Απαντήσεις στο τέταρτο σετ εργαστηριακών ασκήσεων

Ον/μο:	Μαντάς Ελευθέριος	AM:	1047128	Έτος:	50
--------	----------------------	-----	---------	-------	----

Ασκηση 1

Ερώτηση 1 Υπολογίστε την στοχαστική μέση τιμή της διαδικασίας.

Απάντηση:

Ο τύπος της κανονικής κατανομής είναι ο εξής

$$f_x(x) = \frac{b-a}{2} = \frac{1}{2}$$

Η στοχαστική μέση τιμή της διαδικασίας είναι η εξής:

$$\begin{split} & \int^{\infty} -\infty x f x\left(x\right) \\ dx &= \frac{b-a}{2} \int^{\frac{1}{2}} -\frac{1}{2} x dx = \\ &\frac{1}{2} \int^{\frac{1}{2}} -\frac{1}{2} (\frac{x^{2}}{2})' dx = 0 \end{split}$$

Ερώτηση 2 Χρησιμοποιώντας τη συνάρτηση $rand(\cdot)$ της MATLAB δημιουργήστε Κ υλοποιήσεις της διαδικασίας και εκτιμήστε, υπολογίζοντας την αριθμητική μέση τιμή κάθε χρονική στιγμή, την στοχαστική μέση τιμή της. Τι παρατηρείτε καθώς αυξάνει ο αριθμός των υλοποιήσεων της διαδικασίας που χρησιμοποιούνται στην εκτίμηση της στοχαστικής μέσης τιμής; Απεικονίστε την μέση υλοποίηση στον παρακάτω πίνακα.

Απαντήσεις στο τέταρτο σετ εργαστηριακών ασκήσεων

Ον/μο:	Μαντάς Ελευθέριος	AM:	1047128	Έτος:	50
--------	----------------------	-----	---------	-------	----

Όσο αυξάνεται ο αριθμός Κ τόσο πιο κοντά στη πραγματική τιμή του στοχαστικού μέσου όρου είναι η τιμή που εκτιμούμε.

Ερώτηση 3 Υπολογίστε και απεικονίστε την ακολουθία αυτοσυσχέτισης της διαδικασίας. Είναι η παραπάνω διαδικασία "λευκή"; Αιτιολογείστε την απάντησή σας.

Απάντηση:

Ένα βασικό χαρακτηριστικό των λευκών διαδικασιών είναι πως διέπονται από gaussian (κανονική) κατανομή. Σε αυτή τη περίπτωση η διαδικασία δεν είναι λευκή καθώς δημιουργήθηκε βάση της συνάρτησης rand() της MATLAB η οποία παράγει ομοιόμορφης κατανομής αποτελέσματα.

$$\int_{-\infty}^{\infty} -\infty \int_{-\infty}^{\infty} -\infty x 1x 2fx(x) dx 1dx 2 = \int_{-\frac{1}{2}}^{\frac{1}{2}} -\frac{1}{2}(0x 2 + 0x 2) dx_2 = 0$$

Ερώτηση 4 Χρησιμοποιώντας τα δεδομένα του Ερωτήματος 2, εκτιμήστε την ακολουθία αυτοσυσχέτισης. Τι παρατηρείτε καθώς αυξάνει ο αριθμός Κ των υλοποιήσεων της διαδικασίας που χρησιμοποιούνται στην εκτίμηση της ακολουθίας αυτοσυσχέτισης;

Απάντηση:

Όσο ο αριθμός Κ αυξάνεται, δημιουργούμε περισσότερες υλοποιήσεις της στοχαστικής διαδικασίας. Αυτό μας δίνει περισσότερη ακρίβεια στην εκτίμηση της αρχικής

Απαντήσεις στο τέταρτο σετ εργαστηριακών ασκήσεων

Ον/μο: Μαντάς Ελευθέριος	AM:	1047128	Έτος:	50
-----------------------------	-----	---------	-------	----

Ερώτηση 5 Υπολογίστε και απεικονίστε την Πυκνότητα Φάσματος (Spectral Density) της διαδικασίας. Πόσο κοντά στην ιδανική πυκνότητα είναι η εκτίμησή της από την ακολουθία αυτοσυσχέτισης του Ερωτήματος 4 και πως επηρεάζεται από το Κ;

Απάντηση:

Ασκηση 2

Ερώτηση 1 Υπολογίστε την στοχαστική μέση τιμή της διαδικασίας.

Απάντηση:

Η συνάρτηση που χαρακτηρίζει την gaussian κατανομή είναι ο εξής.

ει την gaussian κατανομή είναι ο εξή
$$rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2}$$

Όπως και παραπάνω το αποτέλεσμα βγαίνει ίδιο και είναι 0

Ερώτηση 2 Χρησιμοποιώντας τη συνάρτηση randn(·) της MATLAB δημιουργήστε Κ υλοποιήσεις της διαδικασίας και εκτιμήστε, υπολογίζοντας την αριθμητική μέση τιμή κάθε γρονική στιγμή, την στογαστική μέση τιμή της. Τι παρατηρήτε καθώς αυξάνει ο αριθμός των υλοποιήσεων της διαδικασίας που χρησιμοποιούνται στην εκτίμηση της στοχαστικής μέσης τιμής; Απεικονίστε την μέση υλοποίηση στον παρακάτω πίνακα.

