EAIiIB	Michał	Kilian	Rok II	Grupa 5a	
Temat:			Numer ćwiczenia:		
Wahadło proste			0		
Data wykonania 10.10.2018r.	Data oddania 12.10.2018r.	Zwrot do poprawki	Data oddania	Data zaliczenia	Ocena

1 Cel ćwiczenia

Zaznajomienie się z typowymi metodami opracowania danych pomiarowych przy wykorzystaniu wyników pomiarów dla wahadła pro stego

Wahadło matematyczne to punktowa masa m zawieszona na nieważkiej i nierozciągliwej lince poruszająca w jednorodnym polu grawitacyjnym. W doświadczeniu wykorzystamy bardzo dobre przybliżenie takiego układu jakim jest ciężka metalowa kulka zawieszona na nitce.

Aby znacząco uprościć obliczenia przyjmiemy $\sin\theta\approx\theta$ co jest prawdą dla małych wartości kąta θ zgodnie z twierdzeniem Taylora. Dzięki temu ograniczamy wpływ oporu powietza na wyniki, a z uproszczonego równania ruchu wahadła uzyskujemy następujacą zależność

$$T = 2\pi \sqrt{\frac{l}{g}} \tag{1}$$

gdzie T - okres drgań, l - długość nici, g - przyspieszenie grawitacyjne. Po przekształceniu otrzymujemy wzór roboczy pozwalający na wyznaczenie wartości przyspieszenia grawitacyjnego dla Ziemi

$$g = \frac{4\pi^2 l}{T^2} \tag{2}$$

2 Opis doświadczenia

Ćwiczenie składa się z 2 części, w pierwszej dokonujemy pomiarów dla ustalonej długości wahadła, a w drugiej wyznaczamy przyspieszenie grawitacyjne g za pomocą regresji liniowej.

Rysunek 1: Zestaw użyty w doświadczeniu

Na statywie zawieszono metalową kulkę na nici. Przed rozpoczęciem doświadczenia została zmierzona długość powstałego w ten sposób wahadła za pomocą linijki. Następnie zmierzono stoperem czas trwania 20 okresów drgań wahadła. Wyniki umieszczono w tabeli.

3 Wyniki pomiarów

Tablica 1: Pomiar okresu drgań przy ustalonej długości wahadła

długość wahadła l = 50, 1cm niepewność pomiaru u(l) = 0, 1cm

Lp.	liczba okresów k	czas t dla k okresów [s]	Okres $T_i = t/k[s]$
1	20	28.45	1,4225
2	20	28.5	1,425
3	20	28,37	1,4185
4	20	28,21	1,4105
5	20	28,29	1,4145
6	20	28,56	1,428
7	20	28,48	1,424
8	20	28,52	$1,\!426$
9	20	28,47	1,4235
10	20	28,39	1,4195

Tablica 2: Pomiar zależności okresu drgań od długości wahadła

Lp.	l [mm]	k	t [s]	T_i [s]	$T_i^2[s^2]$
1	501	20	28.424	1,4212	2,0198
2	475	20	27,626	1,3825	1,9080
3	450	20	27,160	1,3456	1,8442
4	431	20	26,096	1,3169	1,7025
5	402	20	25,626	1,2719	1,6417
6	352	20	24,002	1,1901	1,4402
7	302	20	21,974	1,1024	1,2071
8	281	20	21,184	1,0634	1,1219
9	250	20	20,002	1,0030	1,002
10	219	20	18,768	0,9387	0,8806
11	198	20	18,204	0,8926	0,8285
12	178	20	16,826	0,8463	0,7078
13	150	20	15,184	0,7769	0,5764
14	120	20	13,938	0,6949	0,4857
15	101	20	12,712	0,6375	0,4040

4 Opracowanie wyników

Ocena błęów grubych Wszystkie wyniki wynoszą nieco ponad 28 sekund i żaden nie odstaje znacząco od reszty co pozwala założyć, że nie popełniliśmy żadnego błędu grubego podczas pomiarów

