1 行列式

设 $A = [a_{ij}]$ 是 n 阶方阵,按一行或者一列展开:则

$$a_{1j}A_{1k} + a_{2j}A_{2k} + \dots + a_{nj}A_{nk} = \delta_{jk}|A| \tag{1}$$

其中 $\delta_{jk} = 0$ 如果 $k \neq j$, $\delta_{jj} = 1$.

应用:设 A 的每行元素求和都为 3,且 |A| = 8,求 $\sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij}$.

定理 1.1 (克拉默法则). 设 $A = [\alpha_1, \alpha_2, \cdots, \alpha_n]$ 为 n 阶方阵,考虑线性方程组 $AX = \beta$,若 $|A| \neq 0$,则方程组有唯一解

$$X = A^{-1}\beta$$

或者 $X = [x_1, x_2, \cdots, x_n]^T$ 满足

$$x_1 = \frac{D_1}{D}, \ x_2 = \frac{D_2}{D}, \ \cdots, x_n = \frac{D_n}{D}$$

其中 D = |A| 和 $D_i = |[\alpha_1, \alpha_2, \dots, \alpha_{i-1}, \beta, \alpha_{i+1}, \dots, \alpha_n]|$ 对 $i = 1, \dots, n$.

应用:用于解n元n个方程的方程组的方程。

2 线性方程组

- 消元法解方程: $AX = \beta$
- 用初等行变换化增广矩阵为阶梯型: $\bar{A} = [A, \beta]$ 。
- 有解的判断方法: 有解当且仅当 $r(A) = r(\bar{A})$, 当且仅当 β 可由 A 的列向量线性表示。
- 唯一解: $r(A) = r(\bar{A}) =$ 未知量的个数。
- 消元法解方程一定要掌握,在后期的矩阵对角化、找特征向量、把一个向量扩充为一组正交基 P167 例 4.8.10 等。

3 矩阵计算

- 矩阵多项式: $f(x) = a_k x^k + a_{k-1} x^{k-1} + \dots + a_1 x + a_0$, 且 A 为 n 阶,则 $f(A) = a_k A^k + a_{k-1} A^{k-1} + \dots + a_1 A + a_0 E$.
- 这要结合矩阵对角化来学习:若存在可逆 P,使得 $P^{-1}AP = diag\{\lambda_1, \cdots, \lambda_n\}$,

$$P^{-1}f(A)P = diag\{f(\lambda_1), \cdots, f(\lambda_n)\}$$

在计算 f(A) 或者 |f(A)| 时可以直接利用,例如 |A + E| 的行列式。

• 矩阵行列式与矩阵乘法的关系: 设 A, B 为 n 阶, 则 |AB| = |A||B|. 证明可以不看,或者应用分块矩阵给出一个证明。

• 矩阵的迹: A 为 n 阶,定义 $trA = \sum_{i=1}^{n} a_{ii}$. 则 tr(AB) = tr(BA) 对任意的 $A_{n \times m}$ 和 $B_{m \times n}$ 成立。

可以用于证明:不存在 n 阶 A,B,使得 AB-BA=E.

- $\dot{\mathbb{R}} : (A+B)^2 = (A+B)(A+B) = A^2 + BA + AB + B^2.$
- 设 α, β 为两个 n 维列向量,若 $A = \alpha \beta^T$,则 $A^k = (\beta^T \alpha)^{k-1} A$,其中 $\beta^T \alpha$ 是一个数。
- 设 $A = diag\{\lambda_1, \cdots, \lambda_n\}$ 且 $\lambda_i \neq \lambda_j$, 则与 A 可交换的矩阵一定是对角矩阵。

分块矩阵类比: 把 λ_i 换成 $\lambda_i E_{r_i}$, 则与 A 可交换的矩阵一定是分块对角矩阵。

• 可逆矩阵: $A^{-1} = \frac{1}{|A|}A^*$, 其中 A^* 为 A 的伴随矩阵。注: $A^* = [b_{ij}]$ 的元素满足 $b_{ij} = A_{ji}$, 而不是 A_{ij} .

例: $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ 则 $A^* = \begin{bmatrix} d & -b \\ -c & b \end{bmatrix}$ 和 $A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & b \end{bmatrix}$.

• 已知矩阵满足某些等式, 求矩阵的逆: 一般配出单位矩阵 E.

例: $A^2 - 2A - 3E = 0$ 求 A^{-1} .

解: A(A-2E) = 3E 可知 $\frac{1}{3}A(A-2E) = E$, 从而 $A^{-1} = \frac{1}{3}(A-2E)$.

例:设 A + B = AB,求 A - E的逆。

解: A = (A-E)B, 从而 E+(A-E) = (A-E)B, 所以 E = (A-E)(B-E). 因此 $(A-E)^{-1} = B-E$.

- 分块矩阵: 掌握 2×2 的分块,比如求 $P = \left[\begin{array}{cc} A & 0 \\ C & B \end{array} \right]$ 的逆 (P96 例 3.3.5)
- 分块矩阵: 掌握对角分块矩阵的性质: $A = diag\{A_1, A_2, \dots, A_t\}$. 乘法, 加法, 数乘, 行列式, 求逆。

应用: 求矩阵的逆。例如 P97 例 3.3.6.

- 附录四:对任意矩阵 $A_{n\times m}$, $B_{m\times n}$, 则 $|E_n + AB| = |E_m + BA|$. 特别地,在计算行列式的时候可以直接应用,在计算特征多项式时也会用到。例: 若 A,B 是 n 阶方阵,证明 AB 和 BA 的特征多项式相等。
- 初等矩阵: 对单位矩阵施行一次初等变换的矩阵。初等矩阵都是可逆矩阵, 逆矩阵也是初等矩阵。

重要的定理:对矩阵施行一次初等行变换等价于左乘一个初等矩阵,施行 一次列变换等价于右乘一个初等矩阵。 推论: 若 $A_{m \times n}$ 的秩为 r(A) = r, 则存在可逆矩阵 P,Q 使得

$$PAQ = \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right]$$

推论: 若 A 可逆,则存在一序列初等矩阵 P_1, P_2, \cdots, P_k 使得

$$A = P_1 P_2 \cdots P_k$$
.

推论:若 A 可逆,则 $A^{-1}C$,可以通过如下的方式求得: $A^{-1}C = P_k^{-1} \cdots P_2^{-1} P_1^{-1}C$, 等价于: 对分块矩阵 [A,C] 做初等行变换把 A 化为 E,则同时有 C 化为 $A^{-1}C$. P104-105.

应用:用于用初等变换求矩阵的逆或者求 $A^{-1}C$.

对于右乘 CA^{-1} , 则考虑列变换。

推论: 若 A, B 可逆, 则 r(AC) = r(C) = r(CB) = r(ACB).

4 线性空间

- 线性空间: 有加法和数乘的集合。例如数域 $P \perp m \times n$ 矩阵组成的空间。 次数小于 n 次的多项式全体组成的空间。
- 线性无关:一组向量如果表示零向量的表示法唯一,则称该向量组线性无关。
- 要会判断一组向量是线性相关或者线性无关: 如果是 P^n 中的向量可以用矩阵的秩来判断。比如

 $\alpha_1, \cdots, \alpha_s \in P^n$ 线性相关当且仅当 $A = [\alpha_1, \cdots, \alpha_s]$ 满足 r(A) < s. $\alpha_1, \cdots, \alpha_s \in P^n$ 线性无关当且仅当 $A = [\alpha_1, \cdots, \alpha_s]$ 满足 r(A) = s. 要理解这两个性质的证明,在具体的计算中,如果 $\alpha_1, \cdots, \alpha_s$ 是线性相关的,要找出它的一个极大无关组(例如找一组向量的生成子空间的一组基),此时可以对矩阵 $A = [\alpha_1, \cdots, \alpha_s]$ 施行初等**行变换**,化为阶梯型 $B = [\alpha_1', \cdots, \alpha_s']$. 此时只要确定 B 中列的一个极大无关组,对应回 A 中的列就是向量组 $\alpha_1, \cdots, \alpha_s$ 的一个极大无关组。具体例子 P124 例 4.2.1,P127 9.

对于一般的 n 维线性空间中的向量组 $\alpha_1, \cdots, \alpha_s$,只要取定一组基 e_1, \cdots, e_n ,然后考虑向量在这组基下的坐标 $X_1, \cdots, X_s \in P^n$,此时判断 $\alpha_1, \cdots, \alpha_s$ 的线性关系 (无关、相关),等价于判断 X_1, \cdots, X_s 的线性关系,因此要熟练掌握 P^n 中如何判断一组向量的线性关系。

• 4.3 节向量极大无关组: 这一节的证明都需要掌握,特别是定理 4.3.2,定理 4.3.3

- 极大无关组:向量组的一个线性无关的部分向量组,且与原向量组等价。要求:掌握如何求一个向量组的极大无关组。P130 例 4.3.1, P131 1.
- 极大无关组与原向量组等价。
- 定理: 向量组 $\alpha_1, \dots, \alpha_r$ 可以由 $\beta_1, \beta_2, \dots, \beta_s$ 线性表示,若 $\alpha_1, \dots, \alpha_r$ 线性无关,则 $r \leq s$.

