Transformations chimique qui s'effectuent en deux sens

Etat d'équilibre d'un système chimique

Exercice 1: Acide chlorhydrique

On considère un mélange de :

- -Une solution S_1 d'acide chlorhydrique de volume $V_1 = 5mL$ et de concentration molaire $C_1 = 0.5mol/L$
- -Une solution S_2 d'acide chlorhydrique de volume $V_1 = 20mL$ et pH = 1.3
- 1. Ecrire l'équation de la réaction chimique d'acide chlorhydrique et l'eau
- 2. Calculer la quantité de la matière de H3O+ pour chaque solution ? déduire la concentration molaire du mélange ?
- 3. Calculer le pH du mélange?

Exercice 2:

Le pH de la solution d'acide méthanoïque HCOOH de concentration $C = 1, 0.10^{-1} moL/L$ est pH = 2.4

- 1. Ecrire l'équation de la réaction chimique d'acide méthanoïque avec l'eau?
- 2. Dresser le tableau d'avancement de la réaction chimique?
- 3. Montrer que la réaction chimique n'est pas totale?
- 4. Calculer les concentrations molaires finales des ions de la solution à l'état final de la réaction chimique? (on néglige les ions HO^-)

Exercice 3:

Le pH d'une solution aqueuse d'ibuprofène $C_{13}H_{18}O_2$ de concentration molaire $C = 5, 0.10^{-2} mol.L^{-1}$ vaut pH = 2, 7 à $25^{\circ}C$.

- 1. Ecrire l'équation de la réaction modélisant la transformation entre l'ibuprofène et l'eau
- 2. Déterminer l'avancement final x_f en fonction de pH et V
- 3. Déterminer xm en fonction C et V
- 4. Montrer que cette transformation est limitée.

Exercice 4:

L'acide propanoïque C_2H_5COOH est un acide gras, utilisé dans la synthèse de certains produits organiques et pharmaceutiques, de parfums et dans la médecine vétérinaire.

1. On considère, à 25°C, une solution aqueuse (S) d'acide propanoïque de concentration molaire $C=2,0.10^{-3}mol.L^{-1}$ et de volume V=1,0L. La mesure de la conductivité σ de la solution (S) a donné la valeur $\sigma=6,2.10^{-3}S.m^{-1}$.

$$\lambda_{H_3O^+} = 35.10^{-3} S.m^2/mol$$
 $\lambda_{C_2H_5COO^-} = 3,58.10^{-3} S.m^2/mol$

- 1.1. Écrire l'équation chimique modélisant la réaction de l'acide propanoïque avec l'eau.
- 1.2. Dresser le tableau d'avancement de la réaction en utilisant les grandeurs C_A , V_A , l'avancement x et l'avancement x_{eq} à l'état d'équilibre du système chimique. Déterminer la valeur de l'avancement maximal.
- 1.3. Vérifier que la valeur de l'avancement à l'état d'équilibre est $1, 6.10^{-4} mol$.
- 1.4. Calculer la valeur du taux d'avancement final.
- 2- On considère une solution aqueuse (S') d'acide propanoïque de concentration molaire $C_A=2.10^{-4}mol.L^{-1}$ et de pH=4,3. On note τ' le taux d'avancement final de la réaction de l'acide propanoïque avec l'eau dans ce cas.
- 2.1. Déterminer la valeur de τ' .
- 2.2. Comparer les valeurs de τ et τ' . Déduire.

Exercices Supplémentaires

Exercice 4:

On considère une solution (S_a) d'acide méthanoïque de volume V et de concentration molaire $C_a=10^{-2}mol/L$. La mesure du pH de cette solution donne : pH=2,9. On modélise la réaction entre l'acide méthanoïque et l'eau par l'équation suivante :

$$HCOOH_{(aq)} + H_2O_{(aq)} \Longrightarrow HCOO_{(aq)}^- + H_3O_{(aq)}^+$$

- 1. Construire le tableau d'avancement de l'évolution du système.
- 2. Montrer que le taux d'avancement final de cette transformation s'écrit sous la forme $\tau = \frac{10^{-pH}}{C_a}$. Calculer la valeur de τ , et conclure.

Exercice 5:

On note l'acide Ibuprofène par RCOOH et sa base conjuguée par $RCOO^-$. $M(RCOO^-) = 206g/mol$. On dissout, dans l'eau pure, un échantillon de masse m = 200mg d'acide RCOOH, contenu dans un sachet d'Ibuprofène, pour obtenir une solution aqueuse (S_0) de concentration C_0 et de volume V0=100mL.

- 1.1. Calculer C_0 .
- 1.2. La mesure du pH de la solution S_0 a donné la valeur : pH = 3, 17.
- 1.2.1 Vérifier, à l'aide du tableau d'avancement, que la réaction de l'Ibuprofène avec l'eau est limitée.

Exercice 6:

On désignera l'acide étudié par AH et sa base conjuguée par A^-

On prépare une solution (SA) d'acide butanoïque de concentration molaire $C_A=10^{-2}mol/L$ et de volume V_A . La mesure du pH de la solution (S_A) donne pH=3,41.

- 1. Construire le tableau d'avancement.
- 2. Donner l'expression de l'avancement x_{eq} à l'équilibre en fonction de V_A et $[H_3O^+]_{eq}$ (Concentration molaire des ions hydroniums à l'équilibre)
- 3. Trouver l'expression du taux d'avancement final τ à l'équilibre en fonction de pH et C_A , puis calculer sa valeur. Que conclure ?

Exercice 7:

Les conductivités molaires ioniques : $\lambda_{H_3O^+}=3$, $49.10^{-2}S.m^2/mol$; $\lambda_{CH_3COO^-}=4$, $09.10^{-3}S.m^2/mol$ On dispose de deux solutions (S1) et (S2) d'acide éthanoïque.

La conductivité de la solution (S1) de concentration molaire $C_1 = 5.10^{-2} mol/L$; $\sigma_1 = 3, 5.10^{-2} S/m$. La conductivité de la solution (S2) de concentration molaire $C_2 = 5.10^{-3} mol/L$; $\sigma_2 = 1, 1.10^{-2} S/m$.

On considère que la dissolution de l'acide éthanoïque dans l'eau est limitée.

- 1. Ecrire l'équation modélisant la dissolution de l'acide éthanoïque dans l'eau.
- 2. Trouver l'expression de la concentration molaire effective $[H_3O^+]_{(eq)}$ des ions oxoniums à l'équilibre en fonction de σ et $\lambda_{CH_3COO^-}$ et $\lambda_{H_3O^+}$.
- 3. Calculer $[H_3O^+]_{(eq)}$ dans chacune des solutions (S1) et (S2).
- 4. Déterminer les taux d'avancement final τ_1 et τ_2 de la réaction de l'acide éthanoïque avec l'eau dans chacune des solutions (S1) et (S2). Déduire l'influence de la concentration initiale de la solution sur le taux d'avancement final.