Wykład 2. Reprezentacja komputerowa grafów

Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach $(x_1, x_2, ..., x_n)$ i m krawędziach $(e_1, e_2, ..., e_m)$.

Określmy macierz $A(G) = [a_{ij}]_{n \times m}$ dla i = 1, ..., n, j = 1, ..., m w następując sposób:

 $a_{ij} = egin{cases} 1 & \text{krawędź } e_{j} \text{ jest incydentna do } i - \text{tego wierzchołka } x_{i}, \ 0 & \text{w przeciwnym przypadku.} \end{cases}$

Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach $(x_1, x_2, ..., x_n)$ i m krawędziach $(e_1, e_2, ..., e_m)$.

Definicja

Określmy macierz $A(G)=\left[a_{ij}\right]_{n\times m}$ dla $i=1,...,n,\,j=1,...,m$ w następujący sposób:

$$a_{ij} = egin{cases} 1 & \text{krawędź } e_{j} \text{ jest incydentna do } i-\text{tego wierzchołka } x_{i} \\ 0 & \text{w przeciwnym przypadku.} \end{cases}$$

Tak określona macierz A(G) nazywa się *macierza incydencii*

Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach $(x_1, x_2, ..., x_n)$ i m krawędziach $(e_1, e_2, ..., e_m)$.

Definicja

Określmy macierz $A(G)=\left[a_{ij}\right]_{n\times m}$ dla $i=1,...,n,\,j=1,...,m$ w następujący sposób:

$$a_{ij} = egin{cases} 1 & \text{krawed\'z } e_j \text{ jest incydentna do } i-\text{tego wierzchołka } x_i, \\ 0 & \text{w przeciwnym przypadku.} \end{cases}$$

Tak określona macierz A(G) nazywa sie *macierza incydencii*

Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach $(x_1, x_2, ..., x_n)$ i m krawędziach $(e_1, e_2, ..., e_m)$.

Definicja

Określmy macierz $A(G)=\left[a_{ij}\right]_{n\times m}$ dla $i=1,...,n,\,j=1,...,m$ w następujący sposób:

$$a_{ij} = egin{cases} 1 & ext{krawed\'z} \ e_{j} \ ext{jest incydentna do} \ i - ext{tego wierzchołka} \ x_{i}, \ 0 & ext{w przeciwnym przypadku}. \end{cases}$$

Tak określona macierz A(G) nazywa się macierzą incydencji.

$$G) = \begin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \end{array} \qquad \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach $(x_1, x_2, ..., x_n)$ i m krawędziach $(e_1, e_2, ..., e_m)$.

Definicja

Określmy macierz $A(G)=\left[a_{ij}\right]_{n\times m}$ dla $i=1,...,n,\,j=1,...,m$ w następujący sposób:

$$a_{ij} = egin{cases} 1 & ext{krawed\'z} \ e_{j} \ ext{jest incydentna do} \ i - ext{tego wierzchołka} \ x_{i}, \ 0 & ext{w przeciwnym przypadku}. \end{cases}$$

Tak określona macierz A(G) nazywa się macierzą incydencji.

Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach $(x_1, x_2, ..., x_n)$ i m krawędziach $(e_1, e_2, ..., e_m)$.

Definicja

Określmy macierz $A(G)=\left[a_{ij}\right]_{n\times m}$ dla $i=1,...,n,\,j=1,...,m$ w następujący sposób:

$$a_{ij} = egin{cases} 1 & \text{krawed\'z } e_j \text{ jest incydentna do } i-\text{tego wierzchołka } x_i, \\ 0 & \text{w przeciwnym przypadku.} \end{cases}$$

Tak określona macierz A(G) nazywa się macierzą incydencji.

- każda kolumna A(G) zawiera dokładnie dwie jedynki, ponieważ każda krawędź jest incydentna do dokładnie dwóch wierzchołków
- liczba jedynek w każdym wierszu równa się stopniowi odpowiadającego mu wierzchołka
- wiersz złożony z samych zer reprezentuje wierzchołek izolowany
- krawędzie równoległe tworzą identyczne kolumny

Krawędź *a* jest incydentna do wierzchołków *x*₁ i *x*₂.

