

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : C07H 21/04, C07K 1/00, 14/00, C12N 1/21, 15/00, 15/09, 15/63, 15/70, C12P 19/34		A1	(11) International Publication Number: WO 00/52027 (43) International Publication Date: 8 September 2000 (08.09.00)
(21) International Application Number: PCT/US00/05432 (22) International Filing Date: 2 March 2000 (02.03.00)		(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW, ARIVO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).	
(30) Priority Data: 60/122,389 2 March 1999 (02.03.99) US 60/126,049 23 March 1999 (23.03.99) US 60/136,744 28 May 1999 (28.05.99) US		Published <i>With international search report.</i> <i>With an indication in relation to deposited biological material furnished under Rule 13bis separately from the description.</i>	
(71) Applicant: LIFE TECHNOLOGIES, INC. [US/US]; 9800 Medical Center Drive, Rockville, MD 20850 (US).			
(72) Inventors: HARTLEY, James, L.; 7409 Hillside Drive, Frederick, MD 21702 (US). BRASCH, Michael, A.; 20931 Sunnymacres Road, Gaithersburg, MD 20882 (US). TEMPLE, Gary, F.; 114 Ridge Road, Washington Grove, MD 20882 (US). CHEO, David; 2006 Baltimore Road, #21, Rockville, MD 20851 (US).			
(74) Agent: ESMOND, Robert, W. et al.; Sterne, Kessler, Goldstein & Fox P.L.L.C., Suite 600, 1100 New York Avenue, N.W., Washington, DC 20005-3934 (US).			
(54) Title: COMPOSITIONS AND METHODS FOR USE IN RECOMBINATIONAL CLONING OF NUCLEIC ACIDS			
(57) Abstract			
<p>The present invention relates generally to compositions and methods for use in recombinational cloning of nucleic acid molecules. In particular, the invention relates to nucleic acid molecules encoding one or more recombination sites or portions thereof, to nucleic acid molecules comprising one or more of these recombination site nucleotide sequences and optionally comprising one or more additional physical or functional nucleotide sequences. The invention also relates to vectors comprising the nucleic acid molecules of the invention, to host cells comprising the vectors or nucleic acid molecules of the invention, to methods of producing polypeptides using the nucleic acid molecules of the invention, and to polypeptides encoded by these nucleic acid molecules or produced by the methods of the invention. The invention also relates to antibodies that bind to one or more polypeptides of the invention or epitopes thereof. The invention also relates to the use of these compositions in methods for recombinational cloning of nucleic acids, <i>in vitro</i> and <i>in vivo</i>, to provide chimeric DNA molecules that have particular characteristics and/or DNA segments.</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

Compositions and Methods for Use in Recombinational Cloning of Nucleic Acids

5

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates generally to recombinant DNA technology. More particularly, the present invention relates to compositions and methods for use in recombinational cloning of nucleic acid molecules. The invention relates specifically to nucleic acid molecules encoding one or more recombination sites or one or more partial recombination sites, particularly *attB*, *attP*, *attL*, and *attR*, and fragments, mutants, variants and derivatives thereof. The invention also relates to such nucleic acid molecules wherein the one or more recombination site nucleotide sequences is operably linked to the one or more additional physical or functional nucleotide sequences. The invention also relates to vectors comprising the nucleic acid molecules of the invention, to host cells comprising the vectors or nucleic acid molecules of the invention, to methods of producing polypeptides and RNAs encoded by the nucleic acid molecules of the invention, and to polypeptides encoded by these nucleic acid molecules or produced by the methods of the invention, which may be fusion proteins. The invention also relates to antibodies that bind to one or more polypeptides of the invention or epitopes thereof, which may be monoclonal or polyclonal antibodies. The invention also relates to the use of these nucleic acid molecules, vectors, polypeptides and antibodies in methods for recombinational cloning of nucleic acids, *in vitro* and *in vivo*, to provide chimeric DNA molecules that have particular characteristics and/or DNA segments. More particularly, the antibodies of the invention may be used to identify and/or purify proteins or fusion proteins encoded by the nucleic acid molecules or vectors of the invention, or to identify and/or purify the nucleic acid molecules of the invention.

Related Art

5 **Site-specific recombinases.** Site-specific recombinases are proteins that are present in many organisms (e.g. viruses and bacteria) and have been characterized to have both endonuclease and ligase properties. These recombinases (along with associated proteins in some cases) recognize specific sequences of bases in DNA and exchange the DNA segments flanking those segments. The recombinases and associated proteins are collectively referred to as "recombination proteins" (see, e.g., Landy, A., *Current Opinion in Biotechnology* 3:699-707 (1993)).

10

Numerous recombination systems from various organisms have been described. See, e.g., Hoess *et al.*, *Nucleic Acids Research* 14(6):2287 (1986); Abremski *et al.*, *J. Biol. Chem.* 261(1):391 (1986); Campbell, *J. Bacteriol.* 174(23):7495 (1992); Qian *et al.*, *J. Biol. Chem.* 267(11):7794 (1992);
15 Araki *et al.*, *J. Mol. Biol.* 225(1):25 (1992); Maeser and Kahnmann *Mol. Gen. Genet.* 230:170-176 (1991); Esposito *et al.*, *Nucl. Acids Res.* 25(18):3605 (1997).

20 Many of these belong to the integrase family of recombinases (Argos *et al.* *EMBO J.* 5:433-440 (1986); Voziyanov *et al.*, *Nucl. Acids Res.* 27:930 (1999)). Perhaps the best studied of these are the Integrase/att system from bacteriophage λ (Landy, A. *Current Opinions in Genetics and Devel.* 3:699-707 (1993)), the Cre/loxP system from bacteriophage P1 (Hoess and Abremski (1990)
25 In *Nucleic Acids and Molecular Biology*, vol. 4. Eds.: Eckstein and Lilley, Berlin-Heidelberg: Springer-Verlag; pp. 90-109), and the FLP/FRT system from the *Saccharomyces cerevisiae* 2 μ circle plasmid (Broach *et al.* *Cell* 29:227-234 (1982)).

30 Backman (U.S. Patent No. 4,673,640) discloses the *in vivo* use of λ recombinase to recombine a protein producing DNA segment by enzymatic site-specific recombination using wild-type recombination sites attB and attP.

Hasan and Szybalski (*Gene* 56:145-151 (1987)) discloses the use of λ Int recombinase *in vivo* for intramolecular recombination between wild type attP and attB sites which flank a promoter. Because the orientations of these sites are

inverted relative to each other, this causes an irreversible flipping of the promoter region relative to the gene of interest.

5 Palazzolo *et al.* *Gene* 88:25-36 (1990), discloses phage lambda vectors having bacteriophage λ arms that contain restriction sites positioned outside a cloned DNA sequence and between wild-type *loxP* sites. Infection of *E. coli* cells that express the Cre recombinase with these phage vectors results in recombination between the *loxP* sites and the *in vivo* excision of the plasmid replicon, including the cloned cDNA.

10 Pósfai *et al.* (*Nucl. Acids Res.* 22:2392-2398 (1994)) discloses a method for inserting into genomic DNA partial expression vectors having a selectable marker, flanked by two wild-type FRT recognition sequences. FLP site-specific recombinase as present in the cells is used to integrate the vectors into the genome at predetermined sites. Under conditions where the replicon is functional, this cloned genomic DNA can be amplified.

15 Bebee *et al.* (U.S. Patent No. 5,434,066) discloses the use of site-specific recombinases such as Cre for DNA containing two *loxP* sites for *in vivo* recombination between the sites.

20 Boyd (*Nucl. Acids Res.* 21:817-821 (1993)) discloses a method to facilitate the cloning of blunt-ended DNA using conditions that encourage intermolecular ligation to a dephosphorylated vector that contains a wild-type *loxP* site acted upon by a Cre site-specific recombinase present in *E. coli* host cells.

25 Waterhouse *et al.* (WO 93/19172 and *Nucleic Acids Res.* 21 (9):2265 (1993)) disclose an *in vivo* method where light and heavy chains of a particular antibody were cloned in different phage vectors between *loxP* and *loxP 511* sites and used to transfect new *E. coli* cells. Cre, acting in the host cells on the two parental molecules (one plasmid, one phage), produced four products in equilibrium: two different cointegrates (produced by recombination at either *loxP* or *loxP 511* sites), and two daughter molecules, one of which was the desired product.

30 Schlake & Bode (*Biochemistry* 33:12746-12751 (1994)) discloses an *in vivo* method to exchange expression cassettes at defined chromosomal locations, each flanked by a wild type and a spacer-mutated FRT recombination site. A

double-reciprocal crossover was mediated in cultured mammalian cells by using this FLP/FRT system for site-specific recombination.

Hartley *et al.* (U.S. Patent No. 5,888,732) disclose compositions and methods for recombinational exchange of nucleic acid segments and molecules, including for use in recombinational cloning of a variety of nucleic acid molecules *in vitro* and *in vivo*, using a combination of wildtype and mutated recombination sites and recombination proteins.

Transposases. The family of enzymes, the transposases, has also been used to transfer genetic information between replicons. Transposons are structurally variable, being described as simple or compound, but typically encode the recombinase gene flanked by DNA sequences organized in inverted orientations. Integration of transposons can be random or highly specific. Representatives such as Tn7, which are highly site-specific, have been applied to the *in vivo* movement of DNA segments between replicons (Lucklow *et al.*, *J. Virol.* 67:4566-4579 (1993)).

Devine and Boeke *Nucl. Acids Res.* 22:3765-3772 (1994), discloses the construction of artificial transposons for the insertion of DNA segments, *in vitro*, into recipient DNA molecules. The system makes use of the integrase of yeast TY1 virus-like particles. The DNA segment of interest is cloned, using standard methods, between the ends of the transposon-like element TY1. In the presence of the TY1 integrase, the resulting element integrates randomly into a second target DNA molecule.

Recombination Sites. Also key to the integration/recombination reactions mediated by the above-noted recombination proteins and/or transposases are recognition sequences, often termed "recombination sites," on the DNA molecules participating in the integration/recombination reactions. These recombination sites are discrete sections or segments of DNA on the participating nucleic acid molecules that are recognized and bound by the recombination proteins during the initial stages of integration or recombination. For example, the recombination site for Cre recombinase is *loxP* which is a 34 base pair sequence comprised of two 13 base pair inverted repeats (serving as the recombinase binding sites) flanking an 8 base pair core sequence. See Figure 1 of Sauer, B., *Curr. Opin. Biotech.*

5 5:521-527 (1994). Other examples of recognition sequences include the *attB*, *attP*, *attL*, and *attR* sequences which are recognized by the recombination protein λ Int. *attB* is an approximately 25 base pair sequence containing two 9 base pair core-type Int binding sites and a 7 base pair overlap region, while *attP* is an approximately 240 base pair sequence containing core-type Int binding sites and arm-type Int binding sites as well as sites for auxiliary proteins integration host factor (IHF), FIS and excisionase (Xis). See Landy, *Curr. Opin. Biotech.* 3:699-707 (1993); see also U.S. Patent No. 5,888,732, which is incorporated by reference herein.

10 **DNA cloning.** The cloning of DNA segments currently occurs as a daily routine in many research labs and as a prerequisite step in many genetic analyses. The purpose of these clonings is various, however, two general purposes can be considered: (1) the initial cloning of DNA from large DNA or RNA segments (chromosomes, YACs, PCR fragments, mRNA, etc.), done in a relative handful of known vectors such as pUC, pGem, pBlueScript, and (2) the subcloning of these DNA segments into specialized vectors for functional analysis. A great deal of time and effort is expended both in the transfer of DNA segments from the initial cloning vectors to the more specialized vectors. This transfer is called subcloning.

15

20 The basic methods for cloning have been known for many years and have changed little during that time. A typical cloning protocol is as follows:

- (1) digest the DNA of interest with one or two restriction enzymes;
- (2) gel purify the DNA segment of interest when known;
- (3) prepare the vector by cutting with appropriate restriction enzymes, treating with alkaline phosphatase, gel purify etc., as appropriate;
- (4) ligate the DNA segment to the vector, with appropriate controls to eliminate background of uncut and self-ligated vector;
- (5) introduce the resulting vector into an *E. coli* host cell;
- (6) pick selected colonies and grow small cultures overnight;
- (7) make DNA minipreps; and

(8) analyze the isolated plasmid on agarose gels (often after diagnostic restriction enzyme digestions) or by PCR.

The specialized vectors used for subcloning DNA segments are functionally diverse. These include but are not limited to: vectors for expressing nucleic acid molecules in various organisms; for regulating nucleic acid molecule expression; for providing tags to aid in protein purification or to allow tracking of proteins in cells; for modifying the cloned DNA segment (*e.g.*, generating deletions); for the synthesis of probes (*e.g.*, riboprobes); for the preparation of templates for DNA sequencing; for the identification of protein coding regions; for the fusion of various protein-coding regions; to provide large amounts of the DNA of interest, *etc.* It is common that a particular investigation will involve subcloning the DNA segment of interest into several different specialized vectors.

As known in the art, simple subclonings can be done in one day (*e.g.*, the DNA segment is not large and the restriction sites are compatible with those of the subcloning vector). However, many other subclonings can take several weeks, especially those involving unknown sequences, long fragments, toxic genes, unsuitable placement of restriction sites, high backgrounds, impure enzymes, *etc.* Subcloning DNA fragments is thus often viewed as a chore to be done as few times as possible.

Several methods for facilitating the cloning of DNA segments have been described, *e.g.*, as in the following references.

Ferguson, J., *et al. Gene* 16:191 (1981), discloses a family of vectors for subcloning fragments of yeast DNA. The vectors encode kanamycin resistance. Clones of longer yeast DNA segments can be partially digested and ligated into the subcloning vectors. If the original cloning vector conveys resistance to ampicillin, no purification is necessary prior to transformation, since the selection will be for kanamycin.

Hashimoto-Gotoh, T., *et al. Gene* 41:125 (1986), discloses a subcloning vector with unique cloning sites within a streptomycin sensitivity gene; in a streptomycin-resistant host, only plasmids with inserts or deletions in the dominant sensitivity gene will survive streptomycin selection.

5

10

15

20

Accordingly, traditional subcloning methods, using restriction enzymes and ligase, are time consuming and relatively unreliable. Considerable labor is expended, and if two or more days later the desired subclone can not be found among the candidate plasmids, the entire process must then be repeated with alternative conditions attempted. Although site specific recombinases have been used to recombine DNA *in vivo*, the successful use of such enzymes *in vitro* was expected to suffer from several problems. For example, the site specificities and efficiencies were expected to differ *in vitro*; topologically linked products were expected; and the topology of the DNA substrates and recombination proteins was expected to differ significantly *in vitro* (*see, e.g., Adams et al, J. Mol. Biol.* 226:661-73 (1992)). Reactions that could go on for many hours *in vivo* were expected to occur in significantly less time *in vitro* before the enzymes became inactive. In addition, the stabilities of the recombination enzymes after incubation for extended periods of time in *in vitro* reactions was unknown, as were the effects of the topologies (*i.e.*, linear, coiled, supercoiled, etc.) of the nucleic acid molecules involved in the reaction. Multiple DNA recombination products were expected in the biological host used, resulting in unsatisfactory reliability, specificity or efficiency of subcloning. Thus, *in vitro* recombination reactions were not expected to be sufficiently efficient to yield the desired levels of product.

Accordingly, there is a long felt need to provide an alternative subcloning system that provides advantages over the known use of restriction enzymes and ligases.

25

SUMMARY OF THE INVENTION

30

The present invention relates to nucleic acid molecules encoding one or more recombination sites or one or more partial recombination sites, particularly *attB*, *attP*, *attL*, and *attR*, and fragments, mutants, variants and derivatives thereof. The invention also relates to such nucleic acid molecules comprising one or more of the recombination site nucleotide sequences or portions thereof and one or more additional physical or functional nucleotide sequences, such as those

encoding one or more multiple cloning sites, one or more transcription termination sites, one or more transcriptional regulatory sequences (e.g., one or more promoters, enhancers, or repressors), one or more translational signal sequences, one or more nucleotide sequences encoding a fusion partner protein or peptide (e.g., GST, His₆ or thioredoxin), one or more selection markers or modules, one or more nucleotide sequences encoding localization signals such as nuclear localization signals or secretion signals, one or more origins of replication, one or more protease cleavage sites, one or more desired proteins or peptides encoded by a gene or a portion of a gene, and one or more 5' or 3' polynucleotide tails (particularly a poly-G tail). The invention also relates to such nucleic acid molecules wherein the one or more recombination site nucleotide sequences is operably linked to the one or more additional physical or functional nucleotide sequences.

The invention also relates to primer nucleic acid molecules comprising the recombination site nucleotide sequences of the invention (or portions thereof), and to such primer nucleic acid molecules linked to one or more target-specific (e.g., one or more gene-specific) primer nucleic acid sequences. Such primers may also comprise sequences complementary or homologous to DNA or RNA sequences to be amplified, e.g., by PCR, RT-PCR, etc. Such primers may also comprise sequences or portions of sequences useful in the expression of protein genes (ribosome binding sites, localization signals, protease cleavage sites, repressor binding sites, promoters, transcription stops, stop codons, etc.). Said primers may also comprise sequences or portions of sequences useful in the manipulation of DNA molecules (restriction sites, transposition sites, sequencing primers, etc.). The primers of the invention may be used in nucleic acid synthesis and preferably are used for amplification (e.g., PCR) of nucleic acid molecules. When the primers of the invention include target- or gene-specific sequences (any sequence contained within the target to be synthesized or amplified including translation signals, gene sequences, stop codons, transcriptional signals (e.g., promoters) and the like), amplification or synthesis of target sequences or genes may be accomplished. Thus, the invention relates to synthesis of a nucleic acid molecules comprising mixing one or more primers of the invention with a nucleic acid

template, and incubating said mixture under conditions sufficient to make a first nucleic acid molecule complementary to all or a portion of said template. Thus, the invention relates specifically to a method of synthesizing a nucleic acid molecule comprising:

- 5 (a) mixing a nucleic acid template with a polypeptide having polymerase activity and one or more primers comprising one or more recombination sites or portions thereof; and
- (b) incubating said mixture under conditions sufficient to synthesize a first nucleic acid molecule complementary to all or a portion of said template and which preferably comprises one or more recombination sites or portions thereof.

10 Such method of the invention may further comprise incubating said first synthesized nucleic acid molecule under conditions sufficient to synthesize a second nucleic acid molecule complementary to all or a portion of said first nucleic acid molecule. Such synthesis may provide for a first nucleic acid molecule having a recombination site or portion thereof at one or both of its termini.

15 In a preferred aspect, for the synthesis of the nucleic acid molecules, at least two primers are used wherein each primer comprises a homologous sequence at its terminus and/or within internal sequences of each primer (which may have a homology length of about 2 to about 500 bases, preferably about 3 to about 100 bases, about 4 to about 50 bases, about 5 to about 25 bases and most preferably about 6 to about 18 base overlap). In a preferred aspect, the first such primer comprises at least one target-specific sequence and at least one recombination site or portion thereof while the second primer comprises at least one recombination site or portion thereof. Preferably, the homologous regions between the first and second primers comprise at least a portion of the recombination site. In another aspect, the homologous regions between the first and second primers may comprise one or more additional sequences, e.g., expression signals, translational start motifs, or other sequences adding functionality to the desired nucleic acid sequence upon amplification. In practice, two pairs of primers prime synthesis or amplification of a nucleic acid molecule. In a preferred aspect, all or at least a portion of the synthesized or amplified nucleic acid molecule will be homologous

to all or a portion of the template and further comprises a recombination site or a portion thereof at at least one terminus and preferably both termini of the synthesized or amplified molecule. Such synthesized or amplified nucleic acid molecule may be double stranded or single stranded and may be used in the recombinational cloning methods of the invention. The homologous primers of the invention provide a substantial advantage in that one set of the primers may be standardized for any synthesis or amplification reaction. That is, the primers providing the recombination site sequences (without the target specific sequences) can be pre-made and readily available for use. This in practice allows the use of shorter custom made primers that contain the target specific sequence needed to synthesize or amplify the desired nucleic acid molecule. Thus, this provides reduced time and cost in preparing target specific primers (e.g., shorter primers containing the target specific sequences can be prepared and used in synthesis reactions). The standardized primers, on the other hand, may be produced in mass to reduce cost and can be readily provided (e.g., in kits or as a product) to facilitate synthesis of the desired nucleic acid molecules.

Thus, in one preferred aspect, the invention relates to a method of synthesizing or amplifying one or more nucleic acid molecules comprising:

- (a) mixing one or more nucleic acid templates with at least one polypeptide having polymerase or reverse transcriptase activity and at least a first primer comprising a template specific sequence (complementary to or capable of hybridizing to said templates) and at least a second primer comprising all or a portion of a recombination site wherein said at least a portion of said second primer is homologous to or complementary to at least a portion of said first primer; and
- (b) incubating said mixture under conditions sufficient to synthesize or amplify one or more nucleic acid molecules complementary to all or a portion of said templates and comprising one or more recombination sites or portions thereof at one and preferably both termini of said molecules.

More specifically, the invention relates to a method of synthesizing or amplifying one or more nucleic acid molecules comprising:

- (a) mixing one or more nucleic acid templates with at least one polypeptide having polymerase or reverse transcriptase activity and at least a first primer comprising a template specific sequence (complementary to or capable of hybridizing to said templates) and at least a portion of a recombination site, and at least a second primer comprising all or a portion of a recombination site wherein said at least a portion of said recombination site on said second primer is complementary to or homologous to at least a portion of said recombination site on said first primer; and
- (b) incubating said mixture under conditions sufficient to synthesize or amplify one or more nucleic acid molecules complementary to all or a portion of said templates and comprising one or more recombination sites or portions thereof at one and preferably both termini of said molecules.

In a more preferred aspect, the invention relates to a method of amplifying or synthesizing one or more nucleic acid molecules comprising:

- (a) mixing one or more nucleic acid templates with at least one polypeptide having polymerase or reverse transcriptase activity and one or more first primers comprising at least a portion of a recombination site and a template specific sequence (complementary to or capable of hybridizing to said template);
- (b) incubating said mixture under conditions sufficient to synthesize or amplify one or more first nucleic acid molecules complementary to all or a portion of said templates wherein said molecules comprise at least a portion of a recombination site at one and preferably both termini of said molecules;
- (c) mixing said molecules with one or more second primers comprising one or more recombination sites, wherein said recombination sites of said second primers are homologous to or

complementary to at least a portion of said recombination sites on said first nucleic acid molecules; and

- 5 (d) incubating said mixture under conditions sufficient to synthesize or amplify one or more second nucleic acid molecules complementary to all or a portion of said first nucleic acid molecules and which comprise one or more recombination sites at one and preferably both termini of said molecules.

10 The invention also relates to vectors comprising the nucleic acid molecules of the invention, to host cells comprising the vectors or nucleic acid molecules of the invention, to methods of producing polypeptides encoded by the nucleic acid molecules of the invention, and to polypeptides encoded by these nucleic acid molecules or produced by the methods of the invention, which may be fusion proteins. The invention also relates to antibodies that bind to one or more polypeptides of the invention or epitopes thereof, which may be monoclonal or 15 polyclonal antibodies. The invention also relates to the use of these nucleic acid molecules, primers, vectors, polypeptides and antibodies in methods for recombinational cloning of nucleic acids, *in vitro* and *in vivo*, to provide chimeric DNA molecules that have particular characteristics and/or DNA segments.

20 The antibodies of the invention may have particular use to identify and/or purify peptides or proteins (including fusion proteins produced by the invention), and to identify and/or purify the nucleic acid molecules of the invention or portions thereof.

25 The methods for *in vitro* or *in vivo* recombinational cloning of nucleic acid molecule generally relate to recombination between at least a first nucleic acid molecule having at least one recombination site and a second nucleic acid molecule having at least one recombination site to provide a chimeric nucleic acid molecule. In one aspect, the methods relate to recombination between a first vector having at least one recombination site and a second vector having at least one recombination site to provide a chimeric vector. In another aspect, a nucleic acid molecule having at least one recombination site is combined with a vector having at least one recombination site to provide a chimeric vector. In a most 30 preferred aspect, the nucleic acid molecules or vectors used in recombination

comprise two or more recombination sites. In a more specific embodiment of the invention, the recombination methods relate to a Destination Reaction (also referred to herein as an "LR reaction") in which recombination occurs between an Entry clone and a Destination Vector. Such a reaction transfers the nucleic acid molecule of interest from the Entry Clone into the Destination Vector to create an Expression Clone. The methods of the invention also specifically relate to an Entry or Gateward reaction (also referred to herein as a "BP reaction") in which an Expression Clone is recombined with a Donor vector to produce an Entry clone. In other aspects, the invention relates to methods to prepare Entry clones by combining an Entry vector with at least one nucleic acid molecule (e.g., gene or portion of a gene). The invention also relates to conversion of a desired vector into a Destination Vector by including one or more (preferably at least two) recombination sites in the vector of interest. In a more preferred aspect, a nucleic acid molecule (e.g., a cassette) having at least two recombination sites flanking a selectable marker (e.g., a toxic gene or a genetic element preventing the survival of a host cell containing that gene or element, and/or preventing replication, partition or heritability of a nucleic acid molecule (e.g., a vector or plasmid) comprising that gene or element) is added to the vector to make a Destination Vector of the invention.

Preferred vectors for use in the invention include prokaryotic vectors, eukaryotic vectors, or vectors which may shuttle between various prokaryotic and/or eukaryotic systems (e.g. shuttle vectors). Preferred prokaryotic vectors for use in the invention include but are not limited to vectors which may propagate and/or replicate in gram negative and/or gram positive bacteria, including bacteria of the genera *Escherichia*, *Salmonella*, *Proteus*, *Clostridium*, *Klebsiella*, *Bacillus*, *Streptomyces*, and *Pseudomonas* and preferably in the species *E. coli*. Eukaryotic vectors for use in the invention include vectors which propagate and/or replicate in yeast cells, plant cells, mammalian cells, (particularly human and mouse), fungal cells, insect cells, nematode cells, fish cells and the like. Particular vectors of interest include but are not limited to cloning vectors, sequencing vectors, expression vectors, fusion vectors, two-hybrid vectors, gene therapy vectors, phage display vectors, gene-targeting vectors, PACs, BACs, YACs, MACs, and

reverse two-hybrid vectors. Such vectors may be used in prokaryotic and/or eukaryotic systems depending on the particular vector.

In another aspect, the invention relates to kits which may be used in carrying out the methods of the invention, and more specifically relates to cloning or subcloning kits and kits for carrying out the LR Reaction (*e.g.*, making an Expression Clone), for carrying out the BP Reaction (*e.g.*, making an Entry Clone), and for making Entry Clone and Destination Vector molecules of the invention. Such kits may comprise a carrier or receptacle being compartmentalized to receive and hold therein any number of containers. Such containers may contain any number of components for carrying out the methods of the invention or combinations of such components. In particular, a kit of the invention may comprise one or more components (or combinations thereof) selected from the group consisting of one or more recombination proteins or auxiliary factors or combinations thereof, one or more compositions comprising one or more recombination proteins or auxiliary factors or combinations thereof (for example, GATEWAY™ LR Clonase™ Enzyme Mix or GATEWAY™ BP Clonase™ Enzyme Mix), one or more reaction buffers, one or more nucleotides, one or more primers of the invention, one or more restriction enzymes, one or more ligases, one or more polypeptides having polymerase activity (*e.g.*, one or more reverse transcriptases or DNA polymerases), one or more proteinases (*e.g.*, proteinase K or other proteinases), one or more Destination Vector molecules, one or more Entry Clone molecules, one or more host cells (*e.g.* competent cells, such as *E. coli* cells, yeast cells, animal cells (including mammalian cells, insect cells, nematode cells, avian cells, fish cells, etc.), plant cells, and most particularly *E. coli* DB3.1 host cells, such as *E. coli* LIBRARY EFFICIENCY® DB3.1™ Competent Cells), instructions for using the kits of the invention (*e.g.*, to carry out the methods of the invention), and the like. In related aspects, the kits of the invention may comprise one or more nucleic acid molecules encoding one or more recombination sites or portions thereof, particularly one or more nucleic acid molecules comprising a nucleotide sequence encoding the one or more recombination sites or portions thereof of the invention. Preferably, such nucleic acid molecules comprise at least two recombination sites which flank a selectable

marker (*e.g.*, a toxic gene and/or antibiotic resistance gene). In a preferred aspect, such nucleic acid molecules are in the form of a cassette (*e.g.*, a linear nucleic acid molecule comprising one or more and preferably two or more recombination sites or portions thereof).

5 Kits for inserting or adding recombination sites to nucleic acid molecules of interest may comprise one or more nucleases (preferably restriction endonucleases), one or more ligases, one or more topoisomerases, one or more polymerases, and one or more nucleic acid molecules or adapters comprising one or more recombination sites. Kits for integrating recombination sites into one or 10 more nucleic acid molecules of interest may comprise one or more components (or combinations thereof) selected from the group consisting of one or more integration sequences comprising one or more recombination sites. Such integration sequences may comprise one or more transposons, integrating viruses, homologous recombination sequences, RNA molecules, one or more host cells 15 and the like.

Kits for making the Entry Clone molecules of the invention may comprise any or a number of components and the composition of such kits may vary depending on the specific method involved. Such methods may involve inserting the nucleic acid molecules of interest into an Entry or Donor Vector by the recombinational cloning methods of the invention, or using conventional molecular biology techniques (*e.g.*, restriction enzyme digestion and ligation). In a preferred aspect, the Entry Clone is made using nucleic acid amplification or synthesis products. Kits for synthesizing Entry Clone molecules from amplification or synthesis products may comprise one or more components (or combinations thereof) selected from the group consisting of one or more Donor Vectors (*e.g.*, one or more attP vectors including, but not limited to, pDONR201 (Figure 49), pDONR202 (Figure 50), pDONR203 (Figure 51), pDONR204 (Figure 52), pDONR205 (Figure 53), pDONR206 (Figure 53), and the like), one or more polypeptides having polymerase activity (preferably DNA polymerases and most preferably thermostable DNA polymerases), one or more proteinases, one or more reaction buffers, one or more nucleotides, one or more primers comprising one or 20 25 30

more recombination sites or portions thereof, and instructions for making one or more Entry Clones.

Kits for making the Destination vectors of the invention may comprise any number of components and the compositions of such kits may vary depending on the specific method involved. Such methods may include the recombination methods of the invention or conventional molecular biology techniques (e.g., restriction endonuclease digestion and ligation). In a preferred aspect, the Destination vector is made by inserting a nucleic acid molecule comprising at least one recombination site (or portion thereof) of the invention (preferably a nucleic acid molecule comprising at least two recombination sites or portions thereof flanking a selectable marker) into a desired vector to convert the desired vector into a Destination vector of the invention. Such kits may comprise at least one component (or combinations thereof) selected from the group consisting of one or more restriction endonucleases, one or more ligases, one or more polymerases, one or more nucleotides, reaction buffers, one or more nucleic acid molecules comprising at least one recombination site or portion thereof (preferably at least one nucleic acid molecule comprising at least two recombination sites flanking at least one selectable marker, such as a cassette comprising at least one selectable marker such as antibiotic resistance genes and/or toxic genes), and instructions for making such Destination vectors.

The invention also relates to kits for using the antibodies of the invention in identification and/or isolation of peptides and proteins (which may be fusion proteins) produced by the nucleic acid molecules of the invention, and for identification and/or isolation of the nucleic acid molecules of the invention or portions thereof. Such kits may comprise one or more components (or combination thereof) selected from the group consisting of one or more antibodies of the invention, one or more detectable labels, one or more solid supports and the like.

Other preferred embodiments of the present invention will be apparent to one of ordinary skill in light of what is known in the art, in light of the following drawings and description of the invention, and in light of the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 depicts one general method of the present invention, wherein the starting (parent) DNA molecules can be circular or linear. The goal is to exchange the new subcloning vector D for the original cloning vector B. It is desirable in one embodiment to select for AD and against all the other molecules, including the Cointegrate. The square and circle are sites of recombination: *e.g.*, *lox* (such as *loxP*) sites, *att* sites, *etc.* For example, segment D can contain expression signals, protein fusion domains, new drug markers, new origins of replication, or specialized functions for mapping or sequencing DNA. It should be noted that the cointegrate molecule contains Segment D (Destination vector) adjacent to segment A (Insert), thereby juxtaposing functional elements in D with the insert in A. Such molecules can be used directly *in vitro* (*e.g.*, if a promoter is positioned adjacent to a gene-for *in vitro* transcription/translation) or *in vivo* (following isolation in a cell capable of propagating *ccdB*-containing vectors) by selecting for the selection markers in Segments B+D. As one skilled in the art will recognize, this single step method has utility in certain envisioned applications of the invention.

Figure 2 is a more detailed depiction of the recombinational cloning system of the invention, referred to herein as the "GATEWAY™ Cloning System." This figure depicts the production of Expression Clones via a "Destination Reaction," which may also be referred to herein as an "LR Reaction." A kan' vector (referred to herein as an "Entry clone") containing a DNA molecule of interest (*e.g.*, a gene) localized between an *attL1* site and an *attL2* site is reacted with an amp' vector (referred to herein as a "Destination Vector") containing a toxic or "death" gene localized between an *attR1* site and an *attR2* site, in the presence of GATEWAY™ LR Clonase™ Enzyme Mix (a mixture of Int, IHF and Xis). After incubation at 25°C for about 60 minutes, the reaction yields an amp' Expression Clone containing the DNA molecule of interest localized between an *attB1* site and an *attB2* site, and a kan' byproduct molecule, as well as intermediates. The reaction mixture may then be transformed into host cells (*e.g.*, *E. coli*) and clones containing the nucleic acid molecule of interest may

be selected by plating the cells onto ampicillin-containing media and picking amp^r colonies.

5 **Figure 3** is a schematic depiction of the cloning of a nucleic acid molecule from an Entry clone into multiple types of Destination vectors, to produce a variety of Expression Clones. Recombination between a given Entry clone and different types of Destination vectors (not shown), via the LR Reaction depicted in Figure 2, produces multiple different Expression Clones for use in a variety of applications and host cell types.

10 **Figure 4** is a detailed depiction of the production of Entry Clones via a "BP reaction," also referred to herein as an "Entry Reaction" or a "Gateward Reaction." In the example shown in this figure, an amp^r expression vector containing a DNA molecule of interest (e.g., a gene) localized between an attB1 site and an attB2 site is reacted with a kan^r Donor vector (e.g., an attP vector; here, GATEWAY™ pDONR201 (see Figure 49A-C)) containing a toxic or "death" gene localized between an attP1 site and an attP2 site, in the presence of GATEWAY™ BP Clonase™ Enzyme Mix (a mixture of Int and IHF). After incubation at 25 °C for about 60 minutes, the reaction yields a kan^r Entry clone containing the DNA molecule of interest localized between an attL1 site and an attL2 site, and an amp^r by-product molecule. The Entry clone may then be 15 transformed into host cells (e.g., *E. coli*) and clones containing the Entry clone (and therefore the nucleic acid molecule of interest) may be selected by plating the cells onto kanamycin-containing media and picking kan^r colonies. Although this figure shows an example of use of a kan^r Donor vector, it is also possible to use 20 Donor vectors containing other selection markers, such as the gentamycin resistance or tetracycline resistance markers, as discussed herein.

25 **Figure 5** is a more detailed schematic depiction of the LR ("Destination") reaction (Figure 5A) and the BP ("Entry" or "Gateward") reaction (Figure 5B) of the GATEWAY™ Cloning System, showing the reactants, products and byproducts of each reaction.

Figure 6 shows the sequences of the attB1 and attB2 sites flanking a gene of interest after subcloning into a Destination Vector to create an Expression Clone.

5 **Figure 7** is a schematic depiction of four ways to make Entry Clones using the compositions and methods of the invention: 1. using restriction enzymes and ligase; 2. starting with a cDNA library prepared in an attL Entry Vector; 3. using an Expression Clone from a library prepared in an attB Expression Vector via the BxP reaction; and 4. recombinational cloning of PCR fragments with terminal attB sites, via the BxP reaction. Approaches 3 and 4 rely on recombination with a
10 Donor vector (here, an attP vector such as pDONR201 (see Figure 49A-C), pDONR202 (see Figure 50A-C), pDONR203 (see Figure 51A-C), pDONR204 (see Figure 52A-C), pDONR205 (see Figure 53A-C), or pDONR206 (see Figure 54A-C), for example) that provides an Entry Clone carrying a selection marker such as kan^r, gen^r, tet^r, or the like.

15 **Figure 8** is a schematic depiction of cloning of a PCR product by a BxP (Entry or Gateward) reaction. A PCR product with 25 bp terminal attB sites (plus four Gs) is shown as a substrate for the BxP reaction. Recombination between the attB-PCR product of a gene and a Donor vector (which donates an Entry Vector that carries kan^r) results in an Entry Clone of the PCR product.

20 **Figure 9** is a listing of the nucleotide sequences of the recombination sites designated herein as *attB1*, *attB2*, *attP1*, *attP2*, *attL1*, *attL2*, *attR1* and *attR2*. Sequences are written conventionally, from 5' to 3'.

25 **Figures 10-20:** The plasmid backbone for all the Entry Vectors depicted herein is the same, and is shown in Figure 10A for the Entry Vector pENTR1A. For other Entry Vectors shown in Figures 11-20, only the sequences shown in Figure "A" for each figure set (*i.e.*, Figure 11A, Figure 12A, etc.) are different (within the attL1-attL2 cassettes) from those shown in Figure 10 -- the plasmid backbone is identical.

30 **Figure 10** is a schematic depiction of the physical map and cloning sites (Figure 10A), and the nucleotide sequence (Figure 10B), of the Entry Vector pENTR1A.

5 **Figure 11** is a schematic depiction of the cloning sites (Figure 11A) and the nucleotide sequence (Figure 11B) of the Entry Vector pENTR2B.

10 **Figure 12** is a schematic depiction of the cloning sites (Figure 12A) and the nucleotide sequence (Figure 12B) of the Entry Vector pENTR3C.

15 **Figure 13** is a schematic depiction of the cloning sites (Figure 13A) and the nucleotide sequence (Figure 13B) of the Entry Vector pENTR4.

20 **Figure 14** is a schematic depiction of the cloning sites (Figure 14A) and the nucleotide sequence (Figure 14B) of the Entry Vector pENTR5.

25 **Figure 15** is a schematic depiction of the cloning sites (Figure 15A) and the nucleotide sequence (Figure 15B) of the Entry Vector pENTR6.

30 **Figure 16** is a schematic depiction of the cloning sites (Figure 16A) and the nucleotide sequence (Figure 16B) of the Entry Vector pENTR7.

35 **Figure 17** is a schematic depiction of the cloning sites (Figure 17A) and the nucleotide sequence (Figure 17B) of the Entry Vector pENTR8.

40 **Figure 18** is a schematic depiction of the cloning sites (Figure 18A) and the nucleotide sequence (Figure 18B) of the Entry Vector pENTR9.

45 **Figure 19** is a schematic depiction of the cloning sites (Figure 19A) and the nucleotide sequence (Figure 19B) of the Entry Vector pENTR10.

50 **Figure 20** is a schematic depiction of the cloning sites (Figure 20A) and the nucleotide sequence (Figure 20B) of the Entry Vector pENTR11.

55 **Figure 21** is a schematic depiction of the physical map and the Trc expression cassette (Figure 21A) showing the promoter sequences at -35 and at -10 from the initiation codon, and the nucleotide sequence (Figure 21B-D), of Destination Vector pDEST1. This vector may also be referred to as pTrc-
60 DEST1.

65 **Figure 22** is a schematic depiction of the physical map and the His6 expression cassette (Figure 22A) showing the promoter sequences at -35 and at -10 from the initiation codon, and the nucleotide sequence (Figure 22B-D), of Destination Vector pDEST2. This vector may also be referred to as pHis6-
70 DEST2.

5 **Figure 23** is a schematic depiction of the physical map and the GST expression cassette (Figure 23A) showing the promoter sequences at -35 and at -10 from the initiation codon, and the nucleotide sequence (Figure 23B-D), of Destination Vector pDEST3. This vector may also be referred to as pGST-DEST3.

10 **Figure 24** is a schematic depiction of the physical map and the His6-Trx expression cassette (Figure 24A) showing the promoter sequences at -35 and at -10 from the initiation codon and a TEV protease cleavage site, and the nucleotide sequence (Figure 24B-D), of Destination Vector pDEST4. This vector may also be referred to as pTrx-DEST4.

15 **Figure 25** is a schematic depiction of the attR1 and attR2 sites (Figure 25A), the physical map (Figure 25B), and the nucleotide sequence (Figure 25C-D), of Destination Vector pDEST5. This vector may also be referred to as pSPORT(+-)-DEST5.

20 **Figure 26** is a schematic depiction of the attR1 and attR2 sites (Figure 26A), the physical map (Figure 26B), and the nucleotide sequence (Figure 26C-D), of Destination Vector pDEST6. This vector may also be referred to as pSPORT(-)-DEST6.

25 **Figure 27** is a schematic depiction of the attR1 site, CMV promoter, and the physical map (Figure 27A), and the nucleotide sequence (Figure 27B-C), of Destination Vector pDEST7. This vector may also be referred to as pCMV-DEST7.

30 **Figure 28** is a schematic depiction of the attR1 site, baculovirus polyhedrin promoter, and the physical map (Figure 28A), and the nucleotide sequence (Figure 28B-D), of Destination Vector pDEST8. This vector may also be referred to as pFastBac-DEST8.

35 **Figure 29** is a schematic depiction of the attR1 site, Semliki Forest Virus promoter, and the physical map (Figure 29A), and the nucleotide sequence (Figure 29B-E), of Destination Vector pDEST9. This vector may also be referred to as pSFV-DEST9.

Figure 30 is a schematic depiction of the attR1 site, baculovirus polyhedrin promoter, His6 fusion domain, and the physical map (Figure 30A), and the nucleotide sequence (Figure 30B-D), of Destination Vector pDEST10. This vector may also be referred to as pFastBacHT-DEST10.

5 Figure 31 is a schematic depiction of the attR1 cassette containing a tetracycline-regulated CMV promoter and the physical map (Figure 31A), and the nucleotide sequence (Figure 31B-D), of Destination Vector pDEST11. This vector may also be referred to as pTet-DEST11.

10 Figure 32 is a schematic depiction of the attR1 site, the start of the mRNA of the CMV promoter, and the physical map (Figure 32A), and the nucleotide sequence (Figure 32B-D), of Destination Vector pDEST12.2. This vector may also be referred to as pCMVneo-DEST12, as pCMV-DEST12, or as pDEST12.

15 Figure 33 is a schematic depiction of the attR1 site, the λP_L promoter, and the physical map (Figure 33A), and the nucleotide sequence (Figure 33B-C), of Destination Vector pDEST13. This vector may also be referred to as $p\lambda P_L$ -DEST13.

20 Figure 34 is a schematic depiction of the attR1 site, the T7 promoter, and the physical map (Figure 34A), and the nucleotide sequence (Figure 34B-D), of Destination Vector pDEST14. This vector may also be referred to as pPT7-DEST14.

Figure 35 is a schematic depiction of the attR1 site, the T7 promoter, and the N-terminal GST fusion sequence, and the physical map (Figure 35A), and the nucleotide sequence (Figure 35B-D), of Destination Vector pDEST15. This vector may also be referred to as pT7 GST-DEST15.

25 Figure 36 is a schematic depiction of the attR1 site, the T7 promoter, and the N-terminal thioredoxin fusion sequence, and the physical map (Figure 36A), and the nucleotide sequence (Figure 36B-D), of Destination Vector pDEST16. This vector may also be referred to as pT7 Trx-DEST16.

30 Figure 37 is a schematic depiction of the attR1 site, the T7 promoter, and the N-terminal His6 fusion sequence, and the physical map (Figure 37A), and the

nucleotide sequence (Figure 37B-D), of Destination Vector pDEST17. This vector may also be referred to as pT7 His-DEST17.

5 **Figure 38** is a schematic depiction of the attR1 site and the p10 baculovirus promoter, and the physical map (Figure 38A), and the nucleotide sequence (Figure 38B-D), of Destination Vector pDEST18. This vector may also be referred to as pFBp10-DEST18.

10 **Figure 39** is a schematic depiction of the attR1 site, and the 39k baculovirus promoter, and the physical map (Figure 39A), and the nucleotide sequence (Figure 39B-D), of Destination Vector pDEST19. This vector may also be referred to as pFB39k-DEST19.

15 **Figure 40** is a schematic depiction of the attR1 site, the *polh* baculovirus promoter, and the N-terminal GST fusion sequence, and the physical map (Figure 40A), and the nucleotide sequence (Figure 40B-D), of Destination Vector pDEST20. This vector may also be referred to as pFB GST-DEST20.

20 **Figure 41** is a schematic depiction of a 2-hybrid vector with a DNA-binding domain, the attR1 site, and the ADH promoter, and the physical map (Figure 41A), and the nucleotide sequence (Figure 41B-E), of Destination Vector pDEST21. This vector may also be referred to as pDB Leu-DEST21.

25 **Figure 42** is a schematic depiction of a 2-hybrid vector with an activation domain, the attR1 site, and the ADH promoter, and the physical map (Figure 42A), and the nucleotide sequence (Figure 42B-D), of Destination Vector pDEST22. This vector may also be referred to as pPC86-DEST22.

30 **Figure 43** is a schematic depiction of the attR1 and attR2 sites, the T7 promoter, and the C-terminal His6 fusion sequence, and the physical map (Figure 43A), and the nucleotide sequence (Figure 43B-D), of Destination Vector pDEST23. This vector may also be referred to as pC-term-His6-DEST23.

35 **Figure 44** is a schematic depiction of the attR1 and attR2 sites, the T7 promoter, and the C-terminal GST fusion sequence, and the physical map (Figure 44A), and the nucleotide sequence (Figure 44B-D), of Destination Vector pDEST24. This vector may also be referred to as pC-term-GST-DEST24.

5 **Figure 45** is a schematic depiction of the attR1 and attR2 sites, the T7 promoter, and the C-terminal thioredoxin fusion sequence, and the physical map (Figure 45A), and the nucleotide sequence (Figure 45B-D), of Destination Vector pDEST25. This vector may also be referred to as pC-term-Trx-DEST25.

10 **Figure 46** is a schematic depiction of the attR1 site, the CMV promoter, and an N-terminal His6 fusion sequence, and the physical map (Figure 46A), and the nucleotide sequence (Figure 46B-D), of Destination Vector pDEST26. This vector may also be referred to as pCMV-SPneo-His-DEST26.

15 **Figure 47** is a schematic depiction of the attR1 site, the CMV promoter, and an N-terminal GST fusion sequence, and the physical map (Figure 47A), and the nucleotide sequence (Figure 47B-D), of Destination Vector pDEST27. This vector may also be referred to as pCMV-Spneo-GST-DEST27.

20 **Figure 48** is a depiction of the physical map (Figure 48A), the cloning sites (Figure 48B), and the nucleotide sequence (Figure 48C-D), for the attB cloning vector plasmid pEXP501. This vector may also be referred to equivalently herein as pCMV•SPORT6, pCMVSPORT6, and pCMVSport6.

25 **Figure 49** is a depiction of the physical map (Figure 49A), and the nucleotide sequence (Figure 49B-C), for the Donor plasmid pDONR201 which donates a kanamycin-resistant vector in the BP Reaction. This vector may also be referred to as pAttPkanr Donor Plasmid, or as pAttPkan Donor Plasmid

Figure 50 is a depiction of the physical map (Figure 50A), and the nucleotide sequence (Figure 50B-C), for the Donor plasmid pDONR202 which donates a kanamycin-resistant vector in the BP Reaction.

25 **Figure 51** is a depiction of the physical map (Figure 51A), and the nucleotide sequence (Figure 51B-C), for the Donor plasmid pDONR203 which donates a kanamycin-resistant vector in the BP Reaction.

Figure 52 is a depiction of the physical map (Figure 52A), and the nucleotide sequence (Figure 52B-C), for the Donor plasmid pDONR204 which donates a kanamycin-resistant vector in the BP Reaction.

Figure 53 is a depiction of the physical map (Figure 53A), and the nucleotide sequence (Figure 53B-C), for the Donor plasmid pDONR205 which donates a tetracycline-resistant vector in the BP Reaction.

5 **Figure 54** is a depiction of the physical map (Figure 54A), and the nucleotide sequence (Figure 54B-C), for the Donor plasmid pDONR206 which donates a gentamycin-resistant vector in the BP Reaction. This vector may also be referred to as pENTR22 attP Donor Plasmid, pAttPGenr Donor Plasmid, or pAttPgent Donor Plasmid.

10 **Figure 55** depicts the attB1 site, and the physical map, of an Entry Clone (pENTR7) of CAT subcloned into the Destination Vector pDEST2 (Figure 22).

15 **Figure 56** depicts the DNA components of Reaction B of the one-tube BxP reaction described in Example 16, pEZC7102 and attB-tet-PCR.

20 **Figure 57** is a physical map of the desired product of Reaction B of the one-tube BxP reaction described in Example 16, tetx7102.

15 **Figure 58** is a physical map of the Destination Vector pEZC8402.

25 **Figure 59** is a physical map of the expected tet^r subclone product, tetx8402, resulting from the LxR Reaction with tetx7102 (Figure 57) plus pEZC8402 (Figure 58).

20 **Figure 60** is a schematic depiction of the bacteriophage lambda recombination pathways in *E. coli*.

25 **Figure 61** is a schematic depiction of the DNA molecules participating in the LR Reaction. Two different co-integrates form during the LR Reaction (only one of which is shown here), depending on whether attL1 and attR1 or attL2 and attR2 are first to recombine. In one aspect, the invention provides directional cloning of a nucleic acid molecule of interest, since the recombination sites react with specificity (attL1 reacts with attR1; attL2 with attR2; attB1 with attP1; and attB2 with attP2). Thus, positioning of the sites allows construction of desired vectors having recombined fragments in the desired orientation.

30 **Figure 62** is a depiction of native and fusion protein expression using the recombinational cloning methods and compositions of the invention. In the upper figure depicting native protein expression, all of the translational start signals are

included between the attB1 and attB2 sites; therefore, these signals must be present in the starting Entry Clone. The lower figure depicts fusion protein expression (here showing expression with both N-terminal and C-terminal fusion tags so that ribosomes read through attB1 and attB2 to create the fusion protein).
5 Unlike native protein expression vectors, N-terminal fusion vectors have their translational start signals upstream of the attB1 site.

10 **Figure 63** is a schematic depiction of three GATEWAY™ Cloning System cassettes. Three blunt-ended cassettes are depicted which convert standard expression vectors to Destination Vectors. Each of the depicted cassettes provides amino-terminal fusions in one of three possible reading frames, and each has a distinctive restriction cleavage site as shown.

15 **Figure 64** shows the physical maps of plasmids containing three attR reading frame cassettes, pEZC15101 (reading frame A; Figure 64A), pEZC15102 (reading frame B; Figure 64B), and pEZC15103 (reading frame C; Figure 64C).

20 **Figure 65** depicts the attB primers used for amplifying the tet^r and amp^r genes from pBR322 by the cloning methods of the invention.

25 **Figure 66** is a table listing the results of recombinational cloning of the tet^r and amp^r PCR products made using the primers shown in Figure 65.

30 **Figure 67** is a graph showing the effect of the number of guanines (G's) contained on the 5' end of the PCR primers on the cloning efficiency of PCR products. It is noted, however, that other nucleotides besides guanine (including A, T, C, U or combinations thereof) may be used as 5' extensions on the PCR primers to enhance cloning efficiency of PCR products.

25 **Figure 68** is a graph showing a titration of various amounts of attP and attB reactants in the BxP reaction, and the effects on cloning efficiency of PCR products.

30 **Figure 69** is a series of graphs showing the effects of various weights (Figure 69A) or moles (Figure 69B) of a 256 bp PCR product on formation of colonies, and on efficiency of cloning of the 256 bp PCR product into a Donor Vector (Figure 69C).

Figure 70 is a series of graphs showing the effects of various weights (Figure 70A) or moles (Figure 70B) of a 1 kb PCR product on formation of colonies, and on efficiency of cloning of the 1 kb PCR product into a Donor Vector (Figure 70C).

5 Figure 71 is a series of graphs showing the effects of various weights (Figure 71A) or moles (Figure 71B) of a 1.4 kb PCR product on formation of colonies, and on efficiency of cloning of the 1.4 kb PCR product into a Donor Vector (Figure 71C).

10 Figure 72 is a series of graphs showing the effects of various weights (Figure 72A) or moles (Figure 72B) of a 3.4 kb PCR product on formation of colonies, and on efficiency of cloning of the 3.4 kb PCR product into a Donor Vector (Figure 72C).

15 Figure 73 is a series of graphs showing the effects of various weights (Figure 73A) or moles (Figure 73B) of a 4.6 kb PCR product on formation of colonies, and on efficiency of cloning of the 4.6 kb PCR product into a Donor Vector (Figure 73C).

20 Figure 74 is photograph of an ethidium bromide-stained gel of a titration of a 6.9 kb PCR product in a BxP reaction.

Figure 75 is a graph showing the effects of various amounts of a 10.1 kb PCR product on formation of colonies upon cloning of the 10.1 kb PCR product into a Donor Vector.

25 Figure 76 is photograph of an ethidium bromide-stained gel of a titration of a 10.1 kb PCR product in a BxP reaction.

Figure 77 is a table summarizing the results of the PCR product cloning efficiency experiments depicted in Figures 69-74, for PCR fragments ranging in size from 0.256 kb to 6.9 kb.

30 Figure 78 is a depiction of the sequences at the ends of attR Cassettes. Sequences contributed by the Cm^r-ccdB cassette are shown, including the outer ends of the flanking attR sites (boxed). The staggered cleavage sites for Int are indicated in the boxed regions. Following recombination with an Entry Clone, only the outer sequences in attR sites contribute to the resulting attB sites in the

Expression Clone. The underlined sequences at both ends dictate the different reading frames (reading frames A, B, or C, with two alternative reading frame C cassettes depicted) for fusion proteins.

5 **Figure 79** is a depiction of several different attR cassettes (in reading frames A, B, or C) which may provide fusion codons at the amino-terminus of the encoded protein.

10 **Figure 80** illustrates the single-cutting restriction sites in an attR reading frame A cassette of the invention.

15 **Figure 81** illustrates the single-cutting restriction sites in an attR reading frame B cassette of the invention.

20 **Figure 82** illustrates the single-cutting restriction sites in two alternative attR reading frame C cassettes of the invention (Figures 82A and 82B) depicted in Figure 78.

25 **Figure 83** shows the physical map (Figure 83A), and the nucleotide sequence (Figure 83B-C), for an attR reading frame C parent plasmid prfC Parent III, which contains an attR reading frame C cassette of the invention (alternative A in Figures 78 and 82).

30 **Figure 84** is a physical map of plasmid pEZC1301.

20 **Figure 85** is a physical map of plasmid pEZC1313.

25 **Figure 86** is a physical map of plasmid pEZ14032.

30 **Figure 87** is a physical map of plasmid pMAB58.

25 **Figure 88** is a physical map of plasmid pMAB62.

30 **Figure 89** is a depiction of a synthesis reaction using two pairs of homologous primers of the invention.

25 **Figure 90** is a schematic depiction of the physical map (Figure 90A), and the nucleotide sequence (Figure 90B-D), of Destination Vector pDEST28.

30 **Figure 91** is a schematic depiction of the physical map (Figure 91A), and the nucleotide sequence (Figure 91B-D), of Destination Vector pDEST29.

25 **Figure 92** is a schematic depiction of the physical map (Figure 92A), and the nucleotide sequence (Figure 92B-D), of Destination Vector pDEST30.

5 **Figure 93** is a schematic depiction of the physical map (Figure 93A), and the nucleotide sequence (Figure 93B-D), of Destination Vector pDEST31.

10 **Figure 94** is a schematic depiction of the physical map (Figure 94A), and the nucleotide sequence (Figure 94B-E), of Destination Vector pDEST32.

15 **Figure 95** is a schematic depiction of the physical map (Figure 95A), and the nucleotide sequence (Figure 95B-D), of Destination Vector pDEST33.

20 **Figure 96** is a schematic depiction of the physical map (Figure 96A), and the nucleotide sequence (Figure 96B-D), of Destination Vector pDEST34.

25 **Figure 97** is a depiction of the physical map (Figure 97A), and the nucleotide sequence (Figure 97B-C), for the Donor plasmid pDONR207 which donates a gentamycin-resistant vector in the BP Reaction.

30 **Figure 98** is a schematic depiction of the physical map (Figure 98A), and the nucleotide sequence (Figure 98B-D), of the 2-hybrid vector pMAB85.

35 **Figure 99** is a schematic depiction of the physical map (Figure 99A), and the nucleotide sequence (Figure 99B-D), of the 2-hybrid vector pMAB86.

DETAILED DESCRIPTION OF THE INVENTION

20 *Definitions*

In the description that follows, a number of terms used in recombinant DNA technology are utilized extensively. In order to provide a clear and consistent understanding of the specification and claims, including the scope to be given such terms, the following definitions are provided.

25 **Byproduct:** is a daughter molecule (a new clone produced after the second recombination event during the recombinational cloning process) lacking the segment which is desired to be cloned or subcloned.

30 **Cointegrate:** is at least one recombination intermediate nucleic acid molecule of the present invention that contains both parental (starting) molecules. It will usually be linear. In some embodiments it can be circular. RNA and polypeptides may be expressed from cointegrates using an appropriate host cell strain, for example *E. coli* DB3.1 (particularly *E. coli* LIBRARY EFFICIENCY®

DB3.1TM Competent Cells), and selecting for both selection markers found on the cointegrate molecule.

5 **Host:** is any prokaryotic or eukaryotic organism that can be a recipient of the recombinational cloning Product, vector, or nucleic acid molecule of the invention. A "host," as the term is used herein, includes prokaryotic or eukaryotic organisms that can be genetically engineered. For examples of such hosts, see Maniatis *et al.*, *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1982).

10 **Insert or Inserts:** include the desired nucleic acid segment or a population of nucleic acid segments (segment *A* of Figure 1) which may be manipulated by the methods of the present invention. Thus, the terms Insert(s) are meant to include a particular nucleic acid (preferably DNA) segment or a population of segments. Such Insert(s) can comprise one or more nucleic acid molecules.

15 **Insert Donor:** is one of the two parental nucleic acid molecules (e.g. RNA or DNA) of the present invention which carries the Insert. The Insert Donor molecule comprises the Insert flanked on both sides with recombination sites. The Insert Donor can be linear or circular. In one embodiment of the invention, the Insert Donor is a circular DNA molecule and further comprises a cloning vector sequence outside of the recombination signals (see Figure 1). When a population of Inserts or population of nucleic acid segments are used to make the Insert Donor, a population of Insert Donors results and may be used in accordance with the invention. Examples of such Insert Donor molecules are GATEWAYTM Entry Vectors, which include but are not limited to those Entry Vectors depicted in Figures 10-20, as well as other vectors comprising a gene of interest flanked by 20 one or more *attL* sites (e.g., *attL1*, *attL2*, etc.), or by one or more *attB* sites (e.g., *attB1*, *attB2*, etc.) for the production of library clones.

25 **Product:** is one of the desired daughter molecules comprising the *A* and *D* sequences which is produced after the second recombination event during the recombinational cloning process (see Figure 1). The Product contains the nucleic acid which was to be cloned or subcloned. In accordance with the invention, when a population of Insert Donors are used, the resulting population of Product

molecules will contain all or a portion of the population of Inserts of the Insert Donors and preferably will contain a representative population of the original molecules of the Insert Donors.

Promoter: is a DNA sequence generally described as the 5'-region of a gene, located proximal to the start codon. The transcription of an adjacent DNA segment is initiated at the promoter region. A repressible promoter's rate of transcription decreases in response to a repressing agent. An inducible promoter's rate of transcription increases in response to an inducing agent. A constitutive promoter's rate of transcription is not specifically regulated, though it can vary under the influence of general metabolic conditions.

Recognition sequence: Recognition sequences are particular sequences which a protein, chemical compound, DNA, or RNA molecule (e.g., restriction endonuclease, a modification methylase, or a recombinase) recognizes and binds. In the present invention, a recognition sequence will usually refer to a recombination site. For example, the recognition sequence for Cre recombinase is *loxP* which is a 34 base pair sequence comprised of two 13 base pair inverted repeats (serving as the recombinase binding sites) flanking an 8 base pair core sequence. See Figure 1 of Sauer, B., *Current Opinion in Biotechnology* 5:521-527 (1994). Other examples of recognition sequences are the *attB*, *attP*, *attL*, and *attR* sequences which are recognized by the recombinase enzyme λ Integrase. *attB* is an approximately 25 base pair sequence containing two 9 base pair core-type Int binding sites and a 7 base pair overlap region. *attP* is an approximately 240 base pair sequence containing core-type Int binding sites and arm-type Int binding sites as well as sites for auxiliary proteins integration host factor (IHF), FIS and excisionase (Xis). See Landy, *Current Opinion in Biotechnology* 3:699-707 (1993). Such sites may also be engineered according to the present invention to enhance production of products in the methods of the invention. When such engineered sites lack the P1 or H1 domains to make the recombination reactions irreversible (e.g., *attR'* or *attP'*), such sites may be designated *attR'* or *attP'* to show that the domains of these sites have been modified in some way.

5 **Recombination proteins:** include excisive or integrative proteins, enzymes, co-factors or associated proteins that are involved in recombination reactions involving one or more recombination sites, which may be wild-type proteins (See Landy, *Current Opinion in Biotechnology* 3:699-707 (1993)), or mutants, derivatives (e.g., fusion proteins containing the recombination protein sequences or fragments thereof), fragments, and variants thereof.

10 **Recombination site:** is a recognition sequence on a DNA molecule participating in an integration/recombination reaction by the recombinational cloning methods of the invention. Recombination sites are discrete sections or segments of DNA on the participating nucleic acid molecules that are recognized and bound by a site-specific recombination protein during the initial stages of integration or recombination. For example, the recombination site for Cre recombinase is *loxP* which is a 34 base pair sequence comprised of two 13 base pair inverted repeats (serving as the recombinase binding sites) flanking an 8 base pair core sequence. See Figure 1 of Sauer, B., *Curr. Opin. Biotech.* 5:521-527 (1994). Other examples of recognition sequences include the *attB*, *attP*, *attL*, and *attR* sequences described herein, and mutants, fragments, variants and derivatives thereof, which are recognized by the recombination protein λ Int and by the auxiliary proteins integration host factor (IHF), FIS and excisionase (Xis). See
15 Landy, *Curr. Opin. Biotech.* 3:699-707 (1993).

20 **Recombinational Cloning:** is a method described herein, whereby segments of nucleic acid molecules or populations of such molecules are exchanged, inserted, replaced, substituted or modified, *in vitro* or *in vivo*. By "in vitro" and "in vivo" herein is meant recombinational cloning that is carried out outside of host cells (e.g., in cell-free systems) or inside of host cells (e.g., using recombinant proteins expressed by host cells), respectively.

25 **Repression cassette:** is a nucleic acid segment that contains a repressor or a Selectable marker present in the subcloning vector.

30 **Selectable marker:** is a DNA segment that allows one to select for or against a molecule (e.g., a replicon) or a cell that contains it, often under particular conditions. These markers can encode an activity, such as, but not limited to,

production of RNA, peptide, or protein, or can provide a binding site for RNA, peptides, proteins, inorganic and organic compounds or compositions and the like. Examples of Selectable markers include but are not limited to: (1) DNA segments that encode products which provide resistance against otherwise toxic compounds (e.g., antibiotics); (2) DNA segments that encode products which are otherwise lacking in the recipient cell (e.g., tRNA genes, auxotrophic markers); (3) DNA segments that encode products which suppress the activity of a gene product; (4) DNA segments that encode products which can be readily identified (e.g., phenotypic markers such as β -galactosidase, green fluorescent protein (GFP), and cell surface proteins); (5) DNA segments that bind products which are otherwise detrimental to cell survival and/or function; (6) DNA segments that otherwise inhibit the activity of any of the DNA segments described in Nos. 1-5 above (e.g., antisense oligonucleotides); (7) DNA segments that bind products that modify a substrate (e.g. restriction endonucleases); (8) DNA segments that can be used to isolate or identify a desired molecule (e.g. specific protein binding sites); (9) DNA segments that encode a specific nucleotide sequence which can be otherwise non-functional (e.g., for PCR amplification of subpopulations of molecules); (10) DNA segments, which when absent, directly or indirectly confer resistance or sensitivity to particular compounds; (11) DNA segments that encode products which are toxic in recipient cells; (12) DNA segments that inhibit replication, partition or heritability of nucleic acid molecules that contain them; and/or (13) DNA segments that encode conditional replication functions, e.g., replication in certain hosts or host cell strains or under certain environmental conditions (e.g., temperature, nutritional conditions, etc.).

Selection scheme: is any method which allows selection, enrichment, or identification of a desired Product or Product(s) from a mixture containing an Entry Clone or Vector, a Destination Vector, a Donor Vector, an Expression Clone or Vector, any intermediates (e.g. a Cointegrate or a replicon), and/or Byproducts. The selection schemes of one preferred embodiment have at least two components that are either linked or unlinked during recombinational cloning. One component is a Selectable marker. The other component controls the expression *in vitro* or *in vivo* of the Selectable marker, or survival of the cell (or

the nucleic acid molecule, *e.g.*, a replicon) harboring the plasmid carrying the Selectable marker. Generally, this controlling element will be a repressor or inducer of the Selectable marker, but other means for controlling expression or activity of the Selectable marker can be used. Whether a repressor or activator is used will depend on whether the marker is for a positive or negative selection, and the exact arrangement of the various DNA segments, as will be readily apparent to those skilled in the art. A preferred requirement is that the selection scheme results in selection of or enrichment for only one or more desired Products. As defined herein, selecting for a DNA molecule includes (a) selecting or enriching for the presence of the desired DNA molecule, and (b) selecting or enriching against the presence of DNA molecules that are not the desired DNA molecule.

In one embodiment, the selection schemes (which can be carried out in reverse) will take one of three forms, which will be discussed in terms of Figure 1. The first, exemplified herein with a Selectable marker and a repressor therefore, selects for molecules having segment *D* and lacking segment *C*. The second selects against molecules having segment *C* and for molecules having segment *D*. Possible embodiments of the second form would have a DNA segment carrying a gene toxic to cells into which the *in vitro* reaction products are to be introduced. A toxic gene can be a DNA that is expressed as a toxic gene product (a toxic protein or RNA), or can be toxic in and of itself. (In the latter case, the toxic gene is understood to carry its classical definition of "heritable trait".)

Examples of such toxic gene products are well known in the art, and include, but are not limited to, restriction endonucleases (*e.g.*, *Dpn*I), apoptosis-related genes (*e.g.* ASK1 or members of the bcl-2/ced-9 family), retroviral genes including those of the human immunodeficiency virus (HIV), defensins such as NP-1, inverted repeats or paired palindromic DNA sequences, bacteriophage lytic genes such as those from Φ X174 or bacteriophage T4; antibiotic sensitivity genes such as *rpsL*, antimicrobial sensitivity genes such as *pheS*, plasmid killer genes, eukaryotic transcriptional vector genes that produce a gene product toxic to bacteria, such as GATA-1, and genes that kill hosts in the absence of a suppressing function, *e.g.*, *kicB*, *ccdB*, Φ X174 *E* (Liu, Q. *et al.*, *Curr. Biol.*

8:1300-1309 (1998)), and other genes that negatively affect replicon stability and/or replication. A toxic gene can alternatively be selectable *in vitro*, e.g., a restriction site.

Many genes coding for restriction endonucleases operably linked to inducible promoters are known, and may be used in the present invention. See, e.g. U.S. Patent Nos. 4,960,707 (*DpnI* and *DpnII*); 5,000,333, 5,082,784 and 5,192,675 (*KpnI*); 5,147,800 (*NgoAIII* and *NgoAI*); 5,179,015 (*FspI* and *HaeIII*); 5,200,333 (*HaeII* and *TaqI*); 5,248,605 (*HpaII*); 5,312,746 (*Clal*); 5,231,021 and 5,304,480 (*XbaI* and *XbaII*); 5,334,526 (*AluI*); 5,470,740 (*NsiI*); 5,534,428 (*SstI/SacI*); 5,202,248 (*NcoI*); 5,139,942 (*NdeI*); and 5,098,839 (*PacI*). See also Wilson, G.G., *Nucl. Acids Res.* 19:2539-2566 (1991); and Lunnen, K.D., *et al.*, *Gene* 74:25-32 (1988).

In the second form, segment *D* carries a Selectable marker. The toxic gene would eliminate transformants harboring the Vector Donor, Cointegrate, and Byproduct molecules, while the Selectable marker can be used to select for cells containing the Product and against cells harboring only the Insert Donor.

The third form selects for cells that have both segments *A* and *D* in *cis* on the same molecule, but not for cells that have both segments in *trans* on different molecules. This could be embodied by a Selectable marker that is split into two inactive fragments, one each on segments *A* and *D*.

The fragments are so arranged relative to the recombination sites that when the segments are brought together by the recombination event, they reconstitute a functional Selectable marker. For example, the recombinational event can link a promoter with a structural nucleic acid molecule (e.g., a gene), can link two fragments of a structural nucleic acid molecule, or can link nucleic acid molecules that encode a heterodimeric gene product needed for survival, or can link portions of a replicon.

Site-specific recombinase: is a type of recombinase which typically has at least the following four activities (or combinations thereof): (1) recognition of one or two specific nucleic acid sequences; (2) cleavage of said sequence or sequences; (3) topoisomerase activity involved in strand exchange; and (4) ligase

activity to reseal the cleaved strands of nucleic acid. See Sauer, B., *Current Opinions in Biotechnology* 5:521-527 (1994). Conservative site-specific recombination is distinguished from homologous recombination and transposition by a high degree of sequence specificity for both partners. The strand exchange mechanism involves the cleavage and rejoicing of specific DNA sequences in the absence of DNA synthesis (Landy, A. (1989) *Ann. Rev. Biochem.* 58:913-949).

Subcloning vector: is a cloning vector comprising a circular or linear nucleic acid molecule which includes preferably an appropriate replicon. In the present invention, the subcloning vector (segment *D* in Figure 1) can also contain functional and/or regulatory elements that are desired to be incorporated into the final product to act upon or with the cloned DNA Insert (segment *A* in Figure 1). The subcloning vector can also contain a Selectable marker (preferably DNA).

Vector: is a nucleic acid molecule (preferably DNA) that provides a useful biological or biochemical property to an Insert. Examples include plasmids, phages, autonomously replicating sequences (ARS), centromeres, and other sequences which are able to replicate or be replicated *in vitro* or in a host cell, or to convey a desired nucleic acid segment to a desired location within a host cell. A Vector can have one or more restriction endonuclease recognition sites at which the sequences can be cut in a determinable fashion without loss of an essential biological function of the vector, and into which a nucleic acid fragment can be spliced in order to bring about its replication and cloning. Vectors can further provide primer sites, *e.g.*, for PCR, transcriptional and/or translational initiation and/or regulation sites, recombinational signals, replicons, Selectable markers, *etc.* Clearly, methods of inserting a desired nucleic acid fragment which do not require the use of homologous recombination, transpositions or restriction enzymes (such as, but not limited to, UDG cloning of PCR fragments (U.S. Patent No. 5,334,575, entirely incorporated herein by reference), T:A cloning, and the like) can also be applied to clone a fragment into a cloning vector to be used according to the present invention. The cloning vector can further contain one or more selectable markers suitable for use in the identification of cells transformed with the cloning vector.

5 **Vector Donor:** is one of the two parental nucleic acid molecules (e.g. RNA or DNA) of the present invention which carries the DNA segments comprising the DNA vector which is to become part of the desired Product. The Vector Donor comprises a subcloning vector *D* (or it can be called the cloning vector if the Insert Donor does not already contain a cloning vector (e.g., for PCR fragments containing *attB* sites; see below)) and a segment *C* flanked by recombination sites (see Figure 1). Segments *C* and/or *D* can contain elements that contribute to selection for the desired Product daughter molecule, as described above for selection schemes. The recombination signals can be the same or different, and can be acted upon by the same or different recombinases. In addition, the Vector Donor can be linear or circular. Examples of such Vector Donor molecules include GATEWAY™ Destination Vectors, which include but are not limited to those Destination Vectors depicted in Figures 21-47 and 90-96.

10

15 **Primer:** refers to a single stranded or double stranded oligonucleotide that is extended by covalent bonding of nucleotide monomers during amplification or polymerization of a nucleic acid molecule (e.g. a DNA molecule). In a preferred aspect, a primer comprises one or more recombination sites or portions of such recombination sites. Portions of recombination sites comprise at least 2 bases (or basepairs, abbreviated herein as "bp"), at least 5-200 bases, at least 10-100 bases, at least 15-75 bases, at least 15-50 bases, at least 15-25 bases, or at least 16-25 bases, of the recombination sites of interest, as described in further detail below and in the Examples. When using portions of recombination sites, the missing portion of the recombination site may be provided as a template by the newly synthesized nucleic acid molecule. Such recombination sites may be located within and/or at one or both termini of the primer. Preferably, additional sequences are added to the primer adjacent to the recombination site(s) to enhance or improve recombination and/or to stabilize the recombination site during recombination. Such stabilization sequences may be any sequences (preferably G/C rich sequences) of any length. Preferably, such sequences range in size from 1 to about 1000 bases, 1 to about 500 bases, and 1 to about 100 bases, 1 to about 60 bases, 1 to about 25, 1 to about 10, 2 to about 10 and preferably about 4 bases.

20

25

30

Preferably, such sequences are greater than 1 base in length and preferably greater than 2 bases in length.

Template: refers to double stranded or single stranded nucleic acid molecules which are to be amplified, synthesized or sequenced. In the case of double stranded molecules, denaturation of its strands to form a first and a second strand is preferably performed before these molecules will be amplified, synthesized or sequenced, or the double stranded molecule may be used directly as a template. For single stranded templates, a primer complementary to a portion of the template is hybridized under appropriate conditions and one or more polypeptides having polymerase activity (e.g. DNA polymerases and/or reverse transcriptases) may then synthesize a nucleic acid molecule complementary to all or a portion of said template. Alternatively, for double stranded templates, one or more promoters may be used in combination with one or more polymerases to make nucleic acid molecules complementary to all or a portion of the template. The newly synthesized molecules, according to the invention, may be equal or shorter in length than the original template. Additionally, a population of nucleic acid templates may be used during synthesis or amplification to produce a population of nucleic acid molecules typically representative of the original template population.

Adapter: is an oligonucleotide or nucleic acid fragment or segment (preferably DNA) which comprises one or more recombination sites (or portions of such recombination sites) which in accordance with the invention can be added to a circular or linear Insert Donor molecule as well as other nucleic acid molecules described herein. When using portions of recombination sites, the missing portion may be provided by the Insert Donor molecule. Such adapters may be added at any location within a circular or linear molecule, although the adapters are preferably added at or near one or both termini of a linear molecule. Preferably, adapters are positioned to be located on both sides (flanking) a particular nucleic acid molecule of interest. In accordance with the invention, adapters may be added to nucleic acid molecules of interest by standard recombinant techniques (e.g. restriction digest and ligation). For example, adapters may be added to a circular molecule by first digesting the molecule with

an appropriate restriction enzyme, adding the adapter at the cleavage site and reforming the circular molecule which contains the adapter(s) at the site of cleavage. In other aspects, adapters may be added by homologous recombination, by integration of RNA molecules, and the like. Alternatively, adapters may be ligated directly to one or more and preferably both termini of a linear molecule thereby resulting in linear molecule(s) having adapters at one or both termini. In one aspect of the invention, adapters may be added to a population of linear molecules, (e.g. a cDNA library or genomic DNA which has been cleaved or digested) to form a population of linear molecules containing adapters at one and preferably both termini of all or substantial portion of said population.

Adapter-Primer: is primer molecule which comprises one or more recombination sites (or portions of such recombination sites) which in accordance with the invention can be added to a circular or linear nucleic acid molecule described herein. When using portions of recombination sites, the missing portion may be provided by a nucleic acid molecule (e.g., an adapter) of the invention. Such adapter-primers may be added at any location within a circular or linear molecule, although the adapter-primers are preferably added at or near one or both termini of a linear molecule. Examples of such adapter-primers and the use thereof in accordance with the methods of the invention are shown in Example 25 herein. Such adapter-primers may be used to add one or more recombination sites or portions thereof to circular or linear nucleic acid molecules in a variety of contexts and by a variety of techniques, including but not limited to amplification (e.g., PCR), ligation (e.g., enzymatic or chemical/synthetic ligation), recombination (e.g., homologous or non-homologous (illegitimate) recombination) and the like.

Library: refers to a collection of nucleic acid molecules (circular or linear). In one embodiment, a library may comprise a plurality (*i.e.*, two or more) of DNA molecules, which may or may not be from a common source organism, organ, tissue, or cell. In another embodiment, a library is representative of all or a portion or a significant portion of the DNA content of an organism (a "genomic" library), or a set of nucleic acid molecules representative of all or a portion or a significant portion of the expressed nucleic acid molecules (a cDNA library) in a

cell, tissue, organ or organism. A library may also comprise random sequences made by *de novo* synthesis, mutagenesis of one or more sequences and the like. Such libraries may or may not be contained in one or more vectors.

Amplification: refers to any *in vitro* method for increasing a number of copies of a nucleotide sequence with the use of a polymerase. Nucleic acid amplification results in the incorporation of nucleotides into a DNA and/or RNA molecule or primer thereby forming a new molecule complementary to a template. The formed nucleic acid molecule and its template can be used as templates to synthesize additional nucleic acid molecules. As used herein, one amplification reaction may consist of many rounds of replication. DNA amplification reactions include, for example, polymerase chain reaction (PCR). One PCR reaction may consist of 5-100 "cycles" of denaturation and synthesis of a DNA molecule.

Oligonucleotide: refers to a synthetic or natural molecule comprising a covalently linked sequence of nucleotides which are joined by a phosphodiester bond between the 3' position of the deoxyribose or ribose of one nucleotide and the 5' position of the deoxyribose or ribose of the adjacent nucleotide. This term may be used interchangeably herein with the terms "nucleic acid molecule" and "polynucleotide," without any of these terms necessarily indicating any particular length of the nucleic acid molecule to which the term specifically refers.

Nucleotide: refers to a base-sugar-phosphate combination. Nucleotides are monomeric units of a nucleic acid molecule (DNA and RNA). The term nucleotide includes ribonucleoside triphosphates ATP, UTP, CTG, GTP and deoxyribonucleoside triphosphates such as dATP, dCTP, dITP, dUTP, dGTP, dTTP, or derivatives thereof. Such derivatives include, for example, [α S]dATP, 7-deaza-dGTP and 7-deaza-dATP. The term nucleotide as used herein also refers to dideoxyribonucleoside triphosphates (ddNTPs) and their derivatives. Illustrated examples of dideoxyribonucleoside triphosphates include, but are not limited to, ddATP, ddCTP, ddGTP, ddITP, and ddTTP. According to the present invention, a "nucleotide" may be unlabeled or detectably labeled by well known techniques. Detectable labels include, for example, radioactive isotopes, fluorescent labels, chemiluminescent labels, bioluminescent labels and enzyme labels.

5 **Hybridization:** The terms "hybridization" and "hybridizing" refers to base pairing of two complementary single-stranded nucleic acid molecules (RNA and/or DNA) to give a double stranded molecule. As used herein, two nucleic acid molecules may be hybridized, although the base pairing is not completely complementary. Accordingly, mismatched bases do not prevent hybridization of two nucleic acid molecules provided that appropriate conditions, well known in the art, are used. In some aspects, hybridization is said to be under "stringent conditions." By "stringent conditions" as used herein is meant overnight incubation at 42°C in a solution comprising: 50% formamide, 5x SSC (150 mM NaCl, 15mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 g/ml denatured, sheared salmon sperm DNA, followed by washing the filters in 0.1x SSC at about 65°C.

10

15 Other terms used in the fields of recombinant DNA technology and molecular and cell biology as used herein will be generally understood by one of ordinary skill in the applicable arts.

Overview

20 Two reactions constitute the recombinational cloning system of the present invention, referred to herein as the "GATEWAY™ Cloning System," as depicted generally in Figure 1. The first of these reactions, the **LR Reaction** (Figure 2), which may also be referred to interchangeably herein as the **Destination Reaction**, is the main pathway of this system. The LR Reaction is a recombination reaction between an Entry vector or clone and a Destination Vector, mediated by a cocktail of recombination proteins such as the GATEWAY™ LR Clonase™ Enzyme Mix described herein. This reaction transfers nucleic acid molecules of interest (which may be genes, cDNAs, cDNA libraries, or fragments thereof) from the Entry Clone to an Expression Vector, to create an Expression Clone.

25

30 The sites labeled L, R, B, and P are respectively the attL, attR, attB, and attP recombination sites for the bacteriophage λ recombination proteins that constitute the Clonase cocktail (referred to herein variously as "Clonase" or

“GATEWAY™ LR Clonase™ Enzyme Mix” (for recombination protein mixtures mediating attL x attR recombination reactions, as described herein) or “GATEWAY™ BP Clonase™ Enzyme Mix” (for recombination protein mixtures mediating attB x attP recombination reactions, as described herein)). The Recombinational Cloning reactions are equivalent to concerted, highly specific, cutting and ligation reactions. Viewed in this way, the recombination proteins cut to the left and right of the nucleic acid molecule of interest in the Entry Clone and ligate it into the Destination vector, creating a new Expression Clone.

The nucleic acid molecule of interest in an Expression Clone is flanked by the small attB1 and attB2 sites. The orientation and reading frame of the nucleic acid molecule of interest are maintained throughout the subcloning, because attL1 reacts only with attR1, and attL2 reacts only with attR2. Likewise, attB1 reacts only with attP1, and attB2 reacts only with attP2. Thus, the invention also relates to methods of controlled or directional cloning using the recombination sites of the invention (or portions thereof), including variants, fragments, mutants and derivatives thereof which may have altered or enhanced specificity. The invention also relates more generally to any number of recombination site partners or pairs (where each recombination site is specific for and interacts with its corresponding recombination site). Such recombination sites are preferably made by mutating or modifying the recombination site to provide any number of necessary specificities (e.g., attB1-10, attP1-10, attL1-10, attR1-10, etc.), non-limiting examples of which are described in detail in the Examples herein.

When an aliquot from the recombination reaction is transformed into host cells (e.g., *E. coli*) and spread on plates containing an appropriate selection agent, e.g., an antibiotic such as ampicillin with or without methicillin, cells that take up the desired clone form colonies. The unreacted Destination Vector does not give ampicillin-resistant colonies, even though it carries the ampicillin-resistance gene, because it contains a toxic gene, e.g., *ccdB*. Thus selection for ampicillin resistance selects for *E. coli* cells that carry the desired product, which usually comprise >90% of the colonies on the ampicillin plate.

To participate in the Recombinational (or “GATEWAY™”) Cloning Reaction, a nucleic acid molecule of interest first may be cloned into an Entry

Vector, creating an Entry Clone. Multiple options are available for creating Entry Clones, including: cloning of PCR sequences with terminal attB recombination sites into Entry Vectors; using the GATEWAY™ Cloning System recombination reaction; transfer of genes from libraries prepared in GATEWAY™ Cloning System vectors by recombination into Entry Vectors; and cloning of restriction enzyme-generated fragments and PCR fragments into Entry Vectors by standard recombinant DNA methods. These approaches are discussed in further detail herein.

A key advantage of the GATEWAY™ Cloning System is that a nucleic acid molecule of interest (or even a population of nucleic acid molecules of interest) present as an Entry Clone can be subcloned in parallel into one or more Destination Vectors in a simple reactions for anywhere from about 30 seconds to about 60 minutes (preferably about 1-60 minutes, about 1-45 minutes, about 1-30 minutes, about 2-60 minutes, about 2-45 minutes, about 2-30 minutes, about 1-2 minutes, about 30-60 minutes, about 45-60 minutes, or about 30-45 minutes). Longer reaction times (*e.g.*, 2-24 hours, or overnight) may increase recombination efficiency, particularly where larger nucleic acid molecules are used, as described in the Examples herein. Moreover, a high percentage of the colonies obtained carry the desired Expression Clone. This process is illustrated schematically in Figure 3, which shows an advantage of the invention in which the molecule of interest can be moved simultaneously or separately into multiple Destination Vectors. In the LR Reaction, one or both of the nucleic acid molecules to be recombined may have any topology (*e.g.*, linear, relaxed circular, nicked circular, supercoiled, etc.), although one or both are preferably linear.

The second major pathway of the GATEWAY™ Cloning System is the **BP Reaction** (Figure 4), which may also be referred to interchangeably herein as the **Entry Reaction** or the **Gateway Reaction**. The BP Reaction may recombine an Expression Clone with a Donor Plasmid (the counterpart of the byproduct in Figure 2). This reaction transfers the nucleic acid molecule of interest (which may have any of a variety of topologies, including linear, coiled, supercoiled, etc.) in the Expression Clone into an Entry Vector, to produce a new Entry Clone. Once this nucleic acid molecule of interest is cloned into an Entry

Vector, it can be transferred into new Expression Vectors, through the LR Reaction as described above. In the BP Reaction, one or both of the nucleic acid molecules to be recombined may have any topology (*e.g.*, linear, relaxed circular, nicked circular, supercoiled, etc.), although one or both are preferably linear.

5 A useful variation of the BP Reaction permits rapid cloning and expression of products of amplification (*e.g.*, PCR) or nucleic acid synthesis. Amplification (*e.g.*, PCR) products synthesized with primers containing terminal 25 bp attB sites serve as efficient substrates for the Gateward Cloning reaction. Such amplification products may be recombined with a Donor Vector to produce an Entry Clone (see
10 Figure 7). The result is an Entry Clone containing the amplification fragment. Such Entry Clones can then be recombined with Destination Vectors -- through the LR Reaction -- to yield Expression Clones of the PCR product.

15 Additional details of the LR Reaction are shown in Figure 5A. The GATEWAY™ LR Clonase™ Enzyme Mix that mediates this reaction contains lambda recombination proteins Int (Integrase), Xis (Excisionase), and IHF (Integration Host Factor). In contrast, the GATEWAY™ BP Clonase™ Enzyme Mix, which mediates the BP Reaction (Figure 5B), comprises Int and IHF alone.
20

The recombination (att) sites of each vector comprise two distinct segments, donated by the parental vectors. The staggered lines dividing the two portions of each att site, depicted in Figures 5A and 5B, represent the seven-base staggered cut produced by Int during the recombination reactions. This structure is seen in greater detail in Figure 6, which displays the attB recombination sequences of an Expression Clone, generated by recombination between the attL1 and attL2 sites of an Entry Clone and the attR1 and attR2 sites of a Destination
25 Vector.

30 The nucleic acid molecule of interest in the Expression Clone is flanked by attB sites: attB1 to the left (amino terminus) and attB2 to the right (carboxy terminus). The bases in attB1 to the left of the seven-base staggered cut produced by Int are derived from the Destination vector, and the bases to the right of the staggered cut are derived from the Entry Vector (see Figure 6). Note that the sequence is displayed in triplets corresponding to an open reading frame. If the reading frame of the nucleic acid molecule of interest cloned in the Entry Vector

is in phase with the reading frame shown for attB1, amino-terminal protein fusions can be made between the nucleic acid molecule of interest and any GATEWAY™ Cloning System Destination Vector encoding an amino-terminal fusion domain. Entry Vectors and Destination Vectors that enable cloning in all three reading frames are described in more detail herein, particularly in the Examples.

The LR Reaction allows the transfer of a desired nucleic acid molecule of interest into new Expression Vectors by recombining a Entry Clone with various Destination Vectors. To participate in the LR or Destination Reaction, however, a nucleic acid molecule of interest preferably is first converted to a Entry Clone. Entry Clones can be made in a number of ways, as shown in Figure 7.

One approach is to clone the nucleic acid molecule of interest into one or more of the Entry Vectors, using standard recombinant DNA methods, with restriction enzymes and ligase. The starting DNA fragment can be generated by restriction enzyme digestion or as a PCR product. The fragment is cloned between the attL1 and attL2 recombination sites in the Entry Vector. Note that a toxic or "death" gene (*e.g.*, ccdB), provided to minimize background colonies from incompletely digested Entry Vector, must be excised and replaced by the nucleic acid molecule of interest.

A second approach to making an Entry Clone (Figure 7) is to make a library (genomic or cDNA) in an Entry Vector, as described in detail herein. Such libraries may then be transferred into Destination Vectors for expression screening, for example in appropriate host cells such as yeast cells or mammalian cells.

A third approach to making Entry Clones (Figure 7) is to use Expression Clones obtained from cDNA molecules or libraries prepared in Expression Vectors. Such cDNAs or libraries, flanked by attB sites, can be introduced into a Entry Vector by recombination with a Donor Vector via the BP Reaction. If desired, an entire Expression Clone library can be transferred into the Entry Vector through the BP Reaction. Expression Clone cDNA libraries may also be constructed in a variety of prokaryotic and eukaryotic GATEWAY™-modified vectors (*e.g.*, the pEXP501 Expression Vector (see Figure 48), and 2-hybrid and

attB library vectors), as described in detail herein, particularly in the Examples below.

A fourth, and potentially most versatile, approach to making an Entry Clone (Figure 7) is to introduce a sequence for a nucleic acid molecule of interest into an Entry Vector by amplification (*e.g.*, PCR) fragment cloning. This method is diagramed in Figure 8. The DNA sequence first is amplified (for example, with PCR) as outlined in detail below and in the Examples herein, using primers containing one or more bp, two or more bp, three or more bp, four or more bp, five or more bp, preferably six or more bp, more preferably 6-25 bp (particularly 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 or 25) bp of the attB nucleotide sequences (such as, but not limited to, those depicted in Figure 9), and optionally one or more, two or more, three or more, four or more, and most preferably four or five or more additional terminal nucleotide bases which preferably are guanines. The PCR product then may be converted to a Entry Clone by performing a BP Reaction, in which the attB-PCR product recombines with a Donor Vector containing one or more attP sites. Details of this approach and protocols for PCR fragment subcloning are provided in Examples 8 and 21-25.

A variety of Entry Clones may be produced by these methods, providing a wide array of cloning options; a number of specific Entry Vectors are also available commercially from Life Technologies, Inc. (Rockville, MD). The Examples herein provide a more in-depth description of selected Entry Vectors and details of their cloning sites. Choosing the optimal Entry Vector for a particular application is discussed in Example 4.

Entry Vectors and Destination Vectors should be constructed so that the amino-terminal region of a nucleic acid molecule of interest (*e.g.*, a gene, cDNA library or insert, or fragment thereof) will be positioned next to the attL1 site. Entry Vectors preferably contain the rrnB transcriptional terminator upstream of the attL1 site. This sequence ensures that expression of cloned nucleic acid molecules of interest is reliably "off" in *E. coli*, so that even toxic genes can be successfully cloned. Thus, Entry Clones may be designed to be transcriptionally silent. Note also that Entry Vectors, and hence Entry Clones, may contain the kanamycin antibiotic resistance (kan') gene to facilitate selection of host cells

containing Entry Clones after transformation. In certain applications, however, Entry Clones may contain other selection markers, including but not limited to a gentamycin resistance (*gen^r*) or tetracycline resistance (*tet^r*) gene, to facilitate selection of host cells containing Entry Clones after transformation.

Once a nucleic acid molecule of interest has been cloned into an Entry Vector, it may be moved into a Destination Vector. The upper right portion of Figure 5A shows a schematic of a Destination Vector. The thick arrow represents some function (often transcription or translation) that will act on the nucleic acid molecule of interest in the clone. During the recombination reaction, the region between the attR1 and attR2 sites, including a toxic or "death" gene (e.g., *ccdB*), is replaced by the DNA segment from the Entry Clone. Selection for recombinants that have acquired the ampicillin resistance (*amp^r*) gene (carried on the Destination Vector) and that have also lost the death gene ensures that a high percentage (usually >90%) of the resulting colonies will contain the correct insert.

To move a nucleic acid molecule of interest into a Destination Vector, the Destination Vector is mixed with the Entry Clone comprising the desired nucleic acid molecule of interest, a cocktail of recombination proteins (e.g., GATEWAY™ LR Clonase™ Enzyme Mix) is added, the mixture is incubated (preferably at about 25°C for about 60 minutes, or longer under certain circumstances, e.g. for transfer of large nucleic acid molecules, as described below) and any standard host cell (including bacterial cells such as *E. coli*; animal cells such as insect cells, mammalian cells, nematode cells and the like; plant cells; and yeast cells) strain is transformed with the reaction mixture. The host cell used will be determined by the desired selection (e.g., *E. coli* DB3.1, available commercially from Life Technologies, Inc., allows survival of clones containing the *ccdB* death gene, and thus can be used to select for cointegrate molecules -- i.e., molecules that are hybrids between the Entry Clone and Destination Vector). The Examples below provide further details and protocols for use of Entry and Destination Vectors in transferring nucleic acid molecules of interest and expressing RNAs or polypeptides encoded by these nucleic acid molecules in a variety of host cells.

The cloning system of the invention therefore offers multiple advantages:

- Once a nucleic acid molecule of interest is cloned into the GATEWAY™ Cloning System, it can be moved into and out of other vectors with complete fidelity of reading frame and orientation. That is, since the reactions proceed whereby attL1 on the Entry Clone recombines with attR1 on the Destination Vector, the directionality of the nucleic acid molecule of interest is maintained or may be controlled upon transfer from the Entry Clone into the Destination Vector. Hence, the GATEWAY™ Cloning System provides a powerful and easy method of directional cloning of nucleic acid molecule of interest.
- One-step cloning or subcloning: Mix the Entry Clone and the Destination Vector with Clonase, incubate, and transform.
- Clone PCR products readily by *in vitro* recombination, by adding attB sites to PCR primers. Then directly transfer these Entry Clones into Destination Vectors. This process may also be carried out in one step (see Examples below).
- Powerful selections give high reliability: >90% (and often >99%) of the colonies contain the desired DNA in its new vector.
- One-step conversion of existing standard vectors into GATEWAY™ Cloning System vectors.
- Ideal for large vectors or those with few cloning sites.
- Recombination sites are short (25 bp), and may be engineered to contain no stop codons or secondary structures.
- Reactions may be automated, for high-throughput applications (*e.g.*, for diagnostic purposes or for therapeutic candidate screening).
- The reactions are economical: 0.3 µg of each DNA; no restriction enzymes, phosphatase, ligase, or gel purification. Reactions work well with miniprep DNA.
- Transfer multiple clones, and even libraries, into one or more Destination Vectors, in a single experiment.
- A variety of Destination Vectors may be produced, for applications including, but not limited to:

• Protein expression in *E. coli*: native proteins; fusion proteins with GST, His6, thioredoxin, etc., for purification, or one or more epitope tags; any promoter useful in expressing proteins in *E. coli* may be used, such as ptrc, λP_L , and T7 promoters.

5 • Protein expression in eukaryotic cells: CMV promoter, baculovirus (with or without His6 tag), Semliki Forest virus, Tet regulation.

• DNA sequencing (all *lac* primers), RNA probes, phagemids (both strands)

- 10 • A variety of Entry Vectors (for recombinational cloning entry by standard recombinant DNA methods) may be produced:

• Strong transcription stop just upstream, for genes toxic to *E. coli*.

• Three reading frames.

• With or without TEV protease cleavage site.

• Motifs for prokaryotic and / or eukaryotic translation.

15 • Compatible with commercial cDNA libraries.

- Expression Clone cDNA (attB) libraries, for expression screening, including 2-hybrid libraries and phage display libraries, may also be constructed.

Recombination Site Sequences

20 In one aspect, the invention relates to nucleic acid molecules, which may or may not be isolated nucleic acid molecules, comprising one or more nucleotide sequences encoding one or more recombination sites or portions thereof. In particular, this aspect of the invention relates to such nucleic acid molecules comprising one or more nucleotide sequences encoding *attB*, *attP*, *attL*, or *attR*, or portions of these recombination site sequences. The invention also relates to mutants, derivatives, and fragments of such nucleic acid molecules. Unless otherwise indicated, all nucleotide sequences that may have been determined by sequencing a DNA molecule herein were determined using manual or automated DNA sequencing, such as dideoxy sequencing, according to methods that are routine to one of ordinary skill in the art (Sanger, F., and Coulson, A.R., *J. Mol. Biol.* 94:444-448 (1975); Sanger, F., et al., *Proc. Natl. Acad. Sci. USA* 74:5463-5467 (1977)). All amino acid sequences of polypeptides encoded by DNA

molecules determined herein were predicted by conceptual translation of a DNA sequence determined as above. Therefore, as is known in the art for any DNA sequence determined by these approaches, any nucleotide sequence determined herein may contain some errors. Nucleotide sequences determined by such methods are typically at least about 90% identical, more typically at least about 95% to at least about 99.9% identical to the actual nucleotide sequence of the sequenced DNA molecule. As is also known in the art, a single insertion or deletion in a determined nucleotide sequence compared to the actual sequence will cause a frame shift in translation of the nucleotide sequence such that the predicted amino acid sequence encoded by a determined nucleotide sequence will be completely different from the amino acid sequence actually encoded by the sequenced DNA molecule, beginning at the point of such an insertion or deletion.

Unless otherwise indicated, each "nucleotide sequence" set forth herein is presented as a sequence of deoxyribonucleotides (abbreviated A, G, C and T). However, by "nucleotide sequence" of a nucleic acid molecule or polynucleotide is intended, for a DNA molecule or polynucleotide, a sequence of deoxyribonucleotides, and for an RNA molecule or polynucleotide, the corresponding sequence of ribonucleotides (A, G, C and U), where each thymidine deoxyribonucleotide (T) in the specified deoxyribonucleotide sequence is replaced by the ribonucleotide uridine (U). Thus, the invention relates to sequences of the invention in the form of DNA or RNA molecules, or hybrid DNA/RNA molecules, and their corresponding complementary DNA, RNA, or DNA/RNA strands.

In a first such aspect, the invention provides nucleic acid molecules comprising one or more nucleotide sequences encoding *attB1*, or mutants, fragments, variants or derivatives thereof. Such nucleic acid molecules may comprise an *attB1* nucleotide sequence having the sequence set forth in Figure 9, such as: ACAAGTTGTACAAAAAAGCAGGCT, or a nucleotide sequence complementary to the nucleotide sequence set forth in Figure 9 for *attB1*, or mutants, fragments, variants or derivatives thereof. As one of ordinary skill will appreciate, however, certain mutations, insertions, or deletions of one or more bases in the *attB1* sequence contained in the nucleic acid molecules of the invention may be made without compromising the structural and functional

integrity of these molecules; hence, nucleic acid molecules comprising such mutations, insertions, or deletions in the *attB1* sequence are encompassed within the scope of the invention.

In a related aspect, the invention provides nucleic acid molecules comprising one or more nucleotide sequences encoding *attB2*, or mutants, fragments, variants or derivatives thereof. Such nucleic acid molecules may comprise an *attB2* nucleotide sequence having the sequence set forth in Figure 9, such as: ACCCAGCTTCTTGTACAAAGTGGT, or a nucleotide sequence complementary to the nucleotide sequence set forth in Figure 9 for *attB2*, or mutants, fragments, variants or derivatives thereof. As noted above for *attB1*, certain mutations, insertions, or deletions of one or more bases in the *attB2* sequence contained in the nucleic acid molecules of the invention may be made without compromising the structural and functional integrity of these molecules; hence, nucleic acid molecules comprising such mutations, insertions, or deletions in the *attB2* sequence are encompassed within the scope of the invention.

A recombinant host cell comprising a nucleic acid molecule containing *attB1* and *attB2* sites (the vector pEXP501, also known as pCMVSPORT6; see Figure 48), *E. coli* DB3.1(pCMVSPORT6), was deposited on February 27, 1999, with the Collection, Agricultural Research Culture Collection (NRRL), 1815 North University Street, Peoria, Illinois 61604 USA, as Deposit No. NRRL B-30108. The *attB1* and *attB2* sites within the deposited nucleic acid molecule are contained in nucleic acid cassettes in association with one or more additional functional sequences as described in more detail below.

In another related aspect, the invention provides nucleic acid molecules comprising one or more nucleotide sequences encoding *attP1*, or mutants, fragments, variants or derivatives thereof. Such nucleic acid molecules may comprise an *attP1* nucleotide sequence having the sequence set forth in Figure 9, such as: TACAGGTCACTAATACCATCTAACGTTGATTCAAGTGA-CTGGATATGTTGTTTACAGTATTATGAGTCTGTTTTAT-GCAAAATCTAATTAAATATTGATATTATATCATTACGTT-TCTCGTTCAAGCTTTGTACAAAGTGGCATTATAAAAAAGCATTG-CTCATCAATTGTTGCAACGAACAGGTCACTATCAGTCAAAATAA-

AATCATTATTG, or a nucleotide sequence complementary to the nucleotide sequence set forth in Figure 9 for *attP1*, or mutants, fragments, variants or derivatives thereof. As noted above for *attB1*, certain mutations, insertions, or deletions of one or more bases in the *attP1* sequence contained in the nucleic acid molecules of the invention may be made without compromising the structural and functional integrity of these molecules; hence, nucleic acid molecules comprising such mutations, insertions, or deletions in the *attP1* sequence are encompassed within the scope of the invention.

In another related aspect, the invention provides nucleic acid molecules comprising one or more nucleotide sequences encoding *attP2*, or mutants, fragments, variants or derivatives thereof. Such nucleic acid molecules may comprise an *attP2* nucleotide sequence having the sequence set forth in Figure 9, such as: CAAATAATGATTTATTTGACTGATAGTGACCTGTTCGTTG-CAACAAATTGATAAGCAATGCTTCTTATAATGCCAACTTT-GTACAAGAAAGCTGAACGAGAACGTAAAATGATA-TAAATACTAATATATTAAATTAGATTTGCATAAAAAACAG-ACTACATAATACTGTAAAACACAACATATCCAGTCACTATGAATCAA-CTACTTAGATGGTATTAGTGACCTGTA, or a nucleotide sequence complementary to the nucleotide sequence set forth in Figure 9 for *attP2*, or mutants, fragments, variants or derivatives thereof. As noted above for *attB1*, certain mutations, insertions, or deletions of one or more bases in the *attP2* sequence contained in the nucleic acid molecules of the invention may be made without compromising the structural and functional integrity of these molecules; hence, nucleic acid molecules comprising such mutations, insertions, or deletions in the *attP2* sequence are encompassed within the scope of the invention.

A recombinant host cell comprising a nucleic acid molecule (the *attP* vector pDONR201, also known as pENTR21-*attPkan* or pAttPkan; see Figure 49) containing *attP1* and *attP2* sites, *E. coli* DB3.1(pAttPkan) (also called *E. coli* DB3.1(pAHKan)), was deposited on February 27, 1999, with the Collection, Agricultural Research Culture Collection (NRRL), 1815 North University Street, Peoria, Illinois 61604 USA, as Deposit No. NRRL B-30099. The *attP1* and *attP2* sites within the deposited nucleic acid molecule are contained in nucleic acid

cassettes in association with one or more additional functional sequences as described in more detail below.

In another related aspect, the invention provides nucleic acid molecules comprising one or more nucleotide sequences encoding *attR1*, or mutants, fragments, variants or derivatives thereof. Such nucleic acid molecules may comprise an *attR1* nucleotide sequence having the sequence set forth in Figure 9, such as: ACAAGTTGTACAAAAAGCTGAACGAG-
AAACGTAAAATGATATAATATCAATATATTAAATTAGATTTCGCAT-
AAAAAACAGACTACATAACTGTAAAACACAACATATCCAGTCA-
CTATG, or a nucleotide sequence complementary to the nucleotide sequence set forth in Figure 9 for *attR1*, or mutants, fragments, variants or derivatives thereof. As noted above for *attB1*, certain mutations, insertions, or deletions of one or more bases in the *attR1* sequence contained in the nucleic acid molecules of the invention may be made without compromising the structural and functional integrity of these molecules; hence, nucleic acid molecules comprising such mutations, insertions, or deletions in the *attR1* sequence are encompassed within the scope of the invention.

In another related aspect, the invention provides nucleic acid molecules comprising one or more nucleotide sequences encoding *attR2*, or mutants, fragments, variants or derivatives thereof. Such nucleic acid molecules may comprise an *attR2* nucleotide sequence having the sequence set forth in Figure 9, such as: GCAGGTCTGACCATAGTAGCTGGATAT-GTTGTGTTTACAGTATTATGTAGTCTGTTTTATGCAAAATCTA-
ATTAATATATTGATATTATCATTACGTTCTCGTTAGCTT-TCTTGTACAAAGTGGT, or a nucleotide sequence complementary to the nucleotide sequence set forth in Figure 9 for *attR2*, or mutants, fragments, variants or derivatives thereof. As noted above for *attB1*, certain mutations, insertions, or deletions of one or more bases in the *attR2* sequence contained in the nucleic acid molecules of the invention may be made without compromising the structural and functional integrity of these molecules; hence, nucleic acid molecules comprising such mutations, insertions, or deletions in the *attR2* sequence are encompassed within the scope of the invention.

5

10

Recombinant host cell strains containing *attR1* sites apposed to cloning sites in reading frame A, reading frame B, and reading frame C, *E. coli* DB3.1(pEZC15101) (reading frame A; see Figure 64A), *E. coli* DB3.1(pEZC15102) (reading frame B; see Figure 64B), and *E. coli* DB3.1(pEZC15103) (reading frame C; see Figure 64C), and containing corresponding *attR2* sites, were deposited on February 27, 1999, with the Collection, Agricultural Research Culture Collection (NRRL), 1815 North University Street, Peoria, Illinois 61604 USA, as Deposit Nos. NRRL B-30103, NRRL B-30104, and NRRL B-30105, respectively. The *attR1* and *attR2* sites within the deposited nucleic acid molecules are contained in nucleic acid cassettes in association with one or more additional functional sequences as described in more detail below.

15

20

25

In another related aspect, the invention provides nucleic acid molecules comprising one or more nucleotide sequences encoding *attL1*, or mutants, fragments, variants and derivatives thereof. Such nucleic acid molecules may comprise an *attL1* nucleotide sequence having the sequence set forth in Figure 9, such as: CAA ATA ATG ATT TTA TTT TGA CTG ATA GTG ACC TGT TCG TTG CAA CAA ATT GAT AAG CAA TGC TTT TTT ATA ATG CCA ACT TTG TAC AAA AAA GCA GGC T, or a nucleotide sequence complementary to the nucleotide sequence set forth in Figure 9 for *attL1*, or mutants, fragments, variants or derivatives thereof. As noted above for *attB1*, certain mutations, insertions, or deletions of one or more bases in the *attL1* sequence contained in the nucleic acid molecules of the invention may be made without compromising the structural and functional integrity of these molecules; hence, nucleic acid molecules comprising such mutations, insertions, or deletions in the *attL1* sequence are encompassed within the scope of the invention.

30

In another related aspect, the invention provides nucleic acid molecules comprising one or more nucleotide sequences encoding *attL2*, or mutants, fragments, variants and derivatives thereof. Such nucleic acid molecules may comprise an *attL2* nucleotide sequence having the sequence set forth in Figure 9, such as: C AAA TAA TGA TTT TAT TTT GAC TGA TAG TGA CCT GTT CGT TGC AAC AAA TTG ATA AGC AAT GCT TTC TTA TAA TGC CAA

5 CTT TGT ACA AGA AAG CTG GGT, or a nucleotide sequence complementary to the nucleotide sequence set forth in Figure 9 for *attL2*, or mutants, fragments, variants or derivatives thereof. As noted above for *attB1*, certain mutations, insertions, or deletions of one or more bases in the *attL2* sequence contained in the nucleic acid molecules of the invention may be made without compromising the structural and functional integrity of these molecules; hence, nucleic acid molecules comprising such mutations, insertions, or deletions in the *attL2* sequence are encompassed within the scope of the invention.

10 Recombinant host cell strains containing *attL1* sites apposed to cloning sites in reading frame A, reading frame B, and reading frame C, *E. coli* DB3.1(pENTR1A) (reading frame A; see Figure 10), *E. coli* DB3.1(pENTR2B) (reading frame B; see Figure 11), and *E. coli* DB3.1(pENTR3C) (reading frame C; see Figure 12), and containing corresponding *attL2* sites, were deposited on February 27, 1999, with the Collection, Agricultural Research Culture Collection 15 (NRRL), 1815 North University Street, Peoria, Illinois 61604 USA, as Deposit Nos. NRRL B-30100, NRRL B-30101, and NRRL B-30102, respectively. The *attL1* and *attL2* sites within the deposited nucleic acid molecules are contained in nucleic acid cassettes in association with one or more additional functional sequences as described in more detail below.

20 Each of the recombination site sequences described herein or portions thereof, or the nucleotide sequence cassettes contained in the deposited clones, may be cloned or inserted into a vector of interest (for example, using the recombinational cloning methods described herein and/or standard restriction cloning techniques that are routine in the art) to generate, for example, Entry Vectors or Destination 25 Vectors which may be used to transfer a desired segment of a nucleic acid molecule of interest (e.g., a gene, cDNA molecule, or cDNA library) into a desired vector or into a host cell.

30 Using the information provided herein, such as the nucleotide sequences for the recombination site sequences described herein, an isolated nucleic acid molecule of the present invention encoding one or more recombination sites or portions thereof may be obtained using standard cloning and screening procedures, such as those for cloning cDNAs using mRNA as starting material. Preferred such

methods include PCR-based cloning methods, such as reverse transcriptase-PCR (RT-PCR) using primers such as those described herein and in the Examples below. Alternatively, vectors comprising the cassettes containing the recombination site sequences described herein are available commercially from
5 Life Technologies, Inc. (Rockville, MD).

The invention is also directed to nucleic acid molecules comprising one or more of the recombination site sequences or portions thereof and one or more additional nucleotide sequences, which may encode functional or structural sites such as one or more multiple cloning sites, one or more transcription termination sites, one or more transcriptional regulatory sequences (which may be promoters, enhancers, repressors, and the like), one or more translational signals (*e.g.*, secretion signal sequences), one or more origins of replication, one or more fusion partner peptides (particularly glutathione S-transferase (GST), hexahistidine (His₆), and thioredoxin (Trx)), one or more selection markers or modules, one or more nucleotide sequences encoding localization signals such as nuclear localization signals or secretion signals, one or more origins of replication, one or more protease cleavage sites, one or more genes or portions of genes encoding a protein or polypeptide of interest, and one or more 5' polynucleotide extensions (particularly an extension of guanine residues ranging in length from about 1 to about 20, from about 2 to about 15, from about 3 to about 10, from about 4 to about 10, and most preferably an extension of 4 or 5 guanine residues at the 5' end of the recombination site nucleotide sequence. The one or more additional functional or structural sequences may or may not flank one or more of the recombination site sequences contained on the nucleic acid molecules of the invention.
10
15
20
25

In some nucleic acid molecules of the invention, the one or more nucleotide sequences encoding one or more additional functional or structural sites may be operably linked to the nucleotide sequence encoding the recombination site. For example, certain nucleic acid molecules of the invention may have a promoter sequence operably linked to a nucleotide sequence encoding a recombination site or portion thereof of the invention, such as a T7 promoter, a phage lambda PL
30

promoter, an *E. coli lac*, *trp* or *tac* promoter, and other suitable promoters which will be familiar to the skilled artisan.

Nucleic acid molecules of the present invention, which may be isolated nucleic acid molecules, may be in the form of RNA, such as mRNA, or in the form of DNA, including, for instance, cDNA and genomic DNA obtained by cloning or produced synthetically, or in the form of DNA-RNA hybrids. The nucleic acid molecules of the invention may be double-stranded or single-stranded. Single-stranded DNA or RNA may be the coding strand, also known as the sense strand, or it may be the non-coding strand, also referred to as the anti-sense strand. The nucleic acid molecules of the invention may also have a number of topologies, including linear, circular, coiled, or supercoiled.

By "isolated" nucleic acid molecule(s) is intended a nucleic acid molecule, DNA or RNA, which has been removed from its native environment. For example, recombinant DNA molecules contained in a vector are considered isolated for the purposes of the present invention. Further examples of isolated DNA molecules include recombinant DNA molecules maintained in heterologous host cells, and those DNA molecules purified (partially or substantially) from a solution whether produced by recombinant DNA or synthetic chemistry techniques. Isolated RNA molecules include *in vivo* or *in vitro* RNA transcripts of the DNA molecules of the present invention.

The present invention further relates to mutants, fragments, variants and derivatives of the nucleic acid molecules of the present invention, which encode portions, analogs or derivatives of one or more recombination sites. Variants may occur naturally, such as a natural allelic variant. By an "allelic variant" is intended one of several alternate forms of a gene occupying a given locus on a chromosome of an organism (see Lewin, B., ed., *Genes II*, John Wiley & Sons, New York (1985)). Non-naturally occurring variants may be produced using art-known mutagenesis techniques, such as those described hereinbelow.

Such variants include those produced by nucleotide substitutions, deletions or additions or portions thereof, or combinations thereof. The substitutions, deletions or additions may involve one or more nucleotides. The variants may be altered in coding regions, non-coding regions, or both. Alterations in the coding

regions may produce conservative or non-conservative amino acid substitutions, deletions or additions. Especially preferred among these are silent substitutions, additions and deletions, which do not alter the properties and activities of the encoded polypeptide(s) or portions thereof, and which also do not substantially alter the reactivities of the recombination site nucleic acid sequences in recombination reactions. Also especially preferred in this regard are conservative substitutions.

Particularly preferred mutants, fragments, variants, and derivatives of the nucleic acid molecules of the invention include, but are not limited to, insertions, deletions or substitutions of one or more nucleotide bases within the 15 bp core region (GCTTTTTATACTAA) which is identical in all four wildtype lambda *att* sites, *attB*, *attP*, *attL* and *attR* (see U.S. Application Nos. 08/663,002, filed June 7, 1996 (now U.S. Patent No. 5,888,732), 09/005,476, filed January 12, 1998, and 09/177,387, filed October 23, 1998, which describes the core region in further detail, and the disclosures of which are incorporated herein by reference in their entireties). Analogously, the core regions in *attB1*, *attP1*, *attL1* and *attR1* are identical to one another, as are the core regions in *attB2*, *attP2*, *attL2* and *attR2*. Particularly preferred in this regard are nucleic acid molecules comprising insertions, deletions or substitutions of one or more nucleotides within the seven bp overlap region (TTTATAC, which is defined by the cut sites for the integrase protein and is the region where strand exchange takes place) that occurs within this 15 bp core region (GCTTTTTATACTAA). Examples of such preferred mutants, fragments, variants and derivatives according to this aspect of the invention include, but are not limited to, nucleic acid molecules in which the thymine at position 1 of the seven bp overlap region has been deleted or substituted with a guanine, cytosine, or adenine; in which the thymine at position 2 of the seven bp overlap region has been deleted or substituted with a guanine, cytosine, or adenine; in which the thymine at position 3 of the seven bp overlap region has been deleted or substituted with a guanine, cytosine, or adenine; in which the adenine at position 4 of the seven bp overlap region has been deleted or substituted with a guanine, cytosine, or thymine; in which the thymine at position 5 of the seven bp overlap region has been deleted or substituted with a

guanine, cytosine, or adenine; in which the adenine at position 6 of the seven bp overlap region has been deleted or substituted with a guanine, cytosine, or thymine; and in which the cytosine at position 7 of the seven bp overlap region has been deleted or substituted with a guanine, thymine, or adenine; or any combination of one or more such deletions and/or substitutions within this seven bp overlap region. As described in detail in Example 21 herein, mutants of the nucleic acid molecules of the invention in which substitutions have been made within the first three positions of the seven bp overlap (TTTATAC) have been found in the present invention to strongly affect the specificity of recombination, mutant nucleic acid molecules in which substitutions have been made in the last four positions (TTTATAC) only partially alter recombination specificity, and mutant nucleic acid molecules comprising nucleotide substitutions outside of the seven bp overlap, but elsewhere within the 15 bp core region, do not affect specificity of recombination but do influence the efficiency of recombination.

Hence, in an additional aspect, the present invention is also directed to nucleic acid molecules comprising one or more recombination site nucleotide sequences that affect recombination specificity, particularly one or more nucleotide sequences that may correspond substantially to the seven base pair overlap within the 15 bp core region, having one or more mutations that affect recombination specificity. Particularly preferred such molecules may comprise a consensus sequence (described in detail in Example 21 herein) such as NNNATAC, wherein "N" refers to any nucleotide (*i.e.*, may be A, G, T/U or C), with the proviso that if one of the first three nucleotides in the consensus sequence is a T/U, then at least one of the other two of the first three nucleotides is not a T/U.

In a related aspect, the present invention is also directed to nucleic acid molecules comprising one or more recombination site nucleotide sequences that enhance recombination efficiency, particularly one or more nucleotide sequences that may correspond substantially to the core region and having one or more mutations that enhance recombination efficiency. By sequences or mutations that "enhance recombination efficiency" is meant a sequence or mutation in a recombination site, preferably in the core region (*e.g.*, the 15 bp core region of *att* recombination sites), that results in an increase in cloning efficiency (typically

measured by determining successful cloning of a test sequence, e.g., by determining CFU/ml for a given cloning mixture) when recombining molecules comprising the mutated sequence or core region as compared to molecules that do not comprise the mutated sequence or core region (e.g., those comprising a wildtype recombination site core region sequence). More specifically, whether or not a given sequence or mutation enhances recombination efficiency may be determined using the sequence or mutation in recombinational cloning as described herein, and determining whether the sequence or mutation provides enhanced recombinational cloning efficiency when compared to a non-mutated (e.g., wildtype) sequence. Methods of determining preferred cloning efficiency-enhancing mutations for a number of recombination sites, particularly for *att* recombination sites, are described herein, for example in Examples 22-25. Examples of preferred such mutant recombination sites include but are not limited to the *attL* consensus core sequence of caactnnntnnnannaagttg (wherein "n" represents any nucleotide), for example the *attL5* sequence agcctgcittattatactaagggtggcatta and the *attL6* sequence agcctgccttttatattaagggtggcatta; the *attB1.6* sequence ggggacaaccttgtacaaaaagttggct; the *attB2.2* sequence ggggacaaccttgtacaagaaagctgggt; and the *attB2.10* sequence ggggacaaccttgtacaagaaagttgggt. Those of skill in the art will appreciate that, in addition to the core region, other portions of the *att* site may affect the efficiency of recombination. There are five so-called arm binding sites for the integrase protein in the bacteriophage lambda *attP* site, two in *attR* (P1 and P2), and three in *attL* (P'1, P'2 and P'3). Compared to the core binding sites, the integrase protein binds to arm sites with high affinity and interacts with core and arm sites through two different domains of the protein. As with the core binding site a consensus sequence for the arm binding site consisting of C/AAGTCACTAT has been inferred from sequence comparison of the five arm binding sites and seven non-*att* sites (Ross and Landy, *Proc. Natl. Acad. Sci. USA* 79:7724-7728 (1982)). Each arm site has been mutated and tested for its effect in the excision and integration reactions (Numrych *et al.*, *Nucl. Acids Res.* 18:3953 (1990)). Hence, specific sites are utilized in each reaction in different ways, namely, the P1 and P'3

sites are essential for the integration reaction whereas the other three sites are dispensable to the integration reaction to varying degrees. Similarly, the P2, P'1 and P'2 sites are most important for the excision reaction, whereas P1 and P'3 are completely dispensable. Interestingly, when P2 is mutated the integration reaction occurs more efficiently than with the wild type attP site. Similarly, when P1 and P'3 are mutated the excision reaction occurs more efficiently. The stimulatory effect of mutating integrase arm binding sites can be explained by removing sites that compete or inhibit a specific recombination pathway or that function in a reaction that converts products back to starting substrates. In fact there is evidence for an XIS-independent LR reaction (Abremski and Gottesman, *J. Mol. Biol.* 153:67-78 (1981)). Thus, in addition to modifications in the core region of the att site, the present invention contemplates the use of att sites containing one or more modifications in the integrase arm-type binding sites. In some preferred embodiments, one or more mutations may be introduced into one or more of the P1, P'1, P2, P'2 and P'3 sites. In some preferred embodiments, multiple mutations may be introduced into one or more of these sites. Preferred such mutations include those which increase the recombination *in vitro*. For example, in some embodiments mutations may be introduced into the arm-type binding sites such that integrative recombination, corresponding to the BP reaction, is enhanced. In other embodiments, mutations may be introduced into the arm-type binding sites such that excisive recombination, corresponding to the LR reaction, is enhanced. Of course, based on the guidance contained herein, particularly in the construction and evaluation of effects of mutated recombination sites upon recombinational specificity and efficiency, analogous mutated or engineered sequences may be produced for other recombination sites described herein (including but not limited to *lox*, FRT, and the like) and used in accordance with the invention. For example, much like the mutagenesis strategy used to select core binding sites that enhance recombination efficiency, similar strategies can be employed to select changes in the arms of attP, attL and attR, and in analogous sequences in other recombination sites such as *lox*, FRT and the like, that enhance recombination efficiency. Hence, the construction and evaluation of such mutants is well within the abilities of those of ordinary skill in the art without undue experimentation.

One suitable methodology for preparing and evaluating such mutations is found in Numrych, *et al.*, (1990) *Nucleic Acids Research* 18(13): 3953-3959.

Other mutant sequences and nucleic acid molecules that may be suitable to enhance recombination efficiency will be apparent from the description herein, or may be easily determined by one of ordinary skill using only routine experimentation in molecular biology in view of the description herein and information that is readily available in the art

Since the genetic code is well known in the art, it is also routine for one of ordinary skill in the art to produce degenerate variants of the nucleic acid molecules described herein without undue experimentation. Hence, nucleic acid molecules comprising degenerate variants of nucleic acid sequences encoding the recombination sites described herein are also encompassed within the scope of the invention.

Further embodiments of the invention include isolated nucleic acid molecules comprising a polynucleotide having a nucleotide sequence at least 50% identical, at least 60% identical, at least 70% identical, at least 75% identical, at least 80% identical, at least 85% identical, at least 90% identical, and more preferably at least 95%, 96%, 97%, 98% or 99% identical to the nucleotide sequences of the seven bp overlap region within the 15 bp core region of the recombination sites described herein, or the nucleotide sequences of *attB1*, *attB2*, *attP1*, *attP2*, *attL1*, *attL2*, *attR1* or *attR2* as set forth in Figure 9 (or portions thereof), or a nucleotide sequence complementary to any of these nucleotide sequences, or fragments, variants, mutants, and derivatives thereof.

By a polynucleotide having a nucleotide sequence at least, for example, 95% "identical" to a reference nucleotide sequence encoding a particular recombination site or portion thereof is intended that the nucleotide sequence of the polynucleotide is identical to the reference sequence except that the polynucleotide sequence may include up to five point mutations (*e.g.*, insertions, substitutions, or deletions) per each 100 nucleotides of the reference nucleotide sequence encoding the recombination site. For example, to obtain a polynucleotide having a nucleotide sequence at least 95% identical to a reference *attB1* nucleotide sequence, up to 5% of the nucleotides in the *attB1* reference sequence may be

5 deleted or substituted with another nucleotide, or a number of nucleotides up to 5% of the total nucleotides in the *attB1* reference sequence may be inserted into the *attB1* reference sequence. These mutations of the reference sequence may occur at the 5' or 3' terminal positions of the reference nucleotide sequence or anywhere between those terminal positions, interspersed either individually among nucleotides in the reference sequence or in one or more contiguous groups within the reference sequence.

10 As a practical matter, whether any particular nucleic acid molecule is at least 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical to, for instance, a given recombination site nucleotide sequence or portion thereof can be determined conventionally using known computer programs such as DNAsis software (Hitachi Software, San Bruno, California) for initial sequence alignment followed by ESEE version 3.0 DNA/protein sequence software (cabot@trog.mbb.sfu.ca) for multiple sequence alignments. Alternatively, such 15 determinations may be accomplished using the BESTFIT program (Wisconsin Sequence Analysis Package, Genetics Computer Group, University Research Park, 575 Science Drive, Madison, WI 53711), which employs a local homology algorithm (Smith and Waterman, *Advances in Applied Mathematics* 2: 482-489 (1981)) to find the best segment of homology between two sequences. When 20 using DNAsis, ESEE, BESTFIT or any other sequence alignment program to determine whether a particular sequence is, for instance, 95% identical to a reference sequence according to the present invention, the parameters are set such that the percentage of identity is calculated over the full length of the reference nucleotide sequence and that gaps in homology of up to 5% of the total number 25 of nucleotides in the reference sequence are allowed.

30 The present invention is directed to nucleic acid molecules at least 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical to the *attB1*, *attB2*, *attP1*, *attP2*, *attL1*, *attL2*, *attR1* or *attR2* nucleotide sequences as set forth in Figure 9, or to the nucleotide sequence of the deposited clones, irrespective of whether they encode particular functional polypeptides. This is because even where a particular nucleic acid molecule does not encode a particular functional polypeptide, one of skill in the art would still know how to use the nucleic acid

molecule, for instance, as a hybridization probe or a polymerase chain reaction (PCR) primer.

Mutations can also be introduced into the recombination site nucleotide sequences for enhancing site specific recombination or altering the specificities of the reactants, etc. Such mutations include, but are not limited to: recombination sites without translation stop codons that allow fusion proteins to be encoded; recombination sites recognized by the same proteins but differing in base sequence such that they react largely or exclusively with their homologous partners allowing multiple reactions to be contemplated; and mutations that prevent hairpin formation of recombination sites. Which particular reactions take place can be specified by which particular partners are present in the reaction mixture.

There are well known procedures for introducing specific mutations into nucleic acid sequences. A number of these are described in Ausubel, F.M. *et al.*, *Current Protocols in Molecular Biology*, Wiley Interscience, New York (1989-1996). Mutations can be designed into oligonucleotides, which can be used to modify existing cloned sequences, or in amplification reactions. Random mutagenesis can also be employed if appropriate selection methods are available to isolate the desired mutant DNA or RNA. The presence of the desired mutations can be confirmed by sequencing the nucleic acid by well known methods.

The following non-limiting methods can be used to modify or mutate a given nucleic acid molecule encoding a particular recombination site to provide mutated sites that can be used in the present invention:

1. By recombination of two parental DNA sequences by site-specific (e.g. attL and attR to give attP) or other (e.g. homologous) recombination mechanisms where the parental DNA segments contain one or more base alterations resulting in the final mutated nucleic acid molecule;
2. By mutation or mutagenesis (site-specific, PCR, random, spontaneous, etc) directly of the desired nucleic acid molecule;
3. By mutagenesis (site-specific, PCR, random, spontaneous, etc) of parental DNA sequences, which are recombined to generate a desired nucleic acid molecule;

4. By reverse transcription of an RNA encoding the desired core sequence; and
5. By *dé novo* synthesis (chemical synthesis) of a sequence having the desired base changes, or random base changes followed by sequencing or functional analysis according to methods that are routine in the art.

The functionality of the mutant recombination sites can be demonstrated in ways that depend on the particular characteristic that is desired. For example, the lack of translation stop codons in a recombination site can be demonstrated by expressing the appropriate fusion proteins. Specificity of recombination between homologous partners can be demonstrated by introducing the appropriate molecules into *in vitro* reactions, and assaying for recombination products as described herein or known in the art. Other desired mutations in recombination sites might include the presence or absence of restriction sites, translation or transcription start signals, protein binding sites, particular coding sequences, and other known functionalities of nucleic acid base sequences. Genetic selection schemes for particular functional attributes in the recombination sites can be used according to known method steps. For example, the modification of sites to provide (from a pair of sites that do not interact) partners that do interact could be achieved by requiring deletion, via recombination between the sites, of a DNA sequence encoding a toxic substance. Similarly, selection for sites that remove translation stop sequences, the presence or absence of protein binding sites, etc., can be easily devised by those skilled in the art.

Accordingly, the present invention also provides a nucleic acid molecule, comprising at least one DNA segment having at least one, and preferably at least two, engineered recombination site nucleotide sequences of the invention flanking a selectable marker and/or a desired DNA segment, wherein at least one of said recombination site nucleotide sequences has at least one engineered mutation that enhances recombination *in vitro* in the formation of a Cointegrate DNA or a Product DNA. Such engineered mutations may be in the core sequence of the recombination site nucleotide sequence of the invention; *see* U.S. Application Nos. 08/486,139, filed June 7, 1995, 08/663,002, filed June 7, 1996 (now U.S. Patent No. 5,888,732), 09/005,476, filed January 12, 1998, and 09/177,387, filed

October 23, 1998, the disclosures of which are all incorporated herein by reference in their entireties.

5 While in the preferred embodiment the recombination sites differ in sequence and do not interact with each other, it is recognized that sites comprising the same sequence, which may interact with each other, can be manipulated or engineered to inhibit recombination with each other. Such conceptions are considered and incorporated herein. For example, a protein binding site (*e.g.*, an antibody-binding site, a histone-binding site, an enzyme-binding site, or a binding site for any nucleic acid molecule-binding protein) can be engineered adjacent to one of the sites. In
10 the presence of the protein that recognizes the engineered site, the recombinase fails to access the site and another recombination site in the nucleic acid molecule is therefore used preferentially. In the cointegrate this site can no longer react since it has been changed, *e.g.*, from attB to attL. During or upon resolution of the cointegrate, the protein can be inactivated (*e.g.*, by antibody, heat or a change
15 of buffer) and the second site can undergo recombination.

20 The nucleic acid molecules of the invention can have at least one mutation that confers at least one enhancement of said recombination, said enhancement selected from the group consisting of substantially (i) favoring integration; (ii) favoring recombination; (ii) relieving the requirement for host factors; (iii) increasing the efficiency of said Cointegrate DNA or Product DNA formation;
25 (iv) increasing the specificity of said Cointegrate DNA or Product DNA formation; and (v) adding or deleting protein binding sites.

30 In other embodiments, the nucleic acid molecules of the invention may be PCR primer molecules, which comprise one or more of the recombination site sequences described herein or portions thereof, particularly those shown in Figure 9 (or sequences complementary to those shown in Figure 9), or mutants, fragments, variants or derivatives thereof, attached at the 3' end to a target-specific template sequence which specifically interacts with a target nucleic acid molecule which is to be amplified. Primer molecules according to this aspect of the invention may further comprise one or more, (*e.g.*, 1, 2, 3, 4, 5, 10, 20, 25, 50, 100, 500, 1000, or more) additional bases at their 5' ends, and preferably comprise one or more (particularly four or five) additional bases, which are preferably

guanines, at their 5' ends, to increase the efficiency of the amplification products incorporating the primer molecules in the recombinational cloning system of the invention. Such nucleic acid molecules and primers are described in detail in the examples herein, particularly in Examples 22-25.

5 Certain primers of the invention may comprise one or more nucleotide deletions in the *attB1*, *attB2*, *attP1*, *attP2*, *attL1*, *attL2*, *attR1* or *attR2* sequences as set forth in Figure 9. In one such aspect, for example, *attB2* primers may be constructed in which one or more of the first four nucleotides at the 5' end of the *attB2* sequence shown in Figure 9 have been deleted. Primers according to this aspect of the invention may therefore have the sequence:

10 (attB2(-1)): CCCAGCTTCTTGTACAAAGTGGTnnnnnnnnnnnn . . . n

(attB2(-2)): CCAGCTTCTTGTACAAAGTGGTnnnnnnnnnnnn . . . n

(attB2(-3)): CAGCTTCTTGTACAAAGTGGTnnnnnnnnnnnn . . . n

(attB2(-4)): AGCTTCTTGTACAAAGTGGTnnnnnnnnnnnn . . . n,

15 wherein "nnnnnnnnnnnn . . . n" at the 3' end of the primer represents a target-specific sequence of any length, for example from one base up to all of the bases of a target nucleic acid molecule (*e.g.*, a gene) or a portion thereof, the sequence and length which will depend upon the identity of the target nucleic acid molecule which is to be amplified.

20 The primer nucleic acid molecules according to this aspect of the invention may be produced synthetically by attaching the recombination site sequences depicted in Figure 9, or portions thereof, to the 5' end of a standard PCR target-specific primer according to methods that are well-known in the art. Alternatively, additional primer nucleic acid molecules of the invention may be produced synthetically by adding one or more nucleotide bases, which preferably correspond to one or more, preferably five or more, and more preferably six or more, contiguous nucleotides of the *att* nucleotide sequences described herein (*see, e.g.*, Example 20 herein; *see also* U.S. Application Nos. 08/663,002, filed June 7, 1996 (now U.S. Patent No. 5,888,732), 09/005,476, filed January 12, 1998, and 09/177,387, filed October 23, 1998, the disclosures of which are all incorporated herein by reference in their entireties), to the 5' end of a standard PCR target-specific primer according to methods that are well-known in the art, to provide

primers having the specific nucleotide sequences described herein. As noted above, primer nucleic acid molecules according to this aspect of the invention may also optionally comprise one, two, three, four, five, or more additional nucleotide bases at their 5' ends, and preferably will comprise four or five guanines at their 5' ends. In one particularly preferred such aspect, the primer nucleic acid molecules of the invention may comprise one or more, preferably five or more, more preferably six or more, still more preferably 6-18 or 6-25, and most preferably 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 or 25, contiguous nucleotides or bp of the *attB1* or *attB2* nucleotide sequences depicted in Figure 9 (or nucleotides complementary thereto), linked to the 5' end of a target-specific (e.g., a gene-specific) primer molecule. Primer nucleic acid molecules according to this aspect of the invention include, but are not limited to, *attB1*- and *attB2*-derived primer nucleic acid molecules having the following nucleotide sequences:

15 ACAAGTTGTACAAAAAAGCAGGCT-nnnnnnnnnnnnn . . . n
 ACCACTTGTACAAGAAAGCTGGGT-nnnnnnnnnnnnn . . . n
 TGTACAAAAAAGCAGGCT-nnnnnnnnnnnnn . . . n
 TGTACAAGAAAGCTGGGT-nnnnnnnnnnnnn . . . n
 ACAAAAAAAGCAGGCT-nnnnnnnnnnnnn . . . n
20 ACAAGAAAAGCTGGGT-nnnnnnnnnnnnn . . . n
 AAAAAGCAGGCT-nnnnnnnnnnnnn . . . n
 AGAAAGCTGGGT-nnnnnnnnnnnnn . . . n
 AAAAGCAGGCT-nnnnnnnnnnnnn . . . n
 GAAAGCTGGGT-nnnnnnnnnnnnn . . . n
25 AAAGCAGGCT-nnnnnnnnnnnnn . . . n
 AAAGCTGGGT-nnnnnnnnnnnnn . . . n
 AAGCAGGCT-nnnnnnnnnnnnn . . . n
 AAGCTGGGT-nnnnnnnnnnnnn . . . n
 AGCAGGCT-nnnnnnnnnnnnn . . . n
30 AGCTGGGT-nnnnnnnnnnnnn . . . n
 GCAGGCT-nnnnnnnnnnnnn . . . n
 GCTGGGT-nnnnnnnnnnnnn . . . n

CAGGCT-nnnnnnnnnnnnn . . . n

CTGGGT-nnnnnnnnnnnnn . . . n,

wherein "nnnnnnnnnnnn . . . n" at the 3' end of the primer represents a target-specific sequence of any length, for example from one base up to all of the bases of a target nucleic acid molecule (e.g., a gene) or a portion thereof, the sequence and length which will depend upon the identity of the target nucleic acid molecule which is to be amplified.

Of course, it will be apparent to one of ordinary skill from the teachings contained herein that additional primer nucleic acid molecules analogous to those specifically described herein may be produced using one or more, preferably five or more, more preferably six or more, still more preferably ten or more, 15 or more, 20 or more, 25 or more, 30 or more, etc. (through to and including all) of the contiguous nucleotides or bp of the *attP1*, *attP2*, *attL1*, *attL2*, *attR1* or *attR2* nucleotide sequences depicted in Figure 9 (or nucleotides complementary thereto), linked to the 5' end of a target-specific (e.g., a gene-specific) primer molecule. As noted above, such primer nucleic acid molecules may optionally further comprise one, two, three, four, five, or more additional nucleotide bases at their 5' ends, and preferably will comprise four guanines at their 5' ends. Other primer molecules comprising the *attB1*, *attB2*, *attP1*, *attP2*, *attL1*, *attL2*, *attR1* and *attR2* sequences depicted in Figure 9, or portions thereof, may be made by one of ordinary skill without resorting to undue experimentation in accordance with the guidance provided herein.

The primers of the invention described herein are useful in producing PCR fragments having a nucleic acid molecule of interest flanked at each end by a recombination site sequence (as described in detail below in Example 9), for use in cloning of PCR-amplified DNA fragments using the recombination system of the invention (as described in detail below in Examples 8, 19 and 21-25).

Vectors

The invention also relates to vectors comprising one or more of the nucleic acid molecules of the invention, as described herein. In accordance with the invention, any vector may be used to construct the vectors of the invention. In

particular, vectors known in the art and those commercially available (and variants or derivatives thereof) may in accordance with the invention be engineered to include one or more nucleic acid molecules encoding one or more recombination sites (or portions thereof), or mutants, fragments, or derivatives thereof, for use in the methods of the invention. Such vectors may be obtained from, for example, Vector Laboratories Inc., InVitrogen, Promega, Novagen, New England Biolabs, Clontech, Roche, Pharmacia, EpiCenter, OriGenes Technologies Inc., Stratagene, Perkin Elmer, Pharmingen, Life Technologies, Inc., and Research Genetics. Such vectors may then for example be used for cloning or subcloning nucleic acid molecules of interest. General classes of vectors of particular interest include prokaryotic and/or eukaryotic cloning vectors, Expression Vectors, fusion vectors, two-hybrid or reverse two-hybrid vectors, shuttle vectors for use in different hosts, mutagenesis vectors, transcription vectors, vectors for receiving large inserts and the like.

Other vectors of interest include viral origin vectors (M13 vectors, bacterial phage λ vectors, bacteriophage P1 vectors, adenovirus vectors, herpesvirus vectors, retrovirus vectors, phage display vectors, combinatorial library vectors), high, low, and adjustable copy number vectors, vectors which have compatible replicons for use in combination in a single host (pACYC184 and pBR322) and eukaryotic episomal replication vectors (pCDM8).

Particular vectors of interest include prokaryotic Expression Vectors such as pcDNA II, pSL301, pSE280, pSE380, pSE420, pTrcHisA, B, and C, pRSET A, B, and C (Invitrogen, Inc.), pGEMEX-1, and pGEMEX-2 (Promega, Inc.), the pET vectors (Novagen, Inc.), pTrc99A, pKK223-3, the pGEX vectors, pEZ18, pRIT2T, and pMC1871 (Pharmacia, Inc.), pKK233-2 and pKK388-1 (Clontech, Inc.), and pProEx-HT (Life Technologies, Inc.) and variants and derivatives thereof. Destination Vectors can also be made from eukaryotic Expression Vectors such as pFastBac, pFastBac HT, pFastBac DUAL, pSFV, and pTet-Splice (Life Technologies, Inc.), pEUK-C1, pPUR, pMAM, pMAMneo, pBI101, pBI121, pDR2, pCMVEBNA, and pYACneo (Clontech), pSVK3, pSVL, pMSG, pCH110, and pKK232-8 (Pharmacia, Inc.), p3'SS, pXT1, pSG5, pPbac, pMbac, pMC1neo, and pOG44 (Stratagene, Inc.), and pYES2, pAC360, pBlueBacHis A,

B, and C, pVL1392, pBsuBacII, pCDM8, pcDNA1, pZeoSV, pcDNA3 pREP4, pCEP4, and pEBVHis (Invitrogen, Inc.) and variants or derivatives thereof.

Other vectors of particular interest include pUC18, pUC19, pBlueScript, pSPORT, cosmids, phagemids, YACs (yeast artificial chromosomes), BACs (bacterial artificial chromosomes), MACs (mammalian artificial chromosomes), pQE70, pQE60, pQE9 (Qiagen), pBS vectors, PhageScript vectors, BlueScript vectors, pNH8A, pNH16A, pNH18A, pNH46A (Stratagene), pcDNA3 (InVitrogen), pGEX, pTrsfus, pTrc99A, pET-5, pET-9, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia), pSPORT1, pSPORT2, pCMVSPORT2.0 and pSV-SHORT1 (Life Technologies, Inc.) and variants or derivatives thereof.

Additional vectors of interest include pTrxFus, pThioHis, pLEX, pTrcHis, pTrcHis2, pRSET, pBlueBacHis2, pcDNA3.1/His, pcDNA3.1(-)/Myc-His, pSecTag, pEBVHis, pPIC9K, pPIC3.5K, pAO815, pPICZ, pPICZ α , pGAPZ, pGAPZ α , pBlueBac4.5, pBlueBacHis2, pMelBac, pSinRep5, pSinHis, pIND, pIND(SP1), pVgRXR, pcDNA2.1, pYES2, pZErO1.1, pZErO-2.1, pCR-Blunt, pSE280, pSE380, pSE420, pVL1392, pVL1393, pCDM8, pcDNA1.1, pcDNA1.1/Amp, pcDNA3.1, pcDNA3.1/Zeo, pSe, SV2, pRc/CMV2, pRc/RSV, pREP4, pREP7, pREP8, pREP9, pREP10, pCEP4, pEBVHis, pCR3.1, pCR2.1, pCR3.1-Uni, and pCRBac from Invitrogen; λ ExCell, λ gt11, pTrc99A, pKK223-3, pGEX-1 λ T, pGEX-2T, pGEX-2TK, pGEX-4T-1, pGEX-4T-2, pGEX-4T-3, pGEX-3X, pGEX-5X-1, pGEX-5X-2, pGEX-5X-3, pEZZ18, pRIT2T, pMC1871, pSVK3, pSVL, pMSG, pCH110, pKK232-8, pSL1180, pNEO, and pUC4K from Pharmacia; pSCREEN-1b(+), pT7Blue(R), pT7Blue-2, pCITE-4abc(+), pOCUS-2, pTAG, pET-32 LIC, pET-30 LIC, pBAC-2cp LIC, pBACgus-2cp LIC, pT7Blue-2 LIC, pT7Blue-2, λ SCREEN-1, λ BlueSTAR, pET-3abcd, pET-7abc, pET9abcd, pET11abcd, pET12abc, pET-14b, pET-15b, pET-16b, pET-17b-pET-17xb, pET-19b, pET-20b(+), pET-21abcd(+), pET-22b(+), pET-23abcd(+), pET-24abcd(+), pET-25b(+), pET-26b(+), pET-27b(+), pET-28abc(+), pET-29abc(+), pET-30abc(+), pET-31b(+), pET-32abc(+), pET-33b(+), pBAC-1, pBACgus-1, pBAC4x-1, pBACgus4x-1, pBAC-3cp, pBACgus-2cp, pBACsurf-1, plg, Signal plg, pYX, Selecta Vecta-Neo, Selecta Vecta - Hyg, and Selecta Vecta - Gpt from Novagen; pLexA, pB42AD, pGBT9, pAS2-1,

5 pGAD424, pACT2, pGAD GL, pGAD GH, pGAD10, pGilda, pEZM3, pEGFP,
pEGFP-1, pEGFP-N, pEGFP-C, pEBFP, pGFPuv, pGFP, p6xHis-GFP, pSEAP2-Basic,
pSEAP2-Contral, pSEAP2-Promoter, pSEAP2-Enhancer, p β gal-Basic,
p β gal-Control, p β gal-Promoter, p β gal-Enhancer, pCMV β , pTet-Off, pTet-On,
pTK-Hyg, pRetro-Off, pRetro-On, pIRES1neo, pIRES1hyg, pLXSN, pLNCX,
pLAPSN, pMAMneo, pMAMneo-CAT, pMAMneo-LUC, pPUR, pSV2neo,
pYEX 4T-1/2/3, pYEX-S1, pBacPAK-His, pBacPAK8/9, pAcUW31, BacPAK6,
pTriplEx, λ gt10, λ gt11, pWE15, and λ TriplEx from Clontech; Lambda ZAP II,
10 pBK-CMV, pBK-RSV, pBluescript II KS +/-, pBluescript II SK +/-, pAD-GAL4,
pBD-GAL4 Cam, pSurfscript, Lambda FIX II, Lambda DASH, Lambda EMBL3,
Lambda EMBL4, SuperCos, pCR-Script Amp, pCR-Script Cam, pCR-Script
Direct, pBS +/-, pBC KS +/-, pBC SK +/-, Phagescript, pCAL-n-EK, pCAL-n,
pCAL-c, pCAL-kc, pET-3abcd, pET-11abcd, pSPUTK, pESP-1, pCMVLaci,
15 pOPRSVI/MCS, pOPI3 CAT, pXT1, pSG5, pPbac, pMbac, pMC1neo, pMC1neo
Poly A, pOG44, pOG45, pFRT β GAL, pNEO β GAL, pRS403, pRS404, pRS405,
pRS406, pRS413, pRS414, pRS415, and pRS416 from Stratagene.

20 Two-hybrid and reverse two-hybrid vectors of particular interest include
pPC86, pDBLeu, pDBTrp, pPC97, p2.5, pGAD1-3, pGAD10, pACt, pACT2,
pGADGL, pGADGH, pAS2-1, pGAD424, pGBT8, pGBT9, pGAD-GAL4,
pLexA, pBD-GAL4, pHISi, pHISi-1, placZi, pB42AD, pDG202, pJK202,
pJG4-5, pNLexA, pYESTrp and variants or derivatives thereof.

25 Yeast Expression Vectors of particular interest include pESP-1, pESP-2,
pESC-His, pESC-Trp, pESC-URA, pESC-Leu (Stratagene), pRS401, pRS402,
pRS411, pRS412, pRS421, pRS422, and variants or derivatives thereof.

According to the invention, the vectors comprising one or more nucleic acid
30 molecules encoding one or more recombination sites, or mutants, variants,
fragments, or derivatives thereof, may be produced by one of ordinary skill in the
art without resorting to undue experimentation using standard molecular biology
methods. For example, the vectors of the invention may be produced by
introducing one or more of the nucleic acid molecules encoding one or more
recombination sites (or mutants, fragments, variants or derivatives thereof) into
one or more of the vectors described herein, according to the methods described,

for example, in Maniatis *et al.*, *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1982). In a related aspect of the invention, the vectors may be engineered to contain, in addition to one or more nucleic acid molecules encoding one or more recombination sites (or portions thereof), one or more additional physical or functional nucleotide sequences, such as those encoding one or more multiple cloning sites, one or more transcription termination sites, one or more transcriptional regulatory sequences (e.g., one or more promoters, enhancers, or repressors), one or more selection markers or modules, one or more genes or portions of genes encoding a protein or polypeptide of interest, one or more translational signal sequences, one or more nucleotide sequences encoding a fusion partner protein or peptide (e.g., GST, His₆ or thioredoxin), one or more origins of replication, and one or more 5' or 3' polynucleotide tails (particularly a poly-G tail). According to this aspect of the invention, the one or more recombination site nucleotide sequences (or portions thereof) may optionally be operably linked to the one or more additional physical or functional nucleotide sequences described herein.

Preferred vectors according to this aspect of the invention include, but are not limited to: pENTR1A (Figures 10A and 10B), pENTR2B (Figures 11A and 11B), pENTR3C (Figures 12A and 12B), pENTR4 (Figures 13A and 13B), pENTR5 (Figures 14A and 14B), pENTR6 (Figures 15A and 15B), pENTR7 (Figures 16A and 16B), pENTR8 (Figures 17A and 17B), pENTR9 (Figures 18A and 18B), pENTR10 (Figures 19A and 19B), pENTR11 (Figures 20A and 20B), pDEST1 (Figures 21A-D), pDEST2 (Figure 22A-D), pDEST3 (Figure 23A-D), pDEST4 (Figure 24A-D), pDEST5 (Figure 25A-D), pDEST6 (Figure 26A-D), pDEST7 (Figure 27A-C), pDEST8 (Figure 28A-D), pDEST9 (Figure 29A-E), pDEST10 (Figure 30A-D), pDEST11 (Figure 31A-D), pDEST12.2 (also known as pDEST12) (Figure 32A-D), pDEST13 (Figure 33A-C), pDEST14 (Figure 34A-D), pDEST15 (Figure 35A-D), pDEST16 (Figure 36A-D), pDEST17 (Figure 37A-D), pDEST18 (Figure 38A-D), pDEST19 (Figure 39A-D), pDEST20 (Figure 40A-D), pDEST21 (Figure 41A-E), pDEST22 (Figure 42A-D), pDEST23 (Figure 43A-D), pDEST24 (Figure 44A-D), pDEST25 (Figure 45A-D), pDEST26 (Figure 46A-D), pDEST27 (Figure 47A-D), pEXP501 (also known

as pCMVSPORT6) (Figure 48A-B), pDONR201 (also known as pENTR21 attP vector or pAttPkan Donor Vector) (Figure 49), pDONR202 (Figure 50), pDONR203 (also known as pEZ15812) (Figure 51), pDONR204 (Figure 52), pDONR205 (Figure 53), pDONR206 (also known as pENTR22 attP vector or pAttPgen Donor Vector) (Figure 54), pMAB58 (Figure 87), pMAB62 (Figure 88), pDEST28 (Figure 90), pDEST29 (Figure 91), pDEST30 (Figure 92), pDEST31 (Figure 93), pDEST32 (Figure 94), pDEST33 (Figure 95), pDEST34 (Figure 96), pDONR207 (Figure 97), pMAB85 (Figure 98), pMAB86 (Figure 99), and fragments, mutants, variants, and derivatives thereof. However, it will be understood by one of ordinary skill that the present invention also encompasses other vectors not specifically designated herein, which comprise one or more of the isolated nucleic acid molecules of the invention encoding one or more recombination sites or portions thereof (or mutants, fragments, variants or derivatives thereof), and which may further comprise one or more additional physical or functional nucleotide sequences described herein which may optionally be operably linked to the one or more nucleic acid molecules encoding one or more recombination sites or portions thereof. Such additional vectors may be produced by one of ordinary skill according to the guidance provided in the present specification.

