

Metody identifikace systémů z přechodových charakteristik

Obsah

1	Úvo	od	2
2		oximace soustavy 1.řádu	
3		ejcova metoda aproximace přechodových charakteristik	
	3.1	Aproximace přenosem 2.řádu s rozdílnými časovými konstantami	
	3.2	Aproximace přenosem n-tého řádu se stejnými časovými konstantami	
4	Inte	egrační charakter soustavy	7
	4.1	Integrační soustava bez setrvačnosti	7
	4.2	Integrační soustavy se setrvačností	7
5	Apı	oximace využívající přenos s dopravním zpožděním	9
	5.1	Soustavy s dopravním zpožděním	9
	5.2	Aproximace pomocí tečny v inflexním bodě	.10
	5.3	Aproximace pomocí sečny v inflexním bodě	.11
	5.4	Aproximace pomocí tečny a sečny v inflexním bodě	.12
	5.5	Aproximace dvoubodovou metodou - varianta č. 1	.13
	5.6	Aproximace dvoubodovou metodou - varianta č. 2	.14

1 Úvod

Identifikace systémů pomocí aproximace změřených přechodových charakteristik patří mezi deterministické metody. Použití je vhodné, je-li šum na výstupu měřené soustavy zanedbatelný nebo nevýznamný z hlediska dynamických vlastností systému. Většinou se využívá jedna naměřená přechodová charakteristika reálného procesu, ale je možné pracovat i s více odezvami.

Přechodová charakteristika je odezva systému na jednotkový skokový vstup. Jedná se o důležitý nástroj pro identifikaci parametrů a struktury dynamických systémů. Existuje mnoho metod, které lze použít k identifikaci systémů z přechodových charakteristik. Zde je několik příkladů:

Metody založené na aproximaci:

- **Metoda tečny v inflexním bodu:** Tato metoda aproximuje přechodovou charakteristiku tečnou v inflexním bodu. Z parametrů tečny se pak dají vypočítat parametry systému.
- Metoda momentů: Tato metoda aproximuje přechodovou charakteristiku součtem exponenciálních funkcí. Z parametrů exponenciálních funkcí se pak dají vypočítat parametry systému.
- Metoda nejmenších čtverců: Tato metoda minimalizuje chybu mezi naměřenou a aproximovanou přechodovou charakteristikou.

Metody založené na optimalizaci (nejsou součástí tohoto textu):

- Metoda genetických algoritmů: Tato metoda používá genetické algoritmy k nalezení
 optimálních parametrů systému, které minimalizují chybu mezi naměřenou a simulovanou
 přechodovou charakteristikou.
- Metoda minimalizace kvadratické odchylky na datech: Tato metoda používá optimalizační algoritmus k nalezení optimálních parametrů přenosové funkce téměř libovolné struktury. Parametry systému se pak optimalizují tak, aby se minimalizoval součet kvadrátů rozdílů mezi naměřenou a simulovanou přechodovou charakteristikou.

V následujícím textu jsou uvedeny některé z možností postupů při identifikaci systému pomocí aproximačních metod. Detailněji je uveden postup pro identifikaci metodou prof. Strejce, jejíž výsledkem může být buď přenos se dvěma různými časovými konstantami, nebo přenos s jednou vícenásobnou časovou konstantou. Takové přenosy se běžně užívají k popisu mnoha technologických procesů, zejména z oblasti energetiky, tepelných systémů, výšky hladiny a jim podobných.

Dále jsou rozepsány vybrané postupy pro identifikaci systému, kdy výsledkem je přenos typu první řád s dopravním zpožděním (FOPDT). Takové přenosy jsou velmi užitečné při aplikaci mnoha návrhových metod PID regulátorů.

Výběr vhodné metody pro identifikaci systému z přechodové charakteristiky závisí na několika faktorech, jako je:

- Typ systému
- Kvalita dat
- Požadovaná přesnost
- Dostupný čas a výpočetní zdroje

2 Aproximace soustavy 1.řádu

Soustava prvního řádu bez dopravního zpoždění je popsána přenosem:

$$G(s) = \frac{K}{T_1 s + 1}$$

kde K je zesílení soustavy, T_1 je časová konstanta.

