STM32F446xx

ARM® Cortex®-M4 32b MCU+FPU, 225DMIPS, up to 512kB Flash/128+4KB RAM, USB OTG HS/FS, 17 TIMs, 3 ADCs, 20 comm. interfaces

Data brief

Features

- Core: ARM[®] 32-bit Cortex[®]-M4 CPU with FPU, Adaptive real-time accelerator (ART Accelerator[™]) allowing 0-wait state execution from FI ash memory, frequency up to 180 MHz, MPU, 225 DMIPS/1.25 DMIPS/MHz (Dhrystone 2.1), and DSP instructions
- Memories
 - 512 kB of Flash memory
 - 128 KB of SRAM
 - Flexible external memory controller with up to 16-bit data bus: SRAM,PSRAM,SDRAM/LPSDR SDRAM, Flash NOR/NAND memories
 - Dual mode Quad SPI interface
- LCD parallel interface, 8080/6800 modes
- Clock, reset and supply management
 - 1.7 V to 3.6 V application supply and I/Os
 - POR, PDR, PVD and BOR
 - 4-to-26 MHz crystal oscillator
 - Internal 16 MHz factory-trimmed RC (1% accuracy)
 - 32 kHz oscillator for RTC with calibration
 - Internal 32 kHz RC with calibration
- Low power
 - Sleep, Stop and Standby modes
 - V_{BAT} supply for RTC, 20×32 bit backup registers + optional 4 KB backup SRAM
- 3×12-bit, 2.4 MSPS ADC: up to 24 channels and 7.2 MSPS in triple interleaved mode
- 2×12-bit D/A converters
- General-purpose DMA: 16-stream DMA controller with FIFOs and burst support
- Up to 17 timers: 2x watchdog, 1x SysTick timer and up to twelve 16-bit and two 32-bit timers up to 180 MHz, each with up to 4 IC/OC/PWM or pulse counter
- Debug mode
 - SWD & JTAG interfaces
 - Cortex[®]-M4 Trace Macrocell™

- Up to 114 I/O ports with interrupt capability
 - Up to 111 fast I/Os up to 90 MHz
 - Up to 112 5 V-tolerant I/Os
- Up to 20 communication interfaces
 - SPDIF-Rx
 - Up to $4 \times I^2$ C interfaces (SMBus/PMBus)
 - Up to 4 USARTs/2 UARTs (11.25 Mbit/s, ISO7816 interface, LIN, IrDA, modem control)
 - Up to 4 SPIs (45 Mbits/s), 3 with muxed I²S for audio class accuracy via internal audio PLL or external clock
 - 2 x SAI (serial audio interface)
 - 2 × CAN (2.0B Active)
 - SDIO interface
 - Consumer electronics control (CEC) I/F
- Advanced connectivity
 - USB 2.0 full-speed device/host/OTG controller with on-chip PHY
 - USB 2.0 high-speed/full-speed device/host/OTG controller with dedicated DMA, on-chip full-speed PHY and ULPI
 - Dedicated USB power rail enabling on-chip PHYs operation throughout the entire MCU power supply range
- 8- to 14-bit parallel camera interface up to 54 Mbytes/s
- · CRC calculation unit
- RTC: subsecond accuracy, hardware calendar
- 96-bit unique ID

Table 1. Device summary

Reference	Part number
STM32F446xx	STM32F446MC, STM32F446ME, STM32F446RC, STM32F446RE, STM32F446VC, STM32F446VE, STM32F446ZC, STM32F446ZE.

Contents STM32F446xx

Contents

1	Intro	duction	7						
2	Desc	Description							
	2.1	Compatibility with STM32F4 family	10						
3	Func	ctional overview	13						
	3.1	$ARM^{@}$ Cortex $^{@}$ -M4 with FPU and embedded Flash and SRAM \dots	13						
	3.2	Adaptive real-time memory accelerator (ART Accelerator™)	13						
	3.3	Memory protection unit	13						
	3.4	Embedded Flash memory	14						
	3.5	CRC (cyclic redundancy check) calculation unit	14						
	3.6	Embedded SRAM	14						
	3.7	Multi-AHB bus matrix	14						
	3.8	DMA controller (DMA)	15						
	3.9	Flexible memory controller (FMC)	16						
	3.10	Quad SPI memory interface (QUADSPI)	16						
	3.11	Nested vectored interrupt controller (NVIC)	17						
	3.12	External interrupt/event controller (EXTI)	17						
	3.13	Clocks and startup	17						
	3.14	Boot modes	18						
	3.15	Power supply schemes	18						
	3.16	Power supply supervisor	18						
		3.16.1 Internal reset ON	18						
		3.16.2 Internal reset OFF	18						
	3.17	Voltage regulator	19						
		3.17.1 Regulator ON	20						
		3.17.2 Regulator OFF	21						
		3.17.3 Regulator ON/OFF and internal reset ON/OFF availability	23						
	3.18	Real-time clock (RTC), backup SRAM and backup registers	23						
	3.19	Low-power modes	24						
	3.20	V _{BAT} operation	25						
	3.21	Timers and watchdogs	25						

		3.21.1 Advanced-control timers (TIM1, TIM8)	27
		3.21.2 General-purpose timers (TIMx)	27
		3.21.3 Basic timers TIM6 and TIM7	27
		3.21.4 Independent watchdog	
		3.21.5 Window watchdog	
		3.21.6 SysTick timer	
	3.22	Inter-integrated circuit interface (I ² C)	
	3.23	Universal synchronous/asynchronous receiver transmitters (USART	
	3.24	Serial peripheral interface (SPI)	29
	3.25	HDMI (high-definition multimedia interface) consumer electronics control (CEC)	30
	3.26	Inter-integrated sound (I ² S)	30
	3.27	SPDIF-RX Receiver Interface (SPDIF-RX)	30
	3.28	Serial Audio interface (SAI)	31
	3.29	Audio PLL (PLLI2S)	31
	3.30	Serial Audio Interface PLL(PLLSAI)	31
	3.31	Secure digital input/output interface (SDIO)	31
	3.32	Controller area network (bxCAN)	32
	3.33	Universal serial bus on-the-go full-speed (OTG_FS)	32
	3.34	Universal serial bus on-the-go high-speed (OTG_HS)	32
	3.35	Digital camera interface (DCMI)	33
	3.36	General-purpose input/outputs (GPIOs)	33
	3.37	Analog-to-digital converters (ADCs)	33
	3.38	Temperature sensor	34
	3.39	Digital-to-analog converter (DAC)	34
	3.40	Serial wire JTAG debug port (SWJ-DP)	34
	3.41	Embedded Trace Macrocell™	35
4	Pinou	and pin description	36
5	Memo	ry mapping	62
6	Packa	ge characteristics	67
	6.1	Package mechanical data	67
	6.2	Thermal characteristics	79

Contents STM32F446xx

7	Part numbering						
Appendix	A A	pplication block diagrams	81				
	A.1	USB OTG full speed (FS) interface solutions	81				
	A.2	USB OTG high speed (HS) interface solutions	83				
8	Revis	sion history	84				

STM32F446xx List of figures

List of figures

Figure 1.	Compatible board design for LQFP100 package	. 10
Figure 2.	Compatible board for LQFP64 package	
Figure 3.	STM32F466xx block diagram	. 12
Figure 4.	STM32F446xx and Multi-AHB matrix	. 15
Figure 5.	Power supply supervisor interconnection with internal reset OFF	. 19
Figure 6.	Regulator OFF	. 21
Figure 7.	Startup in regulator OFF: slow V _{DD} slope	
	power-down reset risen after V _{CAP 1} /V _{CAP 2} stabilization	. 22
Figure 8.	Startup in regulator OFF mode: fast V _{DD} slope	
	power-down reset risen before V _{CAP_1} /V _{CAP_2} stabilization	. 22
Figure 9.	STM32F446xC/xE LQFP64 pinout	. 36
Figure 10.	STM32F446xC/xE LQFP100 pinout	. 37
Figure 11.	STM32F446xC LQFP144 pinout	
Figure 12.	STM32F446xC/xE WLCSP81 ballout	. 39
Figure 13.	STM32F446xC/xE UFBGA144 ballout	. 40
Figure 14.	Memory map	
Figure 15.	LQFP64-10x10 mm 64 pin low-profile quad flat package outline	
Figure 16.	LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline	
Figure 17.	LQPF100 recommended footprint	
Figure 18.	LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline	
Figure 19.	LQFP144 recommended footprint	. 73
Figure 20.	UFBGA144, 7x7x0.60 R12x12 P 0.5mm, package outline	
Figure 21.	UFBGA144 - 10 x 10 x 0.6 mm, 0.8 pitch package outline	
Figure 22.	WLCSP81 - 0.4 mm pitch package outline	. 78
Figure 23.	USB controller configured as peripheral-only and used in Full speed mode	. 81
Figure 24.	USB controller configured as host-only and used in full speed mode	
Figure 25.	USB controller configured in dual mode and used in full speed mode	. 82
Figure 26.	USB controller configured as peripheral, host, or dual-mode	
	and used in high speed mode	. 83

List of tables STM32F446xx

List of tables

Device summary	1
Voltage regulator configuration mode versus device operating mode	20
Regulator ON/OFF and internal reset ON/OFF availability	23
Voltage regulator modes in stop mode	24
Comparison of I2C analog and digital filters	28
USART feature comparison	29
Legend/abbreviations used in the pinout table	41
STM32F446xx pin and ball descriptions	41
LQFP64 – 10 x 10 mm low-profile quad flat package mechanical data	68
· · · · · · · · · · · · · · · · · · ·	
UFBGA144 - 10 x 10 x 0.6 mm, 0.8 pitch, 144-pin package mechanical data	76
Package thermal characteristics	79
Document revision history	84
	Device summary STM32F446x features and peripheral counts. Voltage regulator configuration mode versus device operating mode Regulator ON/OFF and internal reset ON/OFF availability. Voltage regulator modes in stop mode. Timer feature comparison. Comparison of I2C analog and digital filters. USART feature comparison Legend/abbreviations used in the pinout table. STM32F446xx pin and ball descriptions. Alternate function. STM32F446xx and register boundary addresses. LQFP64 – 10 x 10 mm low-profile quad flat package mechanical data. LQPF100, 14 x 14 mm 100-pin low-profile quad flat package mechanical data. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data. UFBGA144, 7 x 7 x 0.60 R12x12 P 0.5 mm, 144-pin package mechanical data. UFBGA144 - 10 x 10 x 0.6 mm, 0.8 pitch, 144-pin package mechanical data. WLCSP81 - 0.4 mm pitch package mechanical data. Package thermal characteristics. Ordering information scheme. Document revision history

STM32F446xx Introduction

1 Introduction

This databrief provides the description of the STM32F446xx line of microcontrollers.

The STM32F446xx databrief should be read in conjunction with the STM32F4xx reference manual.

For information on the Cortex[®]-M4 core, please refer to the Cortex[®]-M4 programming manual (PM0214), available from the *www.st.com*.

Description STM32F446xx

2 Description

The STM32F446xx devices are based on the high-performance ARM[®] Cortex[®]-M4 32-bit RISC core operating at a frequency of up to 180 MHz. The Cortex-M4 core features a Floating point unit (FPU) single precision which supports all ARM[®] single-precision data-processing instructions and data types. It also implements a full set of DSP instructions and a memory protection unit (MPU) which enhances application security.

The STM32F446xx devices incorporate high-speed embedded memories (Flash memory up to 512 Kbyte, up to 128 Kbyte of SRAM), up to 4 Kbytes of backup SRAM, and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB buses and a 32-bit multi-AHB bus matrix.

All devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve general-purpose 16-bit timers including two PWM timers for motor control, two general-purpose 32-bit timers.

They also feature standard and advanced communication interfaces.

- Up to four I²Cs;
- Four SPIs, three I²Ss full simplex. To achieve audio class accuracy, the I²S peripherals
 can be clocked via a dedicated internal audio PLL or via an external clock to allow
 synchronization;
- Four USARTs plus two UARTs;
- An USB OTG full-speed and an USB OTG high-speed with full-speed capability (with the ULPI), both with dedicated power rails allowing to use them throughout the entire power range;
- Two CANs;
- Two SAIs serial audio interfaces. To achieve audio class accuracy, the SAIs can be clocked via a dedicated internal audio PLL;
- An SDIO/MMC interface;
- · Camera interface;
- HDMI-CEC;
- SPDIF-Rx;
- QuadSPI.

Advanced peripherals include an SDIO, a flexible memory control (FMC) interface, a camera interface for CMOS sensors. Refer to *Table 2: STM32F446x features and peripheral counts* for the list of peripherals available on each part number.

The STM32F446xx and devices operates in the –40 to +105 °C temperature range from a 1.7 to 3.6 V power supply.

The supply voltage can drop to 1.7 V with the use of an external power supply supervisor (refer to *Section 3.16.2: Internal reset OFF*). A comprehensive set of power-saving mode allows the design of low-power applications.

The STM32F446xx devices offer devices in 6 packages ranging from 64 pins to 144 pins. The set of included peripherals changes with the device chosen.

STM32F446xx Description

These features make the STM32F446xxmicrocontrollers suitable for a wide range of applications:

- Motor drive and application control
- Medical equipment
- Industrial applications: PLC, inverters, circuit breakers
- Printers, and scanners
- Alarm systems, video intercom, and HVAC
- Home audio appliances

Table 2. STM32F446x features and peripheral counts

Peripherals		STM32F44 6MC	STM32F44 6ME	STM32F44 6RC	STM32F44 6RE	STM32F44 6VC	STM32F44 6VE	STM32F44 6ZC	STM32F44 6ZE	
Flash memory in Kbytes		256	512	256	512	256	512	256	512	
SRAM in	System				128 (1	12+16)				
Kbytes	Backup				4	4				
FMC memory co	ntroller		N	0			Ye	s ⁽¹⁾		
	General- purpose				1	0				
Timers	Advanced- control				2	2				
	Basic				2	2				
	SPI / I ² S				4/2 (sim	nplex) ⁽²⁾				
	I ² C				4	4				
	USART/UART				4.	/2				
	USB OTG FS				Ye	es				
	USB OTG HS	Yes								
Communication interfaces	CAN	2								
	SAI	2								
	SDIO	Yes								
	SPDIF-Rx	1								
	HDMI-CEC	1								
Quad SPI		1								
Camera interface	9				Ye	es				
GPIOs		6	3	5	60	8	1	1′	14	
12-bit ADC			2					;	3	
Number of chann	nels	1	4	1	6	1	6	2	4	
12-bit DAC Number of channels		Yes 2								
Maximum CPU f	requency	180 MHz								
Operating voltag	е	1.8 to 3.6 V ⁽³⁾								
Operating to	roturos			Ambient tem	peratures: –40) to +85 °C /–4	0 to +105 °C			
Operating tempe	ratures			Juno	tion temperatu	ıre: -40 to + 12	25 °C			
Packages		WLC	SP81	LQF	P64	LQF	P100	LQF UFB0	P144 GA144	

Description STM32F446xx

 For the LQFP100 package, only FMC Bank1 or Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select. Bank2 can only support a 16- or 8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not available in this package.

