OPERATING SUMMARY

TILLSONBURG

WATER POLLUTION CONTROL PLANT

LIBRARY COPY

MAR 2 4 1975

MINISTRY OF THE

ROHMENT

Copyright Provisions and Restrictions on Copying:

This Ontario Ministry of the Environment work is protected by Crown copyright (unless otherwise indicated), which is held by the Queen's Printer for Ontario. It may be reproduced for non-commercial purposes if credit is given and Crown copyright is acknowledged.

It may not be reproduced, in all or in part, for any commercial purpose except under a licence from the Queen's Printer for Ontario.

For information on reproducing Government of Ontario works, please contact ServiceOntario Publications at copyright@ontario.ca

MINISTRY OF THE ENVIRONMENT

MINISTER Honourable William G. Newman

DEPUTY MINISTER E. Biggs

ASSISTANT DEPUTY MINISTER REGIONAL OPERATIONS J. Barr

REGIONAL OPERATIONS DIVISION

DIRECTOR, SOUTHWESTERN REGION D. McTavish

MANAGER, UTILITY OPERATIONS A. Ladbrooke

TILLSONBURG

WATER POLLUTION CONTROL PLANT

MINISTRY OF THE ENVIRONMENT

1973 ANNUAL OPERATING SUMMARY

prepared by
Plant Performance Unit
TECHNICAL SERVICES BRANCH
T. Cross, Director

CONTENTS

Title Page	•	•	٠	٠	•	•	•	•	•	•	1
Flow Diagram	•	•	•	•	•	٠	•		•		4
Design Data	•	•	•	•	•	•			•		5
Process Data			_	_	-		_	10	_		6

DESIGN DATA

Project: Town of Tillsonburg WPCP

Project No.: 1-0137-67 Design Flow: 1.8 MGD

BOD: Raw Sewage - 235 mg/l

Removal 95%

SS: Raw Sewage - 250 mg/l

Removal 95%

PRIMARY TREATMENT

AIR DEGRITTER:

Size, 13' x 15' x 10' swd

Volume: 12,160 I. Gal. Detention: 9.7 min.

PRIMARY SEDIMENTATION:

Two, Size 50.3' x 10' x 8' swd One, Size 50' x 20' x 8.25' swd Volume: (total) 102,000 I. Gal.

Detention: 1.3 hours

Overflow Rate: 900 gal/ft²/day

SECONDARY TREATMENT

AERATION TANKS:

Type: Diffused Air

Size: Four, size 50' x 30' x 13' swd Volume (total): 487,000 I. Gal.

Detention: (total) 6.5 hours

SECONDARY SEDIMENTATION:

Size: Two, size 50.3' x 10' x 12.25' swd

One, size 65' x 20' x 12.5' swd

Volume (total): 178,000 I. Gal.

Detention (total) 2.4 hr.

Overflow Rate: 780 gal/ft²/day

CHLORINATION:

Chlorinator: Type: W & T A731

Size: 400 lb/day

CHLORINE CONTACT CHAMBER:

Size: 21' x 20' x 9.2' swd

Volume: 24,000 I. Gal. Detention: 19 min.

OUTFALL - to creek

SLUDGE HANDLING:

Digestion System: Two-Stage

Primary Digester: 45' dia. x 20' swd.

Volume: 36, 000 ft³

Secondary Digester: 45' dia. x 20' swd

Volume: 36, 000 ft³

PUMPING STATION:

John Pound Street Pumping Station

Capacity: 2.7 MGD plus 50% standby

Screening and Comminution.

