General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

THE EFFECT OF REMOTE ZONES
ON THE ACCURACY OF EVALUATING
THE MOLODENSKY INTEGRAL

BY

James J. Buglia

January 1976

This informal documentation medium is used to provide accelerated or special release of technical information to selected users. The contents may not meet NASA formal editing and publication standards, may be revised, or may be incorporated in another publication.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION LANGLEY RESEARCH CENTER, HAMPTON, VIRGINIA 23665

(NASA-TM-X-72798) THE EFFECT OF REMOTE ZONES ON THE ACCURACY OF EVALUATING THE MOLODENSKY (NASA) 22 p HC \$3.50 CSCL 09E N76-17681

Unclas G3/46 14217

1. Report No. NASA TM X-72798	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle	<u> </u>	5. Report Date
The Effect of Remote Zones	On the Accuracy of	January 1976
Evaluating the Molodensky	-	6. Performing Organization Code
7. Author(s)		8 Performing Organization Report No.
7. Addition(3)		o renorming organization stages a to
James J. Buglia		10 Wark Unit No.
9. Performing Organization Name and Address		İ
NASA Langley Research Cent	er	11. Contract or Grant No.
Hampton, VA 23665		13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address		Technical Memorandum
National Aeronautics and S	pace Administration	M. Constant A. Constant
		14. Sponsoring Agency Code
Washington, DC 20546		
15. Supplementary Notes		
16. Abstraut		
An analytical method is pr	escented for determining th	ne error in computing
An analytical method is pr	esented for determining the	ne error in compacing
the gravity anomaly from t	he Molodensky integral if	geoidal undulation data
in remote zones are neglec	eted. The error is given	in terms of the usual
degree variance and a set	of parameters which are for	unctions only of the size
of the area in which undul	ation data are taken. A	numerical calculation
using Kaula's degree varia	nces indicates that it is	necessary to integrate
the Molodensky integral ov	ver approximately a hemispl	here in order to reduce
the effect of neglected da	ta to the order of 1 mill:	igal in the computation
of gravity anomaly.		
17 Key Words (Suggested by Author(s))	18. Distribution	
Condony	unclassif	ied - unlimited
Geodesy Geoid		
Geoid Molodensky equation		
norodensky equation		

20. Security Classif. (of this page)

unclassified

19. Security Classif. (of this report)

unclassified

27 Pare.

\$3.25

21 No. of Pages

22

THE EFFECT OF REMOTE ZONES ON THE ACCURACY OF EVALUATING THE MOLODENSKY INTEGRAL

James J. Buglia

An analytical method is presented for determining the error in computing the gravity anomaly from the Molodensky integral if geoidal undulation data in remote zones are neglected. The error is given in terms of the usual degree variance and a set of parameters which are functions only of the size of the area in which undulation data are taken. A numerical calculation using Kaula's degree variances indicates that it is necessary to integrate the Molodensky integral over approximately a hemisphere in order to reduce the effect of neglected data to the order of 1 milligal in the computation of gravity anomaly.

INTRODUCTION

The Molodensky integral, which relates the gravity anomaly at a specific point to a global distribution of geoidal undulation measurements, has long been of considerable theoretical use to the geodetic community. This equation has recently begun receiving renewed practical attention because direct geoidal measurements are now available, through altimetry data obtained from the GEOS-3 spacecraft, thus permitting the direct calculation of the anomalous gravity field.

Theoretically, the use of the Molodensky equation to compute gravity anomalies requires a continuous, global distribution of geoidal undulation measurements. This ideal situation is, of course, never realized in practice. The integral must be replaced by sums over finite areas, and interpolation and/or extrapolation of measured data are generally required to produce a sufficiently dense network of data.

It is thus of current interest to inquire if one can, as in the case of the Stokes equation, replace the global integration by an integration over a small spherical cap centered at the computation point. Two related questions are thereby raised: What is the expected error incurred in the computation of the gravity anomaly by neglecting undulation measurements in the remote zone outside a spherical cap of specified size; and, how large should the spherical cap be in order to contain the error within a specified accuracy?

