Package 'rddtools'

August 29, 2016

August 29, 2016
Version 0.4.0
Title Toolbox for Regression Discontinuity Design ('RDD')
Description Set of functions for Regression Discontinuity Design ('RDD'), for data visualisation, estimation and testing.
Maintainer Bastiaan Quast dquast@gmail.com>
Imports KernSmooth, ggplot2, rdd, sandwich, lmtest, Formula, locpol, methods
Depends AER, np
Suggests stats4, car, knitr, testthat
License GPL (>= 2)
<pre>URL https://github.com/bquast/RDDtools</pre>
<pre>BugReports https://github.com/bquast/RDDtools/issues</pre>
VignetteBuilder knitr
NeedsCompilation no
Author Matthieu Stigler [aut], Bastiaan Quast [aut, cre]
Repository CRAN
Date/Publication 2015-07-27 13:32:08
R topics documented:
as.lm
as.npregbw
clusterInf
covarTest mean
dens_test
gen_mc_ik
house

^	2	1	
1	/.	as In	7

Index		29
	waldci	28
	vcovCluster	
	STAR_MHE	
	rot_bw	
	rdd_reg_np	
	rdd_reg_lm	
	rdd_pred	
	rdd_gen_reg	
	rdd_data	
	rdd_coef	
	rdd_bw_rsw	
	rdd_bw_ik	16
	rddtools	16
	plotSensi	14
	plotPlacebo	
	plotBin	
	plot.rdd_data	11

as.lm

Convert a rdd object to lm

Description

Convert a rdd object to lm

Usage

as.lm(x)

Arguments

Х

An object to convert to lm

Value

An object of class 1m

See Also

as.npreg which converts rdd_reg objects into npreg from package np.

as.npregbw 3

Examples

```
data(house)
house_rdd <- rdd_data(y=house$y, x=house$x, cutpoint=0)
reg_para <- rdd_reg_lm(rdd_object=house_rdd)
reg_para_lm <- as.lm(reg_para)
reg_para_lm
plot(reg_para_lm, which=4)</pre>
```

as.npregbw

Convert an rdd_reg object to a npreg object

Description

Convert an rdd_object to a non-parametric regression npreg from package np

Usage

```
as.npregbw(x, ...) as.npreg(x, ...)
```

Arguments

x Object of class rdd_reg created by rdd_reg_np or rdd_reg_lm

... Further arguments passed to the npregbw or npreg

Details

This function converts an rdd_reg object into an npreg object from package np Note that the output won't be the same, since npreg does not offer a triangular kernel, but a Gaussian or Epanechinkov one. Another reason why estimates might differ slightly is that npreg implements a multivariate kernel, while rdd_reg proceeds as if the kernel was univariate. A simple solution to make the multivariate kernel similar to the univariate one is to set the bandwidth for x and Dx to a large number, so that they converge towards a constant, and one obtains back the univariate kernel.

Value

An object of class npreg or npregbw

See Also

```
as.lm which converts rdd_reg objects into lm.
```

4 clusterInf

Examples

```
# Estimate ususal rdd_reg:
data(house)
house_rdd <- rdd_data(y=house$y, x=house$x, cutpoint=0)
reg_nonpara <- rdd_reg_np(rdd_object=house_rdd)</pre>
## Convert to npreg:
reg_nonpara_np <- as.npreg(reg_nonpara)</pre>
reg_nonpara_np
rdd_coef(reg_nonpara_np, allCo=TRUE, allInfo=TRUE)
## Compare with result obtained with a Gaussian kernel:
bw_lm <- dnorm(house_rdd$x, sd=rddtools:::getBW(reg_nonpara))</pre>
reg_nonpara_gaus <- rdd_reg_lm(rdd_object=house_rdd, w=bw_lm)</pre>
all.equal(rdd_coef(reg_nonpara_gaus),rdd_coef(reg_nonpara_np))
```

clusterInf

Post-inference for clustered data

Description

Correct standard-errors to account for clustered data, doing either a degrees of freedom correction or using a heteroskedasticidty-cluster robust covariance matrix possibly on the range specified by bandwidth

Usage

```
clusterInf(object, clusterVar, vcov. = NULL, type = c("df-adj", "HC"), ...)
```

Arguments

object Object of class lm, from which rdd_reg also inherits. clusterVar The variable containing the cluster attributions. vcov. Specific covariance function to pass to coeftest. See help of sandwich The type of cluster correction to use: either the degrees of freedom, or a HC type matrix. Further arguments passed to coeftest

Value

The output of the coeftest function, which is itself of class coeftest

References

. . .

