

ТЕХНОЛОГИЯ КРОССПЛАТФОРМЕННОГО ПРОГРАММИРОВАНИЯ МИКРОКОНТРОЛЛЕРОВ В ИНТЕГРИРОВАННОЙ СРЕДЕ РАЗРАБОТКИ ARDUINO

ЛАБОРАТОРНАЯ РАБОТА №1 ПО ТСИСА "ФОРМАЛИЗАЦИЯ СЛОЖНЫХ СИСТЕМ" МАРЧУК ИВАН ИУ6-72Б

ВВЕДЕНИЕ

Системный анализ — это научно-методологическая дисциплина, которая изучает принципы, методы и средства исследования сложных объектов посредством представления их в качестве систем и анализа этих систем.

Системный анализ использует макроподход: При изучении сложного объекта главное внимание уделяется внешним связям объекта с другими системами, а не его детальной внутренней структуре.

Также, системный анализ использует функциональный подход: при изучении сложного объекта приоритет отдается его целям и функциям, из которых выводится структура (а не наоборот)

О СИСТЕМЕ ПРЕДСТАВЛЕННОЙ В ЛАБОРАТОРНОЙ РАБОТЕ И ЦЕЛЯХ ДЛЯ КОТОРЫХ ОНА ИСПОЛЬЗУЕТСЯ

- Технология кроссплатформенного программирования микроконтроллеров в интегрированной среде разработки arduino это программное средство создающее и использующее технологический концепт, которого должны придерживаться разработчики программных библиотек-ядер для различных типов микроконтроллерных архитектур, для обеспечения совместимости кода ядер с общими библиотеками периферии микроконтроллеров (система обеспечивающая мультиплатформенность).
- Целью данной технологии является возможность использования общей системы команд при написании кода в среде arduino, для возможности переноса частей кода программ с одной архитектуры на другую и ускорения разработки

СВОЙСТВА СИСТЕМЫ

• Общие:

- Искуственная
- Открытая

• Структура:

• Иерархическая упорядоченность

• Динамика:

- Адаптивность
- Совместимость
- Оптимизация

• Описание и управление:

- Многовариантность
- Неоднозначность оптимальности

СТРУКТУРНАЯ СХЕМА

подсистемы и их цели

Подсистема	Цель
Менеджер библиотек	Система управления
	стандартными библиотеками,
	использующими язык С или
	Arduino C
Командное ядро языка	Использующее стандартный
ARDUINO	набор команд ядро,
	обеспечивающее
	кроссплатформенность кода
Подключаемое ядро от	Ядро преобразующее команды
стороннего разработчика	из командного ядра Arduino в
	команды ассемблера
	микроконтроллера
Программы прошивки	Программы обеспечивающие
микроконтроллеров (например	возможность прошивки и
Avrdude)	отладки программной памяти
	микроконтроллеров

ЦЕЛЕВЫЕ ПОКАЗАТЕЛИ

- Переносимость кода между микроконтроллерными архитектурами
- Увеличение скорости разработки
- Оптимизация скомпилированного кода
- Диапазон поддерживаемых функций

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ЦЕЛЕВОЙ ПОКАЗАТЕЛЬ

- Качество интеграции библиотек
- Уровень программной оптимизации встраиваемых частей (бибилиотек и ядер)
- Уровень соблюдения во встраиваемых ядрах стандартов программного ядра Arduino

ВХОДНЫЕ ПЕРЕМЕННЫЕ

- Текст программы
- Используемое микроконтроллерное ядро
- Программные библиотеки Arduino

ФОРМАЛЬНОЕ ОПИСАНИЕ СИСТЕМЫ

 $S = \langle \psi_{a'} \psi_{b'} P_0 (\psi_{a'} \psi_b) \rangle$

S - система

 ψ_a – подмодель, определяющая поведение системы

 $\psi_{\rm b}$ – это подмодель, определяющая структуру системы, при её внутреннем рассмотрении

Р_п – предикат целостности, определяющий назначение системы, семантику моделей

$$\psi_a = \langle x, y, z, f, g \rangle$$

x=x(t) – входной поток (набор предлагаемых транзакций)

y=y(t) – выходной поток (набор событий + информация о цепочке блоков по запросу)

z=z(t) - состояние модели (содержимое цепочки блоков)

f, g – функционалы (глобальные уравнения системы), задающие текущие значения выходного сигнала y(t) и внутреннего состояния z(t).

МОДЕЛЬ "ЧЕРНОГО ЯЩИКА"

- Черный ящик термин, используемый для обозначения системы, внутреннее устройство и механизм работы которой очень сложны, неизвестны или неважны в рамках данной задачи.
- «Метод чёрного ящика» метод исследования таких систем, когда вместо свойств и взаимосвязей составных частей системы, изучается реакция системы, как целого, на изменяющиеся условия.
- Так как внутренняя структура системы слишком сложна для формального описания, предлагается рассматривать систему в качестве черного ящика.

