Университет ИТМО Факультет ПИиКТ

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

I CEMECTP

Лектор: Екатерина Станиславовна Трифанова

осень 2023

Автор: Александр Калиев Проект на GitHub

Содержание

1	2023-09-13		
	1.1	Intro	2
	1.2	Information theory	2
	1.3	Hartley measure	2
	1.4	Shannon's measure	2
	1.5	Why different volume on different devices?	3
	1.6	Unary notation	3
	1.7	Optimal notation	3
	1.8	Transposition to any notation	3
	1.9	Bergman's Notation	3
	1.10	Zekendorf's notation	3
	1.11	Factorial notation	4
2	2023	3-09-27	4

1 2023-09-13

1.1 Intro

Аннотации, аннотации, аннотации!!!

Примерно по тематике лекций. Найти статью, приближенную к теме лекции. Формат: A4. Плюсы и минусы аннотаций.

- ▷ Lectures (2 times a week)
- ▶ Labworks (2 times a week)
- → Annotations
 - 2 tests in CDO
 - Exam
 - Bonuses for detected mistakes & inordinary solutions

Замечание. Main goal is to learn a lot of information fastly and effectively

1.2 Information theory

Classic definition:

Определение 1.1 (Probability). $p(A) = \frac{m}{n}$

Statistic definition:

Определение 1.2. $p(A) = \lim_{n \to \infty} \frac{m}{n}$

Свойство 1.2.1. $0 \leqslant p(A) \leqslant 1$

1.3 Hartley measure

A system S can be in N conditions. Then, we can represent a condition using powers of 2. Because of $P = \frac{1}{N}$,

1.4 Shannon's measure

$$i(S) = -\sum_{i=1}^{N} p_i \cdot \log_2 p_i$$

N – amount of system's conditions

 p_i - probability of S in condition i

Пример. We have 3 jokers, 3 aces, 1 king, 1 queen, 1 jack. What's the amount of information?

1.5 Why different volume on different devices?

Приставки в СИ
$$kB = 10^3 byte$$
 $KiB = 2^{10} byte$ $MB = 1e6$ $MiB = 2e20$ \dots \dots \dots \dots \dots

1.6 Unary notation

The main disadvantage – absence of zero.

Let
$$X_{(q)} = x_{n-1}x_{n-2}\dots x_0.x_{-1}x_{-2}\dots x_{-m}$$

$$X_{(q)} = \sum_{i=-m}^{n-1} x_i \cdot q^i$$

Задача. $0.8125_{10} = ?_{(2)}$

1.7 Optimal notation

Задача. Robinson Cruso has found 60 stones. How many days we cane code using this 60 stones?

e is optimal.

Optimal means best on some cryteria/option

Обеспечивать, число и функциональность

1.8 Transposition to any notation

1.9 Bergman's Notation

$$\forall x \in \mathbb{R} : x = \sum_{k=-n}^{n-1} d_k \cdot z^k$$
, where $d_k \in \{0, 1\}, z = \frac{1+\sqrt{5}}{2}$

Slide is fucked up

1.10 Zekendorf's notation

 $x = \sum_{k=1}^{n} d_k F_k$, where $d_k \in \{0,1\}$, F_k are Fibonnacci numbers

2 «1's» in a row is forbidden!

1.11 Factorial notation

$$x = \sum_{k=1}^{n} d_k k!$$

2 2023-09-27

$$L = \sum_{i=1}^{N} P_i l_i$$

Коэф сжатия = $\frac{\text{вход}}{\text{выход}}$

Сжатие без потерь (полностью обратимое) — сжатые данные после декодирования (распаковки) не отличаются от исходных.

Сжатие с потерями (частично обратимое) — сжатые данные после декодирования (распаковки) отличаются от исходных, так как при сжатии часть исходных данных была отброшена для увеличения коэффициента сжатия.