Оглавление

1. Введение	3
2. Методы измерения массы нейтрального каона	
3. Детектор КМД-3	5
4. Экспериментальная статистика и отбор событий	6
5. Контроль энергии	8
6. Систематические эффекты и учёт поправок	10
7. Результаты	11
8. Список литературы	13

1. Введение

Целью данной работы является измерение массы нейтрального каона K_s^0 на основе статистики, полученной на детекторе КМД-3 на коллайдере ВЭПП-2000 в области энергий, соответствующей ϕ -мезонному резонансу ($\sqrt{s}=1010-1028$ МэВ). В качестве источника каонов использовался процесс

$$e^+e^- \to \varphi(1020) \to K_s^0 K_L^0; K_s^0 \to \pi^+\pi^-.$$
 (1)

Таблица 1 и рисунок 1 содержат информацию о предыдущих измерениях массы как нейтрального, так и заряженного каона. Ранее в ИЯФ уже проводили подобные измерения. При помощи детектора КМД были проведены наиболее точные на своё время измерения массы нейтрального каона с помощью калибровки энергии пучка методом резонансной деполяризации (таблица 1, [1]). На данный момент наиболее точный результат получен в DAФNE при помощи детектора КLOE. Стоит отметить, что при измерении в DAФNE использовалась калибровка массы ϕ -мезона, проведённая на ВЭПП-2М с детектором КМД. Помимо этого, на ВЭПП-2М с детектором КМД-2 была проделана работа по улучшению точности измерения, но анализ не был завершён [2].

Поскольку в эксперименте КМД-3 был набран интеграл светимости в районе ϕ -мезонного резонанса превышающий значение предыдущих исследований (больше $10~\text{пб}^{-1}$), ВЭПП-2000 имеет систему непрерывного мониторинга энергии методом обратного комптоновского рассеяния и в силу того, что угловое разрешения детектора было улучшено почти в три раза по сравнению с предыдущим детектором (КМД-2), есть надежда провести новое измерение массы нейтрального и заряженного каона с лучшей точностью (рисунок 1, 1).

На рисунке 1 видно, что предыдущие измерения дают достаточно точные, но не согласованные результаты. Поэтому представляет высокий интерес очередное измерение массы заряженного каона. Для этого планируется использовать изученные в этой работе методы для измерения массы заряженного каона.

В связи с недостаточным импульсным разрешением детектора КМД-3 масса определялась не прямым вычислением инвариантной массы, а при помощи двух малочувствительных к ошибке измерения импульса соотношений, которые позволяют по измеренным углам и отношению импульсов пионов определить массу каона [3].

На данный момент проведён предварительный анализ экспериментальных данных в одной точке по энергии на пике ϕ -мезоного резонанса. Было проведено моделирование и отработана методика измерения массы с учётом следующих систематических эффектов: излучение фотонов в начальном состоянии e^+e^- (радиационная поправка), эффекты, связанные с импульсным и пространственным разрешением детектора (поправки на нелинейность) и взаимные корреляции этих эффектов.

Таблица 1. Предыдущие измерения массы нейтрального каона [2, 4]

Value (MeV)	Events	Document ID	Experiment
497.607±0.007±0.015	261k	Tomoradze	KLOE
497.583±0.005±0.020	35k	Ambrosino	KLOE
497.625±0.001±0.031	655k	Lai	NA48
497.661±0.033	3713	Barkov	CMD
497.742±0.085	780	Barkov	CMD
497.634±0.024	49k	Зайцев	CMD-2
497.611±0.013	PDG Fit (Error includes scale factor of 1.2)		

Рис. 1. График измерения массы $m_{K^{\pm}}$. Измерения GALL 88 и CHENG 75 показаны отдельно для каждого измеренного перехода. [4]

2. Методы измерения массы нейтрального каона

• Метод инвариантной массы:

Рассмотрим распад частицы массы M с энергией E на частицы с энергией E_i и \vec{p}_i . Тогда квадрат массы изначальной частицы равен

$$M^{2} = (\sum E_{i})^{2} - (\sum \vec{p}_{i})^{2}. \tag{1}$$

Если частицы, образовавшиеся в результате распада, надёжно идентифицируются детектором, то (1) можно переписать в следующем виде:

$$M^{2} = (\sum \sqrt{m_{i}^{2} + \vec{p}_{i}^{2}})^{2} - (\sum \vec{p}_{i})^{2}.$$
 (2)

То есть массу изначальной частицы можно измерить, зная лишь какие частицы родились и каков их импульс. Существенным недостатком данного метода является большая чувствительность к абсолютным сдвигам величин импульсов \vec{p}_i и углам разлёта частиц.

