Tema 5: Teoría Semántica

Lógica

Grado en Ingeniería Informática 2018/19

uc3m

Teoría Semántica en cálculo proposicional

Introducción

- Utiliza la simbolización vista hasta el momento
- La diferencia principal es que el sistema de fórmulas y estructuras deductivas válidas no se construye a partir de los axiomas y reglas sino mediante una simbolización del significado de las proposiciones

Introducción

- Para esto, se necesita
 - Un conjunto de significados atribuibles a las proposiciones {V,F} o {1,0}
 - Definición semántica de las conectivas (tablas de verdad)
 - Una definición semántica de deducción correcta

Tablas de verdad

• Definición de conectivas

p	~p
V	F
F	V

p	q	$p \wedge q$
V	V	V
v	F	F
F	V	F
F	F	F

p	q	$p \vee q$
V	V	V
V	F	V
F	V	V
F	F	F

p	q	$p \rightarrow q$
V	V	V
V	F	F
F	V	V
F	F	V

Tablas de verdad

• El número de interpretaciones (filas) es 2^n , donde n es el número de proposiciones que intervienen en la fórmula.

Interpretaciones para 3 proposiciones

		p	q	r	
7	\sim	1	1	1	Г
6	\rightsquigarrow	1	1	0	
5	\sim	1	0	1	
4	\rightsquigarrow	1	0	0	
3	\rightsquigarrow	0	1	1	
2	\rightsquigarrow	0	1	0	
1	\rightsquigarrow	0	0	1	
0	\leadsto	0	0	0	

- Es posible construir la tabla de significado de cualquier fórmula a partir de las correspondientes fórmulas parciales que la integran
- **Interpretación:** asignación de significados a sus componentes básicas (una línea de la tabla de verdad)
 - Modelo: interpretación que hace cierta una fórmula
 - Contramodelo (contraejemplo):
 interpretación que hace falsa la fórmula

Equivalencia

Considere las formulas que siguen:

$$p \wedge q \sim (\sim p \vee \sim q) \sim (p \rightarrow \sim q) \sim (q \rightarrow \sim p)$$

- Si se construyen las tablas de verdad, se puede verificar que se obtienen columnas finales idénticas.
- Cuando se obtienen los mismos resultados para cualquier interpretación (fila) estamos ante un caso de *equivalencia lógica*

- De acuerdo con el resultado de las interpretaciones, las fórmulas pueden clasificarse en:
 - □ Tautología: siempre es verdad (|=)
 - Contradicción: siempre es falsa
 - **Contingencia:** valores distintos (ninguna de las anteriores)
- Una fórmula que tiene al menos un modelo es satisfacible (al menos una línea en la que todas las fórmulas son válidas).
- Una fórmula sin contraejemplos es semánticamente válida.

2 ³ interpretaciones			Fórmula 1	Fórmula 2	Fórmula 3	
	p	g	-	$(p \wedge q) \wedge \neg (q \vee r)$	$(p \wedge q) \rightarrow (q \wedge r)$	$(p \wedge q) \rightarrow (q \vee r)$
	1	1	1	.0	1	1
	1	1	0	0	0	1
	1	0	1	0	1	1
	1	0	0	0	1	1
	0	1	1	0	Ť	1
	0	1	0	0	1	1
	0	0	1	0	I	1
	0	0	.0	0	1	1

- F1 es insatisfacible (contradicción) (tautología negada)
- F2 es satisfacible
- F3 es una tautología (semánticamente válida)

Evaluación de Fórmulas

• Ejemplos: tautologías

р	p → p	,							
1	1	р	q	$q\top$	p → (q →	р)			
0	1	1	1	1	1				
		1	0	1	1	р	q	~p → q	p → (~p → q)
		0	1	0	1	1	1	1	1
		0	0	1	1	1	0	1	1
						0	1	1	1
						0		0	
						0	0	0	1

• Ejemplos: contradicciones y contingencia

Deducción Correcta

- Dada una estructura deductiva
 p₁,p₂,p₃,...,pn⇒q se define como correcta
 cuando no existe una interpretación que haga
 p₁,p₂,p₃,...,pn verdadero y q falso.
- Para comprobar que una estructura deductiva es incorrecta, basta con encontrar una interpretación que no cumpla la regla anterior.