20

Polymerases

Preferred polypeptides having reverse transcriptase activity (*i.e.*, those polypeptides able to catalyze the synthesis of a DNA molecule from an RNA template) for use in accordance with the present invention include, but are not limited to Moloney Murine Leukemia Virus (M-MLV) reverse transcriptase, Rous Sarcoma Virus (RSV) reverse transcriptase, Avian Myeloblastosis Virus (AMV) reverse transcriptase, Rous Associated Virus (RAV) reverse transcriptase, Myeloblastosis Associated Virus (MAV) reverse transcriptase, Human Immunodeficiency Virus (HIV) reverse transcriptase, retroviral reverse transcriptase, retrotransposon reverse transcriptase, hepatitis B reverse transcriptase, cauliflower mosaic virus reverse transcriptase and bacterial reverse transcriptase. Particularly preferred are those polypeptides having reverse

transcriptase activity that are also substantially reduced in RNase H activity (*i.e.*, "RNase H" polypeptides). By a polypeptide that is "substantially reduced in RNase H activity" is meant that the polypeptide has less than about 20%, more preferably less than about 15%, 10% or 5%, and most preferably less than about 2%, of the RNase H activity of a wildtype or RNase H⁻ enzyme such as wildtype M-MLV reverse transcriptase. The RNase H activity may be determined by a variety of assays, such as those described, for example, in U.S. Patent No. 5,244,797, in Kotewicz, M.L. *et al.*, *Nucl. Acids Res.* 16:265 (1988) and in Gerard, G.F., *et al.*, *FOCUS* 14(5):91 (1992), the disclosures of all of which are fully incorporated herein by reference. Suitable RNase H⁻ polypeptides for use in the present invention include, but are not limited to, M-MLV H⁻ reverse transcriptase, RSV H⁻ reverse transcriptase, AMV H⁻ reverse transcriptase, RAV H⁻ reverse transcriptase, MAV H⁻ reverse transcriptase, HIV H⁻ reverse transcriptase, THERMOSCRIPT™ reverse transcriptase and THERMOSCRIPT™ II reverse transcriptase, and SUPERSCRIPT™ I reverse transcriptase and SUPERSCRIPT™ II reverse transcriptase, which are obtainable, for example, from Life Technologies, Inc. (Rockville, Maryland). See generally published PCT application WO 98/47912.

Other polypeptides having nucleic acid polymerase activity suitable for use in the present methods include thermophilic DNA polymerases such as DNA polymerase I, DNA polymerase III, Klenow fragment, T7 polymerase, and T5 polymerase, and thermostable DNA polymerases including, but not limited to, *Thermus thermophilus* (*Tth*) DNA polymerase, *Thermus aquaticus* (*Taq*) DNA polymerase, *Thermotoga neopolitana* (*Tne*) DNA polymerase, *Thermotoga maritima* (*Tma*) DNA polymerase, *Thermococcus litoralis* (*Tli* or VENT®) DNA polymerase, *Pyrococcus furiosus* (*Pfu*) DNA polymerase, *Pyrococcus* species GB-D (or DEEPVENT®) DNA polymerase, *Pyrococcus woosii* (*Pwo*) DNA polymerase, *Bacillus stearothermophilus* (*Bst*) DNA polymerase, *Sulfolobus acidocaldarius* (*Sac*) DNA polymerase, *Thermoplasma acidophilum* (*Tac*) DNA polymerase, *Thermus flavus* (*Tfl/Tub*) DNA polymerase, *Thermus ruber* (*Tru*) DNA polymerase, *Thermus brockianus* (DYNAZYME®) DNA polymerase, *Methanobacterium thermoautotrophicum* (*Mth*) DNA polymerase, and mutants,

variants and derivatives thereof. Such polypeptides are available commercially, for example from Life Technologies, Inc. (Rockville, MD), New Englan BioLabs (Beverly, MA), and Sigma/Aldrich (St. Louis, MO).

5

Host Cells

10

15

20

25

30

The invention also relates to host cells comprising one or more of the nucleic acid molecules or vectors of the invention, particularly those nucleic acid molecules and vectors described in detail herein. Representative host cells that may be used according to this aspect of the invention include, but are not limited to, bacterial cells, yeast cells, plant cells and animal cells. Preferred bacterial host cells include *Escherichia* spp. cells (particularly *E. coli* cells and most particularly *E. coli* strains DH10B, Stbl2, DH5 α , DB3, DB3.1 (preferably *E. coli* LIBRARY EFFICIENCY® DB3.1™ Competent Cells; Life Technologies, Inc., Rockville, MD), DB4 and DB5; see U.S. Provisional Application No. 60/122,392, filed on March 2, 1999, the disclosure of which is incorporated by reference herein in its entirety), *Bacillus* spp. cells (particularly *B. subtilis* and *B. megaterium* cells), *Streptomyces* spp. cells, *Erwinia* spp. cells, *Klebsiella* spp. cells, *Serratia* spp. cells (particularly *S. marcessans* cells), *Pseudomonas* spp. cells (particularly *P. aeruginosa* cells), and *Salmonella* spp. cells (particularly *S. typhimurium* and *S. typhi* cells). Preferred animal host cells include insect cells (most particularly *Drosophila melanogaster* cells, *Spodoptera frugiperda* Sf9 and Sf21 cells and *Trichoplusa* High-Five cells), nematode cells (particularly *C. elegans* cells), avian cells, amphibian cells (particularly *Xenopus laevis* cells), reptilian cells, and mammalian cells (most particularly CHO, COS, VERO, BHK and human cells). Preferred yeast host cells include *Saccharomyces cerevisiae* cells and *Pichia pastoris* cells. These and other suitable host cells are available commercially, for example from Life Technologies, Inc. (Rockville, Maryland), American Type Culture Collection (Manassas, Virginia), and Agricultural Research Culture Collection (NRRL; Peoria, Illinois).

Methods for introducing the nucleic acid molecules and/or vectors of the invention into the host cells described herein, to produce host cells comprising one or more of the nucleic acid molecules and/or vectors of the invention, will be

familiar to those of ordinary skill in the art. For instance, the nucleic acid molecules and/or vectors of the invention may be introduced into host cells using well known techniques of infection, transduction, transfection, and transformation. The nucleic acid molecules and/or vectors of the invention may be introduced alone or in conjunction with other the nucleic acid molecules and/or vectors. Alternatively, the nucleic acid molecules and/or vectors of the invention may be introduced into host cells as a precipitate, such as a calcium phosphate precipitate, or in a complex with a lipid. Electroporation also may be used to introduce the nucleic acid molecules and/or vectors of the invention into a host. Likewise, such molecules may be introduced into chemically competent cells such as *E. coli*. If the vector is a virus, it may be packaged *in vitro* or introduced into a packaging cell and the packaged virus may be transduced into cells. Hence, a wide variety of techniques suitable for introducing the nucleic acid molecules and/or vectors of the invention into cells in accordance with this aspect of the invention are well known and routine to those of skill in the art. Such techniques are reviewed at length, for example, in Sambrook, J., *et al.*, *Molecular Cloning, a Laboratory Manual*, 2nd Ed., Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, pp. 16.30-16.55 (1989), Watson, J.D., *et al.*, *Recombinant DNA*, 2nd Ed., New York: W.H. Freeman and Co., pp. 213-234 (1992), and Winnacker, E.-L., *From Genes to Clones*, New York: VCH Publishers (1987), which are illustrative of the many laboratory manuals that detail these techniques and which are incorporated by reference herein in their entireties for their relevant disclosures.

Polypeptides

In another aspect, the invention relates to polypeptides encoded by the nucleic acid molecules of the invention (including polypeptides and amino acid sequences encoded by all possible reading frames of the nucleic acid molecules of the invention), and to methods of producing such polypeptides. Polypeptides of the present invention include purified or isolated natural products, products of chemical synthetic procedures, and products produced by recombinant techniques from a prokaryotic or eukaryotic host, including, for example, bacterial, yeast, insect, mammalian, avian and higher plant cells.

The polypeptides of the invention may be produced by synthetic organic chemistry, and are preferably produced by standard recombinant methods, employing one or more of the host cells of the invention comprising the vectors or isolated nucleic acid molecules of the invention. According to the invention, 5 polypeptides are produced by cultivating the host cells of the invention (which comprise one or more of the nucleic acid molecules of the invention, preferably contained within an Expression Vector) under conditions favoring the expression of the nucleotide sequence contained on the nucleic acid molecule of the invention, such that the polypeptide encoded by the nucleic acid molecule of the invention is produced by the host cell. As used herein, "conditions favoring the expression 10 of the nucleotide sequence" or "conditions favoring the production of a polypeptide" include optimal physical (e.g., temperature, humidity, etc.) and nutritional (e.g., culture medium, ionic) conditions required for production of a recombinant polypeptide by a given host cell. Such optimal conditions for a 15 variety of host cells, including prokaryotic (bacterial), mammalian, insect, yeast, and plant cells will be familiar to one of ordinary skill in the art, and may be found, for example, in Sambrook, J., et al., *Molecular Cloning, A Laboratory Manual*, 2nd Ed., Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, (1989), Watson, J.D., et al., *Recombinant DNA*, 2nd Ed., New York: W.H. Freeman and Co., and Winnacker, E.-L., *From Genes to Clones*, New York: VCH Publishers 20 (1987).

In some aspects, it may be desirable to isolate or purify the polypeptides of the invention (e.g., for production of antibodies as described below), resulting in the production of the polypeptides of the invention in isolated form. The polypeptides 25 of the invention can be recovered and purified from recombinant cell cultures by well-known methods of protein purification that are routine in the art, including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. For example, His6 or GST fusion tags on polypeptides made by the methods of the invention may be isolated using 30 appropriate affinity chromatography matrices which bind polypeptides bearing

His₆ or GST tags, as will be familiar to one of ordinary skill in the art. Polypeptides of the present invention include naturally purified products, products of chemical synthetic procedures, and products produced by recombinant techniques from a prokaryotic or eukaryotic host, including, for example, bacterial, yeast, higher plant, insect and mammalian cells. Depending upon the host employed in a recombinant production procedure, the polypeptides of the present invention may be glycosylated or may be non-glycosylated. In addition, polypeptides of the invention may also include an initial modified methionine residue, in some cases as a result of host-mediated processes.

Isolated polypeptides of the invention include those comprising the amino acid sequences encoded by one or more of the reading frames of the polynucleotides comprising one or more of the recombination site-encoding nucleic acid molecules of the invention, including those encoding *attB1*, *attB2*, *attP1*, *attP2*, *attL1*, *attL2*, *attR1* and *attR2* having the nucleotide sequences set forth in Figure 9 (or nucleotide sequences complementary thereto), or fragments, variants, mutants and derivatives thereof; the complete amino acid sequences encoded by the polynucleotides contained in the deposited clones described herein; the amino acid sequences encoded by polynucleotides which hybridize under stringent hybridization conditions to polynucleotides having the nucleotide sequences encoding the recombination site sequences of the invention as set forth in Figure 9 (or a nucleotide sequence complementary thereto); or a peptide or polypeptide comprising a portion or a fragment of the above polypeptides. The invention also relates to additional polypeptides having one or more additional amino acids linked (typically by peptidyl bonds to form a nascent polypeptide) to the polypeptides encoded by the recombination site nucleotide sequences or the deposited clones. Such additional amino acid residues may comprise one or more functional peptide sequences, for example one or more fusion partner peptides (*e.g.*, GST, His₆, Trx, etc.) and the like.

As used herein, the terms "protein," "peptide," "oligopeptide" and "polypeptide" are considered synonymous (as is commonly recognized) and each term can be used interchangeably as the context requires to indicate a chain of two or more amino acids, preferably five or more amino acids, or more preferably ten

or more amino acids, coupled by (a) peptidyl linkage(s), unless otherwise defined in the specific contexts below. As is commonly recognized in the art, all polypeptide formulas or sequences herein are written from left to right and in the direction from amino terminus to carboxy terminus.

5 It will be recognized by those of ordinary skill in the art that some amino acid sequences of the polypeptides of the invention can be varied without significant effect on the structure or function of the polypeptides. If such differences in sequence are contemplated, it should be remembered that there will be critical areas on the protein which determine structure and activity. In general, it is possible to replace residues which form the tertiary structure, provided that residues performing a similar function are used. In other instances, the type of residue may be completely unimportant if the alteration occurs at a non-critical 10 region of the polypeptide.

15 Thus, the invention further includes variants of the polypeptides of the invention, including allelic variants, which show substantial structural homology to the polypeptides described herein, or which include specific regions of these polypeptides such as the portions discussed below. Such mutants may include deletions, insertions, inversions, repeats, and type substitutions (for example, substituting one hydrophilic residue for another, but not strongly hydrophilic for 20 strongly hydrophobic as a rule). Small changes or such "neutral" or "conservative" amino acid substitutions will generally have little effect on activity.

25 Typical conservative substitutions are the replacements, one for another, among the aliphatic amino acids Ala, Val, Leu and Ile; interchange of the hydroxylated residues Ser and Thr; exchange of the acidic residues Asp and Glu; substitution between the amidated residues Asn and Gln; exchange of the basic residues Lys and Arg; and replacements among the aromatic residues Phe and Tyr.

30 Thus, the fragment, derivative or analog of the polypeptides of the invention, such as those comprising peptides encoded by the recombination site nucleotide sequences described herein, may be (i) one in which one or more of the amino acid residues are substituted with a conservative or non-conservative amino acid residue (preferably a conservative amino acid residue), and such substituted amino acid residue may be encoded by the genetic code or may be an amino acid (e.g.,

desmosine, citrulline, ornithine, etc.) that is not encoded by the genetic code; (ii) one in which one or more of the amino acid residues includes a substituent group (e.g., a phosphate, hydroxyl, sulfate or other group) in addition to the normal "R" group of the amino acid; (iii) one in which the mature polypeptide is fused with another compound, such as a compound to increase the half-life of the polypeptide (for example, polyethylene glycol), or (iv) one in which additional amino acids are fused to the mature polypeptide, such as an immunoglobulin Fc region peptide, a leader or secretory sequence, a sequence which is employed for purification of the mature polypeptide (such as GST) or a proprotein sequence. Such fragments, derivatives and analogs are intended to be encompassed by the present invention, and are within the scope of those skilled in the art from the teachings herein and the state of the art at the time of invention.

The polypeptides of the present invention are preferably provided in an isolated form, and preferably are substantially purified. Recombinantly produced versions of the polypeptides of the invention can be substantially purified by the one-step method described in Smith and Johnson, *Gene* 67:31-40 (1988). As used herein, the term "substantially purified" means a preparation of an individual polypeptide of the invention wherein at least 50%, preferably at least 60%, 70%, or 75% and more preferably at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% (by mass) of contaminating proteins (*i.e.*, those that are not the individual polypeptides described herein or fragments, variants, mutants or derivatives thereof) have been removed from the preparation.

The polypeptides of the present invention include those which are at least about 50% identical, at least 60% identical, at least 65% identical, more preferably at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% identical, to the polypeptides described herein. For example, preferred *attB1*-containing polypeptides of the invention include those that are at least about 50% identical, at least 60% identical, at least 65% identical, more preferably at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% identical,

to the polypeptide(s) encoded by the three reading frames of a polynucleotide comprising a nucleotide sequence of *attB1* having a nucleic acid sequence as set forth in Figure 9 (or a nucleic acid sequence complementary thereto), to a polypeptide encoded by a polynucleotide contained in the deposited cDNA clones described herein, or to a polypeptide encoded by a polynucleotide hybridizing under stringent conditions to a polynucleotide comprising a nucleotide sequence of *attB1* having a nucleic acid sequence as set forth in Figure 9 (or a nucleic acid sequence complementary thereto). Analogous polypeptides may be prepared that are at least about 65% identical, more preferably at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% identical, to the *attB2*, *attP1*, *attP2*, *attL1*, *attL2*, *attR1* and *attR2* polypeptides of the invention as depicted in Figure 9. The present polypeptides also include portions or fragments of the above-described polypeptides with at least 5, 10, 15, 20, or 25 amino acids.

By a polypeptide having an amino acid sequence at least, for example, 65% "identical" to a reference amino acid sequence of a given polypeptide of the invention is intended that the amino acid sequence of the polypeptide is identical to the reference sequence except that the polypeptide sequence may include up to 35 amino acid alterations per each 100 amino acids of the reference amino acid sequence of a given polypeptide of the invention. In other words, to obtain a polypeptide having an amino acid sequence at least 65% identical to a reference amino acid sequence, up to 35% of the amino acid residues in the reference sequence may be deleted or substituted with another amino acid, or a number of amino acids up to 35% of the total amino acid residues in the reference sequence may be inserted into the reference sequence. These alterations of the reference sequence may occur at the amino (N-) or carboxy (C-) terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence. As a practical matter, whether a given amino acid sequence is, for example, at least 65% identical to the amino acid sequence of a given polypeptide of the invention can be determined

conventionally using known computer programs such as those described above for nucleic acid sequence identity determinations, or more preferably using the CLUSTAL W program (Thompson, J.D., *et al.*, *Nucleic Acids Res.* 22:4673-4680 (1994)).

5 The polypeptides of the present invention can be used as molecular weight markers on SDS-PAGE gels or on molecular sieve gel filtration columns using methods well known to those of skill in the art. In addition, as described in detail below, the polypeptides of the present invention can be used to raise polyclonal and monoclonal antibodies which are useful in a variety of assays for detecting protein expression, localization, detection of interactions with other molecules, or 10 for the isolation of a polypeptide (including a fusion polypeptide) of the invention.

In another aspect, the present invention provides a peptide or polypeptide comprising an epitope-bearing portion of a polypeptide of the invention, which may be used to raise antibodies, particularly monoclonal antibodies, that bind 15 specifically to a one or more of the polypeptides of the invention. The epitope of this polypeptide portion is an immunogenic or antigenic epitope of a polypeptide of the invention. An "immunogenic epitope" is defined as a part of a protein that elicits an antibody response when the whole protein is the immunogen. These immunogenic epitopes are believed to be confined to a few loci on the molecule. 20 On the other hand, a region of a protein molecule to which an antibody can bind is defined as an "antigenic epitope." The number of immunogenic epitopes of a protein generally is less than the number of antigenic epitopes (*see, e.g.*, Geysen *et al.*, *Proc. Natl. Acad. Sci. USA* 81:3998- 4002 (1983)).

As to the selection of peptides or polypeptides bearing an antigenic epitope 25 (*i.e.*, that contain a region of a protein molecule to which an antibody can bind), it is well-known in the art that relatively short synthetic peptides that mimic part of a protein sequence are routinely capable of eliciting an antiserum that reacts with the partially mimicked protein (*see, e.g.*, Sutcliffe, J.G., *et al.*, *Science* 219:660-666 (1983)). Peptides capable of eliciting protein-reactive sera are frequently represented in the primary sequence of a protein, can be characterized 30 by a set of simple chemical rules, and are not confined to the immunodominant regions of intact proteins (*i.e.*, immunogenic epitopes) or to the amino or carboxy

termini. Peptides that are extremely hydrophobic and those of six or fewer residues generally are ineffective at inducing antibodies that bind to the mimicked protein; longer peptides, especially those containing proline residues, usually are effective (Sutcliffe, J.G., et al., *Science* 219:660-666 (1983)).

5 Epitope-bearing peptides and polypeptides of the invention designed according to the above guidelines preferably contain a sequence of at least five, more preferably at least seven or more amino acids contained within the amino acid sequence of a polypeptide of the invention. However, peptides or polypeptides comprising a larger portion of an amino acid sequence of a polypeptide of the invention, containing about 30 to about 50 amino acids, or any length up to and including the entire amino acid sequence of a given polypeptide of the invention, also are considered epitope-bearing peptides or polypeptides of the invention and also are useful for inducing antibodies that react with the mimicked protein. Preferably, the amino acid sequence of the epitope-bearing peptide is selected to provide substantial solubility in aqueous solvents (*i.e.*, the sequence includes relatively hydrophilic residues and highly hydrophobic sequences are preferably avoided); sequences containing proline residues are particularly preferred.

10 Non-limiting examples of epitope-bearing polypeptides or peptides that can be used to generate antibodies specific for the polypeptides of the invention include certain epitope-bearing regions of the polypeptides comprising amino acid sequences encoded by polynucleotides comprising one or more of the recombination site-encoding nucleic acid molecules of the invention, including those encoding *attB1*, *attB2*, *attP1*, *attP2*, *attL1*, *attL2*, *attR1* and *attR2* having the nucleotide sequences set forth in Figure 9 (or a nucleotide sequence complementary thereto); the complete amino acid sequences encoded by the three reading frames of the polynucleotides contained in the deposited clones described herein; and the amino acid sequences encoded by all reading frames of polynucleotides which hybridize under stringent hybridization conditions to polynucleotides having the nucleotide sequences encoding the recombination site sequences (or portions thereof) of the invention as set forth in Figure 9 (or a nucleic acid sequence complementary thereto). Other epitope-bearing polypeptides or peptides that may be used to generate antibodies specific for the polypeptides

of the invention will be apparent to one of ordinary skill in the art based on the primary amino acid sequences of the polypeptides of the invention described herein, via the construction of Kyte-Doolittle hydrophilicity and Jameson-Wolf antigenic index plots of the polypeptides of the invention using, for example, PROTEAN computer software (DNASTAR, Inc.; Madison, Wisconsin).

The epitope-bearing peptides and polypeptides of the invention may be produced by any conventional means for making peptides or polypeptides including recombinant means using nucleic acid molecules of the invention. For instance, a short epitope-bearing amino acid sequence may be fused to a larger polypeptide which acts as a carrier during recombinant production and purification, as well as during immunization to produce anti-peptide antibodies. Epitope-bearing peptides also may be synthesized using known methods of chemical synthesis (see, e.g., U.S. Patent No. 4,631,211 and Houghten, R. A., *Proc. Natl. Acad. Sci. USA* 82:5131-5135 (1985), both of which are incorporated by reference herein in their entireties).

As one of skill in the art will appreciate, the polypeptides of the present invention and epitope-bearing fragments thereof may be immobilized onto a solid support, by techniques that are well-known and routine in the art. By "solid support" is intended any solid support to which a peptide can be immobilized. Such solid supports include, but are not limited to nitrocellulose, diazocellulose, glass, polystyrene, polyvinylchloride, polypropylene, polyethylene, dextran, Sepharose, agar, starch, nylon, beads and microtitre plates. Linkage of the peptide of the invention to a solid support can be accomplished by attaching one or both ends of the peptide to the support. Attachment may also be made at one or more internal sites in the peptide. Multiple attachments (both internal and at the ends of the peptide) may also be used according to the invention. Attachment can be via an amino acid linkage group such as a primary amino group, a carboxyl group, or a sulphhydryl (SH) group or by chemical linkage groups such as with cyanogen bromide (CNBr) linkage through a spacer. For non-covalent attachments to the support, addition of an affinity tag sequence to the peptide can be used such as GST (Smith, D.B., and Johnson, K.S., *Gene* 67:31 (1988)), polyhistidines (Hochuli, E., et al., *J. Chromatog.* 411:77 (1987)), or biotin. Such affinity tags

5 may be used for the reversible attachment of the peptide to the support. Such immobilized polypeptides or fragments may be useful, for example, in isolating antibodies directed against one or more of the polypeptides of the invention, or other proteins or peptides that recognize other proteins or peptides that bind to one or more of the polypeptides of the invention, as described below.

10 As one of skill in the art will also appreciate, the polypeptides of the present invention and the epitope-bearing fragments thereof described herein can be combined with one or more fusion partner proteins or peptides, or portions thereof, including but not limited to GST, His₆, Trx, and portions of the constant domain of immunoglobulins (Ig), resulting in chimeric or fusion polypeptides. These fusion polypeptides facilitate purification of the polypeptides of the invention (EP 0 394 827; Traunecker *et al.*, *Nature* 331:84- 86 (1988)) for use in analytical or diagnostic (including high-throughput) format.

15

Antibodies

20

In another aspect, the invention relates to antibodies that recognize and bind to the polypeptides (or epitope-bearing fragments thereof) or nucleic acid molecules (or portions thereof) of the invention. In a related aspect, the invention relates to antibodies that recognize and bind to one or more polypeptides encoded by all reading frames of one or more recombination site nucleic acid sequences or portions thereof, or to one or more nucleic acid molecules comprising one or more recombination site nucleic acid sequences or portions thereof, including but not limited to *att* sites (including *attB1*, *attB2*, *attP1*, *attP2*, *attL1*, *attL2*, *attR1*, *attR2* and the like), *lox* sites (e.g., *loxP*, *loxP511*, and the like), FRT, and the like, or mutants, fragments, variants and derivatives thereof. See generally U.S. Patent No. 5,888,732, which is incorporated herein by reference in its entirety. The antibodies of the present invention may be polyclonal or monoclonal, and may be prepared by any of a variety of methods and in a variety of species according to methods that are well-known in the art. See, for instance, U.S. Patent No. 5,587,287; Sutcliffe, J.G., *et al.*, *Science* 219:660-666 (1983); Wilson *et al.*, *Cell* 37: 767 (1984); and Bittle, F.J., *et al.*, *J. Gen. Virol.* 66:2347-2354 (1985). Antibodies specific for any of the polypeptides or nucleic acid molecules described

25

herein, such as antibodies specifically binding to one or more of the polypeptides encoded by the recombination site nucleotide sequences, or one or more nucleic acid molecules, described herein or contained in the deposited clones, antibodies against fusion polypeptides (e.g., binding to fusion polypeptides between one or more of the fusion partner proteins and one or more of the recombination site polypeptides of the invention, as described herein), and the like, can be raised against the intact polypeptides or polynucleotides of the invention or one or more antigenic polypeptide fragments thereof.

As used herein, the term "antibody" (Ab) may be used interchangeably with the terms "polyclonal antibody" or "monoclonal antibody" (mAb), except in specific contexts as described below. These terms, as used herein, are meant to include intact molecules as well as antibody fragments (such as, for example, Fab and F(ab')₂ fragments) which are capable of specifically binding to a polypeptide or nucleic acid molecule of the invention or a portion thereof. It will therefore be appreciated that, in addition to the intact antibodies of the invention, Fab, F(ab')₂ and other fragments of the antibodies described herein, and other peptides and peptide fragments that bind one or more polypeptides or polynucleotides of the invention, are also encompassed within the scope of the invention. Such antibody fragments are typically produced by proteolytic cleavage of intact antibodies, using enzymes such as papain (to produce Fab fragments) or pepsin (to produce F(ab')₂ fragments). Antibody fragments, and peptides or peptide fragments, may also be produced through the application of recombinant DNA technology or through synthetic chemistry.

Epitope-bearing peptides and polypeptides, and nucleic acid molecules or portions thereof, of the invention may be used to induce antibodies according to methods well known in the art, as generally described herein (see, e.g., Sutcliffe, *et al.*, *supra*; Wilson, *et al.*, *supra*; and Bittle, F. J., *et al.*, *J. Gen. Virol.* 66:2347-2354 (1985)).

Polyclonal antibodies according to this aspect of the invention may be made by immunizing an animal with one or more of the polypeptides or nucleic acid molecules of the invention described herein or portions thereof according to standard techniques (see, e.g., Harlow, E., and Lane, D., *Antibodies: A*

Laboratory Manual, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press (1988); Kaufman, P.B., et al., In: *Handbook of Molecular and Cellular Methods in Biology and Medicine*, Boca Raton, Florida: CRC Press, pp. 468-469 (1995)). For producing antibodies that recognize and bind to the polypeptides or nucleic acid molecules of the invention or portions thereof, animals may be immunized with free peptide or free nucleic acid molecules; however, antibody titer may be boosted by coupling of the peptide to a macromolecular carrier, such as albumin, KLH, or tetanus toxoid (particularly for producing antibodies against the nucleic acid molecules of the invention or portions thereof; see Harlow and Lane, *supra*, at page 154), or to a solid phase carrier such as a latex or glass microbead. For instance, peptides containing cysteine may be coupled to carrier using a linker such as m-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS), while other peptides may be coupled to carrier using a more general linking agent such as glutaraldehyde. Animals such as rabbits, rats and mice may be immunized with either free (if the polypeptide immunogen is larger than about 25 amino acids in length) or carrier-coupled peptides or nucleic acid molecules, for instance, by intraperitoneal and/or intradermal injection of emulsions containing about 100 µg peptide, polynucleotide, or carrier protein, and Freund's adjuvant. Several booster injections may be needed, for instance, at intervals of about two weeks, to provide a useful titer of antibody which can be detected, for example, by ELISA assay using free peptide or nucleic acid molecule adsorbed to a solid surface. In another approach, cells expressing one or more of the polypeptides or polynucleotides of the invention or an antigenic fragment thereof can be administered to an animal in order to induce the production of sera containing polyclonal antibodies, according to routine immunological methods. In yet another method, a preparation of one or more of the polypeptides or polynucleotides of the invention is prepared and purified as described herein, to render it substantially free of natural contaminants. Such a preparation may then be introduced into an animal in order to produce polyclonal antisera of greater specific activity. The titer of antibodies in serum from an immunized animal, regardless of the method of immunization used, may be increased by selection of anti-peptide or anti-polynucleotide antibodies, for

instance, by adsorption to the peptide or polynucleotide on a solid support and elution of the selected antibodies according to methods well known in the art.

In an alternative method, the antibodies of the present invention are monoclonal antibodies (or fragments thereof which bind to one or more of the polypeptides of the invention). Such monoclonal antibodies can be prepared using hybridoma technology (Kohler *et al.*, *Nature* 256:495 (1975); Köhler *et al.*, *Eur. J. Immunol.* 6:511 (1976); Köhler *et al.*, *Eur. J. Immunol.* 6:292 (1976); Hammerling *et al.*, In: *Monoclonal Antibodies and T-Cell Hybridomas*, Elsevier, N.Y., pp. 563-681 (1981)). In general, such procedures involve immunizing an animal (preferably a mouse) with a polypeptide or polynucleotide of the invention (or a fragment thereof), or with a cell expressing a polypeptide or polynucleotide of the invention (or a fragment thereof). The splenocytes of such mice are extracted and fused with a suitable myeloma cell line. Any suitable myeloma cell line may be employed in accordance with the present invention; however, it is preferable to employ the parent myeloma cell line (SP₂O), available from the American Type Culture Collection, Rockville, Maryland. After fusion, the resulting hybridoma cells are selectively maintained in HAT medium, and then cloned by limiting dilution as described by Wands *et al.* (*Gastroenterol.* 80:225-232 (1981)). The hybridoma cells obtained through such a selection are then assayed to identify clones which secrete antibodies capable of binding one or more of the polypeptides or nucleic acid molecules of the invention, or fragments thereof. Hence, the present invention also provides hybridoma cells and cell lines producing monoclonal antibodies of the invention, particularly that recognize and bind to one or more of the polypeptides or nucleic acid molecules of the invention.

Alternatively, additional antibodies capable of binding to one or more of the polypeptides of the invention, or fragments thereof, may be produced in a two-step procedure through the use of anti-idiotypic antibodies. Such a method makes use of the fact that antibodies are themselves antigens, and that, therefore, it is possible to obtain an antibody which binds to a second antibody. In accordance with this method, antibodies specific for one or more of the polypeptides or polynucleotides of the invention, prepared as described above, are used to immunize an animal, preferably a mouse. The splenocytes of such an

animal are then used to produce hybridoma cells, and the hybridoma cells are screened to identify clones which produce an antibody whose ability to bind to an antibody specific for one or more of the polypeptides or polynucleotides of the invention can be blocked by polypeptides of the invention themselves. Such antibodies comprise anti-idiotypic antibodies to the antibodies recognizing one or more of the polypeptides or polynucleotides of the invention, and can be used to immunize an animal to induce formation of further antibodies specific for one or more of the polypeptides or polynucleotides of the invention.

For use, the antibodies of the invention may optionally be detectably labeled by covalent or non-covalent attachment of one or more labels, including but not limited to chromogenic, enzymatic, radioisotopic, isotopic, fluorescent, toxic, chemiluminescent, or nuclear magnetic resonance contrast agents or other labels.

Examples of suitable enzyme labels include malate dehydrogenase, staphylococcal nuclease, delta-5-steroid isomerase, yeast-alcohol dehydrogenase, alpha-glycerol phosphate dehydrogenase, triose phosphate isomerase, peroxidase, alkaline phosphatase, asparaginase, glucose oxidase, beta-galactosidase, ribonuclease, urease, catalase, glucose-6-phosphate dehydrogenase, glucoamylase, and acetylcholine esterase.

Examples of suitable radioisotopic labels include ^3H , ^{111}In , ^{125}I , ^{131}I , ^{32}P , ^{35}S , ^{14}C , ^{51}Cr , ^{57}Co , ^{58}Fe , ^{75}Se , ^{152}Eu , ^{90}Y , ^{67}Cu , ^{217}Cl , ^{211}At , ^{212}Pb , ^{47}Sc , ^{109}Pd , etc. ^{111}In is a preferred isotope where *in vivo* imaging is used since its avoids the problem of dehalogenation of the ^{125}I or ^{131}I -labeled monoclonal antibody by the liver. In addition, this radionucleotide has a more favorable gamma emission energy for imaging (Perkins *et al.*, *Eur. J. Nucl. Med.* 10:296-301 (1985); Carasquillo *et al.*, *J. Nucl. Med.* 28:281-287 (1987)). For example, ^{111}In coupled to monoclonal antibodies with 1-(*P*-isothiocyanatobenzyl)-DPTA has shown little uptake in non-tumorous tissues, particularly the liver, and therefore enhances specificity of tumor localization (Esteban *et al.*, *J. Nucl. Med.* 28:861-870 (1987)).

Examples of suitable non-radioactive isotopic labels include ^{157}Gd , ^{55}Mn , ^{162}Dy ,

30 ^{52}Tr , and ^{56}Fe .

Examples of suitable fluorescent labels include an ^{152}Eu label, a fluorescein label, an isothiocyanate label, a rhodamine label, a phycoerythrin label, a

phycocyanin label, an allophycocyanin label, an o-phthaldehyde label, a green fluorescent protein (GFP) label, and a fluorescamine label.

Examples of suitable toxin labels include diphtheria toxin, ricin, and cholera toxin.

5 Examples of chemiluminescent labels include a luminal label, an isoluminal label, an aromatic acridinium ester label, an imidazole label, an acridinium salt label, an oxalate ester label, a luciferin label, a luciferase label, and an aequorin label.

10 Examples of nuclear magnetic resonance contrasting agents include heavy metal nuclei such as Gd, Mn, and iron.

15 Typical techniques for binding the above-described labels to the antibodies of the invention are provided by Kennedy *et al.*, *Clin. Chim. Acta* 70:1-31 (1976), and Schurs *et al.*, *Clin. Chim. Acta* 81:1-40 (1977). Coupling techniques mentioned in the latter are the glutaraldehyde method, the periodate method, the dimaleimide method, the m-maleimidobenzyl-N-hydroxy-succinimide ester method, all of which methods are incorporated by reference herein.

20 It will be appreciated by one of ordinary skill that the antibodies of the present invention may alternatively be coupled to a solid support, to facilitate, for example, chromatographic and other immunological procedures using such solid phase-immobilized antibodies. Included among such procedures are the use of the antibodies of the invention to isolate or purify polypeptides comprising one or more epitopes encoded by the nucleic acid molecules of the invention (which may be fusion polypeptides or other polypeptides of the invention described herein), or to isolate or purify polynucleotides comprising one or more recombination site sequences of the invention or portions thereof. Methods for isolation and purification of polypeptides (and, by analogy, polynucleotides) by affinity chromatography, for example using the antibodies of the invention coupled to a solid phase support, are well-known in the art and will be familiar to one of ordinary skill. The antibodies of the invention may also be used in other applications, for example to cross-link or couple two or more proteins, polypeptides, polynucleotides, or portions thereof into a structural and/or functional complex. In one such use, an antibody of the invention may have two

or more distinct epitope-binding regions that may bind, for example, a first polypeptide (which may be a polypeptide of the invention) at one epitope-binding region on the antibody and a second polypeptide (which may be a polypeptide of the invention) at a second epitope-binding region on the antibody, thereby bringing the first and second polypeptides into close proximity to each other such that the first and second polypeptides are able to interact structurally and/or functionally (as, for example, linking an enzyme and its substrate to carry out enzymatic catalysis, or linking an effector molecule and its receptor to carry out or induce a specific binding of the effector molecule to the receptor or a response to the effector molecule mediated by the receptor). Additional applications for the antibodies of the invention include, for example, the preparation of large-scale arrays of the antibodies, polypeptides, or nucleic acid molecules of the invention, or portions thereof, on a solid support, for example to facilitate high-throughput screening of protein or RNA expression by host cells containing nucleic acid molecules of the invention (known in the art as "chip array" protocols; *see, e.g.*, U.S. Patent Nos. 5,856,101, 5,837,832, 5,770,456, 5,744,305, 5,631,734, and 5,593,839, which are directed to production and use of chip arrays of polypeptides (including antibodies) and polynucleotides, and the disclosures of which are incorporated herein by reference in their entireties). By "solid support" is intended any solid support to which an antibody can be immobilized. Such solid supports include, but are not limited to nitrocellulose, diazocellulose, glass, polystyrene, polyvinylchloride, polycarbonate, polypropylene, polyethylene, dextran, Sepharose, agar, starch, nylon, beads and microtitre plates. Preferred are beads made of glass, latex or a magnetic material. Linkage of an antibody of the invention to a solid support can be accomplished by attaching one or both ends of the antibody to the support. Attachment may also be made at one or more internal sites in the antibody. Multiple attachments (both internal and at the ends of the antibody) may also be used according to the invention. Attachment can be via an amino acid linkage group such as a primary amino group, a carboxyl group, or a sulphhydryl (SH) group or by chemical linkage groups such as with cyanogen bromide (CNBr) linkage through a spacer. For non-covalent attachments, addition of an affinity tag sequence to the peptide can be used such as GST

(Smith, D.B., and Johnson, K.S., *Gene* 67:31 (1988)), polyhistidines (Hochuli, E., et al., *J. Chromatog.* 411:77 (1987)), or biotin. Alternatively, attachment can be accomplished using a ligand which binds the Fc region of the antibodies of the invention, e.g., protein A or protein G. Such affinity tags may be used for the reversible attachment of the antibodies to the support. Peptides may also be recognized via specific ligand-receptor interactions or using phage display methodologies that will be familiar to the skilled artisan, for their ability to bind polypeptides of the invention or fragments thereof.

10

Kits

15

In another aspect, the invention provides kits which may be used in producing the nucleic acid molecules, polypeptides, vectors, host cells, and antibodies, and in the recombinational cloning methods, of the invention. Kits according to this aspect of the invention may comprise one or more containers, which may contain one or more of the nucleic acid molecules, primers, polypeptides, vectors, host cells, or antibodies of the invention. In particular, a kit of the invention may comprise one or more components (or combinations thereof) selected from the group consisting of one or more recombination proteins (e.g., Int) or auxiliary factors (e.g. IHF and/or Xis) or combinations thereof, one or more compositions comprising one or more recombination proteins or auxiliary factors or combinations thereof (for example, GATEWAY™ LR Clonase™ Enzyme Mix or GATEWAY™ BP Clonase™ Enzyme Mix) one or more Destination Vector molecules (including those described herein), one or more Entry Clone or Entry Vector molecules (including those described herein), one or more primer nucleic acid molecules (particularly those described herein), one or more host cells (e.g. competent cells, such as *E. coli* cells, yeast cells, animal cells (including mammalian cells, insect cells, nematode cells, avian cells, fish cells, etc.), plant cells, and most particularly *E. coli* DB3, DB3.1 (preferably *E. coli* LIBRARY EFFICIENCY® DB3.1™ Competent Cells; Life Technologies, Inc., Rockville, MD), DB4 and DB5; see U.S. Provisional Application No. 60/122,392, filed on March 2, 1999, and the corresponding U.S. Utility Application No. _____ of Hartley et al., entitled "Cells Resistant to Toxic Genes and Uses Thereof," filed

20

25

30

5

10

15

20

30

on even day herewith, the disclosures of which are incorporated by reference herein in its entirety), and the like. In related aspects, the kits of the invention may comprise one or more nucleic acid molecules encoding one or more recombination sites or portions thereof, such as one or more nucleic acid molecules comprising a nucleotide sequence encoding the one or more recombination sites (or portions thereof) of the invention, and particularly one or more of the nucleic acid molecules contained in the deposited clones described herein. Kits according to this aspect of the invention may also comprise one or more isolated nucleic acid molecules of the invention, one or more vectors of the invention, one or more primer nucleic acid molecules of the invention, and/or one or more antibodies of the invention. The kits of the invention may further comprise one or more additional containers containing one or more additional components useful in combination with the nucleic acid molecules, polypeptides, vectors, host cells, or antibodies of the invention, such as one or more buffers, one or more detergents, one or more polypeptides having nucleic acid polymerase activity, one or more polypeptides having reverse transcriptase activity, one or more transfection reagents, one or more nucleotides, and the like. Such kits may be used in any process advantageously using the nucleic acid molecules, primers, vectors, host cells, polypeptides, antibodies and other compositions of the invention, for example in methods of synthesizing nucleic acid molecules (*e.g.*, via amplification such as via PCR), in methods of cloning nucleic acid molecules (preferably via recombinational cloning as described herein), and the like.

Optimization of Recombinational Cloning System

The usefulness of a particular nucleic acid molecule, or vector comprising a nucleic acid molecule, of the invention in methods of recombinational cloning may be determined by any one of a number of assay methods. For example, Entry and Destination vectors of the present invention may be assessed for their ability to function (*i.e.*, to mediate the transfer of a nucleic acid molecule, DNA segment, gene, cDNA molecule or library from a cloning vector to an Expression Vector) by carrying out a recombinational cloning reaction as described in more detail in the Examples below and as described in U.S. Application Nos. 08/663,002, filed

-95-

June 7, 1996 (now U.S. Patent No. 5,888,732), 09/005,476, filed January 12, 1998, 09/177,387, filed October 23, 1998, and 60/108,324, filed November 13, 1998, the disclosures of which are incorporated by reference herein in their entireties. Alternatively, the functionality of Entry and Destination Vectors prepared according to the invention may be assessed by examining the ability of these vectors to recombine and create cointegrate molecules, or to transfer a nucleic acid molecule of interest, using an assay such as that described in detail below in Example 19. Analogously, the formulation of compositions comprising one or more recombination proteins or combinations thereof, for example GATEWAY™ LR Clonase™ Enzyme Mix and GATEWAY™ BP Clonase™ Enzyme Mix, may be optimized using assays such as those described below in Example 18.

Uses

There are a number of applications for the compositions, methods and kits of the present invention. These uses include, but are not limited to, changing vectors, targeting gene products to intracellular locations, cleaving fusion tags from desired proteins, operably linking nucleic acid molecules of interest to regulatory genetic sequences (e.g., promoters, enhancers, and the like), constructing genes for fusion proteins, changing copy number, changing replicons, cloning into phages, and cloning, e.g., PCR products, genomic DNAs, and cDNAs. In addition, the nucleic acid molecules, vectors, and host cells of the invention may be used in the production of polypeptides encoded by the nucleic acid molecules, in the production of antibodies directed against such polypeptides, in recombinational cloning of desired nucleic acid sequences, and in other applications that may be enhanced or facilitated by the use of the nucleic acid molecules, vectors, and host cells of the invention.

In particular, the nucleic acid molecules, vectors, host cells, polypeptides, antibodies, and kits of the invention may be used in methods of transferring one or more desired nucleic acid molecules or DNA segments, for example one or more genes, cDNA molecules or cDNA libraries, into a cloning or Expression Vector for use in transforming additional host cells for use in cloning or

-96-

amplification of, or expression of the polypeptide encoded by, the desired nucleic acid molecule or DNA segment. Such recombinational cloning methods which may advantageously use the nucleic acid molecules, vectors, and host cells of the invention, are described in detail in the Examples below, and in commonly owned U.S. Application Nos. 08/486,139, filed June 7, 1995, 08/663,002, filed June 7, 1996 (now U.S. Patent No. 5,888,732), 09/005,476, filed January 12, 1998, 09/177,387, filed October 23, 1998, and 60/108,324, filed November 13, 1998, the disclosures of all of which are incorporated by reference herein in their entireties.

10

It will be understood by one of ordinary skill in the relevant arts that other suitable modifications and adaptations to the methods and applications described herein are readily apparent from the description of the invention contained herein in view of information known to the ordinarily skilled artisan, and may be made without departing from the scope of the invention or any embodiment thereof. Having now described the present invention in detail, the same will be more clearly understood by reference to the following examples, which are included herewith for purposes of illustration only and are not intended to be limiting of the invention.

15

20

Examples

Example 1: Recombination Reactions of Bacteriophage λ

The *E. coli* bacteriophage λ can grow as a lytic phage, in which case the host cell is lysed, with the release of progeny virus. Alternatively, lambda can integrate into the genome of its host by a process called lysogenization (see Figure 60). In this lysogenic state, the phage genome can be transmitted to daughter cells for many generations, until conditions arise that trigger its excision from the genome. At this point, the virus enters the lytic part of its life cycle. The control of the switch between the lytic and lysogenic pathways is one of the best understood processes in molecular biology (M. Ptashne, *A Genetic Switch*, Cell Press, 1992).

25

The integrative and excisive recombination reactions of λ , performed *in vitro*, are the basis of Recombinational Cloning System of the present invention. They can be represented schematically as follows:

5

10

The four att sites contain binding sites for the proteins that mediate the reactions. The wild type attP, attB, attL, and attR sites contain about 243, 25, 100, and 168 base pairs, respectively. The attB x attP reaction (hereinafter referred to as a "BP Reaction," or alternatively and equivalently as an "Entry Reaction" or a "Gateward Reaction") is mediated by the proteins Int and IHF. The attL x attR reaction (hereinafter referred to as an "LR Reaction," or alternatively and equivalently as a "Destination Reaction") is mediated by the proteins Int, IHF, and Xis. Int (integrase) and Xis (excisionase) are encoded by the λ genome, while IHF (integration host factor) is an *E. coli* protein. For a general review of lambda recombination, see: A. Landy, *Ann. Rev. Biochem.* 58: 15 913-949 (1989).

15

20

Example 2: Recombination Reactions of the Recombinational Cloning System

The LR Reaction -- the exchange of a DNA segment from an Entry Clone to a Destination Vector -- is the *in vitro* version of the λ excision reaction:

25

30

There is a practical imperative for this configuration: after an LR Reaction in one configuration of the present method, an att site usually separates a functional motif (such as a promoter or a fusion tag) from a nucleic acid molecule of interest in an Expression Clone, and the 25 bp attB site is much smaller than the attP, attL, and attR sites.

Note that the recombination reaction is conservative, i.e., there is no net synthesis or loss of base pairs. The DNA segments that flank the recombination

sites are merely switched. The wild type λ recombination sites are modified for purposes of the GATEWAYTM Cloning System, as follows:

To create certain preferred Destination Vectors, a part (43 bp) of attR was removed, to make the excisive reaction irreversible and more efficient (W. Bushman et al., *Science* 230: 906, 1985). The attR sites in preferred Destination Vectors of the invention are 125 bp in length. Mutations were made to the core regions of the att sites, for two reasons: (1) to eliminate stop codons, and (2) to ensure specificity of the recombination reactions (i.e., attR1 reacts only with attL1, attR2 reacts only with attL2, etc.).

Other mutations were introduced into the short (5 bp) regions flanking the 15 bp core regions of the attB sites to minimize secondary structure formation in single-stranded forms of attB plasmids, e.g., in phagemid ssDNA or in mRNA. Sequences of attB1 and attB2 to the left and right of a nucleic acid molecule of interest after it has been cloned into a Destination Vector are given in Figure 6.

Figure 61 illustrates how an Entry Clone and a Destination Vector recombine in the LR Reaction to form a co-integrate, which resolves through a second reaction into two daughter molecules. The two daughter molecules have the same general structure regardless of which pair of sites, attL1 and attR1 or attL2 and attR2, react first to form the co-integrate. The segments change partners by these reactions, regardless of whether the parental molecules are both circular, one is circular and one is linear, or both are linear. In this example, selection for ampicillin resistance carried on the Destination Vector, which also carries the death gene ccdB, provides the means for selecting only for the desired attB product plasmid.

Example 3: Protein Expression in the Recombinational Cloning System

Proteins are expressed *in vivo* as a result of two processes, transcription (DNA into RNA), and translation (RNA into protein). For a review of protein expression in prokaryotes and eukaryotes, see Example 13 below. Many vectors (pUC, BlueScript, pGem) use interruption of a transcribed lacZ gene for blue-white screening. These plasmids, and many Expression Vectors, use the lac promoter to control expression of cloned genes. Transcription from the lac

promoter is turned on by adding the inducer IPTG. However, a low level of RNA is made in the absence of inducer, i.e., the lac promoter is never completely off. The result of this "leakiness" is that genes whose expression is harmful to *E. coli* may prove difficult or impossible to clone in vectors that contain the lac promoter, or they may be cloned only as inactive mutants.

In contrast to other gene expression systems, nucleic acid molecules cloned into an Entry Vector may be designed *not* to be expressed. The presence of the strong transcriptional terminator *rrnB* (Orosz, et al., *Eur. J. Biochem.* 201: 653, 1991) just upstream of the attL1 site keeps transcription from the vector promoters (drug resistance and replication origin) from reaching the cloned gene. However, if a toxic gene is cloned into a Destination Vector, the host may be sick, just as in other expression systems. But the reliability of subcloning by *in vitro* recombination makes it easier to recognize that this has happened -- and easier to try another expression option in accordance with the methods of the invention, if necessary.

Example 4: Choosing the Right Entry Vector

There are two kinds of choices that must be made in choosing the best Entry Vector, dictated by (1) the particular DNA segment that is to be cloned, and (2) what is to be accomplished with the cloned DNA segment. These factors are critical in the choice of Entry Vector used, because when the desired nucleic acid molecule of interest is moved from the Entry Vector to a Destination Vector, all the base pairs between the nucleic acid molecule of interest and the Int cutting sites in attL1 and attL2 (such as in Figure 6) move into the Destination Vector as well. For genomic DNAs that are not expressed as a result of moving into a Destination Vector, these decisions are not as critical.

For example, if an Entry Vector with certain translation start signals is used, those sequences will be translated into amino acids if an amino-terminal fusion to the desired nucleic acid molecule of interest is made. Whether the desired nucleic acid molecule of interest is to be expressed as fusion protein, native protein, or both, dictates whether translational start sequences must be included between the attB sites of the clone (native protein) or, alternatively, supplied by the Destination

-100-

Vector (fusion protein). In particular, Entry Clones that include translational start sequences may prove less suitable for making fusion proteins, as internal initiation of translation at these sites can decrease the yield of N-terminal fusion protein. These two types of expression afforded by the compositions and methods of the invention are illustrated in Figure 62.

No Entry Vector is likely to be optimal for all applications. The nucleic acid molecule of interest may be cloned into any of several optimal Entry Vectors.

As an example, consider pENTR7 (Figure 16) and pENTR11 (Figure 20), which are useful in a variety of applications, including (but not limited to):

10

- Cloning cDNAs from most of the commercially available libraries. The sites to the left and right of the *ccdB* death gene have been chosen so that directional cloning is possible if the DNA to be cloned does not have two or more of these restriction sites.

15

- Cloning of genes directionally: *SaI*, *Bam*HI, *Xmn*I (blunt), or *Kpn*I on the left of *ccdB*; *Not*I, *Xho*I, *Xba*I, or *Eco*RV (blunt), on the right.

20

- Cloning of genes or gene fragments with a blunt amino end at the *Xmn*I site. The *Xmn*I site has four of the six most favored bases for eukaryotic expression (see Example 13, below), so that if the first three bases of the DNA to be cloned are ATG, the open reading frame (ORF) will be expressed in eukaryotic cells (e.g., mammalian cells, insect cells, yeast cells) when it is transcribed in the appropriate Destination Vector. In addition, in pENTR11, a Shine-Dalgarno sequence is situated 8 bp upstream, for initiating protein synthesis in a prokaryotic host cell (particularly a bacterial cell, such as *E. coli*) at an ATG.

25

30

- Cleaving off amino terminal fusions (e.g., His₆, GST, or thioredoxin) using the highly specific TEV (Tobacco Etch Virus) protease (available from Life Technologies, Inc.). If the nucleic acid molecule of interest is cloned at the

-101-

blunt *XmnI* site, TEV cleavage will leave two amino acids on the amino end of the expressed protein.

5 • Selecting against uncut or singly cut Entry Vector molecules during cloning with restriction enzymes and ligase. If the *ccdB* gene is not removed with a double digest, it will kill any recipient *E. coli* cell that does not contain a mutation that makes the cell resistant to *ccdB* (see U.S. Provisional Application No. 60/122,392, filed on March 2, 1999, the disclosure of which is incorporated by reference herein in its entirety).

10

• Allowing production of amino fusions with ORFs in all cloning sites. There are no stop codons (in the *attL1* reading frame) upstream of the *ccdB* gene.

In addition, pENTR11 is also useful in the following applications:

15

• Cloning cDNAs that have an *NcoI* site at the initiating ATG into the *NcoI* site. Similar to the *XmnI* site, this site has four of the six most favored bases for eukaryotic expression. Also, a Shine-Dalgarno sequence is situated 8 bp upstream, for initiating protein synthesis in a prokaryotic host cell (particularly a bacterial cell, such as *E. coli*) at an ATG.

20

• Producing carboxy fusion proteins with ORFs positioned in phase with the reading frame convention for carboxy-terminal fusions (see Figure 20A).

25 Table 1 lists some non-limiting examples of Entry Vectors and their characteristics, and Figures 10-20 show their cloning sites. All of the Entry Vectors listed in Table 1 are available commercially from Life Technologies, Inc., Rockville, Maryland. Other Entry Vectors not specifically listed here, which comprise alternative or additional features may be made by one of ordinary skill using routine methods of molecular and cellular biology, in view of the disclosure contained herein.

30

Table 1 Examples of Entry Vectors

Designation	Mnemonic Name	Class of Entry Vector	Distinctive Cloning Sites	Amino Fusions	Native Protein in E.coli	Native Protein in Eukaryotic Cells	Protein Synthesis Features
pENTR-1A, 2B, 3C	Minimal blunt RF A, B, C	Alternative Reading Frame Vectors	Reading frame A, B, or C; blunt cut closest to attL1	Good	Poor	Good	Minimal amino acids between tag and protein; no SD
pENTR4	Minimal Nco	Restr. Enz. Cleavage Vectors	Nco I site (common in euk. cDNAs) closest to attL1	Good	Poor	Good	Good Kozac; no SD
pENTR5	Minimal Nde	Restr. Enz. Cleavage Vectors	NdeI site closest to attL1	Good	Poor	Poor at Nde I, Good at Xmn I	No SD; poor Kozac at Nde, good at Xmn
pENTR6	Minimal Sph	Restr. Enz. Cleavage Vectors	Sph I site closest to attL1	Good	Poor	Poor at Sph I, Good at Xmn I	No SD; poor Kozac at Sph, good at Xmn
pENTR7	TEV Blunt	TEV Cleavage Site Present	Xmn I (blunt) is first cloning site after TEV site	Good	Poor	Good at Xmn I site	TEV protease leaves Gly-Thr on amino end of protein; no SD
pENTR8	TEV Nco	TEV Cleavage Site Present	Nco I is first cloning site after TEV site	Good	Poor	Good	TEV protease leaves Gly-Thr on amino end of protein; no SD

pENTR9	TEV Nde	TEV Cleavage Site Present	Nde I is first cloning site after TEV site	Good	Poor	Poor	TEV protease leaves Gly-Thr on amino end of protein, no SD, poor Kozac
pENTR10	Nde with SD	Good SD for E.coli Expression	Strong SD; Nde I site, no TEV	Poor	Good	Poor	Strong SD, internal starts in amino fusions. Poor Kz. No TEV
pENTR11	2 X SD+Kozac	Good SD for E.coli Expression	Xmn I (blunt) and Nco I sites each preceded by SD and Kozac	Good	Good	Good	Strong SD/Koz Internal starts in amino fusions. No TEV

Entry vectors pENTR1A (Figures 10A and 10B), pENTR2B (Figures 11A and 11B), and pENTR3C (Figures 12A and 12B) are almost identical, except that the restriction sites are in different reading frames. Entry vectors pENTR4 (Figures 13A and 13B), pENTR5 (Figures 14A and 14B), and pENTR6 (Figures 15A and 15B) are essentially identical to pENTR1A, except that the blunt *Dra*I site has been replaced with sites containing the ATG methionine codon: *Nco*I in pENTR4, *Nde*I in pENTR5, and *Sph*I in pENTR6. Nucleic acid molecules that contain one of these sites at the initiating ATG can be conveniently cloned in these Entry vectors. The *Nco*I site in pENTR4 is especially useful for expression of nucleic acid molecules in eukaryotic cells, since it contains many of the bases that give efficient translation (see Example 13, below). (Nucleic acid molecules of interest cloned into the *Nde*I site of pENTR5 are not expected to be highly expressed in eukaryotic cells, because the cytosine at position -3 from the initiating ATG is rare in eukaryotic genes.)

Entry vectors pENTR7 (Figures 16A and 16B), pENTR8 (Figures 17A and 17B), and pENTR9 (Figures 18A and 18B) contain the recognition site for the TEV protease between the attL1 site and the cloning sites. Cleavage sites for *Xmn*I (blunt), *Nco*I, and *Nde*I, respectively, are the most 5' sites in these Entry vectors. Amino fusions can be removed efficiently if nucleic acid molecules are cloned into these Entry vectors. TEV protease is highly active and highly specific.

Example 5: Controlling Reading Frame

One of the trickiest tasks in expression of cloned nucleic acid molecules is making sure the reading frame is correct. (Reading frame is important if fusions are being made between two ORFs, for example between a nucleic acid molecule of interest and a His6 or GST domain.) For purposes of the present invention, the following convention has been adopted: The reading frame of the DNA cloned into any Entry Vector must be in phase with that of the attB1 site shown in Figure 16A, pENTR7. Notice that the six As of the attL1 site are split into two lysine codons (aaa aaa). The Destination Vectors that make amino fusions were constructed such that they enter the attR1 site in this reading frame.

-105-

Destination Vectors for carboxy terminal fusions were also constructed, including those containing His₆ (pDEST23; Figure 43), GST (pDEST24; Figure 44), or thioredoxin (pDEST25; Figure 45) C-terminal fusion sequences.

Therefore, if a nucleic acid molecule of interest is cloned into an Entry Vector so that the aaa aaa reading frame within the attL1 site is in phase with the nucleic acid molecule's ORF, amino terminal fusions will automatically be correctly phased, for all the fusion tags. This is a significant improvement over the usual case, where each different vector can have different restriction sites and different reading frames.

See Example 15 for a practical example of how to choose the most appropriate combinations of Entry Vector and Destination Vector.

Materials

Unless otherwise indicated, the following materials were used in the remaining Examples included herein:

5X LR Reaction Buffer:

200-250 mM (preferably 250 mM) Tris-HCl, pH 7.5

250-350 mM (preferably 320 mM) NaCl

1.25-5 mM (preferably 4.75 mM) EDTA

12.5-35 mM (preferably 22-35 mM, and most preferably 35 mM)

Spermidine-HCl

1 mg/ml bovine serum albumin

GATEWAY™ LR Clonase™ Enzyme Mix:

per 4 µl of 1X LR Reaction Buffer:

150 ng carboxy-His6-tagged Int (see U.S. Appl. Nos. 60/108,324, filed November 13, 1998, and 09/438,358, filed November 12, 1999, both entirely incorporated by reference herein)

-106-

25 ng carboxy-His6-tagged Xis (see U.S. Appl. Nos. 60/108,324, filed November 13, 1998, and 09/438,358, filed November 12, 1999, both entirely incorporated by reference herein)

30 ng IHF

5 50% glycerol

5X BP Reaction Buffer:

125 mM Tris-HCl, pH 7.5

110 mM NaCl

10 25 mM EDTA

25 mM Spermidine-HCl

5 mg/ml bovine serum albumin

GATEWAY™ BP Clonase™ Enzyme Mix:

15 per 4 µl of 1X BP Reaction Buffer:

200 ng carboxy-His6-tagged Int (see U.S. Appl. Nos. 60/108,324, filed November 13, 1998, and 09/438,358, filed November 12, 1999, both entirely incorporated by reference herein)

80 ng IHF

20 50% glycerol

10X Clonase Stop Solution:

25 50 mM Tris-HCl, pH 8.0

1 mM EDTA

2 mg/ml Proteinase K

Example 6: LR ("Destination") Reaction

To create a new Expression Clone containing the nucleic acid molecule of interest (and which may be introduced into a host cell, ultimately for production of the polypeptide encoded by the nucleic acid molecule), an Entry Clone or Vector containing the nucleic acid molecule of interest, prepared as described

herein, is reacted with a Destination Vector. In the present example, a β -Gal gene flanked by attL sites is transferred from an Entry Clone to a Destination Vector.

Materials needed:

- 5 • 5 X LR Reaction buffer
- Destination Vector (preferably linearized), 75-150 ng/ μ l
- Entry Clone containing nucleic acid molecule of interest, 100-300 ng in \leq 8 μ l TE buffer
- Positive control Entry Clone (pENTR- β -Gal) DNA (See note, below)
- 10 • Positive control Destination Vector, pDEST1 (pTrc), 75 ng/ μ l
- GATEWAY™ LR Clonase™ Enzyme Mix (stored at - 80° C)
- 10X Clonase Stop solution
- pUC19 DNA, 10 pg/ μ l
- Chemically competent *E. coli* cells (competence: $\geq 1 \times 10^7$ CFU/ μ g), 400 μ l.
- 15 • LB Plates containing ampicillin (100 μ g/ml) and methicillin (200 μ g/ml) \pm X-gal and IPTG (See below)

Notes:

Preparation of the Entry Clone DNA: Miniprep DNA that has been treated with RNase works well. A reasonably accurate quantitation ($\pm 50\%$) of the DNA to be cloned is advised, as the GATEWAY™ reaction appears to have an optimum of about 100-300 ng of Entry Clone per 20 μ l of reaction mix.

The positive control Entry Clone, pENTR- β -Gal, permits functional analysis of clones based on the numbers of expected blue vs. white colonies on LB plates containing IPTG + Bluo-gal (or X-gal), in addition to ampicillin (100 μ g/ml) and methicillin (200 μ g/ml). Because β -Galactosidase is a large protein, it often yields a less prominent band than many smaller proteins do on SDS protein gels.

In the Positive Control Entry Vector pENTR- β -Gal, the coding sequence of β -Gal has been cloned into pENTR11 (Figures 20A and 20B), with translational start signals permitting expression in *E. coli*, as well as in eukaryotic

-108-

cells. The positive control Destination Vector, for example pDEST1 (Figure 21), is preferably linearized.

To prepare X-gal + IPTG plates, either of the following protocols may be used:

5

A. With a glass rod, spread over the surface of an LB agar plate: 40 µl of 20 mg/ml X-gal (or Bluo-gal) in DMF plus 4 µl 200 mg/ml IPTG. Allow liquid to adsorb into agar for 3-4 hours at 37° C before plating cells.

10

B. To liquid LB agar at ~45° C, add: X-gal (or Bluo-Gal) (20 mg/ml in DMF) to make 50 µg/ml and IPTG (200 mM in water) to make 0.5-1 mM, just prior to pouring plates. Store X-gal and Bluo-Gal in a light-shielded container.

15

Colony color may be enhanced by placing the plates at 5° C for a few hours after the overnight incubation at 37° C. Protocol B can give more consistent colony color than A, but A is more convenient when selection plates are needed on short notice.

20

Recombination in Clonase reactions continues for many hours. While incubations of 45-60 minutes are usually sufficient, reactions with large DNAs, or in which both parental DNAs are supercoiled, or which will be transformed into cells of low competence, can be improved with longer incubation times, such as 2-24 hours at 25° C.

Procedure:

25

1. Assemble reactions as follows (combine all components at room temperature, except GATEWAY™ LR Clonase™ Enzyme Mix ("Clonase LR"), before removing Clonase LR from frozen storage):

		Tube 1	Tube 2	Tube 3	Tube 4
	Component	Neg.	Pos.	Neg.	Test
5	p-Gate- β Gal, (Positive control Entry Clone) 75 ng/ μ l	4 μ l	4 μ l		
10	pDEST1 (Positive control Destination Vector), 75 ng/ μ l	4 μ l	4 μ l		
	Your Entry Clone (100-300 ng)			1 - 8 μ l	1 - 8 μ l
15	Destination Vector for your nucleic acid molecule, 75 ng/ μ l			4 μ l	4 μ l
	5 X LR Reaction Buffer	4 μ l	4 μ l	4 μ l	4 μ l
20	TE	8 μ l	4 μ l	To 20 μ l	To 16 μ l
	GATEWAY™ LR Clonase™ Enzyme Mix (store at - 80° C, add last)	---	4 μ l	---	4 μ l
	Total Volume	20 μ l	20 μ l	20 μ l	20 μ l

2. Remove the GATEWAY™ LR Clonase™ Enzyme Mix from the -80° C freezer, place immediately on ice. The Clonase takes only a few minutes to thaw.
3. Add 4 μ l of GATEWAY™ LR Clonase™ Enzyme Mix to reactions #2 and #4;
- 25 4. Return GATEWAY™ LR Clonase™ Enzyme Mix to - 80° C freezer.
5. Incubate tubes at 25° for at least 60 minutes.
6. Add 2 μ l Clonase Stop solution to all reactions. Incubate for 20 min at 37°C. (This step usually increases the total number of colonies obtained by 10-20 fold.)
7. Transform 2 μ l into 100 μ l competent *E. coli*. Select on plates containing ampicillin at 100 μ g/ml.
- 30

Example 7: Transformation of *E. coli*

35 To introduce cloning or Expression Vectors prepared using the recombinational cloning system of the invention, any standard *E. coli* transformation protocol should be satisfactory. The following steps are recommended for best results:

-110-

1. Let the mixture of competent cells and Recombinational Cloning System reaction product stand on ice at least 15 minutes prior to the heat-shock step. This gives time for the recombination proteins to dissociate from the DNA, and improves the transformation efficiency.

5

2. Expect the reaction to be about 1%-5% efficient, i.e., 2 µl of the reaction should contain at least 100 pg of the Expression Clone plasmid (taking into account the amounts of each parental plasmid in the reaction, and the subsequent dilution). If the E. coli cells have a competence of 10^7 CFU/µg, 100 pg of the desired clone plasmid will give about 1000 colonies, or more, if the entire transformation is spread on one ampicillin plate.

10

3. Always do a control pUC DNA transformation. If the number of colonies is not what you expect, the pUC DNA transformation gives you an indication 15 of where the problem was.

15

Example 8: Preparation of attB-PCR Product

For preparation of attB-PCR products in the PCR cloning methods described in Example 9 below, PCR primers containing attB1 and attB2 sequences are used. The attB1 and attB2 primer sequences are as follows:

attB1: 5'-GGGGACAAGTTGTACAAAAAAGCAGGCT-(template-specific sequence)-3'

25

attB2: 5'-GGGGACCCTTGTACAAGAAAGCTGGGT-(template-specific sequence)-3'

30

The attB1 sequence should be added to the amino primer, and the attB2 sequence to the carboxy primer. The 4 guanines at the 5' ends of each of these primers enhance the efficiency of the minimal 25 bp attB sequences as substrates for use in the cloning methods of the invention.

Standard PCR conditions may be used to prepare the PCR product. The following suggested protocol employs PLATINUM *Taq* DNA Polymerase High

-111-

Fidelity®, available commercially from Life Technologies, Inc. (Rockville, MD). This enzyme mix eliminates the need for hot starts, has improved fidelity over Taq, and permits synthesis of a wide range of amplicon sizes, from 200 bp to 10 kb, or more, even on genomic templates.

5

Materials needed:

- PLATINUM Taq DNA Polymerase High Fidelity® (Life Technologies, Inc.)
- attB1- and attB2- containing primer pair (see above) specific for your template
- DNA template (linearized plasmid or genomic DNA)
- 10X High Fidelity PCR Buffer
- 10 mM dNTP mix
- PEG/MgCl₂ Mix (30% PEG 8000, 30 mM MgCl₂)

10

15

Procedure:

1.) Assemble the reaction as follows:

Component	Reaction with <u>Plasmid Target</u>	Reaction with <u>Genomic</u> Target
10X High Fidelity PCR Buffer	5 µl	5 µl
dNTP Mix 10 mM	1 µl	1 µl
MgSO ₄ , 50mM	2 µl	2 µl
attB1 Primer, 10 µM	2 µl	1 µl
attB2 Primer, 10 µM	2 µl	1 µl
Template DNA	1-5 ng*	≥100 ng
PLATINUM Taq High Fidelity	2 µl	1 µl
Water	to 50 µl	to 50 µl

* Use of higher amounts of plasmid template may permit fewer cycles (10-15) of PCR

30

35

- 2.) Add 2 drops mineral oil, as appropriate.
- 3.) Denature for 30 sec. at 94°C.
- 4.) Perform 25 cycles:

5 94°C for 15 sec-30 sec

 55°C for 15 sec-30 sec

 68°C for 1 min per kb of template.

- 10 5.) Following the PCR reaction, apply 1-2 µl of the reaction mixture to an agarose gel, together with size standards (e.g., 1 Kb Plus Ladder, Life Technologies, Inc.) and quantitation standards (e.g., Low Mass Ladder, Life Technologies, Inc.), to assess the yield and uniformity of the product.

15 Purification of the PCR product is recommended, to remove attB primer dimers which can clone efficiently into the Entry Vector. The following protocol is fast and will remove DNA <300 bp in size:

16 6.) Dilute the 50 µl PCR reaction to 200 µl with TE.

- 17 7.) Add 100 µl PEG/MgCl₂ Solution. Mix and centrifuge immediately at 13,000 RPM for 10 min at room temperature. Remove the supernatant (pellet is clear and hard to see).

- 18 8.) Dissolve the pellet in 50 µl TE and check recovery on a gel.

19 If the starting PCR template is a plasmid that contains the gene for Kan^r, it is advisable to treat the completed PCR reaction with the restriction enzyme *Dpn*I, to degrade the plasmid since unreacted residual starting plasmid is a potential source of false-positive colonies from the transformation of the GATEWAY™ Cloning System reaction. Adding ~5 units of *Dpn*I to the completed PCR reaction and incubating for 15 min at 37°C will eliminate this potential problem. Heat inactivate the *Dpn*I at 65°C for 15 min, prior to using the PCR product in the GATEWAY™ Cloning System reaction.

Example 9: Cloning attB-PCR products into Entry Vectors via the BP ("Gateward") Reaction

The addition of 5'-terminal attB sequences to PCR primers allows synthesis of a PCR product that is an efficient substrate for recombination with a Donor (attP) Plasmid in the presence of GATEWAY™ BP Clonase™ Enzyme Mix. This reaction produces an Entry Clone of the PCR product (See Figure 8).

The conditions of the Gateward Cloning reaction with an attB PCR substrate are similar to those of the BP Reaction (see Example 10 below), except that the attB-PCR product (see Example 8) substitutes for the Expression Clone, and the attB-PCR positive control (attB-tet^r) substitutes for the Expression Clone Positive Control (GFP).

Materials needed:

- 5 X BP Reaction Buffer
- Desired attB-PCR product DNA, 50-100 ng in ≤ 8 µl TE.
- Donor (attP) Plasmid (Figures 49-54), 75 ng/µl, supercoiled DNA
- attB-tet^r PCR product positive control, 25 ng/µl
- GATEWAY™ BP Clonase™ Enzyme Mix (stored at - 80° C)
- 10x Clonase Stop Solution
- pUC19 DNA, 10 pg/µl.
- Chemically competent E.coli cells (competence: ≥1x10⁷ CFU/µg), 400 µl

Notes:

- Preparation of attB-PCR DNA: see Example 8.
- The Positive Control attB-tet^rPCR product contains a functional copy of the tet^r gene of pBR322, with its own promoter. By plating the transformation of the control BP Reaction on kanamycin (50 µg/ml) plates (if kan^r Donor Plasmids are used; see Figures 49-52) or an alternative selection agent (e.g., gentamycin, if gen^r Donor Plasmids are used; see Figure 54), and then picking about 50 of these colonies onto plates with tetracycline (20 µg/ml), the

percentage of Entry Clones containing functional tet^r among the colonies from the positive control reaction can be determined (% Expression Clones = (number of tet^r + kan^r (or gen^r) colonies/kan^r (or gen^r) colonies).

5

Procedure:

1. Assemble reactions as follows. Combine all components except GATEWAY™ BP Clonase™ Enzyme Mix, before removing GATEWAY™ BP Clonase™ Enzyme Mix from frozen storage.

10

Component	Neg.	Pos.	Test
	Tube 1	Tube 2	Tube 3
attB-PCR product, 50-100 ng			1 - 8 µl
Donor (attP) Plasmid 75 ng/µl	2 µl	2 µl	2 µl
attB-PCR tet ^r control DNA (75 ng/µl)		4 µl	
5 X BP Reaction Buffer	4 µl	4 µl	4 µl
TE	10 µl	6 µl	To 16 µl
GATEWAY™ BP Clonase™ Enzyme Mix (store at -80° C, add last)	4 µl	4 µl	4 µl
Total Volume	20 µl	20 µl	20 µl

15

20

25

30

2. Remove the GATEWAY™ BP Clonase™ Enzyme Mix from the -80° C freezer, place immediately on ice. The Clonase takes only a few minutes to thaw.
3. Add 4 µl of GATEWAY™ BP Clonase™ Enzyme Mix to the subcloning reaction, mix.
4. Return GATEWAY™ BP Clonase™ Enzyme Mix to - 80° C freezer.
5. Incubate tubes at 25° for at least 60 minutes.

6. Add 2 µl Proteinase K (2 µg/µl) to all reactions. Incubate for 20 min at 37°C.
7. Transform 2 µl into 100 µl competent E. coli, as per 3.2, above. Select on LB plates containing kanamycin, 50 µg/ml.

5

Results:

10

15

20

25

30

In initial experiments, primers for amplifying tetR and ampR from pBR322 were constructed containing only the tetR- or ampR-specific targeting sequences, the targeting sequences plus attB1 (for forward primers) or attB2 (for reverse primers) sequences shown in Figure 9, or the attB1 or attB2 sequences with a 5' tail of four guanines. The construction of these primers is depicted in Figure 65. After PCR amplification of tetR and ampR from pBR322 using these primers and cloning the PCR products into host cells using the recombinational cloning system of the invention, the results shown in Figure 66 were obtained. These results demonstrated that primers containing attB sequences provided for a somewhat higher number of colonies on the tetracycline and ampicillin plates. However, inclusion of the 5' extensions of four or five guanines on the primers in addition to the attB sequences provided significantly better cloning results, as shown in Figures 66 and 67. These results indicate that the optimal primers for cloning of PCR products using recombinational cloning will contain the recombination site sequences with a 5' extension of four or five guanine bases.

To determine the optimal stoichiometry between attB-containing PCR products and attP-containing Donor plasmid, experiments were conducted where the amount of PCR product and Donor plasmid were varied during the BP Reaction. Reaction mixtures were then transformed into host cells and plated on tetracycline plates as above. Results are shown in Figure 68. These results indicate that, for optimal recombinational cloning results with a PCR product in the size range of the tet gene, the amounts of attP-containing Donor plasmids are between about 100-500 ng (most preferably about 200-300 ng), while the optimal concentrations of attB-containing PCR products is about 25-100 ng (most preferably about 100 ng), per 20 µl reaction.

Experiments were then conducted to examine the effect of PCR product size on efficiency of cloning via the recombinational cloning approach of the invention.

PCR products containing attB1 and attB2 sites, at sizes 256 bp, 1 kb, 1.4 kb, 3.4 kb, 4.6 kb, 6.9 kb and 10.1 kb were prepared and cloned into Entry vectors as described above, and host cells were transformed with the Entry vectors containing the cloned PCR products. For each PCR product, cloning efficiency was calculated relative to cloning of pUC19 positive control plasmids as follows:

$$\text{Cloning Efficiency} = \frac{\text{CFU/ng attB PCR product}}{\text{CFU/ng pUC19 control}} \times \frac{\text{Size (kb) PCR product}}{\text{Size (kb) pUC19 control}}$$

10

15

The results of these experiments are depicted in Figures 69A-69C (for 256 bp PCR fragments), 70A-70C (for 1 kb PCR fragments), 71A-71C (for 1.4 kb PCR fragments), 72A-72C (for 3.4 kb PCR fragments), 73A-73C (for 4.6 kb PCR fragments), 74 (for 6.9 kb PCR fragments), and 75-76 (for 10.1 kb PCR fragments). The results shown in these figures are summarized in Figure 77, for different weights and moles of input PCR DNA.

20

25

Together, these results demonstrate that attB-containing PCR products ranging in size from about 0.25 kb to about 5 kb clone relatively efficiently in the recombinational cloning system of the invention. While PCR products larger than about 5 kb clone less efficiently (apparently due to slow resolution of cointegrates), longer incubation times during the recombination reaction appears to improve the efficiency of cloning of these larger PCR fragments. Alternatively, it may also be possible to improve efficiency of cloning of large (> about 5 kb) PCR fragments by using lower levels of input attP Donor plasmid and perhaps attB-containing PCR product, and/or by adjusting reaction conditions (e.g., buffer conditions) to favor more rapid resolution of the cointegrates.

30

Example 10: The BP Reaction

One purpose of the Gateward ("Entry") reaction is to convert an Expression Clone into an Entry Clone. This is useful when you have isolated an individual Expression Clone from an Expression Clone cDNA library, and you wish to transfer the nucleic acid molecule of interest into another Expression Vector, or

to move a population of molecules from an attB or attL library. Alternatively, you may have mutated an Expression Clone and now wish to transfer the mutated nucleic acid molecule of interest into one or more new Expression Vectors. In both cases, it is necessary first to convert the nucleic acid molecule of interest to an Entry Clone.

5

Materials needed:

- 5 X BP Reaction Buffer
- Expression Clone DNA, 100-300 ng in ≤ 8 µl TE.
- Donor (attP) Vector, 75 ng/µl, supercoiled DNA
- Positive control attB-tet-PCR DNA, 25 ng/µl
- GATEWAY™ BP Clonase™ Enzyme Mix (stored at - 80°C)
- Clonase Stop Solution (Proteinase K, 2 µg/µl).

10

15

Notes:

Preparation of the Expression Clone DNA: Miniprep DNA treated with RNase works well.

1. As with the LR Reaction (see Example 14), the BP Reaction is strongly influenced by the topology of the reacting DNAs. In general, the reaction is most efficient when one of the DNAs is linear and the other is supercoiled, compared to reactions where the DNAs are both linear or both supercoiled. Further, linearizing the attB Expression Clone (anywhere within the vector) will usually give more colonies than linearizing the Donor (attP) Plasmid. If finding a suitable cleavage site within your Expression Clone vector proves difficult, you may linearize the Donor (attP) Plasmid between the attP1 and attP2 sites (for example, at the *Nco*I site), avoiding the *ccdB* gene. Maps of Donor (attP) Plasmids are given in Figures 49-54.

20

25

Procedure:

30

1. Assemble reactions as follows. Combine all components at room temperature, except GATEWAY™ BP Clonase™ Enzyme Mix, before removing GATEWAY™ BP Clonase™ Enzyme Mix from freezer.

Component	Neg.	Pos.	Test
	Tube 1	Tube 2	Tube 3
Positive Control, attB-tet-PCR DNA, 25 ng/ μ l	4 μ l	4 μ l	
Desired attB Expression Clone DNA (100ng) linearized			1 - 8 μ l
Donor (attP) Plasmid, 75 ng/ μ l	2 μ l	2 μ l	2 μ l
5 X BP Reaction Buffer	4 μ l	4 μ l	4 μ l
TE	10 μ l	6 μ l	To 16 μ l
GATEWAY™ BP Clonase™ Enzyme Mix (store at - 80° C, add last)	---	4 μ l	4 μ l
Total Volume	20 μ l	20 μ l	20 μ l

2. Remove the GATEWAY™ BP Clonase™ Enzyme Mix from the -80°C freezer, place immediately on ice. The mixture takes only a few minutes to thaw.
3. Add 4 μ l of GATEWAY™ BP Clonase™ Enzyme Mix to the subcloning reaction, mix.
4. Return GATEWAY™ BP Clonase™ Enzyme Mix to - 80° C freezer.
5. Incubate tubes at 25° for at least 60 minutes. If both the attB and attP DNAs are supercoiled, incubation for 2-24 hours at 25°C is recommended.
6. Add 2 μ l Clonase Stop Solution. Incubate for 10 min at 37°C.
7. Transform 2 μ l into 100 μ l competent E. coli, as above. Select on LB plates containing 50 μ g/ml kanamycin.

Example 11: Cloning PCR Products into Entry Vectors using Standard Cloning Methods

Preparation of Entry Vectors for Cloning of PCR Products

All of the Entry Vectors of the invention contain the death gene ccdB as a stuffer between the "left" and "right" restriction sites. The advantage of this arrangement is that there is virtually no background from vector that has not been cut with both restriction enzymes, because the presence of the ccdB gene will kill

all standard *E. coli* strains. Thus it is necessary to cut each Entry Vector twice, to remove the *ccdB* fragment.

We strongly recommend that, after digestion of the Entry Vector with the second restriction enzyme, you treat the reaction with phosphatase (calf intestine alkaline phosphatase, CIAP or thermosensitive alkaline phosphatase, TSAP). The phosphatase can be added directly to the reaction mixture, incubated for an additional time, and inactivated. This step dephosphorylates both the vector and *ccdB* fragments, so that during subsequent ligation there is less competition between the *ccdB* fragment and the DNA of interest for the termini of the Entry

10

Vector.

Blunt Cloning of PCR products

Generally PCR products do not have 5' phosphates (because the primers are usually 5' OH), and they are not necessarily blunt. (On this latter point, see Brownstein, et al., *BioTechniques* 20: 1006, 1996 for a discussion of how the sequence of the primers affects the addition of single 3' bases.) The following protocol repairs these two defects.

In a 0.5 ml tube, ethanol precipitate about 40 ng of PCR product (as judged from an agarose gel).

1. Dissolve the precipitated DNA in 10 μ l comprising 1 μ l 10 mM rATP, 1 μ l mixed 2 mM dNTPs (i.e., 2 mM each dATP, dCTP, dTTP, and dGTP), 2 μ l 5x T4 polynucleotide kinase buffer (350 mM Tris HCl (pH7.6), 50 mM MgCl₂, 500mM KCl, 5 mM 2-mercaptoethanol) 10 units T4 polynucleotide kinase, 1 μ l T4 DNA polymerase, and water to 10 μ l.
2. Incubate the tube at 37° for 10 minutes, then at 65° for 15 minutes, cool, centrifuge briefly to bring any condensate to the tip of the tube.
3. Add 5 μ l of the PEG/MgCl₂ solution, mix and centrifuge at room temperature for 10 minutes. Discard supernatant.
4. Dissolve the invisible precipitate in 10 μ l containing 2 μ l 5x T4 DNA ligase buffer (Life Technologies, Inc.), 0.5 units T4 DNA ligase, and about 50 ng of blunt, phosphatase-treated Entry Vector.

20

25

30

-120-

5. Incubate at 25° for 1 hour, then 65° for 10 minutes. Add 90 µl TE, transform 10 µl into 50 - 100 µl competent E. coli cells.
6. Plate on kanamycin.

10 5 Note: In the above protocol, steps b-c simultaneously polish the ends of the PCR product (through the exonuclease and polymerase activities of T4 DNA polymerase) and phosphorylate the 5' ends (using T4 polynucleotide kinase). It is necessary to inactivate the kinase, so that the blunt, dephosphorylated vector in step e cannot self ligate. Step d (the PEG precipitation) removes all small molecules (primers, nucleotides), and has also been found to improve the yield of cloned PCR product by 50 fold.

Cloning PCR Products after Digestion with Restriction Enzymes

15 Efficient cloning of PCR products that have been digested with restriction enzymes includes three steps: inactivation of *Taq* DNA polymerase, efficient restriction enzyme cutting, and removal of small DNA fragments.

20 20 *Inactivation of Taq DNA Polymerase:* Carryover of *Taq* DNA polymerase and dNTPs into a RE digestion significantly reduces the success in cloning a PCR product (D. Fox et al., *FOCUS* 20(1):15, 1998), because *Taq* DNA polymerase can fill in sticky ends and add bases to blunt ends. Either TAQQUENCH™ (obtainable from Life Technologies, Inc.; Rockville, Maryland) or extraction with phenol can be used to inactivate the *Taq*.

25 25 *Efficient Restriction Enzyme Cutting:* Extra bases on the 5' end of each PCR primer help the RE cut near ends of PCR products. With the availability of cheap primers, adding 6 to 9 bases on the 5' sides of the restriction sites is a good investment to ensure that most of the ends are digested. Incubation of the DNA with a 5-fold excess of restriction enzyme for an hour or more helps ensure success.

30 30 *Removal of Small Molecules before Ligation:* Primers, nucleotides, primer dimers, and small fragments produced by the restriction enzyme digestion,

can all inhibit or compete with the desired ligation of the PCR product to the cloning vector. This protocol uses PEG precipitation to remove small molecules.

Protocol for cutting the ends of PCR products with restriction enzyme(s):

5

1. Inactivation of Taq DNA polymerase in the PCR product:

Option A: Extraction with Phenol

A1. Dilute the PCR reaction to 200 µl with TE. Add an equal volume of phenol:chloroform:isoamyl alcohol, vortex vigorously for 20 seconds, and centrifuge for 1 minute at room temperature. Discard the lower phase.

10

A2. Extract the phenol from the DNA and concentrate as follows. Add an equal volume of 2-butanol (colored red with "Oil Red O" from Aldrich, if desired), vortex briefly, centrifuge briefly at room temperature. Discard the upper butanol phase. Repeat the extraction with 2-butanol. This time the volume of the lower aqueous phase should decrease significantly. Discard the upper 2-butanol phase.

15

A3. Ethanol precipitate the DNA from the aqueous phase of the above extractions. Dissolve in a 200 µl of a suitable restriction enzyme (RE) buffer.

20

Option B: Inactivation with TaqQuench

25

B1. Ethanol precipitate an appropriate amount of PCR product (100 ng to 1 µg), dissolve in 200 µl of a suitable RE buffer.

B2. Add 2 µl TaqQuench.

30

2. Add 10 to 50 units of restriction enzyme and incubate for at least 1 hour. Ethanol precipitate if necessary to change buffers for digestion at the other end of the PCR product.

-122-

3. Add ½ volume of the PEG/MgCl₂ mix to the RE digestion. Mix well and immediately centrifuge at room temperature for 10 minutes. Discard the supernatant (pellet is usually invisible), centrifuge again for a few seconds, discard any remaining supernatant.

5

4. Dissolve the DNA in a suitable volume of TE (depending on the amount of PCR product in the original amplification reaction) and apply an aliquot to an agarose gel to confirm recovery. Apply to the same gel 20-100 ng of the appropriate Entry Vector that will be used for the cloning.

10

Example 12: Determining The Expected Size of the GATEWAY™ Cloning Reaction Products

If you have access to a software program that will electronically cut and splice sequences, you can create electronic clones to aid you in predicting the sizes and restriction patterns of GATEWAY™ Cloning System recombination products.

The cleavage and ligation steps performed by the enzyme Int in the GATEWAY™ Cloning System recombination reactions mimic a restriction enzyme cleavage that creates a 7-bp 5'-end overhang followed by a ligation step that reseals the ends of the daughter molecules. The recombination proteins present in the Clonase cocktails (see Example 19 below) recognize the 15 bp core sequence present within all four types of att sites (in addition to other flanking sequences characteristic of each of the different types of att sites).

By treating these sites in your software program as if they were restriction sites, you can cut and splice your Entry Clones with various Destination Vectors and obtain accurate maps and sequences of the expected results from your GATEWAY™ Cloning System reactions.

30

Example 13: Protein Expression

Brief Review of Protein Expression

Transcription: The most commonly used promoters in *E. coli* Expression Vectors are variants of the lac promoter, and these can be turned on by adding

IPTG to the growth medium. It is usually good to keep promoters off until expression is desired, so that the host cells are not made sick by the overabundance of some heterologous protein. This is reasonably easy in the case of the lac promoters used in *E. coli*. One needs to supply the *lac I* gene (or its more productive relative, the *lac I^q* gene) to make *lac* repressor protein, which binds near the promoter and keeps transcription levels low. Some Destination Vectors for *E. coli* expression carry their own *lacI^q* gene for this purpose. (However, lac promoters are always a little "on," even in the absence of IPTG.)

Controlling transcription in eukaryotic cells is not nearly so straightforward or efficient. The tetracycline system of Bujard and colleagues is the most successful approach, and one of the Destination Vectors (pDEST11; Figure 31) has been constructed to supply this function.

Translation: Ribosomes convert the information present in mRNA into protein. Ribosomes scan RNA molecules looking for methionine (AUG) codons, which begin nearly all nascent proteins. Ribosomes must, however, be able to distinguish between AUG codons that code for methionine in the middle of proteins from those at the start. Most often ribosomes choose AUGs that are 1) first in the RNA (toward the 5' end), and 2) have the proper sequence context. In *E. coli* the favored context (first recognized by Shine and Dalgarno, *Eur. J. Biochem.* 57: 221 (1975)) is a run of purines (As and Gs) from five to 12 bases upstream of the initiating AUG, especially AGGAGG or some variant.

In eukaryotes, a survey of translated mRNAs by Kozak (*J. Biol. Chem.* 266: 19867 (1991)) has revealed a preferred sequence context, gcc Acc ATGG, around the initiating methionine, with the A at -3 being most important, and a purine at +4 (where the A of the ATG is +1), preferably a G, being next most influential. Having an A at -3 is enough to make most ribosomes choose the first AUG of an mRNA, in plants, insects, yeast, and mammals. (For a review of initiation of protein synthesis in eukaryotic cells, see: Pain, V.M. *Eur. J. Biochem.* 236:747-771, 1996.)

Consequences of Translation Signals for GATEWAY™ Cloning System: First, translation signals (Shine-Dalgarno in *E. coli*, Kozak in eukaryotes) have to be close to the initiating ATG. The attB site is 25 base pairs long. Thus if

translation signals are desired near the natural ATG of the nucleic acid molecule of interest, they must be present in the Entry Clone of that nucleic acid molecule of interest. Also, when a nucleic acid molecule of interest is moved from an Entry Clone to a Destination vector, any translation signals will move along. The result is that the presence or absence of Shine-Dalgarno and/or Kozak sequences in the Entry Clone must be considered, with the eventual Destination Vectors to be used in mind.

Second, although ribosomes choose the 5' ATG most often, internal ATGs are also used to begin protein synthesis. The better the translation context around this internal ATG, the more internal translation initiation will be seen. This is important in the GATEWAY™ Cloning System, because you can make an Entry Clone of your nucleic acid molecule of interest, and arrange to have Shine-Dalgarno and/or Kozak sequences near the ATG. When this cassette is recombined into a Destination Vector that transcribes your nucleic acid molecule of interest, you get native protein. If you want, you can make a fusion protein in a different Destination Vector, since the Shine-Dalgarno and/or Kozak sequences do not contain any stop signals in the same reading frame. However, the presence of these internal translation signals may result in a significant amount of native protein being made, contaminating, and lowering the yield of, your fusion protein.

This is especially likely with short fusion tags, like His6.

A good compromise can be recommended. If an Entry Vector like pENTR7 (Figure 16) or pENTR8 (Figure 17) is chosen, the Kozak bases are present for native eukaryotic expression. The context for *E. coli* translation is poor, so the yield of an amino-terminal fusion should be good, and the fusion protein can be digested with the TEV protease to make near-native protein following purification.

Recommended Conditions for Synthesis of Proteins in E. coli: When making proteins in *E. coli* it is advisable, at least initially, to incubate your cultures at 30°C, instead of at 37°C. Our experience indicates that proteins are less likely to form aggregates at 30°C. In addition, the yields of proteins from cells grown at 30°C frequently are improved.

The yields of proteins that are difficult to express may also be improved by inducing the cultures in mid-log phase of growth, using cultures begun in the morning from overnight growths, as opposed to harvesting directly from an overnight culture. In the latter case, the cells are preferably in late log or stationary growth, which can favor the formation of insoluble aggregates.

5

Example 14: Constructing Destination Vectors from Existing Vectors

10

Destination Vectors function because they have two recombination sites, attR1 and attR2, flanking a chloramphenicol resistance (CmR) gene and a death gene, ccdB. The GATEWAY™ Cloning System recombination reactions exchange the entire Cassette (except for a few bases comprising part of the attB sites) for the DNA segment of interest from the Entry Vector. Because attR1, CmR, ccdB gene, and attR2 are contiguous, they can be moved on a single DNA segment. If this Cassette is cloned into a plasmid, the plasmid becomes a Destination Vector. Figure 63 shows a schematic of the GATEWAY™ Cloning System Cassette; attR cassettes in all three reading frames contained in vectors pEZC15101, pEZC15102 and pEZC15103 are shown in Figures 64A, 64B, and 64C, respectively.

15

20

The protocol for constructing a Destination Vector is presented below. Keep in mind the following points:

25

- Destination Vectors must be constructed and propagated in one of the DB strains of *E. coli* (e.g., DB3.1, and particularly *E. coli* LIBRARY EFFICIENCY® DB3.1™ Competent Cells) available from Life Technologies, Inc. (and described in detail in U.S. Provisional Application No. 60/122,392, filed on March 2, 1999, which is incorporated herein by reference), because the ccdB death gene will kill any *E. coli* strain that has not been mutated such that it will survive the presence of the ccdB gene.
- If your Destination Vector will be used to make a fusion protein, a GATEWAY™ Cloning System cassette with the correct reading frame must be used. The nucleotide sequences of the ends of the cassettes are shown in Figure 78. The reading frame of the fusion protein domain must

30

-126-

be in frame with the core region of the attR1 site (for an amino terminal fusion) so that the six As are translated into two lysine codons. For a C-terminal fusion protein, translation through the core region of the attR2 site should be in frame with -TAC-AAA-, to yield -Tyr-Lys-.

- 5
- Note that each reading frame Cassette has a different unique restriction site between the chloramphenicol resistance and ccdB genes (*Mlu*I for reading frame A, *Bgl*II for reading frame B, and *Xba*I for reading frame C; see Figure 63).
 - Most standard vectors can be converted to Destination Vectors, by inserting the Entry Cassette into the MCS of that vector.
- 10

Protocol for Making a Destination Vector

1. If the vector will make an amino fusion protein, it is necessary to keep the "aaa aaa" triplets in attR1 in phase with the triplets of the fusion protein. Determine which Entry cassette to use as follows:

- 15
- a.) Write out the nucleotide sequence of the existing vector near the restriction site into which the Entry cassette will be cloned. These must be written in triplets corresponding to the amino acid sequence of the fusion domain.

20

 - b.) Draw a vertical line through the sequence that corresponds to the restriction site end, after it has been cut and made blunt, i.e., after filling in a protruding 5' end or polishing a protruding 3' end.

25

 - c.) Choose the appropriate reading frame cassette:
 - If the coding sequence of the blunt end ends after a complete codon triplet, use the reading frame A cassette. See Figures 78, 79 and 80.
- 30

•If the coding sequence of the blunt end ends in a single base, use the reading frame B cassette. See Figures 78, 79 and 81.

5 •If the coding sequence of the blunt end ends in two bases, use the reading frame C cassette. See Figures 78, 79, 82A-B, and 83A-C.

10 2. Cut one to five micrograms of the existing plasmid at the position where you wish your nucleic acid molecule of interest (flanked by att sites) to be after the recombination reactions. **Note:** it is better to remove as many of the MCS restriction sites as possible at this step. This makes it more likely that restriction enzyme sites within the GATEWAY™ Cloning System Cassette will be unique in the new plasmid, which is important for linearizing the Destination Vector (Example 14, below).

15 3. Remove the 5' phosphates with alkaline phosphatase. While this is not mandatory, it increases the probability of success.

20 4. Make the end(s) blunt with fill-in or polishing reactions. For example, to 1 µg of restriction enzyme-cut, ethanol-precipitated vector DNA, add:

- i. 20 µl 5x T4 DNA Polymerase Buffer (165 mM Tris-acetate (pH 7.9), 330 mM Na acetate, 50 mM Mg acetate, 500 µg/ml BSA, 2.5 mM DTT)
- ii. 5 µl 10mM dNTP mix
- iii. 1 Unit of T4 DNA Polymerase
- iv. Water to a final volume of 100 µl
- v. Incubate for 15 min at 37°C.

25 5. Remove dNTPs and small DNA fragments: Ethanol precipitate (add three volumes of room temperature ethanol containing 0.1 M sodium acetate, mix well, immediately centrifuge at room temperature 5 - 10 minutes), dissolve wet precipitate in 200 µl TE, add 100 µl 30% PEG 8000, 30 mM MgCl₂, mix well,

immediately centrifuge for 10 minutes at room temperature, discard supernatant, centrifuge again a few seconds, discard any residual liquid.

5 6. Dissolve the DNA to a final concentration of 10 - 50 ng per microliter. Apply 20 - 100 ng to a gel next to supercoiled plasmid and linear size standards to confirm cutting and recovery. The cutting does not have to be 100% complete, since you will be selecting for the chloramphenicol marker on the Entry cassette.

10 7. In a 10 µl ligation reaction combine 10 - 50 ng vector, 10 - 20 ng of Entry Cassette (Figure 79), and 0.5 units T4 DNA ligase in ligase buffer. After one hour (or overnight, whichever is most convenient), transform 1 µl into one of the DB strains of competent *E. coli* cells with a *gyrA*462 mutation (See U.S. Provisional Application No. 60/122,392, filed on March 2, 1999, which is incorporated herein by reference), preferably DB3.1, and most preferably *E. coli* LIBRARY 15 EFFICIENCY® DB3.1™ Competent Cells. The *ccdB* gene on the Entry Cassette will kill other strains of *E. coli* that have not been mutated so as to survive the presence of the *ccdB* gene.

20 8. After expression in SOC medium, plate 10 µl and 100 µl on chloramphenicol-containing (30 µg / ml) plates, incubate at 37° C.

25 9. Pick colonies, make miniprep DNA. Treat the miniprep with RNase A and store in TE. Cut with the appropriate restriction enzyme to determine the orientation of the Cassette. Choose clones with the attR1 site next to the amino end of the protein expression function of the plasmid.

Notes on Using Destination Vectors

- We have found that about ten-fold more colonies result from a GATEWAY™ Cloning System reaction if the Destination Vector is linear or relaxed. If the 30 competent cells you use are highly competent (>10⁸ per microgram), linearizing the Destination Vector is less essential.

-129-

- The site or sites used for the linearization must be within the Entry Cassette. Sites that cut once or twice within each cassette are shown in Figures 80-82.
- Minipreps of Destination Vectors will work fine, so long as they have been treated with RNase. Since most DB strains are *endA*- (See U.S. Provisional Application No. 60/122,392, filed on March 2, 1999, which is incorporated herein by reference), minipreps can be digested with restriction enzymes without a prior phenol extraction.
- Reading the OD₂₆₀ of miniprep DNA is inaccurate unless the RNA and ribonucleotides have been removed, for example, by a PEG precipitation.

10

Example 15: Some Options in Choosing Appropriate Entry Vectors and Destination Vectors: An Example

15 In some applications, it may be desirable to express a nucleic acid molecule of interest in two forms: as an amino-terminal fusion in *E. coli*, and as a native protein in eukaryotic cells. This may be accomplished in any of several ways:

20 **Option 1:** Your choices depend on your nucleic acid molecule of interest and the fragment that contains it, as well as the available Entry Vectors. For eukaryotic translation, you need consensus bases according to Kozak (*J. Biol. Chem.* 266:19867, 1991) near the initiating methionine (ATG) codon. All of the Entry Vectors offer this motif upstream of the *XmnI* site (blunt cutter). One option is to amplify your nucleic acid molecule of interest, with its ATG, by PCR, making the amino end blunt and the carboxy end containing the natural stop codon followed by one of the "right side" restriction sites (*EcoRI*, *NotI*, *XhoI*, *EcoRV*, or *XbaI* of the pENTR vectors).

25

If you know your nucleic acid molecule of interest does not have, for example, an *XhoI* site, you can make a PCR product that has this structure:

30 Xho I

5' ATG nnn nnn --- nnn TAA ctc gag nnn nnn 3'
3' tac nnn nnn --- nnn att gag ctc nnn nnn 5'

-130-

After cutting with *Xho*I, the fragment is ready to clone:

5' ATG nnn nnn --- nnn TAA c 3'
3' tac nnn nnn --- nnn att gag ct 5'

5 (If you follow this example, don't forget to put a phosphate on the amino oligo.)

10 Option 2: This PCR product could be cloned into two Entry Vectors to give the desired products, between the *Xmn*I and *Xho*I sites: pENTR1A (Figures 10A, 10B) or pENTR7 (Figures 16A, 16B). If you clone into pENTR1A, amino fusions will have the minimal number of amino acids between the fusion domain and your nucleic acid molecule of interest, but the fusion cannot be removed with TEV protease. The converse is true of clones in pENTR7, i.e., an amino fusion can be cleaved with TEV protease, at the cost of more amino acids between the fusion and your nucleic acid molecule of interest.

15 In this example, let us choose to clone our hypothetical nucleic acid molecule of interest into pENTR7, between the *Xmn*I and *Xho*I sites. Once this is accomplished, several optional protocols using the Entry Clone pENTR7 may be followed:

20 Option 3: Since the nucleic acid molecule of interest has been amplified with PCR, it may be desirable to sequence it. To do this, transfer the nucleic acid molecule of interest from the Entry Vector into a vector that has priming sites for the standard sequencing primers. Such a vector is pDEST6 (Figures 26A, 26B). This Destination Vector places the nucleic acid molecule of interest in the opposite orientation to the lac promoter (which is leaky -- see Example 3 above). If the gene product is toxic to *E. coli*, this Destination Vector will minimize its toxicity.

25 Option 4: While the sequencing is going on, you might wish to check the expression of the nucleic acid molecule of interest in, for example, CHO cells, by recombinining the nucleic acid molecule of interest into a CMV promoter vector (pDEST7, Figure 27; or pDEST12, Figure 32), or into a baculovirus vector (pDEST8, Figure 28; or pDEST10, Figure 30) for expression in insect cells. Both

of these vectors will transcribe the coding sequence of your nucleic acid molecule of interest, and translate it from the ATG of the PCR product using the Kozak bases upstream of the *XmnI* site.

5 **Option 5:** If you wish to purify protein, for example to make antibodies, you can clone the nucleic acid molecule of interest into a His6 fusion vector, pDEST2 (Figure 22). Since the nucleic acid molecule of interest is cloned downstream of the TEV protease cleavage domain of pENTR7 (Figure 16), the amino acid sequence of the protein produced will be:

10 [----- attB1 -----] TEV protease

NH₂- MSYYHHHHHGITSLYKKAGF**ENLYFQ!** GTM---COOH

15 The attB site and the restriction sites used to make the Destination and Entry Vectors are translated into the underlined 11 amino acids (GITSLYKKAGF). Cleavage with TEV protease (arrow) leaves two amino acids, GT, on the amino end of the gene product.

20 See Figure 55 for an example of a nucleic acid molecule of interest, the chloramphenicol acetyl transferase (CAT) gene, cloned into pENTR7 (Figure 16) as a blunt (amino)-*Xba*I (carboxy) fragment, then cloned by recombination into the His6 fusion vector pDEST2 (Figure 22).

25 **Option 6:** If the His6 fusion protein is insoluble, you may go on and try a GST fusion. The appropriate Destination vector is pDEST3 (Figure 23).

30 **Option 7:** If you need to make RNA probes and prefer SP6 RNA polymerase, you can make the top strand RNA with your nucleic acid molecule of interest cloned into pSPORT+ (pDEST5 (Figures 25A, 25B)), and the bottom strand RNA with the nucleic acid molecule of interest cloned into pSPORT(-) (pDEST6 (Figures 26A, 26B)). Opposing promoters for T7 RNA polymerase and SP6 RNA polymerase are also present in these clones.

5 **Option 8:** It is often worthwhile to clone your nucleic acid molecule of interest into a variety of Destination Vectors in the same experiment. For example, if the number of colonies varies widely when the various recombination reactions are transformed into *E. coli*, this may be an indication that the nucleic acid molecule of interest is toxic in some contexts. (This problem is more clearly evident when a positive control gene is used for each Destination Vector.) Specifically, if many more colonies are obtained when the nucleic acid molecule of interest is recombined into pDEST6 than in pDEST5, there is a good chance that leakiness of the lac promoter is causing some expression of the nucleic acid molecule of interest in pSPORT "+" (which is not harmful in pDEST6 because the nucleic acid molecule of interest is in the opposite orientation).

10

15 ***Example 16: Demonstration of a One-tube Transfer of a PCR Product (or Expression Clone) to Expression Clone via a Recombinational Cloning Reaction***

20 In the BxP recombination (Entry or Gateward) reaction described herein, a DNA segment flanked by attB1 and attB2 sites in a plasmid conferring ampicillin resistance was transferred by recombination into an attP plasmid conferring kanamycin resistance, which resulted in a product molecule wherein the DNA segment was flanked by attL sites (attL1 and attL2). This product plasmid comprises an "attL Entry Clone" molecule, because it can react with a "attR Destination Vector" molecule via the LxR (Destination) reaction, resulting in the transfer of the DNA segment to a new (ampicillin resistant) vector. In the previously described examples, it was necessary to transform the BxP reaction products into *E. coli*, select kanamycin resistant colonies, grow those colonies in liquid culture, and prepare miniprep DNA, before reacting this DNA with a Destination Vector in an LxR reaction.

25

30 The goal of the following experiment was to eliminate the transformation and miniprep DNA steps, by adding the BxP Reaction products directly to an LxR Reaction. This is especially appropriate when the DNA segment flanked by attB sites is a PCR product instead of a plasmid, because the PCR product cannot give

ampicillin-resistant colonies upon transformation, whereas attB plasmids (in general) carry an ampicillin resistance gene. Thus use of a PCR product flanked by attB sites in a BxP Reaction allows one to select for the ampicillin resistance encoded by the desired attB product of a subsequent LxR Reaction.

5 Two reactions were prepared: Reaction A, negative control, no attB PCR product, (8 µl) contained 50 ng pEZC7102 (attP Donor plasmid, confers kanamycin resistance) and 2 µl BxP Clonase (22 ng / µl Int protein and 8 ng/µl IHF protein) in BxP buffer (25 mM Tris HCl, pH 7.8, 70 mM KCl, 5 mM spermidine, 0.5 mM EDTA, 250 µg / ml BSA). Reaction B (24 µl) contained
10 150 ng pEZC7102, 6 µl BxP Clonase, and 120 ng of the attB -tet-PCR product in the same buffer as reaction A. The attB - tet - PCR product comprised the tetracycline resistance gene of plasmid pBR322, amplified with two primers containing either attB1 or attB2 sites, and having 4 Gs at their 5' ends, as described earlier.

15 The two reactions were incubated at 25°C for 30 minutes. Then aliquots of these reactions were added to new components that comprised LxR Reactions or appropriate controls for the LxR Reaction. Five new reactions were thus produced:

20 **Reaction 1:** 5 µl of reaction A was added to a 5 µl LxR Reaction containing 25 ng *Nco*I-cut pEZC8402 (the attR Destination Vector plasmid) in LxR buffer (37.5 mM Tris HCl, pH 7.7, 16.5 mM NaCl, 35 mM KCl, 5 mM spermidine, 375 µg / ml BSA), and 1 µl of GATEWAY™ LR Clonase™ Enzyme Mix (total volume of 10 µl).

25 **Reaction 2:** Same as reaction 1, except 5 µl of reaction B (positive) were added instead of reaction A (negative).

30 **Reaction 3:** Same as reaction 2, except that the amounts of Nco-cut pEZC8402 and GATEWAY™ LR Clonase™ Enzyme Mix were doubled, to 50 ng and 2 µl, respectively.

-134-

Reaction 4: Same as reaction 2, except that 25 ng of pEZ11104 (a positive control attL Entry Clone plasmid) were added in addition to the aliquot of reaction B.

5 **Reaction 5:** Positive control LxR Reaction, containing 25 ng *NcoI*-cut pEZC8402, 25 ng pEZ11104, 37.5 mM Tris HCl pH 7.7, 16.5 mM NaCl, 35 mM KCl, 5 mM spermidine, 375 µg / ml BSA and 1 µl GATEWAY™ LR Clonase™ Enzyme Mix in a total volume of 5 µl.

10 All five reactions were incubated at 25°C for 30 minutes. Then, 1 µl aliquots of each of the above five reactions, plus 1 µl from the remaining volume of Reaction B, the standard BxP Reaction, were used to transform 50 µl competent DH5 α *E. coli*. DNA and cells were incubated on ice for 15 min., heat shocked at 42°C for 45 sec., and 450 µl SOC were added. Each tube was 15 incubated with shaking at 37°C for 60 min. Aliquots of 100 µl and 400 µl of each transformation were plated on LB plates containing either 50 µg/ml kanamycin or 100 µg/ml ampicillin (see Table 2). A transformation with 10 pg of pUC19 DNA (plated on LB-amp₁₀₀) served as a control on the transformation efficiency of the DH5 α cells. Following incubation overnight at 37°C, the 20 number of colonies on each plate was determined.

Results of these reactions are shown in Table 2.

25 **Table 2***

Reaction No.:	1	2	3	4	5	6
Number of Colonies						
Vol. plated: BxP Reaction	Neg. Control BxP Reaction	1X pEZC8402 and LR Clonase™	2X pEZC8402 and LR Clonase™	LxR Reaction with Pos. Control DNA	LxR Reaction alone	BxP Reaction alone
100 µl	2	1	8	9	~1000	~1000
400 µl	5	10	35	62	>2000	>2000
Selection:	Kan	Amp	Amp	Amp	Amp	Kan

30 *(Transformation with pUC 19 DNA yielded 1.4 x 10⁹ CFU/µg DNA.)

34 of the 43 colonies obtained from Reaction 3 were picked into 2 ml Terrific Broth with 100 µg/ml ampicillin and these cultures were grown overnight, with shaking, at 37°C. 27 of the 34 cultures gave at least moderate growth, and of these 24 were used to prepare miniprep DNA, using the standard protocol.

5 These 24 DNAs were initially analyzed as supercoiled (SC) DNA on a 1% agarose gel to identify those with inserts and to estimate the sizes of the inserts. Fifteen of the 24 samples displayed SC DNA of the size predicted (5553 bp) if **tetx7102** had correctly recombined with **pEYC8402** to yield **tetx8402**. One of these samples contained two plasmids, one of ~5500 bp and a one of ~3500 bp. The majority of the remaining clones were approximately 4100 bp in size.

10

All 15 of the clones displaying SC DNA of predicted size (~5500 bp) were analyzed by two different double digests with restriction endonucleases to confirm the structure of the expected product: **tetx8402**. (See plasmid maps, Figures 57-59) In one set of digests, the DNAs were treated with *Not I* and *Eco RI*, which should cut the predicted product just outside both *attB* sites, releasing the *tet^r* insert on a fragment of 1475 bp. In the second set of digests, the DNAs were digested with *NoI* and with *NruI*. *NruI* cleaves asymmetrically within the subcloned *tet^r* insert, and together with *NoI* will release a fragment of 1019 bp.

15

Of the 15 clones analyzed by double restriction digestion, 14 revealed the predicted sizes of fragments for the expected product.

20

Interpretation:

The DNA components of Reaction B, **pEYC7102** and *attB-tet-PCR*, are shown in Figure 56. The desired product of BxP Reaction B is **tetx7102**, depicted in Figure 57. The LxR Reaction recombines the product of the BxP Reaction, **tetx7102** (Figure 57), with the Destination Vector, **pEYC8402**, shown in Figure 58. The LxR Reaction with **tetx7102** plus **pEYC8402** is predicted to yield the desired product **tetx8402**, shown in Figure 59.

25

Reaction 2, which combined the BxP Reaction and LxR Reaction, gave few colonies beyond those of the negative control Reaction. In contrast, Reaction 3, with twice the amount of **pEYC8402** (Figure 58) and LxR Clonase, yielded a

30

larger number of colonies. These colonies were analyzed further, by restriction digestion, to confirm the presence of expected product. Reaction 4 included a known amount of attL Entry Clone plasmid in the combined BxP-plus-LxR reaction. But reaction 4 yielded only about 1% of the colonies obtained when the same DNA was used in a LxR reaction alone, Reaction 6. This result suggests that the LxR reaction may be inhibited by components of the BxP reaction.

Restriction endonuclease analysis of the products of Reaction 3 revealed that a sizeable proportion of the colonies (14 of the 34 analyzed) contained the desired tet^r subclone, tetx8402 (Figure 59).

The above results establish the feasibility of performing first a BxP recombination reaction followed by a LxR recombination reaction -- in the same tube -- simply by adding the appropriate buffer mix, recombination proteins, and DNAs to a completed BxP reaction. This method should prove useful as a faster method to convert attB-containing PCR products into different Expression Clones, eliminating the need to isolate first the intermediate attL-PCR insert subclones, before recombining these with Destination Vectors. This may prove especially valuable for automated applications of these reactions.

This same one-tube approach allows for the rapid transfer of nucleic acid molecules contained in attB plasmid clones into new functional vectors as well. As in the above examples, attL subclones generated in a BxP Reaction can be recombined directly with various Destination Vectors in a LxR reaction. The only additional requirement for using attB plasmids, instead of attB-containing PCR products, is that the Destination Vector(s) employed must contain a different selection marker from the one present on the attB plasmid itself and the attP vector.

Two alternative protocols for a one-tube reaction have also proven useful and somewhat more optimal than the conditions described above.

Alternative 1:

Reaction buffer contained 50 mM Tris-HCl (pH 7.5), 50 mM NaCl, 0.25 mM EDTA, 2.5 mM spermidine, and 200 µg/ml BSA. After a 16 (or 3) hour incubation of the PCR product (100 ng) + attP Donor plasmid (100 ng) +

5 GATEWAY™ BP Clonase™ Enzyme Mix + Destination Vector (100 ng), 2 μ l of GATEWAY™ LR Clonase™ Enzyme Mix (per 10 μ l reaction mix) was added and the mixture was incubated an additional 6 (or 2) hours at 25°C. Stop solution was then added as above and the mixture was incubated at 37°C as above and transformed by electroporation with 1 μ l directly into electrocompetent host cells.

10 Results of this series of experiments demonstrated that longer incubation times (16 hours vs. 3 hours for the BP Reaction, 6 hours vs. 2 hours for the LR Reaction) resulted in about twice as many colonies being obtained as for the shorter incubation times. With two independent genes, 10/10 colonies having the correct cloning patterns were obtained.

Alternative 2:

15 A standard BP Reaction under the reaction conditions described above for Alternative 1 was performed for 2 hours at 25°C. Following the BP Reaction, the following components were added to the reaction mixture in a total volume of 7 μ l:

20 mM Tris-HCl, pH 7.5

100 mM NaCl

5 μ g/ml Xis-His6

15% glycerol

20 ~1000 ng of Destination Vector

The reaction mixture was then incubated for 2 hours at 25°C, and 2.5 μ l of stop solution (containing 2 μ g/ml proteinase K) was added and the mixture was incubated at 37°C for an additional 10 minutes. Chemically competent host cells were then transformed with 2 μ l of the reaction mixture, or electrocompetent host cells (*e.g.*, EMax DH10B cells; Life Technologies, Inc.) were electroporated with 2 μ l of the reaction mixture per 25-40 μ l of cells. Following transformation, mixtures were diluted with SOC, incubated at 37°C, and plated as described above on media selecting for the selection markers on the Destination Vector and the Entry clone (B x P reaction product). Analogous results to those described for Alternative 1 were obtained with these reaction conditions -- a higher level of colonies containing correctly recombined reaction products were observed.

Example 17: Demonstration of a One-tube Transfer of a PCR Product (or Expression Clone) to Expression Clone via a Recombinational Cloning Reaction

5 Single-tube transfer of PCR product DNA or Expression Clones into Expression Clones by recombinational cloning has also been accomplished using a procedure modified from that described in Example 16. This procedure is as follows:

10 • Perform a standard BP (Gateward) Reaction (see Examples 9 and 10) in 20 μ l volume at 25°C for 1 hour.

15 • After the incubation is over, take a 10 μ l aliquot from the 20 μ l total volume and add 1 μ l of Proteinase K (2 mg/ml) and incubate at 37°C for 10 minutes. This first aliquot can be used for transformation and gel assay of BP reaction analysis. Plate BP reaction transformation on LB plates with **Kanamycin** (50 μ g/ml).

20 • Add the following reagents to the remaining 10 μ l aliquot of the BP reaction:

20 1 μ l of 0.75 M NaCl
2 μ l of destination vector (150 ng/ μ l)
4 μ l of LR Clonase™ (after thawing and brief mixing)

25 • Mix all reagents well and incubate at 25°C for 3 hours. Stop the reaction at the end of incubation with 1.7 μ l of Proteinase K (2 mg/ml) and incubate at 37°C for 10 minutes.

30 • Transform 2 μ l of the completed reaction into 100 μ l of competent cells. Plate 100 μ l and 400 μ l on LB plates with **Ampicillin** (100 μ g/ml).

Notes:

- If your competent cells are less than 10⁸ CFU/ μ g, and you are concerned about getting enough colonies, you can improve the yield several fold by incubating the

-139-

BP reaction for 6-20 hours. Electroporation also can yield better colony output than chemical transformation.

5 •PCR products greater than about 5-6 kb show significantly lower cloning efficiency in the BP reaction. In this case, we recommend using longer incubation times for both BP and LR steps.

10 •If you want to move your insert gene into several destination vectors simultaneously, then scale up the initial BP reaction volume so that you have a 10 µl aliquot for adding each destination vector.

Example 18: Optimization of GATEWAY™ Clonase™ Enzyme Compositions

15 The enzyme compositions containing Int and IHF (for BP Reactions) were optimized using a standard functional recombinational cloning reaction (a BP reaction) between attB-containing plasmids and attP-containing plasmids, according to the following protocol:

Materials and Methods:

20 ***Substrates:***

AttP - supercoiled pDONR201

AttB - linear ~ 1Kb [³H]PCR product amplified from pEYC7501

Proteins:

25 IntH6 -- His₆-carboxy- tagged λ Integrase

IHF -- Integration Host Factor

Clonase:

30 50 ng/µl IntH6 and 20 ng/µl IHF, admixed in 25 mM Tris- HCl (pH 7.5), 22 mM NaCl, 5 mM EDTA, 1 mg/ml BSA, 5 mM Spermidine, and 50% glycerol.

-140-

Reaction Mixture (total volume of 40 µl):

1000 ng AttP plasmid

600 ng AttB [³H] PCR product

8 µl Clonase (400 ng IntH6, 160 ng IHF) in 25 mM Tris-HCl (pH 7.5),

5 22 mM NaCl, 5 mM EDTA, 1 mg/ml BSA, 5 mM Spermidine, 5 mM

DTT.

Reaction mixture was incubated for 1 hour at 25°C, 4 µl of 2 µg/µl proteinase K was added and mixture was incubated for an additional 20 minutes at 37°C. Mixture was then extracted with an equal volume of Phenol/Chloroform/Isoamyl alcohol. The aqueous layer was then collected, and 0.1 volumes of 3 M sodium acetate and 2 volumes of cold 100% ethanol were added. Tubes were then spun in a microcentrifuge at maximum RPM for 10 minutes at room temperature. Ethanol was decanted, and pellets were rinsed with 70% ethanol and re-centrifuged as above. Ethanol was decanted, and pellets were allowed to air dry for 5-10 minutes and then dissolved in 20 µl of 33 mM Tris-Acetate (pH 7.8), 66 mM potassium acetate, 10 mM magnesium acetate, 1 mM DTT, and 1mM ATP. 2 units of exonuclease V (e.g., Plasmid Safe; EpiCentre, Inc., Madison, WI) was then added, and the mixture was incubated at 37°C for 30 minutes.

20 Samples were then TCA-washed by spotting 30 µl of reaction mixture onto a Whatman GF/C filter, washing filters once with 10% TCA + 1% NaPPi for 10 minutes, three times with 5% TCA for 5 minutes each, and twice with ethanol for 5 minutes each. Filters were then dried under a heat lamp, placed into a scintillation vial, and counted on a β liquid scintillation counter (LSC).

25 The principle behind this assay is that, after exonuclease V digestion, only double-stranded circular DNA survives in an acid-insoluble form. All DNA substrates and products that have free ends are digested to an acid-soluble form and are not retained on the filters. Therefore, only the ³H-labeled attB linear DNA which ends up in circular form after both inter- and intramolecular integration is complete is resistant to digestion and is recovered as acid-insoluble product. Optimal enzyme and buffer formulations in the Clonase compositions therefore are those that give the highest levels of circularized ³H-labeled attB-containing

sequences, as determined by highest cpm in the LSC. Although this assay was designed for optimization of GATEWAY™ BP Clonase™ Enzyme Mix compositions (Int + IHF), the same type of assay may be performed to optimize GATEWAY™ LR Clonase™ Enzyme Mix compositions (Int + IHF + Xis), except that the reaction mixtures would comprise 1000 ng of AttR (instead of AttP) and 600 ng of AttL (instead of AttB), and 40 ng of His₆-carboxy- tagged Xis (XisH6) in addition to the IntH6 and IHF.

Example 19: Testing Functionality of Entry and Destination Vectors

As part of assessment of the functionality of particular vectors of the invention, it is important to functionally test the ability of the vectors to recombine. This assessment can be carried out by performing a recombinational cloning reaction (as schematized in Figures 2, 4, and 5A and 5B, and as described herein and in commonly owned U.S. Application Nos. 08/486,139, filed June 7, 1995, 08/663,002, filed June 7, 1996 (now U.S. Patent No. 5,888,732), 09/005,476, filed January 12, 1998, and 09/177,387, filed October 23, 1998, the disclosures of all of which are incorporated by reference herein in their entireties), by transforming E. coli and scoring colony forming units. However, an alternative assay may also be performed to allow faster, more simple assessment of the functionality of a given Entry or Destination Vector by agarose gel electrophoresis. The following is a description of such an in vitro assay.

Materials and Methods:

Plasmid templates pEYC1301 (Figure 84) and pEYC1313 (Figure 85), each containing a single wild type att site, were used for the generation of PCR products containing attL or attR sites, respectively. Plasmid templates were linearized with *Alw*NI, phenol extracted, ethanol precipitated and dissolved in TE to a concentration of 1 ng/μl.

-142-

PCR primers (capital letters represent base changes from wildtype):

attL1 gggg agcct gctttttGtacAaa gttggcatta taaaaaagca ttgc
attL2 gggg agcct gcttCttGtacAaa gttggcatta taaaaaagca ttgc
attL right tggtgccggg aagctagagt aa

5 attR1 gggg Acaag ttTgtCaaaaaagc tgaacgaga aacgtaaaat
attR2 gggg Acaag ttTgtCaGaaagc tgaacgaga aacgtaaaat
attR right ca gacggcatga tgaacctgaa

10 PCR primers were dissolved in TE to a concentration of 500 pmol/μl. Primer mixes were prepared, consisting of attL1 + attLright primers, attL2 + attLright primers, attR1 + attRight primers, and attR2 + attRight primers, each mix containing 20 pmol/μl of each primer.

PCR reactions:

15 1 μl plasmid template (1 ng)
1 μl primer pairs (20 pmoles of each)
3 μl of H₂O
45 μl of Platinum PCR SuperMix® (Life Technologies, Inc.)

20 Cycling conditions (performed in MJ thermocycler):

95°C/2 minutes
94°C/30 seconds
25 cycles of 58°C/30 seconds and 72°C/1.5 minutes
72°C/5 minutes
5°C/hold

25 The resulting attL PCR product was 1.5 kb, and the resulting attR PCR product was 1.0 kb.

30 PCR reactions were PEG/MgCl₂ precipitated by adding 150 μl H₂O and 100 μl of 3x PEG/ MgCl₂ solution followed by centrifugation. The PCR products were dissolved in 50 μl of TE. Quantification of the PCR product was performed by gel electrophoresis of 1 μl and was estimated to be 50-100 ng/μl.

-143-

Recombination reactions of PCR products containing attL or attR sites with GATEWAY™ plasmids was performed as follows:

- 8 µl of H₂O
- 2 µl of attL or attR PCR product (100-200 ng)
- 5 2 µl of GATEWAY™ plasmid (100 ng)
- 4 µl of 5x Destination buffer
- 4 µl of GATEWAY™ LR Clonase™ Enzyme Mix

20 µl total volume (the reactions can be scaled down to a 5 µl total volume by adjusting the volumes of the components to about ¼ of those shown above, while keeping the stoichiometries the same).

Clonase reactions were incubated at 25 °C for 2 hours. 2 µl of proteinase K (2 mg/ml) was added to stop the reaction. 10 µl was then run on a 1 % agarose gel. Positive control reactions were performed by reacting attL1 PCR product (1.0 kb) with attR1 PCR product (1.5 kb) and by similarly reacting attL2 PCR product with attR2 PCR product to observe the formation of a larger (2.5 kb) recombination product. Negative controls were similarly performed by reacting attL1 PCR product with attR2 PCR product and vice versa or reactions of attL PCR product with an attL plasmid, etc.

In alternative assays, to test attB Entry vectors, plasmids containing single attP sites were used. Plasmids containing single att sites could also be used as recombination substrates in general to test all Entry and Destination vectors (*i.e.*, those containing attL, attR, attB and attP sites). This would eliminate the need to do PCR reactions.

25

Results:

30

Destination and Entry plasmids when reacted with appropriate att-containing PCR products formed linear recombinant molecules that could be easily visualized on an agarose gel when compared to control reactions containing no attL or attR PCR product. Thus, the functionality of Destination and Entry vectors constructed according to the invention may be determined either by carrying out the Destination or Entry recombination reactions as depicted in

-144-

Figures 2, 4, and 5A and 5B, or more rapidly by carrying out the linearization assay described in this Example.

Example 20: PCR Cloning Using Universal Adapter-Primers

As described herein, the cloning of PCR products using the GATEWAY™ PCR Cloning System (Life Technologies, Inc.; Rockville, MD) requires the addition of attB sites (attB1 and attB2) to the ends of gene-specific primers used in the PCR reaction. The protocols described in the preceding Examples suggest that the user add 29 bp (25 bp containing the attB site plus four G residues) to the gene-specific primer. It would be advantageous to high volume users of the GATEWAY™ PCR Cloning System to generate attB-containing PCR product using universal attB adapter-primers in combination with shorter gene-specific primers containing a specified overlap to the adapters. The following experiments demonstrate the utility of this strategy using universal attB adapter-primers and gene-specific primers containing overlaps of various lengths from 6 bp to 18 bp. The results demonstrate that gene-specific primers with overlaps of 10 bp to 18 bp can be used successfully in PCR amplifications with universal attB adapter-primers to generate full-length PCR products. These PCR products can then be successfully cloned with high fidelity in a specified orientation using the GATEWAY™ PCR Cloning System.

Methods and Results:

To demonstrate that universal attB adapter-primers can be used with gene-specific primers containing partial attB sites in PCR reactions to generate full-length PCR product, a small 256 bp region of the human hemoglobin cDNA was chosen as a target so that intermediate sized products could be distinguished from full-length products by agarose gel electrophoresis.

The following oligonucleotides were used:

30

B1-Hgb: GGGG ACA AGT TTG TAC AAA AAA GCA GGC T-5' -Hgb*
B2-Hgb: GGGG ACC ACT TTG TAC AAG AAA GCT GGG T-3' -Hgb**

-145-

	18B1-Hgb:	TG TAC AAA AAA GCA GGC T-5'-Hgb
	18B2-Hgb:	TG TAC AAG AAA GCT GGG T-3'-Hgb
	15B1-Hgb:	AC AAA AAA GCA GGC T-5'-Hgb
	15B2-Hgb:	AC AAG AAA GCT GGG T-3'-Hgb
5	12B1-Hgb:	AA AAA GCA GGC T-5'-Hgb
	12B2-Hgb:	AG AAA GCT GGG T-3'-Hgb
	11B1-Hgb:	A AAA GCA GGC T-5'-Hgb
	11B2-Hgb:	G AAA GCT GGG T-3'-Hgb
	10B1-Hgb:	AAA GCA GGC T-5'-Hgb
10	10B2-Hgb:	AAA GCT GGG T-3'-Hgb
	9B1-Hgb:	AA GCA GGC T-5'-Hgb
	9B2-Hgb:	AA GCT GGG T-3'-Hgb
	8B1-Hgb:	A GCA GGC T-5'-Hgb
	8B2-Hgb:	A GCT GGG T-3'-Hgb
15	7B1-Hgb:	GCA GGC T-5'-Hgb
	7B2-Hgb:	GCT GGG T-3'-Hgb
	6B1-Hgb:	CA GGC T-5'-Hgb
	6B2-Hgb:	CT GGG T-3'-Hgb

20 attB1 adapter: GGGG ACA AGT TTG TAC AAA AAA GCA GGC T
attB2 adapter: GGGG ACC ACT TTG TAC AAG AAA GCT GGG T

* -5'-Hgb = GTC ACT AGC CTG TGG AGC AAG A

** -3'-Hgb = AGG ATG GCA GAG GGA GAC GAC A

25

The aim of these experiments was to develop a simple and efficient universal adapter PCR method to generate attB containing PCR products suitable for use in the GATEWAY™ PCR Cloning System. The reaction mixtures and thermocycling conditions should be simple and efficient so that the universal adapter PCR method could be routinely applicable to any PCR product cloning application.

30

PCR reaction conditions were initially found that could successfully amplify predominately full-length PCR product using gene-specific primers containing 18bp and 15 bp overlap with universal attB primers. These conditions are outlined below:

35

-146-

10 pmoles of gene-specific primers
10 pmoles of universal attB adapter-primers
1 ng of plasmid containing the human hemoglobin cDNA.
100 ng of human leukocyte cDNA library DNA.
5 5 µl of 10x PLATINUM Taq HiFi® reaction buffer (Life Technologies, Inc.)
2 µl of 50 mM MgSO₄
1 µl of 10 mM dNTPs
0.2 µl of PLATINUM Taq HiFi® (1.0 unit)
H₂O to 50 µl total reaction volume

10

Cycling conditions:

15

25 x | 95°C/5 min
| 94°C/15 sec
| 50°C/30 sec
| 68°C/1 min
| 68°C/5 min
| 5°C/hold

20 To assess the efficiency of the method, 2 µl (1/25) of the 50 µl PCR reaction was electrophoresed in a 3 % Agarose-1000 gel. With overlaps of 12 bp or less, smaller intermediate products containing one or no universal attB adapter predominated the reactions. Further optimization of PCR reaction conditions was obtained by titrating the amounts of gene-specific primers and universal attB adapter-primers. The PCR reactions were set up as outlined above except that the 25 amounts of primers added were:

0, 1, 3 or 10 pmoles of gene-specific primers

0, 10, 30 or 100 pmoles of adapter-primers

-147-

Cycling conditions:

5 25 x

95°C/3 min
94°C/15 sec
50°C/45 sec
68°C/1 min
68°C/5 min
5°C/hold

10 The use of limiting amounts of gene-specific primers (3 pmoles) and excess adapter-primers (30 pmoles) reduced the amounts of smaller intermediate products. Using these reaction conditions the overlap necessary to obtain predominately full-length PCR product was reduced to 12 bp. The amounts of gene-specific and adapter-primers was further optimized in the following PCR reactions:

- 15 0, 1, 2 or 3 pmoles of gene-specific primers
 0, 30, 40 or 50 pmoles of adapter-primers

Cycling conditions:

20 25 x

95°C/3 min
94°C/15 sec
48°C/1 min
68°C/1 min
68°C/5 min
5°C/hold

25 The use of 2 pmoles of gene-specific primers and 40 pmoles of adapter-primers further reduced the amounts of intermediate products and generated predominately full-length PCR products with gene-specific primers containing an 11 bp overlap. The success of the PCR reactions can be assessed in any PCR application by performing a no adapter control. The use of limiting amounts of gene-specific primers should give faint or barely visible bands when 1/25 to 1/10 of the PCR reaction is electrophoresed on a standard agarose gel. Addition of the

universal attB adapter-primers should generate a robust PCR reaction with a much higher overall yield of product.

PCR products from reactions using the 18 bp, 15 bp, 12 bp, 11 bp and 10 bp overlap gene-specific primers were purified using the CONCERT® Rapid PCR Purification System (PCR products greater than 500 bp can be PEG precipitated). The purified PCR products were subsequently cloned into an attP containing plasmid vector using the GATEWAY™ PCR Cloning System (Life Technologies, Inc.; Rockville, MD) and transformed into *E. coli*. Colonies were selected and counted on the appropriate antibiotic media and screened by PCR for correct inserts and orientation.

Raw PCR products (unpurified) from the attB adapter PCR of a plasmid clone of part of the human beta-globin (Hgb) gene were also used in GATEWAY™ PCR Cloning System reactions. PCR products generated with the full attB B1/B2-Hgb, the 12B1/B2, 11B1/B2 and 10B1/B2 attB overlap Hgb primers were successfully cloned into the GATEWAY™ pENTR21 attP vector (Figure 49). 24 colonies from each (24 x 4 = 96 total) were tested and each was verified by PCR to contain correct inserts. The cloning efficiency expressed as cfu/ml is shown below:

Primer Used	cfu/ml
Hgb full attB	8,700
Hgb 12 bp overlap	21,000
Hgb 11 bp overlap	20,500
Hgb 10 bp overlap	13,500
GFP control	1.300

Interestingly, the overlap PCR products cloned with higher efficiency than did the full attB PCR product. Presumably, and as verified by visualization on agarose gel, the adapter PCR products were slightly cleaner than was the full attB PCR product. The differences in colony output may also reflect the proportion of PCR product molecules with intact attB sites.

Using the attB adapter PCR method, PCR primers with 12 bp attB overlaps were used to amplify cDNAs of different sizes (ranging from 1 to 4 kb)

from a leukocyte cDNA library and from first strand cDNA prepared from HeLa total RNA. While three of the four cDNAs were able to be amplified by this method, a non-specific amplification product was also observed that under some conditions would interfere with the gene-specific amplification. This non-specific product was amplified in reactions containing the attB adapter-primers alone without any gene-specific overlap primers present. The non-specific amplification product was reduced by increasing the stringency of the PCR reaction and lowering the attB adapter PCR primer concentration.

These results indicate that the adapter-primer PCR approach described in this Example will work well for cloned genes. These results also demonstrate the development of a simple and efficient method to amplify PCR products that are compatible with the GATEWAY™ PCR Cloning System that allows the use of shorter gene-specific primers that partially overlap universal attB adapter-primers. In routine PCR cloning applications, the use of 12 bp overlaps is recommended. The methods described in this Example can thus reduce the length of gene-specific primers by up to 17 residues or more, resulting in a significant savings in oligonucleotide costs for high volume users of the GATEWAY™ PCR Cloning System. In addition, using the methods and assays described in this Example, one of ordinary skill can, using only routine experimentation, design and use analogous primer-adapters based on or containing other recombination sites or fragments thereof, such as *attL*, *attR*, *attP*, *lox*, FRT, etc.

Example 21: Mutational Analysis of the Bacteriophage Lambda *attL* and *attR* Sites: Determinants of *att* Site Specificity in Site-specific Recombination

To investigate the determinants of *att* site specificity, the bacteriophage lambda *attL* and *attR* sites were systematically mutagenized. As noted herein, the determinants of specificity have previously been localized to the 7 bp overlap region (TTTATAC, which is defined by the cut sites for the integrase protein and is the region where strand exchange takes place) within the 15 bp core region (GCTTTTTTTATACTAA) which is identical in all four lambda *att* sites, *attB*, *attP*, *attL* and *attR*. This core region, however, has not heretofore been systematically

mutagenized and examined to define precisely which mutations produce unique changes in *att* site specificity.

Therefore, to examine the effect of *att* sequence on site specificity, mutant *attL* and *attR* sites were generated by PCR and tested in an *in vitro* site-specific recombination assay. In this way all possible single base pair changes within the 7 bp overlap region of the core *att* site were generated as well as five additional changes outside the 7 bp overlap but within the 15 bp core *att* site. Each *attL* PCR substrate was tested in the *in vitro* recombination assay with each of the *attR* PCR substrates.

10

Methods

To examine both the efficiency and specificity of recombination of mutant *attL* and *attR* sites, a simple *in vitro* site-specific recombination assay was developed. Since the core regions of *attL* and *attR* lie near the ends of these sites, it was possible to incorporate the desired nucleotide base changes within PCR primers and generate a series of PCR products containing mutant *attL* and *attR* sites. PCR products containing *attL* and *attR* sites were used as substrates in an *in vitro* reaction with GATEWAY™ LR Clonase™ Enzyme Mix (Life Technologies, Inc.; Rockville, MD). Recombination between a 1.5 kb *attL* PCR product and a 1.0 kb *attR* PCR product resulted in a 2.5 kb recombinant molecule that was monitored using agarose gel electrophoresis and ethidium bromide staining.

15

20

25

30

Plasmid templates pEZC1301 (Figure 84) and pEZC1313 (Figure 85), each containing a single wild type *attL* or *attR* site, respectively, were used for the generation of recombination substrates. The following list shows primers that were used in PCR reactions to generate the *attL* PCR products that were used as substrates in L x R Clonase reactions (capital letters represent changes from the wild-type sequence, and the underline represents the 7 bp overlap region within the 15 bp core *att* site; a similar set of PCR primers was used to prepare the *attR* PCR products containing matching mutations):

-151-

GATEWAY™ sites (note: attL2 sequence in GATEWAY™ plasmids begins "acccca" while the attL2 site in this example begins "agcct" to reflect wild-type attL outside the core region.):

5

attL1: gggg agcct gctttttGtacAaa gttggcatta taaaaa-
 agca ttgc

10

attL2: gggg agcct gctttCttGtacAaa gttggcatta taaaaa-
 agca ttgc

Wild-type:

attL0: gggg agcct gctttttataactaa gttggcatta taaaaa-
 agca ttgc

15

Single base changes from wild-type:

attLT1A: gggg agcct gctttAttataactaa gttggcatta taaaaa-
 agca ttgc

20

attLT1C: gggg agcct gctttCttataactaa gttggcatta taaaaa-
 agca ttgc

attLT1G: gggg agcct gctttGttataactaa gttggcatta taaaaa-
 agca ttgc

25

attLT2A: gggg agcct gcttttAtataactaa gttggcatta taaaaa-
 agca ttgc

30

attLT2C: gggg agcct gcttttCtataactaa gttggcatta taaaaa-
 agca ttgc

attLT2G: gggg agcct gcttttGtataactaa gttggcatta taaaaa-
 aagca ttgc

35

-152-

attLT3A: gggg agcct gcttttAataactaa gttggcatta taaaa-
aagca ttgc

5 attLT3C: gggg agcct gcttttCataactaa gttggcatta taaaa-
aagca ttgc

attLT3G: gggg agcct gcttttGataactaa gttggcatta taaaa-
aagca ttgc

10

attLA4C: gggg agcct gcttttCtactaa gttggcatta taaaa-
aagca ttgc

15

attLA4G: gggg agcct gcttttGtactaa gttggcatta taaaa-
aagca ttgc

20

attLA4T: gggg agcct gcttttTtactaa gttggcatta taaaa-
aagca ttgc

25

attLT5A: gggg agcct gctttttaAactaa gttggcatta taaaa-
aagca ttgc

30

attLT5C: gggg agcct gctttttaCactaa gttggcatta taaaa-
aagca ttgc

35

attLT5G: gggg agcct gctttttaGactaa gttggcatta taaaa-
aagca ttgc

attLA6C: gggg agcct gctttttatCtaa gttggcatta taaaa-
aagca ttgc

-153-

attLA6G: gggg agcct gctttttatGctaa gttggcatta taaaa-
aagca ttgc

5 attLA6T: gggg agcct gctttttatTctaa gttggcatta taaaa-
aagca ttgc

10 attLC7A: gggg agcct gctttttataAataa gttggcatta taaaa-
aagca ttgc

15 attLC7G: gggg agcct gctttttataGtaa gttggcatta taaaa-
aagca ttgc

attLC7T: gggg agcct gctttttataTtaa gttggcatta taaaa-
aagca ttgc

Single base changes outside of the 7 bp overlap:

20 attL8: gggg agcct Actttttataactaa gttggcatta taaaa-
aagca ttgc

25 attL9: gggg agcct gcCttttataactaa gttggcatta taaaaaa-
agca ttgc

attL10: gggg agcct gcttCtttataactaa gttggcatta taaaaaa-
agca ttgc

30 attL14: gggg agcct gctttttatacacCaa gttggcatta taaaaaa-
agca ttgc

35 attL15: gggg agcct gctttttataactaG gttggcatta taaaaaa-
agca ttgc

Note: additional vectors wherein the first nine bases are gggg agcca (*i.e.*, substituting an adenine for the thymine in the position immediately preceding the 15-bp core region), which may or may not contain the single base pair substitutions (or deletions) outlined above, can also be used in these experiments.

5

Recombination reactions of *attL*- and *attR*-containing PCR products was performed as follows:

8 µl of H₂O

10 2 µl of *attL* PCR product (100 ng)

2 µl of *attR* PCR product (100 ng)

4 µl of 5x buffer

4 µl of GATEWAY™ LR Clonase™ Enzyme Mix

20 µl total volume

15

Clonase reactions were incubated at 25°C for 2 hours.

2 µl of 10X Clonase stop solution (proteinase K, 2 mg/ml) were added to stop the reaction.

10 µl were run on a 1 % agarose gel.

20

Results

Each *attL* PCR substrate was tested in the *in vitro* recombination assay with each of the *attR* PCR substrates. Changes within the first three positions of the 7 bp overlap (TTTATAC) strongly altered the specificity of recombination. These mutant *att* sites each recombined as well as the wild-type, but only with their cognate partner mutant; they did not recombine detectably with any other *att* site mutant. In contrast, changes in the last four positions (TTTATAC) only partially altered specificity; these mutants recombined with their cognate mutant as well as wild-type *att* sites and recombined partially with all other mutant *att* sites except for those having mutations in the first three positions of the 7 bp

30

overlap. Changes outside of the 7 bp overlap were found not to affect specificity of recombination, but some did influence the efficiency of recombination.

Based on these results, the following rules for *att* site specificity were determined:

- 5 • Only changes within the 7 bp overlap affect specificity.
- Changes within the first 3 positions strongly affect specificity.
- Changes within the last 4 positions weakly affect specificity.

Mutations that affected the overall efficiency of the recombination reaction were also assessed by this method. In these experiments, a slightly increased (less than 2-fold) recombination efficiency with *att*L T1A and *att*L C7T substrates was observed when these substrates were reacted with their cognate *att*R partners. Also observed were mutations that decreased recombination efficiency (approximately 2-3 fold), including *att*L A6G, *att*L 14 and *att*L 15. These mutations presumably reflect changes that affect Int protein binding at the core *att* site.

The results of these experiments demonstrate that changes within the first three positions of the 7 bp overlap (TTTATAC) strongly altered the specificity of recombination (*i.e.*, *att* sequences with one or more mutations in the first three thymidines would only recombine with their cognate partners and would not cross-react with any other *att* site mutation). In contrast, mutations in the last four positions (TTTATAC) only partially altered specificity (*i.e.*, *att* sequences with one or more mutations in the last four base positions would cross-react partially with the wild-type *att* site and all other mutant *att* sites, except for those having mutations in one or more of the first three positions of the 7 bp overlap). Mutations outside of the 7 bp overlap were not found to affect specificity of recombination, but some were found to influence (*i.e.*, to cause a decrease in) the efficiency of recombination.

Example 22: Discovery of Att Site Mutations That Increase the Cloning Efficiency of GATEWAY™ Cloning Reactions

In experiments designed to understand the determinants of *att* site specificity, point mutations in the core region of *att*L were made. Nucleic acid molecules containing these mutated *att*L sequences were then reacted in an LR

reaction with nucleic acid molecules containing the cognate *attR* site (*i.e.*, an *attR* site containing a mutation corresponding to that in the *attL* site), and recombinational efficiency was determined as described above. Several mutations located in the core region of the *att* site were noted that either slightly increased (less than 2-fold) or decreased (between 2-4-fold) the efficiency of the recombination reaction (Table 3).

Table 3. Effects of attL mutations on Recombination Reactions.

	<u>Site</u>	<u>Sequence</u>	<u>Effect on Recombination</u>
	attL0	agcctgcttttatactaagttggcatta	
	attL5	agcctgctttAtataactaagttggcatta	slightly increased
	attL6	agcctgcttttataTtaagttggcatta	slightly increased
15	attL13	agcctgcttttatGctaagttggcatta	decreased
	attL14	agcctgcttttatacCaagttggcatta	decreased
	attL15	agcctgcttttatactaGgttggcatta	decreased
20	consensus	CAACTTnnTnnnAnnAAGTTG	

It was also noted that these mutations presumably reflected changes that either increased or decreased, respectively, the relative affinity of the integrase protein for binding the core *att* site. A consensus sequence for an integrase core-binding site (CAACTTNNT) has been inferred in the literature but not directly tested (see, *e.g.*, Ross and Landy, *Cell* 33:261-272 (1983)). This consensus core integrase-binding sequence was established by comparing the sequences of each of the four core *att* sites found in *attP* and *attB* as well as the sequences of five non-*att* sites that resemble the core sequence and to which integrase has been shown to bind *in vitro*. These experiments suggest that many more *att* site mutations might be identified which increase the binding of integrase to the core *att* site and thus increase the efficiency of GATEWAY™ cloning reactions.

Example 23: Effects of Core Region Mutations on Recombination Efficiency

To directly compare the cloning efficiency of mutations in the att site core region, single base changes were made in the attB2 site of an attB1-TET-attB2 PCR product. Nucleic acid molecules containing these mutated *attB2* sequences were then reacted in a BP reaction with nucleic acid molecules containing non-cognate *attP* sites (*i.e.*, wildtype *attP2*), and recombinational efficiency was determined as described above. The cloning efficiency of these mutant attB2 containing PCR products compared to standard attB1-TET-attB2 PCR product are shown in Table 4.

10

Table 4. Efficiency of Recombination With Mutated attB2 Sites.

	<u>Site</u>	<u>Sequence</u>	<u>Mutation</u>	<u>Cloning Efficiency</u>
15	attB0	tcaagtt <u>gtataaaaa</u> aggcaggct		
	attB1	ggggaca <u>gtttgtacaaaaa</u> aggcaggct		
	attB2	ggggacc <u>acttgtacaaa</u> gaaagctgggt		100%
	attB2.1	gggg <u>A</u> cactt <u>gtacaaa</u> gaaagctgggt	C→A	40%
	attB2.2	gggg <u>ac</u> a <u>cttgtacaaa</u> gaaagctgggt	C→A	131%
20	attB2.3	gggg <u>acc</u> <u>C</u> ttt <u>gtacaaa</u> gaaagctgggt	A→C	4%
	attB2.4	gggg <u>acca</u> <u>A</u> ttt <u>gtacaaa</u> gaaagctgggt	C→A	11%
	attB2.5	gggg <u>accac</u> <u>G</u> tt <u>gtacaaa</u> gaaagctgggt	T→G	4%
	attB2.6	gggg <u>accact</u> <u>G</u> t <u>gtacaaa</u> gaaagctgggt	T→G	6%
	attB2.7	gggg <u>accactt</u> <u>G</u> gt <u>acaaa</u> gaaagctgggt	T→G	1%
25	attB2.8	gggg <u>accactt</u> <u>T</u> t <u>acaaa</u> gaaagctgggt	G→T	0.5%

30

As noted above, a single base change in the attB2.2 site increased the cloning efficiency of the attB1-TET-attB2.2 PCR product to 131% compared to the attB1-TET-attB2 PCR product. Interestingly, this mutation changes the integrase core binding site of attB2 to a sequence that matches more closely the proposed consensus sequence.

