▶ $\mathcal{L} = [1, +]$ — класс линейных функций.

- ▶ $\mathcal{L} = [1, +]$ класс линейных функций.
- ▶ $\mathcal{M} = [0, 1, \&, \lor]$ класс монотонных функций.

- ▶ $\mathcal{L} = [1, +]$ класс линейных функций.
- ▶ $\mathcal{M} = [0, 1, \&, \lor]$ класс монотонных функций.
- $\mathcal{S} = \{f \mid f^* = f\} \stackrel{?}{=} [\neg, \sigma]$ класс самодвойственных функций.

- ▶ $\mathcal{L} = [1, +]$ класс линейных функций.
- ▶ $\mathcal{M} = [0, 1, \&, \lor]$ класс монотонных функций.
- $\mathcal{S} = \{f \mid f^* = f\} \stackrel{?}{=} [\neg, d]$ класс самодвойственных функций.
- $T_0 = \{ f \mid f(0,\ldots,0) = 0 \} = [+,\&].$

<u>Основн</u>ые замкнутые классы

- $\mathcal{L} = [1, +]$ класс линейных функций.
- ▶ $\mathcal{M} = [0, 1, \&, \lor]$ класс монотонных функций.
- $\mathcal{S} = \{f \mid f^* = f\} \stackrel{?}{=} [\neg, d]$ класс самодвойственных функций.
- $T_0 = \{ f \mid f(0,\ldots,0) = 0 \} = [+,\&].$
- $ightharpoonup \mathcal{T}_1 = \{f \mid f(1, ..., 1) = 1\} = [\leftrightarrow, \lor] \stackrel{?}{=} [\to, \&].$

Определение. Класс функций $\mathcal{C} \subseteq \mathcal{F}$ называется полным, если $[\mathcal{C}] = \mathcal{F}$.

Определение. Класс функций $\mathcal{C} \subseteq \mathcal{F}$ называется полным, если $[\mathcal{C}] = \mathcal{F}$.

Примеры:

Определение. Класс функций $\mathcal{C} \subseteq \mathcal{F}$ называется полным, если $[\mathcal{C}] = \mathcal{F}$.

- \triangleright {0,1, \lor ,&}, {0,1,+} неполные классы.

Определение. Класс функций $\mathcal{C} \subseteq \mathcal{F}$ называется полным, если $[\mathcal{C}] = \mathcal{F}$.

- ▶ $\{0,1,\lor,\&\}, \{0,1,+\}$ неполные классы.
- ightharpoonup Если $\mathcal{C}\subseteq\mathcal{D}$ и $\mathcal{D}
 eq\mathcal{F}$ замкнутый, то \mathcal{C} неполный, поскольку

Определение. Класс функций $\mathcal{C} \subseteq \mathcal{F}$ называется полным, если $[\mathcal{C}] = \mathcal{F}$.

- ▶ $\{0,1,\lor,\&\}, \{0,1,+\}$ неполные классы.
- ightharpoonup Если $\mathcal{C}\subseteq\mathcal{D}$ и $\mathcal{D}
 eq\mathcal{F}$ замкнутый, то \mathcal{C} неполный, поскольку

$$[\mathcal{C}]\subseteq [\mathcal{D}]=\mathcal{D}\varsubsetneq \mathcal{F}.$$

Теорема. Класс функций $\mathcal{C} \subseteq \mathcal{F}$ является полным тогда и только тогда, когда \mathcal{C} не содержится в классах \mathcal{T}_0 , \mathcal{T}_1 , \mathcal{M} , \mathcal{L} , \mathcal{S} .

Теорема. Класс функций $\mathcal{C} \subseteq \mathcal{F}$ является полным тогда и только тогда, когда \mathcal{C} не содержится в классах \mathcal{T}_0 , \mathcal{T}_1 , \mathcal{M} , \mathcal{L} , \mathcal{S} .

