Al for the Media Week 6, Domain 2 Domain

Overview

Domain 2 Domain Models (pre-recorded lecture):

- What can we do with these models?
- What does the model need?
 - Combining what we already learned about to make this work!
- Limitations and follow-up models

Practical session (during the live session**):**

Code: Training a pix2pix model

I Motivation

Domain to domain (or image to image) models

pix2pix (2017)

Online demo:

affinelayer.com/
pixsrv/

Example 1: Learning to see...

 Custom pix2pix running in realtime and interactively at the "AI: More than Human" exhibition at Barbican

Video: <u>vimeo.com/260612034</u>

Info: memo.tv/works/learning-to-see/

Example 2: Predicting the future ...

- Uses pix2pix trained on a sequence of frames from a video
 - Also shows the progress of the trained network (rubbish at the beginning, but gets better)

Video: youtube.com/watch?v=lr59AhOPgWQ

Blog: https://magenta.tensorflow.org/nfp p2p

Example 3: Sculpting with Al ...

 Improved versions of pix2pix trained with custom dataset of human bodies

Video: youtube.com/watch?v=TN7Ydx9ygPo

Info: nvidia.com/en-us/research/ai-art-

gallery/artists/scott-eaton/

Scott Eaton's description

https://youtu.be/TN7Ydx9ygPo?t=480
 (around 2 mins)

Learning how these artworks were made!

Dataset:

Learning how these artworks were made!

Dataset:

To edges:

Learning how these artworks were made!

Dataset:

Train a model on this translation

Learning how these artworks were made!

Dataset:

Train a model on this translation

Then use the model on new kinds of data:

II How to get there?

Domain to Domain

Convolutional layers (recap)

Intuition: working with images

Nearby pixels correspond.

Far away pixels don't.

Convolutional layers (recap)

Intuition: working with images

Nearby pixels correspond.

Far away pixels don't.

Manual Convolutional filter:

Convolutional layers (recap)

Learned Convolutional filters:

• Interactive Convolutional Neural Network (runs in the browser and has good visualization): cs.cmu.edu/~aharley/vis/conv/flat.html

First idea: Convolutional NN

- "Fully Convolutional" with only convolutional layers
- Problem: Too complicated task, no separation for different object sizes

Encoder-Decoder models (recap)

Auto-encoder models

• AE models are trained to reconstruct images as best as they can, while forcing the image through a lower dimensional latent vector

Second idea: Auto-Encoders

- Encoder-decoder architecture to learn the translation?
- Problem: AE models force the reconstruction through a small bottleneck
 - We loose a lot of information in the process and the results would be blurry

Domain to Domain

What kind of model can we use here?

Not: Fully Conv NNs, AutoEncoders, ...

Adding skip connections

- Idea for the U-Net model:
 - Add skip connections between the encoder and decoder networks
 - Paper with U-Net applied on the task of lunar crater identification

U-Net

U-Net

Images from one "domain"

Paired images from another "domain"

• Connects one image to another while going through a bottleneck

U-Net

Images from one "domain"

Paired images from another "domain"

• Additionally: "skip connections" that allow the information to flow

U-Net in a real-world scenario

Usually used for the task of semantic segmentation

From real world data to semantic labels

Example code (cat segmentation demo): github.com/zaidalyafeai/Notebooks/blob/master/unet.ipynb

U-Net in a real-world scenario

Can be adapted to many tasks – for example this "change detection",
 where it needed to learn which kind of change we care about

Third idea: U-Net

• Encoder-decoder model with skip connections

Third idea: U-Net

Images from domain A

U-Net

Images from domain B

• Encoder-decoder model with skip connections

Third idea: U-Net

Images from domain A

U-Net

Images from domain B

- Encoder-decoder model with skip connections
- Almost there! We can do even better ... < Add adversarial training

III pix2pix model

Pix2Pix

- Uses ideas from the Generative Adversarial Network (GAN) models
 - Generator is a U-Net network
 - With the addition of the discriminator network and adversarial training

Final idea: pix2pix

pix2pix (the trained generator network bit)

Images from domain A

Images from domain B

Encoder-decoder model with skip connections
with adversarial training helping the quality of the generative model

Pix2Pix

- General purpose image-to-image translation:
 - From their 2017 paper: "Many problems in image processing, computer graphics, and computer vision can be posed as "translating" an input image into a corresponding output image."
 - Translating without specifically defining the rules data-driven translating between two domains by showing paired examples:
 - [Image from A, Corresponding Image from B] * N samples

Pix2Pix

General purpose image-to-image translation:

Figure 11: Example applications developed by online community based on our pix2pix codebase: #edges2cats [3] by Christopher Hesse, Background removal [6] by Kaihu Chen, Palette generation [5] by Jack Qiao, $Sketch \rightarrow Portrait$ [7] by Mario Klingemann, $Sketch \rightarrow Pokemon$ [1] by Bertrand Gondouin, "Do As I Do" pose transfer [2] by Brannon Dorsey, and #fotogenerator by Bosman et al. [4].

- For training it needs paired data
 - dataset of images from domain A, and dataset of corresponding images from domain B
 - Simple example "horse 2 zebra" model, would require careful arranging of animals

- ⇒ CycleGAN (next week)
- dataset of images from domain A, and dataset of corresponding images from domain B
- Simple example "horse 2 zebra" model, would require careful arranging of animals

- ⇒ CycleGAN (next week)
- dataset of images from domain A, and dataset of corresponding images from domain B
- Simple example "horse 2 zebra" model, would require careful arranging of animals
- Basic pix2pix has relatively low resolution

- ⇒ CycleGAN (next week)
- dataset of images from domain A, and dataset of corresponding images from domain B
- Simple example "horse 2 zebra" model, would require careful arranging of animals
- Basic pix2pix has relatively low resolution \Rightarrow pix2pixHD

- ⇒ CycleGAN (next week)
- dataset of images from domain A, and dataset of corresponding images from domain B
- Simple example "horse 2 zebra" model, would require careful arranging of animals
- Basic pix2pix has relatively low resolution \Rightarrow pix2pixHD
- For animation, we want something to enforce temporal consistency between consecutive frames

IV uses and follow-up work

Follow-up papers?

- Pix2Pix HD (2018)
 - Allows higher resolution of the trained pictures (from 256x256px up to 2048x1024px!)

Figure 2: Example results of using our framework for translating edges to high-resolution natural photos, using CelebA-HQ [26] and internet cat images.

Code: github.com/NVIDIA/pix2pixHD

Example project:

GAN Theft Auto: Autonomous Texturing of Procedurally Generated Interactive Cities

Oscar Dadfar Carnegie Mellon University Pittsburgh, USA odadfar@andrew.cmu.edu Lingdong Huang Carnegie Mellon University Pittsburgh, USA lingdonh@andrew.cmu.edu Hizal Çelik Carnegie Mellon University Pittsburgh, USA hizalc@andrew.cmu.edu

Figure 1: Cross-views of Cityscape [Left] and GTA V [Right] texturings using Pix2PixHD.

Follow-up papers?

- Vid2Vid (2018)
 - Keep temporal consistency between frames

Code: github.com/NVIDIA/vid2vid

Follow-up papers?

- SPADE and the interactive demo GauGAN (2019)
 - Interactive painting tool based on pix2pix like models

Code: github.com/NVlabs/SPADE

More high-quality examples:

Summary from the lecture

- Combining ideas from last classes, we can achieve image2image models:
 - Convolutional layers (working with images)
 - Encoder decoder models (split small details and large context)
 - U-Nets: Skip connections (allow information to keep at the original resolution)
 - Adversarial training (more realistic images)

Links and additional readings:

- Online pix2pix demos: affinelayer.com/pixsrv/
 - Follow-up papers: pix2pixHD (with high. res.), vid2vid (with frame to frame consistency), SPADE (interactive), ... (and many more...)

- Bonus readings:
 - About Pix2Pix on ML4A blog with code

Preparation for the practical

- Think about a dataset of images you'd like to use when training pix2pix model.
- We will use a Colab code which will download a YouTube video and extract frames from it — this will serve as our dataset
- Task: choose a video!

End of the lecture

Al for the Media Week 6, Domain 2 Domain

Practical: pix2pix training

Practical: Domain 2 Domain

Training Pix2Pix models

Namely using the sketch2image with our own data.

Continue with code on Github:

- Repo: github.com/previtus/cci AI for the Media 2022
- Notebook in folder: week06 domain-to-domain

Pix2Pix

- You might recall that we will need paired data in our dataset:
 - Data from domain A
 - Data from domain

 And we will be learning the translation between A to B

Examples from training:

- **ps:** remember that the model saw only the edges/sketch when reconstructing these images
- (note) the pix2pix demo's have much better quality of the trained models

Demo with a video ->

- Note that there is almost no temporal consistency between these frames ...
- Longer video: here

The end