(51)Int.CL5

F 1 6 F 15/02

A 6 3 G 21/20

(19)日本国特許庁 (JP) (12) 公開特許公報(A)

FΙ

識別記号 庁内整理番号

C 9138-3.J

(11)特許出願公開番号

特開平6-280934

技術表示箇所

(43)公開日 平成6年(1994)10月7日

31/04 B 6 1 B 12/04			
		審查請求	未請求 請求項の数1 OL (全 21 頁)
(21)出願番号	特顯平5-71696	(71)出願人	
			松久 寛
(22)出願日	平成5年(1993)3月30日		滋賀県大津市比叡平 1 -22-27
		(71)出願人	000224994
			特許機器株式会社
			兵庫県尼崎市南初島町10番地133
		(72)発明者	松久 寛
			滋賀県大津市比叡平1-22-27
		(72)発明者	安田 正志

(54)【発明の名称】 振り子型構造物の動吸振器

(57)【要約】

【目的】 横揺れの抑制に、特に有用な振り子型構造物 の動吸振器を提供する。

【構成】 振り子型構造物2に付帯させ、この振り子型 構造物2の重心よりも上方にて、振り子型構造物に対し て制振力付与可能に動吸振器1を設けて形成してある。

兵庫県尼崎市南初島町10番地133 特許機

器株式会社内 (74)代理人 弁理士 青山 葆 (外1名)

【特許請求の範囲】

【請求項1】 振り子型構造物に付借させ、この振り子 型構造物の重心よりも上方にて、振り子型構造物に対し て制振力付与可能に設けたことを特徴とする付振り子型 構造物の郵吸援器。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、例えば索動機器(ゴンドラ)のような振り子型構造物の動吸振器に関するものである。

[00002]

【従来の技術】近年、スキー場や観光地で使用されている紫助機器は、モノレールなどに比べて、建設費が安いという長折があるため、炎場下泉として採用しようと検討され始めている。しかしながら、この宗動機器の最大の難点は、単に、別の机力を受ける場外、現在は数15m/sぐらいで運転を停止しているが、都市交通として利用するには、少なくとも風速20m/sぐらいまでは、翌行できるを求める。そこで、実動機器の風騰を抑える技術に関心が集まっているが、これには一般的な並進モデルを適用することができず、新たに関係数9子の制援技術が必要になっている。

【0003】 従来、素動製器に対する具体的な制度技術 としては、ジャイロモーメントを利用するもの(前巻) (原原、松久・佐藤、ジャイロモーメントを用いる制度機構、機能,57-534C(1991),497、松岡・西田、ジャイロモーメ ントの利用によるゴンドラの模型れを防止削削、機構論、 (0.920-55, B(1992),178)、動吸振器を利用するもの(後 者)が考えられている。

4月からえられている。 【0004月 前者については、既に、6人乗り機器用の 終作機も作られびANKI H. and NEKOMOTO Y. and MONOBE H. Development of CMG Active Vibration Control Dev ice for Gondola, The First International Conference on Motion and Vibration Control (MOVIC), (1992), 31 0.)、風による動語を1/3 ぐらいに減少させている。 【0005】 力、後書については、はお質能系のもの や、振り子形のものが検討されてきた(佐藤・干島、振り 子式動製張器による素動製器の動揺低減について、機溝 額、8、910-17 (1991), 528.)

[0006]

【発明が解決しようとする展画】 上記従来の相張技術の 内、前者については、漢動兼器は外部電源と接続も形 いないので、バッテリで駆動で施を名電心形のシステム の開発が必要になるという問題がある。また、後者の 内、ほね質量形のものについては、操器の重心付近に取 り付けると、操器と動吸振器の質量は一体となって動 き、制度効果は生じない。

【0007】一方、振り子型のものは、二重振り子として動吸振器を搬器の下方に設置し、最適な同調を行わせ

ようとすると、動吸振器の随が長くなり、実用的でなく なる。さらに、振り子を傾けて脳角振動数を低くすることによって胸の戻きを短くすることも検討されているが (佐藤・細川・干島、傾斜振り子式減衰装置による常動景器 の動揺削割、機踏論、№ 920-55、人(1992)、592.)、このこう にした場合物吸緩器の取り付け位置の問題が生じる。 本発明は、斯る従来の問題点を課題としてなされたもの で、機踏れの抑制に特に有用光張り子型構造物の動吸接 継を提供しようとするものである。

[0008]

【課題を解決するための手段】上記課題を解決するため に、本発明は、振り子型構造物に付帯させ、この振り子 型構造物の重心よりも上方にて、振り子型構造物に対し て制振力付与可能に設けて形成した。

[0009]

【作用】上記発明のように構成することにより、動吸振 器の質量要素とそれを支持する接り予型構造物との間に 相対変位が生じて、接り予型構造物の振動エネルギが吸 収されるようになる。

[0010]

【実施例】次に、本発明の一実施例を図面にしたがって 説明する。図1は、本発明の第1実施例に係るばね質量 型の動吸振器1を適用した振り子型構造物2の構成要素 を、図形化して示したものである。被吊枠体11が、リ ンク12を介して支持部O(図1において点として、表 されており、以下、支点Oという)により揺動可能に吊 持され、被吊持体11とリンク12により質量m,の振 り子型構造物 2 (以下、質量m,という)、例えば索動搬 器を形成している。動吸振器1は、質量m,の重心より も上方にて、例えば本実施例では、被吊持体11と支点 Oとの間にて、質量m,に制振力付与可能に設けてあ る。即ち、この動吸振器1は、形態的には限定するもの ではないが、作用的にはリンク12を横切る方向に直線 運動可能に設けた質量m。の質量要素13(以下、質量m 。という)と、この質量m。とリンク12との間に介在す るばね定数kのばね要素14と、およびこれと並列的に 作用する減衰係数 c のダンパー要素 1 5 とに分けられ ろ.

【0011】そして、上記のように質量m,に付替して、その重心よりも上力に動張板器1を配置し、以下に詳述するように、質量m,の振り子運動の固有振動に対して、付加質量比に応じて最適な同調を行わせ、制振力を付与させるようにしてある。

【0012】次に、上述した動吸振器1を適用した質量 m₁の振動に関して理論解析する。

運動方程式

図1に示すように、質量 \mathbf{m}_1 は、支点〇を中心として揺 動可能で、その自由度を12とし、減衰は無視する。支点 のから質量 \mathbf{m}_1 の重心までの距離を1,角変位を θ_1 とす る。動吸機器1は、支点〇より距離10所に取り付けら れ、質量m₂のリンク12を横切る方向の変位をuとす る。上述したように、ばね要素14のばね定数はk、ダ ンバ要素15の減衰係数はととする。また、支点Oを原 点として、xy座標を図1に示すように取ると、質量m

 $_{1}$ の重心位置 (x_{1}, y_{1}) と質量 m_{2} の重心位置 (x_{2}, y_{2}) は、次式(1)~(4)で表される。

【0013】

$$x_1 = l_1 \sin \theta_1 \tag{1}$$

$$y_1 = l_1 \cos \theta_1 \tag{2}$$

$$x_2 = l\sin\theta_1 + u\cos\theta_1 \tag{3}$$

これにより、両者の減線は変式(55℃ 187 せまいれる。 【数2】

$$\dot{x}_1 = l_1 \dot{\theta}_1 \cos \theta_1 \tag{5}$$

$$\dot{y}_1 = -l_1 \dot{\theta}_1 \sin \theta_1 \tag{6}$$

$$\dot{x}_2 = l\dot{\theta}_1 \cos\theta_1 + \dot{u}\cos\theta_1 - u\dot{\theta}_1 \sin\theta_1 \tag{7}$$

[0014]
$$\overline{x}$$
 \overline{y} \overline{x} \overline{y} \overline{x} \overline{y} \overline{y}

り、位置エネルギVは、静止時を基準にとり、重力加速 度を g とすると次式(10)で表され、散逸関数Fは次式

 $T = \frac{1}{2}m_1l_1^2\dot{\theta}_1^2 + \frac{1}{2}m_2(l^2\dot{\theta}_1^2 + \dot{u}^2 + u^2\dot{\theta}_1^2 + 2l\dot{u}\dot{\theta}_1)$ (9)

$$V = m_1 g l_1 (1 - \cos \theta_1) + m_2 g \{ l(1 - \cos \theta_1) + u \sin \theta_1 \} + \frac{1}{2} k u^2$$
(10)

$$F = \frac{1}{2}c\dot{u}^2 \tag{11}$$

【0.015】これらより、質量 m_1 に働く外力を Pe^{iwt} 2),(1.3)が得られる。 としたときのラグランジェの運動方程式より、次式(1 【数4】

$$m_1 l_1^2 \ddot{\theta}_1 + m_2 (l^2 \ddot{\theta}_1 + 2u \dot{u} \dot{\theta}_1 + u^2 \ddot{\theta}_1 + l \ddot{u}) + m_1 g l_1 \sin \theta_1$$

