Algo-Tutorium 12

Speicherung

- Blattorientiert:
 - innere Knoten als Schlüssel, Blätter als Daten
- Knotenorientiert:
 - Datenspeicherung in den Knoten
- Allgemein: Für B- und (a,b)-Bäume beides möglich

B-Bäume – Basics

Knotenorientierter, balancierter Suchbaum der Ordnung k

- knotenorientiert:= Datenspeicherung in den Knoten
- Ordnung: $k \ge 2$ legt Kinderanzahl fest
- "vollständig" balanciert: alle Blätter haben dieselbe Tiefe
- Kinderanzahl:
 - Wurzel: ≥ 2 Kinder
 - $k \le \# \text{Kinder} \le 2k 1$ (für innere Knoten)
- Höhe: $O(\log(n))$

Einfügen/ Löschen im B-Baum

- nach beiden Operationen soll die Balance noch gelten (Balance in unserem Fall: alle Blätter haben dieselbe Höhe, Anzahl der Kinder muss passen)
- falls nicht: herstellen durch
- 1. "zu wenig": Verschmelzen
- 2. "zu viele": Aufspalten
- Hat Knoten nach Einfügen $\leq 2k-2$ Werte/ 2k-1 Dummies OK
- Hat Knoten nach Einfügen $\geq 2k-1$ Werte/ 2k Dummies SPALTE bei mittlerem Element auf und lasse es hochsteigen

Einfügen im B-Baum

Verfahren: finde richtige Stelle anhand der Schlüssel, füge ein, prüfe Kinderanzahl und spalte auf (ggfs. iterativ nach oben weiter)

Füge ein: 1 - 4 - 7 - 2 - 3 - 16 - 9 in B-Baum der Ordnung k = 2

Einfügen im B-Baum

Verfahren: finde richtige Stelle anhand der Schlüssel, füge ein, prüfe Kinderanzahl und spalte auf (ggfs. iterativ nach oben weiter)

Füge ein: 1 - 4 - 7 - 2 - 3 - 16 - 9 in B-Baum der Ordnung k = 2

Einfügen im B-Baum

Verfahren: finde richtige Stelle anhand der Schlüssel, füge ein, prüfe Kinderanzahl und spalte auf (ggfs. iterativ nach oben weiter)

Füge ein: 1 - 4 - 7 - 2 - 3 - 16 - 9 in B-Baum der Ordnung k = 2

Löschen im B-Baum

Verfahren: finde richtige Stelle anhand der Schlüssel, lösche, ersetze ggfs. durch Vorgänger und repariere durch Verschmelzen

Lösche: einmal 7, einmal 9 (aus diesem Baum)

Löschen im B-Baum

Verfahren: finde richtige Stelle anhand der Schlüssel, lösche, ersetze ggfs. durch Vorgänger und repariere durch Verschmelzen

Lösche: einmal 7, einmal 9 (aus gleichem Baum)

Löschen im B-Baum **Verfahren:** finde richtige Stelle anhand der Schlüssel, lösche, ersetze ggfs. durch Vorgänger und repariere durch Verschmelzen

Lösche: einmal 7, einmal 9 (aus gleichem Baum)

Löschen im B-Baum

Verfahren: finde richtige Stelle anhand der Schlüssel, lösche, ersetze ggfs. durch Vorgänger und repariere durch Verschmelzen

Lösche: einmal 7, einmal 9 (aus gleichem Baum)

Restliches Reparieren wie beim Fall davor – Übung!

Vorgänger = rechtester Schlüssel im linken Teilbaum

(a,b)-Bäume – Basics

Blattorientierter, balancierter Suchbaum der Ordnung (a, b)

 $| a \ge 2, b \ge 2a - 1$

- blattorientiert:= innere Knoten als Schlüssel, Blätter als Daten
- Ordnung: legt Kinderanzahl fest
- "vollständig" balanciert: alle Blätter haben dieselbe Tiefe
- Kinderanzahl:
 - Wurzel: ≥ 2 Kinder
 - $a \le \#$ Kinder $\le b$ (für innere Knoten)
- Höhe: $O(\log(n))$

(a,b)-Bäume – Basics

Verhältnis Schlüssel und Blatt:

- ullet (innerer) Knoten hat d Kinder und besteht daher aus d-1 Schlüsseln
- s_i (i-ter Schlüssel) ist gleichzeitig rechtestes Blatt (Maximum!) im i-ten Unterbaum
- > daher steht GesamtMax auch in der Wurzel

Einfügen/ Löschen im (a,b)-Baum

- nach beiden Operationen soll die Balance noch gelten (Balance in unserem Fall: alle Blätter haben dieselbe Höhe, Anzahl der Kinder muss passen)
- falls nicht: herstellen durch
- 1. "zu wenig": Verschmelzen oder Stehlen
- 2. "zu viele": Aufspalten

Einfügen im (a,b)-Baum

Verfahren: finde richtige Stelle anhand der Schlüssel, füge ein, prüfe Kinderanzahl und spalte auf (ggfs. iterativ nach oben weiter)

mit
$$a = 2, b = 4$$

Einfügen im (a,b)-Baum

Verfahren: finde richtige Stelle anhand der Schlüssel, füge ein, prüfe Kinderanzahl und spalte auf (ggfs. iterativ nach oben weiter)

Füge ein:
$$5-6-7-4-3-2-1$$
 mit $a=2, b=4$

mit
$$a = 2, b = 4$$

Verfahren: finde richtige Stelle anhand der Schlüssel: a ist in Blatt v

- 1. a steht auch in $parent(v) \rightarrow l\ddot{o}$ sche a
- 2. a steht in Schlüsselebene weiter oben \rightarrow lösche a, ersetze oben mit nächstkleinerem Element

parent(v) verliert Kind: verschmelze (2 \rightarrow 1) oder stehle (2 \rightarrow 2)

Lösche: 4 mit a = 2, b = 4

Fall 1: lösche! alle Geschwister "voll"? Nein, verschmelzen!