К сожалению, из-за недостаточной точности измерения импульсов и углов у детектора КМД-3 систематическая ошибка массы, определённой таким образом, достигает нескольких $M \ni B/c^2$. Однако в экспериментах NA48 и KLOE систематическая погрешность измерения импульсов мала, что позволяет измерять массу при помощи (1) с ошибкой порядка нескольких сотых $M \ni B/c^2$ [5, 6].

• Метод предельного угла:

Если энергия каона E_K может быть измерена независимо, то масса каона M_K можно определить соотношением

$$M_{K_S^0} = E_{K_S^0} \sqrt{1 - \beta_m^2 \cos(\frac{\psi_c}{2})},$$
(3)

где $\beta_m^2=1$ – M_π^2/E_K^2 , ψ_c — предельный пространственный угол разлёта пионов в распаде $K_S^0 \to \pi^+\pi^-$ [1].

Так как в эксперименте величина ψ_c определяется с некоторым конечным разрешением σ_{ψ} , при определении средней массы $\langle M_{K_S^0} \rangle$ по выборке следует учитывать сдвиг $\Delta M_{K_S^0}$, связанный с нелинейностью зависимости (3) от параметра ψ_c . С точностью до второго порядка этот сдвиг равен [3]

$$\Delta M_{K_S^0} = \langle M_{K_S^0} \rangle - M_{K_S^0} \approx \frac{\sigma_{\psi_c}^2}{2} \frac{\partial^2}{\partial \psi_c^2} M_{K_S^0}. \tag{4}$$

Угловое разрешение детектора КМД-3 $\sigma_{\psi}=0.0164\pm0.0001$ рад. При энергии пучка $E_{beam}=510$ МэВ это соответствует $\Delta M_{K_S^0}\approx-11.258\pm0.002$ кэВ/с². У детектора КМД-2 $\sigma_{\psi}=0.040\pm0.002$ рад, что соответствует $\Delta M_{K_S^0}\approx-60\pm7$ кэВ/с² [2].

ullet Метод полной реконструкции распада $K^0_S o \pi^+\pi^-$

Данный метод был предложен А. Зайцевым и изложен в [2, 3]. Рассмотрим распад нейтрального каона K^0_S массы $M_{K^0_S}$ с энергии $E_{K^0_S}$ на два заряженных пиона $\pi^+\pi^-$ с массами M_π и импульсами $\overrightarrow{p_+}$ и $\overrightarrow{p_-}$. Тогда согласно [3] верно соотношение

$$\beta_{K_S^0}^2 = \frac{1}{n^2} \left(1 + \cos \psi \sqrt{1 - \eta^2} \right) \left[1 - \sqrt{1 - \beta_m^2 \eta^2} \right],\tag{5}$$

где $\beta_{K_S^0}^2 \equiv 1 - M_{K_S^0}^2 / E_{K_S^0}^2$, $\eta \equiv \frac{1 - Y^2}{1 + Y^2}$, $Y = |\overrightarrow{p_+}| / |\overrightarrow{p_-}|$, $\cos \psi \equiv \frac{\overrightarrow{p_+} \cdot \overrightarrow{p_-}}{|\overrightarrow{p_+}||\overrightarrow{p_-}|}$. Выразив массу $M_{K_S^0}$ из (5) получим явное выражение:

$$\mathsf{M}_{K_S^0} = E_{K_S^0} \sqrt{[1 - \frac{1}{\eta^2} (1 + \sqrt{1 - \eta^2} \cos \psi)(1 - \sqrt{1 - \eta^2 \beta_m^2})}. \tag{6}$$

В пределе $\eta \to 0$ (5) переходит в

$$\beta_{K_{S}^{0}}^{2} = \beta_{m}^{2} \cos^{2} \frac{\psi_{c}}{2},\tag{7}$$

где ψ_c — предельный пространственный угол разлёта пионов. В силу того, что (7) эквивалентно (3), вышеприведённые рассуждения о сдвиге средней массы $\Delta M_{K_S^0}$, связанный с нелинейностью зависимости $M_{K_S^0}$ от параметра ψ_c , справедливы и для (5) при $|\eta| \ll 1$ [3].