- 2. The SPI1, SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode.
- 3. V_{DD}/V_{DDA} minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external power supply supervisor (refer to Section 3.16.2: Internal reset OFF).

2.1 Compatibility with STM32F4 family

The STM32F446xC/xV is software and feature compatible with the STM32F4 family.

The STM32F446xC/xV can be used as drop-in replacement of the other STM32F4 products but some slight changes have to be done on the PCB board.

Figure 1. Compatible board design for LQFP100 package

STM32F446xx Description

STM32F405/STM32F415 line STM32F446xx 22 52 51 50 49 53 52 51 50 49 54 45 PC12 PC11 PC10 PA15 53 52 51 50 49 49 48 VDD 47 VCAP2 46 PA13 45 PA12 44 PA11 43 PA10 - VDD VDD 42 PA9 41 PA8 40 PC9 VSS VSS 39 PC8 38 PC7 37 PC6 36 PB15 PB11 not available anymore 35 PB14 34 PB13 33 PB12 Replaced by V_{CAP1} VCAP 1 VDD 08 62 87 VDD 08 62 87 VDD 08 62 87 V_{CAP} increased to 4.7 μf ESR 1 Ω or below 1 VSS VDD VSS VDD MS33845V2

Figure 2. Compatible board for LQFP64 package

Figure 3 shows the STM32F446xx block diagram.

Description STM32F446xx

Figure 3. STM32F466xx block diagram

3 Functional overview

3.1 ARM® Cortex®-M4 with FPU and embedded Flash and SRAM

The ARM® Cortex®-M4 with FPU processor is the latest generation of ARM processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.

The ARM® Cortex®-M4 with FPU core is a 32-bit RISC processor that features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices.

The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution.

Its single precision FPU (floating point unit) speeds up software development by using metalanguage development tools, while avoiding saturation.

The STM32F446xx family is compatible with all ARM tools and software.

Figure 3 shows the general block diagram of the STM32F446xx family.

Note: Cortex-M4 with FPU core is binary compatible with the Cortex-M3 core.

3.2 Adaptive real-time memory accelerator (ART Accelerator™)

The ART Accelerator™ is a memory accelerator which is optimized for STM32 industry-standard ARM® Cortex®-M4 with FPU processors. It balances the inherent performance advantage of the ARM® Cortex®-M4 with FPU over Flash memory technologies, which normally requires the processor to wait for the Flash memory at higher frequencies.

To release the processor full 225 DMIPS performance at this frequency, the accelerator implements an instruction prefetch queue and branch cache, which increases program execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the performance achieved thanks to the ART Accelerator is equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 180 MHz.

3.3 Memory protection unit

The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory.

The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.

The MPU is optional and can be bypassed for applications that do not need it.

3.4 Embedded Flash memory

The devices embed a Flash memory of 512KB available for storing programs and data.

3.5 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a software signature during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

3.6 Embedded SRAM

All devices embed:

- Up to 128Kbytes of system SRAM.
 RAM memory is accessed (read/write) at CPU clock speed with 0 wait states.
- 4 Kbytes of backup SRAM

This area is accessible only from the CPU. Its content is protected against possible unwanted write accesses, and is retained in Standby or VBAT mode.

3.7 Multi-AHB bus matrix

The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, USB HS) and the slaves Flash memory, RAM, QuadSPI, FMC, AHB and APB peripherals and ensures a seamless and efficient operation even when several high-speed peripherals work simultaneously.

577

Figure 4. STM32F446xx and Multi-AHB matrix

3.8 DMA controller (DMA)

The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8 streams each. They are able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals, support burst transfer and are designed to provide the maximum peripheral bandwidth (AHB/APB).

The two DMA controllers support circular buffer management, so that no specific code is needed when the controller reaches the end of the buffer. The two DMA controllers also have a double buffering feature, which automates the use and switching of two memory buffers without requiring any special code.

Each stream is connected to dedicated hardware DMA requests, with support for software trigger on each stream. Configuration is made by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals:

- SPI and I²S
- I²C
- USART
- General-purpose, basic and advanced-control timers TIMx
- DAC
- SDIO
- Camera interface (DCMI)
- ADC
- SAI1/SAI2
- SPDIF-Rx
- QuadSPI

3.9 Flexible memory controller (FMC)

All devices embed an FMC. It has seven Chip Select outputs supporting the following modes: SDRAM/LPSDR SDRAM, SRAM, PSRAM, NOR Flash and NAND Flash. With the possibility to remap FMC bank 1 (NOR/PSRAM 1 and 2) and FMC SDRAM bank 1/2 in the Cortex-M4 code area.

Functionality overview:

- 8-,16-bit data bus width
- Read FIFO for SDRAM controller
- Write FIFC
- Maximum FMC_CLK/FMC_SDCLK frequency for synchronous accesses is 90 MHz.

LCD parallel interface

The FMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost-effective graphic applications using LCD modules with embedded controllers or high performance solutions using external controllers with dedicated acceleration.

3.10 Quad SPI memory interface (QUADSPI)

All devices embed a Quad SPI memory interface, which is a specialized communication interface targeting Single, Dual or Quad SPI flash memories. It can work in direct mode through registers, external flash status register polling mode and memory mapped mode. Up to 256 Mbytes external flash are memory mapped, supporting 8, 16 and 32-bit access. Code execution is supported. The opcode and the frame format are fully programmable. Communication can be either in Single Data Rate or Dual Data Rate.

3.11 Nested vectored interrupt controller (NVIC)

The devices embed a nested vectored interrupt controller able to manage 16 priority levels, and handle up to 91 maskable interrupt channels plus the 16 interrupt lines of the Cortex[®]-M4 with FPU core.

- Closely coupled NVIC gives low-latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Allows early processing of interrupts
- Processing of late arriving, higher-priority interrupts
- Support tail chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimum interrupt latency.

3.12 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of 23 edge-detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 114 GPIOs can be connected to the 16 external interrupt lines.

3.13 Clocks and startup

On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The 16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy over the full temperature range. The application can then select as system clock either the RC oscillator or an external 4-26 MHz clock source. This clock can be monitored for failure. If a failure is detected, the system automatically switches back to the internal RC oscillator and a software interrupt is generated (if enabled). This clock source is input to a PLL thus allowing to increase the frequency up to 180 MHz. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example if an indirectly used external oscillator fails).

Several prescalers allow the configuration of the two AHB buses, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the two AHB buses is 180 MHz while the maximum frequency of the high-speed APB domains is 90 MHz. The maximum allowed frequency of the low-speed APB domain is 45 MHz.

The devices embed a dedicated PLL (PLLI2S) and PLLSAI which allows to achieve audio class performance. In this case, the I²S master clock can generate all standard sampling frequencies from 8 kHz to 192 kHz.

3.14 Boot modes

At startup, boot pins are used to select one out of three boot options:

- Boot from user Flash
- Boot from system memory
- Boot from embedded SRAM

The boot loader is located in system memory. It is used to reprogram the Flash memory through a serial (UART, I²C, CAN, SPI and USB) communication interface. Refer to application note AN2606 for details.

3.15 Power supply schemes

- V_{DD} = 1.7 to 3.6 V: external power supply for I/Os and the internal regulator (when enabled), provided externally through V_{DD} pins.
- V_{SSA}, V_{DDA} = 1.7 to 3.6 V: external analog power supplies for ADC, DAC, Reset blocks, RCs and PLL. V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS}, respectively.
- V_{BAT} = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

Note:

 V_{DD}/V_{DDA} minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.16.2: Internal reset OFF). Refer to Table 3: Voltage regulator configuration mode versus device operating mode to identify the packages supporting this option.

3.16 Power supply supervisor

3.16.1 Internal reset ON

On packages embedding the PDR_ON pin, the power supply supervisor is enabled by holding PDR_ON high. On the other package, the power supply supervisor is always enabled.

The device has an integrated power-on reset (POR)/ power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry. At power-on, POR/PDR is always active and ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is reached, the option byte loading process starts, either to confirm or modify default BOR thresholds, or to disable BOR permanently. Three BOR thresholds are available through option bytes. The device remains in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$ or V_{BOR} , without the need for an external reset circuit.

The device also features an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.16.2 Internal reset OFF

This feature is available only on packages featuring the PDR_ON pin. The internal power-on reset (POR) / power-down reset (PDR) circuitry is disabled through the PDR_ON pin.

> An external power supply supervisor should monitor $V_{\mbox{\scriptsize DD}}$ and should maintain the device in reset mode as long as V_{DD} is below a specified threshold. PDR_ON should be connected to VSS, to allows device to operate down to 1.7v. Refer to Figure 5: Power supply supervisor interconnection with internal reset OFF.

VDD STM32F446x Application reset signal (optional) ☐ VBAT □ PDR ON **VSS**

Figure 5. Power supply supervisor interconnection with internal reset OFF

The V_{DD} specified threshold, below which the device must be maintained under reset, is 1.7 V.

A comprehensive set of power-saving mode allows to design low-power applications.

PDR not active: 1.7v< VDD<3.6v

When the internal reset is OFF, the following integrated features are no more supported:

- The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled
- The brownout reset (BOR) circuitry must be disabled
- The embedded programmable voltage detector (PVD) is disabled
- V_{BAT} functionality is no more available and V_{BAT} pin should be connected to V_{DD}.

All packages, except for the LQFP100/LQFP64, allow to disable the internal reset through the PDR_ON signal.

3.17 Voltage regulator

The regulator has four operating modes:

- Regulator ON
 - Main regulator mode (MR)
 - Low power regulator (LPR)
 - Power-down
- Regulator OFF

MS33844V1

3.17.1 Regulator ON

On packages embedding the BYPASS_REG pin, the regulator is enabled by holding BYPASS_REG low. On all other packages, the regulator is always enabled.

There are three power modes configured by software when the regulator is ON:

- MR mode used in Run/sleep modes or in Stop modes
 - In Run/Sleep mode

The MR mode is used either in the normal mode (default mode) or the over-drive mode (enabled by software). Different voltages scaling are provided to reach the best compromise between maximum frequency and dynamic power consumption. The over-drive mode allows operating at a higher frequency than the normal mode for a given voltage scaling.

In Stop modes

The MR can be configured in two ways during stop mode:

MR operates in normal mode (default mode of MR in stop mode)

MR operates in under-drive mode (reduced leakage mode).

LPR is used in the Stop modes:

The LP regulator mode is configured by software when entering Stop mode.

Like the MR mode, the LPR can be configured in two ways during stop mode:

- LPR operates in normal mode (default mode when LPR is ON)
- LPR operates in under-drive mode (reduced leakage mode).
- Power-down is used in Standby mode.

The Power-down mode is activated only when entering in Standby mode. The regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption. The contents of the registers and SRAM are lost.

Refer to *Table 3* for a summary of voltage regulator modes versus device operating modes.

Two external ceramic capacitors should be connected on $V_{CAP\ 1}$ and $V_{CAP\ 2}$ pin.

All packages have the regulator ON feature.

Table 3. Voltage regulator configuration mode versus device operating mode⁽¹⁾

Voltage regulator configuration	Run mode	Sleep mode	Stop mode	Standby mode
Normal mode	MR	MR	MR or LPR	-
Over-drive mode ⁽²⁾	MR	MR	-	-
Under-drive mode	-	-	MR or LPR	-
Power-down mode	-	-	-	Yes

^{1. &#}x27;-' means that the corresponding configuration is not available.

^{2.} The over-drive mode is not available when V_{DD} = 1.7 to 2.1 V.

3.17.2 Regulator OFF

This feature is available only on packages featuring the BYPASS_REG pin. The regulator is disabled by holding BYPASS_REG high. The regulator OFF mode allows to supply externally a V_{12} voltage source through V_{CAP} and V_{CAP} pins.

Since the internal voltage scaling is not managed internally, the external voltage value must be aligned with the targeted maximum frequency. The two 2.2 μ F ceramic capacitors should be replaced by two 100 nF decoupling capacitors.

When the regulator is OFF, there is no more internal monitoring on V_{12} . An external power supply supervisor should be used to monitor the V_{12} of the logic power domain. PA0 pin should be used for this purpose, and act as power-on reset on V_{12} power domain.

In regulator OFF mode, the following features are no more supported:

- PA0 cannot be used as a GPIO pin since it allows to reset a part of the V₁₂ logic power domain which is not reset by the NRST pin.
- As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As a consequence, PA0 and NRST pins must be managed separately if the debug connection under reset or pre-reset is required.
- The over-drive and under-drive modes are not available.

Figure 6. Regulator OFF

The following conditions must be respected:

- V_{DD} should always be higher than V_{CAP_1} and V_{CAP_2} to avoid current injection between power domains.
- If the time for V_{CAP_1} and V_{CAP_2} to reach V₁₂ minimum value is faster than the time for V_{DD} to reach 1.7 V, then PA0 should be kept low to cover both conditions: until V_{CAP_1} and V_{CAP_2} reach V₁₂ minimum value and until V_{DD} reaches 1.7 V (see *Figure 7*).
- Otherwise, if the time for V_{CAP_1} and V_{CAP_2} to reach V₁₂ minimum value is slower than the time for V_{DD} to reach 1.7 V, then PA0 could be asserted low externally (see Figure 8).
- If V_{CAP_1} and V_{CAP_2} go below V_{12} minimum value and V_{DD} is higher than 1.7 V, then a reset must be asserted on PA0 pin.

Note: The minimum value of V_{12} depends on the maximum frequency targeted in the application.

