Lecture 10

Univariate Volatility Modeling

Reading: An introduction to analysis of financial data with $\ensuremath{\mathbb{R}}$ (2013) by Ruey Tsay

MATH 8090 Time Series Analysis Week 10 Univariate Volatility Modeling

Background

ARCH Mode

ARCH Model

Stochastic Volatility

Whitney Huang Clemson University

Agenda

Univariate Volatility Modeling

Background

ARCH Model

ARCH Model

GARCH and GARCH Models

Stochastic Volatility

Model

- Background
- 2 ARCH Model
- **3** GARCH Model
- IGARCH and EGARCH Models
- Stochastic Volatility Model

Financial Time Series

Univariate Volatility Modeling

CLEMS N

Apple Inc

Source: Google Finance

Background

RCH Model

GARCH Model

Log Returns of Apple Stock

$$r_t = \log\left(\frac{y_t}{y_{t-1}}\right)$$
, where y_t is the price at time t

Periods of high uncertainty or large price movements tend to cluster together ⇒ Volatility Clustering

Background

ADCH Mada

GARCH Mode

GARCH and GARCH Models

CLEMS N U N I V E R S I T Y

Dackground

EGARCH Models

Stochastic Volatility Model

Volatility measures the degree of variation in asset prices over time, typically quantified as the (conditional) standard deviation of log returns.

Why is volatility important?

- Option pricing e.g., Black-Scholes model
- Risk management e.g., Value-at-Risk (VaR)
- Asset allocation e.g., minimum-variance portfolios
- Forecasting e.g., interval prediction of returns

Key challenge: Volatility is not directly observable

We will take an econometric approach by modeling the conditional standard deviation (σ_t) of daily or monthly returns

Basic structure

$$r_t = \mu_t + a_t, \quad \mu_t = \mathbb{E}(r_t|F_{t-1}) = \phi_0 + \sum_{i=1}^p \phi_i r_{t-i} + \sum_{j=1}^q \theta_j a_{t-j}$$

Volatility models are concerned with time-evolution of

$$\operatorname{Var}(r_t|F_{t-1}) = \operatorname{Var}(a_t|F_{t-1}) = \sigma_t^2,$$

the conditional variance of a return

- Autoregressive conditional heteroscedastic (ARCH) model [Engle, 1982]
- Generalized Autoregressive Conditional Heteroskedasticity (GARCH) Model [Bollerslev, 1986]
- Integrated Generalized Autoregressive Conditional heteroskedasticity (IGARCH) model
- Exponential general autoregressive conditional heteroskedastic (EGARCH) model [Nelson, 1991]
- Asymmetric parametric ARCH models [Ding, Granger, and Engle, 1994]
- Stochastic volatility (SV) models [Melino and Turnbull, 1990; Harvey, Ruiz, and Shephard, 1994; Jacqier, Polson. and Rossi, 19941

$$a_t = \sigma_t \epsilon_t, \qquad \sigma_t^2 = \alpha_0 + \alpha_1 a_{t-1}^2 + \dots + \alpha_m a_{t-m}^2, \qquad \alpha_i \geq 0 \text{ for } 1 \leq i \leq m$$

where $\{\epsilon_t\}$ is an i.i.d. sequence with:

- $\bullet \ \mathbb{E}[\epsilon_t] = 0$
- $Var[\epsilon_t] = 1$
- Common choices: standard normal, standardized Student-t, or generalized error distribution (and their skewed forms)

ARMA Analogy: ARCH(m) is analogous to an AR(m) model, but for the squared innovations

......

ARCH Model

Car ii TOTT MIOGOT

Stochastic Volatility
Model

Stochastic Volatilit

ARCH(1) model

$$a_t = \sigma_t \epsilon_t$$
, $\sigma_t^2 = \alpha_0 + \alpha_1 a_{t-1}^2$, $\alpha_0 > 0$, $\alpha_1 \ge 0$

Main Properties:

- $\mathbb{E}(a_t) = 0$, $\operatorname{Var}(a_t) = \frac{\alpha_0}{1 \alpha_1}$, valid if $0 < \alpha_1 < 1$
- Under normality:

$$\mathbb{E}[a_t^4] = \frac{3\alpha_0^2(1+\alpha_1)}{(1-\alpha_1)(1-3\alpha_1^2)}$$

