Statistique Asymptotique

Université Hassiba Benbouali de Chlef

Plan du Cours

- ► Modes de convergence
- Méthode Delta
- ► *M* et *Z*-estimateurs
- ► Méthode Delta fonctionnelle
- ightharpoonup U-statistiques
- ► Processus empirique

Références

► Van der Vaart, A. W. (2000). Asymptotic statistics. Cambridge university press.

Introduction

La statistique asymptotique étudie le comportement des procédures statistiques en fonction de la taille de l'échantillon $n \to +\infty$.

- Pour obtenir des approximations utiles de la distribution des statistiques de test, les pivots utilisés pour les intervalles de confiance, etc.
- Évaluer l'optimalité asymptotique des procédures statistiques.

Modes de convergence

Soit $\{X_n, n \geq 0\}$ une suite de variables aléatoires à valeurs réelles, on s'intéresse alors à la convergence de cette suite. Il existe plusieurs modes de convergence on les définit ci-dessous :

Convergence en probabilité

Définition 2.1

 X_n converge en probabilité, on note $X_n \stackrel{P}{\longrightarrow} X$, si :

$$\forall \epsilon > 0, \lim_{n \to +\infty} \mathbb{P}(|X_n - X| > \epsilon) = 0.$$

Remarque

Dans le cas vectoriel $X_n \xrightarrow{P} X$ si $||X_n - X|| \xrightarrow{P} 0$. C'est-à-dire :

$$\lim_{n \to +\infty} \mathbb{P}\left(\|X_n - X\| > \epsilon\right) = 0.$$

Exemple

Exemple

Si pour tout n, X_n suit la loi exponentielle de paramètre n, la suite $(X_n)_{n\geq 0}$ converge en probabilité vers la v.a.r. constante 0.

Exemple

Soient X_1,\ldots,X_n un échantillon de la loi Uniforme $\mathcal{U}[0,\theta]$, l'estimateur du maximum de vraisemblance $\widehat{\theta}_n$ converge en probabilité vers la vraie valeur du paramètre θ_0 .

Convergence en moyenne d'ordre $\it r$

Définition 2.2

 X_n converge en moyenne d'ordre r, on note : $X_n \stackrel{r}{\longrightarrow} X$, si :

$$\mathbb{E}(|X_n|^r) < +\infty, \ \forall n \text{ et } \mathbb{E}(|X_n - X|^r) \underset{n \to +\infty}{\longrightarrow} 0.$$

- Pour r = 1, on parle simplement de convergence en moyenne.
- ▶ Si r = 2, on dit que X_n converge en moyenne quadratique.
- Soit a une constante réelle. On a alors $X_n \stackrel{m.q}{\longrightarrow} a$ si et seulement si

$$\lim_{n \to +\infty} \mathbb{E}\left[X_n\right] = a \text{ et } \lim_{n \to +\infty} \text{Var}\left[X_n\right] = 0.$$

Convergence presque sûre

Définition 2.3

 X_n converge presque sûrement, on note $X_n \stackrel{p.s}{\longrightarrow} X$, si :

$$\exists C \in \mathcal{A}, \ \mathbb{P}(C) = 1, \ \forall \omega \in C, \lim_{n \to +\infty} X_n(\omega) = X(\omega).$$

Remarque

La convergence presque sûre est équivalente à

$$\mathbb{P}\left(\limsup_{n\to+\infty}\left\{|X_n-X|\geq\epsilon\right\}\right)=0.$$

Limite supérieure et inférieure d'une suite d'événements

Soit $(\Omega,\mathcal{A},\mathbb{P})$ un espace probabilisé, $(A_n)_{n\geq 0}$ une suite d'événements. On définit la limite supérieure de la suite $(A_n)_{n\geq 0}$ par :

$$\begin{split} \lim\sup_n A_n &= \bigcap_{n\geq 0} \bigcup_{k\geq n} A_k = \{\omega \in \Omega \mid \forall n \in \mathbb{N}, \ \exists k \geq n, \ \omega \in A_k \} \\ &= \left\{ \omega \in \Omega; \ \omega \in A_k \text{ infiniment souvent} \right\}. \end{split}$$

On définit la limite infrieure de la suite $(A_n)_{n>0}$ par :

$$\begin{split} \lim \inf_n A_n &= \bigcup_{n \geq 0} \bigcap_{k \geq n} A_k = \{\omega \in \Omega \mid \exists n \in \mathbb{N}, \ \forall k \geq n, \ \omega \in A_k \} \\ &= \left\{ \omega \in \Omega; \ \omega \in A_k \ \text{à partir d'un certain rang} \right\}. \end{split}$$

Lemme de Borel-Cantelli

Lemme 1

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé, $(A_n)_{n \geq 0}$ une suite d'événements.

