1. Short Problems

(1) If $\frac{4x}{x^2+1} = 2$, what is x?.

Scratch Work:

(2) Let x = 3y + c. If $3x^2 - 2x + 6 = 27y^2 + \frac{17}{3}$, what is c? Scratch Work:

Answer: c =

(3)	Solve	the	following	system	of	equations:
-----	-------	-----	-----------	--------	----	------------

$$17x - 3y = 64$$

$$2x + 3y = 88$$

Scratch Work:

Answer:

$$x =$$

$$y =$$

2. Word problems

- **2.1.** The roux. You're making a <u>roux</u>. The recipe requires 3:2 ratio of butter to flour. 2.1.1. *Questions*.
- (1) You want to make 15 cups of roux. How much butter do you need? Express your answer in cups.
- (2) After making 15 cups of roux (with the correct butter-flour ratio), you accidentally add a cup of flour. How much butter should you add to the mixture so that the ratio of butter to flour is 3:2?

2.1.2. Answers.

2.1.3. Scratch Work.

2.2. Triangles. For this problem, refer to Figure 1.

FIGURE 1. Triangles

- The red square has area A.
- The base of the green triangle has length A.
- $2.2.1. \ Questions.$
 - (1) Compute the length of of the hypotenuse of the triangle.
 - (2) Compute the area of the blue square.
 - (3) Assume the area of the blue square is exactly 4 times the area of the red square. What is A?
- $2.2.2.\ Answers.$
 - (1) Length of hypotenuse:
- (2) Area of blue square:

2.2.3.	Scratch wor	rk.			

2.3. Compute the vertices. For this problem, refer to Figure 2.

FIGURE 2. Orange Triangle

- (1) Determine the equations of the three lines in the graph. Write your answers in the form y = mx + b.
- (2) Determine the coordinates of the vertices of the orange triangle.

 $2.3.1.\ Answers.$

(1)	Eq	uations	of	lines:
-----	----	---------	----	--------

• Equation of the line through (x_1, y_1) and (x_2, y_2) :

$$y =$$

• Equation of the line through (x_1, y_1) and (x_3, y_3) :

$$y =$$

• Equation of the line through (x_2, y_2) and (x_3, y_3) :

$$y =$$

(2) Coordinates of vertices:

- $(x_1, y_1) =$
- $(x_2, y_2) =$ $(x_3, y_3) =$

 $2.3.2.\ Scratch\ work.$