Topic 13 Arithmetic Components

Components to be discussed

- Arithmetic and logic unit (ALU)
- Carry lookahead adder
- Incrementer
- Magnitude comparator
- Multiplier

Arithmetic-Logic Unit: ALU

- ALU: Component that can perform any of various arithmetic (add, subtract, increment, etc.) and logic (AND, OR, etc.) operations, based on control inputs
- Key component in computer

TABLE 4.2 Desired calculator operations

	Inpu	ts		Sample output if A=00001111, B=00000101		
Х	у	Z	Operation			
0	0	0	S = A + B	S=00010100		
0	0	1	S = A - B	S=00001010		
0	1	0	S = A + 1	S=00010000		
0	1	1	S = A	S=00001111		
1	0	0	S = A AND B (bitwise AND)	S=00000101		
1	0	1	S = A OR B (bitwise OR)	S=00001111		
1	1	0	S = A XOR B (bitwise XOR)	S=00001010		
1	1	1	S = NOT A (bitwise complement)	S=11110000		

Multifunction Calculator with an ALU

- ALU functions selected by a mux
 - But too many wires
 - Wasted power computing all those operations when at any time you only use one of the results

TABLE 4.2 Desired calculator operations

Inputs				Sample output if		
Х	у	Z	Operation	A=00001111, B=00000101		
0	0	0	S = A + B	S=00010100		
0	0	1	S = A - B	S=00001010		
0	1	0	S = A + 1	S=00010000		
0	1	1	S = A	S=00001111		
1	0	0	S = A AND B (bitwise Al	S=00000101		
1	0	1	S = A OR B (bitwise OR)	S=00001111		
1	1	0	S = A XOR B (bitwise XOR)	S=00001010		
1	1	1	S = NOT A (bitwise complement)	S=11110000		

Carry-Ripple Adder

Carry-ripple adder

- 4-bit adder: Adds two 4-bit numbers, generates 5-bit output
 - 5-bit output can be considered 4-bit "sum" plus 1-bit "carry out"
- Can easily build any size adder

carrie	s:	c3	c2	c1	cin
B:		b3	b2	b1	b0
A:	+	a3	a2	a1	a0
со	ut	s3	s2	s1	s0

Carry-Ripple Adder's Behavior

Assume all inputs initially 0

0111+0001 (answer should be 01000)

Output after 2 ns (1 FA del ay)

Wrong answer -- something wrong? No -- just need more time for carry to ripple through the chain of full adders.

Carry-Ripple Adder's Behavior

Correct answer appears after 4 FA delays

Faster Adder

- Faster adder Use two-level combinational logic design process
 - 4-bit two-level adder is big
 - 9 input and 5 output combination circuit
 - Pro: Fast
 - 2 gate-level delays
 - Con: Large
 - Truth table would have $2^{(4+4+1)} = 512$ rows
 - Plot shows 4-bit adder would use about 500 gates

400¢

2000

Recall Full Adder

Α	В	С	Sum	Carry
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Sum = A'B'C + A'BC' + AB'C' + ABC
=
$$\Sigma$$
 m(1, 2, 4, 7)
Carry = A'BC + AB'C + ABC' + ABC
= Σ m(3, 5, 6, 7)

Sum = A'B'C + A'BC' + AB'C' + ABC
= A'(B'C + BC') + A(B'C' + BC)
= A'(B
$$\oplus$$
 C) + A(B \oplus C)'
(let B \oplus C = D)
= A'D + AD'
= A \oplus D
= A \oplus B \oplus C
Carry = A'BC + AB'C + ABC' + ABC
= A'BC + AB'C + AB (C' + C)
= A'BC + AB'C + AB
= (A'C + A)B + A(B'C + B)
= (C + A)B + A(C + B)
= CB + AB + AC + AB
= AB + AC + BC
= (A'B+AB') C + AB (C'+C)
= (A \oplus B)C + AB

9

Faster Adder - Intuitive Attempt at "Lookahead"

Produce carries directly

```
c1 = a0b0 + a0c0 + b0c0

c2 = a1b1 + a1c1 + b1c1

= a1b1 + a1(a0b0+a0c0+b0c0) + b1(a0b0+a0c0+b0c0)

c3 = a2b2 + a2c2 + b2c2

= ...... (replace c2)

c4 = a3b3 + a3c3 + b3c3

= ...... (replace c3)
```

