සියලු ම හිමිකම් ඇව්රිණි / (மුழுப் பதிப்புரிமையுடையது /All Rights Reserved)

ම් ලංකා විභාග දෙපාර්තමේත්තුව ලී ලංකා විභාග දෙපාර්තම්ත්තුව ලී ලංකා විභාග දෙපාර්තමේත්තුව ලී ලංකා විභාග දෙපාර්තමේත්තුව ඉහතිකසට ප්රියාජන නිකාශස්සභාව ඉහතිකසට පුළුවෙන්න විභාගස්සමට ප්රියාජන නිකාශස්සභාව ඉහතිකයට ප්රියාජන නිකාශස්සභාව Department of Examinations, Sri Lanka Department of **නිතාප්සාණ්ඩ Sri Likk මේ සිට ප්රියා**ජන ප්රියාජන විභාග දෙපාර්තමේත්තුව ලී ලංකා විභාග දෙපාර්තමේත්තුව

අධානයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2016 අගෝස්කු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2016 ஓகஸ்ந் General Certificate of Education (Adv. Level) Examination, August 2016

භෞතික ව්දනව

பௌதிகவியல் **Physics**

පැග දෙකයි

இரண்டு மணித்தியாலம் Two hours

උපදෙස් :

- * මෙම පුශ්න පතුයේ පුශ්න 50 ක්, පිටු 10 ක අඩංගු වේ.
- * සියලු ම පුශ්නවලට පිළිතුරු සපයන්න.
- * පිළිතුරු පතුයේ නියමිත ස්ථානයේ ඔබේ **විභාග අංකය** ලියන්න.
- * පිළිතුරු පතුයේ පිටුපස දී ඇති උපදෙස් සැලකිලිමත් ව කියවන්න.
- * 1 සිට **50** ඉතක් වූ එක් එක් පුශ්නය සඳහා දී ඇති (1), (2), (3), (4), (5) යන පිළිතුරුවලින් **නිවැරදි** හෝ **ඉතාමත් ගැළපෙන** හෝ පිළිතුර තෝරා ගෙන, එය, **පිළිතුරු පතුයේ පිටුපස දැක්වෙන උපදෙස් පරිදි කතිරයකින්** (X) ලකුණු කරන්න.

ගණක යන්තු භාවිතයට ඉඩ දෙනු නො ලැබේ.

(ගුරුත්වජ ත්වරණය, $g = 10 \text{ N kg}^{-1}$)

- විකිරණශීලි පුභවයක සකියතාව මැනීමට භාවිත කරනු ලබන SI ඒකකය වනුයේ,
 - (1) Bq
- (2) Gy
- (3) J Bq⁻¹
- (5) Sv
- $oldsymbol{2}$. එක්තරා දිග මිනුමක පුතිශත දෝෂය 1% ට වඩා අඩුවෙන් තබා ගත යුතුව ඇත. මිනුම් උපකරණය නිසා ඇති වන දෝෂය 1 mm නම් මැතිය යුතු දිග,
 - (1) 1 mm ට වඩා වැඩි විය යුතු ය.
- (2) 1 cm ට වඩා වැඩි විය යුතු ය.
- (3) 10 cm ට වඩා වැඩි විය යුතු ය.
- (4) 1 m ට වඩා වැඩි විය යුතු ය.
- (5) 10 m ට වඩා වැඩි විය යුතු ය.
- 3. සිදුරේ අරය ඒකාකාර වූ එක්තරා දුව-වීදුරු උෂ්ණත්වමානයක් කුමාංකනය කර ඇත්තේ ජලයේ තාපාංකය සහ අයිස් හි දුවාංකය භාවිත කිරීමෙන් ය. මෙම උෂ්ණත්වමානයේ භාවිත කරනු ලබන උෂ්ණත්වමාන දුවයකට පහත දී ඇති ගුණ අතුරෙන් අත**පවශපයෙන් ම** තිබිය යුතු ගුණය කුමක් ද?
 - (1) ඉහළ පරිමා පුසාරණතාව
- (2) ඒකාකාර පරිමා පුසාරණය (3) ඉහළ තාප සන්නායකතාව

- (4) අඩු විශිෂ්ට තාප ධාරිතාව
- (5) අඩු වාෂ්ප පීඩනය
- 4. විදාහුත් චූම්බක තරංග සම්බන්ධයෙන් පහත කුමක් **අසත** වේ ද?
 - (1) විදයුත් සහ චූම්බක ක්ෂේතුවල දිශාවන් එකිනෙකට ලම්බ වේ.
 - (2) වේගය පුචාරණ මාධාපය මත රඳා නොපවතී.
 - (3) පුචාරණය සඳහා දුවාමය මාධායයක් අවශාම නො වේ.
 - (4) තරංගයේ පුචාරණ දිශාව, විදාුත් හා චුම්බක ක්ෂේතුවල දිශාවන්ට ලම්බ වේ.
 - (5) මාධා දෙකක් අතර මායිමේ දී පරාවර්තනය විය හැක.
- 5. ශිෂායෙක් පහත සඳහන් (A), (B) සහ (C) කුම තුන, විභවමාන කම්බියක වෝල්ටීයතා සංවේදීතාව (V/cm) වැඩි කිරීම සඳහා යෝජනා කළේ ය.
 - (A) කම්බියේ දිග වැඩි කිරීම
 - (B) කම්බිය සමග ශේණිගතව පුතිරෝධකයක් සම්බන්ධ කිරීම
 - (C) කම්බිය හරහා යොදා ඇති චෝල්ටීයතාව වැඩි කිරීම

ඉහත සඳහන් කුම තුන අතුරෙන්,

- A පමණක් නිවැරදි වේ.
- (2) A සහ B පමණක් නිවැරදි වේ.
- (3) B සහ C පමණක් නිවැරදි වේ.
- (4) A සහ C පමණක් නිවැරදි වේ.
- (5) A, B සහ C සියල්ල ම නිවැරදි වේ.

ත්තරා පරිණාමකයක පුාථමික දඟරයේ වට 360 ක් සහ ද්විතියික දඟරයේ වට 30 ක් ඇත. මෙම පරිණාමකය භාවිත කරනුයේ පහත සඳහන් කුමන වෝල්ටීයතා පරිවර්තනය සිදු කර ගැනීමට ද? (පු.ධා. = පුතාාවර්තක ධාරා, ස.ධා. = සරල ධාරා)

- (1) 240 V පු.ධා. වෝල්ටීයතාවක් 12 V ස.ධා. වෝල්ටීයතාවක් බවට
- (2) 240 V පු.ධා. වෝල්ටීයතාවක් 2 880 V පු.ධා. වෝල්ටීයතාවක් බවට
- (3) 240 V ස.ධා. චෝල්ටීයතාවක් 20 V ස.ධා. චෝල්ටීයතාවක් බවට
- (4) 240 V පු.ධා. වෝල්ටීයතාවක් 20 V පු.ධා. වෝල්ටීයතාවක් බවට
- (5) 240 V ස.ධා, චෝල්ටීයතාවක් 2880 V ස.ධා, චෝල්ටීයතාවක් බවට

7. පහත දී ඇති අභා $oldsymbol{s}$ න්තර පුතිරෝධ කට්ටල අතුරෙන්, පෙන්වා ඇති පරිපථයේ I ධාරාව සහ $1~\mathrm{k}\Omega$ පුතිරෝධකය හරහා චෝල්ටීයතාව මැනීම සඳහා (A) ඇමීටරයකට සහ (V)චෝල්ට්මීටරයකට තිබිය යුතු වඩාත් ම සුදුසු අභාංත්තර පුතිරෝධ කට්ටලය වන්නේ,

	ඇමීටරයේ අභාන්තර පුතිරෝධය	වෝල්ට්මීටරයේ අභාන්තර පුතිරෝධය
(1)	1 Ω	5 kΩ
(2)	5 Ω	1 kΩ
(3)	. 1 Ω	20 Ω
(4)	20 Ω	5 kΩ
(5)	5 Ω	50 Ω

- 8. පහත සඳහන් කුමක් පෘෂ්ඨික ආතතියෙහි පුතිඵලයක් **නො වේ** ද?
 - (1) ගෝලාකාර ජල බිඳිති ඇති වීම
 - (2) ජලයේ කේශික උද්ගමනය
 - (3) කෘමීන්ට නොගිලී ජල පෘෂ්ඨ මත ඇවිදීමට ඇති හැකියාව
 - (4) සබන් බුබුළක් තුළ අමතර පීඩනය
 - (5) ජල පෘෂ්ඨවලින් ජල අණු ඉවත් වීම
- 9. ඇදි තන්තුවක ඇති ස්ථාවර තරංගයක් සම්බන්ධ ව කර ඇති පහත පුකාශ සලකා බලන්න.
 - (A) තන්තුව දිගේ ශක්තිය පුචාරණය නො වේ.
 - (B) නිෂ්පන්දයක පිහිටීම කාලය සමග වීචලනය නො වේ.
 - (C) තත්තුවේ එක් එක් අංශුව අත්කර ගත්තා උපරිම විස්ථාපනය තත්තුව දිගේ ඒවායේ පිහිටීම් මත රඳා පවතී. ඉහත පුකාශ අතුරෙන්,
 - (1) A පමණක් සතා වේ.
- (2) B පමණක් සතා වේ.
- (3) A සහ C පමණක් සතා වේ.
- (4) B සහ C පමණක් සතා වේ.
- (5) A, B සහ C සියල්ල ම සතා වේ.
- 10. දී ඇති සතාාතා වගුවට අනුකූලව කිුිිියාත්මක වන්නේ පහත දී ඇති කුමන ද්වාරය ද?/ද්වාර ද?

(1) Pපමණි

(2) P සහ Q පමණි

(3) Q සහ R පමණි

(4) P සහ R පමණි

- (5) P, Q සහ R සියල්ල ම
- 11. ටුාන්සිස්ටරය නිවැරදි ව කිුියාත්මක කර සුදුසු ධාරාවක් ලබා ගැනීම සඳහා, පෙන්වා ඇති සන්ධි හරහා යෙදිය යුතු විභව අන්තරයෙහි **ගුැවීයතාවන් නිවැරදි ව දක්වා ඇත්තේ කුමන රූපයේ ද?/රූපවල ද? +** (1) A හි පමණි

- (2) B හි පමණි
- (3) C හි පමණි
- (4) A සහ C හි පමණි
- (5) B සහ C හි පමණි

- (A) (B) (C)
- 12. එක්තරා පුද්ගලයකුගේ ශරීර උෂ්ණත්වය $35\,^{\circ}\mathrm{C}$ වන විට ශරීරයෙන් නිකුත් වන විකිරණයේ උච්ච තරංග ආයාමය ඇති වන්නේ $9.4~\mu m$ දී ය. ඔහුගේ ශරීර උෂ්ණත්වය $39~^{\circ}\mathrm{C}$ දක්වා වැඩි වුවහොත් උච්ච තරංග ආයාමය වන්නේ, (කෘෂ්ණ වස්තු විකිරණ තත්ත්වයන් යෙදිය හැකි බව උපකල්පනය කරන්න.)
 - (1) $\frac{35}{39} \times 9.4 \ \mu \text{m}$

(2) $\frac{39}{35} \times 9.4 \ \mu \text{m}$

(3) $\frac{77}{78} \times 9.4 \ \mu \text{m}$

(4) $\frac{78}{77} \times 9.4 \ \mu \text{m}$

- (5) $\left(\frac{78}{77}\right)^4 \times 9.4 \ \mu \text{m}$
- 13. ගමන් කරන ජෙට් යානාවකට 150 dB උපරිම ධ්වති තීවුතා මට්ටමක් ඇති කළ හැක. ශුවාාතා දේහලියේ දී ධ්වතියේ තීවුතාව $10^{-12}~{
 m W~m^{-2}}$ ලෙස ගන්න. ජෙට් යානාව මගින් ඇති කළ හැකි උපරිම ධ්වනි තීවුතාව ${
 m W~m^{-2}}$ වලින් වන්නේ,
 - (1) 100
- (2) 200
- (3) 400
- (4) 800
- (5) 1000

- 14. නිශ්චල වැවක මතුපිට පෘෂ්ඨය මතින් සුළඟක් හමා යන විට, රූපයේ පෙනෙන පරිදි ජලය මත පාවෙමින් තිබෙන ජපන් ජබර පඳුරක් uපුවේගයකින් සුළං හමන දිශාවට ගමන් කරන බව නිරීක්ෂණය කර ඇත. v පිළිබඳ ව කර ඇති පහත සඳහන් පුකාශ සලකා බලන්න.
 - (A) වායු අණු මගින් පඳුරට ගමාතාව සංකුාමණය වන ශීසුතාව මත v හි විශාලත්වය රඳා පවතී.
 - (B) ජලයේ දුස්සුාවිතාව මත v හි විශාලත්වය රඳා පවතී.
 - (C) පදුරේ ස්කන්ධය මත v හි විශාලත්වය රඳා පවතී.

ඉහත පුකාශ අතුරෙන්,

- (1) C පමණක් සතා වේ.
- (2) A සහ B පමණක් සතා වේ.
- (3) B සහ C පමණක් සතා වේ.
- (4) A සහ C පමණක් සතා වේ.
- (5) A, B සහ C සියල්ල ම සතා වේ.
- 15. වාතයේ සිරස් ව පහළට වැටෙන වස්තුවක් ක්ෂණයකින් පුපුරා කැබලි හතරක් බවට පත් වේ. පුපුරා යාමෙන් මොහොතකට පසු කැබලිවල චලිතවලට තිබිය හැකි **දිශා** පෙන්වා ඇත්තේ පහත කුමන රූප සටහන මගින් ද? (පිපිරීමට පෙර වස්තුවේ චලිත දිශාව:↓)

(2)

(3)

 ${f 16}$. විස්ථාපන (d)-කාල (t) පුස්තාරයේ පෙන්වා ඇති සරල රේඛා දෙක මගින් නිරූපණය කරනු ලබන්නේ කාලය t=0 දී නිශ්චලතාවයෙන් පටන් ගෙන ධන x-දිශාව ඔස්සේ ගමන් කරන Aසහ B වස්තු ලදකක චලිතයන් ය. වස්තුවල චලිතය පිළිබඳ ව කර ඇති පහත කුමන පුකාශය සතා වේ ද?

- (2) $t = t_0$ වන විට B වස්තුව A ට වඩා වැඩි විස්ථාපනයක් සිදු කර ඇත.
- (3) A වස්තුවට B ට වඩා වැඩි පුවේගයක් ඇත.
- (4) A වස්තුවට B ට වඩා වැඩි ත්වරණයක් ඇත.
- (5) සරල රේඛා දෙක එකිනෙක කැපී යන ලක්ෂායේ දී වස්තු දෙකට සමාන පුවේග ඇත.

