

Trường & Giải tích

Người trình bày: Carina

Mục lục

1. Trường vô hướng và giải tích đa biến

2. Trường vector và giải tích vector

3. Về trường lực xuyên tâm

Mục lục

1. Trường vô hướng và giải tích đa biến

2. Trường vector và giải tích vector

3. Về trường lực xuyên tâm

Trường vector

Hình: Trường vận tốc của chất lưu

$$\mathbf{v} = \mathbf{v}(x, y) = \mathbf{v}(r, \theta)$$

Hình: Trường tĩnh điện của điện tích điểm

$$\mathsf{E}=\mathsf{E}(x,y,z)=\mathsf{E}(r)$$

Trường (lực) thế

1. Giá trị của tích phân đường (công) chỉ phụ thuộc vào điểm đầu và điểm cuối:

$$-\int_{\textbf{r}_1}^{\textbf{r}_2} \textbf{F} \cdot d\textbf{I} = V(\textbf{r}_1) - V(\textbf{r}_2).$$

2. Lưu số trên một đường cong kín là bằng không:

$$\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{I} = 0.$$

3. Trường lực thế có thể biểu diễn dưới dạng gradient của một hàm vô hướng:

$$\mathbf{F} = -\nabla V$$
.

Ví dụ về các lực thế: lực hấp dẫn, lực đàn hồi, ...

Quan hệ giữa các tính chất của trường thế

Từ tính chất thứ nhất,

$$-\mathbf{F} \cdot d\mathbf{I} = dV$$
.

Do đó,

$$- \big(F_x \mathsf{d} x + F_y \mathsf{d} y + F_z \mathsf{d} z \big) = \partial_x V \mathsf{d} x + \partial_y V \mathsf{d} y + \partial_z V \mathsf{d} z.$$

Đồng nhất hai vế,

$$\mathbf{F} = -\nabla V$$
.

Từ tính chất thứ hai (xét trên mặt phẳng xy),

$$\oint \mathbf{F} \cdot d\mathbf{I} = dXdY (\partial_x F_y - \partial_y F_x) = 0.$$

Tương tự cho các mặt phẳng khác,

$$dYdZ (\partial_y F_z - \partial_z F_y) = 0.$$

$$dXdZ (\partial_z F_x - \partial_x F_z) = 0.$$

Curl và định lý Curl(Stokes)

Curl của F được định nghĩa là

$$\nabla \times \mathbf{F} \equiv \det \left(\begin{bmatrix} \hat{x} & \hat{y} & \hat{z} \\ \partial_{x} & \partial_{y} & \partial_{z} \\ F_{x} & F_{y} & F_{z} \end{bmatrix} \right).$$

Định lý Stokes tổng quát hoá cho mọi bề mặt:

$$\int_{\mathcal{S}} (\nabla \times \mathbf{F}) \cdot d\mathbf{a} = \oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{I}.$$

Chú ý, C là đường biên của bề mặt S.

Curl của một trường thế bằng không nên ${\bf F}$ phải có dạng $-\nabla V$ vì

$$\nabla \times (\nabla V) = 0 \quad \forall V.$$

Cụ thể,

$$\partial_{xy} V = \partial_{yx} V,$$

$$\partial_{yz} V = \partial_{zy} V,$$

$$\partial_{zx} V = \partial_{xz} V.$$

Tóm lại, điều kiện cần và đủ của một trường thế là

$$\nabla \times \mathbf{F} = \mathbf{0}$$
.

Minh hoạ cho dòng chảy xoáy

$$\mathbf{v} = -y\hat{x} + x\hat{y},$$

$$abla imes \mathbf{v} = 2\hat{\mathbf{z}}.$$

Hình: Định lý Stokes

Hình: Chiều của vector pháp tuyến

Mục lục

1. Trường vô hướng và giải tích đa biến

2. Trường vector và giải tích vector

3. Về trường lực xuyên tâm

Tài liệu tham khảo I

- [1] I.V.Savelyev, *Giáo trình vật lý đại cương tập 1*. Nhà xuất bản Đại học và Trung học chuyên nghiệp, 1988.
- [2] D. Morin, *Introduction to classical mechanics: with problems and solutions*. Cambridge University Press, 2008.
- [3] J. .-. M. Brébec, PFIEV Co học 1. NXB Giáo dục, 2015.
- [4] J. .-. M. Brébec, PFIEV Co học 2. NXB Giáo dục, 2015.

