Sorbonne Université M2 Informatique, Spécialité SAR Algorithmique Répartie Avancée Année universitaire 2021/2022

GRAPHES DYNAMIQUES

Swan DUBOIS

- Graphe :
 - Outil mathématique
 - Modèle pour un ensemble d'acteurs (nœuds, sommets) avec des relations binaires (arcs, arêtes)
- Théorie très riche avec nombreux concepts bien définis
- Modèle général
 - Tâches/travailleurs et possibilité d'affectations
 - Danseurs/danseuses et préférence de partenaires
 - Dépendances entre tâches
 - Réseau (informatique, social, professionnel...)

- Graphe :
 - Outil mathématique
 - Modèle pour un ensemble d'acteurs (nœuds, sommets) avec des relations binaires (arcs, arêtes)
- Théorie très riche avec nombreux concepts bien définis
- Modèle général
 - Tâches/travailleurs et possibilité d'affectationss
 - Danseurs/danseuses et préférence de partenaires
 - Dépendances entre tâches
 - Réseau (informatique, social, professionnel...)

- Graphe :
 - Outil mathématique
 - Modèle pour un ensemble d'acteurs (nœuds, sommets) avec des relations binaires (arcs, arêtes)
- Théorie très riche avec nombreux concepts bien définis
- Modèle général :
 - Tâches/travailleurs et possibilité d'affectations
 - Danseurs/danseuses et préférence de partenaires
 - Dépendances entre tâches
 - Réseau (informatique, social, professionnel...)

- Algorithmique répartie "à la Lamport" :
 - Tout processus peut communiquer avec tout autre tout le temps
 - Modèle = graphe complet
- Algorithmique répartie avec point de vue "réseaux" :
 - Tout processus peut communiquer avec un sous-ensemble toui le temps
 - Modèle = graphe quelconque
- Algorithmique répartie pour réseaux "modernes" :
 - Tout processus peut communiquer avec un sous-ensemble à certains moments
 - Modèle = ???

- Algorithmique répartie "à la Lamport" :
 - Tout processus peut communiquer avec tout autre tout le temps
 - Modèle = graphe complet
- Algorithmique répartie avec point de vue "réseaux" :
 - Tout processus peut communiquer avec un sous-ensemble tout le temps
 - Modèle = graphe quelconque
- Algorithmique répartie pour réseaux "modernes" :
 - Tout processus peut communiquer avec un sous-ensemble à certains moments
 - Modèle = ???

- Algorithmique répartie "à la Lamport" :
 - Tout processus peut communiquer avec tout autre tout le temps
 - Modèle = graphe complet
- Algorithmique répartie avec point de vue "réseaux" :
 - Tout processus peut communiquer avec un sous-ensemble tout le temps
 - Modèle = graphe quelconque
- Algorithmique répartie pour réseaux "modernes" :
 - Tout processus peut communiquer avec un sous-ensemble à certains moments
 - Modèle = ???

OUI!

- Besoin d'accord sur les définitions pour écrire/comprendre l'algorithme
- Mais surtout pour la preuve et l'analyse
- Exemple : preuve par récurrence sur distance à un initiateur
- Distance = longueur du plus court chemin
- Chemin et longueur non clairement définis en dynamique...

- OUI!
- Besoin d'accord sur les définitions pour écrire/comprendre l'algorithme
- Mais surtout pour la preuve et l'analyse
- Exemple : preuve par récurrence sur distance à un initiateur
- Distance = longueur du plus court chemin
- Chemin et longueur non clairement définis en dynamique...

- OUI!
- Besoin d'accord sur les définitions pour écrire/comprendre l'algorithme
- Mais surtout pour la preuve et l'analyse
- Exemple : preuve par récurrence sur distance à un initiateur
- Distance = longueur du plus court chemin
- Chemin et longueur non clairement définis en dynamique...

- OUI!
- Besoin d'accord sur les définitions pour écrire/comprendre l'algorithme
- Mais surtout pour la preuve et l'analyse
- Exemple : preuve par récurrence sur distance à un initiateur
- Distance = longueur du plus court chemin
- Chemin et longueur non clairement définis en dynamique...

- OUI!
- Besoin d'accord sur les définitions pour écrire/comprendre l'algorithme
- Mais surtout pour la preuve et l'analyse
- Exemple : preuve par récurrence sur distance à un initiateur
- Distance = longueur du plus court chemin
- Chemin et longueur non clairement définis en dynamique...