	а	b	С	d	е	t	g
x_1	1	0	0	0	0	0	0
<i>X</i> 2	1	1	0	0	0	0	1
<i>X</i> ₃	0	1	1	1	0	1	0
X4	0	0	1	1	1	0	0
<i>X</i> ₅	$\begin{bmatrix} 1\\1\\0\\0\\0 \end{bmatrix}$	0	0	0	1	1	1

- każda kolumna A(G) zawiera dokładnie dwie jedynki, ponieważ każda krawędź jest incydentna do dokładnie dwóch wierzchołków
- liczba jedynek w każdym wierszu równa się stopniowi odpowiadającego mu wierzchołka
- wiersz złożony z samych zer reprezentuje wierzchołek izolowany
- krawędzie równoległe tworzą identyczne kolumny

$$deg(x_2) = 3$$

	a	b	С	d	e	f	g
<i>X</i> ₁	[1	0	0	0	0	0	0
X2	1	1	0	0	0	0	1
<i>X</i> ₃	0	1	1	1	0	1	0
X4	0	0	1	1	1	0	0
<i>X</i> 5	0	0	0	0	1	1	0 1 0 0 1

- każda kolumna A(G) zawiera dokładnie dwie jedynki, ponieważ każda krawędź jest incydentna do dokładnie dwóch wierzchołków
- liczba jedynek w każdym wierszu równa się stopniowi odpowiadającego mu wierzchołka
- wiersz złożony z samych zer reprezentuje wierzchołek izolowany
- krawędzie równoległe tworzą identyczne kolumny

	a	Ь	С	d	е	f	g
X1	[1	0	0	0	0	0	0
X2	1	1	0	0	0	0	1
X3	0	1	1	1	0	1	0
X4	0	0	1	1	1	0	0
<i>X</i> ₅	[0	0	0	0	1	1	0 1 0 0 1

- każda kolumna A(G) zawiera dokładnie dwie jedynki, ponieważ każda krawędź jest incydentna do dokładnie dwóch wierzchołków
- liczba jedynek w każdym wierszu równa się stopniowi odpowiadającego mu wierzchołka
- wiersz złożony z samych zer reprezentuje wierzchołek izolowany
- krawędzie równoległe tworzą identyczne kolumny

Krawędzie c i d są równoległe

	а	Ь	C	d	e	f	g
<i>X</i> ₁	[1	0	0	0	0	0	0
X2	1	1	0	0	0	0	1
<i>X</i> ₃	0	1	1	1	0	1	0
X4	0	0	1	1	1	0	0
<i>X</i> ₅	0	0	0	0	1	1	0 - 1 0 0 1

Z algorytmicznego punktu widzenia macierz incydencji jest najgorszą formą reprezentacji grafu.

- wymaga zdefiniowania tablicy o n·m komórkach, z których większość jest wypełniona zerami,
- ② odpowiedź na pytanie, czy istnieje krawędź łącząca konkretne wierzchołki wymaga wykonania *m* kroków (przeszukania *m* kolumn)

- Z algorytmicznego punktu widzenia macierz incydencji jest najgorszą formą reprezentacji grafu.
 - ullet wymaga zdefiniowania tablicy o $n \cdot m$ komórkach, z których większość jest wypełniona zerami,
 - e) odpowiedź na pytanie, czy istnieje krawędź łącząca konkretne wierzchołki wymaga wykonania m kroków (przeszukania m kolumn)

Z algorytmicznego punktu widzenia macierz incydencji jest najgorszą formą reprezentacji grafu.

- $oldsymbol{\circ}$ wymaga zdefiniowania tablicy o $n\cdot m$ komórkach, z których większość jest wypełniona zerami,
- ② odpowiedź na pytanie, czy istnieje krawędź łącząca konkretne wierzchołki wymaga wykonania *m* kroków (przeszukania *m* kolumn).

Modyfikacje macierzy incydencji

W przypadku, gdy graf G ma pętle, wówczas macierz incydencji A(G) można zdefiniować następująco:

$$\mathbf{a}_{ij} = \begin{cases} &\text{jeśli krawędź } e_j \text{ jest incydentna do} \\ 1 & i-\text{tego wierzchołka } x_i \\ &\text{i nie jest pętlą przy } x_i, \end{cases}$$

$$2 &\text{jeśli krawędź } e_j \text{ jest pętlą przy wierzchołku } x_i, \end{cases}$$

$$0 &\text{w pozostałych przypadkach}$$

Modyfikacje macierzy incydencji

W przypadku, gdy graf G ma pętle, wówczas macierz incydencji A(G) można zdefiniować następująco:

$$a_{ij} = \begin{cases} & \text{jeśli krawędź } e_j \text{ jest incydentna do} \\ 1 & i - \text{tego wierzchołka } x_i \\ & \text{i nie jest pętlą przy } x_i, \end{cases}$$

$$2 & \text{jeśli krawędź } e_j \text{ jest pętlą przy wierzchołku } x_i,$$

$$0 & \text{w pozostałych przypadkach}$$

Niech będzie dany graf G nieskierowany o n wierzchołkach $(x_1, x_2, ..., x_n)$.