Finite only if $0 < \alpha_1^2 < \frac{1}{3}$

Implications:

- Finite variance: $\alpha_1 < 1$. Finite kurtosis: $\alpha_1^2 < \frac{1}{3}$
- Large $\alpha_1 \Rightarrow$ heavy-tailed a_t

Even with Gaussian errors, ARCH(1) produces heavy-tailed returns

Building an ARCH Model

Model the mean and test for ARCH effects

Univariate Volatility Modeling

Daonground

ARCH Model

JAN TOTT WIOO

Building an ARCH Model

- Model the mean and test for ARCH effects
 - Fit a mean model: a_t = y_t $\hat{\mu}_t$

Univariate Volatility Modeling

, and a

ARCH Model

ALIOTIVIOUE

Building an ARCH Model

Model the mean and test for ARCH effects

- Fit a mean model: $a_t = y_t \hat{\mu}_t$
- Test for conditional heteroscedasticity in $\{a_t\}$:

 $H_0:$ no ARCH effects vs. $H_1:$ ARCH effects present

Univariate Volatility Modeling

Daorigioana

ARCH Model

GARCH Mode

GARCH and EGARCH Models

Stochastic Volatility Model

- Fit a mean model: $a_t = y_t \hat{\mu}_t$
- Test for conditional heteroscedasticity in $\{a_t\}$:

 H_0 : no ARCH effects vs. H_1 : ARCH effects present

• Use the Ljung-Box test on $\{a_t^2\}$ [McLeod and Li, 1983] or the Lagrange Multiplier test [Engle, 1982]

Daonground

ARCH Model

JANGH MOULEI

GARCH and

Stochastic Volatility

- Model the mean and test for ARCH effects
 - Fit a mean model: $a_t = y_t \hat{\mu}_t$
 - Test for conditional heteroscedasticity in $\{a_t\}$:

- Use the Ljung-Box test on $\{a_t^2\}$ [McLeod and Li, 1983] or the Lagrange Multiplier test [Engle, 1982]
- **Determine the order** m: Examine the PACF of $\{a_t^2\}$ to identify significant lags

- Model the mean and test for ARCH effects
 - Fit a mean model: $a_t = y_t \hat{\mu}_t$
 - Test for conditional heteroscedasticity in $\{a_t\}$:

- Use the Ljung-Box test on $\{a_t^2\}$ [McLeod and Li, 1983] or the Lagrange Multiplier test [Engle, 1982]
- ② Determine the order m: Examine the PACF of $\{a_t^2\}$ to identify significant lags
- Estimate parameters: Use Conditional Maximum Likelihood Estimation

- Model the mean and test for ARCH effects
 - Fit a mean model: $a_t = y_t \hat{\mu}_t$
 - Test for conditional heteroscedasticity in $\{a_t\}$:

- Use the Ljung-Box test on $\{a_t^2\}$ [McLeod and Li, 1983] or the Lagrange Multiplier test [Engle, 1982]
- ② Determine the order m: Examine the PACF of $\{a_t^2\}$ to identify significant lags
- Estimate parameters: Use Conditional Maximum Likelihood Estimation
- Check model adequacy

Background

ARCH Model

Stochastic Volatility

- Model the mean and test for ARCH effects
 - Fit a mean model: $a_t = y_t \hat{\mu}_t$
 - Test for conditional heteroscedasticity in $\{a_t\}$:

- Use the Ljung-Box test on $\{a_t^2\}$ [McLeod and Li, 1983] or the Lagrange Multiplier test [Engle, 1982]
- ② Determine the order m: Examine the PACF of $\{a_t^2\}$ to identify significant lags
- Estimate parameters: Use Conditional Maximum Likelihood Estimation
- Check model adequacy
 - Check Q-statistics for standardized residuals and their squares

Model the mean and test for ARCH effects

- Fit a mean model: $a_t = y_t \hat{\mu}_t$
- Test for conditional heteroscedasticity in $\{a_t\}$:

- Use the Ljung-Box test on $\{a_t^2\}$ [McLeod and Li, 1983] or the Lagrange Multiplier test [Engle, 1982]
- ② Determine the order m: Examine the PACF of $\{a_t^2\}$ to identify significant lags
- Estimate parameters: Use Conditional Maximum Likelihood Estimation
- Check model adequacy
 - Check Q-statistics for standardized residuals and their squares
 - Assess skewness and kurtosis of residuals

