

Le contexte

Entreprise française dans l'agroalimentaire

Stratégie de développement à l'international

Exportation de ses produits, pas de production dans les pays ciblés

Problématique

Quels sont les pays propices à une insertion dans le marché du poulet ?

Les données choisies

Croissance de la population entre 2016 et 2017

PIB par habitant

Disponibilité alimentaire en calories (Kcal/personne/jour)

Disponibilité de protéines en quantité (g/personne/jour)

Proportion de protéines d'origine animale dans la disponibilité de protéines total

Proportion de protéines issue de la viande de volailles

Méthodes d'analyse utilisées

Classification hiérarchique: dendrogramme

Méthode de classification : kmeans

ACP : analyse en composante principale

Tests statistiques:

- Test d'adéquation : Kolmogorov Smirnov
- Test de comparaison sur deux clusters choisis : égalité des variances et des moyennes

Création des clusters

Le dendrogramme

• Création de 5 clusters

Algorithme K-Means

Identification de deux clusters qui se démarquent

Les centres de classes

	pays	croissance_pop	PIB_hab	prot_anim_prot_tot	prot_hab	prot_volaille	kcal_hab	cluster
0	Arménie	0.29	3914.525246	46.83	35634.95	5.34	1118360.0	5
1	Afghanistan	2.58	513.085978	19.88	20494.75	1.00	747155.0	2
2	Albanie	-0.08	4514.204908	54.37	43106.50	3.76	1236985.0	5
3	Algérie	2.07	4109.701336	28.92	33788.05	2.44	1216910.0	5

Permet de caractériser chacun des clusters et d'en choisir deux à étudier plus en profondeur

Caractéristiques des clusters

- Cluster 1 : 23 pays
- Cluster 2 : 47 pays
- Cluster 3 : 25 pays
- Cluster 4 : 12 pays
- Cluster 5: 65 pays

Nous allons sélectionné en priorité les pays du **cluster 3** et dans un second temps les pays du **cluster 5**.

Analyse en composante principale

- Critère de Kaiser = (100/6) = 16.6%
- Conservation des composantes F1 et
 F2
- Besoin de deux composantes minimum afin de constituer un plan

Cercle des corrélations

- La croissance de la population contribue fortement à la formation de F2
- F1 réunit les variables concernant la disponibilité alimentaire
- Corrélation entre le PIB par habitant et la disponibilité alimentaire en protéines et en calories

Projection des individus

- Cluster 3 qui se démarque
- Intérêt pour le cluster 5 qui se confirme

Tests statistiques

Kolmogorov Smirnov

- Variables continues
- α = 0.05
- N = 172
- $1.358 \div \sqrt{172} = 0.10$

Notre valeur D doit être inférieur à 0.10 afin de déterminer que la distribution suit une loi normale (hypothèse H0)

	α							
n	0.001	0.01	0.02	0.05	0.1			
1		0.99500	0.99000	0.97500	0.95000			
2	0.97764	0.92930	0.90000	0.84189	0.77639			
3	0.92063	0.82900	0.78456	0.70760	0.63604			
4	0.85046	0.73421	0.68887	0.62394	0.56522			
5	0.78137	0.66855	0.62718	0.56327	0.50945			
6	0.72479	0.61660	0.57741	0.51926	0.46799			
7	0.67930	0.57580	0.53844	0.48343	0.43607			
8	0.64098	0.54180	0.50654	0.45427	0.40962			
9	0.60846	0.51330	0.47960	0.43001	0.38746			
10	0.58042	0.48895	0.45662	0.40962	0.36866			
11	0.55588	0.46770	0.43670	0.39122	0.35242			
12	0.53422	0.44905	0.41918	0.37543	0.33815			
13	0.51490	0.43246	0.40362	0.36143	0.32548			
14	0.49753	0.41760	0.38970	0.34890	0.31417			
15	0.48182	0.40420	0.37713	0.33760	0.30397			
16	0.46750	0.39200	0.36571	0.32733	0.29471			
17	0.45440	0.38085	0.35528	0.31796	0.28627			
18	0.44234	0.37063	0.34569	0.30936	0.27851			
19	0.43119	0.36116	0.33685	0.30142	0.27135			
20	0.42085	0.35240	0.32866	0.29407	0.26473			
25	0.37843	0.31656	0.30349	0.26404	0.23767			
30	0.34672	0.28988	0.27704	0.24170	0.21756			
35	0.32187	0.26898	0.25649	0.22424	0.20184			
40	0.30169	0.25188	0.23993	0.21017	0.18939			
45	0.28482	0.23780	0.22621	0.19842	0.17881			
50	0.27051	0.22585	0.21460	0.18845	0.16982			
Over 50	1.94947/√n	1.62762/√n	1.51743/√n	1.35810/√n	1.22385/√n			