- 17. බර $5\ 000\ \mathrm{N}$ වූ උත්තෝලකයක් $5\ 000\ \mathrm{N}$ ක භාරයක් ගෙන යයි. ගොඩනැගිල්ලක සිරස් ව ඉහළට ගමන් කරන අතරතුර එය නියත පුවේගයෙන් 2 වන මහලෙහි සිට 12 වන මහල දක්වා තත්පර 20 කින් ගමන් කරයි. එක් එක් මහලෙහි උස $4 \ \mathrm{m}$ වේ. නියත පුවේගයෙන් ගමන් කරන විට දී මෝටරයේ නිපදවෙන ජවයෙන් 80% ක් පමණක්, ගුරුත්වයට එරෙහිව උත්තෝලකය සහ භාරය ඉහළට එසවීමට වැය වන්නේ නම්, මෝටරයෙහි ජවය වනුයේ,
 - (1) 20 kW
- (2) 25 kW
- (3) 40 kW
- (4) 60 kW
- (5) 1000 kW
- $oldsymbol{18}$. A,B සහ C නම් ඒක වර්ණ ආලෝක කදම්බ තුනකට එක ම තීවුතා (එනම්, ඒකක වර්ගඵලයක් හරහා තත්පරයකට ගලා යන ශක්ති) ඇත. එහෙත් A කදම්බය හා ආශිුත තරංග ආයාමය B කදම්බය හා ආශිුත එම අගයට වඩා වැඩි වන අතර, C කදම්බය හා ආශිුත සංඛාාතය A කදම්බය හා ආශිුත එම අගයට වඩා අඩු ය. කදම්බ තුනෙහි ෆෝටෝන සුාවය (තත්පරයක දී ඒකක වර්ගඵලයක් හරහා ගමන් කරන ෆෝටෝන සංඛාහාව) ආරෝහණ පටිපාටියට ලියුවහොත් එය,
- (2) B, A, C වේ.
- (3) A, B, C වේ.
- (4) B, C, A වේ. (5) C, B, A වේ.
- $19.~~l_{
 m Al}$ සහ $l_{
 m Cl}$ පිළිවෙළින්, කාමර උෂ්ණත්වයේ සිට heta $^{
 m e}$ C පුමාණයකින් උෂ්ණත්වය වැඩි කළ විට ඇලුමිනියම් (Al) සහ තඹ $(ilde{ ext{Cu}})$ දඬු දෙකක මුල් දිගෙහි සිදු වූ **භාගික වැඩි වීම** නිරූපණය කරයි. heta °C සමග $l_{ extsf{Al}}$ සහ $l_{ extsf{Cu}}$ හි විචලන වඩා හොඳින් දක්වනු ලබන්නේ පහත කුමන පුස්තාරයෙන් ද? (ඇලුමිනියම් සහ තඹවල රේඛීය පුසාරණතා පිළිවෙළින් $2.3 \times 10^{-5}\,^{\circ}\mathrm{C}^{-1}$ සහ $1.7 \times 10^{-5}\,^{\circ}\mathrm{C}^{-1}$ වේ.)

[හතරවැනි පිටුව බලන්න.

- 20. ගඩොලින් නිමවා ඇති නිවසක ජනෙල් වසා ඇති එක්තරා කාමරයක් තුළ පසුගිය උෂ්ණාධික සමයේ දී රාතිු කාලයේ උෂ්ණත්වය 35 °C බව නිරීක්ෂණය විය. පුද්ගලයෙක් රාතිු කාලයේ දී මෙම කාමරයේ ජනෙල් මිනිත්තු කිහිපයකට විවෘත කර නිවසින් පිටත තිබෙන 27 °C හි පවතින වඩා සිසිල් වාතයෙන් කාමරය පිරියාමට සැලැස්වූයේ ය. ජනෙල් නැවත වැසූ විට කාමරයේ උෂ්ණත්වය සුළු කාලයක දී 35 °C ආසන්නයටම නැවතත් පැමිණි බව ඔහු නිරීක්ෂණය කළේ ය. නිරීක්ෂණය කරන ලද පුතිඵලය පැහැදිලි කිරීම සඳහා ඔහු විසින් යෝජනා කරන ලද පහත සඳහන් හේතු අතුරෙන් වඩාත් ම පිළිගත නොහැකි හේතුව කුමක් ද?
 - (1) කාමරය ඇතුළත වාත අණුවල ශීඝු චලනය
- (2) වාත අණු බිත්ති සමග ගැටීම

(3) වාතයේ අඩු විශිෂ්ට තාප ධාරිතාව

- (4) වාතයේ අඩු තාප සත්තායකතාව
- (5) ගඩොල් බිත්තිවල ඉහළ විශිෂ්ට තාප ධාරිතාව
- 21. රූපයේ පෙනෙන පරිදි 0 °C හි පවතින l kg ස්කන්ධයක් සහිත අයිස් ඝනයක් තුළ කුඩා ලෝහ ගෝලයක් සිරවී ඇත. මෙම අයිස් ඝනය සම්පූර්ණයෙන් ම දියකර උෂ්ණත්වය 0 °C ජලය බවට පත් කිරීම සඳහා 300 kJ පුමාණයක තාප ශක්තියක් සැපයිය යුතු බව සොයා ගන්නා ලදි. අයිස්වල විලයනයේ විශිෂ්ට ගුප්ත තාපය 330 kJ/kg වේ. ලෝහ ගෝලයේ ස්කන්ධය ගුෑම් වලින් ආසන්න වශයෙන්,

- (1) 30
- (2) 33
- (3) 91
- (4) 110
- (5) 333
- 22. P V රූප සටහනේ දැක්වෙන පරිදි පරිසූර්ණ වායුවක් a අවස්ථාවේ සිට b අවස්ථාව දක්වා acb හා adb මාර්ග දෙක ඔස්සේ ගෙන යනු ලැබේ. acb මාර්ගය ඔස්සේ ගෙන යන විට වායුව මගින් $100~\mathrm{J}$ ක තාප පුමාණයක් අවශෝෂණය කරන අතර, වායුව මගින් $50~\mathrm{J}$ ක කාර්යයක් සිදු කරයි. adb මාර්ගය ඔස්සේ ගෙන යන විට වායුව මගින් $10~\mathrm{J}$ ක කාර්යයක් සිදු කරයි නම්, adb මාර්ගය ඔස්සේ ගෙන යාමේ දී වායුව මගින් අවශෝෂණය කරන තාප පුමාණය වනුයේ,

- (1) 40 J
- (2) 50 J
- (3) -50 J
- (4) 60 J
- (5) 60 J
- 23. A ගුහලෝකය සඳහා, $\dfrac{$ ගුහලෝකයේ ස්කන්ධය $}{$ ගුහලෝකයේ අරය යන අනුපාතය B ගුහලෝකය සඳහා එම අනුපාතය මෙන් හතර ගුණයක්
 - නම්, $\dfrac{A}{B}$ ගුහලෝකයේ පෘෂ්ඨය මත දී වියෝග පුවේගය යන අනුපාතය වන්නේ,

- (2) 2
- (3) 4
- (4) 8
- (5) 12
- 24. එක එකෙහි ධාරිතාව C වූ සර්වසම සමාත්තර තහඩු ධාරිතුක පහක් සහිත ජාලයක් රූපයේ පෙන්වා ඇති පරිදි චෝල්ටීයතාව V වූ කෝෂයකට සම්බන්ධ කර ඇත. ධාරිතුක තහඩු නිදහස් අවකාශයේ ඇති බව උපකල්පනය කරන්න. සංවෘත S පෘෂ්ඨය හරහා සඵල විදයුත් සුාවය වන්නේ,

- (1) $\frac{CV}{2E}$
- $(2) \quad \frac{3CV}{5\in_0}$
- $(3) \quad \frac{CV}{\in_0}$

- $(4) \quad \frac{3CV}{\in_0}$
- (5) 0
- 25. $3\ V$ සහ $3.2\ V$ ව්.ගා.බ. ඇති $0.5\ \Omega$ වූ සමාන අභාහන්තර පුනිරෝධ සහිත කෝෂ දෙකක් රූපයේ පෙන්වා ඇති පරිදි සමාන්තරගතව සම්බන්ධ කර ඇත. කෝෂ සංයුක්තය මගින් උත්සර්ජනය කෙරෙන ක්ෂමතාව වන්නේ,

- (1) 0.01 W
- (2) 0.02 W
- (3) 0.03 W

- (4) 0.04 W
- (5) 0.05 W
- ${f 26}$. එක එකෙහි විෂ්කම්භය d වූ සහ දිග L වූ එක්තරා ලෝහයකින් සාදන ලද සර්වසම කම්බි නවයක් සමාන්තරගතව සම්බන්ධ කර තනි පුතිරෝධකයක් සාදා ඇත. මෙම පුතිරෝධකයෙහි පුතිරෝධය, එම ලෝහයෙන්ම සාදන ලද දිග L වූ සහ විෂ්කම්භය D වූ තනි කම්බියක පුතිරෝධයට සමාන වන්නේ D හි අගය,
 - (1) $\frac{d}{3}$ ට සමාන වූ විට ය.
- (2) 3d ට සමාන වූ විට ය.
- (3) 6d ට සමාන වූ විට ය.

- (4) 9d ට සමාන වූ විට ය.
- (5) 18d ට සමාන වූ විට ය.

 ${f 27}.\quad A\hat{OC}=B\hat{OD}$ වන පරිදි සකසා ඇති සමාන දිගින් යුත් $AO,\,OB,\,CO$ සහ ODසෘජු කම්බි කොටස් සහිත සැකැස්මක් රූපයේ පෙන්වා ඇති දිශාවන් ඔස්සේ I ධාරා රැගෙන යයි. රුපයේ පෙන්වා ඇති පරිදි චූම්බක ක්ෂේතුයකට ලම්බව මෙම සැකැස්ම තැබූ විට චූම්බක ක්ෂේතුය නිසා එය,

- (1) කඩදාසියේ තලය ඔස්සේ ඉහළ දිශාවට සම්පුයුක්ත බලයක් අත් විඳියි.
- (2) කඩදාසියේ තලය ඔස්සේ පහළ දිශාවට සම්පුයුක්ත බලයක් අත් විඳියි.
- (3) කඩදාසියේ තලය ඔස්සේ දකුණු දිශාවට සම්පුයුක්ත බලයක් අත් විදියි.
- (4) කඩදාසියේ තලය ඔස්සේ වම් දිශාවට සම්පුයුක්ත බලයක් අත් විඳියි.
- (5) සම්පුයුක්ත බලයක් අත් නොවිදියි.
- ${f 28}$. ${f (a)}$ රූපයේ පෙන්වා ඇති තරංග ආකෘතිය පහත පෙන්වා ඇති ${f P,\,Q,\,R}$ සහ ${f S}$ පරිපථවල A,B පුදාන අගු හරහා යොදා ඇත.

- (1) Pපරිපථය හරහා පමණි.
- (2) Q පරිපථය හරහා පමණි.
- (3) R පරිපථය හරහා පමණි.

- (4) S පරිපථය හරහා පමණි.
- (5) R සහ S පරිපථ හරහා පමණි.
- ${f 29}$. රූපයේ දැක්වෙන පරිදි ස්කන්ධය m_1 හා m_2 වන ළමයි දෙදෙනෙක්, O ගුරුත්ව කේන්දුයේ සමතුලිත කර ඇති ඒකාකාර දණ්ඩක් මත සමතුලිතව සිටගෙන සිටිති. ඉන්පසු දණ්ඩේ ති්රස් සමතුලිතතාව පවත්වා ගනිමින් ඔවුහු දණ්ඩ මත පිළිවෙළින් v_1 සහ v_2 නියත චේගවලින් එකවරම චලිත වීමට පටන් ගනිති.

ළමයින් දෙදෙනාගේ චලිතය පිළිබඳ ව කර ඇති පහත සඳහන් පුකාශ සලකා බලන්න.

ඕනෑම t කාලයක දී සමතුලිතතාව පවත්වා ගැනීම සඳහා,

- (A) ඔවුන් සැම විට ම පුතිවිරුද්ධ දිශා ඔස්සේ ගමන් කළ යුතු ය.
- (B) ඔවුන් සැම විට ම ඔවුන්ගේ මුඑ රේඛීය ගමාතාව ශූනා වන සේ පවත්වා ගනිමින් ගමන් කළ යුතු ය.
- (\mathbf{C}) එක් ළමයකු O වටා ඇති කරනු ලබන සූර්ණය අනෙක් ළමයා විසින් O වටා ඇති කරනු ලබන සූර්ණයට සමාන සහ පුතිවිරුද්ධ වන ආකාරයට ඔවුන් සැම විට ම ගමන් කළ යුතු ය.

ඉහත පුකාශ අතුරෙන්,

- (1) A පමණක් සතා වේ.
- (2) B පමණක් සතා වේ.
- (3) A සහ B පමණක් සතා වේ.

- (4) B සහ C පමණක් සතා වේ.
- (5) A,B සහ C සියල්ල ම සතා වේ.
- ${f 30}$. රූපයේ පෙන්වා ඇති පරිදි ස්කන්ධය m සහ අරය rවූ ඒකාකාර තැටියක් ලිස්සීමකින් තොරව පළමු ව තිරස් පෘෂ්ඨයක් දිගේ පෙරළෙමින් ගොස් අනතුරුව වකු බෑවුම් තලයක් දිගේ ඉහළට ගමන් කිරීමට පටන් ගනියි. තිරස් පෘෂ්ඨය මත දී තැටියට vරේඛීය පුවේගයක් ඇත. තැටියේ කේන්දුය හරහා එහි තලයට ලම්බ අක්ෂය වටා තැටියේ අවස්ථිති

කරන උපරිම උස h කුමක් ද?

- 31. වීදුරුවක ඇති පරිමාව $500~{
 m cm}^3$ වූ නැවූම් දොඩම් දාවණයක පතුලේ දොඩම් ඇට ස්වල්පයක් ඇත. සීනි ගුෑම් $10~{
 m m}$ පුමාණයක් දාවණයෙහි දිය කළ විට දොඩම් ඇට යාත්තමින් දාවණයේ පතුලේ පාවීමට පටන්ගන්නා බව නිරීක්ෂණය කරන ලදි. සීනි එකතු කිරීම නිසා දුාවණයේ පරිමාව වෙනස් නො වන බව උපකල්පනය කරන්න. සීනි එකතු කිරීමට පෙර දොඩම් දුාවණයේ ඝනත්වය $1\,000~{
 m kg}~{
 m m}^{-3}$ වූයේ නම්, දොඩම් ඇටවල ඝනත්වය (${
 m kg}~{
 m m}^{-3}$ වලින්) ආසන්න වශයෙන් සමාන වනුයේ,
 - (1) 1020
- (2) 1040
- (3) 1060
- (4) 1080
- (5) 1100
- 32. සුමට හුමණ මේසයක් මත වාඩි වී අත් ඉවතට විහිදා එක් එක් අනිත් භාරයක් දරා සිටින පිරිමි ළමයෙක් ω_0 කෝණික පුවේගයක් සහිත ව භුමණය වෙමින් සිටියි. ළමයා අත් දෙක තම ශරීරය දෙසට නවා ගත් විට කෝණික පුවේගය ω_1 බවට පත්වේ. අත් ඉවතට විහිදා සහ අත් තම ශරීරය දෙසට තවාගෙන සිටින අවස්ථාවල දී භුමණ පද්ධතිවල අවස්ථිති සූර්ණ පිළිවෙළින් I_0 සහ I_1 නම්
 - (1) $\omega_0 > \omega_1$, $I_0 > I_1$, $\omega \omega_0 I_0 > \omega_1 I_1 \otimes \delta$.