 $+ m_2 g (u \cos \theta_1 + l \sin \theta_1) = P l_1 e^{i\omega t}$ (12)
 $m_2 (l \ddot{\theta}_1 + \ddot{u}) + m_2 g \sin \theta_1 - m_2 u \dot{\theta}_1^2 + c \dot{u} + ku = 0$ (13)

$$m_2(l\theta_1+u)+m_2g\sin\theta_1 - m_2u\theta_1 + cu + \kappa$$

 θ_1 およびuを微小量として、式 $(1\,2)$, $(1\,3)$ の高次項 る。 を省略し、線形化すると次式 $(1\,4)$, $(1\,5)$ が得られ 【数5】

$$(m_2l^2 + m_1l_1^2)\ddot{\theta_1} + m_2l\ddot{u} + (m_2l + m_1l_1)g\theta_1 + m_2gu$$

$$= Pl_1e^{i\omega t}$$
(14)

 $m_2 l\ddot{\theta}_1 + m_2 \ddot{u} + c\dot{u} + m_2 g\theta_1 + ku = 0$ (15)

【0016】これより、変位の複素振幅Θ₁, Uは、次式 【数6】 (16),(17)で表される。

$$\theta_1 = (-m_2\omega^2 + k + i\omega c)Pl_1/Z \qquad (16)$$

$$U = (m_2 l \omega^2 - m_2 g) P l_1 / Z \tag{17}$$

$$Z = \{-(m_1l_1^2 + m_2l^2)\omega^2 + (m_1l_1 + m_2l)g\}$$

ここで、無次元化のため、次式 $\left(\frac{-m_2\omega^2+k+i\omega c}{8}\right)-\left(\frac{-m_2l\omega^2+m_2g}{4\omega^2}\right)$ 導入する。

$$\mu = m_2/m_1$$
, $\gamma = l/l_1$, $a^2 = g/l_1$
 $\omega_a^2 = k/m_2$, $\zeta = c/2m_2a$, $f = \omega_a/a$ (18)
 $h = \omega/a$, $g_{st} = P/(m_1q)$, $U_{st} = Pl_1/(m_1g)$

【0017】主系(振り子型構造物2)と付加系振り子

される。

(動吸振器1)の変位は、次式(19)~(22)のように表 [数8]

$$e_{l} = \frac{A + i2\zeta B}{C + i2\zeta D} e_{st} \tag{19}$$

$$|s_1| = \sqrt{\frac{A^2 + 4\zeta^2 B^2}{C^2 + 4\zeta^2 D^2}} \Theta_{st}$$
 (20)

$$U = \frac{E}{C + i2\zeta D} U_{\rm st} \tag{21}$$

$$|U| = \sqrt{\frac{E^2}{C^2 + 4\zeta^2 D^2}} U_{\text{st}}$$
 (22)

ここで

$$A = f^{2} - h^{2}$$

$$B = h$$

$$C = (1 - h^{2})(f^{2} - h^{2}) - \mu(\gamma f^{2} - 1)(\gamma h^{2} - 1)$$

$$D = \{1 + \mu \gamma - (1 + \mu \gamma^{2})h^{2}\}h$$

$$E = -(1 - \gamma h^{2})$$

【0018】最適調整ある。

式(20)は、主系角変位の周波数応答を表すが、二自由 度振動系として二つの共振点と一つの反共振点をもつ。 また、この周波数応答は、減衰比との値に拘わらず、二 つの定点P,Qを通るので、その二定点P,Qの高さを揃 え、そこで、この周波数応答が最大値になるような動吸 振器 1 と主系の固有振動数 f optと減衰比ζoptを求める

(Den Hartog, Mechanical Vibrations, (1950) McGraw-Hil 1)。まず、定点を通るという条件、即ち式(20)がとに 関する恒等式になるという条件より、定点P、Qの振動 数、即ち次式(23)で示すように、h,, h,が求められ る。 【数91

$$h_{p,q} = \sqrt{a \mp \sqrt{a^2 - b}}$$
 (23)
 $a = \frac{1 + f^2(1 + \mu \gamma^2)}{2 + \mu \gamma^2}$
 $b = \frac{2(1 + \mu \gamma)f^2 - \mu}{2 + \mu \gamma^2}$
 $constant = constant = co$

り、最適となる動吸振器1と主系の固有振動数 f = f

optが、次式(24)で示すように、求められる。 L# 101

$$f_{\text{opt}} = \frac{\sqrt{1 + 2\mu\gamma + \mu^2\gamma^3}}{1 + \mu\gamma^2} \approx \frac{\sqrt{1 + 2\mu\gamma}}{1 + \mu\gamma^2}$$
(24)

そのときの二定点 P, Qの振動数 h_p , h_q は次式(25), (26)で表される。

$$h_{\rm p}^2 = \frac{(1 + \mu \gamma)(2 + \mu \gamma^2) - (1 - \gamma)\sqrt{\mu^2 \gamma^2 + 2\mu}}{(1 + \mu \gamma^2)(2 + \mu \gamma^2)}$$
(25)
$$h_{\rm q}^2 = \frac{(1 + \mu \gamma)(2 + \mu \gamma^2) + (1 - \gamma)\sqrt{\mu^2 \gamma^2 + 2\mu}}{(1 + \mu \gamma^2)(2 + \mu \gamma^2)}$$
(26)

$$h_{q}^{2} = \frac{(1+\mu\gamma)(2+\mu\gamma^{2}) + (1-\gamma)\sqrt{\mu^{2}\gamma^{2} + 2\mu}}{(1+\mu\gamma^{2})(2+\mu\gamma^{2})}$$
(26)

さらに、定点P,Qでの主系の振幅は次式(27)で示す ようになる。

$$|\Theta_{1q}| = |\Theta_{1q}| = \frac{\sqrt{2 + \mu \gamma^2}}{(1 - \gamma)\sqrt{\mu}} \Theta_{44}$$
[0 0 2 0] 次に、定点P, Qで主義の振幅が最大にな [数 1 3]

【数13】 る減衰比とを次式(28)より求める。

$$\left. \frac{\partial \left| \boldsymbol{\Theta}_{l} \right|}{\partial h} \right|_{h=h} = 0$$
 (28)
足するなが最複複数比く $_{\mathrm{opt}}$ であ れる。

る。式(28)に式(20)を代入すると次式(29)が得ら

$$(AA' + 4\zeta^2BB')(C^2 + 4\zeta^2D^2) - (A^2 + 4\zeta^2B^2)$$

 $\times (CC' + 4\zeta^2DD') = 0$ (29)

ここで、/ は∂/∂h を曳し、

$$A' = -2h$$

 $B' = 1$
 $C' = -2(1 + f^2)h + 4h^3 - 2\gamma\mu(\gamma f^2 - 1)h$

100211ま(29) かずまとすが一致した ルグントル・エ 0)のようになる。

$$\zeta_{\text{opt}} = \frac{1}{2} \sqrt{\frac{AA' - |\theta_l/\theta_{\text{st}}|^2 CC'}{-BB' + |\theta_l/\theta_{\text{st}}|^2 DD'}}$$
(30)

しかし、定点Pで頼きが零となる $\zeta_{\rm opt} = \zeta_{\rm popt}$ と、定 点Qで頼きが零となる $\xi = \zeta_{\rm opt}$ とは俺かに異なる。こ れらの値は、どちらをとっても現実的な調整において は、大差を生じないので、次式(3~1)で示すように、両 者の相加平均を最適調整時のく_{のpt}として使うのも一つ の方法である。

$$\zeta_{\text{opt}} = \frac{1}{2}(\zeta_{\text{popt}} + \zeta_{\text{qopt}})$$

(31)

【0022】等価質量比 助吸振器1の効率を表す等価質量比μ。を、式(19)よ り次のように定義する。即ち、式(19)の分母の実部C において、 f=1, h=1 とおくことにより次式(3 2) が得られる。

【数17】

$$\mu_e = \mu(1-\gamma)^2$$

(32)

この式(32)を式(27)に代入することにより、主系の 定点P,Qでの振幅が次式(33)で表される。 【数18】

$$|\theta_{1p}| = |\theta_{1q}| = \sqrt{1 + \frac{2 - \mu(1 - 2\gamma)}{\mu_e}} \theta_{st}$$
 (33)

[0.023] この式(33)において、現実的には、 μ は 0.1 より小さい値を力 が好ましく、0.5 あたりの値をとる。したがって、、 振幅は $(1+(2/\mu_0\Theta_{\pi^0})^{1/2}$ と近似でき、等価質量 比によって振幅が与えられると言える。式(32)より、 γ が 1 のとき、即ち動吸振器 上を質量所、0 重心に設置 すれば、全く制振効果はなく、 γ が 1 より外れると制振 効果が出てくる。現実的には、 $\gamma=1/2$ のときやも、

