Mecânica dos Fluidos Ano Letivo 2022/23

Fig.1 Esquema de montagem para a realização da experiência da demonstração do teorema de Bernoulli

Resumo

O objetivo deste trabalho prático é comprovar a validade do Teorema de Bernoulli aplicado a um escoamento de água permanente numa conduta circular de secção variável (Venturi). Através de instrumentos apropriados e obtemos cálculos dados como diferentes tipos de pressão (estática, de estagnação e dinâmica) e velocidade da água em diferentes secções da conduta e através da destes dados comparação experimentais com valores teóricos, podemos demonstrar o Teorema de Bernoulli.

Introdução

A equação da conservação energia aplicada a um escoamento permanente, incompressível invíscido onde não se verifiquem variações de energia (calor ou energia interna, por exemplo) simplifica-se na equação de Bernoulli:

$$y_1 + \frac{v_1^2}{2g} + \frac{P_1}{\rho g} = y_2 + \frac{v_2^2}{2g} + \frac{P_2}{\rho g}$$

Sendo o escoamento, neste trabalho experimental, horizontal (y1=y2), a pressão (P) será máxima onde a velocidade for nula e, nesse ponto, é conhecida por pressão total ou de estagnação:

$$P_{estagnação} = P + \frac{1}{2} \rho v^2$$

Sendo P, a pressão estática e 1/2ρν², a pressão dinâmica.

A conduta de secção variável é de forma cónica e para atingir o objetivo da experiência vamos estudar o escoamento com o Venturi (a conduta de secção variável) em dois perfis: convergente e divergente.

Através da análise da equação de Bernoulli comprovamos que quando há uma diminuição da velocidade a pressão aumenta e vice-versa.

Procedimento Experimental

Neste trabalho foi seguido o protocolo disponível no e-learning.

Foi definido um caudal de entrada na secção de ajustando ensaio cuidadosamente a válvula.

Para calcular esse caudal usámos um cronometro e um "jarro" volumétrico, realizando cinco medições

Os valores de pressão estática foram medidos em mm de água recorrendo a um manómetro unido ao tubo de venturi.

De seguida medimos a pressão com sonda e a pressão de estagnação em cada ponto.

Por fim, invertemos o tubo e repetimos o procedimento inteiro para a nova posição.

Teorema de Bernoulli Demonstração

Alexandre Silva 107957, Diogo Fernandes 107364, Magner Gusse 110180, Matilde Vinagreiro 109021

Mecânica dos Fluidos, Turma P7, Grupo P7-2, Departamento de Engenharia Mecânica,

Universidade de Aveiro

Resultados e Cálculos

procedimento experimental retirámos os seguintes valores:

	P estatica (±0.5 mmH2O)	Po (±0.5 mm H2O)	P com sonda (±0.5 mm H2O)	Diametro da secção (mm)
а	274	273	267	25
b	254	271	246	13.9
С	232	270	224	11.8
d	208	269	200	10.7
е	186	267	176	10.0
f	210	231	206	25.0

Tabela.1 Valores experimentais das pressões no Venturi convergente.

_		•	
Volume (±0.000125 m3)	Tempo (±0.1 s)	Caudal (m^3/s)	Erro associado ao caudal
0.000550	5.01	0.000110	1.4E-06
0.000550	5.07	0.000108	1.5E-07
0.000500	4.67	0.000107	1.3E-06
0.000480	4.41	0.000109	5.1E-07
0.000530	4.93	0.000108	8.3E-07
Média:		0.000108	8.4E-07

P estatica (±0.5 mmH2O) Po (±0.5 mm H2O) P com sonda (±0.5 mm H2O) Diametro da secção(mm)

Tabela.2 Valores experimentais do caudal no Venturi convergente.

a	2/3	282	2//	25
b	164	283	157	10
С	165	278	157	10.7
d	169	274	197	11.8
е	200	274	197	13.9
f	234	246	232	25.0

Tabela.3 Valores experimentais das pressões no Venturi divergente.

Volume (±0.000125 m3)	Tempo (±0.1 s)	Caudal (m^3/s)	Erro associado ao caudal
0.000430	3.37	0.000128	3.0E-06
0.000500	4.35	0.000115	9.6E-06
0.000580	4.55	0.000127	2.9E-06
0.000420	3.50	0.000120	4.6E-06
0.000385	2.90	0.000133	8.2E-06
Méd	dia:	0.000125	5.7E-06

Tabela.4 Valores experimentais do caudal no Venturi divergente.

De seguida usámos a equação da

conservação da massa para verificar as velocidades teóricas (que foram calculadas através do caudal médio e das áreas de cada secção do Venturi) que foi dado em cada ponto.

valores experimentais velocidades foram obtidos a partir das pressões dinâmicas usando as equações:

$$P_{din\hat{a}mica} = P_0 - P_{est\acute{a}tica} \tag{1}$$

$$v = \sqrt{\frac{2*P_{dinamica}}{\rho}} \tag{2}$$

Para os cálculos usámos os seguintes dados: -Densidade da água: 0,00000997 (g/mm^3) [1] -Diâmetros das diferentes secções do venturi (e áreas correspondentes)

-Medições diretas de pressão por parte dos tubos manométricos

Através da mesma obtemos os convintes resultados.

seguintes resultados.						
	V exp (m/s)	V teo (m/s)	Erro (%)			
а	0.140	0.221	36.6			
b	0.577	0.714	19.1			
С	0.863	0.991	12.9			
d	1.093	1.205	9.2			
е	1.260	1.379	8.7			
f	0.642	0.221	190.7			

Gráfico.1 Gráfico contínuo e normalizado da velocidade experimetal em relação à teórica no Venturi convergente.

