Problem 2.8 - Uncertainty Analysis

Get["UCAnalysis.m", Path → {NotebookDirectory[]}]

Evaluated Functional Relationship

QAnalysisEnvironment

$$y = x_1 x_2$$

Variable		Uncertainty Interval	Distribution	$ \partial f/\partial x_i $
\mathbf{x}_1	v	$(1.00 \pm 0.05) \times 10^{1}$	Uniform	1.8 × 10 ⁵
x ₂	Δp	$(1.80 \pm 0.05) \times 10^5$	Uniform	1. × 10 ¹

У	1.8×10 ⁶	
Ymin Ymax	1.6625×10 ⁶ 1.9425×10 ⁶	= y - 137500. = y + 142500.
ε_{max} $y \pm \varepsilon_{\text{max}}$	140 000 (1.8 ± 0.2) × 10 ⁶	$= 7.78\%$ $= 1.8(2) \times 10^{6}$
u _c y ± u _c	59441.8483337567 (1.80 ± 0.06) × 10 ⁶	$= 3.3 \%$ $= 1.80(6) \times 10^{6}$

Absolute Maximum Uncertainty

$$\varepsilon_{\text{max}} = \sum_{i=1}^{n} |\partial_{x_i} f[x]| \varepsilon_i; f[x] \pm \varepsilon_{\text{max}} // \text{QUCE}$$

```
1.8 \times 10^{6} \pm 0.14 \times 10^{6}
\in \left[1.66 \times 10^{6}; 1.94 \times 10^{6}\right]
\simeq \left(1.8 \pm 0.2\right) \times 10^{6} = 1.8(2) \times 10^{6}
```

Combined Standard Uncertainty

$$u_c = \left(\sum_{i=1}^{n} (\partial_{x_i} f[x])^2 u_i^2\right)^{1/2}; f[x] \pm u_c // \text{QUCA}$$

```
1.8 \times 10^{6} \pm 0.0594418 \times 10^{6}
\in [1.74056 \times 10^{6}; 1.85944 \times 10^{6}]
\approx (1.80 \pm 0.06) \times 10^{6} = 1.80(6) \times 10^{6}
```

Monte Carlo Simulation

```
Block[ { data, trials = 10<sup>6</sup> },
  data = f@@ Table[RandomReal[fDist[i], {trials}], {i, 1, n}];
  Mean[data] ± StandardDeviation[data] ] // QUCA
```

```
1.80009595507303 × 10<sup>6</sup> ± 0.0594155 × 10<sup>6</sup>

\in [1.74068 \times 10^6; 1.85951 \times 10^6]

\simeq (1.80 \pm 0.06) \times 10^6 = 1.80(6) \times 10^6
```