TIWSNE – Wireless Sensor Networks and Electronics – (2015-Q4)

Lecture 3

HW nodes & Energy consumption

Jens Kargaard Madsen

(Email: jkm@eng.au.dk; Room E228)

Lecture plan

- Two lectures about HW modes & Energy
 - Today theory (part 1)
 - Sensor node (mote) HW/Architecture
 - Survey of the main components
 - Energy (power) supply and consumption
 - Understand energy consumption aspects for these components
 - Energy sources incl. harvesting methods
 - Power management
 - Lab exercise (part 2)
 - Tuesday 28/4 group 1 to n
 - Tuesday 5/5 group n+1 to N

Sensor node architecture

- Three characteristics:
 - Sensing/controlling
 - Processing
 - Communication
- Five major components:

Sensors

- Purpose is to sense (control) some physical or environmental condition, such as temperature, and turn it into a signal for reading and/or further processing
- There exist "thousands" of different kind of sensors
 - Own interface specifications
 - No general interface
- Characteristics
 - Any energy radiated ?
 - Passive or active ?

Sensors - Categories

- Main categories
 - Passive, omnidirectional
 - Ex: Thermometer, microphones
 - Passive, narrow-beam
 - Ex: Camera
 - Active
 - Ex: Radar
- Use of integrated electronics provides outputs easy to interface to microprocessor e.g.
 - A digital interface
 - An (analog) low impedance voltage

Sensors - Ex. Temperature

- An analog temperature sensor consists of a chip that tells what the ambient temperature is!
 - Utilize that voltage across a diode change with temperature
 - Precisely amplifying the voltage change generates an analog signal that is directly proportional to temperature

Ex. ADI TMP36

- Temp in °C = [(Vout in mV) 500] / 10
- What is temperature if Vout = 1V?
- What is Δ Vout if Δ Temp = 1°C?

Controller

- Purpose of the controller is to process (all) tasks:
 - Collecting and processing data from sensors, and prepare data for communication
 - Execute programs
 - Start-up and initialization
 - Time critical signal processing
 - Communication protocols
 - Applications
 - Aggregate data (e.g. avg temperature measurements)

"CPU" of the node

Controller - Options

- Various architectures trade-offs between:
 - Flexibility
 - Performance
 - Energy efficient
 - Costs
- Main options (HW implementations chips)
 - Microcontrollers "Slim" general purpose processor
 - DSPs Optimized signal processor
 - FPGAs Re-programmable (soft application specific) IC
 - ASICs Application specific IC

Controller - Options (cont.)

	Microcontroller	DSP	FPGA	ASIC
Flexibility				
Performance				
Energy efficient				
Cost (development)	N/A	N/A		
Cost (per pcs)				
Comments	Tailored embedded application	Tailored signal processing	Good for testing / small volume	Peak performance / large volume

 To be energy efficient the controller should be able to operate in low power modes, i.e. it should be possible to move efficiently between sleeping and working/active states

Controller - Examples of Microcontrollers

- Texas Instruments MSP430 (many versions/flavours)
 - 16-bit RISC core, 4-48 MHz, up to 66KB RAM, up to 512KB Flash, several DACs, prices starts at ~0.25 USD
 - 32-bit version (MSP432) based on ARM Cortex M4 core
 - Low power modes of operation (active-to-idle-to-sleep)

DEPARTMENT OF ENGINEERING

- ARM Cortex-Mx (x=0,1,2,3,4,7) based ones
 - 32 bits optimized for energy and mixed-signal appls
 _{AARHUS}

Controller - Ex. Temperature continued.

- Ex.: Temperature Sensor (ADI TMP36) connected to an ADC (Analog-2-Digital Converter) in the Microcontroller
 - Full scale measurement range = 0 to 2 volts
 - ADC resolution is 10 bits: 2¹⁰ = 1024 quantization levels (codes)
 - What is the ADC voltage resolution?
 - What is the ADC temperature resolution?

Communication device

- The purpose of the communication device is to exchange data between individual nodes
- Which transmission medium for wireless?
 - Electromagnetic at radio frequencies?
 - Electromagnetic, light?
 - Ultrasound?
- Radio Frequency (RF)-based communication is the preferred and dominant technology
 - Relatively long range and overcome challenging "corners"
 - High data rates
 - Acceptable bit error rates

All at reasonable energy expenditures

Memory

Communication device (cont.)

