ELL 101: INTRODUCTION TO ELECTRICAL ENGINEERING

Tutorial Problem Set 2

1. Find the current I for the circuit shown in figure 1

Fig. 1

2. Use branch currents in the network shown in Fig. 2 to find the current supplied by the 60-V source.

3. Find the unknown voltage V_1 in the circuit of Fig. 3.

4. What is the voltage V_S across the open switch in the circuit of the given figure?

Fig. 4

5. Find the value of unknown voltage in the given circuit

6. Determine the voltage labeled v in the circuit of the figure shown below.

7. For the circuit shown in the following figure, determine the value of the voltage labelled v_1 and the current labeled i_1 .

8. Determine the voltage v as labeled in the following figure, and calculate the power supplied by each current source.

9. The voltage V shown in the figure below is:

10. The circuit shown in Fig. 14 is a voltage divider, also called an attenuator. When it is a single resistor with an adjustable tap, it is called a potentiometer, or pot. To discover the effect of loading, which is caused by the resistance R of the voltmeter VM, calculate the ratio V_{out}/V_{in} for (a) $R=\infty$, (b) 1 $M\Omega$, (c) 10 $k\Omega$, and (d) 1 $k\Omega$.

11. Find the value of V in the given circuit

Fig. 11

12. Find the value of I_1 in the given circuit

Fig. 12

13. Find the value of current I_1 , I_2 , I_3 .

Fig. 13

14. Determine numerical values for each of the three mesh currents as labeled in the circuit diagram of following figure

15. For the circuit of following figure, determine the mesh current i_1 and the power dissipated by the 1 Ω resistor.

16. Calculate the mesh currents i_1 and i_2 for the circuit shown in the figure below:

Fig. 16

17. For the circuit shown in Fig.17, find the branch currents I_1 , I_2 and I_3 using mesh analysis.

Fig. 17

18. Find the voltage V_{ab} in the network shown in Fig. 18.

Fig. 18

19. Obtain the total power supplied by the 60-V source and the power absorbed in each resistor in the network.

Fig. 19

20. For the network shown in Fig. 20, find V_s which makes $I_0 = 7.5$ mA.

Fig. 20