Numerical Analysis Final Assignment (in Portuguese)

Lucas Oliveira David

Universidade Federal de Sao Carlos

Numerical Analysis Class
Professor: Dr. Edgard A. Pimentel

December 12, 2015

1 Integração numérica

Seja $f: [1,4] \subset \mathbb{R} \to \mathbb{R} \mid f(x) = \log x$ nossa função de interesse e n=4 o número de amostras coletadas no intervalo [1,4].

$$h = \frac{b-a}{n} = \frac{4-1}{4} = .75$$

1.1 Regra do trapézio

$$\int_{1}^{4} \log x dx \approx \frac{h}{2} [\log x_{0} + \log x_{n} + 2 \sum_{i=1}^{n-1} \log x_{i}], \text{ where } x_{i} = x_{0} + hi.$$

$$= \frac{.75}{2} [\log 1 + \log 4 + 2(\log 1.75 + \log 2.5 + \log 3.25)]$$

$$= .375 [0 + 1.386294361 + 2(0.559615788 + 0.916290732 + 1.178654996)]$$

$$= .375 [6.695417393]$$

$$= 2.510781522$$

1.2 Regra de Simpson

$$\int_{1}^{4} \log x dx \approx \frac{h}{3} [\log x_{0} + \log x_{n} + 2 \sum_{i=1}^{n-1} \log x_{i} + 2 \sum_{i=0}^{\frac{n}{2}-1} x_{2i+1}], \text{ where } x_{i} = x_{0} + hi.$$

$$= \frac{.75}{3} [6.695417393 + 2(0.559615788 + 1.178654996)]$$

$$= \frac{.75}{3} [10.171958961]$$

$$= 2.54298974$$

2 Solução numérica para equações diferenciais ordinárias

Seja $y:[0,.5]\in\mathbb{R}$ e n=5 iterações, estime o valor de y_5 para o problema de valores iniciais abaixo:

$$P = \begin{cases} \dot{y} = y + xy \\ y_0 = 1 \end{cases}$$

2.1 Método explicito de Euler

$$h = \frac{b-a}{n} = \frac{.5-0}{5} = .1$$

$$y_{n+1} = y_n + hf(y_n, x_n)$$

$$y_{n+1} = y_n + .1(y_n + x_n y_n)$$

$$y_{n+1} = y_n[1 + .1 + .1x_n]$$

n	x_n	y_n
0	0	1
1	.1	1.1
2	.2	1.221
3	.3	1.36752
4	.4	1.5452976
5	.5	1.761639264

Table 1: Iterações do método de Euler explícito.

$$\therefore y_5 = 1.761639264$$

2.2 Método implícito de Euler

$$y_{n+1} = y_n + hf(y_{n+1}, x_{n+1})$$

$$= y_n + .1(y_{n+1} + x_{n+1}y_{n+1})$$

$$= y_n + .1y_{n+1}(1 + x_{n+1})$$

$$= y_n + .1y_{n+1}(x_n + 1.1)$$

$$\iff$$

$$y_{n+1} - .1y_{n+1}(x_n + 1.1) = y_n$$

$$y_{n+1}[1 - .1(x_n + 1.1)] = y_n$$

$$y_{n+1} = \frac{y_n}{1 - .1(x_n + 1.1)}$$

$$y_{n+1} = \frac{y_n}{.89 - .1x_n}$$

n	x_n	y_n
0	0	1
1	.1	1.123595506
2	.2	1.276813075
3	.3	1.467601235
4	.4	1.706513064
5	.5	2.007662428

Table 2: Iterações do método Euler implícito.

$$\therefore y_5 = 2.007662428$$

2.3 Método de Heun

$$y_{n+1} = y_n + h \frac{1}{2} [f(y_n, x_n) + f(y_{n+1}, x_{n+1})]$$

$$y_{n+1} = y_n + \frac{1}{20} [y_n + x_n y_n + y_{n+1} + x_{n+1} y_{n+1}]$$

$$y_{n+1} - \frac{y_{n+1} + y_{n+1} x_{n+1}}{20} = y_n + \frac{1}{20} (y_n + y_n x_n)$$

$$y_{n+1} \frac{19 - x_{n+1}}{20} = \frac{21 y_n + x_n y_n}{20}$$

$$y_{n+1} = \frac{21 y_n + x_n y_n}{18.9 - x_n}$$

$$y_{n+1} = \frac{y_n (21 + x_n)}{18.9 - x_n}$$

$\mid n \mid$	x_n	y_n
0	0	1
1	.1	1.1111111111
2	.2	1.247044917
3	.3	1.413762152
4	.4	1.61898569
5	.5	1.872772636

Table 3: Iterações do método Euler implícito.

$$\therefore y_5 = 1.872772636$$

3 Principal Component Analysis utilizando Decomposição de valor singular (SVD)

Seja $K = [k_{ij}]_{2 \times n}$ um conjunto de dados com n amostras e duas características. O conjunto segue uma certa distribuição, como ilustrado na figura abaixo:

Figure 1: O conjunto de dados $K \subset \mathbb{R}^2$.

Redução dimensional é um assunto amplamente abordado em multiplos contextos (e.g., estatístico, computacional) a fim de reduzir a necessidade por recursos computacionais ou melhoramento de visualização. Consiste em, a partir de um conjunto X, encontrar um conjunto Y de menor dimensionalitade tal que a perca de informação seja mínima.

Uma das técnicas mais conhecidas empregadas na redução dimensional é Principal Component Analysis (PCA), descrita abaixo:

Identificando as componentes principais Se o conjunto de dados está centrado na origem do espaço (como o da figura 1), as componentes principais (vetores em preto) são exatamente os autovetores da matrix de covariância das características $(\frac{1}{n}KK^T)$, multiplicados pelas raizes de seus seus respectivos autovalores:

$$K = U\Sigma V^{T}$$

$$\Sigma_{X} = \frac{1}{n}KK^{T}$$

$$\Longrightarrow$$

$$\Sigma_{X} = \frac{1}{n}(U\Sigma V^{T})(U\Sigma V^{T})^{T} = \frac{1}{n}U\Sigma^{2}U^{T}$$

Singular Value Decomposition (SVD) pode ser utilizada para extrair tais autovetores/valores!

Seleção de PCs Todos os autovetores são vetores unitários, e a variância das amostras em uma determinada direção v_i é dada pelo autovalor associado λ_i . Portanto os autovetores (colunas de U) podem ser ordenados descrecentemente usando $|\lambda_i|$ como valor de comparação; finalmente, componentes (colunas de U) com baixa variancia podem ser eliminados.

Projetando amostras do espaço original para o reduzido Observe que os autovetores formam uma base, logo Vy=x, onde $x\in X,y\in Y$. Portanto, a matrix V^{-1} é a matrix de projeção de X para Y, mas V é ortonormal (propriedade de SVD + fato de reordenar colunas não alterar a ortogonalidade de uma matriz), então

$$V^{-1} = V^T \implies V^T x = y$$

A figura abaixo ilustra a aplicação do PCA sobre um conjunto de dados R:

Figure 2: O conjunto de dados $R\subset\mathbb{R}^2$ e sua redução para o \mathbb{R}^2 e \mathbb{R} , respectivamente.