 μ_{∞} =0.25 μ であるので、制振効果を上げるために は、なるべく上部に取り付けるのが好ましい。次に、動 級振器1を主系の重心に取り付けると $(1=1_1)$ 、制振 効果がないことの物理的な理由について説明する。式 (14)から式(15)に1を乗じた式を引けば、次式(34)で示す主系の回転に関する運動方律式が得られる。 {数19

$$m_1 l_1^2 \ddot{\theta_1} + m_1 g l_1 \theta_1 - c l \dot{u} + m_2 g u - k l u = P l_1 e^{i w t}$$
 (34)

[0024] 式(34)の左辺第1項は横性現 第2項は 重力による他元モーメント、第3項は動吸振器1の減衰 によるモーメント、第4項は動吸振器1の質量m。に作用 する重力によって生じるモーメント、第5項は動吸振器 1のばれ要素14より生じるモーメントである。最適に 同調する場合、動吸振器1の固有変数を上来のの耐力 動数がほぼ一致するので、 $k/m_2=g/1$,が成身立 ち、上記第4項と第5項が相殺する。したがって、主系 と動吸振器1は、同じ固有振動数を有する二つの系のダ ンパだけで結合していることになり、両者は一体となっ て振動し、練変力は働かなくなる。

【0025】周波数応答

図2に最適調整された動吸振器1を有する系、および動 吸振器1を有さない系の周波数応答を示す。パラメータ は、一例として6人乗りの宗動機器を想定し、1_i=4 m, m,=1tonとする。実機の主系の減衰比は1%以

【0026】過渡応答

図3に初期整化に対する時間応答を示す。なお、動吸張器 1 のない場合を一点試練で、動吸振器 1 を設けた場合を実験(μ_e =0.05)、および破線(μ_e =0.025)で示してある。風による外力の要動成分の無次元量 \mathbb{P}/m_1 gを平均値り、標準偏差 σ =0.0886の正規乱影で、サンプリングの時間関係を0.3分としたときの応答を図4〜図6に示す。これらのジミュレーションはすグム

ス法で計算したものである。なお、図4は動吸振器1を 設けない場合、図 $5(\mu_a=0.05)$,図 $6(\mu_a=0.02)$ 5)は動吸振器1を設けた場合を示している。

【0027】図7は、本発明の第2実施例に係る振り子 型の動吸振器1aを用いた振り子型構造物2aの構成要 素を、図形化して示したもので、図1に示すものと共通 する部分については同一番号が付してある。被吊持体1 1が、リンク12aを介して支持部O(上記同様、以 下、支点Oという)により揺動可能に吊持され、被吊持 体11とリンク12aにより質量m,の振り子型構造物 2 a (以下、上記同様に質量m,という)を形成してい る。動吸振器1aは、質量m,の重心よりも上方にて、 例えば本実施例では、支点Oに関して被吊持体11とは 反対側に位置するリンク12a上の支持部O,(以下、支 点O,という)にて、質量m,に制振力付与可能に設けて ある。即ち、この動吸振器1aは、形態的には限定する ものではないが、作用的には支点O,を中心として揺動

可能に設けたリンク21と、リンク21に吊持された質 量m。の質量要素13(以下、上記同様に質量m。という) と、リンク21とリンク12aとの間に介在する減衰係 数 c のダンパー要素 1 5 とに分けられる。

【0028】そして、第1実施例の場合と同様に質量m ,に付帯して、その重心よりも上方に動吸振器1 a を配 置し、以下に詳述するように、質量m,の振り子運動の 固有振動に対して、付加質量比に応じて最適な同調を行 わせ、制振力を付与させるようにしてある。次に、上述 した動吸振器1aを用いた質量m,の振動に関して理論 解析する。図7に示すように、動吸振器1aとしての付 加系振り子の支点〇,を主系の支点〇の上方1の所にと る。主系のリンク12aと動吸振器1aのリンク21の 角変位を θ , θ 。, 支点O,O,から質量m, m,の重心まで の長さ、即ち腕の長さを1,,1。とする。主系および付 加系質量の位置は、次式(35)~(38)で表される。 【数20】

$$x_1 = l_1 \sin \theta_1$$

$$= l_1 \sin \theta_1 \tag{35}$$

$$y_1 = l_1 \cos \theta_1 \tag{36}$$

$$x_2 = l_2 \sin(\theta_1 + \theta_2) - l \sin \theta_1$$

$$y_2 = l_2 \cos(\theta_1 + \theta_2) - l \cos \theta_1$$
(37)

【0029】付加系の減衰をc,主系に作用する外力を Peiotkl. ラグランジェの方程式を作って線形化す

ると、次式(39),(40)のように表せる。 【数21】

$$(m_1l_1^2 + m_2l_2^2 + m_2l^2 - 2m_2ll_2)\ddot{\theta}_1 + (m_2l_2^2 - m_2ll_2)\ddot{\theta}_2 + (m_1l_1 + m_2l_2 - m_2l)g\dot{\theta}_1 + m_2l_2g\dot{\theta}_2 = Pl_1e^{i\omega t}$$
 (39
 $(m_2l_2^2 - m_2ll_2)\ddot{\theta}_1 + m_2l_2^2\ddot{\theta}_2 + cl_2^2\dot{\theta}_2 + m_2gl_2\theta_1$

この式を、次式(41)で表す記号、および式(18)で表 す記号を用いて無次元化すると、主系と付加系の角変位 を与える式は、式(19),(21)と同じものになり、最

$$\gamma = (l_2 - l)/l_1, \ \omega_s^2 = g/l_2$$

【0030】図8は、本発明の第3字編例に係る円軌道 型動吸振器 1 b を用いた振り子型構造物 2 b の構成要素 を、図形化して示したもので、図7に示すものと共通す る部分には同一番号を付して説明を省略する。この動吸 振器1bは、図7において、リンク21を介して支点O ,より質量要素m,を吊持していたのに代えて、リンク1 2 bと一体的な円軌道2 2 Eに質量要素m。を転動自在 に支持したもので、力学的には、図7に示すものと実質 的に変わりはない。なお、図8に示す実施例の場合、ダ ンパ要素は転動体であるローラ部に介在させてあり、図 示されていない。さらに、別の実施例として、図8に示 す質量要素m。を用いず、これに代えて円軌道22に質 量m2を備えさせるとともに、リンク12bと一体的に

適同頭+無猫344分(表の4)(44)) (32)で与えら

(38)

【数22】

揺動するローラ部上を、このローラ部に対して相対的に 転動させるようにし、かつ転動部にダンパ要素を介在さ せるようにしてもよい。

【0031】図9、10は、本発明の第4実施例に係る 傾斜振り子型の動吸振器1 cを用いた振り子型構造物2 cの構成要素を、図形化して示したもので、上記各実施 例と共通する部分については、互いに同一番号を付して 説明を省略する。この動吸振器1 cは、図9に示すよう に、リンク12cが静止し、垂直状態にあるときに、質 量要素moを吊持するリンク21cが水平方向に対し T、角度 $\alpha(0° < \alpha < 90°)(\alpha$ の符号は図9におい て下向きに正とする)だけ傾斜するように形成したもの

である。形態的には限定するものではないが、作用的に

は、リンク12cとリンク21cとの間にダンパ要素1 5が介在する。

【0032】次に、上述した動吸振器1cを用いた質量 m,の振動に関して理論解析する。付加系振り子を主系 の下部に取り付けた二重振り子の場合、主系の周期が長 いため、付加系振り子の腕も長くなり、実用上都合が悪

$$\omega^2 = \frac{g \sin \alpha}{l_2}$$

【0033】図10に示すように、付加系振り子の各変 位をもっとすると、主系および付加系の質量の位置は、

$$\omega^2 = \frac{g \sin c}{l_2}$$

$$x_1 = l_1 \sin \theta_1 \tag{43}$$

【数23】

【数24】

次式(43)~(46)で表される。

$$y_1 = l_1 \cos \theta_1 \tag{44}$$

$$\begin{cases} x_2 \\ y_2 \end{cases} = \begin{bmatrix} \cos \theta_1 & \sin \theta_1 \\ -\sin \theta_1 & \cos \theta_1 \end{bmatrix} \begin{cases} l_2 \sin \theta_2 \\ l + l_2 \cos \theta_2 \sin \alpha \end{cases}$$
(45)

これより、ラグランジュの運動方程式を立て、次式(4 7)で表される記号と式(18)で表される記号を用いて 無次元化すると、上記実施例の場合と同様に、主系と付 加系の変位は式(19),(21)となる。最適調整,等価質 量比も同様に式(24),(30),(32)で与えられる。 【数25】

