Areal Data Overview

Proximity Matrix

Similar to the distance matrix with point-reference data, a proximity matrix W is used to model areal data.

Grid Example

Create an adjacency matrix with diagonal neigbors

Create an adjacency matrix without diagonal neigbors

Spatial Association

There are two common statistics used for assessing spatial association: Moran's I and Geary's C.

Moran's I

$$I = \frac{n \sum_{i} \sum_{j} w_{ij} (Y_i - \bar{Y}) (Y_j - \bar{Y})}{(\sum_{i \neq j} w_{ij}) \sum_{i} (Y_i - \bar{Y})^2}$$

Geary's C

$$C = \frac{(n-1)\sum_{i}\sum_{j}w_{ij}(Y_{i} - Y_{j})^{2}}{2(\sum_{i \neq j}w_{ij})\sum_{i}(Y_{i} - \bar{Y})^{2}}$$

Spatial Association Exercise

and proximity matrix

```
W <- matrix(0, 16, 16)
for (i in 1:16){
  W[i,] <- as.numeric((d4$rpos[i] == d4$rpos & (abs(d4$cpos[i] - d4$cpos) == 1)) |
                           (d4\$cpos[i] == d4\$cpos \& (abs(d4\$rpos[i] - d4\$rpos) == 1)))
}
head(W)
         [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
##
                             0
## [1,]
            0
                  1
                       0
                                   1
                                        0
                                              0
                                                   0
                                                         0
                                                                0
## [2,]
                  0
                             0
                                  0
                                                         0
                                                                0
                                                                             0
                                                                                    0
            1
                                        1
                                              0
                                                   0
                                                                       0
                       1
## [3,]
            0
                  1
                       0
                             1
                                  0
                                        0
                                              1
                                                   0
                                                         0
                                                                0
                                                                       0
                                                                                    0
## [4,]
            0
                  0
                       1
                             0
                                  0
                                        0
                                              0
                                                   1
                                                         0
                                                                0
                                                                      0
                                                                             0
                                                                                    0
                                                         1
## [5,]
            1
                             0
                                        1
                                                   0
                                                                0
                                                                                    0
##
   [6,]
            0
                  1
                       0
                             0
                                        0
                                                   0
                                                                                    0
##
         [,14]
               [,15]
                      [,16]
## [1,]
             0
                    0
                           0
## [2,]
             0
                    0
                           0
## [3,]
             0
                    0
                           0
## [4,]
             0
                    0
                           0
## [5,]
             0
                    0
                           0
## [6,]
```

for each scenario plot the grid, calculate I spdep::moran.test and G spdep::geary.test.

1. Simulate data where the responses are i.i.d. N(0,1).

2. Simulate data and calculate I and G for a 4-by-4 grid with a chess board approach, where "black squares" $\sim N(-2,1)$ and "white squares" $\sim N(2,1)$.

3. Simulate multivariate normal response on a 4-by-4 grid where $y \sim N(0, (I - \rho W)^{-1})$, where $\rho = .3$ is a correlation parameter and W is a proximity matrix.