Ret

Sea $\tau_{Ret} = (\emptyset, \{s^2, i^2\}, \{\leq^2\}, a)$. Y sea $Ret = (\Sigma_{Ret}, \tau_{Ret})$, donde Σ_{Ret} es el siguiente conjunto de sentencias:

1

Sea $\tau_{Ret} = (\emptyset, \{s^2, i^2\}, \{\leq^2\}, a)$. Y sea $Ret = (\Sigma_{Ret}, \tau_{Ret})$, donde Σ_{Ret} es el siguiente conjunto de sentencias:

$$A_{\leq R} = \forall x \ x \leq x$$

$$A_{\leq A} = \forall x \forall y \ ((x \leq y \land y \leq x) \rightarrow x \equiv y)$$

$$A_{\leq T} = \forall x \forall y \forall z \ ((x \leq y \land y \leq z) \rightarrow x \leq z)$$

$$A_{sesC} = \forall x \forall y \ (x \leq x \ s \ y \land y \leq x \ s \ y)$$

$$A_{s \leq C} = \forall x \forall y \forall z \ ((x \leq z \land y \leq z) \rightarrow x \ s \ y \leq z)$$

$$A_{iesC} = \forall x \forall y \ (x \ i \ y \leq x \land x \ i \ y \leq y)$$

$$A_{i \geq C} = \forall x \forall y \forall z \ ((z \leq x \land z \leq y) \rightarrow z \leq x \ i \ y)$$

1

Ret

Daremos pruebas formales para las siguientes sentencias:

Ret

Daremos pruebas formales para las siguientes sentencias:

•
$$\phi = \forall x \forall y \forall z (x s y) s z \le x s (y s z)$$

Daremos pruebas formales para las siguientes sentencias:

- $\phi = \forall x \forall y \forall z (x s y) s z \le x s (y s z)$
- $ullet \ \psi = {\it Dis} 1
 ightarrow {\it CancDobl} \ \ {\it Donde}$

$$Dis1 = \forall xyz \ (x \ i \ y) \ s \ (x \ i \ z) \equiv x \ i \ (y \ s \ z)$$
$$CancDobl = \forall xy \ (\exists z (x \ i \ z \equiv y \ i \ z \land x \ s \ z \equiv y \ s \ z) \rightarrow x \equiv y)$$

Modelos de Ret: $A_{\leq R}, A_{\leq A}, A_{\leq T}$

• $\mathbf{A} \models A_{\leq R} \land A_{\leq A} \land A_{\leq T}$ si y sólo si $(A, \leq^{\mathbf{A}})$ es un poset

Modelos de Ret: $A_{\leq R}, A_{\leq A}, A_{\leq T}$

- $\mathbf{A} \models A_{\leq R} \land A_{\leq A} \land A_{\leq T}$ si y sólo si $(A, \leq^{\mathbf{A}})$ es un poset
- **Observación:** Una estructura **A** de tipo τ_{Ret} puede satisfacer los 3 axiomas pero esto no significa que las operaciones $s^{\mathbf{A}}$ e $i^{\mathbf{A}}$ sean las operaciones supremo e ínfimo respecto al orden $\leq^{\mathbf{A}}$.

Modelos de Ret: $A_{\leq R}, \overline{A_{\leq A}, A_{\leq T}, A_{sesC}, A_{s\leq C}}$

Si **A** \models $A_{\leq R} \land A_{\leq A} \land A_{\leq T}$ entonces:

• $A \models A_{sesC}$ si y sólo si $(a s^A b)$ es cota superior de $\{a, b\}$ en (A, \leq^A) cualesquiera sean a y b.

Modelos de Ret: $A_{\leq R}$, $A_{\leq A}$, $A_{\leq T}$, A_{sesC} , $A_{s\leq C}$

Si $\mathbf{A} \models A_{\leq R} \land A_{\leq A} \land A_{\leq T}$ entonces:

- $A \models A_{sesC}$ si y sólo si $(a s^A b)$ es cota superior de $\{a, b\}$ en (A, \leq^A) cualesquiera sean a y b.
- $\mathbf{A} \models A_{s \leq C}$ si y sólo si $(a \ s^{\mathbf{A}} \ b)$ es menor o igual a toda cota superior de $\{a,b\}$ cualesquiera sean $a \ y \ b$

Modelos de Ret: $A_{\leq R}, \overline{A_{\leq A}, A_{\leq T}, A_{sesC}, A_{s\leq C}}$

Si $\mathbf{A} \models A_{\leq R} \land A_{\leq A} \land A_{\leq T}$ entonces:

- $A \models A_{sesC}$ si y sólo si $(a s^A b)$ es cota superior de $\{a, b\}$ en (A, \leq^A) cualesquiera sean a y b.
- $\mathbf{A} \models A_{s \leq C}$ si y sólo si $(a \ s^{\mathbf{A}} \ b)$ es menor o igual a toda cota superior de $\{a,b\}$ cualesquiera sean $a \ y \ b$
- A cumplirá los axiomas $A_{\leq R}, A_{\leq A}, A_{\leq T}, A_{\text{ses}C}$ y $A_{\text{s}\leq C}$ si y sólo si $\leq^{\mathbf{A}}$ es un orden parcial y $s^{\mathbf{A}}$ es la operación supremo respecto del orden $\leq^{\mathbf{A}}$.

A es un modelo de Ret si y sólo si se cumple que:

A es un modelo de Ret si y sólo si se cumple que:

• $(A, \leq^{\mathbf{A}})$ es un orden parcial

A es un modelo de Ret si y sólo si se cumple que:

- $(A, \leq^{\mathbf{A}})$ es un orden parcial
- $s^{\mathbf{A}}$ es el supremo en el poset $(A, \leq^{\mathbf{A}})$

A es un modelo de Ret si y sólo si se cumple que:

- $(A, \leq^{\mathbf{A}})$ es un orden parcial
- s^{A} es el supremo en el poset (A, \leq^{A})
- $i^{\mathbf{A}}$ es el ínfimo en el poset $(A, \leq^{\mathbf{A}})$

Encontraremos una prueba formal en Ret de la sentencia:

$$\forall x \forall y \forall z (x s y) s z \leq x s (y s z)$$

Encontraremos una prueba formal en Ret de la sentencia:

$$\forall x \forall y \forall z (x s y) s z \leq x s (y s z)$$

Forma de encontrar la prueba formal:

Encontraremos una prueba formal en Ret de la sentencia:

$$\forall x \forall y \forall z (x s y) s z \leq x s (y s z)$$

Forma de encontrar la prueba formal:

1. Prueba Matemática

Encontraremos una prueba formal en Ret de la sentencia:

$$\forall x \forall y \forall z (x s y) s z \leq x s (y s z)$$

Forma de encontrar la prueba formal:

- 1. Prueba Matemática
- 2. Prueba Formal

• Sean a, b, c elementos de A fijos.

