

Vortrag - 1

Question Answering auf dem Lehrbuch "Health Information Systems" mit Hilfe von unüberwachtem Training eines Pretrained Transformers

Leipzig, Juni 2023

Überblick

- Einleitung
 - Gegenstand und Motivation
 - ▶ Problematik
 - Ziel
 - Aufgaben
- ▶ Stand der Forschung
 - Grundlagen Forschung
 - Continual Pretraining
 - Aktuelle Modelle
 - ► Erforschung von Modellen
- ▶ Zeitplanung

Einleitung - Gegenstand und Motivation

- ▶ Informationsbeschaffung in der Medizininformatik
- SNIK-Ontologie
- ▶ BeLL-Arbeit (Brunch, 2022): QAS über SNIK
- ChatGPT als Wissensgrundlage?
- ► ChatGPT vs QAS (Omar u.a. 2023)

Einleitung - Gegenstand und Motivation

- Informationsbeschaffung in der Medizininformat
- SNIK-Ontologie
- ▶ BeLL-Arbeit (Brunch, 2022): QAS über SNIK
- ChatGPT als Wissensgrundlage?
- ► ChatGPT vs QAS (Omar u.a. 2023)

Wilhelm-Ostwald-Schule, Gymnasium der Stadt Leipzig

Universität Leipzig

Medizinische Fakultät

Institut für Medizinische Informatik, Statistik und Epidemiologie

OUESTION ANSWERING AUF SNIK

BESONDERE LERNLEISTUNG

vorgelegt von

Hannes Raphael Brunsch Besondere Lernleistung Referenzfach Informatik

Leipzig, den 20. Januar 2023

Einleitung - Gegenstand und Motivation

- ▶ Informationsbeschaffung in der Medizininformatik
- SNIK-Ontologie
- ▶ BeLL-Arbeit (Brunch, 2022): QAS über SNIK
- ChatGPT als Wissensgrundlage?
- ► ChatGPT vs QAS (Omar u.a. 2023)

ChatGPT versus Traditional Question Answering for Knowledge Graphs: Current Status and Future Directions Towards Knowledge Graph Chatbots

Reham Omar¹, Omij Mangukiya¹, Panos Kalnis² and Essam Mansour¹ ¹Concordia University, Canada, ²KAUST, Saudi Arabia {Fname}.{Lname}@concordia.ca, panos.kalnis@kaust.edu.sa

Einleitung - Problematik

- ▶ Literatur zu Informationssysteme im Gesundheitswesen
 - ▶ Blaue Buch "Health Information Systems"
 - Komplex
 - Umfangreich
 - Fragmentiert
- ▶ Problem
 - ► Komplexe Sachverhalte in die Praxis übersetzen
 - ► Extraktion von relevanten Informationen aus großem Umfang

Einleitung - Problematik

- ▶ Literatur zu Informationssysteme im Gesundheitswese
 - ▶ Blaue Buch "Health Information Systems"
 - ► Komplex
 - Umfangreich
 - ▶ Fragmentiert
- Problem
 - ► Komplexe Sachverhalte in die Praxis übersetzen
 - Extraktion von relevanten Informationen aus großen

Einleitung - Problematik

- ▶ Literatur zu Informationssysteme im Gesundheitswesen
 - ▶ Blaue Buch "Health Information Systems"
 - ► Komplex
 - Umfangreich
 - Fragmentiert
- ▶ Problem
 - ► Komplexe Sachverhalte in die Praxis übersetzen
 - ► Extraktion von relevanten Informationen aus großem Umfang

Einleitung - Zielsetzung

- Beantwortung von Fragen zu Informationssystemen im Gesundheitswesen in natürlicher Sprache durch eine Konversations-KI mit Hilfe von Winter u.a. (2023)
- Lösung einer Beispielklausur des Moduls "Architektur von Informationssystemen im Gesundheitswesen" mit Hilfe einer Konversions-KI.
- 3. Das Ziel ist kein Produktivsystem, sondern soll lediglich die Machbarkeit der Beantwortung von Fragen mit Hilfe einer Konversations-KI