Deducción Correcta

Ejemplo: Modus Ponens: A, A \rightarrow B \Rightarrow B

	<u>A</u>	$A \rightarrow B$	В
	V	V	V
,	V	F	F
	F	V	V
	F	V	F

No hay ninguna interpretación donde las premisas sean V y la conclusión F.

Por tanto, la deducción es correcta

Deducción Correcta

• **Ejemplo:** $A \rightarrow B$, $B \rightarrow C \Rightarrow A \rightarrow C$

p	q	$p \rightarrow q$
V	V	V
V	F	F
F	V	V
F	F	V

	A	В	C	$A \rightarrow B$	$B \rightarrow C$	A→C
	1	1	1	1	1	→ 1
	1	1	0	1	0	0
	1	0	1	0	1	1
	1	0	0	0	1	0
_						
	0	1	1	1	1	→ 1
	0	1	0	1	0	1
	0	0	1	1	1	→ 1
	0	0	0	1	1	→ 1

Deducción incorrecta

• **Ejemplo:** $A \rightarrow B, B \rightarrow C \Rightarrow C \rightarrow A$

p	q	$p \rightarrow q$
V	V	V
V	F	F
F	V	V
F	F	V

A	В	C	$A \rightarrow B$	$B \rightarrow C$	C→A
1	1	1	1	1	1
1	1	0	1	0	1
1	0	1	0	1	1
1	0	0	0	1	1
0 0 0 0	1 1 0 0	1 0 1 0	1 1 1 1	0 1	0 1 0 1

Teorema de la Deducción

• Es demostrable mediante la definición semántica de deducción

Si

$$p_1,p_2,p_3,...,p_n \Rightarrow q$$

Es una deducción correcta

$$p_1, p_2, ..., p_{n-1} \Rightarrow p_n \rightarrow q$$

También es una deducción correcta

Tautologías asociadas una Deducción

 Si p₁,p₂,p₃,...,pn⇒q es una deducción semánticamente correcta, entonces

$$\models p_1 \rightarrow (p_2 \rightarrow (p_3 \rightarrow ... (p_n \rightarrow q)...)$$
 es una tautología

 Si p₁,p₂,p₃,...,pn⇒q es una deducción semánticamente correcta, entonces

$$\models \mathbf{p_1} \land \mathbf{p_2} \land \mathbf{p_3} \land \dots \land \mathbf{p_n} \rightarrow \mathbf{q}$$
 es una tautología

• Las fórmulas asociadas son equivalentes

Tautologías asociadas una Deducción

- Dos ideas importantes:
 - Mediante la TS podemos comprobar si una deducción es correcta, pero no demostrar dicha corrección.
 - Si una deducción es correcta, la fórmula asociada es una tautología. Lo recíproco también es cierto.

- Frente a los sistemas axiomáticos, TS permite definir un procedimiento *sistemático* para comprobar si una deducción es correcta o si una fórmula es semánticamente válida.
- Dos métodos principales
 - Directo
 - · Construcción de una tabla de verdad completa
 - Problemático si hay muchas interpretaciones
 - Contraejemplo
 - · Búsqueda de una interpretación específica

Comprobación de Deducciones

- Procedimiento contraejemplo
 - Construir una fórmula asociada
 - Generar interpretaciones y calcular significados para la fórmula
 - Buscando algún significado falso (contraejemplo)
- Alternativa: operar de forma análoga con una deducción completa buscando una interpretación tal que
 - · Todas las premisas sean verdaderas
 - Conclusión falsa

$$(\sim A \vee \sim B) \Rightarrow \sim (A \wedge B)$$

Fórmula asociada:

 $(\sim A \vee \sim B) \rightarrow \sim (A \wedge B)$

Método directo

A	В	~A	~B	A ^ B	~A ∨ ~B	$\sim (\mathbf{A} \wedge \mathbf{B})$	$(\sim A \vee \sim B) \rightarrow \sim (A \wedge B)$
V	V	F	F	V	F	F	V
V	F	F	V	F	V	V	V
F	V	V	F	F	V	V	V
F	F	V	V	F	V	V	V

La formula asociada es una tautología (no hay contraejemplos), entonces la deducción es correcta.