- Model the mean and test for ARCH effects
 - Fit a mean model: $a_t = y_t \hat{\mu}_t$
 - Test for conditional heteroscedasticity in $\{a_t\}$:

- Use the Ljung-Box test on $\{a_t^2\}$ [McLeod and Li, 1983] or the Lagrange Multiplier test [Engle, 1982]
- ② Determine the order m: Examine the PACF of $\{a_t^2\}$ to identify significant lags
- Estimate parameters: Use Conditional Maximum Likelihood Estimation
- Check model adequacy
 - Check Q-statistics for standardized residuals and their squares
 - Assess skewness and kurtosis of residuals
 - Verify no remaining ARCH effects

Univariate Volatility

- Simple and intuitive: easy to understand and estimate
- Captures volatility clustering: periods of high and low variability
- Produces heavy tails: helps explain large market movements

Limitations:

- Symmetric response: treats positive and negative shocks equally
- Parameter constraints: e.g., ARCH(1) requires $\alpha_1^2 \in [0,1/3]$
- Limited flexibility: volatility forecasts can change too slowly

Background

ARCH Model

GARCH Model

Here we test and examine the temporal pattern of the squared residuals

> Box.test(y^2 , lag = 12, type = 'Ljung')

Box-Ljung test

data: y^2

X-squared = 68.67, df = 12, p-value = 5.676e-10

$$r_t = \mu + a_t, \quad a_t = \sigma_t \epsilon_t, \quad \sigma_t^2 = \alpha_0 + \sum_{i=1}^3 \alpha_i a_{t-i}^2,$$

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

assuming $\epsilon_t \overset{i.i.d.}{\sim} N(0,1)$.

Error Analysis:

```
Estimate Std. Error t value Pr(>|t|)
mu 0.016572 0.006423 2.580 0.00988 **
omega 0.012043 0.001579 7.627 2.4e-14 ***
alpha1 0.208649 0.129177 1.615 0.10626
alpha2 0.071837 0.048551 1.480 0.13897
alpha3 0.049045 0.048847 1.004 0.31536
```

Background

ARCH Model

GARCH Mode

EGARCH Models

Here we fit an ARCH(3) for the volatility:

$$r_t = \mu + a_t, \quad a_t = \sigma_t \epsilon_t, \quad \sigma_t^2 = \alpha_0 + \sum_{i=1}^3 \alpha_i a_{t-i}^2,$$

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

assuming $\epsilon_t \stackrel{i.i.d.}{\sim} N(0,1)$.

Error Analysis:

```
Estimate
               Std. Error t value Pr(>|t|)
                           2.580 0.00988 **
    0.016572
                 0.006423
mu
omega 0.012043
                 0.001579 7.627 2.4e-14 ***
alpha1 0.208649 0.129177 1.615 0.10626
                 0.048551 1.480 0.13897
alpha2 0.071837
alpha3 0.049045
                 0.048847
                           1.004 0.31536
```

Let's fit a simplified ARCH(1) model

```
Estimate
                 Std. Error
                             t value Pr(>|t|)
       0.016570
                   0.006161
                               2.689
                                      0.00716 **
       0.012490
                   0.001549
                               8.061 6.66e-16
alpha1 0.363447
                   0.131598
                               2.762
                                      0.00575 **
```

omega

mu

```
Signif. codes:
                       0.001
                                  0.01 '*'
                                           0.05 '.' 0.1 ' '1
```


Univariate Volatility Modelina

ARCH Model

ARCH(1) Model Checking

Univariate Volatility Modeling

Background

ARCH Model

ARCH Model

Stochastic Volatility

Standardised Residuals Tests:

