Data visualisation with R

Statistical Computing and Empirical Methods Unit EMATM0061, Data Science MSc

Rihuan Ke rihuan.ke@bristol.ac.uk

What will we cover today

We discuss why visualisation is a crucial skill for data scientists.

We consider the difference between various visual cues within plots.

We will take a brief look at the ggplot2 library within R.

We will also think about basic data types and shapes.

The importance of visualisation

1. Exploring data

Many people are skilled at thinking visually.

Plotting data is often the fastest way to gain insights

- Identifying outliers
- Determining the "shape" of a data distribution
- Identifying relationships between variables
- Spotting trends over time

The importance of visualisation

2. Communicating your insights:

Data scientists must do more than understand and gain insight from data.

That insight must also be communicated to others within their organization.

Remember that your audience is often:

- very short on time
- from a non-technical background.

Effective visualisations often allow us to bridge that gap.

A case study: The Challenger

In January 1986 the Challenger rocket was due to be launched by NASA.

A group of engineers who designed motors for NASA requested a delay.

It was argued that the rubber O-rings would not withstand the cold.

The advice was disregarded with dire consequences.

The rocket exploded 73 seconds after the launch.

A case study: The Challenger

Tufte (1997) has argued that this could have been avoided by a better presentation.

HISTORY OF O-RING TEMPERATURES (DEGREES-F)				
MOTOR	MBT	AMB	O-RING	WIND
om-t	68	36	47	10 mpH
Om - 2	76	45	52	10 MPH
qm - 3	72.5	40	48	10 mpH
Qm - 4	76	48	51	10 MPH
5&m-15	52	64	53	10 mpH
5RM-22	77	78	75	10 MPH
5 Rm - 25	55	26	29 27	10 MPH 25 MPH

Visual cues

Visual cues are components of a plot or graph which draw the attention of your audience.

- **1. Position** (numerical): Where in relation to other things?
- 2. Length (numerical): How large (in one dimension)?
- **3. Angle** (numerical): How wide is
- **4. Direction** (numerical): At what slope?
- **5. Shape** (numerical): Which group?
- **6.** Area (numerical): How big (in two dimensions)?
- 7. Volume (numerical): How big (in three dimensions)?
- **8. Shade** (numerical or categorical): How dark is something?
- **9. Colour** (numerical or categorical): What colour is something?

Visual cues

Visual cues are components of a plot or graph which draw the attention of your audience.

Three figures for the number of cars sold over a given month, broken down by the manufacturer.

Which of these plots do you think is easiest to interpret?

Visualisation in R with ggplot2

Hadley Wickham's **ggplot2** package allows us to quickly generate impressive plots within R.

The **ggplot2** package implements Leland Wilkinson's Grammar of Graphics:

- 1. An aesthetic is a mapping between a variable and a visual cue.
- 2. A glyph is a basic graphical element e.g. a mark or symbol.
- 3. A guide is an annotation which provides context.

The **ggplot2** package is included in the tidyverse package. To use it, first:

library(tidyverse)

The Palmer penguins data set

First load the palmer penguins library

We can take a look at the data set by using the head function.

```
library(palmerpenguins)
head(penguins)
## # A tibble: 6 x 8
     species island bill_length_mm bill_depth_mm flipper_l...¹ body_...² sex
                                                                               year
    <fct> <fct>
                                <dbl>
                                              <dbl>
                                                                  <int> <fct> <int>
                                                          <int>
## 1 Adelie Torgersen
                                 39.1
                                               18.7
                                                            181
                                                                   3750 male
                                                                               2007
## 2 Adelie Torgersen
                                 39.5
                                               17.4
                                                            186
                                                                   3800 fema...
                                                                               2007
## 3 Adelie Torgersen
                                                                   3250 fema...
                                 40.3
                                               18
                                                            195
                                                                               2007
## 4 Adelie Torgersen
                                                                     NA <NA>
                                 NA
                                               NA
                                                             NA
                                                                               2007
## 5 Adelie Torgersen
                                 36.7
                                               19.3
                                                            193
                                                                   3450 fema...
                                                                               2007
## 6 Adelie Torgersen
                                 39.3
                                               20.6
                                                            190
                                                                   3650 male
                                                                               2007
## # ... with abbreviated variable names 'flipper_length_mm, 'body_mass_g
```

Types of variables

```
## # A tibble: 6 × 8
    species island
                      bill length mm bill depth mm flipper l...¹ body ...² sex
                                                                               year
    <fct> <fct>
                                <dbl>
                                              <dbl>
                                                         <int>
                                                                 <int> <fct> <int>
## 1 Adelie Torgersen
                                               18.7
                                                                   3750 male
                                 39.1
                                                            181
                                                                               2007
## 2 Adelie Torgersen
                                              17.4
                                                                  3800 fema... 2007
                                 39.5
                                                            186
## 3 Adelie Torgersen
                                                                  3250 fema... 2007
                                40.3
                                               18
                                                            195
## 4 Adelie Torgersen
                                                                    NA <NA>
                                                                               2007
                                NA
                                              NA
                                                            NA
## 5 Adelie Torgersen
                                36.7
                                              19.3
                                                                   3450 fema...
                                                                              2007
                                                            193
## 6 Adelie Torgersen
                                 39.3
                                               20.6
                                                            190
                                                                   3650 male
                                                                               2007
## # ... with abbreviated variable names ¹flipper length mm, ²body mass g
```

Continuous Numeric variables that can take any value on an interval e.g. Bill length, Bill depth

Discrete Numeric variables for which there is a minimum gap between possible values. e.g. year the observation was recorded.

