Devoir à la maison n°03

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1

Partie I – Définition et étude de la fonction dilogarithme

I.1 f est clairement de classe \mathcal{C}^1 sur $]-\infty,0[$ et sur]0,1[. Il suffit donc de prouver que f et f' admettent des limites finies en 0.

Comme $ln(1-t) \underset{t\to 0}{\sim} -t$, $\lim_{t\to 0} f = 1$.

Un calcul facile donne

$$\forall t \in]-\infty, 0[\cup]0, 1[, f'(t) = \frac{1}{t(1-t)} + \frac{\ln(1-t)}{t^2}$$

Or

$$\frac{1}{1-t} = 1 + t + o(t)$$

et

$$\ln(1-t) = -t - \frac{t^2}{2} + o(t)$$

donc

$$f'(t) = \frac{1}{2} + o(1)$$

ou encore $\lim_{0} f' = \frac{1}{2}$.

On peut donc prolonger f en une fonction de classe \mathcal{C}^1 sur $]-\infty,1[$.

- **I.2** L est continue sur $]-\infty,1[$ en tant que primitive de f sur cet intervalle. Il suffit donc de montrer que L admet une limite finie en 1, autrement dit que l'intégrale $\int_0^1 f(t) \, dt$ converge. Or $f(t) \sim -\ln(1-t)$. Par croissances comparées, $f(t) = o\left(\frac{1}{\sqrt{1-t}}\right)$ donc f est intégrable sur [0,1[par comparaison à une intégrale de Riemann convergente. Par conséquent, $\int_0^1 f(t) \, dt$ converge et L admet bien une limite finie en 1: L est donc prolongeable par continuité en 1.
- **I.3** D'après le théorème fondamental de l'analyse, L est une primitive de f sur $]-\infty,1[$. L est donc dérivable sur cet intervalle et L'=f.
- **I.4** Pour $t \in]0, 1[$, $\ln(1-t) < 0$ donc f(t) > 0. Pour $t \in]-\infty, 0[$, $\ln(1-t) > 0$ donc f(t) > 0. De plus, f(0) = 1 > 0. Ainsi L' = f est strictement positive sur $]-\infty, 1[$: L est donc strictement croissante sur $]-\infty, 1[$.
- **I.5** Puisque $\lim_{t \to -\infty} \ln(1-t) = +\infty$, $\frac{1}{t} = o(f(t))$. Or $\int_{-1}^{-\infty} \frac{\mathrm{d}t}{t}$ diverge et f est positive. On en déduit donc que $\int_{0}^{-\infty} f(t) \, \mathrm{d}t$ diverge. Par conséquent, $\lim_{x \to -\infty} F(x) = -\infty$.

Partie II - Relations fonctionnelles et valeurs particulières

1

© Laurent Garcin MP Dumont d'Urville

II.6 II.6.a On effectue le changement de variable $u = -\ln(1-t)$ i.e. $t = 1 - e^{-u}$. $u \mapsto 1 - e^{-u}$ est une bijection de classe \mathcal{C}^1 strictement croissante de $[0, +\infty[$ sur [0, 1[. De plus, $\frac{\mathrm{d}t}{\mathrm{d}u} = e^{-u}$ donc

$$L(1) = \int_0^1 \frac{-\ln(1-t)}{t} dt = \int_0^{+\infty} \frac{u}{1 - e^{-u}} \cdot e^{-u} du = \int_0^{+\infty} \frac{u}{e^u - 1} du$$

II.6.b Soit $k \in \mathbb{N}^*$. Par croissances comparées, $xe^{-kx} = o(1/x^2)$ donc l'intégrale définissant I_k converge. Par intégration par parties,

$$I_k = -\frac{1}{k} \left[x e^{-kx} \right]_0^{+\infty} + \frac{1}{k} \int_0^{+\infty} e^{-kx} dx$$

L'intégration par parties est légitime car $\lim_{x\to +\infty} xe^{-kx} = 0$ donc le crochet converge. De plus,

$$I_k = \frac{1}{k} \int_0^{+\infty} e^{-kx} dx = -\frac{1}{k^2} \left[e^{-kx} \right]_0^{+\infty} = \frac{1}{k^2}$$

II.6.c Par convexité de exp, $e^x \ge 1 + x$ pour tout $x \in \mathbb{R}$ ou encore $x \le e^x - 1$. Puisque $e^x - 1 > 0$ pour tout $x \in \mathbb{R}_+^*$, $0 \le \frac{x}{e^x - 1} \le 1$.