	V exp (m/s)	V teo (m/s)	Erro (%)
а	0.420	0.254	65.5
b	1.527	1.586	3.7
С	1.488	1.385	7.4
d	1.435	1.139	26.0
е	1.204	0.821	46.7
f	0.485	0.254	91.1

Tabela.6 Valores da velocidade e respetivo erro no Venturi divergente.

Gráfico.2 Gráfico contínuo e normalizado da velocidade experimetal em relação à teórica no Venturi divergente.

Verificamos de que apesar as velocidades experimentais terem um grande desvio em relação ao valor teórico, o erro associado aos valores experimentais intercepta os valores teóricos na maioria dos pontos pontos pontos (exceto no último ponto no convergente e os dois ultimos pontos antes do que encerra), o que indica algum grau de exatidão.

	P Dinamica (Pa)		P Dinamica (Pa)
a	24.29	а	32.11
b	254.18	b	1254.22
С	489.41	С	956.84
d	723.88	d	646.91
е	948.86	е	335.98
f	24.29	f	32.11

Tabela.8 Valores da pressão **Tabela.7** Valores da pressão dinâmica no Venturi convergente. dinâmica no Venturi divergente.

Depois, usámos a equação de Bernoulli para prever a pressão ao longo do venturi (convergente e divergente) para comprovar a veracidade desta, e obtemos os seguintes resultados:

P estatica exp (Pa) P estatica teo (Pa) Erro (%) 2678.22 2678.22 0.0 2482.73 2448.33 2267.69 2213.10 2.8 1978.63 2033.10 1818.06 1753.65 2052.65 2678.22 23.4

oel	oela.9 Valores da pressão estática e respetivo erro no Venturi convergento						
		P estatica exp (Pa)	P estatica teo (Pa)	Erro (%)			
	а	2668.44	2668.44	0.0			
	b	1603.02	1446.33	10.8			
	С	1612.80	1743.71	7.5			
	d	1651.89	2053.64	19.6			
	е	1954.90	2364.57	17.3			
	f	2297 24	2668 44	1/1 2			

Tabela.10 Valores da pressão estática e respetivo erro no Venturi divergente

Gráfico.3 Gráfico contínuo e normalizado da pressão estática

Gráfico.4 Gráfico contínuo e normalizado da pressão estática experimetal em relação à teórica no Venturi divergente.

Verificam-se desvios em relação ao valor teórico de 20% mas em ambos os casos vemos pelas barras de erro que o valor experimental intercepta o teórico (exceção último ponto posição convergente).

No caso do venturi convergente: A média dos valores experimentais da pressão de estagnação 263.50 ± 10.83 mm de H20.

valor teórico da pressão de estagnação é 276.49 mm de H20. O intervalo dos valores experimentais

não intercepta com o valor teórico e o desvio percentual é de 4,70 %. No caso do venturi convergente:

A média dos valores experimentais da pressão de estagnação 272.83 ± 15.17 mm de H20.

O valor teórico da pressão de1,24%. estagnação é 276.28 mm de H20.

o intervalo dos valores Aqui experimentais, no convergente intercepta com o valor teórico, menos no ultimo ponto, e no divergente, só os dois primeiros intercetam.

O valor de Po vai corresponder à cota de energia total média de escoamento em ambos os casos.

Com os valores de Po experimentais, calculámos a percentagem de energia dissipada de ponto para ponto como é visível nas seguintes tabelas:

		•		
	% de Enegia Dissipada			% de Enegia Dissipada
а	0.00		а	0.00
b	0.73		b	0.35
С	0.37		С	1.77
d	0.37		d	1.44
е	0.74		е	0.00
f	13 48	•	f	10.22

Tabela.11 Valores da dissipação de Tabela.12 Valores da dissipação energia no Venturi convergente. de energia no Venturi divergente. Verifica-se facilmente que um Venturi perde menos energia na posição divergente.

Conclusões

Analisando resultados OS que verificar te.obtivemos podemos atingimos os objetivos do trabalho, nomeadamente demonstrar que o Teorema de Bernoulli se (quando a velocidade aumenta a pressão diminui e vice-versa).

obtivemos disso Apesar erros consideráveis que são explicados pelas perdas de energia.

Outros fatores que podem ter contribuindo para os erros foram talvez a presença de ar nas condutas que não conduzia a leituras estáveis nos tubos manométricos e fraca resolução dos "copos" volumétricos para medição do caudal.

Concluímos ainda que Venturi um utilizado deve ser na posição 2 (divergente) pois perde menos energia.

Aplicações

O teorema de Bernoulli é aplicado em áreas muito diversas do nosso estilo vida. Um exemplo bastante interessante é encontrado no tubo de Pitot, que é usado em aviões e carros de fórmula 1 para medições de velocidade. Ele utiliza um principio semelhante ao Venturi nomeadamente na posição divergente.

Referências

Protocolo do Trabalho Prático da Unidade Curricular.

Slides da Unidade Curricular. [1] Bergman, T. L., & Incropera, F. P. (2011). Fundamentals of heat and mass transfer (Seventh edition.). Wiley.