Московский государственный технический университет имени Н. Э. Баумана Кафедра «Системы обработки информации и управления»

Лабораторная работа №2 по курсу «Методы машинного обучения» на тему:

«Изучение библиотек обработки данных»

Выполнил:

Студент ИУ5-24М

Черната Н. С.

Задание

Часть 1.

Выполните первое демонстрационное задание "demo assignment" под названием "Exploratory data analysis with Pandas" со страницы курса https://mlcourse.ai/assignments

Условие задания -

https://nbviewer.jupyter.org/github/Yorko/mlcourse_open/blob/master/jupyter_english/assignments_demo/assignment01_pandas_uci_adult.ipynb?flush_cache=true

Часть 2.

Выполните следующие запросы с использованием двух различных библиотек - Pandas и PandaSQL:

- один произвольный запрос на соединение двух наборов данных
- один произвольный запрос на группировку набора данных с использованием функций агрегирования

Сравните время выполнения каждого запроса в Pandas и PandaSQL.

In [1]:	<pre>import numpy as np import pandas as pd</pre>															
In [2]:		<pre>data = pd.read_csv('MMO/lab2/adult.data.csv') data.head()</pre>														
Out[2]:		age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race	sex	capital- gain	capital- loss	hours- per-week	native- country	sal
	0	39	State-gov	77516	Bachelors	13	Never- married	Adm-clerical	Not-in-family	White	Male	2174	0	40	United- States	<=
	1	50	Self-emp- not-inc	83311	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White	Male	0	0	13	United- States	<=
	2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	Male	0	0	40	United- States	<=
	3	53	Private	234721	11th	7	Married-civ- spouse	Handlers- cleaners	Husband	Black	Male	0	0	40	United- States	<=
	4	28	Private	338409	Bachelors	13	Married-civ- spouse	Prof-specialty	Wife	Black	Female	0	0	40	Cuba	<=
In [3]:	dat	a['se	ex'].value	_counts	()											
Out[3]:	Fem	ale	21790 10771 ex, dtype:	int64												

```
In [5]: float((data['native-country'] == 'Germany').sum()) / data.shape[0]
 Out[5]: 0.004207487485028101
 The average age of the rich: 44.0 +- 10.5 years, poor - 37.0 +- 14.0 years.
  In [7]: data.loc[data['salary'] == '>50K', 'education'].unique()
 Out[7]: array(['HS-grad', 'Masters', 'Bachelors', 'Some-college', 'Assoc-voc', 
'Doctorate', 'Prof-school', 'Assoc-acdm', '7th-8th', '12th', 
'10th', '11th', '9th', '5th-6th', '1st-4th'], dtype=object)
 Race: Amer-Indian-Eskimo, sex: Female
                   119.000000
           mean
                     37,117647
           min
                     17,000000
                     27.000000
           50%
                     36.000000
           75%
                     46.000000
           max
                     80.000000
           Name: age, dtype: float64
           Race: Amer-Indian-Eskimo, sex: Male
                   192.000000
           count
 In [10]: data.loc[(data['sex'] == 'Male') 8
                (data['marital-status'].isin(['Never-married',
                                                  Separated',
                                                'Divorced'
                                                 'Widowed'])), 'salary'].value_counts()
Out[10]: <=50K 7552
           >50K
                     697
           Name: salary, dtype: int64
 Out[11]: <=50K 7576
           >50K
                    5965
           Name: salary, dtype: int64
 In [12]: data['marital-status'].value_counts()
 Out[12]: Married-civ-spouse
           Never-married
                                      10683
           Divorced
                                       4443
           Separated
                                       1025
           Widowed
                                       993
           Married-spouse-absent
Married-AF-spouse
                                       418
                                        23
           Name: marital-status, dtype: int64
In [13]: max_load = data['hours-per-week'].max()
          print("Max time - {0} hours./week.".format(max_load))
          \label{eq:num_worksholics} $$ num_worksholics = data[data['hours-per-week'] == max_load].shape[0] $$ print("Total number of such hard workers {0}".format(num_worksholics)) $$ $$
          rich_share = float(data[(data['hours-per-week'] == max_load)
    & (data['salary'] == '>50K')].shape[0]) / num_workaholics
print("Percentage of rich among them {0}%".format(int(100 * rich_share)))
          Max time - 99 hours./week.
          Total number of such hard workers 85
          Percentage of rich among them 29%
In [14]: pd.crosstab(data['native-country'], data['salary'],
                      values=data['hours-per-week'], aggfunc=np.mean).T
Out[14]:
                                                                       Cuba Dominican-
           native-
country
                         ? Cambodia Canada
                                                   China Columbia
                                                                                         Ecuador
                                                                                                             England ...
                                                                                                                         Portugal
                                                                                                                                            Scotland
                                                                                                  Salvador
            salarv
            <=50K</p>
40.164760
41.416667
37.914634
37.914634
37.381818
38.684211
37.985714
42.338235
38.041667
36.030928
40.483333
...
41.939394
38.470588
39.444444
             >50K 45.547945 40.000000 45.641026 38.900000 50.000000 42.440000 47.000000 48.750000 45.000000 44.533333 ... 41.500000 39.416667 46.666667
          2 rows × 42 columns
          4
```

```
Часть 2.
```

```
In [15]: user_usage = pd.read_csv('MMO/lab2/user_usage.csv')
    user_device = pd.read_csv('MMO/lab2/user_device.csv')
    devices = pd.read_csv('MMO/lab2/android_devices.csv')
```

