Support Vector Machines

Aarti Singh

Co-instructor: Pradeep Ravikumar

Machine Learning 10-701 Feb 13, 2017

At Pittsburgh G-20 summit ...

Linear classifiers – which line is better?

Pick the one with the largest margin!

Parameterizing the decision boundary

Parameterizing the decision boundary

Maximizing the margin

Distance of closest examples from the line/hyperplane

margin =
$$\gamma$$
 = 2a/ $\|w\|$

w is perpendicular to lines

$$\mathbf{w}.(\mathbf{x}_{+}-\mathbf{x}_{-})=0$$

$$\mathbf{x}_{+} = \mathbf{x}_{-} + \gamma \mathbf{w} / \|\mathbf{w}\|$$

$$\mathbf{w}.\mathbf{x}_{+} = \mathbf{w}.\mathbf{x}_{-} + \gamma \|\mathbf{w}\|$$

$$a-b = -a-b + \gamma ||w||$$

$$2a = \gamma \|\mathbf{w}\|$$

Maximizing the margin

Maximizing the margin

equations by a)

9

Support Vector Machines

min w.w s.t. $(\mathbf{w}.\mathbf{x}_j+b) y_j \ge 1 \forall j$

Solve efficiently by quadratic programming (QP)

- Quadratic objective, linear constraints
- Well-studied solution algorithms

Support Vectors

Linear hyperplane defined by "support vectors"

Moving other points a little doesn't effect the decision boundary

only need to store the support vectors to predict labels of new points

For support vectors $(\mathbf{w}.\mathbf{x}_j+b)$ $\mathbf{y}_j = 1$

What if data is not linearly separable?

Use features of features of features of features....

$$x_1^2, x_2^2, x_1x_2,, exp(x_1)$$

But run risk of overfitting!

What if data is still not linearly separable?

Allow "error" in classification

Smaller margin ⇔ larger ||w||

min
$$\mathbf{w}.\mathbf{w} + C \text{ #mistakes}$$

 $\mathbf{s.t.} (\mathbf{w}.\mathbf{x}_j + b) y_j \ge 1 \quad \forall j$

Maximize margin and minimize # mistakes on training data

C - tradeoff parameter

Not QP ⊗

0/1 loss (doesn't distinguish between near miss and bad mistake)

What if data is still not linearly separable?

Allow "error" in classification

Soft margin approach

$$\min_{\mathbf{w},b} \mathbf{w}.\mathbf{w} + C \sum_{j} \xi_{j}$$
s.t. $(\mathbf{w}.\mathbf{x}_{j}+b) y_{j} \ge 1-\xi_{j} \quad \forall j$

$$\xi_{j} \ge 0 \quad \forall j$$

 ξ_j - "slack" variables = (>1 if x_j misclassifed) pay linear penalty if mistake

C - tradeoff parameter (chosen by cross-validation)

Soft-margin SVM

Soften the constraints:

$$(\mathbf{w}.\mathbf{x}_{j}+b) \ \mathbf{y}_{j} \ge 1-\xi_{j} \quad \forall j$$
$$\xi_{j} \ge 0 \quad \forall j$$

Penalty for misclassifying:

$$C \xi_j$$

How do we recover hard margin SVM?

Set
$$C = \infty$$

Slack variables – Hinge loss

Notice that

$$\xi_j = (1 - (\mathbf{w} \cdot x_j + b)y_j))_+$$

Slack variables – Hinge loss

$$\xi_j = (1 - (\mathbf{w} \cdot x_j + b)y_j))_+$$

min $\mathbf{w}.\mathbf{w} + C \sum_{j} \xi_{j}$ s.t. $(\mathbf{w}.\mathbf{x}_{j}+b) y_{j} \ge 1-\xi_{j} \quad \forall j$ $\xi_{i} \ge 0 \quad \forall j$

Regularized hinge loss

$$\min_{\mathbf{w},b} \mathbf{w}.\mathbf{w} + C \sum_{j} (1-(\mathbf{w}.x_j+b)y_j)_+$$

Support Vectors

Margin support vectors

 $\xi_j = 0$, $(\mathbf{w}.\mathbf{x}_j + b)$ $y_j = 1$ (don't contribute to objective but enforce constraints on solution)

