

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problems Mailbox.**

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C12N 15/86, 7/00, 15/88, A61K 48/00 // C07K 14/47		A2	(11) International Publication Number: WO 96/13597 (43) International Publication Date: 9 May 1996 (09.05.96)
(21) International Application Number: PCT/US95/14017		(74) Agents: BAK, Mary, E. et al.; Howson and Howson, Spring House Corporate Center, P.O. Box 457, Spring House, PA 19477 (US).	
(22) International Filing Date: 27 October 1995 (27.10.95)		(81) Designated States: AL, AM, AU, BB, BG, BR, BY, CA, CN, CZ, EE, FI, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LT, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, RO, RU, SD, SG, SI, SK, TJ, TM, TT, UA, UG, US, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, LS, MW, SD, SZ, UG).	
(30) Priority Data: 08/331,381 28 October 1994 (28.10.94) US		Published <i>Without international search report and to be republished upon receipt of that report.</i>	
(60) Parent Application or Grant (63) Related by Continuation US 08/331,381 (CIP) Filed on 28 October 1994 (28.10.94)			
(71) Applicant (for all designated States except US): THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA [US/US]; 133 South 36th Street, Philadelphia, PA 19104-3246 (US).			
(72) Inventors; and (75) Inventors/Applicants (for US only): WILSON, James, M. [US/US]; 1350 N. Avignon Drive, Gladwyne, PA 19035 (US). FISHER, Krishna, J. [US/US]; 4006 Pine Street, Philadelphia, PA 19104 (US). CHEN, Shu-Jen [-/US]; 3901 Conshohocken Avenue, Philadelphia, PA 19131 (US). WEITZMAN, Matthew [GB/US]; 301 S. 19th Street #2A, Philadelphia, PA 19103 (US).			

(54) Title: IMPROVED ADENOVIRUS AND METHODS OF USE THEREOF

(57) Abstract

A recombinant adenovirus and a method for producing the virus are provided which utilize a recombinant shuttle vector comprising adenovirus DNA sequence for the 5' and 3' cis-elements necessary for replication and virion encapsidation in the absence of sequence encoding viral genes and a selected minigene linked thereto, and a helper adenovirus comprising sufficient adenovirus gene sequences necessary for a productive viral infection. Desirably the helper gene is crippled by modifications to its 5' packaging sequences, which facilitates purification of the viral particle from the helper virus.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgyzstan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LU	Luxembourg	TD	Chad
CS	Czechoslovakia	LV	Latvia	TG	Togo
CZ	Czech Republic	MC	Monaco	TJ	Tajikistan
DE	Germany	MD	Republic of Moldova	TT	Trinidad and Tobago
DK	Denmark	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	US	United States of America
FI	Finland	MN	Mongolia	UZ	Uzbekistan
FR	France			VN	Viet Nam
GA	Gabon				

IMPROVED ADENOVIRUS AND METHODS OF USE THEREOF

This invention was supported by the National Institute of Health Grant No. P30 DK 47757. The United 5 States government has rights in this invention.

Field of the Invention

The present invention relates to the field of vectors useful in somatic gene therapy and the production 10 thereof.

Background of the Invention

Human gene therapy is an approach to treating human disease that is based on the modification of gene 15 expression in cells of the patient. It has become apparent over the last decade that the single most outstanding barrier to the success of gene therapy as a strategy for treating inherited diseases, cancer, and other genetic dysfunctions is the development of useful 20 gene transfer vehicles. Eukaryotic viruses have been employed as vehicles for somatic gene therapy. Among the viral vectors that have been cited frequently in gene therapy research are adenoviruses.

Adenoviruses are eukaryotic DNA viruses that can be 25 modified to efficiently deliver a therapeutic or reporter transgene to a variety of cell types. Recombinant adenoviruses types 2 and 5 (Ad2 and Ad5, respectively), which cause respiratory disease in humans, are currently being developed for gene therapy. Both Ad2 and Ad5 30 belong to a subclass of adenovirus that are not associated with human malignancies. Recombinant adenoviruses are capable of providing extremely high levels of transgene delivery to virtually all cell types, regardless of the mitotic state. High titers (10^{13} 35 plaque forming units/ml) of recombinant virus can be easily generated in 293 cells (the adenovirus quivalent

to retrovirus packaging cell lines) and cryo-stored for extended periods without appreciable losses. The efficacy of this system in delivering a therapeutic transgene *in vivo* that complements a genetic imbalance has been demonstrated in animal models of various disorders [Y. Watanabe, Atherosclerosis, 36:261-268 (1986); K. Tanzawa et al, FEBS Letters, 118(1):81-84 (1980); J.L. Golasten et al, New Engl. J. Med., 309(11983):288-296 (1983); S. Ishibashi et al, J. Clin. Invest., 92:883-893 (1993); and S. Ishibashi et al, J. Clin. Invest., 93:1885-1893 (1994)]. Indeed, a recombinant replication defective adenovirus encoding a cDNA for the cystic fibrosis transmembrane regulator (CFTR) has been approved for use in at least two human CF clinical trials [see, e.g., J. Wilson, Nature, 365:691-692 (Oct. 21, 1993)]. Further support of the safety of recombinant adenoviruses for gene therapy is the extensive experience of live adenovirus vaccines in human populations.

Human adenoviruses are comprised of a linear, approximately 36 kb double-stranded DNA genome, which is divided into 100 map units (m.u.), each of which is 360 bp in length. The DNA contains short inverted terminal repeats (ITR) at each end of the genome that are required for viral DNA replication. The gene products are organized into early (E1 through E4) and late (L1 through L5) regions, based on expression before or after the initiation of viral DNA synthesis [see, e.g., Horwitz, Virology, 2d edit., ed. B. N. Fields, Raven Press, Ltd., New York (1990)].

The first-generation recombinant, replication-deficient adenoviruses which have been developed for gene therapy contain deletions of the entire E1a and part of the E1b regions. This replication-defective virus is grown on an adenovirus-transformed, complementation human

embryonic kidney cell line containing a functional adenovirus E1a gene which provides a transacting E1a protein, the 293 cell [ATCC CRL1573]. E1-deleted viruses are capable of replicating and producing infectious virus 5 in the 293 cells, which provide E1a and E1b region gene products in trans. The resulting virus is capable of infecting many cell types and can express the introduced gene (providing it carries its own promoter), but cannot replicate in a cell that does not carry the E1 region DNA 10 unless the cell is infected at a very high multiplicity of infection.

However, *in vivo* studies revealed transgene expression in these E1 deleted vectors was transient and invariably associated with the development of severe 15 inflammation at the site of vector targeting [S. Ishibashi et al, J. Clin. Invest., 93:1885-1893 (1994); J. M. Wilson et al, Proc. Natl. Acad. Sci., USA, 85:4421-4424 (1988); J. M. Wilson et al, Clin. Bio., 3:21-26 (1991); M. Grossman et al, Som. Cell. and Mol. Gen., 17:601-607 (1991)]. One explanation that has been 20 proposed to explain this finding is that first generation recombinant adenoviruses, despite the deletion of E1 genes, express low levels of other viral proteins. This could be due to basal expression from the unstimulated 25 viral promoters or transactivation by cellular factors. Expression of viral proteins leads to cellular immune responses to the genetically modified cells, resulting in their destruction and replacement with nontransgene containing cells.

30 There yet remains a need in the art for the development of additional adenovirus vector constructs for gene therapy.

Summary of the Invention

In one aspect, the invention provides the components of a novel recombinant adenovirus production system. One component is a shuttle plasmid, pAdΔ, that comprises adenovirus cis-elements necessary for replication and virion encapsidation and is deleted of all viral genes. This vector carries a selected transgene under the control of a selected promoter and other conventional vector/plasmid regulatory components. The other component is a helper adenovirus, which alone or with a packaging cell line, supplies sufficient gene sequences necessary for a productive viral infection. In a preferred embodiment, the helper virus has been altered to contain modifications to the native gene sequences which direct efficient packaging, so as to substantially disable or "cripple" the packaging function of the helper virus or its ability to replicate.

In another aspect, the present invention provides a unique recombinant adenovirus, an AdΔ virus, produced by use of the components above. This recombinant virus comprises an adenovirus capsid, adenovirus cis-elements necessary for replication and virion encapsidation, but is deleted of all viral genes (i.e., all viral open reading frames). This virus particle carries a selected transgene under the control of a selected promoter and other conventional vector regulatory components. This AdΔ recombinant virus is characterized by high titer transgene delivery to a host cell and the ability to stably integrate the transgene into the host cell chromosome. In one embodiment, the virus carries as its transgene a reporter gene. Another embodiment of the recombinant virus contains a therapeutic transgene.

In another aspect, the invention provides a method for producing the above-described recombinant AdΔ virus by co-transferring a cell line (either a packaging cell

line or a non-packaging cell line) with a shuttle vector or plasmid and a helper adenovirus as described above, wherein the transfected cell generates the AdΔ virus. The AdΔ virus is subsequently isolated and purified therefrom.

In yet a further aspect, the invention provides a method for delivering a selected gene to a host cell for expression in that cell by administering an effective amount of a recombinant AdΔ virus containing a therapeutic transgene to a patient to treat or correct a genetically associated disorder or disease.

Other aspects and advantages of the present invention are described further in the following detailed description of the preferred embodiments thereof.

15

Brief Description of the Figures

Fig. 1A is a schematic representation of the organization of the major functional elements that define the 5' terminus from Ad5 including an inverted terminal repeat (ITR) and a packaging/enhancer domain. The TATA box of the E1 promoter (black box) and E1A transcriptional start site (arrow) are also shown.

Fig. 1B is an expanded schematic of the packaging/enhancer region of Fig. 1A, indicating the five packaging (PAC) domains (A-repeats), I through V. The arrows indicate the location of PCR primers referenced in Figs. 9A and 9B below.

Fig. 2A is a schematic of shuttle vector pAdΔ.CMVLacZ containing 5' ITR from Ad5, followed by a CMV promoter/enhancer, a LacZ gene, a 3' ITR from Ad5, and remaining plasmid sequence from plasmid pSP72 backbone. Restriction endonuclease enzymes are represented by conventional d signatures in the plasmid constructs.

Fig. 2B is a schematic of the shuttle vector digested with EcoRI to release the modified Ad Δ genome from the pSP72 plasmid backbone.

Fig. 2C is a schematic depiction of the function of the vector system. In the presence of an E1-deleted helper virus Ad.CBhpAP which encodes a reporter minigene for human placenta alkaline phosphatase (hpAP), the Ad Δ .CMVLacZ genome is packaged into preformed virion capsids, distinguishable from the helper virions by the presence of the LacZ gene.

Figs. 3A to 3F [SEQ ID NO: 1] report the top DNA strand of the double-stranded plasmid pAd Δ .CMVLacZ. The complementary sequence may be readily obtained by one of skill in the art. The sequence includes the following components: 3' Ad ITR (nucleotides 607-28 of SEQ ID NO: 1); the 5' Ad ITR (nucleotides 5496-5144 of SEQ ID NO: 1); CMV promoter/enhancer (nucleotides 5117-4524 of SEQ ID NO: 1); SD/SA sequence (nucleotides 4507-4376 of SEQ ID NO: 1); LacZ gene (nucleotides 4320-845 of SEQ ID NO: 1); and a poly A sequence (nucleotides 837-639 of SEQ ID NO: 1).

Fig. 4A is a schematic of shuttle vector pAd Δ c.CMVLacZ containing an Ad5 5' ITR and 3' ITR positioned head-to-tail, with a CMV enhancer/promoter-LacZ minigene immediately following the 5' ITR, followed by a plasmid pSP72 (Promega) backbone. Restriction endonuclease enzymes are represented by conventional designations in the plasmid constructs.

Fig. 4B is a schematic depiction of the function of the vector system of Fig. 4A. In the presence of helper virus Ad.CBhpAP, the circular pAD Δ c.CMVLacZ shuttle vector sequence is packaged into virion heads, distinguishable from the helper virions by the presence of the LacZ gene.

Figs. 5A to 5F [SEQ ID NO: 2] report the top DNA strand of the double-stranded vector pAdAc.CMVLacZ. The complementary sequence may be readily obtained by one of skill in the art. The sequence includes the following components: 5' Ad ITR (nucleotides 600-958 of SEQ ID NO: 2); CMV promoter/enhancer (nucleotides 969-1563 of SEQ ID NO: 2); SD/SA sequence (nucleotides 1579-1711); LacZ gene (nucleotides 1762-5236 of SEQ ID NO: 2); poly A sequence (nucleotides 5245-5443 of SEQ ID NO: 2); and 3' Ad ITR (nucleotides 16-596 of SEQ ID NO: 2).

Fig. 6 is a schematic of shuttle vector pAdA.CBCFTR containing 5' ITR from Ad5, followed by a chimeric CMV enhancer/β actin promoter enhancer, a CFTR gene, a poly-A sequence, a 3' ITR from Ad5, and remaining plasmid sequence from plasmid pSL1180 (Pharmacia) backbone. Restriction endonuclease enzymes are represented by conventional designations in the plasmid constructs.

Figs. 7A to 7H [SEQ ID NO: 3] report the top DNA strand of the double-stranded plasmid pAdA.CBCFTR. The complementary sequence may be readily obtained by one of skill in the art. The sequence includes the following components: 5' Ad ITR (nucleotides 9611-9254 of SEQ ID NO: 3); chimeric CMV enhancer/β actin promoter (nucleotides 9241-8684 of SEQ ID NO: 3); CFTR gene (nucleotides 8622-4065 of SEQ ID NO: 3); poly A sequence (nucleotides 3887-3684 of SEQ ID NO: 3); and 3' Ad ITR (nucleotides 3652-3073 of SEQ ID NO: 3). The remaining plasmid backbone is obtained from pSL1180 (Pharmacia).

Fig. 8A illustrates the generation of 5' adenovirus terminal sequence that contained PAC domains I and II by PCR. See, arrows indicating righthand and lefthand (PAC II) PCR probes in Fig. 1B.

Fig. 8B illustrates the generation of 5' terminal sequence that contained PAC domains I, II, III and IV by PCR. See, arrows indicating righthand and lefthand (PAC IV) PCR probes in Fig. 1B.

5 Fig. 8C depicts the amplification products subcloned into the multiple cloning site of pAd.Link.1 (IHGT Vector Core) generating pAd.PACII (domains I and II) and pAd.PACIV (domains I, II, III, and IV) resulting in crippled helper viruses, Ad.PACII and Ad.PACIV with
10 modified packaging (PAC) signals.

15 Fig. 9A is a schematic representation of the subcloning of a human placenta alkaline phosphatase reporter minigene containing the immediate early CMV enhancer/ promoter (CMV), human placenta alkaline phosphatase cDNA (hpAP), and SV40 polyadenylation signal (PA) into pAd.PACII to result in crippled helper virus vector pAdA.PACII.CMVhpAP. Restriction endonuclease enzymes are represented by conventional designations in the plasmid constructs.

20 Fig. 9B is a schematic representation of the subcloning of the same minigene of Fig. 9A into pAd.PACIV to result in crippled helper virus vector pAd.PACIV.CMV.hpAP.

25 Fig. 10 is a flow diagram summarizing the synthesis of an adenovirus-based polycation helper virus conjugate and its combination with a pAdA shuttle vector to result in a novel viral particle complex. CsCl band purified helper adenovirus was reacted with the heterobifunctional crosslinker sulfo-SMCC and the capsid protein fiber is
30 labeled with the nucleophilic maleimide moiety. Free sulfhydryls were introduced onto poly-L-lysine using 2-iminothiolane-HCl and mixed with the labelled adenovirus, resulting in the helper virus conjugate Ad-pLys. A unique adenovirus-based particle is generated by purifying the Ad-pLys conjugate over a CsCl gradient to
35

remove unincorporated poly-L-lysine, followed by extensively dialyzing, adding shuttle plasmid DNAs to Ad-pLys and allowing the complex formed by the shuttle plasmid wrapped around Ad-pLys to develop.

5 Fig. 11 is a schematic diagram of pCCL-DMD, which is described in detail in Example 9 below.

Fig. 12A - 12P provides the continuous DNA sequence of pAdΔ.CMVmDys [SEQ ID NO:10].

10 Detailed Description of the Invention

The present invention provides a unique recombinant adenovirus capable of delivering transgenes to target cells, as well as the components for production of the unique virus and methods for the use of the virus to treat a variety of genetic disorders.

15 The AdΔ virus of this invention is a viral particle containing only the adenovirus cis-elements necessary for replication and virion encapsidation (i.e., ITRs and packaging sequences), but otherwise deleted of all adenovirus genes (i.e., all viral open reading frames). This virus carries a selected transgene under the control of a selected promoter and other conventional regulatory components, such as a poly A signal. The AdΔ virus is characterized by improved persistence of the vector DNA in the host cells, reduced antigenicity/immunogenicity, and hence, improved performance as a delivery vehicle. An additional advantage of this invention is that the AdΔ virus permits the packaging of very large transgenes, such as a full-length dystrophin cDNA for the treatment 20 of the progressive wasting of muscle tissue characteristic of Duchenne Muscular Dystrophy (DMD).

25 This novel recombinant virus is produced by use of an ad novirus-based v ctor production system containing two components: 1) a shuttle vector that compris s adenovirus cis-elements necessary for r plication and

virion encapsidation and is deleted of all viral genes, which vector carries a reporter or therapeutic minigene and 2) a helper adenovirus which, alone or with a packaging cell line, is capable of providing all of the 5 viral gene products necessary for a productive viral infection when co-transfected with the shuttle vector. Preferably, the helper virus is modified so that it does not package itself efficiently. In this setting, it is desirably used in combination with a packaging cell line 10 that stably expresses adenovirus genes. The methods of producing this viral vector from these components include both a novel means of packaging of an adenoviral/transgene containing vector into a virus, and a novel method for the subsequent separation of the 15 helper virus from the newly formed recombinant virus.

I. The Shuttle Vector

The shuttle vector, referred to as pAdA, is composed of adenovirus sequences, and transgene sequences, 20 including vector regulatory control sequences.

A. The Adenovirus Sequences

The adenovirus nucleic acid sequences of the shuttle vector provide the minimum adenovirus sequences which enable a viral particle to be produced with the 25 assistance of a helper virus. These sequences assist in delivery of a recombinant transgene genome to a target cell by the resulting recombinant virus.

The DNA sequences of a number of adenovirus types are available from Genbank, including type Ad5 30 [Genbank Accession No. M73260]. The adenovirus sequences may be obtained from any known adenovirus serotype, such as serotypes 2, 3, 4, 7, 12 and 40, and further including any of the presently identified 41 human types [see, e.g., Horwitz, cit d above]. Similarly adenoviruses 35 known to infect other animals may also be employed in the

vector constructs of this invention. The selection of the adenovirus type is not anticipated to limit the following invention. A variety of adenovirus strains are available from the American Type Culture Collection, 5 Rockville, Maryland, or available by request from a variety of commercial and institutional sources. In the following exemplary embodiment an adenovirus, type 5 (Ad5) is used for convenience.

However, it is desirable to obtain a variety of 10 pAd Δ shuttle vectors based on different human adenovirus serotypes. It is anticipated that a library of such plasmids and the resulting Ad Δ viral vectors would be useful in a therapeutic regimen to evade cellular, and possibly humoral, immunity, and lengthen the duration of 15 transgene expression, as well as improve the success of repeat therapeutic treatments. Additionally the use of various serotypes is believed to produce recombinant viruses with different tissue targeting specificities. The absence of adenoviral genes in the Ad Δ viral vector 20 is anticipated to reduce or eliminate adverse CTL response which normally causes destruction of recombinant adenoviruses deleted of only the E1 gene.

Specifically, the adenovirus nucleic acid 25 sequences employed in the pAd Δ shuttle vector of this invention are adenovirus genomic sequences from which all viral genes are deleted. More specifically, the adenovirus sequences employed are the cis-acting 5' and 3' inverted terminal repeat (ITR) sequences of an adenovirus (which function as origins of replication) and 30 the native 5' packaging/enhancer domain, that contains sequences necessary for packaging linear Ad genomes and enhancer elements for the E1 promoter. These sequences are the sequences necessary for replication and virion encapsidation. See, e.g., P. Hearing et al, J. Virol., 35 61(8):2555-2558 (1987); M. Grable and P. Hearing, J.

Virol., 64(5): 2047-2056 (1990); and M. Grable and P. Hearing, J. Virol., 66(2):723-731 (1992).

According to this invention, the entire adenovirus 5' sequence containing the 5' ITR and 5 packaging/enhancer region can be employed as the 5' adenovirus sequence in the pAdA shuttle vector. This left terminal (5') sequence of the Ad5 genome useful in this invention spans bp 1 to about 360 of the conventional adenovirus genome, also referred to as map units 0-1 of the viral genome. This sequence is provided herein as nucleotides 5496-5144 of SEQ ID NO: 1, nucleotides 600-958 of SEQ ID NO: 2; and nucleotides 10 9611-9254 of SEQ ID NO: 3, and generally is from about 353 to about 360 nucleotides in length. This sequence 15 includes the 5' ITR (bp 1-103 of the adenovirus genome), and the packaging/enhancer domain (bp 194-358 of the adenovirus genome). See, Figs. 1A, 3, 5, and 7.

Preferably, this native adenovirus 5' region is employed in the shuttle vector in unmodified form. 20 However, some modifications including deletions, substitutions and additions to this sequence which do not adversely effect its biological function may be acceptable. See, e.g., WO 93/24641, published December 9, 1993. The ability to modify these ITR sequences is 25 within the ability of one of skill in the art. See, e.g., texts such as Sambrook et al, "Molecular Cloning. A Laboratory Manual.", 2d edit., Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1989).

The 3' adenovirus sequences of the shuttle 30 vector include the right terminal (3') ITR sequence of the adenoviral genome spanning about bp 35,353 - end of the adenovirus genome, or map units ~98.4-100. This sequence is provided herein as nucleotides 607-28 of SEQ ID NO: 1, nucleotides 16-596 of SEQ ID NO: 2; and 35 nucleotides 3652-3073 of SEQ ID NO: 3, and generally is

about 580 nucleotides in length. This entire sequence is desirably employed as the 3' sequence of an pAdA shuttle vector. Preferably, the native adenovirus 3' region is employed in the shuttle vector in unmodified form.

5 However, some modifications to this sequence which do not adversely effect its biological function may be acceptable.

An exemplary pAdA shuttle vector of this invention, described below and in Fig. 2A, contains only those adenovirus sequences required for packaging adenoviral genomic DNA into a preformed capsid head. The pAdA vector contains Ad5 sequences encoding the 5' terminal and 3' terminal sequences (identified in the description of Fig. 3), as well as the transgene sequences described below.

From the foregoing information, it is expected that one of skill in the art may employ other equivalent adenovirus sequences for use in the AdA vectors of this invention. These sequences may include other adenovirus strains, or the above mentioned cis-acting sequences with minor modifications.

B. The Transgene

The transgene sequence of the vector and recombinant virus is a nucleic acid sequence or reverse transcript thereof, heterologous to the adenovirus sequence, which encodes a polypeptide or protein of interest. The transgene is operatively linked to regulatory components in a manner which permits transgene transcription.

30 The composition of the transgene sequence will depend upon the use to which the resulting virus will be put. For example, one type of transgene sequence includes a reporter sequence, which upon expression produces a detectable signal. Such reporter sequences 35 include without limitation an *E. coli* beta-galactosidase

(*LacZ*) cDNA, a human placental alkaline phosphatase gene and a green fluorescent protein gene. These sequences, when associated with regulatory elements which drive their expression, provide signals detectable by conventional means, e.g., ultraviolet wavelength absorbance, visible color change, etc.

Another type of transgene sequence includes a therapeutic gene which expresses a desired gene product in a host cell. These therapeutic nucleic acid sequences typically encode products for administration and expression in a patient *in vivo* or *ex vivo* to replace or correct an inherited or non-inherited genetic defect or treat an epigenetic disorder or disease. Such therapeutic genes which are desirable for the performance of gene therapy include, without limitation, a normal cystic fibrosis transmembrane regulator (CFTR) gene (see Fig. 7), a low density lipoprotein (LDL) gene [T. Yamamoto et al, *Cell*, 39:27-28 (November, 1984)], a DMD cDNA sequence [partial sequences available from GenBank, Accession Nos. M36673, M36671, [A. P. Monaco et al, *Nature*, 323:646-650 (1986)] and L06900, [Roberts et al, *Hum. Mutat.*, 2:293-299 (1993)]] (Genbank), and a number of genes which may be readily selected by one of skill in the art. The selection of the transgene is not considered to be a limitation of this invention, as such selection is within the knowledge of the art-skilled.

C. Regulatory Elements

In addition to the major elements identified above for the pAdΔ shuttle vector, i.e., the adenovirus sequences and the transgene, the vector also includes conventional regulatory elements necessary to drive expression of the transgene in a cell transfected with the pAdΔ vector. Thus the vector contains a select d promoter which is linked to the transgene and located,

with the transgene, between the adenovirus sequences of the vector.

Selection of the promoter is a routine matter and is not a limitation of the pAdA vector itself.

5 Useful promoters may be constitutive promoters or regulated (inducible) promoters, which will enable control of the amount of the transgene to be expressed. For example, a desirable promoter is that of the cytomegalovirus immediate early promoter/enhancer [see, 10 e.g., Boshart et al, *Cell*, 41:521-530 (1985)]. This promoter is found at nucleotides 5117-4524 of SEQ ID NO: 1 and nucleotides 969-1563 of SEQ ID NO: 2. Another promoter is the CMV enhancer/chicken β -actin promoter (nucleotides 9241-8684 of SEQ ID NO: 3). Another 15 desirable promoter includes, without limitation, the Rous sarcoma virus LTR promoter/enhancer. Still other promoter/enhancer sequences may be selected by one of skill in the art.

The shuttle vectors will also desirably contain 20 nucleic acid sequences heterologous to the adenovirus sequences including sequences providing signals required for efficient polyadenylation of the transcript and introns with functional splice donor and acceptor sites (SD/SA). A common poly-A sequence which is employed in 25 the exemplary vectors of this invention is that derived from the papovavirus SV-40 [see, e.g., nucleotides 837-639 of SEQ ID NO: 1; 5245-5443 of SEQ ID NO: 2; and 3887-3684 of SEQ ID NO: 3]. The poly-A sequence generally is inserted in the vector following the transgene sequences 30 and before the 3' adenovirus sequences. A common intron sequence is also derived from SV-40, and is referred to as the SV-40 T intron sequence [see, e.g., nucleotides 4507-4376 of SEQ ID NO: 1 and 1579-1711 of SEQ ID NO: 2]. A pAdA shuttle vector f th pr s nt invention may also 35 contain such an intron, desirably locat d between th

promoter/enhancer sequence and the transgene. Selection of these and other common vector elements are conventional and many such sequences are available [see, e.g., Sambrook et al, and references cited therein].

5 Examples of such regulatory sequences for the above are provided in the plasmid sequences of Figs. 3, 5 and 7.

The combination of the transgene, promoter/enhancer, the other regulatory vector elements are referred to as a "minigene" for ease of reference herein.

10 The minigene is preferably flanked by the 5' and 3' cis-acting adenovirus sequences described above. Such a minigene may have a size in the range of several hundred base pairs up to about 30 kb due to the absence of adenovirus early and late gene sequences in the vector.

15 Thus, this AdΔ vector system permits a great deal of latitude in the selection of the various components of the minigene, particularly the selected transgene, with regard to size. Provided with the teachings of this invention, the design of such a minigene can be made by resort to conventional techniques.

II. The Helper Virus

Because of the limited amount of adenovirus sequence present in the AdΔ shuttle vector, a helper adenovirus of 25 this invention must, alone or in concert with a packaging cell line, provide sufficient adenovirus gene sequences necessary for a productive viral infection. Helper viruses useful in this invention thus contain selected adenovirus gene sequences, and optionally a second reporter minigene.

30 Normally, the production of a recombinant adenovirus which utilizes helper adenovirus containing a full complement of adenoviral genes results in a recombinant virus contaminated by excess production of the helper virus. Thus, extensive purification of the viral vector

from the contaminating helper virus is required. However, the present invention provides a way to facilitate purification and reduce contamination by crippling the helper virus.

5 One preferred embodiment of a helper virus of this invention thus contains three components (A) modifications or deletions of the native adenoviral gene sequences which direct efficient packaging, so as to substantially disable or "cripple" the packaging function
10 of the helper virus or its ability to replicate, (B) selected adenovirus genes and (C) an optional reporter minigene. These "crippled" helper viruses may also be formed into poly-cation conjugates as described below.

15 The adenovirus sequences forming the helper virus may be obtained from the sources identified above in the discussion of the shuttle vector. Use of different Ad serotypes as helper viruses enables production of recombinant viruses containing the Δ Ad (serotype 5) shuttle vector sequences in a capsid formed by the other 20 serotype adenovirus. These recombinant viruses are desirable in targeting different tissues, or evading an immune response to the Δ Ad sequences having a serotype 5 capsid. Use of these different Ad serotype helper viruses may also demonstrate advantages in recombinant 25 virus production, stability and better packaging.

A. The Crippling Modifications

30 A desirable helper virus used in the production of the adenovirus vector of this invention is modified (or crippled) in its 5' ITR packaging/enhancer domain, identified above. As stated above, the packaging/enhancer region contains sequences necessary for packaging linear adenovirus genomes ("PAC" sequences). More specifically, this sequence contains at least seven distinct yet functionally redundant domains

that are required for efficient encapsidation of replicated viral DNA.

Within a stretch of nucleotide sequence from bp 194-358 of the Ad5 genome, five of these so-called A-repeats or PAC sequences are localized (see, Fig. 1B).
5 PAC I is located at bp 241-248 of the adenovirus genome (on the strand complementary to nucleotides 5259-5246 of SEQ ID NO: 1). PAC II is located at bp 262-269 of the adenovirus genome (on the strand complementary to
10 nucleotides 5238-5225 of SEQ ID NO: 1). PAC III is located at bp 304-311 of the adenovirus genome (on the strand complementary to nucleotides 5196-5183 of SEQ ID NO: 1). PAC IV is located at bp 314-321 of the adenovirus (on the strand complementary to nucleotides
15 5186-5172 of SEQ ID NO: 1). PAC V is located at bp 339-346 of the adenovirus (on the strand complementary to nucleotides 5171-5147 of SEQ ID NO: 1).

Corresponding sequences can be obtained from SEQ ID NO: 2 and 3. PAC I is located at nucleotides 837-851 of SEQ ID NO: 2; and on the strand complementary to nucleotides 9374-9360 of SEQ ID NO: 3. PAC II is located at nucleotides 859-863 of SEQ ID NO: 2; and on the strand complementary to nucleotides 9353-9340 of SEQ ID NO: 3.
20 PAC III is located at nucleotides 901-916 of SEQ ID NO: 2; and on the strand complementary to nucleotides 9311-9298 of SEQ ID NO: 3. PAC IV is located at nucleotides 911-924 of SEQ ID NO: 2; and on the strand complementary to nucleotides 9301-9288 of SEQ ID NO: 3. PAC V is located at nucleotides 936-949 of SEQ ID NO: 2; and on
25 the strand complementary to nucleotides 9276-9263 of SEQ ID NO: 3.

Table 1 below lists these five native Ad5 sequences and a consensus PAC sequence based on the similarities between an eight nucleic acid stretch within the five sequences. The consensus sequence contains two positions at which the nucleic acid may be A or T (A/T). The conventional single letter designations are used for the nucleic acids, as is known to the art.

Table 1

	<u>A-Repeat</u>	<u>Adenovirus Genome Base Pair Nos. & Nucleotide sequence</u>		
10	I	241	248	TAG TAAATTTG GGC [SEQ ID NO: 4]
15	II	262	269	AGT AAGATTTG GCC [SEQ ID NO: 5]
20	III	304	311	AGT GAAATCTG AAT [SEQ ID NO: 6]
25	IV	314	321	GAA TAATTTTG TGT [SEQ ID NO: 7]
30	V	339	346	CGT AATATTTG TCT [SEQ ID NO: 8]
	Consensus 5' (A/T)AN(A/T)TTTG 3' [SEQ ID NO: 9]			

According to this invention, mutations or deletions may be made to one or more of these PAC sequences to generate desirable crippled helper viruses. A deletion analysis of the packaging domain revealed a positive correlation between encapsidation efficiency and the number of packaging A-repeats that were present at the 5' end of the genome. Modifications of this domain may include 5' adenovirus sequences which contain less than all five of the PAC sequences of Table 1. For example, only two PAC sequences may be present in the crippled virus, e.g., PAC I and PAC II, PAC III and PAC IV, and so on. Deletions of selected PAC sequences may

involve deletion of contiguous or non-contiguous sequences. For example, PAC II and PAC IV may be deleted, leaving PAC I, III and IV in the 5' sequence. Still an alternative modification may be the replacement 5 of one or more of the native PAC sequences with one or more repeats of the consensus sequence of Table 1. Alternatively, this adenovirus region may be modified by deliberately inserted mutations which disrupt one or more of the native PAC sequences. One of skill in the art may 10 further manipulate the PAC sequences to similarly achieve the effect of reducing the helper virus packaging efficiency to a desired level.

Exemplary helper viruses which involve the manipulation of the PAC sequences described above are 15 disclosed in Example 7 below. Briefly, as described in that example, one helper virus contains in place of the native 5' ITR region (adenovirus genome bp 1-360), a 5' adenovirus sequence spanning adenovirus genome bp 1-269, which contains only the 5' ITR and PAC I and PAC II 20 sequences, and deletes the adenovirus region bp 270-360.

Another PAC sequence modified helper virus contains only the 5' Ad5 sequence of the ITR and PAC I through PAC IV (Ad bp 1-321), deleting PAC V and other sequences in the Ad region bp 322-360.

These modified helper viruses are characterized 25 by reduced efficiency of helper virus encapsidation. These helper viruses with the specific modifications of the sequences related to packaging efficiency, provide a packaging efficiency high enough for generating 30 production lots of the helper virus, yet low enough that they permit the achievement of higher yields of Ad Δ transducing viral particles according to this invention.

B. The Selected Adenovirus Genes

Helper viruses useful in this invention, whether or not they contain the "crippling" modifications described above, contain selected adenovirus gene sequences depending upon the cell line which is transfected by the helper virus and shuttle vector. A preferred helper virus contains a variety of adenovirus genes in addition to the modified sequences described above.

As one example, if the cell line employed to produce the recombinant virus is not a packaging cell line, the helper virus may be a wild type Ad virus. Thus, the helper virus supplies the necessary adenovirus early genes E1, E2, E4 and all remaining late, intermediate, structural and non-structural genes of the adenovirus genome. This helper virus may be a crippled helper virus by incorporating modifications in its native 5' packaging/enhancer domain.

A desirable helper virus is replication defective and lacks all or a sufficient portion of the adenoviral early immediate early gene E1a (which spans mu 1.3 to 4.5) and delayed early gene E1b (which spans mu 4.6 to 11.2) so as to eliminate their normal biological functions. Such replication deficient viruses may also have crippling modifications in the packaging/enhancer domain. Because of the difficulty surrounding the absolute removal of adenovirus from Ad Δ preparations that have been enriched by CsCl buoyant density centrifugation, the use of a replication defective adenovirus helper prevents the introduction of infectious adenovirus for in vivo animal studies. This helper virus is employed with a packaging cell line which supplies the deficient E1 proteins, such as the 293 c 11 line.

Additionally, all or a portion of the adenovirus delayed early gene E3 (which spans mu 76.6 to 86.2) may be eliminated from the adenovirus sequence which forms a part of the helper viruses useful in this invention, without adversely affecting the function of the helper virus because this gene product is not necessary for the formation of a functioning virus.

In the presence of other packaging cell lines which are capable of supplying adenoviral proteins in addition to the E1, the helper virus may accordingly be deleted of the genes encoding these adenoviral proteins.

Such additionally deleted helper viruses also desirably contain crippling modifications as described above.

C. A Reporter Minigene

It is also desirable for the helper virus to contain a reporter minigene, in which the reporter gene is desirably different from the reporter transgene contained in the shuttle vector. A number of such reporter genes are known, as referred to above. The presence of a reporter gene on the helper virus which is different from the reporter gene on the pAdΔ, allows both the recombinant AdΔ virus and the helper virus to be independently monitored. For example, the expression of recombinant alkaline phosphatase enables residual quantities of contaminating adenovirus to be monitored independent of recombinant LacZ expressed by an pAdΔ shuttle vector or an AdΔ virus.

D. Helper Virus Polycation Conjugates

Still another method for reducing the contamination of helper virus involves the formation of poly-cation helper virus conjugates, which may be associated with a plasmid containing other adenoviral genes, which are not present in the helper virus. The helper viruses described above may be further modified by resort to adenovirus-polylysine conjugate technology.

See, e.g., Wu et al, J. Biol. Chem., 264:16985-16987 (1989); and K. J. Fisher and J. M. Wilson, Biochem. J., 299: 49 (April 1, 1994), incorporated herein by reference.

5 Using this technology, a helper virus containing preferably the late adenoviral genes is modified by the addition of a poly-cation sequence distributed around the capsid of the helper virus. Preferably, the poly-cation is poly-lysine, which
10 attaches around the negatively-charged vector to form an external positive charge. A plasmid is then designed to express those adenoviral genes not present in the helper virus, e.g., the E1, E2 and/or E4 genes. The plasmid associates to the helper virus-conjugate through the
15 charges on the poly-lysine sequence. This modification is also desirably made to a crippled helper virus of this invention. This conjugate (also termed a trans-infection particle) permits additional adenovirus genes to be removed from the helper virus and be present on a plasmid
20 which does not become incorporated into the virus during production of the recombinant viral vector. Thus, the impact of contamination is considerably lessened.

25 III. Assembly of Shuttle Vector, Helper Virus and
 Production of Recombinant Virus

The material from which the sequences used in the pAdA shuttle vector and the helper viruses are derived, as well as the various vector components and sequences employed in the construction of the shuttle vectors, 30 helper viruses, and AdA viruses of this invention, are obtained from commercial or academic sources based on previously published and described materials. These materials may also be obtained from an individual patient or generated and selected using standard recombinant 35 molecular cloning techniques known and practiced by those

skilled in the art. Any modification of existing nucleic acid sequences forming the vectors and viruses, including sequence deletions, insertions, and other mutations are also generated using standard techniques.

Assembly of the selected DNA sequences of the adenovirus, and the reporter genes or therapeutic genes and other vector elements into the pAd Δ shuttle vector using conventional techniques is described in Example 1 below. Such techniques include conventional cloning techniques of cDNA such as those described in texts [Sambrook et al, cited above], use of overlapping oligonucleotide sequences of the adenovirus genomes, polymerase chain reaction, and any suitable method which provides the desired nucleotide sequence. Standard transfection and co-transfection techniques are employed, e.g., CaPO₄ transfection techniques using the HEK 293 cell line. Other conventional methods employed in this invention include homologous recombination of the viral genomes, plaquing of viruses in agar overlay, methods of measuring signal generation, and the like. Assembly of any desired Ad Δ vector or helper virus of this invention is within the skill of the art, based on the teachings of this invention.

A. Shuttle Vector

As described in detail in Example 1 below and with resort to Fig. 2A and the DNA sequence of the plasmid reported in Fig. 3, a unique pAd Δ shuttle vector of this invention, pAd Δ .CMVLacZ, is generated. pAd Δ .CMVLacZ contains Ad5 sequences encoding the 5' terminal followed by a CMV promoter/enhancer, a splice donor/splice acceptor sequence, a bacterial beta-galactosidase gene (LacZ), a SV-40 poly A sequence (pA), a 3' ITR from Ad5 and remaining plasmid sequence from plasmid pSP72 (Promega) backbone.

To generate the Ad Δ genome which is incorporated in the vector, the plasmid pAd Δ .CMVLacZ must be digested with EcoRI to release the Ad Δ .CMVLacZ genome, freeing the adenovirus ITRs and making them 5 available targets for replication. Thus production of the vector is "restriction-dependent", i.e., requires restriction endonuclease rescue of the replication template. See, Fig. 2B.

A second type of pAd Δ plasmid was designed 10 which places the 3' Ad terminal sequence in a head-to-tail arrangement relative to the 5' terminal sequence. As described in Example 1 and Figs. 4A, and with resort to the DNA sequence of the plasmid reported in Fig. 5, a second unique Ad Δ vector sequence of this invention, 15 Ad Δ c.CMVLacZ, is generated from the shuttle plasmid pAd Δ c.CMVLacZ, which contains an Ad5 5' ITR sequence and 3' ITR sequence positioned head-to-tail, followed by a CMV enhancer/ promoter, SD/SA sequence, LacZ gene and pA sequence in a plasmid pSP72 (Promega) backbone. As 20 described in Example 1B, this "restriction-independent" plasmid permits the Ad Δ genome to be replicated and rescued from the plasmid backbone without including an endonuclease treatment (see, Fig. 4B).

