1 Block Diagram Algebra In series: $\Sigma = \Sigma_1 \Sigma_2$

In parallel: $\Sigma = \Sigma_1 + \Sigma_2$ positive feedback: $\Sigma = \frac{\Sigma_1}{I - \Sigma_1 \Sigma_2}$

negative feedback: $\Sigma = \frac{\Sigma_1}{I + \Sigma_1 \Sigma_2}$ 2 Modeling

2.1 Definitions

Inputs u(t): How does the outside world affect the sys-

Outputs v(t): What do we observe about the system?

State/Memory x(t): How does the system change internally over time? Disturbances d(t): External, unintentional effects on the

Parameters: System specifications that are fixed and do not change over time.

Basic Control Architectures

2.2.1 Feed-Forward

Doesn't change it's dynamics but relies on precise knowledge of the plant.

Feedback loop

Feedback control can stabilize unstable systems, reject external disturbancies and handle uncertainties in the sys-

But it can introduce instability and feed sensor noise into the system.

2.3 System Classification

Static / Memoryless

Output only depends on inputs at current time t.

Non-static Examples:

$$y(t) = u(t-1), \quad y(t) = \int_0^t u(\tau) d\tau$$

Note that for a static LTI the state vector x does not appear, hence matrices A, B, C are zero.

Causal Output relies on past and current inputs but not on future

Non-causal systems cannot be implemented in the real

world.

Non-causal Examples:

$$y(t) = u(t+2), \quad y(t) = \frac{d}{dt}u(t), \quad y(t) = \int_{-\infty}^{t} u(\tau) d\tau$$

For LTI: strictly causal means feedthrough D is zero.

Time-invariant

Linearity

Shifting the output has the same effect as shifting the

Time-varying Examples:

$$y(t) = t \cdot u(t), \quad y(t) = u(\sin(t)), \quad y(t^2) = u(t)$$

Linear systems satisfy following properties:

$$\Sigma(\alpha u_1+\beta u_2)=\alpha\Sigma(u_1)+\beta\Sigma(u_2)$$

$$\Sigma(k\cdot u)=k\cdot\Sigma(u)$$
 where Σ can be treated as a scalar:

$$\Sigma(u) = \Sigma \cdot u$$

Proper systems have TF where the denominator has a

higher degree than the nominator. Realizable

Realizable Systems need to be proper and causal.

2.4 LTI Systems

There is not many LTI systems in real world applications but a lot of real world systems can be approximated very well with LTI's.

2.4.1 State Space Model

$$y(t) = h(x(t), u(t)) = Cx(t) + Du(t)$$

2.4.2 Time Response

$$x(t) = e^{At}x_0 + \int_0^t e^{A(t-\tau)}Bu(\tau) d\tau$$

$$y(t) = Ce^{At}x_0 + C\int_0^t e^{A(t-\tau)}Bu(\tau) d\tau + Du(t)$$

 $\dot{x}(t) = f(x(t), u(t)) = Ax(t) + Bu(t)$

Where
$$y(t)$$
 is composed y_{IC} (the first part) and y_F , its second part

second part. Du(t) is called **feedthrough**.

2.4.3 Matrix Exponentials

The inverse of a 2×2 matrix A is computed as follows:

$$A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \quad \Rightarrow \quad A^{-1} = \frac{1}{ad - bc} \left[\begin{array}{cc} d & -b \\ -c & a \end{array} \right]$$

If A is in diagonal form, e^{At} can be simplified to:

$$\exp\left(\left[\begin{array}{cc} \lambda_1 & 0 \\ 0 & \lambda_2 \end{array}\right]t\right) = \left[\begin{array}{cc} e^{\lambda_1 t} & 0 \\ 0 & e^{\lambda_2 t} \end{array}\right]$$

