REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-01-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden to Department of Defense, Washington Headquarters Services Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

PLEASE DO N	DI RETURN TO	UK FURM IU II	HE ABOVE ADDRESS.			
1. REPORT DAT	•	· 1	ORT TYPE			3. DATES COVERED (From - To)
06-08- 4. TITLE AND S			Presentation	,,	Es CON	I TRACT NUMBER
Silicon-on-Sa					Da. CON	IRACI NUMBER
Sincon-on-Sa	ppinic					
					5b. GRA	NT NUMBER
						*
					5c. PRO	GRAM ELEMENT NUMBER
6. AUTHORS					5d. PRO	JECT NUMBER
de la Houssay	e Paul					
Lagnado, Isaa					En TACH	NUMBER
					DE. IASK	NOMBER
					5f. WOR	K UNIT NUMBER
7. PERFORMING	ORGANIZATIO	ON NAME(S) AN	D ADDRESS(ES)		I	8. PERFORMING ORGANIZATION
Space and Na	val Warfare Sy	stems Center				REPORT NUMBER
53560 Hull S						
San Diego, C	A 92152-5001					
9. SPONSORING	3/MONITORING	AGENCY NAME	(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)
						11. SPONSOR/MONITOR'S REPORT NUMBER(S)
12. DISTRIBUTIO	ON/AVAILABILI	TY STATEMENT				
Approved for	public release	distribution is	unlimited.			
13. SUPPLEMEN	NTARY NOTES			3		
				· ·		
substrates for achieve a stru can be afforda sapphire (TFS incorporated i digital conver	application to cture in which ably implement GOS), namely to the total terms for space a	sub 100-nm de the modern CN ted. In this com he double Solid rmance produc application.	vice technology, will to MOS technology, the natext, one approach to the Phase Epitaxy (DSPE)	ne reviewed. The reviewed is the content of the con	The focus tology an of crystall ed truly of ICs for v	layers of silicon (30-100 nm) on sapphire of the investigation was, and still is, to d workhorse of the electronic revolution, line, device-quality thin film silicon-on-outstanding results which are presently wireless communication, and analog-to-
	<u> </u>	axiai Overgrov	rui Workshop, Juneau,	Tidoka, Tugi	ust 2 0, 1	
	=RMS on-on-sapphire or deposition (
16. SECURITY C	A COLOATIO	N OE+	17. LIMITATION OF	18. NUMBER	100 NA	ME OF RESPONSIBLE PERSON
a. REPORT		c. THIS PAGE	ABSTRACT	OF	1	NE OF RESPONSIBLE PERSON Houssave, Paul R., D876
2. 142. 01.1	#. ADD 11401	J. 11113 1 AGE		PAGES		EPHONE NUMBER (Include area code)
1 1	IJ	T I	ιπι	35.		53-3912

20001012 099

Silicon-on-Sapphire

Abstract

The early sixties were at the beginning of the electronics revolution where silicon integrated circuits built their current dominance, fundamentally and pervasively on tailor-made materials, starting at the atomic level. Thin-film deposition techniques, particularly chemical vapor deposition (CVD) and molecular-beam epitaxy (MBE) were developed to provide control over material constituents "in atomic amounts", in order to form the active part of high-performance devices. Nonetheless, the CVD techniques failed to provide a crystalline silicon structure amenable to advanced devices on insulating substrates, particularly sapphire.

In this presentation, the major issues, which confronted the formation of very thin layers of silicon (30-100 nm) on sapphire substrates for application to sub 100-nm device technology, will be reviewed. The focus of the investigation was, and still is, to achieve a structure in which the modern CMOS technology, the mainstay technology and workhorse of the electronic revolution, can be affordably implemented. In this context, one approach to the obtention of crystalline, device-quality thin film silicon-on-sapphire (TFSOS), namely the double Solid Phase Epitaxy (DSPE), has achieved truly outstanding results which are presently incorporated into high-performance products, such as phase-locked loop (PLL) ICs for wireless communication, and analog-to-digital converters for space application.

Besides the materials properties, devices' performances ($f_t > 100 \text{GHz}$) and circuits' applications (analog and mixed signals), present investigations aimed at producing stressed layers of Si_{1-x} Ge_x (x>0.75) grown on TFSOS will also be described. Based on the present results, TFSOS could become entrenched, as CMOS, as new materials and devices appear – witness the recent success in developing highly-engineered structures with SiGe on TFSOS (hole mobility, through Hall measurements, is in excess of $800 \text{cm}^2/\text{V.sec}$) – using the established industrial infrastructure.