Figure 7. Startup in regulator OFF: slow V_{DD} slope power-down reset risen after V_{CAP-1}/V_{CAP-2} stabilization

1. This figure is valid whatever the internal reset mode (ON or OFF).

Figure 8. Startup in regulator OFF mode: fast V_{DD} slope power-down reset risen before $V_{CAP\ 1}/V_{CAP\ 2}$ stabilization

1. This figure is valid whatever the internal reset mode (ON or OFF).

3.17.3 Regulator ON/OFF and internal reset ON/OFF availability

Table 4. Regulator ON/OFF and internal reset ON/OFF availability

Package	Regulator ON	Regulator OFF	Internal reset ON	Internal reset OFF
LQFP64 LQFP100	Yes	No	Yes	No
LQFP144	Yes	No		
UFBGA144	Yes	Yes	Yes PDR_ON set to V _{DD}	Yes PDR_ON set to VSS
WLCSP81	BYPASS_REG set to Vss	BYPASS_REG set to VDD		

3.18 Real-time clock (RTC), backup SRAM and backup registers

The backup domain includes:

- The real-time clock (RTC)
- 4 Kbytes of backup SRAM
- 20 backup registers

The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain the second, minute, hour (in 12/24 hour), week day, date, month, year, in BCD (binary-coded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are performed automatically. The RTC provides a programmable alarm and programmable periodic interrupts with wakeup from Stop and Standby modes. The sub-seconds value is also available in binary format.

It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural quartz deviation.

Two alarm registers are used to generate an alarm at a specific time and calendar fields can be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit programmable binary auto-reload downcounter with programmable resolution is available and allows automatic wakeup and periodic alarms from every 120 µs to every 36 hours.

A 20-bit prescaler is used for the time base clock. It is by default configured to generate a time base of 1 second from a clock at 32.768 kHz.

The 4-Kbyte backup SRAM is an EEPROM-like memory area. It can be used to store data which need to be retained in VBAT and standby mode. This memory area is disabled by default to minimize power consumption (see Section 3.19: Low-power modes). It can be enabled by software.

The backup registers are 32-bit registers used to store 80 bytes of user application data when V_{DD} power is not present. Backup registers are not reset by a system, a power reset, or when the device wakes up from the Standby mode (see Section 3.19: Low-power modes).

Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes, hours, day, and date.

Like backup SRAM, the RTC and backup registers are supplied through a switch that is powered either from the V_{DD} supply when present or from the V_{BAT} pin.

3.19 Low-power modes

The devices support three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

Stop mode

The Stop mode achieves the lowest power consumption while retaining the contents of SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled.

The voltage regulator can be put either in main regulator mode (MR) or in low-power mode (LPR). Both modes can be configured as follows (see *Table 5: Voltage regulator modes in stop mode*):

- Normal mode (default mode when MR or LPR is enabled)
- Under-drive mode.

The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup / tamper / time stamp events, the USB OTG FS/HS wakeup).

Voltage regulator configuration	Main regulator (MR)	Low-power regulator (LPR)
Normal mode	MR ON	LPR ON
Under-drive mode	MR in under-drive mode	LPR in under-drive mode

Table 5. Voltage regulator modes in stop mode

• Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.2 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, the SRAM and register contents are lost except for registers in the backup domain and the backup SRAM when selected.

The device exits the Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm / wakeup / tamper /time stamp event occurs.

The standby mode is not supported when the embedded voltage regulator is bypassed and the 1.2 V domain is controlled by an external power.

3.20 V_{BAT} operation

The V_{BAT} pin allows to power the device V_{BAT} domain from an external battery, an external supercapacitor, or from V_{DD} when no external battery and an external supercapacitor are present.

V_{BAT} operation is activated when V_{DD} is not present.

The V_{BAT} pin supplies the RTC, the backup registers and the backup SRAM.

Note: When the microcontroller is supplied from V_{BAT} , external interrupts and RTC alarm/events do not exit it from V_{BAT} operation.

When PDR_ON pin is not connected to V_{DD} (Internal Reset OFF), the V_{BAT} functionality is no more available and V_{BAT} pin should be connected to V_{DD} .

3.21 Timers and watchdogs

The devices include two advanced-control timers, eight general-purpose timers, two basic timers and two watchdog timers.

All timer counters can be frozen in debug mode.

Table 6 compares the features of the advanced-control, general-purpose and basic timers.

Table 6. Timer feature comparison

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/ compare channels	Complementary output	Max interface clock (MHz)	Max timer clock (MHz)
Advanced- control	TIM1, TIM8	16-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	Yes	90	180
	TIM2, TIM5	32-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	No	45	90/180
	TIM3, TIM4	16-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	No	45	90/180
General	TIM9	16-bit	Up	Any integer between 1 and 65536	No	2	No	90	180
purpose	TIM10, TIM11	16-bit	Up	Any integer between 1 and 65536	No	1	No	90	180
	TIM12	16-bit	Up	Any integer between 1 and 65536	No	2	No	45	90/180
	TIM13, TIM14	16-bit	Up	Any integer between 1 and 65536	No	1	No	45	90/180
Basic	TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No	45	90/180

1. The maximum timer clock is either 90 or 180 MHz depending on TIMPRE bit configuration in the RCC_DCKCFGR register.

3.21.1 Advanced-control timers (TIM1, TIM8)

The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead times. They can also be considered as complete general-purpose timers. Their 4 independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge- or center-aligned modes)
- One-pulse mode output

If configured as standard 16-bit timers, they have the same features as the general-purpose TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0-100%).

The advanced-control timer can work together with the TIMx timers via the Timer Link feature for synchronization or event chaining.

TIM1 and TIM8 support independent DMA request generation.

3.21.2 General-purpose timers (TIMx)

There are ten synchronized general-purpose timers embedded in the STM32F446xx devices (see *Table 6* for differences).

TIM2, TIM3, TIM4, TIM5

The STM32F446xx include 4 full-featured general-purpose timers: TIM2, TIM5, TIM3, and TIM4. The TIM2 and TIM5 timers are based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. The TIM3 and TIM4 timers are based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They all feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input capture/output compare/PWMs on the largest packages.

The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the Timer Link feature for synchronization or event chaining.

Any of these general-purpose timers can be used to generate PWM outputs.

TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 4 hall-effect sensors.

TIM9, TIM10, TIM11, TIM12, TIM13, and TIM14

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM10, TIM11, TIM13, and TIM14 feature one independent channel, whereas TIM9 and TIM12 have two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers. They can also be used as simple time bases.

3.21.3 Basic timers TIM6 and TIM7

These timers are mainly used for DAC trigger and waveform generation. They can also be used as a generic 16-bit time base.

TIM6 and TIM7 support independent DMA request generation.

3.21.4 Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 32 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes.

3.21.5 Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

3.21.6 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard downcounter. It features:

- A 24-bit downcounter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0
- Programmable clock source.

3.22 Inter-integrated circuit interface (I²C)

Four I²C bus interfaces can operate in multimaster and slave modes. Three I²C can support the standard (up to 100 KHz) and fast (up to 400 KHz) modes.

One I²C can support the standard (up to 100 KHz), fast (up to 400 KHz) and fast mode plus (up to 1MHz) modes.

They (all I²C) support the 7/10-bit addressing mode and the 7-bit dual addressing mode (as slave).

A hardware CRC generation/verification is embedded.

They can be served by DMA and they support SMBus 2.0/PMBus.

The devices also include programmable analog and digital noise filters (see *Table 7*).

Table 7. Comparison of I2C analog and digital filters

	Analog filter	Digital filter
Pulse width of suppressed spikes	≥ 50 ns	Programmable length from 1 to 15 I2C peripheral clocks

3.23 Universal synchronous/asynchronous receiver transmitters (USART)

The devices embed four universal synchronous/asynchronous receiver transmitters (USART1, USART2, USART3 and USART6) and four universal asynchronous receiver transmitters (UART4, and UART5).

These six interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability. The USART1 and USART6 interfaces are able to communicate at speeds of up to 11.25 Mbit/s. The other available interfaces communicate at up to 5.62 bit/s.

USART1, USART2, USART3 and USART6 also provide hardware management of the CTS and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All interfaces can be served by the DMA controller.

Table 8. USART feature comparison ⁽¹⁾									
USART name	Standard features	Modem (RTS/CTS)	LIN	SPI maste r	irD A	Smartcard (ISO 7816)	Max. baud rate in Mbit/s (oversamplin g by 16)	Max. baud rate in Mbit/s (oversamplin g by 8)	APB mapping
USART1	х	Х	х	Х	Х	Х	5.62	11.25	APB2 (max. 90 MHz)
USART2	х	Х	х	Х	Х	Х	2.81	5.62	APB1 (max. 45 MHz)
USART3	х	Х	Х	Х	х	Х	2.81	5.62	APB1 (max. 45 MHz)
UART4	х	-	Х	-	х	-	2.81	5.62	APB1 (max. 45 MHz)
UART5	х	-	Х	-	Х	-	2.81	5.62	APB1 (max. 45 MHz)
USART6	Х	х	Х	х	Х	Х	5.62	11.25	APB2 (max. 90 MHz)

Table 8. USART feature comparison⁽¹⁾

3.24 Serial peripheral interface (SPI)

The devices feature up to four SPIs in slave and master modes in full-duplex and simplex communication modes. SPI1, and SPI4 can communicate at up to 45 Mbits/s, SPI2 and SPI3 can communicate at up to 22.5 Mbit/s. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the DMA controller.

^{1.} X = feature supported.

The SPI interface can be configured to operate in TI mode for communications in master mode and slave mode.

3.25 HDMI (high-definition multimedia interface) consumer electronics control (CEC)

The devices embeds a HDMI-CEC controller that provides hardware support of consumer electronics control (CEC) (Appendix supplement 1 to the HDMI standard).

This protocol provides high-level control functions between all audiovisual products in an environment. It is specified to operate at low speeds with minimum processing and memory overhead.

3.26 Inter-integrated sound (I²S)

Three standard I²S interfaces (multiplexed with SPI1, SPI2 and SPI3) are available. They can be operated in master or slave mode, in simplex communication modes, and can be configured to operate with a 16-/32-bit resolution as an input or output channel. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the I²S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency.

All I2Sx can be served by the DMA controller.

3.27 SPDIF-RX Receiver Interface (SPDIF-RX)

The SPDIF-RX peripheral, is designed to receive an S/PDIF flow compliant with IEC-60958 and IEC-61937. These standards support simple stereo streams up to high sample rate, and compressed multi-channel surround sound, such as those defined by Dolby or DTS (up to 5.1).

The main features of the SPDIF-RX are the following:

- Up to 4 inputs available
- Automatic symbol rate detection
- Maximum symbol rate: 12.288 MHz
- Stereo stream from 32 to 192 kHz supported
- Supports Audio IEC-60958 and IEC-61937, consumer applications
- Parity bit management
- · Communication using DMA for audio samples
- Communication using DMA for control and user channel information
- Interrupt capabilities

The SPDIF-RX receiver provides all the necessary features to detect the symbol rate, and decode the incoming data stream.

The user can select the wanted SPDIF input, and when a valid signal will be available, the SPDIF-RX will re-sample the incoming signal, decode the manchester stream, recognize frames, sub-frames and blocks elements. It delivers to the CPU decoded data, and associated status flags.

The SPDIF-RX also offers a signal named spdif_frame_sync, which toggles at the S/PDIF sub-frame rate that will be used to compute the exact sample rate for clock drift algorithms.

3.28 Serial Audio interface (SAI)

The devices feature two serial audio interfaces (SAI1 and SAI2). Each serial audio interfaces based on two independent audio subblocks which can operate as transmitter or receiver with their FIFO. Many audio protocols are supported by each block: I2S standards, LSB or MSB-justified, PCM/DSP, TDM, AC'97 and SPDIF output, supporting audio sampling frequencies from 8 kHz up to 192 kHz. Both subblocks can be configured in master or in slave mode. The SAIs use a PLL to achieve audio class accuracy.

In master mode, the master clock can be output to the external DAC/CODEC at 256 times of the sampling frequency.

The two subblocks can be configured in synchronous mode when full-duplex mode is required.

SAI1 and SA2 can be served by the DMA controller.

3.29 Audio PLL (PLLI²S)

The devices feature an additional dedicated PLL for audio I²S and SAI applications. It allows to achieve error-free I²S sampling clock accuracy without compromising on the CPU performance, while using USB peripherals.

The PLLI2S configuration can be modified to manage an I²S/SAI sample rate change without disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces.

The audio PLL can be programmed with very low error to obtain sampling rates ranging from 8 KHz to 192 KHz.

In addition to the audio PLL, a master clock input pin can be used to synchronize the I^2S/SAI flow with an external PLL (or Codec output).

3.30 Serial Audio Interface PLL(PLLSAI)

An additional PLL dedicated to audio and USB is used for SAI1 and SAI2 peripheral in case the PLLI2S is programmed to achieve another audio sampling frequency (49.152 MHz or 11.2896 MHz) and the audio application requires both sampling frequencies simultaneously.

The PLLSAI is also used to generate the 48MHz clock for USB FS and SDIO in case the system PLL is programmed with factors not multiple of 48MHz.

3.31 Secure digital input/output interface (SDIO)

An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.

The interface allows data transfer at up to 48 MHz, and is compliant with the SD Memory Card Specification Version 2.0.

The SDIO Card Specification Version 2.0 is also supported with two different databus modes: 1-bit (default) and 4-bit.

The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack of MMC4.1 or previous.

3.32 Controller area network (bxCAN)

The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1 Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one CAN is used). 256 bytes of SRAM are allocated for each CAN.

3.33 Universal serial bus on-the-go full-speed (OTG_FS)

The devices embed an USB OTG full-speed device/host/OTG peripheral with integrated transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator. The USB has dedicated power rails allowing its use throughout the entire power range. The major features are:

- Combined Rx and Tx FIFO size of 320 × 35 bits with dynamic FIFO sizing
- Supports the session request protocol (SRP) and host negotiation protocol (HNP)
- 6 bidirectional endpoints
- 12 host channels with periodic OUT support
- HNP/SNP/IP inside (no need for any external resistor)
- For OTG/Host modes, a power switch is needed in case bus-powered devices are connected

3.34 Universal serial bus on-the-go high-speed (OTG_HS)

The devices embed a USB OTG high-speed (up to 480 Mb/s) device/host/OTG peripheral. The USB OTG HS supports both full-speed and high-speed operations. It integrates the transceivers for full-speed operation (12 MB/s) and features a UTMI low-pin interface (ULPI) for high-speed operation (480 MB/s). When using the USB OTG HS in HS mode, an external PHY device connected to the ULPI is required.

The USB OTG HS peripheral is compliant with the USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator. The USB has dedicated power rails allowing its use throughout the entire power range.