If A is not diagonal but diagonalizable, e^{At} is computed

$$\det\left(\left[\begin{array}{cc}a-\lambda & b\\c&d-\lambda\end{array}\right]\right)=(a-\lambda)(d-\lambda)-bc=0$$

$$e^{At} = \operatorname{diag}\left[e^{\lambda_1 t}, e^{\lambda_2 t}\right]$$

If A is in Jordan form, e^{At} can be simplified to:

$$\exp\left(\left[\begin{array}{cc} \lambda & 1\\ 0 & \lambda \end{array}\right]t\right) = e^{\lambda t} \left[\begin{array}{cc} 1 & t\\ 0 & 1 \end{array}\right]$$

$$\exp\left(\left[\begin{array}{cc} \lambda & 1 & 0\\ 0 & \lambda & 1\\ 0 & 0 & \lambda \end{array}\right]t\right) = e^{\lambda t} \left[\begin{array}{cc} 1 & t & \frac{t^2}{2}\\ 0 & 1 & t \end{array}\right]$$

2.4.4 Diagonalization

Compute eigenvector's and -values.

 $\begin{array}{l} T=(v_1,v_2,...,v_n),\ \tilde{A}=T^{-1}AT=diag(\lambda_1,\lambda_2,...,\lambda_n)\\ \tilde{B}=T^{-1}B,\ \tilde{C}=CT,\ \tilde{D}=D,\ \tilde{x}=T^{-1}x \end{array}$

Asymptotically stable: State converges to "zero" (stays constant) for bounded initial condition & zero input. $Re(\lambda_i) < 0 \quad \forall i$

initial condition & zero input. $Re(\lambda_i) < 0 \quad \forall i$

BIBO stable: Output remains bounded for every bounded input. 2.4.6 Minimal LTI System

Lyapunov stable: State will remain bounded for bounded

It is defined by **observability** \mathcal{O} and **controllability** \mathcal{C} which

means that it is expressed in its simplest form while retaining all dynamic behavior and contains no unnecessary states. (\mathcal{C} and \mathcal{O} have full rank n)

For Minimal System asymptotic stability = BIBO stability!

Non-linear Systems Hartman-Grobman Theorem

2.5

stable. (Assuming you stay close to the equilibrium point) 2.5.1 Linearization To linearize a non-linear system, we use the Jacobian **Linearization procedure** based on the *Taylor-Series ex-*

It states that if the approximated LTI system is asympto-

tically stable, the real, non-linear system is also locally

pansion around an equilibrium point (x_e, u_e) , where $\dot{x} =$ $f(x_e, u_e) = 0.$

 $\left\{ \begin{array}{l} \dot{x}(t) = f(x(t), u(t)) \\ y(t) = g(x(t), u(t)) \\ x(t_0) = x_0 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \\ x(0) = x_0 \end{array} \right.$

$$A = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \dots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}_{(x_e, u_e)} \quad B = \begin{bmatrix} \frac{\partial f_1}{\partial u_1} \\ \vdots \\ \frac{\partial f_n}{\partial u} \end{bmatrix}_{(x_e, u_e)}$$

$$C = \left[\frac{\partial g}{\partial x_1} \cdots \frac{\partial g}{\partial x_n}\right]_{(x_e, u_e)} \quad D = \left[\frac{\partial g}{\partial u}\right]_{(x_e, u_e)}$$

 $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{p \times n}$, $D \in \mathbb{R}^{p \times m}$ Where n, m and p are the dimensions of the state-, inputand output vector respectively.

Note: Since in this course we deal with SISO systems, the B and D matrices have 1 column.

3 Signal Analysis

Understand the input-output behaviour of a given system.

3.1 Output Response

 y_{ss} because the transient response disappears.

$$y_{ss}(t) = (C(sI - A)^{-1}B + D)e^{st} = G(s)e^{st}$$

3.2 Transfer Function

This G(s) is called transfer function. It is a complex num ber and describes the input - steady-state-output relation of a system. $G(s) = C(sI - A)^{-1}B + D$

$$G(s) = \frac{Y(S)}{U(S)}$$

The impulse response h(t) defines our system because of its Laplace transform being the transfer function:

$$\mathcal{L}\{h(t)\} = H(s) = G(s)$$

3.2.1 Canonical Form

$$G(s) = \frac{b_{n-1}s^{n-1} + b_{n-2}s^{n-2} + \dots + b_0}{s^n + a_{n-1}s^{n-1} + \dots + a_0} + d$$

$$A = \begin{bmatrix} \ddot{0} & \ddot{0} & \ddot{1} & \ddot{0} & \cdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \ddot{0} & \ddot{0} & \ddot{0} & \ddot{1} & -a_{0} \\ -a_{1} & -a_{2} & \cdots & -a_{n-1} & 0 \end{bmatrix}$$

$$B = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}, \quad C = \begin{bmatrix} b_0 & \dots & b_{n-1} \end{bmatrix}, \quad D = [d]$$

