Tutorial Computer- and robot-assisted Surgery

NATIONALES CENTRUM FÜR TUMORERKRANKUNGEN PARTNERSTANDORT DRESDEN UNIVERSITÄTS KREBSCENTRUM UCC

getragen von:

Deutsches Krebsforschungszentrum Universitätsklinikum Carl Gustav Carus Dresden Medizinische Fakultät Carl Gustav Carus, TU Dresden Helmholtz-Zentrum Dresden-Rossendorf

Sebastian Bodenstedt Translational Surgical Oncology

Questions lecture

Review Segmentation

Threshold operations

- Point-based (no global features)
- Generation of a binary image
- Operator with threshold Θ

$$f \to h$$

$$h_{jk} = \begin{cases} 1 & \text{für } f_{jk} > \Theta \\ 0 & \text{sonst} \end{cases}$$

$$h_{jk} = \begin{cases} 1 & \text{für } \Theta_{\min} < f_{jk} < \Theta_{\max} \\ 0 & \text{sonst} \end{cases}$$

Threshold

- Threshold segmentation
 - Type:

THRESH_BINARY	$dst(x, y) = \begin{cases} maxval \\ 0 \end{cases}$	if $src(x, y) > thresh$ otherwise
THRESH_BINARY_INV	$dst(x,y) = \begin{cases} 0 \\ maxval \end{cases}$	if $src(x, y) > thresh$ otherwise
THRESH_TRUNC	$dst(x,y) = \begin{cases} threshold \\ src(x,y) \end{cases}$	d if src(x, y) > thresh otherwise
THRESH_TOZERO	$dst(x,y) = \begin{cases} src(x,y) \\ 0 \end{cases}$	if $src(x, y) > thresh$ otherwise
THRESH_TOZERO_INV	$dst(x,y) = \begin{cases} 0 \\ src(x,y) \end{cases}$	if $src(x, y) > thresh$ otherwise

Image representation

- Color image: different models for different applications
 - B/W: Grayscale
 - RGB-model: specific for screens (Phosphor-crystals), very common
 - CMYK-model: Color printer (subtractive color mix)
 - YCbCr: Breakdown into luminescence Y und two color components Cb, Cr
 - HSV (Hue, Saturation, Value): specific for color segmentation

RGB

Regiongrowing

- Connected regions regarding $H(f_v)$
- Based n seeds
 - Manually defined from the user
 - Seeds are in a region
 - $H(f_{\nu})$ can be defined through the neighbors of the seeds
 - Depending on the criteria the results depends on the position of the seeds

Regiongrowing

Workflow

Define seed as starting value

- Consider neighbors (not seen before)
 - Mark pixel as seen
- If pixel fulfills criteria H
 - Yes: Use this pixel as new seed point
 - No: End

Active Contours

- Definition:
 - Representation of a curve through n points

$$v:[0,1] o \mathcal{R}^2$$
 $v(s) = \left(egin{array}{c} x(s) \ y(s) \end{array}
ight)$

Closed Curve

$$v(0) = v(1)$$

Active Contours

Energy minimization problem

$$E = \int_{0}^{1} (E_{int}(v(s)) + E_{image}(v(s))ds$$

Internal Energy

Describes the form of a curve

External Energy

Adaption to the edge

Are there any questions ?

