

12. More on HANK

Adv. Macro: Heterogenous Agent Models

Jeppe Druedahl

Introduction

Introduction

- Today: Fiscal policy in a HANK model with sticky wages
 - Some analytical insights
 - Additional numerical results

Introduction

- Today: Fiscal policy in a HANK model with sticky wages
 - Some analytical insights
 - Additional numerical results
- Literature: Auclert et. al. (2023),
 »The Intertemporal Keynesian Cross«
 - Long paper with many (technical) details
 - We will focus on the main results

Sticky wages

Households

Household problem:

$$\begin{split} v_t(z_t, a_{t-1}) &= \max_{c_t} \frac{c_t^{1-\sigma}}{1-\sigma} - \varphi \frac{\ell_t^{1+\nu}}{1+\nu} + \beta \mathbb{E}_t \left[v_{t+1}(z_{t+1}, a_t) \right] \\ \text{s.t. } a_t + c_t &= (1 + r_t^a) a_{t-1} + (1 - \tau_t) w_t \ell_t z_t + \chi_t \\ \log z_{t+1} &= \rho_z \log z_t + \psi_{t+1} \ , \psi_t \sim \mathcal{N}(\mu_\psi, \sigma_\psi), \ \mathbb{E}[z_t] = 1 \\ a_t &\geq 0 \end{split}$$

- Active decisions: Consumption-saving, c_t (and a_t)
- Union decision: Labor supply, ℓ_t
- Consumption function: $C_t^{hh} = C^{hh} \left(\{ r_s^a, \tau_s, w_s, \ell_s, \chi_s \}_{s \ge 0} \right)$

Firms

Production and profits:

$$Y_t = \Gamma_t L_t$$

$$\Pi_t = P_t Y_t - W_t L_t$$

First order condition:

$$\frac{\partial \Pi_t}{\partial L_t} = 0 \Leftrightarrow P_t \Gamma_t - W_t = 0 \Leftrightarrow w_t \equiv W_t / P_t = \Gamma_t$$

Zero profits: $\Pi_t = 0$

Wage and price inflation:

$$\begin{split} \pi_t^w &\equiv W_t/W_{t-1} - 1 \\ \pi_t &\equiv \frac{P_t}{P_{t-1}} - 1 = \frac{W_t/\Gamma_t}{W_{t-1}/\Gamma_{t-1}} - 1 = \frac{1 + \pi_t^w}{\Gamma_t/\Gamma_{t-1}} - 1 \end{split}$$

Union

Everybody works the same:

$$\ell_t = L_t^{hh}$$

 Unspecified wage adjustment costs imply a New Keynesian Wage (Phillips) Curve (NKWPC or NKWC)

$$\pi_{t}^{w} = \kappa \left(\varphi \left(L_{t}^{hh} \right)^{\nu} - \frac{1}{\mu} \left(1 - \tau_{t} \right) w_{t} \left(C_{t}^{hh} \right)^{-\sigma} \right) + \beta \pi_{t+1}^{w}$$

Government

- Spending: G_t
- Tax bill: T_t

$$T_t = \int \tau_t w_t \ell_t z_t d\boldsymbol{D}_t = \tau_t \Gamma_t L_t = \tau_t Y_t$$

If one-period bonds:

$$B_t = (1 + r_t^b)B_{t-1} + G_t + \chi_t - T_t$$

• If long-term bonds: Geometrically declining payment stream of $1, \delta, \delta^2, \ldots$ for $\delta \in [0, 1]$. The bond price is q_t .

$$q_t(B_t - \delta B_{t-1}) = B_{t-1} + G_t + \chi_t - T_t$$

Potential tax-rule:

$$\tau_t = \tau_{ss} + \omega q_{ss} \frac{B_{t-1} - B_{ss}}{Y_{ss}}$$

Central bank

Standard Taylor rule:

$$1 + i_t = (1 + i_{t-1})^{\rho_i} \left((1 + r_{ss}) (1 + \pi_t)^{\phi_{\pi}} \right)^{1 - \rho_i}$$