要掌握这个定理的各种推论:

- 向量组 $\alpha_1, \dots, \alpha_r$ 可以由 $\beta_1, \beta_2, \dots, \beta_s$ 线性表示, 若 r > s, 则向量 组 $\alpha_1, \dots, \alpha_r$ 线性相关。例如:若 α_1, α_2 可以由 β 线性表示,则必有 α_1, α_2 线性相关。
- 向量组 (I) 可由向量组 (II) 线性表示,则 秩(I) ≤ 秩(II)。
- 线性无关组 $\alpha_1, \dots, \alpha_r$ 与 $\beta_1, \beta_2, \dots, \beta_s$ 等价,则 r = s.
- 一个向量组的极大无关组的向量个数是唯一确定的。
- 若线性无关向量 $\alpha_1, \dots, \alpha_r$ 可以被 $\beta_1, \beta_2, \dots, \beta_r$ 线性表示, 则这两组向量等价。
- 若 $\alpha_1, \dots, \alpha_n$ 是线性空间 V 的一组基,且 $\alpha_1, \dots, \alpha_n$ 可以被 $\beta_1, \beta_2, \dots, \beta_n$ 线性表示,则 $\beta_1, \beta_2, \dots, \beta_n$ 为 V 的一组基。
- 证明一组向量 $\alpha_1, \dots, \alpha_s$ 是线性无关的,一般是利用反证法:假设存在一组不全为零的数 k_i 使得 $k_1\alpha_1 + \dots + k_s\alpha_s = \theta$. 然后利用题目已知的条件带入得到一个关于 k_1, \dots, k_s 的方程组,然后判断这组方程只有零解。或者直接假设某个 $k_i \neq 0$,利用已知条件推出 $k_i = 0$,得出矛盾。

具体例子可以参考 P125 例 4.2.2, P127 10, 或证明正交向量组是线性无关的。另外可以对比理解 P128 定理 4.3.3 的证明 (这个证明要求掌握。)

- 属于 P 上的线性空间的基: $e_1, \dots, e_n \in V$ 在数域 P 上线性无关,且 V 中任一向量可由这组向量表示。称数域 P 上的线性空间的维数为 n.
 - \mathbb{C} 是实数域上的 2 维线性空间,基为: i,1.
 - C 是复数域上的 1 维线性空间,基为: 1.
 - $\mathbb{R}_+ = \{x > 0, x \in \mathbb{R}\}$ 按如下运算是实数域上的线性空间,维数为 1. 加法: $a \otimes b = ab$. 数乘: $k \cdot a = a^k$, 其中 $a, b \in \mathbb{R}_+$, $k \in \mathbb{R}$. 该线性空间的零元素为 1, 任一不等于 1 的正实数都是该线性空间的基。
- 坐标表示: 给定一组基 e_1, \cdots, e_n , 对 $\alpha \in V$ 且 $\alpha = x_1e_1 + \cdots + x_ne_n$, 则 称 $X = [x_1, \cdots, x_n]^T$ 是 α 在基 e_1, \cdots, e_n 的坐标。给定一组基后,线性 空间向量组的线性无关、相关性可以通过相应的坐标在 P^n 中的无关与相 关性来判断

• 定理: 给定 V 上一组基 e_1, \dots, e_n , 设 $\alpha_1, \dots, \alpha_s$ 为 V 上的一组向量, 对 应的坐标记为

$$X_i = [a_{1i}, a_{2i}, \cdots, a_{ni}]^T, i = 1, 2, \cdots, s$$

以坐标列向量构成 $n \times s$ 矩阵 $A = [X_1, X_2, \dots, X_s]$,则

- $-\alpha_1, \cdots, \alpha_s$ 线性相关当且仅当 r(A) < s.
- $-\alpha_1, \cdots, \alpha_s$ 线性无关当且仅当 r(A) = s.

要熟练运用该定理,特别是判断向量组无关与相关问题上。比如如下的各种推论:

- -n 维线性空间的 n+1 个向量必定线性相关。
- 线性空间 V 中的向量组 β_1, \dots, β_s 线性无关,则 $\dim V \geq s$.
- n 维线性空间的 n 个无关的向量是一组基。
- 两组基的过渡矩阵是可逆矩阵。
- 过渡矩阵: 设 (I): e_1, e_2, \cdots, e_n 与 (II): e'_1, e'_2, \cdots, e'_n 是 n 维线性空间 V 的两组基, e'_i (1 $\leq i \leq n$) 经基 (I) 线性表示为

$$\begin{cases}
e'_{1} = m_{11}e_{1} + m_{21}e_{2} + \dots + m_{n1}e_{n}, \\
e'_{2} = m_{12}e_{1} + m_{22}e_{2} + \dots + m_{n2}e_{n}, \\
\vdots & \vdots \\
e'_{n} = m_{1n}e_{1} + m_{2n}e_{2} + \dots + m_{nn}e_{n}.
\end{cases} (2)$$

以 $e_i'(1 \le i \le n)$ 在基 (I) 下的坐标作为列向量构成的矩阵

$$M = \begin{bmatrix} m_{11} & m_{12} & \cdots & m_{1n} \\ m_{21} & m_{22} & \cdots & m_{2n} \\ \vdots & \vdots & & \vdots \\ m_{n1} & m_{n2} & \cdots & m_{nn} \end{bmatrix}$$
(3)

称为基(I)到基(II)的过渡矩阵.

• 基变换公式:

$$[e'_1, e'_2, \cdots, e'_n] = [e_1, e_2, \cdots, e_n]M.$$
 (4)

• 坐标变换公式: $\alpha \in V$ 中一个向量, α 在基 (I) 基 (II) 下的坐标分别为

$$X = [x_1, x_2, \cdots, x_n]^T, \ X' = [x'_1, x'_2, \cdots, x'_n]^T.$$

则

$$X = MX', X' = M^{-1}X.$$
 (5)

要掌握如何计算过渡矩阵(注意区分行和列),如何运用过渡矩阵求不同基下的坐标(坐标变换公式),例:P136,P137。

- 子空间: 线性空间 V 的**子集** W, 关于 V 中的加法和数乘封闭。
- 生成子空间: $\alpha_1, \dots, \alpha_s \in V$, 则它们生成的子空间

$$L(\alpha_1, \dots, \alpha_s) = \{k_1\alpha_1 + k_2\alpha_2 + \dots + k_s\alpha_s \mid k_1, \dots, k_s \in P\}$$

注: $\alpha_1, \dots, \alpha_s$ 不一定线性无关。

- 设 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 与 β_1, \cdots, β_r 为 V 的两组向量,则
 - 1. $L(\alpha_1, \alpha_2, \dots, \alpha_s) = L(\beta_1, \beta_2, \dots, \beta_r)$ 当且仅当 $\alpha_1, \alpha_2, \dots, \alpha_s$ 与 β_1, \dots, β_r 等价。
 - 2. $\dim L(\alpha_1, \alpha_2, \dots, \alpha_s) = \Re\{\alpha_1, \alpha_2, \dots, \alpha_s\}$, 且 $\alpha_1, \alpha_2, \dots, \alpha_s$ 的 极大无关组均可作为 $L(\alpha_1, \alpha_2, \dots, \alpha_s)$ 的一组基。
- 若 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性无关,则 $L(\alpha_1,\alpha_2,\cdots,\alpha_s)$ 是 s 维的线性空间。
- $-\dim L(\alpha_1, \alpha_2, \cdots, \alpha_s) \leq s.$
- 若 $\beta_1, \cdots, \beta_r \in V$ 是一个向量组,如果 $\beta_1, \cdots, \beta_r \in L(\alpha_1, \alpha_2, \cdots, \alpha_s)$,

$$L(\beta_1, \cdots, \beta_r) \subset L(\alpha_1, \alpha_2, \cdots, \alpha_s).$$

在证明中经常用到这些性质,要求熟练掌握。

掌握如果计算生成子空间的基和维数:等价于寻找向量组的极大无关组。P140

- 解空间与基础解系: $m \times n$ 矩阵 A 的秩为 r(A) = r, 则线性方程组 AX = 0 的解的全体记为 $W \subset P^n$ (称为该线性方程组的解空间), 维数满足 $\dim W = n r$, W 的一组基称为该方程组的一个基础解系。
 - * 掌握计算基础解系:解方程,然后找出通解,计算出来的解要代回原方程去验证,P145。
 - * 要证明一组向量是一个方程组的基础解系主要分三步: 一,判断矩阵 A 的秩,然后确定解空间的维数。二,证明该向量组每个元素都是方程组的解。三,证明该向量组线性无关且个数等于解空间的维数。P149 5, 6.
 - * 寻找一个方程组的基础解系: 1,判断解空间的维数。2,找出线性无关的解。3,线性无关的解的个数等于维数。
 - *基础解系的定理的应用:判断矩阵的秩,例 P 148, P150 7, 8, 9, 14, 15.
 - 1. 如果要判断两个矩阵 A, B 的秩相等,只需证明 AX = 0 与 BX = 0 同解,例如证明 $r(A) = r(A^T A)$.
 - 2. 如果判断两个矩阵 A, B 的秩 $r(A) \le r(B)$, 只需证明 BX = 0 的解都是 AX = 0 的解,例如 $r(AB) \le r(B)$.
 - 3. 证明矩阵秩的不等式问题可以利用上一章的分块矩阵,初等 变换等方法。

