LOAN DOCUMENT LEVEL INVENTORY DOCUMENT IDENTIFICATION Sep qu H MATRICULAR STATISTICS ! Apparered in partie minute Distribution Valuation DISTRIBUTION STATEMENT NTIS UNANNOUNCER JUSTIFICATION DISTRIBUTION/ AVAILABILITY CODES DISTRIBUTION AVAILABILITY AND/OR SPECIAL DATE ACCESSIONED DTIC QUALITY INSPECTED 4 DISTRIBUTION STAMP DATE RETURNED 19961011 086 DATE RECEIVED IN DTIC REGISTERED OR CERTIFIED NUMBER PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-FDAC DTIC FORM 70A PREVIOUS EDITIONS MAY BE USED UNTIL DOCUMENT PROCESSING SHEET

LOAN DOCUMENT

AFMC-TM-96-9002

MINUTES OF AIRCRAFT/ RUNWAY DEICING/ANTIICING TECHNOLOGY CROSSFEED

AL BACA
CARROLL HERRING

HQ AFMC/ENBE 4375 CHIDLAW ROAD, SUITE 6 WPAFB OH 45433-5006

SEPTEMBER 1996

FINAL REPORT FOR 08/20/96 -- 08/21/96

Approved for public release; distribution unlimited

DIRECTORATE OF ENGINEERING AND TECHNICAL MANAGEMENT AIR FORCE MATERIEL COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-5006

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed, as licensing the holder, or any other person or corporation; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

The technical report has been reviewed and is approved for publication.

CARROLL B. HERRING Environmental Engineer

HQ AFMC/ENBE

GILBERT M. WENDT, Lt Col, USAF Chief, MEB Environmental Integration Br

Mut M. 1.)

PM and S&IO MEB Support Division

RICHARD G. NELSON, Lt Col, USAF Chief, PM and S&IO MEB Support Div

If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify _____, Wright-Patterson AFB OH 45433-____ to help maintain a current mailing list.

Copies of this report should not be returned unless return is required by Security Consideration, contractual obligations, or notice on a specific document.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

A ACTIVEY HEE ONLY (I b)	-(1) In proper page		
1. AGENCY USE ONLY (Leave bla	ok) 2. REPORT DATE SEP 1996	3. REPORT TYPE AND DATE: FINAL 0:	S COVERED 8/20/9608/21/96
A TITLE AND SUBTITLE MINU	TES OF AIRCRAFT/RU	NWAY DETCING / 5. FUN	DING NI IMREES
ANTI-ICING TEC	CHNOLOGY CROSSFEED	C P)	 E 78054
6. AUTHOR(S)AL BACA		Ti	
CARROLL HER		W	
7. PERFORMING ORGANIZATION N			FORMING ORGANIZATION
DIRECTORATE OF MANAGEMENT AIR FORCE MATE	'ENGINEERING AND T	ECHNICAL	ORT NUMBER F9601
	ON AFB OH 45433-50		. , , , , , , , , , , , , , , , , , , ,
a SPONSOPING / MONITORING AG	ENCY NAME(S) AND ADDRESS(ES)	10.59/	DNSORING / MONITORING
	ENGINEERING AND T	ECHNICAL AG	ENCY REPORT NUMBER
AIR FORCE MATE	DIEL COMMAND	A	MC-TM-96-9002
WRIGHT-PATTERS	ON AFB OH 45433-50		
11. SUPPLEMENTARY NOTES T	ECHNOLOGY CROSSFEEI	WAS CONDUCTED IN	SUPPORT
DEVELOPMENT EF			
12a. DISTRIBUTION / AVAILABILITY APPROVED FOR P UNLIMITED.	STATEMENT UBLIC RELEASE; DIST		ISTRIBUTION CODE
13. ABSTRACT (Maximum 200 word	rie)		
THE AIRCRAFT/R WAS CONDUCTED ARLINGTON VIRG MEETING DEVOTE MENTALLY FRIEN	UNWAY DEICING/ANTI- BY THE AIR FORCE DU	JRING 20-21 AUG 19 INT SERVICE AND IN OF INFORMATION OR FI-ICING TECHNOLOG	996 IN IDUSTRY E ENVIRON- ETES THE
IT WAS DESIGNED WHICH HAVE POT	D TO IDENTIFY VARIO ENTIAL FOR USE BY A ROLS AND RESTRICTIO	OUS TYPES OF TECHN AIR FORCE TO MEET	OLOGIES THE
14. SUBJECT TERMS			Las Municipes Of Sacre
14. SUBJECT TERMS			15. NUMBER OF PAGES
			16. PRICE CODE
17. SECURITY CLASSIFICATION	18. SECURITY CLASSIFICATION	19. SECURITY CLASSIFICATION	20. LIMITATION OF ABSTRACT
OF UNCLASSIFIED	OE THIS PAGE UNCLASSIFIED	OF ABSTRACT UNCLASSIFIED	SAR

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

DEPARTMENT OF THE AIR FORCE

HEADQUARTERS AIR FORCE MATERIEL COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO

MEMORANDUM FOR SEE DISTRIBUTION

20 Sep 96

FROM: HQ AFMC/ENBE

4375 Chidlaw Road, Suite 6

Wright-Patterson Air Force Base, Ohio 45433-5006

SUBJECT: Aircraft and Runway Dicing/Anti-icing Technology Crossfeed

- 1. During 20-21 August 1996, AFMC conducted a joint service and industry meeting devoted to the crossfeed of technology information pertaining to aircraft and runway deicing and anti-icing operations. The meeting was designed to identify technologies which have potential for use by the Air Force to meet the increased controls and restrictions imposed by the Clean Water Act.
- 2. The crossfeed meeting was held in Arlington, Virginia in conjunction with the annual Aircraft and Airfield De-icing Conference and Exposition. The crossfeed meeting consisted of government and industry briefings and subsequent discussions. The first day included such topics as experiences with military and commercial fluids, the results of various de-icing technology studies, the status of research, development and testing efforts, as well as implementation efforts and success stories by various military activities. The last half day was devoted to technology briefings by industry, all of which provided information about various types of de-icing technology. The briefings covered aircraft and runway de-icing technologies, chemicals used, and capturing, recycling and treatment methods.
- 3. An effort was made to capture the technology information in a comprehensive set of minutes for distribution to Air Force activities. The minutes are at Attachment 1.
- 4. Our de-icing point of contact is Carroll Herring, HQ AFMC/ENBE, DSN 787-6448.

FOR THE COMMANDER

Ciller M. We

GILBERT M. WENDT, LT COL, USAF Chief, MEB Environmental Integration Branch PM and S&IO MEB Support Division

Attachment: Minutes

Page Reference Guide

Document or Briefing	Page Number
Distribution List Minutes Agenda Attendees	2 9 18A 19
Crossfeed Objective Commercial Specs Mil Type De-icing Fluid Specs AFRES Pilots' Experiences	25 36 58 65
"Off-the-Shelf" Technologies [AFLMA Study] Literature and Technology Review [ACC Study] COTS and R&D Information [HSC Study] Introduction to Clean Water Act, Permits, etc.	82 92 104 140
De-icing / Anti-icing Technologies and Case Studies Basic Research Development of New Anti-icing Product NASA Ames Environment Friendly Fluid	155 207 219 228
Toxicity Testing of New Products Runway De-icing Technologies and Chemicals Efficient Deicing Trucks w/Hot Air AFRES Solution at Niagara Falls	241 261 281 284
AFRES Solution at Pittsburgh IAP Holding Pond for Milwaukee ANG Base De-icing Truck Technology Improvements Forced Air Snow Removal	309 317 326 348
Whisper Wash [™] De-icing System Radiant Heat Efficient Pre-Moist Chem. Spreaders Portable Glycol Capture Systems	353 358 383 405
Pressurized Water, Vacuum and Clean-Up Glycol Recovery Vehicles Anaerobic Biofiltration Contact List	417 429 430 450

OC-ALC/TI 3001 Staff Drive, Suite 2AF69A Tinker AFB OK 73145-3001

OO-ALC/TI 5851 F Ave Hill AFB UT 84056-5713

SA-ALC/TI 450 Quentin Roosevelt Rd Kelly AFB TX 78241-6416

SM-ALC/TI 5225 Bailey Loop McCllellan AFB CA 95652-2510

WR-ALC/TI 420 Second St., Suite 100 Robins AFB GA 31098-1640

OC-ALC/EM 7701 Second St., Suite 220 Tinker AFB OK 73145-9100

OO-ALC/EM 7276 Wadleigh Rd Hill AFB UT 84056-5137

SA-ALC/EM 307 Tinker Dr Kelly AFB TX 78241-5917

SM-ALC/EM 5050 Dudley Blvd, Suite 3 McClellan AFB CA 95652-1389

WR-ALC/EM 216 Ocmulgee Ct. Robins AFB GA 31098-1646

ASC/EM 1801 Tenth St. Suite 2 Wright-Patterson AFB, OH 45433-7626

ESC/EN-2 5 Eglin St (Bldg 1624) Hanscom AFB MA 01731-2116 HSC/EMP 2909 North Rd Brooks AFB TX 78235-5128

SMC/SDZB 160 Skynet St Suite 2315 Los Angeles AFS CA 90245

AGMC/EM 813 Irving Wick Dr West Newark AFB OH 43057-7506

914 LG/LGC NFDA CMSgt Paul Antkoviak 10315 Wagner Dr. Niagara Falls NY 14304

317 AS/DOLT
Capt. Dave Arthur
105 East Hill Blvd.
Charleston AFB SC 29404

AFMC/ENBE Al Baca 4375 Chidlaw Rd Suite 6 Wright-Patterson AFB, OH 45433

Phil Bevilacqua Bldg 2188 Stop 3 Pax River NAS NAS MD

NAWC

AFMC/LG-EV
Mike Bickett
4375 Chidlaw Rd Suite 6
Wright-Patterson AFB, OH 45433

AFMC/ENBE Terry Black 4375 Chidlaw Rd Suite 6 Wright-Patterson AFB, OH 45433

171 ARW/LGGGB SMSgt Robert Boyer 300 Tanker Rd Coraopolis PA 15108

AFOSR/NL Capt Michael Chipley Bolling AFB DC 20332-6600 914 Log Grp/CC Col Alan Clune 10315 Wagner Dr Niagara Falls NY14303

Air Command Headquarters Lewis Cocks Westwin Manitoba R3J 0T0 CANADA

AFCEE/CCR-D
Johnny Combs
525 Griffin St Suite 505
Dallas TX 75202

AFIT Student
Capt Jeffrey Cornell
PO Box 2917
Boulder CO 80306

632 AMSS/LGA SMSgt Bruce Cremer 42-336 Burns Rd. Elmendorf AFB, AK 99506

3CE/CEOCA Joe Cross 32-187 Arcasia Ave Elmendorf AFB AK 99506

23CES/CEVC
Bob Dalzell
560 Interceptor rd
Pope AFB NC 28308

171ARW
Wayne De Bor
3651 Mapleview Dr
Pittsburg PA 15012

AFCSA/JACE Eric Eklund 1801 Wilson Blvd. Suite 629 Arlington VA

AL/OEBW MSgt Mary Fields 2402 E Dr. Brooks AFB TX 78244 ACC/LGOV - **(25 Copies)**Drew Francis
11817 Canon Blvd. Suite 306
Newport News VA

AF/OEBW
Capt Paul Fronapfel
2402 E Dr
Brooks AFB TX 78244

3EMS/LGMG Robert Giroux 11620 Q St. Elmondorf AFB AK 99506

USAF/CEVQ
Maj David Guadalupe
1260 Air Force Pentagon
Wash DC 20330-1260

SAF/MIQ Norm Guenthen 1260 AIR force Pentagon Washington DC 20330-1260

NASA Ames Research Center Dr Len Haslim MS 237-11 Moffett Field CA 94035

AFOSR/NL
Dr Fred Hedberg
110 Duncan Ave. Suite B115
Bolling AFB DC 20332

AFMC/ENBE (25 Copies)
Carroll Herring
4375 Chidlaw Rd Suite 6
Wright-Patterson AFB, OH 45433

128ARW/EM 1 Lt Bob Huelsman 1723 East Grange Ave Milwaukee WI 53207 PACAF/CEVC Mano Husain 25E St Suite D-306 Hickam AFB, HI 96853

910 AW
Skip Igo
Kings Grave Rd
Vienna, OH 44473-0910

910 AW/LGM Maj. Lynn Jobes Youngstown AFB, OH 44473

411 Airlift Wing/MVS
Rick Jozwick
316 Defense Ave Suite 101
Coroapolis PA 15108

SA-ALC/TIEM

John King

450 Quentin Roosevelt Rd
Kelly AFB TX 78241

NAWC Aircraft Div Walt Koehler Code SR41 Lakehurst NAS NJ 08733-5009

AFOSR/NL

Dr Walt Kozumbo 110 Duncan Ave. Suite B115 Bolling AFB DC 20332-6600

AFCESA/CEOM SMSgt Earl Labonte 139 Barnes Dr Suite1 Tyndall AFB FL 32403

440 AW GMIAP MAO SMSgt Paul Lacourciere 300 E College Ave. Milwakee WI 53207

NAVAIR PMA-260C21 Maj Mike Landry 1421 Jefferson Davis Hwy Arlington VA 22243-5120 FAA - AAS-100 George Legarreta 800 Independence Ave. SW Washington DC 20591-0004

USAFE/CEVC
Deborah Locklair
Unit 3050 Box 10
APO OE 09094

ANGRC/CEVC (10 Copies)
Kathy Makofski
3500 Fetchet Ave.
Andrews AFB MD 20762

FAA Technical Center Charles Masters AAR-421 Atlantic City Intl Airport NJ 08405

OL AL HSC/OET
Dr David Mattie
2856 G St
Wright-Patterson AFB, OH 45433

HSC/XRE Lt Col Brian McCarty 2510 Kennedt Cir Suite 220 Brooks AFB TX 78235-4466

CNO N457D1 Tami McVey 2211 S Clark Place Rm 644 Arlington VA

AFMC/LG-EV
Jerry Mongelli
4375 Chidlaw Rd Suite 6
Wright-Patterson AFB, OH 45433

DLA/DSCR-JDT Cliff Myers 8000 Jefferson Davis Hwy Richmond VA 23297

ACC/CEVCM
Gary Nault
129 Adrews St
Langley AFB, VA 23665

AFMC/CEVV

Maj. Kent Nonaka 4225 Logistics Ave Wright-Patterson AFB, OH 45433

12 AV Battalion
Jerry Oliver
Davison Army Airfield
Ft Belvoir VA 22060

SA-ALC/LDEE
Pete Palmer
485 Quentin Roosevelt
Kelly AFB. TX 78241

AMSAT-B-TL
Aviation Applied Tech Dir
Paul Pantelis
Ft. Eustis VA 23604

AF Liaison Officer Lt Col. Rich Perkins MS210-6, NASA-Ames Moffett Field CA 94035

317 AS/DOLT
Maj Pedro Rivas
105 East Hill Blvd
Charleston AFB SC 29404

Army Corp Engineer(CRREL)
Dr Charles Ryerson
72 Lyme Rd
Hanover NH 03755-1290

NFESC

Robert Sandoval 1100 23rd Ave Port Hueneme, CA 93043

AMC/CEVC H. Sanghavi 507 A St. Scott AFB IL 62226

USAF/CEVQ Jay Shah 1260 Air Force Pentagon Washington DC 20330-1260 AMC/DOTK
Capt. Greg Sims
Bldg 1600 Suite 3A1
Scott AFB IL 62225

1 Lt Yvonne Spencer 8107 13th Street Brooks AFB TX

AFRES/CEV (10 Copies)
Sue Stell
155 2nd St.
Robins AFB. GA 31098

NAWC Aircraft Division Paul Swindell Hwy 547 Lakehurst NJ 08733

171 ARW/EM
John E. Tower
300 Tanker Rd
Coraopolis, PA 15108-4257

WL/MLSE
1 Lt. Ita Udo-Aka
2179 12th St. Suite1
Wright-Patterson AFB, OH 45433

AFCEE/CCR-A Vic Verma 77 Forsyth St SW Suite 295 Atlanta GA 30335-6801

151 ARW/EM 1 Lt Jack Wall 765 North 2200 West Salt Lake City UT 84116

OC-ALC/EMV
Donald Webb
7701 2nd St.
Tinker AFB, OK 73145-9100

AL/EQ

Lt Col Allan Weiner

139 Barnes Dr

Tyndall AFB FL 32403

NAS Brunswick

ASC(AW) Jack Yon

1251 Orion St.

South Brunswick ME 04011

SA-ALC/SFTT

Gus Zachariades

1014 Billy Mitchell Blvd. Suite 1

Kelly AFB TX 78241

911 (758AS/MA)

Alvin Zatezalo

316 Defense Ave

Corapolis PA 15108-4403

NASA AMES Research Center

Dr John Zuk

MS 237-11

Moffett Field CA 94035

AF PRO-ACT

314 Commerce St

San Antonio TX 78201

ASC/LU/

2275 D St Bldg 16 Suite 16

Wright-Patterson AFB, OH 45433-7233

ASC/VL

Bldg 2042 2609 L St

Wright-Patterson AFB, OH 45433-7500

ASC/YC

2699 Paramount PI

Fairborn OH 45324-6766

ASC/YD

2275 D St Suite 16 Bldg 16

Wright-Patterson AFB, OH 45433-7233

ASC/YF

2130 Fifth St Bldg 50

Wright-Patterson AFB, OH 45433-7003

ASC/YP

1981 Monahan Way Suite 105

Wright-Patterson AFB, OH 45433-7205

ASC/YS/

2275 D St Suite 4

Wright-Patterson AFB, OH 45433-7721

ASC/YT

2100 Monihan Way

Wright-Patterson AFB, OH 45433-7014

ESC/JS

3 Eglin St

Hanscom AFB MA 01731-2119

ESC/AW

3 Eglin St

Hanscom AFB MA 01731-2115

OC-ALC/LC

3001 Staff Dr Suite 2AG 76A

Tinker AFB OK 73145-3019

OC-ALC/LH

3001 Staff Dr Suite 2AH1 92B

Tinker AFB OK 73145-3021

OC-ALC/LK

3001 Staff Dr Suite 1AG 110

Tinker AFB OK 73145-3018

OO-ALC/LAC

7728 Fourth St

Hill AFB UT 84056

OO-ALC/LIL

5760 Southgate Ave

Hill AFB UT 84056-5226

SA-ALC/LA

375 Airlift Dr Suite 1

Kelly AFB TX 78241-6334

SA-ALC/LDE

485 Quentin Rooseveld Rd Suite 7

Kelly AFB TX 78241-5000

SA-ALC/LF 1015 Billy Mitchell Blvd Kelly AFB TX 78241-5601

SA-ALC/SF 1014 Andrews Rd Suite 1 Kelly AFB TX 78241-5603

SA-ALC/LAF 5020 Dudley Blvd McClellan AFB CA 95652-1391

SM-ALC/ QLA 3200 Peacekeeper Way Suite 9 McClellan AFB CA 95652-1034

WR-ALC/LB 265 Ocmulgee Ct Robins AFB GA 31098-1647

WR-ALC/LF 296 Cochran St Robins AFB GA 31098-1622

WR-ALC/LJ 265 Ocmulgee Ct Robins AFB GA 31098-1646

WR-ALC/LU 240 Cochran St Robins AFB GA 31098-1622

5 CES/CEO 320 Peacekeeper Place Minot AFB ND 58705-5006

PRO-ACT AFCEE/EP Brooks AFB TX 78235-5318

55CEB/CEV Offutt AFB NE 68113

AF Safety Agency Kirtland AFB NM 87117 AFLMA/LGM Environmental Initiatives Branch Maxwell AFB, Gunter Annex, AL 36114