PROCESS DATA FLOWS

DESIGN CAPACITY _____

PLANT PERFORMANCE

		BIOCHEA	AICAL OXYG	EN DE	MAND	SU	SPENDED	PHOSPHORUS					
	TOTAL FLOW	AVERAGE	MAXIMUM	INFLUENT EFFLUENT RE		REDU	CTION	INFLUENT	EFFLUENT	REDUCTION		INFLUENT	EFFLUENT
MONTH	million gallons	DAY mil. gal	DAY mgd	mg/l	mg/l	%	10 ³ pounds	mg/i	mg/l	%	10 ³ pounds	mg/LP	mg/l P
JAN	23.6	0.76	0.88	120	7	94	27	268	13	95	60	9.4	5.9
FEB	21.8	0.78	0.88	130	6	95	27	197	18	91	39	7.5	0.4
MAR	31.8	1.02	1.38	90	6	93	27	327	12	96	100	2.8	0.2
APR	28.5	0.95	1.11	75	4	95	20	245	10	96	67	4.8	2.2
MAY	25.2	0.81	0.90	70	8	89	16	230	8	96	56	4.6	1.4
JUNE	23.9	0.80	0.91	120	6	95	27	299	6	98	70	7.0	1.2
JULY	22.4	0.72	0.82		10			301	5	98	66		0.8
AUG	22.0	0.71	0.79	180	3	98	39	280	27	90	55	6.2	0.6
SEPT	20.2	0.67	0.74	170	5	97	33	256	13	95	49	7.2	0.7
ост	22.6	0.73	0.98					406	21	95	87		
NOV	24.3	0.81	0.94	140	7	95	32	226	22	90	49	3.6	0.7
DEC	26.3	0.85	0.99					227	23	90	54		
TOTAL	292.6	-	-	-	-	-		-	-	-	752	_	-
AVG.		0.80	1.38	122	6	95	28	271	15	94	63	5.9	1.4
No. of Samples	_	-	-	9	10	-	_	61	62	-	-	9	10

BIOCHEMICAL OXYGEN DEMAND

SUSPENDED SOLIDS

PHOSPHORUS

PLANT INFLUENT -----

DIGESTION % - NOTICE SOURCE DISCONCENTRATION AVERAGE DISCONCENTRATION AND SOURCE DISCO

DIGESTED SLUDGE

RAW SLUDGE TO DIGESTER DIGESTED SLUDGE REMOVED

TREATMENT DATA

	GRIT	CHLORINATION PRIMARY EFFLUENT					RATIO	N	SLUDGE DIGESTION and DISPOSAL							
монтн	QUANTITY REMOVED cubic feet	Cl ₂ USED	AVG. DOSE mg/l	BOD mg/L	SUSPENDED SOLIDS mg/l	MLSS CONC mg/l	F/M	AIR 1000 ft ³ 1b BOD	QUANTITY	TOTAL SOLIDS %	VOL.	QUANTITY 10 ³ gallons	TOTAL SOLIDS	VOL.	SUPER- NATANT T. S. %	AMOUNT HAULED cubic yards
JAN	21	654	2.8	85	162	2380	0.05	2.5	145	1.8		0	2.4		0.3	0
FEB	58	641	2.9	110	95	2190	0.07	1.9	266	2.1		74	2.5		1.8	437
MAR	34	628	2.4	100	577	2010	0.09	1.6	163	3.1		61	2.8		0.5	365
APR	28	688	2.4	40	108	2260	0.03	4.5	167	3.7		71	4.2		0.1	423
MAY	50	579	2.3	55	140	2360	0.03	4.0	165	2.6		60	2.9		0.1	357
JUNE	42	312	1.3	46	110	2460	0.03	4.8	157	5.5		52	3.0		0.3	312
JULY	38	498	2.2	60	142	2580	0.03	4.2	139	1.2		57	3.9		0.1	338
AUG	34	533	2.4	50	208	2760	0.02	4.6	151	2.4		61	3.3		0.1	364
SEPT	33	519	2.6	60	130	2280	0.03	4.1	187	2.9		48	3.7		0.2	286
ост	32	491	2.2		216	2370			200	2.0		49	2.8		0.1	293
NOV	37	554	2.3	60	144	2370	0.04	3.5	158	2.7		48	3.9		0.1	286
DEC	23	613	2.3		114	2400			152	3.6		41	4.3		0.2	247
TOTAL	430	6710	-	_	-	_	-	-	2050	-	-	622	-	-		3708
AVG.	1.5 cu ft/mil gal	559	2.3	77	179	2370	0.04	3.6	171	2.8		57	3.3		0.3	337

