PROGRAMAÇÃO LINEAR UERJ/2024

02 - Método das Duas Fases

Rodrigo Madureira rodrigo.madureira@ime.uerj.br IME-UERJ

Sumário

- Introdução
- Pase I
- Fase II
- 4 Variáveis artificiais e viabilidade do PPL original
- 5 Novos casos de eliminação das variáveis artificiais na Fase I

Exemplo: Considere o problema a seguir:

max
$$z = -2x_1 - 4x_2$$

s.a.
$$x_1 + 5x_2 \le 80$$
$$4x_1 + 2x_2 \ge 20$$
$$x_1 + x_2 = 10$$
$$x_1, x_2 > 0$$

Passando para a forma padrão, temos:

max
$$z = -2x_1 - 4x_2 + 0s_1 + 0s_2$$

s.a.
$$x_1 + 5x_2 + s_1 = 80$$

$$4x_1 + 2x_2 - s_2 = 20$$

$$x_1 + x_2 = 10$$

$$x_1, x_2, s_1, s_2 \ge 0$$

Em outros termos:

$$\max z = \begin{bmatrix} -2 & -4 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ s_1 \\ s_2 \end{bmatrix}$$

s.a.

$$\begin{bmatrix} 1 & 5 & 1 & 0 \\ 4 & 2 & 0 & -1 \\ 1 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ s_1 \\ s_2 \end{bmatrix} = \begin{bmatrix} 80 \\ 20 \\ 10 \end{bmatrix}$$

$$x, s \ge 0$$

Note que nos problemas de maximização, nem sempre podemos trabalhar com restrições somente do tipo $A_jx_j \leq b_j$. Neste exemplo, temos uma restrição do tipo $A_jx_j \geq b_j$ e outra do tipo $A_jx_j = b_j$.

Assim, na matriz do sistema de restrições, não é possível ter vetores colunas formando uma matriz identidade para a base inicial B do método Simplex.

Para resolver esse problema de não conseguir formar uma matriz identidade para a base inicial B, a ideia do **Método das Duas Fases** é acrescentar para cada restrição do tipo \geq ou = uma variável artificial \mathfrak{a}_i .

Neste exemplo, o sistema de restrições se torna

$$x_1 + 5x_2 + s_1 = 80$$

 $4x_1 + 2x_2 - s_2 + a_2 = 20$
 $x_1 + x_2 + a_3 = 10$
 $x_1, x_2, s_1, s_2, a_2, a_3 \ge 0$

Em outros termos:

$$\begin{bmatrix} 1 & 5 & 1 & 0 & 0 & 0 \\ 4 & 2 & 0 & -1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ s_1 \\ s_2 \\ a_2 \\ a_2 \end{bmatrix} = \begin{bmatrix} 80 \\ 20 \\ 10 \end{bmatrix}$$

Assim, as colunas A₃, A₅ e A₆ formam uma base do sistema de restrições.

A solução básica inicial fica:

$$\begin{aligned} x_B &= \begin{bmatrix} s_1 & \alpha_2 & \alpha_3 \end{bmatrix}^T = \begin{bmatrix} 80 & 20 & 10 \end{bmatrix}^T; \\ x_N &= \begin{bmatrix} x_1 & x_2 & s_2 \end{bmatrix}^T = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T. \end{aligned}$$

O método consiste em:

Fase I: Resolver o subproblema P^{α} , que tem por objetivo eliminar as variáveis artificiais, isto é, reduzi-las a zero.

Assim, a Fase I consiste em

$$\max z^{a} = \sum_{k} -a_{k}$$
s.a.
$$A'x' = b$$

$$x' > 0$$

Como $a_k \ge 0$, logo $z^a \le 0$. Ou seja, $\max z^a = 0$. Portanto, as variáveis a_k devem sair da base neste subproblema P^a . Isso é o mesmo que tornar $a_k = 0$.

No exemplo que estamos vendo, o subproblema P^{α} da Fase I fica assim:

$$\max \quad z^{\alpha} = \begin{bmatrix} -1 & -1 \end{bmatrix} \begin{bmatrix} \alpha_2 \\ \alpha_3 \end{bmatrix}$$

s.a.

$$\begin{bmatrix} 1 & 5 & 1 & 0 & 0 & 0 \\ 4 & 2 & 0 & -1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ s_1 \\ s_2 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 80 \\ 20 \\ 10 \end{bmatrix}$$

$$x_1, x_2, s_1, s_2 a_1, a_2 \ge 0$$

No tableau inicial da Fase I, colocamos na linha L_1 os coeficientes com sinal trocado da função objetivo do subproblema P^{α} e na linha L_2 , os coeficientes com sinal trocado da função objetivo do problema original.

