

МИРЭА – Российский технологический университет Институт радиотехнических и телекоммуникационных систем Кафедра телекоммуникаций

Построение беспроводных систем связи Лекция 1. Введение в беспроводные сети

E-mail: termilab@mirea.ru

Аудитория Д-321

Введение в беспроводные сети

Технологии беспроводных сетей

Стандарты беспроводных ЛВС

Компоненты беспроводных ЛВС

Беспроводные сети

Технологии беспроводных сетей

Частотный диапазон для передачи данных

10 MHz - 300 THz

Подавляющее большинство технологий беспроводной передачи данных используют частотный диапазон 10 MHz – 300 THz

Длина волны излучения в диапазоне ~ 1 мкм – 30 м

Короткие волны VHF - UHF 30 м – 10 см

Микроволны MW 10 см – 0,1 мм ИК излучение IR 0,1 мм – 1 мкм

Радиоволны

Диапазон	Описание
3-30 KHz	VLF – Very Low Frequency, Surface Waves – коммуникации на расстояния свыше 100 км
30- 300 KHz	LF – Low Frequency, Ground Waves – Связь на дальние расстояния свыше 100 км. Широковещание (радиостанции)
300 – 3000 KHz	MF – Medium Frequency, Ground Waves – Широковещание (радиостанции)
3 – 30 MHZ	HF – High Frequency, Sky Waves – Широковещание (радиостанции)

Радиоволны

Диапазон	Описание
30-300 MHz	VHF – Very High Frequency, Space Waves – мобильная связь, ТВ-широковещание (10 – 50 км)
300- 3000 MHz	UHF – Ultra High Frequency, Space Waves – мобильная связь, ТВ-широковещание, point-to-point links, беспроводные ЛВС
3 – 30 GHz	SHF – Super High Frequency, Space Waves – 5G связь, point-to-point links, беспроводные ЛВС, спутниковая связь
30 GHz и выше	EHF – Extra High Frequency, Space Waves – спутниковая связь (между спутниками)

Беспроводные технологии. Параметры

Параметр	Описание
Частота	Низкочастотные (Low, Hz) – Высокочастотные (High, Hz)
Frequency	
Мощность	Маломощные (Low, менее 1mW) – Мощные (High, более 100 W)
излучения	
Power level	
Полоса	Узкополосные (Narrowband) – Широкополосные (Wideband)
Bandwidth	
Расстояние	Short (менее 100 ft – 30 м) – Long (100 км и более)
передачи	
Signal Range	
Покрытие	Local area – Wide area
Coverage	

Беспроводные технологии. Параметры

Параметр	Описание
Тип сигнала	Цифровой (Digital) – Аналоговый (Analog)
Signal Type	
Полоса	Low (Kbps, менее 1Mbps) – High (10 Mbps и более)
пропускания	
Data Rates	
Приложения	Стационарные (Fixed) – Мобильные (Mobile)
Applications	
Signal / Path	Прямой (Direct) – Отраженный (Reflective)
Стоимости	Incorporais (Mauro FO LICD) Expansiva
Стоимость	Inexpensive (менее 50 USD) – Expensive
Cost	

Технологии и области покрытия

Общая закономерность – чем больше область покрытия тем ниже скорость передачи данных

Наземные сети сотовой связи широко используются в качестве WAN и MAN каналов

Технологии GSM и CDMA позволяют организовать как голосовую связь, так и передачу данных

Технологии WAN. Мобильная связь

Архитектура сети мобильной связи стандарта GSM схожа с сетями фиксированной телефонной сети. Для обеспечения сервисов пакетной передачи существует расширение опорной сети, известное как базовая сеть GPRS (GPRS Core Network). Это позволяет мобильным телефонам получать доступ к таким сервисам, как WAP, MMS, передача видео, доступ к сети Интернет.

1 поколение

D-AMPS – Digital Advanced Mobile Phone System

2 поколение

GPRS – General Packet Radio Service

EDGE (EGPRS) -

Enhanced Data rates for GSM Evolution

1990 г. – Усовершенствование стандарта мобильной связи AMPS (на основе аналоговых сигналов). Диапазон от 400 до 890 МГц. Применяется частотное разделение абонентов по каналам 30 КГц в пределах соты (один абонент – один канал). До 48 Кbps

2000 г. GPRS - надстройка над технологией мобильной связи GSM, осуществляющая пакетную передачу данных. GPRS позволяет пользователю сети сотовой связи производить обмен данными с другими устройствами в сети GSM и с внешними сетями, в том числе Интернет. До 85 (115) Kbps.

