使用说明书

1 遥控器:

1.1 通过通信模式按键切换遥控与四轴的通信模式

遥控器模式 与 对应指示灯

- 1、对频模式: LED2 与 LED1 亮
- 2、正常通信模式: LED2 与 LED1 灭
- 2、外环角度调节 PID 模式: LED2 灭, LED1 亮
- 3、内环角速度调节 PID 模式: LED2 凉, LED1 灭

2 四轴:

注意:由于油门摇杆为 360°回中摇杆,以下操作时**注意安全**,将四**轴上锁**(四轴开机时默认为上锁状态)。

2.1 对频(遥控器处于 对频模式)

介于该四轴位学习套件,也为了方便调试,取消此功能油门摇杆 先向下打满保存2S,在向上打满保存2S。

2.2 上锁/解锁 (遥控器处于 正常通信模式)

(1) 上锁

接下 KEY1 并保持 3S,同时方向摇杆 向右打满 等待四轴的 LED1,LED3 指示灯闪烁,闪烁结束,操作完成

(2) 解锁

按下 KEY1 并保持 3S,同时方向摇杆 向左打满 等待四轴的 LED2,LED4 指示灯闪烁,闪烁结束,操作完成

2.3 加速度计六面校准(遥控器处于 正常通信模式)

(1) 正面

遥控按下 KEY1 并保持 1.5S,同时方向摇杆 向上打满;四轴水平放置;等待 LED4 指示灯闪烁,闪烁结束,操作完成

(2) 背面

按下 KEY1 并保持 1.5S,同时方向摇杆 向下打满 四轴背面倒置,等待 LED3 指示灯闪烁,闪烁结束,操作完成

(3) 前面

按下 KEY2 并保持 1.5S, 同时油门摇杆 向上打满 四轴朝下垂直放置, 等待 LED1, LED4 指示灯闪烁, 闪烁结束, 操作完成

(4) 后面

按下 KEY2 并保持 1.5S, 同时油门摇杆 向下打满 四轴朝上垂直放置, 等待 LED1, LED4 指示灯闪烁, 闪烁结束, 操作完成

(5) 左面

按下 KEY2 并保持 1.5S, 同时油门摇杆 向左打满 四轴朝左垂直放置, 等待 LED1, LED4 指示灯闪烁, 闪烁结束, 操作完成

(6) 右面

按下 KEY2 并保持 1.5S, 同时油门摇杆 向右打满 四轴朝右垂直放置, 等待 LED1, LED4 指示灯闪烁, 闪烁结束, 操作完成

2.4 陀螺仪调准(遥控器处于 正常通信模式)

同时 按下 KEY1 和 KEY2 并保持 3S 四轴朝下垂直放置,等待 LED1, LED3 指示灯闪烁,闪烁结束,操作完成

2.5 PID 参数调节 (使用 匿名四轴上位机)

方法 1: 通过四轴的 UART2 与上位机通信,通过上位机直接调参。 方法 2: 通过遥控器的 UART1 与上位机通信,通过匿名上位机向遥控器发送参数。 切换遥控器的通信模式,通过 NRF 将 PID 参数数据发送给四轴。

1	ROL速率	2800 🕻 0	10 ţ	瓦环乡粉
2	PIT速率	2800 📫 0	10 🗼	→ 外环参数
3	YAW速率	1 🗘 0	0 1	
4	自稳ROL	780 🗘 0	7 ;	
5	自稳PIT	780 🗘 0	7 📫	→ 内环参数
6	自稳YAW	4000 ‡ 100	0 1	

2.6 以下是我的姿态 PID 调节方法 (烤四轴)

将四轴架起来

先给外环 PID 的 P 的值给 1

在调节的每一步过程中都要给四轴一定的干扰,观察其现象

- (1) 调节内环 ROL 和 PIT 的 P
 - 一般 ROL 和 PIT 的值相等,给 ROL 和 PIT 赋值,直到出现现象: 四轴在中间稳定一小会儿就开始前后震荡,大概是震荡 3-4 次就达到最大震幅($\pm 45^{\circ}$ 左右)。
- (2) 调节内环 ROL 和 PIT 的 D

给 D 赋值直到出现现象:

四轴不再前后震荡,能稳定大概 1-2s,然后四轴出现高频震动(应该是 YAW 未做调节所导致)

在调节过程中不要一味的加或减,P的值也可以适当的加减,P和D两个参数互相扶持调节,才能趋近最佳点

(3) 调节内环 YAW

在前两步没有问题后试飞,试飞现象:

四轴会出现自旋,给 YAW 的 P 赋值,直到四轴不在自旋(或者幅度减小),若 出现超调,可适当加一点 D。若还有一点细微自旋,可加入 I 微调

- (4) 若四轴飞行不稳,那就得再细调 ROL 和 PIT
 - P: 控制系统的反应速度。
 - I: 用于辅助 P 的控制, 在 P 和 D 不能达到理想效果, 在微调时才加入。
- D: 抑制系统的震荡,对 P 有抑制作用。但当 D 值过大出现超调,系统会也出现高频震动。
- (5) 调节外环 PID

外环 PID 控制的是方向摇杆和航向的反应,调节方法于内环类似,先给 P 赋值,出现超调加入 D 来抑制,通过 I 来微调。

注:

- (1) 四轴在开机时要将四轴水平卡住,等待陀螺仪稳定。
- (2) 上位机所显示的数据是真时值的 1000 倍。

2.7 PID 调节参考资料

- (1) 网友的文档: http://forum.eepw.com.cn/thread/259834/1
- (2) 正点原子的小四轴开发指南: ATK-MiniFly 微型四轴开发指南_V1.1. pdf