Big Data and Data Science

Mark Asch - IMU/VLP/CSU 2023

The 4th paradigm

- 1. The scientific methodology: (three pillars)
 - (a) Experiments
 - (b) Theory
 - (c) Simulation
- 2. The 4th paradigm: science from the data
 - (a) the data deluge instruments, connected objetcs, internet, etc. (exponential growth)
 - (b) data science... "let the data speak "

4th paradigm

Data Science

The 4 "V's" of Big Data

- 1. Volume
- 2. Variety
- 3. Velocity
- 4. Veracity

Volume

Explosion des données en bioinformatique

Variety

transcriptomiques

marrays RNASeq

protéomiques métabolomiques

spectro. masse

structurales

cristallo. RMN

images biologiques

microscopie

images médicales

IRM

cliniques cohortes biobanques

bibliographiques

environnementales

Velocity

Veracity

- trust, integrity, quality, transparency
- security
- confidentiality
- protection of private life
- intellectual propriety

Big Data and Statistics

- For both, we want to learn from the data...
- Statistiques analyze primary data (experimental, samples) and try to verify hypotheses.
- Big data attempts to use secondary data (observations) to deduce the hypotheses and hence to create new insights.
- Conclusion: the 2 approaches are complementary and should proceed hand-in-hand... to facilitate and provide tools for decision-making based on the data. The 2 fields should be united to draw reliable onclusions from available data
- A lack of expertise in statistics can (and has eg. using omic data...) led to fundamental errors!
 - ⇒ clinical trials cancelled for an anti-cancer treatment;
 - ⇒ effect of GMO on cancer;
 - ⇒ Google flu... (correlation vs causation!)

Statistics for Big Data

- ✓ General skills of a "data scientis":
 - statistics
 - linear algebra
 - programming
- ✔ Complementary skills:
 - data preparation ("data wrangling, munging, scraping")
 - modeling
 - visualization
 - communication

Statistical Inference

- ✓ The data represent traces of real-world processes that depend on the way we collect the data.
- ✓ Two sources of uncertainty:
 - random character of the process itself,
 - uncertainty due to the data collection method
- ✓ The process that leads us from the world to the data, then from the data to the world, is called statistical inference
 - procedures, methods, theorems that allow us to extract information from data that come from a random/stochastic process

Populations and Samples

Definition 1. A population is the set of all the objects (observations) being studied. Their number is denoted by N.

Definition 2. A sample is a subset, of size $n, n \leq N$, drawn from the population. We examine these observations to draw conclusions and infer things about the population.

For Big Data:

- X N = AII ????
- X Correlation \Longrightarrow Causation ???

Models

Definition 3. A model is an attempt to understand and represent the nature of reality. It is a construction from which all superfluous details have been eliminated.

CAVEAT:

- "Models are models, not reality!"
- "All models are wrong, but some are useful."

Statistical Models

We seek the underlying process...

- ✓ What comes first?
- ✓ What influences what?
- ✓ What is the cause of what?
- ✓ What would be a test of his?

How to construct a model

- ✓ Exploratory data analysis (see below)
 - calculate basic statistics
 - draw graphics
 - obtain intuition
- ✔ Probability distributions

- the foundations of classical statistical models
- not all processes generate data that ressemble known distributions (Gauss, Poisson, Weibull, etc.), but many do
- these laws attribute a probability to a subset of possible outcomes by means of a corresponding function

Law/distributions of Probability

References

- 1. M. DeGroot, M. Schervish, *Probability and Statistics*, Addison Wesley, 2002.
- 2. Spiegel, Murray et Larry Stephens, *Statistics: Cours et problèmes*, 3ème édition, Série Schaum/McGraw Hill. 2000.
- 3. V. Mayer-Schönberger et K. Cukier. *Big Data: La révolution des données est en marche.* Robert Laffont. 2014.
- 4. H. Laude. Data Scientist et langage R Guide d'autoformation à l'exploitation des Big Data. Editions ENI. 2016.
- 5. M. Lutz. Data Science: fondamentaux et études de cas: Machine Learning avec Python et R. Eyrolles. 2015.

- 6. G. James, D. Witten, T. Hastie, R. Tibshirani. *An Introduction to Statistical Learning with Applications in R.* Springer. 2013. Freely available for download.
- 7. Rachel Schutt and Cathy O'Neil. *Doing Data Science*. O'Reilly. 2014.
- 8. I. Goodfellow, Y. Bengio, A. Courville. *Deep Learning*. MIT Press. 2016.

http://www.deeplearningbook.org