The Stellar Command Module

Integrating Astronomy and Art User Guide

Angelo Fraietta

University of New South Wales

All rights reserved

First edition: 6 June 2019

Short contents

- Short contents · iii
 - $\text{Contents} \cdot iv$
- List of Figures \cdot v
- List of Tables · vi
- List of typeset examples \cdot vii
 - $\mathsf{Preface} \cdot \mathsf{i} x$
 - $Introduction \cdot xi \\$
 - Background · xiii
 - $Terminology \cdot xvii \\$
- $1 \quad \text{Using Stellar Command with OSC} \cdot 1$
- $2 \quad \text{Using Stellar Command as a Java Library} \cdot 5$
 - 3 Comments · 7
 - Notes \cdot 9
 - $\mathsf{Bibliography} \cdot 11$

Contents

Sh	ort cor	tents	iii
Со	ntents		iv
Lis	t of Fi	gures	v
Lis	t of Ta	bles	vi
Lis	t of ty	peset examples	vii
Pre	eface		ix
nt	roduct	ion	xi
	VizieF	rium Command Module Command Module	xiii xiii xv xv xv
1	Using 1.1	Sound Control xvii Stellar Command with OSC Launching Stellar Command	1 1
2	Using	Stellar Command as a Java Library	5
3	Comm 3.1	nents Algorithms	7 7
Vo	tes		9
Bil	oliogra	phy	11

List of Figures

1 2	Constellations displayed in Western sky lore	
11	Remote Stellarium and OSC Clients	5

List of Tables

List of typeset examples

Preface

Stellar Command is a software system that integrates Stellarium planetarium software with online astronomical data acquisition through VizieR database of astronomical catalogues [OBM00]. Stellar Command can be used as an interface mechanism for correlating music and sound generation, allowing Stellarium to be used as both a direct input interface for performance or composition, and as a remotely controlled derivative multimedia display output.

I hope you will have as much fun creating musical works with it as much as I have.

NGELO FRAIETTA

Newcastle, AU

June 2019

Introduction

Musical composition and performance inspired or based on astronomy has been used in many cultures for millennia, with many civilizations creating songs and dances based on the astronomical calendar to reinforce the tracking of seasonal activities; such as planting and harvesting of crops, times of trade, and religious or cultural practices [R⁺15, dM15, Lim15]. More recently, composers have used scientific data obtained from individual stars to generate sounds and have created compositions directly correlated to that data [Fra14b, Bri13].

The advancement of computing power has made the availability of planetarium software for both desktop and mobile platforms very accessible to many people. These software packages are not only used for scientific and research activities; such as astronomy, education and general stargazing; they have also been used by artists in presenting multimedia artworks and installations [ZSW17, TIS+13].

Many composers have used the cosmos as inspiration or stimulus to their works, with many using scientific observations or data as input [Fra08b, Fra14b]. The *Quadrivium* linked astronomy, mathematics, geometry and music as a standard part of classical education up until the renaissance [LML⁺10]. Composers have been mapping mathematics and geometry to music since antiquity [Jam95, AF02]. Kepler stated "The heavenly motions are nothing but a continuous song for several voices, to be perceived by the intellect, not by the ear; a music which, through discordant tensions, through syncopations and cadenzas as it were, progresses toward certain pre designed six-voiced cadences, and thereby sets landmarks in the immeasurable flow of time." [RR79, cited in 286]. This notion inspired Rogers and Ruff to compose *The Harmony of the World* (1979), describing their work as "A Realization for the Ear" [RR79, p. 286] of Johannes Kepler's Astronomical Data from Harmonices Mundi 1619. More recently, composers have used measurements from online databases as inputs to automata or as stimulus to performers.

Nick Ryan developed a musical instrument called *Machine 9* that uses the location of 27,000 pieces of space junk as input to an automaton [Ing17]. The instrument is a large cylindrical phonograph that maps space debris to sound as it directly passes overhead. Each groove on the cylinder is associated with a catalogued piece of space debris [spa16]. The system accesses publicly available databases that provides the telemetry data of space debris, which is then modelled in real-time. When the telemetry data indicates that one of catalogued items is overhead, the machine locates one of the grooves on the cylinder and plays a mapped sound mechanically through a record-player type stylus.

Another system based on astronomical catalogues was the author's own musical composition and performance interface using naked eye and binocular astronomy [Fra14b]. A specific star was determined by calculating its azimuth and height above the horizon—

xii INTRODUCTION

known as its *altitude*—using accelerometer and magnetometer sensors, and calculating the exact location of the star on the celestial sphere using the sensor data, time and geographical location of the observer. This calculation returns the star's *right ascension* (*RA*), which is based on its azimuth at Greenwich Meantime at the vernal equinox, and its *declination* (*Dec.*), which is the stars north-south position at the same time [DSZ11, Fra14b]. The resultant RA and Dec. are added as input to the VizieR database of online catalogues, returning data about stars—such as brightness and colour—within the defined radius. Various works were created using this interface. In one performance, which was conducted in conjunction with the Newcastle Astronomical Society on one of their field viewing nights, members of the public were enticed into viewing the night sky through high powered binoculars, while the sound generated, which was based on data from the stars they were viewing, was played through loudspeakers on the field [Fra14a]. Another set of performances was conducted with an improvising ensemble that featured various astronomical photos displayed as a slide show where the astronomical data was mapped as MIDI and functioned as inspirational impetus for the performers [Bri13].