- (2) $\omega_0 < \omega_1$, $I_0 > I_1$, $\omega \omega_0 I_0 < \omega_1 I_1 \otimes \delta$. (4) $\omega_0 > \omega_1$, $I_0 < I_1$, $\omega \omega_0 I_0 = \omega_1 I_1 \otimes \delta$.
- ${f 33}$. ති්රසට ආනතව තබා ඇති PQ සහ QR සුමට තහඩු දෙකක් අතර රූපයේ පෙනෙන පරිදි XY දණ්ඩක් රැඳී ඇත. PQR කෝණය 90° වන අතර තහඩුවල පෘෂ්ඨ කඩදාසියේ තලයට අභිලම්බ වේ. බොහෝ දූරට දණ්ඩේ ගුරුත්ව කේන්දුය පිහිටිය හැකි ලක්ෂාය වන්නේ,
 - (1) A
- (2) B
- (3) C

- (4) D
- (5) E

34. සර්වසම ස්කන්ධ සහිත රූපයේ පෙන්වා ඇති හැඩයන්ගෙන් යුත් A සහ B නම් වස්තූන් දෙකක් සහ එම ස්කන්ධයම ඇති C නම් ඉගා්ලාකාර වස්තුවක් ති්රස් පෘෂ්ඨයක් මත තුනී කුරු තුනක් මගින් රූපයේ පෙන්වා ඇති ආකාරයට y අක්ෂය ඔස්සේ දෘඪ ලෙස සවි කර ඇත. x සහ y අක්ෂ දෙක ම තිරස් පෘෂ්ඨය මත පිහිටා ඇත. වාත පුවාහයක් පෘෂ්ඨයට සමාන්තරව වස්තූන් හරහා $oldsymbol{x}$ දිශාව ඔස්සේ ගලා යයි. (වාත පුවාහය වස්තූන් වටා ආකූලතාවක් ඇති නොකරන බව උපකල්පනය කරන්න.) වස්තූන් සහ ගෝලය මගින්, සවි කර ඇති කුරු මත ඇති කරන බලවල විශාලත්ව F_A, F_B සහ F_C ආරෝහණ පටිපාටියට ලියූ ව්ට, එය,

- (1) F_B , F_A , F_C \odot \odot . (2) F_B , F_C , F_A \odot \odot . (3) F_C , F_A , F_B \odot \odot .

- (4) F_A , F_C , F_B වේ. (5) F_C , F_R , F_A වේ.
- ${f 35}$. රූපයේ පෙන්වා ඇති ආකාරයට, A විස්තාරයක් සහිත ව ඉහළට සහ පහළට සරල අනුවර්තී චලිතයක් සිදු කරන තිරස් පෘෂ්ඨයක් මත ස්කන්ධයක් නිශ්චලතාවයේ පවතී. පෘෂ්ඨය සමග ස්කන්ධය සැම විට ම ස්පර්ශව තබා ගනිමින්, පෘෂ්ඨයට චලනය විය හැකි උපරිම සංඛාාතය

වන්නේ.

- (1) $2\pi\sqrt{\frac{g}{A}}$ (2) $\sqrt{\frac{g}{A}}$ (3) $\frac{1}{2}\sqrt{\frac{g}{A}}$ (4) $\frac{1}{2\pi}\sqrt{\frac{g}{A}}$ (5) $\frac{1}{\pi}\sqrt{\frac{g}{A}}$
- ${f 36}$. සංඛානතය f වූ හඬක් නිකුත් කරන නළාවක් අරය r වූ වෘත්තයක පරිධිය දිගේ නියත ω කෝණික පුවේගයකින් ගමන් කරයි. වාතයේ ධ්වති පුවේගය v වේ. වෘත්තයෙන් පිටත නිශ්චලව සිටින අසන්තකුට ඇසෙන හඬෙහි ඉහළ ම සංඛාහතය වන්නේ,
- (1) $f\left(\frac{v}{v-r\omega}\right)$ (2) $f\left(\frac{v-r\omega}{v}\right)$ (3) $f\left(1-\frac{v}{r\omega}\right)$ (4) $f\left(\frac{v}{r\omega}\right)$
- (5) $f\left(\frac{v}{v+rm}\right)$
- $oldsymbol{37}$. රූප සටහනෙහි පෙන්වා ඇති පරිදි ආලෝක කිරණයක් සෘජුකෝණී වීදුරු පිස්මයක AC මුහුණත මතට ලම්බව පතිත වේ. රූප සටහනේ පෙන්වා ඇති පථය දිගේ ආලෝක කිරණයට ගමන් කිරීම සඳහා පුිස්මය සැදි දුවාසට තිබිය හැකි වර්තන අංකයේ අවම අගය,

- (2) 1.41
- (3) 1.58

- (4) 1.73
- (5) 1.87

- ${f 38}.$ නාතීය දුර f_1 වූ තුනී උත්තල කාචයක පුධාන අක්ෂය මත වස්තුවක් තැබූ විට රේඛීය විශාලනය m_1 වූ තාත්වීක පුතිබීම්බයක් V_1 දුරකින් සැදේ. මෙම කාචය, නාභීය දුර f_2 වූ $(f_2 < f_1)$ වෙනත් තුනී උත්තල කාචයකින් පුතිස්ථාපනය කර එම ස්ථානයේ ම තැබූ විට නව පුතිබිම්බ දුර V_2 සහ විශාලනය m_2 තෘප්ත කරන අවශානා, වන්නේ,
 - (1) $V_2 > V_1$ සහ $m_2 > m_1$

- (2) $V_2 > V_1 \iff m_1 > m_2$ (4) $V_2 < V_1 \iff m_1 > m_2$
- (3) $V_2 < V_1 \iff m_2 > m_1$ (5) $V_2 < V_1 \iff m_1 = m_2$
- $oldsymbol{39}$. රූපයේ පෙන්වා ඇති පරිදි පැත්තක දිග a වන ABC සමපාද තිුකෝණයෙහි B සහ Cශීර්ෂ මත එක එකක් +q වන ලක්ෂීය ආරෝපණ දෙකක් රඳවා ඇති අතර වෙනත් ලක්ෂීය +q ආරෝපණයක් P ලක්ෂායේ රඳවා ඇත. A ලක්ෂාය මත තබන ලද ඒකක ධන ආරෝපණයක් මත ශූතා සම්පුයුක්ත බලයක් කිුිිියා කරන්නේ AP දුර,
 - (1) $\sqrt{2}a$ ට සමාන වූ විට ය.
- (2) $\frac{a}{2}$ ට සමාන වූ විට ය.
- (3) $\frac{a}{\sqrt{\left(\sqrt{3}\right)}}$ ට සමාන වූ විට ය.
- (4) $rac{a}{4}$ ට සමාන වූ විට ය.

- 40. පෙන්වා ඇති පරිපථයේ කෝෂ දෙකට නොගිණිය හැකි අභාවන්තර පුතිරෝධ ඇත. පරිපථයේ,
 - (1) $2 \, \mathrm{V}$ කෝෂය හරහා $\frac{3}{2R}$ ධාරාවක් ගලයි.
 - (2) $2 \, \mathrm{V}$ කෝෂය හරහා $\frac{6}{R}$ ධාරාවක් ගලයි.
 - (3) $2\,\mathrm{V}$ කෝෂය හරහා $\frac{10}{R}$ ධාරාවක් ගලයි.
 - (4) $2\,\mathrm{V}$ කෝෂය හරහා $\frac{3}{R}$ ධාරාවක් ගලයි.
 - (5) 2 V කෝෂය හරහා ධාරාවක් නොගලයි.

41. සමාන දිගකින් යුත් එහෙත් වෙනස් හරස්කඩ අරයයන් සහිත පටු නල දෙකක් කෙළවරින් කෙළවර සම්බන්ධ කර රූපයේ පෙන්වා ඇති පරිදි එය තුළින් ජලය ගලා යෑමට සලස්වා ඇත.

More Past Papers at tamilguru.lk

පෙන්වා ඇති පරිදි, නල තුළින් ඒවායේ හරස්කඩ හරහා ජලය ගලා යෑමේ සාමානා පුවේග v_1 සහ v_2 ද නල හරහා ගොඩනැඟුන පීඩන අන්තර ΔP_1 සහ ΔP_2 ද නම්, $\frac{\Delta P_1}{\Delta P_2}$ අනුපාතය සමාන වනුයේ,

- (2) $\frac{v_1}{v_2}$ (3) $\left(\frac{v_1}{v_2}\right)^2$ (4) $\left(\frac{v_1}{v_2}\right)^3$ (5) $\left(\frac{v_1}{v_2}\right)^4$
- සිසුවෙක් කාමර උෂ්ණත්වය $27~^{\circ}\mathrm{C}$ පවතින නියත m_0 ස්කන්ධයක් සහිත පරිපූර්ණ වායුවක් භාවිත කර බොයිල් නියමය සතාහපනය කිරීම සඳහා පරීක්ෂණයක් සිදු කර, රූපයේ දී ඇති ආකාරයේ පුස්තාරයක් ලබා ගත්තේ ය. මෙහි P යනු වායුවේ පීඩනය $\stackrel{.}{\epsilon}$ V යනු වායුවේ පරිමාව ද වේ.

ඔහු ඉන්පසු V පරිමාවෙන් කිසියම් වායු පුමාණයක් ඉවත් කර කාමර උෂ්ණත්වයට වඩා $100~^{\circ}\mathrm{C}$ කින් වැඩි උෂ්ණත්වයක දී පරීක්ෂණය නැවතත් සිදු කළේ ය. ඔහු ලබා ගත් නව පුස්තාරයට රූපයේ පෙන්වා ඇති පුස්තාරයේ අනුකුමණයට සමාන අනුකුමණයක් තිබුණේ නම්, ඔහු විසින් ඉවත් කරන ලද වායු පුමාණයේ ස්කත්ධය වන්නේ,

- (1) $\frac{27}{100} m_0$
- (2) $\frac{73}{100} m_0$
- (3) $\frac{1}{4} m_0$
- (4) $\frac{1}{2} m_0$

43. පෙන්වා ඇති පරිපථයේ කෝෂ දෙකට ම නොගිණිය හැකි අභෳන්තර පුතිරෝධ ඇත. R' යනු විචලා පුතිරෝධකයක අගය වේ. A හා B ලක්ෂා හරහා වෝල්ටීයතාව වන $\mathbf{V}_{AB} (= \mathbf{V}_A - \mathbf{V}_B)$, R' සමග වීචලනය වීම වඩාත් ම

හොඳින් නිරූපණය කෙරෙන්නේ,

6 V 2 (0, 0)-2-(2)

 $V_{_{AB}}$ (0, 0)9R 12R -2 (4)

 V_{AB} 4 3. 2 1 (0,0)6R 9R 12R --1 (5)

44. පරිමාව V_A , V_B හා V_C වන A, B හා C සංවෘත කාමර තුනක් තුළ ඇති, වායුගෝලීය පීඩනයේ පවතින වාතයේ, නිරපේක්ෂ ආර්දුතා පිළිවෙළින් S_A, S_B සහ S_C වේ. [(a) රූපය බලන්න.] A කාමරය තුළ ඇති වාතයෙහි තුෂාර අංකය T_0 වේ. (b) රූපයේ දැක්වෙන පරිදි දොරවල් විවෘත කර කාමර තුනෙහි ඇති වාතය මිශු වීමට ඉඩ හැරිය විට, කාමර තුනෙහි පොදු තුෂාර අංකය T_0 හි පැවතීමට නම්,

(1)
$$S_A = \frac{V_B S_B + V_C S_C}{V_B + V_C}$$
 විය යුතු ය.

(2)
$$S_A = \frac{S_B + S_C}{2}$$
 විය යුතු ය.

(3)
$$V_A S_A = V_B S_B + V_C S_C$$
 විය යුතු ය.

(4)
$$\frac{S_A}{V_A} = \frac{S_B}{V_B} + \frac{S_C}{V_C}$$
 විය යුතු ය.

(5)
$$S_A = \sqrt{S_B S_C}$$
 විය යුතු ය.

45. $2~\mu F$ වන ධාරිතුකයක් හා $1 \mu F$ වන ධාරිතුකයක් ශ්‍රේණිගතව සම්බන්ධ කර බැටරියක් මගින් ආරෝපණය කරනු ලැබේ. එවීට ධාරිතුකවල ගබඩා වන ශක්ති පිළිවෙළින් E_1 හා E_2 වේ. ඒවායේ සම්බන්ධය ඉවත් කර, විසර්ජනය වීමට ඉඩ හැර, නැවත එම බැටරිය මගින් ම **වෙන වෙන ම** ආරෝපණය කළ විට ධාරිතුක දෙකෙහි ගබඩා වන ශක්ති පිළිවෙළින් E_3 හා E_{A} වේ. එව්ට,

(1)
$$E_3 > E_1 > E_4 > E_2 \otimes \delta$$
.

(2)
$$E_1 > E_2 > E_3 > E_4$$
 \odot

$$\begin{array}{llll} (1) & E_3 > E_1 > E_4 > E_2 & \hbox{\od}. \\ (3) & E_3 > E_1 > E_2 > E_4 & \hbox{\od}. \\ (5) & E_3 > E_4 > E_2 > E_1 & \hbox{\od}. \\ \end{array}$$

$$\begin{array}{ll} (2) & E_1 > E_2 > E_3 > E_4 \otimes \mathbb{D}. \\ (4) & E_1 > E_3 > E_4 > E_2 \otimes \mathbb{D}. \end{array}$$

$$(3) L_3 > L_4 > L_2 > L_1 = 0.$$

46. යංමාපාංකය Y වන දුවායකින් සාදා ඇති, ස්කන්ධය M ද හරස්කඩ වර්ගඵලය A ද වූ බර සෘජුකෝණාසුාකර ලෝහ කුට්ටියක් (a) රූපයේ පෙන්වා ඇති පරිදි ති්රස් පෘෂ්ඨයක් මත තබා ඇති විට එහි උස L වේ. ඉහත සඳහන් කළ කුට්ටියට සර්වසම වන කුට්ටි හතරක් (b) රූපයේ පෙන්වා ඇති පරිදි එකිනෙක මත තබා ඇති විට එම කුට්ටි හතරෙහි සම්පූර්ණ උස වන්නේ,

- (1) $L\left(4-\frac{2Mg}{YA}\right)$ (2) $L\left(4-\frac{8Mg}{YA}\right)$ (3) $L\left(4-\frac{7Mg}{YA}\right)$

- (4) $L\left(4 \frac{6Mg}{YA}\right)$ (5) $L\left(4 \frac{4Mg}{YA}\right)$
- 47. (a) රූපයේ පෙන්වා ඇති පරිදි ස්කන්ධය 2m සහ m වූ කුට්ටි දෙකක් එකිනෙකට ස්පර්ශ වන ලෙස සුමට පෘෂ්ඨයක් මත තබා ඇත. F තිරස් බාහිර බලයක්, ස්කන්ධය 2m වන කරන බල නිවැරදි ව පෙන්වනු ලබයි ද?