II.6.d Comme somme (finie) linéaire d'intégrales convergentes

$$\sum_{k=1}^{n} I_k = \int_0^{+\infty} x \sum_{k=1}^{n} e^{-kx} dx = \int_0^{+\infty} \frac{x e^{-x} (1 - e^{-nx})}{1 - e^{-x}} dx = \int_0^{+\infty} \frac{x (1 - e^{-nx})}{e^x - 1} dx$$

Par conséquent,

$$L(1) - \sum_{k=1}^{n} I_k = \int_0^{+\infty} \frac{xe^{-nx}}{e^x - 1} dx$$

D'après la question précédente

$$0 \le L(1) - \sum_{k=1}^{n} I_k \le \int_0^{+\infty} e^{-nx} dx = \frac{1}{n}$$

II.6.e En passant à la limite dans la question précédente.

$$L(1) = \lim_{n \to +\infty} \sum_{k=1}^{n} I_k = \sum_{k=1}^{+\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$$

II.7 II.7.a Posons φ : $x \mapsto L(x) + L(-x) - \frac{1}{2}L(x^2)$. Comme L est dérivable sur $]-1,1[,\varphi]$ l'est également et

$$\forall x \in]-1,1[, \ \varphi'(x) = \mathrm{L}'(x) - \mathrm{L}'(-x) - x\mathrm{L}'(x^2) = f(x) - f(-x) - 2xf(x^2)$$

Notamment, $\varphi'(0) = 0$ et pour tout $x \in]-1,0[\cup]0,1[$,

$$\varphi'(x) = -\frac{\ln(1-x)}{x} - \frac{\ln(1+x)}{x} + x \cdot \frac{\ln(1-x^2)}{x^2} = \frac{-\ln((1-x)(1+x)) + \ln(1-x^2)}{x} = 0$$

Ainsi ϕ' est nulle sur] -1, 1[et donc ϕ est constante sur] -1, 1[. Par ailleurs, L est continue sur [-1, 1] donc ϕ l'est également. Par continuité, ϕ est constante sur [-1, 1]. Or $\phi(0) = 0$ car L(0) = 0 donc ϕ est nulle sur [-1, 1]. Par conséquent,

$$\forall x \in [-1, 1], \ L(x) + L(-x) = \frac{1}{2}L(x^2)$$

II.7.b En prenant x = 1, on obtient

$$L(1) + L(-1) = \frac{1}{2}L(1)$$

donc

$$L(-1) = -\frac{1}{2}L(1) = -\frac{\pi^2}{12}$$

© Laurent Garcin MP Dumont d'Urville

II.8 II.8.a On raisonne comme à la question précédente en posant $\psi: x \mapsto L(x) + L(1-x) + \ln(x) \ln(1-x)$. A nouveau, ψ est dérivable sur]0,1[et

$$\forall x \in]-1,1[,\ \psi'(x) = \mathsf{L}'(x) - \mathsf{L}'(1-x) + \frac{\ln(1-x)}{x} - \frac{\ln(x)}{1-x} = f(x) - f(1-x) + \frac{\ln(1-x)}{x} - \frac{\ln(x)}{1-x} = 0$$

Ainsi ψ est constante sur]0,1[. On note C cette constante.

Par continuité de L en 0 et 1,

$$\lim_{x \to 0^+} L(x) + L(1 - x) = L(0) + L(1) = \frac{\pi^2}{6}$$

 $\lim_{x \to 0^+} L(x) + L(1-x) = L(0) + L(1) = \frac{\pi^2}{6}$ De plus, $\ln(x) \ln(1-x) \sim -x \ln(x)$ donc $\lim_{x \to 0^+} \ln(x) \ln(1-x) = 0$ par croissances comparées. On en déduit que $\lim_{\Omega} \psi = \frac{\pi^2}{6} = C$.

