CPSC 340: Machine Learning and Data Mining

Deep Learning Bonus Slides

Why "Neural Network"?

Cartoon of "typical" neuron:

- Neuron has many "dendrites", which take an input signal.
- Neuron has a single "axon", which sends an output signal.
- With the right input to dendrites:
 - "Action potential" along axon (like a binary signal):

Why "Neural Network"?

Why "Neural Network"?

"Artificial" Neural Nets vs. "Real" Networks Nets

- Artificial neural network:
 - $-x_i$ is measurement of the world.
 - $-z_i$ is internal representation of world.
 - $-y_i$ is output of neuron for classification/regression.
- Real neural networks are more complicated:
 - Timing of action potentials seems to be important.
 - "Rate coding": frequency of action potentials simulates continuous output.
 - Neural networks don't reflect sparsity of action potentials.
 - How much computation is done inside neuron?
 - Brain is highly organized (e.g., substructures and cortical columns).
 - Connection structure changes.
 - Different types of neurotransmitters.

- 1950 and 1960s: Initial excitement.
 - Perceptron: linear classifier and stochastic gradient (roughly).
 - "the embryo of an electronic computer that [the Navy] expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence."
 New York Times (1958).
 - https://www.youtube.com/watch?v=IEFRtz68m-8
 - Object recognition
 assigned to students as a
 summer project
- Then drop in popularity:
 - Quickly realized limitations of linear models.

- 1970 and 1980s: Connectionism (brain-inspired ML)
 - Want "connected networks of simple units".
 - Use parallel computation and distributed representations.
 - Adding hidden layers z_i increases expressive power.
 - With 1 layer and enough sigmoid units, a universal approximator.
 - Success in optical character recognition.

- 1990s and early-2000s: drop in popularity.
 - It proved really difficult to get multi-layer models working robustly.
 - We obtained similar performance with simpler models:
 - Rise in popularity of logistic regression and SVMs with regularization and kernels.
 - Lots of internet successes (spam filtering, web search, recommendation).
 - ML moved closer to other fields like numerical optimization and statistics.

- Late 2000s: push to revive connectionism as "deep learning".
 - Canadian Institute For Advanced Research (CIFAR) NCAP program:
 - "Neural Computation and Adaptive Perception".
 - Led by Geoff Hinton, Yann LeCun, and Yoshua Bengio ("Canadian mafia").
 - Unsupervised successes: "deep belief networks" and "autoencoders".
 - Could be used to initialize deep neural networks.

https://www.youtube.com/watch?v=KuPai0ogiHk

2010s: DEEP LEARNING!!!

- Bigger datasets, bigger models, parallel computing (GPUs/clusters).
 - And some tweaks to the models from the 1980s.
- Huge improvements in automatic speech recognition (2009).
 - All phones now have deep learning.
- Huge improvements in computer vision (2012).
 - Changed computer vision field almost instantly.
 - This is now finding its way into products.

2010s: DEEP LEARNING!!!

Media hype:

- "How many computers to identify a cat? 16,000"

New York Times (2012).

- "Why Facebook is teaching its machines to think like humans"
 Wired (2013).
- "What is 'deep learning' and why should businesses care?"
 Forbes (2013).
- "Computer eyesight gets a lot more accurate"

New York Times (2014).

2015: huge improvement in language understanding.

Multiple Word Prototypes

- What about homonyms and polysemy?
 - The word vectors would need to account for all meanings.
- More recent approaches:
 - Try to cluster the different contexts where words appear.

- Use different vectors for different contexts.

Multiple Word Prototypes

Why
$$z_i = Wx_i$$
?

- In PCA we had that the optimal Z = XW^T(WW^T)⁻¹.
- If W had normalized+orthogonal rows, $Z = XW^T$ (since $WW^T = I$).
 - So $z_i = Wx_i$ in this normalized+orthogonal case.
- Why we would use $z_i = Wx_i$ in neural networks?
 - We didn't enforce normalization or orthogonality.
- Well, the value W^T(WW^T)⁻¹ is just "some matrix".
 - You can think of neural networks as just directly learning this matrix.

Faces might be composed of different "parts":

• First layer of z_i trained on 10 by 10 image patches:

- Attempt to visualize second layer:
 - Corners, angles, surface boundaries?
- Models require many tricks to work.
 - We'll discuss these next time.

• First layer of z_i trained on 10 by 10 image patches:

http://www.cs.toronto.edu/~rgrosse

• First layer of z_i trained on 10 by 10 image patches:

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf

• First layer of z_i trained on 10 by 10 image patches:

• First layer of z_i trained on 10 by 10 image patches:

Visualization of second and third layers trained on specific objects:

& "Gabor filters"

• First layer of z_i trained on 10 by 10 image patches:

