

$$I(J^P) = \frac{1}{2}(0^-)$$

$m_{K_L^0} - m_{K_S^0}$

For earlier measurements, beginning with GOOD 61 and FITCH 61, see our 1986 edition, Physics Letters **170B** 132 (1986).

OUR FIT is described in the note on "CP violation in K_L decays" in the K_L^0 Particle Listings. The result labeled "OUR FIT Assuming CPT" ["OUR FIT Not assuming CPT"] includes all measurements except those with the comment "Not assuming CPT" ["Assuming CPT"]. Measurements with neither comment do not assume CPT and enter both fits.

VALUE ($10^{10} \ \hbar \ \mathrm{s}^{-1}$)	DOCUMENT ID	TECN COMMENT
0.5293 ±0.0009 OUR FIT	Error includes scale factor of	of 1.3. Assuming CPT
0.5289 ±0.0010 OUR FIT	Not assuming CPT	
0.52797 ± 0.00195	^{1,2} ABOUZAID 11	KTEV Not assuming CPT
0.52699 ± 0.00123	1,3 ABOUZAID 11	KTEV Assuming CPT
$0.5240\ \pm0.0044\ \pm0.0033$	APOSTOLA 99C	CPLR K^0 - \overline{K}^0 to $\pi^+\pi^-$
$0.5297\ \pm0.0030\ \pm0.0022$	⁴ SCHWINGEN95	E773 20–160 GeV <i>K</i> beams
$0.5286\ \pm0.0028$	⁵ GIBBONS 93	E731 Assuming CPT
$0.5257\ \pm0.0049\ \pm0.0021$	⁴ GIBBONS 93C	E731 Not assuming CPT
$0.5340\ \pm0.00255\pm0.0015$	⁶ GEWENIGER 74C	SPEC Gap method
$0.5334\ \pm0.0040\ \pm0.0015$	^{6,7} GJESDAL 74	SPEC Assuming CPT
• • • We do not use the following	owing data for averages, fits,	limits, etc. • • •
0.5261 ± 0.0015	⁸ ALAVI-HARATI03	KTEV Assuming CPT
0.5288 ± 0.0043	⁹ ALAVI-HARATI03	
$0.5343\ \pm0.0063\ \pm0.0025$	¹⁰ ANGELOPO 01	CPLR
$0.5295\ \pm0.0020\ \pm0.0003$	¹¹ ANGELOPO 98D	CPLR Assuming CPT
0.5307 ± 0.0013	¹² ADLER 96C	RVUE
$0.5274\ \pm0.0029\ \pm0.0005$	¹¹ ADLER 95	CPLR Sup. by ANGELOPOU-
0.482 ± 0.014	13 ARONSON 82B	LOS 98D SPEC <i>E</i> =30–110 GeV
0.534 ± 0.007	¹⁴ CARNEGIE 71	ASPK Gap method
0.542 ± 0.006	¹⁴ ARONSON 70	ASPK Gap method
0.542 ± 0.006	CULLEN 70	CNTR

 $^{^1}$ The two ABOUZAID 11 values use the same data. The first enters the "assuming CPT " fit and the second enters the "not assuming CPT " fit.

² ABOUZAID 11 fit has Δm , $\tau_{\mathcal{S}}$, ϕ_{ϵ} , $\mathrm{Re}(\epsilon'/\epsilon)$, and $\mathrm{Im}(\epsilon'/\epsilon)$ as free parameters. See $\mathrm{Im}(\epsilon'/\epsilon)$ in the " K_L^0 CP violation" section for correlation information.

 $^{^3}$ ABOUZAID 11 fit has Δm and $\tau_{\rm S}$ free but constrains ϕ_{ϵ} to the Superweak value, i.e. assumes CPT. See " $K^0_{\rm S}$ Mean Life" section for correlation information.

 $^{^4}$ Fits Δm and ϕ_{+-} simultaneously. GIBBONS 93C systematic error is from B. Winstein via private communication. 20–160 GeV K beams.

 $^{^5}$ GIBBONS 93 value assume $\phi_{+-}=\phi_{00}=\phi_{\rm SW}=(43.7\pm0.2)^\circ$, i.e. assumes *CPT*. 20–160 GeV *K* beams.

⁶ These two experiments have a common systematic error due to the uncertainty in the momentum scale, as pointed out in WAHL 89.

- 7 GJESDAL 74 uses charge asymmetry in $K^0_{\ell 3}$ decays.
- 8 ALAVI-HARATI 03 fit Δm and $au_{{\cal K}^0_{f c}}$ simultaneously. ϕ_{+-} is constrained to the Superweak value, i.e. CPT is assumed. See " K^0_S Mean Life" section for correlation information. Superseded by ABOUZAID 11.
- 9 ALAVI-HARATI 03 fit $\Delta \emph{m},~\phi_{+-}$, and $au_{\emph{K}_{S}}$ simultaneously. See ϕ_{+-} in the " \emph{K}_{L} CP violation" section for correlation information. Superseded by ABOUZAID 11.
- 10 ANGELOPOULOS 01 uses strong interactions strangeness tagging at two different times.
- 11 Uses \overline{K}^0_{e3} and K^0_{e3} strangeness tagging at production and decay. Assumes *CPT* conservation on $\Delta S = -\Delta Q$ transitions.
- 12 ADLER 96C is the result of a fit which includes nearly the same data as entered into the "OUR FIT" value above.
- 13 ARONSON 82 find that Δm may depend on the kaon energy.
- 14 ARONSON 70 and CARNEGIE 71 use K_S^0 mean life $= (0.862 \pm 0.006) imes 10^{-10}$ s. We have not attempted to adjust these values for the subsequent change in the K^0_S mean life or in η_{+-} .

KO MEAN LIFE

<u>VALUE</u> (10^{-8} s)	EVTS	DOCUMENT ID		TECN	COMMENT		
5.116±0.021 OUR FIT	Error i	ncludes scale factor	of 1.1				
5.099 ± 0.021 OUR AVE	RAGE						
$5.072 \pm 0.011 \pm 0.035$	13M	¹ AMBROSINO	06	KLOE	$\sum_i B_i = 1$		
$5.092 \pm 0.017 \pm 0.025$	15M	AMBROSINO	05 C	KLOE	v		
5.154 ± 0.044	0.4M	VOSBURGH	72	CNTR			
ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$							

 5.15 ± 0.14 DEVLIN 67 CNTR

¹ AMBROSINO 06 uses $\phi \to K_L K_S$ with K_L tagged by $K_S \to \pi^+\pi^-$. The four major K_L BR's are measured, the small remainder $(\pi^+\pi^-,\pi^0\pi^0,\gamma\gamma)$ is taken from PDG 04. This KLOE K_L lifetime is obtained by imposing $\sum_i B_i = 1$. The correlation matrix among the four measured K_L BR's and this K_L lifetime is $K_{e3} = K_{\mu 3} = 3\pi^0 = \pi^+\pi^-\pi^0 = \tau_{K_L}$ $K_{e3} = K_{\mu 3} = 3\pi^0 = \pi^+\pi^-\pi^0 = \tau_{K_L}$ $K_{e3} = 1 = -0.25 = -0.56 = -0.07 = 0.25$ $K_{\mu 3} = 1 = -0.43 = -0.20 = 0.33$ $3\pi^0 = 1 = -0.39 = -0.21$

$$K_{e3}$$
 $K_{\mu 3}$ $3\pi^0$ $\pi^+\pi^-\pi^0$ au_{K_L}
 K_{e3} 1 -0.25 -0.56 -0.07 0.25
 $K_{\mu 3}$ 1 -0.43 -0.20 0.33
 $3\pi^0$ 1 -0.39 -0.21
 $\pi^+\pi^-\pi^0$ 1 -0.39

These correlations are taken into account in our fit. The average of this KLOE mean life measurement and the independent KLOE measurement in AMBROSINO 05C is (5.084 \pm $0.023) \times 10^{-8}$ s.

K1 DECAY MODES

Scale factor/ Fraction (Γ_i/Γ) Confidence level Mode

Semileptonic modes

$$\Gamma_1$$
 $\pi^{\pm}\,e^{\mp}\,\nu_e$ [a] (40.55 \pm 0.11) % S=1.7 Called K^0_{e3} .

HTTP://PDG.LBL.GOV Page 2 Created: 5/30/2017 17:22

Γ_2	$\pi^{\pm}\mu^{\mp}\nu_{\mu}$	[a]	(27.04 ± 0.07)%	S=1.1
	Called $K_{\mu 3}^{0}$.			
	$(\pi\mu$ atom $) u$		(1.05 ± 0.11) $\times 10^{-7}$	
	$\pi^0\pi^\pme^\mp u$	[a]	(5.20 ± 0.11) $\times 10^{-5}$	
Γ_5	$\pi^\pme^\mp ue^+e^-$	[a]	(1.26 ± 0.04) $\times 10^{-5}$	

Hadronic modes, including Charge conjugation×Parity Violating (CPV) modes

Γ_6	$3\pi^0$			(19.52 ± 0.12) %	S=1.6
Γ ₇	$\pi^+\pi^-\pi^0$			(12.54 ± 0.05) %	
Γ ₈	$\pi^+\pi^-$	CPV	[<i>b</i>]	$(1.967\pm0.010)\times10^{-3}$	S=1.5
Γ_9	$\pi^0\pi^0$	CPV		$(8.64 \pm 0.06) \times 10^{-4}$	S=1.8

Semileptonic modes with photons

Hadronic modes with photons or $\ell \overline{\ell}$ pairs

		•		
Γ_{12}	$\pi^0\pi^0\gamma$	< 2.43	$\times 10^{-7}$	CL=90%
Γ_{13}	$\pi^+\pi^-\gamma$	$[c,d]$ (4.15 ± 0.1	$5) \times 10^{-5}$	S=2.8
Γ_{14}	$\pi^+\pi^-\gamma(DE)$	(2.84 ± 0.1	$1) \times 10^{-5}$	S=2.0
	$\pi^0 2\gamma$	[c] (1.273 ± 0.03)	$33) \times 10^{-6}$	
Γ_{16}	$\pi^0 \gamma e^+ e^-$	(1.62 ± 0.1	7) $\times 10^{-8}$	

Other modes with photons or $\ell \overline{\ell}$ pairs

Γ_{17}	2γ	$(5.47 \pm 0.04) \times 10^{-4}$	S=1.1
Γ_{18}	3γ	$< 7.4 \times 10^{-8}$	CL=90%
Γ_{19}	$e^+e^-\gamma$	$(9.4 \pm 0.4) \times 10^{-6}$	S=2.0
Γ_{20}	$\mu^+\mu^-\gamma$	$(3.59 \pm 0.11) \times 10^{-7}$	S=1.3
Γ_{21}	$e^+e^-\gamma\gamma$	[c] $(5.95 \pm 0.33) \times 10^{-7}$	
Γ_{22}	$\mu^+\mu^-\gamma\gamma$	[c] $(1.0 \ ^{+0.8}_{-0.6}) \times 10^{-8}$	

Charge conjugation \times Parity (*CP*) or Lepton Family number (*LF*) violating modes, or $\Delta S = 1$ weak neutral current (*S1*) modes

Γ_{23}	$\mu^+\mu^-$	<i>S</i> 1		(6.84	± 0.11) × 10 ⁻⁹	
Γ_{24}	e^+e^-	<i>S</i> 1		(9	$^{+6}_{-4}$	$)\times10^{-12}$	
Γ ₂₅	$\pi^{+}\pi^{-}e^{+}e^{-}$	S1	[c]	(3.11	± 0.19	$) \times 10^{-7}$	
	$\pi^0 \pi^0 e^+ e^-$	<i>S</i> 1	<	6.6		$\times 10^{-9}$	CL=90%
	$\pi^{0}\pi^{0}\mu^{+}\mu^{-}$	<i>S</i> 1	<	9.2		\times 10 ⁻¹¹	CL=90%
	$\mu^+\mu^-e^+e^-$	<i>S</i> 1		(2.69	± 0.27	$) \times 10^{-9}$	
	$e^{+}e^{-}e^{+}e^{-}$	S1		(3.56	±0.21	$) \times 10^{-8}$	
Γ ₃₀	$\pi^0 \mu^+ \mu^-$	CP,S1	[e] <	3.8		$\times 10^{-10}$	CL=90%
	$\pi^0e^+e^-$	CP,S1	[e] <	2.8		$\times 10^{-10}$	CL=90%
	$\pi^0 u \overline{ u}$	CP,S1	[f]	2.6		$\times 10^{-8}$	CL=90%
Γ ₃₃	$\pi^0\pi^0 u\overline{ u}$	<i>S</i> 1	<	8.1		$\times 10^{-7}$	CL=90%
Γ ₃₄	$\mathrm{e}^{\pm}\mu^{\mp}$	LF	[a] <	4.7		\times 10 ⁻¹²	CL=90%

HTTP://PDG.LBL.GOV Page 3 Created: 5/30/2017 17:22

- [a] The value is for the sum of the charge states or particle/antiparticle states indicated.
- [b] This mode includes gammas from inner bremsstrahlung but not the direct emission mode $K_I^0 \to \pi^+\pi^-\gamma(DE)$.
- [c] See the Particle Listings below for the energy limits used in this measurement.
- [d] Most of this radiative mode, the low-momentum γ part, is also included in the parent mode listed without γ 's.
- [e] Allowed by higher-order electroweak interactions.
- [f] Violates *CP* in leading order. Test of direct *CP* violation since the indirect *CP*-violating and *CP*-conserving contributions are expected to be suppressed.

CONSTRAINED FIT INFORMATION

An overall fit to the mean life and 15 branching ratios uses 27 measurements and one constraint to determine 11 parameters. The overall fit has a $\chi^2 = 37.4$ for 17 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta p_i \delta p_j \right\rangle / (\delta p_i \cdot \delta p_j)$, in percent, from the fit to parameters p_i , including the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

	Mode	Rate (10^8 s^{-1})	Scale factor
Γ_1	$\pi^{\pm}e^{\mp} u_{ m e}$	[a] 0.07927 ± 0.00034	1.1
	Called K_{e3}^0 .		
Γ_2	$\pi^{\pm}\mu^{\mp} u_{\mu}$	[a] 0.05286 ± 0.00025	1.1
	Called $K_{\mu 3}^0$.		
Γ_6	$3\pi^0$	0.03815 ± 0.00030	1.5
	$\pi^+\pi^-\pi^0$	0.02451 ± 0.00015	
U	$\pi^{+}\pi^{-}$	[b] (3.844 ± 0.023) \times 10 ⁻¹	1.2
Γ ₉	$\pi^{0}\pi^{0}$	$(1.690 \pm 0.013) \times 10^{-2}$	
Γ_{13}	$\pi^+\pi^-\gamma$	$[c,d]$ (8.11 ± 0.29) \times 10	-6 2.7
Γ_{14}	$\pi^+\pi^-\gamma(DE)$	$(5.55 \pm 0.21) \times 10^{-2}$	-6 2.0
Γ_{17}	2γ	$(1.069 \pm 0.010) \times 10^{-2}$	-4 1.2
Γ ₁₉	$e^+e^-\gamma$	$(1.84 \pm 0.08) \times 10^{-2}$	-6 1.9

\mathcal{K}_L^0 DECAY RATES					
$\Gamma(\pi^+\pi^-\pi^0)$					Γ ₇
VALUE (10 ⁶ s ⁻¹)	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
2.451±0.015 OUR FIT • • • We do not use the	e followir	ng data for average	c fitc	limits 4	etc • • •
	ic ronovvii		J, 1105	,	
$2.32 \begin{array}{l} +0.13 \\ -0.15 \end{array}$	192	BALDO	75	HLBC	Assumes <i>CP</i>
2.35 ± 0.20	180	¹ JAMES	72	HBC	Assumes CP
2.71 ± 0.28	99	CHO	71	DBC	Assumes CP
2.5 ± 0.3	98	¹ JAMES	71	HBC	Assumes CP
2.12 ± 0.33	50	MEISNER	71	HBC	Assumes CP
2.20 ± 0.35	53	WEBBER	70	HBC	Assumes <i>CP</i>
$2.62 \begin{array}{l} +0.28 \\ -0.27 \end{array}$	136	BEHR	66	HLBC	Assumes CP
3.26 ± 0.77	18	ANDERSON	65	HBC	
1.4 ± 0.4	14	FRANZINI	65	HBC	
$^{ m 1}$ JAMES 72 is a final	measure	ment and includes	JAME	S 71.	
$\Gamma(\pi^{\pm}e^{\mp} u_{e})$					Γ ₁
$VALUE (10^6 \text{ s}^{-1})$	EVTS	DOCUMENT ID		TECN	COMMENT
7.927 ± 0.034 OUR FIT	Error ir	ncludes scale factor	of 1.	1.	
• • • We do not use th	e followir	ng data for average	s, fits	, limits, e	etc. • • •
7.81 ± 0.56	620	CHAN	71	HBC	
$7.52 \begin{array}{c} +0.85 \\ -0.72 \end{array}$		AUBERT	65	HLBC	$\Delta S = \Delta Q$, CP assumed
$\Gamma(\pi^{\pm}e^{\mp}\nu_{e}) + \Gamma(\pi^{\pm}$	$=\mu^{\mp}\nu_{\mu}$				$(\Gamma_1 + \Gamma_2)$
<i>VALUE</i> (10^6 s^{-1})	EVTS	DOCUMENT ID		TECN	COMMENT
$\frac{VALUE (10^6 \text{ s}^{-1})}{13.21 \pm 0.05 \text{ OUR FIT}}$					
• • • We do not use th	e followir	ng data for average	s, fits	, limits, e	etc. • • •
12.4 ± 0.7	410	¹ BURGUN	72	НВС	$K^+ p \rightarrow K^0 p \pi^+$
8.47 ± 1.69	126	¹ MANN	72		$K^- p \rightarrow n \overline{K}^0$
HTTP://PDG.LBL.	GOV	Page 5		Creat	red: 5/30/2017 17:22

13.1 ± 1.3		$^{ m 1}$ WEBBER			
11.6 ± 0.9		^{1,2} CHO			$K^+ n \rightarrow K^0 p$
$10.3\ \pm0.8$	335	² HILL	67	DBC	$K^+ n \rightarrow K^0 p$
$9.85 {+} 1.15 \\ -1.05$	109	¹ FRANZINI	65	HBC	

¹ Assumes $\Delta S = \Delta Q$ rule.

K_I^0 BRANCHING RATIOS

— Semileptonic modes —

 $\Gamma(\pi^{\pm}e^{\mp}\nu_{e})/\Gamma_{total}$ VALUE

0.4055±0.0011 OUR FIT

Error includes scale factor of 1.7.

0.4047±0.0028 OUR AVERAGE

Error includes scale factor of 3.1.

0.4007±0.0005±0.0015

13M

1 AMBROSINO 06 KLOE

0.4067±0.0011

2 ALEXOPOU... 04 KTEV

The matrix is
$$\kappa_{e3}$$
 $\kappa_{\mu 3}$ κ

 Γ_2/Γ

Created: 5/30/2017 17:22

 $\Gamma(\pi^{\pm}\mu^{\mp}
u_{\mu})/\Gamma_{\mathsf{total}}$

VALUEEVTSDOCUMENT IDTE0.2704±0.0007 OUR FITError includes scale factor of 1.1.

 0.2700 ± 0.0008 OUR AVERAGE

 $0.2698 \pm 0.0005 \pm 0.0015$ 13M 1 AMBROSINO 06 KLOE 0.2701 ± 0.0009 2 ALEXOPOU... 04 KTEV

$$\left[\Gamma \left(\pi^{\pm} e^{\mp} \nu_{e} \right) + \Gamma \left(\pi^{\pm} \mu^{\mp} \nu_{\mu} \right) \right] / \Gamma_{\text{total}}$$

$$\frac{DOCUMENT ID}{T}$$

0.6760±0.0012 OUR FIT Error includes scale factor of 1.6.

²CHO 70 includes events of HILL 67.

 $^{^1}$ There are correlations between these five KLOE measurements: B(K_L \rightarrow $\pi\,e\nu$), B(K_L \rightarrow $\pi\,\mu\nu$), B(K_L \rightarrow $3\pi^0$), B(K_L \rightarrow $\pi^+\pi^-\pi^0$), and τ_{K_L} measured in AMBROSINO 06. See the footnote for the τ_{K_L} measurement for the correlation matrix.

² ALEXOPOULOS 04 constrains $\sum_i B_i = 0.9993$ for the six major K_L branching fractions. The correlations among these branching fractions are taken into account in our fit. The correlation matrix is

 $^{^1}$ There are correlations between these five KLOE measurements: B(K_L \rightarrow $\pi\,e\,\nu$), B(K_L \rightarrow $\pi\,\mu\nu$), B(K_L \rightarrow $^3\pi^0$), B(K_L \rightarrow $^+\pi^-\pi^0$), and τ_{K_L} measured in AMBROSINO 06. See the footnote for the τ_{K_I} measurement for the correlation matrix.

² For correlations with other ALEXOPOULOS 04 measurements, see the footnote with their B($K_I \rightarrow \pi e \nu$) measurement.

VALUE		DOCUMENT ID		TECN	COMMENT
0.6669 ± 0.0027 OUR FIT					
0.666 ± 0.004 OUR AVE	RAGE Er	ror includes scale fa	ctor	of 1.6.	
• • We use the following	g data for a	verages but not for	fits.	• • •	
0.6740 ± 0.0059		¹ AMBROSINO			
$0.6640 \pm 0.0014 \pm 0.0022$	394K	² ALEXOPOU	04	KTEV	Not in fit
• • We do not use the	following da	ta for averages, fits	, lim	its, etc. •	• • •
0.702 ± 0.011	33k	СНО	80	HBC	
0.662 ± 0.037	10k	WILLIAMS	74	ASPK	
0.741 ± 0.044	6700	BRANDENB	73	HBC	
0.662 ± 0.030	1309	EVANS	73	HLBC	
0.68 ± 0.08	3548	BASILE	70	OSPK	
0.71 ± 0.05	770	BUDAGOV	68	HLBC	
¹ AMBROSINO 06 ente	ers the fit vi	a their separate mea	sure	ments of	these two modes.
² ALEXOPOULOS 04 e					

VALUE (units 10^{-7})	EVTS	DOCUMENT ID		TECN
3.90±0.39	155	¹ ARONSON	86	SPEC

 \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

seen 18 COOMBES 76 WIRE

¹ARONSON 86 quote theoretical value of $(4.31 \pm 0.08) \times 10^{-7}$.

$\Gamma(\pi^0\pi^{\pm}e^{\mp} u)/\Gamma_{ m total}$	Γ ₄ /Γ
()/ total	

VALUE (units 10^{-5})	CL% EVTS	DOCUMENT ID)	TECN	
5.20±0.11 OUR AVERA	AGE				
$5.21\!\pm\!0.07\!\pm\!0.09$	5402	BATLEY	04	NA48	
$5.16\!\pm\!0.20\!\pm\!0.22$	729	MAKOFF	93	E731	

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

$\Gamma(\pi^{\pm}e^{\mp}\nu e^{+}e^{-})/\Gamma(\pi^{+}\pi^{-}\pi^{0})$ Γ_{5}/Γ_{7}

 VALUE (units 10^{-5})
 EVTS
 DOCUMENT ID
 TECN
 COMMENT

 10.02 ± 0.17 ± 0.29
 19k
 1 ABOUZAID
 07C
 KTEV
 $M_{ee} > 5$ MeV, $E_{ee}^* > 30$ MeV

 $^{^{1}}$ DONALDSON 74 uses $K_{L}^{0}
ightarrow ~\pi^{+}\pi^{-}\pi^{0}/($ all $K_{L}^{0})$ decays = 0.126.

 $^{^1\,\}text{E}^*_{ee}$ is the energy of the $e^+\,e^-$ pair in the kaon rest frame. ABOUZAID 07C reports $[\Gamma(K_L^0\to~\pi^\pm\,e^\mp\,\nu\,e^+\,e^-)/\Gamma(K_L^0\to~\pi^+\,\pi^-\,\pi^0)]~/~[B(\pi^0\to~e^+\,e^-\,\gamma)]=(8.54\pm0.07\pm0.13)\times10^{-3}$ which we multiply by our best value $B(\pi^0\to~e^+\,e^-\,\gamma)=(1.174\pm0.035)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

——— Hadronic modes. ———

including Charge conjugation×Parity Violating (CPV) modes

 $\Gamma(3\pi^0)/\Gamma_{\text{total}}$ Γ_6/Γ

<u>VALUE</u> <u>EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u> **0.1952±0.0012 OUR FIT** Error includes scale factor of 1.6.

0.1969±0.0026 OUR AVERAGE Error includes scale factor of 2.0.

• • • We use the following data for averages but not for fits. • • •

 $0.1997 \pm 0.0003 \pm 0.0019$ 0.1945 ± 0.0018

13M $\frac{1}{4}$ AMBROSINO 06

KLOE Not fitted

¹ ALEXOPOU... 04 KTEV Not fitted

 $\Gamma(3\pi^0)/\Gamma(\pi^{\pm}e^{\mp}\nu_e)$

 Γ_6/Γ_1

<u>VALUE</u> <u>EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>

0.481 ±0.004 OUR FIT Error includes scale factor of 1.8.
• • • We use the following data for averages but not for fits. • • •

0.4782±0.0014±0.0053 209K ¹ ALEXOPOU... 04 KTEV Not in fit

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $0.545 \pm 0.004 \pm 0.009$

38k

KREUTZ 95

$\Gamma(3\pi^{0})/\left[\Gamma(\pi^{\pm}e^{\mp}\nu_{e})+\Gamma(\pi^{\pm}\mu^{\mp}\nu_{\mu})+\Gamma(\pi^{+}\pi^{-}\pi^{0})\right] \qquad \Gamma_{6}/(\Gamma_{1}+\Gamma_{2}+\Gamma_{7})$

 0.2436 ± 0.0018 **OUR FIT** Error includes scale factor of 1.6.

• • We do not use the following data for averages, fits, limits, etc.

0.251	± 0.014	549	BUDAGOV	68	HLBC	ORSAY measur.
0.277	± 0.021	444	BUDAGOV	68	HLBC	Ecole polytec.meas
0.31	$+0.07 \\ -0.06$	29	KULYUKINA	68	CC	
0.24	±0.08	24	V VIIK IVI V	64	CC	

$$\Gamma(3\pi^0)/\Gamma(\pi^+\pi^-\pi^0)$$

 Γ_6/Γ_7

Created: 5/30/2017 17:22

VALUE <u>EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>

1.557 \pm **0.012 OUR FIT** Error includes scale factor of 1.3.

ullet ullet We use the following data for averages but not for fits. ullet ullet

1.582±0.027 13M ¹ AMBROSINO 06 KLOE Not in fit

• • • We do not use the following data for averages, fits, limits, etc. • • •

1.80 ±0.13 1010 BUDAGOV 68 HLBC 2.0 ±0.6 188 ALEKSANYAN 64B FBC

¹ We exclude these B($K_L \to 3\pi^0$) measurements from our fit because the authors have constrained K_L branching fractions to sum to one. It enters our fit via the other measurements from the experiment and their correlations, along with our constraint that the fitted branching fractions sum to one.

¹ This measurement enters the fit via their separate measurements of these two modes.

¹ AMBROSINO 06 enters the fit via their separate measurements of these two modes.

 $\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\text{total}}$ Γ_7/Γ DOCUMENT ID TECN 0.1254 ± 0.0005 OUR FIT 0.1255 ± 0.0006 OUR AVERAGE ¹ AMBROSINO 06 KLOE ² ALEXOPOU... 04 KTEV $0.1263 \pm 0.0004 \pm 0.0011$ 13M 0.1252 ± 0.0007

 $\Gamma(\pi^{+}\pi^{-}\pi^{0})/\Gamma(\pi^{\pm}e^{\mp}\nu_{e})$

 Γ_7/Γ_1

 0.3092 ± 0.0016 OUR FIT Error includes scale factor of 1.1.

• • • We use the following data for averages but not for fits. • • •

¹ ALEXOPOU... 04 KTEV Not in fit $0.3078 \pm 0.0005 \pm 0.0017$ 799K

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $0.336 \pm 0.003 \pm 0.007$

KREUTZ

NA31

$$\frac{\Gamma(\pi^{+}\pi^{-}\pi^{0})/\left[\Gamma(\pi^{\pm}e^{\mp}\nu_{e})+\Gamma(\pi^{\pm}\mu^{\mp}\nu_{\mu})+\Gamma(\pi^{+}\pi^{-}\pi^{0})\right]\Gamma_{7}/(\Gamma_{1}+\Gamma_{2}+\Gamma_{7})}{\Gamma_{2}}$$
VALUE

DOCUMENT ID

TECN
COMMENT

0.1565\pm0.0006 OUR FIT Error includes scale factor of 1.1

• • • We do not use the following data for averages, fits, limits, etc. • • •

0.163 ± 0.003	6499	СНО	77	HBC	
0.1605 ± 0.0038	1590	ALEXANDER	73 B	HBC	
0.146 ± 0.004	3200	BRANDENB	73	HBC	
0.159 ± 0.010	558	EVANS	73	HLBC	
$0.167\ \pm0.016$	1402	KULYUKINA	68	CC	
0.161 ± 0.005		HOPKINS	67	HBC	
0.162 ± 0.015	126	HAWKINS	66	HBC	
0.159 ± 0.015	326	ASTBURY	65 B	CC	
0.178 ± 0.017	566	GUIDONI	65	HBC	
0.144 ± 0.004	1729	HOPKINS	65	HBC	See HOPKINS 67

$$\Gamma(\pi^+\pi^-)/\Gamma_{\text{total}}$$
Violates *CP* conservation.

1.967±0.010 OUR FIT Error includes scale factor of 1.5. ¹ ALEXOPOU... 04 KTEV

 $^{^1}$ There are correlations between these five KLOE measurements: B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi \, e \,
u$), B($K_L o \pi$ $\pi\mu\nu$), B($K_L\to 3\pi^0$), B($K_L\to \pi^+\pi^-\pi^0$), and τ_{K_L} measured in AMBROSINO 06. See the footnote for the τ_{K_L} measurement for the correlation matrix.

 $^{^2}$ For correlations with other ALEXOPOULOS 04 measurements, see the footnote with their $B(K_I \rightarrow \pi e \nu)$ measurement.

¹ This measurement enters the fit via their separate measurements for the two modes.

 $^{^{}m 1}$ For correlations with other ALEXOPOULOS 04 measurements, see the footnote with their B($K_L
ightarrow \pi e
u$) measurement.