-158-

Additional experiments were performed to directly compare the cloning efficiency of an attB1-TET-attB2 PCR product with a PCR product that contained attB sites containing the proposed consensus sequence (*see Example 22*) of an integrase core binding site. The following attB sites were used to amplify attB-TET PCR products:

5 attB1 ggggacaagtttgtacaaaaaaggcaggct
attB1.6 ggggacaaCtttgtacaaaaaagTTggct
attB2 ggggaccacttgtacaagaaagctgggt
10 attB2.10 ggggacAacttgtacaagaaagTtgggt

15 BP reactions were carried out between 300 ng (100 fmoles) of pDONR201 (Figure 49A) with 80 ng (80 fmoles) of attB-TET PCR product in a 20 μ l volume with incubation for 1.5 hrs at 25°C, creating pENTR201-TET Entry clones. A comparison of the cloning efficiencies of the above-noted attB sites in BP reactions is shown in Table 5.

Table 5. Cloning efficiency of BP Reactions.

PCR product	CFU/ml	Fold Increase
B1-tet-B2	7,500	
B1.6-tet-B2	12,000	1.6 x
B1-tet-B2.10	20,900	2.8 x
B1.6-tet-B2.10	30,100	4.0 x

20 These results demonstrate that attB PCR products containing sequences that perfectly match the proposed consensus sequence for integrase core binding sites can produce Entry clones with four-fold higher efficiency than standard Gateway attB1 and attB2 PCR products.

25 The entry clones produced above were then transferred to pDEST20 (Figure 40A) via LR reactions (300 ng (64 fmoles) pDEST20 mixed with 50 ng (77 fmoles) of the respective pENTR201-TET Entry clone in 20 μ l volume; incubated for 1 hr incubation at 25°C). The efficiencies of cloning for these reactions are compared in Table 6.

Table 6. Cloning Efficiency of LR Reactions.

pENTR201-TET x pDEST20	CFU/ml	Fold Increase
L1-tet-L2	5,800	
L1.6-tet-L2	8,000	1.4
L1-tet-L2.10	10,000	1.7
L1.6-tet-L2.10	9,300	1.6

These results demonstrate that the mutations introduced into attB1.6 and attB2.10 that transfer with the gene into entry clones slightly increase the efficiency of LR reactions. Thus, the present invention encompasses not only mutations in *attB* sites that increase recombination efficiency, but also to the corresponding mutations that result in the *attL* sites created by the BP reaction.

To examine the increased cloning efficiency of the attB1.6-TET-attB2.10 PCR product over a range of PCR product amounts, experiments analogous to those described above were performed in which the amount of attB PCR product was titrated into the reaction mixture. The results are shown in Table 7.

Table 7. Titration of attB PCR products.

Amount of attB PCR product (ng)	PCR product	CFU/ml	Fold Increase
20	attB1-TET-attB2	3,500	6.1
	attB1.6-TET-attB2.10	21,500	
50	attB1-TET-attB2	9,800	5.0
	attB1.6-TET-attB2.10	49,000	
100	attB1-TET-attB2	18,800	2.8
	attB1.6-TET-attB2.10	53,000	
200	attB1-TET-attB2	19,000	2.5
	attB1.6-TET-attB2.10	48,000	

These results demonstrate that as much as a six-fold increase in cloning efficiency is achieved with the attB1.6-TET-attB2.10 PCR product as compared to the standard attB1-TET-attB2 PCR product at the 20 ng amount.

Example 24: Determination of attB Sequence Requirements for Optimum Recombination Efficiency

To examine the sequence requirements for attB and to determine which attB sites would clone with the highest efficiency from populations of degenerate attB sites, a series of experiments was performed. Degenerate PCR primers were designed which contained five bases of degeneracy in the B-arm of the attB site. These degenerate sequences would thus transfer with the gene into Entry clone in BP reactions and subsequently be transferred with the gene into expression clones in LR reactions. The populations of degenerate attB and attL sites could thus be cycled from attB to attL back and forth for any number of cycles. By altering the reaction conditions at each transfer step (for example by decreasing the reaction time and/or decreasing the concentration of DNA) the reaction can be made increasingly more stringent at each cycle and thus enrich for populations of attB and attL sites that react more efficiently.

The following degenerate PCR primers were used to amplify a 500 bp fragment from pUC18 which contained the lacZ alpha fragment (only the attB portion of each primer is shown):

attB1 GGGG ACAAGTTGTACAAA AAAGC AGGCT
attB1n16-20 GGGG ACAAGTTGTACAAA nnnnn AGGCT
attB1n21-25 GGGG ACAAGTTGTACAAA AAAGC nnnnn

attB2 GGGG ACCACTTGTACAAG AAAGC TGGGT
attB2n16-20 GGGG ACCACTTGTACAAG nnnnn TGGGT
attB2n21-25 GGGG ACCACTTGTACAAG AAAGC nnnnn

The starting population size of degenerate att sites is 4^5 or 1024 molecules. Four different populations were transferred through two BP reactions and two LR reactions. Following transformation of each reaction, the population of transformants was amplified by growth in liquid media containing the appropriate selection antibiotic. DNA was prepared from the population of clones by alkaline

-161-

lysis miniprep and used in the next reaction. The results of the BP and LR cloning reactions are shown below.

BP-1, overnight reactions

	cfu/ml	percent of control
attB1-LacZa-attB2	78,500	100 %
attB1n16-20-LacZa-attB2	1,140	1.5 %
attB1n21-25-LacZa-attB2	11,100	14 %
attB1-LacZa-attB2n16-20	710	0.9 %
attB1-LacZa-attB2n21-25	16,600	21 %

LR-1, pENTR201-LacZa x pDEST20/EcoRI, 1hr reactions

	cfu/ml	percent of control
attL1-LacZa-attL2	20,000	100 %
attL1n16-20-LacZa-attL2	2,125	11 %
attL1n21-25-LacZa-attL2	2,920	15 %
attL1-LacZa-attL2n16-20	3,190	16 %
attL1-LacZa-attL2n21-25	1,405	7 %

BP-2, pEXP20-LacZa/ScalI x pDONR 201, 1hr reactions

	cfu/ml	percent of control
attB1-LacZa-attB2	48,600	100 %
attB1n16-20-LacZa-attB2	22,800	47 %
attB1n21-25-LacZa-attB2	31,500	65 %
attB1-LacZa-attB2n16-20	42,400	87 %
attB1-LacZa-attB2n21-25	34,500	71 %

LR-2, pENTR201-LacZa x pDEST6/Ncol, 1hr reactions

	cfu/ml	percent of control
attL1-LacZa-attL2	23,000	100 %
attL1n16-20-LacZa-attL2	49,000	213 %
attL1n21-25-LacZa-attL2	18,000	80 %
attL1-LacZa-attL2n16-20	37,000	160 %
attL1-LacZa-attL2n21-25	57,000	250 %

These results demonstrate that at each successive transfer, the cloning efficiency of the entire population of att sites increases, and that there is a great deal of flexibility in the definition of an *attB* site. Specific clones may be isolated from the above reactions, tested individually for recombination efficiency, and

sequenced. Such new specificities may then be compared to known examples to guide the design of new sequences with new recombination specificities. In addition, based on the enrichment and screening protocols described herein, one of ordinary skill can easily identify and use sequences in other recombination sites, e.g., other *att* sites, *lox*, FRT, etc., that result in increased specificity in the recombination reactions using nucleic acid molecules containing such sequences.

5

Example 25: Design of att Site PCR Adapter-Primers

10

Additional studies were performed to design gene-specific primers with 12bp of attB1 and attB2 at their 5'-ends. The optimal primer design for *att*-containing primers is the same as for any PCR primers: the gene-specific portion of the primers should ideally have a Tm of > 50°C at 50 mM salt (calculation of Tm is based on the formula $59.9 + 41(\%GC) - 675/n$).

15

Primers:

12bp attB1: AA AAA GCA GGC TNN - forward gene-specific primer

20

12bp attB2: A GAA AGC TGG GTN - reverse gene-specific primer

attB1 adapter primer: GGGGACAAGTTGTACAAAAAAGCAGGCT

attB2 adapter primer: GGGGACCACTTGTACAAGAAAGCTGGGT

25

Protocol:

(1) Mix 200 ng of cDNA library or 1 ng of plasmid clone DNA (alternatively, genomic DNA or RNA could be used) with 10 pmoles of gene specific primers in a 50 µl PCR reaction, using one or more polypeptides having DNA polymerase activity such as those described herein. (The addition of greater than 10 pmoles of gene-specific primers can decrease the yield of attB PCR product. In addition, if RNA is used, a standard reverse transcriptase-PCR (RT-

30

PCR) protocol should be followed; see, e.g., Gerard, G.F., et al., *FOCUS* 11:60 (1989); Myers, T.W., and Gelfand, D.H., *Biochem.* 30:7661 (1991); Freeman, W.N., et al., *BioTechniques* 20:782 (1996); and U.S. Application No. 09/064,057, filed April 22, 1998, the disclosures of all of which are incorporated herein by reference.)

5

1st PCR profile:

- (a) 95°C for 3 minutes
- (b) 10 cycles of:
 - (i) 94°C for 15 seconds
 - (ii) 50°C* for 30 seconds
 - (iii) 68°C for 1 minute/kb of target amplicon
- (c) 68°C for 5 minutes
- (d) 10°C hold

15

*The optimal annealing temperature is determined by the calculated Tm of the gene-specific part of the primer.

20

(2) Transfer 10 µl to a 40 µl PCR reaction mix containing 35 pmoles each of the attB1 and attB2 adapter primers.

25

2nd PCR profile:

- (a) 95°C for 1 minute
- (b) 5 cycles of:
 - (i) 94°C for 15 seconds
 - (ii) 45°C* for 30 seconds
 - (iii) 68°C for 1 minute/kb of target amplicon
- (c) 15-20 cycles** of:
 - (i) 94°C for 15 seconds
 - (ii) 55°C* for 30 seconds

30

-164-

- (iii) 68°C for 1 minute/kb of target amplicon
- (d) 68°C for 5 minutes
- (e) 10°C hold

5 *The optimal annealing temperature is determined by the calculated Tm of the gene-specific part of the primer.

**15 cycles is sufficient for low complexity targets.

Notes:

- 10 1. It is useful to perform a no-adapter primer control to assess the yield of attB PCR product produced.
2. Linearized template usually results in slightly greater yield of PCR product.

15

Example 26: One-Tube Recombinational Cloning Using the GATEWAY™ Cloning System

20 To provide for easier and more rapid cloning using the GATEWAY™ cloning system, we have designed a protocol whereby the BP and LR reactions may be performed in a single tube (a "one-tube" protocol). The following is an example of such a one-tube protocol; in this example, an aliquot of the BP reaction is taken before adding the LR components, but the BP and LR reactions may be performed in a one-tube protocol without first taking the BP aliquot:

25

<u>Reaction Component</u>	<u>Volume</u>
attB DNA (100-200 ng/25 µl reaction)	1-12.5 µl
attP DNA (pDONR201) 150 ng/µl	2.5 µl
5X BP Reaction Buffer	5.0 µl
Tris-EDTA	(to 20 µl)
<u>BP Clonase</u>	<u>5.0 µl</u>
Total vol.	25 µl

-165-

After the above components were mixed in a single tube, the reaction mixtures were incubated for 4 hours at 25°C. A 5 µl aliquot of reaction mixture was removed, and 0.5 µl of 10X stop solution was added to this reaction mixture and incubated for 10 minutes at 37°C. Competent cells were then transformed with 1-2 µl of the BP reaction per 100 µl of cells; this transformation yielded colonies of Entry Clones for isolation of individual Entry Clones and for quantitation of the BP Reaction efficiency.

To the remaining 20 µl of BP reaction mixture, the following components of the LR reaction were added:

10

<u>Reaction Component</u>	<u>Final Concentration</u>	<u>Volume Added</u>
NaCl	0.75 M	1 µl
Destination Vector	150 ng/ul	3 µl
<u>LR Clonase</u>		<u>6 µl</u>
Total vol.		30 µl

15

After the above components were mixed in a single tube, the reaction mixtures were incubated for 2 hours at 25°C. 3 µl of 10X stop solution was added, and the mixture was incubated for 10 minutes at 37°C. Competent cells were then transformed with 1-2 µl of the reaction mixture per 100 µl of cells

20

Notes:

1. If desired, the Destination Vector can be added to the initial BP reaction.
2. The reactions can be scaled down by 2x, if desired.
3. Shorter incubation times for the BP and/or LR reactions can be used (scaled to the desired cloning efficiencies of the reaction), but a lower number of colonies will typically result.
4. To increase the number of colonies obtained by several fold, incubate the BP reaction for 6-20 hours and increase the LR reaction to 3 hours. Electroporation also works well with 1-2 ul of the PK-treated reaction mixture.

30

5. PCR products greater than about 5 kb may show significantly lower cloning efficiency in the BP reaction. In this case, we recommend using a one-tube reaction with longer incubation times (e.g., 6-18 hours) for both the BP and LR steps.

5

Example 27: Relaxation of Destination Vectors During the LR Reaction

To further optimize the LR Reaction, the composition of the LR Reaction buffer was modified from that described above and this modified buffer was used in a protocol to examine the impact of enzymatic relaxation of Destination Vectors during the LR Reaction.

10 LR Reactions were set up as usual (see, e.g., Example 6), except that 5X BP Reaction Buffer (see Example 5) was used for the LR Reaction. To accomplish Destination Vector relaxation during the LR Reaction, Topoisomerase I (Life Technologies, Inc., Rockville, MD; Catalogue No. 38042-016) was added to the reaction mixture at a final concentration of ~15U per μ g of total DNA in the reaction (for example, for reaction mixtures with a total of 400ng DNA in the 20 μ l LR Reaction, ~6units of Topoisomerase I was added).

15 Reaction mixtures were set up as follows:

20

<u>Reaction Component</u>	<u>Volume</u>
ddH ₂ O	6.5 μ l
4X BP Reaction Buffer	5 μ l
100ng single chain/linear pENTR CAT, 50 ng/ μ l	2 μ l
25 300ng single chain/linear pDEST6, 150ng/ μ l	2 μ l
Topoisomerase I, 15 U/ml	0.5 μ l
LR Clonase	4 μ l

25

30 Reaction mixtures were incubated at 25°C for 1hour, and 2 μ l of 2 μ g/ μ l Proteinase K was then added and mixtures incubated for 10 minutes at 37°C to stop the LR Reaction. Competent cells were then transformed as described in the preceding examples. The results of these studies demonstrated that relaxation of

substrates in the LR reaction using Topoisomerase I resulted in a 2- to 10-fold increase in colony output compared to those LR reactions performed without including Topoisomerase I.

Having now fully described the present invention in some detail by way of illustration and example for purposes of clarity of understanding, it will be obvious to one of ordinary skill in the art that the same can be performed by modifying or changing the invention within a wide and equivalent range of conditions, formulations and other parameters without affecting the scope of the invention or any specific embodiment thereof, and that such modifications or changes are intended to be encompassed within the scope of the appended claims.

All publications, patents and patent applications mentioned in this specification are indicative of the level of skill of those skilled in the art to which this invention pertains, and are herein incorporated by reference to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated by reference.

WHAT IS CLAIMED IS:

1. An isolated nucleic acid molecule comprising a nucleotide sequence selected from the group of nucleotide sequences consisting of an attB1 nucleotide sequence as set forth in Figure 9, an attB2 nucleotide sequence as set forth in Figure 9, an attP1 nucleotide sequence as set forth in Figure 9, an attP2 nucleotide sequence as set forth in Figure 9, an attL1 nucleotide sequence as set forth in Figure 9, an attL2 nucleotide sequence as set forth in Figure 9, an attR1 nucleotide sequence as set forth in Figure 9, an attR2 nucleotide sequence as set forth in Figure 9, a polynucleotide complementary thereto, and a mutant, fragment, or derivative thereof.
2. An isolated nucleic acid molecule comprising an attB1 nucleotide sequence as set forth in Figure 9, a polynucleotide complementary thereto, or a mutant, fragment, variant or derivative thereof.
3. An isolated nucleic acid molecule comprising an attB2 nucleotide sequence as set forth in Figure 9, a polynucleotide complementary thereto, or a mutant, fragment, variant or derivative thereof.
4. An isolated nucleic acid molecule comprising an attP1 nucleotide sequence as set forth in Figure 9, a polynucleotide complementary thereto, or a mutant, fragment, variant or derivative thereof.
5. An isolated nucleic acid molecule comprising an attP2 nucleotide sequence as set forth in Figure 9, a polynucleotide complementary thereto, or a mutant, fragment, variant or derivative thereof.
6. An isolated nucleic acid molecule comprising an attL1 nucleotide sequence as set forth in Figure 9, a polynucleotide complementary thereto, or a mutant, fragment, variant or derivative thereof.

7. An isolated nucleic acid molecule comprising an attL2 nucleotide sequence as set forth in Figure 9, a polynucleotide complementary thereto, or a mutant, fragment, variant or derivative thereof.

5 8. An isolated nucleic acid molecule comprising an attR1 nucleotide sequence as set forth in Figure 9, a polynucleotide complementary thereto, or a mutant, fragment, variant or derivative thereof.

10 9. An isolated nucleic acid molecule comprising an attR2 nucleotide sequence as set forth in Figure 9, a polynucleotide complementary thereto, or a mutant, fragment, variant or derivative thereof.

15 10. The isolated nucleic acid molecule of claim 1, further comprising one or more functional or structural nucleotide sequences selected from the group consisting of one or more multiple cloning sites, one or more localization signals, one or more transcription termination sites, one or more transcriptional regulatory sequences, one or more translational signals, one or more origins of replication, one or more fusion partner peptide-encoding nucleic acid molecules, one or more protease cleavage sites, and one or more 5' polynucleotide extensions.

20 11. The nucleic acid molecule of claim 10, wherein said transcriptional regulatory sequence is a promoter, an enhancer, or a repressor.

25 12. The nucleic acid molecule of claim 10, wherein said fusion partner peptide-encoding nucleic acid molecule encodes glutathione S-transferase (GST), hexahistidine (His₆), or thioredoxin (Trx).

13. The nucleic acid molecule of claim 10, wherein said 5' polynucleotide extension consists of from one to five nucleotide bases.

30 14. The nucleic acid molecule of claim 13, wherein said 5' polynucleotide extension consists of four or five guanine nucleotide bases.

15. A primer nucleic acid molecule suitable for amplifying a target nucleotide sequence, comprising the isolated nucleic acid molecule of claim 1 or a portion thereof linked to a target-specific nucleotide sequence useful in amplifying said target nucleotide sequence.

5

16. The primer nucleic acid molecule of claim 15, wherein said primer comprises an attB1 nucleotide sequence having the sequence shown in Figure 9 or a portion thereof, or a polynucleotide complementary to the sequence shown in Figure 9 or a portion thereof.

10

17. The primer nucleic acid molecule of claim 15, wherein said primer comprises an attB2 nucleotide sequence having the sequence shown in Figure 9 or a portion thereof, or a polynucleotide complementary to the sequence shown in Figure 9 or a portion thereof.

15

18. The primer nucleic acid molecule of claim 15, further comprising a 5' terminal extension of four or five guanine bases.

20

19. A vector comprising the isolated nucleic acid molecule of claim 1.

20. The vector of claim 19, wherein said vector is an Expression Vector.

25

21. A host cell comprising the isolated nucleic acid molecule of claim 1 or the vector of claim 19.

30

22. A method of synthesizing or amplifying one or more nucleic acid molecules comprising:

(a) mixing one or more nucleic acid templates with at least one polypeptide having polymerase or reverse transcriptase activity and at least a first primer comprising a template-specific sequence that is complementary to or capable of hybridizing to said

templates and at least a second primer comprising all or a portion of a recombination site wherein said at least a portion of said second primer is homologous to or complementary to at least a portion of said first primer; and

- 5 (b) incubating said mixture under conditions sufficient to synthesize or amplify one or more nucleic acid molecules complementary to all or a portion of said templates and comprising one or more recombination sites or portions thereof at one or both termini of said molecules.

10

23. A method of synthesizing or amplifying one or more nucleic acid molecules comprising:

- 15 (a) mixing one or more nucleic acid templates with at least one polypeptide having polymerase or reverse transcriptase activity and at least a first primer comprising a template-specific sequence that is complementary to or capable of hybridizing to said templates and at least a portion of a recombination site, and at least a second primer comprising all or a portion of a recombination site wherein said at least a portion of said recombination site on said second primer is complementary to or homologous to at least a portion of said recombination site on said first primer; and
- 20 (b) incubating said mixture under conditions sufficient to synthesize or amplify one or more nucleic acid molecules complementary to all or a portion of said templates and comprising one or more recombination sites or portions thereof at one or both termini of said molecules.

25

30 24. A method of amplifying or synthesizing one or more nucleic acid molecules comprising:

- (a) mixing one or more nucleic acid templates with at least one polypeptide having polymerase or reverse transcriptase activity

and one or more first primers comprising at least a portion of a recombination site and a template-specific sequence that is complementary to or capable of hybridizing to said template;

- 5 (b) incubating said mixture under conditions sufficient to synthesize or amplify one or more first nucleic acid molecules complementary to all or a portion of said templates wherein said molecules comprise at least a portion of a recombination site at one or both termini of said molecules;
- 10 (c) mixing said molecules with one or more second primers comprising one or more recombination sites, wherein said recombination sites of said second primers are homologous to or complementary to at least a portion of said recombination sites on said first nucleic acid molecules; and
- 15 (d) incubating said mixture under conditions sufficient to synthesize or amplify one or more second nucleic acid molecules complementary to all or a portion of said first nucleic acid molecules and which comprise one or more recombination sites at one or both termini of said molecules.

20 25. A polypeptide encoded by the isolated nucleic acid molecule of any one of claims 1-10.

25 26. An isolated nucleic acid molecule comprising one or more *att* recombination sites comprising at least one mutation in its core region that increases the specificity of interaction between said recombination site and a second *att* recombination site.

30 27. The isolated nucleic acid molecule of claim 26, wherein said mutation is at least one substitution mutation of at least one nucleotide in the seven basepair overlap region of said core region of said recombination site.

28. The isolated nucleic acid molecule of claim 26, wherein said nucleic acid molecule comprises the sequence NNNATAC, wherein "N" refers to any nucleotide with the proviso that if one of the first three nucleotides in the consensus sequence is a T/U, then at least one of the other two of the first three nucleotides is not a T/U.

5

29. An isolated nucleic acid molecule comprising one or more mutated *att* recombination sites comprising at least one mutation in its core region that enhances the efficiency of recombination between a first nucleic acid molecule comprising said mutated *att* recombination site and a second nucleic acid molecule comprising a second recombination site that interacts with said mutated *att* recombination site.

10

30. The isolated nucleic acid molecule of claim 29, wherein said mutated *att* recombination site is a mutated *attL* site comprising a core region having the nucleotide sequence caactnnnnnannaagtgg, wherein "n" represents any nucleotide.

15

31. The isolated nucleic acid molecule of claim 30, wherein said mutated *attL* recombination site comprises a core region having a nucleotide sequence selected from agcctgctttattatactaagttggcatta (*attL5*) and agcctgcttttatattaagttggcatta (*attL6*).

20

32. The isolated nucleic acid molecule of claim 29, wherein said mutated *att* recombination site comprises a core region having a nucleotide sequence selected from the group consisting of ggggacaacttgtacaaaaagttggct (*attB1.6*), ggggacaacttgtacaagaaagctgggt (*attB2.2*), and ggggacaacttgtacaagaaagttgggt (*attB2.10*).

25

33. A vector selected from the group consisting of pENTR1A, pENTR2B, pENTR3C, pENTR4, pENTR5, pENTR6, pENTR7, pENTR8, pENTR9, pENTR10, pENTR11, pDEST1, pDEST2, pDEST3, pDEST4,

30

5 pDEST5, pDEST6, pDEST7, pDEST8, pDEST9, pDEST10, pDEST11, pDEST12.2 (also known as pDEST12), pDEST13, pDEST14, pDEST15, pDEST16, pDEST17, pDEST18, pDEST19, pDEST20, pDEST21, pDEST22, pDEST23, pDEST24, pDEST25, pDEST26, pDEST27, pDEST28, pDEST29, pDEST30, pDEST31, pDEST32, pDEST33, pDEST34, pDONR201 (also known as pENTR21 attP vector or pAttPkan Donor Vector), pDONR202, pDONR203 (also known as pEZ15812), pDONR204, pDONR205, pDONR206 (also known as pENTR22 attP vector or pAttPgen Donor Vector), pDONR207, pMAB58, pMAB62, pMAB85 and pMAB86.

10

34. A host cell comprising the vector of claim 33.

35. A polypeptide encoded by the vector of claim 33.

15

36. A kit for use in synthesizing a nucleic acid molecule, said kit comprising the isolated nucleic acid molecule of any one of claims 1-10, 26 and 29.

20

37. A kit for use in synthesizing a nucleic acid molecule, said kit comprising the primer of claim 15 or claim 18.

38. A kit for use in cloning a nucleic acid molecule, said kit comprising the vector of claim 19 or claim 33.

167.1

Applicant's or agent's file reference number	0942.~8PC03	International application No. t ¹ PCT/US 00/05432
--	-------------	---

**INDICATIONS RELATING TO DEPOSITED MICROORGANISM
OR OTHER BIOLOGICAL MATERIAL**
(PCT Rule 13bis)

REC'D 17 APR 2000

WIPO PCT

- A. The indications made below relate to the microorganism referred to in the description on page 52, line 31.

B. IDENTIFICATION OF DEPOSITFurther deposits are identified on an additional sheet

Name of depositary institution
Agricultural Research Culture Collection (NRRL)
International Depository Authority

Address of depositary institution (*including postal code and country*)

1815 N. University Street
Peoria, Illinois 61604
United States of America

Date of deposit February 27, 1999	Accession Number NRRL B-30099
--------------------------------------	----------------------------------

C. ADDITIONAL INDICATIONS (*leave blank if not applicable*)This information is continued on an additional sheet

Escherichia coli DB3.1(pAHPKan) or Escherichia coli DB3.1(pAttPKan)

D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (*if the indications are not for all designated States*)**E. SEPARATE FURNISHING OF INDICATIONS** (*leave blank if not applicable*)

The indications listed below will be submitted to the international Bureau later (*specify the general nature of the indications, e.g., "Accession Number of Deposit"*)

For receiving Office use only

 This sheet was received with the international application

For International Bureau use only

 This sheet was received by the International Bureau on:

Authorized officer

17 April 2000
PCT Team 1
Ref ID: PCT/US00/05432 (PA)

Authorized officer

167.2

Applicant's or agent's file reference number	0942.468PC03	International application No. t ^l PCT/US 00/05432
--	--------------	---

**INDICATIONS RELATING TO DEPOSITED MICROORGANISM
OR OTHER BIOLOGICAL MATERIAL
(PCT Rule 13bis)**

REC'D 17 APR 2000

WIPO PCT

- A. The indications made below relate to the microorganism referred to in the description on page 55, line 16.

B. IDENTIFICATION OF DEPOSITFurther deposits are identified on an additional sheet

Name of depositary institution
Agricultural Research Culture Collection (NRRL)
International Depository Authority

Address of depositary institution (*including postal code and country*)

1815 N. University Street
Peoria, Illinois 61604
United States of America

Date of deposit February 27, 1999	Accession Number NRRL B-30100
--------------------------------------	----------------------------------

C. ADDITIONAL INDICATIONS (*leave blank if not applicable*) This information is continued on an additional sheet

Escherichia coli DB3.1(pENTR-1A)

D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (*if the indications are not for all designated States*)**E. SEPARATE FURNISHING OF INDICATIONS** (*leave blank if not applicable*)

The indications listed below will be submitted to the international Bureau later (*specify the general nature of the indications, e.g., "Accession Number of Deposit"*)

For receiving Office use only

For International Bureau use only

This sheet was received with the international application

This sheet was received by the International Bureau on:

Authorized officer *[Signature]*
U.S. Patent and Trademark Office
Received 17 APR 2000

Authorized officer

167 3	International application No. tb PCT/US00/05432
Applicant's or agent's file reference number 0942.468PC03	

**INDICATIONS RELATING TO DEPOSITED MICROORGANISM
OR OTHER BIOLOGICAL MATERIAL**
(PCT Rule 13bis)

REC'D 1 JUN 2000

WIPO PCT

A. The indications made below relate to the microorganism referred to in the description on page 16.	
B. IDENTIFICATION OF DEPOSIT Further deposits are identified on an additional sheet <input checked="" type="checkbox"/>	
Name of depositary institution Agricultural Research Culture Collection (NRRL) International Depository Authority	
Address of depositary institution (<i>including postal code and country</i>) 1815 N. University Street Peoria, Illinois 61604 United States of America	
Date of deposit February 27, 1999	Accession Number NRRL B-30101
C. ADDITIONAL INDICATIONS (<i>leave blank if not applicable</i>) This information is continued on an additional sheet <input type="checkbox"/>	
Escherichia coli DB3.1(pENTR-2B)	
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (<i>if the indications are not for all designated States</i>)	
E. SEPARATE FURNISHING OF INDICATIONS (<i>leave blank if not applicable</i>) The indications listed below will be submitted to the international Bureau later (<i>specify the general nature of the indications, e.g., "Accession Number of Deposit"</i>)	

For receiving Office use only		For International Bureau use only	
<input checked="" type="checkbox"/> This sheet was received with the international application		<input type="checkbox"/> This sheet was received by the International Bureau on:	
Authorized officer	XOAIARHIS ST. OPACILO, 2000-12-27 TELEFON: +351-21-805-3230 (PT)		
Authorized officer			

167.4

107.4
Applicant's or agent's file reference number 0942.468PC03 International application No. 107.4 PCT/US 0105432

**INDICATIONS RELATING TO DEPOSITED MICROORGANISMS
OR OTHER BIOLOGICAL MATERIAL
(PCT Rule 13bis)**

REC'D 17 APR 2000

ANALYST

BOT

- A. The indications made below relate to the microorganism referred to in the description on page 55, line 16.

B. IDENTIFICATION OF DEPOSIT

Further deposits are identified on an additional sheet

Name of depository institution

Name of depositary institution
Agricultural Research Culture Collection (NRRL)
International Depository Authority

Address of depository institution (including postal code and country)

1815 N. University Street
Peoria, Illinois 61604
United States of America

Date of deposit
February 27 1999

Accession Number
NRRL B-30102

C. ADDITIONAL INDICATIONS (Leave blank if not applicable)

This information is continued on an additional sheet

Escherichia coli DB3.1(pENTR-3C)

D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (*if the indications are not for all designated States*)

E. SEPARATE FURNISHING OF INDICATIONS (*leave blank if not applicable*)

The indications listed below will be submitted to the international Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")

For receiving Office use only

For International Bureau use only

This sheet was received with the international application

This sheet was received by the International Bureau on:

Authorized officer

Authorized officer

167.5

Applicant's or agent's file reference number	0942.468PC03	International application No. tb. PCT/US 00/05432
--	--------------	--

**INDICATIONS RELATING TO DEPOSITED MICROORGANISM
OR OTHER BIOLOGICAL MATERIAL**
(PCT Rule 13bis)

PCT	17
V.	
	PT

A. The indications made below relate to the microorganism referred to in the description on page 8.		REGD 17 APR 2000
B. IDENTIFICATION OF DEPOSIT		Further deposits are identified on an additional sheet <input checked="" type="checkbox"/>
Name of depositary institution Agricultural Research Culture Collection (NRRL) International Depository Authority		
Address of depositary institution (<i>including postal code and country</i>) 1815 N. University Street Peoria, Illinois 61604 United States of America		
Date of deposit February 27, 1999	Accession Number NRRL B-30103	
C. ADDITIONAL INDICATIONS (<i>leave blank if not applicable</i>)		This information is continued on an additional sheet <input type="checkbox"/> Escherichia coli DB3.1(pEZC15101)
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (<i>if the indications are not for all designated States</i>)		
E. SEPARATE FURNISHING OF INDICATIONS (<i>leave blank if not applicable</i>) The indications listed below will be submitted to the international Bureau later (<i>specify the general nature of the indications, e.g., "Accession Number of Deposit"</i>)		

For receiving Office use only		For International Bureau use only
<input checked="" type="checkbox"/> This sheet was received with the international application		<input type="checkbox"/> This sheet was received by the International Bureau on:
Authorized officer	<i>RECORDED</i> <i>ST</i> 12-15-2000 12-15-2000 (E)	Authorized officer

167.6

Applicant's or agent's file reference number 0942.468PC03	International application No. 1. PCT/US 10/05432
--	--

REC'D 17

**INDICATIONS RELATING TO DEPOSITED MICROORGANISM
OR OTHER BIOLOGICAL MATERIAL *VPO*
(PCT Rule 13bis)**

A. The indications made below relate to the microorganism referred to in the description on page <u>54</u> , line <u>9</u> .	
B. IDENTIFICATION OF DEPOSIT Further deposits are identified on an additional sheet <input checked="" type="checkbox"/>	
Name of depositary institution Agricultural Research Culture Collection (NRRL) International Depository Authority	
Address of depositary institution (<i>including postal code and country</i>) 1815 N. University Street Peoria, Illinois 61604 United States of America	
Date of deposit February 27, 1999	Accession Number NRRL B-30104
C. ADDITIONAL INDICATIONS (<i>leave blank if not applicable</i>) This information is continued on an additional sheet <input type="checkbox"/> Escherichia coli DB3.1(pEZA15102)	
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (<i>if the indications are not for all designated States</i>)	
E. SEPARATE FURNISHING OF INDICATIONS (<i>leave blank if not applicable</i>) The indications listed below will be submitted to the international Bureau later (<i>specify the general nature of the indications, e.g., "Accession Number of Deposit"</i>)	

For receiving Office use only		For International Bureau use only	
<input checked="" type="checkbox"/> This sheet was received with the international application		<input type="checkbox"/> This sheet was received by the International Bureau on:	
Authorized officer	<i>Barbara Miller</i>	Authorized officer	

167.7	
Applicant's or agent's file reference number	International application No. tt PCT/US 00/05432

**INDICATIONS RELATING TO DEPOSITED MICROORGANISM
OR OTHER BIOLOGICAL MATERIAL**
(PCT Rule 13bis)

REC'D 17 APR 2000

V T

A. The indications made below relate to the microorganism referred to in the description on page 54, line 9.

B. IDENTIFICATION OF DEPOSITFurther deposits are identified on an additional sheet

Name of depositary institution

Agricultural Research Culture Collection (NRRL)
International Depository Authority

Address of depositary institution (*including postal code and country*)

1815 N. University Street
Peoria, Illinois 61604
United States of America

Date of deposit
February 27, 1999

Accession Number
NRRL B-30105

C. ADDITIONAL INDICATIONS (*leave blank if not applicable*)This information is continued on an additional sheet

Escherichia coli DB3.1(pEZC15103)

D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (*if the indications are not for all designated States*)**E. SEPARATE FURNISHING OF INDICATIONS** (*leave blank if not applicable*)

The indications listed below will be submitted to the international Bureau later (*specify the general nature of the indications, e.g., "Accession Number of Deposit"*)

For receiving Office use only

For International Bureau use only

This sheet was received with the international application

This sheet was received by the International Bureau on:

Authorized officer

Authorized officer

167, 8

Applicant's or agent's file reference number	0942.408PC03	International application No. tl PCT/US 00/05432
--	--------------	---

**INDICATIONS RELATING TO DEPOSITED MICROORGANISM
OR OTHER BIOLOGICAL MATERIAL**

- A. The indications made below relate to the microorganism referred to in the description on page 51, line 20-21.

B. IDENTIFICATION OF DEPOSIT

Further deposits are identified on an additional sheet

Name of depository institution

**Agricultural Research Culture Collection (NRRL)
International Depository Authority**

Address of depository institution (including postal code and country)

1815 N. University Street
Peoria, Illinois 61604
United States of America

Date of deposit
February 27, 1999

Accession Number
NRRL B-30108

C. ADDITIONAL INDICATIONS (leave blank if not applicable)

This information is continued on an additional sheet

Escherichia coli DB10B(pCMVSPORT6)

D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States)

E. SEPARATE FURNISHING OF INDICATIONS (Leave blank if not applicable)

The indications listed below will be submitted to the international Bureau later (*specify the general nature of the indications, e.g., "Accession Number of Deposit."*)

For receiving Office use only	For International Bureau use only
<input checked="" type="checkbox"/> This sheet was received with the international application	<input type="checkbox"/> This sheet was received by the International Bureau on:
Authorized officer Barbara Fritsch <i>[Signature]</i>	Authorized officer

1/240

Figure 1

2/240

FIGURE 2

FIGURE 3

FIGURE 4

FIGURE 5

6/240

FIGURE 6

7/240

FIGURE 7

8/240

FIGURE 8

9/26/00

Recombination Site Nucleotide Sequences

attB1: 5'-ACAAGTTGTACAAAAAGCAGGCT-3'

attB2: 5'-ACCCAGCTTCTTGTACAAAGTGGT-3'

attP1: 5'-TACAGGTCACTAACCATCTAAGTAGTGATTGACTGGATATG-TTGTGTTTACAGTATTATGTAGTCTGTTTATGCAAATCTAATTAT-ATATATTGATATTATCATTTCAGTTCTCGTTAGCTTTGTAC-AAAGTTGGCATTATAAAAAGCATTGCTCATCAATTGTTGCAACGAACA-GGTCACTATCAGTCAAATAAAATCATTATTG-3'

attP2: 5'-CAAATAATGATTTATTTGACTGATAGTGACCTGTTGCAACAAAT-TGATAAGCAATGCTTCTTATAATGCCAACTTGACAAGAAAGCTGAAC-GAGAAACGTAAAATGATATAAATATCAATATATTAAATTAGATTTGCAT-AAAAAAACAGACTACATAACTGTAAAACACAACATATCCAGTCACTATGA-ATCAACTACTTAGATGGTATTAGTGACCTGTA-3'

attR1: 5'-ACAAGTTGTACAAAAAGCTGAACGAGAAACGTAAAATGATATAAA-TATCAATATATTAAATTAGATTTGCATAAAAACAGACTACATAATAC-TGTAACACACAATATCCAGTCACTATG-3'

attR2: 5'-GCAGGTGACCATAGTGACTGGATATGTTGTTTACAGTATTAT-GTAGTCTGTTTATGCAAATCTAATTAAATATTGATATT-ATATCATTTCAGTTCTCGTTAGCTTCTGTACAAAGTGGT-3'

attL1: 5'-CAAATAATGATTTATTTGACTGATAGTGACCTGTTGCAAC-AAAATTGATAAGCAATGCTTCTTATAATGCCAACTTGACAAAAAA-GCAGGCT-3'

attL2: 5'-CAAATAATGATTTATTTGACTGATAGTGACCTGTTGCAACAA-ATTGATAAGCAATGCTTCTTATAATGCCAACTTGACAAAGAAAGCTGGGT-3'

Figure 9

10/240

Figure 10A: Cloning sites of the Entry Vector pENTRTM 1A (reading frame A)

<i>Dra</i> I	<i>Xmn</i> I	<i>Sal</i> I	<i>Bam</i> H I	<i>Kpn</i> I	<i>Eco</i> R I
ACT TTG TAC AAA AAA GCA GGC TTT AAA GGA ACC AAT TCA	GTC GAC TGG ATC CGG TAC CGA ATT C	TGA AAC ATG TTT TTT CGT CCG AAA TTT CCT TGG TTA AGT	CAG CTG ACC TAG GCC ATG GCT TAA	G	thr leu tyr lys lys ala gly phe lys gly thr asn ser val asp trp ile arg tyr arg ile

<i>Eco</i> R I	<i>Not</i> I	<i>Xho</i> I	<i>Eco</i> R V
ccdB gene G AAT TCG CGG CCG CAC TCG AGA TAT CTA GAC CCA GCT TTC TTG TAC AAA C TTA AGC GCC GGC GTG AGC TCT ATA GAT CTG GGT CGA AAG AAC ATG TTT			

11/240

pENTR1A 2717 bp

<u>Base Nos.</u>	<u>Gene Encoded</u>
67..166	attL1
321..626	ccdB
655..754	attL2
877..1686	KmR
1791..2364	ori

1 CTGACGGATG GCCTTTTGC GTTTCTACAA ACTCTTCCTG TTAGTTAGTT ACTTAAGCTC
 61 GGGCCCCAAA TAATGATTT ATTTTACTG ATAGTGACCT GTTCGTTGCA ACAATTGAT
 121 AAGCAATGCT TTTTATAAT GCCAACTTTG TACAAAAAAG CAGGCTTTAA AGGAACCAAT
 181 TCAGTCGACT GGATCCGGTA CCGAATTGCG TTACTAAAAAG CCAGATAACA GTATGCGTAT
 241 TTGCGCGCTG ATTTTGCCTG TATAAGAATA TATACTGATA TGTATACCCG AAGTATGTCA
 301 AAAAGAGGTG TGCTTCTAGA ATGCAGTTA AGGTTTACAC CTATAAAAAGA GAGAGCCGTT
 361 ATCGTCTGTT TGTGGATGTA CAGAGTGTAA TTATTGACAC GCCCCGGCGA CGGATAGTGA
 421 TCCCCCTGGC CAGTGCACGT CTGCTGTCAG ATAAAGTCTC CCGTGAACCT TACCCGGTGG
 481 TGCATATCGG GGATGAAAGC TGGCGCATGA TGACCACCGA TATGGCCAGT GTGCCGGTCT
 541 CGCTTATCGG GGAAGAAGTG GCTGATCTCA GCCACCGCGA AAATGACATC AAAAACGCCA
 601 TTAACCTGAT GTTCTGGGA ATATAGAATT CGCGGCGCGA CTCGAGATAT CTAGACCCAG
 661 CTTCTTGTA CAAAGTTGGC ATTATAAGAA AGCATTGCTT ATCAATTGTT TGCAACGAAC
 721 AGGTCACTAT CAGTCAAAAT AAAATCATTA TTTGCCATCC AGCTGCAGCT CTGGCCCGTG
 781 TCTCAAAATC TCTGATGTTA CATTGCACAA GATAAAAATA TATCATCATG AACAAATAAAA
 841 CTGCTCTGTT ACATAAACAG TAATACAAGG GGTGTTATGA GCCATATTCA ACGGGAAACG
 901 TCGAGGCCGC GATTAAATTC CAACATGGAT GCTGATTAT ATGGGTATAA ATGGGCTCGC
 961 GATAATGTCG GGCAATCAGG TGCACAAATC TATCGTTGT ATGGGAAGCC CGATGCGCCA
 1021 GAGTTGTTTC TGAAACATGG CAAAGGTAGC GTTGCCTAATG ATGTTACAGA TGAGATGGTC
 1081 AGACTAAACT GGCTGACCGA ATTTATGCCT CTTCCGACCA TCAAGCATT TATCCGTACT
 1141 CCTGATGATG CATGGTTACT CACCACTGCG ATCCCCGGAA AAACAGCATT CCAGGTATTAA
 1201 GAAGAATATC CTGATTCAAG TGAAAATATT GTTGTGTCG TGCGAGTGTC CCTGCGCCGG
 1261 TTGCAATTGCA TTCTGTTTG TAATTGCTT TTTAACAGCG ATCGCGTATT TCGTCTCGCT
 1321 CAGGCGCAAT CACGAATGAA TAACGGTTTG GTTGATGCGA GTGATTGTTGA TGACGAGCGT
 1381 AATGGCTGGC CTGTTGAACA AGTCTGGAA GAAATGCTACA AACTTTGCC ATTCTCACCG
 1441 GATTCACTGG TCACTCATGG TGATTCTCA CTTGATAACC TTATTTTGA CGAGGGAAA
 1501 TTAATAGGTT GTATTGATGT TGGACGAGTC GGAATCGCAG ACCGATACCA GGATCTTGC
 1561 ATCCTATGGA ACTGCCTCGG TGAGTTTCT CTTTCATTAC AGAAACGGCT TTTTCAAAAA
 1621 TATGGTATTG ATAATCTGA TATGAATAA TTGCACTTCA ATTTGATGCT CGATGAGTT
 1681 TTCTAATCAG AATTGGTAA TTGGTTGTA CATTATTCAAG ATTGGGCCCG GTTCCACTGA
 1741 CGCTCAGACC CGTAGAAAA GATCAAAGGA TCTTCTTGAG ATCCTTTTT TCTGCGCGTA
 1801 ATCTGCTGCT TGCAAAACAAA AAAACCACCG CTACCAGCG TGTTTTGTT GCCGGATCAA
 1861 GAGCTACAA CTCTTTTCC GAAGGTAACG GGCTTCAGCA GAGCGCAGAT ACCAAATACT
 1921 GTTCTTCTAG TGTAGCCGT GTTACGCCAC CACTTCAGA ACTCTGTAGC ACCGCCCTACA
 1981 TACCTCGCTC TGCTAATCCT GTTACCACTG GCTGCTGCCA GTGGCGATAA GTCGTGTCTT
 2041 ACCGGGTTGG ACTCAAGACG ATAGTTACCG GATAAGGCGC AGCGGTGGG CTGAACGGGG
 2101 GGTTCTGCA CACAGCCAG CTTGGAGCGA ACGACCTACA CCGAACTGAG ATACCTACAG
 2161 CGTGAGCTAT GAGAAAGCGC CACGCTTCCC GAAGGGAGAA AGGCGGACAG GTATCCGGTA
 2221 AGCGGCAGGG TCGGAACAGG AGAGCGACAG AGGGAGCTTC CAGGGGGAAA CGCCCTGGTAT
 2281 CTTTATAGTC CTGTCGGGTT TCGCCACCTC TGACTTTGAGC GTCGATTGTT GTGATGCTCG
 2341 TCAGGGGGGC GGAGCCTATG GAAAAACGCC AGCAACGCCGG CCTTTTTACG GTTCTGGCC
 2401 TTTTGCTGGC CTTTGCTCA CATGTTCTT CCTGCGTTAT CCCCTGATTG TGTGGATAAC
 2461 CGTATTACCG CTAGCATGGA TCTCGGGAC GTCTAACTAC TAAGCGAGAG TAGGGAACGTG
 2521 CCAGGCATCA AATAAAACGA AAGGCTCAGT CGGAAGACTG GGCCTTCGT TTTATCTGTT
 2581 GTTTGTCGGT GAACGCTCTC CTGAGTAGGA CAAATCCGCC GGGAGCGGAT TTGAACGTTG
 2641 TGAAGCAACG GCCCGGAGGG TGGCGGGCAG GACGCCGCC ATAAACTGCC AGGCATCAA
 2701 CTAAGCAGAA GGCCATC

FIGURE 108

12/240

Figure 11A: Cloning Sites of the Entry Vector pENTR2B (reading frame B)

Detailed description: This diagram shows the pET-28b(+) vector sequence with restriction enzyme cleavage sites. The vector sequence is: TTG TAC AAA AAA GCA GGC TGG CGC CGG AAC CAA TTC AGT CGA CTG GAT CCG AAC ATG TTT TTT CGT CCG ACC GCG GCC TTG GTT AAG TCA GCT GAC CTA GCG. Four restriction sites are marked with arrows: EcoRI at position 11, XbaI at position 21, SalI at position 28, and BamHI at position 34. The resulting fragments are: Int attL1 (positions 1-10), EcoRI (positions 11-20), XbaI (positions 21-27), SalI (positions 28-33), and BamHI (positions 34-39). These fragments correspond to the amino acid codons: Leu, Tyr, Lys, Lys, Ala, Gly, Trp, Arg, Arg, Asn, Gln, Phe, Ser, Arg, Leu, Asp, Pro.

Int attL2

GCT	TTC	TTG	TAC	AAA	G
CGA	AAG	AAC	ATG	TTT	C

Ala Phe Leu Tyr Lys

13/240

pENTR2B 2718 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
67..166	attL1
322..627	ccdB
656..755	attL2
878..1687	KmR
1792..2365	ori

1 CTGACGGATG GCCTTTTGC GTTTCTACAA ACTCTTCCTG TTAGTTAGTT ACTTAAGCTC
 61 GGGCCCCAAA TAATGATTTT ATTTTGACTG ATAGTGACCT GTTCGTTGCA ACAAATTGAT
 121 AAGCAATGCT TTTTATAAT GCCAACTTG TACAAAAAAG CAGGCTGGCG CCGGAACCAA
 181 TTCAGTCGAC TGGATCCGGT ACCGAATTG CTTACTAAAA GCCAGATAAC AGTATGCGTA
 241 TTTGCGCGCT GATTTTGCG GTATAAGAAT ATATACTGAT ATGTATACCC GAAGTATGTC
 301 AAAAGAGGTT GTGCTTCTAG AATGCAGTTT AAGGTTTACA CCTATAAAAG AGAGAGCCGT
 361 TATCGTCTGT TTGTGGATGT ACAGAGTGT ATTATTGACA CGCCC GGCG ACGGATGGTG
 421 ATCCCCCTGG CCAGTGCACG TCTGCTGTCA GATAAAGTCT CCCGTGAAC TTACCCGGTG
 481 GTGCATATCG GGGATGAAAG CTGGCGCATG ATGACCACCG ATATGGCCAG TGTGCCGGTC
 541 TCCGTTATCG GGGAAAGAAGT GGCTGATCTC AGCCACCGCG AAAATGACAT CAAAACGCC
 601 ATTAACCTGA TGTCTGGGG AATATAGAAT TCGCGGCCGC ACTCGAGATA TCTAGACCCA
 661 GCTTTCTTGT ACAAAAGTTGG CATTATAAGA AAGCATTGCT TATCAATTG TTGCAACGAA
 721 CAGGTCACTA TCAGTCAAA TAAAATCATT ATTGCCATC CAGCTGCAGC TCTGCCCGT
 781 GTCTCAAAAT CTCTGATGTT ACATTGCACA AGATAAAAAT ATATCATCAT GAACAATAAA
 841 ACTGTCTGCT TACATAAAC GAAATACAAG GGGTGTATG AGCCATATTC AACGGGAAAC
 901 GTCGAGGCCG CGATTAATT CCAACATGGA TGCTGATTTA TATGGGTATA AATGGGCTCG
 961 CGATAATGTC GGGCAATCAG GTGCGACAAT CTATCGTTG TATGGGAAGC CCGATGCC
 1021 AGAGTTGTTT CTGAAACATG GCAAAGGTAG CGTTGCCAAT GATGTTACAG ATGAGATGGT
 1081 CAGACTAAC TGGCTGACGG AATTATGCC TCTTCCGACC ATCAAGCATT TTATCCGTAC
 1141 TCCTGATGAT GCATGGTTAC TCACCACTGC GATCCCCGGG AAAACAGCAT TCCAGGTATT
 1201 AGAAGAATAT CCTGATTCAAG GTGAAAATAT TGGTGTGCG CTGGCAGTGT TCCGGCC
 1261 GTTGCATTG ATTCCCTGTT GAAATTGTCC TTTAACAGC GATCGCGTAT TTCTGCTCGC
 1321 TCAGGCCAA TCACGAATGA ATAACGGTTT GGGTGTGCG AGTGTGTTG ATGACGAGCG
 1381 TAATGGCTGG CCTGTTGAAC AAGTCTGGAA AGAAATGCAT AAACTTTGC CATTCTCACC
 1441 GGATTCACTC GTCACTCAGT GTGATTCTC ACTGTGATAAC CTTATTTG ACGAGGGAA
 1501 ATTAATAGGT TGTATTGATG TTGGACGAGT CGGAATCGCA GACCGATACC AGGATCTTGC
 1561 CATCCTATGG AACTGCCTCG GTGAGTTTC TCCTTCATTA CAGAAACGGC TTTTCAAAA
 1621 ATATGGTATT GATAATCCG ATATGAATAA ATTGCAGTTT CATTGATGC TCGATGAGTT
 1681 TTTCTAATCA GAATTGGTTA ATTGGTTGA ACATTATTCA GATTGGGCC CGTCCACTG
 1741 AGCGTCAGAC CCCGTAGAAA AGATCAAAGG ATCTCTTGA GATCCTTTT TTCTGCGCGT
 1801 AATCTGCTGC TTGCAAACAA AAAAACCCACC GCTACCAGCG GTGGTTGTT TGCGGATCA
 1861 AGAGCTACCA ACTCTTTTC CGAAGGTAC TGCGCTTCAGC AGAGCGCAGA TACCAAATAC
 1921 TGTCTTCTA GTGTAGCCGT AGTTAGGCCA CCACCTCAAG AACTCTGTAG CACCGCCTAC
 1981 ATACCTCGCT CTGCTAATCC TGTTACCAAGT GGCTGCTGCC AGTGGCGATA AGTCGTGCT
 2041 TACCGGGTTG GACTCAAGAC GATACTTACG GGATAAGGCG CAGCGGTGG GCTGAACGGG
 2101 GGTTCTGTC ACACAGCCCA GCTTGGAGCG AACGACCTAC ACCGAACGTG GATACTACA
 2161 GCGTGAGCTA TGAGAAAGCG CCACCGCTCC CGAAGGGAGA AAGGCGGACA GGTATCCGGT
 2221 AAGCGGCAGG GTCGGAACAG GAGAGCGCAC GAGGGAGCTT CCAGGGGAA ACGCCCTGGTA
 2281 TCTTTATACT CCGTGTGGGT TTGCGCCACCT CTGACTTGAG CGTCGATTT TGTGATGCTC
 2341 GTCAGGGGGG CGGAGCCTAT GGAAAACGC CAGCAACCGCG GCCTTTTAC GGTTCCCTGGC
 2401 CTTTGCTGG CCTTTGCTC ACATGTTCTT TCCTGCGTTA TCCCTGATT CTGTTGATAA
 2461 CCGTATTACC GCTAGCATGG ATCTCGGGGA CGCTCTAACTA CTAAGCGAGA GTAGGAAACT
 2521 GCCAGGCATC AAATAAAACG AAAGGCTCAG TCGGAAGACT GGGCCTTCG TTTTATCTGT
 2581 TGTGTTGCTGG TGAACGCTCT CCTGAGTAGG ACAAAATCCGC CGGGAGCGGA TTTGAACGTT
 2641 GTGAAGCAAC GGCCCGGAGG GTGGCGGGCA GGACGCCGC CATAAAACTGC CAGGCATCAA
 2701 ACTAAGCAGA AGGCCATC

FIGURE 1(B)

14 | 240

Figure 1A: Cloning Sites of the Entry Vector pENTR3C (reading frame C)

Int	attL1	Drai	XmnI	SalI	BamHI												
TTG TAC AAA AAA GCA GGC TCT TTA AAG GAA CCA ATT CAG TCG ACT CGA TCC GGT																	
AAC ATG TTT TTT CGT CCG AGA AAT TTC CTT GGT TAA GTC AGC TGA CCT AGG CCA																	
Leu	Tyr	Lys	Lys	Ala	Gly	Ser	Leu	Lys	Glu	Pro	Ile	Gln	Ser	Thr	Gly	Ser	Gly

KpnI EcoRI PvuI EcoRI NotI XhoI EcoRV XbaI
ACC GAA TTC GAT CGC-- ccdB --G AAT TCG CGG CCG CAC TCG AGA TAT CTA
 TGG CTT AAG CTA GCG C TTA AGC GCC GGC GTG AGC TCT ATA GAT
 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
 Thr Glu Phe Asn Ser Arg Pro His Ser Arg Tyr Leu

attL2	Int
GAC CCA GCT TIC TTG TAC AAA G	
CTG GGT CGA AAG AAC ATG TTT C	
↓	
Asp Pro Ala Phe Leu Tyr Lys	

15/240

pENTR3C 2723 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
67..166	attL1
327..632	ccdB
661..760	attL2
883..1692	KmR
1797..2370	ori

1 CTGACGGATG GCCTTTTTCG GTTTCTACAA ACTCTTCCGT TTAGTTAGTT ACTTAAGCTC
 61 GGGCCCCAAA TAATGATTTT ATTTTGACTG ATAGTGACCT GTTCGTTGCA ACAAATTGAT
 121 AAGCAATGCT TTTTTATAAT GCCAACTTTG TACAAAAAAG CAGGCTCTT AAAGGAACCA
 181 ATTCACTCGA CTGGATCCGG TACCGAATTG GATCGCTTAC TAAAAGCCAG ATAACAGTAT
 241 GCGTATTTCG GCGCTGATTT TTGCGGTATA AGAATATATA CTGATATGTA TACCGAAGT
 301 ATGTCAAAAA GAGGTGTGCT TCTAGAATGC AGTTTAAGGT TTACACCTAT AAAAGAGAGA
 361 GCCGTTATCG TCTGTTTGTG GATGTACAGA GTGATATTAT TGACACGCC GGGCGACGGA
 421 TGGTGTATCCC CCTGGCCAGT GCACGTCTGC TGTCAGATAA AGTCTCCGT GAACCTTACC
 481 CGGTGGTGCA TATCGGGGAT GAAAGCTGGC GCATGATGAC CACCGATATG GCCAGTGTGC
 541 CGGTCTCCGT TATCGGGGAA GAAGTGGCTG ATCTCAGCCA CGCGAAAT GACATCAAAA
 601 ACGCCATTAA CCTGATGTTG TGGGAAATAT AGAATTCCGG GCGCAGCTCG AGATATCTAG
 661 ACCCAGCTTT CTTGTACAAA GTTGGCATTAA TAAGAAAGCA TTGCTTATCA ATTTGTTGCA
 721 ACGAACAGGT CACTATCAGT CAAAATAAAA TCATTATTTG CCATCCAGCT GCAGCTCTGG
 781 CCCGTGTCTC AAAATCTCTG ATGTTACATT GCACAAGATA AAAATATATC ATCATGAACA
 841 ATAAAACGTGT CTGCTTACAT AAACAGTAAT ACAAGGGGTG TTATGAGGCC TATTCAACGG
 901 GAAACGTGCA GGCGCGATT AAATTCCAAC ATGGATGCTG ATTTATATGG GTATAAATGG
 961 GCTCGCGATA ATGTCGGGCA ATCAGGTGGC ACAATCTATC GCTTGTATGG GAAGCCCGAT
 1021 GCGCCAGAGT TGTTCTGAA ACATGGCAA GGTAGCGTTG CCAATGATGT TACAGATGAG
 1081 ATGGTCAGAC TAAACTGGCT GACGGAATTG ATGCTCTTC CGACCATCAA GCATTTTATC
 1141 CGTACTCCTG ATGATGCATG GTTACTCACC ACTGCGATCC CCGGAAAAC AGCATTCCAG
 1201 GTATTAGAAG AATATCCTGA TTCAGGTGAA ATATATTGTTG ATGCGCTGGC AGTGTTCCTG
 1261 CGCCGGTTGC ATTCGATTCC TGTTTGTAAAT TGTCTTTTA ACAGCGATCG CGTATTTCTG
 1321 CTCGCTCAGG CGCAATCACG AATGAATAAC GTTTGGTTG ATGCGAGTGA TTTGATGAC
 1381 GAGCGTAATG GCTGGCTGT TGAACAAGTC TGGAAAGAAA TGCAAAACT TTTGCCATTC
 1441 TCACCGGATT CAGTCGTAC TCATGGTGAT TTCTCACTTG ATAACCTTAT TTTTGACGAG
 1501 GGGAAATTAA TAGTTGTAT TGATGTTGGA CGAGTCGGAA TCGCAGACCG ATACCAAGGAT
 1561 CTTGCCATCC TATGAACTG CCTCGGTGAG TTTTCTCCCTT CATTACAGAA ACGGCTTTTT
 1621 CAAAAATATG GTATTGATAA TCCTGATATG AATAAATTGC AGTTTCATTT GATGCTCGAT
 1681 GAGTTTTCT AATCAGAATT GGTAAATTGG TTGTAACATT ATTCAGATTG GGCCCCGTT
 1741 CACTGAGCGT CAGACCCCGT AGAAAAGATC AAAGGATCTT CTTGAGATCC TTTTTTCTG
 1801 CGCGTAATCT GCTGCTTGCA AACAAAAAAA CCACCGCTAC CAGCGGTGGT TTGTTTGC
 1861 GATCAAGAGC TACCAACTCT TTTTCCGAAG GTAACTGGCT TCAGCAGAGC GCAGATACCA
 1921 AATACTGTTC TTCTAGTGTG GCCGTAGTTA GGCCACCACT TCAAGAACTC TGTAGCACCG
 1981 CCTACATACC TCGCTCTGCT AATCCTGTTA CCAGTGGCTG CTGCCAGTGG CGATAAGTCG
 2041 TGTCTTACCG GGTTGGACTC AAGACGATAG TTACCGGATA AGGCGCAGCG GTCGGGCTGA
 2101 ACGGGGGGTT CGTGCACACA GCCCAGCTTG GAGCGAACGA CCTACACCGA ACTGAGATAC
 2161 CTACAGCGTG AGCTATGAGA AAGGCCACG CTTCCCGAAG GGAGAAAGGC GGACAGGTAT
 2221 CGGGTAAGCG GCAGGGTCGG AACAGGAGAG CGCACGAGGG AGCTTCCAGG GGGAAACGCC
 2281 TGGTATCTTT ATAGTCTCTG CGGGTTTCGC CACCTCTGAC TTGAGCGTCG ATTTTTGTGA
 2341 TGCTCGTCAG GGGGGCGGAG CCTATGGAAA AACGCCAGCA ACGCGCCCTT TTACGGTT
 2401 CTGGCCTTTT GCTGGCCTTT TGCTCACATG TTCTTCCGT CGTTATCCCC TGATTCTGTG
 2461 GATAACCGTA TTACCGTAG CATGGATCTC GGGGACGTCT AACTACTAAG CGAGAGTAGG
 2521 GAACTGCCAG GCATCAAATA AACGAAAGG CTCAGTCGGA AGACTGGCC TTTCGTTTAA
 2581 TCTGTTGTTT GTCGGTGAAAC GCTCTCCTGA GTAGGACAAA TCCGCCGGGA GCGGATTGAA
 2641 ACGTTGTGAA GCAACGCCGGC GGAGGGTGGC GGGCAGGACG CCCGCCATAA ACTGCCAGGC
 2701 ATCAAAACTAA GCAGAAGGCC ATC

56/128 12B

16/240

Figure 13A: Cloning Sites of the Entry Vector pENTR4

Int attL1	NcoI	Kozak	XmnI	SalI	BamHI
TTG TAC AAA AAA GCA GGC TCC ACC ATG GGA ACC AAT TCA GTC GAC TGG ATC CGG					
AAC ATG TTT TTT CGT CCG AGG TGG TAC CCT TGG TTA AGT CAG CTG ACC TAG GCC					
Leu Tyr Lys Lys Ala Gly Ser Thr Met Gly Thr Asn Ser Val Asp Trp Ile Arg					

KpnI EcoRI	EcoRI	NotI	XbaI	EcoRV	XbaI
TAC CGA ATT C-- ccdB	--G AAT TCG CGG CCG CAC TCG AGA TAT CTA GAC CCA GCT				
ATG GCT TAA G	C TTA AGC GCC GGC GTG AGC TCT ATA GAT CTG GGT CGA				
Tyr Arg Ile	Asn Ser Arg Pro His Ser Arg Tyr Leu Asp Pro Ala				

Int attL2
TTC TTG TAC AAA G AAG AAC ATG TTT C
Phe Leu Tyr Lys

17/240

pENTR4 2720 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
67..166	attL1
324..629	ccdB
658..757	attL2
880..1689	KmR
1794..2367	ori

1 CTGACGGATG GCCTTTTGC GTTCTACAA ACTCTTCCTG TTAGTTAGTT ACTTAAGCTC
 61 GGGCCCCAAA TAATGATTT ATTGTACTG ATAGTGACCT GTTCGTTGCA ACAATTGAT
 121 AAGCAATGCT TTTTATAAT GCCAACTTTG TACAAAAAAG CAGGCTCCAC CATGGGAACC
 181 AATTCAAGTCG ACTGGATCCG GTACCGAATT CGCTTACTAA AAGCCAGATA ACAGTATGCG
 241 TATTTGCGCG CTGATTTTG CGGTATAAGA ATATATACTG ATATGTATAC CCGAAGTATG
 301 TCAAAAAGAG GTGTGCTTCT AGAATGCAAGT TTAAGGTTA CACCTATAAA AGAGAGAGCC
 361 GTTATCGTCT GTTTGTGGAT GTACAGAGTG ATATTATTGA CACGCCCGGG CGACGGATGG
 421 TGATCCCCCT GGCCAGTGCA CGTCTGCTGT CAGATAAAAGT CTCCCGTGA CTTTACCCGG
 481 TGGTGCATAT CGGGGATGAA AGCTGGCGCA TGATGACCAAC CGATATGGCC AGTGTGCCGG
 541 TCTCCGTTAT CGGGGAAGAA GTGGCTGATC TCAGGCCACCG CGAAAATGAC ATCAAAAACG
 601 CCATTAACCT GATGTTCTGG GGAATATAGA ATTGCGGGCC GCACTCGAGA TATCTAGACC
 661 CAGCTTTCTT GTACAAAGTT GGCATTATAA GAAAGCATTG CTTATCAATT TGTTGCAACG
 721 AACAGGTACAC TATCAGTCAA AATAAAATCA TTATTTGCCA TCCAGCTGCA GCTCTGGCCC
 781 GTGTCTCAAAT ATCTCTGATG TTACATTGCA CAAGATAAAA ATATATCATC ATGAACAATA
 841 AAACGTCTG CTTACATAAA CAGTAATACA AGGGGTGTTA TGAGCCATAT TCAACGGGAA
 901 ACGTCGAGGC CGCGATTAAGA TTCCAACATG GATGCTGATT TATATGGGTA TAAATGGGCT
 961 CGCGATAATG TCGGGCAATC AGGTGCGACA ATCTATCGCT TGTATGGGAA GCGCGATGCG
 1021 CCAGAGTTGT TTCTGAAACA TGGCAAAGGT AGCGTTGCCA ATGATGTTAC AGATGAGATG
 1081 GTCAGACTAA ACTGGCTGAC GGAATTATG CCTCTTCGCA CCATCAAGCA TTTTATCCGT
 1141 ACTCCTGGTG ATGCATGGTT ACTCACCACT GCGATCCCCG GAAAACAGC ATTCCAGGTA
 1201 TTAGAAGAAT ATCCTGATTC AGGTGAAAAT ATTGTTGATG CGCTGGCAGT GTTCTGCGC
 1261 CGGTTGCATT CGATTCTGT TTGTAATTGT CCTTTAAACA GCGATGCCGT ATTCGTC
 1321 GCTCAGGGCG AATCACGAAT GAATAACGGT TTGGTTGATG CGAGTGATTT TGATGACGAG
 1381 CGTAATGGCT GGCCTGTTGA ACAAGTCTGG AAAGAAATGC ATAAACATTG GCCATTCTCA
 1441 CCGGATTCAAG TCGTCACTCA TGGTGAATTTC TCACTTGATA ACCTTATTT TGACGAGGGG
 1501 AAATTAATAG GTGTATTGA TGTGGACGA GTCGGAATCG CAGACCGATA CCAGGATCTT
 1561 GCCATCCTAT GGAACTGCC CGGTGAGTTT TCTCCTTCAT TACAGAAACG GCTTTTCAA
 1621 AAATATGGTA TTGATAATCC TGATATGAAT AAATTGCACT TTCAATTGAT GCTCGATGAG
 1681 TTTTCTAAT CAGAATTGGT TAATTGGTTG TAACATTATT CAGATTGGC CCCGTTCCAC
 1741 TGAGCGTCAG ACCCGTAGA AAAGATCAA GGATCTTCTT GAGATCTTT TTTCTGCGC
 1801 GTAATCTGCT GCTTGAAAC AAAAAGACCA CGCTTACCAAG CGGTGGTTG TTTGCCGGAT
 1861 CAAGAGCTAC CAACTTTT TCCGAAGGTA ACTGGCTTC GCAAGCGCA GATACCAAAT
 1921 ACTGTTCTTC TAGTGTAGCC GTAGTTAGGC CACCACTCA AGAACTCTGT AGCACCGCCT
 1981 ACATACCTCG CTCTGCTAAT CCTGTTACCA GTGGCTGCTG CCAGTGGCGA TAAGTCGTGT
 2041 CTTACCGGGT TGGACTCAAG ACGATAGTTA CGCGATAAGG CGCAGCGTC GGGCTGAACG
 2101 GGGGGTTGCT GCACACAGCC CAGCTTGGAG CGAACGACCT ACACCGAACT GAGATACCTA
 2161 CAGCGTGGAGC TATGAGAAAG CGCCACGCTT CCCGAAGGGA GAAAGGCGGA CAGGTATCCG
 2221 GTAAAGCGGCA GGGTCGGAAC AGGAGAGCGC ACGAGGGAGC TTCCAGGGGG AAACGCCCTGG
 2281 TATCTTTATA GTCTGTCGG GTTCTGCCAC CTCTGACTTG AGCGTCGATT TTTGTGATGC
 2341 TCGTCAGGGG GGCAGGAGCT ATGGAAAACGCCAGCAACG CGGCCTTTT ACGGTTCCCTG
 2401 GCCTTTGCT GGCCTTGTGTC TCACATGTT TTTCTGCGT TATCCCTGA TTCTGTGGAT
 2461 AACCGTATTA CCGCTAGCAT GGATCTCGGG GACGTCTAAC TACTAAGCGA GAGTAGGGAA
 2521 CTGCCAGGCA TCAAATAAA CGAAAGGCTC AGTCGGAAGA CTGGGGCTTT CGTTTTATCT
 2581 GTTGTGTTGTC GGTGAACGCT CTCCTGAGTA GGACAAATCC GCGGGGAGCG GATTGAAACG
 2641 TTGTGAAGCA ACGGCCCCGA GGGTGGCGGG CAGGACGCC GGCATAAAACT GCCAGGCATC
 2701 AACTAAGCA GAAGGCCATC

FIGURE 13B

18/240

Figure 14A: Cloning sites of the Entry Vector pENTR2

Int att-L1 Nde I Kpn I Sst I
 --- tgg tac aaa aaa gca ggc tt cat atg gga atc aat tca gtc
 --- acc atg ttt cgt ccg aat gta tcc cct tgg tta agt cag
 Leu Tyr Lys Lys Ala Gly Phe His Met Gly Thr Asn Ser Val

Bam H I Kpn I Eco RI Eco R I
 gac tgg atc cgg tac cga att cgc --- Death --- agt att cgc
 cgg acc tag gcc atg gct taa gcg --- (ccdB) --- tct taa gcg.
 Arg Trp Ile Arg Tyr Arg Ile

Nhe I Xba I Eco R I Xba Int att-L2
 bge cgc act cga gat atc tag acc cag ctt tcc xgt aca adg
 cgg deg tga gct cta tag atc tgg gtc gaa aca aca tct tcc ---

19/260

pENTR5 2720 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
67..166	attL1
324..629	ccdB
658..757	attL2
880..1689	KmR
1794..2367	ori

1 CTGACGGATG GCCTTTTGC GTTTCTACAA ACTCTTCCTG TTAGTTAGTT ACTTAAGCTC
 61 GGGCCCCAAA TAATGATTG ATTTTGACTG ATAGTGACCT GTTCGTTGCA ACAAATTGAT
 121 AAGCAATGCT TTTTTATAAT GCCAACCTTG TACAAAAAAAG CAGGCTTCA TATGGGAACC
 181 AATTCACTCG ACTGGATTCG GTACCGAATT CGCTTACTAA AAGCCAGATA ACAGTATGCG
 241 TATTGCGCG CTGATTTTG CCGGTATAAGA ATATATACG ATATGTATAC CGAAGTATG
 301 TCACAAAGAG GTGTGCTTCT AGAATGCACT TTAAGGTTA CACCTATAAA AGAGAGAGCC
 361 GTTATCGTCT GTTGTGGAT GTACAGAGTG ATATTATTGA CACGCCCGGG CGACGGATGG
 421 TGATCCCCCT GGCCAGTGC CGTCTGCTGT CAGATAAAAGT CTCCCGTGAA CTTTACCCGG
 481 TGGTGCATAT CGGGGATGAA AGCTGGCGCA TGATGACCA CGATATGGCC AGTGTGCGGG
 541 TCTCCGTTAT CGGGGAAGAA GTGGCTGATC TCAGGCCACCG CGAAAATGAC ATCAAAAACG
 601 CCATTAACCT GATGTTCTGG GGAATATAGA ATTGCGGCC GCACTCGAGA TATCTAGACC
 661 CAGCTTCTT GTACAAAGTT GGCAATTATAA GAAAGCATG CTTATCAATT TGTTGCAACG
 721 AACAGGTCAC TATCAGTCAA AATAAATCA TTATTTGCA TCCAGCTGCA GCTCTGGCCC
 781 GTGTCTCAA ATCTCTGATG TTACATTGCA CAAGATAAAA ATATATCATC ATGAACAATA
 841 AAACGTCTG CTTACATAAA CAGTAATACA AGGGGTGTTA TGAGCCATAT TCAACGGAA
 901 ACCTGAGGC CGCGATTAAA TTCCAATGATG GATGCTGATT TATATGGTA TAAATGGGCT
 961 CGCGATAATG TCGGGCAATG AGGTGCGACA ATCTATCGCT TGATGGAA GCCCGATGCG
 1021 CCAGAGTGT TTCTGAAACA TGGCAAGGT AGCGTTGCA ATGATGTTAC AGATGAGATG
 1081 GTCACTAACT ACTGGCTGAC GGAATTATG CCTCTTCCGA CCATCAAGCA TTTTATCCGT
 1141 ACTCCTGATG ATGCATGGTT ACTCACCACT GCGATCCCCG GAAAACAGC ATTCCAGGTA
 1201 TTAGAAGAAAT ATCCTGATTC AGGTGAAAT ATTGTTGATG CGCTGGCAGT GTTCTGCGC
 1261 CGGTTGCATT CGATTCTGT TTGTAATTGT CCTTTTAACA GCGATCGCGT ATTTCTGCTC
 1321 GCTCAGGCGC AATCACGAAT GAATAACGGT TTGGTTGATG CGAGTGATTT TGATGACGAG
 1381 CGTATGGCT GGCGTGTGA ACAAGTCTGG AAAGAAATGC ATAAACTTTT GCCATCTCA
 1441 CCGGATTCA CGTCACTCA TGGTGATTC TCACTTGATA ACCTTATTG TGACGAGGGG
 1501 AAATTAATAG GTTGTATTGA TGTTGGACGA GTCGGAATCG CAGACCGATA CCAGGATCTT
 1561 GCCATCCTAT GGAACCTGCCT CGGTGAGTTT TCTCCCTCAT TACAGAAACG GCTTTTCAA
 1621 AAATATGGTA TTGATAATCC TGATATGAAT AAATTGCACT TTCATTTGAT GCTCGATGAG
 1681 TTTTTCTAAT CAGAATTGGT TAATTGGTT TAACATTATT CAGATTGGGC CCCGTTCCAC
 1741 TGAGCGTCAG ACCCGTAGA AAAGATCAA GGATCTTCTT GAGATCCTT TTTTCTGCGC
 1801 GTAATCTGCT GCTTGAAAC AAAAAGACCA CGCGTACCCAG CGGTGGTTG TTTGCCGGAT
 1861 CAAGAGCTAC CAACTCTTT TCCGAAGGTA ACTGGCTTCA GCAGAGCGCA GATACCAAAT
 1921 ACTGTTCTTC TAGTGTAGGC GTAGTTAGGC CACCACTTCA AGAACTCTGT AGCACCGCT
 1981 ACATACCTCG CTCTGCTAAT CCTGTTACCA GTGGCTGCTG CCAGTGGCGA TAAGTCGTGT
 2041 CTTACCGGGT TGGACTCAAG ACGATAGTTA CCGGATAAGG CGCAGCGTC GGGCTGAACG
 2101 GGGGGTTCGT GCACACAGCC CAGCTGGAG CGAACGACCT ACACCGAACT GAGATACCTA
 2161 CAGCGTGAGC TATGAGAAAG CGCCACGCTT CCCGAAGGGG GAAAGCGGA CAGGTATCCG
 2221 GTAAAGCGCA GGGCGGAAC AGGAGAGCGC ACAGGGGAGC TTCCAGGGGG AAACGCCCTGG
 2281 TATCTTTATA GTCTGTCGG GTTCTGCCAC CTCTGACTTG AGCGTCGATT TTTGTGATGC
 2341 TCGTCAGGGG GGCGGAGCCT ATGGAAAAAC GCCAGCAACG CGGCCTTTT ACGGTTCTG
 2401 GCCTTTGCT GGCGTTTGC TCACATGTT TTCTGCGT TATCCCTGA TTCTGTTGGAT
 2461 AACCGTATTA CCGCTAGCAT GGATCTCGGG GACGTCTAAC TACTAAGCGA GAGTAGGGAA
 2521 CTGCCAGGCA TCGAATAAAA CGAAAGGCTC AGTCGGAAGA CTGGCCCTT CGTTTATCT
 2581 GTTGTGTC GGTGAACGCT CTCTGAGTA GGACAAATCC GCGGGAGCG GATTTGAACG
 2641 TTGTGAAGCA ACGGCCCCGA GGGTGGCGGG CAGGACGCCC GCCATAAACT GCCAGGCATC
 2701 AACTAAGCA GAAGGCCATC

FIGURE 14B

20/240

Figure 15A. Cloning sites of the Entry Vector pEMR6

Int att L1 Sph I Kpn I Xba I Sal I
 --- ttt tac aaa aaa gca ggc tgg atg cga acc aat tca tcc
 --- adc aeg cgt ttt cgt ccc aag tac get tgg tta agt cag
 Leu Tyr Lys Lys Ala Gly Cys Met Arg Thr Asn Ser Val

BamH I Kpn I EcoRI EcrI
 gac tgg att cgg tac cga att cgc --- Death --- aga att cgc
 cgg acc tag gcc atg get taa gcg --- (codB) --- tct taa gcg
 Asp Trp Ile Arg Tyr Arg Ile

Not Xba I EcoR I Xba I Int att L2
 ggc cgc act cga gat atc tag acc cag ctt tgg aca gag ---
 cgg gcg tga get cta tag atc tgg gtc gaa aga aca tgt tcc ---

21/240

pENTR6 2717 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
67..166	attL1
321..626	ccdB
655..754	attL2
877..1686	KmR
1791..2364	ori

1 CTGACGGATG GCCTTTTGC GTTTCTACAA ACTCTTCCTG TTAGTTAGTT ACTTAAGCTC
 61 GGGCCCCAAA TAATGATTTT ATTTTGACTG ATAGTGACCT GTTCGTTGCA ACAATTGAT
 121 AAGCAATGCT TTTTTATAAT GCCAACTTTG TACAAAAAAAG CAGGCTGCAT GCGAACCAAT
 181 TCAGTCGACT GGATCCGGTA CCGAATTTCGC TTACTAAAAG CCAGATAACA GTATGCGTAT
 241 TTGCGCGCTG ATTTTGCGG TATAAGAATA TATACTGATA TGTATAACCG AAGTATGTCA
 301 AAAAGAGGTG TGCTTCTAGA ATGCAGTTA AGGTTTACAC CTATAAAAAGA GAGAGCCGTT
 361 ATCGTCTGTT TGTGGATGTA CAGAGTGTATA TTATTGACAC GCGCCGGCGA CGGATGGTGA
 421 TCCCCCTGGC CAGTGCACGT CTGCTGTCAG ATAAAGTCTC CCGTGAACCTT TACCCGGTGG
 481 TGCATATCGG GGATGAAAGC TGGCGCATGA TGACCACCGA TATGGCCAGT GTGCCGGTCT
 541 CCGTTATCGG GGAAGAAGTG GCTGATCTCA GCCACCGCGA AAATGACATC AAAAACGCCA
 601 TTAACCTGAT GTTCTGGGA ATATAGAATT CGCGGCGCGA CTCGAGATAT CTAGACCCAG
 661 CTTTCTTGTAA CAAAGTTGGC ATTATAAGAA AGCATTTGTT ATCAATTGTT TGCAACGAAC
 721 AGGTCACTAT CAGTCAAAAT AAAATCATTAA TTGCCCATTCC AGCTGCAGCT CTGGCCCGTG
 781 TCTCAAAATC TCTGATGTTA CATTGCACAA GATAAAAATA TATCATCATG AACAAATAAAA
 841 CTGTCGCTT ACATAAACAG TAATACAAGG GGTGTTATGA GCCATATTCA ACGGGAAACG
 901 TCGAGGCCGC GATTAAATTC CAACATGGAT GCTGATTTAT ATGGGTATAA ATGGGCTCGC
 961 GATAATGTCG GGCAATCAGG TGCACAAATC TATCCCTTGT ATGGGAAGCC CGATGCGCCA
 1021 GAGTTGTTTC TGAAACATGG CAAAGGTAGC GTTGCCTAATG ATGTTACAGA TGAGATGGTC
 1081 AGACTAAACT GGCTGACCGA ATTTATGCCT CTTCCGACCA TCAAGCATT TATCCGTACT
 1141 CCTGATGATG CATGGTTACT CACCACTGC ATCCCCGGAA AAACAGCATT CCAGGTATTAA
 1201 GAAGAATATC CTGATTCAAGG TGAAAATATT GTTGATGCGC TGGCAGTTGTT CCTGCGCCGG
 1261 TTGCATTGCA TTCCCTGTTG TAATTGCTT CTTAACAGCG ATCGCGTATT TCGTCTCGCT
 1321 CAGGCGCAAT CACGAATGAA TAACGGTTTG GTTGATGCGA GTGATTTGA TGACGAGCGT
 1381 AATGGCTGGC CTGTTGAACA AGTCTGGAAA GAAATGCATA AACTTTGCC ATTCTCACCG
 1441 GATTCACTCG TCACTCATGG TGATTCTCA CTTGATAACC TTATTTTGA CGAGGGAAA
 1501 TTAATAGGTT GTATTGATGT TGGACGAGTC GGAATCGCAG ACCGATACCA GGATCTGCC
 1561 ATCCTATGGA ACTGCCTCGG TGAGTTTCT CTTTCATTAC AGAAACGGCT TTTCAAAAAA
 1621 TATGGTATTG ATAATCTGA TATGAATAAA TTGCGATTTTC ATTGATGCT CGATGAGTTT
 1681 TTCTAATCAG AATTGGTTAA TTGGTTGAA CATTATTCAAG ATTGGGCCCG GTTCCACTGA
 1741 GCGTCAGACC CCGTAGAAAA GATCAAAGGA TCTTCTTGAG ATCCTTTTT TCTGCGCGTA
 1801 ATCTGCTGCT TGCAAAACAAA AAAACCACCG CTACCGCGG TGGTTGTTT GCCGGATCAA
 1861 GAGCTACCAA CTCTTTTCC GAAGGTAACG GGCTTCAGCA GAGCGCAGAT ACCAAATACT
 1921 GTTCTTCTAG TGAGCGTA GTTACGCCAC CACTCAAGA ACTCTGTAGC ACCGCCCTACA
 1981 TACCTCGCTC TGCTAATCCT GTTACCACTG GCTGCTGCCA GTGGCGATAA GTCGTGTCTT
 2041 ACCGGGTTGG ACTCAAGACG ATAGTTACCG GATAAGGCGC AGCGGTGGG CTGAACGGGG
 2101 GGGTCGTGCA CACAGCCCG CTTGGAGCGA ACGACCTACA CCGAAGTGG ATACCTACAG
 2161 CGTGAGCTAT GAGAAAGCGC CACGCTTCCC GAAGGGAGAA AGGCGGACAG GTATCCGGTA
 2221 AGCGGCAGGG TCGGAACAGG AGAGCGCACG AGGGAGCTTC CAGGGGGAAA CGCCTGGTAT
 2281 CTTTATAGTC CTGTCGGTT TCGCCACCTC TGACTTGAGC GTGATTTTT GTGATGCTCG
 2341 TCAGGGGGGC GGAGCCTATG GAAAAACGCC AGCAACCGGG CCTTTTACG GTTCCCTGGCC
 2401 TTTTGCTGGC CTTTGCTCA CATGTTCTT CCTGCGTTAT CCCCTGATTC TGTGGATAAC
 2461 CGTATTACCG CTAGCATGGA TCTCGGGGAC GTCTAACTAC TAAGCGAGAG TAGGGAACCTG
 2521 CCAGGCATCA AATAAAACGA AAGGCTCAGT CGGAAGACTG GGCCTTCGT TTTATCTGTT
 2581 GTTTGTCGGT GAACGCTCTC CTGAGTAGGA CAAATCCGCC GGGAGCGGAT TTGAACGTTG
 2641 TGAAGCAACG GCCCGGAGGG TGGCGGGCAG GACGCCCGCC ATAAACTGCC AGGCATCAA
 2701 CTAAGCAGAA GGCCATC

FIGURE 15B

22/740

Figure 16A: Cloning sites of the Entry Vector pENTR2

23/240

pENTR7 2738 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
67..166	attL1
342..647	ccdB
676..775	attL2
898..1707	KmR
1812..2385	ori

1 CTGACGGATG GCCTTTTGC GTTTCTACAA ACTCTTCCTG TTAGTTAGTT ACTTAAGCTC
 61 GGGCCCCAAA TAATGATTTT ATTTTGACTG ATAGTGACCT GTTCGTTGCA ACAAAATTGAT
 121 AAGCAATGCT TTTTTATAAT GCCAACTTTG TACAAAAAAAG CAGGCTTGA AAACCTGTAT
 181 TTTCAAGGAA CCGTTTCATG CATCGTCGAC TGGATCCGGT ACCGAATTGCT CTTACTAAAA
 241 GCCAGATAAC AGTATGCGTA TTTGCGCGCT GATTTTGCG GTATAAGAAT ATATACTGAT
 301 ATGTATACCC GAAGTATGTC AAAAGAGGT GTGCTTCTAG AATGCAGTTT AAGGTTTACA
 361 CCTATAAAAG AGAGAGCCGT TATCGTCTGT TTGTGGATGT ACAGAGTGAT ATTATTGACA
 421 CGCCCGGGCG ACGGATAGTG ATCCCCCTGG CCAGTGCACG TCTGCTGTCA GATAAAAGTCT
 481 CCCGTGAAC TTAACCGGTG GTGCATATCG GGGATGAAAG CTGGCGCATG ATGACCACCG
 541 ATATGGCCAG TGTGCCGGTC TCCGTTATCG GGGAAAGAAGT GGCTGATCTC AGCCACCGCG
 601 AAAATGACAT CAAAAACGCC ATTAACCTGA TGTTCTGGGG AATATAGAAT TCGCGGCCGC
 661 ACTCGAGATA TCTAGACCCA GCTTCTTGT. ACAAAAGTTGG CATTATAAGA AAGCATTGCT
 721 TATCAATTG TTGCAACGAA CAGGTCACTA TCAGTCAAA TAAAATCATT ATTTGCCATC
 781 CAGCTGCAGC TCTGGCCCGT GTCTCAAAT CTCTGATGTT ACATTGACA AGATAAAAAT
 841 ATATCATCAT GAACAATAAA ACTGCTGCT TACATAAACAA GTAATACAAG GGGTGTATG
 901 AGCCATATTC AACGGAAAC GTCGAGGCCG CGATTAAATT CCAACATGGA TGCTGATTTA
 961 TATGGGTATA AATGGGCTCG CGATAATGTC GGGCAATCAG GTGCGACAAT CTATCGCTTG
 1021 TATGGGAAGC CCGATGCCGC AGAGTTGTTT CTGAAACATG GCAGGTTAG CGTTGCCAAT
 1081 GATGTTACAG ATGAGATGGT CAGACTAAAC TGGCTGACGG AATTTATGCC TCTTCCGACC
 1141 ATCAAGCATT TTATCCGTAC TCCTGATGAT GCATGGTTAC TCACCATGTC GATCCCCGG
 1201 AAAACAGCAT TCCAGGTATT AGAAGAATAT CTCGATTCAAG GTGAAAATAT TGTTGATGCG
 1261 CTGGCAGTGT TCCCGCCCG GTTGCATTGCG ATTCTGTTT GTAAATTGTC TTTAACAGC
 1321 GATCGCGTAT TTCGTCGCG TCAGCGCAA TCACGAATGAA ATAACGGTTT GGTTGATGCG
 1381 AGTGTATTTG ATGACGAGCG TAATGGCTGG CCTGTTGAAC AAGTCTGGAA AGAAATGCA
 1441 AAACTTTTGC CATTCTCACCG GGATTCAGTC GTCACTCATG GTGATTTCCTC ACTTGATAAC
 1501 CTTATTTTG ACGAGGGGAA ATTAATAGGT TGTATTGATG TTGGACCGAGT CGGAATCGCA
 1561 GACCGATACC AGGATCTTGC CATCCTATGG AACTGCCCG GTGAGTTTTC TCCTTCATTA
 1621 CAGAAACGGC TTTTTCAAAA ATATGGTATT GATAATCCTG ATATGAATAA ATTGCAGTTT
 1681 CATTGATGTC TCGATGAGTT TTTCTAATCA GAATTGGTTA ATTGGTTGTA ACATTATTCA
 1741 GATTGGGCC CGTTCCACTG AGCGTCAGAC CCCGTAGAAA AGATCAAAGG ATCTTCTTGA
 1801 GATCCTTTTT TTCTGCGCGT AATCTGCTGC TTGCAAACAA AAAAACCAAC GCTACCAGCG
 1861 GTGGTTTGTG TGCGCGATCA AGAGCTACCA ACTCTTTTC CGAAGGTAAC TGGCTTCAGC
 1921 AGAGCGCAGA TACCAAATAC TGTTCTTCTA GTGTAGCCGT AGTTAGGCCA CCACCTCAAG
 1981 AACTCTGTAG CACCGCCCTAC ATACCTCGCT CTGCTAATCC TGTTACCAAGT GGCTGCTGCC
 2041 AGTGGCGATA AGTCGTGTCT TACCGGGTTG GACTCAAGAC GATAGTTACC GGATAAGGCG
 2101 CAGCGGTCGG GCTGAACGGG GGGTCGTGC ACACAGCCCA GCTTGGAGCG AACGACCTAC
 2161 ACCGAACCTGA GATAACCTACA GCGTAGCTA TGAGAAAGCG CCACGCTTCC CGAAGGGAGA
 2221 AAGGCGGACA GGTATCCGGT AAGCGGCAGG GTCGGAACAG GAGAGGCCAC GAGGGAGCTT
 2281 CCAGGGGGAA ACGCCTGGTA TCTTTATAGT CCTGTCGGGT TTGCGCACCT CTGACTTGTAG
 2341 CGTCGATTTT TGTGATGCTC GTCAAGGGGG CGGAGCCTAT GGAAAACGC CAGCAACCGCG
 2401 GCCTTTTTAC GGTTCTGGC CTTTGCTGG CCTTTGCTC ACATGTTCTT TCCTGCGTTA
 2461 TCCCCTGATT CTGTGGATAA CCGTATTACG GTAGCATGG ATCTCGGGGA CGTCTAACTA
 2521 CTAAGCGAGA GTAGGAAACT GCCAGGCATC AAATAAAAGC AAAGGCTCAG TCGGAAGAGCT
 2581 GGGCCTTTCG TTTTATCTGT TGTTGTCGG TGAACGCTCT CCTGAGTAGG ACAAAATCCGC
 2641 CGGGAGCGGA TTTGAACGTT GTGAAGCAAC GGCCCGGAGG GTGGCGGGCA GGACGCCCCGC
 2701 CATAAAACTGC CAGGCATCAA ACTAAGCAGA AGGCCATC

56/ME 16B

24/240

Figure 17A: Cloning Sites of the E_NT_Y Vector pETURB

Int attL

tat tac aaa aaa gca ggc ttt gaa aac ctg tat ttt caa gya
tgt pcr gtc ttt cgt ccg aaa ctt ttg gac ata aaa gtt cct

Leu Tyr Lys Lys Ala Gly Phe Glu Asn Leu Tyr Phe Gln, Gly

TEV Protease

NcoI HaeII SalI BamHI KpnI EcoRI

acc atg gac cta gtc gac tgt atc cgg tac cgt cda att cgc ---
tgg tac ctg gat cag cgg acc tag gtc atg gtc taa gtc ---

Thr Met Asp Leu Val Asp Trp Ile Arg Tyr Arg Ile

EcoRI NotI XbaI EcoRI XbaI attL

Death --- aga att cgc ggc cgc act cga gat atc tag acc cag
--- tct taa gtc cgg cgg tga gtc cta tag atc tgg gtc

Int

cct tct gtc aca aaa ---
gaa aga aca tgt ttc ---

25/240

pENTR8 2735 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
67..166	attL1
339..644	ccdB
673..772	attL2
895..1704	KmR
1809..2382	ori

1 CTGACGGATG GCCTTTTGC GTTTCTACAA ACTCTTCCTG TTAGTTAGTT ACTTAAGCTC
 61 GGGCCCCAAA TAATGATTTT ATTTTGACTG ATAGTGACCT GTTCGTTGCA ACAAATTGAT
 121 AAGCAATGCT TTTTTATAAT GCCAACTTTG TACAAAAAAAG CAGGCTTGTGA AAACCTGTAT
 181 TTTCAAGGAA CCATGGACCT AGTCGACTGG ATCCGGTACC GAATTGCGTT ACTAAAAGCC
 241 AGATAAACAGT ATGCGTATTT GCGCGCTGAT TTTTGCCTGA TAAGAATATA TACTGATATG
 301 TATACCCGAA GTATGTCAA AAGAGGTGTG CTCTAGAAT GCAGTTAAG GTTTACACCT
 361 ATAAAAGAGA GAGCCGTTAT CGTCTGTTG TGGAATGTACA GAGTGTATT ATTGACACGC
 421 CCGGGCGACG GATAGTGATC CCCCTGGCCA GTGCACGTCT GCTGTCAGAT AAAGTCTCCC
 481 GTGAACCTTA CCCGGTGGTG CATATCGGGG ATGAAAGCTG GCGCATGATG ACCACCGATA
 541 TGGCCAGTGT GCGGCTCTCC GTTATCGGGG AAAAGTGGC TGATCTCAGC CACCGCGAAA
 601 ATGACATCAA AAACGCCATT AACCTGATGT TCTGGGGAAAT ATAGAATTG CGGCGCACT
 661 CGAGATATCT AGACCCAGCT TTCTTGTACA AAGTTGGCAT TATAAGAAAG CATTGCTTAT
 721 CAATTGTTG CAACGAACAG GTCACATATCA GTCAAATAA AATCATTATT TGCCATCCAG
 781 CTGCAGCTCT GGCCCGTGTG TCAAAATCTC TGATGTTACA TTGACAAAGA TAAAATATATA
 841 TCATCATGAA CAATAAAACT GTCTGCTTAC ATAAACAGTA ATACAAGGGG TGTTATGAGC
 901 CATATTCAAC GGGAAACGTC GAGGCCGCGA TTAAATTCCA ACATGGATGC TGATTTATAT
 961 GGGTATAAT GGGCTCCGGA TAATGTCGGG CAATCAGGTG CGACAACTA TCGCTTGTAT
 1021 GGGAAAGCCG ATGCGCCAGA GTTGTCTG AAACATGGCA AAGGTAGCGT TGCCAATGAT
 1081 GTACAGATG AGATGGTCAG ACTAAACTGG CTGACGGAAAT TTATGCTCT TCCGACCATC
 1141 AAGCATTCTA TCCGTACTCC TGATGATGCA TGTTACTCA CCACCGCAT CCCCGGAAA
 1201 ACAGCATTCC AGGTATTAGA AGAATATCTC GATTCAAGGTG AAAATATTGT TGATGCGCTG
 1261 GCAGTGTCCC TCGCCGGTT GCATTGATT CCTGTTGTG ATTGCTCTT TAACAGCGAT
 1321 CGCGTATTTC GTCTCGCTCA GGCACATCA CGAACGAAATA ACGGTTGGT TGATGCGAGT
 1381 GATTTTGATG ACGAGCGTAA TGGCTGGCT GTTGAACAAG TCTGAAAGA AATGCATAAA
 1441 CTTTGCCAT TCTCACCGGA TTCAGTCGTC ACTCATGGTG ATTCTCACT TGATAACCTT
 1501 ATTTTGACG AGGGAAATT AATAGGTTGT ATTGATGTTG GACGAGTCGG AATCGCAGAC
 1561 CGATACCAGG ATCTTGCAT CCTATGGAAC TGCCCTGGTG AGTTTCTCC TTCATTACAG
 1621 AAACGGCTT TTCAAAATA TGTTATTGAT AATCCTGATA TGAATAAAATT GCAGTTCAT
 1681 TTGATGCTCG ATGAGTTTT CTAATCAGAA TTGGTTAATT GGTTGTAACA TTATTCAAGAT
 1741 TGGGCCCGT TCCACTGAGC GTCAGACCCC GTAGAAAAAGA TCAAAGGATC TTCTGAGAT
 1801 CCTTTTTTTC TGCGCGTAAT CTGCTGCTG CAAACAAAAA AACCACCGCT ACCAGCGGTG
 1861 GTTGTGTTGC CGGATCAAGA GCTACCAACT CTTTTCCGA AGGTAACCTGG CTTCAGCAGA
 1921 GCGCAGATAC CAAACTGT TCTTCTAGTG TAGCCGTAGT TAGGCCACCA CTTCAAGAAC
 1981 TCTGTAGCAC CGCCTACATA CCTCGCTCTG CTAATCCTGT TACAGTGGC TGCTGCCAGT
 2041 GGCAGATAAGT CGTGTCTTAC CGGGTTGGAC TCAAGACGAT AGTTACCGGA TAAGGCGCAG
 2101 CGGTGGGCT GAACGGGGGG TTCGTGCACA CAGCCCAGCT TGGAGCGAAC GACCTACACC
 2161 GAACTGAGAT ACCTACAGCG TGAGCTATGA GAAAGCGCA CGCTTCCCGA AGGGAGAAAG
 2221 GCGGACAGGT ATCCGGTAAG CGGCAGGGTC GGAACAGGAG AGCGCAGGAG GGAGCTTCCA
 2281 GGGGAAACG CCTGGTATCT TTATAGTCCT GTGGGGTTTC GCCACCTCTG ACTTGAGCGT
 2341 CGATTTTGT GATGCTCGTC AGGGGGCGG AGCCTATGGA AAAACGCCAG CAACCGGGCC
 2401 TTTTTACGGT TCCTGGCCTT TTGCTGGCTT TTGCTCACA TGTTCTTCC TGCGTTATCC
 2461 CCTGATTCTG TGGATAACCG TATTACCGCT AGCATGGATC TCGGGGACGT CTAACACTA
 2521 AGCGAGAGTA GGGAACTGCC AGGCATCAA TAAACGAAAG GGCTCAGTCG GAAGACTGGG
 2581 CCTTCGTTT TATCTGTTGT TTGCTGGTGA ACGCTCTCCT GAGTAGGACA AATCCGCCGG
 2641 GAGCGGATTT GAACGTTGTG AAGCAACGGC CGGGAGGGTG CGGGGCAGGA CGCCCGCCAT
 2701 AAACTGCCAG GCATCAAACG AAGCAGAAGG CCATC

FIGURE 17B

26/240

Figure 18A: Cloning sites of the Entry Vector pENTR9

I-t att L1

EcoI tac aaa aaa gca ggc ttt gaa aac ctg tat ttt caa gga
 SalI aag aag ttt ttt cgt ccg aaa ctt ttg gac ata aaa gtt cct
 Lys Lys Lys Ala Gly Phe Glu Asn Leu Tyr Phe Gln Gly
 TEV protease

NdeI BglII SalI BamHI KpnI EcoRI

cat atg aga tct gtc gac tgg atc cgg tac/cgt att cgc ---
 gta tac tct aga cag cgt acc tag/gtc atg gct taa/gcg ---
 His Met Arg Ser Val Asp Trp Ile Arg Tyr Arg Ile

EcoRI NotI XbaI EcoRI XbaI att L2

Death --- aga att cgc/ggc cgc act cga gat/att tag/acc cag ---
 --- tct taa/gcg cgc gcg tga gct/cta tag/acc/tgg gtc

I-t

ttt tcc/tgt/aaa/aag ---
 gaa aga aca tct tcc ---

27/240

pENTR9 2735 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
67..166	attL1
339..644	ccdB
673..772	attL2
895..1704	KmR
1809..2382	ori

1 CTGACGGATG GCCTTTTGC GTTTCTACAA ACTCTTCCTG TTAGTTAGTT ACTTAAGCTC
 61 GGGCCCCAAA TAATGATTTT ATTTTGACTG ATAGTGAACCT GTTCGTTGCA ACAAATTGAT
 121 AAGCAATGCT TTTTATAAT GCCAACTTTG TACAAAAAAAG CAGGCTTGA AAACCTGTAT
 181 TTTCAAGGAC ATATGAGATC TGTCGACTGG ATCCGGTACCC GAATTCCGCTT ACTAAAAGCC
 241 AGATAAACAGT ATGCGTATTT GCGCGCTGAT TTTGCGGTA TAAGAATATA TACTGATATG
 301 TATAACCGAA GTATGTCAA AAGAGGTGTG CTTCTAGAAT GCAGTTTAAG GTTACACCT
 361 ATAAAAGAGA GAGCCGTTAT CGTCTGTTG TGGATGTACA GAGTGTAT ATTGACACGC
 421 CCGGGCGAGC GATAGTGATC CCCCTGGCCA GTGCACGTC GCTGTAGAT AAAGTCTCCC
 481 GTGAACTTTA CCCGGTGGTG CATATCGGGG ATGAAAGCTG GCGCATGATG ACCACCGATA
 541 TGGCCAGTGT GCCGGTCTCC GTTATCGGGG AAGAAGTGGC TGATCTCAGC CACCGCGAAA
 601 ATGACATCAA AAACGCCATT AACCTGATGT TCTGGGAAT ATAGAATTGCG CGGCCGCACT
 661 CGAGATATCT AGACCCAGCT TTCTGTACA AAGTTGGCAT TATAAGAAAG CATTGCTTAT
 721 CAATTTGTTG CAACGAACAG GTCACATATCA GTCAAAATAA AATCATTATT TGCCATCCAG
 781 CTGCAGCTCT GGCCCGTGT TC AAAATCTC TGATGTTACA TTGCAAAAGA TAAAAATATA
 841 TCATCATGAA CAATAAAACT GTCTGCTTAC ATAAACAGTA ATACAAGGGG TGTTATGAGC
 901 CATATTCAAC GGGAAACGTC GAGGCCGCGA TTAAATTCCA ACATGGATGC TGATTTATAT
 961 GGGTATAAAT GGGCTCGCGA TAATGTCGGG CAATCAGGTG CGACAATCTA TCGCTTGTAT
 1021 GGGAAAGCCCG ATGCGCCAGA GTTGTCTG AAACATGGCA AAGGTAGCGT TGCCATGAT
 1081 GTTACAGATG AGATGGTCAG ACTAAACTGG CTGACGGAAT TTATGCTCT TCCGACCATC
 1141 AAGCATTAA TCCGTACTCC TGATGATGCA TGGTACTCA CCACTGCGAT CCCCCGGAAAA
 1201 ACAGCATTCC AGGTATTAGA AGAATATCCT GATTCAAGGTG AAAATATTGT TGATGCGCTG
 1261 CGAGTGTCCC TGCGCCGGT GCATTCGATT CTGTTGTA ATTGCTCTT TAACAGCGAT
 1321 CGCGTATTTC GTCTCGCTCA GGCGCAATCA CGAATGATAA ACGGTTGGT TGATGCGAGT
 1381 GATTTGATG ACGAGCGTAA TGCTGGCCT GTTGAACAAG TCTGGAAAGA AATGCATAAA
 1441 CTTTTGCCAT TCTCACCGA TTCAGTCGTC ACTCATGGTG ATTCTCACT TGATAACCTT
 1501 ATTTTTGAGC AGGGAAATT AATAGGTTGT ATTGATGTTG GACGAGTCGG AATCGCAGAC
 1561 CGATACCAGG ATCTTGCCAT CCTATGGAAC TGCCTCGGTG AGTTTCTCC TTCATTACAG
 1621 AAACGGCTTT TTCAAAAAATA TGGTATTGAT AATCTGATA TGAATAAATT GCAGTTTCAT
 1681 TTGATGCTCG ATGAGTTTT CTAATCAGAA TTGGTTAATT GGTTGTAACA TTATTCAAGAT
 1741 TGGGCCCGT TCCACTGAGC GTCAGACCCC GTAGAAAAGA TCAAAGGATC TTCTTGAGAT
 1801 CCTTTTTITC TGCGCGTAAT CTGCTGCTTG CAAACAAAAA AACCAACCGCT ACCAGCGGTG
 1861 GTTTGTTGC CGGATCAAGA GCTACCAACT CTTTTCCGA AGGTAACCTGG CTTCAAGCAGA
 1921 GCGCAGATAC CAAATACTGT TCTTCTAGTG TAGCGTAGT TAGGCCACCA CTTCAAGAAC
 1981 TCTGTAGCAC CGCCTACATA CCTCGCTCTG CTAATCCTGT TACCAGTGGC TGCTGCCAGT
 2041 GGGCATAAGT CGTGTCTTAC CGGGTTGGAC TCAAGACGAT AGTTACCGGA TAAGGCGCAG
 2101 CGGTGGGCT GAACGGGGGG TTCGTGCACA CAGCCCAGCT TGGAGCGAAC GACCTACACC
 2161 GAACTGAGAT ACCTACAGCG TGAGCTATGA GAAAGCGCCA CGCTTCCCGA AGGGAGAAAG
 2221 GCGGACAGGT ATCCGGTAAG CGGCAGGGTC GGAACAGGGAG AGCGCACGAG GGAGCTTCCA
 2281 GGGGGAAACG CCTGGTATCT TTATAGTCT GTCGGGTTTC GCCACCTCTG ACTTGAGCGT
 2341 CGATTTTTGT GATGCTCGTC AGGGGGCGG AGCCTATGGA AAAACGCCAG CAACGCGGCC
 2401 TTTTACGGT CCCTGGCCTT TTGCTGGCCT TTTGCTCACA TGTTCTTCC TGCGTTATCC
 2461 CCTGATTCTG TGGATAACCG TATTACCGT AGCATGGATC TCAGGGACGT CTAACACTA
 2521 AGCGAGAGTA GGGAACTGCC AGGCATCAA TAAAACGAA GGCTCAGTCG GAAGACTGGG
 2581 CCTTTCGTTT TATCTGTTGT TTGCTGGTGA ACGCTCTCCT GAGTAGGACA AATCCGCCGG
 2641 GAGCGGAGTTT GAACGTTGTG AAGCAACGGC CCGGAGGGTG GCGGGCAGGA CGCCCGCCAT
 2701 AAACTGCCAG GCATCAAACG AAGCAGAAGG CCATC

FIGURE 18B

28/240

Figure 19A: Cloning sites of the ENTRY Vector pENTR10

Int attL1 S.D. - 12 NdeI

--- ttt tac aaa aaa gca ggc ttc gaa cta agg aaa tac tta cat
 --- ddd atg tcc ttt cgt ccg aag ctt gat tcc ttt atg aat gta
 Leu Tyr Lys Lys Ala Gly Phe Glu Leu Arg Lys Tyr Leu His

Kpn Xba Sph Bam Kpn EcoRI

atg gga acc aat tca gtc gac tgg atc egg tac cgt att cgc ---
 tac cct tgg tta aat cag cgt acc tag gcp atg gct taa gcg ---
 Met Gly Thr Asn Ser Val Asp Trp Ile Arg Tyr Arg Ile

EcoRI Not Xba EcoRI Xba att 2

Death --- aga att cgc ggc cgc act cga gat atc tag acc cag
 (ccdB) --- tct taa gcg ccg gcg tga gct cta tag atc tgg gtc

Int

--- ttt tcc tgg aca aag ---
 gaa aca aca tcc tcc ---

29/240

pENTR10 2738 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
67..166	attL1
342..647	ccdB
676..775	attL2
898..1707	KmR
1812..2385	ori

1 CTGACGGATG GCCTTTTGC GTTTCTACAA ACTCTTCCGT TTAGTTAGTT ACTTAAGCTC
 61 GGGCCCCAAA TAATGATTT ATTTTGACTG ATAGTGACCT GTTCGTTGCA ACAAAATTGAT
 121 AAGCAATGCT TTTTTATAAT GCCAACTTTG TACAAAAAAAG CAGGCTTCGA ACTAAGGAAA
 181 TACTTACATA TGGGAACCAA TTCAGTCGAC TGGATCCGGT ACCGAATTGCG CTTACTAAAA
 241 GCCAGATAAAC AGTATGCCGA TTTGCCGCT GATTTTGCG GTATAAGAAT ATATACTGAT
 301 ATGTATACCC GAAGTATGTC AAAAGAGGT GTGCTTCTAG AATGCAGTTT AAGGTTTACA
 361 CCTATAAAAG AGAGAGCCGT TATCGTCTGT TTGTTGGATGT ACAGAGTGAT ATTATTGACA
 421 CGCCCGGGCG ACGGATGGTG ATCCCCCTGG CCAGTGCACG TCTGCTGTCA GATAAAGTCT
 481 CCCGTGAACCT TTACCCGGTG GTGCATATCG GGGATGAAAG CTGGCGCATG ATGACCACCG
 541 ATATGGCCAG TGTGCCGGTC TCCGTTATCG GGGAAAGAAGT GGCTGATCTC AGCCACCGCG
 601 AAAATGACAT CAAAAACGCC ATTAACCTGA TTGTTCTGGGG AATATAGAAT TCGGGCCGC
 661 ACTCGAGATA TCTAGACCCA GCTTTCTTGT ACAAAAGTTGG CATTATAAGA AAGCATTGCT
 721 TATCAATTG TTGCAACGAA CAGGTCACTA TCAGTCAAAA TAAAATCATT ATTTGCCATC
 781 CAGCTGCAGC TCTGGCCCGT GTCTCAAAT CTCTGATGTT ACATTGCACA AGATAAAAAT
 841 ATATCATCAT GAACAATAAA ACTGTCCTGCT TACATAAAACA GTAATACAAG GGGTGTATG
 901 AGCCATATTC AACGGGAAAC GTCGAGGGCCG CGATTAAATT CCAACATGGA TGCTGATTAA
 961 TATGGGTATA AATGGGCTCG CGATAATGTC GGGCAATCAG GTGCGACAAT CTATCGCTTG
 1021 TATGGGAAGC CCGATGCCGC AGAGTTGTTT CTGAAACATG GCAAAGGTAG CGTTGCCAAT
 1081 GATGTTACAG ATGAGATGGT CAGACTAAAC TGCTGACGG AATTATGCC TCTTCCGACC
 1141 ATCAAGCATT TTATCCGTAC TCCTGATGAT GCATGGTTAC TCACCACTGC GATCCCCGGA
 1201 AAAACAGCAT TCCAGGTATT AGAAGAATAT CCTGATTGAG GTGAAAATAT TGTTGATGCG
 1261 CTGGCAGTGT TCCCTGCCCG GTTGCAATTG ATTCTGTTT GTAATTGTC TTTAACAGC
 1321 GATCGCGTAT TTCTGCTCGC TCAGGCCAA TCAAGAATGAA ATAACGGTTT GGTTGATGCG
 1381 AGTGATTTG ATGACGAGCG TATGGCTGG CCTGTTGAAC AAGTCTGAA AGAAATGCAT
 1441 AAACTTTTGC CATTCTCACCG GGATTCACTG GTCACTCATG GTGATTTCTC ACTTGATAAC
 1501 CTTATTTTGT ACGAGGGAA ATTAATAGGT TGTATTGATG TTGGACGAGT CGGAATCGCA
 1561 GACCGATACC AGGATCTTGC CATCCATGG AACTGCCCTCG GTGAGTTTC TCCTTCATTA
 1621 CAGAAACGGC TTTTTCAAA ATATGGTATT GATAATCTG ATATGAATAA ATTGAGTTT
 1681 CATTGATGC TCGATGAGTT TTTCTAATCA GAATTGGTTA ATTGGTTGTA ACATTATTCA
 1741 GATTGGGCC CGTTCCACTG AGCGTCAGAC CCCGTAGAAA AGATCAAAGG ATCTTCTGAA
 1801 GATCTTTT TTCTGCCCGT AATCTGCTGC TTGCAAACAA AAAAACCAAC GCTACCAGCG
 1861 GTGGTTGTT TGCCGGATCA AGAGCTACCA ACTCTTTTC CGAAGGTAAC TGGCTTCAGC
 1921 AGAGCGCAGA TACCAAATAC TGTTCTTCTA GTGTAGCCGT AGTTAGGCCA CCACTTCAG
 1981 AACTCTGTAG CACCGCTAC ATACCTCGCT CTGCTAATCC TGTTACCAAGT GGCTGCTGCC
 2041 AGTGGCGATA AGTCGTGTCT TACCGGGTTG GACTCAAGAC GATAGTTACC GGATAAGGCG
 2101 CAGCGGTGCG GCTGAACGGG GGGTTCTGAC ACACAGCCC GCTGGAGCG AACGACCTAC
 2161 ACCGAACGTGA GATACTACA GCGTAGCTA TGAGAAAGCG CCACGCTTCC CGAAGGGAGA
 2221 AAGGCGGACA GGTATCCGGT AAGCGGCAGG GTCCGAACAG GAGAGCGCAC GAGGGAGCTT
 2281 CCAGGGGAA ACGCCTGGTA TCTTTATAGT CCTGTCGGGT TTGCCCCACT CTGACTTGAG
 2341 CGTCGATTTT TGTGATGTC GTCAGGGGGG CGGAGCCTAT GGAAAAACGC CAGCAACCGC
 2401 GCCTTTTAC GGTTCTGGC CTTTGCTGG CCTTTGCTC ACATGTTCTT TCCTGCGTTA
 2461 TCCCCTGATT CTGTGGATAA CCGTATTACG GCTAGCATGG ATCTCGGGGA CGTCTAACTA
 2521 CTAAGCGAGA GTAGGGAACT GCCAGGCATC GAATAAAACG AAAGGCTCAG TCGGAAGACT
 2581 GGGCTTTCG TTTTATCTGT TGTTGTCGG TGAACGCTCT CCTGAGTAGG ACAAAATCCGC
 2641 CGGGAGCGGA TTTGAACGTT GTGAAGCAAC GGCCCGGGAGG GTGGCGGGCA GGACGCCGC
 2701 CATAAAACTGC CAGGCATCAA ACTAAGCAGA AGGCCATC

FIGURE 1B

30/240

Figure 20A: Cloning Sites of the Entry Vector pENTR11

Int	attL1	S.D.	Kozak	XmnI	S.D.
TTG TAC AAA AAA GCA GGC TTC	GAA GGA GAT AGA ACC	AAT TCT CTA AGG AAA TAC			
AAC ATG TTT TTT CGT CCG AAG	CTT CCT CTA TCT TGG	TTA AGA GAT TCC TTT ATG			
Leu Tyr Lys Lys Ala Gly Phe Glu Gly Asp Arg Thr Asn Ser Leu Arg Lys Tyr					

Kozak	NcoI	SalI	BamHI	KpnI	EcoRI	EcoRI	NotI
TTA ACC ATG	GTC GAC	TGG ATC	CGG TAC	CGA ATT C	--ccdB	--G	AAT TCG
AAT TGG TAC	CAG CTG	ACC TAG	GCC ATG	GCT TAA G		C	GGG CCG
						TTA AGC	GCC GGC
						Asn Ser	Arg Pro
Leu Thr Met Val Asp Trp Ile Arg Tyr Arg Ile							

XbaI	EcoRV	XbaI	Int	attL2
CAC TCG AGA TAT	CTA GAC CCA GCT TTC	TTG TAC AAA G		
GTG AGC TCT ATA GAT	CTG GGT CGA AAG AAC ATG	TTT C		
His Ser Arg Tyr Leu Asp Pro Ala Phe Leu Tyr Lys				

31/240

pENTR11 2744 bp (rotated to position 2578)

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
67..166	attL1
348..653	ccdB
683..781	attL2
904..1713	KmR
1818..2391	ori

1 CTGACGGATG GCCTTTTGC GTTTCTACAA ACTCTTCCTG TTAGTTAGTT ACTTAAGCTC
 61 GGGCCCAA TAATGATTTT ATTTTGACTG ATAGTGCACCT GTTCGTTGCA ACAAATTGAT
 121 AAGCAATGCT TTTTATAAT GCCAACTTTG TACAAAAAAAG CAGGCTTCGA AGGAGATAGA
 181 ACCAATTCTC TAAGGAAATA CTTAACCATG GTCGACTGGA TCCGGTACCG AATTGCTTA
 241 CTAAAAGCCA GATAACAGTA TGCGTATTTG CGCGCTGATT TTTGCGGTAT AAGAATATAT
 301 ACTGATATGT ATACCCGAAG TATGTCAAAA AGAGGTGTGC TTCTAGAATG CAGTTAAGG
 361 TTTACACCTA TAAAAGAGAG AGCCGTTATC GTCTGTTGT GGATGTACAG AGTGTATTA
 421 TTGACACGCC CGGGCGACGG ATAGTGATCC CCCTGGCCAG TGACGTCTG CTGTACAGATA
 481 AAGTCTCCCG TGAACATTAC CCGGTGGTGC ATATCGGGGA TGAAAGCTGG CGCATGATGA
 541 CCACCGATAT GGCCAGTGTG CCGGTCTCCG TTATCGGGGA AGAAGTGGCT GATCTCAGCC
 601 ACCCGCAGAA TGACATCAAA AACGCCATTA ACCTGATGTT CTGGGAAATA TAGAATTGCG
 661 GGCCGCACTC GAGATATCTA GACCCAGCTT TCTTGTACAA AGTTGGCATT ATAAGAAAGC
 721 ATTGCTTATC AATTGTTGC AACGAACAGG TCACTATCAG TCAAAATAAA ATCATTATTT
 781 GCCATCCAGC TGCAGCTCTG GCCCAGTGTCT CAAAATCTCT GATGTTACAT TGCAACAAGAT
 841 AAAAATATAT CATCATGAAC AATAAAACTG TCTGCTTACA TAAACAGTAA TACAAGGGGT
 901 GTTATGAGCC ATATTCAACG GGAAACGTG AGGCCGCGAT TAAATTCAA CATGGATGCT
 961 GATTTATATG GGTATAAAATG GGCTCGCGAT AATGTCGGGC AATCAGGTGC GACAATCTAT
 1021 CGCTTGATG GGAAGCCCGA TGCGCCAGAG TTGTTTCTGA AACATGGCAA AGGTAGCGTT
 1081 GCCAATGATG TTACAGATGA GATGGTCAGA CTAAACTGGC TGACGGAATT TATGCCTCTT
 1141 CCGACCATCA AGCATTCTT CCGTACTCCT GATGATGCAT GGTTACTCAC CACTGCGATC
 1201 CCCGAAAAAA CAGCATTCCA GGTATTAGAA GAATATCCTG ATTCAGGTGA AAATATTGTT
 1261 GATGCGCTGG CAGTGTCTC GCGCCGGTTG CATTGCGATT CTGTTGTTA TTGTCCTTTT
 1321 AACAGCGATC GCGTATTTCG TCTCGCTCAG GCGCAATCAC GAATGAATAA CGGTTGGTT
 1381 GATGCGAGTG ATTTGATGA CGAGCGTAAT GGCTGGCTG TTGAACAAGT CTGGAAAGAA
 1441 ATGCATAAAC TTTTGCCATT CTCACCGGAT TCAGTCGTCA CTCATGGTGA TTTCTCACTT
 1501 GATAACCTTA TTTTGACGA GGGGAAATTA ATAGGTTGTA TTGATGTTGG ACGAGTCGGA
 1561 ATCGCAGACC GATACCAGGA TCTTGCCATC CTATGGAACT GCCTCGGTGA GTTTCTCCT
 1621 TCATTACAGA AACGGCTTT TCAAAATAT GGTATTGATA ATCCTGATAT GAATAAATTG
 1681 CAGTTTCATT TGATGCTCGA TGAGTTTTC TAATCAGAAT TGTTAAATTG GTGTAACAT
 1741 TATTTCAGATT GGGCCCCGTT CCACTGAGCG TCAGACCCCCC TAGAAAAGAT CAAAGGATCT
 1801 TCTTGAGATC CTTTTTTCTC GCGCGTAATC TGCTGCTTGC AAACAAAAAA ACCACCGCTA
 1861 CCAGCGGTGG TTTGTTGCC GGATCAAGAG CTACCAACTC TTTTCCGAA GGTAACTGGC
 1921 TTCAGCAGAG CGCAGATACC AAATCTGTT CTTCTAGTGT AGCCGTAGTT AGGCACCCAC
 1981 TTCAAGAACT CTGTCAGCAGC GCCTACATAC CTCGCTCTGC TAATCCTGTT ACCAGTGGCT
 2041 GCTGCCAGTG GCGATAAGTC GTGTCCTTACG GGGTTGGACT CAAGACGATA GTTACCGGAT
 2101 AAGGCGCAGC GGTCGGGCTG AACGGGGGGT TCGTGCACAC AGCCCAGCTT GGAGCGAACG
 2161 ACCTACACCG AACTGAGATA CCTACAGCGT GAGCTATGAG AAAGCCAC GCTTCCGAA
 2221 GGGAGAAAGG CGGACAGGTA TCCGCTAAGC GGCAGGGTGC GAACAGGAGA GCGCACGAGG
 2281 GAGCTTCCAG GGGGAAACGC CTGGTATCTT TATAGTCTCTG TCGGGTTCG CCACCTCTGA
 2341 CTTGAGCGTC GATTTTGTG ATGCTCGTCA GGGGGCGGA GCCTATGGAA AAACGCCAGC
 2401 AACCGGGCCT TTTTACGGTT CCTGGCTTT TGCTGGCCTT TTGCTCACAT GTTCTTCCCT
 2461 GCGTTATCCC CTGATTCTGT GGATAACCGT ATTACCGCTA GCATGGATCT CGGGGACGTC
 2521 TAACTACTAA GCGAGAGTAG GGAACCTGCCA GGCATCAAAT AAAACGAAAG GCTCAGTCGG
 2581 AAGACTGGGC CTTTCGTTT ATCTGTTGTT TGTCGGTGAA CGCTCTCCTG AGTAGGACAA
 2641 ATCCGCCGGG AGCGGATTTG AACGTTGTGA AGCAACGGCC CGGAGGGTGG CGGGCAGGAC
 2701 GCCGCCATA AACTGCCAGG CATCAAACTA AGCAGAAGGC CATC

FIGURE 20B

32 | 240

Figure 2 | A: pDEST1 Native Protein Expression in E. coli

-35 Trc promoter -10 mRNA
 1 atgagctgt **gaca**ttaat catccggctc **gtataatgt** tggattgtg agccggataac
 tactcgacaa **ctgt**taatta gtaggccag **catatt**ac acctaaacac tcgccttattg
 61 aatttcacac aggaaaacaga caggatagg atcacaagt **tgt**atdaada agcttcaacga
 ttAAAGTGTG TCCCTTGCT GTCATATCC tagtgttcaa acatgtttt tccgttttgt

33/240

pDEST1 6464 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
216..257	Trc promoter
397..273	attR1
647..1306	CmR
1426..1510	inactivated ccdA
1648..1953	ccdB
1994..2118	attR2
2598..3503	ampR
4104..4264	ori
4504..4941	flori (f1 intergenic region)
5340..6420	lacIq

1 GTTTGACAGC TTATCATCGA CTGCACGGTG CACCAATGCT TCTGGCGTCA GGCAGCCATC
 61 GGAAGCTGTG GTATGGCTGT GCAGGTCGTA AATCACTGCA TAATTCGTGT CGCTCAAGGC
 121 GCACTCCCGT TCTGGATAAT GTTTTGTGCG CCGACATCAT AACGGTTCTG GCAAATATTG
 181 TGAAATGAGC TGTTGACAAT TAATCATCCG GTCCGTATAA TCTGTGGAAT TGTGAGCGGG
 241 ATAACAATTG CATCGCGAGG TACCAAGCTA TCACAAGTTT GTACAAAAAA GCTGAACGAG
 301 AAACGTAAAA TGATATAAAAT ATCAATATAT TAAATTAGAT TTTGCATAAA AAACAGACTA
 361 CATAATACTG TAAAACACAA CATATCCAGT CACTATGGCG GCCGCTAAGT TGGCAGCATC
 421 ACCCGACGCA CTTTGCGCCG AATAAAATACC TGTGACGGAA GATCACTTCG CAGAATAAAAT
 481 AAATCCTGGT GTCCCCTGTTG ATACCGGGAA GCCCTGGGCC AACTTTTGGC GAAAATGAGA
 541 CGTTGATCGG CACGTAAGAG GTTCCAACCT TCACCATAAT GAAATAAGAT CACTACCGGG
 601 CGTATTTTTT GAGTTATCGA GATTTTCAGG AGCTAAGGAA GCTAAAATGG AGAAAAAAAT
 661 CACTGGATAT ACCACCGTTG ATATATCCCA ATGGCATCGT AAAGAACATT TTGAGGCATT
 721 TCAGTCAGTT GCTCAATGTA CCTATAACCA GACCCTTCAG CTGGATATTG CGGCCTTTTT
 781 AAAGACCGTA AAGAAAAATA AGCACAAGTT TTATCCGGCC TTTATTCA CA TTCTTGCCCC
 841 CCTGATGAAT GCTCATCCGG AATTCCGTAT GGCAATGAAA GACGGTGAGC TGGTGATATG
 901 GGATAGTGTG CACCCCTGTT ACACCGTTT CCATGAGCAA ACTGAAACGT TTTCATCGCT
 961 CTGGAGTGAA TACACCGACG ATTTCCGGCA GTTCTCACAC ATATATTTCCG AAGATGTGGC
 1021 GTGTTACGGT GAAAACCTGG CCTATTCTCC TAAAGGGTTT ATTGAGAATA TGTTTTTTCGT
 1081 CTCAGCCAAT CCCTGGGTGA GTTTCACCAG TTTTGATTTA AACGTTGGCCA ATATGGACAA
 1141 CTTCTTCGCC CCCGTTTCA CCATGGGCAA ATATATACG CAAGGGCACCA AGGTGCTGAT
 1201 GCCGCTGGCG ATTCAAGGTT ATCATGGCGT CTGTGATGGC TTCCATGTCG GCAGAATGCT
 1261 TAATGAATTA CAACAGTACT GCGATGAGTG GCAGGGCGGG CGTAAACCC GTGGATCCGG
 1321 CTTACTAAAAA AGCAGATAAC AGTATGCGTA TTTGCGCGCT GATTTTGCG GTATAAGAAT
 1381 ATATACTGAT ATGTATACCC GAAGTATGTC AAAAGAGGT GTGCTATGAA GCAGCGTATT
 1441 ACAGTGACAG TTGACAGCGA CAGCTATCAG TTGCTCAAGG CATATATGAT GTCAATATCT
 1501 CCGGTCTGGT AAGCACAACC ATGCAGAATG AAGCCCGTCG TCTGCGTGCC GAACGCTGGA
 1561 AAGCGGAAAAA TCAGGAAGGG ATGGCTGAGG TCGCCCGGTT TATTGAAATG AACGGCTCTT
 1621 TTGCTGACGA GAACAGGGAC TGGTGAATG CAGTTTAAGG TTTACACCTA TAAAAGAGAG
 1681 AGCCGTTATC GTCTGTTTGT GGATGTACAG AGTGTATTA TTGACACGCC CGGGCGACGG
 1741 ATGGTGATCC CCCTGGCCAG TGACGTCTG CTGTCAAGATA AAGTCTCCCG TGAACATTAC
 1801 CCGGTGGTGC ATATCGGGGA TGAAAGCTGG CGCATGATGA CCACCGATAT GGCCAGTGTG
 1861 CCGGTCTCCG TTATCGGGGA AGAAGTGGCT GATCTCAGCC ACCGGAAAAA TGACATCAA
 1921 AACGCCATTA ACCTGATGTT CTGGGAATA TAAATGTCAG GCTCCCTTAT ACACAGCCAG
 1981 TCTGCAGGTC GACCATAGTG ACTGGATATG TTGTGTTTA CAGTATTATG TAGTCTGTTT
 2041 TTTATGCAAA ATCTAATTG ATATATTGAT ATTATATATCA TTTTACGTTT CTCGTTAGC
 2101 TTTCTTGATC AAAGTGGTGA TAGCTTGGCT GTTTGGCGG ATGAGAGAAAG ATTTCTAGCC
 2161 TGATACAGAT TAAATCAGAA CGCAGAAGCG GTCTGATAAA ACAGAATTG CCTGGCGGCA
 2221 GTAGCGCGGT GGTCCACCT GACCCCATGC CGAACCTCAGA AGTGAACCGC CGTAGCGCCG
 2281 ATGGTAGTGT GGGGTCTCCC CATGCGAGAG TAGGGAACCTG CCAGGCATCA AATAAAACGA
 2341 AAGGCTCAGT CGAAAGACTG GGCCTTCGT TTTATCTGTT GTTTGCGGT GAACGCTCTC
 2401 CTGAGTAGGA CAAATCCGCC GGGAGGGAT TTGAAACGTTG CGAAGCAACG GCCCAGGG
 2461 TGGCGGGCAG GACGCCCGCC ATAAACTGCC AGGCATCAAA TTAAGCAGAA GGCCATCCTG
 2521 ACGGATGGCC TTTTGCCTT TCTACAAACT CTTTTGTTT ATTTTCTAA ATACATTCAA-

FIGURE 21B

34/240

2581 ATATGTATCC GCTCATGAGA CAATAACCT GATAATGCT TCAATAATAT TGAAAAGGA
 2641 AGAGTATGAG TATTCAACAT TTCCGTGTCG CCCTTATTCC CTTTTTGCG GCATTTGCC
 2701 TTCCCTGTTT TGCTCACCCA GAAACGCTGG TGAAGTAAA AGATGCTGAA GATCAGTTGG
 2761 GTGCACGAGT GGTTTACATC GAACTGGATC TCAACAGCGG TAAGATCCTT GAGAGTTTC
 2821 GCCCGAAGA ACCTTTCCA ATGATGAGCA CTTTAAAGT TCTGCTATGT GGCGCGGTAT
 2881 TATCCCGTGT TGACGCCGG CAAGAGCAAC TCGGTGCGC Catacaactat TCTCAGAATG
 2941 ACTTGGTTGA GTACTCACCA GTCACAGAAA AGCATCTTAC GGATGGCATG ACAGTAAGAG
 3001 AATTATGCAG TGCTGCCATA ACCATGAGTG ATAACACTGC GGCCAACCTTA CTTCTGACAA
 3061 CGATCGGAGG ACCGAAGGAG CTAACCGCTT TTTTGCACAA CATGGGGAT CATGTAACTC
 3121 GCCTTGATCG TTGGGAAACCG GAGCTGAATG AAGCCATACC AAACGAGGAG CGTGACACCA
 3181 CGATGCCAAC AGCAATGGCA ACAACGTTGC GCAAACATTAACTGGGAA CTACTTAACTC
 3241 TAGCTCCCG GCAACAATTAA ATAGACTGGA TGGAGGCGGA TAAAGTTGCA GGACCACTTC
 3301 TGCCTCGGC CCTTCCGGCT GGCTGGTTA TTGCTGATAA ATCTGGAGCC GGTGAGCGTG
 3361 GGTCTCGCGG TATCATTGCA GCACTGGGGC CAGATGGTAA GCCCCTCCGT ATCGTAGTTA
 3421 TCTACACGAC GGGGAGTCAG GCAACTATGG ATGAACGAAA TAGACAGATC GCTGAGATAG
 3481 GTGCCCTACT GATTAAGCAT TGGTAACTGT CAGACCAAGT TTACTCATAT ATACTTTAGA
 3541 TTGATTAAAA ACTTCATTAA TAATTAAAAA GGATCTAGGT GAAGATCCTT TTTGATAATC
 3601 TCATGACCAA AATCCCTAA CGTGAGTTTT CGTTCCACTG AGCGTCAGAC CCCGTAGAAA
 3661 AGATCAAAGG ATCTTCTTGA GATCCTTTTT TTCTGCGCGT AATCTGCTGC TTGCAAACAA
 3721 AAAAACCAAC GCTACCAGCG GTGGTTTGTG TGCCGGATCA AGAGCTACCA ACTCTTTTC
 3781 CGAAGGTAAC TGGCTTCAGC AGAGCGCAGA TACCAAATAC TGCTCTCTA GTGTAGCCGT
 3841 AGTTAGGCCA CCACTTCAG AACTCTGTAG CACCGCCTAC ATACCTCGCT CTGCTAATCC
 3901 TGTATTACAGT GGCTGCTGCC AGTGGCGATA AGTCGTGTC TACCGGGTTG GACTCAAGAC
 3961 GATAGTTACC GGATAAGGCG CAGCGTCGG GCTGAACGGG GGGTTGCTGC ACACAGCCCA
 4021 GCTGGAGCG AACGACCTAC ACCGAACCTGA TACACCTACA GCGTGAGCTA TGAGAAAGCG
 4081 CCAAGCTTCC CGAAGGGAGA AAGGGCGACA GGTATCCGGT AAGCGGCAGG GTCCGAACAG
 4141 GAGAGCGCAC GAGGGAGCTT CCAGGGGGAA ACCGCTGGTA TCTTTATAGT CCTGTCGGGT
 4201 TTCGCCACCT CTGACTTGAG CGTCGATTTT TGTGATGCTC GTCAGGGGGG CGGAGCCTAT
 4261 GGAAACACGC CAGCAACCGC GCCTTTTAC GGTTCCTGGC CTTTTGCTGG CTTTTGCTC
 4321 ACATGTTCTT TCCCTGCTTA TCCCCCTGATT CTGTTGATAA CCGTATTACCC GCCTTTGAGT
 4381 GAGCTGATAC CGCTCGCCG AGCCGAACGA CCGAGCGCAG CGAGTCAGT AGCGAGGAAG
 4441 CGGAAGAGCG CCTGATGCGG TATTTTCTCC TTACGCATCT GTGCGGTATT TCACACCGCA
 4501 TAATTTGTT AAAATTGCG TTAAATTTTT GTTAAATCAG CTCAATTAA AACCAATAGG
 4561 CCGAAATCGG CAAAATCCT TATAAATCAA AAAAATAGAC CGAGATAGGG TTGAGTGTG
 4621 TTCCAGTTG GAACAAGAGT CCACTATTAA AGAACGTGGA CTCCAACGTC AAAGGGCGAA
 4681 AAACCGTCTA TCAGGGCGAT GGCCCCTAC GTGAACCATC ACCCTAATCA AGTTTTTGG
 4741 GGTCGAGGTG CCGTAAAGCA CTAAATCGGA ACCCTAAAGG GAGCCCCGA TTTAGAGCTT
 4801 GACGGGGAAA GCGGGCGAAC GTGGCGAGAA AGGAAGGGAA GAAAGCGAAA GGAGCGGGCG
 4861 CTAGGGCGCT GGCAAGTGTG GCGGTACGC TGCGCGTAAC CACCACACCC GCGCGCTTA
 4921 ATGCGCCGCT ACAGGGCGCG TCCATTGCCC ATTCAAGGCTG CTATGGTCA CTCTCAGTAC
 4981 AATCTGCTCT GATGCCGCAT AGTTAAGCCA GTACCAAGTCA CGTAGCGATA TCGGAGTGT
 5041 TACACTCCGC TATCGCTACG TGACTGGGTG ATGGCTGCGC CCGACACCC GCAACACCC
 5101 GCTGACGCGC CCTGACGGGC TTGTCGCTC CCGGCATCCG CTTACAGACA AGCTGTGACC
 5161 GTCTCCGGGA GCTGCATGTG TCAGAGGTTT TCACCGCTAT CACCGAAACG CGCGAGGCAG
 5221 CAGATCAATT CGCGCGCGA GGCAGACCGG CATGCATTAA CGTTGACACC ATCGAATGGT
 5281 GCAAAACCTT TCGCGGTATG GCATGATAGC GCCCAGAAGA GAGTCATTC AGGGTGGTGA
 5341 ATGTGAAACC AGTAACGTG TACGATGTCG CAGAGTATGC CGGTGTCCTCT TATCAGACCG
 5401 TTTCCCGCGT GGTGAACCAAG GCGAGCCACG TTTCTGCGAA AACCGGGAA AAAGTGGAAAG
 5461 CGCGGATGGC GGAGCTGAAT TACATCCCA ACCCGTGGC ACAACAACTG GCGGGCAAC
 5521 AGTCGTTGCT GATTGGCGTT GCCACCTCCA GTCTGGCCCT GCACGCGCCG TCGCAAATTG
 5581 TCGCGGCGAT TAAATCTCGC GCGATCAAC TGGGTGCCAG CGTGGTGGTG TCGATGGTAG
 5641 AACGAAGCGG CGTCGAAGCC TGTAAGCGG CGGTGCACAA TCTTCTCGCG CAACCGCTCA
 5701 GTGGGCTGAT CATTAACTAT CCGCTGGATG ACCAGGATGC CATTGCTGTG GAAGCTGCCT
 5761 GCACTAATGT TCCGGCGTTA TTTCTTGTG TCTCTGACCA GACACCCATC AACAGTATTA
 5821 TTTCTCCCA TGAAGACGGT ACGCGACTGG GCGTGGAGCA TCTGGTCGCA TTGGGTGACC
 5881 AGCAAATCGC GCTGTTAGCG GGCCCAATTAA GTTCTGTCTC GGCGCGTCTG CGTCTGGCTG
 5941 GCTGGCATAA ATATCTCACT CGCAATCAA TTCAGCCGAT AGCGGAACGG GAAGGGCACT
 6001 GGAGTGCCAT GTCCGGTTT CAACAAACCA TGCAAATGCT GAATGAGGGC ATCGTTCCCA-

FIGURE 21C

35/240

6061 CTGCGATGCT GGTTGCCAAC GATCAGATGG CGCTGGCGC AATGCGCC ATTACCGAGT
6121 CCGGGCTGCG CGTTGGTGC GATATCTCGG TAGTGGGATA CGACGATACC GAAGACAGCT
6181 CATGTTATAT CCCGCCGTAA ACCACCATCA AACAGGATTTC TCGCCTGCTG GGGCAAACCA
6241 GCGTGGACCG CTTGCTGCAA CTCTCTCAGG GCCAGGCGGT GAAGGGCAAT CAGCTGTTGC
6301 CCGTCTCACT GGTGAAAAGA AAAACCCACCC TGCGACCCAA TACGAAACCC GCCTCTCCCC
6361 GCGCGTTGGC CGATTCAATTA ATGCAGCTGG CACGACAGGT TTCCCGACTG CAAAGCGGGC
6421 AGTGAGCGCA ACGCAATTAA TGTGAGTTAG CGCGAATTGA TCTG

FIGURE 21D

36/240

Figure 22A: *pDST2*

His6 fusions in E. coli

970 aat att ctg aaa tga gct gtt gac aat tad tca ccc ggt ccg tat aat ctg
 tta taa gac ttt act cga caa ctg tta att agt agg cca ggc ata tta gac
 1021 tgg aat tgt gag cgg ata aca att tca cac agg aaa cag acc atg tcg tac
 acc tta aca ctc gcc tat tgt taa agt gtg tcc ttt gtc tgg tac agc atg
 1072 Tyr His His His His His Gly Ile Thr Ser Int ATR1
 tac cat cac cat cac cat cat ggt att aca agt tgg tgg aca aca gct gaa
 atg gta gtg gta gtg gta gtg ccg tag tgt tca aac atg ttt ttt cga ctc

37/240

pDEST2 6553 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
912..962	Trc
1223..1009	attR1
1473..2132	CmR
2252..2336	inactivated ccdA
2474..2779	ccdB
2820..2944	attR2
3509..4414	ampR
5015..5175	ori
5415..5852	flori (f1 intergenic region)
6225..752	lacIq

1 GGCGGTGCAC AATCTTCTCG CGCAACGCGT CAGTGGGCTG ATCATTAACT ATCCGCTGGA
 61 TGACCAAGGAT GCCATTGCTG TGGAAAGCTGC CTGCACTAAT GTTCCGGCGT TATTTCTTGA
 121 TGTCTCTGAC CAGACACCCA TCAACAGTAT TATTTTCTCC CATGAAGACG GTACGCGACT
 181 GGGCGTGGAG CATCTGGTC CATTGGGTCA CCAGCAAATC GCGCTGTTAG CGGGCCATT
 241 AAGTTCTGTC TCGGCGCTC TGCGTCTGGC TGGCTGGCAT AAATATCTCA CTCGCAATCA
 301 AATTCAAGCCG ATAGCGAAC GGGAAAGCGA CTGGAGTGCCT ATGTCGGTT TTCAACAAAC
 361 CATGCAAATG CTGAATGAGG GCATCGTTCC CACTGCGATG CTGGTTGCCA ACGATCAGAT
 421 GGCCTGGGC GCAATGCGCG CCATTACCGA GTCCGGGCTG CGCGTTGGTG CGGATATCTC
 481 GGTAGTGGGA TACGACGATA CCGAAGACAG CTCATGTTAT ATCCCGCCGT CAACCACCAT
 541 CAAACAGGAT TTTCGCTGTC TGGGGCAAAC CAGCGTGGAC CGCTTGCTGC AACTCTCTCA
 601 GGGCCAGGCG GTGAAGGGCA ATCAGCTGTT GCCCGTCTCA CTGGTGAAA CAAAAACAC
 661 CCTGGCACCC AATACGAAA CCGCCTCTCC CCGCGCGTTG GCCGATTCTAT TAATCGAGCT
 721 GGCACGACAG GTTTCCCGAC TGGAAAGCGG GCAGTGGAGCG CAACGAAATT AATGTGAGTT
 781 AGCGCGAATT GATCTGGTTT GACAGCTTAT CATCGACTGC ACGGTCAACC AATGCTCTG
 841 GCGTCAGGCA GCCATCGGAA GCTGTGGTGG CTCGTAATC ACTGCATAAT
 901 TCGTGTGCGT CAAGGCGAC TCCCGTTCTG GATAATGTTT TTGCGCCGA CATCATAACG
 961 GTTCTGGCAA ATATTTGAA ATGAGCTGTT GACAATTAAAT CATCCGGTCC STATAATCTG
 1021 TGGAAATTGTC AGCGGATAAAC AATTTACAC AGGAAACAGA CCATGTCGTA STACCATCAC
 1081 CATCACCATC ACGGCATCAC AAGTTTGATC AAAAGAGCTG AACGAGAAC GTAAAATGAT
 1141 ATAAATATCA ATATTTAAA TTAGATTTG CATAAAAAAC AGACTACATA ATACTGTAAA
 1201 ACACAACATA TCCAGTCACT ATGGCGGCCG CTAAGTTGGC AGCATCACCC GACGCACTTT
 1261 GCGCCGAATA AATACCTGTC ACGGAAAGATC ACTTCGCGAGA ATAAATAAAT CCTGGTGTCC
 1321 CTGTTGATAC CGGGAAAGCCC TGGGCAACT TTTGGCGAAA ATGAGACGTT GATCGGCACG
 1381 TAAGAGGTTT CAACTTTCAC CATAATAAA TAAGATCACT ACCGGGCGTA TTTTTTGAGT
 1441 TATCGAGATT TTCAGGAGCT AAGGAAGCTA AAATGGAGAA AAAAATCACT GGATATACCA
 1501 CCGTTGATAT ATCCCAATGG CATCGTAAAG AACATTTGAA GGCAATTTCAG TCAGTTGCTC
 1561 AATGTACCTA TAACCAGACC GTTCAGCTGG ATATTACGGC CTTTTAAAG ACCGTAAGA
 1621 AAAATAAGCA CAAGTTTAT CCGGCTTTA TTACACATTCT TGCCCGCTG ATGAATGCTC
 1681 ATCCGGAAATT CCGTATGGCA ATGAAAGACG GTGAGCTGGT GATATGGGAT AGTGTTCACC
 1741 CTTGTTACAC CGTTTCCAT GAGCAAACCTG AAACGTTTC ATCGCTCTGG AGTGAATACC
 1801 ACGACGATTT CCGGCAGTTT CTACACATAT ATTGCAAGA TGTGGCGTGT TACGGTAAA
 1861 ACCTGGCCTA TTTCCTAAA GGGTTTATTG AGAATATGTT TTGCGTCTCA GCCAATCCCT
 1921 GGGTGAGTTT CACCAGTTT GATTTAAACG TGGCCAATAT GGACAACCTTC TTGCGCCCCG
 1981 TTTTCACCAT GGGCAAATAT TATACCGCAAG GCGACAAGGT GCTGATGCCG CTGGCGATT
 2041 AGGTTCATCA TGCGTCTGT GATGGCTTCC ATGTCGGCAG AATGCTTAAT GAATTACAAC
 2101 AGTACTGCGA TGAGTGGCAG GGCAGGGCGT AAACGCGTGG ATCCGGCTTA CTAAAAGCCA
 2161 GATAACAGTA TGCGTATTG CGCGCTGATT TTGCGGTAT AAGAATATAT ACTGATATGT
 2221 ATACCCGAAG TATGTCAAA AGAGGTGTGC TATGAAGCAG CGTATTACAG TGACAGTTGA
 2281 CAGCGACAGC TATCAGTTGC TCAAGGCATA TATGATGTCA ATATCTCCGG TCTGGTAAGC
 2341 ACAACCATGC AGAATGAAGC CGTCCGTCTG CGTCCGAAAC GCTGGAAAGC GGAAAATCAG
 2401 GAAGGGATGG CTGAGGTGCGC CCGGTTTATT GAAATGAACG GCTCTTTGC TGACGAGAAC
 2461 AGGGACTGGT GAAATGCAGT TTAAGTTTA CACCTATAAA AGAGAGAGCC GTTATCGTCT
 2521 GTTTGTGGAT GTACAGAGTG ATATTATTGA CACGCCGGG CGACGGATGG TGATCCCCCT-