Chief of Naval Operations Code N451H Crystal Plaza #5 2222 Jefferson Davis Hwy Arlington VA 22244-5108

Naval Aviation Depot Code 4.3.4.10 Wright Street Bldg. 793 Jacksonville FL 32212-0016

AMCIO-EQM Rock Island IL 61229-6000

Commander (Code 88-4) Marine Corps Logistics Base 814 Radford Blvd. Albany GA 31704-1128

HQ USCG Code G-EAE-37 2100 Second Street SW Washington DC 20593-0001

JDMAG Bldg. 280, Door 24 4170 Hebble Creek Road WPAFB, OH 45433-5653

Senior Air Traffic Investigator National Safety Transportation Board NTSB/AS-10 490 L'Enfant Plaza East SW Washington DC 20594

AFSAC/XMX 1822 van Patton Dr Wright-Patterson AFB, OH 45433

AFMC/DRB 4375 Chidlaw Rd Suite 6 Wright-Patterson AFB, OH 45433

AFMC/DRC 4375 Chidlaw Rd Suite 6 Wright-Patterson AFB, OH 45433 AFMC/DRMA/ 4375 Chidlaw Rd Suite 6 Wright-Patterson AFB, OH 45433

AFMC/SGCP 4375 Chidlaw Rd Suite 6 Wright-Patterson AFB, OH 45433

AFMC/STPM 4375 Chidlaw Rd Suite 6 Wright-Patterson AFB, OH 45433

AFMC/DOP 4375 Chidlaw Rd Suite 6 Wright-Patterson AFB, OH 45433

AFMC/DRA 4375 Chidlaw Rd Suite 6 Wright-Patterson AFB, OH 45433

AFMC/DRB 4375 Chidlaw Rd Suite 6 Wright-Patterson AFB, OH 45433

AFMC/DRC 4375 Chidlaw Rd Suite 6 Wright-Patterson AFB, OH 45433

AFMC/DRMA/ 4375 Chidlaw Rd Suite 6 Wright-Patterson AFB, OH 45433

AFMC/SGCP 4375 Chidlaw Rd Suite 6 Wright-Patterson AFB, OH 45433

AFMC/STPM 4375 Chidlaw Rd Suite 6 Wright-Patterson AFB, OH 45433

AFMC/DOP 4375 Chidlaw Rd Suite 6 Wright-Patterson AFB, OH 45433

ACC/DOTO 205 Dodd Blvd Suite 101 Langley AFB VA 33665-2789 AMC/LGAB (11 Copies) Chief Dave Young 402 Scott Dr Unit 2A2 Scott AFB IL 62225-5308

AMC/LGFB 402 Scott Dr Unit 2A2 Scott AFB IL 62225-5308

AFRES/LGM 155 2nd St. Robins AFB. GA 31098

AFRES/DOT 155 2nd St. Robins AFB. GA 31098

ANGSC/LGM/ 3500 Fetchet Ave Bldg R-47 Andrews AFB MD 20762

ANGSC/XOT 3500 Fetchet Ave Bldg R-47 Andrews AFB MD 20762

USAFE/LGMM APO OE 09094

HQ USAF/LGMM 1260 Air Force Pentagon Washington DC 20330-1260

Minutes

De-icing and Anti-icing Technology Crossfeed Meeting

1. MEETING LOCATION:

ANSER

Suite 800

1215 Jefferson Davis Hwy Arlington VA (Crystal City)

2. MEETING DATES:

20-21 August 1996

3. PURPOSE OF THE MEETING:

The purpose of the technology crossfeed meeting was to exchange information on aircraft and runway de-icing and anti-icing technologies and to identify those technologies which are potentially useful to Air Force activities in meeting the storm water runoff controls and restrictions imposed by the Clean Water Act. The Crossfeed was planned to support the Air Force de-icing and anti-icing working group's effort to develop a strategy for future environmentally sound de-icing and anti-icing operations which would allow achievement of the Air Force flying mission and could be executed without an excessive drain on financial resources. It was also intended to provide Air Force environmental managers, runway managers, and weapon system managers with insight into compliant de-icing and anti-icing processes in order for them to make the right management decisions in regards to Air Force de-icing operations. This is especially true since standard Air Force de-icing processes do not appear possible, but rather, the de-icing solution at each base appears to have to be site specific; *i.e.*, dependent on factors such as local law requirements, geographic location, temperature, topography, amount of precipitation and whether that precipitation is rain, freezing rain, sleet or snow.

4. DISCUSSION:

The crossfeed consisted of a series of presentations by various government and industry representatives who are knowledgeable in the development, evaluation and use of the various de-icing and anti-icing technologies. The briefings covered aircraft and runway de-icing and anti-icing technologies, including alternative chemicals and processes; new efficient equipment; capture and recycle technologies; and, treatment techniques. There were also summaries of the findings from de-icing technology studies; the results of new product and process test and evaluation efforts; a brief look at RDT&E; and, reports on successful implementation efforts.

In the past, the Air Force primarily used ethylene glycol for aircraft de-icing and urea or glycol mixtures for runway de-icing. Currently, The Air Force is using more environment friendly chemicals such as propylene glycol for aircraft de-icing and potassium acetate for runways. However, increasingly more strict discharge limits from Clean Water Act amendments and NPDES permits is requiring Air Force activities to seek out additional affordable, effective solutions. It is therefore imperative that the Air Force investigate other technologies and chemicals which may further reduce the negative environmental impacts of de-icing and anti-icing operations.

Many sources of technical information exist. Several studies have been initiated by Air Force organizations to identify de-icing and anti-icing technologies. New products and technologies are being evaluated at various sites. Some activities have acquired and implemented new technologies. This technology crossfeed meeting brought together activities that have technology information and activities that need technology information. Crossfeed attendees were provided with an opportunity to assess the availability of technologies and to have face-to-face discussions with the briefers to discuss pertinent issues and to clarify fine points of concern.

This joint service and industry de-icing and anti-icing technology crossfeed meeting was scheduled after the annual Aircraft and Airfield De-icing Conference and before the Air Force's de-icing and anti-icing working group strategy development session. The crossfeed meeting consisted of one and one half days of technology presentations. One day was devoted to presentations by government personnel. One half day was devoted to presentations by vendors and manufacturers of de-icing and anti-icing technologies. Companies invited to make a presentation to the Air Force during the "industry half day" were asked to discuss how the various types of available technologies could benefit the Air Force.

We advised individuals planning to attend the Air Force crossfeed to first attend the Annual Aircraft and Airfield De-icing Conference to gather ideas and information on deicing technologies and applications. The intent was to use what was presented and discussed at the annual conference to the Air Force advantage during the following Crossfeed and Work Group meetings.

5. PRESENTATIONS:

The crossfeed agenda is provided at attachment 1. A brief summary of each presentation, whether provided by government or industry, is provided in the following paragraphs. More detailed information on each briefing is included in attachment 3. We asked each briefer to provide copy of his or her briefing charts. We also asked the briefers to synopsize their presentation for us. All the materials provided by the briefers to us are in the attachment. We recommend that you review all the materials in the attachment.

Crossfeed Objective

AFMC/ENBE

Mr. Carroll Herring covered the Crossfeed Objectives and went over the agenda. Mr. Herring stated that the purpose of the crossfeed meeting was to present an overview of the available technologies to interested parties while assembling a reference document as a permanent record to assist those Air Force individuals who would be working the individual problems. In this regard, one of the most important things we did was to develop a compendium of government and industry personnel who are knowledgeable in de-icing to be a point of departure for the individuals working the de-icing problems to talk to. The list is included in the minutes.

Commercial Specs

SAE G-12 Fluids Committee

This briefing was presented by Ms Jane Hinkle of Octagon Process in her capacity as Secretary of the SAE G-12 Committee. Ms Hinkle told us about the work of the G-12 committee regarding de-icing fluids. The G-12 Committee was established as an ad hoc group but in 1992 became a permanent SAE standing committee. Membership has grown from the original dozen or so to in excess of 300 people. In regards to de-icing the committee is charged with writing the international de-icing fluids specifications which they do in full cooperation with the European Committees. Since the Air Force is serious about embracing the Commercial fluid specifications, we had Ms Hinkle tell us about the SAE commercial specifications as well as about how the SAE fluids compare with the ISO and European fluids. Ms Hinkle also explained how the commercial fluids differ from the mil spec fluids.

Mil Type De-icing Fluid Specs

Navy (Pax River)

This briefing was presented by Phil Bevilacqua of Pax River NAS. The Navy owns the de-icing military specifications and we wanted to hear the Navy perspective since the Navy does not appear to want to embrace the commercial specs to the extent that the Air Force does. We were told that the Navy was reluctant to accept the SAE AMS 1424 and AMS 1428 standards because the specs do not allow the base material to be specified, do not have strict corrosion requirements, and may cause procurement problems due to incompatible formulations from different manufacturers.

AFRES Pilots' Experiences

317AS/DOLT

This briefing was presented by Capt. Dave Arthur and Maj. Pedro Rivas, a couple of AFRES C-17 pilots who fly commercial airliners in their civilian jobs. Their briefing was well received as obviously both men had a wealth of experience and provided tremendous insight about the frustrating de-icing problems which they encounter as Air Force pilots of a super sophisticated aircraft. Their script is provided with their briefing slides.

• "Off-the-Shelf" Technologies [AFLMA Study]

AFMC/ENBE

As the AFLMA personnel who performed the 1995 study were unable to attend this conference, Mr. Herring presented data extracted from the 1995 AFLMA de-icing study. The study reviewed "off the shelf" technologies and the report identified de-icing technologies which were in use by military and civil aviation as well as those technologies which showed potential for efficient, more environment friendly, de-icing. Several of the technologies described in the report were briefed by industry during the industry half day portion of the crossfeed.

Literature and Technology Review [ACC Study] HSC/YAL & AL/OEBW

This briefing was a presentation summarizing an on-going ACC study to evaluate aircraft and runway de-icing at 19 ACC bases for application of de-icing technologies. A synopsis of the briefing is included with the briefing charts.

• COTS and R&D Information [HSC Study]

Labat-Anderson Inc.

This briefing summarized an HSC study into understanding de-icing technical needs (TNs) 914, 918, 2501 and 2504 and to identify technologies which could meet those needs. The study addressed the subject of aircraft and ground (e.g., runway and roadway) de-icing. The objectives were twofold to identify commercial products, procedures, and infrastructure changes relative to de-icing; and, to identify commercial and governmental research into de-icing. Needs statements were reviewed for characteristics, similarities and differences and a criteria was developed for analyzing potential solutions. A compendium of current commercial products and research efforts, including information on technology vendors, applications, and costs was developed. This information is included with the briefing charts.

Introduction to Clean Water Act, Permits, etc.

AFCEE/CCR-D

This briefing was an explanation of the Clean Water Act and its enforcement. We were told that de-icing is covered as a "process wastewater" under the NPDES Permit (Individual or Storm Water). De-icing runoff is responsible for significant degradation of waters quality in this country. NPDES permits require Best Management Practices (BMPs) to eliminate, or at least to reduce the de-icing runoff. The criminal penalties (per violation) are as follows: Negligent - \$25,000 and 1 year in prison; Knowing - \$50,000 and 3 years in prison: Endangerment - \$250,000 and 15 years in prison. The civil penalty is \$25,000 per day. Therefore, the best advise is to be aware. The Air Force has to be sensitive to local demands and concerns. Ignorance of the law is no excuse.

De-icing / Anti-icing Technologies and Case Studies

NDCEE

This briefing summarized the alternative technologies, materials, and operational procedures for both aircraft and runway de-icing as identified in two Air Force reports:

"Report on the Requirements Analysis for De-icing" (Draft version dated June 28, 1996) by the Human Systems Center (HSC/XRE) of Brooks AFB, TX, and "Exploring available De-icing Technologies" (October 1995) by the Air Force Logistics Management Agency (AFLMA). NDCEE also surveyed various airports, military bases, and airline companies for what they were doing in regards to de-icing practices. NDCEE then combined the technical information they extracted from the two studies and from other sources available to them with their inquiry into the de-icing practices at the various locations they surveyed to relate technologies to factors. This useful information can guide individuals during technology selection processes to identify the technology which meets their specific requirements.

Basic Research AFOSR/NL

Dr. Hedberg told us that the Air Force Office of Scientific Research is currently supporting basic research programs relating to de-icer and anti-icer chemistry as a key component of its thrust on alternative materials and processes for hazard free operations and maintenance. Examples would be cold weather insect and fish protein research and the use of ground cover root systems to assist with natural degradation. Computational chemistry is being used for the first time to better understand the chemical mechanism of freezing point depression, and to guide selection of optimized molecular structure. Some of this research is being performed by various colleges and universities. Other research is being done at the various Air Force laboratories.

Development of New Anti-icing Product

Wright Lab

This briefing was a joint Wright Lab and NASA Ames presentation. The introduction was provided by Lt Udo-Aka of Wright Lab who gave a short presentation on de-icing and anti-icing R&D needs. De-icing and anti-icing R&D needs are divided into two major categories: aircraft needs and runway and pavement needs. Wright Lab is the OPR for the aircraft needs. Armstrong Lab is the OPR for runway and pavement needs. Industry has taken the lead on runway and pavement de-icing and is actively pursuing alternative de-icing materials. The Air Force does not have R&D projects to support runway and pavement de-icing but is doing test & evaluation to ensure that the alternative materials developed by industry are suitable for Air Force use.

Lt Udo-Aka then turned the podium over to Lt Col Perkins, the Wright Lab liaison to NASA Ames, and to Dr. Zuk and Dr. Haslim of NASA Ames. Wright lab has been cooperating with NASA Ames on an advanced aircraft anti-icer program since FY 1993. The NASA Ames advanced aircraft anti-icer program is developing a propylene glycol-based anti-icer with significantly extended holdover times (qualified at 118 minutes). By providing better protection against icing, the advanced anti-icer will allow the Air Force to use less propylene glycol, thereby reducing the environmental impact.

Wright Lab is striving to qualify anti-icers for Air Force use during the 96-97 snow season. WL/MLS concluded that its material compatibility tests on commercial Type II anti-icers last June met the AMS 1428 specification. All tests conducted produced satisfactory results. Therefore, AMS 1428 (Type II anti-icers) is in the process of being adopted for Air Force use during the 96-97 snow season. The preliminary adoption notice was released in July.

Toxicity Testing of New Products

OL AL HSC

This briefing pertained to the DOD toxicology program. Toxicology was defined and related to the risk assessment process. The presentation continued with an explanation of the chemical risk assessment process and the need for health-based approaches to identify and characterize potential hazardous substances. A brief overview of toxicity screens and tests was presented to make toxicity data more meaningful. The presentation included an explanation of tri-service toxicology and identified the toxicology points of contact in the other services. Please refer to Dr. Mattie's briefing slides and synopsis for additional information.

Runway De-icing Technologies and Chemicals

AFCESA

This briefing pertained to the Air Force runway and taxiway de-icers. Sgt. Labonte talked about currently approved runway de-icing technologies and chemicals plus those that may be on the horizon. He explained how the Air Force has gone about reducing harmful de-icers such as urea and ethylene glycol. He also summarized the results of the sodium acetate test at Elmendorf AFB and the sodium formate test at Minot AFB. The briefing included an explanation of the Runway Ice Detection System and touched briefly on advances on mechanical cleaning of runways and mobile sensors to monitor runway temperatures.

Introduction to Clean Water Act, Permits, etc.

AFCEE/CCR-D

This briefing was an explanation of the Clean Water Act and its enforcement. We were told that de-icing is covered as a "process wastewater" under the NPDES Permit (Individual or Storm Water). De-icing runoff is responsible for significant degradation of waters quality in this country. NPDES permits require Best Management Practices (BMPs) to eliminate, or at least to reduce the de-icing runoff. The criminal penalties (per violation) are as follows: Negligent - \$25,000 and 1 year in prison; Knowing - \$50,000 and 3 years in prison: Endangerment - \$250,000 and 15 years in prison. The civil penalty is \$25,000 per day. Therefore, the best advise is to be aware. The Air Force has to be sensitive to local demands and concerns. Ignorance of the law is no excuse.

Efficient Deicing Trucks w/Hot Air

Navy (Lakehurst)

This briefing was a Navy briefing about what they are doing to procure more efficient deicing trucks. Essentially, they are tying in with an Air Force contract. Their main concern is to reduce the amount of glycol applied. One of the things they are doing in this regard is to prototype a hot air system.

AFRES Solution at Niagara Falls

914 LG

This briefing was a no nonsense briefing given by Col Clune of the Niagara Falls AFRES Base about how changes in operations, management practices and technology can reduce the amount of glycol in storm water runoff. Col Clune has had to solve many frustrating de-icing problems. You are invited to read his briefing notes which he included with his briefing slides. Both contain excellent information.

Note: We also included AFRES BMP guidance with the Col Clune briefing.

AFRES Solution at Pittsburgh IAP

911 ALW

This briefing by Pittsburgh IAP-ARS (AFRES) discussed the regulatory actions by the State of Pennsylvania Department of Environmental Resources that led to the creation of a de-icing pad and collection system on the base. The design and implementation of this system, as well as its timeliness, were also discussed. The synopsis of the briefing and the briefing charts are in the attachment.