 $\Gamma(\pi^{+}\pi^{-})/\Gamma(\pi^{\pm}e^{\mp}\nu_{e})$ Γ_8/Γ_1 VALUE (units 10^{-3}) **4.849**±**0.020 OUR FIT** Error includes scale factor of 1.1. 4.840 ± 0.020 OUR AVERAGE ¹ LAI $4.826\pm0.022\pm0.016$ 07 NA48 • • We use the following data for averages but not for fits. • • • 84k ² ALEXOPOU... 04 KTEV Not in fit $4.856 \pm 0.017 \pm 0.023$ $^1\,\text{The LAI 07}$ central value of 4.835×10^{-3} has been reduced by 0.19% to 4.826×10^{-3} to subtract the contribution from the direct emission mode $K_L^{\bullet} \to \pi^+\pi^-\gamma({\sf DE})$. 2 This measurement enters the fit via their separate measurements for the two modes. $[\Gamma(\pi^{+}\pi^{-}) + \Gamma(\pi^{+}\pi^{-}\gamma(DE))]/\Gamma(\pi^{\pm}\mu^{\mp}\nu_{\mu})$ $(\Gamma_8+\Gamma_{14})/\Gamma_2$ VALUE (units 10^{-3})EVTSDOCUMENT ID7.38 ± 0.04 OUR FITError includes scale factor of 1.4. ¹ AMBROSINO 06F KLOE $7.275 \pm 0.042 \pm 0.054$ 45k 1 Fully inclusive. Taking B($K_L^0 o \pi \mu
u$) from KLOE, AMBROSINO 06, B($K_I^0 o$ $\pi^+\pi^- + \pi^+\pi^-\gamma(DE) = (1.963 \pm 0.012 \pm 0.017) \times 10^{-3}$ is obtained. $\Gamma(\pi^{+}\pi^{-})/[\Gamma(\pi^{\pm}e^{\mp}\nu_{e}) + \Gamma(\pi^{\pm}\mu^{\mp}\nu_{\mu})]$ Violates *CP* conservation. $\Gamma_8/(\Gamma_1+\Gamma_2)$ VALUE (units 10^{-3}) DOCUMENT ID TECN COMMENT **EVTS** 2.909±0.013 OUR FIT Error includes scale factor of 1.3. • • We do not use the following data for averages, fits, limits, etc. 3.13 ± 0.14 1687 3.04 ± 0.14 2703 309 2.51 ± 0.23 525 ¹ FITCH 67 OSPK η_{+} =1.94 ± 0.08 2.35 ± 0.19 1 Old experiments excluded from fit. See subsection on η_{+-} in section on "PARAMETERS FOR $K_I^0
ightarrow 2\pi$ DECAY" below for average η_{+-} of these experiments and for note on $\Gamma(\pi^{\pm}e^{\mp}\nu_e)/\Gamma(2 \text{ tracks})$ $\Gamma_1/(\Gamma_1+\Gamma_2+0.03508\Gamma_6+\Gamma_7+\Gamma_8)$ $\Gamma(2 \text{ tracks}) = \Gamma(\pi^{\pm} e^{\mp} \nu_{e}) + \Gamma(\pi^{\pm} \mu^{\mp} \nu_{\mu}) + 0.03508 \Gamma(3\pi^{0}) + \Gamma(\pi^{+} \pi^{-} \pi^{0})$ $+\Gamma(\pi^+\pi^-)$ where 0.03508 is the fraction of $3\pi^0$ events with one Dalitz decay ($\pi^0\to$ $\gamma e^+ e^-$). DOCUMENT ID TECN **EVTS 0.5006±0.0009 OUR FIT** Error includes scale factor of 1.3. 0.4978 ± 0.0035 6.8M LAI $\Gamma(\pi^{+}\pi^{-})/\left[\Gamma(\pi^{\pm}e^{\mp}\nu_{e})+\Gamma(\pi^{\pm}\mu^{\mp}\nu_{\mu})+\Gamma(\pi^{+}\pi^{-}\pi^{0})\right] \qquad \Gamma_{8}/(\Gamma_{1}+\Gamma_{2}+\Gamma_{7})$ Violates *CP* conservation. VALUE (units 10^{-3}) DOCUMENT ID TECN COMMENT EVTS **2.454**±**0.011 OUR FIT** Error includes scale factor of 1.3. • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ MESSNER 4200 73 ASPK $\eta_{+-} = 2.23 \pm 0.05$ 1 From same data as $\Gamma(\pi^+\pi^-)/\Gamma(\pi^+\pi^-\pi^0)$ MESSNER 73, but with different normal-HTTP://PDG.LBL.GOV Page 10 Created: 5/30/2017 17:22

G	•	• //-		`	,
$\Gamma(\pi^+\pi^-)/\Gamma(\pi^+\pi^-)$ Violates <i>CP</i> conse					Γ_8/Γ_7
$VALUE$ (units 10^{-2})	EVTS	DOCUMENT ID	TEC	N COI	MMENT
1.568 ± 0.010 OUR FIT	Error inclu	des scale factor	of 1.3.		
• • • We do not use th	e following d	lata for average	es, fits, limi	ts, etc.	• • •
1.64 ± 0.04	4200	MESSNER	73 ASI	PK η_+	_ = 2.23
$\Gamma(\pi^0\pi^0)/\Gamma_{\text{total}}$ Violates <i>CP</i> conse	rvation.				Г9/Г
VALUE (units 10^{-3})		DOCUMENT ID		:N	
0.864±0.006 OUR FIT 0.865±0.012		des scale factor ALEXOPOU		EV	
¹ For correlations with					oo the feetnets with
their B($K_L \rightarrow \pi e \nu$) measureme	ent.	4 measurer	nents, s	ee the loothote with
$\Gamma(\pi^0\pi^0)/\Gamma(\pi^+\pi^-)$. •				Γ_9/Γ_8
Violates <i>CP</i> conse	rvation.	DOCUMENT ID			
0.4395±0.0023 OUR FI	T Error inc		tor of 2.0.		
0.4390 ± 0.0012		ETAFIT	16		
$\Gamma(\pi^0\pi^0)/\Gamma(3\pi^0)$ Violates <i>CP</i> conse					Γ_9/Γ_6
		DOCUMEN		TECN	COMMENT
0.443 ±0.004 OUR FI					
• • We use the follow	_				
$0.4446 \pm 0.0016 \pm 0.0019$		¹ ALEXOP			Not in fit
• • • We do not use th	e following d	lata for average	es, fits, limi	ts, etc.	• • •
0.37 ± 0.08	29	BARMIN	70		$\eta_{00} = 2.02 \pm 0.23$
0.32 ± 0.15	30	BUDAGO	V 70	HLBC	$\eta_{00} = 1.9 \pm 0.5$
0.46 ± 0.11		BANNER		OSPK	η_{00} =2.2 ± 0.3
¹ This measurement e	nters the fit	via their separa	ate measure	ements f	or the two modes.
	Semilepto	onic modes w	vith photo	ns —	
$\Gamma(\pi^{\pm} e^{\mp} u_e \gamma) / \Gamma(\pi^{\pm}$	$(e^{\mp} u_{m{e}})$				Γ_{10}/Γ_{1}
VALUE (units 10^{-2}) E	VTS D	OCUMENT ID	TECN	СОММ	ENT
0.935±0.015 OUR AVE			e factor of :	1.9. See	the ideogram below.
0.935±0.015 OUR AVE 0.924±0.023±0.016	9k ¹ A	MBROSINO (08F KLOE	$E_{\gamma}^* > 3$	30 MeV, $\theta_{e\gamma}^* > 20^\circ$
0.935±0.015 OUR AVE 0.924±0.023±0.016	9k ¹ A		08F KLOE 05 KTEV	$E_{\gamma}^* > 3$ $E_{\gamma}^* > 3$	· ·

 $0.908\!\pm\!0.008\!+\!0.013\atop-\,0.012$

 $0.934 \pm 0.036 \, {}^{+\, 0.055}_{-\, 0.039}$

15k

ALAVI-HARATI01J

LEBER

KTEV $extit{E}_{\gamma}^* \geq$ 30 MeV, $heta_{ exttt{e}\gamma}^* \geq$ 20 $^\circ$

Created: 5/30/2017 17:22

96 NA31 $E_{\gamma}^* \geq$ 30 MeV, $\theta_{e\gamma}^* \geq$ 20°

 $^{^2}$ Also measured cut $E_{\gamma}^* >$ 10 MeV, $\theta_{e\gamma}^* >$ 0° 14221 evts: $\Gamma(\pi^{\pm}\,e^{\mp}\,\nu_{e}\gamma)$ / $\Gamma(\pi^{\pm}\,e^{\mp}\,\nu_{e})$ $= (4.942 \pm 0.062)\%.$

$$\Gamma\!\left(\pi^{\pm}\,\mathrm{e}^{\mp}\,\nu_{\mathrm{e}}\,\gamma\right)\!/\Gamma\!\left(\pi^{\pm}\,\mathrm{e}^{\mp}\,\nu_{\mathrm{e}}\right)\,\mathrm{(units}\;10^{-2}\mathrm{)}$$

$\Gamma(\pi^{\pm}\mu^{+} u_{\mu}\gamma)/\Gamma(\pi)$	$\Gamma^{\pm}\mu^{+} u_{\mu})$			Γ_{11}/Γ_2
VALUE (units 10^{-3})	EVTS	DOCUMENT ID	TECN	COMMENT
2.09 ± 0.08 OUR AVE	RAGE			
2.09 ± 0.09		¹ ALEXOPOU 05	KTEV	$E_{\gamma}^{*} >$ 30 MeV
$2.08 \pm 0.17 {+0.16 \atop -0.21}$	252	BENDER 98	NA48	$E_{\gamma}^* \geq$ 30 MeV

 $^{^1}$ Also measured cut E_{γ}^* >10 MeV, 1385 evts: $\Gamma(\pi^{\pm}\mu^{\mp}\,\nu_{\mu}\,\gamma)\,/\,\Gamma(\pi^{\pm}\,\mu^{\mp}\,\nu_{\mu})=(0.530\,\pm\,0.053)$ $0.014 \pm 0.012)\%$.

– Hadronic modes with photons or $\ell \overline{\ell}$ pairs -

$\Gamma(\pi^0\pi^0\gamma)/\Gamma_{\text{total}}$ VALUE (units 10^{-6}) CL% DOCUMENT ID TECN COMMENT 08B KTEV $\overline{\mathcal{K}_L^0 \rightarrow \pi^0 \pi_D^0 \gamma, \pi_D^0 \rightarrow \text{ee} \gamma}$ < 0.243 90 ABOUZAID ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet< 5.6 90 BARR 94 NA31 90 <230 ROBERTS E799

¹ Direct emission contribution measured $\langle \mathsf{X} \rangle = -2.3 \pm 1.3 \pm 1.4$.

 $\Gamma(\pi^+\pi^-\gamma)/\Gamma(\pi^+\pi^-\pi^0)$

 Γ_{13}/Γ_{7}

For earlier limits see our 1992 edition Physical Review D45 S1 (1992).

VALUE (units 10^{-4})	EVTS	DOCUMENT ID	TECN	COMMENT
• • • We do not	use the following	data for averages	, fits, limits,	etc. • • •
1.23 ± 0.13	516 ^{1,2}	CARROLL	80B SPEC	$E_{\gamma}^{*} >$ 20 MeV
2.33 ± 0.23		1	80B SPEC	/
$3.56 \!\pm\! 0.26$	1062 ^{1,2}	CARROLL	80B SPEC	$E_{\gamma}^{*} >$ 20 MeV
				1

¹ CARROLL 80B quotes B($\pi^+\pi^-\gamma$) using normalization B($\pi^+\pi^-\pi^0$) = 0.1239. We divide by this value to obtain their measured $\Gamma(\pi^+\pi^-\gamma)$ / $\Gamma(\pi^+\pi^-\pi^0)$.

 $\Gamma(\pi^+\pi^-\gamma)/\Gamma(\pi^+\pi^-)$

 Γ_{13}/Γ_{8}

$\Gamma(\pi^+\pi^-\gamma(\mathsf{DE}))/\Gamma(\pi^+\pi^-\gamma)$

 Γ_{14}/Γ_{13}

These values assume that $\Gamma(K_L^0 \to \pi^+\pi^-\gamma) = \Gamma(K_L^0 \to \pi^+\pi^-\gamma(DE)) + \Gamma(K_L^0 \to \pi^+\pi^-\gamma(IB))$, the sum of widths for the direct emission (DE) and inner bremsstrahlung (IE) processes, with no IB-DE interference. DE assumes a form factor as described in RAMBERG 93.

DOCUMENT ID

<u>VALUE</u>	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
0.684±0.009 OUR FIT					
0.684±0.009 OUR AVE	RAGE				
0.689 ± 0.021	111k	ABOUZAID	06A	KTEV	$E_{\gamma}^{*} >$ 20 MeV
0.683 ± 0.011	8669	ALAVI-HARAT	101 в	KTEV	$E_{\gamma}^{*} > 20 \text{ MeV}$
$0.685 \!\pm\! 0.041$	3136	RAMBERG	93	E731	$E_{\gamma}^{*} > 20 \text{ MeV}$

$\Gamma(\pi^0 2\gamma)/\Gamma_{\text{total}}$

 Γ_{15}/Γ

TECN COMMENT

	1.275	生0.03 3	OUR AV	EKAGE						
	1.28	± 0.06	± 0.01	1.4k		ABOUZAID	80	KTEV		
	1.27	± 0.04	± 0.01	2.5k	2	LAI	02 B	NA48		
•	• • \	Ve do n	ot use the	following data	a for	averages, fits,	limits,	etc. ●	• •	
	1.68	± 0.07	± 0.08	884	3	ALAVI-HARAT	199 B	KTEV		
	1.7	± 0.2	± 0.2	63	4	BARR	92	NA31		
	1.86	± 0.60	± 0.60	60		PAPADIMITR.	91	E731	$m_{\gamma\gamma} >$	280 MeV
	< 5.1			90		PAPADIMITR.	91	E731	$m_{\gamma\gamma}^{\prime\prime}<$	264 MeV
	2.1	± 0.6		14	5	BARR	90 C	NA31		280 MeV
									, ,	

² Internal Bremsstrahlung component only.

³ Direct γ emission component only.

⁴ Both IB and DE components.

¹ ALAVI-HARATI 01B includes both Direct Emission (DE) and Inner Bremsstrahlung (IB) processes.

 1 ABOUZAID 08 reports (1.29 \pm 0.03 \pm 0.05) \times 10^{-6} from a measurement of [$\Gamma(K_L^0\to\pi^0\,2\gamma)/\Gamma_{total}$] / [B($K_L^0\to\pi^0\,\pi^0$)] assuming B($K_L^0\to\pi^0\,\pi^0$) = (8.69 \pm 0.04) \times 10⁻⁴, which we rescale to our best value B($K_L^0\to\pi^0\,\pi^0$) = (8.64 \pm 0.06) \times 10⁻⁴. Our first error is their experiment's error and our second error is the systematic error from using our best value.

² LAI 02B reports $[\Gamma(\kappa_L^0 \to \pi^0 2\gamma)/\Gamma_{\text{total}}] / [B(\kappa_L^0 \to \pi^0 \pi^0)] = (1.467 \pm 0.032 \pm 0.032) \times 10^{-3}$ which we multiply by our best value $B(\kappa_L^0 \to \pi^0 \pi^0) = (8.64 \pm 0.06) \times 10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. They also find that $B(\pi^0 2\gamma, m_{\gamma\gamma} < 110 \text{ MeV}) < 0.6 \times 10^{-8} (90\% \text{ CL})$.

³ ALAVI-HARATI 99B finds that $\Gamma(\pi^0 2\gamma, m_{\gamma\gamma} < 240 \text{ MeV})) / \Gamma(\pi^0 2\gamma) = (17.3 \pm 1.3 \pm 1.5)\%$. Superseded by ABOUZAID 08.

$\Gamma(\pi^0 \gamma e^+ e^-)/\Gamma_{\text{total}}$

 Γ_{16}/Γ

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$2.34\pm0.35\pm0.13$$
 44 ALAVI-HARATI01E KTEV <71 90 0 MURAKAMI 99 SPEC

— Other modes with photons or $\ell \overline{\ell}$ pairs ——

 $\Gamma(2\gamma)/\Gamma_{\text{total}}$ Γ_{17}/Γ

<u>VALUE (units 10⁻⁴)</u> <u>EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u> **5.47±0.04 OUR FIT** Error includes scale factor of 1.1.

• • • We do not use the following data for averages, fits, limits, etc. • • •

4.54 ± 0.84		$^{ m 1}$ BANNER	72 B	OSPK	
$4.5\ \pm1.0$	23	ENSTROM	71	OSPK	K_I^0 1.5–9 GeV/c
5.0 ± 1.0		² REPELLIN	71	OSPK	L
5.5 ± 1.1	90	KUNZ	68	OSPK	Norm.to 3 π (C+N)

¹ This value uses $(\eta_{00}/\eta_{+-})^2=1.05\pm0.14$. In general, $\Gamma(2\gamma)/\Gamma_{total}=[(4.32\pm0.55)\times 10^{-4}][(\eta_{00}/\eta_{+-})^2]$.

 $\Gamma(2\gamma)/\Gamma(3\pi^0)$ Γ_{17}/Γ_6

$VALUE$ (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
2.802±0.017 OU	IR FIT				
2.802±0.018 OU	IR AVERAGE				
$2.79 \pm 0.02 \pm 0.$.02 27k	ADINOLFI	03	KLOE	
$2.81 \pm 0.01 \pm 0.$.02	LAI	03	NA48	

HTTP://PDG.LBL.GOV

Page 14

⁴ BARR 92 find that $\Gamma(\pi^0 2\gamma, m_{\gamma\gamma}$ <240 MeV)/ $\Gamma(\pi^0 2\gamma)$ < 0.09 (90% CL).

⁵ BARR 90C superseded by BARR 92.

¹ ABOUZAID 07D includes 1997 (ALAVI-HARATI 01E) and 1999 data. It measures the ratio of B($K_L^0 \rightarrow \pi^0 \gamma e^+ e^-$) / B($K_L^0 \rightarrow \pi^0 \pi_D^0$), where π_D^0 is the Dalitz decaying π^0 , and uses PDG 06 values B($K_L^0 \rightarrow \pi^0 \pi^0$) = (8.69 \pm 0.04) \times 10⁻⁴, and B($\pi_D^0 \rightarrow e^+ e^- \gamma$) = (1.198 \pm 0.032) \times 10⁻². Supersedes ALAVI-HARATI 01E result.

² Assumes regeneration amplitude in copper at 2 GeV is 22 mb. To evaluate for a given regeneration amplitude and error, multiply by (regeneration amplitude/22mb)².

• • • We do not use the following data for averages, fits, limits, etc. • •

2.13 ± 0.43	28	BARMIN	71	HLBC	
2.24 ± 0.28	115	BANNER	69	OSPK	
2.5 ± 0.7	16	ARNOI D	68 B	HI BC	Vacuum decay

 $\Gamma(2\gamma)/\Gamma(\pi^0\pi^0)$ Γ_{17}/Γ_9

 VALUE
 EVTS
 DOCUMENT ID
 TECN

 0.633 ± 0.006 OUR FIT
 Error includes scale factor of 1.4.

 0.632 ± 0.004 ± 0.008
 110k
 BURKHARDT 87
 NA31

 $\Gamma(3\gamma)/\Gamma_{\text{total}}$ Γ_{18}/Γ

VALUE CL% DOCUMENT ID TECN **<7.4 × 10⁻⁸** 90 ¹ TUNG 11 K391

• • • We do not use the following data for averages, fits, limits, etc. • • $<2.4 \times 10^{-7}$ 90 ² BARR 95c NA31

 $\Gamma(e^+e^-\gamma)/\Gamma_{ ext{total}}$ Γ_{19}/Γ

VALUE (units 10^{-6})EVTSDOCUMENT IDTECN9.4 \pm 0.4 OUR FITError includes scale factor of 2.0.

10.0±0.5 OUR AVERAGE Error includes scale factor of 1.5. See the ideogram below.

 $10.6 \pm 0.2 \pm 0.4$ 6864 1 FANTI 99B NA48 $9.2 \pm 0.5 \pm 0.5$ 1053 BARR 90B NA31 $9.1 \pm 0.4 ^{+0.6}_{-0.5}$ 919 OHL 90B B845

WEIGHTED AVERAGE 10.0±0.5 (Error scaled by 1.5)

HTTP://PDG.LBL.GOV

Page 15

 $^{^1}$ TUNG 11 reports the result assuming parity violating interaction and using 2005 data (Run-II and III). Assuming parity conserving or phase space interaction, the 90% upper limits obtained are 7.5 \times 10 $^{-8}$ and 8.6 \times 10 $^{-8}$, respectively.

² Assumes a phase-space decay distribution.

¹ For FANTI 99B, the ± 0.4 systematic error includes for uncertainties in the calculation, primarily uncertainties in the $\pi^0 \to e^+e^-\gamma$ and $K_L^0 \to \pi^0\pi^0$ branching ratios, evaluated using our 1999 Web edition values.

 $\Gamma(\mu^+\mu^-\gamma)/\Gamma_{ ext{total}}$ VALUE (units 10⁻⁷) EVTS

3.59±0.11 OUR AVERAGE Error includes scale factor of 1.3.
3.62±0.04±0.08 9100 ALAVI-HARATIO1G KTEV
3.4 ±0.6 ±0.4 45 FANTI 97 NA48

 $3.23 \pm 0.23 \pm 0.19$ 197 SPENCER 9

 $\Gamma(e^+e^-\gamma\gamma)/\Gamma_{\text{total}}$ Γ_{21}/Γ

E799

VALUE (units 10^{-7})	EVTS	DOCUMENT ID		TECN	COMMENT
5.95 ± 0.33 OUR AVE	RAGE				
$5.84 \pm 0.15 \pm 0.32$	1543	ALAVI-HARATI	01F	KTEV	$E_{\gamma}^{*} >$ 5 MeV
$8.0 \pm 1.5 \ ^{+1.4}_{-1.2}$	40	SETZU	98	NA31	$E_{\gamma}^{*} >$ 5 MeV
$6.5\ \pm 1.2\ \pm 0.6$	58	NAKAYA			$E_{\gamma}^{*} > 5 \text{ MeV}$
6.6 ± 3.2		MORSE	92	B845	$E_{\gamma}^{*} > 5 \text{ MeV}$

$$\Gamma(\mu^+\mu^-\gamma\gamma)/\Gamma_{ ext{total}}$$
 $\Gamma_{ ext{22}}/\Gamma$ $\Gamma_{ ext{VALUE (units }10^{-9})}$ $\Gamma_{ ext{EVTS}}$ $\Gamma_{ ext{DOCUMENT }ID}$ $\Gamma_{ ext{ECN}}$ $\Gamma_{ ext{COMMENT}}$ $\Gamma_{ ext{COMMENT}}$ $\Gamma_{ ext{10.4}}$ $\Gamma_{ ext{10.4}$

— Charge conjugation \times Parity (*CP*) or Lepton Family number (*LF*) – wiolating modes, or $\Delta S = 1$ weak neutral current (*S1*) modes —

 $\Gamma(\mu^+\mu^-)/\Gamma(\pi^+\pi^-)$ Test for $\Delta S=1$ weak neutral current. Allowed by higher-order electroweak interaction.

			•	•		
$VALUE$ (units 10^{-6})	EVTS	DOCUMENT ID		TECN	COMMENT	
3.48 ±0.05 OUR	AVERAGE					
3.474 ± 0.057	6210	AMBROSE	00	B871		
3.87 ± 0.30	179	¹ AKAGI	95	SPEC		
3.38 ± 0.17	707	HEINSON	95	B791		
• • • We do not u	se the followir	ig data for average	es, fits	, limits,	etc. • • •	
$3.9 \pm 0.3 \pm 0.1$	178	² AKAGI	91 B	SPEC	In AKAGI 95	
$3.45 \pm 0.18 \pm 0.13$	368	³ HEINSON	91	SPEC	In HEINSON 95	
4.1 ± 0.5	54	INAGAKI	89	SPEC	In AKAGI 91B	
$2.8\pm0.3\pm0.2$	87	MATHIAZHA.	89 B	SPEC	In HEINSON 91	

HTTP://PDG.LBL.GOV

Page 16

Created: 5/30/2017 17:22

 Γ_{20}/Γ

 1 AKAGI 95 gives this number multiplied by the PDG 1992 average for $\Gamma(K_I^0
ightarrow$ $\pi^+\pi^-)/\Gamma(\text{total})$.

²AKAGI 91B give this number multiplied by the 1990 PDG average for $\Gamma(K_I^0 \rightarrow$ $\pi^+\pi^-)/\Gamma(\text{total})$.

 3 HEINSON $^\circ$ give $\Gamma(\mathcal{K}_L^0 \to \mu\mu)/\Gamma_{ ext{total}}$. We divide out the $\Gamma(\mathcal{K}_L^0 \to \pi^+\pi^-)/\Gamma_{ ext{total}}$ PDG average which they used.

 $\Gamma(e^+e^-)/\Gamma_{\text{total}}$

Test for $\Delta S = 1$ weak neutral current. Allowed by higher-order electroweak interaction.

$VALUE$ (units 10^{-10})	CL% EVTS	DOCUMENT ID		TECN
$0.087^{+0.057}_{-0.041}$	4	AMBROSE	98	B871

• • • We do not use the following data for averages, fits, limits, etc. • • •

< 1.6	90	1	AKAGI	95	SPEC
< 0.41	90	0	¹ ARISAKA	93 B	B791

 $^{^{}m 1}$ ARISAKA 93B includes all events with <6 MeV radiated energy.

$\Gamma(\pi^+\pi^-e^+e^-)/\Gamma_{\text{total}}$

 Γ_{25}/Γ

 Γ_{24}/Γ

Test for $\Delta S = 1$ weak neutral current. Allowed by higher-order electroweak interaction.

		· · · · · · · · · · · · · · · · · · ·	0		
$VALUE$ (units 10^{-7})	CL% EVTS	DOCUMENT ID		TECN	COMMENT
3.11±0.19 OUR A	VERAGE				
$3.08\!\pm\!0.09\!\pm\!0.18$	1125	1 LAI	03 C	NA48	
$3.2 \pm 0.6 \pm 0.4$	37	ADAMS	98	KTEV	
$4.4 \pm 1.3 \pm 0.5$	13	TAKEUCHI	98	SPEC	
ullet $ullet$ $ullet$ We do not use	the following dat	a for averages, fit	s, limi	ts, etc. •	• • •
<4.6	90	NOMURA	97	SPEC	$m_{0.0} > 4 \text{ MeV}$

⁹⁷ SPEC $m_{e\,e} > 4$ MeV 1 LAI 03C second error is $0.15({
m syst})\pm0.10({
m norm})$ combined in quadrature. The normal-

 $\Gamma(\pi^0\pi^0e^+e^-)/\Gamma_{\rm total}$ Test for $\Delta S=1$ weak neutral current. Allowed by higher-order electroweak interaction.

 $\Gamma(\pi^0\pi^0\mu^+\mu^-)/\Gamma_{\rm total}$

 Γ_{27}/Γ

Created: 5/30/2017 17:22

Test for $\Delta \hat{S} = 1$ weak neutral current. Allowed by higher-order electroweak interaction.

$$\frac{\text{VALUE}}{\text{<9.2} \times 10^{-11}}$$
 $\frac{\text{CL}\%}{\text{90}}$ $\frac{\text{DOCUMENT ID}}{\text{1}}$ ABOUZAID 11A E799

ization uses BR($K_L \to \pi^+\pi^-\pi^0$) * BR($\pi^0 \to e^+e^-$) = (1.505 \pm 0.047) \times 10⁻³ from our 2000 Edition.

 $^{^1}$ ABOUZAID 11A also reports B($K_I^0 \to \pi^0\pi^0X^0 \to \pi^0\pi^0\mu^+\mu^-$) $<~1.0 imes 10^{-10}$ at 90% C.L., where the X^0 is a possible new neutral boson that was reported by PARK 05 with a mass of 214.3 \pm 0.5 MeV/c².

 $\Gamma(\mu^+\mu^-e^+e^-)/\Gamma_{ ext{total}}$ Test for $\Delta S=1$ weak neutral current. Allowed by higher-order electroweak interaction

•	cst 101 4 5 — 1 Wear	incutiui cui	ciic. / mowed b	, inglici	oraci cic	ctrowcak mitcraction.
<i>VALUE</i> (ι	ınits 10 ⁻⁹) <u>CL</u> %	<u>EVTS</u>	DOCUMENT I	D	TECN	COMMENT
2.	69±0.27 OUR AVE	RAGE				
2.	$69 \pm 0.24 \pm 0.12$	131	¹ ALAVI-HAR	ATI03 B	KTEV	
2.	$9 \begin{array}{c} +6.7 \\ -2.4 \end{array}$	1	GU	96	E799	
• • • V	Ve do not use the fo	ollowing dat	a for averages,	fits, limit	ts, etc. •	• • •
2.	$62\pm0.40\pm0.17$	43	ALAVI-HAR	ATI01H	KTEV	Sup. by ALAVI- HARATI 03B
<4900	90		BALATS	83	SPEC	11/11/11/11/035

 $^{^1}$ ALAVI-HARATI 03B also measures the linear slope $lpha = -1.59 \pm 0.37$.

$\Gamma(e^+e^-e^+e^-)/\Gamma_{\text{total}}$

 Γ_{29}/Γ

Test for $\Delta S = 1$ weak neutral current. Allowed by higher-order electroweak interaction.

			<i>j</i>	6	
VALUE (units 10^{-8})	EVTS	DOCUMENT ID		TECN	COMMENT
3.56±0.21 OUR AVE	RAGE				
$3.30 \pm 0.24 \pm 0.25$	200	1 LAI	05 B	NA48	
$3.72 \pm 0.18 \pm 0.23$	441	ALAVI-HARA	TI01D	KTEV	
$3.96 \pm 0.78 \pm 0.32$	27	GU	94	E799	
$3.07 \pm 1.25 \pm 0.26$	6	VAGINS	93	B845	
\bullet \bullet We do not use t	he followi	ng data for averag	ges, fits	, limits,	etc. • • •
$6 \pm 2 \pm 1$	18	² AKAGI	95	SPEC	$m_{ee} > 470 \; {\rm MeV}$
$7 \pm 3 \pm 2$	6	² AKAGI	95	SPEC	$m_{ee} > 470 \text{ MeV}$
$10.4\ \pm 3.7\ \pm 1.1$	8	³ BARR	95	NA31	
$6 \pm 2 \pm 1$	18	AKAGI	93	CNTR	Sup. by AKAGI 95
4 ± 3	2	BARR	91	NA31	Sup. by BARR 95
1, 4, 65-	1.4000	I . B .			

 $^{^1}$ LAI 05B uses 1998 and 1999 data. Data are normalized to the observed events of $K_I^0
ightarrow$ $\pi^+\pi^-\pi^0$ (π^0 into Dalitz pair) and PDG 04 values are used for B($K_L^0 \to \pi^+\pi^-\pi^0$) and B($\pi^0 \to e^+e^-\gamma$). The systematic error includes a normalization error of ± 0.10 .

 $\Gamma\big(\pi^0\mu^+\mu^-\big)/\Gamma_{\rm total}$

 Γ_{30}/Γ

Violates CP in leading order. Test for $\Delta S=1$ weak neutral current. Allowed by higher-order electroweak interaction.

VALUE (units 10^{-9})	CL% EVTS	DOCUMENT ID	TECN
<0.38	90	ALAVI-HARATI00D	KTEV

• • We do not use the following data for averages, fits, limits, etc.

< 5.1 90 0 **HARRIS** 93 E799

 $\Gamma(\pi^0 e^+ e^-)/\Gamma_{\text{total}}$

 Γ_{31}/Γ

Created: 5/30/2017 17:22

Violates CP in leading order. Direct and indirect CP-violating contributions are expected to be comparable and to dominate the CP-conserving part. LAI 02B result suggests that *CP*-violation effects dominate. Test for $\Delta S=1$ weak neutral current. Allowed by higher-order electroweak interaction.

$VALUE$ (units 10^{-10})	CL% EVTS	DOCUMENT ID	TECN	COMMENT
< 2.8	90	¹ ALAVI-HARATI 04A	KTEV	combined result

 $^{^2}$ Values are for the total branching fraction, acceptance-corrected for the $m_{
m ee}$ cuts shown.

³ Distribution of angles between two e^+e^- pair planes favors CP=-1 for K_I^0 .

