

TL072 TL072A - TL072B

LOW NOISE J-FET DUAL OPERATIONAL AMPLIFIERS

- WIDE COMMON-MODE (UP TO V_{CC}⁺) AND DIFFERENTIAL VOLTAGE RANGE
- LOW INPUT BIAS AND OFFSET CURRENT
- LOW NOISE $e_n = 15 \text{nV}/\sqrt{\text{Hz}}$ (typ)
- OUTPUT SHORT-CIRCUIT PROTECTION
- HIGH INPUT IMPEDANCE J-FET INPUT STAGE
- LOW HARMONIC DISTORTION : 0.01% (typ)
- INTERNAL FREQUENCY COMPENSATION
- LATCH UP FREE OPERATION
- HIGH SLEW RATE: 16V/µs (typ)

DESCRIPTION

The TL072, TL072A and TL072B are high speed J-FET input dual operational amplifiers incorporating well matched, high voltage J-FET and bipolar transistors in a monolithic integrated circuit.

The devices feature high slew rates, low input bias and offset current, and low offset voltage temperature coefficient.

ORDER CODE

Part Number	Temperature Range	Package					
Fait Number	Temperature Name	N	D				
TL072M/AM/BM	-55°C, +125°C	•	•				
TL072I/AI/BI	-40°C, +105°C	•	•				
TL072C/AC/BC	0°C, +70°C	•	•				
Example: TL072CN							

N = Dual in Line Package (DIP)
D = Small Outline Package (SO) - also available in Tape & Reel (DT)

PIN CONNECTIONS (top view)

- 1 Offset null 1
- 2 Inverting input 1
- 3 Non-inverting input 1
- 4 V_{CC}
- 5 Non-inverting input 2
- 6 -Inverting input 2
- 7 Output 2
- 8 V_{CC}+

March 2001 1/10

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	TL072M, AM, BM	TL072I, AI, BI	TL072C, AC, BC	Unit		
V _{CC}	Supply voltage - note 1)	±18					
V _i	Input Voltage - note ²⁾		±15		V		
V _{id}	Differential Input Voltage - note 3)	±30					
P _{tot}	Power Dissipation	680					
	Output Short-circuit Duration - note 4)	Infinite					
T _{oper}	Operating Free-air Temperature Range	ting Free-air Temperature Range -55 to +125 -40 to +105 0 to					
T _{stg}	Storage Temperature Range -65 to +150						

- All voltage values, except differential voltage, are with respect to the zero reference level (ground) of the supply voltages where the zero reference level is the midpoint between V_{CC}⁺ and V_{CC}⁻.

 The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
- 2.
- Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
- The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded

ELECTRICAL CHARACTERISTICS

 $V_{CC} = \pm 15V$, $T_{amb} = +25^{\circ}C$ (unless otherwise specified)

Symbol	Parameter		TL072I,M,AC,AI,AM, BC,BI,BM			TL072C		
		Min.	Тур.	Max.	Min.	Тур.	Max.	
V _{io}	Input Offset Voltage ($R_s = 50\Omega$) $T_{amb} = +25^{\circ}C \qquad TL072$ $TL072A$ $TL072B$ $T_{min} \leq T_{amb} \leq T_{max} \qquad TL072$ $TL072A$ $TL072A$ $TL072B$		3 3 1	10 6 3 13 7 5		3	10	mV
DV _{io}	Input Offset Voltage Drift		10			10		μV/°C
I _{io}	Input Offset Current - note $^{1)}$ $T_{amb} = +25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$		5	100 4		5	100 10	pA nA
I _{ib}	Input Bias Current -note 1 $T_{amb} = +25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$		20	200 20		20	200 20	pA nA
A _{vd}	Large Signal Voltage Gain $(R_L = 2k\Omega, V_o = \pm 10V)$ $T_{amb} = +25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$	50 25	200		25 15	200		V/mV
SVR	Supply Voltage Rejection Ratio ($R_S = 50\Omega$) $T_{amb} = +25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$	80 80	86		70 70	86		dB
I _{CC}	Supply Current, no load $T_{amb} = +25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$		1.4	2.5 2.5		1.4	2.5 2.5	mA
V _{icm}	Input Common Mode Voltage Range	±11	+15 -12		±11	+15 -12		V
CMR	Common Mode Rejection Ratio ($R_S = 50\Omega$) $T_{amb} = +25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$	80 80	86		70 70	86		dB
l _{os}	Output Short-circuit Current $T_{amb} = +25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$	10 10	40	60 60	10 10	40	60 60	mA
±V _{opp}	$\begin{array}{ll} \text{Output Voltage Swing} \\ T_{amb} = +25^{\circ}\text{C} & \text{RL} = 2k\Omega \\ & \text{RL} = 10k\Omega \\ T_{min} \leq T_{amb} \leq T_{max} & \text{RL} = 2k\Omega \\ & \text{RL} = 10k\Omega \end{array}$	10 12 10 12	12 13.5		10 12 10 12	12 13.5		V
SR	Slew Rate (T_{amb} = +25°C) V_{in} = 10V, R_L = 2k Ω , C_L = 100pF, unity gain	8	16		8	16		V/µs
t _r	Rise Time (T_{amb} = +25°C) V_{in} = 20mV, R_L = 2k Ω , C_L = 100pF, unity gain		0.1			0.1		μs
K _{ov}	Overshoot ($T_{amb} = +25^{\circ}C$) $V_{in} = 20$ mV, $R_L = 2$ k Ω , $C_L = 100$ pF, unity gain		10			10		%
GBP	Gain Bandwidth Product ($T_{amb} = +25$ °C) $V_{in} = 10$ mV, $R_L = 2$ k Ω , $C_L = 10$ 0pF, f= 100kHz	2.5	4		2.5	4		MHz
R _i	Input Resistance		10 ¹²			10 ¹²		Ω

