Санкт-Петербургский Политехнический университет Петра Великого

Отчет по лабораторной работе \mathbb{N}^1

Изучение характеристик распределений

Студент: Швачко Никита Андреевич Преподаватель: Баженов Александр Николаевич Группа: 5030102/20202

Санкт-Петербург 2025

1 Формулировка задания и его формализация

Для 4 распределений:

- Нормальное распределение N(x,0,1)
- Распределение Коши C(x,0,1)
- Распределение Пуассона P(k, 10)
- Равномерное распределение $U(x, -\sqrt{3}, \sqrt{3})$
- 1. Сгенерировать выборки размером 10,50 и 1000 элементов. Построить на одном рисунке гистограмму и график плотности распределения.
- 2. Сгенерировать выборки размером $10,\!100$ и 1000 элементов. Для каждой выборки вычислить следующие статистические характеристики положения данных: $\bar{x}, \text{med } x, z_Q$. Повторить такие вычисления 1000 раз для каждой выборки и найти среднее характеристик положения и их квадратов:

$$E(z) = \bar{z}$$

Вычислить оценку дисперсии по формуле:

$$D(z) = \overline{z^2} - \bar{z}^2$$

Представить полученные данные в виде таблиц. Пояснение

$$z_Q = \frac{z_{1/4} + z_{3/4}}{2}$$

2 Гистограммы и графики плотности распределений

Рис. 1: Гистограммы и плотности распределений для выборок разного размера

3 Результаты вычислений статистических характеристик

Таблица 1: Средние значения характеристик положения и их дисперсии

Нормальное			
Выборка	Характеристика	$\mathbf{E}(\mathbf{z})$	$\mathbf{D}(\mathbf{z})$
10	\bar{x}	-0	0.09
10	$\operatorname{med} x$	-0.01	0.13
10	z_Q	-0	0.11
100	$ar{x}$	0	0.01
100	$\operatorname{med} x$	-0	0.02
100	z_Q	-0	0.01
1000	\bar{x}	0	0
1000	$\operatorname{med} x$	0	0
1000	z_Q	0	0
Коши			
Выборка	Характеристика	E(z)	$\mathbf{D}(\mathbf{z})$
10	\bar{x}	0.75	283.65
10	$\operatorname{med} x$	0.01	0.33
10	z_Q	0.01	0.86
100	$ar{x}$	-0.46	205.23
100	$\operatorname{med} x$	0	0.03
100	z_Q	0.01	0.05
1000	\bar{x}	-9.05	51968.84
1000	$\operatorname{med} x$	-0	0
1000	z_Q	0	0.01
Пуассон			
Выборка	Характеристика	E(z)	$\mathbf{D}(\mathbf{z})$
10	\bar{x}	10.04	1.06
10	$\operatorname{med} x$	9.9	1.41
10	z_Q	9.98	1.19
100	$ar{x}$	10.01	0.09
100	$\operatorname{med} x$	9.88	0.18
100	z_Q	9.93	0.14
1000	$ar{x}$	10	0.01
1000	$\operatorname{med} x$	10	0
1000	z_Q	9.99	0
Равномерное			
Выборка	Характеристика	E(z)	$\mathbf{D}(\mathbf{z})$
10	\bar{x}	0.01	0.1
10	$\operatorname{med} x$	0.01	0.22
10	z_Q	0.01	0.14
100	$ar{ar{x}}$	-0	0.01
100	$\operatorname{med} x$	-0.01	0.03
100	z_Q	-0	0.01
1000	$ar{x}$	0	0
1000	$\operatorname{med} x$	0	0
1000	z_Q	0	0

4 Выводы

• При увеличении размера выборки характеристики положения стабилизируются.

- Среднее значение \bar{x} для распределения Коши не является надежным из-за сильных выбросов.
- Медиана и квартильный средний z_Q показывают меньшую изменчивость в выборках с выбросами.
- Пуассоновское распределение при больших n приближается к нормальному.
- Равномерное распределение демонстрирует низкую изменчивость статистик.