Meta aprendizaje: aprendiendo de pocos ejemplos

Berenice Montalvo Lezama

github.com/bereml/spdl-21-metalearn

III Simposio Peruano de Deep Learning

Enero 2021

Aprendizaje convencional

• Se entrena un modelo por cada tarea a resolver.

¿Por qué es importante aprender con pocos datos?

Existen muchos dominios donde los datos etiquetados son escasos.

traducción de lenguas raras

robótica

imágenes médicas

Report: opacidades de aspecto intersticioalveolar parcheadas y bilaterales que predominan en ambos lobulos inferiores sospechosas de infeccion por COVID-19 . senos costofrenicos libres .

Labels: COVID 19, alveolar pattern, interstitial pattern, pneumonia Locations: costophrenic angle, lobar, bilateral, lower lobe

DICOM Fields	
Study Date 2020031	.7
Patient's Sex M	
Patient's Birth Date	e 1986
Modality CR	
Manufacturer GE H	lealthcare

Date	Test	Result
17.03.2020	PCR	NEGATIVE
18.03.2020	PCR	NEGATIVE
19.03.2020	IGG	POSITIVE
19.03.2020	IGM	POSITIVE
20.03.2020	PCR	POSITIVE

Transferencia de conocimiento

• Aprovecha el conocimiento de una tarea base en una tarea objetivo.

Adaptación de dominio

 Aprender un modelo de una distribución origen y se aplica a una distribución diferente.

Aprendizaje multitarea

• Aprendizaje simultáneo de varias tareas relacionadas.

Una intuición de meta aprendizaje

Entrenamiento Prueba

¿Qué artista pintó esta obra? ¿Braque o Cezanne?

• Familia de técnicas enfocadas adaptarse rápidamente a nueva información.

Tipos de meta aprendizaje

Métricas

Optimizadores

Alucinaciones

comparación

optimización

aumentado

Métricas

Verificación de rostros

• Comparar la imagen del rostro de una persona con otra y verificar si coinciden.

ejemplo positivo

ejemplo negativo

Red Siamesa

representaciones

Representaciones

Pérdida constractiva

$$J(x_1, x_2, y) = (y d^2) + (1 - y) (max (0, m - d)^2)$$

d: distancia euclideana entre representaciones $d = \sqrt{(x_1 - x_2)^2}$

y: etiqueta de las parejas (1 similares, 0 distintas)

m: margen

Similares

$$y = 0$$

$$J(x_1, x_2, y) = d^2$$

$$J(x_1, x_2, y) = max(0, m - d)^2$$

Para minimizar *J* se maximiza *d*

Aprendizaje de una observación

¡tiempo de programar! siamese.ipynb

Red relacional

¡Gracias!

Bere Montalvo Lezama

http://turing.iimas.unam.mx/~bereml/bereml@turing.iimas.unam.mx