Although both systems are innovative and impressive, they have identifiable boundaries. First, Machine 9 exists as an installation piece using unique piece of specialised hardware [spa16]. Furthermore, a publicly available API to convert the space debris to a musical transmission protocol like MIDI or OSC [WF+97] is not yet available for the wider computer music community. Secondly, although the binocular display has an awesome display—the actual night sky—"few people ventured outside to the astronomical equipment"[Fra14b, p. 50] because they were required to leave the room to look through binoculars while the ensemble played in a room. Furthermore, the work is severely bound by weather conditions and a clear view of the sky. In one of the performances, "the sky was completely covered with cloud and it rained, so there was nothing to see through the binoculars. The audience, however, enjoyed the ensemble performance with the NASA image slide show with samples fed from stored star tables."[Fra14b, p. 50]. This weather constraint inspired the author to use planetarium software as the input and display mechanism as an alternative to binoculars.

Stellar Command enables composers to access astronomical data as input to their software using a common API. It also enables them to provide the audience an impressive planetarium software display that runs on a laptop computer without requiring the audience to leave the room. Furthermore, it facilitates creation of interactive celestial based installations. Stellar Command is available as open source software through GitHub [Fra19b].

Background

STELLARIUM

Stellarium is a software program designed to enable people to create a virtual planetarium using their home computer [ZW18]. It runs on Windows, OSX and Linux/Unix, including Raspberry Pi [ZW18, p. 6]. Stellarium calculates positions of the Sun, moon, stars and planets based on the time and location defined by the user, and renders them to the display. Stellarium is used by both amateur and professional astronomers, and is used by the European Organisation for Astronomical Research in the Southern Hemisphere to facilitate distribution and sharing of visual data among scientists [Ber08]. Stellarium has a very high quality graphical display, supporting spherical mirror projection that can be used with a dome [MC09] and is used in many schools and museums because it is both scientifically accurate and visually engaging [Ber08]. Moreover, Stellarium can display constellations from several different cultures and has labels translated to more than 40 languages, making Stellarium both culturally aware and inclusive [Ber08]. For example, Figures 1 and 2 display the same area of sky, however the first presents the constellations using the western sky lore while the latter presents them in the Tukano sky lore¹ [RD76]. A comparison reveals that Scorpius and Crux are referred to as the Fer-de-lance and the Tortoise. This feature can make Stellarium an extremely useful tool in facilitating multimedia presentations for ethnomusicogy or composing in non-western contexts.

Many astronomers use Stellarium to display a prediction of the sky for a future time, such as organising a viewing night or planning an astro-photography session [Ash15]. Archaeoastronomers also use the feature to generate an astronomical display from a location for a period sometime in the past [Zot14]. Also, the landscape feature facilitates a connection between landscape and skyscape, so one can map the sky against a landscape for research or aesthetics [ZSW17].

Stellarium scripts are written in ECMAScript, also known as Javascript, and enables the programmer to generate and run an automated astronomy presentation, facilitating automation of all the functionality of Stellarium [ZW18].

Stellarium has a Remote Control plugin that enables third party programs to communicate with Stellarium via a REST client. This feature was used by the author to create an interactive spacecraft game using a sonic ball as a preliminary test of Stellarium's viability as a responsive performance interface [FB19]. The plugin also allows clients to query the status of Stellarium, including the area of sky currently being displayed. The exact celestial vector and field of view displayed are used as the input to the VizieR server in order to obtain data about stars in that location.

¹The Tukano tribes are indigenous peoples of the northwestern region of Brazil [Kno76].

xiv BACKGROUND

Figure 1: Constellations displayed in Western sky lore.

Figure 2: Constellations displayed in Tukano sky lore.

VIZIER

VIZIER

VizieR is an online database of high quality astronomical catalogues collected by the Centre de Données astronomiques de Strasbourg (CDS), one of whose main goals "is to promote the usage of the reliable astronomical catalogues to the astronomical community" [OBM00, p. 25]. One of the ways CDS ensures the reliability of their archives and catalogues is to only collect data that has been published or accepted in refereed scientific journals or literature. The number of catalogues available has grown from 3000 in 1999 [OBM00, p. 24] to currently 18000 [Viz18]. Catalogues can be selected by name or based on the wavelength, mission and astronomy type [Och10]. Wavelength dictates the frequency spectrum of the data in the catalogue, such as radio, infra-red, optical, x-ray, and Gamma-RAY. The mission indicates the purpose for which the catalogue was created or is used. For example, the purpose of the Kepler Mission is to "detect Earth-size planets in the habitable zone ... of solar-like stars..., determine their frequency, and identify their characteristics." [KBB+10, p. 2]; and so catalogues created or used within this mission can be specifically targeted. The type of astronomy indicates the subject area of research that the catalogue belongs to; for example, black holes, galaxy clusters, planetary nebulae, red shifts, and photometry.

Once a user has selected the database criteria to search, they must provide VizieR a search window that consists of a target centre and area around that point to search. The target centre is the point on the celestial sphere referenced to a celestial equinox², and can be defined by object name, RA and Dec., or by IAU-coordinates [viz17].

STELLAR COMMAND MODULE

Although it is possible to communicate directly to Stellarium and VizieR directly through the HTTP interface, the stellar position parameters between the two systems are different. Stellarium returns its position information as three dimensional spherical points, with a separate query for the field of view; whereas, VizieR requires the data as a two dimensional geometric point with a defined radius. The Stellar Command module abstracts this information from the client software and removes the requirement to perform these calculations by the client. Stellar Command directs VizieR to query the Hipparcos catalogue because it provides a "complete all-sky survey of astrometric and photometric parameters for one million stars down to magnitude 11 " [VL97, p. 201]. An attempt was made using other photometric catalogues, however, it was difficult to obtain consistent results for all sky locations.

The interface required to control both Stellarium and VizieR was HTTP based, so a language that provided network functionality as a fundamental core feature was preferred. Also, it was imperative that third party users of the library should not have to learn a particular programming language, but instead, could easily interface with the library using their preferred music package such as Max MSP, SuperCollider or PD. Furthermore, it would be advantageous for users to be able to integrate the library into the programming language of their choice, such as C, C++, Python, Ruby, or Java.