В отличии от прямого измерения инвариантной массы данный метод обладает малой чувствительностью к систематическим погрешностям измерения абсолютных значений импульсов пионов $|\overrightarrow{p_+}|, |\overrightarrow{p_-}|$, так как импульсы пионов входят в виде отношения $Y = |\overrightarrow{p_+}|/|\overrightarrow{p_-}|$. Аналогично методу предельного угла метод полной реконструкции распада обладает высокой чувствительностью к величине ψ_c .

3. Детектор КМД-3

Криогенный магнитный детектор (КМД-3, рис. 2) [7] установлен в одной из двух точек столкновения электрон-позитронного коллайдера ВЭПП-2000 [8]. Треккинговая система детектора состоит из цилиндрической дрейфовой камеры (DC) и двухслойной цилиндрической многопроволочной пропорциональной Z-камеры. Обе камеры установлены внутри тонкого $(0.085\,X_0)$ сверхпроводящего соленоида с магнитным полем 1.3 T. DC измеряет импульс и полярный (θ) и азимутальный (ϕ) углы заряженной частицы. Z-камера измеряет координату частиц вдоль оси пучка. Энергии и направления фотонов определяется при помощи размещённого вне соленоида баррельного электромагнитного калориметра, состоящего из двух систем: внутреннего калориметра на жидком ксеноне

(LXe) толщиной $5.4\,X_0$ и внешнего калориметра на кристаллах йодида цезия (CsI) толщиной $8.1\,X_0$ [9]. В торцах детектора стоят калориметры, основанные на кристаллах BGO, толщиной $13.4\,X_0$.

Контроль энергии пучка осуществлялся посредством лазерной системы методом обратного комптоновского рассеяния. Систематическая погрешность измерения энергии в системе центра масс $E_{c.m}$ равняется 0.06 МэВ [10, 11].

События записываются согласно сигналам с двух независимых триггерных систем: нейтральной и заряженной. Заряженный триггер требует наличие хотя бы одного заряженного трека (использует информацию из DC). Нейтральный триггер требует либо энерговыделение в калориметре больше $E_{beam}/2$, либо наличие более двух кластеров с энерговыделением больше порога 25 МэВ.

Рис. 2 Схема детектора КМД-3

4. Экспериментальная статистика и отбор событий

В данной работе каона использовались данные 2018 года (сезон PHI/OMEGA 2018), набранные вблизи пика ϕ -мезонного резонанса ($\sqrt{s}=1019~{\rm MpB}$). При измерении проводился непрерывный контроль энергии методом обратного комптоновского рассеяния [10, 11].

Процесс $e^+e^- \to K_s^0 K_L^0$ регистрировался по распаду $K_s^0 \to \pi^+\pi^-$. Сначала отбирались «хорошие» треки, то есть треки для которых выполнялись следующие условия:

- 1. Координата вдоль пучка |z| < 12 см,
- 2. Качество реконструкции трека в r- ϕ и z-плоскостях $\chi^2_{r-\phi} < 15$, $\chi^2_z < 12$,
- 3. Количество сработавших проволочек в дрейфовой камере $10 < n_{hit} < 30$,
- 4. Полярный угол трека $\left|\theta \frac{\pi}{2}\right| \le 0.9$ (рис. 3).