Holding Pond for Milwaukee ANG Base

128 ARW

This briefing was a Wisconsin Air National Guard (ANG) briefing about a retention pond that they are planning to capture and treat spent glycol. The Wisconsin ANG determined that a collection pond made the most sense from its perspective. A collection pond stores stormwater with de-icing fluid during the winter, treats the water through natural processes during the spring and summer and discharges the treated de-icing fluid into the stormwater system in the fall.

De-icing Truck Technology Improvements

Landoll & FMC

Tom Joyce of Landoll Corp. along with Dave Phillips and Lee Williams of FMC briefed de-icing truck technology. Of particular interest is the development work being done in the field of forced air technology through a cooperative research agreement with Wright Lab. Development has also been supported by United Airlines and Federal Express. Further development in using this type of system in conjunction with existing de-icing technology is planned for the near future.

Note: Simon Aviation, a manufacturer of de icing equipment, was not able to participate in the crossfeed due to last minute commitments. As a result, Allied Signal and CCSI were added to the agenda as last minute replacements.

Forced Air Snow Removal

Allied Signal

John Stanko briefed the Allied Signal "Augmented Forced Air De-icing System" which uses a small amounts of fluid. The Allied Signal Centrifuge Compressor and the Allied Signal APU are good air sources because they are compact and can be located near the nozzle for de-icing operations. This simplifies air delivery. The Allied Signal system utilizes high velocity co-axial streams of de-icing fluid and air to overcome the limitations of pure air forced de-icing. (Pure forced air is not effective on wet snow or ice.) Testing of the system begins after Labor Day.

Whisper Wash[™] De-icing System

Catalyst & Chemical Services

John Gaughan briefed that Catalyst & Chemical Services Inc. (CCSI) has designed and patented the "Whisper WashTM", a mobile aircraft de-icing/anti-icing system. The system operates as the aircraft taxis beneath height adjusted boom arms which extend from flatbed trailers over the complete wing area. Pneumatic nozzle groups remove snow and ice from the aircraft via heated compressed air. Hydraulic nozzle groups apply anti-icing fluid to the cleared wing and control surfaces. Flow rates, mix ratios, etc can be manually or automatically controlled based on weather conditions or specific requirements.

Radiant Heat

Process Technologies

John Chew briefed that Process Technologies Inc. has developed the InfratekTM Pre-Flight De-icing System, an aircraft de-icing system which uses radiant energy as an alternative to glycol. The aircraft is moved into a open-ended hangar and deiced using radiant energy.. Radiant heat melts the ice quickly. Please note that the radiant energy output is carefully matched to the aircraft so that the interior cabin temperature is not affected. In this regard, the FAA is involved in a cooperative research effort to insure that de-icing can occur without impacting the accuracy of the on-board instruments.

Efficient Pre-Moist Chem. Spreaders

Thomsen Products/EPOKE

Torben Zerlang and Lars Mathiasen briefed EPOKE chemical spreaders for runways. They told us that EPOKE spreaders are in use all over the world. Regarding the pre-moist spreaders, they said that by pre-wetting the solid de-icers, substantial material cost savings are possible and that pre-wetting limits the adverse impact on the environment.

Portable Glycol Capture Systems

Int'l Automated Systems

Jorgen Bildsoe briefed RO-MAT, a fluid collection system for capturing glycol fluids during de-icing operations. The RO-MAT fluid collection system is a deeply ribbed, steel belted, tough rubber matting which can be installed on a concrete or asphalt apron or taxiway. The collection system is modular and can be deployed if required.

Pressurized Water, Vacuum and Clean-Up Coastal Fluid Technology

Glenn Vanderlinden briefed recycling and treatment services for spent de-icing fluids and contaminated stormwater. Coastal Fluid Technologies Inc provides a glycol collection and recycling service which is flexible to allow custom solutions. What is done depends on the locale. Ordinarily, pick-up is during the de-icing operation. If the local rules are especially stringent, it may be necessary to make several passes to grab as much glycol as possible. Recycling revenues are used to offset collection and management costs. (Spent EG has about 1/3 the value of spent PG.)

Glycol Recovery Vehicles

Vactor Manufacturing Co.

Steve Baker briefed glycol recovery vehicles which can be used to vacuum glycol and waste water resulting from aircraft de-icing. Vactor Manufacturing manufactures a specially designed truck which is used to efficiently capture as much of the spent fluid as quickly as possible. The truck also has the capability to pick up the residue with a scrub feature.

Anaerobic Biofiltration

Biofiltration Systems

Tom Cannon briefed anaerobic biofiltration. The key is to control bacteria to process specific waste. BioFiltration Systems has developed a process to harness bacteria to specifically treat glycol and associated effluent. The right kind of bacteria is required. Three to four weeks must pass before the bacteria get hungry and start eating glycol. The treatment is done through biofilter media in a tank which means the effluent is put in contact with a bacteria that biodegrades the waste and turns it into methane gas and carbon dioxide.

6. SUMMARY:

We believe that the De-icing and anti-icing Technology Crossfeed was successful. One hundred and sixteen people representing Air Force, Army, Navy, other military and government activities, and industry attended. Technical information on many de-icing and anti-icing technologies was exchanged.

Even though an effort was made to identify and discuss as many technologies as possible in the time available, the crossfeed was not a comprehensive review of all available deicing and anti-icing technologies. Also, the reader needs to keep in mind that the technologies discussed at the crossfeed meeting and summarized in this report were selected as representing the type of technology available and are not necessarily the best or most desirable technology for Air Force application. The best solution for an Air Force installation is a combination of best management practices and technologies tailored for the specific site depending upon the operational environment at that location as well as the waste water controls and permit requirements for that area.

Military applications are somewhat different from civil aviation. Time spent on the runway between de-icing and takeoff may impact the need for an anti-icing fluid versus a de-icing fluid. Another factor to consider is the proposed location of a de-icing facility if one is planned, or for that matter, exists. What will be the impact of routing all aircraft through a single de-icing pad? Is the base in question located near other large glycol users so that capture and recycling will be cost effective? What are the rules of the waste water treatment plant serving that location?

The volume of glycol used on a specific Air Force base may not justify construction of expensive de-icing pads or allow for installation of an economical capture and recycle system. For a recycling service to be economical, there must be adequate volume and the glycol mixture waste must not be too diluted. Even the mixture of ethylene and propylene glycols in the waste can present a problem in recycling.

In the final analysis, there cannot be a common strategy for all Air Force Bases. Each solution has to be site specific. The solution selected has to consider things such as geography, topography, temperature, precipitation, local law, capability of the local POTW, etc. in addition to the economic considerations and the operational requirements.

These crossfeed minutes should serve as a starting point in any search for the most appropriate aircraft and runway de-icing technologies at an Air Force installation. Aircraft de-icing operations are controlled by aircraft technical orders and by the pilot's flight manual. Any changes to local de-icing procedures must be approved by weapon system single managers for aircraft based there. There should also be coordination with the single managers who manage aircraft which may land there. Please remember that the single manager of the aircraft landing at a base has the final say about what de-icing materials can be used around his or her airplane. Therefore, please do not forget to coordinate de-icing matters with the weapon system single managers.

Minutes prepared by: Carroll Herring, Action Officer, and Al Baca, Support Contractor

Approved as written:

GILBERT M. WENDT, LT COL, USAF

Chief, MEB Environmental Integration Branch

PM and S&IO MEB Support Division

Attachments

- 1.. Crossfeed Agenda
- 2. Roster of Attendees
- 3. Briefings including Synopsis
- 4. Contact List

Agenda

De-icing Technology Crossfeed
ANSER
1215 Jefferson Davis Hwy Suite 800
Arlington VA (Crystal City)

20 August 1996

1400 - 1405 Welcome

AFMC/ENBE

1405 - 1410 Administrative

ANSER

1410 -1425 Crossfeed Objective

AFMC/ENBE

De-icing and Anti-icing Specifications

1425 - 1450 Commercial Specs

SAE G-12 Fluids Committee

[Commercial specifications, the different types of fluids, and an SAE G-12 Fluids Committee status report]

1450 - 1510 Mil Type De-icing Fluid Specs

Navy (Pax River)

[Overview of the military type de-icing fluid specs by Navy Chemical Engineer]

Comparing Military and Civilian De-icing and Anti-icing Operations

1510 - 1530 One Pilot's Experience

317AS/DOLT

[An AFRES C-17 pilot who flies for American Airlines will compare military and commercial de-icing]

1530 - 1545 15 Minute Break (Please do not exceed 15 minutes

Survey of De-icing Products, Technologies and Chemicals

1545 - 1600 "Off-the-Shelf" Technologies

AFMC/ENBE

[Summary of the "off the shelf" de-icing/anti-icing products and technologies extracted from the 1995 AFLMA Study]

- 1600 1620 Literature and Technology Review [ACC Study] HSC/YAL & AL/OEBW [Study to evaluate aircraft and runway de-icing at 19 ACC bases for application of de-icing technologies]
- 1620 1645 COTS and R&D Information [HSC Study] Labat-Anderson Inc. [Understanding de-icing technical needs (TNs) 914, 918, 2501 and 2504 and to identify technologies that can meet those needs]

NOTE: Immediately after the previous briefing, there will be a brainstorming session. Those who wish to participate are welcome to stay.

[Before the Air Staff de-icing working group members can develop an environmentally compliant de-icing strategy, they must have a knowledge of what military bases and civilian airports have already done in areas such as operational and procedural changes, best management practices, simple and low cost infrastructure improvements, etc to reduce glycol and other de-icing chemicals in stormwater runoff. This forum is intended to gather these ideas for the De-icing Working Group members. Please stay and participate]

21 August 1996

0800 - 0810 Introduction to Clean Water Act, Permits, etc.

AFCEE/CCR-D

[An explanation of the Clean Water Act and its enforcement. There will also be an explanation of NPDES and SPDES permits]

Survey of De-icing / Anti-icing Technologies and Chemicals

0810 - 0840 De-icing / Anti-icing Technologies and Case Studies

NDCEE

[Case studies and technology summaries as they relate to possible Air Force use]

Research & Development Efforts

0840 - 0900 Basic Research

AFOSR/NL

[Briefing regarding the research at the colleges and universities that AFOSR/NL is sponsoring.]

0900 - 0930 Development of New Anti-icing Product

Wright Lab

[Briefing on the de-icing research being done by Wright Labs. Includes an explanation of NASA Ames research to provide a more environmentally friendly type II fluid.]

Test and Evaluation of Chemicals and Technologies

0930 - 0945 Toxicity Testing of New Products

OL AL HSC

[Importance of toxicity testing before new products are authorized for Air Force use]

0945 - 1000 15 Minute Break (Please do not exceed 15 minutes)

1000 - 1015 Runway De-icing Technologies and Chemicals

AFCESA

1015 - 1025 Results of Sodium Acetate Test

3CE/CEORH

1025 - 1035 Results of Sodium Formate Test

5CES/CEO

[Briefing on current runway de-icing technologies and chemicals plus those that may be on the horizon. (eg urea; potassium acetate; sodium formate; calcium magnesium acetate; mechanical de-icing equipment; runway ice detection system; etc.) Also briefings regarding the sodium acetate test at Elmendorf AFB and the sodium formate test at Minot AFB.]

Military Implementation Efforts and Success Stories

1035 - 1100 Efficient Deicing Trucks w/Hot Air

Navy (Lakehurst)

[Navy perspective on efficient ADAF application reducing the amounts of glycol fluids used]

1100 - 1125 AFRES Solution at Niagara Falls

914 LG

[How changes in operations, management practices and technology can reduce glycol in storm water runoff]

1125 - 1140 AFRES Solution at Pittsburgh IAP

911 ALW

[Small capturing and disposal operation]

1140 - 1200 Holding Pond for Milwaukee ANG Base [Glycol capture for treatment in a holding pond]

128 ARW

1200 - 1300 Lunch

"Industry Half Day" Briefings by Industry New & Innovative Products & Technologies

Aircraft De-icing and Anti-icing Chemicals and Technologies

1300 - 1330	De-icing Equipment and Technologies	Simon Aviation
1330 - 1400	De-icing Truck Technology Improvements	Landoll & FMC
1400 - 1430	Radiant Heat	Process Technologies
R	unway De-icing and Anti-icing Chemicals an	d Technologies
1430 - 1500	Efficient Pre-Moist Chem Spreaders	Thomsen Products/EPOKE
1500 - 1515	15 Minute Break (Please do not exceed 15 minute	es)
	Capturing and Recycling Technolog	gies
1515 - 1545	Portable Glycol Capture Systems	Int" I Automated Systems
1545 - 1615	Pressurized Water, Vacuum and Clean-Up	Coastal Fluid Technology
1615 - 1645	Glycol Recovery Vehicles	Vactor Manufacturing Co
	Treatment Products and Technolog	gies
1645 - 1715	Anaerobic Biofiltration	Biofiltration Systems

Thank you for participating in the Air Force De-icing Technology Crossfeed. Past experiences with technology crossfeeds clearly indicate that attendee participation in the discussions add significantly to the good of having the crossfeed.

We intend to publish a comprehensive set of minutes of the crossfeed proceedings by 30 Sep 1996. Our hope is that the information in the minutes will be an excellent reference for military people working de-icing problems.

Briefers, please do not forget to provide us with your synopsis and a hard copy of your briefing for inclusion in the minutes.

Carroll Herring Action Officer

Al Baca Minutes

	A	8	ပ	O	ш	L	5
_	LAST NAME	FIRST NAME	ORGANIZATION	MAILING ADDRESS	PHONE	FAX	E-MAIL
N	Antkoviak	CMSgt Paul	914 LG/LGC NFDA	10315 Wagner Dr Niagara Falls NY 14304	DSN: 238- 2263	DSN: 238- 2119	
က	Arthur	Capt Dave	317 AS/DOLT	105 East Hill Blvd Charleston AFB SC 29404	803-566- 2436	803-566- 5867	
4	Baca	AI	AFMC/ENBE	4375 Chidlaw Rd Ste 6, WPAFB OH 45433	DSN: 787- 0350	DSN: 986- 1650	abbaca@wpgate1.wpafb.af.mil
rð.	Bagshaw	Gary	ACC/CEO	129 Andrews St Ste 102 Langley AFB VA	804-764- 6270	804-764- 5363	bagshawg@hqaccce.langley.af.mil
9	Baker	Steve	Vactor Manufacturing Inc.	1621 S. Illinois St. Streator, IL 61364	815- 672.3171	815-672- 2779	
7	Batts	John	Batts Inc.	P.O.Box 1, Advance IN	317-676- 5123	317-676- 5275	
80	Beckwith	MGen (Ret) Ron	Aircraft Delcing Systems Corp.	2001 Jeff. Dav. Hwy #1100 Arlington VA 22202	703-418- 1702	703-418- 0034	rlbeckwith@aol.com
6	Bevilacqua	Phil	NAWC	Bldg 2188 Stop 3 Pax River MD	301-342- 8056	301-342- 8062	bevilacqua_philip%pax5@mr.nawcad.navy.m il
9	Bickett	Mike	AFMC/LG-EV	4375 Chidlaw Rd Ste 6, WPAFB OH 45433	DSN: 787- 3487	DSN: 787- 4244	bickett@wpgate1.wpafb.af.mil
=	Bildsoe	Jorgen	International Automated Systems	2233 Hamline Ave N. St. Paul, MN 55127	612-636- 3853	612-636- 0309	
12	Black	Terry	AFMC/ENBE	4375 Chidlaw Rd Ste 6, WPAFB OH 45433	513-257- 0011	513-476- 1650	tblack@wpgate1.wpafb.af,mil
13	Boyer	SMSgt Robert	171 ARW/LGGGB	300 Tanker Rd Coraopolis PA 15108	412-474- 7381	412-474- 7270	
14	Cannon	Tom	Biofiltration Sys	1800 Second St Ste 808 Sarasota FL 34236	813-953- 5200	813-953- 5353	
15	Carlson	Christina	SAIC	11251 Roger Bacon Dr. (M/S R-4-3) Reston VA 20190	703-318- 4596	703-736- 0826	ccarlson@lan828.ehsg.saic.com
16	Chew	John	Process Technologies	40 Centre Dr. Orchard Park NY 14127	716-662- 0022	716-662- 0033	
17	Chipley	Capt Michael	AFOSR/NL	Bolling AFB DC	202-767- 0468	202-404- 7475	michael.chipley@afosr.af.mil
18	Clune	Col Alan	914 Log Grp/CC	10315 Wagner Dr Niagara falls NY14303	DSN: 238- 2271	DSN: 238- 2119	aclune@iag.afres.af.mil
19	Cocks	Lewis	ACHQ/ CAN	Air Command Headquarters Westwin Man R3J 0T0 CANADA	204-833- 5238	204-833- 2566	
20	Combs	Johnny	AFCEE/CCR-D	525 Griffin St STE 505 Dallas TX 75202	214-767- 4671	214-767- 4661	jcombs@afceeb1.brooks.af.mil