Comprobación de Deducciones

$$(\sim A \vee \sim B) \Rightarrow \sim (A \wedge B)$$

Fórmula asociada:

$$(\sim A \vee \sim B) \rightarrow \sim (A \wedge B)$$

Método del contraejemplo

• 1.
$$(\sim A \vee \sim B) \rightarrow \sim (A \wedge B)$$

• 2.
$$(\sim A \lor \sim B) \rightarrow \sim (A \land B)$$
Verdad

Verdad

•
$$3.(\sim A \vee \sim B) \rightarrow \sim (A \wedge B)$$

$$({\overset{\sim}{-}} A \lor {\overset{\sim}{-}} B) \to {\overset{\sim}{-}} (A \land B)$$

$$(\sim A \lor \sim B) \rightarrow \sim (A \land B)$$

A=F, B=V, entonces
$$\sim$$
(A \wedge B) es V
A=V, B=F, entonces \sim (A \wedge B) es V
^1 A=F B=F, entonces \sim (A \wedge B) es V

La implicación no puede ser falsa, no hay contraejemplos, por lo que deducción es correcta.

$$(\sim A \vee \sim B) \rightarrow \sim (A \wedge B)$$

Método del contraejemplo. Otra representación

Valores copiados _____

Condiciones

No hay un contraejemplo. La deducción es correcta

Comprobación de Deducciones

 $p \lor q, q \to r, p \to s \Longrightarrow s$ Métod

Método directo

J	_	•	4,	4		· · • .	P '	5 —
		p	q	r	s	p∨q	$\mathbf{q} ightarrow \mathbf{r}$	$\mathbf{p} \rightarrow \mathbf{s}$
		0	0	0	0	0	1	1
		0	0	0	1	0	1	1
		0	0	1	o	0	1	1
		0	0	1	1	0	1	1
		0	1	0	o	1	0	1
		0	1	0	1	1	0	1
		0	1	1	0	1	1	1
		0	1	1	1	1	1	1
		1	0	0	О	1	1	0
		1	0	0	1	1	1	1
		1	0	1	О	1	1	0
		1	0	1	1	1	1	1
		1	1	0	o	1	0	0
		1	1	О	1	1	0	1
		1	1	1	o	1	0	0
		1	1	1	1	1	0	1

Existe una interpretación en la que las premisas con V y la conclusión F Deducción no correcta

p	q	$p \rightarrow q$
V	V	V
V	F	F
F	V	V
F	F	V

Una interpretación es un contraejemplo si: premisas V y conclusión F

O Existe una interpretación que hace premisas V y conclusión F (contraejemplo): p=0, q=1, r=1, s=0 Deducción incorrecta

Comprobación de Deducciones

• Analizamos la corrección de la deducción estudiando si la fórmula asociada es una tautología.

$$[p \rightarrow (q \lor r)] , (r \leftrightarrow s) , t \Rightarrow (p \rightarrow q)$$

$$([p \rightarrow (q \lor r)] \land (r \leftrightarrow s) \land t) \rightarrow (p \rightarrow q)$$

$$1 \qquad 1 \qquad 1 \qquad 1 \qquad 0 \qquad 0$$

Intentamos identificar una interpretación para la cual el consecuente sea F, y el antecedente V. Para esto, p tiene que ser V q tiene que ser F. Para que el segmento proveniente de la primera premisa sea V, r tiene que ser V. Esto supone que s también deberá ser V. Si t fuese v, entonces todo el antecedente sería V, con lo que queda claro que existe un contraejemplo y NO ES UNA TAUTOLOGÍA

Refutación

- Otra vía potencial fundamentada en la misma idea que la del contraejemplo
- Negamos la conclusión, la unimos a las premisas y vemos si el conjunto resultante es satisfacible

$$p_1, p_2, p_3, ...p_n \Rightarrow \mathbf{q}$$

$$p_1^p_2^p_3^ ...^p_n^q$$

• La deducción es correcta si y sólo si la segunda expresión es insatisfacible.

Propiedades Formales de Cálculo Prop.

- El sistema formal de cálculo proposicional tiene como propiedades:
 - Consistencia: no es demostrable una fórmula y su negación
 - Completitud: toda fórmula válida es demostrable.
 - Decidibilidad: existe un procedimiento efectivo de comprobar si una fórmula es válida.

