Pricing surplus server capacity for mean waiting time sensitive customers

A proof of conjecture

Manu K. Gupta

Institut de Recherche en Informatique de Toulouse (IRIT), Toulouse, France.

Joint work with N. Hemachandra

Outline

- Joint pricing and scheduling problem
- Conjecture
- Outline of the proof

Motivation

• Firm can 'lease its facilities' to new customers without affecting the service level of inhouse customers.

Figure 1: Model abstraction

Motivation

- Firm can 'lease its facilities' to new customers without affecting the service level of inhouse customers.
- Firms could be a container depot, a mobile service provider, a large manufacturing plant, etc.

Figure 1: Model abstraction

Joint pricing and scheduling problem¹

• Model to price server's surplus capacity in M/G/1 queue.

¹S. K. Sinha, N. Rangaraj, and N. Hemachandra. "Pricing surplus server capacity for mean waiting time sensitive customers". In: European Journal of Operational Research 205 (2010), pp. 159–171.

Joint pricing and scheduling problem¹

- Model to price server's surplus capacity in M/G/1 queue.
- Surplus capacity utilized by introducing new (secondary) customers.

¹S. K. Sinha, N. Rangaraj, and N. Hemachandra. "Pricing surplus server capacity for mean waiting time sensitive customers". In: European Journal of Operational Research 205 (2010), pp. 159–171.

Joint pricing and scheduling problem¹

- Model to price server's surplus capacity in M/G/1 queue.
- Surplus capacity utilized by introducing new (secondary) customers.
- Primary are the existing customers and their mean waiting time is promised below S_p .

¹S. K. Sinha, N. Rangaraj, and N. Hemachandra. "Pricing surplus server capacity for mean waiting time sensitive customers". In: European Journal of Operational Research 205 (2010), pp. 159–171.

 Sensitivity of secondary class to both unit admission price and service level.

- Sensitivity of secondary class to both unit admission price and service level.
- Admission control of secondary class customers.

- Sensitivity of secondary class to both unit admission price and service level.
- Admission control of secondary class customers.
- Scheduling across classes.

- Sensitivity of secondary class to both unit admission price and service level.
- Admission control of secondary class customers.
- Scheduling across classes.
 - Strict priority may not suffice.

- Sensitivity of secondary class to both unit admission price and service level.
- Admission control of secondary class customers.
- Scheduling across classes.
 - Strict priority may not suffice.
- A dynamic priority scheduling scheme is needed.

- Sensitivity of secondary class to both unit admission price and service level.
- Admission control of secondary class customers.
- Scheduling across classes.
 - Strict priority may not suffice.
- A dynamic priority scheduling scheme is needed.
 - Delay dependent priority scheme.

- Sensitivity of secondary class to both unit admission price and service level.
- Admission control of secondary class customers.
- Scheduling across classes.
 - Strict priority may not suffice.
- A dynamic priority scheduling scheme is needed.
 - Delay dependent priority scheme.
- Decisions:

- Sensitivity of secondary class to both unit admission price and service level.
- Admission control of secondary class customers.
- Scheduling across classes.
 - Strict priority may not suffice.
- A dynamic priority scheduling scheme is needed.
 - Delay dependent priority scheme.
- Decisions:
 - Price charged and service level offered to secondary class

- Sensitivity of secondary class to both unit admission price and service level.
- Admission control of secondary class customers.
- Scheduling across classes.
 - Strict priority may not suffice.
- A dynamic priority scheduling scheme is needed.
 - Delay dependent priority scheme.
- Decisions:
 - Price charged and service level offered to secondary class
 - Scheduling across classes

Delay dependent priority scheduling scheme²

Prioritize jobs based on the following instantaneous priority:

$$q_p(t) = delay \times b_p$$

 $^{^{2}} Leonard \ Kleinrock. \ "A \ delay \ dependent \ queue \ discipline". \ In: \ \textit{Naval Research Logistics Quarterly} \ 11 \ (1964), pp. 329-341.$

Delay dependent priority scheduling scheme²

Prioritize jobs based on the following instantaneous priority:

$$q_p(t) = delay \times b_p$$

Figure 2: Illustration of delay dependent priority

²Leonard Kleinrock. "A delay dependent queue discipline". In: Naval Research Logistics Quarterly 11 (1964), pp. 329–341.

Delay dependent priority scheduling scheme²

Prioritize jobs based on the following instantaneous priority:

$$q_p(t) = delay \times b_p$$

Figure 2: Illustration of delay dependent priority

Ties (at t_0) are broken according to FCFS

²Leonard Kleinrock. "A delay dependent queue discipline". In: Naval Research Logistics Quarterly 11 (1964), pp. 329–341.

