Problem 32: Let v and w be distinct, randomly chosen roots of the equation $z^{1997} - 1 = 0$. Find the probability that $\sqrt{2 + \sqrt{3}} \le |v + w|$. (Source: AIME)

Let $v = \cos x + i \sin x$ and $w = \cos y + i \sin y$ be two distinct roots of the equation $z^{1997} - 1 = 0$.

We will start by assuming $\sqrt{2+\sqrt{3}} \le |v+w|$.

$$\begin{split} &\sqrt{2+\sqrt{3}} \leq |v+w| \\ &\sqrt{2+\sqrt{3}} \leq |(\cos x + \cos y) + i(\sin x + \sin y)| \\ &\sqrt{2+\sqrt{3}} \leq \sqrt{(\cos x + \cos y)^2 + (\sin x + \sin y)^2} \\ &2+\sqrt{3} \leq (\cos x + \cos y)^2 + (\sin x + \sin y)^2 \\ &2+\sqrt{3} \leq \cos^2 x + \cos^2 y + 2\cos x\cos y + \sin^2 x + \sin^2 y + 2\sin x\sin y \\ &2+\sqrt{3} \leq \cos^2 x + \sin^2 x + \cos^2 y + \sin^2 y + 2\cos x\cos y + 2\sin x\sin y \\ &2+\sqrt{3} \leq 2 + 2\cos x\cos y + 2\sin x\sin y \\ &2+\sqrt{3} \leq 2 + 2(\cos x\cos y + \sin x\sin y) \\ &2+\sqrt{3} \leq 2 + 2\cos(x-y) \\ &\sqrt{3} \leq 2\cos(x-y) \\ &\frac{\sqrt{3}}{2} \leq \cos(x-y) \end{split}$$

We have arrived at the result $\frac{\sqrt{3}}{2} \le \cos(x-y)$. For this to be true, it is necessary that $-\frac{\pi}{6} \le x-y \le \frac{\pi}{6}$.

Now x is the argument of v, and y is the argument of w.

Since v and w are 1997th roots of unity, we can write $x = 2k\pi/1997$ and $y = 2l\pi/1997$ for integers $0 \le k, l \le 1996$.

Since $v \neq w$, we know that $k \neq l$.

Now we can solve for k and l.

$$-\frac{\pi}{6} \le x - y \le \frac{\pi}{6}$$

$$-\frac{\pi}{6} \le \frac{2k\pi}{1997} - \frac{2l\pi}{1997} \le \frac{\pi}{6}$$

$$-\frac{\pi}{6} \le \frac{2(k-l)\pi}{1997} \le \frac{\pi}{6}$$

$$-\frac{1997}{12} \le k - l \le \frac{1997}{12}$$

$$-166 < k - l < 166$$

we are able to round since k and l are integers

We know that the difference k-l is in the range of integers $[-166,0) \cup (0,+166]$.

After randomly choosing a value for k, there are 332 values of l that meet this requirement, out of 1996 possible values of l.

Thus the probability that $-166 \le k - l \le 166$ (for two distinct integers $0 \le k, l \le 1996$) is $\frac{332}{1996}$

This condition is strong enough that it implies both $-\frac{\pi}{6} \le x - y \le \frac{\pi}{6}$ and $\sqrt{2 + \sqrt{3}} \le |v + w|$.

Thus the probability that $\sqrt{2+\sqrt{3}} \le |v+w|$ is $\boxed{\frac{332}{1996} = \frac{83}{499}}$