- Sean a, b, c elementos de A fijos.
- Probaremos que

$$(a s b) s c \leq a s (b s c)$$

- Sean a, b, c elementos de A fijos.
- Probaremos que

$$(a s b) s c \leq a s (b s c)$$

• Sabemos por A_{sesC} que

$$a \le a \ s \ (b \ s \ c) \tag{1}$$

$$b s c \le a s (b s c) \tag{2}$$

- Sean a, b, c elementos de A fijos.
- Probaremos que

$$(a s b) s c \leq a s (b s c)$$

• Sabemos por A_{sesC} que

$$a \le a \ s \ (b \ s \ c) \tag{1}$$

$$b s c \le a s (b s c) \tag{2}$$

• Aplicandolo nuevamente, sabemos que

$$b \le (b \ s \ c) \tag{3}$$

$$c \le (b \ s \ c) \tag{4}$$

• Luego, por (2), (3) y $A_{\leq T}$ tenemos

$$b \le a s (b s c) \tag{5}$$

• Luego, por (2), (3) y $A_{\leq T}$ tenemos

$$b \le a s (b s c) \tag{5}$$

• Y por (2), (4) y $A_{\leq T}$ tenemos

$$c \le a \ s \ (b \ s \ c) \tag{6}$$

• Luego, por (2), (3) y $A_{\leq T}$ tenemos

$$b \le a s (b s c) \tag{5}$$

• Y por (2), (4) y *A*<*T* tenemos

$$c \le a \ s \ (b \ s \ c) \tag{6}$$

• Es decir, hasta aquí hemos probado que

$$a \le a \ s \ (b \ s \ c) \tag{7}$$

$$b \le a s (b s c) \tag{8}$$

$$c \le a s (b s c) \tag{9}$$

• Por $A_{s < C}$, tomando

$$x = a$$

$$y = b$$

$$z = a s (b s c)$$

tenemos que

$$a s b \le a s (b s c) \tag{10}$$

• Finalmente, si aplicamos nuevamente $A_{s < C}$ tomando

$$x = a s b$$

 $y = c$
 $z = a s (b s c)$

obtenemos

$$(a s b) s c \leq a s (b s c)$$
 (11)

• Finalmente, si aplicamos nuevamente $A_{s \leq C}$ tomando

$$x = a s b$$

 $y = c$
 $z = a s (b s c)$

obtenemos

$$(a s b) s c \leq a s (b s c)$$
 (11)

• Como *a*, *b*, *c* eran elementos cualesquiera, probamos que

$$\forall x \forall y \forall z \ (x s y) s z \leq x s (y s z)$$

Ahora daremos la prueba formal en Ret de la sentencia en cuestión

1.
$$\forall x \forall y \ (x \leq x \ s \ y \land y \leq x \ s \ y)$$

AXIOMAPROPIO

1.
$$\forall x \forall y \ (x \leq x \ s \ y \land y \leq x \ s \ y)$$

2.
$$a \le a \ s \ (b \ s \ c) \land (b \ s \ c) \le a \ s \ (b \ s \ c)$$

PARTICULARIZACION×2(1)

1.
$$\forall x \forall y \ (x \leq x \ s \ y \land y \leq x \ s \ y)$$

3. $bsc \leq as(bsc)$

2.
$$a \le a s (b s c) \land (b s c) \le a s (b s c)$$
 PARTICULARIZACIONx2(1)

AXIOMAPROPIO

CONJELIM(2)

1.
$$\forall x \forall y \ (x \leq x \ s \ y \land y \leq x \ s \ y)$$

2.
$$a \leq a s (b s c) \wedge (b s c) \leq a s (b s c)$$

3.
$$b s c \le a s (b s c)$$

4.
$$b \leq b \ s \ c \land c \leq b \ s \ c$$

AXIOMAPROPIO

PARTICULARIZACION×2(1)

CONJELIM(2)

PARTICULARIZACION×2(1)

1.
$$\forall x \forall y \ (x \leq x \ s \ y \land y \leq x \ s \ y)$$

2.
$$a \le a s (b s c) \land (b s c) \le a s (b s c)$$

3.
$$b s c \leq a s (b s c)$$

4.
$$b \le b \ s \ c \land c \le b \ s \ c$$

5.
$$b \le (b \ s \ c)$$

AXIOMAPROPIO

PARTICULARIZACION×2(1)

CONJELIM(2)

 ${\sf PARTICULARIZACION}{\times}2(1)$

CONJELIM(4)

1.
$$\forall x \forall y \ (x \leq x \ s \ y \land y \leq x \ s \ y)$$

2.
$$a \le a s (b s c) \land (b s c) \le a s (b s c)$$

3.
$$bsc \leq as(bsc)$$

4.
$$b \le b s c \land c \le b s c$$

5.
$$b \le (b \ s \ c)$$

6.
$$b \leq (b s c) \wedge b s c \leq a s (b s c)$$

AXIOMAPROPIO

1.
$$\forall x \forall y \ (x \leq x \ s \ y \land y \leq x \ s \ y)$$

2.
$$a \leq a s (b s c) \wedge (b s c) \leq a s (b s c)$$

3.
$$bsc \leq as(bsc)$$

4.
$$b \le b \ s \ c \land c \le b \ s \ c$$

5.
$$b \le (b \ s \ c)$$

6.
$$b \leq (b s c) \wedge b s c \leq a s (b s c)$$

7.
$$\forall x \forall y \forall z \ ((x \leq y \land y \leq z) \rightarrow x \leq z)$$

AXIOMAPROPIO

PARTICULARIZACION×2(1)

CONJELIM(2)

PARTICULARIZACION×2(1)

CONJELIM(4)

CONJINT(5,3)

AXIOMAPROPIO

1.
$$\forall x \forall y \ (x \le x \ s \ y \land y \le x \ s \ y)$$
 AXIOMAPROPIO

2.
$$a \le a s (b s c) \land (b s c) \le a s (b s c)$$
 PARTICULARIZACION×2(1)

3.
$$b s c \le a s (b s c)$$
 CONJELIM(2)

4.
$$b \le b \ s \ c \land c \le b \ s \ c$$
 PARTICULARIZACION $\times 2(1)$

5.
$$b \le (b \ s \ c)$$
 CONJELIM(4)

6.
$$b \le (b s c) \land b s c \le a s (b s c)$$
 CONJINT(5,3)

7.
$$\forall x \forall y \forall z \ ((x \le y \land y \le z) \rightarrow x \le z)$$
 AXIOMAPROPIO

8.
$$(b \le (b \ s \ c) \land (b \ s \ c) \le a \ s \ (b \ s \ c)) \rightarrow (b \le a \ s \ (b \ s \ c))$$
 PARTICULARIZACIONx3(7)

1.
$$\forall x \forall y \ (x \le x \ s \ y \land y \le x \ s \ y)$$
 AXIOMAPROPIO
2. $a \le a \ s \ (b \ s \ c) \land (b \ s \ c) \le a \ s \ (b \ s \ c)$ PARTICULARIZACION $x2(1)$

3.
$$b s c \le a s (b s c)$$
 CONJELIM(2)

4.
$$b \le b \ s \ c \land c \le b \ s \ c$$
 PARTICULARIZACION $\times 2(1)$

5.
$$b \le (b \ s \ c)$$
 CONJELIM(4)

6.
$$b \le (b s c) \land b s c \le a s (b s c)$$
 CONJINT(5,3)

7.
$$\forall x \forall y \forall z \ ((x \le y \land y \le z) \to x \le z)$$
 AXIOMAPROPIO
8. $(b < (b \ s \ c) \land (b \ s \ c) < a \ s \ (b \ s \ c))$ PARTICULARIZACIONx3(7)

9.
$$b \le a s (b s c)$$
 MODUSPONENS(6,8)

$$0. \quad b \le a \ s \ (b \ s \ c)$$
 MODUSPONENS(6,8)

10. c < (b s c)

1.
$$\forall x \forall y \ (x \leq x \, s \, y \land y \leq x \, s \, y)$$
 AXIOMAPROPIO
2. $a \leq a \, s \ (b \, s \, c) \land (b \, s \, c) \leq a \, s \ (b \, s \, c)$ PARTICULARIZACIONx2(1)
3. $b \, s \, c \leq a \, s \ (b \, s \, c)$ CONJELIM(2)
4. $b \leq b \, s \, c \land c \leq b \, s \, c$ PARTICULARIZACIONx2(1)
5. $b \leq (b \, s \, c)$ CONJELIM(4)
6. $b \leq (b \, s \, c) \land b \, s \, c \leq a \, s \ (b \, s \, c)$ CONJINT(5,3)
7. $\forall x \forall y \forall z \ ((x \leq y \land y \leq z) \rightarrow x \leq z)$ AXIOMAPROPIO
8. $(b \leq (b \, s \, c) \land (b \, s \, c) \leq a \, s \ (b \, s \, c)) \rightarrow (b \leq a \, s \ (b \, s \, c))$ PARTICULARIZACIONx3(7)
9. $b \leq a \, s \ (b \, s \, c)$ MODUSPONENS(6,8)