Απαντήσεις στο τέταρτο σετ εργαστηριακών ασκήσεων

Ον/μο: Μαντάς Ελευθέριος	AM:	1047128	Έτος:	50
-----------------------------	-----	---------	-------	----

Απάντηση:

Ερώτηση 3 Υπολογίστε και απεικονίστε την ακολουθία αυτοσυσχέτισης της διαδικασίας. Είναι η παραπάνω διαδικασία "λευκή"; Αιτιολογείστε την απάντησή σας.

Απάντηση:

Ένα βασικό χαρακτηριστικό των λευκών διαδικασιών είναι πως διέπονται από gaussian κατανομή. Σε αυτή τη περίπτωση η διαδικασία δημιουργήθηκε βάση της συνάρτησης randn() της MATLAB η οποία παράγει αποτελέσματα gaussian κατανομής και επομένως η διαδικασία αυτή είναι «λευκή».

Ο τύπος της gaussian κατανομής είναι ο παρακάτω που δίνει 0 σαν αποτέλεσμα, με παρόμοιο τρόπο όπως στην άσκηση 1.3.

$$\dfrac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2}$$

Με αποτέλεσμα 0

Απαντήσεις στο τέταρτο σετ εργαστηριακών ασκήσεων

Ον/μο:	Μαντάς Ελευθέριος	AM:	1047128	Έτος:	50
--------	----------------------	-----	---------	-------	----

Ερώτηση 4 Χρησιμοποιώντας τα δεδομένα του Ερωτήματος 2, εκτιμήστε την ακολουθία αυτοσυσχέτισης. Τι παρατηρήτε καθώς αυξάνει ο αριθμός Κ των υλοποιήσεων της διαδικασίας που χρησιμοποιούνται στην εκτίμηση της ακολουθίας αυτοσυσχέτισης;

Απάντηση:

Ερώτηση 5 Υπολογίστε και απεικονίστε την Πυκνότητα Φάσματος (Spectral Density) της διαδικασίας. Πόσο κοντά στην ιδανική πυκνότητα είναι η εκτίμησή της από την ακολουθία αυτοσυσχέτισης του Ερωτήματος 4 και πως επηρεάζεται από το K;

Απάντηση:

Ασκηση 3

Ερώτηση 1 Χρησιμοποιήστε αποδοτικά τον Νόμο των Μεγάλων Αριθμών και αποκαλύψτε την εικόνα που κρύβεται στην ακολουθία. Εκτιμήστε την διασπορά του θορύβου καθώς και την κατανομή του.

Απαντήσεις στο τέταρτο σετ εργαστηριακών ασκήσεων

AM:	Έτος:	50

Ερώτηση 2 Χρησιμοποιώντας την εικόνα που αποκαλύψατε, επιβεβαιώστε το Κεντρικό Οριακό Θεώρημα.

Απάντηση:

Ασκηση 4

Ερώτηση 1 Χρησιμοποιήστε τις συναρτήσεις $plot(\cdot)$, $abs(\cdot)$ και $angle(\cdot)$ για να σχεδιάσετε το μέτρο και τη φάση της διατεθείσας υλοποίησης του στοχαστικού σήματος, χρησιμοποιώντας τα M=100 πρώτα δείγματα του σήματος. Καταγράψτε τις παρατηρήσεις σας.

Απάντηση:

angle()

Απαντήσεις στο τέταρτο σετ εργαστηριακών ασκήσεων

Ον/μο:	Μαντάς Αευθέριος ΑΙ	M: 104712	8 Έτος:	50
--------	------------------------	-----------	---------	----

Ερώτηση 2 Εκτελέστε την εντολή $plot(y(n, \theta_0))$ και προσπαθήστε να κατανοήσετε αυτό που βλέπετε. Καταγράψτε τις παρατηρήσεις σας.

Απάντηση:

Ερώτηση 3 Εκτελέστε την εντολή $stem(angle(y(n, \theta_0)))$ και προσπαθήστε να κατανοήσετε αυτό που βλέπετε. Καταγράψτε τις παρατηρήσεις σας.

Απαντήσεις στο τέταρτο σετ εργαστηριακών ασκήσεων

Ον/μο: Μαντάς Ελευθέριος	AM:	1047128	Έτος:	50
-----------------------------	-----	---------	-------	----

Ερώτηση 4 Σχολιάστε, την διαδικασία η οποία ονομάζεται Περιοδόγραμμα:

Απάντηση:

Το Περιοδόγραμμα είναι μια τεχική εκτίμησης του συχνοτικού περιεχομένου ενός στοχαστικού σήματος. Εφαρμόζεται σε σήματα με θόρυβο της μορφής:

$$y[n]=s[n]+w[n]$$

Όπου y είναι το σήμα εξόδου, s το σήμα εισόδου και w ο θόρυβος. Η εκτίμηση του φάσματος ισχύος γίνεται απευθείας από το σήμα.