(1)

	z	χ_1	x_2	s_1	s_2	\mathfrak{a}_2	\mathfrak{a}_3		
z^{a}	1	0	0	0	0	1	1	$0 = \bar{z}^{\alpha}$	(L_1)
z	1	2	4	0	0	0	0	$0=\bar{z}$	(L_2)
s_1	0	1	5	1	0	0	0	80	(L ₃)
\mathfrak{a}_2	0	4	2	0	-1	1	0	20	(L_4)
\mathfrak{a}_3	0	1	1	0	0	0	1	10	(L_5)

Note que não faz nenhum sentido começarmos com $\bar{z}^{\alpha}=0$ na linha L_1 do tableau, já que o objetivo da Fase I é eliminar as variáveis artificiais e consequentemente tornar $\bar{z}^{\alpha}=0$ ao longo das iterações.

Também não faz sentido que a_2 e a_3 , duas variáveis básicas, tenham coeficientes iguais a 1 na linha L_1 , pois variáveis básicas têm coeficientes nulos na linha da função objetivo.

Então, a primeira tarefa é eliminar os coeficientes iguais a ${\color{blue}1}$ na linha L_1 através de operações elementares nas linhas.

No tableau, notamos que na coluna de α_2 , há um elemento igual a 1 na linha L_4 , enquanto na coluna de α_3 , há um elemento igual a 1 na linha L_5 .

Logo, para eliminar os coeficientes iguais a 1 em L_1 , devemos subtrair de L_1 as linhas L_4 e L_5 . Ou seja, realizamos a operação:

$$L_1 \leftarrow L_1 - L_4 - L_5. \\$$

Assim, o tableau resultante fica:

(2)

	z	χ_1	χ_2	s_1	s_2	\mathfrak{a}_2	\mathfrak{a}_3		
z^{α}	1	-5	-3	0	1	0	0	$-30 = \bar{z}^{\alpha}$	(L_1)
z	1	2	4	0	0	0	0	$0=ar{z}$	(L ₂)
								80	(L_3)
\mathfrak{a}_2	0	4	2	0	-1	1	0	20	(L_4)
\mathfrak{a}_3	0	1	1	0	0	0	1	10	(L_5)

Agora, podemos aplicar o algoritmo Simplex no tableau resultante. (2)

	z	ψx_1	x_2	s ₁	s_2	\mathfrak{a}_2	\mathfrak{a}_3		
z^{α}	1	-5	-3	0	1	0	0	$-30 = \bar{z}^{\alpha}$	(L ₁)
z	1	2	4	0	0	0	0	$0=\bar{z}$	(L ₂)
s ₁	0	1	5	1	0	0	0	80	(L ₃)
$\Leftarrow \mathfrak{a}_2$	0	4	2	0	-1	1	0	20	(L_4)
\mathfrak{a}_3	0	1	1	0	0	0	1	10	(L_5)

Quem entra na base:

$$z_1 - c_1 = -5 < 0 \text{ e } z_2 - c_2 = -3 < 0$$

Como $z_1 - c_1 < z_2 - c_2$, então x_1 entra na base .

Quem sai da base:

$$\begin{aligned} &a_{11} = 1 > 0 \text{ (OK); } a_{21} = 4 > 0 \text{ (OK); } a_{31} = 1 > 0 \text{ (OK).} \\ &\min\left\{\frac{b_1}{a_{11}}, \frac{b_2}{a_{21}}, \frac{b_3}{a_{31}}\right\} = \min\left\{\frac{80}{1}, \frac{20}{4}, \frac{10}{1}\right\} = \frac{20}{4} = 5 \Rightarrow a_2 \text{ sai da base.} \end{aligned}$$

Pivô: $a_{21} = 2$;

Linha do pivô: L₄;

Operações nas linhas para eliminar os elementos da coluna do pivô, exceto o pivô:

$$L_{1} \leftarrow L_{1} - \left(\frac{-5}{4}\right)L_{4} = L_{1} + \frac{5}{4}L_{4};$$

$$L_{2} \leftarrow L_{2} - \frac{2}{4}L_{4} = L_{2} - \frac{1}{2}L_{4};$$

$$L_{3} \leftarrow L_{3} - \frac{1}{4}L_{4};$$

$$L_{5} \leftarrow L_{5} - \frac{1}{4}L_{4};$$

$$L_4 \leftarrow \frac{1}{4}L_4$$
.