Примеры:

▶ $\{\neg,\&\}$ — полный, так как $\neg \notin \mathcal{T}_0, \mathcal{T}_1, \mathcal{M}; \& \notin \mathcal{L}, \mathcal{S}$.

Теорема. Класс функций $C \subseteq \mathcal{F}$ является полным тогда и только тогда, когда C не содержится в классах \mathcal{T}_0 , \mathcal{T}_1 , \mathcal{M} , \mathcal{L} , \mathcal{S} .

- ▶ $\{\neg,\&\}$ полный, так как $\neg \notin \mathcal{T}_0, \mathcal{T}_1, \mathcal{M}; \& \notin \mathcal{L}, \mathcal{S}$.
- ▶ $\{\neg, \lor\}$ полный, так как $\neg \notin \mathcal{T}_0, \mathcal{T}_1, \mathcal{M}; \lor \notin \mathcal{L}, \mathcal{S}$.

Теорема. Класс функций $C \subseteq \mathcal{F}$ является полным тогда и только тогда, когда C не содержится в классах \mathcal{T}_0 , \mathcal{T}_1 , \mathcal{M} , \mathcal{L} , \mathcal{S} .

- ▶ $\{\neg, \&\}$ полный, так как $\neg \notin \mathcal{T}_0, \mathcal{T}_1, \mathcal{M}; \& \notin \mathcal{L}, \mathcal{S}$.
- ▶ $\{\neg, \lor\}$ полный, так как $\neg \notin \mathcal{T}_0, \mathcal{T}_1, \mathcal{M}; \lor \notin \mathcal{L}, \mathcal{S}$.
- ▶ $\{1,+,\&\}$ полный, так как $1 \notin \mathcal{T}_0,\mathcal{S}; + \notin \mathcal{T}_1,\mathcal{M}; \& \notin \mathcal{L}.$

Теорема. Класс функций $C \subseteq \mathcal{F}$ является полным тогда и только тогда, когда C не содержится в классах \mathcal{T}_0 , \mathcal{T}_1 , \mathcal{M} , \mathcal{L} , \mathcal{S} .

- ▶ $\{\neg, \&\}$ полный, так как $\neg \notin \mathcal{T}_0, \mathcal{T}_1, \mathcal{M}; \& \notin \mathcal{L}, \mathcal{S}$.
- ▶ $\{\neg, \lor\}$ полный, так как $\neg \notin \mathcal{T}_0, \mathcal{T}_1, \mathcal{M}; \lor \notin \mathcal{L}, \mathcal{S}$.
- ▶ $\{1, +, \&\}$ полный, так как $1 \notin \mathcal{T}_0, \mathcal{S}; + \notin \mathcal{T}_1, \mathcal{M}; \& \notin \mathcal{L}$.
- ▶ $\{|\}$ полный, так как $| \notin \mathcal{T}_0, \mathcal{T}_1, \mathcal{M}, \mathcal{L}, \mathcal{S}$.

Теорема. Класс функций $C \subseteq \mathcal{F}$ является полным тогда и только тогда, когда C не содержится в классах \mathcal{T}_0 , \mathcal{T}_1 , \mathcal{M} , \mathcal{L} , \mathcal{S} .

- ▶ $\{\neg, \&\}$ полный, так как $\neg \notin \mathcal{T}_0, \mathcal{T}_1, \mathcal{M}; \& \notin \mathcal{L}, \mathcal{S}$.
- ▶ $\{\neg, \lor\}$ полный, так как $\neg \notin \mathcal{T}_0, \mathcal{T}_1, \mathcal{M}; \lor \notin \mathcal{L}, \mathcal{S}$.
- ▶ $\{1, +, \&\}$ полный, так как $1 \notin \mathcal{T}_0, \mathcal{S}; + \notin \mathcal{T}_1, \mathcal{M}; \& \notin \mathcal{L}$.
- ▶ $\{|\}$ полный, так как $| \notin \mathcal{T}_0, \mathcal{T}_1, \mathcal{M}, \mathcal{L}, \mathcal{S}$.
- ▶ $\{\downarrow\}$ полный, так как $\downarrow \notin \mathcal{T}_0, \mathcal{T}_1, \mathcal{M}, \mathcal{L}, \mathcal{S}$.