Verfahren: finde richtige Stelle anhand der Schlüssel: a ist in Blatt v

- 1. a steht auch in $parent(v) \rightarrow l\ddot{o}$ sche a
- 2. a steht in Schlüsselebene weiter oben \rightarrow lösche a, ersetze oben mit nächstkleinerem Element

parent(v) verliert Kind: verschmelze (2 \rightarrow 1) oder stehle (2 \rightarrow 2)

Lösche: 4 mit a = 2, b = 4

Fall 1: lösche! alle Geschwister "voll"? Nein, verschmelzen!

Verfahren: finde richtige Stelle anhand der Schlüssel: a ist in Blatt v

- 1. a steht auch in $parent(v) \rightarrow l\ddot{o}$ sche a
- 2. a steht in Schlüsselebene weiter oben \rightarrow lösche a, ersetze oben mit nächstkleinerem Element

parent(v) verliert Kind: verschmelze (2 \rightarrow 1) oder stehle (2 \rightarrow 2)

Lösche: 4 mit a = 2, b = 4

Fall 1: lösche! Geschwister ≥ 3 Kinder? Nein, verschmelzen!

Verfahren: finde richtige Stelle anhand der Schlüssel: a ist in Blatt v

- 1. a steht auch in $parent(v) \rightarrow l\ddot{o}$ sche a
- 2. a steht in Schlüsselebene weiter oben \rightarrow lösche a, ersetze oben mit nächstkleinerem Element

parent(v) verliert Kind: verschmelze (2 \rightarrow 1) oder stehle (2 \rightarrow 2)

Lösche: 5 mit a = 2, b = 4

Fall 2: lösche, ersetze durch 4 alle Geschwister ≥ 3 Kinder? Ja, stehlen! PB

Aufgabe 1: (2,4)-Bäume

— Vorbereitung auf Aufgabe 3 des Übungsblattes — Betrachten Sie den folgenden (2,4)-Baum.

- a) Fügen Sie die fehlenden Labels ein.
- b) Fügen Sie die Schlüssel 20, 18 und 12 in dieser Reihenfolge in den (2,4)-Baum ein und zeichnen Sie die resultierenden Bäume.
- c) Sei T der Baum nach dem Einfügen von 20, 18 und 12. Löschen Sie den Schlüssel 5 aus T und zeichnen Sie den resultierenden Baum.

A2

AVL-Bäume lassen sich einfach in (2,4)-Bäume umwandeln. Zeigen Sie per vollständiger Induktion, dass sich ein AVL-Baum T der Höhe h in einen (2,4)-Baum T' mit folgenden Eigenschaften umwandeln lässt:

- Ist h = 2k für ein $k \in \mathbb{N}$, so hat T' Höhe k und die Wurzel von T' hat genau einen Key.
- Ist h = 2k + 1 für ein $k \in \mathbb{N}$, so gilt entweder
 - dass T' Höhe k hat und die Wurzel von T' mehr als einen Key enthält, oder,
 - -dass T^{\prime} Höhe k+1hat und die Wurzel von T^{\prime} genau einen Key enthält.

Dabei können stets beide Optionen realisiert werden.

Gehen Sie dabei davon aus, dass sowohl T als auch T' knotenorientiert sind. Vereinfacht können Sie dabei annehmen, dass der linke Teilbaum mindestens so tief ist, wie der rechte und dass es **keinen** Teilbaum der Höhe 1 gibt, bei dem die Wurzel nur ein Kind hat. Entsprechend kann der Induktionsanfang dann wie folgt aussehen:

h = 0:

(a) → [a

h = 1:

Besprechung

A1 a) • Key ist jeweils der größte Wert im jeweiligen Teilbaum:

• 18: Split benötigt weil rechter Teilbaum nun 5 Kinder hat

• 18: Split benötigt weil rechter Teilbaum nun 5 Teilbäume hat

• 12

• Durch Löschen hat linker Teilbaum nur noch 1 Kind → stehle

h = 0:

(a) — a

h = 1:

IV: Sei $h-1=2k-1\in N$ bel. aber fest. Dann können wir einen AVL-Baum der Höhe h-1 und h-2 in einen (2,4)-Baum umwandeln. (Nach den in der Aufgabenstellung beschriebenen Regeln.)

IS:

Fall 1: h=2k und B(a)=0:

Fall 2: h=2k und B(a)=-1:

Fall 3: h = 2k + 1 und B(a) = 0:

Fall 4: h = 2k + 1 und B(a) = -1:

