

Lecture 20 Filter Design

Linear Filter Design

- Used to be an art
 - Now, lots of tools to design optimal filters
- For DSP there are two common classes
 - Infinite impulse response IIR
 - Finite impulse response FIR
- Both classes use finite order of parameters for design
- We will cover FIR designs, briefly mention IIR

What is a linear filter

- Attenuates certain frequencies
- Passes certain frequencies
- Effects both phase and magnitude
- IIR
 - Mostly non-linear phase response
 - Could be linear over a range of frequencies
- FIR
 - Much easier to control the phase
 - Both non-linear and linear phase

FIR Design by Windowing

• Given desired frequency response, $H_d(e^{j\omega})$, find an impulse response

$$h_d[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d(e^{j\omega}) e^{j\omega n} d\omega$$
 ideal

 Obtain the Mth order causal FIR filter by truncating/windowing it

$$h[n] = \left\{ \begin{array}{ll} h_d[n]w[n] & 0 \le n \le M \\ 0 & \text{otherwise} \end{array} \right\}$$

FIR Design by Windowing

We already saw that,

$$H(e^{j\omega}) = H_d(e^{j\omega}) * W(e^{j\omega})$$

For Boxcar (rectangular) window

$$W(e^{j\omega}) = e^{-j\omega \frac{M}{2}} \frac{\sin(w(M+1)/2)}{\sin(w/2)}$$

FIR Design by Windowing

Tapered Windows

Name(s)	Definition	MATLAB Command	Graph (<i>M</i> = 8)
Hann	$w[n] = \begin{cases} \frac{1}{2} \left[1 + \cos\left(\frac{\pi n}{M/2}\right) \right] & n \le M/2 \\ 0 & n > M/2 \end{cases}$	hann (M+1)	hann(M+1), M = 8 1 0.8 0.6 0.4 0.2 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Hanning	$w[n] = \begin{cases} \frac{1}{2} \left[1 + \cos\left(\frac{\pi n}{M/2 + 1}\right) \right] & n \le M/2 \\ 0 & n > M/2 \end{cases}$	hanning (M+1)	hanning(M+1), M = 8 1 0.8 0.6 0.4 0.2 0.5 0 0 5
Hamming	$w[n] = \begin{cases} 0.54 + 0.46 \cos\left(\frac{\pi n}{M/2}\right) & n \le M/2 \\ 0 & n > M/2 \end{cases}$	hamming (M+1)	hamming(M+1), M = 8 1 0.8 0.6 0.4 0.2 0.5 0 5 n

Tradeoff - Ripple vs Transition Width

Python: scipy.filter.firwin

FIR Filter Design

- Choose a desired frequency response $H_d(e^{j\omega})$
 - non causal (zero-delay), and infinite imp. response
 - If derived from C.T, choose T and use:

$$H_d(e^{j\omega}) = H_c(j\frac{\Omega}{T})$$

- Window:
 - Length M+1 ⇔ effect transition width
 - Type of window ⇔ transition-width/ ripple
 - Modulate to shift impulse response

$$H_d(e^{j\omega})e^{-j\omega\frac{M}{2}}$$

FIR Filter Design

• Determine truncated impulse response $h_1[n]$

$$h_1[n] = \begin{cases} \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d(e^{j\omega}) e^{-j\omega \frac{M}{2}} e^{j\omega n} & 0 \le n \le M \\ 0 & \text{otherwise} \end{cases}$$

Apply window

$$h_w[n] = w[n]h_1[n]$$

- Check:
 - Compute $H_{\omega}(e^{j\omega})$, if does not meet specs increase M or change window

Example: FIR Low-Pass Filter Design

$$H_d(e^{j\omega}) = \begin{cases} 1 & |\omega| \le \omega_c \\ 0 & \text{otherwise} \end{cases}$$

Choose M ⇒ Window length and set

$$H_1(e^{j\omega}) = H_d(e^{j\omega})e^{-j\omega\frac{M}{2}}$$

$$h_1[n] = \begin{cases} \frac{\sin(\omega_c(n-M/2))}{\pi(n-M/2)} & 0 \le n \le M \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{\omega_c}{\pi}\operatorname{sinc}(\frac{\omega_c}{\pi}(n-M/2))$$

Example: FIR Low-Pass Filter Design

The result is a windowed sinc function

$$h_w[n] = w[n]h_1[n]$$

- High Pass Design:
 - Design low pass hw[n]
 - Transform to $h_{w}/n/(-1)^{n}$

- General bandpass
 - -Transform to $2h_{w}/n/cos(\omega_{0}n)$

Characterization of Filter Shape

Time-Bandwidth Product, a unitless measure $T(BW) = (M+1)\omega/2\pi$ \Rightarrow also, total # of zero crossings

Larger TBW ⇒ More of the "sinc" function hence, frequency response looks more like a rect function

Frequency Response Profile

Q: What are the lengths of these filters in samples?

$$2 = (M+1)^*(\pi/6) / (2\pi) \Rightarrow M=23$$
 $12 = (M+1)^*(\pi) / (2\pi) \Rightarrow M=23$

$$12 = (M+1)^*(\pi) / (2\pi) \Rightarrow M=23$$

Note that transition is the same!

Alternative Design Through FFT

- To design order M filter:
- Over-Sample/discretize the frequency response at P points where P >> M (P=15M is good)

$$H_1(e^{j\omega_k}) = H_d(e^{j\omega_k})e^{-j\omega_k\frac{M}{2}}$$

- Sampled at: $\omega_k = k \frac{2\pi}{P}$ $|k = [0, \cdots, P-1]$
- Compute $h_1[n] = IDFT_P(H_1[k])$
- Apply M+1 length window:

$$h_w[n] = w[n]h_1[n]$$

Example: signal.firwin2

- signal.firwin2(M+1,omega_vec/pi, amp_vec)
- taps1 = signal.firwin2(30, [0.0,0.2,0.21,0.5, 0.6, 1.0], [1.0, 1.0, 0.0,0.0,1.0,0.0])

Example: Design using FFT

- For M+1=14
 - -P = 16 and P = 1026

Optimal Filter Design

- Window method
 - Design Filters heuristically using windowed sinc functions
- Optimal design
 - Design a filter h[n] with H(e^{jω})
 - Approximate $H_d(e^{j\omega})$ with some optimality criteria or satisfies specs.

Optimality

Least Squares:

minimize
$$\int_{\omega \in \text{care}} |H(e^{j\omega}) - H_d(e^{j\omega})|^2 d\omega$$

Variation: weighted least-squares

minimize
$$\int_{-\pi}^{\pi} W(\omega) |H(e^{j\omega}) - H_d(e^{j\omega})|^2 d\omega$$

Optimality

Chebychev Design (min-max)

minimize_{$$\omega \in \text{care}$$} max $|H(e^{j\omega}) - H_d(e^{j\omega})|$

- Parks-McClellan algorithm equi-ripple
- Also known as Remez exchange algorithms (signal.remez)

Example of Complex Filter

Larson et. al, "Multiband Excitation Pulses for Hyperpolarized 13C Dynamic Chemical Shift Imaging" JMR 2008;194(1):121-127

Need to design 11 taps filter with following frequency response:

