Teória automatického riadenia III. Cvičenie, Optimalizácia, Lagrangeove multiplikátory

G. Takács, G. Batista

Ústav automatizácie, merania a aplikovanej informatiky Strojnícka fakulta, Slovenská technická univerzita Zápis optimalizačného problému:

min
$$f(x)$$
,
s.t. $g_i(x) \le 0$,
 $h_j(x) = 0$,

kde $g_i(x)$ sú obmedzenia s nerovnosťami, i=1,...,m a $h_j(x)$ sú obmedzenia s rovnosťami, j=1,...,l

Takýto optimalizačný problém sa rieši pomocou Lagrangeových multiplikátorov, ktoré sa značia μ_i pre nerovnosti, λ_j pre rovnosti.

(UAMAI) TAR III. 21.11.2016 2/5

Zovšeobecnené riešenie tohto problému musí spĺňať podmienky KKT (Karush-Kuhn-Tucker)

Nutné podmienky

- 1. Stacionarita (Stationarity)
 - pre max.: $\nabla f(x^*) = \sum_{i=1}^m \mu_i \nabla g_i(x^*) + \sum_{i=1}^l \lambda_i \nabla h_i(x^*)$
 - pre min.: $-\nabla f(x^\star) = \sum_{i=1}^m \mu_i \nabla g_i(x^\star) + \sum_{i=1}^l \lambda_j \nabla h_j(x^\star)$
- 2. Primárna prípustnosť (Primal feasibility)
 - $g_i(x^*) \leq 0$, pre všetky i = 1, ..., m
 - $h_j(x^*) = 0$, pre všetky j = 1, ..., I
- 3. Duálna prípustnosť (Dual feasibility)
 - $\mu_i \geq 0$, pre všetky i = 1, ..., m
- 4. Doplnková vôľa (Complementary slackness)
 - $\mu_i g_i(x^*) = 0$, pre všetky i = 1, ..., m
- x* označuje polohu optima

3/5

(UAMAI) TAR III. 21.11.2016

Ak sú splnené nutné podmienky, nemusí to znamenať že je výsledok globálne optimálny. Treba sa pozrieť aj na podmienky regularity a na postačujúce podmienky (je ich veľa, tak ich teraz neuvádzam).

Domáca úloha

Skupina A

1.

min, max
$$x^2 + y$$

s.t. $x^2 - y^2 = 1$

Skupina B

1

min, max
$$x^2y$$

s.t. $x^2 + y^2 = 1$

2.

min, max
$$x^2 + 2y^2$$

s.t. $x^2 + y^2 \le 4$

2.

min, max
$$x^4 + y^2$$

s.t. $x^2 + y^2 \le 1$

Výpočet oboch príkladov overte kontrolou nutných podmienok KKT

5/5