- Si $\sum_{n} \mathbb{P}(A_n) < +\infty$ alors $\mathbb{P}\left(\limsup_{n} A_n\right) = 0$ Autrement dit, avec une probabilité égale à 1, au plus un nombre fini d'événements A_n se réalise.
- Si les événements A_n sont indépendants, et si $\sum_n \mathbb{P}(A_n) = +\infty \text{ alors } \mathbb{P}\left(\limsup_n A_n\right) = 1.$ Autrement dit, avec une probabilité égale à 1, une infinité d'événements A_n se réalise.

Lemme de Borel-Cantelli de convergence presque sûre

Proposition 2.4

- I Si $\forall \epsilon > 0$, $\sum_{n=1}^{\infty} \mathbb{P}\left(|X_n X| \ge \epsilon\right) < \infty$ alors X_n converge presque sûrement vers X.
- 2 Si $(X_n)_n$ est une suite de variables indépendantes, alors X_n converge presque sûrement vers c si et seulement si $\forall \epsilon > 0$, $\sum_{n=0}^{+\infty} \mathbb{P}\left(|X_n c| \geq \epsilon\right) < \infty.$

Preuve

- I On pose $A_n=\{|X_n-X|\geq \epsilon\}.$ On a $\sum_n \mathbb{P}(A_n)<+\infty$, donc par Borel-Cantelli $\mathbb{P}\left(\limsup_n A_n\right)=0.$ Donc on a la convergence presque sûre de X_n vers X.
- 2 Si $\sum_n \mathbb{P}(A_n) = +\infty$ avec $A_n = \{|X_n c| \geq \epsilon\}$ des évènements indépendants. Par Borel-Cantelli, $\mathbb{P}\left(\limsup_n A_n\right) = 1$, d'où une contradiction car la convergence presque sûre implique $\mathbb{P}\left(\limsup_n A_n\right) = 0$.

Convergence en loi

Définition 2.5

 X_n converge en loi, et on note $X_n \xrightarrow{\mathcal{L}} X$, si :

$$\lim_{n\to +\infty} \mathbb{F}_{X_n}(x) = \mathbb{F}_X(x) \text{ en tout point de continuité } x \text{ de } \mathbb{F}.$$

Remarque

Si X_n et X sont des variables aléatoires discrètes, alors

$$X_n \xrightarrow{\mathcal{L}} X \Longleftrightarrow \mathbb{P}(X_n = k) \longrightarrow \mathbb{P}(X = k)$$
 pour tout k .

Convergence en loi (suite)

Exemple

Soit $X_n = \frac{1}{n}$ avec probabilité 1 et X = 0 avec probabilité 1.

$$\mathbb{F}_{X_n}(x) = \mathbb{1}_{\{x \geq \frac{1}{n}\}} \text{ et } \mathbb{F}_X(x) = \mathbb{1}_{\{x \geq 0\}}$$

avec $\mathbb{F}_{X_n}(0) = 0$ pour tout n et $\mathbb{F}_X(0) = 1$.

Théorème de Portmanteau

Théorème 2.6

Pour tous vecteurs aléatoires X_n et X les conditions suivantes sont équivalentes :

