ЛАБОРАТОРНАЯ РАБОТА №4

Вычисление наибольшего общего делителя

Пусть числа a и b целые и $b \neq 0$. Разделить a на b с остатком — значит представить a в виде a = qb + r, где $q,r \in Z$ и $0 \le r \le |b|$. Число q называется неполным частным, число r — неполным остатком от деления a на b.

Целое число $d \neq 0$ называется наибольшим общим делителем целых чисел $a_1, a_2, ..., a_k$ (обозначается $d = \text{HOД}(a_1, a_2, ..., a_k)$), если выполняются следующие условия:

- 1. каждое из чисел $a_1, a_2, ..., a_k$ делится на d;
- 2. если $d_1 \neq 0$ другой общий делитель чисел $a_1, a_2, ..., a_k$, то d делится на d_1 . Например, НОД(12345, 24690) = 12345, НОД(12345, 54321) = 3, НОД(12345, 12541) = 1.

Ненулевые целые числа a и b называются $accountercondomain between <math>a\sim b$), если a делится на b и b делится на a.

Для любых целых чисел $a_1, a_2, ..., a_k$ существует наибольший общий делитель d и его можно представить в виде *линейной комбинации* этих чисел:

$$d = c_1 a_1 + c_2 a_2 + \dots + c_k a_k, c_i \in Z$$
 (Z – множество целых чисел).

Например, НОД чисел 91, 105, 154 равен 7. В качестве линейного представления можно взять

$$7 = 7 \cdot 91 + (-6) \cdot 105 + 0 \cdot 154,$$

либо

$$7 = 4 \cdot 91 + 1 \cdot 105 - 3 \cdot 154.$$

Целые числа $a_1, a_2, ..., a_k$ называются взаимно простыми в совокупности, если $HOД(a_1, a_2, ..., a_k)=1$. Целые числа a и b называются взаимно простыми, если HOД(a,b)=1.

Целые числа a_1, a_2, \dots, a_k называются *попарно взаимно простыми*, если $HOД(a_i, a_i)=1$ для всех $1 \le i \ne j \le k$.

Алгоритмы вычисления наибольшего общего делителя.

Для вычисления наибольшего общего делителя двух целых чисел применяется способ повторного деления с остатком, называемый *алгоритмом Евклида*.

1. Алгоритм Евклида.

Вход. Целые числа $a, b; 0 < b \le a$.

Bыход.d = HOД(a,b).

- 1. Положить $r_0 \leftarrow a, r_1 \leftarrow b, i \leftarrow 1$.
- 2. Найти остаток r_{i+1} от деления r_{i-1} на r_i .
- 3. Если $r_{i+1}=0$, то положить $d \leftarrow r_i$. В противном случае положить $i \leftarrow i+1$ и вернуться на шаг 2.
- 4. Результат: *d*.

Бинарный алгоритм Евклида является более быстрым при реализации на компьютере, поскольку использует двоичное представление чисел a и b. Бинарный алгоритм Евклида основан на следующих свойствах наибольшего общего делителя (считаем, что $0 < b \le a$):

- 1) если оба числа a и b четные, то $HOД(a,b) = 2 \cdot HOД(\frac{a}{2}, \frac{b}{2});$
- 2) если число a нечетное, число b четное, то $HOД(a,b) = HOД(a,\frac{b}{2})$;
- 3) если оба числа a и b нечетные, a > b, то HOД(a,b) = HOД(a b, b);
- 4) если a = b, то HOД(a, b) = a.

2. Бинарный алгоритм Евклида.

Bxod. Целые числа $a, b; 0 < b \le a$.

Bыход. d = HOД(a, b).

- 9. Положить $g \leftarrow 1$.
- 2. Пока оба числа a и b четные, выполнять $a \leftarrow \frac{a}{2}$, $b \leftarrow \frac{b}{2}$, $g \leftarrow 2g$ до получения хотя бы одного нечетного значения a или b.
- 3. Положить $u \leftarrow a, v \leftarrow b$.
- 4. Пока $u \neq 0$ выполнять следующие действия:

- 4.1. Пока ичетное, полагать $u \leftarrow \frac{u}{2}$.
- 4.2.Пока *v*четное, полагать $v \leftarrow \frac{v}{2}$.
- 4.3. При $u \ge v$ положить $u \leftarrow u v$. В противном случае положить $v \leftarrow v u$.
- 5. Положить $d \leftarrow gv$.
- Результат: d

3. Расширенный алгоритм Евклида.

Вход. Целые числа $a, b; 0 < b \le a$.

3, PHBIIII BBCKOFO Bыход. d = HOД(a, b); такие целые числа x, y, что ax + by = d.

- 1. Положить $r_0 \leftarrow a, r_1 \leftarrow b, x_0 \leftarrow 1, x_1 \leftarrow 0, y_0 \leftarrow 0, y_1 \leftarrow 1, i \leftarrow 1.$
- 2. Разделить с остатком r_{i-1} на r_i : $r_{i-1} = q_i r_i + r_{i+1}$.
- 3. Если $r_{i+1}=0$, то положить $d\leftarrow r_i$, $x\leftarrow x_i$, $y\leftarrow y_i$. В противном случае положить $x_{i+1} \leftarrow x_{i-1} - q_i x_i$, $y_{i+1} \leftarrow y_{i-1} - q_i y_i$, $i \leftarrow i+1$ и вернуться на шаг 2.
- 4. Результат: *d*, *x*, *y*.

4. Расширенный бинарный алгоритм Евклида.

 $Bxo\partial$. Целые числа $a,b; 0 < b \le a$.

Bыход. d = HOД(a, b).

- 1. Положить $g \leftarrow 1$.
- 2. Пока числа a и b четные, выполнять $a \leftarrow \frac{a}{2}, b \leftarrow \frac{b}{2}, g \leftarrow 2g$ до получения хотя бы одного нечетного значения a или b.
- 3. Положить $u \leftarrow a, v \leftarrow b, A \leftarrow 1, B \leftarrow 0, C \leftarrow 0, D \leftarrow 1$.
- 4. Пока $u \neq 0$ выполнять следующие действия:
 - 4.1.Пока и четное:
 - 4.1.1. Положить $u \leftarrow \frac{u}{2}$.
 - 4.1.2. Если оба числа A и B четные, то положить $A \leftarrow \frac{A}{2}$, $B \leftarrow \frac{B}{2}$. В противном случае положить $A \leftarrow \frac{A+b}{2}, B \leftarrow \frac{B-a}{2}$.
 - 4.2.Пока *v* четное:
 - 4.2.1. Положить $v \leftarrow \frac{v}{2}$.

- 4.2.2. Если оба числа C и D четные, то положить $C \leftarrow \frac{C}{2}$, $D \leftarrow \frac{D}{2}$. В противном случае положить $C \leftarrow \frac{C+b}{2}$, $D \leftarrow \frac{D-a}{2}$.
- 4.3. При $u \geq v$ положить $u \leftarrow u v$, $A \leftarrow A C$, $B \leftarrow B D$. В противном случае 160HPIIIIeBCKOFO положить $v \leftarrow v - u$, $C \leftarrow C - A$, $D \leftarrow D - B$.
- 5. Положить $d \leftarrow gv, x \leftarrow C, y \leftarrow D$.
- 6. Результат: *d*, *x*, *y*.

Задания к лабораторной работе

TPAMM
TPAMM
TPAMM
TPAMM
TO SHEAD THE BEHHER WHITE BEHHER THE BEHER THE BEHHER THE BEHER THE BEHHER Реализовать все рассмотренные алгоритмы программно.