Algoritmos en teoría de números

Segundo semestre 2022

IIC2283

Prof. Nicolás Van Sint Jan

Recordatorio: segunda versión del test de primalidad

Una observación importante: si n es compuesto, entonces puede existir $a \in \mathbb{Z}_n^*$ tal que $a^{n-1} \not\equiv 1 \pmod n$

Por ejemplo: $3^{15} \mod 16 = 11$

En lugar de considerar \mathbb{Z}_n^* en el test de primalidad, consideramos:

$$J_n = \{a \in \mathbb{Z}_n^* \mid a^{n-1} \equiv 1 \pmod{n}\}$$

Si demostramos que para cada número compuesto n se tiene que $|J_n| \leq \frac{1}{2} \cdot |\mathbb{Z}_n^*|$, entonces tenemos un test de primalidad.

Puesto que para p primo: $|J_p| = |\mathbb{Z}_p^*| = p-1$

Recordatorio: segunda versión del test de primalidad

Recuerde que en nuestros algoritmos consideramos $n \ge 2$

```
 \begin{aligned} \textbf{TestPrimalidad3}(n, \ k) \\ & \text{sea } a_1, \dots, a_k \text{ una secuencia de números elegidos de} \\ & \text{manera uniforme e independiente desde } \{1, \dots, n-1\} \\ & \textbf{for } i := 1 \textbf{ to } k \textbf{ do} \\ & \textbf{ if MCD}(a_i, n) > 1 \textbf{ then return COMPUESTO} \\ & \textbf{ else} \\ & \textbf{ if EXP}(a_i, n-1, n) \neq 1 \\ & \textbf{ then return COMPUESTO} \\ & \textbf{ return PRIMO} \end{aligned}
```

Recordatorio: Teoría de grupos

Definición

Un conjunto G y una función (total) $\circ: G \times G \to G$ forman un grupo si:

1. (Asociatividad) Para cada $a, b, c \in G$:

$$(a \circ b) \circ c = a \circ (b \circ c)$$

2. (**Elemento neutro**) Existe $e \in G$ tal que para cada $a \in G$:

$$a \circ e = e \circ a = a$$

3. (Inverso) Para cada $a \in G$, existe $b \in G$:

$$a \circ b = b \circ a = e$$

Propiedades básicas

- Neutro es único: Si e_1 y e_2 satisfacen 2, entonces $e_1 = e_2$
- Inverso de cada elemento a es único: Si $a \circ b = b \circ a = e$ y $a \circ c = c \circ a = e$, entonces b = c

Outline

Teorema de Lagrange (cont.)

Test de primalidad: tercera versión

Teoría de grupos: algunos ejemplos

Ejercicios

Muestre que los siguientes son grupos:

- 1. $(\mathbb{Z}_n, +)$, donde $\mathbb{Z}_n = \{0, 1, \dots, n-1\}$ y + es la suma en módulo n
- 2. (\mathbb{Z}_n^*, \cdot) , donde \cdot es la multiplicación en módulo n
- 3. (J_n, \cdot) , donde \cdot es la multiplicación en módulo n

Teoría de grupos: subgrupos

Definición

 (H, \circ) es un subgrupo de un grupo (G, \circ) , para $\emptyset \subsetneq H \subseteq G$, si (H, \circ) es un grupo.

Ejercicio

Demuestre que (J_n,\cdot) es un subgrupo de (\mathbb{Z}_n^*,\cdot)

Propiedades básicas

- Si e_1 es el neutro en (G, \circ) y e_2 es el neutro de (H, \circ) , entonces $e_1 = e_2$
- Para cada $a \in H$, si b es el inverso de a en (G, \circ) y c es el inverso de a en (H, \circ) , entonces c = b

Teoría de grupos: una propiedad fundamental

Teorema de Lagrange

Si (G, \circ) es un grupo finito y (H, \circ) es un subgrupo de (G, \circ) , entonces |H| divide a |G|

Why are numbers beautiful? It's like asking why is Beethoven's Ninth Symphony beautiful. If you don't see why, someone can't tell you. I know numbers are beautiful. If they aren't beautiful, nothing is.

— Paul Erdos —

AZ QUOTES

Teorema de Lagrange: demostración

Demostración

Suponga que e es el elemento neutro de (G,\circ) y a^{-1} es el inverso de a en (G,\circ)

Sea \sim una relación binaria sobre G definida como:

 $a \sim b$ si y sólo si $b \circ a^{-1} \in H$

Lema

 \sim es una relación de equivalencia.

Teorema de Lagrange: demostración del primer lema

Lema

Sea \sim una relación binaria sobre G definida como:

$$a \sim b$$
 si v sólo si $b \circ a^{-1} \in H$

 \sim es una relación de equivalencia.

Demostración

(Refleja) $a \sim a$ ya que $a \circ a^{-1} = e$ y $e \in H$.

(Simétrica) Suponga que $a \sim b$. Demostramos que $b \sim a$.