The major features are:

- Combined Rx and Tx FIFO size of 1 Kbit × 35 with dynamic FIFO sizing
- Supports the session request protocol (SRP) and host negotiation protocol (HNP)
- 8 bidirectional endpoints
- 16 host channels with periodic OUT support
- Internal FS OTG PHY support
- External HS or HS OTG operation supporting ULPI in SDR mode. The OTG PHY is connected to the microcontroller ULPI port through 12 signals. It can be clocked using the 60 MHz output.
- Internal USB DMA
- HNP/SNP/IP inside (no need for any external resistor)
- for OTG/Host modes, a power switch is needed in case bus-powered devices are connected

3.35 Digital camera interface (DCMI)

The devices embed a camera interface that can connect with camera modules and CMOS sensors through an 8-bit to 14-bit parallel interface, to receive video data. The camera interface can sustain a data transfer rate up to 54 Mbyte/s at 54 MHz. It features:

- Programmable polarity for the input pixel clock and synchronization signals
- Parallel data communication can be 8-, 10-, 12- or 14-bit
- Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2 progressive video, RGB 565 progressive video or compressed data (like JPEG)
- Supports continuous mode or snapshot (a single frame) mode
- Capability to automatically crop the image black & white.

3.36 General-purpose input/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain, with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current-capable and have speed selection to better manage internal noise, power consumption and electromagnetic emission.

The I/O configuration can be locked if needed by following a specific sequence in order to avoid spurious writing to the I/Os registers.

Fast I/O handling allowing maximum I/O toggling up to 90 MHz.

3.37 Analog-to-digital converters (ADCs)

Three 12-bit analog-to-digital converters are embedded and each ADC shares up to 16 external channels, performing conversions in the single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs.

Additional logic functions embedded in the ADC interface allow:

- Simultaneous sample and hold
- Interleaved sample and hold

The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1, TIM2, TIM3, TIM4, TIM5, or TIM8 timer.

3.38 Temperature sensor

The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 1.7 V and 3.6 V. The temperature sensor is internally connected to the same input channel as V_{BAT} , ADC1_IN18, which is used to convert the sensor output voltage into a digital value. When the temperature sensor and V_{BAT} conversion are enabled at the same time, only V_{BAT} conversion is performed.

As the offset of the temperature sensor varies from chip to chip due to process variation, the internal temperature sensor is mainly suitable for applications that detect temperature changes instead of absolute temperatures. If an accurate temperature reading is needed, then an external temperature sensor part should be used.

3.39 Digital-to-analog converter (DAC)

The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs.

This dual digital Interface supports the following features:

- two DAC converters: one for each output channel
- 8-bit or 10-bit monotonic output
- left or right data alignment in 12-bit mode
- synchronized update capability
- noise-wave generation
- triangular-wave generation
- dual DAC channel independent or simultaneous conversions
- DMA capability for each channel
- external triggers for conversion
- input voltage reference V_{RFF+}

Eight DAC trigger inputs are used in the device. The DAC channels are triggered through the timer update outputs that are also connected to different DMA streams.

3.40 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

3.41 Embedded Trace Macrocell™

The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F446xx through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors.

The Embedded Trace Macrocell operates with third party debugger software tools.

Pinout and pin description 4

Figure 9. STM32F446xC/xE LQFP64 pinout

1. The above figure shows the package top view.

Figure 10. STM32F446xC/xE LQFP100 pinout

1. The above figure shows the package top view.

Figure 11. STM32F446xC LQFP144 pinout

1. The above figure shows the package top view.

Figure 12. STM32F446xC/xE WLCSP81 ballout

1. The above figure shows the package top view.

577

Figure 13. STM32F446xC/xE UFBGA144 ballout

rigure 13. STM321 440XC/XE of BGA 144 ballout
1 2 3 4 5 6 7 8 9 10 11 12
A PC13 PE3 PE2 PE1 PE0 PB4 PB3 PD6 PD7 PA15 PA14 PA13
B PC14 PE4 PE5 PB9 PB5 PG15 PG12 PD5 PC11 PC10 PAI2
C PC15 VBAT PF0 PF1 PB8 PB6 PG14 PG11 PD4 PC12 VDD USB PA11
D PHO VSS VDD PF2 BOOTO PB7 PG13 PG10 PD3 PD1 PA10 PA9
E PH1 PF3 PF4 PF5 PDR VSS PG9 PD2 PD0 PC9 PA8
F NRST PF9 PF8 VSS VDD VDD VDD VDD VDD VDD VDD PC8 PC7
G PF10 PF9 PF8 VSS VDD VDD VDD VCAP_2 VSS PG8 PC6
H PC1 PC2 PC3 BYPASS VSS VCAP_1 PE11 PD11 PG7 PG6 PG5
J VSSA PA0 PA4 PC4 PB2 PG1 PE10 PD10 PG4 PG3 PG2
K (VREF-) (PA1) (PC5) (PF13) (PG0) (PE9) (PE13) (PD14) (PD15)
L (VREF+) (PA2) (PB0) (PF12) (PD8) (PD12) (PD8) (PD12) (PB14) (PB15)
M VDDA PA3 PA7 PB1 PF11 PF14 PE7 PB10 PB10 PB11 PB13
MSv36519V1

1. The above picture shows the package top view.

Table 9. Legend/abbreviations used in the pinout table

Name	Abbreviation	Definition					
Pin name		specified in brackets below the pin name, the pin function during and after as the actual pin name					
	S	Supply pin					
Pin type	I	Input only pin					
	I/O	Input / output pin					
	FT	5 V tolerant I/O					
I/O structure	TTa 3.3 V tolerant I/O directly connected to ADC						
I/O structure	B Dedicated BOOT0 pin						
	RST	Bidirectional reset pin with weak pull-up resistor					
Notes	Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset						
Alternate functions	Functions selected	d through GPIOx_AFR registers					
Additional functions	Functions directly selected/enabled through peripheral registers						

Table 10. STM32F446xx pin and ball descriptions

	Pin Number									
LQFP64	LQFP100	WLCSP 81	UFBGA144	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	1	D7	А3	1	PE2	I/O	FT		TRACECLK, SPI4_SCK, SAI1_MCLK_A, QUADSPI_BK1_IO2, FMC_A23, EVENTOUT	
-	2	D6	A2	2	PE3	I/O	FT		TRACED0, SAI1_SD_B, FMC_A19, EVENTOUT	
-	3	A9	B2	3	PE4	I/O	FT		TRACED1, SPI4_NSS, SAI1_FS_A, FMC_A20, DCMI_D4, EVENTOUT	
-	4	-	В3	4	PE5	I/O	FT		TRACED2, TIM9_CH1, SPI4_MISO, SAI1_SCK_A, FMC_A21, DCMI_D6, EVENTOUT	

Table 10. STM32F446xx pin and ball descriptions (continued)

	Piı	n Nun							escriptions (continued)	
LQFP64	LQFP100	WLCSP 81	UFBGA144	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	5	ı	B4	5	PE6	I/O	FT		TRACED3, TIM9_CH2, SPI4_MOSI, SAI1_SD_A, FMC_A22, DCMI_D7, EVENTOUT	
1	6	В9	C2	6	VBAT	S				
2	7	C8	A1	7	PC13	I/O	FT		EVENTOUT	TAMP_1/WKUP1
3	8	C9	B1	8	PC14- OSC32_IN(PC14)	I/O	FT		EVENTOUT	OSC32_IN
4	9	D9	C1	9	PC15- OSC32_OUT(PC15)	I/O	FT		EVENTOUT	OSC32_OUT
-	-	1	C3	10	PF0	I/O	FT		I2C2_SDA, FMC_A0, EVENTOUT	
-	-	1	C4	11	PF1	I/O	FT		I2C2_SCL, FMC_A1, EVENTOUT	
-	-	1	D4	12	PF2	I/O	FT		I2C2_SMBA, FMC_A2, EVENTOUT	
-	-	-	E2	13	PF3	I/O	FT		FMC_A3, EVENTOUT	ADC3_IN9
-	-	-	E3	14	PF4	I/O	FT		FMC_A4, EVENTOUT	ADC3_IN14
-	-	-	E4	15	PF5	I/O	FT		FMC_A5, EVENTOUT	ADC3_IN15
-	10	-	D2	16	VSS	S				
-	11	1	D3	17	VDD	S				
-	-	-	F3	18	PF6	I/O	FT		TIM10_CH1, SAI1_SD_B, QUADSPI_BK1_IO3, EVENTOUT	ADC3_IN4
-	-	-	F2	19	PF7	I/O	FT		TIM11_CH1, SAI1_MCLK_B, QUADSPI_BK1_IO2, EVENTOUT	ADC3_IN5
-	-	-	G3	20	PF8	I/O	FT		SAI1_SCK_B, TIM13_CH1, QUADSPI_BK1_IO0, EVENTOUT	ADC3_IN6
-	-	-	G2	21	PF9	I/O	FT		SAI1_FS_B, TIM14_CH1, QUADSPI_BK1_IO1, EVENTOUT	ADC3_IN7
-	ı	ı	G1	22	PF10	I/O	FT		DCMI_D11, EVENTOUT	ADC3_IN8
5	12	E9	D1	23	PH0-OSC_IN(PH0)	I/O	FT		EVENTOUT	OSC_IN

Table 10. STM32F446xx pin and ball descriptions (continued)

	Piı	n Nun	nber							
LQFP64	LQFP100	WLCSP 81	UFBGA144	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
6	13	F9	E1	24	PH1- OSC_OUT(PH1)	I/O	FT		EVENTOUT	OSC_OUT
7	14	D8	F1	25	NRST	I/O	RS T			
8	15	G9	H1	26	PC0	I/O	FT		SAI1_MCLK_B, OTG_HS_ULPI_STP, FMC_SDNWE, EVENTOUT	ADC123_IN10
9	16	-	H2	27	PC1	I/O	FT		SPI3_MOSI/I2S3_SD, SAI1_SD_A, SPI2_MOSI/I2S2_SD, EVENTOUT	ADC123_IN11
10	17	E8	НЗ	28	PC2	I/O	FT		SPI2_MISO, OTG_HS_ULPI_DIR, FMC_SDNE0, EVENTOUT	ADC123_IN12
11	18	F8	H4	29	PC3	I/O	FT		SPI2_MOSI/I2S2_SD, OTG_HS_ULPI_NXT, FMC_SDCKE0, EVENTOUT	ADC123_IN13
-	19	Н9	-	30	VDD	S				
-	-	G8	-	-	VSS	S				
12	20	F7	J1	31	VSSA	S				
-	-	-	K1	-	VREF-	S				
-	21	Н8	L1	32	VREF+	S				
13	22	-	M1	33	VDDA	S				
14	23	J9	J2	34	PA0-WKUP(PA0)	I/O	FT		TIM2_CH1/TIM2_ETR, TIM5_CH1, TIM8_ETR, USART2_CTS, UART4_TX, EVENTOUT	ADC123_IN0, WKUP0/TAMP_2
15	24	G7	K2	35	PA1	I/O	FT		TIM2_CH2, TIM5_CH2, USART2_RTS, UART4_RX, QUADSPI_BK1_IO3, SAI2_MCLK_B, EVENTOUT	ADC123_IN1
16	25	E7	L2	36	PA2	I/O	FT		TIM2_CH3, TIM5_CH3, TIM9_CH1, USART2_TX, SAI2_SCK_B, EVENTOUT	ADC123_IN2

Table 10. STM32F446xx pin and ball descriptions (continued)

	Piı	n Nun			<u> </u>				escriptions (continued)	
LQFP64	LQFP100	WLCSP 81	UFBGA144	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
17	26	E6	M2	37	PA3	I/O	FT		TIM2_CH4, TIM5_CH4, TIM9_CH2, SAI1_FS_A, USART2_RX, OTG_HS_ULPI_D0, EVENTOUT	ADC123_IN3
18	27	-	G4	38	VSS	S				
-	-	J8	H5	-	BYPASS_REG	I	FT			
19	28	-	F4	39	VDD	S				
20	29	H7	J3	40	PA4	I/O	тс		SPI1_NSS/I2S1_WS, SPI3_NSS/I2S3_WS, USART2_CK, OTG_HS_SOF, DCMI_HSYNC, EVENTOUT	ADC12_IN4, DAC_OUT1
21	30	F6	K3	41	PA5	I/O	тс		TIM2_CH1/TIM2_ETR, TIM8_CH1N, SPI1_SCK/I2S1_CK, OTG_HS_ULPI_CK, EVENTOUT	ADC12_IN5, DAC_OUT2
22	31	G6	L3	42	PA6	I/O	FT		TIM1_BKIN, TIM3_CH1, TIM8_BKIN, SPI1_MISO, I2S2_MCK, TIM13_CH1, DCMI_PIXCLK, EVENTOUT	ADC12_IN6
23	32	E5	M3	43	PA7	I/O	FT		TIM1_CH1N, TIM3_CH2, TIM8_CH1N, SPI1_MOSI/I2S1_SD, TIM14_CH1, FMC_SDNWE, EVENTOUT	ADC12_IN7
24	33	J7	J4	44	PC4	I/O	FT		I2S1_MCK, SPDIF_RX2, FMC_SDNE0, EVENTOUT	ADC12_IN14
25	34	-	K4	45	PC5	I/O	FT		USART3_RX, SPDIF_RX3, FMC_SDCKE0, EVENTOUT	ADC12_IN15

Table 10. STM32F446xx pin and ball descriptions (continued)

	Piı	n Nun	nber							
LQFP64	LQFP100	WLCSP 81	UFBGA144	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
26	35	F5	L4	46	PB0	I/O	FT		TIM1_CH2N, TIM3_CH3, TIM8_CH2N, SPI3_MOSI/I2S3_SD, UART4_CTS, OTG_HS_ULPI_D1, SDIO_D1, EVENTOUT	ADC12_IN8
27	36	Н6	M4	47	PB1	I/O	FT		TIM1_CH3N, TIM3_CH4, TIM8_CH3N, OTG_HS_ULPI_D2, SDIO_D2, EVENTOUT	ADC12_IN9
28	37	J6	J5	48	PB2	I/O	FT		TIM2_CH4, SAI1_SD_A, SPI3_MOSI/I2S3_SD, QUADSPI_CLK, OTG_HS_ULPI_D4, SDIO_CK, EVENTOUT	
-	-	-	M5	49	PF11	I/O	FT		SAI2_SD_B, FMC_SDNRAS, DCMI_D12, EVENTOUT	
-	ı	-	L5	50	PF12	I/O	FT		FMC_A6, EVENTOUT	
-	1	-	-	51	VSS	S				
-	-	-	G5	52	VDD	S				
-	-	-	K5	53	PF13	I/O	FT		FMPI2C1_SMBA, FMC_A7, EVENTOUT	
-	-	-	M6	54	PF14	I/O	FT		FMPI2C1_SCL, FMC_A8, EVENTOUT	
-	-	-	L6	55	PF15	I/O	FT		FMPI2C1_SDA, FMC_A9, EVENTOUT	
-	-	-	K6	56	PG0	I/O	FT		FMC_A10, EVENTOUT	
-	-		J6	57	PG1	I/O	FT		FMC_A11, EVENTOUT	
-	38	J5	M7	58	PE7	I/O	FT		TIM1_ETR, UART5_RX, QUADSPI_BK2_IO0, FMC_D4, EVENTOUT	
-	39	H5	L7	59	PE8	I/O	FT		TIM1_CH1N, UART5_TX, QUADSPI_BK2_IO1, FMC_D5, EVENTOUT	
-	40	G5	K7	60	PE9	I/O	FT		TIM1_CH1, QUADSPI_BK2_IO2, FMC_D6, EVENTOUT	