- 矩阵的行秩 = 矩阵行向量组的秩 = 矩阵的秩 = 矩阵的列秩 = 矩阵的列向量组的秩。一般情况矩阵的行向量组和列向量组不在同一个空间。在遇到矩阵的秩的问题时,如果用上一章的结论无法证明,可以考虑用矩阵的行秩或者列秩来考虑,这需要掌握向量组的线性无关性与相关性,例P148
- 欧氏空间:有内积的线性空间。可以理解为线性空间中引进的向量与向量的乘法,满足交换律,分配率等,可以与 ℝ 上的乘法类比。
- \mathbb{R}^n 上的标准内积: $\alpha = [a_1, \dots, a_n]^T$, $\beta = [b_1, \dots, b_n]^T$, 则內积

$$(\alpha, \beta) = a_1 b_1 + \dots + a_n b_n = \alpha^T \beta$$

其中后一个等号是矩阵的乘法。

- 任一 n 阶正定矩阵 A 可以定义 \mathbb{R}^n 的一个內积: $(\alpha, \beta) = \alpha^T A \beta$. 特别地,标准内积是由 A = E 定义的。
- \mathbb{R}^n 中任一內积对应一个正定矩阵 A, 这个正定矩阵就是內积在一组基下的度量矩阵。
- 内积满足线性性: $(\sum_{i=1}^{m} k_i \alpha_i, \sum_{j=1}^{n} t_j \beta_j) = \sum_{i=1}^{m} \sum_{j=1}^{n} (\alpha_i, \beta_j).$
- $|(\alpha, \beta)| \le ||\alpha|| \cdot ||\beta||$, 等号成立当且仅当 α, β 相关 $(\beta = k\alpha,$ 或者 $\alpha = k\beta.)$
 - 可以用来证明: 若 A 正定, 且 $X,Y \in \mathbb{R}^n$, 则有 $|X^TAY|^2 \le |X^TAX|$ · $|Y^TAY|$. 该结论对半正定矩阵也对, 可以考虑 $A + \epsilon E$, 然后另 $\epsilon \to 0$.
- $(\alpha, \beta) = 0$ 称 $\alpha 与 \beta$ 正交或者相互垂直。
- $||\alpha + \beta|| \le ||\alpha|| + ||\beta||$
- 度量矩阵: 设 e_1, \dots, e_n 为 V 的一组基, 矩阵 $A = [a_{ij}]_{n \times n} = [(e_i, e_j)]_{n \times n}$ 称为基 e_1, \dots, e_n 下的度量矩阵。**理解度量矩阵的定义,例 P162.**
 - 度量矩阵是对称矩阵。
 - − 若 α, β 的坐标为 $X, Y \in \mathbb{R}^n$, 则 $(\alpha, \beta) = X^T A Y$, 由内积的正定性, 可知 A 是正定矩阵。
 - 计算两向量的内积,可以通过度量矩阵来计算 $(\alpha, \beta) = X^T A Y$. 例: P162.
 - 设 $\alpha_1, \dots, \alpha_n \in \mathbb{R}^n$, 记 $B = [\alpha_1, \dots, \alpha_n]$, 则该基下的度量矩阵为 $A = [(\alpha_i, \alpha_j)]_{n \times n} = [\alpha_i^T \alpha_j]_{n \times n} = B^T B$. 由于 B 可逆,可知 $A = B^T B$ 正定。
- 正交向量组: 两两正交的非零向量构成的向量组。
 - 正交向量组线性无关。证明利用反证法和正交性。
 - 正交基: n 维欧氏空间 n 个两两正交的向量组成的向量组。

- 标准正交基: 正交基且每个向量都是单位长度。**从正交基到标准正交基**,**只需做单位化**: $\beta = \alpha/||\alpha||$.
- 由度量矩阵的定义可知: 正交基对应的度量矩阵为对角矩阵,标准正交基对应的度量矩阵为单位矩阵。特别地,若 $\alpha_1, \dots, \alpha_n \in \mathbb{R}^n$ 为一组标准正交基,则矩阵 $B = [\alpha_1, \dots, \alpha_n]$ 为正交矩阵: $B^T B = E$.
- 取定标准正交基后,计算向量的内积比较容易。设 e_1, \cdots, e_n 是一个标准正交基, α, β 的坐标为 $X = [x_1, \cdots, x_n]^T, Y = [y_1, \cdots, y_n]^n$,则 1. $(\alpha, \beta) = X^T Y$
 - 2. $x_i = (\alpha, e_i)$.
- 给定一组标准正交基,要计算一个向量的坐标,只需计算内积。 $\alpha = (\alpha, e_1)e_1 + \cdots + (\alpha, e_n)e_n$. 例 P165, P171 11. **这个结论只对标准正交基成立**。
- 任一正交向量组都可以扩充为一组正交基。
- 施密特正交化: 任一一组基 $\alpha_1, \dots, \alpha_n$,都存在上三角矩阵 $B \perp b_{ii} > 0$ 使得向量组 $[\beta_1, \dots, \beta_n] = [\alpha_1, \dots, \alpha_n] B$ 为标准正交基。
 - 要**熟练**掌握施密特正交化的证明,从一组基变为正交基时用到。P167 例 4.8.10, P172 13, 15.
 - -QR 分解: 任意可逆的实矩阵 A 都存在正交矩阵 Q 和上三角矩阵 R 且 $r_{ii} > 0$,使得 A = QR,并且这样的 Q, R 是唯一。

Proof. 设 $A = [\alpha_1, \dots, \alpha_n]$, 则列向量 $\alpha_1, \dots, \alpha_n \in \mathbb{R}^n$ 为一组基,由施密特正交化存在一个上三角矩阵 S 且 $s_{ii} > 0$,和标准正交基 β_1, \dots, β_n ,满足

$$[\beta_1, \cdots, \beta_n] = [\alpha_1, \cdots, \alpha_n]S.$$

记矩阵 $Q = [\beta_1, \dots, \beta_n]$, 由于 β_1, \dots, β_n 是标准正交矩阵,所以 Q 是正交矩阵。因此 Q = AS. 从而 $A = QS^{-1}$, 记 $R = S^{-1}$ 即得分解公式。整个证明还需下面两个结论:

- * 上三角矩阵的逆矩阵还是上三角矩阵。按照伴随矩阵的定义可证明。
- * 唯一性:上三角型的正交矩阵必是对角矩阵且对角元为 1 或 -1,如果对角元素都大于零,则该矩阵一定是单位矩阵。**利用:正交矩阵的每一行、每一列作为向量,向量的长度为** 1.

П

- Cholesky 分解: 任一正定矩阵 A 存在唯一的上三角矩阵 R 且 $r_{ii} > 0$, 满足 $A = R^T R$.

Proof. 由于 A 正定,所以存在可逆矩阵 B 使得 $A=B^TB$. 对 B 应用 QR 分解,有上三角矩阵 R 和正交矩阵 Q 使得

$$B = QR$$

 $\exists R_{ii} > 0. \exists A = B^T B = R^T Q^T Q R = R^T R.$

唯一性:若存在上三角矩阵 P 且对角元素 $p_{ii} > 0$ 满足 $A = P^T P = R^T R$.则 $(R^T)^{-1}P^T = RP^{-1}$,而前者是下三角,后者是上三角,因此 RP^{-1} , $(R^T)^{-1}P^T$ 是对角矩阵。特别地, $R^{-1}P = (R^T)^{-1}P^T = RP^{-1}$,即 RP^{-1} 的逆等于本身且是对角矩阵,因此 $RP^{-1} = E$,从而 R = P.

