Međuispit iz Linearne algebre

2. svibnja 2016.

[5 bodova]

- (a) Zadani su vektori $\mathbf{a}=(1,2,2)$ i $\mathbf{b}=(2,1,3)$ s koeficijentima iz polja \mathbb{Z}_5 . (2b) Provjerite jėsu li vektori a i b linearno nezavisni nad poljem \mathbb{Z}_5 . (1b) Napišite sve elemente podprostora $L(\mathbf{a})$ vektorskog prostora \mathbb{Z}_5^3 nad poljem \mathbb{Z}_5 .
- (b) Zadana je matrica $\mathbf{A}=\begin{bmatrix}1&4\\2&2\end{bmatrix}$ s koeficijentima iz polja \mathbb{Z}_5 . (2b) Riješite matričnu jednadžbu XA = B, ako je $B = \begin{bmatrix} 2 & 0 \\ 3 & 1 \end{bmatrix}$.
- 2. [7 boda] Neka je P_2 vektorski prostor svih polinoma p=p(t) stupnja najviše 2. Neka je $Ap = p''(t) + t \cdot p'(t).$
 - (a) (2b) Dokažite da je $A: P_2 \to P_2$ linearni operator.
 - (b) (3b) Odredite jezgru tog operatora. Odredite također rang i defekt tog operatora.
 - (c) (2b) Odredite matricu tog operatora u kanonskoj bazi u P_2 .
 - $[{\bf 5}\ {\bf bodova}]$ U vektorskom prostoru V^3 zadani su vektori ${\bf a}=2{\bf i}+{\bf j}+{\bf k},\,{\bf b}={\bf i}-{\bf j}-{\bf k}.$ Neka je $A:V^3 \to V^3$ linearni operator ortogonalnog projiciranja na ravninu $L(\mathbf{a}, \mathbf{b})$.
 - (a) (2b) Odredite matricu A tog operatora u kanonskoj bazi.
 - (b) (2b) Dijagonalizirajte matricu A (ako je to moguće), tj. odredite bazu s obzirom na koju je matrica $\mathbf D$ tog operatora dijagonalna i nađite $\mathbf D$.
 - (c) (1b) Izračunajte $A(3\mathbf{i} + \mathbf{j} 3\mathbf{k})$.
- 4. [5 bodova] Zadani su linearni operatori $A:X \to Y$ i $B:Y \to Z$, te neke tri baze u konačno-dimenzionalnim vektorskim prostorima X,Y i Z. Neka su $\mathbf A$ i $\mathbf B$ pripadajuće matrice operatora A i B u odgovarajućim parovima baza.
 - (a) (2b) Ako je C matrica linearnog operatora $B \circ A : X \to Z$ u odgovarajućem paru baza,
- (b) (3b) Zadana su dva linearna operatora $A, B: V^3 \to V^3$ sa $A(\mathbf{a}) = ((\mathbf{i} + \mathbf{j} + \mathbf{k}), \mathbf{a}) (\mathbf{i} + \mathbf{j} 3\mathbf{k})$ i $B(\mathbf{a})=(\mathbf{i}-\mathbf{j}+\mathbf{k})\times\mathbf{a}$, za bilo koji vektor $\mathbf{a}\in V^3$, gdje je s $(\cdot\,,\cdot)$ označen skalarni produkt, a s ' \times ' vektorski produkt dvaju vektora u V^3 . Odredite matricu linearnog operatora $B \circ A : V^3 \to V^3$ u kanonskoj bazi $\{\mathbf{i}, \mathbf{j}, \mathbf{k}\}.$

[7 bodova] Zadane su funkcije $f(x) = \sin 3x$ i $g(x) = \sin 3x + \cos 3x$ u Lebesgueovom prostoru $L^2(-\pi, \pi)$, s uobičajenim skalarnim produktom.

(1b) Provjerite jesu li funkcije f i g međusobno okomite u tom prostoru.

(b) (2b) Provjerite da funkcije f i g razapinju isti podprostor kao i funkcije f i h, gdje $h(x) = \cos 3x$ (tj. provjerite da vrijedi $f, g \in L(f, h)$ i $f, h \in L(f, g)$).

(3b) Odredite funkciju e = e(x) u vektorskom podprostoru L(f, g) koja je najbliža funkciji h(x) = x s obzirom na normu u prostoru $L^2(-\pi, \pi)$.

(d) (1b) Izračunajte ||g|| u Lebesgueovom prostoru $L^2(-\pi,\pi)$.

[5 bodova] Neka je $A: X \to X$ linearni operator koji u bazi $\{e_1, \ldots, e_n\}$ ima matricu A, a u bazi $\{e'_1, \ldots, e'_n\}$ matricu A'.

(a) (3b) Dokažite da je $\mathbf{A}' = \mathbf{T}^{-1}\mathbf{A}\mathbf{T}$, gdje je \mathbf{T} matrica prijelaza iz prve baze u drugu.

(b) (2b) Zadan je linearni operator $A: V^2 \to V^2$ sa $Av_1 = v_1 + 2v_2$ i $Av_2 = v_1 - v_2$, gdje je $v_1 = \mathbf{i} + \mathbf{j}$, $v_2 = \mathbf{i} - 3\mathbf{j}$. Odredite matricu operatora A u kanonskoj bazi.

[4 boda] Zadana je matrica

$$\mathbf{A} = \left[\begin{array}{ccc} 1 & -1 & 1 \\ 1 & 2 & 1 \\ 2 & -1 & 1 \end{array} \right].$$

(a) (2b) Rabeći Hamilton-Cayleyev teorem, izračunajte \mathbf{A}^{-1} .

(b) (1b) Rabeći Hamilton-Cayleyev teorem, izrazite A^3 kao linearnu kombinaciju matrica I, A i A^2 .

[7 bodova] Zadana je matrica

$$\mathbf{A} = \begin{bmatrix} 0 & 2 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & -3 \end{bmatrix}.$$

(a) (1b) Odredite vlastite vrijednosti matrice A.

(b) (3b) Odredite odgovarajuće vlastite vektore matrice A.

(c) (3b) Dokažite da se matrica $\bf A$ može dijagonalizirati. Odredite matricu sličnosti $\bf T$. Fullom napišite vezu između matrica $\bf A$, $\bf T$ i dijagonalne matrice $\bf D$.

pit se piše 120 minuta. Dozvoljeno je koristiti samo prazne papire i pr je. Svaki zadatak rješavajte na zasebnom listu papira te ih prilikom lajte po redu.