Alternative: Real rate rule

$$1 + i_t = (1 + r_{ss})(1 + \pi_{t+1})$$

Indeterminacy: Consider limit or assume future tightening

Fisher-equation:

$$1 + r_t = \frac{1 + i_t}{1 + \pi_{t+1}}$$

Arbitrage

1. One-period *real* bond, $q_t = 1$:

$$t > 0$$
: $r_t^b = r_t^a = r_{t-1}$
 $r_0^b = r_0^a = 1 + r_{ss}$

2. or, one-period nominal bond, $q_t = 1$:

$$t > 0: r_t^b = r_t^a = r_{t-1}$$

 $t > 0: r_0^b = r_0^a = (1 + r_{ss})(1 + \pi_{ss})/(1 + \pi_0)$

3. or, long-term (real) bonds:

$$rac{1+\delta q_{t+1}}{q_t} = 1+r_t$$

$$1+r_t^b = 1+r_t^a = rac{1+\delta q_t}{q_{t-1}} = egin{cases} rac{1+\delta q_0}{q_{-1}} & ext{if } t=0 \ 1+r_{t-1} & ext{else} \end{cases}$$

Market clearing

- 1. Asset market: $q_t B_t = A_t^{hh}$
- 2. Labor market: $L_t = L_t^{hh}$
- 3. Goods market: $Y_t = C_t^{hh} + G_t$

Equation system

Taylor-rule and long-term government debt:

$$\begin{aligned} w_{t} - \Gamma_{t} \\ Y_{t} - \Gamma_{t} L_{t} \\ 1 + \pi_{t} - \frac{1 + \pi_{t}^{w}}{\Gamma_{t} / \Gamma_{t-1}} \\ 1 + i_{t} - (1 + i_{t-1})^{\rho_{i}} \left((1 + r_{ss}) (1 + \pi_{t})^{\phi_{\pi}} \right)^{1 - \rho_{i}} \\ 1 + r_{t} - \frac{1 + i_{t}}{1 + \pi_{t+1}} \\ \frac{1 + \delta q_{t+1}}{q_{t}} - (1 + r_{t}) \\ 1 + r_{t}^{a} - \frac{1 + \delta q_{t}}{q_{t-1}} \\ \tau_{t} - \left[\tau_{ss} + \omega q_{ss} \frac{B_{t-1} - B_{ss}}{Y_{ss}} \right] \\ q_{t} (B_{t} - \delta B_{t-1}) - [B_{t-1} + G_{t} + \chi_{t} - \tau_{t} Y_{t}] \\ q_{t} B_{t} - A_{t}^{hh} \\ \pi_{t}^{w} - \left[\kappa \left(\varphi \left(L_{t}^{hh} \right)^{\nu} - \frac{1}{\mu} \left(1 - \tau_{t} \right) w_{t} \left(C_{t}^{hh} \right)^{-\sigma} \right) + \beta \pi_{t+1}^{W} \right] \end{aligned}$$

Reduced equation system with ordered blocks

$$\begin{split} \textit{H}(\pi^{\textit{w}},\textit{L},\textit{G},\chi,\Gamma) &= \left[\begin{array}{c} q_t B_t - A_t^{hh} \\ \pi_t^{\textit{w}} - \left[\kappa \left(\varphi \left(L_t^{hh}\right)^{\nu} - \frac{1}{\mu} \left(1 - \tau_t\right) w_t \left(C_t^{hh}\right)^{-\sigma}\right) + \beta \pi_{t+1}^{W} \right] \end{array}\right] = \mathbf{0} \end{split}$$
 Production: $w_t = \Gamma_t$
$$Y_t = \Gamma_t L_t$$