• • • We do not use the following data for averages, fits, limits, etc. • • •

	3.5		90		ALAVI-HARAT	1044	KTEV	
<			90		ALAVI-HARAT	104A	r\ i E v	
	0.0047	$7^{+0.0022}_{-0.0018}$			² LAI	02 B	NA48	CP-conserving part
<	5.1		90	2	ALAVI-HARAT	101	KTEV	
	0.01	to 0.02			ALAVI-HARAT	199 B	KTEV	CP-conserving part
<	43		90	0	HARRIS	93 B	E799	
<	75		90	0	BARKER	90	E731	
<	55		90	0	OHL	90	B845	
< '	400		90		BARR	88	NA31	
<3	200		90		JASTRZEM	88	SPEC	

¹ Combined result of ALAVI-HARATI 04A 1999-2000 data set and ALAVI-HARATI 01 1997 data set.

 $\Gamma(\pi^0 \nu \overline{\nu})/\Gamma_{\rm total}$

 Γ_{32}/Γ

Violates CP in leading order. Test of direct CP violation since the indirect CP-violating and CP-conserving contributions are expected to be suppressed. Test of $\Delta S=1$ weak neutral current.

VALU	JE (units 10 ⁻⁷)	<u>CL%</u>	DOCUMENT ID		TECN
<	0.26	90	$^{ m 1}$ AHN	10	K391
• •	• We do not use t	he following	data for average	es, fits,	limits, etc. \bullet \bullet
<	0.67	90	² AHN	80	K391
<	2.1	90	³ AHN	06	K391
<	5.9	90	ALAVI-HARA	TI00	KTEV
<	16	90	ADAMS	99	KTEV
< ;	580	90	WEAVER	94	E799
<22	200	90	GRAHAM	92	CNTR

¹ Obtained combining Run-2 (AHN 08) and Run-3 data.

$\Gamma(\pi^0\pi^0 u\overline{ u})/\Gamma_{ ext{total}}$

 $\frac{CL\%}{< 8.1 \times 10^{-7}}$ 90 $\frac{DOCUMENT ID}{1}$ K391

• • • We do not use the following data for averages, fits, limits, etc. • •

$$<4.7\times10^{-5} \qquad \qquad 90 \qquad \ ^2\,\text{NIX} \qquad \qquad 07 \quad \text{K391}$$

² LAI 02B uses the absence of a signal in $K_L^0 \to \pi^0 \gamma \gamma$ with $m(\gamma \gamma) < m(\pi^0)$ and their a_V value to predict this value.

²Value obtained using data from February to April 2005.

³ Value obtained analyzing 10% of data of RUN 1 (performed in 2004).

 $^{^1}$ Using 2005 Run-I data. OGATA 11 also sets a limit on the $K_L^0\to\pi^0\pi^0X\to \text{invisible}$ particles process: the limit on the branching fraction varied from 7.0×10^{-7} to 4.0×10^{-5} for the mass of X ranging from 50 to 200 MeV/c².

Observed 1 event with expected background of 0.43 ± 0.35 events. NIX 07 also measured B($K_L^0 \rightarrow \pi^0\pi^0P$) $< 1.2\times10^{-6}$ at 90% CL, where P is the pseudoscalar particle and $m_P < 100$ MeV.

 $\Gamma(e^{\pm}\mu^{\mp})/\Gamma_{\text{total}}$ Test of lepton family number conservation. Γ_{34}/Γ

VALUE (units 10	¹¹) <u>CL%</u>	EVTS	DOCUMENT ID		TECN	
<0.47	90		AMBROSE	98 B	B871	
• • • We do n	ot use the	followin	g data for average	es, fits,	limits, etc. • • •)
< 9.4	90	0	AKAGI	95	SPEC	
< 3.9	90	0	ARISAKA	93	B791	
<3.3	90	0	¹ ARISAKA	93	B791	

¹ This is the combined result of ARISAKA 93 and MATHIAZHAGAN 89.

 Γ_{35}/Γ

 $\Gamma \left(e^{\pm} \, e^{\pm} \, \mu^{\mp} \, \mu^{\mp} \right) / \Gamma_{\text{total}}$ Test of lepton family number conservation.

VALUE (units 10	⁻¹¹) CL%	<u>EVTS</u>	DOCUMENT ID	TECN COMMENT
< 4.12	90	0	ALAVI-HARATI03E	KTEV
 ● ● We do r 	not use the	followin	g data for averages, fit	s, limits, etc. • • •
< 12.3	90	0	¹ ALAVI-HARATI01	KTEV Sup. by ALAVI-
<610	90	0	¹ GU 96	HARATI 03B E799

¹ Assuming uniform phase space distribution.

 Γ_{36}/Γ

 $\Gamma(\pi^0\mu^{\pm}e^{\mp})/\Gamma_{\rm total}$ Test of lepton family number conservation.

$_{\it VALUE}$ (units 10^{-10})	CL%	DOCUMENT ID		TECN
< 0.76	90	ABOUZAID	08 C	KTEV
• • • We do not use the	following o	lata for averages	, fits,	limits, etc. • • •
<62	90	ARISAKA	98	E799

 Γ_{37}/Γ

 $\Gamma(\pi^0\pi^0\mu^{\pm}e^{\mp})/\Gamma_{ ext{total}}$ Test of lepton family number conservation.

VALUE (units 10^{-10})	<u>CL%</u> <u>DOCUMENT ID</u>			TECN	
<1.7	90	ABOUZAID	08C	KTEV	

A REVIEW GOES HERE - Check our WWW List of Reviews

ENERGY DEPENDENCE OF K_L^0 DALITZ PLOT

For discussion, see note on Dalitz plot parameters in the ${\it K}^{\pm}$ section of the Particle Listings above. For definitions of a_V , a_t , a_{μ} , and a_V , see the earlier version of the same note in the 1982 edition of this Review published in Physics Letters 111B 70 (1982).

$$|{\rm matrix~element}|^2=1+gu+hu^2+jv+kv^2+fuv$$
 where $u=(s_3-s_0)~/~m_\pi^2$ and $v=(s_2-s_1)~/~m_\pi^2$

LINEAR COEFFICIENT g FOR $K_L^0 \to \pi^+\pi^-\pi^0$

VALUE	<u>EVTS</u>	DOCUMENT ID		
0.678 ±0.008 OUR A	/ERAGE	Error includes scale	e fact	or of 1.5. See the ideogram
below.				
$0.6823 \pm 0.0044 \pm 0.0044$	500k	ANGELOPO	9 8C	CPLR
0.681 ± 0.024	6499	CHO	77	HBC
0.620 ± 0.023	4709	PEACH	77	HBC
0.677 ± 0.010	509k	MESSNER	74	ASPK $a_V = -0.917 \pm 0.013$
				,
HTTP://PDG.LBL.0	GOV	Page 20		Created: 5/30/2017 17:22

• • • We do not use the following data for averages, fits, limits, etc. • • •

0.69	± 0.07	192	¹ BALDO		HLBC	
0.590	± 0.022	56k	¹ BUCHANAN	75	SPEC	$a_{II} = -0.277 \pm 0.010$
0.619	± 0.027	20k				$a_t = -0.282 \pm 0.011$
0.612	± 0.032		¹ ALEXANDER		HBC	-
0.73	± 0.04	3200	¹ BRANDENB	73	HBC	
0.608	± 0.043	1486		72	HLBC	$a_t = -0.277 \pm 0.018$
0.650	± 0.012	29k	$^{ m 1}$ ALBROW	70	ASPK	$a_V = -0.858 \pm 0.015$
0.593	± 0.022	36k	^{1,3} BUCHANAN	70	SPEC	$a_{II} = -0.278 \pm 0.010$
0.664	± 0.056	4400	¹ SMITH	70	OSPK	$a_t = -0.306 \pm 0.024$
0.400	± 0.045	2446	¹ BASILE	68 B	OSPK	$a_t = -0.188 \pm 0.020$
0.649	± 0.044	1350	$^{ m 1}$ HOPKINS	67	HBC	$a_t = -0.294 \pm 0.018$
0.428	± 0.055	1198	$^{ m 1}$ NEFKENS	67	OSPK	$a_{II} = -0.204 \pm 0.025$

 $^{^1}$ Quadratic dependence required by some experiments. (See sections on "QUADRATIC COEFFICIENT h" and "QUADRATIC COEFFICIENT k" below.) Correlations prevent us from averaging results of fits not including $g,\ h,$ and k terms.

 $^{^3}$ BUCHANAN 70 result revised by BUCHANAN 75 to include radiative correlations and to use more reliable K_L^0 momentum spectrum of second experiment (had same beam).

Linear coeff. g for $K_L^0 \to \pi^+\pi^-\pi^0$ matrix element squared

 $^{^2}$ BISI 74 value comes from quadratic fit with quad. term consistent with zero. g error is thus larger than if linear fit were used.

QUADRATIC COEFFICIENT h FOR $K_I^0 \rightarrow \pi^+\pi^-\pi^0$

VALUE	EVTS	DOCUMENT ID		TECN
0.076±0.006 OUR AV	/ERAGE			
$0.061\!\pm\!0.004\!\pm\!0.015$	500k	ANGELOPO	98 C	CPLR
$0.095\!\pm\!0.032$	6499	CHO	77	HBC
0.048 ± 0.036	4709	PEACH	77	HBC
$0.079\!\pm\!0.007$	509k	MESSNER	74	ASPK

• • • We do not use the following data for averages, fits, limits, etc. • • •

¹ ALBROW 29k -0.011 ± 0.018 ¹ SMITH 0.043 ± 0.052 4400 70 OSPK

See notes in section "LINEAR COEFFICIENT g FOR $K_L^0
ightarrow \pi^+\pi^-\pi^0$ |MATRIX $|ELEMENT|^{2}$ above.

QUADRATIC COEFFICIENT k FOR $K_I^0 \rightarrow \pi^+\pi^-\pi^0$

VALUE	EVTS	DOCUMENT ID	TECN
0.0099±0.0015 OUR AVER	RAGE		
$0.0104 \pm 0.0017 \pm 0.0024$	500k	ANGELOPO 980	CPLR
$0.024\ \pm0.010$	6499	CHO 77	HBC
-0.008 ± 0.012	4709	PEACH 77	HBC
0.0097 ± 0.0018	509k	MESSNER 74	ASPK

LINEAR COEFFICIENT j FOR $K_L^0 \to \pi^+\pi^-\pi^0$ (*CP*-VIOLATING TERM) Listed in *CP*-violation section below.

QUADRATIC COEFFICIENT f FOR $K_I^0 o \pi^+\pi^-\pi^0$ (*CP*-VIOLATING TERM)

Listed in CP-violation section below.

QUADRATIC COEFFICIENT h FOR $K_L^0 \rightarrow \pi^0 \pi^0 \pi^0$

We do not average measurements that do not account for the effect of final state rescattering.

$VALUE$ (units 10^{-3})	EVTS	DOCUMENT ID		TECN
$+0.59\pm0.20\pm1.16$	68M	¹ ABOUZAID	08A	KTEV

• • • We do not use the following data for averages, fits, limits, etc. • •

$$-6.1 \pm 0.9 \pm 0.5$$
 14.7M 2 LAI 01B NA48 $-3.3 \pm 1.1 \pm 0.7$ 5M 2,3 SOMALWAR 92 E731

 $^{^{1}}$ Quadratic coefficients h and k required by some experiments. (See section on "QUADRATIC COEFFICIENT k" below.) Correlations prevent us from averaging results of fits not including g, h, and k terms.

¹Result obtained using CI3pI model of CABIBBO 05 to include $\pi\pi$ rescattering effects. The systematic error includes an external error of 1.06×10^{-3} from the parametrization input of (a $_0$ -a $_2$) $m_{\pi^+}=$ 0.268 \pm 0.017 from BATLEY 06B.

 $^{^2}$ LAI 01B and SOMALWAR 92 results do not include $\pi\pi$ final state rescattering effects.

 $^{^3}$ SOMALWAR 92 chose m_{π^+} as normalization to make it compatible with the Particle Data Group $K_I^0 \rightarrow \pi^+ \pi^- \pi^0$ definitions.

K_i^0 FORM FACTORS

For discussion, see note on form factors in the K^{\pm} section of the Particle Listings above.

In the form factor comments, the following symbols are used.

 f_{\perp} and f_{\perp} are form factors for the vector matrix element.

 f_{S} and f_{T} refer to the scalar and tensor term.

$$f_0(t) = f_+(t) + f_-(t) t/(m_{\kappa_0}^2 - m_{\pi^+}^2).$$

t= momentum transfer to the $\pi.$

 λ_{+} and λ_{0} are the linear expansion coefficients of f_{+} and f_{0} :

$$f_{+}(t) = f_{+}(0) (1 + \lambda_{+} t / m_{\pi^{+}}^{2})$$

For quadratic expansion

$$f_{+}(t) = f_{+}(0) \left(1 + \lambda'_{+} t / m_{\pi^{+}}^{2} + \frac{\lambda''_{+}}{2} t^{2} / m_{\pi^{+}}^{4}\right)$$

as used by KTeV. If there is a non-vanishing quadratic term, then λ_{\perp}

represents an average slope, which is then different from λ'_{+} .

NA48 (K_{e3}) and ISTRA quadratic expansion coefficients are converted with

$$\lambda'_{+} \stackrel{PDG}{=} \lambda_{+} \stackrel{NA48}{=} \text{ and } \lambda''_{+} \stackrel{PDG}{=} 2 \lambda'_{+} \stackrel{NA48}{=} \lambda'_{+} \stackrel{PDG}{=} (\frac{m_{\pi^{+}}}{m_{\pi^{0}}})^{2} \lambda_{+} \stackrel{ISTRA}{=} \text{ and } \lambda''_{+} \stackrel{PDG}{=} 2 (\frac{m_{\pi^{+}}}{m_{\pi^{0}}})^{4} \lambda'_{+} \stackrel{ISTRA}{=}$$

ISTRA linear expansion coefficients are converted with
$$\lambda_+^{PDG}=(\frac{m_{\pi^+}}{m_{\pi^0}})^2~\lambda_+^{ISTRA}$$
 and $\lambda_0^{PDG}=(\frac{m_{\pi^+}}{m_{\pi^0}})^2~\lambda_0^{ISTRA}$

The pole parametrization is

$$f_{+}(t) = f_{+}(0) \left(\frac{M_V^2}{M_V^2 - t} \right)$$

$$f_0(t) = f_0(0) \left(\frac{M_S^2}{M_S^2 - t} \right)$$

where M_V and M_S are the vector and scalar pole masses.

The dispersive parametrization is

$$f_{+}(t) = f_{+}(0) \exp\left[\frac{t}{m_{\pi}^{2}} (\Lambda_{+} + H(t))\right];$$

 $f_{0}(t) = f_{+}(0) \exp\left[\frac{t}{m_{K}^{2} - m_{\pi}^{2}} (\ln[C] - G(t))\right],$

where Λ_{+} is the slope parameter and $\ln[C] = \ln[f_0 (m_K^2 - m_\pi^2)]$

is the logarithm of the scalar form factor at the Callan-Treiman point

Created: 5/30/2017 17:22

H(t) and G(t) are dispersive integrals.

The following abbreviations are used:

DP = Dalitz plot analysis.

 $PI = \pi$ spectrum analysis.

 $MU = \mu$ spectrum analysis.

POL= μ polarization analysis.

BR = $K_{\mu 3}^0/K_{e3}^0$ branching ratio analysis.

E = positron or electron spectrum analysis.

RC = radiative corrections.

λ_+ (LINEAR ENERGY DEPENDENCE OF f_+ IN K_{e3}^0 DECAY)

For radiative correction of K_{e3}^0 DP, see GINSBERG 67, BECHERRAWY 70, CIRIGLIANO 02, CIRIGLIANO 04, and ANDRE 07. Results labeled OUR FIT are discussed in the review " $K_{\ell3}^\pm$ and $K_{\ell3}^0$ Form Factors" in the K^\pm Listings. For earlier, lower statistics results, see the 2004 edition of this review, Physics Letters **B592** 1 (2004).

$VALUE$ (units 10^{-2})	EVTS	DOCUMENT ID	TEC	COMMENT	
2.82 ±0.04 OUR FIT	Error inclu	ides scale factor of 1.	1. Assum	$\frac{1}{1}$ ning μ - e universali	ty
2.85 ± 0.04 OUR AVE	RAGE				
$2.86 \pm 0.05 \pm 0.04$	2M	AMBROSINO (06D KLC	E	
$2.832 \pm 0.037 \pm 0.043$	1.9M)4A KTE	${\sf EV}$ PI, no $\mu={\sf e}$	
$2.88 \pm 0.04 \pm 0.11$	5.6M	1 LAI $^{\circ}$	04C NA4	8 DP	
• • • We do not use the	following o	data for averages, fits	s, limits, e	etc. • • •	
$2.84 \pm 0.07 \pm 0.13$	5.6M	² LAI (04C NA4	8 DP	
$2.45 \pm 0.12 \pm 0.22$	366k	APOSTOLA 0	00 CPL	R DP	
3.06 ± 0.34	74k	BIRULEV 8	31 SPE	C DP	
3.12 ± 0.25	500k	GJESDAL 7	6 SPE	C DP	
2.70 ± 0.28	25k	BLUMENTHAL7	75 SPE	C DP	

Results from linear fit and assuming only vector and axial couplings.

λ_+ (LINEAR ENERGY DEPENDENCE OF f_+ IN $K_{\mu3}^0$ DECAY)

Results labeled OUR FIT are discussed in the review " $K_{\ell 3}^{\pm}$ and $K_{\ell 3}^{0}$ Form Factors" in the K^{\pm} Listings. For earlier, lower statistics results, see the 2004 edition of this review, Physics Letters **B592** 1 (2004).

VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
2.82 ±0.04 OUR FIT	Error inclu	ides scale factor	of 1.1	. Assum	ning μ - e universality
2.71 ± 0.10 OUR FIT	Error inclu	ides scale factor	of 1.4	. Not as	ssuming $\mu ext{-}e$ universality
$2.67 \pm 0.06 \pm 0.08$	2.3M	¹ LAI	07A	NA48	DP
$2.745 \pm 0.088 \pm 0.063$	1.5M	ALEXOPOU	04A	KTEV	DP, no $\mu=e$
2.813 ± 0.051	3.4M	ALEXOPOU	04A	KTEV	PI, DP, $\mu = e$
3.0 ± 0.3	1.6M	DONALDSON	74 B	SPEC	DP
• • • We do not use the	following o	data for averages	, fits,	limits, e	etc. • • •
	150k	BIRULEV	81	SPEC	DP
1					

 $^{^{1}}$ LAI 07A gives a correlation - 0.40 between their λ_{0} and λ_{+} measurements.

λ_0 (LINEAR ENERGY DEPENDENCE OF f_0 IN $K^0_{\mu3}$ DECAY)

Wherever possible, we have converted the above values of $\xi(0)$ into values of λ_0 using the associated λ_+^μ and $d\xi(0)/d\lambda_+$. Results labeled OUR FIT are discussed in the review " $K_{\ell 3}^\pm$ and $K_{\ell 3}^0$ Form Factors" in the K^\pm Listings. For earlier, lower statistics results, see the 2004 edition of this review, Physics Letters **B592** 1 (2004).

```
VALUE (units 10^{-2})d\lambda_0/d\lambda_+EVTSDOCUMENT IDTECNCOMMENT1.38 ±0.18 OUR FITError includes scale factor of 2.2. Assuming \mu-e universality1.42 ±0.23 OUR FITError includes scale factor of 2.8. Not assuming \mu-e universality1.17 ±0.07 ±0.102.3M\frac{1}{2} LAI07ANA48DP1.657±0.125-0.441.5M\frac{2}{2} ALEXOPOU...04AKTEVDP, no \mu = e
```

HTTP://PDG.LBL.GOV

Page 24

² Results from linear fit with $|f_S/f_+|$ and $|f_T/f_+|$ free.

 1.635 ± 0.121 -0.85 3.4M 3 ALEXOPOU... 04A KTEV PI, DP, $\mu=e$ +1.9 ±0.4 -0.47 1.6M 4 DONALDSON 74B SPEC DP

• • • We do not use the following data for averages, fits, limits, etc. • • •

 3.41 ± 0.67 unknown 150k ⁵ BIRULEV 81 SPEC DF

λ'_{+} (LINEAR K_{e3}^{0} FORM FACTOR FROM QUADRATIC FIT)

VALUE (units 10^{-2})EVTSDOCUMENT IDTECNCOMMENT2.40 ±0.12 OUR FITError includes scale factor of 1.2. Assuming μ -e universality2.49 ±0.13 OUR FITError includes scale factor of 1.1. Not assuming μ -e universality2.48 ±0.17 OUR AVERAGEError includes scale factor of 1.5. See the ideogram below.2.55 ±0.15 ±0.102M $\frac{1}{4}$ AMBROSINO 06D KLOE2.167±0.137±0.1431.9M $\frac{2}{4}$ ALEXOPOU... 04A KTEV PI, no μ = e2.80 ±0.19 ±0.155.6M $\frac{3}{4}$ LAI04C NA48 DP

WEIGHTED AVERAGE 2.48±0.17 (Error scaled by 1.5)

 λ'_+ (LINEAR κ^0_{e3} FORM FACTOR FROM QUADRATIC FIT) (units 10^{-2})

 $^{^1}$ LAI 07A gives a correlation - 0.40 between their λ_0 and λ_+ measurements.

 $^{^2}$ ALEXOPOULOS 04A gives a correlation - 0.38 between their λ_0 and λ_+ measurements.

 $^{^3}$ ALEXOPOULOS 04A gives a correlation - 0.36 between their λ_0 and λ_+ measurements.

 $^{^4\,\}mathrm{DONALDSON}$ 74B $d\lambda_0/d\lambda_+$ obtained from figure 18.

⁵ BIRULEV 81 gives $d\lambda_0/d\lambda_+=-1.5$, giving an unreasonably narrow error ellipse which dominates all other results. We use $d\lambda_0/d\lambda_+=0$.

 $^{^1}$ We use AMBROSINO 06D result in the fit not assuming $\mu-e$ universality. This result enters the fit assuming $\mu-e$ universality via AMBROSINO 07C measurement of λ'_+ in $K_{\mu3}$ decays. AMBROSINO 06D gives a correlation -0.95 between their λ'_+ and λ''_+ .

 $^{^2}$ ALEXOPOULOS 04A gives a correlation - 0.97 between their λ'_+ and λ''_+ .

³ For LAI 04C we calculate a correlation -0.88 between their λ'_{+} and λ''_{+} .

λ''_+ (QUADRATIC K_{e3}^0 FORM FACTOR)

VALUE (units 10^{-2}) Error includes scale factor of 1.2. Assuming μ -e universality 0.20 ± 0.05 OUR FIT 0.16 ± 0.05 OUR FIT Error includes scale factor of 1.1. Not assuming μ -e universality 0.17 ± 0.07 OUR AVERAGE Error includes scale factor of 1.5. See the ideogram below. ¹ AMBROSINO 06D KLOE $0.14 \pm 0.07 \pm 0.04$ 2M ² ALEXOPOU... 04A KTEV $0.287 \pm 0.057 \pm 0.053$ 1.9M PI, no $\mu = e$ $0.04 \pm 0.08 \pm 0.04$ 5.6M

WEIGHTED AVERAGE 0.17±0.07 (Error scaled by 1.5)

 λ''_{+} (QUADRATIC K_{e3}^{0} FORM FACTOR) (units 10^{-2})

λ'_+ (LINEAR $K^0_{\mu 3}$ FORM FACTOR FROM QUADRATIC FIT)

$VALUE$ (units 10^{-2})	EVTS	DOCUMENT ID TECN COMMENT	
2.40 ±0.12 OUR FIT	Error in	cludes scale factor of 1.2. Assuming μ -e universality	
1.89 \pm 0.24 OUR FIT	Not assi	uming μ - e universality	
$2.23 \pm 0.98 \pm 0.37$		1 AMBROSINO 07C KLOE no $\mu=e$	
$2.56 \pm 0.15 \pm 0.09$	3.8M	1 AMBROSINO 07C KLOE $\mu = e$	
$2.05 \pm 0.22 \pm 0.24$	2.3M	1 LAI 07A NA48 DP	
$1.703 \pm 0.319 \pm 0.177$	1.5M	1 ALEXOPOU 04A KTEV DP, no $\mu=e$	
2.064 ± 0.175	3.4M	1 ALEXOPOU 04A KTEV PI, DP, $\mu=e$	

¹See section λ_0 below for correlations.

 $^{^1}$ We use AMBROSINO 06D result in the fit not assuming $\mu-e$ universality. This result enters the fit assuming $\mu-e$ universality via AMBROSINO 07C measurement of λ''_+ in $K_{\mu3}$ decays. AMBROSINO 06D gives a correlation -0.95 between their λ'_+ and λ''_+ .

²ALEXOPOULOS 04A gives a correlation -0.97 between their λ'_+ and λ''_+ .

³ Values doubled to agree with PDG conventions described above.

 $^{^4}$ LAI 04C gives a correlation -0.88 between their λ'_+ and λ''_+ .

λ''_+ (QUADRATIC $K^0_{\mu3}$ FORM FACTOR)

$VALUE$ (units 10^{-2})	EVTS	DOCUMENT ID	TECN COMMENT
0.20 ±0.05 OUR FIT	Error in	cludes scale factor of 1.2	2. Assuming μ - e universality
0.37 ± 0.12 OUR FIT	Error in	cludes scale factor of 1.3	3. Not assuming μ - e universality
$0.48\ \pm0.49\ \pm0.16$	1.8M	¹ AMBROSINO 07C	KLOE no $\mu=\mathit{e}$
$0.15\ \pm0.07\ \pm0.04$	3.8M	¹ AMBROSINO 07C	
$0.26\ \pm0.09\ \pm0.10$	2.3M	¹ LAI 07A	
$0.443\!\pm\!0.131\!\pm\!0.072$	1.5M		KTEV DP, no $\mu=\mathit{e}$
0.320 ± 0.069	3.4M	¹ ALEXOPOU 04A	KTEV PI, DP, $\mu=e$

¹ See section λ_0 below for correlations.

λ_0 (LINEAR f_0 $K^0_{\mu3}$ FORM FACTOR FROM QUADRATIC FIT)								
VALUE (units 10^{-2})	EVTS	DOCUMENT ID	TECN	COMMENT				
1.16 ±0.09 OUR FIT	Error inc	cludes scale factor of 1.2	. Assum	ning μ - e universality				
1.07 \pm 0.14 OUR FIT	Error inc	cludes scale factor of 1.3	. Not a	ssuming $\mu ext{-}e$ universality				
$0.91 \ \pm 0.59 \ \pm 0.26$	1.8M	¹ AMBROSINO 07C						
$1.54 \pm 0.18 \pm 0.13$	3.8M	² AMBROSINO 07C						
$0.95 \pm 0.11 \pm 0.08$								
$1.281 \pm 0.136 \pm 0.122$	1.5M	⁴ ALEXOPOU 04A						
1.372 ± 0.131	3.4M	⁵ ALEXOPOU 04A	KTEV	PI, DP, μ = e				
¹ AMBROSINO 07c,	not assumi	ing μ - e universality, give	s a corr	elation matrix				
	λ'_+	λ''_+						
λ''_+ -	$\lambda'_{+} \\ -0.97$	1						
λ_0	0.81 -	-0.91						
² AMBROSINO 07c,	assuming /	u-e universality, gives a	correlati	on matrix				
	λ' ₊ -0.95 0.29 -	λ''_+						
λ''_+ -	- 0.95	1						
λ_0	0.29 -	- 0.38						
³ LAI 07A gives a cor	relation ma	itrix						

$$\lambda'_{+}$$
 λ''_{+} λ''_{+} λ''_{+} λ_{0} 0.63 -0.73

⁴ ALEXOPOULOS 04A, not assuming μ -e universality, gives a correlation matrix λ'_+ λ''_+ λ_0

$$\lambda'_{+}$$
 λ''_{+} $\lambda''_{$

 λ_0 0.65 -0.75 1 5 ALEXOPOULOS 04A, assuming $\mu\text{-}e$ universality, gives a correlation matrix λ'_+ λ''_+ λ_0

$$\lambda'_{+}$$
 λ''_{+} λ''_{+} λ_{0}
 λ''_{+} λ''_{+} λ_{0} $\lambda_{$

M_V^e (POLE MASS FOR K_{e3}^0 DECAY)

VALUE	(MeV)		EVTS	DOCUMENT ID		TECN	COMMENT
878	± 6	OUR FIT	Error	includes scale factor	of 1.	1. Assu	ming μ - e universality
875	± 5	OUR AV	ERAGE				
870	\pm 6	± 7	2M	AMBROSINO	06 D	KLOE	
881.0	3± 5.1	2 ± 4.94	1.9M	ALEXOPOU	04A	KTEV	PI, no $\mu=e$
859	± 18		5.6M	LAI	04C	NA48	

M_V^μ (POLE MASS FOR $\mathcal{K}_{\mu3}^0$ DECAY)

VALUE	(MeV)		EVTS	DOCUMENT ID		TECN	COMMENT
878	± 6	OUR FI	F Error in	ncludes scale facto	r of 1	.1. Assu	ming μ - e universality
900	±21	OUR FI	F Error in	ncludes scale facto	r of 1	.7. Not	assuming μ - e universality
905	\pm 9	± 17	2.3M	¹ LAI		_	
889.1	9 ± 12.8	1 ± 9.92	1.5M	¹ ALEXOPOU			
882.3	2 ± 6.5	4	3.4M	¹ ALEXOPOU	04A	KTEV	PI, DP, $\mu=\mathrm{e}$

 $^{^1 \, {}m See}$ section M^μ_S below for correlations.

M_S^μ (POLE MASS FOR $K_{\mu3}^0$ DECAY)

VALUE ((MeV)		EVTS	DOCUMENT ID		TECN	COMMENT
1252	± 90	OUR FI	T Error	includes scale fact	or of	2.6. Ass	uming μ - e universality
1222	±80	OUR FI	T Error	includes scale fact	or of	2.3. Not	assuming μ - e universal-
ity							
1400	± 46	± 53	2.3M	1 LAI	07A	NA48	DP
1167.1	4 ± 28.3	0 ± 31.04	1.5M	² ALEXOPOU	04A	KTEV	PI, no $\mu=\mathit{e}$
1173.8	0 ± 39.4	7	3.4M	³ ALEXOPOU	04A	KTEV	PI, DP, $\mu = e$

 $^{^1 \, {\}rm LAI}$ 07A gives a correlation -0.47 between their M_S^μ and M_V^μ measurements, not assuming $\mu\text{-e}$ universality.

\varLambda_{+} (DISPERSIVE VECTOR FORM FACTOR FOR $K_{\mu3}^{0}$ DECAY)

See the review on " $K_{\ell 3}^\pm$ and $K_{\ell 3}^0$ Form Factors" for details of the dispersive parametrization.

$VALUE$ (units 10^{-1})	EVTS	DOCUMENT ID	TECN	COMMENT
0.251 ±0.006 OUR AVE	RAGE	Error includes scale fa	actor of 1.5.	See the ideogram
below.				
$0.2509 \pm 0.0035 \pm 0.0043$	3.4M	¹ ABOUZAID :	10 KTEV	$\mu=e$
$0.257\ \pm0.004\ \pm0.004$	3.8M	² AMBROSINO (07c KLOE	$\mu = e$
$0.233\ \pm0.005\ \pm0.008$	2.3M	³ LAI (07A NA48	DP

 $^{^1}$ Obtained from a sample of 1.9 M K_{e3} and 1.5 M $K_{\mu3}$. The correlation between Λ_+ and ln(C) is -0.269.