Teorema de Post: $\mid B$ es demostrable $\leftrightarrow \mid B$

Teoría Semántica en lógica de predicados

Introducción

- En la semántica proposicional se utilizan las tablas de verdad para fijar los conceptos de consecuencia lógica, validez y equivalencia.
- Para aprovechar estas mismas intuiciones basta considerar que ahora, para una fórmula cualquiera, existen las "tabla de verdad", pero con infinitas líneas o interpretaciones distintas.
- Todos los esquemas utilizados en lógica de proposiciones siguen siendo válidos: así, una fórmula será consecuencia de otra si es verdadera en todas las líneas en que ésta lo es.
- Un conjunto de fórmulas será satisfacible si existe al menos una "línea" (una interpretación) donde coincidan en ser verdaderas.

Introducción

- Se construye en base a la atribución de significado a las fórmulas
- Al ser más complejas que en proposiciones, la evaluación requiere un mayor número de elementos
- Todos los esquemas utilizados en lógica de proposiciones (validez, satisfacibilidad etc.) siguen siendo válidos

- La evaluación requiere lo siguiente:
 - Dominio de referencia, no vacío, para interpretar las letras de término (constantes, variables y funciones)
 - Definición del conjunto de significados a asignar a las fórmulas (V o F)
 - □ Definición semántica de conectivas \sim , \wedge , \vee y \rightarrow (iguales que en cálculo proposicional)

- Interpretación de letras de término y función
 - A las constantes se les asigna un elemento concreto del dominio
 - A las variables se les puede asignar cualquier elemento del dominio
 - A las funciones se les puede asignar una aplicación concreta f: Dⁿ → D de entre todas las posibles

$$D = \{a,b,c\}$$

$$\begin{array}{c|cc} x & f(x) \\ \hline a & a \\ b & a \\ c & b \end{array}$$

- Definición de argumentos del predicado
 - A cada predicado se le asigna una relación concreta n-aria definida en el dominio de referencia
 - Una definición de predicado se establece mediante una correspondencia concreta

$$D^n \rightarrow \{V, F\} \cap \{1, 0\}$$

X	y	P(x,y)
a	a	V
a	b	V
a	c	F
b	a	V
b	b	F
b	c	F
\mathbf{c}	a	V
\mathbf{c}	b	F
\mathbf{c}	c	V

• Ejemplos definiciones de predicados P(x) y Q(x)

$$D=\{a\}$$

X	P(x)	Q(x)
a	1	0

$D=\{a,b\}$

X	P(x)	Q(x)
a	1	1
b	1	0

- Definición semántica de cuantificadores
 - El significado de una fórmula cuantificada se obtiene de acuerdo con las siguientes consideraciones
 - A una fórmula con ∀x se le asignará el valor de verdad V si para todos los elementos del dominio, la fórmula es verdadera (V).
 - A una fórmula con ∃x se le asignará el valor de verdad V si para algún elemento del dominio la fórmula es verdadera (V). En caso contrario será falsa F.

• Ejemplos definición de predicados cuantificados

 $D=\{a\}$

X	P(x)	Q(x)	∀xP(x)	∀xQ(x)
a	0	1	0	1
X	P(x)	Q(x)	$\exists x P(x)$	∃xQ(x)
a	0	1	0	1

 $D=\{a,b\}$

X	P(x)	Q(x)	∀xP(x)	∃xQ(x)
a	1	0	1	0
b	1	0		
X	P(x)	Q(x)	∀xP(x)	∃xQ(x)
a	1	0	0	1
b	0	1		
X	P(x)	Q(x)	∃xP(x)	∀xQ(x)
a	1	0	1	0
b	1	0		

Evaluación de Fórmulas

□ Ejemplo: D³ = {a,b,c}

x y a a a b a c b a b b c c a c b c	P(x,y) V V F F V F V F F F F		
-------------------------------------	------------------------------	--	--

- □ **Ejemplo 1:** $\forall x(P(x) \rightarrow R(x)) \rightarrow \exists yQ(y)$
- Proponemos la siguiente interpretación: D = {a,b,c}

Evaluamos por partes. ¿Si ∃yQ(y) es falso Podemos llegar a $\forall x (P(x) \rightarrow Q(x))$ Predicados básicos verdadero? $P(x) \rightarrow R(x)$ P(x) R(x) Q(x)P(x) R(x) $\forall x (P(x) \rightarrow R(x))$ X a 1 a 1 0 b 1 b No se 1 1 cumple c

Por lo tanto el significado de la fórmula es Verdadero para la interpretación propuesta

Evaluación de Fórmulas

- □ **Ejemplo 2:** $P(x) \land (\forall x (R(x) \land P(y)) \rightarrow \exists y Q(x,y))$
- Proponemos la siguiente interpretación: D = {a,b}, y las variables libres, x=a e y=b.