Если в событии находилось два «хороших» трека, то к этим трекам применялись отборы, которые определяли сигнальные события:

- 1. Неколлинеарность треков,
- 2. Импульс трека $120\frac{M_{9}B}{c} (рис. 4),$

- 3. Противоположные заряды треков,
- 4. Косинус угла между радиус-вектором, соединяющим место встречи пучков с вершиной распада K_S^0 , и направлением импульса K_S^0 в r- φ -плоскости (рис. 5) $\cos \alpha > 0.85$,
- 5. Средние потери двух треков на ионизацию в DC $(\frac{dE_1}{dx} + \frac{dE_2}{dx})/2 < 5000$ (рис. 6).

Для изучения отклика детектора и для определения эффективности детектирования было проведено Монте Карло моделирование при помощи программного пакета GEANT4. Эффективность регистрации при данных условиях отбора составила $\epsilon_{MC} \cong 24\%$.

Рис. 3. Полярный угол трека θ (моделирование, $E_{beam}=510~{
m M}{
m sB}$). Чёрными линиями обозначены ограничения $\left|\theta-\frac{\pi}{2}\right|\leq 0.9$.

Рис. 4. График зависимости импульса π^+ P_{π^+} от импульса $\pi^ P_{\pi^-}$ (моделирование, $E_{beam}=509~{
m M}{
m s}{
m B}$).

Рис. 5. Определение угла α – угла между радиус-вектором, соединяющим место встречи пучков с вершиной распада K_S^0 , и направлением импульса K_S^0 в \mathbf{r} - φ -плоскости

Рис. 6. Средние ионизационные потери двух «хороших» треков. Чёрным выделена сигнальная область.

5. Контроль энергии

Как ранее говорилось, в проведении эксперимента выполнялся контроль энергии методом обратного комптоновского рассеяния. На рисунке 7 изображена зависимость измеренной лазерной системой энергии от номера захода для энергетической точки $E_{beam} = 509.5 \,\mathrm{Mps}$. Не во время всех заходов было проведено измерение энергии. Заходам, во время которых не проводилось измерение энергии устанавливалась номинальное значение, которое определяется как средняя энергия заходов с учётом светимости.

Поскольку масса, определённая выражениями (3) и (6), сильно зависит от энергии пучка, было решено провести независимый контроль стабильности энергии по инвариантной массе заряженных каонов. Для этого использовался процесс $e^+e^- \to \varphi(1020) \to K^+K^-$.

Рис. 7. Зависимость измеренной лазерной системой энергии пучка от захода. Кандидаты в зяряженные каоны отбирались в событиях, где было зарегистрировано два «хороших» трека (см. раздел 4 «Экспериментальная статистика и отбор событий»). Сигнальными событиями считались таковые, что для двух «хороших» треков в этом событии выполнялись следующие условия:

- 1. Треки коллинеарны,
- 2. Противоположные заряды треков,
- 3. Расстояние треков до пучка $\rho < 0.3$ см,
- 4. Средние потери на ионизацию $\frac{dE}{dx} > 7000$ (рис. 8)
- 5. Импульсы треков подчиняются условию $|p_{K^+} p_{K^-}|/(p_{K^+} + p_{K^-}) < 0.3$ (рис. 9) Рис. 8. Ионизационные потери K+K-

Рис. 9. Отношение импульсов

Использую отобранные события, была построена зависимость инвариантной массы K^+K^- от захода. Из рисунка 10 видно, что для энергетической точки $E_{beam}=509.5~\mathrm{M}$ эв инвариантная масса в высокой степени описывает зависимость энергии от захода.

Рис. 10. Зависимость отношения измеренной лазерной системой энергии к инвариантной массе заряженных каонов от номера захода.

На данный момент ошибка измерения энергии пучка, которая для лазерной системы, установленной на ВЭПП-2000, составляет 0.03 МэВ, вносит основной вклад в погрешность измерения массы нейтрального каона. Для уменьшения ошибка измерения энергии требуется специальные усилия по улучшению лазерной системы, либо новые калибровки ВЭПП-2000 по резонансной деполяризации, либо калибровка по массе ϕ -мезона.

6. Систематические эффекты и учёт поправок

Применяемые в этой работе методы требуют знание энергии нейтральных каонов, рождённых в процессе $e^+e^- o \varphi(1020) o K_s^0 K_L^0$, но точное измерение их энергии в эксперименте затруднительно. Предполагается, что энергия каона равна половине энергии в с.ц.м. $E_{K_S^0} = E_{c.m}/2$. Дальше массу, посчитанную для каждого события с соответствующей энергией, усредняют по всей выборке.