Einleitung - Aufgabenstellung

- 1. Ziel 1
 - 1.1 Vergleich von vortrainierten Sprachmodellen aus Nutzbarkeit und Leistung
 - 1.2 Datenkuration von Winter u.a. (2023)
 - 1.3 Continual Pretraining eines Modells
- 2. Ziel 2
 - 2.1 Bewertung von Klausurfragen und deren generierte Antworten
 - 2.2 Evaluation vor und nach dem Training
 - 2.3 Vergleich mit SOTA (GPT-4)

- ► Erstmalige Transformer-Architektur: Vaswani u. a. (2017)
 - ▶ Weiterentwicklung Deep Residual Connections: He u. a. (2016)
 - ▶ Weiterentwicklung Dropout: Srivastava u. a. (2014)
 - ▶ Weiterentwicklung Byte Pair Encoding: Sennrich u. a. (2016)
- ► Transformer Taxonomie: Kalyan u. a. (2022)

- ► Erstmalige Transformer-Architektur: Vaswani u. a. (2017)
 - ► Weiterentwicklung Deep Re
 - ▶ Weiterentwicklung Dropout
 - Weiterentwicklung Byte Pa
- Transformer Taxonomie: Kalya

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com

Noam Shazeer* Google Brain noam@google.com Niki Parmar* Google Research nikip@google.com

Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com Aidan N. Gomez* † University of Toronto aidan@cs.toronto.edu Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* ‡ illia.polosukhin@gmail.com

- ► Erstmalige Transformer-Architektur: Vaswani u. a. (2017)
 - ▶ Weiterentwicklung Deep Residual Connections: He u. a. (2016)
 - ▶ Weiterentwicklung Dropout: Srivastava u. a. (2014)
 - ▶ Weiterentwicklung Byte Pair Encoding: Sennrich u. a. (2016)
- ► Transformer Taxonomie: Kalyan u. a. (2022)

- ▶ Erstmalige Transformer-Architektur: Vaswani u. a. (2017)
 - ▶ Weiterentwicklung Deep Residual Connections: He u. a. (2016)
 - ▶ Weiterentwicklung Dropout: Srivastava u. a. (2014)
 - ▶ Weiterentwicklung Byte Pair Encoding: Sennrich u. a. (2016)
- ► Transformer Taxonomie: Kalyan u. a. (2022)

Neural Machine Translation of Rare Words with Subword Units

Rice Semeth, and Rarry Hadder and Assaudra Birch
School of Informatics University of Enhances

(rice.sennrich, a.birch)@ed.ac.uk, bhaddow@inf.ed.ac.uk

- Erstmalige Transformer-Architektur: Vaswani u. a. (2017)
 - ▶ Weiterentwicklung Deep Residual Connections: He u. a. (2016)
 - ▶ Weiterentwicklung Dropout: Srivastava u. a. (2014)
 - ▶ Weiterentwicklung Byte Pair Encoding: Sennrich u. a. (2016)
- Transformer Taxonomie: Kalyan u. a. (2022)

AMMUS: A Survey of Transformer-based Pretrained Models in Natural Language Processing

Katikapalli Subramanyam Kalyan, Ajit Rajasekharan, and Sivanesan Sangeetha

- ► Leistungssteigerung durch Continual Pretraining
 - ▶ GPT: Radford und Narasimhan (2018)
 - ▶ BioBERT: Lee u. a. (2019)
 - ► Guruangan u. a. (2020)
- ▶ Leistungssteigerung durch Größere Modelle: Kaplan u. a. (2020)
- ▶ Leistungssteigerung durch Fine-Tuning: Ziegler u. a. (2019)