Isaac Lagnado SPAWAR Systems Center San Diego D805 San Diego, CA 92152

COMMUNICATION and INFORMATION SYSTEMS DEPARTMENT

growth Workshop re Technology Lateral Epita Silicon-o

ineau, Alaska--August 2-6, 1999

I. Lagnado, P. la Hoùssaye SPAWARSystems Center San Diego

(619) 553-2682 FAX: (619) 553-2924

emailt: lagnado@sawar.navy.mil

or:houssaye@spawar.navy.mil

TFSOS

- Introduction A historical perspective
- The Vision: Thin Film Silicon on Sapphire
- Comparison with other SOI alternatives
- Recent results for SiGe The march of Technology
- Prognosis-Trend
- Conclusion

Collaborators

- Space and Naval Warfare Systems Center, San Diego
- University of California at San Diego (UCSD)
- International Business Machines (IBM)
- **Auburn University**
- Oklahoma State University
- Saphikon
- Lawrence Semiconductor
- Massachusetts Institute of Technology (MIT)
- **Lincoln Laboratory**
- University of Florida, Gainesville
- Peregrine Semiconductor Corporation
- Northup Grumman
- Rockwell International (Science Center)

Conventional Microelectronics

A Historical Perspective

Systems Center San Diego

Bulk Silicon

Silicon on Sapphire (SOS)

SOURCE GATE DRAIN

n+

n+

SOURCE GATE DRAIN

Sapphire

Parasitic Capacitor

Ш

 $\mathbf{\omega}$

ပ

C B E

← BIPOLAR →

Sapphire

Parasitic Capacitor

H.M. Manasevit & W.S. Simpton. JAP, 35, pg 1349, 1964.

Thin Film Silicon on Sapphire TEM Images: Before & After Improvement Process

Before Improvement

After Improvement

Systems Center San Diego

Thin Film Silicon on Sapphire

The Vision

Scaling Limits

ULTRATHIN SOS

Improvement and Thinning Sequence

1) CVD Silicon as Grown

2) Si implant

3) Two–Step Anneal a) 550 °C SPE Regrowth b) 900 °C Defect Removal

4) Thermal Oxidation

5) Strip Oxide (HF)

Final Product:

Device Quality Single Crystal Silicon Film Under Compressive Strain

S.S. Lau *et al.*, *APL*, **34**(1), p. 76-78, 1 Jan. 1979. T. Yoshii *et al.*, *JJAP*, Part 1, **21**(suppl.21-1), p.175-179, 1982.

RBS Data, TFSOS

G.A. Garcia, R.E. Reedy. *Electronics Let.*, 22(10), p. 537-538, 8 May 1986. R.E. Reedy, G.A. Garcia. MRS Symposium Proc. 107, p. 365-376, 1988.

Auger Analysis, TFSOS

R.E. Reedy, T.W. Sigmon, L.A. Christel, APL, 42(8), p. 707-709, 15 April 1983.

SPAWAR Thin Film CMOS/SOS vs. Other Silicon Implementations

Relative to Bulk CMOS

- Reduced parasitic capacitances
- less junction capacitances and higher speed)
- Reduced short channel effects
- Better device isolation
- Latchup suppression
- Lower body effect
- Wider operating temperature
- Simple mesa fabrication
- Radiation hardness

Relative to SIMOX/BESOI

- Lower loss dielectric substrate
- Lower substrate capacitance
- Higher Q passive elements
- Lower minority carrier lifetime
- Higher S-D breakdown voltage Parasitic bipolar suppressed
- Higher thermal conductivity than SiO₂
- Reduced self-heating effects
- Enhanced hole transport properties
- PMOS closer to NMOS in size, f_T , f_{Max}
- Enhanced CMOS performance
- 6-in wafers available, 8-in also available
- Lower cost/Process Simplicity
- Much reduced Floating Body Effect
- Low leakage Ioff (digital)
- No Kink Effect in I-V (analog)
- No Transient Hysteresis (low frequencies)

Thermal Effects

Thin Film Silicon on Sapphire vs. SIMOX

Thesis (to be published) M. Wetzel, UCSD Ph.D. SOS Data:

Courtesy Prof. D. Antoniadis MIT data;

Systems Center San Diego

Radiation data for TFSOS MOSFETs

<===Prerad

1 Mrad===>

4.2 x 0.6 µm Rad Bias - Vgs=0V, Vds=+3V Dose Rate - 100 krad(SiO2)∕min Measurement Bias - Vds=+3.3V

