

UNCLASSIFIED

AD 259948

*Reproduced
by the*

**ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA**

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

1
CATALOGED BY ASTIA
AS AD NO.

2 59948

TECHNICAL NOTES FRL-TN-47

THE ANALYSIS OF ELECTRONIC TIMING CIRCUITS

PHILIP ZIRKIND

JULY 1961

FELTMAN RESEARCH LABORATORIES
PICATINNY ARSENAL
DOVER, N. J.

11-1961
FELTMAN RESEARCH LABORATORIES
TIPOR A

ORDNANCE PROJECT TS1-200

COPY

DISPOSITION

Destroy this report when it is no longer needed.
Do not return.

ASTIA AVAILABILITY NOTICE

Qualified requesters may obtain copies of this report
from ASTIA.

THE ANALYSIS OF ELECTRONIC TIMING CIRCUITS

by

Philip Zirkind

July 1961

Feltman Research Laboratories
Picatinny Arsenal
Dover, N.J.

Technical Notes FRL-TN-47

Ordnance Project TSI-200

Approved:

sage
S. SAGE
Chief, Pyrotechnics
Laboratory

TABLE OF CONTENTS

	Page
Object	1
Abstract	1
Introduction	1
Conclusions	1
Analysis	2
Distribution List	15
Figures	
1 Case 1, where $C_1:C_2:C_3::100:10:1$	10
2 Case 2, where $C_1:C_2:C_3::10:1:1$	11
3 Case 3, where $C_1:C_2:C_3::100:1:10$	12
4 Case 4, where $C_1:C_2:C_3::10:10:1$	13
5 Case 5, where $C_1 = C_2 = C_3$	14

OBJECT

To analyze a proposed electronic counting circuit and to determine the circuit parameters compatible with fuze requirements and existing components.

ABSTRACT

General solutions were found for designing circuits for charge transfer from a charged capacitor to an uncharged capacitor via a third capacitor with varying charge.

INTRODUCTION

Antitank land mines require fuzing techniques which will:

1. Distinguish between tanks and other vehicles or personnel.
2. Initiate mine when tank is in most vulnerable position with respect to mine.

The second requirement demands that the fuze count tank bogey wheels by impact and release until the proper number have passed over it, and then fire. The circuit functions in such a way that each bogey wheel impact transfers a quantity of charge till "fire" voltage is attained. This paper describes the method of computing the charge accumulated after "n" transfers.

CONCLUSIONS

An electronic counting circuit can be utilized to initiate any voltage-sensitive device. The circuit can be pre-set to function for any number of events and to deliver any voltage compatible with the system requirement. Of the circuit parameters, the capacitor C_2 functions like a ladle to transfer the charge, and hence its capacity determines the number of counts. The other capacitor C_1 serves as a reservoir and determines the final voltage available.

ANALYSIS

Given a charge Q put on condenser C_1 at a voltage E_i , the charge distribution among the three condensers after n transfers is computed as follows:

When C_2 is first switched to C_1 , both condensers will charge to the same voltage, and hence

$$\frac{Q_1}{C_1} = \frac{Q_2}{C_2}$$

or

$$\frac{Q_1}{Q_2} = \frac{C_1}{C_2}$$

That is, the original charge, $Q = Q_1 + Q_2$, will distribute itself proportional to the capacity. Therefore,

$$\frac{Q - Q_2}{Q_2} = \frac{C_1}{C_2}$$

or

$$\frac{Q}{Q_2} - 1 = \frac{C_1}{C_2}$$

$$\frac{Q}{Q_2} = \frac{C_1}{C_2} + 1 = \frac{C_1 + C_2}{C_2}$$

Taking reciprocals,

$$Q_2 = \frac{C_1}{C_1 + C_2} Q$$

It can be shown that

$$Q_1 = \frac{C_2}{C_1 + C_2} Q$$

Let

$$X = \frac{C_2}{C_1 + C_2}$$

Then

$$Q_2 = XQ$$

Now, when C_2 is disconnected from C_1 and connected to C_3 , it, in turn, will distribute whatever charge it has between C_2 and C_3 in accordance with the aforementioned principle.