Теорема. Класс функций $C \subseteq \mathcal{F}$ является полным тогда и только тогда, когда C не содержится в классах \mathcal{T}_0 , \mathcal{T}_1 , \mathcal{M} , \mathcal{L} , \mathcal{S} .

- ▶ $\{\neg,\&\}$ полный, так как $\neg \notin \mathcal{T}_0, \mathcal{T}_1, \mathcal{M}; \& \notin \mathcal{L}, \mathcal{S}$.
- ▶ $\{\neg, \lor\}$ полный, так как $\neg \notin \mathcal{T}_0, \mathcal{T}_1, \mathcal{M}; \lor \notin \mathcal{L}, \mathcal{S}$.
- ▶ $\{1, +, \&\}$ полный, так как $1 \notin \mathcal{T}_0, \mathcal{S}; + \notin \mathcal{T}_1, \mathcal{M}; \& \notin \mathcal{L}$.
- ▶ $\{|\}$ полный, так как $| \notin \mathcal{T}_0, \mathcal{T}_1, \mathcal{M}, \mathcal{L}, \mathcal{S}$.
- ▶ $\{\downarrow\}$ полный, так как $\downarrow \notin \mathcal{T}_0, \mathcal{T}_1, \mathcal{M}, \mathcal{L}, \mathcal{S}$.
- ▶ $\{0,1,xy \lor yz\}$ неполный, так как $\{0,1,xy \lor yz\} \subseteq \mathcal{M}$.

Лемма. Если $f \notin \mathcal{S}$, то $0, 1 \in [f, \neg]$.

Лемма. Если $f \notin \mathcal{S}$, то $0, 1 \in [f, \neg]$.

Доказательство. Пусть $f \notin \mathcal{S}$. Тогда существует набор $(\sigma_1, \ldots, \sigma_n)$ такой, что

$$\overline{f(\overline{\sigma_1},\ldots,\overline{\sigma_n})}=f^*(\sigma_1,\ldots,\sigma_n)\neq f(\sigma_1,\ldots,\sigma_n).$$

Лемма. Если $f \notin \mathcal{S}$, то $0, 1 \in [f, \neg]$.

Доказательство. Пусть $f \notin \mathcal{S}$. Тогда существует набор $(\sigma_1, \ldots, \sigma_n)$ такой, что

$$\overline{f(\overline{\sigma_1},\ldots,\overline{\sigma_n})}=f^*(\sigma_1,\ldots,\sigma_n)\neq f(\sigma_1,\ldots,\sigma_n).$$

Тогда $f(\overline{\sigma_1},\ldots,\overline{\sigma_n})=f(\sigma_1,\ldots,\sigma_n).$

Лемма. Если $f \notin \mathcal{S}$, то $0, 1 \in [f, \neg]$.

Доказательство. Пусть $f \notin S$. Тогда существует набор $(\sigma_1, \ldots, \sigma_n)$ такой, что

$$\overline{f(\overline{\sigma_1},\ldots,\overline{\sigma_n})}=f^*(\sigma_1,\ldots,\sigma_n)\neq f(\sigma_1,\ldots,\sigma_n).$$

Тогда $f(\overline{\sigma_1},\ldots,\overline{\sigma_n})=f(\sigma_1,\ldots,\sigma_n).$ Поэтому для формулы $g(x)=f(x^{\sigma_1},\ldots,x^{\sigma_n})$ имеем

$$g(0) = f(\overline{\sigma_1}, \ldots, \overline{\sigma_n}) = f(\sigma_1, \ldots, \sigma_n) = g(1).$$

Лемма. Если $f \notin \mathcal{S}$, то $0, 1 \in [f, \neg]$.

