Interfaces, canaux et protocoles dans un réseau GSM

Équipe Pédagogique Réseau Informatique @ UVCI 2018

Table des matières

I - Objectifs	3
II - Interfaces et les canaux de communication dans un réseau GSM	4
1. Les Interfaces	
1.1. Définition	
2. Les canaux	. 6
2.1. Les canaux logiques	
3. Exercice	. 8
III - Les Protocoles de communications dans le GSM	9
1. Architecture en couche pour l'accès GSM	. 9
2. Les couches protocolaires dans le GSM	10
3. Exercice	11
IV - Solutions des exercices	12

$\overline{Objectifs}$

 $\bullet \;\; Expliquer$ le rôle de chaque interface dans l'architecture du GSM

1 1 1 1

• *Identifier* les protocoles utilisés par chaque équipement du GSM facilitant la communication entre eux dans le réseau

Objectifs

Expliquer le rôle de chaque interface dans l'architecture du GSM

Les interfaces sont des protocoles permettant de communiquer entre chaque structure du réseau GSM. Elles sont un élément essentiel définit dans la norme GSM car ce sont ces interfaces qui déterminent les interconnexions réseaux au niveau international.

1. Les Interfaces

1.1. Définition

Une interface est un dispositif physique ou logique entre deux systèmes ou deux parties d'un même système, défini par la spécification de caractéristiques appropriées et permettant des échanges d'informations.

L'interface est vue comme la frontière, le point de contact entre deux équipements, entités d'un réseau GSM. Il existe plusieurs interfaces dans la norme GSM qui sont normalisées en général. Chaque interface porte différente flux de protocole.

1.2. Les différentes interfaces dans un réseau GSM

Dans le GSM, chaque interface est désignée par une lettre (de A à H). Parmi les différentes interfaces, nous pouvons retenir les plus utilisées qui sont résumées dans le tableau suivant de la Figure 1.

Le respect des interfaces permet aux opérateurs d'avoir différents fournisseurs et de pouvoir swapper (changer d'équipements au fur et à mesure du déploiement de leur réseau). Bien souvent, le découpage des fonctions entre les éléments du réseau (VLR et MSC par exemple) est effectué par les constructeurs (Ericsson, Nokia ...) qui ne respectent pas forcement celles définies dans le tableau.

- L'interface U_m , aussi appelée Interface Air ou Interface radio se trouve entre la station mobile et la BTS. Elle s'appuie sur le protocole LAPDm (Link Access Protocol on the D mobile Channel) qui est utilisé pour le transport du trafic et des données de signalisation. Elle comprend :
 - La couche physique qui est une liaison radio où les canaux ont une répartition temporelle et fréquentielle.
 - La couche liaison de données qui assure les fonctions de gestion de trames et de signalisation.
 - La sous-couche d'application RR (Receiver Ready) qui est utilisée par la BTS pour extraire certaines informations de messages avant de transmettre le message équivalent.

- L'interface Abis supporte les transmissions de communication entre BSC et BTS. En réalité, la plupart des messages de signalisation sont changés entre le BSC ou le MSC et le MS: la BTS n'a qu'une simple fonction de relais. Cette interface est propre à chaque fournisseur du sous-système radio(BSS).
- L'interface A sépare NSS et BSS. Elle fait l'objet d'une normalisation suffisamment précise pour permettre une interconnexion facile entre les équipements de différents constructeurs.
- $L'interface\ B$ permet de lier le couple MSC/VLR. Elle est rarement normalisée car le MSC et le VLR sont souvent confondus.
- $L'interface\ D$ permet au couple MSC/VLR de dialoguer avec le HLR afin d'assurer l'itinérance internationale ou le roaming.

Exemple : un abonné d'un réseau ivoirien quitte le Côte d'Ivoire pour se rendre en Espagne et se connecter au réseau espagnol.

