### Correction OS – TP 6

# Résistances d'entrée et de sortie

#### II.1 - Identifications des paramètres

A On lit sur la notice du GBF :  $r=50\,\Omega$ . On lit sur la façade de l'oscilloscope :  $r=1,0\,\mathrm{M}\Omega$ .

B On lit pour les deux  $r = 6 \Omega$ .

C On lit pour la partie réceptrice une tension de  $44\,\mathrm{V}$  ou  $440\,\mathrm{V}$  et une intensité de  $95,5\,\mathrm{A}.$ 

On en déduit une résistance  $r=0.46\,\Omega$  ou  $4.6\,\Omega$ .

| Couple | $r_{\rm g\acute{e}n\acute{e}rateur} (\Omega)$ | $r_{\text{r\'ecepteur}} (\Omega)$ |
|--------|-----------------------------------------------|-----------------------------------|
| A      | 50                                            | $1.0 \cdot 10^{6}$                |
| В      | 6                                             | 6                                 |
| С      | $\approx 1 \text{ (ERDF)}$                    | 0,46 ou 4,6                       |

#### II.2 - Modélisations







3. On en déduit :

(a) 
$$i = \frac{e}{r_e + r_s}$$
; (b)  $u = \frac{r_e e}{r_e + r_s}$ ; (c)  $P = ui = \frac{r_e e^2}{(r_e + r_s)^2}$ 

- 4. Électrotechnique : on pose  $x = \frac{r_e}{r_s}$  d'où  $P = \frac{e^2}{r_s} \frac{x}{(1+x)^2} = \frac{e^2}{r_s} f(x)$  d'où P maximale pour x = 1 d'après la figure 2. On en déduit que P est maximale pour  $r_e = r_s$ .
  - Électronique : on cherche  $u \approx e$  donc  $\frac{r_e \, e}{r_e + r_s} \approx e$  ce qui correspond à  $r_e + r_s \approx r_e$  et donc  $r_e \gg r_s$  soit  $\frac{r_e}{r_s} \gg 1$ .
- 5. B et C : électrotechnique. A : électronique.

#### III.3 - Résolution

## Étape 1 – détermination de la fem

$$1. \ u = \frac{r_e \, e}{r_e + r_s}$$

2. On a  $r_s = 50 \Omega$  et  $r_e = 1.0 M\Omega$  donc  $u \approx e$ .

## Étape 2 – détermination de la résistance de sortie

3. 
$$u = \frac{(R_V || r_e)}{(R_V || r_e) + r_s} e$$

4. On a  $(R_V \| r_e) = \frac{R_V r_e}{R_V + r_e}$ . Lorsque la résistance variable est du même ordre de grandeur que la résistance de sortie du GBF, on a  $R_V \approx r_s = 50 \,\Omega \ll r_e = 1.0 \,\mathrm{M}\Omega$  d'où  $(R_V \| r_e) \approx R_V$  et  $u \approx \frac{R_V}{R_V + r_s} e$ .

5. Lorsque  $R_V = r_s$  on a alors  $u \approx \frac{e}{2}$ .

On appelle l'exploitation expérimentale de ce résultat, « méthode des tensions moitié » : on connaît la fem e, on manipule la boîte de résistances variables jusqu'à lire, à l'oscilloscope, une valeur moitié de l'amplitude de cette fem, on a alors  $r_s = R_V$ , ce qui permet de mesurer  $r_s$ .