ₇		CO2-(O) HCOCCO-(N= OCH 3 H C CH N OCH 3	H ₃	58.0	5.8	9 8 6 8
115	E	OCH ₃	ОСН	tc	tc4H9	CO ₂ CH ₂ C≡CH	95.0	58.5	6 5 5	9.1
116	E	осн	OCH ₃	to	tc4H9	cosuc ₃ H ₇	76.0	54.9	7.3	8 8
117	ਝ	OCH ₃	осн3	ţĊ	tc4H9	$co_2N=C(CH_3)_2$	oil	55.4	7.1	12.9
118	3	CH ₃	E 3	nC	nC ₃ H ₇	Н000	79.6	59.2	7.3	12.8
							The state of the s			

Table 1 (continued) Analysis (*) Calc	50		45	40	35	30	25	15 20		10	5
Analysis (%) C R ² R ⁴ Point C H Fo CH ₃ COOH 65.2 60.5 7.4 CH ₃ CH ₂ C ₆ H ₅ COOH 168.0-168.5 60.5 7.4 CH ₃ CH ₂ C ₆ H ₅ CO ₂ CH ₃ 71.0-72.5 67.4 6.3 CH ₃ CO ₂ C ₂ H ₅ CO ₂ C ₂ H ₅ 0il 55.3 6.4 CH ₃ COOH COOH 231.2 41.2 5.3 CH ₃ CO ₂ C ₂ H ₅ COOH 206.0 66.2 5.9 CH ₃ CH ₂ C ₆ H ₅ COOH 206.0 66.2 5.9 CH ₃ CH ₂ C ₆ H ₅ COOH 206.0 66.2 5.9 CH ₃ CH ₂ C ₆ H ₅ COOH 206.0 66.2 5.9 CH ₃ CC ₂ C ₈ H ₅ COOH 206.0 66.2 5.9 CH ₃ CC ₄ H ₉ CO ₂ C ₂ H ₅ Oil 65.5 5.9 CH ₃ CC ₄ H ₉ CO ₂ C ₂ H ₅ Oil 65.5 5.9 CH ₃ CC ₆ C ₇ H ₉ COOH COOH	•					!					
CH CH ₃ CH ₃ CH ₃ CH ₃ CH ₄ CCOH COOH C5.2 60.5 7.5 CH CH ₃ CH ₃ CH ₃ CH ₂ C ₆ H ₅ CCOCH 168.0-168.5 60.5 7.5 CH CH ₃ CH ₃ CH ₂ C ₆ H ₅ CCO ₂ CH ₃ 71.0-72.5 67.1 6.3 CH CH ₃ CH ₃ CH ₃ COOH COOH 231.2 41.2 5.3 CH CH ₃ CH ₃ CH ₂ C ₆ H ₅ CO ₂ C ₂ H ₅ oil 55.2 6.4 CH CH ₃ CH ₃ CH ₃ COOH COOH 231.2 41.2 5.3 CH CH ₃ CH ₃ CH ₂ C ₆ H ₅ COO ₂ C ₂ H ₅ oil 65.5 5.9 CH CH ₃ CH ₃ CH ₃ CH ₂ C ₆ H ₅ COOH 200.0 66.2 5.9 CH CH ₃ CH ₃ CH ₃ CH ₂ C ₆ H ₅ COOH 200.0 66.2 5.9 CH CH ₃ CH ₃ CH ₃ CH ₂ C ₆ H ₅ COO ₂ C ₂ H ₅ oil 63.1 8.3 CH CH ₃ CH ₃ CH ₃ CH ₂ C ₆ H ₅ COO ₂ C ₂ H ₅ Oil 63.1 8.3					Tab	-1	tinued)				1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								•	Anaıysı	(4)	carc
CH ₃ nC ₄ H ₉ COOH 65.2 60.5 7.5 60.3 CH ₃ tC ₄ H ₉ COOH 168.0-168.5 60.5 7.5 67.3 CH ₂ C ₆ H ₅ CO ₂ C ₂ H ₉ 71.0-72.5 67.1 6.3 67.4 6.3 CH ₃ COOH COOH 231.2 41.2 5.3 CH ₃ CH ₂ C ₆ H ₅ COOH 231.2 41.2 5.3 CH ₂ C ₄ H ₅ COOH 20CO 66.2 5.9 67.3 CH ₂ C ₄ H ₅ COOH 20CO 66.2 5.9 65.5 CH ₃ CH ₂ C ₄ H ₉ CO ₂ C ₂ H ₅ oil 63.1 8.3 CH ₃ CH ₃ CC ₄ C ₄ H ₉ CO ₂ C ₂ H ₅ oil 63.1 8.3	Example	4	RJ		E _M		7	Point	ပ	Ħ	z
CH ₃ nC ₄ H ₉ COOH 65.2 60.5 7.4 CH ₃ tC ₄ H ₉ COOH 168.0-168.5 60.5 7.3 CH ₃ CH ₂ C ₆ H ₅ CO ₂ CH ₃ 71.0-72.5 67.1 6.3 CH ₃ COOH COOH 55.4 6.5 CH ₃ CH ₂ C ₆ H ₅ COOH 231.2 41.2 5.3 CH ₃ CH ₂ C ₆ H ₅ COOH 200H 231.2 41.2 5.3 CH ₃ CH ₂ C ₆ H ₅ COOH 200H 231.2 41.2 5.3 CH ₃ CH ₂ C ₆ H ₅ COOH 200H 231.2 41.2 5.3 CH ₃ CH ₂ C ₆ H ₅ COOH 206.0 66.2 5.9 CH ₃ CH ₂ C ₆ H ₅ COOH 206.0 66.2 5.9 CH ₃ CH ₂ C ₆ H ₅ COOH 206.0 66.2 5.9								(o.)			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	119	CH	Э,		້ວແ	H _o	СООН	65.2	60.5	7.5	11.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			า			.			60.5	7.4	11.8
CH ₃ $CH_2C_6H_5$ CO_2CH_3 $71.0-72.5$ 67.1 6.3 CH_3 $CO_2C_2H_5$ Oil 55.3 6.4 6.3 CH_3 $COOH$	120	æ	CHJ		tc	6H1	СООН	168.0-168.5	60.5	7.5	11.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1		•				59.9	7.3	11.4
CH ₃ $co_2c_2H_5$ $co_2c_2H_5$ oil 55.3 6.4 55.4 c.5 COOH COOH 231.2 41.2 5.3 (H ₃ CH ₂ Ch ₅ COOH 200H 206.0 66.2 5.9 CH ₃ $cH_2c_6H_5$ COOH 206.0 66.2 5.9 65.5 5.9 65.5 5.9 63.6 8.2	121	5	CH.		CH,	, H ₅	COCCH	71.0-72.5	67.1	6.3	8.6
CH ₃ CO ₂ C ₂ H ₅ CO ₂ C ₂ H ₅ oil 55.3 6.4 CH ₃ COOH COOH 231.2 41.2 5.3 (Dihydrate) CH ₃ CH ₂ C ₆ H ₅ COOH 206.0 66.2 5.9 CH ₃ CH ₂ C ₆ H ₅ COOH 206.0 66.2 5.9 CH ₃ CH ₂ C ₄ H ₉ CO ₂ C ₂ H ₅ oil 63.1 8.3			ז		3))	1		67.4	6.3	10.0
CH ₃ COOH COOH 231.2 41.2 5.3 (Dihydrate) 40.2 4.9 CO ₂ C ₂ H ₅ COOH 206.0 66.2 5.9 65.5 5.9 65.1 8.3 63.6 8.2	122	E	CH.		00	2,H5	CO2C2H5	oil	55.3	6.4	6.6
CH ₃ COOH COOH 231.2 41.2 5.3 (Dihydrate) CH ₃ CH ₂ C ₆ H ₅ COOH 206.0 66.2 5.9 65.5 5.9 CH ₃ nC ₄ H ₉ CO ₂ C ₂ H ₅ oil 63.1 8.3 63.6 8.2	•)		•) 1			55.4	6.5	7.6
CH ₂ CH ₂ C ₆ H ₅ COOH 206.0 66.2 5.9 CH ₃ nC ₄ H ₉ CO ₂ C ₂ H ₅ oil 63.1 8.3 63.6 8.2	123	#5	CHJ		200	H	C00H	231.2	41.2	5.3	10.7
			1			(Dihydra	ate)	-	40.2	4. 9	10.8
c_{43} $nc_{4}H_{9}$ $co_{2}c_{2}H_{5}$ oil 63.1 8.3 63.6 8.2	124	CH	CHJ		CH, C	, HS	C00H	206.0	66.2	ຜູ	10.3
CH CH_3 nC_4H_9 $CO_2C_2H_5$ oil 63.1 8.3 63.6			,		1	•			65.5	g. 6	10.3
63.6 8.2	125	뚱	GH,	ਜ਼	nc,	Н	COCCHE	0í1	63.1	8.3	10.5
			י	•	r				63.6	8.2	10.0

50		45	40	35	30	25	20	15	10	5	
					Table 1 (continued)	ıtinued)			Analysis	is (%)	Calc
Example	~	r _a	R2		£ ⁸⁴	R4		Melting Point (°C)	ပ	·	Found
126	픙	CH ₃	CH ₃		nC ₃ H ₇	CO2C2H5	e S	oil	61.9	0.0	11.1
127	5	OCH ₃	บี		1C3H7	CO ₂ CH ₃	m	oil	48.1	ທູ ຊ	10.2
128	Ë	сн осн ₃ ѕсн	SCH ₃		ic ₃ H ₇	CO2CH3	e	oil	50.3		8 9
129	#5	OCH ₃	сн осн ₃ N(сн ₃) ₂		ic3H7	co ₂ cH ₃	က	oil	55.1	7.4	14.8
130	ਲ	осн	NHCH ₃		ic ₃ H ₇	co ₂ cH ₃	m	100.5	53.5	7.1	15.6
131	5	осн3	CH ₃		ic3H7	CO ₂ CH ₃	m	oi1	56.7	7.1	11.0
132	5	сн осн3	ฮ		CH ₂ C ₆ H ₅	CO ₂ CH ₃	m	oil	55.8 N/A	4.7 N/A	8.7 A/N

