### Tsallis Mutual Information for Document Classification

#### Preetham Reddy Armoor

Department of Mathematics Hochschule, Mittweida

24 January, 2018

## Outline

- Tsallis Entropy
- Mutual Information
  - Mutual Entropy
  - Generalized kullback-leibler distance
  - Jensen-Tsallis Information
- 3 Image Classification
- 4 Image Registration

## **Entropy**

Entropy: Measure the amount of uncertainty about the random variable Given a random variable X with distribution  $(x_1, x_2, ..., x_n)$ 

#### Definition

Shannon entropy H(X) of a random variable X is defined as

$$H(X) = -\sum_{x \in X} P(x) \log P(x)$$

Generalization of Shannon Entropy.

#### Definition

Tsallis-entropy is defined by

$$H_{\alpha}^{\mathsf{T}}(X) = \frac{1 - \sum_{x \in X} P_x^{\alpha}}{\alpha - 1}$$

where the parameter  $\alpha$  is called Entropic Index , $\alpha>0$  and  $\neq 1$  where  $\sum_{x\in X}P(x)=1$ 

$$H^T_{\alpha}(X)$$
 is concave function of  $p$  for  $\alpha>0$   $H^T_{\alpha}(X)=H(X)$  when  $\alpha\to 1$ 

#### Example

Given a random variable P with bernoulli distribution (p, 1-p)



Figure: Tsallis Entropy of bernoulli distribution (p, 1-p) for different  $\alpha$  values

#### non-extensive (pseudoadditvity) property

Given two random variables X and Y with distribution  $(x_1, x_2, ..., x_n)$  and  $(y_1, y_2, ..., y_n)$ 

Shannon Joint Entropy:

if the variables are independent

$$H(X,Y) = H(X) + H(Y)$$

if the variables are correlated

$$H(X,Y) = H(X) + H(Y|X)$$

#### non-extensive (pseudoadditvity) property

Given two random variables X and Y with distribution  $(x_1, x_2, ..., x_n)$  and  $(y_1, y_2, ..., y_n)$ 

Shannon Joint Entropy:

if the variables are independent

$$H(X,Y) = H(X) + H(Y)$$

if the variables are correlated

$$H(X, Y) = H(X) + H(Y|X)$$

Tsallis Joint Entropy:

$$H_{\alpha}^{T}(X,Y) = H_{\alpha}^{T}(X) + H_{\alpha}^{T}(Y) + (1 - \alpha)H_{\alpha}^{T}(X)H_{\alpha}^{T}(Y)$$

#### Mutual Information

Mutual Information measures the information that X shares with Y

$$MI(X; Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)$$
  
 $MI(X; Y) = H(X) + H(Y) - H(X, Y)$ 

Mutual Entropy

Tsallis Mutual Entropy is generalization of Mutual Information Tsallis Mutual Entropy is defined for  $\alpha>1$ 

$$ME_{\alpha}^{T}(X;Y) = H_{\alpha}^{T}(X) - H_{\alpha}^{T}(X|Y) = H_{\alpha}^{T}(Y) - H_{\alpha}^{T}(Y|X)$$
$$= H_{\alpha}^{T}(X) + H_{\alpha}^{T}(Y) - H_{\alpha}^{T}(X,Y)$$

#### Mutual Entropy

Tsallis Mutual Entropy is generalization of Mutual Information Tsallis Mutual Entropy is defined for  $\alpha>1$ 

$$ME_{\alpha}^{T}(X;Y) = H_{\alpha}^{T}(X) - H_{\alpha}^{T}(X|Y) = H_{\alpha}^{T}(Y) - H_{\alpha}^{T}(Y|X)$$
$$= H_{\alpha}^{T}(X) + H_{\alpha}^{T}(Y) - H_{\alpha}^{T}(X,Y)$$

Upper bound of Mutual Entropy

$$ME_{\alpha}^{T}(X;Y) \leq H_{\alpha}^{T}(X,Y)$$

Measure is always positive and symmetric

Mutual Entropy

Normalization of Mutual Entropy

$$NME_{\alpha}^{T}(X;Y) = \frac{ME_{\alpha}^{T}(X;Y)}{H_{\alpha}^{T}(X;Y)}$$

Normalization of Mutual Entropy: takes values 0 if and only if X and Y are independent and  $\alpha=1$  takes values 1 if and only if X = Y

kullback-leibler distance

kullback-leibler distance or informational divergence

$$KL(p, q) = \sum_{x \in X} p(x) \log \frac{p(x)}{q(x)}$$

the conventions that  $0\log\frac{0}{0}=0$  and  $a\log\frac{a}{0}=\infty$  if a>0 are adopted the kullback-leibler distance satisfies the information inequality  $KL(p,q)\geq 0$  with equality if and only if p=q

kullback-leibler distance

kullback-leibler distance or informational divergence

$$KL(p,q) = \sum_{x \in X} p(x) \log \frac{p(x)}{q(x)}$$

the conventions that  $0\log\frac{0}{0}=0$  and  $a\log\frac{a}{0}=\infty$  if a>0 are adopted the kullback-leibler distance satisfies the information inequality  $\mathit{KL}(p,q)\geq 0$  with equality if and only if p=q mutual information can be obtained from the kullback-leibler distance as follows

$$MI(X; Y) = KL(p(x, y), p(x)p(y))$$

kullback-leibler distance

Tsallis generalization of kullback-leibler distance:

$$KL_{\alpha}^{T}(p,q) = \frac{1}{1-\alpha} \left(1 - \sum_{x \in X} \frac{p(x)^{\alpha}}{q(x)^{\alpha-1}}\right)$$

