cs467

Austin Xia

March 4, 2021

Contents

1	intr	oduction and background	5	
2	linear albegra			
	2.1	Dual Vectors	•	
	2.2	operators	4	
	2.3	spectral Theorem	F	
	2.4	Functions of Operators	6	
	2.5	Tensor Products	6	
3	Qubits and the framework of quantum mechanics			
	3.1	State of a Quantum System	6	
	3.2	Time Evolution of a Closed System	7	
	3.3	Composite Systems	7	
	3.4	Measurement	8	
4	circ	uit model of computation	ę	

List of Figures

List of Tables

1 introduction and background

The non-intuitive behavior of photon-mirror-beam splitter system results from features of quantum mechanics called superposition and interference

the second beam a plitter has caused two paths (in superposition) to interfere, resulting in cancelation of the 0 path

2 linear albegra

Definition 2.0.1 (Hilbert space)

finite-dimensional complex vector space H

2.1 Dual Vectors

• linearity in second argument

$$\langle v, \sum_{i} \lambda_{i} w_{i} \rangle = \sum_{i} \lambda_{i} \langle v, w_{i} \rangle$$

• conjugate-commutativity

$$\langle v, w \rangle = \langle w, v \rangle^*$$

nonnegativity

$$\langle v, v \rangle \ge 0$$

with equality iff v=0

 c^* means complex conjugate of number c

$$v \cdot w = \sum_{i} v_i^* w_i$$

Definition 2.1.1 (H^*)

let H be a hilbert space, H^* is the set of linear maps $H \to C$ We denote elements of H^* by $\langle x|$, where $\langle X|$ has action

$$\langle X|: |\psi\rangle \to \langle X|\psi\rangle \in C$$

The set of maps H^* is a complex vector space itself, is called the the *dual vector space* associated with H. The vector $\langle x|$ is called the dual of $|x\rangle$, it's derived from transposing $|x\rangle$ to row matrix and taking complex conjugate

Note dot product of complex vectors are

$$\mathbf{A} \cdot \mathbf{B} = \sum_{i} a_{i}^{*} b_{i}$$

Definition 2.1.2 (Euclidean norm of $|\psi\rangle)$

norm of a vector $|\psi\rangle$ is $||\psi\rangle|| \equiv \sqrt{\langle \psi | \psi \rangle}$

Definition 2.1.3 (Kronecker delta function $\delta_{i,j}$)

it is 1 whenever i=i, 0 othervise

Theorem 2.1.1 (dual basis)

the set $\{\langle b_n|\}$ is an orthonormal basis for H^* called the dual basis

2.2 operators

outer product

$$(|\psi\rangle\langle\varphi|)|\alpha\rangle = |\psi\rangle(\langle\varphi|\alpha\rangle) = (\langle\varphi|\alpha\rangle)|\psi\rangle$$

outer project of a vector with itself defines a lienar operators $|\psi\rangle\langle\psi|$

Definition 2.2.1 (orthogonal projector)

it projects a vector in H to 1 dimensional subspace of H spanned by $|\psi\rangle$. sunch an operator is called an orthogonal projector

Theorem 2.2.1

let $B = \{|b_n\rangle\}$ be an orthonormal basis for vector space \mathbb{H} , then every line operator T on H can be written as

$$T = \sum_{b_n, b_m \in B} T_{n,m} |b_n\rangle \langle b_m|$$

where $T_{n,m} = \langle b_n | T | b_m \rangle$

the set of all linear operators on vector space H forms a new complex vector space L(H) vectors in L(H) are linear operators on H the basis vectors for L(H) are all possible outer products of pairs of basis vectors from B $\{|b_n\rangle\langle b_m|\}$

the action of T is then

$$T: |\psi\rangle \to \sum_{b_n, b_m \in B} T_{n,m} \langle b_m | \psi \rangle | b_n \rangle$$

 $T_{n,m}$ is matrix entry of T

Definition 2.2.2 (identity operator/resolution of the identity)

for any orthonormal basis $B = \{|b_n\rangle\}$ identity operator is

$$1 = \sum_{b_n \in B} |b_n\rangle\langle b_n|$$

- $H \to C \in H^*$ corresponds to some vector $\langle \varphi' |$
- adjoint of T, T^{\dagger} sends $|\varphi\rangle \to |\varphi'\rangle$