E o novo tableau fica:

(3)

	z	χ_1	ψx_2	s ₁	s_2	\mathfrak{a}_2	\mathfrak{a}_3		
z^{α}	1	0	-1/2	0	-1/4	5/4	0	$-5 = \bar{z}^{\alpha}$	(L_1)
z	1	0	3	0	1/2	-1/2	0	$-10 = \bar{z}$	(L ₂)
81	0	0	9/2	1	1/4	-1/4	0	75	(L_3)
x_1	0	1	1/2	0	-1/4	1/4	0	5	(L_4)
$\Leftarrow \mathfrak{a}_3$	0	0	1/2	0	1/4	-1/4	1	5	(L_5)

Quem entra na base:

$$z_2-c_2=-1/2<0\Rightarrow x_2$$
 entra na base .

Quem sai da base:

$$\begin{split} &\alpha_{12} = 9/2 > 0 \text{ (OK); } \alpha_{22} = 1/2 > 0 \text{ (OK); } \alpha_{32} = 1/2 > 0 \text{ (OK).} \\ &\min\left\{\frac{\bar{x}_1}{\alpha_{12}}, \frac{\bar{x}_2}{\alpha_{22}}, \frac{\bar{x}_3}{\alpha_{32}}\right\} = \min\left\{\frac{75}{9/2}, \frac{5}{1/2}, \frac{5}{1/2}\right\} = \frac{5}{1/2} = 10. \end{split}$$

Houve empate para a escolha de x_1 e a_3 . Como o objetivo na Fase I é eliminar as variáveis artificiais, logo a_3 sai da base.

Pivô: $a_{32} = 1/2$;

Linha do pivô: L₅;

Operações nas linhas para eliminar os elementos da coluna do pivô, exceto o pivô:

$$L_1 \leftarrow L_1 - \left(\frac{-1/2}{1/2}\right) L_5 = L_1 + L_5;$$

$$L_2 \leftarrow L_2 - \frac{3}{1/2}L_5 = L_2 - 6L_5;$$

$$L_3 \leftarrow L_3 - \frac{9/2}{1/2} L_5 = L_3 - 9L_5;$$

$$L_4 \leftarrow L_4 - \frac{1/2}{1/2}L_5 = L_4 - L_5;$$

$$L_5 \leftarrow 2L_5$$
.

E o novo tableau fica:

(4)

	z	χ_1	x_2	s_1	s_2	\mathfrak{a}_2	\mathfrak{a}_3		
z^{α}	1	0	0	0	0	1	1	$0 = \bar{z}^{\alpha}$	(L_1)
								$-40 = \bar{z}$	
s_1	0	0	0	1	-2	2	-9	30	(L ₃)
χ_1	0	1	0	0	-1/2	1/2	-1	0	(L_4)
χ_2	0	0	1	0	1/2	-1/2	2	10	(L_5)

Na linha L_1 , $z_j-c_j\geq 0, \forall j\in I_N$, onde I_N é o conjunto dos índices das variáveis não básicas. Em particular, para a_2 , temos $z_5-c_5=1$, e para a_3 , temos $z_6-z_6=1$.

Logo, o valor ótimo da função objetivo z^{α} na Fase I é: $z^{\alpha*}=0$.

Note que a_2 e a_3 saíram da base e, consequentemente, $a_2=a_3=0$. Assim, eliminamos as variáveis artificiais na Fase I.

Solução ótima do subproblema P^{α} da Fase I: $(\alpha_1^*, \alpha_2^*) = (0, 0)$, onde: $x^{B^{\alpha}} = \begin{bmatrix} s_1 & x_1 & x_2 \end{bmatrix}^T = \begin{bmatrix} 30 & 0 & 10 \end{bmatrix}^T$; $x^{N^{\alpha}} = \begin{bmatrix} a_2 & a_3 & s_2 \end{bmatrix}^T = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T$, so

Agora, começamos a **Fase II** do método: tomamos a solução básica ótima da **Fase I** como a solução básica inicial da **Fase II**, ou seja,

$$\mathbf{x}^{\mathrm{B}} = \begin{bmatrix} \mathbf{s}_1 & \mathbf{x}_1 & \mathbf{x}_2 \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 30 & 0 & 10 \end{bmatrix}^{\mathsf{T}}.$$

Para o tableau inicial da Fase II, é necessário eliminar as colunas correspondentes às variáveis artificiais a_k e a linha da função objetivo z^a .