3.2.2 Other Forms The transfer function for the Root Locus analysis is:

$$G(s) = k_{rl} \frac{(s-z_1)(s-z_2)\cdots(s-z_n)}{(s-p_1)(s-p_2)\cdots(s-p_m)}$$

The transfer function for the Bode Plot analysis is:

$$G(s) = \frac{k_{Bode}}{s^q} \frac{\left(\frac{s}{-z_1} + 1\right)\left(\frac{s}{-z_2} + 1\right)}{\left(\frac{s}{-p_1} + 1\right)}$$

The Partial Fraction Expansion can be written as:

$$G(s) = \frac{r_1}{s - p_1} + \frac{r_2}{s - p_2} + \dots + \frac{r_n}{s - p_n} + r_0$$

Residues of non-repeated poles $p_i \rightarrow \mathbf{cover} \cdot \mathbf{up}$ method: $r_i = \lim_{s \to n} (s - p_i)G(s)$

For repeated poles of order
$$m$$
:

$$r_i = \frac{1}{(m-1)!} \lim_{s \to p_i} \frac{\partial^{m-1}}{\partial s^{m-1}} ((s-p_i)^m) G(s)$$

3.2.3 Graphical computation Phase and Magnitude of an example input s = 2iw can be

computed by looking at the complex plane. By inspecting the poles and zeros of the TF G(s).

Magnitude: $|G(2j\omega)| = \frac{\Pi|Z_i|}{\Pi|P_i|}$

Phase: $\angle G(2j\omega) = \sum \angle Z_i - \sum \angle P_i$ Where P_i, Z_i are vectors from the corresponding pole or zero to the input s (here $=2j\omega$).

3.3 Poles & Zeros The roots of the denominator D(s) of a TF are called **poles** and analogously the roots of the nominator N(s)

zero's. Stable pole: $Re(p_i) < 0 \rightarrow e^{p_i t}$

Unstable pole: $Re(p_i) > 0$, if one pole is unstable, the whole system is unstable!

In General: Stable poles closer to the origin are dominant.

Mnm phase zero: $Re(z_i) < 0$ causes overshoot. **Non-mnm phase zero**: $Re(z_i) > 0$ causes undershoot.

 $|\mathbf{z}| \propto \text{over-/undershoot.}$

Note: In case of pole-zero cancellation stability information is lost! Dangerous since perfect mathematical cancellation is not how the real system would behave (due approximation, noise, etc.).

Open Loop

3.4 Feedback Systems

Open-loop gain L(s) is the transfer function without the feedback connection.

Complementary Sensitivity/Closed-loop TF

It is the closed-loop transfer function T(s) (noise rejection) with gain k. $T(s) = \frac{kL(s)}{1+kL(s)}, \quad |S(s)| \to 1$

Characteristic equation: 1 + kL(s) = 0**Sensitivity Function**

SF Also called Disturbance Rejection. $S(s) = \frac{k}{1+kL(s)}, \quad |S(s)| \to 0$

 $Y(s) = S(s) \cdot (D(s) + P(s) \cdot W(s)) + T(s) \cdot (R(s) - N(s))$

10 times bigger) than the outer loop.

3.5 Root Locus Method Displays how the poles move with varying gain k.

Limitations: It can only be used for finite-dimensional systems and rational functions.

Sketching Rules: (n, m) are the number of openloop poles, zeros respective-

- the RL is symmetric about its real axis.
- all points on the real axis to the left of an odd/even number of poles or zeros are on the positive/negative k root locus.

all points on the real axis are on the root locus.