- 1 X_n converge en loi vers X
- **2** $\mathbb{E}(f(X_n)) \longrightarrow \mathbb{E}(f(X))$ pour toute fonction f continue bornée.
- **3** $\mathbb{E}(f(X_n)) \longrightarrow \mathbb{E}(f(X))$ pour toute fonction f Lipschitzienne bornée.
- 4 $\liminf_{n\to\infty} \mathbb{E}(f(X_n)) \geq \mathbb{E}(f(X))$ pour toute fonction f continue positive.
- $\lim_{n\to\infty}\inf \mathbb{P}(X_n\in G)\geq \mathbb{P}(X\in G) \text{ pour tout ouvert } G.$
- $\lim_{n\to\infty} \mathbb{P}(X_n\in F) \leq \mathbb{P}(X\in F) \text{ pour tout fermé } F.$
- 7 $\lim_{n\to\infty} \mathbb{P}(X_n\in B) = \mathbb{P}(X\in B)$ pour tout Borélien B vérifiant $\mathbb{P}(X\in\partial B)=0$. Où ∂B est la frontière de B (l'adhérence de B privée de l'intérieur de B) : $\partial B=\overline{B}\setminus \overset{\circ}{B}$

Relations entre les modes de convergences

Le schéma suivant résume les implications entre ces différents modes de convergence :

Exemple

La convergence en probabilité n'entraîne pas la convergence en moyenne.

Contre-exemple

Soit, pour tout n une variable aléatoire telle que

$$X_n = \left\{ \begin{array}{ll} n^2 & \text{avec probabilité } \frac{1}{n} \\ 0 & \text{avec probabilité } 1 - \frac{1}{n} \end{array} \right.$$

Alors $(X_n)_{n\geq 0}$ converge en probabilité vers la v.a.r. constante 0 mais $\mathbb{E}\left[X_n\right]\longrightarrow +\infty.$

Variables uniformément tendues

Définition 2.7

Une famille de vecteurs aléatoires $\{X_i,\ i\in\mathcal{I}\}$ est dite uniformément tendue, ou bornée en probabilité si pour tout $\epsilon>0$, il existe un M>0 tel que

$$\sup_{i\in\mathcal{I}}\mathbb{P}\left(\|X_i\|>M\right)<\epsilon.$$

Remarque

Remarquons que pour toute variable aléatoire X et tout $\epsilon>0$, il existe M>0 tel que $\mathbb{P}\left(\|X\|>M\right)<\epsilon$. C'est-à-dire que toute variable est tendue.

Théorème de Prohorov

Théorème 2.8

Soit $(X_n)_{n\in\mathbb{N}}$ une suite de vecteurs aléatoires.

- **1** Si $X_n \xrightarrow{\mathcal{L}} X$, alors la famille $\{X_n, n \in \mathbb{N}\}$ est uniformément tendue.
- **2** Si la famille $\{X_n, n \in \mathbb{N}\}$ est uniformément tendue, alors il existe une sous-suite qui converge en loi vers X.

Fonction caractéristique

Définition 2.9

Soit X une variable aléatoire. On appelle fonction caractéristique de X la fonction φ_X définie sur \mathbb{R} , à valeurs complexes,

$$\varphi_X(t) = \mathbb{E}\left[e^{itX}\right] \qquad \forall t \in \mathbb{R}$$

Exemple : Fonction caractéristique de la loi Binomiale

Si $X\sim \mathcal{B}(n,p).$ Alors X a pour fonction caractéristique $\varphi_X(t)=(p\mathrm{e}^{it}+1-p)^n.$

Exemple : Fonction caractéristique de la loi Normale

Si $X \sim \mathcal{N}(0,1)$. Alors X a pour fonction caractéristique $\varphi_X(t) = \mathrm{e}^{-t^2/2}$.

Propriétés

Proposition 2.10

- **1** Soient X et Y deux variables aléatoires. Si $\forall t \in \mathbb{R}, \ \varphi_X(t) = \varphi_Y(t) \ alors \ X \ et \ Y \ ont \ même loi.$
- 2 Si X et Y sont deux variables aléatoires indépendantes, on a

$$\forall t \in \mathbb{R}, \ \varphi_{X+Y}(t) = \varphi_X(t)\varphi_Y(t)$$

3 Si la v.a.r. X admet un moment d'ordre r, φ_X est de classe \mathcal{C}^r et on a le développement limité suivant en 0

$$\varphi_X(t) = 1 + i\mathbb{E}[X]t - \frac{\mathbb{E}[X^2]}{2}t^2 + \dots + i^r \frac{\mathbb{E}[X^r]}{r!}t^r + o(t^r)$$

Théorème de Lévy

Théorème 2.11

Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires réelles. $(X_n)_{n\in\mathbb{N}}$ converge en loi vers une variable aléatoire réelle X si et seulement si $(\varphi_{X_n})_{n\in\mathbb{N}}$ converge simplement vers φ_X .