Developing the system as a Java Archive (JAR) fulfilled all these requirements. Using a JAR file allowed instantiation from the command line, running as separate processes and using OSC to communicate with other programs. Additionally, many other programming languages can connect directly to a JAR through the Java Native Interface (JNI) [Lia99].

²The default equinox is J2000 [Och10].

Terminology

Right Ascension

Declination

Magnitude

Mission

Open Sound Control

One

Using Stellar Command with OSC

There are primarily two ways to use Stellar Command. The first is as a separate process that runs on the compute. The second method is to use Stellar Command as a library that you link to directly in your program. If you intend to use Stellar Command as a library, you can skip forward to chapter 2 – *Using Stellar Command as a Java Library*.

1.1 Launching Stellar Command

The Stellar Command module is instantiated by executing Java with the name of the JAR file and the required program arguments that define communication, such as the network port to send OSC messages to, and the OSC address space. For example, to start the StellarCommand module so it sends OSC messages on UDP port 1234 using an OSC address space of /Stellar, one would execute the following command:

java -jar StellarCommand.jar port=1234 osc=/Stellar

When the server starts, it will open the first available UDP port, and notify the client of this port. For example, if the command module opened port 4567, it will send an OSC message /Stellar/osc 4567 to the client on the localhost.

/Stellar/osc 4567

Allowing the command module to find its own port number removes the probability of port clashes as each client furnishes the other with a valid port number for communicating without requiring configuration in the command module. It is, however, possible to request the Stellar Command module try certain ports by adding the argument *tryport* with a comma separated list of ports. For example, the argument <code>tryport=3333,4444,5555</code> will cause Stellarium to sequentially try opening the ports listed, and if these all fail, will then open the first available port.

¹In this instance, the OSC client and Stellarium are on the same computer.

java -jar Stellar Command.jar port=1234 osc=/Stellar tryport=3333,4444,5555

The OSC client would receive the following OSC message:

/Stellar/osc 3333

The OSC client and the Stellarium server do not have to be on the same physical computer as the Stellar Command module. For example Figure 1.1, shows three OSC clients and a Stellarium server on a LAN, and a remote Stellarium server accessible from the internet through *myserver.com*.

Figure 1.1: Remote Stellarium and OSC Clients.

Creating a connection between OSC Client 1 and Remote Stellarium Server is ef-

3

fected by adding adding the arguments

client=192.168.0.5 and stellarium=http://myserver.com to the command line. This will cause the Stellar Command module to send OSC messages to "192.168.0.5" and Stellarium commands to http://myserver.com on HTP port 8090², effectively acting as a proxy between the two.

java -jar StellarCommand.jar port=1234 osc=/Stellar \ client=192.168.0.5 stellarium=http://myserver.com

 $^{^2}$ The default Stellarium Remote Control port is 8090, however, this can be changed inside Stellarium. It is assumed that port forwarding when not using a local area network has been configured to send packages to the correct computer hosting Stellarium

Two

Using Stellar Command as a Java Library

This chapter details how to use Stellar Command as a library that you call directly from within your programming environment. If you intend to use Stellar Command as a standalone server application and communicate to it with Open Sound Control Messages through your preferred music package—such as Max MSP, SuperCollider or PD—you can skip back to chapter 1 – *Using Stellar Command with OSC*.

Three

Comments

3.1 Algorithms

Over time we may use this section to explain, or list some of the algorithms for some of the macros in the class. The information may be useful to some.

3.1.1 Autoadjusting \marginparwidth

This algorithm is used within \fixthelayout unless the user have used \setmarginnotes.

```
if twocolumn then
 marginparwidth = min{inner margin,outer margin}
else
  if twoside then
    if marginpar always left or always right then
     marginparwidth = min{inner margin,outer margin}
    else if marginpar in outer margin then
     marginparwidth = outer margin
    else if marginpar in inner margin then
     marginparmargin = inner margin
    end if
  else
    if marginpar in left margin then
     marginparwidth = inner margin
     marginparwidth = outer margin
    end if
  end if
end if
marginparwidth = marginparwidth - 2marginparsep
if marginparwidth < 1pt then
 marginparwidth = 1pt
end if
```

Notes

Bibliography

CTAN is the Comprehensive TeX Archive Network. Information on how to access CTAN is available at http://www.tug.org.

[20117]	2017.
[20118]	2018.
[AAU]	Astronomy archives user group (aaug.
[ABB16]	Samuel Aaron, Alan F Blackwell, and Pamela Burnard. The development of Sonic Pi and its use in educational partnerships: Co-creating pedagogies for learning computer programming. <i>Journal of Music, Technology & Education</i> , 9(1):75–94, 2016.

- [AF02] Gerard Assayag and Hans G Feichtinger. *Mathematics and music: A Diderot mathematical forum.* Springer Science & Business Media, 2002.
- [Ano19] Anonymous. Reference suppressed for anonymity during peer review. 2019.
- [AOB14] Samuel Aaron, Dominic Orchard, and Alan F Blackwell. Temporal semantics for a live coding language. In *Proceedings of the 2nd ACM SIGPLAN international workshop on Functional art, music, modeling & design,* pages 37–47. ACM, 2014.
- [Ash15] Joseph Ashley. Computers and computer programs. In *Astrophotography on the Go*, pages 151–161. Springer, 2015.
- [Azu01] L. Azura. Design of an audio player as system-on-a-chip. *Master's Thesis, Institute of Computer Science, University of Stuttgart*, 2001.
- [Bad14] Yusuf Abdullahi Badamasi. The working principle of an Arduino. pages 1–4. IEEE, September 2014.
- [Bar16] Steven F. (Steven Frank) Barrett. *Bad to the Bone : crafting electronic systems with BeagleBone Black*. Synthesis digital library of engineering and computer science. Second edition. edition, 2016.
- [Ber01] Arnold S Berger. *Embedded systems design: an introduction to processes, tools, and techniques.* CRC Press, 2001.