B. Helper Virus

25 As described in detail in Example 2, an exemplary conventional E1 deleted adenovirus helper virus is virus Ad.CBhpAP, which contains a 5' adenovirus sequence from mu 0-1, a reporter minigene containing human placenta alkaline phosphatase (hpAP) under the transcriptional control of the chicken β -actin promoter, 30 followed by a poly-A sequence from SV40, followed by adenovirus sequences from 9.2 to 78.4 and 86 to 100. This helper contains deletions from mu 1.0 to 9.2 and 78.4 to 86, which eliminate substantially the E1 region 35 and the E3 region of the virus. This virus may be

desirably crippled according to this invention by modifications to its packaging enhancer domain.

Exemplary crippled helper viruses of this invention are described using the techniques described in Example 7 and contain the modified 5' PAC sequences, i.e., adenovirus genome bp 1-269; m.u. 0-0.75 or adenovirus genome bp 1-321; m.u. 0-0.89. Briefly, the 5' sequences are modified by PCR and cloned by conventional techniques into a conventional adenovirus based plasmid. A hpAP minigene is incorporated into the plasmid, which is then altered by homologous recombination with an E3 deleted adenovirus d17001 to result in the modified vectors so that the reporter minigene is followed on its 3' end with the adenovirus sequences mu 9.6 to 78.3 and 87 to 100.

Generation of a poly-L-lysine conjugate helper virus was demonstrated essentially as described in detail in Example 5 below and Fig. 10 by coupling poly-L-lysine to the Ad.CBhpAP virion capsid. Alternatively, the same procedure may be employed with the PAC sequence modified helper viruses of this invention.

C. Recombinant Ad Δ Virus

As stated above, a pAd Δ shuttle vector in the presence of helper virus and/or a packaging cell line permits the adenovirus-transgene sequences in the shuttle vector to be replicated and packaged into virion capsids, resulting in the recombinant Ad Δ virus. The current method for producing such Ad Δ virus is transfection-based and described in detail in Example 3. Briefly, helper virus is used to infect cells, such as the packaging cell line human HEK 293, which are then subsequently transfected with an pAd Δ shuttle vector containing a selected transgene by conventional methods. About 30 or more hours post-transfection, the cells are harvested, and an extract prepared. The Ad Δ viral genome is

packaged into virions that sediment at a lower density than the helper virus in cesium gradients. Thus, the recombinant Ad Δ virus containing a selected transgene is separated from the bulk of the helper virus by 5 purification via buoyant density ultracentrifugation in a CsCl gradient.

The yield of Ad Δ transducing virus is largely dependent on the number of cells that are transfected with the pAd Δ shuttle plasmid, making it desirable to use 10 a transfection protocol with high efficiency. One such method involves use of a poly-L-lysylated helper adenovirus as described above. A pAd Δ shuttle plasmid containing the desired transgene under the control of a suitable promoter, as described above, is then complexed 15 directly to the positively charged helper virus capsid, resulting in the formation of a single transfection particle containing the pAd Δ shuttle vector and the helper functions of the helper virus.

The underlying principle is that the helper 20 adenovirus coated with plasmid pAd Δ DNA will co-transport the attached nucleic acid across the cell membrane and into the cytoplasm according to its normal mechanism of cell entry. Therefore, the poly-L-lysine modified helper adenovirus assumes multiple roles in the context of an 25 Ad Δ -based complex. First, it is the structural foundation upon which plasmid DNA can bind increasing the effective concentration. Second, receptor mediated endocytosis of the virus provides the vehicle for cell uptake of the plasmid DNA. Third, the endosomalytic 30 activity associated with adenoviral infection facilitates the release of internalized plasmid into the cytoplasm. And the adenovirus contributes trans helper functions on which the recombinant Ad Δ virus is dependent for replication and packaging of transducing viral particles. 35 The Ad-based transfection procedure using an pAd Δ shuttle

vector and a polycation-helper conjugate is detailed in Example 6. Additionally, as described previously, the helper virus-plasmid conjugate may be another form of helper virus delivery of the omitted adenovirus genes not present in the pAdA vector. Such a structure enables the rest of the required adenovirus genes to be divided between the plasmid and the helper virus, thus reducing the self-replication efficiency of the helper virus.

A presently preferred method of producing the recombinant AdA virus of this invention involves performing the above-described transfection with the crippled helper virus or crippled helper virus conjugate, as described above. A "crippled" helper virus of this invention is unable to package itself efficiently, and therefore permits ready separation of the helper virus from the newly packaged AdA vector of this invention by use of buoyant density ultracentrifugation in a CsCl gradient, as described in the examples below.

IV. Function of the Recombinant AdA Virus

Once the AdA virus of this invention is produced by cooperation of the shuttle vector and helper virus, the AdA virus can be targeted to, and taken up by, a selected target cell. The selection of the target cell also depends upon the use of the recombinant virus, i.e., whether or not the transgene is to be replicated *in vitro* or *ex vivo* for production in a desired cell type for redelivery into a patient, or *in vivo* for delivery to a particular cell type or tissue. Target cells may be any mammalian cell (preferably a human cell). For example, in *in vivo* use, the recombinant virus can target to any cell type normally infected by adenovirus, depending upon the route of administration, i.e., it can target, without limitation, neurons, hepatocytes, epithelial cells and

the like. The helper adenovirus sequences supply the sequences necessary to permit uptake of the virus by the AdA.

Once the recombinant virus is taken up by a cell,
5 the adenovirus flanked transgene is rescued from the parental adenovirus backbone by the machinery of the infected cell, as with other recombinant adenoviruses. Once uncoupled (rescued) from the genome of the AdA virus, the recombinant minigene seeks an integration site
10 in the host chromatin and becomes integrated therein, either transiently or stably, providing expression of the accompanying transgene in the host cell.

V. Use of the AdA Viruses in Gene Therapy

15 The novel recombinant viruses and viral conjugates of this invention provide efficient gene transfer vehicles for somatic gene therapy. These viruses are prepared to contain a therapeutic gene in place of the LacZ reporter transgene illustrated in the exemplary
20 viruses and vectors. By use of the AdA viruses containing therapeutic transgenes, these transgenes can be delivered to a patient *in vivo* or *ex vivo* to provide for integration of the desired gene into a target cell. Thus, these viruses can be employed to correct genetic
25 deficiencies or defects. An example of the generation of an AdA gene transfer vehicle for the treatment of cystic fibrosis is described in Example 4 below. One of skill in the art can generate any number of other gene transfer vehicles by including a selected transgene for the
30 treatment of other disorders.

The recombinant viruses of the present invention may be administered to a patient, preferably suspended in a biologically compatible solution or pharmaceutically acceptable delivery vehicle. A suitable vehicle includes
35 sterile saline. Other aqueous and non-aqueous isotonic

sterile injection solutions and aqueous and non-aqueous sterile suspensions known to be pharmaceutically acceptable carriers and well known to those of skill in the art may be employed for this purpose.

5 The recombinant viruses of this invention may be administered in sufficient amounts to transfect the desired cells and provide sufficient levels of integration and expression of the selected transgene to provide a therapeutic benefit without undue adverse
10 effects or with medically acceptable physiological effects which can be determined by those skilled in the medical arts. Conventional and pharmaceutically acceptable parenteral routes of administration include direct delivery to the target organ, tissue or site,
15 intranasal, intravenous, intramuscular, subcutaneous, intradermal and oral administration. Routes of administration may be combined, if desired.

Dosages of the recombinant virus will depend primarily on factors such as the condition being treated,
20 the selected gene, the age, weight and health of the patient, and may thus vary among patients. A therapeutically effective human dosage of the viruses of the present invention is believed to be in the range of from about 20 to about 50 ml of saline solution
25 containing concentrations of from about 1×10^7 to 1×10^{10} pfu/ml virus of the present invention. A preferred human dosage is about 20 ml saline solution at the above concentrations. The dosage will be adjusted to balance the therapeutic benefit against any side effects. The
30 levels of expression of the selected gene can be monitored to determine the selection, adjustment or frequency of dosage administration.

The following examples illustrate the construction of the pAd Δ shuttle vectors, helper viruses and recombinant Ad Δ viruses of the present invention and the use thereof in gene therapy. These examples are 5 illustrative only, and do not limit the scope of the present invention.

Example 1 - Production of pAd Δ .CMVLacZ and pAdAc.CMVLacZ Shuttle Vectors

10 A. pAd Δ .CMVLacZ

A human adenovirus Ad5 sequence was modified to contain a deletion in the E1a region [map units 1 to 9.2], which immediately follows the Ad 5' region (bp 1-360) (illustrated in Figs. 1A). Thus, the plasmid 15 contains the 5' ITR sequence (bp 1-103), the native packaging/enhancer sequences and the TATA box for the E1a region (bp 104-360). A minigene containing the CMV immediate early enhancer/promoter, an SD/SA sequence, a cytoplasmic lacZ gene, and SV40 poly A (pA), was 20 introduced at the site of the E1a deletion. This construct was further modified so that the minigene is followed by the 3' ITR sequences (bp 35,353-end). The DNA sequences for these components are provided in Fig. 3 and SEQ ID NO: 1 (see, also the brief description of this 25 figure).

This construct was then cloned by conventional techniques into a pSP72 vector (Promega) backbone to make the circular shuttle vector pAd Δ CMVLacZ. See the schematic of Fig. 2A. This construct was engineered with 30 EcoRI sites flanking the 5' and 3' Ad5 ITR sequences. pAd Δ .CMVLacZ was then subjected to enzymatic digestion with EcoRI, releasing a linear fragment of the vector spanning the terminal end of the Ad 5' ITR sequence through the terminal end of the 3' ITR sequence from the 35 plasmid backbone. See Fig. 2B.

B. pAdAc.CMVLacZ

The shuttle vector pAdAc.CMVLacZ (Figs. 4A and 5) was constructed using a pSP72 (Promega) backbone so that the Ad5 5' ITR and 3' ITR were positioned head-to-tail. The organization of the Ad5 ITRs was based on reports that suggest circular Ad genomes that have the terminal ends fused together head-to-tail are infectious to levels comparable to linear Ad genomes. A minigene encoding the CMV enhancer, an SD/SA sequence, the LacZ gene, and the poly A sequence was inserted immediately following the 5' ITR. The DNA sequence of the resulting plasmid and the sequences for the individual components are reported in Fig. 5 and SEQ ID NO: 2 (see also, brief description of Fig. 5). This plasmid does not require enzymatic digestion prior to its use to produce the viral particle (see Example 3). This vector was designed to enable restriction-independent production of LacZ Ad Δ vectors.

20 Example 2 - Construction of a Helper Virus

The Ad.CBhpAP helper virus [K. Kozarsky et al, Som. Cell Mol. Genet., 19(5):449-458 (1993)] is a replication deficient adenovirus containing an alkaline phosphatase minigene. Its construction involved conventional cloning and homologous recombination techniques. The adenovirus DNA substrate was extracted from CsCl purified d17001 virions, an Ad5 (serotype subgroup C) variant that carries a 3 kb deletion between mu 78.4 through 86 in the nonessential E3 region (provided by Dr. William Wold, 25 Washington University, St. Louis, Missouri). Viral DNA was prepared for co-transfection by digestion with ClaI (adenovirus genomic bp position 917) which removes the left arm of the genome encompassing adenovirus map units 30 0-2.5. See lower diagram of Fig. 1B.

A parental cloning vector, pAd.BglII was designed. It contains two segments of wild-type Ad5 genome (i.e., map units 0-1 and 9-16.1) separated by a unique BglII cloning site for insertion of heterologous sequences.

5 The missing Ad5 sequences between the two domains (adenovirus genome bp 361-3327) results in the deletion of E1a and the majority of E1b following recombination with viral DNA.

10 A recombinant hpAP minigene was designed and inserted into the BglII site of pAd.BglII to generate the complementing plasmid, pAdCBhpAP. The linear arrangement of this minigene includes:

15 (a) the chicken cytoplasmic β -actin promoter [nucleotides +1 to +275 as described in T. A. Kost et al, *Nucl. Acids Res.*, 11(23):8287 (1983); nucleotides 9241-8684 of Fig. 7];

(b) an SV40 intron (e.g., nucleotides 1579-1711 of SEQ ID NO: 2),

20 (c) the sequence for human placental alkaline phosphatase (available from Genbank) and

(d) an SV40 polyadenylation signal (a 237 Bam HI-BclI restriction fragment containing the cleavage/poly-A signals from both the early and late transcription units; e.g., nucleotides 837-639 of SEQ ID NO: 1).

25 The resulting complementing plasmid, pAdCBhpAP contained a single copy of recombinant hpAP minigene flanked by adenovirus coordinates 0-1 on one side and 9.2-16.1 on the other.

30 Plasmid DNA was linearized using a unique NheI site immediately 5' to adenovirus map unit zero (0) and the above-identified adenovirus substrate and the complementing plasmid DNAs were transfected to 293 cells [ATCC CRL1573] using a standard calcium phosphate transfection procedure [see, e.g., Sambrook et al, cit d above]. The end result of homologous recombination

involving sequences that map to adenovirus map units 9-16.1 is hybrid Ad.CBhpAP helper virus which contains adenovirus map units 0-1 and, in place of the E1a and E1b coding regions from the d17001 adenovirus substrate, is 5 the hpAP minigene from the plasmid, followed by Ad sequences 9 to 100, with a deletion in the E3 (78.4-86 mu) regions.

Example 3 - Production of Recombinant AdΔ Virus

10 The recombinant AdΔ virus of this invention are generated by co-transfection of a shuttle vector with the helper virus in a selected packaging or non-packaging cell line.

15 As described in detail below, the linear fragment provided in Example 1A, or the circular AdΔ genome carrying the LacZ of Example 1B, is packaged into the Ad.CBhpAP helper virus (Example 2) using conventional techniques, which provides an empty capsid head, as illustrated in Fig. 2C. Those virus particles which have 20 successfully taken up the pAd shuttle genome into the capsid head can be distinguished from those containing the hpAP gene by virtue of the differential expression of LacZ and hpAP.

25 In more detail, 293 cells (4×10^7 pfu 293 cells/150 mm dish) were seeded and infected with helper virus Ad.CBhpAP (produced as described in Example 2) at an MOI of 5 in 20 ml DMEM/2% fetal bovine serum (FBS). This helper specific marker is critical for monitoring the level of helper virus contamination in AdΔ preparations 30 before and after purification. The helper virus provides in trans the necessary helper functions for synthesis and packaging of the AdΔCMVLacZ genome.

35 Two hours post infection, using either the r restriction-dependent shuttle vector or the restriction-independent shuttle vector, plasmid pAdΔ.CMVLacZ

(digested with EcoRI) or pAdAc.CMVLacZ DNA, each carrying a LacZ minigene, was added to the cells by a calcium phosphate precipitate (2.5 ml calcium phosphate transfection cocktail containing 50 µg plasmid DNA).

5 Thirty to forty hours post-transfection, cells were harvested, suspended in 10 mM Tris-Cl (pH 8.0) (0.5 ml/150 mm plate) and frozen at -80°C. Frozen cell suspensions were subjected to three rounds of freeze (ethanol-dry ice)-thaw (37°C) cycles to release virion
10 capsids. Cell debris was removed by centrifugation (5,000xg for 10 minutes) and the clarified supernatant applied to a CsCl gradients to separate recombinant virus from helper virus as follows.

15 Supernatants (10 ml) applied to the discontinuous CsCl gradient (composed of equal volumes of CsCl at 1.2 g/ml, 1.36 g/ml, and 1.45 g/ml 10 mM Tris-Cl (pH 8.0)) were centrifuged for 8 hours at 72,128Xg, resulting in separation of infectious helper virus from incompletely formed virions. Fractions were collected from the
20 interfacing zone between the helper and top components and analyzed by Southern blot hybridization or for the presence of LacZ transducing particles. For functional analysis, aliquots (2.0 ml from each sample) from the same fractions were added to monolayers of 293 cells (in
25 35 mm wells) and expression of recombinant β-galactosidase determined 24 hours later. More specifically, monolayers were harvested, suspended in 0.3 ml 10 mM Tris-Cl (pH 8.0) buffer and an extract prepared by three rounds of freeze-thaw cycles. Cell debris was
30 removed by centrifugation and the supernatant tested for β-galactosidase (LacZ) activity according to the procedure described in J. Price et al, Proc. Natl. Acad. Sci., USA, 84:156-160 (1987). The specific activity (milliunits β-galactosidase/mg protein or reporter

enzymes was measured from indicator cells. For the recombinant virus, specific activity was 116.

Fractions with β -galactosidase activity from the discontinuous gradient were sedimented through an

5 equilibrium cesium gradient to further enrich the preparation for Ada virus. A linear gradient was generated in the area of the recombinant virus spanning densities 1.29 to 1.34 gm/ml. A sharp peak of the β -gal activity in infected 293 cells, eluted between 1.31 and 1.33 gm/dl. This peak of recombinant virus was located between two major A_{260} nm absorbing peaks and in an area of the gradient with the helper virus was precipitously dropping off. The equilibrium

10 sedimentation gradient accomplished another 102 to 103 fold purification of recombinant virus from helper virus. The yield of recombinant Ada.CMVLacZ virus recovered from a 50 plate prep after 2 sedimentations ranged from 107 to 15 108 transducing particles.

20 Analysis of lysates of cells transfected with the recombinant vector and infected with helper revealed virions capable of transducing the recombinant minigene contained within the vector. Subjecting aliquots of the fractions to Southern analysis using probes specific to 25 the recombinant virus or helper virus revealed packaging of multiple molecular forms of vector derived sequence. The predominant form of the deleted viral genome was the size (~5.5 kb) of the corresponding double stranded DNA monomer (Ada.CMVLacZ) with less abundant but discrete 30 higher molecular weight species (~10 kb and ~15 kb) also present. Full-length helper virus is 35kb. Importantly, the peak of vector transduction activity corresponds with the highest molecular weight form of the deleted virus. These results confirm the hypothesis that ITRs and 35 contiguous packaging sequence are the only elements

necessary for incorporation into virions. An apparently ordered or preferred rearrangement of the recombinant Ad monomer genome leads to a more biologically active molecule. The fact that larger molecular species of the 5 deleted genome are 2x and 3x ~~old~~ larger than the monomer deleted virus genome suggests that the rearrangements may involve sequential duplication of the original genome.

These same procedures may be adapted for production 10 of a recombinant Ad Δ virus using a crippled helper virus or helper virus conjugate as described previously.

Example 4 - Recombinant Ad Δ Virus Containing a Therapeutic Minigene

To test the versatility of the recombinant Ad Δ virus 15 system, the reporter LacZ minigene obtained from pAd Δ CMVLacZ was cassette replaced with a therapeutic minigene encoding CFTR.

The minigene contained human CFTR cDNA [Riordan et al, *Science*, 245:1066-1073 (1989); nucleotides 8622-4065 20 of SEQ ID NO: 3] under the transcriptional control of a chimeric CMV enhancer/chicken β -actin promotor element (nucleotides +1 to +275 as described in T. A. Kost et al, *Nucl. Acids Res.*, 11(23):8287 (1983); nucleotides 9241-8684 of SEQ ID NO: 3, Fig. 7); and followed by an SV-40 25 poly-A sequence (nucleotides 3887-3684 of SEQ ID NO: 3, Fig. 7).

The CFTR minigene was inserted into the E1 deletion site of an Ad5 virus (called pAd.E1 Δ) which contains a deletion in E1a from mu 1-9.2 and a deletion in E3 from 30 mu 78.4-86.

The resulting shuttle vector called pAd Δ .CBCFTR (see Figs. 6 and the DNA sequence of Fig. 7 [SEQ ID NO: 3]) used the same Ad ITRs of pAd Δ CMVLacZ, but the Ad5 sequences terminated with NheI sites instead of EcoRI.

Therefore release of the minigene from the plasmid was accomplished by digestion with NheI.

The vector production system described in Example 3 was employed, using the helper virus Ad.CBhpAP (Example 5 2). Monolayers of 293 cells grown to 80-90% confluence in 150 mm culture dishes were infected with the helper virus at an MOI of 5. Infections were done in DMEM supplemented with 2% FBS at 20 ml media/150 mm plate. Two hours post-infection, 50 µg plasmid DNA in 2.5 ml 10 transfection cocktail was added to each plate and evenly distributed.

Delivery of the pAdΔ.CBCFTR plasmid to 293 cells was mediated by formation of a calcium phosphate precipitate and AdΔ.CBCFTR virus resolved from Ad.CBhpAP helper virus 15 by CsCl buoyant density ultracentrifugation as follows:

Cells were left in this condition for 10-14 h, afterwhich the infection/transfection media was replaced with 20 ml fresh DMEM/2% FBS. Approximately 30 h post-transfection, cells were harvested, suspended in 10 mM 20 Tris-Cl (pH 8.0) buffer (0.5 ml/150 mm plate), and stored at -80°C.

Frozen cell suspensions were lysed by three sequential rounds of freeze (ethanol-dry ice)-thaw (37°C). Cell debris was removed by centrifugation (5,000 25 x g for 10 min) and 10 ml clarified extract layered onto a CsCl step gradient composed of three 9.0 ml tiers with densities 1.45 g/ml, 1.36 g/ml, and 1.20 g/ml CsCl in 10 mM Tris-Cl (pH 8.0) buffer. Centrifugation was performed at 20,000 rpm in a Beckman SW-28 rotor for 8 h at 4°C. 30 Fractions (1.0 ml) were collected from the bottom of the centrifuge tube and analyzed for rAAd transducing vectors. Peak fractions were combined and banded to equilibrium. Fractions containing transducing virions were dialyzed against 20 mM HEPES (pH 7.8)/150 mM NaCl

(HBS) and stored frozen at -80°C in the presence of 10% glycerol or as a liquid stock at -20°C (HBS+40% glycerol).

Fractions collected after ultracentrifugation were
5 analyzed for transgene expression and vector DNA. For lacZ ArAd vectors, 2 µl aliquots were added to 293 cell monolayers seeded in 35 mm culture wells. Twenty-four hours later cells were harvested, suspended in 0.3 ml 10 mM Tris-Cl (pH 8.0) buffer, and lysed by three rounds of
10 freeze-thaw. Cell debris was removed by centrifugation (15,000 x g for 10 min) and assayed for total protein [Bradford, (1976)] and β-galactosidase activity [Sambrook et al, (1989)] using ONPG (o-Nitrophenyl β-D-galactopyranoside) as substrate.

15 Expression of CFTR protein from the AdA.CBCFTR vector was determined by immunofluorescence localization. Aliquots of AdA.CBCFTR, enriched by two-rounds of ultracentrifugation and exchanged to HBS storage buffer, were added to primary cultures of airway epithelial cells obtained from the lungs of CF transplant recipients.
20 Twenty-four hours after the addition of vector, cells were harvested and affixed to glass slides using centrifugal force (Cytospin 3, Shandon Scientific Limited). Cells were fixed with freshly prepared 3% paraformaldehyde in PBS (1.4 mM KH₂PO₄, 4.3 mM Na₂HPO₄, 2.7 mM KCl, and 137 mM NaCl) for 15 min at room
25 temperature (RT), washed twice in PBS, and permeabilized with 0.05% NP-40 for 10 min at RT. The immunofluorescence procedure began with a blocking step in 10% goat serum (PBS/GS) for 1 h at RT, followed by binding of the primary monoclonal mouse anti-human CFTR (R-domain specific) antibody (Genzyme) diluted 1:500 in PBS/GS for 2 h at RT. Cells were washed extensively in PBS/GS and incubated for 1 h at RT with a donkey anti-
30 mouse IgG (H+L) FITC conjugated
35

antibody (Jackson ImmunoResearch Laboratories) diluted 1:100 in PBS/GS.

For Southern analysis of vector DNA, 5 μ l aliquots were taken directly from CsCl fractions and incubated 5 with 20 μ l capsid digestion buifer (50 mM Tris-Cl, pH 8.0; 1.0 mM EDTA, pH 8.0; 0.5% SDS, and 1.0 mg/ml Proteinase K) at 50°C for 1 h. The reactions were allowed to cool to RT, loading dye was added, and electrophoresed through a 1.2% agarose gel. Resolved 10 DNAs were electroblotted onto a nylon membrane (Hybond-N) and hybridized with a 32-P labeled restriction fragment. Blots were analyzed by autoradiography or scanned on a Phosphorimager 445 SI (Molecular Dynamics).

The results that were obtained from Southern blot 15 analysis of gradient fractions revealed a distinct viral band that migrated faster than the helper Ad.CBhpAP DNA. The highest viral titers mapped to fractions 3 and 4. Quantitation of the bands in fraction 4 indicated the titer of Ad.CBhpAP was approximately 1.5x greater than 20 AdACBCFTR. However, if the size difference between the two viruses is factored in (Ad.CBhpAP=35 kb; AdACBCFTR=6.2 kb), the viral titer (where 1 particle=1 DNA molecule) of AdACB.CFTR is at least 4-fold greater than the viral titer of Ad.CBhpAP.

While Southern blot analysis of gradient fractions 25 was useful for showing the production of Ad Δ viral particles, it also demonstrated the utility of ultracentrifugation for purifying Ad Δ viruses. Considering the latter of these, both LacZ and CFTR 30 transducing viruses banded in CsCl to an intermediate density between infectious adenovirus helper virions (1.34 g/ml) and incompletely formed capsids (1.31 g/ml). The lighter density relative to h 1p r virus likely 35 results from the smaller genome carried by the Ad Δ viruses. This further suggests changes in virus size

influences the density and purification of AdA virus. Regardless, the ability to separate AdA virus from the helper virus is an important observation and suggests further purification may be achieved by successive rounds
5 of banding through CsCl.

This recombinant virus is useful in gene therapy alone, or preferably, in the form of a conjugate prepared as described herein.

10 Example 5 - Correction of Genetic Defect in CF airway
Epithelial Cells with AdACB.CFTR

Treatment of cystic fibrosis, utilizing the recombinant virus provided above, is particularly suited for *in vivo*, lung-directed, gene therapy. Airway
15 epithelial cells are the most desirable targets for gene transfer because the pulmonary complications of CF are usually its most morbid and life-limiting.

The recombinant AdACB.CFTR virus was fractionated on sequential CsCl gradients and fractions containing CFTR
20 sequences, migrating between the adenovirus and top components fractions described above were used to infect primary cultures of human airway epithelial cells derived from the lungs of a CF patient. The cultures were subsequently analyzed for expression of CFTR protein by
25 immunocytochemistry. Immunofluorescent detection with mouse anti-human CFTR (R domain specific) antibody was performed 24 hours after the addition of the recombinant virus. Analysis of mock infected CF cells failed to reveal significant binding to the R domain specific CFTR
30 antibody. Primary airway epithelium cultures exposed to the recombinant virus demonstrated high levels of CFTR protein in 10-20% of the cells.

Thus, the recombinant virus of the invention, containing the CFTR gene, may be delivered directly into the airway, e.g. by a formulating the virus above, into a

preparation which can be inhaled. For example, the recombinant virus or conjugate of the invention containing the CFTR gene, is suspended in 0.25 molar sodium chloride. The virus or conjugate is taken up by respiratory airway cells and the gene is expressed.

Alternatively, the virus or conjugates of the invention may be delivered by other suitable means, including site-directed injection of the virus bearing the CFTR gene. In the case of CFTR gene delivery, preferred solutions for bronchial instillation are sterile saline solutions containing in the range of from about 1×10^7 to 1×10^{10} pfu/ml, more particularly, in the range of from about 1×10^8 to 1×10^9 pfu/ml of the virus of the present invention.

Other suitable methods for the treatment of cystic fibrosis by use of gene therapy recombinant viruses of this invention may be obtained from the art discussions of other types of gene therapy vectors for CF. See, for example, U. S. Patent No. 5,240,846, incorporated by reference herein.

Example 6 - Synthesis of Polycation Helper Virus Conjugate

Another version of the helper virus of this invention is a polylysine conjugate which enables the pAd Δ shuttle plasmid to complex directly with the helper virus capsid. This conjugate permits efficient delivery of shuttle plasmid pAd Δ shuttle vector in tandem with the helper virus, thereby removing the need for a separate transfection step. See, Fig. 10 for a diagrammatic outline of this construction. Alternatively, such a conjugate with a plasmid supplying some Ad genes and the helper supplying the remaining necessary genes for production of the Ad Δ viral vector provides a novel way

to reduce contamination of the helper virus, as discussed above.

Purified stocks of a large-scale expansion of Ad.CBhpAP were modified by coupling poly-L-lysine to the 5 virion capsid essentially as described by K. J. Fisher and J. M. Wilson, Biochem. J., 299:49-58 (1994), resulting in an Ad.CBhpAP-(Lys)_n conjugate. The procedure involves three steps.

First, CsCl band purified helper virus Ad.CBhpAP was 10 reacted with the heterobifunctional crosslinker sulfo-SMCC [sulfo-(N-succinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate] (Pierce). The conjugation reaction, which contained 0.5 mg (375 nmol) of sulfo-SMCC and 6×10^{12} A₂₆₀ helper virus particles in 3.0 ml of 15 HBS, was incubated at 30°C for 45 minutes with constant gentle shaking. This step involved formation of a peptide bond between the active N-hydroxysuccinimide (NHS) ester of sulfo-SMCC and a free amine (e.g. lysine) contributed by an adenovirus protein sequence (capsid 20 protein) in the vector, yielding a maleimide-activated viral particle. The activated adenovirus is shown in Fig. 10 having the capsid protein fiber labeled with the nucleophilic maleimide moiety. In practice, other capsid polypeptides including hexon and penton base are also 25 targeted.

Unincorporated, unreacted cross-linker was removed by gel filtration on a 1 cm x 15 cm Bio-Gel P-6DG (Bio-Rad Laboratories) column equilibrated with 50 mM Tris/HCl buffer, pH 7.0, and 150 mM NaCl. Peak A₂₆₀ fractions 30 containing maleimide-activated helper virus were combined and placed on ice.

Second, poly-L-lysine having a molecular mass of 58 kDa at 10 mg/ml in 50 mM triethanolamine buffer (pH 8.0), 150 mM NaCl and 1 mM EDTA was titrated with 2-imminothiolane/HCl (Traut's Reagent; Pierce) to a molar

ratio of 2 moles-SH/mole polylysine under N₂; the cyclic thioimide reacts with the poly(L-lysine) primary amines resulting in a thiolated polycation. After a 45 minute incubation at room temperature the reaction was applied 5 to a 1 cm x 15 cm Bio-Gel P6DG column equilibrated with 50 mM Tris/HCl buffer (pH 7.0), 150 mM NaCl and 2 mM EDTA to remove unincorporated Traut's Reagent.

Quantification of free thiol groups was accomplished with Ellman's reagent [5,5'-dithio-bis-(2-nitrobenzoic acid)], revealing approximately 3-4 mol of -SH/mol of poly(L-lysine). The coupling reaction was initiated by adding 1 x 10¹² A₂₆₀ particles of maleimide-activated helper virus/mg of thiolated poly(L-lysine) and incubating the mixture on ice at 4°C for 15 hours under 15 argon. 2-mercaptoethylamine was added at the completion of the reaction and incubation carried out at room temperature for 20 minutes to block unreacted maleimide sites.

Virus-polylysine conjugates, Ad.CPAP-p(Lys)_n, were 20 purified away from unconjugated poly(L-lysine) by ultracentrifugation through a CsCl step gradient with an initial composition of equal volumes of 1.45 g/ml (bottom step) and 1.2 g/ml (top step) CsCl in 10 mM Tris/HCl buffer (pH 8.0). Centrifugation was at 90,000 g for 2 25 hours at 5°C. The final product was dialyzed against 20 mM Hepes buffer (pH 7.8) containing 150 mM NaCl (HBS).

Example 7 - Formation of AdA/helper-pLys Viral Particle

The formation of Ad.CBhpAP-pLys/pAdA.CMVLacZ 30 particle is initiated by adding 20 µg plasmid pAdA.CMVLacZ DNAs to 1.2 x 10¹² A₂₆₀ particles Ad.CBhpAP-pLys in a final volume of 0.2 ml DMEM and allowing the complex to develop at room temperature for betwe n 10-15 minutes. This ratio typically represents the plasmid DNA 35 binding capacity of a standard lot of ad novirus-pLys

conjugate and gives the highest levels of plasmid transgene expression.

The resulting trans-infection particle is transfected onto 293 cells (4×10^7 cells seeded on a 150 mm dish). Thirty hours after transfection, the particles are recovered and subjected to a freeze/thaw technique to obtain an extract. The extract is purified on a CsCl step gradient with gradients at 1.20 g/ml, 1.36 g/ml and 1.45 g/ml. After centrifugation at 90,000 \times g for 8 hours, the Ad Δ vectors were obtained from a fraction under the top components as identified by the presence of LacZ, and the helper virus was obtained from a smaller, denser fraction, as identified by the presence of hpAP.

15 Example 8 - Construction of Modified Helper Viruses with Crippled Packaging (PAC) Sequences

This example refers to Figs. 9A through 9C, 10A and 10B in the design of modified helper viruses of this invention.

20 Ad5 5' terminal sequences that contained PAC domains I and II (Fig. 8A) or PAC domains I, II, III, and IV (Fig. 8B) were generated by PCR from the wild type Ad5 5' genome depicted in Fig. 1B using PCR clones indicated by the arrows in Fig. 1B. The resulting amplification 25 products (Fig. 8A and 8B) sequences differed from the wild-type Ad5 genome in the number of A-repeats carried by the left (5') end.

As depicted in Fig. 8C, these amplification products were subcloned into the multiple cloning site of 30 pAd.Link.1 (IHGT Vector Core). pAd.Link.1 is a adenovirus based plasmid containing adenovirus m.u. 9.6 through 16.1. The insertion of the modified PAC regions into pAd.Link.1 gen rat d two v ct rs pAd.PACII (containing PAC domains I and II) and pAd.PACIV 35 (containing PAC domains I, II, III, and IV).

Thereafter, as depicted in Figs. 10A and 10B, for each of these plasmids, a human placenta alkaline phosphatase reporter minigene containing the immediate early CMV enhancer/promoter (CMV), human placenta 5 alkaline phosphatase cDNA (hpAl), and SV40 polyadenylation signal (pA), was subcloned into each PAC vector, generating pAd.PACII.CMVhpAP and pAd.PACIV.CMVhpAP, respectively.

These plasmids were then used as substrates for 10 homologous recombination with d17001 virus, described above, by co-transfection into 293 cells. Homologous recombination occurred between the adenovirus map units 9-16 of the plasmid and the crippled Ad5 virus. The results of homologous recombination were helper viruses 15 containing Ad5 5' terminal sequences that contained PAC domains I and II or PAC domains I, II, III, and IV, followed by the minigene, and Ad5 3' sequences 9.6-78.3 and 87-100. Thus, these crippled viruses are deleted of the E1 gene and the E3 gene.

20 The plaque formation characteristics of the PAC helper viruses gave an immediate indication that the PAC modifications diminished the rate and extent of growth. Specifically, PAC helper virus plaques did not develop until day 14-21 post-transfection, and on maturation 25 remained small. From previous experience, a standard first generation Ad.CBhpAP helper virus with a complete left terminal sequence would begin to develop by day 7 and mature by day 10.

Viral plaques were picked and suspended in 0.5 ml of 30 DMEM media. A small aliquot of the virus stock was used to infect a fresh monolayer of 293 cells and histochemically stained for recombinant alkaline phosphatas activity 24 h urs post-inf ction. Six of eight Ad.PACIV.CMVhpAP (ncodes A-repeats I-IV) clon s 35 that were screened for transgene expr ssion were

positive, while all three Ad.PACII.CMVhpAP clones that were selected scored positive. The clones have been taken through two rounds of plaque purification and are currently being expanded to generate a working stock.

5 These crippled helper viruses are useful in the production of the AdΔ virus particles according to the procedures described in Example 3. They are characterized by containing sufficient adenovirus genes to permit the packaging of the shuttle vector genome, but
10 their crippled PAC sequences reduce their efficiency for self-encapsidation. Thus less helper viruses are produced in favor of more AdΔ recombinant viruses.
15 Purification of AdΔ virus particles from helper viruses is facilitated in the CsCl gradient, which is based on the weight of the respective viral particles. This facility in purification is a decided advantage of the AdΔ vectors of this invention in contrast to adenovirus vectors having only E1 or smaller deletions. The AdΔ vectors even with minigenes of up to about 15 kb are
20 significantly different in weight than wild type or other adenovirus helpers containing many adenovirus genes.

Example 9 - AdΔ Vector Containing a full-length dystrophin transgene

25 Duchenne muscular dystrophy (DMD) is a common x-linked genetic disease caused by the absence of dystrophin, a 427K protein encoded by a 14 kilobase transcript. Lack of this important sarcolemmal protein leads to progressive muscle wasting, weakness, and death.
30 One current approach for treating this lethal disease is to transfer a functional copy of the dystrophin gene into the affected muscles. For skeletal muscle, a replication-defective adenovirus represents an efficient delivery system.

According to the present invention, a recombinant plasmid pAdΔ.CMVmdys was created which contains only the Ad5 cis-elements (i.e., ITRs and contiguous packaging sequences) and harbors the full-length murine dystrophin gene driven by the CMV promoter. This plasmid was generated as follows.

pSL1180 [Pharmacia Biotech] was cut with Not I, filled in by Klenow, and religated thus ablating the Not I site in the plasmid. The resulting plasmid is termed pSL1180NN and carries a bacterial ori and Amp resistance gene.

pAdΔ.CMVLacZ of Example 1 was cut with EcoRI, klenowed, and ligated with the ApaI-cut pSL1180NN to form pAdΔ.CMVLacZ (ApaI).

The 14 kb mouse dystrophin cDNA [sequences provided in C. C. Lee et al, *Nature*, 349:334-336 (1991)] was cloned in two large fragments using a lambda ZAP cloning vector (Stratagene) and subsequently cloned into the bluescript vector pSK- giving rise to the plasmid pCCL-DMD. A schematic diagram of this vector is provided in Fig. 11, which illustrates the restriction enzyme sites.

pAdΔ.CMVLacZ (ApaI) was cut with NotI and the large fragment gel isolated away from the lacZ cDNA. pCCL-DMD was also cut with NotI, gel isolated and subsequently ligated to the large NotI fragment of NotI digested pAdΔ.CMVLacZ (ApaI). The sequences of resulting vector, pAdΔ.CMVmdys, are provided in Fig. 12A-12P [SEQ ID NO:10].

This plasmid contains sequences form the left-end of the Ad5 encompassing bp 1-360 (5' ITR), a mouse dystrophin minigene under the control of the CMV promoter, and sequence from the right end of Ad5 spanning

bp 35353 to the end of the genome (3' ITR). The minigene is followed by an SV-40 poly-A sequence similar to that described for the plasmids described above.

The vector production system described herein is employed. Ten 150mm 293 plates are infected at about 90% confluence with a reporter recombinant E1-deleted virus Ad.CBhpAP at an MOI of 5 for 60 minutes at 37°C. These cells are transfected with pAdΔ.CMVmDys by calcium phosphate co-precipitation using 50 µg linearized DNA/dish for about 12-16 hours at 37°C. Media is replaced with DMEM + 10% fetal bovine serum.

Full cytopathic effect is observed and a cell lysate is made by subjecting the cell pellet to freeze-thaw procedures three times. The cells are subjected to an SW41 three tier CsCl gradient for 2 hours and a band migrating between the helper adenovirus and incomplete virus is detected.

Fractions are assayed on a 6 well plate containing 293 cells infected with 5λ of fraction for 16-20 hours in DMEM + 2% FBS. Cells are collected, washed with phosphate buffered saline, and resuspended in 2 ml PBS. 200λ of the 2ml cell fractions is cytospun onto a slide.

The cells were subjected to immunofluorescence for dystrophin as follows. Cells were fixed in 10N MeOH at -20°C. The cells were exposed to a monoclonal antibody specific for the carboxy terminus of human dystrophin [NCL-DYS2; Novocastra Laboratories Ltd., UK]. Cells were then washed three times and exposed to a secondary antibody, i.e. 1:200 goat anti-mouse IgG in FITC.