(2)

(4)

(1)

48. රූපයේ පෙන්වා ඇති පරිදි, ABCD ඍජුකෝණාසුාකර කම්බී පුඩුවක්, PORS පුදේශයට සීමා වී ඇති ඒකාකාර චූම්බක ක්ෂේතුයකට ලම්බව 1 ස්ථානයෙන් ඇතුළු කර u නියත පුවේගයකින් ක්ෂේතුය හරහා ගෙන යනු ලැබේ. එය 2 ස්ථානය පසු කර අවසානයේ එම පුවේගයෙන් ම 3 ස්ථානයෙන් චුම්බක ක්ෂේතුයෙන් ඉවතට ගෙන යයි. පහත සඳහන් පුකාශවලින් කුමක් **සහා හො වේ** ද?

- (1) පුඩුව 1 ස්ථානය හරහා ගමන් කරන විට, කම්බි පුඩුවේ BC කොටස හරහා පමණක් නියත වි. ගා. බ. පේුරණය වේ.
- (2) පුඩුව 2 ස්ථානය පසු කරන විට, AD සහ BC හරහා නියත වී. ගා. බ. ජෝරණය වන අතර ඒවා එකිනෙකට සමාන හා පුතිවිරුද්ධ **වේ**.
- (3) 3 ස්ථානයේ දී AD හරහා පමණක් නියත වී. ගා. බ. පේරණය වේ.
- (4) 2 ස්ථානයේ දී චුම්බක ක්ෂේතුය නිසා පුඩුව මත ඇති වන සම්පුයුක්ත බලය ශූනා වේ.
- (5) 1 සහ 3 ස්ථානවල දී චුම්බක ක්ෂේතුය නිසා පුඩුව මත ඇති වන බලවල දිශා එකිනෙකට පුතිවිරුද්ධ වේ.

49. සමාන I ධාරා ගෙන යන තුනී සාජු දිග කම්බ තුනක් රූපයේ පෙන්වා ඇති පරිදි, A, B හා C අවල ස්ථානවල කඩදාසියෙහි නලයට ලම්බව පවත්වාගෙන ඇත. OA=1 m, OB=1 m හා OC=2 m වේ. x_0 සහ y_0 ලක්ෂාවල තවත් තුනී සාජු දිග කම්බ දෙකක් කඩදාසියෙහි තලයට ලම්බව පවත්වාගෙන ඇත. $x_0=2$ m සහ $y_0=2$ m වේ. පහත දී ඇති ධාරාවන්ගෙන් කුමන ධාරාවන් x_0 හා y_0 හි ඇති කම්බ තුළ ඇති කළහොත් O ලක්ෂායෙහි දී ධන y අක්ෂයේ දිශාවට $\frac{\mu_0 I}{2\pi}$ විශාලත්වයකින් යුත් සම්පුයුක්ත චුම්බක ක්ෂේතුයක් ජනිත කරයි ද?

	x_0 හි ඇති කම්බියේ ඇති කළ යුතු ධාරාව	y ₀ හි ඇති කම්බියේ ඇති කළ යුතු ධාරාව
(1)	31 ⊙	41 ⊗
(2)	41 ⊙	6/ ⊙
(3)	41 ⊗	31 ⊗
(4)	41 ⊗	4/ ⊙
(5)	61 ⊙	4/ ⊙

50. බල නියනය k වූ ද ඇදී නොමැති විට දිග l_0 වූ ද සැහැල්ලු පුතනස්ථ තන්තුවක එක් කෙළවරකට ස්කන්ධය m වූ අංශුවක් ගැටගසා ඇත. තන්තුවේ අනෙක් කෙළවර රූපයේ දක්වා ඇති පරිදි ඝර්ෂණය රහිත සිරස් බිත්තියකට y=0 හි සවි කර ඇත. අංශුව y=0 සිට v_0 පුවේගයක් සහිත ව $\left(v_0<\sqrt{2gl_0}\right)$ සිරස් ව පහළට පුක්ෂේප කරනු ලැබේ. වානයේ පුතිරෝධය නොසලකා හරින්න.

අංශුව එහි පථයෙහි පහළ ම ලක්ෂාය පසු කළ පසු නැවත ක්ෂණිකව නිශ්චලතාවට පත් වන ලක්ෂායේ y බණ්ඩාංකය වනුයේ,

$$(1) \quad -\frac{\left[m(v_0^2+2gl_0)-kl_0^2\right]}{2gm}$$

$$(2) \quad -\frac{(v_0^2 + 2gl_0)}{2g}$$

$$(3) \quad \frac{v_0^2 + 2gl_0}{2g}$$

$$(4) \quad \frac{mv_0^2 + kl_0^2}{gm}$$

(5)
$$\frac{v_0^2}{2g}$$

More Past Papers at

tamilguru.lk

සියලු ම හිමිකම් ඇව්රිණි / முழுப் பதிப்புநிமையுடையது / All Rights Reserved]

ලි ලංකා විතාශ දෙපාර්තමේත්තුව ලි ලංකා විතාශ දෙපාර්ත**ල් අවුණු ලේවල්ගත දෙපාර්තලේ**න්නුවිතාශ දෙපාර්තමේත්තුව ඉබාහනයට පුද්ධනෙන් නිශ්කාසියහාව ඉබාහනයට පුද්ධනෙන් නිශානයියහාග පුද්ධනෙන් විතාශයියහාව ඉබාහනයට පුද්ධනෙන් නිශානයියහාව Department of Examinations, Sri Lanka Department of **இහෝයනයා Sri Lifth කොන්** ඇති කත්ත්ත්ත කත්ත්ත විද්යා විතාශය ප්‍රතිශේෂය සහ ඉබාහනයට ප්‍රතිශේෂය සහ ප්‍රතිශේෂය සහ ප්‍රතිශේෂය සහ ප්‍රතිශේෂය සහ ඉබාහනයට ප්‍රතිශේෂය සහ ප්‍රතිශේෂය සහ ප්‍රතිශේෂය සහ ඉබාහනයට ප්‍රතිශේෂය සහ ප්‍රතිශ්ෂය සහ ප්‍රතිශේෂය සහ ප්‍රතිශ්ෂය සහ ප්‍රතිශ්ෂය සහ ප්‍රතිශ්ෂය සහ ප්‍රතිශ්ෂය සහ ප්‍රතිශ්ෂය සහ

> අධාසන පොදු සහනික පසු (උසස් පෙළ) විභාගය, 2016 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2016 ஓகஸ்நு General Certificate of Education (Adv. Level) Examination, August 2016

<mark>භෞතික විදනව II</mark> ධාණුන්සඛායා II Physics II

சැக භූනයි மூன்று மணித்தியாலம் Three hours

_	
විභාග අංකය :	

වැදගත් :

- 🗱 මෙම පුශ්න පතුය පිටු 13 කින් යුක්ත වේ.
- lpha මෙම පුශ්න පතුය ${f A}$ සහ ${f B}$ යන කොටස් **දෙකකින්** යුක්ත වේ. **කොටස් දෙකට ම** නියමිත කාලය **පැය** තුනකි.
- 🗱 ගණක යන්තු භාවිතයට ඉඩ දෙනු නො ලැබේ.

A කොටස - වනුහගත රචනා (පිටු 2 - 7)

සියලු ම පුශ්නවලට පිළිතුරු මෙම පතුයේ ම සපයන්න. ඔබේ පිළිතුරු, පුශ්න පතුයේ ඉඩ සලසා ඇති තැන්වල ලිවිය යුතු ය. මේ ඉඩ පුමාණය පිළිතුරු ලිවීමට පුමාණවත් බව ද දීර්ඝ පිළිතුරු බලාපොරොත්තු නො වන බව ද සලකන්න.

B කොටස - රචනා (පිටු 8 - 13)

මෙම කොටස පුශ්න **හයකින්** සමන්විත වන අතර පුශ්න **හතරකට** පමණක් පිළිතුරු සැපයිය යුතු ය. මේ සඳහා සපයනු ලබන කඩදාසි පාවිච්චි කරන්න.

- * සම්පූර්ණ පුශ්න පනුයට නියමිත කාලය අවසන් වූ පසු A සහ B කොටස් එක් පිළිතුරු පතුයක් වන සේ, A කොටස B කොටසට උඩින් තිබෙන පරිදි අමුණා, විභාග ශාලාධිපතිට භාර දෙන්න.
- # පුශ්ත පතුයේ B කොටස පමණක් විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.

පරීක්ෂකවරුන්ගේ පුයෝජනය						
සඳහා පමණි						
000-8 samo 0000						

දෙවැනි පතුය සඳහා				
කොටස	පුශ්න අංක	ලැබූ ලකුණු		
	1			
A	2			
A.	3			
	4			
	5			
100 SECTION AND ADDRESS OF THE SECTION ADDRE	6			
**************************************	7			
В	8			
I.S	9 (A)			
	9 (B)			
	10 (A)			
	10 (B)			
එක	ාතුව			

අවසාන ලකුණු

ඉලක්කමෙන්	
අකුරින්	

සංෂක්ත අංක

උත්තර පතු පරීක්ෂක l	
උත්තර පතු පරීක්ෂක 2	
ලකුණු පරීක්ෂා කළේ	
අධීක්ෂණය කළේ	

A කොට**ස- වනුගගත රචනා** පුශ්න **ගතරට ම** පිළිතුරු **මෙම පතුයේ ම** සපයන්න.

(ගුරුත්වජ ත්වරණය, $g = 10 \, \text{N kg}^{-1}$)

මෙම කි්රයේ කිසිවක් නො ලියන්න

- 1. සමහර වස්තු භාජන තුළ අසුරන විට ඒවා භාජනයේ සම්පූර්ණ පරිමාවම අයත් කර නොගනී. මෙය වස්තුවල හැඩය නිසා සිදු වන අතර, එවැනි තත්ත්ව යටතේ දී භාජනයේ පරිමාවෙන් කිසියම් භාගයක් සැම විට ම හිස්ව වාතයෙන් පිරී පවතී.
 - (1) රූපයේ පෙනෙන පරිදි **අරග** r වූ සර්වසම ඝන ගෝලවලින් විධීමත් ආකාරයට සම්පූර්ණයෙන් ම අසුරා ඇති, පැත්තක දිග 8r වූ ඝනකාකාර පෙට්ටියක ආකාරයේ භාජනයක් සලකන්න. මෙය **විධීමත් ඇසිරීමක්** ලෙස හැඳින්වේ.

(a) භාජනයේ අසුරා ඇති ගෝල ගණන සොයන්න.

- (b) භාජනයේ අසුරා ඇති සියලු 0 ගෝල සෑදී ඇති දුවායේ මුළු පරිමාව සඳහා පුකාශනයක්, r සහ π ඇසුරෙන් ලබා ගන්න.
- (c) භාජනය ගෝලවලින් සම්පූර්ණයෙන් ම පිරී ඇති විට,

තාජනය තුළ තිබෙන ගෝල සෑදී ඇති මුළු දුවා පරිමාව යන අනුපාතය ගෝලවල ඇසුරුම් භාගය සම්පූර්ණයෙන් ම පිරී ඇති පරිදි අසුරා ඇති භාජනයේ පරිමාව (f_p) , ලෙස හැඳින්වෙන අතර, සම්පූර්ණයෙන් ම පිරී ඇති පරිදි අසුරා ඇති භාජනයේ පරිමාව **ඇසුරුම්** පරිමාව ලෙස හැඳින්වේ.

ඉහත දැක්වූ විධිමත් ඇසිරීම සඳහා ඇසුරුම් භාගය f_p , සොයන්න.

(d) භාජනයේ ඇති ගෝලවල මුළු ස්කන්ධය m නම්,

ගෝලවල මුළු ස්කන්ධය සම්පූර්ණයෙන් ම පිරී ඇති පරිදි අසුරා ඇති භාජනයේ පරිමාව m සහ r ඇසුරෙන් වාුුත්පන්න කරන්න.

මෙය ගෝලවල **තොග ඝනත්වය** (bulk density) $(d_B^{})$ ලෙස හැඳින්වේ.

- (e) ගෝල සෑදී ඇති දුවාගේ ඝනත්වය (d_M) සඳහා පුකාශනයක් $m,\ r$ සහ π ඇසුරෙන් ලියන්න.
- (f) පරීක්ෂණාත්මක කුමයක් මගින් මුං ඇට සඳහා f_p , d_B සහ d_M යන පරාමිති සෙවීමට ශිෂායෙක් තීරණය කළේ ය. එහි දී මුං ඇට ඇසිරී තිබුණේ අහඹු ආකාරයට ය. එවැනි ඇසුරුමක් හඳුන්වනු ලබන්නේ **අහඹු ඇසුරුමක්** ලෙස ය. (2) රූපය බලන්න. f_p , d_B සහ d_M සඳහා ඉහත (c), (d) සහ (e) හි දැක්වූ අර්ථ දැක්වීම්, අහඹු ලෙස ඇසුරුම් කර ඇති ඕනෑම හැඩයක් සහිත අයිතමවලට ද වලංගු වේ.

ඔහු පළමුවෙන් ම වියළි මුං ඇට මිනුම් සරාවකට දමා (2) රූපයේ පෙන්වා ඇති පරිදි මුං ඇට සඳහා 50 cm³ ක ඇසුරුම් පරිමාවක් ලබා ගත්තේ ය.

