Machine Learning in Communication Networks

Sandeep Kumar Singh

German Aerospace Center (DLR)

Institute of Communications and Navigation, Germany

November 10th, 2020

Knowledge for Tomorrow

Outline

- What is Machine Learning (ML)?
- Applications and challenges
- Basic concepts and Its types
- Algorithms
- Anomaly detection
- Time-series forecasting

Unless otherwise stated, some slides are taken from M. Tornatore: Tutorial on Machine Learning

What is Machine Learning (ML)?

- "Machine Learning is the field of study that gives computers the ability to learn without being explicitly." programmed."- Arthur Samuel (1959):
- "Teaching a computer to automatically learn concepts through data observation"
- For our purposes (in the context of communication networks):
 - A math/statistical instrument to make decisions by inferring statistical properties of monitored data

Al Techniques, Applications and Challenges in Communication Networks

Why Only Now in Networking?

Data Plane-Complexity increase

Coherent Transmission System

• Several system parameters to choose from: modulation techniques and formats, coding rates,

symbol rate...

• DSP: Huge availability of data

Telecommunication or Optical Networks

Customizable channel width, BV-ROADM

Control Plane-New Enablers

Software Defined Networking

• Intelligence (computing capabilities) everywhere

ML Categories (1)

Supervised-learning

- Training: "labelled" data
- Main objective: given a set of "historical" input(s) predict an output
 - Regression: output value is continuous
 - Classification: output value is discrete or "categorical"
- An example: Traffic forecasts
 - Given traffic during last week/month/year
 - Predict traffic for the next period (regression)
 - Predict if available resources will be sufficient (classification)
- Other examples
 - Speech/image recognition
 - Spam classifier
 - House prices prediction/estimation

A Supervised Learning Example

Establish a new lightpath (optical channel)

Objective: find BER of a new lightpath a priori at a particular wavelength, mod., ROADM age, on a given path

A Supervised Learning Example

Training:

 λ = 1550 nm, path = A-B-D-E, mod = QPSK, BER = 10⁻⁵

 λ = 1553 nm, path = A-B-E, mod = QPSK, BER = 10⁻⁶

. .

Testing:

 $\lambda = 1555$ nm, path = C-D-E, mod = QPSK, BER = ?

ML Categories (2)

- Unsupervised Learning
- Data is not "labelled"
- Main objective: derive structures (patterns) from available data
 - Clustering finding "groups" of similar data
 - Anomaly detection
- An example: cell traffic classification
- Given traffic traces
 - Understand if some cells provide similar patterns
 - Residential, business, close to theatre, cinema, stadium...
 - This information can be used to make network resources planning
- Other example
 - Group people according to their interests to improve advertisement

An Unsupervised Learning Example (1)

Data:

 λ = 1550 nm, path = A-B-D-E, mod = QPSK, BER = 10⁻⁵

 λ = 1553 nm, path = A-B-E, mod = QPSK, BER = 10⁻⁶

 λ = 1553 nm, path = A-C-D, mod = QPSK, BER = 10⁻⁶

 $\lambda = 1555$ nm, path = C-D-E, mod = QPSK, BER = 10^{-5}

An Unsupervised Learning Example (2)

Data after few months:

 λ = 1550 nm, path = A-B-D-E, mod = QPSK, BER = 10⁻⁵

 λ = 1553 nm, path = A-B-E, mod = QPSK, BER = 10⁻⁶

 λ = 1553 nm, path = A-C-D, mod = QPSK, BER = 10⁻²

 $\lambda = 1555$ nm, path = C-D-E, mod = QPSK, BER = 10^{-2}

ML Categories (3)

- Semi-Supervised learning
 - Hybrid of previous two categories
 - Main objective: most of the training samples are unlabelled, only few are labelled.
 - Common when labelled data are scarce or expensive
 - Self-training: start with labelled data, then label unlabelled data based on first phase

ML Categories (4)

Semi-Supervised learning

- Hybrid of previous two categories
- Main objective: most of the training samples are unlabelled, only few are labelled.
 - Common when labelled data are scarce or expensive
- Self-training: start with labelled data, then label unlabelled data based on first phase

Reinforcement learning

- Available data is not "labelled"
- Main objective: learn a policy, i.e., a mapping between in inputs/states and actions. Behavior is refined through rewards
- Methodologically similar to «optimal control theory» or «dynamic programming»

Supervised Learning: Regression

- y = h(x): relationship between one dependent variable (Y) and other variables independent variables
- y takes infinite real values
- Univariate: $h(x = x_1) = \theta_0 + \theta_1 x_1$
- Multivariate: $h(x = (x_1, x_2, ..., x_n) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + ... + \theta_n x_n$
- Nonlinear regression: $h(x = (x_1, x_2, ..., x_n) = \theta_0$

$$+\theta_{1}x_{1} + \theta_{2}x_{2} + \dots + \theta_{n}x_{n} +\theta_{11}x_{1}x_{1} + \theta_{12}x_{1}x_{2} + \dots + \theta_{1n}x_{1}x_{n}$$

...

