fvpwnpsre

June 23, 2025

Block 1 sets up everything needed for the analysis. It imports Python libraries like pandas, seaborn, scikit-learn, and plotly for data handling, clustering, and visualizations. After that, we load the dataset into a DataFrame so we can start exploring the health data of the patients.

```
[5]: #Block 1
# Load the dataset from file or upload
from google.colab import files
uploaded = files.upload()

# Assuming file is named like this:
df = pd.read_csv('simulated_health_wellness_data.csv')
df.head()
```

<IPython.core.display.HTML object>

Saving simulated_health_wellness_data.csv to simulated_health_wellness_data (2).csv

```
[5]:
        Exercise Time Min Healthy Meals Per Day Sleep Hours Per Night \
                34.967142
                                                                 7.618856
                                                5
     1
                28.617357
                                                8
                                                                 4.105473
     2
                36.476885
                                                4
                                                                 6.024123
     3
                45.230299
                                                1
                                                                 8.565319
     4
                27.658466
                                                3
                                                                 8.301648
```

	Stress_Level	BMI
0	2	33.068556
1	7	27.267672
2	1	23.779217
3	8	29.820436
4	3	30.947352

Block 2 we're trying to understand the shape and structure of the data. We check for missing values, get summary statistics, and use pair plots to see how variables like sleep, diet, and stress interact. This helps us spot patterns or outliers before we jump into clustering.

```
[7]: #Block 2
# Basic info and stats
print(df.info())
print(df.describe())

# Check for nulls
print("Missing Values:\n", df.isnull().sum())

# Pairplot to visualize distributions
sns.pairplot(df)
plt.suptitle("Feature Relationships", y=1.02)
plt.show()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	Exercise_Time_Min	200 non-null	float64
1	<pre>Healthy_Meals_Per_Day</pre>	200 non-null	int64
2	Sleep_Hours_Per_Night	200 non-null	float64
3	Stress_Level	200 non-null	int64
4	BMI	200 non-null	float64

dtypes: float64(3), int64(2)

memory usage: 7.9 KB

None

Exercise_Time_Min	<pre>Healthy_Meals_Per_Day</pre>	Sleep_Hours_Per_Night	\
200.000000	200.000000	200.000000	
29.592290	2.875000	6.933582	
9.310039	1.815449	1.422471	
3.802549	0.000000	1.778787	
22.948723	2.000000	5.967243	
29.958081	3.000000	6.972331	
35.008525	4.000000	7.886509	
57.201692	9.000000	10.708419	
	200.000000 29.592290 9.310039 3.802549 22.948723 29.958081 35.008525	29.592290 2.875000 9.310039 1.815449 3.802549 0.000000 22.948723 2.000000 29.958081 3.000000 35.008525 4.000000	200.000000 200.000000 200.000000 29.592290 2.875000 6.933582 9.310039 1.815449 1.422471 3.802549 0.000000 1.778787 22.948723 2.000000 5.967243 29.958081 3.000000 6.972331 35.008525 4.000000 7.886509

	Stress_Level	BMI			
count	200.000000	200.000000			
mean	4.995000	25.150008			
std	2.605556	5.070778			
min	1.000000	12.502971			
25%	3.000000	21.458196			
50%	5.000000	25.155662			
75%	7.000000	28.011155			
max	9.000000	37.898547			
Missing Values:					
Exercise_Time_Min 0					
Healthy_Meals_Per_Day 0					
Sleep_Hours_Per_Night 0					
Stress	0				
BMI	0				
dtype: int64					

Block 3 Before clustering, it's important to know how the variables relate to each other and to normalize the data. We use a heatmap to visualize correlations, then standardize all features using a scaler so that variables like BMI or exercise time don't dominate others due to different units.

```
[8]: #Block 3
# Correlation heatmap
plt.figure(figsize=(8, 6))
sns.heatmap(df.corr(), annot=True, cmap='coolwarm')
plt.title("Correlation Matrix")
plt.show()
# Standardize the data
```

```
scaler = StandardScaler()
scaled_data = scaler.fit_transform(df)
```


Block 4 PCA reduces the five wellness features into just two new dimensions. This makes it easier to visualize our data while keeping most of its meaning. The scatter plot at the end shows patients mapped into this new 2D space, helping us see natural separations between groups more clearly.

```
[11]: #Block 4
# Apply PCA
pca = PCA(n_components=2)
pca_data = pca.fit_transform(scaled_data)

# Create PCA DataFrame
pca_df = pd.DataFrame(pca_data, columns=['PC1', 'PC2'])
print("Explained Variance Ratio:", pca.explained_variance_ratio_)

# Plot PCA results
```

```
plt.figure(figsize=(8, 6))
sns.scatterplot(x='PC1', y='PC2', data=pca_df)
plt.title("PCA: Patient Wellness Projection")
plt.show()
```

Explained Variance Ratio: [0.23691549 0.22082517]

In this block 5, we apply K-Means clustering twice—once using the original data and once using the PCA-reduced data. Then we use the silhouette score to measure how well the clusters are formed. Lastly, we plot the clusters to visualize how well the patients separate into wellness groups.

```
[12]: #Block 5
    # K-Means on original data
kmeans = KMeans(n_clusters=3, random_state=42)
labels_original = kmeans.fit_predict(scaled_data)
sil_original = silhouette_score(scaled_data, labels_original)
print("Silhouette Score (Original Data):", sil_original)

# K-Means on PCA data
kmeans_pca = KMeans(n_clusters=3, random_state=42)
```

```
Silhouette Score (Original Data): 0.1516159911787657
Silhouette Score (PCA Data): 0.3625606718282867
```

Block 6, we use hierarchical clustering to group patients based on similarities, and visualize the relationships using a dendrogram. This lets us see how patients merge into clusters step by step.

```
[15]: #Block 6
      # Dendrogram
      plt.figure(figsize=(10, 7))
      linkage_matrix = linkage(scaled_data, method='ward')
      dendrogram(linkage_matrix)
      plt.title("Hierarchical Clustering Dendrogram")
      plt.xlabel("Patients")
      plt.ylabel("Distance")
      plt.show()
      # Agglomerative clustering
      agg = AgglomerativeClustering(n_clusters=3)
      agg_labels = agg.fit_predict(scaled_data)
      # Add to PCA DataFrame for plotting
      pca_df['Agg_Cluster'] = agg_labels
      fig = px.scatter(pca_df, x='PC1', y='PC2', color=pca_df['Agg_Cluster'].
       ⇔astype(str),
                       title="Agglomerative Clusters in PCA Space")
      fig.show()
```


This final block compares how good our clustering methods were by showing the silhouette scores side-by-side. It helps us decide if using PCA improved our clusters and whether K-Means or Hierarchical worked better for segmenting patient wellness profiles. This step wraps up our entire analysis.

```
Model Evaluation Summary:
```

```
Silhouette Score (K-Means on Original Data): 0.152
Silhouette Score (K-Means on PCA Data): 0.363
```

Interpretation:

Higher silhouette scores mean better cluster separation.

Compare visuals and scores to decide which model segments patient types most effectively.