1. 电路如图,求各独立电源和受控源的功率,并指出是吸收功率还是发出功率。

2. 图示电路中,已知 U_{S1} =10V, U_{S2} =9V, I_{S} =1A,试求 U 和 I。

3. 图示电路中,已知 $\frac{1}{\omega C_2}$ =1.5 ωL_1 ,R=1 Ω , ω =10 4 rad/s,电压表 V 的读数为10 $\sqrt{2}$ V,电流表读数 A₁=30A。求:(1)电流表 A₂读数;(2)功率表 W 读数;(3)电路的输入阻抗 Z_{in} 。

4. 图示对称三相电路中,已知电源线电压 U_l =380V,角接负载 Z_1 =-j12 Ω ,星接负载 Z_2 =3+j4 Ω ,求:(1)各组负载的相电流有效值;(2)A 线电流的有效值;(3)两组负载吸收的总功率。

5. 图中非线性电阻 *R* 的伏安特性为 $i=u^2(u>0)$, u、i 的单位分别为 V、A,小信号源 $u_s(t) = 2 \times 10^3 \sin 10t$ V,用小信号分析法求 u(t)和 i(t)。

6. 图示电路中,已知 $u_s(t) = 80\sqrt{2}\sin 10t$ V, $R=40\Omega$, $C_1=2500$ μF, $C_2=5000$ μF, $L_1=6$ H, $L_2=6$ H,M=2H。求电流 i 和电压 u。

7. 电路如图所示,已知 $i_s = \sqrt{2}\sin\omega t$ A, $u_s = (10+10\sin3\omega t)$ V, $R=10\Omega$, $\omega L_1=16\Omega$, $\omega L_2=6\Omega$, $1/\omega C=16\Omega$ 。 求电压 u 及其有效值。

8. 图示电路在 t<0 时已稳定,t=0 时合上开关 S,求 t>0 时的电流 i_L 和 u_L ,并定性画出它们随时间变化的曲线。

9. 已知 R_1 =20 Ω , R_2 =5 Ω , R_3 =5 Ω , L=1H, C=0.05F, I_S =3A, 原来开关 K 是打开的,电路已 达稳态,在 t=0 时合上开关 K,求 K 闭合后的 u_C 。 K(t=0)

10. 图示电路中,已知双口网络 N 的 Z 参数为 $\begin{bmatrix} 4 & 3 \\ 3 & 5 \end{bmatrix}$ Ω , 求 U_1 和 U_2 。

11. 已知图示电路呈感性,功率表的读数为 2000W,两个电压表的读数均为 250V,电流表的读数为 10A,求参数 R、 X_L Q X_C 。