No exemplo que estamos vendo, o tableau inicial da Fase II fica assim: (1)

	z				s_2		
z	1	0	0	0	-1	$-40 = \bar{z}$	(L ₁)
s_1	0	0	0			30	(L ₂)
x_1	0	1	0	0	-1/2	0	(L_3)
x_2	0	0	1	0		10	(L_4)

E assim, iniciamos o algoritmo Simplex na Fase II com o novo tableau: (1)

	z	x_1	χ_2	s_1	$\Downarrow s_2$		
z	1	0	0	0	-1	$-40 = \bar{z}$	(L_1)
S ₁	0	0	0				(L ₂)
x_1	0	1	0	0	-1/2	0	(L_3)
$\Leftarrow x_2$	0	0	1		1/2	10	(L_4)

Quem entra na base:

$$z_4 - c_4 = -1 < 0 \Rightarrow s_2$$
 entra na base.

Quem sai da base:

$$a_{14} = -2 < 0$$
 (×); $a_{24} = -1/2 < 0$ (×); $a_{34} = 1/2 > 0$ (OK). $\min\left\{\frac{b_3}{a_{34}}\right\} = \min\left\{\frac{10}{1/2}\right\} = \frac{10}{1/2} = 20 \Rightarrow x_2 \text{ sai da base.}$

Pivô: $a_{34} = 1/2$; Linha do pivô: L_4 ;

Operações nas linhas para eliminar os elementos da coluna do pivô, exceto o pivô:

$$L_1 \leftarrow L_1 + 2L_4; \qquad L_2 \leftarrow L_2 + 4L_4; \quad L_3 \leftarrow L_3 + L_4; \qquad L_4 \leftarrow 2L_4.$$

E o novo tableau é dado por:

(2)

Na linha L_1 , $z_j - c_j \ge 0, \forall j \in I_N$. Logo, temos:

Solução ótima do PPL original: $(x_1^*, x_2^*) = (10, 0)$.

Valor ótimo da função objetivo: $z^* = -20$.

Teorema (Viabilidade do PPL original)

Seja o P^{α} o problema de programação linear da Fase I que tem por objetivo eliminar as variáveis artificiais. Seja (x^*, a_i^*) a solução ótima de P^{α} . Então:

- ① Se $\sum_i a_i^* > 0 \Rightarrow O$ PPL original é inviável;
- © Se $\sum_i a_i^* = 0 \Rightarrow$ O PPL original é viável e o P $^{\alpha}$ fornece a 1a. solução básica viável do PPL original.

Exemplo (Solução básica viável inexistente)

Considere o problema a seguir:

max
$$z = 3x_1 - 4x_2$$

s.a.
$$x_1 + x_2 \le 4$$
$$2x_1 + 3x_2 \ge 18$$
$$x_1, x_2 \ge 0$$

Na forma padrão e já modificado para o método das duas fases, temos para a Fase I o subproblema P^{α} :

max
$$z^{a} = -a_{1}$$

s.a.
$$x_{1} + x_{2} + s_{1} = 4$$
$$2x_{1} + 3x_{2} - s_{2} + a_{1} = 18$$
$$x_{1} , x_{2} , s_{1} , s_{2} , a_{1} \ge 0$$

O tableau inicial fica da seguinte forma: (1)

	z	x_1	x_2	s ₁	s_2	\mathfrak{a}_1		
z^{a}	1	0	0	0	0	1	$0 = \bar{z}^{\alpha}$	(L_1)
z	1	-3	4	0	0	0	$0=\bar{z}$	(L_2)
S ₁	0	1	1	1	0	0	4	$\overline{(L_3)}$
a_1	0	2	3	0	-1	1	18	(L_4)

Como a_1 é variável básica e seu coeficiente na linha da função objetivo é igual a 1 (não nulo), devemos realizar a operação $L_1 \leftarrow L_1 - L_4$ para anular este coeficiente. Assim, obtemos:

(2)

	z	χ_1	ψx_2	s ₁	s_2	\mathfrak{a}_1		
z^{α}	1	-2	-3	0	1	0	$-18 = \bar{z}^{\alpha}$	(L_1)
z	1	-3	4	0	0	0	$0=\bar{z}$	(L ₂)
$\Leftarrow s_1$	0	1	1	1	0	0	4	(L ₃)
a_1	0	2	3	0	-1	1	18	(L_4)

Quem entra na base:

$$z_2-c_2=-3 < 0$$
 e $z_1-c_1=-2 < 0$
Como $z_2-c_2 < z_1-c_1$, então x_2 entra na base .

Quem sai da base:

$$\begin{array}{l} a_{12} = 1 > 0 \text{ (OK); } a_{22} = 3 > 0 \text{ (OK).} \\ \min\left\{\frac{b_1}{a_{12}}, \frac{b_2}{a_{22}}\right\} = \min\left\{\frac{4}{1}, \frac{18}{3}\right\} = \frac{4}{1} = 4 \Rightarrow s_1 \text{ sai da base.} \end{array}$$

Pivô: $a_{12} = 1$; Linha do pivô: L_3 ;

Operações nas linhas: $L_1 \leftarrow L_1 + 3L_3$; $L_2 \leftarrow L_2 - 4L_3$; $L_4 \leftarrow L_4 - 3L_3$.

E o novo tableau é dado por:

(3)

		χ_1	χ_2	s_1	s_2	\mathfrak{a}_1		
z^{α}	1	1	0	3	1	0	$-6=\bar{z}^{\alpha}$	(L_1)
z						0	$-16 = \bar{z}$	(L ₂)
χ_2	0	1	1	1	0	0	4	(L_3)
a_1	0	-1	0	-3	-1	1	6	(L_4)

Solução ótima do subproblema P^{α} da Fase I: $(\alpha_1^*, \alpha_2^*) = (6, 0)$, onde:

$$x^{B^{\,\alpha}} = \begin{bmatrix} x_2 & \alpha_1 \end{bmatrix}^\mathsf{T} = \begin{bmatrix} 4 & \mathbf{6} \end{bmatrix}^\mathsf{T}; \, x^{N^{\,\alpha}} = \begin{bmatrix} x_1 & s_1 & s_2 \end{bmatrix}^\mathsf{T} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^\mathsf{T}.$$

Porém, $a_1 = 6 \neq 0$ e valor ótimo da função objetivo z^{α} na Fase I é $z^{\alpha*} = -6$.

Portanto, não eliminamos a variável artificial α₁ na Fase I e o PPL original é inviável.

Vamos ver dois casos de eliminação das variáveis artificiais na Fase I em que uma das variáveis artificiais continua na base com valor nulo.

Exemplo - Caso 1: Considere o PPL:

max
$$z = x_1 + x_2$$

s.a.
$$x_1 + 4x_2 \ge 4$$
$$3x_1 + x_2 = 1$$
$$x_1, x_2 > 0$$

Na forma padrão, temos para a Fase I o subproblema P^{α} :

O tableau inicial fica da seguinte forma:

(1)

	z	χ_1	x_2	s_1	\mathfrak{a}_1	\mathfrak{a}_2		
z^{a}	1	0	0	0	1	1	$0 = \bar{z}^{\alpha}$	(L_1)
z	1	-1	-1	0	0	0	$0=\bar{z}$	(L_2)
\mathfrak{a}_1	0	1	4	-1	1	0	4	(L_3)
\mathfrak{a}_2	0	3	1	0	0	1	1	(L_4)

Como α_1 e α_2 são variáveis básicas e seus coeficientes na linha L_1 valem 1, devemos realizar a operação $L_1 \leftarrow L_1 - L_3 - L_4$ para anular estes coeficientes. Assim, obtemos:

(2)

	z	χ_1	χ_2	81	\mathfrak{a}_1	\mathfrak{a}_2		
z^{a}	1	-4	- 5	1	0	0	$-5=\bar{z}^{\alpha}$	(L_1)
1				0	0	0	$0=\bar{z}$	(L ₂)
\mathfrak{a}_1	0	1	4	-1	1	0	4	(L_3)
\mathfrak{a}_2	0	3	1	0	0	1	1	(L_4)

Agora, podemos realizar a pivotagem.

(2)

		χ_1	$\Downarrow x_2$	s ₁	a_1	\mathfrak{a}_2		
za	1	-4	- 5	1	0	0	$-5 = \bar{z}^{\alpha}$	(L ₁)
z	1	-1	-1	0	0	0	$0=\bar{z}$	(L ₂)
$a_1 \Leftrightarrow a_2$	0	1	4	-1	1	0	4	(L_3)
$ \Leftarrow \mathfrak{a}_2$	0	3	1	0	0	1	1	(L_4)

Quem entra na base:

$$z_2 - c_2 = -5 < 0$$
 e $z_1 - c_1 = -4 < 0$
Como $z_2 - c_2 < z_1 - c_1$, então x_2 entra na base .

Quem sai da base:

$$\begin{aligned} &a_{12} = 4 > 0 \text{ (OK)}; \ a_{22} = 1 > 0 \text{ (OK)}.\\ &\min\left\{\frac{b_1}{a_{12}}, \frac{b_2}{a_{22}}\right\} = \min\left\{\frac{4}{4}, \frac{1}{1}\right\} = 1. \end{aligned}$$

Houve empate, podemos escolher a_1 ou a_2 para sair da base.

Aqui, vamos fazer a_2 sair da base.