CONJELIM(4)

1.
$$\forall x \forall y \ (x \leq x \, s \, y \wedge y \leq x \, s \, y)$$
 AXIOMAPROPIO
2. $a \leq a \, s \ (b \, s \, c) \wedge (b \, s \, c) \leq a \, s \ (b \, s \, c)$ PARTICULARIZACIONx2(1)
3. $b \, s \, c \leq a \, s \ (b \, s \, c)$ CONJELIM(2)
4. $b \leq b \, s \, c \wedge c \leq b \, s \, c$ PARTICULARIZACIONx2(1)
5. $b \leq (b \, s \, c)$ CONJELIM(4)
6. $b \leq (b \, s \, c) \wedge b \, s \, c \leq a \, s \ (b \, s \, c)$ CONJINT(5,3)
7. $\forall x \forall y \forall z \ ((x \leq y \wedge y \leq z) \rightarrow x \leq z)$ AXIOMAPROPIO
8. $(b \leq (b \, s \, c) \wedge (b \, s \, c) \leq a \, s \ (b \, s \, c)) \rightarrow (b \leq a \, s \ (b \, s \, c))$ PARTICULARIZACIONx3(7)
9. $b \leq a \, s \ (b \, s \, c)$ MODUSPONENS(6,8)
10. $c \leq (b \, s \, c)$ CONJELIM(4)
11. $c \leq (b \, s \, c) \wedge b \, s \, c \leq a \, s \ (b \, s \, c)$

1.
$$\forall x \forall y \ (x \leq x \, s \, y \land y \leq x \, s \, y)$$
 AXIOMAPROPIO
2. $a \leq a \, s \ (b \, s \, c) \land (b \, s \, c) \leq a \, s \ (b \, s \, c)$ PARTICULARIZACION $x2(1)$
3. $b \, s \, c \leq a \, s \ (b \, s \, c)$ CONJELIM(2)
4. $b \leq b \, s \, c \land c \leq b \, s \, c$ PARTICULARIZACION $x2(1)$
5. $b \leq (b \, s \, c)$ CONJELIM(4)
6. $b \leq (b \, s \, c) \land b \, s \, c \leq a \, s \ (b \, s \, c)$ CONJINT(5,3)
7. $\forall x \forall y \forall z \ ((x \leq y \land y \leq z) \rightarrow x \leq z)$ AXIOMAPROPIO
8. $(b \leq (b \, s \, c) \land (b \, s \, c) \leq a \, s \ (b \, s \, c)) \rightarrow (b \leq a \, s \ (b \, s \, c))$ PARTICULARIZACION $x3(7)$
9. $b \leq a \, s \ (b \, s \, c)$ MODUSPONENS(6,8)
10. $c \leq (b \, s \, c) \land b \, s \, c \leq a \, s \ (b \, s \, c)$ CONJINT(10,3)
12. $(c \leq (b \, s \, c) \land (b \, s \, c) \leq a \, s \ (b \, s \, c)) \rightarrow (c \leq a \, s \ (b \, s \, c))$ PARTICULARIZACION $x3(7)$

1.
$$\forall x \forall y \ (x \leq x \, s \, y \land y \leq x \, s \, y)$$
 AXIOMAPROPIO
2. $a \leq a \, s \ (b \, s \, c) \land (b \, s \, c) \leq a \, s \ (b \, s \, c)$ PARTICULARIZACION $x2(1)$
3. $b \, s \, c \leq a \, s \ (b \, s \, c)$ CONJELIM(2)
4. $b \leq b \, s \, c \land c \leq b \, s \, c$ PARTICULARIZACION $x2(1)$
5. $b \leq (b \, s \, c)$ CONJELIM(4)
6. $b \leq (b \, s \, c) \land b \, s \, c \leq a \, s \ (b \, s \, c)$ CONJINT(5,3)
7. $\forall x \forall y \forall z \ ((x \leq y \land y \leq z) \rightarrow x \leq z)$ AXIOMAPROPIO
8. $(b \leq (b \, s \, c) \land (b \, s \, c) \leq a \, s \ (b \, s \, c)) \rightarrow (b \leq a \, s \ (b \, s \, c))$ PARTICULARIZACION $x3(7)$
9. $b \leq a \, s \ (b \, s \, c)$ MODUSPONENS(6,8)
10. $c \leq (b \, s \, c) \land b \, s \, c \leq a \, s \ (b \, s \, c)$ CONJINT(10,3)
12. $(c \leq (b \, s \, c) \land (b \, s \, c) \leq a \, s \ (b \, s \, c)) \rightarrow (c \leq a \, s \ (b \, s \, c))$ PARTICULARIZACION $x3(7)$
13. $c \leq a \, s \ (b \, s \, c)$ MODUSPONENS(11,12)

14.
$$a \le a \ s \ (b \ s \ c)$$

14.
$$a \le a \ s \ (b \ s \ c)$$
 CONJELIM(2)
15. $a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)$ CONJINT(14,9)

14.
$$a \le a \ s \ (b \ s \ c)$$
 CONJELIM(2)
15. $a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)$ CONJINT(14,9)
16. $\forall x \forall y \forall z \ ((x \le z \land y \le z) \to x \ s \ y \le z)$ AXIOMAPROPIO

14.
$$a \le a \ s \ (b \ s \ c)$$
 CONJELIM(2)
15. $a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)$ CONJINT(14,9)

16.
$$\forall x \forall y \forall z \ ((x \leq z \land y \leq z) \rightarrow x \text{ s } y \leq z)$$
 AXIOMAPROPIO

17.
$$(a \le a \ s \ (b \ s \ c)) \land b \le a \ s \ (b \ s \ c)) \rightarrow ((a \ s \ b) \le a \ s \ (b \ s \ c))$$
 PARTICULARIZACION \times 3(16)

14.
$$a \le a s (b s c)$$

15.
$$a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)$$
 CONJINT(14,9)

16.
$$\forall x \forall y \forall z \ ((x \leq z \land y \leq z) \rightarrow x \text{ s } y \leq z)$$
 AXIOMAPROPIO

17.
$$(a \le a \ s \ (b \ s \ c)) \land b \le a \ s \ (b \ s \ c)) \rightarrow ((a \ s \ b) \le a \ s \ (b \ s \ c))$$
 PARTICULARIZACION×3(16)

18.
$$(a \circ b) \leq a \circ (b \circ c)$$
 MODUSPONENS(15,17)

14.
$$a \le a s (b s c)$$
 CONJELIM(2)

15.
$$a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)$$
 CONJINT(14,9)

16.
$$\forall x \forall y \forall z \ ((x \le z \land y \le z) \rightarrow x \text{ s } y \le z)$$
 AXIOMAPROPIO

17.
$$(a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)) \rightarrow ((a \ s \ b) \le a \ s \ (b \ s \ c))$$
 PARTICULARIZACION×3(16)

18.
$$(a s b) \le a s (b s c)$$
 MODUSPONENS(15,17)

$$19. \ \ ((a\ s\ b)\leq a\ s\ (b\ s\ c) \land\ c\leq a\ s\ (b\ s\ c)) \ \rightarrow \ ((a\ s\ b)\ s\ c\leq a\ s\ (b\ s\ c)) \qquad \mathsf{PARTICULARIZACIONx3(16)}$$

19. $((a s b) < a s (b s c) \land c < a s (b s c)) \rightarrow ((a s b) s c < a s (b s c))$

20. $(a s b) < a s (b s c) \land c < a s (b s c)$

14. $a \leq a s (b s c)$

15.
$$a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)$$
 CONJINT(14,9)
16. $\forall x \forall y \forall z \ ((x \le z \land y \le z) \rightarrow x \ s \ y \le z)$ AXIOMAPROPIO
17. $(a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)) \rightarrow ((a \ s \ b) \le a \ s \ (b \ s \ c))$ PARTICULARIZACIONX3(16)
18. $(a \ s \ b) \le a \ s \ (b \ s \ c)$ MODUSPONENS(15,17)