Obr. 1 Aproximace přechodové charakteristiky soustavou 1.řádu

Nejdříve zjistíme ustálenou hodnotu výstupní a vstupní veličiny. Jejich podílem získáme zesílení K.

$$K = \frac{y(\infty)}{u(\infty)}$$

kde $u(\infty)$ - ustálená hodnota vstupní veličiny, $y(\infty)$ - ustálená hodnota výstupní veličiny.

Časovou konstantu T_1 určíme z hodnoty $0.63y(\infty)$.

3 Strejcova metoda aproximace přechodových charakteristik

Metoda prof. Strejce je použitelná pouze pro systémy, které vykazují aperiodickou odezvu na jednotkový skok. Při aplikaci metody lze postupovat velmi rychle k cíli jen s využitím samotného grafu přechodové odezvy bez nutnosti provádět složité výpočty – většina podstatných parametrů se buď odhadne, odečte z grafu, nebo nalezne v tabulkách metody.

Základem úspěšného nalezení přenosu systému pomocí metody prof. Strejce je co nejpřesnější nalezení inflexního bodu přechodové odezvy a konstrukce tečné přímky, díky níž lze následně odečíst potřebné doby průtahu a náběhu.

Při manuálním zpracování je vhodné zobrazit jen podstatnou část grafu pro zvýšení přesnosti odhadu inflexního bodu i polohy tečné přímky.

Obr. 2 Přechodová charakteristika s aperiodickým průběhem a s vyznačenou dobou náběhu a dobou průtahu

Vykazuje-li odezva systému aperiodický průběh, lze ji aproximovat pomocí soustavy 2.řádu s rozdílnými časovými konstantami nebo soustavou n-tého řádu se stejnými časovými konstantami. Volba soustavy záleží na hodnotě parametru τ , který se vypočte:

$$\tau = \frac{T_u}{T_n}$$

kde T_u - doba průtahu, T_n - doba náběhu.

Pokud je parametr τ je menší než 0,104, volíme pro aproximaci obrazový přenos s rozdílnými časovými konstantami. Pokud je τ větší než 0,104, volíme obrazový přenos se stejnými časovými konstantami. Tedy:

τ < 0,104	=> aproximujeme přenosem ve tvaru:	$G(s) = \frac{K}{(T_1 s + 1)(T_2 s + 1)}$
$\tau \ge 0,104$	=> aproximujeme přenosem ve tvaru:	$G(s) = \frac{K}{(Ts+1)^n}$

3.1 Aproximace přenosem 2.řádu s rozdílnými časovými konstantami

Obr. 3 Aproximace soustavou 2.řádu s rozdílnými časovými konstantami

Parametry přenosu $G(s) = \frac{K}{(T_1s+1)(T_2s+1)}$ určíme následujícím postupem:

1.
$$K = \frac{y(\infty)}{u(\infty)}$$

2. Pro hodnotu $0.72 \ y(\infty)$ odečteme z přechodové charakteristiky časový okamžik t_1 a vypočteme součet časových konstant T_1 a T_2 podle vztahu:

$$T_1 + T_2 = \frac{t_1}{1,2564}$$

- 3. Vypočteme časový okamžik t_2 podle vzorce: $t_2 = 0.3574(T_1 + T_2)$
- 4. Z grafu přechodové charakteristiky odečteme hodnotu $y(t_2)$.
- 5. Podle tabulky 1 určíme poměr časových konstant

$$\tau_2 = \frac{T_1}{T_2}$$

6. Ze známého součtu a poměru časových konstant vypočteme T_1 a T_2

Tab. 1 Určení poměru časových konstant

$y(t_2)$	$ au_2$	$y(t_2)$	$ au_2$
0,30	0,000	0,22	0,183
0,29	0,023	0,21	0,219
0,28	0,043	0,20	0,264
0,27	0,063	0,19	0,322
0,26	0,084	0,18	0,403
0,25	0,105	0,17	0,538
0,24	0,128	0,16	1,000
0,23	0,154		

3.2 Aproximace přenosem n-tého řádu se stejnými časovými konstantami

Obr. 4 Aproximace soustavou 2. řádu se stejnými časovými konstantami

Parametry přenosu $G(s) = \frac{K}{(Ts+1)^n}$ určíme následujícím postupem:

1.
$$K = \frac{y(\infty)}{u(\infty)}$$

- 2. Přechodovou charakteristiku normujeme vzhledem k ustálené hodnotě $y(\infty)$.
- 3. Sestrojíme tečnu v inflexním bodě a určíme τ podle vztahu:

$$\tau = \frac{T_u}{T_n}$$

- 4. Podle hodnoty τ určíme z tab. 2 nejbližší vyšší řád n aproximační soustavy a souřadnici inflexního bodu y_i .
- 5. Pomocí y_i určíme v grafu přechodové charakteristiky inflexní bod a odečteme souřadnici t_i .
- 6. Hodnotu časové konstanty *T* určíme ze vztahu:

$$T = \frac{t_i}{n-1}$$

kde t_i - souřadnice času v inflexním bodě přechodové charakteristiky, n - řád aproximační soustavy.

Tab. 2 Stanovení řádu n aproximační soustavy a zpřesnění polohy inflexního bodu

n	2	3	4	5	6	7	8	9	10
τ	0,104	0,218	0,319	0,41	0,493	0,57	0,642	0,709	0,773
y_i	0,264	0,327	0,359	0,371	0,384	0,394	0,401	0,407	0,413

4 Integrační charakter soustavy

4.1 Integrační soustava bez setrvačnosti

Obr. 5 Vyhodnocení přechodové charakteristiky integrační soustavy

Integrační soustava prvního řádu bez dopravního zpoždění je popsána přenosem:

$$G(s) = \frac{1}{T_I s}$$

kde T_I - časová konstanta.

Jediný parametr přenosu T_I určíme z přechodové charakteristiky z hodnoty y_1 , kterou odečteme pro časový okamžik t=1. T_I se pak vypočte:

$$T_I = \frac{1}{y_1}$$

4.2 Integrační soustavy se setrvačností

Obr. 6 Vyhodnocení přechodové charakteristiky integrační soustavy se setrvačností

Integrační soustava prvního řádu se setrvačností bez dopravního zpoždění je popsána přenosem:

$$G(s) = \frac{1}{T_I s} \frac{1}{(T_1 s + 1)^n}$$

jehož parametry stanovíme následujícím postupem:

- 1. Z grafu přechodové charakteristiky odečteme hodnoty t_0 , $y(t_0)$, $1/T_I$
- 2. Vypočteme pomocnou konstantu

$$A = \frac{y(t_0)}{\frac{t_0}{T_I}}$$

- 3. Z tabulky 3 určíme řád systému *n* podle konstanty *A*.
- 4. Vypočteme hodnotu časové konstanty

$$T_I = \frac{t_0}{n}$$

Tab. 3 Stanovení řádu n podle hodnoty konstanty A

n	1	2	3	4
A	0,368	0,271	0,224	0,195

5 Aproximace využívající přenos s dopravním zpožděním

5.1 Soustavy s dopravním zpožděním

Tento typ popisu se používá ve dvou základních případech:

- Soustavy s ryzím dopravním zpožděním
- Soustavy vykazující evidentně charakter vyššího řádu, které chceme aproximovat přenosem typu první řád s dopravním zpožděním

Obr. 7 Skoková změna Obr. 8 Přechodová charakteristika vstupního signálu soustavy s dopravním zpožděním

Přenos soustav s dopravním zpožděním má tvar:

$$G(s) = G_1(s) \cdot e^{-T_d s}$$

kde $G_1(s)$ - přenos soustavy bez dopravního zpoždění, e - Eulerovo číslo, T_d - časová konstanta dopravního zpoždění.

Nejdříve určíme přenos soustavy bez dopravního zpoždění $G_1(s)$ a pak určíme $e^{-T_d s}$. Toho se využívá u metod, které nepočítají s dopravním zpožděním.

Uvažujme aproximaci přechodové charakteristiky systému s přenosem ve tvaru:

$$G(s) = \frac{K}{T_1 s + 1} \cdot e^{-T_d s}$$

Konstanty tohoto obrazového přenosu se stanoví pomocí níže uvedených metod.

5.2 Aproximace pomocí tečny v inflexním bodě

Obr. 9 Aproximace přechodové charakteristiky pomocí tečny v inflexním bodě

V inflexním bodě přechodové charakteristiky sestrojíme tečnu, pomocí které určíme dopravní zpoždění T_d , které odpovídá době průtahu. Časová konstanta T_1 je rovna časovému úseku, který uplyne mezi skončením doby průtahu T_d a časem, v němž přechodová charakteristika dosáhla 63 % své ustálené hodnoty $0.63y(\infty)$,viz obr. 9.

