Location Problems

Basic Concepts of Location

Last IP modeling tricks

Dispel Misconception

Introduce NLP

First Heuristic

Where to Locate Facilities

- Rectilinear Location Problems
- **■** Euclidean Location Problems
- Location Allocation Problems

Basic Intuition

On the line, if the objective is to min

. . .

- ▶The maximum distance traveled
- ►The maximum distance left + right
- ▶The distance traveled
 - there and back to each customer
- ▶The item-miles traveled

0

1

4

Rectilinear Distance

- Travel on the streets and avenues
- Distance =
 - number of blocks East-West +
 - number of blocks North-South
- Manhattan Metric

Rectilinear Distance

15.057 Spring 03 Vande Vate

Locate a facility....

■To minimize the sum of rectilinear

distances

■ Intuition

■ Where?

■ Why?

Minimize the sum of Rectilinear distances to customers

Solver Model

Cust.	Χ	Υ	Xdist	Ydist	If Left	If Right	If Above	If Below
1	9	9			9.00	(9.00)	(9.00)	9.00
2	9	3			9.00	(9.00)	(3.00)	3.00
3	8	6			8.00	(8.00)	(6.00)	6.00
4	3	9			3.00	(3.00)	(9.00)	9.00
5	0	6			-	-	(6.00)	6.00
6	4	2			4.00	(4.00)	(2.00)	2.00
7	4	0			4.00	(4.00)	-	-
8	2	0			2.00	(2.00)	-	-
9	0	9			-	-	(9.00)	9.00
10	5	2			5.00	(5.00)	(2.00)	2.00
Facility	0	0						
-	Total	0	-	-				

Locate a facility....

■ To minimize the max of rectilinear

distances

■ Intuition

■ Where?

■ Why?

Models

- Set Customers;
- Param X{Customer};
- Param Y{Customer};
- var Xloc >= 0;
- var Yloc >= 0;
- var Xdist{Customer};
- var Ydist{Customer};

Constraints

■ DefineXdist1{c in Customer}:

■ DefineXdist2{c in Customer}:

■ DefineYdist1{c in Customer}:

■ DefineYdist2{c in Customer}:

Objective

- Total Distance:
 - sum{c in Customer}(Xdist[c]+Ydist[c]);
- Maximum Distance?

Min the Max!

- Var Xloc;
- var Yloc;
- var Xdist{Customer}>= 0;
- var Ydist{Customer}>= 0;
- var dmax;
- min objective: dmax;
- s.t. DefineMaxDist{c in Custs}:
 dmax >= Xdist[c] + Ydist[c];

Min the Max Cont'd

■ DefineXdist1{c in Customer}:

■ DefineXdist2{c in Customer}:

■ DefineYdist1{c in Customer}:

■ DefineYdist2{c in Customer}:

Mimimize the Maximum Rectilinear Distance

Solver Model

Challenge #3

- NIMBY....
- Maximize the Minimum Distance
- How did you do it?

NIMBY

Mimimize the Maximum Rectilinear Distance

Cust.	Χ	Υľ	Иin	Total	Xdist	Ydist	Left?	Above?	If Left	If Right	If Above	If Below
1	9	9	0	0					29	-9	11	9
2	9	3	0	0					29	-9	17	3
3	8	6	0	0					28	-8	14	6
4	3	9	0	0					23	-3	11	9
5	0	6	0	0					20	0	14	6
6	4	2	0	0					24	-4	18	2
7	4	0	0	0					24	-4	20	0
8	2	0	0	0					22	-2	20	0
9	0	9	0	0					20	0	11	9
10	5	2	0	0					25	-5	18	2
Facility												
Т	otal											

15.057 Spring 03 Vande Vate

Disjunctive Constraints

- One of Two Constraints holds
 - ► Ydist = TownY DumpY
 - ► Ydist = DumpY TownY
- Binary Variable Chooses 1
 - Ydist ≤ TownY DumpY + 20*Left
 - Ydist ≤ DumpY TownY + 20*(1-Left)
- Only 1 matters (20 is big)
- Objective drives the right choice
- These are hard for the solver

Outline

- Rectilinear Location Problems
- **■** Euclidean Location Problems
- Location Allocation Problems

Locating a single facility

- Distance is not linear
- Distance is a convex function
- Local Minimum is a global Minimum

What kind of function?

Where to Put the Facility

- Total Cost = Σ c_kd_k(x,y)
- $= \sum_{k} c_k \sqrt{(x_k x)^2 + (y_k y)^2}$
- ∂ Total Cost/ ∂ x = Σ c_k (x_k x)/d_k(x,y)
- ∂ Total Cost/ ∂ x = 0 when
- $\blacksquare x = [\Sigma c_k x_k / d_k(x,y)] / [\Sigma c_k / d_k(x,y)]$
- But $d_k(x,y)$ changes with location...

Iterative Strategy

- Start somewhere, e.g.,

 - $\mathbf{y} = [\Sigma \mathbf{c}_k \mathbf{y}_k]/[\Sigma \mathbf{c}_k]$
 - ightharpoonup as though $d_k = 1$.
- Step 1: Calculate values of d_k
- Step 2: Refine values of x and y

 - $y = [\Sigma c_k y_k / d_k] / [\Sigma c_k / d_k]$
- Repeat Steps 1 and 2. ...

Solver Model: Not Linear

Facility

4.5	4 .6	50.88679
4.283971	4.0907	50.35772
4.241999	3.73981	50.11444
4.239085	3.486694	49.9801
4.239961	3.298874	49.90163
4.238616	3.15693	49.85438
4.235342	3.048107	49.82525
4.23113	2.963646	49.80693
4.226679	2.897385	49.79522
4.222382	2.844914	49.78763
4.21843	2.80302	49.78265
4.214899	2.769336	49.77935
4.211803	2.742087	49.77714
4.209121	2.719928	49.77565
4.206817	2.701827	49.77464 5.057 Spring 03 Va

Center of Gravity

Euclidean Location

Euclidean Location

Moving On

- Example of Convex Minimization (Non-linear)
- Example of a Heuristic: Not guaranteed to give us the best answer, but works well.

Locating Several Facilities

- **■** Fixed Number of Facilities to Consider
- Single Sourcing
- Two Questions:
 - ▶ Location: Where
 - ► Allocation: Whom to serve
- Each is simple
- Together they are "harder"

Iterative Approach

- Put the facilities somewhere
- Step 1: Assign the Customers to the Facilities
- Step 2: Find the best location for each facility given the assignments (see previous method)
- Repeat Step 1 and Step 2

Assign Customers to Facilities

- Uncapacitated (facilities can be any size)
 - "Greedy": Assign each customer to closest facility
- Capacitated
 - ▶ Use Optimization: Single-sourcing