Question 1:

Answer the following True/False questions (Assume [East] is positive)

- 1. An object under uniform motion has a
 - (a) Non-zero average acceleration in the positive direction (T / F)
 - (b) Zero average acceleration (T / F)
- 2. De-acceleration is just acceleration in the same direction of motion (T / F)
- 3. Suppose that a bullet accelerates at $\vec{a}_{av} = +1.068 \, \text{km/s}^2$ from rest to a final velocity of $\vec{v}_f = +356 \, \text{m/s}$. Then,
 - (a) The time elapsed was $\Delta t = 3 \,\mathrm{s}$
 - (b) If I double the acceleration of the bullet, then Δt doubles as well. (T / F)
- 4. Suppose a Velocity V. Time plot is represented by y = 2x + 4,
 - (a) The average acceleration is uniform (T / F)
 - (b) The initial velocity of the body at t = 0 was $\vec{v}_i = +4 \,\mathrm{m/s}$ (T / F)
 - (c) The displacement over the time interval [0, 2] was $\Delta \vec{d} = +12 \,\mathrm{m}$ (T / F)
 - (d) The average acceleration is $\vec{a}_{av} = +2 \,\mathrm{m/s^2}$ (T / F)
- 5. A secant line on a Velocity V. Time graph over the interval $[t_1, t_2]$ gives me the instantaneous acceleration over the time interval $[t_1, t_2]$. (T / F)
- 6. Suppose a Position V. Time plot is represented by $y = x^2 + 4$. Then,
 - (a) The object is slowing down in the positive direction. (T / F)
 - (b) The object is experiencing uniform motion. (T / F)
 - (c) The object $\underline{\text{may}}$ be experiencing uniform acceleration (T / F).
 - (d) The initial position vector of the object at t=0 is $\vec{d_i}=2\,\mathrm{m}$
- 7. Suppose that the tangent line to a Position V. Time plot at t=4 was represented by the equation y=-3x+7. Then,
 - (a) The instantaneous velocity of the object at t=4 was $\vec{v}=+3\,\mathrm{m/s}$
 - (b) The instantaneous velocity of the object at t=5 was $\vec{v}=-3\,\mathrm{m/s}$
 - (c) Suppose that the Velocity V. Time plot for the object happened to be linear, then the average velocity of the object must have been $\vec{v}_{av} = -3 \,\mathrm{m/s}$. (T / F)
- 8. Suppose a Velocity V. Time plot is represented by y = -x + 3, then the displacement over the time interval [0, 8] is $\Delta \vec{d} = +0$ m. (T / F)
- 9. Suppose that the average acceleration of an object in motion differs at two distinct points in time, then the Velocity V. Time graph must have been linear. (T / F)

Question 2:

Answer the following multiple choice questions.

1. Which of the following statements are correct about the plot below? (Assume that the motion lasted for 4 seconds)

- (a) The body experienced uniform acceleration throughout the entire trip.
- (b) Within the time interval [0, 2] the average acceleration was $\vec{a}_{av} = +0\,\mathrm{m}/\,\mathrm{s}^2$
- (c) Within the time interval [3, 4] the average acceleration was $\vec{a}_{av} = -4 \,\mathrm{m/s^2}$
- (d) Within the time interval [1, 4] the average acceleration was $\vec{a}_{av} = -1.333 \,\mathrm{m/s^2}$
- (e) At t = 2 s, the instantaneous acceleration was $\vec{a}_{av} = +4$ m/s²
- (f) At t = 3.4 s, the instantaneous acceleration was $\vec{a}_{av} = -4$ m/s²
- (g) The average acceleration is $\underline{\text{not}}$ the same as the instantaneous acceleration for each point in time.
- 2. The Velocity V. Time plot for a body in motion is similar to y = 4x + 7.
 - (a) The displacement over the first t = 4 s was $\Delta \vec{d} = +23$ m.
 - (b) The object experienced uniform motion.
 - (c) The object experienced uniform acceleration.
 - (d) The object was speeding up in the positive direction

Question 3:

Answer the following inquires about the plot below,

- (a) The displacement over the time interval [1,3].
- (b) The displacement over the time interval [3, 8].
- (c) The displacement by the end of the trip ($\Delta t = 12\,\mathrm{s}$)

Question 4:

Answer the following inquires about the Velocity V. Time plot below,

- (a) Determine the average acceleration within the time interval $[\pi/2, \pi]$.
- (b) Determine the instantaneous acceleration at time $t = \pi$. (**Hint:** The line in blue is a tangent line to the plot at $t = \pi$)
- (c) Prove that $\vec{a}_{av} = +0 \,\mathrm{m/\,s^2}$ over the interval $[0,\pi]$.

Question 5:

Given the Position V. Time plot below, answer the following inquires.

- (a) Determine the average velocity over the time interval [0, 2].
- (b) Describe the motion over the time interval [0, 2]
- (c) Determine the instantaneous velocity at t = 1. (**Hint:** The line in blue is a tangent line to the plot at t = 2)
- (d) Describe the motion of the plot after t = 2 seconds.
- (e) The slope of the tangent line in green is m = +12. Determine the equation of the line (y = mx + b).

Question 6:

A ball kicked with an initial velocity of $\vec{v}_i = 80 \,\mathrm{m/s[South]}$. It experiences a drag force and deaccelerates at $\vec{a}_{av} = 5 \,\mathrm{m/s^2[North]}$.

- (a) Determine the final velocity of the ball after $\Delta t = 40 \,\mathrm{s}$
- (b) At what time t did ball start to travel in the Northward direction.

Question 7:

Patrick has decided to embark on a journey throughout the sea on a boat. The boat has a relative velocity of $\vec{v}_{PG} = 400 \,\mathrm{m/s[East]}$ relative to the ground (G). On the boat, Patrick is walking with a relative velocity of $\vec{v}_{PB} = +50 \,\mathrm{m/s}$ relative to the boat. Determine the average acceleration of patrick relative to the ground. Determine,

- (a) The velocity of patrick relative to the ground (\vec{v}_{PG}) (**Hint:** Use the exact same technique from when we were working with position vectors, i.e $\vec{v}_{AC} = \vec{v}_{AB} + \vec{v}_{BC}$)
- (b) The average acceleration of Patrick relative to the ground over a time period of $\Delta t = 40 \,\mathrm{s}$ if everything was <u>initially</u> at rest.

Question 8:

A car is initially traveling at an initial velocity $\vec{v_i} = 412\,\mathrm{m/s[East]}$. The car then de-accelerates at an average acceleration of \vec{a}_{av} to come to a rest at a red light over a duration of Δt . When the light turns green, the car accelerates at an average acceleration $-\vec{a}_{av}$ over a time period $2\Delta t$, to reach a final velocity of $\vec{v}_f = 240\,\mathrm{m/s}$ [East] . Determine the the average acceleration \vec{a}_{av} .

(**Hint**: Setup the correct equations to get rid of Δt)