Out[16]:

	outgoing_mins_per_month	outgoing_sms_per_month	monthly_mb	use_id	platform	device
0	21.97	4.82	1557.33	22787	android	GT-19505
1	1710.08	136.88	7267.55	22788	android	SM-G930F
2	1710.08	136.88	7267.55	22789	android	SM-G930F
3	94.46	35.17	519.12	22790	android	D2303
4	71.59	79.26	1557.33	22792	android	SM-G361F

In [17]: import pandasql as ps
 from pandasql import sqldf
 from datetime import datetime
 import time

Смержено за: 0.0071 seconds

```
In [19]: pysqldf = lambda q: sqldf(q, globals())
q = """
SELECT * FROM user_usage, user_device WHERE user_usage.use_id = user_device.use_id;
"""
tic = time.perf_counter()
joined = pysqldf(q)
toc = time.perf_counter()
print(f"Смержено за: {toc - tic:0.4f} seconds")
```

Смержено за: 0.0327 seconds

In [20]: joined.head()

Out[20]:

	outgoing_mins_per_month	outgoing_sms_per_month	monthly_mb	use_id	use_id	user_id	platform	platform_version	device	use_type_id
0	21.97	4.82	1557.33	22787	22787	12921	android	4.3	GT-19505	1
1	1710.08	136.88	7267.55	22788	22788	28714	android	6.0	SM-G930F	1
2	1710.08	136.88	7267.55	22789	22789	28714	android	6.0	SM-G930F	1
3	94.46	35.17	519.12	22790	22790	29592	android	5.1	D2303	1
4	71.59	79.26	1557.33	22792	22792	28217	android	5.1	SM-G361F	1

In [21]: joined.describe()

Out[21]:

	outgoing_mins_per_month	outgoing_sms_per_month	monthly_mb	use_id	use_id	user_id	platform_version	use_type_id
count	159.000000	159.000000	159.000000	159.000000	159.000000	159.000000	159.000000	159.000000
mean	203.331509	87.978742	4180.378616	22922.327044	22922.327044	25960.918239	5.554717	1.012579
std	248.660581	92.386434	5216.463795	76.511974	76.511974	6275.640431	0.828656	0.111799
min	0.500000	0.250000	0.000000	22787.000000	22787.000000	2873.000000	4.100000	1.000000
25%	70.070000	22.855000	1557.330000	22861.500000	22861.500000	24683.500000	5.000000	1.000000
50%	137.060000	62.850000	2076.450000	22931.000000	22931.000000	29366.000000	6.000000	1.000000
75%	241.035000	119.675000	5191.120000	22986.500000	22986.500000	29673.000000	6.000000	1.000000
max	1710.080000	540.600000	31146.670000	23053.000000	23053.000000	29725.000000	10.100000	2.000000

In [22]: joined.groupby("platform_version")["outgoing_mins_per_month"].describe()

Out[22]:

	count	mean	Sta	min	25%	30 %	13%	max
platform_version								
4.1	5.0	53.566000	34.298639	16.34	16.340	74.59	74.5900	85.97
4.2	1.0	189.100000	NaN	189.10	189.100	189.10	189.1000	189.10
4.3	3.0	119.030000	161.601371	21.97	25.755	29.54	167.5600	305.58
4.4	17.0	313.242353	335.849533	12.85	61.220	78.80	797.0600	797.06
5.0	17.0	179.453529	81.117511	61.43	123.200	143.81	249.2600	360.86
5.1	23.0	131.250000	70.153911	42.75	71.590	109.32	198.0500	248.95
6.0	88.0	203.891591	260.770789	0.50	67.150	145.55	244.8925	1710.08
7.0	2.0	689.590000	752.729311	157.33	423.460	689.59	955.7200	1221.85