Data-Flow Analysis Exercises

	- 5(1-(1)(0W 31(->+) 5(5)		
	Parkland 2		
	Problem 2 Consider the code shown below, in three-address instruction format.		
	Consider the code shown below, in three-address institution format.		
	01 a = 1		
Λ,	02 b = 2		
	03 L0: $c = a + b$ 04		
	05 if c < d goto L2		
	06 L1: d = b + d		
	07 if d < 1 goto L3 08 L2: b = a + b		
	09 e = c – a		
	10 if e = 0 goto L0 11 a = b + d		
	12 b = a - d		
	13 goto L4 14 L3: d = a + b		
	15:		
	16 goto L3		
	17 L4: return		
	For the code shown above, determine the following:		
	0		
	a) The basic blocks of instructions.		
	b) The control-flow graph (CFG) c) For each variable, its corresponding du-chain.		
	c) For each variable, its corresponding <i>du</i> -chain. d) The live variables at the end of each basic block. You do not need to determine the live variables before		
	and after each basic block and justify your answer for the value presented for the basic block containing		
	instructions at line 6 and 7.		
	e) Is the Live-Variable analysis a forward or backwards data-flow analysis problem? Why? What does		
	guarantee its termination when formulated as an iterative data-flow analysis problem?		
) = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =		
	a) Entry b) a: 9d1, M3, N4, N8, M9, N14/p; 9d11, N12/p b: 9d2, N3, N6, N8, N14/p; 9d8, N3, N6, N8, N11, N14/p b1; 31, 24 c; 9d3, N4, N5, N9/p e: 3d9, N10, M15/y) d15, N 154		
	1. bildz, uz, u6, u8, u144; id8, u3, u6, u8, u11, u14		
	13 14 15 196		
	1 Ho 1; 1, 24 Cigas, 49, 45, 41, 41		
	e: 1 d 9, u10, M 15 / 1 d 15, x 15 /		
	() () ()		
	(0: 652:13,4,51) c) 551:1 a,51 552:1 a,5,c,d,et (1: 553:16,71) 553:1 a,6,c,d,et		
	662: 1 a,b,c,det		
	1. 1: 1563:16.74 553- 79,6,c,d,et		
	(1: 6,71 553 - 19,8,c,a,e 1		
	554: 19,5, d,ef		
	656: 4 ab, et		
	() 655; (17,12,134)		
/	3: () 66 6: (14,15,16)		
	III Jun 1 and		
	(4: } 667: d 17t		
	Ψ_1		
	Exit		
	<i>e)</i>		
	a). The live variable analysis is a backward data flow problem as we proposed the information about a future		
	e) The live variable analysis is a backward data-flow problem as we propagate the information about a future		
	use of a variable backward to specific points of the program. If there is a definition at a specific point		
	backward the solution kills all other uses and resets the information associated with that variable. As with		
	many other iterative formulations of data-flow analysis problems termination is guaranteed by the fact		
	that the lattice, in this case the set of variables, has finite cardinality or length. The flow-function, in this		
	case set-union is monotonic.		

Problem 4

```
01
       a = 1
02
       b = 2
03 L0: c = a + b
04
       d = c - a
       if c < d goto L2
05
06 L1: d = b + d
       if d < 1 goto L3
07
08 L2: b = a + b
09
       e = c - a
10
       if e == 0
                 goto L0
11
       a = b + d
12
       b = a - d
13
       goto L4
14 L3: d = a + b
       e = e + 1
15
16
       goto L1
17 L4: return
```

For the code shown above, determine the following:

- a) The basic blocks of instructions and the control-flow graph (CFG).
- b) The live variables at the end of each basic block. You do not need to determine the Live Variables before and after each basic block but justify your answer for the value presented for the basic block containing instructions at line 6 and 7.
- c) Is the Live-Variables analysis a forward or backward data-flow analysis problem? Why and what does guarantee its termination when formulated as a data-flow analysis iterative problem?

a) Besic Blacks Instructions	b) BB1: 2 a/bb justification: In the
BB 7: 91, 28	BBZ: d'a, s, c, d, et & slock BB4, the vai "e"
BBZ: } 3,4,56	BB3: 1 a, b, c, d, et so defined and exists a
BB3:}6,7{	BB4: 3 a,b, c, det have the var e live in
BB4: 18,9,101	BBS: 1 6 - exptorned the block BB3
BB5: 11,12,131	BB5: 1 p - exetorned the black BB3. BB6: 1 a, b, c, d, c c seguir
BB6: 314, 15, 16f	ηρο. [α, ο, ε, α, ε [
BB7: 117/	C) T C
DD7-1 17/	C) The live variable analysis is a backward
Control-Flow Graph	data-then problem because we proposate the
	information about a fixure use of a variable backword
Edny	to specific points of the program. If there is a definition
	at a specific point backword the solution Kills all other uses
BBT	and lesets the infe associated with that variable. As with many
	other iterative formlations of data-flew analysis problems
BB2)	termination is guaranteed by the Fact that the lattice, in
/ • •	this case the set of variables, has finite condinality or
BBJK	length. The thew-twention, in this case set-union is
	monotonic.
3 BB 47	
ABB51	
1000	
1007	

Problem 6

Consider the three-address instruction code below:

```
01 func: a = 0
            e = 1
f = 3
03
            b = a + 1
04 L0:
0.5
            if a < b goto L1
            c = a + b

d = e * a
06
07
            if c != 0 goto L2
0.8
09 L1:
            b = 3 + f
            a = 4
10
11
            if b > a goto L0
12 L2:
            x = a
            y = b + c

z = d
13
14
15
            return
```

For this code determine the following:

- a. The set of basic blocks and the corresponding control-flow graph and dominator tree.
- b. The DU-chains and Reaching Definitions for all variables a, b, c, d, e and f. Ignore in this analysis the variables x, y and z.
- c. Determine a new representation of this code using SSA form representation.

d. Are there any opportunities for constant propagation? How would you detect them from either the information on dominance or via the SSA representation of the program? Which do you think would be the easiest to implement in a compiler? Explain.