Definition 2.2.3

adjoint of T, T^{\dagger} is linear operator on H^* that satisfies

$$(\langle \psi | T^{\dagger} | \varphi \rangle)^* = (\langle \varphi | T | \psi \rangle) \quad \forall | \psi \rangle, | \varphi \rangle \in H$$

 T^{\dagger} is just complex conjugate transpose of T, also called Hermitean conjugate, adjoint of T

Definition 2.2.4 (unitary)

U is unitary if $U^{\dagger} = U^{-1}$

Definition 2.2.5 (Hermitean)

an operator T in Hilbert space H is called Hermitean (self adjoint) if

$$T^{\dagger} = T$$

Definition 2.2.6 (projector, orthogonal projecter)

A projector on vector space H is a linear operator P that satisfies $P^2 = P$, an orthogonal projector also satisfies $P^{\dagger} = P$

Theorem 2.2.2

if $T == T^{\dagger} T |\psi\rangle == \lambda |\psi\rangle$, then $\lambda \in R$

Definition 2.2.7 (trace)

 $Tr(A) = \sum_{b_n} \langle b_n | A | b_n \rangle$ where $\{ |b_n \rangle \}$ is any orthonormal basis

2.3 spectral Theorem

Definition 2.3.1 (normal)

A is normal operator if

$$AA^{\dagger} = A^{\dagger}A$$

both unitary and hermitean operators are normal

Theorem 2.3.1 (spectral Theorem)

for every normal operator T acting on a finite-dimentional Hilbert space H, there is an orthonormal basis of H consisting of eigenvectors $|T_i\rangle$ of T

We refer to T written in its own eigenbasis as the spectral decomposition of T.

The set of eigenvalues of T is called the sepctrum of T

 $T = \sum_i T_i |T_i\rangle\langle T_i|$ where T_i are eigen values, $|T_i\rangle$ are eigenvectors another way of saying the spectral theorem is

Theorem 2.3.2

For every finite dimensional normal matrix T there is a unitary matrix P such that $T = PDP^{\dagger}$ where D is a diagonal matrix

diagonal entries of D are eigenvalues of T. columns of P encode eigenvectors of T

2.4 Functions of Operators

with spectral theorem we can write any normal operator T to

$$T = \sum_{i} T_i |T_i\rangle\langle T_i|$$

Note each $|T_i\rangle\langle T_i|$ is a projector

Talor series for any function f acting on an operator T will have

$$f(T) = \sum_{m} a_m T^m$$

If T is written in diagonal form, then

$$f(T) = \sum_{i} f(T_i) |T_i\rangle\langle T_i|$$

2.5 Tensor Products

• For any $c \in \mathbf{C}, |\psi_1\rangle \in H_1, |\psi_2\rangle \in H_2$

$$c(|\psi_1\rangle \otimes |\psi_2\rangle) = (c|\psi_1\rangle) \otimes |\psi_2\rangle = |\psi_1\rangle \otimes (c|\psi_2\rangle)$$

• for any $|\psi_1\rangle$, $|\varphi_1\rangle \in H_1$, $|\psi_2\rangle \in H_2$

$$(|\psi_1\rangle + |\varphi_1\rangle) \otimes |\psi_2\rangle = |\psi_1\rangle \otimes |\psi_2\rangle + |\varphi_1\rangle \otimes |\psi_2\rangle$$

• for any $|\psi_1\rangle$, $|\varphi_1\rangle \in H_1$, $|\psi_2\rangle \in H_2$

$$|\psi_1\rangle \otimes (|\psi_2\rangle + |\varphi_2\rangle) = |\psi_1\rangle \otimes |\psi_2\rangle + |\psi_1\rangle \otimes |\varphi_2\rangle$$

$$(A \otimes B)(|\psi_1 \otimes |\psi_2\rangle) \equiv A|\psi_1\rangle \otimes B|\psi_2\rangle$$

3 Qubits and the framework of quantum mechanics

Quantum information is the result of reformulating information theory in this quantum framework

3.1 State of a Quantum System

the light-splitter example is an example of a 2-state quantum system: a photon that follow one of two paths, which we identify by $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

and noted a path state of the photo can be described as $\begin{pmatrix} \alpha_0 \\ \alpha_1 \end{pmatrix}$ with $|\alpha_0|^2 + |\alpha_1|^2 = 1$

Definition 3.1.1 (State Space Postulate)

the state of a system is described by a unit vector in a Hilbert Space \mathbb{H}

 \mathbb{H} can be infinite dimensional.