Ocena niepewności pomiaru (typu A) obliczam \bar{x} ze wzoru $\bar{x} = \frac{1}{n} \sum x_i$ $T_0 = \frac{(1,4225s+1,425s+1,4185s+1,4105s+1,4145s+1,428s+1,424s+1,426s+1,4235s+1,4195s)}{10} = 1,4212s$ ze wzoru $u(x) \equiv s_x = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n(n-1)}}$ liczę niepewność pomiaru okresu (typu A) $u(T_0) = \sqrt{\frac{(1,4225s-1,4212s)^2+(1,425s-1,4212s)^2+...+(1,4195s-1,4212s)^2+}{9*10}} = 0,017s$

Ocena niepewności pomiaru długości wahadła (typu B) Niepewność pomiaru długości wahadła (typu B) jest równa działce elementarnej użytego przyrządu. W tym przypadku użyto miarki więcu(l)=1mm

Obliczenie przyspieszenia ziemskiego Przekształcamy wzór $T=2\pi\sqrt{\frac{l}{g}}$ do postaci $g=\frac{4*\pi^2 l}{T^2}$ po podstawieniu $g=\frac{4*\pi^2*0,501m}{(1,4212s)^2}=9,7923\frac{m}{s^2}$

Obliczenie niepewności złożonej Obliczamy niepewności z prawa przenoszenia niepewności $\frac{u_c(y)}{y}=\sqrt{\sum_k[p_k\frac{u(x_k)}{x_k}]^2}$

W naszym przypadku
$$\frac{u_c(y)}{y} = \sqrt{\left(\frac{u(l)}{l}\right)^2 + \left(\frac{-2*u(T)}{T}\right)^2} \frac{u(g)}{g} = \sqrt{\left(\frac{1mm}{501mm}\right)^2 + \left(\frac{-2*0,0017s}{1,4212s}\right)^2} = 0,3\%$$
 Niepewność bezwględna $u_c(g) = 9,7924\frac{m}{s^2} * \frac{0.3\%}{100\%} = 0,029\frac{m}{s^2}$

Obliczenie niepewności rozszerzonej Obliczamy niepewność rozszerzoną ze wzoru U(g)=ku(g) przyjmując k = 2 $U(g)=2*0,029\frac{m}{s^2}=0,058\frac{m}{s^2}$

Porównanie z wartością tabelaraczyną Różnica w stosunku do wartości tabelarycznej dla Krakowa wynosi $9,811\frac{m}{s^2}-9,792\frac{m}{s^2}=0,019\frac{m}{s^2}$ co jest mniejsze niż nasza niepewność rozszerzona więc można uznać, że zmierzone przyspieszenie jest zgodne z wartością tabelaryczną

Rysunek 2: Wykres powstały z pomiarów okresu dla różnych długości nici

Rysunek 3: Wykres zlinearyzowany T^2 w funkcji l wraz z dopasowaną prostą

Obliczenie wartości g z współczynnika nachylenia – Oczytujemy współczynnik nachylenia z wykresu a=4,033 Korzystamy ze wzoru $a=\frac{4\pi^2}{g}$ $g=\frac{4\pi^2}{a}=\frac{4\pi^2}{4,033}=9,7889\frac{m}{s^2}$

Obliczenie niepewności u(g) na podstawie niepewności u(a) Niepewność u(a) odczytujemy z wyniku działania funkcji excel u(a)= Korzystamy z prawa przenoszenia niepewności $\frac{u_c(y)}{y}=0,0024\sqrt{\sum_k[p_k\frac{u(x_k)}{x_k}]^2}$ W naszym przypadku

$$\frac{u_c(g)}{g} = \sqrt{[p_k \frac{u(a)}{a}]^2} = \sqrt{[\frac{-1*0,0024}{4,033}]^2} = \frac{0,0024}{4,033} = 0,58\%$$

$$u(g) = 9,7889 \frac{m}{s^2} * 0,58\% = 0,0058 \frac{m}{s^2}$$

5 Wnioski

Wahadło matematyczne pozwala w dość prosty sposób wyznaczyć przybliżoną wartość przyspieszenia grawitacyjnego. Uzyskane wyniki, zarówno bezpośrednio z pomiarów jak i korzystając z współczynnika nachylenia prostej dopasowanej do wykrsu są bliskie wartości tabelarycznej. Błędy mogą być spowodowane faktem, że nitka nie była nieważka. Ciało natomiast miało swoje rozmiary, a nie było punktem materialnym czego wymaga wahadło matematyczne.