Categorical Variables that can take on only a specific set of values representing distinct categories e.g. species, island, etc.

```
univar_plot <- ggplot(data=penguins, aes(x=flipper_length_mm)) + xlab("Flipper Length (mm)")
univar_plot+geom_histogram(binwidth = 5)+ylab("Count")</pre>
```


Aesthetic

A mapping between a variable and a visual cue.

Flipper length → horizontal position.

Guide

An annotation which provides context.

Glyph

A glyph is a basic graphical element.

Each bar represents the number of penguins with flipper lengths within the window.

univar_plot+geom_density(adjust=0)+ylab('Density')

Aesthetic

A mapping between a variable and a visual cue.

Flipper length \rightarrow horizontal position.

Glyph

A glyph is a basic graphical element. The line within the density plot.

平滑模拟

A density plot is a smoothed analogue of a histogram.

Counts are replaced with smoothed bump functions i.e., kernels

Histograms and density plots display the shape of the data distribution.

Negatively skewed data occurs when there is a large left tail consisting of a relatively small number of relatively low values, but most of the data is towards the upper end of the plot.

Positively skewed data occurs when there is a large right tail consisting of a relatively small number of relatively high values, but most of the data is towards the lower end of the plot.

Positive skew X

Unimodal vs. multi-modal

The number of **modes** refers to the number of peaks within the data.

univar_plot+geom_density(adjust=0)+ylab('Density')

A bimodal distribution.

```
ggplot(data=rename(penguins, Species=species), aes(x=flipper_length_mm, color=Species))+
  geom_density()+theme_bw()+xlab("Flipper length (mm)")+ylab("Density")
```


Flipper length (mm)

Aesthetics

Mappings between a variable and a visual cue.

Flipper length → horizontal position.

Species → colour

```
ggplot(data=penguins, aes(x=flipper_length_mm, y=species))+geom_boxplot()+
   xlab('Flipper length (mm)') + ylab("Penguin species")
```


Aesthetics

Mappings between a variable and a visual cue.

Flipper length \rightarrow horizontal position.

Species → vertical position.

ggplot(data=rename(penguins, Species=species), aes(x=flipper_length_mm, y=Species, fill=Species))+geom_violin()+theme_bw()+x
lab("Flipper length (mm)")

Aesthetics

Mappings between a variable and a visual cue.

Flipper length \rightarrow horizontal position.

Species \rightarrow vertical position.

Species → colour

```
mass_flipper_scatter <- ggplot(data=penguins, aes(y=body_mass_g, x=flipper_length_mm))+
    xlab("Flipper length (mm)") + ylab("Body mass (g)")
mass_flipper_scatter+geom_point(size=3)</pre>
```


Aesthetics

Flipper length \rightarrow horizontal position.

Body mass \rightarrow vertical position.

Glyph

Points.

Flipper length (mm)

```
mass_flipper_scatter+geom_point(aes(color=bill_length_mm, size=3))+
    scale_color_gradient(low="blue", high="red")+guides(color=guide_legend("Bill length (mm)"))
```



```
mass_flipper_scatter+geom_point(aes(color=bill_length_mm, size=bill_depth_mm))+
    scale_color_gradient(low="blue", high="red")+
    guides(color=guide_legend("Bill length (mm)"), size=guide_legend("Bill depth (mm)"))
```


mass_flipper_scatter+geom_point(aes(color=species, shape=species))

Aesthetics

Flipper length \rightarrow horizontal position.

Body mass \rightarrow vertical position.

Species → colour

Species → shape

```
mass_flipper_scatter + geom_text(aes(label=species, color=species)) +
 guides(color=guide legend("Species"))
```


Aesthetics

Adelie Chinstrap

Gentoo

Flipper length \rightarrow horizontal position.

Body mass \rightarrow vertical position.

Species → colour

Species \rightarrow text

Facets

mass_flipper_scatter + geom_point() + facet_wrap(~species)

Aesthetics

Flipper length \rightarrow horizontal position.

Body mass → vertical position

Facets

Species

Trend lines

```
trend_plot <- ggplot(data=filter(penguins, species=='Gentoo'), aes(y=body_mass_g, x=flipper_length_mm)) + xlab('Flipper length (mm)') + ylab('Body mess (g)') + geom_point()
trend_plot + geom_smooth()</pre>
```


Trend lines illustrate the relationship between two variables.

Trend lines

trend_plot+geom_smooth(method="lm")

Annotation

```
min(filter(penguins, species=='Gentoo')$body_mass_g, na.rm=TRUE)
```

[1] 3950

```
trend_plot + geom_smooth(method="lm") +
  geom_curve(x=220, xend=209, y=4250, yend=3975, arrow=arrow(length=unit(0.5, 'cm')), curvature=0.1) +
  geom_text(x=225, y=4250, label="The lightest Gentoo \n penguin weighs 39.5 kg")
```


GGplot2 gallery:

https://exts.ggplot2.tidyverse.org/gallery/

What have we covered?

We discussed the importance of visualisations for data science:

- To explore data
- To explain your insights to colleagues.

We have discussed the difference between various visual cues.

We have had a brief look at the power of the ggplot2 library within R.

Try the examples yourself?

The illustration, codes, and examples are included in the R Markdown file **LectureDataVisualisation.Rmd** which can be downloaded via the course webpage.

Thanks for listening!

Dr. Rihuan Ke rihuan.ke@bristol.ac.uk

Statistical Computing and Empirical Methods Unit EMATM0061, MSc Data Science