ECON-GA 1025 Macroeconomic Theory I Lecture 7

John Stachurski

Fall Semester 2018

Today's Lecture

- VARs and linear state space processes
- Random coefficient models
- Nonlinear stochastic models
- Numerical methods for tracking distributions

Distribution Dynamics: The General Density Case

Recall
$$x_{t+1} = Ax_t + b + C\xi_{t+1}$$

Assume now

- ullet $\{\xi_t\}$ is IID on \mathbb{R}^n with density arphi
- C is $n \times n$ and nonsingular

Under these assumptions, each ψ_t will be a density

To prove this we use

Fact. If ξ has density φ and C is nonsingular, then $y=d+C\xi$ has density

$$p(y) = \varphi\left(C^{-1}(y-d)\right) |\det C|^{-1}$$

The density of x_{t+1} conditional on $x_t = x$ is therefore

$$\pi(x,y) = \varphi\left(C^{-1}(y - Ax - b)\right) |\det C|^{-1}$$

The law of total probability tells us that, for random variables (x,y) with densities,

$$p(y) = \int p(y \mid x) p(x) \, \mathrm{d}x$$

Hence the densities ψ_t and ψ_{t+1} are connected via

$$\psi_{t+1}(y) = |\det C|^{-1} \int \varphi\left(C^{-1}(y - Ax - b)\right) \psi_t(x) dx$$

Suppose we introduce an operator Π from the set of densities $\mathcal D$ on $\mathbb R^n$ to itself via

$$(\psi\Pi)(y) = \int \pi(x, y)\psi(x) \, \mathrm{d}x$$

Then our law of motion for marginals

$$\psi_{t+1}(y) = |\det C|^{-1} \int \varphi \left(C^{-1}(y - Ax - b) \right) \psi_t(x) dx$$

becomes

$$\psi_{t+1} = \psi_t \Pi$$

a concise description of distribution dynamics

Comments:

- In $\psi_{t+1} = \psi_t \Pi$ we write the argument to the left following tradition (see Meyn and Tweedie, 2009)
- \bullet The set of densities ${\mathcal D}$ is endowed with the topology of weak convergence

Proposition. If r(A) < 1, then (\mathcal{D}, Π) is globally stable

Moreover, if h is any function such that $\int |h(x)| \psi^*(x) \, \mathrm{d}x$ is finite, then

$$\mathbb{P}\left\{\lim_{n\to\infty}\frac{1}{n}\sum_{t=1}^nh(x_t)=\int h(x)\psi^*(x)\,\mathrm{d}x\right\}=1$$

Linear State Space Models

The standard linear state space model is

$$x_{t+1} = Ax_t + b + C\xi_{t+1}$$
$$y_t = Gx_t + H\zeta_t$$

where

- A is $n \times n$, b is $n \times 1$ and C is $n \times j$
- G is $k \times n$ and H is $k \times \ell$
- $\{\xi_t\}$ are IID j imes 1 with $\mathbb{E} \xi_t = 0$ and $\mathbb{E} \xi_t \xi_t' = I$
- $\{\zeta_t\}$ are IID $\ell \times 1$ with $\mathbb{E}\zeta_t = 0$ and $\mathbb{E}\zeta_t\zeta_t' = I$

In this context

- $\{x_t\}$ is called the **state process**
- $\{y_t\}$ is called the observation process

Example. The standard linear model of log labor earnings discussed in is

$$y_t = x_t + h\zeta_t$$
 where $x_{t+1} = \rho x_t + b + c\zeta_{t+1}$

- ullet $\{\xi_t\}$ and $\{\zeta_t\}$ are IID and standard normal in ${\mathbb R}$
- h, ρ, b, c are parameters, with $|\rho| < 1$

Recalling that

- $\mu_t = g^t(\mu_0)$ where $g(\mu) := A\mu + b$
- $\Sigma_t = S^t(\Sigma_0)$ where $S(\Sigma) := A'\Sigma A + CC'$

we obtain

$$\mathbb{E}y_t = G\mu_t \quad \text{and} \quad \operatorname{var} y_t = G\Sigma_t G' + HH'$$

