Classification of Room Occupancy using a Convolutional Neural Network

Preprocessing

- Crop and resize images: scale to a uniform size
- Convert image to np.array and normalize pixel values pixel val / 255.0 => result ∈ [0, 1]
- Encode labels: convert labels to one-hot encoding
- Splitting data into training (80%) and validation (20%) sets

Hyperparameter Optimization

Utilized Optuna to optimize:

- conv2d_filter: number of filters in convolutional layers
- dense_units: number of neurons in a dense layer
- dropout_rate: rate for dropout regularization
- learning_rate: learning
 rate for Adam optimizer

The final CNN Model

Used CNN for classification with:

- Adam compiler
- Categorical Cross-Entropy loss function

To limit overfitting:

- Early stopping
- **Keras Pruning**: prunes unpromising trials

- Input Layer: expects color images with dimensions of 44x50 px
- 3 Conv2D layers for feature extraction using best_conv2d_filter
- MaxPooling2D layer to shrink feature maps
- Flatten layer to flatten output to 1D vector
- Dense layer (fully connected) with best_dense_units neurons
- Dropout rate with rate of best_dropout_rate
- Output Dense layer of 4 neurons for 4 output classes

Image Augmentation

Explored image augmentation techniques

- Rotation, flipping, scaling
- Low accuracy on validation data, even with non-aggressive parameters
 - => Overfitting
 - => Original dataset already sufficiently diverse

Results and Conclusion

After 50 epochs, the CNN model achieved a validation accuracy of 96.94%

=> Good hyperparameter optimization by Optuna, good choice of architecture