 Carry outputs of all FAs are represented with a0, a1, a2, a3, b0, b1, b2, b3, and c0

Faster Adder – Intuitive Attempt at "Lookahead"

- Idea: Modify carry-ripple adder
 - don't wait for carry to ripple, but rather directly compute from inputs of earlier stages
 - Called "lookahead" because current stage "looks ahead" at previous stages

Notice – no rippling of carry

Faster Adder – Intuitive Attempt at "Lookahead"

Better Form of Lookahead

- Recall Full Adder, another equation for carry
 Carry = ab + (a ⊕ b)c
- Define two terms
 - Propagate: P = a ⊕ b
 - Generate: G = ab
- Compute lookahead carries from P and G terms, not from external inputs
 - Cout = G + Pc
 - c1 = a0b0 + (a0⊕b0)c0 = G0 + P0c0
 - c2 = a1b1 + (a1⊕b1)c1 = G1 + P1c1
 - $c3 = a2b2 + (a2 \oplus b2)c2 = G2 + P2c2$

Better Form of Lookahead

- With P & G, the carry lookahead equations are much simpler
 - Equations before plugging in

•
$$c1 = G0 + P0c0$$

•
$$c2 = G1 + P1c1$$

•
$$c3 = G2 + P2c2$$

•
$$cout = G3 + P3c3$$

After plugging in:

$$c1 = G0 + P0c0$$

$$c2 = G1 + P1c1 = G1 + P1(G0 + P0c0)$$

$$c2 = G1 + P1G0 + P1P0c0$$

$$c3 = G2 + P2c2 = G2 + P2(G1 + P1G0 + P1P0c0)$$

$$c3 = G2 + P2G1 + P2P1G0 + P2P1P0c0$$

Much simpler than the intuitive lookahead

Better Form of Lookahead (cont.)

Better Form of Lookahead (cont.)

- With P & G, sum outputs are
 - s0 = P0 ⊕ cin
 - s1 = P1 ⊕ c1
 - $s2 = P2 \oplus c2$
 - $s3 = P3 \oplus c3$

Carry-Lookahead Adder -- High-Level View

- Fast -- only 4 gate level delays
 - Each stage has SPG block with 2 gate levels
 - Carry-lookahead logic quickly computes the carry from the propagate and generate bits using 2 gate levels inside
- Reasonable number of gates
- Nice balance between intuitive lookahead and pure combinational logic

Cascading Adders

Example: construct an 8-bit adder with two 4-bit adders

Cascading Adders to CLA Addres

Example: construct an 16-bit adder with four 4-bit adders

Carry-Lookahead Adder -- High-Level View

Adding two more outputs: P, G

P = P3P2P1P0

G = G3+P3G2+P3P2G1+P3P2P1G0

Cascading Adders to CLA Addres

Example: construct an 16-bit adder with four 4-bit adders

CLA Adders

Multi-level CLA structure

CLA Adders

Adder Example: DIP-Switch-Based Adding Calculator

 To prevent spurious values from appearing at output, can place register at output

Incrementer

- Traditional design procedure
 - Capture truth table
 - Derive equation for each output
 - c0 = a3a2a1a0
 - ...
 - s0 = a0
 - Results in small and fast circuit
 - Works for small operand
 - larger operand leads to exponential growth, like for N-bit adder

Inputs					C	utput	S	
a3	a2	a1	a0	c0	s3	s2	s1	s0
0	0	0	0	0	0	0	0	1
0	0	0	1	0	0	0	1	0
0	0	1	0	0	0	0	1	1
0	0	1	1	0	0	1	0	0
0	1	0	0	0	0	1	0	1
0	1	0	1	0	0	1	1	0
0	1	1	0	0	0	1	1	1
0	1	1	1	0	1	0	0	0
1	0	0	0	0	1	0	0	1
1	0	0	1	0	1	0	1	0
1	0	1	0	0	1	0	1	1
1	0	1	1	0	1	1	0	0
1	1	0	0	0	1	1	0	1
1	1	0	1	0	1	1	1	0
1	1	1	0	0	1	1	1	1
1	1	1	1	1	0	0	0	0

Incrementer

- Alternative incrementer design
 - Could use N-bit adder with one of the inputs set to 1
 - Use half-adders (adds two bits) rather than full-adders (adds three bits)
 - Slower but simpler

Comparators

- N-bit equality comparator: Outputs 1 if two N-bit numbers are equal
- Example: 4-bit equality comparator with inputs A and B
 - Approach 1: combinational design procedure
 - Approach 2: recall functionality of XOR and XNOR

0110 = 0111?