Pivô: $a_{22} = 1$; Linha do pivô: L_4 ;

 $\textbf{Operações nas linhas:} \ L_1 \leftarrow L_1 + 5L_4; \quad L_2 \leftarrow L_2 + L_4; \quad L_3 \leftarrow L_3 - 4L_4.$

E o novo tableau é dado por:

(3)

	z	χ_1	χ_2	s ₁	\mathfrak{a}_1	\mathfrak{a}_2		
zα	1	11	0	1	0	5	$0 = \bar{z}^{\alpha}$	(L ₁)
							$1=\bar{z}$	(L ₂)
a_1	0	-11	0	-1	1	-4	0	(L_3)
$ x_2 $	0	3	1	0	0	1	1	(L_4)

Todos os coeficientes de L_1 são não negativos. Atingimos, portanto, o fim da Fase I com $\bar{z}^\alpha=0$ e **solução ótima** $(\alpha_1^*,\alpha_2^*)=(0,0)$, onde:

$$x^{B^{\,\alpha}} = \begin{bmatrix} \alpha_1 & x_2 \end{bmatrix}^T = \begin{bmatrix} 0 & 1 \end{bmatrix}^T; \, x^{N^{\,\alpha}} = \begin{bmatrix} x_1 & \alpha_2 & s_1 \end{bmatrix}^T = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T.$$

Note que neste caso, a variável artificial a_1 continua na base e, mesmo assim, vale zero.

Como $a_1 + a_2 = 0$, o PPL original é viável e prosseguimos então para a Fase II, onde a solução básica viável inicial é dada por:

$$\mathbf{x}^{B} = \begin{bmatrix} \mathbf{\alpha}_{1} & \mathbf{x}_{2} \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} \mathbf{0} & \mathbf{1} \end{bmatrix}^{\mathsf{T}}$$
 .

Eliminamos do último tableau da Fase I a linha L_1 e **somente a coluna de** α_2 , pois α_2 **não está na base** e α_1 **ainda está na base** ao fim da Fase I.

Isso resulta no seguinte tableau inicial para a Fase II:

(1)

	z	x_1	x_2	s_1	\mathfrak{a}_1		
z	1	2	0	0	0	$1=\bar{z}$	(L ₁)
a_1	0	-11	0	-1	1	0	(L ₂)
$\begin{vmatrix} a_1 \\ x_2 \end{vmatrix}$	0	3	1	0	0	1	(L_3)

Como α_1 é variável básica, não podemos eliminá-la imediatamente. Na linha referente a α_1 , que é L_2 , temos elementos não nulos. Assim, podemos fazer uma mudança de base.

As variáveis que estão fora da base são x_1 e s_1 . Podemos escolher qualquer uma delas para entrar na base. Vamos aqui escolher s_1 .

(1)

	z	x_1	x_2	ψs_1	\mathfrak{a}_1		
z	1	2	0	0	0	$1=\bar{z}$	(L_1)
a_1	0	-11	0	-1	1	0	(L ₂)
χ_2	0	3	1	0	0	1	(L_3)

Problemas detectados: $a_{13} = -1 < 0$ e $a_{23} = 0$.

Porém, como **o termo independente é** $b_1 = 0$ **em** L_2 , podemos multiplicar L_2 por -1, ou seja, fazer a operação $L_1 \leftarrow -L_1$. Assim, obtemos:

(2)

	z	χ_1	x_2	ψs_1	a_1		
	l .	l .				$1=\bar{z}$	(L_1)
$\Leftarrow a_1$ x_2	0	11	0	1	-1	0	(L_2)
χ_2	0	3	1	0	0	1	(L_3)

Assim, a_1 pode sair da base, pois $a_{23} = 0$ (×).

Como α_1 saiu da base, podemos finalmente eliminar a coluna de α_1 do tableau inicial da Fase II. Assim, temos:

(3)

	z	x_1	χ_2	s_1		
			0		$1=\bar{z}$	(L_1)
s ₁	0	11	0	1	0	(L_2)
χ_2	0	3	0	0	1	(L_3)

Como todos os coeficientes de L_1 são não negativos, obtemos a solução ótima da Fase II:

Solução ótima: $(x_1^*, x_2^*) = (0, 1)$ (**Solução degenerada**, pois a variável básica x_1 tem valor nulo).