$$\frac{Q_2}{C_1} = \frac{Q_2}{C_2}$$

or

$$Q_1 = \frac{C_1}{C_1 + C_3} = \frac{C_1}{C_2 + C_3} XQ$$

Let

$$Y = \frac{C_1}{C_2 + C_3}$$

Then

$$Q_1 = XYQ$$

After one complete switch, we have

$$(1 - X)Q \text{ in } C_1, (1 - Y)XQ \text{ in } C_2, \text{ and } XYQ \text{ in } C_3.$$

For the second switch, when C_1 is connected to C_3 , there is now charge in both condensers which must be equalized before being distributed. The total charge is

$$(1 - X)Q + (1 - Y)XQ = (1 - XY)Q$$

Now C_1 will have $(1 - X)(1 - XY)Q$ while the rest will remain in C_2 , $X(1 - XY)Q$.

When C_1 is now switched to C_3 , the charge in C_2 and C_3 must be added before being distributed.

$$X(1 - XY)Q + XYQ = X(1 + Y(1 - X))Q$$

Letting $Z =$

$$Y(1 - X)$$

then the total charge in C_2 and C_3 is

$$X(1 + Z)Q$$

yielding

$$(1 - Y)X(1 + Z)Q \text{ in } C_2$$

$$XY(1 + Z)Q \text{ in } C_3$$

Tabulating these calculations for a number of switches yields

No. of Switches	Q_1	Q_2	Q_3
1	$(1 - X)Q$	$(1 - Y)XQ$	XYQ
2	$(1 - X)(1 - XY)Q$	$(1 - Y)X(1 + Z)Q$	$XY(1 + Z)Q$
3	$(1 - X)[1 - XY(1 + Z)]Q$	$(1 - Y)X(1 + Z + Z^2)Q$	$XY(1 + Z + Z^2)Q$

No. of Switches	Q_1	Q_2	Q_3
4	$(1 - X) [(1 - XY (1 + Z + Z^2)] Q$	$(1 - Y) X (1 + Z + Z^2 + Z^3) Q$	$XY (1 + Z + Z^2 + Z^3) Q$
M	$(1 - X) (1 - XY \sum_{i=1}^{\infty} Z^{M-2}) Q$	$(1 - Y) X \sum_{i=1}^{\infty} Z^{M-1} Q$	$(XY \sum_{i=1}^{\infty} Z^{M-1}) Q$

The voltage output, E_o , will be

$$E_o = \frac{Q_3}{C_3} = (XY \sum_{i=1}^{\infty} Z^{M-1}) \frac{Q}{C_3}$$

but

$$Q = C_1 E_i$$

Therefore

$$E_o = (XY \sum_{i=1}^{\infty} Z^{M-1}) \frac{C_1}{C_3} E_i$$

but

$$XY = \frac{C_1}{(C_1 + C_2)} \frac{C_2}{(C_2 + C_3)}$$

Therefore

$$\begin{aligned} XY \frac{C_1}{C_3} &= \frac{C_1}{(C_1 + C_2)} \frac{C_2}{(C_2 + C_3)} \\ &= (1 - X) (1 - Y) \\ &= \frac{1 - Y}{Y} Z \end{aligned}$$

Therefore

$$E_o = \left(\frac{1 - Y}{Y} \sum_{i=1}^{\infty} Z^M \right) E_i$$

From this formula, one can obtain the maximum E_o .

Since

$$\sum_{i=1}^{\infty} Z^i = \frac{Z}{1-Z} \quad (\text{for } Z << 1)$$

Therefore

$$(E_o)_{\max} = \left(\frac{1-Y}{Y} \cdot \frac{Z}{1-Z} \right) E_i$$

Substituting for Y and Z yields

$$(E_o)_{\max} = \frac{C_1}{C_1 + C_2 + C_3} E_i$$

indicating that the larger C_1 is, the closer E_o approaches E_i ultimately.

