Ref. No.: Ex/PRN/PE/T/123/2018

B.E. PRINTING ENGINEERING FIRST YEAR SECOND SEMESTER - 2018

Subject: ELECTRICAL TECHNOLOGY

Time: 3 hrs

Full Marks: 100

Instructions: Answer question no. 1 and any four from the rest.

1. Short answer type questions-

 $2 \times 10 = 20$

- (a) Name the material that is used in the transformer core. State the reason for using this particular material.
- (b) State the relation between the line and phase current and line and phase voltage for three phase delta and star connection.
- (c) What will happen if the rotor speed of an induction motor becomes equal to the synchronous speed?
- (d) How can we reverse the rotation of a dc machine?
- (e) Why starter is an essential part of a dc motor?
- (f) What is the function of commutator in a dc machine?
- (g) How a capacitor will operate, when a dc energy source is connected across it?
- (h) What is the necessary measure required to take, when there is no residual magnetism in the field of a self-excited dc generator?
- (i) Define eddy current loss.
- (j) State two merits of wound rotor or slip ring rotor.
- 2. (a) Calculate the equivalent capacitance of the following circuit -

5.0 μF 1.5 μF 3.5 μF 0.75 μF 15 μF

- (b) Deduce the RMS value of a sinusoidal voltage waveform.
- (c) The voltage and current in a circuit element is $v = 100 \cos (377 t 80^{\circ})$; $i = 10 \cos (377 t + 10^{\circ})$. Identify the element & obtain its value.
- (d) Define KVL and KCL with suitable explanation.

3

5

7

5

3.	(a) State the working principle of a transformer.	5
	(b) Deduce the e.m.f. equation of a transformer.	5
	(c) A single phase 240/20 V, 50 Hz transformer has the secondary full-load current	t of 180 A. It
	has 45 turns on its secondary. Calculate (i) the voltage per turn for both primary and secondary,	
	(ii) the number of primary turns, (iii) the full-load primary current and (iv) the KVA output of the	
	transformer.	10
4.	(a) Derive the torque equation of a dc machine.	5
	(b) Briefly describe the voltage build-up in self-excited generators.	5
	(c) A 440 V, dc compound generator has an armature, series field, and shunt field	resistances of
	0.5Ω , 1.0Ω and 200Ω respectively. Calculate the generated voltage while delivering 40 A to	
	external circuit for both long-shunt and short-shunt connections.	10
5.	(a) Draw and explain the torque/armature current characteristic of a separately excited dc motor.	
		5
	(b) Draw the connection diagrams of dc compound motors along with their corresponding emf	
	equations.	3 + 3
	(c) A 120 V dc shunt motor having an armature circuit resistance of 0.2 Ω and field circuit	
	resistance of 60 Ω , draws a line current of 40 A at full load. The brush voltage drop is 3 V and	
	rated full-load speed is 1800 rpm. Calculate (i) the speed at half load, (ii) the speed at 125 percent	
	full load.	9
6.	(a) A 3-phase, 6 pole, 50 Hz induction motor has a slip of 1% at no load, and 3% at full load.	
	Determine: (i) synchronous speed, (ii) no-load speed, (iii) full-load speed, (iv) frequency of rotor	
	current at standstill, (v) frequency of rotor current at full load.	10
	(b) Draw the torque-slip and torque-speed characteristic of an induction motor.	3 + 3
	(c) What are the reasons behind the skewing of a cage rotor?	4
7.	Write short notes on the following topics – (any two)	$10 \times 2 = 20$
	(a) Measurement of 3-phase power using 2-wattmeter method.	
	(b) Principle of operation of a 3-phase induction motor.	
	(c) Draw the basic construction of a dc machine and write down the functions of e	ach part.
	•	

.

· 25m