Inégalité de Markov

Théorème 2.12

Soit X une variable aléatoire positive. Alors

$$\forall a > 0, \qquad \mathbb{P}(X \ge a) \le \frac{\mathbb{E}[X]}{a}.$$

Plus généralement, si X est une variable aléatoire admettant un moment d'ordre $r \in \mathbb{N}^*$ et si a > 0, alors

$$\mathbb{P}\left(|X| \ge a\right) \le \frac{\mathbb{E}[|X|^r]}{a^r}.$$

Preuve

Pour tout réel positif x, on a l'inégalité $a\mathbb{1}_{\{x\geq a\}}\leq x$, comme on peut le voir sur la figure suivante. En appliquant cette inégalité à la variable X, on obtient $\mathbb{1}_{\{X\geq a\}}\leq \frac{X}{a}$.

Par conséquent,

$$\mathbb{P}(X \ge a) = \mathbb{E}\left[\mathbb{1}_{\{X \ge a\}}\right] \le \mathbb{E}\left[\frac{X}{a}\right] = \frac{\mathbb{E}[X]}{a}$$

Pour la seconde inégalité, il suffit de remarquer l'égalité entre évènement $\{|X|\geq a\}=\{|X|^r\geq a^r\}$ et d'appliquer la première égalité à $|X|^r$ et $a^r.$

Inégalité de Bienaymé-Tchebychev

Théorème 2.13

Soit X une variable aléatoire admet une espérance $\mathbb{E}[X]$ et de variance $\mathrm{Var}[X]$ alors pour tout a>0,

$$\mathbb{P}(|X - \mathbb{E}[X]| \ge a) \le \frac{\operatorname{Var}[X]}{a^2}.$$

Inégalité de Hoeffding

Théorème 2.14

Soit (X_n) une suite de variables aléatoires indépendantes. Soient (a_n) et (b_n) deux suites de nombres réels telles que, pour tout entier n, on a $\mathbb{P}(a_n \leq X_n \leq b_n) = 1$. Alors, notant $S_n = X_1 + \cdots + X_n$, pour tout t > 0 et tout $n \in \mathbb{N}$, on a

$$\mathbb{P}\left(|S_n - E(S_n)| \ge t\right) \le 2 \exp\left(-\frac{2t^2}{\sum_{k=1}^n (b_k - a_k)^2}\right).$$

Inégalité de Jensen

Soit h une fonction convexe sur un intervalle réel $\mathcal I$ et X une variable aléatoire à valeurs dans $\mathcal I$. Alors,

$$h\left(\mathbb{E}\left[X\right]\right) \leq \mathbb{E}\left[h(X)\right]$$

pourvu que les deux espérances existent.

Exemple

La variance est toujours positive : $\mathbb{E}\left[X^2\right] - \mathbb{E}^2\left[X\right] \geq 0$.

La loi des grands nombres

Théorème 2.15

Soit X une variable aléatoire admettant une variance. Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires indépendantes de même loi que X. Alors,

$$\frac{1}{n} \sum_{i=1}^{n} X_i \stackrel{p}{\longrightarrow} \mathbb{E}[X], \quad n \to +\infty.$$

On a:

$$\mathbb{E}\left[\frac{X_1 + \dots + X_n}{n}\right] = \frac{1}{n} \sum_{i=1}^n \mathbb{E}[X_i] = \mathbb{E}[X],$$

et

$$\operatorname{Var}\left[\frac{X_1 + \dots + X_n}{n}\right] = \frac{1}{n^2} \sum_{i=1}^n \operatorname{Var}[X_i] = \frac{1}{n} \operatorname{Var}[X].$$

L'inégalité de Bienaymé-Tchebychev donne :

$$\mathbb{P}\left[\left|\frac{X_1\cdots + X_n}{n} - \mathbb{E}[X]\right| > \epsilon\right] \leq \frac{\mathrm{Var}[X]}{n\epsilon^2} \longrightarrow 0 \text{ quand } n \longrightarrow \infty.$$