The titer/fraction for seven fractions revealed in the immunofluorescent stains were calculated by the following formula and reported in Table 2 below.
DFU/field = (DFU/200λ c lls) x 10 = DFU/10⁶ cells = (DFU/5λ viral fraction) x 20 = DFU/100λ fraction.

Table 2

	<u>Fraction</u>	<u>DFU/100λ</u>
5	1	--
	2	--
	3	6 × 10 ³
10	4	1.8 × 10 ⁴
	5	9.6 × 10 ³
	6	200
15	7	200

A virus capable of transducing the dystrophin minigene is detected as a "positive" (i.e., green fluorescent) cell. The results of the IF illustrate that heat-treated fractions do not show positive immunofluorescence. Southern blot data suggest one species on the same size as the input DNA, with helper virus contamination.

The recombinant virus can be subsequently separated from the majority of helper virus by sedimentation through cesium gradients. Initial studies demonstrate that the functional AdCMVΔmDys virions are produced, but are contaminated with helper virus. Successful purification would render AdΔ virions that are incapable of encoding viral proteins but are capable of transducing murine skeletal muscle.

Example 10 - Pseudotyping

The following experiment provides a method for preparing a recombinant AdΔ according to the invention, utilizing helper viruses from serotypes which differ from that of the pAdΔ in the transfection/infection protocol. It is unexpected that the ITRs and packaging sequence of

Ad5 could be incorporated into a virion of another serotype.

A. Protocol

The basic approach is to transfect the
5 Ad Δ .CMVlacZ recombinant virus (Ad5) into 293 cells and subsequently infect the cell with the helper virus derived from a variety of Ad serotypes (2, 3, 4, 5, 7, 8, 12, and 40). When CPE is achieved, the lysate is harvested and banded through two cesium gradients.

10 More particularly, the Ad5-based plasmid pAd Δ .CMVlacZ of Example 1 was linearized with EcoRI. The linearized plasmids were then transfected into ten 150 mm dishes of 293 cells using calcium phosphate co-precipitation. At 10-15 hours post transfection, wild
15 type adenoviruses (of one of the following serotypes: 2, 3, 4, 5, 7, 12, 40) were used to infect cells at an MOI of 5. The cells were then harvested at full CPE and lysed by three rounds of freeze-thawing. Pellet is resuspended in 4 mL Tris-HCl. Cell debris was removed by
20 centrifugation and partial purification of Ad5 Δ .CMVlacZ from helper virus was achieved with 2 rounds of CsCl gradient centrifugation (SW41 column, 35,000 rpm, 2 hours). Fractions were collected from the bottom of the tube (fraction #1) and analysed for lacZ transducing
25 viruses on 293 target cells by histochemical staining (at 20h PI). Contaminating helper viruses were quantitated by plaque assay.

Except for adenovirus type 3, infection with Ad serotypes 2, 4, 5, 7, 12 and 40 were able to produce lacZ
30 transducing viruses. The peak of β -galactosidase activity was detected between the two major A₂₆₀ absorbing peaks, where most of the helper viruses banded (data not shown). The quantity of lacZ virus recovered from 10 plates ranged from 10⁴ to 10⁸ transducing particles depending on the serotype of the helper. As

expected Ad2 and Ad5 produced the highest titer of lacZ transducing viruses (Table 3). Wild type contamination was in general 10^2 - 10^3 log higher than corresponding lacZ titer except in the case of Ad40.

5 B. Results

Table 3 summarizes the growth characteristics of the wild type adenoviruses as evaluated on propagation in 293 cells. This demonstrated the feasibility of utilizing these helper viruses to infect the cell line 10 which has been transfected with the Ad5 deleted virus.

Table 3

	Adenovirus serotypes	p/ml	pfu/ml	p:pfu
15	2	5×10^{12}	2.5×10^{11}	20:01
	3	1×10^{12}	6.25×10^9	160:1
20	4	3×10^{12}	2×10^9	150:1
	5	1×10^{12}	5×10^{10}	20:01
25	7a	5×10^{12}	1×10^{11}	50:1
	12	6×10^{11}	4×10^9	150:1
30	35	1.2×10^{12}		
	40	2.2×10^{12}	4.4×10^8	5000:1

Table 4 summarizes the results of the final purified fractions. The middle column, labeled LFU/ μ l quantifies the production of lacZ forming units, which is a direct measure of the packaging and propagation of pseudotyped recombinant Ad Δ virus. The pfu/ μ l titer is an estimate of the contaminating wild type virus. Ad Δ virus pseudotyped with all adenoviral strains was 35 g n rated except for Ad3. The titers range between 10^7 - 40 10^4 .

53

Table 4

	Serotypes	LFU/ml	PFU/ml
5	2	4.6×10^7	1.8×10^9
	3	0	NA
10	4	6.7×10^6	9.3×10^7
	5	6.3×10^7	1.9×10^9
15	7a	3×10^6	1.8×10^8
	12	1.2×10^5	3.3×10^8
	40	9.5×10^4	1.5×10^3
20			

Table 5A-5D represents a more detailed analysis of the fractions from the second purification for each of the experiments summarized in Table 4. Again, LFU/ μ l is the recovery of the AdA viruses, whereas pfu/ μ l represents recovery of the helper virus.

Table 5A

	Ad2 Fraction #	VOLUME/ μ l	LFU/ μ l	PFU/ μ l
30	1	120	9532	8×10^6
35	2	100	5.8×10^4	3×10^6
	3	100	8.24×10^4	6×10^5
	4	100	9.47×10^4	1.2×10^5
40	5	100	6×10^4	8×10^4
	6	100	2×10^4	6×10^4
	7	100	5434	5×10^4
45	Total/10 pH		3.32×10^7	1.35×10^9

Table 5B

5

	Ad4 Fraction #	VOLUME/uL	LFU/uL	PFU/uL
10	1	100	1000	1.75×10^5
	2	100	1.79×10^4	2.8×10^5
	3	100	1.8×10^4	5.5×10^4
15	4	100	2909	1.25×10^4
	5	100	920	4×10^4
	6	100	153	3×10^3
20	Total/10 pH		4×10^6	5.6×10^7

25 **Ad5 Fraction #**

	1	120	1.98×10^4	6×10^6
30	2	100	5.8×10^4	3×10^6
	3	100	1.2×10^5	1.5×10^6
	4	100	1×10^5	1.4×10^5
35	5	100	7.96×10^4	8×10^4
	6	100	6860	6×10^4
40	Total/10 pH		3.88×10^7	1.2×10^9

Table 5C

	Ad7 Fraction #	VOLUME/uL	LFU/uL	PFU/uL
10	1	100	1225	5×10^5
	2	100	5550	4×10^5
	3	100	4938	2×10^5
	4	100	3866	8×10^4
	5	100	4134	6×10^4
	6	100	995	7×10^4
	7	100	230	6×10^3
20	Total/10 pH		2.09×10^6	1.3×10^8
25	Ad12 Fraction #			
30	1	100	31	5×10^5
	2	80	169	8.5×10^5
	3	80	245	1.8×10^5
	4	110	161	1.1×10^5
	5	120	62	7×10^3
Total/10 pH		6.14×10^4	1.65×10^8	

Table 5D

	Ad40 Fraction #	VOLUME/uL	LFU/uL	PFU/uL
5	1	80	61	5
	2	80	184	3
10	3	80	199	3
	4	80	168	1
15	5	80	122	
	6	100	46	
	7	100	32	
20	Total/10 pH		6.65×10^4	1.1×10^3

c. Characterization of the Structure of Packaged Viruses

Aliquots of serial fractions were analysed by Southern blots using lacZ as a probe. In the case of Ad2 and 5, not only the linearized monomer was packaged but multiple forms of recombinant virus with distinct sizes were found. These forms correlated well with the sizes of dimers, trimers and other higher molecular weight concatamers. The linearized monomers peaked closer to the top of tube (the defective adenovirus band) than other forms. When these forms were correlated with lacZ activity, a better correlation was found between the higher molecular weight forms than the monomers. With pseudotyping of Ad4 and Ad7, no linearized monomers were packaged and only higher molecular weight forms were found.

These data definitively demonstrate the production and characterization of the A virus and the different pseudotypes. This example illustrates a very simple way of generating pseudotype viruses.

Example 11 - AdΔ Vector Containing a FH Gene

Familial hypercholesterolemia (FH) is an autosomal dominant disorder caused by abnormalities (deficiencies) in the function or expression of LDL receptors [M.S.

5 Brown and J.L. Goldstein, Science, 232(4746):34-37 (1986); J.L. Goldstein and M.S. Brown, "Familial hypercholesterolemia" in Metabolic Basis of Inherited Disease, ed. C.R. Scriver et al, McGraw Hill, New York, pp1215-1250 (1989).] Patients who inherit one abnormal
10 allele have moderate elevations in plasma LDL and suffer premature life-threatening coronary artery disease (CAD). Homozygous patients have severe hypercholesterolemia and life-threatening CAD in childhood. An FH-containing vector of the invention is constructed by replacing the
15 lacZ minigene in the pAdΔc.CMVlacZ vector with a minigene containing the LDL receptor gene [T. Yamamoto et al, Cell, 39:27-38 (1984)] using known techniques and as described analogously for the dystrophin gene and CFTR in the preceding examples. Vectors bearing the LDL receptor
20 gene can be readily constructed according to this invention. The resulting plasmid is termed pAdΔc.CMV-LDL.

This plasmid is useful in gene therapy of FH alone, or preferably, in the form of a conjugate prepared as
25 described herein to substitute a normal LDL gene for the abnormal allele responsible for the gene.

A. Ex Vivo Gene Therapy

Ex vivo gene therapy can be performed by harvesting and establishing a primary culture of
30 hepatocytes from a patient. Known techniques may be used to isolate and transduce the hepatocytes with the above vector(s) bearing the LDL receptor gene(s). For example, techniques of collagenase perfusion dev lop d for rabbit liver can b adapted for human tissu and us d in
35 transduction. Following transduction, the h patocyt s

are removed from the tissue culture plates and reinfused into the patient using known techniques, e.g. via a catheter placed into the inferior mesenteric vein.

B. In Vivo Gene Therapy

5 Desirably, the *in vivo* approach to gene therapy, e.g. liver-directed, involves the use of the vectors and vector conjugates described above. A preferred treatment involves infusing a vector LDL conjugate of this invention into the peripheral 10 circulation of the patient. The patient is then evaluated for change in serum lipids and liver tissues.

The virus or conjugate can be used to infect hepatocytes *in vivo* by direct injection into a peripheral or portal vein (10^7 - 10^8 pfu/kg) or retrograde into the 15 biliary tract (same dose). This effects gene transfer into the majority of hepatocytes.

Treatments are repeated as necessary, e.g. weekly. Administration of a dose of virus equivalent to an MOI of approximately 20 (i.e. 20 pfu/hepatocyte) is 20 anticipated to lead to high level gene expression in the majority of hepatocytes.

All references recited above are incorporated herein by reference. Numerous modifications and variations of the present invention are included in the above-25 identified specification and are expected to be obvious to one of skill in the art. Such modifications and alternations to the compositions and processes of the present invention, such as various modifications to the PAC sequences or the shuttle vectors, or to other 30 sequences of the vector, helper virus and minigene components, are believed to be encompassed in the scope of the claims appended hereto.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT: Trustees of the University of Pennsylvania
Wilson, James M.
Fisher, Krishna J.
Chen, Shu-Jen
Weitzman, Matthew

(ii) TITLE OF INVENTION: Improved Adenovirus and Methods
of Use Thereof

(iii) NUMBER OF SEQUENCES: 10

(iv) CORRESPONDENCE ADDRESS:

(A) ADDRESSEE: Howson and Howson
(B) STREET: Spring House Corporate Cntr, PO Box 457
(C) CITY: Spring House
(D) STATE: Pennsylvania
(E) COUNTRY: USA
(F) ZIP: 19477

(v) COMPUTER READABLE FORM:

(A) MEDIUM TYPE: Floppy disk
(B) COMPUTER: IBM PC compatible
(C) OPERATING SYSTEM: PC-DOS/MS-DOS
(D) SOFTWARE: PatentIn Release #1.0, Version #1.30

(vi) CURRENT APPLICATION DATA:

(A) APPLICATION NUMBER:
(B) FILING DATE:
(C) CLASSIFICATION:

(vii) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER: US 08/331,381
(B) FILING DATE: 28-OCT-1994

(viii) ATTORNEY/AGENT INFORMATION:

(A) NAME: Bak, Mary E.
(B) REGISTRATION NUMBER: 31,215
(C) REFERENCE/DOCKET NUMBER: GNVPN.008PCT

(ix) TELECOMMUNICATION INFORMATION:

(A) TELEPHONE: 215-540-9200
(B) TELEFAX: 215-540-5818

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 7897 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

GAACTCGAGC AGCTGAAGCT TGAATTCCAT CATCAATAAT ATACCTTATT	50
TTGGATTGAA GCCAATATGA TAATGAGGGG GTGGAGTTTG TGACGTGGCG	100
CGGGGCGTGG GAAACGGGGCG GGTGACGTAG GTTTTAGGGC GGAGTAACTT	150
GTATGTGTTG GGAATTGTAG TTTTCTTAAA ATGGGAAGTT ACGTAACGTG	200
GGAAAACGGA AGTGACGATT TGAGGAAGTT GTGGGTTTTT TGGCTTTCGT	250
TTCTGGCGT AGGTTCGCGT GCGGTTTTCT GGGTGTTTTT TGTGGACTTT	300
AACC GTTACG TCATTTTTA GTCCTATATA TACTCGCTCT GCAC TTGGGCC	350
CTTTTTACA CTGTGACTGA TTGAGCTGGT GCCGTGTCGA GTGGTGTTTT	400
TTTAATAGGT TTTCTTTTT ACTGGTAAGG CTGACTGTTA GGCTGCCGCT	450
GTGAAGCGCT GTATGTTGTT CTGGAGCGGG AGGGTGCTAT TTTGCCTAGG	500
CAGGAGGGTT TTTCAGGTGT TTATGTTTT TTCTCTCCTA TTAATTTGT	550
TATACCTCCT ATGGGGGCTG TAATGTTGTC TCTACGCCCTG CGGGTATGTA	600
TTCCCCCAA GCTTGCATGC CTGCAGGTG ACTCTAGAGG ATCCGAAAAA	650
ACCTCCCACA CCTCCCCCTG AACCTGAAAC ATAAAATGAA TGCAATTGTT	700
GTTGTTAACT TGTTTATTGC AGCTTATAAT GGTTACAAAT AAAGCAATAG	750
CATCACAAAT TTCACAAATA AAGCATTTTT TTCACTGCAT TCTAGTTGTG	800
GTTTGTCCAA ACTCATCAAT GTATCTTATC ATGTCTGGAT CCCCGCGGCC	850
GCCTAGAGTC GAGGCCGAGT TTGTCAGAAA GCAGACCAAA CAGCGGTGG	900
AATAATAGCG AGAACAGAGA AATAGCGGCA AAAATAATAC CCGTATCACT	950
TTTGCTGATA TGGTTGATGT CATGTAGCCA AATCGGGAAA AACGGGAAGT	1000

AGGCTCCCAT	GATAAAAAG	TAAAAGAAAA	AGAATAAAC	GAACATCCAA	1050
AAGTTTGTGT	TTTTTAAATA	GTACATAATG	GATTCCTTA	CGCGAAATAC	1100
GGGCAGACAT	GGCCTGCCG	GTTATTATTA	TTTTGACAC	CAGACCAACT	1150
GGTAATGGTA	GCGACCGGGCG	CTCAGCTGTA	A.TCCGCCGA	TACTGACGGG	1200
CTCCAGGAGT	CGTCGCCACC	AATCCCCATA	TGGAAACCGT	CGATATTCA	1250
CCATGTGCCT	TCTTCCGCGT	GCAGCAGATG	GCGATGGCTG	CTTCCATCA	1300
GTTGCTGTTG	ACTGTAGCGG	CTGATGTTGA	ACTGGAAGTC	GCCGCCAC	1350
TGGTGTGGGC	CATAATTCAA	TTCGCGCGTC	CCGCAGCGCA	GACCGTTTC	1400
GCTCGGGAAG	ACGTACGGGG	TATACATGTC	TGACAATGGC	AGATCCCAGC	1450
GGTAAAACA	GGCGGCAGTA	AGGCGGTGG	GATAGTTTC	TTGCGGCCCT	1500
AATCCGAGCC	AGTTTACCCG	CTCTGCTACC	TGCGCCAGCT	GGCAGTTCA	1550
GCCAATCCGC	GCCGGATGCG	GTGTATCGCT	CGCCACTTCA	ACATCAACGG	1600
TAATGCCAT	TTGACCACTA	CCATCAATCC	GGTAGGTTTT	CCGGCTGATA	1650
AATAAGGTTT	TCCCCTGATG	CTGCCACGCG	TGAGCGGTG	TAATCAGCAC	1700
CGCATCAGCA	AGTGTATCTG	CCGTGCACTG	CAACAACGCT	GCTCGGCCCT	1750
GGTAATGGCC	CGCCGCCCTTC	CAGCGTTCGA	CCCAGGCGTT	AGGGTCAATG	1800
CGGGTCGCTT	CACTTACGCC	AATGTCGTTA	TCCAGCGGTG	CACGGGTGAA	1850
CTGATCGCGC	AGCGCGTCA	GCAGTTGTTT	TTTATGCCA	ATCCACATCT	1900
GTGAAAGAAA	GCCTGACTGG	CGGTTAAATT	GCCAACGCTT	ATTACCCAGC	1950
TCGATGCAAA	AATCCATTTC	GCTGGTGGTC	AGATGCGGGA	TGGCGTGGGA	2000
CGCGGCGGGG	AGCGTCACAC	TGAGGTTTTTC	CGCCAGACGC	CACTGCTGCC	2050
AGGCGCTGAT	GTGCCCGGCT	TCTGACCATG	CGGTGCGCTT	CGGTTGCACT	2100
ACCGGTACTG	TGAGCCAGAG	TTGCCCGGCG	CTCTCCGGCT	GCGGTAGTT	2150
AGGCAGTTCA	ATCAACTGTT	TACCTTGTGG	AGCGACATCC	AGAGGCAC	2200
CACCGCTTGC	CAGCGGCTTA	CCATCCAGCG	CCACCATCCA	GTGCAGGAGC	2250
TCGTTATCGC	TATGACGGAA	CAGGTATTG	CTGGTCAC	CGATGGTTG	2300

CCCGGATAAAA CGGAACGTGGP AAAACTGCTG CTGGTGTGTTT GCTTCCGTCA	2350
GCGCTGGATG CGGGCGTGCAG TCGGCAAAGA CCAGACCGTT CATAACAGAAC	2400
TGGCGATCGT TCGGCGTATC GCCAAAATCA CCGCCGTAAG CCGACCACGG	2450
GTTGCCGTTT TCATCATATT TAATCAGCGA CTATCCACC CAGTCCCAGA	2500
CGAAGCCGCC CTGTAAACGG GGATACTGAC GAAACGCCG 2550 CCAGTATT	2550
GCGAAACCGC CAAGACTGTT ACCCATCGCG TGGCGTATT CGCAAAGGAT	2600
CAGCGGGCGC GTCTCTCCAG GTAGCGAAAG CCATTTTG ATGGACCATT	2650
TCGGCACAGC CGGGAAAGGGC TGGTCTTCAT CCACGCGCGC GTACATCGGG	2700
CAAATAATAT CGGTGGCCGT GGTGTCGGCT CCGCCGCCCT CATACTGCAC	2750
CGGGCGGGAA GGATCGACAG ATTTGATCCA GCGATAACAGC GCGTCGTGAT	2800
TAGCGCCGTG GCCTGATTCA TTCCCCAGCG ACCAGATGAT CACACTCGGG	2850
TGATTACGAT CGCGCTGCAC CATTGCGTT ACGCGTTCGC TCATGCCGG	2900
TAGCCAGCGC GGATCATCGG TCAGACGATT CATTGGCACC ATGCCGTGGG	2950
TTTCAATATT GGCTTCATCC ACCACATACA GGCGTAGCG GTCGCACAGC	3000
GTGTACCACA GCGGATGGTT CGGATAATGC GAACAGCGCA CGCGTTAAA	3050
GTTGTTCTGC TTCATCAGCA GGATATCCTG CACCATCGTC TGTCATCCA	3100
TGACCTGACC ATGCAGAGGA TGATGCTCGT GACGGTTAAC GCCTCGAAC	3150
AGCAACGGCT TGCGTTCAAG CAGCAGCAGA CCATTTCAA TCCGCACCTC	3200
GCGGAAACCG ACATCGCAGG CTTCTGCTTC AATCAGCGTG CCGTCGGCGG	3250
TGTGCAGTTC AACCAACCGCA CGATAGAGAT TCGGGATTTG GGCGCTCCAC	3300
AGTTTGGGT TTTGACGTT CAGACGTAGT GTGACCGAT CGGCATAACC	3350
ACCACGCTCA TCGATAATT CACCGCCGAA AGGCGCGGTG CCGCTGGCGA	3400
CCTGCCTTC ACCCTGCCAT AAAGAAACTG TTACCCGTAG GTAGTCACGC	3450
AACTCGCCGC ACATCTGAAC TTCAGCCTCC AGTACAGCGC GGCTGAAATC	3500
ATCATTAAAG CGAGTGGCAA CATGGAAATC GCTGATTGT GTAGTCGGTT	3550
TATGCAGCAA CGAGACGTCA CGGAAAATGC CGCTCATCCG CCACATATCC	3600

TGATCTTCCA	GATAACTGCC	GTCACTCCAA	CGCAGCACCA	TCACCGCGAG	3650
GCGGTTTCT	CCGGCGCGTA	AAAATGCGCT	CAGGTCAAAT	TCAGACGGCA	3700
AACGACTGTC	CTGGCCGTAA	CCGACCCAGC	GCCC GTTGCA	CCACAGATGA	3750
AACGCCGAGT	TAACGCCATC	AAAAATAATT	C CGTCTGGC	C TTCTGTAG	3800
CCAGCTTCA	TCAACATTAA	ATGTGAGCGA	GTAACAACCC	GTCGGATTCT	3850
CCGTGGGAAC	AAACGGCGGA	TTGACCGTAA	TGGGATAGGT	TACGTTGGTG	3900
TAGATGGCG	CATCGTAACC	GTGCATCTGC	CAGTTGAGG	GGACGACGAC	3950
AGTATCGGCC	TCAGGAAGAT	CGCACTCCAG	CCAGCTTICC	GGCACCGCTT	4000
CTGGTGCCGG	AAACCAGGCA	AAGCGCCATT	CGCCATTCAAG	GCTGCGCAAC	4050
TGTTGGGAAG	GGCGATCGGT	GC GGCCTCT	TCGCTATTAC	GCCAGCTGGC	4100
CAAAGGGGGA	TGTGCTGCAA	GGCGATTAAG	TTGGGTAACG	CCAGGGTTTT	4150
CCCAGTCACG	ACGTTGTAAA	ACGACGGGAT	CGCGCTTGAG	CAGCTCCTTG	4200
CTGGTGTCCA	GACCAATGCC	TCCCAGACCG	GCAACGAAAA	TCACGTTCTT	4250
GTTGGTCAA	GTAAACGACA	TGGTGACTTC	TTTTTGCTT	TAGCAGGCTC	4300
TTTCGATCCC	CGGGAATTGC	GGCCGCGGGT	ACAATTCCGC	AGCTTTAGA	4350
GCAGAAGTAA	CACTTCCGTA	CAGGCCTAGA	AGTAAAGGCA	ACATCCACTG	4400
AGGAGCAGTT	CTTTGATTG	CACCACCAAC	GGATCCGGGA	CCTGAAATAA	4450
AAGACAAAAAA	GACTAAACTT	ACCAGTTAAC	TTTCTGGTTT	TTCAGTTCCCT	4500
CGAGTACCGG	ATCCTCTAGA	GTCCGGAGGC	TGGATCGGTC	CCGGTCTCTT	4550
CTATGGAGGT	CAAAACAGCG	TGGATGGCGT	CTCCAGGCAG	TCTGACGGTT	4600
CACTAACGA	GCTCTGCTTA	TATAGACCTC	CCACCGTACA	CGCCTACCGC	4650
CCATTTGCGT	CAATGGGGCG	GAGTTGTTAC	GACATTTGG	AAAGTCCC GT	4700
TGATTTGGT	GCCAAAACAA	ACTCCCATTG	ACGTCAATGG	GGTGGAGACT	4750
TGGAAATCCC	CGTGAGTCAA	ACCGCTATCC	ACGCCATTG	ATGTACTGCC	4800
AAAACCGCAT	CACCATGGTA	ATAGCGATGA	CTAATACGTA	GATGTACTGC	4850
CAAGTAGGAA	AGTCCCATAA	GGTCATGTAC	TGGGCATAAT	GCCAGGCGGG	4900

CCATTTACCG TCATTGACGT CAATAGGGGG CGTACTTGGC ATATGATACA	4950
CTTGATGTAC TGCCAAGTGG GCAGTTTACC GTAAATACTC CACCCATTGA	5000
CGTCAATGGA AAGTCCTAT TGGCGTTACT ATGGGAACAT ACGTCATTAT	5050
TGACGTCAAT GGCGGGGGT CGTTGGCGG TCAGGCCAGC GGGCCATTAA	5100
CCGTAAGTTA TGTAACGACC TGCAGGTCGA CTCTAGAGGA TCTCCCTAGA	5150
CAAATATTAC GCGCTATGAG TAACACAAAA TTATTCAAGAT TTCACTTCCT	5200
CTTATTCAAGT TTCCCAGCGA AAATGGCCAA ATCTTACTCG GTTACGCCA	5250
AATTTACTAC AACATCCGCC TAAAACCGCG CGAAAATTGT CACTTCCTGT	5300
GTACACCGGC GCACACCAAA AACGTCACIT TTGCCACATC CGTCGCTTAC	5350
ATGTGTTCCG CCACACTTGC AACATCACAC TTCCGCCACA CTACTACGTC	5400
ACCCGCCCG TTCCCACGCC CCGGCCACG TCACAAACTC CACCCCTCA	5450
TTATCATATT GGCTTCAATC CAAAATAAGG TATATTATTG ATGATGCTAG	5500
CGAATTCAATC GATGATATCA GATCTGCCGG TCTCCCTATA GTGAGTCGTA	5550
TTAATTCGA TAAGCCAGGT TAACCTGCAT TAATGAATCG GCCAACGCGC	5600
GGGGAGAGGC GGTTTGCCTA TTGGCGCTC TTCCGCTTCC TCGCTCACTG	5650
ACTCGCTGCG CTCGGTCGTT CGGCTGCCGC GAGCGGTATC AGCTCACTCA	5700
AAGGCGGTAA TACGGTTATC CACAGAATCA GGGGATAACG CAGGAAAGAA	5750
CATGTGAGCA AAAGGCCAGC AAAAGGCCAG GAACCGTAAA AAGGCCCGT	5800
TGCTGGCGTT TTTCCATAGG CTCCGCCCG CTGACGAGCA TCACAAAAAT	5850
CGACGCTCAA GTCAGAGGTG GCGAAACCCG ACAGGACTAT AAAGATAACCA	5900
GGCGTTTCCC CCTGGAAGCT CCCTCGTGCCT CTCTCCTGTT CCGACCCCTGC	5950
CGCTTACCGG ATACCTGTCC GCCTTCTCC CTTCGGAAG CGTGGCGCTT	6000
TCTCAATGCT CACGCTGTAG GTATCTCACT TCGGTGTAGG TCGTTCGCTC	6050
CAAGCTGGGC TGTGTGCACG AACCCCCCGT TCAGCCGAC CGCTGCGCCT	6100
TATCCGGTAA CTATCGTCTT GAGTCCAACC CGGTAAGACA CGACTTATCG	6150
CCACTGGCAG CAGCCACTGG TAACAGGATT AGCAGAGCGA GGTATGTAGG	6200

65

CGGTGCTACA GAGTTCTTGA AGTGGTGGCC TAACTACGGC TACACTAGAA	6250
GGACAGTATT TGGTATCTGC GCTCTGCTGA AGCCAGTTAC CTTCGGAAAA	6300
AGAGTTGGTA GCTCTTGATC CGGCAAACAA ACCACCGCTG CTAGCGGTGG	6350
TTTTTTGTT TGCAAGCAGC AGATTACGCG CAGAAAAAAAA GGATCTCAAG	6400
AAGATCCTTT GATCTTTCT ACGGGGTCTG ACGCTCAGTG GAACGAAAAC	6450
TCACGTTAAG GGATTTGGT CATGAGATTA TCAAAAAGGA TCTTCACCTA	6500
GATCCTTTA AATTAAAAAT GAAGTTTAA ATCAATCTAA AGTATATATG	6550
AGTAAACTTG GTCTGACAGT TACCAATGCT TAATCAGTGA GGCACCTATC	6600
TCAGCGATCT GTCTATTCG TTCATCCATA GTTGCCTGAC TCCCCGTCGT	6650
GTAGATAACT ACGATAACGGG AGGGCTTACC ATCTGGCCCC AGTGTGCAA	6700
TGATACCGCG AGACCCACGC TCACCGGCTC CAGATTATAC AGCAATAAAC	6750
CAGCCAGCCG GAAGGGCCGA GCGCAGAAGT GGTCCCTGCAA CTTTATCCGC	6800
CTCCATCCAG TCTATTAATT GTTGCCTGGGA AGCTAGAGTA AGTAGTTCGC	6850
CAGTTAATAG TTTGCGCAAC GTTGTGCCA TTGCTACAGG CATCGTGGTG	6900
TCACGCTCGT CGTTTGGTAT GGCTTCATTC AGCTCCGGTT CCCAACGATC	6950
AAGGCGAGTT ACATGATCCC CCATGTTGTG CAAAAAAGCG GTTAGCTCCT	7000
TCGGTCCTCC GATCGTTGTC AGAAGTAAGT TGGCCGCAGT GTTATCACTC	7050
ATGGTTATGG CAGCACTGCA TAATTCTCTT ACTGTCATGC CATCCGTAAG	7100
ATGCTTTCT GTGACTGGTG AGTACTCAAC CAAGTCATTC TGAGAATAGT	7150
GTATGCGGCCG ACCGAGTTGC TCTTGCCCGG CGTCAATAAG GGATAATACC	7200
GCGCCACATA GCAGAACTTT AAAAGTGCTC ATCATTGGAA AACGTTCTTC	7250
GGGGCGAAAA CTCTCAAGGA TCTTACCGCT GTTGAGATCC AGTCGATGT	7300
AACCCACTCG TGCAACCAAC TGATCTTCAG CATCTTTAC TTTCACCAAGC	7350
GTTCCTGGGT GAGCAAAAAC AGGAAGGCAA AATGCCGCAA AAAAGGGAAT	7400
AAGGGCGACA CGGAAATGTT GAATACTCAT ACTCTTCCTT TTTCAATATT	7450
ATTGAAGCAT TTATCAGGGT TATTGTCTCA TGAGCGGATA CATATTGAA	7500

TGTATTTAGA AAAATAAACCA AATAGGGGTT CCGCGCACAT TTCCCCGAAA	7550
AGTGCCACCT GACGTCTAAG AAACCATTAT TATCATGACA TTAACCTATA	7600
AAAATAGGCG TATCACGAGG CCCTTCGTC TCGCGCGTTT CGGTGATGAC	7650
GGTGAAAACC TCTGACACAT GCAGCTCCCG GAJACGGTCA CAGCTTGTCT	7700
GTAAGCGGAT GCCGGGAGCA GACAAGCCCG TCAGGGCGCG TCAGCGGGTG	7750
TTGGCGGGTG TCGGGGCTGG CTTAACTATG CGGCATCAGA GCAGATTGTA	7800
CTGAGAGTGC ACCATATGGA CATATTGTCG TTAGAACGCG GCTACAATTAA	7850
ATACATAACC TTATGTATCA TACACATAACG ATTTAGGTGA CACTATA	7897

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7852 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

GAATTCGCTA GCTAGCGGGG GAATACATAC CCGCAGGCGT AGAGACAACA	50
TTACAGCCCC CATAGGAGGT ATAACAAAAT TAATAGGAGA GAAAAACACA	100
TAAACACCTG AAAAACCCCTC CTGCCTAGGC AAAATAGCAC CCTCCCGCTC	150
CAGAACAAACA TACAGCGCTT CACAGCGCA GCCTAACAGT CAGCCTTACC	200
AGTAAAAAAAG AAAACCTATT AAAAACACAC CACTCGACAC GGCACCAGCT	250
CAATCAGTCA CAGTGTAAAA AAGGGCCAAG TGCAAGAGCGA GTATATATAG	300
GACTAAAAAA TGACGTAACG GTTAAAGTCC ACAAAAAACA CCCAGAAAAC	350
CGCACGCGAA CCTACGCCA GAAACGAAAG CCAAAAAACC CACAACCTCC	400
TCAAATCGTC ACTTCCGTTT TCCCACGTTA CGTAACCTCC CATTAAAGA	450
AAACTACAAT TCCCAACACA TACAAGTTAC TCCGCCCTAA AACCTACGTC	500
ACCCGCCCCG TTCCCACGCC CCGCGCCACG TCACAAACTC CACCCCTCA	550

TTATCATATT GGCTCAATC CAAAATAAGG TATATTATTG ATGATGCTAG	600
CATCATCAAT AATATACCTT ATTTTGATT GAAGCCAATA TGATAATGAG	650
GGGGTGGAGT TTGTGACGTG GCGCGGGCG TGGAACGGG GCGGGTGACG	700
TAGTAGTGTG GCGGAAGTGT GATGTTCAA G:GTGGCGGA ACACATGTAA	750
GCGACGGATG TGGCAAAAGT GACGTTTTG GTGTGCGCCG GTGTACACAG	800
GAAGTGACAA TTTTCGCGCG GTTTTAGGCG GATGTTGTAG TAAATTTGGG	850
CGTAACCGAG TAAGATTTGG CCATTTCGC GGGAAAACTG AATAAGAGGA	900
AGTGAATCT GAATAATTT GTGTTACTCA TAGCGCGTAA TATTTGTCTA	950
GGGAGATCAG CCTGCAGGTC GTTACATAAC TTACGGTAAA TGGCCCGCCT	1000
GGCTGACCGC CCAACGACCC CCGCCCATTG ACGTCAATAA TGACGTATGT	1050
TCCCCATAGTA ACGCCAATAG GGACTTTCCA TTGACGTCAA TGGGTGGAGT	1100
ATTTACGGTA AACTGCCAC TTGGCAGTAC ATCAAGTGT A TCATATGCCA	1150
AGTACGCCCC CTATTGACGT CAATGACGGT AAATGGCCCG CCTGGCATTAA	1200
TGCCCAAGTAC ATGACCTTAT GGGACTTTCC TACTTGGCAG TACATCTACG	1250
TATTAGTCAT CGCTATTACC ATGGTGATGC GGTTTTGGCA GTACATCAAT	1300
GGCGTGGAT AGCGGTTTGA CTCACGGGA TTTCCAAGTC TCCACCCCAT	1350
TGACGTCAAT GGGAGTTGT TTTGGCACCA AAATCAACGG GACTTTCCAA	1400
AATGTCGTAA CAACTCCGCC CCATTGACGC AAATGGCGG TAGGCGTGTAA	1450
CGGTGGGAGG TCTATATAAG CAGAGCTCGT TTAGTGAACC GTCAGATCGC	1500
CTGGAGACGC CATCCACGCT GTTTTGACCT CCATAGAAGA CACCGGGACC	1550
GATCCAGCCT CCGGACTCTA GAGGATCCGG TACTCGAGGA ACTGAAAAAC	1600
CAGAAAGTTA ACTGGTAAGT TTAGTCTTT TGTCTTTAT TTCAGGTCCC	1650
GGATCCGGTG GTGGTGCAAA TCAAAGAACT GCTCCTCAGT GGATGTTGCC	1700
TTTACTTCTA GGCGTGTACG GAAAGTGTAC TTCTGCTCTA AAAGCTGCGG	1750
AATTGTACCC GCGGCCGCAA TTCCCGGGGA TCGAAAGAGC CTGCTAAAGC	1800
AAAAAAAGAAG TCACCATGTC GTTTACTTTG ACCAACAAAGA ACGTGATTTT	1850

CGTTGCCGGT	CTGGGAGGCA	TTGGTCTGGA	CACCAGCAAG	GAGCTGCTCA	1900
AGCGCGATCC	CGTCGTTTA	CAACGTCGTG	ACTGGGAAAAA	CCCTGGCGTT	1950
ACCCAACCTTA	ATCGCCTTGC	AGCACATCCC	CCTTCGCCA	GCTGGCGTAA	2000
TAGCGAAGAG	GCCCCGACCCG	ATCGCCCTTC	CLAACAGTTG	CGCAGCCTGA	2050
ATGGCGAATG	GCGCTTTGCC	TGGTTTCCGG	CACCAGAACG	GGTGCCGGAA	2100
AGCTGGCTGG	AGTGCGATCT	TCCTGAGGCC	GATACTGTCG	TCGTCCCCTC	2150
AAACTGGCAG	ATGCACGGTT	ACGATGCGCC	CATCTACACC	AACGTAACCT	2200
ATCCCATTAC	GGTCAATCCG	CCGTTTGTTC	CCACGGAGAA	TCCGACGGGT	2250
TGTTACTCGC	TCACATTAA	TGTTGATGAA	AGCTGGCTAC	AGGAAGGCCA	2300
GACGCGAATT	ATTTTTGATG	GCGTTAACTC	GGCGTTTCAT	CTCTGGTGCA	2350
ACGGGGCGCTG	GGTCGGTTAC	GGCCAGGACA	GTCGTTGCC	GTCTGAATT	2400
GACCTGAGCG	CATTTTTACG	CGCCGGAGAA	AACCGCCTCG	CGGTGATGGT	2450
GCTGC GTTGG	AGTGACGGCA	GTTATCTGGA	AGATCAGGAT	ATGTGGCGGA	2500
TGAGCGGCAT	TTTCCGTGAC	GTCTCGTTGC	TGCATAAAC	GAATACACAA	2550
ATCAGCGATT	TCCATGTTGC	CACTCGCTTT	AATGATGATT	TCAGCCGCGC	2600
TGTACTGGAG	GCTGAAGTTC	AGATGTGCGG	CGAGTTGCGT	GAATACCTAC	2650
GGGTAACAGT	TTCTTTATGG	CAGGGTGAAA	CGCAGGTCGC	CAGCGGCACC	2700
GCGCCTTCG	GCGGTGAAAT	TATCGATGAG	CGTGGTGGTT	ATGCCGATCG	2750
CGTCACACTA	CGTCTGAACG	TCGAAAACCC	GAAACTGTGG	AGCGCCGAAA	2800
TCCCGAATCT	CTATCGTGC	GTGGTTAAC	TGCACACC	CGACGGCACG	2850
CTGATTGAAG	CAGAAGCCTG	CGATGTCGGT	TTCCGCGAGG	TGCGGATTGA	2900
AAATGGTCTG	CTGCTGCTGA	ACGGCAAGCC	GTTGCTGATT	CGAGGCGTTA	2950
ACCGTCACGA	GCATCATCCT	CTGCATGGTC	AGGTCA	TGAGCAGACC	3000
ATGGTGCAGG	ATATCCTGCT	GATGAAGCAG	AACAAC	ACGCCGTGCG	3050
CTGTTCGCAT	TATCCGAACC	ATCCGCTGTG	GTACACGCTG	TGCGACCGCT	3100
ACGGCCTGTA	TGTGGTGGAT	GAAGCCAATA	TTGAAACCCA	CGGCATGGTG	3150