Wooldridge (2003) Cluster-sample methods in applied econometrics. American Economic Review, 93, p. 133-138

covarTest_dis 5

See Also

vcovCluster, which implements the cluster-robust covariance matrix estimator used by cluserInf

Examples

```
data(house)
house_rdd <- rdd_data(y=house$y, x=house$x, cutpoint=0)
reg_para <- rdd_reg_lm(rdd_object=house_rdd)

# here we just generate randomly a cluster variable:
nlet <- sort(c(outer(letters, letters, paste, sep='')))
clusRandom <- sample(nlet[1:60], size=nrow(house_rdd), replace=TRUE)

# now do post-inference:
clusterInf(reg_para, clusterVar=clusRandom)
clusterInf(reg_para, clusterVar=clusRandom, type='HC')</pre>
```

covarTest_dis

Testing for balanced covariates: equality of distribution

Description

Tests equality of distribution with a Kolmogorov-Smirnov for each covariates, between the two full groups or around the discontinuity threshold

Usage

```
covarTest_dis(object, bw, exact = NULL, p.adjust = c("none", "holm", "BH",
    "BY", "hochberg", "hommel", "bonferroni"))

## S3 method for class 'rdd_data'

covarTest_dis(object, bw = NULL, exact = FALSE,
    p.adjust = c("none", "holm", "BH", "BY", "hochberg", "hommel",
    "bonferroni"))

## S3 method for class 'rdd_reg'

covarTest_dis(object, bw = NULL, exact = FALSE,
    p.adjust = c("none", "holm", "BH", "BY", "hochberg", "hommel",
    "bonferroni"))
```

Arguments

object object of class rdd_data

bw a bandwidth

exact Argument of the ks.test function: NULL or a logical indicating whether an exact p-value should be computed.

p.adjust Whether to adjust the p-values for multiple testing. Uses the p.adjust function currently not used

6 covarTest_mean

Value

A data frame with, for each covariate, the K-S statistic and its p-value.

Author(s)

Matthieu Stigler << Matthieu. Stigler@gmail.com>>

See Also

covarTest_mean for the t-test of equality of means

Examples

covarTest_mean

Testing for balanced covariates: equality of means with t-test

Description

Tests equality of means by a t-test for each covariate, between the two full groups or around the discontinuity threshold

Usage

```
covarTest_mean(object, bw = NULL, paired = FALSE, var.equal = FALSE,
  p.adjust = c("none", "holm", "BH", "BY", "hochberg", "hommel",
  "bonferroni"))

## S3 method for class 'rdd_data'
covarTest_mean(object, bw = NULL, paired = FALSE,
```

covarTest_mean 7

```
var.equal = FALSE, p.adjust = c("none", "holm", "BH", "BY", "hochberg",
   "hommel", "bonferroni"))

## S3 method for class 'rdd_reg'
covarTest_mean(object, bw = NULL, paired = FALSE,
   var.equal = FALSE, p.adjust = c("none", "holm", "BH", "BY", "hochberg",
   "hommel", "bonferroni"))
```

Arguments

object object of class rdd_data

bw a bandwidth

paired Argument of the t.test function: logical indicating whether you want paired t-tests.

var.equal Argument of the t.test function: logical variable indicating whether to treat the two variances as being equal

p.adjust Whether to adjust the p-values for multiple testing. Uses the p.adjust function

... currently not used

Value

A data frame with, for each covariate, the mean on each size, the difference, t-stat and ts p-value.

Author(s)

Matthieu Stigler << Matthieu. Stigler@gmail.com>>

See Also

covarTest_dis for the Kolmogorov-Smirnov test of equality of distribution

gen_mc_ik

```
## covarTest_mean works also on regression outputs (bw will be taken from the model)
reg_nonpara <- rdd_reg_np(rdd_object=house_rdd_Z)
covarTest_mean(reg_nonpara)</pre>
```

dens_test

Run the McCracy test for manipulation of the forcing variable

Description

Calls the DCdensity test from package rdd on a rdd_object.

Usage

```
dens_test(rdd_object, bin = NULL, bw = NULL, plot = TRUE, ...)
```

Arguments

rdd_object of class rdd_data

bin Argument of the DCdensity function, the binwidth bw Argument of the DCdensity function, the bandwidth plot Whether to return a plot. Logical, default ot TRUE.

... Further arguments passed to DCdensity.

Examples

```
data(house)
house_rdd <- rdd_data(y=house$y, x=house$x, cutpoint=0)
dens_test(house_rdd)</pre>
```

gen_mc_ik

Generate Monte Carlo simulations of Imbens and Kalyanaraman

Description

Generate the simulations reported in Imbens and Kalyanaraman (2012)

Usage

```
gen_mc_ik(n = 200, version = 1, sd = 0.1295, output = c("data.frame",
    "rdd_data"), size)
```

house 9

Arguments

n	The size of sampel to generate
version	The MC version of Imbens and Kalnayaraman (between 1 and 4).
sd	The standard deviation of the error term.
output	Whether to return a data-frame, or already a rdd_data
size	The size of the effect, this depends on the specific version, defaults are as in ik: 0.04, NULL, 0.1, 0.1

Value

An data frame with x and y variables.

