IP Version 4

by

Dr. Günter Kolousek

ISO/OSI Stack - Wiederholung

Anwendungsschicht (application layer)				
Darstellungsschicht (presentation layer)				
Sitzungsschicht (session layer)				
Transportschicht (transport layer)				
Vermittlungsschicht (network layer)				
Sicherungsschicht (datalink layer)				
Bitübertragungsschicht (physical layer)				
-				

TCP/IP Stack

kein striktes Schichtenmodell!

Anwendungsschicht

Transportschicht

Internetschicht

Verbindungsschicht

Internet Protocol Version 4

- ► Teil des TCP/IP Stacks
- verbindungslos, Schicht 3 des ISO/OSI
- ► Hauptfunktionen
 - Adressierung
 - Weiterleitung
 - Abstraktion der unterliegenden physikalischen Schichten
- nicht zuverlässig
 - arbeitet nach dem best-effort Prinzip
 - Pakete können
 - verloren gehen
 - nicht in der richtigen Reihenfolge ankommen
 - mehrfach ankommen

 \rightarrow IP geht davon aus, dass sich höhere Schichten um diese Punkte kümmern!

IP Adressen

- ► 32 Bits
 - 4 Bytes
 - meist Dezimaldarstellung durch Punkt getrennt
- Arten
 - ► Unicast, Multicast, Broadcast
- Adressierungsvarianten
 - Standardadressen, Subnetzadressen, CIDR
- Adresse besteht aus
 - Netzanteil, Hostanteil

Standardadressen

- Klasse A
 - hohe Anzahl an Hosts
- Klasse B
 - mittlere Anzahl an Hosts
- Klasse C
 - kleine Anzahl an Hosts
- Klasse D
 - Multicast-Anwendungen
- Klasse E
 - zukünftige Anwendungen

Klasse A

- Netzanteil erstes Byte
- erstes Bit immer 0
- ► 0.0.0.0 127.255.255.255
 - 0.0.0.0 und 127.0.0.0 reserviert
 - ► 126 Klasse A Netze
 - ► 16777214 (2²⁴ 2) Hosts je Netz
- effektiver Bereich: 1.0.0.1 126.255.255.254

Klasse B

- ► Netzanteil ersten beiden Bytes
- ersten beiden Bits immer 10
- **128.0.0.0 191.255.255.255**
 - ► 16384 (2¹⁴) Klasse B Netze
 - ► 65534 (2¹⁶ 2) Hosts je Netz
- effektiver Bereich: 128.0.0.1 191.255.255.254

Klasse C

- ► Netzanteil ersten drei Bytes
- ersten drei Bits immer 110
- ► 192.0.0.0 223.255.255.255
 - ► 2097152 (2²¹) Klasse C Netze
 - ► 254 (2⁸ 2) Hosts je Netz
- effektiver Bereich: 128.0.0.1 191.255.255.254

Klassen D & E

- Klasse D
 - ersten vier Bits immer 1110
 - restlichen 28 Bits geben die Multicast-Gruppen-Id an
 - **224.0.0.0 239.255.255.255**
 - etliche reserviert
- Klasse E
 - ersten fünf Bits immer 11110
 - "für zukünftige Anwendungen reserviert"

Gründe für diese Einteilung

- ► Einträge in Routern minimieren
 - durch Klassenbildung
- Schnelle Analyse der Adresse
 - Router müssen sich (maximal) nur die ersten Bits ansehen
- Zugriff auf Host- und Netzwerkanteil einfach
 - auf Grund der Bytegrenzen
- ► Einteilung so, dass
 - ▶ große Organisationen → Klasse A
 - ▶ sehr kleine Organisationen → Klasse C
 - Mitte der 80er Jahre fast nur Klasse B Netze verteilt!
 - ► → Adressknappheit!
 - daher neue organisatorische und technische Regeln

Spezielle Adressen

- ► Hostanteil lauter 0er → dieser Host
- Netzanteil lauter 0er → dieses Netz
- ► Hostanteil lauter 1er → alle Hosts
- Netzanteil lauter 1er → alle Netze

Spezielle Adressen – 2

Netzanteil	Hostanteil	Bedeutung	
Netz Id	Host Id	Normale Adresse	
Netz Id	alle 0	Dieser Host (z.B. Host kennt seine IP	
		noch nicht), aber auch Netzadresse	
alle 0	Host Id	Host kennt seine Netz Id nicht oder	
		nicht relevant	
alle 0	alle 0	eigener Host (z.B. bei DHCP oder	
		bei multi-homed Host um beliebige	
		Adresse)	
Netz Id	alle 1	alle Hosts im angegebenen Netz	
		(Broadcast)	
alle 1	alle 1	"alle Hosts in allen Netzen", aber:	
		Broadcast im eigenen Netz	
alle 1	Host Id	sinnlos und wird nicht verwendet!	