Zesílení *K* pak vypočteme podle vztahu:

$$K = \frac{y(\infty)}{u(\infty)}$$

Takto získané hodnoty parametrů dosadíme do obrazového přenosu ve tvaru:

$$G(s) = \frac{K}{T_1 s + 1} \cdot e^{-T_d s}$$

5.3 Aproximace pomocí sečny v inflexním bodě

Obr. 10 Aproximace přechodové charakteristiky pomocí sečny v inflexním bodě

Tato metoda platí pro všechny členy všech řádů - je tedy velmi univerzální.

Parametry přenosu $G(s) = \frac{K}{T_1 s + 1} \cdot e^{-T_d s}$ určíme následujícím způsobem:

- 1. Stanovíme inflexní bod (1).
- 2. Určíme hodnotu $0.63y(\infty)$. Vyznačíme ji na přechodové charakteristice bod (2) a najdeme pro tento časový okamžik bod (3) na pořadnici ustáleného stavu $y(\infty)$.
- 3. Přímka procházející body (1) a (3) vytne na časové ose okamžik, který definuje dopravní zpoždění T_d a časovou konstantu T_1 . Zesílení K vypočteme podle známého vztahu

$$K = \frac{y(\infty)}{u(\infty)}$$

5.4 Aproximace pomocí tečny a sečny v inflexním bodě

Obr. 11 Aproximace přechodové charakteristiky pomocí tečny a sečny v inflexním bodě

Parametry přenosu $G(s) = \frac{K}{T_1 s + 1} \cdot e^{-T_d s}$ určíme následujícím způsobem:

- 1. Nalezneme inflexní bod (1), v němž sestrojíme tečnu.
- 2. Určíme hodnotu $0.63y(\infty)$. Vyznačíme ji na přechodové charakteristice a najdeme pro tento časový okamžik bod (3) na pořadnici ustáleného stavu $y(\infty)$.
- 3. Přímka procházející body (1) a (3), resp. časovou osou t a bodem (3) definuje časovou konstantu T_1 . Průsečík tečny procházející inflexním bodem s časovou osou t určuje časovou konstantu dopravního zpoždění T_d . Zesílení K se vypočte podle vztahu

$$K = \frac{y(\infty)}{u(\infty)}$$

5.5 Aproximace dvoubodovou metodou - varianta č. 1

Obr. 12 Aproximace přechodové charakteristiky dvoubodovou metodou - varianta č. 1

Parametry přenosu $G(s) = \frac{K}{T_1 s + 1} \cdot e^{-T_d s}$ určíme následujícím způsobem:

- 1. Stanovíme hodnoty $y_{0,7}=0.7y(\infty), y_{0,33}=0.33y(\infty)$ a jim odpovídající časové okamžiky $t_{0,7}$ a $t_{0,33}$.
- 2. Z hodnot $t_{0,7}$ a $t_{0,33}$ vypočteme parametry přenosu podle vztahů:

$$T_d = 1,498t_{0,33} - 0,498t_{0,7}$$

$$T_1 = 1,245(t_{0,7} - t_{0,33})$$

3. Zesílení *K* se vypočte podle vztahu:

$$K = \frac{y(\infty)}{u(\infty)}$$

5.6 Aproximace dvoubodovou metodou - varianta č. 2

Obr. 13 Aproximace přechodové charakteristiky dvoubodovou metodou - varianta č. 2

Parametry přenosu $G(s) = \frac{K}{T_1 s + 1} \cdot e^{-T_d s}$ určíme následujícím způsobem:

- 1. Stanovíme hodnoty $y_{0,63}=0.63y(\infty),\ y_{0,28}=0.28y(\infty)$ a jim odpovídající časové okamžiky $t_{0,63}$ a $t_{0,28}$.
- 2. Z hodnot $t_{0,63}$ a $t_{0,28}$ vypočteme parametry přenosu podle vztahů

$$T_d = 1.5(t_{0,28} - \frac{1}{3}t_{0,63})$$

$$T_1 = 1.5(t_{0.63} - t_{0.28})$$

3. Zesílení *K* se vypočte podle vztahu

$$K = \frac{y(\infty)}{u(\infty)}$$