CCAATGAATC GTCTGACCGA TGATCCGCGC TGGCTACCGG CGATGAGCGA	3200
ACCGCGTAACG CGAATGGTGC AGCGCGATCG TAATCACCCG AGTGTGATCA	3250
TCTGCTCGCT GGGGAATGAA TCAGGCCACG GCGCTAATCA CGACCGCGTG	3300
TATCGCTGGA TCAAATCTGT CGATCCCTTC CCCCCGGTGC AGTATGAAGG	3350
CGGGCGGAGCC GACACCACGG CCACCGATAT TATTTGCCCG ATGTACGCGC	3400
GCGTGGATGA AGACCAAGCCC TTCCCGGCTG TGCCGAAATG GTCCATCAA	3450
AAATGGCTTT CGCTACCTGG AGAGACGCGC CCGCTGATCC TTTGCGAATA	3500
CGCCCCACGCG ATGGGTAACA GTCTTGGCGG TTTCGCTAA TACTGGCAGG	3550
CGTTTCGTCA GTATCCCCGT TTACAGGGCG GCTTCGTCTG GGACTGGGTG	3600
GATCAGTCGC TGATTAATA TGATGAAAAC GGCAACCCGT GGTCGGCTTA	3650
CGGGCGGTGAT TTTGGCGATA CGCCGAACGA TCGCCAGTTC TGTATGAACG	3700
GTCTGGTCTT TGCCGACCGC ACGCCGCATC CAGCGCTGAC GGAAGCAAAA	3750
CACCAGCAGC AGTTTTCCA GTTCCGTTTA TCCGGGCAAA CCATCGAAGT	3800
GACCAGCGAA TACCTGTTCC GTCATAGCGA TAACGAGCTC CTGCACTGGA	3850
TGGTGGCGCT GGATGGTAAG CCGCTGGCAA GCGGTGAAGT GCCTCTGGAT	3900
GTCGCTCCAC AAGGTAAACA GTTGATTGAA CTGCCTGAAC TACCGCAGCC	3950
GGAGAGCGCC GGGCAACTCT GGCTCACAGT ACGCGTAGTG CAACCGAACG	4000
CGACCGCATG GTCAGAAAGCC GGGCACATCA GCGCCTGGCA GCAGTGGCGT	4050
CTGGCGGAAA ACCTCAGTGT GACGCTCCCC GCCGCGTCCC ACGCCATCCC	4100
GCATCTGACC ACCAGCGAAA TGGATTTTG CATCGAGCTG GGTAAATAAGC	4150
GTTGGCAATT TAACCGCCAG TCAGGCTTTC TTTCACAGAT GTGGATTGGC	4200
GATAAAAAAC AACTGCTGAC GCCGCTGCGC GATCAGTTCA CCCGTGCACC	4250
GCTGGATAAC GACATTGGCG TAAAGTGAAGC GACCCGCATT GACCTAACG	4300
CCTGGGTCGA ACGCTGGAAG GCGGCGGCC ATTACCAGGC CGAACGAGCG	4350
TTGTTGCAGT GCACGGCAGA TACACTGCT GATGCGGTGC TGATTACGAC	4400
CGCTCACGCG TGGCAGCATC AGGGGAAAAC CTTATTTATC AGCCGGAAAA	4450

CCTACCGGAT	TGATGGTAGT	GGTCAAATGG	CGATTACCGT	TGATGTTGAA	4500
GTGGCGAGCG	ATACACCGCA	TCCGGCGCGG	ATTGGCCTGA	ACTGCCAGCT	4550
GGCGCAGGTA	GCAGAGCGGG	TAAACTGGCT	CGGATTAGGG	CCGCAAGAAA	4600
ACTATCCCAGA	CCGCCTTACT	GCCGCCTGTT	TTGACCGCTG	GGATCTGCCA	4650
TTGTCAGACA	TGTATAACCC	GTACGTCTTC	CCGAGCGAAA	ACGGTCTGCG	4700
CTGCGGGACG	CGCGAATTGA	ATTATGGCCC	ACACCAGTGG	CGCGGCGACT	4750
TCCAGTTCAA	CATCAGCCGC	TACAGTCAAC	AGCAACTGAT	GGAAACCAGC	4800
CATCGCCATC	TGCTGCACGC	GGAAAGAAGGC	ACATGGCTGA	ATATCGACGG	4850
TTTCCATATG	GGGATTGGTG	GCGACGACTC	CTGGAGCCCG	TCAGTATCGG	4900
CGGAATTACA	GCTGAGCGCC	GGTCGCTACC	ATTACCAGTT	GGTCTGGTGT	4950
CAAAAATAAT	AATAACCGGG	CAGGCCATGT	CTGCCCGTAT	TTCGCGTAAG	5000
GAAATCCATT	ATGTACTATT	TAAAAAACAC	AAACTTTGG	ATGTTCGGTT	5050
TATTCTTTT	CTTTTACTTT	TTTATCATGG	GAGCCTACTT	CCCGTTTTTC	5100
CCGATTTGGC	TACATGACAT	CAACCATATC	AGCAAAAGTG	ATACGGGTAT	5150
TATTTTGCC	GCTATTTCTC	TGTTCTCGCT	ATTATTCCAA	CCGCTGTTTG	5200
GTCTGTTTC	TGACAAACTC	GGCCTCGACT	CTAGGCGGCC	GCGGGGATCC	5250
AGACATGATA	AGATACATTG	ATGAGTTGG	ACAAACCACA	ACTAGAATGC	5300
AGTAAAAAAA	ATGCTTTATT	TGTGAAATTT	GTGATGCTAT	TGCTTTATT	5350
GTAACCATTA	TAAGCTGCAA	TAAACAAGTT	AACAACAACA	ATTGCATTCA	5400
TTTTATGTT	CAGGTTCAAGG	GGGAGGTGTG	GGAGGTTTTT	TCGGATCCTC	5450
TAGAGTCGAC	GACGCGAGGC	TGGATGGCCT	TCCCCATTAT	GATTCTTCTC	5500
GCTTCCGGCG	GCATCGGGAT	GCCCCGTTG	CAGGCCATGC	TGTCCAGGCA	5550
GGTAGATGAC	GACCATCAGG	GACAGCTTCA	AGGATCGCTC	CGGGCTCTTA	5600
CCAGCCTAAC	TTCGATCACT	GGACCGCTGA	TCGTCACGGC	GATTATGCC	5650
GCCTCGGCGA	GCACATGGAA	CGGGTTGGCA	TGGATTGTAG	CGGCCGCCCT	5700
ATACCTTGTC	TGCCTCCCCG	CGTTGCGTCG	CGGTGCATGG	AGCCGGGCCA	5750

CCTCGACCTG	AATGGAAGCC	GGCGGCACCT	CGCTAACCGA	TTCACCACTC	5800
CAAGAATTGG	AGCCAATCAA	TTCTTGCAGGA	GAACGTGAA	TGCGCAAACC	5850
AACCCCTGGC	AGAACATATC	CATCGCGTCC	GCCATCTCCA	GCAGCCGCAC	5900
GCGGCCATC	TCGGGCAGCG	TTGGGTCTTG	GJCACGGGTG	CGCATGATCG	5950
TGCTCCTGTC	GTTGAGGACC	CGGCTAGGCT	GGCAGGGTTG	CCTTACTGGT	6000
TAGCAGAATG	AATCACCGAT	ACGCGAGCGA	ACGTGAAGCG	ACTGCTGCTG	6050
CAAAACGTCT	GCGACCTGAG	CAACAACATG	AATGGTCTTC	GGTTTCCGTG	6100
TTTCGTAAAG	TCTGGAAACG	CGGAAGTCAG	CGCCCTGCAC	CATTATGTT	6150
CGGATCTGCA	TCGCAGGATG	CTGCTGGCTA	CCCTGTGGAA	CACCTACATC	6200
TGTATTAACG	AAGCCTTCT	CAATGCTCAC	GCTGTAGGTA	TCTCAGTTCG	6250
GTGTAGGTCTG	TTCGCTCCAA	GCTGGGCTGT	GTGCACGAAC	CCCCCGTTCA	6300
GCCCGACCGC	TGCGCCCTAT	CCGGTAACTA	TCGTCTTGAG	TCCAACCCGG	6350
TAAGACACGA	CTTATCGCCA	CTGGCAGCAG	CCACTGGTAA	CAGGATTAGC	6400
AGAGCGAGGT	ATGTAGGCAGG	TGCTACAGAG	TTCTTGAAGT	GGTGGCCTAA	6450
CTACGGCTAC	ACTAGAAGGA	CAGTATTG	TATCTGCGCT	CTGCTGAAGC	6500
CAGTTACCTT	CGGAAAAGA	GTTGGTAGCT	CTTGATCCGG	CAAACAAACC	6550
ACCGCTGGTA	GC GGTTGGTTT	TTTTGTTGC	AAGCAGCAGA	TTACGCGCAG	6600
AAAAAAAGGA	TCTCAAGAAG	ATCCTTTGAT	CTTTTCTACG	GGGTCTGACG	6650
CTCAGTGGAA	CGAAAACCTCA	CGTTAAGGG	TTTTGGTCAT	GAGATTATCA	6700
AAAAGGATCT	TCACCTAGAT	CCTTTAAAT	AAAAATGAA	GT TTTAAATC	6750
AATCTAAAGT	ATATATGAGT	AAACTTGGTC	TGACAGTTAC	CAATGCTTAA	6800
TCAGTGAGGC	ACCTATCTCA	GCGATCTGTC	TATTTCTGTT	ATCCATAGTT	6850
GCCTGACTCC	CCGTCGTGTA	GATAACTACG	ATACGGGAGG	GCTTACCATC	6900
TGGCCCCAGT	GCTGCAATGA	TACCGCGAGA	CCCACGCTCA	CCGGCTCCAG	6950
ATTATCAGC	AATAAACCGAG	CCAGCCGGAA	GGGCCGAGCG	CAGAAGTGGT	7000
CCTGCAACTT	TATCCGCCTC	CATCCAGTCT	ATTAATTGTT	GCCGGGAAGC	7050

72

TAGAGTAAGT AGTCGCCAG TTAATAGTTT GCGAACGTT GTGCCATTG	7100
CTGCAGGCAT CGTGGTGTCA CGCTCGTCGT TTGGTATGGC TTCATTCA	7150
TCCGGTTCCC AACGATCAAG GCGAGTTACA TCATCCCCA TGTTGTGCAA	7200
AAAAGCGGTT AGCTCCTTCG GTCCCTCGAT CGTTGTCAGA AGTAAGTTGG	7250
CCGCAGTGTT ATCACTCATG GTTATGCCAG CACTGCATAA TTCTCTTACT	7300
GTCATGCCAT CCGTAAGATG CTCTCTGTG ACTGGTGAGT ACTCAACCAA	7350
GTCATTCTGA GAATAGTGT A TGCGGCGACC GAGTTGCTCT TGCCCGGCGT	7400
CAACACGGGA TAATACCGCG CCACATAGCA CAACTTTAAA AGTGCTCATC	7450
ATTGGAAAAAC GTTCTTCGGG GCGAAAAC TCAAGGATCT TACCGCTGTT	7500
GAGATCCAGT TCGATGTAAC CCACTCGTGC ACCCAACTGA TCTTCAGCAT	7550
CTTTTACTTT CACCAGCGTT TCTGGGTGAG CAAAAACAGG AAGGCAAAT	7600
GCCGCAAAA AGGGAATAAG GGCGACACGG AAATGTTGAA TACTCATACT	7650
CTTCCTTTT CAATATTATT GAAGCATTAA TCAGGGTTAT TGTCTCATGA	7700
GCGGATACAT ATTTGAATGT ATTTAGAAAA ATAAACAAAT AGGGGTTCCG	7750
CGCACATTTC CCCGAAAAGT GCCACCTGAC GTCTAAGAAA CCATTATTAT	7800
CATGACATTA ACCTATAAAA ATAGGCGTAT CACGAGGCC CTTCGTCTTC	7850
AA	7852

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 9972 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

TCTTCGGCTT CCTCGCTCAC TGACTCGCTG CGCTCGGTG TTCGGCTGCG	50
GCGAGCGGTA TCAGCTCACT CAAAGGCGGT AATACGGTTA TCCACAGAAT	100

73

CAGGGGATAA CGCAGGAAG AACATGTGAG CAAAAGGCCA GCAAAAGGCC	150
AGGAACCGTA AAAAGGCCGC GTTGCTGGCG TTTTCCATA GGCTCCGCC	200
CCCTGACGAG CATCACAAAA ATCGACGCTC AAGTCAGAGG TGGCGAAACC	250
CGACAGGACT ATAAAGATAC CAGGGCTTTC CCCTGGAAG CTCCCTCGTG	300
CGCTCTCCTG TTCCGACCCCT GCCGCTTACC GGATACCTGT CCGCCTTCT	350
CCCTTCGGGA AGCGTGGCGC TTTCTCATAG CTCACGCTGT AGGTATCTCA	400
GTTCGGTGTA GGTCGTTCGC TCCAAGCTGG GCTGTGTGCA CGAACCCCCC	450
GTCAGCCCC ACCGCTGCCGC CTTATCCGGT AACTATCGTC TTGAGTCCAA	500
CCCGGTAAGA CACGACTTAT CGCCACTGGC AGCAGCCACT GGTAACAGGA	550
TTAGCAGAGC GAGGTATGTA GGCGGTGCTA CAGAGTTCTT GAAGTGGTGG	600
CCTAACTACG GCTACACTAG AAGAACAGTA TTTGGTATCT GCGCTCTGCT	650
GAAGCCAGTT ACCTTCGGAA AAAGAGTTGG TAGCTCTTGA TCCGGCAAAC	700
AAACCACCGC TGGTAGCGGT GGTTTTTTTG TTTGCAAGCA GCAGATTACG	750
CGCAGAAAAA AAGGATCTCA AGAAGATCCT TTGATCTTT CTACGGGTC	800
TGACGCTCAG TGGAACGAAA ACTCACGTTA AGGGATTTG GTCATGAGAT	850
TATCAAAAAG GATCTTCACC TAGATCCTTT TAAATTAAAA ATGAAGTTTT	900
AAATCAATCT AAAGTATATA TGAGTAAACT TGGTCTGACA GTTACCAATG	950
CTTAATCAGT GAGGCACCTA TCTCAGCGAT CTGTCTATT CGTTCATCCA	1000
TAGTTGCCTG ACTCCCCGTC GTGTAGATAA CTACGATAAC GGAGGGCTTA	1050
CCATCTGGCC CCAGTGCTGC AATGATAACG CCAGACCCAC GCTCACCGGC	1100
TCCAGATTAA TCAGCAATAA ACCAGCCAGC CGGAAGGGCC GAGCCAGAA	1150
GTGGTCCTGC AACTTTATCC GCCTCCATCC AGTCTATTAA TTGTTGCCGG	1200
GAAGCTAGAG TAAGTAGTTC GCCAGTTAAT AGTTTGCAC ACGTTGTTGC	1250
CATTGCTACA GGCATCGTGG TGTACGCTC GTCGTTGGT ATGGCTTCAT	1300
TCAGCTCCGC TTCCCAACGA TCAAGGCGAG TTACATGATC CCCCATGTTG	1350
TGCAAAAAAG CGGTTAGCTC CTTCGGTCTT CCGATCGTTG TCAGAAGTAA	1400

GTTGGCCGCA	GTTGTTATCAC	TCATGGTTAT	GGCAGCACTG	CATAATTCTC	1450
TTACTGTCAT	GCCATCCGTA	AGATGCTTTT	CTGTGACTGG	TGAGTACTCA	1500
ACCAAGTCAT	TCTGAGAATA	GTGTATGCCG	CGACCGAGTT	GCTCTTGCCC	1550
GGCGTCAATA	CGGGATAATA	CCGGCCACCA	TAGCAGAACT	TTAAAAGTGC	1600
TCATCATTGG	AAAACGTTCT	TCGGGGCGAA	AACTCTCAAG	GATCTTACCG	1650
CTGTTGAGAT	CCAGTTCGAT	GTAAACCCACT	CGTGCACCCA	ACTGATCTTC	1700
AGCATCTTTT	ACTTTCACCA	GCGTTCTGG	GTGAGCAAAA	ACAGGAAGGC	1750
AAAATGCCGC	AAAAAAGGGA	ATAAGGGCGA	CACGGAAATG	TTGAATACTC	1800
ATACTCTTCC	TTTTTCAATA	TTATTGAAGC	ATTTATCAGG	GTTATTGTCT	1850
CATGAGCGGA	TACATATTG	AATGTATTIA	AAAAAATAAA	CAAATAGGGG	1900
TTCCGCGCAC	ATTTCCCCGA	AAAGTGCCAC	CTGACGTCTA	AGAAACCATT	1950
ATTATCATGA	CATTAACCTA	AAAAAATAGG	CGTATCACGA	GGCCCTTCG	2000
TCTCGCGCGT	TTCGGTGATG	ACGGTAAAAA	CCTCTGACAC	ATGCAGCTCC	2050
CGGAGACGGT	CACAGCTTGT	CTGTAAGCGG	ATGCCGGGAG	CAGACAAGCC	2100
CGTCAGGGCG	CGTCAGCGGG	TGTTGGCGGG	TGTCGGGGCT	GGCTTAACTA	2150
TGCGGCATCA	GAGCAGATTG	TACTGAGAGT	GCACCATAAA	ATTGTAAACG	2200
TTAATATTTT	GTTAAAATTC	GCGTTAAATT	TTTGTAAAT	CAGCTCATTT	2250
TTTAACCAAT	AGGCCGAAAT	CGGCAAATC	CCTTATAAAAT	CAAAGAATA	2300
GCCCGAGATA	GGGTTGAGTG	TTGTTCCAGT	TTGGAACAAG	AGTCCACTAT	2350
TAAAGAACGT	GGACTCCAAC	GTCAAAGGGC	GAAAAACCGT	CTATCAGGGC	2400
GATGGCCCAC	TACGTGAACC	ATCACCCAAA	TCAAGTTTTT	TGGGGTCGAG	2450
GTGCCGTAAA	GCACTAAATC	GGAACCTAA	AGGGAGCCCC	CGATTTAGAG	2500
CTTGACGGGG	AAAGCCGGCG	AACGTGGCGA	GAAAGGAAGG	GAAGAAAGCG	2550
AAAGGAGCGG	GCGCTAGGGC	GCTGGCAAGT	GTAGCGGTCA	CGCTGCGCGT	2600
AACCACCCACA	CCCGCCGCGC	TTAATGCGCC	GCTACAGGGC	GCGTACTATG	2650
GTTGCTTTGA	CGTATGCGGT	GTGAAATACC	GCACAGATGC	GTAAGGAGAA	2700

AATAACCGCAT CAGGCGCCAT TCGCCATTCA GGCTGCAGCAA	2750
GGGCGATCGG TGCGGGCCTC TTTCGCTATTA CGCCAGCTGG CGAAAGGGGG	2800
ATGTGCTGCA AGGCGATTAA GTTGGGTAAC GCCAGGGTTT TCCCAGTCAC	2850
GACGTTGTAA AACGACGGCC AGTGCCAAGC TAAAGGTGCA CGGCCACGT	2900
GGCCACTAGT ACTTCTCGAG CTCTGTACAT GTCCCGGGTC GCGACGTACG	2950
CGTATCGATG CGGCCAGCTG CAGGCCGGCG CCATATGCAT CCTAGGCCTA	3000
TTAATATTCC GGAGTATAACG TAGCCGGCTA ACGTTAACAA CCGGTACCTC	3050
TAGAACTATA GCTAGCCAAT TCCATCATCA ATAATATAACC TTATTTTGGAA	3100
TTGAAGCCAA TATGATAATG AGGGGGTGGGA GTTTGTGACG TGGCGCGGGGG	3150
CGTGGGAACG GGGCGGGTGA CGTAGGTTTT AGGGCGGAGT AACTTGTATG	3200
TGTTGGGAAT TGTAGTTTC TTAAAATGGG AAGTTACGTA ACGTGGGAAA	3250
ACCGGAAGTGA CGATTTGAGG AAGTTGTGGG TTTTTGGCT TTCGTTCTC	3300
GGCGTAGGTT CGCGTGCCTG TTTCTGGGTG TTTTTGTGG ACTTTAACCG	3350
TTACGTCACTT TTTCAGTCCT ATATATACTC GCTCTGCACT TGGCCCTTTT	3400
TTACACTGTG ACTGATTGAG CTGGTGCCGT GTCGAGTGGT GTTTTTTAA	3450
TAGGTTTTCT TTTTTACTGG TAAGGCTGAC TGTTAGGCTG CCGCTGTGAA	3500
GCGCTGTATG TTGTTCTGGA GCGGGAGGGT GCTATTTGC CTAGGCAGGA	3550
GGGTTTTCA GGTGTTATG TGTTTTCTC TCCTATTAAT TTGTTATAC	3600
CTCCTATGGG GGCTGTAATG TTGTCTCTAC GCCTGCCTGGT ATGTATTCCC	3650
CCCAAGCTTG CATGCCTGCA GGTCGACTCT AGAGGATCCG AAAAAACCTC	3700
CCACACCTCC CCCTGAACCT GAAACATAAA ATGAATGCAA TTGTTGTTGT	3750
TAACTTGTTT ATTGCAGCTT ATAATGGTTA CAAATAAAGC AATAGCATCA	3800
CAAATTCAC AAATAAAGCA TTTTTTCAC TGCATTCTAG TTGTGGTTG	3850
TCCAAACTCA TCAATGTATC TTATCATGTC TGGATCCCC TAGCTTGCCA	3900
AACCTACAGG TGGGGTCTTT CATTCCCCC TTTTTCTGGA GACTAAATAA	3950
AATCTTTAT TTTATCTATG GCTCGTACTC TATAGGCTTC AGCTGGTGAT	4000

ATTGTTGAGT CAAAAGTAGA GCCTGGACCA CTGATATCCT GTCTTTAAC	4050
AATTGGACTA ATCGCGGGAT CAGCCAATT CATGAGCAA TGTCCTCATGT	4100
CAACATTTAT GCTGCTCTCT AAAGCCTTGT ATCTTGCATC TCTTCTTCTG	4150
TCTCCTCTTT CAGAGCAGCA ATCTGGGGCT TAGACTTGCA CTTGCTTGAG	4200
TTCCGGTGGG GAAAGAGCTT CACCCGTGCG GAGGGGCTGA TGGCTTGCCG	4250
GAAGAGGCTC CTCTCGTTCA GCAGTTCTG GATGGAATCG TACTGCCGCA	4300
CTTTGTTCTC TTCTATGACC AAAAATTGTT GGCATTCCAG CATTGCTTCT	4350
ATCCTGTGTT CACAGAGAAT TACTGTGCAA TCAGCAAATG CTTGTTTTAG	4400
AGTTCTTCTA ATTATTTGGT ATGTTACTGG ATCCAAATGA GCACTGGGTT	4450
CATCAAGCAG CAAGATCTC GCCTTACTGA GAACAGATCT AGCCAAGCAC	4500
ATCAACTGCT TGTGGCCATG GCTTAGGACA CAGCCCCAT CCACAAGGAC	4550
AAAGTCAAGC TTCCCAGGAA ACTGTTCTAT CACAGATCTG AGCCCAACCT	4600
CATCTGCAAC TTTCCATATT TCTTGATCAC TCCACTGTT ATAGGGATCC	4650
AAGTTTTTC TAAATGTTCC AGAAAAAATA AATACTTTCT GTGGTATCAC	4700
TCCAAAGGCT TTCCTCCACT GTTGCAAAGT TATTGAATCC CAAGACACAC	4750
CATCGATCTG GATTCTCCT TCAGTGTCA GTAGTCTCAA AAAAGCTGAT	4800
AACAAAGTAC TCTTCCCTGA TCCAGTTCTT CCCAAGAGGC CCACCCCTG	4850
GCCAGGACTT ATTGAGAAGG AAATGTTCTC TAATATGGCA TTTCCACCTT	4900
CTGTGTATTT TGCTGTGAGA TCTTGACAG TCATTGGCC CCCTGAGGGC	4950
CAGATGTCAT CTTTCTTCAC GTGTGAATTC TCAATAATCA TAACTTTCGA	5000
GAGTTGGCCA TTCTTGTATG GTTTGGTTGA CTTGGTAGGT TTACCTTCTG	5050
TTGGCATGTC AATGAACCTA AAGACTCGGC TCACAGATCG CATCAAGCTA	5100
TCCACATCTA TGCTGGAGTT TACAGCCAC TGCAATGTAC TCATGATATT	5150
CATGGCTAAA GTCAGGATAA TACCAACTCT TCCTTCTCCT TCTCCTGTTG	5200
TTAAAATGGA AATGAAGGTA ACAGCAATGA AGAAGATGAC AAAAATCATT	5250
TCTATTCTCA TTTGGAACCA GCGCAGTGT GACAGGTACA AGAACCAAGTT	5300

GGCAGTATGT AAATTCAAGAG CTTTGTGGAA CAGAGTTCA AAGTAAGGCT	5350
GCCGTCCGAA GGCACGAAGT GTCCCATAGTC CTTTTAAGCT TGTAACAAGA	5400
TGAGTGAAAA TTGGACTCCT GCCTTCAGAT TCCAGTTGTT TGAGTTGCTG	5450
TGAGGTTTGG AGGAAATATG CTCTCAACAT AATAAAAGCC ACTATCACTG	5500
GCACGTGTTGC AACAAAGATG TAGGGTTGTA AAACTGCGAC AACTGCTATA	5550
GCTCCAATCA CAATTAATAA CAACTGGATG AAGTCAAATA TGGTAAGAGG	5600
CAGAAGGTCA TCCAAAATTG CTATATCTTT GGAGAATCTA TTAAGAATCC	5650
CACCTGCTTT CAACGTGTTG AGGGTTGACA TAGGTGCTTG AAGAACAGAA	5700
TGTAACATTT TGTGGTGTAA AATTTTCGAC ACTGTGATTGAGTATGCAC	5750
CAGTGGTAGA CCTCTGAAGA ATCCCATAGC AAGCAAAGTG TCGGCTACTC	5800
CCACGTAAAT GTAAAACACA TAATACGAAC TGGTGCTGGT GATAATCACT	5850
GCATAGCTGT TATTTCTACT ATGAGTACTA TTCCCTTTGT CTTGAAGAGG	5900
AGTGTTCACA AGGAGCCACA GCACAAACCAA AGAACAGCC ACCTCTGCCA	5950
GAAAAATTAC TAAGCACCAA ATTAGCACAA AAATTAAGCT CTTGTGGACA	6000
GTAAATATATC GAAGGTATGT GTTCCATGTA GTCACTGCTG GTATGCTCTC	6050
CATATCATCA AAAAAGCACT CCTTTAAGTC TTCTTCGTTA ATTTCTTCAC	6100
TTATTTCCAA GCCAGTTCT TGAGATAACC TTCTTGAATA TATATCCAGT	6150
TCAGTCAAGT TTGCCTGAGG GGCCAGTGAC ACTTTTCGTG TGGATGCTGT	6200
TGTCTTCGG TGAATGTTCT GACCTTGGTT AACTGAGTGT GTCATCAGGT	6250
TCAGGACAGA CTGCCTCCTT CGTGCCTGAA GCGTGGGCC AGTGCTGATC	6300
ACGCTGATGC GAGGCAGTAT CGCCTCTCCC TGCTCAGAAT CTGGTACTAA	6350
GGACAGCCTT CTCTCTAAAG GCTCATCAGA ATCCTCTCG ATGCCATTCA	6400
TTTGTAAAGGG AGTCTTTGC ACAATGGAAA ATTTCGTAT AGAGTTGATT	6450
GGATTGAGAA TAGAATTCTT CCTTTTTCC CCAAACCTCTC CAGTCTGTTT	6500
AAAAGATTGT TTTTTGTTT CTGTCCAGGA GACAGGAGCA TCTCCTTCTA	6550
ATGAGAAACG GTGTAAGGTC TCAGTTAGGA TTGAATTCT TCTTTCTGCA	6600

CTAAATTGGT CGAAAGAAC	TC	ACATCCC	AGTTTGAGC	TAAAGTCTGG	6650		
CTGTAGATTT TGGAGTTCTG	AAAATGTCCC	ATAAAAATAG	CTGCTAC	CTT	6700		
CATGCAAAAT TAATATTTG	TCAGCTTCT	TTAAATGTT	TC	CATTAGAA	6750		
GTGACCAAAA TCCTAGTTT	GTTAGCC	CATC	AGTTTACAGA	CACAGCT	TTTC	6800	
AAATATTTCT TTTTCTGTTA	AAACATCT	AG	GTATCCAAA	GGAGAGT	CTA	6850	
ATAAAATACAA ATCAGCATCT	TTGTATA	CTG	CTCTTGCTAA	AGAAATT	CTT	6900	
GCTCGTTGAC CTCCACTCAG	TGTGATTCCA	CCTTCTCAA	GAAC	TA	TATT	6950	
GTCTTCTCT GC	AAACTTGG	AGATGTC	CTC	TAGTTGG	CATGCTTGA	7000	
TGACGCTTCT GTATCTAT	TCATCAT	AGG	AAACAC	AA	GATGAT	ATTT	7050
TCTTTAATGG TGCCAGGCAT	AATCCAGGAA	AACTGAGAAC	AGAATGAA	AT	7100		
TCTTCCACTG TGCTTAATTT	TACCCTCTGA	AGGCTCC	AGT	TCTCCATAA	7150		
TCATCATTAG AAGTGAAGTC	TTGCCTG	GTC	CAGTGG	ATCC AGCAACCGCC	7200		
AAACA	CTCTTCTAT	CTTGAA	ATATCTTCA	GGACAGGAGT	7250		
ACCAAGAAGT GAGAAATTAC	TGAAGAAGAG	GCTGTC	CATCA	CCATTAGAAG	7300		
TTTTCTATT GTTATTGTT	TGTTTGCTT	TCTCAA	ATAA	TTCCCCAAAT	7350		
CCCTCCTCCC AGAAGGCTGT	TACATTCTCC	ATCA	ACTACTT	CTGTA	GTCTG	7400	
TAAGTTAT	TCCAATGTCT	TATATTCTT	G	TTTGTAAG	AAATCCTGTA	7450	
TTTGTTTAT TGCTCCAAGA	GAGTC	CATACC	ATGTTGTAC	AGCCCAGGGA	7500		
AATTGCCGAG TGACCGCCAT	GCGCAGAAC	ATGCAGAATG	AGATGGTGGT	7550			
GAATATTTTC CGGAGGATGA	TTCCTTGAT	TAGTGC	CATAG	GGAAGCACAG	7600		
ATAAAAACAC CACAAAGAAC	CCTGAGAAGA	AGAAGGCTGA	GCTATTGAAG	7650			
TATCTCACAT AGGCTGC	CCGAGTCAGT	TTCAGTTCTG	TTTGTCTTAA	7700			
GT	TTTCAATC	ATTTTTCCA	TTGCTTCTTC	CCAGCAGTAT	GCCTTAACAG	7750	
ATTGGATGTT CTCGATCATT	TCTGAGGTAA	TCACAAGTCT	TTC	ACTGATC	7800		
TTCCCAGCTC TCTGATCTCT	GTACTC	CATC	ATCATTCTCC	CTAGCCCAGC	7850		
CTGAAAAGG GCAAGGACTA	TCAGGAAACC	AAGTCCACAG	AAGGCAGACG	7900			

CCTGTAACAA CTCCCAGATT AGCCCCATGA GGAGTGCCAC TTGCAAAGGA	7950
GCGATCCACA CGAAATGTGC CAATGCAAGT CCTTCATCAA ATTTGTTTAG	8000
GTTGTTGGAA AGGAGACTAA CAAGTTGTCC AATACTTATT TTATCTAGAA	8050
CACGGCTTGA CAGCTTTAAA GTCTTCTTAT AAATCAAAC TAAACATAGCT	8100
ATTCTCATCT GCATTCCAAT GTGATGAAGG CCAAAATGG CTGGGTGTAG	8150
GAGCAGTGTC CTCACAATAA AGAGAAGGCA TAAGCCTATG CCTAGATAAA	8200
TCGCGATAGA GCGTTCTCC TTGTTATCCG GGTCATAGGA AGCTATGATT	8250
CTTCCCAGTA AGAGAGGCTG TACTGCTTG GTGACTTCCC CTAAATATAA	8300
AAAGATTCCA TAGAACATAA ATCTCCAGAA AAAACATCGC CGAAGGGCAT	8350
TAATGAGTTT AGGATTTTC TTTGAAGCCA GCTCTCTATC CCATTCTCTT	8400
TCCAATTTCAGATAGATT GTCAGCAGAA TCAACAGAAG GGATTTGGTA	8450
TATGTCTGAC AATTCCAGGC GCTGTCTGTA TCCTTCCTC AAAATTGGTC	8500
TGGTCCAGCT GAAAAAAAGT TTGGAGACAA CGCTGGCCTT TTCCAGAGGC	8550
GACCTCTGCA TGGTCTCTCG GGCCTGGGG TCCCTGCTAG GGCGTCTGG	8600
GCTCAAGCTC CTAATGCCAA AGGAATTCCCT GCAGCCCGGG GGATCCACTA	8650
GTTCTAGAGC GGCGGCCACC GCGGTGGCTG ATCCCGCTCC CGCCCGCCGC	8700
GCGCTTCGCT TTTTATAGGG CCGCCGCCGC CGCCGCCTCG CCATAAAAGG	8750
AAACTTCGG AGCGCGCCGC TCTGATTGGC TGCCGCCGCA CCTCTCCGCC	8800
TCGCCCCGCC CCGCCCCCTCG CCCCCGCCCG CCCCCCCTGG CGCGCGCCCC	8850
CCCCCCCCCCC CCGCCCCCAT CGCTGCACAA AATAATTAAA AAATAATAA	8900
ATACAAAATT GGGGGTGGGG AGGGGGGGGA GATGGGGAGA GTGAAGCAGA	8950
ACGTGGCCTC GAGTAGATGT ACTGCCAAGT AGGAAAGTCC CATAAGGTCA	9000
TGTACTGGC ATAATGCCAG GCGGGCCATT TACCGTCATT GACGTCAATA	9050
GGGGCGTAC TTGGCATATG ATACACTTGA TGTACTGCCA AGTGGCAGT	9100
TTACCGTAAA TACTCCACCC ATTGACGTCA ATGGAAAGTC CCTATTGGCG	9150
TTACTATGGG AACATACGTC ATTATTGACG TCAATGGCG GGGTCGTTG	9200

80

GGCGGTCAGC CAGGCGGGCC ATTTACCGTA AGTTATGTAA CGACCTGCAG	9250
GCTGATCTCC CTAGACAAAT ATTACCGCCT ATGAGTAACA CAAAATTATT	9300
CAGATTCAC TTCCCTTTAT TCAGTTTCC CGCGAAAATG GCCAAATCTT	9350
ACTCGGTTAC GCCCAAATT ACTACAACAT CCCTAAAAA CCGCGCGAAA	9400
ATTGTCACCT CCTGTGTACA CGGGCGCACA CCAAAAACGT CACTTTGCC	9450
ACATCCGTCG CTTACATGTG TTCCGCCACA CTTGCAACAT CACACTTCCG	9500
CCACACTACT ACGTCACCCG CCCCCTTCCC ACGCCCCGCG CCACGTCACA	9550
AACTCCACCC CCTCATTATC ATATTGGCTT CAATCCAAAA TAAGGTATAT	9600
TATTGATGAT GCTAGCATGC GCAAATTAA AGCGCTGATA TCGATCGCGC	9650
GCAGATCTGT CATGATGATC ATTGCAATTG GATCCATATA TAGGGCCCGG	9700
GTTATAATTA CCTCAGGTTCG ACGTCCCAG GCCATTGAA TTCGTAATCA	9750
TGGTCATAGC TGTTTCTGT GTGAAATTGT TATCCGCTCA CAATTCCACA	9800
CAACATACGA GCCGGAAGCA TAAAGTGTAA AGCCTGGGGT GCCTAATGAG	9850
TGAGCTAACT CACATTAATT GCGTTGCGCT CACTGCCCGC TTTCCAGTCG	9900
GGAAACCTGT CGTGCCAGCT GCATTAATGA ATCGGCCAAC GCGCGGGGAG	9950
AGGCGGTTTG CGTATTGGGC GC	9972

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 14 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

TAGTAAATTT GGGC

14

81

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 14 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

AGTAAGATTT GGCC

14

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 14 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

AGTGAAATCT GAAT

14

(2) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 14 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

GAATAATTGT GTGT

14

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 14 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: doubl
(D) TOPOLOGY: unknown

82

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

CGTAATATTT GTCT

14

(2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 8 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

WANWTTTG

8

(2) INFORMATION FOR SEQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 19307 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

CCAATTCCAT CATCAATAAT ATACCTTATT TTGGATTGAA GCCAATATGA	50
TAATGAGGGG GTGGAGTTTG TGACGTGGCG CGGGGCGTGG GAACGGGGCG	100
GGTGACGTAG GTTTTAGGGC GGAGTAACTT GTATGTGTTG GGAATTGTAG	150
TTTTCTTAAA ATGGGAAGTT ACGTAACGTG GGAAAACGGA AGTGACGATT	200
TGAGGAAGTT GTGGGTTTTT TGGCTTCGT TTCTGGCGT AGGTTCGCGT	250
GCGGTTTCT GGGTGTGTTT TGTGGACTTT AACCGTTACG TCATTTTTA	300
GTCCTATATA TACTCGCTCT GCACCTGGCC CTTTTTACA CTGTGACTGA	350
TTGAGCTGGT GCCGTGTCGA GTGGTGTGTTT TTTAATAGGT TTTCTTTTTT	400

ACTGGTAAGG CTGACTGTTA GGCTGCCGCT GTGAAGCGCT GTATGTTGTT	450
CTGGAGCGGG AGGGTGCTAT TTTGCCTAGG CAGGAGGGTT TTTCAGGTGT	500
TTATGTGTTT TTCTCTCCTA TTAATTGT TATAACCTCCT ATGGGGGCTG	550
TAATGTTGTC TCTACGCCCTG CGGGTATGTA T.CCCCCCAA GCTTGCATGC	600
CTGCAGGTCTG ACTCTAGAGG ATCCGAAAAA ACCTCCCACA CCTCCCCCTG	650
AACCTGAAAC ATAAAATGAA TGCAATTGTT GTTGTAACT TGTTTATTGC	700
AGCTTATAAT GGTTACAAAT AAAGCAATAG CATCACAAAT TTCACAAATA	750
AAGCATTTTT TTCACTGCAT TCTAGTTGTC GTTGTCCAA ACTCATCAAT	800
GTATCTTATC ATGCTCTGGAT CCCCGCGGCC GCTCTAGAAC TAGTGGATCC	850
CCCGGGCTGC AGGAATTCCG TAACATAACT GCGTGCTTTA TTGAGATACA	900
CAGTAAAGCA GTAATATAAT ACAATAGTAA GGCATATATT TGGTGAAATC	950
TGATATGTTG TGAAAATGCA GTAAAATGTA AGTTTAAAAA AATAATTAGT	1000
AAATGTTACA GTGTTGGTGT TAAAACACAA TCTATTATGA TACTCAAGTA	1050
AGAGTCCAGT ACCTGGAGAC AATGATGATA CATGCCATGT GATGATTATG	1100
CTTCAGTTAC ACTGATTATG ATTTACACTT TAATACTTGA TGGTTATAAA	1150
GAACATGAAA TGATGTCCAA ATTATGCTTA AAATCAGCAA TAAAGCTCTC	1200
AGTTTTTATT CAAATATTTT GATAGATTCA CTCCAGAACT AATATCTAAA	1250
AGATAAAACG AAAAGATTAA AACAAAACCA TGCACCTCTAT CTACCTTGGG	1300
TTTTAGAATG AAACTTAAAA CTTCTTAGTA GGAAAGGAAC CCCTTGTGTT	1350
AAATCTTGGT GAAAACAAAT CCTTGGATAA AGAAAATGCC CAGTGCCACA	1400
TAAAGGAGAG AGAGAGAGAA AAGCAAGACC AGAACCAAT TTCAATTGTT	1450
TATCTTAGAG CTTTGGGTTT TCTTTGGAA ATTATAATG AAAAAAGGAA	1500
ACTGGTGTCC ACACAACAGA CAAGTGGTGA AGTTGTGAAA TTAGGTGTGC	1550
ACAATTACTA GAAACACCCC AAAACCAAAG TGAGGTAGAA ATAGCATGAG	1600
AAGCTGTGTT TGATGTTAAT TACAATTAAT AATGGACAAA ACCCACTCGC	1650
TAGAAGTTAA TTACACTTGA CGTTAGAGGT AACAGATTG CAAAATGATA	1700