Table 10. STM32F446xx pin and ball descriptions (continued)

	Piı	n Nun							escriptions (continued)	
LQFP64	LQFP100	WLCSP 81	UFBGA144	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	-	H6	61	VSS	S				
-	-	ı	G6	62	VDD	S				
-	41	J4	J7	63	PE10	I/O	FT		TIM1_CH2N, QUADSPI_BK2_IO3, FMC_D7, EVENTOUT	
-	42	ı	Н8	64	PE11	I/O	FT		TIM1_CH2, SPI4_NSS, SAI2_SD_B, FMC_D8, EVENTOUT	
-	43	-	J8	65	PE12	I/O	FT		TIM1_CH3N, SPI4_SCK, SAI2_SCK_B, FMC_D9, EVENTOUT	
-	44	-	K8	66	PE13	I/O	FT		TIM1_CH3, SPI4_MISO, SAI2_FS_B, FMC_D10, EVENTOUT	
-	45	-	L8	67	PE14	I/O	FT		TIM1_CH4, SPI4_MOSI, SAI2_MCLK_B, FMC_D11, EVENTOUT	
-	46	-	M8	68	PE15	I/O	FT		TIM1_BKIN, FMC_D12, EVENTOUT	
29	47	H4	M9	69	PB10	I/O	FT		TIM2_CH3, I2C2_SCL, SPI2_SCK/I2S2_CK, SAI1_SCK_A, USART3_TX, OTG_HS_ULPI_D3, EVENTOUT	
-	-	-	M10	70	PB11	I/O	FT		TIM2_CH4, I2C2_SDA, USART3_RX, SAI2_SD_A, EVENTOUT	
30	48	J3	H7	71	VCAP_1	S				
31	49	НЗ	-	ı	VSS	S				
32	50	J2	G7	72	VDD	S				
33	51	G4	M11	73	PB12	I/O	FT		TIM1_BKIN, I2C2_SMBA, SPI2_NSS/I2S2_WS, SAI1_SCK_B, USART3_CK, CAN2_RX, OTG_HS_ULPI_D5, OTG_HS_ID, EVENTOUT	

Table 10. STM32F446xx pin and ball descriptions (continued)

	Piı	n Nun							escriptions (continued)	
LQFP64	LQFP100	WLCSP 81	UFBGA144	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
34	52	H2	M12	74	PB13	I/O	FT		TIM1_CH1N, SPI2_SCK/I2S2_CK, USART3_CTS, CAN2_TX, OTG_HS_ULPI_D6, EVENTOUT	OTG_HS_VBUS
35	53	J1	L11	75	PB14	I/O	FT		TIM1_CH2N, TIM8_CH2N, SPI2_MISO, USART3_RTS, TIM12_CH1, OTG_HS_DM, EVENTOUT	
36	54	G3	L12	76	PB15	I/O	FT		RTC_REFIN, TIM1_CH3N, TIM8_CH3N, SPI2_MOSI/I2S2_SD, TIM12_CH2, OTG_HS_DP, EVENTOUT	
-	55	ı	L9	77	PD8	I/O	FT		USART3_TX, SPDIF_RX1, FMC_D13, EVENTOUT	
-	56	İ	K9	78	PD9	I/O	FT		USART3_RX, FMC_D14, EVENTOUT	
-	57	-	J9	79	PD10	I/O	FT		USART3_CK, FMC_D15, EVENTOUT	
-	58	H1	Н9	80	PD11	I/O	FT		FMPI2C1_SMBA, USART3_CTS, QUADSPI_BK1_IO0, SAI2_SD_A, FMC_A16, EVENTOUT	
-	59	G2	L10	81	PD12	I/O	FT		TIM4_CH1, FMPI2C1_SCL, USART3_RTS, QUADSPI_BK1_IO1, SAI2_FS_A, FMC_A17, EVENTOUT	
-	60	G1	K10	82	PD13	I/O	FT		TIM4_CH2, FMPI2C1_SDA, QUADSPI_BK1_IO3, SAI2_SCK_A, FMC_A18, EVENTOUT	
-	-	-	G8	83	VSS	S				
-	-	-	F8	84	VDD	S				

Table 10. STM32F446xx pin and ball descriptions (continued)

	Piı	n Nun			<u></u>				escriptions (continued)	
LQFP64	LQFP100	WLCSP 81	UFBGA144	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	61	1	K11	85	PD14	I/O	FT		TIM4_CH3, FMPI2C1_SCL, SAI2_SCK_A, FMC_D0, EVENTOUT	
-	62	i	K12	86	PD15	I/O	FT		TIM4_CH4, FMPI2C1_SDA, FMC_D1, EVENTOUT	
-	-	-	J12	87	PG2	I/O	FT		FMC_A12, EVENTOUT	
-	-	-	J11	88	PG3	I/O	FT		FMC_A13, EVENTOUT	
-	ı	1	J10	89	PG4	I/O	FT		FMC_A14/FMC_BA0, EVENTOUT	
-	-	-	H12	90	PG5	I/O	FT		FMC_A15/FMC_BA1, EVENTOUT	
-	-	-	H11	91	PG6	I/O	FT		QUADSPI_BK1_NCS, DCMI_D12, EVENTOUT	
-	-	-	H10	92	PG7	I/O	FT		USART6_CK, FMC_INT, DCMI_D13, EVENTOUT	
-	ı	ı	G11	93	PG8	I/O	FT		SPDIF_RX2, USART6_RTS, FMC_SDCLK, EVENTOUT	
-	ı	ı	-	94	VSS	S				
-	ı	ı	F10	1	VDD	S				
-	ı	E1	C11	95	VDDUSB	S				
37	63	F1	G12	96	PC6	I/O	FT		TIM3_CH1, TIM8_CH1, FMPI2C1_SCL, I2S2_MCK, USART6_TX, SDIO_D6, DCMI_D0, EVENTOUT	
38	64	F2	F12	97	PC7	I/O	FT		TIM3_CH2, TIM8_CH2, FMPI2C1_SDA, SPI2_SCK/I2S2_CK, I2S3_MCK, SPDIF_RX1, USART6_RX, SDIO_D7, DCMI_D1, EVENTOUT	
39	65	F3	F11	98	PC8	I/O	FT		TRACED0, TIM3_CH3, TIM8_CH3, UART5_RTS, USART6_CK, SDIO_D0, DCMI_D2, EVENTOUT	

Table 10. STM32F446xx pin and ball descriptions (continued)

	Piı	n Nun							escriptions (continued)	
LQFP64	LQFP100	WLCSP 81	UFBGA144	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
40	66	D1	E11	99	PC9	I/O	FT		MCO2, TIM3_CH4, TIM8_CH4, I2C3_SDA, I2S_CKIN, UART5_CTS, QUADSPI_BK1_IO0, SDIO_D1, DCMI_D3, EVENTOUT	
41	67	E2	E12	100	PA8	I/O	FT		MCO1, TIM1_CH1, I2C3_SCL, USART1_CK, OTG_FS_SOF, EVENTOUT	
42	68	F4	D12	101	PA9	I/O	FT		TIM1_CH2, I2C3_SMBA, SPI2_SCK/I2S2_CK, SAI1_SD_B, USART1_TX, DCMI_D0, EVENTOUT	OTG_FS_VBUS
43	69	E3	D11	102	PA10	I/O	FT		TIM1_CH3, USART1_RX, OTG_FS_ID, DCMI_D1, EVENTOUT	
44	70	C1	C12	103	PA11	I/O	FT		TIM1_CH4, USART1_CTS, CAN1_RX, OTG_FS_DM, EVENTOUT	
45	71	E4	B12	104	PA12	I/O	FT		TIM1_ETR, USART1_RTS, SAI2_FS_B, CAN1_TX, OTG_FS_DP, EVENTOUT	
46	72	D2	A12	105	PA13(JTMS-SWDIO)	I/O	FT		JTMS-SWDIO, EVENTOUT	
-	73	C2	G9	106	VCAP_2	S				
47	74	B1	G10	107	VSS	S				
48	75	A1	F9	108	VDD	S				
49	76	C3	A11	109	PA14(JTCK-SWCLK)	I/O	FT		JTCK-SWCLK, EVENTOUT	
50	77	B2	A10	110	PA15(JTDI)	I/O	FT		JTDI, TIM2_CH1/TIM2_ETR, HDMI_CEC, SPI1_NSS/I2S1_WS, SPI3_NSS/I2S3_WS, UART4_RTS, EVENTOUT	

Table 10. STM32F446xx pin and ball descriptions (continued)

	Piı	n Nun	nber		•					
LQFP64	LQFP100	WLCSP 81	UFBGA144	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
51	78	D3	B11	111	PC10	I/O	FT		SPI3_SCK/I2S3_CK, USART3_TX, UART4_TX, QUADSPI_BK1_IO1, SDIO_D2, DCMI_D8, EVENTOUT	
52	79	D4	B10	112	PC11	I/O	FT		SPI3_MISO, USART3_RX, UART4_RX, QUADSPI_BK2_NCS, SDIO_D3, DCMI_D4, EVENTOUT	
53	80	A2	C10	113	PC12	I/O	FT		I2C2_SDA, SPI3_MOSI/I2S3_SD, USART3_CK, UART5_TX, SDIO_CK, DCMI_D9, EVENTOUT	
-	81	В3	E10	114	PD0	I/O	FT		SPI4_MISO, SPI3_MOSI/I2S3_SD, CAN1_RX, FMC_D2, EVENTOUT	
1	82	C4	D10	115	PD1	I/O	FT		SPI2_NSS/I2S2_WS, CAN1_TX, FMC_D3, EVENTOUT	
54	83	D5	E9	116	PD2	I/O	FT		TIM3_ETR, UART5_RX, SDIO_CMD, DCMI_D11, EVENTOUT	
-	84	-	D9	117	PD3	I/O	FT		TRACED1, SPI2_SCK/I2S2_CK, USART2_CTS, QUADSPI_CLK, FMC_CLK, DCMI_D5, EVENTOUT	
-	85	A3	С9	118	PD4	I/O	FT		USART2_RTS, FMC_NOE, EVENTOUT	
-	86	ı	В9	119	PD5	I/O	FT		USART2_TX, FMC_NWE, EVENTOUT	
-	1	-	E7	120	VSS	S				
-	-	-	F7	121	VDD	S				

Table 10. STM32F446xx pin and ball descriptions (continued)

	Piı	n Nun	nber		-					
LQFP64	LQFP100	WLCSP 81	UFBGA144	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	87	B4	A8	122	PD6	I/O	FT		SPI3_MOSI/I2S3_SD, SAI1_SD_A, USART2_RX, FMC_NWAIT, DCMI_D10, EVENTOUT	
-	88	A4	A9	123	PD7	I/O	FT		USART2_CK, SPDIF_RX0, FMC_NE1, EVENTOUT	
-	-	-	E8	124	PG9	I/O	FT		SPDIF_RX3, USART6_RX, QUADSPI_BK2_IO2, SAI2_FS_B, FMC_NE2/FMC_NCE3, DCMI_VSYNC, EVENTOUT	
-	-	-	D8	125	PG10	I/O	FT		SAI2_SD_B, FMC_NE3, DCMI_D2, EVENTOUT	
-	-	-	C8	126	PG11	I/O	FT		SPI4_SCK, SPDIF_RX0, DCMI_D3, EVENTOUT	
-	-	-	B8	127	PG12	I/O	FT		SPI4_MISO, SPDIF_RX1, USART6_RTS, FMC_NE4, EVENTOUT	
-	-	-	D7	128	PG13	I/O	FT		TRACED2, SPI4_MOSI, USART6_CTS, FMC_A24, EVENTOUT	
-	-	-	C7	129	PG14	I/O	FT		TRACED3, SPI4_NSS, USART6_TX, QUADSPI_BK2_IO3, FMC_A25, EVENTOUT	
-	-	-	-	130	VSS	S				
-	ı	-	F6	131	VDD	S				
-	-	-	В7	132	PG15	I/O	FT		USART6_CTS, FMC_SDNCAS, DCMI_D13, EVENTOUT	
55	89	A5	A7	133	PB3(JTDO/TRACES WO)	I/O	FT		JTDO/TRACESWO, TIM2_CH2, I2C2_SDA, SPI1_SCK/I2S1_CK, SPI3_SCK/I2S3_CK, EVENTOUT	

Table 10. STM32F446xx pin and ball descriptions (continued)

	Pir	n Nun			·				escriptions (continued)	
LQFP64	LQFP100	WLCSP 81	UFBGA144	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
56	90	B5	A6	134	PB4(NJTRST)	I/O	FT		NJTRST, TIM3_CH1, I2C3_SDA, SPI1_MISO, SPI3_MISO, SPI2_NSS/I2S2_WS, EVENTOUT	
57	91	A6	В6	135	PB5	I/O	FT		TIM3_CH2, I2C1_SMBA, SPI1_MOSI/I2S1_SD, SPI3_MOSI/I2S3_SD, CAN2_RX, OTG_HS_ULPI_D7, FMC_SDCKE1, DCMI_D10, EVENTOUT	
58	92	C5	C6	136	PB6	I/O	FT		TIM4_CH1, HDMI_CEC, I2C1_SCL, USART1_TX, CAN2_TX, QUADSPI_BK1_NCS, FMC_SDNE1, DCMI_D5, EVENTOUT	
59	93	В6	D6	137	PB7	I/O	FT		TIM4_CH2, I2C1_SDA, USART1_RX, SPDIF_RX0, FMC_NL, DCMI_VSYNC, EVENTOUT	
60	94	A7	D5	138	воото	I	В			VPP
61	95	C6	C5	139	PB8	I/O	FT		TIM2_CH1/TIM2_ETR, TIM4_CH3, TIM10_CH1, I2C1_SCL, CAN1_RX, SDIO_D4, DCMI_D6, EVENTOUT	
62	96	C7	B5	140	PB9	I/O	FT		TIM2_CH2, TIM4_CH4, TIM11_CH1, I2C1_SDA, SPI2_NSS/I2S2_WS, SAI1_FS_B, CAN1_TX, SDIO_D5, DCMI_D7, EVENTOUT	
-	97	1	A5	141	PE0	I/O	FT		TIM4_ETR, SAI2_MCLK_A, FMC_NBL0, DCMI_D2, EVENTOUT	
-	98	-	A4	142	PE1	I/O	FT		FMC_NBL1, DCMI_D3, EVENTOUT	
63	99	B7	E6	-	VSS	S				