			(L	
	4	20	د	O	H 200	7 000	5
21	Cornell	Capt Jeffrey	AFIT	PO Box 2917 Boulder CO 80306	303-786- 0941	303-492- 0941	cornellj@ucsu.colorado.2du
22	Coulter	Ron	Coastal Fluid Technologies	PO Box 81577 LaFeyette LA 70598	318-261- 0796	318-261- 0797	
23	Cremer	SMSgt Bruce	632 AMSS/LGA	42-336 Burns Rd. Elmendorf AFB, AK	907-552- 2622	907-552- 7177	
24	Cross	Joe	USAF-3CE/CEOCA	32-187 Arcasia Ave Elmendorf AFB AK	907-552- 2994	907-552- 1407	
25	Daizell	Bob	23CES/CEVC	Pope AFB NC	910-394- 1654		
26	De Bor	Wayne	171ARW PA-ANG	3651 Mapleview Dr Pittsburg PA 15012	412-474- 7477		
27	Dionne	Denis	NDCEE(CTL)	1450 Scalp Ave. Johnston, PA 15904	814-269- 2739	814-269- 6218	dionne@ctc.com
28	DuBrucq	Denyse	Richmond De-icer Co	440 E Squantum Rd. Quincy MA 02171	617-376- 9933	617-376- 9953	
29	Eklund	Eric	AFCSA/JACE	1801 Wilson Blvd. Suite 629 Arlington VA	703-696- 9190	703-696- 9184	jagfromhel @aol.com
30	Fields	MSgt Mary	AL/OEBW	2402 E Dr. Brooks AFB TX 78244	DSN: 240- 4859	DSN: 240- 3945	mfields@guardian.brooks, af.mil
31	Francis	Drew	USAF ACC/LGOV	11817 Canon Blvd. Ste 306, Newport News VA	DSN: 764- 9188	DSN: 764- 9153	francisd@acclsg.langley.af.mil
32	Fronapfel	Capt Paul	AF/OEBW	2402 E Dr. Brooks AFB TX 78244	DSN: 240- 4938	DSN: 240- 3945	pfronapfel @guardian.brooks.af.mil
33	Gaugaan	ndol	ccsı	2100 Muir Way Bel Air MD 21015	410-569- 1200	410-569- 1202	http://www.catchem.com
34	Giroux	Robert	3EMS/LGMG	11620 Q St. Elmondorf AFB AK	907-552- 3930	907-552- 8562	girovx@3wgmail.topcover.af.mil
35	Golbeck	Daryl	Inland Technologies	5625 Airport Rd Ste 200 Mississauga Ont L4V 1W1 CANADA	905-405- 6222		
36	Gold	Dr Harris	Foster-Miller	195 Bear Hill Rd Walthan, MA 02154	617-684- 4181	617-290- 0992	hgold@foster-miller.com
37	Greene	Brian	Concurrent Technologies	1450 Scalp Ave Johnstown PA 15904	814-269- 2761	814-269- 6882	greene@ctc.com
38	Gross	Лау	ARCO Chemical	3601 Westchester Pike Newton Square PA 19073	610-359- 6014		
39	Guadalupe	Maj David	USAF/CEVQ	1260 Air Force Pentagon Wash DC 20330 1260	DSN: 227- 2797	DSN: 225- 8943	guadalud@afce.hq.af.mil
6	Guenthen	Norm	SAF/MIQ	1260 Air Force Pentagon Wash DC 20330 1260	703-697- 9297	703-614- 2884	guenthen@af.pentagon.mil

	A	80	ပ	Q	ш	ட	5
41	Hales	Michael	Labat-Anderson	8000 Westpark Dr Ste 400 McClean VA 66508	703-506- 9600		
42	Harris	Bill	Landill Corp	2040 Hillside Dr. Muskengon, MI 49441	616-780- 3455	616-780- 2801	
5	Harrison	Pat	American Airlines		817-963- 1706		
4	Haslim	Dr Len	NASA AMES Research Cent	MS 237-11, Moffett Field CA 94035	415-604- 6575	415-604- 6996	
45	Hedberg	Dr Fred	AFOSR/NL	110 Duncan Ave. Sut B115. Bolling AFB DC 20332	202-767- 5024	202-404- 7475	fredohedberg@afosr.af.mil
46	Hernardez	Dr Mark	Univ of Colorado at Boulder	Campus Box 428 Dept of CEAE Boulder CO 80302	303-492- 5991	303-492- 7317	hernande@stripe.colorado.edu
47	Herring	Carroll	AFMC/ENBE	4375 Chidlaw Rd Ste 6, WPAFB OH 45433	DSN: 787- 6448	DSN: 986- 1650	cherring@wpgate1.wpafb.af.mil
48	Hinebaugh	Larry	Aviation Environmental	4334 S Industrial Rd Ste 400 Las Vegas NV 89103	800-788- 6450		
49	Hinkle	Jane	Octagon Process	The Market Place 725 River Rd Edgewater NJ 07020	201-945- 9400		
50	Huelsman	1 Lt Bob	128ARW/EM	1723 East range Ave Milwaukee WI 53207			rhuelsman@wimke.ang.af.mil
51	Hunt	Darren	Jacobs Engineering	1600 N 17th St. Arlington VA	703-358- 8818	703-358- 8822	
52	Husain	Mano	PACAF/CEVC	25E St Ste D-306, Hickam AFB, HI 96853	808-448- 0474		husainm@hqpacaf.af.mil
53	oßl	Skip	910 AW VIENNA.OH	Kings Grave Rd Vienna, OH 44473-0910	330-392- 1250		
54	Seqof	Maj. Lynn	910 AW/LGM	910 AW/LGM Youngstown AFB, OH 44473	330-392- 1144	DSN: 346- 1350	ljobes@yng.afres.af.mil
55	Joyce	Tom	Landoll Corp	1900 North St Marysville KA 66508	913-562- 5381	913-562- 2825	
56	Jozwick	Rick	411 Airlift Wing/MVS	316 Defense Ave Ste 101 Cpraopolis PA 15108	412-474- 8189		
57	Kelly	Larry	Octagon Process	The Market Place 725 River Rd Edgewater NJ 07020	201-945- 9400		
58	King	John	SA-ALC/TIEM	450 Quentin Rooselute Rd Kelly AFB TX 78241	210-925- 7391	210-925- 4916	jking@sadis01.kelly.af.mil
59	Koch	Lars	Roullinds Fabriker	Hestehaven 5260 Odenses Denmark	45-63-11-52 25	45-63-11-51 94	
09	Koehler	Walt	NAWC Aircraft Div	Lakehurst NAS NJ	908-323- 7907		
				6			

A	\vdash	8	၁	Q	Е	F	5
Koehler		Walter	Naval Air Warfare Cen	Hwy 547 LakeHurst NJ 08733	908-323- 7907	908-323- 1908	
Kozumbo		Dr Walt	AFOSR/NL	Bolling AFB DC	202-767- 4281		
Kull		Michael	Process Technologies	40 Centre Dr. Orchard Park NY 14127	716-662- 0022	716-662- 0033	
Labonte		SMSgt Earl	AFCESA/CEOM	139 Barnes Dr Ste1, Tyndall AFB FL 32403	904-283- 6386	904-283- 6499	lobontee@afcesa.af.mil
Lacourciere		SMSgt Paul	440 AW GMIAP MAO	300 E College Ave. Milwakee WI 53207	414-482- 5550		
Landry		Maj Mike	NAVAIR PMA- 260C21		703-604- 3344	703-604- 4505	
Legarreta		George	FAA (Wash) AAS-100	800 Independence Ave. SW Wash DC	301-267- 8766	301-267- 5383	
Lewandowski		Tom	Ecology & Environment	368 Pleasantview Dr. Buffalo, NY 14068	716-684- 8060		tml02@ene.com
Locklair		Deborah	USAFE/CEVC	Unit 3050 Box 10 APO OE 09094			locklaid@usafe.ramstein.af.mil
Makofsi		Kathy	ANGRC/CEVC	3500 Fetchet Ave. Andrews AFB MD 20762	301-836- 8695	301-836- 8151	kmakofski@angre.ang.af.mil
Malinowski		Tricia	Ecology & Environment	368 Pleasantview Dr. Buffalo, NY 14068	716-684- 8060	716-684- 0844	pam02@ene.com
Masters		Charles	FAA Technical Center	AAR-421 Atlantic City Intl Airport NJ 08405	609-485- 4135	609-485- 4005	masters@admin.tc.faa.gov
Mathiasen		Lars	EPOKE A/S	PO Box 230 6600 VEJEN Denmark			
Mattie		Dr David	AL HSC/OET	OL AL HSC/OET 2856 G St WPAFB OH	513-255- 5740	513-255- 1474	dmattie@al.wpafb.af.mil
McDonald		Evelyn	Labat-Anderson	8000 Westpark Dr Ste 400 McClean VA 66508	703-506- 9600		
McVey		Tami	CNO N457D1	2211 S Clark Place Rm 644 Arlington VA	703-602- 9434	703-602- 5547	mcveyt@n4.opnav.navy.mil
Mongelli		Jerry	AFMC/LG-EV	4375 chidlaw Rd Ste 6 WP AFB OH 45433		513-257- 4244	mongelli@wpgate1.wpafb.af.mil
Myers		Cliff	DLA/DSCR-JDT	8000 Jefferson Davis Hwy Richmond VA 23297	_	DSN: 695- 6008	gst5029@dcsr.dla.mil
Nault		Gary	ACC/CEVCM	129 Adrewes St Langley AFB, VA 23665	757-764- 3668	757-764- 8033	naultg@hqaccce.langley.af.mil
Noel	-	Dong	Ogden Environmental	3325 Perimeter Hill Dr Nashville TN 37211	615-333- 0630	615-331- 4715	dnoelenc5.infi.net

	A	80	ပ	Q	ш	ш	5
91	Nonaka	Maj. Kent	AFMC/CEVV	4225 Logistics Ave WPAFB OH 45433	513-257- 7414	513-486- 1650	nonakak@afmcce.wpafb.af.mil
82	Oliver	Jerry	Davison Army Airfield	Ft Belvoir VA	703-806- 7218		
83	Owens	Roger	EFX Systems	1300 Shames Dr Westbury NY 11590	516-997- 2100	516-997- 2129	Rwodp@aol.com
84	Palmer	Pete	SA-ALC/LDEE	485 Quentin Roosevelt Kelly AFB. TX 78241	210-925- 0239	210-925- 8606	ppalmer@sadis01.af.mil
85	Pantelis	Paul	Aviation Applied Tech Dir	Attn: AMSAT-B-TL FT. Eustis VA 23604	757-878- 5777	757-878- 3029	pantelis@aatdsi.army.mil
98	Perkins	LTC. Rich	AFLO	MS210-6, NASA-AMES, CA 94035	415-604- 5832	415-604- 0867	It_col_rich_perkins@qmgate.arc.nasa.gov
87	Phillips	Dave	FMC	7300 Presidents dr Orlando FL 32809	407-851- 3377		
88	Rivas	Maj Pedro	317 AS/DOLT	105 East Hill Blvd Charleston AFB SC	803-566- 2436	803-566- 5867	
89	Ryerson	Dr Charles	Army Corp Engineer(CRREL)	72 Lyme Rd Hanover NH 03755-1290	601-646- 4487		
06	Sandoval	Robert	NFESC Port Hueneme,CA	1100 23rd Ave Port Hueneme, CA 93043	805-982- 1466	805-982- 4304	bsandov@nfesc.navy.mil
91	Sanghavi	H.	AMC/CEVC	507 A St. Scott AFB IL 62226	618-256- 5764	618-256- 2693	sanghav@hqafm.af.mil
92	Schmift	Ron	Vactor MFG, Inc.	1621 S. Illinois St. Streator, IL 61364	815-672- 3171	815-672- 2779	
93	Shah	Jay	USAF/CEVQ	1260 Air Force Pentagon	703-697- 2797	703-697- 3378	shahj@afce.hq.af.mil
94	Sims	Greg	AMC/DOTK	Bidg 1600 Ste 3A1 Scott AFB IL 62225	618-256- 5924	618-256- 2273	simsgr@safb.af.mil
95	Spencer	1 Lt Yvonne	HSC/YAL	8107 13th Street Brooks AFB TX	DSN: 240- 6354	DSN: 240- 2993	spencery@diamond.brooks.af.mil
96	Stanko	John	Allied Signal	2525 W. 190th Torrance CA 90509	310-512- 4613	310-512- 1589	
97	Stell	ens	AFRES/CEV	155 2nd St. Robins AFB. GA	912-327- 1078	912-327- 0108	stell@wrb.afres.af.mil
86	Swindell	Paul	NAWC AD Lake Hurst	Hwy 547 Lake Hurst NJ 08733	908-313- 1926	980-313- 4029	swindell@lakehurst.navy.mil
66	Thompson	Bobbi	JAYCOR	4035 Col Glenn Hwy Ste 100 Beavercreek OH 45431	513-427- 9690	513-427- 9673	
100	Tower	John E.	171 ARW/EM	300 Tanker Rd Coraopolis, PA 15108- 4257	412-474- 7640	412-474-	
1							

Page 5

A B B C Constal Fluid Tech C Data sist77. Lafayette, LA 70596-1577 518-765 or 13-376 518-76 or 14-376 1518-376 or 17-376								
Udo-Aka 2 Lt. Ita WL/MLSE 2179 12th St. Suite 1 WPAFB, OH 45433 513-255 513-976-513-650-679 513-251-70-79 513-251-70-79 513-251-70-79 513-251-70-70-79 779-70-70-70-70-70-70-70-70-70-70-70-70-70-		A	В	ပ	D	Ш	Œ	5
Vanderlinden Glenn Coastal Fluid Tech PO Box 81577. Lafayette, LA 70598-1577 318-261-379-3793-3793-379-379-379-379-379-379-3	101	Udo-Aka	2 Lt. Ita	WLMLSE	2179 12th St. Suite1 WPAFB, OH 45433	513-255- 3953	513-976- 4378	udoakaui@mil.wpafb.
Vaselich Ray SAF/AQRE 8804 Lake Hill Dr. Lorton VA 22079 703-690-103-690-103-690-103-690-105-690-103-690-105-690-10	102		Glenn	Coastal Fluid Tech Inc.	PO Box 81577. Lafayette, LA 70598-1577	318-261- 0796	318-261- 0797	glennv@coastalfluid.com
Verma Vic AFCEE/CCR-A 77 Forsyth St SW STE 295 Atlanta GA 2537 404-331- 0550 404-331- 0550 Wall 1 Lt Jack 151 ARW/EM 765 North, 2200 West Salt Lake City UT 2157 801-585- 2178 2178 Webb Donald OC-ALC/EMV 7701 Znd St. Tinker AFB, OK 7071 405-734- 405-736- 2178 405-736- 2178 Westmark Lt Col Allan AL/EQ 139 Barnes Dr Tyndall AFB FL 32403 604-283- 606-63- 606-64 606-4 Westmark Carolyn Foster-Miller, Inc. 195 Bear Hill Rd Walthan, MA 02154 617-290- 606-4 617-290- 606-4 Whitman David Environmental 434 S Industrial Rd Sta 400 Las Vegas 600-788- 6450 6450-788- 617-290- 6450 6450-788- 617-290- 6450 Von ASC(AW) Jack NAS Brunswick, R 1251 Orion St. South Brunswick ME 2640 207-921- 20	103		Ray	SAF/AGRE	8804 Lake Hill Dr. Lorton VA 22079	703-690- 1986	703-690- 4572	ravselic@capaccess.org
Well 1 Lt Jack 151 ARW/EM 765 North, 2200 West Salt Lake City UT 801-595- 2178 801-595- 2178 Webb Donald OC-ALC/EMV 7701 2nd St. Tinker AFB, OK 7057 2nd St. 2178 405-734- 405-736-736- 405-736- 405-736- 405-736- 405-736- 405-736- 405-736- 405-736- 405-736- 405-736- 405-736- 405-736-736- 405-736-736- 405-736-736-736- 405-736- 405-736- 405-736-736- 405-736- 405-736-736	104	Verma	Vic	AFCEE/CCR-A	STE 295 35-6801	404-331- 0590	404-331- 2537	vverma@afceeb1.brooks.af.mil
Webb Donald OC-ALC/EMV 7701 2nd St. Tinker AFB, OK 405-734-405-736-4831 405-736-4831 Weiner Lt Col Allan AL/EQ 139 Barnes Dr Tyndall AFB FL 32403 6704-283-6064-604-830 404-283-6064-6063 Westmark Carolyn Foster-Miller, Inc. 195 Bear Hill Rd Waithan, MA 02154 617-684-617-290-4119-6063 617-684-617-290-6063 Whitman David Environmental 4334 S Industrial Rd Ste 400 Las Vegas 6450-7419-7063 800-789-7419-7419-7419-7419-7419-7419-7419-741	105		1 Lt Jack	151 ARW/EM	765 North, 2200 West Salt Lake City UT 84116	801-595- 2157	801-595- 2178	jwall@utslc.ang.af.mil
Weiner Lt Col Allan AL/EQ 139 Barnes Dr Tyndall AFB FL 32403 904-283- 6308 6064 904-283- 6308 Westmark Carolyn Foster-Miller, Inc. 195 Bear Hill Rd Walthan, MA 02154 617-684- 617-290- 617-290- 6450 617-684- 617-290- 617-290- 6450 Whitman David Aviation Aviation 4334 S Industrial Rd Ste 400 Las Vegas 6450 800-788- 6450 7300 Presidents Dr Orlando FL 32809 407-851- 6450 7377 Von ASC(AW) Jack NAS Brunswick, Maine 1251 Orlon St. South Brunswick ME 04011 207-921-	106		Donald	OC-ALC/EMV	7701 2nd St. Tinker AFB, OK	405-734- 7071	405-736- 4381	dwebb@po25.tinker.af.mil
Westmark Carolyn Foster-Miller, Inc. 195 Bear Hill Rd Waithan, MA 02154 617-684-617-290-6193 617-290-6193 Whitman David Aviation 4334 S Industrial Rd Ste 400 Las Vegas 6450 800-788-6450 650-788-6450 Williams Lee FMC 7300 Presidents Dr Orlando FL 32809 407-851-740 207-921-740 Yon ASC(AW) Jack Maine 1251 Orlon St. South Brunswick ME 207-921-7692 207-921-7692 Zachariades Gus SA-ALC/SFTT 1014 Billy Mitchell Blvd. Ste 1 Kelly AFB 210-925-7692 210-925-7692 Zatezalo Alvin 911 (758AS/MA) 316 Defense Ave Ste 101 Corapolis PA 412-474-761 9964-761 Zarlang Torben Thomsen Products 604 Hayden Station Rd Windor CT 06095 860-688-77 7317 Zuk Dr John NASA AMES MS 237-11, Moffett Field CA 94035 415-604-715-70 7317 Zuk Br. 504- 6568 66966 6996-688-70 66568-70 66568-70	107	Weiner	Lt Col Allan	ΑL/EQ	139 Barnes Dr Tyndall AFB FL 32403	904-283- 6308	904-283- 6064	allan_weiner@ccmail.aleq.tyndall.af.mil
Whitman David Aviation 4334 S Industrial Rd Ste 400 Las Vegas B00-789- 6450 800-789- 6450 Williams Lee FMC 7300 Presidents Dr Orlando FL 32809 3377 407-851- 207-921- 20	108		Carolyn	Foster-Miller, Inc.	195 Bear Hill Rd Walthan, MA 02154	617-684- 4119	617-290- 0693	cwestmark@foster-miller.com
Williams Lee FMC 7300 Presidents Dr Orlando FL 32809 407-851- 3377 407-851- 3377 Yon ASC(AW) Jack NAS Brunswick, Maine 1251 Orlon St. South Brunswick ME 207-921- 2643 207-921- 2306 Zachariades Gus SA-ALC/SFTT 1014 Billy Mitchell Blvd. Ste 1 Kelly AFB 210-925- 7613 210-925- 9964 Zatezalo Alvin 911 (758AS/MA) 316 Defense Ave Ste 101 Corapolis PA 15108-4403 412-474- 8191 9964 Zerlang Torben Thomsen Products Inc. 604 Hayden Station Rd Windor CT 06095 B331 860-688- 303-492- 7577 303-492- 7577 7317 Zuk Dr John NASA AMES MS 237-11, Moffett Field CA 94035 6568 6568 6568	109		David	Aviation Environmental	4334 S Industrial Rd Ste 400 Las Vegas NV 89103	800-788- 6450		
Yon ASC(AW) Jack Maine Indemaine Maine Maine Indemaine Maine Indemaine Maine Maine Indemaine Maine Maine Indemaine Maine	110		Lee	FMC	7300 Presidents Dr Orlando FL 32809	407-851- 3377		
Zachariades Gus SA-ALC/SFTT 1014 Billy Mitchell Blvd. Ste 1 Kelly AFB 210-925- 7613 210-925- 9964 Zatezalo Alvin 911 (758AS/MA) 316 Defense Ave Ste 101 Corapolis PA 112-474- 8191 412-474- 8191 860-688- 8191 Zerlang Torben Inc. Boulder, CO 80309-0428 860-688- 8331 303-492- 7317 Zuk Dr John NASA AMES MS 237-11, Moffett Field CA 94035 415-604- 415-604- 415-604- 6596	=======================================		ASC(AW) Jack	NAS Brunswick, Maine	1251 Orion St. South Brunswick ME 04011	207-921- 2643	207-921- 2306	jackyon@jono.com
Zatezalo Alvin 911 (758AS/MA) 316 Defense Ave Ste 101 Corapolis PA 112-474- 8191 412-474- 8191 Zerlang Torben Thomsen Products Inc. 604 Hayden Station Rd Windor CT 06095 8331 860-688- 8331 733-492- 7317 Znidarcic Dr Dobroslav Univ of Colorado Boulder, CO 80309-0428 7577 7317 7317 Zuk Dr John Research Cen MS 237-11, Moffett Field CA 94035 415-604- 6568 6568 6568	112	Zachariades	Gus	SA-ALC/SFTT	1014 Billy Mitchell Blvd. Ste 1 Kelly AFB TX 78241	210-925- 7613	210-925- 9964	czachari@sadis05.kelly.af.mil
Zerlang Torben Thomsen Products Inc. 604 Hayden Station Rd Windor CT 06095 860-688-8331 8331 8331 Znidarcic Dr Dobroslav Univ of Colorado Boulder, CO 80309-0428 303-492-7317 7317 Zuk Dr John Research Cen MS 237-11, Moffett Field CA 94035 415-604-6568 6568 6996	113	Zatezalo	Alvin	911 (758AS/MA)	Ave Ste 101 15108-4403	412-474- 8191		
Znidarcic Dr Dobroslav Univ of Colorado Boulder, CO 80309-0428 303-492-7517 303-492-7317 Zuk Dr John NASA AMES MS 237-11, Moffett Field CA 94035 415-604-6568 6568 6568 6996	114	Zerlang	Torben	Thomsen Products Inc.	604 Hayden Station Rd Windor CT 06095	860-688- 8331		jzuk@mail.arc.nasa.gov
Zuk Dr John Research Cen MS 237-11, Moffett Field CA 94035 415-604-6996 415-604-6996	115	Znidarcic	Dr Dobroslav	Univ of Colorado		303-492- 7577	303-492- 7317	jzuk@mail.arc.nasa.gov
	116		Dr John	NASA AMES Research Cen	1, Moffett Field CA	415-604-	415-604- 6996	jzuk@mail.arc.nasa.gov

