Лекция 2

Несобственный интеграл Критерий Коши, признаки Абеля и Дирихле сходимости несобственных интегралов

Пусть задана функция $f:[a,+\infty)\to\mathbb{R}$ и $f\in R[a,b], \ \forall [a,b]\subset [a,+\infty).$ Определение 2.1. Если существует конечный предел

$$\lim_{b \to +\infty} \int_{a}^{b} f(x)dx = \int_{a}^{+\infty} f(x)dx,$$
(2.1)

то он называется *несобственным* интегралом функции f на $[a, +\infty)$.

Если существует предел (2.1), то говорят, что несобственный интеграл $\int_{-\infty}^{\infty} f(x)dx$ cxodumcs, в противном случае – pacxodumcs. Отметим, что $\int\limits_{-\infty}^{+\infty} f(x)dx$ сходится или расходится одновременно с несобственным интегралом $\int\limits_{-\infty}^{+\infty} f(x)dx$, где $a_1>a$. Действительно, поскольку

$$\int_{a}^{b} f(x)dx = \int_{a}^{a_1} f(x)dx + \int_{a_1}^{b} f(x)dx,$$

то, очевидно, указанные пределы существуют или не существуют.

Теорема 2.1. (Критерий Коши). Пусть задана функция $f:[a,+\infty)\to\mathbb{R}$ и $f\in$ $R[a,b],\ \forall [a,b]\subset [a,+\infty).$ Тогда несобственный интеграл $\int\limits_{-\infty}^{\infty}f(x)dx$ сходится $\Leftrightarrow\ \forall \varepsilon>$

$$\underbrace{0 \exists A > 0; \forall b_1 > A, \ \forall b_2 > A} \Rightarrow \underbrace{\left| \int_{b_1}^{b_2} f(x) dx \right|}_{b_1} < \varepsilon. \qquad F(x) = \underbrace{\int_{b_1}^{a} f(x) dx}_{b_1} = \underbrace{\int_{b_1}^{a} f(x) dx}_{b_2} = \underbrace{\int_{b_1}^{a} f(x) dx}_{b_2} = \underbrace{\int_{b_1}^{a} f(x) dx}_{b_2} = \underbrace{\int_{b_2}^{a} f(x) dx}_{b_2} = \underbrace$$

Доказательство. Рассмотрим функцию $F(b) = \int\limits_a^b f(x) dx$. Вопрос о сходимости

несобственного интеграла $\int_{-\infty}^{+\infty} f(x)dx$ сводится к вопросу о существовании предела

 $\lim_{b\to +\infty} F(b),$ который решается с помощью критерия Коши: $\lim_{b\to +\infty} F(b) \; \exists \Leftrightarrow \forall \varepsilon > 0 \; \exists A$ $a: \; \forall b_1,b_2: \; b_1>A, \; b_2>A \; |F(b_2)-F(b_1)|<\varepsilon.$ Отметим, что

$$|F(b_2) - F(b_1)| = \left| \int_a^{b_2} f(x) dx - \int_a^{b_1} f(x) dx \right| = \left| \int_a^{b_2} f(x) dx + \int_{b_1}^a f(x) dx \right| = \left| \int_{b_1}^{b_2} f(x) dx \right| < \varepsilon.$$
 Теорема 2.2. Пусть $f(x) \geqslant 0$ $\forall x \in [a, +\infty), f \in R[a, b], \forall [a, b] \subset [a, +\infty).$ Несоб-

Теорема 2.2. Пусть $f(x)\geqslant 0$, $\forall x\in [a,\neg\neg\neg]$ ственный интеграл сходится $\Leftrightarrow \exists M\in\mathbb{R}_+$ () $f(x)dx\leqslant M\ \forall b>a$ () $f(x)dx\in \mathbb{R}_+$ () $f(x)dx\in \mathbb{R}_+$

61 ≤ 62 F(61) = F(62) F(B1)-F(B1) => F(B1) = F(B2) Доказательство. Рассмотрим функцию $F(b) = \int f(x)dx$. Функция F(b) является неубывающей, так как из $b_1 \leq b \Rightarrow F(b_1) - F(b_2) = \int_0^{b_1} f(x) dx - \int_0^{b_2} f(x) dx = \int_0^{b_1} f(x) dx$ $\int_{b_{2}}^{a} f(x)dx = \int_{b_{2}}^{b_{1}} f(x)dx = -\int_{b_{1}}^{b_{2}} f(x)dx \le 0.$ Отметим, что $\int_{-\infty}^{+\infty} f(x)dx$ сходится $\Leftrightarrow \exists$ конечный предел $\lim_{x\to a} F(b)$ а последний существует в том и только том случае, когда F ограничена сверху. Теорема 2.3. (признак сравнения). Пусть $f:[a,+\infty)\to\mathbb{R},\ g:[a,+\infty)\to\mathbb{R},$ $f,g\in R[a,b]$, $\forall [a,b]\subset [a,+\infty)$, $\int g(x)dx$ сходится и $|f(x)|\leqslant g(x)$, $\forall x\geqslant a$. Тогда несобственные интегралы $\int_{0}^{+\infty} f(x)dx$ и $\int_{0}^{+\infty} |f(x)|dx$ сходятся. Доказательство. Поскольку $\int g(x)dx$ сходится, то в силу критерия Коши $\forall \varepsilon \triangleright$ $0 \; \exists A>a: \; \forall b_i>A, \; (i=1,2) \Rightarrow \left|\int\limits_{b_i}^{b_2}g(x)dx\right|<arepsilon.$ Тогда $\left|\int\limits_{b_i}^{b_2}f(x)dx\right|\leqslant \left|\int\limits_{b_i}^{b_2}|f(x)|dx\right|\leqslant \left|\int\limits_{b_2}^{b_2}|f(x)|dx\right|$ $\left| \int_{0}^{2} g(x) dx \right| < \varepsilon.$ Таким образом, для рассматриваемых несобственных интегралов выполняется критерий Коши, то есть они сходятся. **Определение 2.2.** Несобственный интеграл $\int f(x)dx$ называется абсолютно сходяuumcs, если сходится интеграл $\int |f(x)|dx$. Несобственный интеграл $\int f(x)dx$ называется условно сходящимся, если он сходится, а несобственный интеграл $\int |f(x)| dx$ расходится. Отметим, что из абсолютной сходимости интеграла $\int f(x)dx$ следует его сходимость, то есть из сходимости $\int_{-\infty}^{+\infty} |f(x)| dx \Rightarrow \int_{-\infty}^{+\infty} f(x) dx$ сходится. Этот факт вытекает из теоремы 2.3, если положить g(x)критерий Коши). Теорема 2.4. (признак Дирихле). Пусть 1. функция $f:[a,+\infty)\to\mathbb{R}$ непрерывна и $\exists M>0$: $\left| \int_{-b}^{b} f(x) dx \right| \leqslant M, \forall b > a;$

