

HappaChemistryNotes

化学笔记

作者: OyamaHappa

时间: Monday 22nd July, 2024

版本: 20240721222406

目录

第一部分	化学反应原理	1
第1章 中和	和滴定实验	2
1.1 滴氮	巨实验	2
1.1	1.1 酸碱中和滴定	2
1.1	1.2 滴定实验仪器以及操作要点	2
	1.1.2.1 滴定方法的关键	2
	1.1.2.2 实验仪器及试剂	2
	1.1.2.3 滴定管的构造特点	3
	1.1.2.4 凡士林的涂抹方式	3
1.1	1.3 指示剂的选择	4
	1.1.3.1 酸碱指示剂	4
1.1	1.4 小结	5
	1.1.4.1 指示剂的选择原则	5
	1.1.4.2 指示剂的选择(由滴定曲线可知)	5
	1.1.4.3 终点判断	5
1.1	 1.5 误差分析	5
1.2 其他	也滴定	6
	v 2.1 氧化还原滴定	6
	1.2.1.1 酸性 KMnO ₄ 溶液滴定 H ₂ C ₂ O ₄ 溶液	6
	1.2.1.2 Na ₂ S ₂ O ₃ 溶液滴定碘液	6
第2章 原	电池	7
2.1 原电	旦池	7
2.1	I.1 原电池的构成条件	7
2.2 盐树	乔	7
2.2	2.1 盐桥构成	7
2.3 膜电	目池	7
2.4 电解	異池1	8
2.4	4.1 电解池	8

第一部分 化学反应原理

第1章 中和滴定实验

1.1 滴定实验

我们在研究物质时,常常需要对物质进行定性分析和定量分析。确定物质的成分,包括元素、无机物所含的 离子和有机物所含的官能团等,在化学上叫做定性分析。测定物质中元素、离子、官能团等各成分的含量,在化 学上叫做定量分析。

1.1.1 酸碱中和滴定

利用中和反应原理,用已知物质的量浓度的酸(或碱)来测定未知物质的量浓度的碱(或酸)的方法

- 1、中和反应:
- 2、中和滴定原理:

$$HA + BOH = BA + H_2O$$

即可得 $c_{(HA)}V_{(HA)} = c_{(BOH)}V_{(BOH)}$

现在我们用 0.1000 mol/L 的 HCl 溶液测定未知浓度的 NaOH 溶液, 到底应测得哪些数据才能求出 $c_{\text{(NaOH)}}$?

1.1.2 滴定实验仪器以及操作要点

1.1.2.1 滴定方法的关键

- (1) 准确测定两种反应物溶液的体积
- (2) 确保标准液、待测液浓度的准确
- (3) 滴定终点的准确判定(包括指示剂的合理选用)

1.1.2.2 实验仪器及试剂

(1) 仪器: 酸式滴定管、碱式滴定管、滴定管夹、烧杯、锥形瓶、铁架台。

酸式滴定管

润洗--用待装液体洗涤

碱式滴定管

1.1.2.3 滴定管的构造特点

①标识: 标有温度、刻度、规格(25.00 mL 或 50.00 mL)

②刻度: 零刻度在 ____, 满刻度在 ____; 最小刻度为 0.1 ml, 精确度为 0.01 ml。

③酸式滴定管:下端是玻璃塞,能盛装_溶液; 碱式滴定管:下端是橡皮管+玻璃小球,能盛装_

1.1.2.4 凡士林的涂抹方式

涂a和c

润洗仪器: 在加入酸、碱之前, 洁净的酸式滴定管和碱式滴定管要分别用所要盛装的酸、碱润洗 2~3次。②方法是: 从滴定管上口加入 3~5 mL 所要盛装的酸溶液或碱溶液。倾斜着转动滴定管, 使液体润湿全部滴定管内壁。然后, 一手控制活塞(轻轻转动酸式滴定管的活塞; 或者轻轻挤压碱式滴定管中的玻璃球), 将液体从滴定管下部放入预置的烧杯中。

③加入反应液: 分别将酸溶液、碱溶液加到酸式滴定管、碱式滴定管中,使液面位于滴定管刻度"0"以上 $2\sim3$ mL处,并将滴定管垂直固定在滴定管夹上。

0调节起始读数: 在滴定管下放一个烧杯,调节活塞,使滴定管尖嘴部分充满反应液,并使液面处于"0"刻度 (或"0"刻度以下),准确读取读数并记录 V_{th}

【思考7】如果滴定管内出现气泡怎么排出气泡?