- OUI!
- Besoin d'accord sur les définitions pour écrire/comprendre l'algorithme
- Mais surtout pour la preuve et l'analyse
- Exemple : preuve par récurrence sur distance à un initiateur
- Distance = longueur du plus court chemin
- Chemin et longueur non clairement définis en dynamique...

- Mobilité vs. Dynamicité ?
 - Mobilité ⇒ Dynamicité
- Churn vs. Connexion/Déconnexion des nœuds?
 - Churn ⇒ Connexion/Déconnexion des nœuds
 - Connexion/Déconnexion des nœuds

 ⇒ Churn
- Types de dynamicité ?

Dynamicité contrôlée	Dynamicité subie prévisible	Dynamicité subie imprévisible
Réseau robots Réseau capteurs/actuateurs	Réseau satellites Réseau bus/métro	

- Mobilité vs. Dynamicité ?
 - Mobilité ⇒ Dynamicité
- Churn vs. Connexion/Déconnexion des nœuds?
 - Churn ⇒ Connexion/Déconnexion des nœuds
- Types de dynamicité ?

Dynamicité contrôlée	Dynamicité subie prévisible	Dynamicité subie imprévisible
Réseau robots Réseau capteurs/actuateurs	Réseau satellites Réseau bus/métro	Réseau ad-hoc Réseau véhiculaire Réseau téléphones Réseau capteurs

- Mobilité vs. Dynamicité ?
 - Mobilité ⇒ Dynamicité
- Churn vs. Connexion/Déconnexion des nœuds?
 - Churn ⇒ Connexion/Déconnexion des nœuds
- Types de dynamicité ?

Dynamicité contrôlée	Dynamicité subie prévisible	Dynamicité subie imprévisible
Réseau robots Réseau capteurs/actuateurs	Réseau satellites Réseau bus/métro	Réseau ad-hoc Réseau véhiculaire Réseau téléphones Réseau capteurs

- Mobilité vs. Dynamicité ?
 - Mobilité ⇒ Dynamicité
- Churn vs. Connexion/Déconnexion des nœuds?
 - Churn ⇒ Connexion/Déconnexion des nœuds
 - Connexion/Déconnexion des nœuds

 ⇒ Churn
- Types de dynamicité ?

Dynamicité contrôlée	Dynamicité subie prévisible	Dynamicité subie imprévisible
Réseau robots Réseau capteurs/actuateurs	Réseau satellites Réseau bus/métro	Réseau ad-hoc Réseau véhiculaire
ressea captears/ actuatears	reseau susymetre	Réseau téléphones Réseau capteurs

- Mobilité vs. Dynamicité ?
 - Mobilité ⇒ Dynamicité
- Churn vs. Connexion/Déconnexion des nœuds?
 - Churn ⇒ Connexion/Déconnexion des nœuds
 - Connexion/Déconnexion des nœuds

 ⇒ Churn
- Types de dynamicité ?

Dynamicité contrôlée	Dynamicité subie prévisible	Dynamicité subie imprévisible
Réseau robots	Réseau satellites	Réseau ad-hoc
Réseau capteurs/actuateurs	Réseau bus/métro	Réseau véhiculaire Réseau téléphones Réseau capteurs

- Mobilité vs. Dynamicité ?
 - Mobilité ⇒ Dynamicité
- Churn vs. Connexion/Déconnexion des nœuds?
 - Churn ⇒ Connexion/Déconnexion des nœuds
 - Connexion/Déconnexion des nœuds

 ⇒ Churn
- Types de dynamicité ?

Dynamicité contrôlée	Dynamicité subie prévisible	Dynamicité subie imprévisible
Réseau robots	Réseau satellites	Réseau ad-hoc
Réseau capteurs/actuateurs	Réseau bus/métro	Réseau véhiculaire Réseau téléphones Réseau capteurs

- Mobilité vs. Dynamicité ?
 - Mobilité ⇒ Dynamicité
- Churn vs. Connexion/Déconnexion des nœuds ?
 - Churn ⇒ Connexion/Déconnexion des nœuds
 - Connexion/Déconnexion des nœuds

 ⇒ Churn
- Types de dynamicité ?