		Statistic	p-Value
R	Chi^2	122.404	0
R	W	0.9647625	8.273101e-08
R	Q(10)	13.72604	0.1858587
R	Q(15)	22.31714	0.09975386
R	Q(20)	23.88257	0.2475594
R^2	Q(10)	12.50025	0.25297
R^2	Q(15)	30.11276	0.01152131
R^2	Q(20)	31.46404	0.04935483
R	TR^2	22.036	0.0371183
	R R R R R^2 R^2 R^2	R W R Q(10) R Q(15) R Q(20) R^2 Q(10) R^2 Q(15) R^2 Q(20)	R Chi^2 122.404 R W 0.9647625 R Q(10) 13.72604 R Q(15) 22.31714 R Q(20) 23.88257 R^2 Q(10) 12.50025 R^2 Q(15) 30.11276 R^2 Q(20) 31.46404

- Jarque-Berg & Shapiro-Wilk Tests: Normality
- Lagrange multiplier (LM) Test: ARCH Effects

shape

mu

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1

Loa Likelihood:

242.9678 normalized: 0.6531391

Description:

Mon Oct 18 15:27:27 2021 by user:

Standardised Residuals Tests:

Statistic p-Value Jaraue-Bera Test Chi^2 130.8931 Shapiro-Wilk Test 0.9637533 5.744995e-08 W Ljung-Box Test 0(10) 14.31288 0.1591926 Ljung-Box Test Q(15)23.34043 0.07717449 Ljung-Box Test 24.87286 0.2063387 Q(20)Ljung-Box Test R^2 Q(10)15.35917 0.1195054 Ljung-Box Test R^2 0(15)33.96318 0.003446127 Ljung-Box Test R^2 Q(20)35.46828 0.01774746 LM Arch Test R TR^2 24.11517 0.01961957

Univariate Volatility Modelina

ARCH Model

Dackground

ARCH Model

RCH Wodel

Stochastic Volatility

For a log-return series r_t , let $a_t = r_t - \mu_t$ denote the innovation at time t.

$$a_t = \sigma_t \varepsilon_t, \qquad \sigma_t^2 = \alpha_0 + \sum_{i=1}^m \alpha_i a_{t-i}^2 + \sum_{j=1}^s \beta_j \sigma_{t-j}^2$$

where $\varepsilon_t \sim \text{i.i.d.}(0,1), \ \alpha_0 > 0, \ \alpha_i, \beta_j \geq 0, \ \text{and} \ \sum_{i=1}^{\max(m,s)} (\alpha_i + \beta_i) < 1 \ \text{ensures stationarity}$

Interpretation: Past shocks (a_{t-i}^2) and past volatility (σ_{t-j}^2) drive current volatility

ARCH reacts only to past shocks, while GARCH also accounts for past volatility - giving smoother and more realistic dynamics in financial returns

$$\sigma_t^2 = \alpha_0 + \alpha_1 a_{t-1}^2 + \beta_1 \sigma_{t-1}^2$$

Key Properties:

- Stationarity: holds if $0 \le \alpha_1, \beta_1 \le 1$ and $\alpha_1 + \beta_1 < 1$
- Volatility clustering: large shocks tend to be followed by large shocks
- Heavy tails:

$$\frac{\mathbb{E}(a_t^4)}{[\mathbb{E}(a_t^2)]^2} = \frac{3[1 - (\alpha_1 + \beta_1)^2]}{1 - (\alpha_1 + \beta_1)^2 - 2\alpha_1^2} > 3$$

1-step forecast:

$$\sigma_t^2(1) = \alpha_0 + \alpha_1 a_t^2 + \beta_1 \sigma_t^2$$

3 ...

GARCH Mode

EGARCH Models

For multi-step ahead forecasts, use $a_t^2 = \sigma_t^2 \epsilon_t^2$ and rewrite the model as

$$\sigma_{t+1}^2 = \alpha_0 + \left(\alpha_1 + \beta_1\right)\sigma_t^2 + \alpha_1\sigma_t^2\big(\epsilon_t^2 - 1\big)$$

We have 2-step ahead volatility forecast

$$\sigma_t^2(2) = \alpha_0 + (\alpha_1 + \beta_1)\sigma_t^2(1)$$

In general, we have

$$\sigma_t^2(\ell) = \alpha_0 + (\alpha_1 + \beta_1)\sigma_t^2(\ell - 1), \quad \ell > 1$$

$$= \frac{\alpha_0[1 - (\alpha_1 + \beta_1)^{\ell - 1}]}{1 - \alpha_1 - \beta_1} + (\alpha_1 + \beta_1)^{\ell - 1}\sigma_t^2(1)$$