FIGURE 22B

38/240

2581 GGCCAGTGCA CGTCTGCTGT CAGATAAAAGT CTCCCGTGAA CTTTACCCGG TGGTGCATAT
 2641 CGGGGATGAA AGCTGGCGCA TGATGACCAC CGATATGGCC AGTGTGCCGG TCTCCGTTAT
 2701 CGGGGAAGAA GTGGCTGATC TCAGCCACCG CGAAAATGAC ATCAAAAACG CCATTAACCT
 2761 GATGTTCTGG GGAATATAAA TGTCAGGCTC CCTTATACAC AGCCAGTCTG CAGGTCGACC
 2821 ATAGTGACTG GATATGTTGT GTTTTACAGT ATTATGTAGT CTGTTTTTTA TGCAAAATCT
 2881 AATTAAATAT ATTGATATTT ATATCATTTT ACGTTTCTCG TTCAAGCTTC TTGTACAAAG
 2941 TGGTGATGCC CATATGGAA TTCAAAGGCC TACGTCGACG AGCTCACTAG TCGCGGCCGC
 3001 TTCTAGAGGA TCCCTCGAGG CATCGGTAC CAAGCTTGGC TGTTTTGGC GATGAGAGAA
 3061 GATTTTCAGC CTGATACAGA TTAAATCAGA ACGCAGAAGC GGTCTGATAA AACAGAATTT
 3121 GCCTGGCGC AGTAGCGCG TGTTCCACC TGACCCCATG CCGAACTCAG AAGTAAACG
 3181 CCGTAGCGCC GATGGTAGTG TGGGTTCTCC CCATGCGAGA GTAGGAACT GCCAGGCATC
 3241 AAATAAAACG AAAGGCTCA GTCGAAAGACT GGGCCTTCG TTTTATCTGT TGTGTCGG
 3301 TGAACGCTCT CCTGAGTAGG ACAAAATCCGC CGGGAGCGGA TTTGAACGTT GCGAACAC
 3361 GGCCCCGAGG CTGGCGGGCA GGACGCCGC CATAAAACTGC CAGGCATCAA ATTAAGCAGA
 3421 AGCCCATCCT GACGGATGGC CTTTTGCGT TTCTACAAAC TCTTTTTGTT TATTTTCTA
 3481 AATACATTCA AATATGTATC CGCTCATGAG ACAATAACCC TGATAAAATGC TTCAATAATA
 3541 TTGAAAAAAGG AAGAGTATGA GTATTCAACA TTTCGCTGTC GCCCTTATTG CCTTTTTGTC
 3601 GGCATTTGC CTTCTGTTT TTGCTCACCC AGAAACGCTG GTGAAAGTAA AAGATGCTGA
 3661 AGATCAGTTG GGTGACAGAG TGGGTTACAT CGAACCTGGAT CTCAACAGCC GTAAGATCCT
 3721 TGAGAGTTT CGCCCCGAG AACGTTTCCC AATGATGAGC ACTTTTAAAG TTCTGCTATG
 3781 TGGCGCGGTAA TTATCCGTT TGACGCCGG GCAAGAGCAA CTGGTCGCC GCATACACTA
 3841 TTCTCAGAAT GACTTGGTTG AGTACTCACC AGTCACAGAA AAGCATCTTA CGGATGGCAT
 3901 GACAGTAAGA GAATTATGCA GTGCTGCCAT AACCATGAGT GATAAACACTG CGGCCAACTT
 3961 ACTTCTGACA ACGATCGGAG GACCGAAGGA GCTAACCGCT TTTTGACACA ACATGGGGGA
 4021 TCATGTAACG CGCCTTGATC GTTGGGAACC GGAGCTGAAT GAAGCCATAC CAAACGACGA
 4081 GCGTGACACC ACGATGCCCTA CAGCAATGGC AACAAACGTT CGCAAACACTAT TAACTGGCGA
 4141 ACTACTTACT CTAGCTTCCC GGCAACAATT AATAGACTGG ATGGAGGCGG ATAAAGTTGC
 4201 AGGACCACTT CTGCGCTCGG CCCTTCCGGC TGGCTGGTTT ATTGCTGATA AATCTGGAGC
 4261 CGGTGAGCGT GGGTCTCGCG GTATCATTGC AGCACTGGG CCAGATGGT AGCCCTCCG
 4321 TATCGTAGTT ATCTACACGA CGGGAGTCAGA GGCAACTATG GATGAACGAA ATAGACAGAT
 4381 CGCTGAGATA GGTGCTCAC TGATTAAGCA TTGTTAATCG TCAGACCAAG TTTACTCATA
 4441 TATACTTTAG ATTGATTTAA AACTTCATTT TAAATTTAA AGGATCTAGG TGAAGATCCT
 4501 TTTTGATAAT CTCATGACCA AAATCCCTTA ACGTGAGTT TCGTTCCACT GAGCGTCAGA
 4561 CCCCGTAGAA AAGATCAAAG GATCTCTTG AGATCCTTTT TTTCTGCGC TAATCTGCTG
 4621 CTTGCAAACA AAAAAACAC CGCTACCAGC GGTGGTTGT TTGCCGGATC AAGAGCTACC
 4681 AACTCTTTT CCGAAGGTAA CTGGCTTCAG CAGAGCGCAG ATACCAAATA CTGCTCTTCT
 4741 AGTAGCGCG TAGTTAGGCC ACCACTTCAA GAACTCTGTA GCACCGCCTA CATAACCTCGC
 4801 TCTGCTAACATC CTGTTACCAAG TGGCTGCTGC CAGTGGCGAT AAGTCGTGTC TTACCGGGTT
 4861 GGACTCAAGA CGATAGTTAC CGGATAAGGC GCAGCGGTG GGCTGAACGG GGGGTTCTGT
 4921 CACACAGCCC AGCTTGGAGC GAACGACCTA CACCGAACTG AGATACCTAC AGCGTGAGCT
 4981 ATGAGAAAGC GCCACGCTTC CCGAAGGGAG AAAGGCGGAC AGGTATCCGG TAAGCGGCAG
 5041 GGTGGAACA GGAGAGCGCA CGAGGGAGCT TCCAGGGGA AACGCTGGT ATCTTATAG
 5101 TCCCTGCGG TTTCGCCACC TCTGACTTGA GCGTCGATTT TTGTGATGCT CGTCAGGGGG
 5161 GCGGAGCCTA TGGAAAAAACG CCAGCAACGC GGCCTTTTTA CGGTTCTGG CCTTTTGCTG
 5221 GCCTTTGCT CACATGTTCT TTCCCTGCTT ATCCCTGAT TCTGTGGATA ACCGTATTAC
 5281 CGCTTTGAG TGAGCTGATA CCGCTCGCCG CAGCGAACG ACCGAGCGCA GCGAGTCAGT
 5341 GAGCGAGGAA CGGGAAAGAGC GCCTGATGCG GTATTTCTC CTTACGCATC TGTGCGTAT
 5401 TTCACACCGC ATAATTTGT TAAAATTCGC GTTAAATTTT TGTTAAATCA GCTCATTTT
 5461 TAACCAATAG GCGAAATCG GCAAAATCCC TTATAAATCA AAAGAATAGA CCGAGATAGG
 5521 GTTGAATGTT GTTCCAGTTT GGAACAAGAG TCCACTATTA AGAACACGTGG ACTCCAACGT
 5581 CAAAGGGCGA AAAACCGTAT ATCAGGGCGA TGGCCCCACTA CGTGAACCAT CACCCCTAAC
 5641 AAGTTTTTG GGGTCGAGGT GCGCTAAAGC ACTAAATCGG AACCCCTAAAG GGAGCCCCCG
 5701 ATTTAGAGCT TGACGGGGAA AGCCGGCGA CGTGGCGAGA AAGGAAGGGAA AGAAAGCGAA
 5761 AGGAGCGGGC GCTAGGGCGC TGGCAAGTGT AGCGGTACAG CTGCGCGTAA CCACCCACACC
 5821 CGCCCGCTT ATGCGCCGC TACAGGGCGC GTCCCATTCG CCATTCAAGGC TGCTATGGTG
 5881 CACTCTCAGT ACAATCTGCT CTGATGCCGC ATAGTTAACG CAGTATAACAC TCCGCTATCG
 5941 CTACGTGACT GGGTCATGGC TGCGCCCCGA CACCCGCCAA CACCCGCTGA CGCGCCCTGA
 6001 CGGGCTTGTC TGCTCCCGGC ATCCGCTTAC AGACAAGCTG TGACCGTCTC CGGGAGCTGC-

FIGURE 22C

39/240

6061 ATGTGTCAGA GGTTTCACC GTCATCACCG AAACGCGCGA GGCAGCAGAT CAATTGCGC
6121 GCGAAGGCAG AGCGGCATGC ATTTACGTTG ACACCATCGA ATGGTGCAAAC CCGTTGCG
6181 GTATGGCATG ATAGCGCCCG GAAGAGAGTC AATTCAAGGT GGTGAATGTG AAACCAGTAA
6241 CGTTATACGA TGTCGCAGAG TATGCCGGTG TCTCTTATCA GACCCTTCC CGCGTGGTGA
6301 ACCAGGCCAG CCACGTTCT GCGAAAACGC GGGAAAAAGT GGAAGCGGCG ATGGCGGAGC
6361 TGAATTACAT TCCCAACCGC GTGGCACAAC AACTGGCGGG CAAACAGTCG TTGCTGATTG
6421 GCGTTGCCAC CTCCAGTCG GCCCTGCACG CGCCGTCGCA AATTGTCGCG GCGATTAAAT
6481 CTCGCGCCGA TCAACTGGGT GCCAGCGTGG TGGTGTGAT GGTAGAACGA AGCGGCGTCG
6541 AAGCCTGTAA AGC

FIGURE 22D

40/240

Figure 23A: pDEST3

GST fusions in E. coli

154 cggttc tgg caaaata ttc tga aat gag ctg ⁻³⁵ Trc promoter
 gcc aag acc gtt tat aag act tta ctc gac ⁻¹⁰ aac tgt att aat cat cgg ctc
 gta taa ^{→ mRNP} ttg gaa tga gcg gat aac aat ttc aca cag gaa aca gta
 cat att aca cac ctt aac act cgc cta ttg tta aag tgt gtc ctt tgt cat
 205 ttc atg tcc cct ata cta ggt tat tgg aaa att aag ggc ctt gtg caa ccc
 256 M S P I L → GST ^{.....}
 aag tac agg gga tat gat cca ata acc ttt taa ttc ccg gaa cac gtt ggg

919 "GST → R G S R R A S V G S P S T S
 ctg gtt ccg cgt gga tct cgt cgt gca tct gtt gga tcc cca tca aca agt
 gac caa ggc gca cct aga gca gca cgt aga caa cct agg ggt agt ^{tgt tca}
 970 ~~4 Y K K~~ ^{attR1}
~~ctg xat dax aad aac gct gaa cga gaa acg taa aat gat ata aat arc aat ata~~
~~aac atg ttt ttg cga crt gct crt tgc att tta cta tat tta tag tta tat~~

41/260

pDEST3 6823 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
150..200	Trc
1087..963	attR1
1337..1996	CmR
2116..2200	inactivated ccdA
2338..2643	ccdB
2684..2808	attR2
3231..4091	ampR
5295..6254	lacIq

1 ACGTTATCGA CTGCACGGTG CACCAATGCT TCTGGCGTCA GGCAGCCATC GGAAGCTGTG
 61 GTATGGCTGT GCAGGGTCGTA AACACTGCA TAATTCGTGT CGCTCAAGGC GCACTCCCGT
 121 TCTGGATAAT GTTTTTGCG CCGACATCAT AACGGTTCTG GCAAATATTG TGAAATGAGC
 181 TGTGACAAT TAATCATCGG CTCGTATAAT GTGTGGAATT GTGAGCGGAT AACAAATTCA
 241 CACAGGAAAC AGTATTCTATG TCCCCCTATAC TAGGTTATTG GAAAATTAAAG GGCCTTGTGC
 301 AACCCACTCG ACTTCTTTG GAATATCTTG AAGAAAAATA TGAAGAGCAT TTGTATGAGC
 361 GCGATGAAGG TGATAAAATGG CGAAACAAAA AGTTTGAATT GGGTTTGGAG TTTCCAATC
 421 TTCCCTTATTA TATTGATGGT GATGTTAAAT TAACACAGTC TATGCCATC ATACGTTATA
 481 TAGCTGACAA GCACAAACATG TTGGGTGGTT GTCCAAAAGA GCGTGCAGAG ATTTCAATGC
 541 TTGAAGGAGC GGTTTTGGAT ATTAGATACG GTGTTTCGAG AATTGCATAT AGTAAAGACT
 601 TTGAAACTCT CAAAGTTGAT TTTCTTAGCA AGCTACCTGA AATGCTGAAA ATGTTGAG
 661 ATCGTTTATG TCATAAAAACA TATTAAATG GTGATCATGT AACCCATCCT GACTTCATGT
 721 TGTATGACGC TCTTGTATGGT GTTTTATACCA TGGACCCAAT GTGCCTGGAT GCGTTCCCAA
 781 AATTAGTTG TTTTAAAAAA CGTATGAAAG CTATCCCACA AATTGATAAG TACTTGAAT
 841 CCAGCAAGTA TATAGCATGG CCTTTGCAGG GCTGGCAAGC CACGTTTGGT GGTGGCGACC
 901 ATCCCTCCAA ATCGGATCTG GTTCCCGCTG GATCTCGTCG TGCACTCTGTT GGATCCCCAT
 961 CAACAAAGTT GTACAAAAAA GCTGAACGAG AAACGTAAAA TGATATAAAT ATCAATATAT
 1021 TAAATTAGAT TTGCAATAAA AAACAGACTA CATAATACTG TAAAACACAA CATATCCAGT
 1081 CACTATGGCG GCCGCTAAAGT TGGCAGCATC ACCCGACGCA CTTTGCGCCG AATAAATACC
 1141 TGTGACGGAA GATCACTTCG CAGAATAAAT AAATCCTGGT GTCTCTGGT ATACCGGGAA
 1201 GCCCTGGGCC AACTTTGGC GAAAATGAGA CGTTGATCGG CACGTAAGAG GTTCCAACCTT
 1261 TCACCCATAAT GAAAATAGAT CACTACCGGG CGTATTGTTT GAGTTATCGA GATTTTCAGG
 1321 AGCTAAGGAA GCTAAAATGG AGAAAAAAAT CACTGGATAT ACCACCGTTG ATATATCCCA
 1381 ATGGCCTCGT AAAGAACATT TTGAGGCATT TCAGTCAGTT GCTCAATGTA CCTATAACCA
 1441 GACCGTTCACTGGATATTAA CGGCCTTTTT AAAGACCGTA AGAAAAAAATA AGCACAAGTT
 1501 TTATCCGGCC TTTATTCACTA TTCTTGCCTG CCTGTGAAT GCTCATCCGG AATTCCGTAT
 1561 GGCAATGAAA GACGGTGAGC TGGTGATATG GGATAGTGGT CACCTTGGT ACACCGTTT
 1621 CCATGAGCAA ACTGAAACGT TTTCATCGCT CTGGAGTGAAT TACACAGACG ATTTCCGGCA
 1681 GTTCTACAC ATATATTGCG AAGATGTGGC GTGTTACGGT GAAAACCTGG CCTATTCCC
 1741 TAAAGGGTTT ATTGAGAATA GTTTTTCTGT CTCAGCCAAT CCCTGGGTGA GTTTCACCAG
 1801 TTTGATTTA AACGTGGCCA ATATGGACAA CTTCTTCGCC CCCGTTTCA CCATGGGCAA
 1861 ATATTATACG CAAGGGCACA AGGTGCTGAT GCCGCTGGCG ATTCAAGGTT ATCATGCCGT
 1921 CTGTGATGGC TTCCATGTG GCAGAATGCT TAATGAATTA CAACAGTACT GCGATGAGTG
 1981 GCAGGGCGGG GCGTAAAGAT CTGGATCCGG CTTACTAAAA GCCAGATAAC AGTATGCGTA
 2041 TTTGCGCGCT GATTTTGCG GTATAAGAAT ATATACTGAT ATGTATACCC GAAGTATGTC
 2101 AAAAGAGGT GTGCTATGAA GCAGCGTATT ACAGTGACAG TTGACAGCGA CAGCTATCAG
 2161 TTGCTCAAGG CATATATGAT GTCAATATCT CCGGTCTGGT AAGCACAACC ATGCAGAATG
 2221 AAGCCCGTCG TCTGCGTGCC GAACGCTGGA AAGCGAAAA TCAGGAAGGG ATGGCTGAGG
 2281 TCGCCCGGTT TATTGAAATG AACGGCTTT TTGCTGACGA GAACAGGGAC TGGTGAATG
 2341 CAGTTAAGG TTTACACCTA TAAAAGAGAG AGCCGTTATC GTCTGTTTGT GGATGTACAG
 2401 AGTGATTTA TTGACACGCC CGGGCGACGG ATGGTGATCC CCCTGGCCAG TGCACGTCTG
 2461 CTGTCAGATA AAGTCTCCCG TGAACCTTAC CCGGTGGTGC ATATCGGGGA TGAAAGCTGG
 2521 CGCATGATGA CCACCGATAT GGCCAGTGTG CCGGTCTCCG TTATCGGGGA AGAAGTGGCT
 2581 GATCTCAGCC ACCGCAGAAA TGACATCAA AACGCCATTA ACCTGATGGT CTGGGAATA
 2641 TAAATGTCAG GCTCCCTTAT ACACAGCCAG TCTGCGAGTC GACCATACTG ACTGGATATG-

FIGURE 23B

42/240

2701 TTGTGTTTA CAGTATTATG TAGTCTGTT TTTATGAAA ATCTAATTAA ATATATTGAT
 2761 ATTTATATCA TTTTACGTT CTCGTTCA GC TTCTTGAC AAAGTGGTT ATGGGAATT
 2821 ATCGTGAATG ACTGACGATC TGCTCGCG TTTCGGTGA TGACGGTGA AACCTCTGAC
 2881 ACATCGAGCT CCCGGAGACG GTCACAGCTT GTCTGTAAGC GGATGCCGG AGCAGACAAG
 2941 CCCGTCAGGG CGCGTCAGCG GGTGTTGGCG GGTGTCGGGG CGCAGCCATG ACCCAGTCAC
 3001 GTAGCGATAG CGGAGTGTAT AATTCTGAA GACGAAAGGG CCTCGTATA CGCCTATTTT
 3061 TATAGGTTAA TGTCATGATA ATAATGGTTT CTAGACGTC AGGTGGCACT TTTCCGGAA
 3121 ATGTGCGCGG AACCCCTATT TGTTTATTTT TCTAAATACA TTCAAATATG TATCCGCTCA
 3181 TGAGACAATA ACCCTGATAA ATGCTTCAAT AATATTGAAA AAGGAAGAGT ATGAGTATT
 3241 AACATTTCCG TGTCGCCCTT ATTCCCTTTT TTGCGGCAIT TTGCTTCCT GTTTTGCTC
 3301 ACCCAGAAC GCTGGTAAA GTAAAAGATG CTGAAGATCA GTTGGGTGCA CGAGTGGGTT
 3361 ACATCGAATC GGATCTCAAC AGCGGTAAAGA TCCTTGAGAG TTTTCGCCCC GAAGAACGTT
 3421 TTCCAATGAT GAGCACTTTT AAAGTCTGC TATGTGGCAG GGTATTATCC CGTGGTACG
 3481 CCCGGCAAGA GCAACTCGGT CGCCGCATAC ACTATTCTCA GAATGACTG GTTGAGTACT
 3541 CACCAACTCAC AGAAAAGCAT CTTACGGATG GCATGACAGT AAGAGAATTA TGCAGTGCTG
 3601 CCATAACCAT GAGTGTAAAC ACTGCGGCCA ACTTACTTCT GACAACGATC GGAGGACCGA
 3661 AGGAGCTAAC CGCTTTTTG CACAAATGG GGGATCATGT AACTCGCCTT GATCGTTGGG
 3721 AACCGGAGCT GAATGAAGCC ATACCAAACG ACAGAGCTGA CACCAAGATG CCTGCAGCAA
 3781 TGGCAACAAAC GTTGCACAA CTATTAACGT GCGAACTACT TACTCTAGCT TCCCCGCAAC
 3841 AATTAATAGA CTGGATGGAG GCGGATAAAAG TTGCAAGGACC ACTTCTGCGC TCGGCCCTTC
 3901 CGGCTGGCTG GTTTATTGCT GATAAAATCG GAGCCGGTGA GCGTGGTCT CGCGGTATCA
 3961 TTGCAAGCACT GGGGCCAGAT GGTAAAGCCCT CCCGTATCGT AGTTATCTAC ACGACGGGA
 4021 GTCAGGCAAC TATGGATGAA CGAAATAGAC AGATCGTGA GATAGGTGCC TCACTGATTA
 4081 AGCATTGGTA ACTGTCAGAC CAAGTTACT CATATATACT TTAGATTGAT TTAAAACCTC
 4141 ATTTTAATT TAAAGGATC TAGGTGAAGA TCCTTTTGA TAATCTCATG ACCAAAATCC
 4201 CTTAACCTGA GTTTCTGTT CACTGAGCGT CAGACCCCGT AGAAAAGATC AAAGGATCTT
 4261 CTTGAGATCC TTTTTTCTG CGCGTAATCT GCTGCTTGCA AAACAAAAAA CCACCGCTAC
 4321 CAGCGGTGGT TTGTTTGCCG GATCAAGAGC TACCAACTCT TTTTCCGAAG GTAACGGCT
 4381 TCAGCAGAGC GCAGATACCA AATACTGTCC TTCTAGTGT GCGTAGTTA GGCCACCACT
 4441 TCAAGAACTC TGTAGCACCG CCTACATACC TCGCTCTGCT AATCTGTTA CCAGTGGCTG
 4501 CTGCCAGTGG CGATAAGTCG TGTCTTACCG GTTGGACTC AAGACGATAG TTACCGATA
 4561 AGGCGCAGCG GTCGGGCTGA ACGGGGGGTT CGTGCACACA GCCCAGCTTG GAGCGAACGA
 4621 CCTACACCGA ACTGAGATAC CTACAGCGT AGCTATGAGA AAGCGCCACG CTTCCGAAG
 4681 GGAGAAAGGC GGACAGGTAT CCGGTAAGCG GCAGGGTCGG AACAGGAGAG CGCACGGAGG
 4741 AGCTTCCAGG GGGAAACGCC TGGTATCTTT ATAGTCTCTG CGGGTTTCGC CACCTCTGAC
 4801 TTGAGCGTCG ATTTTTGTGA TGCTCGTCAG GGGGGCGGAG CCTATGGAAA AACGCCAGCA
 4861 ACGCGCCCTT TTACGGTTC CTGGCCTTT GCTGGCCTTT TGCTCACATG TTCTTCCTG
 4921 CGTTATCCCC TGATTCTGTG GATAACCGTA TTACCGCCTT TGAGTGAGCT GATACCGCTC
 4981 GCCGCAGCCG AACGACCGAG CGCAGCGAGT CAGTGAGCGA GGAAGCGGAA GAGCGCCTGA
 5041 TCGGGTATTT TCTCTTACG CATCTGTGCG GTATTTACA CGCATAAAAT TCCGACACCA
 5101 TCGAATGGTG CAAAACCTTT CGCGGTATGG CATGATAGCG CCCGGAAGAG AGTCAATTCA
 5161 GGGTGGTGA TGTGAAACCA GTAACCTTAT ACCGATGTGCG AGAGTATGCC GGTGTCCTT
 5221 ATCAGACCGT TTCCCGCTG GTGAACCAGG CCAGGCCAGT TTCTGCAAAC ACGCGGGAAA
 5281 AAGTGGAAAGC GCGATGGCG GAGCTGAATT ACATTCCTAA CGCGTGGCA CAACAACCTGG
 5341 CGGGCAAACA GTCGTTGCTG ATTGGCGTTG CCACCTCCAG TCTGGCCCTG CACGCCCGT
 5401 CGCAAATTGT CGCGGCGATT AAATCTCGCG CGCATCAACT GGGTGCAGC GTGGTGGTGT
 5461 CGATGGTAGA ACGAAGCGC GTCGAAGCCT GTAAAGCGC GGTGCACAAT CTTCTCGCGC
 5521 AACCGCGTCAG TGGGCTGATC ATTAACATAC CGCTGGATGA CCAGGATGCC ATTGCTGTGG
 5581 AAGCTGCCTG CACTAATGTT CCGCGTTAT TTCTTGATGT CTCTGACCAAG ACACCCATCA
 5641 ACAGTATTAT TTCTCCCAT GAAGACGGTA CGCGACTGGG CGTGGAGCAT CTGGTGCAT
 5701 TGGGTACCA GCAAATCGCG CTGTTAGCGG GCCCATTAAG TTCTGCTCG GCGCGCTCG
 5761 GTCTGGCTGG CTGGCATAAA TATCTCACTC GCAATCAAAT TCAGCCGATA CGGGAACGGG
 5821 AAGGCGACTG GAGTGCCATG TCCGGTTTTC AACAAACCAT GCAAATGCTG AATGAGGGCA
 5881 TCGTTCCAC TCGGATGCTG GTGCGCAACG ATCAGATGCC GCTGGGCGCA ATGCGCGCCA
 5941 TTACCGAGTC CGGGCTGCCG GTTGGTGCAG ATATCTCGT AGTGGGATAC GACGATACCG
 6001 AAGACAGCTC ATGTTATATC CCGCCGTTAA CCACCATCAA ACAGGATTG CGCCTGCTGG
 6061 GGCAAACCGAG CGTGGACCGC TTGCTGCAAC TCTCTCAGGG CCAGGCGGTG AAGGGCAATC
 6121 AGCTGTTGCC CGTCTCACTG GTGAAAAGAA AAACCCACCT GCGCCCAAT ACGAAACCG-

FIGURE 23C

43/240

6181 CCTCTCCCCG CGCGTTGGCC GATTCAATTAA TGCAGCTGGC ACGACAGGTT TCCCGACTGG
6241 AAAGCGGGCA GTGAGCGCAA CGCAATTAAT GTGAGTTAGC TCACTCATTA GGCACCCAG
6301 GCTTTACACT TTATGCTTCC GGCTCGTATG TTGTGTGGAA TTGTGAGCGG ATAACAATT
6361 CACACAGGAA ACAGCTATGA CCATGATTAC GGATTCACTG GCCGTCGTTT TACAAACGTCG
6421 TGACTGGAA AACCCCTGGCG TTACCCAATC TAATCGCCTT GCAGCACATC CCCCTTCGCG
6481 CAGCTGGCGT AATAGCGAAG AGGCCCGCAC CGATCGCCCT TCCCAACAGT TGCAGCAGCCT
6541 GAATGGCGAA TGGCGCTTTG CCTGGTTTCC GGCAACCAGAA GCGGTGCCGG AAAGCTGGCT
6601 GGAGTGCAT CTTCTGAGG CCGATACTGT CGTCGTCCCC TCAAACGTGGC AGATGCACGG
6661 TTACGATGCG CCCATCTACA CCAACGTAAC CTATCCCATT ACGGTCAATC CGCCGTTTGT
6721 TCCCACGGAG AATCCGACGG GTTGTACTC GCTCACATT AATGTTGATG AAAGCTGGCT
6781 ACAGGAAGGC CAGACGCGAA TTATTTTGAGA TGGCGTTGGAA ATT

FIGURE 23D

44/240

Figure 24A: pDEST4

His6-thioredoxin fusions in *E. coli*

-35 Trc promoter -10
919 gca aat att ctg aaa tga get ~~gtt~~ gac ~~att~~ taa tca tcc ggt ccg ~~cat~~ ~~aat~~
cgt tta taa gac ttt act cga ~~cba~~ ~~ctg~~ ~~tta~~ att agt agg cca ggc ~~ata~~ ~~tta~~ tca

978 ctg tgg ^{→ mRN} tat tgt gag egg ata aca att tca cac agg aaa cag acc atg ggt Met Glu
gac acc tta aca ctc gcc tat tgt taa agt gtg tcc ttt gtc tgg tac cca

Hs 6

TEV protease → Thioredoxin - - (\approx 150 amino acids)

1072 Pro Glu Glu Asp His Met Ser Arg Lys Ile Ile His Lys Thr Arg Arg Arg Ser
tct cag ggc gcc cat atg agc gat aaa att att cac ctg act gac tga ctg ctg tca
aaa gtc ccg cgg gta tac tcg cta ttt taa taa gtg gac tga ctg ctg tca

1429 ATR 1
~~gat gaf gat Atg gat Lys Val Pro Ile~~
~~cta ctg cta ctg ttc cat ggg tag~~
~~gtc agt ttc tcc add add gct gat coa~~
~~tgt tca aac arg ffr ffr ffr ega ott gct~~

45/240

pDEST4 6964 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
964..1003	Trc
1577..1453	attR1
1827..2486	CmR
2606..2690	inactivated ccdA
2828..3133	ccdB
3174..3298	attR2
3872..4777	ampR
5378..5538	ori
5778..6215	flori (f1 intergenic region)
6587..704	lacIq

1 CTATCCGCTG GATGACCAGG ATGCCATTGC TGTGGAAGCT GCCTGCACTA ATGTTCCGGC
 61 GTTATTCTT GATGTCTCTG ACCAGACACC CATCAACAGT ATTATTTCTT CCCATGAAGA
 121 CGGTACGCGA CTGGCGTGG AGCATCTGGT CGCATTGGGT CACCAGAAA TCGCGCTGTT
 181 AGCGGGCCA TTAAGTTCTG TCTCGCGCG TCTGCGTCTG GCTGGCTGGC ATAAATATCT
 241 CACTCGCAAT CAAATTTCAGC CGATACCGGA ACGGGAAGGC GACTGGAGTG CCATGTCCGG
 301 TTTTCAACAA ACCATGCAA TGCTGAATGAA GGGCATCGTT CCCACTGCGA TGCTGGTTGC
 361 CAACGATCAC ATGGCGCTGG CGCCAATGCG CGCATTAC GAGTCCGGC TGCGCGTTGG
 421 TGCGGATATC TCGGTAGTGG GATAACGCGA TACCGAACGAC AGCTCATGTT ATATCCGCC
 481 GTCAAACACC ATCAAACAGG ATTTTCGCT GCTGGGGCAA ACCAGCGTGG ACCGCTTGCT
 541 GCAACTCTCT CAGGGCCAGG CGGTGAAGGG CAATCAGCTG TTGCCCCGTCT CACTGGTGA
 601 AAGAAAAAAC ACCCTGGCAC CCAATACGCA AACCGCTCT CCCCGCGCGT TGGCCGATT
 661 ATTAATGCAG CTGGCACAGC AGGTTTCCC ACTGGAAAGC GGGCAGTGA CGCAACGCAA
 721 TTAATGTGAG TTAGCGCGAA TTGATCTGGT TTGACAGCTT ATCATCGACT GCACGGTGCA
 781 CCAATGCTTC TGGCGTCAGG CAGCCATCGG AAAGCTGTGGT ATGGCTGTGC AGGTCTGAA
 841 TCACACTGATA ATTCGTGTG CTCAAAGGCG ACTCCCGTT TGGATAATGT TTTTGC
 901 GACATCATAA CGGTTCTGGC AAATATTCTG AAATGAGCTG TTGACAATTAA ATCATCCGGT
 961 CCGTATAATC TGTGGAATTG TGAGCGGATA ACAATTTCAC ACAGGAAACA GACCATGGGT
 1021 CATCATCATC ATCATCACCA TTACGATATC CCAACGACCG AAAACCTGTA TTTTCAGGGC
 1081 GCCCATATGA GCGATAAAAT TATTCACCTG ACTGACGACA GTTTTGACAC GGATGTACTC
 1141 AAAGCGGACG GGGCGATCCT CGTCGATTT TGCGCAGAGT GGTGCGGTCC GTGAAAATG
 1201 ATCGCCCCGA TTCTGGATGA AATCGCTGAC GAATATCAGG GCAAACGTGAC CGTTGCAAAA
 1261 CTGAAACATCG ATCAAACACC TGGCACTCGC CCGAAATATG GCATCCGTGG TATCCGACT
 1321 CTGCTGCTGT TCAAAAACGG TGAAGTGGCG GCAACCAAAG TGGGTGCACT GTCTAAAGGT
 1381 CAGTTGAAAG AGTTCCCTGA CGCTAACCTG GCCGGTTCTG GTTCTGGTGA TGACGATGAC
 1441 AAGGTACCCA TCACAAGTTT GTACAAAAAA GCTGAACGAG AAACGTAAGA TGATATAAAT
 1501 ATCAATATAT TAAATTAGAT TTGCACTAA AACAGACTA CATAATACTG TAAAACACAA
 1561 CATATCCAGT CACTATGGCG GCCGCTAAGT TGGCAGCATC ACCCGACGCA CTTTGC
 1621 AATAAATACC TGTGACGGAA GATCACTTCG CAGAATAAAAT AAATCCTGGT GTCCCTGTG
 1681 ATACCGGGAA GCCCTGGGCC AACTTTGGC GAAAATGAGA CGTTGATCGG CACGTAAGAG
 1741 GTTCCAACCTT TCACCATAAT GAAATAAGAT CACTACCGGG CGTATTTTTT GAGTTATCGA
 1801 GATTTTCAGG AGCTAAGGAA GCTAAAATGG AGAAAAAAAT CACTGGATAT ACCACCGTTG
 1861 ATATATCCCA ATGGCATCGT AAAGAACATT TTGAGGCATT TCAGTCAGTT GCTCAATGTA
 1921 CCTATAACCA GACCGTTCAAG CTGGATATTA CGGCCCTTTT AAAGACCGTA AAGAAAAATA
 1981 AGCACAAGTT TTATCCGGCC TTTATTCACTA TTCTTGCCCG CCTGATGAAT GCTCATCCGG
 2041 AATTCGTTAT GGCAATGAAA GACGGTGAGC TGGTGAATATG GGATAGTGGT CACCCCTGTT
 2101 ACACCGTTT CCATGAGCAA ACTGAAACGT TTTCATCGCT CTGGAGTGA TACCACGACG
 2161 ATTCGGCA GTTCTACAC ATATATTCTG AAGATGTGGC GTGTTACGGT GAAAACCTGG
 2221 CCTATTCTCC TAAAGGGTTT ATTGAGAATA TGTGTTTCTG CTCAGCCAAT CCCTGGGTGA
 2281 GTTCACTGAG TTTTGATTAA AACGTTGGCA ATATGGACAA CTTCCTCGCC CCCGTTTCA
 2341 CCATGGGCAA ATATTATACG CAAGGGCACA AGGTGCTGAT GCCGCTGGCG ATTCA
 2401 ATCATGCCGT CTGTGATGGC TTCCATGTGCG GCAGAAATGCT TAATGAATTAA CAACAGTACT
 2461 GCGATGAGTG GCAGGGCGGG GCGTAAACGC GTGGATCCGG CTTACTAAA GCCAGATAAC
 2521 AGTATGCGTA TTTGCGCGCT GATTTTGCG GTATAAGAAT ATATACTGAT ATGTATAACCC-

FIGURE 24B

2581 GAAGTATGTC AAAAGAGGT GTGCTATGAA GCAGCGTATT ACAGTGACAG TTGACAGCGA
 2641 CAGCTATCAG TTGCTCAAGG CATATATGAT GTCAATATCT CCGGTCTGGT AAGCACAAACC
 2701 ATGCAGAATG AAGCCCCTCG TCTCGGTGCC GAACGCTGGA AAGCGGAAAA TCAGGAAGGG
 2761 ATGGCTGAGG TCGCCCGGTT TATTGAAATG AACGGCTCTT TTGCTGACGA GAACAGGGAC
 2821 TGGTGAATG CAGTTAACGG TTTACACCTA TAAAAGAGAG AGCGTTATC GTCTGTTGT
 2881 GGATGTACAG AGTGTATTA TTGACACGCC CGGGCGACGG ATGGTGATC CCCTGGCCAG
 2941 TGCACGTCTG CTGTCAGATA AAGTCTCCCG TGAACCTTAC CCGGTGGTGC ATATCGGGGA
 3001 TGAAAGCTGG CGCATGATGA CCACCGATAT GGCCAGTGTG CCGGTCTCCG TTATCGGGGA
 3061 AGAAGTGGCT GATCTCAGCC ACCGGAAAA TGACATCAAA AACGCCATTA ACCTGATGTT
 3121 CTGGGGATAA TAAATGTCAG GCTCCCTTAC ACACAGCCAG TCTGCAGGTC GACCATAGTG
 3181 ACTGGATATG TTGTGTTTTA CAGTATTATG TAGTCTGTTT TTATGCAAATCTAATTAA
 3241 ATATATTGAT ATTTATATCA TTTTACGTTT CTCGTTCAAGC TTTCTTGTA AAAGTGGTGA
 3301 TGGGGATCCT CTAGAGTCGA CCTGCAGTAA TCGTACAGGG TAGTACAAT AAAAAGGCA
 3361 CGTCAGATGA CGTGCCTTTT TTCTTGAG CAGTAAGCTT GGCTGTTTG GCGGATGAGA
 3421 GAAGATTTTC AGCCTGATAC AGATTAATC AGAACGAGA AGCGGTCTGA TAAAACAGAA
 3481 TTTGCCTGGC GGCAGTAGCG CGGTGGTCCC ACCTGACCCC ATGCCGAACCT CAGAAGTGA
 3541 ACGCCGTAGC GCCGATGGTA GTGTGGGTC TCCCCATGCG AGAGTAGGG ACTGCCAGGC
 3601 ATCAAATAAA ACGAAAGGCT CAGTCGAAAG ACTGGCCTT TCCTGTTATC TGTTGTTGT
 3661 CGGTGAACGC TCTCCTGAGT AGGACAAATC CGCCGGGAGC GGATTTGAAC GTTGCAGAAGC
 3721 AACGGCCCGG AGGGTGGCGG GCAGGAGCC CGCCATAAAC TGCCAGGCAT CAAATTAAAGC
 3781 AGAAGGCCAT CCTGACGGAT GGCCTTTTG CGTTTCTACA AACTCTTTT GTTTATTTT
 3841 CTAAATACAT TCAAATATGAT ATCCGCTCAT GAGACAATAA CCCTGATAAA TGCTTCATAA
 3901 ATATTGAAAA AGGAAGAGTA TGAGTATTCA ACATTTCCGT GTGCCCTTA TTCCCTTTTT
 3961 TGCGGCATT TGCCCTTCCTG TTTTGCTCA CCCAGAAACG CTGGTGAAG TAAAAGATGC
 4021 TGAAGATCAG TTGGGTGCAAC GAGTGGGTTA CATCGAAGCTG GATCTCAACA GCGGTAAGAT
 4081 CCTTGAGAGT TTTCGCCCCG AAGAACGTTT TCCAATGATG AGCACTTTA AAGTTCTGCT
 4141 ATGTGGCGCG GTATTATCCC GTGTTGACGC CGGGCAAGAG CAACTCGGTG GCCGCATACA
 4201 CTATTCTCAG AATGACTTGG TTGAGTACTC ACCAGTCACA GAAAAGCATC TTACGGATGG
 4261 CATGACAGTA AGAGAATTAT GCACTGCTGC CATAACCATG AGTGATAACA CTGCGGCCAA
 4321 CTTACTTCTG ACAACGATCC GAGGACCGAA GGAGCTAAC GCTTTTTGCA ACACATGGG
 4381 GGATCATGTA ACTCGCCTTG ATCGTTGGG ACCGGAGCTG AATGAAGCCA TACCAAACGA
 4441 CGAGCGTGC ACCACGATG CTACAGCAAT GGCAACAAAC TTGCGCAAAC TATTAACCTGG
 4501 CGAACTACTT ACTCTAGCTT CCGCGCAACA ATTAATAGAC TTGATGGAGG CGGATAAAAGT
 4561 TGCAGGACCA CTTCTGCGT CGGCCCTTCC GGCTGGCTGG TTATGCTG ATAAATCTGG
 4621 AGCCGGTGAN CGTGGGTC CCGGTATCAT TGCAGCACTG GGGCCAGATG GTAAGCCCTC
 4681 CCGTATCGTA GTTATCTACA CGACGGGGAG TCAGCGAACT ATGGATGAAC GAAATAGACA
 4741 GATCGCTGAG ATAGGTGCTT CACTGATTAA GCATTGGTAA CTGTCAGACC AAGTTTACTC
 4801 ATATATACTT TAGATTGATT TAAAACCTCA TTTTAAATT AAAAGGATCT AGGTGAAGAT
 4861 CCTTTTGAT AATCTCATGA CAAAATCCC TTAACGTGAG TTTTCGTTCC ACTGAGCGTC
 4921 AGACCCCGTA GAAAAGATCA AAGGATCTTC TTGAGATCCT TTTTTCTGC GCGTAATCTG
 4981 CTGCTTGAA ACAAAAAAAC CACCGCTTAC AGCGGTGGTT TGTTGCGGG ATCAAGAGCT
 5041 ACCAACTCTT TTTCCGAAGG TAACTGGCTT CAGCAGAGCG CAGATACCAA ATACTGCTCT
 5101 TCTAGTGTAG CCGTAGTTAG GCCACCACTT CAAGAACTCT GTAGCACCGC CTACATACCT
 5161 CGCTCTGCTA ATCCCTGTTAC CAGTGGCTGC TGCCAGTGGC GATAAGTCGT GTCTTACCGG
 5221 GTTGGACTCA AGACGATAGT TACCGGATAA GGCGCAGCGG TCGGGCTGAA CGGGGGGTTTC
 5281 GTGCACACAG CCCAGCTTGG AGCGAACGAC CTACACCGAA CTGAGATACC TACAGCGTGA
 5341 GCTATGAGAA AGCGCCACGC TTCCCGAAGG GAGAAAGCGC GACAGGTATC CGGTAAGCGG
 5401 CAGGGTCGGA ACAGGAGAGC GCACGAGGG ACGTCCAGGG GGAAACGCCG GGTATCTTTA
 5461 TAGTCCTGTC GGGTTTCGCC ACCTCTGACT TGAGCGTCA TTTTTGTGAT GCTCGTCAGG
 5521 CGGGCGGGAGC CTATGGAAA ACGCCAGCAA CGCCGCTTT TTACGGTTCC TGGCCTTTTG
 5581 CTGGCCCTTT GCTCACATGT TCTTCTGCTG GTTATCCCT GATTCTGTGG ATAACCGTAT
 5641 TACCGCCCTT GAGTGAGCTG ATACCGCTCG CGCAGGCCGA ACGACCGAGC GCAGCGAGTC
 5701 AGTGAGCGAG GAAGCGGAAG AGCGCCTGAT GCGGTATTTT CTCCCTACGC ATCTGTGCGG
 5761 TATTTCACAC CGCATAATT TGTAAAATT CGCGTTAAAT TTTGTTAAA TCAGCTCATT
 5821 TTTTAACCAA TAGGCCGAAA TCGGAAAAT CCCTTATAAA TCAAAAGAAT AGACCGAGAT
 5881 AGGGTTGAGT GTTGTTCAG TTTGGAACAA GAGTCCACTA TTAAAGAAGC TGGACTCCAA
 5941 CGTCAAAGGG CGAAAAACCG TCTATCAGGG CGATGGCCCA CTACGTGAAC CATCACCTA
 6001 ATCAAGTTT TTGGGGTCGA GGTGCCGTTAA AGCACTAAAT CGGAACCCCTA AAGGGAGCCC-

FIGURE 24C

47/740

6061 CCGATTTAGA GCTTGACGGG GAAAGCCGGC GAACGTGGCG AGAAAGGAAG GGAAGAAAGC
6121 GAAAGGAGCG GGCCTAGGG CGCTGGCAAG TGTAGCGGTC ACGCTGCCTG TAACCAC
6181 ACCCGCCGCG CTTAATGCC CGCTACAGGG CGCGTCCATT CGCCATTCA GCTGCTATGG
6241 TGCACCTCTCA GTACAATCTG CTCTGATGCC GCATAGTTAA GCCAGTATAC ACTCCGCTAT
6301 CGCTACGTGA CTGGGTCATG GCTGCCGCCC GACACCCGCC AACACCCGCT GACGCCCT
6361 GACGGGCTTG TCTGCTCCCG GCATCCGCTT ACAGACAAGC TGTGACCGTC TCCGGAGCT
6421 GCATGTGTCA GAGGTTTTCA CCGTCATCAC CGAAACGCGC GAGGCAGCAG ATCAATTGCG
6481 GCGCGAAGGC GAAGCGGCAT GCATTTACGT TGACACCATC GAATGGTGCA AAACCTTCG
6541 CGGTATGGCA TGATAGCGCC CGGAAGAGAG TCAATTCAAGG GTGGTGAATG TGAAACCAGT
6601 AACGTTATAC GATGTCGCAG AGTATGCCGG TGTCTCTTAT CAGACCGTT CCCGCGTGGT
6661 GAACCAGGCC AGCCACGTTT CTGCGAAAAC GCGGGAAAAA GTGGAAGCGG CGATGGCGGA
6721 GCTGAATTAC ATTCCCAACC GCGTGGCACA ACAACTGGCG GGCACACAGT CGTTGCTGAT
6781 TGGCGTTGCC ACCTCCAGTC TGGCCCTGCA CGCGCCGTCG CAAATTGTCG CGCGATTAA
6841 ATCTCGCGCC GATCAACTGG GTGCCAGCGT GGTGGTGTG ATGGTAGAAC GAAGCGGCCT
6901 CGAACGCTGT AAAGCGGCCG TGACACAATCT TCTCGCGCAA CGCGTCAGTN GGGCTGATCA
6961 TTAA

FIGURE 24D

48/240

Figure 25A pDEST5

pSPORT '+' (for sequencing, probes,
phagemid)

1. agg cac ccc agg ~~dtt tac act tta tgc ttc cgg ctc gaa tgt ttt~~ lac promoter -10 lac RNA
 tcc gtg ggg tcc ~~gaa atg tga aat acg aag gcc gag cat aca aca cac ctt~~

"reverse" sequencing primers

52 ttg tga gcg gat aac aat ttc aca cag gaa aca get ~~atg acc atg att acg~~ $\rightarrow \alpha-$ peptide
 aac act cgc cta ttg tta aag tgt gtc ctt tgt cga tac tgg tac taa tgc

103 cca age tct aat acg act cac tat ~~agg gaa agc tgg tac gcc tgc~~ T7 promoter \rightarrow T7 RNA Pst Kpn
 ggt tcg agh tta tgc tga gtg ata tcc gtt teg acc atg cgg ~~tac~~ acg ~~tct~~ atg

154 EcoRI Sma I Sal I Int attR1
 cgg tcc gga att ccc ~~ggg tcc~~ acg atc ~~aca agt tgg xac aza aea gct gaa~~
 gcc agg cct taa ~~ggg~~ ccc acg ~~tgc tag~~ ~~tgt tca aac atg ttt~~ ttc cgg ~~att~~ gtt

Gene

1990 Int attR2 Spe
~~tct acg ttt ctc ott cag ctt~~ ~~tct tgg aca aag tgg tga tca~~ ~~cct gtc ggc~~
~~xaa tgc aza gag caa gtc gag aga aca tgg ttc acc act agt gat dag cgg~~

2041 Nci I Xba I Bam Hinf III Mlu Sph I
~~bgc cgc tct aga gga tcc aag ctt~~ ~~acg tac ggg tgc atg~~ cga cgt cat agc
 ccc ggg aga tct cct aag ttc gaa tgc atg cgc ~~acg tac gct gca gta tcg~~

2092 tct ~~tct ata gtg cca ccc aaa dtc aat tca ctg gcc gtc gtt tta caa cgt~~ SP6 promoter
 aga ~~aga tat cac agt gga ttt aag tta agt gac cgg cag caa aat gtt gca~~
 \leftarrow SP6 RNA

"forward sequencing . . ."

2143 cgt gac tgg gaa aac cct ggc gtt acc caa ctt aat cgc ctt gca gca cat
 gca ctg acc ctt ttg gga ccc ~~gaa tgg gtt gaa tta gcg gaa cgt cgt gta~~
 .. primers

491260

Figure 25B λ DESTS

(cont'd)

50/240

pDEST5 5957 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
305..181	attR1
555..1214	CmR
1334..1418	inactivated ccdA
1556..1861	ccdB
1902..2026	attR2
2278..2733	f1 (f1 intergenic region)
2865..3722	ampR
5378..5538	ori
4756..5922	lacI

1 AGGCACCCCA GGCTTTACAC TTTATGCTTC CGGCTCGTAT GTTGTGTGGA ATTGTGAGCG
 61 GATAACAATT TCACACAGGA AACAGCTATG ACCATGATTA CGCCAAGCTC TAATACGACT
 121 CACTATAGGG AAAGCTGGTA CGCTCGCAGG TACCGTCCG GAATTCCCGG GTCGACGATC
 181 ACAAGTTGT ACAAAAAAGC TGAACAGAGA ACCTAAAATG ATATAAATAT CAATATATTA
 241 AATTAGATTT TGCAAAAAA ACAGACTACA TAATACTGTA AAACACAACA TATCCAGTCA
 301 CTATGGCGGC CGCTAAGTTG GCAGCATCAC CCCACGCACT TTGCGCCGAA TAAATACCTG
 361 TGACGGAAGA TCACCTCGCA GAATAAATAA ATCCTGGTGT CCCTGTTGAT ACCGGGAAGC
 421 CCTGGGCAA CTTTGGCGA AAATGAGAGC TTGATCGGCA CGTAAGAGGT TCCAACTTTC
 481 ACCATAATGA AATAAGATCA CTACGGGGC TATTTTGTA GTTATCGAGA TTTTCAGGAG
 541 CTAAGGAAGC TAAAATGGAG AAAAATATCA CTGGATATAC CACCGTTGAT ATATCCAAT
 601 GGCATCGTAA AGAACATTTT GAGGCATTTG AGTCAGTTGC TCAATGTACC TATAACCAAGA
 661 CCGTTCAGCT GGATATTACG GCCTTTTAA AGACCGTAA GAAAATAAG CACAAGTTTT
 721 ATCCGGCCTT TATTCACTT CTTGCCCCC TGATGAATGC TCATCCGGAA TTCCGTATGG
 781 CAATGAAAGA CGGTGAGCTG GTGATATGGG ATAGTGTCA CCCTGTTAC ACCGTTTTCC
 841 ATGAGCAAC TGAAACGTT TCATCGCTCT GGAGTGAATA CCACGACGAT TTCCGGCAGT
 901 TTCTACACAT ATATCGCAA GATGTGGCT GTTACGGTA AAACCTGGCC TATTTCCCTA
 961 AAGGGTTTAT TGAGAATATG TTTTTCGCTC CAGCAATCC CTGGGTGAGT TTCACCAAGTT
 1021 TTGATTTAAA CGTGGCCAAT ATGGACAATC TCTTCGCCCC CGTTTCACC ATGGGAAAT
 1081 ATTATACGCA AGGGCACAAG GTGCTGATGC CGCTGGCGAT TCAGGTTCAT CATGCCGTCT
 1141 GTGATGGCTT CCATGTCGGC AGAATGCTTA ATGAATTACA ACAGTACTGC GATGAGTGGC
 1201 AGGGCGGGGC GTAAACGCGT GGATCCGGCT TACTAAAAGC CAGATAACAG TATGCGTATT
 1261 TGCGCCTGA TTTTTCGCGT ATAAGAATAT ATACTGATAT GTATACCGA AGTATGTC
 1321 AAAGAGGTGT GCTATGAAGC AGCGTATTAC AGTGACAGTT GACAGCGACA GCTATCAGTT
 1381 GCTCAAGGCA TATATGATGT CAATATCTCC GGCTGGTAA GCACAACCCT GCAGAATGAA
 1441 GCCCGTCGTC TGCGTGCCGA ACGCTGGAAA CGGGAAAATC AGGAAGGGAT GGCTGAGGTC
 1501 GCCCGTTTA TTGAAATGAA CGGCTCTTTT GCTGACGAGA ACAGGGACTG GTGAAATGCA
 1561 GTTTAAGGTT TACACCTATA AAAGAGAGAG CGGTTATCGT CTGTTTGTGG ATGTACAGAG
 1621 TGATATTATT GACACGCCCG GGCACGGAT GGTGATCCCC CTGGCCAGTG CACGCTGCT
 1681 GTCAGATAAA GTCTCCCGTG AACTTTACCC GGTGGTGCAT ATCGGGGATG AAAGCTGGCG
 1741 CATGATGACC ACCGATATGG CCAGTGTGCC GGTCTCCGTT ATCGGGGAAG AAGTGGCTGA
 1801 TCTCAGCCAC CGCGAAAATG ACATCAAAAA CGCCATTAAC CTGATGTTCT GGGGAATATA
 1861 AATGTCAGGC TCCCTTATAC ACAGCCAGTC TGCAAGTCGA CCATAGTGAC TGGATATGTT
 1921 GTGTTTACA GTATTATGTA GTCTGTTTT TATGCAAAT CTAATTTAAT ATATTGATAT
 1981 TTATATCATT TTACGTTCT CGTCAGCTT TCTTGTACAA AGTGGTGATC ACTAGTCGGC
 2041 GGCGCTCTA GAGGATCCAA GCTTACGTCAC GCGTGCATGC GACGTCTAG CTCTTCTATA
 2101 GTGTCACCTA AATTCAATTG ACTGGCCGTC GTTTTACAAC GTCGTGACTG GGAAAACCT
 2161 GGCCTTACCC AACTTAATCG CCTTGCAGCA CATCCCCCTT TCGCCAGCTG GCGTAATAGC
 2221 GAAGAGGGCCC GCACCGATCG CCCTTCCCAA CAGTTGCGCA GCCTGAATGG CGAATGGACG
 2281 CGCCCTGTAG CGGCATTA AGCGCGCCGG GTGTTGGTGGT TACGCGCAGC GTGACCGCTA
 2341 CACTTGCAG CGCCCTAGCG CCCGCTCCCT TCGCTTCTT CCCTTCCTT CTCGCCACGT
 2401 TCGCCGGCTT TCCCCGTCAA GCTCTAAATC GGGGGCTCCC TTAGGGTTC CGATTAGTG
 2461 CTTTACGGCA CCTCGACCCCA AAAAATG ATTAGGGTGA TGGTTCACGT AGTGGGCCAT
 2521 CGCCCTGATA GACGGTTTT CGCCCTTGA CGTTGGAGTC CACGTTCTT AATAGTGGAC
 2581 TCTTGTCTCCA AACTGGAACA ACATCAACC CTATCTCGGT CTATTCTTT GATTTATAAG-

FIGURE 25C

51/240

2641 GGATTTGCC GATTCGGCC TATTGGTTAA AAAATGAGCT GATTTAACAA AAATTAACG
 2701 CGAATTTAA CAAAATATTA ACGTTACAA TTTCAAGGTGG CACTTTTCCG GGAAATGTGC
 2761 GCAGAACCCC TATTTGTTA TTTTCTAAA TACATTCAA TATGTATCCG CTCATGAGAC
 2821 ATAACCCCTG ATAAATGCTT CAATAATATT GAAAAAGGAA GAGTATGAGT ATTCAACATT
 2881 TCCGTGTCGC CCTTATTCCC TTTTTGCGG CATTGGCCT TCCTGTTTT GCTCACCCAG
 2941 AACGCTGGT GAAAGTAAAA GATGCTGAAG ATCAGTTGGG TGACAGAGTG GGTTACATCG
 3001 AACTGGATCT CAACAGCGGT AAGATCCTTG AGAGTTTCG CCCCAGAGAA CGTTTCCAA
 3061 TGATGAGCAC TTAAAGTT CTGCTATGTG GCGCGGTATT ATCCCGTATT GACGCCGGC
 3121 AAGAGCAACT CGGTGCGCCG ATACACTATT CTCAGAATGA CTTGGTTGAG TACTCACCAG
 3181 TCACAGAAAA GCATCTTACG GATGGCATGA CAGTAAGAGA ATTATGCAGT GCTGCCATAA
 3241 CCATGAGTGA TAACACTGGC GCCAACCTAC TTCTGACAAC GATCGGAGGA CGAAGGAGC
 3301 TAACCGCTTT TTGCAACAAC ATGGGGGATC ATGTAACCTCG CCTTGATCGT TGGGAACCGG
 3361 AGCTGAATGA AGCCATACCA AACGACGAGC GTGACACCAC GATGCCGTGTA GCAATGGCAA
 3421 CAACGTTGCG CAAACTATTA ACTGGCGAAC TACTTACTCT AGCTTCCCG CAACAATTAA
 3481 TAGACTGGAT GGAGGGGGAT AAAGTTGCGAG GACCACCTCT GCGCTCGGCC CTTCCGGCTG
 3541 GCTGGTTTAT TGCTGATAAAA TCTGGAGCCG GTGAGCGTGG GTCTCGCGT ATCATTGCG
 3601 CACTGGGGCC AGATGGTAAG CCCTCCCGTA TCGTAGTTAT CTACACGACG GGGAGTCAGG
 3661 CAACTATGGA TGAACGAAAT AGACAGATCG CTGAGATAGG TGCCCTACTG ATTAAGCATT
 3721 GGTAACTGTC AGACCAAGTT TACTCATATA TACTTTAGAT TGATTTAAA CTTCAATT
 3781 AATTTAAAAG GATCTAGGTG AAGATCCTTT TTGATAATCT CATGACCAAA ATCCCTAAC
 3841 GTGAGTTTTC GTTCCACTGA GCGTCAGACC CCGTAGAAAA GATCAAAGGA TCTTCTTGAG
 3901 ATCCCTTTTTT TCTGGCGTA ATCTGCTGCT TGCAAAACAAA AAAACCAACCG CTACCAAGCG
 3961 TGGTTTGTGTT GCGGATCAA GAGCTACCAA CTCTTTTCC GAAGGTAACG GGCTTCAGCA
 4021 GAGCGCAGAT ACCAAATACT GTCCCTCTAG TGAGGCCGTA GTTACCGC CACTTCAAGA
 4081 ACTCTGTAGC ACCGCTTACA TACCTCGCTC TGCTAATCT GTTACCGT GCTGCTGCCA
 4141 GTGGCGATAA GTGGTGTCTT ACCGGGTTGG ACTCAAGAGC ATAGTTACCG GATAAGCGC
 4201 AGCGGTCGGG CTGAACGGGG GGTTCTGCA CACAGCCCAG CTTGGAGCGA ACGACCTACA
 4261 CCGAACTGAG ATACCTACAG CGTGAGCATT GAGAAAGCGC CACGCTTCCC GAAGGGAGAA
 4321 AGGGGGACAG GTATCCGGTA AGCGGCAGGG TCGGAACAGG AGAGCGCACG AGGGAGCTTC
 4381 CAGGGGGAAA CGCTGGTAT CTTTATAGTC CTGTCGGGTT TCGCCACCTC TGACTTGAGC
 4441 GTGATTTTT GTGATGCTG TCAGGGGGC GGAGCCTATG GAAAACGCC AGCAACGCGG
 4501 CCTTTTACG GTTCCCTGGCC TTTTGCTGGC CTTTGCTCA CATGTTCTT CCTGCGTTAT
 4561 CCCCTGATTG TGTGGATAAC CGTATTACCG CCTTGAGTG AGCTGATACC GCTGCCGCC
 4621 GCGAACGAC CGAGCGCAGC GAGTCAGTGA GCGAGGAAGC GGAAGAGCGC CCAATACGCA
 4681 AACCGCCTCT CCCCCGCGGT TGGCCGATT ATTAAATGCAG AGCTTGCAAT TCGCGCGCA
 4741 AGGGAAAGCG GCATTTACGT TGACACCATC GAATGGCGCA AAACCTTCG CGGTATGGCA
 4801 TGATAGCGCC CGGAAGAGAG TCAATTACGG GTGGTGAATG TGAAACCACT AACGTTATAC
 4861 GATGTCGAG AGTATGCCGG TGTCTCTTAT CAGACCGTTT CCGCGTGGT GAACCAGGCC
 4921 AGCCACGTT CTGCGAAAAC CGGGAAAAAA GTGGAAGCGG CGATGGCGGA GCTGAATTAC
 4981 ATCCCCAACCG CGTGGCACA ACAACTGGCG GGCAACAGT CGTTGCTGAT TGGCGTTGCC
 5041 ACCTCCAGTC TGGCCCTGCA CGCGCCGTG CAAATTGTCG CGCGATTAA ATCTCGCGCC
 5101 GATCAACTGG GTGCCAGCGT GGTGGTGTG ATGGTAGAAC GAAGCGCGT CGAACGCTGT
 5161 AAAGCGGGGG TGCACAATCT TCTCGCGAA CGGGTCAGTG GGCTGATCAT TAACTATCCG
 5221 CTGGATGACC AGGATGCCAT TGCTGTGGAA GCTGCCGTCA CTAATGTTCC GGCGTTATTT
 5281 CTTGATGTCT CTGACCAGAC ACCCATCAAC AGTATTATTT TCTCCCATGA AGACGGTACG
 5341 CGACTGGGGCG TGGAGCATCT GGTGGCATTG GGTCACCGAC AAATCGCGCT GTTACGCC
 5401 CCATTAAGTT CTGTCCTGGC GCGTCTCGGT CTGGCTGGCT GGCATAAATA TCTCACTCGC
 5461 AATCAAATTC AGCCGATAGC GGAACGGGAA GGCGACTGGA GTGCCATGTC CGGTTTCAA
 5521 CAAACCATGC AAATGCTGAA TGAGGGCATC GTTCCCACTG CGATGCTGGT TGCCAACGAT
 5581 CAGATGGCGC TGGCGCAAT GCGGCCATT ACCGAGTCCG GGCTGCGCGT TGGTGC
 5641 ATCTCGGTAG TGGGATACGA CGATAACGAA GACAGCTCAT GTTATATCCC GCCGTC
 5701 ACCATCAAAC AGGATTTTCG CCTGCTGGGG CAAACCAGCG TGGACCGCTT GCTGCAACTC
 5761 TCTCAGGGCC AGGCGGTGAA GGGCAATCAG CTGTTGCCCG TCTCACTGGT GAAAAGAAAA
 5821 ACCACCCCTGG CGCCCAATAC GCAAACGCC TCTCCCCGCC CGTTGGCGA TTCATTAATG
 5881 CAGCTGGCAC GACAGGTTC CCGACTGGAA AGCGGGCGAGT GAGCGCAACG CAATTAATGT
 5941 GAGTTAGCTC ACTCATT

FIGURE 25D

52/240

Figure 26A
pDEST6pSPORT “-“
(opposite strand)

“forward” sequencing primers

1 taa/cgc cag ggt ttt ccc agt cac gac gtt gta aaa cga cgg cca ggt aat
 att gcg gtc cca aaa ggg tca gtg ctg caa cat ttt gct gcc ggt cac tta

SP6 promoter Sph Mlu
 52 tga att tag gtg aca cta tag aag agc tat gac gtc gca tgc ~~atc~~ cgt acg
 act taa atc cac tgt gat atc ttc tcc ata ctg cag cgt acg tgc gca tgc

Hind 3 Bam Xba Not Spe Hpa I Int
 103 taa gct tag atc ctc tag agc ggc cgc cga cta gtg atc ~~aca~~ agt tgg taa
 att cga acc tag gag atc tcc ccc cgg gct gat gac tag ~~tgt tca aac atg~~

154 ~~aaa daa get gga cga gaa acg taa aat gar ata aat atc aat atc taa aat~~
~~ttt tet cga ctt get ctt tgg att tta cta tat tca tag tta tat aat tca~~

↓ Gene

Int att R 2
 1939 ~~tar tta tat pat ttt acg ett ctc gtt tag crt pat ttt aca aag tgg tga~~
~~ata dat ata gta aaa tcc aac gag eaa gtc gaa aga aca tgg ttc acc act~~

Sal Sma EcoRI Kpn Pst T7 RNA
 1990 tcg ~~tcg acc cgg daa ttc~~ cgg acc ggt ~~act~~ tgc ~~agg~~ cgt acc agc ttt ~~ccc~~
 agc age ~~tgg gcc ctt aag~~ gcc tgg dca tgg ~~acc~~ tcc gca tgg tcg aaa ~~ggg~~

T7 promoter α-peptide ← “reverse ..”
 2041 ~~tat agt gag tcg tat tag agc ttg gcg taa tca tgg tca tag ctg ttt cct~~
~~ata tca ctc agc ata atc tcc aac cgc att agt acc agt atc gac aaa gga~~

-35 lac promoter
 2092 gtg tga aat tgt tat ccg ctc aca att cca cac ~~aac atc~~ cga gct gga agc
 cac act tta aca ata ggc gag tgt taa ggt ~~ttg tat~~ gct cgg cct tec
 ... sequencing primers lac RNA

2143 ata aag ~~tgt aaa~~ gcc tgg ggt gcc taa tga gtg agc taa ctc aca tta att
 tat ttc ~~aca ttt~~ cgg acc cca cgg att act cac tcc att gag tgt aat taa

S3/240

Figure 26B

 λ DEST⁶

(cont'd)

54/240

pDEST6 5957 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
266..142	attR1
516..1175	CmR
1295..1379	inactivated ccdA
1517..1822	ccdB
1863..1987	attR2
2203..3369	lacI
4403..5260	ampR
5392..5847	f1 (f1 intergenic region)

1 TAACGCCAGG GTTTTCCCAG TCACGACGTT GTAAAACGAC GGCCAGTGAA TTGAATTAG
 61 GTGACACTAT AGAAGAGCTA TGACGTCGA TGCACCGTA CGTAAGCTTG GATCCTCTAG
 121 AGCGGCCGCC GACTAGTGTAT CACAAGTTG TACAAAAAAG CTGAACGAGA AACGTAAAAT
 181 GATATAAATA TCAATATATT AAATTAGATT TTGCATAAAA AACAGACTAC ATAATACTGT
 241 AAAACACAAC ATATCCAGTC ACTATGGCGG CCGCTAAGTT GGCAGCATCA CCCGACGCAC
 301 TTTGCGCCGA ATAAATACCT GTGACCGGAAG ATCACTTCGC AGAATAAATA AATCCTGGTG
 361 TCCCTGTTGA TACCGGGAAAG CCCTGGGCCA ACTTTTGGCG AAAATGAGAC GTTGATCGGC
 421 ACCTAACAGG TTCCAACATT CACCATAATG AAATAAGATC ACTACCGGGC GTATTTTTTG
 481 AGTTATCGAG ATTTTCAGGA GCTAAGGAAG CTAAAATGGA GAAAAAAATC ACTGGATATA
 541 CCACCGTTGA TATATCCCAA TGGCATCGTA AAGAACATTG TGAGGCATTG CAGTCAGTTG
 601 CTCAATGTAC CTATAACCAG ACCGTTCAAGC TGGATATTAC GGCTTTTTA AAGACCGTAA
 661 AGAAAAAAATA GCACAAGTTT TATCCCGCCT TTATTACAT TCTTGCCCCC CTGATGAATG
 721 CTCATCCGGG ATTCCGTATG GCAATGAAAG ACGGTGAGCT GGTGATATGG GATAGTGTTC
 781 ACCCTTGTAA CACCGTTITC CATGAGCAAA CTGAAACGTT TTCATCGCTC TGGAGTGAAT
 841 ACCACGACGA TTTCCGGCAG TTTCTACACA TATATTGCA AGATGTGGCG TGTTACGGTG
 901 AAAACCTGGC CTATTTCCCT AAAGGGTTTA TTGAGAAATAT GTTTTTCGTC TCAGCCAATC
 961 CCTGGGTGAG TTTCACCAAGT TTTGATTTAA ACCTGGCCAA TATGGACAAC TTCTTCGCC
 1021 CGGTTTAC CATGGGCAAA TATTTACCG AAGGCGACAA GGTGCTGATG CCGCTGGCGA
 1081 TTCAAGTTCA TCATGCCGTC TGTGATGGCT TCCATGTCGG CAGAATGCTT AATGAATTAC
 1141 AACAGTACTG CGATGAGTGG CAGGGCGGG CGTAAACGCG TGGATCCGGC TTACTAAAAG
 1201 CCAGATAACA GTATGCGTAT TTGCGCGCTG ATTTTGCGG TATAAGAATA TATACTGATA
 1261 TGTATACCCG AAGTATGTCA AAAAGAGGTG TGCTATGAAAG CAGCGTATTA CAGTGACAGT
 1321 TGACAGCGAC AGCTATCACT TGCTCAAGGC ATATATGATG TCAATATCTC CGGTCTGGTA
 1381 AGCACAACCA TGCAGAAATGA AGCCCGTCGT CTGGTGGCCG AACGCTGGAA AGCGGAAAAT
 1441 CAGGAAGGGG TGGCTGAGGT CGCCCCGGTT ATTGAAATGA ACGGCTCTT TGCTGACGAG
 1501 AACAGGGACT GGTGAAATGC AGTTAACGGT TTACACCTAT AAAAGAGAGA GCCGTTATCG
 1561 TCTGTTTGTG GATGTACAGA GTGATATTAT TGACACGCC GGGCGACGGA TGGTGATCCC
 1621 CCTGGCCAGT GCACGTCCTGC TGTCAGATAA AGTCTCCCGT GAACTTTACC CGGTGGTGC
 1681 TATCGGGGAT GAAAGCTGGC GCATGATGAC CACCGATATG GCCAGTGTGC CGGTCTCCGT
 1741 TATCGGGGAA GAAGTGGCTG ATCTCAGCCA CCGCGAAAAT GACATCAAAAC CGCCATTAA
 1801 CCTGATGTTG TGGGGAAATAT AAATGTCAGG CTCCCTTATA CACAGCCAGT CTGCAGGTG
 1861 ACCATAGTGA CTGGATATGT TGTGTTTAC AGTATTATGT AGTCTGTTT TTATGCAAA
 1921 TCTAATTTAA TATATTGATA TTTATATCAT TTTACGTTTC TCGTTCAGCT TTCTTGTACA
 1981 AAGTGGTGT CGTCGACCCG GGAATTCCGG ACCGGTACCT GCAGCGGTAC CAGCTTCCC
 2041 TATAGTGTAGT CGTATTAGAG CTGGCGTAA TCATGGTCAT AGCTGTTTCC TGTGAAAT
 2101 TGTATCCGC TCACAATTCC ACACAACATA CGAGCCGGAA GCATAAAAGTG TAAAGCCTGG
 2161 GGTGCCATAAT GAGTGGCTA ACTCACATTA ATTGCGTTGC GCTCACTGCC CGCTTCCAG
 2221 TCGGGAAACC TTGCGTGCCTA GCTGCACTAA TGAATCGGC AACCGCGGG GAGAGGCGGT
 2281 TTGCGTATTG GGCGCCAGGG TGGTTTTCT TTTCACCAAGT GAGACGGGCA ACAGCTGATT
 2341 GCCCTTCACC GCCTGGCCCT GAGAGAGTTG CAGCAAGCGG TCCACGCTGG TTTGCCCCAG
 2401 CAGGCAGAAA TCCTGTTGA TGGTGGTTGA CGGGGGATA TAACATGAGC TGTCTTCGGT
 2461 ATCGTCGTAT CCCACTACCG AGATATCCGC ACCAACCGGC AGCCCGGACT CGGTATGGC
 2521 GCGCATTGCG CCCAGCGCCA TCTGATGTTT GGCACCCAGC ATCGCAGTGG GAACGATGCC
 2581 CTCATTCAAGC ATTTCATGG TTTGTTGAAACCCGACATG GCACTCCAGT CGCCTTCCCG
 2641 TTCCGCTATC GGCTGAATTG GATTGCGAGT GAGATTTA TGCCAGCCAG CCAGACGCA-

FIGURE 26C

2701 ACGCGCCGAG ACAGAACTTA ATGGGCCGC TAACAGCGCG ATTTGCTGGT GACCCAATGC
 2761 GACCAGATGC TCCACGCCA GTCGCGTACG GTCTTCATGG GAGAAAATAA TACTGTTGAT
 2821 GGGTGTCTGG TCAGAGACAT CAAGAAATAA CGCCGGAACA TTAGTGCAGG CAGCTTCCAC
 2881 AGCAATGGCA TCCTGGTCAT CCAGCGGATA GTTAATGATC AGCCCACGTGA CCCGTTGCGC
 2941 GAGAAGATTG TGACCCGCG CTTTACAGGC TTGACGCCG CTTCGTTCTA CCATCGACAC
 3001 CACACACGCTG GCACCCAGTT GATCGCGCG AGATTTAAC GCCCGGACAA TTTGCACGG
 3061 CGCGTGCAGG GCCAGACTGG AGGTGGCAAC GCCAATCAGC AACGACTGTT TGCCCCGCCAG
 3121 TTGGTGTGCC ACAGCGGTTGG GAATGTAATT CAGCTCCGCC ATCGCCGCTT CCACTTTTTC
 3181 CGCGTTTTC GCAGAAACGT GGCTGGCCTG GTTCAACCACG CGGGAAACGG TCTGATAAGA
 3241 GACACCGGCA TACTCTGCA CATCGTATAA CGTIACTGGT TTACACATCA CCACCCCTGAA
 3301 TTGACTCTCT TCCGGGCCT ATCATGCCAT ACCCGGAAAG GTTTTGCGCC ATTGATGGT
 3361 GTCAACGTAAT ATGCCCTTC GCCTTCGCGC GCGAATTGCA AGCTCTGCAT TAATGAATCG
 3421 GCCAACGCGC GGGGAGAGC GGTTTGCCTG TTGGCGCTC TTCCGCTTCC TCGCTCACTG
 3481 ACTCGCTGCG CTGGCTCGT CCGCTCGGGC GAGCGGTATC AGCTCACTCA AAGGGGGTAA
 3541 TACGGTTATC CACAGAATCA GGGGATAACG CAGGAAAGAA CATGTGAGCA AAAGGCCAGC
 3601 AAAAGGCCAG GAACCGTAA AAGGCCGCGT TGCTGGCGTT TTCCCATAGG CTCCGGCCCC
 3661 CTGACGAGCA TCACAAAAAT CGACGCTCAA GTCAAGGGTG GCGAAACCCG ACAGGACTAT
 3721 AAAGATACCA GGCCTTCCC CCTGGAAAGCT CCCTCGTGC CGTACCTGTT CCGACCCCTGC
 3781 CGCTTACCGG ATACCTGTCC GCCTTCTCC CTTGGGAAG CGTGGCGCTT TCTCAATGCT
 3841 CACGCTGTAG GTATCTCAGT TCGGTGTAGG TCGTTGCTC CAAGCTGGC TGTGTGCACG
 3901 AACCCCCCGT TCAGCCGAC CGCTGCCCT TATCCGGTAA CTATCGTCTT GAGTCACACC
 3961 CGGTAAGACA CGACTTATCG CCACTGGCAG CAGCCACTGG TAACAGGATT AGCAGAGCGA
 4021 GGTATGTAGG CGGTGCTACA GAGTTCTTGA AGTGGTGGCC TAACTACGGC TACACTAGAA
 4081 GGACAGTATT TGGTATCTGC GCTCTGCTGA AGCCAGTTAC CTTCGGAAAA AGAGTTGGTA
 4141 GCTCTTGATC CGGCAAACAA ACCACCGCTG GTAGCGGTGG TTTTTTGTG TGCAAGCAGC
 4201 AGATTACGCG CAGAAAAAAA GGATCTCAAG AAGATCCTT GATCTTTCT ACGGGGTCTG
 4261 ACGCTCAGTG GAACGAAAAC TCACGTTAAAG GGATTTGGT CATGAGATT TCAAAAGGA
 4321 TCTTCACCTA GATCCTTTA ATTAAAAAT GAAGTTTAA ATCAATCTAA AGTATATATG
 4381 AGTAAACTTG GTCTGACAGT TACCAATGCT TAATCAGTGA GGCACCTATC TCAGGGATCT
 4441 GTCTATTTCG TTCATCCATA GTTGCTGAC TCCCGTCTG GTAGATAACT ACGATAACGGG
 4501 AGGGCTTACC ATCTGGCCC AGTGTGCAA TGATACCGCG AGACCCACGC TCACCCGCTC
 4561 CAGATTATC AGCAATAAAC CAGCCAGCG GAAGGGCCGA GCGCAGAAGT GGTCTGCAA
 4621 CTTTATCCGC CTCCATCCAG TCTATTAAATT GTTGGCGGGA AGCTAGAGTA AGTAGTTGCG
 4681 CAGTTAATAG TTTGCGAAC GTTGTGCA TTGCTACAGG CATCGTGGT TCACGCTCGT
 4741 CGTTTGGTAT GGCTTCATTC AGCTCCGGT CCCAACGATC AAGGCGAGTT ACATGATCCC
 4801 CCATGTTGTG CAAAAAAGCG GTTACGCTCT TCAGCTCCTC GATCGTTGTC AGAAGTAAGT
 4861 TGGCCGCAGT GTTATCACTC ATGGTTATGG CAGCACTGCA TAATTCTCTT ACTGTCATGC
 4921 CATCCGTAAG ATGCTTTCT GTGACTGGTG AGTACTCAAC CAAGTCATTC TGAGAATAGT
 4981 GTATGCGCG ACCGAGITGC TCTTGCCGG CGTCAATACG GGATAATACC GCGCCACATA
 5041 GCAGAACTTT AAAAGTGTCTC ATCATTGGAA AACGTTCTTC GGGGGCAAAA CTCTCAAGGA
 5101 TCTTACCGCT GTTGAGATCC AGTTGGATGT AACCCACTCG TGCAACCAAC TGATCTTCAG
 5161 CATCTTTAC TTTCACCCAGG GTTTCTGGGT GAGCAAAAC AGGAAGGCAA AATGCCGCAA
 5221 AAAAGGGAAT AAGGGCGACA CGGAAATGTT GAATACTCAT ACTCTTCTT TTTCATATT
 5281 ATTGAAGCAT TTATCAGGGT TATTGTCAT TGAGCGGATA CATATTGAA TGTATTAGA
 5341 AAAATAAACAA AATAGGGGTT CCGCGCACAT TTCCCGAAA AGTGCACCT GAAATTGTAA
 5401 ACGTTAATAT TTTGTTAAA TTGCGTTAA ATTTCGGTTA AATCAGCTCA TTTTTTAACC
 5461 AATAGGCCGA AATCGGCAAATCCTTATA AATCAAAAGA ATAGACCGAG ATAGGGTTGA
 5521 GTGGTGTCTC AGTTGGAAC AAGAGTCCAC TATTAAGAA CGTGGACTCC AACGTCAAAG
 5581 GGCAGAAAAC CGTCTATCAG GGCAGTGGCC CACTACGTGA ACCATCACCC TAATCAAGTT
 5641 TTTTGGGGTC GAGGTGGCGT AAAGCACTAA ATCGGAACCC TAAAGGGAGC CCCCAGTTA
 5701 GAGCTTGACG GGGAAAGCCG GCGAACGTGG CGAGAAAGGA AGGGAAGAAA GCGAAAGGAG
 5761 CGGGCGCTAG GGCGCTGGCA AGTGTAGCGG TCACGCTGCG CGTAACCCAC ACACCCGCCG
 5821 CGCTTAATGC GCCGCTACAG GGCGCGTCCA TTGCGCCATTG AGGCTGCGCA ACTGTTGGGA
 5881 AGGGCGATCG GTGCGGGCCT CTTCGCTATT ACCCCAGCTG GCGAAAGGGG GATGTGCTGC
 5941 AAGGCGATTA AGTTGGG

FIGURE 26d

56/260

Figure 27A: PDEST7

CMV promoter for eukaryotic expression

970 cca ttg acg caa atg ggc ggt agg cgt gta cgg tgg gag gtc tat ata agc
 ggt aac tgc gtt tac ccc cca tcc gca cat gcc acc ctc cag ata tat tcg
 1021 aga gct cgt tta gtg aac cgt cag atc gcc tgg aga cgc cat cca cgc tgt
 tct cga gca aat cac ttg gca gtc tag cgg acc tct gcg gta ggt gcg aca
 1072 CMV enhancer / promoter.
 ttt gac ctc cat aga aga cac cgg gac cga tcc agc ctc cgg act cta gcc
 aaa ctg gag gta tct gtg gec ctg gct agg tgg gag goc tga gat cgg
 1123 tag gcc gcg gag cgg ata aca att tca cac agg aaa cag cta tga cca cta
 atc cgg cgc ctc gec tat tgt taa agt gtg tcc ttt gtc gat act ggt gat
 1174 ggc ttt tgc aaa aag cta ttt agg tga cac tat aga agg tac gcc tgc agg
 ccc aaa acg ttt ttc gat aaa tcc act gtg ata tct tcc atg cgg acg tcc
 1225 Kpn I EcoRI attR1 Pst I attR1
 tac cgg tcc gga att ccc atc aca agt tgg tag aaa agg gat gaa/cgg gaa
 atg gcc agg cct taa ggg tag tgt tca aac atg ttt tct tgg ctc gct ctc

57/260

pDEST7 6025 bp (rotated to position 2800)

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
67..589	CMV promoter
906..782	attR1
1015..1674	CmR
1794..1878	inactivated ccdA
2016..2321	ccdB
2362..2486	attR2
2671..3033	small t & polyA
3227..3502	f1
3962..4822	ampR
5022..5661	ori

1 ATTATCATGA CATTAAACCTA TAAAAATAGG CGTAGTACGA GGCCCTTTCA CTCATTAGAT
 61 GCATGTCGTT ACATAACTTA CCGTAAATGG CCCGCCTGGC TGACCGCCA ACGACCCCCG
 121 CCCATTGACG TCAATAATGA CGTATGTTCC CATAGTAACG CCAATAGGGA CTTTCATTG
 181 ACGTCAATGG GTGGAGTATT TACCGTAAAC TGCCCCTTG GCAGTACATC AAGTGTATCA
 241 TATGCCAAGT ACGCCCTCTA TTGACGTCAA TGACGGTAA TGCCCGCCT GGCATTATGC
 301 CCAGTACATG ACCTTATGGG ACTTTCTAC TTGGCAGTAC ATCTACGTAT TAGTCATCGC
 361 TATTACCATG GTGATGCGGT TTTGGCAGTA CATCAATGGG CGTGGATAGC GGTTTGACTC
 421 ACGGGGATTG CCAAATCTCC ACCCCATTGA CGTCAATGGG AGTTTGTGTTT GGCACCAAAA
 481 TCAACGGGAC TTTCAAAAT GTCGTAACAA CTCCGGCCCA TTGACGCAA TGGGGGTAG
 541 GCGTGTACGG TGGGAGGTTCT ATATAAGCAG AGCTCGTTA GTGAACCGTC AGATGCCCTG
 601 GAGACGCCAT CCACGCTGTT TTGACCTCCA TAGAACAGAC CGGGACCGAT CCAGCCTCCG
 661 GACTCTAGCC TAGGCCGCGG AGCGGATAAC AATTTCACAC AGGAAACAGC TATGACCATT
 721 AGGCCTTTGC AAAAGCTAT TTAGGTGACA CTATAGAAGG TACGCTGCA GGTACCGGAT
 781 CACAAGTTTG TACAAAAAAG CTGAACGAGA AACGTAAGG GATATAATA TCAATATATT
 841 AAATTAGATT TTGCATAAAA AACAGACTAC ATAATACTGT AAAACACAAAC ATATCCAGTC
 901 ACTATGGCGG CCGCATTAGG CACCCCAGGC TTTCACACTT ATGCTTCCGG CTCGTATAAT
 961 GTGTGGATTG TGAGTTAGGA TCCGTCGAGA TTTCAGGAG CTAAGGAAGC TAAAATGGAG
 1021 AAAAAAAATCA CTGGATATAC CACCGTTGAT ATATCCCAAT GGCACTGTA AGAACATTIT
 1081 GAGGCATTC AGTCAGTTG TCAATGTACC TATAACCAGA CGTTCAGCT GGATATTACG
 1141 GCCTTTTAA AGACCGTAAA GAAAAATAAG CACAAGTTT ATCCGGCCTT TATTACACATT
 1201 CTTGCCGCC TGATGAATGC TCATCCGAA TTCCGTATGG CAATGAAAGA CGGTGAGCTG
 1261 GTGATATGGG ATAGTGTTC CCCTTGTTAC ACCGTTTCC ATGAGCAAAC TGAAACGTTT
 1321 TCATCGCTCT GGAGTGAATA CCACGACGAT TTCCGGCAGT TTCTACACAT ATATTCGAA
 1381 GATGTGGCGT GTTACGGTGA AAACCTGGCC TATTCCTTA AAGGGTTTAT TGAGAATATG
 1441 TTTTCGTCT CAGCCAATCC CTGGGTGAGT TTCACCAAGTT TGATTTAAA CGTGGCCAAT
 1501 ATGGACAAC TCTTCGCCCG CGTTTCACC ATGGGCAAAT ATTATACGCA AGGCACAAAG
 1561 GTGCTGATGC CGCTGGCGAT TCAGTTCAT CATGCCGTCT GTGATGGCTT CCATGTCGGC
 1621 AGAATGCTTA ATGAATTACA ACAGTACTGC GATGAGTGGC AGGGCGGGC GTAAACCGGT
 1681 GGATCCGGCT TACTAAAAGC CAGATAACAG TATGCCATT TGCGCGCTGA TTTTGCGGT
 1741 ATAAGAATAT ATACTGATAT GTATACCGA AGTATGTCAA AAAGAGGTGT GCTATGAAGC
 1801 AGCGTATTAC AGTGCACAGTT GACAGGCACA GCTATCAGTT GCTCAAGGCA TATATGATGT
 1861 CAATATCTCC GGTCTGGTAA GCACAACCAT GCAGAATGAA GCCCGTCGTC TGCGTGC
 1921 ACCTGGAAA CGGGAAAAATC AGGAAGGGAT GGCTGAGGTC GCCCCGGTTA TTGAAATGAA
 1981 CGGCTTTT GCTGACGAGA ACAGGGACTG GTGAAATGCA GTTAAAGGTT TACACCTATA
 2041 AAAGAGAGAG CGGTTATCGT CTGTTGTGG ATGTACAGAG TGATATTATT GACACGCCCG
 2101 GGGCACGGAT GGTGATCCCC CTGGCCAGTG CACGTCTGTC GTCAAGATAA GTCTCCGTG
 2161 AACTTACCC GGTGGTGCAT ATCGGGGATG AAAGCTGGCG CATGATGACC ACCGATATGG
 2221 CCAGTGTGCC GGTCTCCGTT ATCGGGGAG AAGTGGCTGA TCTCAGCCAC CGCGAAAATG
 2281 ACATAAAAA CGCCATTAAAC CTGATGTTCT GGGGAATATA AATGTCAGGC TCCCTTATAC
 2341 ACAGCCAGTC TGCAAGGTGCA CCATAGTGAC TGGATATGTT GTGTTTACA GTATTATGTA
 2401 GTCTGTTTT TATGAAAAT CTAATTAAAT ATATTGATAT TTATATCATT TTACGTTCT
 2461 CGTTCACTT TCTTGTACAA AGTGGTGATC CGCTGCATGC GACGTCATAG CTCTCCCT
 2521 ATAGTGAGTC GTATTATAAG CTAGGCAGTG GCCGTCGTT TACAACGTCG TGACTGGAA-

FIGURE 27B

88/240

2581 AACTGCTAGC TTGGGATCTT TGTGAAGGAA CCTTAACCTCT GTGGTGTGAC ATAATTGGAC
 2641 AAACCTACCTA CAGAGATTAA AAGCTCTAACG GTAAAATAAA AATTTTTAAG TGTATAATGT
 2701 GTTAAACTAG CTGCATATGC TTGCTGCTTG AGAGTTTGCG TTACTGAGTA TGATTATGA
 2761 AAATATTATA CACAGGAGCT AGTGATTCTA ATTGTTTGTG TATTTTAGAT TCACAGTCCC
 2821 AAGGCTCATT TCAGGCCCT CAGTCCTCAC AGTCTGTTCA TGATCATAAT CAGCCATACC
 2881 ACATTTGTAG AGGTTTTACT TGCTTTAAAA AACCTCCAC ACCTCCCCCT GAACCTGAAA
 2941 CATAAAATGA ATGCAATTGT TTGTTGTTAAC TTGTTTATTG CAGCTTATAA TGGTTACAAA
 3001 TAAAGCAATA GCATCACAAA TTTCACAAAT AAAGCATTT TTTCAC TGCA TTCTAGTTGT
 3061 GGTTTGTCCA AACTCATCAA TGATCTTAT CATGCTGGA TGATCCTGC ATTAATGAAT
 3121 CGGCCAACGC GCGGGGAGAG GCGGTTTGC G TAITGGCTGG CGTAATAGCG AAGAGGCCG
 3181 CACCGATCGC CCTTCCCCAAC AGTTGCGCAG CCTGAATGGC GAATGGGACG CGCCCTGTAG
 3241 CGGCGCATTA AGCGCGGCGG GTGTGGTGGT TACGCGCAGC GTGACCGCTA CACTGCCAG
 3301 CGCCCTAGCG CCCGCTCCTT TCGCTTCTT CCGCTCCCTT CTCGCCACGT TCGCCGGCTT
 3361 TCCCCGTCAA GCTCTAAATC GGGGGCTCCC TTAGGGTTC CGATTTAGTG CTTTACGGCA
 3421 CCTCGACCCC AAAAAACTG ATTAGGGTGA TGTTTACCGT AGTGGGCCAT CGCCCTGATA
 3481 GACGGTTTT CGCCCTTGA CGTTGGAGTC CACGTTCTTT AATAGTGGAC TCTTGTCCA
 3541 AACTGGAACA ACATCAACC CTATCTCGGT CTATCTTTT GATTTATAAG GGATTTGCC
 3601 GATTTCGGCC TATTGGTTAA AAAATGAGCT GATTTAACAA AAATTTAACG CGAATTTAA
 3661 CAAATATTAA ACGTTTACAA TTTCAGGTGG CACTTTCCGG GGAATATGTC GCGGAACCCC
 3721 TATTGTTTA TTTTCTAA TACATTCAA TATGTATCCG CTACGCCAG GTCTTGGACT
 3781 GGTGAGAACG GCTTGCTCGG CAGCTTCGAT GTGTGCTGGA GGGAGAATAA AGGTCTAAGA
 3841 TGTGCGATAG AGGGAAAGTCG CATTGAATT TGTCGTGTT AGGGATCGT GGTATCAAAT
 3901 ATGTGTGCC ACCCTGGCA TGAGACAATA ACCCTGATAA ATGCTTCAT AATATTGAAA
 3961 AAGGAAGAGT ATGAGTATTG AACATTCCG TGTCGCTT ATTCCCTTT TTGCGGCATT
 4021 TTGCCTTCT GTTTTGCTC ACCCAGAAC GCTGGTGAAGA GTAAAGATG CTGAAGATCA
 4081 GTGGGGTGA CGAGTGGGTT ACATCGAACT CGATCTAAC AGCGGTAAGA TCCTTGAGAG
 4141 TTTCGCCCCC GAAGAACGTT TTCCAATGAT GACCACTTTT AAAGTTCTGC TATGTGGCG
 4201 GGTATTATCC CGTATTGACG CGGGCAAGA GCAACTCGGT CGCCGCATAC ACTATTCTCA
 4261 GAATGACTTG GTTGAGTACT CACCACTCAC AGAAAAGCAT CTTACGGATG GCATGACAGT
 4321 AAGAGAATTAA TGCACTGCTG CCATAACCAT GAGTGATAAC ACTGCGGCCA ACTTACTTCT
 4381 GACAAAGATC GGAGGACCGA AGGAGCTAAC CGCTTTTTG CACAACATGG GGGATCATGT
 4441 AACTCGCCTT GATCGTTGGG AACCGGAGCT GAATGAAGGC ATACCAAACG ACGAGCGTGA
 4501 CACCACGATG CCTGTAGCAA TGGCAACAAAC GTTGCGBAA CTATTAACG GCGAAACTACT
 4561 TACTCTAGCT TCCCAGCAAC AATTAATAGA CTGGATGGAG GCGGATAAAAG TTGCAGGACC
 4621 ACTTCTGCGC TCGGCCCTTC CGGCTGGCTG GTTATTGCT GATAATCTG GAGCCGGTGA
 4681 GCGTGGGTCT CGCGGTATCA TTGCACTGACT GGGGCCAGAT GGTAAAGCCCT CCCGTATCGT
 4741 AGTTATCTAC ACGACGGGGA GTCAAGCAAC TATGGATGAA CGAAATAGAC AGATCGCTGA
 4801 GATAAGGTGC TCACTGATTAA AGCATTGGTA ACTGTCAGAC CAAGTTACT CATATATACT
 4861 TTAGATTGAT TTTAAACTTC ATTTTAATT TAAAGGATC TAGGTGAAGA TCCTTTTGAA
 4921 TAATCTCATG CCATAACTTC GTATAATGTA TGCTATACGA AGTTATGGCA TGACCAAAAT
 4981 CCCTTAACGT GAGTTTCTG TCCACTGAGC GTCAAGACCC GTAGAAAAGA TCAAAGGATC
 5041 TTCTTGAGAT CCTTTTTCTG TGCGCTTAAT CTGCTGCTTG CAAACAAAAA AACCAACCGCT
 5101 ACCAGGGTG GTTGTGTTGC CGGATCAAGA GCTACCAACT CTTTTCCGA AGGTAACTGG
 5161 CTTCAAGCAGA GCGCAGATAC CAAATACTGT CCTCTAGTG TAGCCGTAGT TAGGCCACCA
 5221 CTTCAAGAAC TCTGTAGCAC CGCCTACATA CCTCGCTCTG CTAATCCTGT TACCAGTGGC
 5281 TGCTGCCAGT GGCGATAAGT CGTGTCTTAC CGGGTTGGAC TCAAGACGAT AGTTACCGGA
 5341 TAAGGCGCAG CGGTCGGGCT GAACGGGGGG TTGCGTCACA CAGCCCAGCT TGGAGCGAAC
 5401 GACCTACACC GAACTGAGAT ACCTACAGCG TGAGCATTGA GAAAGCGCCA CGCTTCCGA
 5461 AGGGAGAAAG GCGGACAGGT ATCCGGTAAG CGGCAGGGTC GGAACAGGGAG AGCGCACGAG
 5521 GGAGCTTCCA GGGGGAAACG CCTGGTATCT TTATAGTCT GTCGGGTTTC GCCACCTCTG
 5581 ACTTGAGCGT CGATTTTGT GATGCTGTC AGGGGGCGG AGCCTATGGA AAAACGCCAG
 5641 CAACGCGGCC TTTTACGGT CCTGCCCTT TTGCTGCCCT TTTGCTACA TGTTCTTCC
 5701 TGGCTTATCC CCTGATTCTG TGGATAACCG TATTACCGCC TTTGAGTGTAG CTGATACCGC
 5761 TCGCCGCAGC CGAACGACCG AGCGCAGCGA GTCACTGAGC GAGGAAGCGG AAGAGCGCCC
 5821 AATACGCAAAC CGCCCTCTCC CGCGCTGTTG CGCAGATTCA TAATGCAGAG CTTGCAATT
 5881 GCGCGTTTTT CAATATTATT GAAGCATTAA TCAGGGTTAT TGTCTCATGA GCGGATACAT
 5941 ATTTGAATGT ATTTAGAAA ATAAACAAAT AGGGGTTCCG CGCACATTTC CCCGAAAAGT
 6001 GCCACCTGAC GTCTAAGAAA CCATT

FIGURE 27c

59/260

Figure 78A: pDEST8 Polyhedron Promoter, Baculovirus Transfer Plasmid

AccI

1 cgt ata ctc cgg aat att aat aga tca tgg aga taa tta aaa tga taa cca
 gca tat gag gcc tta taa tta tct agt acc tct att aat ttt act att ggt
 ↓
 52 tct cgc aaa taa ata tgt att tta ctg ttt tcg taa cag ttt tgt aat aaa
 aga gcg ttt att tat tca taa aat gac aaa agc att gtc aaa aca tta ttt
 103 aaa acc tat aaa tat tcc gga tta ttc ata ccc tcc cac cat cgg ggg dgg
 ttt tgg ata ttt ata agg cct aat aag tat ggc agg gtg gta gcc cgc gcc
 154 atc atc aca agt tgt/tgg aaa aaa gct gaa cga gaa aog taa dat dat ata
 tag tag tgt tca aac atg ttt tgc cga ctt act ctt tgc att tta ctt tat

attR1

60/240

pDEST8 6526 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
23..152	Ppolh
284..160	attR1
534..1193	CmR
1313..1397	inactivated ccdA
1535..1840	ccdB
1881..2005	attR2
2766..3146	f1
3240..4090	ampR
4289..4869	ori
5564..6496	genR

1 CGTATACTCC GGAATATTAA TAGATCATGG AGATAATTAA AATGATAACC ATCTCGAAA
 61 TAAATAAGTA TTTTACTGTT TTCGTAACAG TTTGTAATA AAAAACCTA TAAATATTCC
 121 GGATTAITCA TACCGTCCC CCATCGGGCG CGGATCATCA CAAGTTGTA CAAAAAAGCT
 181 GAACGAGAAA CGTAAAATGA TATAAATATC AATATATTAA ATTAGATTTC GCATAAAAAA
 241 CAGACTACAT AATACTGTAA AACACAACAT ATCCAGTCAC TATGGCGGCC GCTAAGTTGG
 301 CAGCATCACC CGACGCAC TTGCGCCAAT AAATACCTGT GACGGAAGAT CACTTCGAG
 361 AATAAATAAA TCCCTGGTGT CCTGTTGATA CCCGGAAAGCC CTGGGCCAAC TTTTGGCAG
 421 AATGAGACGT TGATCGGCAC GTAAGAGGT TCAACTTICA CCATAATGAA ATAAGATCAC
 481 TACCGGGCGT ATTTTTGAG TTATCGAGAT TTTCAGGAGC TAAGGAAGCT AAAATGGAGA
 541 AAAAACATCAC TGGATATACC ACCGTTGATA TATCCCAATG GCATCGTAA GAACATTTG
 601 AGGCATTTCAC GTCAGTTGCT CAATGTACCT ATAACCAGAC CGTTCAGCTG GATATTACGG
 661 CCTTTTAAAG GACCGTAAAG AAAATAAAGC ACAAGTTTA TCCGGCCTT ATTACACATT
 721 TTGCCCCCT GATGAATGCT CATCGGAAT TCCGTATGCC AATGAAAGAC GGTGAGCTGG
 781 TGATATGGGA TAGTGTTCAC CCTTGTAC CCGGTTTCCA TGAGCAAAC GAAACGTTT
 841 CATCGCTCTG GAGTGAATAC CACGACGATT TCCGGCAGTT TCTACACATA TATTGCAAG
 901 ATGTGGCGTG TTACGGTGAAC AACCTGGCT ATTCCCTAA AGGGTTTATT GAGAATATGT
 961 TTTTCGTCTC AGCCAATCCC TGGGTGAGTT TCACCAAGTT TGATTTAAC STGGCCAATA
 1021 TGGACAACCTT CTTCGCCCCC GTTTTACCA TGGGCAAATA TTATACGCAA GGCGACAAGG
 1081 TGCTGATGCC GCTGGCGATT CAGGTTCATC ATGCCGTCTG TGATGGCTTC CATGTCGGCA
 1141 GAATGTTAA TGAATTACAA CAGTACTGCG ATGAGTGGCA GGGCGGGGGCG TAAACGCGTG
 1201 GATCCGGCTT ACTAAAAGCC AGATAACAGT ATGCGTATTG GCGCGCTGAT TTTTGGGTA
 1261 TAAGAATATA TACTGATATG TATACCCGAA GTATGTCAAA AAGAGGTGTG CTATGAAGCA
 1321 GCGTATTACA GTGACAGTTG ACAGGGACAG CTATCAGTTG CTCAAGGCAT ATATGATGTC
 1381 AATATCTCCG GTCTGGTAAG CACAACCATG CAGAATGAAG CCCGTCGTCT GCGTGGCGAA
 1441 CGCTGGAAAG CGGAAAATCA GGAAGGGATG GCTGAGGTCG CCCGGTTTAT TGAAATGAAC
 1501 GGCTCTTTTG CTGACGAGAA CAGGGACTGG TGAAATGCG TTTAAGGTTT ACACCTATAA
 1561 AAGAGAGAGC CGTTATGTC TGGTTGTGAA TGACAGAGT GATATTATTG ACACGCCCGG
 1621 GCGACGGATG GTGATCCCCC TGGCCAGTGC ACGTCGTCTG TCAGATAAAG TCTCCGTGA
 1681 ACTTTACCCG GTGGTGCATA TCGGGGATGA AAGCTGGCGC ATGATGACCA CCGATATGGC
 1741 CAGTGTGCCG GTCTCCGTTA TCGGGGAAGA ACTGGCTGAT CTCAGGCCACC GCGAAAATGA
 1801 CATCAAAAC GCCATTAACC TGATGTCTG GGGAAATATAA ATGTCAGGCT CCCTTATAACA
 1861 CAGCCAGTCT GCAGGTCGAC CATACTGACT GGATATGTT TGTTTACAG TATTATGTAG
 1921 TCTGTTTTTATGCAAAAT TAATTAAATA TATTGATATT TATATCATTT TACGTTTCTC
 1981 GTTCAGCTTT CTGTCACAAA GTGGTGATAG CTTGTCGAGA AGTACTAGAG GATCATATACT
 2041 AGCCATACCA CATTGTTAGA GGTTTTACTT GCTTTAAAAA ACCTCCCACA CCTCCCCCTG
 2101 AACCTGAAAC ATAAAATGAA TGCAATTGTT GTGTTAACT TGTTTATTGC AGCTTATAAT
 2161 GGTACAAAT AAAGCAATAG CATCACAAAT TTACACAAATA AAGCATTTT TTCACGTGAT
 2221 TCTAGTTGTG GTTTGTCCAA ACTCATCAAT GTATCTTATC ATGTCGGAT CTGATCACTG
 2281 CTTGAGCCTA GGAGATCCGA ACCAGATAAG TGAAATCTAG TTCCAAACTA TTTTGTCAATT
 2341 TTAAATTTTC GTATTAGCTT ACGACGCTAC ACCCAGTTCC CATCTTATTG GTCACCTTC
 2401 CCTAAATAAT CCTTAAACAC TCCATTCCCA CCCCTCCAG TTCCCAACTA TTTTGTCCGC
 2461 CCACAGCGGG GCATTTTCT TCCCTGGTATG TTTTTAATCA AACATCCTGC CAACTCCATG
 2521 TGACAAACCG TCATCTTCGG CTACTTTTC TCTGTCACAG AATGAAAATT TTTCTGTCAT-

FIGURE 28B

2581 CTCTTCGTTA TTAATGTTTG TAATTGACTG AATATCAACG CTTATTTGCA GCCTGAATGG
 2641 CGAATGGACG CGCCCTGTAG CGGCATTA AGCGCGGCCG GTGTGGTGGT TACGCGCAGC
 2701 GTGACCGCTA CACTTGGCAG CGCCCTAGCG CCCGCTCCTT TCGCTTCTT CCCTTCCCTT
 2761 CTCGCCACGT TCGCCGGCTT TCCCCGCAA GCTCTAAATC GGGGGCTCCC TTTAGGGTTC
 2821 CGATTAGTGCG CTTTACGGCA CCTCGACCCC AAAAAGCTTG ATTAGGGTGA TGGTTCACGT
 2881 AGTGGGCCAT CGCCCTGATA GACGGTTTT CGCCCTTGAG CGTTGGAGTC CACGTTCTT
 2941 AATAGTGGAC TCTTGTTCGA AACTGGAAACA ACACCTAAC CTTATCTCGGT CTATTCTTT
 3001 GATTATAAG GGATTGTCG GATTGGCC TATTGGTTAA AAAATGAGCT GATTTAACAA
 3061 AAATTTAACG CGAATTTAA CAAAATATTA ACGTTAACAA TTTCAGGTGG CACTTTCCG
 3121 GGAAATGTGC GCGGAACCCC TATTTGTTA TTTTCTAAA TACATTCAA TATGTATCCG
 3181 CTCATGAGAC AATAACCCCTG ATAAATGCTT CAATAATATT GAAAAAGGAA GAGTATGAGT
 3241 ATTCACACATT TCCGTGTGCG CTTTATTCCC TTTTTGCGG CATTTGCCT TCCTGTTTT
 3301 GCTCACCCAG AAACGCTGGT GAAAGTAAAA GATGCTGAAG ATCAGTTGGG TGCACGAGTG
 3361 GGTTACATCG AACTGGATCT CAACAGCGGT AAGATCCTTG AGAGTTTCG CCCCAGAAGAA
 3421 CGTTTCCAA TGATGAGCAC TTTTAAAGTT CTGCTATGTG GCGCGGTATT ATCCCGTATT
 3481 GACGCCGGGC AAGAGCAACT CGGTGCCGC ATACACTATT CTAGAATGA CTTGGTTGAG
 3541 TACTCACCAG TCACAGAAAA GCATCTTAGC GATGGCATGA CAGTAAGAGA ATTATGCAGT
 3601 GCTGCCATAA CCATGAGTGA TAACACTGCG GCCAACTTAC TTCTGACAAC GATCGGAGGA
 3661 CCGAAGGAGC TAACCGTTT TTTGACAAAC ATGGGGGATC ATGTAACCTCG CCTTGATCGT
 3721 TGGGAACCGG AGCTGAATGA AGCCATACCA AACGACGAGC GTGACACAC GATGCTGTGA
 3781 GCAATGGCAA CAACGTTGCG CAAACTATTA ACTGGCGAAC TACTTACTCT AGCTTCCGG
 3841 CAACAATTAA TAGACTGGAT GGAGGGGGAT AAAGTGGAG GACCACTCT GCGCTCGGCC
 3901 CTTCCGGCTG GCTGGTTTAT TGCTGATAAA TCTGGAGCCG GTGAGCGTGG GTCTCGCGT
 3961 ATCATTGCGAG CACTGGGGCC AGATGGTAAG CCCTCCCGTA TCGTAGTTAT CTACACGACG
 4021 GGGAGTCAGG CAACTATGGA TGAACGAAAT AGACAGATCG CTGAGATAGG TGCCCACTG
 4081 ATTAAGCATT GGTAACGTG AGACCAAGTT TACTCATATA TACTTTAGAT TGATTAAAA
 4141 CTTICATTTT AATTTAAAAG GATCTAGGTG AAGATCCTT TTGATAATCT CATGACAAA
 4201 ATCCCTTAAC GTGAGTTTC GTTCCACTGA GGTCAGACCC CGTAGAAAA GATCAAAGGA
 4261 TCTCTTGAG ATCCCTTTT TCTGCGCGTA ATCTGCTGCT TGCAAACAAA AAAACCCACG
 4321 CTACCAAGGG TGTTTGTGTT GCCGGATCAA GAGCTACCAA CTCTTTTCC GAAGGTAAC
 4381 GGCTTCAGCA GAGCGCAGAT ACCAAATACT GTCTTCTAG TGTAGCGTA GTTACGCCAC
 4441 CACTTCAGA CACTCTGTAGC ACCGCTTACA TACCTCGCTC TGCTAATCCT GTTACCACTG
 4501 GCTGCTGCCA GTGGCGATAA GTCGTGTCTT ACCGGGTTGG ACTCAAGACG ATAGTTACCG
 4561 GATAAGGCGC AGCGTCGGG CTGAACGGGG GTTCTGTGCA CACAGCCAG CTTGGAGCGA
 4621 ACCACCTACA CCGAACTGAG ATACCTACAG CGTGAGCATT GAGAAAGCGC CACGCTTCCC
 4681 GAAGGGAGAA AGGCGGACAG GTATCCGGTA AGCGGGCAGGG TCGGAACAGG AGAGCGCACG
 4741 AGGGAGCTTC CAGGGGGAA CGCCTGGTAT CTTTATAGTC CTGTCGGTT TCGCCACCTC
 4801 TGACTTGAGC GTGATTTTG GTGATGCTCG TCAGGGGGC GGAGCCTATG GAAAACGCC
 4861 AGCAACGCGG CCTTTTTTACG GTTCTGGCC TTTTGCTGGC CTTTGCTCA CATGTTCTT
 4921 CCTGCGTTAT CCCCTGATTC TGTGGATAAC CGTATTACCG CTTTGAGTG AGCTGATACC
 4981 GCTGCCCGCA GCCGAACGAC CGAGCGCAGC GAGTCAGTGA GCGAGGAAGC GGAAGAGCGC
 5041 CTGATGCGGT ATTTTCTCT TACGCTATCG TGCGTATTT CACACCGCAG ACCAGCCGCG
 5101 TAACCTGGCA AAATCGGTTA CGGTTGAGTA ATAATGGAT GCCCTGCGTA AGCGGGTGTG
 5161 GCGGACAAT AAAGTCTAA ACTGAACAAA ATAGATCTAA ACTATGACAA TAAAGTCTTA
 5221 AACTAGACAG AATAGTTGTA AACTGAAATC AGTCCAGTTA TGCTGTGAAA AAGCATACTG
 5281 GACTTTTGTT ATGGCTAAAG CAAACTCTTC ATTTTCTGAA GTGCAAATTG CCCGCGTAT
 5341 TAAAGAGGGG CGTGGCCAAG GGCATGTTAA AGACTATATT CGGGCGTTG TGACAATTAA
 5401 CCGAACAACT CCGCGGCCGG GAAGCCGATC TCGGCTTGAA CGAATTGTTA GGTGGCGGT
 5461 CTGGGTGCA TATCAAAGTG CATCACTTCT TCCCGTATGC CCAACTTTGT ATAGAGAGCC
 5521 ACTGCGGGAT CGTCACCGTA ATCTGCTTGC ACGTAGATCA CATAAGCACC AAGGGCGTTG
 5581 GCTCATGCT TGAGGAGATT GATGAGCGCC GTGGCAATGC CCTGCCCTCG GTGCTCGCCG
 5641 GAGACTGCGA GATCATAGAT ATAGATCTCA CTACGCGGCT GCTAAACCT GGGCAGAACG
 5701 TAAGCCGCGA GAGCGCCAAC AACCGCTTCT TGGTCGAAGG CAGCAAGCGC GATGAATGTC
 5761 TTACTACGGG GCAAGTTCCC GAGGTAATCG GAGTCGGCT GATGTTGGGA GTAGGTGGCT
 5821 ACGTCTCCGA ACTCACGACC GAAAAGATCA AGAGCAGCCC GATGGATT GACTTGGTCA
 5881 GGGCCGAGCC TACATGTGCG AATGATGCC ATACTTGAGC CACCTAACTT TGTTTAGGG
 5941 CGACTGCCCT GCTGCGTAAC ATCCTTGCTG CTGCGTAACA TCGTTGCTGC TCCATAACAT
 6001 CAAACATCGA CCCACGGCGT AACGCGCTTG CTGCTTGGAT GCGGGAGGCA TAGACTGTAC-

FIGURE 28C

62/240

6061 AAAAAAACAG TCATAACAAG CCATGAAAAC CGCCACTGCG CCGTTACCAAC CGCTGGTTC
6121 GGTCAAGGTT CTGGACCAGT TGCCTGAGCG CATACTGCTAC TTGCATTACA GTTTACGAAC
6181 CGAACAGGCT TATGTCAACT GGTTCTGTGC CTTCATCCGT TTCCACGGTG TGCGTCACCC
6241 GGCAACCTTG GGCAGCAGCG AAGTCGAGGC ATTCTGTCC TGGCTGGCGA ACGAGCGCAA
6301 GGTTTCGGTC TCCACGCATC GTCAGGCATT GGCGGCCCTTG CTGTTCTTCT ACGGCAAGGT
6361 GCTGTGCACG GATCTGCCCT GGCTTCAGGA GATCGGAAGA CCTCGGCCGT CGCGCGCTT
6421 GCCGGTGGTG CTGACCCCCGG ATGAAGTGGT TCGCATCCTC GGTTTTCTGG AAGGCAGCA
6481 TCGTTTGTTC GCCCAGGACT CTAGCTATAG TTCTAGTGGT TGGCTA

FIGURE 28D

63/240

Figure 29A: DEST9

Semliki Forest Virus vector

103 ttg gcg agg gac att aag gcg ttt aag aaa ttg aga gga cct gtt ata ctc
 aac cgc tcc ctg taa ttc cgc aaa ttc ttt aac tct cct gga caa tat gtg
245 promoter → 245 RNA Bam
 154 ttc tac ggc ggt cct aca ttg gtg cgt taa tac aca gaa ttc tga ttg gat
 gag atg ccg cca gga tct aac ctc gca att atg tgt ctt aag act aac cta
Fsr II ATP
 205 ccc ggt ccg aag cgc gct ttc cca tca aca agt ttg/ ttc aac aad gct gaa
 ggg cca ggc ttc gcg cga aag ggt agt tgt tca aac atg ttt ktc cga ttx

64/240

pDEST9 12464 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
355..232	attR1
605..1264	CmR
1384..1468	inactivated ccdA
1606..1911	ccdB
1952..2078	attR2
2532..2782	ori
3482..4282	ampR
5232..5365	SP6 promoter
5365..6965	nsP1:non-structural protein 1
6965..9265	nsP2:non-structural protein 2
9265..10865	nsP3:non-structural protein 3
10865..161	nsP4:non-structural protein 4

1 AGCAAGTGGT TCCGGACAGG CTTGGGGGCC GAACTGGAGG TGGCACTAAC ATCTAGGTAT
 61 GAGGTAGAGG GCTGCAGAAAG TATCCTCAT A GCCATGGCCA CCTTGGCGAG GGACATTAAG
 121 GCGTTAAGA AATTGAGAGG ACCTGTTATA CACCTCTACG GCGGTCTAG ATTGGTGCCT
 181 TAATACACAG AATTCTGATT GGATCCCGGT CGGAAGCGCG CTTCATCCATC ACAAGTTTGT
 241 ACAAAAAAGC TGAACGAGAA ACGTAAAATG ATATAAATAT CAATATATTA AATTAGATTT
 301 TGCATAAAAA ACAGACTACA TAATACTGTA AAACACAAACA TATCCAGTCA CTATGGCGGC
 361 CGCTAAGTTG GCAGCATCAC CCGACGCACT TTGCGCCGA TAAATACCTG TGACCGAAGA
 421 TCACCTCGCA GAATAAATAA ATCCTGGTGT CCCTGTTGAT ACCGGGAAGC CCTGGGCCAA
 481 CTTTTGGCGA AAATGAGAGG TTGATCGGCA CGTAAGAGGT TCCAACCTTC ACCATAATGA
 541 ATAAGATCA CTACCGGGCG TATTTTTTGTA GTTATCGGAG TTTTCAGGAG CTAAGGAAGC
 601 TAAAATGGAG AAAAAAATCA CTGGATATAC CACCGTTGAT ATATCCAAAT GGCACTCGTAA
 661 AGAACATTTT GAGGCATTTTC AGTCAGTTGC TCAATGTACC TATAACCGA CCGTTCAGCT
 721 GGATATTACG GCCTTTTTAA AGACCGTAA GAAAAATAAG CACAATTTT ATCCGGCCTT
 781 TATTACACATT CTTGCCCCGC TGATGAATGC TCATCCGGAA TTCTGATGG CAATGAAAGA
 841 CGGTGAGCTG GTGATAATGGG ATAGTGTCA CCCTGTTAC ACCGTTTTC ACCGTTTTC ATGAGCAAAC
 901 TGAAACGTTT TCATCGCTCT GGAGTGAATA CCACGACGAT TTCCGGCAGT TTCTACACAT
 961 ATATTCGCAA GATGTGGCGT GTTACGGTGA AAAACCTGGCC TATTTCCCTA AAGGGTTTAT
 1021 TGAGAATATG TTTTCTGCT CAGCCAATCC CTGGGTGAGT TTCAACCAGT TTGATTAA
 1081 CGTGGCCAAT ATGGACAAC TCTTCGCCCC CGTTTTCACC ATGGCAAAAT ATTATAACGCA
 1141 AGGGACAATG GTGCTGATGC CGCTGGCGAT TCAGGTTCAT CATGCCGTCT GTGATGGCTT
 1201 CCATGTCGGC AGAATGCTTA ATGAATTACA ACAGTACTGC GATGAGTGGC AGGGGGGGC
 1261 GTAAAGATCT GGATCCGGCT TACTAAAAGC CAGATAACAG TATGCGTATT TGCGCGCTGA
 1321 TTTTTGGCGGT ATAAGAATAT ATACTGATAT GTATAACCGA AGTATGTCAA AAAGAGGTGT
 1381 GCTATGAAGC AGCGTATTAC AGTGACAGTT GACAGCGACA GCTATCAGTT GCTCAAGGCA
 1441 TATATGATGT CAATATCTCC GGTCTGGTAA GCACAACCAT GCAGAATGAA GCCCCTCGTC
 1501 TGCGTGGCGA ACGCTGGAAA GCGGAAAATC AGGAAGGGAT GGCTGAGGTC GCCCCTGTTA
 1561 TTGAAATGAA CGGCTCTTT GCTGACGAGA ACAGGGACTG GTGAAATGCA GTTTAAGGTT
 1621 TACACCTATA AAAGAGAGAG CCGTTATCGT CTGTTTGTGG ATGTACAGAG TGATATTATT
 1681 GACACGCCCG GGCGACGGAT GGTGATCCCC CTGGCCAGTG CACGTCTGCT GTCAGATAAA
 1741 GTCTCCCGTG AACTTTACCC GGTGGTGCAT ATCGGGGATG AAAGCTGGCG CATGATGACC
 1801 ACCGATATGG CCAGTGTGCGC GGTCTCCGTT ATCGGGGAG AAGTGGCTGA TCTCAGCCAC
 1861 CGCGAAAATG ACATCAAAAA CGCCATTAAC CTGATGTTCT GGGGAATATA AATGTCAGGC
 1921 TCCCTTATAC ACAGCCAGTC TGCAAGTCGA CCATAGTGCAC TGGATATGTT GTGTTTACA
 1981 GTATTTATGTA GTCTGTTTT TATGAAAAG TGCTAATTAA ATATATTGAT ATTTATATCA
 2041 TTTTACGTTT CTCGTTTCAGC TTTCTGTTAC AAAGTGGTGA TGGGAACCTCG AGTTCACTAG
 2101 TCGATCCCGC GGCGCTTTG GAACCTAGGC AAGCATGCGG GCCCAGTGGG TAATTAATTG
 2161 ATTACATCC CTACGCAAC GTTTTACGGC CGCCGGTGGC GCCCCTCGCC GGCAGGCCGT
 2221 CCTTGGCCGT TGCAGGCCAC TCCGGTGGCT CCCGCTCGTCC CCGACTTCCA GGCCAGCAG
 2281 ATGCAAGAAC TCATCAGCGC CGTAAATGCG CTGACAATGA GACAGAACGC AATTGCTCCT
 2341 GCTAGGAGCT TAATTCGAGC AATAATTGGA TTTTATTGTT ATTTGCAAT TGGTTTTAA
 2401 TATTTCAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA-

FIGURE 29B

65/240

2461 AAAAAAAA AAAAAGACTA GAAATCGCGA TTTCTAGTCT GCATTAATGA ATCGGCCAAC
 2521 GCGCGGGGAG AGGCGGTTTG CGTATTGGC GCTCTTCGCTC TTCCCTCGCTC ACTGACTCGC
 2581 TCGCGCTCGGT CGTTCGGCTG CGGGCAGCGG TATCAGCTCA CTCAAAGCCG STAATAACGGT
 2641 TATCCACAGA ATCAGGGGAT AACGCAGGAA AGAACATGTG AGCAAAAGGC CAGCAAAAGG
 2701 CCAGGAACCG TAAAAAGGC GCGTTGCTGG CGTTTCTCCA TAGGCTCCGC CCCCCTGACG
 2761 AGCATCACAA AAATCGACGC TCAAGTCAGA GGTGGCGAAA CCCGACAGGA CTATAAAAGAT
 2821 ACCAGGCCTT TCCCCCTGGA AGCTCCCTCG TGCGCTCTCC TGTTCCGACCC CTGCCGCTTA
 2881 CCGGATACCT GTCCGCTTT CTCCCTTCGG GAAGCGTGGC GCTTTCTCAA TGCTCGCGCT
 2941 GTAGGTATCT CAGTTCGGTG TAGGTCGGTC GCTCCAAGCT GGGCTGTGTG CACGAACCCC
 3001 CCGTTCAAGCC CGACCGCTGC GCCTTATCCG GTAATATCG TCTTGAGTCC AACCCGGTAA
 3061 GACACGACTT ATCGCCACTG GCAGCAGCCA CTGGTAACAG GATTAGCAGA CGCAGGTATG
 3121 TAGGCGGTGC TACAGAGTT TTGAAGTGGT GGCCTAACTA CGGCTACACT AGAAGGACAG
 3181 TATTGGTAT CTGCGCTCTG CTGAAGCCAG TTACCTTCGG AAAAGAGTT GGTAGCTCTT
 3241 GATCCGGCAA ACAAAACCAC GCTGGTAGCG GTGGTTTTTG TGTTTGCAG CAGCAGATTA
 3301 CGCGCAGAAA AAAAGGATCT CAAGAAGATC CTTTGATCTT TTCTACGGGG TCTGACGCTC
 3361 AGTGGAAACGA AAACTCACGT TAAGGGATT TGTCATGAG ATTATCAAAA AGGATCTTCA
 3421 CCTAGATCCT TTTAAATTAA AAATGAAGTT TAAATCAAT CTAAAGTATA TATGAGTAAA
 3481 CTTGGTCTGA CAGTTACCA TGCTTAATCA GTGAGGCACC TATCTCAGCG ATCTGCTAT
 3541 TTCGTTCATC CATAGTTGCC TGACTCCCCG TCCTGTAGAT AACTACGATA CGGGAGGGCT
 3601 TACCATCTGG CCCCAGTGC GCAATGATAC CGCAGAACCC ACGCTCACCG GCTCCAGATT
 3661 TATCAGCAAT AAACCAAGCCA GCGGAAGGG CGGAGCAG AAGTGGTCCT GCAACTTTAT
 3721 CCGCCTCCAT CCAGTCTATT AATTGTTGCC GGGAAAGCTAG AGTAAGTAGT TCGCCAGTTA
 3781 ATAGTTGCCG CAACGTTGTT GGCATTGCTA CAGGCATCGT GGTCACCG TCGTCGTTG
 3841 GTATGGCTTC ATTCAAGCTCC GGTTCACAC GATCAAGGCC AGTTACATGA TCCCCCATGT
 3901 TGTGCAAAA AGCGGTTAGC TCTTCGGTC CTCCGATCGT TGTCAGAAGT AAGTTGGCCG
 3961 CAGTGTATC ACTCATGGTT ATGGCAGCAC TGCAATTCTC TCTTACTGTG ATGCCATCCG
 4021 TAAGATGCTT TTCTGTGACT GGTGAGTCACT CAACCAAGTC ATTCTGAGAA TAGTGTATGC
 4081 GGCGACCGAG TTGCTCTTG CCGCGTCAA TACGGGATAA TACCGCGCCA CATAGCAGAA
 4141 CTTTAAAAGT GCTCATCATT GGAAAAGTT CTTCGGGGCG AAAACTCTCA AGGATCTTAC
 4201 CGCTGTTGAG ATCCAGTTCG ATGTAACCCA CTCGTCACCC CAACTGTATC TCAGCATCTT
 4261 TTACTTTCAC CAGCGTTCTG GGGTGACCAA AAACAGGAAG GCAAAATGCC GCAAAAAGG
 4321 GAATAAGGGC GACACGGAA TGTTGAATAC TCATACTCTT CTTTTTCAA TATTATTGAA
 4381 GCATTATCA GGGTTATTGT CTCATGAGCG GATACATATT TGAATGTATT TAGAAAAATA
 4441 AACAAATAGG GGTTCGGCG ACATTTCCCC GAAAAGTGC ACCTGACGTC TAAGAAACCA
 4501 TTATTATCAT GACATTAACC TATAAAATA GGCATGATCAC GAGGCCCTTT CGTCTCGGC
 4561 GTTTCGGTGA TGACGGTGAA AACCTCTGAC ACATGAGCT CCCGGAGACG GTCACAGCTT
 4621 CTGTCATAAGC GGATGCCGGG AGCAGACAAAG CCCGTCAGGG CGCGTCAGCG GGTGTTGGCG
 4681 GGTGTCGGGG CTGGCTTAAC TATGCGGCAT CAGAGCAGAT TGTACTGAGA GTGCACCATATA
 4741 TCGACGCTCT CCCTTATGCG ACTCCTGCAT TAGGAAGCAG CCCAGTACTA GGTTGAGGCC
 4801 GTTGAGCACC GCGCCCGCAA GGAATGGTGC ATGCAAGGAG ATGGCGCCCA ACAGTCCCC
 4861 GGCCACGGGG CCTGCCACCA TACCCACGCC GAAACAAGCG CTCATGAGCC CGAAGTGGCG
 4921 AGCCCCATCT TCCCCATCGG TGATGTCGGC GATATAGGCG CGAGCAACCG CACCTGTC
 4981 GCGGGTGATG CCGGCCACGA TGCGTCCGGC GTAGAGGATC TGGCTAGCGA TGACCCCTGCT
 5041 GATTGGTTCG CTGACCATTT CCGGGGTGCG GAACGGCGTT ACCAGAAACT CAGAAGGTT
 5101 GTCCAACCAA ACCGACTCTG ACGGCAGTTT ACGAGAGAGA TGATAGGGTC TGCTTCAGTA
 5161 AGCCAGATGC TACACAATTAA GGCTTGACA TATTGTCGTT AGAACCGGGC TACAATTAAAT
 5221 ACATAACCTT ATGTATCATA CACATACGAT TTAGGTGACA CTATAGATGG CGGATGTGTG
 5281 ACATACACGA CGCCAAAAGA TTTTGTCCA GCTCTGCA CCTCCGCTAC GCGAGAGATT
 5341 AACCAACCCAC GATGGCCGCC AAAGTGCATG TTGATATTGA GGCTGACAGC CCATTCTATCA
 5401 AGTCTTGCA GAAGGCATT CCCTCGTTG AGGTGGAGTC ATTGCAAGGTC ACACCAAATG
 5461 ACCATGCAAA TGCCAGAGCA TTTTCGCAAC TGGCTACCAA ATTGATCGAG CAGGAGACTG
 5521 ACAAAAGACAC ACTCATCTTG GATATCGCA GTGCGCCTTC CAGGAGAATG ATGTCTACGC
 5581 ACAAAATACCA CTGCGTATGC CCTATGCCA GCGCAGAAGA CCCCAGAAAGG CTCGATAGCT
 5641 ACGCAAAGAA ACTGGCAGCG GCCTCCGGGA AGGTGGCTGGA TAGAGAGATC GCAGGAAAAA
 5701 TCACCGACCT GCAGACCGTC ATGGCTACGC CAGACGCTGA ATCTCCCTAC TTTTGCCCTG
 5761 ATACAGACGT CACGTGTCGT ACGGCAGCG AAGTGGCCGT ATACCAGGAC GTGTATGCTG
 5821 TACATGCACC AACATCGCTG TACCATCAGG CGATGAAAGG TGTCAGAACG GCGTATTGGA
 5881 TTGGGTTGA CACCACCCCG TTTATGTTG ACGCGCTAGC AGGCGCGTAT CCAACCTACG-

FIGURE 29C

66/240

5941 CCACAAACTG GGCGGACGAG CAGGTGTTAC AGGCCAGGAA CATAGGACTG TGTGCAGCAT
 6001 CCTTGACTGA GGGAAAGACTC GGCAAACGTG CCATTCTCCG CAAGAAGCAA TTGAAACCTT
 6061 GCGACACAGT CATGTTCTCG GTAGGATCTA CATTGTACAC TGAGAGCAGA AAGCTACTGA
 6121 GGAGCTGGCA CTTACCCCTCC GTATTCCACC TGAAAGGTAA ACAATCCTTT ACCTGTAGGT
 6181 GCGATACCAT CGTATCATGT GAAGGGTAGC TAGTTAAGAA ATCACTATG TGCCCCGGCC
 6241 TGTACGGTAA AACGGTAGGG TACGCCGTGA CGTATCACGC GGAGGGATTC CTAGTGTGCA
 6301 AGACCACAGA CACTGTCAAA GGAGAAAGAG TCTCATTCCC TGTATGCACC TACGTCCCT
 6361 CAACCATCTG TGATCAAATG ACTGGCATAC TAGCGACCGA CGTCACACCG GAGGACGCAC
 6421 AGAAGTTGTT AGTGGGATTG AATCAGAGGA TAGTTGTGAA CGGAAGAACAA CAGCGAAACA
 6481 CTAACACGAT GAAGAACTAT CTGCTTCCGA TTGTGGCCGT CGCATTAGC AAGTGGCGA
 6541 GGGAAATACAA GGCAAGACCTT GATGATGAAA AACCTCTGGG TGTCCGAGAG AGGTCACTTA
 6601 CTTGCTGCTG CTTGTGGGCA TTTAAAACGA GGAAGATGCA CACCATGTAC AAGAAACCAG
 6661 ACACCCAGAC AATAGTGAAG GTGCCTTCAG AGTTAACTC GTTCTGTACATC CCGAGCTAT
 6721 GGTCTACAGG CCTCGCAATC CCAGTCAGAT CACGCATTAA GATGCTTTG GCCAAGAAGA
 6781 CCAAGCGAGA GTTAATACCT GTTCTCGACG CGTCTCGACG CAGGGATGCT GAACAAGAGG
 6841 AGAAGGAGAG GTTGGAGGCC GAGCTGACTA GAGAAGCCTT ACCACCCCTC GTCCCCATCG
 6901 CGCCGGCGGA GACGGGAGTC GTGCACGTCG ACGETGAAGA ACTAGAGTAT CACGCAGGTG
 6961 CAGGGGTCGT GGGAAACACCT CGCAGCGCGT TGAAAGTCAC CGCACAGCCG AACGACTAC
 7021 TACTAGGAAA TTACGTAGTT CTGCCCCCGC AGACCGTGCT CAAGAGCTCC AAGTTGGCC
 7081 CCGTGCACCC TCTAGCAGAG CAGGTAAAAA TAATAACACA TAACGGGAGG GCCGGCGGTT
 7141 ACCAGGTCGA CGGATATGAC GGCAGGGTCC TACTACCATG TGGATCGGCC ATTCCGGTCC
 7201 CTGAGTTCA GGCCTTGAGC GAGAGCGCCA CTATGGTGTAA CAACGAAAGG GAGTTCTCA
 7261 ACAGGAAACT ATACCATATT GCGTTCAAG GACCCCTCGCT GAACACCGAC GAGGAGAACT
 7321 ACGAGAAAGT CAGAGCTGAA AGAACTGACG CCGAGTACGT TTTCGACGTA GATAAAAAAAT
 7381 GCTGCGTCAA GAGAGAGGAA GCGTCGGGTT TGGTGTGGT GGGAGAGCTA ACCAACCCCC
 7441 CGTTCCATGA ATTGCCTAC GAAGGGCTGA AGATCAGGCC GTGGCACCAC TATAAGACTA
 7501 CAGTAGTAGG AGTCTTTGGG GTTCCGGGAT CAGGCAAGTC TGCTATTATT AAGAGCCTCG
 7561 TGACCAAACA CGATCTGGTC ACCAGCGCA AGAAGGGAGAA CTGCCAGGAA ATAGTTAACG
 7621 ACGTGAAGAA GCACCGCGGG AAGGGGACAA GTAGGGAAAA CAGTGACTCC ATCCTGCTAA
 7681 ACGGGTGTCG TCGTGCCGTG GACATCCTAT ATGTGGACGA GGCTTTCGCT TGCCATTCCG
 7741 GTACTCTGCT GGGCTTAATT GCTCTTGTAA AACCTCGGAG CAAAGTGGTG TTATGCCAG
 7801 ACCCCAAGCA ATGGGGATTG TTCAATATGA TGCACTTAA GGTGAACCTTC AACACAAACA
 7861 TCTGCACTGA AGTATGTCAT AAAAGTATAT CCAGACGTTG CACGCGTCCA GTCACGSCCA
 7921 TCGTGTCTAC GTTGCACTAC GGAGGCAAGA TGCGCACGAC CAACCCGTGC AACAAACCCA
 7981 TAATCATAGA CACCACAGGA CAGACCAAGC CCAAGCCAGG AGACATCGTG TTAACATGCT
 8041 TCCGAGGCTG GGCAGGACAG CTGCAGTTGG ACTACCGTGG ACACGAAGTC ATGACAGCAG
 8101 CAGCATCTCA GGGCCTCACC CGCAAAGGGG TATACGCCGT AAGGCAGAAG GTGAATGAAA
 8161 ATCCCTTGTA TGCCCCCTGCG TCGGAGCAGC TGAATGACT GCTGACGCGC ACTGAGGATA
 8221 GGCTGGTGTG GAAAACGCTG GCGGGCGATC CCTGGATTAA GTGCCTTATCA AACATTCCAC
 8281 AGGGTAACCT TACGGCCACA TTGGAAGAAT GGCAAGAAGA ACACGACAAA ATAATGAGG
 8341 TGATTGAAGG ACCGGCTGCG CCTGTGGACG CGTCCAGAA CAAAGCGAAC GTGTGTGGG
 8401 CGAAAAGCCT GGTGCTGTG CTGGACACTG CCGGAATCAG ATTGACAGCA GAGGAGTGG
 8461 GCACCATATA TACAGCATTT AAGGAGGACA GAGCTTACTC TCCAGTGGTG GCCTTGATG
 8521 AAATTTGCAC CAAGTACTAT GGAGTTGACC TGGACAGTGG CCTGTTTTCT GCCCGAAGG
 8581 TGTCCCTGTA TTACGAGAAC AACCACGGG ATAACAGACC TGGTGGAAAGG ATGTATGGAT
 8641 TCAATGCCGC AACAGCTGCC AGGCTGGAAG CTAGACATAC CTTCTGTAAAG GGGCAGTGGC
 8701 ATACGGGCAA GCAGGCAGTT ATCGCAGAAA GAAAATCCA ACCGCTTCT GTGCTGGACA
 8761 ATGTAATTCC TATCAACCGC AGGCTGCCG ACAGCCCTGGT GGCTGAGTAC AAGACGGTTA
 8821 AAGGCAGTAG GGGTGTGGG CTGGTCAATA AAGTAAGAGG GTACCCACGTC CTGCTGGTGA
 8881 GTGAGTACAA CCTGGCTTTG CCTCGACGCC GGGTCACTTG GTTGTACCGG CTGAATGTCA
 8941 CAGGCCCGA TAGGTGCTAC GACCTAAGTT TAGGACTGCC GGCTGACGCC GGCAGGTCG
 9001 ACTTGGTCTT TGTGAACATT CACACGAAAT TCAGAACTCCA CCACTACCAAG CAGTGTGTCG
 9061 ACCACGCCAT GAAGCTGCAG ATGCTTGGGG GAGATGCGCT ACGACTGCTA AAACCCGGCG
 9121 GCATCTTGAT GAGAGCTTAC GGATACGCCG ATAAAATCAG CGAAGCCGTT GTTTCCTCCT
 9181 TAAGCAGAAA GTTCTCGTCT GCAAGAGTGT TGCGCCCGA TTGTGTCAAG AGCAATACAG
 9241 AAGTGTCTT GCTGTTCTCC AACTTTGACA ACGGAAAGAG ACCCTCTACG CTACACCAAG
 9301 TGAATACCAA GCTGAGTGCC GTGTATGCCG GAGAAGCCAT GCACACGGCC GGGTGTGCAC
 9361 CATCCTACAG AGTTAAGAGA GCAGACATAG CCACCGTGCAC AGAAGCGGCT GTGGTTAACG

FIGURE 29d

67/240

9421 CAGCTAACGC CCGTGGAACT GTAGGGGATG GCGTATGCAG GGCGTGGCG AAGAAATGGC
 9481 CGTCAGCCTT TAAGGGAGCA GCAACACAG TGGGCACAAT TAAAACAGTC ATGTGCGGCT
 9541 CGTACCCCGT CATCCACGCT GTAGCGCTA ATTCTCTGC CACGACTGAA GCGGAAGGGG
 9601 ACCGCGAATT GCGCGCTGTC TACCGGGCAG TGGCGGCCGA AGTAAACAGA CTGTCACTGA
 9661 GCAGCGTAGC CATCCCCTG CTGTCCACAG GAGTGTTCAG CGCGGAAAGA GATAGGCTGC
 9721 AGCAATCCCT CAACCATCTA TTACAGCAA TGGACGCCAC GGACGCTGAC GTGACCACATCT
 9781 ACTGCAGAGA CAAAAGTTGG GAGAAGAAAA TCCAGGAAGC CATTGACATG AGGACGGCTG
 9841 TGGAGTTGCT CAATGATGAC GTGGAGCTGA CCACAGACTT GGTGAGAGTG CACCCGGACA
 9901 GCAGCCTGGT GGGTCGTAAG GGCTACAGTA CCACTGACGG GTCGCTGTAC TCGTACTTTG
 9961 AAGGTACGAA ATTCAACCCAG GCTGCTATTG ATATGGCAGA GATACTGACG TTGTGGCCA
 10021 GACTGCAAGA GCGAAACGAA CAGATATGCC TATAACCGCCT GGGCGAAACA ATGGACAAACA
 10081 TCAGATCCAA ATGTCCGGTG AACGATTCCG ATTCACTAAC ACCTCCCAGG ACAGTGCCT
 10141 GCCTGTGCCG CTACGCAATG ACAGCAGAAC GGATCGCCCG CCTTAGGTCA CACCAAGTTA
 10201 AAAGCATGGT GGTTCGCTCA TCTTTCCCC TCCCCGAAATA CCATGTAGAT GGGGTGCAGA
 10261 AGGTAAAGTG CGAGAAGGGT CTCCCTGTTG ACCCGACGGT ACCTTCAGTG GTTAGTCCGC
 10321 GGAAGTATGC CGCATCTACG ACGGACCACT CAGATCGGTC GTTACGAGGG TTTGACTTGG
 10381 ACTGGACCAC CGACTCGTCT TCCACTGCA GCGATACCAT GTCGCTACCC AGTTTGCAGT
 10441 CGTGTGACAT CGACTCGATC TAGCAGCCAA TGGCTCCCAT AGTAGTGACG GCTGACGTAC
 10501 ACCCTGAACC CGCAGGCATC GCGGACCTGG CGGCAGATGT GCACCCCTGAA CCCGCAGACC
 10561 ATGTGGACCT GGAGAACCCCG ATTCCCTCCAC CGCGCCCGAA GAGAGCTGCA TACCTTGCCT
 10621 CCCCGCGCGC GGAGCGACCG GTGCCGGCGC CGAGAAAGCC GACGCCCTGCC CCAAGGACTG
 10681 CGTTTAGGAA CAAGCTGCCT TTGACGTTG CGCAGCTTGAG GTCGATGCGT
 10741 TGGCTCCGG GATTACTTTG GGAGACTTGC ACCGACGCTCT CGCAGTAGGC CGCGCGGGTG
 10801 CATAATTTT CTCCCTCGGAC ACTGGCAGCG GACATTACAA ACACAAATTC GTTACCGAGC
 10861 ACAATCTCCA GTGCGCACAA CTGGATGCGG TCCAGGAGGA GAAAATGTAC CCGCCAAAAT
 10921 TGGATACTGA GAGGGAGAAG CTGTTGCTGC TGAAATGCA GATGCACCCA TCGGAGGCTA
 10981 ATAAGAGTCG ATACCACTGC CGCAAAGTGG AGAACATGAA AGCCACGGTG GTGGACAGGC
 11041 TCACATCGGG GGCCAGATTG TACACGGAG CGGACGTAGG CCGCATACCA ACATACCGG
 11101 TTCGGTACCC CCGCCCCGTG TACTCCCTA CCGTGTACGA AAGATTCTCA AGCCCCGATG
 11161 TAGCAATCGC AGCGTGCAAC GAATACCTAT CCAGAAATTAA CCAACAGTG GCGTCGTACC
 11221 AGATAACAGA TGAATACGAC GCATACTTGG ACATGGTTGA CGGGTCGGAT AGTTGCTTGG
 11281 ACAGAGCGAC ATTCTGCCCG GCGAAGCTCC GGTGCTACCC GAAACATCAT GCGTACCA
 11341 AGCCGACTGT ACGCAGTGCC GTCCCCTCAC CCTTTAGAA CACACTACAG AACGTGCTAG
 11401 CGGCTGCCAC CAAGAGAAC TGCAACGTCA CGCAAATGCG AGAAACTACCC ACCATGGACT
 11461 CGGCAGTGTG CAACGTGGAG TGCTTCAAGC GCTATGCTG CTCCGGAGAA TATTGGGAAG
 11521 AATATGCTAA ACAACCTATC CGGATAACCA CTGAGAACAT CACTACCTAT GTGACCAAAT
 11581 TGAAAGGCC GAAAGCTGCT GCCTTGTTCG CTAAGACCCA CAACTGGTT CCGCTGCAGG
 11641 AGGTTCCCAT GGACAGATTG ACGGTCGACA TGAAACGAGA TGTCAAAGTC ACTCCAGGG
 11701 CGAAAACACAC AGAGGAAAGA CCCAAAGTCC AGGTAATTCA AGCAGCGGAG CCATTGGCGA
 11761 CCGCTTACCT GTGCGGCATC CACAGGAAT TAGTAAGGAG ACTAAATGCT GTGTTACGCC
 11821 CTAACGTGCA CACATTGTTT GATATGTCGG CCGAAGACTT TGACCGGATC ATCGCTCTC
 11881 ACTTCCACCC AGGAGACCCG GTTCTAGAGA CGGACATTGC ATCATTGAC AAAAGCCAGG
 11941 ACGACTCCCTT GGCTTAACTA GGTTTAATGA TCCTCGAAGA TCTAGGGTG GATCAGTACC
 12001 TGCTGGACTT GATCGAGGCA GCCTTGGGG AAATATCCAG CTGTCACCTA CCAACTGGCA
 12061 CGCGCTTCAA GTTCCGGAGCT ATGATGAAAT CGGGCATGTT TCTGACTTTG TTTATTAACA
 12121 CTGTTTGAA CATCACCATA GCAAGCAGGG TACTGGAGCA GAGACTCACT GACTCCGCCT
 12181 GTGCGGCCCTT CATCGGCAC GACAACATCG TTCACGGAGT GATCTCCGAC AAGCTGATGG
 12241 CGGAGAGGTG CGCGTCGTGG GTCAACATGG AGGTGAAGAT CATTGACGCT GTCATGGCG
 12301 AAAAACCCCC ATATTTTGT GGGGGATTCA TAGTTTTGA CAGCGTCACA CAGACCGCCT
 12361 GCCGTGTTTC AGACCCACTT AAGCGCCTGT TCAAGTTGGG TAAGCCGCTA ACAGCTGAAG
 12421 ACAAGCAGGA CGAAGACAGG CGACGAGCAC TGAGTGACGA GGTT

FIGURE 29E

68/240

Figure 30A: pDEST10 Polyhedron Promoter with N-His6,
Baculovirus Transfer Plasmid

154 ^{→ mRAT from polyhedrin promoter}
 aaa taa gta ttt tac tgc ttt cgt aac agt ttt gta ata aaa aaa cct ata
 ttt att cat aaa atg aca aaa gca ttg tca aaa cat tat ttt ttt gga tat

205 aat att ccg gat tat tca tac cgt ccc acc atc ggg cgc gga tct egg tcc
 tta taa ggc cta ata agt atg gca ggg tgg tag ccc gcg cct aga gcc agg

256 Met Ser Tyr Tyr His His His His Asp Tyr Asp Ile Pro
 gaa acc atg tcg tac tac cat cac cat cac cat cac gat tac gat atc cca
 ctt tgg tac agc atg atg gta gtg gta gtg cta atg cta tag ggt

307 ^{TEV protease}
 Thr Thr Glu Asn Leu Tyr Phe Gln+Gly Ile Thr Ser Leu Tyr Leu Lys
 acg acc gaa aac ctg tat ttt cag ggc atc ~~aca agt ttg/tac aat gaa gct~~
 tgc tgg ctt ttg gac ata aaa gtc cgg tag ~~tgt tca aac atq ttg ttt ogx~~
 attR1 Int

69/240

pDEST10 6708 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
23..152	Ppolh
461..337	attR1
711..1370	CmR
1490..1574	inactivated ccdA
1712..2017	ccdB
2058..2182	attR2
3394..4369	ampR
4510..5164	ori
5658..62	genR

1 CCCGGATGA AGTGGTCGC ATCCTCGTT TTCTGGAAGG CGAGCATCGT TTGTCGCC
 61 AGGACTCTAG CTATAGTTCT AGTGGTGGC TACGTATACT CCGGAATATT AATAGATCAT
 121 GGAGATAATT AAAATGATAA CCATCTCGCA AATAAAATAAG TATTTTACTG TTTTCGTAAC
 181 AGTTTGTAA TAAAAAAACC TATAAATATT CCGGATTATT CATACCGTCC CACCATCGGG
 241 CGCGGATCTC GGTCCGAAAC CATGTCGTAC TACCATCACC ATCACCATCA CGATTACGAT
 301 ATCCCAACGA CGAAAACCT GTATTTTAG GGCATCACAA GTTTGTACAA AAAAGCTGAA
 361 CGAGAACGT AAAATGATAT AAATATCAAT ATATTAAATT AGATTTTGCA TAAAAAAACAG
 421 ACTACATAAT ACTGTAAAAC ACAACATATC CAGTCACTAT GGCGGCCGCT AAGTTGGCAG
 481 CATCACCCGA CGCACTTTGC GCCGAATAAA TACCTGTGAC GGAAGATCAC TTCGCAGAAT
 541 AAATAATCC TGGTGTCCCT GTTGATACCG GGAAGCCCTG GGCCAACCTT TGGCGAAAAT
 601 GAGACGTTGA TCGGCACGTA AGAGGTTCA ACTTTCACCA TAATGAAATA AGATCACTAC
 661 CGGGCGTATT TTTTGAGTTA TCGAGATTT CAGGAGCTAA GGAAGCTAAA ATGGAGAAAA
 721 AAATCACTGG ATATACCACC GTTGATATAT CCCAATGGCA TGTAAAGAA CATTGGAGG
 781 CATTICAGTC AGTTGCTCAA TGTACCTATA ACCAGACCGT TCAGCTGGAT ATTACGGCCT
 841 TTTTAAAGAC CGTAAAGAAA AATAAGCACA AGTTTATCC GGCCTTTATT CACATTCTTG
 901 CCCGCCTGAT GAATGCTCAT CGGAATTCC GTATGGCAAT GAAAGACGGT GAGCTGGTGA
 961 TATGGGATAG TGTTCACCCCT TGTTACACCG TTTTCATGA GCAAACGTGAA ACGTTTCAT
 1021 CGCTCTGGAG TGAATACCAAC GACGATTCC GGCAGTTCT ACACATATAT TCGCAAGATG
 1081 TGGCGTGTGA CGGTGAAAAC CTGGCCTATT TCCCTAAAGG GTTTATTGAG AATATGTTTT
 1141 TCGTCTCAGC CAATCCCTGG GTGAGTTCA CCAGTTTGA TTAAACGTG GCCAATATGG
 1201 ACAACTTCTT CGCCCCCGTT TTCACCATGG GCAAATATTA TAGCAGG GACAAGGTGC
 1261 TGATGCCGCT GGCAGATTCAAG GTTCATCATG CCGCTGTGA TGGCTTCCAT GTCGGCAGAA
 1321 TGCTTAATGAA ATTACAACAG TACTGCGATG AGTGGCAGGG CGGGGCGTAA ACGCGTGGAT
 1381 CGGGCTTACT AAAAGCCAGA TAACAGTATG CGTATTTGCG CGCTGATTATT TCGGGTATAA
 1441 GAATATATAC TGATATGTAT ACCCGAAGTA TGTCAAAAG AGGTGTGCTA TGAAGCAGCG
 1501 TATTACAGTG ACAGTTGACA GCGACAGTA TCAGTTGCTC AAGGCATATA TGATGTCAT
 1561 ATCTCCGGTC TGGTAAGCAC AACCATGCG AATGAAGCCC GTCGCTCGC TGCGAACGC
 1621 TGGAAAGCGG AAAATCAGGA AGGGATGGCT GAGGTCGCC GGTTTATTGA AATGAACGGC
 1681 TCTTTGCTG ACGAGAACAG GGACTGGTGA AATGCAAGTTT AGGTTTACA CCTATAAAAG
 1741 AGAGAGCCGT TATCGCTGT TTGTTGATGT ACAGAGTGAT ATTATTGACA CGCCCGGGCG
 1801 ACGGATGGTG ATCCCCCTGG CCAGTGCACG TCTGCTGTCA GATAAAGTCT CCCGTGAACACT
 1861 TTACCCGGTG GTGCATATCG GGGATGAAAG CTGGCGCATG ATGACCACCG ATATGGCCAG
 1921 TGTGCCGGTC TCCGTTATCG GGGAAAGGT GGCTGATCTC AGCCACCGCG AAAATGACAT
 1981 CAAAAACGCC ATTAACCTGA TGTTCTGGGG AATATAATG TCAGGCTCCC TTATACACAG
 2041 CCAGCTGCA GGTGACCAT AGTGAAGTGG TATGTTGTGT TTTACAGTAT TATGTAAGTCT
 2101 GTTTTTATG CAAAATCTAA TTTAATATAT TGATATTAT ATCATTTCAC GTTTCTCGTT
 2161 CAGCTTCTT GTACAAAGTG GTGATGCCAT GGATCCGAA TTCAAAGGCC TACGTCGACG
 2221 AGCTCAACTA GTGGGGCCCG TTTGAATCT AGAGCCTGCA GTCTCGAGGC ATGCGGTAC
 2281 AAGCTTGTGAGAAGTACTA GAGGATCATA ATCAGCCATA CCACATTTGT AGAGGTTTTA
 2341 CTTGCTTTAA AAAACCTCCC ACACCTCCCC CTGAACCTGA AACATAAAAT GAATGCAATT
 2401 GTTGTGTTA ACTTGTATT TGCACTTAT AATGTTACA AATAAAGCAA TAGCATCACA
 2461 AATTCACAA ATAAGCATT TTTTCATG CATTCTAGTT GTGGTTGTC CAAACTCATC
 2521 AATGATCTT ATCATGTCTG GATCTGATCA CTGCTTGAGC CTAGGAGATC CGAACCGAGAT
 2581 AAGTGAATC TAGTTCCAAA CTATTTGTC ATTGTTAATT TTCGTATTAG CTTACGACGC-