$$\pi_t = \frac{1 + \pi_t^{\textit{w}}}{\Gamma_t / \Gamma_{t-1}} - 1$$
 Central bank: $i_t = (1 + i_{t-1})^{\rho_i} \left((1 + r_{ss}) \left(1 + \pi_t\right)^{\phi_{\pi}} \right)^{1 - \rho_i} - 1 \text{ (forwards)}$
$$r_t = \frac{1 + i_t}{1 + \pi_{t+1}} - 1$$
 Mutual fund: $q_t = \frac{1 + \delta q_{t+1}}{1 + r_t} \text{ (backwards)}$
$$r_t^{\textit{a}} = \frac{1 + \delta q_t}{q_{t-1}} - 1$$
 Government:
$$\begin{bmatrix} \tau_t \\ B_t \end{bmatrix} = \begin{bmatrix} \tau_{ss} + \omega q_{ss} \frac{B_{t-1} - B_{ss}}{\gamma_{ss}} \\ \frac{(1 + \delta q_t) B_{t-1} + G_t + \chi_t - \tau_t Y_t}{q_t} \end{bmatrix} \text{ (forwards)}$$

DAG

Analytical insights

Simpler consumption function

Assumptions:

- 1. One-period real bond
- 2. No lump-sum transfers, $\chi_t = 0$
- 3. Real rate rule: $r_t = r_{ss}$
- 4. Fiscal policy in terms of dG_t and dT_t satisfying IBC

$$\sum_{t=0}^{\infty} (1 + r_{ss})^{-t} (dG_t - dT_t) = 0$$

- Tax-bill: $T_t = \tau_t w_t \int \ell_t z_t d\mathbf{D}_t = \tau_t \Gamma_t L_t = \tau_t Y_t$
- Household income: $(1 \tau_t)w_t\ell_t z_t = \underbrace{(Y_t T_t)}_{\equiv Z_t} z_t = Z_t z_t$
- Consumption function: Simplifies to

$$C_t^{hh} = C^{hh}(\{Y_s - T_s\}_{s \ge 0}) \Rightarrow C^{hh} = C^{hh}(Y - T) = C^{hh}(Z)$$

Two-equation version in Y and r

$$Y = G + C^{hh}(r, Y - T)$$

 $r = \mathcal{R}(Y; G, T)$

- First equation: Goods market clearing
- Second equation:
 - 1. Government: $extbf{\textit{T}}, extbf{\textit{Y}}
 ightarrow au$
 - 2. Resource constraint: $G, Y \rightarrow C$
 - 3. Firm behavior I: Γ , $Y \rightarrow L$, w
 - 4. NKWC: $\boldsymbol{L}, \boldsymbol{w}, \boldsymbol{\tau} \rightarrow \boldsymbol{\pi}^{\boldsymbol{w}}$
 - 5. Firm behavior II: $\pi^w \to \pi$
 - 6. Central bank: $\pi \rightarrow i$
 - 7. Fisher: $i, \pi \rightarrow r$
- Heterogeneity does not enter $\mathcal{R}(\mathbf{Y}; \mathbf{G}, \mathbf{T})$
- Real rate rule: Inflation is a side-show

Intertemporal Keynesian Cross

$$\mathbf{Y} = \mathbf{G} + C^{hh}(\mathbf{Y} - \mathbf{T})$$

Total differentiation:

$$dY_t = dG_t + \sum_{s=0}^{\infty} \frac{\partial C_t^{hh}}{\partial Z_s} (dY_t - dT_t)$$

IBC implies:
$$\sum_{t=0}^{\infty} (1+r_{ss})^{-t} \frac{\partial C_t^{hh}}{\partial Z_s} = (1+r_{ss})^{-s}$$

Intertemporal Keynesian Cross in vector form

$$d\mathbf{Y} = d\mathbf{G} + \mathbf{M}(d\mathbf{Y} - d\mathbf{T}) \Leftrightarrow$$
$$(\mathbf{I} - \mathbf{M})d\mathbf{Y} = d\mathbf{G} - \mathbf{M}d\mathbf{T}$$

where $M_{t,s}=rac{\partial C_t^{hh}}{\partial Z_s}$ encodes the entire *complexity*

iMPCs in the data

Figure 1: iMPCs in the Norwegian and Italian data

Other columns: Druedahl et al. (2023) show in micro-data that consumption responds today to news about future income.

