Devoir surveillé n°5 Version 2

Durée : 3 heures, calculatrices et documents interdits

I. Étude d'une suite récurrente.

On note $(u_n)_{n\in\mathbb{N}}$ la suite définie par récurrence par $u_0=1$ et, pour tout $n\in\mathbb{N}$,

$$u_{n+1} = u_n^2 + u_n.$$

- 1) Déterminer la nature de la suite $(u_n)_{n\in\mathbb{N}}$ et préciser, le cas échéant, sa limite.
- **2)** Pour tout $n \in \mathbb{N}$, on pose,

$$v_n = \frac{1}{2^n} \ln u_n.$$

a) Prouver que pour tous $n, p \in \mathbb{N}$:

$$0 \leqslant v_{n+p+1} - v_{n+p} \leqslant \frac{1}{2^{n+p+1}} \ln \left(1 + \frac{1}{u_n} \right).$$

b) En déduire que pour tous $n, k \in \mathbb{N}$:

$$0 \leqslant v_{n+k+1} - v_n \leqslant \frac{1}{2^n} \ln \left(1 + \frac{1}{u_n} \right).$$

- c) En déduire la convergence de $(v_n)_{n\in\mathbb{N}}$ vers un réel, que l'on choisit d'écrire comme un logarithme, *i.e.* ln α avec $\alpha>0$.
- 3) a) Déterminer un encadrement de $\ln \alpha v_n$ pour tout $n \in \mathbb{N}$.
 - **b)** En déduire que, pour tout $n \in \mathbb{N}$:

$$u_n \leqslant \alpha^{2^n} \leqslant 1 + u_n.$$

- c) Comparer α et 1.
- d) En déduire la limite $\lim_{n\to+\infty} \frac{u_n}{\alpha^{2^n}}$.
- **4)** Pour tout $n \in \mathbb{N}$ on pose $\delta_n = \alpha^{2^n} u_n$.
 - a) Montrer que la suite $(\delta_n)_{n\in\mathbb{N}}$ est bornée et que, pour tout $n\in\mathbb{N}$,

$$\delta_n = \frac{1}{2} + \frac{\delta_{n+1} + \delta_n^2 - \delta_n}{2} \alpha^{-2^n}.$$

- **b)** En déduire que, pour tout $n \in \mathbb{N}$, $\delta_n < 1$.
- c) En déduire que, pour tout $n \in \mathbb{N}$, $u_n = \left\lfloor \alpha^{2^n} \right\rfloor$.
- d) Montrer enfin que la suite $(\delta_n)_{n\in\mathbb{N}}$ est convergente et donner sa limite.

II. La formule d'inversion de Möbius.

On appelle $\mathscr{A} = \mathbb{C}^{\mathbb{N}^*}$ l'ensemble des fonctions de \mathbb{N}^* dans \mathbb{C} (ensemble des fonctions arithm'etiques).

Pour tout entier n non nul, on note $\mathcal{D}^+(n)$ l'ensemble des diviseurs positifs de n:

$$\mathcal{D}^+(n) = \{ d \in \mathbb{N}^* , d \mid n \}.$$

Si $f, g \in \mathcal{A}$, on définit la fonction $f * g : \mathbb{N}^* \to \mathbb{C}$ par :

$$\forall n \in \mathbb{N}^*, \ (f * g)(n) = \sum_{d \in \mathscr{D}^+(n)} f(d)g\left(\frac{n}{d}\right).$$

On pourra remarquer que

$$\forall n \in \mathbb{N}^*, \ (f * g)(n) = \sum_{a,b \in \mathbb{N}^*, \ ab = n} f(a)g(b).$$

Cette opération * est appelée convolution de Dirichlet et définit naturellement une loi de composition interne sur \mathscr{A} .

On définit deux éléments δ et 1 de \mathscr{A} par :

$$\forall n \in \mathbb{N}^*, \ \delta(n) = \begin{cases} 1 & \text{si } n = 1 \\ 0 & \text{sinon} \end{cases}$$

et

$$\forall n \in \mathbb{N}^*, \ \mathbf{1}(n) = 1.$$

I - Structure de $(\mathscr{A}, +, *)$.

- 1) Justifier que * est associative sur \mathscr{A} .
- 2) La loi * est-elle commutative sur \mathscr{A} ?
- 3) Montrer que δ est un élément neutre pour * dans \mathscr{A} .
- 4) Soit $f \in \mathscr{A}$ vérifiant f(1) = 0. Cet élément f est-il inversible? Est-ce que $(\mathscr{A}, *)$ possède une structure de groupe?
- 5) La réciproque du résultat précédent est-elle vraie?
- **6)** Montrer que $(\mathscr{A}, +, *)$ a une structure d'anneau.
- 7) Cet anneau est-il intègre?

II - Fonction et formule d'inversion de Möbius.

On définit l'élément μ de \mathscr{A} (fonction de Möbius) de la manière suivante : pour tout $n \in \mathbb{N}^*$:

- si n est divisible par le carré d'un nombre premier, $\mu(n) = 0$;
- si n s'écrit comme le produit de k nombres premiers distincts, $\mu(n) = (-1)^k$.
- 8) Soit I un ensemble fini non vide. Justifier que I possède autant de parties de cardinal pair que de parties de cardinal impair.

Remarque : on se rappellera que si $0 \le k \le n$, tout ensemble fini contenant n éléments possède exactement $\binom{n}{k}$ parties ayant k éléments.

9) En déduire que pour tout $n \in \mathbb{N}^*$ différent de 1 :

$$\sum_{d \in \mathcal{D}^+(n)} \mu(d) = 0.$$

- 10) Comment peut-on réécrire le résultat précédent, en fonction de 1 et au regard des objets introduits dans la première partie?
- 11) En déduire la formule d'inversion de Möbius : pour tout $f, g \in \mathcal{A}$,

$$\left(\forall n \in \mathbb{N}^*, \ g(n) = \sum_{d \in \mathscr{D}^+(n)} f(d)\right) \Leftrightarrow \left(\forall n \in \mathbb{N}^*, \ f(n) = \sum_{d \in \mathscr{D}^+(n)} g(d) \mu\left(\frac{n}{d}\right)\right).$$

III - Une application.

Soit $n \in \mathbb{N}^*$. On note $\omega = e^{\frac{2i\pi}{n}}$ et on rappelle que

$$\mathbb{U}_n = \left\{ \omega^k, \ 0 \leqslant k \leqslant n - 1 \right\}.$$

Si $z \in \mathbb{U}_n$, on appelle ordre de z le plus petit entier $d \geqslant 1$ tel que $z^d = 1$.

Si $d \ge 1$, on note $\varphi(d)$ le nombre d'entiers de [1, d] premiers avec d:

$$\varphi(d) = \text{Card} \{ k \in [1, d], \ k \land d = 1 \}.$$

- 12) Soit $z \in \mathbb{U}_n$, montrer que l'ordre de z est bien défini, et qu'il divise n.
- 13) Soit $d \in [1, n-1]$ tel que d|n. Montrer qu'il y a exactement $\varphi(d)$ éléments d'ordre d dans \mathbb{U}_n .

 $Indication: \text{avec } e \in \llbracket 1, n-1 \rrbracket \text{ tel que } d.e = n, \text{ considérer } \omega^e.$

14) En déduire que pour tout $n \ge 1$, $\varphi(n) = \sum_{\substack{a,b \in \mathbb{N}^* \\ ab = n}} a\mu(b)$.

— FIN —