い。そこで、短い腕で長周期を得るようにしたのが図

9,10に示す動吸振器1cである。腕の長さが1。の付

加系振り子を水平面より角度αだけ傾けて取り付けた場

合の付加系振り子の固有振動数は次式(42)で表され

$$\gamma = (l_2 \sin \alpha + l)/l_1, \ \omega_a^2 = g \sin \alpha/l_2$$

【0034】図11、12は、本発明の第5実施例に係 る倒立傾斜振り子型の動吸振器 1 d を用いた振り子型構 造物2 dの構成要素を、図形化して示したもので、図7 に示すものと共通する部分については同一番号が付して ある。本実施例では、被吊持体11が、リンク12 dを 介して支持部O(上記同様、以下、支点Oという)により 揺動可能に吊持され、被吊持体11とリンク12 dによ り質量m,の振り子型構造物2d(以下、上記同様に質量 m,という)を形成している。動吸振器1dは、リンク1 2 d上の支点O,から上方に延びた倒立リンク21 dに より支持された質量要素m。と、リンク12dと倒立り ンク21dとの間に介在するばね要素14(回転ばね定 数: k'), ダンパ要素15(減衰係数: c)とを備え、 質量m,の重心よりも上方にて、質量m,に対して制振力 付与可能に設けられている。

【0035】また、図12に示すように、リンク21d は、z 軸に平行なz' 軸に対して角度 α (-90 $\leq \alpha$ < 0)(αの符号は図12において下向きに正とする)をな している。なお、図12は角度αを明らかにするために 示したもので、この目的に直接関係しない他の構成要素 の図示は省略してある。なお、本実施例については、付 加系振り子の固有振動数を表す上記式(42),(47)第 $2式(\omega_a^2 = g \sin \alpha / 1_o)$ に代えて、上記(42),(47) 第2式の右辺に、(k'/(mo·1o2))の項を加算した式 を用いることにより、基本的には、第1字版例で詳述し た理論が適用できる故、説明を割愛する。

(47)【0036】次に、一例として、図8に示す第3実施例 に係る円軌道型動吸振器1bを使った模型で実験を行っ た。 $1_1 = 1 \text{ m}, m_1 = 8 \text{ kg}, m_2 = 0.8 \text{ kg}$ であり、円 軌道の半径も1mであり、動吸振器1bの取り付け位置 $\xi \cup \nabla \gamma = 0.25 (\mu_{\alpha} = 0.056), 0.5 (\mu_{\alpha} = 0.056)$ 0 2 5) , 1 (μ_n=0)の三通りを選んだ。各場合におけ る初期変位による応答を図示13~図15に示す。理論 解析の結果と同様、取り付け位置を主系の重心近くにす ると($\gamma = 1$)、制振効果は殆どなく、この重心よりも上 方に取り付ける程(v=0.5, v=0.25)、制援効果 は大きくなる。ただし、本実験では、動吸振器1 c の減 衰は、動吸振器 1 c と円軌道 2 2 との間の摩擦に依存し ており、最適な状態には同調されていない。

【0037】本発明は、適用対象を索動搬器に限定する ものでなく、振り子型構造物全般に適用され得るもので あって、本発明による制振と従来の並進運動系の動吸振 器による制振との違いは、主系の傾きによって動吸振器 の質量も主系と同様に重力を受けることにある。動吸振 器を主系の重心に取り付けると、主系に働くモーメント のうち、動吸振器の変位によるばね力によるものと、動 吸振器の重力によるばね力によるものが相殺する。結 局、主系と動吸振器は、同じ固有振動数を有する二つの 系がダンパで結合されたものになり、一体として揺動す る。しかし、動吸振器の位置を主系の重心から離せば、 動吸振器から主系にモーメントが作用する。

【0038】上述したように、本発明については、ばね

質量型、振り子型、円軌道型、極利振り子型、側のが極純版 ライ型動変振器による制張を、動要振器の取り付け位置 をバラメータとして解析し、統一した理論式で認明でき る。最適調整と、制振効果を示す等価質量比は、動吸振 器と主系の質量比単に(1-y)²(こて、, 付は支払から 動級振器に取り付けた点までの配離を主系の転の長さで 除したもの)を乗じたものになる。したがって、側振の ためには、動残振器は、なるべく上方に取り付けるのが 好ましいことが分かる。

【0039】なお、第1~第5実施例において、動吸板器1~14の各々を1台だけ設けたものについて説明したが、本発明はこれに限定するものでなく、振り子型構造物2~24の進行方向、即ちェッ平面に垂充方向のバランスをとるために、動要振器1~14の各々を複数合設けたものも含んでいる。例えば、図12の場合、図1元を動数振器14の他に、実輸に関して、2軌方向に対称の位置ともう1台の動数振器14を設けてもい。

[0040]

【発明の効果】以上の説明より明らかなように、本発明 によれば、援り子型構造物に付計させ、この振り子型構 造物の重心よりも上方にで、援り子型構造地が上で制 援力付も可能に設けて形成してある。このため、以上詳 速したように、動吸振器の質量要素とそれを支持する類 かり子型構造の関に相対を位が生じて、援り子型構造 物の振動ルモルギが吸収されるようになる結果、特に電 源等の動力を要することなく、また接り子の胴を長くす であるとなく、援り子型構造地がは対する制態所列機に 表れるようになり、振り子型構造物の機揺れ抑制作用を 機化でき、援り子型構造物の用途を広げることが可能に なるという効果と乗する。

【図面の簡単な説明】

【図1】 本発明の第1実施例に係る動吸振器を適用した振り子型構造物の全体構成の概略を示す図である。

【図2】 図1に示す動吸振器を有する系、および動吸 振器を有さない系の周波数応答を示す図である。 【図3】 図1に示す動吸振器を有する系、および動吸 振器を有さない系の初期変位に対する応答を示す図であ

【図4】 動吸振器を有さない系のランダム入力に対する広答を示す図である。

【図5】 図1に示す動吸振器を有する系のランダム入 力に対する応答を示す図である。

【図6】 図1に示す動吸振器を有する系のランダム入 力に対する応答を示す図である。

【図7】 本発明の第2実施例に係る動吸振器を適用し

た振り子型構造物の全体構成の概略を示す図である。 【図8】 本発明の第3実施例に係る動吸振器を適用し

た振り子型構造物の全体構成の概略を示す図である。 【図9】 本発明の第4事施例に係る動吸振器を適用し

【図9】 本発明の第4実施例に係る動吸振器を適用した振り子型構造物の全体構成の概略を示す図である。

【図10】 図9に示す実施例の揺動時の状態を示す図 である。。

【図11】 本発明の第5 実施例に係る動吸振器を適用 した振り子型構造物の全体構成の頻解を示す図である。 【図12】 図11に示す動吸振器の質量加₂を支持す るリンクの傾斜状態を示す図で、図11においてA方向

から見た図である。 【図13】 図8に示す動吸振器を有する系の模型を用いて行った実験結果で、初期変位に対する応答を示す図

【図14】 図8に示す動吸振器を有する系の模型を用いて行った実験結果で、初期変位に対する応答を示す図

【図15】 図8に示す動吸振器を有する系の模型を用いて行った実験結果で、初期変位に対する応答を示す図である。

【符号の説明】

1,1a,1b,1c,1d 動吸振器

2,2 a,2 b,2 c,2 d 振り子型構造物

[手続補正書] 【提出日] 平成5年4月12日 [千統補正1] 【補正対象項目名] 図面 【補正対象項目名] 図1 【補正方法] 変更 【補正方法] 変更 【補正內容]

【手統補正2】 Y^y 【補正対象書類名】 図面 【補正対象項目名】 図7 【補正方法】変更 【補正方法】変更 【補正内容】 【図7】

【手統補正3】 【補正対象書類名】図面 【補正対象項目名】図8 【補正方法】変更 【補正内容】 【図8】

【手統補正4】 以 【補正対象書類名】図面 【補正対象項目名】図9 【補正方法】変更 【補正方容】 【補正内容】

【手統補正5】 【補正対象書類名】図面 【補正対象項目名】図10 【補正方法】変更 【補正内容】 【図10】

【手続補正6】 【補正対象書類名】図面 【補正対象項目名】図11 【補正方法】変更 【補正内容】 【図11】

【手続補正7】 【補正対象書類名】図面 【補正対象項目名】図12 【補正方法】変更 【補正内容】 【図12】

【手続補正書】

【提出日】平成6年6月17日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】全文

【補正方法】変更

【補正内容】

【書類名】 明細書

【発明の名称】 振り子型構造物の動吸振器

【特許請求の範囲】

【請求項1】 振り子型構造物に付帯させ、この振り子型構造物の重心よりも上方にて、振り子型構造物に対して で制振力付与可能に設けたことを特徴とする振り子型構造物の動吸振器。