FIGURE 30B

70/240

2641 TACACCCAGT TCCCATCTAT TTTGTCACTC TTCCCTAAAT AATCCTTAAA AACTCCATT
 2701 CCACCCCTCC CAGTTCCCAA CTATTTGTC CGCCCACAGC GGGGCATTT TCTTCCTGTT
 2761 ATGTTTTAA TCAAACATCC TGCCAACCTCC ATGTGACA AA CCGTCATCTT CCGCTACTTT
 2821 TTCTCTGTCA CAGAATGAAA ATTTTTCTGT CATCTCTTCG TTATTAATGT TTGTAATTGA
 2881 CTGAATATCA ACGCTTATTT GCAGCCTGAA TGGGAATGG GACGCGCCCT GTAGCGGCGC
 2941 ATTAAGCGCG GCGGGTGTGG TGGTACGCG CAGCGTGACC GCTACACTTG CCAGCGCCCT
 3001 AGCGCCCGCT CCTTTCGCTT TCTTCCCTTC CTTTCTCGCC ACGTCGCCG GCTTCCCCG
 3061 TCAAGCTCTA AATCGGGGGC TCCCTTAGG GTTCCGATTT AGTCTTAC GGCACCTCGA
 3121 CCCCCAAAAA CTTGATTAGG GTGATGGTT ACGTAATGGG CCATCGCCCT GATAGACGGT
 3181 TTTTCGCCCT TTGACGTTGG AGTCCACGTT CTTTAATAGT GGACTCTTGT TCCAAACTGG
 3241 AACAAACACTC AACCCATCTC CGGTCTATTTC TTTTGATTTA TAAGGGATT TGCCGATTTC
 3301 GGCCTATTGG TTAAAAAAATAG AGCTGATTTA ACAAAATTT AACGCGAATT TTAACAAAAT
 3361 ATTAACGTTT ACAATTTCAG GTGGCACTTT TCAGGGAAAT GTGCGCGGAA CCCCTATTTG
 3421 TTTATTTTC TAAATACATT CAAATATGTA TCCGCTCATG AGACAATAAC CCTGATAAAAT
 3481 GCTTCATAAA TATTGAAAAA GGAAGAGTAT GAGTATTCAA CATTTCGCG TCGCCCTTAT
 3541 TCCCTTTTGC GCGGCATTTT GCCTTCTGT TTTTGCTCAC CCAGAAACGC TGGTGAAGT
 3601 AAAAGATGCT GAAGATCAGT TGGGTGACG AGTGGGTTAC ATCGAACTGG ATCTAACAG
 3661 CGGTAAGATC CTTGAGAGTT TTGCCCCGA AGAACGTTT CCAATGATGA GCACTTTAA
 3721 AGTTCTGCTA TGTGGCGCGG TATTATCCCG TATTGACGCC GGGCAAGAGC AACTCGGTG
 3781 CGCGATACAC TATTCTCAGA ATGACTTGGT TGAGTACTCA CCAGTCACAG AAAAGCATCT
 3841 TACGGATGGC ATGACAGTAA GAGAATTATG CAGTGTGCC ATAACCATGA GTGATAACAC
 3901 TGCAGGCCAAC TTACTTCTGA CAACGATCGG AGGACCGAAG GAGCTAACCG CTTTTTGCA
 3961 CAACATGGGG GATCATGTA CTCGCCTGTA TCGTTGGAA CCGGAGCTGA ATGAAGCCAT
 4021 ACCAAACGAC GAGCGTGCAC CCACGATGCC TGTAGCAATG GCAACAAACGT TGCAGAAACT
 4081 ATTAACGTTG GAACTACTTA CTCTAGCTTC CCGGAAACAA TTAATAGACT GGATGGAGGC
 4141 GGATAAAAGTT GCAGGACCAAC TTCTGCGCTC GGCCCTTCCG GCTGGCTGGT TTATTGCTGA
 4201 TAAATCTGGA GCGGGTGGAC GTGGGTCTCG CGGTATCATT GCAGCACTGG GGCCAGATGG
 4261 TAAGCCCTCC CGTATCGTAG TTATCTACAC GACGGGGAGT CAGGCAACTA TGGATGAACG
 4321 AAATAGACAG ATCGCTGAGA TAGGTGCTCTC ACTGATTAAG CATTGGTAAC TGTCAAGACCA
 4381 AGTTTACTCA TATATACTTT AGATTGATTT AAAACTTCAT TTTTAATTTA AAAGGATCTA
 4441 GGTGAAGATC CTTTTTGATA ATCTCATGAC CAAATCCCT TAACGTGAGT TTTCTTCCA
 4501 CTGAGCGTCA GACCCCGTAG AAAAGATCAA AGGATCTTCT TGAGATCCTT TTTTTCTGCG
 4561 CGTAATCTGC TGCTTGCAAA CAAAAAAACC ACCGCTACCA GCGGTGGTTT GTTTGCCGGA
 4621 TCAAGAGCTC CCAACTCTT TTCCGAAGGT AACTGGCTTC AGCAGAGCGC AGATACAAA
 4681 TACTGCTCTT CTAGTGTAGC CGTAGTTAGG CCACCACTTC AAGAACTCTG TAGCACCGCC
 4741 TACATACCTC GCTCTGCTAA TCCCTGTTAC AGTGGCTGCT GCCAGTGGCG ATAAGTCGTG
 4801 TCTTACCGGG TTGGACTCAA GACGATAGTT ACCGGATAAG GCGCAGCGGT CGGGCTGAAC
 4861 GGGGGGTTCG TGCACACAGC CCAGCTTGA GCGAACGACC TACACCGAAC TGAGATAACCT
 4921 ACAGCGTGGAG CATTGAGAAA GCGCCACGCT TCCCGAAGGG AGAAAGGCAG ACAGGTATCC
 4981 GGTAAGCGGC AGGGTGGAA CAGGAGAGCG CACGAGGGAG CTTCCAGGGG GAAACGCC
 5041 GTATCTTAT AGTCTGTGCG GGTTTGCCTA CCTCTGACTT GAGCGTCGAT TTTTGTGATG
 5101 CTCGTCAGGG GGGCGGAGCC TATGGAAAAA CGCCAGCAAC GCGGCCTTT TACGGTTCC
 5161 GGCCTTTTGC TGGCTTTTG CTCACATGTT CTTTCTGCG TTATCCCTG ATTCTGTGGA
 5221 TAACCGTATT ACCGCCCTTG AGTGGCTGA TACCGCTCGC CGCAGCCGAA CGACCGAGCG
 5281 CAGCGAGTCA GTGAGCGAGG AAGCGGAAGA GCGCCTGATG CGGTATTTTC TCCTTACGCA
 5341 TCTGTGCGGT ATTTCACACC GCAGACCAGC CGCGTAACCT GGCACAAATCG GTTACGTTG
 5401 AGTAATAAAAT GGATGCCCTG CGTAAGCGGG TGTGGCGGA CAATAAAGTC TTAAACTGAA
 5461 CAAAATAGAT CTAAAACTATG ACAATAAAGT CTAAACTAG ACAGAATAGT TGTAACACTGA
 5521 AATCAGTCCA GTTATGCTGT GAAAAGCAT ACTGGACTTT TGTTATGGCT AAAGCAAAC
 5581 CTTCATTTTC TGAAGTGCAA ATTGCCCCGTG CTATTAAGA GGGGCGTGGC CAAGGGCATG
 5641 GTAAAGACTA TATTGGGGC GTTGTGACAA TTACCGAAC AACTCCCGG CCGGGAGGCC
 5701 GATCTCGGCT TGAACGAATT GTTGGTGGC GGTACTTGGG TCGATATCAA AGTGCATCAC
 5761 TTCTTCCCGT ATGCCCAACT TTGTATAGAG AGCCACTGCG GGATCGTCAC CGTAATCTGC
 5821 TTGACGCTAG ATCACATAAG CACCAAGCGC GTTGGCCTCA TGCTTGAGGA GATTGATGAG
 5881 CGCGGTGGCA ATGCCCTGCC TCCGGTGCCTC GCGGAGACT GCGAGATCAT AGATATAGAT
 5941 CTCACTACGC GGCTGCTCAA ACCTGGGCAG AACGTAAGCC GCGAGAGCGC CAACAAACCGC
 6001 TTCTTGGTCG AAGGCAGCAA GCGCGATGAA TGTCTTACTA CCGGAGCAAGT TCCCGAGGTA
 6061 ATCGGAGTCC GGCTGATGTT GGGAGTAGGT GGCTACGCTC CGCAACTCAC GACCGAAAAG-

FIGURE 30C

71/240

6121 ATCAAGAGCA GCCCGCATGG ATTTGACTTG GTCAGGGCCG AGCCTACATG TGCAGATGAT
6181 GCCCATACTT GAGCCACCTA ACTTTGTTTT AGGGCGACTG CCCTGCTGCG TAACATCGTT
6241 GCTGCTGCGT AACATCGTTG CTGCTCCATA ACATAAACA TCGACCCACG GCGTAACGCG
6301 CTTGCTGCTT GGATGCCGA GGCATAGACT GTACAAAAAA ACAGTCATAA CAAGCCATGA
6361 AAACCGCCAC TGCGCCGTTA CCACCGCTGC GTTGGTCAA GGTTCTGGAC CAGTTGCGTG
6421 AGCGCATACG CTACTTGCAT TACAGTTAC GAACCGAAC AACTGGGTTTC
6481 GTGCCCTTCAT CCGTTTCCAC GGTGTGGTC ACCCGGCAAC TTGGGCAGC AGCGAAGTCG
6541 AGGCATTCT GTCCCTGGCTG GCGAACGAGC GCAAGGTTTC GGTCTCCACG CATCGTCAGG
6601 CATTGGCGGC CTTGCTGTT TTCTACGGCA AGGTGCTGTG CACGGATCTG CCCTGGCTTC
6661 AGGAGATCGG AAGACCTCGG CCGTCGCGGC GCTTGCCGGT GGTGCTGA

FIGURE 30D

72/240

Figure 31A: pDEST 11

Tet-regulated eukaryotic expression

mRNA from CMV promoter (controlled by tetracycline)

358 tag tga acc gtc aga tcg cct gga gac gcc atc cac gct gtt ttg acc tcc
atc act tgg cag tct agc gga cct ctg cgg tag gtg cga caa aac tgg agg

409 ata gaa gac acc ggg acc gat cca gcc tcc gcg gcc ccc aat tcg agc tcg
tat ctt ctg tgg ccc tgg cta ggt cgg agg cgc cgg ggc tta agc tcg agc

460 gta ccc ggg gat cct cta gag tcg agg ^{Sal} tcg acg gta ^{Cla} tcg ata ^{Hind 3} agc ttg ata
cat ggg ccc cta gga gat ctc agc tcc agc ^{EcoRV} tgc cat agc tat tcg aac tac
^{Int} attR1

511 tca aca agt ttg taa aac ata aat gtt gaa cga gaa acg taa dat gat ata aat
agt tgt tca aac atg ttt tct cga ctt gct ctt tgc art tta cta cat tta

73/240

pDEST11 7026 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
4..479	TetP ((Tet operator)7 and min hCMV promoter)
638..514	attR1
888..1547	CmR
1667..1751	inactivated ccdA
1889..2194	ccdB
2235..2359	attR2
2402..4132	polyA
4347..4803	f1 ori
4940..5797	ampR

1 CGAGTTTAC CACTCCCTATC AGTGATAGAG AAAAGTGAAA GTCGAGTTTA CCACTCCCTA
 61 TCAGTGATAG AGAAAAGTGA AAGTCGAGTT TACCACTCCC TATCAGTGAT AGAGAAAAGT
 121 GAAAGTCGAG TTTACCCTC CCTATCAGTG ATAGAGAAAA GTGAAAGTCG AGTTTACCA
 181 TCCCTATCAG TGATAGAGAA AAGTGAAGT CGAGTTTAC CACTCCCTATC AGTGATAGAG
 241 AAAAGTGAAGA GTCGAGTTA CCACTCCCTA TCAGTGATAG AGAAAAGTGA AAGTCGAGCT
 301 CGGTACCCGG GTCGAGTAGG CGTGTACGGT GGGAGGCCTA TATAAGCAGA GCTCGTTAG
 361 TGAACCGTCA GATGCCCTGG AGACGCCATC CACGCTGTT TGACCTCCAT AGAACGACACC
 421 GGGACCGATC CAGCCTCCGC GGCCCCGAAT TCGAGCTCGG TACCCGGGGA TCCTCTAGAG
 481 TCGAGGTCGA CGGTATCGAT AAGCTTGATA TCAACAAGTT TGTACAAAAA AGCTGAACGA
 541 GAAACGTAAA ATGATATAAA TATCAATATA TTAAATTAGA TTTTGCATAA AAAACAGACT
 601 ACATAATACT GTAAAACACA ACATATCCAG TCACTATGGC GGCGCTAAG TTGGCAGCAT
 661 CACCCGACGC ACTTTCGCGC GAATAAAATAC CTGTCAGCGA AGATCACTTC GCAGAATAAA
 721 TAAATCCTGG TGCCCTGTT GATACCGGGA AGCCCTGGC CAACTTTGG CGAAAATGAG
 781 ACGTTGATCG GCACGTAAGA GGTTCCAATC TTCACCATAA TGAAATAAGA TCACTACCGG
 841 GCGTATTTTT TGAGTTATCG AGATTTTCAG GAGCTAAGGA AGCTAAAATG GAGAAAAAAA
 901 TCACTGGATA TACCAACCGTT GATATATCCC AATGGCATCG TAAAGAACAT TTTGAGGCAT
 961 TTCAGTCAGT TGCTCAATGT ACCTATAACC AGACCGTTCA GCTGGATATT ACAGCCTTTT
 1021 TAAAGACCGT AAAGAAAAAT AAGCACAAGT TTTATCCGGC CTTTATTACAC ATTCTTGCCC
 1081 GCCTGATGAA TGCTCATCCG GAATTCCGTA TGGCAATGAA AGACGGTGAG CTGGTGATAT
 1141 GGGATAGTGT TCACCCCTGT TACACCGTT TCCATGAGCA AACTGAAACG TTTTCATCGC
 1201 TCTGGAGTGA ATACCACGAC GATTCCGGC AGTTCTACA CATATATTG CAAAGATGTGG
 1261 CGTGTACCGG TGAAAACCTG GCCTATTTC CCAAAGGGTT TATTGAGAAT ATGTTTTTCG
 1321 TCTCAGCCAA TCCCTGGGTG AGTTTCACCA GTTTTGATTT AAACGTTGGC AATATGGACA
 1381 ACTTCCTCGC CCCGTTTTTC ACCATGGGCA AATATTATAC GCAAGGCGAC AAGGTGCTGA
 1441 TGCCGCTGGC GATTCAAGGTT CATCATGGCG TCTGTGATGG CTTCCATGTC GGCAGAATGC
 1501 TTAATGAATT ACAACAGTAC TGCGATGAGT GGCAGGGCGG GGCAGTAAAGA TCTGGATCCG
 1561 GCTTACTAAA AGCCAGATAA CAGTATGCGT ATTTGCGCGC TGATTTTTGC GGTATAAGAA
 1621 TATATACTGA TATGTATACC CGAAGTATGT CAAAAAGAGG TGTGCTATGA AGCAGCGTAT
 1681 TACAGTGACA GTTGACAGCG ACAGCTATCA GTTGTCAAG GCATATATGA TGTCAATATC
 1741 TCCGGTCTGG TAAGCACAAC CATGCGAAAT GAAGCCCGTC GTCTGCGTGC CGAACCTGG
 1801 AAAGCGGAAA ATCAGGAAGG GATGGCTGAG GTCCGCCGGT TTATTGAAAT GAACGGCTCT
 1861 TTTGCTGACG AGAACAGGGG CTGGTGAAT GCAGTTAACG GTTTACACCT ATAAAAGAGA
 1921 GAGCCGTTAT CGTCTGTTTG TGGATGTACA GAGTGATATT ATTGACACGC CGGGGCGACG
 1981 GATGGTGATC CCCCTGGCCA GTGCACGCTC GCTGTCAGAT AAAGTCTCCC GTGAACCTTA
 2041 CCCGGTGGTG CATATCGGGG ATGAAAGCTG GCGCATGATG ACCACCGATA TGGCCAGTGT
 2101 GCCGGTCTCC GTTATCGGGG AAGAAGTGGC TGATCTCAGC CACCGCGAAA ATGACATCAA
 2161 AAACGCCATT AACCTGATGT TCTGGGAAAT ATAATGTCA GGCTCCCTTA TACACAGCCA
 2221 GTCTGCAGGT CGACCATAGT GACTGGATAT GTTGTGTTT ACAGTATTAT GTAGTCTGTT
 2281 TTTTATGCAA AATCTAATT TATATATTGA TATTATATAC ATTTTACGTT TCTCGTTCA
 2341 CTTTCTTGTA CAAAGTGGTT GATATGAAAT TCCTGCAGCC CGGGGGATCC ACTAGTTCTA
 2401 GAGCACTGGC ATGAGTGGCA GGGCGGGGCG TAATTTTTT AAGGGCACTTA TTGGTGCCCT
 2461 TAAACGCCCTG GTGCTACGCC TGAATAAGTG ATAATAAGCG GATGAATGGC AGAAATTGCG
 2521 CGGATTTG TGAAGGAACC TTACTTCTGT GGTGTGACAT AATTGGACAA ACTACCTACA-

FIGURE 31B

2581 GAGATTAAA GCTCTAAGGT AAATATAAAA TTTTAAGTG TATAATGTGT TAAACTACTG
 2641 ATTCTAATTG TTGTTGATT TTAGATTCCA ACCTATGGAA CTGATGAATG GGAGCAGTGG
 2701 TGGAATGCCT TTAATGAGGA AAACCTGTT TGCTCAGAAG AAATGCCATC TAGTGTATGAT
 2761 GAGGCTACTG CTGACTCTCA ACATTCTACT CCTCCAAAAA AGAAGAGAAA GGTAGAAGAC
 2821 CCCAAGGACT TTCCCTCAGA ATTGCTAAGT TTTTGAGTC ATGCTGTGTT TAGTAATAGA
 2881 ACTCTGCTT GCTTGTCTAT TTACACCACA AAGGAAAAAG CTGCACTGCT ATACAAGAAA
 2941 ATTATGGAAA AATATTCTGT AACCTTATA AGTAGGCATA ACAGTTATAA TCATAACATA
 3001 CTGTTTTTC TTACTCCACA CAGGCATAGA GTGCTGCTA TTAATAACTA TGCTCAAAAA
 3061 TTGTGTACCT TTAGCTTTT AATTGTAAA GGGTTAATA AGGAATATT GATGTATAGT
 3121 GCCTTGACTA GAGATCATAA TCAGCCATAC CACATTGTA GAGGTTTAC TTGCTTTAAA
 3181 AAACCTCCC CACCTCCCC TGAAACCTGAA ACATAAAATG AATGCAATTG TTGTTGTTAA
 3241 CTTGTTATT GCAGCTTATA ATGGTTACAA ATAAAGCAAT AGCATCACAA ATTTCACAAA
 3301 TAAAGCATTT TTTCACTGC ATTCTAGTT TGTTTGTCC AAACATCATCA ATGTATCTTA
 3361 TCATGCTGG ATCCCCAGGA AGCTCCTCTG TGTCCTCATA AACCTCTAAC CCCTCTACTT
 3421 GAGAGGACAT TCCAATCATA GGCTGCCAT CCACCCCTCG TGTCCTCTG TTAATTAGGT
 3481 CACTTAACAA AAAGGAAATT GGGTAGGGT TTTCACAGA CCGCTTTCTA AGGGTAATT
 3541 TAAAATATCT GGGAAAGTCCC TTCCACTGCT GTGTTCCAGA AGTGTGGTA AACAGCCCAC
 3601 AAATGTCAAC AGCAGAAACA TACAAGCTGT CAGCTTGCA CAAGGGCCA ACACCTGCT
 3661 CATCAAGAAG CACTGTGGTT GCTGTGTTAG TAATGTGAA AACAGGAGGC ACATTTCCC
 3721 CACCTGTTA GGTTCCAAA TATCTAGTGT TTTCATTTT ACCTGGATCA GGAACCCAGC
 3781 ACTCCACTGG ATAAGCATTAA TCCTTATCCA AAACAGCCTT GTGGTCAGTG TTCATCTGCT
 3841 GACTGTCAAC TGAGCATTT TTTGGGTTA CAGTTGAGC AGGATATTG GTCCTGTAGT
 3901 TTGCTAACAC ACCCTGCAGC TCCAAAGGTT CCCCCACCAAC AGCAAAAAAA TGAAAATTG
 3961 ACCCTGAAT GGTTTTCCA GCACCATTAA CATGAGTTT TTGTTGCTCC GAATGCAAGT
 4021 TTAACATAGC AGTTACCCCA ATAACCTCAG TTAAACAGT AACAGCTTCC CACATCAAA
 4081 TATTCACCA GGTTAAGTCC TCATTTAAAT TAGGCAAAGG AATTGCTCTA GAGCGGCCGC
 4141 CACCGCGGTG GAGCTCAAAT TCGCCCTATA GTGAGTCGA TTACGCGCGC TCACTGGCCG
 4201 TCGTTTACA ACGTCGTGAC TGGGAAACC CTGGCGTTAC CCAACTTAAT CGCCTTGCAG
 4261 CACATCCCCC TTTCGCCAGC TGGCGTAATA GCGAAGAGGC CCGCACCGAT CGCCCTTCCC
 4321 AACAGTTGCG CAGCCTGAAT GGCAGATGGG ACGCGCCCTG TAGCGGCAGA TTAAGCGCGG
 4381 CGGGTGTGGT GGTTACGCGC AGCGTGACCG CTACACTTGC CAGCGCCCTA GCGCCCGCTC
 4441 CTTTCGCTTT CTTCCCTTCC TTTCTGCCA CGTTGCCGG CTTTCCCCGT CAAGCTCTAA
 4501 ATCGGGGGCT CCCTTTAGGG TTCCGATTTA GTGCTTTACG GCACCTCGAC CCCAAAAAAC
 4561 TTGATTAGGG TGATGGTTCA CGTAGTGGC CATCGCCCTG ATAGACGGT TTTGCCCTT
 4621 TGACGTTGGA GTCCACGTT TTTAATAGTG GACTCTGTT CCAAACGTGA ACAACACTCA
 4681 ACCCTATCTC GGTCTATTCT TTTGATTAA AAGGGATTG GCCGATTTCG GCCTATTGGT
 4741 TAAAAAAATGA GCTGATTAA CAAAATTTA ACGCGAATT TAAACAAATA TTAACGCTTA
 4801 CAATTAGGT GGCACTTTCC GGGGAAATGT GCGCGGAACC CCTATTGTT TATTTTCTA
 4861 AATACATTCA AATATGTATC CGCTCATGAG ACAATAACCC TGATAATGTC TTCAATAATA
 4921 TTGAAAAAAGG AAAGATGAA GTATTCAACA TTTCCGTGTC GCCCTTATTG CTTTTTTGTC
 4981 GGCATTTCGCTTCTCTGTT TTGCTCACCC AGAAACGCTG GTGAAAGTAA AAGATGCTGA
 5041 AGATCAGTTG GGTGCAAGA TGGGTTACAT CGAAGTGGAT CTCAACAGCG GTAAGATCCT
 5101 TGAGAGTTT CCCCCCGAAG AACCTTTTCC AATGATGAGC ACTTTAAAG TTCTGCTATG
 5161 TGGCGCGGT AATACCGTAA TTGACGCCGG GCAAGAGCAA CTCGGTCGCC GCATACACTA
 5221 TTCTCAGAAT GACTGGTTG AGTACTCACC AGTCACAGAA AAGCATCTTA CGGATGGCAT
 5281 GACAGTAAGA GAATTATGCA TGCTGCCAT AACCATGAGT GATAACACTG CGGCCAACTT
 5341 ACTCTGACA ACGATCGGAG GACCGAAAGG CCTAACCGCT TTTTGCAACA ACATGGGGGA
 5401 TCATGTAACCT CGCCCTTGATC GTTGGGAACC GGAGCTGAAT GAAGCCATAC CAAACGACGA
 5461 GCGTACGACC ACGATGCCCTG TAGCAATGGC AACAAACGTT CGCAAACACTAT TAACTGGCGA
 5521 ACTACTTACT CTAGCTTCCC GGCAACAAATT AATAGACTGG ATGGAGGGGG ATAAAGTTGC
 5581 AGGACCACTT CTGGCGCTCGG CCCTTCCGGC TGGCTGGTTT ATTGCTGATA AATCTGGAGC
 5641 CGGTGAGCGT GGGTCTCGG GTATCATTGC AGCACTGGGG CCAGATGGTA AGCCCTCCCG
 5701 TATCGTAGTT ATCTACACGA CGGGGAGTCAGA GGCAACTATG GATGAACGAA ATAGACAGAT
 5761 CGCTGAGATA GGTGCCCTAC TGATTAAGCA TTGGTAACTG TCAGACCAAG TTTACTCTATA
 5821 TATACATTAG ATTGATTAA AACTCATTT TTAATTAAA AGGATCTAGG TGAAGATCCT
 5881 TTTTGATAAT CTCATGACCA AAATCCCTTA ACGTGAGTTT TCGTTCCACT GAGCGTCAGA
 5941 CCCCCGTAGAA AAAGATCAAAG GATCTTCTTG AGATCCTTTT TTTCTGCCGG TAATCTGCTG
 6001 CTTGCAAAACA AAAAACCAC CGCTACCAAGC GGTGGTTTGT TTGCGGGATC AAGAGCTACC-

FIGURE 3/C

75/240

6061 AACTCTTTT CCGAAGGTAA CTGGCTTCAG CAGAGCGCAG ATACCAAATA CTGTCCTTCT
6121 AGTGTAGCCG TAGTTAGGCC ACCACTTCAA GAACTCTGTA GCACCGCCTA CATACTCGC
6181 TCTGCTAATC CTGTTACCAAG TGGCTGCTGC CAGTGGCGAT AAGTCTGTGTC TTACCGGGTT
6241 GGACTCAAGA CGATAGTTAC CGGATAAGGC GCAGCGGTG GGCTGAACGG GGGGTTCTG
6301 CACACAGCCC AGCTTGGAGC GAACGACCTA CACCGAACTG AGATACCTAC AGCGTGAGCT
6361 ATGAGAAAAGC GCCACGCTTC CCGAAGGGAG AAAGGCGGAC AGGTATCCGG TAAGCGGCAG
6421 GGTGGAACA GGAGAGCGCA CGAGGGAGCT TCCAGGGGGA AACGCCCTGGT ATCTTTATAG
6481 TCCTGTCGGG TTTCGCCACC TCTGACTTGA CGCTCGATT TTGTGATGCT CGTCAGGGGG
6541 GCGGAGCCTA TGAAAAAACG CCAGCAACGC GGCTTTTA CGGTTCTGG CCTTTTGCTG
6601 GCCTTTGCT CACATGTTCT TTCCCTGCGTT ATCCCCCTGAT TCTGTGGATA ACCGTATTAC
6661 CGCCTTGAG TGAGCTGATA CCGCTCGCCG CAGCCGAACG ACCGAGCGCA GCGAGTCAGT
6721 GAGCGAGGAA GCGGAAGAGC GCCCAATACG CAAACCGCCT CTCCCCGCGC GTTGGCCGAT
6781 TCATTAATGTC AGCTGGCACG ACAGGTTTCC CGACTGGAAA GCGGGCAGTG AGCGCAACGC
6841 AATTAATGTG AGTTAGCTCA CTCATTAGGC ACCCCAGGCT TTACACTTTA TGCTTCCGGC
6901 TCGTATGTTG TGTTGAATTG TGAGCGGATA ACAATTTCAC ACAGGAAACA GCTATGACCA
6961 TGATTACGCC AAGCGCGCAA TTAACCCTCA CTAAAGGGAA CAAAAGCTGG GTACCGGGCC
7021 CCCCCCT

FIGURE 31D

76/240

Figure 32A: pDEST12.2 CMV Promoter for Eukaryotic Expression, SV40 Promoter/ori for G418 Resistance

307 acc gtc aga tcg cct gga gac atc cac gct gtt ttg acc tcc ata gaa
 ↑ mRNA from CMV promoter
 tgg cag tct agc gga cct ctg cgg tag gtg cga caa aac tgg agg tat ctt

358 gac acc ggg acc gat cca gcc tcc gga ctc tag cct agg ccg cgg agc gga
 ctg tgg ccc tgg cta ggt cgg agg cct gag atc gga tcc ggc gcc tcg cct

409 taa caa ttt cac aca gga aac agc tat gac cat tag gcc ttt gca aaa agc
 att gtt aaa gtg tgt cct ttg tcg ata ctg gta atc cgg aaa cgt ttt tcg

460 tat tta ggt gac act ata gaa ggt aeg cct gca ggt ~~acc~~ ^{Ap^r} ggt ccc gaa ttc
 ata aat cca ctg tga tat ctt cca tgc gga cgt cca tgg cca ggc ctt aag

511 cca tca ~~aca~~ ^{Int} ^{EcoR I} agt ttg tao ada ada gct gaa cga gaa acg taa aat gat ata
 ggt agt tgt tca aac atg ttt tbt cga ctc gct ctt tgc att gta qta bat

77/240

pDEST12.2 7278 bp (rotated to position 3900)

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
86..136	ori
220..742	CMV promoter
1059..935	attR1
1168..1827	CmR
1947..2031	inactivated ccdA
2169..2474	ccdB
2515..2639	attR2
2824..3186	small t & polyA
3310..3378	lac
4363..5157	neo
5680..6540	ampR

1 GGGGGGCGGA GCCTATGGAA AAACGCCAGC AACGCCGCCT TTTTACGGTT CCTGGCCTTT
 61 TGCTGGCCTT TTGCTCACAT GTTCTTCCT GCGTTATCCC CTGATTCTGT GGATAACCCT
 121 ATTACCGCCT TTGAGTGAGC TGATACCGCT CGCCGCAGCC GAACGACCGA GCGCAGCGAG
 181 TCAGTGAGCG AGGAAGCGGA AGAGCTCGCG AATGCATGTC GTTACATAAC TTACGGTAAA
 241 TGGCCCGCCT GGCTGACCGC CCAACGACCC CCGCCCATTG ACGTCAATAA TGACGTATGT
 301 TCCCCATAGTA ACCCCAATAG GGACTTTCCA TTGACGTCAA TGGGTGGAGT ATTTACGGTA
 361 AACTGCCAC TTGGCAGTAC ATCAAGTGT A TCATATGCCA AGTACGCCCT CTATTGACGT
 421 CAATGACGGT AAATGGCCCG CCTGGCATTA TGCCAGTAC ATGACCTTAT GGGACTTTCC
 481 TACTTGGCAG TACATCTACG TATTAGTCAT CGCTATTACC ATGGTGATGC GGTTTTGGCA
 541 GTACATCAAT GGGCGTGGAT AGCGGTTTGA CTCACGGGGA TTTCCAAGTC TCCACCCCAT
 601 TGACGTCAAT GGGAGTTTGT TTTGGCACCA AAATCAACGG GACTTTCCAA AATGTGTTAA
 661 CAACTCCGCC CCATTGACGC AAATGGCGG TAGGCGTGTAA CGGTGGGAGG TCTATATAAG
 721 CAGAGCTCGT TTAGTGAACC GTCAGATCGC CTGGAGACGC CATCCACGCT GTTTGACCT
 781 CCATAGAAGA CACCGGGGACC GATCCAGCCT CCGGACTCTA GCCTAGGCCG CGGGACGGAT
 841 AACAAATTCA CACAGGAAAC AGCTATGACC ATTAGGCCCTT TGCAAAAGC TATTTAGGTG
 901 ACACATATAGA AGGTACGCCT GCAGGTACCG GATCACAAGT TTGTACAAAA AAGCTGAACG
 961 AGAAACGTAA AATGATATAA ATATCAATAT ATAAATTAG ATTTTGACATA AAAAACAGAC
 1021 TACATAATAC TGAAAACAC AACATATCCA GTCACTATGG CGGCCGCATT AGGCACCCCA
 1081 GGCTTACAC TTTATGCTTC CGGCTCGTAT AATGTGTGGA TTTTGAGTTA GGATCCGTCG
 1141 AGATTTTCAG GAGCTAAGGA AGCTAAAATG GAGAAAAAAA TCACTGGATA TACCACCGTT
 1201 GATATATCCC AATGGCATCG TAAAGAACAT TTTGAGGCAT TTCAGTCAGT TGCTCAATGT
 1261 ACCTATAACC AGACCGTCA GCTGGATATT ACGGCCTTTT TAAAGACCGT AAAGAAAAT
 1321 AAGCACAAGT TTTATCCGGC CTTTATTCA ATTCTTGCCTT GCCTGATGAA TGCTCATCCG
 1381 GAATTCGTA TGGCAATGAA AGACGGTGG AGCTGGATAT GGGATAGTGT TCACCCCTTGT
 1441 TACACCGTT TCCATGAGCA AACTGAAACG TTTTCATCGC TCTGGAGTGA ATACCAAGAC
 1501 GATTCGGC AGTTCTACA CATATATTCA CAAGATGTGG CGTGTACGG TGAAAACCTG
 1561 GCCTATTCC CTAAGGGTT TATTGAGAAT ATGTTTTCTG TCTCAGCCAA TCCCTGGGTG
 1621 AGTTTCACCA GTTTGATTT AAACGTGGCC AATATGGACA ACTTCTTCGC CCCCCTTTTC
 1681 ACCATGGCA AATATTATAC GCAAGGGAC AAGGTGCTGA TGCCGCTGG GATTCAGGTT
 1741 CATCATGCCG TCTGTGATGG CTTCCATGTC GGCAGAATGC TTAATGAATT ACAACAGTAC
 1801 TGCGATGAGT GGCAAGGGCGG GGCGTAAACG CGTGGATCCG GCTTACTAAA AGCCAGATAA
 1861 CAGTATGCGT ATTGCGCGC TGATTTTGC GGTATAAGAA TATATACTGA TATGTATAC
 1921 CGAAGTATGT CAAAAGAGG TGTGCTATGA AGCAGCGTAT TACAGTGACA GTTGACAGCG
 1981 ACAGCTATCA GTTGCTCAAG GCATATATGA TGTCAATATC TCCGGTCTGG TAAGCACAAC
 2041 CATGCGAAT GAAGCCCGTC GTCTGCGTGC CGAACGCTGG AAAGCGGAAA ATCAGGAAGG
 2101 GATGGCTGAG GTGCCCCGGT TTATTGAAAT GAACGGCTCT TTTGCTGACG AGAACAGGG
 2161 CTGGTGAAT GCAGTTAAG GTTACACCT ATAAAAGAGA GAGCCGTTAT CGTCTGTTTG
 2221 TGGATGTACA GAGTGATATT ATTGACACGC CGGGCGACG GATGGTGATC CCCCTGGCCA
 2281 GTGCACGTCT GCTGTCAAGT AAAGTCTCCC GTGAACCTTA CCCGGTGGTG CATATCGGGG
 2341 ATGAAAGCTG GCGCATGATG ACCACCGATA TGGCCAGTGT GCCGGTCTCC GTTATCGGGG
 2401 AAGAAGTGGC TGATCTCAGC CACCGCGAAA ATGACATCAA AAACGCCATT AACCTGATGT-

FIGURE 32B

78/240

2461 TCTGGGAAT ATAAATGTCA GGCTCCCTTA TACACAGCCA GTCTGCAGGT CGACCATAAGT
 2521 GACTGGATAT GTTGTGTTTT ACAGTATTAT GTAGTCTGTT TTTTATGCAA AATCTAATTT
 2581 AATATATTGA TATTTATATC ATTTCAGTT TCTCGTTCA CCTTCTTGTA CAAAGTGGTG
 2641 ATCGCGTGCAG TGCGACGTCA TAGCTCTC CCTATAGTGA GTCGTATTAT AAGCTAGGCA
 2701 CTGGCCGTGCG TTTTACAACG TCGTGAUTGG GAAAAGTGC AGCTTGGGAT CTTTGTGAAG
 2761 GAACCTTACT TCTGTGGTGT GACATAATTG GACAAACTAC CTACAGAGAT TTAAAGCTCT
 2821 AAGGTAATAA TAAAATTTTT AAGTGTATAA TGTGTTAAC TAGCTGCATA TGCTTGTGTC
 2881 TTGAGAGTTT TGCTTACTGA GTATGATTTA TGAAAATATT ATACACAGGA GCTAGTGATT
 2941 CTAATTGTTT GTGTATTTTA GATTCAAGT CCCAAGGCTC ATTTCAAGGCC CCTCAGTCCT
 3001 CACAGTCTGT TCATGATCAT AATCAGCCAT ACCACATTG TAGAGGTTT ACTTGCTTTA
 3061 AAAAACCTCC CACACCTCCC CCTGAACCTG AAACATAAAA TGAATGCAAT TGTTGTTGTT
 3121 AACCTGTTTA TTGCGAGCTTA TAATGGTTAC AAATAAAGCA ATAGCATCAC AAATTCACA
 3181 AATAAAGCAT TTTTTCACT GCATTCTAGT TGTGTTTGT CCAAACACTCAT CAATGTATCT
 3241 TATCATGTCT GGATCGATCC TGCAATTATG AATCGGCCAA CGCGCGGGGA GAGGCGGTTT
 3301 GCGTATTGGC TGGCGTAATA CGCGAAGAGGC CGCGCACCGAT CGCCCTTCCC AACAGTTGCG
 3361 CAGCCTGAAT GGGGAATGGG ACGCGCCCTG TAGCGCGCA TTAAGCGCGG CGGGTGTGGT
 3421 GGTTACGCGC AGCGTGACCG CTACACTTGC CAGCGCCCTA GCGCCCGCTC CTTTCGCTTT
 3481 CTTCCCTTCC TTTCTCGCCA CGTCGCGG CTTTCCCCGT CAAGCTCTAA ATCGGGGGCT
 3541 CCCCTTGTAGGG TTCCGATTTA GTGCTTACG GCACCTCGAC CCCAAAAAAC TTGATTAGGG
 3601 TGATGGTTCA CGTAGTGGGC CATCGCCCTG ATAGACGGTT TTTCGCCCTT TGACGTTGGA
 3661 GTCCACGTTT TTAAATAGTG GACTCTGTT CCAAACACTGGA ACAACACTCA ACCCTATCTC
 3721 GGTCTATTCT TTGATTATTT AAGGGATTTCG GCCGATTTCG GCCTATTGGT TAAAAAATGA
 3781 GCTGATTTAA CAAATATTAA ACGCGAATT TAAACAAAATA TTAACGTTTA CAATTCGCC
 3841 TGATGCGGTA TTTCTCCCTT ACGCATCTGT GCGGTATTTC ACACCGCATA CGCGGATCTG
 3901 CGCAGCACCA TGCCCTGAAA TAACCTCTGA AAGAGGAAC TGGTTAGGTA CCTTCTGAGG
 3961 CGGAAAGAAC CAGCTGTGGA ATGTTGTCA GTTAGGGTGT GGAAAGTCCC CAGGCTCCCC
 4021 AGCAGGCAGA AGTATGCAA GCATGCATCT CAATTAGTCA GCAACCAGGT GTGAAAGTC
 4081 CCCAGGCTCC CCAGCAGGCA GAAGTATGCA AAGCATGCAT CTCAATTAGT CAGCAACCAT
 4141 AGTCCCAGCCC CTAACTCCGC CCATCCCGCC CCTAACTCCG CCCAGTTCCG CCCATTCTCC
 4201 GCCCCATGGC TGACTAATT TTTTATTTA TGCAAGGCCC GAGGCCGCC CGGCCTCTGA
 4261 GCTATTCCAG AAGTAGTGTAG GAGGCTTTT TGGAGGCCCTA GGCTTTTGC AAAAGCTTGA
 4321 TTCTCTGAC ACAACAGTCT CGAACTTAAG GCTAGAGCCA CCATGATTGA ACAAGATGGA
 4381 TTGCACGCG AGTCTCCGGC CGCTTGGGTG GAGAGGCTAT TCGGCTATGA CTGGGCACAA
 4441 CAGACAATCG GCTGCTCTGA TGCCGCCGTG TTCCGGCTGT CAGCGCAGGG GCGCCCCGGTT
 4501 CTTTTGTCA AGACCGACCT GTCCGGTGCCTA CTGAATGAAAC TGCAGGAGCA GGCAGGCCGG
 4561 CTATCGTGGC TGCCACGAC GGGCGTCCCT TGCGCAGCTG TGCTCGACGT TGTCACTGAA
 4621 GCGGGAAAGGG ACTGGCTGCT ATTGGGGCAA GTGCCGGGGC AGGATCTCCT GTCACTCAC
 4681 CTTGCTCCTG CCGAGAAAAGT ATCCATCATG GCTGATGCAA TGCGGCCGCT GCATACGCTT
 4741 GATCCGGCTA CCTGCCCTATT CGACCACCAA CGGAAACATC GCATCGAGGC AGCACGTACT
 4801 CGGATGGAAG CCGGTCTTGT CGATCAGGAT GATCTGGACG AAGAGCATCA GGGGCTCGCG
 4861 CCAGCCGAAC TGTTCGCCAG GCTCAAGGCG CGCATGCCCG ACGGGGAGGA TCTCGTGTG
 4921 ACCCATGGCG ATGCCCTGCTT GCCGAATATC ATGGTGGAAA ATGGCCGCTT TTCTGGATTC
 4981 ATCGACTGTG GCCGGCTGGG TGTGGCGAC CGCTATCAGG ACATAGGGTT GGCTACCCGT
 5041 GATATTGCTG AAGAGCTTGG CGCGAATGG GCTGACCGCT TCCCTGCT TTACGGTATC
 5101 GCGCCTCCCG ATTTCGAGCG CATCGCCTTC TATCGCCTTC TTGACGAGTT CTTCTGAGCG
 5161 GGACTCTGGG GTTCGAAATG ACCGACCAAG CGACGCCAA CCTGCCATCA CGATGGCCGC
 5221 AATAAAATAT CTTTATTTT ATTACATCTG TGTGTTGGTT TTTTGTGTGA ATCGATAGCG
 5281 ATAAGGATCC GCGTATGGTG CACTCTCAGT ACAATCTGCT CTGATGCCGC ATAGTTAACG
 5341 CAGCCCGAC ACCCGCCAAC ACCCGCTGAC CGCCCTGAC GGGCTTGTCT GCTCCCGCA
 5401 TCCGCTTACA GACAAGCTGT GACCGCTCC GGGAGCTGCA TGTGTCAAGAG GTTTTCACCG
 5461 TCATCACCGA AACGCGCGAG ACGAAAGGGC CTCGTGATAC GCCTATTATTT ATAGGTTAAT
 5521 GTCATGATAA TAATGGTTTC TTAGACGTCA GGTGGCACTT TTGGGGAAA TGTGCGCGGA
 5581 ACCCCTATT TTTTATTTT CTAAATACAT TCAAATATGT ATCCGCTCAT GAGACAATAA
 5641 CCCGTATAA TGCTTCAATA ATATTGAAAA AGGAAGAGTA TGAGTATTCA ACATTTCCGT
 5701 GTCGCCCTTA TTCCCTTTTG TGCGGCATT TGCGCTTCTG TTTTGTCTA CCCAGAAACG
 5761 CTGGTAAAG TAAAAGATGC TGAAGATCAG TTGGGTGAC GAGTGGGTTA CATCGAAGTC
 5821 GATCTCAACA CGGGTAAGAT CCTTGAGAGT TTTGCCCG AAGAACGTTT TCCAATGATG
 5881 AGCACTTTA AAGTTCTGCT ATGTGGCGCG GTATTATCCC GTATTGACGC CGGGCAAGAG-

FIGURE 32C

79/240

5941 CAACTCGGTC GCCGCATACA CTATTCTAG AATGACTTGG TTGAGTACTC ACCAGTCACA
6001 GAAAAGCATC TTACGGATGG CATGACAGTA AGAGAATTAT GCAGTGCTGC CATAACCAGT
6061 AGTGATAACA CTGCGGCCAA CTTACTCTG ACAACGATCG GAGGACCGAA GGAGCTAAC
6121 GCTTTTTGCA ACAACATGGG GGATCATGTA ACTCGCCTTG ATCGTTGGGA ACCGGAGCTG
6181 AATGAAGCCA TACCAAACGA CGAGCGTGC ACCACGATGC CTGTAGCAAT GGCAACAACG
6241 TTGCGCAAAC TATTAACCTGG CGAACTACTT ACTCTAGCTT CCCGGCAACA ATTAATAGAC
6301 TGGATGGAGG CGGATAAAAGT TGCAGGACCA CTTCTCGCCT CGGCCCTTC GGCTGGCTGG
6361 TTTATTGCTG ATAAAATCTGG AGCCGGTGG AGCGGTGAG CGTGGGTCTC GCGGTATCAT TGCA
6421 GGGCCAGATG GTAAGGCCCTC CCGTATCGTA GTTATCTACA CGACGGGGAG TCAGGCAACT
6481 ATGGATGAAC GAAATAGACA GATCGCTGAG ATAGGGTGCCT CACTGATTAA GCATTGGTAA
6541 CTGTCAGACC AAGTTTACTC ATATATACTT TAGATTGATT TAAAACTTCA TTTTTAATT
6601 AAAAGGATCT AGGTGAAGAT CCTTTTTGAT AATCTCATGA CAAAAATCCC TTAACGTGAG
6661 TTTTCGTTCC ACTGAGCGTC AGACCCCGTA GAAAAGATCA AAGGGATCTTC TTGAGATCCT
6721 TTTTTCTGC CGGTAACTG CTGCTTGCA ACAAAAAAAC CACCGCTACC AGCGGTGGTT
6781 TGTGCGCCGG ATCAAGAGCT ACCAACTCTT TTTCCGAAGG TAACTGGCTT CAGCAGAGCG
6841 CAGATACCA AATACTGTCTT TCTAGTGTAG CCGTAGTTAG GCCACCACTT CAAGAACTCT
6901 GTAGCACCGC CTACATACCT CGCTCTGCTA ATCCCTGTTAC CAGTGGCTGC TGCCAGTGGC
6961 GATAAGTCGT GTCTTACCGG GTGGACTCA AGACGATAGT TACCGGATAA GGCGCAGCGG
7021 TCGGGCTGAA CGGGGGGFTC GTGCACACAG CCCAGCTTGG AGCGAACGAC CTACACCGAA
7081 CTGAGATACC TACAGCGTGA GCATTGAGAA AGCGCCACGC TTCCCGAAGG GAGAAAGGCG
7141 GACAGGTATC CGGTAAAGCGG CAGGGTCGGA ACAGGAGAGC GCACGAGGGGA GCTTCCAGGG
7201 GGAAACGCCT GGTATCTTTA TAGTCCTGTC GGGTTTCGCC ACCTCTGACT TGAGCGTCGA
7261 TTTTTGTGAT GCTCGTCA

FIGURE 32D

80/240

Figure 33A:

pDEST13

Native protein in E. coli: λPL
promoter

3721 tggccaaacc aagacagcta aagatctctc acctaccaa caatcccccc ctgcaaaaaa
 acccgtttgg ttctgtcgat ttcttagagag tggatggttt gttacgggg gacgtttttt

3781 taaaattcata taaaaaacat acagataacc atctgcggtg ataaattatc tctggcggtg
 attaagtat atttttgtat tgcttattgg tagacgccac tatttaatag agaccggcac

3841 -35 λPL Promoter -10 mRNA
 ttgacataaa taccactggc ggtgatactgg agcacatcg caggacgcac tgaccaccat
aactgtattt atggtgaccg ccactatgac tcgttagtc gtcctgcgtg actgggtggta

3901 gaaggtgacg ctctaaaaa ttaagecctg aaaaaaggca gcattcaaag cagaaggctt
 cttccactgc gagaattttt aattcggac ttctcccgt cgtaagtttc gtcttccgaa

3961 tgggtgtgt gatacgaacaaac gaagcattgg gatcatcaca agtttgtaca aaaaagctga
 accccacaca ctatgcttg cttcgttaacc ctatgtgt tc当地acatgt ttttcgact

81/240

pDEST13 5848 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
599..1458	ampR
4123..3998	attR1
4372..5031	CmR
5151..5235	inactivated ccdA
5373..5678	ccdB
5719..5843	attR2

1 TTCACTGGCC GTCGTTTAC AACGTCGTGA CTGGGAAAC CCTGGCGTTA CCCAACTTAA
 61 TCGCCTTGCA GCACATCCCC CTTTCGCCAG CTGGCGTAAT AGCGAAGAGG CCCGCACCGA
 121 TCGCCCTTCC CAACAGTTGC GCAGCCTGAA TGGGAATGG CGCCTGATGC GGTATTTCT
 181 CCTTACGCAT CTGTGCGGTA TTTCACACCG CATATGGTGC ACTCTCAGTA CAATCTGCTC
 241 TGATGCCGCA TAGTTAACCC AGCCCCGACA CCCGCCAACA CCCGCTGACG CGCCCTGACG
 301 GGCTTGTCTG CTCCCGCAT CCGCTTACAG ACAAGCTGTG ACCGCTCTCCG GGAGCTGCAT
 361 GTGTCAGAGG TTTTCACCCT CATCACCGAA ACCGCGGAGA CGAAAGGGCC TCGTGATACG
 421 CCTATTTTTA TAGGTTAATG TCAATGATAAT AATGGTTCT TAGACGTAG GTGGCACTTT
 481 TCGGGGAAAT GTGCGCGGAA CCCCTATTG TTTATTTTC TAAATACATT CAAATATGTA
 541 TCCGCTCATG AGACAATAAC CCTGATAAAT GCTTCAATAA TATTGAAAAA GGAAGAGTAT
 601 GAGTATTCAA CATTCCGTG TCGCCCTTAT TCCCCTTTT GCGGCATTTC GCCTTCCTGT
 661 TTTGCTCAC CCAGAAACGC TGGTGAAGT AAAAGATGCT GAAGATCAGT TGGGTGCACG
 721 AGTGGGTTAC ATCGAACTGG ATCTCAACAG CGGTAAAGATC TTGAGAGTT TCGCCCCGGA
 781 AGAACGTTT CCAATGATGA GCACCTTTAA AGTCTGCTA TGTGGCGGG TATTATCCCCG
 841 TATTGACGCC GGGCAAGAGC AACTCGGTG CCGCATACAC TATTCTCAGA ATGACTTGTT
 901 TGAGTACTCA CCAGTCACAG AAAAGCATCT TACGGATGGC ATGACAGTAA GAGAATTATG
 961 CAGTGCCTGCC ATAACCATGA GTGATAAACAC TGCGGCCAAC TTACTTCTGA CAACGATCGG
 1021 AGGACCGAAG GAGCTAACCG CTTTTTGCA CAACATGGGG GATCATGTA CTCGCCCTGA
 1081 TCGTTGGAA CCGGAGCTGA ATGAAGCCAT ACCAAACGAC GAGCGTACA CCACCGATGCC
 1141 TGTAGCAATG GCAACACGT TGCGCAACT ATTAACTGGC GAACTACTTA CTCTAGCTTC
 1201 CCGGCAACAA TTAATAGACT GGATGGAGGC GGATAAAAGTT GCAGGACAC TTCTCGCCTC
 1261 GGGCCCTTCCG GCTGGCTGGT TTATTGCTGA TAAATCTGGA GCGGGTGAGC GTGGGTCTCG
 1321 CGGTATCATT GCAGCACTGG GGCCAGATGG TAAGCCCTCC CGTATCGTAG TTATCTACAC
 1381 GACGGGGAGT CAGGCAACTA TGGATGAAAC AAAAGACAG ATCGCTGAGA TAGGTGCCTC
 1441 ACTGATTAAG CATTGGTAAC TGTCAGACCA AGTTTACTCA TATATACTTT AGATTGATT
 1501 AAAACTTCAT TTTTAATTAA AAAGGATCTA GGTGAAGATC CTTTTTGATA ATCTCATGAC
 1561 CAAAATCCCT TAACGTGAGT TTTCGTTCCA CTGAGCGTCA GACCCGTAG AAAAGATCAA
 1621 AGGATCTCT TGAGATCTT TTTTCTGCG CGTAATCTGC TGCTTGCAAA CAAAAAAACCC
 1681 ACCGCTACCA GCGGTGGTTT GTTTGGCGGA TCAAGAGCTA CCAACTCTTT TTCCGAAGGT
 1741 AACTGGCTTC AGCAGAGCGC AGATACCAAA TACTGTTCTT CTAGTGTAGC CGTAGTTAGG
 1801 CCACCACTTC AAGAACTCTG TAGCACCGCC TACATACCTC GCTCTGCTAA TCCGTGTTACC
 1861 AGTGGCTGCT GCCACTGGCG ATAAGTCGTG TCTTACCGGG TTGGACTCAA GACGATAGTT
 1921 ACCGGATAAG GCGCAGCGGT CGGGCTGAAC GGGGGGTTCG TGCACACAGC CCAGCTGGGA
 1981 GCGAACGACC TACACCGAAC TGAGATACCT ACAGCGTGAG CATTGAGAAA GCGCCACGCT
 2041 TCCCGAAGGG AGAAAGGCGG ACAGGTATCC GGTAAAGCGGC AGGGTCGGAA CAGGAGAGCG
 2101 CACGGGGAG CTTCCAGGGG GAAACGCCGT GTATTTTAT AGTCCCTGTCG GTTTCGCCA
 2161 CCTCTGACTT GAGCGTCGAT TTTTGTGATG CTCGTCAGGG GGGCGGAGCC TATGGAAAAA
 2221 CGCCAGCAAC CGGGCTTTT TACGGTTCTC GGCCCTTTGC TGGCCTTTG CTCACATGTT
 2281 CTTCCCTGCG TTATCCCTG ATTCTGTTGA TAACCGTATT ACCGGCTTTG AGTGAAGCTGA
 2341 TACCGCTCGC CGCAGCCGA CGACCGAGCG CAGCGAGTCA GTGAGCGAGG AAGCGGAAGA
 2401 GCGCCAATA CGAAACCCGC CTCTCCCCGC GCGTTGGCCG ATTCAATTAT GCAGCTGGCA
 2461 CGACAGGTTT CCCGACTTGG AAGCGGGAG TGAGCGAAC GCAATTAAAT TGAGTTAGCT
 2521 CACTCATTAG GCACCCCGAG CTTTACACTT TATGCTTCCG GCTCGTATGT TGTGTGGAAT
 2581 TGTGAGCGGA TAACAATTTC ACACAGGAAA CAGCTATGAC CATGATTACG CCAAGCTTGG
 2641 CTGCAGGTGA TGATTATCAG CCAGCAGAGA TTAAGGAAAA CAGACAGGTT TATTGAGCGC
 2701 TTATCTTCC CTTTATTTT GCTGCGTAA GTCGCATAAA AACCAATTCTT CATAATTCAA-

FIGURE 33B

82/240

2761 TCCATTTACT ATGTTATGTT CTGAGGGGAG TGAAAATTCC CCTAATTCGA TGAAGATTCT
 2821 TGCTCAATTG TTATCAGCTA TGCGCCGACC AGAACACCTT GCCGATCAGC CAAACGTCTC
 2881 TTCAGGCCAC TGACTAGCGA TAACTTTCCC CACAACGGAA CAACTCTCAT TGCACTGGAT
 2941 CATTGGGTAC TGTGGGTTTA GTGGTTGTAA AAACACCTGA CCGCTATCCC TGATCAGTTT
 3001 CTTGAAGGTA AACTCATCAC CCCAAGTCT GGCTATGCAG AAATCACCTG GCTCAACAGC
 3061 CTGCTCAGGG TCAACGAGAA TTAACATTCC GTCAAGGAAAG CTTGGCTTGG AGCCTGTTGG
 3121 TGCGGTATC GAATTACCTT CAACCTCAAG CCAGAATGCA GAATCACTGG CTTTTTTGGT
 3181 TGTGCTTACCATCTC CTCACCTTT GGTAAGGTT CTAAGCTTAG GTGAGAACAT
 3241 CCCTGCCTGA ACATGAGAAA AAACAGGGTA CTCATACTCA CTTCTAAGTG ACGGCTGCAT
 3301 ACTAACCGCT TCATACATCT CGTAGATTTC TCTGGCGATT GAAGGGCTAA ATTCTTCAAC
 3361 GCTAACITTG AGAATTITTG CAAGCAATGCC GGGCTTATAA GCATTTAATG CATTGATGCC
 3421 ATTAATAAAA GCACACAGC CTGACTGCC CATCCCCATC TTGTCTGCAG CAGATTCCTG
 3481 GGATAAGCCA AGTTCATTT TCTTTTTTTT ATAAATTGCT TTAAGGCGAC GTGCGCTCTC
 3541 AAGCTGCTCT TGTGTTAATG GTTTCTTTT TGTGCTCATA CGTTAAATCT ATCACCGAA
 3601 GGGATAAATA TCTAACACCG TGCGTGTGA CTATTTTAC TCTGGCGGTG ATAATGGTTG
 3661 CATGACTAA GGAGGTTGTA TGGAAACACG CATAACCCCTG AAAGATTATG CAATGCGCTT
 3721 TGGGCAAACC AAGACAGCTA AAGATCTCTC ACCTACCAAA CAATGCCCTC CTGCAAAAAA
 3781 TAAATTCTATA TAAAAAACAT ACAGATAAAC ATCTGCGGTG ATAAATTATC TCTGGCGGTG
 3841 TTGACATAAA TACCACTGGC GGTGATACTG AGCACATCAG CAGGACGCAC TGACCAACCAT
 3901 GAAGGTGACG CTCTTAAAAA TTAAGCCCTG AAGAAGGGCA GCATTCAG CAGAAGGCTT
 3961 TGGGGTGTGT GATACGAAAC GAAGCATTGG GATCATCACA AGTTTGTACA AAAAGCTGA
 4021 ACGAGAAACG TAAATGATA TAAATATCAA TATATTAAAT TAGATTITGC ATAAAAAAACA
 4081 GACTACATAA TACTGAAAA CACAACATAT CCAGTCACTA TGGCGGCCG TAAGTTGGCA
 4141 GCATCACCCCG ACGCACTTTG CGCCGAATAA ATACCTGTGA CGGAAGATCA CTTCGCAGAA
 4201 TAAATAATC CTGGTGTCCC TGTGATACC GGGAAAGCCCT GGGCCAACCTT TTGGGAAAAA
 4261 TGAGACGTTG ATCGGCACGTT AAGAGGTTCC AACTTTTACCA ATAATGAAAT AAGATCAGT
 4321 CCGGGCGTAT TTTTGAGTT ATCGAGATTI TCAGGAGCTA AGGAAGCTAA AATGGAGAAA
 4381 AAAATCACTG GATATACAC CGTTGATATA TCCCAATGGC ATCGTAAAGA ACATTITGAG
 4441 GCATTCAGT CAGTTGCTCA ATGTACCTAT AACCGACCG TTCAGCTGGA TATTACGGCC
 4501 TTTTAAAGA CCGTAAAGAA AAATAAGCAC AAGTTTTATC CGGCCTTAT TCACATTCTT
 4561 GCCCCCTGA TGAATGCTA TCCGGAAATTG CGTATGGCA TGAAAGACGG TGAGCTGGTG
 4621 ATATGGGATA GTGTTCACCC TTGTTACACC GTTTCCATG AGCAAACCTGA AACGTTTCA
 4681 TCGCTCTGGA GTGAATACCA CGACGATTTG CGGCAGTTTC TACACATATA TTGCGAACAGT
 4741 GTGGCGTGTG ACGGTGAAAA CCTGGCCTAT TTCCCTAAAG GTTTTATTGA GAATATGTTT
 4801 TTCGCTCTAG CCAATCCCTG GGTGAGTTT ACCAGTTTG ATTTAAACGT GCCAATATG
 4861 GACAACCTCT TCGCCCCCGT TTTCACCATG GGCACAAATTAT ATACGCAAGG CGACAAGGTG
 4921 CTGATGCCGC TGGCGATTCA GTTGTACATGCC GCGCTCTGTG ATGGCTTCCA TGTCCGCAGA
 4981 ATGCTTAATG AATTACAACA GTACTGCGAT GAGTGGCAGG GCGGGGGCGTA AACGGCTGG
 5041 TCCGGCTTAC TAAAGCCAG ATAACAGTAT GCGTATTGCG GCGCTGATTT TTGCGGTATA
 5101 AGAATATATA CTGATATGTA TACCCGAAGT ATGTCAAAAA GAGGTGTGCT ATGAAGCAGC
 5161 GTATTACAGT GACAGTTGAC AGCGACAGCT ATCAGTTGCT CAAGGCATAT ATGATGTCAA
 5221 TATCTCCGGT CTGGTAAGCA CAACCATGCA GAATGAAGCC CGTCGTCTGC GTGCCGAACG
 5281 CTGAAAGCG GAAAATCAGG AAGGGATGGC TGAGGTCGCC CGGTTTATG AAATGAACGG
 5341 CTCTTTGCT GACGAGAACAA GGGACTGGT AAATGCAGTT TAAGGTTTAC ACCTATAAAA
 5401 GAGAGAGCGG TTATCGTCTG TTGTTGGATG TACAGAGTGA TATTATTGAC ACGCCCGGGC
 5461 GACGGATGGT GATCCCCCTG GCCAGTGCAC GTCTGCTGTG AGATAAAGTC TCCCGTGAAC
 5521 TTACCCGGT GGTGCATATC GGGGATGAAA GCTGGCGCAT GATGACCAACC GATATGGCCA
 5581 GTGTGCCGGT CTCCGTTATC GGGGAAGAAG TGGCTGATCT CAGCCACCGC GAAAATGACA
 5641 TCAAAACGC CATTAAACCTG ATGTTCTGGG GAATATAAAAT GTCAGGCTCC GTTATACACA
 5701 GCCAGTCTGC AGGTCGACCA TAGTGAUTGG ATATGTTGTTG TTTCACAGTA TTATGTAGTC
 5761 TGTTTTTAT GCAAAATCTA ATTTAATATA TTGATATTTA TATCATTATA CGTTCTCGT
 5821 TCAGCTTCT TGTACAAAGT GGTGATAA

FIGURE 33C

83/240

Figure 34A: pDEST14 Native Protein Expression in *E. coli*, T7 Promoter

3961 tgccggccac gatgcgtccg gcgttagagga tcgagatctc gatcccgca aatttaatacg
 acggccggtg ctacgcaggc cgcacatctcc agctctagag cttagggcgct ttaatttatgc
 m_{RNA} ↑
 4021 actcaactata gggagaccac aacggtttcc ctcttagatca caagtttgta caaaaaagct
 tgagtgtat ccctctggtg ttgccaaagg gagatgtatg gttcaaacat gttttttcga
 ↓
 XbaI SphI CcdB attR1 attR2 P T7 →

84/240

pDEST14 6422 bp (rotated to position 4000)

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
185..61	attR1
435..1094	CmR
1214..1298	inactivated ccdA
1436..1741	ccdB
1782..1906	attR2
2632..3489	ampR

1 CGATCCCGCG AAATTAATAC GACTCACTAT AGGGAGACCA CAACGGTTTC CCTCTAGATC
 61 ACAAGTTTGT ACAAAAAAGC TGAACGAGAA ACGTAAAATG ATATAAATAT CAATATATTA
 121 AATTAGATTT TGCATAAAAA ACAGACTACA TAATACTGTA AAACACAACA TATCCAGTCA
 181 CTATGGCGGC CGCTAAGTTG GCAGCATCAC CCGACGCACT TTGCGCCGAA TAAATACCTG
 241 TGACGGAAGA TCACCTCGCA GAATAAATAA ATCCCTGGTGT CCCTGTTGAT ACCGGGAAGC
 301 CCTGGGCCAA CTTTTGGCGA AAATGAGACG TTGATCGGC CGTAAGAGGT TCCAACTTTC
 361 ACCATAATGA AATAAGATCA CTACCGGGCG TATTTTTTGAGA GTTATCGAGA TTTTCAGGAG
 421 CTAAGGAAGC TAAAATGGAG AAAAAAATCA CTGGATATAC CACCGTTGAT ATATCCAAAT
 481 GGCATCGTAA AGAACATTTC GAGGCATTTG AGTCAGTTGC TCAATGTACC TATAACCAGA
 541 CCGTCAGCT GGATATTAGC GCCTTTTAA AGACCGTAAAG GAAAAATAAG CACAAGTTTT
 601 ATCCGGCTT TATTACACATT CTTGCCCGC TGATGAATGC TCATCCGGAA TTCCGTATGG
 661 CAATGAAAAGA CGGTGAGCTG GTGATATGGG ATAGTGTTC CCGCTGGTAC ACCGTTTTCC
 721 ATGAGCAAAC TGAAACGTT TCATCGCTCT GGAGTGAATA CCACGACGAT TTCCGGCAGT
 781 TTCTACACAT ATATTCGCAA GATGTGGCGT GTTACGGTGA AAACCTGGCC TATTTCCCTA
 841 AAGGGTTTAT TGAGAATATG TTTTCGGTCT CAGCCAATCC CTGGGTGAGT TTCAACCAGTT
 901 TTGATTAAA CGTGGCCAAT ATGGACAATC TCTTCGCCCC CGTTTCACCC ATGGGAAAT
 961 ATTATACGCA AGGCACAAAG GTGCTGATGC CGCTGGCGAT TCAGGTTCAT CATGCCGTCT
 1021 GTGATGGCTT CCATGTCGGC AGAATGCTTA ATGAATTACA ACAGTACTGC GATGAGTGGC
 1081 AGGGGGGGC GTAAACGCGT GGATCCGGCT TACTAAAAGC CAGATAACAG TATGCGTATT
 1141 TGCGCGCTGA TTTTTGCGGT ATAAGAATAT ATACTGATAT GTATACCCGA AGTATGTC
 1201 AAAGAGGTGT GCTATGAAGC AGCGTATTAC AGTGACAGTT GACACGCGACA GCTATCAGTT
 1261 GCTCAAGGCA TATATGATGT CAATATCTCC GGTCTGGTAA GCACAACCAT GCAGAATGAA
 1321 GCCCGTCGTC TGCGTGCAGA ACGCTGGAAA GCGGAAAATC AGGAAGGGAT GGCTGAGGTC
 1381 GCCCGGTTA TTGAAATGAA CGGCTCTTT GCTGACGAGA ACAGGGACTG GTGAAATGCA
 1441 GTTTAAGGTT TACACCTATA AAAGAGAGAG CGCTTATCGT CTGTTTGTTG ATGTACAGAG
 1501 TGATATTATT GACACGCCCG GGCACGGAT GGTGATCCCC CTGGCCAGTG CACGCTGCT
 1561 GTCAGATAAA GTCTCCCGTG AACTTTACCC GGTGGTGCAT ATCGGGGATG AAAGCTGGCG
 1621 CATGATGACC ACCGATATGG CCAGTGTGCC GGTCTCCGTT ATCGGGGAAAG AAGTGGCTGA
 1681 TCTCAGCCAC CGCGAAAATG ACATAAAAA CGCCAITAAC CTGATGTTCT GGGGAATATA
 1741 AATGTCAGGC TCCCITATAC ACAGCCAGTC TGCAAGTCGA CCATAGTGCAC TGGATATGTT
 1801 GTGTTTACA GTATTATGTA GTCTGTTTT TATGCAAAAT CTAATTAAAT ATATTGATAT
 1861 TTATATCATT TTACGTTCT CGTCAGCTT TCTTGTACAA AGTGGTGATG ATCCGGCTGC
 1921 TAACAAAGCC CGAAAGGAAG CTGAGTTGGC TGCTGCCACC GCTGAGCAAT AACTAGCATA
 1981 ACCCTTGGG GCCTCTAAAC GGGTCTTGAG GGGTTTTTG CTGAAAGGAG GAACTATATC
 2041 CGGATATCCA CAGGACGGGT GTGGTCCCA TGATCGCGTA GTCGATAGTG GCTCCAAGTA
 2101 GCGAACGAG CAGGACTGGG CGGCCGCAA AGGGTCGGA CAGTGTCTCC AGAACCGGTG
 2161 CGCATAGAAA TTGCACTAAC GCATATAGCG CTAGCAGCAC GCCATAGTGA CTGGCGATGC
 2221 TGTCCGAATG GACGATATCC CGCAAGAGGC CGGGCAGTAC CGGCATAACC AAGCCTATGC
 2281 CTACAGCATC CAGGGTGAGC GTGCCGAGGA TGACGATGAG CGCATTGTTA GATTTCATAC
 2341 ACGGTGCCTG ACTGCGTTAG CAATTTAACT GTGATAAACT ACCGCATTAA AGCTTATCGA
 2401 TGATAAGCTG TCAAACATGA GAATTCTTGA AGACGAAAGG GCCTCGTGTAC AGCCCTATTT
 2461 TTATAGGTTA ATGTCATGAT AATAATGGTT TCTTAGACGT CAGGTGGCAC TTTTCCGGGA
 2521 AATGTGCGCG GAACCCCTAT TTGTTTATTT TTCTAAATAC ATTCAAATAT GTATCCGCTC
 2581 ATGAGACAAT AACCCCTGATA AATGCTTCAA TAATATTGAA AAAGGAAGAG TATGAGTATT
 2641 CAACATTCC GTGTCGCCCT TATTCCCTTT TTTGCGGCAT TTTGCCCTTC TGTTTTGCT
 2701 CACCCAGAAA CGCTGGTGAA AGTAAAAGAT GCTGAAGATC AGTTGGGTGC ACGACTGGGT-

FIGURE 34B

85/240

2761 TACATCGAAC TGGATCTCAA CAGCGGTAAG ATCCTGAGA GTTTTCGCC CGAAGAACGT
 2821 TTCCAATGA TGAGCACTTT TAAAGTTCTG CTATGTGGCG CGGTATTATC CCGTGTGAC
 2881 GCCGGGCAAG AGCAACTCGG TCGCCGCATA CACTATTCTC AGAATGACTT GGTTGAGTAC
 2941 TCACCAAGTCA CAGAAAAGCA TCTTACGGAT GGCATGACAG TAAGAGAATT ATGCACTGCT
 3001 GCCATAACCA TGAGTGATAA CACTGCAGGC AACTTACTTC TGACAACGAT CGGAGGACCG
 3061 AAGGAGCTAA CCGCTTTTT GCACAACATG GGGGATCATG TAACTCGCCT TGATCGTTGG
 3121 GAACCGGAGC TGAATGAAGC CATACCAAAC GACGAGCGTG ACACCACGAT GCCTGCAGCA
 3181 ATGGCAACAA CGTTGCGCAA ACTATTAACG GGCAGAACTAC TTACTCTAGC TTCCCGGCAA
 3241 CAATTAATAG ACTGGATGGA GGCGGATAAA GTTGCAGGAC CACTTCTGCG CTCGGCCCTT
 3301 CCGGCTGGCT GTTTTATTGC TGATAAAATCT GGAGCCGGTG AGCGTGGGTC TCGCGGTATC
 3361 ATTGCAGCAC TGGGGCCAGA TGGTAAGCCC TCCCCATATCG TAGTTATCTA CACGACGGGG
 3421 AGTCAGGCAA CTATGGATGA AGAAATAGA CAGATCGCTG AGATAGGTGC CTCACTGATT
 3481 AAGCATTGGT AACTGTCAGA CCAAGTTTAC TCATATATAC TTAGTATTGA TTTAAAACCTT
 3541 CATTTTAAT TTAAAAGGAT CTAGGTGAAG ATCCTTTTG ATAATCTCAT GACCAAAATC
 3601 CCTTAACGTG AGTTTTCGTT CCACTGAGCG TCAGACCCCCG TAGAAAAGAT CAAAGGATCT
 3661 TCTTGAGATC CTTTTTTCT GCGCGTAATC TGCTGCTTGC AAACAAAA ACCACCGCTA
 3721 CCAGGGTGG TTTGTTGCC GGATCAAGAG CTACCAACTC TTTTCCGA GGTAACTGGC
 3781 TTCAGCAGAG CGCAGATACC AAATACTGTC CTTCTAGTGT AGCCGTAGT AGGCCACAC
 3841 TTCAAGAACT CTGTAGCACCC GCCTACATAC CTCGCTCTGC TAATCTGTT ACCAGTGGCT
 3901 GCTGCCAGTG GCGATAAGTC GTGTCTTAC GGGTTGGACT CAAGACATA GTTACCGGAT
 3961 AAGGCGCAGC GGTGGGCTG AACGGGGGGT TCGTGCACAC AGCCAGCTT GGAGCGAACG
 4021 ACCTACACCG AACTGAGATA CCTACAGCGT GAGCTATGAG AAAGGCCAA GCTTCCCGAA
 4081 GGGAGAAAGG CGGACAGGTA TCCGGTAAGC GGCAGGGTCG GAAACAGGAGA GCGCACGGAG
 4141 GAGCTTCCAG GGGGAAACGC CTGGTATCTT TATAGTCTG TCGGGTTTCG CCACCTCTGA
 4201 CTTGAGCGTC GATTTTTGTG ATGCTCGTC GGGGGCGGA GCCTATGGAA AAACGCCAGC
 4261 AACCGGGCTT TTTTACGGTT CCTGGCCTTT TGCTGGCCTT TTGCTCACAT GTTCTTCCCT
 4321 GCGTTATCCC CTGATTCTGT GGATAACCGT ATTACCGCCT TTGAGTGAGC TGATACCGCT
 4381 CGCCGCAGCC GAACGACCGA GCGCAGCGAG TCAGTGAGCG AGGAAGCGGA AGAGCGCCTG
 4441 ATGCGGTATT TTCTCTTAC GCATCTGTG GGTATTTAC ACCGCATATA TGGTGCACTC
 4501 TCAGTACAAT CTGCTCTGAT GCGCATAGT TAAGCCAGTA TACACTCCGC TATCGCTACG
 4561 TGACTGGTCA ATGGCTCGC CCCGACACCC GCCAACACCC GCTGACGCGC CCTGACGGGC
 4621 TTGTCGCTC CCGGCATCCG CTTACAGACA AGCTGTGACC GTCTCCGGGA GCTGCATGTG
 4681 TCAGAGGTTT TCACCGTCAT CACCGAAAC CGCGAGGCAG CTGCGGTAAA GCTCATCAGC
 4741 GTGGTCGTGA AGCGATTAC AGATGTCTG CTGTTCATCC GCGTCCAGCT CGTTGAGTTT
 4801 CTCCAGAAGC GTTAATGTCT GGCTTCTGAT AAAGGGGGC ATGTTAAGGG CGGTTTTTC
 4861 CTGTTGGTC ACTGATGCCT CCGTGTAGG GGGATTCTG TTCATGGGG TAATGATACC
 4921 GATGAAACGA GAGAGGATGC TCACGATAACG GTTACTGAT GATGAACATG CCCGGTTACT
 4981 GGAACGTTGT GAGGGTAAAC AACTGGCGT ATGGATGCC CGGGACCAGA GAAAATCAC
 5041 TCAGGGTCAA TGCCAGCGCT TCGTTAACAC AGATGTAGGT GTTCCACAGG GTAGCCAGCA
 5101 GCATCCTGCG ATGCAGATCC GGAACATAAT GGTGCAGGGC GCTGACTTCC GCGTTCCAG
 5161 ACTTTACGAA ACACGGAAAC CGAAGACCAT TCATGTTGTT GTCAGGTGCG CAGACGTTT
 5221 GCAGCAGCAG TCGCTTCACG TCGCTCGCG TATCGGTGAT TCATTCTGCT AACCAAGTAAG
 5281 GCAACCCCGC CAGCCTAGCC GGGTCCCAA CGACAGGAGC ACGATCATGC GCACCCGTGG
 5341 CCAGGACCCA ACGCTGCCCG AGATGCGCCG CGTGCAGGCTG CTGGAGATGG CGGACGCGAT
 5401 GGATATGTTG TCCAAGGGT TGGTTGCGC ATTACACAGTT CTCCGCAAGA ATTGATTGGC
 5461 TCCAATTCTT GGAGTGGTGA ATCCGTTAGC GAGGTGCCGC CGGCTCCCAT TCAGGTCGAG
 5521 GTGGCCGGC TCCATGCACC GCGACGCAAC CGGGGGAGGC AGACAAGGTA TAGGGCGGCG
 5581 CCTACAATCC ATGCCAACCC GTTCCATGTG CTCGGCGAGG CGGCATAAAAT CGCGTGTGAGC
 5641 ATCAGGGTC CAGTGTGCA AGTTAGGCTG GTAAGAGCCG CGAGCGATCC TTGAAGCTGT
 5701 CCCTGATGGT CGTCATCTAC CTGCGCTGAC AGCATGGCCT GCAACGCCGG CATCCCGATG
 5761 CGGCCGAAG CGAGAAGAAT CATAATGGGG AAGGGCATCC AGCCTCGCGT CGCGAACGCC
 5821 AGCAAGACGT AGCCCAGCGC GTCGGCCGCC ATGCCGGCGA TAATGGCCTG CTTCTCGCCG
 5881 AAACGTTGG TGGGGGAGC AGTGACGAAG GCTTGAGCGA GGGCGTGCAGA GATTCCGAAT
 5941 ACCGCAAGCG ACAGGCCGAT CATCGTCCGC CTCCAGCGA AGCGGTCTC GCCGAAATAG
 6001 ACCCAGAGCG CTGCCGGCAC CTGTCCTACG AGTTGCATGA TAAAGAAGAC AGTCATAAGT
 6061 GCGGGACGA TAGTCATGCC CCGCGCCAC CGGAAGGAGC TGACTGGGTT GAAGGCTCTC
 6121 AAGGGCATCG GTCGATCGAC GCTCTCCCTT ATGCGACTCC TGCATTAGGA AGCAGCCAG
 6181 TAGTAGGTTG AGGCCGTTGA GCACCGCCGC CGCAAGGAAT GGTGCATGCA AGGAGATGGC-

FIGURE 34C

86/240

6241 GCCCAACAGT CCCCCGGCCA CGGGGCCTGC CACCATAACCC ACGCCGAAAC AAGCGCTCAT
6301 GAGCCCGAAG TGGCGAGCCC GATCTTCCCC ATCGGTGATG TCGGCGATAT AGGCCGCCAGC
6361 AACCGCACCT GTGGCGCCGG TGATGCCGGC CACGATGCGT CCGGCGTAGA GGATCGAGAT
6421 CT

FIGURE 34D

87/240

Figure 35A: pDEST15 Glutathione-S-transferase Fusion in *E. coli*, T7 Promoter

mRNA

T7 Promoter

```

1  nat cga gat ctc gat ccc gcg aaa tta ata cga ctc act ata [ggg] aga cca
    nta gct cta gag cta ggg cgc ttt at tat gct gag tga tat ccc tct ggt
      XbaI
52  caa cgg ttt ccc tct aga aat aat ttt gtt taa ctt taa gaa gga gat ata
    gtt gcc aaa ggg aga. tct tta tta aaa caa att gaa att ctt cct cta tat
      NdeI
103  cat ttt tcc cct ata cta ggt tat tgg aaa att aag ggc ctt gtg caa ccc
    gta tac agg gga tat gat cca ata acc ttt taa ttc ccc gaa cac gtt ggg
      ↓ Start Translation GST
154  act cga ctt ctt ttg gaa tat ctt gaa gaa aaa tat gaa gag 'cat ttg tat
    tga gct gaa aac ctt ata gaa ctt ctt ttt ata ctt ctc gta aac ata
      S P I L
715  cag ggc tgg caa gcc acg ttt ggt ggc gac cat cct cca aaa tcg gat
    gtc ccc acc gtt cgg tgc aaa cca cca ccc ctg gta gga ggt ttt agc cta
      S N Q T S L Y K K A
766  ctg gtt ccc cgt cca tgg tgg aat cca aca agt ttg tac aaa aaa gct gaa
    gac cca ggc gca ggt acc acc tta gtt tgt tca aac atg ttt cga ctt
      attR1 Int
817  cga gaa acg taa aat gat ata aat atc aat ata tta aat tag att ttg cat
    gct ctt tgc att tta cta tat tta tag tta tat aat tta atc taa aac gta
      Cmr

```


88/240

pDEST15 7013 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
108..776	GST
916..792	attR1
1025..1537	CmR
1804..1888	inactivated ccda
2026..2331	ccdB
2372..2496	attR2
3233..4093	ampR

1 ATCGAGATCT CGATCCGCG AAATTAATAC GACTCACTAT AGGGAGACCA CAACGGTTTC
 61 CCTCTAGAAA TAATTTGTT TAACTTAAG AAGGAGATAT ACATATGTCC CCTATACTAG
 121 GTTATTGAA AATTAAGGGC CTTGTCAAC CCACTCGACT TCTTTGGAA TATCTTGAG
 181 AAAAATATGA AGAGCATTTG TATGAGCGCG ATGAAGGTGA TAAATGGCGA AACAAAAAGT
 241 TTGAATGGG TTGGAGTTT CCCAATCTTC CTTATTATAT TGATGGTGT GTTAAATTAA
 301 CACAGTCTAT GGCCATCATA CGTTATATAG CTGACAAGCA CAACATGTG GGTGGTTGTC
 361 CAAAAGAGCG TGAGAGATT TCAATGTTG AAGGAGCGGT TTGGATATT AGATACGGTG
 421 TTTCGAGAAT TGCATATAGT AAAGACTTTG AAACCTCTCAA AGTTGATTTT CTTAGCAAGC
 481 TACCTGAAAT GCTGAAATG TTCAAGATC GTTATGTCA TAAAACATAT TTAAATGGTG
 541 ATCATGTAAC CCATCCTGAC TTCAATGTTG ATGACGCTCT TGATGTTGT TTATACATGG
 601 ACCCAATGTG CCTGGATGCG TTCCAAAAT TAGTTGTTT TAAAAAAACGT ATTGAAGCTA
 661 TCCCACAAAT TGATAAGTAC TTGAATCCA GCAAGTATAT AGCATGGCCT TTGCAGGGCT
 721 GGCAAGCCAC GTTGGTGGT GGCAACCAC CTCCAAAATC GGATCTGGTT CCGCGTCCAT
 781 GGTGAATCA AACAGTTG TACAAAAAAG CTGAACGAGA AACGTTAAAT GATATAAAATA
 841 TCAATATATT AAAATTAGATT TTGCATAAAA AACAGACTAC ATAATACTGT AAAACACAAAC
 901 ATATCCAGTC ACTATGGCGG CGCATTAGG CACCCAGGC TTACACTTTT ATGCTTCCGG
 961 CTCGTATAAT GTGTTGGATT TGAGTTAGGA TCCGTCGAGA TTTCAGGAG CTAAGGAAGC
 1021 TAAAATGGAG AAAAATATCA CTGGATATAC CACCGTTGAT ATATCCCAAT GGCACTGTA
 1081 AGAACATTTT GAGGCATTTC AGTCAGTTG TCAATGTACC TATAACCAGA CCGITCAGCT
 1141 GGATATTACG GCCTTTTAA AGACCGTAA GAAAAATAAG CACAGTTT ATCCGGCCCTT
 1201 TATTCACATT CTTGCCGCC TGATGAATGC TCATCCGGAA TTCCGTATGG CAATGAAAGA
 1261 CGGTGAGCTG GTGATATGGG ATAGTGTCA CCCTTGTAC ACCTTTCAC ATGAGCAAAC
 1321 TGAAACGTTT TCATCGCTCT GGAGTGAATA CCACGACGAT TTCCGGAGT TTCTACACAT
 1381 ATATTGCAA GATGTGGCGT GTTACGGTGA AAACCTGGCC TATTTCCCA AAGGGTTTAT
 1441 TGAGAATATG TTTTCGTCT CAGCCAATCC CTGGGTGAGT TTCAACAGTT TTGATTAA
 1501 CGTGGCCAAT ATGGACAATC TCTTCGCCCC CGTTTTCACC ATGGGCAAAT ATTATACGCA
 1561 AGGCGCAAG CGCTGTATGC CGCTGGCGAT TCAGGTTCAT CATGCCGTCT GTGATGGCTT
 1621 CCATGTCGGC AGAATGCTTA ATGAATTACA ACAGTACTGC GATGAGTGGC AGGGCGGGGC
 1681 GTAATCTAGA GGATCCGGCT TACTAAAAGC CAGATAACAG TATGCGTATT TGCAGCTGA
 1741 TTTTGCGGT ATAAGAATAT ATACTGATAT GTATACCCGA AGTATGTCAA AAAGAGGTGT
 1801 GCTATGAAGC AGCGTATTAC AGTGACAGTT GACAGCGACA GCTATCAGTT GCTCAAGGCA
 1861 TATATGATGT CAATATCTCC GGTCTGGTAA GCACAACCAT GCAGAATGAA GCCCGTCGTC
 1921 TGCCTGCCGA ACGCTGGAAA CGGGAAAATC AGGAAGGGAT GGCTGAGGTC GCCCCGGTTA
 1981 TTGAAATGAA CGGCTCTTT GCTGACGAGA ACAGGAGCTG GTGAAATGCA GTTTAAGGTT
 2041 TACACCTATA AAAGAGAGAG CGCTTATCGT CTGTTGTTG ATGTACAGAG TGATATTATT
 2101 GACACGCCCG GGGCACGGAT GGTGATCCCC CTGGCCAGTG CACGCTCTGCT GTCAGATAAA
 2161 GTCTCCCGTG AACTTTACCC GGTGGTGCAT ATCGGGGATG AAAGCTGGCG CATGATGACC
 2221 ACCGATATGG CCAGTGTGCC GGTCTCCGGT ATCGGGGAG AAGTGGCTGA TCTCAGCCAC
 2281 CGCGAAAATG ACATAAAAA CGCCATTAAAC CTGATGTTCT GGGGAATATA AATGTCAGGC
 2341 TCCCTTATAC ACAGCCAGTC TGCAGGTGA CCATAGTGCAC TGGATATGTT GTGTTTACA
 2401 GTATTATGTA GTCTGTTTT TATGAAAAAT CTAATTAAAT ATATTGATAT TTATATCATT
 2461 TTACGTTCT CGTTCACTT TCTTGTACCA AGTGGTTGA TTGACCCGG GATCCGGCTG
 2521 CTAACAAAGC CGGAAAGGAA GCTGAGTTGG CTGCTGCCAC CGCTGAGGAA TAACTAGCAT
 2581 AACCCCTTGG GGCTCTAAA CGGGTCTTGA GGGGTTTTT GCTGAAAGGA GGAACATATA
 2641 CGGGATATCC ACAGGACGGG TGTGGTCGCC ATGATGCGT AGTCGATAGT GGCTCCAAGT-

FIGURE 35B

89/240

2701 AGCGAAGCGA GCAGGACTGG CGGGCGGCCA AAGCGGTGG ACAGTGCTCC GAGAACGGGT
 2761 GCGCATAGAA ATTGCATCAA CGCATATAGC GCTAGCAGCA CGCCATAGTG ACTGGCGATG
 2821 CTGTCGGAAT GGACGATATC CCGCAAGAGG CCCGGCAGTA CCGGCATAAC CAAGCCTATG
 2881 CCTACAGCAT CCAGGGTGCAC GGTGCCGAGG ATGACGATGA GCGCATTGTT AGATTCATA
 2941 CACGGTGCCT GACTGCCTTA GCAATTAAAC TG TGATAAAC TACCGCATTAAAGCTTATCG
 3001 ATGATAAAGCT GTCAAACATG AGAATTCTTG AAGACGAAAG GCCCTCGTGA TACGCCTATT
 3061 TTTATAGGTT AATGTCTGA TAATAATGGT TTCTTAGACG TCAGGTGGCA CTTTTCGGGG
 3121 AAATGTGCGC GGAACCCCTA TTGTTTATT TTCTAAATA CATTCAAATA TGATCCGCT
 3181 CATGAGACAA TAACCCGTAT AAATGCTTCATAATATTGA AAAAGGAAGA GTATGAGTAT
 3241 TCAACATTTC CGTGTGCCCC TTATTCCCTT TTTTGCAGCA TTTTGCCTTC CTGTTTTGC
 3301 TCACCCAGAA ACAGCTGGTGA AAGTAAAAGA TGCTGAAGAT CAGTTGGGTG CACGAGTGGG
 3361 TTACATCGAA CTGGATCTCA ACAGCGGTAA GATCCTTGAG AGTTTCGCGC CCGAAGAACG
 3421 TTTCCAATG ATGAGCACTT TTAAAGTTCT GCTATGTGGC CGGGTATTAT CCCGTGTTGA
 3481 CGCCGGCAGA GAGCAACTCG GTGCCGCAT ACACATTCT CAGAATGACT TGGTTGAGTA
 3541 CTCACCAGTC ACAGAAAAGC ATCTTACGGA TGCGATGACA GTAAGAGAAT TATGCAGTGC
 3601 TGCCATAACC ATGAGTGATA ACAC TGCGGC CAACTTACTT CTGACAAACGA TCGGAGGACC
 3661 GAAGGAGCTA ACCGCTTTT TGCACAAACAT GGGGGATCAT GTAACCTCGCC TTGATCGTTG
 3721 GGAACCGGAG CTGAATGAAG CCATACAAAAA CGACGAGCGT GACACCACGA TGCCTGCAGC
 3781 AATGGCAACA ACCTTGGCAGA AACTATTAAAC TGCGGAACTA CTTACTCTAG CTTCCCGCA
 3841 ACAATTAAATA GACTGGATGG AGGCGGATAA AGTTGCAGGA CCACTTCTGC GCTCGGCCCT
 3901 TCCGGCTGGC TGTTTATTG CTGATAAAATC TGAGGCCGGT GAGCGTGGGT CTCGCGGTAT
 3961 CATTGCAGCA CTGGGGCCAG ATGGTAAGCC CTCCCGTATC GTAGTTATCT ACACGACGGG
 4021 GAGTCAGGCA ACTATGGATG AACGAAATAG ACAGATCGCT GAGATAGGTG CCTCACTGAT
 4081 TAAGCATTGG TAATCTGAG ACCAAGTTTA CTCATATATA CTTAGATTG ATTTAAAAT
 4141 TCATTTTAA TTAAAGGA TCTAGGTGAA GATCCTTTT GATAATCTCA TGACAAAAT
 4201 CCCTTAACGT GAGTTTCGT TCCACTGAGC GTCAGACCCC GTAGAAAAGA TCAAAGGATC
 4261 TTCTTGAGAT CCTTTTTTTC TGCGCGTAT CTGCTGCTTG CAAACAAAAA AACCAACCGCT
 4321 ACCAGCGGTG GTTGTGTTGC CGGATCAAGA GCTACCAACT CTTTTCGGA AGGTAACGG
 4381 CTTCAAGAAC CTTGTAGCAC CGCCTACATA CCTCGCTCTG CTAATCTGT TACCACTGGC
 4441 CTTCAAGAAC TCTGTAGCAC CGCCTACATA CCTCGCTCTG CTAATCTGT TACCACTGGC
 4501 TGCTGCCAGT GCGGATAAGT CGTGTCTTAC CGGGTTGGAC TCAAGACGAT AGTTACCGGA
 4561 TAAGGCGCAG CGGTGGGCT GAACGGGGG TTGCGCACA CAGCCCAGCT TGGAGCGAAC
 4621 GACCTACACC GAACTGAGAT ACCTACAGCG TGAGCTATGA GAAAGCGCCA CGCTTCCCGA
 4681 AGGGAGAAAAG CGGGACAGGT ATCCGGTAAG CGGCAGGGTC GGAACAGGAG AGCGCACGAG
 4741 GGAGCTTCCA GGGGAAACCG CCTGGTATCT TTATAGTCCT GTCGGGTTTC GCCACCTCTG
 4801 ACTTGAGCGT CGATTTTTGT GATGCTCGTC AGGGGGCGG AGCCTATGGA AAAACGCCAG
 4861 CAACCGGCC TTTTACGGT CCCTGGCTT TTGCTGGCTT TTGCTCACA TGTCTTTCC
 4921 TGCCTTATCC CCTGATTCTG TGATAACCG TATTACCGC TTTGAGTGAG CTGATAACCGC
 4981 TCGCCGCAGC CGAACGACCG AGCGCAGCGA GTCACTGAGC GAGGAAGCGG AAGAGCGCCT
 5041 GATGCGGTAT TTCTCCTTA CGCATCTGT CGGTATTC CACCGCATAT ATGGTGCAC
 5101 CTCAGTACAA TCTGCTCTGA TGCGCGATAG TTAAGCCAGT ATACACTCCG CTATCGCTAC
 5161 GTGACTGGGT CATGGCTCGC CCCCACACC CGCCACACCC CGCTGACGCC CCCTGACGGG
 5221 CCTGCTCTGCT CCCGGCATCC GCTTACAGAC AAGCTGTGAC CGTCTCCGGG AGCTGCATGT
 5281 GTCAGAGGTT TTCAACCGTCA TCACCGAAC CGCGCAGGCC GCTCGGGTAA AGCTCATCAG
 5341 CGTGGCTGTG AAGCGATTCA CAGATGTCTG CCTGTTCATC CGCGTCCAGC TCGTTGAGTT
 5401 TCTCCAGAAC CGTTAATGTC TGGCTCTGA TAAAGCGGGC CATGTTAAGG GCGGTTTTT
 5461 CCTGTTGGT CACTGTAGCC TCCGTGTAAG GGGGATTTCT GTTCTATGGGG GTAATGATAC
 5521 CGATGAAACG AGAGGAGAT CTCACGATAC GGGTTACTGA TGATGAACAT GCGCGGTTAC
 5581 TGGAACGTTG TGAGGTTAA CAACTGGCGG TATGGATGCC GCGGGACCAAG AGAAAAAATCA
 5641 CTCAGGGTCA ATGCCAGCGC TTGCTTAATA CAGATGTAGG TGTTCACAG GGTAGCCAGC
 5701 AGCATCCTGC GATCGACATC CGGAACATAA TGGTGCAGGG CGCTGACTTC CGCGTTTCCA
 5761 GACTTTACGA AACACGGAAA CGGAAGACCA TTCATGTTGT TGCTCAGGTC GCAGACGTTT
 5821 TGCAGCAGCA GTCGCTTCAC GTTCGCTCGC GTATCGGTGA TTGATCTGC TAACCAGTAA
 5881 GGCAACCCCG CCAGCCTAGC CGGGTCCCTCA ACCGACAGGAG CACGATCATG CGCACCGTG
 5941 CCCAGGACCC AACGCTGCC GAGATGCGCC GCGTGCAGGC GCTGGAGATG GCGGACGCGA
 6001 TGGATATGTT CTGCCAAGGG TTGGTTGCG CATTACAGT TCTCCGCAAG AATTGATTGG
 6061 CTCCAATTCT TGGAGTGGTG AATCCGTTAG CGAGGTGCCG CCGGCTTCCA TTCAGGTGCGA
 6121 GGTGGCCCGG CTCCATGCAC CGCGACGCAA CGGGGGGAGG CAGACAAGGT ATAGGGCGGC-

FIGURE 35C

90/240

6181 GCCTACAATC CATGCCAACC CGTTCCATGT GCTCGCCGAG GCGGCATAAA TCGCCGTGAC
6241 GATCAGCGGT CCAGTGATCG AAGTTAGGCT GGTAAGAGCC GCGAGCGATC CTTGAAGCTG
6301 TCCCTGATGG TCGTCATCTA CCTGCCCTGGA CAGCATGGCC TCGAACGGGG GCATCCCGAT
6361 GCCGCCGGAA CGGAGAAGAA TCATAATGGG GAAGGCCATC CAGCTCGCG TCGCGAACGC
6421 CAGCAAGACG TAGCCCAGCG CGTCGGCCGC CATGCCGGCG ATAATGCCCT GCTTCTCGCC
6481 GAAACGTTTG GTGGCGGGAC CAGTACGAA GGCTTGAGCG AGGGCGTGCAG AGATTCCGA
6541 TACCGCAAGC GACAGGGCGA TCATCGTCGC GCTCCAGCGA AAGCGGTCCCT CGCCGAAAAA
6601 GACCCAGAGC GCTGCCGGCA CCTGTCCTAC GAGTTGCATG ATAAAGAAGA CAGTCATAAG
6661 TGCGGCAGCG ATAGTCATGC CCCGCGCCCCA CGGAAAGGAG CTGACTGGGT TGAAGGCTCT
6721 CAAGGGCATC GGTGATCGA CGCTCTCCCT TATGCGACTC CTGCATTAGG AAGCAGCCCA
6781 GTAGTAGGTT GAGGCCGTTG AGCACCGCCG CGGCAAGGAA TGGTGATGC AAGGAGATGG
6841 CGCCCAACAG TCCCCCGGCC ACGGGGCCTG CCACCATACC CACGCCGAAA CAAGCGCTCA
6901 TGAGCCCGAA GTGGCGAGCC CGATCTTCCC CATCGGTGAT GTCGGCCATA TAGGCCAG
6961 CAACCGCACC TGTGGCGCCG GTGATGCCGG CCACGATGCG TCCGGCGTAG AGG

FIGURE 351)

91/240

Figure 36A: pDEST16

Thioredoxin N-Fusion Protein
in E. coli with T7 Promoter

T7 Promoter mRNA →

```

1  gat ctc gat ccc gcg aaa tta ata cga ctc act ata ggg aga cca caa cgg
   cta gag cta ggg cgc ttt aat tat gct gag tga tat ccc tct ggt gtt gcc
      XbaI
52  ttt ccc tct aga aat aat ttt gtt taa ctt taa gaa gga gat ata cat atg Start
   aaa ggg aga tct tta tta aaa caa att gaa att ctt cct cta tat gta dac Translation Trx
      S D K
103  agc gat aaa att att cac ctg act gac gac agt ttt gac acg gat gta ctc
   tcg cta ttt taa taa gtg gac tga ctg ctg tca aaa ctg tgc cta cat gag
      G D D D K I
409  ctc gac gct aac ctg gcc ggt tct ggt tct ggt gat gac gat gac aag atc
   gag ctg cga ttg gac cgg cca aga cca aga cca cta ctg cta ctg ttc tag
      T S L Y K K A attR1
460  aca agt ttg tac aaa aaa gct gaa cga gaa acg taa aat gat ata aat atc
   tgt tca aac atg ttt ttt cga ctt gct ctt tgc att tta cta tat tta tag
      Int
  
```


92/260

pDEST16 6675 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
104..457	trxA
585..461	attR1
694..1353	CmR
1473..1557	inactivated ccdA
1695..2000	ccdB
2041..2165	attR2

1 AGATCTCGAT CCCCGAAAT TAATACGACT CACTATAGGG AGACCACAAC GGTTTCCCTC
 61 TAGAAATAAT TTTGTTAAC TTTAAGAAGG AGATATACAT ATGAGCGATA AAATTATTCA
 121 CCTGACTGAC GACAGTTTG ACACGGATGT ACTCAAAGCG GACGGGGCGA TCCTCGTCGA
 181 TTTCTGGCA GAGTGGTGC GTCCGTGAA AATGATCGCC CCGATTCTGG ATGAAATCGC
 241 TGACGAATAT CAGGGCAAC TGACCGTTG AAAACTGAAC ATCGATCAA ACCCTGGCAC
 301 TGCGCCGAAA TATGGCATCC GTGGTATCCC GACTCTGCTG CTGTTCAAAA ACGGTGAAGT
 361 GGCAGCAACC AAAGTGGGTG CACTGTCTAA AGGTCAAGTTG AAAGAGTTCC TCGACGCTAA
 421 CCTGGCCGGT TCTGGTCTG GTGATGACGA TGACAAGATC ACAAGTTTGT ACAAAAAAAGC
 481 TGAACGAGAA ACGTAAAATG ATATAAATAT CAATATATTA AATTAGATT TGCAAAAAAA
 541 ACAGACTACA TAATACTGTA AAACACAACA TATCCAGTCA CTATGGCGGC CGCATTAGGC
 601 ACCCCAGGCT TTACACTTTA TGCTTCCGGC TCGTATAATG TGTTGATTTT GAGTTAGGAT
 661 CCGGCAGAG TTTCAAGGAGC TAAGGAAGCT AAAATGGAGA AAAAATCAC TGGATATACC
 721 ACCGTTGATA TATCCCAATG GCATCGTAA GAACATTTG AGGCATTTCA GTCAGTTGCT
 781 CAATGTACCT ATAACCAGAC CGTTCAGCTG GATATTACGG CCTTTTTAAA GACCGTAAAG
 841 AAAAATAAGC ACAAGTTTA TCCGGCCTT ATTACACATTC TTGCCCCCCT GATGAATGCT
 901 CATCCGGAAT TCCGTATGGC AATGAAAGAC GGTGAGCTGG TGATATGGGA TAGTGTTCAC
 961 CCTTGTACA CCGTTTCCA TGAGCAAAC GAAACGTTT CATCGCTCTG GAGTGAATAC
 1021 CACGACGATT TCCGGCAGTT TCTACACATA TATTGCAAG ATGTGGCGTG TTACGGTGA
 1081 AACCTGGCT ATTCCCTAA AGGGTTTATT GAGAATATGT TTTTGTCTC AGCCAATCCC
 1141 TGGGTGAGTT TCACCAAGTT TGATTTAAC GTGGCAATA TGACAACTT TTTCGCCCCC
 1201 GTTTTCAACCA TGGGCAAATA TTATACGCAA GGCACAAAGG TGCTGATGCC GCTGGCGATT
 1261 CAGGTTCATC ATGGCGTCTG TGATGGCTTC CATGTCGGCA GAATGCTTAA TGAATTACAA
 1321 CAGTACTGCG ATGAGTGGCA GGGCGGGGGC TAAACCGCTG GATCCGGCTT ACTAAAAGCC
 1381 AGATAACAGT ATGCGTATTG GCGCGCTGAT TTTTGGGTA TAAGAATATA TACTGATATG
 1441 TATAACCGAA GTATGTCAA AAGAGGTGTG CTATGAAGCA GCGTATTACA GTGACAGTTG
 1501 ACAGCGACAG CTATCAGTTG CTCAAGGCAT ATATGATGTC AATATCTCCG GTCTGGTAAG
 1561 CACAACCATG CAGAAATGAAG CCCGTCGCTC GCGTGGCGAA CGCTGGAAAG CGGAAAATCA
 1621 GGAAGGGATG GCTGAGGTGCG CCGGGTTTAT TGAAATGAAC GGCCTTTTG CTGACGAGAA
 1681 CAGGGACTGG TGAATGCAAG TTTAAGGTTT ACACCTATAA AAGAGAGAGC CGTTATCGTC
 1741 TGTTTGTGGA TGTACAGAGT GATATTATTG ACACGCCCGG GCGACGGATG GTGATCCCC
 1801 TGGCCAGTGC ACGTCTGCTG TCAGATAAAG TCTCCCGTGA ATTTTACCCG GTGGTGCATA
 1861 TCGGGGATGA AAGCTGGCGC ATGATGACCA CCGATATGGC CAGTGTGCCG GTCTCCGTTA
 1921 TCGGGGAAGA AGTGGCTGAT CTCAGCCACC GCGAAAATGA CATCAAAAC GCCATTAACC
 1981 TGATGTTCTG GGGAAATATAA ATGTCAGGCT CCCTTATACA CAGCCAGTCT GCAGGTGAC
 2041 CATAGTGAATGGGATGTTG TGTTTACAG TATTATGTAG TCTGTTTTTT ATGCAAATC
 2101 TAATTTAATA TATTGATATT TATATCATT TACGTTCTC GTTCAAGCTTT TTGTACAAA
 2161 GTGGTGATGA TCCGGCTGCT AACAAAGCCC GAAAGGAAGC TGAGTTGGCT GCTGCCACCG
 2221 CTGAGCAATA ACTAGCATAA CCCCTTGGGG CCTCTAAACG GGTCTTGAGG GGTTTTTTGC
 2281 TGAAAGGAGG AACTATATCC GGATATCCAC AGGACGGGTG TGGTCGCCAT GATCGCGTAG
 2341 TCGATAGTGG CTCCAAGTAG CGAACGCGAC AGGACTGGGC GGCGGCCAAA GCGGTCGGAC
 2401 AGTGTCCGA GAAACGGGTGC GCATAGAAAT TGCATCAACC CATATAGCCG TAGCAGCACG
 2461 CCATAGTGAC TGGCGATGCT GTGCGAATGG ACGATATCCC GCAAGAGGCC CGGCAGTACC
 2521 GGCATAACCA AGCTTATGCC TACAGCATCC AGGGTACGG TGCCGAGGAT GACGATGAGC
 2581 GCATTGTTAG ATTCATACA CGGTGCCCTGA CTGCGTTAGC AATTAACTG TGATAAACTA
 2641 CCGCATTAAA GCTTATCGAT GATAAGCTG CAAACATGAG AATTCTTGAA GACGAAAGGG
 2701 CCTCGTGATA CGCTTATTTT TATAGGTTAA TGTCACTGATA ATAATGGTTT CTTAGACGTC
 2761 AGGTGGCACT TTTCGGGAA ATGTGCGCGG AACCCCTATT TGTTTATT TCTAAATACA-

FIGURE 36B

93/240

2821 TTCAAATATG TATCCGCTCA TGAGACAATA ACCCTGATAA ATGCTTCAAT AATATTGAAA
 2881 AAGGAAGAGT ATGAGTATTG AACATTCCG TGTCGCCCTT ATTCCCTTT TTGCGGCATT
 2941 TTGCTTCCT GTTTTGGCTC ACCCAGAAAC GCTGGTGAAA GTAAAAGATG CTGAAGATCA
 3001 GTTGGGTGCA CGAGTGGGTT ACATCGAAC GGATCTCAAC AGCGGTAAGA TCCTTGAGAG
 3061 TTTTCGCCCC GAAGAACGTT TTCCAATGAT GAGCACTTTT AAAGTTCTGC TATGTGGCGC
 3121 GGTATTATCC CGTGTGACG CCGGGCAAGA GCAACTCGGT CGCCGCATAC ACTATTCTCA
 3181 GAATGACTTG GTTGGAGTACT CACCAGTCAC AGAAAAGCAT CTTACGGATG GCATGACAGT
 3241 AAGAGAATTA TGCAGTGTG CCATAACCAT GAGTGATAAC ACTGCGGCCA ACTTACTTCT
 3301 GACAACGATC GGAGGACCGA AGGAGCTAAC CGCTTTTTG CACAACATGG GGGATCATGT
 3361 AACTCGCCTT GATCGTTGGG AACCGGAGCT GAATGAAGCC ATACCAAACG ACGAGCGTGA
 3421 CACCAACGATG CTCGCAGCAA TGGCAACAAAC GTTGCAGCAA CTATTAACGT GCGAAGTACT
 3481 TACTCTAGCT TCCCAGGCAAC AATTAATAGA CTGGATGGAG GCGGATAAAG TTGCAGGACC
 3541 ACTTCTGCGC TCGGGCCCTTC CGGCTGGCTG GTTATTGCT GATAAAATCTG GAGCCGGTGA
 3601 GCGTGGGTCT CGCGGTATCA TTGCAAGCACT GGGGCCAGAT GGTAAGCCCT CCCGTATCGT
 3661 AGTTATCTAC ACGACGGGGA GTCAAGGCAAC TATGGATGAA CGAAATAGAC AGATCGCTGA
 3721 GATAGGTGCG TCACTGATTA AGCATTGGTA ACTGTCAGAC CAAGTTACT CATATATACT
 3781 TTAGATTGAT TAAAAACCTTC ATTTTTAATT TAAAAGGATC TAGGTGAAGA TCCTTTTGAA
 3841 TAATCTCATG ACCAAACATCC CTTAACGTGA GTTTCTGTT CACTGAGCGT CAGACCCGT
 3901 AGAAAAGATC AAAGGATCTT CTTGAGATCTC TTGTTTTCTG CGCGTAACCT GCTGCTTGCA
 3961 AACAAAAAAA CCACCGCTAC CAGCGGTGGT TTGTTTGCGG GATCAAGAGC TACCAACTCT
 4021 TTTTCCGAAG GTAACTGGCT TCAGCAGAGC GCAGATACCA AATACTGTCC TTCTAGTGT
 4081 GCCGTAGTTA GGCCACCACT TCAAGAACTC TGAGCACCG CCTACATACC TCGCTCTGCT
 4141 AATCTCTGTTA CCAGTGGCTG CTGCCAGTGG CGATAAGTCG TGTCTTACCG GGTTGGACTC
 4201 AAGACGATAG TTACCGGATA AGGCGCAGCG GTCGGGCTGA ACAGGGGGTTT CGTGACACACA
 4261 GCCCAGCTTG GAGCGAACGA CCTACACCGA ACTGAGATAC CTACAGCGTG AGCTATGAGA
 4321 AAGGCCACAG CTTCCCGAAG GGAGAAAGGC GGACAGGTAT CGGTAAGCG GCAGGGTCGG
 4381 AACAGGAGAG CGCACGAGGG AGCTTCCAGG GGGAAACGCC TTGTTACTTTT ATAGTCCCTGT
 4441 CGGGTTTCGC CACCTCTGAC TTGAGCGTCG ATTGTTGTGA TGCTCTGTCAG GGGGGCGGAG
 4501 CCTATGGAAA AACGCCAGCA ACGGGCCCTT TTACGGGTT CTGGCTTTT GCTGGCCTTT
 4561 TGCTCACATG TTCTTTCTG CGTTATCCCC TGATTCTGTG GATAACCGTA TTACCGCCTT
 4621 TGAGTGAGCT GATAACCGCTC GCGCAGCGG AACGACCGAG CGCAGCGAGT CAGTGAGCGA
 4681 GGAAGCGGAA GAGCGCCTGA TGCGGTATT TCTCTTACG CATCTGTGCG GTATTTCACA
 4741 CCGCATATAT GGTGCACTCT CAGTACAATC TGCTCTGTG CCGCATAGTT AAGCCAGTAT
 4801 ACACCTCGCT ATCGCTACGT GACTGGGTCA TGGCTGCGCC CGGACACCCG CCAACACCCG
 4861 CTGACCGGCC CTGACGGGCT TGTCTGCTCC CGGCATCCCG TTACAGACAA GCTGTGACCG
 4921 TCTCCGGAG CTGCATGTGT CAGAGGTTT CACCGTCATC ACCGAAACGC GCGAGGCAGC
 4981 TGCGGTAAAG CTCATCAGCG TGTCGTGAA CGATTACCA GATGTCGCC TGTTCATCCG
 5041 CGTCAGCTC GTTGAGTTTC TCCAGAACGG TTAATGTCTG GCTTCTGATA AAGCGGGCCA
 5101 TGTTAAGGGC GTTTTTTCTC TGTTGGTCA CTGATGCCCT CGTGTAAAGGG GGATTCTGT
 5161 TCATGGGGT AATGATACCG ATGAAACGAG AGAGGATGCT CACGATACGG GTTACTGT
 5221 ATGAACATGC CCGGTTACTG GAACGTTGTG AGGGTAAACA ACTGGCGGT TGGATGCC
 5281 GGGACCAGAG AAAAATCACT CAGGGTCAAT GCCAGCGCTT CGTTAATACA GATGTAGGTG
 5341 TTCCACAGGG TAGCCAGCA CATCTCGCA TGCAAGATCCG GAACATAATG GTGCAGGGCG
 5401 CTGACTTCCG CGTTTCCAGA CTTTACGAAA CACGGAAACG GAAGACCATT CATGTTGTTG
 5461 CTCAGGTGCG AGACGTTTTC CAGCAGCACT CGCTTCACGT TCGCTCGGT ATCGGTGATT
 5521 CATTCTGCTA ACCAGTAAGG CAACCCCGCC AGCTTAGCCG GGTCTCAAC GACAGGAGCA
 5581 CGATCATGCG CACCCGTGGC CAGGACCCAA CGCTGCCCGA GATGCGCCCG GTGCGGCTGC
 5641 TGGAGATGGC GGACCGCATG GATATGTTCT GCCAAGGGTT GGTTTGCAGA TTCACAGTTC
 5701 TCCGCAAGAA TTGATTGGCT CCAATTCTTG GAGTGGTGA TCCGTTAGCG AGGTGCCGCC
 5761 GGCTTCCATT CAGGTCGAGG TGGCCGGCT CCATGCACCG CGACGCAACG CGGGGAGGCA
 5821 GACAAGGTAT AGGGCGGCCG CTACAATCCA TGCCAAACCCG TTCCATGTGC TCGCCGAGGC
 5881 GGCATAAATC GCGGTGACGA TCAGCGTCC AGTGTACGAA GTTGGCTGG TAAGAGCCGC
 5941 GAGCGATCCT TGAAGCTGTC CCTGATGGTC GTCATCTACC TGCCTGGACA GCATGGCCTG
 6001 CAACCGGGC ATCCCGATGC CGCCGGAAAGC GAGAAGAACG ATAATGGGG AAGCCATCCA
 6061 GCCTCGCGTC GCGAACGCCA GCAAGACGTA CCCAGCGCG TCGGCCGCCA TGCCGGCGAT
 6121 AATGGCCCTG TTCTCGCCGA AACGTTGGT GGCGGGACCA GTGACGAAGG CTTGAGCGAG
 6181 GCGGTGCAAG ATTCCGAATA CCGCAAGCGA CAGGGCGATC ATCGTCGCC TCCAGCGAAA
 6241 CGGGTCCCTCG CCGAAAATGA CCCAGAGCGC TGCCGGCACC TGTCTACGA GTTGCATGAT-

FIGURE 36C

94/240

6301 AAAGAAGACA GTCATAAGTG CGCGGACGAT AGTCATGCC CGCGCCCACC GGAAGGAGCT
6361 GACTGGGTTG AAGGCTCTCA AGGGCATCGG TCGATCGACG CTCTCCCTTA TGCGACTCCT
6421 GCATTAGGAA GCAGCCCAGT AGTAGGTTGA GGCGTTGAG CACCGCCGCC GCAAGGAATG
6481 GTGCATGCAA GGAGATGGCG CCCAACAGTC CCCCGGCCAC GGGGCCTGCC ACCATACCCA
6541 CGCCGAAACA AGCGCTCATG AGCCCCAAGT GGCGAGCCCG ATCTTCCCCA TCGGTGATGT
6601 CGGGCATATA GGGGCAGCA ACCGCACCTG TGGCGCCGGT GATGCCGGCC ACGATGCGTC
6661 CGGGTAGAG GATCG

FIGURE 360

95/240

mRNA

T7 Promoter

1 gat ccc gcg aaa tta ata cga ctc act ata **ggg** aga cca caa cgg ttt ccc
ctt ggg cgc ttt **aat tat** gct gag tga **tat ccc** tct ggt gtt gcc aaa ggg

52 tct aga aat aat ttt gtt taa ctt taa gaa gga gat ata cat **atg tgg tac**
aga tct tta tta aaa caa att gaa att ctt cct cta tat gta tac agc atg

103 **Y H H H H L E S T S L Y K K A**
tac cat cac cat cac cat cac ctc gaa tca **aca agt ttg tac aaa aaa gct**
atg gta gtg gta gtg gta gtg gag ctt agt **tgt tca aac atg ttt ttt cga**

Start Translation M S Y K A
attR1 Int ↓

96/260

pDEST17 6354 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
258..134	attR1
367..1026	CmR
1146..1230	inactivated ccdA
1368..1673	ccdB
1714..1838	attR2
2564..3421	ampR

1 CGATCCCGCG AAATTAATAC GACTCACTAT AGGGAGACCA CAACGGTTTC CCTCTAGAAA
 61 TAATTTGTT TAACTTAAAG AAGGAGATAT ACATATGTCG TACTACCATC ACCATCACCA
 121 TCACCTCGAA TCAACAAGTT TGTACAAAAA AGCTAACGAA GAAACGTAAA ATGATATAAA
 181 TATCAATATA TTAAATTAGA TTTTGCTAA AAAACAGACT ACATAATACT GTAAAACACA
 241 ACATATCCAG TCACTATGGC GGCGCCTTA GGCACCCAG GCTTTACACT TTATGCTTCC
 301 GGCTCGTATA ATGTGTGGAT TTTGAGTTAG GATCCGTCGA GATTTTCAGG AGCTAAGGAA
 361 GCTAAAATGG AGAAAAAAAT CACTGGATAT ACCACCGTTG ATATATCCA ATGGCATCGT
 421 AAAGAACATT TTGAGGCATT TCAGTCAGTT GCTCAATGTA CCTATAACCA GACCCTTCAG
 481 CTGGATATTA CGGCCTTTTT AAAGACCGTA AAGAAAAATA AGCACAAGTT TTATCCGGCC
 541 TTTATTACACA TTCTTGCCCG CCTGATGAAT GCTCATCCGG AATTCCGTAT GGCAATGAAA
 601 GACGGTGAGC TGGTGATATG GGATAGTGTGTT CACCCCTGTT ACACCGTTT CCATGAGCAA
 661 ACTGAAACGT TTTCATCGCT CTGGAGTGAA TACACGACG ATTTCCGGCA GTTTCTACAC
 721 ATATATTTCGC AAGATGTGGC GTGTTACGGT GAAAACCTGG CCTATTTCCC TAAAGGGTTT
 781 ATTGAGAATA TGTTTTTCGT CTCAGCCAAT CCCTGGGTGA GTTTCACCAAG TTTTGATTAA
 841 AACGTGGCCA ATATGGACAA CTTCTTCGCC CCCGTTTCA CCATGGGCAA ATATTATACG
 901 CAAGGCGACA AGGTGCTGAT GCCGCTGGCG ATTCAAGGTTT ATCATGCCGT CTGTGATGGC
 961 TTCCATGTCG GCAGAATGCT TAATGAATTA CAACAGTACT GCGATGAGTG GCAGGGCGGG
 1021 GCGTAAAGAT CTGGATCCGG CTTACTAAAA GCCAGATAAC AGTATGCGTA TTTGCGCGCT
 1081 GATTTTGCG GTATAAGAAT ATATACTGAT ATGTATACCC GAAGTATGTC AAAAAGAGGT
 1141 GTGCTATGAA GCAGCGTATT ACAGTGACAG TTGACAGCGA CAGCTATCAG TTGCTCAAGG
 1201 CATATATGAT GTCAATATCT CCGGTCTGGT AAGCACAACC ATGCGAAATG AAGCCGTCG
 1261 TCTGCGTGCC GAACGCTGGA AAGCGGAAAA TCAGGAAGGG ATGGCTGAGG TCGCCCGGTT
 1321 TATTGAAATG AACGGCTCTT TTGCTGACGA GAACAGGGAC TGGTAAAATG CAGTTIAAGG
 1381 TTTACACCTA TAAAAGAGAG AGCCGTTATC GTCTGTTGT GGATGTACAG AGTGTATTTA
 1441 TTGACACGCC CGGGCGACGG ATGGTGTATCC CCCTGGCCAG TGACACGTCG CTGTAGATA
 1501 AAGTCTCCCG TGAACCTTAC CCGGTGGTGC ATATCGGGGA TGAAAGCTGG CGCATGATGA
 1561 CCACCGATAT GGCCAGTGTG CCGGTCTCCG TTATCGGGGA AGAAGTGGCT GATCTCAGCC
 1621 ACCCGAAAAA TGACATCAA AACGCCATTA ACCTGATGTT CTGGGGAAATA TAAATGTCAG
 1681 GCTCCCTTAT ACACAGGCCAG TCTGCAAGTC GACCAGTAGTG ACTGGATATG TTGTGTTTTA
 1741 CAGTATTATG TAGTCTGTTT TTTATGCAAA ATCTAATTAA ATATATTGAT ATTTATATCA
 1801 TTTTACGTTT CTCGTTCAAGC TTTCTTGAC AAAGTGGTTG ATTCAAGGCT GCTAACAAAG
 1861 CCCGAAAGGA AGCTGAGTTG GCTGCTGCCA CCGCTGAGCA ATAACCTAGCA TAACCCCTTG
 1921 GGGCCTCTAA ACGGGTCTTG AGGGGTTTT TGCTGAAAGG AGGAACATA TCCGGATATC
 1981 CACAGGACGG GTGTGGTCGC CATGATCGCG TAGTCGATAG TGGCTCCAAG TAGCGAAGCG
 2041 AGCAGGACTG GGCGGGCGGCC AAAGCGGTGCG GACAGTGCTC CGAGAACGGG TCGCGATAGA
 2101 AATTGCAATCA ACGCATATAG CGCTAGCAGC ACGCCATAGT GACTGGCGAT GCTGTCGGAA
 2161 TGGACGATAT CCCGCAAGAG GCCCAGT ACCGGCATAA CCAAGCCTAT GCCTACAGCA
 2221 TCCAGGGTGA CGGTGCGGAG GATGACGATG AGGCATTGT TAGATTTCAT ACACGGTGCC
 2281 TGACTGCGTT AGCAATTAA CTGTCGATAAA CTACCGCATT AAAGCTTATC GATGATAAGC
 2341 TGTCAAACAT GAGAATTCTT GAAGACGAAA GGGCCTCGTG ATACGCCAT TTTTATAGGT
 2401 TAATGTCATG ATAATAATGG TTTCTTAGAC GTCAAGGTGGC ACTTTTCGGG GAAATGTGCG
 2461 CGGAACCCCT ATTTGTTAT TTTCTAAAT ACATTCAAAT ATGTATCCGC TCATGAGACA
 2521 ATAACCCCTGA TAAATGCTTC AATAATATTG AAAAAGGAAG AGTATGAGTA TTCAACATT
 2581 CCGTGTGCC CTTATTCCCT TTTTGCGGC ATTTGCGCTT CCTGTTTTG CTCACCCAGA
 2641 AACGCTGGTG AAAGTAAAG ATGCTGAAGA TCAGTTGGGT GCACGAGTGG GTTACATCGA-

FIGURE 37B

97/240

2701 ACTGGATCTC AACAGCGGTA AGATCCTTGA GAGTTTCGC CCCGAAGAAC GTTTCCAAT
 2761 GATGAGCACT TTTAAAGTTG TGCTATGTGG CGCGGTATTA TCCCGTGTG ACGCCGGCA
 2821 AGAGCAACTC GGTGCCGCA TACACTATT TCAGAATGAC TTGGTTGACT ACTCACCACT
 2881 CACAGAAAAG CATCTTACGG ATGGCATGAC AGTAAGAGA TTATGCACTG CTGCCATAAC
 2941 CATGAGTGAT AACACTGCGG CCAACTACT TCTGACAACG ATCGGAGGAC CGAAGGAGCT
 3001 AACCGTTTT TTGCACAACA TGGGGATCA TGTAACTCGC CTTGATCGTT GGGAACCGGA
 3061 GCTGAATGAA GCCATACCAA ACGACGAGCG TGACACCACG ATGCCCTGAG CAATGGCAAC
 3121 AACGTTGCGC AAACATTAA CTGGCGAATC ACTTACTCTA GCTTCCCAGG AACAAATTAAAT
 3181 AGACTGGATG GAGGCGGATA AAGTTGCAAG ACCACTCTG CGCTCGGCC TTCCGGCTGG
 3241 CTGGTTTATT GCTGATAAT CTGGAGCCGG TGAGCGTGGG TCTCGCGTA TCATTGCAAGC
 3301 ACTGGGCCA GATGGTAAGC CCTCCCGTAT CGTAGTTATC TACACGACGG GGAGTCAGGC
 3361 AACTATGGAT GAACGAAATA GACAGATCGC TGAGATAGGT GCCTCACTGA TTAAGCATTG
 3421 GTAATGTC GACCAAGTTT ACTCATATAT ACTTTAGATT GATTTAAAAAC TTCAATTITA
 3481 ATTTAAAAGG ATCTAGGTGA AGATCCTTT TGATAATCTC ATGACAAAAA TCCCTTAACG
 3541 TGAGTTTCG TTCCACTGAG CGTCAGACCC CGTAGAAAAG ATCAAAGGAT TTCTTGAGA
 3601 TCCTTTTTCT CGCGCGTAA TCTGCTGCTT GCAAACAAAAA AAACCACCGC TACCGCGGT
 3661 GGTTTGTGTTG CCGGATCAAG AGCTACCAAC TCTTTTCCG AAGGTAACCTG GCTTCAGCAG
 3721 AGCGCAGATA CCAAATACTG TCCCTCTAGT GTAGCGTAG TTAGGCCACC ACTTCAGA
 3781 CTCTGTAGCA CCGCCTACAT ACCTCGCTC GCTAATCTG TTACCACTGG CTGCTGCCAG
 3841 TGGCGATAAG TCCTGTCTTA CGGGGTGGG CTCAAGACGA TAGTTACCGG ATAAGGGCGA
 3901 GCGGTCGGGC TGAACGGGGG GTTCGTGCAC ACAGCCCAGC TTGGAGCGAA CGACCTACAC
 3961 CGAACTGAGA TACCTACAGC GTGAGCTATG AGAAAGCGCC ACGCTCCCC AAGGGAGAAA
 4021 GCGGGACAGG TATCCGGTAA CGGGCAGGGT CGGAACAGGA GAGCGCACGA GGGAGCTTCC
 4081 AGGGGAAAC GCCTGGTATC TTTATAGTCC TGTCGGGTTT CGCCACCTCT GACTTGAGCG
 4141 TCGATTTTG TGATGCTCGT CAGGGGGCG GAGCTATGG AAAAACGCCA GCAACGGCGC
 4201 CTTTTACGG TTCTCGGCCCT TTGCTGCCCT TTGCTGTCAC ATGTTCTTTC CTGCTTATC
 4261 CCCTGATTCT GTGGATAACC GTATTACCGC TTGAGTGA GCTGATAACCG CTGCCCCAG
 4321 CCGAACGACC GAGCGCAGCG AGTCAGTGAG CGAGGAAGCG GAAGAGCGCC TGATGCGGT
 4381 TTTTCTCCCTT ACCGATCTGT GCGGTATTT ACACCGATA TATGGTCAC TCTCAGTACA
 4441 ATCTGCTCTG ATGCCGCATA GTTAAGCCAG TATACACTCC GCTATCGCTA CGTACTGGG
 4501 TCATGGCTGC GCCCCGACAC CGGCCAACAC CGCTGACGC GCCCTGACGG GCTTGTCTGC
 4561 TCCCGCATIC CGCTTACAGA CAAGCTGTGA CGCTCTCCGG GAGCTGCATG TGTCAGAGGT
 4621 TTTCACCGTC ATCACCGAAA CGCGCAGGGC AGCTGCGGTAA AAGCTCATCA GCGTGGTCGT
 4681 GAAGCGATT ACAGATGTCT GCGCTTCA CGCGCTCCAG CTCGTTGAGT TTCTCCAGAA
 4741 GCGTTAATGT CTGGCTTCTG ATAAAGCGGG CCATGTTAAG GGGGTTTTT TCCCTTTGG
 4801 TCACTGATGC CTCCGTGAA GGGGATTT TGTCATGGG GGTAAATGATA CCGATGAAAC
 4861 GAGAGAGGAT GCTCACGATA CGGGTTACTG ATGATGAACA TGCCCGGTTA CTGGAACGTT
 4921 GTGAGGGTAA ACAACTGGCG GTATGGATGC GGCGGGACCA GAGAAAATC ACTCAGGGTC
 4981 AATGCCAGCG CTTCGTTAAT ACAGATGTAG GTGTTCCACA GGGTAGCCAG CAGCATCCTG
 5041 CGATGCGAGAT CGGAAACATA ATGGTGCAGG CGCCTGACTT CGCGTTTCC AGACTTTACG
 5101 AAACACGGAA ACCGAAGACC ATTCACTGTT TGCTCAGGT CGCAGACGTT TTGCAGCAGC
 5161 AGTCGCTTCA CGTTCGCTCG CGTATCGGT ATTCAATTCTG CTAACCAAGTA AGGCAACCCCC
 5221 GCCAGCCTAG CGGGGTCTC AACGACAGGA GCACGATCAT GCGCACCCGT GGCCAGGACC
 5281 CAACGCTGCC CGAGATGCGC CGCGTGGGC TGCTGGAGAT GCGGGACCG ATGGATATGT
 5341 TCTGCCAAGG GTGGTTTGC GCATTACAG TTCTCCGAA GAATTGATTG GCTCCAATTC
 5401 TTGGAGTGGT GAATCCGTTA GCGAGGTGCC CGCGCTTCC ATTCAAGGTG AGGTGGCCCG
 5461 GCTCCATGCA CGCGCAGCAGCA CGCGGGGAG CGAGACAAGG TATAGGGCGG CGCCTACAAT
 5521 CCATGCCAAC CGCTTCCATG TGCTCGCCGA GCGGCATAA ATCGCCGTGA CGATCAGCGG
 5581 TCCAGTGATC GAAGTTAGGC TGGTAAGAGC CGCGAGCGAT CTTGAAAGCT GTCCCTGATG
 5641 GTCGTCATCT ACCTGCCTGG ACAGCATGGC CTGCAACCGCG GGCATCCCGA TGCGGCCGA
 5701 AGCGAGAAGA ATCATATAATGG GGAAGGCCAT CGACGCCCGC GTCGCGAACG CCAGCAAGAC
 5761 GTAGCCCAGC CGCGTGGCCCG CGATGCCGGC GATAATGGCC TGCTTCTCGC CGAAACGTTT
 5821 GGTGGGGGA CGAGTGACGA AGGCTTGAGC GAGGGCGTGC AAGATTCCGA ATACCGCAAG
 5881 CGACAGGCCG ATCATCGTC CGCTCCAGCG AAAGCGGTCC TCGCCGAAAA TGACCCAGAG
 5941 CGCTGCCGGC ACCTGTCTTA CGAGTTGCAT GATAAGAAG ACAGTCATAA GTCGGGCGAC
 6001 GATAGTCATG CCCCGCGCCC ACCGGAAGGA GCTGACTGGG TTGAAGGCTC TCAAGGGCAT
 6061 CGGTGATCG ACGCTCTCCC TTATGCGACT CCTGCAATTAG GAAGCAGCCC AGTAGTAGGT
 6121 TGAGGCCGTT GAGCACCAGCC CGCGCAAGGA ATGGTGCATG CAAGGAGATG GCGCCCAACA-

FIGURE 37C

98/240

6181 GTCCCCCGGC CACGGGGCCT GCCACCATA CCACGCCGAA ACAAGCGCTC ATGAGCCGA
6241 AGTGGCGAGC CCGATCTTCC CCATCGGTGA TGTGGCGAT ATAGGCGCCA GCAACCGCAC
6301 CTGTGGCGCC GGTGATGCCG GCCACGATGC GTCCGGCGTA GAGGATCGAG ATCT

FIGURE 37D

Figure 38A: DESTIE

FastBac Transfer Vector with p10 Baculovirus Promoter

1 gaagacctcg gcccgtcgccg cgcttgcgg tgggtctgac cccggatgaa gttgggtcgca
 ctctggagc cggcagcgcc gcgaacggcc accacgactg gggccctactt caccagaegt
 61 tcctcggttt tctggaaaggc gagcategtt tggtcgccca ggactcttagc tatagttcta
 aggagccaaa agacctccg ctctgtagcaa acaagcggtt cctgagatcg atatcaagat
 121 gtggttggct acgtatcgag caagaaatca aaaaacggccaa /cgcgttggag tcttgttgc/
 caccaccgta tgcataatc tttgcgttgc /cgcgttgc/ agaacaacacg //
 181 // tattttaca aatgttcaga aatagccatc acttacacca aaaaaaaaaatatgt//
 // aaaaaaatgt ttcttactt ttagccgtatc tgaatgttgt tccccctgtt actttaaatc//
 241 // cattttcagg atgcggggac ctttatcca acccaacacca atatattataa gtttaaatgt mRNA
 // aaaaaaactcc tacggcccttg aaatttaaatgt tgggttgtgt tatataatat caatttatcc//
 301 // attttttat caaatcattt gtatattaaat aaaaatacta taatgtaaat tacattttat
 // taatataata gtttagaaaa aatataat attttatgtat atgacatttta atgtaaaata
 361 ttacaatgag gatcatcaca agtttgcata aaaaagctga acgagaaaacg taaaatgata
 aatgttactc ctatgtgtt tccaaatcatgt tttttcgact tgcttttgc attttactat
 Int ↓ atterI

100 / 240

pDEST18 6613 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
474..1449	ampR
1590..2244	ori
2738..3850	genR
4251..4127	attR1
4501..5160	CmR
5280..5364	inactivated ccdA
5502..5807	ccdB
5848..5972	attR2
6595..25	lacZ

1 GACGCGCCCT GTAGCGGCCG ATTAAGCGCG CGGGGTGTGG TGGTTACGCG CAGCGTGACC
 61 GCTACACTTG CCAGCGCCCT AGCGCCCGT CCTTTCGCTT TCTTCCCTTC CTTCCTCGCC
 121 ACGTCGCCG GCTTCCCCCG TCAAGCTCTA AATCGGGGGC TCCCTTAGG GTTCCGATT
 181 AGTGCCTTAC GGCACCTCGA CCCAAAAAAA CTTGATTAGG GTGATGGTTC ACGTAGTGGG
 241 CCATCGCCCT GATAGACGGT TTTTCGCCCT TTGACGTTGG AGTCCACGTT CTTTAATAGT
 301 GGACTCTTGT TCCAAACTGG AACAACACTC AACCTATCT CGGTCTATTC TTTTGATTTA
 361 TAAGGGATTT TGCCGATTTG GGCCTATTGG TTAAAAAATG AGCTGATTAA ACAAAAATTT
 421 AACCGGAATT TTAACAAAAT ATTAACGTTT ACAATTTCAG GTGGCACTTT TCGGGAAAT
 481 GTGCGCGGAA CCCCTATTG TTTATTTTC TAAATACATT CAAATATGTA TCCGCTCATG
 541 AGACAATAAC CCTGATAAAAT GCTTCAATAA TATTGAAAAA GGAAGAGTAT GAGTATTCAA
 601 CATTCCGTG TCGCCCTTAT TCCCTTTTGC GCGCATTTC GCCTTCTGT TTTGCTCAC
 661 CCAGAAACGC TGGTGAAGT AAAAGATGCT GAAGATCAGT TGGGTGCACG AGTGGGTAC
 721 ATCGAACTGG ATCTCAACAG CGGTAAGATC CTTGAGAGTT TTCGCCCCGA AGAACGTTTT
 781 CCAATGATGA GCACCTTTAA AGTTCTGCTA TGTGGCGCGG TATTATCCC TATTGACGCC
 841 GGGCAAGAGC AACTCGGTG CGGCATACAC TATTCTCAGA ATGACTTGGT TGAGTACTCA
 901 CCAGTCACAG AAAAGCATCT TACCGATGGC ATGACAGTAA GAGAATTATG CAGTGCCTGCC
 961 ATAACCATGA GTGATAAACAC TGCGGCAAC TTACTTCTGA CAACGATCGG AGGACCGAAG
 1021 GAGCTAACCG CTTTTTTGCA CAACATGGGG GATCATGTA CTCGCTTGA TCGTTGGAA
 1081 CGGGAGCTGA ATGAAGCCAT ACCAACGAC GAGCGTGACA CCACGATGCC TGTAGCAATG
 1141 GCAACAAACGT TGGCCAACACT ATTAACGTC GAACTACTTA CTCTAGCTTC CGGGCAACAA
 1201 TTAATAGACT GGATGGAGGC GGATAAAGTT GCAGGACAC TTCTGCCTC GGCCCTTCCG
 1261 GCTGGCTGGT TTATGCTGA TAAATCTGGA GCCGGTGAGC GTGGTCTCG CGGTATCATT
 1321 GCAGCACTGG GGCAGATGG TAAGCCCTCC CGTATCGTAG TTATCAC GACGGGGAGT
 1381 CAGGCAACTA TGGATGAACG AAATAGACAG ATCGCTGAGA TAGGTGCCTC ACTGATTAAG
 1441 CATTGGTAAC TGTCAAGACCA AGTTTACTCA TATATACTTT AGATTGATT AAAACTTCAT
 1501 TTTTAATTAA AAAGGATCTA GGTGAAGATC CTTTTGATA ATCTCATGAC CAAAATCCCT
 1561 TAACCGTGAAT TTTGCTCCA CTGAGCGTC GACCCCGTAG AAAAGATCAA AGGATCTTCT
 1621 TGAGATCCCTT TTTTCTGCG CGTAATCTGC TGCTTGAAA CAAAAAAACC ACCGCTACCA
 1681 CGGGTGGTTT GTTGCGCGGA TCAAGAGCTA CCAACTCTTT TTCCGAAGGT AACTGGCTTC
 1741 AGCAGAGCGC AGATACCAA TACTGCTCTT CTAGTGTAGC CGTAGTTAGG CCACCACTTC
 1801 AAGAAACTCTG TAGCACCAGG TACATACCTC GCTCTGCTAA TCCTGTTACC AGTGGCTGCT
 1861 GCCAGTGGCG ATAAGTGTG TCTTACCGGG TTGGACTCAA GACGATAGTT ACCGGATAAG
 1921 GCGCAGCGGT CGGGCTGAAC GGGGGGTTCG TGACACAGC CCAGCTTGGA GCGAACGACC
 1981 TACACCGAAC TGAGATACCT ACAGCGTGA CATTGAGAAA GCGCCACGCT TCCCGAAGGG
 2041 AGAAAGGCAGG ACAGGTATCC GGTAAGCGGC AGGGTGGAA CAGGAGAGCG CACGAGGGAG
 2101 CTTCCAGGGG GAAAAGCTG GTATCTTAT AGTCCCTGTCG GGTTTCGCCA CCTCTGACTT
 2161 GAGCGTCGAT TTTTGTGATG CTCGTCAGGG GGGCGGAGCC TATGGAAAAA CGCCAGCAAC
 2221 CGGCCCTTTT TACGGTTCTT GGCCTTTGTC TGGCCTTTG CTCACATGTT CTTCCTGCG
 2281 TTATCCCCCTG ATTCTGTGGA TAACCGTATT ACCGCCTTTG AGTGAGCTGA TACCGCTCGC
 2341 CGCAGCCGAA CGACCGAGCG CAGCGAGTC GTGAGCGAGG AAGCGGAAGA GCGCTGATG
 2401 CGGTATTTTC TCCTTACGCA TCTGTGCGGT ATTTCACACC GCAGACCAGC CGCGTAACCT
 2461 GGCAAAATCG GTTACGGTTG AGTAATAAT GGATGCCCTG CGTAAGCGGG TGTGGCGGA-

FIGURE 38B

101/240

2521 CAATAAAAGTC TTAAACTGAA CAAAATAGAT CTAAACTATG ACAATAAAGT CTTAAACTAG
 2581 ACAGAAATAGT TGTAAACTGA AATCAGTCCA GTTATGCTGT GAAAAAGCAT ACTGGACTTT
 2641 TGTTATGGCT AAAGCAAACCT CTTCATTTTC TGAAGTGCCTA ATTGCCCGTC STATTAAAGA
 2701 GGGCGTGGC CAAGGGCATG GTAAAGACTA TATTCCGCGC GTTGTGACAA TTTACCGAAC
 2761 AACTCCGCGG CGGGGAAGCC GATCTCGGCT TGAACCGAATT GTTAGGTGGC GGTACTTGGG
 2821 TCGATATCAA AGTCATCAC TTCTTCCCGT ATGCCCAACT TTGTATAGAG AGCCACTGCG
 2881 GGATCGTCAC CGTAATCTGC TTGACGTAG ATCACATAAG CACCAAGCGC GTTGGCTC
 2941 TGCTTGAGGA GATTGATGAG CGCGGTGGCA ATGCCCTGCC TCCCGTGCCTC GCCGGAGACT
 3001 GCGAGATCAT AGATATAGAT CTCACACGC GGCTGCTCAA ACCTGGGCAG AACGTAAGCC
 3061 GCGAGAGCGC CAACAACCGC TTCTTGGTCG AAGGAGCAGA GCGCGATGAA TGTCTTA
 3121 CGGAGCAAGT TCCCAGGTA ATCGGAGTCC GGCTGATGTT GGGAGTAGGT GGCTACGTCT
 3181 CCGAACTCAC GACCGAAAAG ATCAAGAGCA GCCCGCATGG ATTTGACTTG GTCAGGGCCG
 3241 AGCCTACATG TGCATGATGAT GCCCATACTT GAGCACCTA ACTTTGTTT AGGGCGACTG
 3301 CCCTGCTGCG TAACATCGTT GCTGCTGCGT AACATCGTT CTGCTCCATA ACATCAAACA
 3361 TCGACCCACG GCGTAACCGC TTGCTGCTT GGATGCCGA GGCGATAGACT STACAAAAAA
 3421 ACAGTCATAA CAAGCCATGA AAACCGCCAC TGCGCCGTTA CCACCGCTGC GTTCGGTCAA
 3481 GGTCTGGAC CAGTTGCGTG AGCGCATAAG CTACTGCTAT CAGCTTAC GAACCGAAC
 3541 GGCTTATGTC AACTGGGTTG GTGCTTCAT CGCTTCCAC GGTGTGGTC ACCCGGCAAC
 3601 CTTGGGCACG AGCGAAGTCG AGGCATTCTC GTCCCTGGCTG GCGAACGAGC GCAAGGTTTC
 3661 GGTCTCCACG CATCGTCAGG CATTGGCCG CTTGCTGTTT TCCTACGGCA AGGTGCTGTG
 3721 CACGGATCTG CCCTGGCTTC AGGAGATCGG AAGACCTCGG CGTCGCGGGC GCTTGGCGGT
 3781 GGTGCTGACC CCGGATGAAG TGGTTCGAT CCTCGGTTT CTGGAAGGGC AGCATCGTT
 3841 GTTCCGCCAG GACTCTAGCT ATAGTTCTAG TGGTITGGCTA CGTATCGAGC AAGAAAATAA
 3901 AACGCCAAC GCGTTGGAGT CTTGCTGCT ATTTTACAA AGATTGAGAA ATACGATCA
 3961 CTTACAACAA GGGGGACTAT GAAATTATGC ATTTGAGGA TGCCGGGACC TTTAATTCAA
 4021 CCCAACACAA TATATTATAG TTAAATAAGA ATTATTTATC AAATCATTG TATATTAAATT
 4081 AAAATACTAT ACTGTAATT ACATTATTAC TACAATGAGG ATCATCAAA GTTTGTCAA
 4141 AAAAGCTGAA CGAGAAACGT AAAATGAT AAATATCAAT ATTTAAATT AGATTGCA
 4201 TAAAAAACAG ACTACATAAT ACTGTAACAC ACAACATATC CAGTCACAT GGCAGGCGT
 4261 AAGTTGGCAG CATCACCCGA CGCACTTTCG GCCGAATAAA TACCTGTGAC GGAAGATCAC
 4321 TTGCGAGAAT AAATAAATTC TGGTGTCCCT GTTGATACCG GGAAGCCCTG GCCCACTTT
 4381 TGGCGAAAAT GAGACGTTGA TCGGCACGTA AGAGGTTCCA ACTTCACCA TAATGAAATA
 4441 AGATCACTAC CGGGCGTATT TTTGAGTTA TCGAGATTTT CAGGAGCTAA GGAAGCTAAA
 4501 ATGGAGAAAA AAATCACTGG ATATACCACC GTTGATATAT CCCAATGGCA TCGTAAGAA
 4561 CATTITGAGG CATTTCAGTC AGTTGCTCAA TGTACCTATA ACCAGACCGT TCAGCTGGAT
 4621 ATTACGGCCT TTTAAAGAC CGTAAAGAAA AATAAGCACA AGTTTTATCC GGCCTTATT
 4681 CACATTCTTG CCCGCCTGAT GAATGCTCAT CGGAAATTCC GTATGGCAAT GAAAGACGGT
 4741 GAGCTGGTGA TATGGGATAG TGTTCACCC TGTACACCG TTTTCATGAA GCAAACGTGAA
 4801 ACGTTTCAT CGCTCTGGAG TGAATACAC GACGATTTC GGCAGTTCT ACACATATA
 4861 TCGCAAGATG TGGCGTGTG CCGTGAAAC CTGGCCTATT TCCCTAAAGG GTTTATGAG
 4921 AATATGTTT TCGTCTCAGC CAATCCCTGG GTGAGTTCA CCAGTTTGA TTTAAACGTG
 4981 GCCAATATGG ACAACTCTT CGCCCCCGTT TTCACCATGG GCAAATATTA TACGCAAGGC
 5041 GACAAGGTGC TGATGCCGT GGGGATTCA GTTACATCATG CGTCTGTG TGGCTTCCAT
 5101 GTCGGCAGAA TGCTTAATGA ATTACACAG TACTGCGATG AGTGGCAGGG CGGGCGTAA
 5161 ACGCGTGGAT CGGGCTTACT AAAAGCCAGA TAACAGTATG CGTATTTGGC CGCTGATT
 5221 TGCCTGTATAA GAATATATAC TGATATGTT ACCCGAAGTA TGTCAAAAG AGGTGTGCTA
 5281 TGAAGCAGCG TATTACAGTG ACAGTTGACA GCGACAGCTA TCAGTTGCTC AAGGCAATA
 5341 TGATGTCAAT ATCTCCGGTC TGGTAAGCAC AACCATGAG AATGAAGCCC GTCGCTGCG
 5401 TGCCGAACGC TGGAAAAGCGG AAAATCAGGA AGGGATGGCT GAGGTGCCCC GGTTTATTGA
 5461 AATGAACGGC TCTTTTGTG ACGAGAACAG GGACTGGTGA AATGCACTT AAGGTTTACA
 5521 CCTATAAAAG AGAGAGCCGT TATCGTCTGT TTGTGGATGT ACACAGTGA ATTATTCACA
 5581 CGCCCCGGCG ACGGATGGTG ATCCCCCTGG CCAGTGCACG TCTGCTGTCA GATAAAGTCT
 5641 CCCGTGAACCT TTACCCGGTG GTGCATATCG GGGATGAAAG CTGGCGCATG ATGACCAACCG
 5701 ATATGGCCAG TGTGCCGTG TCCGTTATCG GGGAGAAAGT GGCTGATCTC AGCCACCGCG
 5761 AAAATGACAT CAAAAACGCC ATTAACCTGA TGTCTGGGG AATATAAAATG TCAGGCTCCC
 5821 TTATACACAG CCAGTCTGCA GGTGACCAT AGTGAAGTGA TATGTTGTT TTTACAGTAT
 5881 TATGTAGTCT GTTTTTATG CAAAATCTAA TTAAATATAT TGATATTTAT ATCATTTAC
 5941 GTTCTCGTT CAGCTTCTT GTACAAAGTG GTGATAGCTT GTCGAGAAGT ACTAGAGGAT-

FIGURE 38C

102/260

6001 CATAATCAGC CATACCACAT TTGTAGAGGT TTTACTTGCT TTAaaaaaacc TCCCACACCT
6061 CCCCTGAAC CTGAAACATA AAATGAATGC AATTGTTGTT GTTAACCTGT TTATTGCAGC
6121 TTATAATGGT TACAAATAAA GCAATAGCAT CACAAATTTC ACAAAATAAAG CATTTTTTTC
6181 ACTGCATTCT AGTTGTGGTT TGTCCAAACT CATCAATGTA TCTTATCATG TCTGGATCTG
6241 ATCACTGCTT GAGCCTAGGA GATCCGAACC AGATAAGTGA AATCTAGTTC CAAACTATTT
6301 TGTCACTTTT AATTTTCGTA TTAGCTTACG ACGCTACACC CAGTTCCCAT CTATTTGTC
6361 ACTCTTCCCT AAATAATCCT TAAAAACTCC ATTTCCACCC CTCCCAGTTC CCAACTATTT
6421 TGTCCGCCA CAGCGGGCA TTTTCTTCC TGTTATGTT TTAATCAAAC ATCCTGCCAA
6481 CTCCATGTGA CAAACCGTCA TCTTCGGCTA CTTTTCTCT GTCACAGAAAT GAAAATTTT
6541 CTGTCATCTC TTCGTTATTA ATGTTGTAA TTGACTGAAT ATCAACGCTT ATTTGCAGCC
6601 TGAATGGCGA ATG

FIGURE 38D

103/260

104/240

pDEST19 6668 bp (rotated to position 1000)

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
515..391	attR1
765..1424	CmR
1544..1628	inactivated ccdA
1766..2071	ccdB
2112..2236	attR2
2852..2895	lacZ
3344..4319	ampR
4460..5114	ori
5608..52	genR

1 AGTGGTTCGC ATCCTCGGTT TTCTGGAAGG CGAGCATCGT TTGTCGCC AGGACTCTAG
 61 CTATAGTTCT AGTGGTTGGC TACGTATATC AAATACTTGT AGGTGACCCC GTCATCTTC
 121 CATTGTAACG TAAATGGCA CTTGTAGATG AACCGCCTGT CAAAAAACCG GCCAGTTCT
 181 TCCACAAACT CGCGCACGGC TGTCTCGTAA ACTTTTGCGT CGCAACAATC GCGATGACCT
 241 CGTGGTATGG AAATTTTTTC TAAAAAAGTG TCGTTCATGT CGGCGGCGGG CGCGTTCGCG
 301 CTCCGGTACG CGCGACGGGC ACACAGCAGG ACAGCCTTGT CGGCTCGAT TATCATAAAC
 361 AATCCTGCAG GCATGCAAGC TC GGATCATC ACAAGTTGT ACAAAAAAAGC TGAACGAGAA
 421 ACGTAAATG ATATAAATAT CAATATATTA AATTAGATT TGCAAAAAA ACAGACTACA
 481 TAATACTGTA AAACACAACA TATCCAGTCA CTATGGCGGC CGCTAAGTTG GCAGCATCAC
 541 CCGACGCACT TTGCGCCGAA TAAATACCTG TGACGGAAGA TCACITCGCA GAATAATAA
 601 ATCCTGGTGT CCTGTGTTGAT ACCGGGAAGC CCTGGGCCAA CTTTTGGCGA AAATGAGACG
 661 TTGATCGGCA CGTAAGAGGT TCCAACCTTC ACCATAATGA AATAAGATCA CTACCGGGCG
 721 TATTTTTGAG GTTATCGAGA TTTCAGGAG CTAAGGAAGC TAAAATGGAG AAAAAAATCA
 781 CTGGATATAC CACCGTTGAT ATATCCAAT GGCACTCGTAA AGAACATTG GAGGCAATT
 841 AGTCAGTTGC TCAATGTACC TATAACCGA CGGTTCAAGT GGATATTACG GCCTTTTAA
 901 AGACCGTAAA GAAAATAAG CACAAGTTT ATCCGGCCTT TATTACATT CTTGCCGCC
 961 TGATGAATGC TCATCCGGAA TTCCGTATGG CAATGAAAGA CGGTGAGCTG GTGATATGGG
 1021 ATAGTGTCA CCCTTGTAC ACCGTTTCC ATGAGCAAAC TGAAACGTT TCATCGCTCT
 1081 GGAGTGAATA CCACGACGAT TTCCGGCAGT TTCTACACAT ATATTGCAA GATGTTGGCGT
 1141 GTTACGGTGA AAACCTGGCC TATTTCCCTA AAGGGTTTAT TGAGAATATG TTTTCGTCT
 1201 CAGCCAATCC CTGGGTGAGT TTCACCAAGT TTGATTTAA CGTGGCCAAT ATGGACAAC
 1261 TCTTCGCCCC CGTTTTCAAC ATGGGCAAAT ATTATACGCA AGGCGACAAG GTGCTGATGC
 1321 CGCTGGCGAT TCAGGTTCAT CATGCCGTCT GTGATGGCTT CCATGTCGGC AGAATGCTTA
 1381 ATGAATTACA ACAGTACTGC GATGAGTGGC AGGGCGGGGC GTAAACGCGT GGATCCGGCT
 1441 TACTAAAAGC CAGATAACAG TATGCGTATT TGCGCCTGA TTTTTGCGGT ATAAGAAAT
 1501 ATACTGATAT GTATACCCGA AGTATGTCAA AAAAGAGGTGT GCTATGAAGC AGCGTATTAC
 1561 AGTGACAGTT GACAGCGACA GCTATCAGTT GCTCAAGGCA TATATGATGT CAATATCTCC
 1621 GGTCTGGTAA GCACAACCAT GCAGAATGAA GCCCCGCGTC TGCCTGCCGA ACGCTGGAAA
 1681 GCGGAAAATC AGGAAGGGAT GGCTGAGGTC GCCCCGGTTA TTGAAATGAA CGGCTCTTT
 1741 GCTGACGAGA ACAGGGACTG GTGAAATGCA GTTTAAGGTT TACACCTATA AAAGAGAGAG
 1801 CCGTTATCGT CTGTTTGTGG ATGTACAGAG TGATATTATT GACACGCCCG GGCAGCGGAT
 1861 GGTGATCCCC CTGGCCAGTG CACGTCTGCT GTCAAGATAAA GTCTCCCGTG AACTTTACCC
 1921 GGTGGTGCAT ATCGGGGATG AAAGCTGGCG CATGATGACC ACCGATATGG CCAGTGTGCC
 1981 GGTCTCCGTT ATCGGGGAAAG AAGTGGCTGA TCTCAGCCAC CGCGAAAATG ACATAAAAAA
 2041 CGCCATTAAC CTGATGTTCT GGGGAATATA AATGTCAGGC TCCCTTATAC ACAGCCAGTC
 2101 TGCAGGTCGA CCATAGTGCAC TGGATATGTT GTGTTTACA GTATTATGTA GTCTGTTTT
 2161 TATGCAAAAT CTAATTTAAT ATATTGATAT TTATATCATT TTACGTTCT CGTTCAGCTT
 2221 TCTTGTACAA AGTGGTGATC GAGAAGTACT AGAGGATCAT AATCAGCCAT ACCACATTG
 2281 TAGAGGTTTT ACTGCTTTA AAAAACCTCC CACACCTCCC CCTGAACCTG AAACATAAAA
 2341 TGAATGCAAT TGTGTTGTT AACTTGTTA TTGCGCTTA TAATGGTTAC AAATAAAAGCA
 2401 ATAGCATCAC AAATTCACA AATAAAAGCAT TTTTTCACT GCATTCTAGT TGTGGTTGT
 2461 CCAAACATCAT CAATGATCT TATCATGTCT GGATCTGATC ACTGCTTGAG CCTAGGAGAT
 2521 CGGAACCAGA TAAAGTGAAT CTAGTCCAA ACTATTTGT CATTGTTAAT TTTCGTATTA
 2581 GCTTACGACG CTACACCCAG TTCCCATCTA TTTTGTCACT CTTCCCTAAA TAATCCTTAA-