Dynamicité contrôlée	Dynamicité subie prévisible	Dynamicité subie imprévisible
Réseau robots	Réseau satellites	Réseau ad-hoc
Réseau capteurs/actuateurs	Réseau bus/métro	Réseau véhiculaire Réseau téléphones Réseau capteurs

- Idée = un graphe "qui bouge avec le temps"
- Nombreux modèles issus de nombreux cadres applicatifs distincts
- Aucun modèle ne s'impose vraiment
- Théorie encore jeune et peu développée (comparée aux graphes statiques)

- Idée = un graphe "qui bouge avec le temps"
- Nombreux modèles issus de nombreux cadres applicatifs distincts
- Aucun modèle ne s'impose vraiment
- Théorie encore jeune et peu développée (comparée aux graphes statiques)

- Idée = un graphe "qui bouge avec le temps"
- Nombreux modèles issus de nombreux cadres applicatifs distincts
- Aucun modèle ne s'impose vraiment
- Théorie encore jeune et peu développée (comparée aux graphes statiques)

- Idée = un graphe "qui bouge avec le temps"
- Nombreux modèles issus de nombreux cadres applicatifs distincts
- Aucun modèle ne s'impose vraiment
- Théorie encore jeune et peu développée (comparée aux graphes statiques)

- Ensemble de sommets V fixe
- Un graphe G = (V, E)
- Temps discret $T = \{0, 1, 2, 3, ...\}$
- Graphe évolutif = une suite de sous graphe de G $G = G_0, G_1, G_2, G_3, \dots$ avec $\forall i \in T, G_i \subseteq G$

- Ensemble de sommets V fixe
- Un graphe G = (V, E)
- Temps discret $T = \{0, 1, 2, 3, ...\}$
- Graphe évolutif = une suite de sous graphe de G $G = G_0, G_1, G_2, G_3, \dots$ avec $\forall i \in T, G_i \subseteq G$

- Ensemble de sommets V fixe
- Un graphe G = (V, E)
- Temps discret $T = \{0, 1, 2, 3, ...\}$
- Graphe évolutif = une suite de sous graphe de G $G = G_0, G_1, G_2, G_3, \dots$ avec $\forall i \in T, G_i \subseteq G$

- Ensemble de sommets V fixe
- Un graphe G = (V, E)
- Temps discret $T = \{0, 1, 2, 3, \ldots\}$
- Graphe évolutif = une suite de sous graphe de G $G = G_0, G_1, G_2, G_3, \dots$ avec $\forall i \in T, G_i \subseteq G$

- Simple, généralisation "naturelle" du statique
- Représentation visuelle peu compacte et pratique
- Adapté systèmes synchrones

- Simple, généralisation "naturelle" du statique
- Représentation visuelle peu compacte et pratique
- Adapté systèmes synchrones

- Simple, généralisation "naturelle" du statique
- Représentation visuelle peu compacte et pratique
- Adapté systèmes synchrones

- Ensemble de sommets V fixe
- Un graphe G = (V, E)
- Temps continu $T = \mathbb{R}^+$
- GVT = étiquetage de G avec une fonction de présence $\mathcal{G} = (G, \rho)$ avec $\rho : E \times T \rightarrow \{0, 1\}$ fonction de présence des arêtes

- Ensemble de sommets V fixe
- Un graphe G = (V, E)
- Temps continu $T = \mathbb{R}^+$
- GVT = étiquetage de G avec une fonction de présence $\mathcal{G} = (G, \rho)$ avec $\rho : E \times T \rightarrow \{0, 1\}$ fonction de présence des arêtes

- Ensemble de sommets V fixe
- Un graphe G = (V, E)
- ullet Temps continu $T=\mathbb{R}^+$
- GVT = étiquetage de G avec une fonction de présence $\mathcal{G}=(G,\rho)$ avec $\rho:E\times T\to\{0,1\}$ fonction de présence des arêtes

- Ensemble de sommets V fixe
- Un graphe G = (V, E)
- ullet Temps continu $T=\mathbb{R}^+$
- GVT = étiquetage de G avec une fonction de présence $\mathcal{G} = (G, \rho)$ avec $\rho : E \times T \rightarrow \{0, 1\}$ fonction de présence des arêtes

- Simple, généralisation "naturelle" du statique
- Représentation visuelle compacte mais peu intuitive
- Adapté systèmes asynchrones
- Hypothèse courante : toute apparition d'une durée inférieure à la latence est ignorée
- Facile à enrichir : fonctions de présence des nœuds, de latence de communication, ...

- Simple, généralisation "naturelle" du statique
- Représentation visuelle compacte mais peu intuitive
- Adapté systèmes asynchrones
- Hypothèse courante : toute apparition d'une durée inférieure à la latence est ignorée
- Facile à enrichir : fonctions de présence des nœuds, de latence de communication, ...

