Notas de Aula - Capítulo 2

Probabilidade

Caio Gomes Alves

20/05/2025

1 Variáveis Aleatórias

1.1 Variáveis aleatórias e funções de distribuição

Example 1.1. Considere um experimento em que uma moeda é lançada duas vezes. Seja X = total de caras nos dois lançamentos. Denotemos o evento cara como H e coroa como T. Logo:

Espaço Amostral (Ω)	X
HT	1
TH	1
HH	2
TT	0

Logo, $X: \mathcal{F} \to \mathbb{R}$. Vale também que, $\forall x$ valor na imagem de $X, X^{-1}(x) \in \mathcal{F}$. Por exemplo:

$$x = 1 \Rightarrow X^{-1}(1) = \{HT, TH\}$$

 $x = 2 \Rightarrow X^{-1}(2) = \{HH\}$
 $x = 0 \Rightarrow X^{-1}(0) = \{TT\}$

Definition 1.1 (Variável aleatória). Seja (Ω, \mathcal{F}, P) um espaço de probabilidades. Uma função $X : \mathcal{F} \to \mathbb{R}$ é variável aleatória se $[x \in I] \in \mathcal{F}, \ I \in \mathbb{R}$ (ou, equivalentemente, se $\{\omega : X(\omega) \in I\} \in \mathcal{F}; \ X^{-1}(I) \in \mathcal{F}$).

Definition 1.2 (Distribuição Acumulada). Considere um espaço de probabilidades (Ω, \mathcal{F}, P) e $X : \mathcal{F} \to \mathbb{R}$ uma variável aleatória, defina $F(r) = P(X \le r) = P(\{\omega : X(\omega) \le r\})$.

Example 1.2. Seja X = número de caras em dois lançamentos de moeda (honesta). Temos que as probabilidades de X são dadas por:

$$P(X = 0) = P(\{TT\}) = \frac{1}{4}$$

$$P(X = 1) = P(\{TH, HT\}) = \frac{2}{4}$$

$$P(X = 2) = P(\{HH\}) = \frac{1}{4}$$

Para encontrarmos a função de distribuição acumulada, podemos particinar o espaço e "acumular" as probabilidades. Para r < 0:

$$F(r) = P([X \le r]) = P(\emptyset) = 0$$

Para $r \in [0, 1)$:

$$F(r) = P([X \le r]) = P(X \le 0) = \frac{1}{4}$$

Para $r \in [1, 2)$:

$$F(r) = P([X \le r]) = P(X \le 1) = P(X = 0) + P(X = 1) = \frac{3}{4}$$

Para $r \geq 2$:

$$F(r) = P([X \le r]) = P(X \le 2) = P(X = 0) + P(X = 1) + P(X = 2) = 1$$

Logo, F é dada por:

$$F(r) = \begin{cases} 0, & r < 0 \\ \frac{1}{4}, & r \in [0, 1) \\ \frac{3}{4}, & r \in [1, 2) \\ 1, & r \ge 2 \end{cases}$$

Distribuição de probabilidades acumulada

Theorem 1.1 (Propriedades da distribuição acumulada). Seja X uma variável aleatória definida em (Ω, \mathcal{F}, P) , então a f.d.a. de X (F_X ou F) verifica:

- a) F é monótona não decrescente;
- b) F é contínua à direita;
- c) $\lim_{t\to-\infty} F(t) = 0$ $e \lim_{t\to\infty} F(t) = 1$.

Prova.

- a) Dados $a, b \in \mathbb{R} : a \le b$; $[X \le a] \subseteq [X \le b] \Rightarrow P([X \le a]) \le P([X \le b]) \Rightarrow F(a) \le F(b)$.
- b) Se $X_n \downarrow x$, quando $n \to \infty$, temos que $\{[X \le x_n]\}_{n \ge 1}$ é tal que $\bigcap_{n \ge 1} [X \le x_n] = [X \le x]$. Isso significa que $[X \le x]$ acontece se e somente se $[X \le x_n] \ \forall n$. Além disso, $[X \le x_n] \downarrow [X \le x]$ quando $n \to \infty$, logo, pela continuidade da função de probabilidade $P([X \le x_n]) \downarrow P([X \le x]), n \to \infty$.
- c) Consider agora que $x_n \downarrow -\infty \Rightarrow [X \leq x_n] \downarrow \emptyset$, $n \to \infty \Rightarrow F(x_n) = P([X \leq x_n]) \downarrow P(\emptyset) = 0$, $n \to \infty$. Se $x_n \uparrow \infty \Rightarrow [X \leq x_n] \uparrow \Omega$, $n \to \infty \Rightarrow F(x_n) = P([X \leq x_n]) \uparrow P(\Omega) = 1$, $n \to \infty$.

Theorem 1.2. Se F é a f.d.a. da variável aleatória X, então:

- a) Existem e são finitos os limites laterais $\lim_{t\to r^-} F(t), \lim_{t\to r^+} F(t), \forall r\in\mathbb{R}$ e $\lim_{t\to r^-} F(t)\leq \lim_{t\to r^+} F(t);$
- b) $\lim_{t\to r^+} F(t) = F(r), \forall r \in \mathbb{R};$
- c) $F \notin descontinua\ em\ r, r \in \mathbb{R}\ se\ e\ somente\ se\ \lim_{t\to r^-} F(t) < F(r),\ com\ um\ salto\ de\ tamanho\ F(r) \lim_{t\to r^-} F(t);$
- d) $\forall r \in \mathbb{R}, P(X = r) = F(r) \lim_{t \to r^{-}} F(t);$
- e) Existem no máximo um total enumerável de descontinuidades em F.

Prova.

- a) F é monótona e limitada $(0 \le F \le 1)$. Logo, os limites laterais existem e são limitados.
- b) Como F é monótona não-decrescente, $\forall x,y:x\leq y\Rightarrow F(x)\leq F(y)$. Logo $\lim_{t\to r^-}F(t)\leq \lim_{t\to r^+}F(t)$.
- c) Como F é monótona não-decrescente, uma descontinuidade só ocorre se e somente se $\lim_{t\to r^-} F(t) < \lim_{t\to r^+} F(t) = F(r)$.
- d) Seja $r \in \mathbb{R}$. $[X \le r] = \bigcap_{n=1}^{\infty} (r \frac{1}{n} < x \le r)$, logo:

$$\begin{split} P([X=r]) &= P\left(\bigcap_{n=1}^{\infty} \left(r - \frac{1}{n} < x \le r\right)\right) \\ & \Downarrow (\text{Teorema da continuidade}) \\ &= \lim_{n \to \infty} P\left(\left(r - \frac{1}{n} < x \le r\right)\right) \\ &= \lim_{n \to \infty} \left(F(r) - F\left(r - \frac{1}{n}\right)\right) \\ &= F(r) - \lim_{n \to \infty} F\left(r - \frac{1}{n}\right) \\ P([X=r]) &= F(r) - \lim_{t \to r^-} F(t) \end{split}$$

e) Seja \mathcal{D} o conjunto de pontos de descontinuidades de F, e seja $\lim_{t\to x^-} F(t) = F(x^-)$. Logo:

$$\mathcal{D} = \{ x \in \mathbb{R} : F(x) - F(x^{-}) > 0 \}$$

Seja \mathcal{D}_n o conjunto de pontos para os quais a amplitude do salto é maior ou igual a $\frac{1}{n}$. Logo:

$$\mathcal{D}_n = \left\{ x \in \mathbb{R} : F(x) - F(x^-) \ge \frac{1}{n} \right\} \Rightarrow \#D = |D| \le n$$

Se $x \in \mathcal{D} \Rightarrow \exists n_0 > 1 : F(x) - F(x^-) \ge \frac{1}{n_0} \Rightarrow x \in \bigcup_{n=1}^{\infty} \mathcal{D}_n$. Se $x \in \bigcup_{n=1}^{\infty} \mathcal{D}_n \Rightarrow \exists n_1 : x \in \mathcal{D}_n \Rightarrow x \in \mathcal{D}$. \mathcal{D} portanto é a união enumerável de conjuntos finitos, logo é enumerável.

1.2 Natureza das variáveis aleatórias

- a) X é uma variável aleatória discreta se os valores que ela toma pertencem a um conjunto enumerável, logo $X: \Omega \to \{x_1, x_2, \ldots\}$ (ou seja, $X(\omega) \in \{x_1, x_2, \ldots\}, \forall \omega \in \Omega$) e $P: \{x_1, x_2, \ldots\} \to [0, 1]$ é dado por $P(x_i) = P\{\omega : \omega \in \Omega \in X(\omega) = x_i\} \forall i \ge 1.$
- b) X é uma variável aleatória absolutamente contínua se $\exists f$ (uma função) tal que $f(x) \geq 0, \forall x \in \mathbb{R}$ e $F_X(x) = \int_{-\infty}^x f(t)dt$ (onde f é chamada de densidade de X).
- Sob (a) temos que $[X \le x] = \bigcup_{i:x_i \le x} [X = x_i]$. Logo $F_x(x) = \sum_{i:x_i \le x} P(x_i)$.
- Sob (b) estamos afirmando que F_X é a integral de f (ou seja, f é a sua derivada) para todo x exceto em um conjunto de medida de Lebesgue nula, ou seja, se seu comprimento for zero $(\int_a^a f(t)dt = 0)$. Ainda sob (b), se f é uma função de densidade podemos definir $F(x) = \int_{-\infty}^{x} f(t)dt$ e F verifica:
 - 1. $x \le y \Rightarrow F(x) \le F(y)$;

 - 2. Se $x_n \downarrow x \Rightarrow F(x_n) \downarrow F(x)$; 3. Se $x_n \downarrow -\infty \Rightarrow F(x_n) \downarrow 0$ e se $x_n \uparrow \infty \Rightarrow F(x_n) \uparrow 1$.

Dada uma variável aleatória com distribuição F_X , X tem densidade se:

- (i) F_X é contínua;
- (ii) F_X é derivável por partes (ou derivável no interior de um número finito ou enumerável de intervalos fechados cuja união é igual a \mathbb{R}), ou derivável para todo x exceto um número finito (enumerável) de pontos.

Example 1.3.

$$F_X(x) = \begin{cases} 0, & x < 0 \\ x, & x \in [0, 1] \\ 1, & x > 1 \end{cases}$$

Notas:

- F_X é contínua; - $\{0,1\}$ são pontos sem derivada;

• Podemos definir os seguintes intervalos em que F_X é derivável: $(-\infty,0),(0,1),(1,\infty)$;

• $F_X'(x) = \begin{cases} 1, & x \in (0,1) = f_X(x) \\ 0, & c.c. \end{cases}$; • f(0) e f(1) podem ser definidos como zero ou um, já que tais definições não alteram $F_X(x) = f(x)$

Em contrapartida, considere:

$$F_X(x) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$$

Notas:

• F_X não é contínua; • $P(X=0)=\lim_{x\to 0^+}F_X(x)-\lim_{x\to 0^-}F_X(x)=1.$

Example 1.4. Considere a densidade triangular:

$$f_X(x) = \begin{cases} x, & \text{se } 0 \le x < 1\\ 2 - x, & \text{se } 1 \le x < 2\\ 0 & c.c. \end{cases}$$

Por definição, $f(x) \ge 0 \ \forall x$. Para verificarmos que a probabilidade total é igual a um, podemos realizar a seguinte integração por partes:

$$\int_{-\infty}^{x} f_X(x) dx = \int_{0}^{2} f_X(x) dx$$

$$= \int_{0}^{1} x dx + \int_{1}^{2} (2 - x) dx$$

$$= \frac{x^2}{2} \Big|_{0}^{1} + 2x \Big|_{1}^{2} - \frac{x^2}{2} \Big|_{1}^{2}$$

$$= 1$$

O que demonstra que $f_X(x)$ é densidade de probabilidade.

Conjecture 1.1. Cada função de distribuição se corresponde com apenas uma distribuição? Não.

Prova. Considere, por exemplo, que a variável aleatória $X \sim N(0,1)$. Logo, a sua função distribuição de probabilidade é dada por $f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$ e $\Phi(x)$ é sua acumulada. Vejamos que $X \sim N(0,1) \iff -X \sim$ N(0,1):

Seja ω um possível valor de -X, devemos calcular $P(-X \leq \omega)$ e provar que $P(-X \leq \omega) = \Phi(\omega)$:

$$P(-X \le \omega) = P(X \ge -\omega) = 1 - P(X \le \omega) = 1 - \Phi(-\omega) = 1 - (1 - \Phi(\omega)) = \Phi(\omega)$$

Variáveis aleatórias e σ -álgebra de Borel 1.3

Se X é uma variável aleatória em (Ω, \mathcal{A}, P) , cada evento $[X \leq x] \in \mathcal{A} \ \forall x \in \mathbb{R}$. Isto é, $[X \in \mathcal{B}]$, onde $[X \in \mathcal{B}] = [X \le x]$ é um evento e $P(X \in \mathcal{B})$ é bem definido. No entanto, a operacionalidade do sistema (Ω, \mathcal{A}, P) pode ser estendido a todo boreliano (ou seja, a todos os elementos da σ -álgebra de Borel, que é a menor σ -álgebra contendo os intervalos cujos comprimentos estejam bem definidos).

Proposition 1.1. Se X é uma variável aleatória em (Ω, \mathcal{A}, P) , então o evento $[x \in \mathcal{B}] = \{\omega : \omega \in \mathcal{B}\}$ Ω e $X(\omega) \in \mathcal{B}$ } é um evento aleatório para todo \mathcal{B} boreliano (ou seja, $[x \in B] \in \mathcal{A} \ \forall B \in \mathcal{B}$).

Podemos ver que diferentes tipos de intervalos (leia-se borelianos) podem ser mostrados como pertencentes à σ -álgebra, de modo que variáveis aleatórias que operam sobre esses intervalos estarão bem definidas:

- 1. Se $B = (-\infty, b] \Rightarrow [X \in B] \in \mathcal{A}$ de acordo com a definição de variável aleatória;
- 2. Se $B=(a,\infty)$, podemos fazer $B=(-\infty,a]^c$. Como o evento $[X\leq a]\in\mathcal{A}$ por definição, sendo \mathcal{A} uma σ -álgebra, deve ocorrer que $[X \leq a]^c = B \in \mathcal{A}$, ou seja, $B \in \mathcal{A}$;
- 3. Se $B=(a,b]\Rightarrow [X\in B]=[X\in (a,b]]=[X\leq b]-[X\leq a]$. Como $[X\leq b]\in \mathcal{A}$ e $[X\leq a]\in \mathcal{A}$, então $P(X \in B) = P(X \le b) - P(x \le a) = F_X(b) - F_X(a);$
- 4. Se $B = (a, b) \Rightarrow B = \bigcup_{n=1}^{\infty} \left(a, b \frac{1}{n}\right]$ Sabemos que os eventos $\left(a < X \le b \frac{1}{n}\right] \in \mathcal{A}$ e as suas uniões também pertencem à \mathcal{A} . Quanto à probabilidade, temos $P(X \in B) = P\left(\bigcup_{n=1}^{\infty} \left(a < X \le b \frac{1}{n}\right]\right) = 0$ $\lim_{n\to\infty} P\left(\left(a < X \leq b - \frac{1}{n}\right]\right) = \lim_{n\to\infty} P\left(\left(a < X \leq b - \frac{1}{n}\right]\right) = \lim_{n\to\infty} P\left(\left(a < X \leq b - \frac{1}{n}\right)\right) = \lim_{n\to\infty} F_X\left(b - \frac{1}{n}\right) - F_X(a) = F_X(b^-) - F_X(a);$ 5. Se $B = \bigcup_{i=1}^n B_i : B_i \in \mathcal{A} \ \forall i$, e sendo os B_i 's disjuntos, temos que $[X \in B] = \bigcup_{i=1}^n [X \in B_i] \Rightarrow P([X \in B]) = \sum_{i=1}^n P(X \in B_i).$

Podemos assim reformular os axiomas de Kolmogorov:

- $Ax_1(K)$: $P_X(B) = P(X \in B) \ge 0$;
- $Ax_2(K)$: $P_X(\mathbb{R}) = P(X \in \mathbb{R}) = 1$;

• $Ax_3(K)$: Se $B_1, \ldots, B_n \in \mathcal{B}$, com $B_i \cap B_j = \emptyset \ \forall i \neq j \Rightarrow P_X(\bigcup B_n) = P(X \in \bigcup_n B_n) = P(\bigcup_n [X \in B_n]) = \sum_n P(X \in B_n)$.

Definition 1.3. A probabilidade P_X definida na σ -álgebra de Borel por $P_X(B) = P(X \in B)$ é a distribuição de X.

Proposition 1.2.

- a) Se X é uma variável aleatória discreta com valores em $\{x_1, x_2, \ldots\} \Rightarrow P_X(B) = \sum_{i:x_i \in B} P(x_i);$
- b) Se X é absolutamente contínua com densidade $f \Rightarrow P_X(B) = \int_B f_X dx$.

1.4 Variáveis contínuas

Proposition 1.3. Se $X \sim f_X$, y = bx + c, b > 0 e $c \in \mathbb{R} \Rightarrow Y \sim f_Y$ onde $f_Y(y) = \frac{1}{b} f_X(\frac{y-c}{b})$; $y \in \mathbb{R}$, onde $c \in dito \ um \ parâmetro \ de \ posição \ (muitas \ vezes \ de \ posição \ central)$ e $b \ um \ parâmetro \ de \ escala$.

1.4.1 Exemplos

Example 1.5 (Distribuição Normal).

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \Longrightarrow f_{\mu,\sigma}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Aqui, μ representa a média (posição central) da distribuição e σ^2 a sua variância.

Example 1.6 (Distribuição Cauchy).

$$f(x) = \frac{1}{\pi(1+x^2)} \Longrightarrow f_{b,M}(x) = \frac{1}{b} \frac{1}{\pi\left(1 + \left(\frac{x-M}{b}\right)^2\right)} = \frac{b}{\pi(b^2 + (x-M)^2)}$$

Neste caso, M é a mediana da distribuição e b representa a distância entre M e o 1° quartil da distribuição.

Example 1.7 (Distribuições Exponencial e Gamma). Considere $g(x) = e^{-x}I_{0,\infty}(x)$. Sabemos que g é uma distribuição de probabilidade pois:

$$\begin{cases} g(x) \ge 0 \ \forall x \in (0, \infty) \\ \int_0^\infty e^{-x} dx = 1 \end{cases}$$

Vamos agora incluir no formato do tipo exponencial um componente polinomial. Dado $\alpha > 0$, defina $g(x) = x^{\alpha-1}e^{-x}$. Podemos ver que g é integrável, de modo que:

$$\int_0^\infty g(x)dx = \int_0^\infty x^{\alpha - 1} e^{-x} dx = \Gamma(\alpha)$$

$$f_X(x) = \begin{cases} \frac{1}{\Gamma(\alpha)} x^{\alpha - 1} e^{-x} & x > 0\\ 0 & c.c. \end{cases}$$

Defina agora $y = \frac{X}{\beta}$ onde $X \sim \text{Gamma}(\alpha, 1)$ e $\beta > 0$. A densidade de Y pode ser encontrada por meio de:

$$P(Y \le y) = P\left(\frac{X}{\beta} \le y\right) = P(X \le \beta y) \Rightarrow F_Y(y) = F_X(\beta y)$$
$$f_Y(y) = \beta f_X(\beta y) = \beta \frac{(\beta y)^{\alpha - 1}}{\Gamma(\alpha)} e^{-\beta y} = \frac{\beta^{\alpha}}{\Gamma(\alpha)} y^{\alpha - 1} e^{-\beta y}$$

Nesse caso (conhecido como distribuição Gama) $\frac{1}{\beta}$ é um parâmetro de escala e α é um parâmetro de forma. Temos alguns casos especiais, como:

- Se $\alpha=1:Y\sim \operatorname{Exp}(\beta);$ Se $\alpha=\frac{n}{2},$ com n inteiro e $\beta=\frac{1}{2}:Y\sim \chi^2(n)$

1.5 Variáveis aleatórias multidimensionais

Definition 1.4. A distribuição de probabilidades do vetor aleatório dado por (x_1, \ldots, x_n) é uma tabela que associa a cada valor (x_1,\ldots,x_n) sua probabilidade $P(x_1,\ldots,x_n)=P(X_1=x_1,\ldots,X_n=x_n)$, onde $p \in A$ distribuição conjunta.

Example 1.8. Considere o conjunto de 32 cartas para poker: 7,8,9,10,J,Q,K,A, dos 4 naipes. Duas cartas são retiradas aleatoriamente, sem reposição, e X = número de ases que a pessoa recebe e Y = número de cartas de copas que a pessoa recebe. Qual a probabilidade P(X = 0, Y = 0)?

$$P(X = 0, Y = 0) = \frac{\binom{21}{2}}{\binom{32}{2}} = \frac{210}{496}$$

Definition 1.5. A função de distribuição acumulada do par de variáve aleatórias (X,Y) é dada por:

$$F(X,Y) = P(X \le x, Y \le y) = \sum_{\{i: x_i \le x\}} \sum_{\{j: y_j \le y\}} P(X = x_i, Y = y_i)$$

Seja $\underline{\mathbf{X}} = (X_1, \dots, X_n)$ tal que X_i é variável aleatória definida em (Ω, \mathcal{A}, P) $\forall i$. Então F, a acumulada de $\underline{\mathbf{X}}$ verifica:

- F₁: F é não decrescente em cada uma das coordenadas;
- F₂: F é contínua à direita em cada uma das coordenadas;
- F_3 : $\lim_{x_i \to -\infty} F(x_1, \dots, x_n) = 0$ e $\lim_{x_i \to \infty \forall i} F(x_1, \dots, x_n) = 1$.

As provas de F_1 e F_2 são de simples construção. Para F_3 temos:

Prova. Considere i fixo e o evento $[X_1 \le x_1, \dots, X_{i-1} \le x_{i-1}, X_i \le -m, X_{i+1} \le x_{i+1}, \dots, X_n \le x_n]$. Logo, $F(x_1,\ldots,x_{i-1},-m,x_{i+1},\ldots,x_n) \xrightarrow[m\to\infty]{} 0.$

Por outro lado, note que $[X_1 \leq x_1, \dots, X_{i-1} \leq x_{i-1}, X_i \leq m, X_{i+1} \leq x_{i+1}, \dots, X_n \leq x_n] \xrightarrow[m \to \infty]{} [X_1 \leq x_1, \dots, X_n \leq x_n] \xrightarrow[m \to \infty]{} [X_1 \leq x_1, \dots, X_n \leq x_n] \xrightarrow[m \to \infty]{} [X_1 \leq x_1, \dots, X_n \leq x_n] \xrightarrow[m \to \infty]{} [X_1 \leq x_1, \dots, X_n \leq x_n] \xrightarrow[m \to \infty]{} [X_1 \leq x_1, \dots, X_n \leq x_n] \xrightarrow[m \to \infty]{} [X_1 \leq x_1, \dots, X_n \leq x_n] \xrightarrow[m \to \infty]{} [X_1 \leq x_1, \dots, X_n \leq x_n] \xrightarrow[m \to \infty]{} [X_1 \leq x_1, \dots, X_n \leq x_n] \xrightarrow[m \to \infty]{} [X_1 \leq x_1, \dots, X_n \leq x_n] \xrightarrow[m \to \infty]{} [X_1 \leq x_1, \dots, X_n \leq x_n] \xrightarrow[m \to \infty]{} [X_1 \leq x_1, \dots, X_n \leq x_n] \xrightarrow[m \to \infty]{} [X_1 \leq x_1, \dots, X_n \leq x_n] \xrightarrow[m \to \infty]{} [X_1 \leq x_1, \dots, X_n \leq x_n] \xrightarrow[m \to \infty]{} [X_1 \leq x_1, \dots, X_n \leq x_n] \xrightarrow[m \to \infty]{} [X_1 \leq x_n]$ $x_1, \ldots, X_{i-1} \leq x_{i-1}, X_{i+1} \leq x_{i+1}, \ldots, X_n \leq x_n$] (que é o evento marginal sem o X_i). Já se $x_i \to \infty \ \forall i : \bigcap_{i=1}^n [X_i \leq x_i] \uparrow \Omega \Rightarrow F(x_1, \ldots, x_n) = P\left(\bigcap_{i=1}^n [X_i \leq x_i]\right) \uparrow 1, x_i \to \infty \ \forall i.$

 F_1, F_2 e F_3 não são condições suficientes para que F seja uma função de distribuição acumulada. Vejamos um exemplo que segue F_1, F_2 e F_3 e que não é função de distribuição acumulada:

Seja
$$F_0(x,y) = \begin{cases} 1 & \text{se } x \geq 0, y \geq 0, x+y \geq 1 \\ 0 & \text{c.c.} \end{cases}$$
. Graficamente, temos:

É fácil ver que F_0 segue F_1, F_2 e F_3 , mas vejamos que F_0 atribui probabilidade negativa a certos eventos, a ver $[0 \le X \le 1, 0 \le Y \le 1]$:

$$F_0(0,0) = P(X \le 0, Y \le 0)$$

$$F_0(1,1) = P(X \le 1, Y \le 1)$$

$$F_0(1,1) - F_0(1,0) = P(X \le 1, Y \le 1) - P(X \le 1, Y \le 0) = P(X \le 1, 0 \le Y \le 1)$$

$$F_0(0,1) - F_0(0,0) = P(X \le 0, Y \le 1) - P(X \le 0, Y \le 0) = P(X \le 0, 0 \le Y \le 1)$$

$$F_0(1,1) - F_0(1,0) - F_0(0,1) - F_0(0,0) = P(X \le 1, 0 \le Y \le 1) - P(X \le 0, 0 \le Y \le 1)$$

$$= P(0 \le X \le 1, 0 \le Y \le 1) = -1$$

Defina $\Delta_{k,I}(g(x_1,\ldots,x_k)) = g(x_1,\ldots,x_{k-1},b) - g(x_1,\ldots,x_{k-1},a)$ onde $g:\mathbb{R}^k \to \mathbb{R}; I = (a,b], a \leq b$. Logo, se $I_1 = (a_1,b_1]$ e $I_2 = (a_2,b_2], F:\mathbb{R}^2 \to \mathbb{R}$. Então:

$$\begin{split} \Delta_{1,I_1}(\Delta_{2,I_2}(F(x,y))) &= \Delta_{1,I_1}(F(x,b_2) - F(x,a_2)) \\ &= F(b_1,b_2) + F(a_1,a_2) - F(a_1,b_2) - F(b_1,a_2) \geq 0 \\ &= P(a_1 < X \leq b_1, a_2 < Y \leq b_2) \geq 0 \end{split}$$

No geral:

• F_4 : $\Delta_{1,I_1}\Delta_{2,I_2}\ldots\Delta_{n,I_n}(F(x_1,\ldots,x_n))\geq 0 \ \forall I_k=(a_k,b_k]; a_k\leq b_k, k=1,\ldots,n.$

Definition 1.6. Seja $F : \mathbb{R}^n \to \mathbb{R}$ seguindo F_1, F_2, F_3 e F_4 , logo F é uma função de distribuição acumulada n-dimensional (ou n-variada).

- a) Se o vetor aleatório (X_1,\ldots,X_n) toma valores em um conjunto discreto, o vetor é discreto;
- b) Se para o vetor aleatório (X_1, \ldots, X_n) , F é dada pela forma $F(x_1, \ldots, x_n) = \int_{-\infty}^{x_n} \ldots \int_{-\infty}^{x_1} f(t_1, \ldots, t_n) dt_n \ldots dt_1$, $\forall (x_1, \ldots, x_n)$ onde $f(t_1, \ldots, t_n) \geq 0 \ \forall (t_1, \ldots, t_n) \in \mathbb{R}^n$ então (X_1, \ldots, X_n) é um vetor absolutamente contínuo com densidade f (densidade conjunta).

Definition 1.7. A probabilidade definida em \mathcal{B}^n (borelianos em \mathbb{R}^n) por $P(\underline{X} \in B)$ (com $B \in \mathcal{B}^n$) é chamada de distribuição conjunta de $\underline{X} = (X_1, \dots, X_n)$, com notação: $P_{\overline{X}}(B) = P(\underline{X} \in B)$.

Proposition 1.4.

- a) Se o vetor aleatório \underline{X} é discreto, $P_{X}(B) = \sum_{\{i: x_i \in B\}} P(X_i = x_i) \ \forall B \in \mathcal{B}^n;$
- b) Se \underline{X} é absolutamente contínuo com \overline{de} nsidade f, $P_{\underline{X}}(B) = P(\underline{X} \in B) = \int \dots \int_{B} f(x_1, \dots, x_n) dx_n \dots dx_1$.

1.6 Independência

Definition 1.8. As variáveis aleatórias são (coletivamente) independentes se:

$$P(X_1 \in B_1, \dots, X_n \in B_n) = \prod_{i=1}^n P(X_i \in B_i), \ \forall B_i \in \mathcal{B}^n, \forall i = 1, \dots, n$$

Se X_1, \ldots, X_n são coletivamente independentes, então X_{i1}, \ldots, X_{ik} são coletivamente independentes $\forall k$.

1.6.1Critérios ou consequências

Proposition 1.5.

- a) Se X_1, \ldots, X_n são independentes, então $F_{X_1, \ldots, X_n}(x_1, \ldots, x_n) = \prod_{i=1}^n F_{X_i}(x_i), \forall (x_1, \ldots, x_n) \in \mathbb{R}^n;$ b) Se existem funções F_1, \ldots, F_n tais que $\lim_{n \to \infty} F_i(x) = 1, \forall i \in F_{X_1, \ldots, X_n}(x_1, \ldots, x_n) = \prod_{i=1}^n F_i(x_i), \forall (x_1, \ldots, x_n) \in \mathbb{R}^n \Rightarrow X_1, \ldots, X_n$ são independentes e $F_i = F_{X_i}, \forall i$.

Prova.