Examples

```
mc1_dat <- gen_mc_ik()</pre>
MC1_rdd <- rdd_data(y=mc1_dat$y, x=mc1_dat$x, cutpoint=0)</pre>
## Use np regression:
reg_nonpara <- rdd_reg_np(rdd_object=MC1_rdd)</pre>
reg_nonpara
# Represent the curves:
plotCu <- function(version=1, xlim=c(-0.1,0.1)){</pre>
  res <- gen_mc_ik(sd=0.0000001, n=1000, version=version)
  res <- res[order(res$x),]</pre>
  ylim <- range(subset(res, x>=min(xlim) & x<=max(xlim), 'y'))</pre>
  plot(res, type='1', xlim=xlim, ylim=ylim, main=paste('DGP', version))
  abline(v=0)
  xCut \leftarrow res[which(res$x==min(res$x[res$x>=0]))+c(0,-1),]
  points(xCut, col=2)
layout(matrix(1:4,2, byrow=TRUE))
plotCu(version=1)
plotCu(version=2)
plotCu(version=3)
plotCu(version=4)
layout(matrix(1))
```

house

Dataset used in Lee (2008)

Description

Randomized experiments from non-random selection in U.S. House elections

10 indh

Format

A data frame with 6558 observations and two variables:

- x Vote at election t-1
- y Vote at election t

Source

Guido Imbens webpage: http://scholar.harvard.edu/imbens/scholar_software/regression-discontinuity

References

Imbens, Guido and Karthik Kalyanaraman. (2012) 'Optimal Bandwidth Choice for the regression discontinuity estimator,' Review of Economic Studies (2012) 79, 933-959

Lee, D. (2008) Randomized experiments from non-random selection in U.S. House elections, *Journal of Econometrics*, 142, 675-697

Examples

```
data(house)
rdd_house <- rdd_data(x=x, y=y, data=house, cutpoint=0)
summary(rdd_house)
plot(rdd_house)</pre>
```

indh

INDH data set

Description

Data from the Initiative Nationale du Development Humaine, collected as the part of the SNSF project "Development Aid and Social Dynamics"

Format

A data frame with two variables with 720 observations each

Source

Development Aid and social Dyanmics website: http://qua.st/Development-Aid-Social-Dynamics

References

Arcand, Rieger, and Nguyen (2015) 'Development Aid and Social Dyanmics Data Set'

plot.rdd_data 11

Examples

```
# load the data
data(indh)

# construct rdd_data frame
rdd_dat_indh <- rdd_data(y=choice_pg, x=poverty, data=indh, cutpoint=30)

# inspect data frame
summary(rdd_dat_indh)

# perform non-parametric regression
( reg_np_indh <- rdd_reg_np(rdd_dat_indh) )
plot(reg_np_indh)</pre>
```

plot.rdd_data

Plot rdd_data

Description

Binned plot of the forcing and outcome variable

Usage

```
## S3 method for class 'rdd_data'
plot(x, h, nbins = NULL, xlim = range(object$x, na.rm =
   TRUE), cex = 0.7, nplot = 1, device = c("base", "ggplot"), ...)
```

Arguments

Χ	Object of class rdd_data
h	The binwidth parameter (note this differs from the bandwidth parameter!)
nbins	Alternative to h, the total number of bins in the plot.
xlim	The range of the x data
cex	Size of the points, see par
nplot	Number of plot to draw
device	Type of device used. Currently not used.
	Further arguments passed to the plot function.

Details

Produces a simple binned plot averaging values within each interval. The length of the intervals is specified with the argument h, specifying the whole binwidth (contrary to the usual bandwidth argument, that gives half of the length of the kernel window. When no bandwidth is given, the bandwidth of Ruppert et al is used, see rdd_bw_rsw.

12 plotBin

Value

A plot

Author(s)

Matthieu Stigler << Matthieu. Stigler@gmail.com>>

Examples

```
data(house)
house_rdd <- rdd_data(y=house$y, x=house$x, cutpoint=0)
plot(house_rdd)

## Specify manually the bandwidth:
plot(house_rdd, h=0.2)

## Show three plots with different bandwidth:
plot(house_rdd, h=c(0.2,0.3,0.4), nplot=3)

## Specify instead of the bandwidth, the final number of bins:
plot(house_rdd, nbins=22)

## If the specified number of bins is odd, the larger number is given to side with largest range plot(house_rdd, nbins=21)</pre>
```

plotBin

Bin plotting

Description

Do a 'scatterplot bin smoothing'

Usage

```
plotBin(x, y, h = 0.05, nbins = NULL, cutpoint = 0, plot = TRUE,
  type = c("value", "number"), xlim = range(x, na.rm = TRUE), cex = 0.9,
  main = NULL, xlab, ylab, ...)
```

Arguments

X	Forcing variable
у	Output
h	the bandwidth (defaults to 2*sd(runvar)*length(runvar)^(5))
nbins	number of Bins
cutpoint	Cutpoint
plot	Logical. Whether to plot or only returned silently

plotPlacebo 13

```
type Whether returns the y averages, or the x frequencies xlim, cex, main, xlab, ylab
Usual parameters passed to plot(), see par
... further arguments passed to plot.
```