CONJELIM(2)

CONJINT(18,13)

PARTICULARIZACION×3(16)

14.
$$a \le a s (b s c)$$
 CONJELIM(2)

15.
$$a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)$$
 CONJINT(14,9)

16.
$$\forall x \forall y \forall z \ ((x \leq z \land y \leq z) \rightarrow x \text{ s } y \leq z)$$
 AXIOMAPROPIO

17.
$$(a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)) \rightarrow ((a \ s \ b) \le a \ s \ (b \ s \ c))$$
 PARTICULARIZACION×3(16)

18.
$$(a \circ b) \le a \circ (b \circ c)$$
 MODUSPONENS(15,17)

19.
$$((a s b) \le a s (b s c) \land c \le a s (b s c)) \rightarrow ((a s b) s c \le a s (b s c))$$
 PARTICULARIZACION×3(16)

20.
$$(a s b) \le a s (b s c) \land c \le a s (b s c)$$
 CONJINT(18,13)

21.
$$(a s b) s c \le a s (b s c)$$
 MODUSPONENS(20,19)

14. a < a s (b s c)

20. $(a s b) < a s (b s c) \land c < a s (b s c)$

22. $\forall x \forall y \forall z (x s y) s z \leq x s (y s z)$

21. (a s b) s c < a s (b s c)

15.
$$a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)$$
 CONJINT(14,9)

16. $\forall x \forall y \forall z \ ((x \le z \land y \le z) \rightarrow x \ s \ y \le z)$ AXIOMAPROPIO

17. $(a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)) \rightarrow ((a \ s \ b) \le a \ s \ (b \ s \ c))$ PARTICULARIZACIONX3(16)

18. $(a \ s \ b) \le a \ s \ (b \ s \ c) \land c \le a \ s \ (b \ s \ c)) \rightarrow ((a \ s \ b) \ s \ c \le a \ s \ (b \ s \ c))$ PARTICULARIZACIONX3(16)

CONJELIM(2)

CONJINT(18,13)

MODUSPONENS(20,19)

GENERALIZACIÓN×3(21)

14.
$$a \le a \ s \ (b \ s \ c)$$
 CONJELIM(2)

15. $a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)$ CONJINT(14,9)

16. $\forall x \forall y \forall z \ ((x \le z \land y \le z) \rightarrow x \ s \ y \le z)$ AXIOMAPROPIO

17. $(a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)) \rightarrow ((a \ s \ b) \le a \ s \ (b \ s \ c))$ PARTICULARIZACIONx3(16)

18. $(a \ s \ b) \le a \ s \ (b \ s \ c)$ MODUSPONENS(15,17)

19. $((a \ s \ b) \le a \ s \ (b \ s \ c) \land c \le a \ s \ (b \ s \ c)) \rightarrow ((a \ s \ b) \ s \ c \le a \ s \ (b \ s \ c))$ PARTICULARIZACIONx3(16)

20. $(a \ s \ b) \le a \ s \ (b \ s \ c) \land c \le a \ s \ (b \ s \ c)$ CONJINT(18,13)

21. $(a \ s \ b) \ s \ c \le a \ s \ (b \ s \ c)$ MODUSPONENS(20,19)

22. $\forall x \forall y \forall y \forall z (x \ s \ y) \ s \ z \le x \ s \ (y \ s \ z)$ GENERALIZACIÓNx3(21)

23. $\forall x \forall y \forall y \forall z (x \ s \ y) \ s \ z \le x \ s \ (y \ s \ z)$ CONCLUSION(22)

 $\forall xyz \ (x \ i \ y) \ s \ (x \ i \ z) \equiv x \ i \ (y \ s \ z) \rightarrow \forall x \ \forall y \ (\exists z (x \ i \ z \equiv y \ i \ z \land x \ s \ z \equiv y \ s \ z) \rightarrow x \ \equiv y)$:

Ahora encontraremos una prueba formal en Ret de la sentencia ψ :

 $\mathit{Dis}1 \to \mathit{CancDobl}$

 $\forall xyz \ (x \ i \ y) \ s \ (x \ i \ z) \equiv x \ i \ (y \ s \ z) \rightarrow \forall x \ \forall y \ (\exists z (x \ i \ z \equiv y \ i \ z \land x \ s \ z \equiv y \ s \ z) \rightarrow x \ \equiv y)$:

Ahora encontraremos una prueba formal en Ret de la sentencia ψ :

$$Dis1 \rightarrow CancDobl$$

Utilizaremos la misma forma de encontrar la prueba formal usada para probar ϕ

Para probar ψ , será útil un teorema auxiliar:

$$\forall x \forall y ((x s y) i x \equiv x)$$

A partir de ahora, lo llamaremos TeoremaAbsorv. Queda como ejercicio su prueba.

 $\forall xyz \; (x \; \mathsf{i} \; y) \; \mathsf{s} \; (x \; \mathsf{i} \; z) \equiv x \; \mathsf{i} \; (y \; \mathsf{s} \; z) \to \forall x \; \forall y \; (\exists z (x \; \mathsf{i} \; z \equiv y \; \mathsf{i} \; z \land x \; \mathsf{s} \; z \equiv y \; \mathsf{s} \; z) \to x \; \equiv y) \text{:}$

Prueba Matemática

Ahora si probaremos

 $\mathit{Dis}1 \to \mathit{CancDobl}$

Ahora si probaremos

• Primero, supongamos que se cumple que

$$\forall x \forall y \forall z (x \ i \ y) s \ (x \ i \ z) \equiv x \ i \ (y \ s \ z) \tag{1}$$

Ahora si probaremos

$$Dis1 \rightarrow CancDobl$$

• Primero, supongamos que se cumple que

$$\forall x \forall y \forall z (x \ i \ y) s \ (x \ i \ z) \equiv x \ i \ (y \ s \ z) \tag{1}$$

Probaremos que

$$\forall x \forall y (\exists z ((x \ i \ z \equiv y \ i \ z \land x \ s \ z \equiv y \ s \ z) \rightarrow x \equiv y))$$

 $\forall xyz \ (x \ i \ y) \ s \ (x \ i \ z) \equiv x \ i \ (y \ s \ z) \rightarrow \forall x \ \forall y \ (\exists z (x \ i \ z \equiv y \ i \ z \land x \ s \ z \equiv y \ s \ z) \rightarrow x \ \equiv y)$:

Prueba Matemática

• Sean a, b dos elementos de A fijos

- Sean a, b dos elementos de A fijos
- Probaremos que

$$\exists z (a \ i \ z \equiv b \ i \ z \land a \ s \ z \equiv b \ s \ z) \rightarrow a \equiv b$$

- Sean a, b dos elementos de A fijos
- Probaremos que

$$\exists z (a \ i \ z \equiv b \ i \ z \land a \ s \ z \equiv b \ s \ z) \rightarrow a \equiv b$$

• Supongamos que:

$$\exists z (a \ i \ z \equiv b \ i \ z \land a \ s \ z \equiv b \ s \ z)$$

- Sean a, b dos elementos de A fijos
- Probaremos que

$$\exists z (a \ i \ z \equiv b \ i \ z \land a \ s \ z \equiv b \ s \ z) \rightarrow a \equiv b$$

Supongamos que:

$$\exists z (a i z \equiv b i z \land a s z \equiv b s z)$$

• Supongamos c un elemento que cumple

$$(a i c) \equiv (b i c) \land (a s c) \equiv (b s c)$$
 (2)

- Sean a, b dos elementos de A fijos
- Probaremos que

$$\exists z (a \ i \ z \equiv b \ i \ z \land a \ s \ z \equiv b \ s \ z) \rightarrow a \equiv b$$

Supongamos que:

$$\exists z (a i z \equiv b i z \land a s z \equiv b s z)$$

• Supongamos c un elemento que cumple

$$(a i c) \equiv (b i c) \land (a s c) \equiv (b s c)$$
 (2)

