Homework 2 Problem 1-4

Solution:

(1) How many strings with 5 or more characters can be formed from the letters in SEERESS?

We have 1 R, 3 E's and 3 S's. There are 3 cases to consider:

• for strings with 7 characters, there are:

Totally 140 strings.

• for strings with 6 characters, we may remove either R, E, or S, there are:

$$\frac{6!}{3!3!} + \frac{6!}{1!2!3!} + \frac{6!}{1!2!3!}$$

Totally 140 strings.

• for strings with 5 characters, we may remove either R and E, R and S, E and S, E and E, or S and S, there are:

$$\frac{5!}{2!3!} + \frac{5!}{2!3!} + \frac{5!}{1!2!2!} + \frac{5!}{1!1!3!} + \frac{5!}{1!1!3!}$$

Totally 90 strings.

Therefore, sum up the results of the above 3 cases, there are 140 + 140 + 90 = 370 strings with 5 or more characters that can be formed from SEERESS.

(2) Show that in Z_m with addition modulo $m, m \ge 2, m$ is integer, satisfies closure, associative, commutative properties.

1

• **Closure** If a and b belong to Z_m , then $a +_m b$ belongs to Z_m .

By definition, $a +_m b = (a + b) \mod m$

By the Division Theorem, there are unique integers q, r, such that (a + b) = qm + r, where $0 \le r < m$

Therefore, for all $0 \le r < m$, $(a + b) \equiv r \mod m$

Hence, from the definition of integers modulo m, $a +_m b \in Z_m$

• Associativity If a, b, and c belong to Z_m , then $(a +_m b) +_m c = a +_m (b +_m c)$.

$$(a +_m b) +_m c = [(a + b) \bmod m] +_m c$$
 by definition of $+_m$

$$= [(a + b) + c] \bmod m$$
 by definition of $+_m$

$$= [a + (b + c)] \bmod m$$
 Associative Law of Addition

$$= a +_m [(b + c) \bmod m]$$
 by definition of $+_m$

$$= a +_m (b +_m c)$$
 by definition of $+_m$

• **Commutativity** If a, b belong to Z_m , then $a +_m b = b +_m a$.

$$a +_m b = (a + b) \mod m$$
 by definition of $+_m$
= $(b + a) \mod m$ Commutative Law of Addition
= $b +_m a$ by definition of $+_m$

(3) How many zeros are there at the end of 100!?

The answer is 24.

Because $10 = 2 \times 5$, $10^2 = 2^2 \times 5^2$, and $10^n = 2^n \times 5^n$, we need to find the number of 2 and 5 factors to determine the number of trailing o's.

There are $\lfloor 100/5 \rfloor = 20$ terms divisible by 5^1 , $\lfloor 100/5^2 \rfloor = 4$ terms divisible by 5^2 , $\lfloor 100/5^3 \rfloor = 0$ terms divisible by 5^3 , therefore, the number of 5 factors is 24.

There are $\lfloor 100/2 \rfloor = 50$ terms divisible by 2^1 , the number of 2 factors is at least 50 and is larger than 24. Therefore, 100! is divisible by 10^{24} and no greater power of 10.

Hence there are 24 o's at the end of 100!.

(4) Prove or disprove that $n^2 - 79n + 1601$ is prime whenever n is a positive integer.

n = 1601 is just a counterexample, since if n = 1601, then $n^2 - 79n + 1601 = 1601^2 - 79 \times 1601 + 1601 = 1601 \times (1601 - 79 + 1) = 1601 \times 1523$. So $n^2 - 79n + 1601$ is not a prime when n = 1601.