Perspective: Static Keynesian Cross

• Old Keynesians: Consumption only depends on current income

$$Y_t = G_t + C^{hh}(Y_t - T_t)$$

Total differentiate:

$$dY_t = dG_t + \frac{\partial C_t^{hh}}{\partial Z_t} (dY_t - dT_t)$$

= $dG_t + \text{mpc} \cdot (dY_t - dT_t)$

Solution

$$dY_t = \frac{1}{1 - \mathsf{mpc}} \left(dG_t - \mathsf{mpc} \cdot dT_t \right)$$

from multiplier-process $1 + \mathsf{mpc} + \mathsf{mpc}^2 \cdots = \frac{1}{1 - \mathsf{mpc}}$

Static Keynesian Cross

An Increase in Government Purchases in the Keynesian Cross

Purchases in I metylinistal crows An increase in government purchases of ΔG raises planned expenditure by that amount for any given level of income. The equilibrium moves from point A to point B, and income rises from Y_1 to Y_2 . Note that the increase in income ΔY exceeds the increase in government purchases ΔG . Thus, fiscal policy has a multiplied effect on income.

Intertemporal solution technicalities

- IBCs:
 - 1. NPV-vector: $\mathbf{q} \equiv [1, (1 + r_{ss})^{-1}, (1 + r_{ss})^{-2}, \dots]'$
 - 2. Households: q'M = q' and q'(I M) = 0
 - 3. Government: $\mathbf{q}'(d\mathbf{G} d\mathbf{T}) = \mathbf{0}$
- **Problem:** $(I M)^{-1}$ cannot exist because

$$(I - M)dY = dG - MdT \Leftrightarrow$$

 $q'(I - M)dY = q'(dG - dT) \Leftrightarrow$
 $0 = 0$

• Result: If unique solution then on the form

$$d\mathbf{Y} = \mathcal{M}(d\mathbf{G} - \mathbf{M}d\mathbf{T})$$

 $\mathcal{M} = (\mathbf{K}(\mathbf{I} - \mathbf{M}))^{-1}\mathbf{K}$

Indeterminancy: Still work-in-progress (Auclert et. al., 2023)

Intermezzo: Response of consumption

$$d\mathbf{Y} = d\mathbf{G} + \mathbf{M}(d\mathbf{Y} - d\mathbf{T}) \Leftrightarrow$$

$$d\mathbf{Y} - d\mathbf{G} = \mathbf{M}(d\mathbf{G} - d\mathbf{T}) + \mathbf{M}(d\mathbf{Y} - d\mathbf{G}) \Leftrightarrow$$

$$d\mathbf{Y} - d\mathbf{G} = \mathcal{M}\mathbf{M}(d\mathbf{G} - d\mathbf{T}) \Leftrightarrow$$

$$d\mathbf{C} = \mathcal{M}\mathbf{M}(d\mathbf{G} - d\mathbf{T})$$

Fiscal multipliers

$$d\mathbf{Y} = d\mathbf{G} + \underbrace{\mathcal{M}\mathbf{M}(d\mathbf{G} - d\mathbf{T})}_{d\mathbf{C}}$$

Balanced budget multiplier:

$$d\mathbf{G} = d\mathbf{T} \Rightarrow d\mathbf{Y} = d\mathbf{G}, d\mathbf{C} = 0$$

Note: Central that income and taxes affect household income proportionally in exactly the same way = no redistribution

- Deficit multiplier: $d\mathbf{G} \neq d\mathbf{T}$
 - 1. Larger effect of $d\mathbf{G}$ than $d\mathbf{T}$
 - 2. Numerical results needed

Fiscal multiplier

Impact-multiplier:

$$\frac{\partial Y_0}{\partial G_0}$$

Cummulative-multiplier:

$$\frac{\sum_{t=0}^{\infty} (1+r_{ss})^{-t} dY_t}{\sum_{t=0}^{\infty} (1+r_{ss})^{-t} dG_t}$$

Comparison with RA model

• From lecture 1: $\beta(1+r_{ss})=1$ implies

$$C_t = (1 - \beta) \sum_{s=0}^{\infty} \beta^s Y_{t+s}^{hh} + r_{ss} a_{-1}$$

The iMPC-matrix becomes

$$\mathbf{M}^{RA} = \begin{bmatrix} (1-eta) & (1-eta)eta & (1-eta)eta^2 & \cdots \\ (1-eta) & (1-eta)eta & (1-eta)eta^2 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix} = (1-eta)\mathbf{1}\mathbf{q}'$$