[තුන්වැනි පිටුව ඔලන්න.

e55

		සු ඔහු ඇසුරුම් පරිමාව 50 cm³ වූ මුං ඇට සාඡ් .8 × 10 ⁻² kg බව සොයා ගත්තේ ය.	ී පලයේ ස්කන්ධය මැන	-82 cm ³	තීරයේ කිසිවක් නො ලියන්
	ඉන් සරාව	අනතුරුව ඔහු එම මුං ඇට සාම්පලය ජලය 50 කට ඇතුළත් කළ විට, එහි ජල මට්ටම 82 cm ³ ල හ ගත්තේ ය. (3) රූපය බලන්න.		50 cm ³	
		මුං ඇට සෑදී ඇති දවාගේ පරිමාව කුමක් ද?			
	(ii)	මුං ඇටවල ඇසුරුම් භාගය (f_p) ගණනය කරන්න	o.	GULL	
				(3) රූපය	
	(iii)	මුං ඇටවල තොග ඝනත්වය (d_B), \log m $^{-3}$ වලින්	ගණනය කරන්න.	•	
	<i></i>		-3 squi a state motodo		
	(1V)	මුං ඇට සැදී ඇති දුවායේ ඝනත්වය (d_{M}), \log n			

(g)		ැට 1 kg ක පුමාණයක් ඇසිරීම සඳහා පොලිතීන් බැ අවම පරිමාව ගණනය කරන්න.	අගයක් නිර්මාණය කිරීමට ඇ	ත. එම බෑගයට තිබිය	
				,,,,,,	
මස දී	මට ර	ගාරය තුළ ඇති වාතයේ තුෂාර අංකය පරීක්ෂණාත්ර වබට පවසා ඇත. ්ක්ෂ ආර්දුතාව (RH) සඳහා පුකාශනයක් සංතෘප්ත	•		
·/	RH =			,,,,,,,	

(b)		පරීක්ෂණය සිදු කිරීම සඳහා මන්ථයක් සහ පියන පෙඅනෙකුත් අයිතම මොනවා ද?	ක් සහිත ඔප දැමූ කැලරිමීට	රයකට අමතරව ඔබට	

(c)	වඩා කළ කරන	නිරවදා> අවසාන පුතිඵලයක් ලබා ගැනීම සඳහා ^අ යුතු සාධක දෙකක් ලියා, ඒවා අවම කිරීම සඳහා ඔබ ්න.	පරීක්ෂණය ආරම්භ කිරීමට (බ ගන්නා පරීක්ෂණාත්මක <u>පූ</u>	පෙර අවධානය යො <u>ම</u> අර්වෝපායයන් සඳහන	3
		සාධක	පරික්ෂණාත්මක පූර්චෝ	පායයන්	
	(1)				
	(2)				
(d)	600 600	පරීක්ෂණය සඳහා කුඩා අයිස් කැබලි භාවිත කර	නු ලැබේ. එයට හේතු දෙන		
					- 4

(e)	වරකට අයිස් කැබලි කිහිපයක් ජලයර මොනවා ද?) එකතු :	කළහොත්	් ඔබට මු	හුණපෑමර) සිදු වන	ා පුායෝ	ගික දුෂ්ස	මෙම නිරපේ සිහිවස නො ලි
		•••••				*******			
(<i>f</i>)	මෙම පරීක්ෂණයේ දී ඔබ පාඨාංක ග	නු ලබන් නු	 නේ හරිය	ාටම කුමා	න මොණ	ගාතවල්ව <u>.</u>	 ල දී ද?	********	
		• • • • • • • • • • • • • • • • • • • •	**********	********	**********	**********	*******		
(g)	මෙම පරීක්ෂණයේ දී කැලරිමීටරය, පි	යන සහි	ත ව භාවි	ටිත කිරීම	ට හේතුව	කුමක් ද	?	• • • • • • • • • • • • • • • • • • • •	
			*********	*********			*****		
(h)) මෙම පරීක්ෂණයේ දී ඔබ ලබා ගත යුතු අනෙක් පාඨාංකය කුමක් ද?								
	i) කිසියම් පරීක්ෂණාගාරයක උෂ්ණත්වය 28 °C වූ විට එහි තුෂාර අංකය 24 °C බව සොයා ගන්නා ලදි. පහත වගුව භාවිත කර පරීක්ෂණාගාරයේ සාපේක්ෂ ආර්දුතාව නීර්ණය කරන්න.								
	උෂ්ණත්වය (°C)	20	22	24	26	28	30	32	
	සංකෘප්ත ජලවාෂ්ප පීඩනය (mmHg)	17.53	19.83	22.38	25.20	28.35	31.82	35.66	

3. එක් කෙළවරක් වසා ඇති අනුනාද නලයක් භාවිත කර වාතය තුළ ධ්වනි වේගය සෙවීමට යොදා ගන්නා විකල්ප උපකරණයක් රූපයේ පෙන්වයි. මෙම උපකරණයේ මූලධර්මය පාසල් විදාහාගාරයේ සාමානාශයන් භාවිත වන උපකරණයේ මූලධර්මයට සමාන ය. මෙම උපකරණයේ අනුනාද නලය කුමාංකික පරිමාණයක් සහිත වීදුරු නලයකි. අනුනාද නලයේ ජල මට්ටම ඉහළ පහළ ගෙන යෑම, අනුනාද නලයට සුනමා රබර් බටයකින් සම්බන්ධ කර ඇති X ජල කටාරය ඉහළ පහළ ගෙන යෑමමන් කළ හැක.

	මෙම නීරයේ
(a) අනුතාදයේ දී නලය තුළ සෑදෙන්නේ කුමන වර්ගයේ තරංගයක් ද?	කිසිවක් මසිවක් නො ලියන්
(b) දන්නා f සංඛාාතයක් සහිත සරසුලක් ඔබට දී මූලික ස්වරයට සහ පළමු උපරිතානයට පිළිවෙළින් අ l_0 සහ l_1 අනුනාද දිගවල් ලබා ගැනීමට පවසා ඇත.	නුරූප <u>්</u>
(i) කම්පන විධි දෙක සඳහා තරංග රටා ඇඳ, එහි l_0 සහ l_1 දිගවල්, ආන්ත-ශෝධනය e , නිෂ්පන් සහ පුස්පන්ද (AN) ලකුණු කරන්න.	(N)
(පළමු උපරිතානය සඳහා නලය ඇඳීම ඔබෙන් බලාපොරොත්තු වේ.)	
මූලික ස්වරය :	
<u> </u>	
පළමු උපරිතානය :	
$({ m ii})$ (1) මූලික ස්වරයට අනුරූප තරංග ආයාමය λ නම්, λ සඳහා පුකාශනයක් l_0 සහ e ඇසුරෙන් දක්වන්න.	ලියා
(2) පළමු උපරිතානයට අනුරූප තරංග ආයාමය සඳහා ද එවැනි ම පුකාශනයක් ලියා දක්ව	ත්ත.
(3) වාතයේ ධ්වනි වේගය v නම්, දත්තා සහ මනිත ලද රාශීන් භාවිත කර v සඳහා පුකාශ වුදුත්පත්ත කරන්න.	නයක්

(c) l_0 සඳහා මිනුම ලබා ගැනීමට පෙර අනුනාද නලයේ ජල මව්ටම ඉහළට ම ගෙන ආ යුතු ය. හේතුව පැහැදිලි කරන්න.) ලියල
(d) සාමානාගයන් පාසල් විදාහගාරයේ ඇති උපකරණය භාවිත කිරීම හා සසඳන විට මෙම පුශ්නයේ දී උපකරණය භාවිත කිරීමේ පරීක්ෂණාත්මක කුමවේදයේ ඇති පුධාන වෙනස්කම් දෙකක් ලියන්න.	ඇති
(1)	
(2)	
(e) කාමර උෂ්ණත්වයේ දී (28 °C) 512 Hz සරසුලක් භාවිත කළ විට මූලික ස්වරය සහ පළමු උපරිත	නයට
අනුරූප අනුනාද දිග පිළිවෙළින් 15.5 cm සහ 50.5 cm බව සොයා ගන්නා ලදි. කාමර උෂ්ණත්ව වාතයේ ධ්වනි වේගය ගණනය කරන්න.	⊛ය් දී
	/

4. ප්‍රස්තාර කුමයක් භාවිතයෙන් X වියළි කෝෂයක වි.ගා.බ. (E) සහ අභාන්තර ප්‍රතිරෝධය (r), පරීක්ෂණාත්මක ව නීර්ණය කිරීම සඳහා මෙහි දී ඇති පරිපථය පාසල් විදාහගාරයේ දී භාවිත කළ හැක.

වෙනස් I ධාරාවන් සඳහා කෝෂයේ අගු හරහා V විභව අන්තරය, ඉතා විශාල අභාන්තර පුතිරෝධයක් සහිත චෝල්ට්මීටරයක් මගින් මැනීම පරීක්ෂණාත්මක කුමයට අඩංගු වේ.

(a) V සඳහා පුකාශනයක් I,E සහ r ඇසුරෙන් ලියන්න.

මෙවි තීරයේ තීරිවක් තො ලියන්

(b) (i) පාසල් විදාහගාරයේ ඇති, මෙම පරීක්ෂණය සඳහා භාවිත කළ හැකි විචලා ප්‍රතිරෝධකය නම් කරන්න.

(ii) මෙම පරීක්ෂණයෙන් අපේක්ෂිත පුතිඵල ලබා ගැනීමට Sයතුර නිවැරදි ආකාරයට භාවිත කළ යුතුව ඇත.

(1) S සඳහා භාවිත කළ හැකි වඩාත් ම සුදුසු යතුරු වර්ගය කුමක් ද?

(2) යතුර කිුියාත්මක කිරීමේ දී ඔබ යොදා ගන්නා පරීක්ෂණාත්මක කුමවේදය කුමක් ද?

......

......

(iii) මෙම පරීක්ෂණය සිදු කිරීමේ දී කෝසෙ විසර්ජනය නොවී ඇති බව ඔබ පරීක්ෂණාත්මකව තහවුරු කර ගන්නේ කෙසේ ද?

.....

(c) මෙවැනි පරීක්ෂණයකින් ලබා ගන්නා ලද දත්ත කට්ටලයක් උපයෝගී කර ගෙන අඳින ලද Iට එදිරිව V පුස්තාරයක් පහත පෙන්වා ඇත.

ξ.;.

(i) පහත සඳහන් දෑ සෙවීම සඳහා පුස්තාරය භාවිත කරන්න.	ඉම්ම තිරයේ කිපිවක් නො ලියන්
(1) කෝෂයේ, r අභාගන්තර පුතිරෝධය	
	•
(2) කෝෂයේ, E වි.ගා.බ \cdot	
	•
(ii) ඉහත (c) (i) හි ලබා ගත් අගයයන් සහ (a) යටතේ ලබා ගත් පුකාශනය භාවිත කර, කෝෂය ලුහුවා කළහොත් එය හරහා ධාරාව (I_{SC}) අපෝහනය කරන්න.	3
(d) එක්තරා ඉලෙක්ටුෝනික අයිතමයක් නියම ආකාරයට කිුිිියාත්මක කිරීමට $8.6~{ m V}$ - $9.0~{ m V}$ පරාසය තුර සැපයුම් වෝල්ටීයතාවක් යෙදිය යුතු වේ. ඉලෙක්ටුෝනික අයිතමයේ සැපයුම් වෝල්ටීයතා අගු අත පුතිරෝධය $30~{ m \Omega}$ වේ.	3 3
මෙම ඉලෙක්ටුෝනික අයිතමය කි්යාත්මක කිරීම සඳහා ඔබට $E=9~{ m V}$ සහ $r=10~{ m \Omega}$ වන තනි වියද් කෝෂ බැටරියක් හෝ ලේණිගතව සම්බන්ධ කර ඇති එක එකක් $E=1.5~{ m V}$ සහ $r=0.2~{ m \Omega}$ වන වියද් කෝෂ හයක බැටරි සංයුක්තයක් තෝරා ගැනීමේ අවස්ථාව ඇතැයි සිතන්න. මෙම කොටසේ දී ඇස් දත්ත භාව්ත කර, ඔබ සුදුසු බැටරියක් තෝරා ගන්නා අන්දම පැහැදිලි කරන්න.	3

 \bigcirc i

967

සියලු ම හිමිකම් ඇවිරිණි / மුழுப் பதிப்புரிமையுடையது / All Rights Reserved.]

ලි ලංකා විතාශ දෙපාර්තමේත්තුව ලි ලංකා විතාශ දෙපාර්තමේත්ත**ි ලංකා විභාග දෙපාර්කමේන්තුවා**. විතාශ දෙපාර්තමේත්තුව ලි ලංකා විතාශ දෙපාර්තමේත්තුව இலங்கைப் பரிட்சைத் திணைக்களம் இலங்கைப் பரிட்**ශල**ද්යන්න පැතැති පතුරු කිරීම සහස්ත්ර පත්ත්ර විභාග දෙපාර්තමේත්තුව ලි ලංකා විතාශ දෙපාර්තමේත්තුව Department of Examinations, Sri Lanka Department of Examinations, Sri Lanka Department of Examinations, Sri Lanka

අධායන පොදු සහතික පනු (උසස් පෙළ) විභාගය, 2016 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2016 ஓகஸ்ந் General Certificate of Education (Adv. Level) Examination, August 2016

<mark>හෞතික විදනව II</mark> ධෙளதிகவியல் II Physics II

B කොටස - රචනා

පුශ්න **හතරකට** පමණක් පිළිතුරු සපයන්න.