Table 10. STM32F446xx pin and ball descriptions (continued)

	Pir	n Nun	nber							
LQFP64	LQFP100	WLCSP 81	UFBGA144	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	B8	E5	143	PDR_ON	S				
64	100	A8	F5	144	VDD	S				

Table 11. Alternate function

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
Po	ort	SYS	TIM1/2	TIM3/4/5	TIM8/9/ 10/11/ CEC	I2C1/2/3 /4/CEC	SPI1/2/3/4	SPI2/3/4/ SAI1	SPI2/3/ USART1/2 /3/UART5/ SPDIF	SA12/U SART6/ UART4/ 5/SDIP	CAN1/2 TIM12/13/ 14/ QUADSPI	SAI2/QUA DSPI/ OTG2_HS/ OTG1_FS	OTG1_FS	FMC/ SDIO/ OTG2_FS	DCMI		sys
	PA0	-	TIM2_CH1/ TIM2_ETR	TIM5_CH1	TIM8_ETR	-	-	-	USART2_ CTS	UART4_ TX	-	-	-	-	-	-	EVENT OUT
	PA1	-	TIM2_CH2	TIM5_CH2	-	-	-	-	USART2_ RTS	UART4_ RX	QUADSPI_ BK1_IO3	SAI2_ MCLK_B	-	-	-	-	EVENT OUT
	PA2	-	TIM2_CH3	TIM5_CH3	TIM9_CH1	-	-	-	USART2_ TX	SAI2_ SCK_B	-	-	-	-	-	-	EVENT OUT
	PA3	-	TIM2_CH4	TIM5_CH4	TIM9_CH2	-	-	SAI1_ FS_A	USART2_ RX	-	-	OTG_HS_ ULPI_D0	-	-	-	-	EVENT OUT
	PA4	-	-	-	-	-	SPI1_NSS/I 2S1_WS	SPI3_NSS / I2S3_WS	USART2_ CK	-	-	-	-	OTG_HS_ SOF	DCMI_ HSYNC	-	EVENT OUT
	PA5	-	TIM2_CH1/ TIM2_ETR	-	TIM8_ CH1N	-	SPI1_SCK/I 2S1_CK	-	-	-	-	OTG_HS_ ULPI_CK	-	-	-	-	EVENT OUT
	PA6	-	TIM1_ BKIN	TIM3_CH1	TIM8_ BKIN	-	SPI1_MISO	I2S2_ MCK	-	-	TIM13_CH1	-	-	-	DCMI_ PIXCLK	-	EVENT OUT
Port A	PA7	-	TIM1_ CH1N	TIM3_CH2	TIM8_ CH1N	-	SPI1_MOSI/ I2S1_SD	-	-	-	TIM14_CH1	-	-	FMC_ SDNWE	-	-	EVENT OUT
	PA8	MCO1	TIM1_CH1	-	-	I2C3_ SCL	-	-	USART1_ CK	-	-	OTG_FS_ SOF	-	-	-	-	EVENT OUT
	PA9	-	TIM1_CH2	-	-	I2C3_ SMBA	SPI2_SCK /I2S2_CK	SAI1_ SD_B	USART1_ TX	-	-	-	-	-	DCMI_D0	-	EVENT OUT
	PA10	-	TIM1_CH3	-	-	-	-	-	USART1_ RX	-	-	OTG_FS_ ID	-	-	DCMI_D1	-	EVENT OUT
	PA11	-	TIM1_CH4	-	-	-	-	-	USART1_ CTS	-	CAN1_RX	OTG_FS_ DM	-	-	-	-	EVENT OUT
	PA12	-	TIM1_ETR	-	-	-	-	-	USART1_ RTS	SAI2_ FS_B	CAN1_TX	OTG_FS_ DP	-	-	-	-	EVENT OUT
	PA13	JTMS- SWDIO	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PA14	JTCK- SWCLK	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PA15	JTDI	TIM2_CH1/ TIM2_ETR	-	-	HDMI_ CEC	SPI1_NSS/ I2S1_WS	SPI3_ NSS/ I2S3_WS	-	UART4_ RTS	-	-	-	-	-	-	EVENT OUT

DocID026062 Rev 4

Pinout and pin description

Table 11. Alternate function (continued)

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
Po	ort	SYS	TIM1/2	TIM3/4/5	TIM8/9/ 10/11/ CEC	I2C1/2/3 /4/CEC	SPI1/2/3/4	SPI2/3/4/ SAI1	SPI2/3/ USART1/2 /3/UART5/ SPDIF	SA12/U SART6/ UART4/ 5/SDIP	CAN1/2 TIM12/13/ 14/ QUADSPI	SAI2/QUA DSPI/ OTG2_HS/ OTG1_FS	OTG1_FS	FMC/ SDIO/ OTG2_FS	DCMI		sys
	PB0	-	TIM1_CH2N	TIM3_CH3	TIM8_ CH2N	-	-	-	SPI3_MOSI/ I2S3_SD	UART4_ CTS	-	OTG_HS_ ULPI_D1	-	SDIO_D1	-	-	EVENT OUT
	PB1	-	TIM1_CH3N	TIM3_CH4	TIM8_ CH3N	-	-	-	-	-	-	OTG_HS_ ULPI_D2	-	SDIO_D2	-	-	EVENT OUT
	PB2	-	TIM2_CH4	-	-	-	-	SAI1_ SD_A	SPI3_MOSI/ I2S3_SD	-	QUADSPI_ CLK	OTG_HS_ ULPI_D4	-	SDIO_CK	-	-	EVENT OUT
	PB3	JTDO/ TRACES WO	TIM2_CH2	-	-	I2C2_ SDA	SPI1_SCK /I2S1_CK	SPI3_SCK / I2S3_CK	-	-	-	-	-	-	-	-	EVENT OUT
	PB4	NJTRST	-	TIM3_CH1	-	I2C3_ SDA	SPI1_MISO	SPI3_ MISO	SPI2_NSS/ I2S2_WS	-	-	-	-	-	-	-	EVENT OUT
	PB5	-	-	TIM3_CH2	-	I2C1_ SMBA	SPI1_MOSI /I2S1_SD	SPI3_ MOSI/ I2S3_SD	-	-	CAN2_RX	OTG_HS_ ULPI_D7	-	FMC_ SDCKE1	DCMI_ D10	-	EVENT OUT
	PB6	-	-	TIM4_CH1	HDMI_ CEC	I2C1_ SCL	-	-	USART1_ TX	-	CAN2_TX	QUADSPI_ BK1_NCS	-	FMC_ SDNE1	DCMI_D5	-	EVENT OUT
Port B	PB7	-	-	TIM4_CH2	-	I2C1_ SDA	-	-	USART1_ RX	SPDIF_ RX0	-	-	-	FMC_NL	DCMI_ VSYNC	-	EVENT OUT
FUILB	PB8	-	TIM2_CH1/ TIM2_ETR	TIM4_CH3	TIM10_ CH1	I2C1_ SCL	-	-	-	-	CAN1_RX	-	-	SDIO_D4	DCMI_D6	-	EVENT OUT
	PB9	-	TIM2_ CH2	TIM4_CH4	TIM11_ CH1	I2C1_ SDA	SPI2_NSS/ I2S2_WS	SAI1_ FS_B	-	-	CAN1_TX	-	-	SDIO_D5	DCMI_D7	-	EVENT OUT
	PB10	-	TIM2_CH3	-	-	I2C2_ SCL	SPI2_SCK/ I2S2_CK	SAI1_ SCK_A	USART3_ TX	-	-	OTG_HS_ ULPI_D3	-	-	-	-	EVENT OUT
	PB11	-	TIM2_CH4	-	-	I2C2_ SDA	-	-	USART3_ RX	SAI2_ SD_A	-	-	-	-	-	-	EVENT OUT
	PB12	-	TIM1_BKIN	-	-	I2C2_ SMBA	SPI2_NSS/ I2S2_WS	SAI1_ SCK_B	USART3_ CK	-	CAN2_RX	OTG_HS_ ULPI_D5	-	OTG_ HS_ID	-	-	EVENT OUT
	PB13	-	TIM1_CH1N	-	-	-	SPI2_SCK/ I2S2_CK	-	USART3_ CTS	-	CAN2_TX	OTG_HS_ ULPI_D6	-	-	-	-	EVENT OUT
	PB14	-	TIM1_CH2N	-	TIM8_ CH2N	-	SPI2_MISO	-	USART3_ RTS	-	TIM12_CH1	-	-	OTG_ HS_DM	-	-	EVENT OUT
	PB15	RTC_ REFIN	TIM1_CH3N	-	TIM8_ CH3N	-	SPI2_MOSI /I2S2_SD	-	-	=	TIM12_CH2	-	-	OTG_ HS_DP	-	-	EVENT OUT

Table 11. Alternate function (continued)

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
P	ort	SYS	TIM1/2	TIM3/4/5	TIM8/9/ 10/11/ CEC	I2C1/2/3 /4/CEC	SPI1/2/3/4	SPI2/3/4/ SAI1	SPI2/3/ USART1/2 /3/UART5/ SPDIF	SA12/U SART6/ UART4/ 5/SDIP	CAN1/2 TIM12/13/ 14/ QUADSPI	SAI2/QUA DSPI/ OTG2_HS/ OTG1_FS	OTG1_FS	FMC/ SDIO/ OTG2_FS	DCMI		sys
	PC0	-	-	-	-	-	-	SAI1_ MCLK_B	-	-	-	OTG_HS_ ULPI_STP	-	FMC_ SDNWE	-	-	EVENT OUT
	PC1	-	-	-	-	-	SPI3_MOSI /I2S3_SD	SAI1_ SD_A	SPI2_MOSI /I2S2_SD	-	-	-	-	-	-	-	EVENT OUT
	PC2	-	-	-	-	-	SPI2_MISO	-	-	-	-	OTG_HS_ ULPI_DIR	-	FMC_ SDNE0	-	-	EVENT OUT
	PC3	-	-	-	-	-	SPI2_MOSI/ I2S2_SD	-	-	-	-	OTG_HS_ ULPI_NXT	-	FMC_ SDCKE0	-	-	EVENT OUT
	PC4	-	-	-	-	-	I2S1_MCK	-	-	SPDIF_ RX2	-	-	-	FMC_ SDNE0	-	-	EVENT OUT
	PC5	-	-	-	-	-	-	-	USART3_ RX	SPDIF_ RX3	-	-	-	FMC_ SDCKE0	-	-	EVENT OUT
	PC6	-	-	TIM3_CH1	TIM8_CH1	FMPI2C1 _SCL	I2S2_MCK	-	-	USART6 _TX	-	-	-	SDIO_D6	DCMI_D0	-	EVENT OUT
	PC7	-	-	TIM3_CH2	TIM8_CH2	FMPI2C1 _SDA	SPI2_SCK/ I2S2_CK	I2S3_MCK	SPDIF_ RX1	USART6 _RX	-	-	-	SDIO_D7	DCMI_D1	-	EVENT OUT
Port C	PC8	TRACE D0	-	TIM3_CH3	TIM8_CH3	-	-	-	UART5_ RTS	USART6 _CK	-	-	-	SDIO_D0	DCMI_D2	-	EVENT OUT
	PC9	MCO2	-	TIM3_CH4	TIM8_CH4	I2C3_ SDA	I2S_CKIN	-	UART5_ CTS	-	QUAD_ BK1_IO0	-	-	SDIO_D1	DCMI_D3	-	EVENT OUT
	PC10	-	-	-	-	-	-	SPI3_SCK / I2S3_CK	USART3_ TX	UART4_ TX	QUAD_ BK1_IO1	-	-	SDIO_D2	DCMI_D8	-	EVENT OUT
	PC11	-	-	-	-	-	-	SPI3_ MISO	USART3_ RX	UART4_ RX	QUAD_ BK2_NCS	-	-	SDIO_D3	DCMI_D4	-	EVENT OUT
	PC12	-	-	-	-	I2C2_ SDA	-	SPI3_ MOSI/ I2S3_SD	USART3_ CK	UART5_ TX	-	-	-	SDIO_CK	DCMI_D9	-	EVENT OUT
	PC13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PC14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PC15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT

DocID026062 Rev 4

Pinout and pin description

Table 11. Alternate function (continued)

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
Po	ort	sys	TIM1/2	TIM3/4/5	TIM8/9/ 10/11/ CEC	I2C1/2/3 /4/CEC	SPI1/2/3/4	SPI2/3/4/ SAI1	SPI2/3/ USART1/2 /3/UART5/ SPDIF	SA12/U SART6/ UART4/ 5/SDIP	CAN1/2 TIM12/13/ 14/ QUADSPI	SAI2/QUA DSPI/ OTG2_HS/ OTG1_FS	OTG1_FS	FMC/ SDIO/ OTG2_FS	DCMI		sys
	PD0	-	-	-	-	-	SPI4_MISO	SPI3_ MOSI/ I2S3_SD	-	-	CAN1_RX	-	-	FMC_D2	-	-	EVENT OUT
	PD1	-	-	-	-	-	-	-	SPI2_NSS/ I2S2_WS	-	CAN1_TX	-	-	FMC_D3	-	-	EVENT OUT
	PD2		-	TIM3_ETR	-	-	-	-	-	UART5_ RX	-	-	-	SDIO_CMD	DCMI_ D11	-	EVENT OUT
	PD3	TRACE D1	-	-	-	-	SPI2_SCK/ I2S2_CK	-	USART2_ CTS	-	QUADSPI_ CLK	-	-	FMC_CLK	DCMI_ D5	-	EVENT OUT
	PD4	-	-	-	-	-	-	-	USART2_ RTS	-	-	-	-	FMC_NOE	-	-	EVENT OUT
	PD5	-	-	-	-	-	-	-	USART2_ TX	-	-	-	-	FMC_NWE	ī	-	EVENT OUT
	PD6	-	-	-	-	-	SPI3_ MOSI/ I2S3_SD	SAI1_ SD_A	USART2_ RX	-	-	-	-	FMC_ NWAIT	DCMI_ D10	-	EVENT OUT
Port D	PD7	-	-	-	-	-	-	-	USART2_ CK	SPDIF_ RX0	-	-	-	FMC_NE1	-	-	EVENT OUT
	PD8	-	-	-	-	-	-	-	USART3_ TX	SPDIF_ RX1	-	-	-	FMC_D13	-	-	EVENT OUT
	PD9	-	-	-	-	-	-	-	USART3_ RX	-	-	-	-	FMC_D14	-	-	EVENT OUT
	PD10	-	-	-	-	-	-	-	USART3_ CK	-	-	-	-	FMC_D15	-	-	EVENT OUT
	PD11		-	-	-	FMPI2C1 _SMBA	-	-	USART3_ CTS	-	QUADSPI_ BK1_IO0	SAI2_SD_A	-	FMC_A16	-	-	EVENT OUT
	PD12	-	-	TIM4_CH1	-	FMPI2C1 _SCL	-	-	USART3_ RTS	-	QUADSPI_ BK1_IO1	SAI2_FS_A	-	FMC_A17	-	-	EVENT OUT
	PD13	-	-	TIM4_CH2	-	FMPI2C1 _SDA	-	-	-	-	QUADSPI_ BK1_IO3	SAI2_SCK_A	-	FMC_A18	-	-	EVENT OUT
	PD14	-	-	TIM4_CH3	-	FMPI2C1 _SCL	-	-	-	SAI2_ SCK_A	-	-	-	FMC_D0	-	-	EVENT OUT
	PD15	-	-	TIM4_CH4	-	FMPI2C1 _SDA	-	-	-	-	-	-	-	FMC_D1	-	-	EVENT OUT