 $g:[a,+\infty) o\mathbb{R}$ является непрерывно дифференцируемой и убывающей при $x\geqslant a,$

$$3. \lim_{x \to +\infty} g(x) = 0.$$

Тогда интеграл $\int_{a}^{+\infty} f(x)g(x)dx$ сходится.

Доказательство. Рассмотрим функцию $F(x) = \int_{a}^{x} f(t)dt$. По первому условию $F(x) \leqslant$

 $M, \forall x > a$. Функция F(x) является первообразной функции f. Используя формулу

интегрирования по частям, получаем

$$\int_{a}^{b} f(x)g(x)dx = \int_{a}^{b} F'(x)g(x)dx = \int_{a}^{b} g(x)dF(x) =$$

 $= g(x)F(x) \Big|_{a}^{b} - \int_{a}^{b} F(x)g'(x)dx = g(b)F(b) - g(a)F(a) - \int_{a}^{b} F(x)g'(x)dx.$ (2.2)

Отметим, чта $\int_a^b |F(x)| |g'(x)| dx \leqslant M \int_a^b |g'(x)| dx$. Поскольку g(x) убывающая функ-

Следовательно, $\lim_{b\to +\infty} \int_a^b |F(x)g'(x)| dx \leqslant -M \lim_{b\to +\infty} (g(b)-g(a)) = Mg(a)$ (см. усло-

вие 3). Следовательно, сходится несобственный интеграл $\int_a^b F(x)g'(x)dx$, то есть правая часть (2.2) стремится к конечному значению при $b \to +\infty \Rightarrow$ сходится интеграл $\int_a^b f(x)g(x)dx$.

а Теорема 2.5. (признак Абеля).

еорема 2.5. (призна Пусть

1. $f:[a,+\infty)\to\mathbb{R}$ – непрерывная функция, и интеграл $\int\limits_a^{+\infty}f(x)dx$ сходится;

2. $g:[a,+\infty)\to\mathbb{R}$ – непрерывно дифференцируемая, монотонная и ограниченная функция.

Тогда интеграл $\int_{a}^{+\infty} f(x)g(x)dx$ сходится.

Доказательство. Предположим, что g(x) – убывающая функция. Поскольку $\exists \lim_{x \to +\infty} g(x) = c$. Обозначим $\tilde{g}(x) = g(x) - c$ и рассмотрим несобственный интеграл $\int_{a}^{+\infty} f(x)\tilde{g}(x)dx$. Покажем, что для функций f и \tilde{g} выполнены теоремы 2.4.

Генра (Генра (

$$\int_{a}^{+\infty} f(x)g(x)dx = \int_{a}^{+\infty} f(x)\tilde{g}(x)dx + \int_{a}^{+\infty} f(x)dx \Rightarrow$$

$$\int_{a}^{+\infty} f(x)g(x)dx = \int_{a}^{+\infty} f(x)\tilde{g}(x)dx + \int_{a}^{+\infty} f(x)dx \Rightarrow$$

интеграл $\int\limits_a^{+\infty} f(x)g(x)dx$ сходится.

Определение 2.3. Пусть функция $f:[a,+\infty)\to\mathbb{R}$ является неограниченной в окрестности точки b и $f\in R[a,b-\varepsilon]$ $\forall \varepsilon$ Если существует конечный предел $\lim_{\varepsilon\to 0}\int\limits_a^b f(x)dx=\int\limits_a^b f(x)dx$, то он называется несобственным интегралом функции

Определение 2.4. Если функция f(x) такова, что $\forall \varepsilon > 0$ существуют собственные интегралы $\int\limits_a^{c-\varepsilon} f(x) dx$ и $\int\limits_{c+\varepsilon}^b f(x) dx$ (a < c < b), то под главным значением в смысле $Komu\ (V.p.)$ понимается число

$$V.p. \int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0} \left(\int_{a}^{c-\varepsilon} f(x)dx + \int_{c+\varepsilon}^{b} f(x)dx \right)$$

Аналогично

 $\prod f(x)$.

$$V.p. \int_{-\infty}^{+\infty} f(x)dx = \lim_{R \to +\infty} \int_{-R}^{R} f(x)dx.$$

$$V.p. \int_{-\infty}^{+\infty} f(x)dx = \lim_{R \to +\infty} \int_{-R}^{R} f(x)dx.$$