Consumption response is zero

$$dC^{RA} = \mathcal{M}M^{RA}(dG - dT)$$
$$= \mathcal{M}(1 - \beta)\mathbf{1}q'(dG - dT)$$
$$= \mathbf{0} \Leftrightarrow dY = dG$$

Comparison with TA model

■ Hand-to-Mouth (HtM) households: λ share have $C_t = Y_t^{hh}$

$$\mathbf{M}^{TA} = (1 - \lambda)\mathbf{M}^{RA} + \lambda \mathbf{I}$$

Intertemporal Keynesian Cross becomes

$$(I - M^{TA})dY = dG - M^{TA}dT$$

$$(I - M^{RA})dY = \underbrace{\frac{1}{1 - \lambda} [dG - \lambda dT]}_{d\tilde{G}_{t}} - M^{RA}dT$$

■ Same solution-form as RA: $d\mathbf{Y} = d\tilde{\mathbf{G}}_t$

$$d\mathbf{Y} = d\mathbf{\tilde{G}}_t = d\mathbf{G}_t + \frac{\lambda}{1-\lambda} [d\mathbf{G} - d\mathbf{T}]$$

Still a cumulative multiplier of 1 (both for RA and HtM)

iMPCs in models

Multipliers and debt-financing

Note. These figures assume a persistence of government spending equal to $\rho_G = 0.76$, and vary ρ_B in $dB_t = \rho_B(dB_{t-1} + dG_t)$. See section 7.1 for details on calibration choices.

Generalized IKC

Budget constraint can be written with initial capital gain

$$a_t + c_t = (Y_t - T_t)z_t + \chi_t + \begin{cases} (1 + r_{t-1})a_{t-1} & \text{if } t > 0 \\ (1 + r_{ss} + \text{cap}_0)a_{t-1} & \text{if } t = 0 \end{cases}$$

- 1. Real bond: $cap_0 = 0$
- 2. Nominal bond:

$$\mathsf{cap}_0 = rac{(1+r_{\mathsf{ss}})(1+\pi_{\mathsf{ss}})}{1+\pi_0} - (1+r_{\mathsf{ss}})$$

3. Long-term bond:

$$\mathsf{cap}_0 = rac{1+\delta q_0}{q_{-1}} - \left(1+r_{ss}
ight)$$

Generalized IKC

• Consumption-function $C^{hh} = C^{hh}(r, Y - T, \chi, cap_0)$ implies

$$d\mathbf{C}^{hh} = \mathbf{M}^r d\mathbf{r} + \mathbf{M}(d\mathbf{Y} - d\mathbf{T}) + \mathbf{M}^{\chi} d\chi + \mathbf{m}^{cap} cap_0$$

where

$$m{M}_{t,s}^{r} = \left[rac{\partial \mathcal{C}_{t}^{hh}}{\partial r_{s}}
ight], m{M}_{t,s}^{\chi} = \left[rac{\partial \mathcal{C}_{t}^{hh}}{\partial \chi_{s}}
ight], m{m}_{t}^{\mathsf{cap}} = \left[rac{\partial \mathcal{C}_{t}^{hh}}{\partial \mathsf{cap}_{0}}
ight]$$

• Why are \mathbf{M}^{χ} and \mathbf{M} different?

Exercise

Exercise

Use HANK-sticky-wages in sub-folder.

- 1. Compute fiscal multipliers varying:
 - 1.1 Bond maturity: δ
 - 1.2 Fiscal aggressiveness: ω
 - 1.3 Monetary aggressiveness: ϕ_{π}
- 2. Does the model match the evidence of intertemporal MPCs? What happens to the fiscal multiplier if the fit is improved?

Summary

Summary and next week

Today: Fiscal policy in a HANK model with sticky wages

Next week: I-HANK

Homework:

1. Work on exercise

2. Read: Druedahl et al. (2022),