If r(A) < 1, then

$$\mathbb{E}y_t \to G\mu^*$$
, and $\operatorname{var}y_t \to G\Sigma^*G' + HH'$

where $\mu^*, \Sigma^* = \text{fixed points of } g, S$

Ergodicity results also hold when r(A) < 1

For example,

$$\frac{1}{n} \sum_{t=1}^{n} y_t = \frac{1}{n} \sum_{t=1}^{n} (Gx_t + H\zeta_t)$$
$$= G \frac{1}{n} \sum_{t=1}^{n} x_t + H \frac{1}{n} \sum_{t=1}^{n} \zeta_t$$
$$\to G\mu^*$$

with prob one as $n \to \infty$

Forecasts

We wish to forecast geometric sums

Example. If $\{y_t\}$ is a cash flow, what is the expected discounted value?

The formulas are

$$\mathbb{E}_t \sum_{j=0}^{\infty} \beta^j x_{t+j} = [I - \beta A]^{-1} x_t,$$

$$\mathbb{E}_t \sum_{j=0}^{\infty} \beta^j y_{t+j} = G[I - \beta A]^{-1} x_t$$

Ex. Show the formulas are valid whenever $r(A) < 1/\beta$

Nonlinear Stochastic Models

We have looked at

- 1. nonlinear deterministic models
- 2. nonlinear stochastic models on discrete state spaces and
- 3. linear stochastic models

Now we turn to general nonlinear stochastic models on continuous state spaces

First some motivation...

Figure: Lorenz curve, wealth distribution in Italy

Figure: Lorenz curve, wealth distribution in the US (SCF 2016)

Consider a first order Markov process on state space $X \subset \mathbb{R}^k$ defined by

$$X_{t+1} = F(X_t, \xi_{t+1})$$

where

- $\{\xi_t\}_{t\geqslant 1}\stackrel{\text{\tiny IID}}{\sim} \Phi \text{ in } E\subset \mathbb{R}^j$
- $F: X \times E \rightarrow X$ is Borel measurable

Notes:

- the shock distribution Φ is a CDF
- The initial condition is X_0 with CDF Ψ_0

Assume: X_0 is independent of process $\{\xi_t\}$

Implies independence of X_t and ξ_{t+1} for all t

This holds because X_t is a function only of X_0 and ξ_1, \ldots, ξ_t

$$X_1 = F(X_0, \xi_1)$$

 $X_2 = F(F(X_0, \xi_1), \xi_2)$
 $X_3 = F(F(F(X_0, \xi_1), \xi_2), \xi_3)$

and so on

Example. Consider a stochastic Solow–Swan model on $(0, \infty)$ where

$$k_{t+1} = sz_{t+1}f(k_t) + (1-\delta)k_t$$
 where $\{z_t\} \stackrel{\text{IID}}{\sim} \varphi$ on $(0,\infty)$

A first order Markov process with

- state variable k_t taking values in $X = (0, \infty)$,
- shock space $E = (0, \infty)$ and
- law of motion $F(k,z) := szf(k) + (1 \delta)k$,

Example. Consider stochastic Solow-Swan model growth model

- $k_{t+1} = sz_{t+1}f(k_t) + (1-\delta)k_t$
- $z_t = \exp(y_t)$ where $y_{t+1} = ay_t + b + c\xi_{t+1}$
- $\{\xi_t\}$ IID and N(0,1)

A first order Markov process with

- state vector $X_t := (k_t, y_t) \in \mathsf{X} := (0, \infty) \times \mathbb{R}$,
- law of motion

$$F((k,y),\xi) = \begin{pmatrix} s \exp(ay + b + c\xi)f(k) + (1-\delta)k \\ ay + b + c\xi \end{pmatrix}$$

Let Ψ_t represent the CDF of the state vector X_t generated by

$$X_{t+1} = F(X_t, \xi_{t+1}), \qquad \{\xi_t\}_{t\geqslant 1} \stackrel{\text{IID}}{\sim} \Phi$$

By independence of X_t and ξ_{t+1} ,

$$\mathbb{P}\{X_{t+1} \leq y\} = \mathbb{E}\mathbb{1}\{F(X_t, \xi_{t+1}) \leq y\}$$
$$= \int \int \mathbb{1}\{F(x, z) \leq y\}\Phi(dz)\Psi_t(dx)$$

(The joint CDF of (X_t, ξ_{t+1}) is just the product of the marginals)

