CPSC 131 Data Structures Concepts

Dr. Anand Panangadan apanangadan@fullerton.edu

Goals for today

- Experimental analysis
- Asymptotic analysis

Key terms

- Key terms
 - Experimental analysis
 - Asymptotic analysis
 - Worst-case analysis
 - Big-Oh notation
 - Constant time operations O(1)
 - O(n) operations

Comparing data structures

- Is one program/function/data structure better than another?
- Two approaches to answering this question:
 - 1. Experimental analysis
 - 2. Asymptotic analysis

Experimental Analysis

- Implement the two programs
- Implement a main function that loads both with same data
- Call the same data structure operations on both
 - Insert elements
 - Delete elements ...
- Measure time spent by each data structure

Experimental Analysis

Problems

- Can do experiments only a limited data set
- Other factors impact running time:
 - What other programs are running on the computer
- Does the running time depend on the computer itself?
 - Do the results hold on a different computer?
- Does the running time depend on the implementation?
 - Do the results hold on a different programming language?

Asymptotic Analysis

- Analysis without actually running any code
- Asymptotic: approaching a value closely
- Key idea:
 - We are interested in running time for large data sets
 - How fast will running time increase as we increase data size?
 - Rate of increase is more important than the actual time

Asymptotic Analysis

- Represent by n the most important factor
 - For data structures, n is the number of elements in the data structure
- Analysis
 - How does running time increase in terms of n?
 - Don't care about constant factors
 - Focus on the big picture
 - Not details like initialization
 - Only consider the worst-case

Consider the function:

```
void print(int n) {
    for (int i=0; i < n; ++i) {
        cout << i << endl;
    }
}</pre>
```

- How many steps did we have to do?
 - n, 2n (there are two things being printed), 3n, 3n+2, …?
 - Too complex!
- Do the number of steps increase in proportion to n?
 - Yes!

- Number of operations increases in proportion to n
- "function print takes time on the order of n"
- Written as O(n)
- So also commonly spoken as "Oh of n"

Printing a linked list

- But what about the fact that we had to
 - initialize the loop
 - Printing required cout
 - We also printed endl
 - **—** ...
- Don't care about constant factors
 - Focus on the big picture
 - Not details like initialization

Classes of functions

Number of steps	Big-O class	
1 5 1000	O(1)	Constant time Does not depend on n The best possible
n 2n 1000n + 50	O(n)	Proportional to n
n ² 5n ² 5n ² + 10n + 50	O(n ²)	Increases quadratically with n Much worse than O(n) Nested loops take this time

Comparing

- Arrays
- Singly linked lists
- Doubly linked lists

Comparing

- Operations
 - Create empty
 - Get front element
 - Add/ remove front element
 - Get back element
 - Add/ remove back element
 - Clear data structure
 - Get/add/remove ith element

What about memory requirement?

- So far, we have been speaking of running time
- What about how much memory/space is occupied by a data structure?
- Can also use O(n) concept:
 - Does memory usage go up proportionately to number of elements?

CPSC 131 Data Structures

Dr. Shilpa Lakhanpal shlakhanpal@fullerton.edu

Analyzing an algorithm

- Experimental analysis
- Asymptotic analysis

Key terms, when analyzing an algorithm

- Key terms
 - Experimental analysis
 - Asymptotic analysis
 - Worst-case analysis
 - Big-O notation

Comparing data structures

- Is one program/function/data structure better than another?
- Two approaches to answering this question:
 - 1. Experimental analysis
 - 2. Asymptotic analysis

Experimental Analysis

- Implement the two programs
- Implement a main function that loads both with same data
- Call the same data structure operations on both
 - Insert elements
 - Delete elements ...
- Measure time spent by each data structure

Experimental Analysis

Problems

- Can do experiments only a limited data set
- Other factors impact running time:
 - What other programs are running on the computer
- Does the running time depend on the computer itself?
 - Are the results same on a different computer?
- Does the running time depend on the implementation?
 - Are the results same for a different programming language?

