基礎数学 期末テスト 略解 7/16/09 (佐藤)

- 1 次の各問に答えよ. (各5点)
 - (1) $\log_3 24 \log_3 8$ を計算しなさい.

$$\log_3 24 - \log_3 8 = \log_3 \frac{24}{8} = \log_3 3 = \mathbf{1}.$$

(2) $3^{\frac{1}{3}} \times 9^{\frac{4}{3}} \div 27^{-\frac{1}{3}}$ を計算しなさい.

$$3^{\frac{1}{3}} \times 9^{\frac{4}{3}} \div 27^{-\frac{1}{3}} = 3^{\frac{1}{3}} \times (3^2)^{\frac{4}{3}} \div (3^3)^{-\frac{1}{3}} = 3^{\frac{1}{3}} \times 3^{\frac{8}{3}} \div 3^{-1} = 3^{\frac{1}{3} + \frac{8}{3}} \times 3 = 3^4 = 81.$$

- (3) $f(x) = x^2 + 3x 1$ に対し、y = f(x) の点 (-2, f(-2)) における接線の方程式を求めなさい。 f'(x) = 2x + 3, f'(-2) = -1, f(-2) = -3 より、接線の方程式は y = -(x (-2)) 3 = -x 5.
 - (4) 不定積分 $\int (x^2 + x + 2) dx$ を求めなさい.

$$\frac{x^3}{3} + \frac{x^2}{2} + 2x + C.$$

(5) 定積分 $\int_{-1}^{1} (x^3 + 2x - 1) dx$ の値を求めなさい.

$$\int_{-1}^{1} (x^3 + 2x - 1) \, dx = \left[\frac{x^4}{4} + x^2 - x \right]_{-1}^{1} = -2$$

(6) 一般項が $a_n=5-3n$ で与えられる数列 $\{a_n\}$ は等差数列か等比数列か答えよ。 さらに $\{a_n\}$ の公差または公比を求めよ。

公差が-3の等差数列。

- ② 次の図はある関数 f(x) のグラフである。各グラフの f(x) としてもっとも近いものを(ア)~(カ)の中から選べ。(各 10 点)
 - (1) (1) $f(x) = \log_2 x$

(2) ($\dot{9}$) $f(x) = 2^{-x}$

③ 漸化式 $a_{n+1}=3a_n-4$ (ただし $a_1=2$) で与えられる数列 $\{a_n\}$ の階差数列 $\{b_n\}$ の一般項を求めよ. (10 点)

 $b_{n+1}=a_{n+2}-a_{n+1}=(3a_{n+1}-4)-(3a_n-4)=3(a_{n+1}-a_n)=3b_n$. したがって、階差数列 $\{b_n\}$ は公比が 3 の等比数列である。初項は $b_1=a_2-a_1=(3a_2-4)-a_1=2a_1-4=2\times2-4=0$. 以上のことから、 $\{b_n\}$ の一般項は $b_n=0$.

基礎数学 期末テスト 略解 7/16/09 (佐藤)

4
$$f(x) = -\frac{x^3}{3} + x^2 + 3x - 4$$
 について以下の問いに答えよ. (各 10 点)

- (1) f(x) の極値を求めなさい.
- (2) y = f(x) のグラフの概形を描きなさい (前間で求めた極値, y 切片の情報を図中にわかりやすく書き加えること).

 $f'(x) = -x^2 + 2x + 3 = -(x - 3)(x + 1)$. しがって、f'(x) = 0 となるのは x = -1 と x = 3 のときである。増減表は以下のようになる;

x		-1		3	
f'(x)	_	0	+	0	_
f(x)	減少	$-\frac{17}{3}$	増加	5	減少

したがって、f(x) は x=3 のとき極大値 5、x=-1 のとき極小値 $-\frac{17}{3}$ をとる。 f(0)=-4 より、グラフの y 切片は (0,-4).

5 $y = x^2 - 6x + 5$ と y = 2x - 2 のグラフで囲まれる部分の面積を求めなさい. (20 点)

 $0=(2x-2)-(x^2-6x+5)=-(x^2-8x+7)=-(x-7)(x-1)$ より、2つのグラフは x=1 と x=7 の点で交わる。 $y=x^2-6x+5$ は下に凸の放物線だから、1< x<7 の範囲では直線 y=2x-2 の方が y の値が大きい。したがって、求める面積は $\int_1^7 \{(2x-2)-(x^2-6x+5)\}dx=\int_1^7 (-x^2+8x-7)\,dx=\left[-\frac{x^3}{3}+4x^2-7x\right]_1^7=\mathbf{36}.$