X	y	Q(x,y)	P(x)	R(x)
a	a	1	1	0
a	b	0	1	0
b	a	0	0	1
b	b	1	0	1

Predicados básicos

Nota, variables libres en la fórmula: P(a) vale 1 en esta interpretación P(b) vale 0 en esta interpretación Q(a,y) vale 1 o 0 dependiendo del valor de y

• Ejemplo 2 (II):

 $(P(a) \land (\forall x (R(x) \land P(b))) \rightarrow \exists y Q(a,y)$

X	R(x)	$R(x) {\scriptstyle \wedge} P(b)$	$\forall x (R(x) {\wedge} P(b))$	$P(a) \wedge \forall x (R(x) {\wedge} P(b))$
a	0	0		
b	1	0	0	0
y	Q(a,y)	$\exists y Q(a,y)$		
<u>y</u> a	Q(a,y)	∃уQ(а,у)		

Por lo tanto el significado de la fórmula es Verdadero para la interpretación propuesta

Evaluación de Fórmulas

- □ Ejemplo 2 (III): $P(x) \land (\forall x(R(x) \land P(y)) \rightarrow \exists yQ(x,y))$
- Sea ahora esta otra interpretación en $D = \{a,b\}$, y las variables libres, x=a e y=b.

Predicados	básicos
------------	---------

X	у	Q(x,y)	P(x)	R(x)
a	a	0	1	1
a	b	0	1	1
b	a	0	1	1
b	ь	1	1	1

Nota, variables libres en la fórmula: P(a) vale 1 en esta interpretación P(b) vale 1 en esta interpretación

Q(a,y) vale 0 tanto para y=a como y=b

Ejemplo 2 (IV):

$$(P(a) \land (\forall x (R(x) \land P(b))) \rightarrow \exists y Q(a,y)$$

X	R(x)	$R(x) \land P(b)$	$\forall x (R(x) {\wedge} P(b))$	$P(a) \wedge \forall x (R(x) \wedge P(b))$
a	1	1		
b	1	1	1	1
y	Q(a,y)	$\exists y Q(a,y)$		
y a	Q(a,y)	∃yQ(a,y) 0		

Por lo tanto el significado de la fórmula es Falso para la interpretación propuesta

Definiciones Relacionadas con TS

- Una fórmula es *satisfacible* si tiene al menos una interpretación que la verifique
- Las interpretaciones que satisfacen una fórmula se denominan *modelos*
- Las interpretaciones que no satisfacen una fórmula se denominan *contraejemplos*

Fórmulas Semánticamente Válidas

- Una fórmula es válida en un dominio si cualquier interpretación que pueda plantearse en ese dominio satisface la fórmula
 - Una fórmula válida en un dominio D2 que incluye otro D1, es válida en D1
 - Una fórmula no válida en D1 no lo puede ser en D2
- Una fórmula es *semánticamente válida* cuando es válida en *cualquier* dominio
 - La comprobación de la validez semántica en predicados no es trivial
 - Consiste en buscar un dominio donde no sea válida

Evaluación de Fórmulas

• **Ejemplo 3:** dado el dominio {a} y la fórmula $\forall x \forall y (P(x) \rightarrow P(y))$ averiguar si es satisfacible y válida en el dominio.

X	у	P(x)	$P(x) \rightarrow P(y)$	$\forall y (P(x) \rightarrow P(y))$	$\forall x \ \forall y (P(x) \rightarrow P(y))$
a	a	1	1	1	1
		0	1	1	1

Es satisfacible y válida en D={a}

• Ejemplo: $\exists y(P(y) \lor \forall x(P(x) \to q))$

 $\forall y (P(y) \lor \forall x (P(x) \to q))$

¿Satisfacibles? ¿Válidas en el dominio? ¿Semánticamente válidas?