Ερώτηση 5 Σε ποιά ντετερμινιστική συνάρτηση τείνει η αναμενόμενη τιμή του περιοδογράμματος $P_M(e^{j\omega},\theta)$ όταν το M τείνει στο ∞ ;

Απάντηση:

Η αναμενόμενη τιμή του περιοδογράμματος $P_M(e^{j\omega},\theta)$ όταν το M τείνει στο άπειρο, τείνει στη κρουστική συνάρτηση (συνάρτηση δέλτα ή Ντιράκ)

Ερώτηση 6 Χρησιμοποιώντας τις συναρτήσεις $abs(\cdot)$ και $fftshift(\cdot)$ της MATLAB σχεδιάστε το περιοδόγραμμα του στοχαστικού σήματος, για M = 100, 500, 1000, 10000 και:

Απάντηση:

Ερώτηση 7 Εντοπίστε πιθανές συχνότητες στις οποίες κατανέμεται η ενέργεια του ντετερμινιστικού σήματος

Απάντηση:

Οι συχνότητες στις οποίες κατανέμεται η ενέργεια του σήματος, βάση των παραπάνω περιοδογραμμάτων είναι οι συχνότητες 5.65- $5.95*10^4$ Hz

Απαντήσεις στο τέταρτο σετ εργαστηριακών ασκήσεων

Ον/μο: Μαντάς Ελευθέριος	AM:	1047128	Έτος:	50
-----------------------------	-----	---------	-------	----

Ερώτηση 8 Σχολιάστε την συμπεριφορά του περιοδογράμματος για τις διαφορετικές τιμές του Μ που χρησιμοποιήσατε

Απάντηση:

Όσο αυξάνεται η παράμετρος Μ τόσο περισσότερα δείγμτα του σήματος έχουμε στη διάθεσή μας και έτσι έχουμε μεγαλύτερη ακρίβεια.

Ερώτηση 9 Εκτιμήστε το πλάτος Α του μιγαδικού εκθετικού σήματος

Απάντηση:

Ερώτηση 10 Εκτιμήστε, αν μπορείτε, την ισχύ σ^2 του θορύβου.

Απάντηση:

Ερώτηση 11 Χρησιμοποιήστε τις εκτιμήσεις πλάτους και συχνότητας και δημιουργήστε στην MATLAB το μιγαδικό εκθετικό σήμα και επαναλάβετε τις Ερωτήσεις 8 και 9. Καταγράψτε τις παρατηρήσεις σας.

Απαντήσεις στο τέταρτο σετ εργαστηριακών ασκήσεων

Ον/μο: Μαντάς Ελευθέριο	AM:	1047128	Έτος:	50
----------------------------	-----	---------	-------	----

Ασκηση 5

Ερώτηση 1 Τι είδους διαδικασία περιγράφει η Σχέση (2); Χρησιμοποιώντας $\omega_{\theta}=0.25$ και τη συνάρτηση $randn(\cdot)$, δημιουργήστε μερικές υλοποιήσεις της. Υπολογίστε τα φασματικά χαρακτηριστικά του χρωματισμένου θορύβου. Συμφωνούν με τα θεωρητικά αναμενόμενα;

Απάντηση:

Ερώτηση 2 Ποιά η λειτουργία του Συστήματος Λεύκανσης; Καταγράψτε την απάντησή σας.

Απάντηση:

Ερώτηση 3 Η πηγή του σήματος της Σχέσης (1) είναι ντετερμινιστική ή στοχαστική; Δικαιολογήστε την απάντησή σας. Αν η πηγή του σήματος είναι στοχαστική, είναι ασθενώς ή ισχυρώς στάσιμη πρώτης ή δεύτερης τάξης; Χρησιμοποιώντας τη συνάρτηση rand(·), δημιουργείστε υλοποιήσεις της και προσπαθήστε να επιβεβαιώσετε τις απαντήσεις σας και πειραματικά. Καταγράψτε τα πειράματα που κάνατε και τα αποτελέσματα σας.

Απαντήσεις στο τέταρτο σετ εργαστηριακών ασκήσεων

Ον/μο: Μαντάς Ελευθέριος	AM:	1047128	Έτος:	50
-----------------------------	-----	---------	-------	----

Ερώτηση 4 Εκφράστε την έξοδο του FIR φίλτρου Wiener μήκους M συναρτήσει των συντελεστών της κρουστικής του απόκρισης και του χρωματισμένου θορύβου.

Απάντηση:

Ερώτηση 5 Σχεδιάστε το βέλτιστο FIR φίλτρο Wiener μήκους 2 και υπολογίστε το μέσο τετραγωνικό σφάλμα.

Απάντηση:

Ερώτηση 6 Επαναλάβετε την Ερώτηση 5 για φίλτρα μήκους 3, 4, 5, 6, υπολογίστε τα αντίστοιχα μέσα τετραγωνικά σφάλματα. Τι παρατηρείτε;

M = 3	M =4	M = 5	M = 6
	September 1	J. Co. TI	C THE STATE OF THE