Dado que $a \sim b$: $b \circ a^{-1} \in H$, tenemos que demostrar que $a \circ b^{-1} \in H$. pause Tenemos que:

$$(b \circ a^{-1}) \circ (a \circ b^{-1}) = (b \circ (a^{-1} \circ a)) \circ b^{-1}$$

= $(b \circ e) \circ b^{-1}$
= $b \circ b^{-1}$
= e

Teorema de Lagrange: demostración del primer lema

Lema

Sea \sim una relación binaria sobre G definida como:

$$a \sim b$$
 si v sólo si $b \circ a^{-1} \in H$

 \sim es una relación de equivalencia.

Demostración

De la misma forma concluimos que $(a \circ b^{-1}) \circ (b \circ a^{-1}) = e$. Por lo tanto,

$$(b \circ a^{-1})^{-1} = a \circ b^{-1}.$$

Concluimos que $a \circ b^{-1}$ está en H, ya que (H, \circ) es un subgrupo de (G, \circ) .

Teorema de Lagrange: demostración del primer lema

Lema

Sea \sim una relación binaria sobre G definida como:

$$a \sim b$$
 si v sólo si $b \circ a^{-1} \in H$

 \sim es una relación de equivalencia.

Demostración

(**Transitiva**) Suponga que $a \sim b$ y $b \sim c$. Tenemos que demostrar que $a \sim c$.

Por hipótesis: $b \circ a^{-1} \in H$ y $c \circ b^{-1} \in H$. Tenemos que demostrar que $c \circ a^{-1} \in H$.

Pero $(c \circ b^{-1}) \circ (b \circ a^{-1}) = c \circ a^{-1}$ y \circ es cerrada en H.

Por lo tanto: $c \circ a^{-1} \in H$

Teorema de Lagrange: demostración

Demostración

Sea $[a]_{\sim}$ la clase de equivalencia de $a \in G$ bajo la relación \sim

Lema

- 1. $[e]_{\sim} = H$
- 2. Para cada $a, b \in G$: $|[a]_{\sim}| = |[b]_{\sim}|$

Del lema se concluye el teorema (!). Puesto que las clases de equivalencia de \sim particionan G.

Lema

Sea $[a]_{\sim}$ la clase de equivalencia de $a \in G$ bajo la relación \sim . Luego:

- 1. $[e]_{\sim} = H$
- 2. Para cada $a, b \in G$: $|[a]_{\sim}| = |[b]_{\sim}|$

Demostración

1. Se tiene que:

$$a \in [e]_{\sim} \Leftrightarrow e \sim a$$

 $\Leftrightarrow a \circ e^{-1} \in H$
 $\Leftrightarrow a \circ e \in H$
 $\Leftrightarrow a \in H$

2. Sean $a, b \in G$, y defina la función f de la siguiente forma:

$$f(x) = x \circ (a^{-1} \circ b)$$

Lema

Sea $[a]_{\sim}$ la clase de equivalencia de $a \in G$ bajo la relación \sim . Luego:

- 1. $[e]_{\sim} = H$
- 2. Para cada $a, b \in G$: $|[a]_{\sim}| = |[b]_{\sim}|$

Demostración

Se tiene que:

$$x \in [a]_{\sim} \Rightarrow a \sim x$$

$$\Rightarrow x \circ a^{-1} \in H$$

$$\Rightarrow (x \circ a^{-1}) \circ e \in H$$

$$\Rightarrow (x \circ a^{-1}) \circ (b \circ b^{-1}) \in H$$

$$\Rightarrow (x \circ (a^{-1} \circ b)) \circ b^{-1} \in H$$

$$\Rightarrow f(x) \circ b^{-1} \in H$$

$$\Rightarrow b \sim f(x)$$

$$\Rightarrow f(x) \in [b]_{\sim}$$

Lema

Sea $[a]_{\sim}$ la clase de equivalencia de $a \in G$ bajo la relación \sim . Luego:

- 1. $[e]_{\sim} = H$
- 2. Para cada $a, b \in G$: $|[a]_{\sim}| = |[b]_{\sim}|$

Demostración

Por lo tanto: $f:[a]_{\sim} \to [b]_{\sim}$.

Vamos a demostrar que f es una **biyección**, de lo cual concluimos que $|[a]_{\sim}| = |[b]_{\sim}|$.

Lema

Sea $[a]_{\sim}$ la clase de equivalencia de $a \in G$ bajo la relación \sim . Luego:

- 1. $[e]_{\sim} = H$
- 2. Para cada $a, b \in G$: $|[a]_{\sim}| = |[b]_{\sim}|$

Demostración

f es 1-1:

$$f(x) = f(y) \Rightarrow x \circ (a^{-1} \circ b) = y \circ (a^{-1} \circ b)$$

$$\Rightarrow (x \circ (a^{-1} \circ b)) \circ (b^{-1} \circ a) =$$

$$(y \circ (a^{-1} \circ b)) \circ (b^{-1} \circ a)$$

$$\Rightarrow x \circ (a^{-1} \circ (b \circ b^{-1}) \circ a) =$$

$$y \circ (a^{-1} \circ (b \circ b^{-1}) \circ a)$$

$$\Rightarrow x \circ ((a^{-1} \circ e) \circ a) = y \circ ((a^{-1} \circ e) \circ a)$$

$$\Rightarrow x \circ (a^{-1} \circ a) = y \circ (a^{-1} \circ a)$$

$$\Rightarrow x \circ e = y \circ e$$

$$\Rightarrow x = y$$

Lema

Sea $[a]_{\sim}$ la clase de equivalencia de $a \in G$ bajo la relación \sim . Luego:

- 1. $[e]_{\sim} = H$
- 2. Para cada $a, b \in G$: $|[a]_{\sim}| = |[b]_{\sim}|$

Demostración

f es sobre:

$$y \in [b]_{\sim} \quad \Rightarrow \quad b \sim y$$

$$\Rightarrow \quad y \circ b^{-1} \in H$$

$$\Rightarrow \quad (y \circ b^{-1}) \circ (a \circ a^{-1}) \in H$$

$$\Rightarrow \quad ((y \circ b^{-1}) \circ a) \circ a^{-1} \in H$$

$$\Rightarrow \quad a \sim ((y \circ b^{-1}) \circ a)$$

$$\Rightarrow \quad ((y \circ b^{-1}) \circ a) \in [a]_{\sim}$$

Lema

Sea $[a]_{\sim}$ la clase de equivalencia de $a \in G$ bajo la relación \sim . Luego:

- 1. $[e]_{\sim} = H$
- 2. Para cada $a, b \in G$: $|[a]_{\sim}| = |[b]_{\sim}|$

Demostración

Sea $x = ((y \circ b^{-1}) \circ a)$. Tenemos que:

$$f(x) = x \circ (a^{-1} \circ b)$$

$$= ((y \circ b^{-1}) \circ a) \circ (a^{-1} \circ b)$$

$$= y \circ (b^{-1} \circ (a \circ a^{-1}) \circ b)$$

$$= y \circ ((b^{-1} \circ e) \circ b)$$

$$= y \circ (b^{-1} \circ b)$$

$$= y \circ e$$

$$= y$$

Test de primalidad: segunda versión (continuación)

Dejamos pendiente la siguiente pregunta:

¿Qué enfoque podríamos usar para demostrar que $|J_n| \leq \frac{1}{2} \cdot |\mathbb{Z}_n^*|$?

R: Usamos el Teorema de Lagrange.

Dado que (J_n, \cdot) es un subgrupo de (\mathbb{Z}_n^*, \cdot) :

Si existe $a \in (\mathbb{Z}_n^* \setminus J_n)$, entonces $|J_n| \leq \frac{1}{2} \cdot |\mathbb{Z}_n^*|$

¿Tenemos entonces nuestro test de primalidad?

Test de primalidad: segunda versión (continuación)

Definición

Un número n es de Carmichael si $n \geq 2$, n es compuesto y $|J_n| = |\mathbb{Z}_n^*|$

Ejemplo

561, 1105 y 1729 son números de Carmichael.

Teorema (Alford-Granville-Pomerance)

Existe un número infinito de números de Carmichael.

Conclusión: Este test de primalidad no va a funcionar.

Outline

Teorema de Lagrange (cont.)

Test de primalidad: tercera versión

Test de primalidad: tercera versión

No todo está perdido.

En lugar de utilizar J_n , vamos a usar las herramientas que desarrollamos sobre el siguiente conjunto (n impar):

$$S_n = \{a \in \mathbb{Z}_n^* \mid a^{\frac{n-1}{2}} \equiv 1 \pmod{n} \text{ ó } a^{\frac{n-1}{2}} \equiv -1 \pmod{n}\}$$

Spoiler: Ahora sí va a funcionar.

Test de primalidad: un intento exitoso

Vamos a diseñar un test de primalidad considerando los conjuntos:

$$S_n^+ = \{ a \in \mathbb{Z}_n^* \mid a^{\frac{n-1}{2}} \equiv 1 \pmod{n} \}$$

$$S_n^- = \{ a \in \mathbb{Z}_n^* \mid a^{\frac{n-1}{2}} \equiv -1 \pmod{n} \}$$

Así, podemos definir S_n a partir de estos conjuntos:

$$S_n = S_n^+ \cup S_n^-$$

Para hacer esto necesitamos estudiar algunas propiedades de los conjuntos S_n^+ , S_n^- y S_n .

 Consideramos primero el caso en que n es primo, y luego el caso en que n es compuesto

Una propiedad fundamental de S_n para n primo

Proposición 1

Si $n \geq 3$ es primo, entonces $S_n = \mathbb{Z}_n^*$.

Demostración

Si
$$a \in \{1, \dots, n-1\}$$
, tenemos que $a^{n-1} \equiv 1 \pmod{n}$

Por lo tanto $\left(a^{\frac{n-1}{2}}\right)^2 \equiv 1 \pmod{n}$, de lo cual se deduce que:

$$(a^{\frac{n-1}{2}}+1)\cdot(a^{\frac{n-1}{2}}-1)\equiv 0\pmod{n}$$

Así, dado que n es primo se concluye que $a^{\frac{n-1}{2}} \equiv 1 \pmod{n}$ ó $a^{\frac{n-1}{2}} \equiv -1 \pmod{n}$ (; Por qué?)