Chapter 1

Time Series - Exercises

Shu Shen

Exercise 14.1 For a scalar time series Y_t define the sample autocovariance and autocorrelation

$$\hat{\gamma}(k) = n^{-1} \sum_{t=k+1}^{n} (Y_t - \bar{Y}) (Y_{t-k} - \bar{Y})$$

$$\hat{\rho}\left(k\right) = \frac{\hat{\gamma}\left(k\right)}{\hat{\gamma}\left(0\right)} = \frac{\sum_{t=k+1}^{n} \left(Y_{t} - \bar{Y}\right) \left(Y_{t-k} - \bar{Y}\right)}{\sum_{t=1}^{n} \left(Y_{t} - \bar{Y}\right)^{2}}.$$

Assume the series is strictly stationary, ergodic, strictly stationary, and $E\left[Y_t^2\right]<\infty$. Show that $\hat{\gamma}\left(k\right)\overset{p}{\to}\gamma\left(k\right)$ and $\hat{\rho}\left(k\right)\overset{p}{\to}\gamma\left(k\right)$ as $n\to\infty$. (Use the Ergodic Theorem.)

Solution. 14.1

(1) Since Y_t is strictly stationarity, its transformation $(Y_t - \bar{Y})(Y_{t-k} - \bar{Y})$ is also strictly stationarity.

Use the Ergodic Theorem,

$$(n-k-1)^{-1} \sum_{t=k+1}^{n} (Y_t - \bar{Y}) (Y_{t-k} - \bar{Y}) \xrightarrow{p} E [(Y_t - \bar{Y}) (Y_{t-k} - \bar{Y})] = \gamma (k)$$

as $n \to \infty$, and therefore

$$\hat{\gamma}(k) = n^{-1} \sum_{t=k+1}^{n} (Y_t - \bar{Y}) (Y_{t-k} - \bar{Y}) = \frac{n-k-1}{n} \times \frac{1}{n-k-1} \sum_{t=k+1}^{n} (Y_t - \bar{Y}) (Y_{t-k} - \bar{Y}) \xrightarrow{p} \gamma(k).$$

(2)

$$\hat{\rho}(k) = \frac{\hat{\gamma}(k)}{\hat{\gamma}(0)} \xrightarrow{p} \frac{\gamma(k)}{\gamma(0)} = \rho(k)$$

Exercise 14.2 Show that if (e_t, \mathscr{F}_t) is a MDS and X_t is \mathscr{F}_t -measurable then $u_t = X_{t-1}e_t$ is a MDS.

Solution. 14.2

Since X_t is \mathcal{F}_t -measurable, we have u_t adapted to \mathcal{F}_t in that

$$E[u_t \mid \mathscr{F}_t] = E[X_{t-1}e_t \mid \mathscr{F}_t] = X_{t-1}e_t.$$

as x_{t-1} is \mathcal{F}_t measurable. Moreover,

$$E[u_t \mid \mathscr{F}_{t-1}] = E[X_{t-1}e_t \mid \mathscr{F}_{t-1}] = X_{t-1}E[e_t \mid \mathscr{F}_{t-1}] = 0$$

We thus have verified $u_t = X_{t-1}e_t$ being a MDS.

Exercise 14.3 Let $\sigma_t^2 = E\left[e_t^2 \mid \mathscr{F}_{t-1}\right]$. Show that $u_t = e_t^2 - \sigma_t^2$ is a MDS.

Solution. 14.3

- (1) $\sigma_t^2 = E\left[e_t^2 \mid \mathscr{F}_{t-1}\right]$ is adapted to \mathscr{F}_t . (2) $E\left|\sigma_t^2\right| = E\left|E\left[e_t^2 \mid \mathscr{F}_{t-1}\right]\right| < \infty$.

$$E[u_t \mid \mathscr{F}_{t-1}] = E[e_t^2 - \sigma_t^2 \mid \mathscr{F}_{t-1}]$$

$$= E[e_t^2 - E[e_t^2 \mid \mathscr{F}_{t-1}] \mid \mathscr{F}_{t-1}]$$

$$= E[e_t^2 \mid \mathscr{F}_{t-1}] - E[e_t^2 \mid \mathscr{F}_{t-1}] = 0$$

Therefore, $u_t = e_t^2 - \sigma_t^2$ is a MDS.

Exercise 14.8 Suppose $Y_t = Y_{t-1} + e_t$ with e_t i.i.d. (0,1) and $Y_0 = 0$. Find $var[Y_t]$. Is Y_t stationary? Solution. 14.8

(1)

$$Y_{t} = Y_{t-1} + e_{t}$$

$$= Y_{t-2} + e_{t-1} + e_{t}$$

$$= Y_{t-3} + e_{t-2} + e_{t-1} + e_{t}$$

$$\vdots$$

$$= Y_{0} + e_{1} \cdots + e_{t-2} + e_{t-1} + e_{t}$$

$$= \sum_{i=1}^{t} e_{i}$$

$$var[Y_t] = var\left[\sum_{i=1}^{t} e_i\right] = \sum_{i=1}^{t} var[e_i] = \sum_{i=1}^{t} 1 = t$$

(2) Y_t is not stationary because $var[Y_t]$ varies with t.