1 в презентации есть формула для фиксированного количества частиц A я нашёл для не фиксированного количества частиц может быть её как-то тоже задействовать надо

Thermodynamic explanation by Gibbs potencial

- Gibbs potential G = U + pV TS corresponds to the equilibrium of the thermodynamic system at fixed temperature, pressure and number of particles.
- In differential form: $\mathbf{d}G = -\mathbf{S}\mathbf{d}T + V\mathbf{d}p$, so thermal expansion coefficient $\alpha = (\partial V/\partial T)p/V$ can be expressed as: $\alpha = (1/V)\{\partial 2G/(\partial T\partial p)\}.$
- By the replacing variables, one can get final result: $\alpha = -(1/V)\{\partial S/\partial p\}$.
- In almost all solids $\alpha > 0$, because repulsive inter-atomic forces in crystal lattice act at short-range distance, while attraction forces act at long-range distance. Obtained expression means that usually the **entropy is lesser with greater pressure**.

Определение [править | править код]

Классическим определением энергии Гиббса является выражение

G = U + PV - TS

где U — внутренняя энергия, P — давление среды, V — объём, T — абсолютная температура среды, S — энтропия.

Дифференциал энергии Гиббса для системы с постоянным числом частиц, выраженный в собственных переменных — через давление P и температуру T

dG = -S dT + V dP.

Для системы с переменным числом частиц этот дифференциал записывается так:

 $dG = -S\,dT + V\,dP + \mu\,dN.$

3десь $\mu =$ химический потенциал, который можно определить как энергию, которую необходимо затратить, чтобы добавить в систему ещё одну частицу.