Asymptotic Analysis

- Analysis without actually running any code
- Asymptotic: approaching a value closely
- Key idea:
 - We are interested in running time for large data sets
 - How fast will running time increase as we increase data size?
 - Rate of increase is more important than the actual time

Asymptotic Analysis

- Represent the most important factor by n
 - For data structures, n is the number of elements in the data structure
- Analysis
 - How does running time increase in terms of n?
 - Don't care about constant factors
 - Focus on the big picture
 - Not details like initialization
 - Only consider the worst-case

Consider the function:

```
void print(int n) {
    for (int i=0; i < n; ++i) {
        cout << i << endl;
    }
}</pre>
```

- How many steps did we have to do?
 - n, 2n (are there two things being printed?), 3n, 3n+2, ...?
 - Too complex!
- Do the number of steps increase in proportion to n?
 - Yes!

- Number of operations increases in proportion to n
- "function print takes time on the order of n"
- Written as O(n)
- So also commonly spoken as "Oh of n"

- But what about the fact that we had to
 - initialize the loop
 - Printing required cout
 - We also printed endl
 - **—** ...
- Don't care about constant factors
 - Focus on the big picture
 - Not details like initialization

Classes of functions

Number of steps	Big-O class	
1 5 1000	O(1)	Constant time Does not depend on n The best possible
n 2n 1000n + 50	O(n)	Proportional to n
n ² 5n ² 5n ² + 10n + 50	O(n ²)	Increases quadratically with n Much worse than O(n) Nested loops take this time

What about memory requirement?

- So far, we have been speaking of running time
- What about how much memory/space is occupied by a data structure?
- Can also use O(n) concept:
 - Does memory usage go up proportionately to number of elements?

What we will learn today

- Linear search
- Binary search
- Constant time operations
- Big O notation
- Asymptotic notation
- Algorithm analysis

References

• CSUF CPSC 131 Slides: Algorithm analysis, Dr. Anand Panangadan

CPSC 131 Data Structures

Dr. Shilpa Lakhanpal shlakhanpal@fullerton.edu

Algorithm Analysis

4.4 Growth of functions and complexity

An algorithm with runtime complexity T(N) has a lower bound and an upper bound.

Lower bound

A function f(N) that is \leq the best case T(N), for all values of $N \geq 1$.

Upper bound

A function f(N) that is \geq the worst case T(N), for all values of $N \geq 1$.

Asymptotic notation

Asymptotic notation is the classification of runtime complexity that uses functions that indicate only the growth rate of a bounding function.

3 Asymptotic notations:

O notation

O notation provides a growth rate for an algorithm's upper bound.

Ω notation

 Ω notation provides a growth rate for an algorithm's lower bound.

4.4 Growth of functions and complexity

O notation

O notation provides a growth rate that is both an upper and lower bound.

4.4 Growth of functions and complexity

Table 4.4.1: Notations for algorithm complexity analysis.

Notation	General form	Meaning
0	$T(N)=\mathcal{O}(f(N))$	A positive constant c exists such that, for all N \geq 1, $T(N) \leq c * f(N)$.
Ω	$T(N) = \Omega(f(N))$	A positive constant c exists such that, for all N \geq 1, $T(N) \geq c * f(N)$.
Θ	$T(N) = \Theta(f(N))$	$T(N) = O(f(N))$ and $T(N) = \Omega(f(N))$.

To analyze how runtime of an algorithm scales as the input size increases:

- 1) First determine how many operations the algorithm executes for a specific input size, N.
- 2) Then, the big-O notation for that function is determined.

Algorithm runtime analysis often focuses on the worst-case runtime complexity

The worst-case runtime of an algorithm is the runtime complexity for an input that results in the longest execution

Other runtime analyses include **best-case runtime** and **average-case runtime**.

Runtime analysis example:

Given an algorithm, Count the number of operations:

```
maxVal = numbers[0]
for (i = 0; i < N; ++i)
  if (numbers[i] > maxVal)
     maxVal = numbers[i]
```

Number of operations in worst case?

Algorithm

An algorithm is a sequence of steps, including at least 1 terminating step, for solving a problem.