Nom	Localisation	Utilisation	
Um	MS – BTS	Interface radio : les échanges entre MS et BTS	
Abis	BTS - BSC	Contrôle des équipements et des fréquences	
		allouées à la BTS (relie la BTS au MSC)	
Α	BSC – MSC	Gère les allocations des ressources radio et la mobilité	
В	MSC – VLR	Divers (Transfert de données)	
_	MSC – HLR Interrogation du HLR pour les appels		
С	MSC – GMSC – HLR	Interrogation du HLR pour les messages courts	
D	VLR – HLR	Gestion des informations d'abonnées et de	
		localisations	
Е	MSC – MSC	Exécution des « Handover »	
	MSC – MS - GMSC	Transport de messages courts	
F	MSC - EIR	Vérification de l'identité de l'équipement	
G	VLR –VLR	Gestion des informations d'abonnés	
Н	HLR – Auc	Echanges des données d'authentifications	
Atox	DCC TDALL	Transfert de paroles ou données signalisation du	
Ater	BSC – TRAU	Traffic	

Figure 1 : Tableau résumé des interfaces dans le GSM

La figure ci-dessous illustre les interfaces dans le GSM.

Figure 2 : Schéma des interfaces dans le GSM

2. Les canaux

On retrouve dans un système GSM deux types de canaux qui sont :

- les canaux logiques et
- les canaux physiques.

2.1. Les canaux logiques

Un canal logique est une voie de transmission d'information contenue dans un support physique (canal physique). Selon le type d'information véhiculé, on distingue les canaux logiques suivants :

• les canaux de trafic (TCH) qui transportent la voix et les données entre la BTS et le MS Chaque canal de trafic a un canal de controle associé dans le même intervalle de temps (IT ou TS : Time Slot).

Groupe Canaux Logiques	Canaux dans le groupe	Information	
TCH : Canaux de trafic (donnée/voix)	TCH Full Rate (13 Kbit/s) TCH Half Rate	Voix ou donnée	

Figure 3 : Tableau des canaux logiques de trafic

- les canaux de contrôle (signalisation) qui gèrent des messages dans le réseau et des opérations d'entretien. Ils transmettent des messages de contrôle entre le MS et la BTS. Il y a plusieurs types de canaux logiques de contrôle :
 - les canaux logiques de contrôle dédiés

Groupe Canaux Logiques	Canaux dans le groupe	Information
DCCH : Canal de contrôle dédié. Affecté à chaque connexion du MS		Call setup, handover, SMS, authentificationetc

Figure 4 : Tableau des canaux logiques de contrôle dédiés

- les canaux logiques de contrôle associés.

Groupe Canaux Logiques	Canaux dans le groupe	Information
ACCH: Associated Control Channel. Canal de contrôle associé. Information de contrôle associée à TCH ou SDCCH	Control Channel	Contrôle puissance du MS et rapports de mesures sur cellule serveuse et voisines avec leur RSSI (receive signal strengh Indicator)
	FACCH: Fast Associated Control Channel	Information pour authentification et handovers

Figure 5 : Tableau des canaux logiques de contrôle associés

- les canaux logiques de contrôle de diffusion (broadcast)

Groupe Canaux Logiques	Canaux dans le groupe	Information	
BCCH: Broadcast Control Channel. Canal de contrôle de	BCCH: Broadcast Control Channel	Informations des cellules : Cell Id et la liste de fréquences utilisées	
diffusion. Information de contrôle envoyée sans arrêt vers tous les mobiles dans la cellule.	Correction CHannel (canal	Information qui permet au MS de synchroniser sur la fréquence porteuse de la BTS	
	SCH: Synchronized CHannel (canal de synchronisation)	Après utilisation du $FCCH$, le MS utilise SCH pour se synchroniser avec $TDMA$	

Figure 6 : Tableau des canaux logiques de diffusion (broadcast)

- les canaux logiques de contrôle communs

Groupe Canaux Logiques	Canaux dans le groupe	Information	
commun. Information de contrôle	Channel (canal d'accès aléatoire)	MS envoie une demande d'accès au réseau lors d'établissement d'un appel	
envoyée entre MS et BTS pour l'établissement d'un appel et call paging.	PCH : Paging Channel	Envoyé par la BTS pour contacter le MS spécifié	
	AGCH: Acces Grant Channel	Envoyé par BTS pour affecter de ressources (appel) a MS	

Figure 7 : Tableau des canaux logiques de contrôle communs

Tous ces canaux de contrôle (UpLink ou DownLink) diffusent toujours sur l' IT_0 de la première fréquence de la cellule ($fréquence\ balise$) en permanence et à pleine puissance.