- [Ber08] K Berglund. Using free, open source Stellarium software for iya2009. In *Preparing for the 2009 International Year of Astronomy: A Hands-On Symposium*, volume 400, page 483, 2008.
- [BF16] Oliver Bown and Sam Ferguson. A musical game of bowls using the diads. In *Proceedings of the International Conference on New Interfaces for Musical Expression*, pages 371–372, 2016.
- [BF17] Oliver Bown and Sam Ferguson. Creative media+ the internet of things= media multiplicities. *Leonardo*, (Early Access):53–54, 2017.
- [BF18] Oliver Bown and Sam Ferguson. Understanding media multiplicities. *Entertainment Computing*, 25:62–70, 2018.
- [BFF⁺19] O. Bown, A. Fraietta, S. Ferguson, L Loke, and L. Bray. Strategies to facilitate rapid creative development with multiple networked devices using HappyBrackets. In *International Conference on New Interfaces for Musical Expression (NIME-2019)*. Federal University of Rio Grande do Sul, 2019.
- [Bin10] A. Binstock. Infoworld review: Top Java programming tools. https://www.infoworld.com/article/2683534/development-environments/infoworld-review--top-java-programming-tools.html, 2010. Accessed: 2018-07-05.
- [BL15] Ilias Bergstrom and R Beau Lotto. Code bending: A new creative coding practice. *Leonardo*, 48(1):25–31, 2015.
- [BLFR15] Oliver Bown, Lian Loke, Sam Ferguson, and Dagmar Reinhardt. Distributed interactive audio devices: Creative strategies and audience responses to novel musical interaction scenarios. In *International Symposium on Electronic Art*. ISEA, 2015.
- [Bri86] Reginald Smith Brindle. Musical composition. Oxford University Press, 1986.
- [Bri13] Colin Bright. spa-c–e, 2013. Performed live at Colbourne Ave Glebe, Sydney, Australia May 23rd 2013 by The Colin Bright Syzygy Band and Angelo Fraietta.
- [Buk14] Ivica Ico Bukvic. Pd-l2ork Raspberry Pi toolkit as a comprehensive Arduino alternative in k-12 and production scenarios. In *NIME*, pages 163–166, 2014.
- [BWG⁺06] Michael Barnett, Heather Wagner, Anne Gatling, Janice Anderson, Meredith Houle, and Alan Kafka. The impact of science fiction film on student understanding of science. *Journal of Science Education and Technology*, 15(2):179–191, 2006.
- [BYJ13] Oliver Bown, Miriama Young, and Samuel Johnson. A Java-based remote live coding system for controlling multiple Raspberry Pi units. In *ICMC*, 2013.
- [C+03] PC/104 Embedded Consortium et al. Pc/104 specification version 2.5. San Francisco: PC/104 Embedded Consortium, 2003.

- [Cag07] Nergiz Ercil Cagiltay. Teaching software engineering by means of computer-game development: Challenges and opportunities. *British Journal of Educational Technology*, 38(3):405–415, 2007.
- [Cam54] William Bruce Cameron. Sociological notes on the jam session. *Social forces*, pages 177–182, 1954.
- [CMWW11] Jitong Chen, Lingquan Meng, Xiaonan Wang, and Chenhui Wang. An integrated system for astronomical telescope based on Stellarium. In *Advanced Computer Control (ICACC)*, 2011 3rd International Conference on, pages 431–434. IEEE, 2011.
- [Coi00] Raimundo Olavo Coimbra. *A bandeira do Brasil: raízes histórico-culturais.* Instituto Brasileiro de Geografia e Estatística-IBGE, 2000.
- [dBAB⁺00] Pea de Bernardis, Peter AR Ade, JJ Bock, JR Bond, J Borrill, A Boscaleri, K Coble, BP Crill, G De Gasperis, PC Farese, et al. A flat universe from high-resolution maps of the cosmic microwave background radiation. *Nature*, 404(6781):955, 2000.
- [DC90] Stephen E. Deering and David R. Cheriton. Multicast routing in datagram internetworks and extended lans. *ACM Trans. Comput. Syst.*, 8(2):85–110, May 1990. Accessed: 2018-07-05.
- [Dea09] Roger T Dean. The Oxford handbook of computer music. OUP USA, 2009.
- [DeB00] George E DeBoer. Scientific literacy: Another look at its historical and contemporary meanings and its relationship to science education reform. *Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching*, 37(6):582–601, 2000.
- [DJ00] GUSTAVO Diaz-Jerez. Algorithmic music: using mathematical models in music composition. *The Manhattan School of Music*, 2000.
- [dM15] Flávia Cristina de Mello. *Astronomy and Cosmology of the Guarani of Southern Brazil*, pages 975–980. Springer New York, New York, NY, 2015.
- [DM18] Roger T Dean and Alex McLean. *The Oxford Handbook of Algorithmic Music*. Oxford University Press, 2018.
- [DSC05] Anderson Faustino Da Silva and Vitor Santos Costa. An experimental evaluation of Java JIT technology. *J. UCS*, 11(7):1291–1309, 2005.
- [DSZ11] Peter Duffett-Smith and Jonathan Zwart. Practical astronomy with your calculator or spreadsheet. *Cambridge University Press*,, 2011.
- [Dua10] Paulo Araújo Duarte. Astronomia na Bandeira Brasileira. https://web.archive.org/web/20080502120005/http://www.cfh.ufsc.br/~planetar/textos/astroban.htm, 2010. Accessed: 2018-12-21.
- [Dyk11] Gregory Dyke. Which aspects of novice programmers' usage of an ide predict learning outcomes. In *Proceedings of the 42nd ACM technical symposium on Computer science education*, pages 505–510. ACM, 2011.