5		Calc	Found	Z		e 8	8.4	8.4	8.4	12.7	12.9	13.3	13.2	9.3	9.4	8.1	8.4	8.0	N/A	
		(%)	• -•	Ħ		5.1	5.2	5.4	5.4	6.3	. 6 . 4	6.0	6.0	0.9	6.2	6.4	6.7	5.4	N/A	
		Analysis	٠	U		57.1	57.3	57.5	57.2	61.6	62.2	9.09	61.0	63.6	63.4	62.4	62.7	58.2	N/A	
15			Melting	Point	(o.)	oil		oil		0.06		80.0		oil		oil		oil		
20						ی)			-		مد		**		S. C.	,	## C)	
25	1 (continued)		•	ሚ 4		COCCHE	3	COCH	1	COCH	.	COCH	•	COCH	1	CO, C, H	1	CO, C, H,	3	
30	Table 1 (c			R ₃		CHJCEHE	0	CH, C, H,		СН,С,Н,)) 4	CH, C, H,)) 4	CH, C, H,)) 1	CH, C, H,		CH,C,HE)))	
35																				
40				R 2		5		SCH	7	N(CH,),	9	NHCH	1	CH,		OC, HE		ប		
45				R ₁		OCH,	า	OCH	1	OCH	า	ОСН	า	OCH	7	OCH	า	CH OC, HE	0 %	
						동		H		Ŧ		Ŧ		CH		5		H		
50 55				Example A		133 CH OCH,		134		135		136		137		138		139		

e	(%) Calc	Found	9.7	9.5	10.2	10.6	9.3	9.2	10.2	10.3	10.8	10.7	6.7	6.6	15.2	15.0
5		H	5.9	5.8	5.5	5.5	6.3	6.3	5.5	5.5	5.0	5.1	5.9	6.0	5.1	5.0
10	Analysis	ပ	49.9	49.8	48.1	47.8	51.6	51.9	48.1	48.5	46.1	46.5	49.9	50.3	43.6	43.8
15		Melting Point (°C)	oil		84.8		oil		100.4		133.3		66.1		oil	
20	·		ж ж	ı	#		2 H ₅	;	H (Ħ		# #		; <u>#</u>	
25	(continued)	R4	соснз	i .	СООН		CO2C2H5	I	СООН		H000		COCH)	COCCH	
30	Table 1 (R ³	iC4H9		iC_4H_9	1	nC_4H_9	1	nC_4H_9	1	ic3H7	•	tc4H9	1	ic3H7	
35	•															
40		R ²	ぴ		IJ		ぴ		こ		ひ		ប		ច	
45		R ₁	сн осн ₃	ı	och ₃	•	сн осн	ı	сн осн	•	ОСНЗ	•	OCH3	•	OCH3	
		⋖	8		E		3		EH.		3		E		Z	
50 55	••	Example	140		141		142		143		144		145		146	

5	(%) Calc	Found	14.6													
	Analysis (×		6.0							6.7	•	6.7	6.7	6.7	6.8
10	Anal	ပ	46.0	46.3	50.7	51.5	48.9	48.9	51.8	52.3	50.5	51.7	50.5	50.4	50.5	50.4
15	-	Melting Point (°C)	oil		oil		91.5		oil		oil		oil		68.0	
20	· 😭	₽ ₩	со2сн3		co ₂ cH ₃)	co ₂ CH ₃)	co, ch,)	co ₂ cH ₃)	co ₂ cH ₃)	co ₂ cH ₃	
25	(continued		8		8		8	•	8		8		8		8	
30	Table 1	E ^{R4}	ic3H7		ic3H7	1	ic3H7	•	iC,H,	•	nC ₄ H ₉	•	sC ₄ H ₉		tc4H9	
35	•				2		~									
40		R2	SCH ₃		$N(CH_3)$		NHCH		E E)	OCH	•	OCH		OCH	
45		R ₁	оснз		OCH ₃	•	OCH	•	ОСН)	OCH	•	OCH	•	OCH	
50			z		СН		Z		Z		z		Z		Z	
55		Example	147		148		149		150		151		152		153	

	Calc	Found	13.9	12.1	11.6	11.6	11.6	16.3	15.5
5	is (%)		5.6	6.1	6.6	6.4	6.6	ა. გ. დ.	6.3
10	Analysis	ပ	59.4	58.8	59.8	59.9	59.7	46.5	48.4
15		Melting Point (°C)	oil	84.9	59.5	60.2	76.5	115.8	82.9
20	ed)	4 ×	co ₂ cH ₃	co ₂ cH ₂ c ₆ H ₅	co2cH2c6H5	CO2CH2C6H5	co2cH2c6H5	СООН	СООН
25	(continu		O	2 00	CO	တိ	CO		
30	Table 1 (continued)	m ₃	CH ₂ C ₆ H ₅	ic ₃ H ₇	nC ₄ H ₉	ic4H9	tC4H9	ic3H7	nC4H9
35									
40		2 ²	CH ₃					OCH ₃	OCH ₃
45		R1	осн3	OCH ₃	осн	OCH ₃	OCH ₃	OCH ₃	осн3
50		<	Z	Z	Z	Z	Z	Z	Z
55		Example	154	155	156	157	158	159	160

	(%) Calc	Found	15.5	15.5	15.6
5			6.3	6.3	6.7
10	Analvsis	U	48.5	48.7	60.0
15		Melting Point (°C)	90.7	131.6	
20	led)	₽ ₩	СООН	СООН	co2cH2c6H5
25	(continued)				8
30	Table 1	e _×	iC4H9	tc4H9	ic ₃ H ₇
35					8
40		2 2	осн3	OCH ₃	N(CH ₃)
45		R ₁	осн3	OCH ₃	ОСНЗ
50		«	Z	Z	Z
55		Example	161	162	163

Example 164

5

15

20

30

35

40

45

Methyl 2-(4.6-dimethoxypyrimidin-2-yl)oxybut-2-enoate

A mixture of methyl 2-hydroxybut-3-enoate (0.80g, 6.9mmol), 4,6-dimethoxy-2-methane-sulphonylpyrimidine (1.50g, 6.9mmol) and potassium carbonate (1.04g, 7.6mmol) in methyl ethyl ketone (100ml) was refluxed for 12 hours. The reaction mixture was filtered and the filtrate evaporated in vacuo. Flash column chromatography (silica, 1.5% methanol in chloroform) of the residue gave the title compound: (1.37g, 78% yield by weight). Melting point: 71.0 ° C

Analysis (%):	Calc.	C 52.0	H 5.5	N 11.0
	Found	C 50.6	H 5.8	N 10.5

Examination of the product by nmr spectroscopic analysis confirms the structure as methyli 2-(4,6-dimethoxypyrimidin-2-yl)oxybut-2-enoate.

25 Examples 165 to 168

By methods analogous to those described in Example 164, further compounds of the general formula.

were prepared. Details are given in Table IA.

5	(%) Calc	Found	12.6	13.5	11.7	16.5
		Ħ	6.3	. B. B.	ຸທ ທຸ	5.5
10	Analysis	Ö	59.5	57.7	50.0	47.1
15 20		Melting Point (°C)	oil (boiling point 100-110°C at 2.0 mmHg)	N/A	122.0	oil
25	I.A	R10	CH ₃	CH ₃	CH ₃	CH ₃
30	Table	6 x	=	#	Ħ	æ
35		4	CO ₂ CH ₃	C00H	Н000	CO ₂ CH ₃
40 .		2 ₂	E 3	CH3	CH ₃	OCH ₃
45		-	CH ₃	CH ₃	OCH ₃	OCH ₃
50		4	8	5	¥	Z
5 5		Example	165	166	167	168

Example 169

5

20

Herbicidal Activity

To evaluate their herbicidal activity, compounds according to the invention were tested using as representative range of plants: maize. Zea mays (Mz); rice, Oryza sativa (R); barnyard grass, Echinochloa crusgalli (BG); oat, Avena sativa (O); linseed, Linum usitatissimum (L); mustard, Sinapsis alba (M); sugar beet, Beta vulgaris (SB) and soya bean, Glycine max (S).

The tests fall into two categories, pre-emergence and post-emergence. The pre-emergence tests involved spraying a liquid formulation of the compound onto the soil in which the seeds of the plant specied mentioned above had recently been sown. The post-emergence tests involved two types of test, viz., soil drench and foliar spray tests. In the soil drench tests the soil in which the seedling plants of the above species were growing was drenched with a liquid formulation containing a compound of the invention, and in the foliar spray tests the seedling plants were sprayed with such a formulation.

The soil used in the tests was a prepared horticultural loam.

The formulations used in the tests were prepared from solutions of the test compounds in acetone containing 0.4% by weight of an alkylphenol/ethylene oxide condensate available under the trade mark. TRITON X-155. These acetone solutions were diluted with water and the resulting formulations applied at dosage levels corresponding to 5 kg or 1 kg of active material per hectare in a volume equivalent to 600 litres per hectare in the soil spray and foliar spray test, and at a dosage of level equivalent to 10 kilograms of active material per hectare in a volume equivalent to approximately 3,000 litres per hectare in the soil drench tests.

In the pre-emergence tests untreated sown soil and in the post-emergence tests untreated soil bearing seedling plants were used as controls.

The herbicidal effects of the test compounds were assessed visually twelve days after spraying the foliage and the soil, and thirteen days after drenching the soil and were recorded on a 0-9 scale. A rating 0 indicates growth as untreated control, a rating 9 indicates death. An increase of 1 unit on the linear scale approximates to a 10% increase in the level of effect.

The results of the tests are set out in Table II below, in which the compounds are identified by reference to the preceding examples. Absence of a numeral in the Table indicates a zero rating; an asterisk indicates that no result was obtained.

40

45

			S		_			8	7	-	7	4	
			SB	7	7	9	7	80	&	∞	7	7	
5		ə	X	∞	3	∞	_	80	80	∞	S	8	9
		rgen	ᆲ			4		8	4	9		7	4
0		Pre-emergence	0	~	4	7	9	7	4	5		7	\$
		Pre	BG	8	2	∞	∞	&	∞	&	9	&	∞ :
			&	8	2	6	\$	&	9	∞	4	6	o
5			MZ					8	2	9		6	
			හ .	3		2		&	7	_	7	2	~
20			SB	7	2	5	1	6	œ	6	∞	2	<u>.</u>
		<u>></u>	X	80	7	8	7	6	6	6	∞	œ	∞
		spray	.			4		8	7	∞		7	
5		Foliar	0	5	ന	9	\$	5	2	2	çand)	_	.
		Fol	BG	8	9	∞	∞	8	œ	∞	7	∞	
20	Table		~	3		9	9	2	~	2	7	~	5
30		a)	M _Z					2		7	7	_	9
35		Dosage	kg/ha	5	g	5	-	5	-	2	-	2	
			S					∞		_		7	i.
		g/ha	SB	3		_		6		6		2	i L
10		10/kg/ha	X	_		∞		6		8		-	
			H	2		4		~		∞		9	
46		Soil drench	0	7		_		7		2		_	
45		Soil	BG	80		8		∞		&		8	
			~	~		₩		_		9		_	
50			X Z			3		80		_		-	
		Compound	No.										
55		Cong	Ex.	_		2		m		1 4		l w	

•	Soil drench 10, BG 0 L M 6 7 1 5	10/1 M	/kg/ha SB S	Dosage kg/ha 1	2 × × ×		(continued) Foliar s BG 0	ntinuec Foliar 7 7 7 6	1) Spray 5	χ _α χ	S o o	N 4 -	3 5 7	æ ø •	Pre BG	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	erge 7	.Bence L M. 1	SB 2	ဟ
			3	5 1						m	2 4 5									
~	8	∞	8 2	2 1	& \omega	7	8	∞ ∞		o	o &	3	7	6	8 7	න න		8 7	∞ ∞	2
	9 9	&	9 3	2 ~	~ ~	9	8 ~	o n	2	∞ ∞	o &	9 5	8 7	6 6	∞ , ∞	7	. 7	7	8 ~	2

	တ	7				
	SB	5 2	4	r 3		
5	e ∓	2 2	7			
	rgen L	4	2	-	. 4	
10	Pre-emergence BG O≿ L M	7 7	7 8			
	Pre- BG	∞ v	∞ v	1 2		
	~	æ ~vo	E 7			
15	2 X	7 2	9 7			
_	တ	S	7 1	2		4 m
20	SB	9 6	8 7	8 7	1	8 9
20	×	æ v9	8 ~	7	e –	2 4
	spray L	2 2	9 7			9 7
25 (pan		7	7		·	7
(continued)	Foliar BG O	8 9	2	-	·	. 9
	~	7	20 00			
30	W2	1	7 8			
Table	Dosage kg/ha		ا ا	1	5	2
35	Dosag kg/ha	5	2 1		••	. . –
·	တ					6
	l0/kg/ha M SB	_	S	9		9
40	10/k	_	m			6
		е				4
	dre 0	_	9			
4 5	Soil drench	9	_			2
	cz.	_	9			3
50	X	_	7			6
	D					
	Compound of Ex. No.					
55	EX.	=	121	121	14	51

		S			2 4	~	6 6 6
		SB			& &		8 4
5		9 ∑			2 4	7 7	7
		emergence O L M	·		6 4	2	2
10		- ege	*		9 9	m,	~ ~
		Pre. BG			∞ ∞	4	& A
		α ;			6	9 7	6 ~
15		X.			7 4	4 E	& &
		S		2	8 ~	3 74	& &
		SB	2	~ 2	ထတ	7 4	8 ~
20		Σ	S.	2		2 0	8 ~
		spray L			5	6	~ ~
25	(continued)				7 ~	~ ~	~ ~
	ontfi	Foliar BG O			& &	80 ~	∞ ~
		~			æ ~	3	6
30	le II	Z			~ ~	4 m	6 7
•	Table	Dosage kg/ha	2	5	2	2	~ →
35					4		m
		/ha SB			_	4	6
40		0/kg M			2	4	6
		ich 1			5	7	_
		dren			7	_	_
45		Soil drench 10/kg/ha BG O L M SB			∞	9	∞
		S &			&	9	_
50		X Z			7	9	∞
50							
		Compound of Ex. No.					
55		Con Ex.	18	119	20	21	22

			ဟ	1 2	Î		e -	
			SB	S		~	& ~	*
5		e	E	7 6	2 3		7 ~	
		rgen	-1	9 7			3 6	2
10		Pre-emergence	0	. 7	m 74	m 8	7	
		Pre	BG	7	7	2	ထေထ	3
			~	2	7	m	* *	m
15			Z W	v. 8			7 4	8
			S	2		2 3	7 7	5
			SB	- 9	2	8 4	8 ~	7 7
20			Z	. 80 4	3	7 7	6 6	7
		spray	_	7	2		8 ~	
25	(pen	ar s	' o	7	E 4	2 3	8 ~	2
	(continued)	Foliar	BG	2			ω ω	2
•	(00)		~	~ 5			2 9	
30	Ħ		Mz	2		2		2
	Table	ge					8 9	
	E-41	Dosage	kg/ha	2	2	5	2	2 1
35			တ				7	7
		/ha	SB	2	7	4	c	80
40		0/kg	E	е		2	&	7
		ch 1	H	S			7	2
		dren	0	9	7		&	2
45		Soil drench 10/kg/ha	BG				&	7
•		Š	≃	3			· · · · · · · · · · · · · · · · · · ·	9
			MZ					
50		_	نع	7			∞	7
		Compound	No.					
55		Comp	EX.	54	25	26	27	28

		တ	m	7 -	m	8 ~	2
		SB	2 2	8 ~	ا د د	8 ~	6 7
5		e X	2	2	~ 5		v w
		emergence 0 L M	7		9 7	~ 6	7 6
10		-еще: 0	*	m	4	9 4	6 -
		Pre BG	& &	88 ~	7	ov ∞	~ 9
		∞.	9 8	* 4.	9	& &	2 6
15		XZ	3	1	9 7	5	4 W
		S	2	2	4 4	5 6	3 6
20		SS SS	& &	8 ~	6	6 7	8 9
20		> =	& &	o &	2 9	∞ ∞	9
		spray	~ 2	7	2 4	€ 4	9 9
25	(continued)	Foliar BG 0	2	2 2	7 7	4 6	2 1
	ontí	F0.1	& &	~ ~	6	9	2 0
		~		S E	4 ~	9 7	e 2
30	e 11	Æ	7 -1	5 2	e =	2 6	
•	Table	Dosage kg/ha	5	2	2 4	2	5 -1
35		တ	4	5	*	v	m
		/kg/ha SB	8	1	*	7	9
40		10/kg	7	80	*	∞	8
		Ch 1	6	2	*	2	9
		dren 0	6	5	*	9	7
45		Soil drench	∞	∞	*	7	9
		<i>∞</i>	4	4	*	7	9
50		ZZ	9	_	*	1	9
50							
55		Compound of Ex. No.	29	98	31	32	8

			တ	1	9	7	7			7	7		
			SB	_	7	∞	9			-	7	۳	
5		မ	Z .	~	~	9	\$			~	7	6	•••
		rgen	-1	7	7	2				7	m	~	
10		Pre-emergence	0	۳	-	7				~	4	2	2
		Pre	BG	80	œ	∞	7	4		∞	7	7	4
			œ	7	9	6	6	8	8	æ	9	6	7
15			MZ	9	9	8	4			7	S	2	7
			so .	9	9	9	S	4		-	7	3	-
			SB	8	œ	6	7	2	2	∞	_	7	S
20			Σ	8	∞	60	œ	7	, i	; •	9	7	9
		spray	1	4	2	2		3		_	2	3	
25	ued)		,	5	m	-	7	7	æ	9	% .	7	3
	(continued)	Foliar	BG	9	S	_	7	9		∞	7	∞	2
	(00)		~	9	2	9	2	4	 1	2		4	
30			MZ							5	_	2	
	Table	90		5	7	9	9	2		"	—		-
	FI	Dosage	kg/ha	5		5		2	-	5	-	5	
<i>35</i>			S	4		7				9			
		ha	SB									7	
		0/kg/ha	S	8		80		m		8			
40		10 u	Σ	8		8		7		6		7	
		Soil drench 1	1	4		9				1			
45		1 dr	0	9		7				7		5	
		Sof	BG	_		_		2		8		9	
			~	_		4		m		_		5	
50			¥	~		_		6		-		2	
		pui											
		Compound	No.										
55		3	EX.	34		35		36		37		38	

		SB S		3 3			2
5		6.1					
		uce W		5		3 6	7
		emergence O L M					
10		•		7	1	9 . 6	7 4
	}	Pre BG		9 7		2	2
		œ		7 6			& 9
15		K Z		7			
		တ		2 1		m	6
20		SB	7	2		e 1	4
20		Σ	7	& vo	2 6	8 ~	8 ~
		spray L		E 4		-	-
25	ued)			7 5		7	r 3
	(continued)	Foliar BG 0.		7 4		∞ 4	ထေးက
	(00)	œ		3		2 -	~ 2
30	II	H 2		1			
	Table						
	€-1	Dosage kg/ha	5	5	5	5 1	2
35		S					
			4			-	-
40		/kg		8		7	∞
		ch 10,		2		-	
		renc				7	7
45		Soil drench 10 BG O L M		7		7	1
		1		9			7
		æ		N		9	
50		X Z		7			
		ound ound No.					
55		Compound of Ex. No.	39	40	45	43	777

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

Pre-emergence BG 0 L M 8 7 7 8 7 7 9 7 7 7 9 7 7 7 8 7 6 7	L 4 4 7 6	2-eme. 7 7 7	8 8 8 8 8 8 8 8		x 0 0 0 0	A 8 6 8 7	s / 2	8 8 8 ~ L	> ∞ ∞ ∞ ∞	spray L L 1 3 3	1	Foliar BG 0 8 7 8 6 7 7	8 7 9 7 9	 	6 7 Z Z Z Z	Dosage kg/ha 1 5 5	S /	/kg/ha SB 9	8 8 × 6	-	renci	7 O G		Soil drench BG 0 L 8 7 7 8 7 7	Soil 8 7 8 7 8 7
	7 ~ 4 ~ 9	0 8 7 7				X 8 9 8 7		8 8 8 7 1	x	7 7 6 1	0 ~ 9 ~ ~				j <u> </u>	kg/hi	, , , , , , , , , , , , , , , , , , ,	SB 6	E & &				l l		සි
	4 4 7	8 7 7			6 6	8 8	5 5	8 8 8 7	& & &	1 1 1	7 7 7	80 80 %		7 0 7	6 6	5 1		6	& &				7		ω
	4 ~ 9	, ,			6 6 6	8 7	5 7 5	8 8 ~ 1	∞ ∞ ∞	- 6 -	6 7	8 8 6			9 7	1 5	_	6	₩				7		&
	6	7			6 6	8 7	5	8 ~	∞ ∞	1 3	7	8 7	~ 59	_ ~ •	7	5 -1	~	6	&				7		æ
2 9	9	~			6	7	2	-	∞	-	7	7	5	•	9	<u>~</u>									
		,						,																	
7		9			&	4	ന	_	7		7	8	7	7	7	5		8	∞		9		7	8 7	
9		7	7		^			4	Ś		က	S	2		7	-	·								
2 1	7	9	8		6	S		2	7		9	&	9		3	5		æ	∞	9			7	8 7	
1		S.	80		∞	1		5	1		4	9	۲s		1	~		į							
5 7	2	7	6	_	6	9	7	80	∞	9	7		9		9	2	4	7	œ	2		_		&	
2 1							•	•	c			r	7		~	~									

. .