Reservierte Adressen

- ▶ 127.0.0.0 ... lokaler IP Verkehr (loopback Netz)
 - meist nur eine Adresse 127.0.0.1 ist dem Loopback Interface zugeordnet
 - Loopback Interface: Jedes gesendete Paket kommt zurück
- private Adressen

Klasse	von	bis	Bemerkung
Α	10.0.0.0	10.255.255.255	1 Klasse A
В	172.16.0.0	172.31.255.255	16 Klasse B
С	192.168.0.0	192.168.255.255	256 Klasse C

Reservierte Adressen – 2

- ► 169.254.0.0/16 (link local) zur automatischen Zuweisung einer privaten Adresse (wenn DHCP konfiguriert, aber keine Adresse erhalten)
 - 1. zufällig aus 169.254.1.0 169.254.254.255 (andere reserviert!)
 - Versenden von 3 ARP-probes (Zieladresse: gewählte IP, Absenderadresse 0.0.0.0)
 - 3. kein Antwortpaket erhalten \rightarrow OK, anderenfalls weiter!
- weitere reservierte Adressbereiche sind vorhanden
 - keinerlei Notwendigkeit diese zu kennen, da diese nicht vergeben werden

Bildung von Teilnetzen

- organisatorische Gründe
 - z.B. abteilungsweise Gliederung der Teilnetze.
- geographische Gründe
 - große Distanz zw. Hosts, dann naheliegend oder gefordert
- neuer Typ von physikalischem Netz installiert
- ► Hinzufügen weiterer Hosts → Teilung des Netzes notwendig

Nachteile Standardadressen

- Routertabellen wachsen explosionsartig
- Adresse in einem Netz wird neu benötigt, dann neuer Adressbereich muss angefordert werden, obwohl u.U. noch Adressen in den schon vergebenen Netzen zur Verfügung wären
- Änderung der internen Netzstruktur → Auswirkung auf Adressen
- → Subnetting wurde eingeführt

Subnetting

- Prinzip
 - Subnetting lokal vornehmen
 - von außen unsichtbar (wie ein Netz)
- Durchführung
 - aus (Netzanteil & Hostanteil) wird (Netzanteil & Subnetzanteil & Hostanteil)
 - d.h. ursprünglicher Hostanteil wird geteilt

Vorteile von Subnetting

- Routertabellen vergrößern sich nicht
- Es müssen seltener neue Adressen angefordert werden
- ► Flexibilität, da bei Änderung der Netzstruktur → keine Änderung der Adressen
- Netze können besser auf die physikalischen Gegebenheiten abgestimmt
- Interne Netzstruktur von außen nicht sichtbar
 - auch aus sicherheitstechnischen Überlegungen positiv!

Subnetzmaske

- ▶ 32 Bit
- ▶ 1er Bit → Netzanteil, 0er → Hostanteil
- ► für klassenbasierte Adressen
 - ► Klasse A ... 255.0.0.0
 - ► Klasse B ... 255.255.0.0
 - Klasse C ... 255.255.255.0

Static subnetting

- ► Alle Teilnetze gleiche Größe
- Klasse B Netz 172.16.0.0 mittels 5 Bit Subnetzmaske in 32 Subnetze
 - Subnetzbildung

172 1	Subnet-Id (5 Bits)	Host-Id (11 Bits)
-------	-----------------------	----------------------

- Subnetzmaske: 1111111111111111111111000.00000000 = 255.255.248.0
- Subnetze
 - ightharpoonup 172.16.0.0/255.255.248.0 \equiv 172.16.0.0/21
 - **172.16.8.0/21**
 - ▶ ..

Static subnetting - Problematik

Beispiel

- Organisation bekommt 193.170.149.0 (Klasse C) zugeteilt
- Bedarf an folgenden Netzen
 - ▶ 4 Netze zu je 10 Hosts
 - ▶ 1 Netz zu 50 Hosts
 - 1 Netz zu 100 Hosts

d.h. 190 Hosts < 254 IP Adressen (Klasse C)

- aber es werden 6 Netze benötigt, d.h. Subnet-ID muss die Länge 3 haben
- ightharpoonup es stehen 5 Bits für den Hostanteil zur Verfügung
- → d.h. max. 30 Hosts je Subnetz
- ightharpoonup ightharpoonup d.h. nicht möglich
- → VLSM wird benötigt!

