1)
$$T(n) = \begin{cases} 8T(\frac{n}{3}) + O(n^2), & n>1 \\ 1, & n=1 \end{cases}$$

For better guess;
 $T(3) = 9T(4) + 8 = 18$
 $T(3) = 9T(3) + 81 = \frac{3 \cdot 18 + 81}{1 + 2 \cdot 2} = \frac{3^5 - 3^4 \cdot 3}{1 + 2 \cdot 2} = \frac{3^5 \cdot 4}{1 + 2 \cdot 2$

CamScanner ile tarandı

2) a)
$$T(n) = 5T(\frac{n}{2}) + 0$$
 (n) $= 5T(\frac{n}{2}) + n$

Total cost of the level $l = 0$
 $l = 1$
 $T(\frac{n}{2})$
 $T(\frac{n}{2})$
 $l = 1$
 $T(\frac{n}{2})$
 $T(\frac{n}{2})$
 $T(\frac{n}{2})$
 $T(\frac{n}{2})$
 $t = 1$
 $t = 1$

3) a)
$$f(n) = 3n^2$$
, $g(n) = n^2$
for any no
 $\Rightarrow 3n^2 \le cn^2$, for $c \ge 3$, $n \ge no$
 $\Rightarrow f(n) = O(g(n))$
 $\Rightarrow 3n^2 \ge cn^2$, for $c \le 3$, $n \ge no$
 $\Rightarrow f(n) = O(g(n))$

Thus, both holds $f(n) = O(g(n))$
 $\Rightarrow f(n) = 2n^4 - 3n^2 + 7$, $g(n) = n^5$
 $\Rightarrow 2n^4 - 3n^2 + 7 \le cn^5$, $c = 2$, $n \ge 2$
 $\Rightarrow f(n) = O(g(n))$

c)
$$f(n) = \frac{\log n}{n}$$
, $g(n) = \frac{1}{n}$

$$\frac{\log n}{n} \ge \frac{C}{n}$$
, $g(n) = \frac{1}{n}$

$$\frac{\log n}{n} \ge \frac{C}{n}$$
, $g(n) = \frac{1}{n}$

$$\frac{\log n}{n} \ge \frac{C}{n}$$
, $g(n) = \frac{1}{n}$

$$f(n) = log n, g(n) = log n + \frac{1}{n}$$

$$f(n) = log n, g(n) = log n + \frac{1}{n}$$

$$f(n) = O(g(n))$$

$$f(n) = O(g(n))$$

e)
$$f(n) = 2^{k \log n}$$
, $g(n) = n^{k}$
 $\Rightarrow 2^{k \log n} \leq cn^{k}$, $c = 1$, $n \geq n^{k}$ $\Rightarrow (g(n))$
 $\Rightarrow n^{k} \geq cn^{k}$, $c = 1$, $n \geq n^{k}$ $\Rightarrow (g(n))$

Thus, both $\Theta(g(n))$
 $f(n) = 2^{n}$, $g(n) = 2^{2^{n}}$
 $\Rightarrow 2^{n} \leq c2^{2^{n}}$, $c = 1$, $n \geq n^{k}$ $\Rightarrow (f(n) = 0(g(n)))$

8) $f(n) = 2^{k \log n}$, $g(n) = (\log n)^{k \log n}$
 $2^{k \log n} \leq 2^{k \log n} \leq 2^{k \log n}$
 $2^{k \log n} \leq 2^{k \log n} \leq 2^{k \log n} \leq 2^{k \log n}$
 $2^{k \log n} \leq 2^{k \log n} \leq 2^{k$

3) h)
$$f(n) = \begin{cases} 4^n, & n < 2^{1000} \\ 2^{1000}, & n < 2^{1000} \end{cases}$$

$$\begin{cases} 2^{1000}, & n < 2^{1000} \end{cases}$$

$$2^{1000}, & n < 2^{1000} \end{cases}$$

$$\begin{cases} 2^{1000}, & n < 2^{1000}$$

CamScanner ile tarandı

4) a)
$$T(n) = 3T(\frac{\pi}{4}) + O(n)$$
 $a = 3 > 1$, $b = 4 > 1$, $O(n) = f(n) = n$ asymptotically positive $\log_b a = \log_4 3 \approx 0.792$
 $n^{\log_b a} = n^{0.792}$ case 3 may apply; $f(n) = n = \Omega(n^{0.73+E})$
 $a f(\frac{\pi}{b}) \stackrel{?}{\leq} c f(n)$
 $3f(\frac{\pi}{4}) \stackrel{?}{\leq} c n$

Thus, $T(n) = i\Theta(f(n)) = \Theta(n)$

b) $T(n) = 2^n T(\frac{\pi}{2}) + O(n)$
 $a = 2^n > 1$, $b = 2 > 1$, $O(n) = f(n) = n$ asymptotically $a = 2^n > 1$, $b = 2 > 1$, $O(n) = f(n) = n$

There is no way we can compare $f(n)$ and $f(n)$. There is no way we can compare $f(n)$ and $f(n)$. Thus, live can not solve) this recursion by Master Theorem Thus, live can not solve) this recursion by Master Theorem