Valor ótimo da função objetivo: $z^* = 1$

Exemplo - Caso 2: Considere o PPL:

max
$$z = x_1 + x_2$$

s.a.
$$2x_1 + 3x_2 = 5$$
$$-6x_1 - 9x_2 = -15 \quad (\text{ ou } 6x_1 + 9x_2 = 15, \text{ pois } b_2 \ge 0)$$
$$x_1 - x_2 \ge 0 \quad (\text{ ou } -x_1 + x_2 \le 0, \text{ pois } b_3 = 0)$$
$$x_1, x_2 > 0$$

Na forma padrão, temos para a Fase I o subproblema P^{α} :

max
$$z^{a} = -a_{1} - a_{2}$$

s.a.
$$2x_{1} + 3x_{2} + a_{1} = 5$$

$$6x_{1} + 9x_{2} + a_{2} = 15$$

$$-x_{1} + x_{2} + s_{3} = 0$$

$$x_{1}, x_{2}, s_{3}, a_{1}, a_{2} > 0$$

O tableau inicial fica da seguinte forma:

(1)

	z	χ_1	χ_2	s_3	\mathfrak{a}_1	\mathfrak{a}_2		
z^{α}	1	0	0	0	1	1	$0 = \bar{z}^{a}$	(L ₁)
z	1	-1	-1	0	0	0	$0=\bar{z}$	(L ₂)
\mathfrak{a}_1	0	2	3	0	1	0	5	(L ₃)
\mathfrak{a}_2	0	6	9	0	0	1	15	(L_4)
s_3	0		1	1	0	0	0	(L_5)

Como α_1 e α_2 são variáveis básicas e seus coeficientes em L_1 valem 1, realizamos a operação $L_1 \leftarrow L_1 - L_3 - L_4$ para anular estes coeficientes. Assim, obtemos: (2)

	z	χ_1	x_2	s_3	a_1	\mathfrak{a}_2		
z^{a}	1	-8	-12	0	0	0	$-20 = \bar{z}^{\alpha}$	(L_1)
z	1	-1	-1	0	0	0	$0=\bar{z}$	(L ₂)
a_1	0	2	3	0	1	0	5	(L_3)
\mathfrak{a}_2	0	6	9	0	0	1	15	(L_4)
s ₃	0	-1	1	1	0	0	0	(L_5)

Agora, podemos realizar a pivotagem.

(2)

	z	χ_1	ψx_2	s_3	\mathfrak{a}_1	\mathfrak{a}_2		
z^{a}	1	-8	-12	0	0	0	$-20 = \bar{z}^{\alpha}$	(L_1)
1	l .	1					$0=ar{z}$	(L_2)
a_1	0	2	3	0	1	0	5 15	(L_3)
\mathfrak{a}_2	0	6	9	0	0	1	15	(L_4)
$\Leftarrow s_3$	0	-1	1	1	0	0	0	(L_{5})

Quem entra na base:

$$z_2 - c_2 = -12 < 0$$
 e $z_1 - c_1 = -8 < 0$
 $z_2 - c_2 < z_1 - c_1 \Rightarrow x_2$ entra na base .

Quem sai da base:

$$\begin{array}{l} a_{12}=3>0 \text{ (OK); } a_{22}=9>0 \text{ (OK); } a_{32}=1>0 \text{ (OK).} \\ \min\left\{\frac{b_1}{a_{12}},\frac{b_2}{a_{22}},\frac{b_3}{a_{32}}\right\}=\min\left\{\frac{5}{3},\frac{15}{9},\frac{0}{1}\right\}=0 \Rightarrow s_3 \text{ sai da base.} \end{array}$$

Pivô: $a_{32} = 1$; Linha do pivô: L_5 ;

Operações nas linhas: $L_1 \leftarrow L_1 + 12L_5$; $L_2 \leftarrow L_2 + L_5$; $L_3 \leftarrow L_3 - 3L_5$; $L_4 \leftarrow L_4 - 9L_5$.

E o novo tableau é dado por:

(3)

	z	χ_1	χ_2	\$3	\mathfrak{a}_1	\mathfrak{a}_2		
z^{α}	1	↓ −20	0	12	0	0	$-20 = \bar{z}^{\alpha}$	(L_1)
							$0=\bar{z}$	(L_2)
$\Leftarrow a_1$	0	5	0	-3	1	0	5	(L_3)
\mathfrak{a}_2	0	15	0	-9	0	1	15	(L_4)
$ x_2 $	0	-1	1	1	0	0	0	(L_5)

Quem entra na base: $z_1 - c_1 = -20 < 0 \Rightarrow x_1$ entra na base .

Quem sai da base:
$$a_{11} = 5 > 0$$
 (OK); $a_{21} = 15 > 0$ (OK); $a_{31} = -1 > 0$ (×). $\min\left\{\frac{b_1}{a_{11}}, \frac{b_2}{a_{22}}\right\} = \min\left\{\frac{5}{5}, \frac{15}{15}\right\} = 1$

Houve empate. Escolho a_1 para sair da base.

