

Métodos matriciais e Cluster analysis Introdução

Prof. Abraham Laredo Sicsu

Sobre as aulas

- o Curso preparado para usuários de modelos preditivos.
 - Não vamos discutir como os softwares foram programados
- o Instrutor exporá as principais ideias e o uso do software R.
- o Livro recomendado (disponibilizado pelos autores na net):

https://www-bcf.usc.edu/~gareth/ISL/ISLR%20First%20Printing.pdf

Critério de notas cursos síncronos online (ZOOM)

- Trabalho em grupos de no MÁXIMO TRÊS participantes......30%
 - Trabalho deve ser entregue até a data definida pelo Professor e postado no ECLASS, utilizando o ícone "entrega de atividades"
 - Nota depende de apresentação e conteúdo.
- - O professor colocará um documento (.doc) em Word ("folha de questões") com as questões, bem com um arquivo em Excel com os dados. Vocês serão avisados da postagem por e mail.
 - Haverá diferentes conjuntos de dados. Cada aluno deve tomar cuidado para utilizar as planilhas de dados que correspondem à turma em que ele for alocado.
 - Os alunos deverão resolver as questões _e colocar o respostas no documento "folha de questões" em Word, sem esquecer de colocar o nome
 - Alunos poderão consultar todos os materiais disponíveis no ECLASS de sua turma, acessar a internet e arquivos pessoais.
 - Após completar a prova, os alunos devem preencher as respostas na "folha de questões", salvar a folha de prova como .pdf e postar a "folha de questões" no eclass, clicando no ícone "entrega de atividades" e na pasta com o título deentrega de trabalho final. Por favor, não copiem os scripts do R
 - Os alunos terão um tempo limite para postar a prova no e class que será definido pelo Professor. Findo esse prazo, o sistema não aceita a postagem de novos documentos. E, por favor, não enviem por e mail pois não serão aceitos!
 - Comportamento ético
 - Os alunos deverão resolver as questões **INDIVIDUALMENTE**
 - Proibido qualquer tipo de comunicação, qualquer que seja a mídia utilizada (oral, eletrônica, sinais de fumaça...)

Horários FGV EDUCAÇÃO EXECUTIVA Tarde Manhã 8h30 às 9h45 - aula 13h30 às 14h45 - aula 9h45 ás 9h55-break 14h45 ás 14h55-break 9h55 às 11h15-aula 14h55 às 16h15-aula 11h15 ás 11h30 - break 16h15 ás 16h30 - break 11h30 às 12h30-aula 16h30 às 17h30-aula Machine drinking

Classificação dos métodos

- Métodos supervisionados (nossa disciplina):
 - Objetivo: modelar a relação entre uma variável alvo (ou variável dependente)
 e um conjunto de variáveis previsoras.
 - Duas categorias
 - Modelos de previsão → alvo é prever o valor de uma grandeza quantitativa (demanda, valor do aluguel, vendas,...)
 - Modelos de classificação → objetivo é classificar em uma das categorias da variável alvo (bom/mau pagador, cliente de alto, médio ou baixo potencial) a partir das características definidas pelas previsoras
- Métodos não supervisionados:
 - Objetivo: desvendar padrões de comportamento existentes nos dados.
 - Não existe uma variável alvo para supervisionar a busca desses padrões

Métodos apresentados nesta disciplina

- Cluster analysis
- Análise das componentes principais
- Regras de associação
- Operações com matrizes
- Auto valor e auto vetor

Alguns erros usuais de analistas inexperientes

- Não discutir o problema com as pessoas envolvidas no processo ao qual serão aplicados os resultados e com experts no contexto do problema.
- Preocupar-se mais com a "precisão" do modelo que com sua
 aplicabilidade e a interpretação dos resultados no contexto do problema
 o modelo precisará ser "vendido" dentro da empresa.
- Não alocar boa parte do tempo à analise e interpretação de cada variável considerada no desenvolvimento do modelo

Boa leitura:

https://www.analyticsvidhya.com/blog/2018/07/13-common-mistakes-aspiring-fresher-data-scientists-make-how-to-avoid-them/?utm_source=feedburner&utm_medium=email&utm_campaign=Feed%3A+AnalyticsVidhya+%28Analytics+Vidhya%29

Dados

Qualidade do dados

- O que é um mau pagador?
- O que é um bom funcionário?
- Como definir "experiência"?
- Importante:
 - definição operacional da variável
 - consenso
 - uniformidade de interpretação
 - processo de medição / cálculo

15

Identificação das variáveis previsoras

- Fundamental
- Ouvir experts na área de trabalho
- Brainstorming
- Na dúvida, testar?
- Importante: definição operacional

Análise dos Dados

Objetivos:

- entender o comportamento de cada variável
 - distribuição / outliers / missing values / etc..
- entender relação entre variáveis
- Fundamental para o analista → "insight"

Análise Preliminar dos Dados

- · Dois tipos de análise
 - Univariada
 - Analisa cada variável individualmente sem verificar relações com outras variáveis
 - Medidas descritivas , diagramas de barras, histogramas, box-plot, etc.
 - Bivariada
 - · Analisa a relação entre duas variáveis do projeto
 - Em geral, foco é na relação entre previsor (X) e variável alvo (Y)
 - Correlações, medidas descritivas em cada grupo, box plot, tabelas de contingência. Diagramas de dispersão, matrizes de dispersão etc.

19

Feature engineering (preparação dos dados)

Feature engineering: tratamento da base de dados para aprimorar a análise e modelagem

- 1. Identificação e tratamento de MV
- 2. Identificação e tratamento de outliers
- 3. Criação de novas variáveis a partir das existentes
 - Quantificação de qualitativo
 - Transformação de variáveis
 - Etc.
- 4. Redução de dimensionalidade