Therefore

$$\sigma_t^2(\ell) \to \frac{\alpha_0}{1 - \alpha_1 - \beta_1}, \quad \text{as } \ell \to \infty$$

Statistic n-Value

```
Error Analysis:
```

```
        mu
        0.0163276
        0.0062624
        2.607
        0.00913
        **

        omega
        0.0010918
        0.0085291
        2.063
        0.03907
        *

        alpha1
        0.0802716
        0.0281162
        2.855
        0.00430
        **

        beta1
        0.8553014
        0.0461374
        18.538
        < 2e-16</td>
        ***
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Log Likelihood:

239.5189 normalized: 0.6438681

Description:

Mon Oct 18 15:44:32 2021 by user:

Standardised Residuals Tests:

			Statistic	p-value
Jarque-Bera Test	R	Chi^2	156.5138	0
Shapiro-Wilk Test	R	W	0.9676933	2.471139e-07
Ljung-Box Test	R	Q(10)	9.805485	0.4577215
Ljung-Box Test	R	Q(15)	16.54435	0.346824
Ljung-Box Test	R	Q(20)	17.8005	0.6005484
Ljung-Box Test	R^2	Q(10)	0.5130171	0.9999925
Ljung-Box Test	R^2	Q(15)	10.24557	0.8040151
Ljung-Box Test	R^2	Q(20)	11.77988	0.9234441
LM Arch Test	R	TR^2	9.334459	0.6741288

Univariate Volatility
Modeling

3 -- -

ARCH Model

GARCH Model

GARCH Models

Stochastic Volatility

Model

Volatility Series and Standardized Residuals

GARCH Model Checking: ACF and PACF

GARCH Mode

IGARCH and EGARCH Models

CLEMS

ARCH Mod

If the AR polynomial of the GARCH representation has unit root then we have an IGARCH model

An IGARCH(1, 1) model:

$$a_t = \sigma_t \epsilon_t, \quad \sigma_t^2 = \alpha_0 + \beta_1 \sigma_{t-1}^2 + (1 - \beta_1) a_{t-1}^2$$

ℓ-step ahead forecasts

$$\sigma_t^2(\ell) = \sigma_t(1)^2 + (\ell - 1)\alpha_0, \quad \ell \ge 1$$

 \Rightarrow the effect of $\sigma_t^2(1)$ on future volatilities is persistent, and the volatility forecasts form a straight line with slope α_0

Motivation: EGARCH captures asymmetric volatility effects-negative shocks often increase volatility more than positive shocks of the same size.

Innovation function:

$$g(\varepsilon_t) = \theta \varepsilon_t + \gamma (|\varepsilon_t| - \mathbb{E}|\varepsilon_t|), \quad \text{where } \mathbb{E}[g(\varepsilon_t)] = 0$$

Interpretation:

- If $\gamma > 0$, negative returns ($\varepsilon_t < 0$) cause higher volatility than positive ones.
- The term $|\varepsilon_t| \mathbb{E}|\varepsilon_t|$ ensures mean zero.

Asymmetric form:

$$g(\varepsilon_t) = \begin{cases} (\theta + \gamma)\varepsilon_t - \gamma \mathbb{E}|\varepsilon_t|, & \varepsilon_t \ge 0, \\ (\theta - \gamma)\varepsilon_t - \gamma \mathbb{E}|\varepsilon_t|, & \varepsilon_t < 0 \end{cases}$$

EGARCH(m, s) model:

$$a_t = \sigma_t \varepsilon_t, \qquad \log(\sigma_t^2) = \alpha_0 + \frac{1 + \beta_1 B + \dots + \beta_{s-1} B^{s-1}}{1 - \alpha_1 B - \dots - \alpha_m B^m} g(\varepsilon_{t-1})$$

Univariate Volatility
Modeling

Daonground

CARCH Madal

GARCH and

Model Stochastic Volatility

$$a_t = \sigma_t \epsilon_t$$
, $(1 - \alpha B) \log(\sigma_t^2) = (1 - \alpha)\alpha_0 + g(\epsilon_{t-1})$,