Доказательство. Пусть $f \notin S$. Тогда существует набор $(\sigma_1, \ldots, \sigma_n)$ такой, что

$$\overline{f(\overline{\sigma_1},\ldots,\overline{\sigma_n})}=f^*(\sigma_1,\ldots,\sigma_n)\neq f(\sigma_1,\ldots,\sigma_n).$$

Тогда $f(\overline{\sigma_1},\ldots,\overline{\sigma_n})=f(\sigma_1,\ldots,\sigma_n).$ Поэтому для формулы $g(x)=f(x^{\sigma_1},\ldots,x^{\sigma_n})$ имеем

$$g(0) = f(\overline{\sigma_1}, \ldots, \overline{\sigma_n}) = f(\sigma_1, \ldots, \sigma_n) = g(1).$$

Таким образом, одна из констант 0, 1 является формулой над $\{f, \neg\}$.

Лемма. Если $f \notin \mathcal{S}$, то $0, 1 \in [f, \neg]$.

Доказательство. Пусть $f \notin S$. Тогда существует набор $(\sigma_1, \ldots, \sigma_n)$ такой, что

$$\overline{f(\overline{\sigma_1},\ldots,\overline{\sigma_n})}=f^*(\sigma_1,\ldots,\sigma_n)\neq f(\sigma_1,\ldots,\sigma_n).$$

Тогда $f(\overline{\sigma_1},\ldots,\overline{\sigma_n})=f(\sigma_1,\ldots,\sigma_n).$ Поэтому для формулы $g(x)=f(x^{\sigma_1},\ldots,x^{\sigma_n})$ имеем

$$g(0) = f(\overline{\sigma_1}, \ldots, \overline{\sigma_n}) = f(\sigma_1, \ldots, \sigma_n) = g(1).$$

Таким образом, одна из констант 0, 1 является формулой над $\{f, \neg\}$. Подставляя ее в отрицание, получим другую константу.

Лемма. Если $f \notin \mathcal{S}$, то $0, 1 \in [f, \neg]$.

Таким образом, доказали:

Лемма. Если $f \notin \mathcal{S}$, то $0, 1 \in [f, \neg]$.

Таким образом, доказали:

Если f — не самодвойственная функция, то из f подстановками переменных или их отрицаний (x или $\neg x$) можно получить одну из констант (x или x). Применяя отрицание к полученной константе, получим оставшуюся булеву константу.

Пример. Пусть
$$f(x,y,z)=x\vee yz$$
. Имеем
$$0=\neg f(1,0,0)=f^*(0,1,1)\neq f(0,1,1)=1.$$

Пример. Пусть
$$f(x, y, z) = x \vee yz$$
. Имеем

$$0 = \neg f(1,0,0) = f^*(0,1,1) \neq f(0,1,1) = 1.$$

Рассмотрим формулу $g(x) = f(\neg x, x, x)$.

Пример. Пусть
$$f(x, y, z) = x \vee yz$$
. Имеем

$$0 = \neg f(1,0,0) = f^*(0,1,1) \neq f(0,1,1) = 1.$$

Рассмотрим формулу $g(x) = f(\neg x, x, x)$.

$$g(0) = f(1,0,0) = 1,$$

$$g(1) = f(0, 1, 1) = 1.$$

Пример. Пусть $f(x, y, z) = x \vee yz$. Имеем

$$0 = \neg f(1,0,0) = f^*(0,1,1) \neq f(0,1,1) = 1.$$

Рассмотрим формулу $g(x) = f(\neg x, x, x)$.

$$g(0) = f(1,0,0) = 1,$$

$$g(1) = f(0, 1, 1) = 1.$$

Таким образом, константа **1** выражается формулой над $\{f, \neg\}$.