In practice, we cannot distinguish a continuous state from a discrete state having small spacing

we label one basis vector with $|0\rangle$, one with $|1\rangle$, they are orthogonal to each other

we represent general state by $\alpha_0|0>+\alpha_1|1>$ with $|\alpha_0|^2+|\alpha_1|^2=1$

 α_0 and α_1 are complex coefficient, often called amplitude of basis state $|0\rangle$ and $|1\rangle$

amplitude α can be decomposed uniquely as a product $e^{i\theta}|\alpha|$ where $|\alpha|$ is non-negative corresponding to magnitude of α , $e^{i\theta}$ has norm 1.

value θ is phase, $e^{i\theta}$ is phase vector

the state is described by unit vector means $|\alpha_0|^2 + |\alpha_1|^2 = 1$

this is called *normalization constriant*

vector $e^{i\theta}|\phi\rangle$ is equivalent to the state described by $|\phi\rangle$

example of ϕ would be |0>+|1>

question: is this example not considering it has 100% appearing in 0 and 1 state

On the other hand, relative phase factors between 2 orthogonal states in superposition are physically significant, and the state described by the vector

|0>+|1> is physically different from $|0>+e^{i\theta}|1>$

Theorem 3.1.1 (State SpacePostulate)

we can describe the most general state $|\phi\rangle$ of a single qubit by a vector of form

$$|\phi\rangle = \cos(\theta/2)|0\rangle + e^{i*k}\sin(\theta/2)|1\rangle$$

on a classical computer, a classical bit could be represented by a 0/1,

there is also probablitistic classical bit $\begin{pmatrix} p_0 \\ p_1 \end{pmatrix}$

we can represent two probabilities by 2-dimensional unit vector

now we go back to quantum bit, which is described by a complex unit vector $|\phi\rangle$ in 2 dimentional Hilbert space. Up to a (physically insignificant) flobal phase factor, such a vector can be written in the form

$$|\phi> = \cos(\theta/2)|0> +e^{i*k}\sin(\theta/2)|1>$$

this state vector is often depicted as a point on a 3-dimentional sphere, the *Bloch Sphere* points on the sphere can be expressed in Cartesian corrdinates as

$$(x, y, z) = (\sin\theta\cos\phi, \sin\theta\sin\phi, \cos\theta)$$

3.2 Time Evolution of a Closed System

Theorem 3.2.1 (Evolution Postulate)

The time-Evolution of state of a *closed* quantum system is described by a unitary operator. that is for any evolution of the closed system there exsist a unitary operator U s.t. if initial state is $|\psi_i\rangle$ then after evolution the state will be

$$|\psi_2>=U|\psi_1>$$

3.3 Composite Systems

How to described a closed system of n qubits. how it envolves and what happens when we measure it.

we treat it as a composition of subsystems

Theorem 3.3.1 (Composition of Systems Postulate)

When two physical systems are treated as one combined system. the state space of combined physical system is product space $H_1 \otimes H_2$ of the state space H_1, H_2 of the component subsystems. If first system is in state $|\psi_1\rangle$, second system in state $|\psi_2\rangle$, the state of combined system is

$$|\psi_1>\otimes|\psi_2>$$

We write the joint state like $|\psi_1\rangle|\otimes\psi_2\rangle$ or $|\psi_1\rangle|\psi_2\rangle$

If 2 qubits are allowed to intreact, the closed system includes both qubits together, it might not be possible to write the state in product form. Then we say the qubits are *entangled*

The state of composite system is a vector in 4-dimensional tensor product space of 2 constituent qubits. The 4-dimensional state vectors formed by tensor product of the 2 2-dimensional state vectors form a sparce subset of all 4-dimensional state vectors.

