Inference in Bayesian Networks Part 1

Gennaro De Luca, PhD Arizona State University

The lecture is based on the slides developed by Prof. Yu Zhang from ASU School of Computing and Augmented Intelligence

Inference in Bayesian Networks

Given a model and some data ("evidence"), how do we update our belief?

What are the model parameters?

Inference in Bayesian Networks (cont'd)

Given a model and some data ("evidence"), how do we update our belief?

Example: For a patient with a history of gum problems who has visited both the dentist and the pharmacy:

– What is probability that the patient has a **Toothache**?

Inference in Bayesian Networks (cont'd)

In a simple BN like this, we can compute the exact probabilities.

In general, for a treestructured BN, we may use belief propagation for the inference problem.

Inference in Bayesian Networks (cont'd)

For general structures, sometimes it is possible to generalize this method (e.g., the junction tree algorithm).

More often, we must resort to approximation methods.

- Examples:
 - Variational methods
 - Sampling (Monte Carlo) methods

Inference

Inference: Calculating some useful quantity from a joint probability distribution.

Examples:

- Posterior probability $P(Q|E_1 = e_1, ..., E_k = e_k)$

- Most likely explanation: $argmax_q P(Q = q \mid E_l = e_l,...)$

Inference by Enumeration

General case:

Evidence variables:	$E_{l}, \dots E_{k} = e_{l}, \dots e_{k}$	X_1, X_2, X_n All variables
Query variable:	Q	
Hidden variables:	$H_1, \dots H_r$	

We want:

$$-P(Q|E_1 = e_1, ... E_k = e_k)$$

We want:

$$-P(Q|E_1 = e_1, ... E_k = e_k)$$

Step 1:

- Select the entries consistent with the evidence:
 - Gives us the probabilities for these entries:

$$P(Q, e_1, \dots e_k, H_1, \dots H_r)$$

We want:

$$-P(Q|E_1 = e_1, ... E_k = e_k)$$

Step 2:

- Sum out H to get joint of Query and evidence $P(Q, e_1, \dots e_k) = \sum_{i=1}^{n} h_i, \dots h_i, P(Q, h_i, \dots h_i, e_i, \dots e_k)$

We want:

$$-P(Q|E_1 = e_1, ... E_k = e_k)$$

Step 3:

- Normalize $\times \frac{1}{Z}$

When normalized by dividing by $P(e_1,...e_k)$, it produces the distribution $P(Q \mid e_1,...e_k)$

$$P(Q|e_1, \dots e_k) = \frac{1}{Z}P(Q, e_1, \dots e_k)$$

Normalization delay to the last step since no need to compute $P(e_1,...e_n)$

Evidence variables:	+j, $+m$	A, B, E, J, M All variables
Query variable:	B	
Hidden variables:	A, E	

We want:

$$-P(B|+j,+m)$$

Artificial Intelligence: A Modern Approach 3rd Edition.

$$\begin{split} &P\left(B|+j,+m\right)\\ &\propto\ P(B,+j,+m)\\ &=\sum a,e\ P(B,+j,+m,\ a,\ e)\\ &=\sum a,e\ P(B)P(e)P(a|B,e)P(+j|a)P(+m|a)\\ &=P(B)P(+e)P(+a|B,+e)P(+j|+a)P(+m|+a)\\ &+P(B)P(+e)P(-a|B,+e)P(+j|-a)P(+m|-a)\\ &+P(B)P(-e)P(+a|B,-e)P(+j|+a)P(+m|+a)\\ &+P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a) \end{split}$$

