超大规模集成电路基础 Fundamental of VLSI

第二章 器件

• 一个MOS管内部含有一定数量的反向偏置二

极管

MOS管内部的pn结

二极管符号

- p型半导体
 - 掺杂硼等三价元素

- n型半导体

• 扩散和漂移

- 偏置
 - 外部施加的电压
 - 零偏置
 - 正偏置
 - 反偏置

- 静态特性
 - 二极管与所加偏置电压之间存在指数关系。

$$I_{D} = I_{S}(e^{V_{D}/\phi_{T}} - 1)$$

- 动态特性
 - 耗尽区电容
 - 二极管的耗尽区厚度随着偏置电压改变,这相当于PN结中 存储的电荷量的变化,反应出电容的充放电特性。

$$E_{j} = \sqrt{\left(\frac{2q}{\varepsilon_{si}} \frac{N_{A} N_{D}}{N_{A} + N_{D}}\right) (\phi_{0} - V_{D})} \qquad C_{j} = \frac{dQ_{j}}{dV_{D}} = A_{D} \sqrt{\left(\frac{\varepsilon_{si} q}{2} \frac{N_{A} N_{D}}{N_{A} + N_{D}}\right) (\phi_{0} - V_{D})^{-1}} = \frac{C_{j0}}{\sqrt{1 - V_{D} / \phi_{0}}}$$

$$Q_{j} = A_{D} \sqrt{(2\varepsilon_{si}q \frac{N_{A}N_{D}}{N_{A} + N_{D}})(\phi_{0} - V_{D})}$$

$$W_{j} = W_{n} - W_{p} = \sqrt{\left(\frac{2q}{\varepsilon_{si}} \frac{N_{A} + N_{D}}{N_{A} N_{D}}\right) (\phi_{0} - V_{D})}$$

$$C_{j0} = A_{D} \sqrt{\left(\frac{\mathcal{E}_{si} q}{2} \frac{N_{A} N_{D}}{N_{A} + N_{D}}\right) \phi_{0}^{-1}}$$

- pn结反向击穿
 - 雪崩击穿(可逆)
 - 二极管电场强度随电压升高而增强,当电场强度达到一定 值后使漂移的载流子有很高的加速度,并撞击产生更多的 载流子,使反向电流升高

• 通过栅电压控制的具有电路开关功能的有源器件

- 四个端口: 栅,源,漏,体
- 体端口通常和DC电源相连
 - NMOS的体端接地GND
 - PMOS的体端接高电压Vdd

- 静态特性
 - 电压输出特性分为三个区域
 - 截止区
 - MOS管的源和漏之间没有电流通过,可以认为电阻极高
 - 电阻区
 - MOS管的源和漏之间电流与电压成线性关系,可以认为MOS管的电阻恒定
 - 饱和区
 - MOS管的源和漏之间电流恒定,不随漏和源之间的电压的变换而改变

- 静态特性
 - 强反型层
 - 栅氧层下面源和漏之间的连续沟道
 - 阈值电压V_T
 - 强反型层发生时V_{GS}的电压
 - 截止区V_{GS}< V_T
 - MOS管中没有电流产生

- 静态特性
 - 影响阈值电压的因素
 - 栅和衬底材料间功函数差、氧化层厚度、费米电势、掺杂浓度、氧化层中的杂质电荷、源-体电压V_{SB}
 - 阈值电压计算

$$V_{T} = V_{T0} + \gamma (\sqrt{|(-2)\phi_{F} + V_{SB}|} - \sqrt{|2\phi_{F}|})$$

V_{T0}为V_{SB}=0时的阈值电压

• NMOS阈值电压为正值, PMOS阈值电压为负值

- 静态特性
 - 电阻区: V_{GS}>V_T
 - 单位面积沟道电荷

$$Q_{i}(x) = -C_{ox}[V_{GS} - V(x) - V_{T}]$$

$$I_{D} = -\nu_{n}(x)Q_{i}(x)W$$

$$\upsilon_{n}(x) = -\mu_{n}\xi(x) = \mu_{n}\frac{dV}{dx}$$

$$I_D dx = \mu_n C_{ox} W(V_{GS} - V - V_T) dV$$

$$I_{D} = \mu_{n} C_{ox} \frac{W}{L} \left[(V_{GS} - V_{T}) V_{DS} - \frac{V_{DS}^{2}}{2} \right]$$

$$k'_n = \mu_n C_{ox} = \mu_n \frac{\mathcal{E}_{ox}}{t_{ox}}$$
 工艺跨导 $k_n = k'_n \frac{W}{L}$ 增益因子

- 静态特性
 - 饱和区: V_{GS}-V_{DS}≤V_T
 - 沟道上电压差(从夹断点到源)保持固定在V_{GS}-V_T
 - 漏电流保持常数(或饱和)
 - 漏电流不是V_{DS}的函数,与V_{GS}存在平方关系(一阶近似)

- 静态特性
 - 沟道长度调制
 - 导电沟道长度实际上由所加的V_{DS}调制,耗尽区随V_{DS}增加而加大,从而缩短有效的沟道长度L,使漏电流增加
 - 处在饱和模式下的晶体管受到沟道长度调制的作用,源端和漏端间的电流不再恒定不变,I_D随V_{DS}增加而增加

$$I_{D} = I_{D}'(1 + \lambda V_{DS})$$

- 静态特性
 - 速度饱和
 - 一般情况下载流子迁移率为常数 $v_n(x) = -\mu_n \xi(x) = \mu_n \frac{dV}{dx}$
 - 在电场强度很高情况下($\xi > \xi_c$),载流子速度由于散射效应 而趋于饱和