- Simple, généralisation "naturelle" du statique
- Représentation visuelle compacte mais peu intuitive
- Adapté systèmes asynchrones
- Hypothèse courante : toute apparition d'une durée inférieure à la latence est ignorée
- Facile à enrichir : fonctions de présence des nœuds, de latence de communication, ...

- Simple, généralisation "naturelle" du statique
- Représentation visuelle compacte mais peu intuitive
- Adapté systèmes asynchrones
- Hypothèse courante : toute apparition d'une durée inférieure à la latence est ignorée
- Facile à enrichir : fonctions de présence des nœuds, de latence de communication, ...

- Simple, généralisation "naturelle" du statique
- Représentation visuelle compacte mais peu intuitive
- Adapté systèmes asynchrones
- Hypothèse courante : toute apparition d'une durée inférieure à la latence est ignorée
- Facile à enrichir : fonctions de présence des nœuds, de latence de communication, ...

- Aussi peu que possible...
- Mais quasi obligatoire
- Parfois simple : voisinage de *v*
 - Graphe statique : ensemble de sommets partageant une arête avec v
 - Graphe dynamique : ensemble de sommets partageant une arête avec v à un instant t
 - Tout devient fonction du temps
- Parfois complexe et sujet à débat : connexité, ensemble couvrants, leader...

- Aussi peu que possible...
- Mais quasi obligatoire
- Parfois simple : voisinage de v
 - Graphe statique : ensemble de sommets partageant une arête avec v
 - Graphe dynamique : ensemble de sommets partageant une arête avec v à un instant t
 - Tout devient fonction du temps
- Parfois complexe et sujet à débat : connexité, ensemble couvrants, leader...

- Aussi peu que possible...
- Mais quasi obligatoire
- ullet Parfois simple : voisinage de v

 - Graphe dynamique : ensemble de sommets partageant une arête avec ν à un instant t
 - Tout devient fonction du temps!
- Parfois complexe et sujet à débat : connexité, ensemble couvrants, leader...

- Aussi peu que possible...
- Mais quasi obligatoire
- Parfois simple : voisinage de v

 - Graphe dynamique : ensemble de sommets partageant une arête avec v à un instant t
 - Tout devient fonction du temps!
- Parfois complexe et sujet à débat : connexité, ensemble couvrants, leader...

Degré maximal d'un graphe dynamique

- Graphe statique : Degré d'un nœud deg_v = nombre de voisins
- Graphe dynamique : Degré d'un nœud $deg_v(t)$ = nombre de voisins à un instant t
- ullet Graphe statique : Degré maximal $\Delta_G = \max_{v \in V} \{ deg_v \}$
- Graphe dynamique : Degré maximal ?
 - Option 1 : fonction du temps $\Delta_G(t) = \max_{v \in V} \{ deg_v(t) \}$
 - ullet Option 2 : valeur unique $\Delta_{\mathcal{G}} = \mathit{max}_{v \in V, t \in \mathcal{T}} \{\mathit{deg}_v(t)\}$
 - Les deux sont valables, tout dépend de ce dont on a besoin !!

Degré maximal d'un graphe dynamique

- Graphe statique : Degré d'un nœud deg_v = nombre de voisins
- Graphe dynamique : Degré d'un nœud $deg_v(t)$ = nombre de voisins à un instant t
- ullet Graphe statique : Degré maximal $\Delta_G = \max_{v \in V} \{ deg_v \}$
- Graphe dynamique : Degré maximal ?
 - ullet Option 1 : fonction du temps $\Delta_{\mathcal{G}}(t) = extit{max}_{v \in V} \{ extit{deg}_{v}(t)\}$
 - ullet Option 2 : valeur unique $\Delta_{\mathcal{G}} = \mathit{max}_{v \in V, t \in \mathcal{T}} \{\mathit{deg}_v(t)\}$
 - Les deux sont valables, tout dépend de ce dont on a besoin !

Degré maximal d'un graphe dynamique

- Graphe statique : Degré d'un nœud deg_v = nombre de voisins
- Graphe dynamique : Degré d'un nœud $deg_v(t)$ = nombre de voisins à un instant t
- Graphe statique : Degré maximal $\Delta_G = \max_{v \in V} \{deg_v\}$
- Graphe dynamique : Degré maximal ?
 - ullet Option 1 : fonction du temps $\Delta_{\mathcal{G}}(t) = \mathit{max}_{v \in V}\{\mathit{deg}_v(t)\}$
 - ullet Option 2 : valeur unique $\Delta_{\mathcal{G}} = \mathit{max}_{v \in V, t \in T} \{\mathit{deg}_v(t)\}$
 - Les deux sont valables, tout dépend de ce dont on a besoin !