• Probaremos que

$$a \equiv b$$

 $\forall xyz \ (x \ i \ y) \ s \ (x \ i \ z) \equiv x \ i \ (y \ s \ z) \rightarrow \forall x \ \forall y \ (\exists z (x \ i \ z \equiv y \ i \ z \land x \ s \ z \equiv y \ s \ z) \rightarrow x \ \equiv y)$:

Prueba Matemática

• Por TeoremaAbsorv sabemos que

$$(b s c) i b \equiv b \tag{3}$$

Por TeoremaAbsorv sabemos que

$$(b s c) i b \equiv b \tag{3}$$

• Por (2):

$$(b s c) i b \equiv (a s c) i b \tag{4}$$

Por TeoremaAbsorv sabemos que

$$(b s c) i b \equiv b \tag{3}$$

• Por (2):

$$(b s c) i b \equiv (a s c) i b \tag{4}$$

• Por (1):

$$(a s c) i b \equiv (a i b) s (c i b)$$
 (5)

Por TeoremaAbsorv sabemos que

$$(b s c) i b \equiv b \tag{3}$$

• Por (2):

$$(b s c) i b \equiv (a s c) i b \tag{4}$$

• Por (1):

$$(a s c) i b \equiv (a i b) s (c i b)$$
 (5)

• Nuevamente por (2):

$$(a i b) s (c i b) \equiv (a i b) s (c i a) \tag{6}$$

Por TeoremaAbsorv sabemos que

$$(b s c) i b \equiv b \tag{3}$$

• Por (2):

$$(b s c) i b \equiv (a s c) i b \tag{4}$$

• Por (1):

$$(a s c) i b \equiv (a i b) s (c i b)$$
 (5)

• Nuevamente por (2):

$$(a i b) s (c i b) \equiv (a i b) s (c i a) \tag{6}$$

• Nuevamente por (1) y por conmutatividad de i:

$$(a i b) s (c i a) \equiv (b s c) i a \tag{7}$$

• Y así, por (2):

$$(b s c) i a \equiv (a s c) i a \tag{8}$$

• Y así, por (2):

$$(b s c) i a \equiv (a s c) i a \tag{8}$$

• Finalmente, por TeoremaAbsorv:

$$(a s c) i a \equiv a \tag{9}$$

• Y así, por (2):

$$(b s c) i a \equiv (a s c) i a \tag{8}$$

• Finalmente, por TeoremaAbsorv:

$$(a s c) i a \equiv a \tag{9}$$

• Es decir,

$$a \equiv b$$

Y así, por (2):

$$(b s c) i a \equiv (a s c) i a \tag{8}$$

• Finalmente, por TeoremaAbsorv:

$$(a s c) i a \equiv a \tag{9}$$

• Es decir.

$$a \equiv b$$

• Por lo tanto, se cumple que

$$Dis1 \rightarrow CancDobl$$

Ahora daremos la prueba formal en Ret de la sentencia en cuestión

Ahora daremos la prueba formal en Ret de la sentencia en cuestión

Utilizaremos los siguientes teoremas cuyas pruebas formales son dejadas al lector

• $\forall x \ \forall y \ (x \ s \ y) \ i \ x \equiv x \ (TeoremaAbsorv)$

Ahora daremos la prueba formal en Ret de la sentencia en cuestión

Utilizaremos los siguientes teoremas cuyas pruebas formales son dejadas al lector

• $\forall x \ \forall y \ (x \ s \ y) \ i \ x \equiv x \ (TeoremaAbsorv)$

Prueba Formal

• $\forall x \ \forall y \ (x \ i \ y) \equiv (y \ i \ x)$ (TeoremaConmut)

1.
$$\forall xyz \ (x \ i \ y) \ s \ (x \ i \ z) \equiv x \ i \ (y \ s \ z)$$
 HIPÓTESIS1

1. $\forall xyz \ (x \ i \ y) \ s \ (x \ i \ z) \equiv x \ i \ (y \ s \ z)$ HIPÓTESIS1 2. $\exists z \ ((a \ i \ z) \equiv (b \ i \ z) \land (a \ s \ z) \equiv (b \ s \ z))$ HIPÓTESIS2

1.	$\forall xyz \ (x \ i \ y) \ s \ (x \ i \ z) \equiv x \ i \ (y \ s \ z)$	HIPÓTESIS1
2.	$\exists z ((a i z) \equiv (b i z) \land (a s z) \equiv (b s z))$	HIPÓTESIS2
3.	$((a i c) \equiv (b i c) \land (a s c) \equiv (b s c))$	ELECCION(2)

- $1. \quad \forall xyz \ (x \ \mathsf{i} \ y) \ \mathsf{s} \ (x \ \mathsf{i} \ z) \equiv x \ \mathsf{i} \ (y \ \mathsf{s} \ z)$
- 2. $\exists z ((a i z) \equiv (b i z) \land (a s z) \equiv (b s z))$
- 3. $((aic) \equiv (bic) \land (asc) \equiv (bsc))$
- 4. $\forall x \ \forall y \ (x \ s \ y) \ i \ x \equiv x$

HIPÓTESIS1

HIPÓTESIS2

ELECCION(2) TEOREMAABSORV

- $1. \quad \forall xyz \ (x \ \mathsf{i} \ y) \ \mathsf{s} \ (x \ \mathsf{i} \ z) \equiv x \ \mathsf{i} \ (y \ \mathsf{s} \ z)$
- 2. $\exists z ((a i z) \equiv (b i z) \land (a s z) \equiv (b s z))$
- 3. $((a i c) \equiv (b i c) \land (a s c) \equiv (b s c))$
- 4. $\forall x \ \forall y \ (x \ s \ y) \ i \ x \equiv x$
- 5. $(b s c) i b \equiv b$

HIPÓTESIS1 HIPÓTESIS2

ELECCION(2)

TEOREMAABSORV

PARTICULARIZACION×2(4)

- $1. \quad \forall xyz \ (x \ \mathsf{i} \ y) \ \mathsf{s} \ (x \ \mathsf{i} \ z) \equiv x \ \mathsf{i} \ (y \ \mathsf{s} \ z)$
- 2. $\exists z ((a i z) \equiv (b i z) \land (a s z) \equiv (b s z))$
- 3. $((a i c) \equiv (b i c) \land (a s c) \equiv (b s c))$
- 4. $\forall x \ \forall y \ (x \ s \ y) \ i \ x \equiv x$
- 5. $(b s c) i b \equiv b$
- 6. $(a s c) \equiv (b s c)$

HIPÓTESIS1

HIPÓTESIS2 ELECCION(2)

TEOREMAABSORV

PARTICULARIZACION×2(4)

CONJELIM(3)

- $1. \quad \forall xyz \ (x \ \mathsf{i} \ y) \ \mathsf{s} \ (x \ \mathsf{i} \ z) \equiv x \ \mathsf{i} \ (y \ \mathsf{s} \ z)$
- 2. $\exists z ((a i z) \equiv (b i z) \land (a s z) \equiv (b s z))$
- 3. $((aic) \equiv (bic) \land (asc) \equiv (bsc))$
- 4. $\forall x \ \forall y \ (x \ s \ y) \ i \ x \equiv x$
- 5. $(b s c) i b \equiv b$
- 6. $(asc) \equiv (bsc)$
- 7. $(asc)ib \equiv b$

- HIPÓTESIS1
- HIPÓTESIS2 ELECCION(2)
- TEOREMAABSORV
- PARTICULARIZACION×2(4)
 - CONJELIM(3)
 - REEMP(6,5)

21

1.	∀xyz	(x i y)) s	(<i>x</i> i <i>z</i>) ≡ <i>x</i> i	(y s z))
----	------	---------	-----	-----------------------	----------------	---------	---

