# 3 Rappresentazioni

## 3.1 Introduzione

Esistono più modi per rappresentare delle relazioni. I seguenti modi sono usati per rappresentare relazioni binarie:

- tabelle
- matrici booleane
- grafi e alberi

## 3.2 Tabelle

Data una relazione binaria  $R \subseteq A \times B$  con  $A = \{a_1, a_2, \ldots, a_n\}, B = \{b_1, b_2, \ldots, b_m\}.$ 

 $R=\{\,r_1$  ,  $r_2$  ,  $\ldots$  ,  $r_k$   $\}$  dove  $r_i$  è una generica coppia ordinata = <  $a_s$  ,  $b_t$  > con  $a_s\in A$ ,  $b_t\in B$  che sono generici elementi.

Una tabella che rappresenta la relazione  ${\it R}$  sarà formata in questo modo:

| $\boldsymbol{A}$ | $\boldsymbol{B}$ |
|------------------|------------------|
| $a_s$            | $oldsymbol{b}_t$ |
|                  |                  |
| $a_s$            | $oldsymbol{b}_t$ |

Esempio:

$$R \subseteq A \times B$$
  
 $A = \{1, 2, 3, 4\}$   $B = \{1, 2, 3\}$ 

$$R = \{ <1, 2>, <2, 1>, <3, 2>, <4, 3> \}.$$

| A | В |
|---|---|
| 1 | 2 |
| 2 | 1 |
| 3 | 2 |
| 4 | 3 |

## 3.3 Matrici booleane

Data una relazione binaria  $R\subseteq A\times B$  con  $A=\{a_1,a_2,\ldots,a_n\},B=\{b_1,b_2,\ldots,b_m\}.$ 

 $R=\{\,r_1$  ,  $r_2$  ,  $\ldots$  ,  $r_k$   $\}$  dove  $r_i$  è una generica coppia ordinata = <  $a_s$  ,  $b_t$  > con  $a_s \in A$ ,  $b_t \in B$  che sono generici elementi.

Una matrice booleana che rappresenta la relazione  ${\it R}$  sarà formata in questo modo:

|       | $b_1$ |   | $b_m$ |
|-------|-------|---|-------|
| $a_1$ | 0     | 0 | 0     |
|       | 1     | 1 | 0     |
| $a_n$ | 0     | 1 | 0     |

dove [  $a_{s}$  ,  $b_{t}$  ] vale:

- 1 se  $< a_s$  ,  $b_t > \ \in R$
- O se  $< a_s$ ,  $b_t > \notin R$

## Esempio:

$$R \subseteq A \times B$$
  
 $A = \{1, 2, 3, 4\}$   $B = \{1, 2, 3\}$ 

$$R = \{ <1, 2>, <2, 1>, <3, 2>, <4, 3> \}.$$

|       | $\boldsymbol{b}_1$ | $\boldsymbol{b}_2$ | $b_3$ |
|-------|--------------------|--------------------|-------|
| $a_1$ | 0                  | 1                  | 0     |
| $a_2$ | 1                  | 0                  | 0     |
| $a_3$ | 0                  | 1                  | 0     |
| $a_4$ | 0                  | 0                  | 1     |

## Proprietà delle matrici booleane quadrate

## Riflessività

Se la diagonale principale è composta da tutti 1 la relazione è riflessiva.

|       | $\boldsymbol{b}_1$ | $\boldsymbol{b}_2$ | $b_3$ | $b_4$ |
|-------|--------------------|--------------------|-------|-------|
| $a_1$ | 1                  | 1                  | 1     | 0     |
| $a_2$ | 0                  | 1                  | 1     | 0     |
| $a_3$ | 0                  | 0                  | 1     | 0     |
| $a_4$ | 1                  | 0                  | 1     | 1     |

## Irriflessività

Se la <mark>diagonale principale</mark> è composta da tutti *O* la relazione è **irriflessiva**.

|       | $\boldsymbol{b}_1$ | $b_2$ | $b_3$ | $b_4$ |
|-------|--------------------|-------|-------|-------|
| $a_1$ | 0                  | 1     | 1     | 0     |
| $a_2$ | 0                  | 0     | 1     | 0     |
| $a_3$ | 0                  | 0     | 0     | 0     |
| $a_4$ | 1                  | 0     | 1     | 0     |

#### Simmetria

Se ci sono 1 simmetrici rispetto alla diagonale principale,

la relazione è simmetrica.