Value

Returns silently values

References

McCrary, Justin.

plotPlacebo

Draw a (density) plot of placebo tests

Description

Draw a plot of placebo tests, estimating the impact on fake cutpoints

Usage

```
plotPlacebo(object, device = c("ggplot", "base"), ...)

## S3 method for class 'rdd_reg'
plotPlacebo(object, device = c("ggplot", "base"),
  from = 0.25, to = 0.75, by = 0.1, level = 0.95, same_bw = FALSE,
  vcov. = NULL, plot = TRUE, output = c("data", "ggplot"), ...)

plotPlaceboDens(object, device = c("ggplot", "base"), ...)

## S3 method for class 'rdd_reg'
plotPlaceboDens(object, device = c("ggplot", "base"),
  from = 0.25, to = 0.75, by = 0.1, level = 0.95, same_bw = FALSE,
  vcov. = NULL, ...)

computePlacebo(object, from = 0.25, to = 0.75, by = 0.1, level = 0.95,
  same_bw = FALSE, vcov. = NULL)
```

Arguments

object the output of an RDD regression

device Whether to draw a base or a ggplot graph.

from Starting point of the fake cutpoints sequence. Refers of the quantile of each side

of the true cutpoint

14 plotSensi

to	Ending point of the fake cutpoints sequence. Refers of the quantile of each side of the true cutpoint
by	Increments of the from-to sequence
level	Level of the confidence interval shown
same_bw	Whether to re-estimate the bandwidth at each point
vcov.	Specific covariance function to pass to coeftest. See help of package sandwich.
plot	Whether to actually plot the data.
output	Whether to return (invisibly) the data frame containing the bandwidths and corresponding estimates, or the ggplot object
	Further arguments passed to specific methods.

Value

A data frame containing the cutpoints, their corresponding estimates and confidence intervals.

Author(s)

Matthieu Stigler << Matthieu. Stigler@gmail.com>>

Examples

```
data(house)
house_rdd <- rdd_data(y=house$y, x=house$x, cutpoint=0)
reg_nonpara <- rdd_reg_np(rdd_object=house_rdd)
plotPlacebo(reg_nonpara)

# Use with another vcov function; cluster case
reg_nonpara_lminf <- rdd_reg_np(rdd_object=house_rdd, inference='lm')
# need to be a function applied to updated object!
vc <- function(x) vcovCluster(x, clusterVar=model.frame(x)$x)
plotPlacebo(reg_nonpara_lminf, vcov. = vc)</pre>
```

plotSensi

Plot the sensitivity to the bandwidth

Description

Draw a plot showing the LATE estimates depending on multiple bandwidths

Usage

```
plotSensi(rdd_regobject, from, to, by = 0.01, level = 0.95,
   output = c("data", "ggplot"), plot = TRUE, ...)

## S3 method for class 'rdd_reg_np'
plotSensi(rdd_regobject, from, to, by = 0.05,
```

plotSensi 15

```
level = 0.95, output = c("data", "ggplot"), plot = TRUE,
  device = c("ggplot", "base"), vcov. = NULL, ...)

## S3 method for class 'rdd_reg_lm'
plotSensi(rdd_regobject, from, to, by = 0.05,
  level = 0.95, output = c("data", "ggplot"), plot = TRUE, order,
  type = c("colour", "facet"), ...)
```

Arguments

rdd_regobject	object of a RDD regression, from either rdd_reg_lm or rdd_reg_np
from	First bandwidth point. Default value is max(1e-3, bw-0.1)
to	Last bandwidth point. Default value is bw+0.1
by	Increments in the from to sequence
level	Level of the confidence interval
output	Whether to return (invisibly) the data frame containing the bandwidths and corresponding estimates, or the ggplot object
plot	Whether to actually plot the data.
device	Whether to draw a base or a ggplot graph.
vcov.	Specific covariance function to pass to coeftest. See help of package sandwich
order	For parametric models (from rdd_reg_lm), the order of the polynomial.
type	For parametric models (from rdd_reg_lm) whether different orders are represented as different colour or as different facets.
	Further arguments passed to specific methods

Value

A data frame containing the bandwidths and corresponding estimates and confidence intervals.

Author(s)

Matthieu Stigler << Matthieu. Stigler@gmail.com>>

```
data(house)
house_rdd <- rdd_data(y=house$y, x=house$x, cutpoint=0)

#Non-parametric estimate
bw_ik <- rdd_bw_ik(house_rdd)
reg_nonpara <- rdd_reg_np(rdd_object=house_rdd, bw=bw_ik)
plotSensi(reg_nonpara)
plotSensi(reg_nonpara, device='base')

#Parametric estimate:
reg_para_ik <- rdd_reg_lm(rdd_object=house_rdd, order=4, bw=bw_ik)
plotSensi(reg_para_ik)
plotSensi(reg_para_ik, type='facet')</pre>
```

16 rdd_bw_ik

rddtools

Regression Discontinuity Design

Description

Regression Discontinuity Design

rdd_bw_ik

Imbens-Kalyanaraman Optimal Bandwidth Calculation

Description

Imbens-Kalyanaraman optimal bandwidth for local linear regression in Regression discontinuity designs.

