High-level languages made the process of developing a program simpler and more understandable, and less bound to the underlying hardware. Sometimes software development is known as software engineering, especially when it employs formal methods or follows an engineering design process. Debugging is a very important task in the software development process since having defects in a program can have significant consequences for its users. Code-breaking algorithms have also existed for centuries. Later a control panel (plug board) added to his 1906 Type I Tabulator allowed it to be programmed for different jobs, and by the late 1940s, unit record equipment such as the IBM 602 and IBM 604, were programmed by control panels in a similar way, as were the first electronic computers. Programs were mostly entered using punched cards or paper tape. Assembly languages were soon developed that let the programmer specify instruction in a text format (e.g., ADD X, TOTAL), with abbreviations for each operation code and meaningful names for specifying addresses. Following a consistent programming style often helps readability. It affects the aspects of quality above, including portability, usability and most importantly maintainability. A study found that a few simple readability transformations made code shorter and drastically reduced the time to understand it. Debugging is often done with IDEs. Standalone debuggers like GDB are also used, and these often provide less of a visual environment, usually using a command line. Many programmers use forms of Agile software development where the various stages of formal software development are more integrated together into short cycles that take a few weeks rather than years. New languages are generally designed around the syntax of a prior language with new functionality added, (for example C++ adds object-orientation to C, and Java adds memory management and bytecode to C++, but as a result, loses efficiency and the ability for low-level manipulation). Scripting and breakpointing is also part of this process. Compilers harnessed the power of computers to make programming easier by allowing programmers to specify calculations by entering a formula using infix notation. However, with the concept of the stored-program computer introduced in 1949, both programs and data were stored and manipulated in the same way in computer memory. Later a control panel (plug board) added to his 1906 Type I Tabulator allowed it to be programmed for different jobs, and by the late 1940s, unit record equipment such as the IBM 602 and IBM 604, were programmed by control panels in a similar way, as were the first electronic computers. Debugging is a very important task in the software development process since having defects in a program can have significant consequences for its users. One approach popular for requirements analysis is Use Case analysis. However, because an assembly language is little more than a different notation for a machine language, two machines with different instruction sets also have different assembly languages. Compilers harnessed the power of computers to make programming easier by allowing programmers to specify calculations by entering a formula using infix notation. Unreadable code often leads to bugs, inefficiencies, and duplicated code. Use of a static code analysis tool can help detect some possible problems. The first step in most formal software development processes is requirements analysis, followed by testing to determine value modeling, implementation, and failure elimination (debugging). The choice of language used is subject to many considerations, such as company policy, suitability to task, availability of third-party packages, or individual preference.