Open and Closed Functions

Definition: Open and Closed Functions

Let X and Y be topological spaces. To say that $f: X \to Y$ is open means that for all $A \in \mathscr{T}_X$, $f(A) \in \mathscr{T}_Y$. Likewise, to say that $f: X \to Y$ is closed means that for all closed $A \subset X$, $f(A) \subset Y$ is closed.

Example

1. An open function that is not continuous.

Consider $f: \mathbb{R}_{\text{cof}} \to \mathbb{R}_{\text{coc}}$ defined by f(x) = x. Since every open set in the cofinite topology is open in the cocountable topology, f is open. However, $\mathbb{R} - \mathbb{Q}$ is open in the cocountable topology but not in cofinite topology and so f is not continuous.

2. A closed function that is not continuous.

Consider $f: \mathbb{R}_{\text{cof}} \to \mathbb{R}_{\text{coc}}$ defined by f(x) = x. Since every closed set in the cofinite topology is closed in the cocountable topology, f is closed. However, \mathbb{Q} is closed in the cocountable topology but not in cofinite topology and so f is not continuous.

3. A continuous function that is neither open nor closed.

Consider $f: \mathbb{R}_{dis} \to \mathbb{R}_{ind}$ defined by f(x) = x. Since the only open (and closed) sets in the indiscrete topology are \emptyset and R, and these sets are also open in the indiscrete topology, f is continuous. However, [0,1] is open and closed in the discrete topology, but neither in the indiscrete topology, so f is neither open nor closed.

4. A continuous function that is open but not closed.

Consider $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = e^x$, which is continuous. Since $f((a,b)) = (e^a, e^b)$, open sets will always map to open sets. However, \mathbb{R} is closed in \mathbb{R} and $f(\mathbb{R}) = (0, \infty)$, which is not closed in \mathbb{R} . Thus, f is open but not closed.

5. A continuous function that is closed but not open.

Consider $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) \to y_0$. This was already shown to be continuous. Note that $\{y\}$ is closed in \mathbb{R} so closed sets will always map to closed sets; however, open sets will also map to the closed set and thus f is closed but not open.

Lemma

Let X and Y be topological spaces and let $f:X\to Y$ be bijective. For all $A\subset X$:

$$f(A) = Y - f(X - A)$$

Proof. Assume $A \subset X$.

 (\subset) Assume $y \in f(A)$.

Since f is injective, there exists one and only one $x \in X$ such that y = f(x) and that $x \in A$. Thus, $x \notin X - A$ and so $y = f(x) \notin f(X - A)$. Therefore $y \in Y - f(X - A)$.

 (\supset) Assume $y \in Y - f(X - A)$.

Thus, $y \notin f(X - A)$ and so there is no $x \in X - A$ such that y = f(x). But f is surjective, and so there is such an $x \in X$ and that $x \in A$. Therefore $y = f(x) \in f(A)$.

Lemma

Let X and Y be topological spaces and let $f: X \to Y$ be bijective. f is open iff f is closed.

Proof.

 \implies Assume f is open.

Assume that $A\subset X$ is closed. Then X-A is open, and since f is open, f(X-A) is open and Y-f(X-A) is closed. But f is bijective, so Y-f(X-A)=f(A). Therefore f(A) is closed.

 \iff Assume f is closed.

Assume that $A \subset X$ is open. Then X-A is closed, and since f is closed, f(X-A) is closed and Y-f(X-A) is open. But f is bijective, so Y-f(X-A)=f(A). Therefore f(A) is open.

Lemma

Let X and Y be topological spaces and let $f: X \to Y$ be continuous and closed. For all $A \subset X$, $f(\bar{A}) = \overline{f(A)}$.

Proof. Assume that $A \subset X$. Since f is continuous, $f(\bar{A}) \subset \overline{f(A)}$. Now, since $A \subset \bar{A}$, $f(A) \subset f(\bar{A})$. Furthermore, \bar{A} is closed and f is closed, so $f(\bar{A})$ is closed. But $\overline{f(A)}$ is the smallest closed set containing f(A), and so $f(A) \subset \overline{f(A)} \subset f(\bar{A})$. Therefore $f(\bar{A}) = \overline{f(A)}$.

Theorem

Let X and Y be topological spaces. If X is normal and $f:X\to Y$ is continuous, surjective, and closed then Y is normal.

Proof. Assume that X is normal and $f: X \to Y$ is continuous, surjective, and closed. Assume that B is closed in Y and assume that $V \in \mathscr{T}_Y$ such that $B \subset V$. Since f is continuous, $f^{-1}(B)$ is closed in X and $f^{-1}(V) \in \mathscr{T}_X$ with $f^{-1}(B) \subset f^{-1}(V)$. Now, since X is normal, there exists $U \in \mathscr{T}_X$ such that $f^{-1}(B) \subset U$ and $\bar{U} \subset f^{-1}(V)$. Now, since $U \in \mathscr{T}_X$, X - U is closed in X. Since f is closed, f(X - U) is closed in Y and thus $Y - f(X - U) \subset f(U) \in \mathscr{T}_Y$.

Claim: $B \subset Y - f(X - U)$

Assume $y \in B$. Since f is surjective, y is mapped and all such $x \in f^{-1}(B) \subset U$. Thus, $x \notin X - U$, so $y = f(x) \notin f(X - U)$, and hence $y \in Y - f(X - U)$.

$$\text{Claim: } \overline{Y - f(X - U)} \subset V$$

Since
$$Y-f(X-U)\subset f(U),\ \overline{Y-f(X-U)}\subset \overline{f(U)}.$$
 Now, since $\bar{U}\subset f^{-1}(V),\ f(\bar{U})\subset f(f^{-1}(V))\subset V.$ But f is continuous, so $f(\bar{U})=\overline{f(U)},$ and so $\overline{Y-f(X-U)}\subset \overline{f(U)}\subset V.$

Therefore Y is normal.

Theorem

Let X and Y be topological spaces such that X is compact and Y is Hausdorff. For all $f: X \to Y$, if f is continuous then f is closed.

Proof. Assume that f is continuous and assume that $A \subset X$ is closed in X. Since X is compact, A is also compact. Now, consider f(A) as a subspace of Y. Since $f|_A$ is surjective, f(A) is compact. Finally, since Y is Hausdorff, f(A) is closed. Therefore f is closed.