Definicia

Określamy macierz $A(G) = [a_{ij}]_{n \times n}$ w następujący sposób:

$$a_{ij} = \begin{cases} \text{liczbie krawędzi łączących wierzchołek } x_i \text{ z wierzchołkiem } x_i \\ 0 \text{ jeśli nie istnieje krawędź od } x_i \text{ do } x_j \end{cases}$$

Niech będzie dany graf G nieskierowany o n wierzchołkach $(x_1, x_2, ..., x_n)$.

Definicja

Określamy macierz $A(G) = [a_{ij}]_{n \times n}$ w następujący sposób:

$$a_{ij} = \begin{cases} \text{liczbie krawędzi łączących wierzchołek } x_i \text{ z wierzchołkiem } x_j \\ 0 \text{ jeśli nie istnieje krawędź od } x_i \text{ do } x_j \end{cases}$$

$$A(G) = \begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ x_2 & 0 & 2 & 0 & 1 & 3 \\ x_2 & 2 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ x_5 & 3 & 0 & 0 & 1 & 0 \end{pmatrix}$$

Niech będzie dany graf G nieskierowany o n wierzchołkach $(x_1, x_2, ..., x_n)$.

Definicja

Określamy macierz $A(G) = [a_{ij}]_{n \times n}$ w następujący sposób:

$$a_{ij} = \begin{cases} \text{liczbie krawędzi łączących wierzchołek } x_i \text{ z wierzchołkiem } x_j \\ 0 \text{ jeśli nie istnieje krawędź od } x_i \text{ do } x_j \end{cases}$$

$$A(G) = \begin{pmatrix} x_1 & x_1 & x_2 & x_3 & x_4 & x_5 \\ x_2 & 0 & 2 & 0 & 1 & 3 \\ x_2 & 2 & 1 & 0 & 1 & 0 \\ x_3 & 0 & 0 & 1 & 0 \\ x_4 & x_5 & 1 & 1 & 1 & 1 \\ 3 & 0 & 0 & 1 & 0 \end{pmatrix}$$

Niech będzie dany graf G nieskierowany o n wierzchołkach $(x_1, x_2, ..., x_n)$.

Definicja

Określamy macierz $A(G) = [a_{ij}]_{n \times n}$ w następujący sposób:

$$a_{ij} = \begin{cases} \text{liczbie krawędzi łączących wierzchołek } x_i \text{ z wierzchołkiem } x_j \\ 0 \text{ jeśli nie istnieje krawędź od } x_i \text{ do } x_j \end{cases}$$

$$A(G) = \begin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{array} \left[\begin{array}{ccccccccc} x_1 & x_2 & x_3 & x_4 & x_5 \\ 0 & 2 & 0 & 1 & 3 \\ 2 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 3 & 0 & 0 & 1 & 0 \end{array} \right]$$

- elementy wzdłuż głównej przekątnej są wszystkie zerami wtedy i tylko wtedy, gdy graf nie ma pętli.
- jeżeli graf nie ma pętli (albo na przekątnej ma 0), to stopień wierzchołka jest równy sumie elementów w odpowiednim wierszu lub kolumnie macierzy A(G)
- macierz sąsiedztwa grafu nieskierowanego jest macierzą symetryczną

Krawędź f jest pętlą przy wierzchołku x_4 , więc $a_{44}=1$ oraz k jest pętlą przy wierzchołku x_2 , więc $a_{22}=1$.

	x_1	<i>X</i> 2	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5
<i>X</i> ₁	0	2	0	1	3]
<i>X</i> ₂	2	1	0	1	0
<i>X</i> ₃	0	0	0	1	0
X4	1	1	1	1	1
<i>X</i> ₅	3	0	0	1	0