• a) Se X_1, \ldots, X_n são coletivamente independentes e tomamos $[X_i \leq x_i] = (-\infty, x_i] = B_i$. Então:

$$F_{X_1...X_n}(x_1,...,x_n) = P(X_1 \le x_1,...,X_n \le x_n)$$

$$= P(X_1 \in B_1,...,X_n \in B_n)$$

$$\stackrel{Ind}{=} \prod_{i=1}^n P(X_i \in B_i)$$

$$= \prod_{i=1}^n P(X_i \le x_i) = \prod_{i=1}^n F_{X_i}(x_i) \ \forall (x_1,...,x_n)$$

• b) Para cada $i, F_{X_i}(x_i) = P(X_i \le x_i) = \lim_{m \to \infty} P(X_1 \le m, ..., X_{i-1} \le m, X_i \le x_i, X_{i+1} \le x$ $m, \ldots, X_n \leq m$), de modo que:

$$F_{X_i}(x_i) = \lim_{m \to \infty} F_{X_1 \dots X_n}(m, \dots, m, x_i, m, \dots, m)$$

$$\stackrel{Hip}{=} \lim_{m \to \infty} \left(\prod_{j=1}^{i-1} F_j(m) \times F_i(x_i) \times \prod_{j=i+1}^n F_j(m) \right)$$

$$= F_i(x_i)$$

Logo, a marginal de X_i é precisamente $F_i, \forall i$. Devemos ainda verificar que $P(X_1 \in B_1, \dots, X_n \in B_n) = 0$ $\prod_{i=1}^n P(X_i \in B_i) \ \forall B_i \in \mathcal{B}^n$. Considere $B_i = (a_i, b_i], a_i \leq b_i, a_i, b_i \in \mathbb{R}$. Temos que:

$$P(X_{1} \in B_{1}, \dots, X_{n} \in B_{n}) = P(a_{1} < X_{1} \leq b_{1}, \dots, a_{n} < X_{n} \leq b_{n})$$

$$= \Delta_{1,I_{1}} \dots \Delta_{n,I_{n}} (F_{X_{1} \dots X_{n}}(x_{1}, \dots, x_{n}))$$

$$\stackrel{Ind}{=} \Delta_{1,I_{1}} \dots \Delta_{n,I_{n}} (F_{X_{1}}(x_{1}) \dots F_{X_{n}}(x_{n}))$$

$$= [F_{X_{1}}(b_{1}) - F_{X_{1}}(a_{1})] \times \dots \times [F_{X_{n}}(b_{n}) - F_{X_{n}}(a_{n})]$$

$$= \prod_{i=1}^{n} P(a_{i} < X_{i} \leq b_{i}) = \prod_{i=1}^{n} P(X_{i} \in B_{i})$$

1.6.2 Caso contínuo

Proposition 1.6.

• a) Se X_1, \ldots, X_n são independentes e possuem densidades f_{X_1}, \ldots, f_{X_n} , respectivamente, então $f_{X_1, \ldots, X_n}(x_1, \ldots, x_n) = \prod_{i=1}^n f_{X_i}(x_i) \ \forall (x_1, \ldots, x_n) \in \mathbb{R}^n$ é a densidade conjunta de X_1, \ldots, X_n ;

• b) Se X_1, \ldots, X_n tem densidade conjunta $f_{X_1, \ldots, X_n}(x_1, \ldots, x_n) : f_{X_1, \ldots, X_n}(x_1, \ldots, x_n) = \prod_{i=1}^n f_i(x_i) \ \forall (x_1, \ldots, x_n) \in \mathbb{R}^n$, onde $f_i(x) \geq 0 \ \forall x : \int_{-\infty}^{\infty} f_i(x) dx = 1 \ \forall i$, então X_1, \ldots, X_n são independentes e f_i é a densidade marginal de X_i $\forall i$.

Prova.

• a) Como consequência da proposição 1.5, temos que: $F_{X_1...X_n}(x_1,...,x_n) = \prod_{i=1}^n F_{X_i}(x_i), \forall (x_1,...,x_n)$. Logo, por definição temos:

$$\prod_{i=1}^{n} F_{X_i}(x_i) = \prod_{i=1}^{n} \int_{-\infty}^{x_i} f_{X_i}(t)dt = \int_{-\infty}^{x_1} \cdots \int_{-\infty}^{x_n} f_{X_1}(t_1) \cdots f_{X_n}(t_n)dt_1 \cdots dt_1$$

Assim, f_{X_1}, \ldots, f_{X_n} é a densidade conjunta.

• **b)** Considere:

$$F_{X_1...X_n}(x_1,\ldots,x_n) = \int_{-\infty}^{x_1} \cdots \int_{-\infty}^{x_n} f_{X_1...X_n}(t_1,\ldots,t_n) dt_n \ldots dt_1$$

$$= \int_{-\infty}^{x_1} \cdots \int_{-\infty}^{x_n} f_1(t_1) \ldots f_n(t_n) dt_n \ldots dt_1$$

$$= \prod_{i=1}^n \int_{-\infty}^{x_i} f_i(t_i) dt_i$$

Defina $F_i(x) = \int_{-\infty}^{x_i} f_i(t) dt$. Sendo assim:

$$\prod_{i=1}^{n} \int_{-\infty}^{x_i} f_i(t_i) dt_i = \prod_{i=1}^{n} F_i(x_i)$$

Note que, pela hipótese nas f_i 's, as F_i 's são acumuladas em particular, e $F_i(x) \to 1, x \to \infty$, e pela proposição 1.5: $F_i(x) = F_{X_i}(x_i)$, logo $f_{X_i} = f_i$.

1.6.3 Propriedades

- a) Se F(x,y) é a função de distribuição acumulada conjunta de (X,Y), então $F_X(x) = \lim_{y\to\infty} F(x,y) = F(x,\infty)$ é a função de distribuição acumulada marginal de X;
- b) Se f(x,y) é a função de densidade conjunta de (X,Y), então $f_X(x) = \int_{-\infty}^{\infty} f(x,y) dy$ é a densidade marginal de X.

Example 1.9.

$$f_{XY}(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left\{-\frac{1}{2(1-\rho^2)} \left[\left(\frac{x-\mu_1}{\sigma_1}\right)^2 + \left(\frac{y-\mu_2}{\sigma_2}\right)^2 - 2\rho\left(\frac{x-\mu_1}{\sigma_1}\right) \left(\frac{y-\mu_2}{\sigma_2}\right) \right] \right\}$$

Sendo $\sigma_i > 0, i = 1, 2; -1 < \rho < 1; \mu_i \in \mathbb{R}, i = 1, 2.$ Logo, $(X, Y) \sim N_2\left(\begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \begin{bmatrix} \sigma_1 & \rho \\ \rho & \sigma_2 \end{bmatrix}\right)$, onde, caso $\rho = 0, X$ e Y são independentes.

1.7 Distribuições de funções de vetores

Seja $\underline{X} = (X_1, \dots, X_n)$ um vetor aleatório em (Ω, A, P) . Seja $Y = g(X_1, \dots, X_n)$. Qual a distribuição de Y?

• Nota 1: Para que Y seja variável aleatória cada $B \in \mathcal{B}$ é necessário que $g^{-1}(B)$ seja mensurável, ou seja:

$$g^{-1}(B) = \{x : g(x) \in B\}$$

$$\downarrow \downarrow$$

$$F_Y(y) = P(q(x) \le y)$$

Generalizando, se $Y = g(X_1, \ldots, X_n)$:

$$F_Y(y) = P(g(X_1, \dots, X_n) \le y) = P((X_1, \dots, X_n) \in B_y) = P_X(B_y)$$

Onde $B_y = \{(x_1, \dots, x_n) : g(x_1, \dots, x_n) \le y\}.$

• Nota 2: Se X for discreto:

$$P_Y(y_j) = \sum_{\{i: g(x_i) = y_j\}} P_{\underline{X}}(x_i)$$

Example 1.10. Sejam $X \sim U(0,1)$ e $Y = -\ln(x)$. Temos que $\forall x$ valor de $X: x \in (-\infty,0] \cup [1,\infty)$ o valor de $f_X(x) = 0$. Seja $x \in (0,1) \Leftrightarrow -\ln(x) \in (0,\infty)$, logo $\forall y$ valor de $Y: y \in (0,\infty)$. Calculemos $F_Y(y) = P(Y \leq y)$:

$$F_Y(y) = P(Y \le y) = P(-\ln(X) \le y)$$

$$= P(\ln(X) \ge -y)$$

$$= P(X \ge e^{-y})$$

$$= 1 - P(X < e^{-y}) = 1 - e^{-y}$$

Assim, temos que $Y \sim Exp(1)$.

Example 1.11. Sejam $X \perp Y; X \sim U(0,1); Y \sim U(0,1); Z = \frac{X}{Y}$. Determinar a distribuição de Z:

Os valores que geram indefinição de Z são: X = Y = 0 e Y = 0, X > 0, assim a boa definição de Z é no espaço $[0 < X \le 1, 0 < Y \le 1]$. Vejamos se esse intervalo contém toda a massa de probabilidade:

$$P([0 < X \le 1, 0 < Y \le 1]) = P(0 < X \le 1) \times P(0 < Y \le 1) = 1 \times 1 = 1$$

Logo, basta avaliar o conjunto $[0 < X \le 1, 0 < Y \le 1] \Rightarrow [Z \in (0, \infty)]$. Assim, calculemos $F_Z(z)$:

$$F_Z(z) = P(Z \le z) = P\left(\frac{X}{Y} \le z\right) \Rightarrow \left[\frac{X}{Y} \le z\right] = \left[X \le zY\right] = \left[\frac{X}{z} \le Y\right]$$

Sabemos que X e Y pertencem ao intervalo $(0,1] \times (0,1]$, de modo que temos duas regiões genéricas para explorar: z < 1 e z > 1. De maneira gráfica, temos as seguintes regiões (considere c > 1):

Podemos ver que a região azul corresponde aos casos onde z > 1 e a região verde corresponde aos casos onde z < 1. Assim:

•
$$z < 1$$
:
$$F_Z(z) = \int_0^z \int_0^{\frac{x}{z}} dy dx = \int_0^z y \Big|_0^{\frac{x}{z}} dx = \int_0^z \frac{x}{z} dx = \frac{1}{z} \times \frac{x^2}{2} \Big|_0^z = \frac{z^2}{2z} = \frac{z}{2}$$
• $z > 1$:
$$F_Z(z) = 1 - \frac{1}{2z}$$

De modo que a distribuição acumulada de Z é dada por:

$$F_Z(z) = \begin{cases} 0 & , z \in (-\infty, 0] \\ \frac{z}{2} & , z \in (0, 1) \\ 1 - \frac{1}{2z} & , z \in [1, \infty) \end{cases}$$

Assim, $F_Z(z) = P\left(\frac{X}{Y} \le z\right) = P((X,Y) \in B_z)$, onde os conjuntos B_z podem ter formatos diferentes dependendo de z. A densidade será dada pela derivada de $F_Z(z)$ com relação a z:

$$f_Z(z) = \begin{cases} 0 & , z \le 0 \\ \frac{1}{2} & , z \in (0,1) \\ \frac{1}{2z^2} & , z \ge 1 \end{cases}$$

1.7.1 Distribuição da Soma

Proposition 1.7.

- a) Se X e Y tem densidade conjunta f(x, y) ⇒ f_{X+Y}(z) = ∫_{-∞}[∞] f(z t, t)dt = ∫_{-∞}[∞] f(t, z t)dt;
 b) Se X ⊥ Y e f_X e f_Y são suas marginais, então f_{X+Y}(z) = ∫_{-∞}[∞] f_X(z-t)f_Y(t)dt = ∫_{-∞}[∞] f_X(t)f_Y(z-t)f_Y(t)dt

Prova. Seja $Z=X+Y\Rightarrow [Z\leq z]=[X+Y\leq z]=[(x,y)\in B_z]$. Considerando $B_z=\{(x,y):x+y\leq z\}$ z} = { $(x, y) : x \le z - y$ }, temos que:

$$F_Z(z) = \int \int_{B_z} f(x, y) dx dy = \int_{-\infty}^{\infty} \int_{-\infty}^{z-y} f(x, y) dx dy$$

Seja y um valor fixo e defina s=x+y, ds=dx. Quando $x=z-y\Rightarrow s=z,$ temos:

$$F_Z(z) = \int_{-\infty}^{\infty} \int_{-\infty}^{z} f(s - y, y) ds dy = \int_{-\infty}^{z} \int_{-\infty}^{\infty} f(s - y, y) dy ds = \int_{-\infty}^{z} g(s) ds$$

E g é a densidade de X + Y, ou seja, $g(s) = f_{X+Y}(s)$.

1.7.2 Convolução

Se f_1 e f_2 são densidades de variáveis aleatórias, sua convolução $f_1 * f_2$ é:

$$f_1 * f_2(x) = \int_{-\infty}^{\infty} f_1(x-t) f_2(t) dt$$

Assim, no caso da soma da proposição 1.7, podemos ver que:

$$f_{X+Y}(z) = f_X * f_Y(z)$$

Independência 1.7.3

Proposition 1.8. Se X_1, \ldots, X_n são variáveis aleatórias independentes, então funções de famílias disjuntas $de \{X_i\}_{i>1}$ também são independentes.

Prova: Caso especial. Considere $Y_i = g_i(X_i)$. É necessário provar que $F_{Y_1...Y_n}(y_1,...,y_n) = \prod_{i=1}^n F_{Y_i}(y_i)$:

$$F_{Y_1...Y_n}(y_1, ..., y_n) = P(g_1(x_1) \le y_1, ..., g_n(x_n) \le y_n)$$

$$= P(X_1 \in g_1^{-1}((-\infty, y_1]), ..., X_n \in g_n^{-1}((-\infty, y_n]))$$

$$= \prod_{i=1}^n P(X_i \in g_i^{-1}((-\infty, y_i]))$$

$$= \prod_{i=1}^n P(g_i(X_i) \in (-\infty, y_i]) = \prod_{i=1}^n F_{Y_i}(y_i)$$

Example 1.12. Considere $X \perp Y$, $X \sim Exp(1)$ e $Y \sim Exp(1)$. Determine:

- a) A distribuição de Z = X + Y e $W = \frac{X}{Y}$;
- b) Mostrar que $Z \perp W$.

a)

Como os valores de X e Y são sempre positivos, os valores de Z e W também o serão. Verifiquemos que $F_{ZW}(z,w) = F_Z(z)F_W(w)$:

$$\begin{split} P[Z \leq z, W \leq w] &= F_{ZW}(z, w) \\ &= \left[X + Y \leq z, \frac{X}{Y} \leq w \right] \\ &= \left[Y \leq z - X, \frac{X}{w} \leq Y \right] \end{split}$$

Vejamos que temos que considerar que $Y \le z - X$ e que $\frac{X}{w} \le Y$, ou seja, temos que avaliar as variáveis no seguinte boreliano:

Onde a região em azul claro são os valores onde $Y \ge \frac{X}{w}$, e a região cinza são os valores em que $Y \le z - X$, o ponto p é dado por:

$$\frac{X}{w} = z - X \Rightarrow z = X \left(\frac{1}{w} + 1\right)$$
$$z = X \left(\frac{w+1}{w}\right)$$
$$X = \frac{zw}{w+1}$$

Assim, estamos interessados em encontrar $P((X,Y) \in \mathcal{B}_{z,w})$, que será:

$$P((X,Y) \in \mathcal{B}_{z,w}) = \int_{0}^{p} \int_{\frac{x}{w}}^{z-x} e^{-x} e^{-y} dy dx$$

$$= \int_{0}^{\frac{zw}{w+1}} e^{-x} \left[-e^{-y} \Big|_{\frac{x}{w}}^{z-x} \right] dx$$

$$= \int_{0}^{\frac{zw}{w+1}} e^{-x} \left[e^{-\frac{x}{w}} - e^{-z+x} \right] dx$$

$$= \int_{0}^{\frac{zw}{w+1}} e^{-x} \left(\frac{1+w}{w} \right) - e^{-z} dx$$

$$= -\frac{w}{(1+w)} e^{-x} \left(\frac{1+w}{w} \right) \Big|_{0}^{\frac{zw}{w+1}} - e^{-z} x \Big|_{0}^{\frac{zw}{w+1}}$$

$$= \frac{w}{1+w} \left(1 - e^{-z} - ze^{-z} \right)$$

Assim, temos que a distribuição de Z e W será dada por:

$$F_{ZW}(z,w) = \begin{cases} 0 & , z \le 0, w \le 0\\ \frac{w}{1+w} \left(1 - e^{-z} - ze^{-z}\right) & , z > 0, w > 0 \end{cases}$$