GGACAGTGAT TTCTATTGAG AGAATGCTCT TTAAATGCTA AGAAGAAGAA	1750
ACTGGCATGA GAGGAGTAAA GCTCTTCCTA GCAGTCCTTA GCTTTCTGTT	1800
GCACCTTTTC TCCTGGTTCA ATGACTTGCA TTTGTTTAGA CATTTCAGCC	1850
CGTCAACTAG ACCAGAGAGT TTGGAGACGC T1TGCTCTC AAAACTTCC	1900
AACCACTGTG CCTTCTCACC CACAATCCTG TGTGGAGTTA CTTGCAGGGA	1950
AACCAATGCA AAGGAGACAA ATGCAGTTCA TGGGCTTCTG GACTGATAATT	2000
CACCAGGGTC ACAATGTGAT TGGGTTACTT TCTTAACAGT AATCCTAAGT	2050
CTTGCAGCAT TAAAAAAA AATCATCACA ATGAAGAAAA AAAAACCAA	2100
AAAATCTAAA ATCTAAAATT CATCATCATC ATCAACAACA ACAACAACAA	2150
CAACAACAAA ACCACCCACT TCAGGTTGAG TTTATGAAGA GGGCAGAACAA	2200
ATTTAGTTGT AATTATAGAG ATGTTTATAT GTATAGTTGT AAATATTCAT	2250
CCATTCTTT ACAGAGTTGT TGCTCCCCTC ATATAAATTG ACTGAGGAGC	2300
CGCAACCTTT AGCTCCTACC ATCTTCCTCC TACTGTCTGG GAGTTAAAAA	2350
TGTCATCTGA TGTTCTATTG CAGAAACATC ATTAAATATA ACCCAACAGT	2400
AGGAAGTTGA ATATATCAGC CAACAAATTAA CTATGATAGT AAGTCCTGTG	2450
TATTCAATCG CATGTTCCCTT GAAAAAAATG AATCCTCTAG CTCTCAGTGG	2500
AAAGTTAAA ACTAGAAACA TCTGGAGCCC TAGACAATAT TTTAGTGTGG	2550
CGGTAGTCTC CTGGCTTTGG GCTCCAGGGA AAATTCACTC TTGCCAAGC	2600
AGATAAGCCC AGATGACTAG AAGCAATTTC CATTAGGAAG TGGCAAGAAC	2650
ATTTGAAGAA GTAACCTTCAT ATCTATTAT CTATATACCT ATAGTATTAA	2700
TATACTTGTA GACATATAGA TGTATAAAAT GAAAGCCCAT AGCCAGCCCC	2750
ACTCAGTCAA CAATTCTCAA AAGAGCAATA TGAAGCAGTC ATTTGGTGGG	2800
GTTCGTATGC AAGAAAATAA AAAAACGTCA TGAATTCCAT ATGAATACCA	2850
CGCTAAAGTA ATGCAAAACA ATGTGCTGCC TCAGTGTGTG TGTGTGTGTG	2900
TGTGTGTGTG GTGGGTTCGT GCATGTATGT GTGCGTGTGT GTGTGTGTG	2950
GTGTGTGTGT GTGTGTGTGC GTGTGTGTGTT GTTAGGGGT TTTTATAAAC	3000

AACTTTTTT ATAAAGCAC	3050
TAAACAACCC AAAATGCGTT	3100
CCATATAAAAG AAATGGCAAG	
TTATTTAGCT ATCAAGATTT TACATGTTT CTTTAACCTT TTTGTACAA	3150
TTGCATAGAC GTGTAAAACC TGCCATTGTT AACAAAACAA TAACAGACTT	3200
AGAAAACTACT GAAATCTACA GTATAGTACC ACTACCCTTC ACAAAAATAT	3250
AGATTTTATT TCTTGAAAC TCTTACTGTC TAATCCTCTT TGTTGTACGA	3300
ATATTATAAA AACCATGCGG GAATCAGGAG TTGTAAAACA TTTATTCTGC	3350
TCCTTCTTCA TCTGTCATGA CTGAAACTAA GGACTCCATC GCTCTGCCA	3400
AATCATCTGC CATGTGGAAA AGGCTTCCTA CATTGTGTCC TCTCTCATTG	3450
GCTTCCGGG GGCATTCTT CCTCTTGAAC TAGGGAAGGA GTTGTGAGT	3500
TGCTCCATCA CTTCTTCTAA CCCTGTGCTT GTGTCTGGG GAGGACTCAG	3550
AAGATCTTCC TCACCCATAG ATTCTGAAGT TTGACTGCCA ACCACTCGGA	3600
GCAGCATAGG CTGACTGCTA TCTGACCTCT GCAGAGAGGT GGAAGGAGAG	3650
GACACCGTGG TGCCATTAC CTTAGCTTCA GCCTGGGCT GCTCCAGGAG	3700
CTGTCTCAGT CTATGTAAC GAGACTCCAG CTGTTATTG TGGTCTTCCA	3750
GGATTTGCAT CCTGGCTTCC AGGCGTCCCTT TGTGTTGGCG CAGTAGCTTA	3800
GCCTCAGCAA TGAGCTCAGC ATCCCTGGGA CTCTGAGGAG AGGTGGGCAT	3850
CATCTCAGGA GGAGATGGCA GTGGAGACAG GCCTTTATGC TCATGCTGCT	3900
GCTTCAGGCG ATCATATTCT GCTTGCAGAT TCCTGTTTC TTCCTCAAGA	3950
TCTGCTAGGA TTCTCTCTAG CTCCCCCTTT TCCTCACTCT CTAAGGAAAT	4000
CAAGATCTGG GCAGGACTAC GAGGCTGGCT CAGGGGGGAG TCCTGGTTCA	4050
AACTTGGCA GTAATGCTGG ATTAACAAAT GTTCATCATC TATGCTCTCA	4100
TTAGGAGAGA TGCTATCATT TAGATAAGAT CCATTGCTGT TTTCCATTTC	4150
TGCTAGCCTG CTAGCATAAT GTTCAATGCG TGAATGAGTA TCATCGTGTG	4200
AAAGCTGGGG GGACGAGGCA GGCGCAGAAT CTACTGGCCA GAAGTTGATC	4250
AGAGTAACGG GAGTTCCAT GTTGTCCCCC TCTAACACAG TCTGCACTGG	4300

CAGGTAGCCC ATT CGGGGAT GCT TCGCAA A TAC CTTTG GTTCGAAATT	4350
TGTTTTTTAG TAC CTGGCG AAG TCGCGA A CAT CTTCTCC GGATGTAGTC	4400
GGAGTGCAAT ACT CTACCAT GGGTAGTGC ATTTTATGGC CCT TTGCAAC	4450
TCGGCCAGAA AAAAAGCAAC TTTGGCAGAT GTATAATTA AAATGCTTA	4500
GGCTTCTGTA CCTGAATCCA ATGATTGGAC ACT CCTTACA GATGTTACAC	4550
TTGGCTTGAT GCTTGGCAGT TTCAGCAGCA GCCACTCTGT GCAAGACGGG	4600
CAGCCACACC ATAGACTGGG GTTCCAGGCG CATCCAGTCA AGGAAGAGAG	4650
CAGCTTCAAT CTCAGGTTA TTATGGCAA ATTGGAAGCA GCTCCTGACA	4700
CTCGGCTCAA TGTTACTGCC CCCAAAGGAA GCAACTTCAC CCAACTGTCT	4750
TGGGATTGAT ATAGAACAT GCAGAACAG ACCCAGCCTA CGCTGGTCAC	4800
AAAAGCCAGT TGAAC TTGCC ACTTGCTTGA AAAGGTATCT GTACTTGCT	4850
TCCAAGTGTG CTTTACACAG AGAAATGATG CCAGTTTAA AAGACAGGAC	4900
ACGGATCCTC CCTGTTCGTC CCGTATCATA AACATTGAGA AGCCAGTTGA	4950
GACACATATC CACACAGAGA GGGACATTGA CCAGATTGTT GTGCTCTGC	5000
TCCAGACGAT CATAAATTGT AGTCAAACAG TTAATTATCT GCAGGATATC	5050
CATGGGCTGG TCATTTGCT TGAGGTTGTG CTGGTCCAGG GCATCACATG	5100
CAGCTGACAG GCTCAAGAGA TCCAAGCAA GGGCCTCTG GAGCCTCTG	5150
AGCTTCATGG CAGTCCTATA CGCGGAGAAC CTGACATTAT TCAGGTCAGC	5200
TAAAGACTGG TAGAGCTCTG TCATTTGGG GTGGTCCCAA CAAGTGGTT	5250
GGGTCTCGTG GTTGATATAG TAGGGCACTT TGTTTGGTGA GATGGCTCTC	5300
TCCCAGGGAC CCTGAAC TGA AGTGGAAAGG AAGTGTGGG ATGCAGGACC	5350
AAAGTCCCTG TGGGCTTCAT GCAGCTGTCT GACACGGTCC TCCACAGCCA	5400
CCTGTAGAAG CCTCCATCTG GTATTCA GAT CTTCAAAGT GCTGAGGTTA	5450
TAAGGTGAGA GCTGAATGCC CAGTGTGGTC AGCTGATGTG CAAGGTCA TT	5500
GACACGATTG ACATTCTCTT TAAGAGGTGC AATTTCTCCC CGAAGTGCCT	5550
TGACTTTTTC AAGGTGATCT TGCAGAGAGT CAATGAGGAG ATCCCCCACT	5600

GGCTGCCAGG ATCCCTTGAT CACCTCAGCT TGGCGCAACT TGAGGTCCAG	5650
TTCATCGGCA GCTTCCTGAA GTTCCCTGGAG TCTTTCAAGA GCTTCATCTA	5700
TTTTTCTCTG CCAATCAGCT GAGCGCAGGT TCAATTGTC CCATTCAAGCG	5750
TTGACCTCTT CAGCCTGCTT TCGTAGGAGC CAGTGTACAT TCTGAGCTCT	5800
TTCTTCAGGA GGCAGTTCTC TGGGCTCCTG GTAGAGTTTC TCTAGTCCTT	5850
CCAAAGGCTG CTCTGTCAGA AATATTCTCA CAGTCTCCAG AGTACTCATG	5900
ATTACAGGTT CTTTAGTTTT CAATTCCCTC TTGAAGGCC C TATGTATATC	5950
ATTCTGCTTC TGAACTGCTG GGAAATCACC ACCGATGGGT GCCTGACGGC	6000
TCAGTTCATC ATCTTCAGC TGTAGCCAAA CAAGAAGTTC CTGAAGAGAA	6050
AGATGCAAAC GCTTCCACTG GTCAGAACTT GCTTCCAAT GGGACCTAAT	6100
GTTGAGAGAC TTTTCTGAA GTTCACTCCA CTTGAAATTG ATGTTATCCA	6150
AACGTCTTG TAACAGGGT GCTTCATCCG AACCTCCAG GGATCTCAGG	6200
ATTTTTGGC CATTTCATC AAGATTGTGA TAGATATCTG TGTGAGTTTC	6250
AATTTCTCCT TGGAGATCTT GCCATGGTTT CATCAGCTCT CTGACTCCCC	6300
TGGAGTCTTC TAGGAGCTTC TCCTTACGGG AAGCGTCCTG TAGGACATTG	6350
GCAGTTGTTT CTGCTTCCGT AATCCAGGAA AGAAACTTCT CCAGGTCCAG	6400
AGGAAACTGC TGCAGTAATC TATGAGTTTC TTCCAAAGCA GCCTCTTGCT	6450
CACTTACTCT TTTATGAATG TTTCCCAAG AAGTATTGAT ATTCTCTGTT	6500
ATCATGTGTA CTTTCTGGT ATCATCAGCA GAATAGTCCC GAAGAAGTTT	6550
CAGTGCCAAA TCATTTGCCA CGTCTACACT TATCTGCCGT TGACGGAGGT	6600
CTTTGGCCAA CTGCTTGGTT TCTGTGATCT TCTTTGGAT TGCATCTACT	6650
GTGTGAGGAC CTTCTTCCA TGAGTCAAGC TTGCCTCTGA CCTGTCCTAT	6700
GACCTGTTCG GCTTCTTCCT TAGCTTCCAG CCATTGTGTT GAATCCTTTA	6750
ACATTTCATT CAACTGTTGT CTCCTGTTCT GCAGCTGTT TCAGTAATGA TTGTTCTAGC	6800
TCCCAC TGAAATTCT TTCAATTGAA TCAGTAATGA TTGTTCTAGC	6850
TTCTTGATTG CTGGTTTGT TTTTCAAATT CTGGGCAGCA GTAATGAGTT	6900

CTTCCAATTG	GGGGCGTCTC	TGTTCAAAT	CTTGCAGTGT	TGCCTCTGT	6950
TTGATGATCA	TTTCATTGAT	GTCTTCCAGA	TCACCCACCA	TCACTCTCTG	7000
TGATTTATA	ACTCGATCAA	GCAGAGACAG	CCAGTCTGTA	AGTTCTGTCC	7050
AAGCTCGGTT	GAAGTCTGCC	AGTGCAGGTA	CCCCAACAG	CAAAGAAGAT	7100
GGCATTCTA	GTTGGAGAT	GACAGTTCC	TTAGTAACCA	CAGATTGTGT	7150
CACTAGAGTA	ACAGTCTGAC	TGGCAGAGGC	TCCAGTAGTG	CTCAGTCCAG	7200
GGGCACGGTC	AGGCTGCTTT	GTCCTCAGCT	CCCAGTAA	ATGGTTTACA	7250
GCCTCCCACT	CAGACCTCAG	ATCTTCTAAC	TTCCCTCTCA	CTGGCTGAGT	7300
GCTTGGTTTT	TCCTTATACA	AATGCTGCC	TTTCGACAAA	AGCCTTTCCA	7350
CATCCGCTTG	TTTACCGTGA	ACTGTTACTT	CAATCTCCTT	TATGTCAAAC	7400
GGTCCTGCCT	GAATTGGTTG	GTTATAAATT	TCCAAGTGGT	TTCTAATAGG	7450
AGAGACCCAC	AGAACGAGGT	GATCCAGCTG	CTCTTCAAGC	TGCCTAAAAT	7500
CTTTTAAGTG	AACCTCAAGC	TCTCCTTGT	TCTCAGGTAA	AGCTCTGGAG	7550
ACCTTTATCC	ACTGGAGATT	TGTCTGTTTG	AGCTTCTTTT	CAAGTTTATC	7600
TTGCTCTTCT	GGCCTTATGG	GAGCACTTAC	AAGTACTGCT	CCTCCTGTT	7650
CATTTAATTG	TTTTAGAATT	CCCTGGCGCA	GGGGCAACTC	TTCTGCCAGT	7700
AACTTGACTT	GTTCAAGTTG	TTCTTTAGC	TGCTGCTCAT	CTCCAAGTGG	7750
AGTAATAGCA	ATGTTATCTG	CTTCTTCCAG	CCACAAAACA	AATTCAATT	7800
AATCTCTTTG	AAATTCTGAC	AAGACATTCT	TTTGTCTTC	AATCCTCTT	7850
CTCCTTCTG	CCAGCTCTT	GCAGATGTCG	TGCCACCGCA	GACTCAAGCT	7900
TCCTAATT	TCTTGTAGAA	TATTGACATC	TGTTTTGAA	GACTGTTGAA	7950
TTATTTCTTC	CCCAGTTGCA	TTCAGTGTTC	TGACAACAGC	TTGACGCTGC	8000
CCAATGCCAT	CCTGGAGTT	CTTAAGATAC	CATTGTATT	TAGCATGTT	8050
CCAGTTTCA	GGATTTGTG	TCTTTTGAA	AAACTGTTCA	ACTTCATTCA	8100
GCCATTGATT	AAATACCTTC	ATATCATAAT	GAAAGTGTG	CCATTTTCA	8150
ACTGATCTGT	CGAATCGCCC	TTGTCGTTCC	TTGTACATTC	TATGAAGTTT	8200

TTCCCCCTGG AAATCCATCT GTGCCACGGC TTCTGTACT TTCACCTTTT	8250
CCATGGAGGT GGCACCTTGC AAGGCTGCTG TCTTCCTCTT GTGAATAATA	8300
TCAATCCGAC CTGAGATTG TTGCAAATTG TCTTTATAT TCTTAAGAGA	8350
CTCCTCTTGC TTAAAAAGAT CTTCAAAATC T-TAGCACAG AGTCAGGAG	8400
TATTTAGAAG ATGATCAACT TCTGAAAGAG CTTGTAAGAT ATGACTGATC	8450
TCGGTCAAAT AAGTAGAAGG CACATAAGAA ACATCCAAAG GCATATCTTC	8500
AGTCGTCACT ACCATAGTTT CTTCATGGAG AGTGTGAATT TGTGCAAAGT	8550
TGAGTCCTCG AAACTGAGCA AAATTGCTCT CAATTGCGCG CCAGCGCTTG	8600
CTGAGCTGGA TCTGAGTTGG CTCCACTGCC ATTGCGGCC CATTCTCAGA	8650
CAAGCCCTCA GCTTGCCTGC GCACTGCATT CAGCTCCTCT TTCTCTTCT	8700
GCAATTCAAG ATCAATTTC TTTAATTTC TTTCATCTCT GGGTTCAGGT	8750
AGGCTGGCTA ATTTTTTTTC AATTTCATCC AAGCATTCA GGAGATCATC	8800
AGCCTGCCTC TTGTACTGAT ACCACTGGTG AGAAATTCT AGGGCCTTTT	8850
TTCTCTTTG AGACCTCAA TCCTTGAGAG CATTATGTT TGCTGTAAAC	8900
AGCTGCTGTT TTATCTTTAT TTCCCTCTCGC TTTCTCTCAT CTGTGATTCT	8950
TTGTTGTAAG TTGTCCTCTC TTTGCAACAA TTCATTACA GTACCCCTCAT	9000
TGTCTTCACT CATATCTTTA TTGAAGTCTT CCTCTTCAG ATTCACCCCC	9050
TGCTGAATT CAGCCTCCAG TGGTTCAAGC AATTTTGTA TATCTGAGTT	9100
AAACTGCTCC AATTCTTCA AAGGAATGGA GGCCTTCCA GTCTTAATT	9150
TGTGAGAAAT AGCTGCAAAT CGACGGTTGA GCTCAGAGAT TTGGGGCTCT	9200
ACTACTTTCC TGCAGTGGTC ACCGCGGTTT GCCATCAATT TTGCTGCTTG	9250
GTCACGTGTG GAGTCCACCT TTGGGCGCAT GTCATTCAATT TCAGCCTTTA	9300
AACGCTTAAG AATGTCTTCC TTTTGTGTG GTTTCTCTT TTCAGACTCA	9350
TCTAAAAGTT CATCTGCATG AATGATCCAC TTTGTGATTG GTTCTATGTT	9400
CTGATCAAAG GTTTCCATGT GTTTCTGGTA TTCCAACAAA AGATTTAGCC	9450
ATTCTTCTAC TCTGGAGGTG ACAGCTATCC AGTTACTGTT CAGAAGACTC	9500

90

AGTTTATCTT CTACCAAGGT TTCTTCTTG CCCAACACCA TTTTCAAAGA	9550
CTCTCCTAAT TCTGTAACAC TCTTCAAGTG AGCCTCTGT TTCTCAATCT	9600
CTTTTGAGT AGCCTTCCTT CAGGCAACTT CAGAATCCAA ATTACTTGGC	9650
ATTCCCTCAA CTGCTGATCT CTTCTCAAT TC1.GTATCTG TTGCTGCCAG	9700
CCATTCTGTT AAGACATTCA TTTCTTTCT CATCTTACGG GACAACCTCA	9750
AGCATTCTC CAACTGTTGC TTTCTCTCTG TTACCTTCGC ACCCAACTCA	9800
TTGTAATGCA ATTCAAAGC TGTTACTCGT TCATCAAGCT CTTTGGGATT	9850
TTCTGTCTGC TTTTCTGTA CAATTGACG TCCGGTTTA ATCACCATT	9900
CCACTTCAGA CTTGACTTCA CTCAGGCTTT TATACAAGTT CACACAATGA	9950
CTTAGTTGTG ACTGAATTAC TTCTGTTCA AACTCTTGG TTTCCAATGC	10000
AGGCAAATGC ATCTTGAATT CATCTAAAAT CATCTTACTT TCCTCTAGAC	10050
GTTGTTCAAA ATTGGCTGGT TTTTGGAAATA ATCGAAATT CATGGAGACA	10100
TCTTGTAAATT TTTTCTGTGC AACATCAATT TGTGAAAGAA CCCTTTGGTT	10150
GGCATCCTTC CCCTGGTTAT GTTCTTCAT TTCTTCTAAA CTTATCTCAT	10200
GACTTGTCAA ATCTGATTGG ATTTCTGGG CTTCTGAGG CATTGAGCT	10250
GCATCCACCT TGTCAAGTGAT ATAAGCTGCC AACTGCTTGT CAATGAATT	10300
AAGCGACTCC TGAATTAAGT GCAAGGACTT TTCAATTCC TGGGCAGACT	10350
GGATACTCTG TTCAAGCAAC TTTTGTTC TCACAGCCTC TTCATGTAGT	10400
TCCCTCCAAC GAGAATTAAA CGTCTCAAGC TCCTCATTGA TCAGTTCATC	10450
CATGACTCCT CCATCTGTAA GAGTCTGTGC CAATAGACGA ATCTGATTG	10500
GGTTCTCCTC TGAATGATGC ATCAGATT CAAGAGATT TAGCAATTCA	10550
GTGATTTCCCT CAGGTCTGC AGGAACATT TCCATGGTT TAAGTTCAA	10600
TTCTACTTCA TTGAGCCACT TGTTGCTTT CTCTAAATAT GACAATAACT	10650
CATGCCAACCA TGCCCAAAGT TCTTCCAAAG TTTTGCATT TCCATTCAAGC	10700
CTGGTGCACA GCCATTGGTA GTTGGTGGTC AGAGTTCAA GTTCTTTT	10750
TAAGGCCTCT TGTGCTGAGG GTGGAGCGTG AGCTATTACA CTATTACAG	10800

.91

TCTCAGTAAG GAGTTCACT TTAGTTCTT TTTGTAGTGC CTCTTCTTTA 10850
GCTCTCTTCA TTTCTCAAC AGCAGTCTGT AATTCACTTG GAGTTTTATA 10900
TTCAAAATCT CTCTCTAGAT ATTCTTCTTC AGCTTGTGTC ATCCACTCAT 10950
GCATCTCTGA TAGATCTTT TGGAGGCTTA CGJTTTATC CAAACCTGCC 11000
TTTAAGGCTT CCTTTCTGGT GTAGACCTGG CGGCATATGT GATCCCCTG 11050
AGTGTAAAGC TCTCTAAAGTT CTGCTCCAG TCTGGATGCA AACTCAAGTT 11100
CAGCTTCACT CTTTATCTTC TGCCCACCTT CATTAACACT ATTTAAACTG 11150
GGCTGAATTG TTTGAATATC ACCAACTAAA AGTCTGCATT GTTGAGCTG 11200
TTTTTCAGG ATTTCAGCAT CCCCCAGGGC AGGCCATTCC TCTTTCAGGA 11250
AACACATCAAC TTCAGCCATC CATTCTGTA AGGTTTTAT GTGATTCTGA 11300
AATTTTCGAA GTTTATTCAAT ATGTTCTTCT AGCTTTGGC AGCTTCCAC 11350
CAACTGGGAG GAAAGTTCT TCCAGTCCCC CTCAATCTCT TCAAATTCTG 11400
ACAGATATTCTGGCATATT TCTGAAGGTG CTTTCTTGGC CATCTCCTTC 11450
ACAGTGTAC TCAGATAGTT GAAGCCATT TGTTGCTCTT TCAAAGAACT 11500
TTGCAGAGCC TGTAATTTCCT CGAGTCTCTC CTCCATTATT TCATATTCA 11550
TAACACTAAG ATAAGGTACA GAGAGTTGC TTTCTGACTG CTGGATCCAC 11600
GTCCTGATGC TACTCATTGT CTCCTGATAG CGCATTGGTG GTAAAGTGT 11650
AAAAATTGTC TGTAGCTCTT TCTCTTGGC CCTCACACCA TCAAAGATGT 11700
GGTTAAAATG ATTAGTAAAG GCCACAAAGT CTGCATCCAG AACATTGGC 11750
CCCTGTCCCT TTTCTTTCAG TTGTAGACTC TGAATTTTA ATTGCTCAAT 11800
TTGAGGCTGA AGAGCTGACA ATCTGTTGAC TTCATCCTTA CAAATTTTA 11850
ACTGGCTTTT AATTGCTGTT GGCTCTGATA GGGTGGTAGA CTGGGTTTTC 11900
AACAAAGTTT CGGCAGTAGT TGTCATCTGT TCCAATTGTT GTAGCTGATT 11950
ATAAAAGGTA ATGATGTTGG TTTGATACTC TAGCCAGTTA ACTCTCTCAC 12000
TCAGCAATTG GCAGAATTCT GTCCACCGGC TGTTCAGTTG TTCTGAAGCT 12050
TGTCTGATAC TTTCAGCATT AACACCCTCA TTTGCCATCT GTTCCACCAG 12100

GGCCTGAGCT GATCTGCTGC CATCTGCAG TTTTCTGAAC TTCTCTGCCT	12150
TPTCTCGTGC TATGGCATTG ACTTTTTCTT GCAAGTCTGA GATGTTGCCT	12200
TCTTTTCGAT AGACTGCAA TTCAGAACTC TGTAATACAG CTTCTGAACG	12250
AGTAATCCAA CTGTGAAGTT CAGTTATATC GAJATCCAAC CTTTCCTGA	12300
GTTCAGAATC CACAGTTATC TGCCCTTCTT TTTGAGGAGG TGGTGGTGG	12350
AGTTCCCTCTT GGGCATGTTT TACCATGATT TGTTCCCTTG TGGTCACCAC	12400
AGTTACCGTT TCCATTACAG TTGTCTGTGT TAGGGATGGT TGAGTGGTGG	12450
TGACAGCCTG TGAAATTGT GCTGAACCTCT TTTCAAGTTT TTGGGTTAAA	12500
TTGTCCCAAC GTTGTGCAA GTTTCCATC CAGATTCCA TCTTTGAGT	12550
CACTGACTTA TTTTCAGTG CCGAAAGTAG ATCTTGATTG AGTGAACCTA	12600
TTTTTCCAT GGTGGCTTT TTCTTTCTA GATCTATTT TAAAGTAGAT	12650
ATTTTGTGAA GACTTGACAT CATTTCATTT TGATCTTAA AGCCACTTGT	12700
CTGAATGTTTC TTCATTGCAT CTTCTTTTC TGAAAGCCAT GTACTAAAAA	12750
GGCACTGTTTC TTCACTTAA TGCTGCCATT TTAGAAGAAT ATCTTGAAA	12800
ACAATCCAGC GGTCTTCAGT CCATCTGCAG ATATTGCCC ATCGATCTCC	12850
CAGTACCTTA AGTTGTTCTT CCAAAGCAGC TGTTGCATGA TCACCGCTGG	12900
ATTCATCAAC CACTACTACC ATGTGAGTGA GCGAGTTGAC CCTGACCTGC	12950
TCCTGTTCTA GATCTTCTTG AAGCACCTTA TGTTGTTGTA CTTGGCATT	13000
TAGATCTTCA AGATCAGGTC CAAAGGGCTC TTCCCTCCATT TTCTTAGTTC	13050
TCTCTTCAGT TTTTGTAAAC CAGTCATCTA GTTCTTTAA TTTCTGATT	13100
TGGAGATCCA TTAGAACCTT GTGTAATTG CTTTGTCCCC CCATGCTAGC	13150
TACCCCTGAGA CATTCCCATC TTGAATTAG GAGATTCAATT TGTTCTTGCA	13200
CTTCAGCTTC TTCATCTTCT GATAATTCC CTTTTCCAAC TAGTTGACTT	13250
CCTAACTGTA GAACATTACC AACAAAGTCCT TGATGAGATG TCAGATCCAT	13300
CATGAATCCC TCATGAGCAT GAAACTGTTTC TTTCACTTCT TCAACATCAT	13350
TTGAAATCTC TCCTTGTGCT CGCAATGTAT CCTCGGCAGA AAGAAGCCAT	13400

GAAAGTACTT CTTCTAAAGC AGTTGGTAA CTATCCAGAT TTACTTCCGT 13450
CTCCATCAAT GAACTGTCAA GTGACTTGTC TCTGGGAGCT TCCAAATGCT 13500
GTGAAGGATA GGGGCTCTGT GTGGAATCAG AGGTGGCAAC ATAAGCAGCC 13550
TGTGTGAAGG CATAACTCTT GAATCGAGGC T₁AGGAGATG AAGAAGTTG 13600
TTCATAGCCC TGTGCTAGAC TGACTGTGAT CTGTTGAGAG TAATGCATCT 13650
GGTGATGTAATGTTGAAATGT TCTTCTCTAG TTACTTTGAA AGATGTCCTG 13700
GGCAACATTT CCACCTCTTG AATGGCTTCA ATGCTCACCTT GTTGTGGCAA 13750
AACTTGAAAG AGTGATGTGA TGTACATTAA GATGGACTTC TTGTCTGGAT 13800
AAGTGGTAGC AACATCTTCA GGATCAAGAA GTTTTTCTAT GCCTAACTGG 13850
CATTTGCAA TGTGAAGGC ATGTTCCAGT CTTTGGGTGG CTGAGTGCTG 13900
TGAAACCACA CTATTCCAAT CAAACAGGTC GGGCCTGTGA CTATGGATAA 13950
GAGCATTCAA AGCCAACCCG TCGGACCAGC TAGAGGTGAA GTTGATGACG 14000
TTAACCTGTG GATAATTACG TGTTGACTGT CGAACCCAGC TCAGAAGAAT 14050
CTTTCACTG TTGGTTTGCT GCAATCCAGC CATGATAGTT TTCATCACAT 14100
TTTGACCTG CCAGTGGAGG ATTATATTCC AAATCAAACC AAGAGTGAGT 14150
TTATGATTTTC CATCCACTAT GTCAGTGCTT CCTATATTCA CTAAATCAAC 14200
ATTATTTTTC TGTAAGACCC GCAGTGCTT GTTGACATTG TTCAGGGCAT 14250
GAACCTTTGT AGATCCCTTT TCTTTGGCA GTTTTGCCC TGTAAGGCCT 14300
TCCAAGAGGT CTAGGAGGCG TTTTCCATCC TGCAAGTCAC TGAAGAGGTT 14350
GTCTATGTGT TGCTTTCCAA ACTTAGAAAA TTGTGCATTT ATCCATTTG 14400
TGAATGTTTT CTTTGAACA TCTTCTCTT CATAACAGTC CTCTACTTCT 14450
TCCCACCAAA GCATTTGGAA GAAAAAGTAT ATATCAAGGC AGGGATAAAA 14500
ATCTTGGTAA AAGTTCTCC CAGTTTATT GCTCCAGGAG GCTTAGGTAC 14550
GATGAGAAGC CAATAAAACTT CAGCAGCCTT GACAAAAAAA AAAAAAAA 14600
.TAGCACTTCA AGTCTTCCTA TTCGTTTTT CTATAAAGCT ATTGCCTTCA 14650
AGAGCGGAAT TCCTGCAGCC CGGGGGATCC ACTAGTTCTA GAGCGGCCGC 14700

GGGTACAATT CCGCAGCTTT TAGAGCAGAA GTAACACTTC CGTACAGGCC 14750
TAGAAGTAAA GGCAACATCC ACTGAGGAGC AGTTCTTGA TTTGCACCAC 14800
CACCGGATCC GGGACCTGAA ATAAAAGACA AAAAGACTAA ACTTACCACT 14850
TAACCTTCTG GTTTTCAGT TCCTCGAGTA CGCGATCCTC TAGAGTCCGG 14900
AGGCTGGATC GGTCCC GGTTCTATGG AGGTCAAAAC AGCGTGGATG 14950
GCGTCTCCAG GCGATCTGAC GGTTCACTAA ACGAGCTCTG CTTATATAGA 15000
CCTCCCACCG TACACGCCTA CCGCCCATTG GCGTCAATGG GGCGGAGTTG 15050
TTACGACATT TTGGAAAGTC CCGTTGATTT TGGTGCCAAA ACAAACTCCC 15100
ATTGACGTCA ATGGGGTGGG GACTTGGAAA TCCCCGTGAG TCAAACCGCT 15150
ATCCACGCC ATTGATGTAC TGCCAAAACC GCATCACCAT GGTAAATAGCG 15200
ATGACTAATA CGTAGATGTA CTGCCAAGTA GGAAAGTCCC ATAAGGTCA 15250
GTACTGGCA TAATGCCAGG CGGGCCATTG ACCGTCAATTG ACGTCAATAG 15300
GGGGCGTACT TGGCATATGA TACACTTGAT GTACTGCCAA GTGGGCAGTT 15350
TACCGTAAAT ACTCCACCCA TTGACGTCAA TGGAAAGTCC CTATTGGCGT 15400
TACTATGGGA ACATACGTCA TTATTGACGT CAATGGCGG GGGTCGTTGG 15450
GCGGTCAGCC AGGCAGGCCA TTTACCGTAA GTTATGTAAC GACCTGCAGG 15500
TCGACTCTAG AGGATCTCCC TAGACAAATA TTACCGCCTA TGAGTAACAC 15550
AAAATTATTC AGATTTCACT TCCTCTTATT CAGTTTCCC GCGAAAATGG 15600
CCAAATCTTA CTCGGTTACG CCCAAATTAA CTACAAACATC CGCCTAAAAC 15650
CGCGCGAAAA TTGTCACTTC CTGTGTACAC CGGCGCACAC CAAAAACGTC 15700
ACTTTTGCCA CATCCGTCGC TTACATGTGT TCCGCCACAC TTGCAACATC 15750
ACACTTCCGC CACACTACTA CGTCACCCGC CCCGTTCCCA CGCCCCGCGC 15800
CACGTCAACAA ACTCCACCCC CTCATTATCA TATTGGCTTC AATCCAAAAT 15850
AAGGTATATT ATTGATGATG CTAGCGGGGC CCTATATATG GATCCAATTG 15900
CAATGATCAT CATGACAGAT CTGCGCGCA TCGATATCAG CGCTTTAAAT 15950
TTGCGCATGC TAGCTATAGT TCTAGAGGTA CCGGTTGTTA ACGTTAGCCG 16000

GCTACGTATA	CTCCGGAATA	TTAATAGGCC	TAGGATGCAT	ATGGCGGCCG	16050
GCCGCCCTGCA	GCTGGCGCCA	TCGATACGCG	TACGTCGCGA	CCGGCGGACAT	16100
GTACAGAGCT	CGAGAAAGTAC	TAGTGGCCAC	GTGGGCCGTG	CACCTTAAGC	16150
TTGGCACTGG	CCGTCGTTTT	ACAACGTCGT	GAJTGGAAGA	ACCCCTGGCGT	16200
TACCCAACCTT	AATCGCCTTG	CAGCACATCC	CCCTTTCGCC	AGCTGGCGTA	16250
ATAGCGAAGA	GGCCCCGACC	GATCGCCCTT	CCCAACAGTT	GCGCAGCCTG	16300
AATGGCGAAT	GGCGCCTGAT	GCGGTATTTT	CTCCTTACGC	ATCTGTGCGG	16350
TATTTCACAC	CGCATAACGTC	AAAGCAACCA	TAGTACGCCG	CCTGTAGCGG	16400
CGCATTAAAGC	GCGGCGGGTG	TGGTGGTTAC	GCGCAGCGTG	ACCGCTACAC	16450
TTGCCAGCGC	CCTAGCGCCC	GCTCCCTTCG	CTTCTTCCC	TTCCCTTCTC	16500
GCCACGTTCG	CCGGCTTCC	CCGTCAAGCT	CTAAATCGGG	GGCTCCCTT	16550
AGGGTTCCGA	TTTAGTGCTT	TACGGCACCT	CGACCCAAA	AAACTTGATT	16600
TGGGTGATGG	TTCACGTAGT	GGGCCATCGC	CCTGATAGAC	GGTTTTTCGC	16650
CCTTTGACGT	TGGAGTCCAC	GTTCTTAAT	AGTGGACTCT	TGTTCCAAAC	16700
TGGAACAACA	CTCAACCCCTA	TCTCGGGCTA	TTCTTTGAT	TTATAAGGGA	16750
TTTGCCGAT	TTCGGCCTAT	TGGTTAAAAA	ATGAGCTGAT	TTAACAAAAA	16800
TTTAACGCGA	ATTTAACAA	AATATTAACG	TTTACAATT	TATGGTGCAC	16850
TCTCAGTACA	ATCTGCTCTG	ATGCCGCATA	GTTAAGCCAG	CCCCGACACC	16900
CGCCAACACC	CGCTGACGCG	CCCTGACGGG	CTTGTCTGCT	CCCGGCATCC	16950
GCTTACAGAC	AAGCTGTGAC	CGTCTCCGGG	AGCTGCATGT	GTCAGAGGTT	17000
TTCACCGTCA	TCACCGAAAC	GCGCGAGACG	AAAGGGCCTC	GTGATAACGCC	17050
TATTTTTATA	GGTTAATGTC	ATGATAATAA	TGGTTCTTA	GACGTCAGGT	17100
GGCACTTTTC	GGGGAAATGT	GCGCGGAACC	CCTATTGTT	TATTTTTCTA	17150
AATACATTCA	AATATGTATC	CGCTCATGAG	ACAATAACCC	TGATAAAATGC	17200
TTCAATAATA	TTGAAAAAGG	AAGAGTATGA	GTATTCAACA	TTTCCGTGTC	17250
GCCCTTATTC	CCTTTTTGTC	GGCATTTCGC	CTTCCTGTT	TTGCTCACCC	17300

AGAAACGCTG	GTGAAAGTAA	AAGATGCTGA	AGATCAGTTG	GGTGCACGAG	17350
TGGGTTACAT	CGAACTGGAT	CTCAACAGCG	GTAAGATCCT	TGAGAGTTT	17400
CGCCCCGAAG	AACGTTTCC	AATGATGAGC	ACTTTAAAG	TTCTGCTATG	17450
TGGCGCGGT	TTATCCCCTA	TTGACGCCGG	GCAAGAGCAA	CTCGGTCGCC	17500
GCATACACTA	TTCTCAGAAT	GACTTGGTTG	AGTACTCACC	AGTCACAGAA	17550
AAGCATCTTA	CGGATGGCAT	GACAGTAAGA	GAATTATGCA	GTGCTGCCAT	17600
AACCATGAGT	GATAACACTG	CGGCCAACTT	ACTTCTGACA	ACGATCGGAG	17650
GACCGAAGGA	GCTAACCGCT	TTTTTGCACA	ACATGGGGGA	TCATGTAAC	17700
CGCCTTGATC	GTTGGGAACC	GGAGCTGAAT	GAAGCCATAC	CAAACGACGA	17750
GCGTGACACC	ACGATGCCTG	TAGCAATGGC	AAACAACGTTG	CGCAAACATAT	17800
TAACCTGGCGA	ACTACTTACT	CTAGCTTCCC	GGCAACAATT	AATAGACTGG	17850
ATGGAGGCAG	ATAAAGTTGC	AGGACCACTT	CTGCGCTCGG	CCCTTCCGGC	17900
TGGCTGGTTT	ATTGCTGATA	AATCTGGAGC	CGGTGAGCGT	GGGTCTCGCG	17950
GTATCATTGC	AGCACTGGGG	CCAGATGGTA	AGCCCTCCCG	TATCGTAGTT	18000
ATCTACACGA	CGGGGAGTCA	GGCAACTATG	GATGAACGAA	ATAGACAGAT	18050
CGCTGAGATA	GGTGCCTCAC	TGATTAAGCA	TTGGTAACTG	TCAGACCAAG	18100
TTTACTCATA	TATACTTTAG	ATTGATTTAA	AACTTCATTT	TTAATTAAA	18150
AGGATCTAGG	TGAAGATCCT	TTTGATAAT	CTCATGACCA	AAATCCCTTA	18200
ACGTGAGTTT	TCGTTCCACT	GAGCGTCAGA	CCCCGTAGAA	AAGATCAAAG	18250
GATCTTCTTG	AGATCCCTTT	TTTCTGCGCG	TAATCTGCTG	CTTGCAAACA	18300
AAAAAACAC	CGCTACCAGC	GGTGGTTGT	TTGCCGGATC	AAGAGCTACC	18350
AACTCTTTT	CCGAAGGTAA	CTGGCTTCAG	CAGAGCGCAG	ATACCAAATA	18400
CTGTTCTCT	AGTGTAGCCG	TAGTTAGGCC	ACCACTCAA	GAACCTCTGTA	18450
GCACCGCCTA	CATACCTCGC	TCTGCTAAC	CTGTTACCAAG	TGGCTGCTGC	18500
CAGTGGCGAT	AAGTCGTGTC	TTACCGGGTT	GGACTCAAGA	CGATAGTTAC	18550
CGGATAAGGC	GCAGCGGTG	GGCTGAACGG	GGGGTTCGTG	CACACAGCCC	18600

97

AGCTTGGAGC GAACGACCTA CACCGAACTG AGATAACCTAC AGCGTGAGCT	18650
ATGAGAAAGC GCCACGCTTC CCGAAGGGAG AAAGGCGGAC AGGTATCCGG	18700
TAAGCGGCAG GGTCGGAACA GGAGAGCGCA CGAGGGAGCT TCCAGGGGGA	18750
AACGCCCTGGT ATCTTTATAG TCCTGTCGGG TT'CGCCACC TCTGACTTGA	18800
GCGTCGATTT TTGTGATGCT CGTCAGGGGG GCGGAGCCTA TGGAAAAACG	18850
CCAGCAACGC GGCCTTTITA CGGTTCTGG CCTTTTGCTG GCCTTTGCT	18900
CACATGTTCT TTCCTGCGTT ATCCCCTGAT TCTGTGGATA ACCGTATTAC	18950
CGCCCTTGAG TGAGCTGATA CCGCTCGCCG CAGCCGAACG ACCGAGCGCA	19000
GCGAGTCAGT GAGCGAGGAA GCGGAAGAGC GCCCAATACG CAAACCGCCT	19050
CTCCCCGCGC GTTGGCCGAT TCATTAATGC AGCTGGCACG ACAGGTTTCC	19100
CGACTGGAAA GCGGGCAGTG AGCGCAACGC AATTAATGTG AGTTAGCTCA	19150
CTCATTAGGC ACCCCAGGCT TTACACTTTA TGCTTCCGGC TCGTATGTTG	19200
TGTGGAATTG TGAGCGGATA ACAATTTCAC ACAGGAAACA GCTATGACCA	19250
TGATTACGAA TTCGAATGGC CATGGGACGT CGACCTGAGG TAATTATAAC	19300
CCGGGCC	19307

WHAT IS CLAIMED IS:

1. A recombinant shuttle vector comprising:
 - (a) the DNA sequences of, or corresponding to, a portion of the genome of an adenovirus which comprises DNA sequences of, or corresponding to, the adenovirus 5' and 3' inverted terminal repeats and packaging/enhancer domain necessary for replication and virion encapsidation in the absence of sequence encoding viral genes;
 - (b) a selected gene operatively linked to regulatory sequences directing its expression, said gene operatively linked to the DNA of (a) and capable of expression in a target cell *in vivo* or *in vitro*.
2. The vector according to claim 1 wherein said DNA sequences (a) comprise the native adenovirus 5' inverted terminal repeats and packaging sequences.
3. The vector according to claim 1 wherein said DNA sequences (a) comprise the native adenovirus 3' inverted terminal repeat sequences.
4. The vector according to claim 1 wherein said selected gene (b) is a reporter gene.
5. The vector according to claim 4 wherein said reporter gene is selected from the group consisting of the genes encoding β -galactosidase, alkaline phosphatase and green fluorescent protein.
6. The vector according to claim 1 wherein said selected gene (b) is a therapeutic gene.