Так как в начальном состоянии при аннигиляции e^+e^- может быть излучён дополнительный фотон, энергия пары каонов $K_s^0K_L^0$ определяется неоднозначно (то есть энергетический спектр не является δ -функцией) и не равняется энергии системы в начальном состоянии. Следовательно, при измерении массы необходимо учитывать связанную с этим поправку, так называемую радиационную поправку к начальному состоянию. Радиационную поправку к некой функции F(s), где $s=4E_{beam}^2$ от энергии (например, $M_{K_s^0}$ определяемая соотношением (3) или (6)) можно определить, зная энергетический спектр излучённого фотона, который приведён в работе [12]. Значение функции F(s) с поправкой вычисляется следующим образом

$$F = N(s) \iint_{0 \le x_{1,2} \le 1} F(s') K_{RC}(s, x_1, x_2) \Theta_{cut}(s, x_1, x_2) dx_1 dx_2, \tag{8}$$

где $s' = s(1-x_1)(1-x_2)$, $\Theta_{cut} - \theta$ -функция, учитывающая экспериментальные условия детектирования частиц в конечном состоянии,

$$N(s) = \iint_{0 \le x_{1,2} \le 1} K_{RC}(s, x_1, x_2) \Theta_{cut}(s, x_1, x_2) dx_1 dx_2, \tag{9}$$

$$K_{RC} = D(s, x_1) D(s, x_2) \left[1 + \frac{2\alpha}{\pi} \left(1 + a + b(s) \right) \right] \sigma_{e^+e^- \to K_S K_L}^{(0)}(s'), \tag{10}$$

 α — постоянная тонкой структуры, $a \equiv \frac{\pi^2}{6} - \frac{1}{4}$, D(s,x) и b(s) определены в [12], $\sigma_{e^+e^-\to K_SK_L}^{(0)}$ — сечение процесса $e^+e^-\to K_SK_L$ (параметризация приведена в работе [13]) [3, 12].

Как ранее говорилось, функция $M_{K_S^0}$ нелинейно зависит от угла ψ , то есть в общем случае $\langle M_{K_S^0} \rangle_{\psi} \neq M_{K_S^0} (\langle \psi \rangle)$. Учитывая конечную точность измерения ψ , сдвиг, обусловленный нелинейностью, $\delta M_{K_S^0} = \langle M_{K_S^0} \rangle_{\psi} - M_{K_S^0} (\langle \psi \rangle)$ в предположении гауссового отклика равен

$$\delta \mathbf{M}_{K_{S}^{0}} = -\mathbf{M}_{K_{S}^{0}}(\langle \psi \rangle) + \int 1/\sqrt{2\pi\sigma_{\psi}^{2}} \exp\left[-\frac{\psi - \langle \psi \rangle}{2\sigma_{\psi}^{2}}\right] \mathbf{M}_{K_{S}^{0}}(\psi) d\psi. \tag{11}$$

Так как функция $M_{K^0_S}$ определённая выражением (3) или (6) является достаточно гладкой функцией $\delta M_{K^0_S}$ можно разложить по центральным моментам $M^{(k)}$ нормального распределения

$$\delta \mathbf{M}_{K_S^0} = \sum_{k=0}^{\infty} \frac{1}{k!} \left[\frac{\partial^k}{\partial \psi^k} \mathbf{M}_{K_S^0}(\psi) \right]_{\psi = \langle \psi \rangle} M^{(k)}. \tag{12}$$

Поскольку и радиационная поправка к начальному состоянию, и поправка на нелинейность зависят от средней энергии пучка, для учёта взаимных корреляций между поправками необходим совместный расчёт. Тогда совместная поправка равна

$$\delta \mathbf{M}_{K_S^0} = -\mathbf{M}_{K_S^0}(s, \langle \psi \rangle) + N(s) \iiint K_{JC}(s, x_1, x_2, \psi) \mathbf{M}_{K_S^0}(s', \psi) \Theta_{cut}(s, x_1, x_2) d\psi dx_1 dx_2, \tag{13}$$
 где $K_{JC} = 1/\sqrt{2\pi\sigma_\psi^2} \exp\left[-\frac{\psi - \langle \psi \rangle}{2\sigma_\psi^2}\right] K_{RC}(s, x_1, x_2, \psi).$

