INTEGRAIS TRIGONOMÉTRICAS

Sabemos que:

- [sen x] ' = cos x
 [cos x] ' = sen x
 [tg x] ' = sec² x
 [cotg x] ' = cossec² x
- [$\sec x$] ' = $\sec x \cdot \tan x$
- $[cossec x]' = cossec x \cdot tg x$

Assim,

- $\bullet \quad \int \operatorname{sen} x \, dx = -\cos x + k$
- $\bullet \quad \int \cos x \, dx = \sin x + k$
- $\bullet \quad \int \sec^2 x \, dx = tg \, x + k$
- $\bullet \quad \int \operatorname{cossec}^2 x \, dx = -\cot g \, x + k$
- $\int \sec x \cdot \tan x \, dx = \sec x + k$
- $\int \operatorname{cossec} x \cdot \operatorname{cotg} x \ dx = -\operatorname{cossec} x + k$

I – INTEGRAÇÃO POR SUBSTITUÇÃO

a)
$$\int \frac{2x}{x^2+1} dx$$

$$R: \ln(x^2+1)+c$$

b)
$$\int \cos(2x)dx$$

$$R: \frac{1}{2}\operatorname{sen}(2x) + c$$

c)
$$\int \sqrt{1+y^2} \, 2y dy$$

$$R: \frac{2}{3}(1+y^2)^{\frac{3}{2}}+c$$

d)
$$\int x^2 \operatorname{sen}(x^3) dx$$

$$R:-\frac{1}{3}\cos(x^3)+c$$

e)
$$\int \frac{(\ln x)^2}{x} dx$$

$$R: \frac{(\ln x)^3}{3} + c$$

f)
$$\int x(2x^2+3)^{10}dx$$

$$R: \frac{1}{44} (2x^2 + 3)^{11} + c$$

$$g) \int \frac{x}{\left(x^2 + 5\right)^3} dx$$

$$R: -\frac{1}{4}(x^2 + 5)^{-2} + c$$