A study which addresses these questions has been made and the results are the subject of this paper. The approach used is similar to that taken for addressing these questions for the related Stokes problem. An expression for the mean-square error incurred in neglecting data beyond a spherical cap of given size is derived in terms of a set of universal functions of only the cap size, and of the degree variances associated with the gravity field.

An illustration is provided indicating the mean-square error of omission for two different sets of degree variances, one using Kaula's rule of thumb, and the other for the GEM-4 gravity model. It is shown that a cap size of approximately one hundred degrees in radius is required to reduce the mean-square of omission to about 1 milligal.

ANALYSIS

The Molodensky integral (Molodensky, et al., 1962; Pick et al, 1973) is generally written as

$$\Delta g_{p} = -\frac{\gamma N_{p}}{R_{e}} - \frac{\gamma}{2\pi} \iint_{S} \frac{N - Np}{r_{p}^{3}} d\sigma \qquad (1)$$

in which the reference figure to which all quantities are referred is an ellipsoid of revolution with equatorial radius, a, and flattening, f. Δg_p and N_p are the gravity anomaly and geoidal undulation, respectively, at the point p, γ and R_e are mean values of the acceleration of gravity and radius of the reference ellipsoid, and do is the differential area element. N is the variable geoidal undulation associated with do and is measured along the normal to the reference ellipsoid. r_p is the chord distance between point p and do, and the subscript S on the integral denotes a global integration.

Equation (1) relates measured geoidal undulations about the reference ellipsoid. N and N_p , to gravity anomalies calculated with respect to the ellipsoid. Hence, all quantities in (1) should properly be computed on the ellipsoid. The chord distance, r_p , and the differential area, $d\sigma$, are in this case rather complex functions of position on the ellipsoidal surface. Fortunately, however, the Earth is very nearly spherical in shape with a flattening of approximately 1/300. Consequently, the expressions for r_p and $d\sigma$ can be replaced by their spherical approximations with an acceptably small loss in accuracy. Thus, if Ψ is defined as the central angle between the point p and the area element $d\sigma$, then

$$r_p \approx 2 R_e \sin \frac{\Psi}{2}$$

Further, if p is taken as the pole of a spherical coordinate system, and α is the azimuth angle of $d\sigma$ referred to any convenient meridian through p, the area element $d\sigma$ can be written

$$d\sigma \approx R_e^2 \sin \Psi d\Psi d\alpha$$

As a final preliminary, a new function $f(\Psi)$ is defined by

$$f(\Psi) = \frac{1}{\sin^3 \frac{\Psi}{2}}$$

such that

$$\frac{1}{r_p^3} = \frac{f(\Psi)}{8 R_e^3} \tag{2}$$

Equation (1) is now written as the sum of two parts - an integral over a spherical cap of angular radius Ψ_{0} centered at the point φ , and a second integral covering the rest of the globe.

$$\Delta g_{\mathbf{p}} = -\frac{\gamma N_{\mathbf{p}}}{R_{\mathbf{e}}} - \frac{\gamma}{16\pi R_{\mathbf{e}}} \int_{\Psi=0}^{\Psi_{\mathbf{o}}} \int_{\alpha=0}^{2\pi} f(\Psi)(N - N_{\mathbf{p}}) \sin \Psi d\alpha \tag{3}$$

$$-\frac{\gamma}{16\pi R_{e}} \int_{\Psi=\Psi_{o}}^{\pi} \int_{\alpha=0}^{2\pi} f(\Psi)(N-N_{p}) \sin \Psi d\alpha$$

The second integral of (3) gives the error that would be incurred in the computation of Δg_p by neglecting the undulation data in the region beyond the spherical cap of radius Ψ_o . We call this integral ε_p , and refer to it as the "error of omission." It is the evaluation of ε_p , and, more importantly, the global RMS value of ε_p , which is the topic of the following analysis.

Introducing a new function $\overline{f}(\Psi)$ with the following properties:

$$\overline{f}(\Psi) = 0 \text{ for } \Psi \leq \Psi_{o}$$

$$\overline{f}(\Psi) = f(\Psi) \text{ for } \Psi > \Psi_{o}$$
,

the expression for ε_p becomes

$$\varepsilon_{\mathbf{p}} = -\frac{\gamma}{16\pi R_{\mathbf{e}}} \int_{\Psi=0}^{\pi} \int_{\alpha=0}^{2\pi} \overline{\mathbf{f}}(\Psi)(\mathbf{N} - \mathbf{N}_{\mathbf{p}}) \sin \Psi \, d\Psi \, d\alpha \qquad (4)$$

where now the integration covers the entire globe.