Tsallis generalization of kullback-leibler distance:

$$KL_{\alpha}^{T}(p,q) = \frac{1}{1-\alpha} \left(1 - \sum_{x \in X} \frac{p(x)^{\alpha}}{q(x)^{\alpha-1}}\right)$$

$$MI_{\alpha}^{T}(X;Y) = KL_{\alpha}^{T}(p(x,y), p(x)p(y))$$

$$MI_{\alpha}^{T}(X;Y) = \frac{1}{1-\alpha} \left(1 - \sum_{x \in X} \sum_{y \in Y} \frac{p(x,y)^{\alpha}}{p(x)^{\alpha-1}p(y)^{\alpha-1}}\right)$$

kullback-leibler distance

Normalization of Mutual Information:

$$NMI_{\alpha}^{T}(X;Y) = \frac{MI_{\alpha}^{T}(X;Y)}{H_{\alpha}^{T}(X,Y)}$$

 $\mathit{NMI}_{\alpha}^{\mathcal{T}}(X;Y)$  is a normalize measure for  $\alpha \to 1$ Not true for other  $\alpha$  values as  $\mathit{NMI}_{\alpha}^{\mathcal{T}} > 1$ measure is always positive and symmetric

Jensen-Tsallis Information

from Jensen's inequality ,we obtain the jensen-shannon inequality

$$JS(\pi_1,.....\pi_n; p_1,...., p_n) = H(\sum_{i=1}^n \pi_i p_i) - \sum_{i=1}^n \pi_i H(p_i) \ge 0$$

where  $JS(\pi_1,....\pi_n; p_1,....,p_n)$  is the Jensen-shannon Divergence of probability distributions  $p_1,.....,p_n$  with prior probability or weights  $\pi_1,.....\pi_n$  fulfilling  $\sum_{i=1}^n \pi_i = 1$ 

Mutual Information can also be expressed as Jensen-shannon Divergence

$$I(X; Y) = JS(p(x_1), ...., p(x_n); p(Y|x_1), ...., p(Y|x_n))$$

Jensen-Tsallis Information

Jensen-Shannon divergence can be extended to define the Jensen-Tsallis divergence

$$JS_{\alpha}^{T}(\pi_{1},.....\pi_{n}; p_{1},....., p_{n}) = H_{\alpha}^{T}(\sum_{i=1}^{n} \pi_{i}p_{i}) - \sum_{i=1}^{n} \pi_{i}H_{\alpha}^{T}(p_{i})$$

$$JTI_{\alpha}^{T}(X \to Y) = JT_{\alpha}(p(x); p(Y|x))$$

$$JTI_{\alpha}^{T}(X \to Y) = H_{\alpha}^{T}(\sum_{x \in X} p(x)p(Y|x)) - \sum_{x \in X} p(x)H_{\alpha}^{T}(Y|x)$$

$$JTI_{\alpha}^{T}(X \to Y) = H_{\alpha}^{T}(Y) - \sum_{x \in X} p(x)H_{\alpha}^{T}(Y|x)$$

Jensen-Tsallis Information

for reverse channel  $Y \rightarrow X$ , we have

$$JTI_{\alpha}^{T}(Y \to X) = H_{\alpha}^{T}(X) - \sum_{y \in Y} p(y)H_{\alpha}^{T}(X|y)$$

measure is positive and non-symmetric Normalized of  $JTI_{\alpha}^{T}$  can be defined as

$$NJTI_{\alpha}^{T}(X \to Y) = \frac{JTI_{\alpha}^{T}(X \to Y)}{H_{\alpha}^{T}(X, Y)}$$

measure will also take values in the interval [0,1]

## Metric

For N pixels in the overlap domain  $\Omega_{A,B}$  of images A and B

• sum of squared difference

$$SSD = \frac{1}{N} \sum_{i \in \Omega_{A,B}} |A(i) - B(i)|^2$$

A(i) and B(i) represents the intensity at a pixel i of the images A and B

correlation coefficient

$$cc = \frac{\sum_{i \in \Omega_{A,B}} (A(i) - A')(B(i) - B')}{\left[\sum_{i \in \Omega_{A,B}} (A(i) - A')^2 \sum_{i \in \Omega_{A,B}} (B(i) - B')^2\right]^{\frac{1}{2}}}$$

# Image Classification



Figure: Document classification

# Image Classification

Results

Objective: to calculate the degree of similarity between each input invoice and all reference invoice (a Similarity list is created)