 $^{^2}$ ALEXOPOULOS 04A gives a correlation - 0.46 between their M_S^μ and M_V^μ and measurements, not assuming $\mu\text{-}e$ universality.

 $^{^3}$ ALEXOPOULOS 04A gives a correlation - 0.40 between their M_S^μ and M_V^μ and measurements, assuming $\mu\text{-}e$ universality.

 $^{^2}$ AMBROSINO 07c results include 2M $K_{\rm e3}$ events from AMBROSINO 06D. The correlation between Λ_+ and $\ln({\it C})$ is - 0.26.

 $^{^3}$ LAI 07A gives a correlation -0.44 between their Λ_+ and $\ln(\mathcal{C})$ measurements.

 \varLambda_{+} (DISPERSIVE VECTOR FORM FACTOR FOR $K_{\mu3}^{0}$ DECAY) (units $10^{-1})$

$\ln({\it C})$ (DISPERSIVE SCALAR FORM FACTOR FOR $K_{\mu3}^0$ DECAY)

See the review on " $K_{\ell 3}^\pm$ and $K_{\ell 3}^0$ Form Factors" for details of the dispersive parametrization.

$VALUE$ (units 10^{-1})	EVTS	DOCUMENT ID		TECN	COMMENT
			facto	of 2.0.	See the ideogram below.
$1.915 \pm 0.078 \pm 0.094$	3.4M	¹ ABOUZAID			
$2.04 \pm 0.19 \pm 0.15$	3.8M	² AMBROSINO	07 C	KLOE	$\mu = e$
$1.438 \pm 0.080 \pm 0.112$	2.3M	³ LAI	07A	NA48	DP

 $^{^1}$ Obtained from a sample of 1.9 M K_{e3} and 1.5 M $K_{\mu3}$. The correlation between Λ_+ and ln(C) is -0.269.

 $^{^2}$ AMBROSINO 07C results include 2M K_{e3} events from AMBROSINO 06D. We convert $(\Lambda_+,\,\Lambda_0)$ to $(\Lambda_+,\,\ln(\mathcal{C}))$ parametrization using $\ln(\mathcal{C})=(\Lambda_0\cdot 11.713+0.0398)\pm 0.0041,$ where the error is due to theory parametrization of the form factor. The correlation between Λ_+ and $\ln(\mathcal{C})$ is -0.26.

 $^{^3}$ LAI 07A gives a correlation -0.44 between their Λ_+ and $\ln({\it C})$ measurements.

WEIGHTED AVERAGE 1.75±0.18 (Error scaled by 2.0)

 $\ln({\it C})$ (DISPERSIVE SCALAR FORM FACTOR FOR $K_{\mu3}^0$ DECAY) (units 10^{-1})

$a_1(t_0, Q^2)$ FORM FACTOR PARAMETER See HILL 06 for a definition of this parameter.

VALUE	EVTS	DOCUMENT ID		TECN	
$1.023 \pm 0.028 \pm 0.029$	2M	$^{ m 1}$ ABOUZAID	06 C	KTEV	
$^{1}Q^{2}= 2 \text{ GeV}^{2}, t_{0}=$	0.49 (m _K	$(-m_{\pi})^2$. Correlation	tion be	etween a ₁	and a_2 : $\rho_{12} = -0.064$.

a₂(t₀, Q²) FORM FACTOR PARAMETER See HILL 06 for a definition of this parameter.

VALUE	<u>EVTS</u>	DOCUMENT ID		<u>TECN</u>
$0.75 \pm 1.58 \pm 1.47$	2M	$^{ m 1}$ ABOUZAID	06 C	KTEV
1 Q^{2} = 2 GeV 2 , t_{0} =	0.49 (m _K	$-m_\pi)^2$. Correlat	ion be	etween a_1 and a_2 : $ ho_{12} = -0.064$.

$|f_{\rm S}/f_{+}|$ FOR $K_{\rm e3}^{\rm 0}$ DECAY Ratio of scalar to f_{+} couplings.

68

$VALUE$ (units 10^{-2})	CL%	EVTS	DOCUMENT	ID	TECN	COMMENT
$1.5^{igoplus 0.7}_{-1.0} \pm 1.2$		5.6M	¹ LAI	04 C	NA48	
ullet $ullet$ We do not	use th	ne following	g data for avera	ages, fits,	limits, e	etc. • • •
< 9.5	95	18k	HILL	78	STRC	
<7.	68	48k	BIRULEV	76	SPEC	See also BIRULEV 81

BLUMENTHAL75

SPEC

Created: 5/30/2017 17:22

25k

<4.

 $^{^{1}\}operatorname{Results}$ from linear fit with $\left|f_{S}/f_{+}\right|$ and $\left|f_{T}/f_{+}\right|$ free.

$|f_T/f_+|$ FOR K_{e3}^0 DECAY Ratio of tensor to f_+ couplings.

$VALUE$ (units 10^{-2})	CL%	EVTS		DOCUMEN	NT ID		TECN	COMMENT	
$5^{+3}_{-4}\pm3$		5.6M	1	L _{LAI}		04 C	NA48		

• • We do not use the following data for averages, fits, limits, etc.

<40.	95	18k	HILL	78	STRC	
<34.	68	48k	BIRULEV	76	SPEC	See also BIRULEV 81
<23.	68	25k	BLUMENTH	AL75	SPEC	

¹Results from linear fit with $|f_S/f_+|$ and $|f_T/f_+|$ free.

$|f_T/f_+|$ FOR $K_{\mu 3}^0$ DECAY Ratio of tensor to f_+ couplings.

$VALUE$ (units 10^{-2})	DOCUMENT ID		TECN
12.±12.	BIRULEV 8	31	SPEC

 α_{K^*} DECAY FORM FACTOR FOR $K_L \to \ell^+\ell^-\gamma$, $K_L^0 \to \ell^+\ell^-\ell'^+\ell'^-$ Average of all α_{K^*} measurements (from each of three datablocks following this one) assuming lepton universality.

DOCUMENT ID

−0.205±0.022 OUR AVERAGE Includes data from the 3 datablocks that follow this one. Error includes scale factor of 1.8. See the ideogram below.

 $\alpha_{\textit{K}^*}$ Decay form factor for $\textit{K}_{\textit{L}} \rightarrow \ \ell^+ \ell^- \gamma, \ \textit{K}_{\textit{L}}^0 \rightarrow \ \ell^+ \ell^- \ell'^+ \ell'^-$

α_{K^*} DECAY FORM FACTOR FOR $K_L \rightarrow e^+e^-\gamma$

 α_{K^*} is the constant in the model of BERGSTROM 83 which measures the relative strength of the vector-vector transition $K_I \to K^* \gamma$ with $K^* \to \rho$, ω , $\phi \to \gamma^*$ and the pseudoscalar-pseudoscalar transition $K_L \rightarrow \pi$, η , $\eta' \rightarrow \gamma \gamma^*$.

=0.217±0.034 OUR AVERAGE Error includes scale factor of 2.4.

$-0.207\!\pm\!0.012\!\pm\!0.009$	83k	¹ ABOUZAID	07 B	KTEV
$-0.36 \pm 0.06 \pm 0.02$	6864	FANTI	99 B	NA48
-0.28 ± 0.13		BARR	90 B	NA31
$-0.280 ^{+0.099}_{-0.090}$		OHL	90 B	B845

 $^{^1}$ ABOUZAID 07B measures $extit{C} \cdot lpha_{ extit{K}^*} = -0.517 \pm 0.030 \pm 0.022$. We assume $extit{C} = 2.5$, as in all other measurements.

α_{K*} DECAY FORM FACTOR FOR $K_L \rightarrow \mu^+ \mu^- \gamma$

 α_{K^*} is the constant in the model of BERGSTROM 83 described in the previous section.

DOCUMENT ID TECN **EVTS**

The data in this block is included in the average printed for a previous datablock.

-0.158 ± 0.027 OUR AVERAGE

 $-0.160 ^{\,+\, 0.026}_{\,-\, 0.028}$ 9100 ALAVI-HARATI01G KTEV $-0.04 \begin{array}{l} +0.24 \\ -0.21 \end{array}$ FANTI NA48

α_{K*}^{eff} DECAY FORM FACTOR FOR $K_L \rightarrow e^+e^-e^+e^-$

 $lpha_{K^*}^{ ext{eff}}$ is the parameter describing the relative strength of an intermediate pseudoscalar decay amplitude and a vector meson decay amplitude in the model of BERGSTROM 83. It takes into account both the radiative effects and the form factor. Since there are two e^+e^- pairs here compared with one in $e^+e^-\gamma$ decays, a factorized expression is used for the $e^+e^-e^+e^-$ decay form factor.

DOCUMENT ID TECN <u>EVTS</u>

The data in this block is included in the average printed for a previous datablock.

 $-0.14\pm0.16\pm0.15$ ALAVI-HARATIO1D KTEV 441

$lpha_{DIP}$ DECAY FORM FACTOR FOR $\emph{K}^0_{\emph{L}} ightarrow \emph{\ell}^+ \emph{\ell}^- \gamma$, $\emph{K}^0_{\emph{L}} ightarrow \emph{\ell}^+ \emph{\ell}^- \emph{\ell}'^+ \emph{\ell}'^-$ Average of all $lpha_{DIP}$ measurements (from each of three datablocks following this one)

assuming lepton universality.

DOCUMENT ID

 -1.69 ± 0.08 **OUR AVERAGE** Includes data from the 3 datablocks that follow this one. Error includes scale factor of 1.7.

$lpha_{DIP}$ DECAY FORM FACTOR FOR $K_L^0 ightarrow e^+e^-\gamma$

 $lpha_{DIP}$ parameter in $K_L^0 o \gamma^* \gamma^*$ form factor by DAMBROSIO 98, motivated by vector meson dominance and a proper short distance behavior.

DOCUMENT ID EVTS

The data in this block is included in the average printed for a previous datablock.

83k $-1.729\pm0.043\pm0.028$ ABOUZAID 07B KTEV

HTTP://PDG.LBL.GOV Page 32 Created: 5/30/2017 17:22

 $lpha_{DIP}$ DECAY FORM FACTOR FOR $K_L^0
ightarrow \mu^+ \mu^- \gamma$ $lpha_{DIP}$ is a constant in the model of DAMBROSIO 98 described in the previous section.

 -1.54 ± 0.10

9100

ALAVI-HARATI01G KTEV

$lpha_{DIP}$ DECAY FORM FACTOR FOR $K_L^0 ightarrow e^+e^-\mu^+\mu^ lpha_{DIP}$ is a constant in the model of DAMBROSIO 98 described in the previous section.

The data in this block is included in the average printed for a previous datablock.

 -1.59 ± 0.37

131

ALAVI-HARATI03B KTEV

a₁/a₂ FORM FACTOR FOR M1 DIRECT EMISSION AMPLITUDE

Form factor = $\tilde{g}_{M1}\Big[1+rac{a_1/a_2}{(M_
ho^2-M_K^2)+2M_KE_\gamma^*}\Big]$ as described in ALAVI-HARATI 00B.

<i>VALUE</i> (GeV ²)	EVTS	DOCUMENT ID		TECN	COMMENT
-0.737 ± 0.014 OUR AV	/ERAGE				
$-0.744 \pm 0.027 \pm 0.032$	5241	$^{ m 1}$ ABOUZAID			
$-0.738\!\pm\!0.007\!\pm\!0.018$	111k	² ABOUZAID	06A	KTEV	$\pi^+\pi^+\gamma$
$-0.81 \ {+0.07\atop -0.13} \ \pm 0.02$		³ LAI	03 C	NA48	$\pi^{+}\pi^{-}e^{+}e^{-}$
$-0.737\!\pm\!0.026\!\pm\!0.022$		⁴ ALAVI-HARAT	I01 B		$\pi^+\pi^-\gamma$
$-0.720 \pm 0.028 \pm 0.009$	1766	⁵ ALAVI-HARAT	100 B	KTEV	$\pi^{+}\pi^{-}e^{+}e^{-}$
¹ ABOUZAID 06 also	measured	$ \widetilde{g}_{M1} = 1.11 \pm 0$	0.14.		

\overline{f}_S DECAY FORM FACTOR FOR $K_L^0 ightarrow \, \pi^\pm \pi^0 \, e^\mp u_e$

VALUE	DOCUMENT ID		TECN
0.049 ± 0.011 OUR AVERAGE	Error includes scale	factor	of 1.7.
$0.052 \pm 0.006 \pm 0.002$	BATLEY	04	NA48
$0.010\pm0.016\pm0.017$	MAKOFF	93	E731

\overline{f}_P DECAY FORM FACTOR FOR $K_L^0 ightarrow \, \pi^\pm \pi^0 \, e^\mp u_e$

VALUE	DOCUMENT IL)	TECN
-0.052 ± 0.012 OUR AVERAGE			
$-0.051 \pm 0.011 \pm 0.005$	BATLEY	04	NA48
$-0.079\pm0.049\pm0.022$	MAKOFF	93	E731

λ_a DECAY FORM FACTOR FOR $K_I^0 \to \pi^{\pm}\pi^0 e^{\mp}\nu_e$

VALUE	DOCUMENT IL)	TECN
0.085±0.020 OUR AVERAGE			
$0.087\!\pm\!0.019\!\pm\!0.006$	BATLEY	04	NA48
$0.014 \pm 0.087 \pm 0.070$	MAKOFF	93	E731

 $^{^2}$ ABOUZAID 06A also measured $|\widetilde{g}_{M1}|=1.198\pm0.035\pm0.086.$ 3 LAI 03C also measured $\widetilde{g}_{M1}=0.99^{+0.28}_{-0.27}\pm0.07.$

 $^{^4}$ ALAVI-HARATI 01B fit gives $\chi^2/{\rm DOF}=38.8/27$. Linear and quadratic fits give $\chi^2/{\rm DOF}$ = 43.2/27 and 37.6/26 respectively.

⁵ ALAVI-HARATI 00B also measured $|\widetilde{g}_{M1}| = 1.35 ^{+0.20}_{-0.17} \pm 0.04$.

\overline{h} DECAY FORM FACTOR FOR $K_I^0 ightarrow \pi^{\pm} \pi^0 e^{\mp} \nu_e$

VALUE	DOCUMENT IL)	TECN
-0.30 ± 0.13 OUR AVERAGE			
$-0.32\pm0.12\pm0.07$	BATLEY	04	NA48
$-0.07 \pm 0.31 \pm 0.31$	MAKOFF	93	F731

L_3 CHIRAL PERT. THEO. PARAM. FOR $K_L^0 ightarrow \pi^\pm \pi^0 e^\mp u_e$

VALUE (units 10^{-3})	DOCUMENT ID	TECN
-3.96 ± 0.28 OUR AVERAGE	Error includes scale factor	of 1.6.
-4.1 ± 0.2	BATLEY 04	NA48
-3.4 ± 0.4	¹ MAKOFF 93	E731

 $^{^{}m 1}$ MAKOFF 93 sign has been changed to negative to agree with the sign convention used in BATLEY 04.

av, VECTOR MESON EXCHANGE CONTRIBUTION

<u>VALUE</u>	EVTS	DOCUMENT ID		TECN	COMMENT
-0.43 ± 0.06 OUR AV	ERAGE	Error includes scale	factor	of 1.5.	
$-0.31\!\pm\!0.05\!\pm\!0.07$	1.4k				
$-0.46\!\pm\!0.03\!\pm\!0.04$		LAI	02 B	NA48	$K_I^0 \rightarrow \pi^0 2\gamma$
$-0.67\!\pm\!0.21\!\pm\!0.12$		ALAVI-HARAT	TI01E	KTEV	$\mathcal{K}_{L}^{0} \rightarrow \pi^{0} 2\gamma$ $\mathcal{K}_{L}^{0} \rightarrow \pi^{0} e^{+} e^{-} \gamma$
• • • We do not use t	he followi	ng data for average	s, fits,	limits, e	etc. • • •
$-0.72\!\pm\!0.05\!\pm\!0.06$		² ALAVI-HARAT	199 B	KTEV	$K_L^0 \rightarrow \pi^0 2\gamma$
¹ Using KTeV datas ² Superseded by AB			d 1999	9.	

iperseded by ABOUZAID 08.

A REVIEW GOES HERE – Check our WWW List of Reviews

CP-VIOLATION PARAMETERS IN K_L^0 DECAYS

- Charge asymmetry in $K_{\ell 3}^0$ decays ———

Such asymmetry violates *CP*. It is related to $Re(\epsilon)$.

 A_L = weighted average of $A_L(\mu)$ and $A_L(e)$ In previous editions and in the literature the symbol used for this asymmetry was δ_L or δ . We use A_L for consistency with B^0 asymmetry notation and with recent κ^0_S notation.

VALUE (%) DOCUMENT ID TECN COMMENT **0.332**±**0.006 OUR AVERAGE** Includes data from the 2 datablocks that follow this one. 0.333 ± 0.050 33M WILLIAMS 73 ASPK $K_{\mu 3} + K_{e 3}$

$A_L(\mu) = [\Gamma(\pi^-\mu^+\nu_\mu) - \Gamma(\pi^+\mu^-\overline{\nu}_\mu)]/\text{SUM}$

Only the combined value below is put into the Meson Summary Table.

DOCUMENT ID EVTS

The data in this block is included in the average printed for a previous datablock.

0.304 ± 0.025 OUR AVERAGE

0.313 ± 0.029	15M	GEWENIGER	74	ASPK
0.278 ± 0.051	7.7M	PICCIONI	72	ASPK

• • • We do not use the following data for averages, fits, limits, etc. • • •

0.60 ± 0.14	4.1M	MCCARTHY	73	CNTR
$0.57\ \pm0.17$	1M	$^{ m 1}$ PACIOTTI	69	OSPK
0.403 ± 0.134	1M	¹ DORFAN	67	OSPK

¹ PACIOTTI 69 is a reanalysis of DORFAN 67 and is corrected for $\mu^+\mu^-$ range difference in MCCARTHY 72.

$A_L(e) = [\Gamma(\pi^- e^+ \nu_e) - \Gamma(\pi^+ e^- \overline{\nu}_e)]/\text{SUM}$

Only the combined value below is put into the Meson Summary Table.

VALUE (%) EVTS DOCUMENT ID TECN

The data in this block is included in the average printed for a previous datablock.

0.334 ± 0.007 OUR AVERAGE

$0.3322 \pm 0.0058 \pm 0.0047$	298M	ALAVI-HARAT	102	
0.341 ± 0.018	34M	GEWENIGER	74	ASPK
0.318 ± 0.038	40M	FITCH	73	ASPK
0.346 ± 0.033	10M	MARX	70	CNTR

• • • We do not use the following data for averages, fits, limits, etc. • • •

0.36	± 0.18	600k	ASHFORD	72	ASPK
0.246	±0.059	10M	$^{ m 1}$ SAAL	69	CNTR
0.224	± 0.036	10M	$^{ m 1}$ BENNETT	67	CNTR

¹SAAL 69 is a reanalysis of BENNETT 67.

——— PARAMETERS FOR $K_L^0 \rightarrow 2\pi$ DECAY —

$$\eta_{+-} = A(K_L^0 \to \pi^+\pi^-) / A(K_S^0 \to \pi^+\pi^-)$$

 $\eta_{00} = A(K_L^0 \to \pi^0\pi^0) / A(K_S^0 \to \pi^0\pi^0)$

The fitted values of $|\eta_{+-}|$ and $|\eta_{00}|$ given below are the results of a fit to $|\eta_{+-}|$, $|\eta_{00}|$, $|\eta_{00}/\eta_{+-}|$, and $\mathrm{Re}(\epsilon'/\epsilon)$. Independent information on $|\eta_{+-}|$ and $|\eta_{00}|$ can be obtained from the fitted values of the $K_L^0 \to \pi\pi$ and $K_S^0 \to \pi\pi$ branching ratios and the K_L^0 and K_S^0 lifetimes. This information is included as data in the $|\eta_{+-}|$ and $|\eta_{00}|$ sections with a Document ID "BRFIT." See the note "CP violation in K_L decays" above for details

$\left|\eta_{00}\right| = \left|\mathsf{A}(\mathsf{K}_L^0 o \ 2\pi^0) \ / \ \mathsf{A}(\mathsf{K}_S^0 o \ 2\pi^0)\right|$

VALUE (units 10^{-3})DOCUMENT IDTECNCOMMENT2.220 \pm 0.011 OUR FITError includes scale factor of 1.8.

• • • We do not use the following data for averages, fits, limits, etc. • • •

$2.47 \pm 0.31 \pm 0.24$	ANGELOPO	98	CPLR	
2.49 ± 0.40	¹ ADLER	96 B	CPLR	Sup. by ANGELOPOULOS 98
2.33 ± 0.18	CHRISTENS			. ,
2.71 ± 0.37	² WOLFF			
2.95 ± 0.63	² CHOLLET	70	OSPK	Cu reg., 4γ 's

¹ Error is statistical only.

$\left|\eta_{+-}\right| = \left|\mathsf{A}(\mathsf{K}_L^0 \to \ \pi^+\pi^-)\ /\ \mathsf{A}(\mathsf{K}_S^0 \to \ \pi^+\pi^-)\right|$

VALUE (units 10^{-3}) EVTS DOCUMENT ID TECN COMMENT

2.232±0.011 OUR FIT Error includes scale factor of 1.8. **2.226±0.007** BRFIT 16

• • • We do not use the following data for averages, fits, limits, etc. • • •

2.223 ± 0.012		1 LAI	٠.		
$2.219\!\pm\!0.013$		² AMBROSINO	06F	KLOE	
$2.228\!\pm\!0.010$		³ ALEXOPOU	04	KTEV	
$2.286\!\pm\!0.023\!\pm\!0.026$	70M				K^0 - \overline{K}^0 asymmetry
$2.310 \pm 0.043 \pm 0.031$					K^0 - \overline{K}^0 asymmetry
$2.32 \pm 0.14 \pm 0.03$	10 ⁵	ADLER	92 B	CPLR	K^0 - \overline{K}^0 asymmetry
2.30 ± 0.035		GEWENIGER	74 B	ASPK	

 1 Value obtained from the NA48 measurements of $\Gamma(K_L^0\to\pi^+\pi^-)/\Gamma(K_L^0\to\pi\,e\nu_e)$ and $\tau_{K_S^0}$ and KLOE measurements of B($K_S^0\to\pi^+\pi^-$) and $\tau_{K_L^0}$. $\Gamma(K_L^0\to\pi^+\pi^-)$ is defined to include the inner bremsstrahlung component $\Gamma(K_L^0\to\pi^+\pi^-\gamma({\rm IB}))$ but exclude the direct emission component B($K_S^0\to\pi^+\pi^-({\rm DE})$). Their $|\eta_{+-}|$ value is not directly used in our fit, but enters the fit via their branching ratio and lifetime measurements.

² AMBROSINO 06F uses KLOE branching ratios and τ_L together with τ_S from PDG 04. Their $|\eta_{+-}|$ value is not directly used in our fit, but enters the fit via their branching ratio and lifetime measurements.

³ ALEXOPOULOS 04 $|\eta_{+-}|$ uses their $K_L^0 \to \pi\pi$ branching fractions, $\tau_S = (0.8963 \pm 0.0005) \times 10^{-10}$ s from the average of KTeV and NA48 τ_S measurements, and assumes that $\Gamma(K_S^0 \to \pi\ell\nu_\ell) = \Gamma(K_L^0 \to \pi\ell\nu_\ell)$ giving B($K_S^0 \to \pi\ell\nu_\ell$) = 0.118%. Their η_{+-} is not directly used in our fit, but enters our fit via their branching ratio measurements.

⁴ APOSTOLAKIS 99C report (2.264 \pm 0.023 \pm 0.026 + 9.1[au_s - 0.8934]) imes 10⁻³. We evaluate for our 2006 best value au_s = (0.8958 \pm 0.0005) imes 10⁻¹⁰ s.

 5 ADLER 95B report (2.312 $\pm\,0.043\,\pm\,0.030\,-1[\Delta m-0.5274]\,+9.1[\tau_{\rm S}-0.8926])\times10^{-3}$. We evaluate for our 1996 best values $\Delta m=(0.5304\,\pm\,0.0014)\times10^{-10}\,\hbar{\rm s}^{-1}$ and $\tau_{\rm S}=(0.8927\,\pm\,0.0009)\times10^{-10}$ s. Superseded by APOSTOLAKIS 99C.

$|\epsilon| = (2|\eta_{+-}| + |\eta_{00}|)/3$

This expression is a very good approximation, good to about one part in 10^{-4} because of the small measured value of $\phi_{00}-\phi_{+-}$ and small theoretical ambiguities.

VALUE (units 10⁻³) DOCUMENT ID

2.228 ± 0.011 OUR FIT Error includes scale factor of 1.8.

 $^{^2}$ CHOLLET 70 gives $|\eta_{00}|=(1.23\pm0.24)\times ({\rm regeneration~amplitude},~2~{\rm GeV}/c~{\rm Cu})/10000{\rm mb}.$ WOLFF 71 gives $|\eta_{00}|=(1.13\pm0.12)\times ({\rm regeneration~amplitude},~2~{\rm GeV}/c~{\rm Cu})/10000{\rm mb}.$ We compute both $|\eta_{00}|$ values for (regeneration amplitude, 2 ${\rm GeV}/c~{\rm Cu})=24\pm2{\rm mb}.$ This regeneration amplitude results from averaging over FAISSNER 69, extrapolated using optical-model calculations of Bohm et al., Physics Letters **27B** 594 (1968) and the data of BALATS 71. (From H. Faissner, private communication).

$|\eta_{00}/\eta_{+-}|$

VALUE <u>EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u>

0.9950±0.0007 OUR FIT Error includes scale factor of 1.6.

0.9930 ± 0.0020 OUR AVERAGE

$0.9931\!\pm\!0.0020$	^{1,2} BARR	93 D	NA31
$0.9904 \pm 0.0084 \pm 0.0036$	³ WOODS	88	E731

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

$Re(\epsilon'/\epsilon) = (1-|\eta_{00}/\eta_{+-}|)/3$

We have neglected terms of order $\omega \cdot \text{Re}(\epsilon'/\epsilon)$, where $\omega = \text{Re}(A_2)/\text{Re}(A_0) \simeq 1/22$. If included, this correction would lower $\text{Re}(\epsilon'/\epsilon)$ by about 0.04×10^{-3} . See SOZZI 04.

1.66 \pm **0.23 OUR FIT** Error includes scale factor of 1.6.

1.68 \pm **0.20 OUR AVERAGE** Error includes scale factor of 1.4. See the ideogram below.

1.92 ±0.21	¹ ABOUZAID	11	KTEV	Assuming CPT
1.47 ± 0.22	BATLEY	02	NA48	
$0.74 \pm 0.52 \pm 0.29$	GIRRONS	93 R	F731	

^{• •} We use the following data for averages but not for fits. • • •

$$2.3 \pm 0.65$$
 2.3 BARR 93D NA31

^{• • •} We do not use the following data for averages, fits, limits, etc. • • •

2.110	0 ± 0.343	3	1,4	ABOUZAID	11	KTEV	Not assuming CPT
2.07	± 0.28			ALAVI-HARAT	103	KTEV	In ABOUZAID 11
1.53	± 0.26			LAI	01 C	NA48	Incl. in BATLEY 02
2.80	± 0.30	± 0.28		ALAVI-HARAT	199 D	KTEV	In ALAVI-HARATI 03
1.85	± 0.45	± 0.58	_	FANTI		_	In LAI 01C
2.0	± 0.7		5	BARR	93 D	NA31	
-0.4	± 1.4	± 0.6	_				in GIBBONS 93B
3.3	± 1.1			BURKHARDT	88	NA31	
3.2	± 2.8	± 1.2	2	² woods	88	E731	

¹ The two ABOUZAID 11 values use the same data. The fits are performed with and without *CPT* invariance requirement.

 $^{^{}m 1}$ This is the square root of the ratio R given by BURKHARDT 88 and BARR 93D.

² This is the combined results from BARR 93D and BURKHARDT 88, taking into account a common systematic uncertainty of 0.0014.

³ We calculate $|\eta_{00}/\eta_{+-}|=1-3(\epsilon'/\epsilon)$ from WOODS 88 (ϵ'/ϵ) value.

² These values are derived from $|\eta_{00}/\eta_{+-}|$ measurements. They enter the average in this section but enter the fit via the $|\eta_{00}/\eta_{+-}|$ only.

³ This is the combined results from BARR 93D and BURKHARDT 88, taking into account their common systematic uncertainty.

⁴ We use ABOUZAID 11 Re(ϵ'/ϵ) value with *CPT* assumption in our fits for $|\eta_{+-}|$, $|\eta_{00}|$, and Re(ϵ'/ϵ).

 $^{^5\,\}mathrm{These}$ values are derived from $\left|\eta_{00}/\eta_{+-}\right|$ measurements.

ϕ_{+-} , PHASE of η_{+-}

The dependence of the phase on Δm and τ_S is given for each experiment in the comments below, where Δm is the $K_L^0-K_S^0$ mass difference in units $10^{10}~\hbar {\rm s}^{-1}$ and τ_S is the K_S mean life in units 10^{-10} s. We also give the regeneration phase ϕ_f in the comments below.