【請求項2】 上記振り子塑構造物が、リンクを介して 支持部により揺動可能に被吊時体を吊持して形成され、 上記動吸振器が、作用的には、上記リンクを機切る方向 に直線運動可能に設けた質量要素と、この質量要素と上 記リンクとの間に介在させたば重要素。このば和要素と 並列的に作用するダンバー要素とに分けられ、上記質量 要素が、上記機り子型標準物の振り子運動の固有損動に 対して、付加質量化に記述の発力を関連に同調されたことを特 後とする請求項目に記載の現ケ子型構造物が残損器 【請求項3】 上記接り子型構造物が、リンクを介して 支持部により揺動可能に被所持体を吊持して形成され、 記劃級乗服が、作用的には、上記接り子型構造物の成 心よりも上方に位置する支持部にて揺動可能に設けたリ ンクに吊持された質量要素と、上記両リンク附に介在さ セ大ダンバー要素に分けられ、上記質量要素に入己 サモダンバー要素に分けられ、上記質量要素に入己 り子型構造物の振り子運動の固有振動に対して、付加質 量比に応じて最適に同調されたことを特徴とする請求項 1に記載の姿態・子型構造物の振り振器。

【請求項4】 上記振り子壁標流物が、リンクを介して 支持部により揺動可能に被吊持体を吊持して形成され、 上記動吸振器が、作用的には、上記リンクと一体的に形 成された円軌道上に転動自在に設けた質量要素と、この 質量要素と上記リンクとの間に介在させたダンバ要素と に分けられ、上記質量要素が、上記振り子型構造物の振 り子運動の固有振動に対して、付加質量比に応じて最適 に同調されたことを特徴とする請求項1に記載の振り子 型構造物の動級振器。

【請求項5】 上記獲り予架核流物が、リンクを介して 支持部により揺動可能に被吊持体を吊持して形成され、 上記動級張繋が、作用的には、上記リンクが静止し、垂 直状態にあるときに、水平方向に対して、下向きに鋭角 で傾斜し、上記リンクに対して揺動可能に設けたリンク に吊持された質量変素と、上記両リンク間に介在させた グンパ要素とに分けられ、上記質量要素が、上記振り子 型標流物の振り子運動の固有振動に対して、付加質量比 に応じて良産に同調されたことを特徴とする請求項1に 記載の振り子型構造物の動数便器。

【請求項6】 上記援り予型格念物が、リンクを介して 支持部により振動可能に被出特体を吊持して形成され、 上記動級援騰が、作用的には、上記リンクに揺動可能に 支持された側立リンクに支持された質量要素と、上記両 リンク間に介在させたダン/要素とに分けられ、上記質 量要素が、上記帳り予量構造の援り予理物の関有援動 に対して、付加質量比に応じて最適に同調されたことを 特徴とする請求項1に記載の援り予型構造物の動級援 ⁹⁸⁸

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、例えば索動鮻器(ゴンドラ)のような振り子型構造物の動吸振器に関するものである。

[0002]

【従来の技術】近年、スキー場や観光地で使用されている素助機器は、モノレールなどに比べて、建設費が安いという長所があるため、交通手段として採用しようと検討され始めている。しかしたがら、この素動機器の最大の離点は、風に弱いことにある。偏葉に懸垂された機器は、構造上、風の坑力を受け易く、現在は返遺15m/まぐらいで運転を停止しているが、都市交通として利用するには、少なくとも風速20m/まぐらいまでは、延右できるを要がある。そこで、崇動機器の風酸を抑える技術に関心が集まっているが、これには一般的な並進モデルを適用することができず、新たに側体散り子の制度技術が必要になっているが、

【0003】 従来、素動解器に対する具体的な制度技術 としては、ジャイロモーメントを利用するもの(前者) 信原に投入・佐藤・ジャイロモーメントを用いる制振機 標、機論、57-534C(1991)、497、松岡・西田、ジャイロモーメ ントの利用によるゴンドラの模点れを防止制御、機構論。 0、920-55、B(1992)、178)、動政振器を利用するもの(後 者)が考えられている。

【0004】前者については、既に、6人乗り搬器用の 試作機も作られ(KANKI H. and NEKOMOTO Y. and MONOBE H., Development of CMG Active Vibration Control Device for Gondola, The First International Conference on Motion and Vibration Control(MOVIC), (1992), 31

【0005】一方、後者については、ばれ質量形のもの や、振り子形のものが検討されてきた(佐藤・干島・振り 子式動吸振器による索動機器の動揺低減について,機講 論, No 910-17 ((1991), 528.)。

[0006]

【発明が解決しようとする課題】上記送来の制張技術の 内、前者については、素勢業器は外部電源と接続されて いないので、バッテリで駆動可能な省電力形のシステム の開発が必要になるという問題がある。また、後者の 内、ほば貿量形のものについては、機器の重心付近に取 り付けると、嫌器と動吸震器の質量は一体となって助 き、制度物は注生じない。

【0007】一方、接り子型のものは、二重接りそとして動吸振器を擦器の下方に設置し、最適な問調を行わせようとすると、動吸振器の販が長くなり、実用的でなくなる。さらに、接り子を傾けて固有振動数を低くすることによって觸の長さを短くすることも検討されているが、位距・細川・千島、傾斜振り子式被衰萎度による索動微器の動揺削削、機群陰、№ 920-58、1(1992)、592 、、このようにした場合動吸振器の取り付け位置の問題が生じる。本発明は、斯名徒来の問題が全課題としてなされたもので、模型れの抑制に特に有用な接り子型構造物の動吸振器を提供ようとするものである。

[0008]

【課題を解決するための手段】上記課題を解決するため に、第1 発明は、振り子型構造物に付借させ、この振り 子型構造物の重心よりも上方にて、振り子型構造物に対 して制振力付与可能に設けて形成した。

【0009】また、第2条明は、上記接り子盤構造物 が、リンクを介して支持部により揺動可能に披吊持体を 吊持して形成され、上記動投機器が、作用的には、上記 リンクを供切る方向に直線運動可能に設けた質量要素 と、この質量要素と上記リンクとの間に介在させたばね 要素、このはな要素と変形が作用するダンルで用するダント ジャントルールを リチ運動の固有援助で対して、付加質量比に応じて最適 に同調されたものとした。

10010] さらに、第3発明は、上記振り子型構造物が、リンクを介して支持部により指動可能に使用外形。 お持して形成され、上記動要な器が、作用物には、上記 振り子型構造物の重心よりも上方に位置する支持部にて 振動可能に設けたリンクに内持された質量要素と、上記 質量要素が、上記振り子型構造物の振り子運動の固有振 動に対して、付加質量比化応じて最適に同調されたもの とした。 【0011】さらに、第4条明は、上記振り子型構造物が、リンクを介して支持部により揺動可能と被吊特体を 店持して形成され、上記動吸振器が、作用的には、上記 リンクと一体的に形成されたPI執道上に転動自在に設け た質量要素と、この質量要素と上記リンクとの間に介在 させたゲンバ要素とに分けられ、上記質量要素が、上記 振り子型構造物の振り子運動の固有援動に対して、付加 質量比に応じて最適に同盟されたものとした。

【0012】さらに、第5窓明は、上記線り千型精造物が、リンクを介して支持部により揺動可能に被吊持体を 結片して形成され、上記動処器が、作用所には、上記 リンクが静止し、垂直状態にあるとさに、水平方向に対 して、下向きに鋭角で傾斜し、上記リンクに対して抵動 可能に設けたリンクに吊持された質量要素と、上記両リ ンク間に介在させたダンパ突束とに分けられ、上記質量 要素が、上記線り子型構造物の振り子運動の固有振動に 対して、付加質量比に応じて最適に同調されたものとした。

【0013】さらに、第6発明は、上記振り子型構造物が、リンクを介して支持部により揺動可能と被吊特体を 吊持して形成され、上記動吸援器が、作用的には、上記 リンクに活動可能に支持された側立リンクに支持された 質量要素と、上記両リンク間に介在させたダンパ要素と に分けられ、上記質量要素が、上記振り子型精造物の振 リラ連動の固有振動に対して、付加質量比に応じて最適 に同調されたものとした。

[0014]

【作用】上記発明のように構成することにより、動吸板 器の質量要素とそれを支持する振り子型構造物との間に 相対変位が生じて、振り子型構造物の振動エネルギが吸 収されるようになる。

[0015]

【実施例】次に、本発明の一実施例を図面にしたがって 説明する。図1は、第1,第2発明に係るばね質量型の 動吸振器1を適用した振り子型構造物2の構成要素を、 12を介して支持部〇(関1において点として、要されており、以下、支点〇という)により指動可能に吊持され、被吊時社1とリンク12により質量加っの振り子型構造物2(以下、質量加,という)、例えば柔動樂器を形成している。動吸接器1は、質量加,の重心よりも上方にて、例えば未実施例では、総門特体11と支点〇との間にて、質量加,に制張力付与可能に設けてある。即ち、この動域展器1は、影響的には限定するものではないが、作用的にはリンク12を模切る方向に直線運動可能に設けた質量加。の質量要素13(以下、質量加。というと、この質量加。とリンク12との間に介をする行用さる減度係数。のダンバー要素15とに分けられる。【00161そして、上記のように質量加,に付帯し