Most 2-qubits states are entangled.

A state is tangled if the equation has no solution of α and β

$$|\psi\rangle = (\alpha_0|0\rangle + \alpha_1|1\rangle)(\beta_0|0\rangle + \beta_1|1\rangle)$$

for example

$$|\psi\rangle = \frac{1}{\sqrt{2}}|0\rangle|0\rangle + \frac{1}{\sqrt{2}}|1\rangle|1\rangle$$

This is EPR pair. If we use X to first qubit, Y to second qubit, the system $|\psi_1\rangle \otimes |\psi_2\rangle$ is mapped to

$$X|\psi_1\rangle\otimes I|\psi_2\rangle = (X\otimes I)(|\psi_1\rangle\otimes |\psi_2\rangle)$$

3.4 Measurement

state of a single-qubit system is represented as a vector in Hilbert space

The evolution of state of a system during a Measurement is not unitary

if the state $\sum_i \alpha_i |i>$ is provided as input. it will output i with probability $|\alpha_i|^2$ and leave the system in state |i>

Theorem 3.4.1

For a given orthonormal basis $B = \{|\varphi_i|\}$ of a state space H_A for a system A, it's possible to perform a Von Neumann measurement on system H_A with respect to basis B that, given a state

$$|\psi\rangle = \sum_{i} \alpha |\varphi_{i}\rangle$$

outputs label i with probablity $|\alpha_i|^2$ and leaves the system in state $|\varphi_i\rangle$ For state $|\psi\rangle = \sum_i \alpha_i |\varphi_i\rangle$, note that $\alpha_i = \langle \varphi_i | \psi \rangle$ and thus

$$|\alpha_i|^2 = \alpha_i * \alpha_i = \langle \psi | \varphi_i \rangle \langle \varphi_i | \psi \rangle$$

One slight generalization of Von Neumann measurements:

A Von Neumann Measurement is special kind of projective Measurement

Recall orthogonal projection is operator P with

Note: A^{\dagger} stands for congugate transpose of A

$$P^2 = P, P^{\dagger} = P$$

For any decomposition of identy operator $I = \sum_i P_i$ into orthogonal projectors P_i , there exists projective Measurement that outputs i with probablity $p(i) = \langle \psi | P_i | \psi \rangle$ and leaves the system in renormalized state $\frac{P_i | \psi \rangle}{\sqrt{p(i)}}$.

In other words, this measurement projects the input state $|\psi\rangle$ into one of the orthogonal subspaces corresponding to the projection operators P_i , with probability of square of amplitude of component of $|\psi\rangle$ in that subspace

Von Neumann measurement is special case of a projective measurement where all projectors P_i has rank one (in other words, are of $|\psi_i\rangle\langle\psi_i|$)

The simplest example of a Von Neumann measurement is a complete measurement in the computational basis. This can be viewed as following decompositon

$$I = \sum_{i \in \{0,1\}^n} P_i$$

where $P_i = |i\rangle\langle i|$

projective measurements are often described as *observable* An observable is a Hermitean operator M acting on state space of the system it has decomposition

$$M = \sum_{i} m_i P_i$$

where P_i is orthogonal projector on eigenspace of M with real eigenvalue m_i

Measuring the observable corresponds to performing a projective measurement with respect to the decomposition $I = \sum_{i} P_{i}$ where the measurement outcome i corresponds to eigenvalue m_{i}

$$\||\psi\rangle\| \equiv \dots$$

4 circuit model of computation

uniform families of reversible circuits: model of computation

Circuits are networks composed of wires that carry bit values to gates that perform elementary operations on the bits

acyclic, bits move through circuit in a linear fashion, wires never feed back to a prior location in the circuit.

A circuit has n wires. input -; enter at most one gate at one time -; output

A family of circuits is a set of circuits $\{C_n | n \in \mathbb{Z}^+\}$

Definition 4.0.1

a set of gates is universal if for any f, n,m $f: \{0,1\}^n \to \{0,1\}^m$ a circuit can be constructed for f using only gates from that set

for circuits model, measuring complexity,

we can measure the number of gates/depth of the circuit.

the time slices (different from gate as concurrency)

bits, number of lines

 \triangle