OUR FIT is described in the note on "CP violation in K_L decays" in the K_L^0 Particle Listings. Most experiments in this section are included in both the "Not Assuming CPT" and "Assuming CPT" fits. In the latter fit, they have little direct influence on ϕ_{+-} because their errors are large compared to that assuming CPT, but they influence Δm and τ_s through their dependencies on these parameters, which are given in the footnotes.

iootiiotes.					
VALUE (°)	EVTS	DOCUMENT ID		TECN	COMMENT
43.51 ± 0.05 OUR FIT	Error inclu	des scale factor of 1.	2. As:	suming	CPT
43.4 \pm 0.5 OUR FIT	Error inclu	des scale factor of 1.	2. No	t assum	ing <i>CPT</i>
$42.9 \pm 0.6 \pm 0.3$	70M	¹ APOSTOLA			K^0 - \overline{K}^0 asymmetry
$42.9 \pm 0.8 \pm 0.2$		^{2,3} SCHWINGEN			
$41.4 \pm 0.9 \pm 0.2$		^{3,4} GIBBONS	93	E731	B_4C regenerator
44.5 ± 1.6 ± 0.6		⁵ CAROSI	90	NA31	Vacuum regen.
43.3 ± 1.0 ± 0.5		⁶ GEWENIGER	74 B	ASPK	Vacuum regen.
• • • We do not use the	ne following	data for averages, fit	s, lim	its, etc.	• • •
43.76 ± 0.64		⁷ ABOUZAID	11	KTEV	Not assuming CPT
$44.12 \pm 0.72 \pm 1.20$		⁸ ALAVI-HARAT	103	KTEV	Not assuming CPT
$42.5 \pm 0.4 \pm 0.3$		^{9,10} ADLER	96 C	RVUE	
43.4 ± 1.1 ± 0.3		¹¹ ADLER	95 B		K^0 - \overline{K}^0 asymmetry
$42.3 \pm 4.4 \pm 1.4$	100k	¹² ADLER	92 B	CPLR	K^0 - \overline{K}^0 asymmetry
$47.7 \pm 2.0 \pm 0.9$		^{3,13} KARLSSON	90	E731	
44.3 $\pm 2.8 \pm 0.2$		¹⁴ CARITHERS	75	SPEC	C regenerator

- 1 APOSTOLAKIS 99C measures $\phi_{+-}=(43.19\pm0.53\pm0.28)\,+\,300\,[\Delta m-\,0.5301]$ (°). We have adjusted the measurement to use our best values of ($\Delta m=0.5293\pm0.0009$) ($10^{10}\,\,\hbar\,\,\mathrm{s}^{-1}$). Our first error is their experiment's error and our second error is the systematic error from using our best values.
- 2 SCHWINGENHEUER 95 measures $\phi_{+-}=(43.53\pm0.76)\,+173\,[\Delta m-\,0.5282]\,-275\,[\tau_s-\,0.8926]$ (°). We have adjusted the measurement to use our best values of $(\Delta m=\,0.5293\pm0.0009)\,(10^{10}\,\,\hbar\,\,\mathrm{s}^{-1}),\,(\tau_s=0.8954\pm0.0004)\,(10^{-10}\,\,\mathrm{s}).$ Our first error is their experiment's error and our second error is the systematic error from using our best values.
- ³ These experiments measure $\phi_{+-}-\phi_f$ and calculate the regeneration phase from the power law momentum dependence of the regeneration amplitude using analyticity and dispersion relations. SCHWINGENHEUER 95 [GIBBONS 93] includes a systematic error of 0.35° [0.5°] for uncertainties in their modeling of the regeneration amplitude.
- 4 GIBBONS 93 measures $\phi_{+-}=(42.21\pm0.9)+189~[\Delta m-0.5257]-460~[\tau_s-0.8922]$ (°). We have adjusted the measurement to use our best values of $(\Delta m=0.5293\pm0.0009)~(10^{10}~\hbar~s^{-1}),~(\tau_s=0.8954\pm0.0004)~(10^{-10}~s).$ Our first error is their experiment's error and our second error is the systematic error from using our best values. This is actually reported in SCHWINGENHEUER 95, footnote 8. GIBBONS 93 reports ϕ_{+-} (42.2 \pm 1.4)°. They measure ϕ_{+} - ϕ_{f} and calculate the regeneration phase ϕ_{f} from the power law momentum dependence of the regeneration amplitude using analyticity. An error of 0.6° is included for possible uncertainties in the regeneration phase.
- ⁵CAROSI 90 measures $\phi_{+-}=(46.9\pm1.4\pm0.7)+579~[\Delta m-0.5351]+303~[\tau_s-0.8922]$ (°). We have adjusted the measurement to use our best values of ($\Delta m=0.5293\pm0.0009$) ($10^{10}~\hbar~s^{-1}$), ($\tau_s=0.8954\pm0.0004$) ($10^{-10}~s$). Our first error is their experiment's error and our second error is the systematic error from using our best values.
- ⁶ GEWENIGER 74B measures $\phi_{+-}=(49.4\pm1.0)~+565~[\Delta m-~0.540]$ (°). We have adjusted the measurement to use our best values of ($\Delta m=0.5293\pm0.0009$) ($10^{10}~\hbar~s^{-1}$). Our first error is their experiment's error and our second error is the systematic error from using our best values.
- ⁷ Not independent of other phase parameters reported in ABOUZAID 11.
- ⁸ ALAVI-HARATI 03 ϕ_{+-} is correlated with their $\Delta m = m_{K_L^0} m_{K_S^0}$ and τ_{K_S} measurements in the K_L^0 and K_S^0 sections respectively. The correlation coefficients are $\rho(\phi_{+-},\Delta m)$ =+0.955, $\rho(\phi_{+-},\tau_S)$ =-0.871, and $\rho(\tau_S,\Delta m)$ =-0.840. *CPT* is not assumed. Uses scintillator Pb regenerator. Superseded by ABOUZAID 11.
- ⁹ADLER 96C measures $\phi_{+-}=(43.82\pm0.41)+339~[\Delta m-0.5307]-252~[\tau_s-0.8922]$ (°). We have adjusted the measurement to use our best values of ($\Delta m=0.5293\pm0.0009$) ($10^{10}~\hbar~s^{-1}$), ($\tau_s=0.8954\pm0.0004$) ($10^{-10}~s$). Our first error is their experiment's error and our second error is the systematic error from using our best values.
- 10 ADLER 96C is the result of a fit which includes nearly the same data as entered into the "OUR FIT" value in the 1996 edition of this Review (Physical Review **D54** 1 (1996)).
- ¹¹ ADLER 95B measures $\phi_{+-}=(42.7\pm0.9\pm0.6)+316$ [$\Delta m-0.5274$] +30 [$\tau_{s}-0.8926$] (°). We have adjusted the measurement to use our best values of ($\Delta m=0.5293\pm0.0009$) ($10^{10}~\hbar~s^{-1}$), ($\tau_{s}=0.8954\pm0.0004$) ($10^{-10}~s$). Our first error is their experiment's error and our second error is the systematic error from using our best values.
- ¹² ADLER 92B quote separately two systematic errors: ± 0.4 from their experiment and ± 1.0 degrees due to the uncertainty in the value of Δm .
- 13 KARLSSON 90 systematic error does not include regeneration phase uncertainty.

¹⁴ CARITHERS 75 measures $\phi_{+-} = (45.5 \pm 2.8) + 224 [\Delta m - 0.5348]$ (°). We have adjusted the measurement to use our best values of ($\Delta m = 0.5293 \pm 0.0009$) ($10^{10} \ \hbar$ s^{-1}). Our first error is their experiment's error and our second error is the systematic error from using our best values. $\phi_f = -40.9 \pm 2.6^{\circ}$.

ϕ_{00} , PHASE OF η_{00}

See comment in ϕ_{+-} header above for treatment of Δm and au_{s} dependence, as well as for the inclusion of data in both the "Assuming CPT" and "Not Assuming CPT"

OUR FIT is described in the note on "CP violation in K_L decays" in the K_L^0 Particle

VALUE (°)	DOCUMENT ID TECN COMMENT	
43.52±0.05 OUR FIT	Error includes scale factor of 1.3. Assuming CPT	
43.7 \pm 0.6 OUR FIT	Error includes scale factor of 1.2. Not assuming CPT	
44.5 $\pm 2.3 \pm 0.5$	¹ CAROSI 90 NA31	
 ● ● We do not use th 	e following data for averages, fits, limits, etc. ● ●	
44.06 ± 0.68	² ABOUZAID 11 KTEV Not assuming <i>CPT</i>	
$41.7 \pm 5.9 \pm 0.2$	³ ANGELOPO 98 CPLR	
50.8 ± 7.1 ± 1.7	⁴ ADLER 96B CPLR Sup. by ANGELOPOULOS	3 98
47.4 ± 1.4 ± 0.9	⁵ KARLSSON 90 E731	
1 CAROCLOS	(47.1 0.1 1.0) 570 [A	

 $^{^{1}}$ CAROSI 90 measures $\phi_{00} = (47.1 \pm 2.1 \pm 1.0) + 579 [\Delta m - 0.5351] + 252 [au_{s} - 0.5351]$ 0.8922] (°). We have adjusted the measurement to use our best values of ($\Delta m=$ $0.5293\pm0.0009)~(10^{10}~\hbar~{\rm s}^{-1}),~(au_s=0.8954\pm0.0004)~(10^{-10}~{\rm s}).$ Our first error is their experiment's error and our second error is the systematic error from using our best values. $^2\,\mbox{Not}$ independent of other phase parameters reported in ABOUZAID 11.

$\phi_{\epsilon} = (2\phi_{+-} + \phi_{00})/3$

This expression is a very good approximation, good to about 10^{-3} degrees because of the small measured values of $\phi_{00}-\phi_{+-}$ and Re ϵ'/ϵ , and small theoretical ambiguities.

VALUE (°)		DOCUMENT ID TECN COMMENT
43.52 ±0.0	5 OUR FIT	Error includes scale factor of 1.2. Assuming CPT
43.5 ± 0.5	OUR FIT	Error includes scale factor of 1.3. Not assuming CPT
43.5164 ± 0.0	0002 ± 0.0518	¹ SUPERWEAK 16 Assuming <i>CPT</i>
43.86 ± 0.6	53	² ABOUZAID 11 KTEV Not assuming <i>CPT</i>

 $^{^{}m I}$ SUPERWEAK $^{
m I}$ Superweak constraint $\phi_{+-} = \phi_{\text{SW}} = \tan^{-1}[2 \frac{\Delta m}{\hbar} \left(\frac{\tau_S \tau_L}{\tau_L - \tau_S} \right)]$. This "measurement" is linearized using values near the PDG 04 edition values of Δm , au_S and au_L , and then adjusted to our current values as described in the following "measurement". SUPERWEAK 16 measures $\phi_\epsilon =$ $(43.50258 \pm 0.00021) + 54.1 \ [\Delta m - 0.5289] + 32.0 \ [au_S - 0.89564] \ (^{\circ}).$ We have adjusted the measurement to use our best values of ($\Delta m = 0.5293 \pm 0.0009$) ($10^{10}~\hbar$ s $^{-1}$), ($\tau_s=0.8954\pm0.0004$) (10^{-10} s). Our first error is their experiment's error and our second error is the systematic error from using our best values.

²ABOUZAID 11 uses the full KTeV dataset collected in 1996, 1997, and 1999. See $\text{Im}(\epsilon'/\epsilon)$ section for correlation information.

 $^{^3}$ ANGELOPOULOS 98 measures $\phi_{00}=(42.0\pm5.6\pm1.9)~+~240~[\Delta m-~0.5307]$ (°). We have adjusted the measurement to use our best values of ($\Delta m=0.5293\pm0.0009)$ $(10^{10}~\hbar~\text{s}^{-1})$. Our first error is their experiment's error and our second error is the systematic error from using our best values. The $au_{\it S}$ dependence is negligible.

⁴ ADLER 96B identified initial neutral kaon individually as being a K^0 or a \overline{K}^0 . The systematic uncertainty is $\pm 1.5^{\circ}$ combined in quadrature with $\pm 0.8^{\circ}$ due to Δm .

⁵ KARLSSON 90 systematic error does not include regeneration phase uncertainty.

$Im(\epsilon'/\epsilon) = -(\phi_{00} - \phi_{+-})/3$

For small $|\epsilon'/\epsilon|$, ${\rm Im}(\epsilon'/\epsilon)$ is related to the phases of η_{00} and η_{+-} by the above expression.

VALUE (°) DOCUMENT ID TECN COMMENT

 -0.002 ± 0.005 OUR FIT Error includes scale factor of 1.7. Assuming CPT

-0.11 ± 0.11 OUR FIT Not assuming CPT

 -0.0985 ± 0.1157 ¹ ABOUZAID 11 KTEV Not assuming *CPT*

¹ ABOUZAID 11 uses the full KTeV dataset collected in 1996, 1997, and 1999. The fit has Δm , $\tau_{\rm S}$, ϕ_{ϵ} , ${\rm Re}(\epsilon'/\epsilon)$, and ${\rm Im}(\epsilon'/\epsilon)$ as free parameters. The reported value of ${\rm Im}(\epsilon'/\epsilon)$ = $(-17.20 \pm 20.20) \times 10^{-4}$ rad. The correlation coefficients are $\rho(\phi_{\epsilon}, \Delta m) = 0.828$, $\rho(\phi_{\epsilon}, \tau_{\rm S}) = -0.765$, $\rho(\Delta m, \tau_{\rm S}) = -0.858$, $\rho({\rm Im}(\epsilon'/\epsilon), \phi_{\epsilon}) = -0.041$, $\rho({\rm Im}(\epsilon'/\epsilon), \Delta m) = 0.026$, $\rho({\rm Im}(\epsilon'/\epsilon), \tau_{\rm S}) = -0.010$.

DECAY-PLANE ASYMMETRY IN $\pi^+\pi^-e^+e^-$ DECAYS ———

This is the CP-violating asymmetry

$$A = \frac{N_{\sin\phi\cos\phi > 0.0} - N_{\sin\phi\cos\phi < 0.0}}{N_{\sin\phi\cos\phi > 0.0} + N_{\sin\phi\cos\phi < 0.0}}$$

where ϕ is the angle between the e^+e^- and $\pi^+\pi^-$ planes in the K_L^0 rest frame.

CP ASYMMETRY A in $K_I^0 \rightarrow \pi^+\pi^-e^+e^-$

VALUE (%)	DOCUMENT ID		TECN
13.7±1.5 OUR AVERAGE			
$13.6 \pm 1.4 \pm 1.5$	ABOUZAID	06	KTEV
$14.2 \pm 3.0 \pm 1.9$	LAI	03 C	NA48
$13.6 \pm 2.5 \pm 1.2$	ALAVI-HARAT	100B	KTEV

PARAMETERS FOR e⁺e⁻e⁺e⁻ DECAYS ——

These are the *CP*-violating parameters in the ϕ distribution, where ϕ is the angle between the planes of the two e^+e^- pairs in the kaon rest frame:

$$d\Gamma/d\phi \propto 1 + \beta_{CP} \cos(2\phi) + \gamma_{CP} \sin(2\phi)$$

β_{CP} from $K_I^0 \rightarrow e^+e^-e^+e^-$

<u>V</u> ALUE	EVTS	<u>DOCUME</u>	NT ID	TECN	COMMENT
-0.19 ± 0.07 OUR AVE	ERAGE				
$-0.13\!\pm\!0.10\!\pm\!0.03$	200	1 LAI	05 B	NA48	
$-0.23\!\pm\!0.09\!\pm\!0.02$	441	ALAVI-F	IARATI01D	KTEV	$M_{ee} > 8 {\rm MeV}/c^2$
1 LAI 05B obtains eta_C	$c_P = -0.$	13 ± 0.10 (s	tat) if γ_{CP}	= 0 is a	ssumed.

γ_{CP} from $K_L^0 \rightarrow e^+e^-e^+e^-$

<u>VALUE</u>	EVTS	DOCUMENT	ID	TECN	COMMENT	
0.01 ± 0.11 OUR AV	ERAGE	Error includes so	cale factor	of 1.6.		
$+0.13\pm0.10\pm0.03$	200	LAI	05 B	NA48		
$-0.09\!\pm\!0.09\!\pm\!0.02$	441	ALAVI-HAF	RATI01D	KTEV	$M_{ee} > 8 \text{ MeV}/c^2$	

- CHARGE ASYMMETRY IN $\pi^+\pi^-\pi^0$ DECAYS -

These are *CP*-violating charge-asymmetry parameters, defined at beginning of section "LINEAR COEFFICIENT g FOR $K_L^0 \to \pi^+\pi^-\pi^0$ above. See also note on Dalitz plot parameters in K^\pm section and note on "*CP* violation in K_L decays" above.

LINEAR COEFFICIENT j FOR $K_L^0 \to \pi^+\pi^-\pi^0$

VALUE	<u>EVTS</u>	DOCUMENT ID	TECN	
0.0012±0.0008 OUR AVE	RAGE			
$0.0010 \pm 0.0024 \pm 0.0030$	500k	ANGELOPO	98c CPLR	
$-0.001\ \pm0.011$	6499	CHO	77	
$0.001\ \pm0.003$	4709	PEACH	77	
0.0013 ± 0.0009	3M	SCRIBANO	70	
0.0 ± 0.017	4400	SMITH	70 OSPK	
$0.001\ \pm0.004$	238k	BLANPIED	68	

QUADRATIC COEFFICIENT f FOR $K_L^0 o \pi^+\pi^-\pi^0$

 VALUE
 EVTS
 DOCUMENT ID
 TECN

 0.0045±0.0024±0.0059
 500k
 ANGELOPO... 98C
 CPLR

——— PARAMETERS for ${\it K}_L^0 ightarrow ~\pi^+\pi^-\gamma$ DECAY ———

$\left|\eta_{+-\gamma}\right| = \left|\mathsf{A}(\mathsf{K}_L^0 \to \ \pi^+\pi^-\gamma,\ \mathit{CP}\ \mathsf{violating})/\mathsf{A}(\mathsf{K}_S^0 \to \ \pi^+\pi^-\gamma)\right|$

VALUE (units 10^{-3})	EVTS	DOCUMENT ID	TECN	
2.35 ±0.07 OUR AVE	ERAGE			
$2.359\!\pm\!0.062\!\pm\!0.040$	9045	MATTHEWS	95	E773
$2.15 \pm 0.26 \pm 0.20$	3671	RAMBERG	93 B	E731

$\phi_{+-\gamma} = \text{phase of } \eta_{+-\gamma}$ VALUE (°) EVTS DOCUMENT ID

VALUE ()	EVIS	DOCUMENT ID		IECIV
44 ± 4 OUR AVE	RAGE			
$43.8 \pm \ 3.5 \pm \ 1.9$	9045	MATTHEWS	95	E773
72 ± 23 ± 17	3671	RAMBERG	93 B	E731

$$\frac{|\epsilon'_{+-\gamma}|/\epsilon \text{ for } K^0_L \to \pi^+\pi^-\gamma}{\text{VALUE}} \xrightarrow{CL\%} \frac{EVTS}{1 \text{ RAMBERG}} \xrightarrow{93B} \frac{DOCUMENT ID}{1 \text{ RAMBERG}} = \frac{TECN}{1 \text{ RAMBERG}}$$

$|\mathbf{g}_{E1}|_{\underline{\hspace{1cm}}}$ for $\mathcal{K}_{L}^{0} \rightarrow \pi^{+}\pi^{-}\gamma$

This parameter is the amplitude of the direct emission of a *CP* violating E1 electric dipole photon.

VALUE	CL% E	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
<0.21	90 1	111k	ABOUZAID	06A	KTEV	$E_{\gamma}^{*} >$ 20 MeV

 $^{^1}$ RAMBERG 93B limit on $|\epsilon_{+-\gamma}^{'}|/\epsilon$ assumes than any difference between η_{+-} and $\eta_{+-\gamma}$ is due to direct $C\!P$ violation.

T VIOLATION TESTS IN K_1^0 DECAYS

Im(ξ) in $K_{\mu 3}^0$ DECAY (from transverse μ pol.) Test of T reversal invariance.

1000 01 7 10001	Jai III vai laile	· · ·			
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
-0.007 ± 0.026 OUR	AVERAGE				
0.009 ± 0.030	12M	MORSE	80	CNTR	Polarization
0.35 ± 0.30	207k	¹ CLARK			POL, $t=0$
-0.085 ± 0.064	2.2M	² SANDWEISS	73	CNTR	POL, $t=0$
-0.02 ± 0.08		LONGO	69	CNTR	POL, $t=3.3$
-0.2 ± 0.6		ABRAMS	68 B	OSPK	Polarization
ullet $ullet$ We do not use	the followin	g data for averages	s, fits,	limits, e	etc. • • •
0.012 ± 0.026		SCHMIDT	79	CNTR	Repl. by MORSE 80

¹ CLARK 77 value has additional $\xi(0)$ dependence +0.21Re $[\xi(0)]$.

CPT-INVARIANCE TESTS IN K_I^0 DECAYS

PHASE DIFFERENCE ϕ_{00} - ϕ_{+-}

Test of CPT.

OUR FIT is described in the note on "CP violation in K_L decays" in the K_L^0 Particle

VALUE (°)	DOCUMENT ID	TECN COMMENT
0.006±0.014 OUR FIT	Error includes scale factor of 1	1.7. Assuming <i>CPT</i>
0.34 \pm 0.32 OUR FIT	Not assuming CPT	
$0.006\!\pm\!0.008$	¹ SUPERWEAK 16	Assuming CPT
-0.30 ± 0.88	² SCHWINGEN95	Combined E731, E773
ullet $ullet$ We do not use the f	ollowing data for averages, fits,	limits, etc. • • •
0.30 ± 0.35	³ ABOUZAID 11	KTEV Not assuming CPT
$0.39\ \pm0.22\ \pm0.45$	⁴ ALAVI-HARATI03	KTEV
$0.62\ \pm0.71\ \pm0.75$	SCHWINGEN95	E773
-1.6 ± 1.2	⁵ GIBBONS 93	E731
$0.2 \pm 2.6 \pm 1.2$	⁶ CAROSI 90	NA31
-0.3 ± 2.4 ± 1.2	KARLSSON 90	E731

 $^{^1}$ SUPERWEAK 16 is a fake experiment to constrain $\phi_{00}-\phi_{+-}$ to a small value as described in the note "CP violation in K_L decays."

²SANDWEISS 73 value corrected from value quoted in their paper due to new value of $Re(\xi)$. See footnote 4 of SCHMIDT 79.

 $^{^2\,\}text{This}$ SCHWINGENHEUER 95 values is the combined result of SCHWINGENHEUER 95 and GIBBONS 93, accounting for correlated systematic errors.

 $^{^3}$ Not independent of other phase parameters reported in ABOUZAID 11.

 $^{^4}$ ALAVI-HARATI 03 fit Re(ϵ'/ϵ), Im(ϵ'/ϵ), $\Delta m,~\tau_{\mbox{\it S}},~$ and ϕ_{+-} simultaneously, not assuming *CPT*. Phase difference is obtained from $\phi_{00}-\phi_{+-}\approx -3\mathrm{Im}(\epsilon'/\epsilon)$ for small $|\epsilon'/\epsilon|$. Superseded by ABOUZAID 11.

 $^{^{5}\,\}text{GIBBONS}$ 93 give detailed dependence of systematic error on lifetime (see the section on the K_S^0 mean life) and mass difference (see the section on $m_{K_I^0}-m_{K_S^0}$).

 $^{^6}$ CAROSI 90 is excluded from the fit because it it is not independent of ϕ_{+-} and ϕ_{00} values.

PHASE DIFFERENCE $\phi_{+-} - \phi_{SW}$

Test of *CPT*. The Superweak phase $\phi_{\sf SW} \equiv \tan^{-1}{(2\Delta m/\Delta\Gamma)}$ where $\Delta m = m_{{\cal K}^0_I} - m_{{\cal K}^0_I}$ $m_{K_S^0}$ and $\Delta\Gamma=\hbar(au_L- au_S)/(au_L au_S).$

VALUE (°) $0.61 \pm 0.62 \pm 1.01$

$Re(\frac{2}{3}\eta_{+-} + \frac{1}{3}\eta_{00}) - \frac{A_L}{2}$ Test of *CPT*

VALUE (units 10^{-6})

$\Delta S = \Delta Q$ IN K^0 DECAYS

The relative amount of $\Delta S \neq \Delta Q$ component present is measured by the parameter x, defined as

$$x = A(\overline{K}^0 \to \pi^- \ell^+ \nu) / A(K^0 \to \pi^- \ell^+ \nu)$$
.

We list $Re\{x\}$ and $Im\{x\}$ for K_{e3} and $K_{\mu3}$ combined.

$x = A(\overline{K}^0 \rightarrow \pi^- \ell^+ \nu)/A(K^0 \rightarrow \pi^- \ell^+ \nu) = A(\Delta S = -\Delta Q)/A(\Delta S = \Delta Q)$

REAL PART OF x

<u>VALUE</u>	<u>EVTS</u>	<u>DOCUMENT ID</u>	<u>TECN</u>	<u>COMMENT</u>
$-0.0018\pm0.0041\pm0.0045$		ANGELOPO 98D	CPLR	K_{e3} from K^0
• • • We do not use the fo	ollowing data	for averages, fits, lim	its, etc.	• • •

-				,	,	
0.10	$^{+0.18}_{-0.19}$	79	SMITH			$\pi^- p \rightarrow \kappa^0 \Lambda$
0.04	± 0.03	4724	NIEBERGALL			$K^+ p \rightarrow K^0 p \pi^+$
-0.008	± 0.044	1757	FACKLER	73		K_{e3} from K^0
-0.03	± 0.07	1367	HART	73		K_{e3} from $K^0 \Lambda$
-0.070	± 0.036	1079	MALLARY	73	OSPK	K_{e3} from $K^0\Lambda X$
0.03	± 0.06	410	¹ BURGUN	72	HBC	$K^+ p \rightarrow K^0 p \pi^+$
0.04	$^{+0.10}_{-0.13}$	100	² GRAHAM	72		$K_{\mu 3}$ from $K^0 \Lambda$
-0.05	± 0.09	442	² GRAHAM	72	OSPK	$\pi^- p \rightarrow \kappa^0 \Lambda$
0.26	$^{+0.10}_{-0.14}$	126	MANN	72	HBC	$K^- p \rightarrow n \overline{K}^0$
-0.13	± 0.11	342	² MANTSCH	72	OSPK	K_{e3} from $K^0 \Lambda$
0.04	$+0.07 \\ -0.08$	222	¹ BURGUN	71	НВС	$K^+ p \rightarrow K^0 p \pi^+$

 $^{^1}$ ALAVI-HARATI 03 fit is the same as their ϕ_+ , au_{Ks} , Δm fit, except that the parameter $\phi_{+-} - \phi_{SW}$ is used in place of ϕ .

 $^{^1}$ ALAVI-HARATI 02 uses PDG 00 values of η_{+-} and η_{00} .

0.25	$+0.07 \\ -0.09$	252	WEBBER	71	НВС	$K^- p \rightarrow n \overline{K}^0$
0.12	± 0.09	215	³ CHO	70	DBC	$K^+d \rightarrow K^0pp$
-0.020	± 0.025		⁴ BENNETT	69	CNTR	$\begin{array}{c} Charge\ asym + \ Cu \\ regen. \end{array}$
0.09	$^{+0.14}_{-0.16}$	686	LITTENBERG	69	OSPK	$K^+ n \rightarrow K^0 p$
0.03	± 0.03		⁴ BENNETT	68	CNTR	
0.09	$+0.07 \\ -0.09$	121	JAMES	68	НВС	$\overline{p}p$
0.17	$^{+0.16}_{-0.35}$	116	FELDMAN	67 B	OSPK	$\pi^- p \rightarrow K^0 \Lambda$
0.17	± 0.10	335	³ HILL	67	DBC	$K^+d \rightarrow K^0pp$
0.035	$^{+0.11}_{-0.13}$	196	AUBERT	65	HLBC	K^+ charge exch.
0.06	$^{+0.18}_{-0.44}$	152	⁵ BALDO	65	HLBC	K^+ charge exch.
-0.08	$+0.16 \\ -0.28$	109	⁶ FRANZINI	65	НВС	$\overline{p}p$

IMAGINARY PART OF x

Assumes $m_{K_L^0} - m_{K_S^0}$ positive. See Listings above.

<u>VALUE</u>	L .	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
0.0012	$2 \pm 0.0019 \pm 0.0009$	640k	ANGELOPO	01 B	CPLR	K_{e3} from K^0
• • • V	Ve do not use the fol	lowing data	a for averages, fits	, limi	ts, etc. •	• •
0.0012	2 ± 0.0019	640k	¹ ANGELOPO	98E	CPLR	K_{e3} from K^0
-0.10	$^{+0.16}_{-0.19}$	79	SMITH	75 B	WIRE	$\pi^- p \rightarrow \kappa^0 \Lambda$
-0.06	± 0.05	4724	NIEBERGALL	74		$K^+ p \rightarrow K^0 p \pi^+$
-0.017	± 0.060	1757	FACKLER	73	OSPK	K_{e3} from K^0
0.09	± 0.07	1367	HART	73	OSPK	K_{e3} from $K^0 \Lambda$
0.107	$+0.092 \\ -0.074$	1079	MALLARY	73	OSPK	K_{e3} from $K^0\Lambda X$
0.07	$+0.06 \\ -0.07$	410	² BURGUN	72	НВС	$K^+ p \rightarrow K^0 p \pi^+$
0.12	$^{+0.17}_{-0.16}$	100	³ GRAHAM	72	OSPK	$K_{\mu 3}$ from $K^0 \Lambda$
0.05	± 0.13	442	³ GRAHAM	72	OSPK	$\pi^- p \rightarrow K^0 \Lambda$
0.21	$+0.15 \\ -0.12$	126	MANN	72	HBC	$K^- p \rightarrow n \overline{K}^0$
-0.04	± 0.16	342	³ MANTSCH	72	OSPK	K_{e3} from $K^0 \Lambda$
0.12	$^{+0.08}_{-0.09}$	222	² BURGUN	71	НВС	$K^+ p \rightarrow K^0 p \pi^+$
0.0	± 0.08	252	WEBBER	71	HBC	$K^- p \rightarrow n \overline{K}^0$
-0.08	± 0.07	215	⁴ CHO	70	DBC	$K^+ d \rightarrow K^0 pp$
-0.11	$^{+0.10}_{-0.11}$	686	LITTENBERG	69	OSPK	$K^+ n \rightarrow K^0 p$

¹ BURGUN 72 is a final result which includes BURGUN 71.
² First GRAHAM 72 value is second GRAHAM 72 value combined with MANTSCH 72.
³ CHO 70 is analysis of unambiguous events in new data and HILL 67.
⁴ BENNETT 69 is a reanalysis of BENNETT 68.
⁵ BALDO-CEOLIN 65 gives *x* and *θ* converted by us to Re(*x*) and Im(*x*).

⁶ FRANZINI 65 gives x and θ for Re(x) and Im(x). See SCHMIDT 67.

+0.22	$+0.37 \\ -0.29$	121	JAMES	68	HBC	<u>P</u> p
0.0	±0.25	116	FELDMAN			$\pi^- p \rightarrow K^0 \Lambda$
-0.20	±0.10	335	⁴ HILL	67	DBC	$K^+d \rightarrow K^0pp$
-0.21	$^{+0.11}_{-0.15}$	196	AUBERT	65	HLBC	K^+ charge exch.
-0.44	$^{+0.32}_{-0.19}$	152	⁵ BALDO	65	HLBC	K^+ charge exch.
+0.24	$+0.40 \\ -0.30$	109	⁶ FRANZINI	65	НВС	p p

K_L^0 REFERENCES

BRFIT ETAFIT SUPERWEAK ABOUZAID ABOUZAID OGATA TUNG ABOUZAID AMBROSINO ANDRE LAI LAI NIX ABOUZAID AISO AMBROSINO AMBROSINO AMBROSINO AMBROSINO BATLEY HILL PDG ALEXOPOU AMBROSINO CABIBBO LAI LAI PARK AI AVILHARATI	16 16 16 11 11A 11 10 08 08A 08B 07C 07D 07C 07 07 07A 07 06 06A 06C 06 06B 06G 06B 06G 06B 06G 06B 06G 06B 06G 06G 06G 06G 06G 06G 06G 06G 06G 06G	RPP 2016 edition RPP 2016 edition RPP 2016 edition RPP 2016 edition PR D83 092001 PRL 107 201803 PR D84 052009 PR D83 031101 PR D81 052001 PR D81 072004 PR D77 112004 PR D77 112004 PR D78 032009 PR D78 032014 PRL 100 131803 PRL 100 201802 EPJ C55 539 PRL 99 051804 PRL 99 081803 PR D76 052001 JHEP 0712 105 ANP 322 2518 PL B645 26 PL B647 341 PR D76 011101 PRL 96 101801 PR D74 032004 PR D74 039905 (errat.) PR D74 079101 PR D74 079901 (errat.) PL B632 43 PL B636 166 PL B638 140 PL B638 140 PL B638 173 PR D74 079901 PL B636 15 JHEP 0503 021 PL B605 247 PL B615 31 PRL 94 021801 PR D74 021801 PR D74 021801 PR D74 99 021801	E. Abouzaid et al. J.K. Ahn et al. J.K. Ahn et al. F. Ambrosino et al. F. Ambrosino et al. F. Ambrosino et al. J.R. Batley et al. R.J. Hill WM. Yao et al. T. Alexopoulos et al. F. Ambrosino et al. N. Cabibbo, G. Isidori A. Lai et al. H.K. Park et al.	(PDG Collab.) (PDG Collab.) (PDG Collab.) (PDG Collab.) (FNAL KTeV Collab.) (KEW Collab.) (KEK E391a Collab.) (KEK E391a Collab.) (FNAL KTEV Collab.) (KEK E391a Collab.) (FNAL KTEV Collab.) (KLOE Collab.) (FNAL KTEV Collab.) (KLOE Collab.) (KLOE Collab.) (KLOE Collab.) (KEW E391a Collab.) (KEW E391a Collab.) (KTEV Collab.) (KEK E391a Collab.) (KLOE Collab.) (KLOE Collab.) (KLOE Collab.) (KLOE Collab.) (CERN NA48/2 Collab.) (CERN NA48/2 Collab.) (FNAL KTEV Collab.) (KLOE Collab.) (FNAL KTEV Collab.) (CERN NA48 Collab.) (CERN NA48 Collab.) (CERN NA48 Collab.) (CERN NA48 Collab.)
LAI	05B 05	PL B615 31	A. Lai et al.	(CERN NA48 Collab.)
BATLEY	04	PL B595 75	J.R. Batley <i>et al.</i>	(CERN NA48 Collab.)

