

planetmath.org

Math for the people, by the people.

Jacobson radical of a module category and its power

 ${\bf Canonical\ name} \quad {\bf JacobsonRadicalOfAModuleCategoryAndItsPower}$

Date of creation 2013-03-22 19:02:23 Last modified on 2013-03-22 19:02:23

Owner joking (16130) Last modified by joking (16130)

Numerical id 6

Author joking (16130) Entry type Definition Classification msc 16N20 Assume that k is a field and A is a k-algebra. The category of (left) A-modules will be denoted by Mod(A) and $Hom_A(X,Y)$ will denote the set of all A-homomorphisms between A-modules X and Y. Of course $Hom_A(X,Y)$ is an A-module itself and $End_A(X) = Hom_A(X,X)$ is a k-algebra (even A-algebra) with composition as a multiplication.

Let X and Y be A-modules. Define

$$\operatorname{rad}_A(X,Y) = \{ f \in \operatorname{Hom}_A(X,Y) \mid \forall_{g \in \operatorname{Hom}_A(Y,X)} 1_X - gf \text{ is invertible in } \operatorname{End}_A(X) \}.$$

Definition. The Jacobson radical of a category Mod(A) is defined as a class

$$\operatorname{rad} \operatorname{Mod}(A) = \bigcup_{X,Y \in \operatorname{Mod}(A)} \operatorname{rad}_A(X,Y).\square$$

Properties. 1) The Jacobson radical is an ideal in Mod(A), i.e. for any $X, Y, Z \in Mod(A)$, for any $f \in rad_A(X, Y)$, any $h \in Hom_A(Y, Z)$ and any $g \in Hom_A(Z, X)$ we have $hf \in rad_A(X, Z)$ and $fg \in rad_A(Z, X)$. Additionally $rad_A(X, Y)$ is an A-submodule of $Hom_A(X, Y)$.

- 2) For any A-module X we have $\operatorname{rad}_A(X,X) = \operatorname{rad}(\operatorname{End}_A(X))$, where on the right side we have the classical Jacobson radical.
- 3) If X, Y are both indecomposable A-modules such that both $\operatorname{End}_A(X)$ and $\operatorname{End}_A(Y)$ are local algebras (in particular, if X and Y are finite dimensional), then

$$\operatorname{rad}_A(X,Y) = \{ f \in \operatorname{Hom}_A(X,Y) \mid f \text{ is not an isomorphism} \}.$$

In particular, if X and Y are not isomorphic, then $\operatorname{rad}_A(X,Y) = \operatorname{Hom}_A(X,Y)$. \square

Let $n \in \mathbb{N}$ and let $f \in \operatorname{Hom}_A(X,Y)$. Assume there is a sequence of A-modules $X = X_0, X_1, \ldots, X_{n-1}, X_n = Y$ and for any $0 \le i \le n-1$ we have an A-homomorphism $f_i \in \operatorname{rad}_A(X_i, X_{i+1})$ such that $f = f_{n-1}f_{n-2}\cdots f_1f_0$. Then we will say that f is n-factorizable through Jacobson radical.

Definition. The n-th power of a Jacobson radical of a category Mod(A) is defined as a class

$$\operatorname{rad}^n \operatorname{Mod}(A) = \bigcup_{X,Y \in \operatorname{Mod}(A)} \operatorname{rad}_A^n(X,Y),$$

where $\operatorname{rad}_A^n(X,Y)$ is an A-submodule of $\operatorname{Hom}_A(X,Y)$ generated by all homomorphisms n-factorizable through Jacobson radical. Additionally define

$$\operatorname{rad}_{A}^{\infty}(X,Y) = \bigcap_{n=1}^{\infty} \operatorname{rad}_{A}^{n}(X,Y) \square$$

Properties. 0) Obviously $\operatorname{rad}_A(X,Y) = \operatorname{rad}_A^1(X,Y)$ and for any $n \in \mathbb{N}$ we have

$$\operatorname{rad}_A^n(X,Y) \supseteq \operatorname{rad}_A^\infty(X,Y).$$

1) Of course each $\operatorname{rad}_A^n(X,Y)$ is an A-submodule of $\operatorname{Hom}_A(X,Y)$ and we have following sequence of inclusions:

$$\operatorname{Hom}_A(X,Y) \supseteq \operatorname{rad}_A^1(X,Y) \supseteq \operatorname{rad}_A^2(X,Y) \supseteq \operatorname{rad}_A^3(X,Y) \supseteq \cdots$$

2) If both X and Y are finite dimensional, then there exists $n \in \mathbb{N}$ such that

$$\operatorname{rad}_A^{\infty}(X,Y) = \operatorname{rad}_A^n(X,Y).$$