The last equation can be written as

$$\Psi_{t+1}(y) = \int \int \mathbb{1}\{F(x,z) \leqslant y\} \Phi(\mathrm{d}z) \Psi_t(\mathrm{d}x)$$

Alternatively,

$$\Psi_{t+1}(y) = \int \Pi(x, y) \Psi_t(dx) \qquad (y \in X)$$

where

$$\Pi(x,y) := \int \mathbb{1}\{F(x,z) \leqslant y\}\Phi(\mathrm{d}z)$$

=: the stochastic kernel for our model

We can write

$$\Psi_{t+1}(y) = \int \Pi(x, y) \Psi_t(dx) \qquad (y \in X)$$

as

$$\Psi_{t+1} = \Psi_t \Pi$$

Where Π is the operator on CDF space defined by

$$(\Psi\Pi)(y) = \int \Pi(x, y) \Psi(dx) \qquad (y \in X)$$

If $\mathcal{P}(X)$ is the set of all distributions on X, then

- $(\mathcal{P}(X), \Pi)$ forms a dynamical system
- a stationary distribution is a fixed point of Π in $\mathcal{P}(\mathsf{X})$

Example. The marginal distributions $\{\Psi_t\}$ of capital under the Solow–Swan model obey

$$\Psi_{t+1}(k') = \int \Pi(k, k') \Psi_t(\mathrm{d}k) \qquad (k > 0)$$

with

$$\Pi(k,k') = \mathbb{P}\{s\xi_{t+1}f(k) + (1-\delta)k \leqslant k'\}$$
$$= \Phi\left(\frac{k' - (1-\delta)k}{sf(k)}\right)$$

A distribution Ψ^* is stationary if

$$\Psi^*(k') = \int \Phi\left(\frac{k' - (1 - \delta)k}{sf(k)}\right) \Psi^*(dk) \qquad (k > 0)$$

The Density Case

The sequence $\{\Psi_t\}$ has density representations $\{\psi_t\}$ in some cases

Key condition: $\Pi(x,\cdot)$ can be represented by a density $\pi(x,\cdot)$

Formally, exists for each $x \in X$ a $\pi(x, \cdot)$ such that

$$\Pi(x,y) = \int_{u \leqslant y} \pi(x,u) \, \mathrm{d}u$$

• π is called a **density stochastic kernel**

 \implies distributions $\{\Psi_t\}$ all have densities $\{\psi_t\}$ and they satisfy

$$\psi_{t+1}(y) = \int \pi(x,y)\psi_t(x) \, \mathrm{d}x$$

Example. Consider the IID Solow-Swan CDF kernel

$$\Pi(k,k') = \Phi\left(\frac{k' - (1-\delta)k}{sf(k)}\right)$$

If Φ is differentiable, $\Phi'=\varphi$, then, differentiating w.r.t. k',

$$\pi(k,k') = \varphi\left(\frac{k' - (1-\delta)k}{sf(k)}\right) \frac{1}{sf(k)}$$

The marginal densities $\{\psi_t\}$ satisfy

$$\psi_{t+1}(k') = \int \varphi\left(\frac{k' - (1 - \delta)k}{sf(k)}\right) \frac{1}{sf(k)} \psi_t(k) dk$$

Random Coefficient Models

Kesten processes or **random coefficient models** are recursive sequences of the form

$$x_{t+1} = A_{t+1}x_t + \eta_{t+1}$$

where

- $\{x_t\}_{t\geqslant 0}$ is an $n\times 1$ state vector process
- $\{A_t\}$ is IID, takes values in $\mathcal{M}(n \times n)$
- $\{\eta_t\}$ is IID, takes values in \mathbb{R}^n

Stochastic kernel, is, in CDF format,

$$\Pi(x,y) = \mathbb{P}\{A_{t+1}x + \eta_{t+1} \leqslant y\} \qquad (y \in \mathbb{R}^n)$$

Assume:

$$\mathbb{E}\|A_t\|<\infty$$
 and $\mathbb{E}\|\eta_t\|<\infty$

Let

$$L_n := \frac{1}{n} \mathbb{E} \ln \|A_1 \cdots A_n\| \qquad (n \in \mathbb{N})$$

