Open-Source Workflow for Scientific Paper Figures Inkscape, Python, Matplotlib, and PyVista

Thomas Guillod

Dartmouth College June 6, 2025

Goal and Disclaimers

- Goal: creating publication-quality figures with open-source tools
- Special focus on electrical engineering / power electronics

Disclaimers

- This is the workflow I am using for my own research
- Taste is something subjective and personal
- I am neither a designer nor a graphist
- Create and/or adapt your own workflow

Some Schematics / Diagrams

Inkscape files in the GitHub.

Some Plots

Inkscape files in the GitHub. Python sources in the GitHub.

Open-Source Tools

- Inkscape for creating / assembling figures
- GIMP for handling photos / images
- LaTeX for typesetting equations
- Python / Matplotlib for plots
- Python / PyVista for mesh/FEM
- External resources
 - Pictures / symbols from "The Internet" (check licenses)
 - https://github.com/upb-lea/Inkscape_electric_Symbols

Complete Workflow

Before doing "Design"

- Goal: highlighting your results in an honest way
- Nice plots cannot make up for bad results!
- Make a (tentative) figure list before starting
 - List of the diagrams, schematics, plots, and tables
 - Helpful for doing the figures and writing the paper
- Find the right variables, scaling, and plot type
 - 1D / 2D plots are greats (simple and clear)
 - 3D plots are difficult to read (but sometimes required)
 - High dimensional plots (e.g. parallel coordinates) can be useful
 - https://matplotlib.org/stable/gallery / https://docs.pyvista.org/examples

Standard Sizes

- Figure sizes (IEEE format)
 - o One-column: 88 mm / two-column: 180 mm
 - Two-column figures makes LaTeX placement tricky
- Fonts sizes
 - Times New Roman
 - 10 pt: title text
 - o 9 pt: normal text
 - 8 pt: small details
- Line thickness: between 0.2 mm and 0.8 mm

Some "Design" Tips

- The layout of the figure is important (do quick mockups)
- Do not overload the figures (especially for slides / posters)
- What makes good figures?
 - Consistent size (symbols, fonts, thicknesses, etc.)
 - Consistency between plots (axis limits, colors, etc.)
 - Use bright / strong colors for the important curves / symbols
 - Use pastel / gray colors for less important elements
 - Crop / remove background for the photos
 - Use annotations to highlight interesting features
 - Nice selection of the axis limits and colormaps
 - Make the colors printer and projector compatible
 - https://matplotlib.org/stable/users/explain/colors

Nice things I am not doing

- **Drawing** figures with a **scripting language** (e.g. TikZ)
- Using LaTeX fonts in the figures (nicer but more complex)
 - Import LaTeX equations in the figures as "shapes"
 - Times New Roman is fine for the labels, ticks, etc.
- Exporting final figures with Python (nicer but time-consuming)
 - The Python exports are 90% good (e.g., plot size, font sizes, thicknesses, colors)
 - The 10% remaining edits are done in Inkscape (careful not to alter the data)
- Making the sub-figures with LaTeX packages (complex and rigid)
 - The complete sub-figure composition is done in Inkscape
 - Easier and faster to obtain visually pleasing results

Inkscape Functions I am Using

- Inkscape is extremely powerful
 - 10-20% of the features are often sufficient
 - https://inkscape.org/learn
- Organizing your figures is important
 - Grid / snapping / guides
 - Group / layers
- Split different content is different layers
 - Lock elements / hide elements
 - Layer for the images
 - Layer for the plots / drawings
 - Layer for the annotations

Inkscape Functions I am Using

- "Document Properties" figure and grid sizes
- "Layers and Objects" organize the figure structure
- "Transform" scale, translate, rotate objects
- "Fill and Stroke" color, thickness, arrow, gradient, etc.
- "Align and Distribute" complex alignment options
- "Object Properties" edit complex object properties

Using Vector Graphics for Everything?

- Ideally yes, but there are some exceptions for large plots:
 - Scatter / contour plots
 - Massive oscilloscope data
 - Mesh plots (FEM, FDTD, etc.)
- Figures should (ideally) not exceed 1MB
- Solution 1: down sample / simplify the data
 - Can be easy (oscilloscope data or contour plots)
 - Can be extremely unpracticable (large 3D meshes)
- Solution 2: split the plot into two parts
 - A vector plot with the axes, labels, ticks, legend, etc.
 - A raster plot with the scatter plot dots (payload).

2D Plots with Python / Matplotlib

- "utils_mpl.py" Matplotlib utils
 - Set up nice default parameters (fonts, sizes, etc.)
 - Create and save figures as PDFs and PNGs
 - Set the grid, axis limits, and axis ticks

Some examples

- "plot_line.py" Example with logarithmic axis and custom axis ticks
- o "plot_error.py" Example with error bars and error fill area
- "plot_cmap.py" Example with scatter plot and colormap

2D/3D Meshes with Python / PyVista

- Goal: plot variables on 2D/3D meshes (e.g., FEM, FDTD)
- Solution 1: directly export an image from the EM software
 - Simple but sometimes the plots are low-quality
 - o Fix the axis, colorbar, labels in Inkscape
- Solution 2: export the mesh and the solution
 - Generate the plot with a specialized tool (e.g., ParaView, PyVista)
 - Much more powerful but also more complex
 - Most EM simulation tools support VTK export
- "utils_pv.py" PyVista utils
 - Step nice default parameters
 - Crop the output images
- "plot_mesh.py" 2D/3D plots of EM simulation results from VTK data

Export the Figures

- "export_inkscape.sh" Inkscape export script
 - Export all the Inkscape plots in given folders
 - Export as PDF for the paper (with fonts embedding)
 - Export as high-resolution PNG for the slides / poster
- Vector graphics in slides / poster are possible but prone to bugs
- Using high-resolution PNG is a simple solution (300 500 dpi)

Python and Inkscape Examples

github.com/otvam/inkscape_python_figures