Since $\overline{f}(\Psi)$ is piecewise continuous, it can be expanded in a series of Legendre polynomials (Macmillan, 1958, p 386; Heiskanen and Moritz, 1967, p 28).

$$\overline{f}(\Psi) = \sum_{n=0}^{\infty} \frac{2n+1}{2} R_n P_n(\cos \Psi)$$
 (5)

where the constants are defined by $[(2n+1)/2]R_n$ to simplify the algebra later, and $P_n(\cos\Psi)$ are the Legendre polynomials with argument cos Ψ . The constants are evaluated by utilizing the orthogonality relations for the Legendre polynomials (Heiskanen and Moritz, 1967, p. 30).

$$\frac{2n+1}{2} \quad R_n = \frac{2n+1}{4\pi} \quad \int_{\Psi=0}^{\pi} \quad \int_{\alpha=0}^{2\pi} \overline{f}(\Psi) P_n(\cos \Psi) \sin \Psi \ d\alpha \tag{6}$$

or

$$R_{n} = \int_{\Psi=0}^{\pi} \overline{f}(\Psi) P_{n}(\cos \Psi) \sin \Psi \ i\Psi$$

$$= \int_{\Psi=\Psi_{0}}^{\pi} f(\Psi) P_{n}(\cos \Psi) \sin \Psi \ d\Psi$$
(7)

Substitute (5) into (4), interchange the order of summation and integration, and expand the integrals,

$$\varepsilon_{p} = -\frac{\gamma}{16\pi R_{e}} \sum_{n=0}^{\infty} \frac{2n+1}{2} R_{n} \begin{bmatrix} \pi & 2\pi \\ \int \int \int 0 N P_{n}(\cos \Psi) \sin \Psi d\Psi d\alpha \end{bmatrix}$$

$$-N_{p} \int \int \int 0 P_{n}(\cos \Psi) \sin \Psi d\Psi d\alpha$$

$$= -N_{p} \int \int \int 0 P_{n}(\cos \Psi) \sin \Psi d\Psi d\alpha$$
(8)

N can also be expanded in a series of surface harmonics

$$N = \sum_{n=2}^{\infty} N_n$$

Where the N_n are given by equations similar to eq (6) of this text

$$N_{n} = \frac{2n+1}{4\pi} \int_{\Psi=0}^{\pi} \int_{\alpha=0}^{2\pi} N P_{n}(\cos \Psi) \sin \Psi d\alpha$$

Hence, the first integral of (8) is simply

$$\frac{4\pi N_n}{2n+1}$$

The second integral of (8) is also easily evaluated by recalling that $P_{O}(\cos \Psi) = 1$, and by making use of the orthogonality relations

$$\int_{\Psi=0}^{\pi} \int_{\alpha=0}^{2\pi} P_{n}(\cos\Psi)P_{m}(\cos\Psi)\sin\Psi d\Psi d\alpha = 0 , n \neq m$$

$$= \frac{4\pi}{2n+1}, n = m$$

and, hence, the second integral is equal to 4π .

Eq (8) is written in final form, then, as

$$\varepsilon_{\mathbf{p}} = \frac{\gamma}{8R_{\mathbf{e}}} \left(R_{\mathbf{o}} N_{\mathbf{p}} - \sum_{\mathbf{n}=2}^{\infty} R_{\mathbf{n}} N_{\mathbf{n}} \right)$$
(10)

Eq (10) gives the error in the calculation of the gravity anomaly Δg_p at a specific point P, caused by neglecting the undulation data beyond a spherical cap of angular radius Ψ_0 centered at P. Thus, ϵ_p is a function of the coordinates of P.

While this is of considerable interest in its own right, a more useful parameter is one which has global applicability and is not identified with a specific point.