Usage

```
rdd_bw_ik(rdd_object, kernel = c("Triangular", "Uniform", "Normal"))
```

Arguments

rdd_object of class rdd_data created by rdd_data

kernel The type of kernel used: either triangular or uniform.

Value

The optimal bandwidth

Author(s)

Matthieu Stigler << Matthieu. Stigler@gmail.com>>

References

Imbens, Guido and Karthik Kalyanaraman. (2012) 'Optimal Bandwidth Choice for the regression discontinuity estimator,' Review of Economic Studies (2012) 79, 933-959

See Also

```
rdd_bw_rsw Global bandwidth selector of Ruppert, Sheather and Wand (1995)
```

```
data(house)
rd<- rdd_data(x=house$x, y=house$y, cutpoint=0)
rdd_bw_ik(rd)</pre>
```

rdd_bw_rsw 17

rdd_bw_rsw	Global bandwidth selector of Ruppert, Sheather and Wand (1995) from package KernSmooth

Description

Uses the global bandwidth selector of Ruppert, Sheather and Wand (1995) either to the whole function, or to the functions below and above the cutpoint.

Usage

```
rdd_bw_rsw(object, type = c("global", "sided"))
```

Arguments

object of class rdd_data created by rdd_data

type Whether to choose a global bandwidth for the whole function (global) or for

each side (sided)

Value

One (or two for sided) bandwidth value.

References

See dpill

See Also

rdd_bw_ik Local RDD bandwidth selector using the plug-in method of Imbens and Kalyanaraman (2012)

```
data(house)
rd<- rdd_data(x=house$x, y=house$y, cutpoint=0)
rdd_bw_rsw(rd)</pre>
```

18 rdd_data

rdd_coef

RDD coefficient

Description

Function to access the RDD coefficient in the various regressions

Usage

```
rdd_coef(object, allInfo = FALSE, allCo = FALSE, ...)
## Default S3 method:
rdd_coef(object, allInfo = FALSE, allCo = FALSE, ...)
## S3 method for class 'rdd_reg_np'
rdd_coef(object, allInfo = FALSE, allCo = FALSE, ...)
```

Arguments

object	A RDD regression object
allInfo	whether to return just the coefficients (allInfo=FALSE) or also the se/t stat/pval.
allCo	Whether to give only the RDD coefficient (allCo=FALSE) or all coefficients
	Further arguments passed to/from specific methods

Value

Either a numeric value of the RDD coefficient estimate, or a data frame with the estimate, its standard value, t test and p-value and

rdd	data	

Construct rdd_data

Description

Construct the base RDD object, containing x, y and the cutpoint, eventuallay covariates.

Usage

```
rdd_data(y, x, covar, cutpoint, z, labels, data)
```

rdd_gen_reg

Arguments

У	Output
Х	Forcing variable
covar	Exogeneous variables
cutpoint	Cutpoint
Z	Assignment variable for the fuzzy case.
labels	Additional labels to provide as list (with entries x, y, and eventually vector covar). Unused currently.
data	A data-frame for the x and y variables. If this is provided, the column names can be entered directly for argument x and y

Value

Object of class rdd_data, inheriting from data.frame

Author(s)

Matthieu Stigler << Matthieu. Stigler@gmail.com>>

Examples

```
data(house)
rd<- rdd_data(x=house$x, y=house$y, cutpoint=0)
rd2 <- rdd_data(x=x, y=y, data=house, cutpoint=0)
# The print() function is the same as the print.data.frame:
rd
# The summary() and plot() function are specific to rdd_data
summary(rd)
plot(rd)</pre>
```

rdd_gen_reg

General polynomial estimator of the regression discontinuity

Description

Compute RDD estimate allowing a locally kernel weighted version of any estimation function possibly on the range specified by bandwidth

Usage

```
rdd_gen_reg(rdd_object, fun = glm, covariates = NULL, order = 1,
  bw = NULL, slope = c("separate", "same"), covar.opt = list(strategy =
  c("include", "residual"), slope = c("same", "separate"), bw = NULL), weights,
  ...)
```

20 rdd_gen_reg

Arguments

rdd_object Object of class rdd_data created by rdd_data The function to estimate the parameters fun covariates Formula to include covariates Order of the polynomial regression. order A bandwidth to specify the subset on which the kernel weighted regression is bw estimated slope Whether slopes should be different on left or right (separate), or the same. Options for the inclusion of covariates. Way to include covariates, either in the covar.opt main regression (include) or as regressors of y in a first step (residual). weights Optional weights to pass to the lm function. Note this cannot be entered together with bw

Details

. . .

