DA-IICT, B.Tech, Sem II

- 1. Evaluate
 - (a) $\int (r^2 + \vec{\mathbf{r}} \cdot \vec{\mathbf{a}} + a^2) \delta^3(\vec{\mathbf{r}} \vec{\mathbf{a}}) dV$ over the whole space where $\vec{\mathbf{a}}$ is a fixed vector.
 - (b) $\int_V |\vec{\mathbf{r}} \vec{\mathbf{b}}|^2 \delta^3(5\vec{\mathbf{r}}) dV$ over a cube of side 2, centered at the origin, and $\vec{\mathbf{b}} = 4\hat{\mathbf{y}} + 3\hat{\mathbf{z}}$
- 2. The electric field in a region is given as

$$ec{E} = rac{\sigma}{2\epsilon_0}\hat{i};$$
 for $x > 0$
= $-rac{\sigma}{2\epsilon_0}\hat{i};$ for $x < 0$

Find the charge distribution in the region using the differential form of Gauss's law.

3. The electric field in a region is cylindrically symmetric, given as follows:

$$\vec{\mathbf{E}}(\vec{\mathbf{r}}) = \frac{c\hat{\mathbf{s}}}{s};$$
 when $s \ge a$
= 0; when $s < a$

Find the charge distribution in the region using Gauss' law.

4. We have seen that $\vec{\nabla} \cdot \left(\frac{\hat{r}}{r^2}\right) = 4\pi \delta^3(\vec{r})$. In a similar manner justify that

$$\vec{\nabla} \cdot \left(\frac{\hat{s}}{s}\right) = 2\pi \delta^2(\vec{s})$$

Here s is the distance from the z axis in cylindrical coordinates and $\delta^2(\vec{s})$ is a two dimensional delta function on the xy plane.

5. Prove that $\delta(r) = 4\pi r^2 \delta^3(\vec{r})$ and $\delta(s) = 2\pi s \delta^2(\vec{s})$. Here $\int_0^{\epsilon} \delta(r) dr = 1$ for any $\epsilon > 0$. The integral is 0 otherwise. $\delta(s)$ is defined likewise. 6. The electric field in a region is given as

$$\vec{E} = \frac{\lambda}{2\pi\epsilon_0 s} \hat{s}$$

Find the charge densities in the region.