		S	2	7		∞ ∞	∞ ∞
		SB	7 1	8 ~		P 9	∞ ∞
5		S Z	7 7	L L		- 9	~ ~
		-emergence	2	ν α		∞ 4	o
10		- eme	7 4	~ ~		æ ~	& &
,,		Pre BG	∞ 4	6 6.		∞ ∞	6 6
		æ	8 ~	9 9		6 8	6 6
15		MZ	е н н	9 7		7 5	6 6
		တ	4 H	2	4	5	& &
•		SB	2 4	8 ~	e ⊢	& v	∞ ∞
20		> ≖	& /	∞ ∞	9 6	& r	6 8
		spray L	က	4	7	7	7
25	nued		2	2	m	9 4	ω ω
	(continued)	Foliar BG 0	8 ~	& &	9 %	∞ ∞	ω ω
		~	7	9 4		5	L L
30	le II	ΜZ		2 0	4 -	5	L L
35	Table	Dosage kg/ha	2	2 1	2 4	2 1	25
	,	လ	е	7		4	_
		kg/ha SB	7	∞	4	7	6
40		10/ M	∞	∞	7	1	6
		drench 10/1 0 L M	6	in .	m	9	∞
45		1 dr	_	_	7	_	∞
		Sof1 BG	_	∞	4	∞	0
		~	v	-	2	-	∞ .
50		X Z	4	_	m	_	∞
55		Compound of Ex. No.					
-		CO EX EX	20	51	52	l &	24

		SB S	8 8	8 8 7 7	& &	& &	8 8
		ω Σ	9 9	7	~ ~	& &	
		Pre-emergence BC O L M	9 4	6 7	8 ~	∞ ∞	6 &
)		emen 0	6.	8 7	60 	& &	∞ ∞
		Pre. BG	o. ∞	0 0	o ∞	∞ ∞	6 6
		α	0 80	6 6	6 8	6.6	6 6
		ΜZ	æ •9	6 6	8 ~	6 &	6 6
		S	& ~	∞ ∞	2	∞ ∞	∞ ∞
		SB	∞ ∞	80 ~	8 ~	6 6	8 ~
1		> E	6 ~	8 ~	7	6 6	0 8
		spray	5	~ ~	7	~ ~	~ ~
;	(continued)	Foliar BG O	9	6	7 9	8 ~	8 ~
	onti	Fol	æ ~	∞ ∞	∞ ∞	∞ ∞	6 8
	11 (c	~	9 4	2 4	5 4	~ ~	7
)		2	9 50	2	5	∞ ∞	~ ~
;	Table	Dosage kg/ha	5	2	2 1	5	2 -
		S	~	∞	_	∞	∞
		g/ha SB	0	∞	∞	∞	∞ .
)		10/k	∞	∞	∞	6	∞
		Soil drench 10/kg/ha BG O L M SB	7	7	_	∞	~
•		dre	_	7	_	∞	∞
5		Soil BG	∞	∞	∞	9	∞
		æ	∞	_	7	∞	7
o		¥Z	_	_	_	6	∞
		Compound of Ex. No.					
5		Com Ex.	55	26	57	28	29

1									Table	le II		(continued)	nued	~								,		
Compound		6																						
			Soil drench 10/kg/ha	dre	inch	10/k	g/ha		Dosage			Fol	Foliar	spray	^					Pre-	emer	emergenc	e e	
	Mz	~	98	0	,,	x	SB	S	kg/ha	¥2,	œ	BG	0		X	SB	တ	X	∝	BG	0	-1	X	SB
	7	-	∞	-	7	∞	80	~	5	~	9	_	9	_	8	∞	7	8	6	6	7	8	80	8
									-	7	9	7	9	7	∞	7	7	∞	6	6	7	∞	∞	∞
	7	_	80	_	9	8	∞	٠	5	_	9	8	80	7	∞	80	7	6	6	6	7	6	_	
									-	9	9	9	9	7	∞	7	7	∞	6	∞	7	7	7	~
	9	9	∞	7	9	8	∞	80	\$	7	9	_	7	_	_	~	-	/	6	6	8	_	7	1
									-	m	4	-	7	9	_	9	7	9	6	∞	œ	5	7	7
	9	9	_	/		2			5	2	2	&	7	9	9	3	3	5	∞	9	2		4	2
									7	က		S	<u>.</u>		4	-		2	2	m	7		m	
	~	9	_	_	~	7	_	2	2	Ġ	2	~	9	9	_	8	80	8	6	& ,	7	7	_	80
									,	7	4	7	9	2	7	9	2	S	∞	~	9	m	9	9

•	1	ဟ		∞ ∞	∞ ∞	ထ ထ	
_		SS .	B 11	∞ ∞	∞ ∞	∞ ∞	5 6
5		8 ∑	9	7	9 9	7	7
		irgen	3	6 6	7	6 V9	
10		Pre-emergence BG O L M	5	ထ ထ	7	, ,	
		Pre BG	8 /	9 9	0 0	6	
		≃	6 6	9 9	6 6	6	1
15		X X	80 20	9 9	∞ v	9	
		S	9 7	~ ~	∞ ∞	∞ ∞	•
20 .		SS .	2 4	8 ~	∞ ∞	7	7 -
		λ M	8 ~	00	& &	∞ ∞	e
	<u>~</u>	spray L	2	~ ~	7 7	7	
25	(continued)	Foliar BG O	0 0	- 9	9 9	9 9	
	ont	Fo]	~ ~	∞ ∞	8 49	8 ~	7
30) []	~	9 9	5 6	9 4	o v	
	Table	e X	~ 5	~ ~	7	о го	
	Tal	Dosage kg/ha	~	2 4	2 1	2	2 1
35							
		8 8 8		&	9	9	
		0/kg/ha M SB	4	&	80	6	6
40		10/ M	^	∞	∞	∞	
		Soil drench l	4	∞	^	^	
45		dr O	7	7	L	^	
-10		So 11	7	_	80	80	
		~	9	_	9	9	
50		¥	_	_	7	~	
		ind .					
		Compound of Ex. No.					
55		Co Ex	67	89	69	1 2	12

										1	(continued)	Lnued	<u>.</u>									
Compound			3011	Soil drench	ch 16	10/kg/ha	ha	Dosage	ge e		Fo.]	Foliar	spray	^					Pre-	emer	Pre-emergence	}
Ex. No.	¥	~	BG	0		57 ≭	SBS	kg/ha	WZ WZ	8 2	ည္ထ	' 0	⊢ 1	×	SB	S	¥	~	8 C	•	J R	SB
72							m	5						2	2							
								1							7							
73	2	2	7	7		9	5	5	2	9	9	7	7	7	9	5	2	3	2	7	2 3	6
									-	m	m	9		4	4	co.	,- 4		:	-		_
74						9	2	2			2		7	က	6	7						7
								 i						1								4
75	S	_	_	_	2	2	7	5	2	9	7	7	5	7	9	3	9	&	7	5	2 6	7
								#	7	4	7	9	m	~	4	-4	4	7	9	4	4	
76	7	9	5	7		9	3 1	5	5	7	7	9	2	~	7	4	2	6	7	7	3 5	7
								7	7	m	9	9	က	9	4	-	m	9	4	S	4	

•	S	~ ~	8 ~	& &	& v	~ ~
	SB	~	∞ ∞	∞ ∞	7	∞ ∞
5	e Z	S S	~ ~	∞ ∞	~ ~	~ ~
	-emergence		6 ~	6 8	∞ ∞	∞ ∞
10	eme O	7 7	6 &	Ф 6	8 ~	& &
	Pre BG	e e	00	6 6	ω ω	6 6
	e c.	7	6 6	6 6	σ ∞	6 6
15	W Z	1	ov ∞	0 0	8 7	6 &
	ဟ		∞ ∞	~ ~	2 0	8 ~
	SB	7 7	& &	& &	8 ~	∞ ∞
20	> =	4	∞ ∞	8 ~	∞ ∞	& &
	spray L	m	8 ~	7 7	7 7	& &
25 panu	1		& &	& &	6	~ ~
continued)	Foliar BG 0		∞ ∞	8 ~	7	8 ~
Ö H	c c		7	7	9 5	9 9
30	Z W		8 7	9	3 8	7 /
Table	Dosage kg/ha	5	5	2	5	5
35	چ		:			
	တ		7	7	7	7
	/kg/ha		œ	∞	7	&
40	7		æ	6	∞	&
	Soil drench		7	6	7	7
	o dr		80	∞	7	æ
45	Soil BG	·	∞	6	₩.	∞
	≃		,	7	7	7
50	Z Z		∞	∞	7	7
	Compound of Ex. No.					
55	Comp Ex.	11	78	79	80	18

		v.		1	∞	_			7		2	- 1
5		S. S.	80	~	80	7			&	7	8	2
		ခ် 🗡	_	_	9	9	2		7	9	9	9
	;	rger	· ∞	9	9	9			9	7	9	2
10		Pre-emergence	-	7	~	_			7		9	4
		Pre	6	6	6	6			æ	9	∞	9
		~	6	6	6	6					80	د .
15		<u>\$</u>	6	9	8	∞					7	е
		y.	, ~	7	80	~	2		7	9	9	e
20		S.	8	∞	80	7	6		^	7	7	9
		∑	:	7	80	7	2	m	8	9	7	8
		spray	, ~	7	~	7			m	-	7	1
25	(continued)	Foliar	,	_	80	7	7	-	က	-	~	2
	onti	Fol	6	7	∞	7			_	9	~	ν
30		~	و :	9	9	9			4	~	7	9
00	1e 11	₹	ω	9	8	7	7				9	6
35	Table	Dosage kg/hg	5		5	-	5	-	\$	-	\$	
			, ~		9				۳		6	
		0/kg/ha	و ا		~				8		9	
40		10/k	: ∞	•	_		4		8		7	
		nch	~		9				5		m	
45		dre	, ~		7				4		~	
40		Soil drench 1	8 ∞		∞				∞		~	Ą
		۵	. ~		~				و		_	
50		å	5 C		7				7		2	
		Compound										
55		8	82	j	83		78		85		86	