The significance of C_2 is to control the rate of transfer which will be evident from the following tables. From the general formula, one can establish the voltage transfer after each switch:

$$(E_o)_1 = \left(\frac{C_2}{C_2 + C_3} \cdot \frac{C_1}{C_1 + C_2} \right) E_i$$

$$(E_o)_2 = \left(\frac{C_2}{C_2 + C_3} \cdot \frac{C_1}{C_1 + C_2} \right) \left[1 + \left(\frac{C_3}{C_2 + C_3} \cdot \frac{C_1}{C_1 + C_2} \right) \right] E_i$$

$$(E_o)_3 = \left(\frac{C_2}{C_2 + C_3} \cdot \frac{C_1}{C_1 + C_2} \right) \left[1 + \left(\frac{C_3}{C_2 + C_3} \cdot \frac{C_1}{C_1 + C_2} \right) + \left(\frac{C_3}{C_2 + C_3} \cdot \frac{C_1}{C_1 + C_2} \right)^2 \right] E_i$$

Since E_o is a function of C_1 , C_2 , and C_3 , one can determine the significance of C_2 by tabulating the numerical influence of C_2 . Since it has been established that E_o is proportional to C_1 , then it will be assumed that C_1 is the largest, which reduces it to only five cases. The cases are tabulated below.

Case	Capacitor Ratio
1	$C_1 \gg C_2 \gg C_3$
2	$C_1 \gg C_2 = C_3$
3	$C_1 \gg C_2 \ll C_3$
4	$C_1 = C_3 \gg C_2$
5	$C_1 = C_2 = C_3$

Substituting these capacitor ratios in the preceding formulas, one obtains

Case	$(E_o)_1$	$(E_o)_n$	$(E_o)_n$
1	$-E_i$	$\left(1 + \frac{C_2}{C_1}\right) (E_o)_1$	$\left[1 + \frac{C_1}{C_2} + \left(\frac{C_1}{C_2}\right)^2\right] (E_o)_1$
2	$-\frac{1}{2}E_i$	$\left(1 + \frac{1}{2}\right) (E_o)_1$	$\left[1 + \frac{1}{2} + \frac{1}{4}\right] (E_o)_1$
3	$-\frac{C_2}{C_1} E_i$	$(1 + 1) (E_o)_1$	$[1 + 1 + 1] (E_o)_1$
4	$-\frac{1}{2} E_i$	$\left(1 + \frac{C_1}{2C_2}\right) (E_o)_1$	$\left[1 + \frac{C_1}{2C_2} + \left(\frac{C_1}{2C_2}\right)^2\right] (E_o)_1$
5	$\frac{1}{4} E_i$	$\left(1 + \frac{1}{4}\right) (E_o)_1$	$\left[1 + \frac{1}{4} + \frac{1}{16}\right] (E_o)_1$

Defining $\Delta(E_o)_n$ as $(E_o)_{n+1} - (E_o)_n$, one obtains $\Delta(E_o)_n = Z^n (E_o)_1$ as the general increase in voltage after the n 'th switch. For each case, the result is:

Case	$(\Delta E_o)_n$ [in units of $(E_o)_1$]
1	$(C_3/C_2)^n$
2	$(1/2)^n$
3	-1
4	$(C_3/2C_2)^n$
5	$(1/4)^n$

Recapitulating these results for the first switch, one obtains:

Case	$(E_o)_i$	$\Delta(E_o)_i$
1	$-E_i$	$-\frac{C_1}{C_2}(E_o)_i$
2	$-\frac{1}{2}E_i$	$-\frac{1}{2}(E_o)_i$
3	$-\frac{C_1}{C_2}E_i$	$-(E_o)_i$
4	$-\frac{1}{2}E_i$	$-\frac{C_1}{2C_2}(E_o)_i$
5	$\frac{1}{4}E_i$	$\frac{1}{4}(E_o)_i$

As illustrations of the above cases, computations showing the actual numerical values of the second and third columns are given below and graphically illustrated in Figures 1 through 5 (pp 11 through 15).