Recursive algorithm / function

- breaks the problem into smaller subproblems
- applies itself i.e. calls itself to solve the smaller subproblems

Base case A case where a recursive algorithm completes without applying itself to a smaller subproblem.

Recursion example

```
Factorial(N)
{
    if (N == 1)
       return 1
    else
      return N * Factorial(N - 1)
}
```


4.9 Data structures

Data structure

A data structure is a way of organizing, storing, and performing operations on data.

Table 4.9.1: Basic data structures.

Data structure	Description
Record	A record is the data structure that stores subitems, with a name associated with each subitem.
Array	An array is a data structure that stores an ordered list of items, with each item is directly accessible by a positional index.
Linked list	A <i>linked list</i> is a data structure that stores an ordered list of items in nodes, where each node stores data and has a pointer to the next node.
Binary tree	A binary tree is a data structure in which each node stores data and has up to two children, known as a left child and a right child.
Hash table	A hash table is a data structure that stores unordered items by mapping (or hashing) each item to a location in an array.
Неар	A max-heap is a tree that maintains the simple property that a node's key is greater than or equal to the node's childrens' keys. A min-heap is a tree that maintains the simple property that a node's key is less than or equal to the node's childrens' keys.
Graph	A graph is a data structure for representing connections among items, and consists of vertices connected by edges. A vertex represents an item in a graph. An edge represents a connection between two vertices in a graph.

4.10 Abstract data types

Abstract data type An abstract data type (ADT) is a data type described by predefined user operations, such as "remove data from front," without indicating how each operation is implemented.

4.10 Abstract data types

Table 4.10.1: Common ADTs.

Abstract data type	Description	Common underlying data structures
List	A <i>list</i> is an ADT for holding ordered data.	Array, linked list
Stack	A stack is an ADT in which items are only inserted on or removed from the top of a stack.	Linked list
Queue	A queue is an ADT in which items are inserted at the end of the queue and removed from the front of the queue.	Linked list
Deque	A deque (pronounced "deck" and short for double-ended queue) is an ADT in which items can be inserted and removed at both the front and back.	Linked list
Bag	A bag is an ADT for storing items in which the order does not matter and duplicate items are allowed.	Array, linked list
Set	A set is an ADT for a collection of distinct items.	Binary search tree, hash table
Priority queue	A priority queue is a queue where each item has a priority, and items with higher priority are closer to the front of the queue than items with lower priority.	Неар
Dictionary (Map)	A dictionary is an ADT that associates (or maps) keys with values.	Hash table, binary search tree

ADTs allow programmers to focus on choosing which ADTs best match a program's needs

Points to think about:

 What ADT to use to reversing a list of data elements or say, Display list of users in reverse chronological order

Analysis of Algorithms

- This course's goal: the design of "good" data structures and algorithms
- Data structures: systematic way of organizing and accessing data
- Algorithms: Step-by-step procedure for performing a task in a finite time.
- What does "good" mean?
 - Running time—fast
 - Space usage—small
- Usually means a trade-off
 - Faster often requires more memory for extra pointers
 - Smaller often requires more complex algorithms
- Essential point: Running time increases with input size

Experimental Studies

- Run the algorithm with many different input sizes
- Measure the running time
- Plot the results

Experiment on running time of algorithm.

- Three major limitations:
 - Limited set of inputs; may omit important ones
 - Must always run in same hardware and software environment
 - Must actually implement the algorithm
- Need a general approach that:
 - Considers all possible inputs
 - Allows relative comparisons, independent of hardware and software.
 - Can be done through study, not implementation and lengthy experimentation.

Asymptotic Notation

- Define algorithm in pseudo-code—a series of primitive operations.
- Focus on growth rate as a function of input size, not actual run times.

- The big(O) notation:
 - "function f is the order of g(n)"
 - "function f is big-Oh of g(n)"
 - "function f is O(n)"
 - "function f is Order n"
- Allows us to characterize an algorithm's run time in general terms as a function of the input size.
- Ignores constants and lower order terms
 - Constants aren't affected by size
 - if there are n Log n and n² components, n² will dominate.
- Allows us to compare algorithms and choose the one with the slowest growth rate. "n Log n is better than n²."

