

WHAT IS CLAIMED IS:

1. A method of canceling communication system noise interference, the method comprising the steps of:
 - a) receiving T blocks of data, $\mathbf{Y}(:, t)$, $t = 1, \dots, T$, comprising T blocks of data, $\mathbf{X}(:, t)$, $t = 1, \dots, T$, transmitted over predetermined subchannels;
 - b) determining a set of subchannels, $\mathbf{k}(n)$, for the multichannel frequency domain equalizer (FEQ) for subchannel n ;
 - c) generating multichannel FEQ coefficients, $\mathbf{g}(n)$, for the n^{th} subchannel used to transmit the data; and
 - d) performing multichannel (FEQ) for subchannel n using the generated multichannel FEQ coefficients.
2. The method of canceling communication system noise interference according to claim 1 wherein steps b-d are repeated for each subchannel n used to transmit the T blocks of data.
3. The method of canceling communication system noise interference according to claim 1 wherein the step of determining a set of subchannels, $\mathbf{k}(n)$, for a subchannel n used to transmit the T blocks of data includes selecting subchannel n .
4. The method of canceling communication system noise interference according to claim 3 wherein the step of determining a set of subchannels, $\mathbf{k}(n)$, for a subchannel n used to transmit the T blocks of data further includes selecting neighboring subchannels to subchannel n .
5. The method of canceling communication system noise interference according to claim 3 wherein the step of determining a set of subchannels, $\mathbf{k}(n)$, for a subchannel n used to transmit the T blocks of data further includes selecting subchannels where radio frequency interference is located.

6. The method of canceling communication system noise interference according to claim 3 wherein the step of determining a set of subchannels, $\mathbf{k}(n)$, for a subchannel n used to transmit the T blocks of data further includes selecting subchannels having predetermined noise characteristics.

7. The method of canceling communication system noise interference according to claim 1 wherein the step of generating multichannel FEQ coefficients, $\mathbf{g}(n)$, for subchannel n , comprises solving the equation $\mathbf{g}(n) = \mathbf{Y}(n)^{-1} \mathbf{x}(n)$, where $\mathbf{Y}(n)^{-1}$ is the pseudoinverse of a matrix of received data for subchannels $\mathbf{k}(n)$, and $\mathbf{x}(n)$ is a vector of transmitted data for subchannel n .

8. The method of canceling communication system noise interference according to claim 7 wherein $\mathbf{g}(n)$ is determined adaptively using a block of received data at a time according to an equation defined by: $\mathbf{g}(n) = \mathbf{g}(n) + \mu(t) \mathbf{e}(t) \mathbf{Y}(\mathbf{k}(n), t)^*$, where $\mathbf{g}(n)$ is the vector of multichannel FEQ coefficients for subchannel n and $\mathbf{Y}(\mathbf{k}(n), t)^*$ is the conjugate of a matrix of received data for subchannels $\mathbf{k}(n)$.

9. The method of canceling communication system noise interference according to claim 8 wherein values of $\mathbf{e}(t)$ are determined according to an equation defined by: $\mathbf{e}(t) = \mathbf{X}(n, t) - \mathbf{Y}(\mathbf{k}(n), t)^T \mathbf{g}(n)$, where $\mathbf{X}(n, t)$ is the transmitted data for subchannel n at time t , and $\mathbf{Y}(\mathbf{k}(n), t)^T$ is the transpose of a matrix of received data for subchannels $\mathbf{k}(n)$.

10. The method of canceling communication system noise interference according to claim 8 wherein $\mu(t)$ controls the adaptation according to least mean squares and has a value determined according to an equation defined by: $\mathbf{R} = E[\mathbf{Y}(\mathbf{k}(n), t) \mathbf{Y}(\mathbf{k}(n), t)^H]$, where $\mathbf{Y}(\mathbf{k}(n), t)^H$ is the conjugate transpose of a matrix of received data for subchannels $\mathbf{k}(n)$.

11. The method of canceling noise interference according to claim 8 wherein $\mu(t)$ controls the adaptation according to normalized least mean squares and has a value

determined according to an equation defined by: $\mu(t) = \frac{\alpha}{\beta + \mathbf{Y}(\mathbf{k}(n), t)^H \mathbf{Y}(\mathbf{k}(n), t)},$

where $\alpha \in (0,2)$, $0 \leq \beta$, and $\mathbf{Y}(\mathbf{k}(n), t)$ is a matrix of received data for subchannels $\mathbf{k}(n)$.

12. The method of canceling noise interference according to claim 8 wherein $\mu(t)$ controls the adaptation according to power normalized least mean squares and has a value

α determined according to an equation defined by: $\mu(t) = \frac{\alpha}{\sigma^2(t)},$

where $\sigma^2(t) = c\sigma^2(t-1) + |e(t)|^2$, $c \in (0,1)$, and $0 < \alpha < \frac{2}{M}$.

13. A system for canceling communication system noise interference, the system comprising:

a multichannel frequency domain equalizer configured to receive T blocks of data, $\mathbf{Y}(:, t)$, $t = 1, \dots, T$, comprising T blocks of data, $\mathbf{X}(:, t)$, $t = 1, \dots, T$, transmitted over predetermined subchannels, wherein the multichannel frequency domain equalizer is operational to generate multichannel frequency domain equalization (FEQ) coefficients, $\mathbf{g}(n)$, associated with the n^{th} subchannel used to transmit the data, and to perform multichannel FEQ for the n^{th} subchannel using the generated multichannel FEQ coefficients, and further wherein the FEQ coefficients are associated with a set of subchannels, $\mathbf{k}(n)$, for the n^{th} subchannel used to transmit the T blocks of data.

14. The system according to claim 13 wherein the FEQ is operational to increase a subchannel signal-to-noise ratio beyond that achievable using a single channel FEQ.

15. The system according to claim 13 wherein the FEQ is operational to cancel correlated subchannel noise caused by deterministic noise spreading associated with a plurality of subchannels.

16. The system according to claim 13 wherein the FEQ is operational to increase achievable digital subscriber network data rate beyond that achievable using a single channel FEQ.