Пример. Пусть $f(x, y, z) = x \vee yz$. Имеем

$$0 = \neg f(1,0,0) = f^*(0,1,1) \neq f(0,1,1) = 1.$$

Рассмотрим формулу $g(x) = f(\neg x, x, x)$.

$$g(0) = f(1,0,0) = 1,$$

$$g(1) = f(0, 1, 1) = 1.$$

Таким образом, константа **1** выражается формулой над $\{f,\neg\}$. Константа **0** выражается формулой $\neg g(x) = \neg f(\neg x, x, x)$.

Лемма. Если $f \notin \mathcal{M}$, то $\neg \in [f, 0, 1]$.

Лемма. Если $f \notin \mathcal{M}$, то $\neg \in [f, 0, 1]$.

Доказательство. Пусть $f \notin \mathcal{M}$.

Лемма. Если $f \notin \mathcal{M}$, то $\neg \in [f, 0, 1]$.

Доказательство. Пусть $f \notin \mathcal{M}$. Тогда существует наборы $(\sigma_1, \ldots, \sigma_n) \leq (\tau_1, \ldots \tau_n)$ такие, что $f(\sigma_1, \ldots, \sigma_n) = 1$ и $f(\tau_1, \ldots, \tau_n) = 0$.

Лемма. Если $f \notin \mathcal{M}$, то $\neg \in [f, 0, 1]$.

Доказательство. Пусть $f \notin \mathcal{M}$. Тогда существует наборы $(\sigma_1, \ldots, \sigma_n) \leq (\tau_1, \ldots, \tau_n)$ такие, что $f(\sigma_1, \ldots, \sigma_n) = 1$ и $f(\tau_1, \ldots, \tau_n) = 0$. Определим формулы

$$g_i(x) = egin{cases} 0, & ext{если } \sigma_i = au_i = 0; \ 1, & ext{если } \sigma_i = au_i = 1; \ x, & ext{если } \sigma_i = 0 \text{ и } au_i = 1. \end{cases}$$

Лемма. Если $f \notin \mathcal{M}$, то $\neg \in [f, 0, 1]$.

Доказательство. Пусть $f \notin \mathcal{M}$. Тогда существует наборы $(\sigma_1, \ldots, \sigma_n) \leq (\tau_1, \ldots, \tau_n)$ такие, что $f(\sigma_1, \ldots, \sigma_n) = 1$ и $f(\tau_1, \ldots, \tau_n) = 0$. Определим формулы

$$g_i(x) = egin{cases} 0, & ext{если } \sigma_i = au_i = 0; \ 1, & ext{если } \sigma_i = au_i = 1; \ x, & ext{если } \sigma_i = 0 \text{ и } au_i = 1. \end{cases}$$

Тогда $g_i(0) = \sigma_i$ и $g_i(1) = \tau_i$ для всех $i = \overline{1, n}$.

Лемма. Если $f \notin \mathcal{M}$, то $\neg \in [f, 0, 1]$.

Доказательство. Пусть $f \notin \mathcal{M}$. Тогда существует наборы $(\sigma_1, \ldots, \sigma_n) \leq (\tau_1, \ldots, \tau_n)$ такие, что $f(\sigma_1, \ldots, \sigma_n) = 1$ и $f(\tau_1, \ldots, \tau_n) = 0$. Определим формулы

$$g_i(x) = egin{cases} 0, & ext{если } \sigma_i = au_i = 0; \ 1, & ext{если } \sigma_i = au_i = 1; \ x, & ext{если } \sigma_i = 0 \text{ и } au_i = 1. \end{cases}$$

Тогда $g_i(0) = \sigma_i$ и $g_i(1) = \tau_i$ для всех $i = \overline{1, n}$. Поэтому для формулы $h(x) = f(g_0(x), \dots, g_n(x))$ имеем h(0) = 1 и h(1) = 0, то есть $h(x) = \overline{x}$.

Лемма о немонотонной функции

Лемма. Если $f \notin \mathcal{M}$, то $\neg \in [f, 0, 1]$.

Таким образом, доказали:

Лемма о немонотонной функции

Лемма. Если $f \notin \mathcal{M}$, то $\neg \in [f, 0, 1]$.

