ÜBUNGSBLATT 06 Aufgabe 2 (Extensive Spiele)

Tim Blome, Michael Koller, Ayleen Schinko

02. Dezember 2016

a) Zeigen Sie, dass es kein Normalformspiel gegen kann, in dem es kein pareto-optimalen Ausgang gibt.

Definition (Strategisches Spiel (Normalform))

Ein strategisches Spiel $G = \langle N, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle$ besteht aus

- ullet einer endlichen Menge $N=1,\ldots,n$ an Spielern,
- ullet einer Menge an Aktion A_i für jeden Spieler,
- einer Nutzenfunktion (utility) $u_i:A_1\times\cdots\times A_n\to\mathbb{R}$ für jeden Spieler.

a) Zeigen Sie, dass es kein Normalformspiel gegen kann, in dem es kein pareto-optimalen Ausgang gibt.

DEFINITION (PARETO-OPTIMAL)

Ein Ausgang o^* ist pareto-optimal, wenn er von keinem anderen Ausgang pareto-dominiert wird.

Wenn für alle Spieler $o \ge o'$ (und für mindestens einen \ne), dann pareto-dominiert o o'.

- a) Zeigen Sie, dass es kein Normalformspiel gegen kann, in dem es kein pareto-optimalen Ausgang gibt.
 - Jede Aktionsmenge eines Spielers endlich und nicht leer
 - Durch Nutzenfunktion totale Ordnung auf Aktionsmenge

Widerspruchsbeweis:

Existiert Normalformspiel ohne Pareto optimalen Ausgang, so

- Bilden alle Ausgänge einen Zyklus
 - ightarrow Zyklus nicht möglich, da partielle Ordnung
- Bilden Ausgänge unendlich bessere werdende Kette
 - $\,\rightarrow\,$ Kette nicht möglich, da Aktionsmenge endlich
- ⇒ Es existiert lokales Maximum
- \Rightarrow Pareto optimaler Ausgang

d) Begründen Sie, warum in einem extensiven Spiel mit perfekter Information ein durch Rückwärtsinduktion gefundener Ausgang ein Nash-Gleichgewicht sein muss

In solchem Spiel wird durch Rückwärtsinduktion in jedem Teilspiel ein teilspielperfektes Equilibrium gefunden.

- ⇒ Kein Akteur kann sich in Situation durch Umentscheiden verbessern
- \Rightarrow Teilspielperfektes Equilibrium für gesamtes Spiel ist Nash-Gleichgewicht

e) 1) Stellen Sie Fußball/Komödie als UVEF-Spiel dar.

e) 2) Stellen Sie zweifaches Gefangendilemma als UVEF-Spiel dar.

