ชื่อ Haematococcus pluvialis (1)

ชื่ออื่น ๆ

ชื่อวิทยาศาสตร์ Haematococcus pluvialis (1)

ชื่อพ้อง -

ชื่อวงศ์ CHLOROPHYCEAE (1)

ลักษณะโดยทั่วไป

สาหร่ายที่มีชื่อวิทยาศาสตร์ว่าฮีมาโตคอกคัส พลูวิเอลิส (Haematococcus pluvialis) เป็นสาหร่าย น้ำจืดสีเขียวเซลล์เดียว (green microalgae) มีการเจริญ 2 ระยะ ได้แก่ ระยะแรก (green stage; biomass accumulation) เป็นระยะของการสร้างมวลชีวภาพในสภาวะที่เหมาะต่อการเจริญเติบโต และระยะที่ 2 (red stage; red-astaxanthin formation) เป็นระยะที่ผนังเซลล์ของสาหร่ายจะมีการเปลี่ยนแปลงหนาตัวขึ้น ใน สภาวะต่าง ๆ ที่ไม่เหมาะสมต่อการเจริญเติบโต เช่น สภาวะที่มีความเข้มของแสง อุณหภูมิที่สูงหรือต่ำ ขาด อาหาร หรือสภาวะเครียดจากเกลือ เป็นต้น เซลล์จะมีลักษณะค่อย ๆ เปลี่ยนจากสีเขียวเป็นสีส้ม - แดง เนื่องจากมีการสังเคราะห์และสะสมของสารแอสตาแซนธิน (astaxanthin; 3,3'-dihydroxy- β , β '-carotene-4,4'-dione) ซึ่งเป็นสารคีโตแคโรทีนอยด์ (ketocarotenoid) ในกลุ่มแซนโทฟิลล์ (xanthophylls) ซึ่ง สาหร่าย β . β 0 pluvialis สามารถพบสาร astaxanthin ได้ในปริมาณสูง (1-6) มีการศึกษาเกี่ยวกับสาร astaxanthin พบว่ามีฤทธิ์ในการต้านอนุมูลอิสระ (5-6) และมีข้อมูลที่เกี่ยวข้องกับการเกิดอันตรกิริยาระหว่าง สาร astaxanthin กับยาแผนปัจจุบัน หรือกลไกที่เกี่ยวข้อง ดังต่อไปนี้

อันตรกิริยาต่อยาแผนปัจจุบัน

1. ผลของสาร astaxanthin ต่อกระบวนการเมแทบอลิซึมของยา ผลต่อเอนไซม์ cytochrome P450

การทดสอบฤทธิ์ของสาร astaxanthin ในหลอดทดลอง (human liver microsomes) พบว่ามีฤทธิ์ ยับยั้งเอนไซม์ CYP2C9 ในระดับอ่อน โดยมีค่า IC_{50} เท่ากับ 16.2 ไมโครโมลาร์ (7)

ผลของสาร astaxanthin ต่อ UDP-Glucuronosyl-Transferase (UGT)

การทดสอบผลของสารกลุ่ม xanthophylls 5 ชนิด ได้แก่ astaxanthin, cryptoxanthin, canthaxanthin, lutein และ zeaxanthin ต่อการทำงานของเอนไซม์ UGT ชนิดต่าง ๆ ในหลอดทดลองโดย ใช้ไมโครโซมของตับมนุษย์ (human liver microsomes) พบว่าสาร astaxanthin ไม่มีฤทธิ์ในการยับยั้ง เอนไซม์ UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, UGT2B7 และ UGT2B15 (8)

