The Kernel is a Subgroup

Let $g_1, g_2 \in \ker(\phi)$. Then

$$\phi(g_1g_2) = \phi(g_1)\phi(g_2)$$
 ϕ is a homomorphism
$$= 1_H 1_H \qquad g_1, g_2 \in \ker(\phi)$$

$$= 1_H \qquad g_1, g_2 \in \ker(\phi)$$

Similarly, $1_G \in \ker(\phi)$ and $g^{-1} \in \ker(\phi)$ if $g \in \ker(\phi)$.

Alternating Group

Let X be a set, $|X| = n \le \infty$.

The alternating group on X is the $Alt(X) = ker(sign : Sym(X) \rightarrow \{\pm 1\})$.

October 5, 2023

Group Action

Let G be a group and X a set.

A (left) action of G on X is a function $\alpha: G \times X \to X$ which satisfies two conditions:

- 1. $\alpha(1_G, x) = x$ for all $x \in X$.
- 2. $\alpha(g_1, \alpha(g_2, x)) = \alpha(g_1g_2, x)$ for all $g_1, g_2 \in G$ and $x \in X$.

Notation

Write $\alpha(g, x) = g * x = g \cdot x = gx$.

Example A

Let X be any set, and let $G = \text{Sym}(X) = \{f : X \to X \text{ bijections}\}\$ where the group operation \circ is the composition of functions.

Then G acts (on the left) on X by f * x = f(x).

Then the features

- 1. $\operatorname{Id}_X(x) = x, \ \forall x \in X$
- 2. $g_1 * (g_2 * x) = (g_1 \circ g_2) * x, \forall g_1, g_2 \in G, \forall x \in X$
 - Or $g_1(g_2(x)) = (g_1 \circ g_2)(x)$

are satisfied.

Example B

Let $G = \text{Sym}(\{B, P, W, Y\})$ which acts on $X = \{B, P, W, Y\}$. If $H \leq G$, then H acts on X as well, define $h * x = \dot{h} * x$ (where \dot{h} is regarded as in the alternating group of G). In particular, Alt($\{B, P, W, Y\}$) acts on X by rotations.

Example C*

This example is not required for this class.

From complex Analysis we have the Riemann sphere $\mathbb{P}^1(\mathbb{C}) = \mathbb{C} \cup \{\infty\}$.

Let $G = \mathrm{SL}_2(\mathbb{C})$. Define G-action on $X = \mathbb{P}^1(\mathbb{C})$ by

$$\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} z := \frac{\alpha z + \beta}{\gamma z + \delta} \qquad (\infty \text{ if } \gamma z + \delta = 0)$$

This is called the Möbius group action on $\mathbb{P}^1(\mathbb{C})$.

Exercise: show that 1. and 2. are satisfied.

Definitions

Let G act on X. (Say X is a (left) G-set)

Stabilizer

Let $x \in X$. The stabilizer of x in G is $\operatorname{Stab}_G(x) = \{g \in G | g * x = x\} \subseteq G$.

- Example 1 Let G be any group and X a G-set. Then for any $x \in X$, $\operatorname{Stab}_G(x) \leq G$.
 - Proof
 - 1. $1_G \in \operatorname{Stab}_G(x)$ since, by definition, $1_G * x = x$. Therefore the identity is present.
 - 2. If $g_1, g_2 \in \operatorname{Stab}_G(x)$ are such that $g_1 * x = x$ and $g_2 * x = x$, then $(g_1g_2) * x = g_1 * (g_2 * x) = g_2 * (g_2 * x) = g_1 * (g_2 * x) = g_2 * (g_2 * x) = g$ $g_1 * x = x$

Therefore the stabilizer is closed under composition.

3. Say $g \in \operatorname{Stab}_G(x)$ and g * x = x. Apply g^{-1} to both sdies to get

$$x = 1_{\text{1st Axiom}} 1_G * x = (g^{-1}g) * x = 2_{\text{nd Axiom}} g^{-1} * (g * x) = g^{-1} * x$$

11

Therefore the stabilizer is closed under inverse.

• Example 2 Let $G = Alt(\{B, P, W, Y\})$ and consider $H = Stab_G(W) = \{Id, (BPY), (BYP)\}$. Fact: H does not act transitively on X, since W is fixed and no element $g \in H$ satisfies g * W = B.

Orbit

Let $x \in X$. The G-orbit of x in X is $G \cdot x = \{g * x | g \in G\} \subseteq X$. Let G act on X and $x, y \in X$. Either $G \cdot x = G \cdot Y$ or $G \cdot x \cap G \cdot y = \emptyset$. So X is the disjoint union of G-orbits. e.g. $\{B, P, W, Y\} = \{W\} \prod \{B, P, Y\}$ gives the $\operatorname{Stab}_G(W)$ -orbits.