က် က်

4. 9. -9

(spj)Boj

TESOS NMOSFET

- 4 th 4

300 krad==>

n-MOSFET

Vgs (V)

ņ

p-MOSFET

Thin Film Silicon on Sapphire

Systems Center San Diego

T-Gate used to decrease R_g

• Record high f_t , f_{max} microwave transistor

 $\mathsf{F}_{\mathsf{min}} = \mathsf{1} + \mathsf{kL} f \sqrt{\mathsf{g}_{\mathsf{m}}} \left[\mathsf{R}_{\mathsf{S}} + \mathsf{R}_{\mathsf{g}} \right]$

Record low noise microwave transistor

			w/wo T-Gate	© 2GHz	3Hz
Device	L _{g,drawn} (µm)	$f_{\mathbf{t}}$ (GHz)	$f_{ m max}$ (GHz)	F _{MIN} (dB)	G _a (dB)
NMOS	0.5	25	66/11	6.0	21
PMOS	0.5	14	41/7	6.0	13

R.Johnson et al. TED, 45(5), May 1998.

NOISE COMPARISON

	2 GH	Hz.	8 G	8 GHz	i .	7 15		
	F _{min}	Ga	\mathbf{F}_{min}	Ga	\mathbf{F}_{min}	$G_{\rm a}$	$L_g(\mum)$	Technology
TFSOS: NMOS[9] PMOS[9]	0.9 0.9	21 13	1.4	11	1.8	8.5	0.5	TF SOS TF SOS
Other Si: NMOS [1] PMOS [1] NMOS [2] NMOS [3]	1.5 2.7 0.8 5.0	18 17 17 6.4	3.25 - 1.6	8.5 9.8	2.2	8	0.25 0.25 0.6 1.0	MICROX MICROX MICROX BESOI
Other: HBT [4] HBT [5] PHEMT [6] JFET [7] MESFET [8]	0.5 0.46 0.2 0.4	12 11.6 - 23	0.8 1.4 1.6 0.5	15	1.0 2.0 0.41 -	13 - 13	2 x .6 x 8 3.5 x 3.5 0.15 0.5 0.11	SiGe InP/InGaAs GaP/InGaAs GaAs GaAs

EDL, May 1993, pg. 219, Hanes et al.
 MTT-S Workshop, May 1995, Agarwal et al.
 EDL, Jan 1991, pg. 26, Caviglia, et al.
 MTTS, 1994 pg 1167, H. Schumacher, et al.
 EDL, Oct 1989, Y.K. Chen et al.

EDL, Aug 1983, pg. 406, M. Takikawa et al.
 EDL, Sept. 1993, D. Scherrer et al.
 TED, Feb 1999, pg. 310, Kimo et al.
 TED, May 1998, pg. 1047-54, R. Johnson et al.

Noise Figure Results for Different Technologies: Transistors and LNAs

Noise figures of FET's based on GaAs and of Si CMOS transistors. After L.M. Franca-Neto et al., IEDM, pg. 305-307, 1997.

Frequency (GHz)

Recent Results on Low Noise Amplifier Designs After L.M. Franca-Neto *et al.*, *IEDM*, pg. 305-307, 1997.

Author	Cioffi, IMMMCS, 1992	Cioffi, IMMMCS, 1992	Nakatsugawa, GaAs-IC Symp, 1993	Heaney, GaAs-IC Symp., 1993	Imai, IEEE-Trans. MTT, 1991	Karanicolas, ISSCC, 1996	Rofougaran, IEEE-JSSC, 1996	Shaeffer, IEEE-JSSC, 1997	Johnson, R.A. et al., IEEE-TED, 1998
NF (dB)	2.2	2.2	2.0	1.5	2.5	2.2	3.5	3.5	2.2
F (GHz)	-	1.6	1.9	1.9	1.6	6.0	6.0	1.5	2.4
Technology	1 micron GaAs FET	1 micron GaAs FET	0.3 micron GaAs FET	1 micron GaAs FET	0.3 micron GaAs FET	0.5 micron CMOS	1 micron CMOS	0.6 micron CMOS	0.5 micron CMOS/SOS