- elementy wzdłuż głównej przekątnej są wszystkie zerami wtedy i tylko wtedy, gdy graf nie ma pętli.
- jeżeli graf nie ma pętli (albo na przekątnej ma 0), to stopień wierzchołka jest równy sumie elementów w odpowiednim wierszu lub kolumnie macierzy A(G)
- macierz sąsiedztwa grafu nieskierowanego jest macierzą symetryczną

	x_1	X2	<i>X</i> 3	X4	<i>X</i> 5
<i>X</i> ₁	Γ 0	2	0	1	3]
<i>X</i> ₂	2	1	0	1	0
<i>X</i> ₃	0	0	0	1	0
<i>X</i> ₄	1	1	1	1	1
<i>X</i> ₅	3	0	0	1	0

- elementy wzdłuż głównej przekątnej są wszystkie zerami wtedy i tylko wtedy, gdy graf nie ma pętli.
- jeżeli graf nie ma pętli (albo na przekątnej ma 0), to stopień wierzchołka jest równy sumie elementów w odpowiednim wierszu lub kolumnie macierzy A(G)
- macierz sąsiedztwa grafu nieskierowanego jest macierzą symetryczną

	<i>X</i> ₁	<i>X</i> 2	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5
<i>X</i> ₁	Γ 0	2	0	1	3
<i>X</i> ₂	2	1	0	1	0
<i>X</i> ₃	0	0	0	1	0
X4	1	1	1	1	1
<i>X</i> 5	3	0	0	1	0

- elementy wzdłuż głównej przekątnej są wszystkie zerami wtedy i tylko wtedy, gdy graf nie ma pętli.
- jeżeli graf nie ma pętli (albo na przekątnej ma 0), to stopień wierzchołka jest równy sumie elementów w odpowiednim wierszu lub kolumnie macierzy A(G)
- macierz sąsiedztwa grafu nieskierowanego jest macierzą symetryczną

	<i>X</i> ₁	<i>X</i> 2	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5
<i>X</i> ₁	Γ 0	2	0	1	3]
<i>X</i> ₂	2	1	0	1	0
<i>X</i> ₃	0	0	0	1	0
<i>X</i> ₄	1	1	1	1	1
<i>X</i> ₅	3	0	0	1	0

Zaleta

Odpowiedź na pytanie, czy istnieje krawędź z x_i do x_j dostajemy po jednym kroku.

Wada

Niezależnie od ilości krawędzi w grafie macierz zajmuje n^2 jednostek pamięci

Twierdzenie

Niech A(G) będzie macierzą sąsiedztwa grafu G. Wówczas liczba dróg długości k pomiędzy wierzchołkami x_i i x_j jest równa b_{ij} , gdzie $B=A^k$.

Zaleta

Odpowiedź na pytanie, czy istnieje krawędź z x_i do x_j dostajemy po jednym kroku.

Wada

Niezależnie od ilości krawędzi w grafie macierz zajmuje n^2 jednostek pamięci.

Twierdzenie

Niech A(G) będzie macierzą sąsiedztwa grafu G. Wówczas liczba dróg długości k pomiędzy wierzchołkami x_i i x_j jest równa b_{ij} , gdzie $B=A^k$.

Zaleta

Odpowiedź na pytanie, czy istnieje krawędź z x_i do x_j dostajemy po jednym kroku.

Wada

Niezależnie od ilości krawędzi w grafie macierz zajmuje n^2 jednostek pamięci.

Twierdzenie

Niech A(G) będzie macierzą sąsiedztwa grafu G. Wówczas liczba dróg długości k pomiędzy wierzchołkami x_i i x_j jest równa b_{ij} , gdzie $B=A^k$.

Na przykład

$$b_{42} = a_{41}a_{12} + a_{42}a_{22} + a_{43}a_{32} + a_{44}a_{44} + a_{45}a_{52}$$

= $1 \cdot 2 + 1 \cdot 1 + 1 \cdot 0 + 1 \cdot 1 + 1 \cdot 0 = 4$

Sa to drogi gh, gi, jk, f

Drogi długości 2 obliczamy wyznaczając A^2 .

$$B = A^2 = \begin{bmatrix} 0 & 2 & 0 & 1 & 3 \\ 2 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 3 & 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 2 & 0 & 1 & 3 \\ 2 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 3 & 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 14 & 3 & 1 & 6 & 1 \\ 3 & 6 & 1 & 4 & 7 \\ 1 & 1 & 1 & 1 & 1 \\ 6 & 4 & 1 & 5 & 4 \\ 1 & 7 & 1 & 4 & 10 \end{bmatrix}$$

$$b_{42} = a_{41}a_{12} + a_{42}a_{22} + a_{43}a_{32} + a_{44}a_{42} + a_{45}a_{52}$$

$$= 1 \cdot 2 + 1 \cdot 1 + 1 \cdot 0 + 1 \cdot 1 + 1 \cdot 0 = 4$$

Drogi długości 2 obliczamy wyznaczając A^2 .