5 矩阵对角化

这一章最核心的问题就是研究矩阵如何对角化,在什么条件下可对角化,对角 化的矩阵有哪些应用。**不是所有矩阵都可对角化**。

- 特征值/特征向量: A 是数域 P 上的 n 阶方阵,若存在非零向量 ξ 和 $\lambda_0 \in P$ 满足 $A\xi = \lambda_0 \xi$,则称 λ_0 为 A 的特征值(或特征根), ξ 为对应 λ_0 的特征向量。
- 特征多项式: $f(\lambda) = |\lambda E A|$.
 - -A 的特征值一定是特征多项式 $f(\lambda)=0$ 的解,特征多项式 $f(\lambda)=0$ 的解一定是特征值。
 - 求特征值和特征向量的一般步骤: 通过特征多项式 $|\lambda E A| = 0$ 解 出特征值 $\lambda_1, \dots, \lambda_n$, 然后解方程 $(\lambda_i E A)X = 0$, 对应的解就是特征向量。
 - 复数域上一定有 n 个特征值(计算重数)。
- A 可对角化当且仅当存在 n 个线性无关的特征向量。设线性无关的特征向量为 ξ_1, \dots, ξ_n ,对应的特征值为 $\lambda_1, \dots, \lambda_n$,则矩阵 $P = [\xi_1, \dots, \xi_n]$ 满足: $P^{-1}AP = diag\{\lambda_1, \dots, \lambda_n\}$. 理解这个定理的证明。
- 相似: 设 A 与 B 为 n 阶方阵,若存在可逆矩阵 P 使得 $P^{-1}AP = B$,则 称 A 与 B 相似。
- 设 A 的全体互异的特征值为 $\lambda_1, \dots, \lambda_s$, 则 A 可对角化
 - 当且仅当 $r(\lambda_i E A) = s_i$ 满足 $\sum_{i=1}^s (n s_i) = n$.
 - 当且仅当 $n-s_i=n_i$, $i=1,\dots s$, 其中 λ_i 的重数为 n_i 。

主要用于判断一个矩阵是否可以对角化,这是充要条件。例 P206, P207 3, 6 P 208 7, 8. 证明满足 $A^2=E$ 的矩阵可对角化,满足 $A^2=A$ 的矩阵 A 可对角化。

- 设 A 的所有特征值为 $\lambda_1, \dots, \lambda_n$ (在复数域下总存在 n 个特征值), 则
 - $-tr(A) = \sum_{i=1}^{n} a_{ii} = \sum_{i=1}^{n} \lambda_i$
 - $-|A|=\lambda_1\lambda_2\cdots\lambda_n$ 这两个结论不需要 A 可对角化。
 - 应用: P215 9, P 212 例 5.3.4.

- $h(x) = a_k x^k + \dots + a_1 x + a_0$ 是多项式,若 λ_0 是 A 的特征值,则 $h(\lambda_0)$ 是 h(A) 的特征值。
- A 可逆当且仅当每个特征值都非零,且 A^{-1} 的特征值是 A 的特征值的倒数。
- 相似矩阵有相同的特征多项式。具有相同特征多项式的矩阵不一定相似。 推论: 相似矩阵有相同的迹 tr(A) = tr(B) 和相同的行列式 |A| = |B|. 可以用于判断两矩阵是否相似,P212 例 5.3.4,P215 9.
- $A \subseteq B$ 相似,则 $A^k \subseteq B^k$ 相似, $h(A) \subseteq h(B)$ 相似。
 - -A 与 B 相似,则 |h(A)| = |h(B)|.
 - 若 A 与对角矩阵相似,即 $A=P^{-1}diag\{\lambda_1,\cdots,\lambda_n\}P$,则 $h(A)=P^{-1}diag\{h(\lambda_1),\cdots,h(\lambda_n)\}P$. 这可以用于计算一个矩阵 A^k ,首先是对角化,找出特征值,找出特征向量,然后构造 P.
 - 若 A 可对角化,则 $|h(A)| = h(\lambda_1)h(\lambda_2)\cdots h(\lambda_n)$, $tr(h(A)) = \sum_{i=1}^n h(\lambda_i)$. 该结论对于 A 不可对角化也成立。
 - 具体应用: P214 例 5.3.5, P215 5.
- 实对称矩阵的特征值都是实数 (即复数域解特征多项式得到的 n 个解都是实数。),特征向量也是实向量。
- 实对称矩阵不同特征值的特征向量相互正交。
- 实对称矩阵一定可对角化,即总存在 *n* 个线性无关的特征向量。**只需熟记** 该结论,在遇到实对称矩阵对角化问题,直接解特征值,然后解特征向量,得到线性无关的特征向量一定是 *n* 个。
- 实对称矩阵 A, 存在正交矩阵 U 使得 U^TAU 为对角矩阵。U 的构造方法
 - 利用特征多项式 $|\lambda E A| = 0$ 解出所有特征值。
 - 解线性方程组 $(\lambda_i E A)X = 0$, 得到一个基础解系,利用施密特正交化得到一组单位正交的基础解系。
 - 上面得到 n 个特征向量作为列向量构成的矩阵就是所求的正交矩阵。
 - 注:施密特正交化只需**分别**对每一个特征值对应的特征向量做。如果是计算实对称矩阵的对角化问题,建议利用以上方法构造正交矩阵,这样的好处是正交矩阵的逆只需通过转置即可得到。P 217 例 5.4.1, P218 例 5.4.2.
 - 注:一般的矩阵不存在正交矩阵使得它是对角。存在正交矩阵使得矩阵对角化当且仅当该矩阵是实对称的。

6 二次型

二次型 $f(x_1, \dots, x_n) = X^T A X$, 其中 $A = [a_{ij}]_{n \times n}$ 对称矩阵, $X = [x_1, \dots, x_n]^T$. 本章主要考察如何利用非退化线性替换 X = C Y 化二次型为标准型,等价于把对称矩阵合同到对角矩阵。

- 任意一个数域 P 上的二次型都存在非退化的线性替换化为标准形。
- 数域 P 上的对称矩阵 A,总存在 P 上的可逆矩阵 C 使得 C^TAC 为对角矩阵。
- 对于实对称矩阵 A,则存在正交矩阵 U 使得 $U^TAU = diag\{\lambda_1, \dots, \lambda_n\}$ 其中 λ_i 是 A 的特征值。**化实二次型为标准形**,等价于求正交矩阵把实对角矩阵的对角化。**P238**.
- A 与 B 合同,则 r(A) = r(B). |A| > 0 当且仅当 |B| > 0. 一般情况不会 有 |A| = |B|. **对比矩阵的相似和矩阵的等价来学习**。
- 二次型的秩:标准形中不为零的项的个数 =r(A).
- 复对称矩阵 A 与 B 合同当且仅当 r(A) = r(B).
- 实二次型的规范形 $y_1^2 + \cdots + y_p^2 y_{p+1}^2 \cdots y_r^2$ 是唯一确定的,即 p, r 是唯一确定。
 - -r = r(A)
 - -p 称为正惯性指数 =A 的正特征值的个数。
 - -r-p 称为负惯性指数 =A 的负特征值的个数。
 - 实对称矩阵 A 与 B 在实数域上合同当且仅当 r(A) = r(B) 和正惯性指数相同。
 - 计算正负惯性指数:设 $A = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}$ 为 n 阶可逆矩阵,其中 A_1, A_2 为 $p \times n$, $(n-p) \times n$ 矩阵,计算二次型 $f = X^T (A_1^T A_1 A_2^T A_2) X$ 的正负惯性指数。
 - 计算正负惯性指数: 设 $\alpha \in \mathbb{R}^n$ 且 $\alpha^T \alpha = 1$, 求 $E 2\alpha \alpha^T$ 的的正负 惯性指数。**利用** $|E_n + AB| = |E_m + BA|$
- 正定二次型: 实二次型, 对任意非零实向量 X 有 $X^TAX > 0$.
- 半正定二次型: 实二次型, 对任意非零实向量 X 有 $X^TAX > 0$.
- A 实对称,则如下相互等价
 - 1. A 正定。
 - 2. A 的特征值均大于零。
 - 3. 存在可逆矩阵 B 使得 $A = B^T B$,这个结论只有在证明中才用到
 - 4. A 与单位矩阵合同

5. A 的顺序主子式都大于零。

判断一个实对称矩阵是否正定: (1) 通过定义 $X^TAX > 0$ 来判断 (例如: A, B 正定,证明 A+B 是正定。例: A 正定,C 可逆,证明 C^TAC 正定。例: P254 10.)。(2)证明 A 的特征值都大于零 (例 P254 11.)。(3) 计算 A 的顺序主子式,P253 中的例 6.4.3,需要熟练掌握。

- 若 A 正定、则
 - $-A^{-1}$ 正定。
 - A* 正定
 - 若 C 可逆,则 C^TAC 正定。
- A 正定,则有 |A| > 0. 若实对称矩阵 A 满足 |A| < 0,则存在非零实向量 X 使得 $X^TAX < 0$.
- A 实对称,则如下相互等价:
 - 1. A 半正定。
 - 2. A 的特征值均大于等于零。
 - 3. 存在矩阵 B 使得 $A = B^T B$ 。
 - 4. A 的所有主子式都大于等于零。
- 如果已知一个矩阵 A 是正定矩阵或者证明 A 正定,夫证明相应的结论:
 - 用正交矩阵对角化。例: A, B 正定,且 AB = BA,证明: AB 也正 定。一般的结论: A, B 可对角化,且 AB = BA,则 A, B 可同时对 角化。
 - 利用特征值大于零: 例: A 实对称,证明存在 k > 0 使得 kE + A 正定。例: A 实对称,证明存在 k_0, k_1 使得 $k_0 X^T X \le X^T A X \le k_1 X^T X$. 例: A 半正定且可逆,则 A 正定。**该结论可以用来证明 P254 8,9**.
 - 若结论对于 A = E 很容易证明,此时可以利用分解 $A = B^T B$ 来证明,然后提出 B^T 和 B. 例: A, B 正定,且 AB = BA,证明: AB 也正定。例: A, B A B 都正定,证明 $B^{-1} A^{-1}$ 正定。例: $A = [a_{ij}]$, $B = [b_{ij}]$ 都正定,证明 $D = [a_{ij}b_{ij}]$ 也正定。

7 扰动技巧

- 若要证明一个结论对于半正定矩阵 A 成立,如果对于正定矩阵可以证明,则利用正定矩阵 xE + A 其中 (x > 0),得到一个结论,然后令 $x \to 0$ 可得半正定矩阵的结论。
- 若要证明一个结论对于一般矩阵成立,如果对于可逆矩阵可以证明,则当x 不是特征值时, A xE 是可逆矩阵,验证这个矩阵也满足题目的假设,由于 A xE 可逆,可以利用已经证明的可逆的结论,然后令 $x \to 0$.
- 只要是代数结论,不涉及求逆的,都可以尝试应用上面的技巧。

• 例: n 阶矩阵 A, B, $A^k = 0$ 和 AB = BA, 证明 |A + B| = |B|.

Proof. 1) 若 B 可逆,要证 |A+B|=|B|,只需证 $|AB^{-1}+E|=1$. 由 AB=BA,可得 $B^{-1}A=AB^{-1}$. 从而

$$(AB^{-1})^k = A^k (B^{-1})^k = 0.$$

设 AB^{-1} 的特征值为 $\lambda_1, \dots, \lambda_n$, 则 λ_i^k 是 $(AB^{-1})^k$ 的特征值,特别地, $\lambda_i = 0, i = 1, 2, \dots, n$.

假设 $\lambda'_1, \dots, \lambda'_n$ 为矩阵 $AB^{-1}+E$ 的特征值,对应的特征向量为 ξ'_1, \dots, ξ'_n ,则对任意的 $i=1,2,\dots,n$,有

$$(AB^{-1} + E)\xi_i' = \lambda_i'\xi_i.$$

可知 $AB^{-1}\xi_i'=(\lambda_i'-1)\xi_i'$. 即 $\lambda_i'-1$ 为 AB^{-1} 的特征值(等于零)。因此 $\lambda_i'=1,i=1,\cdots,n$. 因此 $|AB^{-1}+E|=\lambda_1'\lambda_2'\cdots\lambda_n'=1$. 对于 B 可逆,结论已证明。

2) 对于 B 不可逆,假设 B 的特征值为 $\lambda_1, \dots, \lambda_n$,则当 $\lambda \neq \lambda_i$ 时, $D_{\lambda} = B - \lambda E$ 是可逆的,且满足 AD = DA. 利用 1) 证明的结论,可得对任意的 $\lambda \neq \lambda_i$,都有

$$|A + B - \lambda E| = |B - \lambda E|.$$

而上式等式两边都是多项式,在有限个点外相等,则它一定是一个恒等式,特别地 $\lambda=0$ 也是等式,即 |A+B|=|B|. 另一个看法:由于等式两边都是多项式,是关于 λ 的连续函数,因此令 $\lambda\to 0$ 可得 |A+B|=|B|. (因为有限个点外的值不影响极限。)

• 例: n 阶矩阵 A, B, C, D, 若 AC = CA, 证明:

$$\left| \begin{array}{cc} A & B \\ C & D \end{array} \right| = |AD - CB|.$$

Proof. 1) 若 A 可逆,则

$$\begin{vmatrix} A & B \\ C & D \end{vmatrix} = \begin{vmatrix} E & 0 \\ -CA^{-1} & E \end{vmatrix} \begin{vmatrix} A & B \\ C & D \end{vmatrix}$$
 (6)

$$= \left| \begin{array}{cc} A & B \\ 0 & D - CA^{-1}B \end{array} \right| \tag{7}$$

$$= |A||D - CA^{-1}B| \tag{8}$$

$$= |A||D - A^{-1}CB| = |AD - CB|.$$
 (9)

2) 若 A 不可逆,则考虑 $A' = A - \lambda E$ 当 λ 不是 A 的特征值时,A' 时可逆的,且满足 A'C = CA'. 应用 1) 的结论可得

$$\left| \begin{array}{cc} A - \lambda E & B \\ C & D \end{array} \right| = |(A - \lambda E)D - CB|.$$

由于等式两边都是关于 λ 的多项式,等式表明两个多项式在有限个点外恒等,则两个多项式处处相等,特别地,取 $\lambda=0$,得

$$\left| \begin{array}{cc} A & B \\ C & D \end{array} \right| = |AD - CB|.$$

8 例题

• 例: $A \otimes n$ 阶方阵, $\ddot{A} AA^T = A^2$, 证明 $A = A^T$.

Proof. 令 $B=A-A^T$, 则 $B^T=-B$, 要证明 B=0, 只需证明 $tr(BB^T)=0$ 即 $tr(B^2)=0$.

$$tr(B^{2}) = tr(A^{2} + (A^{T})^{2} - AA^{T} - A^{T}A) = tr((A^{T})^{2} - A^{T}A) = tr(A^{T}(A^{T} - A))$$
(10)

由于 tr(CD) = tr(DC), 可得

$$tr(B^2) = tr((A^T - A)A^T) = tr((A^T)^2 - AA^T)$$

对 $AA^T = A^2$ 取转置得 $(A^T)^2 = AA^T$, 因此

$$tr(B^2) = 0$$

• 例: A 实对称,如果存在非零列向量 α 使得 $\alpha^T A \alpha > 0$,则 A 至少有一个特征值大于零。

Proof. 反证法,若 A 的所有特征值都小于等于零。则 -A 的所有特征值都大于等于零,特别地,-A 是半正定的,因此 $\alpha^T(-A)\alpha \geq 0$ 与 $\alpha^T A\alpha > 0$ 矛盾。

• 例: A, B 为 n 阶方阵, A 可逆, 且存在常数 λ , 满足 $A = (A - \lambda E)B$, 求证: AB = BA.

Proof. 1) 若 $\lambda = 0$, 则 A = AB, 由 A 可逆可知 B = E, 因此结论显然成立。

2) 若 $\lambda \neq 0$, 则 (**凑 E**) $\lambda E + A - \lambda E = (A - \lambda E)B$. 因而

$$\lambda E = (A - \lambda E)(B - E).$$

取行列式可得 $|A-\lambda E||B-E|=\lambda^n\neq 0$. 因此 $A-\lambda E$ 可逆。从而 $B=(A-\lambda E)^{-1}A$. 要证明 AB=BA, 只需证明 $A(A-\lambda E)^{-1}A=$

 $(A - \lambda E)^{-1}A^2$. 若我们可以证明 $A(A - \lambda E)^{-1} = (A - \lambda E)^{-1}A$, 则显然有 $A(A - \lambda E)^{-1}A = (A - \lambda E)^{-1}A^2$.

而要证明 $A(A - \lambda E)^{-1} = (A - \lambda E)^{-1}A$,等式两边左乘、右乘可逆矩阵 $A - \lambda E$,只需证明 $(A - \lambda E)A = A(A - \lambda E)$,展开后可知这是成立。因此证明了 $A(A - \lambda E)^{-1} = (A - \lambda E)^{-1}A$,由上面的分析可得 AB = BA. \square

• 例:设 A, B 实对称,且 A 的特征值在区间 [a, b] 上,B 的特征值在区间 [c, d] 上,则 A + B 的特征值在区间 [a + c, b + d] 上。

Proof. 由于 A-aE, B-cE 的特征值都大于等于零, 所以 A-aE, B-cE 是半正定矩阵。从而 A+B-(a+c)E 也是半正定矩阵,特别地,它的特征值都大于等于零,即 A+B 的特征值都大于等于 a+c.

另一方面,bE-A,dE-B 的特征值都大于等于零,所以 bE-A,dE-B 是半正定矩阵,从而 (b+d)E-(A+B) 也是半正定矩阵,特征地,它的特征值都大于等于零,即 A+B 的特征值都小于等于 b+d.

• 例: A 实对称,证明存在 k_0, k_1 ,使得对任意的实向量 X 有 $k_0 X^T X \le X^T A X < k_1 X^T X$.