			တ					1		-	^	-	~
_			SB	7				S	7	∞	∞	∞	80
5		0	Σ.	7	-			9	m	7	~	7	~
		-emergence	H	3				2		~	9	5	∞
10		еве						4	8	7	7	&	-
		Pre.	BG	7				9	S	6	6	6	6
			~	&	7			5	m	6	∞	6	6
15			M Z	2				3	-	6	∞	6	5
			S	9	m			3	8	∞	&	&	80
20			SB	9	7	5	က	_	. د	&	∞	60	&
			Σ	9	7	9	9	7	9	∞	~	∞	∞
		spray	L)	و	7	4	m	~	S	7	7	_	-
25	(continued)		' 0	9	7	8	8	9	S	~	7	∞	- !
	onti	Foliar	ည္ထ	7	S	2	peri	7	9	∞	7	∞	œ ;
20			~	9	2			9	\$	~	9	-	• ·
30	le II		2	9	2			m	7	_	7	_	_
	Table	Dosage	kg/ha	2	-	5	-	5	1	2	-	2	
35		<u> </u>	**										
		cs	တ					2		_		1	į
		10/kg/ha	SB	2				2		80		∞	
40 °			Σ	2				9		8		8	
		ench	니	7				6		_		1	
45		dr	0	5				7		7		7	
		Soil drench	BG	2				m		000		∞	
			~	7				9		~		_	
50			M2	7				m		7		7	
		pur	•						•				
EE		Compound	ć. No.	1		6		6		0		_	
55		1 8	EX.	87		88		89		1 8		91	

EP 0 400 74	1 A1	

7	
×	
nue	
= =	
두	

2.3	
_ =	
O	
con	
<u> </u>	
) 1:	
) 11	
) 11	
ð	
ð	
1e	
1e	
ð	

Soil drench 10/kg/ha																									
R BG O L M SB S kg/ha Mz R BG O L M SB S Mz R BG O L M SB S R BG O L M SB S R			Sof	P 11	lrench	Ä	/kg/h	ø	Dosage			Fol	far	spra	<u>></u>					Pre	•	rgen	ce		
7 8 7 6 7 7 8 8 8 8 7 6 7 7 8 9 9 9	54					*			kg/ha	MZ	~	B C		H	Σ	SB	S	Mz	œ	B C	0	ہے	Σ	SB	S
7 8 8 7 7 7 7 7 7 7 7 7 7 7 7 8 9	1 _					_	8	7	5	7	7	8	_	9	_	~	∞	8	*	8	_	9	7	_	۳ ا
8 9 9									1	_	7	7	7	9	7	7	∞	9	*	~	9	7	~	7	က
8 8 8 7 8 8 6 5 7 8 8 8 8 8 8 8 9 9 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 ~					8		7	5	7	9	80	9	_	80	80	∞	∞	6	6	~	∞	~	∞	7
8 8 8 7 8 8 6 5 7 8 9 8 8 8 8 9 9 9 8 8 8 8 8 8 8 8 8 8									-	4	9	7	9	7	7	∞	cc	∞ .	6	6	9	9	7	7	4
8 8 9 7 8 9 7 5 7 8 8 8 7 8 9 9 9 8 8 1 7 7 8 8 8 9 9 9 7 7 7 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1 00	1				8		9		7	&	6	∞	80	&	&	∞	6	6	6	∞	80	7	7	7
8 8 9 7 8 9 7 5 7 8 8 8 7 8 9 9 9 7 7 7 7 8 8 8 8 8 8 8									-	_	∞	&	7	7	∞ .	∞ -	∞	œ	6	6 -	&	8	7	7	7
8 8 8 8 8 8 8 9 7 8 8 8 8 8 8 8 8 8 8 8 9 7 1 7 7 8 7 7 8 8 8 8 9 9 7	∞					8		7	5	7	8	æ	æ	7	8	6	6	6	6	6	1	7	8	1	4
8 8 8 8 8 8 8 7 7 8 9 9 8 7 7 8 8 8 9 9 7										7	∞	∞	œ	7	∞	∞	~	œ	6	9	7	7	~	1	m
6 8 8 8 6 6	∞	Ì						7	5	7	∞	6	7	7	∞	∞	80	∞	6	0	∞	8	_	~	-
									-	1	7	∞	7	7	7	∞	œ	œ	6	0	7	_	7	7	^

400 741 A1	
700 /71 /71	

10
15
20
25
30
35
40
45
50

		S	2 4	7 7	*	7	
		SB	7	S C	2 4	r 3	0
		nce M	7	7	3 6	7 7	- 9
		irgei L	~ ~	2 3	2 2	7 1	~ ~
		Pre-emergence BG O L M	8 ~	9 9	2	2	0
		Pre	& &	∞ ∞	& &	∞ ∞	6 ~
		2	∞ ∞	8 ~	∞ ∞	8 7	6 8
		X	5	2 3	7 7	7 7	∞ ∞
		တ	∞ ∞	7	7	5	∞ ∞
-	-	SB	6	& &	7 9	∞ ∞	0 00
		> E	8 ~	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2 9	~ ~	8 ~
		spray L	~ ~	~ ~	~ ~	6	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	nued)		8 7	7	7	~ ~	6
	(continued)	Foliar BG O	ထ ထ	∞ ∞	7 7	∞ ∞	∞ ∞
	1.2	e 4	8 ~	& &	8 ~	& \omega	~ ~
	e II	W Z	8 9	~ ~	7	2 2	2 9
	Table	Dosage kg/ha	2 4	5	5	5	2 1
		S	_	∞	_	&	∞
		/kg/ha SB	∞	∞	_	80	&
		10/kg M	~	7	~	~	_
		ich 1 L	9	_	5	4	_
		dren 0	_	7	9	9	9
5		Soil drench 10 BG O L M	∞	&	7	_	∞
		võ ∝	∞	∞	_	7	_
		2	&	 	_	9	_
9							
		Compound of Ex. No.					
5		Comp.	97	86	66	100	101

									Table) II	(continued)	nued:	~										
1										<u>.</u>														
			Soil drench	dre	nch	10/k	/kg/ha		Dosage	41		Fo]	Foliar	spray	>					Pre-	ешет	-emergence	9	
	MZ	~	BG	0	-1	Σ	SB	S	kg/ha	MZ	~	BG	0	H	Z	SB	S	¥2	~	BG	0	1	×	SB
_	7	7	80	_	_	7	∞	_	\$	-	_	œ	_	7	80	&	80	&	6	6	7	∞	_	1
									-	_	_	∞	9	7	7	∞	∞	7	6	œ	7	S	9	9
_	_	7	7	9	9	7	80	_	5	~	_	8	7	9	8	∞	80	₩	6	6	_	_	7	80
		•							~	7	7	7	_	9	9	∞	_	∞	6	6	7	7	7	7
	7	7	8	7	9	_	∞	80	2	-	_	∞	~	9	80	∞	80	8	6	6	7	9	7	∞
									—		m	-	9	9	7	&	∞	∞	6	6	7	4	7	∞
•	2	_	_	9	4	9	9	9	5	7	7	∞	_	9	_	∞	 	4	7	7	4	7	5	4
										7	7	∞	7	9	7	7	7	m	7	7	က	60	7	က
j	9	7	∞	7	9	_	_	7	2	80	_	80	7	9	_	8	8	7	&	∞	7	7	7	9
									-	1	~	∞	7	9	7	œ	7	7	∞	7	7	~	S.	9

 $\boldsymbol{\Box}$

S S SB 5 ¥ Pre-emergence L 0 10 BG 껕 9 9 9 15 HZ 8 8 ∞ S ∞ 8 ∞ 20 E 8 spray (continued) Foliar 25 0 BG ∞ 4 Ħ 30 Table

35

40

45

50

55

9 $\boldsymbol{\omega}$ ¥ す 8 Dosage kg/ha 7 œ S 9 Soil drench 10/kg/ha SB \mathbf{c} ∞ 7 Z 4 _ _ 9 9 9 0 9 _ \mathbf{c} ∞ BG ∞ 8 S œ ∞ ∞ S ∝ ∞ HZ ~ _ Compound Ex. No. of 112 108 109 111 107

	1	တ	Ĩ	4	2	4 4	9 5
		SB	2 9	7	æ •	S S	∞ ∞
.		9 ≭	9 9	n m	9 9	9 .9	9
	,	-emergence	E L	2	8 ~	5	8 7
10		-еще О	2	5 2	r 9	5	6
		Pre BG	∞ ∞	9 4	∞ ∞	∞ ∞	တ. ဆ
		~	∞ v	9 9	& \omega	5 5	66
15		Z Z	6 ~	9 7	~ 9	ν v	6
		. 🕠	~ ~	2	~ ~	v 4	& &
20		SB	6 &	~ ~	& &	& &	6 &
		×	∞ ∞	6	& &	∞ ∞	ထ ထ
	<u></u>	spray L l	6	9 9	9 9	9 9	9 9
25	(continued)	Foliar BG 0.	7	9 9		9 9	9 9
	onti	Fo]	∞ ∞	~ ~	7	7	8 ~
30) 	~	7	20 00	9		7
	Table	· X	7	9 5	7 5	4 6	7
	Tal	Dosage kg/ha	5 -	2 -1	5	2	2
35							&
		ha B S		7	∞	9	œ
40		/kg/ha	60	∞	60		&
40		h 10, M	&	_	∞	9	9
•		Soil drench 10/kg/ha BG O L M SB	7	9	9	2	&
45		oil di BG 0	7		7	9 9	6
			∞		∞ .		_
		~ N	∞		7	4	
50		X	_	9	7	4	
		ound f No.					
55		Compound of Ex. No.	113	114	115	116	117