Supervised Learning: Regression

- y = h(x): relationship between one dependent variable (Y) and other variables independent variables
- y takes infinite real values
- Univariate: $h(x = x_1) = \theta_0 + \theta_1 x_1$
- Multivariate: $h(x = (x_1, x_2, ..., x_n) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + ... + \theta_n x_n$
- Nonlinear regression: $h(x = (x_1, x_2, ..., x_n) = \theta_0$

$$+\theta_{1}x_{1} + \theta_{2}x_{2} + \dots + \theta_{n}x_{n} +\theta_{11}x_{1}x_{1} + \theta_{12}x_{1}x_{2} + \dots + \theta_{1n}x_{1}x_{n}$$

...

- How to choose parameters (weights): θ (θ_0 , θ_1 , θ_2 , ...)?
- Minimize training loss: mean square error $min_{\theta} \left\{ J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(h(x^i) y^i \right)^2 \right\}$
- Gradient descent algo: Partial derivative $\frac{d}{d\theta_j}J(\theta)$, for j=0,1,2,...
- Not enough data/too many features => overfitting

Supervised Learning: Logistic Regression/Classification

- Output y = h(x) takes finite discrete values
 - Binary classification: $y \in \{0, 1\}$, True/False, anomaly/normal
 - Multiclass classifier: $y \in \{0, 1, 2, 3, ... K\}$

$$h(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + ... + \theta_n x_n + ...)$$

$$= g(\theta^T x)$$
Where $g(.) - logistic function$

$$h(x) = \frac{1}{1 + e^{-\theta^T x}} => Sigmoid function$$

$$p(y = k | x, \theta)$$

Neural Networks

- Why do we need a new algorithm?
 - Some problems are just too complex
 - Many features play a role in deciding boundaries among classes => Increased feature space
 - Even difficult for human

Backpropagation algorithm uses **Gradient descent** optimization to minimize error:

$$W^{i+1} \leftarrow W^i - \epsilon \nabla e_W^i$$
 Learning rate

K-Nearest Neighbors (KNN)

- Used for classification and regression
- Decision based on the K nearest points in the training sets
 - Need to choose K
- Example 1: classification (K=3)
 - Choose the most frequent class among the KNN -> predict class 1
 - Changing the value of K (e.g. K=5) may affect the result

Performance Metrics of ML Algorithms

- Regression: minimum prediction error
- Classification:
 - Accuracy: Fraction of test instances correctly classified

		Predicted class	
True class		Normal (-)	Anomaly (+)
	Normal	а	b
	Anomaly	С	d

Total samples = a+b+c+d

True negative (**TN**) = a

True positive (**TP**) = d

False negative (**FN**) = c

False positive (**FP**) = b

Objective: minimum FP, FN

- Precision = TP/(TP+FP): What proportion of positive identifications was actually correct?
- Recall = TP/(TP+FN): What proportion of actual positives was identified correctly?
- F1-score = **2PR/(P+R)**

How to Detect Anomalies?

- Manual
 - -- Cumbersome, time-consuming, error-prone
- Statistical methods
 - -- Limited by data distribution assumptions
- Machine learning
 - -- High computation, benefit from big data, ability to learn complex functions

Anomaly detection framework

Jamming Attacks

How to Predict Time-Series Data (e.g. Traffic, Bandwidth Requirement)?

Problem Statement:

Input sequence
$$\mathbf{X}_{t_i}^v = (x_{t_{i-l+1}}^v, \dots, x_{t_{i-1}}^v, x_{t_i}^v)$$

Predicted sequence $\tilde{\mathbf{Y}}_{t_i}^v = (\tilde{x}_{t_{i+1}}^v, \tilde{x}_{t_{i+2}}^v, \dots, \tilde{x}_{t_{i+h+1}}^v)$

Feature vector $x_{t_i}^v \equiv (lat, lon, COG, SOG)_{t_i}^v$

l: input sequence length

h: output sequence length

$$\tilde{\mathbf{Y}}_{t_i}^v = \phi_{l,h}(\mathbf{X}_{t_i}^v)$$

- Statistical method: most popular Kalman Filter (KF)
- Machine learning: Long Short-Term Memory (LSTM, 1997), Sequence-to-Sequence (Seq2Seq, 2016), etc.

Input x_t

LSTM Network

LSTM Network and Seq2Seq

- LSTM Network:
 Input seq. len (I) = output seq. len (h)
- Seq2Seq:
 LSTM encoder (I) + LSTM decoder (h)
 Many to one One to many

Questions to be addressed

- Which ML algorithm best describes our problem?
- Which data/features should we consider to make predictions?
- Is it worth collecting as much data as possible?
- Is there any irrelevant parameter we can (or should) neglect?
- What is the performance of our learning algorithm?
- And what is its complexity?
- Do we want ML as a black-box?
- Hybrid learning (statistical+ML)?

• ...

Questions?

Thanks for your attention!

Long Short-Term Memory (LSTM)

· Mapping from input to output

 x_t : input vector at time step t

$$h_t = f_W(h_{t-1}, x_t), \text{ e.g., } tanh(W_{hh}h_{t-1} + W_{xh}x_t)$$

 h_t : new hidden state

 $f_W(\cdot)$: some function with parameter (Weight) W

 y_t : Output = $W_{hy}h_t$

• LSTM solves vanishing gradient problem in (Vanilla) RNN