Proof. 由于 A 实对称,所以特征值都是实数。设 $\lambda_1, \cdots, \lambda_n$ 为 A 的特征值,不妨设 λ_1 为最小的特征值, λ_n 为最大的特征值。令 $k_0 = \lambda_1 - 1$, $k_1 = \lambda_n + 1$. 则 $A - k_0 E$, $k_1 E - A$ 的特征值都大于零,因此它们都是正定矩阵,特别地,有

$$X^{T}(A - k_0 E)X \ge 0$$
$$X^{T}(k_1 E - A)X > 0$$

因此 $k_1 X^T X < X^T A X < k_1 X^T X$.

• 例: 求二次型 $f(x_1, \dots, x_n) = \sum_{j=1}^n x_j^2 + 2a \sum_{1 \le j < k \le n} x_j x_k$ 的秩和符号 差,这里 a 是实数。

Proof. 二次型的矩阵为 $A = [a_{ij}]$, 其中 $a_{ii} = 1, i = 1, \cdots, n$. 当 $i \neq j$ 有 $a_{ij} = a$. 则 $A = (1 - a)E + a\alpha\alpha^T$, 这里 $\alpha = [1, 1, \cdots, 1]^T$. 计算 A 的秩 和符号差只需计算出 A 的特征值。

A 的特征多项式

$$h(\lambda) = |(\lambda + a - 1)E - a\alpha\alpha^T| = (\lambda + a - 1)^{n-1}(\lambda + a - 1 - a\alpha^T\alpha) = (\lambda + a - 1)^{n-1}(\lambda - 1 - (n-1)a).$$

因此 A 的所有特征值为 $1-a, 1-a, \cdots, 1-a, 1+a(n-1)$

- 1) 当 n = 1 时, 二次型的秩为 1, 符号差为 1.
- 2) 当 $a=1, n \geq 2$ 时, 二次型的秩为 1, 符号差为 1.
- 3) 当 $a = -1/(n-1), n \ge 2$ 时,二次型的秩为 n-1,符号差为 n-1.
- 4) 当 $-1/(n-1) < a < 1, n \ge 2$ 时,二次型的秩为 n, 符号差为 n.
- 5) 当 a > 1 时,二次型的秩为 n,符号差为 2 n.
- 6) 当 a < -1/(n-1), 二次型的秩为 n, 符号差为 n-2.

• 例:设 $\alpha_1,\alpha_2,\alpha_3$ 是 4 个未知量的非齐次方程组 AX=b 的 3 个解,且 $\alpha_1+\alpha_2=(2,2,4,6)^T,\alpha_1+2\alpha_3=(0,3,0,6)^T,r(A)=3$,求线性方程组 AX=b 的通解。

Proof. 由于 r(A) = 3, 则齐次方程组 AX = 0 的解空间维数为 1, 由于

$$\beta = \alpha_1 + 2\alpha_3 - \frac{3}{2}(\alpha_1 + \alpha_2) = \frac{1}{2}(\alpha_3 - \alpha_1) + \frac{3}{2}(\alpha_3 - \alpha_2) = (-3, 0, -6, -3)^T.$$

是齐次方程组 AX = 0 的解,且非零,所以是它的基础解系。而

$$\eta = \frac{1}{2}(\alpha_1 + \alpha_2) = (1, 1, 2, 3)^T$$

满足 $A\eta = \frac{1}{2}(A\alpha_1 + A\alpha_2) = b$. 因此 η 是 AX = b 的一个特解,因此 AX = b 的通解为 $k\beta + \eta$.

• 例: $A_{n \times m}$ 为实矩阵,若 $tr(A^T A) = 0$,则 A = 0.

Proof. 设 $B = A^T A$, 则 $b_{ii} = \sum_{k=1}^n a_{ki}^2$. 因此 $0 = tr(B) = \sum_{i=1}^m b_{ii} = \sum_{i=1}^m \sum_{k=1}^n a_{ki}^2$ 可得任意的 k, i 有 $a_{ki} = 0$, 即 A = 0.

• 例: A, B 为实的 n 阶方阵, 若 $AB = (B - A^T)A$, 证明 A = 0.

Proof. 由于 $A^TA = BA - AB$. 因此 $tr(A^TA) = tr(BA - AB) = tr(BA) - tr(AB) = 0$. 由上一题结论可知 A = 0.

• 例: $A = diag\{\lambda_1, \dots, \lambda_n\}$ 且 $\lambda_i \neq \lambda_j$, 则任意与 A 可交换的矩阵都是对角矩阵。

Proof. 设 $B = [b_{ij}]$ 且 AB = BA. 则 $(AB)_{ij} = \lambda_i b_{ij}$, $(BA)_{ij} = \lambda_j b_{ij}$. 因 此

$$\lambda_i b_{ij} = \lambda_j b_{ij}$$

若 $i \neq j$, 则可得 $b_{ij} = 0$. 因此 B 是对角矩阵。

• 例: $A = diag\{\lambda_1 E_{r_1}, \dots, \lambda_s E_{r_s}\}$ 且 $\lambda_i \neq \lambda_j$, 则任意与 A 可交换的矩阵 一定是分块对角矩阵。

Proof. 设 B 与 A 可交换,把 B 分块为 $B = [B_{ij}]$,则由 AB = BA,可得 $(AB)_{ij} = \lambda_i B_{ij}$, $(BA)_{ij} = \lambda_j B_{ij}$. 因此

$$\lambda_i B_{ij} = \lambda_j B_{ij}$$

若 $i \neq j$, 则可得 $B_{ij} = 0$. 因此 B 是分块对角矩阵。

• 例: 若 $B = diag\{B_1, B_2, \cdots, B_s\}$ 为分块对角矩阵,则 B 可对角化当且 仅当每个 B_i 可对角化。

Proof. 1)若每个 B_i 都可对角化,则存在可逆矩阵 P_1, P_2, \cdots, P_s 使得 $P_1^{-1}B_1P_1, P_2^{-1}B_2P_2, \cdots, P_s^{-1}B_sP_s$ 为对角矩阵。令 $P=diag\{P_1, P_2, \cdots, P_s\}$,则有 $P^{-1}BP$ 为对角矩阵。

2) 若 B 可对角化,则存在 n 个线性无关的特征向量 $\xi_1, \xi_2, \cdots, \xi_n$ 对应的特征值为 $\lambda_1, \cdots, \lambda_n$. 按矩阵 B 的分块对每个向量分块

$$\xi_i = \begin{pmatrix} \xi_{i1} \\ \xi_{i2} \\ \vdots \\ \xi_{is} \end{pmatrix}$$

由 $B\xi_i = \lambda_i \xi_i$ 可得 $B_j \xi_{ij} = \lambda_i \xi_{ij}$. 若 $\xi_{ij} \neq 0$, 则 ξ_{ij} 为 B_j 的特征向量。设 B_j 的阶数为 n_j .

要证明 B_j 可对角化,只需说明 $\xi_{j1}, \xi_{j2}, \cdots, \xi_{jn}$ 的秩为 n_j ,即存在 n_j 个 线性无关的特征向量。

反证法: 若 $\xi_{j1}, \xi_{j2}, \dots, \xi_{jn}$ 的秩小于 n_j ,我们将证明 ξ_1, \dots, ξ_n 线性相关,得出矛盾。

若 $\xi_{j1},\xi_{j2},\cdots,\xi_{jn}$ 的秩 $=r< n_j,$ 不妨设 $j=1,\,\xi_{11},\xi_{12},\cdots,\xi_{1r}$ 线性无 关。则可逆矩阵 $P=[\xi_1,\cdots,\xi_n]$ 经过初等列变换可化为

$$P \to \left(\begin{array}{cc} A_1 & 0_{n_1 \times (n-r)} \\ A_2 & A_3 \end{array}\right)$$

而 A_1 是列满秩矩阵 $r(A_1) = r$,经过初等行变换可以把 A_2 消去

$$P \to \left(\begin{array}{cc} A_1 & 0_{n_1 \times (n-r)} \\ A_2 & A_3 \end{array}\right) \to \left(\begin{array}{cc} A_1 & 0_{n_1 \times (n-r)} \\ 0_{(n-n_1) \times r} & A_3 \end{array}\right)$$

因此 $r(P) = r(A_1) + r(A_3) = r + r(A_3)$. 由于 A_3 是 $(n - n_1) \times (n - r)$ 矩 阵, 则 $r(A_3) \le n - n_1 < n - r$. 故

$$r(P) = r + r(A_3) < n + r - n_1 < n$$

与 P 可逆矛盾。综上可得 $\xi_{j1}, \xi_{j2}, \dots, \xi_{jn}$ 的秩为 n_j , 即 B_j 存在 n_j 个线性无关的特征向量,因此 B_i 可对角化。

• 例:设 A, B 都可对角化,证明: AB = BA 当且仅当 A, B 可同时对角化,即存在可逆矩阵 P 使得 $P^{-1}AP, P^{-1}BP$ 都是对角矩阵。

Proof. 1) 若 A,B 可同时对角化,即存在可逆矩阵 P 使得 $P^{-1}AP,P^{-1}BP$ 为对角矩阵,所以 $P^{-1}APP^{-1}BP = P^{-1}BPP^{-1}AP$. 从而 $P^{-1}ABP = P^{-1}BAP$. 由于 P 可逆,可得 AB = BA.

