Clasificador de emojis

Daniel Sebastian Preciado Vega Diego Gutierrez Contreras Gerardo Garcia Valle

Nuestra intención es realizar un programa que al recibir una imagen de un emoji como entrada pueda **identificarlo** y muestre su nombre en pantalla.

Dataset

Nuestro dataset se compone de alrededor de **22,000 imágenes** de emojis de distintos diseños, como los de Google, Facebook, iOS, entre otros.

Para nuestra red neuronal optamos por un modelo **VGGNet** por las siguientes razones:

- Enfoque en el rendimiento
- Capacidad de identificar un gran número de categorías
- Corto tiempo de entrenamiento

VGG-16

Visual Geometry Group o VGG, es un modelo de red neuronal con 16 capas convolucionales que destaca por poder clasificar objetos en un gran número de categorías.

Estructura

Modelo

Este modelo de red neuronal se compone de la siguiente manera:

- 13 capas de convolución.
- 3 capas completamente conectadas.
- 5 capas de Max pulling.

Se utiliza la función de activación ReLU en las diferentes capas de la red.

Implementación

Todas las pruebas realizadas se llevaron a cabo mediante la plataforma de Google Colab, haciendo uso de un repositorio de GitHub para almacenar todos los archivos correspondientes.

Entrenamiento

Inicialmente se llevaron a cabo pruebas con entrenamientos de **15** eras.

- Se utilizaron 30 imágenes para entrenar al modelo en la clasificación de 5 categorías.
- Obteniendo resultados de certeza entre un 30% y 40%.

Gran uso de memoria con una muestra de imágenes muy pequeña.

Nuevo acercamiento

Se modificó la propuesta original del programa para reducir el volumen de imágenes requeridas durante el entrenamiento.

Solo se clasificaran los emojis en 3 categorías: Felices, Tristes y Enojados.

Tras realizar los cambios mencionados anteriormente, se obtuvieron resultados variados al modificar parámetros como el número de imágenes por lote o la división de imágenes para entrenar/evaluar.

Hasta que finalmente se obtuvieron resultados aceptables.

CRONOGRAMA DE ACTIVIDADES								
Actividades	03-may	06-may	08-may	10-may	12-may	17-may	18-may	23-may
Elección del tema	Todos							
Creación del repositorio		Daniel						
Búsqueda del dataSet			Daniel					
Definición del logo				Todos				
Elección de la arquitectura				Todos	Todos			
Presentación de avances						Gerardo, Daniel		
Limpieza del dataSet						Gerardo	Diego	
Codificación						Daniel	Todos	
Elaboración del reporte								Gerado, Diego
Elaboración de las diapositivas								Daniel