$$B = A^2 = \begin{bmatrix} 0 & 2 & 0 & 1 & 3 \\ 2 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 3 & 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 2 & 0 & 1 & 3 \\ 2 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 3 & 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 14 & 3 & 1 & 6 & 1 \\ 3 & 6 & 1 & 4 & 7 \\ 1 & 1 & 1 & 1 & 1 \\ 6 & 4 & 1 & 5 & 4 \\ 1 & 7 & 1 & 4 & 10 \end{bmatrix}$$

Na przykład

$$b_{42} = a_{41}a_{12} + a_{42}a_{22} + a_{43}a_{32} + a_{44}a_{42} + a_{45}a_{52}$$

= $1 \cdot 2 + 1 \cdot 1 + 1 \cdot 0 + 1 \cdot 1 + 1 \cdot 0 = 4$

Są to drogi gh, gi, jk, fj

Drogi długości 2 obliczamy wyznaczając A^2 .

$$B = A^2 = \begin{bmatrix} 0 & 2 & 0 & 1 & 3 \\ 2 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 3 & 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 2 & 0 & 1 & 3 \\ 2 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 3 & 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 14 & 3 & 1 & 6 & 1 \\ 3 & 6 & 1 & 4 & 7 \\ 1 & 1 & 1 & 1 & 1 \\ 6 & 4 & 1 & 5 & 4 \\ 1 & 7 & 1 & 4 & 10 \end{bmatrix}$$

Nie są to najkrótsze drog

Wykonując odpowiednie działania otrzymujemy

$$A^{3} = \begin{bmatrix} 15 & 37 & 6 & 25 & 48 \\ 37 & 16 & 4 & 21 & 13 \\ 6 & 4 & 1 & 5 & 4 \\ 25 & 21 & 5 & 20 & 23 \\ 48 & 13 & 4 & 23 & 7 \end{bmatrix} A^{4} = \begin{bmatrix} 243 & 92 & 25 & 131 & 70 \\ 92 & 111 & 21 & 91 & 132 \\ 25 & 21 & 5 & 20 & 23 \\ 131 & 91 & 20 & 94 & 95 \\ 70 & 132 & 23 & 95 & 167 \end{bmatrix}$$

Nie są to najkrótsze drogi.

Wykonując odpowiednie działania otrzymujemy

$$A^{3} = \begin{bmatrix} 15 & 37 & 6 & 25 & 48 \\ 37 & 16 & 4 & 21 & 13 \\ 6 & 4 & 1 & 5 & 4 \\ 25 & 21 & 5 & 20 & 23 \\ 48 & 13 & 4 & 23 & 7 \end{bmatrix} A^{4} = \begin{bmatrix} 243 & 92 & 25 & 131 & 70 \\ 92 & 111 & 21 & 91 & 132 \\ 25 & 21 & 5 & 20 & 23 \\ 131 & 91 & 20 & 94 & 95 \\ 70 & 132 & 23 & 95 & 167 \end{bmatrix}$$

Lista krawędzi

Rozważmy graf G o n krawędziach.

Lista krawędzi grafu G implementujemy w postaci dwóch tablic

$$F = (f_1, f_2, ..., f_m),$$

 $H = (h_1, h_2, ..., h_m).$

gdzie $\{f_i, h_i\}$ reprezentuje krawędź grafu G (łączącą wierzchołki f_i i g_i).

Mamy

$$F = (1, 1, 1, 1, 2, 2, 3, 3, 3),$$

$$H = (1, 2, 2, 4, 3, 4, 4, 4, 5),$$

Lista krawędzi

Rozważmy graf G o n krawędziach.

Lista krawędzi grafu G implementujemy w postaci dwóch tablic

$$F = (f_1, f_2, ..., f_m),$$

 $H = (h_1, h_2, ..., h_m).$

gdzie $\{f_i, h_i\}$ reprezentuje krawędź grafu G (łączącą wierzchołki f_i i g_i).

Mamy

$$F = (1, 1, 1, 1, 2, 2, 3, 3, 3),$$

$$H = (1, 2, 2, 4, 3, 4, 4, 4, 5).$$

Listy krawędzi

Rozważmy graf G o m krawędziach.