Table 11. Alternate function (continued)

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
Po	ort	SYS	TIM1/2	TIM3/4/5	TIM8/9/ 10/11/ CEC	I2C1/2/3 /4/CEC	SPI1/2/3/4	SPI2/3/4/ SAI1	SPI2/3/ USART1/2 /3/UART5/ SPDIF	SA12/U SART6/ UART4/ 5/SDIP	CAN1/2 TIM12/13/ 14/ QUADSPI	SAI2/QUA DSPI/ OTG2_HS/ OTG1_FS	OTG1_FS	FMC/ SDIO/ OTG2_FS	DCMI		sys
	PE0	-	-	TIM4_ETR	-	-	-	-	-	-	-	SAI2_ MCLK_A	-	FMC_ NBL0	DCMI_D2	-	EVENT OUT
	PE1	-	-	-	-	-	-	-	-	-	-	-	-	FMC_ NBL1	DCMI_D3	-	EVENT OUT
	PE2	TRACE CLK	-	-	-	-	SPI4_SCK	SAI1_ MCLK_A	-	-	QUADSPI_ BK1_IO2	-	-	FMC_A23	-	-	EVENT OUT
	PE3	TRACE D0	-	-	-	-	-	SAI1_ SD_B	-	-	-	-	-	FMC_A19	-	-	EVENT OUT
	PE4	TRACE D1	-	-	-	-	SPI4_NSS	SAI1_ FS_A	-	-	-	-	-	FMC_A20	DCMI_D4	-	EVENT OUT
	PE5	TRACE D2	-	-	TIM9_CH1	-	SPI4_MISO	SAI1_ SCK_A	-	-	-	-	-	FMC_A21	DCMI_D6	-	EVENT OUT
	PE6	TRACE D3	-	-	TIM9_CH2	-	SPI4_MOSI	SAI1_ SD_A	-	-	-	-	-	FMC_A22	DCMI_D7	-	EVENT OUT
	PE7	-	TIM1_ETR	-	-	-	-	-	-	UART5_ RX	-	QUADSPI_ BK2_IO0	-	FMC_D4	-	-	EVENT OUT
Port E	PE8	-	TIM1_CH1N	-	-	-	-	-	-	UART5_ TX	-	QUADSPI_ BK2_IO1		FMC_D5	-	-	EVENT OUT
	PE9	-	TIM1_CH1	-	-	-	-	-	-	-	-	QUADSPI_ BK2_IO2		FMC_D6	-	-	EVENT OUT
	PE10	-	TIM1_CH2N	-	-	-	-	-	-	-	-	QUADSPI_ BK2_IO3		FMC_D7	-	-	EVENT OUT
	PE11	-	TIM1_CH2	-	-	-	SPI4_NSS	-	-	-	-	SAI2_ SD_B	-	FMC_D8	-	-	EVENT OUT
	PE12	-	TIM1_CH3N	-	-	-	SPI4_SCK	-	-	-	-	SAI2_ SCK_B	-	FMC_D9	-	-	EVENT OUT
	PE13	-	TIM1_CH3	-	-	-	SPI4_MISO	-	-	-	-	SAI2_ FS_B	-	FMC_D10	-	-	EVENT OUT
	PE14	-	TIM1_CH4	-	-	-	SPI4_MOSI	-	-	-	-	SAI2_ MCLK_B	-	FMC_D11	-	-	EVENT OUT
	PE15	-	TIM1_BKIN	-	-	-		-	-	-	-	-	-	FMC_D12	-	-	EVENT OUT

Pinout and pin description

Table 11. Alternate function (continued)

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
Po	ort	SYS	TIM1/2	TIM3/4/5	TIM8/9/ 10/11/ CEC	I2C1/2/3 /4/CEC	SPI1/2/3/4	SPI2/3/4/ SAI1	SPI2/3/ USART1/2 /3/UART5/ SPDIF	SA12/U SART6/ UART4/ 5/SDIP	CAN1/2 TIM12/13/ 14/ QUADSPI	SAI2/QUA DSPI/ OTG2_HS/ OTG1_FS	OTG1_FS	FMC/ SDIO/ OTG2_FS	DCMI		sys
	PF0	-	-	-	-	I2C2_ SDA	-	-	-	-	-	-	-	FMC_A0	-	-	EVENT OUT
	PF1	-				I2C2_ SCL	-	-	-	-	-	-	-	FMC_A1	-	-	EVENT OUT
	PF2	-	-	-	-	I2C2_ SMBA	-	-	-	-	-	-	-	FMC_A2	-	-	EVENT OUT
	PF3	-	-	-	-		-	-	-	-	-	-	-	FMC_A3	-	-	EVENT OUT
	PF4	-	-	-	-		-	-	-	-	-	-	-	FMC_A4	-	-	EVENT OUT
	PF5	-	-	-	-		-	-	-	-	-	-	-	FMC_A5	-	-	EVENT OUT
	PF6	-	-	-	TIM10_ CH1	-	-	SAI1_ SD_B	-	-	QUADSPI_ BK1_IO3	-	-		-	-	EVENT OUT
	PF7	-	-	-	TIM11_ CH1	-	-	SAI1_ MCLK_B	-	-	QUADSPI_ BK1_IO2	-	-		-	-	EVENT OUT
Port F	PF8	-	-	-	-	-	-	SAI1_ SCK_B	-	-	TIM13_CH1	QUADSPI_ BK1_IO0	-		-	-	EVENT OUT
	PF9	-	-	-	-	-	-	SAI1_ FS_B	-	-	TIM14_CH1	QUADSPI_ BK1_IO1	-		-	-	EVENT OUT
	PF10	-	-	-	-	-	-	-	-	-	-	-	-		DCMI_ D11	-	EVENT OUT
	PF11	-	-	-	-	-	-	-	-	-	-	SAI2_SD_B	-	FMC_ SDNRAS	DCMI_ D12	-	EVENT OUT
	PF12	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A6	-	-	EVENT OUT
	PF13	-	-	-	-	FMPI2C1 _SMBA	-	-	-	-	-	-	-	FMC_A7	-	-	EVENT OUT
	PF14	-	-	-	-	FMPI2C1 _SCL	-	-	-	-	-	-	-	FMC_A8	-	-	EVENT OUT
	PF15	-	-	-	-	FMPI2C1 _SDA	-	-	-	·	-	-	-	FMC_A9	=	-	EVENT OUT

Table 11. Alternate function (continued)

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
Po	ort	sys	TIM1/2	TIM3/4/5	TIM8/9/ 10/11/ CEC	I2C1/2/3 /4/CEC	SPI1/2/3/4	SPI2/3/4/ SAI1	SPI2/3/ USART1/2 /3/UART5/ SPDIF	SA12/U SART6/ UART4/ 5/SDIP	CAN1/2 TIM12/13/ 14/ QUADSPI	SAI2/QUA DSPI/ OTG2_HS/ OTG1_FS	OTG1_FS	FMC/ SDIO/ OTG2_FS	DCMI		sys
	PG0	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A10	-	-	EVENT OUT
	PG1	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A11	-	-	EVENT OUT
	PG2	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A12	-	-	EVENT OUT
	PG3	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A13	-	-	EVENT OUT
	PG4	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A14/ FMC_BA0	-	-	EVENT OUT
	PG5	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A15/ FMC_BA1	-	-	EVENT OUT
	PG6	-	-	-	-	-	-	-	-	-	-	QUADSPI_ BK1_NCS	-	-	DCMI_ D12	-	EVENT OUT
	PG7	-	-	-	-	-	-	-	-	USART6 _CK	-	-	-	FMC_INT	DCMI_ D13	-	EVENT OUT
Port G	PG8	-	-	-	-	-	-	-	SPDIF_RX2	USART6 _RTS	-	-	-	FMC_ SDCLK	-	-	EVENT OUT
	PG9	-	-	-	-	-	-	-	SPDIF_RX3	USART6 _RX	QUADSPI_ BK2_IO2	SAI2_FS_B	-	FMC_NE2/ FMC_NCE3	DCMI_ VSYNC ⁽¹⁾	-	EVENT OUT
	PG10	-	-	-	-	-	-	-	-	-	-	SAI2_SD_B	-	FMC_NE3	DCMI_D2	-	EVENT OUT
	PG11	-	-	-	-	-	-	SPI4_ SCK	SPDIF_RX0	-	-	-	-		DCMI_D3	-	EVENT OUT
	PG12	-	-	-	-	-	-	SPI4_ MISO	SPDIF_RX1	USART6 _RTS	-	-	-	FMC_NE4	-	-	EVENT OUT
	PG13	TRACE D2	-	-	-	-	-	SPI4_ MOSI	-	USART6 _CTS	-	-	-	FMC_A24	-	-	EVENT OUT
	PG14	TRACE D3	-	-	-	-	-	SPI4_ NSS	-	USART6 _TX	QUADSPI_ BK2_IO3	-	-	FMC_A25	-	-	EVENT OUT
	PG15	-	-	-	-	-	-	-	-	USART6 _CTS	-	-	-	FMC_ SDNCAS	DCMI_ D13	-	EVENT OUT

Table 11. Alternate function (continued)

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
Pe	ort	sys	TIM1/2	TIM3/4/5	TIM8/9/ 10/11/ CEC	I2C1/2/3 /4/CEC	SPI1/2/3/4	SPI2/3/4/ SAI1	SPI2/3/ USART1/2 /3/UART5/ SPDIF	SA12/U SART6/ UART4/ 5/SDIP	CAN1/2 TIM12/13/ 14/ QUADSPI	SAI2/QUA DSPI/ OTG2_HS/ OTG1_FS	OTG1_FS	FMC/ SDIO/ OTG2_FS	DCMI		sys
Port H	PH0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
Poith	PH1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT

^{1.} The DCMI_VSYNC alternate function on PG9 is only available on silicon revision 3.

Memory mapping STM32F446xx

5 Memory mapping

The memory map is shown in Figure 14

Figure 14. Memory map

STM32F446xx Memory mapping

Table 12. STM32F446xx and register boundary addresses⁽¹⁾

Bus	Boundary address	Peripheral
	0xE00F FFFF - 0xFFFF FFFF	Reserved
Cortex-M4	0xE000 0000 - 0xE00F FFFF	Cortex-M4 internal peripherals
	0xD000 0000 - 0xDFFF FFFF	FMC bank 6
	0xC000 0000 - 0xCFFF FFFF	FMC bank 5
	0xA000 2000 - 0x0xBFFF FFFF	Reserved
	0xA000 1000 - 0x0xA000 1FFF	QuadSPI control register
AHB3	0xA000 0000 - 0xA000 0FFF	FMC control register
	0x9000 0000 - 0x9FFF FFFF	QuadSPI
	0x8000 0000 - 0x8FFF FFFF	FMC bank 3
	0x7000 0000 - 0x0x7FFF FFFF	Reserved
	0x6000 0000 - 0x6FFF FFFF	FMC bank 1
	0x5006 0C00- 0x5FFF FFFF	Reserved
	0x5006 0800- 0x500F 07FF	Reserved
	0x5005 0400 - 0x5006 07FF	Reserved
AHB2	0x5005 0000 - 0x5005 03FF	DCMI
	0x5004 0000- 0x5004 FFFF	Reserved
	0x5000 0000 - 0X5003 FFFF	USB OTG FS

Memory mapping STM32F446xx

Table 12. STM32F446xx and register boundary addresses⁽¹⁾ (continued)

Bus	Boundary address	Peripheral	
	0x4008 0000- 0x4FFF FFFF	Reserved	
	0x4004 0000 - 0x4007 FFFF	USB OTG HS	
	0x4002 BC00- 0x4003 FFFF		
	0x4002 B000 - 0x4002 BBFF		
	0x4002 9400 - 0x4002 AFFF		
	0x4002 9000 - 0x4002 93FF		
	0x4002 8C00 - 0x4002 8FFF	Reserved	
	0x4002 8800 - 0x4002 8BFF		
	0x4002 8400 - 0x4002 87FF		
	0x4002 8000 - 0x4002 83FF		
	0x4002 6800 - 0x4002 7FFF		
	0x4002 6400 - 0x4002 67FF	DMA2	
	0x4002 6000 - 0x4002 63FF	DMA1	
	0X4002 5000 - 0X4002 5FFF	Reserved	
	0x4002 4000 - 0x4002 4FFF	BKPSRAM	
AHB1	0x4002 3C00 - 0x4002 3FFF	Flash interface register	
АПВІ	0x4002 3800 - 0x4002 3BFF	RCC	
	0X4002 3400 - 0X4002 37FF	Reserved	
	0x4002 3000 - 0x4002 33FF	CRC	
	0x4002 2C00 - 0x4002 2FFF		
	0x4002 2800 - 0x4002 2BFF	Departed	
	0x4002 2400 - 0x4002 27FF	Reserved	
	0x4002 2000 - 0x4002 23FF		
	0x4002 1C00 - 0x4002 1FFF	GPIOH	
	0x4002 1800 - 0x4002 1BFF	GPIOG	
	0x4002 1400 - 0x4002 17FF	GPIOF	
	0x4002 1000 - 0x4002 13FF	GPIOE	
	0X4002 0C00 - 0x4002 0FFF	GPIOD	
	0x4002 0800 - 0x4002 0BFF	GPIOC	
	0x4002 0400 - 0x4002 07FF	GPIOB	
	0x4002 0000 - 0x4002 03FF	GPIOA	