2. ผลของสาร astaxanthin ต่อยาแผนปัจจุบัน ผลต่อยาต้านการแข็งตัวของเลือด

warfarin

มีรายงานผู้ป่วยเพศหญิงอายุ 69 ปี มีประวัติภาวะหลอดเลือดสมองตีบหรืออุดตัน (ischemic stroke) ผู้ป่วยมีการใช้ยา warfarin, atenolol, digoxin, aspirin, omeprazole และ simvastatin ในขนาด คงที่ต่อเนื่องกัน 17 วัน โดยไม่มีการแสดงอาการไม่พึงประสงค์ใด ๆ โดยใช้ยา warfarin ขนาด 3 มก./วัน และ ในวันที่ 17 มีการใช้สาร astaxanthin 2 แคปซูล (แคปซูลละ 4 มก.) ในตอนเย็น และวันถัดมาใช้สาร astaxanthin 2 แคปซูล 2 ครั้ง/วัน (เช้าและเย็น) แล้วพบว่าเกิดจ้ำเลือดบริเวณขาหนีบและต้นขา ในวันถัดมา จ้ำเลือดใหญ่ขึ้น และค่า international normalized ratio (INR) เพิ่มขึ้นจาก 1.4 เป็น 10.38 จึงได้ระงับการ ใช้ astaxanthin และ warfarin และให้วิตามิน K หลังจากนั้น 2 วัน พบว่าค่า INR ลดลงเป็น 1.43 และ อาการจ้ำเลือดดีขึ้น ดังนั้นอาจจะต้องระมัดระวังการใช้ astaxanthin ร่วมกับ warfarin เพราะอาจเสริมฤทธิ์ ต้านการแข็งตัวของเลือดได้ (9)

บทสรุป

การศึกษาเกี่ยวกับการเกิดอันตรกิริยาระหว่างสาร astaxanthin กับยาแผนปัจจุบัน หรือกลไกที่ เกี่ยวข้องนั้น มีข้อมูลงานวิจัยเพียงเล็กน้อย สาร astaxanthin มีรายงานฤทธิ์ยับยั้ง CYP2C9 ในระดับอ่อน และไม่มีฤทธิ์ในการยับยั้งเอนไซม์ UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, UGT2B7 และ UGT2B15 และมีรายงานผู้ป่วยพบการเกิดอันตรกิริยากับยาต้านการแข็งตัวของเลือด warfarin อย่างไรก็ตาม ในปัจจุบัน สาร astaxanthin เป็นผลิตภัณฑ์เสริมอาหารชนิดหนึ่งที่ได้รับความนิยม ถึงแม้รายงานการเกิด อันตรกิริยาต่อยาต่าง ๆ ยังไม่ชัดเจน แต่ก็ควรใช้อย่างระมัดระวัง และหากผู้ป่วยเกิดอาการไม่พึงประสงค์ใด ๆ ถ้ามีประวัติการใช้สาร astaxanthin หรือสมุนไพรใด ๆ ร่วมกับยาแผนปัจจุบัน ควรรายงานแพทย์

ตารางที่ 1 รายงานผลการศึกษาของสาร astaxanthin ต่อกระบวนการเมแทบอลิซึมของยา

ชนิดของ	สารสกัด/	รูปแบบการศึกษา	ระยะเวลา	ผลการศึกษา
CYP450	สารสำคัญ		การศึกษา	
CYP2C9	สาร astaxanthin	หลอดทดลอง โดยใช้ human	-	ยับยั้งเอนไซม์ CYP2C9 ในระดับอ่อน
		liver microsomes		(weakly) มีค่า IC ₅₀ เท่ากับ 16.2 ไมโครโม
				ลาร์ (7)
ชนิดของ	สารสกัด/	รูปแบบการศึกษา	ระยะเวลา	ผลการศึกษา
UGT	สารสำคัญ		การศึกษา	
UGT1A1,	สาร astaxanthin	หลอดทดลอง โดยใช้ human	-	ไม่มีผลยับยั้งเอนไซม์ UGT (8)
UGT1A3,		liver microsomes		
UGT1A4,				
UGT1A6,				
UGT1A9,				
UGT2B7 และ				
UGT2B15				