 $D = \{a,b,c\}$

 Responder a la segunda pregunta requeriría estudiar cualquier posible interpretación del predicado P en el dominio

X	P_1	P_2	P_3	P_4	P_5	P_6	P_7	P ₈ 0 0 0
a	1	1	1	О	О	О	1	0
b	1	1	O	1	О	1	O	O
c	1	O	1	1	1	O	O	0

Evaluación de Fórmulas

• Ejemplo (II): $\exists y(P(y) \lor \forall x(P(x) \to q))$

 $\forall y (P(y) \lor \forall x (P(x) \rightarrow q))$

¿Satisfacibles? ¿Válidas en el dominio? ¿Semánticamente válidas?

 $D = \{a,b,c\}$ Interpretación P1

P(x) $P(x) \rightarrow q$ $\forall x(P(x) \rightarrow q)$ $P(y) \lor \forall x (P(x) \rightarrow q)$ 1 1 1 1 1 b 1 1 1 c 1 0 1 0 0 1 0 1 b

Ambas son satisfacibles (para la interpretación P1 son V)

Ejemplo (III):
$$\exists y(P(y) \lor \forall x(P(x) \to q))$$

$$D = \{a,b,c\} \qquad \forall y(P(y) \lor \forall x(P(x) \to q))$$
Fuente: Cuena, 1985

Evaluación de Deducciones

- Definición semántica de deducción correcta
- Dada una estructura deductiva p₁,p₂,p₃,...,pn ⇒
 q se define como correcta cuando no existe una interpretación que haga p₁,p₂,p₃,...,pn
 verdadero y q falso

Deducción Semánticamente Correcta

- La definición de deducción semánticamente correcta es la misma que en proposiciones
 - □ Una estructura deductiva $\mathbf{p_1}, \mathbf{p_2}, \mathbf{p_3}, ..., \mathbf{p_n} \Rightarrow \mathbf{q}$ se define como correcta cuando no hay una interpretación que haga $\mathbf{p_1}, \mathbf{p_2}, \mathbf{p_3}, ..., \mathbf{p_n}$ verdadero y \mathbf{q} falso
 - O, lo que es lo mismo, $\mathbf{p_1}, \mathbf{p_2}, \mathbf{p_3}, ..., \mathbf{p_n} \Rightarrow \mathbf{q}$ es válida si y solo si la fórmula $\mathbf{p_1} \land \mathbf{p_2} \land \mathbf{p_3} \land ... \land \mathbf{p_n} \land \sim \mathbf{q}$ es insatisfacible
 - Esto permite la comprobación a través de la búsqueda de contraejemplos.

Contraejemplos

• **Ejemplo:**
$$(A \rightarrow P(y)) \rightarrow (A \rightarrow \forall x(P(x)))$$
 ¿Válida?

1.
$$(A \rightarrow P(y)) \rightarrow (A \rightarrow \forall x(P(x)))$$
Falso

2.
$$(A \rightarrow P(y)) \rightarrow (A \rightarrow \forall x(P(x)))$$

Verdadero Falso

3.
$$(A \rightarrow P(y)) \rightarrow (A \rightarrow \forall x(P(x)))$$

Tiene que haber algún predicado que no sea V en P(x) para todos los elementos del dominio D, se puede pensar en un predicado que sea V para algún valor de y ¿pero no para todos? Salvo en dominios con un elemento, SI (contraejemplo a continuación)

Contraejemplos

• Ejemplo (II):
$$(A \rightarrow P(y)) \rightarrow (A \rightarrow \forall x(P(x)))$$

$$D = \{a,b\}$$

Variable libre y: y=a

Se ha encontrado un contraejemplo en el dominio {a,b}, por tanto la fórmula no es válida

Propiedades Formales de Cálculo Pred

- El sistema de cálculo de predicados desarrollado tiene las siguientes propiedades:
 - Consistencia: no es posible demostrar una fórmula y su negación
 - Completitud: toda fórmula semánticamente válida es demostrable en el sistema axiomático
 - Indecidibilidad: no existe un procedimiento finito que permita decidir si una fórmula o deducción es demostrable