STM32F446xx Memory mapping

Table 12. STM32F446xx and register boundary addresses⁽¹⁾ (continued)

Bus	Boundary address	Peripheral	
	0x4001 6C00- 0x4001 FFFF	Decembed	
	0x4001 6800 - 0x4001 6BFF	Reserved	
	0x4001 5C00 - 0x4001 5FFF	SAI2	
	0x4001 6000 - 0x4001 67FF	Reserved	
	0x4001 5800 - 0x4001 5BFF	SAI1	
	0x4001 5400 - 0x4001 57FF		
	0x4001 5000 - 0x4001 53FF	Reserved	
	0x4001 4C00 - 0x4001 4FFF		
	0x4001 4800 - 0x4001 4BFF	TIM11	
	0x4001 4400 - 0x4001 47FF	TIM10	
	0x4001 4000 - 0x4001 43FF	TIM9	
	0x4001 3C00 - 0x4001 3FFF	EXTI	
APB2	0x4001 3800 - 0x4001 3BFF	SYSCFG	
	0x4001 3400 - 0x4001 37FF	SPI4	
	0x4001 3000 - 0x4001 33FF	SPI1	
	0x4001 2C00 - 0x4001 2FFF	SDIO	
	0x4001 2400 - 0x4001 2BFF	Reserved	
	0x4001 2000 - 0x4001 23FF	ADC1 - ADC2 - ADC3	
	0x4001 1800 - 0x4001 1FFF	Reserved	
	0x4001 1400 - 0x4001 17FF	USART6	
	0x4001 1000 - 0x4001 13FF	USART1	
	0x4001 0800 - 0x4001 0FFF	Reserved	
	0x4001 0400 - 0x4001 07FF	TIM8	
	0x4001 0000 - 0x4001 03FF	TIM1	

Memory mapping STM32F446xx

Table 12. STM32F446xx and register boundary addresses⁽¹⁾ (continued)

Bus	Boundary address	Peripheral	
	0x4000 8000- 0x4000 FFFF		
	0x4000 7C00 - 0x4000 7FFF	Reserved	
	0x4000 7800 - 0x4000 7BFF		
	0x4000 7400 - 0x4000 77FF	DAC	
	0x4000 7000 - 0x4000 73FF	PWR	
	0x4000 6C00 - 0x4000 6FFF	HDMI-CEC	
	0x4000 6800 - 0x4000 6BFF	CAN2	
	0x4000 6400 - 0x4000 67FF	CAN1	
	0x4000 6000 - 0x4000 63FF	FMPI2C1	
	0x4000 5C00 - 0x4000 5FFF	I2C3	
	0x4000 5800 - 0x4000 5BFF	I2C2	
	0x4000 5400 - 0x4000 57FF	I2C1	
	0x4000 5000 - 0x4000 53FF	UART5	
	0x4000 4C00 - 0x4000 4FFF	UART4	
	0x4000 4800 - 0x4000 4BFF	USART3	
	0x4000 4400 - 0x4000 47FF	USART2	
APB1	0x4000 4000 - 0x4000 43FF	SPDIF-Rx	
AIDI	0x4000 3C00 - 0x4000 3FFF	SPI3 / I2S3	
	0x4000 3800 - 0x4000 3BFF	SPI2 / I2S2	
	0x4000 3400 - 0x4000 37FF	Reserved	
	0x4000 3000 - 0x4000 33FF	IWDG	
	0x4000 2C00 - 0x4000 2FFF	WWDG	
	0x4000 2800 - 0x4000 2BFF	RTC & BKP Registers	
	0x4000 2400 - 0x4000 27FF	Reserved	
	0x4000 2000 - 0x4000 23FF	TIM14	
	0x4000 1C00 - 0x4000 1FFF	TIM13	
	0x4000 1800 - 0x4000 1BFF	TIM12	
	0x4000 1400 - 0x4000 17FF	TIM7	
	0x4000 1000 - 0x4000 13FF	TIM6	
	0x4000 0C00 - 0x4000 0FFF	TIM5	
	0x4000 0800 - 0x4000 0BFF	TIM4	
	0x4000 0400 - 0x4000 07FF	TIM3	
	0x4000 0000 - 0x4000 03FF	TIM2	

^{1.} The grey color is used for reserved boundary addresses.

6 Package characteristics

6.1 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

Figure 15. LQFP64-10x10 mm 64 pin low-profile quad flat package outline

1. Drawing is not to scale

Table 13. LQFP64 – 10 x 10 mm low-profile quad flat package mechanical data

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max
Α	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	11.800	12.000	12.200	0.4646	0.4724	0.4803
D1	9.800	10.000	10.200	0.3858	0.3937	0.4016
D3	-	7.500	-	-	0.2953	-
E	11.800	12.000	12.200	0.4646	0.4724	0.4803
E1	9.800	10.000	10.200	0.3858	0.3937	0.4016
E3	-	7.500	-	-	0.2953	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
K	0°	3.5°	7°	0°	3.5°	7°
ccc	-	-	0.080	-	-	0.0031

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 16. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline

1. Drawing is not to scale.

Table 14. LQPF100, 14 x 14 mm 100-pin low-profile quad flat package mechanical data

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max
Α	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	15.800	16.000	16.200	0.6220	0.6299	0.6378
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591
D3	-	12.000	-	-	0.4724	-
E	15.800	16.000	16.200	0.6220	0.6299	0.6378

Table 14. LQPF100, 14 x 14 mm 100-pin low-profile quad flat package mechanical data (continued)

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591
E3	-	12.000	-	-	0.4724	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
ccc	-	-	0.080	-	-	0.0031

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

Dimensions are expressed in millimeters.

1. Drawing is not to scale.

Figure 18. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline

1. Drawing is not to scale.

Table 15. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	21.800	22.000	22.200	0.8583	0.8661	0.874
D1	19.800	20.000	20.200	0.7795	0.7874	0.7953
D3	-	17.500	-	-	0.689	-
E	21.800	22.000	22.200	0.8583	0.8661	0.8740
E1	19.800	20.000	20.200	0.7795	0.7874	0.7953
E3	-	17.500	-	-	0.6890	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
ccc	-	-	0.080	-	-	0.0031

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 19. LQFP144 recommended footprint

1. Dimensions are expressed in millimeters.

Figure 20. UFBGA144, 7x7x0.60 R12x12 P 0.5mm, package outline

1. Dimensions are expressed in millimeters.

Table 16. UFBGA144, 7 x 7 x 0.60 R12x12 P 0.5 mm, 144-pin package mechanical data

Symbol	millimeters			inches ⁽¹⁾		
Symbol	Тур	Min	Max	Тур	Min	Max
Α	0.53	0.46	0.6	0.0209	0.0181	0.0236
A1	0.08	0.05	0.11	0.0031	0.002	0.0043
A2	0.45	0.4	0.5	0.0177	0.0157	0.0197
A3	0.13	0.08	0.18	0.0051	0.0031	0.0071
A4	0.32	0.27	0.37	0.0126	0.0106	0.0146
b	0.25	0.2	0.3	0.0098	0.0079	0.0118
D	7	6.95	7.05	0.2756	0.2736	0.2776
D1	5.5	5.45	5.55	0.2165	0.2146	0.2185
E	7	6.95	7.05	0.2756	0.2736	0.2776
E1	5.5	5.45	5.55	0.2165	0.2146	0.2185
е	0.5			0.0197		
F	0.75	0.7	0.8	0.0295	0.0276	0.0315
ddd			0.1			0.0039

Table 16. UFBGA144, 7 x 7 x 0.60 R12x12 P 0.5 mm, 144-pin package mechanical data (continued)

Symbol	millimeters			inches ⁽¹⁾		
Symbol	Тур	Min	Max	Тур	Min	Max
eee			0.15			0.0059
fff			0.05			0.002

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 21. UFBGA144 - 10 x 10 x 0.6 mm, 0.8 pitch package outline

1. Drawing is not to scale.

Table 17. UFBGA144 - 10 x 10 x 0.6 mm, 0.8 pitch, 144-pin package mechanical data

Symbol	millimeters			inches ⁽¹⁾		
	Тур	Min	Max	Тур	Min	Max
Α	0.530	0.460	0.600	0.0209	0.181	0.0236
A1	0.080	0.050	0.110	0.0031	0.0020	0.0043
A2	0.450	0.400	0.500	0.177	0.0157	0.0197
A3	0.080	0.050	0.110	0.0031	0.0020	0.0043
A4	0.320	0.270	0.370	0.0126	0.0106	0.0146
b	0.400	0.360	0.440	0.0157	0.0142	0.0173
D	10.000	9.950	10.050	0.3937	0.3917	0.3957
D1	8.800	8.750	8.850	0.3465	0.3445	0.3484
E	10.000	9.970	10.050	0.3937	0.3917	0.3957
E1	8.800	8.750	8.850	0.3465	0.3445	0.3484
е	0.800	0.750	0.850	.00315	0.0295	0.0335
F	0.600	0.550	0.650	0.0236	0.0217	0.0256

Table 17. UFBGA144 - 10 x 10 x 0.6 mm, 0.8 pitch, 144-pin package mechanical data (continued)

Cumbal	millimeters			inches ⁽¹⁾		
Symbol	Тур	Min	Max	Тур	Min	Max
ddd	-	-	0.080	-	-	0.0031
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.080	-	-	0.0031

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 22. WLCSP81 - 0.4 mm pitch package outline

Table 18. WLCSP81 - 0.4 mm pitch package mechanical data

Obl	millimeters			Inches		
Symbol	Тур	Min	Max	Тур	Min	Max
Α			0.6			0.0236
A1	0.17			0.0067		
A2	0.38			0.015		
A3 ⁽¹⁾	0.025			0.001		
b ⁽²⁾	0.25	0.22	0.28	0.0098	0.0087	0.011
D	3.693	3.658	3.728	0.1454	0.144	0.1468
E	3.815	3.78	3.85	0.1502	0.1488	0.1516
е	0.4			0.0157		
e1	3.2			0.126		
e2	3.2			0.126		
F	0.246			0.0097		
G	0.308			0.0121		
eee	0.05			0.002		

^{1.} Back side coating.

^{2.} Dimension is measured at the maximum bump diameter parallel to primary datum Z.

6.2 Thermal characteristics

The maximum chip-junction temperature, T_J max, in degrees Celsius, may be calculated using the following equation:

 $T_J \max = T_A \max + (P_D \max x \Theta_{JA})$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W,
- P_D max is the sum of P_{INT} max and $P_{I/O}$ max (P_D max = P_{INT} max + $P_{I/O}$ max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

P_{I/O} max represents the maximum power dissipation on output pins where:

$$P_{I/O} \max = \sum (V_{OL} \times I_{OL}) + \sum ((V_{DD} - V_{OH}) \times I_{OH}),$$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Table 13.1 ackage thermal characteristics						
Symbol	Parameter	Value	Unit			
	Thermal resistance junction-ambient LQFP64 - 10 × 10 mm	TBD				
Θ_{JA}	Thermal resistance junction-ambient LQFP100 - 14 × 14 mm / 0.5 mm pitch	43				
	Thermal resistance junction-ambient LQFP144 - 20 × 20 mm / 0.5 mm pitch	40	°C/W			
	Thermal resistance junction-ambient UQFP144 - 7 × 7 mm / 0.5 mm pitch	TBD				
	Thermal resistance junction-ambient UQFP144 - 10 × 10 mm / 0.8 mm pitch	TBD				

Table 19. Package thermal characteristics

Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org.

Part numbering STM32F446xx

7 Part numbering

Table 20. Ordering information scheme

xxx = programmed parts

TR = tape and reel

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

Appendix A Application block diagrams

A.1 USB OTG full speed (FS) interface solutions

Figure 23. USB controller configured as peripheral-only and used in Full speed mode

- External voltage regulator only needed when building a V_{BUS} powered device.
- The same application can be developed using the OTG HS in FS mode to achieve enhanced performance thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.

Figure 24. USB controller configured as host-only and used in full speed mode

- The current limiter is required only if the application has to support a V_{BUS} powered device. A basic power switch can be used if 5 V are available on the application board.
- 2. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.

Figure 25. USB controller configured in dual mode and used in full speed mode

- 1. External voltage regulator only needed when building a $\ensuremath{V_{BUS}}$ powered device.
- 2. The current limiter is required only if the application has to support a V_{BUS} powered device. A basic power switch can be used if 5 V are available on the application board.
- 3. The ID pin is required in dual role only.
- 4. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.

5//

A.2 USB OTG high speed (HS) interface solutions

STM32F4xx · DM not connected USB HS OTG Ctr DF ULPI_CLK DM ULPI_D[7:0] $ID^{(2)}$ USB ULPI_DIR connector ULPI V_{BUS} ULPI_STP V_{SS} ULPI_NXT High speed OTG PHY 24 or 26 MHz XT⁽¹⁾

Figure 26. USB controller configured as peripheral, host, or dual-mode and used in high speed mode

MCO1 or MCO2

MS19005V2

It is possible to use MCO1 or MCO2 to save a crystal. It is however not mandatory to clock the STM32F446xx with a 24 or 26 MHz crystal when using USB HS. The above figure only shows an example of a possible connection.

^{2.} The ID pin is required in dual role only.

Revision history STM32F446xx

8 Revision history

Table 21. Document revision history

Date	Revision	Changes
28-Apr-2014	1	Initial release.
03-Oct-2014	2	Updated Section 3.9 Updated Table 10: STM32F446xx pin and ball descriptions Removed UFBGA column in Table 10: STM32F446xx pin and ball descriptions Added Table 11: Alternate function Updated Figure 21: UFBGA144 - 10 x 10 x 0.6 mm, 0.8 pitch package outline Updated Table 17: UFBGA144 - 10 x 10 x 0.6 mm, 0.8 pitch, 144-pin package mechanical data Added Figure 22: WLCSP81 - 0.4 mm pitch package outline Added Table 18: WLCSP81 - 0.4 mm pitch package mechanical data Updated Table 20: Ordering information scheme
20-Nov-2014	3	Updated Table 2: STM32F446x features and peripheral counts Updated Table 4: Regulator ON/OFF and internal reset ON/OFF availability Updated Table 11: Alternate function Updated Table 20: Ordering information scheme Replaced I2C4 with FMPI2CI and SDMMC with SDIO
08-Dec-2014	4	Changed confidentiality level from ST Restricted to Public. Updated <i>Table 10: STM32F446xx pin and ball descriptions</i> . Updated <i>Table 11: Alternate function</i> .

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2014 STMicroelectronics - All rights reserved