- The communication device receives (transmit) bit- or byte streams from (to) the controller and convert them to (from) radio waves
- Combined device Transmit and Receive = Transceiver

Half Duplex operation

Transceiver states

- Transceivers can be put into different operational states, typically:
 - Transmit
 - Receive
 - Idle ready to receive, but not doing so
 - Some functions in hardware can be switched off, reducing energy consumption a little
 - Sleep significant parts of the transceiver are switched off
 - Not able to immediately receive something
 - Recovery time and startup energy to leave sleep state can be significant

Transceiver characteristics

- Capabilities
 - Interface: bit, byte, packet level?
 - Supported frequency range?
 - Typically, somewhere in 433 MHz 2.4 GHz, ISM band
 - Multiple channels
 - Data rates
 - Range
- Energy characteristics
 - Power consumption to send/receive data?
 - Time and energy consumption to change between different states
 - Transmission power control
 - Power efficiency (which percentage of consumed power is radiated?)

- Radio performance
 - Modulation? (ASK, FSK, ...?)
 - Noise figure? NF = SNR_I/SNR_O
 - Gain? (signal amplification)
 - Receiver sensitivity? (minimum S to achieve a given E_b/N_0)
 - Blocking performance (achieved BER in presence of frequencyoffset interferer)
 - Out of band emissions
 - Carrier sensing & RSSI characteristics
 - Frequency stability (e.g., towards temperature changes)
 - Voltage range

Example radio transceivers

• Almost boundless variety available - two examples:

- TI Chipcon CC2420
 - Implements 802.15.4
 - 2.4 GHz (carrier frequency)
 - 250 kbps (data rate)
 - 16 channels
 - Low power consumption
 - Rx 18.8 mA, Tx 17.4mA (0dBm)
 - Idle 0.4mA, Sleep 0,02mA
- DustNetwork DN2510 (Linear Technology)
 - Similar as CC2420
 - Ultra low power consumption
 - Rx 6mA, Tx 7mA (0 dBm)
 - Next gen 50% reduction

Memory

- Store programs and collected data requiring non-volatile memories, i.e. content not lost when the power is turned off
 - Read-Only Memory (ROM) Can only be read (slow write)
 - Flash Can be electrically erased and reprogrammed
 - Both of these have very high density (Mb/mm2)
- Variable data is stored in Static Random-Access Memory (SRAM) which is volatile, i.e. content lost when the power is turned off
 - Faster access than Flash or ROM
 - Lower dynamic power dissipation than Flash or ROM
 - ~10 times lower density that Flash or ROM
- On-chip memories (see microcontroller)
 - Extra external Flash via serial interface

Energy/power supply

Energy storage (reservoirs)

Power distribution & management

Energy harvesting

Energy/power supply

- Goal: provide as much energy as possible at smallest cost/volume/weight/recharge time/longevity
 - In WSN, recharging may or may not be an option
- Options
 - Primary batteries not rechargeable
 - Secondary batteries rechargeable, only makes sense in combination with some form of energy harvesting
- Requirements include
 - Low self-discharge
 - Long shelf live
 - Capacity under load
 - Voltage stability (to avoid DC-DC conversion)

Battery examples

Energy per volume (J/cm³) - Energy Density

Primary batteries					
Chemistry	Zinc-air	Lithium	Alkaline		
Energy (J/cm ³)	3780	2880	1200		
Secondary batteries					
Chemistry	Lithium	NiMHd	NiCd		
Energy (J/cm ³)	1080	860	650		

- Familiar alkaline "cylindrical cell" batteries
 - AAA, AA, C
 - Lithium based one as well
- Lithium "coin cell" batteries
 - DT size where D is diameter ([mm]) and T i thickness ([mm/10])
 - Popular 2032, i.e. 20 mm diameter and 3.2 mm thickness ~1 cm³

Battery examples

- Additional info:
 - Lithium batteries flat discharge profile , i.e. constant voltage over most of their life time
 - Alkaline batteries linear decrease in voltage limit lifetime
 - Lithium batteries has lowest internal leakage /self-discharge
 - Lithium most expensive
- Continuous Power / cm3 vs. Life

Power Problem

Example 1

- At an average power consumption of 100 μW, we need slightly more than 1 cm3 of lithium battery volume for 1 year of operation, assuming we can use 100% of the charge in the battery.
- Energy density of rechargeable batteries is less than half that of primary batteries.
- So, someone needs to either replace batteries in every node every ~ 9 months, or recharge every battery every 3 to 4 months.
- In most cases, this is not acceptable.