Test d'adéquation : la croissance de la population

- Kolmogorov Smirnov
- D = 0.05
- On ne peut pas rejeter l'hypothèse nulle
 H0

 La croissance de la population suit la loi normale

Test d'adéquation : la proportion de protéines animales

Kolmogorov Smirnov

• D = 0.088

On ne peut pas rejeter l'hypothèse nulle
 H0

 La proportion de protéines animales suit la loi normale

Test d'adéquation : le PIB par habitant

- Kolmogorov Smirnov
- D = 0.244

On ne peut rejeter l'hypothèse nulle H0

 Le PIB par habitant ne suit pas la loi normale

Test d'adéquation : la disponibilité alimentaire en protéines

- Kolmogorov Smirnov
- D = 0.06
- On ne peut pas rejeter l'hypothèse nulle
 H0
- La disponibilité alimentaire en protéines suit la loi normale

Test d'adéquation : la disponibilité alimentaire en calories

- Kolmogorov Smirnov
- D = 0.07
- On ne peut pas rejeter l'hypothèse nulle
 H0
- La disponibilité alimentaire en calories suit la loi normale

Test d'adéquation : la proportion de protéines issue de la viande de volailles

- Kolmogorov Smirnov
- D = 0.09
- On ne peut pas rejeter l'hypothèse nulle
 H0

 La proportion de protéines issue de la viande de volailles suit la loi normale

Test de comparaison : égalités des variances et des moyennes

- Choix des clusters 3 et 5
- Egalité des variances : Test de Barlett si la distribution suit la loi normale
- Egalité des moyennes : Test de Student en cas d'égalité des variances sinon test de Welch*
- Dans le cas où la distribution d'une variable ne suit pas une loi normale, on effectuera le test de Wilcoxon-Mann-Whitney

*<u>Le test t de Welch</u> est une adaptation du test t de Student. Il peut être utilisé notamment pour tester statistiquement l'hypothèse d'égalité de deux moyennes avec deux échantillons de variances inégales. Il s'agit en fait d'une solution approchée du problème de Behrens–Fisher.

Déterminer si la différence est statistiquement significative

Valeur de p $\leq \alpha$: la différence entre les moyennes ou des variances est statistiquement significative (Rejeter H_0)

Valeur de p > α : la différence entre les moyennes ou des variances n'est pas statistiquement significative (Impossible de rejeter H0)

$$\alpha = 0.05$$

Test de comparaison : la croissance de la population

EGALITÉ DES VARIANCES

P-value = 0,12

On ne peut pas rejeter l'hypothèse d'égalité des variances : Test de Student

EGALITÉ DES MOYENNES : TEST DE STUDENT

P-value = 0,016

On peut rejeter l'hypothèse d'égalité des moyennes

Différence significative des moyennes de la croissance de la population entre le cluster 3 et le cluster 5

Test de comparaison : la proportion de protéines animales

EGALITÉ DES VARIANCES

P-value = 0,22

On ne peut pas rejeter l'hypothèse d'égalité des variances : Test de Student

EGALITÉ DES MOYENNES : TEST DE STUDENT

P-value = $7,038^{-6}$

On peut rejeter l'hypothèse d'égalité des moyennes

La moyenne de la proportion de protéines animales entre les deux clusters est différente

Test de comparaison : le PIB par habitant

Test de Mann-Whitney

P-value = 5.53^{-13}

On ne peut pas rejeter l'hypothèse d'égalité des variances

Test de comparaison : la disponibilité alimentaire en protéines

EGALITÉ DES VARIANCES

P-value = 0,5

On ne peut pas rejeter l'hypothèse d'égalité des variances

EGALITÉ DES MOYENNES : TEST DE STUDENT

P-value = $8,49^{-08}$

On peut rejeter l'hypothèse d'égalité des moyennes

La moyenne de la disponibilité alimentaire en protéines entre les deux clusters est différente

Test de comparaison : la disponibilité alimentaire en calories

EGALITÉ DES VARIANCES

P-value = 0,016

On peut rejeter l'hypothèse d'égalité des variances

TEST DE WELCH

P-value = $3,98^{-08}$

On peut rejeter l'hypothèse d'égalité H0

La moyenne de la disponibilité alimentaire en calories entre les deux clusters est différente

Test de comparaison : la proportion de protéines de volaille

EGALITÉ DES VARIANCES

P-value = 0,56

On ne peut pas rejeter l'hypothèse d'égalité des variances

EGALITÉ DES MOYENNES : TEST DE STUDENT

P-value = 0,21

On ne peut pas rejeter l'hypothèse d'égalité des moyennes

La moyenne de la proportion de protéines issue de la viande de volaille entre les deux clusters est identique

Conclusion et recommandations

Les pays sélectionnés

Avantages

- Pays ouvert à l'importation
- Privilégier les pays européens de la liste : logistique facilitée, libre-échange au sein de l'Union Européenne
- Pays à haut potentiel commerciale
- Situation politique stable
- USA et Australie : opportunité économique développée et une clientèle potentiellement très élargie
- Valorisation du Made in France dans ces pays
- Etude des pays européens et du Moyen-Orient du cluster 5 pouvant être également des opportunités économiques : Chypre, Estonie, Koweït, Malte, Pologne, Portugal, Arabie Saoudite...