FIGURE 39B

105/240

2641 AAACTCCATT TCCACCCCTC CCAGTTCCCA ACTATTTGT CCGCCCACAG CGGGGCATTT
 2701 TTCTTCCTGT TATGTTTTA ATCAAACATC CTGCCAACTC CATGTGACAA ACCGTCATCT
 2761 TCGGCTACTT TTTCTCTGTC ACAGAACGAA AATTCTTCTG TCATCTCTTC GTTATTAAATG
 2821 TTTGTAATTG ACTGAATATC AACGCTTATT TGCAGCCTGA ATGGCGAATG GACGCGCCCT
 2881 GTAGCGGCAGC ATTAAGCGCG GCGGGGTGTGG TGTTTACGCG CAGCGTGACC GCTACACTG
 2941 CCAGGCCCT AGCGCCCGCT CCTTTCGCTT TCTTCCCTTC CTTTCTCGCC ACGTTGCCCG
 3001 GCTTCCCGT TCAAGCTCTA AATCGGGGC TCCCTTCTAGG GTTCCGATTT AGTGTCTTAC
 3061 GGCACCTCGA CCCAAAAAAA CTTGATTAGG GTGATGGTTC ACGTAGTGGG CCATCGCCCT
 3121 GATAGACGGT TTTTCGCCCT TTGACGTGG AGTCCACGTT CTTTAATAGT GGACTCTTGT
 3181 TCCAAGCTGG AACAAACACTC AACCTATCT CGGTCTATTC TTTGATTAA TAAGGGATT
 3241 TGCCGATTTG GGCCTATTGG TAAAAAAATG AGCTGATTAA ACAAAATTT AACCGGAATT
 3301 TTAACAAAAT ATTAACGTTT ACAATTTCAG GTGGCACTTT TCAGGGAAAT GTCCGCGGAA
 3361 CCCCTATTG TTTATTTTTC TAAATACATT CAAATATGTA TCCGCTCATG AGACAATAAC
 3421 CCTGATAAAAT GCTTCAATAA TATTGAAAAA GGAAGAGTAT GAGTATTCAA CATTTCCTG
 3481 TCGCCCTTAT CCTCTTTTGC CGGCATTTT GCCTCTCTGT TTTGCTCAC CCAGAAACGC
 3541 TGGTGAAGT AAAAGATGCT GAAGATCAGT TGGGTGCACG AGTGGGTTAC ATCGAAGTGG
 3601 ATCTCAACAG CGGTAAAGATC CTTGAGAGTT TTGGCCCGA AGAACGTTT CCAATGATGA
 3661 GCACTTTAA AGTTCTGCTA TGTGGCGCG TATTATCCC TATTGACGCC GGGCAAGAGC
 3721 AACTCGGTGCG CGCATAACAC TATTCTCAGA ATGACTTGGT TGAGTACTCA CCAGTCACAG
 3781 AAAAGCATCT TACGGATGGC ATGACAGTA GAGAATTATG CAGTGTGCC ATAACCATGA
 3841 GTGATAACAC TGCAGGCAAC TTACTCTGA CAACGATCGG AGGACCGAAG GAGCTAACCG
 3901 CTTTTTGCA CAACATGGGG GATCATGTA CTCCGCTTGA TCGTTGGAA CCGGAGCTGA
 3961 ATGAAGCCAT ACCAACGAC GAGCGTACA CCACCGATGCC TGTAGCAATG GCAACAAACGT
 4021 TGCAGAAACT ATTAACTGGC GAACTACTTA CTCTAGCTTC CCGGCAACAA TTAATAGACT
 4081 GGATGGAGGC GGATAAAAGTT GCAGGACAC TTCTGCGCTC GGCCCTTCCG GCTGGCTGGT
 4141 TTATTGCTGA TAAATCTGGA GCGGTGAGC GTGGGTCTCG CGGTATCATT GCAGCACTGG
 4201 GGCCAGATGG TAAGCCCTCC CGTATCGTAG TTATCTACAC GACGGGGAGT CAGGCAACTA
 4261 TGGATGAACG AAATAGACAG ATCGCTGAGA TAGTGTCCCTC ACTGATTAAG CATTGGTAAC
 4321 TGTCAAGCCA AGTTTACTCA TATATACTTT AGATGATTT AAAACTTCAT TTTTAATT
 4381 AAAGGATCTA GGTGAAGATC CTTTTGATA ATCTCATGAC CAAAATCCCT TAACGTGAGT
 4441 TTTCGTTCCA CTGAGCGTCA GACCCCGTAG AAAAGATCAA AGGATCTTCT TGAGATCCTT
 4501 TTTTTCTGCG CGTAATCTGC TGCTTGCAAA CAAAAAAACC ACCGCTACCA GCGGTGGTTT
 4561 GTTTGCCCGA TCAAGAGCTA CCAACTCTT TTCCGAAGGT AACTGGCTTC AGCAGAGCGC
 4621 AGATACAAA TACTGTCTT CTAGTGTAGC CGTAGTTAGG CCACCACTTC AAGAACTCTG
 4681 TAGCACCGCC TACATACCTC GCTCTGCTAA CCTCTGTTACC AGTGGCTGCT GCCAGTGGCG
 4741 ATAAGTCGT TCTTACCGGG TTGGACTCAA GACGGATAGTT ACCGGATAAG GCGCAGCGGT
 4801 CGGGCTGAAC GGGGGGGTTCG TGACACAGC CCAGCTTGA GCGAACGACC TACACCGAAC
 4861 TGAGATACCT ACAGCGTGA CATTGAGAAA GCGCCACGCT TCCCGAAGGG AGAAAGGC
 4921 ACAGGTATCC GTTAAGGGGG AGGGTCCGAA CAGGAGAGCG CACGAGGGAG CTTCCAGGG
 4981 GAAACGCTG GTATCTTAT AGTCCTGTCG GTTTCGCCA CCTCTGACTT GAGCGTCGAT
 5041 TTTTGTTGATG CTCGTCAGGG GGGCGGAGCC TATGGAAAAA CGCCAGCAAC GCGGCCTTT
 5101 TACGGTTCTT GGCCTTTG TGCGCTTTG CTACACATGTT CTTTCCTGCG TTATCCCCTG
 5161 ATTCTGTGGA TAAACGTATT ACCGCTTTG AGTGTGACTGA TACCGCTCGC CGCAGCCGAA
 5221 CGACCGAGCG CAGCGAGTCA GTGAGCGAGG AAGCGGAAGA GCGCCTGATG CGGTATTTTC
 5281 TCCTTACGCA TCTGTCGGT ATTTCACACC GCAGACCAGC CGCGTAACCT GGCAAAATCG
 5341 GTTACGGTTG AGTAATAAAAT GGATGCCCTG CGTAAGCGGG TGTGGCGGA CAATAAGTC
 5401 TTAACACTGAA CAAAATAGAT CTAAACTATG ACAATAAAAGT CTTAAACTAG ACAGAATAGT
 5461 TGTAAACTGA ATCAGTCCA GTTATGCTGT GAAAAAGCAT ACTGGACTTT TGTTATGGCT
 5521 AAAGCAAACCT TTTCATTTTC TGAAGTGCAA ATTGCCCGTC GTATTAAAGA GGGGCGTGGC
 5581 CAAGGGCATG GTAAAGACTA TATTGCGGCC GTTGTGACAA TTTACCGAAC AACTCCGG
 5641 CGGGGAAGCC GATCTCGGCT TGAAACGAAATT GTTAGGTGGC GGTACTTGGG TCGATATCAA
 5701 AGTGCATCAC TTCTTCCCGT ATGCCAACT TTGTATAGAG AGCCACTGCG GGATCGTCAC
 5761 CGTAATCTGC TTGACGTAG ATCACATAAG CACCAAGCGC GTTGGCCTCA TGCTTGAGGA
 5821 GATTGATGAG CGCGGTGGCA ATGCCCTGCC TCCGGTGCCTC GCCGGAGACT GCGAGATCAT
 5881 AGATATAGAT CTCACTACGC GGCTGCTAA ACCTGGGCAG AACGTAAGCC GCGAGAGCGC
 5941 CAACAACCGC TTCTTGGTCG AAGGCAGCAA GCGCGATGAA TGTCTTACTA CGGAGCAAGT
 6001 TCCCGAGGTA ATCGGAGTCC GGCTGATGTT GGGAGTAGGT GGCTACGCTC CCGAAGTCAC
 6061 GACCGAAAAG ATCAAGAGCA GCCCGCATGG ATTTGACTTG GTCAGGGCCG AGCCTACATG-

FIGURE 39C

106/240

6121 TCGAATGAT GCCCATACTT GAGCCACCTA ACTTTGTTT AGGGCGACTG CCCTGCTGCG
6181 TAACATCGTT GCTGCTGCGT AACATCGTT CTGCTCCATA ACATCAAACA TCGACCCACG
6241 GCGTAACGCG CTTGCTGCTT GGATGCCGA GGCATAGACT GTACAAAAAA ACAGTCATAA
6301 CAAGCCATGA AAACCGCCAC TGCGCCGTTA CCACCGCTGC TTTCGGTCAA GGTTCTGGAC
6361 CAGTTGCGTG AGCGCATACG CTACTTGCAT TACAGTTTAC GAACCGAAC A GGCTTATGTC
6421 AACTGGGTTTC GTGCCCTTCAT CCGTTCCAC GGTGTGCGTC ACCCGGCAAC CTTGGGCAGC
6481 AGCGAAGTCG AGGCATTCT GTCCCTGGCTG GCGAACGAGC GCAAGGTTTC GGTCTCCACG
6541 CATCGTCAGG CATTGGCGGC CTTGCTGTTT TTCTACGGCA AGGTGCTGTG CACGGATCTG
6601 CCCTGGCTTC AGGAGATCGG AAGACCTCGG CCGTCGCGGC GCTTGCCGGT GGTGCTGACC
6661 CCGGATGA

FIGURE 39D

107/260

Figure 40A: pDEST20 Glutathione-S-transferase Fusion with Polyhedron Promoter for Baculovirus Expression

430 ggc tac gta tac tcc gga ata tta ata gat cat gga gat aat taa aat gat
 ccg atg cat atg agg cct tat aat tat cta gta cct cta tta att tta cta //

481 // aac cat ctc gca aat aaa taa gta ttt tac tgt ttt cgt aac agt ttt gta
 // ttg gta gag cgt tta ttt att cat aaa atg aca aaa gca ttg tca aaa cat //

532 // ata aaa aaa cct ata aat att ccg gat tat tca tac cgt ccc acc atc ggg
 // tat ttt ttt gga tat tta taa ggc cta ata agt atg gca ggg tgg tag ccc

Start Transl. M → A P I - - - GST - -

583 // tgc gga tcc atg gcc cct ata cta ggt tat tgg aaa att aag ggc ctt gtg
 gcg cct agg tac cgg gga tat gat cca ata acc ttt taa ttc cgg gaa cac //

1246 // S D L V P R H N Q T S L Y K K A
 // tcg gat ctg gtt cgg cgt cat aat caa aca agt ttg tac aaa aaa gct gaa
 agc cta gac caa ggc gca gta tta gtt tgt tca aac atg ttt ttt cga ctt

1297 cga gaa acg taa aat gat ata aat atc aat ata tt_a aat tag at
 gct ctt tgc att tta cta tat tta tag tta tat aat tta atc ta

108/260

pDEST20 7066 bp (rotated to position 5800)

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
592..1263	GST
1397..1273	attR1
1506..2165	CmR
2285..2369	inactivated ccdA
2507..2812	ccdB
2853..2977	attR2
4214..5064	ampR
5263..5843	ori

1 CCACTGCGCC GTTACCAACCG CTGCCTTCGG TCAAGGTTCT GGACCAGTTG CGTGAGCGCA
 61 TACGCTACTT GCATTACAGT TTACGAACCG AACAGGCTTA TGTCAACTGG GTTCGTCGCT
 121 TCATCCGTTT CCACGGTGTG CGTCACCCGG CAACCTTGGG CAGCAGCGAA GTCGAGGCAT
 181 TTCTGTCCTG GCTGGCGAAC GAGCGCAAGG TTTGGTCTC CACGCATCGT CAGGCATTGG
 241 CGGCCTTGTG GTTCTTCTAC GGCAAGGTGC TGTGCACGGA TCTGCCCTGG CTTCAGGAGA
 301 TCGGAAGACC TCGGCCGTG CGCGCTTGC CGGTGGTGCT GACCCGGAT GAAGTGGTTC
 361 GCATCCTCGG TTTCTGGAA GGCGAGCATC GTTGTTCGC CGAGGACTC AGCTATAAGTT
 421 CTAGTGGTTG GCTACGTATA CTCCGGAATA TTAATAGATC ATGGAGATAA TTAAAATGAT
 481 AACCATCTCG CAAATAAAATA AGTATTTCAC TGTTTCGTA ACAGTTTGT AAAAAAA
 541 CCTATAAAATA TTCCGGATTAA TTCATACCGT CCCACCATCG GCGCGGATC CATGGCCCCT
 601 ATACTAGGTT ATTGGAAAAT TAAGGGCCTT GTGCAACCCA CTCGACTTCT TTTGGAAATAT
 661 CTTGAAGAAA ATATGAAGA GCATTTGTAT GAGCGCGATG AAGGTGATAA ATGGCGAAAC
 721 AAAAGTTTG AATTGGGTTT GGAGTTTCCC AATCTTCCTT ATTATATTGA TGGTGATGTT
 781 AAATTAACAC AGTCTATGGC CATCATACTG TATATAGCTG ACAAGCACAA CATGTTGGT
 841 GGTTGCCAA AAGAGCGTGC AGAGATTCA ATGCTTGAAG GAGCGGTTTT GGATATTAGA
 901 TACGGTGTGTT CGAGAAATTGCA ATATAGTAA GACTTGTAAA CTCTCAAAGT TGATTTCTT
 961 AGCAAGCTAC CTGAAATGCT GAAAATGTC GAAGATCGTT TATGTCAAA AACATATTTA
 1021 AATGGTGATC ATGTAACCCA TCTGACTTC ATGTTGTATG ACGCTCTTGA TGGTGGTTA
 1081 TACATGGACC CAATGTGCCT GGATGCGTC CCAAAATTAG TTTGTTTAA AAAACGTATT
 1141 GAAGCTATCC CACAAATTGA TAAGTACTTG AAATCCAGCA AGTATATAGC ATGGCCTTTG
 1201 CAGGGCTGGC AAGCCACGTT TGGTGGTGGC GACCATCCTC CAAATCGGA TCTGGTCCG
 1261 CGTCATAATC AAACAAGTTT GTACAAAAAA GCTGAACGAG AACGTAAAAA TGATATAAAT
 1321 ATCAATATAT TAAATTAGAT TTGCACTAA AAACAGACTA CATAATACTG TAAACACAA
 1381 CATATCCAGT CACTATGGCG GCCGCATTAG GCACCCCGAG CTTTACACTT TATGCTTCCG
 1441 GCTCGTATGT TGTGTGGATT TTGAGTTAGG ATCCGGCAG ATTTCAGGA GCTAAGGAAG
 1501 CTAAAATGGA GAAAAAAATC ACTGGATATA CCACCGTTGA TATATCCCAA TGGCATCGTA
 1561 AAGAACATTG TGAGGCATTG CAGTCAGTTG CTCAATGTAC CTATAACCAG ACCGTTCCAGC
 1621 TGGATATTAC GGCCTTTTTA AAGACCGTAA AGAAAAATAA GCACAAGTTT TATCCGGCCT
 1681 TTATTTCACAT TCTTGGCCGC CTGATGAATG CTCATCCGGA ATTCCGTATG GCAATGAAAG
 1741 ACGGTGAGCT GGTGATATGG GATAGTGTTC ACCCTTGTGA CACCGTTTC CATGAGCAA
 1801 CTGAAACGTT TTGATCGCTC TGGAGTGAAT ACCACGACGA TTTCCGGCAG TTTCTACACA
 1861 TATATTGCGA AGATGTGGCG TGTGAGTGT AAAACCTGGC CTATTTCCCT AAAGGGTTTAA
 1921 TTGAGAAATAT GTTTTTCGTC TCAGCCAATC CCTGGGTGAG TTTGACCAAGT TTTGATTTAA
 1981 ACGTGGCCAA TATGGACAAAC TTCTTCGCC CCGTTCAC CATGGCAAA TATTATACGC
 2041 AAGGGCACAA GGTGCTGATG CCGCTGGCGA TTGAGGTCA TCATGCCGTC TGTGATGGCT
 2101 TCCATGTCGG CAGAATGCTT AATGAATTAC AACAGTACTG CGATGAGTGG CAGGGCGGGG
 2161 CGTAATCTAG AGGATCCGGC TTACTAAAG CCAGATAACA GTATGCGTAT TTGCGCGCTG
 2221 ATTTTGGCGG TATAAGAATA TATACTGATA TGTATACCCG AAGTATGTCA AAAAGAGGTG
 2281 TGCTATGAAAG CAGGGTATTAA CAGTGCAGT TGACAGCGAC AGCTATCAGT TGCTCAAGGC
 2341 ATATATGATG TCAATATCTC CGGTCTGGTA AGCACAACCA TGCAGAATGA AGCCCGTCGT
 2401 CTGCGTGGCG AACGCTGGAA AGCGGAAAT CAGGAAGGGA TGGCTGAGGT CGCCCGGTTT
 2461 ATTGAAATGA ACGGCTCTT TGCTGAGGAG AACAGGGACT GGTGAAATGC AGTTTAAGGT
 2521 TTACACCTAT AAAAGAGAGA GCGGTTATCG TCTGTTGTG GATGTACAGA GTGATATTAT
 2581 TGACACGCCCGGGCGACGGGA TGGTGATCCC CCTGGCCAGT GCACGTCTGC TGTCAGATAA
 2641 AGTCTCCCGT GAACCTTACCG CGGTGGTGCA TATCGGGGAT GAAAGCTGGC GCATGATGAC-

FIGURE 40B

109/240

2701 CACCGATATG GCCAGTGTGC CGGTCTCCGT TATCGGGAA GAAGTGGCTG ATCTCAGCCA
 2761 CCGCGAAAAT GACATCAAAA ACGCCATTAA CCTGATGTT TGAAAATAT AAATGTCAGG
 2821 CTCCCTTATA CACAGCCAGT CTGCAGGTCG ACCATAGTGA CTGGATATGT TGTGTTTAC
 2881 AGTATTATGT AGTCTGTTT TTATGCAAA TCTAATTAA TATATTGATA TTTATATCAT
 2941 TTTACGTTTC TCGTTCAGCT TTCTTGACA AAGTGGTTG ATAGCTTGTG GAGAAGTACT
 3001 AGAGGATCAT AATCAGCCAT ACCACATTG TAGAGGTTT ACCTTGCTTA AAAAACCTCC
 3061 CACACCTCCC CCTGAACCTG AAACATAAAA TGAATGCAAT TGTTGTTGTT AACTGTTTA
 3121 TTGCACTTA TAATGGTTAC AAATAAAGCA ATAGCATCAC AAATTTCAAA AATAAAGCAT
 3181 TTTTTCACT GCATTCTAGT TGTGGTTGT CCAAACCTCAT CAATGTATCT TATCATGTCT
 3241 GGATCTGATC ACTGCTTGAG CCTAGGAGAT CCGAACAGA TAAGTGAAT CTAGTCCAA
 3301 ACTATTTGT CATTTTTAAT TTTCGTATTA GCTTACGACG CTACACCCAG TTCCCATCTA
 3361 TTTTGTCACT CTCCCTTAA TAATCCTTAA AAACCTCATT TCCACCCCTC CCAGTTCCCA
 3421 ACTATTTGT CCGCCCCACAG CGGGGCATT TTCTTCCTGT TATGTTTTA ATCAAACATC
 3481 CTGCCAATC CATGTGACAA ACCGTCACTC TCGGCTACTT TTTCTCTGTC ACAGAATGAA
 3541 AATTTTCTG TCATCTCTTC GTTATTAATG TTGTAATTG ACTGAATATC AACGCTTATT
 3601 TGCAGCCTGA ATGGCGAATG GACGCGCCCT GTAGCGGCG ATTAAAGCGG GCGGGTGTGG
 3661 TGGTTACGCG CAGCGTGACC GCTACACTT CCAGCGCCCT AGCGCCCGCT CCTTTCGCTT
 3721 TCTTCCCTTC CTTTCTCGCC ACGTTGCCG GCTTCCCGT TCAAGCTCTA AATCGGGGGC
 3781 TCCCTTTAGG GTTCCGATT AGTGTCTTAC GGACACCTGA CCCCCAAAAA CTTGATTAGG
 3841 GTGATGGTTT ACGTAGTGGG CCATCGCCCT GATAGACGGT TTTTCGCCCT TTGACGTTGG
 3901 AGTCCACGTT CTTTAATAGT GGACTCTTGT TCCAAACTGG AACAAACACTC AACCCATCT
 3961 CGGTCTATTTC TTTGATTTA TAAGGGATT TGCCGATTG GGCCTATTGG TTAAAAAATG
 4021 AGCTGATTTA ACAAAATTT AACGCGAATT TTAACAAAAT ATTAACGTTT ACAATTTCAG
 4081 GTGGCACTTT TCGGGAAAT GTGCGGGAA CCCCTATTIG TTTATTTTTC TAAATACATT
 4141 CAAATATGTA TCCGCTCATG AGACAATAAC CCTGATAAAAT GCTTCAATAA TATTGAAAAA
 4201 GGAAGAGTAT GAGTATTCAA CATTTCCTG TCGCCCTTAT TCCCTTTTT GCGCATTTT
 4261 GCCTCCCTGT TTTGCTCAC CCAGAACGC TGGTGAAAGT AAAAGATGCT GAAGATCAGT
 4321 TGGGTGACG AGTGGGTTAC ATCGAACCTGG ATCTCAACAG CGGTAAGATC CTTGAGAGTT
 4381 TTCGCCCGA AGAACGTTT CCAATGATGA GCACTTTAA AGTTCTGCTA TGTGGCGCG
 4441 TATTATCCCG TATTGACGCC GGGCAAGAGC AACTCGGTG CCGCATAACAC TATTCTCAGA
 4501 ATGACTTGGT TGAGTACTCA CCAGTCACAG AAAAGCATCT TACGGATGGC ATGACAGTAA
 4561 GAGAATTATG CAGTGTGCC ATAACCATGA GTGATAACAC TGCGGCAAC TTACTTCTGA
 4621 CAACGATCGG AGGACCGAAG GAGCTAACCG CTTTTTGCAT CACATGGG GATCATGTAA
 4681 CTCGCCCTGA TCGTTGGAA CGGGAGCTGA ATGAAAGCCAT ACCAACGAC GAGCGTGACA
 4741 CCACGATGCC TGTAGCAATG GCAACAAACGT TGCACAAACT ATTAACGTTT GAACTACTTA
 4801 CTCTAGCTTC CCGGCAACAA TTAATAGACT GGATGGAGGC GGATAAAAGTT GCAGGACCAC
 4861 TTCTGCGCTC GGCCCTTCG GCTGGCTGGT TTATTGCTGA TAAATCTGGA GCCGGTGAGC
 4921 GTGGGTCTCG CGGTATCATT GCAGCACTGG GGGCAGATGG TAAGCCCTCC CGTATCGTAG
 4981 TTATCTACAC GACGGGGAGT CAGGCAACTA TGAGATGAACG AAATAGACAG ATCGCTGAGA
 5041 TAGGTGCTCTC ACTGATTAAG CATTGTAAC TGTAGACCA AGTTTACTCA TATATACTTT
 5101 AGATTGATTT AAAACTTCAT TTITTAATTAA AAAGGATCTA GGTGAAGATC CTTTTTGATA
 5161 ATCTCATGAC CAAAATCCCT TAACGTGAGT TTTCGTTCCA CTGAGCGTCA GACCCCGTAG
 5221 AAAAGATCAA AGGATCTTCT TGAGATCTT TTTCGCG CGTAATCTGC TGCTTGCAAA
 5281 CAAAAAAACC ACCGCTACCA GCGGTGGTTT GTTGCCTGGA TCAAGAGCTA CCAACTCTT
 5341 TTCCGAAGGT AACTGGCTTC AGCAGAGCGC AGATACCAA TACTGTCCTT CTAGTGTAGC
 5401 CGTAGTTAGG CCACCACTTC AAGAACTCTG TAGCACCAGCC TACATACCTC GCTCTGCTAA
 5461 TCCGTACCG AGTGGCTGCT GCCAGTGGCG ATAAGTCTG TCTTACCGGG TTGGACTCAA
 5521 GACGATAGTT ACCGGATAAG GCGCAGCGGT CGGGCTGAAC GGGGGTTCG TGACACACGC
 5581 CCAGCTTGGA GCGAACGACC TACACCGAAC TGAGATACCT ACAGCGTGAG CATTGAGAAA
 5641 GCGCCACGCT TCCCGAAGGG AGAAAAGCGG ACAGGTATCC GGTAAGCGGC AGGGTCGGAA
 5701 CAGGAGAGCG CACGAGGGAG CTTCCAGGGG GAAACGCCCTG GTATCTTAT AGTCCTGTCG
 5761 GGTTTCGCCA CCTCTGACTT GAGCGTCGAT TTTTGTGATG CTCGTCAGGG GGGCGGAGCC
 5821 TATGGAAAAA CGCCAGCAAC GCGGCCTTT TACGGTTCTT GGCCTTTCG TGGCCTTTTG
 5881 CTCACATGTT CTTTCTGCG TTATCCCCTG ATTCTGTGGA TAACCGTATT ACCCCCTTTG
 5941 AGTGAAGCTGA TACCGCTCGC CGCAGCCGAA CGACCGAGCG CAGCGAGTCA GTGAGCGAGG
 6001 AAGCGGAAGA GCGCCTGATG CGGTATTTC TCCTTACGCA TCTGTGCGGT ATTTCACACC
 6061 GCAGACCAGC CGCGTAACCT GGCAAAATCG GTTACGGTT AGTAATAAAAT GGATGCCCTG
 6121 CGTAAGCGGG TGTGGCGGA CAATAAGTC TTAAACTGAA CAAAATAGAT CTAAACTATG-

FIGURE 40C

110/240

6181 ACAATAAAAGT CTTAAACTAG ACAGAATAGT TGTAAACTGA AATCAGTCCA GTTATGCTGT
6241 GAAAAAGCAT ACTGGACTTT TGTTATGGCT AAAGCAAAC CTTCATTTTC TGAAGTGAA
6301 ATTGCCCGTC GTATTAAAAGA GGGGCCTGGC CAAGGGCATG GTAAAGACTA TATTCCGCGC
6361 GTTGTGACAA TTTACCGAAC AACTCCGCGG CCGGGAAGCC GATCTCGGCT TGAACCGAATT
6421 GTTAGGTGGC GGTACTTGGG TCGATATCAA AGTCATCAC TTCTTCCCGT ATGCCCAACT
6481 TTGTATAGAG AGCCACTGCG GGATCGTCAC CGTAATCTGC TTGCACGTAG ATCACATAAG
6541 CACCAAGCGC GTTGGCCTCA TGCTTGAGGA GATTGATGAG CGCCGGTGGCA ATGCCCTGCC
6601 TCCGGTGCTC GCCGGAGACT GCGAGATCAT AGATATAGAT CTCACTACCGC GGCTGCTCAA
6661 ACCTGGGCAG AACGTAAGCC GCGAGAGCGC CAACAACCGC TTCTTGGTCG AAGGCAGCAA
6721 GCGCGATGAA TGTCTTACTA CGGAGCAAGT TCCCGAGGTA ATCGGAGTCC GGCTGATGTT
6781 GGGAGTAGGT GGCTACGTCT CCGAACTCAC GACCGAAAAG ATCAAGAGCA GCCCGCATGG
6841 ATTTGACTTG GTCAGGGCCG AGCCTACATG TGCQAATGAT GCCCCATACTT GAGCCACCTA
6901 ACTTTGTTTT AGGGCGACTG CCCTGCTGCG TAACATCGTT GCTGCTGGT AACATCGTTG
6961 CTGCTCCATA ACATCAAACA TCGACCCACG GCGTAACGCG CTTGCTGCTT GGATGCCCGA
7021 GGCATAGACT GTACAAAAAA ACAGTCATAA CAAGCCATGA AAACCG

FIGURE 40D

111/240

Figure 4(1A)

pDEST21

2-Hybrid Vector with
DNA-Binding Domain

ADH PROMOTER

700 ttg ccg ctt tgc tat caa gta taa ata gac ctg cda tta tca atc ttt tgt
aac ggc gaa acg ata tgt cat att tat ctg gac tgt aat aat tag aaa aca,
751 ttc ctc gtc att gtt ctc gtt ccc ttt cct tgt ttc ttt ttc tgc aca
aac gag caa taa caa gag caa ggg aaa gaa gga aca aag aaa aag acg tgt,,
802 ata ttt caa gct ata cca agc ata caa tca act cca aac ttg aag caa gcc
tat aaa gtt cga tat aat tcc tat gtt aat tca ggt tcc aac ttc gtt cgg
Start Transl M K L L S S Gal4 - DB
853 tcc tga aag atg aag cta ctg tct tct atc gaa caa gca tgc gat att tgg//
agg act ttc tac ttc gat gac aga aga tag ctt gtt cgt acg cta taa acg//
1261 gaa gag agt agt aac aaa ggt caa aga cag ttg act gta tcc tcc agg tcc
ctt ctc tca tca ttg ttt cca gtt tct gtc aac tga cat agc agc tcc agc
N Q T S L Y K K A attR1
1312 aat caa aca agt ttg tac aaa aaa gct gaa cga gaa acg taa aat gat ata
tta gtt tgt tca aac atg ttt ttg cga ctt gct ctt tgc att tta cta tat //
Int v

112/240

pDEST21 11713 bp (rotated to position 11000)

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
857..1322	GAL4DB
1456..1332	attR1
1706..2365	CmR
2485..2569	inactivated ccdA
2707..3012	ccdB
3053..3177	attR2
3716..3735	pT7 (T7 promoter)
3899..4354	f1 (f1 intergenic region)
4414..6642	Leu2
7541..8515	kanR
9668..10958	CYH2
11118..848	pADH (ADH promoter)

1 TTTATTATGT TACAATATGG AAGGAACTT TACACTTCTC CTATGCACAT ATATTAATTA
 61 AAGTCCAATG CTAGTAGAGA AGGGGGTAA CACCCCTCCG CGCTCTTTTC CGATTTTTT
 121 CTAAACCGTG GAATATTCG GATATCCTT TGTTGTTTCC GGGTGTACAA TATGGACTTC
 181 CTCTTTCTG GCAACCAAAC CCATACATCG GGATTCTAT AATACCTTCG TTGGTCTCCC
 241 TAACATGTAG GTGGCGGAGG GGAGATATAC AATAGAACAG ATACCAGACA AGACATAATG
 301 GGCTAACAA GACTACACCA ATTACACTGC CTCATTGATG GTGGTACATA ACGAACTAAT
 361 ACTGTAGCCC TAGACTTGAT AGCCATCATC ATATCGAAGT TTCACTACCC TTTTCCATT
 421 TGCCATCTAT TGAAGTAATA ATAGGCGCAT GCAACTTCTT TTCTTTTTTT TTCTTTCTC
 481 TCTCCCCCGT TGTTGTCCTA CCATATCCG AATGACAAAA AAAATGATGG AAGACACTAA
 541 AGGAAAAAAAT TAACGACAAA GACAGCACCA ACAGATGTCG TTGTTCCAGA GCTGATGAGG
 601 GGTATCTTCG AACACACGAA ACTTTTCTC TCCTCTCATTC ACGCACACTA CTCTCTAATG
 661 AGCAACGGTA TACGGCCITC CTTCCAGTTA CTTGAATTG AAATAAAAAA AGTTTGCCGC
 721 TTTGCTATCA AGTATAAATA GACCTGCAAT TATTAATCTT TTGTTCTTC GTCATTGTT
 781 TCGTTCCCTT TCTCTCTGT TTCTTTTCT GCACAATATT TCAAGCTATA CCAAGCATAAC
 841 AATCAACTCC AAGCTTGAAG CAAGCCTCCT GAAAGATGAA GCTACTGTCT TCTATCGAAC
 901 AAGCATGCGA TATTTGCCGA CTAAAAAAGC TCAAGTGCTC CAAAGAAAAA CCGAAGTGC
 961 CCAAGTGTCT GAAGAACAAAC TGGGAGTGT GCTACTCTCC CAAACACAA AGGTCTCCGC
 1021 TGACTAGGGC ACATCTGACA GAAGTGGAA CAAGGCTAGA AAGACTGGAA CAGCTATT
 1081 TACTGATTTT TCTCTGAGAA GACCTTGAA TGATTTGAA ATGGATTCT TTACAGGATA
 1141 TAAAAGCATT GTTAACAGGA TTATTTGTAC AAGATAATGT GAATAAAGAT GCCGTACAG
 1201 ATAGATTGGC TTCAAGTGGAG ACTGATATGC CTCTAACATT GAGACAGCAT AGAATAAGTG
 1261 CGACATCATC ATCGGAAGAG AGTAGTAACA AAGGTCAAAG ACAGTTGACT GTATCGTCA
 1321 GGTCGAATCA AACAAAGTTG TACAAAAAAG CTGAACGAGA AACGTTAAAT GATATAAATA
 1381 TCAATATATT AAATTAGATT TTGCATAAAA AACAGACTAC ATAATACTGT AAAACACAAAC
 1441 ATATCCAGTC ACTATGGCGG CCGCTAAGTT GGCAGCATCA CCCGACGCAC TTTGCGCCGA
 1501 ATAAATACCT GTGACGGAAG ATCACTTCGC AGAATAAATA AATCCTGGTG TCCCTGTTGA
 1561 TACCGGGAAAG CCCTGGGCCA ACTTTTGGCG AAAATGAGAC TTGATCGGG ACGTAAGAGG
 1621 TTCCAACCTT CACCATAATG AAATAAGATC ACTACCGGGC GTATTTTTG AGTTATCGAG
 1681 ATTTTCAGGA GCTAAGGAAG CTAAAATGGA GAAAAAAATC ACTGGATATA CCACC GTGA
 1741 TATATCCCAA TGCAATCGTA AAGAACATT TGAGGCATT CAGTCAGTT CTCAATGTAC
 1801 CTATAACCAAG ACCGTTTCAGC TGGATAATTAC GGCCTTTTA AAGACCGTAA AGAAAATAA
 1861 GCACAAGTTT TATCCGGCCT TTATTCACAT TCTTGCCCGC CTGATGAATG CTCATCCGA
 1921 ATTCGGTATG GCAATGAAAG ACGGTGAGCT GGTGATATGG GATAGTGTTC ACCCTTGT
 1981 CACCGTTTC CATGAGCAA CTGAAACGTT TTCACTCGCTC TGGAGTGAAT ACCACGACGA
 2041 TTTCGGGCAG TTTCTACACA TATAATCGCA AGATGTGGCG TTGTTACGGTG AAAACCTGGC
 2101 CTATTTCCCT AAAGGGTTA TTGAGAATAT GTTTTCTGTC TCAGCCAATC CCTGGGTGAG
 2161 TTTCACCAAGT TTGATTTAA ACGTGGCCAA TATGGACAAC TTCTTCGCC CCGTTTTAC
 2221 CATGGGCAAA TATTATACGC AAGGCGACAA GGTGCTGATG CCGCTGGCGA TTCAAGGTTCA
 2281 TCATGCCGTC TGTGATGGCT TCCATGTCGG CAGAATGCTT AATGAATTAC AACAGTACTG
 2341 CGATGAGTGG CAGGGCGGGG CGTAATCTAG AGGATCCGGC TTACTAAAAG CCAGATAACA
 2401 GTATGCGTAT TTGCGCGCTG ATTTTGCAGG TATAAGAATA TATACTGATA TGTATACCCG-

FIGURE 41B

113/260

2461 AAGTATGTCA AAAAGAGGTG TGCTATGAAG CAGCGTATTA CAGTGACAGT TGACAGCGAC
 2521 AGCTATCAGT TGCTCAAGGC ATATATGATG TCAATATCTC CGGTCTGGTA AGCACAAACCA
 2581 TGCAGAATGA AGCCCGTCGT CTGCGTCCG AACGCTGGAA AGCGGAAAAT CAGGAAGGGA
 2641 TGGCTGAGGT CGCCCGGTTT ATTGAATGA ACGGCTCTT TGCTGACGAG AACAGGGACT
 2701 GGTGAAATGC AGTTTAAGGT TTACACCTAT AAAAGAGAGA GCCGTTATCG TCTGTTGTG
 2761 GATGTACAGA GTGATATTAT TGACACGCC GGGCGACGGA TGTTGATCCC CCTGGCCAGT
 2821 GCACCGTCTGC TGTCAGATAA AGTCTCCGT GAACCTTACC CGGTGGTACA TATCGGGGAT
 2881 GAAAGCTGGC GCATGATGAC CACCGATATG GCCAGTGTGC CGGTCTCCGT TATCGGGGAA
 2941 GAAGTGGCTG ATCTCAGCCA CCGCGAAAAT GACATAAAAA ACGCCATTAA CCTGATGTTC
 3001 TGGGAATAT AAATGTCAAGG CTCCCTATA CACAGCCAGT CTGCAGGTG ACCATAGTGA
 3061 CTGGATATGT TGTGTTTAC AGTATTATGT AGTCTGTTT TTATGCAAAA TCTAATTAA
 3121 TATATTGATA TTTATATCAT TTTACGTTTC TCCTTCAGCT TTCTTGTACA AAGTGGTTG
 3181 ATGGCCGCTA AGTAAGTAAG ACGTCGAGCT CTAAGTAAGT AACGGCCGCC ACCGCGGTGG
 3241 AGCTTTGGAC TTCTTCGCCA GAGGTTGGT CAAGTCTCCA ATCAAGGTG TCGGCTTGT
 3301 TACCTTGCCA GAAATTACG AAAAGATGGA AAAGGGTCAA ATCGTIGGTG GATACGTTGT
 3361 TGACACTTCT AAATAAGCGA ATTTCTTATG ATTATGATT TTATTAATTAA AATAAGTTAT
 3421 AAAAAAAATA AGTGTATACA AATTAAAG TGACTCTTAG GTTTAAAC GAAAATTCTT
 3481 ATTCTTGAGT AACTCTTCC TGTAGGTCAAG TTCTTGTCT CAGGTATAGC ATGAGGTGCG
 3541 TCTTATTGAC CACACCTCTA CCGGCATGCC GAGCAAATGC CTGCAAATCG CTCCCCATT
 3601 CACCCAATTG TAGATATGCT AACTCCAGCA ATGAGTTGAT GAATCTCGGT GTGTATTTA
 3661 TGTCTCAGA GGACAATACC TGTTGTAATC GTTCTTCCAC ACGGATCCCA ATTCCGCCCC
 3721 TAGTGAGTCG TATTACAATT CACTGGCGT CGTTTACAA CGTCTGACT GGGAAAACCC
 3781 TGGCGTTTACCA CAACTTAATC GCCCTTGAGC ACATCCCCCT TTGGCCAGCT GGCCTAATAG
 3841 CGAACGAGGCC CGCACCGATC GCCCCTTCCCA ACAGTTGCGC AGCCTGAATG GCGAATGGAC
 3901 GCGCCCTGTA GCGGCCGAT AAGCGCCGCG GGTGTGGTGG TTACGCGCAG CGTGCACCG
 3961 ACACCTGCCA GCGCCCTAGC GCCCCTCCT TTGCTTCTCT TCTCGCCACG
 4021 TTGCGGGCT TTGCGGCCAGC AGCTCTAAAT CGGGGGCTCC CTTTGGGTTT CCGATTAGT
 4081 GCTTACGGC ACCTCGACCC CAAAAAAACTT GATTAGGGTG ATGGTTCAAG TAGTGGGCCA
 4141 TCGCCCTGAT AGACGGTTTT CGCCCTTITG ACCTGGAGT CCACGTTCTT TAATAGTGG
 4201 CTCTTGTCC AAACCTGGAAC AACACTCAAC CCTATCTCGG TCTATTCTT TGATTATAAA
 4261 GGGATTTCGCG CGATTTCGGC CTATTGGTTA AAAATGAGC TGATTTAAC AAAATTAAAC
 4321 GCGAATTAA AACAAATATT AACGTTTACA ATTTCCTGAT GCGGTATTTC CTCCTTACGC
 4381 ATCTGTGCGG TATTTCACAC CGCATATCGA CCGTCGAGG AGAACCTCTA GTATATCCAC
 4441 ATACCTAATA TTATTGCTT ATTAAAAATG GAATCGGAAC AATTACATCA AAATCCACAT
 4501 TCTCTTCAAA ATCAATTGTC CTGTACTTCC TTGTTCATGT GTGTTCAAAA ACGTTATATT
 4561 TATAGGATAA TTATACTCTA TTCTCAACA AGTAATTGGT TGTGTTGGCC AGCGGTCTAA
 4621 GGCGCCCTGAT TCAAGAAATA TCTTGACCGC AGTTAACTGT GGGAAACTCTA AGGTATCGTA
 4681 AGATGCAAGA GTTCAATCT CTTAGCAACC ATTATTTTT TCCTCAACAT AACGAGAAC
 4741 CACAGGGCG CTATCGCACA GAATCAAATT CGATGACTGG AATTTTTTG TTAATTTCAG
 4801 AGGTCGCTG ACGCATATAC CTTTTCAAC TGAAAAATTG GGAGAAAAG GAAAGGTGAG
 4861 AGGCCGGAAC CGGCTTTCA TATAGAATAG AGAAGCGTTC ATGACTAAAT GCTTGCATCA
 4921 CAATACTTGA AGTTGACAAT ATTATTAAG GACCTATTGT TTTTCCAAT AGGTGGTTAG
 4981 CAATCGTCTT ACTTCTAAC TTTTCTTAC TTTTACATT CAGCAATATA TATATATATT
 5041 TCAAGGATAT ACCATTCTAA TGTCTGCC TATGTCTGCC CCTAAGAAGA TCGTCGTTT
 5101 GCCAGGTGAC CACGTTGGTC AAGAAATCAC AGCCGAAGCC ATTAAGGTTC TTAAAGCTAT
 5161 TTCTGATGTT CGTTCCAATG TCAAGTTGCA TTTCGAAAAT CATTAAATG GTGGTGTG
 5221 TATCGATGCT ACAGGTGTCC CACTCCAGA TGAGGCGCTG GAAGCCTCCA AGAAGGTTGA
 5281 TGCGTTTG TTAGGTGCTG TGGGTGGTCC TAAATGGGGT ACCGGTAGTG TTAGACCTGA
 5341 ACAAGGTTA CTAAAATCC GTAAAGAACT TCAATTGTCAC GCCAACTTAA GACCATGTAA
 5401 CTTTGCATCC GACTCTCTT TAGACTTATC TCCAATCAAG CCACAATTG CTAAAGGTAC
 5461 TGACTTCGTT GTTGTCAAGAG AATTAGTGGG AGGTATTTCAC TTTGGTAAGA GAAAGGAAGA
 5521 CGATGGTGAT GGTGTGCGCTT GGGATAGTGA ACAATACACC GTTCCAGAAG TGCAAAGAAT
 5581 CACAAGAATG CGCGCTTTCA TGGCCCTACA ACATGAGGCC CCATTGCTTA TTTGGTCCTT
 5641 GGATAAAAGCT AATGTTTGG CCTCTTCAAG ATTATGGAGA AAAACTGTGG AGGAAACCAT
 5701 CAAGAACGAA TTCCCTACAT TGAAGGTTCA ACATCAATTG ATTGATTCTG CCGCCATGAT
 5761 CCTAGTTAAG AACCCAAACCC ACCTAAATGG TATTATAATC ACCAGCAACA TGTTGGTGA
 5821 TATCATCTCC GATGAAGCCT CCGTTATCCC AGGTTCCITG GGTTTGTG CATCTGCGTC
 5881 CTTGGCCTCT TTGCCAGACA AGAACACCGC ATTGGTTTG TACGAACCAT GCCACGGTTC-

FIGURE 41C

114/240

5941 TGCTCCAGAT TTGCCAAAGA ATAAGGTTGA CCCTATCGCC ACTATCTTGT CTGCTGCAAT
 6001 GATGTTGAAA TTGTCATTGA ACTTGCTGAA AGAAGGTAAG GCCATTGAAG ATGCAGTTAA
 6061 AAAGGTTTGTG GATGCAGGTA TCAGAACTGG TGATTTAGGT GGTTCCAACA GTACCACCGA
 6121 AGTCGGTGTG GCTGTCGCCG AAGAAGTTAA GAAATCCCT GCTTAAAAAG ATTCTCTTT
 6181 TTATGATAT TTGTACATAA ACTTTATAAA TGAAATTCTAT AATAGAAACG ACACGAAATT
 6241 ACAAAATGGA ATATGTTCAT AGGGTAGACG AAACATATATA CGCAATCTAC ATACATTTAT
 6301 CAAGAAGGAG AAAAGGAGG ATAGTAAAGG AATACAGGTA AGCAAATTGA TACTAATGGC
 6361 TCAACGTGAT AAGGAAAAAG AATTGCACTT TAACATTAAT ATTGACAAGG AGGAGGGCAC
 6421 CACACAAAAA GTTAGGTGTA ACAGAAAATC ATGAAACTAC GATTCTTAAT TTGATATTGG
 6481 AGGATTTCT CTAAAAAAA AAAATACAA CAAATAAAAA ACACCTCAATG ACCTGACCAT
 6541 TTGATGGAGT TAAAGTCAT ACCCTTCTG ACCATTTCCC ATAATGGTG AAGTCCCTC
 6601 AAGAATTTTA CTCTGTCAGA AACGGCTTA CGACGTAGTC GATATGGTG ACTCTCAGTA
 6661 CAATCTGTC TGATGCCGCA TAGTTAACG AGCCCCGACA CCCGCAACA CCCGCTGACG
 6721 CGCCCTGACG GGCTTGTCTG CTCCCGCAT CCGCTTACAG ACAAGCTGTG ACCGCTCTCG
 6781 GGAGCTGCAT GTCTCAGAGG TTTTACCGT CATCACCGAA ACGCGCGAGA CGAAAGGGCC
 6841 TCGTGTACG CCTATTTTA TAGGTTAATG TCATGATAAT AATGGTTCT TAGGACGGAT
 6901 CGCTTGCTG TAACTTACAC GCGCTCGTA TCTTTTAATG ATGAAATAAT TTGGAAATT
 6961 ACTCTGTGTT TATTTATTTT TATGTTTGTG ATTGGATTT TAGAAAGTAA ATAAAGAAGG
 7021 TAGAAAGAGT ACCGAATGAA GAAAAAAA TAAACAAAGG TTTAAAAAAAT TTCAACAAAA
 7081 AGCGTACTTT ACATATATAT TTATTAGACA AGAAAAGCAG ATTAAATAGA TATACATTG
 7141 ATTAACGATA AGTAAAATGT AAAATCACAG GATTTCTG TGTTGCTTC TACACAGACA
 7201 AGATGAAACA ATTCGGCATT AATACCTGAG AGCAGGAAGA GCAAGATAAA AGGTAGTATT
 7261 TGTTGGCATT CCCCTAGAG TCTTTACAT CTTCGAAAAA CAAAACAT TTTTCTTTA
 7321 ATTTCTTTT TTACTTTCTA TTTTTAATT ATATATTAT ATTAAAAAAAT TTAAATTATA
 7381 ATTATTTTA TAGCACGTG TGAAAAGGAC CCAGGTGGCA CTTTCGGGG AAATGTGCGC
 7441 GGAACCCCTA TTGTTTATT TTTCTAAATA CATTCAAATA TGTTGCTCGCT CATGAGACAA
 7501 TAACCCGTGAT AAATGCTTCATAATCTGCA GCTCTGGCCC GTGCTCTCAAATCTGATG
 7561 TTACATTGCA CAAGATAAAA ATATATCATC ATGAAACAATA AAACTGTCTG CTTACATAAA
 7621 CAGTAATACA AGGGGTGTTA TGAGCCATT TCAACGGGAA ACGTCTTGCT GGAGGCCGCG
 7681 ATTAATTCC AACATGGATG CTGATTATAA TGTTGTTAAA TGGGCTCGCG ATAATGTCGG
 7741 GCAATCAGGT GCGACAATCT TTGATTGTA TGGAAGGCC GATGGCCAG AGTTGGTTCT
 7801 GAAACATGGC AAAGGTAGCG TTGCAAATGA TGTTACAGAT GAGATGGTCA GACTAAACTG
 7861 GCTGACGGAA TTATGCTCTC TTCCGACCAT CAAGCATTGTT ATCCGTTACTC CTGATGATGC
 7921 ATGGTTACTC ACCACTGCGA TCCGGGGAA AACAGCATTG CAGGTATTAG AAGAATATCC
 7981 TGATTTCAGGT GAAAATATTG TTGATGGCTT GGCAGTGTTC CTGCGCCGGT TGCATTGAT
 8041 TCCTGTTGTT AATTGTCCTT TTAAACAGCGA TCGCGTATTT CGTCTCGCTC AGGCAGCAATC
 8101 ACGAATGAAT AACGGTTTGG TTGATGGAG TGATTTTGAT GACGAGCGTA ATGGCTGGCC
 8161 TGTTGAAACAA GTCTGGAAAG AAATGCATAC GCTTTTGCA TTCTCACCGG ATTCACTCGT
 8221 CACTCATGGT GATTTCTCAC TTGATAACCT TATTTTGAC GAGGGAAAT TAATAGGTTG
 8281 TATTGATGTT GGACGAGTCG GAATCGCAGA CCGATACCG GATTTGCCA TCCTATGGAA
 8341 CTGCCCTCGGT GAGTTTCTC TTTCATTACA GAAACGGCTT TTCAAAAT ATGGTATTGA
 8401 TAATCCTGAT ATGAATAAAAT TGCACTTCA TTGATGCTC GATGAGTTTT TCTAATCAGA
 8461 ATTGGTTAAT TGTTGTAAC ACTGGCAGAG CATTACGCTG ACTTGACGGG ACGGCCATG
 8521 ACCAAAATCC CTTAACGTGA GTTTTCGTTT CACTGAGCGT CAGACCCCGT AGAAAAGATC
 8581 AAAGGATCTT CTTGAGATCC TTTTTCTG CGCGTAATCT GCTGCTTGCA AACAAAAAAA
 8641 CCACCGCTAC CAGCGGTGGT TTGTTGCCG GATCAAGAGC TACCAACTCT TTTTCCGAAAG
 8701 GTAACTGGCT TCAGCAGAGC GCAGATACCA AATACTGTCC TTCTAGTGTG GCCGTAGTTA
 8761 GGCCACCACT TCAAGAACTC TGAGCACCG CCTACATACC TCGCTCTGCT AATCCTGTTA
 8821 CCAGTGGCTG CTGCCAGTGG CGATAAGTCG TGTCTTACCG GGTTGGACTC AAGACCGATAG
 8881 TTACCGGATA AGGCGCAGCG GTCGGGCTGA ACGGGGGGTT CGTGCACACA GCCCAGCTTG
 8941 GAGCGAACGA CCTACACCGA ACTGAGATAC CTACAGCGTG AGCATTGAGA AAGCGCCACG
 9001 CTTCCCGAAG GGAGAAAGG GGACAGGTAT CCGGTAAGCG GCAGGGTCGG AACAGGAGAG
 9061 CGCACGAGGG AGCTTCAGG GGGGAACGCC TGGTATCTT ATAGTCCTGT CGGGTTTCGC
 9121 CACCTCTGAC TTGAGCGTC ATTGTTGTA TGCTCGTCAG GGGGGCCGAG CCTATGGAAA
 9181 AACGCCAGCA AGCGGCCATT TTTACGGTT CTTGGCTTTT GCTGGCTTT TGCTCACATG
 9241 TTCTTCCCTG CGTTATCCCC TGATTCTGTG GATAACCGTA TTACCGCCTT TGAGTGAGCT
 9301 GATACCGCTC GCCGCAGCCG AACGACCGAG CGCAGCGAGT CAGTGAGCGA GGAAGCCGAA
 9361 GAGCGCCCAA TACGCAAACC GCCTCTCCCC GCGCGTTGGC CGATTCTTAA ATGCAGCTGG-

FIGURE 41D

115/240

9421 CACGACAGGT TTCCCGACTG GAAAGCGGGC AGTGAGCGCA ACGCAATTAA TGTGAGTTAC
 9481 CTCACTCATT AGGCACCCCCA GGCTTTACAC TTTATGCTTC CGGCTCCTAT GTTGTGTGGA
 9541 ATTGTGAGCG GATAACAATT TCACACAGGA AACAGCTATG ACCATGATTA CGCCAAGCTC
 9601 GGAATTAACC CTCACTAAAG GGAACAAAAG CTGGTACCGA TCCCAGCTT TGCAAATTAA
 9661 AGCCTTCGAG CGTCCCCAAA CCTTCTCAAG CAAGGTTTTC AGTATAATGT TACATCGTAA
 9721 CACCGCTCTG TACAGAAAAA AAAGAAAAAT TTGAAATATA AATAACGTT TTAATACTAA
 9781 CATAACTATA AAAAATAAA TAGGGACCTA GACTTCAGGT TGTCTAACTC CTTCCCTTTTC
 9841 GGTTAGAGCG GATGTGGGG GAGGGCGTGA ATGTAAGCGT GACATAACTA ATTACATGAT
 9901 ATCGACAAAG GAAAAGGGC CTGTTACTC ACAGGCTTTT TTCAAGTAGG TAATTAAGTC
 9961 GTTTCTGTCT TTTTCTCT TCAACCCACC AAAGGCCATC TTGGTACTTT TTTTTTTTTT
 10021 TTTTTTTTTT TTTTTTTTTT TTTTTTTTTT TTTTTTTTTT TTTTTTTTTT TTTTTTTTTT
 10081 TTTTTTTTTT TTTTTTTTTT TCATAGAAAT AATACAGAAAG TAGATGTTGA ATTAGATTAA
 10141 ACTGAAGATA TATAATTAT TGGAAAATAC ATAGAGCTTT TTGTTGATGC GCTTAAGCGA
 10201 TCAATTCAAC AACACCACCA GCAGCTCTGA TTTTTCTTC AGCCAACITG GAGACGAATC
 10261 TAGCTTTGAC GATAACTGGA ACATTTGGAA TTCTACCCCTT ACCCAAGATC TTACCGTAAC
 10321 CGGCTGCCAA AGTGTCAATA ACTGGAGCAG TTTCTTCTAGA AGCAGATTTC AAGTATTGGT
 10381 CTCTCTGTC TTCTGGGATC AATGTCCACA ATTTGTCCAA GTTCAAGACT GGCTTCCAGA
 10441 AATGAGCTTG TTGCTTGTGG AAGTATCTCA TACCAACCTT ACCGAAATAA CCTGGATGGT
 10501 ATTTATCCAT GTTAATTCTG TGTTGATGTT GACCACCGC CATAACCTCTA CCACGGGGGT
 10561 GCTTTCTGTG CTTACCGATA CGACCTTAC CGGCTGAGAC GTGACCTCTG TGCTTTCTAG
 10621 TCTTAGTGAA TCTGGAAGGC ATTCTTGATT AGTTGGATGA TTGTTCTGGG ATTTAATGCA
 10681 AAAATCACTT AAGAAGGAAA ATCAACGGAG AAAGCAAACG CCATCTAAA TATACGGGAT
 10741 ACAGATGAAA GGGTTTGAAC CTATCTGGAA AATAGCATTA AACAAAGCGAA AAACCTGCGAG
 10801 GAAAATTGTT TCGCTCTCTG CGGGCTATTC ACAGGCCAGA GGAAAATAGG AAAAATAACA
 10861 GGGCATTAGA AAAATAATT TGATTTGGT AATGTGTGGG TCCTGGTGT CAGATGTTAC
 10921 ATTGGTTACA GTACTCTTGT TTTTGTGTG TTTTCGATG AATCTCCAAA ATGGTTGTTA
 10981 GCACATGGAA GAGTCACCGA TGCTAACGTTA TCTCTATGTA AGCTACGTGG CGTGACTTTT
 11041 GATGAAGCCG CACAAGAGAT ACAGGATTGG CAACTGCAAA TAGAATCTGG GGATCCCCC
 11101 TCGAGATCCG GGATCGAAGA AATGATGGTA AATGAAATAG GAAATCAAGG AGCATGAAGG
 11161 CAAAGACAA ATATAAGGGT CGAACGAAAA ATAAAGTGA AAGTGTGAT ATGATGTATT
 11221 TGGCTTGCCT GCGCCGAAAA AACGAGTTA CGCAATTGCA CAATCATGCT GACTCTGTGG
 11281 CGGACCCCGCG CTCTTGCCTG CCCGGCGATA ACGCTGGCG TGAGGCTGTG CCCGGCGAG
 11341 TTTTTGCGC CTGCATTTTC CAAGGTTAC CCTGCGCTAA GGGGCGAGAT TGGAGAAGCA
 11401 ATAAGAATGC CGGTGGGGT TGCGATGATG ACGACCACGA CAACTGGTGT CATTATTTAA
 11461 GTTGGCCAAA GAACCTGAGT GCATTTGAA CATGAGTATA CTAGAAGAAT GAGCCAAGAC
 11521 TTGCGAGACG CGAGTTTGCC GGTGGTGCAG ACAATAGAGC GACCATGACC TTGAAGGTGA
 11581 GACCGCATA ACCGCTAGAG TACTTTGAAG AGGAAACAGC AATAGGGTTG CTACCACTAT
 11641 AAATAGACAG GTACATACAA CACTGAAAT GGTTGTCTGT TTGAGTACGC TTTCAATTCA
 11701 TTTGGGTGTG CAC

FIGURE 415

116/240

Figure 42A:

pDEST22

2-Hybrid Vector with Activation Domain

657 acg cac act act ctc taa tga gca acg gta tac ggc ctt cct tcc agt tac
 tgc gtg tga tga gag att act cgt tgc cat atg ccg gaa gga agg tca atg
 708 ttg aat ttg aaa taa aaa aag ttt gcc gct ttg cta tca agt ata aat aga
 aac tta aac ttt att ttt ttc aaa cgg cga aac gat agt tca tat tta tct
 759 cct gca att att aat ctt ttg ttt cct cgt cat tgt tct cgt tcc ctt tct
 gga cgt taa taa tta gaa aac aaa gga gca gta aca aga gca agg gaa aga
 810 //tcc/ttg/ttt/cct/ttg/cgt/att/ttc/agc/tat/tcc/aag/cat/aca/atc//
 861 //aac/tcc/aag/ctt/ttg/ccc/aag/dag/aag/cgg/aag/gtc/tcg/agc/ggc/gcc/aat//
 //tgt/agg/ttc/gaa/tac/ggg/ttc/ttc/gcc/ttc/cag/agc/tcg/ccg/cgg/tta//
 Start Translation
 1218 gaa gat acc cca cca aac cca aaa aaa gag ggt ggg tgg aat cca aca agt
 ctt cta tgg ggt ggt ttg ggt ttt ttt ctc cca ccc agc tta gtt tgt tca
 1269 //L Y K K A attR1
 //aac/atg/ttt/ttt/cga/ctt/gtc/ttt/tgc/att/t//
 Intv

D	G	G	S	N	Q	T	S
aat	caa	aca	agt				

117/240

pDEST22 8923 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
904..1248	GAL4 AD
1388..1264	attR1
1638..2297	CmR
2417..2501	inactivated ccdA
2639..2944	ccdB
2985..3109	attR2
3831..4318	f1 (f1 intergenic region)
4334..5176	TRP1
6110..7194	ampR
8344..866	pADH (yeast ADH promoter)

1 TTCATTTGGG TGTGCACTTT ATTATGTAC AATATGGAAG GGAACCTTAC ACTTCTCCTA
 61 TGCACATATA TTAATTAAAG TCCAATGCTA GTAGAGAAGG GGGGTAACAC CCCTCCCGCGC
 121 TCTTTTCCGA TTTTTTTCTA AACCGTGGAA TATTTCGGAT ATCCTTTGT TGTTTCCGGG
 181 TGTACAATAT GGACTTCCTC TTTTCTGGCA ACCAACCCCA TACATCGGGA TTCCCTATAAT
 241 ACCTTCGTTG GTCTCCCTAA CATGTAGGTG GCGGAGGGGA GATATACAAT AGAACAGATA
 301 CCAGACAAGA CATAATGGGC TAAACAAGAC TACCCAATT ACACTGCCTC ATTGATGGTG
 361 GTACATAACG AACTAATACT GTAGCCCTAG ACTTGATAGC CATCATCATA TCGAAGTTTC
 421 ACTACCCCTT TTCCATTGTC CATCTATGA AGTAATAATA GGCGCATGCA ACTTCTTTTC
 481 TTTTTTTTTC TTTTCTCTCT CCCCCGTGTG TGTCTCACCA TATCCGCAAT GACAAAAAAA
 541 ATGATGGAAG ACACATAAAGG AAAAAATTAA CGACAAAGAC AGCACCAACA GATGTCGTTG
 601 TTCCAGAGCT GATGAGGGGT ATCTCGAAC ACAGGAAACT TTTCCCTTC TTCATTACAG
 661 CACACTACTC TCTAATGAGC AACGGTATAC GGCCCTCCCTT CCAGTTACTT GAATTGAAA
 721 TAAAAAAAGT TTGCGGCTTT GCTATCAAGT ATAATAGAC CTGCAATTAT TAATCTTTG
 781 TTTCTCGTC ATTGTTCTG TTCCCTTTCT TCCTTGTTC TTTTCTGCA CAATATTCA
 841 AGCTATACCA AGCATAACAT CAACTCCAAG CTTATGCCA AGAAGAAGCG GAAGGTCTCG
 901 AGCGGCCCA ATTGAAATCA AAGTGGGAAT ATTGCTGATA GCTCATTGTC CTTCACTTT
 961 ACTAACAGTA GCAACGGTCC GAACTCTA ACAAACCTCAAA CAAATTCTCA AGCGCTTTCA
 1021 CAACCAATTG CCTCCTCTAA CGTTCATGAT AACTTCATGA ATAATGAAAT CACGGCTAGT
 1081 AAAATTGATG ATGGTAATAA TTCAAAACCA CTGTCACCTG GTTGGACGGA CCAAACCTGCG
 1141 TATAACCGGT TTGGAATCAC TACAGGGATG TTTAATACCA CTACAATGGA TGATGTATAT
 1201 AACTATCTAT TCGATGATGA AGATACCCCA CCAAACCCAA AAAAGAGGG TGGGTCGAAT
 1261 CAAACAGTT TGTACAAAAA AGCTGAACGA GAAACGTAAA ATGATATAAA TATCAATATA
 1321 TTAAATTAGA TTTTGCATAA AAAACAGACT ACATAATACT GTAAAACACA ACATATCCAG
 1381 TCACTATGGC GGGCGCTAAG TTGGCAGCAT CACCCGACGC ACTTTGCGCC GAATAAATAC
 1441 CTGTGACGGA AGATCACTTC GCAGAATAAA TAAATCCTGG TGTCCCTGTT GATACCGGG
 1501 AGCCCTGGC CAACTTTGG CGAAAATGAG ACGTTGATCG GCACGTAAGA GGTTCCAAGT
 1561 TTCACCATAA TGAATAAAGA TCACTACCGG GCGTATTTTG TGAGTTATCG AGATTTTCAG
 1621 GAGCTAAGGA AGCTAAAATG GAGAAAAAAA TCACTGGATA TACCACCGTT GATATATCCC
 1681 AATGGCATCG TAAAGAACAT TTGAGGCAT TTCAGTCAGT TGCTCAATGT ACCTATAACC
 1741 AGACCGTTCA GCTGGATATT ACGGCCTTT TAAAGACCGT AAAGAAAAAT AAGCACCAAGT
 1801 TTTATCCGGC CTTTATTTCAC ATTCTTGGCC GCCTGATGAA TGCTCATCCG GAATTCCGTA
 1861 TGGCAATGAA AGACGGTGAG CTGGTGTAT GGGATAGTGT TCACCCCTGT TACACCGTT
 1921 TCCATGAGCA AACTGAAACG TTTTCTACG TCTGGAGTGA ATACCACGAC GATTTCGGC
 1981 AGTTTCTACA CATATATTGCA AGATGTGG CGTGTACGG TGAAAACCTG GCCTATTCC
 2041 CTAAAGGGTT TATTGAGAAT ATGTTTTCTG TCTCAGCCAA TCCCTGGGTG AGTTTCACCA
 2101 GTTTTGATTI AAACGTGGCC AATATGGACA ACTTCTTCGC CCCCGTTTC ACCATGGGCA
 2161 AATATTATAC GCAAGGGCGAC AAGGTGCTGA TGCCGCTGGC GATTCAAGGTT CATCATCCG
 2221 TCTGTGATGG CTTCCATGTC GGCAGAATGC TTAATGAATT ACAACAGTAC TGCAGTGAGT
 2281 GGCAGGGCGG GGCCTAATCT AGAGGATCCG GCTTACTAAA AGCCAGATAA CAGTATGCGT
 2341 ATTTGCGCGC TGATTGTTGC GGTATAAGAA TATATACTGA TATGTATACC CGAAGTATGT
 2401 CAAAAAGAGG TGTGCTATGA AGCAGCGTAT TACAGTGACA GTTGACAGCG ACAGCTATCA
 2461 GTTGCTCAAG GCATATATGA TGTCAATATC TCCGGTCTGG TAAGCACAAC CATGCAGAAT
 2521 GAAGCCCGTC GTCTGCGTGC CGAACGCTGG AAAGCGGAAA ATCAGGAAGG GATGGCTGAG-

FIGURE 425

118/240

2581 GTCGCCCGGT TTATTGAAAT GAACGGCTCT TTTGCTGACG AGAACAGGGA CTGGTCAAAT
 2641 GCAGTTAAG GTTTACACCT ATAAAAGAGA GAGCCGTTAT CGTCTGTTT TGGATGTACA
 2701 GAGTGATATT ATTGACACGC CCGGGCGACG GATGGTGATC CCCCTGGCCA GTGCACGTCT
 2761 GCTGTCAGAT AAAGTCTCCC GTGAACCTTA CCCGGTGGTG CATATCGGGG ATGAAAGCTG
 2821 GCGCATGATG ACCACCGATA TGGCCAGTGT GCCGGTCTCC GTTATCGGGG AAGAAGTGGC
 2881 TGATCTCAGC CACCGCGAAA ATGACATCAA AAACGCCATT AACCTGATGT TCTGGGAAT
 2941 ATAAATGTCA GGCTCCCTTA TACACAGCCA GTCTGCAGGT CGACCATAGT GACTGGATAT
 3001 GTTGTGTTT ACAGTATTAT GTAGTCTGTT TTTTATGCAA ATCTAATT TATATATTGA
 3061 TATTATATC ATTTACGTT TCTCGTCAG CTTCTTGTA CAAAGTGGTT TGATGCCGC
 3121 TAAGTAAGTA AGACGTCGAG CTCTAAGTAA GTAACGGCCG CCACCGCGGT GGAGCTTGG
 3181 ACTCTTCGC CAGAGGTTG GTCAAGTCTC CAATCAAGGT TGTCGGCTTG TCTACCTTGC
 3241 CAGAAATTAA CGAAAAGATG GAAAAGGTC AAATCGTTG TAGATACGTT GTTGACACTT
 3301 CTAAATAAGC GAATTCTTA TGATTTATGA TTTTATTAT TAAATAAGTT ATAAAAAAA
 3361 TAAGTGTATA CAAATTITAA AGTGAACCTT AGGTTTAAA ACGAAAATTC TTATTCTTGA
 3421 GTAACCTTT CCTGTAGGTC AGGTTGCTT CTCAGGTATA GCATGAGGTC GCTCTTATIG
 3481 ACCACACCTC TACCGGCATG CCGAGCAAAT GCCTGCAAAT CGCTCCCCAT TTCACCCAAT
 3541 TGTAGATATG CTAACCTCCAG CAATGAGTTG ATGAATCTCG GTGTGTATT TATGTCCTCA
 3601 GAGGACAATA CCTGTTGTA TCGBTCTCC ACACGGATCC CAATTGCCCC TATAGTGAGT
 3661 CGTATTACAA TTCACGGCC GTCTTTTAC AACGTCGTGA CTGGGAAAAC CCTGGCGTTA
 3721 CCCAACCTAA TCGCCTTGCA GCACATCCCC CTTTCGCCAG CTGGCGTAAT AGCGAAAGAGG
 3781 CCCGCACCGA TCGCCCTTCC CAACAGTGTG GCAGCCTGAA TGGCGAATGG ACGGCCCTG
 3841 TAGCGCGCA TTAAGCGCGG CGGGTGTTGGT GTTACCGCGC AGCGTGANCC CTACACTTGC
 3901 CAGGCCCTA GCGCCCGCTC CTTTCGCTT CTTCCCTTCC TTCTCGCCA CGTTGCCCGG
 3961 CTTCCTCGT CAAGCTCTAA ATCGGGGGCT CCCTTGTAGGG TTCCGATT TGTCTTACG
 4021 GCACCTCGAC CCCAAAAAAAC TTGATTAGGG TGATGGTTCA CGTAGTGGGC CATGCCCTG
 4081 ATAGACGGTT TTGCCCCCTT TGACGTTGGA GTCCACGTTT TTAAATAGTG GACTCTTGT
 4141 CCAAACCTGGA ACAACACTCA ACCCTATCTC GGTCTATTCT TTGATT TAAAGGAAATT
 4201 GCGGATTTCG GCCTATTGGT TAAAAAAATGA GCTGATT TAAAGGAAATT ACGCGAATT
 4261 TAACAAAATA TTAACGTTA CAATTCTCTG ATGCGGTATT TTCTCCCTAC GCATCTGTGC
 4321 GGTATTTCAC ACCGCAGGCA AGTGCACAAA CAATACTTAA ATAAATACTA CTCAGTAATA
 4381 ACCTATTCT TAGCATT TAAAGGAAATT GCTATT TGTAGAGTCTT TACACCATT
 4441 GTCTCCACAC CTCCGCTTAC ATCAACACCA ATAACGCCAT TTAATCTAA CGCATCACCA
 4501 ACATTCTG GCGTCAGTCC ACCAGCTAAC ATAAATGTA AGCTTTCGGG GCTCTTGC
 4561 CTTCCAACCC AGTCAGAAAT CGAGTTCCA TCCAAAAGTT CACCTGCCC ACCTGCTTCT
 4621 GAATCAAACA AGGGAAATAAA CGAATGAGGT TTCTGTGAAG CTGCACTGAG TAGTATGTT
 4681 CAGTCTTTG GAAATACGAG TCTTTAATA ACTGGCAAAC CGAGGAACCTC TTGGTATT
 4741 TGCCACGACT CATCTCCATG CAGTTGGACG ATATCAATGC CGTAATCATT GACCAGAGCC
 4801 AAAACATCCT CCTTAGTTG ATTACGAAAC ACGCCAACCA AGTATTTCGG AGTGCCTGAA
 4861 CTATTTTAT ATGCTTTTAC AAGACTTGA ATTTCCTTCA AATAACCGG GTCAATTGTT
 4921 CTCTTCTAT TGGGCACACA TATAATACCC AGCAAGTCAG CATCGGAATC TAGAGCACAT
 4981 TCTCGGGCCT CTGTGCTCTG CAAGCCGAA ACTTCACCA ATGGACCAGA ACTACCTGTG
 5041 AAATTAAATAA CAGACATACT CCAAGTGC TTTGTTGCT TAATCACGTA TACTCACGTG
 5101 CTCAATAGTC ACCAATGCC TCCCTCTTGG CCCTCTCTT TTCTTTTTG GACCGAATT
 5161 ATTCTTAATC GGCAAAAAAA GAAAAGCTCC GGATCAAGAT TGTACGTAAG GTGACAAGCT
 5221 ATTTTCAAT AAAGAATATC TTCCACTACT GCCATCTGGC GTCATAACTG CAAAGTACAC
 5281 ATATATTACG ATGCTGTCTA TTAAATGCTT CCTTATATTAT ATATATAGTA ATGTCGTTA
 5341 TGGTGCACTC TCAGTACAAT CTGCTGTGAT GCCGATAGT TAAGGCCAGG CCGACACCCG
 5401 CCAACACCCG CTGACCGGCC CTGACGGGCT TGTCTGCTCC CGGCATCCGC TTACAGACAA
 5461 GCTGTCAGCG TCTCCGGGAG CTGCATGTT CAGAGGTTT CACCGTCATC ACCGAAACGC
 5521 GCGAGACGAA AGGGCCTCGT GATAACGCTA TTTTATAGG TTAATGTCAT GATAATAATG
 5581 GTTTCTTAGG ACGGATCGCT TGCCTGTAAC TTACACGCC CTCGTATCTT TTAATGATGG
 5641 AATAATTGG GAATTACTC TGTGTTTATT TTTTGTATT TTGATT TAAAGGTTA
 5701 AAGTAAATAA AGAAGGTTAGA AGAGTTACGG AATGAAGAAA AAAAGGTTA CAAAGGTTA
 5761 AAAAATTCA ACAAAGG TACTTTACAT ATATATTAT TAGACAAGAA AAGCAGATTA
 5821 AATAGATATA CATTGATTA AGCATAAGTA AAATGTTAAA TCACAGGATT TTGCGTGTG
 5881 GTCTCTACA CAGACAAGAT GAAACAATTG GGCATTAATA CCTGAGAGCA GGAAGAGCAA
 5941 GATAAAAGGT AGTATTGTT GGCATCCCC CTAGAGTCTT TTACATCTTC GGAAAACAAA
 6001 AACTATTCTT TCTTTAATT TTTCTATT TAAATTTAT ATTTATATTA

FIGURE 42c

119/240

6061 AAAAATTTAA ATTATAATT A TTTTATAGC ACGTGATGAA AAGGACCCAG GTGGCACCTT
 6121 TCGGGGAAAT GTGCGCGGAA CCCCTATTG TTTATTTTC TAAATACATT CAAATATGTA
 6181 TCCGCTCATG AGACAATAAC CCTGATAAAT GCTTCATAA TATTGAAAAA CGAAGAGTAT
 6241 GAGTATTCAA CATTCCGTG TCGCCCTTAT TCCCTTTTT GCGGCATTG GCCTTCCTGT
 6301 TTTTGCTCAC CCAGAAACGC TGGTGAAGT AAAAGATGCT GAAGATCAGT TGGGTGCACG
 6361 AGTGGGTTAC ATCGAAGTGG ATCTCAACAG CGGTAAGATC CTTGAGAGTT TTCGCCCGA
 6421 AGAACGTTT CCAATGATGA GCACTTTAA AGTCTGCTA TGTGGCCGG TATTATCCG
 6481 TATTGACGCC GGGCAAGAGC AACTCGGTG CGCGATACAC TATTCTCAGA ATGACTTGGT
 6541 TGAGTACTCA CCAGTCACAG AAAAGCATCT TACGGATGGC ATGACAGTAA GAGAATTATG
 6601 CAGTGCCTGCC ATAACCAGTGA GTGATAACAC TGCGGCCAAC TTACTCTGA CAACGATCGG
 6661 AGGACCGAAG GAGCTAACCG CTTTTITCA CAACATGGGG GATCATGTAA CTCGCCCTG
 6721 TCGTTGGAA CGCGAGCTGA ATGAAGCCAT ACCAACCGAC GAGCGTGACA CCACGATGCC
 6781 TGTAGCAATG GCAACAACGT TGCGCAAAC TTTAACTGGC GAACTACTTA CTCTAGCTTC
 6841 CCGGCAACAA TTAATAGACT GGATGGAGGC GGATAAAAGTT GCAGGACAC TTCTGCGCTC
 6901 GGCCCTTCCG GCTGGCTGGT TTATTGCTGA TAAATCTGGA GCCGGTGAGC GTGGGTCTCG
 6961 CGGTATCATT GCAGCACTGG GGCCAGATGG TAAGCCCTCC CGTATCGTAG TTATCTACAC
 7021 GACGGGCAGT CAGGCAACTA TGGATGAACG AAATAGACAG ATCGCTGAGA TAGGTGCCTC
 7081 ACTGATTAAG CATTGGTAAC TGTCAAGACCA AGTTTACTCA TATATACTTT AGATTGATTT
 7141 AAAACTTCAT TTTTAATTAA AAAGGATCTA GGTGAAGATC CTTTTTGATA ATCTCATGAC
 7201 CAAAATCCCT TAACGTGAGT TTTCGTTCCA CTGAGCGTCA GACCCCGTAG AAAAGATCAA
 7261 AGGATCTTCT TGAGATCCCT TTTTCTGCG CGTAATCTGC TGCTTGAAA CAAAAAAACC
 7321 ACCGCTACCA GCGGTGGTTT GTTGTGCCGA TCAAGAGCTA CCAACTCTT TTCCGAAGGT
 7381 AACTGGCTTC AGCAGAGCGC AGATACAAA TACTGTCTT CTAGTGTAGC CGTAGTTAGG
 7441 CCACCACTTC AAGAACTCTG TAGCACCGCC TACATACCTC GCTCTGCTAA TCCTGTTACC
 7501 AGTGGCTGCT GCCAGTGGCG ATAAGTGTG TCTTACCGGG TTGGACTCAA GACGATAGTT
 7561 ACCGGATAAG GCGCAGCGGT CGGGCTGAAC GGGGGGTTCG TGACACAGC CCAGCTTGG
 7621 GCGAACGACC TACACCGAAC TGAGATACTC ACAGCGTAG CATTGAGAAA GCGCCACGCT
 7681 TCCCGAAGGG AGAAAGGCGG ACAGGTATCC GGTAAAGCGGC AGGGTCGGAA CAGGAGAGCG
 7741 CACGAGGGAG CTTCCAGGGG GGAACGCGCTG GTATCTTTAT AGTCTGTGCG GGTTTCGCCA
 7801 CCTCTGACTT GAGCGTCGAT TTTTGTGATG CTCGTCAGGG GGGCGAGCC TATGGAAAAA
 7861 CGCCAGCAAC CGGGCTTTT TACGGTCTCT GGCTTTTGC TGGCCTTTTG CTCACATGTT
 7921 CTTTCTGCG TTATCCCCTG ATTCTGTGGA TAACCGTATT ACCGCCCTTG AGTGAGCTGA
 7981 TACCGCTCGC CGCAGCGAA CGACCGAGCG CAGCGAGTC GTGAGCGAGG AAGCGGAAGA
 8041 GCGCCAATA CGCAAACCGC CTCTCCCGC GCGTTGGCCG ATTCAATTAT GCAGCTGGCA
 8101 CGACAGGTTT CCCGACTGGA AAGCGGGCAG TGAGGCCAAC GCAATTAAAG TGAGTTACCT
 8161 CACTCATTAG GCACCCCAGG CTTTACACTT TATGCTTCCG GCTCCTATGT TGTGTGGAT
 8221 TGTGAGCGGA TAACAATTTC ACACAGGAAA CAGCTATGAC CATGATTAGC CCAAGCTCGG
 8281 AATTAACCCCT CACTAAAGGG AACAAAGCT GGGTACCGGG CCCCCCTCG AGATCCGGGA
 8341 TCGAAGAAAT GATGTTAAAT GAAATAGGG ATCAAGGAGC ATGAAGGCAA AAGACAAATA
 8401 TAAGGGTCGA ACGAAAAATAA AAGTGAAGAAG TGTGATATG ATGTATTG CTTTGCAGCG
 8461 CCGAAAAAAAC GAGTTTACCG AATTGACAA TCATGCTGAC TCTGTGGCG ACCCGCGCTC
 8521 TTGGCCGGCCC GGCATAACG CTGGCGTGA GGCTGTGCCG GGCGGAGTTT TTGCGCCTG
 8581 CATTTCACCA GGTTCACCCCT GCGCTAAGGG GCGAGATTGG AGAAGCAATA AGAATGCCGG
 8641 TTGGGGTTGC GATGATGACG ACCACGACAA CTGGTGTCTAT TATTTAAGTT GCCGAAAGAA
 8701 CCTGAGTGCA TTTGCAACAT GAGTATACTA GAAGAATGAG CCAAGACTTG CGAGACGCGA
 8761 GTTGCCTGGT GGTGCGAACAA ATAGAGCGAC CATGACCTTG AAGGTGAGAC GCGCATAACC
 8821 GCTAGAGTAC TTTGAAGAGG AAACAGCAAT AGGGTTGCTA CCAGTATAAA TAGACAGGTA
 8881 CATAACAACAC TGGAAATGGT TGTCTGTTG AGTACGCTTT CAA

FIGURE 4^{2D}

120/240

pDEST23

His6 carboxy-fusion vector, T7 promoter

T7 Promoter → mRNA
 205 atc ccg cga aat taa tac gac tca cta tag gga gat cac aac ggt ttc cct
 tag ggc gct tta att atg ctg aqt qat acc cgt ctg gtg ttg cca aag gga
 256 cta gat cac aag ttt gta caa aaa agc tga acg aga aac gta aaa tga tat
 gat cta ctg ttc aaa cat gtt ttt tcg act tgc tct ttg cat ttt act ata

Cm^R — ccd B — //

1888 ttt tta tgc aaa atc taa ttt aat ata ttg ata ttt ata tca ttt tac gtt
 aaa aat acg ttt tag att aaa tta tat aac tat aaa tat agt aaa atg caa
attR2 A F L Y K V Y I M S Y Y H H
 1939 tct cgt tca gct ttt ttg tac aaa gtg gtg att atg tcg tac tac cat cac
 aga gca agt cga aag aac atg ttt cac cac taa tac age atg atg atg gta gtg
 1990 cat cac cat cac ctc gat gag caa taa cta gca taa ccc ctt ggg gec tet
 gta gtg gta gtg gag cta ctc gtt att gat cgt att ggg gaa ccc cgg aga

FIGURE 43A

121/240

pDEST23 6264 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
285..161	attR1
394..1053	CmR
1173..1257	inactivated ccdA
1395..1700	ccdB
1741..1865	attR2
1883..1911	his6
2574..3434	ampR
3583..4222	ori

1 TCTTCCCCAT CGGTGATGTC GGCGATATAG GCGCCAGCAA CCGCACCTGT GGCGCCGGTG
 61 ATGCCGGCCA CGATGCGTCC GGCGTAGAGG ATCGAGATCT CGATCCCGCG AAATTAAATAC
 121 GACTCACTAT AGGGAGACCA CAACGGTTTC CCTCTAGATC ACAAGTTTGT ACAAAAAAAGC
 181 TGAACCGAGAA ACGTAAAATG ATATAAAATAT CAATATATTAA AATTAGATTT TGCATAAAAA
 241 ACAGACTACA TAATACTGTA AAACACAACA TATCCAGTCA CTATGGCGGC CGCATTAGGC
 301 ACCCCAGGCT TTACACTTTA TGCTTCCGGC TCGTATAATG TGTGGATTTT GAGTTAGGAT
 361 CGGGCGAGAT TTTCAGGAGC TAAGGAAGCT AAAATGGAGA AAAAAATCAC TGGATATACC
 421 ACCGTTGATA TATCCCAATG GCATCGTAA GAACATTGG AGGCATTTCA GTCAAGTTGCT
 481 CAATGTACCT ATAACCAGAC CGTTCAGCTG GATATTACGG CCTTTTTAA GACCGTAAAG
 541 AAAAATAAGC ACAAGTTTTA TCCGGCCTT ATTACACATT TTGCCCCGCCT GATGAATGCT
 601 CATCCGGAAT TCCGTATGGC AATGAAAGAC GGTGAGCTGG TGATATGGGA TAGTGTTCAC
 661 CTTTGTACCA CCGTTTTCCA TGAGCAAATC GAAACGTTT CATCGCTCTG GAGTGAATAC
 721 CACGACGATT TCCGGCAGTT TCTACACATA TATTGCAAG ATGTGGCGTG TTACGGTGAA
 781 AACCTGGCCT ATTTCCCTAA AGGGTTTATT GAGAATATGT TTTTCGTCTC AGCCAATCCC
 841 TGGGTGAGTT TCACCAAGTT TGATTTAAC GTGGCCAATA TGGACAACCTT CTTCGCCCC
 901 GTTTTCACCA TGGGCAAATA TTATACGAA GGCACAAAGG TGCTGATGCC GCTGGCGATT
 961 CAGGTTCATC ATGCCGTCTG TGATGGCTTC CATGTCGGCA GAATGCTTAA TGAATTACAA
 1021 CAGTACTGCG ATGAGTGGCA GGGCGGGCG TAAACGCGTG GATCCGGCTT ACTAAAAGCC
 1081 AGATAAACAGT ATGCGTATTG GCGCGCTGAT TTTTCGGTA TAAGAATATA TACTGATATG
 1141 TATAACCGAA GTATGTCAAA AAGAGGTGTC CTATGAAGCA GCGTATTACA GTGACAGTTG
 1201 ACAGCGACAG CTATCAGTTG CTCAGGGCAT ATATGATGTC AATATCTCCG GTCTGGTAAG
 1261 CACAACCATG CAGAATGAAG CCCGTCGTCT GCGTGCAGAA CGCTGGAAAG CGGAAAATCA
 1321 GGAAGGGATG GCTGAGGTGCG CCCGGTTTAT TGAAATGAAC GGCTCTTTTG CTGACGAGAA
 1381 CAGGGACTGG TGAAATGCAG TTTAAGGTTT ACACCTATAA AAGAGAGAGGC CGTTATCGTC
 1441 TGTTTGTGGA TGTACAGAGT GATATTATTG ACACGCCCGG GCGACGGATG GTGATCCCC
 1501 TGGCCAGTGC ACCTCTGCTG TCAGATAAAG TCTCCCGTGA ACTTTACCCG GTGGTGCTA
 1561 TCGGGGATGA AAGCTGGCGC ATGATGACCA CCGATATGGC CAGTGTGCCG GTCTCCGTTA
 1621 TCGGGGAAGA AGTGGCTGAT CTCAGGCCACC GCGAAAATGA CATCAAAAC GCCATTAACC
 1681 TGATGTTCTG GGGAAATATAA ATGTCAGGCT CCCTTATACA CAGCCAGTCT GCAGGTCGAC
 1741 CATAGTGACT GGATATGTG TGTTTACAG TATTATGTAG TCTGTTTTTT ATGCAAAATC
 1801 TAATTTAATA TATTGATATT TATATCATTT TACGTTCTC GTTCAGCTTT CTTGTACAAA
 1861 GTGGTGATTA TGTGTTACTA CCATCACCAT CACCATCACCC TCGATGAGCA ATAACTAGCA
 1921 TAACCCCTTG GGGCCTCTAA ACGGGTCTTG AGGGGTTTTTG TGCTGAAAGG AGGAACATATA
 1981 TCCGGATATC CACAGGACGG GTGTGGTCGCG CATGATCGCG TAGTCGATAG TGGCTCCAAG
 2041 TAGCGAAGCG AGCAGGACTG GGCGGGCGGCC AAAGCGGTGCG GACAGTGCTC CGAGAACGGG
 2101 TGCGCATAGA AATTCATCA ACGCATATAG CGCTAGCAGC ACGCCATAGT GACTGGCGAT
 2161 GCTGTCGGAA TGGACGATAT CCCGCAAGAG GCCCGGCAGT ACCGGCATAA CCAAGCCTAT
 2221 GCCTACAGCA TCCAGGGTGA CGGTGCCAGG GATGACGATG AGCGCATTGT TAGATTTCAT
 2281 ACACGGTGCC TGACTGCGTT AGCAATTAA CTGTTGATAAA CTACCGCATT AAAGCTTATC
 2341 GATGATAAGC TGTCAAACAT GAGAATTCTT GAAGACGAAA GGGCCTCGTG ATACGCTTAT
 2401 TTTTATAGGT TAATGTCATG ATAATAATGG TTTCTTAGAC GTCAGGTGGC ACTTTTCGGG
 2461 GAAATGTGCG CGGAACCCCT ATTTGTTTAT TTTTCTAAAT ACATTCAAAT ATGTATCCGC
 2521 TCATGAGACA ATAACCCCTGA TAAATGCTTC AATAATATTG AAAAAGGAAG AGTATGAGTA
 2581 TTCAACATTT CCGTGTGCC CTTATTCCCT TTTTGTGGC ATTTTGCCCTT CCTGTTTTG
 2641 CTCACCCAGA AACGCTGGTG AAAGTAAAAG ATGCTGAAGA TCAGTTGGGT GCACGAGTGG-

FIGURE 438

122/260

2701 GTTACATCGA ACTGGATCTC AACAGCGGT A GATCCTTGA GAGTTTCGC CCCGAAGAAC
 2761 GTTTCCAAT GATGAGCACT TTTAAAGTTC TGCTATGTGG CGCGGTATTA TCCCCTGTTG
 2821 ACGCCGGCA AGAGCAACTC GGTCGCCGA TACACTATT C TCAAATGAC TTGGTTGAGT
 2881 ACTCACCAAGT CACAGAAAAG CATCTTACGG ATGGCATGAC AGTAAGAGAA TTATGCAGTG
 2941 CTGCCATAAC CATGAGTGAT AACACTGCC CCAACTTACT TCTGACAACG ATCGGAGGAC
 3001 CGAAGGAGCT AACCGCTTT TTGACAAACA TGGGGATCA TGTAACTCG CTTGATCGTT
 3061 GGGAACCGGA GCTGAATGAA GCCATACCAA ACGACGAGCG TGACACCACG ATGCCTGCAG
 3121 CAATGGCAAC AACGTTGCGC AAACATATTAA CTGGCGAATC ACTTACTCTA GCTTCCCGC
 3181 ACAAAATAAT AGACTGGATG GAGGCGGATA AAGTTGCAGG ACCACTTCTG CGCTCGGCCCC
 3241 TTCCGGCTGG CTGGTTTATT GCTGATAAAAT CTGGAGCCGG TGAGCGTGGG TCTCGGGTA
 3301 TCATTGCAAGC ACTGGGGCCA GATGGTAAGC CCTCCCGTAT CGTAGTTATC TACACGACGG
 3361 GGAGTCAGGC AACTATGGAT GAACGAAATA GACAGATCGC TGAGATAGGT GCCTCACTGA
 3421 TTAAGCATTG GTAACTGTCA GACCAAGTTT ACTCATATAT ACTTTAGATT GATTAAAAC
 3481 TTCATTTTA ATTAAAAGG ATCTAGGTGA AGATCCTTT TGATAATCTC ATGACCAAAA
 3541 TCCCTTAACG TGAGTTTCG TTCCACTGAG CGTCAGACCC CGTAGAAAAG ATCAAAGGAT
 3601 CTTCTTGAGA TCCTTTTTT CTGCGCTAA TCTGCTGCTT GCAAACAAAA AAACCAACGC
 3661 TACCAGCGGT GGTTTGTGTT CGGGATCAAG AGCTACCAAC TCTTTTCCG AAGGTAACG
 3721 GCTTCAGCAG AGCGCAGATA CCAAATACTG TCCTCTAGT GTAGCCGTAG TTAGGCCACC
 3781 ACTTCAAGAA CTCTGTAGCA CGCCTACAT ACCTCGCTCT GCTAATCCTG TTACCAAGTGG
 3841 CTGCTGCCAG TGGCGATAAG TCGTGTCTTA CCGGGTTGGA CTCAGACGA TAGTTACCGG
 3901 ATAAGGCAGA GCGGTCGGGC TGAACGGGGG GTTCTGTCAC ACAGCCCAGC TTGGAGCGAA
 3961 CGACCTACAC CGAACTGAGA TACCTACAGC GTGAGCTATG AGAAAGCGCC ACGCTTCCCG
 4021 AAGGGAGAAA GGGGGACAGG TATCCGGTAA GCGGCAGGGT CGGAACAGGA GAGCGCACGA
 4081 GGGAGCTTCC AGGGGGAAAC GCCTGGTATC TTTATAGTCC TGTCGGGTTT CGCCACCTCT
 4141 GACTTGAGCG TCGATTTTTG TGATGCTCGT CAGGGGGGCG GAGCCTATGG AAAAACGCCA
 4201 GCAACCGGGC CTCTTACGG TTCTGGCCCT TTTGCTGGCC TTTGCTCAC ATGTTCTTC
 4261 CTGCGTTATC CCCTGATTCT GTGGATAACC GTATTACCGC CTTTGAGTGA GCTGATACCG
 4321 CTCGCCGAG CGGAACGACC GAGCGCAGCG AGTCAGTGAG CGAGGAAGCG GAAGAGCGCC
 4381 TGATGCGGTA TTTCTCCTT ACGCATCTGT CGGGTATTT ACACCGCAT A TATGGTGCAC
 4441 TCTCAGTACA ATCTGCTCTG ATGCCGCATA GTTAAGCCAG TATAACTCC GCTATCGCTA
 4501 CGTGACTGGG TCATGGCTGC GCCCCGACAC CGGCCAACAC CGCTGACGG GCCCTGACGG
 4561 GCTTGCTGC TCCCAGCATC CGCTTACAGA CAAGCTGTGA CGCTCTCCGG GAGCTGCATG
 4621 TGTCAGAGGT TTTCACCGTC ATCACCAGA CGCGCGAGGC AGCTGCGGTA AAGCTCATCA
 4681 GCGTGGTCGT GAAGCGATT ACAGATGTCT GCCTGTTCAT CGCGCTCCAG CTCGTTGAGT
 4741 TTCTCCAGAA CGCTTAATGT CTGGCTCTG ATAAAGCGGG CCATGTTAAG GGCGGTTTTT
 4801 TCCCTGTTGG TCACTGATGC CTCCCGTAA GGGGGATTTT TGTTCATGGG GGTAATGATA
 4861 CCGATGAAAC GAGAGAGGAT GCTCACGATA CGGGTTACTG ATGATGAACA TGCCCGGTTA
 4921 CTGGAACGTT GTGAGGGTAA ACAACTGCCG GTATGGATGC GGCGGGACCA GAGAAAAATC
 4981 ACTCAGGGTC AATGCCAGCG CTTCGTTAAT ACAGATGTAG GTGTTCCACA GGGTAGCCAG
 5041 CAGCATCCCTG CGATGCAAGAT CGGAACATA ATGGTGCAGG GCGCTGACTT CCGCGTTTCC
 5101 AGACTTTACG AAACACGGAA ACCGAAGACC ATTCACTGTT TGCTCAGGT CGCAGACGTT
 5161 TTGCAGCAGC AGTCGCTTCA CGTTCGCTCG CGTATCGGTG ATTCAATTCTG CTAACCAGTA
 5221 AGGCAACCCCC GCCAGCCTAG CGGGTCCTC AACGACAGGA GCACGATCAT GCGCACCCGT
 5281 GGCCAGGACC CAACGCTGCC CGAGATGCGC CGCGTGCAGC TGCTGGAGAT GGCGGACGCG
 5341 ATGGATATGT TCTGCCAAGG GTTGGTTTGC GCATTCACAG TTCTCCGAA GAATTGATTG
 5401 GCTCCAATTC TTGGAGTGGT GAATCCGTTA GCGAGGTGCC GCGGGCTTCC ATTCAGGTGCG
 5461 AGGTGGCCCG GCTCCATGCA CGCGCAGCA ACGGGGGAG GCAGACAAGG TATAGGGCGG
 5521 CGCTTACAAT CCATGCCAAC CGTTCCATG TGCTGCCGA GCGGGCATAA ATCGCCGTGA
 5581 CGATCAGCGG TCCAGTGTAC GAAGTTAGGC TGGTAAGAGC CGCGAGCGAT CCTTGAAGCT
 5641 GTCCCTGATG GTCGTCTATC ACCTGCCCTGG ACAGCATGGC CTGCAACCGC GGCATCCCAG
 5701 TGCCGCCGA AGCGAGAAGA ATCATAATGG GGAAGGCCAT CCAGCCTCGC GTCGCGAACG
 5761 CCAGCAAGAC GTAGCCCAGC GCGTGCAGC CCATGCCGC GATAATGGCC TGCTTCTCGC
 5821 CGAAACGTTT GGTGGCGGGCA CGAGTGTACGA AGGCTTGAGC GAGGGCGTGC AAGATTCCGA
 5881 ATACCGCAAG CGACAGGCCG ATCATCGTCG CGCTCCAGCG AAAGCGGTCC TCGCCGAAAA
 5941 TGACCCAGAG CGCTGCCAGC ACCTGCTTA CGAGTTGCAT GATAAAGAAG ACAGTCATAA
 6001 GTGCGCGAC GATAGTCATG CCCCCGCC ACCGGAAGGA GCTGACTGGG TTGAAGGCTC
 6061 TCAAGGGCAT CGGTCGATCG ACGCTCTCCC TTATGCGACT CCTGCATTAG GAAGCAGCCC
 6121 AGTAGTAGGT TGAGGCCGTT GAGCACCGCC GCCGCAAGGA ATGGTGCATG CAAGGAGATG-

FIGURE 43C

123/240

6181 GCGCCCAACA GTCCCCGGC CACGGGGCCT GCCACCATAAC CCACGCCGAA ACAAGCGCTC
6241 ATGAGCCCGA AGTGGCGAGC CCGA

FIGURE 43D

174/260

pDEST24
GST carboxy-fusion vector, T7 promoter

T7 Promoter → mRNA
 1 atc gag atc tcg atc ccg ega aat taa tac gac tca cta tag gaa gac cac
 tag ctc tag agc tag ggc get tta att atg ctg agt gat atc cgt ctg gtg
 52 aac ggt ttc cct cta gat cac aag ttt gta caa aaa agc tga acg aga aac
 ttg cca aag gga gat cta gtc ttc aaa cat gtt ttg tcc act tgc tct ttg //

↓

|| CmR — ccdB ||

attR2 A F L Y K V V I M S
 1735 // tca tct tac gtt tct cgt tca gct ttc ttg tac aaa gtt gtt att atg tcc
 // agt aaa atg cca aga gca agt cca aag aac atg ttt cac cab taa tac agg
 1786 cct ata cta ggt tat tgg aaa att aag ggc ctt gtt caa ccc act cga ctt
 gga tat gat cca ata acc ttt taa ttc ccc gaa cac gtt ggg tga gct gaa

GST Protein → (~ 223 kDa)

FIGURE 44A

125/240

pDEST24 6961 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
195..71	attR1
304..963	CmR
1083..1167	inactivated ccdA
1305..1610	ccdB
1651..1775	attR2
1783..2451	GST
3181..4041	ampR
4190..4829	ori

1 ATCGAGATCT CGATCCCGCG AAATTAATAC GACTCACTAT AGGGAGACCA CAACGGTTTC
 61 CCTCTAGATC ACAAGTTTGT ACAAAAAAGC TGAACGAGAA ACGTAAAATG ATATAAATAT
 121 CAATATATTA AATTAGATTT TGCATAAAAA ACAGACTACA TAATACTGTA AAACACAACA
 181 TATCCAGTCA CTATGGCGGC CGCATTAGGC ACCCCAGGCT TTACACTTTA TGCTTCGGC
 241 TCGTATAATG TGTGGATTTT GAGTTAGGAT CCGGGCAGAT TTTCAGGAGC TAAGGAAGCT
 301 AAAATGGAGA AAAAATCAC TGGATATACC ACCGTTGATA TATCCAATG GCATCGTAA
 361 GAACATTTG AGGCATTCA GTCAGTTGCT CAATGTACCT ATAACCAGAC CGTTCAGCTG
 421 GATATTACGG CCTTTTTAAA GACCGTAAAG AAAAATAAGC ACAAGTTTA TCCGGCCTTT
 481 ATTACACATTC TTGCCCCCCT GATGAATGCT CATCCGGAAT TCCGTATGGC AATGAAAGAC
 541 GGTGAGCTGG TGATATGGGA TAGTGTTCAC CCTTGTACCA CCGTTTTCCA TGAGCAAAC
 601 GAAACGTTT CATCGCTCTG GAGTGAATAC CACGACGATT TCCGGCAGTT TCTACACATA
 661 TATTGCGAAG ATGTGGCGTG TTACGGTGA AACCTGGCCT ATTTCCCTAA AGGGTTTATT
 721 GAGAATATGT TTTTGTCTC AGCCAATCCC TGGGTGAGTT TCACCAAGTT TGATTIAAAC
 781 GTGGCCAATA TGACAACTT CTTCGCCCCC GTTTTCACCA TGGGCAAATA TTATACGAA
 841 GGCGACAAGG TGCTGTATGCC GCTGGCGATT CAGGTTCATC ATGCCGTCTG TGATGGCTTC
 901 CATGTCGGCA GAATGCTTAA TGAATTACAA CAGTACTGCG ATGAGTGGCA GGGCGGGGCG
 961 TAAACGCGTG GATCCGGCTT ACTAAAAGCC AGATAACAGT ATGCGTATTG GCGCGCTGAT
 1021 TTTTGGGTA TAAGAATATA TACTGATATG TATACCCGA GTATGTCAA AAGAGGTGTG
 1081 CTATGAAGCA GCGTATTACA GTGACAGTTG ACAGCGACAG CTATCAGTT CTCAAGGCAT
 1141 ATATGATGTC AATATCTCCG GTCTGGTAAG CACAACCATG CAGAATGAAG CCCGTCGTCT
 1201 GCGTGGCGAA CGCTGGAAAG CGGAAAATCA GGAAGGGATG GCTGAGGTGCG CCCGGTTTAT
 1261 TGAAATGAAC GGCTCTTTG CTGACGAGAA CAGGGACTGG TGAAATGCAG TTTAAGGTTT
 1321 ACACCTATAA AAGAGAGAGC CGTTATCGTC TGTTGTGGA TGTACAGAGT GATATTATTG
 1381 ACACGGCCGG GCGACGGATG GTGATCCCCC TGGCCAGTGC ACGCTGCTG TCAGATAAAG
 1441 TCTCCCGTGA ACTTTACCCG GTGGTGCATA TCGGGGGATGA AAGCTGGCGC ATGATGACCA
 1501 CCGATATGGC CAGTGTGCCG GTCTCCGTTA TCGGGGAAGA AGTGGCTGAT CTCAGCCACC
 1561 GCGAAAATGA CATCAAAAC GCCATTAACC TGATGTTCTG GGGAAATATAA ATGTCAGGCT
 1621 CCCTTATACA CAGCCAGTCT GCAGGTGAC CATACTGACT GGATATGTTG TGTTTACAG
 1681 TATTATGTAG TCTGTTTTT ATGCAAATC TAATTAAATA TATTGATATT TATATCATT
 1741 TACGTTTCTC GTTCAGCTTT CTTGTACAA GTGGTGATTA TGTCCCTAT ACTAGGTTAT
 1801 TGGAAAATTA AGGGCCTTGT GCAACCCACT CGACTTCTT TGAAATATCT TGAAGAAAAA
 1861 TATGAAGAGC ATTTGTATGA GCGCGATGAA GGTGATAAAT GGCAGAACAA AAAGTTGAA
 1921 TTGGGTTTGG AGTTTCCAA TCTTCCTTAT TATATTGATG GTGATGTTAA ATTAACACAG
 1981 TCTATGGCCA TCATACGTTA TATAGCTGAC AAGCACAACA TGTTGGGTGG TTGTCCAAA
 2041 GAGCGTGCAG AGATTTCAAT GCTTGAAGGA GCGGTTTGG ATATTAGATA CGGTGTTCG
 2101 AGAATTGCAAT ATAGTAAAGA CTTTGAAACT CTCAAAGTTG ATTTTCTTAG CAAGCTACCT
 2161 GAAATGCTGA AAATGTTCGA AGATCGTTA TGTCAAAAA CATATTAA TGTTGATCAT
 2221 GTAACCCATC CTGACTTCAT GTTGTATGAC GCTCTTGATG TTGTTTTATA CATGGACCCA
 2281 ATGTGCTGG ATGCGTTCCC AAAATTAGTT TGTTTAAAA AACGTATTGA AGCTATCCA
 2341 CAAATTGATA AGTACTGAA ATCCAGCAAG TATATAGCAT GGCCTTGCAG GGGCTGGCAA
 2401 GCCACGTTG GTGGTGGCA CCATCCTCCA AAATCGGATC TGGTTCCGGC TCCATGGGGA
 2461 TCCGGCTGCT AACAAAGCC GAAAGGAAGC TGAGTTGGCT GCTGCCACCG CTGAGCAATA
 2521 ACTAGCATAA CCCCTTGGG CCTCTAAACG GGTCTTGAGG GGTTTTTGCG TGAAAGGAGG
 2581 AACTATATCC GGATATCCAC AGGACGGGTG TGGTCGCCAT GATCGCTAG TCGATAGTGG
 2641 CTCCAAGTAG CGAAGCGAGC AGGACTGGC GCGGGCCAAA GCGGTGGAC AGTGCTCCGA-

FIGURE 44B

126/240

2701 GAACGGGTGC GCATAGAAAT TGCATCAACG CATATAGCGC TAGCAGCACG CCATAGTGAC
 2761 TGGCGATGCT GTCGGAATGG ACGATATCCC GCAAGAGGCC CGGCAGTACC GGCATAACCA
 2821 AGCCTATGCC TACAGCATCC AGGGTACGG TGCCGAGGAT GACGATGAGC GCATTGTTAG
 2881 ATTCATACA CGGTGCCTGA CTGCGTTAGC AATTAACTG TGATAAACTA CCGCATTAAA
 2941 GCTTATCGAT GATAAGCTGT CAAACATGAG AATTCTGAA GACGAAAGGG CCTCGTGATA
 3001 CGCCTATTTT TATAGGTTAA TGTATGATA ATAATGGTTT CTTAGACGTC AGGTGGCACT
 3061 TTTCGGGGAA ATGTGCGCGG AACCCCTATT TGTTTATTTT TCTAAATACA TTCAAATATG
 3121 TATCCGCTCA TGAGACAATA ACCCTGATAA ATGCTTCAT AATATTGAAA AAGGAAGAGT
 3181 ATGAGTATTG AACATTTCCG TGTCGCCCTT ATTCCCTTT TTGCGGCATT TTGCGCTTCCT
 3241 GTTTTGCTC ACCCAGAAC GCTGGTGAAA GTAAAGATG CTGAAGATCA GTTGGGTGCA
 3301 CGAGTGGGTT ACATCGAACT GGATCTCAAC AGCGGTAAGA TCCTTGAGAG TTTTCGCCCC
 3361 GAAGAACGTT TTCCAATGAT GAGCACTTT AAAGTTCTGC TATGTGGCGC GGTATTATCC
 3421 CGTGTGACG CCGGGCAAGA GCAACTCGGT CGCCGCATAC ACTATTCTCA GAATGACTTG
 3481 GTTGAGTACT CACCAGTCAC AGAAAAGCAT CTTACGGATG GCATGACAGT AAGAGAATTA
 3541 TGCAGTGCTG CCATAACCAC GAGTGATAAC ACTGCGGCCA ACTTACTTCT GACAACGATC
 3601 GGAGGACCGA AGGAGCTAAC CGCTTTTG CACAACATGG GGGATCATGT AACTCGCCCTT
 3661 GATCGTTGGG AACCGGAGCT GAATGAAGCC ATACCAAACG ACGAGCGTGA CACCACGATG
 3721 CCTGCAGCAA TGGCAACAAAC GTTGCAGCAA CTATTAACG GCAGACTACT TACTCTAGCT
 3781 TCCCAGGAAAC AATTAATAGA CTGGATGGAG GCGGATAAAAG TTGCAGGACC ACTTCTGCGC
 3841 TCGGCCCTTC CGGCTGGCTG GTTTATTGCT GATAAACTG GAGCCGGTGA GCGTGGGTCT
 3901 CGCGGTATCA TTGCAAGCT GGGGCCAGAT GTAAAGCCCT CCCGTATCGT AGTTATCTAC
 3961 ACGACGGGGG GTCAGGCAAC TATGGATGAA CGAAATAGAC AGATCGCTGA GATAGGTGCC
 4021 TCACTGATTA AGCATTGGTA ACTGTCAGAC CAAGTTACT CATATATACT TTAGATTGAT
 4081 TTAAAAACTTC ATTTTAATT TAAAAGGATC TAGGTGAAGA TCCTTTTGTA TAATCTCATG
 4141 ACCAAAATCC CTTAACGTGA GTTTCTGTT CACTGAGCGT CAGACCCCGT AGAAAAGATC
 4201 AAAGGATCTT CTTGAGATCC TTTTTTCTG CGCGTAATCT GTCGTTGCA AACAAAAAAA
 4261 CCACCGCTAC CAGCGGTGGT TTGTTGCCG GATCAAGAGC TACCAACTCT TTTTCCGAAG
 4321 GTAATGGCT TCAGCAGAGC GCAGATACCA AATACTGTCC TTCTAGTGTG GCCGTAGTTA
 4381 GGCCACCACT TCAAGAACTC TGAGCACCG CCTACATACC TCGCTCTGCT AATCCTGTTA
 4441 CCAGTGGCTG CTGCCAGTGG CGATAAGTCG TGTCTTACCG GTTGGACTC AAGACGATAG
 4501 TTACCGGATA AGGCGCAGCG GTCGGGCTGA ACGGGGGTTT CGTGCACACA GCCCAGCTTG
 4561 GAGCGAACGA CCTACACCGA ACTGAGATAC CTACAGCGTG AGCTATGAGA AAGCGCCACG
 4621 CTTCCCGAAG GGAGAAAGGC GGACAGGTAT CGGTAAAGCG GCAGGGTCGG AACAGGAGAG
 4681 CGCACGAGGG AGCTTCCAGG GGGAAACGCC TGGTATCTTT ATAGTCTCTG CGGGTTTCGC
 4741 CACCTCTGAC TTGAGCGTCG ATTTTGCTGA TGCTCGTCAG GGGGGCGGAG CCTATGGAAA
 4801 AACGCCAGCA ACGCGGCCCTT TTACGGTTC CTGGCCTTT GCTGGCCTTT TGCTCACATG
 4861 TTCTTCCTG CGTTATCCCC TGATTCTGT GATAACCGTA TTACCGCCTT TGAGTGAGCT
 4921 GATACCGCTC GCCGCAGCCG AACGACCGAG CGCAGCGAGT CAGTGAGCGA GGAAGCGGAA
 4981 GAGCGCCTGA TCGGGTATTT TCTCCTTAGC CATCTGTGCG GTATTTACCA CCGCATATAT
 5041 GGTGCACTCT CAGTACAATC TGCTCTGATG CGCAGTACTT AAGCCAGTAT AACTCCGCT
 5101 ATCGCTACGT GACTGGGTCA TGGCTGCC CGGACACCCG CCAACACCCG CTGACGCGCC
 5161 CTGACGGGCT TGTCTGCTCC CGGCATCCGC TTACAGACAA GCTGTGACCG TCTCCGGAG
 5221 CTGCATGTGT CAGAGGTTT CACCGTCATC ACCGAAACGC GCGAGGCAGC TGCGGTAAAG
 5281 CTCATCAGCG TGGCTGTGAA GCGATTACAA GATGTCTGCC TGTTCATCC CGTCCAGCTC
 5341 GTTGAGTTTC TCCAGAAGCG TTAATGTCTG GCTTCTGATA AAGCGGGCCA TGTTAAGGGC
 5401 GTTTTTTCTC TGTTGGTCA CTGATGCCCT CGTGTAAAGGG GGATTTCTGT TCATGGGGGT
 5461 AATGATACCG ATGAAACGAG AGAGGATGCT CACGATAACGG GTTACTGATG ATGAACATGC
 5521 CCGGTTACTG GAACGGTGTG AGGGTAAACA ACTGGCGGTAA TGATGCGGGC GGGACCAAGAG
 5581 AAAAATCACT CAGGGTCAAT GCCAGCGCTT CGTTAATACA GATGTAGGTG TTCCACAGGG
 5641 TAGCCAGCAG CATCCTGCAGA TGCAAGATCCG GAACATAATG GTGCAGGGCG CTGACTTCCG
 5701 CGTTTCCAGA CTTTACGAAA CACGGAAACCG GAAGACCAATT CATGTTGTTG CTCAGGTCGC
 5761 AGACGTTTG CAGCAGCGT CGCTTCACGT TCGCTCGCGT ATCGGTGATT CATTCTGCTA
 5821 ACCAGTAAGG CAACCCCGCC AGCCTAGCCG GGTCTCAAC GACAGGAGCA CGATCATGCG
 5881 CACCCGTGGC CAGGACCCAA CGCTGCCGA GATGCGCCGC GTGCGGCTGC TGGAGATGGC
 5941 GGACCGGATG GATATGTTCT GCCAAGGGTT GGTTGCGCA TTCACAGTTC TCCGCAAGAA
 6001 TTGATTGGCT CCAATTCTG GAGTGGTGA TCCGTTAGCG AGGTGCGGCC GGCTTCATT
 6061 CAGGTCGAGG TGGCCCGGCT CCATGCACCG CGACGCAACG CGGGGAGGCA GACAAGGTAT
 6121 AGGGCGGCCGC CTACAATCCA TGCCAACCCG TTCCATGTGC TCGCCGAGGC GGCATAAATC-

F6 U26 44C

127/240

6181 GCCGTGACGA TCAGCGGTCC AGTGATCGAA GTTAGGCTGG TAAGAGCCGC GAGCGATCCT
6241 TGAAGCTGTC CCTGATGGTC GTCATCTACC TGCCCTGGACA GCATGGCCTG CAACGCCGGC
6301 ATCCCCGATGC CGCCGGAAGC GAGAAGAACATC ATAATGGGGA AGGCCATCCA GCCTCGCGTC
6361 GCGAACGCCA GCAAGACGTA GCCCAGCGCG TGCCGCCCA TGCCGGCGAT AATGGCTGC
6421 TTCTCGCCGA AACGTTTGGT GGCGGGACCA GTGACGAAGG CTTGAGCGAG GGCAGTCAAG
6481 ATTCCGAATA CCGCAAGCGA CAGGCCGATC ATCGTCGCGC TCCAGCGAAA GCGGTCTCG
6541 CCCAAAAATGA CCCAGAGCGC TGCCGGCACCG TGTCTTACGA GTTGCATGAT AAAGAAGACA
6601 GTCATAAGTG CGCGCAGCAT AGTCATGCC CGCGCCCAACC GGAAGGAGCT GACTGGTTG
6661 AAGGCTCTCA AGGGCATCGG TCGATCGACG CTCTCCCTTA TGCGACTCCT GCATTAGGAA
6721 GCAGCCCAGT AGTAGGTTGA GGCGGTTGAG CACCGCCGCC GCAAGGAATG GTGCATGCAA
6781 GGAGATGGCG CCCAACAGTC CCCCCGGCCAC GGGGCCTGCC ACCATACCCA CGCCGAAACA
6841 AGCGCTCATG AGCCCGAAGT GGCGAGCCCG ATCTTCCCCA TCGGTGATGT CGGCGATATA
6901 GGCGCCAGCA ACCGCACCTG TGGCGCCGGT GATGCCGGCC ACGATGCGTC CGGCAGTAGAG
6961 G

FIGURE 44D

128/260
FIGURE 45A

pDEST25
Thioredoxin carboxy-fusion vector, T7 promoter

T7 Promoter → mRNA

1 nag atc tcc atc ccg cga aat **tta tac gac tca cta tag gga gac cac aac**
 ntc tag agc tag ggc gct tta **att atg ctg aqt qat acc cgt ctg gtg ttg**

52 ggt ttc ect cta gat cac aag ttt **gtt caa aaa agc tga acg aga aac gta** //

// cca aag gga gat cta **atg ttc aaa cat qtt ttg tcg act tgg tct ttg cat** //

CmR — *ccdB* — //

1735 // **attR2** — A F ^W L Y K V V I M S D
 ttt tac gtt tct cgt tca gct ttc ttg tac aaa gtt gtt att atg agc gat
 aaa atg caa aga gca agt cga aag aac atg ttt cac ctc taa tac tcc cta

1786 // **K I I** — *Trx Protein* (~120 aa.) —
 aaa att att cac ctg act gac gac agt ttt gac acg gat gta ctc aaa gcg
 ttt taa taa gtt gac tga ctg ctg tca aaa ctg tgc cta cat gag ttt cgc

129/240

pDEST25 6652 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
844..720	attR1
953..1612	CmR
1732..1816	inactivated ccdA
1954..2259	ccdB
2300..2424	attR2
2432..2794	trx

1 CCGGAAGCGA GAAGAATCAT AATGGGAAAG GCCATCCAGC CTCGGTCCGC GAACGCCAGC
 61 AAGACGTAGC CCAGCGCGTC GGCGGCCATG CGGGCGATAA TGGCCTGCTT CTCGCCAAA
 121 CGTTTGGTGG CGGGACCACT GACGAAGGCT TGAGCGAGGG CGTGCAGAT TCCGAATACC
 181 GCAAGCGACA GGCGGATCAT CGTCGCGCTC CAGCGAAAGC GGTCCCTGCC GAAAATGACC
 241 CAGAGCGCTG CGGGCACCTG TCCTACGAGT TGCAATGATAA AGAAGACAGT CATAAGTGCG
 301 GCGACGATAG TCATGCCCG CGCCCACCGG AAGGAGCTGA CTGGGTTGAA GGCTCTCAAG
 361 GGCATCGGTC GATCGACGCT CTCCCTTATG CGACTCCCTGC ATTAGGAAGC AGCCCAGTAG
 421 TAGGTTGAGG CGGTTGAGCA CGGCGCCCGC AAGGAATGGT GCATGCAAGG AGATGGCGCC
 481 CAACAGTCCC CGGGCACCGG GGCTGCCAC CATAACCCACG CGGAACAAAG CGCTCATGAG
 541 CCCGAAGTGG CGAGCCCGAT CTTCCCCATC GGTGATGTGC GCGATATAGG CGCCAGCAAC
 601 CGCACCTGTG GCGCCGGTGA TGCCGGCAC GATGCGTCCG GCGTAGAGGA TCGAGATCTC
 661 GATCCCGCGA ATTAATACG ACTCACTATA GGGAGACAC AACGGTTTCC CTCTAGATCA
 721 CAAGTTTGTG CAAAAAAAGCT GAACGGAGAA CGTAAATGAA TATAAATATC AATATATTAA
 781 ATTAGATTTT GCATAAAAAA CAGACTACAT AATACTGTAA AACACAACAT ATCCAGTCAC
 841 TATGGCGGCC GCATTAGGCA CCCAGGCTT TACACTTTAT GCTTCCGGCT CGTATAATGT
 901 GTGGATTTG AGTTAGGATC CGGGAGATT TTCAGGAGCT AAGGAAGCTA AAATGGAGAA
 961 AAAATCACT GGATATACCA CGGTTGATAT ATCCCAATGG CATCGTAAAG AACATTTGA
 1021 GGCATTTCAAG TCAGITGCTC AATGTACCTA TAACCAGACC GTTCAGCTGG ATATTACGGC
 1081 CTTTTAAAG ACCGTAAGA AAAATAAGCA CAAGTTTTAT CGGGCTTTA TTCACATTCT
 1141 TGCCCGCTG ATGAATGCTC ATCCGAATT CCGTATGGCA ATGAAAGACG GTGAGCTGGT
 1201 GATATGGGAT AGTGTTCAC CTTGTTACAC CGTTTCCAT GAGCAAACGT AAACGTTTC
 1261 ATCGCTCTGG AGTGAATACC ACGACGATTT CGGGCAGTTT CTACACATAT ATTCGCAAGA
 1321 TGTGGCGTGT TACGGTGAA ACCTGGCTA TTTCCCTAA GGGTTTATTG AGAATATGTT
 1381 TTTCGTCTCA GCCAATCCCT GGGTGGAGTTT CACCAAGTTT GATTTAACCG TGGCAATAT
 1441 GGACAACTTC TTCGCCCCCG TTTTACCAT GGGCAAATAT TATACGCAAG GCGACAAGGT
 1501 GCTGATGCCG CTGGCGATTG AGGTTCATCA TGCCGTCTGT GATGGCTTCC ATGTGGCAG
 1561 AATGCTTAAT GAATTACAAAC AGTACTGCGA TGAGTGGCAG GGCAGGGCGT AAACGCGTGG
 1621 ATCCGGCTTA CTAAAAGCCA GATAACAGTA TGCGTATTG CGCGCTGATT TTTGGGTAT
 1681 AAGAATATAT ACTGATATGT ATACCCGAAG TATGTCAAAAG AGAGGTGTGC TATGAAGCAG
 1741 CGTATTACAG TGACAGTTGA CAGCGACAGC TATCAGTTGC TCAAGGCATA TATGATGTCA
 1801 ATATCTCCGG TCTGGTAAGC ACAACCAGTC AGAATGAAGC CGTCGCTCTG CGTGGCAAC
 1861 GCTGAAAGC GGAAAATCAG GAAGGGATGG CTGAGGTCGC CGGGTTTATT GAAATGAACG
 1921 GCTCTTTGC TGACGAGAAC AGGGACTGGT GAAATGCAGT TAAAGGTTA CACCTATAAA
 1981 AGAGAGAGCC GTTATCGTCT GTTTGGGAT GTACAGAGTG ATATTATTGA CACGCCCGGG
 2041 CGACGGATGG TGATCCCCCT GGCCAGTGCA CGTCTGCTGT CAGATAAGT CTCCCGTGA
 2101 CTTTACCCGG TGGTGCATAT CGGGGATGAA AGCTGGCGCA TGATGACCAC CGATATGGCC
 2161 AGTGTGCCGG TCTCCGTTAT CGGGGAAGAA GTGGCTGATC TCAGCCACCG CGAAAATGAC
 2221 ATCAAAACG CCATTAACCT GATGTTCTGG GGAATATAAA TGTCAAGGCTC CCTTATACAC
 2281 AGCCAGTCTG CAGGTGCGACC ATAGTGAATCT GATATGTTGT GTTTTACAGT ATTATGTAGT
 2341 CTGTTTTTA TGCAAAATCT AATTTAATAT ATTGATATTT ATATCATTTC ACGTTCTCG
 2401 TTCAGCTTTC TTGTACAAAAG TGGTGATTAT GAGCGATAAA ATTATTCACC TGACTGACGA
 2461 CAGTTTGAC ACGGATGTAC TCAAAGCGGA CGGGCGATC CTCGTCGATT TCTGGCAGA
 2521 GTGGTGCAGGT CGGTGCAAA TGATCGCCCC GATTCTGGAT GAAATCGCTG ACGAATATCA
 2581 GGGCAAAACTG ACCGTTGCAA AACTGAACAT CGATCAAAAC CCTGGCACTG CGCCGAAATA
 2641 TGGCATCCGT GGTATCCCGA CTCTGCTGCT GTTCAAAAC GGTGAAGTGG CGGCAACCAA
 2701 AGTGGGTGCA CTGTCTAAAG GTCAGTTGAA AGAGTTCCCTC GACGCTAACCG TGGCCGGTTC
 2761 TGGTTCTGGT GATGACGATG ACAAGGTACCGGGGATCGA TCCGGCTGCT AACAAAGCCCC

FIGURE 45B

130/240

2821 GAAAGGAAGC TGAGTTGGCT GCTGCCACCG CTGAGCAATA ACTAGCATAA CCCCTTGGGG
 2881 CCTCTAACG GGTCTTGAGG GGTTTTTGTC TGAAAGGAGG AACTATATCC GGATATCCAC
 2941 AGGACGGGTG TGGTCGCCAT GATCGCGTAG TCGATAGTGG CTCCAAGTAG CGAAGCGAGC
 3001 AGGACTGGGC GGCAGGCCAAA GCGGTCGGAC AGTGCCTCCGA GAACGGGTGC GCATAGAAAT
 3061 TGCATCAACG CATATAGCGC TAGCAGCACG CCATAGTGAC TGGCGATGCT GTGGAAATGG
 3121 ACGATATCCC GCAAGAGGCC CGGCAGTACC GGCATAACCA AGCCTATGCC TACAGCATCC
 3181 AGGGTGACGG TGCCGAGGAT GACGATGAGC GCATTGTTAG ATTTCATACA CGGTGCCTGA
 3241 CTGCGTTAGC AATTTAAGTG TGATAAAACTA CCGCATTAAA GCTTATCGAT GATAAGCTGT
 3301 CAAACATGAG AATTCTTGAA GACGAAAGGG CCTCGTGTAA CGCCTATTTT TATAGGTTAA
 3361 TGTATGATA ATAATGGTTT CTTAGACGTC AGGTGGCACT TTTCGGGAA ATGTGCGCGG
 3421 AACCCCTATT TGTTTATTTT TCTAAATACA TTCAAATATG TATCCGCTCA TGAGACAATA
 3481 ACCCTGATAA ATGCTTCAT AATATTGAAA AAGGAAGAGT ATGAGTATT AACATTCCG
 3541 TGTCGCCCTT ATTCCCTTTT TTGCGGCATT TTGCGCTTCTT GTTGGTCTC ACCCAGAAAC
 3601 GCTGGTGAAA GTAAAAGATG CTGAAGATCA GTTGGGTGCA CGAGTGGTT ACATCGAACT
 3661 GGATCTCAAC AGCGGTAAGA TCCCTGAGAG TTTTCGCCCC GAAGAACGTT TTCCAAATGAT
 3721 GAGCACTTTT AAAGTTCTGC TATGTGGCGC GGTATTATCC CGTGTGACG CGGGCAAGA
 3781 GCAACTCGGT CGCCGCATAC ACTATTCTCA GAATGACTTG GTTGAGTACT CACCAGTCAC
 3841 AGAAAAGCAT CTTACGGATG GCATGACAGT AAGAGAATTA TGCAAGTGTG CCATAACCAC
 3901 GAGTGATAAC ACTGCGGCCA ACTTACTCT GACAACGATC GGAGGACCGA AGGAGCTAAC
 3961 CGCTTTTTTG CACAACATGG GGGATCATGT AACTCGCTT GATCGTTGGG AACCGGAGCT
 4021 GAATGAGGCC ATACCAAACG ACAGAGCTGA CACCAAGATG CCTGCAGCAA TGGCAACAAC
 4081 GTTGGCCAAA CTATTAAGTCG GCGAACTACT TACTCTAGCT TCCCGGCAAC AATTAATAGA
 4141 CTGGATGGAG CGCGATAAAAG TTGAGGACG ACTTCTGCGC TCGGCCCTTC CGGCTGGCTG
 4201 GTTTTATTGCT GATAAAATCTG GAGCGGTGA CGCGGGTCT CGCGGTATCA TTGCAGCACT
 4261 GGGGCCAGAT GTTAAGCCCT CCCGTATCGT AGTTATCTAC ACAGACGGGA GTCAGGCAAC
 4321 TATGGATGAA CGAAATAGAC AGATCGCTGA GATAGGTGCG TCACTGATTA AGCATTGGTA
 4381 ACTGTCAGAC CAAGTTTACT CATATATACT TTAGATTGAT TAAAAACTTC ATTNTTAATT
 4441 TAAAAGGATC TAGGTGAAGA TCCCTTTTGTA TAATCTCATG ACCAAAATCC CTTAACGTGA
 4501 GTTTTCGTTT CACTGAGCGT CAGACCCCGT AGAAAAGATC AAAGGATCTT CTTGAGATCC
 4561 TTTTTTCTG CGCGTAATCT GCTGCTTGCA AACAAAAAAA CCACCGCTAC CAGCGGTGGT
 4621 TTGTTTGCGC GATCAAGAGC TACCAACTCT TTTCCGAAG GTAAGTGGCT TCAGCAGAGC
 4681 GCAGATACCA AATACTGTCC TTCTAGTGTG GCGTAGTTA GGCCACCACT TCAAGAACTC
 4741 TGTAGCACCG CCTACATACC TCGCTCTGCT AATCCTGTTA CCAGTGGCTG CTGCCAGTGG
 4801 CGATAAGTCG TGTCTTACCG GGTTGGACTC AAGACGATAG TTACCGGATA AGGCGCAGCG
 4861 GTCGGGCTGA ACGGGGGTTT CGTGACACCA GCCCAGCTTG GAGCGAACGA CCTACACCGA
 4921 ACTGAGATAC CTACAGCGTG AGCTATGAGA AAGCGCCACG CTTCGGAAAG GGAGAAAGGC
 4981 GGACAGGTAT CGGTAAGCG GCAGGGTCGG AACAGGAGAG CGCACGAGGG AGCTTCCAGG
 5041 GGGAAACGCC TGGTATCTTT ATAGTCTCTGT CGGGTTTGC CACCTCTGAC TTGAGCGTGC
 5101 ATTTTTGTGA TGCTCGTCAG GGGGGCGGAG CCTATGGAAA AACGCCAGCA ACGCGCCCTT
 5161 TTTACGGTTT CTGGCCTTT GCTGGCCTT TGTCACATG TTCTTCTG CGTTATCCCC
 5221 TGATTCTGTG GATAACCGTA TTACCGCTT TGAGTGGACT GATACCGCTC GCGCAGCCG
 5281 AACGACCGAG CGCAGCGAGT CAGTGAGCGA GGAAGCGGAA GAGCGCCTGA TGCGGTATTT
 5341 TCTCCTTACG CATCTGTGCG GTATTCACA CGCGATATAT GGTGCACTCT CAGTACAATC
 5401 TGCTCTGATG CCGCATAGTT AAGCCAGTAT ACACCTCGCT ATCGCTACGT GACTGGGTCA
 5461 TGGCTCGGCC CCGACACCCG CCAACACCCG CTGACCGGCC CTGACGGGT TGTCTGCTCC
 5521 CGGCATCCGC TTACAGACAA GCTGTGACCG TCTCCGGAG CTGCATGTGT CAGAGGTTTT
 5581 CACCGTCATC ACCGAAACGC GCGAGGCAGC TGCGGTAAAG CTCATCAGCG TGGCTGTGAA
 5641 GCGATTCACA GATGTCTGCC TGTTCATCCG CGTCCAGCTC GTTGAGTTT TCCAGAACCG
 5701 TTAATGTCTG GCTTCTGATA AAGCGGGCA TGTTAAGGGC GTTGGTCTC TGTTGGTCA
 5761 CTGATGCCCTC CGTGTAAAGGG GGATTTCTGT TCATGGGGT AATGATACCG ATGAAACGAG
 5821 AGAGGATGCT CACGATACGG GTTACTGTG ATGAAATGCA CGGGTTACTG GAACGTTGTG
 5881 AGGGTAAACA ACTGGCGGT TGGATGCCGC GGGACCAGAG AAAAATCACT CAGGGTCAAT
 5941 GCCAGCGCTT CGTTAATACA GATGTAGGTG TTCCACAGGG TAGCCAGCAG CATCCTGCGA
 6001 TGCAGATCCG GAACATAATG GTGCAGGGCG CTGACTTCCG CGTTCCAGA CTTTACGAAA
 6061 CACGGAAACCG GAAGACCAATT CATGTTGTTG CTCAGGTGCG AGACGTTTG CAGCAGCAGT
 6121 CGCTTCACGT TCGCTCGCGT ATCGGTGATT CATTCTGCTA ACCAGTAAGG CAACCCCGCC
 6181 AGCCTAGCCG GGTCTCAAC GACAGGAGCA CGATCATGCG CACCCGTGCC CAGGACCCAA
 6241 CGCTGCCGA GATGCCGC GTGCCGCTGC TGGAGATGGC GGACGCGATG GATATGTTCT

H6U26 45C

131/240

6301 GCCAAGGGTT GGTTTGCAGCA TTCACAGTTC TCCGCAAGAA TTGATTGGCT CCAATTCTTG
6361 GAGTGGTGAA TCCGTTAGCG AGGTGCCGC GGCTTCATT CAGGTCGAGG TGGCCCGGCT
6421 CCATGCACCG CGACGCAACG CGGGGAGGCA GACAAGGTAT AGGGCGGCCG CTACAATCCA
6481 TGCCAACCG TTCCATGTGC TCGCCGAGGC GGCATAAATC GCCGTGACGA TCAGCGGTCC
6541 AGTGATCGAA GTTAGGCTGG TAAGAGCCGC GAGCGATCCT TGAAGCTGTC CCTGATGGTC
6601 GTCATCTACC TGCCTGGACA GCATGGCTG CAACGGGGC ATCCCGATGC CG

FIGURE 45D

132/260

FIGURE 46A

**pDEST26 His6 Amino Fusion in pCMV Sport-neo
Vector**

600 ttg acg tca atg gga gtt tgt ttt ggc acc aaa atc aac ggg act ttc caa
 aac tgc agt tac cct caa aca aaa ccg tgg ttt tag ttg ccc tga aag gtt
 651 aat gtc gta aca act ccg ccc cat tga cgc aaa tgg gcg gta ggc gtg tac
 tta cag cat tgt tga ggc ggg gta act ggg ttt acc ccc cat ccc cac atg
 CMV Promoter → M2M
 702 ggt ggg agg tct ata taa gca gag ctc gtt tag tga acc gtc aga tgc tct
 //ccc ccc tcc aga tat att cgt ctc gag caa atc act tgg cag tct agc gga
 753 gga gac gec atc cac gct gtt ttg acc tcc ata gaa gac acc ggg acc gat
 cct ctg cgg tag gtg cga caa aac tgg agg tat ctt ctg tgg ccc tgg cta
 Start Transl. M A Y Y H H
 804 cca gcc tcc gga ctc tag cct agg ccc cgg acc latg ggc tac tac cat cac
 ggt cgg agg cct gag atc gga tcc ggc gcc tgg tac ccc atg atg gta gtc
 H H H H S R S T S I V K K A end R1
 855 dat dac dat cac tct aga tca aca agt ttg tac aaa aaa gct gaa cga gaa
 gta gtc gta gtc aga tct agt tgt tca aac atg ttt ttt cga ctt gct ctt
 Int ↓

133/240

pDEST26 7481 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
492..509	his6
619..519	attR1
752..1411	CmR
1531..1615	inactivated ccdA
1753..2058	ccdB
2099..2223	attR2
2409..2771	SV40 polyA
2966..3421	f1 intergenic region
3485..3903	SV40 promoter
3948..4742	neo
4806..4854	polyA
5265..6125	Apr
6274..6913	ori
7344..385	CMV promoter

1 GTAAACTGCC CACTGGCAG TACATCAAGT GTATCATATG CCAAGTACGC CCCCTATTGA
 61 CGTCAATGAC GGTAAATGGC CCGCCCTGGCA TTATGCCAG TACATGACCT TATGGGACTT
 121 TCCTACTTGG CAGTACATCT ACGTATTAGT CATCGCTATT ACCATGGTGA TGCGGTTTTG
 181 GCAGTACATC AATGGGCGTG GATAGCGGTT TGACTCACGG GGATTTCAA GTCTCCACCC
 241 CATTGACGTC AATGGGAGTT TGTTTGGCA CCAAAATCAA CGGGACTTTTC CAAAATGTCG
 301 TAACAACCTCC GCCCCATTGA CGAAATGGG CGGTAGGCGT GTACGGTGGG AGGTCTATAT
 361 AAGCAGAGCT CGTTTAGTGA ACCGTCAGAT CGCTTGGAGA CGCCATCCAC GCTGTTTTGA
 421 CCTCCATAGA AGACACCGGG ACCGATCCAG CCTCCGGACT CTAGCCTAGG CCGCGGACCA
 481 TGGCGTACTA CCATCACCAT CACCATCACT CTAGATCAAC AAGTTTGAC AAAAAAGCTG
 541 AACGAGAAC GTAAAATGAT ATAAATATCA ATATATTAAA TTAGATTTG CATAAAAAAC
 601 AGACTACATA ATACTGTAAA ACACAAACATA TCCAGTCACT ATGGCGGCCG CATTAGGCAC
 661 CCCAGGCTTT ACACTTTATG CTTCCGGCTC GTATAATGTG TGGATTTGAG GTAGGATCC
 721 GGCAGAGATT TCAGGAGCTA AGGAAGCTAA ATGGAGAAA AAAATCACTG GATATACCAC
 781 CGTTGATATA TCCCAATGGC ATCGTAAAGA ACATTTTGAG GCATTTCACT CAGTTGCTCA
 841 ATGTACCTAT AACCAGACCG TTCAGCTGGA TATTACGGCC TTTTTAAAGA CCGTAAAGAA
 901 AAATAAGCAC AAGTTTTATC CGGCCTTAT TCACATTCTT GCCCGCCTGA TGAATGCTCA
 961 TCCGGAATTG CGTATGGCAA TGAAAGACGG TGAGCTGGTG ATATGGATA GTGTTACCCC
 1021 TTGTTACACC GTTTTCCATG AGCAAACTGA AACGTTTCA TCGCTCTGGA GTGAATACCA
 1081 CGACGATTTTC CGGCAGTTTC TACACATATA TTGCAAGAT GTGGCGTGT ACGGTGAAAA
 1141 CCTGGCCTAT TTCCCTAAAG GGTTTATTGA GAATATGTTT TCGTCTCAG CCAATCCCTG
 1201 GGTGAGTTTC ACCAGTTTG ATTTAACACGT GGCCAATATG GACAACCTCT TCGCCCCCGT
 1261 TTTCACCATG GGCAAATATT ATACGCAAGG CGACAAGGTG CTGATGCCGC TGGCGATTCA
 1321 GGTTCATCAT GCGTCTGTG ATGGCTTCCA TGTCGGCAGA ATGCTTAATG AATTACAACA
 1381 GTACTGCGAT GAGTGGCAGG GCGGGGGCGTA AAGATCTGGA TCCGGCTTAC TAAAGCCAG
 1441 ATAACAGTAT GCGTATTTGC GCGCTGATTT TTGCGGTATA AGAATATATA CTGATATGTA
 1501 TACCCGAAGT ATGTCAAAAAA GAGGTGTGCT ATGAAGCAGC GTATTACAGT GACAGTTGAC
 1561 AGCGACAGCT ATCAGTTGCT CAAGGCATAT ATGATGTCAA TATCTCCGGT CTGGTAAGCA
 1621 CAACCATGCA GAATGAAGCC CGTCGCTCTGC GTGCCGAACG CTGGAAAGCG GAAAATCAGG
 1681 AAGGGATGGC TGAGGTGCGC CGGTTTATTG AAATGAACGG CTCTTTGCT GACGAGAACCA
 1741 GGGACTGGTG AAATGCAGTT TAAGGTTTAC ACCTATAAAA GAGAGAGCCG TTATCGTCTG
 1801 TTTGTGGATG TACAGAGTGA TATTATTGAC ACGCCCGGGC GACGGATGGT GATCCCCCTG
 1861 GCCAGTGCAC GTCTGCTGTC AGATAAAAGTC TCCCGTGAAC TTTACCCGGT GGTGCATATC
 1921 GGGGATGAAA GCTGGCGCAT GATGACCACC GATATGGCCA GTGTGCCGGT CTCCGTTATC
 1981 GGGGAAGAAG TGGCTGATCT CAGCCACCGC GAAAATGACA TCAAAAACGC CATTAAACCTG
 2041 ATGTTCTGGG GAATATAAAAT GTCAGGCTCC CTTATACACA GCCAGTCTGC AGGTCGACCA
 2101 TAGTGAATGG ATATGTTGTG TTTTACAGTA TTATGTAGTC TGTTTTTAT GCAAAATCTA
 2161 ATTTAATATA TTGATATTAA TATCATTTA CGTTTCTCGT TCAGCTTCT TGTACAAAGT
 2221 GGTTGATCGC GTGCATGCGA CGTCATAGCT CTCTCCCTAT AGTGAAGTCGT ATTATAAGCT
 2281 AGGCACTGGC CGTCGTTTA CAACGTCGTG ACTGGAAAAA CTGCTAGCTT GGGATCTTG -

FIGURE 46B

134/260

2341 TGAAGGAACC TTACTTCTGT GGTGTGACAT AATTGGACAA ACTACCTACA GAGATTAAA
 2401 GCTCTAAGGT AAATATAAAA TTTTTAAGTG TATAATGTGT TAAACTAGCT GCATATGCTT
 2461 GCTGCTTGAG AGTTTTGCTT ACTGAGTATG ATTTATGAAA ATATTATACA CAGGAGCTAG
 2521 TGATTCTAAT TGGTTGTGA TTTTAGATTC ACAGTCCCAA GGCTCATTTC AGGCCCTCA
 2581 GTCCTCACAG TCTGTTCATG ATCATAATCA GCCATACAC ACCCTGAAACA TAAAATGAAT GCAATTGTTG
 2641 CTTTAAAAAA CCTCCCCACAC CTCCCCCTGA ACCTGAAACA TAAAATGAAT GCAATTGTTG
 2701 TTGTTAACCT GTTATTGCA GCTTATAATG GTTACAAATA AAGCAATAGC ATCACAAATT
 2761 TCACAAATAA AGCATTTTT TCACTCGATT CTAGTTGTGG TTTGTCCAAA CTCATCAATG
 2821 TATCTTATCA TGTCTGGATC GATCCTGCAT TAATGAATCG GCCAACGCGC GGGGAGAGGC
 2881 GGTTTGCCTA TTGGCTGGCG TAATAGCGAA GAGGCCCGCA CCGATCGCCC TTCCCAACAG
 2941 TTGCGCAGCC TGAATGGCGA ATGGGACGCG CCCTGTAGCG GCGCATTAAAG CGCGGCGGGT
 3001 GTGGTGGTTA CGCGCAGCGT GACCGCTACA CTTGCCAGCG CCCTAGCGCC CGCTCCCTTC
 3061 GCTTTCTTCC CTTCTTTCT CGCCACGTC GCCGGCTTTC CCCGTCAAGC TCTAAATCGG
 3121 GGGCTCCCTT TAGGGTTCCG ATTTAGTGT TTACGGCACC TCGACCCCCAA AAAACTGAT
 3181 TAGGGTGATG GTTCACGTAG TGGGCCATCG CCCTGTATAGA CGGTTTTTCG CCCTTGACG
 3241 TTGGAGTCCA CGTTCTTTAA TAGTGGACTC TTGTTCCAAA CTGGAACAAAC ACTCAACCCCT
 3301 ATCTCGGTCT ATTCTTTGA TTTATAAGGG ATTTTGCCTA TTTCGGCCTA TTGGTTAAAAA
 3361 AATGAGCTGA TTTAACAAAT ATTTAACCGC AATTAAACAA AATATTAAAC GTTTACAATT
 3421 TCGCCTGATG CGGTATTTTC TCCTTACGCA TCTGTGCGGT ATTTCACACC GCATACGCGG
 3481 ATCTGCGCAG CACCATGGCC TGAAAATAAC TCTGAAAGAG GAACTTGGTT AGGTACCTTC
 3541 TGAGGCGGAA AGAACCGACT GTGGAATGTG TGTCAAGTGT GGTGTGGAAA GTCCCCAGGC
 3601 TCCCCAGCAG GCAGAAAGTAT GCAAAGCATG CATCTCAATT AGTCAGCAAC CAGGTGTGGA
 3661 AAGTCCCCAG GCTCCCCAGC AGGCAGAAAGT ATGCAAAGCA TGCATCTCAA TTAGTCAGCA
 3721 ACCATAGTCC CGCCCCAAC TCCGCCATC CGGCCCTAA CTCCGCCAG TTCCGCCCAT
 3781 TCTCCGCCCC ATGGCTGACT AATTTTTTTT ATTTATGCAG AGGCCGAGGG CGCCTCGGCC
 3841 TCTGAGCTAT TCCAGAAGTA GTGAGGGAGGCT TTTTTGGAG GCCTAGGCTT TTGCAAAAG
 3901 CTTGATTCTT CTGACACAAAC AGTCTCGAAC TTAAGGCTAG AGCCACCATG ATTGAACAAG
 3961 ATGGATTGCA CGCAGGTTCT CGGGCCCTT GGGTGGAGAG GCTATTGGC TATGACTGGG
 4021 CACACAGAC AATCGGCTGC TCTGATGCCG CGGTGTTCCG GCTGTAGCG CAGGGGCC
 4081 CGGTTCTTTT TGTCAAGACC GACCTGTCCG GTGGCCCTGAA TGAACGTGAG GACGAGGCAG
 4141 CGCGCTATC GTGGCTGGCC ACGACGGCG TTCCCTGCGC AGCTGTGCTC GACGTTGTCA
 4201 CTGAAGCGGG AAGGGACTGG CTGCTATTGG CGAAGTGC GGGGAGGAT CTCCGTCTCAT
 4261 CTCACCTTGC TCCTGCCAG AAAGTATCCA TCATGGCTGA TGCAATGCC CGGCTGCATA
 4321 CGCTTGATCC GGCTACCTGC CCATTGACC ACCAAGCGAA ACATCGCATE GAGCGAGCAC
 4381 GTACTCGGAT GGAAGCCGGT CTTGTGCGATC AGGATGATCT GGACGAAGAG CATCAGGGC
 4441 TCGGCCAGC CGAACTGTC GCGAGGCTCA AGGCGCGCAT GCCCAGCGC GAGGATCTCG
 4501 TCGTGACCCA TGGCGATGCC TGCTTGGCGA ATATCATGGT GAAAATGGC CGCTTTCTG
 4561 GATTCACTGA CTGTGGCCGG CTGGGTGTGG CGGACCGCTA TCAGGACATA GCGTTGGCTA
 4621 CCCGTGATAT TGCTGAAGAG CTTGGCCGGC AATGGGCTGA CCGCTTCCTC GTGTTTACG
 4681 GTATGCCGC TCCCGATTTC CAGCGCATCG CCTTCTATCG CCTTCTTGAC GAGTTCTTCT
 4741 GAGGGGACT CTGGGGITCG AAATGACCGA CCAAGCGACG CCCAACCTGC CATCACGATG
 4801 GCCGCAATAA AATATCTTA TTTTCATTAC ATCTGTGTGT TGGTTTTTTG TGTGAATCGA
 4861 TAGCGATAAG GATCCGCGTA TGGTGCACTC TCAGTACAAT CTGCTCTGAT GCCGCATAGT
 4921 TAAGCCAGCC CCGACACCCG CCAACACCCG CTGACGCC GCGACGGCT TGTCTGCTCC
 4981 CGGCATCCGC TTACAGACAA GCTGTGACCG TCTCCGGGAG CTGCATGTGT CAGAGGTTTT
 5041 CACCGTCATC ACCGAAACCGC GCGAGACGAA AGGGCCTCGT GATACGCCATA TTTTTATAGG
 5101 TTAATGTCAT GATAATAATG GTTCTTCTAGA CGTCAGGTGG CACTTTTCGG GGAAATGTGC
 5161 GCGGAACCCC TATTGTTTA TTTTCTAAA TACATTCAA TATGTATCCG CTCATGAGAC
 5221 AATAACCCCTG ATAAATGCTT CAATAATATT GAAAAGGAA GAGTATGAGT ATTCAACATT
 5281 TCCGTGTCGC CCTTATTCCC TTTTTGGCG CATTGGCTT CCCTGTTTT GCTCACCCAG
 5341 AAACGCTGGT GAAAGTAAAAA GATGCTGAAG ATCAGTTGGG TGACGAGTG GGTTACATCG
 5401 AACTGGATCT CAACAGCGGT AAGATCCTG AGAGTTTCG CCCCAGAA CGTTTCCAA
 5461 TGATGAGCAC TTTAAAGTT CTGCTATGTG GCGCGTATT ATCCCGTATT GACGCCGGC
 5521 AAGAGCAACT CGGTGCGCC ATACACTATT CTCAGAATGA CTTGGTTGAG TACTCACCAG
 5581 TCACAGAAAA GCATCTTACG GATGGCATGA CAGTAAGAGA ATTATGCAGT GCTGCCATAA
 5641 CCATGAGTGA TAACACTGCG GCCAACTTAC TTCTGACAAC GATCGGAGGA CGAAGGAGC
 5701 TAACCGCTTT TTGACAAC ATGGGGGATC ATGTAACTCG CCTTGATCGT TGGGAACCGG
 5761 AGCTGAATGA AGCCATACCA AACGACGAGC GTGACACCAC GATGCCTGTA GCAATGGCAA -

