Proper Hygiene

The whole problem with the world is that fools and fanatics are always so certain of themselves, and wiser people so full of doubts.

Bertrand Russel

Let's Play True or False

True or False: teddy bear, stinkbug, guacamole.

Answer This is not a statement—it's a list of things; it doesn't have a truth value. I'd say it's a trick question.

True or False Redact.

True or False: In my house this morning, you'll find either a teddy bear, a stinkbug, or guacamole.

Answer This is true. This morning I opened my fridge. On the middle shelf there was a container that passed the guacamole color, texture, and taste test; therefore it is true that in my house this morning, you'll find either a teddy bear, a stinkbug, or guacamole.

No with math

Question Is the following work correct?

$$\int_3^4 x \, \mathrm{d}x \quad \frac{1}{2}x^2 \quad \frac{7}{2}$$

Answer Just like the list "teddy bear, stink bug, guacomole," this is a list of mathematical expressions. As such it's not a statement and it doesn't have a truth value. It's a trick question.

Math Redact

Question Is the following work correct?

$$\int_{3}^{4} x \, \mathrm{d}x = \left. \frac{1}{2} x^{2} \right|_{3}^{4} = \frac{7}{2}$$

Answer Yes, this work is correct. This time we're given something that has a truth value.

The Mad Gardener

Question Is this work correct? (Lewis Carroll, The Mad Gardener's Song)

He thought he saw an Argument That proved he was the Pope: He looked again, and found it was A Bar of Mottled Soap. "A fact so dread," he faintly said, "Extinguishes all hope!

Answer It's amusing nonsense poetry—it's meaningless and neither correct nor incorrect.

With math

Question Is this work correct?

$$\int_{2}^{3} \sqrt{x+1} \, dx = \int \sqrt{z}$$

$$= \int \frac{3}{2} (1+z)^{3/2}$$

$$= \frac{3}{2} (4^{3/2} - 3^{3/2})$$

Answer Unlike the *The Mad Gardener's Song* this is **nonamusing** nonsense. It's meaningless and neither correct nor incorrect.

Math Redact

Let z=x+1. Then $\mathrm{d}z=\mathrm{d}x$. Further x=2 implies z=3; and x=3 implies z=4. Now that we have gathered our four ingredients, we have

$$\int_{2}^{3} \sqrt{x+1} \, dx = \int_{3}^{4} \sqrt{z} \, dx$$
$$= \frac{3}{2} z^{3/2} \Big|_{3}^{4},$$
$$= \frac{3}{2} \left(4^{3/2} - 3^{3/2} \right).$$