2.2. Les canaux physiques

Un canal physique est caractérisé par :

- une paire de fréquences
- un slot ou intervalle de temps (IT) particulier par fréquence choisi parmi huit.

 $Figure\ 8:\ Canal\ physique$

Un canal physique convoie un ou plusieurs canaux logiques.

3. Exercice

[Solution n°1 p 12]

Exercice
Quelle est l'interface entre la BTS et le BSC ?
O Interface Ater
○ L'interface Abis
O L'interface A
○ L'interface B
Exercice
La gestion des informations de localisation de l'abonné se fait par l'intermédiaire de :
O L'interface Abis
O L'interface A
O L'interface B
O L'interface D
O L'interface G
Exercice
L'exécution du Handover se fait entre
☐ Le BSC et la BTS
☐ L'interface G
☐ Deux MSC
☐ MSC et VLR
☐ MSC et MSC
Exercice
La BTS et le mobile sont relié par
☐ L'interface A bis
☐ L'interface A
☐ L'interface C
L'interface Um

Objectifs

Identifier les protocoles utilisés par chaque équipement du GSM facilitant la communication entre eux dans le réseau

Un protocole vise à établir des règles de signalisation de part et d'autre d'une interface. Ainsi, la différence entre protocoles et interfaces est fondamentale. On entendra par protocole, des règles d'échanges entre différentes entités du réseau.

Dans un réseau GSM, la station mobile se connecte à la BTS pour accéder au réseau. Cependant, il faut plutôt considérer que cet accès est reparti entre la BTS, la BSC et le MSC. Toutes les couches de la pile de protocole se trouvent dans la station mobile.

En revanche, côté réseau, les couches sont reparties entre les différents équipements.

1. Architecture en couche pour l'accès GSM

Un terminal GSM dialogue principalement avec le MSC pour établir des communications, disposer de services supplémentaires.

L'architecture du GSM a été fortement inspirée par la technique numérique RNIS. Elle est structurée suivant les trois couches basses du modèle OSI, à savoir :

- La couche 1 ou couche basse définit les caractéristiques physiques de la transmission.
- La couche 2 détaille un protocole de liaison de données qui permet de fiabiliser la communication. Dans le cas du RNIS, celui-ci est le LAPD (Link Access Protocol for the D Channel) c'est un équivalent HDLC.
- La couche 3 a plutôt trait à l'applicatif téléphonique qu'à une réelle couche réseau.

 Dans le réseau fixe, les mêmes couches de protocoles se trouvent dans le terminal et l'équipement d'accès au réseau. Dans un réseau GSM, la station mobile se connecte à la BTS pour accéder au réseau mais il faut plutôt considérer un accès réparti entre la BTS, le BSC et le MSC. Par conséquent, toutes les couches de protocoles sont présentes dans la station mobile. Par contre côté réseau, les couches sont réparties entre les différents éléments.

 Elle est divisée en 3 sous-couches:
 - RR (Radio Ressource) : elle gère la ressource radio. Elle est implantée dans une station mobile. La pile de protocole est également définie sur l'interface A entre le MSC et la BSC, sur l'interface A bis entre la BTS et la BSC.
 - MM (Mobility Management) : elle a pour objet de masquer les effets de l'itinérance. Cette fonction pouvant être assurée par un réseau fixe, elle est traitée au sein du MSC.
 - *CM* (Connection Management) : elle a été volontairement rendu similaire à la couche réseau du RNIS entre un poste téléphonique et sa centrale de rattachement. Celle-ci est donc présente dans le MSC.

