Machine Learning I: Supervised Methods

B. Keith Jenkins

Announcements

- Slido event code: 2816950
 - <u>slido.com</u>, Join as participant
- Lecture-time conflicts: sign up
 - See piazza for instructions
- Homework 5 will be posted tomorrow;
 due on Fri. 3/1.
- Midterm exam in 2 weeks
 - See piazza for materials allowed
- Midterm exam material covered
 - Lectures 1-12, related reading
 - Discussions 1-8, Homeworks 1-5
 - Related piazza posts

Reading

- Bishop 7.1, excluding 7.1.4
 - Support vector machines

Today's lecture

- Regularization
 - Ridge Regression
 - Example
- Midterm lecture material ends here —
- Lagrangian optimization
 - For optimization with constraints
 - · Equality constraints
 - Inequality constraint -> Lecture 13

Copyright 2021-2024 B. Keith Jenkins. All lecture notes contained herein are for use only by students and instructors of EE 559, Spring 2024.

Regularization

→ Imposes a preference for values of w;

-e.g., prefer smaller [w; [+j.]

→ modify the criterion function J(w) to include this preference

Consider le regularization: prefer small ||w||2

Ridge Regression (Regularized Least Squares) [Bishop Sec. 3.1.4]

working in 4 space and w'space (dropping primes on w):

Adding the regularizer term:

$$J_{RR}(w) = \frac{1}{N} \left\| \frac{1}{2} w - y \right\|_{2}^{2} + \lambda \left\| w \right\|_{2}^{2} \qquad \text{(augmented notation)}$$

This assumes we want to regularize over all components of w.

Solve for in.

$$N J_{RR}(w) = \left[\underbrace{\frac{1}{2}w - \underline{y}} \right] + N \lambda w^{T}w$$

$$N \nabla_{w} J_{RR}(w) = \nabla_{w} \left[\underbrace{w^{T}}_{\underline{y}} \underbrace{\frac{1}{2}w - \underline{y}}_{\underline{y}} \right] + N \lambda w^{T}w$$

$$= \lambda \underbrace{\frac{1}{2}}_{\underline{y}} \underbrace{\frac{1}{2}w - \underline{y}}_{\underline{y}} + \lambda N \lambda \underline{w}$$

$$2 \underbrace{\frac{1}{2}}_{\underline{y}} \underbrace{\frac{1}{2}w - \underline{y}}_{\underline{y}} + \lambda N \lambda \underline{w}_{\underline{y}} = 0$$

$$\hat{W} = (\underline{\underline{a}}^{\dagger}\underline{\underline{a}} + N\lambda \underline{\underline{I}})^{-1}\underline{\underline{a}}\underline{\underline{J}}$$

$$\text{Ridge}$$

$$\text{regres}$$

$$\hat{W} = (\underline{\underline{a}}^{\dagger}\underline{\underline{a}} + \lambda' \underline{\underline{I}})^{-1}\underline{\underline{a}}\underline{\underline{J}}$$

$$\hat{W} = (\underline{\underline{a}}^{\dagger}\underline{\underline{a}} + \lambda' \underline{\underline{I}})^{-1}\underline{\underline{a}}\underline{\underline{J}}$$

regression so lution

Comment: if choose $\lambda = 0$, then $\hat{w}_{RR} = (\underline{\underline{\underline{z}}}\underline{\underline{\underline{z}}})^{-1}\underline{\underline{\underline{z}}}\underline{\underline{\underline{z}}}\underline{\underline{\underline{z}}} = \underline{\underline{\underline{\underline{z}}}}^{-1}\underline{\underline{\underline{z}}}\underline{\underline{\underline{z}}}$ = least-squares regression solution

Regression complexity example: regularization

$$N = 10$$
, $M = d = 9 = polynomial order$

$$\hat{f}(x) = \sum_{n=0}^{9} w'_n x^n$$

- S If we don't count the regularizer, the above plots have d.o.f. = 10, Nc= 10
- S Does a regularizer affect d.o.f. or Nc?
 - Affects No because it is adding constraints on the values of w. .

 (similar to data points, which constrain values of w. by adding egins wzn=bn.)
 - Hard to quantify in Nc, so we won't.

Regression complexity example: regularization

$$N = 10$$
, $M = d = 9$

Polynomial Coefficients

	1	l., \ 10	1
	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
w_0^{\star}	0.35	0.35	0.13
w_1^{\star}	232.37	4.74	-0.05
w_2^{\star}	-5321.83	-0.77	-0.06
w_3^{\star}	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^{\star}	1042400.18	-45.95	-0.00
w_8^{\star}	-557682.99	-91.53	0.00
w_9^{\star}	125201.43	72.68	0.01
	•		

In summary

- 1. Balancing complexity: d.o.f. vs. No is important for a Ml system to perform and generalize well
- 2. We showed examples of 2 techiques to resolve the case of d.o.f. too large compared with Nc.
 - reduce d.o.f. by reducing dimensionality D+1 of exp.feat.space add a regularizer to prefer some values of w; (smaller 11-112)
 - over other values.
 - -> Called a soft constraint on dimensionality (or on polyn.order).