2003 г. EDGE — цифровая технология беспроводной передачи данных для мобильной связи, которая функционирует как надстройка над 2G и 2.5G (GPRS)-сетями. По сравнению с GPRS используются другие способы модуляции сигналов. EDGE в сети GSM был впервые представлен в 2003 году в Северной Америке. До 474 Kbps.

Технологии WAN. Мобильная связь

3 поколение

WCDMA / UMTS -Universal Mobile Telecommunications System

CDMA-2000 - Code Division Multiple Access

4 поколение

LTE-

Long Term Evolution

3G (third generation — третье поколение), технологии мобильной связи 3 поколения — набор услуг, который объединяет как высокоскоростной мобильный доступ с услугами сети Интернет, так и технологию радиосвязи, которая создаёт канал передачи данных. Под этим термином чаще всего подразумевается технология UMTS с надстройкой HSPA (High Speed Packet data Access, используется в сетях GSM). До 384 Кbps для мобильного трафика и до 2 Mbps для стационарных инсталляций.

2000 г. LTE (англ. Long-Term Evolution, букв. — «долговременное развитие», часто обозначается как 4G LTE) — стандарт беспроводной высокоскоростной передачи данных для мобильных телефонов и других терминалов, работающих с данными. Он основан на сетевых технологиях GSM/EDGE и UMTS/HSPA, увеличивая пропускную способность и скорость за счёт использования другого радиоинтерфейса вместе с улучшением ядра сети. От 20-100 Mbps и выше

Технологии MAN (Последняя миля)

MMDS (Multichannel Multipoint Distribution System) - Многоканальная Многоточечная Распределительная система— система наземного телевещания, аналог кабельного телевидения

System)

MMDS (Multichannel 1990-е. Многоканальная Многоточечная Multipoint Distribution Распределительная система – MMDS (Multichannel Multipoint Distribution System) – система наземного телевещания, аналог кабельного телевидения, но без кабеля, сходная со спутниковой телевещательной системой – только спутник-ретранслятор в этом случае как бы находится на земле.

LMDS (Local Multipoint Distribution System

Диапазон 2,5 – 2,686 GHz, 24 канала шириной 8 MHz стандарт SECAM, или 31 канал шириной 6,5 MHz PAL. В случае передачи данных система достраивается до двунаправленной (с 1998 года).

Сигнал обратного канала размещается в полосе частот MDS (2,15-2,16 ГГц), WCS (2,30-2,35 ГГц) или внутри самого диапазона MMDS (2,5-2,686 ГГц)

До 45 Mbps в канале

Технологии MAN (Последняя миля)

WiMax (IEEE 802.16d фиксированный и 802.16e мобильный).

Область покрытия базовой станции 40 км

Технологии MAN (Последняя миля)

WiMAX 802.16
Worldwide
Interoperability for
Microwave Access

2004-2005. WiMAX (Worldwide Interoperability for Microwave Access) — технология, разработанная с целью предоставления универсальной беспроводной связи на больших расстояниях для широкого спектра устройств (от рабочих станций и портативных компьютеров до мобильных телефонов). Основана на стандарте IEEE 802.16, который также называют Wireless MAN

Диапазоны 2,3—2,5; 2,5—2,7; 3,4—3,8 GHz. Для взаимодействия между базовыми станциями используется 11 GHz

Скорость передачи данных до 75 Mbps в 802.16d (фиксированный) и до 40 Mbps в 802.16e (мобильный)

Беспроводные технологии LAN

Данный курс посвящен изучению беспроводных технологий, применяемых в локальных вычислительных сетях (Wireless LAN) стандарта IEEE 802.11

Частота и длина волны

Длина волны излучения оказывает влияние на размеры и конструкцию антенн для приема и передачи сигналов

Где

f – частота излучения,

 λ - длина волны излучения

C- скорость распространения волн в среде (скорость света)

$$\lambda = \frac{C}{f} = \frac{3 \cdot 10^8}{2,4 \cdot 10^9} = 0,125 \text{ M}$$

$$\lambda = \frac{C}{f} = \frac{3 \cdot 10^{\circ}}{5 \cdot 10^{\circ}} = 0.06 \, \text{A}$$

Беспроводные сети

Стандарты беспроводных ЛВС

Беспроводные технологии LAN

1998 г. – принятие стандарта IEEE 802.11

Изначально стандарты для беспроводных ЛВС (Wireless LAN, WLAN) разрабатывались для применения в трех не лицензируемых диапазонах ISM (Industry, Science, Medicine).