- 静态特性
 - 速度饱和
 - 用修正后的速度公式重新计算漏电流

$$I_{D} = \frac{\mu_{n} C_{ox}}{1 + (V_{DS}/\xi_{c}L)} \left(\frac{W}{L}\right) \left[(V_{GS} - V_{T})V_{DS} - \frac{V_{DS}^{2}}{2} \right]$$

$$= \mu_{n} C_{ox} \left(\frac{W}{L}\right) \left[(V_{GS} - V_{T})V_{DS} - \frac{V_{DS}^{2}}{2} \right] \kappa(V_{DS})$$

$$\kappa(V) = \frac{1}{1 + (V/\xi_{c}L)}$$

 V_{DS}/L 为沟道的平均电场,长沟器件(L值较大)或 V_{DS} 值较小的情况下, κ 接近1

- 静态特性
 - 饱和电流计算

$$Q_{i}(x) = -C_{ox} [V_{GS} - V(x) - V_{T}]$$

$$I_{D} = -v_{n}(x)Q_{i}(x)W$$

$$I_{DSAT} = \upsilon_{sat} C_{ox} W (V_{GT} - V_{DSAT})$$

$$= \kappa (V_{DSAT}) \mu_n C_{ox} \left(\frac{W}{L}\right) \left(V_{GT} V_{DSAT} - \frac{V_{DSAT}^2}{2}\right)$$

$$V_{DSAT} = \kappa(V_{GT})V_{GT}$$

- 静态特性
 - 从饱和电流计算公式可以看出 $V_{DSAT} = \kappa(V_{GT})V_{GT}$
 - 对于短沟器件及足够大的 V_{GT} , κ 明显小于1,由此 $V_{DSAT} < V_{GT}$,器件在 V_{DS} 达到 $V_{GS} V_{T}$ 之前就已经进入饱和状态。
 - I_{DSAT}与栅源电压V_{GS}成线性关系。

- 静态特性
 - NMOS电流电压关系

长沟晶体管(L_d=10um)

$$I_{D} = \frac{k_{n}'}{2} \frac{W}{L} (V_{GS} - V_{T})^{2}$$

短沟晶体管(L_d=0.25um)

- 静态特性
 - PMOS电流电压关系

- 静态特性
 - 亚阈值情况
 - 当电压低于阈值电压时,MOS晶体管已部分导通
 - 导通到截止的过程是渐变的

- 静态特性
 - MOS模型

$$\begin{split} I_D &= 0 \text{ for } V_{GT} \leq 0 \\ I_D &= k' \frac{W}{L} \Big(V_{GT} V_{min} - \frac{V_{min}^2}{2} \Big) (1 + \lambda V_{DS}) \text{ for } V_{GT} \geq 0 \\ \text{with } V_{min} &= \min(V_{GT}, V_{DS}, V_{DSAT}), \\ V_{GT} &= V_{GS} - V_T, \\ \text{and } V_T &= V_{T0} + \gamma (\sqrt{|-2\phi_E|} + V_{SR}| - \sqrt{|-2\phi_E|}) \end{split}$$

• 静态特性

• 静态特性

单位长度0.25um CMOS工艺模型参数

	V _{T0} (V)	γ (V ^{0.5})	V_{DSAT} (V)	k' (A/V ²)	λ (V ⁻¹)
NMOS	0.43	0.4	0.63	115×10^{-6}	0.06
PMOS	-0.4	-0.4	-1	$\text{-}30\times10^{\text{-}6}$	-0.1

- 等效电阻
 - 数字设计中MOS晶体管常常作为一个开关使用
 - MOS晶体管电阻通常是非线性的
 - 在数字设计中为简化设计常常将其近似成等效线性电阻

• 等效电阻计算

$$R_{eq} = \frac{1}{-V_{DD}/2} \int_{V_{DD}}^{V_{DD}/2} \frac{V}{I_{DSAT}(1+\lambda V)} dV \approx \frac{3}{4} \frac{V_{DD}}{I_{DSAT}} (1 - \frac{7}{9} \lambda V_{DD})$$

$$I_{DSAT} = k' \frac{W}{L} \left((V_{DD} - V_T) V_{DSAT} - \frac{V_{DSAT}^{2}}{2} \right)$$

$$R_{eq} = \frac{1}{2} \left(\frac{V_{DD}}{I_{DSAT}(1+\lambda V_{DD})} + \frac{V_{DD}/2}{I_{DSAT}(1+\lambda V_{DD}/2)} \right) \approx \frac{3}{4} \frac{V_{DD}}{I_{DSAT}} (1 - \frac{5}{6} \lambda V_{DD})$$

- 动态特性
 - MOS晶体管电容模型

- 动态特性
 - MOS结构电容

$$C_{GSO} = C_{GDO} = C_{ox} x_d W = C_o W$$

截面图

- 动态特性
 - 沟道电容 G

- 动态特性
 - 沟道电容

不同工作区域MOS管沟道电容的平均分布情况

工作区域	C_{GCB}	C_{GCS}	C_{GCD}	c_{α}	C_G
截止区	$C_{\alpha x}WL$	0	0	$C_{ox}WL$	$C_{ox}WL + 2C_{o}W$
电阻区	0	$C_{ox}WL/2$	$C_{ax}WL/2$	$C_{ax}WL$	$C_{\alpha x}WL + 2C_{\alpha}W$
饱和区。	0	$(2/3)C_{\alpha x}WL$	0	$(2/3)C_{\alpha x}WL$	$(2/3) C_{\alpha x} WL + 2C_{\alpha} W$

- 动态特性
 - 结电容(扩散电容)
 - 底板pn结 C_{bottom}