Empreinte

- Idée : "résumer" le graphe dynamique en un graphe statique
- $E_{\mathcal{G}} = (V, E)$ avec
 - V l'ensemble de sommets de G
 - E l'ensemble des arêtes qui sont présentes au moins une fois dans G

- Attention aux conclusions hâtives sur l'empreinte!
 - Exemple : degré maximal
 - ullet $\Delta_{\mathcal{G}}$ n'est pas toujours $\Delta_{E_{\mathcal{G}}}$
 - $\Delta_{\mathcal{G}} \leq \Delta_{E_{\mathcal{G}}}$

Empreinte

- Idée : "résumer" le graphe dynamique en un graphe statique
- $E_{\mathcal{G}} = (V, E)$ avec
 - ullet V l'ensemble de sommets de ${\cal G}$
 - \bullet E l'ensemble des arêtes qui sont présentes au moins une fois dans ${\cal G}$

- Attention aux conclusions hâtives sur l'empreinte!
 - Exemple : degré maximal
 - ullet $\Delta_{\mathcal{G}}$ n'est pas toujours $\Delta_{E_{\mathcal{G}}}$!
 - $\Delta_{\mathcal{G}} \leq \Delta_{E_{\mathcal{G}}}$

Empreinte

- Idée : "résumer" le graphe dynamique en un graphe statique
- $E_{\mathcal{G}} = (V, E)$ avec
 - ullet V l'ensemble de sommets de ${\cal G}$
 - \bullet $\it E$ l'ensemble des arêtes qui sont présentes au moins une fois dans $\it \mathcal{G}$

- Attention aux conclusions hâtives sur l'empreinte!
 - Exemple : degré maximal
 - Δ_G n'est pas toujours Δ_{E_G} !
 - $\Delta_{\mathcal{G}} \leq \Delta_{E_{\mathcal{G}}}$

- Dans un graphe statique G, chemin de u à v = suite d'arêtes adjacentes de G menant de u à v
- Longueur d'un chemin = nombre d'arêtes de ce chemin
- Notion centrale en théorie des graphes car permet de définir :
 - Distance de u à v = longueur du plus court chemin de u à v
 - Excentricité de v = plus grande distance entre v et un autre nœud
 - Diamètre de G =plus grande excentricité d'un nœud de G
 - Connexité = existence d'un chemin entre toute paire de nœud
 etc.
- En algorithmique répartie, intuition d'un chemin = possibilité d'envoyer un message.

- Dans un graphe statique G, chemin de u à v = suite d'arêtes adjacentes de G menant de u à v
- Longueur d'un chemin = nombre d'arêtes de ce chemin
- Notion centrale en théorie des graphes car permet de définir :
 - Distance de u à v = longueur du plus court chemin de u à v
 - Excentricité de v = plus grande distance entre v et un autre nœud
 - Diamètre de G =plus grande excentricité d'un nœud de G
 - Connexité = existence d'un chemin entre toute paire de nœud
 etc.
- En algorithmique répartie, intuition d'un chemin = possibilité d'envoyer un message.

- Dans un graphe statique G, chemin de u à v = suite d'arêtes adjacentes de G menant de u à v
- Longueur d'un chemin = nombre d'arêtes de ce chemin
- Notion centrale en théorie des graphes car permet de définir :
 - Distance de u à v = longueur du plus court chemin de u à v
 - Excentricité de v = plus grande distance entre v et un autre nœud
 - Diamètre de G = plus grande excentricité d'un nœud de G
 - Connexité = existence d'un chemin entre toute paire de nœud
 - etc.
- En algorithmique répartie, intuition d'un chemin = possibilité d'envoyer un message.

- Dans un graphe statique G, chemin de u à v = suite d'arêtes adjacentes de G menant de u à v
- Longueur d'un chemin = nombre d'arêtes de ce chemin
- Notion centrale en théorie des graphes car permet de définir :
 - Distance de u à v = longueur du plus court chemin de u à v
 - Excentricité de v = plus grande distance entre v et un autre nœud
 - Diamètre de G = plus grande excentricité d'un nœud de G
 - Connexité = existence d'un chemin entre toute paire de nœud
 - etc.
- En algorithmique répartie, intuition d'un chemin = possibilité d'envoyer un message.