- ► Leistungssteigerung durch Continual Pretraining
 - ▶ GPT: Radford und Narasimhan (2018)
 - ▶ BioBERT: Lee u. a. (2019)
 - ► Guruangan u. a. (2020)
- ▶ Leistungssteigerung durch Größere Modelle: Kaplan u. a. (2020)
- Leistungssteigerung durch Fine-Tuning: Ziegler u. a. (2019)


```
Data and text mining

BioBERT: a pre-trained biomedical language
representation model for biomedical text mining

Jinhyuk Lee (**). Wonjin Yoon (**). Sungdong Kim (**). Donglyven Kim (**).

Sunkyu Kim (**). Chain 16 S (**). Find John (**). Sungdong Kim (**). Donglyven Kim (**).

Sunkyu Kim (**). Chain 16 S (**). Find John (**). Sunkyu Kim (**). The John (**). Sunkyu Kim (**). Sunkyu Ki
```

tood on Marc M. 2019 revised on July 24, 2019 addressed decision on Assessed 24, 2019 accounted on September 5, 2019

- ► Leistungssteigerung durch Continual Pretraining
 - ► GPT: Radford und Narasim
 - ▶ BioBERT: Lee u. a. (2019)
 - ► Guruangan u. a. (2020)
- Leistungssteigerung durch Grö
- Leistungssteigerung durch Fine

Scaling Laws for Neural Language Models

Jared Kaplan * Johns Hopkins University, OpenAI jaredk@jhu.edu		Sam McCandlish* OpenAI sam@openai.com	
OpenAI	OpenAI	OpenAI	OpenAI
henighan@openai.com	tom@openai.com	bchess@openai.com	rewon@openai.co
Scott Gray	Alec Radford	Jeffrey Wu	Dario Amodei
OpenAI	OpenAI	OpenAI	OpenAI
scott@openai.com	alec@openai.com	jeffwu@openai.com	damodei@openai.com

- ► Leistungssteigerung durch Continual Pretraining
 - ▶ GPT: Radford und Narasimhan (2018)
 - ▶ BioBERT: Lee u. a. (2019)
 - ► Guruangan u. a. (2020)
- ▶ Leistungssteigerung durch Größere Modelle: Kaplan u. a. (2020)
- Leistungssteigerung durch Fine-Tuning: Ziegler u. a. (2019)

Fine-Tuning Language Models from Human Preferences

Daniel M. Ziegler* Nisan Stiennon* Jeffrey Wu Tom B. Brown Alec Radford Dario Amodei Paul Christiano Geoffrey Irving
OpenAl

{dmz,nisan,jeffwu,tom,alec,damodei,paul,irving}@openai.com

Aktuelle Modelle

- ► GPT-2: Radford u. a. (2019)
- ▶ GPT-4: OpenAI (2023)
- ► GPT-NeoX: Black u. a. (2022)
- ► LLaMa: Touvron u. a. (2023)

Language Models are Unsupervised Multitask Learners

Alec Radford * | Jeffrey Wu * | Rewon Child | David Luan | Dario Amodei ** | Ilya Sutskever ** |

GPT-4 Technical Report

OpenAI*

GPT-NeoX-20B: An Open-Source Autoregressive Language Model Sid Black* Stella Biderman* Eric Hallahan* **Quentin Anthony** Leo Gao Laurence Golding Horace He Michael Pieler Connor Leahy Kvle McDonell Jason Phang USVSN Sai Prashanth Shiyanshu Purohit Laria Revnolds Ben Wang Jonathan Tow Samuel Weinbach

Aktuelle Modelle

- ► GPT-2: Radford u. a. (2019)
- ▶ GPT-4: OpenAI (2023)
- ► GPT-NeoX: Black u. a. (2022)
- ► LLaMa: Touvron u. a. (2023)

LLaMA: Open and Efficient Foundation Language Models

Hugo Touvron; Thibaut Lavril; Gautier Izacard; Xavier Martinet Marie-Anne Lachaux, Timothee Lacroix, Baptiste Rozière, Naman Goyal Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin Edouard Grave; Guillaume Lample*

Meta AI

Erforschung von Modellen

- ► Adapter: Houlsby u. a. (2019)
- ► Transformer als Informationsquelle
 - ▶ Petroni u. a. (2019)
 - ▶ Wissensneuronen: Dai u. a. (2022)
- ► Al Safety: OpenAl (2023)