Pivô: $a_{11} = 5$; Linha do pivô: L_3 ;

Operações nas linhas: $L_1 \leftarrow L_1 + 4L_3$; $L_2 \leftarrow L_2 + (2/5)L_3$;

$$L_4 \leftarrow L_4 - 3L_3; \quad L_5 \leftarrow L_5 + (1/5)L_3; \quad L_3 \leftarrow L_3/5.$$

E o novo tableau é dado por:

(4)

	z	χ_1	x_2	s ₃	\mathfrak{a}_1	\mathfrak{a}_2		
zα	1	0	0	0	4		$0 = \bar{z}^{\alpha}$	(L ₁)
z							$2=\bar{z}$	(L ₂)
χ_1	0	1	0	-3/5	1/5	0	1	(L_3)
a_2	0	0	0	0	-3	1	0	(L_4)
$ x_2 $	0	0	1	2/5	1/5	0	1	(L_5)

Todos os coeficientes de L_1 são não negativos. Atingimos, portanto, o fim da Fase I com $\bar{z}^\alpha=0$ e **solução ótima** $(\alpha_1^*,\alpha_2^*)=(0,0)$, onde:

$$x^{B^{\alpha}} = \begin{bmatrix} x_1 & \alpha_2 & x_2 \end{bmatrix}^T = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T; x^{N^{\alpha}} = \begin{bmatrix} \alpha_1 & s_3 \end{bmatrix}^T = \begin{bmatrix} 0 & 0 \end{bmatrix}^T.$$

Note que neste caso, a variável artificial a_2 continua na base e, mesmo assim, vale zero.

Como $a_1 + a_2 = 0$, o PPL original é viável e prosseguimos então para a Fase II, onde a solução básica viável inicial é dada por:

$$\mathbf{x}^{B} = \begin{bmatrix} \mathbf{x}_{1} & \mathbf{a}_{2} & \mathbf{x}_{2} \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{1} \end{bmatrix}^{\mathsf{T}}.$$

Eliminamos do último tableau da Fase I a linha L_1 e **somente a coluna de** α_1 , pois α_1 **não está na base** e α_2 **ainda está na base** ao fim da Fase I.

Isso resulta no seguinte tableau inicial para a Fase II:

(1)

	z	χ_1		s ₃	\mathfrak{a}_2		
z	1	0	0	-1/5	0	$2=\bar{z}$	(L ₁)
χ_1	0	1	0	-3/5	0	1	(L ₂)
\mathfrak{a}_2	0	0	0	0	1	0	(L_3)
χ_2	0	0	1	2/5	0	1	(L_4)

Como a_2 é variável básica e a linha referente a ela, L_3 , é composta de zeros, exceto o elemento 1 referente à própria a_2 , existe uma equação redundante no sistema de restrições.

Como conseguência, podemos eliminar a linha L_3 e a coluna de α_2

Isso resulta no seguinte tableau para a Fase II:

(2)

	z	x_1	χ_2	ψ s ₃		
z	1	0	0	-1/5	$2=\bar{z}$	(L_1)
χ_1	0	1	0	-3/5	1	(L ₂)
$ \Leftarrow x_2$	0	0	1	2/5	1	(L_3)

Quem entra na base: $z_3-c_3=-1/5<0\Rightarrow s_3$ entra na base .

Quem sai da base:
$$a_{13} = -3/5 < 0$$
 (×); $a_{23} = 2/5 > 0$ (OK). $\Rightarrow x_2$ sai da base.

Pivô: $a_{23} = 2/5$; Linha do pivô: L_3 ;

Operações nas linhas:
$$L_1 \leftarrow L_1 + (1/2)L_3$$
; $L_2 \leftarrow L_2 + (3/2)L_3$; $L_3 \leftarrow (5/2)L_3$.

Isso resulta no seguinte tableau para a Fase II:

(3)

	z	x_1	x_2	s_3		
z	1	0	1/2	0	$5/2=\bar{z}$	(L_1)
χ_1	0	1	3/2	0	5/2	(L ₂)
s ₃	0	0	5/2	1	5/2	(L_3)

Como todos os coeficientes de L_1 são não negativos, obtemos a solução ótima da Fase II:

Solução ótima: $(x_1^*, x_2^*) = (5/2, 0)$.

Valor ótimo da função objetivo: $z^* = 5/2$.

O gráfico do próximo slide mostra as duas fases, onde:

1a. fase: $O \rightarrow A$;

2a. fase: $A \rightarrow B$.

onde O = (0,0), A = (1,1), B = (5/2,0).

Figura: Método das duas fases - Funções do exemplo - Caso 2