Technology Crossfeed on Deicing/Anti-icing

Arlington, Virginia 20-21 August 1996

Carroll Herring 513 257-6448

Scope

with deicing/anti-icing aircraft and runways and oxygen depletion problems associated Investigate technologies to reduce toxicity

HQ Air Force Materiel Command

Carroll Herring 513 257-6448

Objectives

- Exchange Information on Deicing/Anti-icing **Technologies**
- Support the development of Deicing/Anti-icing Strategies for future Operations
- Status of Research & Development Efforts
- PROs & CONs of various Chemicals & Technologies
- Assist Air Force activities achieve Compliance with minimal negative impacts on the mission
- Understanding of Options for Compliance
- Review Deicing/Anti-icing Studies & Implementation Efforts

HQ Air Force Materiel Command

Carroll Herring 513 257-6448

Deicing/Anti-icing Operations

Aircraft Deicing

Remove Snow, Ice & Frost

Runway Deicing & Anti-icing

- Remove Snow & Ice
- Prevention of ice deposits

Environmental Concerns

- Toxic chemicals entering water supplies
- Oxygen depletion killing fish & aquatic life in streams

Operational Controls & Restrictions

Legislation & Policy

- Clean Water Act, EPA, State & Local Limits
- Monitoring by large glycol users and best management practices to reduce below benchmark values
- National Pollutant Discharge Elimination System (NPDES) permits
- Air Force bases must apply for permits limiting chemicals in storm water runoff
- [Ref. USAF/CE letter dated 31 March 1992] Prohibition on Purchasing ethylene glycol

HQ Air Force Materiel Command

Carroll Herring 513 257-6448

S

Guidance & Instructions

Aircraft Deicing/Anti-icing

- 42C-1-2 "Deicing/Anti-icing Technical Manual"
 - Tech Orders specific to Weapon Systems
- [e.g., Flight Manuals; dash-2 Ground Support Tech Orders]
- MIL-A-8243 "Military Deicing Specification"
 - Type I Propylene Glycol
 - Type II Ethylene Glycol
- AMS 1424 "Aircraft Deicing/Anti-icing
- Type I Newtonian [Propylene, Ethylene or Mixture]
 - AMS 1428 "Aircraft Deicing/Anti-icing
- Type II, III & IV -Pseudo-Plastic Non-Newtonian
- [Propylene, Ethylene or Mixture]

Runway/taxiway Deicing

- AF Instruction 32-1045 "Snow & Ice Control"
- MIL-A-83411 "Military Deicing Specification"
- AMS 1431 "Solid Deicing/Anti-icing Runway Compounds"

Deicing/Anti-icing Chemicals & Technologies

Aircraft Deicing/Anti-icing

Ethylene Glycol

Propylene Glycol

Methyl Cellosolve

Synthetic Deicing Fluids

Deicing truck w/air blast

Deicing Platforms

Deicing Pads

Radiant Heat

Modified Monosaccharides

Capturing Technologies

Vacuum Collection Vehicles Rubberized Mats

Runway Deicing

Potassium Acetate

Urea

Glycol Mixtures

Sodium Acetate

Sodium Formate

Calcium Magnesium Acetate

Isopropyl Alcohol

Runway Ice Detection Sys (RIDS)

Mechanical Deicing

Treatment

Bioremediation/ Biological Filtration

Wet Air Oxidation

HQ Air Force Materiel Command

AGENDA 20 August 1996

1400 - 1405	Welcome	
1405 -1410	Administrative	ANSER
1410 - 1425	Objectives of Crossfeed Meeting	HQ AFMC/ENBE
1425 - 1450	SAE G-12 & Commercial Specifications	G-12 Fluids Committee
1450 - 1510	Status of MIL-A-8243 Specification	Navy [Pax River]
[Comparison of Military and Civil Aviation]	y and Civil Aviation]	
1510 - 1530	Commercial vs Military Experience	317 AS/DOLT
1530 - 1545	Break	
[Survey of Deicing/Ant	[Survey of Deicing/Anti-icing Products & Technologies]	
1545 - 1600	"Off-the-Shelf" Technologies [AFLMA Study]	HQ AFMC/ENBE
1600 - 1620	Literature & Technology Review [ACC Study]	HSC/YAL & AL/OEBW
1620 - 1645	COTS & R&D Information [HSC Study]	Labat-Anderson Inc

HQ Air Force Materiel Command

AGENDA 21 August 1996

0800 - 0810	Introduction to Clean Water Act, Permits, etc	AFCEE/CCR-D
[Survey of De 0810 - 0840	[Survey of Deicing/Anti-icing Technologies & Chemicals] 0810 - 0840 Deicing & Anti-icing Technologies & Case Studies	NDCEE
[Research & 1 0840 - 0900	[Research & Development Efforts]	AFOSR/NL
0800 - 0830	Development of New Anti-icing Products	WL & NASA
[Test & Evalue 0930 - 0945	[Test & Evaluation of Chemicals & Technologies] 0930 - 0945	OL AL HSC/OETB
0945 - 1000	Break	
1000 - 1015	Evaluation of Runway Products & Technologies	AFCESA
1015 - 1025	Na Acetate Testing at Elmendorf	3CE/CEORH
1025 - 1035	Na Formate Testing at Minot	SCES/CEO
[Military Imple 1035 - 1100	[Military Implemnetation Efforts & Success Stories] 1035 - 1100 Aircraft Deicing using Efficient Trucks w/Hot Air	Navy [Lakehurst]
1100 - 1125	Aircraft Deicing by Reserves at Niagara Falls	Reserves [Niagara Falls]
1125 - 1140	Small Gylcol Capturing & Disposal Operation	Reserves [Pittsburgh]
1140 - 1200	Glycol Capture & Treatment via Holding Pond	Guard [Milwaukee]

HQ Air Force Materiel Command

Carroll Herring 513 257-6448

6

AGENDA

21 August 1996

"Industry Half Day"

[Aircraft Deicing Chemicals & Technologies]

Deicing Equipment & Technologies 1300 - 1330

Deicing Truck Technology Improvements 1330 - 1400

Radiant Heat 1400 - 1430 [Runway Deicing & Anti-icing Chemicals & Technologies]

Thomsen Products/EPOKE

Process Technologies

Simon Aviation

Landoll & FMC

Int'l Automated Systems

Efficient Pre-moist Chemical Spreaders 1430 - 1500

Break 1500 - 1515 [Capturing & Recycling Technologies]

Portable Glycol Capture Systems 1515 - 1545 **Costal Fluid Technologies** Pressurized Water, Vaccum & Clean-up Service 1545 - 1615

Glycol Recovery Vehicles 1615 - 1645

[Treatment Products & Technologies]

Anaerobic Biofiltration 1645 - 1715

Carroll Herring 513 257-6448

BioFiltration Systems

Vactor Mfg Inc

Crossfeed Objectives

- ⇔ Review of Potential Deicing/Anti-icing Technologies
- ⇔Support AF Strategy development by Working Group
 - ⇔ Assist AF Activities achieve Compliance
- Appreciation to Host, Speakers & Participants
 - Distribution of Crossfeed Meeting Minutes
 - Future Deicing Technology Conferences
- ⇔Jun 97 Deicing Session at the Air & Waste Mgt Conference ⇔ Aug 97 - Aircraft & Airfield Deicing Conference & Exposition
- Meeting of AF Deicing/Anti-icing Working Group

HQ Air Force Materiel Command

Commercial Specs

Briefed by Jane Hinkle Octagon Process Inc Secretary, SAE G-12 Fluids Committee

BENEFITS OF USING COMMERCIAL TYPE I AND TYPE II FLUIDS

SAFETY

LONGER SUBSTANTIATED HOLDOVERS PROVEN AERODYNAMIC CAPABILITIES

GLOBAL STANDARDIZATION

SAE STANDARDS EQUAL TO ISO USED IN EUROPE / ASIA / NORTH AMERICA

UNIVERSAL APPLICATION METHODS

DEFINITIVE TECHNIQUES
EXACT COMMUNICATION REQUIREMENTS
STANDARDIZED EQUIPMENT

FLUID AVAILABILITY

MILITARY / COMMERCIAL SUPPLIES INTERCHANGEABLE SAME PRODUCTS AVAILABLE WORLD WIDE

INTERNATIONAL FORUM

EXPERT ADVICE AVAILABLE PROBLEM SOLVING RESOLUTIONS

TRAINING

			-

WORKING TOPICS

COMMUNICATION

SAMPLING

DEICING FLUID APPLICATION DRAWINGS

METHODS

SPECS

ARP 4737 - METHODS OF APPLICATION

WORKING TOPICS

TRAINING / HOLDOVER CONSTANTLY FEEDS DATA TO BE INCORPORATED **QUALITY ASSURANCE SECTION**

SPRAYING TECHNIQUES

COMMUNICATION

ICE DETECTION

C	1)
(_)
(ļ	J
0	1	1
(J	J

WORKING TOPICS

AS 5116 ICE DETECTOR STDS

REVIEW AND FINALIZE

THICKNESS TESTING OF DEICERS

HOLDOVER

SPECS

WORKING TOPICS

HOLDOVER TABLES TYPE I, TYPE II, AND TYPE IV

SUBSTANTIATE AND FINE TUNE LABORATORY / FIELD RESULTS

FLUIDS

OCHOO!	りし

AMS 1424 TYPE I FLUIDS, AIRCRAFT

AMS 1428 TYPE II, III, IV FLUIDS, AIRCRAFT

AMS 1431 POWDER RUNWAY DEICERS

AMS 1435 LIQUID RUNWAY DEICERS

WORKING TOPICS

FLAME INHIBITION

HOT CORROSION

FLUID ELIMINATION

FLUID DRY OUT

FOAM TEST

LABORATORY / FIELD CONFORMANCE TESTS

RUNWAY HOLDOVER TESTS

FACILITIES

SPECS

WORKING TOPICS

REMOTE AND CENTRAL DEICING PAD CRITERIA **ARP 4902 - 5 CHAPTERS**

MARKING / LIGHTING STDS / PADS

ENGINES RUNNING / SHUT DOWN

COMMUNICATION

EQUIPMENT

WORKING TOPICS	SAFETY ON BOOMS	CEN / ANSI / SAE CONSOLIDATION	STATIONARY DEICING EQUIPMENT	DEICING PICK-UP EQUIPMENT
	LARGE EQUIPMENT	SMALL EQUIPMENT	CLOSED CAB CRITERIA	RD 50025
SPECS	ARP 1971	ARP 4047	ARP 5058	CANCEL ARD 50025

RUNWAY DEICING EQUIPMENT

GOVERNMENT / COMMERCIAL COMPARISONS

	HOLDOVER TIMES (WSET)	HIGH HUMIDITY TIMES (HHET)	AERODYNAMIC ACCEPTANCE
MIL-A-8243D AM1 TYPE I, II	LESS THAN 1 MIN	LESS THAN 5 MIN	PASSES UP TO 70/30 DILUTION
AMS 1424 / ISO 11075 TYPE I	MINIMUM 3 MIN	MINIMUM 2 HOURS	PASSES UP TO 70/30 DILUTION
AMS 1428 / ISO 11078 TYPE II	MINIMUM 30 MIN	MINIMUM 4 HOURS	PASSES IN CONCENTRATE
AMS 1428 / ISO 11078 *TYPE III	ı	•	•
AMS 1428 / ISO 11078 TYPE IV	MINIMUM 80 MIN	MINIMUM 8 HOURS	PASSES IN CONCENTRATE

^{*}NOT CURRENTLY BEING PRODUCED

RUNWAY SPECIFICATIONS

SAE	TYPE	BASE	OCTAGON NAME
AMS 1431	POWDER	SODIUM ACETATE	RD 1431SA
AMS 1431	POWDER	SODIUM FORMATE	RD 1431SF
AMS 1435	LIQUID	POTASSIUM ACETATE	RD 1435
AMS 1435	LIQUID	PROPYLENE GLYCOL	RD 1426

CURRENT COMMERCIAL SPECIFICATIONS

	SAE 1424 / ISO 11075	SAE 1428 / ISO 11078
BASE MATERIAL / FORMULA	TYPE I - OPTIONAL	TYPE II, III*, IV - OPTIONAL
FORM	WATER THIN LIQUID	GEL TYPE LIQUID
NORMAL USAGE	HEATED / DILUTED	COLD / CONCENTRATED
FUNCTION	AIRCRAFT WING DEICER	AIRCRAFT WING ANTI-FREEZE
AVAILABILITY	DRUMS / BULK	DRUMS / BULK
BIODEGRADABILITY	BIODEGRADABILITY / TRACE METALS REQUIRED	BIODEGRADABILITY / TRACE METALS REQUIRED
LOT ACCEPTANCE	4-6 HOURS TESTING	4-6 HOURS TESTING
CORROSION TESTING	ASTM F 1110, ASTM F 483	ASTM F 1110, ASTM F 483

*NOT CURRENTLY BEING SOLD OR MANUFACTURED

ASTM F 1111, ASTM F 945 ASTM F 519 REQUIRED

ASTM F 1111, ASTM F 945 ASTM F 519 REQUIRED

SAE G-12

MEMBERSHIP GROUPS

AAAE AIRLINES

AEA AIRPORTS

ALPA CONSULTANTS

ASTM EQUIPMENT VENDORS

ATA FLUID VENDORS

EPA OEM'S

IATA

ICAO

ISO

FAA

NASA

TC

USAF

SAE G-12

PARTICIPATING AIRLINES

AIR CANADA

AMERICAN AIRLINES

CANADIAN AIRLINES

CONTINENTAL AIRLINES

DELTA AIR LINES

FEDERAL EXPRESS

NORTHWEST AIRLINES

TWA

UNITED AIRLINES

UPS

USAIR

AIR FRANCE

ALL NIPPON AIRWAYS

AUSTRALIAN AIRLINES

BRITISH AIRWAYS

FINNAIR

JAPAN AIRLINES

KLM

LUFTHANSA

SAS

SWISSAIR

05

CURRENT GOVERNMENT SPECIFICATION

MIL-A-8243D AMENDMENT 1

	TYPE I	TYPE II
BASE MATERIAL / FORMULA	PROPYLENE GLYCOL (AS STATED)	ETHYLENE GLYCOL (AS STATED)
FORM	WATER THIN LIQUID	WATER THIN LIQUID
NORMAL USAGE	HEATED / DILUTED	HEATED / DILUTED
FUNCTION	AIRCRAFT WING DEICER	AIRCRAFT WING DEICER
AVAILABILITY	DRUMS / BULK	DRUMS / BULK
BIODEGRADABILITY	NO REQUIREMENTS	NO REQUIREMENTS
LOT ACCEPTANCE	3 DAYS REQUIRED	3 DAYS REQUIRED
CORROSION TESTING	LIMITED	LIMITED

WRIGHT-PATTERSON AIR FORCE BASE DATEDIAX OHIO

MATERIALS LABORATORY TEST REPORT ON

FIUID: DE-ICING AND DEFROSTING, SPECIFICATION NUMBER 3609, QUALIFICATION TEST OF, OCTAGON PROCESS INC. FORMULA-900

Report No. WCRT H52-318

Date 4 Navember 1952

Project No. S611-18

Spec. No.