		SBS	8 2	7	8 2	7	8	7 7	-
	nce	X	7	7	_	7	7	7	,
	Pre-emergence		_	7	7	7	6	∞	
	B - 6	0	_	7	80	7	∞	7	•
	Pr	BG	6	∞	6	6	6	6	1
		œ	6	6	6	6	6	0	٠
		MZ	~	4	9	-	6	7	4
		%	9	m	9	က	_	9	*
		SB	ω	7	_	9	∞	∞	7
	<u>></u>	×	6	œ	6	8	6	œ	o
	spray		2		5	m	7	9	,
nued	Foliar		9	9	7	9	7	7	~
(continued)	Fol	BG	∞	7	6	&	6	6	6
		~	~	9	7	9	_	_	
Table II		MZ	4		7		7	7	
Tab	Dosage	kg/ha	5	~	5	~	5	-	<u>ر</u>
		Ø	9		9		7		
	10/kg/ha	SB	7		∞		80		7
	10/1	×	8		6		∞		_
	nch	H	4		9		80		
	dre	0	7		∞		8		
•	Soil drench	BG	80		∞		6		
		œ	~		-		7		
		X Z	~		1		8		
	Compound	No.							
	Com	EX.	118		119		120		15

		8			m	6 2	
5		SB			7	9 %	80
		nce M		9 7	~ ~	~ ~	~ 9
		emergence O L M			4	2	L 4
10		•		2	9 9	6	~ 50
		Pre BG			0 80	ov ∞	8 r
		∞.			0 80	8 ~	6 8
15		X X			4 6	4	~ 4
•		S	r 4	-	7	9 7	9
20		SB	2 6	7 7	8 ~	∞ ∿	5 2
		> \(\mathbf{\mathbf{E}}\)	9 7	8 ~	∞ ∞	6	9
		spray L	2		7 11	9 %	~ 9
25	nued		4		9	2 0	9 4
	(continued)	Foliar BG 0	۵ م	B 4	8 ~	& &	7
20		∞	4	2	6	7	9 7
30	le II	X	4	B 4	7	7 4	~ 4
	Table	Dosage kg/ha	2 -1	2	1	2 -	2 -
35		Dos Kg					
		S			7	7	7
	·	/kg/ha	7	8	9	တ	∞
40		10/k	м	ω	∞	∞	_
		drench 0 L			7	7	∞
AE		dre			7	_	_
45		Soil BG		m .	∞	∞	_
		~.		7	∞	∞	_
50		Z X			_	7	7
		Compound of Ex. No.					
55		Com Ex.	123	124	125	126	127

		တ					
		SB	9 7	4 H	e	4	4 -
		⊕ ∑	r 4	2 %	9	7	7
		rgen	9 7	4	2	7	m
		Pre-emergence BG O L M	9 4	9	5	7	2 -
		Pre BG	9 7	9 7	1	8 9	S -
		· ~	9 7	7 6	9	6 8	4
		Z Z	4	7	7	7	7
		တ	4 60	4	4 -	7	9
		SB	1 3	2 2	7	S E	2
	·	> E	•	9 8	3 6	∞ v	8 7
		spray L l	2 2	0 4	4	6	5
	(continued)	Foliar BG O	2	7	4	٦ - ٣	9 6
	onti	Fo1 BG	2	2	7	တ က	2
) <u>II</u>	≃.				5 2	6 -
		Z Z		-		4 -	2
	Table	Dosage kg/ha	2	2 1	5	2 -	5
		တ				7	
		g/ha SB	2	2	6	4	m
		10/k	_	_	9	_	~
		nch	S	2	4	7	ν,
		dre	S	S	4	_	2
;		Soil drench 10/kg/ha BG O L M SB	9	S	2	∞	
		~	٠	S.	S .	_	
)		Z Z				_	
		Compound of Ex. No.	60	6	0	-	12
5		Con Ex.	128	129	130	151	132

5			M SB S	SB 2	SB 2 2	SB 2 2 8B	SB 2 2 8 9 ~ ~
		T clenc	7		1	7	2
10		-emergence	7		9 4	2 0	4 m
		Pre BG	8 ~		∞ ∞	æ ~	7
		≃	သ ဇ		8 9	- 9	2
15		Z	e 6		m	3 6	2
		တ	9 6	4	2 4	9 4	3
20		SB	80 50	4	8 ~	~ 9	ω ν
		B.Y.	8 9	۵ م	9 7	8 ~	∞ ∞
	q	spray L	9 6		4 m	4 -	2
25	(continued)	Foliar BG Ö	20 00	€ 4	0 v	6	2 3
	cont	of DB	& \omega	2	7	8 ~	9 7
0) [[≃	4		9 4	9 4	4 6
-	Table	8) X	m		4	4	4 4
5	Tal	Dosage kg/ha	5	2 4	2 -1	2	2 1
		တ		*	7	7	м
		/kg/ha SB	7	*	_	∞	7
o		10/k	4	*	_	∞	&
		Soil drench 10 BG O L M	8	*		-	7
e		dre o	т	*	7	_	2
5		Soil BG	7	*	∞	_	7
		≈	4	*	_	~	7
50		Z Z	m	*	٠	9	4
55		Compound of Ex. No.	138	139	140	141	142

Compound of Soil drench lo/kg/ha Dosage Foliar spray Fre-emergence Ex. No. Mz R BG O L H SB S kg/ha Mz R BG O L H SB S Mz R BG O L H SB S 143 6 7 7 5 3 8 7 4 5 4 6 6 6 5 8 8 6 2 7 7 6 2 7 7 144 7 7 8 6 5 5 7 8 7 6 8 8 6 7 9 9 7 6 7 7 3 144 7 7 8 7 7 8 6 5 5 7 8 7 6 8 8 6 7 9 9 7 6 7 7 3 145 5 6 7 6 4 7 7 4 5 6 7 7 6 7 7 5 6 8 8 7 4 7 6 2 146 3 7 7 7 8 6 5 5 7 8 7 6 7 7 5 6 8 8 7 4 7 6 7 147 3 6 6 3 7 7 5 8 7 6 7 7 6 7 7 5 6 8 8 7 4 7 6 7 148 3 7 8 7 8 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 149 3 8 8 7 4 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 140 3 8 8 7 7 7 8 7 7 7 8 7 7 7 7 7 7 7 7	55	50			45		40			35		30		25		20			15		10		•	5		
Soll drench 10/kg/ha Bosage										Tal			conti	nued												
No. Hz R BG 0. L H SB S Hz R BG 0. L H SB S Hz R BG 0. L H SB S T	Compound			Soi	1 dz	ench	10/	kg/hɛ		Dosage			Fol		spray						1 1	mer	genc	0		
6 7 7 5 3 8 7 4 5 4 6 6 5 8 8 6 2 7 7 6 2 7 7 7 7 7 7 7 8 7 7 8 6 5 3 2 6 5 3 2 6 5 3 6 5 7 7 7 8 7 7 8 7 8 7 6 8 8 6 7 9 9 7 6 7 7 7 8 7 7 8 7 6 7 7 6 7 7 5 6 8 8 7 4 7 6 7 7 5 6 8 8 7 4 7 6 7 7 6 7 7 5 6 8 8 7 4 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 7 6 7 7 8 6 3 5 6 3 5 6 3 5 7 6 7 7 8 7 6 7 7 8 7 6 7 7 7 5 2 5 4 3 6 4 7 7 8 5 6 8 8 5 7 6 7 7 1 1 1 2 2 2 6 5 5 1 2 2 3 4 7 7 7 8 5 6 8 8 5 7 6 7 7 1 1 1 1 2 2 2 6 5 5 1 2 2 3 4 7 7 8 7 7 8 7 7 8 7 7 7 7 7 7 7 7 7 7	Ex. No.	HZ		BG	0	-1	¥	SB		kg/ha		~	BG	,	,a	X										S
7 7 8 7 7 7 8 6 5 5 7 8 7 6 8 8 6 7 9 9 7 6 7 7 6 7 7 5 6 8 8 7 4 7 6 7 7 6 7 7 5 6 8 8 7 4 7 6 7 7 6 7 7 5 6 8 8 7 4 7 6 7 7 7 6 7 7 7 5 2 2 6 3 5 1 7 7 7 5 2 5 4 3 6 4 7 7 8 5 6 8 8 5 7 6 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	143	9	7	7	5	e e	89	7	4	5	1	9	5 5	9	2	8 9	∞ v			6			2		- 10	
5 6 7 6 4 7 7 4 5 4 6 4 4 6 5 2 4 7 5 4 2 5 1 1 1 4 3 1 5 3 1 1 1 2 1 4 3 5 2 6 3 5 6 3 5 1 1 1 4 3 2 3 1 3 6 6 3 7 7 5 2 5 4 3 6 4 7 7 8 5 6 8 8 5 7 6 7 1 1 1 2 2 2 6 5 5 1 2 3 4	144	7	7	∞	7	7	_	∞	9	5	- N - N	2	8 ~		9	8 ~	8 ~	9		0 80	6 8		9 3			m 2
3 6 6 3 7 7 5 2 5 4 3 6 4 7 7 8 5 6 8 8 5 7 6 1 1 1 2 2 6 5 5 1 2 3 3	145	2	9	7	9		7	7	7	5		7 7	9 4	4 6	4 -	5 6	3 %	2 1	7				~	0 4		9
3 6 6 3 7 7 5 2 5 4 3 6 4 7 7 8 5 6 8 8 5 7 6 1 1 1 2 2 6 5 5 1 2 2 3 2 2 3	146						6			5	7		9	m m	2	9 6	3	2						Lill.		
	147	6	9	9	3		7	5	7	5	4 1	1	6	7 7	7 9	2	8 %	5 1		8 8			2		N 3	