- $\lambda_{\it p}$ Arrival rate for primary class customers
- λ_s Arrival rate of secondary customers
- S_p Promised mean waiting time of primary class customers
- S_s Promised mean waiting time of secondary class customers
 - μ Mean service rate of server
- σ^2 Variance of service time
- $\boldsymbol{\theta}$. Unit admission price charged to secondary customers

- $\lambda_{\it p}$ Arrival rate for primary class customers
- λ_s Arrival rate of secondary customers
- S_p Promised mean waiting time of primary class customers
- S_s Promised mean waiting time of secondary class customers
 - μ Mean service rate of server
- σ^2 Variance of service time
 - θ Unit admission price charged to secondary customers

Linear demand function

$$\lambda_s = a - b\theta - cS_s$$

- λ_p Arrival rate for primary class customers
- λ_s Arrival rate of secondary customers
- S_p Promised mean waiting time of primary class customers
- S_s Promised mean waiting time of secondary class customers
- μ Mean service rate of server
- σ^2 Variance of service time
- $\boldsymbol{\theta}$. Unit admission price charged to secondary customers

Linear demand function

$$\lambda_s = a - b\theta - cS_s$$

- Decision variables:
 - Unit admission price (θ) , service level for new class (S_s) , scheduling parameter (β) and arrival rate for secondary class (λ_s)

- λ_p Arrival rate for primary class customers
- λ_s Arrival rate of secondary customers
- S_p Promised mean waiting time of primary class customers
- S_s Promised mean waiting time of secondary class customers
- μ Mean service rate of server
- σ^2 Variance of service time
- $\boldsymbol{\theta}$. Unit admission price charged to secondary customers

Linear demand function

$$\lambda_s = a - b\theta - cS_s$$

- Decision variables:
 - Unit admission price (θ) , service level for new class (S_s) , scheduling parameter (β) and arrival rate for secondary class (λ_s)
- Objective is to maximize total revenue.

Maximize $\theta \lambda_s$ (1)

$$Maximize \ \theta \lambda_s \tag{1}$$

Subject to

Primary service level: $W_p(\lambda_s, \beta) \leq S_p$ (2)

Maximize
$$\theta \lambda_s$$
 (1)

Subject to

Primary service level:
$$W_p(\lambda_s, \beta) \le S_p$$
 (2)

Secondary service level: $W_s(\lambda_s, \beta) \leq S_s$ (3)

Maximize
$$\theta \lambda_s$$
 (1)

Primary service level:
$$W_p(\lambda_s, \beta) \leq S_p$$
 (2)

Secondary service level:
$$W_s(\lambda_s, \beta) \leq S_s$$
 (3)

Stability:
$$\lambda_s \leq \mu - \lambda_p$$
 (4)

Maximize
$$\theta \lambda_s$$
 (1)

Primary service level:
$$W_p(\lambda_s, \beta) \leq S_p$$
 (2)

Secondary service level:
$$W_s(\lambda_s, \beta) \leq S_s$$
 (3)

Stability:
$$\lambda_s \leq \mu - \lambda_p$$
 (4)

Demand Constraint:
$$\lambda_s \leq a - b\theta - cS_s$$
 (5)

Maximize
$$\theta \lambda_s$$
 (1)

Primary service level:
$$W_p(\lambda_s, \beta) \le S_p$$
 (2)

Secondary service level:
$$W_s(\lambda_s, \beta) \leq S_s$$
 (3)

Stability:
$$\lambda_s \leq \mu - \lambda_p$$
 (4)

Demand Constraint:
$$\lambda_s \leq a - b\theta - cS_s$$
 (5)

$$\lambda_s, \theta, S_s, \beta \ge 0 \tag{6}$$

- Constraint (3) and (5) will be binding.
- P0 is decomposed in P1 (with finite β) and P2 (with infinite β).

Optimization problem P1 and P2

P1:
$$\max_{\lambda_s,\beta} \frac{1}{b} \left(a\lambda_s - \lambda_s^2 - c\lambda_s W_s(\lambda_s,\beta) \right)$$
 (7)

$$W_p(\lambda_s, \beta) \le S_p \tag{8}$$

$$\lambda_s \le \mu - \lambda_p \tag{9}$$

$$\lambda_s, \beta \ge 0 \tag{10}$$

P2:
$$\max_{\lambda_s} \frac{1}{b} [a\lambda_s - \lambda_s^2 - c\lambda_s \tilde{W}_s(\lambda_s)]$$
 (11)

$$\tilde{W}_{p}(\lambda_{s}) \leq S_{p},$$
 (12)

$$\lambda_{s} \leq \mu - \lambda_{p},\tag{13}$$

$$\lambda_s \ge 0.$$
 (14)

Solution by using KKT conditions

Solution of problem P0

Figure 3: Range of S_p with optimal solutions coming from problem P1 and P2

- Search for global optima
- Comparison of optimal objectives of problem P1, O_1^* , and problem P2, O_2^* , in service level range $I \cup I^-$

Comparison of objectives

³S. K. Sinha, N. Rangaraj, and N. Hemachandra. "Pricing surplus server capacity for mean waiting time sensitive customers". In: European Journal of Operational Research 205 (2010), pp. 159–171.

Comparison of objectives

Conjecture³. For $S_p \in I^-$, the optimal solution of P0 is given by optimal solution of P1.

³S. K. Sinha, N. Rangaraj, and N. Hemachandra. "Pricing surplus server capacity for mean waiting time sensitive customers". In: European Journal of Operational Research 205 (2010), pp. 159–171.

• A finite step algorithm⁴ for optimal solution.

⁴S. K. Sinha, N. Rangaraj, and N. Hemachandra. "Pricing surplus server capacity for mean waiting time sensitive customers". In: European Journal of Operational Research 205 (2010), pp. 159–171.

⁵N. Hemachandra and B. S. Raghav. *On a conjecture and performance of a two class delay dependent priority queue*, tech. rep. http://www.ieor.iitb.ac.in/files/TechRepo.COR.16042013.pdf. IIT Bombay, 2012.

- A finite step algorithm⁴ for optimal solution.
 - Conjecture holds true.

⁴S. K. Sinha, N. Rangaraj, and N. Hemachandra. "Pricing surplus server capacity for mean waiting time sensitive customers". In: European Journal of Operational Research 205 (2010), pp. 159–171.

⁵N. Hemachandra and B. S. Raghav. On a conjecture and performance of a two class delay dependent priority queue, tech. rep. http://www.ieor.iitb.ac.in/files/TechRepo.COR.16042013.pdf. IIT Bombay, 2012.

- A finite step algorithm⁴ for optimal solution.
 - Conjecture holds true.
- Sufficient conditions⁵ for conjecture to hold.

⁴S. K. Sinha, N. Rangaraj, and N. Hemachandra. "Pricing surplus server capacity for mean waiting time sensitive customers". In: European Journal of Operational Research 205 (2010), pp. 159–171.

⁵N. Hemachandra and B. S. Raghav. *On a conjecture and performance of a two class delay dependent priority queue,* tech. rep. http://www.ieor.iitb.ac.in/files/TechRepo.c0R.16042013.pdf. IIT Bombay, 2012.

Theorem

Optimal solution for optimization problem P_2 i.e. O_2^* is increasing concave in interval $I^- \cup I$ while O_1^* is increasing concave in I^- and linearly increasing in I

Steps in the proof

Theorem

Optimal solution for optimization problem P_2 i.e. O_2^* is increasing concave in interval $I^- \cup I$ while O_1^* is increasing concave in I^- and linearly increasing in I

Steps in the proof

• A claim on range of optimal solution " $I^- \subset J^{-}$ "

Theorem

Optimal solution for optimization problem P_2 i.e. O_2^* is increasing concave in interval $I^- \cup I$ while O_1^* is increasing concave in I^- and linearly increasing in I

Steps in the proof

- A claim on range of optimal solution " $I^- \subset J^-$ "
- Exploit the structure of optimal solution.

Theorem

Optimal solution for optimization problem P_2 i.e. O_2^* is increasing concave in interval $I^- \cup I$ while O_1^* is increasing concave in I^- and linearly increasing in I

Steps in the proof

- A claim on range of optimal solution " $I^- \subset J^-$ "
- Exploit the structure of optimal solution.
- $\lambda_s^{(4)}$ is an increasing function of S_p .

A proof by contradiction

• Contradiction from infeasibility and $O_2^*(\lambda_s^i,\infty) < O_1^*(\lambda_s^f,\beta^f)$ at $\hat{S}_p + \epsilon$.

A proof by contradiction

- Contradiction from infeasibility and $O_2^*(\lambda_s^i, \infty) < O_1^*(\lambda_s^f, \beta^f)$ at $\hat{S}_p + \epsilon$.
- Contradiction from $O_2^*(\lambda_s^i,\infty) < O_1^*(\lambda_s^f,\beta^f)$ for $S_p \in I$.

A proof by contradiction

- Contradiction from infeasibility and $O_2^*(\lambda_s^i,\infty) < O_1^*(\lambda_s^f,\beta^f)$ at $\hat{S}_p + \epsilon$.
- Contradiction from $O_2^*(\lambda_s^i, \infty) < O_1^*(\lambda_s^f, \beta^f)$ for $S_p \in I$.
- Contradiction from concavity of O_2^* .

Possible way for O_1^* and O_2^*

• The proof of conjecture

Possible way for O_1^* and O_2^*

- The proof of conjecture
- Implications: Validation of finite step algorithm

Thank you!

http://manugupta-or.github.io