2) 若 AB = BA, 由于 A 可对角化,存在可逆矩阵 P_1 使得 $P_1^{-1}AP_1 = diag\{\lambda_1 E_{r_1}, \lambda_2 E_{r_2}, \dots, \lambda_s E_{r_s}\}$, 其中 $\lambda_i \neq \lambda_i$. 则

$$P_1^{-1}AP_1P_1^{-1}BP_1 = P_1^{-1}ABP_1 = P_1^{-1}BAP_1 = P_1^{-1}BP_1P_1^{-1}AP_1$$

即 $P_1^{-1}BP_1$ 与对角分块矩阵 $diag\{\lambda_1E_{r_1},\lambda_2E_{r_2},\cdots,\lambda_sE_{r_s}\}$ 可交换。由于 $\lambda_i\neq\lambda_j$,可得 $P_1^{-1}BP_1$ 也是对角分块矩阵 $P_1^{-1}BP_1=diag\{B_1,B_2,\cdots,B_s\}$. 由于 B 可对角化,所以 $P_1^{-1}BP_1$ 也可对角化,由上一例题可知每个 B_i 可对角化,即存在可逆矩阵 C_1,C_2,\cdots,C_s 使得 $C_1^{-1}B_1C_1,C_2^{-1}B_2C_2,\cdots,C_s^{-1}B_sC_s$ 都是对角矩阵。令

$$Q = diag\{C_1, C_2, \cdots, C_s\}.$$

则 Q 可逆,且

 $Q^{-1}P_1^{-1}BP_1Q = diag\{C_1^{-1}B_1C_1, C_2^{-1}B_2C_2, \cdots, C_s^{-1}B_sC_s\} =$ 対角矩阵。

令 $P = P_1Q$, 则 $P^{-1}BP$ 为对角矩阵。另一方面,

 $P^{-1}AP = Q^{-1}P_1^{-1}AP_1Q = Q^{-1}diag\{\lambda_1 E_{r_1}, \lambda_2 E_{r_2}, \cdots, \lambda_s E_{r_s}\}Q = diag\{\lambda_1 E_{r_1}, \lambda_2 E_{r_2}, \cdots, \lambda_s E_{r_s}\}Q$

П

也是对角矩阵, 所以 A, B 可同时对角化。

• 例: A, B 正定矩阵, AB = BA, 证明 AB 是正定矩阵。

Proof. 证法一:利用上一题的结论,A,B 可同时对角化,即存在可逆矩阵 P 使得 $P^{-1}AP, P^{-1}BP$ 都为对角矩阵且对角元素都是相应的特征值,都 大于零,因此 $P^{-1}ABP$ 也是对角矩阵且对角元素是大于零。因此 AB 的特征值都大于零,故 AB 正定。

证法二: 设 AB 的特征值为 λ , 对应的特征向量为 ξ , 则 $AB\xi = \lambda \xi$. 两边同时左乘 $\xi^T B$ 可得

$$\xi^T B A B \xi = \lambda \xi^T B \xi.$$

由于 A 正定,B 也正定,可得 $\xi^T B \xi > 0$, $\xi^T B A B \xi > 0$.故 $\lambda > 0$.因此 AB 的特征值都大于零,因而 AB 正定。

证法三:由于 A 正定,则存在可逆矩阵 C 使得 $A=C^TC$.因此 $AB=C^TCB=C^T(CBC^{-1})C$.要证 AB 正定,只需证明 CBC^{-1} 正定,由于 CBC^{-1} 与 B 相似,所以特征值都大于零,故 CBC^{-1} 正定。因而 AB 也 正定。

• 例: A, B, A - B 都正定,证明 $B^{-1} - A^{-1}$ 正定。

Proof. 思路: 当 A=E 时,E-B 正定,所以 B 的特征值都小于一。而 B^{-1} 的特征值都大于 1. 所以 $B^{-1}-E$ 正定。一般情形利用 A 正定,存在可逆 C 使得 $A=C^TC$.

由于 A 正定, 所以存在可逆 C 使得 $A = C^T C$. 而

$$A - B = C^{T}C - B = C^{T}(E - (C^{T})^{-1}BC^{-1})C.$$

$$B^{-1} - A^{-1} = B^{-1} - C^{-1}(C^{-1})^{T} = C^{-1}(CB^{-1}C^{T} - E)(C^{-1})^{T}$$

记 $D=(C^T)^{-1}BC^{-1}$,则 $D^{-1}=CB^{-1}C^T$. 由于 A-B 正定,可知 E-D 正定,所以 D 的特征值都小于 1. 从而 $D^{-1}-E$ 也正定。由于 $B^{-1}-A^{-1}=C^{-1}(D^{-1}-E)(C^{-1})^T$,所以 $B^{-1}-A^{-1}$ 也正定。

• 例: 设 $\alpha_1, \dots, \alpha_n$ 是欧氏空间 V 的一组基, 若 $\beta \in V$ 满足 $(\beta, \alpha_i) = 0, i = 1, 2, \dots, n$, 则 $\beta = \theta$.

Proof. 由施密特正交化,存在标准正交基 e_1, \dots, e_n 和过渡矩阵 B,使得 $[e_1, \dots, e_n] = [\alpha_1, \dots, \alpha_n] B$,从而可得 e_i 可被向量组 $\alpha_1, \dots, \alpha_n$ 线性表示。另一方面,由于对任意的 $i = 1, 2, \dots, n$ 有 $(\beta, \alpha_i) = 0$,则 $(\beta, e_i) = 0$. 若 $\beta \neq \theta$,则 $e_1, e_2, \dots, e_n, \beta$ 构成一个正交向量组。由于正交向量组线性无关,所以存在 n+1 个线性无关的向量,矛盾!因此 $\beta = \theta$.

• 例: $A = [a_{ij}], B = [b_{ij}]$ 正定, 证明 $D = [a_{ij}b_{ij}]$ 也正定。

Proof. 由于 B 正定,则存在可逆矩阵 C 使得 $B=C^TC$. 因此 $b_{ij}=\sum_{k=1}^n c_{ki}c_{kj}$. 要证明 D 是正定矩阵,只需对任意非零向量 $X=[x_1,\cdots,x_n]^T$ 证明 $X^TDX>0$. 事实上

$$X^{T}DX = \sum_{i=1}^{n} \sum_{j=1}^{n} d_{ij}x_{i}x_{j} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}b_{ij}x_{i}x_{j}$$
 (11)

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} a_{ij} c_{ki} c_{kj} x_i x_j$$
 (12)

$$= \sum_{k=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}(c_{ki}x_i)(c_{kj}x_j).$$
 (13)

 $\diamondsuit Y_k = [c_{k1}x_1, \cdots, c_{kn}x_n]^T,$ $\$

$$X^T D X = \sum_{k=1}^n Y_k^T A Y_k.$$

由于 A 正定, 要说明 $X^TDX > 0$ 只需说明存在某个 $Y_k \neq 0$ 即可。由于

$$[Y_1, \cdots, Y_k] = Cdiag\{x_1, x_2, \cdots, x_n\}$$

而 C 可逆, $X \neq 0$,则 $[Y_1, \cdots, Y_k]$ 不为零矩阵,所以存在某个 $Y_k \neq 0$. 故 $X^TDX > 0$,从而 D 正定。

另一种看法说明存在 $Y_k \neq 0$: 若所有的 $Y_k = 0$, 按列向量分块 $C = [\alpha_1, \cdots, \alpha_n]$, 则对任意的 i 都有 $(X, \alpha_i) = 0$, 而 $\alpha_1, \cdots, \alpha_n$ 是 \mathbb{R}^n 的一组基,由上一例题的结论可知 X = 0, 矛盾!