where the ϵ_t are i.i.d. standard normal. In this case, $\mathbb{E}(|\epsilon_t|) = \sqrt{\frac{2}{\pi}}$ and the model for $\log(\sigma_t^2)$ becomes

$$(1-\alpha B)\log(\sigma_t^2) = \begin{cases} (1-\alpha)\alpha_0 - \sqrt{\frac{2}{\pi}}\gamma + (\gamma+\theta)\epsilon_{t-1} & \text{if } \epsilon_{t-1} \ge 0, \\ (1-\alpha)\alpha_0 - \sqrt{\frac{2}{\pi}}\gamma + (\gamma-\theta)(-\epsilon_{t-1}) & \text{if } \epsilon_{t-1} < 0 \end{cases}$$

Finally, we have

$$\sigma_t^2 = \sigma_{t-1}^{2\alpha} \exp\left((1-\alpha)\alpha_0 - \sqrt{\frac{2}{\pi}}\gamma\right) \begin{cases} \exp\left[(\gamma+\theta)\frac{a_{t-1}}{\sigma_{t-1}}\right] & \text{if } a_{t-1} \ge 0, \\ \exp\left[(\gamma-\theta)\frac{|a_{t-1}|}{\sigma_{t-1}}\right] & \text{if } a_{t-1} < 0. \end{cases}$$

Dackground

IGARCH and

CLEMS N

We consider the monthly log returns of IBM stock from January 1967 to December 2009

Background

ARCH Mod

CALICITIVIOGE

$$r_t = 0.067 + a_t, \quad a_t = \sigma_t \epsilon_t, \quad \epsilon_t \sim N(0, 1)$$

$$\log(\sigma_t^2) = -0.598 + 0.218(|\epsilon_{t-1}| - 0.423\epsilon_{t-1}) + 0.920\log(\sigma_{t-1}^2)$$

Therefore, we have

$$\sigma_t^2 = \sigma_{t-1}^{2 \times 0.920} \exp(-0.598) \times \begin{cases} \exp(0.125) & \text{if } \epsilon_{t-1} \ge 0, \\ \exp(-0.310) & \text{if } \epsilon_{t-1} < 0. \end{cases}$$

For example, for a standardized shock with magnitude 2 (i.e., two standard deviations), we have

$$\frac{\sigma_t^2(\epsilon_{t-1} = -2)}{\sigma_t^2(\epsilon_{t-1} = 2)} = \frac{\exp(-0.31 \times (-2))}{\exp(0.125 \times 2)} = e^{0.37} = 1.448$$

Therefore, the impact of a negative shock of size two standard deviations is about 44.8% higher than that of a positive shock of the same size

$$a_t = \sigma_t \varepsilon_t, \qquad (1 - \alpha_1 B - \dots - \alpha_m B^m) \log(\sigma_t^2) = \alpha_0 + \nu_t$$

where:

- $\varepsilon_t \sim \text{i.i.d.} \ N(0,1)$ are shocks to returns
- $\nu_t \sim \text{i.i.d.} \ N(0, \sigma_{\nu}^2)$ are shocks to volatility
- ε_t and ν_t are independent

Key idea: Volatility follows its own stochastic process rather than being a deterministic function of past shocks (as in GARCH)

Background

ARCH Model

ARCH Model

$$a_t = \sigma_t \varepsilon_t$$
, $\sigma_t = \sigma \exp(u_t/2)$, $(1-B)^d u_t = \eta_t$, $0 < d < 0.5$

where $\varepsilon_t \sim N(0,1),~\eta_t \sim N(0,\sigma_\eta^2),$ and they are independent By taking logs,

$$\log(a_t^2) = \log(\sigma^2) + u_t + \log(\varepsilon_t^2)$$

$$= \left[\log(\sigma^2) + \mathbb{E}(\log(\varepsilon_t^2))\right] + u_t + \left[\log(\varepsilon_t^2) - \mathbb{E}(\log(\varepsilon_t^2))\right]$$

$$= \mu + u_t + e_t$$

so $\log(a_t^2)$ is a Gaussian long-memory signal plus a non-Gaussian noise

Inference: Because σ_t (or u_t) is unobserved, the likelihood is intractable. Hence, estimation is typically done using **MCMC or particle filtering**

In the R session, the stochwol package uses MCMC sampling to approximate the posterior of volatility paths and parameters

UNIVERSITY

Dackground

ARCH Model

ARCH Model