Case 1

$$C_1:C_2:C_3::100:10:1$$

Then

$$\frac{C_2}{C_2 + C_3} = \frac{C_1}{C_1 + C_2} = \frac{10}{11}; \frac{C_3}{C_2 + C_3} = \frac{1}{11}$$

$$(E_o)_1 = \left(\frac{C_2}{C_2 + C_3} \cdot \frac{C_1}{C_1 + C_2} \right) E_i = \frac{10}{11} \cdot \frac{10}{11} E_i = \frac{100}{121} E_i$$

$$(E_o)_2 = \left(\frac{C_2}{C_2 + C_3} \cdot \frac{C_1}{C_1 + C_2} \right) \left[1 + \left(\frac{C_3}{C_2 + C_3} \cdot \frac{C_1}{C_1 + C_2} \right) \right] E_i = \frac{100}{121} \left(1 + \frac{10}{121} \right) E_i$$

Case 2

$$C_1:C_2:C_3::10:1:1$$

Then

$$\frac{C_1}{C_1 + C_2} = \frac{10}{11}; \frac{C_2}{C_1 + C_2} = \frac{C_3}{C_1 + C_2} = \frac{1}{2}$$

$$(E_o)_i = E_i$$

$$(E_o)_i = \frac{5}{11} \left(1 + \frac{5}{11}\right) E_i$$

Case 3

$$C_1:C_2:C_3::100:1:10$$

Then

$$\frac{C_1}{C_1 + C_2} = \frac{100}{101}; \frac{C_2}{C_2 + C_3} = \frac{1}{11}; \frac{C_3}{C_2 + C_3} = \frac{10}{11}$$

$$(E_o)_i = \frac{100}{1111} E_i$$

$$(E_o)_i = \frac{100}{1111} \left(1 + \frac{1000}{1111}\right) E_i$$

Case 4

$$C_1:C_2:C_3::10:10:1$$

Then

$$\frac{C_1}{C_1 + C_2} = \frac{1}{2}; \frac{C_2}{C_2 + C_3} = \frac{10}{11}; \frac{C_3}{C_2 + C_3} = \frac{1}{11}$$

$$(E_o)_i = \frac{5}{11} E_i$$

$$(E_o)_i = \frac{5}{11} \left(1 + \frac{1}{22}\right) E_i$$

Case 5

$$C_1 = C_2 = C_3$$

$$\frac{C_1}{C_1 + C_2} = \frac{1}{2} ; \quad \frac{C_2}{C_2 + C_3} = \frac{C_3}{C_2 + C_3} = \frac{1}{2}$$

$$(E_o)_1 = \frac{1}{4} E_i$$

$$(E_o)_2 = \left[\frac{1}{4} \left(1 + \frac{1}{4} \right) \right] E_i$$

Fig 1 Case 1, where $C_1 : C_2 : C_3 :: 100 : 10 : 1$

Fig 2 Case 2, where $C_1:C_2:C_3::10:1:1$

Fig 3 Case 3, where $C_1 : C_2 : C_3 :: 100 : 1 : 10$

Fig 4 Case 4, where $C_1 : C_2 : C_3 :: 10 : 10 : 1$

Fig 5 Case 5, where $C_1 = C_2 = C_3$

DISTRIBUTION LIST

Copy No.

Commanding Officer Picatinny Arsenal Dover, New Jersey ATTN: Technical Information Section	1 - 5
Commanding General OSWAC Picatinny Arsenal Dover, New Jersey ATTN: ORDSW-A	6
ORDSW-W	7
Chief of Ordnance Department of the Army Washington 25, D. C. ATTN: ORDTS, Mr. J. F. Kowaleski	8
Chief of Research & Development Office Chief of Staff Dept of the Army Washington 25, D.C.	9
Commanding General Continental Army Command Fort Monroe, Va. ATTN: Mr. N. W. Harrison	10
Commanding General Ordnance Ammunition Command Joliet, Illinois	11
Commanding General Engineer Research & Development Laboratories Ft. Belvoir, Va.	12

Copy No.