2.
$$\exists z ((a i z) \equiv (b i z) \land (a s z) \equiv (b s z))$$

3.
$$((aic) \equiv (bic) \land (asc) \equiv (bsc))$$

4.
$$\forall x \ \forall y \ (x \ s \ y) \ i \ x \equiv x$$

5.
$$(b s c) i b \equiv b$$

6.
$$(asc) \equiv (bsc)$$

7.
$$(asc)ib \equiv b$$

8.
$$(bia)s(bic) \equiv bi(asc)$$

HIPÓTESIS1

HIPÓTESIS2

ELECCION(2)
TEOREMAABSORV

PARTICULARIZACION×2(4)

CONJELIM(3)

REEMP(6,5)

PARTICULARIZACION×3(1)

- 1. $\forall xyz (x i y) s (x i z) \equiv x i (y s z)$
- 2. $\exists z ((a i z) \equiv (b i z) \land (a s z) \equiv (b s z))$
- 3. $((aic) \equiv (bic) \land (asc) \equiv (bsc))$
- 4. $\forall x \ \forall y \ (x \ s \ y) \ i \ x \equiv x$
- 5. $(b \ s \ c) \ i \ b \equiv b$
- 6. $(asc) \equiv (bsc)$
- 7. $(asc)ib \equiv b$
- 8. $(bia)s(bic) \equiv bi(asc)$
- 9. $bi(asc) \equiv b$

- HIPÓTESIS1
- HIPÓTESIS2 ELECCION(2)
- TEOREMAABSORV
- PARTICULARIZACION×2(4)
 - CONJELIM(3)
 - REEMP(6.5)
- PARTICULARIZACIONx3(1)
 - TEOREMACONMUT(7)

10. $(b \ i \ a) \ s \ (b \ i \ c) \equiv b$

1.	$\forall \lambda y z \ (\lambda + y) \circ (\lambda + z) \equiv \lambda + (y \circ z)$	THE OTESIST
2.	$\exists z \ ((a \ i \ z) \equiv (b \ i \ z) \land (a \ s \ z) \equiv (b \ s \ z))$	HIPÓTESIS2
3.	$((a\ i\ c)\equiv (b\ i\ c)\wedge (a\ s\ c)\equiv (b\ s\ c))$	ELECCION(2)
4.	$\forall x \ \forall y \ (x \ s \ y) \ i \ x \equiv x$	TEOREMAABSORV
5.	$(b \ s \ c) \ i \ b \equiv b$	PARTICULARIZACIONx2(4)
6.	$(a s c) \equiv (b s c)$	CONJELIM(3)
7.	$(a \ s \ c) \ i \ b \equiv b$	REEMP(6,5)
8.	$(b i a) s (b i c) \equiv b i (a s c)$	PARTICULARIZACIONx3(1)
9.	$b i (a s c) \equiv b$	TEOREMACONMUT(7)

HIPÓTESIS1

REEMP(8,9)

1 $\forall \forall \forall \forall \forall \forall (\forall i \forall i) \in (\forall i \forall i) = \forall i (\forall i \forall i)$

1.	$\forall xyz \ (x \mid y) \in (x \mid z) \equiv x \mid (y \in z)$	HIPO I ESISI
2.	$\exists z \ ((a \ i \ z) \equiv (b \ i \ z) \land (a \ s \ z) \equiv (b \ s \ z))$	HIPÓTESIS2
3.	$((a \ i \ c) \equiv (b \ i \ c) \land (a \ s \ c) \equiv (b \ s \ c))$	ELECCION(2)
4.	$\forall x \ \forall y \ (x \ s \ y) \ i \ x \equiv x$	TEOREMAABSORV
5.	$(b \ s \ c) \ i \ b \equiv b$	PARTICULARIZACIONx2(4)
6.	$(a s c) \equiv (b s c)$	CONJELIM(3)
7.	$(a \ s \ c) \ i \ b \equiv b$	REEMP(6,5)
8.	$(b i a) s (b i c) \equiv b i (a s c)$	PARTICULARIZACIONx3(1)
9.	$b i (a s c) \equiv b$	TEOREMACONMUT(7)
10.	$(b i a) s (b i c) \equiv b$	REEMP(8,9)
11.	$(a i c) \equiv (b i c)$	CONJELIM(3)

HIDÓTESIS1

1. $\forall xvz (x \mid v) s (x \mid z) \equiv x \mid (v \mid s \mid z)$

	1792 (X 17) 3 (X 12) = X 1 (J 32)	1111 0 1 20101
2.	$\exists z \ ((a \ i \ z) \equiv (b \ i \ z) \land (a \ s \ z) \equiv (b \ s \ z))$	HIPÓTESIS2
3.	$((a\ i\ c)\equiv (b\ i\ c)\wedge (a\ s\ c)\equiv (b\ s\ c))$	ELECCION(2)
4.	$\forall x \ \forall y \ (x \ s \ y) \ i \ x \equiv x$	TEOREMAABSORV
5.	$(b \ s \ c) \ i \ b \equiv b$	PARTICULARIZACIONx2(4)
6.	$(a\ s\ c)\equiv (b\ s\ c)$	CONJELIM(3)
7.	$(a \ s \ c) \ i \ b \equiv b$	REEMP(6,5)
8.	$(b i a) s (b i c) \equiv b i (a s c)$	PARTICULARIZACIONx3(1)
9.	$bi(asc) \equiv b$	TEOREMACONMUT(7)
10.	$(b i a) s (b i c) \equiv b$	REEMP(8,9)
11.	$(a i c) \equiv (b i c)$	CONJELIM(3)
12.	$(b i a) s (a i c) \equiv b$	REEMP(10,11)

HIPÓTESIS1

1.	$\forall xyz \ (x \ i \ y) \ s \ (x \ i \ z) \equiv x \ i \ (y \ s \ z)$	HIPÓTESIS1
2.	$\exists z \ ((a \ i \ z) \equiv (b \ i \ z) \land (a \ s \ z) \equiv (b \ s \ z))$	HIPÓTESIS2
3.	$((a\ i\ c) \equiv (b\ i\ c) \land (a\ s\ c) \equiv (b\ s\ c))$	ELECCION(2)
4.	$\forall x \ \forall y \ (x \ s \ y) \ i \ x \equiv x$	TEOREMAABSORV
5.	$(b \ s \ c) \ i \ b \equiv b$	PARTICULARIZACION×2(4)
6.	$(a s c) \equiv (b s c)$	CONJELIM(3)
7.	$(a \ s \ c) \ i \ b \equiv b$	REEMP(6,5)
8.	$(b i a) s (b i c) \equiv b i (a s c)$	PARTICULARIZACIONx3(1)
9.	$b i (a s c) \equiv b$	TEOREMACONMUT(7)
10.	$(b i a) s (b i c) \equiv b$	REEMP(8,9)
11.	$(a i c) \equiv (b i c)$	CONJELIM(3)
12.	$(b i a) s (a i c) \equiv b$	REEMP(10,11)
13.	$(a i b) s (a i c) \equiv b$	TEOREMACONMUT(12)

1.	$\forall xyz \ (x \ i \ y) \ s \ (x \ i \ z) \equiv x \ i \ (y \ s \ z)$	HIPOTESIS1
2.	$\exists z \ ((a \ i \ z) \equiv (b \ i \ z) \land (a \ s \ z) \equiv (b \ s \ z))$	HIPÓTESIS2
3.	$((a i c) \equiv (b i c) \land (a s c) \equiv (b s c))$	ELECCION(2)
4.	$\forall x \ \forall y \ (x \ s \ y) \ i \ x \equiv x$	TEOREMAABSORV
5.	$(b \ s \ c) \ i \ b \equiv b$	PARTICULARIZACION×2(4)
6.	$(a s c) \equiv (b s c)$	CONJELIM(3)
7.	$(a \ s \ c) \ i \ b \equiv b$	REEMP(6,5)
8.	$(b i a) s (b i c) \equiv b i (a s c)$	PARTICULARIZACIONx3(1)
9.	$b i (a s c) \equiv b$	TEOREMACONMUT(7)
10.	$(b i a) s (b i c) \equiv b$	REEMP(8,9)
11.	$(a i c) \equiv (b i c)$	CONJELIM(3)
12.	$(b i a) s (a i c) \equiv b$	REEMP(10,11)
13.	$(a i b) s (a i c) \equiv b$	TEOREMACONMUT(12)
14.	$(a i b) s (a i c) \equiv a i (b s c)$	PARTICULARIZACION×3(1)