Таким образом, доказали:

Если f — не монотонная функция, то из f подстановками 0, 1 и x можно получить $\neg x$.

Пример. Пусть f(0,0,1,0) = 1 и f(1,0,1,1) = 0.

Пример. Пусть
$$f(0,0,1,0) = 1$$
 и $f(1,0,1,1) = 0$.

Рассмотрим формулу g(x) = f(x, 0, 1, x).

Пример. Пусть
$$f(0,0,1,0) = 1$$
 и $f(1,0,1,1) = 0$.

Рассмотрим формулу
$$g(x) = f(x, 0, 1, x)$$
.

$$g(0) = f(0,0,1,0) = 1,$$

$$g(1) = f(1,0,1,1) = 0.$$

Пример. Пусть
$$f(0,0,1,0) = 1$$
 и $f(1,0,1,1) = 0$.

Рассмотрим формулу g(x) = f(x, 0, 1, x).

$$g(0) = f(0,0,1,0) = 1,$$

$$g(1) = f(1,0,1,1) = 0.$$

Таким образом, $\neg x$ выражается формулой над $\{f, 0, 1\}$.

Лемма. Если $f \notin \mathcal{T}_0$ и $g \notin \mathcal{T}_1$, то либо $\neg \in [f]$, либо $0, 1 \in [f, g]$.

Лемма. Если $f \notin \mathcal{T}_0$ и $g \notin \mathcal{T}_1$, то либо $\neg \in [f]$, либо $0, 1 \in [f, g]$.

Доказательство. Имеем f(0,...,0)=1 и g(1,...,1)=0.

Лемма. Если $f \notin \mathcal{T}_0$ и $g \notin \mathcal{T}_1$, то либо $\neg \in [f]$, либо $0, 1 \in [f, g]$.

Доказательство. Имеем $f(0,\ldots,0)=1$ и $g(1,\ldots,1)=0$. Если $f(1,\ldots,1)=0$, то $f(x,\ldots,x)=\neg x$ и лемма доказана.

Лемма. Если $f \notin \mathcal{T}_0$ и $g \notin \mathcal{T}_1$, то либо $\neg \in [f]$, либо $0, 1 \in [f, g]$.

Доказательство. Имеем $f(0,\ldots,0)=1$ и $g(1,\ldots,1)=0$. Если $f(1,\ldots,1)=0$, то $f(x,\ldots,x)=\neg x$ и лемма доказана. Пусть теперь $f(1,\ldots,1)=1$. Тогда $f(x,\ldots,x)=1$ и, следовательно, $1\in [f,g]$.

Лемма. Если $f \notin \mathcal{T}_0$ и $g \notin \mathcal{T}_1$, то либо $\neg \in [f]$, либо $0, 1 \in [f, g]$.

Доказательство. Имеем f(0,...,0) = 1 и g(1,...,1) = 0. Если f(1,...,1) = 0, то $f(x,...,x) = \neg x$ и лемма доказана. Пусть теперь f(1,...,1) = 1. Тогда f(x,...,x) = 1 и, следовательно, $1 \in [f, g]$. Остается показать, что $0 \in [f, g]$:

$$g(f(x,...,x),...,f(x,...,x)) = g(1,...,1) = 0.$$

Лемма. Если $f \notin \mathcal{T}_0$ и $g \notin \mathcal{T}_1$, то либо $\neg \in [f]$, либо $0, 1 \in [f, g]$.

Доказательство. Имеем $f(0,\ldots,0)=1$ и $g(1,\ldots,1)=0$. Если $f(1,\ldots,1)=0$, то $f(x,\ldots,x)=\neg x$ и лемма доказана. Пусть теперь $f(1,\ldots,1)=1$. Тогда $f(x,\ldots,x)=1$ и, следовательно, $1\in [f,g]$. Остается показать, что $0\in [f,g]$:

$$g(f(x,...,x),...,f(x,...,x)) = g(1,...,1) = 0.$$

Следствие. Если $f \notin \mathcal{T}_0$, $g \notin \mathcal{T}_1$, $p \notin \mathcal{S}$ и $q \notin \mathcal{M}$, то либо ¬, 0, 1 ∈ [f, p], либо ¬, 0, 1 ∈ [f, g, q].

Лемма. Если $f \notin \mathcal{L}$, то &∈ $[f, 0, 1, \neg]$.

Лемма. Если $f \notin \mathcal{L}$, то &∈ $[f, 0, 1, \neg]$.

Доказательство. Пусть $f \notin \mathcal{L}$.

Лемма. Если $f \notin \mathcal{L}$, то &∈ $[f, 0, 1, \neg]$.

Доказательство. Пусть $f \notin \mathcal{L}$. Тогда многочлен Жегалкина содержит конъюнкцию двух переменных, например x_1 и x_2 , откуда имеем $f(x_1, \ldots, x_n) =$

$$x_1x_2f_1(x_3,\ldots,x_n)+x_1f_2(x_3,\ldots,x_n)+x_2f_3(x_3,\ldots,x_n)+f_4(x_3,\ldots,x_n),$$
 причем $f_1(\sigma_3,\ldots,\sigma_n)=1$ для некоторого $(\sigma_3,\ldots,\sigma_n).$

Лемма. Если $f \notin \mathcal{L}$, то &∈ $[f, 0, 1, \neg]$.

Доказательство. Пусть $f \notin \mathcal{L}$. Тогда многочлен Жегалкина содержит конъюнкцию двух переменных, например x_1 и x_2 , откуда имеем $f(x_1, \ldots, x_n) =$

$$x_1x_2f_1(x_3,\ldots,x_n)+x_1f_2(x_3,\ldots,x_n)+x_2f_3(x_3,\ldots,x_n)+f_4(x_3,\ldots,x_n),$$
 причем $f_1(\sigma_3,\ldots,\sigma_n)=1$ для некоторого $(\sigma_3,\ldots,\sigma_n).$

Тогда
$$g(x_1, x_2) = f(x_1, x_2, \sigma_3, \dots, \sigma_n) = x_1 x_2 + \alpha x_1 + \beta x_2 + \gamma$$
, и

Лемма. Если $f \notin \mathcal{L}$, то &∈ $[f, 0, 1, \neg]$.

Доказательство. Пусть $f \notin \mathcal{L}$. Тогда многочлен Жегалкина содержит конъюнкцию двух переменных, например x_1 и x_2 , откуда имеем $f(x_1, \ldots, x_n) =$

$$x_1x_2f_1(x_3,\ldots,x_n)+x_1f_2(x_3,\ldots,x_n)+x_2f_3(x_3,\ldots,x_n)+f_4(x_3,\ldots,x_n),$$
 причем $f_1(\sigma_3,\ldots,\sigma_n)=1$ для некоторого $(\sigma_3,\ldots,\sigma_n).$ Тогда $g(x_1,x_2)=f(x_1,x_2,\sigma_3,\ldots,\sigma_n)=x_1x_2+\alpha x_1+\beta x_2+\gamma,$ и $g(x_1+\beta,x_2+\alpha)+(\alpha\beta+\gamma)=(x_1+\beta)(x_2+\alpha)+\alpha(x_1+\beta)+\beta(x_2+\alpha)+\gamma+\alpha\beta+\gamma=x_1$ & x_2 .

Лемма. Если $f \notin \mathcal{L}$, то &∈ $[f, 0, 1, \neg]$.

Лемма. Если $f \notin \mathcal{L}$, то &∈ $[f, 0, 1, \neg]$.

Следствие. Если $f \notin \mathcal{T}_0$, $g \notin \mathcal{T}_1$, $p \notin \mathcal{S}$ и $q \notin \mathcal{M}$, $r \notin \mathcal{L}$ то либо $[f, p, r] = \mathcal{F}$, либо $[f, g, q, r] = \mathcal{F}$.