FIGURE 1 – Illustration de la loi des grands nombres

Théorème central limite

Théorème 2.16

Soit $(X_n)_{n\geq 1}$ une suite de variable aléatoires réelles, indépendantes, identiquement distribuées dans \mathbb{L}^2 . On note

$$S_n = \sum_{i=1}^n X_i$$
, $m = \mathbb{E}[X_i]$ et $\sigma^2 = \mathrm{Var}[X_i] > 0$. Alors on a :

$$\frac{S_n - nm}{\sqrt{n\sigma^2}} \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1)$$

Preuve

- ▶ Tout d'abord, on peut supposer, quitte à étudier $\frac{X_i m}{\sigma}$, que m = 0 et $\sigma = 1$.
- Il suffit donc de montrer alors que $\frac{S_n}{\sqrt{n}}$ converge en loi vers une gaussienne standard Z.
- ▶ On utilisera le théorème de Lévy en montrant que

$$\forall t \in \mathbb{R}, \ \mathbb{E}\left[e^{it\frac{S_n}{\sqrt{n}}}\right] \longrightarrow \mathbb{E}\left[e^{itZ}\right] = e^{-t^2/2}$$

Preuve (suite)

 $lackbox{ Soit } arphi_X(t) := \mathbb{E}\left[\mathrm{e}^{itX}
ight]$ la fonction caractéristique de X, alors

$$\mathbb{E}\left[e^{it\frac{S_n}{\sqrt{n}}}\right] = \mathbb{E}\left[\prod_{k=1}^n e^{it\frac{X_k}{\sqrt{n}}}\right]$$
$$= \prod_{k=1}^n \mathbb{E}\left[e^{it\frac{X_k}{\sqrt{n}}}\right]$$
$$= \left(\varphi_X\left(\frac{t}{\sqrt{n}}\right)\right)^n.$$

Comme $X \in \mathbb{L}^2$, φ_X est de classe \mathcal{C}^2 et on peut dériver deux fois :

$$\varphi'_X(0) = \mathbb{E}[iX] = 0, \varphi''_X(0) = \mathbb{E}[-X^2] = -\text{Var}[X] = -1.$$

Preuve (suite)

lacktriangle On effectue un développement de Taylor à l'origine de $arphi_X$:

$$\varphi_X\left(\frac{t}{\sqrt{n}}\right) = \varphi_X\left(0\right) + \frac{t}{\sqrt{n}}\varphi_X'(0) + \frac{t^2}{2n}\varphi_X''(0) + \frac{\epsilon_n}{n} \text{ où } \epsilon_n \to 0.$$

Donc:

$$\varphi_X\left(\frac{t}{\sqrt{n}}\right) = 1 - \frac{t^2}{2n} + \frac{\epsilon_n}{n}$$

▶ Si on pose $z_n = \epsilon_n - \frac{t^2}{2}$, on a :

$$\left(\varphi_X\left(\frac{t}{\sqrt{n}}\right)\right)^n = (1-z_n)^n \to e^{-\frac{t^2}{2}}.$$

Preuve (suite)

► Ainsi, par le théorème de Lévy

$$\frac{S_n}{\sqrt{n}} \xrightarrow[n \to +\infty]{\mathcal{L}} \mathcal{N}(0,1)$$

Théorème centrale limite de Lyapounov

Théorème 2.17

Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes (mais pas forcément de même loi), ayant toutes un moment d'ordre $2+\delta$ $(\delta>0)$. On note $\mathbb{E}[X_i]=m_i$ et $\mathbb{V}\mathrm{ar}[X_i]=\sigma_i^2<\infty$, $i\in\mathbb{N}$. On suppose de plus vérifiée la condition de Lyapounov :

$$\frac{1}{s_n^{2+\delta}} \sum_{i=1}^n \mathbb{E}\left[|X_i - m_i|^{2+\delta}\right] \longrightarrow 0 \text{ quand } n \to +\infty,$$

avec $s_n^2 = \sum_{i=1}^n \sigma_i^2$. Alors :

$$\frac{1}{s_n} \sum_{i=1}^n (X_i - m_i) \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1).$$

Théorème de Cramér-Wold

La loi de \mathbf{X} est entièrement déterminée par celles de toutes les combinaisons linéaires de ses composantes $\mathbf{c}^{\top}\mathbf{X}, \ \forall \mathbf{c} \in \mathbb{R}^p$.

$$\mathbf{X}_n \xrightarrow{\mathcal{L}} \mathbf{X} \iff \mathbf{c}^{\top} \mathbf{X}_n \xrightarrow{\mathcal{L}} \mathbf{c}^{\top} \mathbf{X}, \quad \forall \mathbf{c} \in \mathbb{R}^p.$$

Théorème de l'image continue

Théorème 2.18

Soit g une fonction continue et $C_g=\{x|\ g$ est continue en $x\}.$ Si $\mathbb{P}\left(X\in C_g\right)=1,$ alors :

$$X_n \xrightarrow{\mathcal{L}} X \Longrightarrow g(X_n) \xrightarrow{\mathcal{L}} g(X).$$

$$X_n \stackrel{p}{\longrightarrow} X \Longrightarrow g(X_n) \stackrel{P}{\longrightarrow} g(X).$$

$$X_n \xrightarrow{p.s} X \Longrightarrow g(X_n) \xrightarrow{p.s} g(X).$$

On considère la variance empirique $S_n'^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$.

On a

$$S_n^{\prime 2} = \frac{n}{n-1} \left[\frac{1}{n} \sum_{i=1}^n (X_i - m)^2 - (\bar{X}_n - m)^2 \right],$$

Par la loi des grands nombres, on obtient $(\bar{X_n}-m) \xrightarrow{P} 0$ et par conséquent $(\bar{X_n}-m)^2 \xrightarrow{P} 0$. De plus,

$$\frac{1}{n} \sum_{i=1}^{n} (X_i - m)^2 \xrightarrow{P} \mathbb{E}\left[(X_i - m)^2 \right] = \operatorname{Var}[X] = \sigma^2.$$

Alors,

$$S_n^{\prime 2} \xrightarrow{P} 1 \times (\sigma^2 - 0) = \sigma^2.$$

Par le TCL, on a

$$\sqrt{n} \frac{(\bar{X}_n - m)}{\sigma} \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1).$$

Par conséquent,

$$\left[\sqrt{n}\frac{(\bar{X}_n - m)}{\sigma}\right]^2 \xrightarrow{\mathcal{L}} \chi_1^2.$$

Lemme de Slutsky

Théorème 2.19

$$\forall c \in \mathbb{R}, \ X_n \xrightarrow{\mathcal{L}} X \text{ et } Y_n \xrightarrow{\mathcal{L}} c \Longrightarrow \left\{ \begin{array}{l} X_n + Y_n \xrightarrow{\mathcal{L}} X + c. \\ X_n Y_n \xrightarrow{\mathcal{L}} cX. \\ \frac{X_n}{Y_n} \xrightarrow{\mathcal{L}} \frac{X}{c}, c \neq 0. \end{array} \right.$$

Normalité asymptotique de la statistique de Student.

$$\mathcal{T}_n = \frac{\sqrt{n}(X_n - m)}{\sqrt{S_n'^2}}$$

Par le TCL, on a

$$\sqrt{n}(\bar{X}_n - m) \xrightarrow{\mathcal{L}} \mathcal{N}(0, \sigma^2).$$

De plus, on sait que

$$S_n^{\prime 2} \xrightarrow{P} \sigma^2$$
.

Alors par le Lemme de Slutsky :

$$\sqrt{n}(\bar{X}_n - m) \times \frac{1}{\sqrt{\sigma^2}} \xrightarrow{\mathcal{L}} \mathcal{N}(0, \sigma^2) \times \frac{1}{\sqrt{\sigma^2}} = \sigma \mathcal{N}(0, 1) \times \frac{1}{\sigma} = \mathcal{N}(0, 1).$$

Grand et petit o

Définition 2.20

Soient a_n et b_n deux suites strictement positives.

▶ Petit *o*

$$a_n = o(b_n) : \iff \lim_{n \to \infty} \frac{a_n}{b_n} = 0.$$

On écrit
$$a_n = o(1)$$
 si $\lim_{n \to +\infty} a_n = 0$

► Grand O

$$a_n = O(b_n) : \iff \lim_{n \to \infty} \frac{a_n}{b_n} \le M$$
, pour $M > 0$.

On écrit $a_n = O(1)$ si $\exists M < +\infty$ tel que $|a_n| \leq M, \ \forall n \geq 1$.

Grand et petit o (suite)

Exemples

- $n^{-2} = o(n^{-1})$
- $ightharpoonup \log n = O(n)$

Définition 2.21

Grand et petit o (suite)

Étant donné une suite strictement positive a_n et une suite de variables aléatoires X_n ,

$$X_n = o_P(a_n) : \iff \frac{|X_n|}{a_n} \xrightarrow{P} 0$$

$$\iff \lim_{n \to \infty} \mathbb{P}\left[\frac{|X_n|}{a_n} > \epsilon\right] = 0, \ \forall \epsilon > 0.$$

Remarque

On écrit souvent $X_n = X + o_P(1)$ pour indiquer que $X_n \xrightarrow{P} X$.

Définition 2.22

Grand et petit o (suite)

Étant donné une suite strictement positive a_n et une suite de variables aléatoires X_n ,

$$X_n = O_P(a_n) : \iff \forall \epsilon > 0, \ \exists M_\epsilon > 0, \ n_0(\epsilon) \in \mathbb{N} :$$

$$\forall n \ge n_0(\epsilon), \ \mathbb{P}\left[\frac{|X_n|}{a_n} > M_\epsilon\right] < \epsilon$$

$$\iff \lim_{M \to +\infty} \limsup_{n \to \infty} \mathbb{P}\left[\frac{|X_n|}{a_n} > M\right] = 0.$$

▶ Soit $X_n \sim \mathcal{N}(0, n)$, alors

$$\frac{X_n}{\sqrt{n}} \sim \mathcal{N}(0,1).$$

Il existe un certain M tel que la probabilité qu'une valeur de $\mathcal{N}(0,1)$ dépasse M soit inférieure à $\epsilon>0$, et donc $X_n=O_p(\sqrt{n}).$

Exemple (suite)

▶ De plus $X_n = o_p(n)$. En effet

$$\frac{X_n}{n} \sim \mathcal{N}\left(0, \frac{n}{n^2}\right)$$
$$\sim \mathcal{N}\left(0, \frac{1}{n}\right)$$

Il s'en suit que

$$\lim_{n \to \infty} \mathbb{P}\left(\left|\frac{X_n}{n}\right| \ge \epsilon\right) = \lim_{n \to \infty} \mathbb{P}\left(\left|\mathcal{N}\left(0, \frac{1}{n}\right)\right| \ge \epsilon\right)$$
$$= \lim_{n \to \infty} \mathbb{P}\left(\left|\mathcal{N}\left(0, 1\right)\right| \ge \sqrt{n}\epsilon\right) = 0$$

Exemple

Par l'inégalité de Tchebychev
$$\mathbb{P}[|X_n - \mathbb{E}[X_n]| \geq t] \leq \frac{\mathbb{Var}[X_n]}{t^2}$$
, $\forall t > 0$. En posant $\epsilon := \frac{\mathbb{Var}[X_n]}{t^2}$ et $M_\epsilon := \frac{1}{\sqrt{\epsilon}}$, alors $\mathbb{P}\left[|X_n - \mathbb{E}[X_n]| \geq \sqrt{\mathbb{Var}[X_n]}M_\epsilon\right] \leq \epsilon$. Par conséquent,
$$X_n - \mathbb{E}[X_n] = O_P\left(\sqrt{\mathbb{Var}[X_n]}\right).$$

Remarque

- ▶ $X_n = o_P(1)$ signifie que X_n converge vers 0 en probabilité. Plus généralement $X_n = o_p(a_n)$ signifie que $X_n = a_n Y_n$ avec Y_n convergeant vers 0 en probabilité.
- ▶ $X_n = O_P(1)$ signifie que la famille $(X_n)_n$ est uniformément tendue. Plus généralement $X_n = O_p(a_n)$ signifie que $X_n = a_n Y_n$ avec la famille $(Y_n)_n$ uniformément tendue.

Propriétés

$$ightharpoonup o_n(1) + o_n(1) = o_n(1)$$

$$o_p(1) + O_p(1) = O_p(1)$$

$$o_p(1)O_p(1) = o_p(1)$$

$$ightharpoonup \frac{1}{1+o_p(1)} = O_p(1)$$

$$O_p(a_n) = a_n O_p(1)$$