**Office, Chief of Engineers
Washington, D. C.
ATTN: ENGNF**

13

**Commanding General
Aberdeen Proving Ground, Md.
ATTN: Ballistic Research Laboratories,
Development & Proof Services**

14

**Commanding Officer
Diamond Ordnance Fuze Laboratories
Connecticut Avenue & Van Ness Street
Washington 25, D. C.
ATTN: Technical Reference Section**

15

**Office of Technical Services
Acquisitions Section
Department of Commerce
Washington 25, D. C.**

16 - 17

<p>AD _____ Accession No. _____</p> <p>Feltman Research Laboratories Picatinny Arsenal, Dover, N.J.</p> <p>THE ANALYSIS OF ELECTRONIC TIMING CIRCUITS Philip Zirkind</p> <p>Technical Notes FRL-TN-47, July 1961, 17 pp, figures. Ord Proj TSI-200. Unclassified Report</p> <p>General solutions were found for designing circuits for charge transfer from a charged capacitor to an uncharged capacitor via a third capacitor with varying charge.</p>	<p>AD _____ Accession No. _____</p> <p>Feltman Research Laboratories Picatinny Arsenal, Dover, N.J.</p> <p>THE ANALYSIS OF ELECTRONIC TIMING CIRCUITS Philip Zirkind</p> <p>Technical Notes FRL-TN-47, July 1961, 17 pp, figures. Ord Proj TSI-200. Unclassified Report</p> <p>General solutions were found for designing circuits for charge transfer from a charged capacitor to an uncharged capacitor via a third capacitor with varying charge.</p>	<p>AD _____ Accession No. _____</p> <p>Feltman Research Laboratories Picatinny Arsenal, Dover, N.J.</p> <p>THE ANALYSIS OF ELECTRONIC TIMING CIRCUITS Philip Zirkind</p> <p>Technical Notes FRL-TN-47, July 1961, 17 pp, figures. Ord Proj TSI-200. Unclassified Report</p> <p>General solutions were found for designing circuits for charge transfer from a charged capacitor to an uncharged capacitor via a third capacitor with varying charge.</p>
<p>UNCLASSIFIED</p> <ol style="list-style-type: none"> 1. Timing circuits – Analysis 2. Antitank mines – Firing mechanism 	<p>UNCLASSIFIED</p> <ol style="list-style-type: none"> 1. Timing circuits – Analysis 2. Antitank mines – Firing mechanism 	<p>UNCLASSIFIED</p> <ol style="list-style-type: none"> 1. Timing circuits – Analysis 2. Antitank mines – Firing mechanism
<p>AD _____ Accession No. _____</p> <p>Feltman Research Laboratories Picatinny Arsenal, Dover, N.J.</p> <p>THE ANALYSIS OF ELECTRONIC TIMING CIRCUITS Philip Zirkind</p> <p>Technical Notes FRL-TN-47, July 1961, 17 pp, figures. Ord Proj TSI-200. Unclassified Report</p> <p>General solutions were found for designing circuits for charge transfer from a charged capacitor to an uncharged capacitor via a third capacitor with varying charge.</p>	<p>UNCLASSIFIED</p> <ol style="list-style-type: none"> 1. Timing circuits – Analysis 2. Antitank mines – Firing mechanism 	<p>UNCLASSIFIED</p> <ol style="list-style-type: none"> 1. Timing circuits – Analysis 2. Antitank mines – Firing mechanism
<p>(over)</p>	<p>UNCLASSIFIED</p> <ol style="list-style-type: none"> 1. Timing circuits – Analysis 2. Antitank mines – Firing mechanism 	<p>UNCLASSIFIED</p> <ol style="list-style-type: none"> 1. Timing circuits – Analysis 2. Antitank mines – Firing mechanism

