## Linear Algebra I HW7

B13902024 張沂魁

October 29, 2025

**Problem 0.0.1.** Let A be a  $2 \times 2$  matrix over a field F. Then the set of all matrices of the form f(A), where f is a polynomial over F, is a commutative ring K with identity. If B is a  $2 \times 2$  matrix over K, the determinant of B is then a  $2 \times 2$  matrix over F, of the form f(A). Suppose I is the  $2 \times 2$  identity matrix over F and that B is the  $2 \times 2$  matrix over K

$$B = \begin{bmatrix} A - A_{11}I & -A_{12}I \\ -A_{21}I & A - A_{22}I \end{bmatrix}.$$

Show that  $\det B = f(A)$ , where  $f = x^2 - (A_{11} + A_{22})x + \det A$ , and also that f(A) = 0.

**Proof.** Note that

$$\det B = (A - A_{11}I)(A - A_{22}I) - A_{12}A_{21}I = A^2 - (A_{11} + A_{22})A + (A_{11}A_{22} - A_{12}A_{21})I$$
  
=  $A^2 - (A_{11} + A_{22})A + (\det A) \cdot I$ ,

so we know  $\det B = f(A)$ , where  $f(x) = x^2 - (A_{11} + A_{22})x + \det A$ . Also, since we know

$$A^{2} = \begin{pmatrix} A_{11}^{2} + A_{12}A_{21} & A_{11}A_{12} + A_{12}A_{22} \\ A_{21}A_{11} + A_{22}A_{21} & A_{21}A_{12} + A_{22}^{2} \end{pmatrix}$$

$$(A_{11} + A_{22})A = \begin{pmatrix} A_{11}^{2} + A_{11}A_{22} & A_{11}A_{12} + A_{22}A_{12} \\ A_{11}A_{21} + A_{22}A_{21} & A_{11}A_{22} + A_{22}^{2} \end{pmatrix}$$

$$(\det A) \cdot I = \begin{pmatrix} A_{11}A_{22} - A_{12}A_{21} & 0 \\ 0 & A_{11}A_{22} - A_{12}A_{21} \end{pmatrix},$$

so we know  $f(A) = A^2 - (A_{11} + A_{22})A + (\det A) \cdot I = 0.$ 

**Problem 0.0.2.** If  $\sigma$  is a permutation of degree n and A is an  $n \times n$  matrix over the field F with row vectors  $\alpha_1, \ldots, \alpha_n$ , let  $\sigma(A)$  denote the  $n \times n$  matrix with row vectors

$$\alpha_{\sigma 1}, \ldots, \alpha_{\sigma n}$$
.

- (a) Prove that  $\sigma(AB) = \sigma(A)B$ , and in particular that  $\sigma(A) = \sigma(I)A$ .
- (b) If T is the linear operator of Exercise 9, prove that the matrix of T in the standard ordered basis is  $\sigma(I)$ .
- (c) Is  $\sigma^{-1}(I)$  the inverse matrix of  $\sigma(I)$ ?
- (d) Is it true that  $\sigma(A)$  is similar to A?

Note 0.0.1. In Exercise 9, we define

$$T: F^n \to F^n, \quad T(x_1, x_2, \dots, x_n) = (x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(n)})$$

for a permutation  $\sigma \in S_n$ .

## Proof.

(a) Suppose AB's rows are  $r_1, r_2, \ldots, r_n$  and  $A = (a_{ij})_{n \times n}$  and  $B = (b_{ij})_{n \times n}$ , then we know

$$r_i = \left(\sum_{k=1}^n a_{ik} b_{k1}, \sum_{k=1}^n a_{ik} b_{k2}, \dots, \sum_{k=1}^n a_{ik} b_{kn}\right) \quad \forall 1 \le i \le n.$$

Thus, we know the p-th row of  $\sigma(AB)$  is

$$r'_{p} = \left(\sum_{k=1}^{n} a_{\sigma(p)k} b_{k1}, \sum_{k=1}^{n} a_{\sigma(p)k} b_{k2}, \dots, \sum_{k=1}^{n} a_{\sigma(p)k} b_{kn}\right)$$

for all  $1 \leq p \leq n$ . Note that  $\sigma(A)$ 's rows are  $\alpha_{\sigma(1)}, \alpha_{\sigma(2)}, \ldots, \alpha_{\sigma(n)}$ , then if we suppose  $\sigma(A)B$ 's rows are  $r''_1, r''_2, \ldots, r''_n$ , then we know

$$r_i'' = \left(\sum_{k=1}^n a_{\sigma(p)k} b_{k1}, \sum_{k=1}^n a_{\sigma(p)k} b_{k2}, \dots, \sum_{k=1}^n a_{\sigma(p)k} b_{kn}\right) = r_i' \quad \forall 1 \le i \le n,$$

so  $\sigma(AB) = \sigma(A)B$ . Thus, we have

$$\sigma(A) = \sigma(IA) = \sigma(I)A.$$

- (b) Suppose b is the standard ordered basis, then if  $\sigma(j) = i$ , we have  $T(e_i) = e_j$ . Now if  $[T]_b = A = (a_{ij})_{n \times n}$ , then if  $a_{rc} = 1$ , we must have  $T(e_c) = e_r$  since every row and every column of A has exactly one 1, while the other entries in the row/column are 0. Hence, we have  $c = \sigma(r)$ , which means  $[T]_b = \sigma(I)$ .
- (c) Suppose  $\sigma^{-1}(I)\sigma(I) = (c_{ij})_{n \times n}$ , then for  $c_{ij}$ :
  - Case 1: i = j, we know

$$c_{ii} = \sum_{k=1}^{n} \sigma^{-1}(I)_{ik} \sigma(I)_{ki} = \sigma^{-1}(I)_{i,\sigma^{-1}(i)} \sigma(I)_{\sigma^{-1}(i),i} = \sigma(I)_{\sigma^{-1}(i),i} = \sigma(I)_{w,\sigma(w)} = 1$$

if we suppose  $w = \sigma^{-1}(i)$ . Note that this is true since  $k = \sigma^{-1}(i)$  is the only k s.t.  $\sigma^{-1}(I)_{ik} = 1$ , otherwise it is equal to 0.

