h e g

Haute école de gestion Genève

Files et Piles

63-31 - Programmation Collaborative

Les piles et les files

Types abstraits de données, collections, qui ont une interface simple

→ Ajouter un élément à la structure

Pile : push()

File : add()

♦ Récupérer un élément de la structure

Pile : pop()

File : remove()

Différence : ordre dans lequel les éléments sont récupérés

- ✦ File : premier entré, premier sorti Préserve l'ordre d'arrivée, file d'attente classique
- ◆ Pile : dernier entré, premier sorti Inverse l'ordre d'arrivée, pile d'assiettes

h e g Haute école de gestion Genève

Exemples d'utilisation

Files

- → File à la cafétaria
- → Plus généralement, tous systèmes à attente (paquets IP dans les routeurs, processus pour ordonnancement, ...)

Piles

- ♦ Fonction "Annuler" dans les logiciels
- → Bouton "back" dans les navigateurs
- ◆ Empilement de contexte lors de l'appel de fonctions
- → Jeux : backtracking
- ◆ Graphes: exploration

Quelques détails sur les piles

La pile est, par nature, une structure récursive

♦ Pile = premier element + pile

Un exemple en détails

Une application : évaluation expressions arithmétiques

$$+3 + ((1 + 4) * 5 - 4) / 7$$

♦ Notation postfixe :

Autre représentation d'une expression arithmétique

$$(1+4) \Rightarrow 14+ \\ 3+((1+4)*5-4)/7 \Rightarrow 3((((14+)5*)4-)7/)+ \\ \Rightarrow 314+5*4-7/+$$

```
Nombre ⇒ push

Opérateur ⇒ pop ; pop ; calcul ; push
```

Une application : évaluation expressions arithmétiques

$$+3 + ((1 + 4) * 5 - 4) / 7$$

♦ Notation postfixe :

Autre représentation d'une expression arithmétique

$$(1+4) \Rightarrow 14+ \\ 3+((1+4)*5-4)/7 \Rightarrow 3((((14+)5*)4-)7/)+ \\ \Rightarrow 314+5*4-7/+$$

Une application : évaluation expressions arithmétiques

$$+3 + ((1 + 4) * 5 - 4) / 7$$

♦ Notation postfixe :

Autre représentation d'une expression arithmétique

$$(1+4) \Rightarrow 14+ \\ 3+((1+4)*5-4)/7 \Rightarrow 3((((14+)5*)4-)7/)+ \\ \Rightarrow 314+5*4-7/+$$

```
Nombre ⇒ push

Opérateur ⇒ pop ; pop ; calcul ; push
```


Une application : évaluation expressions arithmétiques

$$+3 + ((1 + 4) * 5 - 4) / 7$$

♦ Notation postfixe :

Autre représentation d'une expression arithmétique

$$(1+4) \Rightarrow 14+ \\ 3+((1+4)*5-4)/7 \Rightarrow 3((((14+)5*)4-)7/)+ \\ \Rightarrow 314+5*4-7/+$$

```
Nombre ⇒ push

Opérateur ⇒ pop ; pop ; calcul ; push
```


Une application : évaluation expressions arithmétiques

$$+3 + ((1 + 4) * 5 - 4) / 7$$

♦ Notation postfixe :

Autre représentation d'une expression arithmétique

$$(1+4) \Rightarrow 14+ \\ 3+((1+4)*5-4)/7 \Rightarrow 3((((14+)5*)4-)7/)+ \\ \Rightarrow 314+5*4-7/+$$

```
Nombre ⇒ push

Opérateur ⇒ pop ; pop ; calcul ; push
```


Une application : évaluation expressions arithmétiques

$$+3 + ((1 + 4) * 5 - 4) / 7$$

♦ Notation postfixe :

Autre représentation d'une expression arithmétique

$$(1+4) \Rightarrow 14+ \\ 3+((1+4)*5-4)/7 \Rightarrow 3((((14+)5*)4-)7/)+ \\ \Rightarrow 314+5*4-7/+$$

```
Nombre ⇒ push

Opérateur ⇒ pop ; pop ; calcul ; push
```



```
314+5*4-7/+

pop() \rightarrow 4

pop() \rightarrow 1

eval(1 + 4) \rightarrow 5

push(5)
```

Une application : évaluation expressions arithmétiques

$$+3 + ((1 + 4) * 5 - 4) / 7$$

♦ Notation postfixe :

Autre représentation d'une expression arithmétique

$$(1+4) \Rightarrow 14+ \\ 3+((1+4)*5-4)/7 \Rightarrow 3((((14+)5*)4-)7/)+ \\ \Rightarrow 314+5*4-7/+$$

Une application : évaluation expressions arithmétiques

$$+3 + ((1 + 4) * 5 - 4) / 7$$

♦ Notation postfixe :