Correctly classified but on margin

Non-margin support vectors

 $\xi_j > 0$ (contribute to both objective and constraints)

 $1 > \xi_j > 0$ Correctly classified but inside margin $\xi_i > 1$ Incorrectly classified ₁₈

SVM vs. Logistic Regression

SVM: **Hinge loss**

$$loss(f(x_j), y_j) = (1 - (\mathbf{w} \cdot x_j + b)y_j))_+$$

Logistic Regression: Log loss (-ve log conditional likelihood)

$$loss(f(x_j), y_j) = -\log P(y_j \mid x_j, \mathbf{w}, b) = \log(1 + e^{-(\mathbf{w} \cdot x_j + b)y_j})$$

What about multiple classes?

One vs. rest

Learn 1 classifier: Multi-class SVM

Simultaneously learn 3 sets of weights

$$\mathbf{w}^{(y_j)}.\mathbf{x}_j + b^{(y_j)} \ge \mathbf{w}^{(y')}.\mathbf{x}_j + b^{(y')} + 1, \ \forall y' \ne y_j, \ \forall j$$

Learn 1 classifier: Multi-class SVM

Simultaneously learn 3 sets of weights

n training points $(x_1, ..., x_n)$ d features x_i is a d-dimensional vector

• <u>Primal problem</u>: minimize $_{\mathbf{w},b}$ $\frac{1}{2}\mathbf{w}.\mathbf{w}$ $\left(\mathbf{w}.\mathbf{x}_{j}+b\right)y_{j}\geq1,\ \forall j$

w - weights on features (d-dim problem)

- Convex quadratic program solution quadratic objective, linear constraints
- But expensive to solve if d is very large
- Often solved in dual form (n-dim problem)

Constrained Optimization

 $min_x x^2$ s.t. x > b

 $min_x x^2$

 $min_x x^2$

s.t.
$$x \ge -1$$

 $min_x x^2$

s.t. $x \ge 1$

Constraint active and tight

$$x^* = \max(b, 0)$$

Constrained Optimization – Dual Problem

 α = 0 constraint is inactive α > 0 constraint is active

Primal problem:

$$\min_x x^2$$
 s.t. $x > b$

Moving the constraint to objective function Lagrangian:

$$L(x, \alpha) = x^2 - \alpha(x - b)$$

s.t. $\alpha \ge 0$

Dual problem:

$$\max_{\alpha} d(\alpha) \longrightarrow \min_{x} L(x, \alpha)$$
 s.t. $\alpha \ge 0$

Solving the dual

Solving:

$$L(x, \alpha)$$
 $\max_{\alpha} \min_{x} x^2 - \alpha(x - b)$ s.t. $\alpha \geq 0$

Optimization over x is unconstrained.

$$\frac{\partial L}{\partial x} = 2x - \alpha = 0 \Rightarrow x^* = \frac{\alpha}{2}$$

$$L(x^*, \alpha) = \frac{\alpha^2}{4} - \alpha \left(\frac{\alpha}{2} - b\right)$$
$$= -\frac{\alpha^2}{4} + b\alpha$$

Now need to maximize $L(x^*,\alpha)$ over $\alpha \ge 0$ Solve unconstrained problem to get α' and then take max(α' ,0)

$$\frac{\partial}{\partial \alpha}L(x^*,\alpha) = -\frac{\alpha}{2} + b \implies \alpha' = 2b$$

$$\Rightarrow \alpha^* = \max(2b, 0)$$
 $\Rightarrow x^* = \frac{\alpha^*}{2} = \max(b, 0)$

 α = 0 constraint is inactive, α > 0 constraint is active and tight 27

n training points, d features $(x_1, ..., x_n)$ where x_i is a d-dimensional vector

• <u>Primal problem</u>: minimize_{w,b} $\frac{1}{2}$ w.w $\left(\mathbf{w}.\mathbf{x}_j + b\right)y_j \geq 1, \ \forall j$

w - weights on features (d-dim problem)

• <u>Dual problem</u> (derivation):