7. Результаты

Для дынных в соответствующей пику ϕ -мезонному резонансу энергетической точке $E_{beam}=510~{\rm M}{\rm pB}$, смоделированных с учётом радиационных эффектов, была построена зависимость массы нейтрального каона, вычисленной при помощи выражения (6), от $\ln(Y)$ (рис. 11 a).

Рис. 11. Зависимость массы нейтрального каона, вычисленной с помощью выражения (6), для а) моделирования с $E_{beam} = 510 \text{ M} \cdot \text{B}$, б) эксперимента с $E_{beam} = 509.5 \text{ M} \cdot \text{B}$.

При использовании данных моделирования без излучения масса нейтрального каона согласно (6) составляет $M_{K_S^0}=497.602\pm0.003\frac{\text{M}_{9B}}{c^2}$, согласно (3) $M_{K_S^0}=497.623\pm0.007\frac{\text{M}_{9B}}{c^2}$. Поправка на нелинейность в первом случае будет равна $\Delta M_{K_S^0}\approx-11.258\pm0.002\frac{\text{к}_{9B}}{c^2}$, для второго случая $\Delta M_{K_S^0}\approx-11.253\pm0.002\frac{\text{к}_{9B}}{c^2}$.

Используя данные моделирования с излучением была получена масса, методом полной реконструкции была получена масса $M_{K_S^0}=497.724\pm0.003\frac{\text{МэВ}}{c^2}$. Если учесть совместную поправку, которая равна $\Delta M_{K_S^0}=-111\frac{\text{кэВ}}{c^2}$, то $M_{K_S^0}=497.613\pm0.003\frac{\text{МэВ}}{c^2}$ (во всём этом разделе указывается только статистическая ошибка). При моделировании событий и отклика детектора закладывалась масса нейтрального каона $M_{K_S^0}=497.614\frac{\text{МэВ}}{c^2}$.

8. Заключение

Пока работа по измерению массы нейтрального каона находится только на начальном этапе. Уже сейчас отработана методика измерения массы K_S^0 . Также при помощи моделирования были изучены такие основные поправки, как радиационную поправку и поправку на нелинейность (то есть на разрешение детектора). Было показано на примере данных моделирования, что масса измеряется верно.

Далее планируется применить изученные методики к экспериментальным данным. Помимо этого, в планах есть проведение калибровки энергии по массе ϕ -мезона, целью которой является уменьшение систематической ошибки измерения энергии пучка, а следовательно, и ошибки измерения массы K_S^0 .

9. Список литературы

- 1. Барков et al, Ядерная физика выпуск 46 (1987)
- 2. Зайцев диплом
- 3. Мемо Зайцева
- 4. PDG KK
- 5. https://inspirehep.net/literature/766331
- 6. https://inspirehep.net/literature/585079
- 7. B. I. Khazin et al., Nucl. Phys. B (Proc. Suppl.) 376, 181 (2008).
- 8. Yu. M. Shatunov et al., in Proceedings of the 7th European Particle Accelerator Conference, Vienna, 2000, p. 439.
- 9. V. M. Aulchenko et al., JINST 10, P10006 (2015).
- 10. E.V. Abakumova, et al., Phys. Rev. Lett. 110 (2013) 140402
- 11. E.V. Abakumova, et al., J. Instrum. 10 (2015) T09001.
- 12. A.B. Arbuzov, V.A. Astakhov et al., Radiative corrections for pion and kaon production at e^+e^- colliders of energies below 2 GeV, JHEP 9710 (1997) 006
- 13. Achasov, N. N. and Dubrovin, M. S. and Ivanchenko, V. N. and Kozhevnikov, A. A. and Pakhtusova, E. V., A FRESH LOOK AT φ ω MIXING, Int.J.Mod.Phys.A 7 (1992) 3187-3202