7. The vector according to claim 6 wherein said therapeutic gene is selected from the group consisting of a normal CFTR gene, a DMD Becker allele and a normal LDL gene.

8. A crippled adenovirus helper virus comprising a modified adenovirus sequence in place of native adenovirus sequence map units 0-1, which modification reduces the packaging efficiency of said virus, said virus also containing selected adenovirus genes necessary to direct a productive viral infection.

9. The helper virus according to claim 8 wherein said modified sequence comprises:

- i. a fragment of adenovirus map units 0-1;
- ii. a fragment of (i) containing a 5' inverted terminal repeat and between one to four selected packaging sequences,
- iii. a modified fragment of (i) containing at least one PAC consensus sequence in place of at least one native PAC sequence; and
- iv. a modified fragment of (ii), wherein said native PAC sequences are mutated to contain modified sequences.

10. The virus according to claim 8 wherein said modified sequence comprises Ad5 base pairs 1-269.

11. The virus according to claim 8 wherein said sequence (ii) comprises Ad5 base pairs 1-321.

12. The virus according to claim 8 wherein said helper adenovirus is conjugated to a p ly-cation sequenc .

100

13. A method for producing a recombinant adenovirus which comprises transfecting a selected host cell with

(a) a recombinant shuttle vector comprising

i. the DNA sequences of, or corresponding to, a portion of the genome of an adenovirus which comprises adenovirus 5' and 3' cis-elements necessary for replication and virion encapsidation in the absence of sequence encoding viral genes; and

ii. a selected gene operatively linked to regulatory sequences directing its expression, said gene linked to the DNA of (a) and capable of expression in a target cell *in vivo* or *in vitro*; and

(b) a helper adenovirus comprising sufficient adenovirus gene sequences necessary for a productive viral infection, wherein said transfected host cell permits the formation of a recombinant virus comprising the DNA of (i) and (ii) in an adenoviral capsid, and isolating and purifying the recombinant virus from said cell.

14. The method according to claim 13, wherein said helper virus is a crippled helper virus comprising a modified adenovirus sequence in place of native adenovirus sequence map units 0-1, which modification reduces the packaging efficiency of said helper virus, said helper virus also containing selected adenovirus genes necessary to direct a productive viral infection.

15. The method according to claim 13 wherein said helper adenovirus is associated with a poly-cation sequence.

16. The method according to claim 13 wherein said vector is associated with said helper adenovirus conjugate in a single particle.

17. The method according to claim 13 wherein said helper virus is an adenovirus sequence containing deletions of all or portions of the E1a and E1b genes.

18. The method according to claim 13 wherein said helper virus is an adenovirus sequence containing deletions of all or a portion of the E3 gene.

19. A recombinant adenovirus comprising

i. the DNA of, or corresponding to, a portion of the genome of an adenovirus which comprises adenovirus 5' and 3'cis-elements necessary for replication and virion encapsidation in the absence of sequence encoding viral genes;

ii. a selected gene operatively linked to regulatory sequences directing its expression, said gene linked to the DNA of (a) and capable of expression in a target cell *in vivo* or *in vitro*;

said DNA and gene encapsidated in an adenoviral capsid.

20. The virus according to claim 19 wherein said viral capsid is a capsid of an adenovirus serotype selected from the group consisting of types 2, 4, 5, 7, 12 and 40.

21. The virus according to claim 19 wherein said selected gene is a CFTR gene, a DMD gene and an LDL gene.

102

22. The use of a recombinant adenovirus according to claim 19 for the manufacture of a pharmaceutical composition suitable for delivering and integrating a selected gene into the chromosome of a target cell.

FIG. IA

FIG. 2A**FIG. 2B****FIG. 2C**

3/45

FIGURE 3A

GAACTCGAGC AGCTGAAGCT TGAATTCCAT CATCAATAAT ATACCTTATT	50
TTGGATTGAA GCCAATATGA TAATGAGGGG GTGGAGTTG TGACGTGGCG	100
CGGGGCGTGG GAACGGGGCG GGTGACGTAG GTTTTAGGGC GGAGTAACTT	150
GTATGTGTTG GGAATTGTAG TTTTCTTAAA ATGGGAAGTT ACGTAACGTG	200
GGAAAACGGA AGTGACGATT TGAGGAAGTT GTGGGTTTTT TGGCTTTCGT	250
TTCTGGCGT AGGTTCGCGT CGCGTTTCTC GGGTGTTTT TGTGGACTTT	300
AACCGTTACG TCATTTTTA GTCCTATATA TACTCGCTCT GCACTTGGCC	350
CTTTTTACA CTGTGACTGA TTGAGCTGGT GCCGTGTCGA GTGGTGTTTT	400
TTTAATAGGT TTTCTTTTT ACTGGTAAGG CTGACTGTTA GGCTGCCGCT	450
GTGAAGCGCT GTATGTTGTT CTGGAGCGGG AGGGTGCTAT TTTGCCTAGG	500
CAGGAGGGTT TTTCAGGTGT TTATGTGTT TTCTCTCCTA TTAATTTGT	550
TATACTCCT ATGGGGGCTG TAATGTTGTC TCTACGCCTG CGGGTATGTA	600
TTCCCCCAA GCTTGCATGC CTGCAGGTG ACTCTAGAGG ATCCGAAAAA	650
ACCTCCCACA CCTCCCCCTG AACCTGAAAC ATAAAATGAA TGCAATTGTT	700
GTTGTTAACT TGTTTATTGC AGCTTATAAT GGTACAAAT AAAGCAATAG	750
CATCACAAAT TTCACAAATA AAGCATTTTT TTCACTGCAT TCTAGTTGTG	800
GTTTGTCCAA ACTCATCAAT GTATCTTATC ATGTCTGGAT CCCCCGGGCC	850
GCCTAGAGTC GAGGCCGAGT TTGTCAGAAA GCAGACCAAA CAGCGGTTGG	900
AATAATAGCG AGAACAGAGA AATAGCGGCA AAAATAATAC CCGTATCACT	950
TTTGCTGATA TGGTTGATGT CATGTAGCCA AATCGGGAAA AACGGGAAGT	1000
AGGCTCCCAT GATAAAAAG TAAAAGAAAA AGAATAAAACC GAACATCCAA	1050
AAGTTTGTGT TTTTTAAATA GTACATAATG GATTTCTTAA CGCGAAATAC	1100
GGGCAGACAT GGCCTGCCCG GTTATTATTA TTTTGACAC CAGACCAACT	1150
GGTAATGGTA GCGACCGGCG CTCAGCTGTA ATTCCGCCGA TACTGACGGG	1200
CTCCAGGAGT CGTCGCCACC AATCCCCATA TGAAACCGT CGATATTCA	1250
CCATGTGCCT TCTTCCCGCGT GCAGCAGATG GCGATGGCTG CTTTCCATCA	1300
GTTGCTGTTG ACTGTAGCGG CTGATGTTGA ACTGGAAAGTC GCCGCGCCAC	1350

4/45

FIGURE 3B

TGGTGTGGGC CATAATTCAA TTTCGCGCGTC CCGCAGCGCA GACC GTTTTC	1400
GCTCGGGAAAG ACGTACGGGG TATACATGTC TGACAATGGC AGATCCCAGC	1450
GGTAAAACA GGCGGCAGTA AGGCGGTCGG GATAGTTTC TTGCGGCCCT	1500
AATCCGAGCC AGTTTACCCG CTCTGCTACC TGCGCCAGCT GGCAGTTCA	1550
GCCAATCCGC GCCGGATGCG GTGTATCGCT CGCCACTTCA ACATCAACGG	1600
TAATCGCCAT TTGACCACTA CCATCAATCC GGTAGGTTTT CCGGCTGATA	1650
AATAAGGTTT TCCCCTGATG CTGCCACGCG TGAGCGGTG TG TAATCAGCAC	1700
CGCATCAGCA AGTGTATCTG CCGTGCAGTG CAACAACGCT GCTTCGGCCT	1750
GGTAATGGCC CGCCGCCCTTC CAGCGTTCGA CCCAGGCGTT AGGGTCAATG	1800
CGGGTCGCTT CACTTACGCC AATGTCGTTA TCCAGCGGTG CACGGGTGAA	1850
CTGATCGCGC AGCGGCGTCA GCAGTTGTTT TTTATGCCA ATCCACATCT	1900
GTGAAAGAAA GCCTGACTGG CGGTTAAATT GCCAACGCTT ATTACCCAGC	1950
TCGATGCAAA AATCCATTTC GCTGGTGGTC AGATGCGGGA TGGCGTGGGA	2000
CGCGGCGGGG AGCGTCACAC TGAGGTTTTC CGCCAGACGC CACTGCTGCC	2050
AGGCGCTGAT GTGCCCGGCT TCTGACCATG CGGTGCGTGT CGGTTGCACT	2100
ACCGTACTG TGAGCCAGAG TTGCCCGCG CTCTCCGGCT GCGGTAGTTG	2150
AGGCAGTTCA ATCAACTGTT TACCTTGTGG AGCGACATCC AGAGGCACTT	2200
CACCGCTTGC CAGCGGCTTA CCATCCAGCG CCACCATCCA GTGCAGGAGC	2250
TCGTTATCGC TATGACGGAA CAGGTATTG CTGGTCACTT CGATGGTTG	2300
CCCGGATAAA CGGAACCTGGA AAAACTGCTG CTGGTGTGTTT GCTTCGTCA	2350
GCGCTGGATG CGGCGTGCAG TCGGCAAAGA CCAGACCGTT CATA CAGAAC	2400
TGGCGATCGT TCGGCGTATC GCCAAATCA CCGCCGTAAG CCGACCAACGG	2450
GTTGCCGTTT TCATCATATT TAATCAGCGA CTGATCCACC CAGTCCCAGA	2500
CGAAGCCGCC CTGTAAACGG GGATACTGAC GAAACGCCTG CCAGTATTAA	2550
GCGAAACCGC CAAGACTGTT ACCCATCGCG TGGCGTATT CGCAAAGGAT	2600
CAGCGGGCGC GTCTCTCCAG GTAGCGAAAG CCATTTTTG ATGGACCATT	2650

5/45

FIGURE 3C

TCGGCACAGC CGGGAAAGGGC TGGTCTTCAT CCACGCGCGC GTACATCGGG	2700
CAAATAATAT CGGTGGCCGT GGTGTCGGCT CCGCCGCCTT CATACTGCAC	2750
CGGGCGGGAA GGATCGACAG ATTTGATCCA GCGATACAGC GCGTCGTGAT	2800
TAGCGCCGTG GCCTGATTCA TTCCCCAGCG ACCAGATGAT CACACTCGGG	2850
TGATTACGAT CGCGCTGCAC CATTGCGTT ACGCGTTCGC TCATGCCGG	2900
TAGCCAGCGC GGATCATCGG TCAGACGATT CATTGGCACC ATGCCGTGGG	2950
TTTCAATATT GGCTTCATCC ACCACATACA GGCGTAGCG GTCGCACAGC	3000
GTGTACCACA GCGGATGGTT CGGATAATGC GAACAGCGCA CGGCGTTAAA	3050
GTTGTTCTGC TTCATCAGCA GGATATCCTG CACCATCGTC TGCTCATCCA	3100
TGACCTGACC ATGCAGAGGA TGATGCTCGT GACGGTTAAC GCCTCGAAC	3150
AGCAACGGCT TGCCGTTCAAG CAGCAGCAGA CCATTTCAA TCCGCACCTC	3200
GCGGAAACCG ACATCGCAGG CTTCTGCTTC AATCAGCGTG CCGTCGGCGG	3250
TGTGCAGTTC AACCAACCGCA CGATAGAGAT TCGGGATTTC GGCGCTCCAC	3300
AGTTTCGGGT TTTCGACGTT CAGACGTAGT GTGACGCGAT CGGCATAACC	3350
ACCAACGCTCA TCGATAATTT CACCGCCGAA AGGCGCGGTG CCGCTGGCGA	3400
CCTGCCTTTC ACCCTGCCAT AAAGAAACTG TTACCCGTAG GTAGTCACGC	3450
AACTCGCCGC ACATCTGAAC TTCAGCCTCC AGTACAGCGC GGCTGAAATC	3500
ATCATTAAAG CGAGTGGCAA CATGGAAATC GCTGATTTGT GTAGTCGGTT	3550
TATGCAGCAA CGAGACGTCA CGGAAAATGC CGCTCATCCG CCACATATCC	3600
TGATCTTCCA GATAACTGCC GTCACTCCAA CGCAGCACCA TCACCGCGAG	3650
GCGGTTTTCT CCGGCGCGTA AAAATGCGCT CAGGTCAAAT TCAGACGGCA	3700
AACGACTGTC CTGGCCGTAA CCGACCCAGC GCCCGTTGCA CCACAGATGA	3750
AACGCCGAGT TAACGCCATC AAAAATAATT CGCGTCTGGC CTTCCCTGTAG	3800
CCAGCTTTCA TCAACATTAA ATGTGAGCGA GTAACAAACCC GTCGGATTCT	3850
CCGTGGGAAC AAACGGCGGA TTGACCGTAA TGGGATAGGT TACGTTGGTG	3900
TAGATGGGCG CATCGTAACC GTGCATCTGC CAGTTGAGG GGACGACGAC	3950

FIGURE 3D

AGTATCGGCC TCAGGAAGAT CGCACTCCAG CCAGCTTC GGCACCGCTT	4000
CTGGTGCCGG AAACCAGGCA AAGGCCATT CGCCATTAG GCTGCGAAC	4050
TGTTGGGAAG GGCGATCGGT GCAGGCCTCT TCGCTATTAC GCCAGCTGGC	4100
CAAAGGGGA TGTGCTGCAA GGCGATTAAG TTGGGTAACG CCAGGGTTTT	4150
CCCAGTCACG ACGTTGTAAA ACGACGGGAT CGCGCTTGAG CAGCTCCTTG	4200
CTGGTGTCCA GACCAATGCC TCCCAGACCG GCAACGAAAA TCACGTTCTT	4250
GTTGGTCAA GTAAACGACA TGGTGACTTC TTTTTGCTT TAGCAGGCTC	4300
TTTCGATCCC CGGGAATTGC GGCGCGGGT ACAATTCCGC AGCTTTAGA	4350
GCAGAAAGTAA CACTTCCGTA CAGGCCTAGA AGTAAAGGCA ACATCCACTG	4400
AGGAGCAGTT CTGGATTTG CACCACCACC GGATCCGGGA CCTGAAATAA	4450
AAGACAAAAAA GACTAAACTT ACCAGTTAAC TTTCTGGTTT TTCAGTTCTT	4500
CGAGTACCGG ATCCTCTAGA GTCCGGAGGC TGGATCGGTC CCGGTCTCTT	4550
CTATGGAGGT CAAAACAGCG TGGATGGCGT CTCCAGGCGA TCTGACGGTT	4600
CACTAACGA GCTCTGCTTA TATAGACCTC CCACCGTACA CGCCTACCGC	4650
CCATTTGCGT CAATGGGCG GAGTTGTTAC GACATTTGG AAAGTCCCCT	4700
TGATTTGGT GCCAAAACAA ACTCCCATTG ACGTCAATGG GGTGGAGACT	4750
TGGAAATCCC CGTGAGTCAA ACCGCTATCC ACGCCCATTG ATGTACTGCC	4800
AAAACCGCAT CACCATGGTA ATAGCGATGA CTAATACGTA GATGTACTGC	4850
CAAGTAGGAA AGTCCCATAA GGTCAATGTAC TGGGCATAAT GCCAGGCGGG	4900
CCATTTACCG TCATTGACGT CAATAGGGGG CGTACTTGGC ATATGATACA	4950
CTTGATGTAC TGCCAAGTGG GCAGTTTACC GTAAATACTC CACCCATTGA	5000
CGTCAATGGA AAGTCCCTAT TGGCGTTACT ATGGGAACAT ACGTCATTAT	5050
TGACGTCAAT GGGCGGGGGT CGTTGGCGG TCAGCCAGGC GGGCCATTAA	5100
CCGTAAGTTA TGTAACGACC TGCAGGTCGA CTCTAGAGGA TCTCCCTAGA	5150
CAAATATTAC GCGCTATGAG TAACACAAAA TTATTCAAGAT TTCACTTCCT	5200
CTTATTCAAGT TTTCCCGCGA AAATGGCCAA ATCTTACTCG GTTACGCCA	5250

7/45

FIGURE 3E

AATTTACTAC AACATCCGCC TAAAACCGCG CGAAAATTGT CACTTCCTGT	5300
GTACACCGGC GCACACCAAA AACGTCACTT TTGCCACATC CGTCGCTTAC	5350
ATGTGTTCCG CCACACTTGC AACATCACAC TTCCGCCACA CTACTACGTC	5400
ACCCGCCCG TTCCCACGCC CCGGCCACG TCACAAACTC CACCCCTCA	5450
TTATCATATT GGCTTCAATC CAAAATAAGG TATATTATTG ATGATGCTAG	5500
CGAATTCAATC GATGATATCA GATCTGCCGG TCTCCCTATA GTGAGTCGTA	5550
TTAATTCGA TAAGCCAGGT TAACCTGCAT TAATGAATCG GCCAACGCGC	5600
GGGGAGAGGC GGTTTGCCTA TTGGGCCCTC TTCCGCTTCC TCGCTCACTG	5650
ACTCGCTGCG CTCGGTCGTT CGGCTGCCGC GAGCGGTATC AGCTCACTCA	5700
AAGGCGGTAA TACGGTTATC CACAGAATCA GGGGATAACG CAGGAAAGAA	5750
CATGTGAGCA AAAGGCCAGC AAAAGGCCAG GAACCGTAAA AAGGCCGCGT	5800
TGCTGGCGTT TTTCCATAGG CTCCGCCCG CTGACGAGCA TCACAAAAAT	5850
CGACGCTCAA GTCAGAGGTG GCGAAACCCG ACAGGACTAT AAAGATACCA	5900
GGCGTTTCCC CCTGGAAGCT CCCTCGTGCCT CTCTCCTGTT CCGACCCTGC	5950
CGCTTACCGG ATACCTGTCC GCCTTTCTCC CTTCGGGAAG CGTGGCGCTT	6000
TCTCAATGCT CACGCTGTAG GTATCTCAGT TCGGTGTAGG TCGTTCGCTC	6050
CAAGCTGGGC TGTGTGCACG AACCCCCCGT TCAGCCCGAC CGCTGCGCCT	6100
TATCCGGTAA CTATCGTCTT GAGTCCAACC CGGTAAGACA CGACTTATCG	6150
CCACTGGCAG CAGCCACTGG TAACAGGATT AGCAGAGCGA GGTATGTAGG	6200
CGGTGCTACA GAGTTCTTGA AGTGGTGGCC TAACTACGGC TACACTAGAA	6250
GGACAGTATT TGGTATCTGC GCTCTGCTGA AGCCAGTTAC CTTCGGAAAA	6300
AGAGTTGGTA GCTCTTGATC CGGCAAACAA ACCACCGCTG CTAGCGGTGG	6350
TTTTTTTGTGTT TGCAAGCAGC AGATTACGCG CAGAAAAAAA GGATCTCAAG	6400
AAGATCCTTT GATCTTTCT ACGGGGTCTG ACGCTCAGTG GAACGAAAAC	6450
TCACGTTAAG GGATTTGGT CATGAGATTA TCAAAAAGGA TCTTCACCTA	6500
GATCCTTTTA AATTAAAAAT GAAGTTTAA ATCAATCTAA AGTATATATG	6550

8/45

FIGURE 3F

AGTAAACTTG GTCTGACAGT TACCAATGCT TAATCAGTGA GGCACCTATC	6600
TCAGCGATCT GTCTATTCG TTCATCCATA GTTGCCTGAC TCCCCGTCGT	6650
GTAGATAACT ACGATAACGGG AGGGCTTACC ATCTGGCCCC AGTGCTGCAA	6700
TGATACCGCG AGACCCACGC TCACCGGCTC C/T ATTATTC AGCAATAAAC	6750
CAGCCAGCCG GAAGGGCCGA GCGCAGAAGT GGTCTGCAA CTTTATCCGC	6800
CTCCATCCAG TCTATTAAATT GTTGCCGGGA AGCTAGAGTA AGTAGTTCGC	6850
CAGTTAATAG TTTGCGCAAC GTTGTGCGCA TTGCTACAGG CATCGTGGTG	6900
TCACGCTCGT CGTTGGTAT GGCTTCATTC AGCTCCGGTT CCCAACGATC	6950
AAGGCGAGTT ACATGATCCC CCATGTTGTG CAAAAAAAGCG GTTAGCTCCT	7000
TCGGTCCTCC GATCGTTGTC AGAAGTAAGT TGCCCGCACT GTTATCACTC	7050
ATGGTTATGG CAGCACTGCA TAATTCTCTT ACTGTCATGC CATCCGTAAG	7100
ATGCTTTCT GTGACTGGTG AGTACTCAAC CAAGTCATTC TGAGAATAGT	7150
GTATGCGGCG ACCGAGTTGC TCTTGCCCGG CGTCAATACG GGATAATACC	7200
GCGCCACATA GCAGAACTTT AAAAGTGTCTC ATCATTGGAA AACGTTCTTC	7250
GGGGCGAAAA CTCTCAAGGA TCTTACCGCT GTTGAGATCC AGTCGATGT	7300
AACCCACTCG TGCACCCAAC TGATCTTCAG CATCTTTAC TTTCACCGC	7350
GTTTCTGGGT GAGCAAAAAC AGGAAGGCAA AATGCCGAA AAAAGGGAAT	7400
AAGGGCGACA CGGAAATGTT GAATACTCAT ACTCTTCCTT TTTCAATATT	7450
ATTGAAGCAT TTATCAGGGT TATTGTCTCA TGAGCGGATA CATATTGAA	7500
TGTATTTAGA AAAATAAACAA AATAGGGGTT CCGCGCACAT TTCCCCGAAA	7550
AGTGCCACCT GACGTCTAAG AAACCATTAT TATCATGACA TTAACCTATA	7600
AAAATAGGCG TATCACGAGG CCCTTCGTC TCGCGCGTTT CGGTGATGAC	7650
GGTAAAACC TCTGACACAT GCAGCTCCCG GAGACGGTCA CAGCTTGTCT	7700
GTAAGCGGAT GCCGGGAGCA GACAAGCCCG TCAGGGCGCG TCAGCGGGTG	7750
TTGGCGGGTG TCGGGGCTGG CTTAACTATG CGGCATCAGA GCAGATTGTA	7800
CTGAGAGTGC ACCATATGGA CATATTGTCTG TTAGAACGCG GCTACAATTA	7850
ATACATAACC TTATGTATCA TACACATAACG ATTTAGGTGA CACTATA	7897

FIG. 4A

FIG. 4B

SUBSTITUTE SHEET (ROLE 26)

10/45

FIGURE 5A

GAATTCGCTA GCTAGCGGGG GAATACATA CCGCAGGC GT AGAGACAACA	50
TTACAGCCCC CATAGGAGGT ATAACAAAAT TAATAGGAGA GAAAAACACA	100
TAAACACCTG AAAAACCCCTC CTGCCTAGGC AAAATAGCAC CCTCCCGCTC	150
CAGAACAAACA TACAGCGCTT CACAGCGCA GCCTAACAGT CAGCCTTACC	200
AGTAAAAAAAG AAAACCTATT AAAAAAACAC CACTCGACAC GGCACCCAGCT	250
CAATCAGTCA CAGTGTAAA AAGGGCCAAG TGCGAGCGA GTATATATAG	300
GACTAAAAAA TGACGTAACG GTTAAAGTCC ACAAAAAACA CCCAGAAAAC	350
CGCACCGCAA CCTACGCCA GAAACGAAAG CCAAAAAACC CACAACCTCC	400
TCAAATCGTC ACTTCCGTTT TCCCACGTTA CGTAACCTCC CATTAAAGA	450
AAACTACAAT TCCCAACACA TACAAGTTAC TCCGCCCTAA AACCTACGTC	500
ACCCGCCCCG TTCCCAACGCC CCGCGCCACG TCACAAACTC CACCCCTCA	550
TTATCATATT GGCTTCAATC CAAAATAAGG TATATTATTG ATGATGCTAG	600
CATCATCAAT AATATAACCTT ATTTGGATT GAAGCCAATA TGATAATGAG	650
GGGGTGGAGT TTGTGACGTG GCGCGGGCG TGGAACGGG GCGGGTGACG	700
TAGTAGTGTG GCGGAAGTGT GATGTTGCAA GTGTGGCGGA ACACATGTAA	750
GCGACGGATG TGGAAAAGT GACGTTTTG GTGTGCGCCG GTGTACACAG	800
GAAGTGACAA TTTTCGCGCG GTTTTAGGCG GATGTTGTAG TAAATTGGG	850
CGTAACCGAG TAAGATTTGG CCATTTTCGC GGGAAAACGT AATAAGAGGA	900
AGTGAATCT GAATAATTT GTGTTACTCA TAGCGCGTAA TATTGTCTA	950
GGGAGATCAG CCTGCAGGTC GTTACATAAC TTACGGTAAA TGGCCCGCCT	1000
GGCTGACCGC CCAACGACCC CCGCCCATTG ACGTCAATAA TGACGTATGT	1050
TCCCAGTAA ACGCCAATAG GGACTTTCCA TTGACGTCAA TGGGTGGAGT	1100
ATTTACGGTA AACTGCCAC TTGGCAGTAC ATCAAGTGT A TCATATGCCA	1150
AGTACGCCCT CTATTGACGT CAATGACGGT AAATGGCCCG CCTGGCATTAA	1200
TGCCCAAGTAC ATGACCTTAT GGGACTTTCC TACTTGGCAG TACATCTACG	1250
TATTAGTCAT CGCTATTACC ATGGTGATGC GGTTTTGGCA GTACATCAAT	1300

11/45

FIGURE 5B

GGGCGTGGAT AGCGGTTGA CTCACGGGA TTTCCAAGTC TCCACCCCAT	1350
TGACGTCAAT GGGAGTTGT TTTGGCACCA AAATCAACGG GACTTTCAA	1400
AATGTCGTAACAACTCCGCC CCATTGACGC AAATGGCGG TAGGCGTGTA	1450
CGGTGGGAGG TCTATATAAG CAGAGCTCGT TTAGTGAACC GTCAGATCGC	1500
CTGGAGACGC CATCCACGCT GTTTGACCT CCATAGAAGA CACCGGGACC	1550
GATCCAGCCT CCGGACTCTA GAGGATCCGG TACTCGAGGA ACTGAAAAAC	1600
CAGAAAGTTA ACTGGTAAGT TTAGTCTTT TGTCCTTAT TTCAGGTCCC	1650
GGATCCGGTG GTGGTGCAAA TCAAAGAACT GCTCCTCAGT GGATGTTGCC	1700
TTTACTTCTA GGCTGTACG GAAGTGTAC TTCTGCTCTA AAAGCTGCCG	1750
AATTGTACCC GCGGCCGCAA TTCCCGGGGA TCGAAAGAGC CTGCTAAAGC	1800
AAAAAAGAAG TCACCATGTC GTTTACTTG ACCAACAAAGA ACGTGATTTT	1850
CGTTGCCGGT CTGGGAGGCA TTGGTCTGGA CACCAGCAAG GAGCTGCTCA	1900
AGCGCGATCC CGTCGTTTA CAACGTCGTG ACTGGGAAAA CCCTGGCGTT	1950
ACCCAACCTTA ATCGCCTTGC AGCACATCCC CCTTTGCCA GCTGGCGTAA	2000
TAGCGAAGAG GCCCGCACCG ATCGCCCTTC CCAACAGTTG CGCAGCCTGA	2050
ATGGCGAATG GCGCTTGCC TGGTTCCGG CACCAGAAC GGTGCCGGAA	2100
AGCTGGCTGG AGTGCAGATCT TCCTGAGGCC GATACTGTCG TCGTCCCCTC	2150
AAACTGGCAG ATGCACGGTT ACGATGCCGC CATCTACACC AACGTAACCT	2200
ATCCCATTAC GGTCAATCCG CCGTTGTTCCACCGGAGAA TCCGACGGGT	2250
TGTTACTCGC TCACATTTAA TGTTGATGAA AGCTGGCTAC AGGAAGGCCA	2300
GACGCGAATT ATTTTGATG GCGTTAACTC GGCCTTTCAT CTCTGGTGCA	2350
ACGGGCGCTG GGTCGGTTAC GGCCAGGACA GTCGTTGCC GTCTGAATTT	2400
GACCTGAGCG CATTGGTACG CGCCGGAGAA AACCGCCTCG CGGTGATGGT	2450
GCTGCCTGG AGTGACGGCA GTTATCTGGA AGATCAGGAT ATGTGGCGGA	2500
TGAGCGGCAT TTTCCGTGAC GTCTCGTGC TGCATAAACCA GACTACACAA	2550
ATCAGCGATT TCCATGTTGC CACTCGCTT AATGATGATT TCAGCCGCGC	2600

12/45

FIGURE 5C

TGTACTGGAG	GCTGAAGTTC	AGATGTGCGG	CGAGTTGCGT	GAATACCTAC	2650
GGGTAACAGT	TTCTTTATGG	CAGGGTGAAA	CGCAGGTGCG	CAGCGGCACC	2700
GCGCCCTTCG	GCGGTGAAAT	TATCGATGAG	CGTGGTGGTT	ATGCCGATCG	2750
CGTCACACTA	CGTCTGAACG	TCGAAAACCC	GAAACTGTGG	AGCGCCGAAA	2800
TCCCGAATCT	CTATCGTGC	GTGGTTAAC	TGCACACCGC	CGACGGCACG	2850
CTGATTGAAG	CAGAAGCCTG	CGATGTCGGT	TTCCCGGAGG	TGCGGATTGA	2900
AAATGGTCTG	CTGCTGCTGA	ACGGCAAGCC	GTTGCTGATT	CGAGGCGTTA	2950
ACCGTCACGA	GCATCATCCT	CTGCATGGTC	AGGTCTATGGA	TGAGCAGACC	3000
ATGGTGCAGG	ATATCCTGCT	GATGAAGCAG	AACAACCTTA	ACGCCGTGCG	3050
CTGTTCGCAT	TATCCGAACC	ATCCGCTGTG	GTACACGCTG	TGCGACCGCT	3100
ACGGCCTGTA	TGTGGTGGAT	GAAGCCAATA	TTGAAACCCA	CGGCATGGTG	3150
CCAATGAATC	GTCTGACCGA	TGATCCGCGC	TGGCTACCGG	CGATGAGCGA	3200
ACCGCGTAACG	CGAATGGTGC	AGCGCGATCG	TAATCACCCG	AGTGTGATCA	3250
TCTGCTCGCT	GGGAAATGAA	TCAGGCCACG	GCGCTAATCA	CGACGCGCTG	3300
TATCGCTGGA	TCAAATCTGT	CGATCCTTCC	CGCCCGGTGC	AGTATGAAGG	3350
CGGCGGAGCC	GACACCACGG	CCACCGATAT	TATTTGCCCG	ATGTACGCGC	3400
GCGTGGATGA	AGACCAGCCC	TTCCCGGCTG	TGCCGAAATG	GTCCATCAAA	3450
AAATGGCTTT	CGCTACCTGG	AGAGACCGCG	CCGCTGATCC	TTTGCAGATA	3500
CGCCCCACGCG	ATGGGTAACA	GTCTTGGCGG	TTTCGCTAAA	TACTGGCAGG	3550
CGTTTCGTCA	GTATCCCCGT	TTACAGGGCG	GCTTCGTCTG	GGACTGGGTG	3600
GATCAGTCGC	TGATTAATA	TGATGAAAAC	GGCAACCCGT	GGTCGGCTTA	3650
CGGGCGGTGAT	TTTGGCGATA	CGCCGAACGA	TCGCCAGTTC	TGTATGAACG	3700
GTCTGGTCTT	TGCCGACCGC	ACGCCGCATC	CAGCGCTGAC	GGAAAGCAAAA	3750
CACCAGCAGC	AGTTTTCCA	GTTCCGTTTA	TCCGGGCAAA	CCATCGAAGT	3800
GACCAGCGAA	TACCTGTTCC	GTCATAGCGA	TAACGAGCTC	CTGCACTGGA	3850
TGGTGGCGCT	GGATGGTAAG	CCGCTGGCAA	GCGGTGAAGT	GCCTCTGGAT	3900

13/45

FIGURE 5D

GTCGCTCCAC AAGGTAAACA GTTGATTGAA CTGCCTGAAC TACCGCAGCC	3950
GGAGAGCGCC GGGCAACTCT GGCTCACAGT ACGCGTAGTG CAACCGAACG	4000
CGACCGCATG GTCAGAAGCC GGGCACATCA GCGCCTGGCA GCAGTGGCGT	4050
CTGGCGGAAA ACCTCAGTGT GACGCTCCCC GCAGCGTCCC ACGCCATCCC	4100
GCATCTGACC ACCAGCGAAA TGGATTTTG CATCGAGCTG GGTAATAAGC	4150
GTTGGCAATT TAACCGCCAG TCAGGCTTTC TTTCACAGAT GTGGATTGGC	4200
GATAAAAAAC AACTGCTGAC GCCGCTGCGC GATCAGTTCA CCCGTGCACC	4250
GCTGGATAAC GACATTGGCG TAAGTGAAGC GACCCGCATT GACCCCTAACG	4300
CCTGGGTCGA ACGCTGGAAG CGGGCGGGCC ATTACCAAGC CGAAGCAGCG	4350
TTGTTGCAGT GCACGGCAGA TACACTTGCT GATGCGGTGC TGATTACGAC	4400
CGCTCACGCG TGGCAGCATIC AGGGGAAAAC CTTATTTATC AGCCGGAAAA	4450
CCTACCGGAT TGATGGTAGT GGTCAAATGG CGATTACCGT TGATGTTGAA	4500
GTGGCGAGCG ATACACCGCA TCCGGCGCGG ATTGGCCTGA ACTGCCAGCT	4550
GGCGCAGGTA GCAGAGCGGG TAAACTGGCT CGGATTAGGG CCGCAAGAAA	4600
ACTATCCCGA CCGCCTTACT GCCGCCTGTT TTGACCGCTG GGATCTGCCA	4650
TTGTCAGACA TGTATAACCC GTACGTCTTC CCGAGCGAAA ACGGTCTGCG	4700
CTGCGGGACG CGCGAATTGA ATTATGGCCC ACACCAGTGG CGCGGCGACT	4750
TCCAGTTCAA CATCAGCCGC TACAGTCAAC AGCAACTGAT GGAAACCAGC	4800
CATGCCATC TGCTGCACGC GGAAGAAGGC ACATGGCTGA ATATCGACGG	4850
TTTCCATATG GGGATTGGTG GCGACGACTC CTGGAGCCCG TCAGTATCGG	4900
CGGAATTACA GCTGAGCGCC GGTCGCTACC ATTACCAAGTT GGTCTGGTGT	4950
CAAAAATAAT AATAACCGGG CAGGCCATGT CTGCCGTAT TTCGCGTAAG	5000
GAAATCCATT ATGTAATATT TAAAAAACAC AAACTTTGG ATGTTCGGTT	5050
TATTCTTTT CTTTTACTTT TTTATCATGG GAGCCTACTT CCCGTTTTTC	5100
CCGATTTGGC TACATGACAT CAACCATATC AGCAAAAGTG ATACGGGTAT	5150
TATTTTGCC GCTATTTCTC TGTTCTCGCT ATTATTCCAA CCGCTGTTG	5200
GTCTGCTTTC TGACAAACTC GGCCTCGACT CTAGGCGGCC GCGGGGATCC	5250

14/45

FIGURE 5E

AGACATGATA AGATACATTG ATGAGTTGG ACAAAACCACA ACTAGAATGC	5300
AGTAAAAAAA ATGCTTTATT TGTGAAATTT GTGATGCTAT TGCTTTATTT	5350
GTAACCATTA TAAGCTGCAA TAAACAAGTT AACAAACAACA ATTGCATTCA	5400
TTTATGTTT CAGGTTCAAGG GGGAGGTGTG GGAGGTTTT TCGGATCCTC	5450
TAGAGTCGAC GACGCCAGGC TGGATGCCCT TCCCCATTAT GATTCTCTC	5500
GCTTCCGGCG GCATCGGGAT GCCCGCGTTG CAGGCCATGC TGTCCAGGCA	5550
GGTAGATGAC GACCATCAGG GACAGCTCA AGGATCGCTC GCGGCTCTTA	5600
CCAGCCTAAC TTGATCACT GGACCGCTGA TCGTCACGGC GATTATGCC	5650
GCCTCGGCGA GCACATGGAA CGGGTTGGCA TGGATTGTAG GCGCCGCCCT	5700
ATACCTTGTC TGCCTCCCCG CGTTGCGTCG CGGTGCATGG AGCCGGGCCA	5750
CCTCGACCTG AATGGAAGCC GGCGCACCT CGCTAACGGA TTCACCACTC	5800
CAAGAATTGG AGCCAATCAA TTCTTGCAGA GAACTGTGAA TGCGCAAACC	5850
AACCCTTGGC AGAACATATC CATCGCGTCC GCCATCTCCA GCAGCCGCAC	5900
CGGGCGCATC TCGGGCAGCG TTGGGTCTG GCCACGGGTG CGCATGATCG	5950
TGCTCCTGTC GTTGAGGACC CGGCTAGGCT GGCGGGTTG CCTTACTGGT	6000
TAGCAGAATG AATCACCGAT ACGCGAGCGA ACGTGAAGCG ACTGCTGCTG	6050
CAAAACGTCT GCGACCTGAG CAACAAACATG AATGGTCTTC GGTTTCCGTG	6100
TTTCGTAAAG TCTGGAAACG CGGAAGTCAG CGCCCTGCAC CATTATGTTC	6150
CGGATCTGCA TCGCAGGATG CTGCTGGCTA CCCTGTGGAA CACCTACATC	6200
TGTATTAACG AAGCCTTCT CAATGCTCAC GCTGTAGGTA TCTCAGTTCG	6250
GTGTAGGTCTG TTGCTCCAA GCTGGCTGT GTGCACGAAC CCCCCGTTCA	6300
GCCCGACCGC TGCGCCTTAT CCGGTAACTA TCGTCTTGAG TCCAACCCGG	6350
TAAGACACGA CTTATGCCA CTGGCAGCAG CCACTGGTAA CAGGATTAGC	6400
AGAGCGAGGT ATGTAGGCAG TGCTACAGAG TTCTTGAAGT GGTGGCCTAA	6450
CTACGGCTAC ACTAGAAGGA CAGTATTGAG TATCTGCGCT CTGCTGAAGC	6500
CAGTTACCTT CGGAAAAAGA GTTGGTAGCT CTTGATCCGG CAAACAAACC	6550

