Predictive Modeling

Ma ChengYuan

feature info

datasets:

Based on epiz_inform_stationary_risks_10_events.csv

1.final_obj_hospitalization.txt

personal info

2.from all_epizodes_risks_strat.pkl -

- operation code

- diagnosis

3.all analisis risk stratif.txt

test result

target disease:

1) Желудочковая тахикардия

2) Острый коронарный синдром

3) Медиастинит

patients number by target (ratio for class):

желудочковая_тахикардия: 1723 (1:0.38)

острый_коронарный_синдром :712 (1:0.14)

медиастинит: 46

онмк: 437 (1:0.07)

feature info:

Клинический_диагноз_рубрика: 723

Код_МЭС: 611

Код_теста: 2469

4) OHMK

pipeline fine-tune accuracy datasets problem preprocessin feature analyze g train model engineering prediction change tune model model

preprocessing

- 1. select potential columns from each df (feature engineering)
- convert categorization value to numerical value using one-hot encoding (preprocessing)

```
*** main datasets ***
all_analisis_risk_stratif:
```

- Код_теста
- 1) fill null cell in col('Значение_число') with average value from criteria ((lower + upper) / 2)

```
clinical_diag_293_strat_risk:
```

- Код_МЭС
- Клинический_диагноз_рубрика

test result (f1 metrics)

numerical value using col('Значение_число') with average value	original	original	oversampling	oversampling
	xgb	neural network	xgb	neural network
желудочковая_тахикардия	0.693428	0.567878	0.679563	0.566822
острый_коронарный_синдром	0.759434	0.592496	0.754864	0.574827
ОНМК	0.59969	0.510228	0.618609	0.420461
classified into lower & higher of criteria				
	original	original	oversampling	oversampling
желудочковая_тахикардия	0.6889	0.671587	0.694334	0.636534
острый_коронарный_синдром	0.6911	0.725524	0.684404	0.702459
ОНМК	0.602336	0.589569	0.589569	0.602206
without value in null cell				
	xgb	lgb	decision tree	catboost
желудочковая_тахикардия	0.589569	0.640268	0.686466	0.667132
острый_коронарный_синдром	0.754944	0.652398	0.768578	0.743238
ОНМК	0.619066	0.6599	0.614116	0.536594

Feature Extraction Method

желудочковая_тахика рдия :

selected features: 958 -> 236

f1: 0.678892 -> 0.689613

острый_коронарный_ синдром:

selected features: 813 -> 207

f1 : 0.737259 -> 0.737974

ОНМК:

selected features: 853 -> 218

f1 : 0.617764 -> 0.633716

Final extration with detail (XGB)

ОНМК	стрый_коронарный_синдром	желудочковая_тахикардия	Disease
853	813	958	Original features
218	207	236	Current features
Пол', 'age', '0 I', 'A II'	B III', 'age', 'A II'	age', 'Пол', '0 I'	Personal info
204	189	210	Test feature
7	9	8	Operation feature
3	6	15	Diagnosis feature
0.633716	0.737874	0.689613	F1
0.61776	0.737259	0.678892	Before F1

metrics before and after oversampling(training class ratio)

желудоч	ковая т	ахикар	одия (1:	0.39) :	острый	і коронар	оный с	синдрог	и (1:0.	14):				ОНМН	k (1:0.08):
f1: 0.689613	recision	recall	f1-score	support	f1 : 0.737874	precision	recall	f1-score	support		f1 : 0.633716	precision	recall	f1-score	support
0 1	0.81 0.64	0.90 0.45	0.85 0.53	1065 408	0 1	0.93 0.73	0.98 0.41	0.95 0.52	1304 169		0 1	0.94 0.78	1.00 0.18	0.97 0.30	1375 98
accuracy macro avg weighted avg	0.72 0.76	0.67 0.78	0.78 0.69 0.76	1473 1473 1473	accuracy macro avg weighted avg	0.83 0.90	0.69 0.91	0.91 0.74 0.90	1473 1473 1473		accuracy macro avg weighted avg	0.86 0.93	0.59 0.94	0.94 0.63 0.93	1473 1473 1473
after overs	samplin	g :	(1:1)						(1:1)					(1:1)
Counter({0: 248 f1 : 0.687290	32, 1: 2482	})			Counter({0: f1 : 0.73942	23		-11 -61		t	Counter({1: 3		})		
t	recision	recall	f1-score	support		precision	i rec	all f1-so	ore su	ıpport		precision	recall	f1-score	support
0	0.82 0.58	0.86 0.50	0.84 0.54	1065 408	1	0.93 L 0.64).95).53	1304 169	0 1	0.94 0.52	0.99 0.16	0.97 0.25	1375 98
accuracy macro avg weighted avg	0.70 0.75	0.68 0.76	0.76 0.69 0.75	1473 1473 1473	accuracy macro avo weighted avo	0.79		.71 ().91).74).90	1473 1473 1473	accuracy macro avg weighted avg	0.73 0.91	0.58 0.93	0.93 0.61 0.92	1473 1473 1473
	0.7545	cac 4202co	775		roc auc scor	re is : 0.87	1002287	0003993							

roc auc score is : 0.7515626438368775

5

roc auc score is: 0.7438070500927643

shapley metrics

feedback

After feature extraction, features were trimmed to around 200, and f1 score still can maintain with good quality.

