

สาขาวิชาวิทยาการคอมพิวเตอร์ คณะวิทยาศาสตร์และเทคโนโลยี

มหาวิทยาลัยธรรมศาสตร์ ศูนย์รังสิต

ข้อสอบโครงการคอมพิวเตอร์โอลิมปิก สอวน. ค่าย 2/2563

วันเสาร์ที่ 14 สิงหาคม 2564

ระบบขนส่งผู้ป่วย (PublicHealthNetwork)

ในสถานการณ์โรคระบาดเชื้อไวรัส กระทรวงสาธารณสุขประเทศหนึ่งต้องการวางแผนระบบขนส่งผู้ป่วย ระหว่างจังหวัด สำหรับกรณีที่จำนวนผู้ป่วยในจังหวัดใดที่มีจำนวนเกินกว่าระบบสาธารณะสุขของจังหวัดนั้นจะ รองรับได้ไหว ก็สามารถกระจายผู้ป่วยไปรักษายังจังหวัดอื่นที่ยังมีความสามารถรองรับผู้ป่วยได้ โดยปัจจัย สำคัญที่ต้องจัดหาในระบบขนส่งนี้คือรถพยาบาลที่จะต้องจัดเตรียมไว้เพื่อขนส่งผู้ป่วยระหว่างจังหวัดให้ เพียงพอ โดยในแต่ละจังหวัดจะมีการบันทึกจำนวนผู้ติดเชื้อรวมจนถึงปัจจุบันไว้ และทางกระทรวงๆ มีนโยบาย ในการจัดเตรียมรถพยาบาลว่า <u>จำนวนรถพยาบาลที่ต้องเตรียมระหว่างจังหวัดหนึ่ง</u>ไปยังอีกจังหวัดหนึ่งมีค่า เท่ากับ **ผลรวม**ของผลต่างระหว่างขีดจำกัดของระบบสาธารณสุข (แทนด้วย l) และจำนวนผู้ติดเชื้อ (แทนด้วย l) ดังตัวอย่างด้านล่างนี้

จากตัวอย่างด้านบนนี้ ระบบสาธารณสุขของจังหวัด A ยังมีชีดจำกัดรองรับผู้ป่วยได้อีก 25 คน คำนวณจาก $r_A=l_A-i_A=75-50=25$ ในขณะที่จังหวัด B ยังสามารถรองรับได้ถึง 80 คำนวณได้จาก $r_B=$

 $l_B-i_B=100-20=80\,$ ที่ จะคาดเดาได้ว่ารถพยาบาลที่ต้องเตรียมเพื่อขนส่งคนไข้ระหว่างจังหวัด A และ B คือ $r_A+r_B=80+25=105$ คัน ในขณะที่จังหวัด C ระบบสาธารณสุขไม่สามารถรองรับผู้ป่วย ได้แล้วเนื่องจากขีดจำกัดของระบบสาธารณสุขมีค่าเป็นจำนวนน้อยกว่าหรือเท่ากับ 0 คือ -10 ในกรณีนี้จำนวน รถพยาบาลที่ต้องเตรียม (ระหว่างจังหวัด A และ C) จะมีค่าเท่ากับ 25+1=26 เท่านั้น

หมายเหตุ ในการคำนวณเพื่อหาผลรวมของค่า r ระหว่าง 2 เมือง หากค่า r มีค่าน้อยกว่าหรือเท่ากับ 0 ให้ ปรับค่า r นั้นให้มีค่าเท่ากับ 1 ก่อนคำนวนผลรวมเสมอ

กระทรวงๆ มีนโยบายอีกว่าจะต้องใช้งบในการดำเนินการในระบบนี้**น้อยที่สุด** จึงได้มอบหมายให้คุณ ซึ่งรับอาสาพัฒนาโปรแกรมให้กับกระทรวงๆ เขียนโปรแกรมที่มีประสิทธิภาพเพื่อหาว่าสำหรับเครือข่ายของ ระบบขนส่งผู้ป่วยที่ต้องเชื่อมโยงทุก ๆ จังหวัด จะใช้รถพยาบาลน้อยที่สุดกี่คันในระบบขนส่งผู้ป่วยนี้

ข้อมูลรับเข้า ข้อมูลรับเข้ามีทั้งหมด N+M+1 บรรทัด

- 1. **บรรทัดที่ 1** รับจำนวนเต็ม 2 จำนวน คือ N แทนจำนวนจังหวัด และ M แทนจำนวนเส้นทางเชื่อมต่อ ที่เป็นไปได้ระหว่างจังหวัด
- 2. **บรรทัดที่ 2 ถึง** N+1 ในแต่ละบรรทัดรับค่าจำนวนเต็ม 3 จำนวนคือ j แทนดัชนีของจังหวัด j, i_j แทนจำนวนผู้ติดเชื้อในจังหวัด j และ l_j คือขีดจำกัดของระบบสาธารณสุขของจังหวัด j โดยที่ $j \in \{0,1,\dots,N-1\}$
- บรรทัดที่ N+2 ถึง N+M+1 ในแต่ละบรรทัดรับค่าตัวเลขจำนวน 2 จำนวนแทนเลขดัชนีของจังหวัด
 2 จังหวัดที่มีถนนเชื่อมถึงกันได้

ข้อมูลส่งออก

เลขจำนวนเต็ม 1 จำนวนแทนจำนวนรถพยาบาลที่น้อยที่สุดที่ใช้สร้างเครือข่ายสาธารณสุขนี้

ตัวอย่างที่ 1

ข้อมูลนำเข้า	ข้อมูลส่งออก
3 2	131
0 50 75	
1 20 100	
2 120 110	
0 1	
0 2	

ตัวอย่างที่ 2

ข้อมูลนำเข้า	ข้อมูลส่งออก
8 9	548
0 40 100	
1 70 50	
2 10 100	
3 40 120	
4 40 100	
5 120 70	
6 200 200	
7 10 200	
0 1	
0 2	
1 3	
1 4	
2 5	
4 5	
5 7	
5 6	
6 7	

ตัวอย่างที่ 3

ข้อมูลนำเข้า	ข้อมูลส่งออก
4 6	61
0 50 100	
1 100 50	
2 13 20	
3 40 20	
0 1	
0 2	
0 3	
1 2	
1 3	
2 3	

ข้อกำหนด

หัวข้อ	เงื่อนไข
ข้อมูลนำเข้า	Standard Input (คีย์บอร์ด)
ข้อมูลส่งออก	Standard Output (จอภาพ)
ระยะเวลาสูงสุดที่ใช้ในการประมวลผล	1 วินาที
หน่วยความจำสูงสุดที่ใช้ในการประมวลผล	64 MB
คะแนนสูงสุดของโจทย์	100 คะแนน
เงื่อนไขการรันโปรแกรม	โปรแกรมจะต้องคอมไพล์ผ่าน

ข้อมูลเพิ่มเติมเกี่ยวกับชุดทดสอบ

หัวข้อ	ช่วงของค่าที่เป็นไปได้
N	2 <= N <= 3,000
М	1 <= M <= 1,200,000

ข้อกำหนดอื่น ๆ

ผู้เข้าแข่งขันต้องระบุชื่อแฟ้มข้อมูลและส่วนหัวของโปรแกรมให้สอดคล้องกับภาษาและคอมไพเลอร์ที่ใช้ ดังนี้

ภาษา C	ภาษา C++
/*	/*
TASK: PublicHealthNetwork.c	TASK: PublicHealthNetwork.cpp
LANG: C	LANG: C++
AUTHOR: YourName YourLastName	AUTHOR: YourName YourLastName
ID: YourlD	ID: YourID
*/	*/