MDI0001 MATEMÁTICA DISCRETA

UDESC - Centro de Ciências Tecnológicas Bacharelado em Ciência da Computação

Exercícios Álgebra de Conjuntos

- 1. Sejam $A = \{1, 2, 3, \dots, 8, 9\}, B = \{2, 4, 6, 8\}, C = \{1, 3, 5, 7, 9\}$ e $D = \{3, 4, 5\}$. Determine um conjunto X tal que:
 - (a) X e B são disjuntos
 - (b) $X \subseteq D \in X \nsubseteq B$
 - (c) $X \subseteq A \in X \nsubseteq C$
 - (d) $X \subseteq C$ e $X \nsubseteq A$
- 2. Prove:
 - (a) $A \subseteq B \Leftrightarrow A \cap \overline{B} = \emptyset$.
 - (b) $A \subseteq B \Leftrightarrow \overline{B} \subseteq \overline{A}$.
 - (c) $A \subseteq B \Leftrightarrow A B = \emptyset$.
 - (d) $A \cup (A \cap B) = A$
 - (e) $A \cap (A \cup B) = A$
- 3. Assim como podemos definir a diferença em termos da operação de intersecção e do complementar $(A B = A \cap \overline{B})$, pode-se definir a união $A \cup B$ em termos da operação de intersecção e do complementar. Qual seria essa fórmula?
- 4. Demonstre que:
 - (a) $A = (\overline{B} \cap A) \cup (A \cap B)$
 - (b) $(A \cap B) \cup (\overline{A} \cap B) \cup (A \cap \overline{B}) \cup (\overline{A} \cap \overline{B}) = U$
 - (c) $(A \cap B) B = \emptyset$
 - (d) $(A \cup B) B = A B$
- 5. Prove que, se $A \subseteq B$ então $2^A \subseteq 2^B$.
- 6. Sejam A e B conjuntos quaisquer. Mostre:
 - (a) A é a união disjunta de A B e $A \cap B$.
 - (b) $A \cup B$ é a união disjunta de A B, $A \cap B$ e B A.
- 7. Mostre que é possível que $A \cap B = A \cap C$ sem que B = C.
- 8. Prove que $(A \cup B) (A \cap B) = (A B) \cup (B A)$