Matrix Analysis

Yunwei Ren

Contents

1	Eigenvalues, eigenvectors, and similarity		
	1.0	Introduction	2
	1.1	The eigenvalue-eigenvector equation	2
	1.2	The characteristic polynomial and algebraic multiplicity	3

1 Eigenvalues, eigenvectors, and similarity

1.0 Introduction

1.

Proof. Let $S = \{x \in \mathbb{R}^n : x^T x = 1\}$, which is clearly a compact subset of \mathbb{R}^n . Consider the function $f: x \mapsto x^T A x$. Since,

$$||f(x+\delta) - f(x)|| = ||(x^T A)\delta + \delta^T (Ax) + \delta^T A\delta|| \le K||\delta||$$

for every $x \in \mathbb{R}$ and some fixed K, f is continuous. Hence, by Weierstrass's theorem, f attains its maximum value at some point $x \in S$. Namely, (1.0.3) has a solution x. Therefore, there exists some $\lambda \in \mathbb{R}$ such that $2(Ax - \lambda x) = 0$, implying that every real symmetric matrix has at least one real eigenvalue.

2.

Proof. Let $S = \{x \in \mathbb{R}^n : x^Tx = 1\}$ and m be the maximum value of $x \mapsto x^TAx$ in S. Suppose λ is an eigenvalue of A and $u \neq 0$ is its associated eigenvector, then

$$Au = \lambda u \quad \Rightarrow \quad u^T Au = \lambda \|u\|^2 \quad \Rightarrow \quad (u/\|u\|)^T A(u/\|u\|) = \lambda \quad \Rightarrow \quad m \ge \lambda.$$

Meanwhile, by the previous discussion, m itself is a eigenvalue of A. Hence, it is the largest real eigenvalue of A.

1.1 The eigenvalue-eigenvector equation

1.

Proof. It follows from

$$(A^{-1} - \lambda^{-1}I)x = (A^{-1} - \lambda^{-1}A^{-1}A)x = \lambda^{-1}A^{-1}(\lambda I - A)x = 0.$$

3.

Proof. Since $A \in M_n(\mathbb{R})$, $u, v \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$,

$$Ax = \lambda x \implies Au + iAv = \lambda u + i\lambda v$$

implies $Au = \lambda u$ and $Av = \lambda v$. As $x \neq 0$, at least one of u and v is nonzero and therefore A has a real eigenvector associated with λ . It can happen that only one of u and v is an eigenvector of A, because if $x \in \mathbb{R}^n$, which may happen as we discussed above, the imaginary part of x is 0. Finally, if x is a real eigenvector of A, then the eigenvalue λ it associated with must be real. Otherwise, at least one entry of λx is not real as $x \neq 0$, contradicting with the fact that Ax is real.

5.

Proof. Let $p(t) = t^2 - t$. Since A is idempotent, $p(A) = A^2 - A = 0$. Hence, 0 is the only eigenvalue of p(A). By Theorem 1.1.6, the only values the eigenvalues of A can be are the zeros of p, namely, 0 and 1.

Suppose A is nonsingular, then multiplying A^{-1} on the both sides of $A^2 = A$ yields A = I.

7.

Proof. Suppose $\lambda \in \sigma(A)$ and x is its associated eigenvector, then

$$0 = (A - \lambda I)x = x^*(A^* - \bar{\lambda}I) = x^*(A - \bar{\lambda}I)$$

$$\Rightarrow 0 = x^*(A - \bar{\lambda}I)x = x^*Ax - \bar{\lambda}x^*x = (\lambda - \bar{\lambda})||x||^2.$$

Hence, $\lambda = \bar{\lambda}$, implying all eigenvalues of A are real.

9.

Solution. Solve the equation $det(A - \lambda I) = 0$ and we get $\lambda = \pm i$.

11.

Proof. If $\operatorname{rank}(A - \lambda I) < n - 1$, then $\operatorname{adj}(A - \lambda I) = 0$ by (0.8.2) and therefore we can always choose y to be the 0 and the other parts of the proposition clearly hold. Hence, in the following discussion, we assume that $\operatorname{rank}(A - \lambda I) = n - 1$.

Apply the full-rank factorization and we get $\operatorname{adj}(A - \lambda I) = \alpha x y^*$ for some nonzero $\alpha \in \mathbb{C}$ and $x, y \in \mathbb{C}^n$. Replacing x with αx and α with 1 proves the first part.

Suppose $\operatorname{adj}(A - \lambda I) = [\beta_1, \dots, \beta_n]$, then

$$(A - \lambda I) \operatorname{adj}(A - \lambda I) \Rightarrow (A - \lambda I)\beta_k = 0 \quad (k = 1, 2, \dots, n),$$

implying that β_k is an eigenvector of A associated with λ as long as it is nonzero.

13.

Proof. If rank A < n - 1, then x is always an eigenvector of adj A associated with 0 as adj A = 0. Hence, we may assume that rank = n - 1. Then adj $A = (\det A)A^{-1}$. By Exercise 1, x is an eigenvector of A^{-1} and therefore an eigenvector of adj A.

1.2 The characteristic polynomial and algebraic multiplicity

2.

Proof. Suppose $A = [a_{ij}]_{m,n} = [\alpha_1, \dots, \alpha_n]^T$ and $B = [b_{ij}]_{n,m} = [\beta_1, \dots, \beta_n]$, then

$$\operatorname{tr}(AB) = \sum_{i=1}^{n} \alpha_i \beta_i = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij} b_{ji} = \sum_{j=1}^{m} \sum_{i=1}^{n} b_{ji} a_{ij} = \operatorname{tr}(BA).$$

Hence, for nonsingular $S \in M_n$, $\operatorname{tr}(S^{-1}AS) = \operatorname{tr}(S(S^{-1}A)) = \operatorname{tr}(A)$.