(ගුරුත්වජ ත්වරණය, $g = 10 \,\mathrm{N\,kg}^{-1}$)

- 5. (a) (1) රූපයේ පෙන්වා ඇති පරිදි ස්කන්ධය නොසලකා හැරිය හැකි වූ ද අරය r වූ ද තිරස් වළල්ලක ගැට්ටට ස්කන්ධය m_1 වූ අංශුවක් සවි කර ඇත. POQ යනු වළල්ලේ O කේන්දුය හරහා යන සිරස් අක්ෂයකි.
 - (i) POQ සිරස් අක්ෂය වටා අංශුවෙහි අවස්ථිති ඝූර්ණය I_1 සඳහා පුකාශනයක් m_1 සහ r පද මගින් ලියන්න.
 - (ii) ස්කන්ධය m_2 වන තවත් අංශුවක් m_1 පිහිටන විෂ්කම්භයේ m_1 ට පුතිවිරුද්ධ $Q = \frac{Q}{(1)}$ ලක්ෂායක දී වළල්ලේ ගැට්ටට සවි කර, පද්ධතිය $Q = \frac{Q}{(1)}$ අක්ෂය වටා $Q = \frac{Q}{(1)}$ හියත කෝණික වේගයකින් භුමණය කරනු ලැබේ. $Q = \frac{Q}{(1)}$ අක්ෂය වටා $Q = \frac{Q}{(1)}$ ස්කන්ධයේ අවස්ථිති සූර්ණය නම්, පද්ධතියේ සම්පූර්ණ භුමණ චාලක ශක්තිය $Q = \frac{Q}{(1)}$ සඳහා පුකාශනයක් ලියන්න.
 - (iii) I_0 මගින් දක්වන්නේ POQ අක්ෂය වටා ඉහත (a) (ii) හි, දී ඇති පද්ධතියේ මුළු අවස්ථිති ඝූර්ණය නම්, (a) (ii) හි ලබා ගත් පුකාශනය භාවිත කර $I_0=I_1+I_2$ බව පෙන්වන්න.
 - (b) ඉහත m_1 සහ m_2 අංශු වෙනුවට දැන් එක එකෙහි ස්කන්ධය m වූ සර්වසම අංශු 10 ක් සමාන පරතර ඇතිව වළල්ලෙහි ගැට්ටට සවි කර ඇත. POQ සිරස් අක්ෂය වටා එක් අංශුවක අවස්ථිති සූර්ණය I නම් එම අක්ෂය වටා පද්ධතියෙහි මුළු අවස්ථිති සූර්ණය (I_T) සඳහා පුකාශනයක් ලියන්න.
 - (c) දැන් (2) රූපයෙහි දක්වා ඇති පරිදි ඉහත (b) හි විස්තර කරන ලද වළල්ල POQ සිරස් අක්ෂය සමග සම්පාත වන නොගිණිය හැකි අවස්ථිති සූර්ණයක් සහිත ඇක්සලයකට, ස්කන්ධය නොගිණිය හැකි සමමිතික ලෙස සවි කරන ලද ස්පෝක් කම්බි මගින් සවී කරනු ලැබේ. ඉන්පසු පද්ධතිය කාලය t=0 දී නිශ්චලතාවයෙන් පටන් ගෙන POQ අක්ෂය වටා තිරස් තලයක α නියත නෙ

- (i) $\,$ (1) පද්ධතියට ω නියත කෝණික වේගයට ළඟා වීම සඳහා ගත වන කාලය t සඳහා පුකාශනයක් ලබා ගන්න.
 - (2) පද්ධතිය ω නියත කෝණික වේගයට ළඟා වන විට, එය කොපමණ පරිභුමණ සංඛාහවක් සිදු කර තිබේ ද?
- (ii) ω නියත කෝණික වේගයකින් POQ සිරස් අක්ෂය වටා භුමණය වන විට එක් අංශුවක් මත කිුිිිියා කරන (F) කේන්දු අභිසාරී බලය සඳහා පුකාශනයක් ලියන්න.
- (d) (3) රූපයෙහි දක්වා ඇති, නිශ්චලතාවේ පවතින මෙරිගෝ රවුමට ඉහත (c) හි විස්තර කරන ලද පද්ධතියෙහි ව්යුහයට සමාන ව්යුහයක් ඇත. එනමුදු සවි කර ඇති m ස්කන්ධ වෙනුවට මෙම පද්ධතියේ ඇත්තේ නොසලකා හැරිය හැකි ස්කන්ධයක් සහිත දම්වැල්වලින් එල්ලා ඇති පදින්නන් සහිත අාසන 10 කි. පදින්නන් සහ ආසන රහිත ව POQ අක්ෂය වටා මෙරිගෝ රවුමෙහි අවස්ථිති සූර්ණය $32\ 000\ \mathrm{kg}\ \mathrm{m}^2$ වේ.

මෙරිගෝ රවුම එහි සියලු ම ආසන, පදින්නන්ගෙන් පිරී ඇති විට එය මිනිත්තුවකට පරිභුමණ 12 ක නියත කෝණික වේගයකින් POQ අක්ෂය වටා භුමණය වන අවස්ථාවක් සලකන්න. මෙරිගෝ රවුම භුමණය වන විට දම්වැල්

සියල්ල ම සිරසට ආතතව heta කෝණයක් සාදන අතර, (4) රූපය මගින් එක් පදින්නකුට අදාළ ව එම අවස්ථාව පෙන්වා ඇත. අදාළ ගණනයන් හි දී $\pi=3$ ලෙස ගන්න.

- (i) එක් එක් පදින්නාගේ ස්කන්ධය $70~{\rm kg}$ ද එක් එක් ආසනයේ ස්කන්ධය $20~{\rm kg}$ ද වේ නම්, POQ අක්ෂය වටා පද්ධතියෙහි මුඑ අවස්ථිති සූර්ණය ගණනය කරන්න. පදින්නකුගෙන් සමන්විත ආසනයක අවස්ථිති සූර්ණය ගණනය කිරීමේ දී පුද්ගලයාගේ සහ ඔහුගේ ආසනයෙහි සම්පූර්ණ ස්කන්ධය POQ අක්ෂයෙහි සිට $10~{\rm m}$ තිරස් දුරකින් **සාන්දු වී** ඇති බව උපකල්පනය කරන්න.
- (ii) heta හි අගය ගණනය කරන්න.
- (iii) මුළු පද්ධතියෙහි හුමණ චාලක ශක්තිය කුමක් ද?

Q

(2) රූපය

(3) රූපය

(4) රූපය

6. ස්වච්ඡයේ සහ අක්ෂි කාචයේ සඵල නාභීය දුර, ඇසෙක නාභීය දුර ලෙස සැලකිය හැක. මාංශ ජේශීන් මගින් පාලනය කරනු ලබන කාචයේ වකුතාව නිසා ඇසට එකිනෙකට වෙනස් දුරවලින් පිහිටි වස්තූන්ගෙන් නිකුත්වන ආලෝකය දෘෂ්ටි විතානය මත නාභිගත කර ගැනීමට අවකාශය ලබා දෙයි. සඵල නාභීය දුර සහිත අක්ෂි කාචයක් සමග ඇසෙහි සරල රූප සටහනක්, මෙම රූපයෙහි පෙන්වා ඇත. ඇසෙහි මාංශ ජේශීන් ලිහිල්ව ඇති විට ළමයකුගේ නිරෝගී ඇසක නාභීය දුර 2.5 cm වේ. ඔහුගේ ඇසෙහි අවිදුර ලක්ෂායට අක්ෂි කාචයේ සිට ඇති දුර 25 cm වේ. (රූපයේ දී ඇති රූප සටහන පිටපත් කර ගෙන කිරණ රූප සටහන් අඳින විට එය භාවිත කරන්න.)

- (a) නිරෝගී ඇසක් ඇති ළමයාගේ ඇසෙහි මාංශ පේශීන් නිදහසේ ඇති විට, ඉතා ඈත පිහිටි වස්තුවක සිට පැමිණෙන අාලෝකය ළමයාගේ ඇසෙහි දෘෂ්ටි විතානය මත නාභිගත වන අවස්ථාවක් සඳහා කිරණ රූප සටහනක් අඳින්න. අක්ෂි කාචය සහ දෘෂ්ටි විතානය අතර දුර කොපමණ ද?
- (b) අවිදුර ලක්ෂාගේ තබන ලද ලක්ෂාාකාර ආලෝක පුභවයක් නිරෝගී ඇසක් ඇති ළමයාට පැහැදිලි ව පෙනෙන අවස්ථාව සඳහා කි්රණ රූප සටහනක් අඳින්න. මෙම මොහොතෙහි ඇසෙහි නාභීය දුර ගණනය කරන්න.
- (c) තවත් ළමයකුගේ ඇසේ මාංශ පේශීන් ලිහිල්ව ඇති විට, ඔහුට නිරෝගී ළමයාගේ නාභීය දුරට සමාන නාභීය දුරක් ද (b) කොටසේ අවස්ථාව සඳහා ගණනය කළ නාභීය දුර ද ඇත. එහෙත් ඔහුගේ දෘෂ්ටි විතානය නිරෝගී ළමයාගේ දෘෂ්ටි විතානයේ පිහිටීමට වඩා 0.2 cm ක් පිටුපසින් පිහිටා ඇත.
 - (i) ඉහත (b) හි සඳහන් කළ ආකාරයට ලක්ෂාාකාර ආලෝක පුභවයකින් නිපදවන පුතිබිම්බය උපයෝගී කර ගනිමින් මොහුගේ අව්දුර ලක්ෂාය සහ වීදුර ලක්ෂාය වෙන වෙන වෙන ම කිරණ රූප සටහන් දෙකක් ඇඳ වීදහා දක්වන්න. මෙම ළමයාගේ අව්දුර ලක්ෂායට සහ වීදුර ලක්ෂායට අක්ෂි කාචයේ සිට ඇති දුරවල් ගණනය කරන්න.
 - (ii) සුදුසු කාචයක් භාවිත කරමින් අවශා නිවැරදි කිරීම කළ හැකි අන්දම, දළ කිරණ සටහනක් ඇඳ විදහා දක්වන්න. නිවැරදි කිරීම සඳහා අවශා කාචයේ නාභිය දූර ගණනය කරන්න.
- (d) යම් පුද්ගලයකු වයසට යන විට ඇස්වල නාභීය දුර වෙනස් කිරීමේ හැකියාව දුර්වල වී ඇසෙහි අවිදුර ලක්ෂායට ඇති දුර වැඩි වේ. ඉහත (c) කොටසේ සඳහන් ළමයාට මෙම අවස්ථාවට මුහුණ පෑමට සිදු වුවහොත් ළමයා විසින් පැළැඳිය යුතු අමතර නිවැරදි කිරීමේ කාචයේ වර්ගය කුමක් ද (අභිසාරී ද/අපසාරී ද)? ඔබගේ පිළිතුරට හේතු දෙන්න.
- 7. ΔP පීඩන වෙනසක් යටතේ තිරස් සිලින්ඩරාකාර පටු නලයක් තුළින් දුවයක් ගලන ශීඝුතාව Q සඳහා පොයිසෙල් සමීකරණය ලියා දක්වන්න. ඔබ යොදා ගත් අනෙකුත් සෑම සංකේතයක් ම හඳුන්වන්න. ඉහත තත්ත්වය යටතේ දුවය ගලන ශීඝුතාව වන Q ට එරෙහිව නලය දක්වන පුතිරෝධය, පුවාහ පුතිරෝධය $R = \frac{\Delta P}{Q}$ ලෙස අර්ථ දැක්විය හැකි ය.
 - (a) දුවය හා නලය සම්බන්ධ කුමන භෞතික රාශීන්, R පුවාහ පුතිරෝධය නීර්ණය කරයි ද?
 - (b) (1) රූපයෙහි පෙන්වා ඇති පරිදි ශේණිගතව සම්බන්ධ කර ඇති තිරස් පටු නල තුනක් හරහා ΔP_1 , ΔP_2 සහ ΔP_3 යන පීඩන අන්තරයන් යටතේ දුවයක් ගලා යන විට නල මගින් ඇති කරන පුවාහ පුතිරෝධයන් පිළිවෙළින් R_1 , R_2 සහ R_3 වේ. R සඳහා ඉහත දී ඇති අර්ථ දැක්වීම භාවිත කරමින්, පද්ධතියේ R_0 පුවාහ පුතිරෝධය, $R_0=R_1$

භාවිත කරමින්, පද්ධතියේ R_0 පුවාහ පුතිරෝධය, $R_0=R_1+R_2+R_3$ මගින් ලිවිය හැකි බව පෙන්වන්න. (ගැටී නිසා ඇති වන බලපෑම නොසලකා හරින්න.)

(c) (2) රූපයෙහි පෙන්වා ඇති ආකාරයට එකිනෙකට සමාන්තරව සම්බන්ධ කර ඇති තිරස් පටු නල දෙකක් හරහා ΔP පොදු පීඩන අන්තරයක් යටතේ දුවයක් ගලා යන විට, එම නල මගින් ඇති කරන පුවාහ පුතිරෝධයන් R_1 සහ R_2 වේ. පද්ධතියේ පුවාහ පුතිරෝධය වන R_0 ,

 $\frac{1}{R_0} = \frac{1}{R_1} + \frac{1}{R_2}$ මගින් ලිවිය හැකි බව පෙන්වන්න. (ආන්ත බලපෑම් නොසලකා හරින්න.)

(d) X සිට Y දක්වා දුවයක් ගලා යා හැකි පරිදි X ලක්ෂාය හා Y පොදු කටාරයක් සම්බන්ධ කර ඇති A, B, C, D හා E යන තිරස් පටු නල කට්ටලයක් (3) රූපයේ පෙන්වයි. X හා Y හි පීඩනයන් නියත අගයන්වල පවත්වා ගෙන ඇත. එක් එක් නලයෙහි පුවාහ පුතිරෝධය $mmHg\ s/cm^3$ යන ඒකකවලින් රූපයෙහි ලකුණු කර ඇත. B නලය, පුවාහ පුතිරෝධයන් සමාන වූ C සහ D නල දෙකකට බෙදී ඇත. මෙම සරල කරන ලද ආකෘතිය, ධමනි සහ ශිරා හරහා රුධිරය ගලා යෑම විදහා දැක්වීම සඳහා ද භාවිත කළ හැකි ය.

පහත, (i) (ii) සහ (iii) කොටස්වලට පිළිතුරු, දක්වා ඇති ඒකකවලින් ලබා දීම පුමාණවත් වේ. ($\pi=3$ ලෙස ගන්න.)

- (i) (1) B, C සහ D නල පද්ධතිය නිසා X හා Y ලක්ෂා අතර ඇති කරන පුවාහ පුතිරෝධය ගණනය කරන්න. (2) B, C, D සහ E නල අඩංගු පද්ධතිය නිසා X හා Y ලක්ෂා අතර ඇති කරන පුවාහ පුතිරෝධය ගණනය කරන්න.
- (ii) X හරහා දුවයේ පුවාහ ශීඝුතාව 6 ${
 m cm}^3/{
 m s}$ නම්, X හා Y හරහා පීඩන අන්තරය ගණනය කරන්න.
- (iii) ඉහත පුතිඵල භාවිත කර E නලය හරහා දුවයේ පුවාහ ශීඝුතාව ගණනය කරන්න.
- (iv) E නලයේ දිග $2\,\mathrm{cm}$ නම්, E නලයෙහි අභාාන්තර අරය ගණනය කරන්න. දුවයේ දුස්සුාවිතාව $4.0 \times 10^{-3}\,\mathrm{Pa}\,\mathrm{s}$ වේ. [$1\,\mathrm{mmHg} = 133\,\mathrm{Pa}$ ලෙස ගන්න.]
- (e) ඉහත (d) කොටසෙහි සඳහන් නල පද්ධතියේ එක් නලයක උෂ්ණත්වය අඩු වුවහොත් එම නලය හරහා දුවයේ පුවාහ ශීඝුතාවට කුමක් සිදු වේ ද යන්න පැහැදිලි කරන්න. නලයේ අරයෙහි සහ දිගෙහි සිදු විය හැකි වෙනස්වීම් නොසලකා හරින්න.
- 8. පහත සඳහන් ඡේදය කියවා පුශ්නවලට පිළිතුරු සපයන්න.