Contractor

Contract No.

Submitted by

P. O. No.

Ι PUPPOSI

To test a sample of de-icing and de-frosting fluid for conformance with the requirements of Specification Number 3009.

II FADRUAL DATA

Two, one gallon samples of de-icing and de-frosting fluid, octagon-900, manufactured by Octagon Process Inc., and submitted with letter dated 5 Sept. 1952, were subjected to tests for conformance with the requirements of Specification No. 3609. Results of tests are given in Appendix 1.

III CONCLUSIONS

Results of tests indicated that subject materials conformed to all requirements of Specification Number 3609.

IV RECOMMENDATION

The Materials Laboratory, Directorate of Research, WADC, will take action to place subject materials on the applicable QPL as an approved product.

COORDINATION:

PREPARED BY:

reglass last usas

PUBLICATION REVIEW

This report has been review

E. SORTE, Colonel, USAF Chief, Materials Laboratory

Directorate of Research

DISTRIBUTION:

WCRTH-6

WCIP

his report is not to be used in whole or in part Octagon Process Inc. Vior publicity, advertising or sales promotion.

Appendix 1

Results Of Specification 3609 Tests

TESTS	HESULIS
Appearance	Satisfactory
Consistency and Flow	Satisfactory
Toxicity	Satisfactory
Corresion	
Steel	Satisfactory
Alloy	Satisfactory
Alclad	Satisfactory
Brass	Satisfactory
Copper	Satisfactory
	og of practory
Slush Point	
Package material	Satisfactors 5709
Package Materials plus 50% H2°	Satisfactory 57°F.
Amount of Dilution to 200	,
Control	Satisfaction 2004
Sample	Satisfactory 120%
	Satisfactory 140%
Acrylic Base Plastic	Satisfactory
Doped Fabric Finishes	Satisfactory
Painted Surfaces	Satisfactory
Rubber De-Icer Shoe	Satisfactory
Flash Point	Satisfactory 89°F
Service Test	Not Required

MIL-D-8243 (USAF) 26 March 1953

SUPERSEDING AF 3609 23 April 1947

MILITARY SPECIFICATION

DE_ICING AND DE_FROSTING FLUID

- 1. SCOPE
- 1.1 This specification covers one type of de-icing and de-frosting fluid.
- 2. APPLICABLE SPECIFICATIONS, STANDARDS, DRAWINGS AND PUBLICATIONS
- 2.1 The following specifications and standards of the issue in effect on date of invitation for bids, form a part of this specification.

SPECIFICATIONS

FEDERAL:

I_P_406	Plastics, Organic; General Specifications, Test Methods
NN_B_601	Boxes, Wood-Cleated-Plywood, For Domestic Shipment
NN_B_621	Boxes, Wood, Nailed and Lock-Corner
QQ-A-355	Aluminum-Alloy (24S)-Plate and Sheet
QQ_A_362	Aluminum-Alloy (Clad 248); Plate and Sheet
QQ_B_ 611	Brass; Commercial, Bars, Plates, Rods, Shapes, Sheets and Strips
QQ-C-576	Copper Plates, Sawed Bars, Sheets, and Strips
TT_A_468	Aluminum-Pigment; Powder and Paste for Paint
TT_N_95	Naptha, Petroleum, Aliphatic (For use in organic coatings)
TT-P-141	Paint, Varnish, Lacquer and Related Materials; Methods of Inspection, Sampling and Testing
TT_T_266	Thinner; Dope and Lacquer (Cellulose Nitrate)

SAE TYPE I FLUID

B

0

TABLE 2 - Guideline for Holdover Times Anticipated for SAE Type I Fluid Mixture as a Function of Weather Conditions and OAT

THE RESPONSIBILITY FOR THE APPLICATION OF THESE DATA REMAINS WITH THE USER AND SHOULD ONLY BE USED IN CONJUNCTION WITH THE SAE METHODS DOCUMENT (SEE CAUTIONS)

		COLD		25	co			
lions		RAIN ON COLD SOAKED WING		0.00	0.02-0.03		_	
s Weather Cond		LIGHT	ZAZ Z	30.0 50.0	0.02-0.03	0.02.0.08	0.02-0.03	
Approximate Holdover Times Under Various Weamer Conditions	(hours: minutes)	**FREEZING DRIZZLE		0.05-0.08	00.00.00	0.05-0.0	00:0	
ITE HOIDOVER T		SNOW		0:06-0:15		0:06-0:15		0:06-0:15
Approxima		FREEZING FOG		0:12-0:30	3, 3, 5, 5	0:05-0:15	17.000.0	CL:0-00:0
		*FROST		0:45	0.45	0.40	37.0	0.40
KĪ		î.		above 32	22 to 44	22.10.14	holmu 14	DCION 14
טאו		ပ္	O chode	alcove U	010-10		Delow -10	

C = Degrees Celsius

F * Degrees Fahrenheit

OAT = Outside Air Temperature

P # Freezing Point

*During conditions that apply to aircraft protection for ACTIVE FROST.

**Use light freezing rain holdover times if positive identification of freezing drizzle is not possible.

SAE Type I Fluid/Water Mixture is selected so that the FP of the mixture is at least 10°C(18°F) below OAT.

LOWEST TIME STATED IN THE RANGE. HOLDOVER TIME MAY BE REDUCED WHEN AIRCRAFT SKIN TEMPERATURE IS LOWER THAN OAT. THEREFORE, THE INDICATED TIMES SHOULD BE USED ONLY IN CONJUNCTION WITH A PRE-TAKEOFF CHECK. RATES OR HIGH MOISTURE CONTENT, HIGH WIND VELOCITY OR JET BLAST MAY REDUCE HOLDOVER TIME BELOW THE CAUTION: THE TIME OF PROTECTION WILL BE SHORTENED IN HEAVY WEATHER CONDITIONS. HEAVY PRECIPITATION

SAE TYPE II FLUID Ø

TABLE 4 - Guideline for Holdover Times Anticipated for SAE Type II Fluid Mixtures as a Function of Weather Conditions and OAT

THE RESPONSIBILITY FOR THE APPLICATION OF THESE DATA REMAINS WITH THE USER AND SHOULD ONLY BE USED IN CONJUNCTION WITH SAE METHODS DOCUMENT. (SEE CAUTIONS)

DAT	AT	SAF Tyne II Eleid	Annual	1 1-1-1				\$ 10 to make creat graphical place and on the second second
		Concentration	NIII XOIDAY	Approximate noldover Times Under Various Weather Conditions (hours:minutes)	les Under Val	ious Weathe	r Conditions (nours:minutes)
ပ္	ř.	Neat-Fluid/Water	*Frost	Freezing Fog	Snow	***Freezing	Light	Rain on Cold
		(% 10//% 10/)				Drizzle	Freezing	Soaked Wing
		100/0	12:00	1:15-3:00	0.20-1.00	0.30.4.00	Nail 1	67.000.0
above 0	above 32	75/25	6:00	0.50-2.00	0.15.0.45	0.20	0.13-0.30	0.20-0.40
		50/50	4.00	0.35.1.30	0.05	0.40-0.43	0.10-0.25	0:10-0:25
		100/0	8.00	0.35, 1.30	0.03-0.13	0.10-0.25	0:05-0:15	
0 to -3	32 to 27	75/25	2.00	0.05 4.00	0.47-0-45	0.30-1.00	0:15-0:30	
		01,01	30.5	0.43-1.00	0:13-0:30	0:20-0:45	0:10-0:25	
holon, 2 t.		06/06	3:00	0:15-0:45	0:05-0:15	0:15-0:25	0:05-0:15	
41-015-W0190	Delow 27 to 7	100/0	8:00	0:35-1:30	0:20-0:45	0.30-1.00	**0.10-0.30	
		75/25	5:00	0:25-1:00	0.15-0.30	┰	**0.40 0.26	
below -14 to -25	below 7 to -13	100/0	8:00	0-35-1-30	0.20 0.45		0.10-0.23	
below -25	below-13	100/0	SAF TYPE	If fluid may be	cod bolow	1007/00		
			the fluid is	the fluid is at least 7°C (13°F) below the OAT and the countries in the second point of	F) helpw the	0 (-13 r) p	rovided the In	sezing point of
			criteria are	criteria are met. Consider use of SAE Type I where SAE Type II finish country to	se of SAE TV	De l'where S	Berodynamic AE Tvps II flu	acceptance
			used.					

≈ Celsius

Degrees Fahrenheit

= Outside Air Temperature OAT Vol

▼ Volume

*During conditions that apply to aircraft protection for ACTIVE FROST.

"The lowest use temperature is limited to -10°C (14°F).

***Use light freezing rain holdover times if positive identification of freezing drizzle is not possible.

CAUTION: THE TIME OF PROTECTION WILL BE SHORTENED IN HEAVY WEATHER CONDITIONS. HEAVY PRECIPITATION RATES OR HIGH MOISTURE CONTENT, HIGH WIND VELOCITY OR JET BLAST MAY REDUCE HOLDOVER TIME BELOW THE LOWEST TIME STATED IN THE RANGE. HOLDOVER TIME MAY BE REDUCED WHEN AIRCRAFT SKIN TEMPERATURE IS LOWER THAN OAT. THEREFORE, THE INDICATED TIMES SHOULD BE USED ONLY IN CONJUNCTION WITH A PRE-TAKEOFF CHECK.

SAE TYPE IV FLUID

TABLE 5 - Guideline for Holdover Times Anticipated for SAE Type IV Fluid Mixtures as a Function of Weather Conditions and OAT

THE RESPONSIBILITY FOR THE APPLICATION OF THESE DATA REMAINS WITH THE USER AND SHOULD ONLY BE USED IN CONJUNCTION WITH SAE METHODS DOCUMENT. (SEE CAUTIONS)

				*****	The state of the s			
γ	OAT	SAE Type IV Fluid		Approximate Holdover Times under Various Weather Conditions (hours: minutes)	mes under Var	ious Weather	Conditions (hou	rs:minutes)
ပ္	î	Neat-Fluid/Water (Vol %/Vol %)	*Frost	Freezing Fog	Snow	***Freezing	Freezing Light Freezing	1
		100/0	18:00	2:00-3:00	0.55-1.40	0.45 4.50	Nain Nain	Soaked Wing
above 0	above 32	75/25	6:00	0:40-2:00	0.20-1.00	0.7-0.0	0.30-1:00	0:20-0:40
		50/50	€:00	0:15-0:45	0.05.0.25	0.07 0.45	0.13-0.30	0:10-0:25
		100/0	12:00	2:00-3:00	0:45-1:40	0.45.1.50	0.30 4.00	
0 to -3	32 to 27	75/25	2:00	0:40-2:00	0.15-1.00	0.50.4.00	0.45 0.20	
		50/50	3.00	0.45 0.45		0.50-1.00	0.13-0.30	
holon 9 to 44			9.00	0.13-0.45	0:05-0:20	0:07-0:15	0:05-0:10	
pelow ~ 10 -14	below 27 to 7	100/0	12:00	2:00-3:00	0:35-1:15	••0:45-1:50	₩0.30.0.55	
		75/25	2:00	0:40-2:00	0.15-1.00	*0.20.4.00	*0.40 0.25	
below -14 to -25	below 7 to -13	100/0	12:00	1.00.2.00	0.30 4.40	201 201	0.10-0.25	
below -25	below-13	100/0	SAE TYPE I	SAE TYPE IV fluid may be used below -25°C (173°C)	d below -25°C	(-13°E) provide	1000	
			is at least 7° Consider us	Is at least 7°C (13°F) below the OAT and the aerodynamic acceptance criteria are met Consider use of SAE Type I where SAE Type IV fluid cannot be used.	OAT and the	aerodynamic a	ed the freezing icceptance crite t be used.	point of the fluid ria are met.

[•]C Celsius
•F Degrees Fahrenheit
OAT Outside Air Temperature
Vol Volume

CAUTION: THE TIME OF PROTECTION WILL BE SHORTENED IN HEAVY WEATHER CONDITIONS. HEAVY PRECIPITATION RATES OR HIGH MOISTURE CONTENT, HIGH WIND VELOCITY OR JET BLAST MAY REDUCE HOLDOVER TIME BELOW THE LOWEST TIME STATED IN THE RANGE. HOLDOVER TIME MAY BE REDUCED WHEN AIRCRAFT SKIN TEMPERATURE IS LOWER THAN OAT. THEREFORE, THE INDICATED TIMES SHOULD BE USED ONLY IN CONJUNCTION WITH A PRE-TAKEOFF CHECK,

^{*}During conditions that apply to aircraft protection for ACTIVE FROST.

^{...}Use light freezing rain holdover times if positive identification of freezing drizzle is not possible.

Military Specification Wing Deicer

Phil Bevilacqua Naval Air Warfare Center Patuxent River, MD

Advantages of Mil-A-8243

- Able to specify base material:
- Type I Propylene Glycol, more environmentally acceptable
- Type II Ethylene Glycol
- Materials from different manufacturers are compatible

Disadvantages of Mil-A-8243

- Low/no holdover time
- Includes non-standard corrosion test based on visual appearance only
- Not a performance specification; no opportunity for improvement

Barriers to adopting AMS 1424 (Newtonian liquid type)

- No provision for specifying base material
- Materials from different manufacturers may not be compatible or may require different equipment
- corrosion test is an order of magnitude too Maximum allowable weight loss in high for Navy use

Corrosion Limits mg/cm2/day

NAVAIR AMS 1424	0.3	0.8	04 0.1	2 0.2	2 0.3
	Aluminum 0.04	Steel 0.04	Titanium 0.04	Magnesium 0.2	Cadmium 0.2

Alternatives

- Revise AMS 1424 to address base material, equipment compatibility, and corrosion concerns
- Change Mil-A-8243 to a performance specification similar to AMS 1424

Military Specification Wing Deicer

Phil Bevilacqua
Naval Air Warfare Center
Patuxent River, MD

The Navy currently uses Mil-A-8243 for aircraft wing deicing. Type I, propylene glycol based fluid, is become the standard since it is preferred from an environmental standpoint over Type II, ethylene glycol based fluid. The primary drawback in using Mil-A-8243 is a very short holdover time. The Navy is reluctant to adopt the Society of Automotive Engineers deicing specification AMS 1424, however, since this spec does not allow the base material to be specified, does not have strict corrosion requirements, and may cause procurement problems due to incompatible formulations from different manufacturers.

Intro-

*A perspective from C-17 USAF Reserve/American Airlines pilot

^{*}Problems with C-17 and military (in general) deicing and anti-icing procedures and fluids

^{*}Large disparity between military and commercial training, technology, and procedures

^{*}My four years commercial airline experience eluded to disparity

Deicing/Anti-icing Fluids

- Outdated Winter Operational Procedures
- Military Fluid Labeling
- Adoption of :
 - -SAE 1424 Type I (Mar 95)
 - -SAE 1428 Type II (Jun 96)
- *Military using outdated fluids and procedures
- *Includes non-standardized technical orders
- *C-17 newest aircraft in airlift inventory
- *C-17 capabilities-direct delivery mission
- *A winter storm can nearly stop C-17 operations
- *Military labeling deicing fluids Type I and Type II conflicts with commercial labeling
- *Dangerous misleading were military Type II is not the same as commercial Type II, reserve pilots with airline experience may be mislead that military Type II has same properties as commercial Type II
- *Aircrews welcome the adoption of both SAE 1424 and 1428
- *Step in the right direction

C-17 Deicing/Anti-icing Problems

Initial C-17 Procedures

- *Three fundamental problems preventing increased utility in winter weather
 - -required use of non-standard equipment
 - -current limited effectiveness of military fluids
- -outdated, non-standardized procedures and training
- *Initial C-17 procedures developed by aircrew members with large military aircraft backgrounds—using past aircraft procedures
- *Outdated procedure quote from original C-17 manual "Takeoff must be made within thirty minutes after application of deicing fluid"
- *No reference to start timing or what fluid applicable for
- *I have authored changes to C-17 procedures adopting commercial procedures, holdover time tables, and commercial fluid information

C-17 Deicing/Anti-icing Problems

-Special truck - Calavar Condor T-tail Height

C-17 Deicing/Anti-icing Problems

- T-tail Height
 —Special truck Calavar Condor
- *How long does it take to de-ice a C-17?
- *Factor with deicing/anti-icing t-tail like the C-5
- *Special equipment-Calavar Condor
- -basically a platform truck that provides a long enough extension to the deicing truck's hose

- *How long does it take the C-17 to complete deicing, start engines, and complete systems preflight?
- *Estimated takes 15 minutes with adequate equipment
- *The start of the final application starts the holdover time
- *Preflight to taxi can take up to 40 minutes with full fly-by-wire preflight
- *Can be reduced to around to 30 minutes without full preflight
- *Now were about 45 minutes into our holdover time
- *Assume 5 minute taxi time but could be much longer at joint use or civilian airfields

^{*}Now compare military fluids

^{*}Question mark indicates unknown holdover time

^{*}Assume storm scenario with consistent moderate snowfall rates, OAT at 25'F, and maximum equipment availability

^{*}Actual data from vendors show military fluids have minimal holdover times compared to commercial Type I

^{*}Commercial Type I is really a deicer not an anti-icer

- *Commercial Type II has good holdover times but will not help the C-17
- *Commercial Type II Ultra may work in this scenario
- *Times are from 1995-96 approved holdover time tables
- *The new commercial Type IV show great potential for the C-17

- *Current alternatives for the C-17 are an engine running deicing and anti-icing
- *Concerns about safety and an engine running de-ice operation
- *Another alternative like the engine running de-ice operation is a threshold deice operation

- *DOD down to each Air Force major command must create a common deicing/anti-icing procedure for all aircraft as well as standardized training programs for ground deicing crews and aircrews
- *Update by adoption to commercial industry standards
- *Identify weapon systems that require specialized equipment and procedures
- *Immediately change military labeling to prevent confusion with commercial Type II

*C-17 is a very capable aircraft, give us the tools to significantly improve our safety and flexibility in winter weather

^{*}Thank you for this opportunity to speak to you

● Good afternoon. I'm Captain Dave Arthur and assisting me is Major Pedro Rivas. We are reserve C-17 pilots based with the 315th Airlift Wing, 317th Airlift Squadron, Charleston AFB, South Carolina. Both of us are also commercial airline pilots. ② The purpose of this briefing is to give you a pilots perspective of where we see problems with not only C-17 winter deicing/antiicing operations but military winter deicing/antiicing operations as well.