Figure 4bC

135/240

5821 CAACGTTGCG CAAACTATTA ACTGGCGAAC TACTTACTCT AGCTTCCCGG CAACAATTAA
5881 TAGACTGGAT GGAGGCGGAT AAAGTTGCAG GACCACTTCT GCGCTCGGCC CTTCCGGCTG
5941 GCTGGTTTAT TGCTGATAAA TCTGGAGCCG GTGAGCGTGG GTCTCGCGGT ATCATTGCAG
6001 CACTGGGCC AGATGGTAAG CCCTCCCGTA TCGTAGTTAT CTACACGACG GGGAGTCAGG
6061 CAACTATGGA TGAACGAAAT AGACAGATCG CTGAGATAGG TGCCCTCACTG ATTAAGCATT
6121 GGTAACTGTC AGACCAAGTT TACTCATATA TACTTTAGAT TGATTTAAAAA CTTCATTTTT
6181 AATTAAAAG GATCTAGGTG AAGATCCTT TTGATAATCT CATGACCAAA ATCCCTTAAC
6241 GTGAGTTTTC GTTCCACTGA GCGTCAGACC CCGTAGAAAA GATCAAAGGA TCTTCTTGAG
6301 ATCCTTTTT TCTGCGCGTA ATCTGCTGCT TGCAAACAAA AAAACCACCG CTACCAGCGG
6361 TGGTTTGTGTT GCCGGATCAA GAGCTACCAA CTCTTTTCC GAAGGTAACT GGCTTCAGCA
6421 GAGCGCAGAT ACCAAATACT GTCCCTCTAG TGTAGCGTA GTTACGCCAC CACTTCAAGA
6481 ACTCTGTAGC ACCGCCTACA TACCTCGCTC TGCTAATCCT GTTACCAAGTG GCTGCTGCCA
6541 GTGGCGATAA GTCGTGTCTT ACCGGGTTGG ACTCAAGACG ATAGTTACCG GATAAGGC
6601 AGCGGTGGGG CTGAACGGGG GGTCGTGCA CACAGCCCAG CTTGGAGCGA ACGACCTACA
6661 CCGAAGTGTGAG ATACCTACAG CGTGAGCATT GAGAAAGCGC CACGTTCCC GAAGGGAGAA
6721 AGGCGGACAG GTATCCGGTA AGCGGCAGGG TCGGAACAGG AGAGCGCACG AGGGAGCTTC
6781 CAGGGGGAAA CGCCTGGTAT CTTTATAGTC CTGTCGGGTT TCGCCACCTC TGACTTGAGC
6841 GTCGATTTTT GTGATGCTCG TCAGGGGGC GGAGCCTATG GAAAAACGCC AGCAACGCGG
6901 CCTTTTACG GTTCCCTGGCC TTTTGCTGGC CTTTGCTCA CATGTTCTT CCTGCGTTAT
6961 CCCCTGATTC TGTGGATAAC CGTATTACCG CCTTGAGTG AGCTGATACC GCTCGCCGCA
7021 GCCGAACGAC CGAGCGCAGC GAGTCAGTGA GCGAGGAAGC GGAAGAGCGC CCAATACGCA
7081 AACCGCCTCT CCCCCGCGCGT TGGCCGATT ATTAAATGCAG AGCTTGCAAT TCGCGCGTTT
7141 TTCAATATTA TTGAAGCATT TATCAGGGTT ATTGTCTCAT GAGCGGATAC ATATTGAAAT
7201 GTATTTAGAA AAATAAACAA ATAGGGGTT CGCGCACATT TCCCCGAAAA GTGCCACCTG
7261 ACGTCTAAGA AACCATTATT ATCATGACAT TAAACCTATAA AAATAGGC GTAGTACGAGGC
7321 CCTTCACTC ATTAGATGCA TGTCGTTACA TAACTTACGG TAAATGGCCC GCCTGGCTGA
7381 CCGCCCAACG ACCCCCCGCC ATTGACGTCA ATAATGACGT ATGTTCCCAT AGTAACGCCA
7441 ATAGGGACTT TCCATTGACCG TCAATGGGTG GAGTATTAC G

FIGURE 46d

136/240

FIGURE 47A

pDEST 27 GST Amino Fusion in pCMV Sport-neo Vector

mRNA start

CMV Promoter

```

600 nac ggt ggg agg tct ata taa gca gag ctc gtt tag tga acc gtc aga tcc
      ntg cca ccc tcc aga tat att cgt ctc gag caa atc act tgg cag tct agc
      //                                     M A P I L
651 cct gga gac gcc atc cac gct gtt ttg acc tcc ata gaa gac acc ggg acc
      gga cct ctg cgg tag gtg cga caa aac tgg agg tat ctt ctg tgg ccc tgg
      //                                     M A P I L
702 gat cca gcc tcc gga ctc tag cct agg cgg cgg acc atg gcc cct ata cta
      cta ggt cgg agg cct gag atc gga tcc ggc gcc tgg tac cgg gga tat gat
      //                                     Start Transl GST
753 ggt tat tgg aaa att aag ggc ctt gtg caa ccc act cga ctt ctt ttg gaa
      cca ata acc ttt taa ttc cgg gaa cac gtt ggg tga gct gaa gaa aac ctt
      //                                     GST Protein
804 tat ctt gaa gaa aaa tat gaa gag cat ttg tat gag cgc gat gaa ggt gat
      ata gaa ctt ctt ttt ata ctt ctc gta aac ata ctc gcg cta ctt cca cta
      //                                     V P R S R
1365 ttt ggt ggt ggc gac cat cct cca aaa tcg gat ctg gtt cgg cgt tct aga
      aaa cca cca ccc ctg gta gga ggt ttt agc cta gac caa ggo gca aga tct
      S T S L Y K K A
1416 tca aca agt ttg tac aaa aaa gct gaa cga gaa acg
      agt tgt tca aac atg ttt ttt cga ctt gct ctt tgc
      //                                     attR1
      Int
      attR1
  
```


137/240

pDEST27 8123 bp (rotated to position 7800)

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
130..793	GST
803..927	attR1
1036..1695	CmR
1815..1899	inactivated ccdA
2037..2342	ccdB
2383..2507	attR2
2693..3055	SV40 polyA
3250..3705	f1 intergenic region
3769..4187	SV40 promoter
4232..5026	neo
5090..5138	polyA
5549..6409	Apr
6558..7197	ori
7628..27	CMV promoter

1 ATAAGCAGAG CTCGTTTAGT GAACCGTCAG ATCGCCTGGA GACGCCATCC ACGCTGTTTT
 61 GACCTCCATA GAAGACACCG GGACCGATCC AGCCTCCGGA CTCTAGCCTA GGCCGCGGAC
 121 CATGGCCCT ATACTAGGT ATTGGAAAT TAAGGGCCTT GTGCAACCCA CTCGACTTCT
 181 TTTGGAATAT CTTGAAGAAA AATATGAAGA GCATTGTAT GAGCGCGATG AAGGTGATAA
 241 ATGGCGAAC AAAAGTTG AATTGGTTT GGAGTTTCCC AATCTTCCTT ATTATATTGAA
 301 TGGTGATGTT AAATTAACAC AGTCTATGGC CATCATACTG TATATAGCTG ACAAGCACAA
 361 CATGTTGGGT GGTTGTCAA AAGAGCGTGC AGAGATTCA ATGCTTGAAG GAGCGGTTTT
 421 GGATATTAGA TACGGTGTG CGAGAATTGC ATATAGTAA GACTTTGAAA CTCTCAAAGT
 481 TGATTTCTT AGCAAGCTAC CTGAAATGCT GAAAATGTC GAAGATCGTT TATGTCATAA
 541 AACATATTAA AATGGTGAATC ATGTAACCA TCTTGACTTC ATGTTGTATG ACGCTCTTGA
 601 TGTGTTTTA TACATGGACC CAATGTGCCT GGATGCGTTC CAAAAATTAG TTTGTTTAA
 661 AAAACGTATT GAAGCTATCC CACAAATTGA TAAGTACTTG AAATCCAGCA AGTATATAGC
 721 ATGGCCTTGC CAGGGCTGGC AAGCCACGTT TGTTGGTGGC GACCATCCTC CAAAATCGGA
 781 TCTGGTCCG CGTTCTAGAT CAACAAGTTT GTACAAAAAA GCTGAACGAG AAACGTAAAA
 841 TGATATAAAT ATCAATATAT TAAATTAGAT TTGCAATAAA AAACAGACTA CATAATACTG
 901 TAAAACACAA CATATCCAGT CACTATGGCG GCCGCATTAG GCACCCCCAGG CTTTACACTT
 961 TATGCTTCCG GCTCGTATAA TGTGTTGGATT TTGAGTTAGG ATCCGGCGAG ATTTTCAGGA
 1021 GCTAAGGAAG CTAAAATGGA GAAAAAAATC ACTGGATATA CCACCGTGA TATATCCAA
 1081 TGGCATCGTA AAGAACATT TGAGGCATT TGCTCAGTT CTCATGTAC CTATAACCAG
 1141 ACCGTTCAAGC TGGATATTAC GGCCTTTTA AAGACCGTAA AGAAAAATAA GCACAAGTTT
 1201 TATCCGGCCT TTATTCACAT TCTTGGCCGC CTGATGAATG CTCATCCGGA ATTCCGTATG
 1261 GCAATGAAAG AGGTGAGCT GGTGATATGG GATAGTGTTC ACCCTTGTAA CACCGTTTC
 1321 CATGAGCAAA CTGAAACCTT TTCATCGCTC TGGAGTGAAT ACCACGACGA TTTCCGGCAG
 1381 TTTCTACACA TATATCGCA AGATGTGGCG TGTACCGGTG AAAACCTGGC CTATTTCCCT
 1441 AAAGGGTTAA TTGAGAAAT TTTTTCGTC TCAGCCAATC CCTGGGTGAG TTTCACCAGT
 1501 TTTGATTTAA ACGTGGCAA TATGGACAA TTCTTCGCC CCGTTTCAC CATGGGCAA
 1561 TATTATACGC AAGGCACAA GGTGCTGATG CCGCTGGCGA TTCAAGGTCA TCATGCCGTC
 1621 TGTGATGGCT TCCATGTCGG CAGAATGCTT AATGAATTAC AACAGTACTG CGATGAGTGG
 1681 CAGGGCGGGG CGTAAAGATC TGGATCCGGC TTACTAAAAG CCAGATAACA GTATGCGTAT
 1741 TTGCGCGCTG ATTTTTCGG TATAAGAATA TATACTGATA TGTATACCCG AAGTATGTCA
 1801 AAAAGAGGTG TGCTATGAAG CAGGGTATTA CAGTGACAGT TGACAGCGAC AGCTATCAGT
 1861 TGCTCAAGGC ATATATGATG TCAATATCTC CGGTCTGGTA AGCACAACCA TGCAGAAATGA
 1921 AGCCCGTCGT CTGCGTGGCG AACGCTGGAA AGCGGAAAT CAGGAAGGGAA TGGCTGAGGT
 1981 CGCCCGGTTT ATTGAAATGA ACGGCTCTT TGCTGACGAG AACAGGGACT GGTGAAATGC
 2041 AGTTTAAGGT TTACACCTAT AAAAGAGAGA GCGCTTATCG TCTGTTGTG GATGTACAGA
 2101 GTGATATTAT TGACACGCC GGGCGACGGA TGGTGATCCC CCTGGCCAGT GCACGTCTGC
 2161 TGTCAGATAA AGTCTCCCGT GAACTTTACC CGGTGGTGCA TATCGGGGAT GAAAGCTGGC
 2221 GCATGATGAC CACCGATATG GCCAGTGTGC CGGTCTCCGT TATCGGGGAA GAAAGTGGCTG
 2281 ATCTCAGCCA CGCGAAAAT GACATCAAAA ACGCCATTAA CCTGATGTTG TGGGAATAT—

FIGURE 47B

138/240

2341 AAATGTCAGG CTCCCTTATA CACAGCCAGT CTGCAGGTG ACCATAGTGA CTGGATATGT
 2401 TGTGTTTAC AGTATTATGT AGTCTGTTT TTATGAAAAA TCTAATTAA TATATTGATA
 2461 TTTATATCAT TTACGTTTC TCGTTCAGCT TTCTTGTACA AAGTGGTTGA TCGCGTGCAT
 2521 GCGACGTCA AGCTCTCTCC CTATAGTGAG TCGTATTATA AGCTAGGCAC TGGCCGTCGT
 2581 TTTACAACGT CGTGACTGGG AAAACTGCTA GCTTGGGATC TTTGTGAAGG AACCTTACTT
 2641 CTGTGGTGTG ACATAATTGG ACAAACTACC TACAGAGATT TAAAGCTCTA AGGTAATAT
 2701 AAAATTTTA AGTGTATAAT GTGTTAACT AGCTGCATAT GCTTGCTGCT TGAGAGTTT
 2761 GCTTACTGAG TATGATTATG GAAAATATTA TACACAGGAG CTAGTGATTC TAATTGTTT
 2821 TGTATTTAG ATTCACAGTC CCAAGGCTCA TTTCAGGCC CTCAGTCCTC ACAGTCTGTT
 2881 CATGATCATA ATCAGGCCATA CCACATTGT AGAGGTTTA CTTGCTTTAA AAAACCTCCC
 2941 ACACCTCCCC CTGAACCTGA AACATAAAAT GAATGCAATT GTTGTGTTA ACTTGTAT
 3001 TGCAGCTTAT AATGGTTACA AATAAAGCAA TAGCATCACA AATTCACAA ATAAAGCATT
 3061 TTTTCACTG CATTCTAGTT GTGGTTGTC CAAACCTCATC AATGTATCTT ATCATGCTG
 3121 GATCGATCCT GCATTAATGA ATCGGCCAAC GCGGGGGAG AGGCGGTTTG CGTATTGGCT
 3181 GGC GTAATAG CGAAGAGGCC CGCACCGATC GCCCTTCCCA ACAGTTGCGC AGCCTGAATG
 3241 GCGAATGGGA CGCGCCCTGT AGCGGCGCAT TAAGCGGGC GGGTGTGGTG GTTACGCGCA
 3301 GCGTGACCGC TACACTGCC AGCGCCCTAG CGCCCGCTCC TTTCGTTTC TTCCCTCCCT
 3361 TTCTGCCAC GTTCGCCGGC TTTCCCGTC AAGCTCTAA TCGGGGGCTC CCTTTAGGGT
 3421 TCCGATTTAG TGCTTACGG CACCTCGACC CCAAAAAACT TGATTAGGGT GATGGTTCAC
 3481 GTAGTGGGCC ATCGCCCTGA TAGACGGTT TTCCGCCCTT GACGTTGGAG TCCACGTTCT
 3541 TTAATAGTGG ACTCTTGTTC CAAACTGAA CAACACTCAA CCCTATCTCG GTCTATTCTT
 3601 TTGATTATA AGGGATTTG CCGATTCGG CCTATTGGTT AAAAAATGAG CTGATTTAAC
 3661 AAATATTTAA CGCGAATTAA AACAAAATAT TAACGTTAC AATTCGCCCT GATGCGGTAT
 3721 TTTCTCCCTA CGCATCTGT CGGTATTCA CACCGCATAAC GCGGATCTGC GCAGCACCAT
 3781 GGCCTGAAAT AACCTCTGAA AGAGGAACCT GGTTAGGTAC CTTCTGAGGC GGAAAGAAC
 3841 AGCTGTGGAA TGTGTGTCAAG TTAGGGTGTG GAAAGTCCCC AGGCTCCCCA GCAGGCAGAA
 3901 GTATGCAAAG CATGCATCTC AATTAGTCAG CAACCCAGGTG TGGAAAGTCC CCAGGCTCCC
 3961 CAGCAGGCAG AAGTATGCAA AGCATGCATC TCAATTAGTC AGCAACCATA GTCCCGCCCC
 4021 TAACTCCGCC CATCCCGCCC CTAACTCCGC CCAGTTCCGC CCATTCTCCG CCCCATGGCT
 4081 GACTAATTAA TTTTATTAA GCAGAGGCCG AGGCCGCCCTC GGCCTCTGAG CTATTCCAGA
 4141 AGTAGTGAGG AGGCTTTTT GGAGGCCCTAG GCTTTGCAA AAAGCTTGAT TCTTCTGACA
 4201 CAACAGTCTC GAACTTAAGG CTAGAGCCAC CATGATTGAA CAAGATGGAT TGCACGCAGG
 4261 TTCTCCGGCC GCTTGGGTGG AGAGGCTATT CGGCTATGAC TGGGCACAAAC AGACAATCGG
 4321 CTGCTCTGAT GCCGCCGTGT TCCGGCTGTC AGGCCAGGG CGCCCGGTTT TTTTGTCAA
 4381 GACCGACCTG TCCGGTGCCCG TGAATGAACG GCAGGACGAG GCAGCGCGGC TATCGTGGCT
 4441 GGCCACCGACG GGCCTTCCCTT GCGCAGCTGT GCTCGACGTT GTCACTGAAG CGGGAAAGGGA
 4501 CTGGCTGCTA TTGGCGAAG TGCCGGGCA GGATCTCTG TCATCTCAC TTGCTCCTGC
 4561 CGAGAAAAGTA TCCATCATGG CTGATGCAAT GCGCGGGCTG CATACTGTT ATCCGGCTAC
 4621 CTGCCCATTC GACCACCAAG CGAAACATCG CATCGAGCGA GCACGTACTC GGATGGAAGC
 4681 CGGTCTGTGTC GATCAGGATG ATCTGGACGA AGAGCATCAG GGGCTCGGGC CAGCCGAAC
 4741 GTPCGCCAGG CTCAGGCCGC GCATGCCGA CGGGGAGGAT CTCGTCGTGA CCCATGGCGA
 4801 TGCCTGCTTG CCGAATATCA TGGTGGAAAA TGGCCGCTTT TCTGGATTCA TCGACTGTGG
 4861 CGGGCTGGGT GTGGCGGACC GCTATCAGGA CATAGCGTTG GCTACCCGTG ATATTGCTGA
 4921 AGAGCTTGGC GGCAGATGGG CTGACCCCTT CCTCGTGCTT TACGGTATCG CCGCTCCCGA
 4981 TTCCGAGCCGC ATCGCTTCT ATCGCCTCT TGACGAGTT TCCTGAGGG GACTCTGGGG
 5041 TTGAAATGAA CGGACCAAG GACGCCAAC CTGCCATCAC GATGGCCGCA ATAAAATATC
 5101 TTTATTTCA TTACATCTGT GTGTTGGTTT TTTGTGTGAA TCGATAGCGA TAAGGATCCG
 5161 CGTATGGTGC ACTCTCAGTA CAATCTGCTC TGATGCCGA TAGTTAAGCC AGCCCCGACA
 5221 CCCGCCAACCA CCCGCTGAGC CGCCCTGACG GGCTTGTCTG CTCCCGCAT CCGCTTACAG
 5281 ACAAGCTGTG ACCGTCTCCG GGAGCTGCAT GTGTCAGAGG TTTTCACCGT CATCACCGAA
 5341 ACGCCGAGA CGAAAGGGCC TCGTGATACG CCTATTAA TAGGTTAATG TCATGATAAT
 5401 AATGGTTCT TAGACGTCAG GTGGCACTTT TCAGGGAAAT GTGCGCGGAA CCCCTATTG
 5461 TTTATTTTC TAAATACATT CAAATATGTA TCCGCTCATG AGACAATAAC CCTGATAAAAT
 5521 GCTTCATAA TATTGAAAAA GGAAGAGTAT GAGTATTCAA CATTTCCTG TCGCCCTTAT
 5581 TCCCTTTTTT GCGGCATTTT GCCTTCTGT TTTGCTCAC CCAGAAACGC TGGTGAAGT
 5641 AAAAGATGCT GAAGATCAGT TGGGTGCACG AGTGGGTTAC ATCGAACTGG ATCTCAACAG
 5701 CGGTAAGATC CTTGAGAGTT TTCGCCCGA AGAACGTTTT CCAATGATGA GCACTTTAA
 5761 AGTTCTGCTA TGTGGCGCGG TATTATCCCG TATTGACGCC GGGCAAGAGC AACTCGGTGCG —

FIGURE 47c

139/240

5821 CCGCATACAC TATTCTCAGA ATGACTTGGT TGAGTACTCA CCAGTCACAG AAAAGCATCT
 5881 TACGGATGGC ATGACAGTAA GAGAATTATG CAGTGCTGCC ATAACCATGA GTGATAACAC
 5941 TGCAGGCAAC TTACTTCTGA CAACGATCGG AGGACCGAAG GAGCTAACCG CTTTTTGCA
 6001 CAACATGGGG GATCATGTAA CTCGCCTTGA TCGTTGGAA CGGGAGCTGA ATGAAGCCAT
 6061 ACCAAACGAC GAGCGTGACA CCACGATGCC TGTAGCAATG GCAACAACGT TGCGCAAAC
 6121 ATTAACTGGC GAACACTTTA CTCTAGCTTC CCGGCAACAA TTAATAGACT GGATGGAGGC
 6181 GGATAAAGTT GCAGGACCAC TTCTGCGCTC GGCCCTTCCG GCTGGCTGGT TTATTGCTGA
 6241 TAAATCTGGA GCCGGTGAGC GTGGGTCTCG CGGTATCATT GCAGCACTGG GGCCAGATGG
 6301 TAAGCCCTCC CGTATCGTAG TTATCTACAC GACGGGGAGT CAGGCAACTA TGGATGAACG
 6361 AAATAGACAG ATCGCTGAGA TAGGTGCTCTC ACTGATTAAG CATTGGTAAC TGTCAGACCA
 6421 AGTTTACTCA TATATACTTT AGATTGATTT AAAACTTCAT TTTTAATTTA AAAGGATCTA
 6481 GGTGAAGATC CTTTTGATA ATCTCATGAC CAAAATCCCT TAACGTGAGT TTTCGTCCA
 6541 CTGAGCGTC AGCCCGTAG AAAAGATCAA AGGATCTTCT TGAGATCCTT TTTTCTGCG
 6601 CGTAATCTGC TGCTTGCAAA CAAAAAAACC ACCGCTACCA GCGGTGGTTT GTTGCACCGA
 6661 TCAAGAGCTA CCAACTCTT TTCCGAAGGT AACTGGCTTC AGCAGAGCGC AGATACAAA
 6721 TACTGTCCTT CTAGTGTAGC CGTAGTTAGG CCACCACTTC AAGAACTCTG TAGCACCGCC
 6781 TACATACCTC GCTCTGCTAA TCCTGTTACC AGTGGCTGCT GCCAGTGGCG ATAAGTCGTG
 6841 TCTTACCGGG TTGGACTCAA GACGATAGTT ACCGGATAAG GCGCAGCGGT CGGGCTGAAC
 6901 GGGGGGTTCG TGACACACAGC CCAGCTTGA GCGAACGACC TACACCGAAC TGAGATACCT
 6961 ACAGCGTGAG CATTGAGAAA GCGCCACGCT TCCCCAAGGG AGAAAGGCGG ACAGGTATCC
 7021 GGTAAGCGGC AGGGTCGGAA CAGGAGAGCG CACGAGGGAG CTTCCAGGGG GAAACGCCCTG
 7081 GTATCTTTAT AGTCCTGTCG GGTTTCGCCA CCTCTGACTT GAGCGTCGAT TTTTGTGATG
 7141 CTCGTCAGGG GGGCGGAGCC TATGGAAAAA CGCCAGCAAC GCGGCCCTTT TACGGTCCCT
 7201 GGCCTTTGCG TGCCCTTTG CTCACATGTT CTTTCTGCG TTATCCCCCTG ATTCTGTGGA
 7261 TAACCGTATT ACCGCCTTTG AGTGGAGCTGA TACCGCTCGC CGCAGCCGAA CGACCGAGCG
 7321 CAGCGAGTC A GTGAGCGAGG AAGCGGAAGA GCGCCAATA CGCAAACCGC CTCTCCCGC
 7381 GCGTTGGCCG ATTCAATTAA TACGAGCTTG CAATTGCGC GTTTTCAAT ATTATTGAAG
 7441 CATTATTCAG GGTATTGTC TCATGAGCGG ATACATATTG GAATGTATTG AGAAAATAA
 7501 ACAAAATAGGG GTTCCCGC A CATTCCCG AAAAGTGCCA CCTGACGTCT AAGAAACCAT
 7561 TATTATCATG ACATTAACCT ATAAAAATAG GCGTAGTACG AGGCCCTTC ACTCATTAGA
 7621 TGCATGTCGT TACATAACTT ACGGTAATG GCCCCCTGG CTGACCGCCC AACGACCCCC
 7681 GCCCATTGAC GTCAATAATG ACGTATGTC CCATAGTAAC GCCAATAGGG ACTTTCCATT
 7741 GACGTCATG GGTGGAGTAT TTACGGTAA CTGCCCCACTT GGCAGTACAT CAAGTGTATC
 7801 ATATGCCAAG TACGCCCCCT ATTGACGTCA ATGACGGTAA ATGGCCCGCC TGGCATTATG
 7861 CCCAGTACAT GACCTTATGG GACTTTCTA CTTGGCAGTA CATCTACGTA TTAGTCATCG
 7921 CTATTACCAT GGTGATGCCG TTTGGCAGT ACATCAATGG GCGTGGATAG CGGTTTGA
 7981 CACGGGGATT TCCAAGTCTC CACCCCATG ACGTCAATGG GAGTTTGTGTT TGGCACCAAA
 8041 ATCAACGGGA CTTTCCAAAA TGTCGTAACA ACTCCGCCCC ATTGACGCAA ATGGCGGTA
 8101 GGC GTACG GTGGGAGGTC TAT

FIGURE 47)

Figure 4B A: pEXP501: pCMV-SPORT 6 host for attB Libraries

161/260

Figure 4B: pEXP5D1 (cont'd).

Features of the att B cloning vector, pEXP5D1.
Bases within hatched area are replaced by cDNA in some LTI cDNA libraries.

H8

---aga gct cgt tta gtg aac cgt cag atc gcc tgg aga cgc cat cca
 ---tct cga gca aat cac ttg gca gtc tag cgg acc tct gcg gta ggt

→ CMV mRNA

cgc tgt ttt gac ctc cat aga aga cac cgg gac cga tcc agc ctc
 gcg aca aaa ctg gag gta tct tct gtg gcc ctg gct agg tcc gag

Set I LTI rev primer

cgg act cta gcc tag gcc ggg gag cgg ata aca att tca cac agg
 gcc tga gat cgg atc cgg ggc ctc gcc tat tgt taa agt gtg tcc

ABI rev primer

aaa cag cta tga cca tta ggc cta ttt agg tga cac tat aga aca
 ttt gtc gat act ggt aat ccg gat aaa tcc act gtg ata tct tgt

Int

dK81

ApaI KpnI RsrII

EcoI

SmaI

agt tgg tac aaa aaa gca ggc tgg tac ccg tcc gga att ccc ggg
 tca aac aeg ttt ttt cgt ccc aat atg gcc agg cct taa ggg ccc

EcoII Sal

Spe

Not

Xba

ata /ccg/tcg/agg agc tca/ata/gtc ggc/ggc cgc dct aga gta tcc
 tat/age/ agc/ Egc. tcg agt' gat agg ccg ccg gpg aga tct cat agg

Xba

ApaI

KpnI RsrII

Mlu

dK82

Int

ctc gag ggg ccc aag ctt aeg cgt acc eag ctt tct tgt aca aag
 gag ctc ccc ggg ttc gaa tgc gaa tgg gtc gaa aga aca tgt ttc

T7

T7 promoter

Nhe

1272

tgg tcc cta tag tga gtc gta tta taa gct agg cac tgg cgg tgg
 acc agg gat atc act cag cat aat att cga tcc gtg acc ggc agc

LTI fwd

142/240

pEXP501 4396 bp

1 CCATTGCCA TTCAGGCTGC GCAACTGTTG GGAAGGGCGA TCGGTGCGGG CCTCTTCGCT
 61 ATTACGCCAG CCAATACGCA AACCGCCTCT CCCCGCGCGT TGGCCGATTG ATTAATGCAG
 121 GATCGATCCA GACATGATAA GATACATTGA TGAGTTTGA CAAACACAA CTAGAATGCA
 181 GTGAAAAAAA TGCTTTATTT GTGAAATTG TGATGCTATT GCTTATTTG TAACCATTAT
 241 AAGCTGCAAT AAACAAGTTA ACAACAACAA TTGCATTCA TTTATGTTTC AGGTTCAAGG
 301 GGAGGTGTGG GAGGTTTTTAAAGCAAGTAAACCTCTAC AAATGTGGTA TGGCTGATTA
 361 TGATCATGAA CAGACTGTGA GGACTGAGGG GCCTGAAATG AGCCTTGGGA CTGTGAATCT
 421 AAAATACACA AACAAATTAGA ATCACTAGCT CCTGTTGATA ATATTTTCA TAAATCATACT
 481 CAGTAAGCAA AACTCTCAAG CAGCAAGCAT ATGCAAGCTAG TTTAACACAT TATACACTTA
 541 AAAATTTAT ATTACCTTA GAGCTTTAAA TCTCTGTAGG TAGTTTGTCC AATTATGTCA
 601 CACCACAGAA GTAAGGTTC TTCAACAAAGA TCCCAAGCTA GCAGTTTTC CAGTCACGAC
 661 GTTGTAACAC GACGGCCAGT GCCTAGCTTA TAATACGACT CACTATAGGG ACCACTTTGT
 721 ACAAGAAAGC TGGGTACGCG TAAGCTTGGG CCCCTGAGG GATCCTCTAG AGCGGCCGCC
 781 GACTAGTGTAG CTCGTCGACG ATATCCCCGG AATTCCGGAC CGGTACCGAC CTGCTTTTT
 841 GTACAAACTT GTTCTATAGT GTCACCTAAA TAGGCCAAT GGTATAGCT GTTTCCTGTG
 901 TGAAATTGTT ATCCGCTCCG CGGCCTAGGC TAGAGTCCGG AGGCTGGATC GGTCCGGGTG
 961 TCTTCTATGG AGGTCAAAC AGCGTGGATG CGCTCTCCAG GCGATCTGAC GGTTCACTAA
 1021 ACGAGCTCTG CTATATAGA CCTCCCCACCG TACACGCCA CCGCCCATTT GCGTCATGG
 1081 GGCGGAGTTG TTACGACATT TTGGAAAGTC CGGTGATTT TGGTGCACAA ACAAACTCCC
 1141 ATTGACGTCA ATGGGGTGGG GACTTGGAAA TCCCCGTGAG TCAACCGCT ATCCACGCC
 1201 ATTGATGTAC TGCCAAAACC GCATCACCCT GTTAATAGCG ATGACTAATA CGTAGATGTA
 1261 CTGCCAGTA GGAAAGTCCC ATAAGGTCTAT GTACTGGCA TAATGCCAGG CGGGCCATT
 1321 ACCGTCTTGC AGCTCAATAG GGGCGTACT TGGCATATGA TACACTTGAT GTACTGCCA
 1381 GTGGGAGTT TACCGTAAAT ACTCCACCA TTGACGTCAA TGGAAAGTCC CTATTGGCGT
 1441 TACTATGGG ACATACGTCA TTATTGACGT CAATGGCGG GGGTCGTTGG GCGGTCAAGCC
 1501 AGGCAGGGCCA TTACCGTAA GTTATGTAAC GACATGCATC TAATGAGTGA AAGGGCTCG
 1561 TACTACGCCCT ATTTTTATAG GTTAATGTC TGATAATAAT GTTTTCTTAG ACGTCAGGTG
 1621 GCACTTTTCG GGGAAATGTG CGCGGAACCC CTATTGTTT ATTTTTCTAA ATACATTCAA
 1681 ATATGTATCC GCTCATGAGA CAATAACCT GATAATGCT TCAATAATAT TGAAAACGC
 1741 GCGAATTGCA AGCTCTGC TAATGAACTG GCCAACGCGC GGGGAGAGGC GGTTTGCCTA
 1801 TTGGGGCGTC TTCCGCTTCA TCGCTCACTG ACTCGCTCG CTCGGTGTG CCGCTCCGGC
 1861 GAGCGGTATC AGCTCACTCA AAGGCGTAA TACGGTTATC CACAGAATCA GGGGATAACG
 1921 CAGGAAAGAA CATGTGAGCA AAAGGCCAGC AAAAGGCCAG GAACCGTAAA AAGGCCCGT
 1981 TGCTGGCGTT TTCCCATAGG CTCCGCCCCC CTGACGAGCA TCACAAAAT CGACGCTCAA
 2041 GTCAGAGGTG CGCAAAACCC ACAGGACTAT AAAGATACCA GGCCTTTCCC CCTGGAAAGCT
 2101 CCCTCGTGC CTCTCTGTT CCGACCTCTGC CGCTTACCGG ATACCTGTC GCCTTCTCC
 2161 CTTCCGGAAAG CGTGGCGTT TCTCAATGCT CACCGTGTAG GTATCTCAGT TCGGTGTTAGG
 2221 TCGTTGCTC CAAGCTGGG TGTGTGCACG AACCCCCCGT TCAGCCGAC CGCTGCGCCT
 2281 TATCCGGTAA CTATCGTCTT GAGTCAACCG CGGTAAAGACA CGACTTATCG CCACTGGCAG
 2341 CAGCCACTGG TAACAGGATT AGCAGAGCGA GGTATGTAGG CGGTGCTACA GAGTTCTTGA
 2401 AGTGGTGGCC TAACTACGGC TACACTAGAA GGACAGTATT TGGTATCTGC GCTCTGCTGA
 2461 AGCCAGTTAC TTTCGGAAAA AGAGTTGGTA GCTCTTGATC CGGCAAACAA ACCACCGCTG
 2521 GTAGCGGTGG TTTTTTTGTT TGCAAGCAGC AGATTACGCG CAGAAAAAAA GGATCTCAAG
 2581 AAGATCCTT GATTTTTCT ACAGGGTCTG ACGCTCAGTG GAACGAAAAC TCACGTTAAG
 2641 GGATTTGGT CATGCCATAA CTTCGTATAG CATACTTAT ACGAAGTTAT GGCATGAGAT
 2701 TATCAAAAG GATCTTCACC TAGATCTTT TAAATTAAAA ATGAAGTTT AAATCAATCT
 2761 AAAGTATATA TGAGTAAACT TGGTGTGACA GTTACCAATG CTTAATCAGT GAGGCACCTA
 2821 TCTCAGCGAT CTGTCTATTG CGTTCATCCA TAGTTGCCTG ACTCCCCGTC GTGTAGATAA
 2881 CTACGATACG GGAGGGCTTA CCATCTGGCC CGAGTGTGCA AATGATACCG CGAGACCCAC
 2941 GCTCACCGGC TCCAGATTAA TCAGCAATAA ACCAGCCAGC CGGAAGGGCC GAGCGCAGAA
 3001 GTGGTCCCTGC AACTTATCC GCCTCCATCC AGTCTATTAA TTGTTGCCGG GAAGCTAGAG
 3061 TAAGTAGTTC GCCAGTTAA AGTTTGCCTGA ACGTTGTTGC CATTGCTACA GGCATCGTGG
 3121 TGTCACTGCTC GTCGTTGGT ATGGCTTCAT TCAGCTCCGG TTCCCAACGA TCAAGGCGAG-

FIGURE 48C

143/240

3181 TTACATGATC CCCCCATGTTG TGCAAAAAAG CGGTTAGCTC CTTCGGTCCCT CCGATCGTTG
3241 TCAGAAAGTAA GTTGGCCGCA GTGTTATCAC TCATGGTTAT GGCAAGCACTG CATAATTCTC
3301 TTACTGTCAT GCCATCCGTA AGATGCTTT CTGTGACTGG TGAGTACTCA ACCAAGTCAT
3361 TCTGAGAATA GTGTATGCGG CGACCGAGTT GCTCTGCCCG GGCAGTCATA CGGGATAATA
3421 CCGCGCCACA TAGCAGAACT TTAAAAGTGC TCATCATTGG AAAACGTTCT TCAGGGCGAA
3481 AACTCTCAAG GATCTTACCG CTGTTGAGAT CCAGTCGAT GTAACCCACT CGTGCACCCA
3541 ACTGATCTTC AGCATCTTT ACTTTCACCA GCGTTCTGG GTGAGCAAAA ACAGGAAGGC
3601 AAAATGCCGC AAAAAAGGGA ATAAGGGCGA CACGGAAATG TTGAATACTC ATACTCTTCC
3661 TTTTTCAATA TTATTGAAGC ATTTATCAGG GTTATTGTCT CATGCCAGGG GTGGGCACAC
3721 ATATTGATA CCAGCGATCC CTACACAGCA CATAATTCAA TCGCAGTTCC CTCTATCGCA
3781 CATCTTAGAC CTTTATTCTC CCTCCAGCAC ACATCGAACG TGCCGAGCAA GCCGTTCTCA
3841 CCAGTCCAAG ACCTGGCATG AGCGGATACA TATTTGAATG TATTTAGAAA AATAAACAAA
3901 TAGGGGTTCC GCGCACATT CCCCGAAAAG TGCCACCTGA ATTGTAAAC GTTAATATTT
3961 TGTTAAAATT CGCGTTAAAT TTTTGTTAAA TCAGTCATT TTTTAACCAA TAGGCGAAA
4021 TCGGCAAAAT CCCTTATAAA TCAAAAGAAT AGACCGAGAT AGGGTTGAGT GTTGTTCAG
4081 TTTGGAACAA GAGTCCACTA TTAAAGAACG TGGACTCCAA CGTCAAAGGG CGAAAAACCG
4141 TCTATCAGGG CGATGGCCCA CTACGTGAAC CATCACCCCTA ATCAAGTTTT TTGGGGTGC
4201 GGTGCCGTAA AGCACTAAAT CGGAACCCCTA AAGGGAGCCC CCGATTTAGA GCTTGACGGG
4261 GAAAGCCGGC GAACGTGGCG AGAAAGGAAG GGAAGAAAGC GAAAGGAGCG GGCACGGG
4321 CGCTGGCAAG TGTAGCGGTC ACGCTGCGCG TAACCACCCAC ACCCGCCCGCG CTTAATGCGC
4381 CGCTACAGGG CGCGTC

FIGURE 48D

144/240

145/240

pDONR201 4470 bp (rotated to position 3516)

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
260..29	attP1
656..961	ccdB
1099..1184	ccdA
1303..1962	CmR
2210..2442	attP2
2565..3374	Kmr
3495..4134	ori

1 GTTAACGCTA GCATGGATCT CGGGCCCCAA ATAATGATTT TATTTTGACT GATAGTGACC
 61 TGTCGTTGC AACAAATTGA TGAGCAATGC TTTTTTATAA TGCCAACTTT GTACAAAAAA
 121 GCTGAACGAG AAACGTAAAA TGATATAAAT ATCAATATAT TAAATTAGAT TTTGCATAAA
 181 AAACAGACTA CATAATACTG TAAAACACAA CATATCCAGT CACTATGAAT CAACTACTTA
 241 GATGGTATTA GTGACCTGTA GTCGACCGAC AGCCTTCAA ATGTTCTTCG GGTGATGCTG
 301 CCAACTTAGT CGACCGACAG CCTTCCAAAT GTTCTTCTCA AACGGAATCG TCGTATCCAG
 361 CCTACTCGCT ATTGTCCTCA ATGCCGTATT AAATCATAAA AAGAAATAAG AAAAAGAGGT
 421 GCGAGCCTCT TTTTTGTGTC ACAAAATAAA AACATCTACC TATTCAATATA CGCTAGTGTG
 481 ATAGTCCTGA AAATCATCTG CATCAAGAAC AATTTCACAA CTCTTATACT TTTCTCTTAC
 541 AAGTCGTTCG GCTTCATCTG GATTTTCAGC CTCTATACTT ACTAAACGTG ATAAAGTTTC
 601 TGTAATTCT ACTGTATCGA CCTGCAGACT GGCTGTGTAT AAGGGAGCCT GACATTTATA
 661 TTCCCCAGAA CATCAGGTAA ATGGCGTTT TGATGTCAATT TCAGCGGTGG CTGAGATCAG
 721 CCACTTCTTC CCCGATAAAC GAGACGGCA CACTGGCCAT ATCGGGTGGTC ATCATGCGCC
 781 AGCTTCATC CCCGATATGC ACCACGGGGT AAAGTTCACG GGAGACTTTA TCTGACAGCA
 841 GACGTGCACT GGCCAGGGGG ATCACCATCC GTGCCCGGG CGTGTCAATA ATATCACTCT
 901 GTACATCCAC AAACAGACGA TAACGGCTCT CTCTTTATA GGTGTAAACC TTAAACTGCA
 961 TTTCACCAGT CCCTGTTCTC GTCAGCAAAA GAGCCGTTCA TTTCAATAAA CGGGCGGACC
 1021 TCAGGCCATCC CTTCCGTGATT TTCCGCTTTC CAGCGTTCGG CACGCAGACG ACGGGCTTCA
 1081 TTCTGCATGG TTGTGCTTAC CAGACGGAG ATATTGACAT CATATATGCC TTGAGCAACT
 1141 GATAGCTGTC GCTGTCAACT GTCACTGTAA TACGCTGCTT CATAGCACAC CTCTTTTG
 1201 CATACTCGG GTATACATAT CAGTATATAAT TCTTATACCG CAAAAATCAG CGCGCAAATA
 1261 CGCATACTGT TATCTGGCTT TTAGTAAGCC GGATCCACGC GATTACGCC CGCCCTGCCA
 1321 CTCATCGCAG TACTGTTGTA ATTCAATTAAG CATTCTGCCG ACATGGAAGC CATCACAGAC
 1381 GGCATGATGA ACCTGAATCG CCAGCGGCAT CAGCACCTTG TCGCCCTGG TATAATATTT
 1441 GCCCATGGTG AAAACGGGGG CGAAGAAGTT GTCCATATTG GCCACGTTA AATCAAAACT
 1501 GGTGAAACTC ACCCAGGGAT TGGCTGAGAC GAAAAACATA TTCTCAATAA ACCCTTTAGG
 1561 GAAATAGGCC AGGTTTTCAC CGTAACACGC CACATCTGC GAATATATGT GTAGAAACTG
 1621 CCGGAAATCG TCGTGGTATT CACTCCAGAG CGATGAAAAC GTTCAGTT GCTCATGGAA
 1681 AACGGTGTAA CAAGGGTGA CACTATCCA TATCACCAGC TCACCGTCTT TCATTGCCAT
 1741 ACGGAATTCC GGATGAGCAT TCATCAGGCG GGCAAGAATG TGAATAAAGG CGGGATAAAA
 1801 CTTGTGCTTA TTTTCTTTA CGGTCTTAA AAAGGCCGTA ATATCCAGCT GAACGGCTG
 1861 GTTATAGGTA CATTGAGCAA CTGACTGAAA TGCCTCAAA TGTTCTTAC GATGCCATTG
 1921 GGATATATCA ACGGTGGTAT ATCCAGTGAT TTTTTCTCC ATTTAGCTT CCTTAGCTCC
 1981 TGAAAATCTC GATAACTCAA AAAATACGCC CGGTAGTGAT TTATTCAT TATGGTGA
 2041 GTTGGAACCT CTTACGTGCC GATCAACGTC TCATTTCCGC CAAAGTTGG CCCAGGGCTT
 2101 CCCGGTATCA ACAGGGACAC CAGGATTAT TTATTCTGC AAGTGTCTT CCAGTCACAGG
 2161 TATTATTCTG GCGCAAAGTG CGTCGGGTGA TGCTGCCAAC TTAGTCGACT ACAGGGCACT
 2221 AATACCATCT AAGTGTGTA TTCATAGTGA CTGGATATGT TGTGTTTAC AGTATTATGT
 2281 AGTCTGTTTT TTATGCAAAA TCTAATTAA TATATTGATA TTATATATCAT TTTACGTTT
 2341 TCGTTCAGCT TTCTTGTACA AAGTTGGCAT TATAAGAAAAG CATTGCTTAT CAATTGTTG
 2401 CAACGAACAG GTCACTATCA GTCAAAATAA AATCATTATT TGCCATCCAG CTGCAGCTCT
 2461 GGGCCGTGTC TCAAAATCTC TGATGTTACA TTGCAACAGA TAAAAATATA TCATCATGAA
 2521 CAATAAAACT GTCTGCTTAC ATAAACAGTA ATACAAGGGG TGTTATGAGC CATATTCAAC
 2581 GGGAAACGTC GAGGCCCGCA TTAAATTCCA ACATGGATGC TGATTTATAT GGGTATAAAT
 2641 GGGCTCGCGA TAATGTCGGG CAATCAGGTG CGACAATCTA TCGCTTGTAT GGGAGCCCG
 2701 ATGCGCCAGA GTTGTCTG AAACATGGCA AAGGTAGCGT TGCCAATGAT GTTACAGATG ~

FIGURE 49B

146/240

2761 AGATGGTCAG ACTAAACTGG CTGACCGAAT TTATGCCTCT TCCGACCATC AAGCATTITA
2821 TCCGTACTCC TGATGATGCA TGGTTACTCA CCACTGCGAT CCCCCGAAAA ACAGCATTCC
2881 AGGTATTAGA AGAATATCCT GATTCAAGTG AAAATATTGT TGATGCGCTG GCAGTGTTC
2941 TGCGCCGGTT GCAATGATT CCTGTTGTA ATTGTCTTAA TAACAGCGAT CGCGTATITC
3001 GTCTCGCTCA GGCGCAATCA CGAACATA ACGGTTTGTT TGATGCGAGT GATTTTGATG
3061 ACGAGCGTAA TGGCTGGCCT GTTGAACAAG TCTGGAAAGA AATGCATAAA CTTTGCCAT
3121 TCTCACCGGA TTCAGTCGTC ACTCATGGTG ATTCTCACT TGATAACCTT ATTTTGACG
3181 AGGGAAATT AATAGGTTGT ATTGATGTTG GACGAGTCGG AATCGCAGAC CGATACCAAGG
3241 ATCTGCCAT CCTATGGAAC TGCCCTCGGTG AGTTTCTCC TTCAATTACAG AAACGGCTTT
3301 TTCAAAAATA TGGTATTGAT AATCCTGATA TGAATAAAATT GCAGTTTCAT TTGATGCTCG
3361 ATGAGTTTTT CTAATCAGAA TTGGTTAATT GGGTGTAAACA CTGGCAGAGC ATTACGCTGA
3421 CTTGACGGGA CGCGCAGAC TCATGACCAA AATCCCTTAA CGTGAGTTTT CGTTCCACTG
3481 AGCGTCAGAC CCCGTAGAAA AGATCAAAGG ATCTTCTTGA GATCCTTTTT TTCTGCGCGT
3541 AATCTGCTGC TTGCAACAA AAAAACCAACC GCTACCAGCG GTGGTTTGTT TGCGGGATCA
3601 AGAGCTACCA ACTCTTTTC CGAAGGTAAC TGGCTTCAGC AGAGCGCAGA TACCAAATAC
3661 TGTCTTCTA GTGTAGCCCGT AGTTAGGCCA CCACCTCAAG AACTCTGTAG CACCGCCTAC
3721 ATACCTCGCT CTGCTAATCC TGTTACCAGT GGCTGCTGCC AGTGGCGATA AGTCGTGTCT
3781 TACCGGGTTG GACTCAAGAC GATAGTTACC GGATAAGGCG CAGCGGTCGG GCTGAACGGG
3841 GGGTTCGTGC ACACAGCCC GCTTGGAGCG AACGACCTAC ACCGAACCTGA GATACCTAC
3901 GCGTAGCTA TGAGAAAGCG CCACGCTTCC CGAAGGGAGA AAGGCGGACA GGTATCCGGT
3961 AAGCGGCAGG GTCGGAACAG GAGAGCGCAC GAGGGAGCTT CCAGGGGGAA ACGCCTGGTA
4021 TCTTTATAGT CCTGTCGGGT TTCGCCACCT CTGACTTGAG CGTCGATTTT TGTGATGCTC
4081 GTCAGGGGGG CGGAGCTAT GGAAAAACGC CAGCAACGCG GCCTTTTAC GGTTCCCTGGC
4141 CTTTGCTGG CCTTTTGCTC ACATGTTCTT TCCTGCGTTA TCCCCGTGATT CTGTTGGATAA
4201 CCGTATTACC GCTAGGCCAGG AAGAGTTGT AGAAACGCAA AAAGGCCATC CGTCAGGATG
4261 GCCTCTGCT TAGTTTGATG CCTGGCAGTT TATGGCGGGC GTCCCTGCCG CCACCCCTCCG
4321 GGCGTGTGC TCACAAACGTT CAAATCCGCT CCCGGCGGAT TTGTCTACT CAGGAGAGCG
4381 TTCACCGACA AACAAACAGAT AAAACGAAAG GCCCAGTCTT CCGACTGAGC CTTTCGTTTT
4441 ATTTGATGCC TGGCAGTTCC CTACTCTCGC

FIGURE 49C

147/240
FIGURE 50A: pDONR202 (kanR)

168/260

pDONR202 4204 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
369..127	attP1
486..1059	ori
1228..2107	KmR
2381..2140	attP2
2629..3288	CmR
3408..3492	inactivated ccdA
3630..3935	ccdB

1 CGGCATTGAG GACAATAGCG AGTAGGCTGG ATACGACGAT TCCGTTTGGAG AAGAACATTT
 61 GGAAGGCTGT CGTCGACTA AGTTGGCAGC ATCACCCGAA GAACATTTGG AAGGCTGTCG
 121 GTGCACTACA GGTCACTAAT ACCATCTAAG TAGTGATTG ATAGTGACTG GATATGTTGT
 181 GTTTTACAGT ATTATGTTAGT CTGTTTTTA TGCAAATCT AATTTAATAT ATTGATATTT
 241 ATATCATTTC ACGTTTCTCG TTCAGCTTT TTGACAAAG TTGGCATTAT AAAAAGCAT
 301 TGCTCATCAA TTTGTTGCAA CGAACAGTC ACTATCAGTC AAAATAAAAT CATTATTTGG
 361 GGCCCGAGAT CCATGCTAGC GGTAATACGG TTATCCACAG ATCAGGGGA TAACGCAGGA
 421 AAGAACATGT GAGCAAAAGG CCAGCAAAAG GCCAGGAACC GTAAAAAGGC CGCGTTGCTG
 481 GCGTTTTCC ATAGGCTCCG CCCCCCTGAC GAGCATCACA AAAATCGACG CTCAAGTCAG
 541 AGGTGGCAGAA ACCCGACAGG ACTATAAAGA TACCAAGCGT TTCCCCCTGG AAGCTCCCTC
 601 GTGCGCTCTC CTGTTCCGAC CCTGCCGCTT ACCGGATACC TGTCCGCCTT TCTCCCTCG
 661 GGAAGCGTGG CGCTTCTCA TAGCTCACGC TGTAGGTATC TCAGTTCGGT GTAGGTCGTT
 721 CGCTCCAAGC TGGGCTGTGT GCACGAACCC CCCGTTCAAGC CCGACCGCTG CGCCTTATCC
 781 GGTAACATATC GTCTTGAGTC CAACCCGTTA AGACACGACT TATCGCCACT GGCAGCAGCC
 841 ACTGGTAACA GGATTAGCAG AGCGAGGTAT GTAGGCGGTG CTACAGAGTT CTTGAAGTGG
 901 TGGCCTAACT ACGGCTACAC TAGAAGGACA GTATTGGTA TCTGCGCTCT GCTGAAGCCA
 961 GTTACCTTCG GAAAAAGAGT TGGTAGCTCT TGATCCGGCA AACAAACAC CGCTGGTAGC
 1021 GGTGGTTTTT TTGTTTGCAA GCAGCAGATT ACGGCAGAA AAAAGGATC TCAAGAAGAT
 1081 CCTTTGATCT TTTCTACGGG GTCTGACGCT CAGTGGAACG AAAACTCAGC TTAAGGGATT
 1141 TTGGTCATGA GCTTGCAGCG TCCCCTCAAG TCAGCGTAAT GCTCTGCCAG TGTACCAACC
 1201 AATTAACCA TTCTGATTAG AAAAACTCAT CGAGCATCAA ATGAAACTGC AATTATTCA
 1261 TATCAGGATT ATCAATACCA TATTTTGAA AAAGCCGTT CTGTAATGAA GGAGAAAAGT
 1321 CACCGAGGCA GTTCCATAGG ATGGCAAGAT CCTGGTATCG GTCTGCGATT CCGACTCGTC
 1381 CAACATCAAT ACAACCTATT AATTTCCCT CGTCAAAAT AAGGTTATCA AGTGAGAAAT
 1441 CACCATGAGT GACGACTGAA TCCGGTGAGA ATGGCAAAAG TTTATGCATT TCTTTCAGA
 1501 CTTGTTCAAC AGGCCAGCCA TTACGCTCGT CATCAAAATC ACTCGCATCA ACCAAACCGT
 1561 TATTCAATTG TGATTGCGCC TGAGCGAGAC GAAATACGCG ATCGCTGTTA AAAGGACAAT
 1621 TACAAACAGG AATCGAATGC AACCGGGCGCA GGAACACTGC CAGCGCATCA ACAATATT
 1681 CACCTGAATC AGGATATTCT TCTAATACCT GGAATGCTGT TTTCCGGGG ATCGCAGTGG
 1741 TGAGTAACCA TGCATCATCA GGAGTACCGA TAAAATGCTT GATGGTCGGA AGAGGCATAA
 1801 ATTCCGTCAG CCAGTTTAGT CTGACCATCT CATCGTAAC ATCATTGGCA ACGCTACCTT
 1861 TGCCATGTTT CAGAAACAAAC TCTGGCGCAT CGGGCTTCCC ATACAAGCGA TAGATTGTCG
 1921 CACCTGATTG CCCGACATTA TCGCGAGCCC ATTTATACCC ATATAAAATCA GCATCCATGT
 1981 TGGAAATTAA TCGCGGGCTC GACGTTTCCC GTGAAATATG GCTCATAACA CCCCTTGTAT
 2041 TACTGTTAT GTAAGCAGAC AGTTTTATTG TTCATGATGA TATTTTTA TCTTGTGCAA
 2101 TGTAACATCA GAGATTTGA GACACGGGCC AGAGCTGCAG CTGGATGGCA AATAATGATT
 2161 TTATTTGAC TGATAGTGAC CTGTTGTTG CAACAAATTG ATAAGCAATG CTTTCTTATA
 2221 ATGCCAACTT TGACAAAGAA AGCTGAACGA GAAACGTTAA ATGATATAAA TATCAATATA
 2281 TTAAATTAGA TTTGCATAA AAAACAGACT ACATAATAC GTAAAAACACA ACATATCCAG
 2341 TCACTATGAA TCAACTACTT AGATGGTATT AGTGCACCTG AGTGCACAA GTGGCAGCA
 2401 TCACCCGACG CACTTGCAG CGAATAAATA CCTGTGACGG AAGATCACTT CGCAGAATAA
 2461 ATAAATCCTG GTGCCCCGT TGATACCGGG AAGCCCTGGG CCAACTTTG GCGAAAATGA
 2521 GACGTGATC GGCACGTAAG AGGTTCAAAC TTTCACCATA ATGAAATAAG ATCACTACCG
 2581 GGCCTATTGGAT TTGAGTTATC GAGATTTCA GGAGCTAAGG AAGCTAAAAT GGAGAAAAAA
 2641 ATCACTGGAT ATACCACCGT TGATATATCC CAATGGCATC GTAAAGAACAA TTTTGAGGCA
 2701 TTTCAGTCAG TTGCTCAATG TACCTATAAC CAGACCGTTG AGCTGGATAT TACGGCCTT-

Figure 50B

169/240

2761 TTAAAGACCG TAAAGAAAAA TAAGCACAGG TTTTATCCGG CCTTTATTCA CATTCTGCC
2821 CGCCTGATGA ATGCTCATCC GGAATTCGGT ATGGCAATGA AAGACGGTGA GCTGGTGATA
2881 TGGGATAGTG TTCACCCCTTG TTACACCGTT TTCCATGAGC AAACGTAAAC GTTTTACATCG
2941 CTCTGGAGTG AATACCACGA CGATTTCCGG CAGTTTCTAC ACATATATTG GCAAGATGTG
3001 GCGTGTACG GTGAAAACCT GGCCTATTTT CCTAAAGGGT TTATTGAGAA TATGTTTTTC
3061 GTCTCAGCCA ATCCCTGGGT GAGTTTCACC AGTTTGATT TAAACGTGGC CAATATGGAC
3121 AACTCTTCG CCCCCGTTTT CACCATGGGC AAATATTATA CGCAAGGGCA CAAGGTGCTG
3181 ATGCCGCTGG CGATTCAAGGT TCATCATGCC GTCTGTGATG GCTTCCATGT CGGCAGAACATG
3241 CTTAATGAAT TACAACAGTA CTGCGATGAG TGGCAGGGCG GGGCGTAATC GCGTGGATCC
3301 GGCTTACTAA AAGCCAGATA ACAGTATGCG TATTGCGCG CTGATTTTG CGGTATAAGA
3361 ATATATACTG ATATGTATAC CCGAAGTATG TCAAAAAGAG GTGTGCTATG AAGCAGCGTA
3421 TTACAGTGAC AGTTGACAGC GACAGCTATC AGTTGCTCAA GGCATATATG ATGTCAATAT
3481 CTCCGGTCTG GTAAGCACAA CCATGCAGAA TGAAGCCCGT CGTCTGCGTG CGAACGCTG
3541 GAAAGCGGAA AATCAGGAAG GGATGGCTGA GGTGCCCCGG TTTATTGAAA TGAACGGCTC
3601 TTTTGCTGAC GAGAACAGGG ACTGGTAAAA TGCACTTTAA GGTTTACACC TATAAAAGAG
3661 AGAGCCGTTA TCGTCTGTTT GTGGATGTAC AGAGTGTAT TATTGACACG CCCGGGCGAC
3721 GGATGGTGTAT CCCCCCTGGCC AGTGCACGTC TGCTGTCAAGA TAAAGTCTCC CGTGAACCTTT
3781 ACCCGGTGGT GCATATCGGG GATGAAAGCT GGCGCATGAT GACCACCGAT ATGGCCAGTG
3841 TGCCGGTCTC CGTTATCGGG GAAGAACGTGG CTGATCTCAG CCACCGCGAA AATGACATCA
3901 AAAACGCCAT TAACCTGATG TTCTGGGAA TATAAATGTC AGGCTCCCTT ATACACAGCC
3961 AGTCTGCAGG TEGATACAGT AGAAATTACA GAAACTTTAT CACGTTTAGT AAGTATAGAG
4021 GCTGAAAATC CAGATGAAGC CGAACGACTT GTAAGAGAAA AGTATAAGAG TTGTGAAATT
4081 GTTCTTGATG CAGATGATTTCAGGACTAT GACACTAGCG TATATGAATA GGTAGATGTT
4141 TTTATTTGT CACACAAAAA AGAGGCTCGC ACCTCTTTT CTTATTTCTT TTTATGATTT
4201 AATA

FIGURE SDC

FIGURE 5/A pDONR 203 (*kanR*)

151/240

pDONR203 4208 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
47..131	inactivated ccdA
251..910	CmR
1158..1398	attP2
1509..2082	ori
2251..3130	KmR
3464..3174	attP1
3812..4117	ccdB

1 GCGTTCGGCA CGCAGACGAC GGGCTTCATT CTGCATGGTT GTGCTTACCA GACC GGAGAT
 61 ATTGACATCA TATATGCCCT GAGCAACTGA TAGCTGTCGC TGTCACGTGT CACTGTAATA
 121 CGCTGCTTCA TAGCACACCT CTTTTGACA TACTTCGGGT ATACATATCA GTATATATT
 181 TTATACCGCA AAATCAGCG CGCAAATACG CATACTGTTA TCTGGCTTT AGTAAGCCGG
 241 ATCCACGCGT TTAGCCCC CCCTGCCACT CATCGCAGTA CTGTTGTAAT TCATTAAGCA
 301 TTCTGCCGAC ATGGAAGCCA TCACAGACGG CATGATGAACT GAATCGCC AGCAGCATCA
 361 GCACCTTGTC GCCTGCTA TAATATTGTC CCATGGTGA AACGGGGGGCG AAGAAGTTGT
 421 CCATATTGGC CACGTTAA TCAAAAATGG TGAAACTCAC CCAGGGATTG GCTGAGACGA
 481 AAAACATATT CTCAATAA CCTTTAGGGA AATAGGCCAG GTTTTCACCG TAACACGCCA
 541 CATCTTGCAGA ATATATGTT AGAAAATGCC GGAAATCGTCTG GTGGTATTCA CTCCAGAGCG
 601 ATGAAAACGT TTCACTTGC TCATGGAAA CGGTGTAACA AGGGTGAACA CTATCCCATA
 661 TCACCAAGCTC ACCGICTTTC ATTGCCATAC GGAATCCGG ATGAGCATTC ATCAGGGGGG
 721 CAAGAACATGTG AATAAAGGCC GGATAAAAATC TGTCCTTATT TTTCTTACG GTCTTTAAAA
 781 AGGCCGTAAT ATCCAGCTGA ACAGGCTGGT TATAGGTACA TTGAGCAACT GACTGAAATG
 841 CCTCAAAATG TTCTTTACGA TGCCATTGGG ATATATCAAC GGTGGTATAT CCAGTGATT
 901 TTTCTCCAT TTAGCTTCC TTAGCTCTG AAAATCTCGA TAACTAAAA AATACGCCCC
 961 GTAGTGATCT TATTTCATTA TGGTGAAAGT TGGAACCTCT TACGTGCCGA TCAACGTCTC
 1021 ATTTTCGCCA AAAGTTGGCC CAGGGCTTCC CGGTATCAAC AGGGACACCA GGATTATT
 1081 ATTCTCGCAA GTGATCTTC GTCACAGGTA TTTATCGGC GCAAAGTGC TGCGGTGATG
 1141 CTGCAACTT AGTCGACTAC AGGTCACTAA TACCATCTAA GTAGTTGATT CATACTGACT
 1201 GGATATGTTG TGTTCACAG TATTATGTTAG TCTGTTTTT ATGAAAATC TAATTAAATA
 1261 TATTGATATT TATATCATT TACGTTCTC GTTCAGCTTT CTTGTACAAA GTGGCATT
 1321 TAAGAAAGCA TTGCTTATCA ATTTGTTGCA ACGAACAGGT CACTATCAGT CAAAATAAAA
 1381 TCATTATTG CCATCCAGCT AGCGGTAAATA CGGTTATCCA CAGAACATCAGG GGATAACGCA
 1441 GGAAAGAACAA TGTGAGCAAA AGGCCAGCAA AAGGCCAGGA ACCGTTAAAAA GGCCCGTGTG
 1501 CTGGCGTTTT TCCATAGGCT CCGCCCCCCT GACGGAGCATC AAAAAAAATCG ACGCTCAAGT
 1561 CAGAGGTGGC GAAACCCGAC AGGACTATAA AGATACCAGG CGTTTCCCCC TGGAAGCTCC
 1621 CTCTGCGCT CTCCCTGTTCC GACCTGCGG CTTACCGGAT ACCTGTCCGC CTTTCTCCCT
 1681 TCGGGAAGCG TGGCGTTTC TCATAGCTCA CGCTGTAGGT ATCTCAGTTC GGTGTAGGTC
 1741 GTTCGCTCCA AGCTGGGCTG TGTGACGAA CCCCCCGTTC AGCCCGACCG CTGCGCCTTA
 1801 TCCGGAACCT ATCGTCTTGA GTCCAACCCCG GTAAGACACG ACTTATCGCC ACTGGCAGCA
 1861 GCCACTGGTA ACAGGATTAG CAGAGCGAGG TATGTAGGCG GTGCTACAGA GTTCTTGAAG
 1921 TGGTGGCTA ACTACGGCTA CACTAGAAGA ACAGTATTG GTATCTGGC TCTGCTGAAG
 1981 CCAGTTACCT TCGAAAAAG AGTTGGTAGC TCTTGATCCG GCAAACAAAC CACCGCTGGT
 2041 AGCGGTGGTT TTTTGTGTTG CAAGCAGCAG ATTACGCGCA GAAAAAAAGG ATCTCAAGAA
 2101 GATCCTTGA TCTTTCTAC GGGGCTGAC GCTCAGTGGA ACAGAAAATC ACGTTAAGGG
 2161 ATTTGGTCA TGAGCTTGC CGCTCCCGTC AAGTCAGCGT AATGCTCTGC CAGTGTAC
 2221 ACCAATTAAC CAATTCTGAT TAGAAAAACT CATCGAGCAT CAAATGAAAC TGCAATT
 2281 TCATATCAGG ATTATCAATA CCATATTGTT GAAAAAGCCG TTTCTGTAAT GAAGGAGAAA
 2341 ACTCACCGAG GCAGTTCCAT AGGATGGCAA GATCCTGGTA TCGGCTGCG ATTCCGACTC
 2401 GTCCAACATC AATACAAACCT ATTAATTTC CCTCGTCAA AATAAGGTTA TCAAGTGAGA
 2461 AATCACCATG AGTGAACGACT GAATCCGGTG AGAATGGCAA AAGTTTATGC ATTTCTTCC
 2521 AGACTTGTTC AACAGGCCAG CCATTACGCT CGTCATCAA ATCAACTCGCA TCAACCAAC
 2581 CGTTATTCACT CGTGATTGCG GCCTGAGCGA GACGAAATAC GCGATCGCTG TTAAAAGGAC
 2641 AATTACAAAC AGGAATCGAA TGCAACCGC GCAGGAACAC TGCCAGCGCA TCAACAAATAT
 2701 TTTCACCTGA ATCAGGATAT TCTTCTAATA CCTGGAATGC TGTTTTCCG GGGATCGCAG-

FIGURE 51B

152/240

2761 TGGTGAGTAA CCATGCATCA TCAGGAGTAC GGATAAAAATG CTTGATGGTC GGAAGAGGCA
2821 TAAATTCCGT CAGCCAGTTT AGTCTGACCA TCTCATCTGT AACATCATTG GCAACGCTAC
2881 CTTTGCCATG TTTCAGAAC AACTCTGGCG CATCGGGCTT CCCATACAAG CGATAGATTG
2941 TCGCACCTGA TTGCCCCGACA TTATCGCGAG CCCATTATAA CCCATATAAA TCAGCATCCA
3001 TGTTGGAATT TAATCGCGGC CTCGACGTTT CCCGTTGAAT ATGGCTCATA ACACCCCTTG
3061 TATTACTGTT TATGTAAGCA GACAGTTTA TTGTTCATGA TGATATATT TTATCTTGTG
3121 CAATGTAACA TCAGAGATT TGAGACACGG GCCAGAGCTG CAGCTAGCAT GGATCTCGGG
3181 CCCCAAATAA TGATTTTATT TTGACTGATA GTGACCTGTT CGTTGCAACA AATTGATGAG
3241 CAATGCTTT TTATAATGCC AACTTTGTAC AAAAAGCTG AACGAGAAC GTAAAATGAT
3301 ATAATATCA ATATATTAAA TTAGATTTG CATAAAAAAC AGACTACATA ATACTGTAAA
3361 ACACAAACATA TCCAGTCACT ATGAATCAAC TACTTAGATG GTATTAGTGA CCTGTAGTCG
3421 ACCGACAGCC TTCCAAATGT TCTTCGGGTG ATGCTGCCAA CTTAGTCGAC CGACAGCCTT
3481 CCAAATGTTT TTCTCAAACG GAATCGTCGT ATCCAGCCTA CTGCTATTG TCCTCAATGC
3541 CGTATTAAT CATAAAAAGA AATAAGAAAA AGAGGTGCGA GCCTTTTT TGTGTGACAA
3601 AATAAAAACA TCTACCTATT CATATACGCT AGTGTACATAG TCCTGAAAAT CATCTGCATC
3661 AAGAACAAATT TCACAACCTCT TATACTTTTC TCTTACAAGT CGTTCGGCTT CATCTGGATT
3721 TTCAGCCTCT ATACTTACTA AACGTGATAA AGTTCTGTG ATTTCTACTG TATCGACCTG
3781 CAGACTGGCT GTGTATAAGG GAGCCTGACA TTTATATTCC CCAGAACATC AGGTTAATGG
3841 CGTTTTGAT GTCACTTTCG CGGTGGCTGA GATCAGCCAC TTCTTCCCCG ATAACGGAGA
3901 CGGGCACACT GGCCATATCG GTGGTCATCA TGCGCCAGCT TTCACTCCCCG ATATGCACCA
3961 CGGGTAAAG TTCACGGGAG ACTTTATCTG ACAGCAGACG TGCACTGGCC AGGGGGATCA
4021 CCATCCGTG CCCGGGCGTG TCAATAATAT CACTCTGTAC ATCCACAAAC AGACGATAAC
4081 GGCTCTCTCT TTTATAGGTG TAAACCTTAA ACTGCATTTC ACCAGTCCT GTTCTCGTCA
4141 GCAAAAGAGC CGTTCATTTC AATAAAACCGG GCGACCTCAG CCATCCCTTC CTGATTTCC
4201 GCTTTCCA

FIGURE 51C

153/260

FIGURE 52A pDONR204 (kanR)

154/740

pDONR204 4165 bp

1 CGGCATTGAG GACAATAGCG AGTAGGCTGG ATACGACGAT TCCGTTTGAG AAGAACATTT
 61 GGAAGGCTGT CGGTCGACTA CAGGTCACTA ATACCACCTA AGTAGTTGAA TCATAGTGAC
 121 TGGATATGTT GTGTTTTACA GTATTATGTA GTCTGTTTT TATGCAAAT CTAATTTAAT
 181 ATATTGATAT TTATATCATT TTACGTTCT CGTTCAGCTT TTTGTACAA AGTTGGCATT
 241 ATAAAAAAAGC ATTGCTTATC AATTGTTGC AACGAACAGG TCACTATCAG TCAAAATAAA
 301 ATCATTATTT GGGGCCGAG ATCCATGCTA GCTGCAGTGC GCAGGGCCCG TGTCTCAAAA
 361 TCTCTGATGT TACATTGCAAG AGATAAAAAA TATATCATCA TGAACAATAA AACTGCTGC
 421 TTACATAAAC AGTAATACAA GGGGTGTTAT GAGCCATATT CAACGGGAAA CGTCTTGCTG
 481 GAGGCCGCGA TTAAATTCCA ACATGGATGC TGATTATAT GGGTATAAAAT GGGCTCGCGA
 541 TAATGTCGGG CAATCAGGTG CGACAATCT TCGATTGTG GGGAAAGCCCG ATGCGCCAGA
 601 GTTGTTCCTG AAACATGGCA AAGGTAGCGT TGCCAATGAT GTTACAGATG AGATGGTCAG
 661 ACTAAACTGG CTGACGGAAT TTATGCTCT TCCGACCATC AAGCATTAA TCCGTAATCC
 721 TGATGATGCA TGGTACTCTA CCACGCGAT CCGCGGGAAA ACAGCATTCC AGGTATTAGA
 781 AGAATATCCT GATTCAAGGTG AAAATATTGT TGATGCGCTG GCAGTGTCC TGCGCCGGTT
 841 GCATTGCAATT CCTGTTGTA ATTGCTCTT TAACAGCGAT CGCGTATTTC GTCTCGCTA
 901 GGCGCAATCA CGAATGAATA ACGGTTGGT TGATGCGAGT GATTTGATG ACGAGCGTAA
 961 TGGCTGGCCT GTTGAACAAAG TCTGGAAAGA AATGCAATCG CTTTGCCAT TCTCACCGGA
 1021 TTCAGTCGTC ACTCATGGTG ATTCTCACT TGATAAACCTT ATTGTTGACG AGGGGAAATT
 1081 AATAGGTGTG ATTGATGTTG GACGAGTCGG AATCGCAGAC CGTACCCAGG ATCTTGCAT
 1141 CCTATGGAAC TGCCTCGGTG AGTTTTCTCC TTCATTACAG AAACGGCTTT TTCAAAATA
 1201 TGGTATTGAT AATCCTGATA TGAATAAAAT GCAGTTTCAT TTGATGCTCG ATGAGTTTT
 1261 CTAATCAGAA TTGGTTAATT GGTTGTAACA CTGGCAGAGC ATTACGCTGA CTTGACGGGA
 1321 CGGCGNCATG ACCAAAATC CTTAACGTA GTTTTCGTT CACTGAGCGT CAGACCCGT
 1381 AGAAAAGATC AAAGGATCTT CTTGAGATCC TTTTTTCTG CGCGTAATCT GCTGCTTGCA
 1441 AACAAAAAAA CCACCGCTAC CAGCGGTGGT TTGTTGCGG GATCAAGAGC TACCAACTCT
 1501 TTTTCCGAAAG GTAATGGCT TCAGCAGAGC GCAGATACCA AATACTGTCC TTCTAGTGT
 1561 GCCGTAGTTA GCCCACCCT TCAAGAATC TGTAGCACCG CCTACATACC TCGCTCTGCT
 1621 AATCCTGTTA CCAGTGGCTG CTGCCAGTGG CGATAAGTCG TGTCTTACCG GGTTGGACTC
 1681 AAGACGATAG TTACCGGATA AGGCGCAGGG GTCGGGCTGA ACGGGGGGTT CGTGCACACA
 1741 GCCCAGCTG GAGCGAACGA CCTACACCGA ACTGAGATAC CTACAGCGTG AGCTATGAGA
 1801 AAGGCCACCG CTTCCCGAAG GGAGAAAAGC GGACAGGTAT CCGGTAAGCG GCAGGGTCGG
 1861 AACAGGAGAG CGCACGAGGG AGCTTCCAGG GGGAAACGCC TGGTATCTTT ATAGTCTGT
 1921 CGGGTTTCGC CACCTCTGAC TTGAGCGTCG ATTGTTGATG TGCTCGTCAG GGGGGCGGAG
 1981 CCTATGGAAA AACGCCAGCA ACACGGCTT TTTACGGTTC CTGGCTTTT GCTGGCTTT
 2041 TGCTCACATG TTCTTCCTG CGTTATCCCC TGATTCTGTG GATAACCGTA TTACCGCTAG
 2101 CTGGATCGC AAATAATGAT TTGATTTGA CTGATAGTGA CCTGTTCGTT GCAACAAATT
 2161 GATAAGCAAT GCTTTTTAT AATGCCACT TTGTACAAGA AAGCTGAACG AGAAACGTAA
 2221 AATGATATAA ATATCAATAT ATTAAATTAG ATTGTCATA AAAAACAGAC TACATAATAC
 2281 TGAAAAACAC AACATATCCA GTCACTATGA TTCAACTACT TAGATGGTAT TAGTGACCTG
 2341 TAGTCGACTA AGTTGGCAGC ATCACCCGAC GCACTTGC CGGAATAAAAT ACCTGTGACG
 2401 GAAGATCACT TCGCAGAATA AATAAAATCCT GGTGTCCTG TTGATACCGG GAAGCCCTGG
 2461 GCCAACCTTT GGGAAAATG AGACGTTGAT CGGCACATT CACAACCTT ATACTTTCT
 2521 CTTACAAGTC GTTCCGGCTTC ATCTGGATT TCAGCCTCTA TACTTACTAA ACGTGATAAA
 2581 GTTTCTGTAATTTCTACTGT ATCGACCTGC AGACTGGCTG TGATAACGG AGCCTGACAT
 2641 TTATATTCCC CAGAACATCA GGTTAATGGC GTTTTTGATG TCATTTTCGC GGTGGCTGAG
 2701 ATCAGCCACT TCTCCCCGA TAACGGAGAC CGGCACACTG GCCATATCGG TGGTCATCAT
 2761 GCGCCAGCTT TCATCCCCGA TATGCACCAAC CGGGTAAAGT TCACGGGAGA CTTTATCTGA
 2821 CAGCAGACGT GCACTGGCCA GGGGGATCAC CATCCGTCGC CGGGCGTGT CAATAATATC
 2881 ACTCTGTACA TCCACAAACA GACGATAACG GCTCTCTCTT TTATAGGTGT AAACCTTAAA
 2941 CTGCATTCA CCAGTCCCTG TTCTCGTCAG CAAAAGAGCC GTTCATTTCA ATAAACCGGG
 3001 CGACCTCAGC CATCCCTTCC TGATTTCCG CTTTCCAGCG TTCGGCACGC AGACGACGGG
 3061 CTTCATTCTG CATGGTTGTG CTTACCAGAC CGGAGATATT GACATCATAT ATGCCTTGAG
 3121 CAACTGATAG CTGTCGCTGT CAACTGTACG TGTAATACGC TGCTTCATAG CACACCTTT-

FIGURE 52B

155/240

3181 TTTGACATAC TTGGGTATA CATATCAGTA TATATTCTTA TACCGCAAAA ATCAGCGCGC
3241 AAATACGCAT ACTGTTATCT GGCTTTAGT AAGCCGGATC CACCGGTTA CGCCCCGCC
3301 TGCCACTCAT CGCAGTACTG TTGTAATTCA TTAAGCATTG TGCGACATG GAAGCCATCA
3361 CAGACGGCAT GATGAACCTG AATGCCAGC GGCATCAGCA CCTTGTGCGCC TTGCGTATAA
3421 TATTTGCCCA TGGTGAACGGGGGGCGAAG AAGTTGTCCA TATTGGCCAC GTTTAAATCA
3481 AAACTGGTGA AACTCACCCA GGGATTGGCT GAGACGAAAA ACATATTCTC AATAAACCT
3541 TTAGGGAAAT AGGCCAGGTT TTCACCGTAA CACGCCACAT CTTCGAATA TATGTGAGA
3601 AACTGCCGA AATCGTCGTG GTATTCACTC CAGAGCGATG AAAACGTTTC AGTTTGCTCA
3661 TGGAAAACGG TGTAACAAGG GTGAACACTA TCCCATATCA CCAGCTCACC GTCTTCATT
3721 GCCATACCGA ATTCCGGATG AGCATTCACTC AGGCAGGGCAA GAATGTGAAT AAAGGCCGA
3781 TAAAACTTGT GCTTATTTTT CTTTACGGTC TTTAAAAAGG CCGTAATATC CAGCTGAACG
3841 GTCTGGTTAT AGGTACATTG AGCAACTGAC TGAAATGCCT CAAAATGTTTC TTTACGATGC
3901 CATTGGGATA TATCAACGGT GGTATATCCA GTGATTTTT TCTCCATTTT AGCTTCCTTA
3961 GCTCCTGAAA ATCTCGATAA CTCAAAAAAT ACGCCCGGTA GTGATCTTAT TTCATTATGG
4021 TGAAAGTTGG AACCTCTTAC TGTTCTTGAT GCAGATGATT TTCAGGACTA TGACACTAGC
4081 ATATATGAAT AGGTAGATGT TTTTATTTTG TCACACAAAA AAGAGGCTCG CACCTCTTTT
4141 TCTTATTTCT TTTTATGATT TAATA

FIGURE 52C

156/240

Figure S3A; pDONR205 (tetR)

157/260

pDONR205 4939 bp

GGCATCAGCACCTTGTGCGCTTGGTATAATTTGCCCATGGTAAACGGGGCGAAG
 AAGTTGTCATATTGCCACGTTAACAAACTGGTAAACTCACCCAGGGATTGGCT
 GAGACGAAAAACATACTCTCAATAAACCCATTAGGGAAATAGGCCAGGTTTACCGTAA
 CACGCCACATCTTGCAGTAAATATGTGAGAAACTGCCGAAACTGCGTGGTATTCACTC
 CAGAGCGATGAAAACGTTTCACTGGTAAACAGGTGAACAGGGTGAACACTA
 TCCCATATCACCAGCTCACCGTCTTCACTGCCATACGGAATTCCGGATGAGCATTCACTC
 AGGCGGCAAGAATGTAATAAGGCCGATAAAACTTGTGTTATTTTCTTACGGTC
 TTTAAAAGGCCGTAATCCAGCTGAACGGTCTGGTTAGGGATATGAGCAACTGAC
 TGAAATGCCCAAAATGTTTACGATGCCATTGGGATATCAACGGTGGTATATCCA
 GTGATTTTTCTCCATTAGCTCCCTAGCTCTAGCTCTGAAATCTCGATAACTCAAAAT
 ACGCCCGGAGTGTGATCTTACGTTAGGTGAAAGTGGAAACCTTACGTGCCGATCA
 ACGTCTCACTTCGCAAAGTTGGCCAGGGCTTCCCGGATCAACAGGGACACCAAGGA
 TTTATTTATCTGCGAAGTGTGATCTCCGTACAGGTATTATCGGCCAAAGTGGCTCG
 GGTGATGCTGCCAACTTAGTCGACTACAGGTACTAATACCATCTAAGTAGTTGATTCAT
 AGTGACTGGATATGTTGTTTACAGTATTATGAGTGTGTTTATGCAAAATCTAA
 TTTAATATATTGATATTATACGTTACGTTCTCGTTCACTGTTCTTGACAAAGTT
 GGCATTATAAGAAAGCATTGCTTACGTTGCAACGAACAGGTCACTATCAGTC
 AATAAAATCATTATTGCCATCCAGCTGCAGCTGGCCGTTCTCAGGTTCTCAAATCTGATG
 TTACATTGACAAGATAAAATATCATCATGAAATTCTCATGTTGACAGCTTATCATC
 GATAAGCTTTAATGCCGTAGTTTACAGTTAAATTGCTAACGCAGTCAGGCCCGTGT
 ATGAAATCTAACATGCGCTCATCGTCACTCTCGGCCACCCCTGGATGCTGTAGGC
 ATAGGCTGGTTATGCCGTACTGCCGGCTCTGGGGATATGCTCATTCCGACAGC
 ATGCCAGTCAGTATGCCGTGCTGCTAGCGTATATGCCGTGATGCAATTCTATGCC
 CCCGTTCTCGGAGCACTGTCGACCGCTTGGCCGCCAGCTCGCTTCGCTA
 CTTGGAGCCACTATCGACTACCGGATCATGGGACACACCCGCTCTGGATCCTCTAC
 GCCGGACCGCATCGTGCCGGCATACGGGCCACAGGTGGCTGCTGGCCATATAC
 GCGACATCACCGATGGGAAGATCGGCGCCACTTCCGGCTCATGAGCGCTTGT
 GGCCTGGGTATGGTGCAGGCCGGTGGCCGGGACTGTTGGCGCCATCTCCTG
 GCACCATTCCTGCGCGGCGTCAACGGCCTAACCTACTACTGGCTGCTTCTA
 ATGCAAGGAGTCGATAAGGGAGAGCGTCGACCGATGCCCTGAGAGCCTCAACCCAGTC
 AGCTCTCCGGTGGCGCGGGCATGACTATCGTCGCCACTTATGACTGCTTCTT
 ATCATGCAACTCGTAGGACAGGTGCCGGCAGCGCTCTGGTCAATTTCGGCGAGGACCGC
 TTTGCGCTGGAGCGCAGATGATGCCCTGCTGCTGGTATTGGAATCTGCAAGC
 CTCGCTCAAGCCTCGTCACTGGCCGCCAACACGTTTGGCGAGAAGCAGGCCATT
 ATCGCCGGCATGGCGCCGACCGCTGGCTACGCTTGTGCTGGCGTTCGGCAGCGAGGC
 TGGATGCCCTTCCCCATTATGATTCTCGCTTCCGGGGCATGGGATGCCCGT
 CAGGCCATGCTGTCAGGCAGGTAGATGACGACCATCAGGGACAGCTCAAGGATCGCTC
 GCGGCTCTTACCGCTAACCTCGATCATGGACCGCTGATCGTCAAGGCGATTATGCC
 GCCTCGGGAGCACATGGAACGGTTGGCATGGATTGTAAGCGCCGCCATACCTGTC
 TGCCTCCCGCGTGTGCGCTGGCATGGAGCGGGCACCTGACCTGAATGGAAGCC
 GGCGGCACCTCGCTAACGGATTCAACACTCCAAGAATTGGAGCCAATCAATTCTGCC
 GAACTGTGAATGCGCAAACCAACCTTGGCAGAACATATCCATCGCATGACCAAAATCCC
 TTAACGTGAGTTTCTGCGTCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTC
 TTGAGATCTTCTGCGTCAATCTGCTGCTTGCAGAACAAAAAACCCACCGCTACC
 AGCGGTGGTTTGTGCGGATCAAGAGCTACCAACTCTTCCGAAGGTAACGGCTT
 CAGCAGAGCGCAGATAACCAAAACTGTCCTCTAGTGTAGCGTAGTTAGGCCACCACTT
 CAAGAACACTGTAGCACCGCTACATACCTCGCTCTGCTAATCTGTTACCAAGTGGCTGC
 TGCCAGGGCGATAAGTCGTGCTTACGGGTTGGACTCAAGACGATAGTTACCGGATAA
 GGCGCAGGGCGGGCTGAACGGGGGTTCTGTCAGCACACAGCCCAGCTGGAGCGAACGAC
 CTACACCGAACTGAGATAACCTACAGCGTGAGCTATGAGAAAAGCGCCACGCTTCCGAG
 GAGAAAGCGGACAGGTATCCGTAAGCGGAGGGCTGGAAACAGGAGAGCGCACGAGGG
 GCTTCCAGGGGGAAACGCCCTGGTATCTTATAGTCCTGTCGGGTTTCGCCACCTGACT
 TGAGCGTCGATTTTGTGATGCTCGTCAGGGGGCGGAGCCATGGAAAAACGCCAGCAA-

FIGURE 53B

158/240

CGCGGCCCTTTACGGTCCGTGCTGGCTTTGCTCACATGTTCTTCCTGC
GTTATCCCCGTATTCTGGATAACCGTAACTACCGTAGCAGGAAGAGTTGTAGAAC
GCAAAAAGGCCATCCGTCAAGGATGCCCTCTGCTTAGTTGATGCCCTGCCAGTTATGGC
GGGGCGTCCCTGCCGCCACCCCTCCGGGCGTTGCTTACAACGTTCAAATCCGCTCCGGC
GGATTTGTCCTACTCAGGAGAGCGTTACCGACAAAACAACAGATAAAACGAAAGGCCAG
TCTTCGACTGAGCCTTCGTTTAACTTGATGCCCTGCAAGTTCCCTACTCTCGCTTAAC
GCTAGCATGGATCTGGCCCAAATAATGATTAACTTGACTGATAGTGACCTGTTCG
TTGCAACAAATTGATGAGCAATGCTTTTATAATGCCAATTGACAAAAAGCTGAA
CGAGAAACGTAAAATGATATAAAATATCAATATATTAAATTAGATTTGATCAAACAG
ACTACATAAACTGAAAACACAACATATCCAGTCACTATGAATCAACTACTTAGATGGT
ATTAGTGACCTGTAGTCGACCGACAGCCTTCAAATGTTCTCGGGTGATGCTGCCAACT
TAGTCGACCGACAGCCTTCAAATGTTCTCAAACGGAATCGCTGATCCAGCCTACT
CGCTATTGTCCTCAATGCCGTATTAATCATAAAAAGAAAATAAGAAAAGAGGTGCGAGC
CTCTTTTGTGTGACAAAATAAAACATCTACCTATTCAATACGCTAGTGTCAAGTC
CTGAAAATCATCTGCATCAAGAACAAATTCAAACTCTTAACTTTCTCTTACAAGTCG
TTGGCCTTCATCTGGATTTCAGCCTCTATACTTAACTAACGTGATAAAGTTCTGTAAT
TTCTACTGTATCGACCTGCAGACTGGCTGTGATGTCATTTCGCGGTGGCTGAGATCAGCCACTT
AGAACATCAGGTTAATGGCGTTTGTGATGTCATTTCGCGGTGGCTGAGATCAGCCACTT
CTTCCCCGATAACGGAGACCGGCACACTGGCATATCGGTGGTCACTCGGCCAGCTT
CATCCCCGATATGCACCAACGGGTAAGTTACGGGAGACTTTATCTGACAGCAGACGTG
CACTGGCAGGGGATACCACATCCGCGCCGGCGTGTCAATAATATCACTCTGTACAT
CCACAAAACAGACGATAACGGCTCTCTTTATAGGTGTAACCTTAAACTGCATTTCAC
CAGTCCCTGTTCTCGTCAGCAAAAGAGCCGTTCAATTCAATAACCGGGGACCTCAGCC
ATCCCCTCCTGATTTCCGCTTCCAGCGTTCGGCACGCAGACGACGGCTTCATTCTGC
ATGGTTGTGCTTACAGACGGAGATATTGACATCATATATGCCCTGAGCAACTGATAGC
TGTCGCTGTCAACTGTCACTGTAATACGCTGTTCAAGCACACCTTTTGACATACT
TCGGGTATACATATCAGTATATATTCTTACCGAAAAATCAGCGCAGAACACGCA
CTGTTATCTGGCTTTAGTAAGCCGGATCCACCGCATTACGCCCGCCCTGCCACTCATC
GCAGTACTGTTGTAATTCAAGCATTCTGCCGACATGGAAGCCATCACAGACGGCATG
ATGAACCTGAATGCCAGC

FIGURE 53C

159/260

160/260

pDONR206 4415 bp

CGGCATTGAGGACAATAGCGAGTAGGCTGGATACGACGATTCCGTTGAGAAGAACATTT
 GGAAGGCTGTCGGTCAACTACAGGTCACTAATACCATCTAAGTAGTTGAATCATAGTGAC
 TGGATATGTTGTGTTTACAGTATTATGTTAGCTGTTTATGCAAATCTAATTAAAT
 ATATTGATATTATATCATTTCAGTTCTCGTTAGCTTGTACAAAGTTGGCATT
 ATAAAAAAAGCATTGCTTATCAATTGTTGCAACGAACAGGGTCACTATCAGTCAAATAAA
 ATCATTATTGGGGCCCGAGATCCATGCTAGCGGTAAACCGTTATCCACAGAAATCAGGG
 GATAACGCAGGAAAGAACATGTGAGCAAAGGCCAGCAAAGGCCAGGAACCGTAAAAG
 GCGCGTTGCTGGCGTTTCCATAGGCTCCGCCCCCTGACGAGCATCACAAAAATCGA
 CGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTTAAGAGATCAGGGCGTTCCCCCT
 GGAAGCTCCCTCGTCGCTCTCTGTTCCGACCCCTGCGCTTACCGGATACCTGTCGCCC
 TTTCTCCCTCGGGAAAGCTGGCCTTCTCATAGCTCACCGCTGAGGTATCTAGTTGCG
 GTGTAGGTGCTCGCTCCAAGCTGGCTGTGTCAGAAGCCCCCGTTCAGCCGACCGC
 TGCGCCTTATCCGTAACATCGTCTTGAGTCCAACCCGTAAGACACGACTTATCGCA
 CTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTTAGGCGGTGCTACAGAG
 TTCTTGAAGTGGTGGCTAACTACGGCTACACTAGAAGGACAGTATTGGTATCTGCGCT
 CTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGAAACAAACC
 ACCGCTGGTAGCGGTGGTTTTTGTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGA
 TCTCAAGAAGATCCTTGATCTTCTACGGGCTGACGGCTCAGTGGAACGAAAATCA
 CGTTAAGGGATTGGTCACTGNCGCCGTCGGTAAAGTCAGCTGCAATGCTCTGCCAGTGT
 TACAACCAATTAAACCAATTCTGATTAGAAAATCTCATCGAGCATCAAATGAAACTGCAAT
 TTATTCTATATCAGGATTATCAATACCATATTGGTAAAGGCTTCTGTAATGAAGGA
 GAAAATCACCAGGGCAGTTCCATAGGATGGCAAGATCCTGGTATCGGTCTGCGATTCCG
 ACTCGTCCACATCAATACAACCTATTAGCGAGGTCTCCGATCTCTGAAGCCAGGGC
 AGATCCGTGACAGCACCTTGCCTAGAAGAACAGCAAGGCCAATGCCGACGATGC
 GTGGAGACCGAAACCTTGCCTCGTCTGCCAGGCCAGGACAGAAAATGCCGACTTCGCTG
 CTGCCAAGGTTGCCGGTGACGCACACCGTGGAACGGATGAAGGCAGAACCCAGTTG
 ACATAAGGCTGTTGCTCGTAACGTAAATGCAAGTAGCGTATGCCGCTACGCAACTGG
 TCCAGAACCTTGACCGAACGCAAGGGTGGTAACGGCGAGTGGCTTTCATGGCTTGT
 TATGACTGTTTTTGTACAGTCTATGCCCTGGCATCAAGCAGCAAGCGCTTACGCC
 GTGGGCTGATGTTGATGTTATGGAGCAGCAAGATGTTACGCAGCAGCAACGATGTTAC
 GCAGCAGGGCAGTCGCCCTAAACAAAGTTAGGTGGCTAAAGTATGGCATATTGCA
 ATGTTAGGCTGCCCTGACCAAGTCAAATCCATGCCGCTTGTGATCTTCTGGCTG
 TGAGTTGGAGACGTAGCCACCTACTCCCAACATCAGCCGACTCCGATTACCTGGGAA
 CTTGCTCCGTAGTAAGACAAATTCTCGCCTGCTGCCCTCGACCAAGAACGGTTGG
 CGCTCTCGCGCTTACGTTCTGCCAGGTTGAGCAGCCGCTAGTGGAGATCTATCTA
 TGATCTCGCAGTCTCCGGCGAGCACGGAGGGCATTGCCACCGCCTCATCAATCT
 CCTCAAGCATGAGGCCAACGCGCTTGGCTTATGTGATCTACGTGCAAGCAGATTACGG
 TGACGATCCCGCAGTGGCTCTATACAAAGTTGGCATAACGGGAGAACGATGACTT
 TGATATCGACCCAAAGTACCGCCACCTAACAAATTCTGTCAGCGAGATGCCCTCCGGC
 CTAATTCCCGCTGCAAAATAAGGTTATCAAGTGAGAAATCACCATGAGTGGACTG
 AATCCGGTGAGAATGCCAAAGCGTATGCAATTCTTCCAGACTTGTCAACAGGCCAGC
 CATTACGCTCGTCACTAAATCCTCGCATCAACCAAACCGTTATTCAATTGCGATTTGCG
 CCTGAGGGAGACGAAATACGCGATCGCTGTTAAAGGACAATTACAAACAGGAATCGAAT
 GCAACCGGGCAGGAAACACTGCCAGCGCATCAACAAATTGGTACCTGAACTAGGATATT
 CTCTAATACCTGGAATGCTGTTTCCCGCGATCGCAGTGGTGGAGTAACCATGCACTCAT
 CAGGAGTACGATAAAATGCTGATGGTGGAGAACAGGCTAAATTCCGTCAGGCCACTT
 GTCTGACCATCTCATCTGTAACATCACTGGCAACGCTACCTTGCATGTTGAGAAC
 ACTCTGGCGCATGGCTTCCCATACATGAAAGATTGCGCACCTGATGCCGACCAT
 TATCGCGAGGCCATTATACCCCATAAATCAGCATCCATGTTGGAAATTATCGGGCC
 TCCAGCAAGACGTTCCCGTTGAAATAGGCTCATAACACCCCTTGATTAATGTTTATGT
 AACGAGACAGTTATGTTGATGATAATTGGTATCTTGTGCAAGTAACTACATCAGA
 GATTTGAGACACGGGCCNGCGCACTGCAGCTGGATGCCAAATAATGATTTATTTG
 ACTGATAGTGACCTGTTGCAACAAATTGATAAGCAATGCTTTTATAATGCCAAC ~

FIGURE 54B

(61 / 240)

TTTGTACAAGAAAGCTGAACGAGAACGTAAGATATAAATATCAATATATTAAATTA
GATTTGCATAAAAACAGACTACATAAATCTGAAACACAACATATCCAGTCACATG
ATTCAACTACTTAGATGGTATTAGTGACCTGTAGTCGACTAAGTTGGCAGCATACCGA
CGCACCTTGCAGCGAATAAAACCTGTGACGGAGATCAGTCGAGAATAAAATCAAATCC
TGGTGTCCCTGTTGATACGGGAAGCCCTGGGCCAATTGGCAGAAATGAGACGTTGA
TCGGCACGTAAGAGGTTCAACTTTACCCATAATGAAATAAGATCACTACCGGGCGTATT
TTTGAGTTATCAGAGATTTTCAGGAGCTAAGGAAGCTAAATGGAGAAAAAAATCACTGG
ATATACCACCGTTGATATATCCCATGGCATCGTAAAGAACATTGGAGGCAATTCACTGC
AGTTGCTCAATGTACCTATAACCAAGCAGCTCAGCTGGATATTACGGCCTTTAAAGAC
CGTAAAGAAAAATAAGCACAAAGTTTATCGGCCCTTATTACATTCGCCCCGCTGAT
GAATGCTCATCCGAATTCCGTATGGCAATGAAAGACGGTAGCTGGTATGGGATAG
TGGTACCCCTGTTACACGTTTCCATGAGCAAACGTGAAACGTTTATCGCTCGGAG
TGAATACACGACGATTTCGGCAGTTCTACACATATATTGCAAGATGTGGCGTGT
CGGTGAAAACCTGGCTATTCCCTAAAGGGTTATTGAGAATATGTTTTCGTCTCAGC
CAATCCCTGGGTGAGTTTACCAAGTTTGTATTAAACGTGCCAATATGGACAACCTCTT
CGCCCCCGTTTCCATGGCAATATTACGCAAGGCGACAAGGTGCTGATGCCGCT
GGCGATTCAAGGTTCATCATGCCGCTGTGATGGCTTCCATGCGCAGAATGCTTAATGA
ATTACAACAGTACTGCATGAGTGGCAGGGCGGGCGTAAACGCGTGGATCCGGCTACT
AAAAGCCAGATAACAGTATGCGTATTGCGCGTGTGTTTGTGGTATAAGAATATATAC
TGATATGTATAACCGAAGTATGTCAAAAGAGGTGCTATGAAAGCAGCGTATTACAGTG
ACAGTTGACAGCAGCAGCTATCAGTTGCTCAAGGCATATATGATGTCATATCTCCGGTC
TGGTAAGCACAACCATGCAAGATGAAAGCCGCTGCTGCGTGCCTGGAAAGCGG
AAAATCAGGAAGGGATGGCTGAGGTGCGCCGGTTATTGAAATGAAACGGCTTTTGCTG
ACGAGAACAGGGACTGGTGAATGCAAGTTAACGTTTACACCTATAAAAGAGAGAGCCGT
TATCGTCTGTTGTGGATGTACAGAGTGATATTATTGACACGCCGGCGACGGATGGTG
ATCCCCCTGGCAGTGCACGCTGCTGTCAGATAAGTCTCCGTGAACTTACCCGGTG
GTGCATATCGGGGATGAAAGCTGGCGATGATGACCACCGATATGCCAGTGTGCCGGTC
TCCGTTATCGGGGAGAAGTGGCTGATCTCAGCCACCGCGAAATGACATCAAAACGCC
ATTAACCTGATGTTCTGGGAATATAATGTCAGGCTCCGGTATACACAGCCAGTCGCA
GGTCGATACAGTAGAAATTACAGAAACTTATCACGTTAGTAAGTATAGAGGCTGAAA
TCCAGATGAAAGCCGAACGACTTGTAAAGAGAAAAGTATAAGAGTTGTGAAATTGTTCTGA
TGCAGATGATTTCAGGACTATGACACTAGCATATGAAATAGGTAGATGTTTTATTTT
GTCACACAAAAAGAGGCTCGCACCTTTTCTTATTTATGATTAATA

FIGURE 54 C

162/240

Figure 55 An Entry (pEMR7) Clone of CAT Subcloned into pDEST2

TEV protease → Start CAT

1123	Tyr	Phe	Gln ↓	Gly	Thr	Met	Gly	Lys	Lys	Ile	Thr	Gly	Tyr	Thr	Thr	Val	Asp
	tat	ttt	caa	gga	acc	atg	gag	aaa	aaa	attc	act	gga	tat	acc	acc	gtt	gat
	ata	aaa	gtt	cct	tgg	tac	ctc	ttt	tag	tga	cct	ata	tgg	tgg	caa	cta	

163/240

FIGURE 56

164/240

FIGURE 57

165/260

FIGURE 58

166/260

FIGURE 59

167/260

FIGURE 60

168/240

FIGURE 61

169/260

Native Protein Expression:**Fusion Protein Expression:**

FIGURE 62

170/260

Mlu I (reading frame A)

Bgl II (reading frame B)

Xba I (reading frame C)

FIGURE 63

171/240

FIGURE 64A

172/240

FIGURE CatB

173/260

5

FIGURE 64C

174/260

Primers for Amplifying *tet^R* and *amp^R*
for Cloning by Recombination

FIGURE 65

175/240

**Results of Cloning
tet and amp PCR Products
by Recombination**

PCR Product Used in GCS Reactions	No. Colonies Obtained (100 µl plated)	Form of DNA Analyzed	Colonies Obtained of Predicted Size
tet	6, 10	SC	0 of 8
attB-tet	9, 6	SC	1 of 8
attB+4G-tet	824, 1064	SC AvaI+Bam	7 of 7 7 of 7
amp	7, 13	SC	0 of 8
attB-amp	18, 22	SC	3 of 8
attB+4G-amp	3020, 3540	SC PstI	8 of 8 8 of 8
attB Plasmid (Pos. Control)	320, 394		

FIGURE 66

176/260

FIGURE 67

177/260

FIGURE 68

178/240

FIGURE
69

179/240

FIGURE
7D

A

B

C

180/240

FIGURE 7

A

B

C

181/240

FIGURE 72

A

B

C

182/240

FIGURE 73

A

B

C

6.9 kb PCR DNA Titration in a BxP Reaction

FIGURE 74

184/240

FIGURE 75-

185 / 240

10.1 kb PCR DNA Titration in BxP Reaction

FIGURE 76

186/240

**Cloning of PCR Products of Different Sizes with the
GATEWAY™ PCR Cloning System**

Size	fmols PCR DNA	ng PCR DNA	Cols/ml Transformation (pUC=10 ⁸ CFU/ml)	Correct Clones/Total Examined**
0.26 kb*	15	3	1223	10/10 (a)
	37.5	7.5	2815	
1.0 kb	15	10	507	49/50 (b)
	37.5	25	1447	
1.4 kb	15	14	271	48/50 (c)
	37.5	35	683	
3.4 kb	15	34	478	9/10 (a)
	37.5	85	976	
4.6 kb	15	46	190	10/10 (a)
	37.5	115	195	
6.9 kb	15	69	30 (235)**	47/50 (b)
	37.5	173	54 (463)**	

*The 0.26 kb PCR product was used unpurified; all the others were purified by precipitation with PEG/MgCl₂ as described in the text of Example 9, to remove primer dimers potentially present. Standard incubations were for 60 min.

**overnight incubation

- (a) DNA minipreps
- (b) ampR/kanR
- (c) tetR/kanR

Figure 77

187/240

Reading frame C: (Alternative)
B

att R1 att R2

FIGURE 78

188/240

* cannot be TG or TA

FIGURE 79

189/240

FIGURE 80

190/260

FIGURE 81

191/240

(A)

rfC Cassette (1856 bps)

(B)

rfC cassette (1715 bps)

FIGURE 82

FIGURE 83 A

193/240

prfC Parent III 4554 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
410..286	attR1
660..1319	CmR
1439..1523	inactivated ccdA
1661..1966	ccdB
2007..2131	attR2
2753..3613	amp

1 GCGCCCAATA CGCAAACCGC CTCTCCCCGC GCGTTGGCCG ATTCAATTAT GCAGCTGGCA
 61 CGACAGGTTT CCCGACTGGA AAGCGGGCAG TGAGCGAAC GCAATTAAATG TGAGTTAGCT
 121 CACTCATTAG GCACCCCAGG CTTTACACTT TATGCTTCCG GCTCGTATGT TGTGTGGAAT
 181 TGTGAGCGGA TAACAATTTC ACACAGGAAA CAGCTATGAC CATGATTACG CCAAGCTTGC
 241 ATGCCCTGCAG GTCGACTCTA GAGGATCCCC GGGTACCGAT ATCAAACAAG TTTGTACAAA
 301 AAAGCTGAAC GAGAAACGTA AAATGATATA AATATCAATA TATTAATTTA GATTTGCAT
 361 AAAAACAGA CTACATAATA CTGTAAAACA CAACATATCC AGTCACTATG GCGGCCGCTA
 421 AGTGGCGACG ATCACCCGAC GCACTTTGCG CCGAATAAAAT ACCTGTGACG GAAGATCACT
 481 TCGCAGAATA ATAAATCTT GGTGTCCCTG TTGATACCGG GAAGCCCTGG GCCAACTTTT
 541 GGCAGAAATG AGACGTTGAT CGGCACGTA GAGGTTCCAA CTTTCACCAT AATGAAATAA
 601 GATCACTACC GGGCGTATT TTTGAGTTT CGAGATTTTC AGGAGCTAAG GAAGCTAA
 661 TGGGAAAAAA AATCACTGGA TATACCAACCG TTGATATATC CCAATGGCAT CGTAAAGAAC
 721 ATTTGAGGC ATTCAGTCA GTTGCTCAAT GTACCTATAA CCAGACCGTT CAGCTGGATA
 781 TTACGGCCTT TTAAAGACC GTAAAGAAAA ATAAGCACAA GTTTTATCCG GCCTTTATT
 841 ACATTCTTGC CGCCCTGATG AATGCTCATC CGGAATTCCG TATGGCAATG AAAGACGGTG
 901 AGCTGGTGTATG ATGGGATAGT GTTCACCCCTT GTTACACCGT TTTCCATGAG CAAACTGAAA
 961 CGTTTTCATC GCTCTGGAGT GAATACCAACG ACGATTTCCG GCAGTTCTA CACATATATT
 1021 CGCAAGATGT GGCCTGTTAC GGTGAAAACC TGGCCTATTG CCTCTAAAGGG TTTATTGAGA
 1081 ATATGTTTT CGTCTCAGCC AATCCCTGGG TGAGTTTCAC CAGTTTTGAT TTAAACGTGG
 1141 CCAATATGGA CAACTTCTC GCCCCCGTT TCACCATGGG CAAATATTAT ACGCAAGGCG
 1201 ACAAGGTGCT GATGCCGCTG GCGATTCAAGG TTTCATCATGC CGTCTGTGAT GGCTTCATG
 1261 TCGCAGAAT GCTTAATGAA TTACAACAGT ACTGCGATGA GTGGCAGGGC GGGCGTAAT
 1321 CTAGAGGATC CGGCTTACTA AAAGCCAGAT AACAGTATGC GTATTTGCGC GCTGATTTT
 1381 GCGGTATAAG AATATATACT GATATGTATA CCCGAAGTAT GTCAAAAAGA GGTGTGCTAT
 1441 GAAGCAGCGT ATTACAGTGA CAGTTGACAG CGACAGCTAT CAGTTGCTCA AGGCATATAT
 1501 GATGTCATAA TCTCCGGTCT GGTAAGCACA ACCATGCAGA ATGAAGCCCG TCGCTGCGT
 1561 GCGGAACGCT GGAAAGCGGA AAATCAGGAA GGGATGGCTG AGGTGCCCCG GTTTATTGAA
 1621 ATGAACGGCT CTTTTGCTGA CGAGAACAGG GACTGGTGAA ATGCAGTTTA AGGTTTACAC
 1681 CTATAAAAAGA GAGAGCCGTT ATCGCTGTGTT TGTTGGATGTA CAGAGTGATA TTATTGACAC
 1741 GCGCCGGCGA CGGATGGTGA TCCCCCTGGC CAGTGCACGT CTGCTGTCAG ATAAAGTCTC
 1801 CCGTGAACCTT TACCCGGTGG TGCAATATCG GGATGAAAGC TGGCGCATGA TGACCACCGA
 1861 TATGGCCAGT GTGCCGGTCT CCGTTATCGG GGAAGAAGTG GCTGATCTA GCCACCGCGA
 1921 AAATGACATC AAAAACGCA TTAACCTGAT GTTCTGGGGA ATATAAAATGT CAGGCTCCGT
 1981 TATACACAGC CAGTCTGCA GTGACCTGAT GTGACTGGAT ATGTTGTGTT TTACAGTATT
 2041 ATGTAGTCTG TTTTTTATGC AAAATCTAAT TTAATATATT GATATTATA TCATTTACG
 2101 TTTCTCGTTC AGCTTTCTG TACAAGTGG TTCGATATCG GTACCGAGCT CGAACCTCACT
 2161 GGCGTCTGTT TTACAACGTC GTGACTGGGA AAACCCCTGGC GTTACCCAAC TTAATCGCCT
 2221 TGCAGCACAT CCCCCCTTCG CCAGCTGGCG TAATAGCGAA GAGGCCCGCA CCGATCGCCC
 2281 TTCCCAACAG TTGCGCAGCC TGAATGGCGA ATGGCGCCTG ATGCGGTATT TTCTCCTTAC
 2341 GCATCTGTGC GGTATTTCAC ACCGCATATG GTGCACTCTC AGTACAATCT GCTCTGATGC
 2401 CGCATAGTTA AGCCAGCCCC GACACCCGCC AACACCCGCT GACGCCCT GACGGGCTTG
 2461 TCTGCTCCCCG GCATCCGCTT ACAGACAAGC TGTGACCGTC TCCGGGAGCT GCATGTGTCA
 2521 GAGGTTTTCA CCGTCATCAC CGAAACGCGC GAGACGAAAG GGCCTCGTGA TACGCCATT
 2581 TTTATAGTTT AATGTCATGA TAATAATGGT TTCTTAGACG TCAGGTGGCA CTTTCGGGG
 2641 AAATGTGCGC GGAACCCCTA TTGTTTATT TTTCTAAATA CATTCAAATA TGTATCCGCT
 2701 CATGAGACAA TAACCCCTGAT AAATGCTCA ATAATATTGA AAAAGGAAGA GTATGAGTAT
 2761 TCAACATTTC CGTGTGCCCC TTATTCCCTT TTTGCGGCA TTTTGCCTTC CTGTTTTGCA-

FIGURE 83B

196/740

2821 TCACCCAGAA ACGCTGGTGA AAGTAAAAGA TGCTGAAGAT CAGTTGGGTG CACGAGTGGG
2881 TTACATCGAA CTGGATCTCA ACAGCGGTA GATCCTTGAG AGTTTCGCC CCGAAGAACG
2941 TTTTCCAATG ATGAGCACTT TTAAAGTTCT GCTATGTGGC GCGGTATTAT CCCGTATTGA
3001 CGCCGGCAA GAGCAACTCG GTCGCCGCAT ACACATTCT CAGAATGACT TGGTTGAGTA
3061 CTCACCAGTC ACAGAAAAGC ATCTTACGGA TGGCATGACA GTAAGAGAAT TATGCAGTGC
3121 TGCCATAACC ATGAGTGATA ACACTGCGGC CAACTTACTT CTGACAACGA TCGGAGGACC
3181 GAAGGAGCTA ACCGCTTTTT TGCACAAACAT GGGGGATCAT GTAACTCGCC TTGATCGTTG
3241 GGAACCGGAG CTGAATGAAG CCATACCAAA CGACGAGCGT GACACCACGA TGCCTGTAGC
3301 AATGGCAACA ACGTTGCGCA AACTATTAAC TGGCGAAGTA CTTACTCTAG CTTCCCGGCA
3361 ACAATTAATA GACTGGATGG AGGCGGATAA AGTTGCAGGA CCACCTCTGC GCTCGGCCCT
3421 TCCGGCTGGC TGGTTTATTG CTGATAAAATC TGGAGCCGGT GAGCGTGGGT CTCGCGGTAT
3481 CATTGCAGCA CTGGGGCCAG ATGGTAAGCC CTCCCGTATC GTAGTTATCT ACACGACGGG
3541 GAGTCAGGCA ACTATGGATG AACGAAATAG ACAGATCGCT GAGATAGGTG CCTCACTGAT
3601 TAAGCATTGG TAACTGTCAG ACCAAGTTA CTCATATATA CTTTAGATTG ATTTAAAATC
3661 TCATTTTAA TTTAAAAGGA TCTAGGTGAA GATCCTTTTT GATAATCTCA TGACCAAAAT
3721 CCCTTAACGT GAGTTTCGT TCCACTGAGC GTCAAGACCCC GTAGAAAAGA TCAAAGGATC
3781 TTCTTGAGAT CCTTTTTTTT TGCGCGTAAT CTGCTGCTTG CAAACAAAAA AACCAACCGCT
3841 ACCAGCGGTG GTTTGTTTGC CGGATCAAGA GCTACCAACT CTTTTTCCGA AGGTAACCTGG
3901 CTTCAGCAGA GCGCAGATAC CAAATACTGT CCTCTAGTG TAGCCGTAGT TAGGCCACCA
3961 CTTCAAGAAC TCTGTAGCAC CGCCTACATA CCTCGCTCTG CTAATCCTGT TACCACTGGC
4021 TGCTGCCAGT GGCGATAAGT CGTGTCTTAC CGGGTTGGAC TCAAGACGAT AGTTACCGGA
4081 TAAGGCGCAG CGGTCGGGCT GAACGGGGGG TTCGTGCACA CAGCCCAGCT TGGAGCGAAC
4141 GACCTACACC GAACTGAGAT ACCTACAGCG TGAGCTATGA GAAAGCGCCA CGCTTCCCGA
4201 AGGGAGAAAG CGGGACAGGT ATCCGGTAAG CGGCAGGGTC GGAACAGGGAG AGCGCACGAG
4261 GGAGCTTCCA GGGGGAAACG CCTGGTATCT TTATAGTCCT GTGGGGTTTC GCCACCTCTG
4321 ACTTGAGCGT CGATTTTTGT GATGCTCGTC AGGGGGGGCGG AGCCTATGGA AAAACGCCAG
4381 CAACCGCGGCC TTTTACGGT TCCTGGCCTT TTGCTGGCCTT TTTGCTCACA TGTTCTTCC
4441 TGCCTTATCC CCTGATTCTG TGGATAACCG TATTACCGCC TTTGAGTGAG CTGATACCGC
4501 TCGCCGCAGC CGAACGACCG AGCGCAGCGA GTCAGTGAGC GAGGAAGCGG AAGA

FIGURE 83C

195/240

FIGURE 84

196/240

FIGURE 85

97/240

FIGURE 86

198/260

FIGURE 87

199/260

FIGURE 88

200/240

DNA to be amplified ($5' \rightarrow 3'$):

↓ Denature, anneal
hybrid primers,
+ extend with polymerase

↓ amplification cycles

↓ Denature, anneal
 $\alpha t\beta$ primers,
extend with polymerase

↓ amplification cycles

$\alpha t\beta 1$ primer:
 $gggg \xrightarrow{ABCD}$

$\alpha t\beta 2$ primer:
 $gggg \xrightarrow{abcd}$

Hybrid primers (part
 $\alpha t\beta$, part gene
specific):

$CDw \rightarrow$
 $cd x' \rightarrow$

FIGURE 89

201 / 240

FIGURE 90A

202/240

pDEST28 7141 bp

ATGCATGTCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCC
 CGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTCCAT
 TGACGTCAATGGGTGGAGTATTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTAT
 CATATGCCAAGTACGCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTAT
 GCCCAGTACATGACCTTATGGGACTTCCACTTGGCAGTACATCACGTATTAGTCATC
 GCTATTACCATGGTGATGCGGTTTGGCAGTACATCAATGGCGTGGATAGCGGTTGAC
 TCACGGGATTCCAAGTCTCCACCCATTGACGTCAATGGGAGTTGTTGGCACCAA
 AATCAACGGGACTTCCAAAATGTCGTAACAACCTCGCCCCATTGACGCAAATGGCGGT
 AGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTCCCTATCAGTGTAGAGATCTC
 CCTATCAGTGTAGAGATCGTCGACGAGCTCGTTAGTGAACCCTCAGATGCCCTGGAGA
 CGCCATCCACGCTTTGACCTCCATAGAACACCCGGGACCGATCCAGCCTCCGGACT
 CTAGAGGATCCCTACCGGTGATATCCTCGAGCCATCAACAAGTTGTACAAAAAGCTG
 AACGAGAAACGTTAAATGATATAAATATCAATATATTAAATTAGATTGTCATAAAAAC
 AGACTACATAATACTGTAAAACACAACATATCCAGTCACTATGGCGCCGCATTAGGCAC
 CCCAGGTTTACACTTATGCTTCCGGCTGTATAATGTTGAGTTGAGTTAGGATCC
 GGCAGAGATTTCAAGGAGCTAAGGAAGCTAAAATGGAGAAAAAAACTGGATATACAC
 CGTTGATATATCCAATGGCATCGTAAAGAACATTTGAGGCATTTCAGTCAGTTGCTCA
 ATGTACCTATAACCAGACCGTTACGGTGTGATATTACGGCTTTAAAGACCGTAAAGAA
 AAATAAGCACAAGTTTATCCGGCTTTATTACACATTCTGCCGCTGATGAATGCTCA
 TCCGAATTCCGTATGGCAATGAAAGACGGTGAGCTGGTGTATGGGATAGTGTTCACCC
 TTGTTACACCGTTTCCATGAGCAAACACTGAAACGTTTACATCGCTCTGGAGTGAATACCA
 CGACGATTCCGGCAGTTCTACACATATATTGCAAGATGTGGCTGTACGGTGAAA
 CCTGGCCTATTCCCTAAAGGGTTTATTGAGAATATGTTTCTGTCAGCCAATCCCTG
 GGTGAGTTTACCCAGTTTGTAAACGTGGCCAATATGGACAACCTTCTCCGCCCCGT
 TTTCACCATGGGAAATATATACGCAAGGCAGACAGGTGCTGATGCCGCTGGCATTCA
 GGTTCATCATGCCGTCTGTGATGGCTTCATGTCGGCAGAATGCTTAATGAATTACAACA
 GTACTGCGATGAGTGGCAGGGCGGGCGTAAAGATCTGGATCCGGCTTACTAAAAGCCAG
 ATAACAGTATGCCATTTCGGCGCTGATTTTGGCTATAAGAATATACTGATATGTA
 TACCCGAAGTATGTCAAAAGAGGTGTGCTATGAAGCAGCGTATTACAGTGACAGTTGAC
 AGCGACAGCTATCAGTGCTCAAGGCATATATGATGTCAATATCTCCGGTCTGGTAAGCA
 CAACCATGCGAAATGAAGCCGTCGCTGCGTGGAAAGCGGAAAATCAGG
 AAGGGATGGCTGAGGTGCCGGTTTATTGAAAATGAACGGCTTTTGTGACGGAGAAC
 GGGACTGGTGAATGCAAGTTAACCTATAAAAGAGAGAGCCGTTATCGTCTG
 TTTGTGATGTACAGAGTGTGATATTATTGACACGCCGGCGACGGATGGTATCCCCCTG
 GCCAGTGCACGTCTGTGTCAGATAAGTCTCCGTGAACCTTACCCGGTGGTCATATC
 GGGGATGAAAGCTGGCGCATGATGACCGACCGATATGGCCAGTGTGCCGGTCTCGTTATC
 GGGGAGAAGTGGCTGATCTCAGCCACCGGAAAATGACATCAAAACGCCATTAAACCTG
 ATGTTCTGGGAATATAATGTCAGGCTCCCTATACACAGCCAGTCTGCAGGTGACCA
 TAGTGACTGGATATGTTGTTTACAGTATTATGTTGACTGTTTATGCAAAATCTA
 ATTAAATATATTGATATTATACATTACGTTCTCGTTCAAGCTTCTTGTACAAAGT
 GGTGATGGCGCCGCTTAGAGGGCCAAGCTTACGCGTGCATGCGACGTGATAGCTC
 TCTCCCTATAGTGAGTCGTTACAGTGTGTTTACAGTATTATGTTGACTGTTTACACGTCG
 CTGGGAAAATGCTAGCTGGATCTTGTGAAGGAACCTTACTCTGTGGTGTGACATA
 ATTGGACAAACTACCTACAGAGATTAAAGCTAAGGTAATATAAAATTAAAGTGT
 ATAATGTTAAACTAGCTGCATATGCTTCTGCTTGTGAGAGTTGCTTACTGAGTATGA
 TTTATGAAAATATTATACACAGGAGCTAGTGATTCTAATTGTTGTGTTTATGATTCA
 CAGTCCCAAGGCTCATTTCAGGCCCTCAGTCCTCACAGTCTGTTCATGATCATAATCAG
 CCATACACATTGTAGAGGTTTACTGTTAAAAACCTCCACACCTCCCCCTGAA
 CCTGAAACATAAAATGAATGCAATTGTTGTTAACCTGTTATTGAGCTTATAATGG
 TTACAAATAAGCAATAGCATCACAAATTTCACAAATAAGCATTTCACACTGCATT
 TAGTTGTGGTTGTCAAACTCATCAATGTATCTTACATGCTGAGTCGATCCTGCATT
 AATGAATCGGCCAACCGCGGGGGAGAGGGCGGTTGCGTATTGGCTGGCGTAATAGCGAAG
 AGGCCCGACCGATGCCCTTCCAAACAGTGGCGAGCCTGAATGGCGAATGGGACGCGC
 CCTGTAGCGGCCGATTAAGCGCGGGGTGTGGTGTACCGCGAGCGTGAACGCTACAC
 TTGCCAGCGCCCTAGCGCCGCTCCTTCGCTTCTTCCCTTCTGCCACGTTCG
 CGGCTTCCCCGTAAGCTCTAAATCGGGGCTCCCTTAGGGTCCGATTAGTGTCT-

FIGURE 9B

TACGGCACCTGACCCAAAAACTTGATTAGGGTATGGTCACGTAGTGGGCCATCGC
 CCTGATAGACGGTTTCGCCCTTGACGTTGGAGTCCACGTTCTTAATAGTGGACTCT
 TGTTCAAACACTGAAACAACACTCAACCTATCTCGGTCTATTCTTTGATTTATAAGGGA
 TTTGCCGATTCGGCTATTGGTTAAAAATGAGCTGATTAACAAATATTAACGCAT
 ATTTAACAAATATTAACGTTACAATTGCGCTGATGCGTATTTCTCCTACGCAT
 CTGCGGTATTCACACCGCATACCGGATCTGCGCAGCACATGCCCTGAAATAACCT
 CTGAAAGAGGAACCTGGTAGGCTACCTCTGAGGCGAAAGAACAGCTGTGGAATGTGT
 GTCAGTTAGGGTGTGGAAAGTCCCCAGGCTCCCAGCAGGCAGAAGTATGCAAAGCATGC
 ATCTCAATTAGTCAGCAACCAGGTGTGGAAAGTCCCCAGGCTCCCAGCAGGCAGAAGTA
 TGCAAAGCATGCATCTCAATTAGTCAGCAACCAGTCCGCCCTAACTCCGCCATCC
 CGCCCTAACCTCCGCCAGTCCGCCATTCTCCGCCATGGCTGACTAATTTTTTA
 TTTATGAGAGGCCAGGCCCTGGCTCTGAGCTATTCCAGAAGTAGTGAGGAGGCT
 TTTTGAGGCCTAGGTTTGCAAAAGCTTGATTCTGACACAAACAGTCTCGAACT
 TAAGACCATGGCCAAGCCTTGTCTCAAGAAGAATCCACCTCATTGAAAGAGCAACGGC
 TACAATCAACAGCATCCCCATCTCTGAAGACTACAGCGTCGCCAGCGCAGCTCTCTAG
 CGACGGCCGCATCTCACTGGTGTCAATGTATCATTTACTGGGGACCTTGCGAGA
 ACTCGTGGTGTGGCACTGCTGCTGCGGAGCTGGCAACCTGACTTGATCGTCGC
 GATCGGAAATGAGAACAGGGCATCTGAGCCCCCTGCGGAGCGTGCAGGGTCT
 CGATCTGCATCCTGGATCAAAGCCATAGTGAAGGACAGTGTGATGGACAGCGACGGCAGT
 TGGGATCTGTGAATTGCTGCCCTCTGGTTATGTTGGGAGGGCTAAGCACTTCGTGGCCG
 AGTTGAAATGACCGACCAAGCGACGCCAACCTGCCATACGATGCCAATAAAAATA
 TCTTATTTCATTACATCTGTGTGGTTTTGTGTAATCGATAAGCGATAAGGATC
 CGCGTATGGTGCACTCTCAGTACAATCTGCTCTGATGCCCATAGTTAACCGAGCCCGA
 CACCCGCCAACACCCGCTGACGCCCTGACGGGCTGCTGCTCCCGCATCCGCTTAC
 AGACAAGCTGTGACCGTCTCCGGAGCTGCATGTCAGAGGTTTACCGTCATCACCG
 AAACCGCGAGACGAAAGGCCCTGTGATACGCTTATAGGTTATGTCATGATA
 ATAATGGTTCTAGACGTAGGTGCACTTTGGAAATGTGCGCGGAACCCCTATT
 TGTTTATTCTAAATACATTCAAATATGATCGCTCATGAGACAATAACCCCTGATAA
 ATGCTCAATAATTGAAAAGGAAGAGTATGAGTATTCAACATTCCGTGTCGCCCTT
 ATTCCCCTTTTGCGGATTGCGCTCTGTGCTCACCCAGAAACGCTGGTGA
 GTAAAAGATGCTGAAGATCAGTGGGTGACGAGTGGGTACATCGAACTGGATCTCAAC
 AGCGGTAAGATCCTGAGAGTTCCCGCAAGAACGTTTCAATGAGCAGCTTT
 AAAGTCTGCTATGTCGGCGGTATTATCCCGTATTGACGCCGGCAAGAGCAACTCGGT
 CGCCGATACACTATTCTCAGAATGACTGGTAGACTCACCACTCACAGAAAGCAT
 CTTACGGATGGCATGACAGTAAGAGAATTATGAGCTGCTGCCATAACCATGAGTGATAAC
 ACTGCGGCAACTTACTCTGACAAACGATCGGAGGACGAAAGGAGCTAACCGTTTTG
 CACAACATGGGGATCATGTAACCTCCGTGATCGTGGGAACCGGAGCTGAATGAAGCC
 ATACCAAACGACGGCTGACCCACGATGCCGTAGCAATGGCAACACGTTGCCAA
 CTATTAACGCGAAACTACTACTCTAGCTTCCCGCAACAATTAAATAGACTGGATGGAG
 GCGGATAAAGTTGAGGACCACTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTATTGCT
 GATAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGAGCACTGGGGCCAGAT
 GGTAGCCCTCCGTATCGTAGTTATCAGACGGGAGTCAGGCAACTATGGATGAA
 CGAAATAGACAGATCGCTGAGATAGGTGCTCACTGATTAAGCATTGTAAGTCA
 CAAGTTACTCATATACATTAGATTGATTTAAACTTCATTAAATTAAAAGGATC
 TAGGTGAAGATCCTTTGATAATCTCATGACAAAATCCCTAACGTGAGTTTCGTT
 CACTGAGCGTCAGACCCCGTAGAAAGATCAAAGGATCTTGTGAGATCCTTTCTG
 CGCGTAATCTGCTGCTGCCAACAAAAACCGCTACAGCGGTGGTTGTTGCCG
 GATCAAGAGCTACCAACTCTTTCGAAAGGTAACGGCTTCAGCAGAGCGCAGATACCA
 AATACTGTCCCTCTAGTGTAGCCGTAGTTAGGCCACCACTCAAGAACTCTGTAGCACC
 CCTACATACCTCGCTCTGCAATCCGTGTTACCACTGGCTGCTGCCAGGGCGATAAGTC
 TGTCTTACCGGGTGGACTCAAGACGATAGTTACCGATAAGGCGCAGCGGTGGGCTGA
 ACGGGGGTTCTGACACAGCCCAGCTGGAGCGAACGACCTACACCGAACTGAGATAC
 CTACAGCGTGAGCATTGAGAAAGCGCCACGCTCCGAAGGGAGAAAGCGGACAGGTAT
 CCGGTAAGCGGAGGGTCCGAACAGGAGAGCGCACGAGGGAGCTCCAGGGGAAACGCC
 TGGTATCTTATAGTCTGCTGGGTTCGCCACCTCTGACTTGAGCGTCGATTTTGTA
 TGCTCGTCAGGGGGCGGAGCCTATGGAAAACGCCAGCAACGCCCTTTTACGGTT
 CTGGCCTTTGCTGGCTTTGCTCACATGTTCTCTGCGTTATCCCCTGATTCTGTG
 GATAACCGTATTACCGCCTTGAGTGAACGCTGCCAGCGAACGACCGAG-

FIGURE 90C

206/260

CGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACCGCCTCTCCCC
GCGCGTGGCGATTCAATTAAATGCAGAGCTTGCATTCGCGCGTTTTCAATATTATTGA
AGCATTATCAGGGTTATTGTCTCATGAGCGGATAACATATTGAATGTATTAGAAAAAT
AAACAAATAGGGTTCCGCGCACATTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACC
ATTATTATCATGACATTAACCTATAAAAATAGGCCTAGTACGAGGCCTTCACTCATTA
G

FIGURE 90D

FIGURE 91 A

pDEST29 7156 bp

ATGCATGTCGTTACATAACTTACGGTAAATGGCCGCTGGCTGACCGCCCAACGACCCC
 CGCCCATGACGTCAATAATGACGTATGTCAGTCCCATAGTAACGCCAATAGGGACTTCCAT
 TGACGTCAATGGGTGGAGTATTACGGTAAACTGCCACTTGGCAGTACATCAAGTGTAT
 CATATGCCAAGTACGCCCTATTGACGTCAATGACGGTAAATGGCCGCTGGCATTAT
 GCCCAGTACATGACCTTATGGACTTCCATTGACGTCAATGACGGTAAATGGCCGCTGGCATTAT
 GCTATTACCATGGTGTGCGGTTTGGCAGTACATCAATGGCGTGGATAGCGGTTGAC
 TCACGGGATTCCAAGTCTCCACCCATTGACGTCAATGGGAGTTGTTGGCACCAA
 AATCAACGGGACTTCCAAAATGCTAACAACTCCGCCATTGACGCCAAATGGCGGT
 AGCGTGTACGGTGGGAGGCTATATAAGCAGAGCTCTCCATTGAGTATAGAGATCTC
 CCTATCAGTGTAGAGATCGCAGCAGCTCGTTAGTGAAACGTCAGATCGCTGGAGA
 CGCCATCCACGCTGTTTGCCTTACAGAACACCGGGACCGATCCAGCCTCCGGACC
 ATGGCGTACTACCATCACCATCACACACCGGTGATTCCTCGAGCCCATTACAAGT
 TTGTACAAAAAAGCTGAACGAGAAACGTTAAATGATATAAATATCAATATATTAAATTAG
 ATTTGCATAAAAACAGACTACATAAATCTGAAAACACAATATCCAGTCACTATGG
 CGGCCGATTAGGCACCCCAGGCTTACACTTATGCTTCCGGCTCGTATAATGTGTGGA
 TTTTGAATTAGGATCCGGCAGATTTCAGGAGCTAAGGAAGCTAAATGGAGAAAAAA
 TCACTGGATATACCACCGTTGATATATCCAAATGGCATCGTAAAGAACATTGGAGGCAT
 TTCAGTCAGTGTCAATGTACCTATAACCAGACCGTTGAGCTGGATATTACGGCTTT
 TAAAGACCGTAAAGAAAAATAAGCACAAGTTTATCCGGCTTTATTACACATTGCCCC
 GCCTGATGAATGCTCATCCGAATTCCGTATGCAATGAAAGACGGTGGCTGATAT
 GGGATAGTGTTCACCCCTGTTACACCGTTTCCATGAGCAAACGTTTATCGC
 TCTGGAGTGAATACCACGACGATTCCGGCAGTTCTACACATATACTGCAAGATGTGG
 CGTGTACGGTAAAACCTGGCTATTCCCTAAAGGTTATTGAGAATATGTTTCTG
 TCTCAGCCAATCCCTGGGTGAGTTTACCACTGTTGATTTAACGTGGCCAATATGGACA
 ACTTCTCGCCCCGTTTACCATGGCAAATATTACGCAAGGCACAAGGTGCTGA
 TGCGCTGGCGATTCAAGGTTCATCATGCCGCTGTGATGGCTTCCATGTCGGCAGAATGC
 TTAATGAATTACAACAGTACTCGCATGAGTGGCAGGGCGGGCGTAAACGCGTGGATCCG
 GCTTACTAAAAGCCAGATAACAGTATGCGTATTGCGCCTGATTTTGCCTGATAAGAA
 TATATACTGATATGTATAACCGAAGTATGTCAAAAGAGGTGTGCTATGAAGCAGCGTAT
 TACAGTGACAGTGACAGCGACAGCTATCAGTGTCTCAAGGCATATATGATGTCAATATC
 TCCGGCTGGTAAGCACAACCATGCGAAATGAAGCCGCTCGTGCCTGCCAACGCTGG
 AAAGCGGAAAATCAGGAAGGGATGGCTGAGGTCGCCGGTTATTGAAATGAACGGCTCT
 TTTGCTGACGAGAACAGGGACTGGTAAATGCAAGTTAAGGTTACACCTATAAAAGAGA
 GAGCCGTTATCGTCTGTTGAGTACAGAGTGTATTGACACGCCGGCGACG
 GATGGTGTACCCCTGGCAGTGCACGTCGCTGTCAGATAAGCTCCGTGAACCTTA
 CCCGGTGGTGCATATCGGGGATGAAAGCTGGCGATGATGACCACCGATATGCCAGTGT
 GCCGGTCTCGTTATCGGGGAGAAGTGGCTGATCTCAGGCCACCGCGAAAATGACATCAA
 AAACGCCATTAAACCTGATGTTCTGGGAATATAAATGTCAGGCTCCGTATACACAGCCA
 GTCTGCAGGTCGACCATAGTGACTGGATATGTTGTTACAGTATTATGAGTGTCTGTT
 TTTTATGCAAAATCTAATTAAATATGATATTATATCATTTACGTTCTCGTTCAG
 CTTTCTGTACAAAGTGGTGTGGCGCTAGAGGGCCAAGCTTACCGTGCAT
 GCGACGTCATAGCTCTCCCTATAGTGAGTGTGATTATAAGCTAGGCACGCGCTCGT
 TTTACACGTCGTGACTGGAAAAGCTGCTAGCTGGATCTTGTGAAGGAACCTTACTT
 CTGTGGTGTGACATAATTGGACAAACTACCTACAGAGATTAAAGCTTAAGGTAAATAT
 AAAATTAAAGTGTATAATGTTAAACTAGCTGCATATGCTTGTGTTAGAGTTT
 GCTTACTGAGTATGATTGAAATATTACACAGGAGCTAGTGATTCTAATTGTT
 TGTATTGAGATTACAGTCCCAGGCTATTCAAGGCCCTCAGTCCTCACAGTGT
 CATGATCATAATCAGCCATACCACTTGTAGAGGTTACTGCTTAAAAACCTCCC
 ACACCTCCCCCTGAAACATAAAATGAATGCAATTGTTGTTAACTTGT
 TGCAGCTTATAATGGTACAAATAAGCAATAGCATCACAATTTCACAAATAAGCATT
 TTTTCACTGCATTCTAGTTGTTGTCACACTCATCAATGTATCTTATCATGTCTG
 GATCGATCCCTGCATTAATGAAATCGGCCAACGCCGGAGAGGCGGTTGCGTATTGGCT
 GGCGTAATAGCGAAGAGGCCGACCGATGCCCTCCAAACAGTTGCGCAGCCTGAATG
 GCGAATGGGACGCGCCCTGTAGCGCGCATTAGCGCGGGGTGTTGCGTACCGCGCA
 GCGTGAACGCTACACTGCCAGCGCCCTAGCGCCGCTCCTTCGCTTCTCCCTCCT
 TTCTGCCACGTTGCCGGCTTCCCGTCAAGCTAAATCGGGGCTCCCTTAGGGT-

FIGURE 91B

707/260

TCCGATTAGTGCCTACGGCACCTCGACCCAAAAACTGATTAGGGTGATGGTTAC
 GTAGTGGGCCATGCCCTGATAGACGGTTTCGCCCTTGACGTGGAGTCCACGTTCT
 TTAATAGTGGACTCTGTTCAAACCTGGAACAAACACTCAACCCATCTCGGTCTATTCTT
 TTGATTATAAGGGATTGCGATTGCGCTATTGGTAAAAAATGAGCTGATTAAAC
 AAATATTAACCGAATTAAACAAATATTAACTTACAATTTCGCCTGATGCCGTAT
 TTTCTCCTACGCATCTGCGGTATTACACCCGATAACGGGATCTGCCAGCACCAT
 GGCCTGAAATAACCTCTGAAAGAGGAACCTGGTAGGTAACCTCTGAGGCCGAAAGAAC
 AGCTGTGGAAATGTGTCAAGTTAGGGTAGGCTGGAAAGTCCCAGGCTCCAGCAGGCAGAA
 GTATGCAAAGCATGCATCTCAATTAGTCAGCAACCAGGTGTGGAAAGTCCCAGGCTCCC
 CAGCAGGAGTATGCAAAGCATGCACTCAATTAGTCAGCAACCATAGTCCCAGGCCCC
 TAACCTCGCCCATTCCGCCCTAACTCCGCCAGTCCGCCATTCTCGGCCATGGCT
 GACTAATTTTTATATGAGAGGCCAGGGCCCTAGGCTTTGCAAAAGCTGATTCTGACA
 AGTAGTGAGGAGGCTTTGGAGGCCAGGGCTAGGCTTTGCAAAAGCTGATTCTGACA
 CAACAGTCTGAACTTAAGACCATGGCCAAGCCTTGTCAAGAAGAATCCACCCATCAT
 TGAAAGAGCAACGGCTACAATCAACAGCATCCCATCTCTGAAAGACTACAGCGTCGCCAG
 CGCAGCTCTCTAGCGACGGCCGCATCTCACTGGTCAATGTATATCATTACTGG
 GGGACCTTGTGAGAAGCTCGTGGTGTGGCACTGCTGCTGCCAGCTGGCAACCT
 GACTTGTATCGTCCGATCGGATAGAAGACAGGGCATCTGAGGCCCTGCCAGGTG
 CCGACAGGTGCTCTGATCTGACATCTGGGATCAAAGCCATAGTGAAGGACAGTGTGG
 ACAGCCGACGGCAGTTGGATTCTGAAATGACCGACCAAGCGACGCCAACCTGCCATCAGAT
 AGCACTTCGTGGCGAGTTGAAATGACCGACCAAGCGACGCCAACCTGCCATCAGAT
 GGCGCAATAAAATATCTTATTTCATTACATCTGTTGGTTTTGTGTGAATCG
 ATAGCGATAAGGATCCGCGTATGGTCACTCTCAGTACAATCTGCTCTGATGCCGATAG
 TTAAGCCAGCCCCGACACCCGCAACACCCGCTGACGCCCTGACGGCTTGTCTGCTC
 CGGCCATCCGCTTACAGACAAGCTGTGACCGCTCCGGAGCTGCATGTGTAGAGGTT
 TCACCGTCATCACCAGAACCGCCAGACGAAAGGGCTCGTGTACGCCATTAG
 GTTAATGTATGATAATAATGGTTCTAGACGTCAAGGGTCACTTTGGGAAATGTG
 CGCGGAACCCCTATTGTTATTCTAAATACATTCAAATATGTATCCGCTATGAGA
 CAATAACCCGTATAAAATGCTCAATAATATTGAAAAGGAAGAGTATGAGTATTCAACAT
 TTCCGTGTCGCCCTTATTCCCTTTGCGGCAATTGCGCTTCTGTTGTCAACCC
 GAAACGCTGGTAAAGTAAAGATGCTGAAGATCAGTTGGTGCACGAGTGGTTACATC
 GAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTGCGCCGAAGAACGTTTCCA
 ATGATGAGCACTTTAAAGTTCTGCTATGTGGCGGTATTATCCGTTATGACGCCGG
 CAAGAGCAACTCGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCA
 GTCACAGAAAAGCATCTACGGATGGCATGACAGTAAGAGAATTATGCACTGCTGCCATA
 ACCATGAGTGATAACACTCGGCCAACTTACTCTGACAACGATCGGAGGACCGAAGGAG
 CTAACCGCTTTTGACAAACATGGGGATCATGTAACTCGCCTGATCGTGGGAACCG
 GAGCTGAATGAAGCCATACCAACGACGAGCGTGTACACCACGATGCCGTAGCAATGGCA
 ACAACGTTGCCAAACTATTAACTGGGAACACTACTCTAGCTCCCGCAACAAATT
 ATAGACTGGATGGAGGCGATAAAAGTTGCAAGGACCACTTCTGCGCTCGGCCCTCCGGCT
 GGCTGGTTATTGCTGATAAAATCTGGAGCGGTGAGCGTGGGTCTCGGGTATCATTGCA
 GCACTGGGGCCAGATGGTAAGGCCCTCCGTATCGTAGTTATCTACACGACGGGAGTCAG
 GCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCACTGATTAAGCAT
 TGGTAACTGTCAGACCAAGTTACTCATATATACTTTAGATTGATTTAAACTCATT
 TAATTAAAAGGATCTAGGTGAAGATCCTTTGATAATCTCATGACCAAAATCCCTAA
 CGTGAGTTTGTCCACTGAGCGTCAAGCCCGTAGAAAAGATCAAAGGATCTTCTGA
 GATCCTTTTCTGCGGTAATCTGCTGTTGCAACAAAAAACCCACCGCTACCAGCG
 GTGGTTTGTGCCGGATCAAGAGCTACCAACTCTTCCGAAGGTAACGGCTCAGC
 AGAGCGCAGATACCAAAACTGTCCTCTAGTGTAGCCGTAGTTAGGCCACCTCAAG
 AACTCTGTAGCACCGCCTACATACCTCGCTTGCTAATCTGTTACCGAGTGGCTGCTGCC
 AGTGGCGATAAGTCGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCG
 CAGCGGTGGCTGAACGGGGGTTCTGTCACACAGCCAGCTTGGAGCGAACGACCTAC
 ACCGAACCTGAGATACCTACAGCGTGAGCATTGAGAAAGGCCACGCCAGGGAGA
 AAGGGCGACAGGTATCCGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTT
 CCAGGGGAAACGCCCTGGTATCTTATAGTCTGCTGGGTTCGCCACCTCTGACTTGAG
 CGTCGATTTTGATGCTCGTCAGGGGGGGAGCCTATGGAAAAACGCCAGCAACGCG
 GCCTTTTACGGTCTGCTGGCTTTGCTGGCTTGTCACTGTTCTGCGTTA
 TCCCTGATTCTGTTGATAACCGTATTACCGCTTGAGTGTGACCGCTCGCCGC-

FIGURE 91C

208/240

AGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCAAATACGC
AAACCGCCTCTCCCCGCGCGTTGGCGATTCAATTAAATGCAGAGCTTGCAATTGCGCGTT
TTTCAATATTATTGAAGCATTATCAGGGTTATTGTCTCATGAGCGGATAACATATTGAA
TGTATTTAGAAAAATAAACAAATAGGGTTCCGCGCACATTCCCCGAAAAGTGCCACCT
GACGTCTAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTAGTACGAGG
CCCTTCACTCATTAG

FIGURE 91D

209/240

FIGURE 92A

210/240

pDEST30 7544 bp

ATGCATGTCGTTACATAACTACGGTAAATGGCCCGCTGGCTGACCGCCAAACGACCCC
 CGCCATTGACGTCAATAATGACGTATGTCCTAGTAACGCCAATAGGGACTTCCAT
 TGACGTCAATGGGTGGAGTATTCACGGTAAACTGCCACTTGGCAGTACATCAAGTGTAT
 CATATGCCAAGTACGCCCTATTGACGTCAATGACGGTAAATGGCCCGCTGGCATTAT
 GCCCAGTACATGACCTATGGGACTTCCACTTGGCAGTACATCTACGTATTAGTCATC
 GCTATTACCATGGTATGCGGTTTGGCAGTACATCAATGGCGTGGATAGCGGTTGAC
 TCACGGGATTTCAAGTCTCCACCCATTGACGTCAATGGAGTTGTTGGCACCAA
 AATCAACGGACTTCAAAATGTCGTAACAACCTCCGCCATTGACGCAAATGGCGGT
 AGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTCTCCCTACGTGATAGAGATCTC
 CCTATCAGTGTAGAGATCGTCAGCAGCTCGTTAGTGAACCCTCAGATGCCCTGGAGA
 CGCCATCCACGCTGTTTGACCTCCATAGAAGACACCGGGACCGATCCAGCCTCCGGACT
 CTAGAGGATCCCTACCGGTGATATCCCGAGCCATCAACAAGTTGTACAAAAAGCTG
 AACGAGAACGTTAAATGATATAAATATCAATATATTAAATTAGATTTGCATAAAAAC
 AGACTACATAACTGTAAAACACAACATATCCAGTCACTATGCCGCCGCACTAGGCAC
 CCCAGGCTTACACTTATGCTCCGGCTCGTATAATGTTGAGTTAGGATCC
 GGCAGAGTTTCAGGAGCTAAGGAAGCTAAATGGAGAAAAAAACTGGATATACCAAC
 CGTTGATATATCCAATGGCATCGTAAAGAACATTGAGGCATTTCAGTCAGTTGCTCA
 ATGTACCTATAACCAGACCGTTAGCTGGATATTACGGCCTTTAAAGACCGTAAAGAA
 AAATAAGCACAAGTTTATCCGGCCTTATTACACATTCTGCCCGCTGATGAATGCTCA
 TCCGAATTCCGTATGGCAATGAAAGACGGTGAGCTGGTGTATGGGATAGTGTTCACCC
 TTGTTACACCGTTTCCATGAGCAAACGTTTACGGCCTTTAAAGACCGTAAAGAA
 CGACGATTCGGCAGTTACACATATATTGCAAGATGTGGCGTTACGGTGGAAA
 CCTGGCCTATTCCTAAAGGTTATTGAGAATATGTTTCGTCAGCCAATCCCTG
 GGTGAGTTTACCGAGTTGATTTAACGTGGCCAATATGGACAACCTCTCGCCCCCGT
 TTTCACCATGGCAAATATTACGCAAGGCAGAACAGGTGCTGATGCCGCTGGCGATTCA
 GGTTCATCATGCCGTCTGTGATGGCTTCCATGCGCAGAATGCTTAATGAATTACAACA
 GTACTGCGATGAGTGGCAGGGCGGGCGTAAAGATCTGATCCGGCTACTAAAGCCAG
 ATAACAGTATGCGTATTCGCGCTGATTTGCGGTATAAGAATATACTGATATGTA
 TACCCGAAGTATGTCAAAAGAGGTGTGCTATGAAAGCAGCGTATTACAGTGACAGTTGAC
 AGCGACAGCTATCAGTGTCAAGGCATATATGATGTCAATATCTCCGGTCTGGTAAGCA
 CAACCATGCAGAATGAAGCCCGTCTGCTGCGGAACGCTGGAAAGCGGAAATCAGG
 AAGGGATGGCTGAGGTGCCCGTTATTGAAATGAACGGCTTTTGCTGACGAGAACAA
 GGGACTGGTGAATGCAGTTAACGGTTACACCTATAAAAGAGAGAGCGGTATCGTCTG
 TTTGTGGATGTACAGAGTGTATTATTGACACGCCGGCGACGGATGGTGTATCCCGT
 GCCAGTGCACGCTGCTGTCAGATAAAAGTCTCCCGTGAACATTACCCGGTGGTGCATATC
 GGGGATGAAAGCTGGCGCATGACGACCCGATATGGCAGTGTGCCGGTCTCCGGTATAC
 GGGGAAGAAGTGGCTGATCTCAGGCCACCGAAAATGACATCAAAACGCCATTACCTG
 ATGTTCTGGGAATATAATGTCAAGGCTCCCTTATACACAGCCAGTCTGCAGGTCGACCA
 TAGTGAATGGATATGTTGTGTTTACAGTATTATGATGTTGCTGTTTATGAAATCTA
 ATTTAATATATTGATATTATCATTTCAGTTCTCGTTCAGCTTCTTGCTACAAAGT
 GGTTGATGGCGGCCGCTAGAGGGCCAAGCTTACGGCTGCTGACGCTCATAGCTC
 TCTCCCTATAGTGAATGCGTATTATAAGCTAGGCACTGGCGTGTGTTTACAACGTCGTGA
 CTGGGAAAATGCTAGCTGGATTTGTAAGGAACCTTACTTCTGTGGTGTGACATA
 ATTGGACAAACTACCTACAGAGATTTAACGTTCAAGGTAATATAAAATTGTAAGTGT
 ATAATGTGTTAAACTAGCTGCATATGCTTGTGCTGAGAGTTGCTTACTGAGTATGA
 TTTATGAAAATATTATAACACAGAGCTAGTGTGTTTAATTGTTGTTGATTTAGATTCA
 CAGTCCCAGGCTATTGCAAGGCCCTCAGTCCTCACAGTCTGTCATGATCATAATCAG
 CCATACCACATTGTAGAGGTTTACTGCTTAAAGCTCCACACCTCCCGTAAATGG
 CCTGAAAATAAAGCAATAGCATCACAAATTTCACAAATAAGCATTTCAGCTTAAATG
 TTACAAATAAGCAATAGCATCACAAATTTCACAAATAAGCATTTCAGCTTAAATG
 TAGTGTGGTTGTCCAAACTCATCAATGTATCTTATCATGTCGGATCGATCCTGCA
 AATGAATCGGCCAACGCCGGGGAGAGGGCGTTGCGTATTGGCTGGCGTAATAGCGAAG
 AGGCCCGCAGCGTACGCCCTTCCCAACAGTGTGCGCAGCTGAATGGCGAATGGGACGCC
 CCTGTTAGCGGGCGTAAAGCGCGGGGTGTGGTGTGACGCGCAGCGTACCGTACAC
 TTGCCAGCGCCCTAGGCCCGCTCTTGCCTTCTCCCTTCTGCCACGTC
 CGGGCTTCCCGTCAAGCTCTAAATGGGGCTCCCTTAGGGTCCGATTTAGTGTCTT-