ตารางที่ 3 รายงานผลการศึกษาของสาร astaxanthin ต่อยาแผนปัจจุบัน

กลุ่มยา/	รูปแบบ	ปริมาณ/ความเข้มข้น	ระยะเวลา	ผลการศึกษา		
ยา	การศึกษา	ของสมุนไพรและยา				
ยายับยั้งการเกาะกลุ่มกันของเกล็ดเลือด						
warfarin	รายงาน	ยา warfarin ขนาด 3 มก./วัน,	ประมาณ 1 วันครึ่ง [ใช้ยา warfarin ขนาด 3 มก./วัน	เกิดจ้ำเลือด		
	ผู้ป่วย	สาร astaxanthin 2 แคปซูล	ต่อเนื่องมา 17 วัน และในวันที่ 17 มีการใช้สาร	และค่า INR		
		(แคปซูลละ 4 มก.) ในตอนเย็น	astaxanthin 2 แคปซูล (แคปซูลละ 4 มก.) ในตอน	สูงขึ้น (9)		
		และวันถัดมาใช้สาร	เย็น วันถัดมาใช้สาร astaxanthin 2 แคปซูล			
		astaxanthin 2 แคปซูล 2	2 ครั้ง/วัน (เช้าและเย็น)			
		ครั้ง/วัน (เช้าและเย็น)				

เอกสารอ้างอิง

- 1. Oslan SNH, Shoparwe NF, Yusoff AH, Rahim AA, Chang CS, Tan JS, et al. A review on *Haematococcus pluvialis* bioprocess optimization of green and red stage culture conditions for the production of natural astaxanthin. Biomolecules. 2021;11(2):256. doi: 10.3390/biom11020256.
- 2. Mularczyk M, Michalak I, Marycz K. Astaxanthin and other nutrients from *Haematococcus pluvialis*-multifunctional applications. Mar Drugs. 2020;18(9):459. doi: 10.3390/md18090459.
- 3. Yuan JP, Peng J, Yin K, Wang JH. Potential health-promoting effects of astaxanthin: a high-value carotenoid mostly from microalgae. Mol Nutr Food Res. 2011;55(1):150-65. doi: 10.1002/mnfr.201000414.
- 4. Patel AK, Tambat VS, Chen CW, Chauhan AS, Kumar P, Vadrale AP, et al. Recent advancements in astaxanthin production from microalgae: a review. Bioresour Technol. 2022;364:128030. doi: 10.1016/j.biortech.2022.128030.
- 5. Kobayashi M. *In vivo* antioxidant role of astaxanthin under oxidative stress in the green alga *Haematococcus pluvialis*. Appl Microbiol Biotechnol. 2000;54(4):550-5. doi: 10.1007/s002530000416.
- 6. Oslan SNH, Tan JS, Oslan SN, Matanjun P, Mokhtar RAM, Shapawi R, et al. *Haematococcus pluvialis* as a potential source of astaxanthin with diverse applications in industrial sectors: current research and future directions. Molecules. 2021;26(21):6470. doi: 10.3390/molecules26216470.
- 7. Zheng YF, Bae SH, Kwon MJ, Park JB, Choi HD, Shin WG, Bae SK. Inhibitory effects of astaxanthin, β -cryptoxanthin, canthaxanthin, lutein, and zeaxanthin on cytochrome P450 enzyme activities. Food Chem Toxicol. 2013;59:78-85. doi: 10.1016/j.fct.2013.04.053.
- 8. Zheng YF, Min JS, Kim D, Park JB, Choi SW, Lee ES, et al. In vitro inhibition of human UDP-glucuronosyl-transferase (UGT) isoforms by astaxanthin, β -cryptoxanthin, canthaxanthin, lutein, and zeaxanthin: prediction of in vivo dietary supplement-drug interactions. Molecules. 2016;21(8):1052. doi: 10.3390/molecules21081052.

9.	antiyanon N, Yeephu S. Interaction between warfarin and astaxanthin: a case report. J ardiol Cases. 2019;19(5):173-5. doi: 10.1016/j.jccase.2019.01.002.			