Superseded by ANGELOPOULOS 01B.
 BURGUN 72 is a final result which includes BURGUN 71.
 First GRAHAM 72 value is second GRAHAM 72 value combined with MANTSCH 72.
 Footnote 10 of HILL 67 should read +0.58, not -0.58 (private communication) CHO 70 is analysis of unambiguous events in new data and HILL 67.
 BALDO-CEOLIN 65 gives x and θ converted by us to Re(x) and Im(x).
 FORMATING 65 is a converted by the following the following states of the following stat

⁶ FRANZINI 65 gives x and θ for Re(x) and Im(x). See SCHMIDT 67.

CIRIGLIANO	04	EPJ C35 53	V. Cirigliano, H. Neufeld,	, H. Pichl $(CIT, VALE+)$
LAI	04B	PL B602 41	A. Lai <i>et al.</i>	(CERN NA48 Collab.)
LAI	04C	PL B604 1	A. Lai et al.	(CERN NA48 Collab.)
PDG	04	PL B592 1	S. Eidelman <i>et al.</i>	(PDG Collab.)
	-			`
SOZZI	04	EPJ C36 37	M. Sozzi	(PISA)
ADINOLFI	03	PL B566 61	M. Adinolfi <i>et al.</i>	(KLOE Collab.)
ALAVI-HARATI	03	PR D67 012005	A. Alavi-Harati <i>et al.</i>	(FNAL KTeV Collab.)
Also		PR D70 079904 (errat.)	A. Alavi-Harati et al.	(FNAL KTeV Collab.)
ALAVI-HARATI	U3B	PRL 90 141801	A. ALavi-Harati <i>et al.</i>	(FNAL KTeV Collab.)
LAI	03	PL B551 7	A. Lai <i>et al.</i>	(CERN NA48 Collab.)
LAI	03C	EPJ C30 33	A. Lai <i>et al.</i>	(CERN NA48 Collab.)
ALAVI-HARATI	02	PRL 88 181601	A. Alavi-Harati <i>et al.</i>	(FNAL KTeV Collab.)
ALAVI-HARATI	02C	PRL 89 211801	A. Alavi-Harati et al.	(FNAL KTeV Collab.)
BATLEY	02	PL B544 97	J.R. Batley <i>et al.</i>	(CERN NA48 Collab.)
CIRIGLIANO	02	EPJ C23 121	V. Cirigliano et al.	(VIEN, VALE, MARS)
LAI	02B	PL B536 229	A. Lai <i>et al.</i>	(CERN NA48 Collab.)
ALAVI-HARATI	01	PRL 86 397	A. Alavi-Harati <i>et al.</i>	(FNAL KTeV Collab.)
ALAVI-HARATI	01B	PRL 86 761	A. Alavi-Harati et al.	(FNAL KTeV Collab.)
ALAVI-HARATI	01D	PRL 86 5425	A. Alavi-Harati et al.	(FNAL KTeV Collab.)
ALAVI-HARATI		PRL 87 021801	A. Alavi-Harati <i>et al.</i>	(FNAL KTeV Collab.)
				1
ALAVI-HARATI		PR D64 012003	A. Alavi-Harati <i>et al.</i>	(FNAL KTeV Collab.)
ALAVI-HARATI	01G	PRL 87 071801	A. Alavi-Harati <i>et al.</i>	(FNAL KTeV Collab.)
ALAVI-HARATI	01H	PRL 87 111802	A. Alavi-Harati <i>et al.</i>	(FNAL KTeV Collab.)
ALAVI-HARATI	01J	PR D64 112004	A. Alavi-Harati et al.	(FNAL KTeV Collab.)
ANGELOPO	01	PL B503 49	A. Angelopoulos et al.	` (CPLEAR Collab.)
ANGELOPO		EPJ C22 55	A. Angelopoulos <i>et al.</i>	(CPLEAR Collab.)
			.	
LAI	01B	PL B515 261	A. Lai <i>et al.</i>	(CERN NA48 Collab.)
LAI	01C	EPJ C22 231	A. Lai <i>et al.</i>	(CERN NA48 Collab.)
ALAVI-HARATI	00	PR D61 072006	A. Alavi-Harati <i>et al.</i>	(FNAL KTeV Collab.)
ALAVI-HARATI	00B	PRL 84 408	A. Alavi-Harati et al.	(FNAL KTeV Collab.)
ALAVI-HARATI	00D	PRL 84 5279	A. Alavi-Harati <i>et al.</i>	(FNAL KTeV Collab.)
ALAVI-HARATI		PR D62 112001	A. Alavi-Harati <i>et al.</i>	(FNAL KTeV Collab.)
AMBROSE	00	PRL 84 1389	D. Ambrose <i>et al.</i>	(BNL E871 Collab.)
APOSTOLA	00	PL B473 186	A. Apostolakis <i>et al.</i>	(CPLEAR Collab.)
PDG	00	EPJ C15 1	D.E. Groom <i>et al.</i>	(PDG Collab.)
ADAMS	99	PL B447 240	J. Adams <i>et al.</i>	(FNAL KTeV Collab.)
ALAVI-HARATI	99B	PRL 83 917	A. Alavi-Harati et al.	(FNAL KTeV Collab.)
ALAVI-HARATI		PRL 83 22	A. Alavi-Harati et al.	(FNAL KTeV Collab.)
APOSTOLA	99C	PL B458 545	A. Apostolakis <i>et al.</i>	(CPLEAR Collab.)
	99C		•	
Also		EPJ C18 41	A. Apostolakis <i>et al.</i>	(CPLEAR Collab.)
FANTI	99B	PL B458 553	V. Fanti <i>et al.</i>	(CERN NA48 Collab.)
FANTI	99C	PL B465 335	V. Fanti <i>et al.</i>	(CERN NA48 Collab.)
MURAKAMI	99	PL B463 333	K. Murakami et al.	(KEK E162 Collab.)
ADAMS	98	PRL 80 4123	J. Adams <i>et al.</i>	(FNAL KTeV Collab.)
AMBROSE	98	PRL 81 4309	D. Ambrose <i>et al.</i>	(BNL E871 Collab.)
AMBROSE				
	98B	PRL 81 5734	D. Ambrose <i>et al.</i>	(BNL E871 Collab.)
ANGELOPO	98	PL B420 191	A. Angelopoulos <i>et al.</i>	(CPLEAR Collab.)
ANGELOPO	98C	EPJ C5 389	A. Angelopoulos <i>et al.</i>	(CPLEAR Collab.)
ANGELOPO	98D	PL B444 38	A. Angelopoulos <i>et al.</i>	(CPLEAR Collab.)
Also		EPJ C22 55	A. Angelopoulos et al.	(CPLEAR Collab.)
ANGELOPO	98E	PL B444 43	A. Angelopoulos <i>et al.</i>	(CPLEAR Collab.)
ARISAKA	98	PL B432 230	K. Arisaka <i>et al.</i>	(FNAL E799 Collab.)
BENDER	98	PL B418 411	M. Bender et al.	(CERN NA48 Collab.)
DAMBROSIO	98	PL B423 385	G. D'Ambrosio, G. Isidori	i, J. Portoles
SETZU	98	PL B420 205	M.G. Setzu <i>et al.</i>	
TAKEUCHI	98	PL B443 409	Y. Takeuchi <i>et al.</i>	(KYOT, KEK, HIRO)
FANTI	97	ZPHY C76 653	V. Fanti <i>et al.</i>	(CERN NA48 Collab.)
NOMURA	97	PL B408 445	T. Nomura et al.	(KYOT, KEK, HIRO)
			R. Adler et al.	
ADLER	96B	ZPHY C70 211		(CPLEAR Collab.)
ADLER	96C	PL B369 367	R. Adler <i>et al.</i>	(CPLEAR Collab.)
GU	96	PRL 76 4312	P. Gu <i>et al.</i>	(RUTG, UCLA, EFI, COLO $+$)
LEBER	96	PL B369 69	F. Leber <i>et al.</i> (1	MANZ, CERN, EDIN, ORSAY+)
PDG	96	PR D54 1	R. M. Barnett et al.	(PDG Collab.)
ADLER	95	PL B363 237	R. Adler et al.	(CPLEAR Collab.)
ADLER	95B	PL B363 243	R. Adler et al.	(CPLEAR Collab.)
AKAGI	95 05	PR D51 2061	_	(TOHOK, TOKY, KYOT, KEK)
BARR	95	ZPHY C65 361	G.D. Barr et al.	(CERN, EDIN, MANZ, LALO+)
BARR	95C	PL B358 399	G.D. Barr et al.	(CERN, EDIN, MANZ, LALO+)
HEINSON	95	PR D51 985	A.P. Heinson et al.	(BNL E791 Collab.)
KREUTZ	95	ZPHY C65 67	A. Kreutz <i>et al.</i>	(SIEG, EDIN, MANZ, ORSAY+)
MATTHEWS	95	PRL 75 2803	J.N. Matthews et al.	(RUTG, EFI, ELMT+)
_		* =		(, , , , , , , , , , , , , , , , , , ,

SCHWINGEN	95	PRL 74 4376	B. Schwingenheuer <i>et al</i>	. (EFI, CHIC+)
SPENCER	95	PRL 74 3323	M.B. Spencer et al.	(UCLA, EFI, COLO+)
BARR	94	PL B328 528	G.D. Barr <i>et al.</i>	(CERN, EDIN, MANZ, LALO+)
GU	94	PRL 72 3000	P. Gu et al.	(RUTG, UCLA, EFI, COLO+)
			:: : : : : : : : : : : : : : : : :	`:::::::::::::::::::::::::::::::::::
NAKAYA	94	PRL 73 2169	T. Nakaya <i>et al.</i>	(OSAK, UCLA, EFI, COLU+)
ROBERTS	94	PR D50 1874	D. Roberts <i>et al.</i>	(UCLA, EFI, COLU+)
WEAVER	94	PRL 72 3758	M. Weaver et al.	(UCLA, EFI, COLU, ELMT+)
AKAGI	93	PR D47 R2644	T. Akagi <i>et al.</i>	(TÒHOK, TOKY, KYOT, KEK)
ARISAKA	93	PRL 70 1049	K. Arisaka <i>et al.</i>	(BNL E791 Collab.)
				· · · · · · · · · · · · · · · · · · ·
ARISAKA	93B	PRL 71 3910	K. Arisaka <i>et al.</i>	(BNL E791 Collab.)
BARR	93D	PL B317 233	G.D. Barr <i>et al.</i>	(CERN, EDIN, MANZ, LALO+)
GIBBONS	93	PRL 70 1199	L.K. Gibbons et al.	(FNAL E731 Collab.)
Also		PR D55 6625	L.K. Gibbons et al.	(FNAL E731 Collab.)
GIBBONS	93B	PRL 70 1203	L.K. Gibbons <i>et al.</i>	(FNAL E731 Collab.)
				· · · · · · · · · · · · · · · · · · ·
GIBBONS	93C	Thesis RX-1487	L.K. Gibbons	(CHIC)
Also		PR D55 6625	L.K. Gibbons <i>et al.</i>	(FNAL E731 Collab.)
HARRIS	93	PRL 71 3914	D.A. Harris <i>et al.</i>	$(EFI,\ UCLA,\ COLO+)$
HARRIS	93B	PRL 71 3918	D.A. Harris et al.	(EFI, UCLA, COLO+)
MAKOFF	93	PRL 70 1591	G. Makoff et al.	(FNAL E731 Collab.)
Also	55	PRL 75 2069 (erratum)	G. Makoff et al.	(FINE EIGH COMB.)
	00			(FNAL E721 C II I)
RAMBERG	93	PRL 70 2525	E. Ramberg <i>et al.</i>	(FNAL E731 Collab.)
RAMBERG	93B	PRL 70 2529	E.J. Ramberg <i>et al.</i>	(FNAL E731 Collab.)
VAGINS	93	PRL 71 35	M.R. Vagins et al.	(BNL E845 Collab.)
ADLER	92B	PL B286 180	R. Adler et al.	`(CPLEAR Collab.)
Also	320	SJNP 55 840	R. Adler et al.	(CPLEAR Collab.)
	00			
BARR	92	PL B284 440	G.D. Barr et al.	(CERN, EDIN, MANZ, LALO+)
GRAHAM	92	PL B295 169	G.E. Graham <i>et al.</i>	(FNAL E731 Collab.)
MORSE	92	PR D45 36	W.M. Morse et al.	(BNL, YALE, VASS)
PDG	92	PR D45 S1	K. Hikasa <i>et al.</i>	(ŘEK, LBL, BOST+)
SOMALWAR	92	PRL 68 2580	S.V. Somalwar et al.	(FNAL E731 Collab.)
		PRL 67 2618	T. Akagi <i>et al.</i>	
AKAGI	91B		. 0	(TOHOK, TOKY, KYOT, KEK)
BARR	91	PL B259 389	G.D. Barr <i>et al.</i>	(CERN, EDIN, MANZ, LALO+)
HEINSON	91	PR D44 R1	A.P. Heinson <i>et al.</i>	$(UCI,\ UCLA,\ LANL+)$
PAPADIMITR	. 91	PR D44 R573	V. Papadimitriou et al.	(FNAL E731 Collab.)
BARKER	90	PR D41 3546	A.R. Barker <i>et al.</i>	(FNAL E731 Collab.)
Also	50	PRL 61 2661	L.K. Gibbons <i>et al.</i>	(FNAL E731 Collab.)
	000			
BARR	90B	PL B240 283	G.D. Barr et al.	(CERN, EDIN, MANZ, LALO+)
BARR	90C	PL B242 523	G.D. Barr <i>et al.</i>	(CERN, EDIN, MANZ, LALO+)
CAROSI	90	PL B237 303	R. Carosi <i>et al.</i>	(CERN, EDIN, MANZ, LALO+)
KARLSSON	90	PRL 64 2976	M. Karlsson <i>et al.</i>	(FNAL E731 Collab.)
OHL	90	PRL 64 2755	K.E. Ohl et al.	(BNL E845 Collab.)
OHL	90B		K.E. Ohl et al.	· · · · · · · · · · · · · · · · · · ·
		PRL 65 1407		(BNL E845 Collab.)
PATTERSON	90	PRL 64 1491	J.R. Patterson <i>et al.</i>	(FNAL E731 Collab.)
INAGAKI	89	PR D40 1712	T. Inagaki <i>et al.</i>	(KEK, TOKY, KYOT)
MATHIAZHA	89	PRL 63 2181	C. Mathiazhagan et al.	(UCI, UCLA, LANL+)
MATHIAZHA	89B	PRL 63 2185	C. Mathiazhagan et al.	(UCI, UCLA, LANL+)
WAHL	89	CERN-EP/89-86	H. Wahl	(CERN)
BARR				
	88	PL B214 303	G.D. Barr et al.	(CERN, EDIN, MANZ, LALO+)
BURKHARDT	88	PL B206 169	H. Burkhardt <i>et al.</i>	(CERN, EDIN, MANZ+)
JASTRZEM	88	PRL 61 2300	E. Jastrzembski <i>et al.</i>	(BNL, YALE)
WOODS	88	PRL 60 1695	M. Woods et al.	(FNAL E731 Collab.)
BURKHARDT	87	PL B199 139	H. Burkhardt et al.	(CERN, EDIN, MANZ $+$)
ARONSON	86	PR D33 3180	S.H. Aronson <i>et al.</i>	
	00			(BNL, CHIC, STAN+)
Also		PRL 48 1078	S.H. Aronson et al.	(BNL, CHIC, STAN+)
PDG	86C	PL 170B 132	M. Aguilar-Benitez <i>et al.</i>	. (CERN, CIT+)
COUPAL	85	PRL 55 566	D.P. Coupal et al.	(CHIC, SACL)
BALATS	83	SJNP 38 556	M.Y. Balats et al.	` (ITEP)
		Translated from YAF 38		()
BERGSTROM	83	PL 131B 229	L. Bergstrom, E. Masso,	P. Singer (CERN)
ARONSON	82	PRL 48 1078	S.H. Aronson <i>et al.</i>	(BNL, CHIC, STAN+)
ARONSON	82B	PRL 48 1306	S.H. Aronson <i>et al.</i>	(BNL, CHIC, PURD)
Also		PL 116B 73	E. Fischbach <i>et al.</i>	(PURD, BNL, CHIC)
Also		PR D28 476	S.H. Aronson et al.	(BNL, CHIC, PURD)
Also		PR D28 495	S.H. Aronson et al.	(BNL, CHIC, PURD)
PDG	82B	PL 111B 70	M. Roos et al.	(HELS, CIT, CERN)
				`
BIRULEV	81	NP B182 1	V.K. Birulev et al.	(JINR)
Also		SJNP 31 622	V.K. Birulev <i>et al.</i>	(JINR)
		Translated from YAF 31	1204.	

CARROLL CARROLL CHO MORSE CHRISTENS SCHMIDT HILL CHO CLARK Also DEVOE PEACH	80B 80C 80 80 79 79 78 77 77	PRL 44 529 PL 96B 407 PR D22 2688 PR D21 1750 PRL 43 1209 PRL 43 556 PL 73B 483 PR D15 587 PR D15 553 Thesis LBL-4275 PR D16 565 NP B127 399	A.S. Carroll et al. A.S. Carroll et al. Y. Cho et al. W.M. Morse et al. J.H. Christenson et al. M.P. Schmidt et al. D.G. Hill et al. Y. Cho et al. A.R. Clark et al. G. Shen R. Devoe et al. K.J. Peach et al.	(BNL, ROCH) (BNL, ROCH) (ANL, CMU) (BNL, YALE) (NYU) (YALE, BNL) (BNL, SLAC, SBER) (ANL, CMU) (LBL) (LBL) (EFI, ANL) (BGNA, EDIN, GLAS+)
BIRULEV	76	SJNP 24 178 Translated from YAF 24	V.K. Birulev <i>et al.</i> 340	(JINR)
COOMBES GJESDAL BALDO BLUMENTHAL BUCHANAN CARITHERS SMITH	76 76 75 75 75 75 75 75B	PRL 37 249 NP B109 118 NC 25A 688 PRL 34 164 PR D11 457 PRL 34 1244 Thesis UCSD unpub.	R.W. Coombes et al. G. Gjesdal et al. M. Baldo-Ceolin et al. R.B. Blumenthal et al. C.D. Buchanan et al. W.C.J. Carithers et al. J.G. Smith	(STAN, NYU) (CERN, HEIDH) (PADO, WISC) (PENN, CHIC, TEMP) (UCLA, SLAC, JHU) (COLU, NYU) (UCSD)
BISI	74	PL 50B 504	V. Bisi, M.I. Ferrero	(TORI)
DONALDSON	74	Thesis SLAC-0184	G. Donaldson	(SLAC)
Also DONALDSON	74B	PR D14 2839 PR D9 2960	G. Donaldson <i>et al.</i> G. Donaldson <i>et al.</i>	(SLAC) (SLAC, UCSC)
Also GEWENIGER	74	PRL 31 337 PL 48B 483	G. Donaldson <i>et al.</i>C. Geweniger <i>et al.</i>	(SLAC, UCSC) (CERN, HEIDH)
Also GEWENIGER	74B	Thesis CERN Int. 74-4 PL 48B 487	V. Luth C. Geweniger <i>et al.</i>	(CERN) (CERN, HEIDH)
Also	140	PL 52B 119	S. Gjesdal <i>et al.</i>	(CERN, HEIDH)
GEWENIGER	74C	PL 52B 108	C. Geweniger et al.	(CERN, HEIDH)
GJESDAL MESSNER	74 74	PL 52B 113 PRL 33 1458	S. Gjesdal <i>et al.</i> R. Messner <i>et al.</i>	(CERN, HEIDH) (COLO, SLAC, UCSC)
NIEBERGALL	74	PL 49B 103	F. Niebergall <i>et al.</i>	(CERN, ORSAY, VIEN)
WILLIAMS	74	PRL 33 240	H.H. Williams et al.	` (BNL, YALE)
ALEXANDER BRANDENB	73B 73	NP B65 301	G. Alexander et al.	(TELA, HEID)
EVANS	73	PR D8 1978 PR D7 36	G.W. Brandenburg et al. G.R. Evans et al.	(SLAC) (EDIN, CERN)
Also		PRL 23 427	G.R. Evans et al.	(EDIN, CERN)
FACKLER	73	PRL 31 847	O. Fackler <i>et al.</i>	(MIT)
FITCH Also	73	PRL 31 1524 Thesis COO-3072-13	V.L. Fitch <i>et al.</i> R.C. Webb	(PRIN) (PRIN)
HART	73	NP B66 317	J.C. Hart <i>et al.</i>	(CAVE, RHEL)
MALLARY	73	PR D7 1953	M.L. Mallary et al.	(CIT)
Also MCCARTHY	73	PRL 25 1214 PR D7 687	F.J. Sciulli <i>et al.</i> R.L. McCarthy <i>et al.</i>	(CIT) (LBL)
Also	10	PL 42B 291	R.L. McCarthy <i>et al.</i>	(LBL)
Also		Thesis LBL-550	R.L. McCarthy	(LBL)
MESSNER SANDWEISS	73 73	PRL 30 876 PRL 30 1002	R. Messner <i>et al.</i> J. Sandweiss <i>et al.</i>	(COLO, SLAC, UCSC) (YALE, ANL)
WILLIAMS	73	PRL 31 1521	H.H. Williams <i>et al.</i>	(BNL, YALE)
ASHFORD	72	PL 38B 47	V.A. Ashford <i>et al.</i>	(UCSD)
BANNER BARMIN	72B 72B	PRL 29 237 SJNP 15 638	M. Banner <i>et al.</i> V.V. Barmin <i>et al.</i>	(PRIN) (ITEP)
		Translated from YAF 15	1152.	
BURGUN GRAHAM	72 72	NP B50 194 NC 9A 166	G. Burgun <i>et al.</i> M.F. Graham <i>et al.</i>	(SACL, CERN, OSLO) (ILL, NEAS)
JAMES	72	NP B49 1	F. James <i>et al.</i>	(CERN, SACL, OSLO)
KRENZ	72	LNC 4 213	W. Krenz et al.	(AACH, CERN, EDIN)
MANN MANTSCH	72 72	PR D6 137 NC 9A 160	W.A. Mann <i>et al.</i> P.M. Mantsch <i>et al.</i>	(MASA, BNL, YALE) (ILL, NEAS)
MCCARTHY	72	PL 42B 291	R.L. McCarthy <i>et al.</i>	(LBL)
PICCIONI	72	PRL 29 1412	R. Piccioni et al.	(SLAC)
Also VOSBURGH	72	PR D9 2939 PR D6 1834	R. Piccioni <i>et al.</i> K.G. Vosburgh <i>et al.</i>	(SLAC, UCSC, COLO) (RUTG, MASA)
Also		PRL 26 866	K.G. Vosburgh <i>et al.</i>	(RUTG, MASA)
BALATS	71	SJNP 13 53 Translated from YAF 13	M.Y. Balats et al.	(ITEP)