15/45

FIGURE 5F

ACCGCTGGTA GCGGTGGTTT TTTTGTTCGC AAGCAGCAGA TTACGCGCAG	6600
AAAAAAAGGA TCTCAAGAAC ATCCCTTGAT CTTTTCTACG GGGTCTGACG	6650
CTCAGTGGAA CGAAAACCTCA CGTTAAGGGA TTTTGGTCAT GAGATTATCA	6700
AAAAGGATCT TCACCTAGAT CCTTTTAAAT TA\AAATGAA GTTTTAAATC	6750
AATCTAAAGT ATATATGAGT AAACCTGGTC TGACAGTTAC CAATGCTTAA	6800
TCAGTGAGGC ACCTATCTCA GCGATCTGTC TATTCGTTTC ATCCATAGTT	6850
GCCTGACTCC CCGTCGTGTA GATAACTACG ATACGGGAGG GCTTACCATC	6900
TGGCCCCAGT GCTGCAATGA TACCGCGAGA CCCACGCTCA CCGGCTCCAG	6950
ATTITATCAGC AATAAAACAG CCAGCCGGAA GGGCCGAGCG CAGAAGTGGT	7000
CCTGCAACTT TATCCGCCTC CATCCAGTCT ATTAATTGTT GCCGGGAAGC	7050
TAGAGTAAGT AGTTGCCAG TTAATAGTTT GCGCAACGTT GTTGCCATTG	7100
CTGCAGGCAT CGTGGTGTCA CGCTCGTCGT TTGGTATGGC TTCATTCAAGC	7150
TCCGGTTCCC AACGATCAAG GCGAGTTACA TCATCCCCCA TGTTGTGCAA	7200
AAAAGCGGTT AGCTCCTTCG GTCCTCCGAT CGTTGTCAAG AGTAAGTTGG	7250
CCGCAGTGTGTT ATCACTCATG GTTATGCCAG CACTGCATAA TTCTCTTACT	7300
GTCATGCCAT CCGTAAGATG CTTTCTGTG ACTGGTGAGT ACTCAACCAA	7350
GTCATTCTGA GAATAGTGTG TGCGGCGACC GAGTTGCTCT TGCCCGCGT	7400
CAACACGGGA TAATACCGCG CCACATAGCA CAACTTTAAA AGTGCTCATC	7450
ATTGGAAAAC GTTCTTCGGG GCGAAAACTC TCAAGGATCT TACCGCTGTT	7500
GAGATCCAGT TCGATGTAAC CCACTCGTGC ACCCAACTGA TCTTCAGCAT	7550
CTTTTACTTT CACCAGCGTT TCTGGGTGAG CAAAAACAGG AAGGCAAAAT	7600
GCCGCAAAAA AGGGAATAAG GGCGACACGG AAATGTTGAA TACTCATACT	7650
CTTCCTTTTT CAATATTATT GAAGCATTAA TCAGGGTTAT TGTCTCATGA	7700
GCGGATACAT ATTTGAATGT ATTTAGAAAA ATAAACAAAT AGGGGTTCCG	7750
CGCACATTTC CCCGAAAAGT GCCACCTGAC GTCTAAGAAA CCATTATTAT	7800
CATGACATTA ACCTATAAAA ATAGGCGTAT CACGAGGCC CTTCGTCTTC	7850
AA	7852

FIG. 6

17/45

FIGURE 7A

TCTTCCGCTT CCTCGCTCAC TGACTCGCTG CGCTCGGTGCG TTGGCTGCG	50
GCGAGCGGTA TCAGCTCACT CAAAGGCAGT AATACGGTTA TCCACAGAAAT	100
CAGGGGATAA CGCAGGAAAG AACATGTGAG CAAAAGGCCA GCAAAAGGCC	150
AGGAACCGTA AAAAGGCCGC GTTGCTGGCG TTTTCATAA GGCTCCGCC	200
CCCTGACGAG CATCACAAAA ATCGACGCTC AAGTCAGAGG TGGCGAAACC	250
CGACAGGACT ATAAAGATAAC CAGGCGTTTC CCCCTGGAAG CTCCCTCGTG	300
CGCTCTCCTG TTCCGACCCCT GCCGCTTACCG GGATACCTGT CCGCCTTCT	350
CCCTTCGGGA AGCGTGGCGC TTTCTCATAG CTCACGCTGT AGGTATCTCA	400
GTTCGGTGTAA GGTCGTTCGC TCCAAGCTGG GCTGTGTGCA CGAACCCCCC	450
GTTCAGCCCG ACCGCTGCAG CTTATCCGGT AACTATCGTC TTGAGTCCAA	500
CCCCGTAAGA CACGACTTAT CGCCACTGGC AGCAGCCACT GGTAAACAGGA	550
TTAGCAGAGC GAGGTATGTA GGCGGTGCTA CAGAGTTCTT GAAGTGGTGG	600
CCTAACTACG GCTACACTAG AAGAACAGTA TTTGGTATCT GCGCTCTGCT	650
GAAGCCAGTT ACCTTCGGAA AAAGAGTTGG TAGCTCTTGA TCCGGCAAAC	700
AAACCACCGC TGGTAGCGGT GGTTTTTTTG TTTGCAAGCA GCAGATTACG	750
CGCAGAAAAA AAGGATCTCA AGAAGATCCT TTGATCTTTT CTACGGGGTC	800
TGACGCTCAG TGGAACGAAA ACTCACGTTA AGGGATTTTG GTCATGAGAT	850
TATCAAAAAG GATCTTCACC TAGATCCTTT TAAATTAAAA ATGAAGTTTT	900
AAATCAATCT AAAGTATATA TGAGTAAACT TGGTCTGACA GTTACCAATG	950
CTTAATCAGT GAGGCACCTA TCTCAGCGAT CTGTCTATTT CGTTCATCCA	1000
TAGTTGCCTG ACTCCCCGTC GTGTAGATAA CTACGATAACG GGAGGGCTTA	1050
CCATCTGGCC CCAGTGCTGC AATGATAACG CCAGACCCAC GCTCACCGGC	1100
TCCAGATTTA TCAGCAATAA ACCAGCCAGC CGGAAGGGCC GAGCGCAGAA	1150
GTGGTCCTGC AACTTTATCC GCCTCCATCC AGTCTATTAA TTGTTGCCGG	1200
GAAGCTAGAG TAAGTAGTTTC GCCAGTTAAT AGTTTGGCGCA ACGTTGTTGC	1250
CATTGCTACA GGCATCGTGG TGTCACGCTC GTCTTGGT ATGGCTTCAT	1300

18/45

FIGURE 7B

TCAGCTCCGC TTCCCAACGA TCAAGGCGAG TTACATGATC CCCCATGTTG	1350
TGCAAAAAAG CGGTTAGCTC CTTCGGTCTT CCGATCGTTG TCAGAAAGTAA	1400
GTTGGCCGCA GTGTTATCAC TCATGGTTAT GGCAGCACTG CATAATTCTC	1450
TTACTGTCAT GCCATCCGTA AGATGCTTT CTGTGACTGG TGAGTACTCA	1500
ACCAAGTCAT TCTGAGAATA GTGTATGCCG CGACCGAGTT GCTCTTGCCC	1550
GGCGTCAATA CGGGATAATA CCGCGCCACA TAGCAGAACT TTAAAAGTGC	1600
TCATCATTGG AAAACGTTCT TCGGGGCGAA AACTCTCAAG GATCTTACCG	1650
CTGTTGAGAT CCAGTCGAT GTAACCCACT CGTGCACCCA ACTGATCTTC	1700
AGCATCTTTT ACTTTCACCA GCGTTTCTGG GTGAGCAAAA ACAGGAAGGC	1750
AAAATGCCGC AAAAAAGGGA ATAAGGGCGA CACGGAAATG TTGAATACTC	1800
ATACTCTTCC TTTTTCAATA TTATTGAAGC ATTTATCAGG GTTATTGTCT	1850
CATGAGCGGA TACATATTTG AATGTATTTA GAAAAATAAA CAAATAGGGG	1900
TTCCGCGCAC ATTTCCCCGA AAAGTGCCAC CTGACGTCTA AGAAACCATT	1950
ATTATCATGA CATTAACCTA TAAAAATAGG CGTATCACGA GGCCCTTTCG	2000
TCTCGCGCGT TTCGGTGATG ACGGTAAAAA CCTCTGACAC ATGCAGCTCC	2050
CGGAGACGGT CACAGCTTGT CTGTAAGCGG ATGCCGGGAG CAGACAAGCC	2100
CGTCAGGGCG CGTCAGCGGG TGTGGCGGG TGTCGGGGCT GGCTTAACTA	2150
TGCGGCATCA GAGCAGATTG TACTGAGAGT GCACCATAAA ATTGTAAACG	2200
TTAATATTTT GTTAAAATTC GCGTTAAATT TTTGTTAAAT CAGCTCATT	2250
TTAACCAAT AGGCCAAAT CGGCAAATC CCTTATAAAAT CAAAAGAATA	2300
GCCCCGAGATA GGGTTGAGTG TTGTTCCAGT TTGGAACAAG AGTCCACTAT	2350
TAAAGAACGT GGACTCCAAC GTCAAAGGGC GAAAAACCGT CTATCAGGGC	2400
GATGGCCCAC TACGTGAACC ATCACCCAAA TCAAGTTTT TGGGGTGCAG	2450
GTGCCGTAAA GCACTAAATC GGAACCTAA AGGGAGCCCC CGATTTAGAG	2500
CTTGACGGGG AAAGCCGGCG AACGTGGCGA GAAAGGAAGG GAAGAAAGCG	2550
AAAGGAGCGG GCGCTAGGGC GCTGGCAAGT GTAGCGGTCA CGCTGCGCGT	2600

19/45

FIGURE 7C

AACCACCAACA CCCGCCGC CGTACTATG	2650
GTTGCTTTGA CGTATGCGGT GTGAAATACC GCACAGATGC GTAAGGAGAA	2700
AATAACCGCAT CAGGCGCCAT TCGCCATTCA GGCTGCGCAA CTGTTGGAA	2750
GGGCGATCGG TGCGGGCCTC TTCGCTATTA CGCCAGCTGG CGAAAGGGGG	2800
ATGTGCTGCA AGGCGATTAA GTTGGGTAAC GCCAGGGTTT TCCCAGTCAC	2850
GACGTTGTAA AACGACGGCC AGTGCCAAGC TTAAGGTGCA CGGCCACGT	2900
GGCCACTAGT ACTTCTCGAG CTCTGTACAT GTCCGCGGTC GCGACGTACG	2950
CGTATCGATG GCGCCAGCTG CAGGCGGCCG CCATATGCAT CCTAGGCCTA	3000
TTAATATTCC GGAGTATAACG TAGCCGGCTA ACGTTAACAA CCGGTACCTC	3050
TAGAACTATA GCTAGCCAAT TCCATCATCA ATAATATAACC TTATTTGGA	3100
TTGAAGCCAA TATGATAATG AGGGGGTGGG GTTTGTGACG TGGCGCGGGG	3150
CGTGGGAACG GGGCGGGTGA CGTAGGTTTT AGGGCGGAGT AACTTGTATG	3200
TGTTGGGAAT TGTAGTTTC TTAAAATGGG AAGTTACGTA ACGTGGGAAA	3250
ACGGAAGTGA CGATTTGAGG AAGTTGTGGG TTTTTGGCT TTCGTTCTC	3300
GGCGTAGGTT CGCGTGCCTG TTTCTGGGTG TTTTTGTGG ACTTTAACCG	3350
TTACGTCATT TTTTAGTCCT ATATATACTC GCTCTGCACT TGGCCCTTTT	3400
TTACACTGTG ACTGATTGAG CTGGTGCCGT GTCGAGTGGT GTTTTTTAA	3450
TAGGTTTTCT TTTTTACTGG TAAGGCTGAC TGTTAGGCTG CCGCTGTGAA	3500
GCGCTGTATG TTGTTCTGGA GCGGGAGGGT GCTATTTGC CTAGGCAGGA	3550
GGGTTTTCA GGTGTTATG TGTTTTCTC TCCTATTAAT TTTGTTATAC	3600
CTCCTATGGG GGCTGTAATG TTGCTCTAC GCCTGCGGGT ATGTATTCCC	3650
CCCAAGCTTG CATGCCTGCA GGTCGACTCT AGAGGATCCG AAAAAACCTC	3700
CCACACCTCC CCCTGAACCT GAAACATAAA ATGAATGCAA TTGTTGTTGT	3750
TAACTTGTTT ATTGCAGCTT ATAATGGTTA CAAATAAAGC AATAGCATCA	3800
CAAATTCAC AAATAAAGCA TTTTTTCAC TGCATTCTAG TTGTTGTTG	3850
TCCAAACTCA TCAATGTATC TTATCATGTC TGGATCCCCC TAGCTTGCCA	3900

20/45

FIGURE 7D

AACCTACAGG TGGGGTCTTT CATTCCCCC TTTTTCTGGA GACTAAATAA	3950
AATCTTTAT TTTATCTATG GCTCGTACTC TATAGGCTTC AGCTGGTGAT	4000
ATTGTTGAGT CAAAACTAGA GCCTGGACCA CTGATATCCT GTCTTTAAC	4050
AATTGGACTA ATCGCGGGAT CAGCCAATTC CATGAGCAA TGTCCTCATGT	4100
CAACATTTAT GCTGCTCTCT AAAGCCTTGT ATCTTGCATC TCTTCTTCTG	4150
TCTCCTCTTT CAGAGCAGCA ATCTGGGCT TAGACTTGCA CTTGCTTGAG	4200
TTCCGGTGGG GAAAGAGCTT CACCCTGTCG GAGGGGCTGA TGGCTTGCCG	4250
GAAGAGGCTC CTCTCGTTCA GCAGTTCTG GATGGAATCG TACTGCCGCA	4300
CTTTGTTCTC TTCTATGACC AAAAATTGTT GGCATTCCAG CATTGCTTCT	4350
ATCCTGTGTT CACAGAGAAT TACTGTGCAA TCAGCAAATG CTTGTTTTAG	4400
AGTTCTTCTA ATTATTTGGT ATGTTACTGG ATCCAAATGA GCACTGGGTT	4450
CATCAAGCAG CAAGATCTC GCCTTACTGA GAACAGATCT AGCCAAGCAC	4500
ATCAACTGCT TGTGGCCATG GCTTAGGACA CAGCCCCAT CCACAAGGAC	4550
AAAGTCAAGC TTCCCAGGAA ACTGTTCTAT CACAGATCTG AGCCCAACCT	4600
CATCTGCAAC TTTCCATATT TCTTGATCAC TCCACTGTTA ATAGGGATCC	4650
AAGTTTTTC TAAATGTTCC AGAAAAAATA AATACTTTCT GTGGTATCAC	4700
TCCAAAGGCT TTCCTCCACT GTTGCAAAGT TATTGAATCC CAAGACACAC	4750
CATCGATCTG GATTCTCCT TCAGTGTCA GTAGTCTCAA AAAAGCTGAT	4800
AACAAAGTAC TCTTCCCTGA TCCAGTTCTT CCCAAGAGGC CCACCCCTG	4850
GCCAGGACTT ATTGAGAAGG AAATGTTCTC TAATATGGCA TTTCCACCTT	4900
CTGTGTATTT TGCTGTGAGA TCTTTGACAG TCATTTGGCC CCCTGAGGGC	4950
.CAGATGTCAT CTTCTTCAC GTGTGAATTC TCAATAATCA TAACTTCTGA	5000
GAGTTGGCCA TTCTTGTATG GTTTGGTTGA CTTGGTAGGT TTACCTTCTG	5050
TTGGCATGTC AATGAACCTTA AAGACTCGGC TCACAGATCG CATCAAGCTA	5100
TCCACATCTA TGCTGGAGTT TACAGCCCAC TGCAATGTAC TCATGATATT	5150
CATGGCTAAA GTCAGGATAA TACCAACTCT TCCTTCTCCT TCTCCTGTTG	5200

21/45

FIGURE 7E

TTAAAATGGA AATGAAGGTA ACAGCAATGA AGAAGATGAC AAAAATCATT	5250
TCTATTCTCA TTTGGAACCA GCGCAGTGT GACAGGTACA AGAACCCAGTT	5300
GGCAGTATGT AAATTCAAGAG CTTTGTGGAA CAGAGTTCA AAGTAAGGCT	5350
GCCGTCCGAA GGCACGAAGT GTCCATAGTC CTTTTAAGCT TGTAACAAGA	5400
TGAGTGAAAA TTGGACTCCT GCCTTCAGAT TCCAGTTGTT TGAGTTGCTG	5450
TGAGGTTGG AGGAAATATG CTCTCAACAT AATAAAAGCC ACTATCACTG	5500
GCACGTGTTGC AACAAAGATG TAGGGTTGTA AAACTGCGAC AACTGCTATA	5550
GCTCCAATCA CAATTAATAA CAACTGGATG AAGTCAAATA TGGTAAGAGG	5600
CAGAAGGTCA TCCAAAATTG CTATATCTTT GGAGAATCTA TTAAGAATCC	5650
CACCTGCTTT CAACGTGTTG AGGGTTGACA TAGGTGCTTG AAGAACAGAA	5700
TGTAACATTT TGTGGTGTAA AATTTTCGAC ACTGTGATTGAGTATGCAC	5750
CAGTGGTAGA CCTCTGAAGA ATCCCATAGC AAGCAAAGTG TCGGCTACTC	5800
CCACGTAAAT GTAAAACACA TAATACGAAC TGGTGCTGGT GATAATCACT	5850
GCATAGCTGT TATTTCTACT ATGAGTACTA TTCCCTTTGT CTTGAAGAGG	5900
AGTGTTCACA AGGAGCCACA GCACAACCAA AGAACAGGCC ACCTCTGCCA	5950
GAAAAATTAC TAAGCACCAA ATTAGCACAA AAATTAAGCT CTTGTGGACA	6000
GTAATATATC GAAGGTATGT GTTCCATGTA GTCACTGCTG GTATGCTCTC	6050
CATATCATCA AAAAAGCACT CCTTTAAGTC TTCTTCGTTA ATTTCTTCAC	6100
TTATTTCCAA GCCAGTTCT TGAGATAACC TTCTTGATA TATATCCAGT	6150
TCAGTCAAGT TTGCCTGAGG GGCCAGTGAC ACTTTTCGTG TGGATGCTGT	6200
TGTCTTCGG TGAATGTTCT GACCTTGGTT AACTGAGTGT GTCATCAGGT	6250
TCAGGACAGA CTGCCTCCTT CGTGCCTGAA GCGTGGGGCC AGTGTGATC	6300
ACGCTGATGC GAGGCAGTAT CGCCTCTCCC TGCTCAGAAT CTGGTACTAA	6350
GGACAGCCTT CTCTCTAAAG GCTCATCAGA ATCCTCTTCG ATGCCATTCA	6400
TTTGTAAAGGG AGTCTTTGTC ACAATGGAAA ATTTTCGTAT AGAGTTGATT	6450
GGATTGAGAA TAGAATTCTT CCTTTTTCC CCAAACCTCTC CAGTCTGTTT	6500

22/45

FIGURE 7F

AAAAGATTGT TTTTTGTTT CTGTCCAGGA GACAGGAGCA TCTCCTTCTA	6550
ATGAGAAACG GTGTAAGGTC TCAGTTAGGA TTGAATTCT TCTTTCTGCA	6600
CTAAATTGGT CGAAAGAAC ACATCCCAG AGTTTGAGC TAAAGTCTGG	6650
CTGTAGATTG TGGAGTTCTG AAAATGTCCC ATAAAAATAG CTGCTACCTT	6700
CATGCAAAAT TAATATTTG TCAGCTTCT TTAAATGTTTC CATTAGAA	6750
GTGACCAAAA TCCTAGTTTT GTTAGCCATC AGTTTACAGA CACAGCTTTC	6800
AAATATTCTTCT TTTCTGTTA AAACATCTAG GTATCCAAAA GGAGAGTCTA	6850
ATAAAATACAA ATCAGCATCT TTGTATACTG CTCTTGCTAA AGAAATTCTT	6900
GCTCGTTGAC CTCCACTCAG TGTGATTCCA CCTTCTCCAA GAACTATATT	6950
GTCTTCTCT GCCTAACTTGG AGATGTCCTC TTCTAGTTGG CATGCTTTGA	7000
TGACGCTTCT GTATCTATAT TCATCATAGG AAACACCAAA GATGATATTT	7050
TCTTTAATGG TGCCAGGCAT AATCCAGGAA AACTGAGAAC AGAATGAAAT	7100
TCTTCCACTG TGCTTAATTT TACCCTCTGA AGGCTCCAGT TCTCCATAA	7150
TCATCATTAG AAGTGAAGTC TTGCCTGCTC CAGTGGATCC AGCAACCGCC	7200
AACAACGTGTC CTCTTCTAT CTTGAAATTAA ATATCTTCA GGACAGGAGT	7250
ACCAAGAAGT GAGAAATTAC TGAAGAAGAG GCTGTCATCA CCATTAGAAC	7300
TTTTTCTATT GTTATTGTTT TGTTTGCTT TCTCAAATAA TTCCCCAAAT	7350
CCCTCCTCCC AGAAGGCTGT TACATTCTCC ATCACTACTT CTGTAGTCGT	7400
TAAGTTATAT TCCAATGTCT TATATTCTTG CTTTTGTAAG AAATCCTGTA	7450
TTTTGTTTAT TGCTCCAAGA GAGTCATACC ATGTTGTAC AGCCCAGGGA	7500
AATTGCCGAG TGACCCGCAT GCGCAGAAC AATGCAGAAC AGATGGTGGT	7550
GAATATTTTC CGGAGGATGA TTCCCTTGAT TAGTGCATAG GGAAGCACAG	7600
ATAAAAACAC CACAAAGAAC CCTGAGAACAG AGAAGGCTGA GCTATTGAAG	7650
TATCTCACAT AGGCTGCCTT CCGAGTCAGT TTCAGTTCTG TTTGTCTTAA	7700
GTTTTCAATC ATTTTTCCA TTGCTTCTTC CCAGCAGTAT GCCTTAACAG	7750
ATTGGATGTT CTCGATCATT TCTGAGGTAA TCACAAGTCT TTCACTGATC	7800

23/45

FIGURE 7G

TTCCCAGCTC TCTGATCTCT GTACTTCATC ATCATTCTCC CTAGCCCAGC	7850
CTGAAAAGG GCAAGGACTA TCAGGAAACC AAGTCCACAG AAGGCAGACG	7900
CCTGTAACAA CTCCCAGATT AGCCCCATGA GGAGTGCCAC TTGCAAAGGA	7950
GCGATCCACA CGAAATGTGC CAATGCAAGT CCTTCATCAA ATTTGTTAG	8000
GTTGTTGGAA AGGAGACTAA CAAGTTGTCC AATACTTATT TTATCTAGAA	8050
CACGGCTTGA CAGCTTAAA GTCTTCTTAT AAATCAAACt AAACATAGCT	8100
ATTCTCATCT GCATTCCAAT GTGATGAAGG CCAAAAATGG CTGGGTGTAG	8150
GAGCAGTGTC CTCACAATAA AGAGAAGGCA TAAGCCTATG CCTAGATAAA	8200
TCGGGATAGA GCGTTCTCC TTGTTATCCG GGTCA TAGGA AGCTATGATT	8250
CTTCCCAGTA AGAGAGGCTG TACTGCTTTG GTGACTTCCC CTAAATATAA	8300
AAAGATTCCA TAGAACATAA ATCTCCAGAA AAAACATCGC CGAAGGGCAT	8350
TAATGAGTTT AGGATTTTC TTTGAAGCCA GCTCTCTATC CCATTCTCTT	8400
TCCAATTTTT CAGATAGATT GTCAGCAGAA TCAACAGAAG GGATTTGGTA	8450
TATGTCTGAC AATTCCAGGC GCTGTCTGTA TCCTTTCTC AAAATTGGTC	8500
TGGTCCAGCT GAAAAAAAGT TTGGAGACAA CGCTGGCCTT TTCCAGAGGC	8550
GACCTCTGCA TGGTCTCTCG GGCGCTGGGG TCCCTGCTAG GGCGTCTGG	8600
GCTCAAGCTC CTAATGCCAA AGGAATTCCCT GCAGCCCAGG GGATCCACTA	8650
GTTCTAGAGC GGCGGCCACC GCGGTGGCTG ATCCCGCTCC CGCCCGCCGC	8700
GCGCTTCGCT TTTTATAGGG CCGCCGCCGC CGCCGCTCG CCATAAAAGG	8750
AAACTTTCGG AGCGCGCCGC TCTGATTGGC TGCCGCCGCA CCTCTCCGCC	8800
TCGCCCCGCC CCGCCCCCTCG CCCCCGCCCG CCCCCGCTGG CGCGCGCCCC	8850
CCCCCCCCCCC CCGCCCCCAT CGCTGCACAA AATAATTAAA AAATAAATAA	8900
ATACAAAATT GGGGGTGGGG AGGGGGGGGA GATGGGGAGA GTGAAGCAGA	8950
ACGTGGCCTC GAGTAGATGT ACTGCCAAGT AGGAAAGTCC CATAAGGTCA	9000
TGTACTGGGC ATAATGCCAG GCGGGCCATT TACCGTCATT GACGTCAATA	9050
GGGGCGTAC TTGGCATATG ATACACTTGA TGTACTGCCA AGTGGGCAGT	9100

24/45

FIGURE 7H

TTACCGTAAA TACTCCACCC ATTGACGTCA ATGGAAAGTC CCTATTGGCG	9150
TTACTATGGG AACATACGTC ATTATTGACG TCAATGGCG GGGGTCGTTG	9200
GGCGGTCAGC CAGGCGGGCC ATTTACCGTA AGTTATGTAA CGACCTGCAG	9250
GCTGATCTCC CTAGACAAAT ATTACGCGCT ATGAGTAACA CAAAATTATT	9300
CAGATTCAC TTCCTCTTAT TCAGTTTCC CGCGAAAATG GCCAAATCTT	9350
ACTCGGTTAC GCCCAAATTT ACTACAACAT CCCCTAAAAA CCGCGCGAAA	9400
ATTGTCACTT CCTGTGTACA CCGGCGCACA CCAAAAACGT CACTTTGCC	9450
ACATCCGTCG CTTACATGTG TTCCGCCACA CTTGCAACAT CACACTTCCG	9500
CCACACTACT ACGTCACCCG CCCC GTTCCC ACGCCCCGCG CCACGTCACA	9550
AACTCCACCC CCTCATTATC ATATTGGCTT CAATCCAAAA TAAGGTATAT	9600
TATTGATGAT GCTAGCATGC GCAAATTAA AGCGCTGATA TCGATCGCGC	9650
GCAGATCTGT CATGATGATC ATTGCAATTG GATCCATATA TAGGGCCCGG	9700
GTTATAATTA CCTCAGGTTCG ACGTCCCAG GGCATTCGAA TTCGTAATCA	9750
TGGTCATAGC TGTTTCTGT GTGAAATTGT TATCCGCTCA CAATTCCACA	9800
CAACATACGA GCCGGAAGCA TAAAGTGTAA AGCCTGGGGT GCCTAATGAG	9850
TGAGCTAACT CACATTAATT GCGTTGCGCT CACTGCCCGC TTTCCAGTCG	9900
GGAAACCTGT CGTGCCAGCT GCATTAATGA ATCGGCCAAC GCGCGGGGAG	9950
AGGCGGTTTG CGTATTGGGC GC	9972

FIG. 8A**FIG. 8B****FIG. 8C**

26/45

FIG. 9A

FIG. II

30/45

FIGURE 12A

CCAATTCCAT CATCAATAAT ATACCTTATT TTGGATTGAA GCCAATATGA	50
TAATGAGGGG GTGGAGTTTG TGACGTGGCG CGGGGCGTGG GAACGGGGCG	100
GGTGACGTAG GTTTTAGGGC GGAGTAACCT GTATGTGTTG GGAATTGTAG	150
TTTCTTAAA ATGGGAAGTT ACGTAACGTG GGAAAACGGA AGTGACGATT	200
TGAGGAAGTT GTGGGTTTTT TGGCTTCGT TTCTGGCGT AGGTTCGCGT	250
GCGGTTTCT GGGTGTTTT TGTGGACTTT AACCGTTACG TCATTTTTA	300
GTCCTATATA TACTCGCTCT GCACCTGGCC CTTTTTACA CTGTGACTGA	350
TTGAGCTGGT GCCGTGTCGA GTGGTGTTTT TTTAATAGGT TTTCTTTTTT	400
ACTGGTAAGG CTGACTGTTA GGCTGCCGCT GTGAAGCGCT GTATGTTGTT	450
CTGGAGCGGG AGGGTGCTAT TTTGCCTAGG CAGGAGGGTT TTTCAGGTGT	500
TTATGTTGTT TTCTCTCCTA TTAATTTGT TATACCTCCT ATGGGGGCTG	550
TAATGTTGTC TCTACGCCTG CGGGTATGTA TTCCCCCAA GCTTGCATGC	600
CTGCAGGTCTG ACTCTAGAGG ATCCGAAAAA ACCTCCCACA CCTCCCCCTG	650
AACCTGAAAC ATAAAATGAA TGCAATTGTT GTTGTAACT TGTTTATTGC	700
AGCTTATAAT GGTTACAAAT AAAGCAATAG CATCACAAAT TTCACAAATA	750
AAGCATTGTTT TTCACTGCAT TCTAGTTGTT GTTTGTCCAA ACTCATCAAT	800
GTATCTTATC ATGTCTGGAT CCCCGCGGCC GCTCTAGAAC TAGTGGATCC	850
CCCGGGCTGC AGGAATTCCG TAACATAACT GCGTGCTTTA TTGAGATACA	900
CAGTAAAGCA GTAATATAAT ACAATAGTAA GGCAATATATT TGGTGAAATC	950
TGATATGTTG TGAAAATGCA GTAAAATGTA AGTTTAAAAA AATAATTAGT	1000
AAATGTTACA GTGTTGGTGT TAAAACACAA TCTATTATGA TACTCAAGTA	1050
AGAGTCCAGT ACCTGGAGAC AATGATGATA CATGCCATGT GATGATTATG	1100
CTTCAGTTAC ACTGATTATG ATTTACACTT TAATACTTGA TGGTTATAAA	1150
GAACATGAAA TGATGTCCAA ATTATGCTTA AAATCAGCAA TAAAGCTCTC	1200
AGTTTTTATT CAAATATTTT GATAGATTCA CTCCAGAACT AATATCTAAA	1250

31/45

FIGURE 12B

AGATAAAACG AAAAGATTAA AACAAAACCA TGCACTCTAT CTACCTTGGA	1300
TTTTAGAATG AAACCTAAAAA CTTCTTAGTA GGAAAGGAAC CCCTGTGTTT	1350
AAATCTTGGT GAAAACAAAT CCTTGGATAA AGAAAATGCC CAGTGCACAA	1400
TAAAGGAGAG AGAGAGAGAA AAGCAAGACC AGAACCAAAT TTCAATTGTT	1450
TATCTTAGAG CTTTGGGTTT TCTTTGGAA ATTATAAATG AAAAAAGGAA	1500
ACTGGTGTCC ACACAACAGA CAAGTGGTGA AGTTGTGAAA TTAGGTGTGC	1550
ACAATTACTA GAAACACCCC AAAACCAAAG TGAGGTAGAA ATAGCATGAG	1600
AAGCTGTGTT TGATGTTAAT TACAATTAAT AATGGACAAA ACCCACTCGC	1650
TAGAAGTTAA TTACACTTGA CGTTAGAGGT AACAGATTG CAAAATGATA	1700
GGACAGTGAT TTCTATTGAG AGAATGCTCT TTAAATGCTA AGAAGAAGAA	1750
ACTGGCATGA GAGGAGTAAA GCTCTTCCTA GCAGTCCTTA GCTTCTGTT	1800
GCACCTTTTC TCCTGGTTCA ATGACTTGCA TTTGTTAGA CATTTCAGCC	1850
CGTCAACTAG ACCAGAGAGT TTGGAGACGC TTTGCTCTC AAAACTTCC	1900
AACCACTGTG CCTTCTCACC CACAATCCTG TGTGGAGTTA CTTGCAGGGA	1950
AACCAATGCA AAGGAGACAA ATGCAGTTCA TGGGCTCTG GACTGATATT	2000
CACCAGGGTC ACAATGTGAT TGGGTTACTT TCTTAACAGT AATCCTAAGT	2050
CTTGCAGCAT TAAAAAAAAA AATCATCACA ATGAAGAAAA AAAAACCAA	2100
AAAATCTAAA ATCTAAAATT CATCATCATC ATCAACAAACA ACAACAAACAA	2150
CAACAAACAA ACCACCCACT TCAGGTTGAG TTTATGAAGA GGGCAGAACAA	2200
ATTTAGTTGT AATTATAGAG ATGTTTATAT GTATAGTTGT AAATATTCAT	2250
CCATTCTTTT ACAGAGTTGT TGCTCCCTC ATATAAATTG ACTGAGGAGC	2300
CGCAACCTTT AGCTCCTACC ATCTTCCTCC TACTGTCTGG GAGTTAAAAA	2350
TGTCATCTGA TGTTCTATTG CAGAAACATC ATAAATATA ACCAACAGT	2400
AGGAAGTTGA ATATATCAGC CAACAAATTA CTATGATAGT AAGTCCTGTG	2450
TATTCAATTG CATGTTCCCTT GAAAAAAATG AATCCTCTAG CTCTCAGTGG	2500

32/45

FIGURE 12C

AAAGTTAAA ACTAGAAACA TCTGGAGCCC TAGACAATAT TTTAGTGTGG	2550
CGGTAGTCTC CTGGCTTG GCTCCAGGGA AAATTCACTC TTGCCAAGC	2600
AGATAAGCCC AGATGACTAG AAGCAATTTC CA ^T AGGAAG TGGCAAGAAC	2650
ATTTGAAGAA GTAACTTCAT ATCTATTAT CTATATACCT ATAGTATTAA	2700
TATACTTGTA GACATATAGA TGTATAAAAT GAAAGCCCAT AGCCAGCCCC	2750
ACTCAGTCAA CAATTCTCAA AAGAGCAATA TGAAGCAGTC ATTTGGTGGG	2800
GTTCGTATGC AAGAAAATAA AAAAACGTCA TGAATTCCAT ATGAATAACCA	2850
CGCTAAAGTA ATGCAAAACA ATGTGCTGCC TCAGTGTGTG TGTGTGTGTG	2900
TGTGTGTGTG GTGGGTTCGT GCATGTATGT GTGCGTGTGT GTGTGTGTGT	2950
GTGTGTGTGT GTGTGTGTGC GTGTGTGTGT GTTTAGGGGT TTTTATAAAC	3000
AACTTTTTTT ATAAAGCACA CTTTAGTTA CAATCTCTCT TTATAACTGT	3050
TATAAATTAA TAAACAACCC AAAATGCGTT CCATATAAAAG AAATGGCAAG	3100
TTATTTAGCT ATCAAGATTT TACATGTTT CTTTAACCTT TTTGTACAA	3150
TTGCATAGAC GTGTAAAACC TGCCATTGTT AACAAAACAA TAACAGACTT	3200
AGAAACTACT GAAATCTACA GTATAGTACC ACTACCCCTTC ACAAAATAT	3250
AGATTTTATT TCTTGAAAC TCTTACTGTC TAATCCTCTT TGTTGTACGA	3300
ATATTATAAA AACCATGCGG GAATCAGGAG TTGTAAAACA TTTATTCTGC	3350
TCCTTCTTCA TCTGTATGA CTGAAACTAA GGACTCCATC GCTCTGCCA	3400
AATCATCTGC CATGTGGAAA AGGCTTCCTA CATTGTGTCC TCTCTCATTG	3450
GCTTCCGGG GGCATTCTT CCTCTTGAAC TAGGGAAGGA GTTGTGAGT	3500
TGCTCCATCA CTTCTCTAA CCCTGTGCTT GTGTCCTGGG GAGGACTCAG	3550
AAGATCTTCC TCACCCATAG ATTCTGAAGT TTGACTGCCA ACCACTCGGA	3600
GCAGCATAGG CTGACTGCTA TCTGACCTCT GCAGAGAGGT GGAAGGAGAG	3650
GACACCGTGG TGCCATTACAC CTTAGCTTCA GCCTGGGGCT GCTCCAGGAG	3700
CTGTCTCAGT CTATGTAAC T GAGACTCCAG CTGTTATTG TGGTCTTCCA	3750

33/45

FIGURE 12D

GGATTTGCAT CCTGGCTTCC AGGCGTCCTT TGTGTTGGCG CAGTAGCTTA	3800
GCCTCAGCAA TGAGCTCAGC ATCCCTGGGA CTCTGAGGAG AGGTGGGCAT	3850
CATCTCAGGA GGAGATGGCA GTGGAGACAG GCCTTTATGC TCATGCTGCT	3900
GCTTCAGGCG ATCATATTCT GCTTGAGAT TCCTGTTTC TTCCCTCAAGA	3950
TCTGCTAGGA TTCTCTCTAG CTCCCCTCTT TCCTCACTCT CTAAGGAAAT	4000
CAAGATCTGG GCAGGACTAC GAGGCTGGCT CAGGGGGGAG TCCTGGTTCA	4050
AACTTTGGCA GTAATGCTGG ATTAACAAAT GTTCATCATC TATGCTCTCA	4100
TTAGGAGAGA TGCTATCATT TAGATAAGAT CCATTGCTGT TTTCCATTTC	4150
TGCTAGCCTG CTAGCATAAT GTTCAATGCG TGAATGAGTA TCATCGTGTG	4200
AAAGCTGGGG GGACGAGGCA GGCGCAGAAT CTACTGCCA GAAGTTGATC	4250
AGAGTAACGG GAGTTCCAT GTTGTCCCCC TCTAACACAG TCTGCACTGG	4300
CAGGTAGCCC ATTGGGGAT GCTTCGCAAA ATACCTTTTG GTTCGAAATT	4350
TGTTTTTAG TACCTTGGCG AAGTCGCGAA CATCTTCTCC GGATGTAGTC	4400
GGAGTGCAAT ACTCTACCAT GGGGTAGTGC ATTTTATGGC CCTTGCAAC	4450
TCGGCCAGAA AAAAGCAAC TTTGGCAGAT GTCATAATTAA AAATGCTTTA	4500
GGCTTCTGTA CCTGAATCCA ATGATTGGAC ACTCCTTACA GATGTTACAC	4550
TTGGCTTGAT GCTTGGCAGT TTCAGCAGCA GCCACTCTGT GCAAGACGGG	4600
CAGCCACACC ATAGACTGGG GTTCCAGGCG CATCCAGTCA AGGAAGAGAG	4650
CAGCTTCAAT CTCAGGTTTA TTATTGGCAA ATTGGAAGCA GCTCCTGACA	4700
CTCGGCTCAA TGTACTGCC CCCAAAGGAA GCAACTTCAC CCAACTGTCT	4750
TGGGATTGTA ATAGAATCAT GCAGAAGAAG ACCCAGCCTA CGCTGGTCAC	4800
AAAAGCCAGT TGAACCTGCC ACTTGCTTGA AAAGGTATCT GTACTTGTCT	4850
TCCAAGTGTG CTTTACACAG AGAAATGATG CCAGTTTAA AAGACAGGAC	4900
ACGGATCCTC CCTGTTGTC CCGTATCATA AACATTGAGA AGCCAGTTGA	4950
GACACATATC CACACAGAGA GGGACATTGA CCAGATTGTT GTGCTCTTGC	5000
TCCAGACGAT CATAAATTGT AGTCAAACAG TTAATTATCT GCAGGATATC	5050