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2}\mathbf{w}.\mathbf{w} - \sum_{j} \alpha_{j} \left[\left(\mathbf{w}.\mathbf{x}_{j} + b \right) y_{j} - 1 \right]$$

 $\alpha_{j} \ge 0, \ \forall j$

 α - weights on training pts (n-dim problem)

Dual problem:

$$\max_{\alpha} \min_{\mathbf{w}, b} L(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w} \cdot \mathbf{w} - \sum_{j} \alpha_{j} \left[\left(\mathbf{w} \cdot \mathbf{x}_{j} + b \right) y_{j} - 1 \right]$$

$$\alpha_{j} \geq 0, \ \forall j$$

$$\frac{\partial L}{\partial \mathbf{w}} = 0 \qquad \Rightarrow \mathbf{w} = \sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j}$$

$$\frac{\partial L}{\partial b} = 0 \qquad \Rightarrow \sum_{j} \alpha_{j} y_{j} = 0$$

If we can solve for as (dual problem), then we have a solution for w,b (primal problem)

maximize
$$_{\alpha}$$
 $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j}$ $\sum_{i} \alpha_{i} y_{i} = 0$ $\alpha_{i} \geq 0$

Dual problem is also QP Solution gives α_{j} s

$$\mathbf{w} = \sum_{i} \alpha_i y_i \mathbf{x}_i$$

What about b?

Dual SVM: Sparsity of dual solution

$$\mathbf{w} = \sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j}$$

Only few α_j s can be non-zero : where constraint is active and tight

$$(\mathbf{w}.\mathbf{x}_i + \mathbf{b})\mathbf{y}_i = \mathbf{1}$$

Support vectors – training points j whose α_{i} s are non-zero

maximize
$$_{\alpha}$$
 $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j}$ $\sum_{i} \alpha_{i} y_{i} = 0$ $\alpha_{i} \geq 0$

Use support vectors to compute b since constraint is tight $(w.x_k + b)y_k = 1$

$$\mathbf{w} = \sum_{i} \alpha_i y_i \mathbf{x}_i$$

$$b = y_k - \mathbf{w}.\mathbf{x}_k$$

Dual SVM – non-separable case

Primal problem:

minimize_{w,b}
$$\frac{1}{2}$$
w.w + $C \sum_{j} \xi_{j}$ $\left(\mathbf{w}.\mathbf{x}_{j} + b\right) y_{j} \geq 1 - \xi_{j}, \ \forall j$ $\xi_{j} \geq 0, \ \forall j$

 $\begin{bmatrix} \alpha_j \\ \mu_j \end{bmatrix}$

• Dual problem:

$$\begin{aligned} \max_{\alpha,\mu} \min_{\mathbf{w},b} L(\mathbf{w},b,\alpha,\mu) \\ s.t.\alpha_j &\geq 0 \quad \forall j \\ \mu_j &\geq 0 \quad \forall j \end{aligned}$$

Lagrange Multipliers

Dual SVM – non-separable case

$$\begin{aligned} \text{maximize}_{\alpha} \quad & \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}. \mathbf{x}_{j} \\ & \sum_{i} \alpha_{i} y_{i} = \mathbf{0} \\ & C \geq \alpha_{i} \geq \mathbf{0} \end{aligned}$$

$$\text{comes from } \frac{\partial L}{\partial \mu} = \mathbf{0} \qquad \begin{aligned} & \underbrace{\begin{array}{c} \text{Intuition:} \\ \text{Earlier - If constraint violated, } \alpha_{i} \neq \infty \\ \text{Now - If constraint violated, } \alpha_{i} \leq \mathbf{C} \end{aligned}}$$

Dual problem is also QP Solution gives α_i s

$$\mathbf{w} = \sum_i \alpha_i y_i \mathbf{x}_i$$

$$b = y_k - \mathbf{w}.\mathbf{x}_k$$
 for any k where $C > \alpha_k > 0$

What you need to know

- Maximizing margin
- Derivation of SVM formulation
- Slack variables and hinge loss
- Relationship between SVMs and logistic regression
 - 0/1 loss
 - Hinge loss
 - Log loss
- Tackling multiple class
 - One against All
 - Multiclass SVMs
- Dual SVM formulation (revisit again)
 - Easier to solve when dimension high d > n