

SOUTENANCE PROJET

EQUATION DE PREDATION LOKTAVOLTERA

RÉALISÉ PAR:
ZOUGA JASSIEM
RAYANE TROUDI
FLORENT GERBAUD

SOMMAIRES

OBJECTIF DU PROJET

VISUALISATION DES EQUILIBRES

13 ETUDES DES EQUILIBRES

RESOLUTION EDO PAR EULER IMPLICITE

RESOLUTION EDO PAR RUNGE ET KUTTA

LES IMPRECISIONS DE EULER IMPLICITE ET RUNGE ET KUTTA

CONCLUSION

05

06

07

08

I) OBJECTIF DU PROJET:

RÉSOUDRE LE SYSTEM LODKAVOLTERA PROIE PREDATEUR :

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = \alpha x - \beta xy \\ \frac{\mathrm{d}y}{\mathrm{d}t} = \delta xy - \gamma y \end{cases} \tag{1}$$

Deux méthodes a notre disposition :

- 1)Euler implicite
- 2)Runge kutta

2) VISUALISATION DES EQUILIBRES

FIGURE 1: CHAMP DE VECTEUR

Le point **rouge** représente l'équilibre (gamma/delta,alpha/beta).

Le point vert représente l'équilibre (0,0).

3) ETUDES DES EQUILIBRES:

Calcul des Equilibres :

$$\begin{cases} \dot{x}=0\\ \dot{y}=0 \end{cases}$$

$$\begin{cases} x=\frac{\gamma}{\delta}\\ y=\frac{\alpha}{\beta} \end{cases}$$
 et l'équilibre triviale $(0,0)$:
$$\begin{cases} x=0\\ y=0 \end{cases}$$

Etude de la matrice Jacobienne :

$$J = \left(egin{array}{ccc} lpha - eta y & -eta x \ \delta y & \delta x - \gamma \end{array}
ight)$$

Etude de la matrice Jacobienne en (0,0):

$$J(0,0) = \left(\begin{array}{ccc} \alpha & 0 \\ & & \\ 0 & -\gamma \end{array}\right)$$

Equilibre Instable + point col.

Etude de la matrice Jacobienne en (0,0):

$$J(\frac{\gamma}{\delta}, \frac{\alpha}{\beta}) = \begin{pmatrix} 0 & -\frac{\beta\gamma}{\delta} \\ 0 & \frac{\delta\alpha}{\beta} \end{pmatrix}$$

On peut pas conclure sur la stabilité (instabilité), mais c'est un point centre.

4) RESOLUTION EDO PAR EULER IMPLICITE:

Après résolution du system par la méthode D'Euler implicite on obtient :

$$\begin{cases} x_{n+1} - x_n - h(\alpha x_{n+1} - \beta x_{n+1} y_{n+1}) = 0 \\ y_{n+1} - y_n - h(\delta x_{n+1} y_{n+1} - \gamma y_{n+1}) = 0 \end{cases}$$

On applique la methode de Newton en dimension N en calculant la matrice Jacobienne:

$$J(x_{n+1}, y_{n+1}) = \begin{pmatrix} 1 - h\alpha - h\beta y_{n+1} & h\beta x_{n+1} \\ -h\delta y_{n+1} & 1 - h\delta x_{n+1} + h\gamma \end{pmatrix}$$

On pose:

$$w_{n+1} = w_n - [J]^{-1}F(w_n)$$

5) RESOLUTION EDO PAR RUNGE KUTTA 2:

En posant : pour le modèle à 2 espèces

$$f(x,y) = egin{pmatrix} lpha x - eta xy \ \delta xy - \gamma y \end{pmatrix}$$

et en posant : pour le modèle à 3 espèces

$$f(x, y, z) = egin{pmatrix} x(lpha - eta x - \gamma y) \ y(\delta - \epsilon y - \zeta x - \eta z) \ z(heta y - \iota z - \kappa) \end{pmatrix}$$

On résout récursivement la fonction de la manière suivante :

$$y_{n+1} = y_n + h\left(rac{1}{2}k_1 + rac{1}{2}k_2
ight) \quad ext{avec} \quad egin{dcases} k_1 &= & f(t_n,y_n) \ k_2 &= & f(t_n+h,y_n+hk_1) \ y_0 &= & y(0) \end{cases}$$

6) RESOLUTION EDO PAR RUNGE KUTTA 4:

En posant : pour le modèle à 2 espèces

$$f(x,y) = egin{pmatrix} lpha x - eta xy \ \delta xy - \gamma y \end{pmatrix}$$

et en posant : pour le modèle à 3 espèces

$$f(x, y, z) = egin{pmatrix} x(lpha - eta x - \gamma y) \ y(\delta - \epsilon y - \zeta x - \eta z) \ z(heta y - \iota z - \kappa) \end{pmatrix}$$

On applique la méthode de RungeKutta 4:

$$\begin{cases} k_1 = hf(x_n, y_n) \\ k_2 = hf(x_n + \frac{1}{2}h, y_n + \frac{1}{2}k_1) \\ k_3 = hf(x_n + \frac{1}{2}h, y_n + \frac{1}{2}k_2) \\ k_4 = hf(x_n + h, y_n + k_3) \\ y_{n+1} = y_n + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4) \end{cases}$$

7) LES IMPRÉCISIONS DE EULER IMPLICITE

Méthode de Euler implicite

Simulation de LV2 via Runge Kutta 4

Simulation de LV2 via Euler Implicite

Simulation Lodka-Volterra avec les paramètres de base et (x0, y0, z0) = (4, 10, 6) - Cohabitation des 3 espèces

Simulation Lodka-Volterra avec les paramètres de base et (x0, y0, z0) = (12, 10, 8)

Simulation Lodka-Volterra avec les paramètres de base et (x0, y0, z0) = (12, 10, 8) Mise en évidence de la compétition entre les deux espèces.

Simulation Lodka-Volterra avec les paramètres de base et (x0, y0, z0)= (12, 10, 8) Extinction des deux espèces (Brebis et Loups)

Population des loups en fonctions des lapins

Comparaison du nouveau modèle avec l'ancien modèle

8) LIMITE DU MODELE

9) CARNET DE BORD

Tâches	Date	Responsable(s)
-Résolution de l'EDO a deux équations par la méthode d'EULER implicite sous format papier. -Etude du schéma numérique avec la méthode de Runge et Kutta 2,4 sur format papier.	12/04/2023	-Rayane Troudi -Zouga Jassiem & Florent Gerbaud
-Implémentation de la méthode Runge Kutta ordre 2,4 en python.	13/04/2023	-Zouga Jassiem & Florent Gerbaud
-Implémentation de la méthode d'Euler implicite et la méthode de newton en dim N.	-	-Rayane Troudi
-Etudes de la nature des équilibres des deux schémas. -Implémentation des codes	14/04/2023	-Zouga Jassiem -Rayane Troudi & Florent Gerbaud
python pour le schéma des 3 équations.		
-Analyse et Interprétation des résultats obtenue en modifiant les paramètres des équations.	15/04/2023	-Rayane Troudi -Florent Gerbaud -Zouga Jassiem
-Rédaction du rapport en Latex	17/04/2023	-Rayane Troudi
-Rédaction de la diapo de présentation		-Zouga Jassiem

10) CONCLUSION:

- Possibilité d'améliorer en prenant en compte l'action de pèche et de la chasse..
- Possibilité d'ajouter une super espèce comme l'homme.