Listy krawędzi grafu G implementujemy w postaci dwóch tablic

$$F = (f_1, f_2, ..., f_m),$$

 $H = (h_1, h_2, ..., h_m).$

gdzie $\{f_i, h_i\}$ reprezentuje krawędź grafu G (łączącą wierzchołki f_i i g_i).

Mamy

$$F = (1, 1, 1, 1, 2, 2, 3, 3, 3),$$

$$H = (1, 2, 2, 4, 3, 4, 4, 4, 5).$$

np. pętla - krawędź $\{1\}$, jest pamiętana jako $\{f_1,h_1\}$

Własności listy krawędzi

Zaleta

Do reprezentacji grafu potrzebujemy 2m jednostek pamięci (wygodne dla grafów rzadkich, gdzie liczba krawędzi jest znacznie mniejsza od liczby wierzchołków).

Wada

Do uzyskania zbioru wierzchołków, do którego prowadzą krawędzie z danego wierzchołka potrzeba, w najgorszym przypadku, *m* kroków.

Własności listy krawędzi

Zaleta

Do reprezentacji grafu potrzebujemy 2m jednostek pamięci (wygodne dla grafów rzadkich, gdzie liczba krawędzi jest znacznie mniejsza od liczby wierzchołków).

Wada

Do uzyskania zbioru wierzchołków, do którego prowadzą krawędzie z danego wierzchołka potrzeba, w najgorszym przypadku, *m* kroków.

Listę incydencji budujemy dla każdego z wierzchołków grafu.

Lista incydencji dla wierzchołka $x_i \in V$ zawiera listę takich wierzchołków u że $\{x_i, u\}$ jest krawędzią w grafie.

1: 1 2 2 4 2: 1 1 3 4 3: 2 4 4 5 4: 1 2 3 3 5: 3

Listę incydencji budujemy dla każdego z wierzchołków grafu. Lista incydencji dla wierzchołka $x_i \in V$ zawiera listę takich wierzchołków u, że $\{x_i, u\}$ jest krawędzią w grafie.

Lista incydencji dla grafu

1	1	2	2	4
2	1	1	3	4
3	2	4	4	5
4	1	2	3	3
5	3			

Listę incydencji budujemy dla każdego z wierzchołków grafu. Lista incydencji dla wierzchołka $x_i \in V$ zawiera listę takich wierzchołków u, że $\{x_i, u\}$ jest krawędzią w grafie.

Lista incydencji dla grafu

1:	1	2	2	4
2:	1	1	3	
3:	2	4	4	3
4:	1	2	3	3
5:	3			

Listę incydencji budujemy dla każdego z wierzchołków grafu. Lista incydencji dla wierzchołka $x_i \in V$ zawiera listę takich wierzchołków u, że $\{x_i, u\}$ jest krawędzią w grafie.

Lista incydencji dla grafu

1:	1	2	2	
2:		1		
3:	2	4	4	į
4:	1	2	3	
5:	3			

- lista incydencji składa się z wektora list
- każdą krawędź, w grafach nieskierowanych, musimy pamiętać w dwóch różnych miejscach, jeżeli rozważymy krawędź {u, w}, to wierzchołek w znajduje się na liście incydencji wierzchołka v i na odwrót (powyższe spostrzeżenie nie dotyczy petli)

- liczba komórek potrzebnych do zapamiętania grafu o n wierzchołkach m krawędziach jest, w najgorszym wypadku, proporcjonalna do m+n (na ogół wystarczy 2m komórek pamięci),
- testowanie istnienia pojedynczej krawędzi, w reprezentacji przy pomocy listy incydencji, pochłania czas proporcjonalny do n,
- listy incydencji umożliwiają śledzenie wszystkich połączeń wychodzących z wierzchołka.

- lista incydencji składa się z wektora list
- każdą krawędź, w grafach nieskierowanych, musimy pamiętać w dwóch różnych miejscach, jeżeli rozważymy krawędź {u, w}, to wierzchołek w znajduje się na liście incydencji wierzchołka v i na odwrót (powyższe spostrzeżenie nie dotyczy pętli)

- liczba komórek potrzebnych do zapamiętania grafu o n wierzchołkach m krawędziach jest, w najgorszym wypadku, proporcjonalna do m+n (na ogół wystarczy 2m komórek pamięci),
- testowanie istnienia pojedynczej krawędzi, w reprezentacji przy pomocy listy incydencji, pochłania czas proporcjonalny do n,
- listy incydencji umożliwiają śledzenie wszystkich połączeń wychodzących z wierzchołka.