Wireless Communications Applications Thin Film Silicon on Sapphire

Demonstrate SOS technology application to L and S band **Applications**

Test Vehicle: 2.4 GHz transceiver

- Transmit / Receive Switch R.A. Johnson et al., IEE Elect. Lett., 33(15), pg. 1324-1326, 17 July 1997.
- ➤ **Mixer** R.Johnson et al., TED, **45**(5), pg. 1047-1054, May 1998.
- Low Noise Amplifier R.A. Johnson et al, IEEE Microwave & Guided Wave Letters, 7(10), pg. 350-352,
- Power Amplifier M. Wetzel et al., 1st Annual UCSD Conference on Wireless Communications, March 8-10, 1998

Why CMOS/SOS at

Microwave/RF Frequencies

- Low power, high noise immunity
- Cost
- High integration level (VLSI) / Mature technology
- Competitive manufacturing cost (7-10% higher than CMOS bulk Si)
- ◆ Complexity => Low cost per functional unit
- ◆ 6" wafers available with low defect density
- Reduced processing steps (mesa isolation)
- ◆ Much lower cost than bipolar, HBTs (Si or III-V's)
- Inexpensive material (except vs. bulk silicon)
- Leverage off Si manufacturing base
- Mixed analog / digital integration
- Low loss dielectric substrate (isolation/ no latch up)
- **★** Low substrate capacitance
- High Q passive elements
- f_{max} = 66 GHz (L_{eff} ~ .3 μ m), Noise Figure < 1 dB optically defined devices
- $f_{\rm t} > 100 \, {\rm GHz} \, (L_{\rm eff} \sim .1 \, \mu {\rm m}) \, ({\rm x-ray})$
- Very high linearity at low power (good IP3)
- Excellent ESD protection with low parasitics
- SiGe/SOS, m_h > 800 cm²/V.sec (pMODFET, L_g = 0.1 μ m, g_m = 420 mS/mm) --> much higher speed CMOS with lower power

Why CMOS/SOS at

Microwave/RF Frequencies

- Low power, high noise immunity
- Cost
- High integration level (VLSI) / Mature technology
- Competitive manufacturing cost (7-10% higher than CMOS bulk Si)
- ◆ Complexity => Low cost per functional unit
- ◆ 6" wafers available with low defect density
- Reduced processing steps (mesa isolation)
- Much lower cost than bipolar, HBTs (Si or III-V's)
- Inexpensive material (except vs. bulk silicon)
- Leverage off Si manufacturing base
- Mixed analog / digital integration
- Low loss dielectric substrate (isolation/ no latch up)
- ◆ Low substrate capacitance
- ➡ High Q passive elements
- $f_{\rm max}$ = 66 GHz (L_{eff} ~ .3 μ m), Noise Figure < 1 dB optically defined devices
 - $f_{\rm t} > 100 \, {\rm GHz} \, ({\rm L}_{\rm eff} \sim .1 \, \mu{\rm m}) \, ({\rm x-ray})$
- Very high linearity at low power (good IP3)
- Excellent ESD protection with low parasitics
- SiGe/SOS, $m_h > 800 \text{ cm}^2/\text{V.sec}$ (pMODFET, $L_g = 0.1 \, \mu\text{m}$, fabricated; to be published) --> much higher speed CMOS with lower power

Circuit Level SOS rf Results

FY98 Circuits Test Results LNA, MIXER and T/R Switch Fabricated in TFSOS

MEASURED	MEASURED Operating Freq Gain NF (50 4) IP3 (output) Power@vdd	Gain	NF (50 $^{\Omega}$) IP3	(output)	Power@vdd
LNA	2.4 GHz	11 dB	11 dB 2.2 dB 1	14 dBm	13.2mW@1.5V
1. M. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.					
1. 18 Post 1					
Mixer	Center=2.4 GHz -5 dB	-5 dB		5 dBm	8.4mW@1.5V
	IF=250 MHz				
A 244					
1.111.11					

SURED	SURED Operating Freq Insertion Loss Isolatio	Insertion Loss	Isolatio
Switch	1-5 GHz	1.7-2 dB	30 dB
		0.6-0.7 db	20 dB
	Antenna		
Transmitter	ter Receiver		
<u> </u>		n	y I
_ **]	
•	[1.5 mm X	1.5 mm X 0.55 mm

X 0.55 mm

- Record high f_t (> 105 GHz)
- CMOS inverter delay < 8 psec at RT; 6 psec @ 77K, close to JJ speed;
 - Record low noise (0.9 dB NF @ 2GHz), ==> MAKES HIGH SPEED, HIGH RESOLUTION A/DC possible resulting in low noise front end
- Record BW (10 GHz) for distributed amplifier

8 dBm

 F_t $Vs. I_{ds}$

TFSOS vs. TFSOI RF Data

C. Wann *et al.* ISSCC, Feb. 1998 C. Wann *et al.* EDL, **18**(12), pg. 625-627, Dec. 1997

STANNAR COMPARATIVE STUDY of CMOS on TFSOS vs. SIMOX vs. BULK SILICON

Accomplishment

Systams Center San Diego

Objective:

 Determine the comparative CMOS-based alternatives (bulk Si, SIMOX, TFSOS) to implement low power, high frequency, cost-effective VLSIC technology at 100nm regime in an environment conducive to manufacturing.