Theorem. If $L_n < 0$ for some n, then

• the following random sum exists with prob one:

$$x^* := \eta_0 + A_1 \eta_1 + A_1 A_2 \eta_2 + A_1 A_2 A_3 \eta_3 + \cdots$$

• $\Psi^* : \stackrel{\mathscr{D}}{=} x^*$ is stationary and $(\mathcal{P}(\mathbb{R}^n), \Pi)$ is globally stable

Intuition for stationarity of $\Psi^* \stackrel{\mathscr{D}}{=} x^*$

We need to show that if $x_t \stackrel{\mathscr{D}}{=} x^*$, then $x_{t+1} \stackrel{\mathscr{D}}{=} x^*$

Equivalent: if (A,η) drawn independently, then

$$Ax^* + \eta \stackrel{\mathscr{D}}{=} \eta_0 + A_1 \eta_1 + A_1 A_2 \eta_2 + \cdots$$

True because

$$Ax^* + \eta = \eta + A(\eta_0 + A_1 \eta_1 + A_1 A_2 \eta_2 + \cdots)$$

$$= \eta + A\eta_0 + AA_1 \eta_1 + AA_1 A_2 \eta_2 + \cdots$$

$$\stackrel{\mathcal{D}}{=} \eta_0 + A_1 \eta_1 + A_1 A_2 \eta_2 + A_1 A_2 A_3 \eta_3 + \cdots$$

Example. Consider the vector autoregression model

$$x_{t+1} = Ax_t + \eta_{t+1}$$
 when $\eta_{t+1} := b + C\xi_{t+1}$

The exponent L_n translates to

$$\frac{1}{n} \mathbb{E} \ln \|A_1 \cdots A_n\| = \frac{1}{n} \ln \|A^n\| = \ln \left\{ \|A^n\|^{\frac{1}{n}} \right\}$$

By Gelfand's formula,

$$||A^n||^{\frac{1}{n}} \to r(A) \quad (n \to \infty)$$

Hence r(A) < 1 implies $L_n < 0$ for large n

Example. Consider the GARCH(1, 1) volatility process

$$\sigma_{t+1}^2 = \alpha_0 + \sigma_t^2 (\alpha_1 \xi_{t+1}^2 + \beta)$$

where

- $\{\xi_t\}$ is IID with $\mathbb{E}\xi_t^2=1$
- all parameters are positive

Ex. Show stability holds when $\mathbb{E} \ln(\alpha_1 \xi_{t+1}^2 + \beta) < 0$

A sufficient condition often used in the literature is $\alpha_1+\beta<1$

Ex. Show this condition is sufficient

Intermezzo: Heavy Tailed Distributions

Heavy tails matter for observed economic outcomes

- tail risk impacts asset prices
- Heavy tails in the wealth and income distributions shape our society / politics / welfare

Encountered frequently in social science

- city size distributions
- firm size distributions
- asset returns in high frequency data
- number of citations received by a given scientific paper

Power Laws

A random variable X is said to have a **power law** in the right tail if

$$\exists \alpha, c > 0 \text{ s.t. } \lim_{x \to \infty} x^{\alpha} \mathbb{P}\{X > x\} = c$$

Intuition:

- $\mathbb{P}\{X > x\}$ is proportional to $x^{-\alpha}$ for large x
- right tail decay is much slower than the Gaussian case

Example. The Pareto CDF takes the form

$$F(x) = \begin{cases} 1 - (\check{x}/x)^{\alpha} & \text{if } x \geqslant \check{x} \\ 0 & \text{if } x < \check{x} \end{cases}$$

With linear models, it's thin tails in \implies thin tails out

That is, if

- $\bullet \ x_{t+1} = Ax_t + \eta_{t+1}$
- $\{\eta_t\} \stackrel{ ext{\tiny IID}}{\sim} \varphi$ and φ has thin tails
- ψ^* is the stationary distribution of $\{x_t\}$

then ψ^* has thin tails

With random coefficient models, the story is different

Example. Consider the positive, scalar version

- $\bullet \ x_{t+1} = A_{t+1}x_t + \eta_{t+1}$
- $\{A_t\}$ and $\{\eta_t\}$ both positive and scalar