One such parameter is the global RMS values of ϵ_p , and is found by squaring (10) and evaluating the mean of the result of the entire globe.

By definition, $M\left\{\varepsilon_{p}^{2}\right\}$ is the value of ε_{p}^{2} integrated over the unit sphere, divided by the area of the unit sphere, or

$$M \left\{ \varepsilon_{p}^{2} \right\} = \frac{1}{4\pi} \iint_{S} \varepsilon_{p}^{2} d\sigma \qquad (11)$$

If we write $N_p = \sum_{n=2}^{\infty} N_n$, then ϵ_p can be written

$$\varepsilon_{p} = \frac{\gamma}{8R_{e}} \sum_{n=2}^{\infty} (R_{o} - R_{n}) N_{n}$$

and thus (11) is

$$M \left\{ \varepsilon_{p}^{2} \right\} = \frac{\gamma^{2}}{64R_{e}^{2}} \sum_{n=2}^{\infty} \sum_{m=2}^{\infty} (R_{o} - R_{n})(R_{o} - R_{m})$$

$$\left[\frac{1}{4\pi} \iint_{S} N_{n}N_{m} d\sigma \right]$$
(12)

The bracketed term of (12) is the mean value of the product of two Laplace harmonics. This integral vanishes unless n = m. Heiskenen and Moritz

(1967) gives the following relations (pp. 256 and 259), and show that the mean value of the product of two gravity anomaly harmonics can be written in terms of the degree variances - i.e.

$$M \left\{ \Delta g_{n} \Delta g_{m} \right\} = 0 , n \neq m$$

$$= c_{n} , n = m$$
(13)

Also (p. 97), the general undulation harmonic can be written as a function of the gravity anomaly harmonic as

$$N_{n} = \frac{P_{e}}{\gamma} \qquad \frac{\Delta g_{n}}{p-1} \tag{14}$$

Using (13) and (14), then, we can write

$$M \left\{ N_{n} N_{m} \right\} = 0 \qquad n \neq m$$

$$= \frac{R_{e}^{2}}{\gamma^{2}} \frac{c_{n}}{(n-1)^{2}} , n = m$$

and (12) can be written in final form

$$M \left\{ \varepsilon_{p}^{2} \right\} = \frac{1}{64} \sum_{n=2}^{n} (R_{o} - R_{n})^{2} \frac{c_{n}}{(n-1)^{2}}$$
 (15)

This is the desired equation and expresses the mean square value of the error of omission in Δg_p , in terms of only the degree variances, c_n , and the R_n terms, which are functions only of the cap size, Ψ_0 .

NUMERICAL RESULTS

Expressions for R_n can be found from a direct integration of eq (7) for any Ψ_0 . R_0 and R_1 are thus found to be

$$R_{o} = 4 \left(\frac{1 - \Gamma}{\Gamma} \right)$$

$$R_1 = R_0 - 8 (1 - \Gamma)$$

Where $\Gamma = \sin(\Psi_0/2)$. For larger n, the direct integration of (7) becomes cumbersome. However, Meissl (1971) has derived a recursion formula for Molodensky-type kernals. With a slight modification of notation this formula is

$$R_{n} = \frac{2 \left[P_{n-2} \left(\cos \Psi_{o} \right) - P_{n} \left(\cos \Psi_{o} \right) \right]}{(n - 1/2) \sin(\Psi_{o}/2)} + 2R_{n-1} - R_{n-2}$$

values of R_n are presented in table I for n=0 to 20, and for $\Psi_0=5^\circ$ to 180° in 5-degree increments. R_0 through R_6 are plotted against Ψ_0 in figure 1. All of the R_n tend towards zero as Ψ_0 goes to 180° , naturally, since the error of omission is zero if one integrates eq (1) over the entire globe. All of the R_n display a rather heavily damped oscillatory character, with R_n crossing the zero-axis n times. For moderate to large values of Ψ_0 , the magnitude of R_n decreases rapidly as n increases, indicating that the high frequency components of the gravity field contribute little to the error of omission for these cap sizes. For small values of Ψ_0 the contribution of the higher frequency terms appears to be more significant. However, the degree variances themselves drop off quite rapidly with increasing n. For example, using the well-known Kaula rule of thumb (Kaula, 1962), one can write

$$c_n \approx \frac{96 (n-1)^2 (2n+1)}{n^4}$$

for the Earth's gravity field, and it can be seen that the c_n decreases approximately as 1/n. It has been found that, for Ψ_0 greater than about 10° , seven or eight terms of (15) are sufficient for convergence to less than 1% error in M $\left\{\varepsilon_p^{\ 2}\right\}$.