- lista incydencji składa się z wektora list
- każdą krawędź, w grafach nieskierowanych, musimy pamiętać w dwóch różnych miejscach, jeżeli rozważymy krawędź {u, w}, to wierzchołek w znajduje się na liście incydencji wierzchołka v i na odwrót (powyższe spostrzeżenie nie dotyczy pętli)

- liczba komórek potrzebnych do zapamiętania grafu o n wierzchołkach i m krawędziach jest, w najgorszym wypadku, proporcjonalna do m+n (na ogół wystarczy 2m komórek pamięci),
- testowanie istnienia pojedynczej krawędzi, w reprezentacji przy pomocy listy incydencji, pochłania czas proporcjonalny do *n*,
- listy incydencji umożliwiają śledzenie wszystkich połączeń wychodzących z wierzchołka.

- lista incydencji składa się z wektora list
- każdą krawędź, w grafach nieskierowanych, musimy pamiętać w dwóch różnych miejscach, jeżeli rozważymy krawędź {u, w}, to wierzchołek w znajduje się na liście incydencji wierzchołka v i na odwrót (powyższe spostrzeżenie nie dotyczy pętli)

- liczba komórek potrzebnych do zapamiętania grafu o n wierzchołkach i m krawędziach jest, w najgorszym wypadku, proporcjonalna do m+n (na ogół wystarczy 2m komórek pamięci),
- testowanie istnienia pojedynczej krawędzi, w reprezentacji przy pomocy listy incydencji, pochłania czas proporcjonalny do n,
- listy incydencji umożliwiają śledzenie wszystkich połączeń wychodzących z wierzchołka.

- lista incydencji składa się z wektora list
- każdą krawędź, w grafach nieskierowanych, musimy pamiętać w dwóch różnych miejscach, jeżeli rozważymy krawędź {u, w}, to wierzchołek w znajduje się na liście incydencji wierzchołka v i na odwrót (powyższe spostrzeżenie nie dotyczy pętli)

- liczba komórek potrzebnych do zapamiętania grafu o n wierzchołkach i m krawędziach jest, w najgorszym wypadku, proporcjonalna do m+n (na ogół wystarczy 2m komórek pamięci),
- testowanie istnienia pojedynczej krawędzi, w reprezentacji przy pomocy listy incydencji, pochłania czas proporcjonalny do n,
- listy incydencji umożliwiają śledzenie wszystkich połączeń wychodzących z wierzchołka.

Macierz incydencji

Niech graf G będzie grafem skierowanym bez pętli o wierzchołkach $x_1, x_2, ..., x_n$ i krawędziach $e_1, e_2, ..., e_m$.

Macierz incydencji $A(G) = [a_{ij}]_{n \times m}$ dla i = 1, ..., n, j = 1, ..., m określamy jako:

$$a_{ij} = egin{cases} 1 & ext{jeśli } x_i ext{ jest początkiem } e_j \ -1 & ext{jeśli } x_i ext{ jest końcem } e_j \ 0 & ext{w pozostałych przypadkach} \end{cases}$$

Macierz incydencji

Niech graf G będzie grafem skierowanym bez pętli o wierzchołkach $x_1, x_2, ..., x_n$ i krawędziach $e_1, e_2, ..., e_m$.

Macierz incydencji $A(G) = [a_{ij}]_{n \times m}$ dla i = 1, ..., n, j = 1, ..., m określamy jako:

$$a_{ij} = egin{cases} 1 & ext{jeśli } x_i ext{ jest początkiem } e_j \ -1 & ext{jeśli } x_i ext{ jest końcem } e_j \ 0 & ext{w pozostałych przypadkach} \end{cases}$$

Macierz incydencji

Niech graf G będzie grafem skierowanym bez pętli o wierzchołkach $x_1, x_2, ..., x_n$ i krawędziach $e_1, e_2, ..., e_m$.

