Контрольная работа 2

Задача 1. Пусть u(x) = 0 при $x \le 0$ и $u(x) = ax + x^2$. Найдите $J^{2,+}u(0)$ для всех a.

Задача 2. Докажите, что u является вязкостным решением уравнения |Du(x)| = f(x) тогда и только тогда, когда $v = -e^{-u}$ является вязкостным решением уравнения

$$|Dv(x)| + v(x)f(x) = 0.$$

Задача 3. Покажите, что для каждого $t \in [0,1]$ функция $u_t(x) = 1-x^2$ при $-1 \le x < -t$, $u_t(x) = x^2 - 1 + 2(1-t^2)$ при |x| < t и $u_t(x) = 1-x^2$ при $t < x \le 1$ является вязкостным решением уравнения |u'(x)| - 2|x| = 0 на (-1,1) с граничными условиями u(-1) = u(1) = 0.

Задача 4. Пусть A(x) – матрица $n \times n$ и $|A(x) - A(y)| \le L|x-y|$. Пусть f — липшицева функция. Докажите, что на ограниченной области $\Omega \subset \mathbb{R}^n$ задача Дирихле для уравнения

$$u + \left| A(x)Du(x) \right|^2 - f(x) = 0$$

имеет не более одного вязкостного решения $u \in C(\overline{\Omega})$.

Задача 5. Пусть Ω — ограниченная область, $f \in C(\overline{\Omega}), f > 0$. Покажите, что метод Перрона применим к задаче Дирихле |Du| = f на Ω и u = 0 на $\partial\Omega$. Сравните результат с примером из задачи 3.

Задача 6. Выполняется ли структурное условие (втрое условие в теореме о принципе сравнения) для операторов

$$\Delta_{\infty} u = \frac{1}{|Du|^2} \sum_{i,j=1}^{n} u_{x_i x_j} u_{x_i} u_{x_j}$$

И

$$\Delta_p u = -|Du|^{p-2} \left(\Delta u + (p-2) \langle D^2 u \frac{Du}{|Du|}, \frac{Du}{|Du|} \rangle \right), \quad p > 2.$$

Задача 7. Предположим, что

$$|H(x,p) - H(y,p)| \le C_1|x - y|(1 + |p|), \quad |H(x,p) - H(x,q)| \le C_2|p - q|.$$

Докажите, что для ограниченных вязкостных субрешения u и суперрешения v уравнения

$$u + H(x, Du) = 0$$

на \mathbb{R}^n верно неравенство $u \leq v$.

Надо решить любые три задачи и прислать решения до 11 декабря!