FIGURE 12E

CATGGGCTGG TCATTTGCT TGAGGTTGTG CTGGTCCAGG GCATCACATG	5100
CAGCTGACAG GCTCAAGAGA TCCAAGAAA GGGCCTCTG GAGCCTCTG	5150
AGCTTCATGG CAGTCCTATA CGCGGAGAAC CTGACATTAT TCAGGTCAGC	5200
TAAAGACTGG TAGAGCTCTG TCATTTGGG GTGGTCCCAA CAAGTGGTTT	5250
GGGTCTCGTG GTTGATATAG TAGGGCACTT TGTTTGGTGA GATGGCTCTC	5300
TCCCAGGGAC CCTGAACCTGA AGTGGAAAGG AAGTGCTGGG ATGCAGGACC	5350
AAAGTCCCTG TGGGCTTCAT GCAGCTGTCT GACACGGTCC TCCACAGCCA	5400
CCTGTAGAAG CCTCCATCTG GTATTCAAGAT CTTCCAAAGT GCTGAGGTTA	5450
TAAGGTGAGA GCTGAATGCC CAGTGTGGTC AGCTGATGTG CAAGGTCATT	5500
GACACGATTG ACATTCTCTT TAAGAGGTGC AATTTCTCCC CGAAGTGCCT	5550
TGACTTTTTC AAGGTGATCT TGCAGAGAGT CAATGAGGAG ATCCCCCACT	5600
GGCTGCCAGG ATCCCTTGAT CACCTCAGCT TGGCGCAACT TGAGGTCCAG	5650
TTCATCGGCA GCTTCCTGAA GTTCCTGGAG TCTTTCAAGA GCTTCATCTA	5700
TTTTTCTCTG CCAATCAGCT GAGCGCAGGT TCAATTGTC CCATTCAAGCG	5750
TTGACCTCTT CAGCCTGCTT TCGTAGGAGC CGAGTGACAT TCTGAGCTCT	5800
TTCTTCAGGA GGCAGTTCTC TGGGCTCCTG GTAGAGTTTC TCTAGTCCTT	5850
CCAAAGGCTG CTCTGTCAGA AATATTCTCA CAGTCTCCAG AGTACTCATG	5900
ATTACAGGTT CTTTAGTTTT CAATTCCCTC TTGAAGGCC TATGTATATC	5950
ATTCTGCTTC TGAACTGCTG GGAAATCACC ACCGATGGGT GCCTGACGGC	6000
TCAGTTCATC ATCTTCAGC TGTAGCCAAA CAAGAAGTTC CTGAAGAGAA	6050
AGATGCAAAC GCTTCCACTG GTCAGAACTT GCTTCCAAAT GGGACCTAAT	6100
GTTGAGAGAC TTTTTCTGAA GTTCACTCCA CTTGAAATTG ATGTTATCCA	6150
AACGTCTTIG TAACAGGGGT GCTTCATCCG AACCTTCCAG GGATCTCAGG	6200
ATTTTTGGC CATTTTCATC AAGATTGTGA TAGATATCTG TGTGAGTTTC	6250
AATTTCTCCT TGGAGATCTT GCCATGGTTT CATCAGCTCT CTGACTCCCC	6300
TGGAGTCTTC TAGGAGCTTC TCCTTACGGG AAGCGTCCTG TAGGACATTG	6350

35/45

FIGURE 12F

GCAGTTGTTT CTGCTCCGT AATCCAGGAA AGAAACTTCT CCAGGTCCAG	6400
AGGGAACCTGC TGCAGTAATC TATGAGTTTC TTCCAAAGCA GCCTCTGCT	6450
CACTTACTCT TTTATGAATG TTTCCCCAAG AAGTATTGAT ATTCTCTGTT	6500
ATCATGTGTA CTTTCTGGT ATCATCAGCA GAATAGTCCC GAAGAAGTTT	6550
CAGTGCCAAA TCATTTGCCA CGTCTACACT TATCTGCCGT TGACGGAGGT	6600
CTTTGGCCAA CTGCTTGGTT TCTGTGATCT TCTTTGGAT TGCACTACT	6650
GTGTGAGGAC CTTCTTCCA TGAGTCAAGC TTGCCTCTGA CCTGTCCTAT	6700
GACCTGTTCG GCTTCTTCCT TAGCTTCCAG CCATTGTGTT GAATCCTTA	6750
ACATTCATT CAACTGTTGT CTCCTGTTCT GCAGCTGTTC TTGAACCTCA	6800
TCCCACGTGAA TCTGAATTCT TTCAATTGCA TCAGTAATGA TTGTTCTAGC	6850
TTCTTGATTG CTGGTTTGT TTTCAAATT CTGGGCAGCA GTAATGAGTT	6900
CTTCCAATTG GGGCGTCTC TGTTCCAAAT CTTGCAGTGT TGCCCTCTGT	6950
TTGATGATCA TTTCATTGAT GTCTTCCAGA TCACCCACCA TCACCTCTG	7000
TGATTTATA ACTCGATCAA GCAGAGACAG CCAGTCTGTA AGTTCTGTCC	7050
AAGCTCGGTT GAAAGTCTGCC AGTGCAGGTA CCTCCAACAG CAAAGAAGAT	7100
GGCATTCTA GTTTGGAGAT GACAGTTCC TTAGTAACCA CAGATTGTGT	7150
CACTAGAGTA ACAGTCTGAC TGGCAGAGGC TCCAGTAGTG CTCAGTCCAG	7200
GGGCACGGTC AGGCTGCTTT GTCCTCAGCT CCCGAAGTAA ATGGTTTACA	7250
GCCTCCCACT CAGACCTCAG ATCTTCTAAC TTCCCTCTCA CTGGCTGAGT	7300
GCTTGGTTTT TCCTTATACA AATGCTGCC TTTCGACAAA AGCCTTCCA	7350
CATCCGCTTG TTTACCGTGA ACTGTTACTT CAATCTCCCT TATGTCAAAC	7400
GGTCCTGCCT GACTTGGTTG GTTATAAATT TCCAACGTGGT TTCTAATAGG	7450
AGAGACCCAC AGAACGCAGGT GATCCAGCTG CTCTTCAAGC TGCCTAAAAT	7500
CTTTTAAGTG AACCTCAAGC TCTCCTTGT TCTCAGGTAA AGCTCTGGAG	7550
ACCTTTATCC ACTGGAGATT TGTCTGTTTG AGCTTCTTTT CAAGTTTATC	7600

36/45

FIGURE 12G

TTGCTCTTCT	GGCCTTATGG	GAGCACTTAC	AAGTACTGCT	CCTCCTGTTT	7650
CATTTAATTG	TTTTAGAATT	CCCTGGCGCA	GGGGCAACTC	TTCTGCCAGT	7700
AACTTGACTT	GTTCAAGTTG	TTCTTTAGC	TGCTGCTCAT	CTCCAAGTGG	7750
AGTAATAGCA	ATGTTATCTG	CTTCTTCCAG	CCACAAAACA	AATTCAATTAA	7800
AATCTCTTG	AAATTCTGAC	AAGACATTCT	TTTGTTCCTTC	AATCCTCTTT	7850
CTCCTTCTG	CCAGCTCTTT	GCAGATGTCG	TGCCACCGCA	GAECTCAAGCT	7900
TCCTAATTTT	TCTTGTAGAA	TATTGACATC	TGTTTTGAA	GAETGTTGAA	7950
TTATTTCTTC	CCCAGTTGCA	TTCAGTGTTC	TGACAACAGC	TTGACGCTGC	8000
CCAATGCCAT	CCTGGAGTTC	CTTAAGATAAC	CATTTGTATT	TAGCATGTTC	8050
CCAGTTTCA	GGATTTGTG	TCTTTTGAA	AAACTGTTCA	ACTTCATTCA	8100
GCCATTGATT	AAATACCTTC	ATATCATAAT	GAAAGTGTGG	CCATTTTCA	8150
ACTGATCTGT	CGAACATGCC	TTGTCGTTCC	TTGTACATTG	TATGAAGTTT	8200
TTCCCCCTGG	AAATCCATCT	GTGCCACGGC	TTCCGTACT	TTCACCTTTT	8250
CCATGGAGGT	GGCACTTTGC	AAGGCTGCTG	TCTTCTTCCTT	GTGAATAATA	8300
TCAATCCGAC	CTGAGATTTG	TTGCAAATTG	TCTTTATAT	TCTTAAGAGA	8350
CTCCTCTTGC	TTAAAAAGAT	CTTCAAAATC	TTTAGCACAG	AGTTCAAGGAG	8400
TATTTAGAAG	ATGATCAACT	TCTGAAAGAG	CTTGTAAAGAT	ATGACTGATC	8450
TCGGTCAAAT	AAGTAGAAGG	CACATAAGAA	ACATCCAAAG	GCATATCTTC	8500
AGTCGTCACT	ACCATAGTTT	CTTCATGGAG	AGTGTGAATT	TGTGCAAAGT	8550
TGAGTCTTCG	AAACTGAGCA	AAATTGCTCT	CAATTGCCG	CCAGCGCTTG	8600
CTGAGCTGGA	TCTGAGTTGG	CTCCACTGCC	ATTGCGGCC	CATTCTCAGA	8650
CAAGCCCTCA	GCTTGCCTGC	GCAC TG CATT	CAGCTCCTCT	TTCTTCTTCT	8700
GCAATTCA	ATCAATTTC	TTAATTTC	TTTCATCTCT	GGGTTCAAGGT	8750
AGGCTGGCTA	ATTTTTTTC	AATTTCATCC	AAGCATTCA	GGAGATCATC	8800
AGCCTGCCTC	TTGTACTGAT	ACCACTGGTG	AGAAATTCT	AGGGCCCTTTT	8850

37/45

FIGURE 12H

TTCTTCTTG AGACCTCAAA TCCTTGAGAG CATTATGTTT TGTCTGTAAC	8900
AGCTGCTGTT TTATCTTAT TTCCCTCGC TTTCTCTCAT CTGTGATTCT	8950
TTGTTGTAAG TTGTCCTCCTC TTTGCAACAA TTCATTTACA GTACCCTCAT	9000
TGTCCTCACT CATATCTTA TTGAAGTCTT CCTCTTCAG ATTCACCCCC	9050
TGCTGAATT CAGCCTCCAG TGGTTCAAGC AATTTTGTA TATCTGAGTT	9100
AAACTGCTCC AATTCTTCA AAGGAATGGA GGCCTTCAGA GTCTTAATT	9150
TGTGAGAAAT AGCTGCAAAT CGACGGTTGA GCTCAGAGAT TTGGGGCTCT	9200
ACTACTTCC TGCAGTGGTC ACCGCGGTTT GCCATCAATT TTGCTGCTTG	9250
GTCACGTGTG GAGTCCACCT TTGGGCGCAT GTCATTCAATT TCAGCCTTTA	9300
AACGCTTAAG AATGTCTTCC TTTGTTGTG GTTTCTTCTT TTCAGACTCA	9350
TCTAAAAGTT CATCTGCATG AATGATCCAC TTTGTGATTT GTTCTATGTT	9400
CTGATCAAAG GTTTCCATGT GTTTCTGGTA TTCCAACAAA AGATTTAGCC	9450
ATTCTTCTAC TCTGGAGGTG ACAGCTATCC AGTTACTGTT CAGAAGACTC	9500
AGTTTATCTT CTACCAAGGT TTCTTCTTG CCCAACACCA TTTCAAAAGA	9550
CTCTCCTAAT TCTGTAACAC TCTTCAAGTG AGCCTCTGT TTCTCAATCT	9600
CTTTTGAGT AGCCTTCCC CAGGCAACTT CAGAATCCAA ATTACTTGGC	9650
ATTCCCTCAA CTGCTGATCT CTTCGTCAAT TCTGTATCTG TTGCTGCCAG	9700
CCATTCTGTT AAGACATTCA TTTCTTTCT CATCTTACGG GACAACITCA	9750
AGCATTCTC CAACTGTTGC TTTCTCTCTG TTACCTTCGC ACCCAACTCA	9800
TTGTAATGCA ATTTCAAAGC TGTTACTCGT TCATCAAGCT CTTTGGGATT	9850
TTCTGTCTGC TTTTCTGTA CAATTTGACG TCCGGTTTA ATCACCAATT	9900
CCACTTCAGA CTTGACTTCA CTCAGGCTTT TATAACAAGTT CACACAATGA	9950
CTTAGTTGTG ACTGAATTAC TTCTGTTCA ACACTCTGG TTTCCAATGC	10000
AGGCAAATGC ATCTTGACTT CATCTAAAAT CATCTTACTT TCCTCTAGAC	10050
GTTGTTCAAA ATTGGCTGGT TTTTGGAAATA ATCGAAATT CATGGAGACA	10100
TCTTGTAAATT TTTCTGTGC AACATCAATT TGTGAAAGAA CCCTTGGTT	10150

38 / 45

FIGURE 12I

GGCATCCTTC CCCTGGTTAT GTTTCTTCAT TTCTTCTAAA CTTATCTCAT	10200
GAATTGTCAA ATCTGATTGG ATTTTCTGGG CTTCCTGAGG CATTGAGCT	10250
GCATCCACCT TGTCAGTGAT ATAAGCTGCC AACTGCTTGT CAATGAATTC	10300
AAGCGACTCC TGAATTAAGT GCAAGGACTT TTCAATTCC TGGGCAGACT	10350
GGATACTCTG TTCAAGCAAC TTTTGTTC TCACAGCCTC TTCATGTAGT	10400
TCCCTCCAAC GAGAATTAAA CGTCTCAAGC TCCTCATTGA TCAGTTCATC	10450
CATGACTCCT CCATCTGTAA GAGTCTGTGC CAATAGACGA ATCTGATTTG	10500
GGTTCTCCTC TGAATGATGC ATCAGATTT CAAGAGATT TAGCACTTCA	10550
GTGATTTCT CAGGT CCTGC AGGAACATTT TCCATGGTTT TAAGTTCAA	10600
TTCTACTTCA TTGAGCCACT TGTGCTTT CTCTAAATAT GACAATAACT	10650
CATGCCAACA TGCCCCAAACT TCTTCCAAAG TTTGCAATT TCCATTCAAGC	10700
CTGGTGCACA GCCATTGGTA GTTGGTGGTC AGAGTTCAA GTTCTTTTT	10750
TAAGGCCTCT TGTGCTGAGG GTGGAGCGTG AGCTATTACA CTATTTACAG	10800
TCTCAGTAAG GAGTTCACT TTGTTCTT TTTGAGTGC CTCTCTTTA	10850
GCTCTCTCA TTTCTCAAC AGCAGTCTGT AATTCACTG GAGTTTATA	10900
TTCAAAATCT CTCTCTAGAT ATTCTTCTTC AGCTTGTGTC ATCCACTCAT	10950
GCATCTCTGA TAGATTTT TGGAGGCTTA CGGTTTTATC CAAACCTGCC	11000
TTTAAGGCTT CCTTCTGGT GTAGACCTGG CGGCATATGT GATCCCAGT	11050
AGTGTAAAGC TCTCTAAGTT CTGCTCCAG TCTGGATGCA AACTCAAGTT	11100
CAGCTTCACT CTTTATCTTC TGCCCACCTT CATTAACACT ATTTAAACTG	11150
GGCTGAATTG TTTGAATATC ACCAACTAAA AGTCTGCATT GTTGTAGCTG	11200
TTTTTCAGG ATTTCAGCAT CCCCCAGGGC AGGCCATTCC TCTTCAGGA	11250
AAACATCAAC TTCAGGCCATC CATTCTGTA AGGTTTTAT GTGATTCTGA	11300
AATTTCGAA GTTTATTCAAT GTGTTCTTCT AGCTTTGGC AGCTTTCCAC	11350
CAACTGGGAG GAAAGTTCT TCCAGTGCC CTCATCTCT TCAAATTCTG	11400

39/45

FIGURE 12J

ACAGATATTCTGGCATATTCTGAAGGTGCTTCCTGGC	CATCTCCTTC	11450
ACAGTGTACACTAGATTGAAGCCATTCTGTTGCTCTTCAAAAGAACT		11500
TTGCAGAGCCTGTAATTCCCGAGTCTCTCCTCCATTATTTCATATTCA	G	11550
TAACACTAAGATAAGGTACA GAGAGTTTGCCTTCTGACTGCTGGATCCAC		11600
GTCCTGATGCTACTCATTGTCTCCTGATAGCGCATTGGTGTAAAGTGT	C	11650
AAAAATTGTC TGTAGCTCTTCTCTGGCCCTCACACCA TCAAAGATGT	A	11700
GGTTAAAATGATTAGTAAAGGCCACAAAGTCTGCATCCAGAACATTGGC	C	11750
CCCTGTCCCTTTCTGAGTTGTAGACTCTGAATTTTTATTGCTCAAT	T	11800
TTGAGGCTGAAGAGCTGACAATCTGTTGACTTCATCCTTA CAAATT	T	11850
ACTGGCTTTTAAATTGCTGTTGGCTCTGATAGGTGGTAGACTGGTTTC	A	11900
AACAAGTTTTCGGCAGTAGTTGTCATCTGT TCCAATTGTTGTAGCTGATT	T	11950
ATAAAAGGTAATGATGTTGGTTGTACTCTAGCCAGTTAACCTCTCAC	C	12000
TCAGCAATTG GCAGAATTCTGTCCACCGGC TGTTAGTTGTTCTGAAGCT	G	12050
TGTCTGATACTTTCAGCATT AACACCCTCA TTGCCATCTGTTCCACCAG	T	12100
GGCCTGAGCTGATCTGCTGGCATCTGAGTTTCTGAACTTCTGCTT	C	12150
TTTCTCGTGC TATGGCATTGACTTTCTTGCAAGTCTGAGTGTGCCT	T	12200
TCTTTTCGATAGACTGAAA TTCAGAACTCTGTAATACAGCTTCTGAACG	A	12250
AGTAATCCAACTGTGAAGTT CAGTTATATC GACATCCAACCTTTCTGA	G	12300
GTTCAGAACATCACAGTTATC TGCCCTCTCTTTGAGGAGGTGGTGG	T	12350
AGTTCCCTCTTGGCATGTTTACCATGATT TGTTCCCTTG TGGTCACCAT	C	12400
AGTTACCGTTTCCATTACAGTTGTCTGTGTAGGGATGGTTGAGTGGTGG	A	12450
TGACAGCCTGTGAAATTGTGCTGAACCTTTCAAGTTTTGAGTTGGTAAA	T	12500
TTGTCCCCAAC GTTGTGAAA GTTTCCATCAGATTCCA TCTTTGAGT	C	12550
CACTGACTTATTTTCAGTGCCGAAAGTAGATCTTGATTGAGTGAACCTTA	G	12600
GTTCATGTTCCATGGTGGCTTTTCTGATCTATTAAAGTAGAT	T	12650

40/45

FIGURE 12K

ATTTTGTGAA GACTTGACAT CATTTCATTT TGATCTTTAA AGCCACTTGT	12700
CTGAATGTTC TTCATTGCAT CTTCTTTTC TGAAAGCCAT GTACTAAAAA	12750
GGCACTGTTC TTCAGTAAAA TGCTGCCATT TTAGAAGAAT ATCTTGTAAA	12800
ACAATCCAGC GGTCTTCAGT CCATCTGCAG ATATTTGCCC ATCGATCTCC	12850
CAGTACCTTA AGTTGTTCTT CCAAAGCAGC TGGTGCATGA TCACCGCTGG	12900
ATTCATCAAC CACTACTACC ATGTGAGTGA GCGAGTTGAC CCTGACCTGC	12950
TCCTGTTCTA GATCTTCTTG AAGCACCTTA TGGTGGTGTG CTTGGCATT	13000
TAGATCTTCA AGATCAGGTC CAAAGGGCTC TTCCCTCCATT TTCTTAGTTC	13050
TCTCTTCAGT TTTTGTAAAC CAGTCATCTA GTTCCTTTAA TTTCTGATTG	13100
TGGAGATCCA TTAGAACCTT GTGTAATTG CTTTGTGTTT CCATGCTAGC	13150
TACCCGTAGA CATTCCCATC TTGAATTAG GAGATTCAATT GGTTCTTGCA	13200
CTTCAGCTTC TTCATCTTCT GATAATTCC CTTTCCAAC TAGTTGACTT	13250
CCTAACTGTA GAACATTACC AACAAAGTCCT TGATGAGATG TCAGATCCAT	13300
CATGAATCCC TCATGAGCAT GAAACTGTTC TTTCACCTCT TCAACATCAT	13350
TTGAAATCTC TCCTTGTGCT CGCAATGTAT CCTCGGCAGA AAGAAGCCAT	13400
GAAAGTACTT CTTCTAAAGC AGTTTGGTAA CTATCCAGAT TTACTTCCGT	13450
CTCCATCAAT GAACTGTCAA GTGACTTGTC TCTGGGAGCT TCCAAATGCT	13500
GTGAAGGATA GGGGCTCTGT GTGGAATCAG AGGTGGCAAC ATAAGCAGCC	13550
TGTGTGAAGG CATAACTCTT GAATCGAGGC TTAGGAGATG AAGAAGTTG	13600
TTCATAGCCC TGTGCTAGAC TGACTGTGAT CTGTTGAGAG TAATGCATCT	13650
GGTGATGTAA TTGAAAATGT TCTTCTCTAG TTACTTTGA AGATGTCTG	13700
GGCAACATTT CCACTTCTTG AATGGCTTCA ATGCTCACTT GTTGTGGCAA	13750
AACTTGAAAG AGTGATGTGA TGTACATTAA GATGGACTTC TTGTCTGGAT	13800
AAGTGGTAGC AACATCTTCA GGATCAAGAA GTTTTTCTAT GCCTAACTGG	13850
CATTTGCAA TGTTGAAGGC ATGTTCCAGT CTTTGGGTGG CTGAGTGCTG	13900

41/45

FIGURE 12L

TGAAACCACA CTATTCCAAT CAAACAGGTC GGGCCTGTGA CTATGGATAA	13950
GAGCATTCAA AGCCAACCCG TCGGACCAGC TAGAGGTGAA GTTGATGACG	14000
TTAACCTGTG GATAATTACG TGTTGACTGT CGAACCCAGC TCAGAAGAAT	14050
CTTTTCACTG TTGGTTTGCT GCAATCCAGC C TGATAGTT TTCATCACAT	14100
TTTTGACCTG CCAGTGGAGG ATTATATTCC AAATCAAACC AAGAGTGAGT	14150
TTATGATTTTC CATCCACTAT GTCAGTGCTT CCTATATTCA CTAAATCAAC	14200
ATTATTTTTTC TGTAAGACCC GCAGTGCCTT GTTGACATTG TTCAGGGCAT	14250
GAACCTTTGT AGATCCCTTT TCTTTGGCA GTTTTTGCCCT TGTAAGGCCT	14300
TCCAAGAGGT CTAGGAGGCG TTTTCCATCC TGCAGGTAC TGAAGAGGTT	14350
GTCTATGTGT TGCTTTCCAA ACTTAGAAAA TTGTGCATTG ATCCATTTG	14400
TGAATGTTTT CTTTGAAACA TCTTCTCTTT CATAACAGTC CTCTACTTCT	14450
TCCCACCAAA GCATTTGGAA GAAAAAGTAT ATATCAAGGC AGGGATAAAA	14500
ATCTTGGTAA AAGTTTCTCC CAGTTTATT GCTCCAGGAG GCTTAGGTAC	14550
GATGAGAACG CAATAAACIT CAGCAGCCTT GACAAAAAAA AAAAAAAA	14600
TAGCACTTCA AGTCTTCCTA TTCGTTTTT CTATAAGCT ATTGCCTTCA	14650
AGAGCGGAAT TCCTGCAGCC CGGGGGATCC ACTAGTTCTA GAGCGGCCGC	14700
GGGTACAATT CCGCAGCTTT TAGAGCAGAA GTAACACTTC CGTACAGGCC	14750
TAGAAGTAAA GGCAACATCC ACTGAGGAGC AGTTCTTGA TTTGCACCAC	14800
CACCGGATCC GGGACCTGAA ATAAAAGACA AAAAGACTAA ACTTACCACT	14850
TAACCTTCTG GTTTTCAGT TCCTCGAGTA CCGGATCCTC TAGAGTCCGG	14900
AGGCTGGATC GGTCCCGGTG TCTTCTATGG AGGTCAAAAC AGCGTGGATG	14950
GCGTCTCCAG GCGATCTGAC GGTTCACTAA ACGAGCTCTG CTTATATAGA	15000
CCTCCCACCG TACACGCCCTA CCGCCCCATTG GCGTCAATGG GGCGGAGTTG	15050
TTACGACATT TTGGAAAGTC CCGTTGATTT TGGTGCCAAA ACAAACTCCC	15100
ATTGACGTCA ATGGGGTGGA GACTTGAAA TCCCCGTGAG TCAAACCGCT	15150
ATCCACGCCCTT ATTGATGTAC TGCCAAAACC GCATCACCAT GGTAATAGCG	15200

42/45

FIGURE 12M

ATGACTAATA CGTAGATGTA CTGCCAAGTA GGAAAGTCCC ATAAGGTCA	15250
GTACTGGCA TAATGCCAGG CGGGCCATT ACCGTCATTG ACGTCAATAG	15300
GGGGCGTACT TGGCATATGA TACACTTGAT GTACTGCCAA GTGGCAGTT	15350
TACCGTAAAT ACTCCACCCA TTGACGTCAA TGAAAGTCC CTATTGGCGT	15400
TACTATGGGA ACATACGTCA TTATTGACGT CAATGGCGG GGGTCGTTGG	15450
GCGGTCAGCC AGGCAGGCCA TTTACCGTAA GTTATGTAAC GACCTGCAGG	15500
TCGACTCTAG AGGATCTCCC TAGACAAATA TTACGCGCTA TGAGTAACAC	15550
AAAATTATTTC AGATTCACT TCCTCTTATT CAGTTTCCC GCGAAAATGG	15600
CCAAATCTTA CTCGGTTACG CCCAAATTAA CTACAACATC CGCCTAAAAC	15650
CGCGCGAAAA TTGTCACTTC CTGTGTACAC CGGCGCACAC CAAAAACGTC	15700
ACTTTTGCCA CATCCGTCGC TTACATGTGT TCCGCCACAC TTGCAACATC	15750
ACACTTCCGC CACACTACTA CGTCACCCGC CCCGTTCCCA CGCCCCGCGC	15800
CACGTACAA ACTCCACCCC CTCATTATCA TATTGGCTTC AATCCAAAAT	15850
AAGGTATATT ATTGATGATG CTAGCGGGC CCTATATATG GATCCAATTG	15900
CAATGATCAT CATGACAGAT CTGCGCGCA TCGATATCAG CGCTTTAAAT	15950
TTGCGCATGC TAGCTATAGT TCTAGAGGTA CCGGTTGTTA ACGTTAGCCG	16000
GCTACGTATA CTCCGGAATA TTAATAGGCC TAGGATGCAT ATGGCGGCCG	16050
GCCGCCTGCA GCTGGCGCCA TCGATACGCG TACGTGCGA CCGCGGACAT	16100
GTACAGAGCT CGAGAAGTAC TAGTGGCCAC GTGGGCCGTG CACCTTAAGC	16150
TTGGCACTGG CCGTCGTTTT ACAACGTCGT GACTGGAAA ACCCTGGCGT	16200
TACCCAACCTT AATCGCCTTG CAGCACATCC CCCTTTCGCC AGCTGGCGTA	16250
ATAGCGAAGA GGCCCGCACC GATGCCCTT CCCAACAGTT GCGCAGCCTG	16300
AATGGCGAAT GGCGCCTGAT GCGGTATTTT CTCCCTACGC ATCTGTGCGG	16350
TATTCACAC CGCATAACGTC AAAGCAACCA TAGTACGCGC CCTGTAGCGG	16400
CGCATTAAAGC GCGGCGGGTG TGGTGGTTAC GCGCAGCGTG ACCGCTACAC	16450

FIGURE 12N

TTGCCAGCGC CCTAGCGCCC GCTCCTTTCG CTTTCTTCCC TTCCCTTCTC	16500
GCCACGTTCG CCGGCTTCC CCGTCAAGCT CTAAATCGGG GGCTCCCTT	16550
AGGGTTCCGA TTTAGTGCTT TACGGCACCT CGACCCAAA AAACTTGATT	16600
TGGGTGATGG TTCACGTAGT GGGCCATCGC CCTGATAGAC GGTTTTTCGC	16650
CCTTGACGT TGGAGTCCAC GTTCTTTAAT AGTGGACTCT TGTTCCAAAC	16700
TGGAACAACA CTCAACCCTA TCTCGGGCTA TTCTTTGAT TTATAAGGGA	16750
TTTGCCGAT TTCGGCCTAT TGGTTAAAAA ATGAGCTGAT TTAACAAAAA	16800
TTTAACGCGA ATTTAACAA AATATTAACG TTTACAATT TATGGTGCAC	16850
TCTCAGTACA ATCTGCTCTG ATGCCGCATA GTTAAGCCAG CCCCACACC	16900
CGCCAACACC CGCTGACGCG CCCTGACGGG CTTGTCTGCT CCCGGCATCC	16950
GCTTACAGAC AAGCTGTGAC CGTCTCCGGG AGCTGCATGT GTCAGAGGTT	17000
TTCACCGTCA TCACCGAAAC GCGCGAGACG AAAGGGCCTC GTGATACGCC	17050
TATTTTATA GGTTAATGTC ATGATAATAA TGGTTCTTA GACGTCAGGT	17100
GGCACTTTTC GGGGAAATGT GCGCGGAACC CCTATTTGTT TATTTTCTA	17150
AATACATTCA AATATGTATC CGCTCATGAG ACAATAACCC TGATAAAATGC	17200
TTCAATAATA TTGAAAAGG AAGAGTATGA GTATTCAACA TTTCCGTGTC	17250
GCCCTTATTC CCTTTTTTGC GGCATTTGC CTTCTGTTT TTGCTCACCC	17300
AGAAACGCTG GTGAAAGTAA AAGATGCTGA AGATCAGTTG GGTGCACGAG	17350
TGGGTTACAT CGAACTGGAT CTCAACAGCG GTAAGATCCT TGAGAGTTT	17400
CGCCCCGAAG AACGTTTCC AATGATGAGC ACTTTAAAG TTCTGCTATG	17450
TGGCGCGGTA TTATCCCGTA TTGACGCCGG GCAAGAGCAA CTCGGTCGCC	17500
GCATACACTA TTCTCAGAAT GACTTGGTTG AGTACTCACC AGTCACAGAA	17550
AAGCATCTTA CGGATGGCAT GACAGTAAGA GAATTATGCA GTGCTGCCAT	17600
AACCATGAGT GATAACACTG CGGCCAACTT ACTTCTGACA ACGATCGGAG	17650
GACCGAAGGA GCTAACCGCT TTTTGCACA ACATGGGGGA TCATGTAAC	17700

FIGURE 120

CGCCTTGATC GTTGGGAACC GGAGCTGAAT GAAGCCATAC CAAACGACGA	17750
GCGTGACACC ACGATGCCTG TAGCAATGGC AACAAACGTTG CGCAAACATAT	17800
TAACTGGCGA ACTACTTACT CTAGCTTCCC GGCAACAATT AATAGACTGG	17850
ATGGAGGCAG ATAAAGTTGC AGGACCACCTT CTGCGCTCGG CCCTTCCGGC	17900
TGGCTGGTTT ATTGCTGATA AATCTGGAGC CGGTGAGCGT GGGTCTCGCG	17950
GTATCATTGC AGCACTGGGG CCAGATGGTA AGCCCTCCCG TATCGTAGTT	18000
ATCTACACGA CGGGGAGTCA GGCAACTATG GATGAACGAA ATAGACAGAT	18050
CGCTGAGATA GGTGCCTCAC TGATTAAGCA TTGGTAACTG TCAGACCAAG	18100
TTTACTCATA TATACTTTAG ATTGATTAA AACTTCATT TTAATTTAAA	18150
AGGATCTAGG TGAAGATCCT TTTGATAAT CTCATGACCA AAATCCCTTA	18200
ACGTGAGTTT TCGTTCCACT GAGCGTCAGA CCCCGTAGAA AAGATCAAAG	18250
GATCTTCTTG AGATCCTTTT TTTCTGCGCG TAATCTGCTG CTTGCAAACA	18300
AAAAAACAC CGCTACCAGC GGTGGTTTGT TTGCCGGATC AAGAGCTACC	18350
AACTCTTTT CCGAAGGTAA CTGGCTTCAG CAGAGCGCAG ATACCAAATA	18400
CTGTTCTTCT AGTGTAGCCG TAGTTAGGCC ACCACTCAA GAACTCTGTA	18450
GCACCGCCTA CATACTCGC TCTGCTAATC CTGTTACCAAG TGGCTGCTGC	18500
CAGTGGCGAT AAGTCGTGTC TTACCGGGTT GGACTCAAGA CGATAGTTAC	18550
CGGATAAGGC GCAGCGGTCG GGCTGAACGG GGGGTTCGTG CACACAGCCC	18600
AGCTTGGAGC GAACGACCTA CACCGAACTG AGATACCTAC AGCGTGAGCT	18650
ATGAGAAAGC GCCACGCTTC CCGAAGGGAG AAAGGCGGAC AGGTATCCGG	18700
TAAGCGGCAG GGTCGGAACA GGAGAGCGCA CGAGGGAGCT TCCAGGGGA	18750
AACGCCCTGGT ATCTTTATAG TCCTGTCCCC TTTGCCACC TCTGACTTGA	18800
CGCTCGATT TTGTGATGCT CGTCAGGGGG GCGGAGCCTA TGGAAAAACG	18850
CCAGCAACGC GGCCTTTTA CGGTTCCCTGG CCTTTTGCTG GCCTTTGCT	18900
CACATGTTCT TTCCTGCCGT ATCCCCCTGAT TCTGTGGATA ACCGTATTAC	18950

45/45

FIGURE 12P

CGCCTTGAG TGAGCTGATA CCGCTGCCG CAGCCGAACG ACCGAGCGCA	19000
GCGAGTCAGT GAGCGAGGAA GCGGAAGAGC GCCCAATACG CAAACCGCCT	19050
CTCCCCGCGC GTTGGCCGAT TCATTAATGC AGCTGGCACG ACAGGTTTCC	19100
CGACTGGAAA GCAGGCAGTG AGCGCAACGC AATTAATGTG AGTTAGCTCA	19150
CTCATTAGGC ACCCCAGGCT TTACACTTTA TGCTTCCGGC TCGTATGTTG	19200
TGTGGAATTG TGAGCGGATA ACAATTCAC ACAGGAAACA GCTATGACCA	19250
TGATTACGAA TTCGAATGGC CATGGGACGT CGACCTGAGG TAATTATAAC	19300
CCGGGCC	19307

INTERNATIONAL SEARCH REPORT

Inten	Application No
PCT/US 95/14017	

A. CLASSIFICATION OF SUBJECT MATTER			
IPC 6	C12N15/86	C12N7/00	C12N15/88 A61K48/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 C12N A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P,X	WO,A,95 27071 (BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM) 12 October 1995 see page 15, line 27 - page 16, line 13 see page 19, line 23 - page 24, line 25 see claims 15,16 ---	1-6,13, 19,20,22
X	J.VIROLOGY, vol. 66, no. 2, February 1992, pages 723-731, XP002012398 GRABLE, M. AND HEARING, P.: "cis and trans Requirements for the Selective Packaging of Adenovirus Type 5 DNA" see the whole document ---	8-11
Y	---	12,15 -/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- 'A' document defining the general state of the art which is not considered to be of particular relevance
- 'E' earlier document but published on or after the international filing date
- 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- 'O' document referring to an oral disclosure, use, exhibition or other means
- 'P' document published prior to the international filing date but later than the priority date claimed

- 'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- 'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- 'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- '&' document member of the same patent family

1

Date of the actual completion of the international search	Date of mailing of the international search report
3 September 1996	20.09.96
Name and mailing address of the ISA	Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+ 31 70) 340-2040, Telex 31 651 epo nl.
Fax (+ 31 70) 340-3016

Donath, C

INTERNATIONAL SEARCH REPORT

Int'l. Application No
PCT/US 95/14017

C(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	PROC.NATL.ACAD.SCI.USA, vol. 89, no. 7, 1992, pages 2581-2584, XP002012528 QUANTIN, B. ET AL.: "Adenovirus as an expression vector in muscle cells in vivo" see the whole document ---	1-7,13, 15-22
Y	BLOOD, vol. 84, no. 5, 1 September 1994, pages 1492-1500, XP002012529 GOODMAN, S. ET AL.: "Recombinant Adeno-Associated Virus-Mediated Gene Transfer into Hematopoietic Progenitor Cells" see the whole document ---	1-7,13, 15-22
Y	BIOCHEM J., vol. 299, no. 1, April 1994, pages 49-58, XP002012399 FISHER, K.J. AND WILSON, J.M.: "Biochemical and functional analysis of an adenovirus-based ligand complex for gene transfer" see page 50, left-hand column, paragraph 1 - page 52, left-hand column, paragraph 1 ---	12,15
T	VIROLOGY, vol. 217, no. 1, March 1996, pages 11-22, XP002012530 FISHER, K.J. ET AL.: "Recombinant Adenovirus deleted of all viral genes for gene therapy of cystic fibrosis" see the whole document -----	1-22

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int'l Application No

PCT/US 95/14017

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO-A-9527071	12-10-95	AU-B- 2238695	23-10-95

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C12N 15/86, 7/00, 15/88 A61K 48/00		A3	(11) International Publication Number: WO 96/13597 (43) International Publication Date: 9 May 1996 (09.05.96)
(21) International Application Number: PCT/US95/14017		(74) Agents: BAK, Mary, E. et al.; Howson and Howson, Spring House Corporate Center, P.O. Box 457, Spring House, PA 19477 (US).	
(22) International Filing Date: 27 October 1995 (27.10.95)		(81) Designated States: AL, AM, AU, BB, BG, BR, BY, CA, CN, CZ, EE, FI, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LT, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, RO, RU, SD, SG, SI, SK, TJ, TM, TT, UA, UG, US, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, LS, MW, SD, SZ, UG).	
(30) Priority Data: 08/331,381 28 October 1994 (28.10.94) US		(71) Applicant (for all designated States except US): THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA [US/US]; 133 South 36th Street, Philadelphia, PA 19104-3246 (US).	
(60) Parent Application or Grant (63) Related by Continuation US Filed on 08/331,381 (CIP) 28 October 1994 (28.10.94)		Published With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.	
(72) Inventors; and (75) Inventors/Applicants (for US only): WILSON, James, M. [US/US]; 1350 N. Avignon Drive, Gladwyne, PA 19035 (US). FISHER, Krishna, J. [US/US]; 4006 Pine Street, Philadelphia, PA 19104 (US). CHEN, Shu-Jen [-US]; 3901 Conshohocken Avenue, Philadelphia, PA 19131 (US). WEITZMAN, Matthew [GB/US]; 301 S. 19th Street #2A, Philadelphia, PA 19103 (US).		(88) Date of publication of the international search report: 31 October 1996 (31.10.96)	

(54) Title: RECOMBINANT ADENOVIRUS AND METHODS OF USE THEREOF

(57) Abstract

A recombinant adenovirus and a method for producing the virus are provided which utilize a recombinant shuttle vector comprising adenovirus DNA sequence for the 5' and 3' cis-elements necessary for replication and virion encapsidation in the absence of sequence encoding viral genes and a selected minigene linked thereto, and a helper adenovirus comprising sufficient adenovirus gene sequences necessary for a productive viral infection. Desirably the helper gene is crippled by modifications to its 5' packaging sequences, which facilitates purification of the viral particle from the helper virus.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgyzstan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LJ	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LU	Luxembourg	TD	Chad
CS	Czechoslovakia	LV	Latvia	TG	Togo
CZ	Czech Republic	MC	Monaco	TJ	Tajikistan
DE	Germany	MD	Republic of Moldova	TT	Trinidad and Tobago
DK	Denmark	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	US	United States of America
FI	Finland	MN	Mongolia	UZ	Uzbekistan
FR	France			VN	Viet Nam
GA	Gahon				