Parameter-Efficient Transfer Learning for NLP

Neil Houlsby ¹ Andrei Giurgiu ^{1 *} Stanisław Jastrzębski ^{2 *} Bruna Morrone ¹ Quentin de Laroussilhe ¹ Andrea Gesmundo ¹ Mona Attariyan ¹ Sylvain Gelly ¹

Erforschung von Modellen

- ► Adapter: Houlsby u. a. (2019)
- ► Transformer als Informationsquelle
 - ▶ Petroni u. a. (2019)
 - ▶ Wissensneuronen: Dai u. a. (2022)
- ► Al Safety: OpenAl (2023)

Language Models as Knowledge Bases?

Erforschung von Modellen

- Adapter: Houlsby u. a. (2019)
- ► Transformer als Informationsquelle
 - ▶ Petroni u. a. (2019)
 - ▶ Wissensneuronen: Dai u. a. (2022)
- ► Al Safety: OpenAl (2023)

Knowledge Neurons in Pretrained Transformers

Damai Dai^{††}, Li Dong[†], Yaru Hao[†], Zhifang Sui[†], Baobao Chang[†], Furu Wei[‡]

[†]MOE Key Lab of Computational Linguistics, Peking University

[†]Microsoft Research

{daidamai, szf, chbb}@pku.edu.cn
{lidongl,yaruhao,fuwei}@microsoft.com

Zeitplanung

Quellen

- ▶ Ben Wang (2021). "Mesh-Transformer-JAX: Model-Parallel Implementation of Transformer Language Model with JAX". In: https://github.com/kingoflolz/mesh-transformer-jax
- Black, Sidney u. a. (Mai 2022). "GPT-NeoX-20B: An Open-Source Autoregressive Language Model". In: Proceedings of BigScience Episode #5 – Workshop on Challenges & Perspectives in Creating Large Language Models. Association for Computational Linguistics, S. 95–136. doi: 10.18653/1/2022.bigscience-1.9.
- Brown, Tom u. a. (2020). "Language Models are Few-Shot Learners". In: Advances in Neural Information Processing Systems. Hrsg. von H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan und H. Lin. Bd. 33. Curran Associates, Inc., S. 1877–1901. url: https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
- Brunsch, Hannes Raphael (2022). "Question Answering auf SNIK". Besondere Lernleistung. Leipzig, Germany: Wilhelm-Ostwald-Schule. url: https://www.snik.eu/public/bell-hrb.pdf.
- Dai, Damai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang und Furu Wei (2022). Knowledge Neurons in Pretrained Transformers. arXiv: 2104.08696 [cs.CL].
- ▶ Dehouche, Nassim (März 2021). "Plagiarism in the age of massive Generative Pre-trained Transformers (GPT-3): "The best time to act was yesterday. The next best time is now." In: Ethics in Science and Environmental Politics 21. doi: 10.3354/esep00195
- Gururangan, Suchin, Ana Marasovi 'c, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey und Noah A. Smith (Juli 2020). "Don't Stop Pretraining: Adapt Language Models to Domains and Tasks". In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Online: Association for Computational Linguistics, S. 8342–8360. doi: 10.18653/v1/2020.acl-main.740. url:https://aclanthology.org/2020.acl-main.740.
- He, Kaiming, Xiangyu Zhang, Shaoqing Ren und Jian Sun (2016). "Deep Residual Learning for Image Recognition". In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), S. 770–778. doi: 10.1109/CVPR.2016.90.
- Houlsby, Neil, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona Attariyan und Sylvain Gelly (2019). "Parameter-Efficient Transfer Learning for NLP". In: Proceedings of the 36th International Conference on Machine Learning. Hrsg. von Kamalika Chaudhuri und Ruslan Salakhutdinov. Bd. 97. Proceedings of Machine Learning Research. PMLR, S. 2790–2799. url: https://proceedings.mlr.press/v97/houlsby19a.html.

