## Reproducting Deep Transfer Learning for Art Classification Problems

Jasper van Tilburg, Martijn Bosma, Thomas Barendse - Group 10



This poster provides an overview of the results of our reproduction of a paper by Sabotelli et al. (2018). They explore the field of Transfer Learning by transferring the knowledge of deep convolutional networks pretrained on ImageNet to much smaller art image datasets. They investigate accuracies when only training the top-layer classifier (off-the-shelf) and when finetuning all parameters in the network.

|           |             | Number of items |         | Number of labels |       |
|-----------|-------------|-----------------|---------|------------------|-------|
| Challenge | Dataset     | paper           | our     | paper            | our   |
| Type      | Rijksmuseum | 112,012         | 100,950 | 1,054            | 189   |
| Artist    | Rijksmuseum | 82,018          | 100,950 | 1,196            | 1,027 |
| Material  | Rijksmuseum | 110,668         | 100,950 | 206              | 66    |
| Material  | iMet 2020   | -               | 17,494  | -                | 235   |
| Country   | iMet 2020   | -               | 25,153  | -                | 61    |

We reproduced experiments with three art classification challenges on the Rijksmuseum dataset and we contributed experiments on the iMet datasets. These are the number of items and labels for each challenge and dataset.

## Results on Rijksmuseum Dataset



The Rijksmuseum dataset is an art image collection from the Rijksmuseum in Amsterdam. We trained the networks to classify by artist (left), by material (right) and by type. Unfortunately, the data is currently incomplete as we are still running experiments.

|           |          | Off-the-shelf |        | Finetuning |        |
|-----------|----------|---------------|--------|------------|--------|
| Challenge | Model    | paper         | ours   | paper      | ours   |
| Material  | ResNet50 | 0.8681        | -      | 0.9295     | 0.9507 |
| Material  | VGG19    | 0.9212        | -      | 0.9223     | 0.9496 |
| Material  | AlexNet  | -             | 0.9008 | -          | 0.9422 |
| Type      | ResNet50 | 0.7123        | -      | 0.9130     | 0.9508 |
| Type      | VGG19    | 0.7733        | -      | 0.9027     | 0.9467 |
| Type      | AlexNet  | -             | -      | -          | -      |
| Artist    | ResNet50 | 0.008         | 0.3875 | 0.4613     | 0.5922 |
| Artist    | VGG19    | 0.3811        | 0.3697 | 0.4498     | 0.6690 |
| Artist    | AlexNet  | -             | -      | -          | -      |

We reproduced the table as given by the paper. The table is still incomplete, but shows promising results. For all challenges our results are close to that of the authors. For the best performing models, results are even higher. We expect this deviation due to the fact that our dataset contains a smaller number of different labels.

## Results on iMet 2020 Dataset



The iMet 2020 dataset is an art image collection from the New York Metropolitan Museum of Art. We trained the networks to classify by material (left) and by country (right). Material classification accuracies are lower then for the RijkMuseum. This is due to the fact that iMet 2020 has much less data.

| Challenge  | Model    | off-the-shelf | finetuning |
|------------|----------|---------------|------------|
| Material   | ResNet50 | 0.6898        | 0.8022     |
| Material   | VGG19    | 0.6185        | 0.8053     |
| Material   | AlexNet  | 0.5816        | 0.7442     |
| By country | ResNet50 | 0.6013        | 0.7563     |
| By country | VGG19    | 0.5652        | 0.7615     |
| By country | AlexNet  | 0.5451        | 0.6965     |

## Summary

- Rijksmuseum dataset approximately equally large
- Less labels on Rijksmuseum dataset
- Close results on Material and Type classification
- Artist classification reproduction performs significantly better
- Worse results on iMet 2020 dataset due to less data