II.8.b En prenant $x = \frac{1}{2}$

$$2L\left(\frac{1}{2}\right) = \frac{\pi^2}{6} - \ln\left(\frac{1}{2}\right)^2$$

donc

$$L\left(\frac{1}{2}\right) = \frac{\pi^2}{12} - \frac{1}{2}\ln^2(2)$$

Partie III – Une équation différentielle

On considère les équations différentielles

 $\mathcal{E}: xy'' + y' = \frac{1}{1 - x}$

et

$$\mathcal{E}': xz' + z = \frac{1}{1-x}$$

III.9 Les solutions sur]0, 1[de l'équation homogène xz' + z = 0 sont les fonctions $x \mapsto \frac{\lambda}{x}$ avec $\lambda \in \mathbb{R}$. On vérifie que f est une solution particulière de \mathcal{E}' sur]0,1[. Les solutions de \mathcal{E}' sur]0,1[sont donc les fonctions $x\mapsto f(x)+\frac{\lambda}{x}$ avec $\lambda \in \mathbb{R}$.

On montre de la même manière que les solutions de \mathcal{E}' sur $]-\infty,1[$ sont de cette forme.

III.10 Via le changement de variable z = y', on montre que les solutions de \mathcal{E} sur]0,1[sont les primitives des solutions de \mathcal{E}' sur cet intervalle, c'est-à-dire les fonctions de la forme

$$x \mapsto L(x) + \lambda \ln(x) + \mu$$
 avec $(\lambda, \mu) \in \mathbb{R}^2$

De la même manière les solutions de \mathcal{E} sur $]-\infty,1[$ sont les fonctions de la forme

$$x \mapsto L(x) + \lambda \ln(-x) + \mu$$
 avec $(\lambda, \mu) \in \mathbb{R}^2$

III.11 Soit g une éventuelle solution de \mathcal{E} sur $]-\infty,1[$. Il existe donc $(\lambda_1,\mu_1,\lambda_2,\mu_2)\in\mathbb{R}^4$ tel que

$$\forall x \in]0,1[, g(x) = L(x) + \lambda_1 \ln(x) + \mu_1$$

$$\forall x \in]-\infty, 1[, g(x) = L(x) + \lambda_2 \ln(x) + \mu_2$$

Comme g doit être deux fois dérivable en 0 et a fortiori continue en 0, $\lambda_1=\lambda_2=0$. Le même argument de continuité montre alors que $\mu_1 = \mu_2$. Il existe donc $\mu \in \mathbb{R}$ tel que

$$\forall x \in]-\infty, 1[, g(x) = L(x) + \mu$$

Réciproquement, soit $\mu \in \mathbb{R}$. Ce qui précède montre que $g: x \mapsto L(x) + \mu$ est bien solution de \mathcal{E} sur $]-\infty,1[$ et sur]0, 1[. On a donc

$$\forall x \in]-\infty, 0[\cup]0, 1[, xg''(x) + g'(x) = \frac{1}{1-x}$$

Mais L est de classe \mathcal{C}^1 sur] $-\infty$, 1[et L' = f. Or f est elle-même de classe \mathcal{C}^1 sur] $-\infty$, 1[donc L est de classe \mathcal{C}^2 sur] $-\infty$, 1[. Notamment, g'' et g' sont continues en 0 de même que $x\mapsto \frac{1}{1-x}$ donc

$$\forall x \in]-\infty, 1[, xg''(x) + g'(x) = \frac{1}{1-x}$$

et g est bien solution de \mathcal{E} sur $]-\infty,1[$.

Pour récapituler, les solutions de \mathcal{E} sur $]-\infty,1[$ sont exactement les fonctions $L+\mu$ avec $\mu\in\mathbb{R}$.