- [End99] Mica R Endsley. Level of automation effects on performance, situation awareness and workload in a dynamic control task. *Ergonomics*, 42(3):462–492, 1999.
- [Far15] Eleanor Farrington. Parametric equations at the circus: Trochoids and poi flowers. *The College Mathematics Journal*, 46(3):173–177, 2015.
- [FB17] Sam Ferguson and Oliver Bown. Creative coding for the Raspberry Pi using the HappyBrackets platform. In *Proceedings of the 2017 ACM SIGCHI Conference on Creativity and Cognition*, pages 551–553. ACM, 2017.
- [FB19] Angelo Fraietta and Oliver Bown. Creating a sonified spacecraft game using HappyBrackets and Stellarium. In *Procedings of the 17th Linux Audio Conference (LAC-19)*, pages 1–7. CCRMA, Stanford University, USA, 2019.
- [FdSNdSO19] A Fraietta, Helena de Souza Nunes, and Natanael de Souza Ourives. Creating order and progress. In *International Conference on New Interfaces for Musical Expression (NIME-2019)*. Federal University of Rio Grande do Sul, 2019.
- [FM11] Emmanuel Fléty and Côme Maestracci. Latency improvement in sensor wireless transmission using IEEE 802.15. 4. In *New Interfaces for Musical Expression (NIME 2011)*, pages 409–412, 2011.
- [Fra05a] Angelo Fraietta. The smart controller workbench. In *Proceedings of the 2005 conference on New interfaces for musical expression*, pages 46–49. University of British Columbia, Vancouver, 2005.
- [Fra05b] Angelo Fraietta. Smart controller/bell garden demo. In *Proceedings of the* 2005 conference on New interfaces for musical expression, pages 260–261. National University of Singapore, 2005.
- [Fra06] Angelo Fraietta. *The Smart Controller an integrated electronic instrument for real-time performance using programmable logic control*. Phd, Western Sydney University, 2006.
- [Fra08a] Angelo Fraietta. Open Sound Control: Constraints and limitations. In *International Conference on New Interfaces for Musical Expression (NIME-2008)*, pages 19–23, 2008.
- [Fra08b] A Fraknoi. Music inspired by astronomy: A selected listing for the international year of astronomy. In *Preparing for the 2009 International Year of Astronomy: A Hands-On Symposium*, volume 400, page 514, 2008.
- [Fra14a] Angelo Fraietta. Echoes from the fourth day a segue through the southern night sky for FM synthesiser and binoculars, 2014. Performed in Brickworks Park in collaboration with the Newcastle Astronomical Society.
- [Fra14b] Angelo Fraietta. Musical composition with naked eye and binocular astronomy. In *Australasian Computer Music Conference* 2014, pages 47–52. Victorian College of the Arts, 2014.

- [Fra19a] A Fraietta. Stellar command: a planetarium based cosmic performance interface. In *International Conference on New Interfaces for Musical Expression* (NIME-2019). Federal University of Rio Grande do Sul, 2019.
- [Fra19b] A. Fraietta. Stellar command software module. https://github.com/angelofraietta/StellarCommand, 2019. Accessed: 2019-02-02.
- [FRB⁺17] Sam Ferguson, Anthony Rowe, Oliver Bown, Liam Birtles, and Chris Bennewith. Networked pixels: Strategies for building visual and auditory images with distributed independent devices. In *Proceedings of the 2017 ACM SIGCHI Conference on Creativity and Cognition*, pages 299–308. ACM, 2017.
- [FW09] A. J. Figueredo and P. S. A. Wolf. Assortative pairing and life history strategy a cross-cultural study. *Human Nature*, 20:317–330, 2009.
- [Gam93] Olympic Games. Music of the spheres. 1993.
- [GBL94] Patricia M Greenfield, Craig Brannon, and David Lohr. Two-dimensional representation of movement through three-dimensional space: The role of video game expertise. *Journal of applied developmental psychology*, 15(1):87–103, 1994.
- [Gep18] Alexander CT Geppert. *Imagining outer space: European astroculture in the twentieth century.* Springer, 2018.
- [Ger05] Lincoln Geraghty. Creating and comparing myth in twentieth-century science fiction: "star trek" and "star wars". *Literature/Film Quarterly*, 33(3):191–200, 2005.
- [Gre10] Bruce Gregory. The integration of classical music composition theory with mind-body hypnotherapy. *Australian Journal of Clinical and Experimental Hypnosis* (Online), 38(1):1, 2010.
- [HA07] Jean-Michel Hoc and René Amalberti. Cognitive control dynamics for reaching a satisficing performance in complex dynamic situations. *Journal of cognitive engineering and decision making*, 1(1):22–55, 2007.
- [HC02] Cay S Horstmann and Gary Cornell. *Core Java 2: Volume I, Fundamentals.* Pearson Education, 2002.
- [HC15] Joan Horvath and Rich Cameron. Cosplay, wearable tech, and the internet of things. In *The New Shop Class*, pages 85–96. Springer, 2015.
- [Hey03] Paul Heyer. America under attack i: a reassessment of orson welles' 1938 war of the worlds broadcast. *Canadian Journal of Communication*, 28(2):149, 2003.
- [Hin16] Abram Hindle. Hacking nimes. In *Proceedings of the International Conference on New Interfaces for Musical Expression*, volume 16 of 2220-4806, pages 359–364, Brisbane, Australia, 2016. Queensland Conservatorium Griffith University.
- [Hub12] David Miles Huber. *The MIDI manual: a practical guide to MIDI in the project studio.* Focal Press, 2012.

- [Hur58] Paul D Hurd. Science literacy: Its meaning for american schools. *Educational leadership*, 16(1):13–16, 1958.
- [Hym07] Mark Hyman. The first mind-body medicine: Bringing shamanism into the 21st century. *Alternative therapies in health and medicine*, 13(5):10–11, 2007.
- [Idr14] Ivan Idris. Python data analysis. Packt Publishing Ltd, 2014.
- [Ing17] Simon Ings. Plane speaking: Analogue tech powers a futuristic artwork. *New Scientist Archive*, 235(3133):43, 2017.
- [Jam95] Jamie James. *The music of the spheres: Music, science, and the natural order of the universe.* Springer Science & Business Media, 1995.
- [K.86] Martin K. Parsing in functional unification grammar. In K. Spark Jones B. J. Grosz and B. L. Webber, editors, *Readings in Natural Language Processing*, pages 125–138. Morgan Kaufmann Publishers, Los Altos, 1986.
- [KBB+10] David G Koch, William J Borucki, Gibor Basri, Natalie M Batalha, Timothy M Brown, Douglas Caldwell, Jørgen Christensen-Dalsgaard, William D Cochran, Edna DeVore, Edward W Dunham, et al. Kepler mission design, realized photometric performance, and early science. The Astrophysical Journal Letters, 713(2):L79, 2010.
- [KCC⁺07] Amit Kapadia, Fabien Chéreau, Lars Lindberg Christensen, Lars Holm Nielsen, Adrienne Gauthier, Robert Hurt, and Ryan Wyatt. Vamp in Stellarium/virgo: A proof of concept. *Proceedings from Communicating Astronomy with the Public*, 2007.
- [KG07] Yasmin B Kafai and Michael T Giang. Virtual playgrounds: Children's multi-user virtual environments for playing and learning with science. *Children's learning in a digital world*, pages 196–217, 2007.
- [K]] Petr Kubánek and Martin Jelínek. Rts2–open source observatory manager.
- [KK02] James Keogh and Jim Keogh. *J2EE: The complete reference*. McGraw-Hill/Osborne, 2002.
- [KK06] Zoltán Kolláth and Jen O Keuler. Stellar acoustics as input for music composition. *Musicae Scientiae*, 10(1_suppl):161–183, 2006.
- [KLPL16] Hee-Won Kim, Su-Jung Lee, Han-Ju Park, and Suk-Ho Lee. Ambient lighting for korean karaoke based on screen colors and singer interaction. *Indian Journal of Science and Technology*, 9(46), 2016.
- [Kno76] Francis Knobloch. The Tukano indians and advancing "civilisation". *Mankind Quarterly*, 17(2), 1976.
- [Lar02] Craig Larman. *Applying UML and patterns: an introduction to object-oriented analysis and design and the unified process.* Prentice Hall, second edition, 2002.
- [LBF⁺18] L. Loke, O Bown, S Ferguson, L Bray, A Fraietta, and K Packham. Your move sounds so predictable! In *Proceedings of the 2018 Annual Symposium on Computer-Human Interaction in Play (CHI PLAY 2018) Companion Extended Abstracts*, pages 121–125. ACM, 2018.

- [LE14] Sang Won Lee and Georg Essl. Models and opportunities for networked live coding. 2014.
- [Led02] Jim Ledin. Simulation takes off with hardware. *Embedded Systems Programming*, 15(4):19–29, April 2002.
- [Lia99] Sheng Liang. *The Java Native Interface: Programmer's Guide and Specification*. Addison-Wesley Professional, 1999.
- [Lim15] Flávia Pedroza Lima. *Astronomy in Brazilian Ethnohistory*, pages 945–951. Springer New York, New York, NY, 2015.
- [LK06] Jim Lovell and Jeffrey Kluger. *Apollo* 13. Houghton Mifflin Harcourt, 2006.
- [LML⁺10] Miranda Lundy, John Martineau, Miranda Lundy, Daud Sutton, Anthony Ashton, and Jason Martineau. *Quadrivium: The four classical liberal arts of number, geometry, music, & cosmology.* Walker & Company, 2010.
- [LYBB14] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. *The Java virtual machine specification*. Pearson Education, 2014.
- [LZ12] Yuxi Liu and Guohui Zhou. Key technologies and applications of internet of things. pages 197–200. IEEE, January 2012.
- [Mag11] Thor Magnusson. Algorithms as scores: Coding live music. *Leonardo Music Journal*, pages 19–23, 2011.
- [Mag14] Thor Magnusson. Scoring with code: Composing with algorithmic notation. *Organised Sound*, 19(3):268–275, 2014.
- [Mah05] Michael S Mahoney. The histories of computing (s). *Interdisciplinary Science Reviews*, 30(2):119–135, 2005.
- [Mal82] Thomas W Malone. Heuristics for designing enjoyable user interfaces: Lessons from computer games. In *Proceedings of the 1982 conference on Human factors in computing systems*, pages 63–68. ACM, 1982.
- [Mar11] Michael Margolis. Arduino Cookbook: Recipes to Begin, Expand, and Enhance Your Projects. "O'Reilly Media, Inc.", 2011.
- [MBJ⁺16] Giulio Moro, Astrid Bin, Robert H Jack, Christian Heinrichs, Andrew P son, et al. Making high-performance embedded instruments with bela and pure data. 2016.
- [MC09] Matthew Mc Cool. Touring the cosmos through your computer: a guide to free desktop planetarium software. *CAPjournal*,(7), pages 21–23, 2009.
- [McC18] Mark McCurry. Rtosc-realtime safe open sound control messaging. In *Linux Audio Conference 2018*, page 51, 2018.
- [Mir01] Eduardo Miranda. Composing music with computers. Focal Press, 2001.
- [MJM⁺16] Andrew P McPherson, Robert H Jack, Giulio Moro, et al. Action-sound latency: Are our tools fast enough? 2016.

