Home Assignment V

The solution will be published at the net at 04.02

Exercise 1. Let X_1, X_2, \ldots be independent random variables with $P(X_n = \sqrt{n}) = P(X_n = -\sqrt{n}) = \frac{1}{2}$. Prove that $\{X_n\}$ does not obey the weak low of large numbers; i.e. $P\left(\left|\frac{1}{n}\sum_{k=1}^n X_k\right| < \epsilon\right)$ does not converge to 0, although $E\left(\frac{1}{n}\sum_{k=1}^n X_k\right) = 0$ for each n.

Exercise 2. Let ρ_n be the distance between two randomly and independently chosen points in the unit cube in \mathbb{R}^n . Find $\lim_{n\to\infty}\frac{E(\rho_n)}{\sqrt{n}}$.

Exercise 3. Let $X_{\lambda} \sim Poiss(\lambda)$. Prove that $Y_{\lambda} = \frac{X_{\lambda} - \lambda}{\sqrt{\lambda}}$ is asymptotically normal N(0, 1) as $\lambda \to \infty$.

Exercise 4. Let X_1, X_2, \ldots be independent random variables with $P(X_n = n) = P(X_n = -n) = \frac{1}{4}$, $P(X_n = 0) = \frac{1}{2}$. Check the validity of the central limit theorem for this sequence.

Exercise 5. Let X_1, X_2, \ldots be independent identically distributed random variables with $P(X_n=1)=p>\frac{1}{2},\ P(X_n=-1)=1-p.$ Let $S_n=X_1+\ldots+X_n,\ T_n=\inf\{k>0:S_k=n\}.$ (a) Prove that $\lim_{n\to\infty}P\left(\left|\frac{S_n}{n}-(2p-1)\right|>\epsilon\right)=0$ for each $\epsilon>0$. (b)** In the class we found $E(T_1)$ assuming that $E(T_1)<\infty$. Define for arbitrary $M>0,\ T_1\wedge M=\min\{T_1,M\}$ and apply the same argument as in the class to this variable in order to prove that $E(T_1)<\infty$. (c)* Prove that $\lim_{n\to\infty}P\left(\left|\frac{T_n}{n}-\frac{1}{2p-1}\right|>\epsilon\right)=0$ for each $\epsilon>0$.