Circuitos integrados - Compuertas Lógicas Básicas

 AND: puerta lógica digital que implementa la conjunción lógica, esta tendrá una salida alta únicamente cuando los valores de ambas entradas sean altos.

Α	В	Q
0	0	0
0	1	0
1	0	0
1	1	1

• OR: puerta lógica digital que implementa la disyunción lógica. Cuando todas sus entradas están en 0, su salida está en 0, mientras que cuando al menos una o ambas entradas están en 1, su salida va a estar en.

Α	В	Q
0	0	0
0	1	1
1	0	1
1	1	1

• NOT: puerta lógica que implementa la negación lógica.. Siempre que su entrada está en 0, su salida está en 1, mientras que cuando su entrada está en 1, su salida va a estar en 0.

Q	Q'
0	1
1	0

• NOR: puerta lógica digital que implementa la disyunción lógica negada. NOR es el resultado de la negación del operador OR.

Α	В	Q
0	0	1
0	1	0
1	0	0
1	1	0

• NAND: puerta lógica que produce una salida falsa solamente si todas sus entradas son verdaderas.

Α	В	Q
0	0	1
0	1	1
1	0	1
1	1	0

• XOR: puerta lógica digital que implementa el o exclusivo; es decir, una salida verdadera resulta si una, y solo una de las entradas a la puerta es verdadera.

Α	В	Q
0	0	0
0	1	1
1	0	1
1	1	0

AND-OR-INVERTED: Combinación de varias compuertas AND que posteriormente se vierten en una compuerta NOR

Α	В	C	D	Q
0	0	0	0	1 0 " 0"
0	0	0	1	Connection Diagram
0	0	1	0	1 V _{CC} C1 B1 F1 E1 D1 Y1
0	0	1	1	0 14 13 12 11 10 9 8
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	0
1	1	0	0	
1	1	0	1	0 1 2 3 4 5 6 7
1	1	1	0	0 I I I I I I I I I
1	1	1	1	0