N-bit magnitude comparator

- Indicates whether A>B, A=B, or A<B, for its two N-bit inputs A and B
- Design approach 1: combinational design procedure
- Design approach 2: Consider how compare by hand.

- By-hand example leads to idea for design
 - Start at left, compare each bit pair, pass results to the right
 - Each stage has 3 inputs indicating results of higher stage, passes results to lower stage

Each stage:

- out_gt = in_gt + (in_eq * a * b')
 - A>B (so far) if already determined in higher stage, or if higher stages equal but in this stage a=1 and b=0
- out_lt = in_lt + (in_eq * a' * b)
 - A<B (so far) if already determined in higher stage, or if higher stages equal but in this stage a=0 and b=1
- out_eq = in_eq * (a XNOR b)
 - A=B (so far) if already determined in higher stage and in this stage a=b too
- Simple circuit inside each stage, just a few gates (not shown)

1011 = 1001? How does it work? a2 b2 b1 a0 b0 out_gt in_gt out_gt 🖚 in_gt out_gt → in_gt out_gt → AgtB Ieq=1 causes this $\rightarrow leq \xrightarrow{1} leq \stackrel{1} leq \xrightarrow{1} leq \stackrel{1} leq \stackrel{$ out_eq in_eq out_eq → in_eq out_eq → AeqB llt → in lt out It in It out_lt → in_lt out_lt → in_lt out_lt → AltB stage to compare Stage2 Stage3 Stage1 Stage0 (a) 1 1 а3 b3 а b а out_gt in_gt out_gt in_gt out_gt → in_gt out_gt → AgtB out_eq → in_eq out_eq → AeqB out_eq**→** in_eq out_eq**→** in_eq llt→ in_lt out_lt _ in_lt out_t in_lt out_lt → in_lt out_lt → AltB Stage3 Stage2 Stage1 Stage0 (b)

- Final answer appears on the right
- Takes time for answer to "ripple" from left to right
- Thus called "carry-ripple style" even though there's no "carry" involved

Magnitude Comparator Example: Minimum of Two Numbers

- Design a combinational component that finds the minimum of two 8-bit numbers
 - Solution: Use 8-bit magnitude comparator and 8-bit 2x1 mux
 - If A<B, pass A through mux. Else, pass B.

What if inputs are 2's complement???

Multiplier

- Can build multiplier that mimics multiplication by hand
 - Notice that multiplying multiplicand by 1 is same as ANDing with 1

```
(the top number is called the multiplicand)

(the bottom number is called the multiplier)

(each row below is called a partial product)

(because the rightmost bit of the multiplier is 1, and 0110*1=0110)

(because the second bit of the multiplier is 1, and 0110*1=0110)

(because the third bit of the multiplier is 0, and 0110*0=0000)

(because the leftmost bit of the multiplier is 0, and 0110*0=0000)

(the product is the sum of all the partial products: 18, which is 6*3)
```

Multiplier – Array Style

Generalized representation of multiplication by hand

```
a3 a2 a1 a0

x b3 b2 b1 b0

b0a3 b0a2 b0a1 b0a0 (pp1)

b1a3 b1a2 b1a1 b1a0 0 (pp2)

b2a3 b2a2 b2a1 b2a0 0 0 (pp3)

+ b3a3 b3a2 b3a1 b3a0 0 0 0 (pp4)

p7 p6 p5 p4 p3 p2 p1 p0
```

Multiplier – Array Style

Smaller Multiplier -- Sequential (Add-and-Shift) Style

- Add-and-Shift
 - Don't compute all partial products simultaneously
 - Rather, compute one at a time (similar to by hand), maintain a running sum

Smaller Multiplier -- Sequential (Add-and-Shift) Style

- Design circuit that computes one partial product at a time, adds to running sum
 - Note that shifting running sum right (relative to partial product) after each step ensures partial product added to correct running sum bits

Step 2

+ 0011

00110

+0110

010010

0110

Step 3

+ 0000

0010010

Step 1

+ 0011

+ 0110

00110

0110

0000

Smaller Multiplier – Controller Design

