Computer Graphics

P. Healy

CS1-08 Computer Science Bldg. tel: 202727 patrick.healy@ul.ie

Spring 2021-2022

Outline

- Drawing Algorithms
 - Line Drawing Algorithms: §6

Outline

- Drawing Algorithms
 - Line Drawing Algorithms: §6

Which pixels?

Which pixels do we "light up" when drawing the line **segment** (0,4) to (13,0)? (Note pixel "surrounds" the (x,y) value.)

A line-drawing demo

- The equation of a line is y = mx + c, where $m = \frac{\Delta y}{\Delta x}$ is its slope and c is its y-intercept (when x = 0)
- The line containing $p=(x_p,y_p)$ and $q=(x_q,y_q)$ has slope $m=\frac{y_q-y_p}{x_q-x_p}$
- For the same line we can figure out c since every (x, y) on must satisfy

$$\frac{(y - y_p)}{(x - x_p)} = m$$
$$(y - y_p) = m(x - x_p)$$
$$y = mx + (y_p - mx_p)$$

- The equation of a line is y = mx + c, where $m = \frac{\Delta y}{\Delta x}$ is its slope and c is its y-intercept (when x = 0)
- The line containing $p=(x_p,y_p)$ and $q=(x_q,y_q)$ has slope $m=rac{y_q-y_p}{x_q-x_p}$
- For the same line we can figure out c since every (x, y) on must satisfy

$$\frac{(y - y_p)}{(x - x_p)} = m$$
$$(y - y_p) = m(x - x_p)$$
$$y = mx + (y_p - mx_p)$$

- The equation of a line is y = mx + c, where $m = \frac{\Delta y}{\Delta x}$ is its slope and c is its y-intercept (when x = 0)
- The line containing $p=(x_p,y_p)$ and $q=(x_q,y_q)$ has slope $m=\frac{y_q-y_p}{x_q-x_p}$
- For the same line we can figure out c since every (x, y) on must satisfy

$$\frac{(y - y_p)}{(x - x_p)} = m$$
$$(y - y_p) = m(x - x_p)$$
$$y = mx + (y_p - mx_p)$$

Another way to look on this is

$$c = y - mx|_{(x_q, y_q)} = y_q - mx_q$$

- The equation of a line is y = mx + c, where $m = \frac{\Delta y}{\Delta x}$ is its slope and c is its y-intercept (when x = 0)
- The line containing $p=(x_p,y_p)$ and $q=(x_q,y_q)$ has slope $m=rac{y_q-y_p}{x_q-x_p}$
- For the same line we can figure out c since every (x, y) on must satisfy

$$\frac{(y - y_p)}{(x - x_p)} = m$$
$$(y - y_p) = m(x - x_p)$$
$$y = mx + (y_p - mx_p)$$

- If slope is $m = \frac{\Delta y}{\Delta x}$ and we're "standing" on line then advancing Δx units in x-direction and Δy units in y-direction brings us back on to line
- If we advance pixel in x-direction then we must advance
 pixels in y-direction to compensate
- To draw a line segment between two points we start at one end point and move towards the other as follows:
 - If line has ______ then we "sample" at (step along) successive values of ____ and

$$y_{k+1} = y_k + m$$

• If the line has $\underbrace{\hspace{1cm}}$ then $\frac{1}{m}$ is small and so we sample successively on $\underbrace{\hspace{1cm}}$ using

$$X_{k+1} = X_k + \frac{1}{m}$$

- If slope is $m = \frac{\Delta y}{\Delta x}$ and we're "standing" on line then advancing Δx units in x-direction and Δy units in y-direction brings us back on to line
- If we advance pixel in x-direction then we must advance
 pixels in y-direction to compensate
- To draw a line segment between two points we start at one end point and move towards the other as follows:
 - If line has ______ then we "sample" at (step along) successive values of ___ and
 - $y_{k+1} = y_k + m$
 - If the line has \bigcup then $\frac{1}{m}$ is small and so
 - we sample successively on \bigcup using
 - $x_{k+1} = x_k + \frac{1}{m}$
- This is much faster than solving y = mx + c repeatedly