Next -

Look at another technique to improve on d.o.f. > Nc balance, from earlier:

Increase No by adding other constraints

- Restrict choices of optimal decision boundary [classification]

=> Support Vector Machines (SVMs)

Lagrange Optimization with One Equality Constraint [Bishop App. E]

-> Use typical math notation (not ML notation)

Problem: Find an extremum of f(x) (= J(w) for us), subject to the constraint:

$$g(x)=0$$

new: constraint

Solution: 1. Set up a Lagrangian function;

$$L(\underline{x},\lambda) = f(\underline{x}) + \lambda g(\underline{x})$$

original constraint: g(x)=0.

fon. to
minimize

(criterian J(w))

Note: when constraint is satisfied,
$$L(\underline{x}, \lambda) = f(\underline{x})$$

2. Lagrange method:
$$\nabla_{\underline{x},\lambda} L(\underline{x},\lambda) = 0$$

given

Ex. of Lagrangian Optimization with 1 Equality Constraint

Let
$$f(x) = ||x||_2^2 = x_1^2 + x_2^2$$
 (d=2)

Minimize $f(\underline{x})$ subject to (st.) constraint: $\chi_2 - \chi_1 = -1$ Sconstraint $= g(\underline{x}) = \chi_2 - \chi_1 + 1 = 0$

Lagrange method:

Let
$$L(\chi, \lambda) = f(\chi) + \lambda g(\chi)$$

$$= ||\chi||_{2}^{2} + \lambda (\chi_{2} - \chi_{1} + 1)$$

$$L(\chi, \lambda) = (\chi_{1}^{2} + \chi_{2}^{2}) + \lambda (\chi_{2} - \chi_{1} + 1)$$

$$\nabla_{\chi, \lambda} L(\chi, \lambda) = 0$$

$$\begin{cases} \frac{\partial L}{\partial \lambda} = \chi_2 - \chi_1 + 1 = 0 & \leftarrow (3) \end{cases}$$

$$(1)+(2) =) \quad \lambda \chi_1 + \lambda \chi_2 = 0 \Rightarrow \quad \chi_1 = -\chi_2$$

$$\rightarrow (3) \Rightarrow \quad \chi_2 - (-\chi_2) + |= 0 \Rightarrow \lambda \chi_2 = -1 \Rightarrow \quad \chi_2 = -1$$

$$\chi^{*} = \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}, \quad \lambda = 1$$

$$\chi_{2} = -\frac{1}{2}$$

$$\chi_{1} = +\frac{1}{2}$$

$$\lambda = 1$$

g(x)=0

Intuitive explanation of Lagrange example

In x_1x_2 -plane, $f(x) = ||x||_2^2$ $f(x) = d_E^2(0, x) = r^2$ f = Const. is a circle, about origin.

Increase r until circle
just touches constraint

g=0. —) point x*.

C is tangent to g=0 at this

point x*.

$$\nabla_{\underline{x}} f(\underline{x}) \perp f(\underline{x}) = C$$

$$\nabla_{\underline{x}} g(\underline{y}) \perp g(\underline{y}) = 0$$

$$f(\underline{x}) = C \text{ istangent to } g(\underline{x}) = 0$$

$$\Rightarrow \nabla_{\underline{x}} f(\underline{x}) = \pm \lambda \nabla_{\underline{x}} g(\underline{x}) \text{ at } \underline{x} = \underline{x}^*$$

$$\nabla_{\chi} f \mp \lambda \nabla_{\chi} g = 0$$
 choose + sign

f(x)=C,

 $f(\chi) = c_2 > c,$

$$\nabla_{\underline{x}} (f + \lambda g) = 0$$

$$\nabla_{\underline{x}} (L(\underline{x}, \lambda)) = 0$$

$$\nabla_{\underline{y}} (L(\underline{x}, \lambda)) = 0$$

$$\nabla_{\underline{y$$

Lagrangian Opt. n. with Multiple Equality Constraints

Find min. of $f(\underline{x})$ s.t. $g_{i}(\underline{x})=0$, $i=1,2,\cdots,R$. R<d.

$$L(x, \lambda) = f(x) + \sum_{i=1}^{R} \lambda_i g_i(x)$$
; $\lambda_i = \text{Lagrange multiplier}$