Chemin dans un graphe dynamique ?

- Idée = conserver l'intuition de possibilité d'envoyer un message
- ullet Chemin dans $G_i \not\Rightarrow {\sf possibilit\'e}$ d'envoyer un message
- Chemin dans tous les $G_i \Rightarrow$ possibilité d'envoyer un message
- Suffisant mais est-ce nécessaire ?

Chemin dans un graphe dynamique?

- Idée = conserver l'intuition de possibilité d'envoyer un message
- Chemin dans $G_i \not\Rightarrow$ possibilité d'envoyer un message
- Chemin dans tous les $G_i \Rightarrow$ possibilité d'envoyer un message
- Suffisant mais est-ce nécessaire ?

Chemin dans un graphe dynamique ?

- Idée = conserver l'intuition de possibilité d'envoyer un message
- Chemin dans l'empreinte

 possibilité d'envoyer un message
- ullet Chemin dans $G_i \not\Rightarrow {\sf possibilit\'e}$ d'envoyer un message
- ullet Chemin dans tous les $G_i \Rightarrow$ possibilité d'envoyer un message
- Suffisant mais est-ce nécessaire ?

Chemin dans un graphe dynamique?

- Idée = conserver l'intuition de possibilité d'envoyer un message
- Chemin dans $G_i \not\Rightarrow$ possibilité d'envoyer un message
- Chemin dans tous les $G_i \Rightarrow$ possibilité d'envoyer un message
- Suffisant mais est-ce nécessaire ?

Chemin dans un graphe dynamique?

- Idée = conserver l'intuition de possibilité d'envoyer un message
- Chemin dans $G_i \not\Rightarrow$ possibilité d'envoyer un message
- Chemin dans tous les $G_i \Rightarrow$ possibilité d'envoyer un message
- Suffisant mais est-ce nécessaire ?

- Il faut prendre en compte le temps et les latences
- Dépend d'une date de départ !
- Trajet de u à v au temps t_d = Chemin a₁, a₂,... de u à v dans l'empreinte tel que :

```
• a_1 est présente à un t_1 \geq t_d
• a_2 est présente à un t_2 \geq t_1 + 1
• etc.
```

Relation non symétrique car trajet "orienté" par le temps

- Il faut prendre en compte le temps et les latences
- Dépend d'une date de départ !
- Trajet de u à v au temps t_d = Chemin a_1, a_2, \ldots de u à v dans l'empreinte **tel que** :

```
• a_1 est présente à un t_1 \ge t_d
• a_2 est présente à un t_2 \ge t_1 + 1
• etc.
```

Relation non symétrique car trajet "orienté" par le temps

- Il faut prendre en compte le temps et les latences
- Dépend d'une date de départ !
- Trajet de u à v au temps t_d = Chemin a_1, a_2, \ldots de u à v dans l'empreinte **tel que** :
 - a_1 est présente à un $t_1 \geq t_d$
 - ullet a_2 est présente à un $t_2 \geq t_1 + 1$
 - etc.
- Relation non symétrique car trajet "orienté" par le temps

- Il faut prendre en compte le temps et les latences
- Dépend d'une date de départ!
- Trajet de u à v au temps t_d = Chemin a_1, a_2, \ldots de u à v dans l'empreinte **tel que** :
 - a_1 est présente à un $t_1 \geq t_d$
 - a_2 est présente à un $t_2 \ge t_1 + 1$
 - etc.
- Relation non symétrique car trajet "orienté" par le temps

- ullet Date de départ eq Date de première émission
- Longueur du trajet = nombre d'arêtes traversées
- Durée = Date d'arrivée Date de première émission
- Qu'est-ce qu'un bon trajet ?
- Tout dépend de l'objectif :
 - Le plus court = minimise la longueur
 - Le plus rapide = minimise la durée
 - Arrivant le plus vite = minimise la date d'arrivée

- Date de départ ≠ Date de première émission
- Longueur du trajet = nombre d'arêtes traversées
- Durée = Date d'arrivée Date de première émission
- Qu'est-ce qu'un bon trajet ?
- Tout dépend de l'objectif :
 - Le plus court = minimise la longueur
 - Le plus rapide = minimise la durée
 - Arrivant le plus vite = minimise la date d'arrivée

