实验名称 液体黏度的测定

一. 实验预习

实验指导书中提到,在本实验中,如果小钢球从蓖麻油液面处开始下落,初速度为零,最初是加速运动,随着速度的增大,其受到的黏滞力也将增大,因此该过程是一个加速度越来越小的加速运动。但是实际操作时,小钢球是从距离液面 h 高度开始下落的,请分析一下,小钢球进入蓖麻油之后,是做加速运动还是减速运动?设小钢球质量为 m,直径为 d,小球密度为 ρ ,蓖麻油密度为 ρ 0,黏滞系数为 η ,黏滞力由斯托克斯定律给出,无需作修正,忽略空气对小钢球的作用力。

F = 6元リッ・豆 , mgh = シmット, 小球到液面、V= 129h

有 笠 (豆3) P9 = 塩 (豆3) P9 + 6元リッ・豆
$$V_0 = \frac{(P-P_0)^2 9d^2}{18\eta}$$
 $V_0 = \frac{(P-P_0)^2 9d^4}{368\eta^2}$

h>ho, 小球先减速压匀速 h<ho, 小球先加速压匀速 h=ho, 小球匀速.

二. 实验现象及原始数据记录

小钢	直径测	叉丝的竖直刻线与小球像	叉丝的竖直刻线与小球像	蓖麻油温度	小钢球下
球编	量次数	左侧相切时测微鼓轮读数	右侧相切时测微鼓轮读数	T(°C)	落时间 t
号		x ₁ (mm) 30.791	x ₂ (mm) 29.781		(s)
1	1		• • •	3 0	35.9)
	2	30.780	29.778		
	3	30.783	29.780		
	4	30.776	29.773		
	5	\$×.781	29.778		
2	1	25.721	24.927	<i>≯</i> 6	2J. b
	2	25.718	24.923		
	3	25.709	24.920		
	4	25.716	24.923		
	5	25.718	24.923		
3	1	≥8.043	27.243	42	14.13
	2	28.038	27.240		
	3	28, 041	27.240		
	4	28.040	27.238		
	5	28.03	27. 238		
4	1	30.089	27.021	50	9-14
	2	30.090	29.023		
	3	30.086	29.020		
	4	30.088	29.020		
	5	30.088	29.021		
5	1	29.360	29.021 28.562 28.560	60	6.41
	2	29.360	28.560		
	3	29.366	28.564		
	4	29. 362	28,519		
	5	٤9. 364	28.559 28.564		

30

三. 数据处理

(利用测得的数据计算各温度下蓖麻油的黏度,绘出黏度-温度关系曲线,推导出 η 的相对不确定度公式,然后计算某个温度下 η 的不确定度,并完整表达测量结果,要有详细的计算过程,格式工整)

公式
$$\eta = \frac{(\rho - \rho_0) d^2 t}{18V_0}$$
 、実际カ $\eta = \frac{(\rho - \rho_0) d^2 t}{18L(1+24\frac{d}{D})}$

$$0.30^{\circ}$$
 $d = 1.004 \text{ mm}$, $\eta = 0.060 \text{ fg.5}$

四. 实验结论及现象分析

答: 蓖麻油黏度随温度用高面降低.

五. 讨论题

- 1. 讨论本实验中出现实验误差的原因。
- 2. 请解释为什么液体的黏度是随着温度上升而下降。
- 3. 如果小球在靠近玻璃管壁处下落,会对液体黏度的实验测量值有什么影响?
- 4. 如果玻璃管是倾斜的,会对液体黏度的实验测量值有什么影响?

答:1. 读数误差,种温度仅有一次计算

- 2. 温度开高,分子动能增加,加快液体流动,从而黏度下降。
- 3、会使几场大.
- 4. 会使1偏大.