- If slope is $m = \frac{\Delta y}{\Delta x}$ and we're "standing" on line then advancing Δx units in x-direction and Δy units in y-direction brings us back on to line
- If we advance pixel in x-direction then we must advance
 pixels in y-direction to compensate
- To draw a line segment between two points we start at one end point and move towards the other as follows:
 - If line has then we "sample" at (step along) successive values of and

$$y_{k+1} = y_k + m$$

• If the line has then $\frac{1}{m}$ is small and so we sample successively on using

$$x_{k+1} = x_k + \frac{1}{m}$$

- If slope is $m = \frac{\Delta y}{\Delta x}$ and we're "standing" on line then advancing Δx units in x-direction and Δy units in y-direction brings us back on to line
- If we advance pixel in x-direction then we must advance
 pixels in y-direction to compensate
- To draw a line segment between two points we start at one end point and move towards the other as follows:
 - If line has then we "sample" at (step along) successive values of and

$$y_{k+1} = y_k + m$$

• If the line has then $\frac{1}{m}$ is small and so we sample successively on using

$$x_{k+1} = x_k + \frac{1}{m}$$

- If slope is $m = \frac{\Delta y}{\Delta x}$ and we're "standing" on line then advancing Δx units in x-direction and Δy units in y-direction brings us back on to line
- If we advance pixel in x-direction then we must advance
 pixels in y-direction to compensate
- To draw a line segment between two points we start at one end point and move towards the other as follows:
 - If line has then we "sample" at (step along) successive values of and

$$y_{k+1} = y_k + m$$

• If the line has then $\frac{1}{m}$ is small and so we sample successively on using

$$x_{k+1} = x_k + \frac{1}{m}$$

- If slope is $m = \frac{\Delta y}{\Delta x}$ and we're "standing" on line then advancing Δx units in x-direction and Δy units in y-direction brings us back on to line
- If we advance pixel in x-direction then we must advance
 pixels in y-direction to compensate
- To draw a line segment between two points we start at one end point and move towards the other as follows:
 - If line has then we "sample" at (step along) successive values of and

$$y_{k+1} = y_k + m$$

• If the line has then $\frac{1}{m}$ is small and so we sample successively on using

$$x_{k+1} = x_k + \frac{1}{m}$$

```
void lineDDA (int x0, int y0, int xEnd, int yEnd)
  int dx = xEnd - x0, dy = yEnd - y0, steps, k;
  float xIncrement, yIncrement, x = x0, y = y0;
  if (fabs(dx) > fabs(dy)) steps = fabs (dx);
  else steps = fabs (dy);
  xIncrement = float (dx) / float (steps);
  vIncrement = float (dy) / float (steps);
  setPixel (round (x), round (y)); // round(x) = in
  for (k = 0; k < steps; k++) {
   x += xIncrement;
   y += yIncrement;
    setPixel (round (x), round (y));
```

```
void lineDDA (int x0, int y0, int xEnd, int yEnd)
  int dx = xEnd - x0, dy = yEnd - y0, steps, k;
  float xIncrement, yIncrement, x = x0, y = y0;
  if (fabs(dx) > fabs(dy)) steps = fabs (dx);
  else steps = fabs (dy);
  xIncrement = float (dx) / float (steps);
  vIncrement = float (dy) / float (steps);
  setPixel (round (x), round (y)); // round(x) = in
  for (k = 0; k < steps; k++) {
   x += xIncrement;
   y += yIncrement;
    setPixel (round (x), round (y));
```

```
void lineDDA (int x0, int y0, int xEnd, int yEnd)
  int dx = xEnd - x0, dy = yEnd - y0, steps, k;
  float xIncrement, yIncrement, x = x0, y = y0;
  if (fabs(dx) > fabs(dy)) steps = fabs (dx);
  else steps = fabs (dy);
  xIncrement = float (dx) / float (steps);
  vIncrement = float (dy) / float (steps);
  setPixel (round (x), round (y)); // round(x) = in
  for (k = 0; k < steps; k++) {
   x += xIncrement;
   y += yIncrement;
    setPixel (round (x), round (y));
```

Bresenham's Line-Drawing Algorithm

- DDA requires floating point arithmetic
- Bresenham's algorithm requires only (much faster) integer calculations
- The general idea also works for circles and other curves
- Idea: as with prev. alg., from current pixel (x_k, y_k) , we need to decide where to go to next
- Assuming (w.l.o.g.) that |m| < 1, and so we will **sample** at successive values of x again but increasing x
- That is with $x_{k+1} = x_k + 1$; find the best choice for y_{k+1}