Autre représentation d'une expression arithmétique

$$(1+4) \Rightarrow 14+ \\ 3+((1+4)*5-4)/7 \Rightarrow 3((((14+)5*)4-)7/)+ \\ \Rightarrow 314+5*4-7/+$$

$$314+5*4-7/+$$

pop() \Rightarrow 5

pop() \Rightarrow 5

Une application : évaluation expressions arithmétiques

$$+3 + ((1 + 4) * 5 - 4) / 7$$

♦ Notation postfixe :

Autre représentation d'une expression arithmétique

$$(1+4) \Rightarrow 14+ \\ 3+((1+4)*5-4)/7 \Rightarrow 3((((14+)5*)4-)7/)+ \\ \Rightarrow 314+5*4-7/+$$

Une application : évaluation expressions arithmétiques

$$+3 + ((1 + 4) * 5 - 4) / 7$$

♦ Notation postfixe :

Autre représentation d'une expression arithmétique

$$(1+4) \Rightarrow 14+ \\ 3+((1+4)*5-4)/7 \Rightarrow 3((((14+)5*)4-)7/)+ \\ \Rightarrow 314+5*4-7/+$$

```
Nombre ⇒ push

Opérateur ⇒ pop ; pop ; calcul ; push
```


314+5*4-7/+

pop()
$$\rightarrow$$
 4

pop() \rightarrow 25

eval(25 - 4) \rightarrow 21

push(21)

Une application : évaluation expressions arithmétiques

$$+3 + ((1 + 4) * 5 - 4) / 7$$

♦ Notation postfixe :

Autre représentation d'une expression arithmétique

$$(1+4) \Rightarrow 14+ \\ 3+((1+4)*5-4)/7 \Rightarrow 3(((14+)5*)4-)7/)+ \\ \Rightarrow 314+5*4-7/+$$

Une application : évaluation expressions arithmétiques

$$+3 + ((1 + 4) * 5 - 4) / 7$$

♦ Notation postfixe :

Autre représentation d'une expression arithmétique

$$(1+4) \Rightarrow 14+ \\ 3+((1+4)*5-4)/7 \Rightarrow 3((((14+)5*)4-)7/)+ \\ \Rightarrow 314+5*4-7/+$$

```
Nombre ⇒ push

Opérateur ⇒ pop ; pop ; calcul ; push
```


314+5*4-7/+

pop()
$$\rightarrow$$
 7

pop() \rightarrow 21

eval(21 / 7) \rightarrow 3

push(3)

Une application : évaluation expressions arithmétiques

$$+3 + ((1 + 4) * 5 - 4) / 7$$

♦ Notation postfixe :

Autre représentation d'une expression arithmétique

$$(1+4) \Rightarrow 14+ \\ 3+((1+4)*5-4)/7 \Rightarrow 3((((14+)5*)4-)7/)+ \\ \Rightarrow 314+5*4-7/+$$

$$314+5*4-7/+$$

pop() \rightarrow 3

pop() \rightarrow 3

eval(3 + 3) \rightarrow 6

push(6)

Les piles en Java

```
import java.util.Stack;
class TestStack {
    public static void main(String args[]) {
        Stack<Integer> maPile = new Stack<>();
        int x;
        maPile.push(12);
        maPile.push(314);
        maPile.push (212);
        while (! maPile.isEmpty())
            x = maPile.pop();
            System.out.println("--> " + x);
```

Conversion d'expression en notation postfixe

```
Pour chaque élément x (nombre, opérateur, parenthèse) de l'expression
     si (x entier)
           \Rightarrow afficher(x)
     sinon si (x opérateur)
           tant que priorité(tête(pile)) ≤ priorité (x)
                y = pop()
                afficher(y)
           push(x)
     sinon si ( x == '(' )
           push(x)
     sinon si ( x == ')' )
           y = pop()
           tant que tête(pile) ≠ '('
                afficher(y)
                y = pop()
```

Tant que pile non vide

x = pop()

afficher(x)

L'algorithme ci-contre permet de convertir une expression "normale" (notation infixe) en notation postfixe

- → Utilisation d'une pile aussi
- → Algorithme pas forcément intuitif
 - => prendre un exemple (lequel ?)
- → Représentation en pseudo-code

Les files en Java

```
import java.util.queue;
class TestQueue {
   public static void main(String args[]) {
        Queue<Integer> maFile = new LinkedList<>();
        int x;
        maFile.add(12);
        maFile.add(314);
        maFile.add(212);
        while (! maFile.isEmpty())
            x = maFile.remove();
            System.out.println("--> " + x);
```

Les files en Java

```
import java.util.queue;
class TestQueue {
    public static void main(String args[]) {
        Queue<Integer> maFile = new LinkedList<>();
        int x;
        maFile.add(12);
        maFile.add(314);
                                          LinkedList est une classe concrete qui
                                             implémente l'interface Queue
        maFile.add(212);
        while (! maFile.isEmpty())
             x = maFile.remove();
             System.out.println("--> " + x);
```

Hiérarchie des collections

h e g Haute école de gestion Genève

Exercice Dirigé

Comment modéliser une exploration de labyrinthe ?