It is obvious to see that **test feature** can influence the result of prediction more than other features

related previous work

желудочковая тахикардия:

острый_коронарный_синдром:

медиастинит :

онмк :

A machine learning-based risk stratification model for ventricular tachycardia and heart failure in hypertrophic cardiomyopathy

A Machine Learning-Based Approach for the Prediction of Acute Coronary Syndrome Requiring Revascularization Performance of a Machine Learning Algorithm in Predicting Outcomes of Aortic Valve Replacement

Performance Analysis of Machine Learning Approaches in Stroke Prediction

link:

https://www.sciencedirect.com/ science/article/pii/S0010482521 00442X link:

https://link.springer.com/article/ 10.1007/s10916-019-1359-5 link:

https://www.sciencedirect.com/science/article/abs/pii/S0003497520311565

link:

https://ieeexplore.ieee.org/abstrac t/document/9297525?casa_token =TfM_OTIj2BEAAAAA:vV39yNcK MpzQc9jl_oopWu0eggmUj9CRo METefwiKE7d3W07qChFVgS8H mEnqhtRvggkcX0FChDokA

related previous work

желудочковая_тахикардия:

A machine learning-based risk stratification model for ventricular tachycardia and heart failure in hypertrophic cardiomyopathy

link:

https://www.sciencedirect.com/ science/article/pii/S0010482521 00442X

Table 1Patient demographic, physical and clinical characteristics. The upper part of the table shows patient overview characteristics and the lower part shows the statistics in terms of baseline and follow-up measurements.

Patients	Total (N = 2302)					
Characteristics	no. (%)					
Sex						
Male	1448 (62.9%)					
Female	854 (37.1%)					
Family history of HCM	983 (42.7%)					
Family history of SCD	426 (18.5%)					
Family history of CAD	104 (4.5%)					
Diabetes	82 (3.6%)					
Type 2 diabetes	73 (3.2%)					
Hypertension	214 (9.3%)					
Hypercholesterolemia	478 (20.8%)					
Genetic mutations	Total tests performed (N					
	= 1321)					
MYBPC3	455 (34.4%)					
MYH7	254 (19.2%)					
MYL2	13 (1.0%)					
MYL3	7 (0.5%)					
TNNI3	42 (3.2%)					
TNNT2	45 (3.4%)					
TPM1	8 (0.6%)					
TTN	3 (0.2%)					

Performance of the machine learning algorithms on the task of risk stratification of HCM patients. The results of the 10-fold cross-validation for predicting high-risk patients five years ahead are shown. The reported values are mean values and standard deviation between cross-validation folds. The best results for each metric are in bold.

Model	Accuracy	AUC	Specificity	Sensitivity	Precision	F ₁ score
Random forest	0.72 ± 0.03	0.79 ± 0.03	0.81 ± 0.05	0.62 ± 0.03	0.74 ± 0.05	0.68 ± 0.03
SVM (linear)	0.69 ± 0.05	0.74 ± 0.04	0.69 ± 0.05	0.69 ± 0.08	0.59 ± 0.08	0.63 ± 0.07
SVM (RBF)	0.67 ± 0.02	0.73 ± 0.03	0.68 ± 0.03	0.64 ± 0.05	0.62 ± 0.04	0.63 ± 0.04
Boosted trees	0.75 ± 0.02	0.82 ± 0.02	0.81 ± 0.03	0.67 ± 0.04	0.78 ± 0.02	0.72 ± 0.02
Neural-Networks	0.74 ± 0.03	0.80 ± 0.04	0.86 ± 0.05	0.61 ± 0.07	0.79 ± 0.05	0.68 ± 0.05

AUC - Area Under Curve, SVM - support vector machine, RBF - radial basis kernel.

comparison(желудочковая_тахикардия)

my	(желудочковая_тахикардия)
removed rows when there is missing value	copying past/known values of the last result (in the range of five years)
filled missing value with average value from range of criteria	missing numerical values were replaced by random samples from the normal distributions
	combining all possible pairs of patient measurements as features
4909 (1723:3186)	2302 (undefined)
XGB	XGB
AUC 0.76, F1 0.69	AUC 0.82, F1 0.71

related previous work

острый_коронарный_синдром:

A Machine Learning-Based Approach for the Prediction of Acute Coronary Syndrome Requiring Revascularization

link:

https://link.springer.com/article/ 10.1007/s10916-019-1359-5

		Features
Epidemiological data	1	Gender
	2	Age
Clinical data at emergency department or outpatient clinic	3	Systolic BP
	4	Diastolic BP
	5	HR
Past medical history before presenting chest pain	6	CAD
	7	MI
	8	CABG
	9	PCI
	10	Hypertension
	11	DM
	12	Hyperlipidemia
	13	CVA
	14	PCI
	15	History of Smokin
	16	Current smoking
Laboratory data before presenting chest pain	17	TC
	18	LDL- cholesterol
	19	HDL-cholesterol
	20	TG

comparison(острый_коронарный_синдром)

my	(острый_коронарный_синдром)
filled missing value with average value from range of criteria	Nearest neighbor imputation to fill missing value
4909 (712:4197)	5838 (2311 : 3527)
XGB	SVM
AUC 0.88, F1 0.74	AUC 0.86

End (thank you very much)

Ma ChengYuan