- Given x co-ordinate of $x_k + 1$, what is **best** y value, $y_{k+1} = y_k$ or $y_{k+1} = y_k + 1$ (for the previous line)?
- The **exact** value is $y = m(x_k + 1) + c$
- So we should choose the value closest to this as best
- The two differences or errors are:

$$d_l = y - y_k$$

= $m(x_k + 1) + c - y_k$, and
 $d_u = y_k + 1 - y$
= $y_k + 1 - m(x_k + 1) - c$

• $d_l > d_u \rightarrow d_l - d_u > 0$ so sign tells us which is larger; then combining these

$$d_l - d_u = 2m(x_k + 1) - 2y_k + 2c - 1$$

- In $d_l d_u = 2m(x_k + 1) 2y_k + 2c 1$ we still have $m = \frac{\Delta y}{\Delta x}$ which is a **real** no.; try fix this
- If we assume that $\Delta x > 0$ (always scan from left to right in x) then multiply through by Δx . Let \bigcirc be the \bigcirc predicate:

$$p_k = \Delta x (d_l - d_u)$$

= $2\Delta y x_k - 2\Delta x y_k + C$

has the same sign as before, where $C = 2\Delta y + 2c\Delta x - \Delta x$ is a **constant** throughout

- So $p_k > 0 \Rightarrow d_l > d_u$ and the upper y, y_{k+1} , is closest
- Having decided on y_k , compute p_k to find the better y_{k+1}
- Likewise, computing $p_{k+1} = 2\Delta y x_{k+1} 2\Delta x y_{k+1} + C$ tells us what y_{k+2} to choose at $x = x_{k+2}$

- Can we squeeze any more juice from this?
- Subtracting successive values of p:

$$p_{k+1} - p_k = 2\Delta y x_{k+1} - 2\Delta x y_{k+1} + C - (2\Delta y x_k - 2\Delta x y_k + C)$$

$$= 2\Delta y (x_{k+1} - x_k) - 2\Delta x (y_{k+1} - y_k)$$

$$= 2\Delta y - 2\Delta x (y_{k+1} - y_k)$$

and

$$p_{k+1} = p_k + 2\Delta y - 2\Delta x(y_{k+1} - y_k)$$

• The initial condition is (see p_k on prev. slide)

$$p_0 = 2\Delta y x_0 - 2\Delta x y_0 + 2\Delta y + 2c\Delta x - \Delta x$$
$$= 2\Delta y - \Delta x$$

since
$$y_0 = \frac{\Delta y}{\Delta x} x_0 + c$$

- $p_{k+1} = p_k + 2\Delta y 2\Delta x(y_{k+1} y_k)$
- $p_0 = 2\Delta y \Delta x$
- $p_k < 0 \Rightarrow$ stay with same y-value: $y_{k+1} = y_k$
- Note that $2\Delta y$ and $2\Delta x$ are **constants**
- Procedure:
 - Compute p_0 and use this to tell whether y_1 stays with same value as y_0 or to use $y_0 + 1$ at $x_1 = x_0 + 1$
 - We use this *y*-information in computing *p*₁:

$$p_1 = p_0 + 2\Delta y - 2\Delta x(y_1 - y_0)$$

- Repeatedly use y-information from p_k to calc p_{k+1}
- Note: each predicate p_k says what to at **next** sample, x_{k+1}

- The previous treatment was for "gently increasing lines" lines of the form 0 ≤ m ≤ 1
- What about "gently decreasing lines"?
- A similar derivation to the previous one can be done for when y decreases as x increases:
 - For consistency with previous case we base predicate p_k on "predicate less than 0 means we stay with current y"
 - To do this we must set

$$p_k = \Delta x (d_u - d_l)$$

- The exact same formulae as before are yielded with the exception that $(y_{k+1} y_k) = -1 \text{ or } 0$ opposite to previous
- To fix for this always in either case use absolute value of Δy
- As with DDA if 1 < |m| (slope is steep either positive or negative) we sample with increasing y to improve coverage