VLSM

- Variable Length Subnet Masking
- Unterteilung der Subnetze
- jedes Subnetz eigene Subnetzmaske
- Lösung zu vorhergehender Aufgabenstellung

Weiterleiten (forward)

- 1. Wenn Zielsystem \rightarrow stopp (d.h. Router ist Ziel)
- 2. Für jeden Eintrag (Subnetznummer, Subnetzmaske, nächster Hop) der Weiterleitungstabelle:
 - 2.1 D1 = Zieladresse & Subnetzmaske
 - 2.2 Wenn D1 == Subnetznummer dann:

Wenn nächster Hop ein Interface:

- dann Paket an Interface ausliefern
- anderenfalls Paket an Interface ausliefern, das zu diesem Router gehört
- 3. Wenn kein Router gefunden dann: an Default-Router! prinzipieller Ablauf!!

CIDR

- Classless Inter-Domain Routing
- Problematik
 - ▶ Annahme Organisation benötigt 256 Adressen → Klasse B zugewiesen
 - \rightarrow Effizienz: $256/65534 \cdot 100\% = 0.39\%$
 - Erschöpfung der Adressen wird nicht vorgebeugt
- Besser: Zuweisung zweier Klasse C Netze
 - aber: 2 Routereinträge & 2 Klassen
- CIDR Ansatz
 - Auflösung feste IP Adresse zu Netzklasse
 - keine Klassen mehr!
 - Zuweisung aufeinanderfolgender Klasse C Netze
 - Aggregation zu einem Routereintrag
 - ▶ → supernetting

CIDR - 2

- Annahme: Bedarf an 16 Klasse C Netzen
- Zuweisung von 192.4.16.0/24 bis 192.4.31.0/24
 - oberen 20 Bits gleich: 11000000 00000100 0001
 - ► → Netz 192.4.16.0/20!
- nur ein Routereintrag!
- lässt sich auch über mehrere Organisationen kaskadieren
- ▶ BGP, RIP v2, OSPF sind alle CIDR-tauglich
- keine IPv4 Bereiche zum Vergeben mehr vorhanden!

IP Datagram

IP Datagram - 2

- Version: 4 oder 6
- HLen: in 32-Bitworten (inkl. Optionen)
- ► TOS: für QoS
- ► Len: Gesamtläng in Bytes
- ► Identification: → Fragmentierung
- ► Flags → Fragmentierung
 - ► DF ... do not fragment
 - ► MF ... more fragments
- ▶ Offset: → Fragmentierung
- TTL: Time To Live
 - ▶ übliche Anfangswerte: 64 oder 128

IP Datagram - 3

- Protocol: gibt (Transport)protokoll an
 - ▶ 1...ICMP
 - ▶ 6... TCP
 - ▶ 17...UDP
- Checksum: über den gesamten Header
- Source: IP Adresse des Senders
- Destination: IP Adresse des Empfängers
- Options
 - variable Information
 - z.B. für Routing, Security, Zeitstempel
 - ggf. mit 0en bis zur nächsten 32-Bit Wortgrenze

Fragmentierung

- Anpassung der Paketgröße an unterliegende Schicht
 - MTU: Maximum Transmission Unit
 - max. Größe in Bytes der PDU einer
 - minimale MTU für IPv4 576 Bytes
- Beispiel:
 - ► FDDI Paket: 4352 Byte an Daten
 - ► Ethernet-Frame: 1500 Byte an Daten
 - ► → Fragmentierung beim Übergang
- Prinzip
 - Segmentierung und Reassemblierung
 - Reassemblierung nur beim Empfänger
 - lacktriangle 1 Fragment verloren ightarrow alle Fragmente verworfen
 - Offset eines Fragmentes in 8 Bytes
 - lacktriangle DF ightarrow ICMP Fragmentation needed but DF was set

Fragmentierung – Beispiel

- 1400 Byte
- nicht fragmentiert
 - Identification = x; MF = 0; Offset = 0; Data (1400)
- ► fragmentierte Pakete mit MTU = 532
 - 1. Identification = x; MF = 1; Offset = 0; Data (512)
 - 2. Identification = x; MF = 1; Offset = 64; Data (512)
 - 3. Identification = x; MF = 0; Offset = 128; Data (376)

ICMP

- Internet Message Control Protocol
- ► Hilfprotokoll für IP
 - Status, Steuer, Fehlermeldungen
- Wichtigste Beispiele
 - Echo Request & Echo Reply. Query-Nachricht
 - Ziel nicht erreichbar. Fehlernachricht
 - Netzwerk nicht erreichbar
 - Host nicht erreichbar
 - Port nicht erreichbar
 - **...**
 - Quelle unterdrücken (source quench). Fehlernachricht

ARP

- Address Resolution Protocol
- ▶ jeder Host merkt sich Zuordnungen IP zu MAC in Cache
- ► Broadcast...