433.075—434.750 МГц

868.7—869.2 МГц

868.0—868.2 МГц

2400.0—2483.5 МГц

5180.0—5320.0 МГц

5180.0—5320.0 МГц

Эволюция беспроводных LAN

Основные характеристики WLAN

Эффективность передачи данных / скорость Wi-Fi сети

количество информации, передаваемое в эфире в единицу времени

Сколько бит передается в одном радио-символе?

Способы кодирования и модуляции

Количество пространственных потоков (Spatial Streams)

Возможность использования разных антенн и передатчиков для разных клиентов

Полоса пропускания канала

Количество частот, которые мы можем модулировать в единицу времени

Overhead (накладные расходы) протокола

Служебные фреймы Preamble/Ack/CTS/RTS и т.п.

Семейство стандартов IEEE 802

IEEE LAN/MAN Standards

- 802.0 Sponsor Executive Committee (SEC)
- 802.1 High Level Interface (HILI)
- 802.2 Logical Link Control (LLC)
- 802.3 CSMA/CD (Ethernet)
- 802.4 Token Bus
- 802.5 Token Ring
- 802.6 Metropolitan Area Network (MAN)
- 802.7 BroadBand Technical Advisory Group (BBTAG)
- 802.8 Fiber Optics Technical Advisory Group (FOTAG)
- 802.9 Integrated Services LAN (ISLAN)
- 802.10 Standard for Interoperable LAN Security (SILS)
- 802.11 Wireless LAN (WLAN)
- -802.11a, 802.11b, 802.11e, 802.11g, 802.11i, 802.11n, 802.11ac/ax
- 802.12 Demand Priority
- 802.14 Cable-TV Based Broadband Communication Network
- 802.15 Wireless Personal Area Network (WPAN)
- 802.16 Broadband Wireless Access (BBWA)
- 802.17 RPRSG Resilient Packet Ring Group (RPRSG)

Стандарты IEEE 802 прежде всего разрабатываются для physical layer (1) и data link layer (2) модели OSI

Структура семейства IEEE 802

Подуровень 802.2 Logical Link Control (LLC) – отдельный стандарт

Стандарты Physical Layer (PHY) и Media-Access Control (MAC) – подуровня Data Link layer отдельный раздел (разные для разных сред передачи)

Стандарт 802.1 Bridging является частью стандарта 802.1 HILI (High Level Interface), обеспечивает связь между МАС подуровнем и LLC подуровнем

IEEE 802.11 Standard for WLAN MAC and PHY Specifications

Data Link	802.2 LLC – Logical Link Control
Layer	802.11 MAC – Media Access Control
Physical	Частотные диапазоны. Мощность. Техники
Layer	модуляции и кодирования FHSS (802.11), DSSS (802.11b), OFDM (802.11a,g,n,ac,ax)

LLC Sublayer – верхний уровень в иерархии стандартов IEEE 802

Основная задача LLC – обмен MAC Service Data Units (MSDUs) между точками присутствия LLC-сервиса между пользователями, использующими 802-based MAC протоколы

LLC не зависит от топологии, среды передачи данных (это описывается подуровнями PHY и MAC Network Layer взаимодействует с MAC-подуровнем через LLC-подуровень

Модуляция сигнала в сетях 802.11

802.11 FHSS (1998г)	Псевдослучайная перестройка рабочей частоты (FHSS, frequency-hopping spread spectrum) - метод передачи информации по радио, особенность которого заключается в частой смене несущей частоты. Частота меняется в соответствии с псевдослучайной последовательностью чисел, известной как отправителю, так и получателю. Метод повышает помехозащищённость канала связи.
802.11b	Метод прямой последовательности для расширения спектра (DSSS direct
DSSS	sequence spread spectrum) — широкополосная модуляция с прямым
(1999г)	расширением спектра, метод формирования широкополосного радиосигнала, при котором исходная последовательность битов преобразуется в псевдослучайную последовательность, используемую для модуляции несущей.
	Используется в сетях стандарта IEEE 802.11 и CDMA
802.11a	OFDM (Orthogonal frequency-division multiplexing мультиплексирование с
OFDM	ортогональным частотным разделением каналов), цифровая схема модуляции, которая использует большое количество близко расположенных ортогональных
(1999г)	поднесущих. Каждая поднесущая модулируется по обычной схеме модуляции (например, квадратурная амплитудная модуляция)