UNCLASSIFIED
UNITERMS

Antitank mine fuzes
Zirkind, P.
Ord Proj TSI-200

UNCLASSIFIED
UNTERMS

Antitank mine fuzes
Zirkind, P.
Ord proj TSI-200

UNCLASSIFIED

UNCLASSIFIED
UNITERMS

UNCLASSIFIED
UNTERMS

Antitank mine fuzes
Zirkind, P.
Ord Proj TSh-200

UNCLASSIFIED

UNCLASSIFIED

<p>AD _____ Accession No. _____</p> <p>Feltman Research Laboratories Picatinny Arsenal, Dover, N.J.</p> <p>THE ANALYSIS OF ELECTRONIC TIMING CIRCUITS</p> <p>Philip Zirkind</p> <p>Technical Notes FRL-TN-47, July 1961, 17 pp, figures. Ord Proj TSI-200. Unclassified Report</p> <p>General solutions were found for designing circuits for charge transfer from a charged capacitor to an uncharged capacitor via a third capacitor with varying charge.</p>	<p>UNCLASSIFIED</p> <p>1. Timing circuits – Analysis</p> <p>2. Antitank mines – Firing mechanism</p>	<p>AD _____ Accession No. _____</p> <p>Feltman Research Laboratories Picatinny Arsenal, Dover, N.J.</p> <p>THE ANALYSIS OF ELECTRONIC TIMING CIRCUITS</p> <p>Philip Zirkind</p> <p>Technical Notes FRL-TN-47, July 1961, 17 pp, figures. Ord Proj TSI-200. Unclassified Report</p> <p>General solutions were found for designing circuits for charge transfer from a charged capacitor to an uncharged capacitor via a third capacitor with varying charge.</p>	<p>UNCLASSIFIED</p>
<p>AD _____ Accession No. _____</p> <p>Feltman Research Laboratories Picatinny Arsenal, Dover, N.J.</p> <p>THE ANALYSIS OF ELECTRONIC TIMING CIRCUITS</p> <p>Philip Zirkind</p> <p>Technical Notes FRL-TN-47, July 1961, 17 pp, figures. Ord Proj TSI-200. Unclassified Report</p> <p>General solutions were found for designing circuits for charge transfer from a charged capacitor to an uncharged capacitor via a third capacitor with varying charge.</p>	<p>UNCLASSIFIED</p> <p>1. Timing circuits – Analysis</p> <p>2. Antitank mines – Firing mechanism</p>	<p>AD _____ Accession No. _____</p> <p>Feltman Research Laboratories Picatinny Arsenal, Dover, N.J.</p> <p>THE ANALYSIS OF ELECTRONIC TIMING CIRCUITS</p> <p>Philip Zirkind</p> <p>Technical Notes FRL-TN-47, July 1961, 17 pp, figures. Ord Proj TSI-200. Unclassified Report</p> <p>General solutions were found for designing circuits for charge transfer from a charged capacitor to an uncharged capacitor via a third capacitor with varying charge.</p>	<p>UNCLASSIFIED</p>
<p>AD _____ Accession No. _____</p> <p>Feltman Research Laboratories Picatinny Arsenal, Dover, N.J.</p> <p>THE ANALYSIS OF ELECTRONIC TIMING CIRCUITS</p> <p>Philip Zirkind</p> <p>Technical Notes FRL-TN-47, July 1961, 17 pp, figures. Ord Proj TSI-200. Unclassified Report</p> <p>General solutions were found for designing circuits for charge transfer from a charged capacitor to an uncharged capacitor via a third capacitor with varying charge.</p>	<p>UNCLASSIFIED</p> <p>1. Timing circuits – Analysis</p> <p>2. Antitank mines – Firing mechanism</p>	<p>AD _____ Accession No. _____</p> <p>Feltman Research Laboratories Picatinny Arsenal, Dover, N.J.</p> <p>THE ANALYSIS OF ELECTRONIC TIMING CIRCUITS</p> <p>Philip Zirkind</p> <p>Technical Notes FRL-TN-47, July 1961, 17 pp, figures. Ord Proj TSI-200. Unclassified Report</p> <p>General solutions were found for designing circuits for charge transfer from a charged capacitor to an uncharged capacitor via a third capacitor with varying charge.</p>	<p>UNCLASSIFIED</p>
<p>(over)</p>	<p>(over)</p>	<p>(over)</p>	<p>(over)</p>