Que é uma distribuição de probabilidade, pois é absolutamente contínua (e por consequência, contínua à direita) e os seguintes limites são bem definidos:

$$\lim_{w \to 0} F_{ZW}(z, w) = 0$$
$$\lim_{z \to 0} F_{ZW}(z, w) = 0$$
$$\lim_{z \to \infty, w \to \infty} F_{ZW}(z, w) = 1$$

b)

Temos que as distribuições marginais de Z e W serão:

$$F_Z(z) = \lim_{w \to \infty} F_{ZW}(z, w) = 1 - e^{-z} - ze^{-z}$$

 $F_W(w) = \lim_{z \to \infty} F_{ZW}(z, w) = \frac{w}{1 + w}$

E como a distribuição conjunta é o produto das marginais, temos que $Z \perp W$. As densidades serão dadas pelas derivadas da distribuição acumulada conjunta, ou seja:

$$f_{ZW}(z,w) = \frac{\partial}{\partial z} \frac{\partial}{\partial w} \left(\frac{w}{1+w} \left(1 - e^{-z} - ze^{-z} \right) \right)$$
$$= \frac{1}{(1+w)^2} z e^{-z} I_{(0,\infty)}(z) I_{(0,\infty)}(w)$$

1.8 Método do Jacobiano

Seja $g: G_0 \to G$, com $G, G_0 \subseteq \mathbb{R}^n$ e ambos abertos. Então $g(x_1, \ldots, x_n) = (g_1(x_1, \ldots, x_n), \ldots, g_n(x_1, \ldots, x_n)) = (y_1, \ldots, y_n)$, com g sendo bijetiva, ou seja, para todo g valor de g0, existe g1 valor de g2 tal que g(g)3 de g3. Logo g3 admite inversa usual $g^{-1} = g$ 4, com g5.

$$x_1 = h_1(y_1, \dots, y_n)$$

$$\vdots$$

$$x_n = h_n(y_1, \dots, y_n)$$

Vamos supor que existem as derivadas parciais $\frac{\partial x_i}{\partial y_j}$, $\forall i, \forall j$, e que elas são contínuas em G. Desejamos computar: $\int \dots \int_C f_Y(y) dy$, em termos de $\int \dots \int_D f_X(x) dx$.

Example 1.13. Sejam $Y=(Y_1,Y_2)=\left(X_1+X_2,\frac{X_1}{X_2}\right)$. Teremos então que: $y_1=g_1(x_1,x_2)=x_1+x_2$ e $y_2=g_2(x_1,x_2)=\frac{x_1}{x_2}$. Temos assim os valores dos y's em termos dos x's, e desejamos encontrar o contrário:

$$y_1 = x_1 + x_2 \Rightarrow x_1 = y_1 - x_2$$

$$y_2 = \frac{y_1 - x_2}{x_2} \Rightarrow x_2 = \frac{y_1}{y_2 + 1} \Rightarrow x_1 = \frac{y_1 y_2}{y_2 + 1}$$

Agora que temos os valores de X_1 e X_2 em função de Y_1 e Y_2 . Agora, podemos calcular as derivadas parciais de x com relação a y:

$$\frac{\partial x_1}{\partial y_1} = y_2(y_2 + 1)^{-1}$$

$$\frac{\partial x_1}{\partial y_2} = y_1(y_2 + 1)^{-2}$$

$$\frac{\partial x_2}{\partial y_1} = (y_2 + 1)^{-1}$$

$$\frac{\partial x_2}{\partial y_2} = -y_1(y_2 + 1)^{-2}$$

Definimos agora o Jacobiano:

$$J(\underline{\mathbf{x}},\underline{\mathbf{y}}) = \det \begin{bmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_1}{\partial y_2} & \cdots & \frac{\partial x_1}{\partial y_n} \\ \frac{\partial x_2}{\partial y_1} & \frac{\partial x_2}{\partial y_2} & \cdots & \frac{\partial x_2}{\partial y_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial x_n}{\partial y_1} & \frac{\partial x_n}{\partial y_2} & \cdots & \frac{\partial x_n}{\partial y_n} \end{bmatrix}$$
(1)

Dessa forma, o Jacobiano da transformação será:

$$J(\underline{\mathbf{x}},\underline{\mathbf{y}}) = \det \begin{bmatrix} y_2(y_2+1)^{-1} & y_1(y_2+1)^{-2} \\ (y_2+1)^{-1} & -y_1(y_2+1)^{-2} \end{bmatrix}$$
$$= [y_2(y_2+1)^{-1}].[-y_1(y_2+1)^{-2}] - [y_1(y_2+1)^{-2}].[(y_2+1)^{-1}]$$
$$= -y_1(y_2+1)^{-2}$$

Pelo teorema do Jacobiano, temos que:

$$\int \dots \int_A f(x_1, \dots, x_n) dx_1 \dots dx_n = \int \dots \int_{g(A)} f(h_1(y_1, \dots, y_n), \dots, h_n(y_1, \dots, y_n)) |J(\underline{\mathbf{x}}, \underline{\mathbf{y}})| dy_1 \dots dy_n$$

Se f é integrável em A, com $A \subseteq G_0$ e $h = g^{-1}$. Assim, usando os valores do exemplo 1.12, temos que $X_1 \sim exp(1), X_2 \sim exp(1), X_1 \perp X_2$, com densidade conjunta dada por $f_{X_1X_2}(x_1, x_2) = e^{-x_1+x_2}$, de modo que:

$$\begin{split} f(h_1(y_1, y_2), h_2(y_1, y_2)) |J(\underline{\mathbf{x}}, \underline{\mathbf{y}})| &= f\left(\frac{y_1 y_2}{y_2 + 1}, \frac{y_1}{y_2 + 1}\right) \big| - y_1 (y_2 + 1)^{-2} \big| \\ &= \exp\left(-\left[\frac{y_1 y_2}{y_2 + 1} + \frac{y_1}{y_2 + 1}\right]\right) y_1 (y_2 + 1)^{-2} \\ &= e^{-y_1} y_1 (y_2 + 1)^{-2} \end{split}$$

Que é a mesma densidade conjunta encontrada para Z e W no exemplo 1.12.

1.8.1 Notas

1. Sendo f a densidade de X_1, \ldots, X_n e $P((X_1, \ldots, X_n) \in G_0) = 1$, se $Y_i = g_i(x_1, \ldots, x_n)$; $i = 1, \ldots, n$, e $\mathcal{B} \subseteq G$, com \mathcal{B} boreliano. Então:

$$P((Y_1, \dots, Y_n) \in \mathcal{B}) = P((X_1, \dots, X_n) \in h(\mathcal{B}))$$

$$= \int \dots \int_{h(\mathcal{B})} f(x_1, \dots, x_n) dx_1 \dots dx_n$$

$$= \int \dots \int_{\mathcal{B}} f(h_1(x_1, \dots, x_n), \dots, h_n(x_1, \dots, x_n)) |J(\underline{\mathbf{x}}, \underline{\mathbf{y}})| dy_1 \dots dy_n$$

2. $P((Y_1,\ldots,Y_n)\in G)=P((X_1,\ldots,X_n)\in h(G))=P((X_1,\ldots,X_n)\in G_0)=1.$ De modo análogo:

$$P((Y_1, \dots, Y_n) \in \mathcal{B}) = P((Y_1, \dots, Y_n) \in \mathcal{B} \cap G)$$
$$= \int \dots \int_{\mathcal{B} \cap G} f(h(y)) |J(\underline{\mathbf{x}}, \underline{\mathbf{y}})| dy_1 \dots dy_n$$

Theorem 1.3. Sob as condições impostas no início da seção, a densidade conjunta de (Y_1, \ldots, Y_n) é dada por:

$$f_{Y_1...Y_n} = \begin{cases} f_X(h_1(y_1, ..., y_n), ..., h_n(y_1, ..., y_n)) |J(\underline{x}, \underline{y})| & , y \in G \\ 0 & , c.c. \end{cases}$$

1.8.2 Propriedades do Jacobiano

Podemos inverter a ordem das variáveis no Jacobiano, seguindo a seguinte propriedade:

$$J(\underline{\mathbf{x}}, \underline{\mathbf{y}}) = (J(\underline{\mathbf{y}}, \underline{\mathbf{x}}))^{-1} \Big|_{\mathbf{X} = h(y)}$$
(2)

Example 1.14. Retornando ao problema apresentado no exemplo 1.12:

$$y_1 = x_1 + x_2 y_2 = x_1 x_2^{-1}$$

$$\frac{\partial y_1}{\partial x_1} = 1 \frac{\partial y_1}{\partial x_2} = 1$$

$$\frac{\partial y_2}{\partial x_1} = x_2^{-1} \frac{\partial y_2}{\partial x_2} = -x_1 (x_2)^{-2}$$

De modo que podemos agora encontrar o Jacobiano com relação aos valores das derivadas parciais dos y's, e invertê-lo para encontrar o Jacobiano dos x's:

$$J(\underline{y}, \underline{x}) = \det \begin{bmatrix} 1 & 1 \\ x_2^{-1} & -x_1(x_2)^{-2} \end{bmatrix} = (x_2)^{-2}(x_2 + x_1)(-1)$$

$$= \left(\frac{y_2 + 1}{y_1}\right)^2 \left(\frac{y_1}{y_2 + 1} + \frac{y_1 y_2}{y_2 + 1}\right)(-1)$$

$$= \frac{(y_2 + 1)^2}{(y_1)^2} \frac{y_1(y_2 + 1)}{y_2 + 1}(-1)$$

$$= -\frac{(y_2 + 1)^2}{y_1} = -y_1^{-1}(y_2 + 1)^2 = \frac{1}{J(\underline{x}, \underline{y})}$$

Temos que, se $g: G_0 \to G$, com $G_0, G \subseteq \mathbb{R}^n$ abertos, se $g(x_1, \ldots, x_n) = (y_1, \ldots, y_n)$, então g é bijetiva e $h = g^{-1}$.

Example 1.15. Seja $X \sim U(0,1)$ e Y = -ln(X). Temos que $G_0 = (0,1)$, e g(x) = -ln(x), de modo que $G = (0,\infty)$. Então:

$$g^{-1}(y) = h(y) = \exp(-y) = e^{-y}$$

 $\frac{\partial}{\partial y}(g^{-1}(y)) = -e^{-y} = J(x, y)$

Assim, para encontrar $P(Y \leq y)$, teremos:

$$P(Y \le y) = P(-\ln(X) \le y)$$

$$= P(\ln(X) \ge -y)$$

$$= P(X \ge e^{-y})$$

$$= 1 - P(X \le e^{-y})$$

$$= 1 - e^{-y} = F_Y(y) \Longrightarrow f_Y(y) = e^{-y}$$

Pelo Jacobiano, teremos:

$$f_Y(y) = f_X(h(y)).|J| = 1.e^{-y}$$

Theorem 1.4. Sejam G_1, G_2, \ldots, G_k disjuntos tais que $P\left(\underline{X} \in \bigcup_{i=1}^k G_i\right) = 1$, tal que $g\big|_{G_l}$ é 1:1 para todo $l=1,\ldots,k$. Denotamos por $h^{(l)}$ a inversa de g em G_l , e definimos assim o Jacobiano local $J_l(\underline{x},\underline{y})$ como:

$$f_Y(y) = \begin{cases} \sum_{l=1}^k f\left(h^{(l)}(y)\right) |J_l(\underline{x}, \underline{y})| & ; \underline{y} \in G_l \\ 0 & c.c. \end{cases}$$

Example 1.16. Sejam $X \sim N(0,1)$ e $Y = X^2$. Sabemos que $y = x^2$ não é bijetiva, mas podemos considerar a seguinte partição em que essa função seja localmente bijetiva: $G_1=(-\infty,0)$ e $G_2=(0,\infty)$. Então, em $G_1, h^{(1)}(y) = -\sqrt{y}$, e em $G_2, h^{(2)}(y) = \sqrt{y}$, de modo que os jacobianos locais serão:

$$J_1(x,y) = \frac{\partial}{\partial y} h^{(1)}(y) = -\frac{1}{2\sqrt{y}}$$
$$J_2(x,y) = \frac{\partial}{\partial y} h^{(2)}(y) = \frac{1}{2\sqrt{y}}$$

Assim, a densidade de Y será dada por:

$$\begin{split} f_Y(y) &= f_X \left(h^{(1)}(y) \right) \left| J_1(x,y) \right| + f_X \left(h^{(2)}(y) \right) \left| J_2(x,y) \right| \\ &= \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}y \right) \frac{1}{2\sqrt{y}} + \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}y \right) \frac{1}{2\sqrt{y}} \\ &= \begin{cases} \frac{1}{\sqrt{2\pi}} y^{-\frac{1}{2}} e^{-\frac{1}{2}y} & , y > 0 \\ 0 & , c.c. \end{cases} \end{split}$$

Ou seja, $Y \sim Gama\left(\frac{1}{2}, \frac{1}{2}\right)$, ou $Y \sim \chi^2(1)$.

Notas:

- Se X_1, \ldots, X_n são iid, com $X_i \sim N(0,1) \Rightarrow X_1^2 + \ldots + X_n^2 \sim \chi^2(n)$; Se $X \sim N(0,1), Y \sim \chi^2(n)$, com $X \perp Y \Rightarrow \frac{x}{\sqrt{y/n}} \sim t(n)$;
- Sejam X_1, \ldots, X_n , iid, com $X_i \sim N(0,1)$, com $\bar{x} = \frac{\sum_{i=1}^n x_i}{n}, s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i \bar{x})^2$:

 - 1. $\frac{\bar{x}\sqrt{n}}{\sigma} \sim N(0,1);$ 2. $\frac{(n-1)s^2}{\sigma^2} \sim \chi^2(n-1);$ 3. $\frac{\bar{x}\sqrt{n}}{s} \sim t(n-1);$ 4. $\bar{x} \perp s^2.$
- Se $X \sim \chi^2(k), Y \sim \chi^2(n), X \perp Y \Rightarrow \frac{X/k}{Y/n} \sim F(k, n);$ Se $T \sim t(n) \Rightarrow T^2 \sim F(1, n).$

1.9 Exercícios

Exercise 1.1 (BJ 2.1). Seja X o número de caras obtidas em 4 lançamentos de uma moeda honesta. Desenhe o gráfico da função de distribuição de X.

Resposta. Sabemos que $X \sim Bin(4,0.5)$, então o gráfico da distribuição de X será dada por:

Distribuição acumulada

Exercise 1.2 (BJ 2.2). Um ponto é selecionado, ao acaso, do quadrado unitário $[0,1] \times [0,1]$. Seja X a primeira coordenada do ponto selecionado. Faça o gráfico da função de distribuição de X.