For illustrative purposes, eq (15) was evaluated for two sets of degree variances — the Kaula approximation above, and a set of degree variances derived from the GEM-4 gravity field (Lerch, et al., 1972). These results are displayed in fig. 2, where the quantity $\sqrt{M\left\{\epsilon_p^2\right\}}$ is plotted for a range of Ψ_o . The general trend of the curves is that expected, namely, that the error of omission drops off rather rapidly with increasing size of the spherical cap, asymptotically approaching zero error as Ψ_o goes to 180°. Both sets of degree variances yield quantitatively similar results, indicating that a cap size of the order of 90° - 100° is necessary to reduce the error of omission to the order of 1 milligal.

CONCLUSIONS

A rather simple formula has been derived which predicts the mean-square error incurred in the computation of gravity anomaly by the Molodensky formula when one uses only measured data in a small spherical cap surrounding the computation point, and neglects data outside this cap. If one uses representative degree variances for the Earth it is found that integration of geoidal undulation data over approximately a hemisphere centered at the computation point is required to yield the gravity anomaly at the computation point to an accuracy of 1 milligal. It is evident that rather extensive interpolation and/or extrapolation of measured data would i general be necessary to provide a sufficiently dense network of data for direct utilization of the Molodensky integral.

REFERENCES

- 1. Heiskanen, W. A. and Moritz, H., Physical Geodesy, W. H. Freeman and Co., 1967.
- 2. Kaula, William M., An Introduction to Planetary Physics; The Terrestrial Planets, John Wiley and Sons, 1962.
- 3. Lerch, F. J.; Wagner, C. A.; Putney, B. H.; Sandson, M. L.; Brownd, S. J. E.; Richardson, J. A.; and Taylor, W. A.; Gravitational Field Models GEM-3 and -4, Goddard Space Flight Center, X-592-72-476, 1972.
- 4. MacMillan, W. P., The Theory of the Potential, Dover Publications, Inc., 1958.
- Meissl, Peter, Preparations for the Numerical Evaluation of Second-Order Molodensky-Type Formulas, Repts. of the Dept. Geo. Sci., Rep. No. 163, The Ohio State University, Columbus, Ohio, 1971.
- Molodensky, M. S.; Eremeev, V. F.; and Yurkina, M. I.; <u>Methods for Studying the External Gravitational Field and Figure of the Earth</u>, Israel Program for Scientific Translations, Jerusalem, 1962.
- 7. Pick, M.; Picha, J.; and Vyskocik, V.; Theory of the Earth's Gravity Field, Elsevier Scientific Publishing Co., 1973.
- Rapp, Richard H., The Formation and Analysis of a 5° Equal Area Block Terrestrial Gravity Field, Rept. of the Dept. Geo. Sci., Rep. No. 178, Ohio State University, Columbus, Ohio, 1972.

R10	26.57052	-2.24474	-3.76321	-1.48597	. 25324	.77582	.49730	. 32133	25710	24763	07295	. 39073	.13857	.07571	02204	07810	36493	00897	09050	.05046	.02217	01639	03575	02575	00100	.02227	. 02371	.00782	01082	01825	01128	.00200	99010.	. 33973	.33343	. 00000
R ₉		. 40447	.70608	-2.17338	38230	.55724	.67209	.34641	03320	23939	23052	09167	.05528	.12552	.10244	. 02544	34737	07441	05141	00282	.03738	.04723	.02691	30578	02907	03075	01368	•00856	.02169	-01948	.00625	00774	01385	01060	00349	. 00000
RB	36.12646	1.91990	-3.23160	-2.67353	-1.11612	18890.	.58811	.57379	.29150	01555	20053	22583	13515	00720	.38795	.11543	.08036	.01483	04301	06747	05405	01696	.02130	.04205	.03850	.01675	00933	02626	02739	01509	.00200	-01442	11710.	.01145	.00356	. 00000
R7	41.38996	-			-1.80049	62016	.18637	.53245	.51877	•30926	.05811	12891	23636	18133	09373	-00662	.07923	.10408	.08319	. 03470	01719	05216	06026	04353	01296	.01719	.03539	.03673	.02372	*00+08	01322	02182	02335	01224	00361	00000
R ₆	.9841	8.17296	62196	-2.52045	-2.23568	-1.34545	47787	.13073	.43470	.48370	.36731	.17969	00514	12909	18196	16668	10565	02765	.04101	.08276	.09136	.07114	•03365	05900	03810	05250	04884	03144	00793	.01352	.02681	.02959	.02345	€0129€	. 30366	.00000
R ₅	52.51350	7	. 7024		-2.13046	-1.84854	-1.23303	55803	05356	.26505	.40605	. 40625	.31+26	.17881	.04105	06976	13772	15938	14118	16560*-	03390	.31543	.05610	.07708	.07755	.06112	.03434	.00487	02037	03658	34188	03732	32634	01369	03370	0.00000
$R_{1\mu}$	59.18195	7884	4.82465	.31609	-1.36834	-1.79321	-1.63794	-1.24195	78681	36598	03947	.18750	.31323	.35183	.32398	.25232	.15883	. 36245	02224	08565	12318	13470	12368	09603	05883	01543	.01605	.04294	.05873	.06295	.05724	.04460	15820.		.00374	0.00000
. В.	5.7927	22.05193	8.82210	.1632	.47203	79679	-1.31238	.4152	•	-1.05310	77550	50000	25304	04929	10401.	90602.	.26674	.28427	. 26955	.23118	.17776	.11726	. 05663	. 00149	04408	07754	06260	10554	10200	69680	07161	05102	03107	_	03377	0.0000
RS	0 72.74854	27.94129	13.76003	7.16075	3.59434	1.52777	.30145	41637	81144	99621	-1.04291	-1.00000	90108	75999	62382	47484	33192	20101	08612	.01043	.03762	.14547	.18485	.20725	.21467	. 20541	.19403	.17113	.14350	.11356	.0837+	. 05620	.03276	•	.00373	0.0000
$_{1}^{R}$	3513	4.5921	5.6d3+	2.4545	.2124	. 5253	176	.4313	•	. 34575	.35671	00000	25097	43760	55919	63483	67453	54529	07641	65302	61128	56305	51011	45299	39439	-,33603	27939	22575	17615	13149	09251	05983	03393	in	.003	0, 00000
RO	20	1.8948	6.6451	9.0350	480	1.4548		7.69522	.4525	5.46431	17900	.0000	4440	2.97379	5707	2229	9201	1.65685	4253		1.04189	.88313	.74276	.61880	.5053	.41351	.32957	67	.19412	.14110	.09712	.06171	.03452	25	2	0.00000
÷°	n	3	15	2	52) O	35	10	45	Ç	55	9	é5	2	75	30	85	65	65	61	105	011	115	120	172	130	135	140	145	150	155	100	165	170	175	180

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

TABLE I(a) R coefficients for ψ_0 = 5 to 180 degrees

n = 0 to 10

÷°	R ₁₁	R ₁₂	R ₁₃	R ₁₄	R15	R16	R17	R18	R ₁₉	R20
w		2687	.5709	.165	.04	5.19564	145	.29020		9.
3	-3.c4176	4.5379	5.2767	5.601	.056	**	-5.12735	-4.62407		-3.32825
15		2.9900	2.3379	1.612	87863	33	.41	.90208	1.25871	4
7	740+2	. 1593		9	.12	56	æ	3	.53129	.20035
52	61669.	17716.		2	57	~	.167	39146	2	51897
3.	.73662	11603.		7	34195	43885	2	-		.09827
35	.18753	12178	-, 32644	37848	168	11403	2	0	.24827	.19804
7	23758	33451		087		.23445	.20513	11411.	1464	11896
45	28703	.1525		171	18597	66760.	3	12419	13227	36562
20	08994	. 39271		125	0.0000.	10355	12133	15471	-03:205	. 19326
3	.10415	11691.		1	11487	11	-	8	3726	.00633
90	.14074	. 35594		104	380	25	91610.	.02781	04205	06255
r)	. 05093	36632		.0	3	2	90	4	38	+1610.
2	19150	. 3839		064	485	237	05521	4	.03823	.03608
15	08705	1-1277-		3	02877	6	. 30125	.04214	18	02735
3	04111	. 34373		025	04572	0	.04035	9	03229	01593
85	.02721	. 05394		.045	. 30486	38		-	2	. 32646
3	.05046	. 33589		00410	.03647	32	0	00226	.02598	. 00175
55	.03183	03039		. 03282	87600.	28	033		00136	02107
001	01417	13445		020	02485	3	2	00036	9	.30687
c01	03366	.00114		01521	-	20	0	0	5	16610.
11	02558	. 32853		02440	.01336	-	01857	.00195	.01456	01099
113	39000.	.02257		00016	.01894	01410	00480	•01565	00824	00693
150	. 02724	JU+5J	.3174	. 31944	30357	2	-	00290	00936	89110.
125	16020.	32221		.01111	168	90	*00505	2	01600	.00105
130	00209	01461		00995	03	.31248	=	034	16500	01000
135	01654	19500.		•014	.01247	00413	00503	8	68	.00309
140	01700	.01712		. 30327	.00786	01124	• 30926	00361	30275	10700.
145	00076			.01207	1100	3	04	19	0	30527
150	.01309	0	600	900	92	. 00931	00713	•00354	.00039	00366
155	.01325	0	550	900	021	5	3	19	00646	.00562
160	.00246	0	076	.008	3		.00518	00317	.00111	62000.
165	00702	3	ç	.00018	.00158	00293	.00387	00443	- 30462	30450
173	00877	78	0068	. 00590	00496	•00400	00317	.00235	00158	.00083
175	00335	2	00319	.00310	00300	16700.	00280	.00270	00259	.00248
3	. 3333	3	000		.00000	.00000	00000	0		. 00000

Table I(b) R coefficients for ψ_0 = 5 to 180 degrees

•	^R 30	.317	108	62	.10376	.06743		.11794	39373	. Je185	03395	. 30574	.01167	02101	.02327		•01386	30634	00065	65	00880		30772	8	00152	30153	.00372	00472	+5400.	30341	271000	00002	00134	•03534	00200	. 30133	.00000					
	R29		523	62	379iJ				37321	.02075	.01536	03353	29	02825	.01502	00148	00880	.01400	01403	7	041	00169	.00590	00761	m	041	.00082	-	30433	CA	00331	64100.	.000040	30169	N		000000	きる。				
	R28	11	15	818	27015	2	16507	.10010	4	03763		99	.02507	17	01500	. 02154	01852	.00953	-00001	00843	12	00933	.30428	14	25	67	352	0	84100.	037	7	28		-	2	-	00000	ORIGH	REPROPE PAGE	COUNC		
	R27	525	397	214	4		16865	-	8	78	.05713	5	01393	86	14	33	30	138	.01558	26	0	20	95	•00119	17	032	190	053	020	16	00384	.03374	=	0	610	-	.00000		PAUL	BILLIST	TO OF	
	R26	-10-27603	21	45	58301	8	37835	2		5	.01604	0	52	4	32	168	77	-	3	112	127	990	322	00805	52	03	325	058	7	0	4	240		2		-	00			Jan.		
	R25	-9.63727	37	45	~	12		9	2	2	04217	90	02925	2	85	54	044	131	01743	036	.00421	01145	81600.	00085	00652	.00790	033	027	8	00415	005	035	03	2	12	318	.00000		180 degrees	1		
	R24	-8.82526	Ď	.1498	.6430	05	7	16	.0580	35	52	55	20	16	33	1	28	11	1	45	27	10	2600.	97	30203	.0060	15	5	. 0038	. 33572	53	23	0	9100	.0011	220	S		= 5 to	0		
	R23	7.8	50	.3773	.5466	23	17	1404	25	1000	0547	. 32.35	50	. 0258	0150	75	0133	.0117	9510	00 00	95	0135	36	3378	5.2	0012	5	2	0003	25	00 46	5	0039	27	07	0.021	ဒ္		coefficients for		to 30	
	R22	0	25	• 2519	. 30 23	2717	15	3427	1186	39+9	20	1053	3347	13	3379	56	2213	0215	2013	0115	e 010.	0003	1131	39	5700	3.	0003	4,	0048	27	0058	017	034	0035	333	77	0000		æ	E	n = 21 t	
	R21	10	. 5 028	.5612	.1033	.4536	23.5	1854	1501	3287	_	1350	.3213	2445	culo.	_	3225		9554	0047	-	0113	. 2055	.0	• 000.	•	7	0	0016	_	0055	0032	.0023	_	0007	.0023	000		Table I(c)			
	→	un ,	3	2	50	52	00	35	7	4	S	5	çç	5	70	15	2	92	6											145												

0	R ₃₁	R ₃₂	R ₃₃	R ₃₄	R35	R36	R37	R38	R ₃₉	Rho
'n	-11.25366	.0816	.81.74	.4541	01		.35		-7.69023	-7-03576
3	.2587	. 3430	.3307	1890		.786	517	8	.90047	.57522
15	764	+	763	.8429	3	61880	.451	592	+04400-	.10882
23	576	£71	232	238		.28245	3	5	08796	15233
52	595	633	98	404	17	15069	19	.03243	(1)	.16769
3	274	32	295	563	.14020	.08368	66210.	N		12382
35	51	01075	733	64	0	05575	.00193	45	3	.08187
1	700	E S	353	129	.07076	. 33669	31135	2	9	347
10	5+0	3 32	_	518	0	32453	•01565	.34427	.04554	10126.
50	0517	354	42	372	41	. 31731	7	-	03007	332
52	0366	347	045	9770	03358	01218	•0175€	.33057	.01741	+1500
90	218	313	660	_	27	. 0361	0	02428	00754	12clu.
92	387	251	3.	4	2	00636	.01639	.31863	.00022	01709
7.0	9770	777	144	0	.01918	.00421	01492	01366	-00484	.01565
75	035	7	1+1	0	31634	03284	.01365	. 00538	00798	012oc
30	.01252	33	31421		.01405	.00181	01235	900	.00951	.00850
4)	137		131	7	01219	03162	90110.	. JOST7	00977	-100419
60	127	5	116	4	.01064	.03342	00930	00037	10500	.00032
75	1010	30	98	0	00935	.00005	. 50863	-	JO770	
100	00 7	21	вЭ	3300	.00325	00041	007	23	.00554	00467
105	0030	60	62	2	00731	.03065	.00639	30383	03433	5350C.
117	33	312		0	.00650	03093	00539	*00439	.00210	00545
115	0029	009	3	5	00579	.03100	.00447	00462	00037	95406.
150		950	113	71	.00517	03119	00362	.00458	03107	00322
125	054	30461	C	.00414	00462	.00128	.00284	00432	*00514	.00163
135	00	131	9	5	.00412	3134		38	00283	00009
135	43	310	13	39	3	.00138	.30151	00332	.00313	30119
0+	670	+2000.	3	37	3	113	0	9	3	. 30236
145	7	60	77	34	02	.00138	0	2	• 00275	305
150	001		28	030	7	3	33006	. 30137	30222	.00243
155	213	122	2	27	02	.00129	00004	0	.00156	30232
100	070		25	53	-	00121	.00048	.00025	00089	86100
105	770	22	71	16	5	5		91000	. 00029	00068
173	5	33177	7	13	.00116	00051	99000.	00041	.00016	76.000.
175	0.3116	2	2	3	+2000	. 11164	0	. 30044	00035	. u3326
130		. 33030	. 00000	0	.00000	.00000	.00000	. 30303	.00000	.00000

Table I(d) R coefficients for ψ_0 = 5 to 180 degrees

Figure 1. Dimensionless R coefficients plotted against ψ_0 for n = 0 to 5

Figure 2. Mean value of error of omission in gravity anomaly as a function of distance from the computation point for two sets of degree variances.