- closed loop poles approach the open loop poles as
- $k \to 0$. Start drawing from open loop poles (\times)
- closed loop poles approach the open loop zeros (o) as $k \to \infty$. • if n > m the excess pole(s) will go to infinty at
- angle(s) δ_i . Two poles on the real axis meet in breakaway points and leave perpendicular to the real axis. breakouts from poles/zeros go to/come from infinity.
- the origin of asymptotes σ_a is where all the asymptotes intercept the real axis in one point.
- if there is at least two lines going to infinity, the sum of all roots (real parts) is constant. (good for intui-

$$\begin{split} \delta_i &= \frac{\pi(2i+1)}{n-m}, \text{if } k_{rl} > 0, i = \{0,1,...,n-m-1\} \\ \delta_i &= \frac{2i \cdot \pi}{n-m}, \text{ if } k_{rl} < 0 \\ \sigma_a &= \frac{1}{n-m} (\sum Re(p_i) - \sum Re(z_i)) \\ L(\mathbf{0}) &= \mathbf{1}/k_{crit} \end{split}$$

3.6.1 1st Order system

3.6 System Specifications

Settling Time: $T_{d\%} = \tau \log(100/d), \tau = -\frac{1}{Re(n)}$ 3.6.2 2nd Order System

$$\omega_n = \sqrt{\sigma^2 + \omega^2} \quad |\sigma| = \zeta \omega_n \quad \varphi = \arctan\left(\frac{\sigma}{\omega}\right)$$
Damping ratio: $\zeta = \sin(|\varphi|)$

Peak overshoot ratio: $M_p = e^{\frac{\sigma \pi}{\omega}}, \zeta^2 = \frac{(\ln M_p)^2}{\pi^2 + (\ln M_p)^2}$

Rise time: $T_{100\%} = \frac{\pi/2 - \varphi}{\omega} \approx \frac{\pi}{2\omega_{\pi}}$ Settling time: $T_{d\%} = \frac{1}{|\sigma|} log(\frac{d}{100})$

Note: Dominant pole is the one with the least negative real part (slowest decay). If you cancel out your non-dominant pole(s) p, you have to divide the gain by p.

3.6.3 Steady state error summary

Time to peak: $T_p = \frac{\pi}{11}$

e_{ss}	q = 0	q = 1	q=2	q: Unit ramp order Type: # integrators
Type 0	$\frac{1}{1+k_{Bode}}$	∞	∞	pe : # Integrators
Type 1	0	$\frac{1}{k_{\text{Bode}}}$	∞	$e_{ss} = \lim_{s o 0} G(s)$
Type 2	0	0	$\frac{1}{k_{Bode}}$	s-70
This sh	ows that	if you	want	to reach a zero steady s

the inner loop to have a bigger bandwidth (rule of thumb: you need q+1 integrators (Type). Gain selection table:

		proportional	integral	derivative
_	ss-error	\downarrow	$\rightarrow 0$	n.a.
	oscillations	↑	(†)	\downarrow
	sens. to noise	↑	n.a.	†
	stab. margins	(↓)	\downarrow	†
	3.7 Frequency	Response		

Bode Plot 3.7.1

$|G(j\omega)|_{\mathsf{dB}} = 20 \log_{10} |G(j\omega)|$

Inverting $G(i\omega)$ results in reflection about the horizontal

Bode's Law: If the slope of Magnitude curve $|G(j\omega)|$ is c.20db/decade for more than one decade, then the phase will be approximately $c.90^{\circ}$.