図形化して示したものである。被吊持体11が、リンク

【0016】そして、上記のように質量m,に付帯して、その重心よりも上方に助張振客1を配置し、以下に 詳述するように、質量m,の振り子運動の固有振動に対して、付加質量比に応じて最適な問題を行わせ、削振力を付与させるようにしてある。

【0017】次に、上述した動吸振器1を適用した質量 m,の振動に関して理論解析する。

運動方程式

図1に示すように、質量m₁は、支点のを中心として掲 動可能で、その自由度も1とし、減液は無限する。 支点 のから質量m₁の重応までの距離を1,角変位を 6,とす る。動数振器 1は、支点Oより距離1の所に取り付けら れ、質量m₂のリンク12を模切る方油の変位を uとす 。上述したように、ばれ要素14のばれ定数はは、ダ ンバ要素15の減衰採数は c きする。また、支点Oを原 点として、x y 座標を図1に示すように取ると、質量m 1の重心位置(x₁, y₁)と質量m₂の重心位置(x₂, y₂) は、次式(1)~(4)で表される。

【0018】 【数1】

 $x_1 = l_1 \sin \theta_1 \tag{1}$

 $y_1 = l_1 \cos \theta_1 \tag{2}$

 $x_2 = l \sin \theta_1 + u \cos \theta_1 \tag{3}$

これにより、両者の連接は天式(595-0 ta) で表写れる。 (4)

 $\dot{x}_1 = l_1 \dot{\theta}_1 \cos \theta_1 \tag{5}$

 $\dot{\eta}_1 = -l_1 \dot{\theta}_1 \sin \theta_1 \tag{6}$

 $\dot{x}_2 = l\dot{\theta}_1 \cos\theta_1 + \dot{u}\cos\theta_1 - u\dot{\theta}_1 \sin\theta_1 \tag{7}$

【0019】運動エネルギアは、 (x_{\pm},y_{\pm}) のようにな (x_{\pm},y_{\pm}) のようにな (x_{\pm},y_{\pm}) (8) (8) (8) 乗止時を基準にとり、重力加速

度を収とすると次式(10)で表され、散逸関数Fは次式 【数31 (11)で表される。

$$T = \frac{1}{2}m_1l_1^2\dot{\theta_1}^2 + \frac{1}{2}m_2(l^2\dot{\theta_1}^2 + \dot{u}^2 + u^2\dot{\theta_1}^2 + 2l\dot{u}\dot{\theta_1})$$
(9)

$$V = m_1 g l_1 (1 - \cos \theta_1) + m_2 g \{ l (1 - \cos \theta_1) + u \sin \theta_1 \}$$

$$+ \frac{1}{2} k u^2$$
(16)

$$F = \frac{1}{2}c\dot{u}^2\tag{11}$$

【数4】

【0020】これらより、質量m,に働く外力をPeiω ^tとしたときのラグランジェの運動方程式より、次式(1

2). (13)が得られる。

$$\begin{split} m_1 l_1^2 \ddot{\theta}_1 + m_2 (l^2 \ddot{\theta}_1 + 2u \dot{u} \dot{\theta}_1 &+ u^2 \ddot{\theta}_1 + l \ddot{u}) + m_1 g l_1 \sin \theta_1 \\ &+ m_2 g (u \cos \theta_1 &+ l \sin \theta_1) = P l_1 e^{i \omega t} \end{split} \tag{12}$$

$$m_2(l\ddot{\theta}_1 + \ddot{u}) + m_2g\sin\theta_1 - m_2u\dot{\theta}_1^2 + c\dot{u} + ku = 0$$
 (13)

θ,およびuを微小量として、式(12),(13)の高次項 【数5】 を省略し、線形化すると次式(14),(15)が得られ <u>ځ.</u>

$$(m_2l^2 + m_1l_1^2)\tilde{\theta}_1 + m_2l\tilde{u} + (m_2l + m_1l_1)g\theta_1 + m_2gu$$

$$= Pl_1e^{i\omega t}$$
(14)

$$m_2 l\ddot{\theta}_1 + m_2 \ddot{u} + c\dot{u} + m_2 g\theta_1 + ku = 0$$
 (15)

【0021】これより、変位の複素振幅Θ., Uは、次式 (16),(17)で表される。

$$\theta_1 = (-m_2\omega^2 + k + i\omega c)Pl_1/Z \tag{16}$$

$$U = (m_2 l \omega^2 - m_2 g) P l_1 / Z$$

$$Z = \{ -(m_1 l_1^2 + m_2 l^2) \omega^2 + (m_1 l_1 + m_2 l) g \}$$
(17)

$$Z = \{-(m_1 \iota_1^2 + m_2 \iota^2)\omega^2 + (m_1 \iota_1 + m_2 \iota)g\}$$

$$\times (-m_2 \iota^2 + k + i\omega c) - (-m_2 \iota \iota^2 + m_2 \iota^2)$$

ここで、無次元化のため、次式 $\left(\frac{-m_2\omega^2}{8} + \frac{k}{m_2} + i\omega c\right) - \left(\frac{-m_2l\omega^2}{m_2l\omega^2} + m_2g\right)^2$ 導入する。

$$\mu = m_2/m_1$$
, $\gamma = l/l_1$, $n^2 = g/l_1$
 $\omega_a^2 = k/m_2$, $\zeta = c/2m_2n$, $f = \omega_a/n$ (18)
 $h = \omega/n$, $\theta_{st} = P/(m_1q)$, $U_{st} = Pl_1/(m_1q)$

【数8】

【0022】主系(振り子型構造物2)と付加系(動吸振

器1)の変位は、次式(19)~(22)のように表され る。

$$\theta_{\rm t} = \frac{A + i2\zeta B}{C + i2\zeta D} e_{\rm st} \tag{19}$$

$$|\theta_1| = \sqrt{\frac{A^2 + 4\zeta^2 B^2}{C^2 + 4\zeta^2 D^2}} e_{st}$$
 (20)

$$U = \frac{E}{C + i2CD}U_{st}$$
 (21)

$$|U| = \sqrt{\frac{E^2}{C^2 + 4\zeta^2 D^2}} U_{\rm st} \tag{22}$$

ここで

$$A = f^{2} - h^{2}$$

$$B = h$$

$$C = (1 - h^{2})(f^{2} - h^{2}) - \mu(\gamma f^{2} - 1)(\gamma h^{2} - 1)$$

$$D = \{1 + \mu \gamma - (1 + \mu \gamma^{2})h^{2}\}h$$

$$E = -(1 - \gamma h^{2})$$

である.

【0023】最適調整

式(20)は、主系角変位の耐波数応答を表すが、二自由 度変動系として二つの共振点と一つの反共振点をもつ。 また、この周波数応等は、機変比りの値に向わらず、二 つの定点P、Qを適る。それ故、二定点P、Qの高さを互 いに等しく、かつ最大にすることにより主系に対する動 変援器1の発展自有援動数比が、血・髪曲複変比し、msが 変援器1の発展自有援動数比し、msが 求められる (Den Hartog, Mechanical Vibrations, (1960) MoGraw+Hill)。まず、定点を通るという条件、即ち式 (20)がにに関する恒等式たなるという条件より、定点 P, Qの振動数、即ち次式<math>(23)で示すように、 h_p , h_q が求められる。

$$h_{p,q} = \sqrt{a \mp \sqrt{a^2 - b}}$$

$$a = \frac{1 + f^2(1 + \mu \gamma^2)}{2 + \mu \gamma^2}$$

$$b = \frac{2(1 + \mu \gamma)f^2 - \mu}{2 + \mu \gamma^2}$$

【0024】そして、定点P,Qの高さが等しいことより、最適となる主系に対する動吸振器1の最適固有振動数比f=foptが、次式(24)で示すように、求められ

【数10】

$$f_{\rm opt} = \frac{\sqrt{1+2\mu\gamma + \mu^2\gamma^3}}{1+\mu\gamma^2} \approx \frac{\sqrt{1+2\mu\gamma}}{1+\mu\gamma^2}$$
(24)

そのときの二定点P, Qの振動数 h_p , h_q は次式(25), 【数11】 (26)で表される。

$$h_{\rm p}^2 = \frac{(1+\mu\gamma)(2+\mu\gamma^2) - (1-\gamma)\sqrt{\mu^2\gamma^2 + 2\mu}}{(1+\mu\gamma^2)(2+\mu\gamma^2)}$$
(25)
$$h_{\rm q}^2 = \frac{(1+\mu\gamma)(2+\mu\gamma^2) + (1-\gamma)\sqrt{\mu^2\gamma^2 + 2\mu}}{(1+\mu\gamma^2)(2+\mu\gamma^2)}$$
(26)

$$h_{q}^{2} = \frac{(1+\mu\gamma)(2+\mu\gamma^{2}) + (1-\gamma)\sqrt{\mu^{2}\gamma^{2} + 2\mu}}{(1+\mu\gamma^{2})(2+\mu\gamma^{2})}$$
(26)