Symbol	Parameter	TL072I,M,AC,AI,AM, BC,BI,BM			TL072C			Unit
		Min.	Тур.	Max.	Min.	Тур.	Max.	
THD	Total Harmonic Distortion (T_{amb} = +25°C) f= 1kHz, R _L = 2k Ω ,C _L = 100pF, A _v = 20dB, V _o = 2V _{pp}		0.01			0.01		%
e _n	Equivalent Input Noise Voltage $R_S = 100\Omega$, $f = 1KHz$		15			15		$\frac{\text{nV}}{\sqrt{\text{Hz}}}$
Øm	Phase Margin		45			45		degrees
V ₀₁ /V ₀₂	Channel separation $A_V = 100$		120			120		dB

^{1.} The input bias currents are junction leakage currents which approximately double for every 10°C increase in the junction temperature.

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE versus FREQUENCY

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE versus FREQUENCY

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE versus FREQUENCY

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE versus FREE AIR TEMP.

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE versus LOAD RESISTANCE

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE versus SUPPLY VOLTAGE

INPUT BIAS CURRENT versus FREE AIR TEMPERATURE

LARGE SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT versus FREQUENCY

SUPPLY CURRENT PER AMPLIFIER versus FREE AIR TEMPERATURE

LARGE SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION versus FREE AIR TEMP.

TOTAL POWER DISSIPATION versus FREE AIR TEMPERATURE

COMMON MODE REJECTION RATIO versus FREE AIR TEMPERATURE

6/10

VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE

OUTPUT VOLTAGE versus ELAPSED TIME

EQUIVALENT INPUT NOISE VOLTAGE versus FREQUENCY

TOTAL HARMONIC DISTORTION versus FREQUENCY

PARAMETER MEASUREMENT INFORMATION

Figure 1 : Voltage Follower

Figure 2 : Gain-of-10 Inverting Amplifier

TYPICAL APPLICATIONS

100KHz QUADRUPLE OSCILLATOR

PACKAGE MECHANICAL DATA

8 PINS - PLASTIC DIP

Dim.	Millimeters			Inches				
	Min.	Тур.	Max.	Min.	Тур.	Max.		
Α		3.32			0.131			
a1	0.51			0.020				
В	1.15		1.65	0.045		0.065		
b	0.356		0.55	0.014		0.022		
b1	0.204		0.304	0.008		0.012		
D			10.92			0.430		
Е	7.95		9.75	0.313		0.384		
е		2.54			0.100			
e3		7.62			0.300			
e4		7.62			0.300			
F			6.6			0260		
i			5.08			0.200		
L	3.18		3.81	0.125		0.150		
Z			1.52			0.060		

PACKAGE MECHANICAL DATA

8 PINS - PLASTIC MICROPACKAGE (SO)

Dim.	Millimeters			Inches				
Dilli.	Min.	Тур.	Max.	Min.	Тур.	Max.		
Α			1.75			0.069		
a1	0.1		0.25	0.004		0.010		
a2			1.65			0.065		
a3	0.65		0.85	0.026		0.033		
b	0.35		0.48	0.014		0.019		
b1	0.19		0.25	0.007		0.010		
С	0.25		0.5	0.010		0.020		
c1			45°	(typ.)				
D	4.8		5.0	0.189		0.197		
E	5.8		6.2	0.228		0.244		
е		1.27			0.050			
e3		3.81			0.150			
F	3.8		4.0	0.150		0.157		
L	0.4		1.27	0.016		0.050		
М			0.6			0.024		
S	8° (max.)							