$\begin{array}{c cccc} i) \leq 0 & -20 \\ i) > 0 & -20 \\ i) > 0 & -40 \\ i) \leq 0 & -40 \\ i) > 0 & -40 \\ i) \leq 0 & +20 \\ i) > 0 & $	
$\begin{array}{c cccc} (i) \leq 0 & -40 \\ (i) > 0 & -40 \\ (i) \leq 0 & +20 \\ (i) > 0 & +20 \end{array}$	$\begin{array}{c c} \frac{dB}{dec} & -180^{\circ} \\ \frac{dB}{dec} & +180^{\circ} \\ \frac{dB}{dec} & +90^{\circ} \\ \frac{dB}{dec} & -90^{\circ} \end{array}$
$\begin{array}{c ccc} & -1 & -20 \\ \hline & & & \\ i) & > 0 & +20 \\ \hline & & & \\ i) & > 0 & +20 \\ \hline \end{array}$	$\begin{array}{c c} \frac{dB}{dec} & +180^{\circ} \\ \frac{dB}{dec} & +90^{\circ} \\ \frac{dB}{dec} & -90^{\circ} \end{array}$
$(i) \le 0 + 20$ (i) > 0 + 20	$\frac{dB}{dec}$ +90° $\frac{dB}{dec}$ -90°
(i) > 0 + 20	$\frac{dB}{dec}$ -90°
	aec
) - 0 140	78 1 1000
$(i) > 0 \mid +40$	$\frac{dB}{dec}$ -180°
$i) \leq 0$ $+40$	$\frac{dB}{dec}$ + 180°
≥ 0 $0\frac{d}{d}$	$\frac{B}{ec}$ 0°
$< 0 \qquad \qquad 0 \frac{d}{d}$	$\pm 180^{\circ}$
$\cdot s$ +20	$\frac{dB}{dec}$ +90°
$\frac{1}{1.8}$ -20	$\frac{dB}{dec}$ -90°
9.T	$-\omega \cdot \tau$
-	1

implies integrator/differentiator. 2. Magnitude comes in from 0 at bode gain (unless 1. applies). 3. Resonance spikes only occur for complex poles.

3.7.2 Nyquist Plot **Nyquist Theorem**

Nyquist contour is the path enclosing the complete right half of the complex plane CW.

N = Z - P

N: #Clockwise Encirclements of $\frac{-1}{2}$ Z: #Unstable closed-loop poles

P: #Unstable open-loop poles Poles on the imaginary axis: If moving CCW around the poles in the contour, close the plot CW and vice versa.

Nyquist Condition

If the open loop is stable, the Nyquist plot should NOT encircle the $\frac{-1}{L}$ point, in order for the closed loop to be

Gain & Phase margins Measurements that tell $\operatorname{Im} L(i\omega)$ vou how close your system is to instability.

Note: Here the point is $\operatorname{Re} L(i\omega)$ -1 due to the fact that L(s) has gain 1. $\phi_m = \phi(\omega_c) + 180^\circ$ $= \angle L(j\omega_c) + 180^{\circ}$ $g_m = 1/|L(j\omega_{pc})|$ $|L(j\omega)| < \frac{1}{L}$, whenever $\angle L(j\omega) = 180^{\circ}$

Bode plot: Magnitude has to be under 0db when phase crosses
$$-180^{\circ}$$
.

Phase has to be above the -180° line when Magnitude is 0db. Note: Only valid if the open loop is stable and non-mnm phase, otherwise it has to be double checked by other cri-

terions. 3.7.3 Frequency Domain Specifications Namely disturbance and noise rejection.

cies (under 10Hz). \rightarrow make $|S(j\omega)| \ll 1$ @low-freq Noise is typically conceived in high frequencies (over 100Hz). $\rightarrow |T(j\omega)| \ll 1$ @high-freq

Disturbances and commands act at 'low' frequen-

Bode plot obstacle course: Low-freq obstacle $W_1(j\omega)$: $|L(j\omega)| > |W_1(j\omega)|$

High-freq obstacle $W_2(j\omega)$: $|L(j\omega)| < |W_2(j\omega)|^{-1}$ Closed-loop bandwidth

compensator.

 ω such that $|T(i\omega)| > 1/\sqrt{2}$.

Lead Compensator $|L(j\omega|\uparrow)$

Which means that the output can track the commands to within a factor of ≈ 0.7 .