UNCLASSIFIED
UNITERMS

Antitank mine fuzes
Zirkind, P.
Ord proj TSI-200

UNCLASSIFIED
UNITERMS

Antitank mine fuzes
Zirkind, P.
Ord proj TSI-200

UNCLASSIFIED
UNITERMS

UNCLASSIFIED
UNITERMS

Antitank mine fuzes
Zirkind, P.
Ord proj TSI-200

UNCLASSIFIED
UNITERMS

Antitank mine fuzes
Zirkind, P.
Ord proj TSI-200

UNCLASSIFIED
UNITERMS

Antitank mine fuzes
Zirkind, P.
Ord proj TSI-200

<p>UNCLASSIFIED</p> <p>AD _____ Accession No. _____</p> <p>Feltman Research Laboratories Picatinny Arsenal, Dover, N.J.</p> <p>THE ANALYSIS OF ELECTRONIC TIMING CIRCUITS Philip Zirkind</p> <p>Technical Notes FRL-TN-47, July 1961, 17 pp, figures. Ord Proj TSI-200. Unclassified Report</p> <p>General solutions were found for designing circuits for charge transfer from a charged capacitor to an uncharged capacitor via a third capacitor with varying charge.</p>	<p>UNCLASSIFIED</p> <p>AD _____ Accession No. _____</p> <p>Feltman Research Laboratories Picatinny Arsenal, Dover, N.J.</p> <p>THE ANALYSIS OF ELECTRONIC TIMING CIRCUITS Philip Zirkind</p> <p>Technical Notes FRL-TN-47, July 1961, 17 pp, figures. Ord Proj TSI-200. Unclassified Report</p> <p>General solutions were found for designing circuits for charge transfer from a charged capacitor to an uncharged capacitor via a third capacitor with varying charge.</p>	<p>UNCLASSIFIED</p> <p>AD _____ Accession No. _____</p> <p>Feltman Research Laboratories Picatinny Arsenal, Dover, N.J.</p> <p>THE ANALYSIS OF ELECTRONIC TIMING CIRCUITS Philip Zirkind</p> <p>Technical Notes FRL-TN-47, July 1961, 17 pp, figures. Ord Proj TSI-200. Unclassified Report</p> <p>General solutions were found for designing circuits for charge transfer from a charged capacitor to an uncharged capacitor via a third capacitor with varying charge.</p>
<p>(over)</p>	<p>(over)</p>	<p>(over)</p>
<p>UNCLASSIFIED</p> <p>AD _____ Accession No. _____</p> <p>Feltman Research Laboratories Picatinny Arsenal, Dover, N.J.</p> <p>THE ANALYSIS OF ELECTRONIC TIMING CIRCUITS Philip Zirkind</p> <p>Technical Notes FRL-TN-47, July 1961, 17 pp, figures. Ord Proj TSI-200. Unclassified Report</p> <p>General solutions were found for designing circuits for charge transfer from a charged capacitor to an uncharged capacitor via a third capacitor with varying charge.</p>	<p>UNCLASSIFIED</p> <p>AD _____ Accession No. _____</p> <p>Feltman Research Laboratories Picatinny Arsenal, Dover, N.J.</p> <p>THE ANALYSIS OF ELECTRONIC TIMING CIRCUITS Philip Zirkind</p> <p>Technical Notes FRL-TN-47, July 1961, 17 pp, figures. Ord Proj TSI-200. Unclassified Report</p> <p>General solutions were found for designing circuits for charge transfer from a charged capacitor to an uncharged capacitor via a third capacitor with varying charge.</p>	<p>UNCLASSIFIED</p> <p>AD _____ Accession No. _____</p> <p>Feltman Research Laboratories Picatinny Arsenal, Dover, N.J.</p> <p>THE ANALYSIS OF ELECTRONIC TIMING CIRCUITS Philip Zirkind</p> <p>Technical Notes FRL-TN-47, July 1961, 17 pp, figures. Ord Proj TSI-200. Unclassified Report</p> <p>General solutions were found for designing circuits for charge transfer from a charged capacitor to an uncharged capacitor via a third capacitor with varying charge.</p>
<p>(over)</p>	<p>(over)</p>	<p>(over)</p>

UNCLASSIFIED
UNITERMS

Antitank mine fuzes
Zirkind, P.
Ord proj TSt-200

UNCLASSIFIED
UNITERMS

Antitank mine fuzes
Zirkind, P.
Ord proj TSt-200

UNCLASSIFIED

UNCLASSIFIED
UNITERMS

Antitank mine fuzes
Zirkind, P.
Ord proj TSt-200

UNCLASSIFIED

Antitank mine fuzes
Zirkind, P.
Ord proj TSt-200

UNCLASSIFIED

UNCLASSIFIED