Performance Measures

percentage of classification success: number of correctly classified input invoices over the total number of input

classification error: position of the corresponding reference invoice in the similarity list

## **Image Classification**

#### Results

| $\alpha$ values | $MI^T$ |        | $NMI^T$ |        | $ME^T$ |         | $NME^T$ |        | $JTI^T$ |        | $NJTI^T$ |        |
|-----------------|--------|--------|---------|--------|--------|---------|---------|--------|---------|--------|----------|--------|
| 0.2             | 96.84  | (1.67) | 92.63   | (1.29) |        |         |         |        | 71.58   | (6.26) | 69.47    | (9.00) |
| 0.4             | 98.95  | (2.00) | 100.0   | (0.00) |        |         |         |        | 80.00   | (2.58) | 81.05    | (3.39) |
| 0.6             | 98.95  | (1.00) | 100.0   | (0.00) |        |         |         |        | 90.53   | (1.67) | 89.47    | (1.30) |
| 0.8             | 98.95  | (1.00) | 100.0   | (0.00) |        |         |         |        | 94.74   | (1.40) | 94.74    | (1.00) |
| 1.0             | 98.95  | (2.00) | 100.0   | (0.00) | 98.95  | (2.00)  | 100.0   | (0.00) | 98.95   | (2.00) | 100.0    | (0.00) |
| 1.2             | 98.95  | (2.00) | 100.0   | (0.00) | 87.37  | (2.58)  | 100.0   | (0.00) | 97.89   | (1.00) | 100.0    | (0.00) |
| 1.4             | 97.89  | (1.50) | 97.89   | (1.00) | 78.95  | (6.40)  | 100.0   | (0.00) | 97.89   | (1.50) | 100.0    | (0.00) |
| 1.6             | 94.74  | (1.40) | 94.74   | (1.00) | 72.63  | (8.27)  | 97.89   | (1.50) | 96.84   | (1.33) | 97.89    | (1.00) |
| 1.8             | 89.47  | (2.10) | 90.53   | (1.56) | 67.37  | (9.65)  | 93.68   | (2.50) | 96.84   | (1.33) | 97.89    | (1.00) |
| 2.0             | 87.37  | (2.33) | 86.32   | (2.15) | 63.16  | (10.66) | 91.58   | (4.86) | 96.84   | (1.33) | 97.89    | (1.00) |
| 2.2             | 75.79  | (2.13) | 77.89   | (2.10) | 54.74  | (10.23) | 88.42   | (6.64) | 96.84   | (1.33) | 97.89    | (1.00) |
| 2.4             | 67.37  | (2.61) | 70.53   | (2.50) | 52.63  | (10.78) | 86.32   | (8.31) | 96.84   | (1.33) | 97.89    | (1.00) |
| 2.6             | 65.26  | (3.06) | 66.32   | (2.97) | 46.32  | (10.55) | 85.26   | (9.50) | 96.84   | (1.33) | 97.89    | (1.00) |
| 2.8             | 64.21  | (3.50) | 64.21   | (3.38) | 42.11  | (10.60) | 81.05   | (8.67) | 96.84   | (1.33) | 97.89    | (1.00) |
| 3.0             | 63.16  | (3.80) | 64.21   | (3.79) | 38.95  | (10.93) | 77.89   | (8.67) | 97.89   | (1.50) | 100.0    | (0.00) |

Figure: Table for the percentage of classification success and mean of classification error of the misclassified input invoices for different  $\alpha$  values



Figure: Main components of the registration process

Results

Two different measures Robustness

Accuracy
Robustness: evaluated in terms of the partial image overlap
AFA(area of function attraction) evaluates the range of convergence of a
registration measure to its global maximum, counting the number of pixels
from which the global maximum is reached by applying a maximum
gradient method

Results



Figure: AFA parameter values with respect to the  $\alpha$  value for the  $MI_T$ ,  $ME_T$ ,  $JTI_T$  measures(left) and the corresponding normalized measures(right)

Results

Accuracy powell's method optimizer,a rigid transform for each image with original resolution 14 points manually identified and converted to the scaled space of a height 800 pixels mean error: Average euclidean distance between these moved points and the corresponding points in the template

Results



Figure: Mean error at the final registration position for different measure and  $\alpha$  value for the  $MI_T$ ,  $ME_T$ ,  $JTI_T$  measures(left) and the corresponding normalized measures(right)

#### Conclusion

for document classification the best results are obtained with normalized measure using  $\alpha$  values between 0.4 and 1.2 for  $\mathit{NMI}_T$  and between 1 and 1.4 for  $\mathit{NME}_T$  and  $\mathit{NJTI}_T$ 

for document registration, the most robust results have been obtained by  $NME_T$  with  $\alpha=1.3$  and the most accurate ones have been achieved by  $NJTI_T$  with  $\alpha=0.3$ 

#### Reference I



Marius Villa, Anton Bardera, Miquel Feixas and Mateu Sbert Tsallis Mutual Information for Document Classification Institut d'informatica i Applicacions, Universitat de Girona