Minima & Maxima

Concepts

Topics covered are:

- 1. Local Minima and Maxima
- 2. Absolute Minima and Maxima
- 3. First & Second Derivative Tests

Local Minima and Maxima

For a function f(x), all the points where the function forms a peak is a local maxima, and all the deepest points of a dip is a local minima.

Mathematically, if the derivative of the function at a point is 0, and it has a *positive* slope before the point and a *negative* slope after the point, it is a **local maxima**.

Similarly, if the derivative of the function at a point is 0, and it has a *negative* slope before the point and a *positive* slope after the point, it is a **local minima**.

Absolute Minima and Maxima

The maximum value of all the local maxima of a function is called the **absolute maxima** of the function.

The minimum value of all the local minima of a function is called the **local minima** of the function.

First & Second Derivative Tests

These tests are used to check minima and maxima for a given function. For the **first derivative test**:

- 1. Find the derivative of f(x) .i.e. f'(x)
- 2. Find critical points (points where f'(x) = 0)
- 3. For each critical point, use the mathematical way to find minima and maxima.

For the second derivative test:

Minima & Maxima

- 1. Find the derivative of f(x) i.e. f'(x)
- 2. Find critical points
- 3. Find second derivative i.e. $f^{"}(x)$
- 4. If $f^{\prime\prime}(k)>0$ where k is a critical point, then k is a local maxima. If $f^{\prime\prime}(k)<0$, then k is a local minima. Use the first derivative test in case of 0.

Uses

The concept of Minima and Maxima itself is an application of derivatives. Using this concept, it becomes easy to find where the curve takes a turn, find where the curve attains maximum and minimum values without actually having to look at the curve.

Minima & Maxima 2