- ullet Date de départ eq Date de première émission
- Longueur du trajet = nombre d'arêtes traversées
- Durée = Date d'arrivée Date de première émission
- Qu'est-ce qu'un bon trajet ?
- Tout dépend de l'objectif :
 - Le plus court = minimise la longueur
 - Le plus rapide = minimise la durée
 - Arrivant le plus vite = minimise la date d'arrivée

- ullet Date de départ eq Date de première émission
- Longueur du trajet = nombre d'arêtes traversées
- Durée = Date d'arrivée Date de première émission
- Qu'est-ce qu'un bon trajet ?
- Tout dépend de l'objectif :
 - Le plus court = minimise la longueur
 - Le plus rapide = minimise la durée
 - Arrivant le plus vite = minimise la date d'arrivée

- Date de départ ≠ Date de première émission
- Longueur du trajet = nombre d'arêtes traversées
- Durée = Date d'arrivée Date de première émission
- Qu'est-ce qu'un bon trajet ?
- Tout dépend de l'objectif :
 - Le plus court = minimise la longueur
 - Le plus rapide = minimise la durée
 - Arrivant le plus vite = minimise la date d'arrivée

Connexité

- Intuition dans un graphe statique : tout le monde peut communiquer avec tout le monde
- Définition dans un graphe statique : pour toute paire de nœuds, il existe un chemin les reliant
- Généralisation dans un graphe dynamique ?
 - Beaucoup de définitions existent
 - Aucune n'est strictement meilleure que les autres
 - Tout dépend du contexte et du cas d'application
 - La définition retenue impacte beaucoup les résultats
 - Comment les comparer ?

Connexité

- Intuition dans un graphe statique : tout le monde peut communiquer avec tout le monde
- Définition dans un graphe statique : pour toute paire de nœuds, il existe un chemin les reliant
- Généralisation dans un graphe dynamique ?
 - Beaucoup de définitions existent
 - Aucune n'est strictement meilleure que les autres
 - lout dépend du contexte et du cas d'applicationne
 - La définition retenue impacte beaucoup les résultats
 - Comment les comparer ?

Connexité

- Intuition dans un graphe statique : tout le monde peut communiquer avec tout le monde
- Définition dans un graphe statique : pour toute paire de nœuds, il existe un chemin les reliant
- Généralisation dans un graphe dynamique ?
 - Beaucoup de définitions existent...
 - Aucune n'est strictement meilleure que les autres !
 - Tout dépend du contexte et du cas d'application.
 - La définition retenue impacte beaucoup les résultats
 - Comment les comparer ?

Empreinte connexe

- ullet Il existe un nœud v tel que tout autre nœud ait un trajet vers v
- Pour tout nœud v, tout autre nœud a un trajet vers v
- Pour tout nœud v, tout autre nœud a infiniment souvent un trajet vers v
- Pour tout nœud v, tout autre nœud a un chemin vers v à un instant donné
- Pour toute paire de nœuds, il existe un trajet entre eux toutes les T unités de temps
- etc.

- Empreinte connexe
- ullet Il existe un nœud v tel que tout autre nœud ait un trajet vers v
- Pour tout nœud v, tout autre nœud a un trajet vers v
- Pour tout nœud v, tout autre nœud a infiniment souvent un trajet vers v
- Pour tout nœud v, tout autre nœud a un chemin vers v à un instant donné
- Pour toute paire de nœuds, il existe un trajet entre eux toutes les T unités de temps
- etc.

- Empreinte connexe
- ullet Il existe un nœud v tel que tout autre nœud ait un trajet vers v
- Pour tout nœud v, tout autre nœud a un trajet vers v
- Pour tout nœud v, tout autre nœud a infiniment souvent un trajet vers v
- Pour tout nœud v, tout autre nœud a un chemin vers v à un instant donné
- Pour toute paire de nœuds, il existe un trajet entre eux toutes les T unités de temps
- etc.

- Empreinte connexe
- ullet Il existe un nœud v tel que tout autre nœud ait un trajet vers v
- Pour tout nœud v, tout autre nœud a un trajet vers v
- Pour tout nœud v, tout autre nœud a infiniment souvent un trajet vers v
- Pour tout nœud v, tout autre nœud a un chemin vers v à un instant donné
- Pour toute paire de nœuds, il existe un trajet entre eux toutes les T unités de temps
- etc.