排气泡: 酸式滴定管 → 尖嘴部分朝上, 碱式滴定管 →

除去碱式滴定管乳胶管中气泡的方法

5 放液

- a 从碱式滴定管中放出 25.00ml 氢氧化钠溶液于锥形瓶中;
- b 滴入几滴酚酞试液(指示剂),将锥形瓶置于酸式滴定管下方,并在瓶底衬一张白纸。
- ⑥滴定: 左手控制酸式滴定管活塞, 右手摇动锥形瓶, 边滴入盐酸 (当接近终点时, 改<u>为適加</u><u>半</u>適酸), 边不断顺时针方向摇动, 眼睛要始终注视

⑦记读数: * 当滴入最后半滴 HCl. 溶液由红色突变为无色,且半分钟内不褪色. 停止滴定,准确记下盐酸读数 $V_{\&}$,并准确求得滴定用去的盐酸体积 $V=V_{\&}-V_{\&}$ (平行实验 2-3 次)

滴入最后半滴标准溶液具体操作?

⑧计算

【经典 2】【2020 年 7 月选考】滴定前,有关滴定管的正确操作为 (选出正确操作并按序排列,选项可重复使用): 检漏 \rightarrow 蒸馏水洗涤 \rightarrow 用滴定液润洗 2 至 3 次 \rightarrow 装入滴定液至零刻度以上 \rightarrow 排除气泡 \rightarrow 调整滴定液液面 至零刻度或零刻度以下 \rightarrow 记录起始读数 \rightarrow 开始滴定。

1.1.3 指示剂的选择

1.1.3.1 酸碱指示剂

(1) 酸碱指示剂的变色范围 (pH 值)

田甘松	< 3.1	$3.1 \sim 4.4$	> 4.4
丁 至 位	红	橙	黄
而八冊十	< 8.2	$8.2 \sim 10$	> 10
刊时	无色	浅红	红
石芯	< 5	$5 \sim 8$	> 8
口心	红	紫	蓝

1.1.3.1.1 滴定终点

显酸 ⇒ 甲基橙

显碱 ⇒ 酚酞

1.1.3.1.2 变化曲线 若以酸碱中和滴定过程中滴加酸(或碱)的量为横轴,以溶液的 pH 为纵轴,即可绘出的一条溶液 pH 随酸(或碱)的滴加量而变化的曲线。

1.1.4 小结

1.1.4.1 指示剂的选择原则

变色要明显、灵敏;

指示剂的变色范围要尽可能在滴定过程中的 pH 值突变范围内。

指示剂用量不能太多,2~3滴即可:

1.1.4.2 指示剂的选择(由滴定曲线可知)

强酸强碱相互滴定,可选用甲基橙或酚酞。

若反应生成强酸弱碱盐,溶液呈酸性,则选用酸性变色范围的指示剂(甲基橙);

若反应生成强碱弱酸盐,溶液呈碱性,则选用碱性变色范围的指示剂(酚酞)

石蕊试液因颜色变化不明显,且变色范围过宽,一般不作滴定指示剂。

酸性 KMnO₄ 溶液等本身呈现颜色的滴定试剂,不用另外选择指示剂

1.1.4.3 终点判断

滴入最后半滴 XX 标准溶液后,溶液由 XX 色突变 XX 色,且半分钟内不褪色。

指示剂操作	酚酞	甲基橙
强碱滴定强酸	无色变为红色	橙色变为黄色
强酸滴定强碱	红色变为无色	黄色变为橙色

1.1.5 误差分析

以一元酸和一元碱的中的滴定为例

$$C_{\clip}V_{\clip}=C_{\clip}$$
 . V_{\clip}

滴定过程中任何错误操作都有可能导致 C 标、V 标、V 待的误差。但在实际操作中认为 C 标是已

知的,
$$V_{\hat{f}}$$
 是固定的, 对于 $c_{(NaOH)} = \frac{c_{(HCl)}V_{(HCl)}}{V_{(NaOH)}}$