- Case 2:  $i \neq j$ , then

$$c_{ij} = \sum_{k=1}^{n} \sigma^{-1}(I)_{ik} \sigma(I)_{kj} = \sigma^{-1}(I)_{i,\sigma^{-1}(i)} \sigma(I)_{\sigma^{-1}(i),j}.$$

Note that  $\sigma(\sigma^{-1}(i)) = i \neq j$ , so we must have  $\sigma(I)_{\sigma^{-1}(i),j} = 0$ , and thus  $c_{ij} = 0$ .

Hence, we know  $\sigma^{-1}(I)\sigma(I) = I$ , which means  $\sigma^{-1}(I)$  is the inverse matrix of  $\sigma(I)$ .

(d) The answer is: not necessarily true.

Claim 0.0.1. If  $P \sim I$ , then P = I.

**Proof.** If 
$$P \sim I$$
, then  $Q^{-1}PQ = I$  for some  $Q$ , so  $PQ = Q$ , which means  $P = PQQ^{-1} = QQ^{-1} = I$ .

With this claim, if we pick some  $\sigma \in S_n$  s.t.  $\sigma$  is not identity permutation, then  $\sigma(I) \neq I$ , and thus  $\sigma(I)$  is not similar to I.

**Problem 0.0.3.** Let A be an  $n \times n$  matrix over K, a commutative ring with identity. Suppose A has the block form

$$A = \begin{pmatrix} A_1 & 0 & \cdots & 0 \\ 0 & A_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_k \end{pmatrix}$$

where  $A_i$  is an  $r_i \times r_i$  matrix. Prove

$$\det A = (\det A_1)(\det A_2) \cdots (\det A_k).$$

**Proof.** We first do a easier case: If  $A = \begin{pmatrix} A_1 & 0 \\ 0 & B \end{pmatrix}$ , where  $A_1 \in M_{r_1}(K)$  and B is a square matrix,

then we show that  $det(A) = det(A_1) det(B)$ . We do induction on  $r_1$ .

• For  $r_1 = 1$ , we know  $A = \begin{pmatrix} a & 0 \\ 0 & B \end{pmatrix}$ , where A = (a), then we know

$$\det(A) = a \det(B) = \det(A) \det(B)$$

by expanding along the first row.

- Now suppose for all  $r_1 \leq p-1$  this is true.
- Then for  $r_1 = p$ , we know

$$\det(A) = \sum_{i=1}^{p} (-1)^{1+j} a_{ij} \det(A(1 \mid j)) = \sum_{i=1}^{p} (-1)^{1+j} a_{ij} \det\begin{pmatrix} A_1(1 \mid j) & 0 \\ 0 & B \end{pmatrix},$$

by expanding along the first row, and by induction hypothesis, we know

$$\det\begin{pmatrix} A_1(1\mid j) & 0\\ 0 & B \end{pmatrix} = \det(A_1(1\mid j))\det(B),$$

so we know

$$\det(A) = \sum_{j=1}^{p} (-1)^{1+j} a_{1j} \det(A_1(1 \mid j)) \det(B) = \det(B) \cdot \left( \sum_{j=1}^{p} (-1)^{1+j} a_{1j} \det(A_1(1 \mid j)) \right)$$
$$= \det(B) \cdot \det(A),$$

so we're done.

By this case, we can first suppose

$$B_1 = \begin{pmatrix} A_2 & 0 & \cdots & 0 \\ 0 & A_3 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_k \end{pmatrix},$$

then we know  $\det(A) = \det\begin{pmatrix} A_1 & 0 \\ 0 & B_1 \end{pmatrix} = \det(A_1) \det(B_1)$ , and similarly defines  $B_2, B_3, \ldots, B_{k-1}$ , then we know  $\det(B_i) = \det(A_{i+1}) \det(B_{i+1})$  for all  $1 \le i \le k-2$ , and thus

$$\det(A) = \det(A_1) \det(A_2) \dots \det(A_k).$$

**Problem 0.0.4.** Let A be an  $n \times n$  matrix over a field,  $A \neq 0$ . If r is any positive integer between 1 and n, an  $r \times r$  submatrix of A is any  $r \times r$  matrix obtained by deleting (n-r) rows and (n-r) columns of A. The **determinant rank** of A is the largest positive integer r such that some  $r \times r$  submatrix of A has a **non-zero determinant**. Prove that the determinant rank of A is equal to the **row rank** of A (= **column rank** A).

**Problem 0.0.5.** Let A, B, C, D be commuting  $n \times n$  matrices over the field F. Show that the determinant of the  $2n \times 2n$  matrix

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

is  $\det(AD - BC)$ .