- [MKC12] Jim Murphy, Ajay Kapur, and Dale Carnegie. Musical robotics in a loud-speaker world: Developments in alternative approaches to localization and spatialization. *Leonardo Music Journal*, pages 41–48, 2012.
- [MLF⁺02] Dieter Mehrholz, L Leushacke, W Flury, R Jehn, H Klinkrad, and M Landgraf. Detecting, tracking and imaging space debris. *ESA Bulletin*(0376-4265), (109):128–134, 2002.
- [MML18] Hicham Medromi, Laila Moussaid, and FAL Laila. Analysis of the allocation of classes, threads and cpu used in embedded systems for Java applications. *Procedia computer science*, 134:334–339, 2018.
- [Mon16] Simon Monk. *Raspberry Pi cookbook: Software and hardware problems and solutions.* "O'Reilly Media, Inc.", 2016.
- [Mor96] Henry M Morris. Meeting user needs keeps board business booming. *Control Engineering*, 43(11):D, 1996.
- [MQW10] Steve Massey, Steve Quirk, and Fred Watson. *Atlas of the Southern Night Sky*. New Holland Publishers, 2010.
- [MR02] Iain Milne and Glenn Rowe. Difficulties in learning and teaching programming—views of students and tutors. *Education and Information technologies*, 7(1):55–66, 2002.
- [MW64] F. Mosteller and D. Wallace. *Inference and Disputed Authorship: The Federalist*. Addison-Wesley, Reading, Massachusetts, 1964.
- [MW09] Alex McLean and Geraint A Wiggins. Words, movement and timbre. In *NIME*, pages 276–279. Citeseer, 2009.
- [MZ15] Andrew McPherson and Victor Zappi. An environment for submillisecondlatency audio and sensor processing on beaglebone black. In *Audio Engineering Society Convention 138*. Audio Engineering Society, 2015.
- [OBM00] François Ochsenbein, Patricia Bauer, and James Marcout. The VizieR database of astronomical catalogues. *Astronomy and Astrophysics Supplement Series*, 143(1):23–32, 2000.
- [Och10] François Ochsenbein. The "vizquery" program. http://vizier.u-strasbg.fr/vizier/doc/vizquery.htx, 2010. Accessed: 2019-01-18.
- [Oui10] Hector Ouilhet. Google sky map: using your phone as an interface. In *Proceedings of the 12th international conference on Human computer interaction with mobile devices and services*, pages 419–422. ACM, 2010.
- [Pac96] Jozef Pacholczyk. Music and astronomy in the muslim world. *Leonardo*, 29(2):145–150, 1996.
- [Qua02] Terry Quatrani. *Visual modeling with rational rose* 2002 *and UML*. Addison-Wesley Longman Publishing Co., Inc., 2002.
- [R⁺15] Clive LN Ruggles et al. *Handbook of Archaeoastronomy and Ethnoastronomy*. Springer New York, 2015.

- [RCL99] Bryan L Riemann, Nancy A Caggiano, and Scott M Lephart. Examination of a clinical method of assessing postural control during a functional performance task. *Journal of Sport Rehabilitation*, 8(3):171–183, 1999.
- [RD76] Gerardo Reichel-Dolmatoff. Cosmology as ecological analysis: a view from the rain forest. *Man*, pages 307–318, 1976.
- [RML+06] Jukka Rönkkö, Jussi Markkanen, Raimo Launonen, Marinella Ferrino, Enrico Gaia, Valter Basso, Harshada Patel, Mirabelle D'Cruz, and Seppo Laukkanen. Multimodal astronaut virtual training prototype. *International Journal of Human-Computer Studies*, 64(3):182–191, 2006.
- [RNC+03] Ricardo Rosas, Miguel Nussbaum, Patricio Cumsille, Vladimir Marianov, Mónica Correa, Patricia Flores, Valeska Grau, Francisca Lagos, Ximena López, Verónica López, et al. Beyond nintendo: design and assessment of educational video games for first and second grade students. *Computers & Education*, 40(1):71–94, 2003.
- [RPK⁺15] Karen Robson, Kirk Plangger, Jan H Kietzmann, Ian McCarthy, and Leyland Pitt. Is it all a game? Understanding the principles of gamification. *Business Horizons*, 58(4):411–420, 2015.
- [RPK⁺16] Karen Robson, Kirk Plangger, Jan H Kietzmann, Ian McCarthy, and Leyland Pitt. Game on: Engaging customers and employees through gamification. *Business horizons*, 59(1):29–36, 2016.
- [RR79] John Rodgers and Willie Ruff. Kepler's harmony of the world: A realization for the ear: Three and a half centuries after their conception, Kepler's data plotting the harmonic movement of the planets have been realized in sound with the help of modern astronomical knowledge and a computer-sound synthesizer. *American Scientist*, 67(3):286–292, 1979.
- [RT15] Fabienne Reynard and Philippe Terrier. Role of visual input in the control of dynamic balance: variability and instability of gait in treadmill walking while blindfolded. *Experimental brain research*, 233(4):1031–1040, 2015.
- [RW12] Matt Richardson and Shawn Wallace. *Getting started with Raspberry Pi.* "O'Reilly Media, Inc.", 2012.
- [Sal89] G. Salton. Automatic Text Processing. Addison-Wesley, 1989.
- [Sar01] John M Sarkissian. On eagle's wings: The parkes observatory's support of the apollo 11 mission. *Publications of the Astronomical Society of Australia*, 18(3):287–310, 2001.
- [Sch14] Maik Schmidt. Raspberry Pi: A Quick-Start Guide. Pragmatic Bookshelf, 2014.
- [SFRB04] Eric Singer, Jeff Feddersen, Chad Redmon, and Bil Bowen. Lemur's musical robots. In *Proceedings of the 2004 conference on New interfaces for musical expression*, pages 181–184. National University of Singapore, 2004.

- [SKA⁺16] R Benjamin Shapiro, Annie Kelly, Matthew Ahrens, Rebecca Fiebrink, et al. Blockytalky: A physical and distributed computer music toolkit for kids. 2016.
- [Spa72] K. Sparck Jones. A statistical interpretation of term specificity and its application in retrieval. *Journal of Documentation*, 28(1):11–21, 1972.
- [spa16] Space debris motion translated into music. https://www.youtube.com/watch?v=PJ8ojV5hiOk, 2016. Accessed: 2019-01-18.
- [SPS11] Robert J Stone, Peter B Panfilov, and Valentin E Shukshunov. Evolution of aerospace simulation: From immersive virtual reality to serious games. In *Recent Advances in Space Technologies (RAST), 2011 5th International Conference on*, pages 655–662. IEEE, 2011.
- [Tel06] JP Telotte. Lost in space: Television as science fiction icon. *Journal of Popular Film and Television*, 33(4):178–186, 2006.
- [TFB17] Luca Turchet, Carlo Fischione, and Mathieu Barthet. Towards the internet of musical things. In *Proceedings of the Sound and Music Computing Conference*, pages 13–20, 2017.
- [TFE⁺18] Luca Turchet, Carlo Fischione, Georg Essl, Damián Keller, and Mathieu Barthet. Internet of musical things: Vision and challenges. *IEEE Access*, 6:61994–62017, 2018.
- [TIS⁺13] Elena Tuveri, Samuel A Iacolina, Fabio Sorrentino, L Davide Spano, and Riccardo Scateni. Controlling a planetarium software with a kinect or in a multi-touch table: a comparison. In *Proceedings of the Biannual Conference of the Italian Chapter of SIGCHI*, page 6. ACM, 2013.
- [TMF16] Luca Turchet, Andrew McPherson, and Carlo Fischione. Smart instruments: Towards an ecosystem of interoperable devices connecting performers and audiences. In *Proceedings of the Sound and Music Computing Conference*, pages 498–505, 2016.
- [TRJ11] Emily S Tabanao, Ma Mercedes T Rodrigo, and Matthew C Jadud. Predicting at-risk novice Java programmers through the analysis of online protocols. In *Proceedings of the seventh international workshop on Computing education research*, pages 85–92. ACM, 2011.
- [Tuf01] Edward R. Tufte. The visual display of quantitative information, 2001.
- [vdVdBvO12] JW van der Veen, R de Beer, and D van Ormondt. Utilizing Java concurrent programming, multi-processing and the Java native interface. Running Native Code in Separate Parallel Processes," Report on behalf of the Marie-Curie Research Training Network FAST, 2012.
- [viz17] Vizier help faq tutorial output preferences and constraint specifications. http://vizier.u-strasbg.fr/viz-bin/vizHelp?3.htx#target, 2017. Accessed: 2019-01-18.
- [Viz18] VizieR. https://vizier.u-strasbg.fr/viz-bin/VizieR, 2018. Accessed: 2019-01-18.

- [VL97] Floor Van Leeuwen. The Hipparcos mission. *Space Science Reviews*, 81(3-4):201–409, 1997.
- [Wal67] D Perkin Walker. Kepler's celestial music. *Journal of the Warburg and Courtauld Institutes*, pages 228–250, 1967.
- [WF⁺97] Matthew Wright, Adrian Freed, et al. Open SoundControl: A new protocol for communicating with sound synthesizers. In *ICMC*, 1997.
- [Win95] Todd Winkler. Making motion musical: Gesture mapping strategies for interactive computer music. pages 261–64. The International Computer Music Association, The International Computer Music Association, 1995.
- [Win01] Todd Winkler. *Composing interactive music: techniques and ideas using Max.* MIT press, 2001.
- [Wol01] Mark JP Wolf. Genre and the video game. *The medium of the video game*, pages 113–134, 2001.
- [ZC11] Gabe Zichermann and Christopher Cunningham. *Gamification by design: Implementing game mechanics in web and mobile apps.* "O'Reilly Media, Inc.",
 2011.
- [ZFLZ17] Sichen Zhao, Yuan Fang, Wenfeng Li, and Kanglian Zhao. Design and implemention of an emulation node for space network protocol testing. In *International Conference on Machine Learning and Intelligent Communications*, pages 658–667. Springer, 2017.
- [ZN12] Georg Zotti and Wolfgang Neubauer. A virtual reconstruction approach for archaeoastronomical research. In *Virtual Systems and Multimedia (VSMM)*, 2012 18th International Conference on, pages 33–40. IEEE, 2012.
- [Zna02] Alfred Znamierowski. *The world encyclopedia of flags: The definitive guide to international flags, banners, standards and ensigns.* Hermes House, 2002.
- [Zot14] Georg Zotti. Towards serious gaming for archaeoastronomical simulation. *Mediterranean Archaeology & Archaeometry*, 14(3), 2014.
- [ZSW17] Georg Zotti, Florian Schaukowitsch, and Michael Wimmer. The skyscape planetarium, 2017.
- [ZW18] Georg Zotti and Alexander Wolf. Stellarium 0.18.0 user guide. 2018.
- [ZWC⁺10] Qian Zhu, Ruicong Wang, Qi Chen, Yan Liu, and Weijun Qin. Iot gateway: Bridgingwireless sensor networks into internet of things. In *Embedded and Ubiquitous Computing (EUC)*, 2010 IEEE/IFIP 8th International Conference on, pages 347–352. Ieee, 2010.

Colophon

This manual was typeset using the LaTeX typesetting system created by Leslie Lamport and the memoir class. The body text is set 10/12pt on a 33pc measure with Palatino designed by Hermann Zapf, which includes italics and small caps. Other fonts include Sans, Slanted and Typewriter from Donald Knuth's Computer Modern family.