		Note	
		-	
		I	I
Name Vorname			
	1		
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach)	2		
	-		
Unterschrift der Kandidatin/des Kandidaten	3		
TECHNISCHE UNIVERSITÄT MÜNCHEN	4		
Fakultät für Mathematik			
rakultat fur Mathematik			
Semestrale	5		
Lineare Algebra 1			
Prof. Dr. F. Roesler			
	6		
19. Februar 2007, 10:15 – 11:45 Uhr			
	7		
Hörsaal: Reihe: Platz:	′		
Tiotsual			
Hinweise:			
Überprüfen Sie die Vollständigkeit der Angabe: 7 Aufgaben			
Bearbeitungszeit: 90 min.	\sum		
Erlaubte Hilfsmittel: keine			
	J		
Iur von der Aufsicht auszufüllen:			
örsaal verlassen von bis	ī		
orbadi veriasseri voii bis	-	Erstkorrek	tur
orzeitig abgegeben um			
	II		
esondere Bemerkungen:		Zweitkorr	ektur

Aufgabe 1 Lineare Abbildung [ca. 8 Punkte] Sei $f: \mathbb{R}^4 \longrightarrow \mathbb{R}^3$ die \mathbb{R} -lineare Abbildung, die durch

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \longmapsto \begin{pmatrix} -1 & 0 & 4 & 0 \\ -3 & 1 & -4 & 1 \\ -4 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$$

definiert wird.

- (i) Geben Sie $\ker f$ an.
- (ii) Geben Sie $\operatorname{rg} f$ und eine Basis von $\operatorname{im} f$ an.
- (iii) Untersuchen und begründen Sie, ob die Abbildung injektiv, surjektiv oder bijektiv ist.

Aufgabe 2 [ca. 6 Punkte]

Es sei V ein \mathbb{K} -Vektorraum.

- (i) Beweisen Sie: zu $v_0, v_1 \in V$ mit $v_0 \neq v_1$ existiert eine Gerade in V (d.h. eine Nebenklasse p+U mit $p \in V$ und einem eindimensionalen Unterraum $U \leq V$), die v_0 und v_1 enthält.
- (ii) Zeigen Sie, dass die Gerade in (i) eindeutig bestimmt ist.

Aufgabe 3 Basisdarstellung [ca. 8 Punkte]

Sei V der \mathbb{R} -Vektorraum, der durch die Funktionen

$$f_1: \mathbb{R} \longrightarrow \mathbb{R}, x \mapsto f_1(x) = 1$$

$$f_2: \mathbb{R} \longrightarrow \mathbb{R}, \ x \mapsto f_2(x) = x$$

$$f_3: \mathbb{R} \longrightarrow \mathbb{R}, \ x \mapsto f_3(x) = \sin x$$

$$f_4: \mathbb{R} \longrightarrow \mathbb{R}, x \mapsto f_4(x) = \cos x$$

aufgespannt wird. Der formelle Ableitungsoperator ist die R-lineare Abbildung, die durch

$$\frac{\mathrm{d}}{\mathrm{d}x}(f_1) = 0$$
, $\frac{\mathrm{d}}{\mathrm{d}x}(f_2) = f_1$, $\frac{\mathrm{d}}{\mathrm{d}x}(f_3) = f_4$, $\frac{\mathrm{d}}{\mathrm{d}x}(f_4) = -f_3$

definiert ist. Weiterhin definieren wir die Abbildung $H:V\longrightarrow V$ durch

$$f \mapsto \left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^2 f + f = \frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{\mathrm{d}}{\mathrm{d}x}(f)\right) + f$$

- (i) Zeigen Sie, dass $b := \{f_1, f_2, f_3, f_4\}$ eine Basis von V ist.
- (ii) Geben Sie die darstellende Matrix $\left[\frac{H(b)}{b}\right]=M_b^b(H)$ von H bezüglich b an.
- (iii) Geben Sie ker H an.

Aufgabe 4 Lineares Gleichungssystem auf endlichen Körpern mit Parameter [ca. 4 Punkte] Lösen Sie folgendes Gleichungssystem in $\mathbb{F}_5 := \mathbb{Z}/5\mathbb{Z}$:

$$\overline{16} \cdot x_1 + \overline{2} \cdot x_2 = \overline{99}$$

$$\overline{14} \cdot x_1 + \mu \cdot x_2 = \overline{-1}$$

Geben Sie die Lösungsmengen für alle Werte von $\mu \in \mathbb{F}_5$ an. Untersuchen Sie, für welche Werte von μ das Gleichungssystem keine Lösung hat.

Aufgabe 5 Rang einer linearen Abbildung [ca. 4 Punkte]

Sei $f:V\longrightarrow W$ eine \mathbb{K} -lineare Abbildung zwischen zwei \mathbb{K} -Vektorräumen mit rg f=n.

- (i) Zeigen Sie, dass $\dim_{\mathbb{K}} W \ge n$ gilt.
- (ii) Zeigen Sie, dass $\dim_{\mathbb{K}} V \ge n$ gilt.

Aufgabe 6 [ca. 4 Punkte]

Es sei V ein \mathbb{K} -Vektorraum und $f:V\longrightarrow V$ ein Endomorphismus. Wie immer bezeichne f^k für $k\in\mathbb{N}$ die k-malige Hintereinanderausführung von f und für k=0 die Identität auf V. Zeigen Sie:

$$\forall k \in \mathbb{N}: f(\ker(f^k)) \subseteq \ker(f^{k-1}).$$

(Hinweis: Es ist einfacher, diese Aussage nicht per Induktion zu beweisen.)

Kreuzen Sie an, ob die nachfolgenden Aussagen wahr oder falsch sind. Begründungen sind nicht verlangt. (Für jedes richtige Kreuz gibt es 1 Punkt, **für jedes falsche Kreuz 1 Punkt Abzug.** Wenn Sie bei einer Aussage nichts ankreuzen, gibt es dafür 0 Punkte. Bei mehr falschen als richtigen Antworten wird die Aufgabe insgesamt mit 0 Punkten bewertet.)

Es gibt genau eine lineare Abbildung $f: \mathbb{R}^3 \to \mathbb{R}^2$ mit $f(-3,1,4) = (1,2)$ und $f(2,2,0) = (0,1)$.	□ wahr	□ falsch
Sind R_1 und R_2 Äquivalenzrelationen auf einer Menge M , so wird auch durch $xRy : \Leftrightarrow xR_1y \vee xR_2y \qquad (x,y\in M)$ eine Äquivalenzrelation auf M definiert.	□ wahr	□ falsch
Die Matrix $\begin{pmatrix} -1 & 0 & 1 \\ -1 & 1 & 0 \\ 1 & 1 & -1 \end{pmatrix}$ hat über allen Körpern denselben Rang.	□ wahr	□ falsch
Im Vektorraum der 2×2 -Matrizen über einem Körper $\mathbb K$ ist $\left\{\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathscr M_2(\mathbb K): \ a+b-c=0 \right\}$ ein Untervektorraum.	□ wahr	□ falsch
Ist U ein Untervektorraum eines \mathbb{K} -Vektorraums V , so gilt für alle $v, w \in V$: $v \in U \land w \notin U \implies v + w \notin U.$	□ wahr	□ falsch
Für Abbildungen $\varphi: X \to Y$ und $\psi: Y \to Z$ zwischen Mengen gilt: $\psi \circ \varphi \text{ bijektiv } \Rightarrow \psi \text{ injektiv } \wedge \varphi \text{ surjektiv}$	□ wahr	□ falsch