Foundations of Reinforcement Learning From Markov Decision Processes to Optimal Value Functions

Matthia Sabatelli

October 13, 2021

Today's Agenda

- 1 Course Information
- 2 What is Reinforcement Learning
- 3 Markov Decision Processes
- **4** Value Functions

- Coordinator: Matthia Sabatelli
- Lecturers: Matthia Sabatelli (m.sabatelli@rug.nl) and Nicole Orzan (n.orzan@rug.nl)
- Classroom: TBD
- Theoretical Lectures: Monday morning from 9:00-11:00
- Computer Labs: Monday afternoon from 15:00-17:00

- Lecture 1: Foundations of Reinforcement Learning (Matthia)
- Lecture 2: Exploration and Bandit Problems (Nicole)
- Lecture 3: Dynamic Programming (Nicole)
- Lecture 4: Model-Free Reinforcement Learning (Matthia)
- Lecture 5: Function Approximators (Matthia)
- Lecture 6: Beyond Model-Free Reinforcement Learning (Matthia)
- Lecture 7: What does it mean to do research in RL? (Matthia & Nicole)

All course material will be made available

- Nestor
- Github: https://github.com/paintception/ reinforcement-learning-practical

Textbook: Reinforcement Learning: An Introduction by Sutton & Barto

Final course assessement:

- There is no exam
- Students should handle in three deliverables:
 - 1. Assignment 1: 25% of the grade (coding)
 - 2. Assignment 2: 25% of the grade (mathematics)
 - 3. Report: 50% of the grade (final project)
- Students can work alone or in groups of a maximum of 2 people

Machine Learning is typically divided into three branches:

- 1. Supervised Learning: learning from labeled data
- 2. Unsupervised Learning: learning from unlabeled data
- 3. Reinforcement Learning: learning from experience

A reminder of supervised learning:

- input space: χ
- output space: y
- probability distribution p(x, y)

The goal

We want to build a function $f: \mathcal{X} \to \mathcal{Y}$ that minimizes the expectation of a given loss ℓ

$$\mathbb{E}_{(x,y)\sim p(x,y)}\{\ell(y,f(x))\}$$

through leaning samples $LS = \{(x_i, y_i) | i = 1, ..., N\}$ of input-output pairs drawn from p(x, y).

Supervised learning is therefore:

- a learning paradigm which is static
- no interaction happens between the learner and p(x, y)
- Assumes we have access to a knowledgable supervisor

In Reinforcement Learning however ...

- We would like to learn how to interact with an environment
- We do not assume any sort of supervision but only a reward signal
- The component of time plays a crucial role
- The learning process is therefore dynamic and uncertain

Markov Decision Processes

Value Function