අඩු තාපන කාලය, ස්ථානගත තාපනය, සෘජුතාපනය සහ කාර්යක්ෂම ශක්ති පරිභෝජනය වැනි වාසි නිසා ජේරණ තාපන (Induction heating) තාක්ෂණ කුම්චේදය නොයෙකුත් කාර්මික, ගෘහස්ථ සහ චෛදා යෙදුම් සඳහා තේරීම වී තිබේ. ජේරණ තාපනයේ මෙහෙයුම් මූලධර්මය පාදක වී ඇත්තේ මයිකල් ෆැරඩේ විසින් 1831 දී සොයා ගන්නා ලද වීදයුත් චූම්බක ජේරණය පිළිබඳ නියමය මත ය. ජේරණ තාපන පද්ධතියක පුධාන සංරචක දෙක වන්නේ අධිසංඛාහත පුතාහචර්ත ධාරාවක් ලැබීමෙන් කාල-විචලා චූම්බක ක්ෂේතුයක් ජනනය කරන කම්බි දඟරයක් (බොහෝ විට තඹ දඟරයක්) සහ තාපය උත්පාදනය කරනු ලබන විදයුත් සන්නායක දවායෙකි. පුතාහචර්ත ධාරාවෙහි දිශාව චෙනස් වන විට චූම්බක ක්ෂේතුය ද එහි දිශාව වෙනස් කර ගනී. එවැනි කාල-විචලා චූම්බක ක්ෂේතුයකට සන්නායක දවායෙක්, අනාවරණය කළ විට සුළි ධාරා ලෙස හඳුන්වන ධාරා පුඩු, සන්නායක දවාය තුළ ජේරණය වේ. චූම්බක ක්ෂේතුය එහි දිශාව ශීලයෙන් වෙනස් කර ගන්නා විට සුළි ධාරාවන් ද ඒවායේ දිශාවන් ශීලයෙන් වෙනස් කර ගනී. සුළි ධාරා සැම විට ම සන්නායක දවාය තුළ සංවෘත පුඩු සාදන්නේ විචලා චූම්බක ක්ෂේතුයට ලම්බක තලවල ය. සන්නායක දවායේ පුතිරෝධයක් පැවතීම නිසා සුළි ධාරා මගින් ජූල් තාපයක් (I^2R වර්ගයේ තාපය) ජනනය කරයි.

තිපදවන වුම්බක ක්ෂේතුය වඩා පුභල වන විට හෝ විදැසුත් සන්නායකතාව වඩා වැඩි වූ විට හෝ වුම්බක ක්ෂේතුය වෙනස් වන ශී්ඝුතාව වඩා වැඩි වන විට හෝ වර්ධනය වන සුළි ධාරා ද වඩා විශාල වේ. චර්මාචරණය (skin effect) නමින් හඳුන්වන ආචරණය නිසා දඟරයේ ඇති අධි සංඛ්‍යාත ප්‍රතාවර්ත ධාරා මගින් ජනනය වන සුළි ධාරා පවතින්නේ සන්නායක පෘෂ්ඨයට ආසන්න සීමාසහිත ඝනකමක් තුළ පමණි.

චර්මාවරණය යනු ඕනෑම අධි සංඛාහත විද්යුත් ධාරාවක්, සන්නායකයක් තුළ දී එහි පෘෂ්ඨයට ආසන්නව විශාලම ධාරා සනත්වයක් ද දුවායේ ගැඹුර සමග ඉතා ශීසුයෙන් අඩු වෙමින් පවතින ධාරා සනත්වයක් ද සහිතව පැතිර පැවතීමට ඇති පුවණතාවයි. දඟරයේ පුතාහවර්ත ධාරාව සහ සුළි ධාරා පුඩු අතර අනොන්නා ආකර්ෂණය නිසා සුළි ධාරා පැතිර පවතින සනකම තවදුරටත් අඩු වේ. මෙය සමීපත්ව ආචරණය (proximity effect) ලෙස හැඳින්වේ. ජූල් තාපනයට අමතරව දුවා තුළ මන්දායන ආවරණය (hysteresis effect) නමින් හඳුන්වන සංසිද්ධිය නිසා ද අමතර තාපයක් නිපද වේ. මෙය සිදු වන්නේ සමහර මල නොබැඳෙන වානේ, චීනච්චට්ට් සහ නිකල් වැනි පෙරෝ චුම්බක දුවා තුළ පමණි. පුතාහවර්ත ධාරාව නිසා ඇති කෙරෙන විචලා චුම්බක ක්ෂේතුයට පුතිවාරයක් ලෙස මෙම දුවා තුළ ඇති චුම්බක වසම් (magnetic domains) ඒවායේ දිශානති නැවත-නැවත වෙනස් කර ගනී. මේවා එසේ දෙපසට හැරවීමට අවශා ශක්තිය අවසානයේ දී තාපය බවට පරිවර්තනය වේ. මත්දායන ආවරණය නිසා තාපය ජනනය වන ශීසුතාව, විචලනය වන චුම්බක ක්ෂේතුයේ සංඛාහතය සමග වැඩි වේ. වාණිජ ලෙස පවතින පේරණ තාපන පද්ධතිවල කිුයාත්මක සංඛාහත ආසන්න වශයෙන් 60 Hz සිට 1 MHz දක්වා පරාසයක වන අතර වොට් කිහිපයක සිට මෙගාවොට් කිහිපයක් දක්වා ජව ලබා දේ.

වෙළඳ පොළෙහි ඇති ජේුරණ ලිප් ලෙස හැඳින්වෙන ලිප් වර්ගය මෙම මූලධර්මය මත කි්යාත්මක වන්නෙකි. ජේුරණ ලිපක අාහාර පිසින බඳුන තබන ලිප් මූහුණකට (cooker top) යාත්තමින් පහළින් එයට නොගෑවෙන පරිදි සවි කර ඇති තඹ දඟරයක් හරහා පුතාාාවර්ත ධාරාවක් යවනු ලැබේ. ආහාර පිසින බඳුනේ සම්පූර්ණ පතුලම තාපය ජනනය කරන සන්නායක දුවාය ලෙස කි්යා කරයි. දඟරය මගින් ඇති කරන ච්චලා චුම්බක ක්ෂේතුය ආහාර පිසින බඳුනේ පතුලට ඇතුළු වී සුළි ධාරා ඇති කිරීම මගින් සහ මන්දායන හානි මගින් තාපය නිපදවයි. තාපය නිපදවීම සඳහා මෙම කි්යාවලි දෙක ම උපයෝගි කර ගනු පිණිස ආහාර පිසින බඳුන් හෝ ඒවායේ පතුල සාදා ඇත්තේ පෙරෝ චුම්බක දුවා වන සමහර මල නොබැඳෙන වානේ, චීනච්චට්ටී වැනි දුවා වලිනි.

- (a) විදාපුත් චුම්බක පේුරණය පිළිබඳ ව ෆැරඩේ නියමය වචනයෙන් ලියා දක්වන්න.
- (b) පුේරණ තාපනය භාවිත වන ක්ෂේතු **දෙකක්** නම් කරන්න.
- (c) ලේරණ තාපනය හා සම්බන්ධ තාපන කිුයාවලි **දෙකක්** ලියා දක්වන්න.
- (d) වඩා විශාල සුළි ධාරා ඇති වීමට තුඩු දිය හැකි සාධක **තුනක්** ලියා දක්වන්න.
- (e) දුවාහයක් තුළ සුළි ධාරා, පෘෂ්ඨයට ආසන්න, සීමාසහිත ඝනකමකට සීමා කරන ආචරණ **දෙක** ලියා දක්වන්න.
- (ƒ) දී ඇති රූප සටහන පිටපත් කර ගෙන පහත සඳහන් පුශ්නවලට පිළිතුරු සපයන්න. එක්තරා ක්ෂණික කාලයක දී දඟරයක් තුළ පුතාහවර්ත ධාරාවක දිශාව රූපයේ පෙන්වා ඇත. කාලය සමග මෙම ධාරාවේ විශාලත්වය වැඩිවෙමින් පවතින අවස්ථාවක් සලකන්න. පෙන්වා ඇති පරිදි දඟරයට ඉහළින් සන්නායක දුවායක් තබා ඇත.

- (i) එක් ක්ෂේතු රේඛාවක් මත ඊතලයක් ඇඳීමෙන්, මෙම අවස්ථාවේ දී ඇති වන චුම්බක ක්ෂේතුයේ දිශාව පෙන්වන්න.
- (ii) පුතාහවර්ත ධාරාව වැඩිවෙමින් පවතින විට එක් සුළි ධාරා පුඩුවක් දුවා α තුළ α ස්ථානයට ආසන්න පුදේශයක ඇඳ, සුළි ධාරාවේ දිශාව ලකුණු කර පෙන්වන්න.
- (iii) ඔබ විසින් ඉහත (ii) හි අඳින ලද සුළි ධාරාවේ දිශාව නීර්ණය කළේ කෙසේ දැයි ලෙන්ස් නියමය යොදා ගෙන පැහැදිලි කරන්න.
- (g) පුතාසාවර්ත ධාරාවේ සංඛාහතය වැඩි කරන විට, දුවාසයක රත් වන ශීඝුතාව ද වැඩි වන්නේ කෙසේ දැයි පැහැදිලි කරන්න.
- (h) කාල-විචලා වුම්බක ක්ෂේතුයක්, අරය R වූ ද ඝනකම b වූ ද පුතිරෝධකතාව P වූ ද තැටියක් තුළට ඇතුළුවන අවස්ථාවක් සලකන්න. යොදනු ලබන වුම්බක ක්ෂේතුයේ B සුාව ඝනත්වය $B=B_0\sin\omega t$ ආකාරයෙන් සයිනාකාරව විචලා වේ නම් සහ මෙහි B_0 යනු වුම්බක සුාව ඝනත්වයේ විස්තාරය ද ω යනු කෝණික සංඛාාතය ද t යනු කාලය ද වේ නම්, ඉතා ම සරල කරන ලද එක්තරා ආකෘතියකට පදනම් ව සුළි ධාරා මගින් තැටියෙහි ජනනය වන මධානා ජවය $P=kB_0^2\,\omega^2$ මගින් ලබා දිය හැකි ය. මෙහි $k=\frac{\pi R^4 b}{16\rho}$ වේ.

 $k=0.5~{
m m}^4~\Omega^{-1}$, $\omega=6~000~{
m rad~s}^{-1}$ හා $B_0=7.5\times 10^{-3}~{
m T}$ නම්, තැටිය තුළ ජනනය වන ජවය ගණනය කරන්න.

(i) සුළි ධාරා නිසා පරිණාමකයක මධාාය රත් වන අතර එය තාපය ලෙස ශක්තිය හානි වීමකට දායක වේ. පරිණාමක තුළ මෙම ශක්ති හානිය අවම කර ඇත්තේ කෙසේ ද?

9. (A) කොටසට හෝ (B) කොටසට හෝ පමණක් පිළිතුරු සපයන්න.

- (A) (a) පුතිරෝධය R වූ පුතිරෝධකයක් හරහා Iධාරාවක්, t කාලයක් තුළ යැවූ විට හානි වන ශක්තිය (W) සඳහා පුකාශනයක් ලියන්න.
 - (b) විදුලි විලායකයක් යනු තුනී ලෝහ කම්බියක් අන්තර්ගත කුඩා මූලාවයවයකි. නිර්දේශිත ධාරාවලට වඩා වැඩි ධාරා (අධිභාර ධාරා සහ ලුහුවත් පරිපථ නිසා) ගලා යෑම නිසා විදුපුත්/ඉලෙක්ටෝනික පරිපථවලට සිදු වන හානිය වළක්වා ගැනීමට ඒවා හා ශ්‍රේණිගතව විදුලි විලායක සම්බන්ධ කර ඇත. කිසියම් පරිපථයක විලායකය හරහා ධාරාව, පරිපථයේ නිර්දේශිත ධාරා අගයට වඩා වැඩි වූ විට ව්ලායකය දැවී (දුව වී) ගොස් පරිපථය ජව පුභවයෙන් විසන්ධි වේ. විදුලි විලායක තෝරා ගනු ලබන්නේ ඒවායේ පුමාණන, පරිපථවල නිර්දේශිත ධාරා අගයන්ට සමාන වන පරිදි ය.
 - (i) වීලායකයක් R භාර පුතිරෝධයක් සහිත පරිපථයකට සම්බන්ධ කරන්නේ කෙසේ දැයි (1) රූපයේ පෙන්වා ඇත. එක්තරා වීලායකයක ධාරාව S A ලෙස පුමාණනය කර ඇත. වීලායක කම්බියේ දිග S cm ξ එහි අරය S 0.1 mm ξ (හරස්කඩ වර්ගඵලය S 10S 10S 10S 25S 10S 26S 26S 26S 26S 36S 3
 - (ii) වීලායකය (i) හි සඳහන් කළ පුමාණනයෙන් කියාත්මක වන විට, අනවරත අවස්ථාවේ දී වීලායක කම්බියෙන් ජනනය වන සම්පූර්ණ තාපය, වීලායකය දැවී යාමකින් තොරව පරිසරයට හානි වේ. 5 A වීලායකයෙන් ඒ ආකාරයට හානි වන ක්ෂමතාව ගණනය කරන්න. උෂ්ණත්ව පරාසය තුළ වීලායක කම්බියේ පුතිරෝධයෙහි සාමානා අගය (b) (i) හි ගණනය කළ අගය මෙන් පස්ගුණයක් ලෙස ගන්න.
 - (iii) විදුලි විලායක නිෂ්පාදකයන් සිදු කරන එක් පරීක්ෂා කිරීමක් වන්නේ විදුලි විලායකයක් අාසන්න වශයෙන් එක් මිලිතත්පරයක දී දුව වීමට (දැවීමට) අවශා ධාරා ස්පන්දයක විස්තාරය සෙවීමයි. (2) රූපයේ පෙන්වා ඇති, මිලිතත්පර එකක කාලයක් සහිත සෘජුකෝණාසාකාර ධාරා ස්පන්දය සලකා (b) (i) හි, දී ඇති විලායක කම්බිය දුව කිරීමට අවශා ස්පන්දයේ I_0 උච්ච ධාරාව ගණනය කරන්න. මෙම තත්වය යටතේ දී පරිසරයට සිදු වන තාප හානිය නොසැලකිය හැකි තරම් කුඩා යැයි උපකල්පනය කරන්න. (b) (i) හි දී ඇති විලායක කම්බියේ ස්කන්ධය 7.5×10^{-6} kg ලෙස සහ උෂ්ණත්ව පරාසය තුළ විලායක කම්බියේ පුතිරෝධයෙහි සාමානා අගය (b) (i) හි ගණනය කළ අගය මෙන් පස්ගුණයක් ලෙස ගන්න. විලායක කම්බිය සාදා ඇති දුවායේ විශිෂ්ට තාප ධාරිතාව 390 J kg^{-1} °C $^{-1}$ වේ, විලායක කම්බිය සාදා ඇති දුවායේ දුවාංකය $1\ 0.05$ °C වේ.
 - (iv) (3) රූපයේ පෙන්වා ඇති ආකාරයට 230 V වෝල්ටීයතාවක් යොදා ඇති භාරයක් සහිත පරිපථය XY හි දී ලුහුවත් වී ඇති අවස්ථාවක් සලකන්න. මෙම අවස්ථාවේ දී 5 A විලායකයක් හරහා ධාරාව ගණනය කරන්න. (b) (iii) හි ලබා ගත් පුතිඵල භාවිතයෙන් මෙහි දී මිලිතත්පර 1 කට පුථම විලායකය දැවී යන බව පෙන්වන්න.(මෙහි ලැබෙන ධාරාව සෘජුකෝණාස්‍‍රාකාර ධාරා ස්පන්දයක් ලෙස උපකල්පනය කරන්න.)