Theorem. (Kesten) If

- (some technical restrictions)
- There exists a positive constant α such that

$$\mathbb{E} A^{\alpha} = 1$$
, $\mathbb{E} \eta^{\alpha} < \infty$, and $\mathbb{E} [A^{\alpha} \ln^{+} A] < \infty$

then there exists a random variable x^* on \mathbb{R}_+ such that

$$x^* \stackrel{\mathscr{D}}{=} A_t x^* + \eta_{t+1}$$
 and $\lim_{x \to \infty} x^{\alpha} \mathbb{P}\{x^* > x\} = c$

for some $c, \alpha > 0$

Sketch of proof (due to Gabaix): The influence of $\{\eta_t\}$ in $x_{t+1} = A_{t+1}x_t + \eta_{t+1}$ is insignificant when x_t is large

So

- 1. set $\eta_t \equiv 0$
- 2. let A_t have density g for all t
- 3. consider the stationary density ψ^* of $x_{t+1} = A_{t+1}x_t$

Fact. If A has density g on $(0, \infty)$ and x > 0, then the density of Y = Ax is

$$f(y) = g\left(\frac{y}{x}\right)\frac{1}{x}$$

Hence density of $y := x_{t+1} = A_{t+1}x_t$ given $x_t = x$ is

$$\pi(x,y) = g\left(\frac{y}{x}\right)\frac{1}{x}$$

So

$$\psi^*(y) = \int \pi(x, y) \psi^*(x) \, \mathrm{d}x = \int g\left(\frac{y}{x}\right) \frac{1}{x} \psi^*(x) \, \mathrm{d}x$$

Ex. Show that $\psi^*(x) = kx^{-\alpha-1}$ is a solution for some constant k, provided that $\int g(t)t^\alpha\,\mathrm{d}t = 1$

... which is true by assumption (recall $\mathbb{E} A^{\alpha} = 1$)

A Nonlinear Scalar Model

Several models we study are scalar and have the form

$$X_{t+1} = \zeta_{t+1}g(X_t) + \eta_{t+1}$$

where

- 1. g is a Borel measurable function from \mathbb{R}_+ to itself,
- 2. $\{\zeta_t\}$ is IID on \mathbb{R}_+ with density ν
- 3. $\{\eta_t\}$ is IID on \mathbb{R}_+ with density ϕ
- 4. $\{\eta_t\}$ and $\{\zeta_t\}$ are independent

What is the density stochastic kernel?

What is the density of $Y := \zeta_{t+1}g(x) + \eta_{t+1}$?

Fact. If U has density φ_U and Y = f(U) where f is continuously differentiable and strictly increasing, then the density of Y is

$$\varphi_Y(y) = \varphi_U(f^{-1}(y)) \left| \frac{\mathrm{d}f^{-1}(y)}{\mathrm{d}y} \right|$$

Hence density of $Y = \zeta g(x) + \eta$ given $\zeta = z$ is $y \mapsto \varphi(y - zg(x))$

(Here we take $\varphi(u) = 0$ whenever $u \leqslant 0$)

By the law of total probability

$$\pi(x,y) = \int \varphi(y - zg(x))\nu(\mathrm{d}z)$$

Hence the marginal densities $\{\psi_t\}$ of

$$X_{t+1} = \zeta_{t+1} g(X_t) + \eta_{t+1}$$

obey

$$\psi_{t+1} = \psi_t \Pi$$

where

$$(\psi\Pi)(y) = \int \int \varphi(y - zg(x))\nu(dz)\psi(x) dx$$

- ullet A self-mapping on \mathcal{D} , the set of densities on \mathbb{R}_+
- When is (\mathcal{D}, Π) is globally stable?

Regarding the process $X_{t+1} = \zeta_{t+1}g(X_t) + \eta_{t+1}$, we have:

Proposition. If

- 1. the density φ of η has finite first moment with $\varphi\gg 0$ and
- 2. there exist positive constants L and λ such that $\lambda < 1$ and

$$\mathbb{E}\zeta g(x) \leqslant \lambda x + L \qquad (x \geqslant 0)$$

then (\mathcal{D},Π) is globally stable, with unique stationary density ψ^* If h is Borel measurable and $\int |h(x)|\psi^*(x)\,\mathrm{d}x < \infty$, then

$$\frac{1}{n}\sum_{t=1}^{n}h(X_t)\to\int h(x)\psi^*(x)\,\mathrm{d}x$$

with probability one as $n \to \infty$

The positive density restriction on φ is stronger than we need Its role to generate mixing