1.	$\forall xyz \ (x \ i \ y) \ s \ (x \ i \ z) \equiv x \ i \ (y \ s \ z)$	HIPÓTESIS1
2.	$\exists z ((a i z) \equiv (b i z) \land (a s z) \equiv (b s z))$	HIPÓTESIS2
3.	$((a \ i \ c) \equiv (b \ i \ c) \land (a \ s \ c) \equiv (b \ s \ c))$	ELECCION(2)
4.	$\forall x \ \forall y \ (x \ s \ y) \ i \ x \equiv x$	TEOREMAABSORV
5.	$(b \ s \ c) \ i \ b \equiv b$	PARTICULARIZACIONx2(4)
6.	$(a s c) \equiv (b s c)$	CONJELIM(3)
7.	$(a \ s \ c) \ i \ b \equiv b$	REEMP(6,5)
8.	$(b i a) s (b i c) \equiv b i (a s c)$	PARTICULARIZACIONx3(1)
9.	$b i (a s c) \equiv b$	TEOREMACONMUT(7)
10.	$(b i a) s (b i c) \equiv b$	REEMP(8,9)
11.	$(a i c) \equiv (b i c)$	CONJELIM(3)
12.	$(b i a) s (a i c) \equiv b$	REEMP(10,11)
13.	$(a i b) s (a i c) \equiv b$	TEOREMACONMUT(12)
14.	$(a i b) s (a i c) \equiv a i (b s c)$	PARTICULARIZACIONx3(1)
15.	$ai(bsc) \equiv b$	REEMP(14,13)

1.	$\forall xyz \ (x \ i \ y) \ s \ (x \ i \ z) \equiv x \ i \ (y \ s \ z)$	HIPÓTESIS1
2.	$\exists z \ ((a \ i \ z) \equiv (b \ i \ z) \land (a \ s \ z) \equiv (b \ s \ z))$	HIPÓTESIS2
3.	$((a \ i \ c) \equiv (b \ i \ c) \land (a \ s \ c) \equiv (b \ s \ c))$	ELECCION(2)
4.	$\forall x \ \forall y \ (x \ s \ y) \ i \ x \equiv x$	TEOREMAABSORV
5.	$(b \ s \ c) \ i \ b \equiv b$	PARTICULARIZACION×2(4)
6.	$(a\ s\ c)\equiv (b\ s\ c)$	CONJELIM(3)
7.	$(a \ s \ c) \ i \ b \equiv b$	REEMP(6,5)
8.	$(b i a) s (b i c) \equiv b i (a s c)$	PARTICULARIZACIONx3(1)
9.	$b i (a s c) \equiv b$	TEOREMACONMUT(7)
10.	$(b i a) s (b i c) \equiv b$	REEMP(8,9)
11.	$(a i c) \equiv (b i c)$	CONJELIM(3)
12.	$(b \ i \ a) \ s \ (a \ i \ c) \equiv b$	REEMP(10,11)
13.	$(a i b) s (a i c) \equiv b$	TEOREMACONMUT(12)
14.	$(a i b) s (a i c) \equiv a i (b s c)$	PARTICULARIZACION×3(1)
15.	$ai(bsc) \equiv b$	REEMP(14,13)
16.	$a i (a s c) \equiv b$	REEMP(6,15)

1.	$\forall xyz \ (x \mid y) \ s \ (x \mid z) \equiv x \mid (y \mid s \mid z)$	HIPÓTESIS1
2.	$\exists z ((a i z) \equiv (b i z) \land (a s z) \equiv (b s z))$	HIPÓTESIS2
3.	$((a i c) \equiv (b i c) \land (a s c) \equiv (b s c))$	ELECCION(2)
4.	$\forall x \ \forall y \ (x \ s \ y) \ i \ x \equiv x$	TEOREMAABSORV
5.	$(b \ s \ c) \ i \ b \equiv b$	PARTICULARIZACIONx2(4)
6.	$(a s c) \equiv (b s c)$	CONJELIM(3)
7.	$(a \ s \ c) \ i \ b \equiv b$	REEMP(6,5)
8.	$(b i a) s (b i c) \equiv b i (a s c)$	PARTICULARIZACIONx3(1)
9.	$b i (a s c) \equiv b$	TEOREMACONMUT(7)
10.	$(b i a) s (b i c) \equiv b$	REEMP(8,9)
11.	$(a i c) \equiv (b i c)$	CONJELIM(3)
12.	$(b i a) s (a i c) \equiv b$	REEMP(10,11)
13.	$(a i b) s (a i c) \equiv b$	TEOREMACONMUT(12)
14.	$(a i b) s (a i c) \equiv a i (b s c)$	PARTICULARIZACIONx3(1)
15.	$ai(bsc) \equiv b$	REEMP(14,13)
16.	$ai(asc) \equiv b$	REEMP(6,15)
17.	$(a \ s \ c) \ i \ a \equiv b$	TEOREMACONMUT(16)

1. $\forall xyz (x i y) s (x i z) \equiv x i (y s z)$	HIPÓTESIS1
2. $\exists z ((a i z) \equiv (b i z) \land (a s z) \equiv (b s z))$	HIPÓTESIS2
3. $((a i c) \equiv (b i c) \land (a s c) \equiv (b s c))$	ELECCION(2)
4. $\forall x \ \forall y \ (x \ s \ y) \ i \ x \equiv x$	TEOREMAABSORV
5. $(b s c) i b \equiv b$	PARTICULARIZACIONx2(4)
6. $(a s c) \equiv (b s c)$	CONJELIM(3)
7. $(a s c) i b \equiv b$	REEMP(6,5)
8. $(b i a) s (b i c) \equiv b i (a s c)$	PARTICULARIZACION×3(1)
9. $bi(asc) \equiv b$	TEOREMACONMUT(7)
10. $(b \ i \ a) \ s \ (b \ i \ c) \equiv b$	REEMP(8,9)
11. $(a i c) \equiv (b i c)$	CONJELIM(3)
12. $(b i a) s (a i c) \equiv b$	REEMP(10,11)
13. $(a i b) s (a i c) \equiv b$	TEOREMACONMUT(12)
14. $(a i b) s (a i c) \equiv a i (b s c)$	PARTICULARIZACIONx3(1)
15. $ai(bsc) \equiv b$	REEMP(14,13)
16. $ai(asc) \equiv b$	REEMP(6,15)
17. $(a s c) i a \equiv b$	TEOREMACONMUT(16)
18. (a s c) i a ≡ a	PARTICULARIZACIONx2(4)

1.	$\forall xyz \ (x \ i \ y) \ s \ (x \ i \ z) \equiv x \ i \ (y \ s \ z)$	HIPÓTESIS1
2.	$\exists z \ ((a \ i \ z) \equiv (b \ i \ z) \land (a \ s \ z) \equiv (b \ s \ z))$	HIPÓTESIS2
3.	$((a i c) \equiv (b i c) \land (a s c) \equiv (b s c))$	ELECCION(2)
4.	$\forall x \ \forall y \ (x \ s \ y) \ i \ x \equiv x$	TEOREMAABSORV
5.	$(b \ s \ c) \ i \ b \equiv b$	PARTICULARIZACION×2(4)
6.	$(a s c) \equiv (b s c)$	CONJELIM(3)
7.	$(a s c) i b \equiv b$	REEMP(6,5)
8.	$(b i a) s (b i c) \equiv b i (a s c)$	PARTICULARIZACIONx3(1)
9.	$b i (a s c) \equiv b$	TEOREMACONMUT(7)
10.	$(b i a) s (b i c) \equiv b$	REEMP(8,9)
11.	$(a i c) \equiv (b i c)$	CONJELIM(3)
12.	$(b i a) s (a i c) \equiv b$	REEMP(10,11)
13.	$(a i b) s (a i c) \equiv b$	TEOREMACONMUT(12)
14.	$(a i b) s (a i c) \equiv a i (b s c)$	PARTICULARIZACIONx3(1)
15.	$a i (b s c) \equiv b$	REEMP(14,13)
16.	$a i (a s c) \equiv b$	REEMP(6,15)
17.	$(a s c) i a \equiv b$	TEOREMACONMUT(16)
18.	$(a \ s \ c) \ i \ a \equiv a$	PARTICULARIZACION×2(4)
19.	$a \equiv b$	TESIS2REEMP(18,17)

