

FÍSICA II – ICF-190 RESPUESTAS GUÍA Nº 2

	,
1	$\Phi = \begin{cases} -11.8 \frac{Nm^2}{C} &, & plano \ x = 0 \\ 11.8 \frac{Nm^2}{C} &, & plano \ x = 1.4 m \\ 0 &, & en \ otro \ caso \end{cases}$
	$\Phi = \begin{cases} 3.92 \frac{Nm^2}{C} &, & plano \ y = 0 \\ -3.92 \frac{Nm^2}{C} &, & plano \ y = 1.4 m \\ 0 &, & en \ otro \ caso \end{cases}$
	$\Phi = \begin{cases} -3.92 \frac{1 \text{vm}}{C}, & plano \ y = 1.4 \text{ m} \\ 0, & en \ otro \ caso \end{cases}$
	$\begin{cases} 5.9 \frac{Nm^2}{C} &, plano \ x = 0 \\ -5.9 \frac{Nm^2}{C} &, plano \ x = 1.4 \ m \end{cases}$
	$\Phi = \begin{cases} -7.8 \frac{Nm^2}{C} &, plano y = 0 \\ Nm^2 & \end{cases}$
	$7.8 \frac{Nm^2}{C} , plano y = 1.4 m$ $0 , en otro caso$
2	$\Phi = aE$
3	a) Todas b) igual
4	a) $22.3 \frac{Nm^2}{C}$ b) $Q = 1.97 \times 10^{-10} C$
5	a) $Q = 152 \mu C$ b) $\Phi = 17.18 \times 10^6 \frac{Nm^2}{C}$
6	$\vec{E} = -\frac{\sigma}{\varepsilon_0}\hat{i}$ b) $\vec{E}_{neto} = \vec{0}$ c) $\vec{E} = \frac{\sigma}{\varepsilon_0}\hat{i}$

Facultad de Ingeniería y Ciencias

Departamento de Ciencias Físicas	
7	a) $\vec{E} = \begin{cases} \frac{A}{2\varepsilon_0} \hat{r} &, r < R \\ \frac{AR^2}{2\varepsilon_0 r^2} \hat{r}, r \ge R \end{cases}$ b) $\vec{E} = \begin{cases} \frac{\rho_0 r}{3\varepsilon_0} \hat{r} &, r < R \\ \frac{\rho_0 R^3}{3\varepsilon_0 r^2} \hat{r}, r \ge R \end{cases}$
8	Este es el mismo problema del taller 3
9	$\vec{E} = \frac{\rho R}{3\varepsilon_0} \hat{j}$
10	a) $\vec{E} = \frac{Q}{4\pi\varepsilon_0 r^2} \hat{r}$ $r < a$ b) $\vec{E} = \left(\frac{A}{2\varepsilon_0} + \frac{Q - 2\pi A a^2}{4\pi\varepsilon_0 r^2}\right) \hat{r}$ $a < r < b$
	c) $\vec{E} = \frac{Q + 2\pi A(b^2 - a^2)}{4\pi\epsilon_0 r^2} \hat{r}$ $r > b$
	a) $\vec{E} = \frac{\rho r}{2\varepsilon_0} \hat{r}$ $r < a$ b) $\vec{E} = \frac{\rho a^2}{2\varepsilon_0 r} \hat{r}$ $a < r < b$ c) $\vec{E} = \vec{0}$ $r > b$
12	$\vec{E} = \frac{\rho \vec{d}}{3\varepsilon_0} \hat{r}$ donde $\vec{d} = \vec{r}_1 - \vec{r}_2$ es el vector constante que apunta desde el centro de la esfera
	con carga positiva a la esfera con carga negativa.