Resposta. Como o ponto é escolhido ao acaso, cada uma das coordenadas seguirá uma distribuição uniforme entre 0 e 1, de modo que $X \sim \mathrm{U}(0,1)$, e o gráfico da distribuição será dado por:

Distribuição acumulada

Exercise 1.3 (BJ 2.4). Seja X uma variável aleatória com distribuição de Poisson, com parâmetro $\lambda > 0$. Mostre que a função de distribuição de X é

$$F(X) = \begin{cases} \frac{1}{n!} \int_{\lambda}^{\infty} e^{-t} t^n dt & \text{, se } n \le x < n+1, n = 0, 1, 2, \dots \\ 0 & \text{, se } x < 0 \end{cases}$$

Resposta. Sabemos que a função densidade de probabilidade de X é dada por $f(x) = \frac{e^{-\lambda} \lambda^x}{x!}$. Suponha que, para x = k a função de distribuição anterior é verdadeira. Assim, mostremos por indução que a mesma é válida para x = k + 1.

$$\begin{split} F(k+1) &= \frac{1}{(k+1)!} \int_{\lambda}^{\infty} e^{-t} t^{k+1} dt \Rightarrow \begin{bmatrix} u = t^{k+1} dt & dv = e^{-t} \\ du = (k+1) t^k & v = -e^{-t} \end{bmatrix} \\ &= \frac{1}{(k+1)!} \left[-e^{-t} t^{k+1} \Big|_{\lambda}^{\infty} + \int_{\lambda}^{\infty} e^{-t} (k+1) t^k dt \right] \\ &= \frac{1}{(k+1)!} \left[e^{-\lambda} \lambda^{k+1} + (k+1) \int_{\lambda}^{\infty} e^{-t} t^k dt \right] \\ &= \frac{e^{-\lambda} \lambda^{k+1}}{(k+1)!} + \frac{1}{k!} \int_{\lambda}^{\infty} e^{-t} t^k dt = P(X = k+1) + F(k) \end{split}$$

Assim, F(k+1) = F(k) + P(X=k+1), de modo que a função apresentada é sim a distribuição de X. \square

Exercise 1.4 (BJ 2.5). Suponha que a vida útil de um certo tipo de lâmpada tenha distribuição exponencial com parâmetro λ .

a) Seja T o tempo de vida de uma lâmpada desse tipo. Mostre que:

$$P(T > t + s | T > t) = P(T > s), \forall s, t > 0$$

- b) Suponha que $\lambda = 3$ quando a vida é expressa em dias. Uma lâmpada solitária é ligada em uma sala no instante t = 0. Um dia depois, você entra na sala e fica ali durante 8 horas, saindo no final desse período.
 - (i) Qual a probabilidade de que você entre na sala quando já está escura?
 - (ii) Qual a probabilidade de você entrar na sala com a lâmpada ainda acesa e sair da sala depois da lâmpada queimar?

Resposta. a)

Temos que $[T>t+s]\subset [T>t]\Rightarrow P(T>t+s,T>t)=P(T>t+s)$. Além disso, como $T\sim \operatorname{Exp}(\lambda)\Rightarrow P(T>t)=1-P(T\leq t)=1-F_T(t)=1-(1-e^{-\lambda t})=e^{-\lambda t}$. Desse modo:

$$\begin{split} P(T > t + s | T > t) &= \frac{P(T > t + s, T > t)}{P(T > t)} = \frac{P(T > t + s)}{P(T > t)} \\ &= \frac{e^{-\lambda(t + s)}}{e^{-\lambda t}} \\ &= e^{-\lambda s} = 1 - F_T(s) = P(T > s) \end{split}$$

b)

(i) Caso depois de um dia a lâmpada já esteja apagada, então $T \leq 1$, de modo que:

$$P(T \le 1) = 1 - e^{-3.1} = 1 - e^{-3}$$

(ii) Caso a lâmpada ainda esteja acesa depois de um dia, mas tenha queimado antes de 8 horas ($\frac{1}{3}$ de dia) dado que não tenha queimado no primeiro dia, queremos encontrar a probabilidade do seguinte evento: $P\left(T \le 1 + \frac{1}{3}|T>1\right) = 1 - P\left(T>1 + \frac{1}{3}|T>1\right)$, que utilizando o resultado obtido em (a), temos que será:

$$P\left(T \le 1 + \frac{1}{3}|T > 1\right) = 1 - P\left(T > 1 + \frac{1}{3}|T > 1\right)$$
$$= 1 - P\left(T > \frac{1}{3}\right)$$
$$= 1 - e^{-3 \cdot \frac{1}{3}} = 1 - e^{-1}$$

Exercise 1.5 (BJ 2.6). Seja X uma variável aleatória com densidade:

$$f(x) = \begin{cases} cx^2 & \text{, se } -1 \le x \le 1\\ 0 & \text{, c.c.} \end{cases}$$

- a) Determine o valor da constante c.
- **b)** Ache o valor α tal que $F_X(\alpha) = \frac{1}{4}$.

Resposta. a)

Temos que $\int_{-\infty}^{\infty} f(x)dx = 1 \Rightarrow \int_{-1}^{1} cx^2 dx = 1$. Assim:

$$\int_{-1}^{1} cx^{2} dx = c \int_{-1}^{1} x^{2} dx$$

$$= c \left(\frac{x^{3}}{3} \Big|_{-1}^{1} \right)$$

$$= c \left(\frac{1}{3} + \frac{1}{3} \right) = \frac{2c}{3} \Longrightarrow c = \frac{1}{\frac{2}{3}} = \frac{3}{2}$$

b)

Podemos calcular a distribuição de X como segue:

$$F_X(x) = \frac{3}{2} \int_{-1}^x x^2 dx$$

$$= \frac{3}{2} \left(\frac{x^3}{3} \Big|_{-1}^x \right)$$

$$= \frac{3}{2} \left(\frac{x^3 + 1}{3} \right) = \frac{x^3 + 1}{2}$$

Assim, podemos encontrar o valor α tal que $F_X(\alpha) = \frac{1}{4}$:

$$\frac{x^3 + 1}{2} = \frac{1}{4}$$
$$x^3 + 1 = \frac{1}{2}$$
$$x = \sqrt[3]{-\frac{1}{2}}$$

Exercise 1.6 (BJ 2.7). Uma variável aleatória X tem função de distribuição:

$$F(X) = \begin{cases} 0 & , \text{se } x < 0 \\ x^3 & , \text{se } 0 \le x \le 1 \\ 1 & , \text{se } x > 1 \end{cases}$$

Qual a densidade de X?

Resposta. Podemos encontrar a função densidade de probabilidade de X a partir da derivação em partes da distribuição acumulada:

$$f_X(x) = \frac{\partial}{\partial x} F_X(x) = \frac{\partial}{\partial x} (x^3) = 3x^2$$

De modo que a densidade será:

$$f_X(x) = \begin{cases} 0 & , \text{se } x < 0 \\ 3x^2 & , \text{se } 0 \le x \le 1 \\ 0 & , \text{se } x > 1 \end{cases}$$

Exercise 1.7 (BJ 2.9). Seja X uma variável aleatória com densidade:

$$f(x) = \begin{cases} \frac{1}{(1+x)^2} & \text{se } x > 0\\ 0 & \text{s.c.} \end{cases}$$

Seja $Y = \max(X, c)$, onde c é uma constante maior que 0.

- a) Ache a função de distribuição de Y.
- b) Decomponha F_Y em partes discreta, absolutamente contínua e singular.

Resposta. a)

Como $Y = \max(X, c)$, separaremos em dois casos:

 $\min(\mathbf{X}, \mathbf{c}) = \mathbf{X} \Rightarrow \mathbf{X} \leq \mathbf{c}$:

$$F_Y(y) = \int_0^c \frac{1}{(1+y)^2} dy \Rightarrow \begin{bmatrix} u = (1+y) & du = dy \\ a = 1 & b = c+1 \end{bmatrix}$$
$$= \int_1^{c+1} u^{-2} du$$
$$= -u^{-1} \Big|_1^{c+1} = -(c+1)^{-1} - (-1^{-1}) = 1 - \frac{1}{c+1} = \frac{c}{c+1}$$

Como c é uma constante, esse valor será a probabilidade pontual $P(\max(X, c) = c) = P(Y = c) = \frac{c}{c+1}$. $\min(\mathbf{X}, \mathbf{c}) = \mathbf{c} \Rightarrow \mathbf{X} > \mathbf{c}$:

$$F_Y(y) = P(Y = c) + P(c < Y \le y) = \frac{c}{c+1} + \int_c^y \frac{1}{(1+y)^2} dy \Rightarrow \begin{bmatrix} u = (1+y) & du = dy \\ a = c+1 & b = y+1 \end{bmatrix}$$

$$= \frac{c}{c+1} + \left(\int_{c+1}^{y+1} u^{-2} du \right)$$

$$= \frac{c}{c+1} + \left(-u^{-1} \Big|_{c+1}^{y+1} \right)$$

$$= \frac{c}{c+1} + \frac{1}{c+1} - \frac{1}{y+1}$$

$$= \frac{c+1}{c+1} - \frac{1}{y+1} = 1 - \frac{1}{y+1} = \frac{y}{y+1}$$

Assim, a distribuição de Y será:

$$F_Y(x) = \begin{cases} 0 & \text{, se } x \le 0\\ \frac{c}{c+1} & \text{, se } 0 < x \le c \Rightarrow F_Y(y) = \begin{cases} 0 & \text{, se } y < c\\ \frac{y}{y+1} & \text{, se } y \ge c \end{cases}$$

b)

A parte discreta envolve o salto que ocorre em Y=c, de tamanho $\frac{c}{c+1}$. Os demais pontos são absolutamente contínuos. Assim, não temos partes singulares.

Exercise 1.8 (BJ 2.10). Se X é uma variável aleatória com distribuição exponencial de parâmetro $\lambda > 0$, qual a distribuição da variável aleatória $Y = \min(\lambda, X)$

Resposta. De maneira similar ao caso anterior, como $Y = \min(\lambda, X)$, separaremos Y em dois casos: $\min(\lambda, \mathbf{X}) = \mathbf{X} \Rightarrow \mathbf{X} \leq \lambda$:

$$F_Y(y) = \int_0^y \lambda e^{-\lambda y} dy$$
$$= \frac{\lambda}{\lambda} \left(-e^{-u} \Big|_0^{\lambda y} \right) = 1 - e^{-\lambda y}$$

 $\min(\lambda, \mathbf{X}) = \lambda \Rightarrow \lambda < \mathbf{X} < \infty$:

$$F_Y(y) = P(Y \le \lambda) + P(Y > \lambda) = 1 - e^{-\lambda \lambda} + \int_{\lambda}^{\infty} \lambda e^{-\lambda y} dy$$
$$= 1 - e^{-\lambda^2} + \frac{\lambda}{\lambda} \left(-e^{-u} \Big|_{\lambda^2}^{\infty} \right) = 1 - e^{-\lambda^2} + e^{-\lambda^2} = 1$$

De modo que a distribuição de Y é dada por:

$$F_Y(y) = \begin{cases} 0 & , \text{se } x \le 0\\ 1 - e^{-\lambda y} & , \text{se } 0 < x \le \lambda\\ 1 & , \text{se } x > \lambda \end{cases}$$

Exercise 1.9 (BJ 2.12). Determine a densidade de Y = (b-a)X + a, onde $X \sim U[0,1]$. Faça o gráfico da função de distribuição de Y.

Resposta. Sabemos que $f_X(x) = I_{[0,1]}$ e pela proposição 1.3 temos que quando Y = bX + c então:

$$f_Y(y) = \frac{1}{b} f_X\left(\frac{y-c}{b}\right)$$

Dessa forma, considerando que b = (b - a) e c = (a), então:

$$f_Y(y) = \frac{1}{(b-a)} f_X\left(\frac{y-a}{b-a}\right) = \frac{1}{(b-a)} I_{[0,1]}$$

De modo que $Y \sim U(a, b)$.

Exercise 1.10 (BJ 2.13). Se X tem densidade $f(x) = e^{-2|x|}$, $-\infty < x < \infty$, qual a densidade de Y = |X|?

Resposta. Como $F_Y(y) = P(Y \le y)$, temos que:

$$F_Y(y) = P(Y \le y)$$

$$= P(|X| \le y)$$

$$= \int_{-y}^{y} e^{-2|x|} dx$$

Como $f_X(x)$ é simétrica em torno de zero, temos que:

$$F_Y(y) = 2 \int_0^y e^{-2|x|} dx = 2 \int_0^y e^{-2x} dx$$
$$= \frac{2}{2} \int_0^{2y} e^{-u} du$$
$$= -e^{-u} \Big|_0^{2y}$$
$$= 1 - e^{-2y}$$

Ou seja, $f_Y(y) = \frac{\partial}{\partial y} F_Y(y) = 2e^{-2y} \Rightarrow Y \sim \text{Exp}(2).$

Exercise 1.11 (BJ 2.14). Cinco pontos são escolhidos, independentemente e ao acaso, do intervalo [0,1]. Seja X o número de pontos que pertencem ao intervalo [0,c] onde 0 < c < 1. Qual a distribuição de X?

Resposta. Consideremos inicialmente o caso em que um ponto é escolhido ao acaso do intervalo [0,1]. Desse modo, por ser uniformemente distribuído no intervalo, a probabilidade de que o ponto pertença ao intervalo [0,c] é o comprimento desse intervalo, de modo que:

$$P(X = 0) = (1 - c), P(X = 1) = c$$

Para dois pontos, temos que levar em consideração o caso em que X=1, pois podem ocorrer duas formas diferentes de isso ocorrer: o primeiro ponto pertence ao intervalo e o segundo não, ou o segundo ponto pertence ao intervalo e o segundo não, de modo que:

$$P(X = 0) = (1 - c)^{2}, P(X = 1) = 2c(1 - c), P(X = 2) = c^{2}$$

É fácil perceber o padrão, de modo que $X \sim \text{Bin}(5,c)$.

Exercise 1.12 (BJ 2.15). Determine a distribuição do tempo de espera até o segundo sucesso em uma sequência de ensaios de Bernoulli com probabilidade p de sucesso.

Resposta. Considerando que, nesse caso, o tempo de espera é discreto, vamos levar em consideração que foram necessários n ensaios até o segundo sucesso, que ocorreu com probabilidade p. Assim, ocorreu algum sucesso entre os (n-1) ensaios anteriores, também com probabilidade p, enquanto que os (n-2) ensaios restantes foram fracassos, cada um com probabilidade (1-p).

Seja X o número de ensaios necessários até o segundo sucesso. Como os ensaios são independentes, a probabilidade de que X=2 será:

$$P(X = 2) = (n-1)p^{2}(1-p)^{n-2}$$

Que podemos identificar como sendo proveniente de uma distribuição binomial negativa, que de modo geral descreve a probabilidade de serem necessários X ensaios de Bernoulli independentes com probabilidade de sucesso p até se obter o r-ésimo sucesso, com a seguinte densidade:

$$X \sim \text{NegBin}(r, p) \Rightarrow f_X(x) = {x-1 \choose r-1} p^r (1-p)^{x-r}$$

Exercise 1.13 (BJ 2.17). a)

Demonstre que a função

$$F(x,y) = \begin{cases} 1 - e^{-x - y} & \text{, se } x \ge 0, y \ge 0 \\ 0 & \text{, c.c.} \end{cases}$$

não é função de distribuição de um vetor aleatório.

b)

Mostre que a seguinte função é função de distribuição de algum (X,Y):

$$F(x,y) = \begin{cases} (1 - e^{-x})(1 - e^{-y}) & \text{, se } x \ge 0, y \ge 0\\ 0 & \text{, c.c.} \end{cases}$$

Resposta. a)

Para que F seja uma função de distribuição de probabilidade, é necessário que ela siga as propriedades enunciadas no início do capítulo, a ver:

• F_1 : é não-decrescente em cada uma das coordenadas:

Seja $x_1 \leq x_2$. Teremos que:

$$F(x_1, y) \stackrel{?}{\leq} F(x_2, y)$$

$$1 - e^{-y}e^{-x_1} \stackrel{?}{\leq} 1 - e^{-y}e^{-x_2}$$

$$-e^{-y}e^{-x_1} \stackrel{?}{\leq} -e^{-y}e^{-x_2}$$

$$e^{-x_1} \stackrel{?}{>} e^{-x_2}$$

Como $x_1 \leq x_2 \Rightarrow e^{-x_1} \geq e^{-x_2}$, então a função é não decrescente em X. Para Y se obtém de maneira análoga.