1.	$\forall xyz \ (x \ i \ y) \ s \ (x \ i \ z) \equiv x \ i \ (y \ s \ z)$	HIPÓTESIS1
2.	$\exists z \ ((a \ i \ z) \equiv (b \ i \ z) \land (a \ s \ z) \equiv (b \ s \ z))$	HIPÓTESIS2
3.	$((a\ i\ c)\equiv (b\ i\ c)\wedge (a\ s\ c)\equiv (b\ s\ c))$	ELECCION(2)
4.	$\forall x \ \forall y \ (x \ s \ y) \ i \ x \equiv x$	TEOREMAABSORV
5.	$(b \ s \ c) \ i \ b \equiv b$	PARTICULARIZACION×2(4)
6.	$(a s c) \equiv (b s c)$	CONJELIM(3)
7.	$(a \ s \ c) \ i \ b \equiv b$	REEMP(6,5)
8.	$(b i a) s (b i c) \equiv b i (a s c)$	PARTICULARIZACION×3(1)
9.	$b i (a s c) \equiv b$	TEOREMACONMUT(7)
10.	$(b i a) s (b i c) \equiv b$	REEMP(8,9)
11.	$(a i c) \equiv (b i c)$	CONJELIM(3)
12.	$(b i a) s (a i c) \equiv b$	REEMP(10,11)
13.	$(a i b) s (a i c) \equiv b$	TEOREMACONMUT(12)
14.	$(a i b) s (a i c) \equiv a i (b s c)$	PARTICULARIZACIONx3(1)
15.	$ai(bsc) \equiv b$	REEMP(14,13)
16.	$ai(asc) \equiv b$	REEMP(6,15)
17.	$(a \ s \ c) \ i \ a \equiv b$	TEOREMACONMUT(16)
18.	$(a \ s \ c) \ i \ a \equiv a$	PARTICULARIZACION×2(4)
19.	$a \equiv b$	TESIS2REEMP(18,17)
20.	$\exists z \; ((a \; i \; z) \equiv (b \; i \; z) \land (a \; s \; z) \equiv (b \; i \; z)) \rightarrow a \; \equiv b$	CONCLUSION

1.	$\forall xyz (x i y) s (x i z) \equiv x i (y s z)$	HIPÓTESIS1	
2.	$\exists z \ ((a \ i \ z) \equiv (b \ i \ z) \land (a \ s \ z) \equiv (b \ s \ z))$	HIPÓTESIS2	
3.	$((a i c) \equiv (b i c) \land (a s c) \equiv (b s c))$	ELECCION(2)	
4.	$\forall x \ \forall y \ (x \ s \ y) \ i \ x \equiv x$	TEOREMAABSORV	
5.	$(b \ s \ c) \ i \ b \equiv b$	PARTICULARIZACIONx2(4)	
6.	$(a s c) \equiv (b s c)$	CONJELIM(3)	
7.	$(a \ s \ c) \ i \ b \equiv b$	REEMP(6,5)	
8.	$(b i a) s (b i c) \equiv b i (a s c)$	PARTICULARIZACIONx3(1)	
9.	$b i (a s c) \equiv b$	TEOREMACONMUT(7)	
10.	$(b i a) s (b i c) \equiv b$	REEMP(8,9)	
11.	$(a i c) \equiv (b i c)$	CONJELIM(3)	
12.	$(b i a) s (a i c) \equiv b$	REEMP(10,11)	
13.	$(a i b) s (a i c) \equiv b$	TEOREMACONMUT(12)	
14.	$(a i b) s (a i c) \equiv a i (b s c)$	PARTICULARIZACIONx3(1)	
15.	$ai(bsc) \equiv b$	REEMP(14,13)	
16.	$ai(asc) \equiv b$	REEMP(6,15)	
17.	$(a \ s \ c) \ i \ a \equiv b$	TEOREMACONMUT(16)	
18.	(a s c) i a ≡ a	PARTICULARIZACIONx2(4)	
19.	$a \equiv b$	TESIS2REEMP(18,17)	
20.	$\exists z \ ((a \ i \ z) \equiv (b \ i \ z) \land (a \ s \ z) \equiv (b \ i \ z)) \rightarrow a \equiv b$	CONCLUSION	
21.	$\forall x \; \forall y \; (\exists z (x \; i \; z \equiv y \; i \; z \land x \; s \; z \equiv y \; s \; z) \to x \; \equiv y)$	TESIS1GENERALIZACIÓN×2(20)	

1.	$\forall xyz \ (x \ i \ y) \ s \ (x \ i \ z) \equiv x \ i \ (y \ s \ z)$	HIPÓTESIS1	L
2.	$\exists z ((a i z) \equiv (b i z) \land (a s z) \equiv (b s z))$	HIPÓTESIS2	2
3.	$((a i c) \equiv (b i c) \land (a s c) \equiv (b s c))$	ELECCION(2))
4.	$\forall x \ \forall y \ (x \ s \ y) \ i \ x \equiv x$	TEOREMAABSORV	/
5.	$(b s c) i b \equiv b$	PARTICULARIZACIONx2(4))
6.	$(a s c) \equiv (b s c)$	CONJELIM(3))
7.	$(a\ s\ c)\ i\ b\equiv b$	REEMP(6,5))
8.	$(b i a) s (b i c) \equiv b i (a s c)$	PARTICULARIZACION×3(1))
9.	$b i (a s c) \equiv b$	TEOREMACONMUT(7))
10.	$(b i a) s (b i c) \equiv b$	REEMP(8,9))
11.	$(a \ i \ c) \equiv (b \ i \ c)$	CONJELIM(3))
12.	$(b \ i \ a) \ s \ (a \ i \ c) \equiv b$	REEMP(10,11))
13.	$(a i b) s (a i c) \equiv b$	TEOREMACONMUT(12))
14.	$(a i b) s (a i c) \equiv a i (b s c)$	PARTICULARIZACION×3(1))
15.	$ai(bsc) \equiv b$	REEMP(14,13))
16.	$ai(asc) \equiv b$	REEMP(6,15))
17.	$(a\ s\ c)\ i\ a\equiv b$	TEOREMACONMUT(16))
18.	$(a s c) i a \equiv a$	PARTICULARIZACION×2(4))
19.	$a \equiv b$	TESIS2REEMP(18,17))
20.	$\exists z ((a i z) \equiv (b i z) \land (a s z) \equiv (b i z)) \rightarrow a \equiv b$	CONCLUSION	J
21.	$\forall x \ \forall y \ (\exists z (x \ i \ z \equiv y \ i \ z \land x \ s \ z \equiv y \ s \ z) \ \rightarrow x \ \equiv y)$	TESIS1GENERALIZACIÓN×2(20))
22.	$\forall xyz \ (x \ i \ y) \ s \ (x \ i \ z) \equiv x \ i \ (y \ s \ z) \rightarrow \forall x \ \forall y \ (\exists z (x \ i \ z \equiv y \ i \ z \land x \ s \ z \equiv y \ s \ z)$	$\rightarrow x \equiv y$) CONCLUSION	J