For $A \in M_n$, $\det(S^{-1}AS) = \det(S)\det(S^{-1})\det(A) = \det(A)$, which means the determinant function on M_n is similarity invariant.

4.

Proof. It follows immediately from the fact that $\sigma(A) \subset \{0,1\}$ and $S_k(A)$ is the sum of some $\prod \lambda_{i_i}$.

6.

Proof. rank $(A - \lambda I) = n - 1$ implies the matrix $A - \lambda I$ is singular, and therefore λ is an eigenvalue of A. However, it may not have multiplicity 1. For example¹, suppose

¹Thanks to Zhihan Jin, one of my classmates.

 $A = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$. rank A = 1 but 0, the only eigenvalue of A is of multiplicity 2.

8.

Proof. $p_{A+\lambda I}(t) = \det(tI - (A + \lambda I)) = \det((t - \lambda)I - A) = p_A(t - \lambda)$ and hence the eigenvalues of $A + \lambda I$, the zeros of $p_{A+\lambda}(t)$, are $\lambda_1 + \lambda, \ldots, \lambda_n + \lambda$.

10.

Proof. Since $p_A(t)$ has n roots and non-real roots of a polynomial come in paris, at least one of the roots is real. Hence, A has at least one real eigenvalue.

12. TODO

14.

Proof. Suppose $C = \begin{bmatrix} \mu & 0 \\ * & B \end{bmatrix}$. By the exercise on p52,

$$p_A(t) = (t - \lambda)p_C(t) = (t - \lambda)p_{C^T}(t) = (t - \lambda)(t - \mu)p_B(t).$$

16.

Proof. $f(t) = \det(A + (tx)y^T = \det A + y^T(\operatorname{adj} A)tx = \det A + t\beta$ where $\beta = y^T(\operatorname{adj} A)x$, a constant independent of t. Hence, for $t_1 \neq t_2$

$$\frac{t_2 f(t_1) - t_1 f(t_2)}{t_2 - t_1} = \frac{t_2(\det A + t_1 \beta) - t_1(\det A + t_2 \beta)}{t_2 - t_1} = \det A.$$

For the second part, we can get from calculation that

$$f(-b) = \det(A - b[1, \dots, 1]^T[1, \dots, 1]) = (d_1 - b) \cdots (d_n - b) = q(b)$$

and f(-c) = q(-c). Hence, if $b \neq c$,

$$\det A = \frac{(-c)f(-b) - (-b)f(-c)}{(-c) - (-b)} = \frac{bq(c) - cq(b)}{b - c}.$$

Now suppose b = c. Note that f(t) is a liner function of t, which is differentiable, implying that

$$\det A = \lim_{t_2 \to t_1} \frac{t_2 f(t_1) - t_1 f(t_2)}{t_2 - t_1} = f'(t_1) t_1 - f(t_1).$$

Meanwhile, since q(t) is continuous, $q(t) \to f(-b)$ as $t \to b$. Thus,

$$\det A = \lim_{c \to b} \frac{(-c)f(-b) - (-b)f(-c)}{(-c) - (-b)} = q(b) - bq'(b).$$

Let

$$A_* = \lambda I - A = \begin{bmatrix} \lambda & -b & \cdots & -b \\ -c & \lambda & \ddots & \vdots \\ \vdots & \ddots & \ddots & -b \\ -c & \cdots & -c & \lambda \end{bmatrix}.$$

and $q_*(t) = (\lambda - t)^n$, then by the previous result,

$$p_A(\lambda) = \frac{-bq_*(-c) - (-c)q_*(-b)}{-c - (-b)} = \frac{b(\lambda + c)^n - c(\lambda + b)^n}{b - c}, \quad \text{if } b \neq c,$$

$$p_A(\lambda) = q_*(-b) - (-b)q_*'(-b) = (\lambda + b)^{n-1}(\lambda - (n-1)b), \quad \text{if } b = c.$$

18.

Proof. The identity can be derived immediately from Observation 1.2.4 and the identity $a_1 = (-1)^{n-1} \operatorname{tr} \operatorname{adj}(A)$, the proof of which can be found on p53.

20.

Proof. By (1.2.13),

$$\det(I+A) = (-1)^n p_A(-1) = (-1)^n \left((-1)^n + \sum_{k=1}^n (-1)^{n-k} E_k(A)(-1)^k \right) = 1 + \sum_{k=1}^n E_k(A).$$

22.

Proof. Suppose

$$A = \begin{bmatrix} t & -1 & & 0 \\ & \ddots & \ddots & \\ & & \ddots & -1 \\ & & & t \end{bmatrix},$$

then

$$p_{C_n(\varepsilon)}(t) = \det(A + [0, \dots, 0, 1]^T [-\varepsilon, 0, \dots, 0])$$

$$= \det A - \varepsilon [1, 0, \dots, 0] (\operatorname{adj} A) [0, \dots, 0, 1]^T$$

$$= \det A - \varepsilon ((\operatorname{adj} A) [1, n])$$

$$= \det A - \varepsilon \det A [\{n\}^c, \{1\}^c]$$

$$= t^n - \varepsilon.$$

And its spectrum, namely the set of roots of $p_{C_n(\varepsilon)}$, is $\{\varepsilon^{1/n}e^{2\pi ik/n}: k=0,1,\ldots,n-1\}$. Hence,

 $\rho(I + C_n(\varepsilon)) = 1 + \rho(C_n(\varepsilon)) = 1 + \varepsilon^{1/n}.$