#### **Asimmetria**

Se rispetto agli  ${\it 1}$  i loro  ${\it specchiati}$  rispetto al  ${\it centro}$  della  ${\it matrice}$  sono  ${\it 0}$ ,

la relazione è asimmetrica.

|       | $\boldsymbol{b}_1$ | $b_2$ | $b_3$ | $b_4$ |
|-------|--------------------|-------|-------|-------|
| $a_1$ | 0                  | 1     | 1     | 0     |
| $a_2$ | 0                  | 0     | 0     | 0     |
| $a_3$ | 0                  | 0     | 0     | 1     |
| $a_4$ | 0                  | 0     | 0     | 0     |

#### **Antisimmetria**

Se rispetto agli 1 i loro **specchiati alla diagonale principale** sono 0,

la relazione è antisimmetrica.

|       | <b>b</b> <sub>1</sub> | $b_2$ | $b_3$ | $b_4$ |
|-------|-----------------------|-------|-------|-------|
| $a_1$ | 0                     | 1     | 0     | 0     |
| $a_2$ | 0                     | 0     | 1     | 0     |
| $a_3$ | 0                     | 0     | 0     | 0     |
| $a_4$ | 0                     | 0     | 1     | 0     |

#### **Funzione**

Se ogni riga ha al massimo un 1, la relazione è una funzione.

#### Funzione totale

Se ogni riga ha esattamente un 1, la relazione è una funzione totale.

#### **Funzione** iniettiva

Se ogni colonna ha al massimo un 1, la relazione è una funzione iniettiva.

#### **Funzione suriettiva**

Se ogni colonna ha almeno un 1, la relazione è una funzione suriettiva.

#### Funzione biiettiva

Se ogni colonna ha esattamente un 1, la relazione è una funzione biiettiva.

## 3.4 Grafi

Un grafo è un insieme di **nodi** (identificati da nomi) collegati da **archi**. I grafi si dividono in due grandi gruppi:

• grafi diretti / orientati: gli archi hanno un verso e vanno percorsi in quel modo



• grafi indiretti / non orientati: gli archi non hanno verso e possono essere percorsi in ogni modo (avanti e indietro). Gli archi non orientati possono essere anche interpretati come una coppia di archi orientati che collegano due nodi e che vanno in versi opposti



#### 3.4.1 Archi e nodi

#### Arco entrante

Arco che rispetto ad un nodo, arriva nel nodo.

#### Arco entrante

Arco che rispetto ad un nodo, parte dal nodo.

#### Gradi di un nodo

Grado di ingresso: numero di archi entranti di un nodo.

Grado di uscita: numero di archi uscenti di nodo.

#### Nodo sorgente

Un nodo che non ha archi entranti, ovvero il suo grado di ingresso è O.

#### Nodo pozzo

Un nodo che non ha archi uscenti, ovvero il suo grado di uscita è O.

#### Nodo isolato

Un nodo che non ha né archi entranti, né archi uscenti ovvero il suo grado di ingresso e di uscita è O.

Può essere considerato come un nodo sia sorgente sia pozzo.

### Nodo cappio

Un nodo che ha un arco che parte e arriva a sé stesso, ovvero il suo grado di ingresso e di uscita sono almeno 1.

## Proprietà delle relazioni nei grafi

## Riflessività

Quando tutti i nodi del grafo hanno un cappio.

#### Irriflessività

Quando nessun nodo del grafo ha un cappio.

#### Simmetria

Quando per ogni arco, esiste l'arco di verso opposto.

#### **Asimmetria**

Quando per ogni arco, non esiste mai l'arco di verso opposto.

#### **Transitività**

Quando per ogni coppia di archi che collegano  $N_1 \to N_2$  ,  $N_2 \to N_3$  esiste un arco che collega  $N_1 \to N_3$  .

## 3.4.2 Grafi particolari

Grafo etichettato: grafo in cui anche gli archi hanno dei nomi.



Grafo pesato: grafo in cui gli archi hanno dei pesi.



Grafo bipartito: grafo in cui i nodi possono essere divisi in due sottoinsiemi tali che ogni nodo di questi due insiemi è collegato solo a nodi dell'altro insieme.



## 3.4.3 Proprietà dei grafi

#### Cammino

Una sequenza finita di nodi collegati da archi orientati.

#### Semicammino

Una sequenza finita di nodi collegati da archi non orientati.

#### Lunghezza del cammino / semicammino

Numero degli archi del cammino. Alternativamente, il numero dei nodi del cammino/semicammino - 1.

#### Ciclo di un grafo

Un cammino del grafo che parte da un nodo e arriva allo stesso nodo. Ogni nodo cappio è un ciclo.

#### Semiciclo di un grafo

Un semicammino del grafo che parte da un nodo e arriva allo stesso nodo. Ogni nodo cappio è un ciclo.

#### Grafo connesso

Un grafo in cui per ogni coppia di nodi esiste un cammino/semicammino tra essi.

Ovvero non esistono nodi isolati.

### **Grafo completo**

Un grafo in cui per ogni nodo è collegato direttamente con tutti gli altri nodi, ma non con sé stesso.

#### Grafo aciclico

Un grafo in cui non esistono cicli.

### **DAG (Direct Acyclic Graph)**

Grafo orientato, aciclico.

## 3.5 Alberi

Gli alberi sono particolari tipi di grafi.

Per la precisione sono **DAG connessi**, con un solo nodo sorgente, chiamato radice e **ogni nodo non-radice ha un solo nodo entrante**.

#### **Radice**

L'unico nodo sorgente, è il padre di ogni nodo.

#### Nodo non-radice

I nodi dell'albero, vengono chiamati **padri** rispetto ai nodi collegati con i loro archi uscenti e **figli** rispetto ai nodi collegati con i loro archi entranti.

#### Rami

Gli archi dell'albero.

#### **Foglie**

I nodi pozzi dell'albero.

#### Livello del nodo

La lunghezza del cammino che parte dalla radice e arriva al nodo.

Formulabile come: livello del nodo padre + 1.

#### Livello della radice

Il livello della radice è **0**.

#### Altezza di un albero

Il massimo tra tutti i livelli dei nodi.

## 3.5.1 Alberi particolari

#### Albero binario

Un albero in cui ogni nodo ha al massimo 2 nodi figli.



#### Albero strettamente binario

Un albero in cui ogni nodo ha 2 oppure 0 nodi figli.



#### Albero n-ario

Un albero in cui ogni nodo ha al massimo n nodi figli.

#### Albero bilanciato

Un albero in cui tutti i cammini dalla radice alle foglie hanno la stessa lunghezza.

Perciò basta calcolare solamente 1 cammino radice o foglia per trovare l'altezza.

#### Albero di ricerca

Un albero in cui ogni nodo a sinistra della radice deve essere minore di essa e ogni nodo a destra della radice deve essere maggiore di essa. Inoltre ogni sottoalbero deve essere di ricerca.

#### **BST (Binary Search Tree)**

Un albero di ricerca in cui ogni nodo ha al massimo 2 nodi figli.



#### 3.5.2 Metodi di visita

#### Visita in-order

Prima visito il sottoalbero sinistro, poi la radice, infine il sottoalbero destro.

## Visita pre-order

Prima visito la radice, poi il sottoalbero sinistro, infine il sottoalbero destro.

### Visita post-order

Prima visito il sottoalbero sinistro, poi il sottoalbero destro, infine la radice.

#### Visita in-order al contrario

Prima visito il sottoalbero destro, poi la radice, infine il sottoalbero sinistro.

### Visita a livelli

Prima visito la radice, poi tutti i nodi del secondo livello da sinistra, poi i nodi del terzo livello da sinistra e così via per ogni livello successivo.