You Can Have Better Graph Neural Networks by Not Training Weights at All: Finding Untrained GNNs Tickets

Tianjin Huang, Tianlong Chen, Meng Fang, Vlado Menkovski, Jiaxu Zhao, Lu Yin, Yulong Pei, Decebal Constantin Mocanu, Zhangyang Wang, Mykola Pechenizkiy, Shiwei Liu

Основная идея

- В графовых нейтронных сетях существуют необученные подсети (лотерейные билеты), которые предсказывают результат с почти таким же качеством, как и обученные
- Генерируется сеть (одной из архитектур) с рандомными начальными весами и из нее выбирается хорошо работающая подсеть

Что такое гипотеза о лотерейном билете?

- В большой нейронной сети, найдется подсеть сильно меньше размером, которая выдает сравнимые по качеству результаты
- Такая сеть требует меньше ресурсов для обучения

Что произойдет если мы найдем такую сеть?

- Это будет новым способом получения рабочей GNN и стандартное обучение перестанет быть незаменимым
- Это продвинет исследования в наличие необучаемых рабочих нейронных сетей и в остальных областях

Как происходит поиск необученной НС?

- А матрица ребер
- X матрица признаков вершин

$$min_{m \in \{0,1\}} |\theta| L(g(A, X; \theta \odot m), y)$$

• m - маска

Старые способы получения нетренированных сетей

- Edge-popup
 - Вычислим popup-score дальше оставляем топ k% весов в слое с самыми высокими popup-score
- Разреженность (sparsity) устанавливается в начале и не меняется в процессе обучения
- Слои юниформные на каждом одинаковая sparsity

Figure 2. In the edge-popup Algorithm, we associate a score with each edge. On the forward pass we choose the top edges by score. On the backward pass we update the scores of all the edges with the straight-through estimator, allowing helpful edges that are "dead" to re-enter the subnetwork. We never update the value of any weight in the network, only the score associated with each weight.

Как происходит изменение sparsity?

- s_i начальная sparsity
- s_f конечная sparcity
- s_t sparsity на шаге t
- t_0 начальное время
- Δt время между шагами спарсификации

$$s_t = s_f + (s_i - s_f)(1 - \frac{t - t_0}{n\Delta t})$$

$$t \in \{t_0, t_0 + \Delta t, \dots, t_0 + n\Delta t\}$$

В этой статье

- $s_i = 0$
- Δt время на одну эпоху

Архитектуры и датасеты

• Архитектуры: GCN, GIN, GAT

Table 2: Graph datasets statistics.

DataSets	#Graphs	#Nodes	#Edges	#Classes	#Features	Metric
Cora	1	2708	5429	7	1433	Accuracy
Citeseer	1	3327	4732	6	3703	Accuracy
Pubmed	1	19717	44338	3	3288	Accuracy
OGBN-Arxiv	1	169343	1166243	40	128	Accuracy
Texas	1	183	309	5	1703	Accuracy
OGBN-Products	1	24449029	61859140	47	100	Accuracy
OGBG-molhiv	41127	25.5(Average)	27.5(Average)	2	_	ROC-AUC
OGBG-molbace	1513	34.1(Average)	36.9(Average)	2	-	ROC-AUC

Результаты

- С увеличением размера сети UGTs могут достичь сравнимой точности
- Edge-рорир тоже стремится

Что такое over-smoothing и как помогут UGTs?

- Качество GNN не улучшается, когда мы увеличиваем количество слоев
- Так как в процессе обмена информацией между вершинами они становятся слишком похожи друг на друга

Что такое over-smoothing и как помогут UGTs?

Сравнение с другими state-of-the-art техниками

• Что это за техники можно почитать тут

	Cora		Citeseer		Pubmed	
N-Layers	16	32	16	32	16	32
Trained Dense GCN	21.4	21.2	19.5	20.2	39.1	38.7
+Residual +Jumping	20.1 76.0	19.6 75.5	20.8 58.3	20.90 55.0	38.8 75.6	38.7 75.3
+NodeNorm +PairNorm	21.5 55.7	21.4 17.7	18.8 27.4	19.1 20.6	18.9 71.3	18 61.5
+DropNode +DropEdge	27.6 28.0	27.6 27.8	21.8 22.9	22.1 22.9	40.3 40.6	40.3 40.5
UGTs-GCN	77.3 \pm 0.9	$\textbf{77.5} \pm \textbf{0.8}$	61.1±0.9	56.2±0.4	77.6±0.9	76.3±1.2

MAD - сравнение гладкости

• UGTs сильно менее гладкие в процессе обучения, что и хорошо

TSNE - визуализации

Figure 3: TSNE visualization of node representations learned by densely trained GCN and UGTs. Ten classes are randomly sampled from OGBN-Arxiv for visualization. Model depth is set as 16 and 32 respectively; width is set as 448. See Appendix B.1 for GAT architecture.

Другие эксперименты

- Более подробно исследовали эффект sparsity для UGTs
 - UGTs постоянно находит нетренированную подсеть для большого диапазона sparsity
 - Постоянно побеждает edge-popup
- UGTs хорошо работает на детекции аномалий
- Посмотрели на задачи графового уровня и другие датасеты

Выводы

- Необученная хорошо работающая подсеть существует
- Работает хорошо на разной sparsity
- Метод работает лучше, чем Edge-рорир почти всегда
- Побеждает проблему чрезмерного сглаживания (over-smoothing)
- Получает сравнимые (а часто сильно лучшие) результаты, чем уже исследованные техники для борьбы со сглаживанием
- Также применимо к другим задачам