This function allows the user to use a custom estimating function, instead of the traditional lm(). It is assumed that the custom function has following behaviour:

Further arguments passed to fun. See the example.

- 1. A formula interface, together with a data argument
- 2. A weight argument
- 3. A coef(summary(x)) returning a data-frame containing a column Estimate

Note that for the last requirement, this can be accommodated by writing a specific rdd_coef function for the class of the object returned by fun.

Value

An object of class rdd reg lm and class lm, with specific print and plot methods

References

TODO

```
## Step 0: prepare data
data(house)
house_rdd <- rdd_data(y=house$y, x=house$x, cutpoint=0)

## Estimate a local probit:
house_rdd$y <- with(house_rdd, ifelse(y<quantile(y, 0.25), 0,1))
reg_bin_glm <- rdd_gen_reg(rdd_object=house_rdd, fun= glm, family=binomial(link='probit'))
print(reg_bin_glm)
summary(reg_bin_glm)</pre>
```

rdd_pred 21

rdd_pred	RDD coefficient prediction

Description

Function to predict the RDD coefficient in presence of covariate (without covariates, returns the same than rdd_coef)

Usage

```
rdd_pred(object, covdata, se.fit = TRUE, vcov. = NULL, newdata,
   stat = c("identity", "sum", "mean"), weights)
```

Arguments

object	A RDD regression object
covdata	New data.frame specifying the values of the covariates, can have multiple rows.
se.fit	A switch indicating if standard errors are required.
vcov.	Specific covariance function (see package sandwich), by default uses the vcov
newdata	Another data on which to evaluate the x/D variables. Useful in very few cases.
stat	The statistic to use if there are multiple predictions, 'identity' just returns the single values, 'mean' averages them
weights	Eventual weights for the averaging of the predicted values.

Details

The function rdd_pred does a simple prediction of the RDD effect

$$RDDeffect = \mu(x, z, D = 1) - \mu(x, z, D = 0)$$

When there are no covariates (and z is irrelevant in the equation above), this amounts exactly to the usual RDD coefficient, shown in the outputs, or obtained with rdd_coef. If there were covariates, and if these covariates were estimated using the "include" *strategy* and with different coefficients left and right to the cutoff (i.e. had argument *slope* = "separate"), than the RDD effect is also dependent on the value of the covariate(s). rdd_pred allows to set the value of the covariate(s) at which to evaluate the RDD effect, by providing a data.frame with the values for the covariates. Note that the effect can be evaluated at multiple points, if you provide multiple rows of covdata.

In pressence of covariate-specific RDD effect, one may wish to estimate an average effect. This can be done by setting the argument stat='mean'. Weights can additionally be added, with the argument weights, to obtain a weighted-average of the predictions. Note however that in most cases, this will be equivalent to provide covariates at their (weighted) mean value, which will be much faster also!

Standard errors, obtained setting the argument se.fit=TRUE, are computed using following formula:

$$x_i \Omega x_i'$$

22 rdd_reg_lm

where Ω is the estimated variance-covariance matrix (by default $\sigma^2(X'X)^{-1}$ using vcov) and x_i is the input data (a mix of covdata and input data). If one wishes individual predictions, standard errors are simply obtained as the square of that diagonal matrix, whereas for mean/sum, covariances are taken into account.

Value

Returns the predicted value(s), and, if se.fit=TRUE, their standard errors.

References

Froehlich (2007) Regression discontinuity design with covariates, IZA discussion paper 3024

Examples

```
# Load data, add (artificial) covariates:
data(house)
n_Lee <- nrow(house)</pre>
z1 <- runif(n_Lee)</pre>
house_rdd <- rdd_data(y=y, x=x, data=house, covar=z1, cutpoint=0)</pre>
# estimation without covariates: rdd_pred is the same than rdd_coef:
reg_para <- rdd_reg_lm(rdd_object=house_rdd)</pre>
rdd_pred(reg_para)
rdd_coef(reg_para, allInfo=TRUE)
# estimation with covariates:
reg_para_cov <- rdd_reg_lm(rdd_object=house_rdd,</pre>
                           covariates='z1',
                           covar.opt=list(slope='separate') )
# should obtain same result as with RDestimate
rdd_pred(reg_para_cov, covdata=data.frame(z1=0))
# evaluate at mean of z1 (as comes from uniform)
rdd_pred(reg_para_cov, covdata=data.frame(z1=0.5))
```

 ${\tt rdd_reg_lm}$

Parametric polynomial estimator of the regression discontinuity

Description

Compute a parametric polynomial regression of the ATE, possibly on the range specified by bandwidth

rdd_reg_lm 23

Usage

```
rdd_reg_lm(rdd_object, covariates = NULL, order = 1, bw = NULL,
 slope = c("separate", "same"), covar.opt = list(strategy = c("include",
 "residual"), slope = c("same", "separate"), bw = NULL),
 covar.strat = c("include", "residual"), weights)
```

