UNIVERSITY OF INFORMATION TECHNOLOGY

Faculty of Information Systems

Chapter 4

STRUCTURE MODELING

Dr. Cao Thi Nhan

LEARNING OBJECTIVES

- 1. Understand basic rules and guidelines for creating CRC cards, class diagrams, and object diagrams.
- 2. Have ability to create class diagrams, and object diagrams.
- 3. Understand the relationship among the structural models
- 4. Understand the relationship between the structural and functional models

CONTENTS

- 1. Introduction
- 2. Structure Models
 - 1. Class, Attribute, and Operation
 - 2. Relationship
- 3. Object Identification
- 4. Class diagram

- A structural model describes the structure of the data that supports the business processes
- It illustrates people, places, or things about which information is captured and how they are related to one another
- The structure of data used in the system is represented through Class - Responsibility -Collaboration (CRC) cards, class diagrams, and object diagrams.

- Purpose of Structural Models
 - Reduce the "semantic gap" between the real world and the world of software
 - Create a vocabulary for analysts and users
 - Represent things, ideas, and concepts of importance in the application domain

In UML:

- **Structure Diagrams** show the **static structure** of the system and its parts on different abstraction and implementation **levels** and how they are related to each other.
- The elements in a structure diagram represent the meaningful concepts of a system, and may include abstract, real world and implementation concepts.
- Class Diagram, Object Diagram, Package Diagram, Composite Structure Diagram, Component Diagram, Deployment Diagram, Profile Diagram.

- Structural model does contain analysis classes, attributes, operations, and the relationships among the analysis classes
- The structural model at this point should represent the responsibilities of each class and the collaborations among the classes
- Typically, structural models are depicted using CRC cards, class diagrams, and, in some cases, object diagrams

- 1. Class: template to define specific instances or objects
- 2. Object: instantiation of a class
- 3. Attributes: describes the object
- 4. Behaviours: specify what an object can do
- 5. Relationships

- Template to define specific instances or objects
 - Concrete (can have real instances): employee, customer
 - Abstract (only exists to hold subclasses): person
- Typical Example
 - Application domain
 - user-interface, data structure, file structure, operating environment, document, and multimedia classes
- Example: Customer, Patient, Doctor, Appointment, Symptom...

- Nonstandard UML class
 - 1. Boundary class: user interface screen, system interface or device interface object.
 - 2. Control class: flow of control or behavior
 - Entity class: information or data. Course, Teacher, CourseGrade ...

Attribute

- Units of information relevant to the description of the class
- Only attributes important to the task should be included
- Example:
 - Customer class: Name, Address, Phone number
 - Patient class: Name, Address, Phone, Insurance Carrier

Attribute

- Derived attributes: can be calculated from others
 - Age: calculated from birth date and current date
 - Overall score: calculated from midterm score, final score, homework score, attendance score, and bonus score
- Visibility
 - + Public (not hidden)
 - # Protected (hidden from all except immediate subclasses)
 - Private (hidden from all other classes)

Classes and objects

Classes

Patient

- Name
- Birthdate
- Address
- Phone Number
- + Insert ()
- + Delete ()

Appointment

- Patient name
- Doctor name
- Date
- time
- + Insert ()
- + Delete ()

Instantiation

Objects

An instance of the Patient class

aPatient: Patient

Name = Theresa Marks Birthdate = March 26, 1965 Address = 50 Winds Way, Ocean City, NJ 09009

Phone Number = (804) 555-7889

An instance of the Appointment class

anAppointment : Appointment

Patient name = John Smith Doctor name = Dr. David Broussesau Date = September 17, 2002 time = 9:30 A.M.