Macierz incydencji $A(G) = [a_{ij}]_{n \times m}$ dla i = 1, ..., n, j = 1, ..., m określamy jako:

$$a_{ij} = egin{cases} 1 & ext{jeśli } x_i ext{ jest początkiem } e_j \ -1 & ext{jeśli } x_i ext{ jest końcem } e_j \ 0 & ext{w pozostałych przypadkach} \end{cases}$$

Macierz sąsiedztwa

Macierz sąsiedztwa dla grafu skierowanego definiujemy identycznie jak dla grafu nieskierowanego. Przypomnijmy więc, że

Definicja

$$a_{ij} = \begin{cases} \text{liczbie krawędzi łączących wierzchołek } x_i \text{ z wierzchołkiem } x_j \\ 0 \text{ jeśli nie istnieje krawędź od } x_i \text{ do } x_j \end{cases}$$

Macierz sąsiedztwa

Macierz sąsiedztwa dla grafu skierowanego definiujemy identycznie jak dla grafu nieskierowanego. Przypomnijmy więc, że

Definicja

$$a_{ij} = \begin{cases} \text{liczbie krawędzi łączących wierzchołek } x_i \text{ z wierzchołkiem } x_j \\ 0 \text{ jeśli nie istnieje krawędź od } x_i \text{ do } x_j \end{cases}$$

Analogicznie jak dla grafów nieskierowanych, kolejne potęgi macierzy sąsiedztwa digrafu, odpowiadają macierzy zawierającej liczbę dróg pomiędzy wierzchołkami.

Macierz sąsiedztwa dla grafu jest postaci

$$A = \left[\begin{array}{cccc} 0 & 0 & 0 & 1 \\ 2 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right]$$

Analogicznie jak dla grafów nieskierowanych, kolejne potęgi macierzy sąsiedztwa digrafu, odpowiadają macierzy zawierającej liczbę dróg pomiędzy wierzchołkami.

Macierz sąsiedztwa dla grafu jest postaci

$$A = \left[\begin{array}{cccc} 0 & 0 & 0 & 1 \\ 2 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right]$$

Analogicznie jak dla grafów nieskierowanych, kolejne potęgi macierzy sąsiedztwa digrafu, odpowiadają macierzy zawierającej liczbę dróg pomiędzy wierzchołkami.

Macierz sąsiedztwa dla grafu jest postaci

$$A = \left[\begin{array}{cccc} 0 & 0 & 0 & 1 \\ 2 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right]$$

Są 4 drogi długości 2:

$$a_{13}^2 = 1$$
 - droga $\frac{ca}{a_{23}^2} = 1$ - droga $\frac{ba}{a_{24}^2} = 2$ - dwie drogi $\frac{dc}{dc}$ i $\frac{ec}{a_{24}^2}$

Analogicznie jak dla grafów nieskierowanych, kolejne potęgi macierzy sąsiedztwa digrafu, odpowiadają macierzy zawierającej liczbę dróg pomiędzy wierzchołkami.

Macierz sąsiedztwa dla grafu jest postaci

$$A = \left[\begin{array}{cccc} 0 & 0 & 0 & 1 \\ 2 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right]$$

Są 2 drogi długości 3:

$$a_{23}^3 = 2$$
 - dwie drogi dca i eca

Analogicznie jak dla grafów nieskierowanych, kolejne potęgi macierzy sąsiedztwa digrafu, odpowiadają macierzy zawierającej liczbę dróg pomiędzy wierzchołkami.

Macierz sąsiedztwa dla grafu jest postaci

$$A = \left[\begin{array}{cccc} 0 & 0 & 0 & 1 \\ 2 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right]$$

W grafie nie ma dróg długości 4 i więcej

Podobnie jak dla grafu nieskierowanego, listę incydencji dla digrafu budujemy dla każdego z jego wierzchołków.

Lista incydencji dla wierzchołka $x_i \in V$, zawiera listę takich wierzchołków u że (x_i, u) jest krawedzia w grafie.

Podobnie jak dla grafu nieskierowanego, listę incydencji dla digrafu budujemy dla każdego z jego wierzchołków.

Lista incydencji dla wierzchołka $x_i \in V$, zawiera listę takich wierzchołków u, że (x_i, u) jest krawędzią w grafie.

x :)

y : z

z: x, u

и: х, у

W listach incydencji dla digrafów, każda krawedź pamietana jest tylko raz

x: y

y: z

z: x, u

u: x, y

W listach incydencji dla digrafów, każda krawędź pamiętana jest tylko raz

x : *y*

y: z

z: x, u

u: x, y

W listach incydencji dla digrafów, każda krawędź pamiętana jest tylko raz.

Reprezentacje macierzowe Lista incydencji

Dziękuję za uwagę!!!