读数比实际

	产生误差的常见因素		对 V _{HCl} 的影
	未用标准液润洗酸式滴定管	[HCL]↓	†
滴定前操作	未用待测液润洗碱式滴定管	[NaOH]↓	+
個是則採作	用待测液润洗锥形瓶	NaOH↑	1
	洗涤后锥形瓶未干燥	n(NaOH) 不变	_
	滴定前俯视酸式滴定管,滴定后平视		↑
滴定时读数不准	滴定前仰视酸式滴定管,滴定后俯视		↑
取液时读数不准	取待测液时先俯视后仰视		+
以 似 的	取待测液时先仰视后俯视		1
	滴定前酸式滴定管有气泡,滴定后气泡消失		<u> </u>
	滴定前酸式滴定管无气泡,滴定后有气泡		+
操作不当	滴定结束,滴定管尖端挂一滴液体未滴下		†
1条年/トコ	滴定过程中,振荡锥形瓶时,不小心将溶液溅出		↑
	用甲基橙作指示剂,滴至橙色,半分钟内又还原成黄色,不处理就计算		†
	配制标准液的固体有不反应的杂质		+

1.2 其他滴定

1.2.1 氧化还原滴定

1.2.1.1 酸性 KMnO₄ 溶液滴定 H₂C₂O₄ 溶液

原理: $2\text{MnO}_4^- + 6\text{H}^+ + 5\text{H}_2\text{C}_2\text{O}_4 = 10\text{CO}_2 \uparrow + 2\text{Mn}^{2+} + 8\text{H}_2\text{O}$;

指示剂及滴定终点:酸性 $KMnO_4$ 溶液本身呈紫红色,不用另外选择指示剂,当滴入最后半滴酸性 $KMnO_4$ 溶液,溶液由无色变浅红色,且半分钟内不变色,说明达到滴定终点。

1.2.1.2 Na₂ S₂O₃ 溶液滴定碘液

原理: $2 S_2 O_3^{2-} + I_2 = S_4 O_6^{2-} + 2I^-$;

指示剂及滴定终点: 用淀粉溶液 + 作指示剂, 当滴入最后半滴 $\mathrm{Na_2}\ \mathrm{S_2O_3}$ 溶液, 溶液的蓝色褪去, 且半分钟内不恢复原色, 说明达到滴定终点。

第2章 原电池

2.1 原电池

将化学能转化为电能的装置,本质为自发进行的氧化还原反应。

正极 化合价 \downarrow , 得 e^- ⇒ 牺牲阳极的阴极保护法

负极 化合价 \uparrow , 失 e^- , 氧化反应

2.1.1 原电池的构成条件

1、活性不同的两极 2、自发的氧化还原反应 3、闭合回路 4、电解质

2.2 盐桥

2.2.1 盐桥构成

盐桥里的物质一般是强电解质而且不与两池中电解质反应,常使用装有饱和 KCl 琼脂溶胶的 U 形管,离子可以在其中自由移动。

盐桥作用:

电极反应方程式:

三大流向:

2.3 膜电池

膜的引入简化了装置,用离子交换膜分隔成两池,仅允许特定的离子通过;且膜能持续、长期使用。

膜的分类: 叫什么就只让什么离子过

- ①阳离子交换膜
- 2 阴离子交换膜
- 3质子交换膜

只有 H^+ 能过

④双极膜

 $H_2O \rightleftharpoons H^+ + OH^-$ 一人去一边

2.4 电解池 1

2.4.1 电解池

电解池: 把电能转变为化学能的装置。

2.4.1.0.1 构成条件 1. 电源

- 2. 两个电极 (只导电, 可用惰性电极--石墨, 铂 Pt, 金 Au)
- 3. 电解质 (水/熔融)
- 4. 闭合回路

2.4.1.0.2 两个电极

2.4.1.0.3 流向

电子 $\mathbb{H} \to \mathbb{H}$

电流 阴→阳

★离子 异性相吸(阳离子→阴极)