Übungsblatt Ana 1

Computational and Data Science FS2025

Mathematik 2

Lernziele:

- Sie kennen die Begriffe Integral, Stammfunktion, lineare Substitution und deren wichtigste Eigenschaften.
- Sie k\u00f6nnen die Methode der linearen Substitution anwenden, um bestimmte und unbestimmte Integrale von linear substituierten Elementarfunktionen zu berechnen.
- > Sie können den Flächeninhalt zwischen einer Funktion und den Koordinatenachsen bestimmen.
- Sie können den Flächeninhalt zwischen zwei sich schneidenden Funktionen bestimmen.
- Sie können das Volumen von Rotationskörpern bestimmen.

1. Aussagen über Integration und lineare Substitution

Welche der folgenden Aussagen sind wahr und welche falsch?

Welche der leigenden Massagen sind Walli dild Welche laisen:		
	wahr	falsch
a) Gegeben sei die integrierbare Funktion $f: \mathbb{R} \to \mathbb{R}$. Dann gilt: $0 <$		
$a < b \Rightarrow \int_0^a f(x)dx \le \int_0^b f(x)dx.$		
b) Gegeben sei die integrierbare Funktion $f: \mathbb{R} \to \mathbb{R}$. Dann gilt:		
$a < b \Rightarrow \int_a^b f(x)dx \le \int_a^b f(x) dx.$		
c) Gegeben sei die integrierbare Funktion $f: \mathbb{R} \to \mathbb{R}$. Dann gilt:		
$a < b \Rightarrow \int_a^b f(x) dx \le \left \int_a^b f(x) dx \right .$		
d) Die Methode der linearen Substitution basiert auf der		
Kettenregel der Differentialrechnung.		
e) Die Methode der linearen Substitution kann nur bei gegebenen		
Integrationsgrenzen angewandt werden.		
f) Die Methode der linearen Substitution eignet sich zur Integration		
von Linearkombinationen von Funktionen.		
g) Es gilt: $\int \cos(3x + 4) dx = \sin(3x + 4) + c$.		
h) Es gilt: $\int \cos(3x + 4) dx = \frac{1}{3}\sin(x) + c$.		

2. Aufleitung von linear substituierten Funktionen

Berechnen Sie die folgenden unbestimmten Integrale unter Zuhilfenahme der linearen Substitution.

a)
$$\int (2x + 7)^3 dx$$

c)
$$\int 9 \cdot 2^{3x-5} dx$$

e)
$$\int \frac{1}{\sqrt{4x-3}} dx$$

g)
$$\int (5x - 3)^2 dx$$

i)
$$\int 12 \cdot 7^{5-3x} dx$$

k)
$$\int \frac{1}{\sqrt{6x+9}} dx$$

b)
$$\int (4-2x)^7 dx$$

d)
$$\int \frac{1}{5} \cdot 2^{\frac{x-10}{15}} dx$$

f)
$$\int \sqrt{6-x} dx$$

h)
$$\int (3 - 0.25x)^7 dx$$

$$j) \int \frac{1}{6} \cdot 2^{\frac{x-11}{18}} dx$$

$$\int \frac{1}{2x-13} dx$$

3. Flächeninhalt

a) Welchen Flächeninhalt schliesst die Kurve $f(x) = \sqrt{6-2x}$ mit den beiden Koordinatenachsen ein?

b) Der Graph der Funktion $f(x) = \frac{1}{2}x^2$ wird von einer Geraden, die durch den Ursprung geht und eine negative Steigung besitzt, geschnitten. Wie gross ist die Steigung der Geraden, wenn die von ihr und der Funktion $f(x) = \frac{1}{2}x^2$ eingeschlossene Fläche zwei Flächeneinheiten beträgt?

4. Flächeninhalte bestimmen

a) Welche Fläche schliesst die Kurve $f(x) = 0.2x(x^2 - 4)$ mit der x-Achse im Intervall $-3 \le x \le 3$ ein?

b) Bestimmen Sie den Flächeninhalt zwischen den Parabeln $f(x) = x^2 - 2$ und $f(x) = -x^2 + 2x + 2$.

c) Sei $F = \{(x,y) | 0 \le x \le \pi, x \le y \le f(x) = x + \sin x\}$. Berechnen Sie den Flächeninhalt A von F.

5. Volumen von Rotationskörpern

a) Durch Rotation der Kurve $f(x) = \sqrt{x}$ um die y-Achse entsteht ein trichterförmiger Drehkörper. Bestimmen Sie sein Volumen, wenn er in der Höhe y = 5 abgeschnitten wird.

2

b) Bestimmen Sie das Rotationsvolumen eines Körpers, der durch Drehung des Kurvenstücks $f(x) = \sqrt{x^2 - 9}$, mit $3 \le x \le 5$

(i) um die x-Achse,

(ii) um die y-Achse entsteht.