Accomplishment:

Test vehicle: 4-bit, 10 Gsps A/DC.

Comparator Bank

Bubble Detector

Output Buffer

 $f_{max} = 10 \text{ GHz goal}$; $f_{max} = 7.5-8 \text{ GHz experimental}$

	Comparator Bank	Bubble Detector	Encoder	Total Delay	Clock
	Delay =t _d Ln 2 ⁿ (pS)	Delay (pS)	Delay (pS)	(pS)	f _{max} (GHz)
CMOS/Si Bulk	108	47	76	231	4.4
CMOS/SIMOX		37	60	183	5.5

7.5-8

131

46

29

56

CMOS/TFSOS

13-GHz Tuned Amplifier

- Demonstrated Functional Samples (Body-Tied and Floating Body) on Bulk, SOI, and SOS wafers.
- The Peak Gain is ~15dB for SOS Samples.
- Amplifiers with Floating Body have ~5dB Higher Gains.
- Bulk Samples Have Less than 0dB Gain
- SOS Samples Have Significantly Better Characteristics than SOI and Bulk Samples.

K.K. O et al. GOMAC, March 1998.Yo-Chuol Ho, et al. Custom Integrated Circuits Conference, April 1998.K.-H. Kim et al. ISSCC, Feb. 1998.

Distributed Amplifer

Broadest bandwidth ever reported for any Si-FET 300 um gate width, 4 stages distributed amplifier

Schematic

Photograph of Amplifier

Power measurements at 1, 2, 5, & 10 GHz

NEAR FUTURE

Fabrication in Progress:

- LNAs, Mixers, VCOs for operation @18-40 GHz
 System-on-a-Chip @18 GHz
 Single-chip GPS receivers (~80-100 dB isolation)-SBIR '99
 SiGe p-FET (> 100 GHz) & Logic

	rating Freq	Gain	NF (50 💯)	Operating Freq Gain NF (50 42) IP3 (output) Power@vdd	Power@vdd
LNA 18	18 GHz	15 db	15 db 3 dB	5dBm	22mW@1.5V
LNA/Differential	18 GHz	22 dB	22 dB 3.7	10 dBm	60mW@1.5
<i>Mixer</i> Center IF≕0	Center=16-20GHz 7 db IF=0.5-4 GHz	7 db	10 dB	5dBm	40mW@1.5V

Thin-film Silicon-on-Sapphire **Characteristics**

Fully depleted operation --> improved low voltage performance (esp. w.r.t. bipolar)

Lower minority carrier lifetime

Parasitic bipolar suppressed

Higher S-D breakdown voltage

compressive stress (valence band splitting); better design flexibility for Enhanced PMOS --> higher hole mobility than bulk Si, due to low power CMOS over GaAs (no p-channel)

Excellent rf performance

• $f_{\rm t}$ > 100 GHz for 0.1 $\mu{\rm m}$ L_{eff} n-type transistors

• f_{max} > 66/45 GHz for .4 µm n/p-channel

Extremely low-loss substrate at rf (loss tangent < .0001)

No parasitic coupling to substrate for passive components

Good thermal conductivity

Higher than SiO,

Comparable to GaAs

UHV/CVD Grown FET Structures

- SOS layer is compressively strained ~ 0.35%
- Remains ~ 0.30% strained after UHV/CVD growth
- Low density of misfit dislocation at the Si/Al₂O₃ interface

 - P. Mooney *et al.*, Appl. Phys. Lett. 73, pg. 924, 1998.
 ——Mat. Res. Soc. Symp. Proc., **533**, pg. 55, 1998.
 - —To be published in Applied Physics Letters.

X-ray diffraction

Planar-view TEM

Si/Al₂O₃ Interi

Arrows point to Si/Al₂O₃ interface where misfit dislocations end

regions

regions

Triple-Axis X-Ray Diffraction Measurements

- Measured thickness and strain of Si layer, thickness and alloy composition of SiGe layer, and thickness of Si cap layer
- Showed that interdiffusion of Si and Ge at Si/SiGe interfaces occurs during thermal annealing at 850°C
- Demonstrated that SiGe layer structures were degraded by device fabrication processes at T > 800°C
- → Low temperature processing required

Ge concentration in strained SiGe Layer over time at 850°C

0.25

0.20

SiGe FETs on Silicon-on-Sapphire Substrates

SiGe p-MOSFET Devices (Ge 20-30%)

(S.J. Mathew *et al.*, Tech. Dig. 1997 Device Research Conf. and Electron Device Letters 20, 173 (1999)) Hole mobilities 30 to 50% higher, up to 200 cm²/V-s

New Approach: p-MODFET Devices

Room temperature hole mobilities up to 1050 cm²/Vs in (K. Ismail et al., Appl./ Phys. Lett. 64, 3124 (1994)) modulation doped structures on bulk Si

(M. Arafa e*t al.*, Electron Devices Lett. 17, 586 (1996)) $f_t = 70 \text{ GHz for p-MODFETs on bulk Si}$ Ī

Systems Center San Diego

Modulation-doped p-FET layers on SOS

Strained Si_{1-x}Ge_x device layer

neet Density (cm 2.40x10¹² 2.80x10¹² Mobility and Sheet Hole Density vs. T

Hole mobility (300K): 804 cm²/V sec Sheet hole density: $2.5 \times 10^{12} \text{ cm}^{-2}$

120 nm

dy.

Active device layers are grown on top of a strain-relaxed SiGe buffer layer: total epi thickness approx. 1 micron

Nomarski image of p-MODFET wafer surface

Gov32.6: 4" Union Carbide SOS substrate

Gov32.8: 4" bulk silicon

- If not well-improved, large pits occur after SiGe growth at macro-twin defects in original SOS layer;
 - Low defect density in SOS substrate required
- Wafer bonding methods have the potential to produce SOS substrates with
- zero microtwin defects;
- threading defect densities reduced by many orders of magnitude;
- thin relaxed SiGe buffer layers on sapphire (required for fully depleted FETs)

Closing Thoughts

- operated wireless communication and S to K-band (~40 GHz) applications TFSOS addresses present and long-term issues and needs in batteryproviding unique solutions for low power System-on-a-Single-Chip, integrating analog and digital functions
- Focus of present and near-term
- Strained SiGe (>75% Ge) on SOS to achieve high $\mu_{\rm h}$
- $1/f_{\text{p-SiGe/SOS}} < 1/f_{\text{p-SiGe/Si}}$
- ⇒ Mixers with lower phase noise
- f_t, f_{max} highest ever, for low power CMOS and high performance
- SiGe p-FETs with greater or similar n-FET mobility will significantly reduce device size/chip area
- higher CMOS performance products (f_t , $f_{max} > 100-200$ GHz), for reduced system cost, using industrial IC infrastructure
- FETs and AlGaAs/GaAs HEMTs (Prof. David Ferry, ASU, Seminar UCSD, May QHD simulation predicts similar device transconductance for SiGe on SOS
- World highest hole mobility (804 cm²/V.sec @300 K) measured on modulation-doped p-FET structure on TFSOS substrate
- MOSIS accepts TFSOS designs

The Future

- Extend performance of silicon technology to K-band, benefiting from established industrial infrastructure resulting in lower cost
- TFSOS technology for digital and analog devices
- -10 times lower power x delay product than conventional bulk technologies benefits in, e.g.,
 - ---Real-time sensor information processing
- ---Radar image processing
- —Digital communication
- —Another factor of 5 reduction with low V_{dd}
- --- Deployable/Unattended situation awareness systems
- —Extended operation of all battery-powered systems
- —10x greater immunity to SEU which benefits
 - —All space based electronics
- TFSOS, a technology to implement advanced components, such as A/D converters, and single chip wireless communication systems

The Future

- K-band, benefiting from established industrial infrastructure resulting Extend performance of silicon technology with SiGe/TFSOS CMOS to in lower cost, advanced components, such as A/DCs and wireless communication functions
- TFSOS, implementing a low power, lower cost, high performance technology for application to:
- Space based electronics
- Image processing
- Digital communication
- Extended operation battery-powered systems
- Other commercial/military systems

and what all t he damned fools said would happen has come to pass What all the wise promised has not happened,

William Lamb Second Viscount Melbourne (from Lord Melbourne, 1834)