Behaviour (Operation/Method)

- Action that instances/objects can take
- Focus on relevant problem-specific operations (at this point)
- Example:
 - Patient object: make appointment, view appointment history
 - Student object: register for courses, check grade

Behaviour (Operation/Method)

- Constructor
 - Creates object
- Destructor
 - Removes object
- Query
 - Makes information about state available
- Update
 - Changes values of some or all attributes

Relationship

- Generalization
 - Enables inheritance of attributes and operations [...is a kind of...]
- Aggregation
 - Relates parts to the whole [..is a part of..]
- Association
 - Miscellaneous relationships between classes

CONTENTS

- 1. Introduction
- 2. Structure Models
 - 1. Class, Attribute, and Operation
 - 2. Relationship
- 3. Object Identification
- 4. Class diagram
- 5. Creating class diagram

OBJECT IDENTIFICATION

- 1. Textual Analysis
- 2. Brainstorming
- 3. Common object lists
- 4. Patterns
- 5. Combination of above techniques

Textual Analysis

- ✓ Reviewing the use-case diagrams and examining the text in the use-case descriptions to identify potential objects, attributes, operations, and relationships.
- ✓ Nouns suggest possible classes
- ✓ Verbs suggest possible operations

Brainstorming

- ✓ Individuals suggest potential classes that could be useful for the problem under consideration.
- ✓ It simply asks the participants to identify the objects based on their past experiences.

Common object lists

- ✓ List of objects common to the business domain of the system
- ✓ Reviewing the use cases can identify the roles that the people play in the problem, such as doctor, nurse, patient, or receptionist
- ✓ Places, containers, organizations, business records, catalogs, and policies

Patterns

✓ a useful group of collaborating classes that provide a solution to a commonly occurring problem

Patterns

✓ a useful group of collaborating classes that provide a solution to a commonly occurring problem

CLASS DIAGRAM

- 1. Elements of a class diagram
- 2. Examples

- 1. Class
- 2. Attribute
- 3. Operation
- 4. Association
- 5. Generalization
- 6. Aggregation
- 7. Composition

Elements of a class diagram

- 1. Class: represents a kind of person, place, or thing about which the system will need to capture and store information
- 2. Attribute: represents properties that describe the state of an object;
- 3. Operation: represents the actions or functions that a class can perform

Name

Attribute(s)

Operation(s)

- 4. Association:
- ✓ Represents a relationship between multiple classes or a class and itself
- ✓ Contains multiplicity symbols, which represent the minimum and maximum times a class instance can be associated with the related class instance

	AssociatedWith	
0.	.*	1

- 4. Association:
- ✓ Represents a relationship between multiple classes or a class and itself
- ✓ Contains multiplicity symbols, which represent the minimum and maximum times a class instance can be associated with the related class instance

	AssociatedWith	
0.	.*	1

Elements of a class diagram

4. Association:

Elements of a class diagram

4. Association:

Exactly one	1	Department 1 Boss	A department has one and only one boss.
Zero or more	0*	Employee O* Child	An employee has zero to many children.
One or more	1*	Boss Employee	A boss is responsible for one or more employees.

Elements of a class diagram

4. Association:

Zero or one	01	Employee 01 Spouse	An employee can be married to zero or one spouse.
Specified range	24	Employee 24 Vacation	An employee can take from two to four vacations each year.
Multiple, disjoint ranges	13,5	Employee 13,5 Committee	An employee is a member of one to three or five committees.

Elements of a class diagram

4. Association:

Association Classes

- 5. Generalization:
- Represents a-kind-of
 relationship
 between
 multiple classes

- 6. Aggregation:
- ✓ Represents a logical a-part-of relationship between multiple classes or a class and itself
- ✓ Is a special form of an association

- 7. Composition:
- Represents a physical a-part-of relationship between multiple classes or a class and itself
- ✓ It is a *whole/part* relationship.

Object diagram

Group Discussion

- ☐ Group: 5 students; Time: 10 minutes.
- Create Class Diagram for:
 - 1. Course registration of an university
 - 2. Order process of a supermarket
 - 3. Transfer process using e-banking of a bank