- like irreducibility for finite state systems
- stops us getting "stuck" at "local attractors"

Example. Suppose

- $\zeta \equiv 1$ and $\eta \equiv 0$
- g has multiple fixed points

Then stability fails

Figure: Dynamics with a degenerate shock and multiple fixed points

Even if

- ζ and η are permitted to have densities
- these densities have small supports

then local attractors will have permanent influence

Figure: Time series with small shocks

Condition (ii) prevents $\{X_t\}$ from diverging to $+\infty$ When it holds we have

$$\mathbb{E}[X_{t+1} \mid X_t] = \mathbb{E}[\zeta_{t+1}g(X_t) + \eta_{t+1} \mid X_t]$$
$$= \mathbb{E}[\zeta]g(X_t) + \mathbb{E}[\eta] \leqslant \lambda X_t + K$$

where $K := L + \mathbb{E}[\eta]$

Taking expectations of both sides gives

$$\mu_{t+1} \leqslant \lambda \mu_t + K$$

where μ_t is the mean of X_t for each t

Since $\lambda < 1$, the mean of X_t is bounded by $K/(1-\lambda)$

Wealth Dynamics

Let's examine a particular nonlinear stochastic model representing wealth dynamics

$$w_{t+1} = R_{t+1}s(w_t) + y_{t+1}$$

Simplifying assumptions

- All shocks independent across household
- Savings rule ad hoc (optimal rule to be treated soon)

How does the wealth distribution evolve?

Can our simple model replicate the data?

Figure: Lorenz curve, wealth distribution in the US (SCF 2016)

So let's look at our model of wealth dynamics

To repeat,

$$w_{t+1} = R_{t+1}s(w_t) + y_{t+1}$$

- y_{t+1} is IID with common density ϕ
- R_{t+1} is IID with common distribution ν

Baseline savings rule:

$$s(w) = \mathbb{1}\{w > \bar{w}\}s_0w$$

where \bar{w} and s_0 are positive parameters

Figure: Time series for one household

Figure: Holding $\{R_t\}$ at the constant $\mathbb{E}R_t$ means smaller spikes

Our wealth process is a version of the earlier model

$$X_{t+1} = \zeta_{t+1} g(X_t) + \eta_{t+1}$$

In particular, the stochastic density kernel is

$$\pi(w,w') := \int \varphi(w'-zs(w))\nu(z)\,\mathrm{d}z$$

Figure: Stochastic 45 degree diagram for wealth dynamics

The wealth distribution process $\{\psi_t\}$ obeys

$$\psi_{t+1} = \psi_t \Pi$$

where

$$(\psi\Pi)(w') = \int \pi(w, w')\psi(w) dw$$

= $\int \int \varphi(y - zs(w))\nu(dz)\psi(w) dw$

How does it evolve?

- analytical expressions for ψ_t not generally available
- but we can track it by simulation

Algorithm 1: Draws from the marginal distribution ψ_t

```
1 for i in 1 to m do

2 | draw w from the initial condition \psi_0;

3 | for j in 1 to t do

4 | draw R' and y' from their distributions;

5 | set w = R's(w) + y';

6 | end

7 | set w_t^i = w;

8 end

9 return (w_t^1, \ldots, w_t^m)
```

Given $\{w_t^m\}$, we can to compute the empirical distribution

$$F_t^m(x) := \frac{1}{m} \sum_{i=1}^m \mathbb{1}\{w_t^i \leqslant x\}$$

An **unbiased** estimator of the CDF Ψ_t of w_t

$$\mathbb{E}[F_t^m(x)] = \frac{1}{m} \sum_{i=1}^m \mathbb{E}[\mathbb{1}\{w_t^i \leqslant x\}] = \frac{1}{m} m \mathbb{P}\{w_t \leqslant x\} = \Psi_t(x)$$

Also consistent, since the SLLN yields, with prob one,

$$\lim_{m \to \infty} F_t^m(x) = \mathbb{E}[\mathbb{1}\{w_t^i \leqslant x\}] = \mathbb{P}\{w_t \leqslant x\} = \Psi_t(x)$$

Figure: The empirical distribution F_m^t for different values of t