さらに、定点P,Qでの主系の振幅は次式(27)で示す ようになる。

$$|\theta_{1p}| = |\theta_{1q}| = \frac{\sqrt{2 + \mu \gamma^2}}{(1 - \gamma) / \mu} \theta_{st}$$
(27)

る減衰比とを次式(28)より求める。

$$\left. \frac{\partial \left| g_1 \right|}{\partial h} \right|_{h=h} = 0$$
 (28) 即ち、式(28)を満足するて が最高競技比 ζ_{opt} であ 【数14】

【数14】 る。式(28)に式(20)を代入すると次式(29)が得ら れる。

$$(AA' + 4\zeta^2 BB')(C^2 + 4\zeta^2 D^2) - (A^2 + 4\zeta^2 B^2) \times (CC' + 4\zeta^2 DD') = 0$$
(29)

ここで, / は∂/∂h を表し,

$$\begin{array}{ll} A' &= -2h \\ B' &= 1 \\ C' &= -2(1+f^2)h + 4h^3 - 2\gamma\mu(\gamma f^2 - 1)h \\ D' &= 1 + \mu\gamma - 3(1+\mu\gamma^2)h^2 \end{array}$$

【0026】式(29)、および式(20)より、次式(3 【数151 0)のようになる。

$$\zeta_{\text{opt}} = \frac{1}{2} \sqrt{\frac{AA' - |\theta_{1}/\theta_{\text{st}}|^{2} CC'}{-BB' + |\theta_{1}/\theta_{\text{st}}|^{2} DD'}}$$
(30)

しかし、定点Pで傾きが零となる $\zeta_{opt} \equiv \zeta_{popt}$ と、定 点Qで傾きが零となるく≡くgontとは僅かに異なる。こ れらの値は、どちらをとっても現実的な調整において は、大差を生じないので、次式(31)で示すように、両

者の相加平均を最適調整時のtontとして使うのも一つ の方法である。

【数16】

$$\zeta_{\text{opt}} = \frac{1}{2}(\zeta_{\text{popt}} + \zeta_{\text{qopt}})$$
 (31)

【0027】等価質量比 動吸振器1の効率を表す等価質量比μ を、式(19)よ り次のように定義する。即ち、式(19)の分母の実部C において、f = 1, h = 1とおくことにより次式(32)

が得られる。 【数17】

$$\mu_{\mathbf{e}} = \mu(1 - \gamma)^2 \tag{32}$$

この式(32)を式(27)に代入することにより、主系の 【数18】 定点P,Qでの振幅が次式(33)で表される。

$$|\theta_{1p}| = |\theta_{1q}| = \sqrt{1 + \frac{2 - \mu(1 - 2\gamma)}{\mu_e}} \theta_{st}$$
 (33)

【0028】この式(33)において、現実的には、μは 0.1より小さい値をとり、yはなるべく小さい値の方 が好ましく、0.5あたりの値をとる。したがって、、 振幅は〔1+(2/μ。) 「²⁰0。と近似でき、等価質量 比によって振幅が与えられると言える。式(32)より、 yが1のとき、即も動板振器しを質量加、の重心に設度 すれば、全く制度効果はなく、yが1より外れると制模 効果が出てくる。現実的には、y=1/2のときでも、 μ。一0.25 μであるので、制援効果を上げるために は、なるべく上端に取り付けるのが好ましい。次に、動 販振器1を主楽の重心に取り付けると(1=1)、削援 効果がないことの物理的な理由について説明する。式 (14)から式(15)に1を乗じた式を引けば、次式(3 4)で示す主系の回転に関する運動方組式が得られる。 【数191】

$$m_1 l_1^2 \ddot{\theta_1} + m_1 g l_1 \theta_1 - c l \dot{u} + m_2 g u - k l u = P l_1 e^{iwt}$$
 (34)

【0030】周波数応答

【0031】過渡応答

図 3 に初期変位に対する時間応答を示す。なお、動吸振器 1 のない場合を一点娯楽で、動吸振器 1 を設けた場合を実線 (μ_e = 0.05)、および破線 (μ_e = 0.025)で示してある。平均値 0.標準偏差 σ = 0.0886の正規乱数で、サンブリングの時間間隔を0.3秒として、風に

よる外力の変動成分の無次元量P/m,gを得たときの 応答を図4~図6に示す。これらのシミュレーションは アダムス法で計算したものである。なお、図4は動吸援 器1を設けない場合、図5(μ_α=0.05),図6(μ_α= 0.025)は動吸振器1を設けた場合を示している。 【0032】図7は、第1,第3発明に係る振り子型の 動吸振器1aを用いた振り子型構造物2aの構成要素 を、図形化して示したもので、図1に示すものと共通す る部分については同一番号が付してある。被吊持体11 が、リンク12aを介して支持部O(上記同様、以下、 支点Oという)により揺動可能に吊持され、被吊持体1 1とリンク12aにより質量m,の振り子型構造物2a (以下、上記同様に質量m,という)を形成している。動 吸振器1 a は、質量m,の重心よりも上方にて、例えば 本実施例では、支点Oに関して被吊持体11とは反対側 に位置するリンク12a上の支持部O,(以下、支点O, という)にて、質量m,に制振力付与可能に設けてある。 即ち、この動吸振器laは、形態的には限定するもので はないが、作用的には支点O,を中心として揺動可能に 設けたリンク21と、リンク21に吊持された質量m。 の質量要素13(以下、上記同様に質量m2という)と、 リンク21とリンク12aとの間に介在する減衰係数c のダンパー要素15とに分けられる。

【0033】そして、図1に示す装置の場合と同様に質量m,に付替して、その重心よりも上がに動吸振器1a を配置し、以下に詳述するように、質量m,の振り予運動の固有振動に対して、付加質量比(付加系の質量/主系の質量)に応じて最適な同葉を行わせ、制度力を付きさせるようにしてある。次に、上述した動数振器1aを用いた質量m,の振動に関して理論解析する。図7に示 すように、動吸振器1aとしての付加系振り子の支点O ₁を主系の支点Oの上方1の所にとる。主系のリンク1 2aと動吸振器1aのリンク21の角変位をθ₁, θ₂, 支 ₂, O, O, から質量m, m, の重かまでの長さ、即ち腕の長 さを $1_1, 1_2$ とする。主系および付加系質量の位置は、 次式(35) \sim (38)で表される。 【数20】

$$x_1 = l_1 \sin \theta_1 \tag{35}$$

$$y_1 = l_1 \cos \theta_1 \tag{36}$$

$$x_2 = l_2 \sin(\theta_1 + \theta_2) - l \sin \theta_1 \tag{37}$$

 $y_2 = l_2 \cos(\theta_1 + \theta_2) - l \cos\theta_1$ [数21] (38)

力を $Pe^{1}\omega^{t}$ とし、ラグランジェの方程式を作って線形化すると、次式(3.9)、(4.0)のように表せる。

化すると、次式(39),(40)のように表せる。

$$(m_1l_1^2 + m_2l_2^2 + m_2l^2 - 2m_2ll_2)\ddot{\theta}_1 + (m_2l_2^2 - m_2ll_2)\ddot{\theta}_2 + (m_1l_1 + m_2l_2 - m_2l)g\theta_1 + m_2l_2g\theta_2 = Pl_1e^{i\omega t}$$
(39)
$$(m_2l_2^2 - m_2ll_2)\ddot{\theta}_1 + m_2l_2^2\ddot{\theta}_2 + cl_2^2\dot{\theta}_2 + m_2gl_2\theta_1$$

この式を、次式(41)で表す記号、および式(18)で表 す記号を用いて無灰元化すると、主系と付加系の角変位 を与える式は、式(19)、(21)と同じものになり、最 適同顕、毎倍質量比も式(24)、(30)、(32)で与えら

$$\gamma = (l_2 - l)/l_1, \ \omega_3^2 = g/l_2$$

【0035】図8は、第1,第3発明に係る円軌道型動 吸振器 1 b を用いた振り子型構造物 2 b の構成要素を、 図形化して示したもので、図7に示すものと共通する部 分には同一番号を付して説明を省略する。この動吸振器 1 b は、図7において、リンク21を介して支点O.よ り質量要素m。を吊持していたのに代えて、リンク12 bと一体的な円軌道22上に質量要素m。を転動自在に 支持したもので、力学的には、図7に示すものと実質的 に変わりはない。なお、図8に示す実施例の場合、ダン パ要素は転動体であるローラ部に介在させてあり、図示 されていない。さらに、別の実施例として、図8に示す 質量要素m。を用いず、これに代えて円軌道22に質量 m。を備えさせるとともに、この円軌道22をリンク1 2 bと一体的に揺動するローラ部上にて、このローラ部 に対して相対的に転動させるようにし、かつ転動部にダ ンパ要素を介在させるようにしてもよい。