• F_2 : é contínua à direita:

Como a função F é absolutamente contínua no espaço amostral de X e Y, ela será também contínua à direita.

• F_3 : limites do espaço amostral:

$$\lim_{x \to 0} F(x, y) = 0 \quad \lim_{y \to 0} F(x, y) = 0 \quad \lim_{x \to \infty, y \to \infty} F(x, y) = 1$$

• $F_4: \Delta_{1,I_1}\Delta_{2,I_2}\dots\Delta_{n,I_n}(F(x_1,\dots,x_n)) \ge 0 \ \forall I_k = (a_k,b_k]; a_k \le b_k, k = 1,\dots,n.$

$$\begin{split} P(a < X \le b, c < Y \le d) &= F(b, d) - F(a, d) - F(b, c) + F(a, c) \ge 0 \\ &= 1 - e^{-b - d} - 1 + e^{-a - d} - 1 + e^{-b - c} + 1 - e^{-a - c} \ge 0 \\ &= e^{-a - d} + e^{-b - c} - e^{-b - d} - e^{-a - c} \ge 0 \\ e^{-a - d} + e^{-b - c} > e^{-b - d} + e^{-a - c} \end{split}$$

E como a < b e c < d, temos que $e^{-a-d} < e^{-b-d}$ e $e^{-b-c} < e^{-a-c}$, de modo que a última desigualdade é falsa. Assim, a avaliação dessa probabilidade será negativa, para qualquer conjunto de pontos $(a,b] \in X$, $(c,d] \in Y$, o que mostra que F não é uma função distribuição de probabilidade.

b)

Semelhante ao caso anterior, vejamos se F segue as propriedades F_1 a F_4 :

• F_1 : é não-decrescente em cada uma das coordenadas:

Como podemos separar essa distribuição em um produto de duas partes, uma que depende apenas de x e outra que depende apenas de y, podemos analisar cada caso separadamente. Como $(1-e^{-x})$ é não-decrescente em $[0, \infty)$, ela será não-decrescente em y também.

• F_2 : é contínua à direita:

Como a função F é absolutamente contínua no espaço amostral de X e Y, ela será também contínua à direita.

• F_3 : limites do espaço amostral:

$$\lim_{x \to 0} F(x, y) = 0 \quad \lim_{y \to 0} F(x, y) = 0 \quad \lim_{x \to \infty, y \to \infty} F(x, y) = 1$$

• $F_4: \Delta_{1,I_1}\Delta_{2,I_2}\dots\Delta_{n,I_n}(F(x_1,\dots,x_n)) \ge 0 \ \forall I_k = (a_k,b_k]; a_k \le b_k, k = 1,\dots,n.$

$$\begin{split} P(a < X \le b, c < Y \le d) &= F(b, d) - F(a, d) - F(b, c) + F(a, c) \ge 0 \\ &= (1 - e^{-b})(1 - e^{-d}) - (1 - e^{-a})(1 - e^{-d}) - (1 - e^{-b})(1 - e^{-c}) + (1 - e^{a})(1 - e^{c}) \ge 0 \\ &= (1 - e^{-b})(1 - e^{-d} - 1 + e^{-c}) - (1 - e^{-a})(1 - e^{-d} - 1 + e^{-c}) \ge 0 \\ &= (1 - e^{-b})(e^{-c} - e^{-d}) - (1 - e^{-a})(e^{-c} - e^{-d}) \ge 0 \\ &(1 - e^{-b})(e^{-c} - e^{-d}) \ge (1 - e^{-a})(e^{-c} - e^{-d}) \end{split}$$

E como a < b, temos que $(1 - e^{-a}) < (1 - e^{-b})$, de modo que a última desigualdade é verdadeira. Assim, a avaliação dessa probabilidade será positiva, para qualquer conjunto de pontos $(a,b] \in X$, $(c,d] \in Y$, o que mostra que F é uma função distribuição de probabilidade.

Exercise 1.14 (BJ 2.18). Uma urna contém três bolas numeradas 1, 2 e 3. Duas bolas são retiradas sucessivamente da urna, ao acaso e sem reposição. Seja X o número da primeira bola tirada e Y o número da segunda.

- a) Descreva a distribuição conjunta de X e Y.
- **b)** Calcule P(X < Y).

Resposta. a)

Temos que a tabela da distribuição conjunta de X e Y será:

X	1	2	3
1	0	1/6	1/6
2	1/6	0	1/6
3	1/6	1/6	0

Assim, podemos ver que a distribuição conjunta será:

$$f_{XY}(i,j) = P(X=i, Y=j) = \begin{cases} 0 & \text{se } i=j, \ i, j=1, 2, 3 \\ \frac{1}{6} & \text{se } i \neq j \end{cases}$$

b)

Temos que P(X < Y) será dado por:

$$P(X < Y) = P(X = 1, Y = 2) + P(X = 1, Y = 3) + P(X = 2, Y = 3) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2}$$

Exercise 1.15 (BJ 2.19). Dizemos que a distribuição conjunta de X_1, \ldots, X_n é invariante para permutações se toda permutação das X_i tem a mesma distribuição, i.e., se $(X_{\pi_1}, \ldots, X_{\pi_n}) \sim (X_1, \ldots, X_n)$ para toda permutação (π_1, \ldots, π_n) do vetor $(1, \ldots, n)$.

a) Mostre que se $(X,Y) \sim (Y,X)$ e X e Y possuem densidade conjunta f(x,y), então $P(X < Y) = P(X > Y) = \frac{1}{2}$, com P(X = Y) = 0.

b) Generalize o item (a), provando que se a distribuição conjunta de X_1, \ldots, X_n é invariante para permutações e X_1, \ldots, X_n possuem densidade conjunta $f(x_1, \ldots, x_n)$, então:

$$P(X_1 < X_2 < \dots < X_n) = P(X_{\pi_1} < X_{\pi_2} < \dots < X_{\pi_n}) = \frac{1}{n!}$$

e $P(X_i = X_j \text{ para algum par } (i, j) \text{ tal que } i \neq j) = 0$

Resposta. a)

Sabemos que $(X,Y) \sim (Y,X)$, de modo que $f(x,y) = f(y,x) \Rightarrow P(X>Y) = P(Y<X)$, assim:

$$\left. \begin{array}{ll} P(X>Y) & = \int_{-\infty}^{\infty} \int_{-\infty}^{y} f(x,y) dx dy \\ P(YY) + P(Y$$

E como P(X > Y) = P(Y < X), temos que $2P(X > Y) = 1 \Rightarrow P(X > Y) = \frac{1}{2} \Rightarrow P(Y < X) = \frac{1}{2}$. Por fim, como o evento [X = Y] é complementar de $[X < Y] \cup [X > Y] \Rightarrow P(X = Y) = 1 - P(X < Y) - P(X > Y) = 0$.

b)

Como todas as π_i permutações possíveis são igualmente distribuídas, temos que $P(X_{\pi_{i1}} < \ldots < X_{\pi_{in}}) = P(X_1 < \ldots < X_n), \forall \pi_i$. Assim, para que consideremos todas as n! combinações possíveis de permutações de π_i , teremos que:

$$\sum_{j} P(X_{\pi_{j1}} < \dots < X_{\pi_{jn}}) = n! P(X_1 < \dots < X_n) = 1$$

$$P(X_1 < \dots < X_n) = \frac{1}{n!}$$

E novamente, o complementar desse conjunto será que algum $X_i = X_j$ para algum par $(i, j), i \neq j$, então $P(X_i = X_j) = 1 - n! P(X_1 < \ldots < X_n) = 1 - \frac{n!}{n!} = 0$.

Exercise 1.16 (BJ 2.20). Seleciona-se, ao acaso, um ponto do círculo unitário, dado por:

$$\{(x,y): x^2+y^2 \le 1\}$$

Sejam X e Y as coordenadas do ponto selecionado.

- a) Qual a densidade conjunta de X e Y?
- **b)** Determine P(X < Y), P(X > Y) e P(X = Y).

Resposta. a)

Chamemos o círculo unitário de A. Como o ponto é escolhido ao acaso dentro de A, temos que a densidade conjunta de X e Y será:

$$f(x,y) = \frac{1}{\operatorname{Área}(A)} I_A(x,y)$$

Onde $I_A(x,y)$ é uma função indicadora, que toma valor 0 caso $\{(x,y) \notin A\}$ e 1 caso $\{(x,y) \in A\}$. E como A é um círculo de raio 1, sabemos que sua área será π , de modo que:

$$f(x,y) = \frac{1}{\pi} I_A(x,y)$$

b)

É fácil ver que (X,Y) é invariante à permutação (já que a reta Y=X corta o espaço amostral de maneira simétrica em (X,Y)), de modo que podemos usar os resultados obtidos anteriormente para ver que:

$$P(X < Y) = P(X > Y) = \frac{1}{2} \quad P(X = Y) = 0$$

Exercise 1.17 (BJ 2.21). Seleciona-se, ao acaso, um ponto do quadrado unitário, dado por:

$$\{(x,y) \ : \ 0 \le x \le 1, 0 \le y \le 1\}$$

Sejam X e Y as coordenadas do ponto selecionado.

- a) Qual a densidade conjunta de X e Y?
- **b)** Calcule $P(\left|\frac{Y}{X} 1\right| \le \frac{1}{2})$;
- c) Calcule $P\left(Y \ge X | Y \ge \frac{1}{2}\right)$

Resposta. a)

Seja A o quadrado unitário. Assim como no caso anterior, temos que a densidade conjunta será dada por:

$$f(x,y) = \frac{1}{\text{Área}(A)} I_{[0,1]}(x,y) = I_{[0,1]}(x,y)$$

b)

Temos que levar em consideração que:

$$P\left(\left|\frac{Y}{X} - 1\right| \le \frac{1}{2}\right) = P\left(\frac{x}{2} \le Y \le \frac{3x}{2}\right)$$

Que pode ser representado por encontrar a área hachurada no diagrama a seguir:

Que resulta na seguinte integral:

$$P\left(\frac{x}{2} \le Y \le \frac{3x}{2}\right) = \int_{0}^{2/3} \int_{x/2}^{3x/2} 1 dy dx + \int_{2/3}^{1} \int_{x/2}^{1} 1 dy dx$$

$$= \int_{0}^{2/3} \left(y\Big|_{x/2}^{3x/2}\right) dx + \int_{2/3}^{1} \left(y\Big|_{x/2}^{1}\right) dx$$

$$= \int_{0}^{2/3} x dx + \int_{2/3}^{1} 1 - \frac{x}{2} dx$$

$$= \left(\frac{x^{2}}{2}\Big|_{0}^{2/3}\right) + \left(x - \frac{x^{2}}{4}\Big|_{2/3}^{1}\right)$$

$$= \frac{4}{9} + 1 - \frac{1}{4} - \frac{2}{3} + \frac{4}{36}$$

$$= \frac{5}{12}$$

c)

Aqui temos o condicionante que restringe o espaço amostral, de forma que teremos que encontrar a área hachurada a seguir, dividida pela área de $Y \ge 1/2$:

Desse modo, teremos:

$$P\left(Y \ge X, Y \ge \frac{1}{2}\right) = \int_0^{1/2} \int_{1/2}^1 1 dy dx + \int_{1/2}^1 \int_x^1 1 dy dx$$

$$= \int_0^{1/2} \left(y\Big|_{1/2}^1\right) dx + \int_{1/2}^1 \left(y\Big|_x^1\right) dx$$

$$= \int_0^{1/2} \frac{1}{2} dx + \int_{1/2}^1 (1 - x) dx$$

$$= \left(\frac{x}{2}\Big|_0^{1/2}\right) + \left(x - \frac{x^2}{2}\Big|_{1/2}^1\right)$$

$$= \frac{1}{4} + 1 - \frac{1}{2} - \frac{1}{2} + \frac{1}{8}$$

$$= \frac{3}{8}$$

E podemos encontrar o valor da probabilidade condicional pelo Teorema de Bayes:

$$P\left(Y \ge X | Y \ge \frac{1}{2}\right) = \frac{P\left(Y \ge X, Y \ge \frac{1}{2}\right)}{P\left(Y \ge \frac{1}{2}\right)} = \frac{3/8}{1/2} = \frac{3}{4}$$

Exercise 1.18 (BJ 2.22). (Critério para independência no caso discreto)

a) Sejam X e Y variáveis aleatórias discretas, tomando respectivamente os valores x_1, x_2, \ldots e y_1, y_2, \ldots Prove que X e Y são independentes se, e somente se:

$$P(X = x_i, Y = y_i) = P(X = x_i)P(Y = y_i)$$

para todo i, j.

b) Mostre que, se X e Y tomam somente um número finito de valores, digamos x_1, \ldots, x_m e y_1, \ldots, y_n , então X e Y são independentes se:

$$P(X = x_i, Y = y_i) = P(X = x_i)P(Y = y_i)$$

para $1 \le i \le m-1, 1 \le j \le n-1$, ou seja, para provar independência, basta verificar (m-1)(n-1) equações.

c) Generalize o item (a) para o caso de n variáveis aleatórias.

Resposta. a) \Box

Exercise 1.19 (BJ 2.24). Ache a densidade conjunta e as distribuições marginais das variáveis aleatórias X e Y cuja função de distribuição conjunta está no exercício 1.13 (b). X e Y são independentes?

Resposta. Temos que $F(x,y) = (1 - e^{-x})(1 - e^{-y})$. Podemos encontrar a densidade conjunta a partir das derivadas parciais da acumulada:

$$f(x,y) = \frac{\partial}{\partial x} \frac{\partial}{\partial y} (1 - e^{-x}) (1 - e^{-y})$$
$$= \frac{\partial}{\partial x} (1 - e^{-x}) (-e^{-y})$$
$$= (-e^{-x}) (-e^{-y})$$
$$= e^{-x} e^{-y}$$

Com isso, as distribuições marginais serão dadas por:

$$f_X(x) = \int_0^\infty e^{-x} e^{-y} dy = e^{-x}$$
$$f_Y(y) = \int_0^\infty e^{-x} e^{-y} dx = e^{-y}$$

Podemos assim ver que X e Y são independentes, já que $f_{X,Y}(x,y) = f_X(x)f_Y(y)$

Exercise 1.20 (BJ 2.25). Determine as distribuições marginais das variáveis aleatórias discretas X e Y definidas no exercício 1.14. X e Y são independentes?

Resposta. Temos que $P(X=i,Y=j)=\frac{1}{6}$ caso $i\neq j, i,j=1,2,3$. As marginais serão as somas parciais para cada valor, resultando em:

$$P(X = x) = \sum_{j=1}^{3} P(X = x, Y = j) = \begin{cases} \frac{1}{3} & x = 1, 2, 3\\ 0 & \text{c.c.} \end{cases}$$
$$P(Y = y) = \sum_{i=1}^{3} P(X = i, Y = y) = \begin{cases} \frac{1}{3} & y = 1, 2, 3\\ 0 & \text{c.c.} \end{cases}$$

Assim, podemos ver que X e Y não são independentes, já que $P(X=i,Y=j) \neq P(X=i)P(Y=j)$.

