МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа физики и исследований им. Ландау

Определение нагрева пули при поражении цели

Автор: Шахматов Андрей Юрьевич Б02-304

Аннотация

Найдена начальная скорость пули при выстреле из духового ружья при помощи баллистических маятников, принцип работы которых основан на вращательном и поступательном движении. Оценена теплота, выделяющаяся при столкновении пули с мишенью. Найдено повышение температуры пули при столкновении с мишенью.

Содержание

1	Вве,	дение	1
2	Мет	годика	1
3	Резу	ультаты и их анализ	2
4	Выв	воды	4
5	Исп	ользованная литература	4
6	-	ложения Данные результатов измерений геометрических и физических характеристик маят-	4
	6.2	ников	4

1 Введение

В современном военном и спортивном стрелковом деле одной из ключевых проблем является сохранение поражающей способности пуль во время их столкновения с мишенью. При попадании в мишень пуля испытывает значительные механические и термические нагрузки, которые могут привести к ее деформации и, следовательно, снижению поражающей способности. Однако, определение температуры, на которую нагревается пуля при столкновении с мишенью, позволит подобрать более термостабильные материалы для производства пуль. Цель настоящей работы заключается в определении температуры нагрева пули при попадании в мишень.

2 Методика

Повышение температуры пули возможно оценить, считая, что вся теплота Q, выделившаяся при столкновении пошла на её нагрев. Тогда повышение температуры t выражается через удельную теплоёмкость материала пули (свинца) $c=140~\frac{Дж}{\kappa \Gamma^*C}$ и массу пули m

$$t = \frac{Q}{cm}. (1)$$

При столкновении пули с баллистическим маятником теплота Q выражается через начальную энегрию пули E_0 , длину подвеса маятника L и момент инерции матника I

$$Q = E_0 \left(1 - \frac{mL^2}{I} \right). \tag{2}$$

Рис. 1: Схема экспериментальной установки по измерению начальной скорости пули с помощью маятника, основанного на поступательном движении

Тогда задача сводится к нахождению начальной скорости пули V и энергии $E_0 = \frac{mV^2}{2}$. Начальную скорость пули можно найти анализируя максимальную амплитуду баллистического маятника после столкновения. Предложено два метода определении начальной скорости пули: с использованием маятника A (Рис. 1) и крутильного матяника B (Рис. 2). Для маятника A, согласно [1], скорость пули V выражается через линейную амплитуду A, массу пули m, массу маятника M, длину подвеса L

$$V = \frac{M}{m} \sqrt{\frac{g}{L}} A. \tag{3}$$

В случае маятника В первоначально следует найти характерную величину $p=\sqrt{kI}$, где k - крутильная жесткость маятника, I - момент инерции маятника. Величину p можно определить, измерив период колебаний маятника T_2 с дополнительными грузами массой M и период колебаний T_1 без них. Тогда величина p выражается как

$$p = \frac{4\pi M R^2 T_1}{T_1^2 - T_2^2},\tag{4}$$

где R - расстояние от оси вращения до грузов массой M. Тогда начальная скорость пули выражается через параметр p, линейную амплитуду колебаний A, расстояние до точки измерения амплитуды l, массу пули m и расстояние от оси вращения до мишени r:

$$V = \frac{A}{l} \frac{p}{mr}.$$
 (5)

3 Результаты и их анализ

С использованием линейки и весов измерены параметры маятника В (Таблица 3) и маятника А (Таблица 4). Найдены периоды колебаний крутильного маятника с грузами $T_1 = 6.683 \pm 0.018$ с и без грузов $T_2 = 4.993 \pm 0.018$ с. С использованием выражения 4 найдено значение параметра $p = 0.403 \pm 0.010 \, \frac{\text{кг·м}^2}{\text{c}}$. Измерены массы 10 пуль. Для первых 5 пуль проведены измерения амплитуды на маятнике А (Таблица 5). С использованием выражения 3 найдена начальная скорость пуль

Рис. 2: Схема экспериментальной установки по измерению начальной скорости пули с помощью крутильного маятника

(Таблица 1). Для оставшийхся 5 пуль проведены измерения амплитуды на маятнике В (Таблица 6). С использованием выражения 5 найдена начальная скорость пуль (Таблица 1).

