## 1. Consider the graph below:



## We wish to represent it as an adjacency list. Select the correct statements below.

- lacksquare The adjacency list for node 2 has a single entry [1] representing the incoming edge 1 o 2.
- lacksquare The adjacency list for node 2 has a single entry [4] representing the outgoing edge 2 o 4.
- CorrectCorrect.
- lacktriangle The adjacency list for node 4 contains the element 5, and the list for node 5 contains the element 4.
- lacktriangledown The adjacency list for node 3 is empty, since it has no outgoing edges.
- Correct
  Correct, as evident from the drawing.
- The total size of the adjacency list is the number of nodes (6) plus the number of edges (8).
- Correct
  Correct. Adjacency list has one list for each node and one entry in each list for each edge.

## 2. Consider the graph below:



Consider the adjacency matrix representation for the graph above. We recommend that you write down this representation for the graph above. Select all the correct facts from the list below.

| octed att the correct facts from the tist betow.                                                                                                   |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $\hfill\square$ The matrix is an $8\times 8$ matrix, since there are $8$ edges in the graph.                                                       |  |
| The matrix is a $6	imes 6$ matrix, wherein each row and column corresponds to a node in the graph.                                                 |  |
|                                                                                                                                                    |  |
| lacksquare To represent the edge $2	o 4$ , the matrix has an entry $1$ in the row corresponding to node $2$ and column corresponding to node $4$ . |  |
|                                                                                                                                                    |  |
| ☑ If the graph were undirected, then the adjacency matrix equals its transpose.                                                                    |  |
|                                                                                                                                                    |  |

The adjacency matrix for a graph with n nodes and m edges is an m imes m matrix with n entries that are 1.

The adjacency matrix for a graph with n nodes and m edges is an  $n \times n$  matrix with m entries that are 1.

○ Correct

Correct.