My four years experience at a major airline have allowed me to witness a great disparity between military and commercial aviation deicing/anti-icing technology, training, and procedures . Military aircraft, over the past decade, have been operating with outdated winter operational procedures and resources. This also includes non-standardized aircraft technical orders. It seems that every aircraft has a different way to conduct deicing operations.

The C-17 is the latest addition to the military's airlift fleet. The aircraft's hallmark is the direct-delivery of outsized cargo over global distances into short, austere airfields. But, this unsurpassed capability can be halted by a simple winter storm. This briefing will introduce you to three fundamental problems with current military and C-17 deicing operations.

Military deicing/anti-icing fluids are limited in their scope compared to today's commercial deicing/anti-icing fluids. But more importantly, fluid labeling is inconsistent with commercial fluid specifications and is <u>dangerously misleading</u>. Military Type I and Type II fluids are similar <u>only</u> to commercial Type I fluids. To prevent associating military Type II fluids with commercial Type II, a change to the military labeling is needed immediately. For example, labeling military fluids Type IA and Type IB would not lead to confusion with commercial fluids and better represent their characteristics.

On 24 March 1995, the Department of Defense adopted the use of [Society of Automotive Engineers] (SAE) 1424 Type I fluid. The ultimate users, Air Force aircrews, welcome this long overdue change. We feel it is a step in the right direction. As you will see shortly, this adoption will not solve all the C-17's deicing requirements. We must acquire the commercial aviation industry standards and training so that our commanders can have greater flexibility.

There are three fundamental problem areas for the C-17 and most other airlift aircraft. These problems affect safe winter operations and prevent the increased utility and departure reliability of these airlift assets. They are: required use of non-standard equipment, current limited effectiveness of military deicing/anti-icing fluids, and the use of outdated, non-standardized training and procedures **9**.

The first problem is with outdated or non-standardized procedures. The initial cadre of C-17 aircrew publication managers had backgrounds in heavy airlift aircraft. Many of the initial C-17 technical orders, procedures, and regulations were adopted from these older aircraft publications and procedures. Until specific C-17 aircraft and mission capabilities came to fruition, portions of these publications remained unchanged. Specifically, the cold weather operations section of the aircraft flight manual.

Let me expound on a quotation from the original C-17 pilot flight manual, cold weather operations section. Quote, Takeoff must be made within thirty minutes after application of deicing fluid, unquote. It does not tell you when to begin the 30 minutes or what type of fluid the time is good for. This procedure's exact origin is not known, but has been in use with Air Force airlift aircraft well over fifteen years. Until this year, it was the standard by which other airlift aircrews considered it safe for takeoff after deicing.

Major Rivas and myself have since authored numerous changes to the C-17 cold weather operating procedures adopting current commercial deicing/anti-icing practices. The most recent change, which is soon to be released, will include commercial deicing/anti-icing fluid information, holdover time tables, and procedures for deicing/anti-icing with engines running.

The following C-17 winter scenario will highlight the other two problems; nonstandard equipment and use of military fluids. To better highlight these problems, let's assume a winter storm with continuous moderate snowfall and an outside air temperature of 25'F.

How long does it take to de-ice a C-17? • A factor affecting the C-17, and the C-5 aircraft as well, is the ability for

equipment to apply deicing/anti-icing fluid to the aircraft's 't-tail,' i.e. the elevator and horizontal stabilizer. A standard aircraft deicing truck cannot reach the top of the C-17 t-tail. A special type of truck is required. This extra tall 'cherry picker', called a Calavar Condor, is basically a platform truck that provides a long enough extension to the deicing truck's hose so it can properly de-ice the aircraft's t-tail.

Next, how long does it take for the aircraft to start engines and subsequently takeoff? This brings us to our third problem. Let's assume three deicing trucks and one calavar condor is available in this winter scenario: 6 a best case equipment scenario. The application of military Type I fluid to de-ice the C-17 should take around 15 minutes. We are now up to 15 minutes into the scenario and haven't started the aircraft engines.

The C-17 has unique preflight characteristics because of its' modern electronic flight controls—better known as fly-by-wire flight controls. It takes up to 40 minutes from the beginning of the 'Before starting engines checklist', assuming a full fly-by-wire preflight is required, to the time the aircraft is ready to taxi. If only an abbreviated preflight is required then 30 minutes between engine start and taxi. So assume best case with only a 30 minute preflight. Therefore, we are now 45 minutes since the application of deicing fluid.

Now add an additional 5 minutes for taxiing to the runway. This profile results in the C-17 taking close to one hour from the time deicing fluid application began to actual aircraft takeoff. Don't forget we assumed lots of de-ice equipment and a short preflight. The Compare to military deicing fluids. Remember, no holdover time exists with military fluids. Just takeoff within 30 minutes has been the only time limit. Commercial Type I has limited anti-ice capabilities.

Now take the same scenario and apply commercial Type II and Type II Ultra fluids.
① Using 1995-1996 holdover tables, undiluted Type II fluid would have a holdover time of approximately 35 minutes while Type II Ultra provides a holdover time of approximately 50 minutes. Holdover time would be exceeded for Type II and we would be at the end of the holdover time for Type II Ultra. A new Type IV fluid will probably be used this year by the commercial airlines. It has great potential for long holdover times.

One work around in this constant snowfall scenario is the application of commercial Type I fluids to clean the aircraft prior to engine start, then after engine start, when the aircraft is ready to taxi, apply both commercial Type I to re-clean the aircraft and then Type II for anti-icing. This gives the maximum time and safety benefit to the aircrew. A modification to this would be a threshold deicing/anti-icing program.

The Department of Defense down to each Air Force major command must create a common deicing/anti-icing procedure for all aircraft as well as standardized training programs for ground deicing crews and aircrews **10**.

In summary, if we solve these three problems for the C-17 then all military aircraft could be utilized in greater numbers regardless of the winter weather while greatly improving safety margins. The Department of Defense need's these up-to-date commercial fluids and equipment. They also need to standardize all ground and aircrew winter operations training and procedures. Because military aircraft are designed for specific missions, like the C-17, they may require specialized procedures and equipment as well. 19 The C-17 is a very capable aircraft. Give us the tools to significantly improve our safety and flexibility in the worst winter weather. Thank you for this opportunity to speak to you today.

De-Icing Technologies

OBJECTIVE

technologies that will prevent the negative environmental impact of current USAF Review existing "off-the-shelf" aircraft de-icing procedures

searches of current publications; contacting source references and various civilian and Study accomplished through literature - AFMC

military agencies

Methodology

Civil Aviation vs Military Operations

- Air Force
- Frozen precipitation & snow due to long periods on the ground
- · Little delay between deicing & departure
- Civil Aviation
- Majority of service life spent in flight
- Long delays on taxiway waiting for clearance

Technologies Actively Used in USAF/Civil Aviation

- USAF De-Icing Truck with Air-Blast System
- Coolant Recycling/Bulk Glycol Recycling
- Aircraft Anti-Icing/De-Icing Fluid Collection Service
- Automated De-Icing Platforms
- Heavy Mat Fluid Capture Systems

Existing Technologies That Have Potential to be Adapted to De-Icing

- Automotive Coolant Recycling
- Radiant Heat
- Biological Filtration
- Landfill Liner Type Fluid Collection Systems

Automotive Coolant Recycler

- Series of filters & a vacuum distillation system
- specification & additives mixed in to return it to Coolant is filtered; distilled to required original composition
- Approved by US Army [lead service] for reclaiming vehicle coolant
- Used by Dover AFB to reclaim engine coolants
- \$12,000 plus consumables for 55 gal/cycle model Purchase through normal USAF supply at cost of

Radiant Heat

- Infrared burners or natural sunlight to heat taxi-through enclosures
- FAA was testing the technology but results were not yet available
- Used on railroad ore cars in upper midwest
- Concerns:
- Potential effect on sensitive guidance & tracking systems
- Potential for melted precipitation to re-freeze in control surface areas

Biological Filtration

- biofilter & additives to break down fluid Aerated retention pond or an anaerobic
- Aeration speeds up natural biodegradation process
- amount of sludge & produces gases which can provide heat for operating the process Anaerobic biodegradation reduces the during cold weather

- AFMC

Liner & Fluid Collection Systems

- Chemically resistant liner stretched over a flexible berm
- Requires a pumping station to transfer the fluid from the mat to a holding area
- Nat'l Aeronautic & Space Administration at Being used for wash water containmnet by El Paso, Texas

Availability of the AFLMA Report

For a copy of AFLMA Final Report LM9416500 contact:

Defense Technical Information Center (DTIC) at 1-800-225-3842 Distribution limited to U.S. Government Agencies & their Contractors for reasons of Administrative or operational use

Briefing: ACC Deicing/Anti-icing Operations, Compliance Evaluation and Requirements Identification

Briefed by: Capt. Paul Fronapfel

Technical Project Manager

AL/OEBW (Water Quality Branch)

2402 E Drive

Brooks AFB TX 78235-5114

DSN: 240-4938 FAX: 240-3945 pfronapfel@guardian.brooks.af.mil

and

1 Lt Yvonne Spencer Program Manager HSC/YAL

HSC/YAL

8107 13th Street

Brooks AFB TX 78235-5218

DSN: 240-6354 FAX: 240-2993

spencery@diamond.brooks.af.mil

Summary:

HQ ACC/CEVC has initiated an effort to evaluate the deicing and anti-icing operations at 19 of its bases, including northern and mid-tier locations. Driving forces to develop this project are many. The environmental fate and effects of deicing and anti-icing chemicals have caused concern among both civilian and military institutions and special interest groups. Wildlife kills at ACC bases and rejection of MILCON projects desired by ACC/CEV at its bases have spurred its interest in developing suitable studies at bases which have deicing/anti-icing operations. The purpose of this study is to evaluate the compliance status at each base at the present time and into the 21st century. By evaluating the operations and management practices at each base, ACC/CEV can identify any requirements to ensure environmental compliance through operations, management, or infrastructure modifications. MILCON requirements and justifications will be developed through these efforts and make approval of projects at the Air Staff level more promising.

Drivers for evaluating the deicing and anti-icing operations and effects on the environment come mainly from the Clean Water Act and associated state and local requirements. NPDES discharge permits and non-storm discharge certification associated with SWPPPs can impose requirements on bases to reduce or eliminate any runoff to storm drainage associated with deicing and anti-icing operations. In addition, it is in the best interest of ACC to have a proactive approach to environmental compliance and pollution prevention concerns.

HQ ACC/CEV requested the assistance of AL/OEBW and HSC/YAQ in overseeing this project to insure compliance at applicable ACC bases with respect to anti-icing and

conducted through ACC's ECAS contract mechanism. The contractor selected for the project was Ecology and Environment, Inc. out of Lancaster, NY.

The first phase of this project includes developing and completing a questionnaire for 19 ACC bases regarding their requirements, operations, management, and infrastructure with respect to deicing and anti-icing operations. Using these questionnaires, which were sent to representatives of CE, BE, LG, and DO at each base, the contractor will develop a justification letter stating reasons to or not to conduct further studies at each base. The contractor will produce a sampling and analysis plan for each base as necessary, and attempt to conduct a site visit during some deicing/anti-icing operations at the ACC bases and up to three other civilian institutions and other DOD installations to observe the practices and facilities at each location.

Using information collected during the site visits, E & E will develop a recommendations report for each ACC facility indicating methods to reduce the environmental effects of the deicing/anti-icing chemicals through management, operational, facility infrastructure, or chemical changes. If appropriate, the contractor will develop a 10% design and justification for any MILCON requirements identified through the project to insure environmental compliance with federal, state, and local requirements.

In addition to developing a site-specific recommendations report, the contractor will submit a summary of a literature and technology review conducted to develop solutions for each base. This information can be shared with other agencies to assist with their studies or projects associated with deicing/anti-icing of aircraft and runways. The projected submission date for the literature/technology review report is May 97, and the project completion date is August 97.

Briefing on Requirements Analysis for Deicing

PROJECT BACKGROUND:

Outline

Approach

Findings

Conclusions

Recommendations

PROJECT BACKGROUND:

Objectives

ground (e.g., runway, roadway) deicing that contains: technologies surrounding the subject of aircraft and Provide a Requirements Analysis of the issues and

- Identification of Technology Group characteristics
- Clarification of similarities, differences and criteria for analysis
- Compendium of current commercial products and research efforts
- Identification of technology vendors, applications and cost
- Focus on resources future

PROJECT BACKGROUND: Focus of Deicing Needs

Technology Need No. 914: Making aircraft deicing operations more environmentally "benign" Technology Need No. 918: Making ground deicing operations more environmentally "benign" Technology Need No. 2501: Consideration of Sodium Formate for the deicing of pavements

Technology Need No. 2504: Degradation rates of chemicals with lower toxicity

P. Be

PROJECT BACKGROUND:

Regulatory Drivers and Guidelines

National Regulations

- Clean Water Act (CWA)

National Pollutant Discharge System (NPDES)

- State NPDES Regulations

Air Force Instructions

- AF 32-4041 "Water Quality Compliance"

- AF 32-1045 "Snow and Ice Control"

Information Sources

- Government Sectors
- Department of Defense, Air Force, Army Corps of Engineers
- **Environmental Protection Agency**
- Aviation Administration, Federal Highway Department of Transportation, Federal Administration
- NASA
- Government laboratories
- State and county road departments

Information Sources (cont.)

Private Sector

- Commercial airlines

- Aircraft manufacturers

Private laboratories

- Chemical companies

Other industries requiring deicing

Information Sources (cont.)

Other Sectors

- University research

Institutes

- Associations

- Conferences

- Symposia

- Societies

- International organizations

Search Mechanisms

- Internet
- Dialog
- On-line databases
- National libraries
- Expert network

Overall Criteria for Evaluation of Deicing/Anti-icing Products

ICE/SNOW MELTING EFFICIENCY

The use of more effective melting fluids or solids will decrease the amount of their use which may decrease harmful effects on the environment.

CORROSIVITY

Deicing and anti-icing agents used in and around aircraft, runways, taxiways and parking stalls cannot include salts or other chemicals known to be corrosive to aircraft.

COST EFFICIENCY

Although more effective solutions may have higher procurement costs, they may be more cost effective in the long term where damage to equipment and infrastructure is less.

Deicing/Anti-icing Products (cont.) Overall Criteria for Evaluation of

REDUCE ADVERSE EFFECTS ON THE ENVIRONMENT:

The environmental effects of uncontrolled release of deicing/anti-icing chemical compounds include:

- High Biochemical Oxygen Demand (BOD) rates
- Nitrate enrichment of surface and groundwaters
- Impaired aesthetic water quality
- Ammonia formation from the degradation of urea
- Overall toxicity of such chemicals to terrestrial and aquatic life

Deicing Problem Analysis

Aircraft Deicing/Anti-icing Fluids Type I:

Removal of snow and ice already present on aircraft

Characteristics of deicing fluid:

Glycol based

Thin liquid

Results in short holdover time 3-7 minutes

Aircraft Deicing/Anti-icing Fluids Type II:

Fluid applied to aircraft prior to precipitation or after deicing

Characteristics to deicing fluid:

- Glycol based
- Thickened liquid
- Reduces time and materials spent deicing aircraft
- Holdover time increased (10-30 minutes)

Aircraft Deicing/Anti-icing Materials

Materials currently in use by the Air Force and Industry:

Ethylene glycol: high toxicity to environment and aquatic life, low BOD, being phased out

environment and aquatic life, but material exerts Propylene glycol: not directly toxic to a high BOD

Aircraft Deicing/Anti-icing Infrastructure Improvements

- Runoff Mitigation Structure: structure that isolates facility runoff from airfield storm sewers
- multiple collection areas which provide Detention Basins and Pads: single or economical treatment of runoff
- connected to a pad where aircraft are deiced Underground Storage Tanks: used for collection of deicing fluids, typically

FINDINGS: New Deicing Fluids

COTS Solutions or Research Projects	AIRCRAFT	ROADS/RUNWAYS
COTS	 No substitutes for glycol found SAE Type II glycol with longer holdover times 	Several substitutes found that are not in AF Tech Order for roads/runways - sodium acetate, sodium formate, magnesium chloride, calcium magnesium acetate (all low or non-corrosive). Also potash is emerging as a deicer
R&D	NASA-Ames non-toxic glycol substitute (Type II) Aspen Systems non-toxic substitute review - proteins, polypeptides, & calcium magnesium acetate	 On roads calcium chloride formulations for making ice and snow wetter No R&D identified; however, road/runway deicing would benefit from substitute for propylene glycol

FINDINGS: New Deicing Processes

COTS Solutions or Research Projects	AIRCRAFT	ROADS/RUNWAYS
	 Infrared Deicing System Pneumatic Impulse Ice Protection AIRefrigeration Snow Blowing System 	No new processes identified
	Heating Element in Aircraft Coating	Federal Highway Administration research on innovative anti-icing strategies

Improve Formulation Effectiveness

COTS Solutions or Research Projects	AIRCRAFT	ROADS/RUNWAYS
COTS	No improved formulations identified	More effective deicer formulation
R&D	Aspen Systems improved formulations	DOT/CRREL research on less expensive formulations for calcium magnesium acetate and potassium acetate

FINDINGS: Improve Usage Procedures

FINDINGS: Collect and Recycle

			•
ROADS/RUNWAYS	No commercial products identified	No R&D identified	
AIRCRAFT	 Ground Deicing pads Some commercial recycling of captured fluids 	No R&D identified	
COTS Solutions or Research Projects	COTS	R&D	

Self and the self

FINDINGS: Collect and Remediate

COTS Solutions or Research Projects	AIRCRAFT	ROADS/RUNWAYS
COTS	 Ground Deicing pads Bioremediation of glycol runoff 	Bioremediation of glycol runoff
R&D	No R&D identified	• No R&D identified

Aircraft Deicing/Anti-icing Improvements

Anti-ice aircraft before storm events

Properly mix deicing/anti-icing fluids

Recycling of glycols

Better ice detection methods

Aircraft Deicing/Anti-icing R & D: Air Force Funded Research

NASA Ames Research Center - non-glycol based fluid, biodegradable, non-toxic, low corrosivity, cost competitive

fluid, small ratio of chemical mixture, results in Aspen Systems, Inc. - synthetic glycol based less runoff material

Examples of Industry Process Research Aircraft Deicing/Anti-icing R & D:

Continental & Allied Signal of Canada - heating Electrothermal Ice Protection System (ETIPS), panel bonded to wing surface used to melt ice

Technologies Inc. - Infrared technology used InfraTek Pre-flight Deicing System, Process to deice aircraft

Heater Panel, TDG Aerospace - prevents formation of ice on aircraft wings

Runway and Road Deicing/Anti-icing Materials Currently In Use By Air Force and Industry

Materials	BOD	Roads	BOD Roads Runways
Potassium Acetate (liquid)	Low	×	×
Sodium Acetate (powder	Low	×	×
Sodium Formate (powder)	Low	×	×
Calcium Magnesium Acetate	Med.	×	
Urea	High	×	
Calcium Chloride	High	×	
Sodium Chloride	High	×	
Magnesium Chloride (liquid)	High	×	

Chemical Use Strategies - Liquid vs. Solid Forms and/or Combinations

Benefits

- materials used due to initial prevention of ice bond Efficiencies in liquid chemical applications (less formation vs. breaking of existing ice bond)
- less chemicals and reduced of chemical applications Reduction of environmental consequences (due to when using liquid chemicals or combination)
- Cost trade-off (use of less materials may result in cost savings)
- Performance (studies being conducted to determine criteria for liquid chemical applications)

Deicing and Anti-icing Strategies

formation of pavement ice bond) vs. reactive Preventive (liquid anti-icing prevents (deicing breaks existing ice bond)

chemicals; ice vs. snow or extreme cold vs. Weather factors (can determine whether to use deicing chemicals or anti-icing mild freeze temperatures)

Fo Bo

FINDINGS:

New Developments in Spreader/Application Equipment

Improved spreaders and spreader patterns

 Improved spreader equipment to distribute liquid, solid and liquid/solid chemical combinations

THE STATE OF THE S

FINDINGS:

Observations

- Information received to date indicates that there is no appropriate material substitute for glycols used in aircraft deicing/anti-icing.
- Most industry efforts focus in the areas of process substitution rather material substitution.
- Change in process can lead to more efficient usage of chemicals and therefore reduced environmental impacts, with current materials.

