train_test_split

sklearn.model_selection.train_test_split(*arrays, test_size=None,
train_size=None, random_state=None, shuffle=True, stratify=None)
[source]

Split arrays or matrices into random train and test subsets.

Quick utility that wraps input validation, <code>next(ShuffleSplit().split(X, y))</code>, and application to input data into a single call for splitting (and optionally subsampling) data into a one-liner.

Read more in the User Guide.

Parameters:

*arrays: sequence of indexables with same length / shape[0]

Allowed inputs are lists, numpy arrays, scipy-sparse matrices or pandas dataframes.

test_size : float or int, default=None

If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is set to the complement of the train size. If train_size is also None, it will be set to 0.25.

train_size : float or int, default=None

If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size.

random_state: int, RandomState instance or None, default=None

Controls the shuffling applied to the data before applying the split. Pass an int for reproducible output across multiple function calls. See <u>Glossary</u>.

shuffle: bool, default=True

Whether or not to shuffle the data before splitting. If shuffle=False then stratify must be None.

stratify: array-like, default=None

If not None, data is split in a stratified fashion, using this as the class labels. Read more in the User Guide.

Returns:

splitting: list, length=2 * len(arrays)

List containing train-test split of inputs.

• Added in version 0.16: If the input is sparse, the output will be a scipy.sparse.csr_matrix. Else, output type is the same as the input type.

Examples

```
>>> train_test_split(y, shuffle=False)
[[0, 1, 2], [3, 4]]
```

Gallery examples

Release Highlights for scikit-learn 1.5

Release Highlights for scikit-learn 1.4

Release Highlights for scikit-learn 0.24

Release Highlights for scikit-learn 0.23

Release Highlights for scikit-learn 0.22

Comparison of Calibration of Classifiers

Probability
Calibration curves

Probability calibration of classifiers

Classifier comparison

Recognizing handwritten digits

Principal
Component
Regression vs Partial
Least Squares
Regression

Post pruning decision trees with cost complexity pruning

Understanding the decision tree structure

Kernel PCA

Comparing random forests and the multi-output meta estimator

Early stopping in Gradient Boosting

Feature importances with a forest of trees

Feature transformations with ensembles of trees

Features in
Histogram Gradient
Boosting Trees

Gradient Boosting
Out-of-Bag
estimates

Gradient Boosting regression

Gradient Boosting regularization

IsolationForest example

Multi-class AdaBoosted Decision Trees

Prediction Intervals for Gradient Boosting Regression

Faces recognition example using eigenfaces and SVMs

Image denoising using kernel PCA

Lagged features for time series forecasting

Model Complexity
Influence

Prediction Latency

Pipeline ANOVA SVM

Univariate Feature Selection

Examples of Using FrozenEstimator

Comparing various online solvers

Early stopping of Stochastic Gradient Descent

L1-based models for Sparse Signals

MNIST classification using multinomial logistic + L1

Multiclass sparse logistic regression on 20newgroups

Non-negative least squares

Ordinary Least Squares Example

Poisson regression and non-normal loss

Tweedie regression on insurance claims

Common pitfalls in the interpretation of coefficients of linear models

Failure of Machine Learning to infer causal effects

Permutation
Importance vs
Random Forest

Permutation
Importance with
Multicollinear or
Correlated Features

Scalable learning with polynomial kernel approximation

Evaluation of outlier detection estimators

Feature Importance (MDI)

Introducing the set_output API

ROC Curve with Visualization API

Visualizations with Display Objects

Class Likelihood Ratios to measure classification performance

Confusion matrix

Custom refit strategy of a grid search with crossvalidation

Detection error tradeoff (DET) curve

Effect of model regularization on training and test error

Multiclass Receiver
Operating
Characteristic (ROC)

Post-tuning the decision threshold for cost-sensitive learning

Precision-Recall

Multilabel classification using a classifier chain

Comparing Nearest Neighbors with and without

Varying regularization in Multi-layer Perceptron

Dimensionality Reduction with Neighborhood

Visualization of MLP weights on MNIST

Nearest Neighbors Classification

Column Transformer with Mixed Types

Restricted
Boltzmann Machine
features for digit

Effect of transforming the targets in regression model

Feature discretization

Importance of Feature Scaling

Map data to a normal distribution

Target Encoder's
Internal Cross fitting

© Copyright 2007 - 2025, scikit-learn developers (BSD License).