BARMIN	71	PL 35B 604	V.V. Barmin et al.	(ITEP)
	71	LNC 2 1169		(SACL, CERN, OSLO)
BURGUN			G. Burgun et al.	
CARNEGIE	71	PR D4 1	R.K. Carnegie et al.	(PRIN)
CHAN	71	Thesis LBL-350	J.H.S. Chan	(LBL)
CHO	71	PR D3 1557	Y. Cho et al.	(CMU, BNL, CASE)
ENSTROM	71	PR D4 2629	J. Enstrom <i>et al.</i>	(SLAC, STAN)
Also		Thesis SLAC-0125	J.E. Enstrom	` (STAN)
	71			
JAMES	71	PL 35B 265	F. James <i>et al.</i>	(CERN, SACL, OSLO)
MEISNER	71	PR D3 59	G.W. Meisner <i>et al.</i>	(MASA, BNL, YALE)
REPELLIN	71	PL 36B 603	J.P. Repellin et al.	` (ORSAY, CERN)
			•	
WEBBER	71	PR D3 64	B.R. Webber <i>et al.</i>	(LRL)
Also		PRL 21 498	B.R. Webber <i>et al.</i>	(LRL)
Also		Thesis UCRL 19226	B.R. Webber	(LRL)
	71			
WOLFF	71	PL 36B 517	B. Wolff et al.	(ORSAY, CERN)
ALBROW	70	PL 33B 516	M.G. Albrow et al.	(MCHS, DARE)
ARONSON	70	PRL 25 1057	S.H. Aronson et al.	(EÈI, ILLC, SLAC)
BARMIN	70	PL 33B 377	V.V. Barmin <i>et al.</i>	(ITEP, JINR)
BASILE	70	PR D2 78	P. Basile <i>et al.</i>	(SACL)
BECHERRAWY		PR D1 1452	T. Becherrawy	
				(ROCH)
BUCHANAN	70	PL 33B 623	C.D. Buchanan <i>et al.</i>	(SLAC, JHU, UCLA)
Also		Private Comm.	A.J. Cox	
BUDAGOV	70	PR D2 815		(CEDNI ODSAV EDOL)
	10		I.A. Budagov et al.	(CERN, ORSAY, EPOL)
Also		PL 28B 215	I.A. Budagov et al.	(CERN, ORSAY, EPOL)
CHO	70	PR D1 3031	Y. Cho et al.	` (CMU, BNL, CASE)
	10			
Also		PRL 19 668	D.G. Hill et al.	(BNL, CMU)
CHOLLET	70	PL 31B 658	J.C. Chollet <i>et al.</i>	(CERN)
CULLEN	70	PL 32B 523	M. Cullen et al.	(AACH, CERN, TORI)
MARX	70	PL 32B 219	J. Marx <i>et al.</i>	(COLU, HARV, CERN)
Also		Thesis Nevis 179	J. Marx	(COLU)
SCRIBANO	70	PL 32B 224	A. Scribano et al.	(PISA, COLU, HARV)
				` = (
SMITH	70	PL 32B 133	R.C. Smith et al.	(UMD, BNL)
WEBBER	70	PR D1 1967	B.R. Webber <i>et al.</i>	(LRL)
Also		Thesis UCRL 19226	B.R. Webber	(LRL)
	CO			
BANNER	69	PR 188 2033	M. Banner et al.	(PRIN)
Also		PRL 21 1103	M. Banner <i>et al.</i>	(PRIN)
Also		PRL 21 1107	J.W. Cronin, J.K. Liu, J	I.E. Pilcher (PRIN)
			J. VV. Crommi, J. IV. Liu, J	
			C D /	
BENNETT	69	PL 29B 317	S. Bennett et al.	(COLU, BNL)
BENNETT FAISSNER	69 69	PL 29B 317 PL 30B 204	S. Bennett <i>et al.</i> H. Faissner <i>et al.</i>	(COLU, BNL)
FAISSNER	69	PL 30B 204	H. Faissner et al.	(COLU, BNL) (AACH3, CERN, TORI)
FAISSNER LITTENBERG	69 69	PL 30B 204 PRL 22 654	H. Faissner <i>et al.</i> L.S. Littenberg <i>et al.</i>	(COLU, BNL) (AACH3, CERN, TORI) (UCSD)
FAISSNER	69	PL 30B 204	H. Faissner et al.	(COLU, BNL) (AACH3, CERN, TORI) (UCSD)
FAISSNER LITTENBERG LONGO	69 69 69	PL 30B 204 PRL 22 654 PR 181 1808	H. Faissner <i>et al.</i> L.S. Littenberg <i>et al.</i> M.J. Longo, K.K. Young	(COLU, BNL) (AACH3, CERN, TORI) (UCSD) (J.A. Helland (MICH, UCLA)
FAISSNER LITTENBERG LONGO PACIOTTI	69 69 69	PL 30B 204 PRL 22 654 PR 181 1808 Thesis UCRL 19446	H. Faissner et al. L.S. Littenberg et al. M.J. Longo, K.K. Young M.A. Paciotti	(COLU, BNL) (AACH3, CERN, TORI) (UCSD) (J.A. Helland (MICH, UCLA) (LRL)
FAISSNER LITTENBERG LONGO PACIOTTI SAAL	69 69 69 69	PL 30B 204 PRL 22 654 PR 181 1808 Thesis UCRL 19446 Thesis	H. Faissner et al. L.S. Littenberg et al. M.J. Longo, K.K. Young M.A. Paciotti H.J. Saal	(COLU, BNL) (AACH3, CERN, TORI) (UCSD) (J.A. Helland (MICH, UCLA) (LRL) (COLU)
FAISSNER LITTENBERG LONGO PACIOTTI	69 69 69	PL 30B 204 PRL 22 654 PR 181 1808 Thesis UCRL 19446	H. Faissner et al. L.S. Littenberg et al. M.J. Longo, K.K. Young M.A. Paciotti	(COLU, BNL) (AACH3, CERN, TORI) (UCSD) (J.A. Helland (MICH, UCLA) (LRL)
FAISSNER LITTENBERG LONGO PACIOTTI SAAL ABRAMS	69 69 69 69 69 68B	PL 30B 204 PRL 22 654 PR 181 1808 Thesis UCRL 19446 Thesis PR 176 1603	H. Faissner et al. L.S. Littenberg et al. M.J. Longo, K.K. Young M.A. Paciotti H.J. Saal R.J. Abrams et al.	(COLU, BNL) (AACH3, CERN, TORI) (UCSD) (J.A. Helland (MICH, UCLA) (LRL) (COLU) (ILL)
FAISSNER LITTENBERG LONGO PACIOTTI SAAL ABRAMS ARNOLD	69 69 69 69 69 68B 68B	PL 30B 204 PRL 22 654 PR 181 1808 Thesis UCRL 19446 Thesis PR 176 1603 PL 28B 56	H. Faissner et al. L.S. Littenberg et al. M.J. Longo, K.K. Young M.A. Paciotti H.J. Saal R.J. Abrams et al. R.G. Arnold et al.	(COLU, BNL) (AACH3, CERN, TORI) (UCSD) (J.A. Helland (MICH, UCLA) (LRL) (COLU) (ILL) (CERN, ORSAY)
FAISSNER LITTENBERG LONGO PACIOTTI SAAL ABRAMS ARNOLD BASILE	69 69 69 69 68B 68B 68B	PL 30B 204 PRL 22 654 PR 181 1808 Thesis UCRL 19446 Thesis PR 176 1603 PL 28B 56 PL 28B 58	H. Faissner et al. L.S. Littenberg et al. M.J. Longo, K.K. Young M.A. Paciotti H.J. Saal R.J. Abrams et al. R.G. Arnold et al. P. Basile et al.	(COLU, BNL) (AACH3, CERN, TORI) (UCSD) (J.A. Helland (MICH, UCLA) (LRL) (COLU) (ILL) (CERN, ORSAY) (SACL)
FAISSNER LITTENBERG LONGO PACIOTTI SAAL ABRAMS ARNOLD	69 69 69 69 69 68B 68B	PL 30B 204 PRL 22 654 PR 181 1808 Thesis UCRL 19446 Thesis PR 176 1603 PL 28B 56	H. Faissner et al. L.S. Littenberg et al. M.J. Longo, K.K. Young M.A. Paciotti H.J. Saal R.J. Abrams et al. R.G. Arnold et al.	(COLU, BNL) (AACH3, CERN, TORI) (UCSD) (J.A. Helland (MICH, UCLA) (LRL) (COLU) (ILL) (CERN, ORSAY) (SACL) (COLU, CERN)
FAISSNER LITTENBERG LONGO PACIOTTI SAAL ABRAMS ARNOLD BASILE BENNETT	69 69 69 69 68B 68B 68B	PL 30B 204 PRL 22 654 PR 181 1808 Thesis UCRL 19446 Thesis PR 176 1603 PL 28B 56 PL 28B 58 PL 27B 244	H. Faissner et al. L.S. Littenberg et al. M.J. Longo, K.K. Young M.A. Paciotti H.J. Saal R.J. Abrams et al. R.G. Arnold et al. P. Basile et al. S. Bennett et al.	(COLU, BNL) (AACH3, CERN, TORI) (UCSD) (J.A. Helland (MICH, UCLA) (LRL) (COLU) (ILL) (CERN, ORSAY) (SACL) (COLU, CERN)
FAISSNER LITTENBERG LONGO PACIOTTI SAAL ABRAMS ARNOLD BASILE BENNETT BLANPIED	69 69 69 69 68 68B 68B 68B	PL 30B 204 PRL 22 654 PR 181 1808 Thesis UCRL 19446 Thesis PR 176 1603 PL 28B 56 PL 28B 58 PL 27B 244 PRL 21 1650	H. Faissner et al. L.S. Littenberg et al. M.J. Longo, K.K. Young M.A. Paciotti H.J. Saal R.J. Abrams et al. R.G. Arnold et al. P. Basile et al. S. Bennett et al. W.A. Blanpied et al.	(COLU, BNL) (AACH3, CERN, TORI) (UCSD) (J.A. Helland (MICH, UCLA) (LRL) (COLU) (ILL) (CERN, ORSAY) (SACL)
FAISSNER LITTENBERG LONGO PACIOTTI SAAL ABRAMS ARNOLD BASILE BENNETT BLANPIED BOHM	69 69 69 69 68B 68B 68B 68 68	PL 30B 204 PRL 22 654 PR 181 1808 Thesis UCRL 19446 Thesis PR 176 1603 PL 28B 56 PL 28B 58 PL 27B 244 PRL 21 1650 PL 27B 594	H. Faissner et al. L.S. Littenberg et al. M.J. Longo, K.K. Young M.A. Paciotti H.J. Saal R.J. Abrams et al. R.G. Arnold et al. P. Basile et al. S. Bennett et al. W.A. Blanpied et al. A. Bohm et al.	(COLU, BNL) (AACH3, CERN, TORI) (UCSD) (J.A. Helland (MICH, UCLA) (LRL) (COLU) (ILL) (CERN, ORSAY) (SACL) (COLU, CERN) (CASE, HARV, MCGI)
FAISSNER LITTENBERG LONGO PACIOTTI SAAL ABRAMS ARNOLD BASILE BENNETT BLANPIED	69 69 69 69 68 68B 68B 68B	PL 30B 204 PRL 22 654 PR 181 1808 Thesis UCRL 19446 Thesis PR 176 1603 PL 28B 56 PL 28B 58 PL 27B 244 PRL 21 1650	H. Faissner et al. L.S. Littenberg et al. M.J. Longo, K.K. Young M.A. Paciotti H.J. Saal R.J. Abrams et al. R.G. Arnold et al. P. Basile et al. S. Bennett et al. W.A. Blanpied et al.	(COLU, BNL) (AACH3, CERN, TORI) (UCSD) (J.A. Helland (MICH, UCLA) (COLU) (ILL) (CERN, ORSAY) (SACL) (CASE, HARV, MCGI) (CERN, ORSAY, IPNP)
FAISSNER LITTENBERG LONGO PACIOTTI SAAL ABRAMS ARNOLD BASILE BENNETT BLANPIED BOHM	69 69 69 69 68B 68B 68B 68 68	PL 30B 204 PRL 22 654 PR 181 1808 Thesis UCRL 19446 Thesis PR 176 1603 PL 28B 56 PL 28B 58 PL 27B 244 PRL 21 1650 PL 27B 594	H. Faissner et al. L.S. Littenberg et al. M.J. Longo, K.K. Young M.A. Paciotti H.J. Saal R.J. Abrams et al. R.G. Arnold et al. P. Basile et al. S. Bennett et al. W.A. Blanpied et al. A. Bohm et al. I.A. Budagov et al.	(COLU, BNL) (AACH3, CERN, TORI) (UCSD) (J.A. Helland (MICH, UCLA) (COLU) (ILL) (CERN, ORSAY) (SACL) (CASE, HARV, MCGI) (CERN, ORSAY, IPNP)
FAISSNER LITTENBERG LONGO PACIOTTI SAAL ABRAMS ARNOLD BASILE BENNETT BLANPIED BOHM BUDAGOV Also	69 69 69 69 68B 68B 68B 68 68	PL 30B 204 PRL 22 654 PR 181 1808 Thesis UCRL 19446 Thesis PR 176 1603 PL 28B 56 PL 28B 58 PL 27B 244 PRL 21 1650 PL 27B 594 NC 57A 182 PL 28B 215	H. Faissner et al. L.S. Littenberg et al. M.J. Longo, K.K. Young M.A. Paciotti H.J. Saal R.J. Abrams et al. R.G. Arnold et al. P. Basile et al. S. Bennett et al. W.A. Blanpied et al. A. Bohm et al. I.A. Budagov et al. I.A. Budagov et al.	(COLU, BNL) (AACH3, CERN, TORI) (UCSD) (J.A. Helland (MICH, UCLA) (LRL) (COLU) (ILL) (CERN, ORSAY) (SACL) (COLU, CERN) (CASE, HARV, MCGI) (CERN, ORSAY, IPNP) (CERN, ORSAY, EPOL)
FAISSNER LITTENBERG LONGO PACIOTTI SAAL ABRAMS ARNOLD BASILE BENNETT BLANPIED BOHM BUDAGOV Also JAMES	69 69 69 69 68B 68B 68B 68 68	PL 30B 204 PRL 22 654 PR 181 1808 Thesis UCRL 19446 Thesis PR 176 1603 PL 28B 56 PL 28B 56 PL 27B 244 PRL 21 1650 PL 27B 594 NC 57A 182 PL 28B 215 NP B8 365	H. Faissner et al. L.S. Littenberg et al. M.J. Longo, K.K. Young M.A. Paciotti H.J. Saal R.J. Abrams et al. R.G. Arnold et al. P. Basile et al. S. Bennett et al. W.A. Blanpied et al. A. Bohm et al. I.A. Budagov et al. I.A. Budagov et al. F. James, H. Briand	(COLU, BNL) (AACH3, CERN, TORI) (UCSD) (J.A. Helland (MICH, UCLA) (LRL) (COLU) (ILL) (CERN, ORSAY) (SACL) (COLU, CERN) (CASE, HARV, MCGI) (CERN, ORSAY, IPNP) (CERN, ORSAY, EPOL) (IPNP, CERN)
FAISSNER LITTENBERG LONGO PACIOTTI SAAL ABRAMS ARNOLD BASILE BENNETT BLANPIED BOHM BUDAGOV Also	69 69 69 69 68B 68B 68B 68 68	PL 30B 204 PRL 22 654 PR 181 1808 Thesis UCRL 19446 Thesis PR 176 1603 PL 28B 56 PL 28B 58 PL 27B 244 PRL 21 1650 PL 27B 594 NC 57A 182 PL 28B 215	H. Faissner et al. L.S. Littenberg et al. M.J. Longo, K.K. Young M.A. Paciotti H.J. Saal R.J. Abrams et al. R.G. Arnold et al. P. Basile et al. S. Bennett et al. W.A. Blanpied et al. A. Bohm et al. I.A. Budagov et al. I.A. Budagov et al.	(COLU, BNL) (AACH3, CERN, TORI) (UCSD) (J.A. Helland (MICH, UCLA) (LRL) (COLU) (ILL) (CERN, ORSAY) (SACL) (COLU, CERN) (CASE, HARV, MCGI) (CERN, ORSAY, IPNP) (CERN, ORSAY, EPOL) (IPNP, CERN)
FAISSNER LITTENBERG LONGO PACIOTTI SAAL ABRAMS ARNOLD BASILE BENNETT BLANPIED BOHM BUDAGOV Also JAMES Also	69 69 69 69 68B 68B 68B 68 68 68B	PL 30B 204 PRL 22 654 PR 181 1808 Thesis UCRL 19446 Thesis PR 176 1603 PL 28B 56 PL 28B 56 PL 27B 244 PRL 21 1650 PL 27B 594 NC 57A 182 PL 28B 215 NP B8 365 PRL 21 257	H. Faissner et al. L.S. Littenberg et al. M.J. Longo, K.K. Young M.A. Paciotti H.J. Saal R.J. Abrams et al. R.G. Arnold et al. P. Basile et al. S. Bennett et al. W.A. Blanpied et al. A. Bohm et al. I.A. Budagov et al. I.A. Budagov et al. F. James, H. Briand J.A. Helland, M.J. Longo	(COLU, BNL) (AACH3, CERN, TORI) (UCSD) (J.A. Helland (MICH, UCLA) (LRL) (COLU) (ILL) (CERN, ORSAY) (SACL) (COLU, CERN) (CASE, HARV, MCGI) (CERN, ORSAY, IPNP) (CERN, ORSAY, EPOL) (IPNP, CERN) o, K.K. Young (UCLA, MICH)
FAISSNER LITTENBERG LONGO PACIOTTI SAAL ABRAMS ARNOLD BASILE BENNETT BLANPIED BOHM BUDAGOV Also JAMES	69 69 69 69 68B 68B 68B 68 68	PL 30B 204 PRL 22 654 PR 181 1808 Thesis UCRL 19446 Thesis PR 176 1603 PL 28B 56 PL 28B 58 PL 27B 244 PRL 21 1650 PL 27B 594 NC 57A 182 PL 28B 215 NP B8 365 PRL 21 257 JETP 26 20	H. Faissner et al. L.S. Littenberg et al. M.J. Longo, K.K. Young M.A. Paciotti H.J. Saal R.J. Abrams et al. R.G. Arnold et al. P. Basile et al. S. Bennett et al. W.A. Blanpied et al. A. Budagov et al. I.A. Budagov et al. I.A. Budagov et al. F. James, H. Briand J.A. Helland, M.J. Longe L.A. Kulyukina et al.	(COLU, BNL) (AACH3, CERN, TORI) (UCSD) (J.A. Helland (MICH, UCLA) (LRL) (COLU) (ILL) (CERN, ORSAY) (SACL) (COLU, CERN) (CASE, HARV, MCGI) (CERN, ORSAY, IPNP) (CERN, ORSAY, EPOL) (IPNP, CERN)
FAISSNER LITTENBERG LONGO PACIOTTI SAAL ABRAMS ARNOLD BASILE BENNETT BLANPIED BOHM BUDAGOV Also JAMES Also KULYUKINA	69 69 69 69 68B 68B 68B 68 68B 68B 68B	PL 30B 204 PRL 22 654 PR 181 1808 Thesis UCRL 19446 Thesis PR 176 1603 PL 28B 56 PL 28B 58 PL 27B 244 PRL 21 1650 PL 27B 594 NC 57A 182 PL 28B 215 NP B8 365 PRL 21 257 JETP 26 20 Translated from ZETF 53	H. Faissner et al. L.S. Littenberg et al. M.J. Longo, K.K. Young M.A. Paciotti H.J. Saal R.J. Abrams et al. R.G. Arnold et al. P. Basile et al. S. Bennett et al. W.A. Blanpied et al. A. Bohm et al. I.A. Budagov et al. I.A. Budagov et al. F. James, H. Briand J.A. Helland, M.J. Longe L.A. Kulyukina et al. 29.	(COLU, BNL) (AACH3, CERN, TORI) (UCSD) (UCSD) (LRL) (COLU) (ILL) (COLU) (SACL) (COLU, CERN) (CASE, HARV, MCGI) (CERN, ORSAY, IPNP) (CERN, ORSAY, EPOL) (IPNP, CERN) O, K.K. Young (UCLA, MICH)
FAISSNER LITTENBERG LONGO PACIOTTI SAAL ABRAMS ARNOLD BASILE BENNETT BLANPIED BOHM BUDAGOV Also JAMES Also KULYUKINA	69 69 69 69 68B 68B 68B 68 68 68 68 68	PL 30B 204 PRL 22 654 PR 181 1808 Thesis UCRL 19446 Thesis PR 176 1603 PL 28B 56 PL 28B 58 PL 27B 244 PRL 21 1650 PL 27B 594 NC 57A 182 PL 28B 215 NP B8 365 PRL 21 257 JETP 26 20 Translated from ZETF 53 Thesis PU-68-46	H. Faissner et al. L.S. Littenberg et al. M.J. Longo, K.K. Young M.A. Paciotti H.J. Saal R.J. Abrams et al. R.G. Arnold et al. P. Basile et al. S. Bennett et al. W.A. Blanpied et al. A. Bohm et al. I.A. Budagov et al. I.A. Budagov et al. F. James, H. Briand J.A. Helland, M.J. Longe L.A. Kulyukina et al. 29. P.F. Kunz	(COLU, BNL) (AACH3, CERN, TORI) (UCSD) (UCSD) (LRL) (COLU) (LRL) (COLU) (CERN, ORSAY) (SACL) (COLU, CERN) (CASE, HARV, MCGI) (CERN, ORSAY, IPNP) (CERN, ORSAY, EPOL) (IPNP, CERN) o, K.K. Young (PRIN)
FAISSNER LITTENBERG LONGO PACIOTTI SAAL ABRAMS ARNOLD BASILE BENNETT BLANPIED BOHM BUDAGOV Also JAMES Also KULYUKINA	69 69 69 69 68B 68B 68B 68 68B 68B 68B	PL 30B 204 PRL 22 654 PR 181 1808 Thesis UCRL 19446 Thesis PR 176 1603 PL 28B 56 PL 28B 58 PL 27B 244 PRL 21 1650 PL 27B 594 NC 57A 182 PL 28B 215 NP B8 365 PRL 21 257 JETP 26 20 Translated from ZETF 53	H. Faissner et al. L.S. Littenberg et al. M.J. Longo, K.K. Young M.A. Paciotti H.J. Saal R.J. Abrams et al. R.G. Arnold et al. P. Basile et al. S. Bennett et al. W.A. Blanpied et al. A. Bohm et al. I.A. Budagov et al. I.A. Budagov et al. F. James, H. Briand J.A. Helland, M.J. Longe L.A. Kulyukina et al. 29.	(COLU, BNL) (AACH3, CERN, TORI) (UCSD) (UCSD) (LRL) (COLU) (ILL) (COLU) (SACL) (COLU, CERN) (CASE, HARV, MCGI) (CERN, ORSAY, IPNP) (CERN, ORSAY, EPOL) (IPNP, CERN) O, K.K. Young (UCLA, MICH)
FAISSNER LITTENBERG LONGO PACIOTTI SAAL ABRAMS ARNOLD BASILE BENNETT BLANPIED BOHM BUDAGOV Also JAMES Also KULYUKINA KUNZ BENNETT	69 69 69 69 68B 68B 68B 68 68 68 68 68	PL 30B 204 PRL 22 654 PR 181 1808 Thesis UCRL 19446 Thesis PR 176 1603 PL 28B 56 PL 28B 58 PL 27B 244 PRL 21 1650 PL 27B 594 NC 57A 182 PL 28B 215 NP B8 365 PRL 21 257 JETP 26 20 Translated from ZETF 53 Thesis PU-68-46 PRL 19 993	H. Faissner et al. L.S. Littenberg et al. M.J. Longo, K.K. Young M.A. Paciotti H.J. Saal R.J. Abrams et al. R.G. Arnold et al. P. Basile et al. S. Bennett et al. W.A. Blanpied et al. A. Bohm et al. I.A. Budagov et al. I.A. Budagov et al. F. James, H. Briand J.A. Helland, M.J. Longo L.A. Kulyukina et al. 29. P.F. Kunz S. Bennett et al.	(COLU, BNL) (AACH3, CERN, TORI) (UCSD) (UCSD) (UCSD) (LRL) (COLU) (ILL) (COLU) (ILC) (CERN, ORSAY) (COLU, CERN) (CASE, HARV, MCGI) (CERN, ORSAY, IPNP) (CERN, ORSAY, EPOL) (IPNP, CERN) (O, K.K. Young (UCLA, MICH) (JINR) (COLU)
FAISSNER LITTENBERG LONGO PACIOTTI SAAL ABRAMS ARNOLD BASILE BENNETT BLANPIED BOHM BUDAGOV Also JAMES Also KULYUKINA KUNZ BENNETT DEBOUARD	69 69 69 69 68B 68B 68B 68 68 68 68 68	PL 30B 204 PRL 22 654 PR 181 1808 Thesis UCRL 19446 Thesis PR 176 1603 PL 28B 56 PL 28B 58 PL 27B 244 PRL 21 1650 PL 27B 594 NC 57A 182 PL 28B 215 NP B8 365 PRL 21 257 JETP 26 20 Translated from ZETF 53 Thesis PU-68-46 PRL 19 993 NC 52A 662	H. Faissner et al. L.S. Littenberg et al. M.J. Longo, K.K. Young M.A. Paciotti H.J. Saal R.J. Abrams et al. R.G. Arnold et al. P. Basile et al. S. Bennett et al. W.A. Blanpied et al. A. Budagov et al. I.A. Budagov et al. I.A. Budagov et al. F. James, H. Briand J.A. Helland, M.J. Longo L.A. Kulyukina et al. 29. P.F. Kunz S. Bennett et al. X. de Bouard et al.	(COLU, BNL) (AACH3, CERN, TORI) (UCSD) (J.A. Helland (MICH, UCLA) (LRL) (COLU) (ILL) (CERN, ORSAY) (SACL) (COLU, CERN) (CASE, HARV, MCGI) (CERN, ORSAY, IPNP) (CERN, ORSAY, EPOL) (IPNP, CERN) o, K.K. Young (UCLA, MICH) (JINR) (PRIN) (COLU) (CERN)
FAISSNER LITTENBERG LONGO PACIOTTI SAAL ABRAMS ARNOLD BASILE BENNETT BLANPIED BOHM BUDAGOV Also JAMES Also KULYUKINA KUNZ BENNETT DEBOUARD Also	69 69 69 69 68 68 68 68 68 68 68 68 68	PL 30B 204 PRL 22 654 PR 181 1808 Thesis UCRL 19446 Thesis PR 176 1603 PL 28B 56 PL 28B 58 PL 27B 244 PRL 21 1650 PL 27B 594 NC 57A 182 PL 28B 215 NP B8 365 PRL 21 257 JETP 26 20 Translated from ZETF 53 Thesis PU-68-46 PRL 19 993 NC 52A 662 PL 15 58	H. Faissner et al. L.S. Littenberg et al. M.J. Longo, K.K. Young M.A. Paciotti H.J. Saal R.J. Abrams et al. R.G. Arnold et al. P. Basile et al. S. Bennett et al. W.A. Blanpied et al. A. Budagov et al. I.A. Budagov et al. I.A. Budagov et al. F. James, H. Briand J.A. Helland, M.J. Longe L.A. Kulyukina et al. 29. P.F. Kunz S. Bennett et al. X. de Bouard et al. X. de Bouard et al.	(COLU, BNL) (AACH3, CERN, TORI) (UCSD) (UCSD) (IUCSD) (LRL) (COLU) (ILL) (COLU) (SACL) (COLU, CERN) (CASE, HARV, MCGI) (CERN, ORSAY, IPNP) (CERN, ORSAY, EPOL) (IPNP, CERN) o, K.K. Young (UCLA, MICH) (JINR) (PRIN) (COLU) (CERN, ORSAY, MPIM)
FAISSNER LITTENBERG LONGO PACIOTTI SAAL ABRAMS ARNOLD BASILE BENNETT BLANPIED BOHM BUDAGOV Also JAMES Also KULYUKINA KUNZ BENNETT DEBOUARD	69 69 69 69 68B 68B 68B 68 68 68 68 68	PL 30B 204 PRL 22 654 PR 181 1808 Thesis UCRL 19446 Thesis PR 176 1603 PL 28B 56 PL 28B 58 PL 27B 244 PRL 21 1650 PL 27B 594 NC 57A 182 PL 28B 215 NP B8 365 PRL 21 257 JETP 26 20 Translated from ZETF 53 Thesis PU-68-46 PRL 19 993 NC 52A 662	H. Faissner et al. L.S. Littenberg et al. M.J. Longo, K.K. Young M.A. Paciotti H.J. Saal R.J. Abrams et al. R.G. Arnold et al. P. Basile et al. S. Bennett et al. W.A. Blanpied et al. A. Budagov et al. I.A. Budagov et al. I.A. Budagov et al. F. James, H. Briand J.A. Helland, M.J. Longo L.A. Kulyukina et al. 29. P.F. Kunz S. Bennett et al. X. de Bouard et al.	(COLU, BNL) (AACH3, CERN, TORI) (UCSD) (UCSD) (IUCSD) (LRL) (COLU) (ILL) (COLU) (SACL) (COLU, CERN) (CASE, HARV, MCGI) (CERN, ORSAY, IPNP) (CERN, ORSAY, EPOL) (IPNP, CERN) o, K.K. Young (UCLA, MICH) (JINR) (PRIN) (COLU) (CERN, ORSAY, MPIM)
FAISSNER LITTENBERG LONGO PACIOTTI SAAL ABRAMS ARNOLD BASILE BENNETT BLANPIED BOHM BUDAGOV Also JAMES Also KULYUKINA KUNZ BENNETT DEBOUARD Also DEVLIN	69 69 69 69 68 68 68 68 68 68 68 68 68	PL 30B 204 PRL 22 654 PR 181 1808 Thesis UCRL 19446 Thesis PR 176 1603 PL 28B 56 PL 28B 58 PL 27B 244 PRL 21 1650 PL 27B 594 NC 57A 182 PL 28B 215 NP B8 365 PRL 21 257 JETP 26 20 Translated from ZETF 53 Thesis PU-68-46 PRL 19 993 NC 52A 662 PL 15 58 PRL 18 54	H. Faissner et al. L.S. Littenberg et al. M.J. Longo, K.K. Young M.A. Paciotti H.J. Saal R.J. Abrams et al. R.G. Arnold et al. P. Basile et al. S. Bennett et al. W.A. Blanpied et al. A. Budagov et al. I.A. Budagov et al. I.A. Budagov et al. F. James, H. Briand J.A. Helland, M.J. Longo L.A. Kulyukina et al. 29. P.F. Kunz S. Bennett et al. X. de Bouard et al. X. de Bouard et al. T.J. Devlin et al.	(COLU, BNL) (AACH3, CERN, TORI) (UCSD) (UCSD) (IUCSD) (LRL) (COLU) (ILL) (COLU) (SACL) (COLU, CERN) (CASE, HARV, MCGI) (CERN, ORSAY, IPNP) (CERN, ORSAY, EPOL) (IPNP, CERN) o, K.K. Young (UCLA, MICH) (JINR) (PRIN) (CERN, ORSAY, MPIM) (CERN, ORSAY, MPIM) (PRIN, UMD)
FAISSNER LITTENBERG LONGO PACIOTTI SAAL ABRAMS ARNOLD BASILE BENNETT BLANPIED BOHM BUDAGOV Also JAMES Also KULYUKINA KUNZ BENNETT DEBOUARD Also DEVLIN Also	69 69 69 69 68 68 68 68 68 68 68 68 67 67	PL 30B 204 PRL 22 654 PR 181 1808 Thesis UCRL 19446 Thesis PR 176 1603 PL 28B 56 PL 28B 58 PL 27B 244 PRL 21 1650 PL 27B 594 NC 57A 182 PL 28B 215 NP B8 365 PRL 21 257 JETP 26 20 Translated from ZETF 53 Thesis PU-68-46 PRL 19 993 NC 52A 662 PL 15 58 PRL 18 54 PR 169 1045	H. Faissner et al. L.S. Littenberg et al. M.J. Longo, K.K. Young M.A. Paciotti H.J. Saal R.J. Abrams et al. R.G. Arnold et al. P. Basile et al. S. Bennett et al. W.A. Blanpied et al. A. Bohm et al. I.A. Budagov et al. I.A. Budagov et al. I.A. Budagov et al. S. Helland, M.J. Longo L.A. Kulyukina et al. S. Bennett et al. X. de Bouard et al. X. de Bouard et al. X. de Bouard et al. T.J. Devlin et al. G.A. Sayer et al.	(COLU, BNL) (AACH3, CERN, TORI) (UCSD) (UCSD) (ILC) (COLU) (ILL) (COLU) (SACL) (COLU, CERN) (CASE, HARV, MCGI) (CERN, ORSAY, IPNP) (CERN, ORSAY, EPOL) (IPNP, CERN) (O, K.K. Young (UCLA, MICH) (JINR) (PRIN) (CERN, ORSAY, MPIM) (COLU) (CERN, ORSAY, MPIM) (PRIN, UMD) (UMD, PPA, PRIN)
FAISSNER LITTENBERG LONGO PACIOTTI SAAL ABRAMS ARNOLD BASILE BENNETT BLANPIED BOHM BUDAGOV Also JAMES ALSO KULYUKINA KUNZ BENNETT DEBOUARD Also DEVLIN Also DORFAN	69 69 69 69 68 68 68 68 68 68 68 68 67 67	PL 30B 204 PRL 22 654 PR 181 1808 Thesis UCRL 19446 Thesis PR 176 1603 PL 28B 56 PL 28B 58 PL 27B 244 PRL 21 1650 PL 27B 594 NC 57A 182 PL 28B 215 NP B8 365 PRL 21 257 JETP 26 20 Translated from ZETF 53 Thesis PU-68-46 PRL 19 993 NC 52A 662 PL 15 58 PRL 18 54 PR 169 1045 PRL 19 987	H. Faissner et al. L.S. Littenberg et al. M.J. Longo, K.K. Young M.A. Paciotti H.J. Saal R.J. Abrams et al. R.G. Arnold et al. P. Basile et al. S. Bennett et al. W.A. Blanpied et al. A. Bohm et al. I.A. Budagov et al. I.A. Budagov et al. I.A. Budagov et al. I.A. Budagov et al. S. Bennett et al. L.A. Budagov et al. L.A. Budagov et al. L.A. Budagov et al. S. Bennett et al. X. de Bouard et al. X. de Bouard et al. T.J. Devlin et al. G.A. Sayer et al. D.E. Dorfan et al.	(COLU, BNL) (AACH3, CERN, TORI) (UCSD) (UCSD) (IUCSD) (LRL) (COLU) (ILL) (COLU) (SACL) (COLU, CERN) (CASE, HARV, MCGI) (CERN, ORSAY, EPOL) (IPNP, CERN) (O, K.K. Young (UCLA, MICH) (COLU) (CERN, ORSAY, MICH) (COLU) (CERN, ORSAY, EPOL) (IPNP, CERN) (IPNP, CERN) (IPNP, CERN) (COLU) (COLU) (COLU) (CERN, ORSAY, MICH) (COLU) (CERN, ORSAY, MPIM) (PRIN, UMD) (UMD, PPA, PRIN) (SLAC, LRL)
FAISSNER LITTENBERG LONGO PACIOTTI SAAL ABRAMS ARNOLD BASILE BENNETT BLANPIED BOHM BUDAGOV Also JAMES Also KULYUKINA KUNZ BENNETT DEBOUARD Also DEVLIN Also	69 69 69 69 68 68 68 68 68 68 68 68 67 67	PL 30B 204 PRL 22 654 PR 181 1808 Thesis UCRL 19446 Thesis PR 176 1603 PL 28B 56 PL 28B 58 PL 27B 244 PRL 21 1650 PL 27B 594 NC 57A 182 PL 28B 215 NP B8 365 PRL 21 257 JETP 26 20 Translated from ZETF 53 Thesis PU-68-46 PRL 19 993 NC 52A 662 PL 15 58 PRL 18 54 PR 169 1045	H. Faissner et al. L.S. Littenberg et al. M.J. Longo, K.K. Young M.A. Paciotti H.J. Saal R.J. Abrams et al. R.G. Arnold et al. P. Basile et al. S. Bennett et al. W.A. Blanpied et al. A. Bohm et al. I.A. Budagov et al. I.A. Budagov et al. I.A. Budagov et al. S. Helland, M.J. Longo L.A. Kulyukina et al. S. Bennett et al. X. de Bouard et al. X. de Bouard et al. X. de Bouard et al. T.J. Devlin et al. G.A. Sayer et al.	(COLU, BNL) (AACH3, CERN, TORI) (UCSD) (UCSD) (ILC) (COLU) (ILL) (COLU) (SACL) (COLU, CERN) (CASE, HARV, MCGI) (CERN, ORSAY, IPNP) (CERN, ORSAY, EPOL) (IPNP, CERN) (O, K.K. Young (UCLA, MICH) (JINR) (PRIN) (CERN, ORSAY, MPIM) (COLU) (CERN, ORSAY, MPIM) (PRIN, UMD) (UMD, PPA, PRIN)
FAISSNER LITTENBERG LONGO PACIOTTI SAAL ABRAMS ARNOLD BASILE BENNETT BLANPIED BOHM BUDAGOV Also JAMES Also KULYUKINA KUNZ BENNETT DEBOUARD Also DEVLIN Also DORFAN FELDMAN	69 69 69 69 68 68 68 68 68 68 68 67 67 67	PL 30B 204 PRL 22 654 PR 181 1808 Thesis UCRL 19446 Thesis PR 176 1603 PL 28B 56 PL 28B 58 PL 27B 244 PRL 21 1650 PL 27B 594 NC 57A 182 PL 28B 215 NP B8 365 PRL 21 257 JETP 26 20 Translated from ZETF 53 Thesis PU-68-46 PRL 19 993 NC 52A 662 PL 15 58 PRL 18 54 PR 169 1045 PRL 19 987 PR 155 1611	H. Faissner et al. L.S. Littenberg et al. M.J. Longo, K.K. Young M.A. Paciotti H.J. Saal R.J. Abrams et al. R.G. Arnold et al. P. Basile et al. S. Bennett et al. W.A. Blanpied et al. A. Bohm et al. I.A. Budagov et al. I.A. Budagov et al. F. James, H. Briand J.A. Helland, M.J. Longo L.A. Kulyukina et al. 29. P.F. Kunz S. Bennett et al. X. de Bouard et al. X. de Bouard et al. T.J. Devlin et al. G.A. Sayer et al. D.E. Dorfan et al. L. Feldman et al.	(COLU, BNL) (AACH3, CERN, TORI) (UCSD) (UCSD) (UCSD) (LRL) (COLU) (LRL) (COLU) (ILL) (COLU, CERN, ORSAY) (SACL) (COLU, CERN) (CASE, HARV, MCGI) (CERN, ORSAY, IPNP) (CERN, ORSAY, EPOL) (IPNP, CERN) o, K.K. Young (UCLA, MICH) (CERN) (CERN, ORSAY, MPIM) (COLU) (CERN) (CERN, ORSAY, MPIM) (PRIN, UMD) (UMD, PPA, PRIN) (SLAC, LRL) (PENN)
FAISSNER LITTENBERG LONGO PACIOTTI SAAL ABRAMS ARNOLD BASILE BENNETT BLANPIED BOHM BUDAGOV Also JAMES Also KULYUKINA KUNZ BENNETT DEBOUARD Also DEVLIN Also DORFAN FELDMAN FITCH	69 69 69 69 68B 68B 68B 68 68 68 67 67 67	PL 30B 204 PRL 22 654 PR 181 1808 Thesis UCRL 19446 Thesis PR 176 1603 PL 28B 56 PL 28B 58 PL 27B 244 PRL 21 1650 PL 27B 594 NC 57A 182 PL 28B 215 NP B8 365 PRL 21 257 JETP 26 20 Translated from ZETF 53 Thesis PU-68-46 PRL 19 993 NC 52A 662 PL 15 58 PRL 18 54 PR 169 1045 PRL 19 987 PR 155 1611 PR 164 1711	H. Faissner et al. L.S. Littenberg et al. M.J. Longo, K.K. Young M.A. Paciotti H.J. Saal R.J. Abrams et al. R.G. Arnold et al. P. Basile et al. S. Bennett et al. W.A. Blanpied et al. A. Bohm et al. I.A. Budagov et al. I.A. Budagov et al. F. James, H. Briand J.A. Helland, M.J. Longe L.A. Kulyukina et al. 29. P.F. Kunz S. Bennett et al. X. de Bouard et al. X. de Bouard et al. T.J. Devlin et al. G.A. Sayer et al. D.E. Dorfan et al. L. Feldman et al. V.L. Fitch et al.	(COLU, BNL) (AACH3, CERN, TORI) (UCSD) (J.A. Helland (MICH, UCLA) (LRL) (COLU) (ILL) (CERN, ORSAY) (SACL) (COLU, CERN) (CASE, HARV, MCGI) (CERN, ORSAY, IPNP) (CERN, ORSAY, EPOL) (IPNP, CERN) (O, K.K. Young (UCLA, MICH) (JINR) (PRIN) (COLU) (CERN, ORSAY, MPIM) (COLU) (CERN, ORSAY, MPIM) (PRIN, UMD) (UMD, PPA, PRIN) (SLAC, LRL) (PENN) (PRIN)
FAISSNER LITTENBERG LONGO PACIOTTI SAAL ABRAMS ARNOLD BASILE BENNETT BLANPIED BOHM BUDAGOV Also JAMES Also KULYUKINA KUNZ BENNETT DEBOUARD Also DEVLIN Also DORFAN FELDMAN FITCH GINSBERG	69 69 69 69 68B 68B 68 68 68 68 67 67 67 67	PL 30B 204 PRL 22 654 PR 181 1808 Thesis UCRL 19446 Thesis PR 176 1603 PL 28B 56 PL 28B 58 PL 27B 244 PRL 21 1650 PL 27B 594 NC 57A 182 PL 28B 215 NP B8 365 PRL 21 257 JETP 26 20 Translated from ZETF 53 Thesis PU-68-46 PRL 19 993 NC 52A 662 PL 15 58 PRL 18 54 PR 169 1045 PRL 19 987 PR 155 1611 PR 164 1711 PR 164 1711	H. Faissner et al. L.S. Littenberg et al. M.J. Longo, K.K. Young M.A. Paciotti H.J. Saal R.J. Abrams et al. R.G. Arnold et al. P. Basile et al. S. Bennett et al. W.A. Blanpied et al. A. Budagov et al. I.A. Budagov et al. F. James, H. Briand J.A. Helland, M.J. Longe L.A. Kulyukina et al. 29. P.F. Kunz S. Bennett et al. X. de Bouard et al. X. de Bouard et al. T.J. Devlin et al. C.A. Sayer et al. D.E. Dorfan et al. U.L. Fitch et al. E.S. Ginsberg	(COLU, BNL) (AACH3, CERN, TORI) (UCSD) (UCSD) (LRL) (COLU) (ILL) (COLU) (SACL) (COLU, CERN) (CASE, HARV, MCGI) (CERN, ORSAY, IPNP) (CERN, ORSAY, EPOL) (IPNP, CERN) O, K.K. Young (UCLA, MICH) (JINR) (PRIN) (CERN, ORSAY, MPIM) (CERN, ORSAY, MPIM) (PRIN, UMD) (UMD, PPA, PRIN) (SLAC, LRL) (PENN) (PRIN)
FAISSNER LITTENBERG LONGO PACIOTTI SAAL ABRAMS ARNOLD BASILE BENNETT BLANPIED BOHM BUDAGOV Also JAMES Also KULYUKINA KUNZ BENNETT DEBOUARD Also DEVLIN Also DORFAN FELDMAN FITCH	69 69 69 69 68B 68B 68B 68 68 68 67 67 67	PL 30B 204 PRL 22 654 PR 181 1808 Thesis UCRL 19446 Thesis PR 176 1603 PL 28B 56 PL 28B 58 PL 27B 244 PRL 21 1650 PL 27B 594 NC 57A 182 PL 28B 215 NP B8 365 PRL 21 257 JETP 26 20 Translated from ZETF 53 Thesis PU-68-46 PRL 19 993 NC 52A 662 PL 15 58 PRL 18 54 PR 169 1045 PRL 19 987 PR 155 1611 PR 164 1711	H. Faissner et al. L.S. Littenberg et al. M.J. Longo, K.K. Young M.A. Paciotti H.J. Saal R.J. Abrams et al. R.G. Arnold et al. P. Basile et al. S. Bennett et al. W.A. Blanpied et al. A. Bohm et al. I.A. Budagov et al. I.A. Budagov et al. F. James, H. Briand J.A. Helland, M.J. Longe L.A. Kulyukina et al. 29. P.F. Kunz S. Bennett et al. X. de Bouard et al. X. de Bouard et al. T.J. Devlin et al. G.A. Sayer et al. D.E. Dorfan et al. L. Feldman et al. V.L. Fitch et al.	(COLU, BNL) (AACH3, CERN, TORI) (UCSD) (J.A. Helland (MICH, UCLA) (LRL) (COLU) (ILL) (CERN, ORSAY) (SACL) (COLU, CERN) (CASE, HARV, MCGI) (CERN, ORSAY, IPNP) (CERN, ORSAY, EPOL) (IPNP, CERN) (O, K.K. Young (UCLA, MICH) (JINR) (PRIN) (COLU) (CERN, ORSAY, MPIM) (COLU) (CERN, ORSAY, MPIM) (PRIN, UMD) (UMD, PPA, PRIN) (SLAC, LRL) (PENN) (PRIN)
FAISSNER LITTENBERG LONGO PACIOTTI SAAL ABRAMS ARNOLD BASILE BENNETT BLANPIED BOHM BUDAGOV Also JAMES Also KULYUKINA KUNZ BENNETT DEBOUARD Also DEVLIN Also DORFAN FELDMAN FITCH GINSBERG HILL	69 69 69 69 68 68 68 68 68 68 68 67 67 67 67 67	PL 30B 204 PRL 22 654 PR 181 1808 Thesis UCRL 19446 Thesis PR 176 1603 PL 28B 56 PL 28B 58 PL 27B 244 PRL 21 1650 PL 27B 594 NC 57A 182 PL 28B 215 NP B8 365 PRL 21 257 JETP 26 20 Translated from ZETF 53 Thesis PU-68-46 PRL 19 993 NC 52A 662 PL 15 58 PRL 18 54 PR 169 1045 PRL 19 987 PR 155 1611 PR 164 1711 PR 162 1570 PRL 19 668	H. Faissner et al. L.S. Littenberg et al. M.J. Longo, K.K. Young M.A. Paciotti H.J. Saal R.J. Abrams et al. R.G. Arnold et al. P. Basile et al. S. Bennett et al. W.A. Blanpied et al. A. Budagov et al. I.A. Budagov et al. I.A. Budagov et al. F. James, H. Briand J.A. Helland, M.J. Longe L.A. Kulyukina et al. 29. P.F. Kunz S. Bennett et al. X. de Bouard et al. X. de Bouard et al. T.J. Devlin et al. G.A. Sayer et al. D.E. Dorfan et al. L. Feldman et al. V.L. Fitch et al. E.S. Ginsberg D.G. Hill et al.	(COLU, BNL) (AACH3, CERN, TORI) (UCSD) (UCSD) (LRL) (COLU) (ILL) (COLU) (ILL) (CERN, ORSAY) (SACL) (COLU, CERN) (CASE, HARV, MCGI) (CERN, ORSAY, IPNP) (CERN, ORSAY, IPNP) (CERN, ORSAY, EPOL) (IPNP, CERN) o, K.K. Young (UCLA, MICH) (JINR) (PRIN) (COLU) (CERN) (CERN, ORSAY, MPIM) (PRIN, UMD) (UMD, PPA, PRIN) (SLAC, LRL) (PENN) (MASB) (BNL, CMU)
FAISSNER LITTENBERG LONGO PACIOTTI SAAL ABRAMS ARNOLD BASILE BENNETT BLANPIED BOHM BUDAGOV Also JAMES Also KULYUKINA KUNZ BENNETT DEBOUARD Also DEVLIN Also DORFAN FELDMAN FITCH GINSBERG HILL HOPKINS	69 69 69 69 68 68 68 68 68 68 68 67 67 67 67 67	PL 30B 204 PRL 22 654 PR 181 1808 Thesis UCRL 19446 Thesis PR 176 1603 PL 28B 56 PL 28B 58 PL 27B 244 PRL 21 1650 PL 27B 594 NC 57A 182 PL 28B 215 NP B8 365 PRL 21 257 JETP 26 20 Translated from ZETF 53 Thesis PU-68-46 PRL 19 993 NC 52A 662 PL 15 58 PRL 18 54 PR 169 1045 PRL 19 987 PR 155 1611 PR 164 1711 PR 162 1570 PRL 19 668 PRL 19 668 PRL 19 185	H. Faissner et al. L.S. Littenberg et al. M.J. Longo, K.K. Young M.A. Paciotti H.J. Saal R.J. Abrams et al. R.G. Arnold et al. P. Basile et al. S. Bennett et al. W.A. Blanpied et al. A. Budagov et al. I.A. Budagov et al. I.A. Budagov et al. F. James, H. Briand J.A. Helland, M.J. Longe L.A. Kulyukina et al. 29. P.F. Kunz S. Bennett et al. X. de Bouard et al. X. de Bouard et al. T.J. Devlin et al. G.A. Sayer et al. D.E. Dorfan et al. L. Fieldman et al. V.L. Fitch et al. E.S. Ginsberg D.G. Hill et al. H.W.K. Hopkins, T.C. E	(COLU, BNL) (AACH3, CERN, TORI) (UCSD) (UCSD) (IUCSD) (LRL) (COLU) (ILL) (COLU) (SACL) (COLU, CERN) (CASE, HARV, MCGI) (CERN, ORSAY, IPNP) (CERN, ORSAY, IPNP) (CERN, ORSAY, EPOL) (IPNP, CERN) (O, K.K. Young (UCLA, MICH) (JINR) (PRIN) (COLU) (CERN) (CERN, ORSAY, MPIM) (PRIN, UMD) (UMD, PPA, PRIN) (SLAC, LRL) (PENN) (PRIN) (MASB) (BNL, CMU) (BNL, CMU)
FAISSNER LITTENBERG LONGO PACIOTTI SAAL ABRAMS ARNOLD BASILE BENNETT BLANPIED BOHM BUDAGOV Also JAMES Also KULYUKINA KUNZ BENNETT DEBOUARD Also DEVLIN Also DORFAN FELDMAN FITCH GINSBERG HILL HOPKINS NEFKENS	69 69 69 69 68B 68B 68B 68 68 68 67 67 67 67 67 67	PL 30B 204 PRL 22 654 PR 181 1808 Thesis UCRL 19446 Thesis PR 176 1603 PL 28B 56 PL 28B 58 PL 27B 244 PRL 21 1650 PL 27B 594 NC 57A 182 PL 28B 215 NP B8 365 PRL 21 257 JETP 26 20 Translated from ZETF 53 Thesis PU-68-46 PRL 19 993 NC 52A 662 PL 15 58 PRL 18 54 PR 169 1045 PRL 19 987 PR 155 1611 PR 164 1711 PR 162 1570 PRL 19 668 PRL 19 185 PR 19 185 PR 157 1233	H. Faissner et al. L.S. Littenberg et al. M.J. Longo, K.K. Young M.A. Paciotti H.J. Saal R.J. Abrams et al. R.G. Arnold et al. P. Basile et al. S. Bennett et al. W.A. Blanpied et al. A. Budagov et al. I.A. Budagov et al. I.A. Budagov et al. F. James, H. Briand J.A. Helland, M.J. Longe L.A. Kulyukina et al. S. Bennett et al. X. de Bouard et al. X. de Bouard et al. T.J. Devlin et al. C.A. Sayer et al. D.E. Dorfan et al. L. Fitch et al. E.S. Ginsberg D.G. Hill et al. H.W.K. Hopkins, T.C. E B.M.K. Nefkens et al.	(COLU, BNL) (AACH3, CERN, TORI) (UCSD) (UCSD) (IUCSD) (UCSD) (UCSD) (IUCH) (COLU) (ILL) (COLU) (ILL) (CERN, ORSAY) (SACL) (COLU, CERN) (CASE, HARV, MCGI) (CERN, ORSAY, IPNP) (CERN, ORSAY, EPOL) (IPNP, CERN) (ON, K.K. Young (UCLA, MICH) (JINR) (PRIN) (CERN, ORSAY, MPIM) (PRIN, UMD) (CERN, ORSAY, MPIM) (PRIN, UMD) (UMD, PPA, PRIN) (SLAC, LRL) (PENN) (PRIN) (MASB) (BNL, CMU) (BNL, CMU) (BNL) (ILL)
FAISSNER LITTENBERG LONGO PACIOTTI SAAL ABRAMS ARNOLD BASILE BENNETT BLANPIED BOHM BUDAGOV Also JAMES Also KULYUKINA KUNZ BENNETT DEBOUARD Also DEVLIN Also DORFAN FELDMAN FITCH GINSBERG HILL HOPKINS	69 69 69 69 68 68 68 68 68 68 68 67 67 67 67 67	PL 30B 204 PRL 22 654 PR 181 1808 Thesis UCRL 19446 Thesis PR 176 1603 PL 28B 56 PL 28B 58 PL 27B 244 PRL 21 1650 PL 27B 594 NC 57A 182 PL 28B 215 NP B8 365 PRL 21 257 JETP 26 20 Translated from ZETF 53 Thesis PU-68-46 PRL 19 993 NC 52A 662 PL 15 58 PRL 18 54 PR 169 1045 PRL 19 987 PR 155 1611 PR 164 1711 PR 162 1570 PRL 19 668 PRL 19 668 PRL 19 185	H. Faissner et al. L.S. Littenberg et al. M.J. Longo, K.K. Young M.A. Paciotti H.J. Saal R.J. Abrams et al. R.G. Arnold et al. P. Basile et al. S. Bennett et al. W.A. Blanpied et al. A. Budagov et al. I.A. Budagov et al. I.A. Budagov et al. F. James, H. Briand J.A. Helland, M.J. Longe L.A. Kulyukina et al. 29. P.F. Kunz S. Bennett et al. X. de Bouard et al. X. de Bouard et al. T.J. Devlin et al. G.A. Sayer et al. D.E. Dorfan et al. L. Fieldman et al. V.L. Fitch et al. E.S. Ginsberg D.G. Hill et al. H.W.K. Hopkins, T.C. E	(COLU, BNL) (AACH3, CERN, TORI) (UCSD) (UCSD) (IUCSD) (LRL) (COLU) (ILL) (COLU) (SACL) (COLU, CERN) (CASE, HARV, MCGI) (CERN, ORSAY, IPNP) (CERN, ORSAY, IPNP) (CERN, ORSAY, EPOL) (IPNP, CERN) (O, K.K. Young (UCLA, MICH) (JINR) (PRIN) (COLU) (CERN) (CERN, ORSAY, MPIM) (PRIN, UMD) (UMD, PPA, PRIN) (SLAC, LRL) (PENN) (PRIN) (MASB) (BNL, CMU) (BNL, CMU)
FAISSNER LITTENBERG LONGO PACIOTTI SAAL ABRAMS ARNOLD BASILE BENNETT BLANPIED BOHM BUDAGOV Also JAMES Also KULYUKINA KUNZ BENNETT DEBOUARD Also DEVLIN Also DORFAN FELDMAN FITCH GINSBERG HILL HOPKINS NEFKENS SCHMIDT	69 69 69 69 68 68 68 68 68 68 68 67 67 67 67 67 67 67	PL 30B 204 PRL 22 654 PR 181 1808 Thesis UCRL 19446 Thesis PR 176 1603 PL 28B 56 PL 28B 58 PL 27B 244 PRL 21 1650 PL 27B 594 NC 57A 182 PL 28B 215 NP B8 365 PRL 21 257 JETP 26 20 Translated from ZETF 53 Thesis PU-68-46 PRL 19 993 NC 52A 662 PL 15 58 PRL 18 54 PR 169 1045 PRL 19 987 PR 155 1611 PR 164 1711 PR 162 1570 PRL 19 668 PRL 19 185 PR 157 1233 Thesis Nevis 160	H. Faissner et al. L.S. Littenberg et al. M.J. Longo, K.K. Young M.A. Paciotti H.J. Saal R.J. Abrams et al. R.G. Arnold et al. P. Basile et al. S. Bennett et al. W.A. Blanpied et al. A. Bohm et al. I.A. Budagov et al. I.A. Budagov et al. I.A. Budagov et al. S. Bennett et al. A. Budagov et al. J.A. Helland, M.J. Longe L.A. Kulyukina et al. S. Bennett et al. X. de Bouard et al. X. de Bouard et al. T.J. Devlin et al. G.A. Sayer et al. D.E. Dorfan et al. L. Fieldman et al. V.L. Fitch et al. E.S. Ginsberg D.G. Hill et al. H.W.K. Hopkins, T.C. E B.M.K. Nefkens et al. P. Schmidt	(COLU, BNL) (AACH3, CERN, TORI) (UCSD) (UCSD) (UCSD) (LRL) (COLU) (ILL) (COLU) (SACL) (COLU, CERN) (CASE, HARV, MCGI) (CERN, ORSAY, EPOL) (IPNP, CERN) (O, K.K. Young (UCLA, MICH) (JINR) (CERN, ORSAY, MPIM) (COLU) (CERN, ORSAY, MPIM) (COLU) (CERN, ORSAY, MPIM) (PRIN, UMD) (UMD, PPA, PRIN) (SLAC, LRL) (PENN) (PRIN) (MASB) (BNL, CMU) (ILL) (COLU)
FAISSNER LITTENBERG LONGO PACIOTTI SAAL ABRAMS ARNOLD BASILE BENNETT BLANPIED BOHM BUDAGOV Also JAMES Also KULYUKINA KUNZ BENNETT DEBOUARD Also DEVLIN Also DORFAN FELDMAN FITCH GINSBERG HILL HOPKINS NEFKENS SCHMIDT BEHR	69 69 69 69 68 68 68 68 68 68 68 67 67 67 67 67 67 67 67 67 67 67	PL 30B 204 PRL 22 654 PR 181 1808 Thesis UCRL 19446 Thesis PR 176 1603 PL 28B 56 PL 28B 58 PL 27B 244 PRL 21 1650 PL 27B 594 NC 57A 182 PL 28B 215 NP B8 365 PRL 21 257 JETP 26 20 Translated from ZETF 53 Thesis PU-68-46 PRL 19 993 NC 52A 662 PL 15 58 PRL 19 58 PRL 19 997 PR 169 1045 PRL 19 987 PR 169 1045 PRL 19 987 PR 155 1611 PR 164 1711 PR 162 1570 PRL 19 668 PRL 19 185 PR 157 1233 Thesis Nevis 160 PL 22 540	H. Faissner et al. L.S. Littenberg et al. M.J. Longo, K.K. Young M.A. Paciotti H.J. Saal R.J. Abrams et al. R.G. Arnold et al. P. Basile et al. S. Bennett et al. W.A. Blanpied et al. A. Bohm et al. I.A. Budagov et al. I.A. Budagov et al. I.A. Budagov et al. S. Bennett et al. L.A. Budagov et al. I.A. Longo I.A. Kulyukina et al. I.A. Cappende et al. I.J. Devlin et al. I.J. Devlin et al. I.J. Devlin et al. I.Feldman et al. I.Feldman et al. I.Feldman et al. I.Feldman et al. I.K. Hopkins, T.C. El. I.W.K. Hopkins, T.C. El. I.W.K. Hopkins, T.C. El. I.B. Schmidt I. Behr et al.	(COLU, BNL) (AACH3, CERN, TORI) (UCSD) (UCSD) (UCSD) (UCSD) (LRL) (COLU) (ILL) (COLU) (SACL) (COLU, CERN) (CASE, HARV, MCGI) (CERN, ORSAY, EPOL) (IPNP, CERN) (CERN, ORSAY, EPOL) (IPNP, CERN) (COLU, CERN) (CERN, ORSAY, EPOL) (IPNP, CERN) (CERN, ORSAY, MICH) (JINR) (COLU) (CERN, ORSAY, MPIM) (COLU) (CERN, ORSAY, MPIM) (COLU) (CERN, ORSAY, MPIM) (PRIN, UMD) (UMD, PPA, PRIN) (SLAC, LRL) (PENN) (PRIN) (MASB) (BNL, CMU) (BOLL) (COLU) (EPOL, MILA, PADO, ORSAY)
FAISSNER LITTENBERG LONGO PACIOTTI SAAL ABRAMS ARNOLD BASILE BENNETT BLANPIED BOHM BUDAGOV Also JAMES Also KULYUKINA KUNZ BENNETT DEBOUARD Also DEVLIN Also DORFAN FELDMAN FITCH GINSBERG HILL HOPKINS NEFKENS SCHMIDT BEHR HAWKINS	69 69 69 69 68 68 68 68 68 68 68 67 67 67 67 67 67 67	PL 30B 204 PRL 22 654 PR 181 1808 Thesis UCRL 19446 Thesis PR 176 1603 PL 28B 56 PL 28B 58 PL 27B 244 PRL 21 1650 PL 27B 594 NC 57A 182 PL 28B 215 NP B8 365 PRL 21 257 JETP 26 20 Translated from ZETF 53 Thesis PU-68-46 PRL 19 993 NC 52A 662 PL 15 58 PRL 18 54 PR 169 1045 PRL 19 987 PR 155 1611 PR 164 1711 PR 162 1570 PRL 19 668 PRL 19 185 PR 157 1233 Thesis Nevis 160 PL 22 540 PL 21 238	H. Faissner et al. L.S. Littenberg et al. M.J. Longo, K.K. Young M.A. Paciotti H.J. Saal R.J. Abrams et al. R.G. Arnold et al. P. Basile et al. S. Bennett et al. W.A. Blanpied et al. A. Bohm et al. I.A. Budagov et al. F. James, H. Briand J.A. Helland, M.J. Longo L.A. Kulyukina et al. 29. P.F. Kunz S. Bennett et al. X. de Bouard et al. X. de Bouard et al. T.J. Devlin et al. G.A. Sayer et al. D.E. Dorfan et al. L. Feldman et al. V.L. Fitch et al. E.S. Ginsberg D.G. Hill et al. H.W.K. Hopkins, T.C. E B.M.K. Nefkens et al. P. Schmidt L. Behr et al. C.J.B. Hawkins	(COLU, BNL) (AACH3, CERN, TORI) (UCSD) (UCSD) (LRL) (COLU) (ILL) (COLU) (ILL) (CERN, ORSAY) (SACL) (COLU, CERN) (CASE, HARV, MCGI) (CERN, ORSAY, IPNP) (CERN, ORSAY, IPNP) (CERN, ORSAY, EPOL) (IPNP, CERN) (OLLA, MICH) (JINR) (PRIN) (COLU) (CERN, ORSAY, MPIM) (PRIN, UMD) (UMD, PPA, PRIN) (PRIN, UMD) (UMD, PPA, PRIN) (PRIN) (PRIN) (PRIN) (PRIN) (PRIN) (PRIN) (PRIN) (PRIN) (BAC, LRL) (PENN) (PRIN) (MASB) (BNL, CMU) (BACOLU) (COLU)
FAISSNER LITTENBERG LONGO PACIOTTI SAAL ABRAMS ARNOLD BASILE BENNETT BLANPIED BOHM BUDAGOV Also JAMES Also KULYUKINA KUNZ BENNETT DEBOUARD Also DEVLIN Also DORFAN FELDMAN FITCH GINSBERG HILL HOPKINS NEFKENS SCHMIDT BEHR	69 69 69 69 68 68 68 68 68 68 68 67 67 67 67 67 67 67 67 67 67 67	PL 30B 204 PRL 22 654 PR 181 1808 Thesis UCRL 19446 Thesis PR 176 1603 PL 28B 56 PL 28B 58 PL 27B 244 PRL 21 1650 PL 27B 594 NC 57A 182 PL 28B 215 NP B8 365 PRL 21 257 JETP 26 20 Translated from ZETF 53 Thesis PU-68-46 PRL 19 993 NC 52A 662 PL 15 58 PRL 19 58 PRL 19 997 PR 169 1045 PRL 19 987 PR 169 1045 PRL 19 987 PR 155 1611 PR 164 1711 PR 162 1570 PRL 19 668 PRL 19 185 PR 157 1233 Thesis Nevis 160 PL 22 540	H. Faissner et al. L.S. Littenberg et al. M.J. Longo, K.K. Young M.A. Paciotti H.J. Saal R.J. Abrams et al. R.G. Arnold et al. P. Basile et al. S. Bennett et al. W.A. Blanpied et al. A. Bohm et al. I.A. Budagov et al. I.A. Budagov et al. I.A. Budagov et al. S. Bennett et al. L.A. Budagov et al. I.A. Longo I.A. Kulyukina et al. I.A. Cappende et al. I.J. Devlin et al. I.J. Devlin et al. I.J. Devlin et al. I.Feldman et al. I.Feldman et al. I.Feldman et al. I.Feldman et al. I.K. Hopkins, T.C. El. I.W.K. Hopkins, T.C. El. I.W.K. Hopkins, T.C. El. I.B. Schmidt I. Behr et al.	(COLU, BNL) (AACH3, CERN, TORI) (UCSD) (UCSD) (UCSD) (UCSD) (LRL) (COLU) (ILL) (COLU) (SACL) (COLU, CERN) (CASE, HARV, MCGI) (CERN, ORSAY, EPOL) (IPNP, CERN) (CERN, ORSAY, EPOL) (IPNP, CERN) (COLU, CERN) (CERN, ORSAY, EPOL) (IPNP, CERN) (CERN, ORSAY, MICH) (JINR) (COLU) (CERN, ORSAY, MPIM) (COLU) (CERN, ORSAY, MPIM) (COLU) (CERN, ORSAY, MPIM) (PRIN, UMD) (UMD, PPA, PRIN) (SLAC, LRL) (PENN) (PRIN) (MASB) (BNL, CMU) (BOLL) (COLU) (EPOL, MILA, PADO, ORSAY)