Figure 9 : Schéma de l'architecture en couche dans le BSS

2. Les couches protocolaires dans le GSM

L'architecture des protocoles du GSM est issue à la fois des architectures classiques du modèle OSI et de celle du réseau téléphonique numérique.

Figure 10 : Schéma de la pile des protocoles

- Le protocole *Call Control (CC)* prend en charge le traitement des appels tels que l'établissement, la terminaison et la supervision.
- Le protocole Short Message Service (SMS) qui permet l'envoi de courts messages.
- Le protocole Supplementary Services (SS) prend en charge les compléments de services. La liste de ces services est longue mais, à titre d'exemple, citons
 - le *CLIP* (Calling Line Identification Presentation),
 - le CLIR (Calling Line Identification Restriction) et
 - le *CFU* (Call Forwarding Unconditional).
- Le protocole *Mobility Management (MM)* gère l'identification, l'authentification sur le réseau et la localisation d'un terminal. Cette application se trouve dans le sous-réseau de

. .

commutation (NSS) et dans le mobile car ils doivent tous deux connaître la position du mobile dans le réseau.

• Le protocole *Radio Ressource management (RR)* s'occupe de la liaison radio. Il interconnecte une BTS et un BSC car ce dernier gère l'attribution des fréquences radio dans une zone.

Les trois premiers protocoles applicatifs pré-cités (CC, SMS et SS) ne sont implémentés que dans les terminaux mobiles et les commutateurs. Leurs messages voyagent de façon transparente à travers le BSC et le BTS.

3. Exercice

[Solution n°2 p 12]

Exercice
L'architecture du réseau GSM est subdivisé en couches.
Exercice
$La\ couche\ 1\ dans\ le\ syst\`eme\ GSM\ correspond\ \grave{a}\ quelle\ couche\ du\ mod\`ele\ OSI\ ?$
la couche réseau
O la couche physique
O la couche liaison de donnée
O la couche application
Exercice
Le protocole en charge de la liaison de données dans le GSM est le
Exercice
Dans une station mobile (MS), on trouve les protocoles
☐ HDLC
☐ LAPDp
\square MM
☐ RRa
□ RR
Exercice
$Que\ représente\ le\ protocole\ RR\ dans\ le\ système\ GSM\ ?$
un gestionnaire de la ressource radio
un gestionnaire de l'interface radio
$\hfill \square$ Il interconnecte la MS au MSC
$\hfill \square$ il interconnecte le BSC au MSC
☐ il interconnecte la BTS au BSC

 $Exercice\ p.\ 8$

Solutions des exercices

> Solution n°1

Exercice O Interface Ater			
L'interface Abis			
O L'interface A			
O L'interface B			
Exercice			
O L'interface Abis			
O L'interface A			
O L'interface B			
• L'interface D			
O L'interface G			
Exercice			
☐ Le BSC et la BTS			
L'interface G			
✓ Deux MSC			
☐ MSC et VLR			
✓ MSC et MSC			
Exercice			
L'interface A bis			
L'interface A			
L'interface C			
✓ L'interface Um			

Exercice p. 11

1 To 1

> Solution n°2

Exercice
L'architecture du réseau GSM est subdivisé en 3 couches.
Exercice
O la couche réseau
• la couche physique
O la couche liaison de donnée
O la couche application
Exercice
Le protocole en charge de la liaison de données dans le GSM est le LAPDm .
LAPDm : Link Access Protocole for D channel and mobility.
Exercice
☐ HDLC
☐ LAPDp
✓ MM
☐ RRa
☑ RR
Exercice
✓ un gestionnaire de la ressource radio
un gestionnaire de l'interface radio
☐ Il interconnecte la MS au MSC
$\hfill \square$ il interconnecte le BSC au MSC
☑ il interconnecte la BTS au BSC

1 1 1 1 1