Arguments

rdd_object Object of class rdd data created by rdd_data Formula to include covariates covariates Order of the polynomial regression. order A bandwidth to specify the subset on which the parametric regression is estihw mated slope Whether slopes should be different on left or right (separate), or the same. covar.opt Options for the inclusion of covariates. Way to include covariates, either in the main regression (include) or as regressors of y in a first step (residual). covar.strat

DEPRECATED, use covar.opt instead.

weights Optional weights to pass to the lm function. Note this cannot be entered together

with bw

Details

This function estimates the standard *discontinuity regression*:

$$Y = \alpha + \tau D + \beta_1(X - c) + \beta_2 D(X - c) + \epsilon$$

with τ the main parameter of interest. Several versions of the regression can be estimated, either restricting the slopes to be the same, i.e $\beta_1 = \beta_2$ (argument slope). The order of the polynomial in X-c can also be adjusted with argument order. Note that a value of zero can be used, which corresponds to the simple difference in means, that one would use if the samples were random. Covariates can also be added in the regression, according to the two strategies discussed in Lee and Lemieux (2010, sec 4.5), through argument covar.strat:

include Covariates are simply added as supplementary regressors in the RD equation

residual The dependent variable is first regressed on the covariates only, then the RDD equation is applied on the residuals from this first step

The regression can also be estimated in a neighborhood of the cutpoint with the argument bw. This make the parametric regression resemble the non-parametric local kernel rdd_reg_np. Similarly, weights can also be provided (but not simultaneously to bw).

The returned object is a classical 1m object, augmented with a RDDs1ot, so usual methods can be applied. As is done in general in R, heteroskeadsticity-robust inference can be done later on with the usual function from package sandwich. For the case of clustered observations a specific function clusterInf is provided.

Value

An object of class rdd_reg_lm and class lm, with specific print and plot methods

24 rdd_reg_np

Examples

```
## Step 0: prepare data
data(house)
house_rdd <- rdd_data(y=house$y, x=house$x, cutpoint=0)</pre>
## Step 2: regression
# Simple polynomial of order 1:
reg_para <- rdd_reg_lm(rdd_object=house_rdd)</pre>
print(reg_para)
plot(reg_para)
# Simple polynomial of order 4:
reg_para4 <- rdd_reg_lm(rdd_object=house_rdd, order=4)</pre>
reg_para4
plot(reg_para4)
# Restrict sample to bandwidth area:
bw_ik <- rdd_bw_ik(house_rdd)</pre>
reg_para_ik <- rdd_reg_lm(rdd_object=house_rdd, bw=bw_ik, order=4)</pre>
reg_para_ik
plot(reg_para_ik)
```

rdd_reg_np

Parametric polynomial estimator of the regression discontinuity

Description

Compute a parametric polynomial regression of the ATE, possibly on the range specified by bandwidth

Usage

```
rdd_reg_np(rdd_object, covariates = NULL, bw = rdd_bw_ik(rdd_object),
    slope = c("separate", "same"), inference = c("np", "lm"),
    covar.opt = list(slope = c("same", "separate"), bw = NULL))
```

Arguments

rdd_object	Object of class rdd_data created by rdd_data
covariates	TODO
bw	A bandwidth to specify the subset on which the parametric regression is estimated
slope	Whether slopes should be different on left or right (separate), or the same.
inference	Type of inference to conduct: non-parametric one (np) or standard (lm). See details.
covar.opt	Options for the inclusion of covariates. Way to include covariates, either in the main regression (include) or as regressors of y in a first step (residual).

rot_bw 25

Value

An object of class rdd_reg_np and class lm, with specific print and plot methods

References

TODO

See Also

rdd_bw_ik Bandwidth selection using the plug-in bandwidth of Imbens and Kalyanaraman (2012)

Examples

```
## Step 0: prepare data
data(house)
house_rdd <- rdd_data(y=house$y, x=house$x, cutpoint=0)
## Step 2: regression
# Simple polynomial of order 1:
reg_nonpara <- rdd_reg_np(rdd_object=house_rdd)
print(reg_nonpara)
plot(reg_nonpara)</pre>
```

rot_bw

Bandwidth selector

Description

implements dpill

Usage

```
rot_bw(object)
```

Arguments

object

object of class rdd_data

References

```
McCrary, Justin. (2008) 'Manipulation of the running variable in the regression discontinuity design: A density test,' Journal of Econometrics. 142(2): 698-714. http://dx.doi.org/10.1016/j.jeconom.2007.05.005
```

```
#No discontinuity
```

26 STAR_MHE

STAR_MHE	Transformation of the STAR dataset as used in Angrist and Pischke (2008)

Description

Transformation of the STAR dataset as used in Table 8.2.1 of Angrist and Pischke (2008)

Usage

STAR_MHE

Format

A data frame containing 5743 observations and 6 variables. The first variable is from the original dataset, all other are created by Angrist and Pischke STAT code.

```
schidkn School ID in kindergarden (original variable, schoolidk in STAR)
pscore The propensity score (computed by A & P)
classid The id of the class (computed by A & P)
cs Class size (computed by A & P)
female, nwhite Various covariates (computed by A & P)
```

Details

). This is a transformation of the dataset from the project STAR (Student/Teacher Achievement Ratio. The full dataset is described and available in package AER, STAR. The transformed data was obtained using the STATA script krueger.do, obtained from Joshua Angrist website (http://economics.mit.edu/faculty/angrist/data1/mhe/krueger), on the webstar.dta.

