

DEPARTAMENTO DE TEORÍA DE LA SEÑAL Y COMUNICACIONES Y SISTEMAS TELEMÁTICOS Y COMPUTACIÓN

GRADO EN INGENIERÍA AEROESPACIAL EN AERONAVEGACIÓN

Sistemas de Telecomunicación para la Navegación Aérea

Práctica 4: «Clutter»

Curso Académico 15/16

Mihaela I. Chidean

Antonio J. Caamaño

Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.

Fecha publicación: 28/04/2016

1. Objetivos y descripción de la práctica

El objetivo de esta práctica es que el alumno se familiarice con los diferentes conceptos relacionados con el clutter y que implemente varias funciones que realicen los cálculos necesarios para determinar parámetros relacionados con el funcionamiento del radar en presencia de clutter superficial o volumétrico.

1.1. Grupos

Los alumnos realizarán la práctica de manera individual.

1.2. Evaluación

Todas las prácticas de la asignatura relativas al bloque de *Surveillance* se evaluarán mediante la entrega de una **única memoria**, que será organizada en tantas secciones como prácticas se llevarán a cabo. La extensión máxima de la memoria es de **7** páginas, incluida la portada y la bibliografía empleada. Únicamente serán corregidas las memorias entregadas en formato pdf.

En la portada cada alumno deberá indicar claramente su nombre.

La fecha de entrega la memoria de prácticas es 5 de mayo de 2016.

Posibles penalizaciones sobre la nota de las prácticas 3 y 4:

■ Memoria entregada el día 6 de mayo de 2016:

5 puntos

■ Memoria entregada el día 7 de mayo de 2016 o sucesivos:

10 puntos

• La portada no incluye el nombre del autor:

5 puntos

1.3. Material

La práctica se realizará en el aula 009 del Edificio Laboratorio II.

2. Consideraciones previas

Para la correcta realización de esta práctica, el alumno empleará los materiales docentes utilizados en las clases de teoría impartidas los días 18 y 22 de abril de 2016.

3. Desarrollo de la práctica

3.1. Estudio de Ψ

Un radar en alta mar trabajando a una frecuencia central de 5,2GHz se ve afectado por clutter superficial causado por el mar $(S_{state} = 3)$.

Q1: Represente en una gráfica la relación entre $\Delta\Psi$ y ángulo de grazing de la onda incidente (Ψ) .

Q2: ¿Cuál es el ángulo crítico Ψ_c para este radar?

3.2. Clutter superficial

Implemente una función llamada radar_eq_c_sup.m que calcule la intensidad de señal recibida del clutter superficial en función de la potencia de los siguientes parámetros: P_t , G, A_e , σ^0 , A_c y R.

Considere un radar cuya frecuencia de operación es de 5,6GHz y la ganancia de la antena de transmisión es de 45dB. Este radar se ve afectado por clutter superficial caracterizado por $\sigma^0 = -20dB$. Considere que el ancho de haz del radar es de $\theta_B = 2^{\circ}$ y que el ancho de los pulsos empleados es de $\tau = 10ns$.

Q3: Represente en una gráfica la intensidad de señal recibida en función del ángulo de grazing para $\Psi < \pi/12$ radianes y considerando que el clutter está localizado a una distancia de 35km.

Q4: Represente en una gráfica la intensidad de señal recibida en función de la distancia entre el radar y el clutter para un ángulo de grazing de $\Psi = 2^{\circ}$.

3.3. Clutter volumétrico

Considere un radar cuya frecuencia de operación es de 5,6GHz, la ganancia de la antena de transmisión es de 45dB, la relación señal a clutter mínima es de 5dB y el ancho de pulso es de $\tau=10ns$. El objetivo del radar es un objeto volador con una sección eficaz del radar de $2m^2$. Sin embargo, la operación del radar se ve entorpecida por una lluvia uniforme que se puede caracterizar por el siguiente factor de reflectividad

$$Z = 200r^{1.6}$$

Q5: Represente en una gráfica el rango máximo de este radar en función de la cantidad de lluvia caída (*raifall rate*).

Q6: ¿Qué medidas se podrían llevar a cabo para incrementar el rango de detección de este radar?