ANDERSON	65	PRL 14 475	J.A. Anderson et al.	(LRL, WISC)
ASTBURY	65B	PL 18 175	P. Astbury et al.	(ČERN, ZURI)
AUBERT	65	PL 17 59	B. Aubert et al.	(EPOL, ORSAY)
Also		PL 24B 75	J.P. Lowys <i>et al.</i>	(EPOL, ORSAY)
BALDO	65	NC 38 684	M. Baldo-Ceolin et al.	(PADO)
FRANZINI	65	PR 140 B127	P. Franzini et al.	(COLU, RUTG)
GUIDONI	65	Argonne Conf. 49	P. Guidoni et al.	(BNL, YALE)
HOPKINS	65	Argonne Conf. 67	H.W.K. Hopkins, T.C. Bacon, F. Eisler	(VAND+)
ALEKSANYAN	64B	Dubna Conf. 2 102	A.S. Aleksanyan et al.	(YERE)
Also		JETP 19 1019	A.S. Aleksanyan et al. (LEE	BD, MPEI, YERE)
		Translated from ZETF 46		
ANIKINA	64	JETP 19 42	M.K. Anikina <i>et al.</i>	(GEOR, JINR)
		Translated from ZETF 46		(55.11.)
FITCH	61	NC 22 1160	V.L. Fitch, P.A. Piroue, R.B. Perkins	(PRIN+)
GOOD	61	PR 124 1223	R.H. Good <i>et al.</i>	(LRL)

- OTHER RELATED PAPERS -

HAYAKAWA 93	B PR D48 1150	M. Hayakawa, A.I. Sanda	(NAGO)			
"Searching for	T, CP, CPT, $\Delta S = \Delta Q R L$	le Violations in the Neutral K M	leson System: A `Guide''			
LITTENBERG 93	3 ARNPS 43 729	L.S. Littenberg, G. Valencia	(BNL, FNAL)			
Rare and Radiative Kaon Decays						
RITCHIE 93	RMP 65 1149	J.L. Ritchie, S.G. Wojcicki				
"Rare K Deca	ays''					
WINSTEIN 93	RMP 65 1113	B. Winstein, L. Wolfenstein				
	for Direct <i>CP</i> Violation"					
BATTISTON 92		R. Battiston et al.	(PGIA, CERN, TRSTT)			
Status and Pe	erspectives of K Decay Physic	S				
DIB 92		C.O. Dib, R.D. Peccei	(UCLA)			
Tests of CPT conservation in the neutral kaon system.						
KLEINKNECHT 92		K. Kleinknecht	(MANZ)			
	on CP Violation in Decays of					
KLEINKNECHT 90		K. Kleinknecht	(MANZ)			
PEACH 90		K.J. Peach	(EDIN)			
BRYMAN 89		D.A. Bryman	(TRIU)			
"Rare Kaon D						
KLEINKNECHT 76		K. Kleinknecht	(DORT)			
GINSBERG 73	3 PR D8 3887	E.S. Ginsberg, J. Smith	(MIT, STON)			
GINSBERG 70	PR D1 229	E.S. Ginsberg	(HAIF)			
HEUSSE 70) LNC 3 449	P. Heusse <i>et al.</i>	(ORSAY)			
CRONIN 68	BC Vienna Conf. 281	J.W. Cronin	(PRIN)			
RUBBIA 67	7 PL 24B 531	C. Rubbia, J. Steinberger	(CERN, COLU)			
Also	PL 23 167	C. Rubbia, J. Steinberger	(CERN, COLU)			
Also	PL 20 207	C. Alff-Steinberger et al.	(CERN)			
Also	PL 21 595	C. Alff-Steinberger et al.	(CERN)			
AUERBACH 66	PR 149 1052	L.B. Auerbach et al.	(PENN)			
Also	PRL 14 192	L.B. Auerbach et al.	(PENN)			
FIRESTONE 66	5B PRL 17 116	A. Firestone et al.	(YALÈ, BNL)			
BEHR 65	Argonne Conf. 59	L. Behr <i>et al.</i>	(EPOL, MILA, PADO)			
MESTVIRISH 65	5 JINR P 2449	A.N. Mestvirishvili et al.	(JINR)			
TRILLING 65	5B UCRL 16473	G.N. Trilling	`(LRL)			
Updated from 1965 Argonne Conference, page 115.						
JOVANOV 63	BNL Conf. 42	J.V. Jovanovich et al.	(BNL, UMD)			
			,			