ව්ලායක

(v) 1 μs කාලයක් තුළ ඇති වන 500 A සෘජුකෝණාස්‍‍රාකාර පට්‍ර ධාරා ස්පන්දයක් 5 A විලායකයක් හරහා ගමන් කරයි. මෙම අවස්ථාවේ දී විලායකය දැවී යයි ද? සුදුසු ගණනය කිරීමක් භාවිතයෙන් ඔබේ පිළිතුර සතාාපනය කරන්න.

- (B) විවෘත පුඩු චෝල්ටීයතා ලාභය A වන කාරකාත්මක වර්ධකයක පරිපථ සංකේතය (1) රූපයෙන් දක්වා ඇත.
 - (a) V_0 පුතිදානය සඳහා පුකාශනයක් $V_1,\,V_2$ සහ A ඇසුරෙන් ලියන්න.

- (b) කාරකාත්මක වර්ධකයේ ධන සහ සෘණ පුතිදාන සංතෘප්ත වෝල්ටීයතා $\pm~15~{
 m V}$ සහ $A=10^5$ නම්, එහි පුතිදානය සංතෘප්ත වීම දක්වා එළවන පුදාන වෝල්ටීයතා අන්තරයේ අවම අගය ගණනය කරන්න.
- (c) (i) (2) රූපයේ පෙන්වා ඇති පරිදි පරිපථයේ + පුදානයට උච්ච විස්තාරය $5\,\mathrm{V}$ වන දී ඇති තිුකෝණාකාර වෝල්ටීයතා සංඥාව යෙදූ විට ලැබෙන පුතිදාන V+ වෝල්ටීයතා තරංග ආකෘතිය ඇඳ දක්වන්න. එහි $5\,\mathrm{V} \bigwedge$ \bigwedge
 - (ii) (2) රූපයේ පරිපථය දැන් (3) රූපයේ පෙනෙන ආකාරයට විකරණය කර ඇත. S_1 වසා S_2 විවෘත කළ විට පරිපථය පුදාන තිකෝණාකාර සංඥාව සඳහා (3) රූපයේ පෙන්වා ඇති පුතිදාන තරංග ආකෘතිය නිපදවයි. (c) (i) හි ඔබ අඳින ලද තරංග ආකෘතිය සහ (3) රූපය මගින් පෙන්වා ඇති

පුතිදාන චෝල්ටීයතා තරංග ආකෘතිය අතර වෙනසක් ඇතොත් එය (3) රූපයේ ඇති පරිපථ මූලාවයවයන්ගේ කිුිිියාකාරිත්වය සලකමින් පැහැදිලි කරන්න. (3) රූපයේ පුතිදානයේ උච්ච චෝල්ටීයතාව කුමක් ද?

V

(iii) දැන් S_1 විවෘත කර සහ S_2 සංවෘත කර (3) රූපයේ ඇති කාරකාත්මක $^4\, {
m V}$ වර්ධකයේ – පුදානයට $+3\, {
m V}$ වෝල්ටීයතාවක් යොදනු ලැබේ. (4) රූපයේ පෙන්වා ඇති කල්පිත චෝල්ටීයතාවක් කාරකාත්මක වර්ධකයේ + පුදානයට $^2\, {
m V}$ යෙදූ විට පරිපථයෙන් බලාපොරොත්තු විය හැකි පුතිදාන චෝල්ටීයතා තරංග ආකෘතිය ඇඳ චෝල්ටීයතාවේ විශාලත්වය ලකුණු කරන්න.

(d) එක්තරා රුධිර සෛල ගිණුම් පද්ධතියක් (Blood Cell Counting System) පහත ආකාරයට කි්යාත්මක වේ. සුදුසු දුාවණයක දන්නා අනුපාතයකට තනුක කරන ලද රුධිරය (5) රූපයේ පෙන්වා ඇති පරිදි S සහ T ඉලෙක්ටෝඩ දෙකක් අතර තබා ඇති විෂ්කම්භය $50~\mu m$ පුමාණයේ වන X කුඩා සිදුර තුළින් ගලා යෑමට සලස්වනු ලැබේ. රුධිර සෛල ගණන් කිරීම පදනම් ව ඇත්තේ රුධිර සෛලවල විදුසුත් පුතිරෝධකතාව, දුාවණයේ විදුසුත් පුතිරෝධකතාවට වඩා වැඩිය යන සතාපය මත ය.

- (5) සහ (6) රූප මගින් පෙන්වා ඇති පරිදි පද්ධතිය හරහා 6 mA ක නියත ධාරාවක් යවනු ලැබේ. X සිදුර හරහා **උාවණය** ගමන් කරන විට $1\ 000\ \Omega$ පුතිරෝධකය සහ ඉලෙක්ටෝඩ හරහා ධාරා (5) රූපයේ පෙන්වා ඇත. X සිදුර හරහා **රුධීර සෛලයක්** ගමන් කරන විට $1\ 000\ \Omega$ පුතිරෝධකය සහ ඉලෙක්ටෝඩ හරහා ධාරා (6) රූපයෙන් පෙන්වා ඇත. (5) සහ (6) රූපවල දැක්වෙන පරිපථවල P ලක්ෂාය (3) රූපයේ පෙන්වා ඇති පරිපථයේ කාරකාත්මක වර්ධකයෙහි + පුදානයට සම්බන්ධ කරනු ලැබේ. මෙහි S_1 විවෘත කර සහ S_2 සංවෘත කර ඇත. V_0 පුතිදානය සංඥා ගණිනයකට (counter) සම්බන්ධ කර ඇත(රූපයේ පෙන්වා නොමැත).
 - (i) (5) සහ (6) රූපවල Pලක්ෂායේ වෝල්ටීයතා මොනවා ද?
- (ii) (5) රූපයේ තත්වය (6) ට පුථම ඇති වන්නේ නම්, එවැනි තත්ත්ව සඳහා P හි ඇති වන වෝල්ටීයතා තරංග ආකෘතිය ඇඳ දක්වන්න.
- (iii) ඉහත (ii) ට අදාළ ව, (3) රූපයේ පෙන්වා ඇති පරිපථයේ පුතිදාන වෝල්ටීයතා තරංග ආකෘතිය ද ඇඳ දක්වන්න.
- (iv) තනුක රුධීර පුවාහයක් X සිදුර හරහා ගලා යෑමට සැලැස්වුවහොත් ගණිනයේ පුතිදානය කුමක් දක්වයි ද?

10. (A) කොටසට හෝ (B) කොටසට හෝ පමණක් පිළිතුරු සපයන්න.

- (A) (a) (i) දුවාායක භෞතික අවස්ථාව, ඝන අවස්ථාවේ සිට දුව අවස්ථාව බවට වෙනස් වන විට තාපය අවශෝෂණය කර ගන්නේ කෙසේ දැයි කෙටියෙන් පැහැදිලි කරන්න.
 - (ii) එක්තරා තාප බලාගාරයක් මගින් නිපදවන ලද මෙගාජූල් 10ක අමතර තාප ශක්තියක්, 420 °C දුවාංකයේ පවත්වාගෙන ඇති පරිවරණය කරන ලද **ඝන** තුත්තනාගම් කුට්ටියක ගුප්ත තාපය ලෙස ගබඩා කළ යුතුව ඇත. සම්පූර්ණ අමතර ශක්තියම තුත්තනාගම් දුව කිරීමට භාවිත වන්නේ නම්, මේ සඳහා අවශා අවම ඝන තුත්තනාගම් ස්කන්ධය ගණනය කරන්න.
 - තුත්තනාගම් හි විලයනයේ විශිෂ්ට ගුප්ත කාපය $1.15 imes 10^5 \, \mathrm{J \ kg^{-1}}$ වේ.
 - (b) බාහිර උෂ්ණත්වය -30 °C හි ඇති විට ශීකල රටක එළිමහනෙහි පිහිටි එක්තරා වසන ලද ගබඩා කාමරයක් තුළ උෂ්ණත්වය 0 °C හි පවත්වා ගත යුතුව ඇත. කාමරය 20 cm ඝනකමක් ඇති කොන්කුීට් බිත්ති මගින් තාප පරිවරණය කර ඇත.රූපයේ පෙන්වා ඇති පරිදි බිත්තිවල අභාන්තර පෘෂ්ඨය හා ස්පර්ශව 0 °C හි පවතින අවශා තරමේ ඝනකමක් සහිත ඒකාකාර ජල ස්ථරයක් පවත්වා ගෙන ඇත. නිශ්චල අයිස් තට්ටු සෑදීම වැළැක්වීම සඳහා ජලය අභාන්තරිකව මත්ථනය කරනු ලැබේ. (මන්ථන ක්‍රියාවලිය ජලයට තාපය සපයන්නේ නැති බව උපකල්පනය කරන්න.)

- (i) මෙම කුමය මගින් කාමරයේ උෂ්ණත්වය කිසියම් කාලයක් පුරා $0\,^{\circ}\mathrm{C}$ හි පවත්වා ගත හැක්කේ කෙසේ දැයි කෙටියෙන් පැහැදිලි කරන්න.
- (ii) පැය 10ක් දක්වා කාමර උෂ්ණත්වය $0\,^{\circ}\mathrm{C}$ හි පවතින බවට ද මෙම කාලය තුළ ජලයේ ස්කන්ධයෙන් 25%ක් පමණක් අයිස් බවට පත්වීම ද සහතික කෙරෙන ජල ස්ථරයක අවම ස්කන්ධය ගණනය කරන්න. බීත්තිවල සම්පූර්ණ මධානා පෘෂ්ඨ වර්ගඑලය $120\,\mathrm{m}^2$ වේ. කොන්කී්ට්හි තාප සන්නායකතාව = $0.8\,\mathrm{W}\,\mathrm{m}^{-1}\,^{\circ}\mathrm{C}^{-1}$. අයිස්වල විලයනයේ විශිෂ්ට ගුප්ත තාපය = $3.35 \times 10^5\,\mathrm{J}\,\mathrm{kg}^{-1}$
- (iii) කිසියම් බලාපොරොත්තු නොවූ හේතුවක් නිසා ඉහත සඳහන් කළ ජල පෘෂ්ඨය සම්පූර්ණයෙන් ම හිමායනය වී $5~{\rm cm}$ ඝනකමක් සහිත ඒකාකාර අයිස් පෘෂ්ඨයක් කොන්කුීට් බිත්තිවල අභාන්තර පෘෂ්ඨය මත සෑදුණේ යැයි සිතන්න. අයිස් පෘෂ්ඨය සෑදුණු වහාම $0~{\rm ^{o}C}$ කාමරයෙන් ඉවතට තාපය ගලා යෑම ඇරඹෙන ශීඝුතාව ගණනය කරන්න. අයිස් හි තාප සන්නායකතාව = $2.2~{\rm W~m^{-1}\,^{o}C^{-1}}$. ගණනය කිරීම සඳහා, තාපය ඉවතට ගලා යන අයිස් ස්ථරයේ සම්පූර්ණ මධානා පෘෂ්ඨ ක්ෂේතුඵලය $120~{\rm m^2}$ ලෙස ද උපකල්පනය කරන්න.
- (B) අභා୪වකාශ යානා, චන්දිකා ආදියෙහි විදුලිය නිපදවීම සඳහා විකිරණශීලි සමස්ථානික තාප විදුසුත් ජනක (Radioisotope Thermoelectric Generators (RTGs)) භාවිත කරනු ලබයි. RTG යක් උපපද්ධති දෙකකින් සමන්විත ය.
 - (1) තාප පුතවය:
 - මෙය ඇල්ෆා අංශු පිට කරන විකිරණශීලි පුභවයක් අඩංගු භාජනයකි. පිට කරනු ලබන සියලු ම ඇල්ෆා අංශුන් මගින් නිපදවන චාලක ශක්තිය තාප ශක්තිය බවට පෙරළනු ලබන අතර එය භාජනය මගින් අවශෝෂණය කර ගනු ලැබේ.
 - (2) ශක්ති පරිවර්තන පද්ධතිය:
 - මෙය, භාජනය අවශෝෂණය කළ තාප ශක්තිය විදුසුත් ශක්තිය බවට පෙරළන තාපවිදුසුත් ජනකයකි.

 238 Pu, ප්ලූටෝනියම් ඔක්සයිඩ් $({
m PuO}_2)$ ආකාරයට විකිරණශීලි පුභවයක් ලෙස භාවිත කරන එක්තරා අභාවකාශ යානයක් සතු RTG යක් සලකන්න. අභාවකාශ යානයේ ගමන ආරම්භයේ දී විකිරණශීලි පුභවයෙහි ${
m PuO}_2$ $2.38~{
m kg}$ ක් අඩංගු වන අතර ${
m PuO}_2$ හි භාගයක් ලෙස 238 Pu ඇත්තේ $0.9~{
m fa}$. එක් 238 Pu විකිරණශීලි ක්ෂයවීමක දී භාජනය අවශෝෂණය කරන තාප ශක්තිය $5.5~{
m MeV}$ වේ. 238 Pu හි අර්ධ ආයු කාලය වසර $87.7~{
m 2}$ න අතර ඊට අනුරූප ක්ෂය නියතය $0.0079~{
m y}^{-1}~(=2.5\times 10^{-10}~{
m s}^{-1})$ වේ. ඇවගාඩෝ අංකය මවුලයකට පරමාණු $6.0\times 10^{23}~{
m e}$ ව.

- (i) අභාඵිකාශ යානය ගමන ආරම්භයේ දී විකිරණශීලි පුභවයෙහි ආරම්භක සකිුයතාව Bq වලින් සොයන්න.
- (ii) තාප ජවය, විදාූත් ජවය බවට පරිවර්තනය කිරීමේ කාර්යක්ෂමතාව 7% නම්, අභාවකාශ යානයේ ගමන ආරම්භයේ දී RTG හි විදාූත් ජවය සොයන්න. $(1~{
 m MeV}=1.6\times10^{-13}~{
 m J}).$
- (iii) වසර 10 කට පසු අභාවකාශ යානය ගමන් අවසන් කරන විට විකිරණශීලි සමස්ථානික පුභවයේ සකිුයතාව සොයන්න. ($e^{-0.079}=0.92$ ලෙස ගන්න.)
- (iv) ගමන අවසානයේ දී RTG ජනනය කරන විදාුුුත් ජවය සොයන්න.
- (v) ගමන අවසානයේ දී විදායුත් ජවය අඩු වීමේ පුතිශතය සොයන්න.
- (vi) අභාපවකාශ යානාවල RTG භාවිත කිරීමේ **එක්** වාසියක් දෙන්න.

More Past Papers at tamilguru.lk