【0036】図9、10は、第1、第4発明に係る傾斜 援り子型の動吸振器1cを用いた振り子型精造物2cの 構成要素を、図形化して示したもので、上記各実施例と 共通する部分については、互いに同一番号を付して説明

$$\omega^2 = \frac{g \sin \alpha}{l_2}$$

【0038】図10に示すように、付加系振り子の各変位を θ_2 とすると、主系および付加系の質量の位置は、

$$m_{5.} + m_2 g l_2 \theta_2 = 0$$
 (40)

(41)

を省略する。この郵販振器 1 cは、図 9 に示すように、 リンク 1 2 cが静止し、重直状態にあるときに、質量要 業 m_{α} を吊持するリンク 2 1 cが水平方向に対して、角 度 α (α $< \alpha$ < 9 α > 0

【0037】 於に、上述した動吸機器 1 c を用いた質量 血。複類的に関して理論解析する。付加系援り子を主来 の下部に取り付けた二重複り子の場合、主来の周期が長 いため、付加系援り子の腕も長くなり、実用上都合が悪 い。そこで、短い腕で民周期を得るようにしたのが図 り、10にデー動製度器 1 c である。脳の長さが1。の付 加系援り子を水平面より角度 a だけ傾けて取り付けた場 合の付加系援り子の固有振動数は次式(42)で表され る。

(42)

次式(43)~(46)で表される。 【数24】

【数23】

$$x_1 = l_1 \sin \theta_1$$
(43)

$$y_1 = l_1 \cos \theta_1$$
(44)

$$\begin{cases} x_2 \\ y_2 \end{cases} = \begin{bmatrix} \cos \theta_1 & \sin \theta_1 \\ -\sin \theta_1 & \cos \theta_1 \end{bmatrix} \begin{bmatrix} l_2 \sin \theta_2 \\ l + l_2 \cos \theta_2 \sin \alpha \end{bmatrix}$$
(45)

これより、ラグランジュの編新力程表を登ら、2 CS (4 て 7)で表される記号と式(18)で表される記号を用いて 無次元化すると、上記実施例の場合と同様に、主系と付加系の変位は式(19)、(21)となる。 及適調整、等価質 【46) 量比も同様に式(24), (30), (32) で与えられる。 【数25】

$$\gamma = (l_2 \sin \alpha + l)/l_1, \quad \omega_2^2 = q \sin \alpha/l_2 \tag{47}$$

【0039】図11,12は、第1,第5発明に保る例立傾斜版り下壁の動吸振器14を用いた振り下壁構造物と24の構成要を、関形化していたもので、例7に示すものと共通する部分については同一番号が付してある。本実施例では、被吊持体11が、リンク124を分して実持部のに比別時、以下次点のというりにより、動可能に吊持され、被吊持体11とリンク124により質量m。の振り子壁造物24位以下、上記同様に質量m。少とりうと売り変している。動吸盤31位は、リンク124位により支持された質量要素m。と、リンク124と例立り、ウ214との間に介在するほど東24位(回転ばなり定数:k')、ダンパ要乗15(被資係数:c)とを備え、質量m。の重心よりも上方形で、質量m。に対して制版力付与可能に設けられている。

[0041] 次に、一例として、図8に示す装置における可軌道型動要振器 1 b を使った模型で実験を行った。 1_1 =1 m, m_1 =8 k g m_2 =0. 8 k g τ 5 b)、月軌道の半径6 1 m τ 6 b)、動吸銀器 1 b のm9 付け位置として γ =0. 2 5 $(\mu_e$ =0. 0 5 6), 0. 5 $(\mu_e$ =0. 0 2 5 $(\mu_e$ =0) 0 三旬 0 を進んだ。各場合における初期変位による応答を図示 1 3 一図 1 5 に示す、理論解析の結果と同様、取り付け位置を主系の重心近くにすると(γ =1)、制態効果は殆どなく、この重心よりも上方に

取り付ける程 $(\gamma = 0.5, \gamma = 0'.25)$ 、制振効果は大きくなる。ただし、本実験では、動吸振器1 c cの間の摩擦に依存しており、最適な状態には信置されていない。

【0042】本築明は、適用対象を素動熱器に限定する ものでなく、振り子型構造物や軟に適用され得るもので あって、本集明による削減と往来の並適運動素の動吸援 器による削減との違いは、主系の類きによって動吸援器 の質量も主承と同様に重力を受けることにある。動吸援 器を主系の重心に取り付けると、主系に働くモーメント のうち、動吸振器の変位によるばね力によるものと、動 吸振器の重力によるばね力によるものと、動 、主系と動吸援器は、同じ電イ援動数を有する。 高、主系と動吸援器は、同じ電イ援動数を有するこつの 系がダンパで結合されたものになり、一体として揺動す る。しかし、動吸振器の位置を主系の重心から離せば、 動吸振器から生涯にモーメントが作用する。

【0043】上途したように、本発明については、ば私質量型、振り子型、門軌道型、無神振り子型。 例立傾斜振) 子型動吸器器による削減を、動張振器の取り付け位置 をパラメータとして解析し、統一した理論式で説明でき る。最適調整と、制振効果を示す等価質量比は、動吸振器 器と主系の質量比μに(1-y)²(ここで、yは支点から 動吸振器に取り付けた点までの距離を主系の腕の長さで 除したもの)を乗じたものになる。したがって、削振の ためには、動吸振器は、なるべく上方に取り付けるのが 好ましいことが分かる。

【0044】なお、上記冬実施例において、動吸振器 1 ~1 dの各々を1台だけ設けたものについて説明した が、本発明はこれに限定するものでなく、握り予型構造 物2~2 dの連行方向、即ちょッ平面に垂直な方向のバ ランスをとるために、動吸振器 1~1 dの各々を複数台 設けたものも含んでいる。例えば、図 12の場合、図示 する動吸振器 1 dの他に、ッ軸に関して、2軸方向に対 称の位置にも51台の動吸振器 1 dを設けてもよい。

[0045]

【発明の効果】以上の説明より明らかなように、本発明

によれば、振り子型構造物に付借させ、この振り子型構造物の重心よりも上方にて、振り子型構造物に対して制 振力付与可能定設けで形成してある。このため、以上詳 速したように、動吸振器の質量要素とそれを支持する振 り子型構造物との間に相対変位が生じて、振り子型構造 物の振動エネルギが吸収されるようになる結果、特に電 源等の動力を要することなく、また振り子の脳を長くす ることなく、振り子型構造物に対する制振作用が明確に 表れるようになり、振り子型構造物の概范れ抑制作用を 強化でき、振り子型構造物の用途を広げることが可能に なるという効果を要する。

【図面の簡単な説明】

- 【図1】 第1,第2発明に係る動吸振器を適用した振 り子型標浩物の全体構成の概略を示す図である。
- 【図2】 図1に示す動吸振器を有する系、および動吸 振器を有さない系の周波数応答を示す図である。
- 【図3】 図1に示す動吸振器を有する系、および動吸 振器を有さない系の初期変位に対する応答を示す図であ ス
- 【図4】 動吸振器を有さない系のランダム入力に対する応答を示す図である。
- 【図5】 図1に示す動吸振器を有する系のランダム入 力に対する応答を示す図である。
- 【図6】 図1に示す動吸振器を有する系のランダム入 力に対する応答を示す図である。

- 【図7】 第1,第2発明に係る動吸振器を適用した振り子型構造物の全体構成の概略を示す図である。
- 【図8】 第1,第3発明に係る動吸振器を適用した振 9子型構造物の全体構成の概略を示す図である。
- 【図9】 第1,第4発明に係る動吸振器を適用した振 り子型構造物の全体構成の概略を示す図である。
- 【図10】 図9に示す実施例の揺動時の状態を示す図である。。
- 【図11】 第1,第5発明に係る動吸振器を適用した 振り子型構造物の全体構成の概略を示す図である。
- 【図12】 図11に示す動吸振器の質量m₂を支持するリンクの傾斜状態を示す図で、図11においてA方向から見た図である。
- 【図13】 図8に示す動吸振器を有する系の模型を用いて行った実験結果で、初期変位に対する応答を示す図である。
- 【図14】 図8に示す動吸振器を有する系の模型を用いて行った実験結果で、初期変位に対する応答を示す図である。
- 【図15】 図8に示す動吸振器を有する系の模型を用いて行った実験結果で、初期変位に対する応答を示す図である。

【符号の説明】

- 1,1a,1b,1c,1d 動吸振器。
- 2,2a,2b,2c,2d 振り子型構造物。