802.11 a	Разработка РНҮ для 5 GHZ диапазона
802.11 b	Разработка High Rate PHY для диапазона 2,4 GHz
802.11 c	Описание Bridge Operation с 802.11 MAC (spanning tree)
802.11 d	Определение требований к РНҮ для 802.11 operation в разных региональных Wi-Fi доменах (странах)
802.11 e	Расширение 802.11 MAC для QoS

Структура семейства IEEE 802.11

802.11 f	Разработка рекомендуемых правил для IAPP (Inter-Access Point Protocol) для мультивендорного использования
802.11 g	Разработка High Speed PHY для диапазона 2,4 GHz
802.11 h	Расширение 802.11 PHY – Dynamic Frequency Selection / Transmit Power Control
802.11 i	Расширение 802.11 MAC – security и authentication механизмы
802.11 j	Расширение 802.11 для дополнительной селекции каналов в диапазоне 5 GHz в Японии

802.11k	Radio Resource Management в беспроводных сетях
802.11n	Усовершенствование стандарта 802.11 g, включена поддержка MIMO (multiple-in – multiple-out), реализована способность одновременного приема/передачи нескольких потоков данных через несколько антенн, вместо одной
802.11ac	Усовершенствование стандарта 802.11а в диапазоне 5 GHz
802.11ax	Развитие стандарта 802.11ас, High-Efficiency Wireless (в диапазоне 2,4 GHz обратно совместим с 802.11n

Стандартизирующие организации

IEEE – Institute of Electrical and Electronics Engineers

Институт инженеров электротехники и электроники. Международная некоммерческая организация. Штаб-квартира в США

ANSI – American national standards institute

Американский национальный институт стандартов. Член организаций ISO и IEC

Wi-Fi Alliance (Wireless Fidelity Alliance, WECA Wireless Ethernet Compatibility Alliance)

Тестирование совместимости WLAN - продуктов

Стандартизирующие организации

ISO – International Organization for Standardization

Международная организация по стандартизации

IETF – Internet Engineering Task Force

Некоммерческая организация, Инженерный Совет Internet

ITU – International Telecommunication Union

Международный союз электросвязи

Стандартизирующие организации

ГКРЧ - Государственная комиссия по радиочастотам

Межведомственный координационный орган, действующий при Министерстве цифрового развития, связи и массовых коммуникаций Российской Федерации.

ГКРЧ обладает всей полнотой полномочий в области регулирования радиочастотного спектра в РФ

Аналоги В США – FCC, в Европе - ETSI

www.fcc.gov www.etsi.org

Беспроводные сети

Компоненты беспроводных ЛВС

Беспроводные точки доступа (Access Points, AP)

Cisco Aironet - первое поколение

- · 1200 Series (802.11a and 802.11b)
- 1100 Series (802.11b)

Cisco Aironet - третье поколение

- · 2800 Series 802.11n, 802.11ac
- 3800 Series 802.11n, 802.11ac

Cisco Aironet - второе поколение

1130 Series (802.11a, 802.11g)

Cisco Aironet - четвертое поколение

9100 Series 802.11ax

Access Points (AP) – беспроводные точки доступа. Выпускаются с поддержкой диапазона 2,4 GHz (стандарты 802.11 b/g/n), либо с поддержкой диапазонов 2,4 GHz и 5 GHz (стандарты 802.11 a/n/ac/ax)

Точки доступа имеют различные management и security features

Точка доступа – суть беспроводной коммутатор

Каждая точка доступа имеет FLASH ROM, на котором хранится firmware и файлы конфигурации

Точка доступа может выступать как усилитель (repeater)

Бриджи

Bridges – беспроводные бриджи. Обладают расширенным функционалом точек доступа. Выпускаются с поддержкой диапазона 2,4 GHz (стандарты 802.11 b/g/n), либо с поддержкой диапазонов 2,4 GHz и 5 GHz (стандарты 802.11 a/n/ac)

Беспроводные бриджи используются в outdoor-инсталляциях при построении фиксированных point-to-point или point-to-multipoint каналов связи

Бриджи используют модифицированную версию протоколов 802.11 и могут быт не совместимы с другим беспроводным оборудованием

Клиентское оборудование

Беспроводные интерфейсные карты

- 350 Series (802.11b)
- 5 GHz client adapter (802.11a)
- · Workgroup bridge (802.11b)

Беспроводные телефоны 802.11

· Wireless IP Phone

Благодарю за внимание!

Кафедра телекоммуникаций

Кампус на проспекте Вернадского 78

Аудитории: Д-321, Б-216-б

Телефон: +7 (495) 987-47-17

E-mail: termilab@mirea.ru