

ESCUELA POLITÉCNICA NACIONAL

FACULTAD DE CIENCIAS MODELOS LINEALES Y DISEÑO DE EXPERIMENTOS DEBER 01

Fecha entrega: 2015/05/06

EJERCICIOS

1. Sea X un vector aleatorio de ley normal de parámetros μ, Σ :

$$X = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix}, \mu = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \Sigma = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 4 \end{pmatrix}$$

- a. Demuestre que Σ es simétrica definida positiva.
- **b.** Escriba la función de densidad de X.
- c. Escriba la función característica de X.
- **d.** ¿Cuál es la ley de $X_1 + 2X_2 X_3$?
- e. ¿Cuál es la ley del vector U?

$$U = \left(\begin{array}{c} 2X_1 - X_2 \\ -X_2 + 2X_3 \end{array}\right)$$

- **f.** Encuentre la ley codicional de (X_1, X_2) dado $X_3 = x_3$
- **g.** Encuentre la ley codicional de X_2 dado $(X_1, X_3) = (x_1, x_3)$
- h. Encuentre la función de regresión lineal de X_2 en x_1, x_3 , los coeficentes de regresión y la varianza parcial.
- **2.** Sea X un vector aleatorio de ley normal de parámetros μ, Σ :

$$X = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix}, \mu = \begin{pmatrix} -3 \\ 1 \\ 4 \end{pmatrix}, \Sigma = \begin{pmatrix} 1 - 2 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

¿Son independientes las siguientes variables (o vectores aleatorias)

a.
$$X_1 y X_2$$
.

b.
$$(X_1, X_2)$$
 y X_3 .

c.
$$\frac{X_1+X_2}{2}$$
 y X_3 .

d.
$$X_2 y X_2 - \frac{5}{2}X_1 - X_3$$
.

3. Si X_1, X_2 son variables aleatorias tales que:

$$X_1 + X_2, X_1 - X_2$$

son independientes de ley normal centrada y reducida, demuestre que el par (X_1, X_2) es normalmente distribuido.

4. Sean $X \leadsto N_n(\mu, \Sigma), A$ una matriz rxn, c un vector de r componentes, entonces:

$$AX + c \rightsquigarrow N_r(A\mu + c, A\Sigma A^t)$$

5. Demuestre que si $X \leadsto \chi^2_{n,\delta^2}$, entonces:

$$E(X) = \delta^2 + n$$

$$Var(X) = 4\delta^2 + 2n$$