Name : Tushar Shirsath

Roll No: 220940325083

Q.2

```
In [1]: # Importing Libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]: df = pd.read_excel(r'C:\Users\Dell\Desktop\ML_Module_Exam\Data\data_final.xlsx')
df

Out[2]:

	observation	feature	price
0	0.44	0.68	511.14
1	0.99	0.23	717.10
2	0.84	0.29	607.91
3	0.28	0.45	270.40
4	0.07	0.83	289.88
95	0.99	0.13	636.22
96	0.28	0.46	272.12
97	0.87	0.36	696.65
98	0.23	0.87	434.53
99	0.77	0.36	593.86

100 rows × 3 columns

Data Understanding

```
In [3]: df.shape
Out[3]: (100, 3)
In [4]: df.info()
        <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 100 entries, 0 to 99
       Data columns (total 3 columns):
                        Non-Null Count Dtype
        # Column
        ---
                                       float64
        0 observation 100 non-null
        1 feature
                        100 non-null
                                       float64
                        100 non-null
                                       float64
        2 price
       dtypes: float64(3)
       memory usage: 2.5 KB
```

In [5]: df.describe()

Out[5]:

	observation	feature	price
count	100.000000	100.000000	100.000000
mean	0.550300	0.501700	554.214600
std	0.293841	0.307124	347.312796
min	0.010000	0.000000	42.080000
25%	0.300000	0.230000	278.172500
50%	0.570000	0.485000	514.285000
75%	0.822500	0.760000	751.752500
max	1.000000	0.990000	1563.820000

In [6]: df.head()

Out[6]:

	observation	feature	price
0	0.44	0.68	511.14
1	0.99	0.23	717.10
2	0.84	0.29	607.91
3	0.28	0.45	270.40
4	0.07	0.83	289.88

In [7]: df.isnull().sum()

Out[7]: observation 0 feature 0 price 0 dtype: int64

In [8]: sns.pairplot(df)

Out[8]: <seaborn.axisgrid.PairGrid at 0x1cb47678400>

In [9]: df.corr()

Out[9]:

	observation	reature	price
observation	1.000000	0.041766	0.764315
feature	0.041766	1.000000	0.627476
price	0.764315	0.627476	1.000000

In [10]: # Dataset has Two independent Variabale and One dependent variable

```
In [11]: x = df.drop('price', axis=1)
Out[11]:
              observation feature
           0
                    0.44
                           0.68
           1
                    0.99
                           0.23
           2
                    0.84
                           0.29
           3
                    0.28
                           0.45
           4
                    0.07
                           0.83
          95
                    0.99
                           0.13
          96
                    0.28
                           0.46
          97
                    0.87
                           0.36
          98
                    0.23
                           0.87
          99
                    0.77
                           0.36
          100 rows × 2 columns
In [12]: y = df.price
         У
Out[12]: 0
                511.14
                717.10
                607.91
         2
          3
                270.40
         4
                289.88
          95
                636.22
         96
                272.12
          97
                696.65
                434.53
                593.86
         Name: price, Length: 100, dtype: float64
In [13]: x.shape, y.shape
Out[13]: ((100, 2), (100,))
In [14]: # Train and Test Data
In [15]: from sklearn.model_selection import train_test_split
In [16]: x_train, x_test, y_train, y_test = train_test_split(x, y, train_size=0.8, random_state=42)
In [17]: x_train.shape, x_test.shape, y_train.shape, y_test.shape
Out[17]: ((80, 2), (20, 2), (80,), (20,))
 In [ ]:
```

As number of independent feature are more than one so we will go with Multiple Linear Regression Model

Multiple Linear Regression Model

```
In [20]: # Now we will plot scatter plot

plt.scatter(y_pred, y_test, color = 'green')
plt.plot(y_pred, y_test, color = 'red')
plt.show()
```



```
In [21]: model.predict([[0.40, 0.65]])
```

C:\Users\Dell\anaconda3\lib\site-packages\sklearn\base.py:450: UserWarning: X does not have valid feature names, but LinearRegression was fitted with feature names warnings.warn(

Out[21]: array([519.25718884])

Result with error calculation and Performance of Model

In [22]: from sklearn import metrics

Mean Absolute error

```
In [23]: round(metrics.mean_absolute_error(y_test, y_pred),2)
```

Out[23]: 68.25

Mean Squared Error

```
In [24]: round(metrics.mean_squared_error(y_test, y_pred) ,2)
```

Out[24]: 7901.48

Median Absolute Error

```
In [25]: round(metrics.median_absolute_error(y_test, y_pred),2)
```

Out[25]: 56.08

Explained Varience Score

```
In [26]: round(metrics.explained_variance_score(y_test, y_pred),2)
```

Out[26]: 0.94

OLS Summary Report

```
In [27]: import statsmodels.api as sm
           constant = sm.add_constant(x_train)
           op = sm.OLS(y_train, constant).fit()
           op.summary()
Out[27]: OLS Regression Results
                Dep. Variable:
                                         price
                                                     R-squared:
                                                                   0.935
                      Model:
                                         OLS
                                                 Adj. R-squared:
                                                                   0.933
                     Method:
                                 Least Squares
                                                     F-statistic:
                                                                   553.4
                       Date: Mon, 23 Jan 2023 Prob (F-statistic): 2.04e-46
                                      17:38:06
                                                Log-Likelihood:
                                                                  -468 52
                       Time:
            No. Observations:
                                           80
                                                           AIC:
                                                                   943.0
                                           77
                                                           BIC:
                Df Residuals:
                                                                   950.2
                                            2
                    Df Model:
             Covariance Type:
                                     nonrobust
                             coef std err
                                                t P>|t|
                                                           [0.025
                                                                     0.9751
                  const -249,7765 24,830 -10,059 0,000 -299,219
                                                                  -200.334
            observation
                        855.8957 33.498
                                           25.550 0.000
                                                          789.192
                                                                   922,600
                         656.4236 31.261
                                           20.998 0.000
                                                         594.174 718.673
                 feature
                  Omnibus: 33.673
                                     Durbin-Watson:
                                                        1.755
            Prob(Omnibus):
                             0.000 Jarque-Bera (JB):
                                                       60,429
                                           Prob(JB): 7.55e-14
                     Skew:
                             1.656
                  Kurtosis:
                             5,675
                                           Cond. No.
                                                         5.16
           Notes:
```

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [28]: # From above report we can see that R-squared value is 0.935 .

In [29]: # Now we will build model using Polynomial Regression
```

Polynomial Regression Model Building

```
In [32]: # We will see it on scatter plot
    plt.scatter(y_pred1, y_test, color = 'green')
    plt.plot(y_pred1, y_test, color='blue')
    plt.show()
```



```
In [33]: metrics.r2_score(y_test, y_pred1)
```

Out[33]: 0.9997458144373799

In []:

Conclusion

Here i have build two different models . One using Multiple Regression and Second using Polynomial Regression. From this two model i can conclude that Polynomial Regression model is more accurate tahn Multiple linear regression model

In []: