Abhimanyu Sethia 190023 sethia@iitk.ac.in

Assignment 12

Question 5

Q5 For $a, b \in \mathbb{R}$ with a < b, let (f_n) be a sequence of differential functions on [a, b]. Suppose (f_n) and (f'_n) are uniformly bounded. Show that (f_n) is equicontinuous and has a uniformly convergent convergent subsequence.

Solution:

Since (f'_n) is bounded, there exists $M \in \mathbb{R}$ s.t. $|f'_n(x)| \leq M \ \forall x \in [a,b] \ \forall n \in \mathbb{N}$. So, by Mean Value Theorem, $|f_n(x) - f_n(y)| \leq M|x - y|, \ x, y \in [a,b] \ \forall n \in \mathbb{N}$. Now, for any $\varepsilon > 0$, take $\delta_{\varepsilon} = \frac{\varepsilon}{M} > 0$. So, $d(x,y) < \delta_{\varepsilon} \implies |f(x) - f(y)| < \varepsilon \ \forall f \in (f_n)$. Since this is true for all $\varepsilon > 0$, (f_n) is equicontinuous, by the definition of equicontinuity.

Moreover, [a, b] is compact. We have already seen that (f_n) is uniformly bounded and equicontinuous. Hence, from the proof of Arzela-Ascoli theorem as done in the lecture, we can obtain a subsequence of (f_n) which is uniformly Cauchy, and thereby, uniformly convergent.

Hence, proved.