Cálculo Numérico - IME/UERJ

Gabarito - Lista de Exercícios 2

Série de Taylor e Raízes de funções

1. **Resposta:** Vamos calcular os valores de p(x) em pontos suficientemente próximos das raízes. Assim, temos a tabela:

x	0	0,5	1	1,5	2	2,5	3	3,5	4	4,5
p(x)	400	85,75	0	-7,8125	- 2	0	- 0,5	- 0,3125	0	1,75

Analisando o sinal de p(x) para os valores da tabela, concluímos que nas proximidades da raiz 2,5, no intervalo (2,3), a função p(x) não mudou de sinal. Portanto, o método da Bisseção não funciona para a raiz 2,5.

- 2. [2, 3]. Número de iterações: $k_{\min} = 10$.
- 3. (a) Resposta:

Usando gráficos ou o Teorema do Valor Intermediário, temos duas raízes: $r_1 \in (-1,0)$ e $r_2 \in (1,2)$.

Para r_1 , uma boa aproximação inicial é $x_0 = -0, 7$, enquanto para r_2 , uma boa aproximação inicial é $x_0 = 1, 9$.

(b) Resposta:

Pelo teorema do método do ponto fixo, há uma sequência convergente para uma raiz quando $\varphi'(x) \leq M < 1$ para todo $x \in I$, onde I é um intervalo centrado na raiz e $x_0 \in I$.

$$|\varphi_1'(x)| = \left| \frac{e^{-2x}}{\sqrt{4 - e^{-2x}}} \right| = \frac{e^{-2x}}{\sqrt{4 - e^{-2x}}}$$

Então, para as aproximações iniciais das raízes do item (a):

$$|\varphi'_1(r_1 \approx -0,7)| \approx 1,9731 > 1 \Rightarrow \text{Diverge!}$$

$$|\varphi_1'(r_2 \approx 1, 9)| \approx 0,0113 < 1 \Rightarrow \varphi_1(x)$$
 converge para $r_2 \in (1, 2)$.

$$|\varphi_2'(x)| = \left| \frac{x}{4 - x^2} \right|$$

Então, para as aproximações iniciais das raízes do item (a):

$$|\varphi_2'(r_1 \approx -0,7)| \approx 0,1994 < 1 \Rightarrow \varphi_2(x)$$
 converge para $r_1 \in (-1,0)$.

$$|\varphi_2'(r_2 \approx 1,9)| \approx 4,8718 > 1 \Rightarrow \text{Diverge!}$$

4. (a) Usando gráficos ou Teorema do Valor Intermediário, escolha uma boa aproxi-

1

mação inicial no intervalo (1,2). Um exemplo é $x_0 = 1, 5$.

- (b) $|\varphi_1'(1,5)| \approx 1,5493 > 1$ (não converge), $|\varphi_2'(1,5)| \approx 0,2171 < 1$ (converge).
- (c) $r \approx 1,5569$
- 5. Como $|\varphi_1'(2)| < |\varphi_2'(2)| < 1$, logo $\varphi_1(x)$ gera sequências mais rapidamente convergentes para a raiz.
- 6. Resolver.