

Status
October 2017

Kieran Leschinski

Stable Version 0.4

Main Developments

- Imaging mode
 - 4mas, 1.5mas, sub-pixel are working
 - Improved thermal background
 - Verification with HAWK-I data proposal accepted (P100)
- Spectroscopy mode
 - Stand-alone prototype is working
 - Needs to be integtrated into main package

SimCADO has more built in Source objects

- Point Sources
 - cluster()
 - stars(), star()
- Extended Sources
 - elliptical(), sersic profile()
 - spiral(), spiral profile()
- Image support
 - source from image()
- Basic SIE gravitational lens
 - apply_grav_lens()

Documentation available at

www.univie.ac.at/simcado/

Docs » Home

Welcome to SimCADocs

The (slowly expanding) documentation base for SimCADO

Omega Cen as imaged with HST/WFC3, HST/SimCADO and MICADO/SimCADO by Maximilian Fabricius (MPE). The synthetic images of the same region of Omega Cen are based on the HST catalog by Anderson & van der Marel 2010 and augmented by all the faint stars that did not end up in the HST catalogue.

SimCADO in a nutshell

SimCADO is a python package designed to simulate the effects of the Atmosphere, E-ELT, and MICADO instrument on incoming light. The current version (v0.2) can simulate the MICADO imaging modi (4mas and 1.5mas per pixel in the wavelength range $0.7\mu m$ to $2.5\mu m$).

iPython/Jupyter notebooks

Help desk at

oliver.czoske@univie.ac.at

kieran.leschinski@univie.ac.at

Help desk availability notice
Unfortunately for the near future** we can provide help

only on a volunteer best-effort basis

** Near future = Oliver : end of year(?), Kieran : ~March 2018

MICADO will reach K~27.5 and J~29 in 5 hours

Or K_{AB}~29.3 and J_{AB}~29.8 if you like AB magnitudes

Young massive clusters are useful

<u>Advantages</u>

Young <100 Myr
Population intact
No explosions
Membership is easy

Disadvantages

Too dense for current telescopes

Extracted IMF with PSF Photometry

Don't rely on exposure time calculators for dense regions

SimCADO 1 Point sources and Supernovae

LSST will provide bi-weekly coverage of the sky down to i~24 mag

5 mins/day with MICADO in J-band sufficient to follow SNe for >100 days

Make a Source object and run it

```
In []: import simcado as sim
    from astropy.io import ascii

lc = ascii.read("./SN2015bn sdss_g.txt")

for i in np.arange(len(lc)):

    src_sn = sim.source.star(filter_name="J", mag=lc["mag"][i])
    sim.run(src_sn, filename=str(i)+".fits", OBS_EXPTIME=300)

make_gif(tbl=lc)
```

Make a Source object and run it

Make a star object

```
In [ ]: import simcado as sim
    from astropy.io import ascii

lc = ascii.read("./SN2015bn sds/_g.txt")

for i in np.arange(len(lc)):

    src_sn = sim.source.star(filter_name="J", mag=lc["mag"][i])
    sim.run(src_sn, filename=str(i)+".fits", OBS_EXPTIME=300)

make_gif(tbl.lc)
```

Magic "batteries included" one-liner simulation

SimCADO 2: Extended objects and sub-structure

Model of B1938 "observed" with SimCADO

2hr runs for system H=19^m

See Vegetti & Czoske (in prep)

Effects from halo sub-structures with M>1E7 Mo are detectable

SimCADO 2: The same system for H=21 mag

Model of B1938 "observed" with SimCADO

2hr runs for system H=21^m

2 seperate objects can be combined in a single simulation

SimCADO needs

- 1) Image of the lensing elliptical B1938
 - 2) Image of the lensing elliptical B1938
 - 3) A spectrum for each galaxy

Combine 2 Source objects and run

Combine 2 Source objects and run

Use inbuilt model of Elliptical galaxy

Create Source from ondisk image of lensed galaxy

Combine Source objects

Make some observations

SimCADO 3: Multiply imaged quasar light curves

J=15 mag, 10 min exposure time

System diameter ~4 arcsec

Light curve from QSO J1131-1231 (Tewes+ 2013)

SimCADO 3: Multiply imaged quasar light curves

J=20 mag, 60 min exposure time System diameter ~0.4 arcsec

Majority of effort goes into describing objects of interest

```
In [ ]: import simcado as sim
        from astropy.io import ascii
                  = sim.source.spiral profile(r eff=25, arms width=0.3)
        sp lensed = sim.source.apply grav lens(spiral, y cen=-10, eccentricity=0.3, rotation=-45)
        lam, spec = sim.source.SED("spiral", "J", mag=20)
                  = sim.source.source from image(sp lensed, lam=lam, spectra=spec, plate scale=0.004)
        ring
        ellip = sim.source.elliptical(0.2, plate scale=0.004, mag=21,
                                      filter name="J", ellipticity=0.7, angle=45)
        tbl = ascii.read("./qso light curves.dat") # Tewes+ (2013)
        mags = np.array([tbl[n+" mag"] for n in "ABCD"])
        xp, yp = get dists from centre()
        for i in range(len(t)):
            stars = sim.source.stars(mags=mags[:, i], x=xp, y=yp)
            src combi = ell + lens + stars
            sim.run(src combi, filename=str(i)+".fits", OBS EXPTIME=3600)
```

Majority of effort goes into describing objects of interest

```
import simcado as sim
                                          Generate lensed spiral galaxy
from astropy.io import ascii
         = sim.source.spiral profile(r eff=25, arms width=0.3)
sp lensed = sim.source.apply grav lens(spiral, y cen=-10, eccentricity=0.3, rotation=-45)
lam, spec = sim.source.SED("spiral", "J", mag=20)
         = sim.source.source from image(sp lensed, lam=lam, spectra=spec, plate scale=0.004)
ring
ellip = sim.source.elliptical(0.2, plate scale=0.004, mag=21,
                           filter name="J", ellipticity=0.7, angle=45)
tbl = ascii.read("./qso light curves.dat") # Tewes+ (2)
                                                    Generate elliptical galaxy
mags = np.array([tbl[n+" mag"] for n in "ABCD"])
xp, yp = get dists from centre()
                                                          Create variable cores
for i in range(len(t)):
   stars = sim.source.stars(mags=mags[:, i], x=xp, y=yp)
   src combi = ell + lens + stars
   sim.run(src combi, filename=str(i)+".fits", OBS EXPTIME=3600)
```

"Observe" the system

Getting started with SimCADO

Install the package

\$ pip3 install --user http://www.univie.ac.at/simcado/SimCADO.tar.gz

Update the data

```
>>> import simcado
```

>>> simcado.get extras()

Make / Download a detector noise cube

>>> simcado.install noise cube(n=25)

Documentation available at

www.univie.ac.at/simcado/

Docs » Home

Welcome to SimCADocs

The (slowly expanding) documentation base for SimCADO

Omega Cen as imaged with HST/WFC3, HST/SimCADO and MICADO/SimCADO by Maximilian Fabricius (MPE). The synthetic images of the same region of Omega Cen are based on the HST catalog by Anderson & van der Marel 2010 and augmented by all the faint stars that did not end up in the HST catalogue.

SimCADO in a nutshell

SimCADO is a python package designed to simulate the effects of the Atmosphere, E-ELT, and MICADO instrument on incoming light. The current version (v0.2) can simulate the MICADO imaging modi (4mas and 1.5mas per pixel in the wavelength range $0.7\mu m$ to $2.5\mu m$).

iPython/Jupyter notebooks