Source

Data obtained using the script krueger.do on data webstar.rda, found on J. Angrist website http://economics.mit.edu/faculty/angrist/data1/mhe/krueger, retrieved on 26 November 2012.

References

Krueger, A. (1999) 'Experimental Estimates Of Education Production Functions,' *The Quarterly Journal of Economics*, Vol. 114(2), pages 497-532, May.

Angrist, A. ad Pischke J-S (2008) *Mostly Harmless Econometrics: An Empiricist's Companion*, Princeton University press

See Also

STAR for the original dataset.

vcovCluster 27

Examples

vcovCluster

Cluster Heteroskedasticity-consistent estimation of the covariance matrix.

Description

Offer a cluster variant of the usual Heteroskedasticity-consistent

Usage

```
vcovCluster(object, clusterVar)
vcovCluster2(object, clusterVar1, clusterVar2)
```

Arguments

object Object of class lm, from which rdd_reg also inherits.

clusterVar The variable containing the cluster attributions.

clusterVar1, clusterVar2

The two cluster variables for the 2-cluster case.

Value

A matrix containing the covariance matrix estimate.

Author(s)

Mahmood Arai, see http://people.su.se/~ma/econometrics.html

References

Cameron, C., Gelbach, J. and Miller, D. (2011) Robust Inference With Multiway Clustering, *Journal of Business and Economic Statistics*, vol. 29(2), pages 238-249. #'

Wooldridge (2003) Cluster-sample methods in applied econometrics. *American Economic Review*, 93, p. 133-138

Arai, M. (2011) Cluster-robust standard errors using R, Note available http://people.su.se/~ma/clustering.pdf.

28 waldci

See Also

clusterInf for a direct function, allowing also alternative cluster inference methods.

Examples

```
data(STAR_MHE)
if(all(c(require(sandwich), require(lmtest)))){

# Run simple regression:
reg_krug <- lm(pscore~cs, data=STAR_MHE)

# Row 1 of Table 8.2.1, inference with standard vcovHC:
coeftest(reg_krug,vcov.=vcovHC(reg_krug, 'HC1'))[2,2]

# Row 4 of Table 8.2.1, inference with cluster vcovHC:
coeftest(reg_krug,vcov.=vcovCluster(reg_krug, clusterVar=STAR_MHE$classid))[2,2]
}</pre>
```

waldci

Confint allowing vcov

Description

Version of vcov allowing for confint

Usage

```
waldci(x, parm = NULL, level = 0.95, vcov. = NULL, df = NULL, ...)
```

Arguments

x	Object of class lm or else
parm	specification of which parameters are to be given confidence intervals, see confint
level	the confidence level required, see confint()
vcov.	Specific covariance function to pass to coeftest. See help of sandwich
df	Degrees of freedom
	Further arguments

Index

```
as.1m, 2, 3
                                                    rdd_reg_np, 3, 15, 23, 24
as.npreg, 2
                                                    rddtools, 16
as.npreg (as.npregbw), 3
                                                    rddtools-package (rddtools), 16
as.npregbw, 3
                                                    rot_bw, 25
clusterInf, 4, 23, 28
                                                    sandwich, 14, 15
                                                    STAR, 26
computePlacebo (plotPlacebo), 13
                                                    STAR_MHE, 26
covarTest_dis, 5, 7
covarTest_mean, 6, 6
                                                    t.test, 7
DCdensity, 8
                                                    vcov, 21, 22
dens_test, 8
                                                    vcovCluster, 5, 27
dpill, 17
                                                    vcovCluster2 (vcovCluster), 27
gen_mc_ik, 8
                                                    \text{waldci}, \frac{28}{}
house, 9
indh, 10
ks.test, 5
npreg, 3
npregbw, 3
p.adjust, 5, 7
par, 11, 13
plot, 11
plot.rdd_data, 11
plotBin, 12
plotPlacebo, 13
plotPlaceboDens (plotPlacebo), 13
plotSensi, 14
rdd_bw_ik, 16, 17, 25
rdd_bw_rsw, 11, 16, 17
rdd_coef, 18, 20, 21
rdd_data, 16, 17, 18, 20, 23, 24
rdd_gen_reg, 19
rdd_pred, 21
rdd_reg_lm, 3, 15, 22
```