• 例:设实二次型 f的秩大于 1,则它可以分成两个一次齐次多项式的乘积当且仅当它的秩为 2 且符号差为零。

Proof. 假设 f 可以表示为两个一次齐次多项式的乘积:

$$f(x_1, \dots, x_n) = (a_1x_1 + a_2x_2 + \dots + a_nx_n)(b_1x_1 + \dots + b_nx_n)$$

若 (a_1,a_2,\cdots,a_n) 与 (b_1,b_2,\cdots,b_n) 线性相关且 $(b_1,\cdots,b_n)=k(a_1,\cdots,a_n)$,不妨设 $a_1\neq 0$,令 $y_1=a_1x_1+\cdots+a_nx_n,\ y_2=x_2,\cdots,y_n=x_n$,它是一个非退化的线性替换,则有

$$f = ky_1^2$$

这与 f 的秩大于 1 矛盾。因此 (a_1, a_2, \dots, a_n) 与 (b_1, b_2, \dots, b_n) 线性无 关。不妨设

$$\left|\begin{array}{cc} a_1 & a_2 \\ b_1 & b_2 \end{array}\right| \neq 0.$$

令 $y_1 = a_1x_1 + \dots + a_nx_n$, $y_2 = b_1x_1 + \dots + b_nx_n$, $y_3 = x_3, \dots, y_n = x_n$, 则它是一个非退化线性替换,替换后的结果为

$$f = y_1 y_2$$
.

 $\Leftrightarrow y_1 = z_1 - z_2, y_2 = z_1 + z_2, y_3 = z_3, \dots, y_n = z_n, \ \$

$$f = z_1^2 - z_2^2$$
.

因此 f 的秩为 2, 符号差为零。

另一方面: 若 f 的秩为 2,符号差为零,则存在非退化替换 X=CY 使得 $f=y_1^2-y_2^2=(y_1-y_2)(y_1+y_2)$. 由于 y_1,y_2 都是关于 x_1,\cdots,x_n 的一次 齐次多项式,因此 f 可以表示为两个一次齐次多项式的乘积。

• 例: $A \to n$ 阶方阵, $\alpha \to n$ 维列向量, 若 $B = \begin{pmatrix} A & \alpha \\ \alpha^T & 0 \end{pmatrix}$ 的秩 r(B) = r(A), 则 α 可由 A 的列向量表示。

Proof. 由于 $r(A) = r(B) \ge r(A \alpha) \ge r(A)$, 因此不等号都是等号,即 $r(A \alpha) = r(A) = r$. 设 A 的列向量组为 β_1, \cdots, β_n , 取它的一个极大无关组 $\beta_{i_1}, \cdots, \beta_{i_r}$. 由于 $r(A \alpha) = r(A)$, 则 $\beta_{i_1}, \cdots, \beta_{i_r}$ 也是 $\beta_1, \cdots, \beta_n, \alpha$ 的一个极大无关组,特别地, α 可由 $\beta_{i_1}, \cdots, \beta_{i_r}$ 线性表示。

• 例:设 A 为正定矩阵,B 实对称,则 A+B 的正惯性指数大于等于 B 的 正惯性指数。

Proof. 由于 A 正定,存在可逆矩阵 C 使得 $A=C^TC$. 因此

$$A + B = C^{T}C + B = C^{T}(E + (C^{-1})^{T}BC^{-1})C$$

所以 A + B 与 $E + (C^{-1})^T B C^{-1}$ 合同。故 A + B 的正惯性指数等于 $E + (C^{-1})^T B C^{-1}$ 的正惯性指数。另一方面 B 与 $(C^{-1})^T B C^{-1}$ 合同,所 以 B 的正惯性指数等于 $(C^{-1})^T B C^{-1}$ 的正惯性指数。通过计算正特征值的个数可知: $E + (C^{-1})^T B C^{-1}$ 的正惯性指数大于等于 $(C^{-1})^T B C^{-1}$ 的正惯性指数,因此 A + B 的正惯性指数大于等于 B 的正惯性指数。

• 例:设 $A=\begin{pmatrix}A_1\\A_2\end{pmatrix}$ 为 n 阶可逆矩阵,其中 A_1,A_2 为 $p\times n$, $(n-p)\times n$ 矩阵,计算二次型 $f=X^T(A_1^TA_1-A_2^TA_2)X$ 的正负惯性指数。

Proof. 由于 $A^T A = A_1^T A_1 + A_2^T A_2$ 为正定矩阵, 利用上一例可知

 $A^{T}A + A_{1}^{T}A_{1} - A_{2}^{T}A_{2} = 2A_{1}^{T}A_{1}$ 的正惯性指数大于等于 $A_{1}^{T}A_{1} - A_{2}^{T}A_{2}$ 的正惯性指数。

而 $A_1^TA_1$ 的秩等于 $r(A_1)=p$, 且 $A_1^TA_1$ 半正定,因此 $A_1^TA_1$ 的正惯性指数等于 p. 从而 $A_1^TA_1-A_2^TA_2$ 的正惯性指数小于等于 p. 另一方面,同理

 $A^{T}A + A_{2}^{T}A_{2} - A_{1}^{T}A_{1} = 2A_{2}^{T}A_{2}$ 的正惯性指数大于等于 $A_{2}^{T}A_{2} - A_{1}^{T}A_{1}$ 的正惯性指数.

所以 $A_2^TA_2 - A_1^TA_1$ 的正惯性指数小于等于 n-p. 因此 $A_1^TA_1 - A_2^TA_2$ 的 负惯性指数小于等于 n-p.

由于 $D = [A_1^T, -A_2^T]$ 是可逆矩阵,而 $DA = A_1^T A_1 - A_2^T A_2$. 因此 $A_1^T A_1 - A_2^T A_2$ 可逆。故它的正负惯性指数和为 n,因此 $A_1^T A_1 - A_2^T A_2$ 的正负惯性指数分别为 p 和 n-p.

• 例: 求二次型 $f(x_1,\dots,x_n) = \sum_{i=1}^k (a_{i1}x_1 + \dots + a_{in}x_n)^2$ 的矩阵。

Proof. 设 $\alpha_i = [a_{i1}, a_{i2}, \cdots, a_{in}]^T, X = [x_1, \cdots, x_n]^T$. 则

$$f = \sum_{i=1}^{k} X^{T} \alpha_{i} \alpha_{i}^{T} X = X^{T} (\alpha_{1}, \dots, \alpha_{k}) \begin{pmatrix} \alpha_{1}^{T} \\ \vdots \\ \alpha_{k}^{T} \end{pmatrix} X.$$

记 $A = [\alpha_1, \dots, \alpha_k]$,则二次型对应的矩阵为 AA^T .

9 二次型的配方法

对于一般的二次型

$$f(x_1, \dots, x_n) = a_{11}x_1^2 + 2a_{12}x_1x_2 + \dots + 2a_{1n}x_1x_n + a_{22}x_2^2 + 2a_{23}x_2x_3 + \dots + a_{nn}x_n^2$$

利用配方法来化为标准形的主要步骤: 归纳的过程, 先消去所有 x_1 的交叉项, 然后消去所有 x_2 的交叉项, \cdots , 消去所有 x_{n-1} 的交叉项。

主要是利用公式:

$$(a_1x_1 + a_2x_2 + \dots + a_nx_n)^2$$

$$= a_1^2x_1^2 + 2a_1a_2x_1x_2 + 2a_1a_3x_1x_3 + \dots + a_n^2x_n^2 + 2a_2a_3x_2x_3 + \dots + a_n^2x_n^2$$

$$\exists \exists \exists \exists x_1 = 1, x_1 = 1, x_2 = 1, x_2 = 1, x_3 = 1, x_1 = 1, x_2 = 1, x_3 = 1, x_3$$

$$(a_1x_1 + a_2x_2 + \dots + a_nx_n)^2 - (a_1^2x_1^2 + 2a_1a_2x_1x_2 + 2a_1a_3x_1x_3 + \dots + 2a_1a_nx_1x_n)$$

= $a_2^2x_2^2 + 2a_2a_3x_2x_3 + \dots + a_n^2x_n^2$. (15)

等式右边不会出现 x_1 的项。

下面我们通过介绍如何消去 x_1 的交叉项来说明配方法:

1. 若 $a_{11} \neq 0$, 不妨设 $a_{11} = a^2 > 0$ (对于小于零的情形取负号即可), 令

$$\begin{cases} y_1 = ax_1 + a^{-1}a_{12}x_2 + a^{-1}a_{13}x_3 + \dots + a^{-1}a_{1n}x_n \\ y_2 = x_2 \\ y_3 = x_3 \\ \vdots \\ y_n = x_n \end{cases}$$

则该线性替换可逆, 且替换后

$$f = y_1^2 + a_{22}^* y_2^2 + a_{23}^* y_2 y_3 + \dots + a_{nn}^* y_n^2$$

没有 y_1 的交叉项,接下来只需依次类推即可消去 y_2 的交叉项,…

2. 若 $a_{11} = 0$ 且某个 $a_{1i} \neq 0$, 不妨设 $a_{12} \neq 0$. 令

$$\begin{cases} x_1 = y_1 - y_2 \\ x_2 = y_1 + y_2 \\ y_3 = x_3 \\ \vdots \\ y_n = x_n \end{cases}$$

则该替换是非退化且替换后

$$f = 2a_{12}y_1^2 - 2a_{12}y_2^2 + \cdots$$

使得 y_1^2 的系数非零,可以利用上面 1 中的情形消去与所有 y_1 的交叉项,依次类推即可化为标准形。