FIGURE 92B

211/240

TACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGTGATGGTCACGTAGTGGGCCATCGC
 CCTGATAGACGGTTTCGCCCTTGACGTTGGAGTCCACGTTCTTAATAGTGGACTCT
 TGTCCAAACTGGAACAACACTCAACCCATCTCGGTCTATTCTTTGATTATAAGGGA
 TTTGCCGATTCGCCATTGGTTAAAAATGAGCTGATTAAACAAATATTAAACGCGA
 ATTTAACAAAATATTAACGTTACAATTTCGCCTGATGCGGTATTCTCCTACGCAT
 CTGTCGGTATTCACACCGCATACGCGGATCTGCGCAGCACCATGGCCTGAAATAACCT
 CTGAAAGAGGAACCTGGTTAGGTACCTTCTGAGGCGGAAGAACAGCTGTGGAATGTGT
 GTCAGTTAGGGTGTGAAAGTCCCCAGGCTCCCCAGCAGCAGAAGTATGCAAAGCATGC
 ATCTCAATTAGTCAGCAACCAGGTGTGAAAGTCCCCAGGCTCCCAGCAGGAGAAGTA
 TGCAAAGCATGCATCTCAATTAGTCAGCAACCAGTCCGCCCTAACTCCGCCATCC
 CGCCCTAACTCCGCCAGTCCGCCATTCTCGCCCATGGCTGACTAATTTTTA
 TTTATGCAGAGGCCAGGCCCTGGCCTCTGAGCTATTCCAGAAAGTAGTGAGGAGGCT
 TTTTGGAGGCCTAGGCTTTGCAAAAGCTGATTCTCTGACACAAACAGTCTCGAACT
 TAAGGCTAGAGCCACCATGATTGAAACAAGATGGATTGACCGCAGGTTCTCGGCCGCTTG
 GGTGGAGAGGCTATTGGCTATGACTGGGACAACAGACAATGGCTGCTCTGATGCCGC
 CGTGTCCGGCTGTGAGCGCAGGGCGCCGGTTCTTTGTCAAGACCGACCTGTCCGG
 TGCCCTGAATGAAGTGCAGGACAGGAGCAGCGCCGCTATCGTGGCTGGCACGACGGCGT
 TCCTTGCAGCTGTGCTGACGTTGCACTGAAGCGGGAGGGACTGGCTGCTATTGGG
 CGAAGTGCAGGGCAGGATCTCCTGTCATCTCACCTGCTCTGCCAGAAAGTATCCAT
 CATGGCTATGCAATGCGCGGCTGCATACGCTTGTACCTGCCATTGACCA
 CCAAGCGAAACATGCATCGAGCGAGCACGTAACCGATGGAAGGCCGGTCTGTGATCA
 GGATGATCTGGACGAAGAGCATCAGGGGCTCGGCCAGCGCAACTGTTGCCAGGCTCAA
 GGCAGCATGCCGACGGCAGGATCTCGTGTGACCCATGGCGATGCCCTGCTGCCGAA
 TATCATGGTGGAAAATGGCGCTTTCTGGATTGACTCGACTGTGGCCGGTGGGTGGC
 GGACCGCTATCAGGACATAGCGTTGGCTACCCGTGATATTGCTGAAGAGCTTGGCGGCGA
 ATGGGCTGACCGCTTCTCGTGTACGGTATGCCGCTCCGATTGCAAGCGCATCGC
 CTTCTATGCCCTCTTGACGAGTTCTCTGAGCGGGACTCTGGGGTCTGAAATGACCGAC
 CAAGCGACGCCAACCTGCCATCAGGATGGCGCAATAAAATATCTTATTTCATTACA
 TCTGTTGTTGGTTTTGTGTGAATCGATAGCGATAAGGATCCGCTATGGTCACTCT
 CAGTACAATCTGCTCTGATGCCGATAGTTAAGCCAGCCCCGACACCCGCAACACCCG
 TGACGCGCCCTGACGGGCTGTCTGCTCCGGCATCCGCTTACAGACAAGCTGTGACCGT
 CTCCGGGAGCTGCTGTGAGGTTTACCGTCATACCGAAACGCGCAGACGAAA
 GGGCCTCGTGTACGCCATTTTATAGGTTAATGTCATGATAATAATGGTTCTTAGAC
 GTCAGGTGGCATTTCGGGAAATGTGCGGGAACCCCTATTGTTATTCTAAAT
 ACATTCAAATATGATCCGCTATGAGACAATAACCTGATAAAATGTTCAATAATATTG
 AAAAAGGAAGAGTATGAGTATTCAACATTCCGTCGCCCCATTCCCTTTGCGGC
 ATTTCGCTTCTGTTTGCTCACCGAAACGCTGGTGAAGTAAAGATGCTGAAGA
 TCAGTTGGTGCAGACTGGTTACATCGAACCTGGATCTCAACAGCGGTAAAGATCCTGA
 GAGTTTCGCCCGAAGAACGTTCCAATGATGAGCAGCTTTAAAGTTCTGCTATGTGG
 CGCGGTATTATCCGTTATGACGCCGGCAAGAGCAACTCGGTGCCGCATACACTATT
 TCAGAATGACTTGGTTGAGTACTCACCAAGTCAGAAAAGCATCTACGGATGGCATGAC
 AGTAAGAGAATTATGCACTGCTGCCATAACCATGAGTGATAACACTGCGGCCACTTACT
 TCTGACAACGATCGGAGGACCGAAGGAGCTAACGCTTTTGCAACATGGGGATCA
 TGTAACCTGCCCTGATCGTTGGAAACGGAGCTGAATGAAGCCATACCAACGACGAGCG
 TGACACCACGATGCCGTAGCAATGCCAACAGTTGCCAAACTATTAACTGGCAACT
 ACTTACTCTAGCTTCCGCCAACAAATTAGACTGGATGGAGGCGATAAAGTTGCAGG
 ACCACTTCTGCCCTGCCCTCCGGCTGGTTATTGCTGATAAAATCTGGAGCCGG
 TGAGCGTGGGTCTCGCGGTATCATTGCACTGGGCCAGATGGTAAGGCCCTCCGTAT
 CGTAGTTATCTACAGACGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGC
 TGAGATAGGTGCCACTGATTAAAGCATGGTAACTGTCAGACCAAGTTACTCATATA
 ACTTTAGATTGATTAAAACCTCATTTAATTAAAAGGATCTAGGTGAAGATCCTTT
 TGATAATCTCATGACCAAAATCCCTAACGTGAGTTTCGTTCCACTGAGCGTCAGACCC
 CGTAGAAAAGATCAAAGGATCTTCTGAGATCCTTTCTGCGCGTAATCTGCTGCTT
 GCAAACAAAAAACACCGCTACCAAGCGGTGGTTGTTGCCGATCAAGAGCTACCAAC
 TCTTTTCCGAAGGTAACGGCTCAGCAGAGCGCAGATAACAAATACTGCTCTTAGT
 GTAGCGTAGTTAGGCCACCACTCAAGAACTCTGTAGCAGGCCCTACATACTCGCTCT
 GCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCATAAGTCGTGCTTACCGGGTTGGA
 CTCAAGACGATAAGTTACCGATAAGGCGCAGCGGTGGCTGAACGGGGGTTCGTGCAC-

FIGURE 92C

212/260

ACAGCCCAGCTGGAGCGAACGACCTACACCGAACTGAGATA CCTACAGCGTGAGCATTG
AGAAAGGCCACGCCCTCCCGAAGGGAGAAAGCGGACAGGTATCCCGTAAGCGGCAGGGT
CGGAACAGGAGAGCGCACGAGGGAGCTTCAGGGGAAACGCCTGGTATCTTATAGTCC
TGTCGGTTTCGCCACCTCTGACTTGAGCGTCAGTTGTGATGCTCGTCAGGGGGCG
GAGCCTATGGAAAAACGCCAGCAACCGCCCTTTACGTTCCCTGCCCTTGTGGC
TTTGCTCACATGTTCTTCCTGCGTTATCCCCGTGATTCTGTGGATAACCGTATTACCGC
CTTGAGTGAGCTGATACCGCTGCCGCAGCCGACGACCGAGCGCAGCGAGTCAGTGAG
CGAGGAAGCGGAAGAGCGCCAATACGCAAACCGCCTCTCCCGCGCGTTGGCCGATTCA
TTAATGCAGAGCTTGCATTGCGCGTTTCAATATTATTGAAGCATTATCAGGGTTA
TTGTCTCATGAGCGGATACATATTGAATGTATTAGAAAAATAACAAATAGGGTTCC
GCGCACATTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATT
AACCTATAAAATAGGCGTAGTACGAGGCCCTTCACTCATTAG

FIGURE 92D

213/260

FIGURE 93A

2/4/240

pDEST31 7559 bp

ATGCATGTCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCCAACGACCCC
 CGCCCATGGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTCCAT
 TGACGTCAATGGTGGAGTATTTACGGTAAACTGCCACTGGCAGTACATCAAGTGTAT
 CATATGCCAAGTACGCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTAT
 GCCCAGTACATGACCTTATGGACTTCCCTACTTGGCAGTACATCTACGTATTAGTCATC
 GCTATTACCATGGTGTGATGCGGTTGGCAGTACATCAATGGCGTGGATAGCGGTTTGAC
 TCACGGGATTCCAAGTCTCACCCATTGACGTCAATGGGAGTTGTGTTGGCACCAA
 AATCAACGGGACTTCAAAAATGTCGAACAACACTCCGCCATTGACGCAAATGGCGGT
 AGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTCTCCCTATCAGTGTAGAGATCTC
 CCTATCAGTGTAGAGATCGTCGACGGCTCGTTAGTGAACCGTCAGATGCCCTGGAGA
 CGCCATCCACGCTGTTGACCTCCATAGAACGACACCAGGACCGATCCAGCCTCCGGACC
 ATGGCGTACTACCATCACCATCACACCGGTGATATCCTCGAGCCATCACAAAGT
 TTGTACAAAAAAAGCTGAACGAGAAACGTAATGATATAAATATCAATATATTAATTAG
 ATTTGCATAAAAACAGACTACATAACTGTAACACAAACATATCCAGTCAGTCACTATGG
 CGGCCGATTAGGCACCCAGGCTTACACTTATGCTCCGGCTCGTATAATGTGTGGA
 TTTGAGTTAGGATCCGGCAGATTTCAGGAGCTAAGGAAGCTAAAATGGAGAAAAAA
 TCACTGGATATACCACCGTTGATATATCCCAATGGCATCGTAAAGAACATTGAGGCAT
 TTCAGTCAGTTGCTCAATGTACCTATAACCAGACCGTTAGCTGGATATTACGGCCTTT
 TAAAGACCGTAAAGAAAATAAGCACAAGTTATCCGGCCTTATTACACATTGGCCC
 GCCTGATGAATGCTATCCGAATTCCGTATGGCAATGAAAGACGGTGAGCTGGTGTAT
 GGGATAGTGTTCACCCCTGTTACACCCTTCCATGAGCAAACGTTTCACTCGC
 TCTGGAGTGAATACCAACGACGATTCCGGCAGTTCTACACATATATTGCAAGATGTGG
 CGTGTACGGTAAAACCTGGCTATTCCCTAAAGGTTATTGAGAATATGTTTCG
 TCTCAGCCAATCCCTGGGTGAGTTTACCAAGTTTGATTTAAACGTCGCAATATGGACA
 ACTTCTCGCCCCCGTTTACCATGGCAAAATATTACGCAAGGCGACAAGGTGCTGA
 TGCCGCTGGCGATTCAAGGTTCATCATGCCGCTGTGATGGCTTCCATGTCGGCAGAATGC
 TTAATGAATTACAACAGTACTGCGATGAGTGGCAGGGCGGGCGTAAACGCGTGGATCCG
 GCTTACTAAAAGCCAGATAACAGTATGCGTATTGCGCGCTGATTTGCGGTATAAGAA
 TATATACTGATATGTATAACCGAAGTATGTCAAAAGAGGTGCTATGAAGCAGCGTAT
 TACAGTGCAGTTGACAGCGACAGCTATCAGTTGCTCAAGGCATATATGATGTCAATATC
 TCCGGTCTGGTAAGCACAACCATGCGAGATGAAAGCCCCGCTGCTGCGCCGAACGCTGG
 AAAGCGGAAAATCAGGAAGGGATGGCTGAGGTGCCCCGGTTATTGAAATGAAACGGCTCT
 TTTGCTGAGAGAACAGGGACTGGTGAATGCAAGTTAAGGTTACACCTATAAAAGAGA
 GAGCCGTTATCGTCTGTTGTGGATGTACAGAGTGTATATTGACACGCCCCGGCGACG
 GATGGTGTACCCCTGGCCAGTGCACTGCTGCTGTCAGATAAAGCTCCCGTGAACCTTA
 CCCGGTGGTGCATATCGGGATGAAAGCTGGCGCATGATGACCAACCGATATGCCAGTGT
 GCCGGTCTCCGTTATCGGGGAAGAAGTGGCTGATCTCAGCCACCGCAAACGATCAA
 AAACGCCATTAACCTGATGTTCTGGGAATATAATGTCAGGCTCCGTTATACACAGCCA
 GTCTGCAGGTGCGACCATAGTGACTGGATATGTTGTTTACAGTATTATGAGTCTGTT
 TTTTATGCAAATCTAATTAAATATTGATATTATCATTTACGTTCTCGTTCA
 CTTTCTTGTACAAAGTGGTGTGATGGCGGGCGCTCTAGAGGGCCCAAGCTTACGCGTGCAT
 GCGACGTCATAGCTCTCCCTATAGTGTGAGCTGTATTATAAGCTAGGCACTGGCGTCTG
 TTTACAACGTCGTGACTGGAAAACGCTAGCTTGGGATCTTGTGAAGGAACCTTACTT
 CTGTTGGTGTGACATAATTGGCAAAACTACCTACAGAGATTAAAGCTTAAGGTAATAT
 AAAATTAAAGTGTATAATGTTAAACTAGCTGCATATGCTTGCTGCTGAGAGTTT
 GCTTACTGAGTATGATTATGAAATATTATACACAGAGCTAGTGTATTCTAATTGTTG
 TGTATTAAAGTGTGATGTTTACAGTCCCAAGGCTATTCAAGGCCCCCTCAGTCCTCACAGTCTGTT
 CATGATCATAATCAGCCATACCAATTGAGGTTTACTGCTTTAAACCTCC
 ACACCTCCCCCTGAACCTGAAACATAAAATGAATGCAATTGTTGTTAATTGTT
 TGCACTGTTACATGGTAAACAAATAAAAGCAATAGCATCACAAATTTCACAAATAAGCATT
 TTTTCACTGCAATTGTTAGTTGCTCAAACCTACATCAATGTTATCATGTC
 GATCGATCTGCATTGTTAGTTGCTGAGGTTTACTGCTTTAAACCTCC
 GGCGTAAAGCGAAGAGGCCGACCGATGCCCTCCAAACAGTGTGCGCAGCCTGAATG
 GCGAATGGGACGCGCCCTGTAGCGCGCATTAAAGCGCGGGGTGTGGTGGTTACGCGCA
 GCGTGAACCGCTACACTTGGCCAGGCCCTAGCGCCGCTCTTGTGTTTCTCCCTTCC
 TTCTCGCCACGTTGCCGGTTTCCCCGTCAAGCTCTAAATGGGGCTCCCTTAGGGT-

FIGURE 93B

TCCGATTAGTGCCTACGGCACCTCGACCCCCAAAAACTGATTAGGGTATGGTTCAC
 GTAGTGGGCCATCGCCCTGATAGACGGTTTCGCCCTTGACGTTGGAGTCCACGTTCT
 TTAATAGTGGACTCTTGTCCAAACTGGAACAACACTCAACCCATCTCGGTCTATTCTT
 TTGATTATAAGGGATTTGCCGATTGCCCTATTGGTAAAAAATGAGCTGATTTAAC
 AAATATTAACCGAATTTAACAAATATTAACGTTACAATTGCCCTGATGCCGTAT
 TTTCTCCTACGCATCTGCGGTATTCACACCGCATA CGGGATCTGCGCAGCACCAT
 GGCCTGAAATAACCTCTGAAAGAGGAACCTGGTAGGTA CTTCTGAGGCGGAAAGAAC
 AGCTGTGGATGTGTCAAGTTAGGGTGTGGAAAGTCCCAGGCTCCCAGCAGGCAGAA
 GTATGCAAAGCATGCATCTCAATTAGTCAGCAACCAGGTGTGGAAAGTCCCCAGGCTCCC
 CAGCAGGAGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCAGTCCCAGGCTCCC
 TAACCTCGCCCCTCCGCCCTAACCTCCGCCAGTCCGCCATTCTCGCCCCATGGCT
 GACTAATTTTTTATTTATGAGAGGCCAGGCCCTCGGCTCTGAGCTATTCCAGA
 AGTAGTGGAGGAGGCTTTTGAGGCCCTAGGCTTTGCAAAAGCTGATTCTGACA
 CAACAGTCGAACCTAACGGCTAGAGCCACCATGATTGAAACAAGATGGATTGACGCAGG
 TTCTCCGGCCGCTTGGGTGGAGAGGCTATTGCGCTATGACTGGGACAACAGACAATCGG
 CTGCTCTGATGCCCGCTGTTCCGGCTGTCAGCGCAGGGCGCCGGTCTTTGTCAA
 GACCGACCTGTCCGGTGCCTGAATGAACTGCAGGACGAGGCAGCGGGTATCGTGGCT
 GGCCACGACGGCGTTCTGCAGCTGTGACTGACGTTGCACTGAAGCGGGAGGGA
 CTGGCTGCTATTGGCGAAGTGCAGGGCAGGATCTCTGCTCATCTCACCTGCTCTGC
 CGAGAAAGTATCCATCATGGCTGATGCAATGCCGGCTGACAGCTTGTATCCGGCTAC
 CTGCCATTGACCAACCGAATCGCATCGAGCAGCAGTACTGGATGGAAGC
 CGGTCTGTCAGGATGATCTGGACGAAGAGCATCAGGGCTCGGCCAGCGAAC
 GTTCGCCAGGCTCAAGGCGCGCATGCCGACGGCAGGATCTGTCGTGACCCATGGCGA
 TGCCTGCTTGGCAATATCATGGTGGAAAATGCCGCTTTCTGAGCTATCGACTGTGG
 CCGGCTGGGTGGCGGACCGCTATCAGGACATAGCAGTGGCTACCCGTGATATTGCTGA
 AGAGCTTGGCGGAATGGCTGACCGCTTCCTGCTTACGGTATGCCGCTCCCGA
 TTCGCAGCGCATGCCCTCTATGCCCTCTTGACGAGTTCTCTGAGCGGGACTCTGGGG
 TTCGAAATGACCGACCAAGCGACGCCAACCTGCCATCACGATGCCGCAATAAAATATC
 TTTATTTTCAATTACATCTGTTGGTTTTGTGAAATCGATAGCGATAAGGATCCG
 CGTATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGATAGTTAACCGCCCCGACA
 CCCGCCAACACCCGCTGACGCCCTGACGGCTTGTCTGCTCCCGCATCCGCTTACAG
 ACAAGCTGTGACCGTCTCCGGAGCTGATGTCAGAGGTTTACCGTACACCGAA
 ACGCGAGACGAAAGGGCTCGTGTACGCCATTTTATAGGTTAATGTCATGATAAT
 AATGGTTCTTAGACGTCAAGTGGCACTTTCGGGAAATGCGCGGAACCCCTATTG
 TTTATTTCTAAATACATTCAAATATGATCCGCTCATGAGACAATAACCTGATAAAAT
 GCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTCCGCTGCCCCCTAT
 TCCCTTTTGCGGCTTGCCTCTGTTGCTACCCAGAAACGCTGGTGAAGAGT
 AAAAGATGCTGAAGATCAGTTGGGTGACGAGTGGTTACATGAACTGGATCTAACAG
 CGGTAAGATCCTGAGAGTTGCCCGAAGAACGTTTCCAATGAGCAGCAGCTTAA
 AGTTCTGCTATGCGCGGTATTATCCCGTATTGACGCCGGCAAGAGCAACTCGGTG
 CCGCATACACTATTCTCAGAATGACTGGTTGAGTACTCACCAGTCAGAAAAGCATCT
 TACGGATGGCATGACAGTAAGAGAATTATGCACTGCTGCCATAACCATGAGTGA
 AACAC TGCAGGCCAACTTACTCTGACAAACGATCGGAGGACGAAGGAGCTAACCG
 TTTTGCAAAACATGGGGATCATGTAACCTGCCCTGATCGTGGGAACCGGAGCTGA
 ATGAGCCATACCAACGAGCGTGACACCAGATGCCGTAGCAATGCCAACAGTTGCG
 CAAACTTAAACTGGCAACTACTCTAGCTCCCGCAACAATTAAATAGACTGGATGGAGGC
 GGATAAAAGTTGAGGACCACTCTGCCTCGGCCCTCCGGCTGGTGGTTATTGCTGA
 TAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCACTGGGCCAGATGG
 TAAGCCCTCCCGTATGTAAGTTATCTACAGCACGGGAGTCAGGCAACTATGGATGA
 AACAAAGACAGATGCTGAGATAGGTGCCACTGATTAAAGCATGGTAAGTGCAGACCA
 AGTTTACTCATATATACTTTAGATTGATTTAAACTTCATTAAATTAAAGGATCTA
 GGTGAAGATCCTTTTGATAATCTCATGACCAAAATCCCTAACGTGAGTTTCGTTCCA
 CTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTCTTGAGATCCTTTCTGCG
 CGTAATCTGCTGCCCTGCAACACAAAAACCCACCGCTACCGCGGGTTGTTGCCGGA
 TCAAGAGCTACCAACTCTTCCGAAGGTAACGGCTTCAGCAGAGCGCAGATACCAA
 TACTGCTCTAGTGTAGCCGTAGTTAGGCCACCACTCAAGAACACTCTGTA
 GACGCCAGTGGCTGCTGCCAGTGGCGATAAGTCGTG
 TCTTACCGGGTTGGACTCAAGACGATAGTTACCGATAAGCGCAGCGTGGGCTGAAC-

FIGURE 93C

GGGGGGTTCGTGCACACAGCCCAGCTGGAGCGAACGACCTACACCGAACTGAGATAACCT
ACAGCGTGAGCATTGAGAAAGCGCCACGCTTCCGAAGGGAGAAAGGCGGACAGGTATCC
GGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACAGAGGGAGCTTCCAGGGGGAAACGCCCTG
GTATCTTATAGTCTGTCGGGTTCGCCACCTCTGACTTGAGCGTCGATTTGTGATG
CTCGTCAGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCCCTTTACGGTTCCCT
GGCCTTTGCTGGCCTTGTCACTGTTCTCGCTTATCCCTGATTCTGTGGA
TAACCGTATTACCGCCTTGAGTGAGCTGATAACCGCTCGCCGAGCCGAACGACCGAGCG
CAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCAATACGCAAACGCCCTCTCCCCGC
GCGTTGGCGATTCAATTAAATGCAGAGCTGCAATTGCGCGTTTCAATATTATTGAAG
CATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTGAATGTATTAGAAAAATAA
ACAAATAGGGGTTCCGCGCACATTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCAT
TATTATCATGACATTAACCTATAAAATAGGCGTAGTACCGAGGCCCTTCACTCATTAG

FIGURE 93D

217/240

FIGURE 94A

218/240

pDEST32 12288 bp

GACGAAAGGGCCTCGTATAACGCCTATTTTATAGGTTAATGTCATGATAATAATGGTT
 CTTAGGACGGATCGCTGCCTGTAACCTACACGCCCTCGTATCTTTAATGATGGAATA
 ATTTGGAAATTACTCTGTGTTATTATTTATGTTTGATTTAGAAAGT
 AAATAAAGAAGGTAGAAGAGTTACGGAATGAAGAAAAAAAATAAACAAAGGTTAAAAA
 ATTTCAACAAAAGCGTACTTACATATATATTATTAGACAAGAAAGCAGATTAAATA
 GATATACATCGATTAACGATAAGTAAATGTAACAGGATTTCGTGTGGTCT
 TCTACACAGACAAGATGAAACAATTCCGCAATTACCTGAGAGCAGGAAGAGCAAGATA
 AAAGGTAGTATTGTTGGCGATCCCCCTAGAGTCTTACATCTCGAAAACAAAAACT
 ATTTTTCTTAATTCTTTTACTTTCTATTAAATTATATTATATTATATTAAAAAA
 ATTTAAATTATAATTATTATAGCACGTGATGAAAGGACCCAGGTGGCACTTTCGG
 GGAAATGTGCGCGGAACCCCTATTGTTATTCTAAATACATTCAAATATGTATCCG
 CTCATGAGACAATAACCCCTGATAAAATGCTTCAATAATCTGCACTGCGCAGGGCCCCGTGTC
 TCAAAATCTCTGATGTTACATTGACAAGATAAAAATATCATCATGAACAATAAAACT
 GTCTGCTTACATAAACAGTAATAACAAGGGTGTATGAGCCATATTCAACGGGAAACGTC
 TTGCTGGAGGCCGATTAAATTCAAACATGGATGCTGATTTATGGGTATAATGGC
 TCGGTAGCCAACCACTAGAACTATAAGCTAGAGTCTGGCGAACAAACGATGCTCGCCTT
 CCAGAAAACGAGGATGCGAACCAACTCATCCGGGTAGCACCACGGCAAGGCCCGCG
 ACGGCCGAGGTCTCCGATCTCCTGAAGCCAGGGCAGATCCGTGACAGCACCTTGCCTCGT
 AGAAGAACAGCAAGGCCAATGCTGACGTGCGTGGAGACCAGAACCTTGCCTCGT
 TCGCCAGCCAGGACAGAAATGCCCTGACTTCGCTGCTGCCAAGGGTGCCTGACGCA
 CACCGTGGAAACGGATGAAGGCACGAACCCAGTTGACATAAGCCTTGCCTGCTAAAC
 TGTAATGCAAGTAGCGTATGCGCTCACGCAACTGGTCCAGAACCTTGACCGAACGCG
 GTGGTAACGGCGCAGTGGCGTTTCATGGCTGTTATGACTGTTTTGATGTTATGGA
 TGCCTCGGCATCCAAGCAGCAAGCGCTTACGCCGTGGGTGATGTTGATGTTATGGA
 GCAGCAACGATGTTACGCAGCAGCAACGATGTTACGCAGCAGGGCAGTCGCCCTAAAC
 AAGTTAGGTGGCTCAAGTATGGCATATTCCGACATGTAGGCTCGGCCCTGACCAAGTC
 AAATCCATGCGGGCTGCTTGTATCTGATCTTTCGGCTGAGTTCGGAGACGTAGCCACCTAC
 TCCCACATCAGCCGGACTCCGATTACCTCGGAACCTGCTCCGTAGTAAGACATTCA
 GCGCTGCTGCCCTCGACCAAGAACGGTTGGCGCTCTCGCGCTTACGTTCTGCC
 AGGTTGAGCAGCCCGTACTGAGATCTATGATCTCGCAGTCTCCGGCAGAC
 CGGAGGCAGGGCATTGCCACCGCGCTCATCAATCTCTCAAGCATGAGGCCAACGCG
 GGTGCTTATGTGATCTACGTGCAAGCAGATTACGGTACGATCCCCAGTGGCTCTAT
 ACAAAAGTTGGCATAACGGGAAGAAGTGTGACTTTGATATCGACCCAAGTACGCCACC
 TAACAATTGCTCAAGCCGAGATCGGCTCCGGCTAATAGGTTGATTTGATGTTGGAC
 GAGTCGGAATCGCAGACCGATACCGAGATCTGCCATCTATGGAACCTGCTCGGTGAGT
 TTTCTCTTCAATTACAGAAACGGCTTTTCAAAATATGGTATTGATAATCCTGATATGA
 ATAAATTGCACTGGTTCATTGATGCTGATGAGTTTTCTAATCAGAATTGTTAATTGGT
 TGTAACACTGGCAGAGCATTACGCTGACTTGACGGGACGGCGNCATGACCAAAATCCCT
 AACGTGAGTTCTGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTT
 GAGATCTTTCTGCGCTAATCTGCTGCTGCAACAAAAAACACCGCTACCA
 CGGTGGTTGGCTTGCGGATCAAGAGCTACCAACTCTTCTGCAAGGTAACTGGCTTCA
 GCAGCGCAGATACCAAATACTGCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCA
 AGAACTCTGTAGCACCGCCTACATACCTCGCTGCTAATCCTGCTGAGTACCGAGTGGCTGCTG
 CCAGTGGCGATAAGTGTGCTTACGGGTTGGACTCAAGACGATAGTTACCGGATAAAG
 CGCAGCGCTGGCTGAAACGGGGGTTGCGCACACAGCCAGCTGGAGCGAACGACCT
 ACACCGAACTGAGATACCTACAGCGTGAGCATTGAGAAAGGCCACGCTTCCGAAGGG
 GAAAGGGCGACAGGTATCCGTAAGCGCAGGGTGGAAACAGGGAGAGCGCACGAGGGAGC
 TTCCAGGGGGAAACGCCCTGGTATCTTATAGTCTGTCGGGTTTCGCCACCTGACTTG
 AGCGTCGATTTTGATGCTGTCAGGGGGCGAGCCTATGGAAAAACGCCAGCAACG
 CGGCCTTCTACGGTCTGGCCTTTGCTGGCTTTGCTCACATGTTCTTCTGCGT
 TATCCCTGATTCTGTGATAACCGTATTACCGCCTTGAGTGTAGCTGATACCGCTGCC
 GCAGCCGAACCGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCA
 GCAAAACGCCCTCCCCCGCGTGGCCGATTCAATTAGCAGCTGGCACGCCAGGTTTC
 CCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAGTGTAGTTACCTCACTCATTAG
 CACCCCAAGGCTTACACTTATGCTTCCGGCTCTATGTTGTGTTGGAAATTGTGAGCG
 AACAAATTTCACACAGGAAACAGCTATGACCATGATTACGCCAGCTCGGAATTACCC
 -

FIGURE 94B

ACTAAAGGGAACAAAAGCTGGTACCGATCCGAGCTTGCAAATTAAAGCCTCGAGCGT
 CCCAAAACCTCTCAAGCAAGGTTTCAGTATAATGTTACATGCGTACACCGCTGTAC
 AGAAAAAAAAGAAAAATTGAAATATAAATAACGTTCTTAATAACTAACATAACTATAAAA
 AAATAAAATAGGGACCTAGACTTCAGGGTGTCTAACTCCTCCTTTCGGTAGAGCGGAT
 GTGGGGGGAGGGCGTGAATGTAAGCGTGACATAACTAACATGATATCGACAAAGGAA
 AAGGGGCCGTACTCACAGGTTTCAGTAGGTAATTAAAGTCGTTCTGTCTTT
 TCCCTCTCAACCCACCAAGGCCATCTGGTACTTTTTTTTTTTTTTTTTTTTT
 TTT
 TTTTTTTCATAGAAATAACAGAAAGTAGATGTTGAATTAGATTAAACTGAAGATATA
 AATTATTGAAAATACATAGAGCTTTGTTGATGCGCTTAAGCGATCAATTCAACAAAC
 ACCACCAGCAGCTCTGATTTTCTCAGCCAACCTGGAGACGAATCTAGCTTGACGAT
 AACTGGAACATTGGAATTCTACCCCTACCAAGATCTTACCGTAACCGGCTGCCAAAGT
 GTCAATAACTGGAGCAGTTCTTAGAAGCAGATTCAAGTATTGGTCTCTGTCTTC
 TGGGATCAATGTCACAAATTGTCAGTTCAAGACTGGCTCCAGAAATGAGCTTGTG
 CTTGTTGAAAGTATCTCATACCAACCTACCGAAATAACCTGGATGGTATTATCCATGTT
 AATTCTGTGGTGTGTTGACCAACGGCCATACCTCTACCACCGGGGTGCTTCTGTGCTT
 ACCGATACGACCTTACCGCTGAGACGTGACCTCTGTGTTCTAGTCTTAGTGAATCT
 GGAAGGCATTCTGATTAGTTGGATGATTGTTCTGGGATTAAATGCAAAATCACTTAAG
 AAGGAAAATCAACGGAGAAAGCAAACGCCATCTAAATATAACGGGATACAGATGAAAGGG
 TTTGAACCTATCTGAAAATAGCATTAAACAAGCGAAAACACTGCGAGGAAAATTGTTGC
 GTCTCTGCGGCTATTACCGGCCAGAGGAAAATAGGAAAATAACAGGGCATTAGAAA
 ATAATTGATTGTTGGTAATGTTGTTGCTGTCAGATGTTACATTGGTTACAGTA
 CTCTGTTTGTGTTGATGAAATCTCAAATGGTTGTTAGCACATGGAAGAG
 TCACCGATGCTAAGTTATCTCTATGTAAGCTACGTGGCTGACTTTGATGAGCCGAC
 AAGAGATAACAGGATTGGAACCTGCAATAGAAATCTGGGATCCCCCTCGAGATCCGGGA
 TCGAAGAAATGATGGTAAATGAAATAGGAAATCAAGGAGCATGAGGCAAAGACAAATA
 TAAGGGTCAACGAAAATAAGTAAAAGTAAAAGTGTGATGATGTTGATTTGGCTTGC
 CCGAAAAAACGAGTTACCGCAATTGCAACATCATGCTGACTCTGTTGCGGACCCGCGCTC
 TTGCGGCCGCGATAACGCTGGCGTGAGGCTGCCCCGGAGTTTGC
 CATTTCACGGTTTACCTCGCTAACGGGGAGATTGGAGAACATAAGAAATGCC
 TTGGGTTGCGATGATGACGACCACGACAACGGTGTCTATTAAAGTTGCGAAAGAA
 CCTGAGTCATTGCAACATGAGTAACTAGAGAAATGAGCAAGACTTGC
 GAGACGCGA
 GTTGCGGGTGGTGC
 GAACAAATAGAGCGACCATGACCTTGAAGGTGAGACGCGCATAACC
 GCTAGAGTACTTGAAGAGGAAACAGCAATAGGGTTGCTACAGTATAAATAGACAGGTA
 CATACAACACTGGAAATGGTTGCTGGTACGCTTCAATTCAATTGCGTGTG
 CAC
 TTTATTATGTTACAATATGGAAGGGAACTTACACTTCTCTATGCA
 CATATAATTAAATTAA
 AAGTCCAATGCTAGTAGAGAAGGGGGTAACACCCCTCCGCGCTTTCCGATT
 CTAAACCGTGGAAATTTCGGATATCCTTTGTTGTTCCGGGTGACAATATGGACTTC
 CTCTTCTGGCAACCAACCCATACATCGGATTCTATAAACCTCGTTGGTCTCCC
 TAACATGTTAGGTGGGGAGGGAGATATAACATAGAACAGATAC
 GAGACATAATG
 GGCTAAACAAGACTACACCAATTACACTGCCTCATTGATGGTGGTACATAACGA
 ACTAAT
 ACTGTAGCCCTAGACTGATAGCCATCATCATCGAACGTTCACTACCC
 CTTCCATT
 TGCCATCTATTGAAAGTAAATAGGGCATGCAACTTCTTTCTTTCT
 TCTCCCGTGTCTC
 ACCATATCGCAATGACAAAAAAATGATGGAAGACACTAA
 AGGAAAAAATTAAACGACAAAGACAGCACCAACAGATGTC
 GTGTTCCAGAGCTGATGAGG
 GGTATCTCGAACACACGAAACTTTCTCTCATTCA
 CGCACACTACTCT
 TAATG
 AGCAACGGTATA
 CGGCCTCCCTCAGTTACTGAAATTGAAATAAAAAGTTGCC
 GCTTGC
 TATCAAGTATAAATAGACCTGCAATTAAATCTTGTGTTCTCGT
 CATTGTC
 TCGTTCCCTTCTCCTGTTCTGACAATATTCAAGCTATACCAAGC
 ATAC
 AATCAACTCCAAGCTGAGCAAGCCTCTGAAAGATGAGCTACTG
 TCTTCTATCGAAC
 AAGCATGCGATATTGCGACTTAAAGCTCAAGTGTCCAAGAAAAACCGAAGTGGC
 CCAAGTGTCTGAAAGAACAACTGGAGTGTGCTACTCTCC
 AAAACCAAAAGGTCTCC
 CG
 TGACTAGGGCACATCTGACAGAAGTGGAAATCAAGGCTAGAAAGACTG
 GGAACAGCTATT
 TACTGATTTCCTCGAGAAGACCTTGACATGATTGAAATGGATT
 CTTACAGGATA
 TAAAAGCATTGTTAACAGGATTATTGTTACAAGATAATG
 TAATAAGATGCC
 GT
 CACAG
 ATAGATTGGCTTCAGTGGAGACTGATATGCC
 CTTCTAACATTGAGACAGCATAGAATAAGTG
 CGACATCATCATCGGAAGAGAGTAGTAACAAAGGTCAAAGACAG
 GTGACTGTATCGTCA
 GGTGAAATCAAACAAGTTGACAAAAAGCTGAACGAGAAACG
 TAAATGATATAAATA

Figure 94c

270/240

TCAATATATTAAATTAGATTTCATAAAAAACAGACTACATAACTGTAAAACACAAC
 ATATCCAGTCACTATGGCGGCCGCTAAGTTGGCAGCATCACCGACGCACTTGCGCCGA
 ATAAATACCTGTGACGGAAGATCACTTCGAGAATAAATAAATCCTGGTGTCCCTGTTGA
 TACCGGGAAAGCCCTGGCCAACCTTTGGCAAAATGAGACGTTGATCGGCACGTAAGAGG
 TTCCAACCTTCACCATAATGAAATAAGATCACTACCGGGGTATTGGAGTTATCGAG
 ATTTTCAGGAGCTAAGGAAGCTAAAATGGAGAAAAAAATCACTGGATATACCACCGTTGA
 TATATCCAATGGCATCGTAAAGAACATTGAGGCATTTCAGTCAGTTGCTCAATGTAC
 CTATAACCAGACCCTTCAGCTGGATATTACGGCCTTTAAAGACCGTAAAGAAAAATAA
 GCACAAGTTTATCCGGCCTTATTACACATTCTGCCCCGTGATGAATGCTCATCCGGA
 ATTCCGTATGGCAATGAAAGACGGTGAGCTGGTATATGGGATAGTGTTCACCCCTGTTA
 CACCGTTTCCATGAGCAAACGTTTCATCGCTCTGGAGTGAATACCAACGACGA
 TTTCCGGCAGTTCTACACATATTCGCAAGATGTGGCGTGTACGGTAAAACCTGGC
 CTATTTCCCTAAAGGGTTATTGAGAATATGTTTCTGCTCAGCCAATCCCTGGGTGAG
 TTTCACCACTTTGATTTAACGTTGCAATATGGACAACCTCTTCGCCCCGTTTCAAC
 CATGGGCAAATATTACGCAAGGCAGAACAGGTGCTGATGCCGCTGGCATTAGGTTCA
 TCATGCCGTCTGTGATGGCTTCCATGTCGGCAGAATGCTTAATGAATTACAACAGTACTG
 CGATGAGTGGCAGGGCGGGCGTAATCTAGAGGATCCGGCTACTAAAGCCAGATAACA
 GTATGCGTATTCGCGCTGATTTTGGTATAAGAATATATACTGATATGTATACCCG
 AAGTATGTCAAAAGAGGTGCTGATTAAGCAGCGTATTACAGTGACAGTTGACAGCGAC
 AGCTATCAGTTGCTCAAGGCATATATGATGTCAATATCCGGTCTGGTAAGCACAACCA
 TGCAGAATGAAGCCCCTCGCTGCGTGGCAACGCTGGAAAGCGAAAATCAGGAAGGGGA
 TGGCTGAGGTCGCCCCGTTATTGAAATGAAACGGCTCTTGTGACGAGAAACAGGGACT
 GGTGAAATGCAAGTTAACCTTAAAGGTTACACCTATAAAAGAGAGAGCGTGTACGTTG
 GATGTACAGAGTGTGATATTATTGACACGCCGGCGACGGATGGTATCCTGGCCAGT
 GCACGTTGCTGTCAGATAAAAGTCTCCGTGAACCTTACCCGGTGGTGCATATCGGGGAT
 GAAAGCTGGCCGATGATGACCAACCGATAATGCCAGTGTGCCGTCTCGTTATCGGGGAA
 GAAGTGGCTGATCTCAGCCACCGGAAAATGACATCAAAACGCCATTACCTGATGTTCT
 TGGGAATATAAATGTCAGGCTCCCTTATACACAGCCAGTCTGCAAGGTCACCATAGTGA
 CTGGATATGTTGTTTACAGTATTATGAGTCTGTTTATGCAAATCTAATTAA
 TATATTGATATTATATCATTTCACGTTCTCGTTCACTTCTGTTACAAAGTGGTTTG
 ATGGCCGCTAAGTAAGTAAGACGTCGAGCTCTAAGTAAGTAACGGCCACCGCGGTGG
 AGCTTGGACTCTTCGCCAGAGGTTGGTCAAGTCTCAATCAAGGTTGTCGGCTTGTCT
 TACCTTGCAGAAATTACGAAAAGATGGAAAAGGTCAATCGTTGGTAGATACGTTGT
 TGACACTCTAAATAAGCGAATTCTTATGATTATGATTATTATTAAATAAGTTA
 AAAAATAAGTGTATACAAATTAAAGTGAACCTTAAAGTGTACTCTAGGTTAAAACGAAAATTCTT
 GTTCTGAGTAACCTTCTGTAGGTCAGGTTGCTTCAGGTATAGCATGAGGTCGC
 TCTTATTGACCAACCTCTACCGGATGCCGAGCAAATGCCGAAATCGCTCCCCATT
 CACCCATTGAGATATGCAACTCCAGCAATGAGTTGATGAAATCTCGGTGTATT
 TGTCTCAGAGGACAATACCTGTTGAATGTTCTTCCACACGGATCCAAATCGCCCTA
 TAGTGAGTCGATTACAATTCACTGCCGTGTTTACAACGTCGTGACTGGAAAACCC
 TGGCGTTACCCAACTTAATGCCCTGCAGCACATCCCCCTTCGCCAGCTGGCGTAATAG
 CGAAGAGGCCGACCGATGCCCTCCAAACAGTTGCGCAGCCTGAATGGCGAATGGAC
 GCGCCCTGTAGGGCGCATTAAGCGGGCGGGTGTGGTACGCGCAGCGTGACCGCT
 ACACCTGCCAGGCCCTAGGCCGCTCCTTCGCTTCTCCCTTCGCCACG
 TTCGCCGGCTTCCCCGTCAAGCTCAAATCGGGGCTCCCTTAGGGTTCCGATTAGT
 GCTTACGGCACCTCGACCCAAAAACTGATTAGGGTGTGGTTACGTAGGGCA
 TCGCCCTGATAGACGGTTTCGCCCTTGACGTTGGAGTCCACGTTCTTAATAGTGA
 CTCTTGTCCAACACTGGAACAAACACTCAACCCATCTCGGTCTATTCTTTGATTATAA
 GGGATTTCGCCGATTCGCCATTGGTAAAAAATGAGCTGATTAAACAAAATTAAAC
 GCGAATTAAACAAATATTAACGTTACAATTCTGATGCCGTATTCTCCTTACGC
 ATCTGCGGTATTCACACCGCATATGACCCGTCGAGGGAGAACTCTAGTATATCCAC
 ATACCTAATATTATTGCTTATTAAAAATGGAATCGGAACAAATTACATCAAATCCACAT
 TCTCTCAAATCAATTGCTCTGACTTCCTGTTCATGTTGTTCAAACGTTATATT
 TATAGGATAATTATACTCTATTCTCAACAGTAATTGGTTGTTGGCGAGCGGTCTAA
 GGCGCTGATTCAAGAAATATCTTGACCGCAGTTAAGTGTGGAAACTCAGGTATCGTA
 AGATGCAAGAGAGTCGAATCTTAGCAACCATATTTCCTCAACATAACGAGAACAA
 CACAGGGCGCTATCGCACAGAATCAAATTGATGACTGGAAATTGGTTAATTTCAG
 AGGTGCCCTGACGCATATACCTTTCAACTGAAATTGGAGAAAAGGAAAGGTGAG-

FIGURE 94D

AGGCCGGAACCGGCTTTCATATAGAATAGAGAACGCCTCATGACTAAATGCTTGCATCA
CAATACTTGAGGTGACAATATTATTAAAGGACCTATTGTTTTCCAATAGGTGGTTAG
CAATCGTCTTACCTTCTAACCTTACCTTACATTTCAGCAATATATATATATT
TCAAGGATATACCATTCTAATGTCTGCCCTATGTCTGCCCTAAGAAGATCGTCGTTT
GCCAGGTGACCACGTTGGTCAAGAAATCACAGCCGAAGCCATTAAAGGTCTTAAAGCTAT
TTCTGATGTTGTTCCAATGTCAGGTCGATTCGAAAATCATTAAATTGGTGGTGC
TATCGATGCTACAGGTGTCCTCAGATGAGGCGCTGGAAAGCCTCCAAGAAGGTTGA
TGCCTTTGTTAGGTGCTGGGTGCTAAATGGGGTACCGTAGTGTAGACCTGA
ACAAGGTTACTAAAAATCCGTAAGAACTTCATTGACGCCACTTAAGACCATGTA
CTTGACATCCGACTCTCTTGTGACTTATCTCAATCAAGCCACAATTGCTAAAGGTAC
TGACTTCGTTGTCAGAGAATTAGTGGGAGGTATTTACTTGGTAAGAGAAAGGAAGA
CGATGGTATGGTGTGCTGGATAGTGAACAATACCCGTTCCAGAAGTGC
ACAAGAATGGCCGCTTCATGGCCTACACATGAGCACCATTGCCTATTGGTCTT
GGATAAAGCTAATGTTTGGCCTCTCAAGATTGGAGAAAATGTGGAGGAAACCAT
CAAGAACGAATTCCCTACATTGAAGGTTCAACATCAATTGATTGATTCTGCCGC
CCTAGTTAAGAACCAACCCACCTAAATGGTATTATAATCACCAGAACATGTTGGTGA
TATCATCTCGATGAAGCCTCGTTATCCAGGTTCTGGGTTGGCCATCTGC
CTTGGCCTTTGCCAGACAAGAACCCGCATTGGTTGACGAACCATGCCACGGTTC
TGCTCCAGATTGCCAAGAATAAGGTTGACCTATGCCACTATCTGTCTG
GATGTTGAAATTGTCATTGAACCTGCCATGAAAGGTAAGGCCATTGAAGATGC
AAAGGTTTGGATGCAGGTATCAGAACTGGTGAATTAGGTGGTCAACAGTAC
AGTCGGTATGCTCGCCGAAGAAGTTAAGAAAATCCTGCTTAAAGATTCT
TTTATGATATTGTCATAAAACTTATAAAATGAAATTCTATAATAGAAACGAC
ACAAATGGAATATGTCATAGGGTAGACGAAACTATACGCAATCTAC
CAAGAAGGAGAAAAGGAGGATAGTAAAGGAATACAGGTAAAGCAAATT
TCAACGTGATAAGGAAAAGAACATTGCACTTAACTTAAATTGACAAGGAGGAGGG
CACACAAAAAGTTAGGTGTAACAGAAAATCATGAAACTACGATTCT
AGGATTTCTCTAAAAAAACAAACAAATAAAACACTCAATGACCTGAC
TTGATGGAGTTAAGTCATACTTCTGAACCATTTCCCATAATGGTGA
AAAGAATTTCAGGGCTTACGACGTAGTCGATATTGGTGC
CAATCTGCTCTGATGCCCATAGTTAAGCCAGCCCCGACACCG
CGCCCTGACGGGCTTGTCTGCCATCCGTTACAGACAAGCTGT
GGAGCTGCATGTGTCAGAGGTTTCAACCGTACACCGAAACGCG
CG

FIGURE 94E

222/240

FIGURE 95A

223/240

pDEST33 8815 bp

GCCTTACGCATCTGCGGTATTCACACCGCAGGCAAGTCACAACAAACTTAAATA
 AATACTACTCAGTAATAACCTATTTCTAGCATTGGACGAAATTGCTATTTGTTAG
 AGTCTTTACACCATTGCTCCACACCTCGCTTACATCACACCAATAACGCCATTAA
 ATCTAACGCGCATACCAACATTCTGGCGTCAGTCCACCCAGCTAACATAAAATGTAAGC
 TTTCGGGGCTCTCTGCCTTCCAACCCAGTCAGAAATCGAGTTCCAATCCAAAAGTTCAC
 CTGCCCCACTGCTTCTGAATCAAACAGGAAATAACGAATGAGGTTCTGTAAGCTG
 CACTGAGTAGTATGTTGAGTCAGTCTTTGGAAATAACGAGTCTTTAATAACTGGCAAACCGA
 GGAACCTTGGTATTCTGCCACGACTCATCTCCATGCAGTTGGACGATATCAATGCCGT
 AATCATTGACCAGAGCCAAACATCTCCCTTAGGTTGATTACGAAACACGCCAACCAAGT
 ATTTGGAGTGCCCTGAACTATTTTATATGCTTTACAAGACTGAAATTTCCTTGCAA
 TAACCGGGTCAATTGTTCTTTCTATTGGCACACATATAATACCCAGCAAGTCAGCAT
 CGGAATCTAGAGCACATTCTGCCCTCTGTGCTCTGCAAGCCGAAACTTCAACCAATG
 GACCAGAACTACCTGTGAAATTAAACACAGACATACTCCAAGCTGCTTTGTGCTTAA
 TCACGTATACTCACGTGCTCAATAGTCACCAATGCCCTCCCTCTGGCCCTCTCCTTT
 TTTTCGACCGAATTAATTCTTAATCGGAAAAAGAAAAGCTCCGGATCAAGATTGT
 ACGTAAGGTGACAAGCTATTTCAATAAGAAATCTTCCACTACTGCCATCTGGCGTC
 ATAACGTCAAAGTACACATATAATTAGCATGCTGCTATTAAATGCTCCTATATTATA
 TATAGTAATGTCGTTATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGATAGTTAA
 GCCAGCCCCGACACCCGCCAACACCCGCTGACCGCCCTGACGGGCTTGTCTGCTCCC
 CATCCGCTTACAGACAAGCTGTGACCGTCTCCGGAGCTGATGTGTCAGAGGTTTCAC
 CGTCATCACCGAAACCGCGAGACGAAAGGGCTCGTGTACGCCATTAGGTTA
 ATGTCATGATAATAATGGTTCTTAGGACGGATCGCTGCTGTAACACCGCCTC
 GTATTTAATGATGGAATAATTGGGAATTACTCTGTTTATTAGTTATGTT
 TGTTAGGATTAGAAAGTAAATAAGAAGTAGAAGAGTTACGGAATGAAAGAAAAAA
 AAATAACAAAGGTTAAAAAATTCACAAAAGCGTACTTACATATAATTATTAG
 ACAAGAAAAGCAGATTAATAGATATACTCGATTAACGATAAGTAAAATGAAAATCA
 CAGGATTTCGTGTGGCTTCTACACAGACAAGATGAAACAATTGGCATTAACCT
 GAGAGCAGGAAGAGCAAGATAAAAGGTAGTATTGTTGGCGATCCCCCTAGAGTCTT
 CATCTCGGAAAACAAAACATTTTCTTAATTCTTTACTTTCTATTAGGTTA
 TTTATATATTATTAATTTAAATTATAATTATTAGGTTATAGCACGTGATGAAAAG
 GACCCAGGTGGCACTTTGGGGAAATGTGCGGAAACCCCTATTGTTATTCTAA
 ATACATTCAAATATGTATCCGCTCATGAGACAATAACCGTATAATGCTTCAATAAT
 TGAAAAGGAAGAGTATGAGTATTCAACATTCCGTGTCGCCCTATTCCCTTTGCG
 GCATTTGCCTTCTGTTTGCTCACCCAGAAACGCTGGTGAAGTAAAAGATGCTGAA
 GATCAGTTGGGTGCACGAGTGGTTACATCGACTGGATCTCAACAGCGTAAGATCCT
 GAGAGTTCGCCCCGAAGAACGTTTCAATGATGAGCACTTTAAAGTTCTGCTATGT
 GGCAGGTATTATCCGTTATGACGCCGGCAAGAGCAACTCGTCGCCGATACACTAT
 TCTCAGAATGACTGGTTGAGTACTCACAGTCACAGAAAAGCATCTACGGATGGCATG
 ACAGTAAGAGAATTATGCACTGCTGCCATAACCATGAGTGATAACACTGCCAACTTA
 CTTCTGACAACGATCGAGGACCGAAGGAGCTAACCGTTTCAACAACATGGGGAT
 CATGTAACTCGCTTGTGTTGGAAACCGGAGCTGAATGAAGCCATACAAACGAG
 CGTGACACCACGATGCCGTAGCAATGGCAACACGTTGCGCAAACATTAAACTGGCGAA
 CTACTTACTCTAGCTTCCCGCAACAATTAAATAGACTGGATGGAGGGCGATAAGTTGCA
 GGACCACTCTGCGCTCGGCCCTCCGGCTGGTTATTGCTGATAAACTCGGAGCC
 GGTGAGCGTGGGTCTCGCGGTATCATGAGCACTGGGGCCAGATGTTAAGCCCTCCCGT
 ATCGTAGTTATCTACACGACGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATC
 GCTGAGATAGGTGCTCACTGATTAAGCATTGTAACTGTCAGACCAAGTTACTCATAT
 ATACTTAGATTGATTAAAACCTCATTTAATTAAAAGGATCTAGGTGAAGATCCTT
 TTTGATAATCTCATGACCAAATCCCTAACGTGAGTTCTGTTCACTGAGCGTCAGAC
 CCCGTAGAAAAGATCAAAGGATCTTCTGAGATCTTTCTGCGCTAATCTGCTGC
 TTGCAAACAAAAAACACCGCTACAGCGTGGTTGTTGCCGATCAAGAGCTACCA
 ACTCTTTCCGAAGGTAACTGGCTCAGCAGAGCGCAGATAACAAACTGTCCTCTA
 GTGTAGCCGTAGTTAGGCCACCTCAAGAACTCTGTAAGCACCGCCTACATACCTCGCT
 CTGCTAATCCTGTTACCAAGTGGCTGTCAGTGGCGATAAGTCGTGCTTACCGGGTTG
 GACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTGGCTGAACGGGGGTTCGTGC
 ACACAGCCCAGCTGGAGCGAACGACCTACACCGAAGTACCTACAGCGTGAGCAT-

FIGURE 95B

224/260

TGAGAAAGGCCACGCTTCCGAAGGGAGAAAGGCGGACAGGTATCGGTAAGCGGCAGG
 GTCGGAACAGGAGAGCGCACGAGGGAGCTCCAGGGGGAACGCCCTGGTATCTTTATAGT
 CCTGTCGGTTGCCACCTCTGACTTGACGCTGATTTGTATGCTCGTCAGGGGG
 CCGAGCCTATGGAAAACGCCAGCAACGCCCTTTACGGTCTGGCCTTTGCTGG
 CCTTTGCTCACATGTTCTCTCGTTATCCCCTGATTCTGTGATAACCGTATTACC
 GCCTTGAGTGAGCTGATACCGCTGCCCGAGCGAACGACCGAGCGCAGCGAGTCAGTG
 AGCGAGGAAGCGGAAGAGCGCCAATACGCAAACGCCCTCCCCCGCGTGGCCGATT
 CATTAAATGCAGCTGGCACGACAGGTTCCCGACTGGAAAGCGGGCAGTGAGCGAACGCA
 ATTAATGTGAGTTACCTCACTCATTAGGACCCCCAGGCTTACACTTATGCTCCGGCT
 CCTATGTTGTGGAATTGTGAGCGATAACAATTACACAGGAAACAGCTATGACCAT
 GATTACGCCAAGCTCGGAATTAAACCTCACTAAAGGAACAAAGCTGGTACCGGGCCC
 CCCCTCGAGATCCGGATCGAAGAAATGATGGTAAATGAAATAGGAAATCAAGGAGCATG
 AAGGCAAAAGACAAATAAGGGTCAACGAAAAATAAGTGAAGAAGTGTGATATGATG
 TATTTGGCTTGCGCGCCAAAAACGAGTTACGCAATTGACAATCATGCTGACTCT
 GTGGCGGACCCCGCCTTGCGGCCGGCGATAACGCTGGCGTGGCTGTGCCCCGGC
 GGAGTTTTGCGCCTGCATTTCAGGTTACCGCTCGCTAAGGGCGAGATTGGAGA
 AGCAATAAGAATGCCGTTGGGTTGCATGACGACCACGACAACGGTGTGTCATTAT
 TTAAGTTGCCGAAAGAACCTGAGTGCAATTGCAACATGAGTATACTAGAAGAATGAGCA
 AGACTTGCAGACGCGAGTTGCCGGTGGCGAACAAATAGAGCAGCATGACCTTGAAG
 GTGAGACGCGCATAACCGCTAGAGTACTTGAAGAGGAAACAGCAATAGGTTGCTACCA
 GTATAAAAGACAGGTACATACAACACTGAAATGGTTGCTGTTGAGTACGCTTCAA
 TTCATTGGGTGCACTTATTATGTTACAATATGGAAGGGAACTTTACACTTCTCTTA
 TGCACATATATTAAATTAAAGTCAAATGCTAGTAGAGAAGGGGGTAACACCCCTCCGGC
 TCTTTCCGATTTTCTAAACCGTGGAAATATTGCGATATCCTTGTGTTCCGG
 TGTACAATATGGACTTCCCTTTCTGGCAACCAAACCCATACATCGGGATTCTATAAT
 ACCTTCGTTGGTCTCCCTAACATGTAGGTGGCGGAGGGAGATATAACATAGAACAGATA
 CCAGACAAGACATAATGGCTAAACAAGACTACACCAATTACACTGCCTCATGATGGTG
 GTACATAACGAACTAAACTGTAGGCCCTAGACTTGATAGCCATCATATCGAAGTTTC
 ACTACCCCTTTCCATTGCCATCTATTGAAAGTAATAATAGGCGCATGCAACTTCTTTC
 TTTTTTTCTTCTCTCCCCGGTTGCTCATTGCAATATCCGAAATGACAAAAAAA
 ATGATGGAAGACACTAAAGGAAAAAAATTAAACGACAAAGACAGCACCAACAGATGTCGTTG
 TTCCAGAGCTGATGAGGGGTATCTCGAACACAGAAACTTTCTCCTTCATTCA
 CACACTACTCTAAATGAGCAACGGTACCGCCTCCAGTTACTGAATTGGATGTTGAA
 TAAAAAAAGTTGCCGTTGCTATCAAGTATAAAATAGACCTGCAATTATTAAATTTG
 TTTCTCGTATTGTTCTGTTCCCTTCTGTTCTGCAAAATATTCA
 AGCTATACCAAGCATAACATCAACTCCAAAGCTTATGCGAACAGGTTCTCG
 AGCGGCCAATTAAATCAAAGGGAAATTGCTGATAGCTCATTGCTCCTCACTTCA
 ACTAACAGTAGCAACGGTCCGAACCTCATAACAACTCAAACAAATTCTCAAGCGCTTCA
 CAACCAATTGCCTCTCTAACGTTCATGATAACTCATGAAATAATGAAATCACGGCTAGT
 AAAATTGATGATGGTAATAATTCAAACCAACTGTACCTGGTGTGACGGACCAAAGTGC
 TATAACGCGTTGGAATCACTACAGGGATGTTAATACCAACTACAATGGATGATGTATAT
 AACTATCTATTGATGAGAAGATAACCCACAAACCAAAAAAGAGGGGGTGGTCAAT
 CAAACAAGTTGTAACAAAAAGCTGAACGAGAACGTAATGATATAATATCAATATA
 TTAAATTAGATTGCAATAAAACAGACTACATAATACTGTAACACACATATCCAG
 TCACTATGGCGGCCGCTAACGGTGGCAGCATACCCGACGCACTTGCCTGTTGATACCGGG
 CTGTGACGGAAGATCACTTGGCAGAATAAAATCACTGGTGTGCTCCTGTTGATACCGGG
 AGCCCTGGCCAACCTTGGCGAAATGAGACGTTGATCGGCACGTAAGAGGTTCCA
 TTCACCATGAAATAAGATCACTACCGGGCGTATTGAGTTGAGTGGATATGCTC
 GAGCTAAGGAAGCTAAATGGAGAAAAAAATCACTGGATATACCAACCGTTGATATATCCC
 AATGGCATCGTAAAGAACATTGAGGCATTCACTGCTCAATGTACCTATAACC
 AGACCGTTCACTGGGATATTACGGCTTTAAAGACGTAAGAAAAATAAGCACAAGT
 TTTATCCGGCTTTATTACATTCTGCCCGCTGATGAATGCTCATCGGAATTCCGTA
 TGGCAATGAAAGACGGTGGCTGAGCTGGTATGGGATAGTGGTACCCCTGTTACCGGTT
 TCCATGAGCAAACGTAACGTTTCACTGCTCTGGAGTGAATACCAACGACGGATTCCGG
 AGTTTCTACACATATATCGCAAGATGTCGTTGAGTGGTACGGTGAACACCTGGCTATTCC
 CTAAGGGTTATTGAGAATATGGACAACCTCTCGCCCCGGTTTCAACATGGCA
 GTTTGATTAAACGTCGCAATATGGACAACCTCTCGCCCCGGTTTCAACATGGCA
 AATATTATACGCAAGGCACAAGGTGCTGATGCCGCTGGCGATTCAAGTTCATCATGCCG-

FIGURE 95C

225/240

TCTGTGATGGCTTCCATGTCGGCAGAACATGCTTAATGAATTACAACAGTACTGCGATGAGT
GGCAGGGCGGGCGTAATCTAGAGGATCGGCTTACTAAAAGCCAGATAACAGTATGCGT
ATTGCGCGCTGATTTGCGGTATAAGAATATATACTGATATGTATACCCGAAGTATGT
CAAAAGAGGGTGTGCTATGAAGCAGCGTATTACAGTGACAGTTGACAGCGACAGCTATCA
GTTGCTCAAGGCATATATGATGTCAATATCTCCGGTCTGGTAAGCACAACCATGCAGAAT
GAAGCCCGTCTCGTGCAGCGCTGGAAAGCGAAAATCAGGAAGGGATGGCTGAG
GTCGCCGGTTATTGAAATGAACGGCTCTTGCTGACGAGAACAGGGACTGGTGAAAT
GCAGTTAAGGTTACACCTATAAAAGAGAGAGCCGTTATCGTCTGTTGTGGATGTACA
GAGTGATATTATTGACACGCCGGCGACGGATGGTGATCCCCCTGGCCAGTGCACGTCT
GCTGTAGATAAAGTCTCCGTGAACTTACCCGGTGGTGCATATCGGGATGAAAGCTG
GCGCATGATGACCAACCGATATGCCAGTGTGCCGGTCTCGTTATCGGGAAAGAAGTGGC
TGATCTCAGCCACCGCGAAAATGACATAAAAACGCCATTAACCTGATGTTCTGGGAAT
ATAAAATGTCAGGCTCCGTATACACAGCCAGTCTGCAGGTGACCCATAGTGACTGGATAT
GTTGTGTTTACAGTATTATGAGTCGTTTTATGCAAAATCTAATTAAATATATTGA
TATTATATCATTTACGTTCTCGTTCTGTTCTGTTACAAAGTGGTTGATGGCCGC
TAAGTAAGTAAGACGTGAGCTCCCTATAGTGAGTCGTTACACTGGCCGTGTTTAC
AACGTGACTGGAAAACACCGGTGAGCTAAGTAAGTAACGCCGCCACCGCGGTG
GAGCTTGGACTTCCGCCAGAGGTTGGTCAAGTCTCCAATCAAGGTTGTCGGCTTGT
CTACCTTGCAGAAATTACGAAAAGATGGAAAAGGGTCAAATCGTTGGTAGATACTGTTG
TTGACACTTCTAAATAAGCGAATTCTTATGATTATGATTTTATTAAATAAGTTA
TAAAAAAAATAAGTGTATAACAAATTAAAGTACTCTTAGGTTTAAACGAAAATTCT
TGTTCTTGAGTAACTCTTCTGTAGGTCAAGGTTCTCAGGTATAGCATGAGGTG
CTCTTATTGACCACACCTTACCGGATGCCGAGCAAATGCTGCAAATCGCTCCCCATT
TCACCCAAATTGAGATATGCTAACTCCAGCAATGAGTTGATGAATCTGGTGTGTTT
ATGTCCTCAGAGGACAATACCTGTTGAATCGTTCTCCACACGGATCCGCATCAGCGA
AATTGTAACGTTAATATTGTTAAATTCCGTTAAATATTGTTAAATCAGCTCATT
TTTAACCAATAGGCCAAATCGGCAAAATCCCTATAAAATCAAAGAATAGACCGAGAT
AGGGTTGAGTGTGTTCCAGTTGAAACAAGAGTCCACTATTAAAGAACGTGGACTCCAA
CGTCAAAGGGCGAAAACCGTCTATCAGGGCGATGCCCACTACGTGAACCATCACCTA
ATCAAGTTTTGGGTCAGGGTCAAGGACTAAAGCACTAAATCGGAACCTAAAGGGAGCCC
CCGATTAGAGCTGACGGGAAAGCCGGCGACGTGGCGAGAAAGGAAGGGAGAAAGC
GAAAGGAGCGGGCGTAGGGCGTGGCAAGTGTAGCGGTACGCTGCGTAACCAC
ACCCGCCGCGCTTAATGCCCGTACAGGGCGTCCATTGCCATTCACTGCA

FIGURE 95D

226/240

FIGURE 96A

227/240

pDEST34 7114 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
195..71	attR1
304..963	CmR
1305..1610	ccdB
1651..1775	attR2
1780..2472	GST
2675..2720	T7stop
3334..4194	ampR
4343..4982	ori

ATCGAGATCTCGATCCCGCAAATTAAACGACTCACTATAGGGAGACCACAACGGTTTC
 CCTCTAGATCACAAAGTTGTACAAAAAAGCTGAACGAGAAACGTAATGATATAAATAT
 CAATATATTAAATTAGATTTGCATAAAAAACAGACTACATAATCTGTAACACAAACA
 TATCCAGTCACTATGGCGCGCATAGGCACCCAGGCTTACACTTATGCTTCCGGC
 TCGTATAATGTGGATTGAGTTAGGATCCGGCAGATTTCAGGAGCTAAGGAAGCT
 AAAATGGAGAAAAAAATCACTGGATATAACCAACCGTGATATATCCAATGGCATCGTAA
 GAACATTTGAGGCATTCAGTCAGTTGCTCAATGTACCTATAACAGACCGTTCAGCTG
 GATATTACGGCTTTAAAGACCGTAAAGAAAATAAGCACAAGTTATCCGGCTTT
 ATTACACATTCTGCCGCTGATGAATGCTCATCCGAATTCCGTATGGCAATGAAAGAC
 GGTGAGCTGGTGATATGGGATAGTGGTACCCCTGTTACACCGTTTCCATGAGCAA
 GAAACGTTTCATCGCTGGAGTGAAATACCAACGACGATTCCGGCAGTTCTACACATA
 TATTGCAAGATGTGGCTGTTACGGTAAACCTGGCTATTCCCTAAAGGGTTATT
 GAGAATATGTTTCGTCAGCCAATCCCTGGGTGAGTTTACCCAGTTTGATTAAAC
 GTGGCCAATATGGACAACCTCTCGCCCCCGTTTCACCATGGGAAATATTACGCAA
 GGCACAAGGTGCTGATGCCGCTGGCATTAGGTTCATATGCCGCTGTGATGGCTTC
 CATGTCGGCAGAATGCTTAATGAATTACAACAGTACTGCCGATGAGTGGCAGGGCG
 TAAACCGTGGATCCGGCTTACTAAAAGCCAGATAACAGTATGCCGTATTGCGCCTGAT
 TTTTGCCTATAAGAATATACTGATATGTATACCGAAGTATGCAAAAGAGGTGTG
 CTATGAAGCAGCGTATTACAGTGACAGTTGACAGCGACAGCTATCAGTTGCTCAAGGCAT
 ATATGATGTCATATCTCCGGTCTGGTAAGCACAACCATGAGAATGAAGCCGTCGTCT
 GCGTGGCAACGCTGGAAACGGAAAATCAGGAAGGGATGGCTGAGGTGCGCCGGTTAT
 TGAAATGAACGGCTTTGCTGACGAGAACAGGGACTGGTAAATGCACTTAAAGTTT
 ACACCTATAAAAGAGAGAGCCGTATCGTCTGGATGATCCCCCTGGCCAGTCACGCTGTG
 ACACGCCCGGGCGACGGATGGTATCGGCTATGGGAATATAATGTCAGGCT
 CCCTTATACACAGCCAGTCTGCAGGTCGACCATAGTGACTGGATATGTTGTTTACAG
 TATTATGTTAGTCTGTTTATGCAAAATCTAATTAAATATTGATATTATATCATT
 TACGTTCTCGTTCTGTTCTGACAAAGGGTGTATGTCCTTACACTAGGTTAT
 TGGAAAATTAAAGGGCTTGTGCAACCCACTCGACTTCTTTGGAAATATCTGAAAGAAAA
 TATGAAGAGCATTGATGAGCGCGATGAAGGTGATAAAATGGGAAACAAAAAGTTGAA
 TTGGGTTGGAGTTCCCAATCTCCTTATTATATTGATGGTGTGTTAAATTACACAG
 TCTATGCCATACGTTATAGCTGACAAGCACAACATGTTGGTGGTTGTCCAAA
 GAGCGTGCAGAGATTCAATGCTGAAGGAGCGGTTTGGATATTAGATACGGTGTTCG
 AGAATTGCAATAGTAAAGACTTTGAAACTCTCAAAGTTGATTTCTTAGCAAGCTACCT
 GAAATGCTGAAAATGTTGCAAGATGTTATGTCATAAAACATATTAAATGGTGTAC
 GTAACCCATCTGACTTCATGTTGATGACGCTCTGATGTTTTATACATGGACCA
 ATGTCGCTGGATGCGTCCCACAAATTAGTTGTTTAAAAAACGTTGATGAAAGCTATCCA
 CAAATTGATAAGTACTGAAATCCAGCAAGTATAGCATGGCCTTGCAGGGCTGGCA
 GCCACGTTGGTGGCGACCATCCTCCAAAATGGATCTGGTCCCGTCCATGGGA
 TCCGGCTGCTAACAAAGCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCGCTT
 CCCGATAAGGGAGCAGGCCAGTAAAGCATTACCGTGGTGGGGTCCGAGCGGCAAA
 GGGAGCAGACTCTAAATCTGCCGTATGCAACTCGAAGGTTGCAATCCTCCCCCACCAC
 CATCACTTCAAAAGTGAATTGCGTGTGAGCAATAACTAGCATAACCCCTGGGGCTCTAA-

FIGURE 96B

ACGGGTCTTGAGGGGTTTGCTGAAAGGAGGAACATATCCGGATATCCACAGGACGG
 GTGTGGTCGCCATGATCGCGTAGTCGATAGTGGCTCCAAGTAGCGAAGCGAGCAGGACTG
 GCGCGGCCAAACGGTCGGACAGTGCTCCGAGAACGGTGCGCATAGAAATTGCATCA
 ACGCATATAGCGCTAGCAGCACGCCATAGTGACTGGCGATGCTGCGGAATGGACGATAT
 CCCGCAAGAGGCCGGCAGTACCGGCATAACCAAGCCTATGCCACAGCATCCAGGGTGA
 CGGTGCCGAGGATGACGATGAGCGCATTGTTAGATTCTACACGGTGCCTGACTGCGTT
 AGCAATTAACTGTGATAAACTACCGCATTAAAGCTTATCGATGATAAGCTGTCAAACAT
 GAGAATTCTGAAGACGAAAGGGCCTCGTACGCCTATTTTATAGGTTAATGTCATG
 ATAATAATGGTTCTAGACGTAGGTGGCACTTTCGGGAAATGTGCGCGAACCCCTGA
 ATTGTTATTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCCTGA
 TAAATGCTTCATAAATATTGAAAAGGAAGAGTATGAGTATTCAACATTCCGTGCGCC
 CTTATTCCCTTTTGC GGCACTTGCCTCCTGTTTGTCTACCCAGAAACGCTGGTG
 AAAGTAAAAGATGCTGAAGATCAGTTGGTGCACGAGTGGTTACATGAACTGGATCTC
 AACAGCGGTAAAGATCCTGAGAGTTGCCCCGAAGAACGTTTCAATGATGAGCACT
 TTAAAGTTCTGCTATGTGGCGGGTATTATCCCCTGTTGACGCCGGCAAGAGCAACTC
 GGTCGCCGCATACACTATTCTCAGAATGACTGGTTGAGTACTCACCAGTCACAGAAAAG
 CATCTTACGGATGGCATGACAGTAAGAGAATTATGCACTGCTGCCATAACCATGAGTGAT
 AACACTGCGGCCAACTTACTCTGACAACAGATCGGAGGACGAAGGAGCTAACCGTTTT
 TTGACAAACATGGGGATCATGTAACTCGCCTGATCGTTGGGAACCGGAGCTGAATGAA
 GCCATACCAAACGACGAGCGTGACACCACGATGCCGCAAGCAATGCCAACGTTGCGC
 AAACATTAACTGGGAACTAACCTACTCTAGCTCCGGCAACAATTAAATAGACTGGATG
 GAGGC GGATAAAAGTTGAGGACCACTTCTGCGCTCGGCCCTCCGGCTGGCTGGTTATT
 GCTGATAAAATCTGGAGCCGGTAGCGTGGGTCTCGGGTATCATTGAGCACTGGGGCCA
 GATGGTAAGCCCTCCGTATCGTAGTTATCTACAGACGGGAGTCAGGCAACTATGGAT
 GAACGAAATAGACAGATGCTGAGATAGGTGCCACTGATTAAGCATTGGTAACTGTC
 GACCAAGTTACTCATATATACTTAGATTAAACTCATTTTAATTAAAAGG
 ATCTAGGTGAAGATCCTTTTGATAATCTCATGACCAAAATCCCTAACGTGAGTTTCG
 TTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTCTGAGATCCTTTTT
 CTGCGCTAATCTGCTGCTTGCAAACAAAAACCCACCGCTACCGCTACAGCGGTGGTT
 CCGGATCAAGAGCTACCAACTTTTCCGAAGGTAACTGGCTTCAGCAGAGGCCAGATA
 CCAAATACTGCTCTCTAGTGTAGCCGTAGTTAGGCCACCAACTCAAGAAACTCTGTAGCA
 CGCCTACATACCTCGCTGCTAATCTGTTACCGACTGGCTGCTGCCAGTGGCGATAAG
 TCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGATAAGGCCAGCGGTGGGC
 TGAACGGGGGGTCTGTCACACAGCCAGCTTGGAGCGAACGACTAACCGAAGTGGAGA
 TACCTACAGCGTAGCTATGAGAAAAGCGCACGCCAGCTCCGAAGGGAGAAAAGGCCAGG
 TATCCGGAAGCGCAGGGTGGAAACAGGAGAGCGCACGAGGGAGCTCCAGGGGAAAC
 GCCTGGTATCTTATAGTCTGCTGGTTCTGCCACCTCTGACTTGAGCGTCGATTTC
 TGATGCTCGTCAGGGGGGGAGCTATGGAAAACGCCAGCAACGCCCTTTTACGG
 TTCCTGGCTTTGCTGGCTTTGCTCACATGTTCTTCTGCGTTATCCCTGATTCT
 GTGGATAACCGTATTACCGCTTTGAGTGAGCTGATACCGCTCGCCAGCCGAACGACC
 GAGCGCAGCGAGCTAGTGAGCGAGGAAGCGGAAGAGCGCTGATCGGTATTCTCCTT
 ACCGATCTGCGGTATTTACACCCGATATATGGTGCACTCTCAGTACAATCTGCTCTG
 ATGCCGATAGTTAAGCCAGTATAACACTCCGCTATCGCTACGTGACTGGTCATGGCTGC
 GCCCGACACCCGCCAACACCCGCTGACGCCCTGACGGGCTGCTGCTCCGGCATC
 CGCTTACAGACAAGCTGTGACCGTCTCCGGAGCTGATGTGAGGGTTTACCGTC
 ATCACCGAAAAGCCGAGGCAGCTGGTAAAGCTCATCAGCGTGGTGTGAAGCGATT
 ACAGATGCTGCCGTTATCCGCTCCAGCTCGTGGAGTTCTCCAGAAGCGTTAATGT
 CTGGCTCTGATAAAAGCGGCCATGTTAAGGGCGTTTTCTGTTGGTCACTGATGC
 CTCCGTTAAGGGGGATTCTGTTATGGGGTAAATGATACCGATGAAACGAGAGAGGAT
 GCTCACGATAAGGGTACTGATGATGAAACATGCCGGTACTGGAACGTTGTGAGGGTAA
 ACAACTGGCGGTATGGATGCCGGGACCAAGAGAAAATCACTCAGGGTCAATGCCAGCG
 CTTCGTTAATACAGATGAGGTGTTCCACAGGGTAGCCAGCAGCATCTGCGATGCAGAT
 CGGAACATAATGGTGCAGGGCGCTGACTTCCGCTTCCAGACTTACGAAACACGGAA
 ACCGAAGACCATTCATGTTGCTCAGGTGCGAGACGTTTGCAGCAGCAGTCGCTTCA
 CGTTCGCTCGCGTATCGGTGATTCTGCTAACAGTAAGGCAACCCCGCCAGCCTAG
 CGGGTCTCAACGACAGGAGCACGATCATGCCACCGTGGCCAGGACCCAACGCTGCC
 CGAGATGCGCCGCGTGC GGCTGCTGGAGATGGCGGACGCCATGGATATGTTCTGCCAAGG
 GTTGGTTGCGCATTACAGTTCTCCGCAAGAATTGATTGGCTCCAATTCTGGAGTGGT-

FIGURE 96C

229/260

GAATCCGTTAGCGAGGTGCCGCCGGCTTCCATTCAAGTCGAGGTGGCCCAGCTCCATGCA
CCCGCAGCAACCGCGGGAGGCAGACAAGGTATAGGGCGCGCTACAATCCATGCCAAC
CCGTTCCATGTGCTGCCGAGCGGGCATAAATCGCGTACGATCAGCGGTCCAGTGATC
GAAGTTAGGCTGGTAAGAGCCCGAGCGATCCTGAAGCTGTCCCTGATGGTCGTATCT
ACCTGCTGGACAGCATGGCCTGCAACCGGGCATCCCGATGCCGAGCGCCAGAAGA
ATCATAATGGGAAGGCCATCCAGCCTCGCGTCCAGCAACGCCAGCAAGACGTAGCCCAGC
GCGTCGGCGCCATGCCGGCGATAATGGCCTGCTCTCGCCGAAACGTTGGTGGCGGG
CCAGTGACGAAGGCTTGAGCGAGGGCGTGCAAGATTCCGAAATACCGAAGCGACAGGCC
ATCATCGTCGCGCTCCAGCGAAAGCGGTCCCTCGCCGAAAATGACCCAGAGCGCTGCC
ACCTGCTCTACGAGTTGCATGATAAAGAACAGTCATAAGTGCAGGACGATAGTCATG
CCCCCGCCACCAGGAAGGAGCTGACTGGGTTGAAGGCTCTCAAGGGCATCGGTGATCG
ACGCTCTCCCTTATGCGACTCCTGCATTAGGAAGCAGCCCAGTAGTAGGTTGAGGCC
GAGCACCGCCCGCAAGGAATGGTGCATGCAAGGAGATGGCGCCAAACAGTCCCCCG
CACGGGGCCTGCCACCATACCCACGGCAAACAGCGCTCATGAGGCCGAAGTGGCGAGC
CCGATCTTCCCCATCGGTGATGTCGGCGATATAGGCGCAGCAACCGCACCTGTGGCGCC
GGTGATGCCGCCACGATGCGTCCGGCGTAGAGG

FIGURE 96D

230/240

FIGURE 97A

pDONR207 5584 bp

GCGAGAGTAGGAACTGCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAGACTGGGC
 CTTTCGTTTATCTGTTGTTGCGGTGAAACGCTCTCCTGAGTAGGACAAATCCGCCGGG
 AGCGGATTGAACTGAGCAACGGCCGGAGGGTGGCGGGCAGGACGCCGCCATA
 AACTGCCAGGCATCAAACATAAGCAGAAGGCCATCCTGACGGATGGCCTTTGCGTTCT
 ACACAAACTCTCCTGGCTAGCGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGA
 AAGAACATGTGAGCAAAAGGCCAGCAGAAGGCCAGGAACCGTAAAAGGCCGCTTGCTG
 GCGTTTCCATAGGCTCCGCCCTGACGAGCATCACAAAATCGACGCTCAAGTCAG
 AGGTGGCGAAACCGACAGGACTATAAGATAACAGCGTTTCCCCCTGGAAGCTCCCTC
 GTGCCTCTCCTGTTCCGACCCCTGCCGTTACCGGATAACCTGTCGCCCTTCTCCCTCG
 GGAAGCGTGGCGTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTGTT
 CGCTCCAAGCTGGCTGTGACGAAACCCCCCTCAGGCCGACCGCTGCGCCTTATCC
 GGTAACTATCGTCTTAGTCAACCCGGTAAGCACGACTATCGCCACTGGCAGCAGCC
 ACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTCTCAGAGTTCTGAAGTGG
 TGGCCTAACTACGGCTACACTAGAAGGACAGTATTGGTATCTGCGCTCTGCTGAAGCCA
 GTTACCTCGGAAAAAGAGTTGGTAGCTTGTATCCGGAAACAAACCACCGCTGGTAGC
 GGTGGTTTTTGTGCAAGCAGCAGATTACCGCAGAAAAAAAGGATCTCAAGAAGAT
 CCTTTGATCTTCTACGGGGTCTGACGCTCAGTGGAAACGAAAACCTACGTTAAGGGATT
 TTGGTCATGAGCTGCGCCGCTCCCGTCAAGTCAGCTAATGCTCTGCCAGTGTACAACC
 AATTAACCAATTCTGATTAGAAAAACTCATCGAGCATCAAATGAAACTGCAATTATTCA
 TATCAGGATTATCAATACCATATTTGAAAAAGCCGTTCTGTAATGAAGGAGAAAAC
 CACCGAGGCAGTCCATAGGATGGCAAGATCTGGTATCGGTCTGCCATTCCGACTCGTC
 CAACATCAATAACACCTATTAGTAGCACCAGACTAGAACATAGCTAGAGTCTGGCGA
 ACAAACGATGCTGCCCTCCAGAAAACCGAGGATGCGAACCACTTCATCCGGGGTCAGCA
 CCACCGCAAGCCCGCAGGGCGAGGTCTCCGATCTCTGAAGGCAGGGCAGATCCG
 TGCACAGCACCTTGCCTGAGAAGAACAGCAAGGGCGCAATGCCCTGACGATGCGTGGAGA
 CCGAAACCTTGCCTCGTTCGCCAGCAGGACAGAAATGCCCTGACTTCGCTGCCCCA
 AGGTTGCCGGGTGACGCACACCGTGGAAACGGATGAAGGCACGAACCCAGTTGACATAAG
 CCTGTTCCGTTCTGAAACTGTAATGCAAGTAGCGTATGCCCTCACGCAACTGGCCAGAA
 CCTTGACCGAACGCCAGCGGTGGTAACGGCGCAGTGGCGTTTCTGGCTTGTATGACT
 GTTTTTGATGTTATGGAGCAGCAACGATGTTACGCAAGCAGTGTACGCAAG
 GATGTTGCTGAGCTACAGTCTATGCCCTGAGGAGGTTACGCAACGATGTTACGCA
 GGCAGTCGCCCTAAAACAAAGTTAGTGGCTCAAGTATGGCATTCGACATGTAGG
 CTCGCCCTGACCAAGTCAAATCCATGCCCTGCTGCCCTGCCAACGAGGTTGCGCTCTC
 GGAGACGTGCCCTACTCCCAACATCAGCCGACTCCGATTACCTGGGAACCTGCTC
 CGTAGTAAGACATTCTGCGCTTGCTGCCCTGCCAACAGAAGCGGGTGTGGCGCTCTC
 GCGCTTACGTTCTGCCAGGTTGAGCAGCCCGTAGTGTAGATCTATATCTGATCTC
 GCAGTCGCCGAGCACCGGAGGCAGGGATTGCCACCGCCTCATCAATCTCCTCAAG
 CATGAGGCCAACCGCCTGGTCTATGTGATCTACGTCAGCAAGCAGATTACGGTACGAT
 CCCGAGTGGCTCTATACAAAGTTGGCATACGGGAAGAAGTGTACGCACTTGTATATC
 GACCCAAAGTACCGCACCTAACAAATTGTTCAAGCGAGATGGCTCCGGCCTAATT
 CCCCTGTCAAAATAAGTTATCAAGTGAGAAATCACCATGACTGACGACTGAATCCGG
 TGAGAATGGCAAAAGTTATGCAATTCTTCCAGACTTGTCAACAGGCCAGCCATTACCG
 CTCGTCATCAAAATCACTCGCATCAACCAACCGTTATTCTCGTGTGCGCTGAGC
 GAGACGAAATACCGCATCGTGTAAAAGGACAATTACAAACAGGAATCGAATGCAACCG
 GCGCAGGAACACTGCCAGGCATCAACAAATTTCACCTGAACTCAGGATATTCTCTAA
 TACCTGGAATGCTGTTTCCGGGATCGCAGTGGTGAAGTAAACCATGTCATCATCAGGAGT
 ACGGATAAAATGCTGATGGTGGAAAGAGGGATAAAATCCGTCAGCCAGTTAGTCTGAC
 CATCTCATCTGTAACATCATTGGCAACGCTACCTTGCCATGTTGAGAAACAACCTG
 CGCATCGGGCTTCCCATAACAGCAGATTGTCGACCTGATTGCCGACATTATCGCG
 AGCCCATTTATAACCCATAAAATCAGCATCCATGTTGAAATTAAATCGCGGCCCTGACGT
 TTCCCGTTGAATATGGCTCATACACCCCCCTGATTACTGTTATGTAAGCAGACAGTT
 TATTGTTCATGATGATATTTTATCTTGCAATGTAACATCAGAGATTGGAGACAC
 GGGCCAGAGCTGAGCTGGATGGCAAATAATGATTGACTGATAGTGACCTGTT
 CGTTGCAACAAATTGATAAGCAATGCTTCTTATAATGCAACTTGTACAAGAAAGCTG
 AACGAGAAACGTAAAATGATAAAATATCAATATATTAAATTAGATTGCAATAAAAAC
 AGACTACATAACTGTAACACACATATCAGTCAGTCACTATGAATCAACTACTAGATG-

FIGURE 97B

232/240

GTATTAGTGACCTGAGTCGACTAAGTTGGCAGCATCACCCGACGCACTTGCGCCGAAT
AAATACCTGTGACGGAAGATCACTTCGAGAATAAAATAATCCTGGTGTCCCTGTTGATA
CCGGGAAGCCCTGGGCCAACTTGGGAAAATGAGACGTTGATCGGCACGTAAGAGGTTC
CAACTTCACCATAATGAAATAAGATCACTACCGGGCGTATTTTGAGTTATCGAGATT
TTCAGGAGCTAAGGAAGCTAAAATGGAGAAAAAAATCACTGGATATACCACCGTTGATAT
ATCCAATGGCATCGTAAGAACATTGAGGCATTTCAGTCAGTTGCTCAATGTACCTA
TAACCAGACCGTTCAGCTGGATATTACGGCTTTAAAGACCGTAAAGAAAAATAAGCA
CAAGTTTATCCGGCCTTATTACACATTCTGCCCCCTGATGAATGCTCATCCGGATT
CCGTATGGCAATGAAAGACGGTGAGCTGGTATATGGGATAGTGTTCACCCCTGTTACAC
CGTTTCCATGACCAAACGAAACGTTTACGCTCTGGACTGAATACACGACGATT
CCGGCAGTTCTACACATATTCGCAAGATGTCGGTGTACGGTAAAACCTGGCCTA
TTCCCTAAAGGGTTATTGAGAATATGTTTCTGCTCTAGCCAATCCCTGGGTGAGTTT
CACCAGTTGATTTAAACGTGGCCAATATGGACAACCTCTCGCCCCCGTTTACCAT
GGCAAATATTACGCAAGGCACAAGGTGCTGATGCCGCTGGGATTCAGGTTCATCA
TGCGCTCTGTGATGGCTCCATGTCGGCAGAATGCTTAATGAATTACAACAGTACTGCGA
TGAGTGGCAGGGGGGGCGTAATCGCGTGGATCCGGTTACTAAAAGCCAGATAACAGTA
TGCCTATTGCGCGCTGATTTGCGGTATAAGAATATATACTGATATGTATAACCGAAG
TATGTCAAAAGAGGGTGTGCTATGAAGCAGCGTATTACAGTGCAGTTGACAGCGACAGC
TATCAGTTGCTCAAGGCATATATGATGTCATATCTCCGGTCTGGTAAGCACAACCATGC
AGAATGAAGCCCCTGCTGCGTGCCTGGAAACGGAAAATCAGGAAGGGATGG
CTGAGGTGCGCCGTTATTGAAATGAACGGCTCTTGTGACGAGAACAGGGACTGG
GAAATGCAGTTAACGTTAACCTATAAAAGAGAGAGCCGTTATGTCAGTTGTGGAT
GTACAGAGTGTATATTGACACGCCGGCAGGGATGGTGTACCCCTGGCCAGTGCA
CGTCTGCTGTCAGATAAGCTCCCGTGAACCTTACCGGTGGTGCATATCGGGGATGAA
AGCTGGCGCATGATGACCAACCGATATGCCAGTGTGCCGGTCTCCGGTATCGGGGAAGAA
GTGGCTGATCTGCCACCGGAAATGACATCAAAACGCCATTAAACCTGATGTTCTGG
GGAATATAAAATGTCAGGCTCCCTTATACACGCCAGTCTGAGGTGATACAGTAGAAAT
TACAGAAACTTATCACGTTAGTAAGTATAGAGGCTGAAAATCCAGATGAAGCCGAACG
ACTTGTAAGAGAAAAGTATAAGAGTTGTGAAATTGTTCTGATGCAAGATGATTTCAGGA
CTATGACACTAGCGTATATGAATAGGTAGATGTTTATTTGTCACACAAAAAGAGGC
TCGCACCTTTCTTATTTGATTTAATACGCCATTGAGGACAATAGCGAG
TAGGCTGGATACGACGATTCGTTGAGAAGAACATTGGAAGGCTGTCGGTCGACTAAG
TTGGCAGCATACCCGAAGAACATTGGAAGGCTGTCGGTCGACTACAGGTCACTAAC
CATCTAAGTAGTTGATTGATAGTGCAGTGGATATGTTGTTTACAGTATTATGTAGTCT
GTTTTTATGCAAAATCTAATTAAATATTGATATTATATCATTACGTTCTCGTT
CAGCTTTTGTACAAAGTGGCATTATAAAAAGCATTGCTCATCAATTGTTGCAACG
AACAGGTCACTATCAGTCAAAATAAAATCATTATTGGGGCCGAGATCCATGCTAGCGT
TAAC

FIGURE 97C

233/240

pMAB85

FIGURE 98A

234/240
pMAB85 7038 bp

GCCTTACGCATCTGCGGTATTCACACCGCAGGCAAGTGCACAAACAATACTTAAATA
 AATACTACTCAGTAATAACCTATTCTTAGCATTTGACGAAATTGCTATTGTTAG
 AGTCTTTACACCATTGCTCCACACCTCCGTTACATCAACACCAATAACGCCATTAA
 ATCTAACGCGCATACCAACATTCTGGCGTCAGTCCACAGCTAACATAAAATGTAAGC
 TTCGGGGCTCTTGCTTCCAACCCAGTCAGAAATCGAGTCCAAATCCAAAAGTTCAC
 CTGCCCCACCTGCTCTGAATCAAACAAGGAATAAACGAATGAGGTTCTGTGAAGCTG
 CACTGAGTAGTATGTCAGTCTTTGAAATACGAGTCTTTAATAACTGGCAACCGA
 GGAACCTTTGGTATTCTGCCACGACTCATCTCCATGCGAGTGGACGATATCAATGCCGT
 AATCATTGACCAGAGCCAAAACATCCTCCCTAGGTTGATTACGAAACACGCCAACCAAGT
 ATTTGGAGTGCTGAACTATTATGCTTTACAAGACTTGAATTTCTTGCAAA
 TAACCGGGTCAATTGTTCTCTTCTATTGGCACACATAATAACCCAGCAAGTCAGCAT
 CGGAATCTAGAGCACATTCTGGGCTCTGTGCTGCAAGCCGCAAACCTTCACCAATG
 GACCAGAACTACCTGTGAAATTAAACAGACATACTCCAAGCTGCCCTTGCTGCTTAA
 TCACGTATACTCACGTGCTAACATAGTCACCAATGCCCTCCCTTGCCCTCTCTTTC
 TTTTTCGACCGAATTAAATTCTTAATCGGAAAAAGAAAAGCTCCGGATCAAGATTGT
 ACGTAAGGTGACAAGCTATTTCATAAAAGAATATCTTCAACTACTGCCATCTGGCGTC
 ATAAC TGCAAAGTACACATATTACGATGCTGCTATTAAATGCTTCTATATTATATA
 TATAGTAATGTCGTTATGGTGCACTCTAGTACAATCTGCTGATGCCATAGTTAA
 GCCAGCCCCGACACCCGCCAACACCCGCTGACGCCCTGACGGGTTGTCTGCCCGG
 CATCCGCTTACAGACAAGCTGTGACCGTCTCCGGAGCTGCATGTCAGAGGTTTAC
 CGTCATACCGGAAACCGCGAGACGAAAGGGCCTCGTGCATACGCTTATTTAGGTTA
 ATGTCATGATAATAATGGTTCTAGGACGGATCGCTGCCTGTAACCTACCGGCCTC
 GTATCTTTAATGATAAAATTGGGAAATTACTCTGTTATTATTTATGTTT
 TGTATTGGATTAGAAAGTAAATAAAGAAGTAGAAGAGTTACGGAATGAAGAAAAAA
 AAATAACAAAGGTTAAAAAAATTCAACAAAAGCTACTTACATATATTTATTAG
 ACAAGAAAAGCAGATTAAATAGATATACATTGATTAACGATAAGTAAATGAAAATCA
 CAGGATTTCGTGTGGCTTCTACACAGACAGATGAAACAATTGGCATTAAACCT
 GAGAGCAGGAAGAGCAAGATAAAAGTAGTATTGTTGGCGATCCCCCTAGAGTCTTTA
 CATCTCGGAAACAAAAACTATTCTTCTTAAATTCTTTTACTTTCTATTAA
 TTTATATATTATTTAAATTAAATTATTTATAGCACGTGATGAAAAG
 GACCCAGGTGGCACTTTGGGAAATGTGCGCGAACCCCTATTGTTATTCTAA
 ATACATTCAAATATGTATCCGCTCATGAGACAATAACCCGTATAATGCTCAATAATAT
 TGAAAAGGAAGAGTATGAGTATTCAACATTCCGTCGCCCTATTCCCTTTGCG
 GCATTGCTTCCCTGTTGCTACCCAGAAACGCTGGTGAAAGTAAAGATGCTGAA
 GATCAGTTGGGTGCACGAGTGGGTTACATCGAACCTGATCTAACAGCGGTAAGATCCTT
 GAGAGTTTGGCCGAAGAACGTTTCCAATGATGAGCACTTTAAAGTTCTGCTATGT
 GGCGGGTATTATCCGTATTGACGCCGGCAAGAGCAACTCGTCGCCGATACACTAT
 TCTCAGAATGACTGGTTGAGTACTCACCACTCACAGAAAAGCATTTACGGATGGCATG
 ACAGTAAGAGAATTATGCACTGCTGCCATAACCATGAGTGATAACACTCGGCCAACTTA
 CTTCTGACAACGGATCGGAGGACCGAAGGGAGCTAACGCTTTTCAACATGGGGAT
 CATGTAACTCGCCTTGATCGTTGGGAAACGGAGCTGAATGAAGCCATACCAAACGACGAG
 CGTGACACCACCGATGCCGTAGCAATGGCAACAACGTTGCGAAACTATTACTGGCGAA
 CTACTTACTCTAGCTCCCGCAACAATTAAAGACTGGATGGAGGCGGATAAGTTGCA
 GGACCACTCTGCGCTGGCCCTCCGGCTGGTTATTGCTGATAAAATCTGGAGCC
 GGTGAGCGTGGGTCTCGCGGTATCTGAGACTGGGGCCAGATGTTAGCCCTCCGT
 ATCGTAGTTATCACACGACGGGCACTCAGGAAACTATGGATGAAAGAAATAGACAGATC
 GCTGAGATAGGTGCTCACTGATTAAGCATTGTAACTGTCAGACCAAGTTACTCATAT
 ATACTTAGATTGATTTAAACTCATTTAAATTAAAGGATCTAGGTGAAGATCCTT
 TTTGATAATCTCATGACCAAAATCCCTAACGTGAGTTTCTGTTCACTGAGCGTCAGAC
 CCCGTAGAAAAGATCAAAGGATCTCTTGAGATCTTTCTGCGCGTAATCTGCTGC
 TTGCAAACAAAAACACCGCTACCAGCGTGGGTTGTTGCCGATCAAGAGCTACCA
 ACTCTTTCCGAAGGTAACTGGCTCAGCAGAGCGCAGATAACAAACTGTCCTCTA
 GTGTAGCCGTAGTTAGGCCACCACTCAAGAACTCTGAGTGCACCGCCTACATACCTCGCT
 CTGCTAATCTGTTACAGTGGCTGCGAGTGGCGATAAGTCGTGCTTACGGGTTG
 GACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTGGCTGAACGGGGTTCGTGC-

Figure 98B

ACACAGCCCAGTTGGAGCGAACGACCTACACCGAACTGAGATAACCTACAGCGTGAGCAT
 TGAGAAAGGCCACGCTTCCGAAGGGAGAAAGGCGGACAGGTATCCGTAAGCGGCAGG
 GTCGGAACAGGAGAGCGCACGGAGCTCAGGGGGAAACGCCCTGGTATCTTATAGT
 CCTGTCGGTTTCGCCACCTCTGACTTGAGCGTCGATTGATGCTCGTCAGGGGG
 CCGAGCCTATGGAAAACGCCAGCAACGCCCTTTACGGTCTGCCCTTGTGG
 CCTTTGCTCACATGTTCTTCGTTATCCCTGATTCTGTGGATAACCGTATTACC
 GCCTTGAGTGAGCTGATACCGCTGCCGAGCGAACGACCGAGCGAGCGAGTCAGTG
 AGCGAGGAAGCGGAAGAGCGCCAATACGCAAACGCCCTCCCCCGCGTGGCGATT
 CATTAATGCAGCTGGCACGACAGGTTCCGACTGAAAGCGGGCAGTGAGCGCAACGCA
 ATTAATGTGAGTTACCTCACTCATTAGGCACCCAGGCTTACACTTATGCTTCCGGCT
 CCTATGTTGTGTTGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGACCAT
 GATTACGCCAAGCTCGGAATTAAACCCCTACTAAAGGAAACAAAGCTGGTACCGGGCCC
 CCCCTCGAGATCCGGATCGAAGAAATGATGGTAAATGAAATAGGAAATCAAGGAGCATG
 AAGGCAAAAGACAATATAAGGGTCAACGAAAAATAAAGTGAAGAAGTGTGATATGATG
 TATTTGGCTTGCAGCGCCAAAAAACGAGTTACGCAATTGACAATCATGCTGACTCT
 GTGGCGGACCCCGCGCTTGCAGCGGCGATAACGCTGGCGTGGCTGTGCCCGGC
 GGAGTTTTGCGCCTGCATTTCAGGTTACCTGCGTAAGGGCGAGATTGGAGA
 AGCAATAAGAATGCCGTTGGGTTGCATGATGACGACCACGACAACACTGGTGTCTTAT
 TTAAGTTGCCAAAGAACCTGAGTGATGCAATTGCAACATGAGTATACTAGAAGAATGAGCCA
 AGACTTGCAGACGCGAGTTGCCGGTGCAGAACATAGAGCAGCATGACCTTGAAG
 GTGAGACGCGATAACCGTAGAGTACTTGAAGAGGAAACAGCAATAGGTTGCTACCA
 GTATAATAGACAGGTACATACAACACTGAAATGGTTGCTGTTGAGTACGCTTCAA
 TTCATTGGGTGCACTTATTATGTTACAATATGAAAGGAACTTACACTTCTCCTA
 TGCACATATATTAAATTAAAGTCAATGCTAGTAGAGAAGGGGGTAACACCCCTCCGCGC
 TCTTCCGATTCTAAACCGTGAATATTGAGTATCCTTGTGTTCCGG
 TGTACAATATGAACTTCTCTTCTGGCAACCAAACCATACATCGGATTCTATAAT
 ACCTTCGTTGGTCTCCCTAACATGTTAGGTGGCGAGGGAGATACAAATAGAACAGATA
 CCAGACAAGACATAATGGCTAAACAAAGACTACACCAATTACACTGCGCTATTGATGGTG
 GTACATAACGAACTAATGTTAGCCCTAGACTGATAGCCATCATATCGAAGTTTC
 ACTACCTTTTCCATTGCCATCTATTGAAGTAATAATAGGCGCATGCAACTTCTTTC
 TTTTTTTCTTCTCTCTCCCCGGTGTCTCACCATATCGCAATGACAAAAAAA
 ATGATGGAAGACACTAAAGGAAAAATTAAACGACAAAGACAGCACCAACAGATGTCGTG
 TTCCAGAGCTGATGAGGGTATCTGAAACACAGAAACTTTCTCCTTCATTCA
 CACACTACTCTAAATGAGCAACGGTACCGCCTCCCTCCAGTACTTGAATTGAAA
 TAAAAAAAGTTGCCGCTTGCTATCAAGTATAATAGACCTGCAATTATAATCTTTG
 TTTCCCTCGTCAATTGTTCTCGTCCCTTCTTCTTGTGTTCTTCTGACAATATTCA
 AGCTATAACCAAGCATAACACTCCAAAGCTTATGCCAAGAAGAAGCGGAAGGTCTCG
 AGCGGCCAATTAAAGTGGGATAATTGCTGATAGCTCATTGCTTCACTTCA
 ACTAACAGTAGCAACGGTCCGAACCTCATAACAAACTCAAACAAATTCTAACGCGCTTCA
 CAACCAATTGCCCTCTAACGTTCATGATAACTTCACTGAAATAATGAAATCACGGCTAGT
 AAAATTGATGATGGAATAATTCAAAACACTGTCACCTGGTGGACGGACCAAAACTGCG
 TATAACCGTTGGAACTACACAGGGATGTTAACACTACAAATGGATGATGTTAT
 AACTATCTATTGATGATGAGATAACCCACAAACCAAAAAAGAGGGTGGTGTGATC
 ACAAGTTGTACAAAAGCAGGCTGTCGACCCGGGAAATTGAGCTACTAGTGC
 CGCACCGTACCCAGCTTCTGTAACAAAGTGGTGCAGCTCCTATAGTGA
 TATTACACTGGCGTGTGTTACAAACGTCGACTGGGAAAACACCGGTGAGCTCAAGTC
 AAGTAACGGCCGCCACCGCGTGGAGCTTGGACTTCTCGCCAGAGGTTGGTCAAGTC
 TCCAAATCAAGGGTGTGCGCTTGTCTACCTTGCAGAAATTACGAAAGATGGAAAAGGG
 TCAAATCGTGTAGATACGTTGACACTCTAAATAAGCGAATTCTTATGATTAT
 GATTTTATTATAAAAGTTATAAAAAAAATAAGTGTATAACAAATTAAAGTGA
 TTAGGTTTAAACGAAAATTCTGTTCTGAGTAACCTTCTGAGTCAAGGTTGCT
 TTCTCAGGTATAGCATGAGGTCGCTTATTGACCAACCTCTACCGGATGCCGAGCAA
 ATGCCCTGCAAATCGCTCCCCATTACCCAAATTGAGATGCTAACTCCAGCAATGAGT
 TGATGAATCTCGGTGTGTTTTATGTCCTCAGAGGACAATACTGTTGATCGTTCTT
 CCACACGGATCCGATCAGCGAAATTGAAAGCTTAAATATTGTTAAATTCGCGTTA
 AATATTGTTAAATCAGCTCATTTAAACCAATAGGCCGAAATCGGAAACAAATCCCTAT
 AAATCAAAGAATAGACCGAGATAAGGGTTGAGTGTGTTCCAGTTGGAACAGTCCA
 CTATTAAAGAACGTGGACTCCAACGTCAAAGGGAAAAACCGTCTATCAGGGCGATGGC-

FIGURE 98C

CCACTACGTGAACCATCACCTAATCAAGTTTGGGTCGAGGTGCCGTAAAGCACTA
AATCGGAACCCTAAAGGGAGCCCCGATTAGAGCTTGACGGGAAAGCCGGCGAACGTG
GCGAGAAAAGGAAGGGAAGAAAGCGAAAGGAGCAGCGCTAGGGCGCTGGCAAGTGTAGCG
GTCACGCTGCGCTAACCAACACCCGCCGCGCTTAATGCGCCGCTACAGGGCGCGTCC
CATTCGCCATTCACTGCA

FIGURE 98D

237/240

pMAB86

FIGURE 99A

pMAB86 7146 bp

GACGAAAGGGCCTCGTATACGCCATTTTATAGGTTAATGTCATGATAATAATGGTT
CTTAGGACGGATCGCTTGCTGTAACTTACACCGCCTCGTATCTTTAATGATGGAATA
ATTTGGGAAATTACTCTGTGTTATTATTTATGTTGTATTGGATTTAGAAAGT
AAATAAAAAGGTTAGAAGAGTTACGAATGAAGAAAAAAATAACAAAGGTTAAAAA
ATTTCAACAAAAGCGTACTTACATATATATTAGACAAGAAAAGCAGATTAAATA
GATATACATTGATTAACGATAAGTAAAATGTAATACAGGATTTCTGTGTTGGTCT
TCTACACAGACAAGATGAAACAATTCCGGATTAATACCTGAGAGCAGGAAGAGCAAGATA
AAAGGTAGTATTGTTGGCGATCCCCCTAGAGTCTTACATCTCGGAAACAAAAACT
ATTTTCTTAATTCTTTACTTCTATTAAATTATATATTAAAAA
ATTTAAATTATAATTATTTATAGCACGTGATGAAAAGGACCAGGTGGCACTTTCCG
GGAAATGTGCGCGGAACCCCTATTGTTATTCTAAATACATTCAAATATGTATCCG
CTCATGAGACAATAACCTGATAAAATGCTCAATAATATTGAAAAGGAAGAGTATGAGT
ATTCAACATTCCGTGTCGCCCTTATTCCCTTTGCGGCATTTGCCCTCTGTTTT
GCTCACCCAGAAACGCTGGTAAAGTAAAAGATGCTGAAGATCAGTGGTGCACGAGTG
GGTTACATCGAACCTGGATCTCAACAGCGGTAAAGATCCTGAGGTTTCGCCCGAAGAA
CGTTTCCAATGATGAGCACTTTAAAGTTCTGCTATGTGGCGCGTATTATCCGTATT
GACGCCGGCAAGAGCAACTCGGTGCCGCATACACTATTCTCAGAAATGACTTGGTTGAG
TACTCACCAGTCACAGAAAAGCATTTACGGATGGCATGACAGTAAGAGAATTATGAGT
GCTGCCATAACCATGAGTGATAACACTGCCGCAACTTACTTCTGACAACGATCGGAGGA
CCGAAGGAGCTAACCGCTTTTACAACATGGGGATCATGTAACTCGCCTTGATCGT
TGGGAAACCGGAGCTGAATGAAGCCATACCAAAACGACGAGCGTGCACACCACGATGCCGTGA
GCAATGGCAACAACTGGTGCGBAAACTATTAACGGCAACTACTTACTCTAGCTTCCCG
CAACAATTAAATAAGACTGGATGGAGCGGATAAAGTGTGAGGACCAACTCTCGCCTCGGCC
CTTCCGGCTGGCTGGTTATTGCTGATAAAATCTGGAGGCCGGTGGCTGAGCGTGGGTCTCGCGT
ATCATTGCACTGGGGCCAGATGGTAAAGCCCTCCGTATCGTAGTTATCTACACGACG
GGCAGTCAGGCAACTATGGATGAACCAAATAGACAGATCGCTGAGGATAGGTGCCTCACTG
ATTAAGCATTGGTAACTGTCAGACCAAGTTACTCATATATACTTTAGATTGATTAAAAA
CTTCATTTAAATTAAAGGATCTAGGTGAAGATCCTTTGATAATCTCATGACCAAA
ATCCCTTAACGTGAGTTCTGTTCACTGAGCGTCAGACCCCTAGAAAAGATCAAAGGA
TCTTCTTGAGATCCTTTCTGCGCTAATCTGCTGCTTGCAAACAAAAAACACCG
CTACCGCGGTGTTGTTGCCGATCAAGAGCTACCAACTCTTCCGAAAGGTAAC
GGCTTCAGCAGAGCGCAGATACCAAAACTGTCCTCTAGTGTAGCCGTAGTTAGGCCAC
CACTTCAGAACCTGTAGCACCCTACATACCTCGCTGCTAATCTGTTACAGTG
GCTGCTGCCAGTGGCGATAAGTCGTCTTACGGGTTGGACTCAAGACGATAGTTACCG
GATAAGGCGCAGCGGTGGCTGAACGGGGGTTCTGTGACACACAGCCAGCTGGAGCGA
ACGACCTACACCGAACTGAGATACCTACAGCGTGAGCATTGAGAAAGGCCACGCTTCCC
GAAGGGAGAAAGCGGAGCAGGTATCCGTAACGGCAGGGTGGACAGGAGAGCGCAG
AGGGAGCTTCAGGGGGAAACGCCCTGGTATCTTATAGTCCTGTCGGGTTGCCACCTC
TGACTTGAGCGTCGATTTGTGATGCTCGTCAGGGGGCCGAGCCTATGGAAAAACGCC
AGCAACCGGGCTTTTACGGTTCTGGCCTTTGCTGCCCTTTGCTCACATGTTCTT
CCTCGCTTATCCCTGATTCTGTTGATAACCGTATTACCGCTTTGAGTGAAGCTGATAC
GCTGCCGCAGCGAACGACCGAGCGCAGCAGTCAGTGAAGCGAGCTGGAGCG
CCAATACGCAAACCGCCTCTCCCGCGCTGGCGATTCAATTATGAGCTGGCACGAC
AGGTTCCCGACTGGAAAGCGGGAGTGAAGCGAACGCAATTATGAGTTACCTCACT
CATTAGGCACCCAGGCTTACACTTATGCTCCGGCTCCTATGTTGTGGAATTGAG
AGCGGATAACAATTACACAGGAAACAGCTATGACCATGATTACGCCAGCTCGGAATT
AACCCCTCACTAAAGGGAAACAAAAGCTGGTACCGGGCCCCCTCGAGATCCGGATCGA
AGAAATGATGGTAAATGAAATAGGAAATCAAGGAGCATGAAGGAAAAGACAAATATAAG
GGTCAACGAAAAATAAAAGTGAAGAGTGTGATATGATGTTGAGCTGATAC
AAAAACGAGTTACGCAATTGACAAATCATGCTGACTCTGTCGGCGAACCGCGCTCTTGC
CGGCCCGCGATAACGCTGGCGTGAAGGCTGCCCCGGAGTTTTGCGCCTGCATT
TTCCAAGGTTACCCCTGCCCTAAGGGCGAGATTGGAGAAGCAATAAGAATGCCGGTTGG
GGTTGCGATGATGACGACCAAGCAGACAACGGTGTCTATTAAAGTTGCGAAAGAACCTG
AGTGCATTGCAACATGAGTAACTAGAAGAATGAGCCAAGAGACTTGCAGACGCGAGTT
GCCGGTGGTGCAGAACATAAGAGCGACCATGACCTTGAGGAGACGCGCATAACCGCTA

FIGURE 99B

GAGTACTTTGAAGAGGAAACAGCAATAGGGTTGCTACCAGTATAAATAGACAGGTACATA
 CAAACACTGGAAATGGTTGCTGTTGAGTACGCCTTCAATTCAATTGGGTGTGCACTTTA
 TTATGTTACAATATGGAAGGAACTTTACACTTCTCCTATGCACATATAATTAAATTAAAGT
 CCAATGCTAGTAGAGAAGGGGGTAACACCCCTCCCGCCTTTCCGATTTTTCTAA
 ACCGTGGAATATTCGGATATCCTTGTGTTCCGGGTGACAATATGGACTTCCCT
 TTTCTGGCAACCAAACCCATACATCGGGATTCTTATAATACCTCGTGGTCTCCCTAAC
 ATGTAGGTGGCGAGGGGAGATATAACATAGAACAGATACCAGACAAGACATAATGGGCT
 AAACAAGACTACACCAATTACACTGCCTCATGATGGTGTACATAACGAACTAATCTG
 TAGCCCTAGACTTGATAGCCATCATCATATCGAAGTTCACTACCCCTTCCATTGCC
 ATCTATTGAAGTAATAATAGGCGCATGCAACTTCTTTCTTTCTCTCTC
 CCCCCTGTTGTCACCATATCGCAATGACAAAAAAATGATGGAAGACACTAAAGGA
 AAAAATTAAACGACAAGACAGCACCAACAGATGTCGTTCCAGAGCTGATGAGGGTA
 TCTCGAACACACGAAACTTTCCCTCATTCACGACACTACTCTCTAATGAGCA
 ACGGTATACGGCCTCCTCCAGTTACTGAAATTGAAATAAAAAAGTTGCCGCTTG
 CTATCAAGTATAAATAGACCTGCAATTATAATCTTTCTCCTCGTCAATTGTTCTCGT
 TCCCTTCTCCTGTTCTTCTGACAATATTCAAGCTATAACAGCATACAATC
 AACTCCAAGCTTATGCCAAGAAGACGGAGGTCTGAGCGGCCAATTAAATCAA
 AGTGGGAATATTGCTGATAGCTATTGCTTCACTTCACTAACAGTAGCAACGGTCCG
 AACCTCATAACAACACTCAAACAAATTCTCAAGCGCTTACAACCAATTGCCCTCTAAC
 GTTCATGATAACTTCATGAATAATGAAATCACGGCTAGTAAATTGATGATGGAATAAT
 TCAAAACACTGTCACCTGGACGGACCAAAC TGCGTATAACGCGTTGGAATCACT
 ACAGGGATGTTAATACCACTACAATGGATGATGTATAACTATCTATTGATGATGAA
 GATACCCCACCAAACCCAAAAAAGAGGGTGGTCGATCACAAGTTGTACAAAAAGCA
 GGCTTGTGACCCCCGGAAATTCAAGATCTACTAGTGCAGCGCACCGTACCCAGCTTCT
 TGTACAAAGTGGTGACGTCAGCTCTAAGTAAGTAACGGCCACCGCGGTGGAGCTT
 GGACTTCTCGCCAGAGGTTGGTCAAGTCTCAATCAAGGTTGTCGGCTTGTCTACCTT
 GCCAGAAAATTACGAAAAGATGAAAAGGGTCAAATCGTGGTAGATACTGTTGACAC
 TTCTAAATAAGCGAATTCTTATGATTATGATTTTATTAAATAAGTTATAAAAAAA
 AATAAGTGTATAACAAATTAAAGTACTCTTAGGTTAAACGAAAATTCTGTTCTT
 GAGTAACTCTTCTGTAGGTGAGGTGCTTCTCAGGTATAGCATGAGGTGCTCTTAT
 TGACCCACACCTTACCGGATGCCGAGCAATGCCTGCAAATCGTCCCCATTCAACCA
 ATTGTAGATATGCTAACTCCAGCAATGAGTTGATGAATCTCGGTGTATTTATGCTT
 CAGAGGACAATAACCTGTTGAACTCGTCTCCACACGGATCCAACTCGCCCTATAGTGA
 GTCGTATTACAATTCACTGCCGTGTTTACAACGTCGTAACGGAAAACCCCTGGCGT
 TACCCAACCTTAATGCCCTGCAGCACATCCCCCTTCGCCAGCTGGCGTAATAGCGAAGA
 GGCCCGACCGATGCCCTCCAAACAGTTGCGCAGCCTGAATGGGAATGGACGCC
 TGTAGCGCGCATTAAGCGGGGGGTGTTACGCGCAGCGTACCGCTACACTT
 GCCAGGCCCTAGGCCCGCTCTCGTTCTCCCTCCCTCGCCACGTTGCC
 GGCTTCCCCGTCAGCTCAAATCGGGGCTCCCTTAGGGTCCGATTTAGTGT
 CGGCACCTCGACCCAAAAAAACTTGATTAGGGTGTGGTACGTTACGTTAGTGG
 TGATAGACGGTTTTCGCCCTTGACGTTGGAGTCCACGTTAAATAGTGGACTCTG
 TTCCAACACTGGACAAACACTCAACCCATCTCGGTCTATTCTTGTGTTAAAGGGATT
 TTGCGGATTTCGCCCTATTGGTTAAAAAATGAGCTGATTTAACAAAATTAAACGCGAAT
 TTTAACAAAATTAAACGTTACAATTCTGATGCGGTATTTCTCCTTACGCATCTGT
 GCGGTATTCACACCGCAGGCAAGTGCACAAACAAACTTAAATAACTACTCAGTAA
 TAACCTATTCTAGCATTGACGAAATTGCTATTGTTAGAGTCTTTACACCAT
 TTGTCACACCTCCGTTACATCAACACCAATAACGCCATTAACTAAGCGCATCAC
 CAACATTCTGGCGTCAGTCCACCGAGCTAACATAAAATGTAAGCTTCCGGCTCT
 GCCTCCAACCCAGTCAGAAATGAGTTCAATCCAAAAGTTCACCTGCCCACCTGCTT
 CTGAATCAAACAAGGGATAAACGAATGAGGTTCTGTGAGCTGACTGAGTAGTATGT
 TGCAGTCTTGGAAATACGAGTCTTTAATAACTGGCAAACCGAGGAACCTGGTATT
 CTTGCCACGACTCATCTCATGCAAGTGGACGATATCAATGCCGAATCATTGACCAGAG
 CCAAAACATCCTCCTTAGGTTGATTACGAAACACGCCAACCAAGTATTGAGGTGCGCTG
 AACTATTTTATATGTTTACAAGACTTGAAATTCTTCTGCAATAACGGGTCAATTG
 TTCTCTTCTATTGGGCACACATATAATACCCAGCAAGTCAGCATCGGAATCTAGAGCAC
 ATTCTGCGGCCTCTGTGCTCTGCAAGCCGCAAACCTTCACCAATGGACCAGAACTACCTG
 TGAAATTAAATAACAGACATACTCCAAGCTGCCCTTGTGCTTAATCACGTATACTCAG
 TGCTCAATAGTCACCAATGCCCTCCCTCTGGCCCTCTCCTTTCTTGTGACCGAAT-

FIGURE 9c

260 / 260

TAATTCTTAATCGGCAAAAAAGAAAAGCTCCGGATCAAGATTGTACGTAAGGTGACAAG
CTATTTTCATAAAGAATATCTTCCACTACTGCCATCTGGCGTCATAACTGCAAAGTAC
ACATATATTACGATGCTGTCTATTAAATGCTTCCATATTATATATAGTAATGTCGTT
TATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGCCCCGACACC
CGCCAACACCCGCTGACGCCCTGACGGGCTTGTCTGCTCCGGCATCCGCTTACAGAC
AAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTCACCGTCATCACCGAAAC
GCGCGA

FIGURE 99D

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM
(PCT Rule 13bis)

REC'D

A. The indications made below relate to the microorganism referred to in the description on page <u>54</u> , line <u>8</u>	
B. IDENTIFICATION OF DEPOSIT <div style="float: right; margin-top: -20px;"><input checked="" type="checkbox"/> Further deposits are identified on an additional sheet</div> <p>Name of depositary institution Agricultural Research Culture Collection (NRRL) International Depository Authority</p> <p>Address of depositary institution (<i>including postal code and country</i>) 1815 N. University Street Peoria, Illinois 61604 United States of America</p>	
Date of deposit	February 27, 1999
Accession Number	NRRL B-30103
C. ADDITIONAL INDICATIONS (<i>leave blank if not applicable</i>) <div style="float: right; margin-top: -20px;"><input type="checkbox"/> This information is continued on an additional sheet</div> <p>Escherichia coli DB3.1(pEZC15101)</p> <p>In respect of those designations in which a European Patent is sought a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which the application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 28(4) EPC).</p>	
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (<i>if the indications are not for all designated States</i>) <div style="float: right; margin-top: -20px;"></div>	
E. SEPARATE FURNISHING OF INDICATIONS (<i>leave blank if not applicable</i>) <div style="float: right; margin-top: -20px;"></div> <p>The indications listed below will be submitted to the International Bureau later (<i>specify the general nature of the indications, e.g., "Accession Number of Deposit"</i>)</p>	
For receiving Office use only For International Bureau use only	
<input checked="" type="checkbox"/> This sheet was received with the international application	
Authorized officer 	
<input type="checkbox"/> This sheet was received by the International Bureau on:	
Authorized officer	

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM
(PCT Rule 13bis)

<p>A. The indications made below relate to the microorganism referred to in the description on page <u>55</u>, line <u>16</u>.</p>		
<p>B. IDENTIFICATION OF DEPOSIT</p>		<input checked="" type="checkbox"/> Further deposits are identified on an additional sheet
<p>Name of depositary institution Agricultural Research Culture Collection (NRRL) International Depository Authority</p>		
<p>Address of depositary institution (<i>including postal code and country</i>) 1815 N. University Street Peoria, Illinois 61604 United States of America</p>		
Date of deposit	February 27, 1999	Accession Number
		NRRL B-30100
<p>C. ADDITIONAL INDICATIONS (<i>leave blank if not applicable</i>)</p>		<input type="checkbox"/> This information is continued on an additional sheet
<p>Escherichia coli DB3.1(pENTR-1A)</p>		
<p>In respect of those designations in which a European Patent is sought a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which the application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 28(4) EPC).</p>		
<p>D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (<i>if the indications are not for all designated States</i>)</p>		
<p>E. SEPARATE FURNISHING OF INDICATIONS (<i>leave blank if not applicable</i>)</p>		
<p>The indications listed below will be submitted to the International Bureau later (<i>specify the general nature of the indications, e.g., "Accession Number of Deposit"</i>)</p>		

For receiving Office use only		For International Bureau use only	
<input checked="" type="checkbox"/> This sheet was received with the international application		<input type="checkbox"/> This sheet was received by the International Bureau on:	
Authorized officer 		Authorized officer	

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM
(PCT Rule 13bis)

A. The indications made below relate to the microorganism referred to in the description on page 55, line 16.

B. IDENTIFICATION OF DEPOSIT

Further deposits are identified on an additional sheet

Name of depositary institution

Agricultural Research Culture Collection (NRRL)
 International Depository Authority

Address of depositary institution (*including postal code and country*)

1815 N. University Street
 Peoria, Illinois 61604
 United States of America

Date of deposit	February 27, 1999	Accession Number	NRRL B-30102
-----------------	-------------------	------------------	--------------

C. ADDITIONAL INDICATIONS (*leave blank if not applicable*)

This information is continued on an additional sheet

Escherichia coli DB3.1(pENTR-3C)

In respect of those designations in which a European Patent is sought a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which the application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 28(4) EPC).

D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (*if the indications are not for all designated States*)**E. SEPARATE FURNISHING OF INDICATIONS** (*leave blank if not applicable*)

The indications listed below will be submitted to the international Bureau later (*specify the general nature of the indications, e.g., "Accession Number of Deposit"*)

For receiving Office use only		For International Bureau use only	
<input checked="" type="checkbox"/> This sheet was received with the international application		<input type="checkbox"/> This sheet was received by the International Bureau on:	
Authorized officer 		Authorized officer	

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM
(PCT Rule 13bis)

<p>A. The indications made below relate to the microorganism referred to in the description on page <u>55</u>, line <u>16</u></p>		
<p>B. IDENTIFICATION OF DEPOSIT</p>		<input checked="" type="checkbox"/> Further deposits are identified on an additional sheet
<p>Name of depositary institution Agricultural Research Culture Collection (NRRL) International Depository Authority</p>		
<p>Address of depositary institution (<i>including postal code and country</i>) 1815 N. University Street Peoria, Illinois 61604 United States of America</p>		
Date of deposit	February 27, 1999	Accession Number
		NRRL B-30101
<p>C. ADDITIONAL INDICATIONS (<i>leave blank if not applicable</i>)</p>		<input type="checkbox"/> This information is continued on an additional sheet
<p>Escherichia coli DB3.1(pENTR-2B)</p> <p>In respect of those designations in which a European Patent is sought a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which the application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 28(4) EPC).</p>		
<p>D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (<i>if the indications are not for all designated States</i>)</p>		
<p>E. SEPARATE FURNISHING OF INDICATIONS (<i>leave blank if not applicable</i>)</p> <p>The indications listed below will be submitted to the international Bureau later (<i>specify the general nature of the indications, e.g., "Accession Number of Deposit"</i>)</p>		

<p>For receiving Office use only</p> <p><input checked="" type="checkbox"/> This sheet was received with the international application</p> <p>Authorized officer </p>	<p>For International Bureau use only</p> <p><input type="checkbox"/> This sheet was received by the International Bureau on:</p> <p>Authorized officer</p>
--	--

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM
(PCT Rule 13bis)

A. The indications made below relate to the microorganism referred to in the description on page <u>1 WPO S1</u> <u>1 PCT</u> <u>20-21</u>	
B. IDENTIFICATION OF DEPOSIT Further deposits are identified on an additional sheet <input checked="" type="checkbox"/>	
Name of depositary institution Agricultural Research Culture Collection (NRRL) International Depository Authority	
Address of depositary institution (<i>including postal code and country</i>) 1815 N. University Street Peoria, Illinois 61604 United States of America	
Date of deposit February 27, 1999	Accession Number NRRL B-30108
C. ADDITIONAL INDICATIONS (<i>leave blank if not applicable</i>) This information is continued on an additional sheet <input type="checkbox"/> Escherichia coli DB10B(pCMVSPORT6)	
In respect of those designations in which a European Patent is sought a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which the application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 28(4) EPC).	
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (<i>if the indications are not for all designated States</i>)	
E. SEPARATE FURNISHING OF INDICATIONS (<i>leave blank if not applicable</i>) The indications listed below will be submitted to the international Bureau later (<i>specify the general nature of the indications, e.g., "Accession Number of Deposit"</i>)	

For receiving Office use only	For International Bureau use only
<input checked="" type="checkbox"/> This sheet was received with the international application	
Authorized officer 	
<input type="checkbox"/> This sheet was received by the International Bureau on:	
Authorized officer	

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM
(PCT Rule 13bis)

<p>A. The indications made below relate to the microorganism referred to in the description on page <u>54</u>, line <u>9</u>.</p>		
<p>B. IDENTIFICATION OF DEPOSIT</p>		<input checked="" type="checkbox"/> Further deposits are identified on an additional sheet
<p>Name of depositary institution Agricultural Research Culture Collection (NRRL) International Depository Authority</p>		
<p>Address of depositary institution (<i>including postal code and country</i>) 1815 N. University Street Peoria, Illinois 61604 United States of America</p>		
Date of deposit	February 27, 1999	Accession Number
		NRRL B-30105.
<p>C. ADDITIONAL INDICATIONS (<i>leave blank if not applicable</i>)</p>		<input type="checkbox"/> This information is continued on an additional sheet
<p>Escherichia coli DB3.1(pEZC15103)</p> <p>In respect of those designations in which a European Patent is sought a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which the application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 28(4) EPC).</p>		
<p>D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (<i>if the indications are not for all designated States</i>)</p>		
<p>E. SEPARATE FURNISHING OF INDICATIONS (<i>leave blank if not applicable</i>)</p> <p>The indications listed below will be submitted to the International Bureau later (<i>specify the general nature of the indications, e.g., "Accession Number of Deposit"</i>)</p>		
For receiving Office use only		For International Bureau use only
<input checked="" type="checkbox"/> This sheet was received with the international application		<input type="checkbox"/> This sheet was received by the International Bureau on:
Authorized officer 		Authorized officer

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM
(PCT Rule 13bis)

<p>A. The indications made below relate to the microorganism referred to in the description on page <u>54</u>, line <u>9</u>.</p>		
<p>B. IDENTIFICATION OF DEPOSIT</p>		<input checked="" type="checkbox"/> Further deposits are identified on an additional sheet
<p>Name of depositary institution Agricultural Research Culture Collection (NRRL) International Depository Authority</p>		
<p>Address of depositary institution (<i>including postal code and country</i>) 1815 N. University Street Peoria, Illinois 61604 United States of America</p>		
Date of deposit	February 27, 1999	Accession Number
NRRL B-30104.		
<p>C. ADDITIONAL INDICATIONS (<i>leave blank if not applicable</i>)</p>		<input type="checkbox"/> This information is continued on an additional sheet
<p>Escherichia coli DB3.1(pEZC15102)</p>		
<p>In respect of those designations in which a European Patent is sought a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which the application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 28(4) EPC).</p>		
<p>D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (<i>if the indications are not for all designated States</i>)</p>		
<p> </p>		
<p>E. SEPARATE FURNISHING OF INDICATIONS (<i>leave blank if not applicable</i>)</p>		
<p>The indications listed below will be submitted to the international Bureau later (<i>specify the general nature of the indications, e.g., "Accession Number of Deposit"</i>)</p>		
<p>For receiving Office use only</p>		<p>For International Bureau use only</p>
<p><input checked="" type="checkbox"/> This sheet was received with the international application</p>		<p><input type="checkbox"/> This sheet was received by the International Bureau on:</p>
<p>Authorized officer</p>		<p>Authorized officer</p>

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM
(PCT Rule 13bis)

<p>A. The indications made below relate to the microorganism referred to in the description on page <u>52</u>, line <u>31</u>.</p>		
<p>B. IDENTIFICATION OF DEPOSIT</p>		<input checked="" type="checkbox"/> Further deposits are identified on an additional sheet
<p>Name of depositary institution Agricultural Research Culture Collection (NRRL) International Depository Authority</p>		
<p>Address of depositary institution (<i>including postal code and country</i>) 1815 N. University Street Peoria, Illinois 61604 United States of America</p>		
Date of deposit	February 27, 1999	Accession Number
 U.S. PATENT & TRADEMARK OFFICE MAR 02 2000 JC67		
<p>C. ADDITIONAL INDICATIONS <i>(leave blank if not applicable)</i></p>		<input type="checkbox"/> This information is continued on an additional sheet
<p>Escherichia coli DB3.1(pAHPKan) or Escherichia coli DB3.1(pAttPKan)</p>		
<p>In respect of those designations in which a European Patent is sought a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which the application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 28(4) EPC).</p>		
<p>D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE <i>(if the indications are not for all designated States)</i></p>		
<p>E. SEPARATE FURNISHING OF INDICATIONS <i>(leave blank if not applicable)</i></p>		
<p>The indications listed below will be submitted to the international Bureau later (<i>specify the general nature of the indications, e.g., "Accession Number of Deposit"</i>)</p>		

For receiving Office use only		For International Bureau use only	
<input checked="" type="checkbox"/> This sheet was received with the international application		<input type="checkbox"/> This sheet was received by the International Bureau on:	
Authorized officer Barbara Fridie PCT Operations - IOPD Team 1 (703) 305-3771 / (703) 305-3230 (FAX)			

*Escherichia coli DB3.1(pENTR-3C)***ICELAND**

The applicant hereby requests that, until the application has been laid open to public inspection (by the Icelandic Patent Office), or has been finally decided upon by the Icelandic Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art.

NETHERLANDS

The applicant hereby requests that until the date of a grant of a Netherlands patent or until the date on which the application is refused or withdrawn or lapsed, the microorganism shall be made available as provided in Rule 31F(1) of the Patent Rules only by the issue of a sample to an expert. The request to this effect must be furnished by the applicant with the Netherlands Industrial Property Office before the date on which the application is made available to the public under Section 22C or Section 25 of the Patents Act of the Kingdom of the Netherlands, whichever of the two dates occurs earlier.

NORWAY

The applicant hereby requests that, until the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Norwegian Patent office or any person approved by the applicant in the individual case.

SINGAPORE

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for international publication of the application.

*Escherichia coli DB3.1(pENTR-3C)***SWEDEN**

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent office or any person approved by the applicant in the individual case.

UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for international publication of the application.

*Escherichia coli DB3.1(pENTR-2B)***AUSTRALIA**

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

CANADA

The applicant hereby requests that, until either a Canadian patent has been issued on the basis of the application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the furnishing of a sample of deposited biological material referred to in the application only be effected to an independent expert nominated by the Commissioner of Patents.

DENMARK

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent office or any person approved by the applicant in the individual case.

FINLAND

The applicant hereby requests that, until the application has been laid open to public inspection (by the National Board of Patents and Registration), or has been finally decided upon by the National Board of Patents and Registration without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the National Board of Patents and Registration or any person approved by the applicant in the individual case.

*Escherichia coli DB3.1(pENTR-2B)***ICELAND**

The applicant hereby requests that, until the application has been laid open to public inspection (by the Icelandic Patent Office), or has been finally decided upon by the Icelandic Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art.

NETHERLANDS

The applicant hereby requests that until the date of a grant of a Netherlands patent or until the date on which the application is refused or withdrawn or lapsed, the microorganism shall be made available as provided in Rule 31F(1) of the Patent Rules only by the issue of a sample to an expert. The request to this effect must be furnished by the applicant with the Netherlands Industrial Property Office before the date on which the application is made available to the public under Section 22C or Section 25 of the Patents Act of the Kingdom of the Netherlands, whichever of the two dates occurs earlier.

NORWAY

The applicant hereby requests that, until the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Norwegian Patent office or any person approved by the applicant in the individual case.

SINGAPORE

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for international publication of the application.

*Escherichia coli DB3.1(pENTR-2B)***SWEDEN**

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent office or any person approved by the applicant in the individual case.

UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for international publication of the application.

*Escherichia coli DB3.1(pENTR-1A)***AUSTRALIA**

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

CANADA

The applicant hereby requests that, until either a Canadian patent has been issued on the basis of the application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the furnishing of a sample of deposited biological material referred to in the application only be effected to an independent expert nominated by the Commissioner of Patents.

DENMARK

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent office or any person approved by the applicant in the individual case.

FINLAND

The applicant hereby requests that, until the application has been laid open to public inspection (by the National Board of Patents and Registration), or has been finally decided upon by the National Board of Patents and Registration without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the National Board of Patents and Registration or any person approved by the applicant in the individual case.

*Escherichia coli DB3.1(pENTR-1A)***ICELAND**

The applicant hereby requests that, until the application has been laid open to public inspection (by the Icelandic Patent Office), or has been finally decided upon by the Icelandic Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art.

NETHERLANDS

The applicant hereby requests that until the date of a grant of a Netherlands patent or until the date on which the application is refused or withdrawn or lapsed, the microorganism shall be made available as provided in Rule 31F(1) of the Patent Rules only by the issue of a sample to an expert. The request to this effect must be furnished by the applicant with the Netherlands Industrial Property Office before the date on which the application is made available to the public under Section 22C or Section 25 of the Patents Act of the Kingdom of the Netherlands, whichever of the two dates occurs earlier.

NORWAY

The applicant hereby requests that, until the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Norwegian Patent office or any person approved by the applicant in the individual case.

SINGAPORE

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for international publication of the application.

*Escherichia coli DB3.1(pENTR-1A)***SWEDEN**

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent office or any person approved by the applicant in the individual case.

UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for international publication of the application.

*Escherichia coli DB10B(pCMVSPORT6)***AUSTRALIA**

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

CANADA

The applicant hereby requests that, until either a Canadian patent has been issued on the basis of the application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the furnishing of a sample of deposited biological material referred to in the application only be effected to an independent expert nominated by the Commissioner of Patents.

DENMARK

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent office or any person approved by the applicant in the individual case.

FINLAND

The applicant hereby requests that, until the application has been laid open to public inspection (by the National Board of Patents and Registration), or has been finally decided upon by the National Board of Patents and Registration without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the National Board of Patents and Registration or any person approved by the applicant in the individual case.

*Escherichia coli DB3.1(pAHPKan) or Escherichia coli DB3.1(pAttPKan)***AUSTRALIA**

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

CANADA

The applicant hereby requests that, until either a Canadian patent has been issued on the basis of the application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the furnishing of a sample of deposited biological material referred to in the application only be effected to an independent expert nominated by the Commissioner of Patents.

DENMARK

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent office or any person approved by the applicant in the individual case.

FINLAND

The applicant hereby requests that, until the application has been laid open to public inspection (by the National Board of Patents and Registration), or has been finally decided upon by the National Board of Patents and Registration without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the National Board of Patents and Registration or any person approved by the applicant in the individual case.

*Escherichia coli DB3.1(pAHPKan) or Escherichia coli DB3.1(pAttPKan)***ICELAND**

The applicant hereby requests that, until the application has been laid open to public inspection (by the Icelandic Patent Office), or has been finally decided upon by the Icelandic Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art.

NETHERLANDS

The applicant hereby requests that until the date of a grant of a Netherlands patent or until the date on which the application is refused or withdrawn or lapsed, the microorganism shall be made available as provided in Rule 31F(1) of the Patent Rules only by the issue of a sample to an expert. The request to this effect must be furnished by the applicant with the Netherlands Industrial Property Office before the date on which the application is made available to the public under Section 22C or Section 25 of the Patents Act of the Kingdom of the Netherlands, whichever of the two dates occurs earlier.

NORWAY

The applicant hereby requests that, until the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Norwegian Patent office or any person approved by the applicant in the individual case.

SINGAPORE

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for international publication of the application.

*Escherichia coli DB3.1(pAHPKan) or Escherichia coli DB3.1(pAttPKan)***SWEDEN**

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent office or any person approved by the applicant in the individual case.

UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for international publication of the application.

*Escherichia coli DB10B(pCMV Sport6)***ICELAND**

The applicant hereby requests that, until the application has been laid open to public inspection (by the Icelandic Patent Office), or has been finally decided upon by the Icelandic Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art.

NETHERLANDS

The applicant hereby requests that until the date of a grant of a Netherlands patent or until the date on which the application is refused or withdrawn or lapsed, the microorganism shall be made available as provided in Rule 31F(1) of the Patent Rules only by the issue of a sample to an expert. The request to this effect must be furnished by the applicant with the Netherlands Industrial Property Office before the date on which the application is made available to the public under Section 22C or Section 25 of the Patents Act of the Kingdom of the Netherlands, whichever of the two dates occurs earlier.

NORWAY

The applicant hereby requests that, until the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Norwegian Patent office or any person approved by the applicant in the individual case.

SINGAPORE

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for international publication of the application.

*Escherichia coli DB10B(pCMVSport6)***SWEDEN**

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent office or any person approved by the applicant in the individual case.

UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for international publication of the application.

*Escherichia coli DB3.1(pEZC15103)***AUSTRALIA**

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

CANADA

The applicant hereby requests that, until either a Canadian patent has been issued on the basis of the application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the furnishing of a sample of deposited biological material referred to in the application only be effected to an independent expert nominated by the Commissioner of Patents.

DENMARK

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent office or any person approved by the applicant in the individual case.

FINLAND

The applicant hereby requests that, until the application has been laid open to public inspection (by the National Board of Patents and Registration), or has been finally decided upon by the National Board of Patents and Registration without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the National Board of Patents and Registration or any person approved by the applicant in the individual case.

*Escherichia coli DB3.1(pEZA15103)***ICELAND**

The applicant hereby requests that, until the application has been laid open to public inspection (by the Icelandic Patent Office), or has been finally decided upon by the Icelandic Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art.

NETHERLANDS

The applicant hereby requests that until the date of a grant of a Netherlands patent or until the date on which the application is refused or withdrawn or lapsed, the microorganism shall be made available as provided in Rule 31F(1) of the Patent Rules only by the issue of a sample to an expert. The request to this effect must be furnished by the applicant with the Netherlands Industrial Property Office before the date on which the application is made available to the public under Section 22C or Section 25 of the Patents Act of the Kingdom of the Netherlands, whichever of the two dates occurs earlier.

NORWAY

The applicant hereby requests that, until the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Norwegian Patent office or any person approved by the applicant in the individual case.

SINGAPORE

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for international publication of the application.

*Escherichia coli DB3.1(pEZR15103)***SWEDEN**

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent office or any person approved by the applicant in the individual case.

UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for international publication of the application.

*Escherichia coli DB3.1(pEZC15102)***AUSTRALIA**

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

CANADA

The applicant hereby requests that, until either a Canadian patent has been issued on the basis of the application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the furnishing of a sample of deposited biological material referred to in the application only be effected to an independent expert nominated by the Commissioner of Patents.

DENMARK

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent office or any person approved by the applicant in the individual case.

FINLAND

The applicant hereby requests that, until the application has been laid open to public inspection (by the National Board of Patents and Registration), or has been finally decided upon by the National Board of Patents and Registration without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the National Board of Patents and Registration or any person approved by the applicant in the individual case.

*Escherichia coli DB3.1(pEZC15102)***ICELAND**

The applicant hereby requests that, until the application has been laid open to public inspection (by the Icelandic Patent Office), or has been finally decided upon by the Icelandic Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art.

NETHERLANDS

The applicant hereby requests that until the date of a grant of a Netherlands patent or until the date on which the application is refused or withdrawn or lapsed, the microorganism shall be made available as provided in Rule 31F(1) of the Patent Rules only by the issue of a sample to an expert. The request to this effect must be furnished by the applicant with the Netherlands Industrial Property Office before the date on which the application is made available to the public under Section 22C or Section 25 of the Patents Act of the Kingdom of the Netherlands, whichever of the two dates occurs earlier.

NORWAY

The applicant hereby requests that, until the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Norwegian Patent office or any person approved by the applicant in the individual case.

SINGAPORE

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for international publication of the application.

*Escherichia coli DB3.1(pEZC15102)***SWEDEN**

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent office or any person approved by the applicant in the individual case.

UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for international publication of the application.

*Escherichia coli DB3.1(pEZC15101)***AUSTRALIA**

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

CANADA

The applicant hereby requests that, until either a Canadian patent has been issued on the basis of the application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the furnishing of a sample of deposited biological material referred to in the application only be effected to an independent expert nominated by the Commissioner of Patents.

DENMARK

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent office or any person approved by the applicant in the individual case.

FINLAND

The applicant hereby requests that, until the application has been laid open to public inspection (by the National Board of Patents and Registration), or has been finally decided upon by the National Board of Patents and Registration without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the National Board of Patents and Registration or any person approved by the applicant in the individual case.

*Escherichia coli DB3.1(pEZC15101)***ICELAND**

The applicant hereby requests that, until the application has been laid open to public inspection (by the Icelandic Patent Office), or has been finally decided upon by the Icelandic Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art.

NETHERLANDS

The applicant hereby requests that until the date of a grant of a Netherlands patent or until the date on which the application is refused or withdrawn or lapsed, the microorganism shall be made available as provided in Rule 31F(1) of the Patent Rules only by the issue of a sample to an expert. The request to this effect must be furnished by the applicant with the Netherlands Industrial Property Office before the date on which the application is made available to the public under Section 22C or Section 25 of the Patents Act of the Kingdom of the Netherlands, whichever of the two dates occurs earlier.

NORWAY

The applicant hereby requests that, until the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Norwegian Patent office or any person approved by the applicant in the individual case.

SINGAPORE

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for international publication of the application.

*Escherichia coli DB3.1(pEZC15101)***SWEDEN**

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent office or any person approved by the applicant in the individual case.

UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for international publication of the application.

*Escherichia coli DB3.1(pENTR-3C)***AUSTRALIA**

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

CANADA

The applicant hereby requests that, until either a Canadian patent has been issued on the basis of the application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the furnishing of a sample of deposited biological material referred to in the application only be effected to an independent expert nominated by the Commissioner of Patents.

DENMARK

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent office or any person approved by the applicant in the individual case.

FINLAND

The applicant hereby requests that, until the application has been laid open to public inspection (by the National Board of Patents and Registration), or has been finally decided upon by the National Board of Patents and Registration without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the National Board of Patents and Registration or any person approved by the applicant in the individual case.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US00/05432

A. CLASSIFICATION OF SUBJECT MATTER

IPC(7) :Please See Extra Sheet.

US CL :435/91.2, 252.3, 320.1; 530/350; 536/ 23.1, 24.1

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 435/91.2, 252.3, 320.1; 530/350; 536/ 23.1, 24.1

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

NONE

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Please See Extra Sheet.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X,P ----	US 5,888,732 A (HARTLEY et al.) 30 March 1999, see entire document.	1-21, 25-30 36-38 -----
Y,P		22-24, 31-35
X - Y	HASAN et al. Escherichia coli genome targeting, I. Cre-lox-mediated in vitro generation of ori- plasmids and their in vivo chromosomal integration and retrieval. Gene. 1994, Vol. 150, pages 51-56, see entire document.	1-5, 10, 11, 19-21 ----- 15-18, 22-38
X - Y	KATZ et al. Site-specific recombination in Escherichia coli between the att sites of plasmid pSE211 from Saccharopolyspora erythraea. Mol. Gen. Genet. 1991, Vol. 227, pages 155-159, see entire document.	1-11, 19-21 ----- 15-18, 22-38

Further documents are listed in the continuation of Box C. See patent family annex.

- * Special categories of cited documents:
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "Z" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
08 MAY 2000	23 MAY 2000
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231	Authorized officer <i>Dixie Lawrence Fox</i> IREM YUCEL
Faxsimile No. (703) 305-3230	Telephone No. (703) 308-0196

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US00/05432

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X - Y	ASTUMIAN et al. Site-specific recombination between cloned attP and attB sites from the Haemophilus influenzae bacteriophage HP1 propagated in recombination deficient Escherichia coli. J of Bacteriology. March 1989, Vol. 171, No. 3, pages 1747-1750, see entire document.	1-11, 19-21 ----- 15-18, 22-38

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US00/05432

A. CLASSIFICATION OF SUBJECT MATTER:
IPC (7):

C07H 21/04; C07K 1/00, 14/00; C12N 1/21, 15/00, 15/09, 15/63, 15/70; C12P 19/34

B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

WEST, STN (CAPLUS); DIALOG (MEDLINE, BIOSIS; SCISEARCH, PASCAL)

Terms: att (B?, P?, R?, L?), MCS, POLYLINKER, PLASMID, VECTOR, LOCALIZATION, SIGNAL, TRANSCRIPTION, TERMIN?, TRANSLATION?, ORI, REPLICON, GST, HEXHIST?, THIOREDOX?, CLEAVAGE, SITE?, SPECIF?, DIRECT?, RECOMBIN?, CLON?, INSERT?

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.