Table II (continued) H SB S Mz R BC C L M SB S Mz R BC L M SB S Mz R BC C L M SB S T T T T T T T	50			45	40		40		35		30			25		20	20		15		10			5	
J/kg/ha Dosage Foliar spray Pre-emergence 4 SB S kg/ha Hz R BG O' L M SB S Hz R BG O L M 3 5 2 5 7 7 7 7 7 7 6 6 7 9 8 7 7 7 3 4 3 5 4 7 7 7 7 7 6 4 6 9 8 7 7 7 3 4 3 5 4 7 7 7 7 7 6 4 6 9 8 7 7 7 3 5 2 5 7 7 7 7 7 6 4 6 9 8 7 7 7 3 5 2 5 4 5 7 7 7 7 6 4 6 9 8 7 7 7 3 6 6 6 6 5 5 5 6 8 8 8 6 3 5 3 7 7 8 7 7 5 7 8 6 8 8 8 7 7 7 4 6 6 7 6 6 7 7 8 7 7 8 7 8 8 8 7 7 7 8 7 7 8 7 8 6 7 7 8 8 8 8 7 7 7 8 6 5 5 7 7 8 7 8 6 7 7 8 8 8 8 7 7 7 8 6 5 5 7 7 8 7 8 6 7 7 8 8 8 7 7 7 8 6 5 5 5 6 7 7 6 6										Tab			onti	nued											
2 kg/ha Mz R BG O' L H SB S Mz R BG O L M 2 5 7 7 7 7 7 7 7 6 6 7 9 8 7 7 7 7 3 5 4 7 7 7 7 7 6 6 6 5 5 3 1 1 2 6 6 6 5 5 3 1 7 7 7 6 8 8 6 3 5 2 5 4 5 7 7 5 7 5 5 6 8 8 6 3 5 2 5 7 7 8 7 5 7 5 5 6 7 7 6 6 7 7 6 3 5 5 7 7 8 7 6 9 7 7 8 8 8 7 4 6 5 5 5 7 7 8 7 7 8 7 7 8 8 8 7 7	Soil drench 10					-	0/k	g/ha		Dosage			Fol	1	spray						Pre-	merg	gence		
5 2 5 7 7 7 7 7 7 7 6 6 7 9 8 7 7 7 7 7 7 7 7 6 4 6 9 8 7 7 7 7 7 7 6 4 6 9 8 7 7 7 7 7 7 6 4 6 9 8 7 7 7 7 7 7 7 7 6 4 6 9 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Mz R BG O L	BG 0	.0	0	-1		Z :	SB		kg/ha	Mz	&	BG	6	ے	X	SB								æ
4 3 5 4 4 8 6 5 5 5 4 4 8 6 5 2 3 2 3 2 3 2 3 2 3 2 3 3 2 3	9 1 9 1 9	6 7	7		9		۳	5	2	5	7	7	-	7	7	7	9	9	7						
4 3 5 4 7 7 7 7 6 6 6 6 2 5 3 1 7 8 8 8 8 8 8 8 7 7 8 8 8 8 7 7 8 8 8 8 7 7 8 8 8 8 7 7 8 8 8 8 7 7 8 8 8 7 7 8 8 8 7 7 8 8 8 7 7 8 8 8 7 7 8 8 8 7 7 8 8 8 7 7										-	7	9	9	9	2	5	S	4	4	_			~	~	
5 2 5 4 5 7 7 5 7 5 6 8 8 6 3 5 2 1 7 2 5 4 5 7 7 5 7 5 5 6 8 8 6 3 5 2 1 7 2 5 7 7 8 7 6 9 7 7 8 8 8 7 4 6 8 1 4 6 6 7 4 6 5 5 6 7 7 6 9 7 7 8 8 8 7 4 6 8 1 4 6 6 7 7 8 6 7 7 8 7 8 6 7 7 6 9 7 7 7 8 7 7 8 7 7 7 8 7 7 7 8 7 7 7 7	3 6 7 7 5	7 7	7		2	_	3	4	3	5	4	7	_	7	_	7	9	4	9	6					
5 2 5 4 5 7 7 5 7 5 5 6 8 8 6 3 5 2 1 2 2 4 3 2 6 1 4 4 3 2 1 7 2 5 7 7 8 7 6 9 7 7 8 8 8 7 4 6 8 1 4 6 6 7 4 6 5 5 6 7 7 6 8 8 8 7 4 6 8 6 5 5 7 7 8 7 8 6 7 9 9 8 7 7 1 7 1 6 5 5 6 7 7 6 6 7 7 7 8 6 7 7 6 6 5											7	9	9	9	7	S	m	-		7	7	.+		_	
7 2 5 7 7 8 7 6 9 7 7 8 8 8 7 4 6 8 1 4 6 6 7 4 6 5 5 6 7 7 6 8 6 5 5 7 7 8 6 7 7 6 5 6 5 5 6 7 7 8 6 7 7 7 7 6 5 5 5 6 7 7 6 5 5 6 7 7 7 7 7 7 7 7 8 6 7 7 7 7 7 7 8 6 7 7 8 6 7 7 8 8 7 7 7 7 7 7 8 8 9 8 8 8 9 8 8 9 8 9 8 9 8 9 8	7 9 9 9 7	9 9	9		7	_	3	5	2	2	4	5	~	7	2	1	2	5	9	8					
7 2 5 7 7 8 7 6 9 7 7 8 8 8 7 4 6 8 8 8 7 4 6 8 8 8 7 4 6 8 5 5 6 7 7 6 9 7 7 8 8 7 7 6 5 5 8 7 7 7 8 7 7 8 6 7 9 9 8 7 7 7 7 8 6 7 9 9 8 7 7 7 7 7 7 8 6 7 9 9 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7										-	7	7	4	ю	8	9		~		7	7	m		~	_
6 5 5 7 7 8 7 7 8 6 7 6 9 9 8 7 7 7 7 7 7 7 7 7 7 7 8 7 7 7 8 6 7 9 9 8 7 7 7 7 7 7 7 8 7 7 7 7 7 7 7 7	8 8 8 7 6	8 7	7		9	1	&	7	2	5	7	-	8	7	9	6	7	7	8	8	8				_
6 5 5 7 7 8 7 7 8 6 7 9 9 8 7 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1										~	4	9	9	7	4	9	2	5	9	7	7	va .			.0
6 7 6 6 / 5 5 8 9 8 6 2 6	7 7 8 7 5	8 7	7	Ì	2	1	8	9	5	5	_	7	80	7	7	8	9	_	6	6			_		
										,4	9	9	7	9	9	~	S	5	&	6	&				

•	1		i						1		1	
		S	80	7			2				9	2
5		SB	7	9	2		m	-	2	7	2	m
	ce	Z	7	7	2	m	9	2	2	m	~	2
	emergence	1	~	4			4	7	2		2	
10		0	~	9	5	~	9	4	5	7	7	9
	Pre	BG	8	∞	4		æ	∞	7	~	6	8
15		≈	∞	9			æ	7	8	9	8	8
••		W _Z	80	S	7		7	9	4	2	7	9
		တ	7	9	7	3	5	4	2	က	7	2
20		SB	æ	9	2		7	ĸ	∞	~	8	9
	A	Σ	ထ	7	7	7	7	S	80	7	80	7
Q	spray		7	9	9	7	7	9	9	S	5	2
25 Jane	Foliar	0	7	7	7	9	7	7	7	7	7	7
continued)	Fo	BG	7	4	7	4	8	7	7	_	7	7
30		8	9	m	9	2	4	4	88	7	3	က
Table		MZ	7		4	2	9	9	2	က	7	7
35	Dosage	kg/ha	5	-	5		5	H	5	- -	5	1
		S	~				5		۳		4	÷
	10/kg/ha	SB	&		2		4		7		9.	•
40	10/1	X	æ		4		9				7	
	Soil drench	7	9				2		m		2	
45 .	dr	0	7		S		9		7		9	
	Sot	B G	∞	1	7		7		7		1	
		∝	æ		6	•	9		8		9	
50		Mz	∞		4		9		_		7	
55	Compound	Ex. No.	153		154		155		156		157	

Compound of SolI drench lo/kg/ha SolI dre	55	50		-	45		40			35	30			25		20		15	15		10		5	_	
Pound No. Mz R BG O L M SB S kg/ha Mz R BG O L M SB S Mz R R No. No. Mz R BG O L M SB S kg/ha Mz R BG O L M SB S Mz R R No. 6 7 6 5 4 6 8 4 5 6 6 8 6 7 6 8 6 7 6 8 8 7 7 8 7 7 8 7 7 8 7 7 8 8 8 8										Tab			ontír	(peni											
No. Mz R BG O L M SB S kg/ha Mz R BG O L M SB S Mz R R T T 6 5 4 6 8 4 5 6 6 7 6 8 6 7 6 8 6 7 7 8 7 7 7 7 7 7 7	Jo			Soil	dre	nch	10/k	3/ha		Dosage			Foli		pray					À	re-e	merg	ence		
6 7 6 5 4 6 8 4 5 6 6 8 6 7 7 8 5 7 7 7 7 7 7 3 7 4 6 5 7 7 8 7 7 8 7 7 6 8 8 8 8 7 7 7 8 7 7 7 7		MZ	ø	BG	0		×	SB	S	kg/ha	M z	~	BG								0	7	Z.	S	S
1 4 5 6 6 7 6 8 4 2 5 5 7 7 7 7 7 7 7 3 7 4 6 5 7 7 8 7 7 8 7 6 8 8 8 8 8 8 8 8 8 8 8 8	89	9	_	9	S	4	9	80	4	5	9	9	80	9	7	7		7	1		3	7	3	4	2
7 7 7 7 3 7 4 6 5 7 7 8 7 7 8 7 6 8 8 8 8 8 8 7 7 8 7 7 7 7										-	4	ហ	9	9	7		7	7		S	7		7	m	
1 4 7 7 6 6 7 5 4 6 8 8 8 9 1 8 9 7 7 6 8 8 8 8 9 9 8 9 9 8 7 8 7 6 8 8 8 8 9 9 8 9 7 8 7 8 7 8 8 8 8 8 8 9 9 8 9 7 8 7 8	69	7	-	1	7	e e	7	4	9	5	7	-	8	7	7	8				6	7	4	7	5	9
7 7 7 7 4 3 5 6 7 7 6 6 8 8 6 7 8 8 6 6 5 4 7 5 2 4 8 6 7 8 7 8 6 7 8 7 5 8 8 6 7 8 7 7 9 7 6 8 9 8 5 7 6 8 8 8 8 9 7 7 9 7 6 8 7 6 8 8 8 8 9 9										-	7	7	7	9	9	_	2 7	9	∞	60	9	;-1	لا)	2	
6 7 8 7 8 6 2 5 6 7 8 7 5 8 8 6 7 8 7 7 7 9 7 7 7 9 7 7 9 7 9 7 6 8 8 8 8 8 9 8 9 8 5 7 8 7 8 8 8 8 8 9 9 8 9 7 8 7 8 8 8 8 8	20	-	-	_	-	4	-	4	m	2	9	7	7	9	9		- C		8	∞	9	4	7	7	2
6 7 8 7 8 6 2 5 6 7 8 7 5 8 8 6 7 8 7 7 7 7 7 7 7 9 7 6 8 8 8 8 9 9 1 5 7 7 9 7 6 8 8 9 9 9 7 6 8 8 8 8 9 9										-	ന	9	9	ς.	7	7	7.4	4	∞	9	ທ .	7	S	m	
1 2 5 7 6 8 9 4 5 7 7 9 7 6 8 8 8 8 9 1 5 7 7 9 7 6 8 8 8 9 1 5 7 8 7 6 8 8 9 9	51	9	_	&	_		8	9	2	5	9	_	8	7	5		8		8	6	9	en en	7	9	
7 7 9 8 8 5 7 9 7 6 8 8 8 8 9 9 1 5 7 8 7 6 8 8 6 8 9										-	7	ហ	7	9	7		2	'n	7	7	.Ω		9	e4 (
6 8 9 8 8 6 8 9	62	7	_	6	7	9	8	6	∞	ر ا	7	7	6	7	9		8	8	6	6	7	8	9	7	7
										-	S	7	ထ	7			& ~	∞	9	6	7	7	9	7	9