- Empreinte connexe
- ullet Il existe un nœud v tel que tout autre nœud ait un trajet vers v
- Pour tout nœud v, tout autre nœud a un trajet vers v
- Pour tout nœud v, tout autre nœud a infiniment souvent un trajet vers v
- Pour tout nœud v, tout autre nœud a un chemin vers v à un instant donné
- Pour toute paire de nœuds, il existe un trajet entre eux toutes les T unités de temps
- etc.

- Empreinte connexe
- ullet Il existe un nœud v tel que tout autre nœud ait un trajet vers v
- Pour tout nœud v, tout autre nœud a un trajet vers v
- Pour tout nœud v, tout autre nœud a infiniment souvent un trajet vers v
- Pour tout nœud v, tout autre nœud a un chemin vers v à un instant donné
- Pour toute paire de nœuds, il existe un trajet entre eux toutes les T unités de temps
- etc.

- Empreinte connexe
- ullet Il existe un nœud v tel que tout autre nœud ait un trajet vers v
- Pour tout nœud v, tout autre nœud a un trajet vers v
- Pour tout nœud v, tout autre nœud a infiniment souvent un trajet vers v
- Pour tout nœud v, tout autre nœud a un chemin vers v à un instant donné
- Pour toute paire de nœuds, il existe un trajet entre eux toutes les T unités de temps
- etc.

Comparaison des définitions

- Chaque définition de connexité induit une classe de graphes dynamiques (l'ensemble des graphes dynamiques satisfaisants la définition)
- L'inclusion/l'intersection des ces classes permet de comparer objectivement les définitions
- Cela induit une hiérarchie permettant de caractériser le degré de dynamisme d'un graphe

Comparaison des définitions

- Chaque définition de connexité induit une classe de graphes dynamiques (l'ensemble des graphes dynamiques satisfaisants la définition)
- L'inclusion/l'intersection des ces classes permet de comparer objectivement les définitions
- Cela induit une hiérarchie permettant de caractériser le degré de dynamisme d'un graphe

Comparaison des définitions

- Chaque définition de connexité induit une classe de graphes dynamiques (l'ensemble des graphes dynamiques satisfaisants la définition)
- L'inclusion/l'intersection des ces classes permet de comparer objectivement les définitions
- Cela induit une hiérarchie permettant de caractériser le degré de dynamisme d'un graphe

Hiérarchie de dynamicité

Intérêts

- Comparaison objective des définitions et des résultats
- Mutualisation/factorisation des résultats issus de cadre applicatifs différents
- Deux propriétés très intéressantes :

 - Impossibilité dans une classe ⇒ Impossibilité dans toutes les classes englobantes

Intérêts

- Comparaison objective des définitions et des résultats
- Mutualisation/factorisation des résultats issus de cadre applicatifs différents
- Deux propriétés très intéressantes :
 - Algorithme dans une classe ⇒ Algorithme dans toutes les classes incluses
 - Impossibilité dans une classe
 ⇒ Impossibilité dans toutes les classes englobantes

Intérêts

- Comparaison objective des définitions et des résultats
- Mutualisation/factorisation des résultats issus de cadre applicatifs différents
- Deux propriétés très intéressantes :
 - Algorithme dans une classe ⇒ Algorithme dans toutes les classes incluses
 - Impossibilité dans une classe ⇒ Impossibilité dans toutes les classes englobantes

Préparation du TD

• Séance du 18/01

- Regarder l'article "Shortest, Fastest, and Foremost Broadcast in Dynamic Networks" disponible sur la page Moodle de l'UE
- Objectifs:
 - Comprendre le problème et le modèle
 - Identifier les classes de graphes dynamiques utilisées
 - Repérer les algorithmes et résultats utiles pour les questions du TD
 - Essayer de comprendre l'intuition derrière ces résultats

Préparation du TD

- Séance du 18/01
- Regarder l'article "Shortest, Fastest, and Foremost Broadcast in Dynamic Networks" disponible sur la page Moodle de l'UE
- Objectifs :
 - Comprendre le problème et le modèle
 - Identifier les classes de graphes dynamiques utilisées
 - Repérer les algorithmes et résultats utiles pour les questions du TD
 - Essayer de comprendre l'intuition derrière ces résultats

Préparation du TD

- Séance du 18/01
- Regarder l'article "Shortest, Fastest, and Foremost Broadcast in Dynamic Networks" disponible sur la page Moodle de l'UE
- Objectifs :
 - Comprendre le problème et le modèle
 - Identifier les classes de graphes dynamiques utilisées
 - Repérer les algorithmes et résultats utiles pour les questions du TD
 - Essayer de comprendre l'intuition derrière ces résultats