

Actividad el algoritmo de árbol de decisión (Tiempo estimado: 90 [minutos]) Actividad individual.

Objetivo de aprendizaje:

Programar un algoritmo de predicción en múltiples variables en Python con el uso de las librerías de Scikit_Learn para crear un modelo de árbol de decisión.

Habilidades	Ha	bi	lid	lad	es
-------------	----	----	-----	-----	----

Razonamiento lógico y sistémico.

Instrucciones:

- 1. Revisa las <u>secciones 1 a 5</u> del siguiente link:
 - https://www.kaggle.com/learn/intro-to-machine-learning
- 2. Responde correctamente las siguientes preguntas guía:
 - a) Capturing patterns from data is called ___ajustar o entrenar al modelo____
 - b) The data used to fit the model is called ___datos de entrenamiento___
 - c) After the model has been fit, you can apply it to new data to ____predecir_____
 - d) You predict the price of any house by tracing through ___un árbol de medicion ___
 - e) The point at the bottom where we make a prediction is called **hoja**
 - f) Explica lo que representa cada fila de la siguiente tabla (revisa la sección 2)

	Rooms	Bathroom	Landsize	Lattitude	Longtitude
count	60.000000	60.000000	60.000000	60.000000	60.000000
mean	2.716667	1.566667	251.133333	-37.777957	144.939105
std	0.783120	0.620734	244.073028	0.048900	0.054444
min	1.000000	1.000000	0.000000	-37.848100	144.867900
25%	2.000000	1.000000	123.000000	-37.808125	144.878975
50%	3.000000	1.500000	165.500000	-37.801550	144.952150
75%	3.000000	2.000000	266.750000	-37.723775	144.995400
max	6.000000	3.000000	1063.000000	-37.716400	145.000400

Los resultados muestran 8 números por cada columna en el conjunto de datos.

El primero (count/recuento) muestra cuántas filas son las que tienen valores no faltantes.

El segundo (mean/medida) que es el promedio.

El tercero (std/estándar) es la desviación estándar, que está midiendo la extensión numérica de los valores.

El cuarto (min/mínimo) es el valor mínimo.

El quinto (25%)

El sexto y séptimo (50% y 75%) son percentiles que se definirán de manera análoga.

Y el octavo (max/máximo) es el valor más grande.

g)	The column we want to predict, which is calledobjetivo de predicción
h)	The columns that are inputted into our model (and later used to make predictions) are
	calledcaracterísticas
i)	The steps to building and using a model are:
	_Definir: ¿Qué tipo de modelo será? ¿Un árbol de decisión? ¿Algún otro tipo de modelo?
	_Entre otros parámetros del tipo de modelo
	_Ajuste: es la captura de patrones de los datos que se proporcionan
	_Predecir:
Observa cór	no es la predicción de los precios tomando en cuenta cinco registros. NOTA: En realidad no so
	as cinco en orden de aparición puesto que se excluyeron los registros que tienen celdas vacías
-	melb_data.csv ¿cuál sería el MAE para los datos predichos?The predictions are
[1035000	. 1465000. 1600000. 1876000. 1636000.]
j)	-
-	¿Cómo se define el Error Medio Absoluto (MAE <i>Mean Absolute Error</i>)
	MAE de tu entrenamiento con cinco registros? 666.666666666666666666666666666666666
I)	
m)	Después de dividir el conjunto de datos en las variables de entrenamiento y validación
	(train_X, val_X, train_y, val_y), así como después de entrenar nuevamente, cuál
	es el MAE que obtienes?
3. En	Google Colaboratory codifica el script que se adjunta a este documento.
	un repositorio en GitHub agrega el script y en los comentarios las preguntas y respuestas.
4. [1]	an repositorio en dichas agrega el script y en los comentarios las pregantas y respuestas.

Recomendaciones al facilitador:

- Descarga el archivo melb_data.csv
 NOTA: el archivo original que puedes
 descargar en el minicurso, tiene más de
 5000 registros; Google Colaboratory no
 permite cargar archivos con demasiados
 registros, es por ello que se redujo a los
 primeros 100.
- El documento en el enlace
 https://www.kaggle.com/learn/intro-tomachine-learning
 es un minicurso, el cual pretende hacer una breve introducción al aprendizaje de máquinas. Es importante que leas con detenimiento las secciones 1 a 5 para poder entender el script.

Recursos y materiales necesarios:

Cuenta de correo en Gmail Registro en Kaggle.com


```
[12] import pandas as pd
     from sklearn.tree import DecisionTreeRegressor
     from sklearn.metrics import mean_absolute_error
     from sklearn.model_selection import train_test_split
[13] from google.colab import files
    uploaded = files.upload()
Seleccionar archivos melb_data.csv
    • melb_data.csv(text/csv) - 13839 bytes, last modified: n/a - 100% done
    Saving melb data.csv to melb data.csv
[14] melbourne_data = pd.read_csv('melb_data.csv')
    melbourne_data.columns
'Landsize', 'BuildingArea', 'YearBuilt', 'CouncilArea', 'Lattitude', 'Longtitude', 'Regionname', 'Propertycount'],
          dtype='object')
melbourne_data = melbourne_data.dropna(axis=0)
    v=melbourne data.Price
    melbourne_features = ['Rooms', 'Bathroom', 'Landsize', 'Lattitude', 'Longtitude']
    X = melbourne_data[melbourne_features]
    X.describe()
[ ] X.head()
[]
    melbourne_model = DecisionTreeRegressor(random_state=1)
    melbourne_model.fit(X, y)
    print("Making predictions for the following 5 houses:")
    print(X.head())
    print("The predictions are")
    print(melbourne_model.predict(X.head()))
[ ] predicted_home_prices = melbourne_model.predict(X)
    mean_absolute_error(y, predicted_home_prices)
train_X, val_X, train_y, val_y = train_test_split(X, y, random_state = 0)
    melbourne_model = DecisionTreeRegressor()
    melbourne_model.fit(train_X, train_y)
    val_predictions = melbourne_model.predict(val_X)
    print(mean_absolute_error(val_y, val_predictions))
```


UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO

Instalaci n Configuración y Comunicación de Sistemas Operativos

RÚBRICA DE EVALUACIÓN DE LA INFOGRAFÍA				
PUNTO A EVALUAR	MUY BIEN 10	BIEN 8	REGULAR 5	PUNTAJE OBTENIDO
Información vertida en el documento	La información que se vierte en el documento es veraz y está en el contexto correcto.	La información que se vierte en el documento es veraz pero no está en el contexto correcto.	La información que se vierte en el documento no es veraz y no está en el contexto correcto.	
			TOTAL	