			S	-		7				5			; ;
5			SB			8	S			00	4		į
•		၁၁	Ė			8	S			9	m	m	
		rger	ы	3		2				9			
10		Pre-emergence	0	7	m	2	7			9	٣	7	
		Pre	BG	∞	9	4				7		7	•
			~	9		7				7			:
15			X Z			2				5	2		
			S	2	2	_	7 .			5	က	2	
20			SB	7	4	7	S			8	7		1
		>	×	7	9	7	က	7	~	8	5	2	1
		spray	1	_	5	5				7	m	2	
25	nued	Foliar	. 0	~	9	2	7			9	5	m	7
	(continued)	Fol	BG	∞	&	9	8			7	S	m	
	7.5%		~	7	Ņ	8				7		2	
30	le II		. X	9	7	8	H ,			9	7	2	
35	Tabl	Dosage	kg/ha	5	-	5	-	5		5		5	1
00			တ	4						2			
		g/ha	SB	3		∞				&			
40		10/kg,	X			5				80			1
			1			9				9			İ
		dre	0	7		2				3			i
45		Soil drench	BG	~		9				7			
		0,	œ	&		7				7			
50			X Z	8						2			
	·	ound	No.										
55		Compound	Ex.	163		164		166		167		168	

Claims

5

10

15

30

50

1. A compound of the general formula I

$$\begin{array}{c}
\mathbb{R}^2 \\
\mathbb{R}^1 \\
\mathbb{N}
\end{array}$$
(1)

in which

A represents a nitrogen atom or a group CR5;

R', R² and R⁵ each independently represents a hydrogen or halogen atom, a formyl, cyano. carboxy or azido group or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, alkoxy, alkenyloxy, alkynyloxy, aryloxy, alkylthio, alkynylthio, arylthio, alkylcarbonyl, alkoxycarbonyl, or dialkyliminoxy group, an unsubstituted aminoxy group or an amino or aminoxy group substituted by an alkyl group, itself optionally substituted by halogen, alkoxy, hydroxy or carboxy, an alkenyl group, an aryl group, a hydroxy group, a cyano group, an alkoxy group or an amino group itself optionally mono- or di- substituted by alkyl, aryl or alkylcarbonyl or which forms part of a heterocyclic ring;

and R represents a group of the general formula

$$-\frac{R3}{-R^4} \qquad (A)$$

in which

R³ represents a hydrogen atom, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic or aryl group, or a group COR³ in which R³ represents a hydroxy, alkoxy, carboxy, alkoxycarbonyl, amino, or mono-or di- alkylamino group;

R⁴ represents a group COR⁶ wherein R⁶ represents a hydrogen or halogen atom, a hydroxy group, an optionally substituted alkoxy, alkenyloxy, alkynyloxy, cycloalkoxy, aryloxy, alkylthio, alkenylthio, alkynylthio, arylthio or dialkyliminoxy group or an amino or aminoxy group optionally substituted by an alkyl group, itself optionally substituted by halogen, alkoxy, hydroxy or carboxy, an alkenyl group, an aryl group, a hydroxy group, a cyano group, an alkoxy group or an amino group itself optionally mono- or di- substituted by alkyl, aryl or alkylcarbonyl or which forms part of a heterocyclic ring; or R⁶ represents a group OR⁷ in which R⁷ represents an optionally substituted heterocyclic ring;

or R represents a group of the general formula

$$R^9 R^{10}$$
 R^4
(B)

in which R⁴ is as defined above and R⁹ and R¹⁰ each independently represents a hydrogen atom or an alkyl group;

provided that when A represents a nitrogen atom then R' and/or R² do not represent a chlorine atom; or a carboxylic acid salt of a compound of general formula I with an equivalent amount of an inorganic or organic cation.

2. A compound as claimed in claim 1, in which A represents a nitrogen atom or a group CH.

.

15

30

45

50

- 3. A compound as claimed in claim 1 or claim 2, in which R^1 and R^2 each independently represents a halogen atom, a C_{1-4} alkyl group, a C_{1-4} alkoxy group, a C_{1-4} alkylthio group or a mono- or di- C_{1-4} alkylamino group.
- 4. A compound as claimed in claim 3, in which R¹ and R² each independently represents a chlorine atom, a methyl group, a methoxy group, a methylthio group, a methylamino group or a dimethylamino group.
- 5. A compound as claimed in any one of claims 1 to 4, in which R represents a group of the formula A wherein R³ represents a hydrogen atom; a C₁₋₆ alkyl group optionally substituted by a C₁₋₄ alkylthio group; a cyclohexyl group; a benzyl group; a phenyl group optionally substituted by one or more substituents independently selected from halogen atoms, trifluoromethyl groups, C₁₋₄ alkyl groups and (C₁₋₄ alkoxy)carbonyl groups; a thienyl group; a carboxy group; a (C₁₋₄ alkoxy)carbonyl group or a di(C₁₋₄ alkyl)carbamoyl group.
 - 6. A compound as claimed in claim 5, in which R^3 represents a C_{2-6} alkyl group, a benzyl group or an unsubstituted phenyl group.
 - 7. A compound as claimed in claim 6, in which R³ represents an isopropyl, n-propyl, i-butyl, n-butyl, s-butyl, t-butyl, benzyl or phenyl group.
- 8. A compound as claimed in any one of claims 1 to 7, in which, in a group of the formula A represented by R, R⁴ represents a group COR⁶ in which R⁶ represents a hydroxy group; a C₁₋₄ alkoxy group optionally substituted by a halogen atom or a C₁₋₄ alkoxy, C₁₋₄ alkylthio, phenyl, benzyl optionally substituted on the phenyl ring by one or more substituents independently selected from halogen atoms and C₁₋₄ alkoxy groups, furyl, tetrahydrofuryl or thienyl group; a C₁₋₄ alkylthio group; a C₂₋₄ alkynyloxy group; a phenoxy group optionally substituted by one or more substituents independently selected from C₁₋₄ alkyl groups, nitro groups and hydroxy(C₁₋₄) alkyl groups; a phenylthio group; an amino group optionally substituted by a carboxy or (C₁₋₄ alkoxy)carbonyl group; or a di (C₁₋₄) alkylaminoxy group.
 - 9. A compound as claimed in claim 8, in which R⁴ represents a group COR⁶ wherein R⁶ represents a hydroxy group, a C₁₋₄ alkoxy group or an optionally substituted amino group.
 - 10. A compound as claimed in claim 9, in which R⁴ represents the group COR⁶ in which R⁶ represents a hydroxy group or a C₁₋₄ alkoxy group.
 - 11. A compound as claimed in any one of claims 1 to 4, in which R represents a group of the formula B wherein one of R⁹ and R¹⁰ represents a hydrogen atom and the other represents a C₁₋₄ alkyl group.
 - 12. A carboxylic acid salt as claimed in claim 1, which is an alkali metal salt.
 - 13. A compound as claimed in any one of claims 1 to 12, wherein A represents CH, R¹ and R² are the same and each represents a methyl group or a methoxy group, and R represents a group of the formula A in which R³ represents an n-butyl group, an i-butyl group, a t-butyl group or a phenyl group and R⁴ represents a carboxy group or a methoxycarbonyl group.
 - 14. A compound as claimed in claim 13, wherein A is CH; R¹ is CH₃, R² is CH₃, R³ is iC₄H₉ and R⁴ is COOH
 - A is CH, R1 is OCH3, R2 is OCH3, R3 is iC4H9 and R4 is CO2CH3
 - A is CH, R1 is CH3, R2 is CH3, R3 is phenyl and R4 is CO2CH3.
 - 15. A process for the preparation of a compound as claimed in claim 1, which comprises a) reacting a compound of the general formula II

in which R1, R2 and A are as defined in claim 1 and L represents a leaving group, with a compound of the general formula III

in which R3 and R4 are as defined in claim 1,

b) for compounds as claimed in claim 1, in which A represents CR5, reacting a compound of the general formula IV

20 in which R', R2 and R5 are as defined in claim 1, with a compound of the general formula V

$$H \longrightarrow \stackrel{X}{\leftarrow} \mathbb{R}^3$$
 V

in which R3 and R4 are as defined in claim 1, and X represents a leaving group,

and if required or desired, converting a compound of general formula I into another compound of general formula I, or

converting a carboxylic acid of general formula I into a salt thereof, or

converting a carboxylic acid salt of a compound of general formula I into the free acid or into another salt.

- 15. A process as claimed in claim 14, wherein in process variant (a) the leaving group L is a chlorine atom or a methanesulphonyl group,
- 16. A process as claimed in claim 14, wherein in process variant (b) the leaving group X is a bromine atom.
- 17. A herbicidal composition which comprises a compound as claimed in any one of claims 1 to 13 in association with a carrier.
- 18. A method of combating undesired plant growth at a locus which comprises treating the locus with a compound as claimed in any one of claims 1 to 13, or with a composition as claimed in claim 17.
 - 19. The use of a compound as claimed in any one of claims 1 to 13 or a composition as claimed in claim 17, in combating undesired plant growth.

35

5

15