Asymptotic Analysis

n	log n	n	n log n	n²	n ³	2 ⁿ
8	3	8	24	64	512	256
16	4	16	64	256	4,096	65,536
32	5	32	160	1,024	32,768	4,294,967,296
64	6	64	384	4,096	262,144	1.84E+19
128	7	128	896	16,384	2,097,152	3.40E+38
256	8	256	2,048	65,536	16,777,216	1.16E+77
512	9	512	4,608	262,144	134,217,728	1.34E+154

Growth rates of runtimes.

Running Time	Maximum Problem Size (n)				
(us)	1 second	1 minute	1 hour		
400n	2,500	150,000	9,000,000		
2n ²	707	5,477	42,426		
2 ⁿ	19	25	31		

Maximum problem sizes.

Running Time	New Maximum Problem Size
400n	256m
2n ²	16 m
2 ⁿ	m + 8

New maximum problem sizes: CPU 256 times faster

Big-O Examples

```
int LinearSearch(int numbers[], int numbersSize, int key)
    for (int i = 0; i < numbersSize; ++i)
          if (numbers[i] == key)
               return(i);
     return(-1); // not found
```

Binary Search

Search for 30

R	0	П	n	d	1
1 /	v	u		u	

0	1	2	3	4	5	6	7	8
10	20	30	40	50	60	70	80	90
lwr				mid				upr

Round 2

0	1	2	3	4	5	6	7	8
10	20	30	40	50	60	70	80	90

lwr mid upr

Round 3

0	1	2	3	4	5	6	7	8
10	20	30	40	50	60	70	80	90

lwr upr

Search for 75 Round 1 lwr mid upr Round 2 lwr mid upr Round 3 lwr mid upr Round 4 lwr upr range is empty

```
int BinarySearch(int numbers[], int numbersSize, int key)
    int mid = 0;
    int lwr = 0;
    int upr = numbersSize - 1;
    while (upr >= lwr)
          mid = (upr + lwr) / 2;
          if (numbers[mid] < key)</pre>
              lwr = mid + 1;
          else if (numbers[mid] > key)
              upr = mid - 1;
```

```
else
{
     return(mid);
}
return(-(mid + 1)); // mid indicates insertion point
}
```

Selection Sort

Round 3

Round 2

10	10 20 40		50	30					
i & s swap with self									
10	20	40	50	30					

Round 4


```
void SelectionSort(int numbers[], int numbersSize)
               indexSmallest;
     int
     int
               temp;
    for (int i = 0; i < numbersSize; ++i)
          indexSmallest = i;
          for (int j = i + 1; j < numbersSize; ++j)
               if (numbers[j] < numbers[indexSmallest])</pre>
                    indexSmallest = j;
          temp = numbers[i];
          numbers[i] = numbers[indexSmallest];
          numbers[indexSmallest] = temp;
```

Amortization

Financial: Amortization is paying off an amount owed over time by making planned, incremental payments of principal and interest.

Computer Science: To even out the costs of running an algorithm over many iterations, so that high-cost iterations are much less frequent than low-cost iterations, which lowers the average running time per iteration.

Example: Increase the Extension Size, Reduce the Number of Copy Operations

Extend	by 1
---------------	------

Double Each Extension

		zacena a y z	200.00			
Insert#	Size	Capacity	Copies	Size	Capacity	Copies
1	1	1	0	1	1	
2	2	2	1	2	2	1
3	3	3	2	3	4	2
4	4	4	3	4	4	
5	5	5	4	5	8	4
6	6	6	5	6	8	
7	7	7	6	7	8	
8	8	8	7	8	8	
9	9	9	8	9	16	8
10	10	10	9	10	16	
11	11	11	10	11	16	
12	12	12	11	12	16	
13	13	13	12	13	16	
14	14	14	13	14	16	
15	15	15	14	15	16	
16	16	16	15	16	16	

Total Copies

120

Total Copies

15