The (open-loop) crossover freq ω_c ($|L(j\omega_c)=1|$) is approximately the bandwidth if phase margin is about 90° 3.7.4 Loop shaping Loop shaping is the task of designing a dynamic com-

tem requirements ('moves smoothly through the obstacle course'). For this task you have 4 tools to choose from: Prop. Gain k, Differentiator 1/s, Lead-compensator, Lag-

Proportional Gain k With the proportional gain you can simply shift the magnitude-plot up or down by either increasing or decreasing it. The phase stays unchanged. Useful to increase band-width $(k \uparrow)$ or reduce steady-state error $(k \downarrow)$ Watch out for instability with too big gains!

Integrator 1/sIs mostly only used for eliminating steady-state error. (see Section 2.6.3)

 $C_{\text{lead}} = \frac{s/a+1}{s/b+1} = \frac{b}{a} \frac{s+a}{s+b},$ The lead compensator induces an up-ramp in magnitude

 -90° (max phase increase)

and a **bump-up** in phase around \sqrt{ab} (i.e. first the zero

than the pole). Multiply k by a/b, thus magnitude is

not affected at high frequencies. Else if ω_c shouldn't be

changed use: $|L(j\omega_c)| = 1 = 0dB$ Typical use: Increase

The lag compensator (same as 'lead', except b < a) in-

duces a down-ramp in magnitude and a bump-down in

phase. (i.e. pole comes first than the zero) Typical use:

 $\varphi_{min} = 2\arctan\left(\sqrt{\frac{b}{a}}\right) - 90^{\circ}$, magnitude increase = a/b

1. Secure 0 steady-state error (→ integrators).

2. Adjust gain such that the magnitude plot evades

Improve command tracking/disturbance rejection.

the low-freq obstacle W_1 (left side bode plot). • 3. Work with poles and zeros to reach bandwidth phase-margin and noise rejection W_2 . 3.8 Non-Mnm-Zeros and Unstable Poles

Step-by-step loop shaping approach

 $P(s) = P_{mp}(s)D(s), |D(s)| = 1 \text{ and } |P_{mp}(s)| = |P(s)|$ Where in $P_{mp}(s)$ you substitute the poles/zeros in the

right half plane with its symmetric in the left half plane. 3.9 Time delays TF of a time delay: e^{-sT} . It is non-rational but linear.

$$\left|e^{-j\omega T}\right| = 1,$$
 $\angle e^{-j\omega T} = -\omega T$

Or in words, the time delay does not affect the magnitude but it 'eats up' the phase margin ϕ_m $\phi_{m,T} = \phi_{m,0} - \omega_c T$

$$\varphi_{m,T} - \varphi$$

Padé approximation: $e^{-sT} \approx \frac{2/T-s}{2/T+s}$ $2\pi \text{Hz} = rad/s$ 3.10 Nonlinearities

Given a non-linearity we check stability by setting bounda-

phase margin.

 $\varphi_{max} = 2\arctan\left(\sqrt{\frac{b}{a}}\right)$

Lag Compensator $|L(j\omega|\downarrow)$

ries. Thus the Nyquist criterion becomes a bit more complecated. We differentiate between:] Necessary Condition: Nyquist plot encircles the range

 $[-1/k_1, -1/k_2]$ on the Re-axis the required ammount. Sufficient condition (circle): Ny-plot encircles a circle pensator C(s), that guides the given TF of the physical which reaches from $[-1/k_1, -1/k_2]$.

system P(s), such that $L(s) = C(s) \cdot P(s)$ satisfies all sys-Describing function $N(A) = \frac{b_1(A)/a_1(A)}{A} = \frac{1}{\pi A} \int_{-\pi}^{\pi} y(t) \sin(\omega t) \cos(\omega t) d(\omega t).$ For odd / even non-linearities.

> With this describing function N(A) you can now approximate the non linear system with a TF L'(A, s):

 $L'(A,s) = N(A) \cdot L(s)$

$$L(A, s) = N(A) \cdot L(s)$$

Which is dependent on the Amplitude A of the input signal and s.

Limit cycles

 $A = -AN(A)L(j\omega), \quad L(j\omega) = -1/N(A)$ Which means that they intersect in the complex plane.

Stability then can be determined sectionwise, by counting the encirclements!
 dB
 -20
 0
 1
 5
 20
 40
 60

 0.1
 1
 1.12
 1.77
 10
 100
 1000