

机器学习-关联规则

黄海广 副教授

2022年01月

本章目录

- 01 关联规则概述
- 02 Apriori 算法
- 03 FP-Growth算法
- 04 Eclat算法

01 关联规则概述

- 02 Apriori 算法
- 03 FP-Growth算法
- 04 Eclat算法

关联规则

关联规则(Association Rules)反映一个事物与其他事物之间的相互依存性和关联性。如果两个或者多个事物之间存在一定的关联关系,那么,其中一个事物就能够通过其他事物预测到。

关联规则可以看作是一种IF-THEN关系。假设商品A被客户购买,那么在相同的交易ID下,商品B也被客户挑选的机会就被发现了。

有没有发生过这样的事:你出去买东西,结果却买了比你计划的多得多的东西?这是一种被称为冲动购买的现象,大型零售商利用机器学习和Apriori算法,让我们倾向于购买更多的商品。

购物车分析是大型超市用来揭示商品之间关联的关键技术之一。他们试图找出不同物品和产品之间的关联,这些物品和产品可以一起销售,这有助于正确的产品放置。

买面包的人通常也买黄油。零售店的营销团队应该瞄准那些购买面包和黄油的顾客,向他们提供报价,以便他们购买第三种商品,比如鸡蛋。

因此,如果顾客买了面包和黄油,看到鸡蛋有折扣或优惠,他们就会倾向于多花些钱买鸡蛋。这就是购物车分析的意义所在。

置信度: 表示你购买了A商品后,你还会有多大的概率购买B商品。

Confidence
$$(A -> B) = \frac{\text{freq}(A, B)}{\text{freq}(A)}$$

支持度: 指某个商品组合出现的次数与总次数之间的比例, 支持度越高表示该组合出现的几率越大。

$$Support(A, B) = \frac{freq(A, B)}{N}$$

提升度: 提升度代表商品A的出现,对商品B的出现概率提升了多少,即"商品A的出现,对商品B的出现概率提升的"程度。

$$Lift(A->B) = \frac{Support(A->B)}{Support(A) \times Support(B)}$$

Transaction 1	9 9 %
Transaction 2	(4)
Transaction 3	(3)
Transaction 4	(4)
Transaction 5	∅ 🕑 🕞
Transaction 6	₫ 🕑 ⊝
Transaction 7	∅
Transaction 8	Ø 🖔

Support
$$\{ \bigcirc \} = \frac{4}{8}$$

Confidence
$$\{ \bigcirc \rightarrow \bigcirc \} = \frac{\text{Support } \{ \bigcirc, \bigcirc \}}{\text{Support } \{ \bigcirc \}} = 3/4$$

Lift
$$\{ \bigcirc \rightarrow \bigcirc \} = \frac{\text{Support } \{ \bigcirc, \bigcirc \}}{\text{Support } \{ \bigcirc \} \times \text{Support } \{ \bigcirc \}}$$

置信度: $Confidence = \frac{freq(A,B)}{freq(A)}$

支持度: $Support = \frac{freq(A,B)}{N}$

提升度: $Lift = \frac{Support}{Support(A) \times Support(B)}$

- 01 关联规则概述
- 02 Apriori 算法
- 03 FP-Growth算法
- 04 Eclat算法

Apriori算法利用频繁项集生成关联规则。它基于频繁项集的子集也必须是频繁项集的概念。

频繁项集是支持值大于阈值(support)的项集。

Apriori算法就是基于一个先验:

如果某个项集是频繁的,那么它的所有子集也是频繁的。

算法流程

输入:数据集合D,支持度阈值 α

输出: 最大的频繁k项集

- 1) 扫描整个数据集,得到所有出现过的数据,作为候选频繁1项集。k=1,频繁0项集为空集。
- 2) 挖掘频繁k项集
 - a) 扫描数据计算候选频繁k项集的支持度
 - b) 去除候选频繁k项集中支持度低于阈值的数据集,得到频繁k项集。如果得到的频繁k项集为空,则直接返回频繁k-1项集的集合作为算法结果,算法结束。如果得到的频繁k项集只有一项,则直接返回频繁k项集的集合作为算法结果,算法结束。
 - c) 基于频繁k项集,连接生成候选频繁k+1项集。
- 3) 令k=k+1, 转入步骤2。

算法案例

订单编号	项目	项集	支持度
T1	1 3 4	{1}	3
T2	2 3 5	{2}	3
T3	1 2 3 5	{3}	4
T4	2 5	{4}	1
T5	1 3 5	{5 }	4

第一次迭代:假设支持度阈值为2,创建大小为1的项集并计算它们的支持度。

C₁

算法案例

C₁

项集	支持度
{1}	3
{2}	3
{3}	4
{4 }	1
{5 }	4

F1

项集	支持度
{1}	3
{2}	3
{3}	4
{5}	4

可以看到,第4项的支持度为1,小于最小支持度2。所以我们将在接下来的 迭代中丢弃{4}。我们得到最终表F1。

算法案例

		•	CZ		
订单编号	项目	项集	支持度	项集	支持度
T1	1 3 4	{1,2}	1	{1,3}	3
T2	2 3 5	{1,3}	3	{1,5}	2
T3	1 2 3 5	{1,5}	2	{2,3}	2
T4	2 5	{2,3}	2	{2,5}	3
T5	1 3 5	{2,5}	3	{3,5}	3
		{3,5}	3		

E7

第2次迭代:接下来我们将创建大小为2的项集,并计算它们的支持度。F1中设置的所有项

算法案例

C2 F2 订单编号 项目 支持度 支持度 项集 项集 T1 1 3 4 {1,2} {1,3} 3 3 T2 2 3 5 {1,3} {1,5} 2 1 2 3 5 {1,5} T3 {2,3} {2,3} **T4** 2 5 {2,5} 3 T5 1 3 5 {2,5} {3,5} 3 {3,5}

再次消除支持度小于2的项集。在这个例子中{1, 2}。

现在,让我们了解什么是剪枝,以及它如何使Apriori成为查找频繁项集的 最佳算法之一。

算法案例

 订单编号
 项目

 T1
 1 3 4

 T2
 2 3 5

 T3
 1 2 3 5

 T4
 2 5

 T5
 1 3 5

C3

项集	在F2里?
{1,2,3}, <mark>{1,2}</mark> ,{1,3},{2,3}	否
{1,2,5}, <mark>{1,2}</mark> ,{1,5},{2,5}	否
{1,3,5},{1,5},{1,3},{3,5}	是
{2,3,5},{2,3},{2,5},{3,5}	是

剪枝:我们将C3中的项集划分为子集,并消除支持值小于2的子集。

算法案例

订单编号	项	目			
T1	1	3	4		
T2	2	3	5		
T3	1	2	3	5	
T4	2	5			
T5	1	3	5		

项集	支持度
{1,3,5}	2
{2.3.5}	2

F3

第三次迭代: 我们将丢弃{1,2,3}和{1,2,5}, 因为它们都包含{1,2}。

算法案例

订单编号	项	1			F	3
T1	1	3	4		项集	支持
T2	2	3	5		{1,3,5}	2
T3	1	2	3	5	{2,3,5}	2
T4	2	5				
T5	1	3	5			

第四次迭代:使用F3的集合,我们将创建C4。

算法案例

因为这个项集的支持度小于2,所以我们就到此为止,最 后一个项集是F3。

注: 到目前为止, 我们还没有计算出置信度。

使用F3, 我们得到以下项集:

对于I={1,3,5}, 子集是{1,3}, {1,5}, {3,5}, {1}, {3}, {5}

对于I={2,3,5}, 子集是{2,3}, {2,5}, {3,5}, {2}, {3}, {5}

项集	支持度
{1,3,5}	2
{2,3,5}	2

算法案例

应用规则:我们将创建规则并将它们应用于项集F3。现在假设最小置信值是60%。 对于I的每个子集S,输出规则

- S-> (I-S) (表示S推荐I-S)
- 如果:支持度(I)/支持度(S)>=最小配置值

算法案例

{1,3,5}

规则1:{1,3}->({1,3,5}-{1,3})表示1&3->5

置信度=支持度(1,3,5)/支持度(1,3)=2/3=66.66%>60%

因此选择了规则1

规则2:{1,5}->({1,3,5}-{1,5})表示1&5->3

置信度=支持度(1,3,5)/支持度(1,5) =2/2=100%>60%

因此选择了规则2

项集	支持度
{1,3,5}	2
{2,3,5}	2

算法案例

规则3:{3,5}->({1,3,5}-{3,5})表示3&5->1

置信度=支持度(1,3,5)/支持度(3,5)=2/3=66.66%>60%

因此选择规则3

规则4:{1}->({1,3,5}-{1})表示1->3&5

置信度=支持度(1,3,5)/支持度(1)=2/3=66.66%>60%

因此选择规则4

这就是在Apriori算法中创建规则的方法。可以为项集{2,3,5}实现相同的步骤。

算法案例

规则5:{3}->({1,3,5}-{3})表示3->1和5

置信度=支持度(1,3,5)/支持度(3)=2/4=50%<60%

规则5被拒绝

规则6:{5}->({1,3,5}-{5})表示5->1和3

置信度=支持度(1,3,5)/支持度(5)=2/4=50%<60%

规则6被拒绝

Apriori算法缺点

Apriori 在计算的过程中有以下几个缺点:

可能产生大量的候选集。因为采用排列组合的方式,把可能的项集都

组合出来了;

每次计算都需要重新扫描数据集,来计算每个项集的支持度。

- 01 关联规则概述
- 02 Apriori 算法
- 03 FP-Growth算法
- 04 Eclat算法

FP-growth (Frequent Pattern Growth) 算法思想

FP-growth(频繁模式增长)算法是韩家炜老师在2000年提出的关联分析算法,它采取如下**分治**策略:将提供频繁项集的数据库压缩到一棵频繁模式树(FP-Tree),但仍保留项集关联信息。

该算法是对Apriori方法的改进。生成一个频繁模式而不需要生成候选模式。

FP-growth算法以树的形式表示数据库,称为频繁模式树或FP-tree。

此树结构将保持项集之间的关联。数据库使用一个频繁项进行分段。这个片段被称为"模式片段"。分析了这些碎片模式的项集。因此,该方法相对减少了频繁项集的搜索。

FP-growth算法思想

FP-growth算法是基于Apriori原理的,通过将数据集存储在FP (Frequent Pattern)树上发现频繁项集,但不能发现数据之间的关联规则。

FP-growth算法只需要对数据库进行**两次扫描**,而Apriori算法在求每个潜在的频繁项集时都需要扫描一次数据集,所以说Apriori算法是高效的。其中算法发现频繁项集的过程是:

- (1)构建FP树;
- (2)从FP树中挖掘频繁项集。

FP-growth算法思想

该算法和Apriori算法最大的不同有两点:

第一,不产生候选集

第二,只需要两次遍历数据库,大大提高了效率。

FP-Tree (Frequent Pattern Tree)

FP树(FP-Tree)是由数据库的初始项集组成的树状结构。 FP树的目的是挖掘最频繁的模式。FP树的每个节点表示项集的一个项。

根节点表示null,而较低的节点表示项集。在形成树的同时,保持节点与较低节点(即项集与其他项集)的关联。

算法步骤

FP-growth算法的流程为:

首先构造FP树,然后利用它来挖掘频繁项集。

在构造FP树时,需要对数据集扫描两遍,

第一遍扫描用来统计频率,第二遍扫描至考虑频繁项集。

FP-Tree (Frequent Pattern Tree)

FP树(FP-Tree)是由数据库的初始项集组成的树状结构。 FP树的目的是挖掘最频繁的模式。FP树的每个节点表示项集的一个项。

根节点表示null,而较低的节点表示项集。在形成树的同时,保持节点与较低节点(即项集与其他项集)的关联。

算法案例

设置支持度阈值为50%,置信度阈值为60%

交易编号	项目
T1	11,12,13
T2	12,13,14
Т3	14,15
T4	11,12,14
Т5	11,12,13,15
Т6	11,12,13,14

统计每个项目的数量

项目	数量
I 1	4
12	5
I 3	4
14	4
I 5	2

项集数量排序

项目	数量
12	5
I 1	4
13	4
14	4

支持度阈值=50%=>0.5*6=3=>最小子项目数量=3

重新调整事务数据库

按照项目数量排序

交易编号	项目
T1	12,11,13
T2	12,13,14
Т3	14,15
T4	12,11,14
Т5	12,11,13,15
Т6	12,11,13,14

Null

1.考虑到根节点为空(null)。

交易编号	项目
T1	12,11,13
T2	12,13,14
Т3	14,15
T4	12,11,14
T5	12,11,13,15
Т6	12,11,13,14

- 1.考虑到根节点为空(null)。
- 2. T1:I1、I2、I3的第一次扫描 包含三个项目{I1:1}、{I2:1}、 {I3:1}, 其中I2作为子级链接到 根, I1链接到I2, I3链接到I1。 (这里根据项集的数量排序成I2、I1、I3)

交易 编号	项目
T1	12,11,13
T2	12,13,14
Т3	14,15
T4	12,11,14
T5	12,11,13,15
Т6	12,11,13,14

再次扫描数据库并检查事务。检查第一个事务并找出其中的项集。计数最大的项集在顶部,计数较低的下一个项集,以此类推。这意味着树的分支是由事务项集按计数降序构造的。

3.T2:包含I2、I3和I4,其中I2链接到根,I3链接到I2,I4链接到I3。但是这个分支将共享I2节点,就像它已经在T1中使用一样。将I2的计数增加1,I3作为子级链接到I2,I4作为子级链接到I3。计数是{I2:2},{I3:1},{I4:1}。

交易 编号	项目
T1	12,11,13
T2	12,13,14
Т3	14,15
T4	12,11,14
Т5	12,11,13,15
Т6	12,11,13,14

3.T2:包含I2、I3和I4,其中I2链接到根,I3链接到I2,I4链接到I3。但是这个分支将共享I2节点,就像它已经在T1中使用一样。将I2的计数增加1,I3作为子级链接到I2,I4作为子级链接到I3。计数是{I2:2},{I3:1},{I4:1}。

4.T3:I4、	15 。	类似地,	在创建子级时,
一个带有	īI5的	新分支链	接到14。

交易 编号	项目
T1	12,11,13
T2	12,13,14
Т3	14,15
T4	12,11,14
T5	12,11,13,15
Т6	12,11,13,14

5.T4:I1、I2、I4。顺序为I2、I1和I4。I2已经链接到根节点,因此它将递增1。同样地,I1将递增1,因为它已经链接到T1中的I2,因此{I2:3}, {I1:2}, {I4:1}。

交易 编号	项目
T1	12,11,13
T2	12,13,14
Т3	14,15
T4	12,11,14
T5	12,11,13,15
Т6	12,11,13,14

5.T4:I1、I2、I4。顺序为I2、I1和I4。I2已经链接到根节点,因此它将递增1。同样地,I1将递增1,因为它已经链接到T1中的I2,因此{I2:3}, {I1:2}, {I4:1}。

6.T5:I1、I2、I3、I5。顺序为I2、I1、I3和I5。 因此{I2:4}, {I1:3}, {I3:2}, {I5:1}。

7.T6:I1、I2、I3、I4。顺序为I2、I1、I3和I4。 因此{I2:5}, {I1:4}, {I3:3}, {I4:1}。

交易 编号	项目
T1	12,11,13
T2	12,13,14
Т3	14,15
T4	12,11,14
T5	12,11,13,15
Т6	12,11,13,14

5.T4:I1、I2、I4。顺序为I2、I1和I4。I2已经链接到根节点,因此它将递增1。同样地,I1将递增1,因为它已经链接到T1中的I2,因此{I2:3}, {I1:2}, {I4:1}。

6.T5:I1、I2、I3、I5。顺序为I2、I1、I3和I5。 因此{I2:4}, {I1:3}, {I3:2}, {I5:1}。

7.T6:I1、I2、I3、I4。顺序为I2、I1、I3和I4。 因此{I2:5}, {I1:4}, {I3:3}, {I4 1}。

交易 编号	项目
T1	12,11,13
T2	12,13,14
Т3	14,15
T4	12,11,14
T5	12,11,13,15
Т6	12,11,13,14

FP-tree的挖掘总结如下:

- 1.不考虑最低节点项I5,因为它没有达到最小支持计数3,因此将其删除。
- 2.下一个较低的节点是I4。I4出现在三个分支中, {I2,I1,I3,I4:1}, {I2,I3,I4:1}。因此,将I4作为后缀,前缀路径将是{I2,I1,I3:1}, {I2,I1:1}, {I2,I3:1}。这形成了条件模式基。
- 3.将条件模式基视为事务数据库,构造FP树。这将包含 {I2:3},不考虑I1、I3,因为它不满足最小支持计数。

"条件模式基" 指的是以要挖掘的节点为叶子节点,自底向上求出 FP 子树,然后将 FP 子树的祖先节点设置为叶子节点之和。

4.此路径将生成所有频繁模式的组合: {I2,I4:3} 5.对于I3,前缀路径(条件模式基)将是: {I2,I1:3} , {I2:1},这将生成一个2节点FP树: {I2:4,I1:3},并 生成频繁模式: {I2,I3:4}, {I1:I3:3}, {I2,I1,I3:3}。 6.对于I1,前缀路径(条件模式基)是: {I2:4},这 将生成一个单节点FP树: {I2:4},并生成频繁模式: {I2,I1:4}。

注意:条件模式基的计数是根据路径中节点的最小计数来决定的。

项目	条件模式基	条件FP树	生成的频繁集
14	{ 12, 11, 3:1} , { 12, 11, 4:1} ,{ 12, 3:1}	{12:3}	{12,14:3}
13	{I2,I1:3},{I2:1}	{I2:4, I1:3}	{12,13:4}, {11:13:3}, {12,11,13:3}
I1	{12:4}	{12:4}	{12,11:4}

根据条件FP树,我们可以进行全排列组合,得到挖掘出来的频繁模式(这里要将商品本身,如I4也算进去,每个商品挖掘出来的频繁模式必然包括这商品本身)

FP-Growth算法的优点

- 1.与Apriori算法相比,该算法只需对数据库进行两次扫描
- 2.该算法不需要对项目进行配对,因此速度更快。
- 3.数据库存储在内存中的压缩版本中。
- 4.对长、短频繁模式的挖掘具有高效性和可扩展性。

FP-Growth算法的缺点

- 1.FP-Tree比Apriori更麻烦,更难构建。
- 2.可能很耗资源。
- 3. 当数据库较大时,算法可能不适合共享内存

- 01 关联规则概述
- 02 Apriori 算法
- 03 FP-Growth算法
- 04 Eclat算法

Eclat算法,即**等价类变换(Equivalence Class Transformation, Eclat)**,是一种基于集合交集的深度优先搜索算法,它适用于具有局部性增强特性的顺序执行和并行执行。

Eclat算法思想

Apriori和FP-growth方法使用水平数据格式挖掘频繁项集,ECLAT是一种使用垂直数据格式挖掘频繁项集的方法。它将把水平数据格式的数据(左图)转换为垂直格式(倒排)(右图),具体就是将事务数据中的项作为key,每个项对应的事务ID作为value。

交易编号	项目
T1	11,12,13
T2	12,13,14
Т3	14,15
T4	11,12,14
T5	11,12,13,15
Т6	11,12,13,14

项目编 号	交易集
I 1	T1,T4,T5,T6
12	T1,T2,T4,T5,T6
13	T1,T2,T5,T6
14	T2,T3,T4,T5
15	T3,T5

Eclat算法思想

此方法将以垂直数据格式形成个项集。使用k的过程增加1,通过转换后的倒排表可以加快频繁集生成速度。

Eclat算法挖掘频繁项集的过程如下:

- 1.通过扫描一次数据集,把水平格式的数据转换成垂直格式;
- 2.项集的支持度计数简单地等于项集的交易集的长度;
- 3.从k = 1开始,可以根据先验性质,使用频繁k项集来构造候选(k + 1)项集;
- 4.通过取频繁k项集的交易集的交,计算对应的(k+1)项集的交易集。
- 5. 重复该过程,每次k增加1,直到不能再找到频繁项集或候选项集。

Eclat算法的优缺点

优点:

Eclat的优势是只需扫描一遍完整的数据库, 这种方法与Apriori相比有一个优势, 在产生候选(k+1)项集时利用先验性质, 而且不需要扫描数据库来确定(k+1)项集的支持度, 这是因为每个k项集的交易集携带了计算支持度的完整信息。

Eclat算法的优缺点

缺点:

当有许多事务需要大量内存和计算时间来相交集合时,就会出现瓶颈。因为在 Eclat算法中,它由2个集合的并集产生新的候选集,通过计算这2个项集的交易集 的交集快速得到候选集的支持度,所以,当交易集的规模庞大时将出现以下问题:

- 求交易集的交集的操作将消耗大量时间,影响了算法的效率;
- 交易集的规模相当庞大,消耗系统大量的内存。

参考文献

- [1] Peter Harrington.机器学习实战[M]. 北京:人民邮电出版社,2013.
- [2] Borgelt C. Efficient implementations of apriori and ECLAT[C]//FIMI' 03: Proceedings of the IEEE ICDM workshop on frequent itemset mining implementations. 2003: 90.
- [3] WANG K, TANG L, HAN J, et al. Top Down FP-Growth for Association Rule Mining[M]. Proceedings of the 6th Pacific Area Conference on Knowledge Discovery and Data Mining: Taipei,2002.
- [4] Jiawei Han, Micheling Kamber, Jian Pei, et al. 《数据挖掘:概念与技术(原书第3版)》[M]. 北京:机械工业出版社,2012.