Power Problem

- Example 2:
 - Number of instructions
 - Energy per instruction: 1 nJ
 - Small battery ("smart dust" cubic-mm): 1 J = 1 Ws
 - Corresponds: 10⁹ instructions!
 - Lifetime
 - Or: Require a single day operational lifetime = 24x60x60 =86400s
 - 1 Ws / 86400s \approx 11.5 μ W as max. sustained power consumption!
 - Ex. MSP 430 ~1mW when active! (rougly 100 times more ~864s ~15mins operation)
 - Not feasible! (today)

Energy harvesting

- How to recharge a battery?
 - A laptop: easy, plug into wall socket in the evening
 - A sensor node? Try to harvest energy from environment
- Ambient energy sources
 - Light! solar cells
 - Temperature gradients difference
 - Vibrations
 - Pressure variation (piezoelectric) from the heel of a shoe
 - •••••

Energy harvesting - overview

Energy source	Energy density		
Batteries (zinc-air) Batteries (rechargable lithium)	$1050 - 1560 \mathrm{mWh/cm^3}$ $300 \mathrm{mWh/cm^3}$ (at $3 - 4 \mathrm{V}$)		
Energy source	Power density		
Solar (outdoors)	$15\mathrm{mW/cm^2}$ (direct sun)		
Solar (indoors)	$0.15\mathrm{mW/cm^2}$ (cloudy day) $0.006\mathrm{mW/cm^2}$ (standard office desk) $0.57\mathrm{mW/cm^2}$ (< 60 W desk lamp)		
Vibrations	$0.01 - 0.1 \mathrm{mW/cm^3}$		
Acoustic noise	$3 \cdot 10^{-6} \mathrm{mW/cm^2}$ at $75 \mathrm{Db}$		
	$9,6 \cdot 10^{-4} \text{mW/cm}^2 \text{ at } 100 \text{Db}$		
Passive human-powered systems	1.8 mW (shoe inserts)		
Nuclear reaction	$80 \mathrm{mW/cm^3}, 10^6 \mathrm{mWh/cm^3}$		

Power Problem "solution"

- What can we do?
 - Utilize that most of the time the Sensor node has nothing to do!
 - Turn it off, i.e. go into sleep (less power) when nothing to do and wake up again when required
 - External stimuli
 - Timer
 - Known as Duty-Cycling
 - Active (e.g. 1%)
 - Sleep (e.g. 99%)

Duty cycle =

T_{tx}= transmission period T_{cyc}= total cycle period

• Combine this if possible with energy harvesting, i.e. recharge battery continuously even when system is sleeping

Switching between operation (consumption) modes

- Simplest idea: Greedily switch to lower mode whenever possible
- Problem: Time and power consumption required to reach higher modes not negligible
 - Introduces overhead
 - Switching only pays off if?
- Example: Event-triggered wake up from sleep mode

Some energy consumption figures

- Microcontroller
 - TI MSP 430 (@ 1 MHz, 3V):
 - 300 µA active (~1mW)
 - 0.5 μA standby/idle (~1.5μW)
 - 0.1 μA power down /deep sleep(~0.3μW)- only woken up (1μS) by external interrupts (not even timer is running any more)
 - Atmel ATMega
 - Operational mode: 15 mW active, 6 mW idle
 - Sleep mode: 75 μW

Memory power consumption

- Crucial part: FLASH memory
 - Power for SRAM almost negligible (but leakage)
- FLASH writing/erasing is expensive
 - Example: FLASH on Mica motes
 - Reading: ≈ 1.1 nAh per byte
 - Writing: ≈ 83.3 nAh per byte

Controlling transceivers

- Similar to controller, low duty cycle is necessary
 - Easy to do for transmitter similar problem to controller: when is it worthwhile to switch off
 - Difficult for receiver: Not only time when to wake up not known, it also depends on *remote* partners
- Example
 - TI CC2420
 - Rx 18.8 mA, Tx 17.4mA (0dBm)
 - Idle 0.4mA, Sleep 0,02mA

Computation vs. communication energy cost

- Tradeoff?
 - Directly comparing computation/communication energy cost not possible
 - But: put them into perspective!
 - Energy ratio of "sending one bit" vs. "computing one instruction": Anything between 220 and 2900 in the literature
 - To communicate (send & receive) one kilobyte
 computing three million instructions!
- Hence: try to compute instead of communicate whenever possible
- Key technique in WSN in-network processing!
 - Exploit aggregation, compression schemes, intelligent coding schemes, ...

2-and-2 exercise

- Radio
 - Data rate 250kbps, TX current 25mA (I)
- Sample a sensor once per sec. and send the 8 bit result
- Calculate the average current over time (charge Q) per sample in the following scenarios: (Note: I = dQ/dt, i.e. dQ = Idt)
 - a) No energy consumed to acquire the sample. No startup time for the radio - just wake up and transmit sample and go back to sleep immediately after transmission.
 - b) As in (a) except the radio burns an average of 10 mA during a 1ms startup period.
 - c) As in (b) except we collect samples for two minutes at a time, and send all 120 samples at the end of each two minute period.
 - a) How much longer can the radio/mote run when supplied from a battery?

Summary

- For WSN, the need to build cheap, low-energy, (small) devices has various consequences for system design
 - Radio frontends and controllers are much simpler than in conventional mobile networks
 - Power management (switching off or throttling down devices) is crucial
 - Energy supply and harvesting are still (and for the foreseeable future) a premium resource
 - Try to compute instead of communicate whenever possible