Exercise 1.21 (BJ 2.26). Demonstre que se f(x, y) é a densidade conjunta de X e Y, então X tem densidade dada por:

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$$

Resposta. Sabemos que podemos encontrar a acumulada marginal de X, a partir da sua densidade conjunta, integrando da seguinte forma:

$$F_X(x) = \int_{-\infty}^x \int_{-\infty}^\infty f(u, y) dy du$$

E que, a partir da acumulada podemos chegar na densidade por meio de derivação:

$$f_X(x) = \frac{\partial}{\partial x} F_X(x) = \frac{\partial}{\partial x} \left(\int_{-\infty}^x \int_{-\infty}^\infty f(u, y) dy du \right)$$

E, pelo Teorema Fundamental do Cálculo, temos que a derivada de uma integral definida é o valor da sua derivada avaliada no limite superior da integral, de modo que teremos:

$$f_X(x) = \frac{\partial}{\partial x} \left(\int_{-\infty}^x \int_{-\infty}^\infty f(u, y) dy du \right)$$
$$= \int_{-\infty}^\infty f(x, y) dy$$

Exercise 1.22 (BJ 2.28). Sejam X e Y variáveis aleatórias independentes, com $X \sim U(0,a)$ e $Y \sim U(a,a+b)$, onde a>0,b>0. Qual a probabilidade de que os três segmentos [0,X],[X,Y],[Y,a+b] possam formar um triângulo?

Resposta. Sabemos que $f_X(x)=\frac{1}{a}I_{[0,a]}(x)$ e $f_Y(y)=\frac{1}{b}I_{[a,b]}(y)$. Como X e Y são independentes, a distribuição conjunta será o produto das distribuições marginais, de modo que:

$$f(x,y) = \frac{1}{ab} I_{[0,a] \times [a,b]}(x,y)$$

Para que os segmentos [0, X], [X, Y], [Y, a + b] formem um triângulo, eles devem preservar a desigualdade triangular, ou seja:

$$(X - 0) + (Y - X) \ge (a + b - Y)$$

$$Y \ge \frac{a + b}{2}$$

$$(X - 0) + (a + b - Y) \ge (Y - X)$$

$$Y \le X + \frac{a + b}{2}$$

$$(Y - X) + (a + b - Y) \ge (X - 0)$$

$$X \le \frac{a + b}{2}$$

Ou seja, seja A o evento em que ocorre um triângulo. A probabilidade de A será dividida em dois casos: a>b e a<bbr/>b:

 $\mathbf{b} > \mathbf{a} \Rightarrow \frac{a+b}{2} > a$:

$$P(A) = \int_0^a \int_{\frac{a+b}{2}}^{\frac{a+b}{2}+x} \frac{1}{ab} dy dx$$
$$= \frac{1}{ab} \int_0^a \int_{\frac{a+b}{2}}^{\frac{a+b}{2}+x} 1 dy dx$$
$$= \frac{1}{ab} \int_0^a x dx = \frac{1}{ab} \frac{a^2}{2}$$
$$= \frac{a}{2b}$$

 $\mathbf{b} < \mathbf{a} \Rightarrow \frac{a+b}{2} < a \text{ e } \frac{a-b}{2} > 0$:

$$P(A) = \int_{\frac{a-b}{2}}^{\frac{a+b}{2}} \int_{0}^{\frac{a+b}{2}+x} \frac{1}{ab} dy dx$$

$$= \frac{1}{ab} \int_{\frac{a-b}{2}}^{\frac{a+b}{2}} \left(\frac{b-a}{2} + x\right) dx$$

$$= \frac{1}{ab} \left(\frac{b-a}{2}x + \frac{x^2}{2}\Big|_{\frac{a-b}{2}}^{\frac{a+b}{2}}\right)$$

$$= \frac{b}{2a}$$

De modo que:

$$P(A) = \frac{\min(a, b)}{2\max(a, b)}$$

Exercise 1.23 (BJ 2.29). Demonstre: se a variável aleatória X é independente de si mesma, então X é constante com probabilidade 1 (i.e., existe uma constante c tal que P(X=c)=1).

Resposta. Vamos provar por absurdo: suponha que X não é constante, ou seja, existem pelo menos dois valores (chamemos de c_1 e c_2) que tomem valores de probabilidade não nula em X. Como $X \perp X$, teremos que:

$$P(X = c_1, X = c_2) = P(X = c_1)P(X = c_2) = 0$$

 $P(X = c_1, X = c_1) = (P(X = c_1))^2 = P(X = c_1) = 0$ ou 1
 $P(X = c_2, X = c_2) = (P(X = c_2))^2 = P(X = c_2) = 0$ ou 1

Mas, como $P(X = c_1) + P(X = c_2) = 1$, ou $P(X = c_1) = 0$ ou $P(X = c_2) = 0$, de modo que uma das constantes deve ter probabilidade igual a 0, de modo que c é único.

Exercise 1.24 (BJ 2.30). Suponha que as vidas úteis T_1 e T_2 de máquinas I e II sejam variáveis aleatórias independentes tendo distribuições exponenciais com, respectivamente, parâmetros λ_1 e λ_2 . Um inspetor escolhe uma das máquinas ao acaso, cada uma tendo a mesma probabilidade de ser escolhida, e depois observa a máquina escolhida durante a vida útil dela.

- a) Determine a densidade de T, onde T é a vida observada.
- b) Suponha que o inspetor parou de observar a máquina depois de 100 horas, com a máquina ainda funcionando. Qual a probabilidade condicional da máquina escolhida ter sido a máquina I?
- c) Qual a distribuição de T se $\lambda_1 = \lambda_2 = \lambda$?

Resposta. a)

Como $T_1 \sim \text{Exp}(\lambda_1)$ e $T_2 \sim \text{Exp}(\lambda_2)$, temos que as acumuladas e densidades dessas variáveis aleatórias serão:

$$F_{T_1}(t) = 1 - e^{-\lambda_1 t} \quad f_{T_1}(t) = \lambda_1 e^{-\lambda_1 t}$$

$$F_{T_2}(t) = 1 - e^{-\lambda_2 t} \quad f_{T_2}(t) = \lambda_2 e^{-\lambda_2 t}$$

E além disso, seja M_i o evento em que a máquina i foi escolhida. Como as probabilidades serão as mesmas, teremos que:

$$P(M) = \begin{cases} \frac{1}{2} & M = I\\ \frac{1}{2} & M = II \end{cases}$$

Levando isso em consideração, podemos utilizar a lei das probabilidades totais para encontrar a distribuição de T:

$$F_T(t) = P(T \le t) = P(T \le t | M = I)P(M = I) + P(T \le t | M = II)P(M = II)$$

$$= \frac{1}{2}F_{T_1}(t) + \frac{1}{2}F_{T_2}(t)$$

$$= \frac{1}{2}(1 - e^{-\lambda_1 t} + 1 - e^{-\lambda_2 t})$$

$$= 1 - \frac{1}{2}\left(e^{-\lambda_1 t} + e^{-\lambda_2 t}\right)$$

E a densidade será obtida derivando com relação a t:

$$f_T(t) = \frac{\partial}{\partial t} F_T(t)$$

$$= \frac{\partial}{\partial t} \left(1 - \frac{1}{2} \left(e^{-\lambda_1 t} + e^{-\lambda_2 t} \right) \right)$$

$$= -\frac{1}{2} \left(\frac{\partial}{\partial t} \left(e^{-\lambda_1 t} \right) + \frac{\partial}{\partial t} \left(e^{-\lambda_2 t} \right) \right)$$

$$= -\frac{1}{2} \left(-\lambda_1 e^{-\lambda_1 t} - \lambda_2 e^{-\lambda_2 t} \right)$$

$$= \frac{1}{2} \left(\lambda_1 e^{-\lambda_1 t} + \lambda_2 e^{-\lambda_2 t} \right)$$

b)

Podemos encontrar essa probabilidade condicional por meio da inversão da condição, utilizando o teorema de Bayes:

$$\begin{split} P(M=I|T>100) &= \frac{P(M=I,T>100)}{P(T>100)} = \frac{P(T>100|M=I)P(M=I)}{P(T>100)} \\ &= \frac{\frac{1}{2}(1-F_{T_1}(100))}{1-F_T(100)} \\ &= \frac{\frac{1}{2}e^{-100\lambda_1}}{\frac{1}{2}\left(e^{-100\lambda_1}+e^{-100\lambda_2}\right)} \\ &= \frac{e^{-100\lambda_1}}{e^{-100\lambda_1}+e^{-100\lambda_2}} \end{split}$$

c)

Como $\lambda_1 = \lambda_2 = \lambda$, teremos que:

$$F_T(t) = 1 - \frac{1}{2} \left(e^{-\lambda t} + e^{-\lambda t} \right) = 1 - e^{-\lambda t}$$
$$f_T(t) = \frac{1}{2} \left(\lambda e^{-\lambda t} + \lambda e^{-\lambda t} \right) = \lambda e^{-\lambda t}$$

Assim, podemos ver que nesse caso $T \sim \text{Exp}(\lambda)$.

Exercise 1.25 (BJ 2.31). Suponhamos que os tempos que dois estudantes demoram para resolverem um problema sejam independentes e exponenciais, com parâmetro $\lambda > 0$. Calcule a probabilidade do primeiro estudante demorar pelo menos duas vezes o tempo do segundo para resolver o problema.

Resposta. Sejam T_1 e T_2 os tempos necessários para que os estudantes 1 e 2 (respectivamente) resolvam o problema. Temos que $T_1 \sim \text{Exp}(\lambda), T_2 \sim \text{Exp}(\lambda), T_1 \perp T_2$, de modo que $f(t_1, t_2) = \lambda^2 e^{-\lambda(t_1 + t_2)}$:

$$P(T_1 > 2T_2) = \int_0^\infty \int_{2t_2}^\infty f(t_1, t_2) dt_1 dt_2$$

$$\stackrel{\text{ind}}{=} \int_0^\infty \int_{2t_2}^\infty \lambda^2 e^{-\lambda t_1} e^{-\lambda t_2} dt_1 dt_2$$

$$= \int_0^\infty \lambda e^{-\lambda t_2} \int_{2t_2}^\infty \lambda e^{-\lambda t_1} dt_1 dt_2$$

$$= \int_0^\infty \lambda e^{-\lambda t_2} \left(-e^{-\lambda t_1} \Big|_{2t_2}^\infty \right) dt_2$$

$$= \int_0^\infty \lambda e^{-\lambda t_2} e^{-2\lambda t_2} dt_2$$

$$= \int_0^\infty \lambda e^{-3\lambda t_2} dt_2$$

$$= \frac{\lambda}{3\lambda} \left(-e^{-3\lambda t_2} \Big|_0^\infty \right)$$

$$= \frac{1}{3}$$

Exercise 1.26 (BJ 2.32). Um ponto é selecionado, ao acaso, do seguinte quadrado:

Sejam X e Y as coordenadas do ponto selecionado.

- a) Qual a densidade conjunta de X e Y?
- **b)** Obtenha a densidade marginal de X.
- c) X e Y são independentes?

Resposta. a)

Chamemos de A o quadrado. Como a escolha do ponto é ao acaso, temos que a densidade conjunta será:

$$f(x,y) = \frac{1}{\text{Área}(A)} I_A(x,y) = \frac{1}{2} I_A(x,y)$$

b)

Sabemos que $f_X(x) = \int_{-\infty}^{\infty} f(x,y) dy$, porém temos que verificar que as equações que limitam Y mudam, conforme X muda. Assim, serão dois casos:

$$\begin{cases} -x - 1 \le y \le x + 1 & \text{, se } -1 \le x < 0 \\ x - 1 \le y \le -x + 1 & \text{, se } 0 \le x \le 1 \end{cases}$$

Assim, a densidade marginal de X será dada por:

$$\begin{split} f_X(x) &= \int_{-x+1}^{x+1} \frac{1}{2} dy I_{[-1,0)}(x) + \int_{x-1}^{-x+1} \frac{1}{2} dy I_{[0,1]}(x) \\ &= \frac{1}{2} \left(y \Big|_{-x+1}^{x+1} \right) I_{[-1,0)}(x) + \frac{1}{2} \left(y \Big|_{x-1}^{-x+1} \right) I_{[0,1]}(x) \\ &= \frac{1}{2} (2x+2) I_{[-1,0)}(x) + \frac{1}{2} (-2x+2) I_{[0,1]}(x) \\ &= \begin{cases} x+1 & -1 \le x < 0 \\ -x+1 & 0 \le x \le 1 \end{cases} \end{split}$$

c)

Podemos obter a densidade marginal de Y de maneira similar, em que teremos:

$$f_Y(y) = \begin{cases} y+1 & -1 \le y < 0 \\ -y+1 & 0 \le y \le 1 \end{cases}$$

E com isso, podemos facilmente ver que $f(x,y) \neq f_X(x) f_Y(y)$, de modo que X e Y não serão independentes.

Exercise 1.27 (BJ 2.33). Suponhamos que X e Y tenham distribuição conjunta dada pela seguinte tabela:

X Y	1	2	3
1	0	1/5	0
2	1/5	1/5	1/5
3	0	1/5	0

(Por exemplo, P(X = 1, Y = 1) = 0 e P(X = 2, Y = 1) = 1/5.)

- a) Determine as distribuições marginais de X e Y.
- b) X e Y são independentes? Por quê?

Resposta. a)

Temos que as marginais serão dadas por:

$$P(X = x) = \sum_{i=1}^{3} P(X = x, Y = i) = \begin{cases} \frac{1}{5} & , x = 1\\ \frac{3}{5} & , x = 2\\ \frac{1}{5} & , x = 3 \end{cases}$$
$$P(Y = y) = \sum_{i=1}^{3} P(X = i, Y = y) = \begin{cases} \frac{1}{5} & , y = 1\\ \frac{3}{5} & , y = 2\\ \frac{1}{5} & , y = 3 \end{cases}$$

b)

É fácil ver que X e Y não são independentes, pois $P(X=i,Y=j) \neq P(X=i)$ $P(Y=j), \forall i,j=1,2,3.$

Exercise 1.28 (BJ 2.34). Sejam X e Y variáveis aleatórias independentes com distribuição uniforme em $[\theta - 1/2, \theta + 1/2]$, onde $\theta \in \mathbb{R}$. Prove que a distribuição de X - Y não depende de θ , achando sua densidade.

Exercise 1.29 (BJ 2.35). Sejam X_1, \ldots, X_n variáveis aleatórias independentes com densidade comum de Rayleigh com parâmetro $\theta > 0$:

$$f(x) = \begin{cases} \frac{x}{\theta^2} \exp\left(-\frac{x^2}{2\theta^2}\right) & x > 0\\ 0 & x \le 0 \end{cases}$$

- a) Determine a densidade conjunta de Y_1, \ldots, Y_n , em que $Y_i = X_i^2$.
- **b)** Qual a distribuição de $U = \min_{1 \le i \le n} X_i$?
- c) Calcule a distribuição de $Z = \frac{X_1}{X_2}$.

Resposta. a)

Como os X_i 's são independentes, sabemos que os Y_i 's também o serão, de modo que $f_{Y_1...Y_n}(y_1,...,y_n) = \prod_{i=1}^n f_{Y_i}(y_i)$, que podemos encontrar como segue:

$$F_Y(y) = P(X^2 \le y) = P(X \le \sqrt{y})$$

$$= \int_0^{\sqrt{y}} \frac{x}{\theta^2} \exp\left(-\frac{x^2}{2\theta^2}\right) dx \Rightarrow \begin{bmatrix} u = x^2 \\ du = 2x dx \end{bmatrix}$$

$$= \int_0^y \frac{1}{2\theta^2} \exp\left(-\frac{u}{2\theta^2}\right) du$$

$$= \frac{1}{2\theta^2} \left(-2\theta^2 \exp\left(-\frac{u}{2\theta^2}\right)\Big|_0^y\right)$$

$$= 1 - \exp\left(-\frac{y}{2\theta^2}\right)$$

$$f_Y(y) = \frac{\partial}{\partial y} F_Y(y) = \frac{1}{2\theta^2} \exp\left(-\frac{y}{2\theta^2}\right)$$

Podemos ver que, cada um dos $Y_i \sim \text{Exp}\left(\frac{1}{2\theta^2}\right)$, de modo que a densidade conjunta será:

$$f_{Y_1...Y_n}(y_1,...,y_n) = \prod_{i=1}^n = \frac{1}{2\theta^2} \exp\left(-\frac{y_i}{2\theta^2}\right) = \left(\frac{1}{2\theta^2}\right)^n \exp\left(-\frac{1}{2\theta^2}\sum_{i=1}^n y_i\right)$$

b)

$$P(U \le u) = P\left(\min_{1 \le i \le n} X_i \le u\right) = 1 - P\left(\min_{1 \le i \le n} X_i > u\right)$$

$$= 1 - P(X_1 > u, \dots, X_n > u)$$

$$\stackrel{\text{ind}}{=} 1 - \prod_{i=1}^n P(X_i > u)$$

$$\stackrel{\text{iid}}{=} 1 - (P(X > u))^n$$

$$= 1 - \left(\int_u^\infty \frac{x}{\theta^2} \exp\left(-\frac{x^2}{2\theta^2}\right) dx\right)^n$$

$$= 1 - \left(\exp\left(-\frac{u^2}{2\theta^2}\right)\right)^n$$

$$= 1 - \exp\left(-\frac{nu^2}{2\theta^2}\right)$$

$$f_U(u) = \frac{\partial}{\partial u} F_U(u)$$

$$= \frac{nu}{\theta^2} \exp\left(-\frac{nu^2}{2\theta^2}\right)$$

Podemos perceber que $U \sim \text{Rayleigh}\left(\frac{\sqrt{n}}{\theta}\right)$.

 $\mathbf{c})$

Podemos inicialmente encontrar a distribuição acumulada de Z:

$$P(Z \le z) = P(X_1 \le X_2 z)$$

$$= \int_0^\infty \int_0^{x_2 z} f(x_1, x_2) dx_1 dx_2$$

$$\stackrel{\text{ind}}{=} \int_0^\infty \int_0^{x_2 z} \frac{x_1}{\theta^2} \exp\left(-\frac{x_1^2}{2\theta^2}\right) \frac{x_2}{\theta^2} \exp\left(-\frac{x_2^2}{2\theta^2}\right) dx_1 dx_2$$

$$= \int_0^\infty \frac{x_2}{\theta^2} \exp\left(-\frac{x_2^2}{2\theta^2}\right) \int_0^{x_2 z} \frac{x_1}{\theta^2} \exp\left(-\frac{x_1^2}{2\theta^2}\right) dx_1 dx_2 \Rightarrow \begin{bmatrix} u = \frac{x_1^2}{2\theta^2} \\ du = \frac{x_1^2}{\theta^2} dx_1 \end{bmatrix}$$

$$= \int_0^\infty \frac{x_2}{\theta^2} \exp\left(-\frac{x_2^2}{2\theta^2}\right) \int_0^{\frac{x_2^2 z^2}{2\theta^2}} \exp\left(-u\right) du dx_2$$

$$= \int_0^\infty \frac{x_2}{\theta^2} \exp\left(-\frac{x_2^2}{2\theta^2}\right) \left(1 - \exp\left(-\frac{x_2^2 z^2}{2\theta^2}\right)\right) dx_2$$

$$= \int_0^\infty \frac{x_2}{\theta^2} \exp\left(-\frac{x_2^2}{2\theta^2}\right) dx_2 - \int_0^\infty \frac{x_2}{\theta^2} \exp\left(-\frac{x_2^2(1 + z^2)}{2\theta^2}\right) dx_2$$

$$= 1 - \int_0^\infty \frac{x_2}{\theta^2} \exp\left(-\frac{x_2^2(1 + z^2)}{2\theta^2}\right) dx_2 \Rightarrow \begin{bmatrix} v = \frac{x_2^2(1 + z^2)}{2\theta^2} \\ dv = \frac{x_2(1 + z^2)}{\theta^2} dx_2 \end{bmatrix}$$

$$= 1 - \int_0^\infty \frac{1}{(1 + z^2)} \exp(-v) dv$$

$$F_Z(z) = 1 - \frac{1}{(1 + z^2)}$$

De modo que sua densidade será:

$$f_Z(z) = \frac{\partial}{\partial z} F_Z(z) = \frac{2z}{(1+z^2)^2}$$

Exercise 1.30 (BJ 2.36). Sejam as variáveis X_1, \ldots, X_n independentes e exponenciais com, respectivamente, parâmetros $\alpha_1, \ldots, \alpha_n$.

- a) Mostre que a distribuição de $Y = \min_{1 \le i \le n} X_i$ é exponencial. Qual o parâmetro?
- **b)** Prove que para $k = 1, \ldots, n$:

$$P\left(X_k = \min_{1 \le i \le n} X_i\right) = \frac{\alpha_k}{\alpha_1 + \ldots + \alpha_n}$$

Resposta. a)

Como todos os $X_i \sim \text{Exp}(\alpha_i)$, com $X_i \perp X_j, \forall i \neq j$, teremos que:

$$P(Y \le y) = P\left(\min_{1 \le i \le 1} X_i \le y\right) = 1 - P\left(\min_{1 \le i \le 1} X_i > y\right)$$

$$= 1 - P(X_1 > y, \dots, X_n > y)$$

$$\stackrel{\text{ind}}{=} 1 - \prod_{i=1}^n P(X_i > y)$$

$$= 1 - \prod_{i=1}^n (\exp(-\alpha_i y))$$

$$= 1 - \exp\left(-y\sum_{i=1}^n \alpha_i\right)$$

Assim, temos que $Y \sim \text{Exp}\left(\sum_{i=1}^{n} \alpha_i\right)$.

b)

Seja $Z = \min_{i \neq k} X_i$. Veja que $[X_k = \min_{1 \leq i \leq n} X_i] \perp [Z]$, de modo que a densidade conjunta de ambos será:

$$f_{X_k Z}(x_k, z) = \alpha_k \sum_{i \neq k} \alpha_i \exp\left(-\alpha_k x_k - z \sum_{i \neq k} \alpha_i\right)$$

Dessa forma, podemos ver que $P(X_k = \min_{1 \le i \le n} X_i) = P(X_k < Z)$. Assim, podemos encontrar essa probabilidade por meio da seguinte integral:

$$\begin{split} P(X_k < z) &= \int_0^\infty \int_0^z \alpha_k \sum_{i \neq k} \alpha_i \exp\left(-\alpha_k x_k - z \sum_{i \neq k} \alpha_i\right) dx_k dz \\ &= \int_0^\infty \alpha_k \sum_{i \neq k} \alpha_i \exp\left(-z \sum_{i \neq k} \alpha_i\right) \int_0^z \exp(-\alpha_k x_k) dx_k dz \\ &= \int_0^\infty \alpha_k \sum_{i \neq k} \alpha_i \exp\left(-z \sum_{i \neq k} \alpha_i\right) \frac{1}{\alpha_k} \left(-\exp(-\alpha_k x_k)\Big|_0^z\right) dz \\ &= \sum_{i \neq k} \alpha_i \int_0^\infty \exp\left(-z \sum_{i \neq k} \alpha_i\right) (1 - \exp(-z\alpha_k)) dz \\ &= \sum_{i \neq k} \alpha_i \left(\int_0^\infty \exp\left(-z \sum_{i \neq k} \alpha_i\right) dz - \int_0^\infty \exp\left(-z \sum_{i = 1}^n \alpha_i\right) dz\right) \\ &= \sum_{i \neq k} \alpha_i \left(\frac{-\exp\left(-z \sum_{i \neq k} \alpha_i\right)}{\sum_{i \neq k} \alpha_i}\Big|_0^\infty - \frac{-\exp\left(-z \sum_{i = 1}^n \alpha_i\right)}{\sum_{i = 1}^n \alpha_i}\Big|_0^\infty\right) \\ &= \sum_{i \neq k} \alpha_i \left(\frac{1}{\sum_{i \neq k} \alpha_i} - \frac{1}{\sum_{i = 1}^n \alpha_i}\right) \\ &= \frac{\sum_{i = 1}^n \alpha_i - \sum_{i \neq k} \alpha_i}{\sum_{i = 1}^n \alpha_i} = \frac{\alpha_k}{\sum_{i = 1}^n \alpha_i} \end{split}$$

Exercise 1.31 (BJ 2.37). Seja X uma variável aleatória cuja função de distribuição F é uma função contínua na reta. Prove que a distribuição de Y = F(X) é U(0,1).

Resposta. Vejamos que:

$$F_Y(y) = P(Y \le y) = P(F_X(x) \le y)$$

= $P(x \le F_X^{-1}(y))$
= $F_X(F_X^{-1}(y)) = y$

De modo que $F_Y(y) = y$. Ainda, caso $y < 0, P(F_X(x) \le y) = 0$ e de maneira similar, caso $y > 1, P(F_X(x) \le y) = 1$, de modo que a distribuição de Y será:

$$F_Y(y) = \begin{cases} 0 & , y < 0 \\ y & , 0 \le y \le 1 \Rightarrow Y \sim U(0, 1) \\ 1 & , y > 1 \end{cases}$$

Exercise 1.32 (BJ 2.38). a) As variáveis X, Y e Z são independentes, cada uma uniformemente distribuída no intervalo [0,1]. Determine P(X < Y < Z) e $P(X \le Y \le Z)$.

b) Se X,Y e Z são independentes e identicamente distribuídas, e a função de distribuição comum F é contínua, qual a P(X < Y < Z)?

Resposta. a)

Vejamos que o evento (x < y < z) implica que x < y e y < z. Como as variáveis são independentes, temos que a distribuição conjunta é igual a 1, e a probabilidade desse evento será:

$$P(X < Y < Z) = \int_0^1 \int_0^x \int_0^x 1 dz dy dx$$
$$= \int_0^1 \int_0^x y dy dx$$
$$= \int_0^1 \frac{x^2}{2} dx$$
$$= \frac{x^3}{6} \Big|_0^1 = \frac{1}{6}$$

E como P(X = Y) = P(Y = Z) = P(X = Z) = 0 (pela continuidade no vazio), teremos que $P(X \le Y \le Z) = P(X < Y < Z) = \frac{1}{6}$.

b)

Por ser crescente e contínua, teremos que $X < Y < Z \Leftrightarrow F(X) < F(Y) < F(Z)$, e como $F \sim U(0,1)$ (pelo exercício 1.31), teremos que:

$$\begin{split} P(X < Y < Z) &= P(F(X) < F(Y) < F(Z)) \\ &= \frac{1}{6} \end{split}$$

Pelo resultado obtido em (a).

Exercise 1.33 (BJ 2.39). a) Sejam X e Y independentes com distribuição de Poisson tendo, respectivamente, parâmetros λ_1 e λ_2 . Mostre que $X + Y \sim \text{Poisson}(\lambda_1 + \lambda_2)$.

b) Mostre que se X_1, \ldots, X_n são independentes tais que $X_i \sim \text{Poisson}(\lambda_i), i = 1, \ldots, n$, então $X_1 + \ldots + X_n \sim \text{Poisson}(\lambda_1 + \ldots + \lambda_n)$.

Resposta. a)

Como $X \perp Y$, temos que a densidade conjunta será:

$$P(X = x, Y = y) = \frac{e^{-\lambda_1} \lambda_1^x}{x!} \frac{e^{-\lambda_2} \lambda_2^y}{y!}$$

Dessa forma, seja $X + Y = Z \Rightarrow Y = Z - X$, de modo que:

$$\begin{split} P(Z=z) &= P(X+Y=z) = P(Y=z-x) \\ &= \sum_{i=0}^{\infty} P(X=i,Y=z-i) \\ &\stackrel{\text{ind}}{=} \sum_{i=0}^{\infty} P(X=i)P(Y=z-i) \\ &= \sum_{i=0}^{z} \frac{e^{-\lambda_1}\lambda_1^i}{i} \frac{e^{-\lambda_2}\lambda_2^{(z-i)}}{(z-i)!} \\ &= e^{-(\lambda_1+\lambda_2)} \sum_{i=0}^{z} \frac{\lambda_1^i\lambda_2^{(z-i)}}{i!(z-i)!} \\ &= \frac{e^{-(\lambda_1+\lambda_2)}}{z!} \sum_{i=0}^{z} \lambda_1^i\lambda_2^{(z-i)} \frac{z!}{i!(z-i)!} \\ &= \frac{e^{-(\lambda_1+\lambda_2)}}{z!} \sum_{i=0}^{z} \binom{z}{i} \lambda_1^i\lambda_2^{(z-i)} \\ &= \frac{e^{-(\lambda_1+\lambda_2)}}{z!} \sum_{i=0}^{z} \binom{z}{i} \left(\frac{\lambda_1}{\lambda_1+\lambda_2}\right)^i \left(\frac{\lambda_2}{\lambda_1+\lambda_2}\right)^{(z-i)} \\ &= \frac{e^{-(\lambda_1+\lambda_2)}(\lambda_1+\lambda_2)^z}{z!} \sum_{i=0}^{z} \binom{z}{i} \left(\frac{\lambda_1}{\lambda_1+\lambda_2}\right)^i \left(\frac{\lambda_2}{\lambda_1+\lambda_2}\right)^{(z-i)} \\ &= \frac{e^{-(\lambda_1+\lambda_2)}(\lambda_1+\lambda_2)^z}{z!} \\ &= \frac{e^{-(\lambda_1+\lambda_2)}(\lambda_1+\lambda_2)^z}{z!} \end{split}$$

Assim, $X + Y \sim \text{Poisson}(\lambda_1 + \lambda_2)$.

b)

Provemos por indução. Em (a) provamos para n=2. Consideremos que $X_i \sim \text{Poisson}(\lambda_i), \forall i=1,\ldots,n$ e que (por hipótese) $Z=\sum_{i=1}^n X_i \sim \text{Poisson}(\sum_{i=1}^n \lambda_i)$. Seja $X_{n+1} \sim \text{Poisson}(\lambda_{n+1})$.

Pelo que foi visto em (a), a soma de duas variáveis aleatórias com distribuição Poisson resulta em uma variável aleatória com distribuição Poisson, com parâmetro igual à soma dos parâmetros das variáveis somadas. Assim, $Z + X_{n+1} \sim \operatorname{Poisson}\left(\left(\sum_{i=1}^n \lambda_i\right) + \lambda_{n+1}\right) = \operatorname{Poisson}\left(\sum_{i=1}^{n+1} \lambda_i\right)$, que vale para todo $n \in \mathbb{N}$.