Маятник А			N	Іаятник В	
m, г	$u, \frac{M}{c} \cdot 10^2$	ϵ_u	m, г	$u, \frac{M}{c} \cdot 10^2$	ϵ_u
0.5097	1.35	0.02	0.5068	1.63	0.03
0.5047	1.36	0.02	0.5067	1.58	0.03
0.5037	1.36	0.02	0.5124	1.62	0.03
0.5046	1.39	0.02	0.5007	1.71	0.03
0.5103	1.37	0.02	0.5063	1.64	0.03

Таблица 1: Начальные скорости пуль на маятниках A и B. m - масса пули, u - начальная скорость пули, ϵ_u - относительная погрешность u.

Для определения теплоты, которая выделилась при столкновении, были использованы результаты, полученные с использованием маятника А. Используя выражения 1 и 2 рассчитаны теплота, выделившаяся при столкновении, и повышение температуры пули при условии, что вся выделившаяся теплота пошла на её нагрев (Таблица 2).

m, г	<i>Q</i> , Дж	t, °C
0.5097	4.63	64.9
0.5047	4.68	66.0
0.5037	4.68	66.0
0.5046	4.89	69.0
0.5103	4.83	68.0

Таблица 2: Теплоты Q, выделившиеся при столконовении, и повышения температур пуль t. Относительная погрешность $\epsilon_Q = 0.04$, относительная погрешность $\epsilon_t = 0.04$.

Средняя температура нагрева пуль оказалась равна $t=66.9\pm1.3$, °C. Принимая температуру плавления свинца за T=327.46 °Cи начальную температуру пули $t_0=20$ °C, можно сделать вывод о том, что энергии, сообщаемой пули при выстреле из духовой винтовки недостаточно, чтобы пуля расплавилась при попадании в мишень, так как T меньше чем t_0+t чуть менее чем в четыре раза.

4 Выводы

В среденем скорость вылета пули из духового ружья составила $u=1.37\pm0.27\cdot10^2~\frac{\rm M}{\rm c}$. С учётом данной начальной скорости вылета пули была получена оценка теплоты, выделяющейся при столкновении пули с мишенью $Q=4.74\pm0.10~\rm Дж$. Средняя температура нагрева пули при столкновении с мишенью оказалась равна $t=66.9\pm1.3~\rm ^{\circ}C$.

5 Использованная литература

Список литературы

[1] Лабораторный практикум по общей физике, Том 1, под редакцией А. Д. Гладуна

6 Приложения

6.1 Данные результатов измерений геометрических и физических характеристик маятников

	m_1 , кг	m_2 , кг	M, кг	R, M	<i>r</i> , м	<i>l</i> , м
Измерения	0.7306	0.7299	1.4605	0.360	0.204	1.430
Погрешности	0.0001	0.0001	0.0001	0.005	0.005	0.005

Таблица 3: Характеристики маятника В. m_1 - масса дополнительного груза с одной стороны, m_2 - масса дополнительного груза с другой стороны, M - суммарная масса дополнительных грузов, R - расстояние от оси вращения до точки подвеса дополнительных грузов, r - расстояние от оси вращения до мишени, l - расстояние от оси вращения до точки измерения амплитуды.

	M, кг	L, M
Измерения	2.900	2.210
Погрешности	0.005	0.005

Таблица 4: Характеристики маятника А. M - масса маятника, L - расстояние от точки подвеса до маятника.

6.2 Результаты измерений амплитуд колебаний маятников

Диаметр пули $d = 4.5 \pm 0.1$ см.

т, г	A, cm
0.5097	11.25
0.5047	11.25
0.5037	11.25
0.5046	11.50
0.5103	11.50

Таблица 5: Массы пуль m и линейные амплитуды отклонения A, измеренные на матянике B.

m, г	A, см
0.5068	6.0
0.5067	5.8
0.5124	6.0
0.5007	6.2
0.5063	6.0

Таблица 6: Массы пуль m и линейные амплитуды отклонения A, измеренные на матянике B.