- Example 1 When G = Alt(X), for $X = \{B, P, W, Y\}$, there is only one orbit since $\forall x \in X, G \cdot x = X$.
- Example 2 When $G = \text{Stab}_G(W)$, for $X = \{B, P, W, Y\}$, then $G \cdot W = \{W\}$ while

$$G \cdot B = \{ Id(B), (B P Y)(B), (B Y P)(B) \} = \{ B, P, Y \}$$

= $G \cdot P = \{ Id(P), (B P Y)(P), (B Y P)(P) \} = \{ P, Y, B \}$
= $G \cdot Y$

Transitivity

Say G acts transitively on X (or the action is transitive) if, for any pair $x, y \in X$, there exists $g \in G$ (depending on x and y) such that g * x = y.

- Example $G = Alt(\{B, P, W, Y\}) \bigcirc \{B, P, W, Y\}$ is transitive.
 - Proof Let $x, y \in X$ be arbitrary. If x = y, then take $g = \operatorname{Id}_X$ and we have g * x = y. Suppose $x \neq y$, then write $X = \{x, y, z, w\}$ and take g = (x y)(z w). We have g * x = y. e.g. x = P, y = Y, z = B and w = W gives g = (P Y)(B W).
- Exercise * This exercise is not required for the course. Prove that $SL_2(\mathbb{C})$ acts transitively on $\mathbb{P}^1(\mathbb{C})$. Say $\mathbb{P}^1(\mathbb{C})$ is a homogeneous space under $SL_2(\mathbb{C})$.

Group Action Gives Group Homomorphisms

 (\longrightarrow) Let G act on X. Then

- 1. For any $g \in G$, the function $\pi_g : X \to X$ defined by $\pi_g(x) = g * x$ is a bijection of X, hence $\pi_G \in \text{Sym}(X)$.
- 2. The function $G \xrightarrow{\phi} \mathrm{Sym}(X)$ given by $\phi(g) = \pi_g$ is a group homomorphism.

Proof of 1

Need to show that π_g is injective and surjective.

(Inj) Let $x, y \in X$ and assume $\pi_g(x) = \pi_g(y)$ (i.e. g * x = g * y). Apply $g^{-1}*$ on both sides, such that $x = g^{-1}*(g*x) = g^{-1}*(g*y) = y$.

(Sur) Let $x \in X$ be arbitrary. Need to find $y \in X$ such that $\pi_g(y) = x$.

Take $y = g^{-1} * x$, and $\pi_a(y) = g * (g^{-1} * x) = x$.

Proof of 2

Need to show that $\forall g_1, g_2 \in G$, $\phi(g_1g_2) = \phi(g_1)\phi(g_2)$. $\phi(g_1g_2) \in \text{Sym}(X)$ is characterized by $[\phi(g_1g_2)](x) = \pi_{g_1g_2}(x) = (g_1g_2) * x$. On the other hand, $\phi(g_1)\phi(g_2) \in \text{Sym}(X)$ is characterized by $[\phi(g_1)\phi(g_2)](x) = \phi(g_1)[\phi(g_2)(x)] = g_1 * (g_2 * x)$. By the second group action axiom, these must be the same.

Group Homomorphism Admits Group Action

 (\longleftarrow) Let $G \stackrel{\rho}{\to} \operatorname{Sym}(X)$ be a group homomorphism.

Then, by letting $g * x = \rho(g)(x) \in X$ we get a left G-action on X.

Proof

- 1. $1_G * x = \rho(1_G)(x) = \operatorname{Id}_X(x) = x$.
- 2. Let $g_1, g_2 \in G$ and $x \in X$. Then $(g_1g_2) * x = [\rho(g_1g_2)](x) = [\rho(g_1) \circ \rho(g_2)](x) = \rho(g_1)[\rho(g_2)(x)] =$ $g_1 * (g_2 * x)$.

Right Group Actions

Let G be a group and X be a set. A right G-action on X is a function $\beta: X \times G \to X$ such that

- 1. $\beta(x, 1_G) = x, \forall x \in X$.
- 2. $\beta(x, g_1g_2) = \beta(\beta(x, g_1), g_2), \forall g_1, g_2 \in G, \forall x \in X.$

Notation

$$\beta(x,g) = x * g = x \cdot g = xg$$

Remark

If $\alpha: G \times X \to X$ is a left action, we get a right action $\beta: X \times G \to X$ by $\beta(x,g) = \alpha(g^{-1},x)$ and vice versa. That is $x * g = g^{-1} * x$.

Proof recommended as an exercise.

Analogues

Stability, orbit and transitivty all have analogues which can be demonstrated by converting to left actions.

Cosets

Let $H \leq G$, and let X = G.

We have left action $H \times X \to X$ and h * x = hx (taken in G).

As well as right action $X \times H \to X$ where x * h = xh.

A (left) *H*-coset is an orbit xH for some $x \in X$.

A (right) H-coset is an orbit Hx for some $x \in X$.

Example

Let
$$G = Alt(4)$$
, $H = Stab_G(W) = \{Id, (B P Y), (B Y P)\}.$

- 1. Take any $x \in H$, xH = H.
- 2. Take x = (B P)(W Y), and $xH = \{(B P)(W Y), (B P)(W Y)(B P Y) = (P W Y), (B P)(W Y)(B Y P) = (B W Y)\}.$
- 3. There are two more; what are they?