Quellen 2

- ▶ Jiang, Zhengbao, Antonios Anastasopoulos, Jun Araki, Haibo Ding und Graham Neubig (Nov. 2020). "X-FACTR: Multilingual Factual Knowledge Retrieval from Pretrained Language Models". In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Online: Association for Computational Linguistics, S. 5943–5959. doi: 10.18653/v1/2020.emnlp-main.479.
- Kalyan, Katikapalli Subramanyam, Ajit Rajasekharan und Sivanesan Sangeetha (2022). "AMMU: A survey of transformer-based biomedical pretrained language models". In: Journal of biomedical informatics 126, S. 103982. doi: 10.1016/j.jbi.2021.103982.
- Kaplan, Jared, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu und Dario Amodei (2020). Scaling Laws for Neural Language Models. arXiv: 2001.08361 [cs.LG].
- Lee, Jinhyuk, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho So und Jaewoo Kang (2019). "BioBERT: a pre-trained biomedical language representation model for biomedical text mining". In: Bioinformatics 36.4, S. 1234–1240. issn: 1367-4803. doi: 10.1093/bioinformatics/btz682.
- Omar, Reham, Omij Mangukiya, Panos Kalnis und Essam Mansour (2023). ChatGPT versus Traditional Question Answering for Knowledge Graphs: Current Status and Future Directions Towards Knowledge Graph Chatbots. Version 1. arXiv: 2302.06466 [cs.CL].
- OpenAI (2023). "GPT-4 Technical Report". In: arXiv: 2303.08774[cs.CL].
- Petroni, Fabio, Tim Rocktäschel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu und Alexander Miller (Nov. 2019). "Language Models as Knowledge Bases?" In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China: Association for Computational Linguistics, S. 2463–2473. doi: 10.18653/v1/D19-1250.
- Pfeiffer, Jonas, Andreas Rücklé, Clifton Poth, Aishwarya Kamath, Ivan Vuli 'c, Sebastian Ruder, Kyunghyun Cho und Iryna Gurevych (Okt. 2020). "AdapterHub: A Framework for Adapting Transformers". In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations. Online: Association for Computational Linguistics, S. 46–54. doi: 10.18653/v1/2020.emnlp-demos.7. url: https://aclanthology.org/2020.emnlp-demos.7
- Radford, Alec und Karthik Narasimhan (2018). "Improving Language Understanding by Generative Pre-Training".
- Radford, Alec, Jeff Wu, Rewon Child, David Luan, Dario Amodei und Ilya Sutskever (2019). "Language Models are Unsupervised Multitask Learners". In: url: https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf.

Quellen 3

- ► Sennrich, Rico, Barry Haddow und Alexandra Birch (Aug. 2016). "Neural Machine Translation of Rare Words with Subword Units". In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Berlin, Germany: Association for Computational Linguistics, S. 1715–1725. doi: 10.18653/v1/P16-1162. url: https://aclanthology.org/P16-1162.
- Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever und Ruslan Salakhutdinov (2014). "Dropout: A Simple Way to Prevent Neural Networks from Overfitting". In: Journal of Machine Learning Research 15.56, S. 1929–1958. url: http://jmlr.org/papers/v15/srivastava14a.html.
- ▶ Touvron, Hugo u. a. (2023). LLaMA: Open and Efficient Foundation Language Models. arXiv: 2302.13971 [cs.CL].
- Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser und Illia Polosukhin (2017). "Attention is All you Need". In: Advances in Neural Information Processing Systems. Hrsg. von I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan und R. Garnett. Bd. 30. Curran Associates, Inc. url: https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
- Winter, Alfred, Elske Ammenwerth, Reinhold Haux, Michael Marschollek, Bianca Steiner und Franziska Jahn (2023). Health Information Systems. 3. Aufl. Health Informatics. Springer Cham. isbn: 978-3-031-12310-8. doi: 10.1007/978-3-031-12310-8.
- Ziegler, Daniel M., Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul F. Christiano und Geoffrey Irving (2019). "Fine-Tuning Language Models from Human Preferences". In: CoRR abs/1909.08593. url: http://arxiv.org/abs/1909.08593.

VIELEN DANK!

Paul Keller

Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE) www.imise.uni-leipzig.de