

VISUALISIERUNG DER MANDELBROTMENGE

Felicia Burtscher Matthias Kupferschmied Nora Rülander Eike Sommer

Definition der Mandelbrotmenge

- 1980 veröffentlichte Benoît Mandelbrot eine Arbeit zum Thema Mandelbrotmenge
- Rekursionsvorschrift: $z_{k+1} = z_k^2 + c$ mit $c \in \mathbb{C}$ und $z_0 = 0$
- Definition der Mandelbrotmenge M:

 $M := \{ c \in \mathbb{C} : Die Folge (z_k) \text{ ist beschränkt} \}$

Komplexe Zahlen c, für die die Folge (z_k) beschränkt ist, sind schwarz eingefärbt. Zahlen, für die die Folge divergiert, sind grün eingefärbt.

Beispiel 1:
$$c = 0,1 + 0 \cdot i$$

 $z_1 = 0 + 0,1 = 0,1$
 $z_2 = (0,1)^2 + 0,1 = 0,11$
 $z_3 = (0,11)^2 + 0,1 = 0,1121$
 $z_4 = 0,11256641$
 $z_5 = 0.1126711966602881$
 $z_{1000} = 0.11270166537925831$

Beispiel 2:
$$c = 1 + 0 \cdot i$$

 $z_1 = 0 + 1 = 1$
 $z_2 = 1^2 + 1 = 2$
 $z_3 = 2^2 + 1 = 5$
 $z_4 = 26$
 $z_5 = 257$

Graphische Darstellung der Mandelbrotmenge

- Alle komplexen
 Zahlen c, für die die
 Folge (z_k) beschränkt
 ist, sind schwarz
 eingefärbt.
- Gezeigt wird der Ausschnitt der komplexen Zahlenebene:
 - $-2,3 \leq \text{Re}(c) \leq 1$
 - $-1,2 \le Im(c) \le 1,2$
- Herausforderung:
 Koordinatentransformation

Beschränktheit

• Wenn c Element der Mandelbrotmenge ist, dann gilt: $M = \{c \in \mathbb{C} : |z_k| \le 2 \text{ für alle Iterationsschritte k}\}$ Wenn $|z_k| > 2 \text{ für ein k, dann ist die Folge } (z_k)$ unbeschränkt und somit c nicht Element der Mandelbrotmenge c.

Beweisidee: Beweis durch Induktion.

Proposition 1: Sei Icl > 2. Dann gilt: $Icl = Iz_1 I < Iz_2 I < ... < Iz_k I$.

Proposition2: Sei |c| > 2. Dann gilt: $|z_k| > |z_2| + 2^{k-2} - 1$) ($|z_2| - |c|$) für alle $k \ge 2$.

Beispiel 1:
$$c = 0,1 + 0.1$$

$$z_1 = 0,1$$
, $|z_1| = 0,1$

$$z_2 = 0.11$$
, $|z_2| = 0.11$

....

 $|z_{1000}| = 0.11270166537925831$

→ Entscheidung: c gehört zur

Menge M

Beispiel 2:
$$c = 1 + 0 \cdot i$$

$$z_1 = 1$$
, $|z_1| = 1$

$$z_2 = 2$$
, $|z_1| = 2$

$$z_3 = 5$$
, $|z_1| = 5$

→ c gehört nicht zur Menge M

Graphische Darstellung der Mandelbrotmenge

M ist spiegelsymmetrisch zur reellen Achse.

Beweisskizze: Sei c = a + bi eine komplexe Zahl und d = a - bi die zu c konjugiert komplexe Zahl. Für c und d ergeben sich für die ersten zwei Iterationsschritte:

$$z_1 = 0 + c = c = a + bi$$

 $z_2 = (a + bi)^2 + (a + bi)$
 $= a^2 + 2abi - b^2 + a + bi$
 $= (a^2 - b^2 + a) + (2ab + b)i$

$$z_1 = 0 + d = d = a - bi$$

 $z_2 = (a - bi)^2 + (a - bi)$
 $= a^2 - 2abi - b^2 + a - bi$
 $= (a^2 - b^2 + a) - (2ab + b)i$

Der Betrag einer komplexen Zahl c misst die Länge der Strecke vom Nullpunkt zum Punkt c. Deswegen ist der Betrag einer komplexen Zahl und ihrer konjugiert komplexen Zahl gleich.

Variation von z₀

$$z_0 = 0.5 + 0i$$

$$z_0 = 1 + 0.2i$$

$$z_0 = -1 + 0.5i$$

 $z_0 = -0.5 + 0.5i$

Variation von z₀

"lineare" Farbprojektion mit Startwert $z_0 = -0.5 + 0.5i$

Verschiedene Iterationsstufen

1 Iteration

100 Iterationen

10 Iterationen

1000 Iterationen

•Alle Punkte c, die betragsmäßig kleiner als 2 sind, liegen in einem Kreis mit Radius 2.

•Mit steigender Iterationszahl nähert sich die Darstellung der tatsächlichen Menge an.

Verschiedene Iterationsstufen

1 Iteration

3 Iterationen

2 Iterationen

4 Iterationen

- •Der Farbverlauf gibt an, wie viele Iterationsschritte benötigt werden, um herauszufinden, dass der Punkt c außerhalb der Mandelbrotmenge liegt.
- •Die Iterationsschritte werden linear auf den Farbraum projiziert.

Verschiedene Iterationsstufen

5 Iterationen

100 Iterationen

10 Iterationen

1000 Iterationen

•Der Farbverlauf zeigt, dass bei vielen komplexen Zahlen c, nach relativ wenig Iterationsschritten deutlich wird, dass die Folge unbeschränkt ist.

Numerisches Problem

Die schwarze Linie ist ein Detail, das größer dargestellt wird, als es ist.

Durch Erhöhung der Bildhöhe um einen Pixel verschwindet das Artefakt.

Blauer Kanal "Wurzel" – Projektion 100 Iterationen

Blauer Kanal "Wurzel" – Projektion 1000 Iterationen

Blauer Kanal zweimal gezoomt "Wurzel" – Projektion 100 Iterationen

Blauer Kanal zweimal gezoomt "Wurzel" – Projektion 1000 Iterationen

Blauer Kanal zweimal gezoomt "Wurzel" – Projektion 100 Iterationen

Blauer Kanal zweimal gezoomt "Wurzel" – Projektion 1000 Iterationen

"lineare" Farbprojektion

"quadratische" Farbprojektion

"lineare" Farbprojektion 3 mal gezoomt

"quadratische" Farbprojektion 3 mal gezoomt

"lineare" Farbprojektion 8 mal gezoomt

"quadratische" Farbprojektion 8 mal gezoomt

"einfache" Farbprojektion

"dreifache" Farbprojektion

"einfache" Farbprojektion 3 mal gezoomt

"dreifache" Farbprojektion 3 mal gezoomt

"einfache" Farbprojektion 5 mal gezoomt

"dreifache" Farbprojektion 5 mal gezoomt

<u>Farbverläufe</u>

"50-fache" Projektion

"510-fache" Projektion

"50-fache" Projektion 3 mal gezoomt

"510-fache" Projektion 3 mal gezoomt

"50-fache" Projektion 5 mal gezoomt

"510-fache" Projektion 5 mal gezoomt

"logarithmische " Farbprojektion

"logarithmische" Farbprojektion 2 mal gezoomt

<u>Farbverläufe</u>

"logarithmische" Farbprojektion 5 mal gezoomt

"logarithmische" Farbprojektion 11 mal gezoomt

Strukturreichtum am Rand der Mandelbrotmenge

3 mal gezoomt

9 mal gezoomt

5 mal gezoomt

13 mal gezoomt

- Zoomfaktor: 0,2
- •Bei fortgesetzter
 Ausschnittsvergrößerung
 bilden sich ähnliche
 Strukturen, wie am
 Anfangszustand.
- Herausforderung beim Programmieren : Parallelisieren des Codes (Multi-Threading), Image Buffering
- •Weitere Optimierungsideen: Zwischenspeicherung von Daten, Nutzen mathematischer Eigenschaften der Mandelbrotmenge, Optimieren der Rechengenauigkeit.

Konvergenz

Beispiel 1: $c = 0,1 + 0 \cdot i$

$$z_1 = 0 + 0.1 = 0.1$$

$$z_2 = (0,1)^2 + 0,1 = 0,11$$

$$z_3 = 0,1121$$

$$z_4 = 0,11256641$$

$$z_5 = 0.1126711966602881$$

....

$$z_{1000} = 0.11270166537925831$$

Konvergenz

Periodischer Grenzzyklus

Beispiel 3:
$$c = -1$$

 $z_1 = (-1)^2 - 1 = 0$
 $z_2 = 0^2 - 1 = -1$

Periodischer Grenzzyklus

Chaotisches Verhalten

Wechselhaftes Verhalten

Quellen

Mandelbrot, B. (2013): Die fraktale Geometrie der Natur. Springer.

Mandelbrotmenge.http://www.math.kit.edu/iana2/~mandel/seite/media/vl6.pdf (aufgerufen am 15.09.2015).