September 1997

FINDINGS:

Organizations Performing Deicing/Antiicing Research

- Strategic Highway Research Program (SHRP)
- Federal Highway Administration (FHWA)
- US Army Corps of Engineers Cold Regions Research & Engineering Laboratory (CRREL)
- International Community (Transport Canada)
- State Departments of Transportation
- Air Force Labs (Wright, Armstrong)

FINDINGS:

Research and Development

- Propylene glycol (advanced performance in freeze testing and in conjunction with other chemicals)
- corrosion inhibitor formulas reduce corrosion in deicing chemicals, such as potassium Corrosion inhibitors (improvements to acetate)

Set Habital Section of the Control o

Conclusions

- Force; although Air force operations and performance Deicing affects a much larger audience than the Air requirements may be different
 - Research on glycol substitutes is limited
- COTS products exist for capture and recycling or remediation of aircraft glycol runoff
- relative to deicing have been made in the commercial and Advances in operations, management and training local government sectors
- There are several COTS substitutes for deicing roads and runways
- There are COTS equipment to maximize road/runway deicing efficiencies

Recommendations

- glycols for deicing of aircraft, to include review of Focus on process improvements in the use of the Deicing tech order, training, and other procedural issues
- Further integrate anti-icing programs
- Continue to monitor research on glycol substitutes
- Consider a technology evaluation on COTS for capture and recycling or remediation of glycol fluids from aircraft deicing operations
- Test alternative chemicals (not in AF Snow and Ice Control RFI) for roads and runways

Recommendations (cont.)

techniques for aircraft, road and runway deicing efficiencies in using products, equipment and Promote exchange of information on AF

Monitor international and national standards groups work on deicing Follow up all research identified as it evolves and evaluate usefulness to AF **Briefing:**

Requirements Analysis for Deicing

(The HSC/XRE Study)

Briefed by:

Evelyn McDonald Labat-Anderson Inc.

8000 Westpark Dr. Suite 400

McClean VA 22102

(703)-506-1400

FAX: (703)-506-4646

Summary:

HSC/XRE conducts an annual survey of Air Force environmental, occupational health and safety needs. As part of this process, requirements analyses are conducted on related groups of needs.

This study addressed the subject of aircraft and ground (e.g., runway and roadway) deicing. The objectives were twofold: 1) to identify commercial products, procedures, and infrastructure changes relative to deicing and 2) to identify commercial and governmental research into deicing.

The team reviewed the needs statements for characteristics, similarities and differences and developed criteria for analyzing potential solutions. The team then developed a compendium of current commercial products and research efforts, including information on technology vendors, applications, and costs.

Environmental Excellence Mr. Johnny Combs, P.E., REM HQ Air Force Center AFCEE/CCR-D (Dallas) Clean Water Act Introduction to Presented by for

1972 Amendments to the Federal (FWPCA) - "Clean Water Act" Water Pollution Control Act

- "to restore and maintain the chemical, physical, and biological integrity of the Nation's waters."
- Two Main Goals:
- Eliminate the discharge of pollutants into navigatable waters by 1985.
- protects and propogates fish, shellfish, and Achieve an interim water quality level that wildlife and supports recreation in and on the water, where attainable.

Status of the Waters of the U.S.

Nutrients

Pesticides

Enrichment/DO Organic

CWA Compliance Strategy

- Discharge Elimination System (NPDES) **EPA developed the National Pollutant** permit for industrial/municipal point sources
- permits for industrial/ municipal facilities 1987 CWA Amendments added phased storm water (i.e. non point sources)

Penalties for Non Compliance

- Criminal (per violation)
- Negligent \$25,000 and 1 year in prison
- Knowing \$50,000 and 3 years
- Endangerment \$250,000 and 15 years
- Civil \$25,000/day
- Administrative \$10-125,000

NPDES Permit Options

- Individual NPDES Permit issued by EPA
- Individual NPDES Permit issued by State
- Storm Water NPDES Permit issued by EPA
- Storm Water NPDES Permit issued by State

Where Does Deicing Come In?

- Deicing is covered as a "process wastewater" under the NPDES Permit (Individual or Storm Water)
- EPA prohibited a condition know as "Dry Weather Discharge"
- reaching the drainage system under their own Dry Weather Discharge - deicing chemicals flow

NPDES Permit Requirements

- Implement a Storm Water Pollution Prevention Plan
- Identify sources of deicing
- Monitor runoff for deicing components
- Eliminate dry weather deicing discharges
- Train employees on P2 techniques and plan
- Implement BMP to eliminate/reduce deicing

State Reaction to Deicing

- during deicing than all POTWs in the state "4 times the COD load from one airport for the entire year."
- "Not a problem, reaction is so delayed the deicing chemicals are in another state before they impact the river."
- "Definitely the CWA issue of the 90's"

Summary

- Deicing runoff is responsible for significant degradation of waters quality in the U.S.
- NPDES permits require BMPs to eliminate/reduce deicing runoff
- Attempt procedural before structural solutions
- Be sensitive to local demands/concerns

STORM WATER REGULATIONS FOR DEICING ACTIVITIES

Note:

This information was provided by Theresa Finke. Mrs. Finke works water issues for HQ AFMC/CEVC. Our intent in asking Mrs. Finke to develop this write-up is to provide you, the reader, with a better understanding of storm water regulations.

Mrs. Finke would have attended our de-icing crossfeed except she was on maternity leave.

GENERAL INFORMATION

Deicing activities are a concern due to the toxic and oxygen-depleting components of deicing chemicals. These chemicals can run off into water bodies causing violations of National Pollutant Discharge Elimination System (NPDES) permits.

In Nov 90, the Environmental Protection Agency (EPA) published NPDES storm water regulations that required specific industrial categories to be covered under a storm water permit. Bases can obtain coverage under an individual, federal or state general/baseline, or the multi-sector permit. The federal general permit was published in the Federal Register (FR) dated 9 Sep 92, and the multi-sector permit was issued in final form in the 29 Sep 95 FR. These permits include monitoring requirements for air transportation facilities that use deicing chemicals.

The general and multi-sector permits cover residual chemicals remaining on the runway/ramp from deicing/anti-icing activities that become part of the storm water runoff. Dry weather discharges from airport deicing/anti-icing operations are not authorized by these permits. A dry weather discharge occurs when deicing chemicals leave the runway/ramp under their own flow and discharge into the storm drainage system.

Many states consider runoff from deicing activity to be an industrial process wastewater discharge and subject to individual NPDES permit authority. Individual permits, unlike the general and multi-sector permits, have numerical parameter limits that must be monitored and met. If a dry weather discharge will occur, an individual permit is required. Bases must determine if they can meet the prohibition of dry weather discharges to decide which permit to apply for.

Most state general permits are very similar to the federal general permit. As stated, an individual permit typically has more specific and stringent requirements than the multi-sector or general permits. The requirements must be reviewed on a site-specific basis for each installation. This paper provides a comparison of the federal general and the multi-sector permits. The ultimate goal is "zero discharge" of glycols to water bodies.

STORM WATER POLLUTION PREVENTION PLANS

Multi-Sector and General: A storm water pollution prevention plan must be developed for facilities covered by these permits. The pollution prevention plan identifies potential sources of pollution which are expected to affect the quality of storm water discharges and describes the implementation of practices which are to be used to reduce pollutants in these discharges. The plan consists of many items, however, only those items specific to deicing activities are mentioned in this paper.

The plan should address all aspects of aircraft and runway deicing/anti-icing operations, including quantities used (totals and volume per surface area) and stored, application, handling and storage procedures. Facilities shall provide a narrative description of "best management practices" (BMPs) which will be implemented to control or manage storm water runoff from areas where deicing/anti-icing operations occur in an effort to minimize or reduce the amount of pollutants being discharged from the site.

The following are considered BMPs for deicing activities (These are only some of the available options. No particular practice must be implemented. However, if the plan states that a particular BMP will be implemented, then the facility is required to comply with it):

Evaluate present chemical application rates to ensure against excessive over application.

Emphasize anti-icing operations in lieu of deicing.

Consider installing runway ice detection systems (RIDS) which monitor runway temperatures.

Consider pre-wetting the deicing chemical to improve adhesion to the iced surface.

Use chemicals which have less of an environmental impact on receiving waters

Establish a centralized deicing station that would allow the spent deicing/anti-icing chemicals to be collected and then disposed of to sanitary sewage facility, retention and detention ponds, or by recycling, etc.

Move critical aircraft into hangars before icing events to minimize deicing required

Delay flight schedule at Southern Tier bases to allow ice to thaw

Reduce the nozzle size of the deicing hose to reduce volume of chemical used

Use temporary containment pads to capture fluid for treatment at low use bases

Use modified street sweepers to pick up the deicing fluid from the ramp after aircraft deicing operations

Plug storm drains and pump deicing fluid out for treatment

POLLUTION PREVENTION TRAINING

Multi-Sector and General: Pollution prevention training should address topics such as spill response, good housekeeping, material management practices and deicing/anti-icing procedures for personnel responsible for implementing activities which may impact storm water. EPA recommends that facilities conduct training annually at a minimum. However, more frequent training may be necessary at facilities with high turnover of employees or where employee participation is essential to the storm water pollution prevention plan.

COMPREHENSIVE SITE COMPLIANCE EVALUATION

Multi-Sector and General: The plan must describe the scope and content of comprehensive site evaluations that will be conducted to confirm the accuracy of the description of potential pollution sources, determine effectiveness of the plan, and assess compliance with terms and conditions of the permit. The evaluations must be conducted at least annually. The plan must be revised as appropriate within 2 weeks if significant problems are found during each evaluation. Changes in the measures and controls must be implemented in a timely manner and no later than 12 weeks after completion of the inspection.

INSPECTIONS

In addition to or as part of the comprehensive site evaluation, inspections shall be conducted. The inspections are typically visual and help ensure that BMPs are operating and properly maintained. The comprehensive site evaluation is more detailed and is intended to provide an overview of the entire facilities' pollution prevention activities. *Multi-Sector*: Once per week for areas where deicing operations are being conducted.

General: At appropriate intervals specified in the pollution prevention plan

ANNUAL LOADING ESTIMATES

Multi-Sector: All facilities that use more than 100,000 gallons of glycol-based deicing/anti-icing chemicals and/or 100 tons or more of urea on an average annual basis shall prepare estimates of annual pollutant loadings resulting from discharges of spent deicing/anti-icing chemicals from the facility. The loading estimates shall reflect the amounts of deicing/anti-icing chemicals discharges to separate storm sewer systems or surface waters, prior to and after implementation of the facility's storm water pollution prevention plan. Such estimates shall be reviewed and certified by an environmental professional (engineer, scientist, etc.) with experience in storm water pollution prevention. The environmental professional need not be certified or registered.

General: No requirement to calculate annual loading estimates

FACILITIES REQUIRED TO CONDUCT SAMPLING

Multi-Sector: Airport facilities that use more than 100,000 gallons of glycol-based deicing/anti-icing chemicals and/or 100 tons or more of urea on an average annual basis. The "average annual usage rate" is determined by averaging the total amounts of deicing/anti-icing chemicals used at the facility for the three previous calendar years. In determining the fluid amounts of deicing/anti-icing chemicals used at a facility, facilities should use the pre-dilution volume.

General: Airports with over 50,000 flight operations per year

ANALYSES REQUIRED AND LIMITS

Multi-Sector:

Pollutants of Concern	Monitoring Cutoff Concentrations
BOD	30 mg/l
COD	120 mg/l
Ammonia	19 mg/l
pH	6.0 to 9.0 s.u.

In cases where the average concentration for all grab samples analyzed for a parameter exceeds the cutoff concentrations, EPA expects permittees to place special emphasis on methods for reducing the presence of those parameters in storm water discharges. Monitoring is required in the second year for the pollutants of concern. If the pollutant of concern levels are above the monitoring cutoff concentration values, then monitoring is also required in the fourth year of the permit to determine the effectiveness of any BMPs that were implemented.

General:

Parameter

Oil and grease

BOD

Total suspended solids

pΗ

The primary ingredient used in the deicing materials used at the site (e.g., ethylene glycol, urea, etc.).

There are no concentration limits for this permit. However, facilities are expected to implement BMPs to reduce those parameters found in storm water discharges based on sampling results. A common sense approach should be taken with regards to the need for implementation of BMPs (i.e., if levels are reasonable or are not elevated during times of deicing activities, then no BMPs would need to be implemented). Pollution prevention techniques and procedural BMPs should be implemented before any structural BMPs are considered.

MONITORING FREQUENCY

Multi-Sector: Facilities must monitor four times during the second year of permit (Dec-Feb) coverage when deicing/anti-icing activities are occurring and from outfalls that receive storm water runoff from those areas. At the end of the second year of permit coverage, a facility must calculate the average concentration for all grab samples analyzed for each parameter on an outfall by outfall basis. If the average concentration for all grab samples analyzed for a pollutant of concern is greater than the monitoring cutoff concentration, then the permittee is required to conduct monitoring during the fourth year of the permit. No monitoring is required during the first, third, and fifth years of permit coverage.

General: Monitoring must be conducted once per year during deicing activities.

COMPLIANCE DEADLINES

Multi-Sector: 29 Mar 96 for filing the application for the permit

25 Sep 96 for development of pollution prevention plan

25 Sep 96 for compliance with the plan

General: 1 Oct 92 for filing the application for the permit

1 Apr 93 for development of pollution prevention plan

1 Oct 93 for compliance with the plan

T. Finke/HQ AFMC/CEVC/DSN 787-5878/4 Apr 96

De-icing/Anti-icing Technologies and Case Studies

Technology Cross-Feed

Air Force Materiel Command PRESENTED TO

PRESENTED BY

The National Defense Center For Environmental Excellence $\,\,NDCEE$

D. Dionne, Technical Staff (814) 269-2739

B. E. Greene, Technical Staff (814) 269-2761

CONCURRENT TECHNOLOGIES CORPORATION 1450 SCALP AVENUE OPERATED BY:

OHNSTOWN, PA 15904

Outline

- Overview of the National Defense Center for **Environmental Excellence**
- Summary of Findings from Two Air force De-icing Reports
- Survey Success Stories of Alternative Technologies for De-icing

Appendices

- Appendix 1 Definitions
- Appendix 2 De-icing Case Studies
- Appendix 3 References

Methodology

Air Force Reports

- Exploring Available De-icing Technologies, Air Force Logistics Management Agency (AFLMA)
- Draft Report on the requirements analysis for de-icing, Human Systems Center (HSC)

NDCEE
Review & Observations

De-icing Case Studies

Additional References

Rating Criteria

- **Biochemical Oxygen Demand (BOD)**
- **Ecological Toxicity/Hazard**
- Regulatory Issues
- Ice Melting Efficiency
- Implementation
- Maintenance
- Cost Efficiency
- Recyclability
- Materials Compatibility
 - Maturity
- Ammonia/Nitrate Formation

NDCEE

Aircraft De-icing Chemicals

AND SELLINGS CO. LAND PHO & Sabinda Salistot SOUR PSAN ONTO BUBILDO HA N 7 2 0 Ecological toxicity/hazard Material compatibility Ice melting efficiency Rating Criteria Regulatory issues Implementation Cost efficiency Maintenance Recyclability Maturity BOD

+ = Favorable
○ = Neutral
- Unfavorable
No. = Reference Source

Aircraft De-icing Equipment

+ = Favorable

O = Neutral
■ = Unfavorable
No. = Reference Source

airblast system for aircraft and runway de-icing Ellsworth AFB, SD

Aircraft De-icing Capture of Runoff

Detroit Metro Wayne Co. Airport
Detroit, MI
runoff held in pond, discharged to
sanitary sewer

NDCEE

No. = Reference Source

- Unfavorable

+ = Favorable

O = Neutral

Aircraft De-icing Reclamation/Treatment

Spill biotreamper Reclamation/Treatment Piological tilles BOINGS HOHOR SEARCE Nanogal Mind Centilesed Hount eath 0 **Ecological toxicity/hazard** Regulatory issues mplementation Cost efficiency Rating Maintenance Criteria Maturity BOD

Pittsburgh Int'l Airport Pittsburgh, PA distilled condensate biotreatment Albany County Albany, NY aerobic digester

Dorval Airport Montreal, Canada planning to recover surrounding airports' fluid

Lester B. Pearson Int'l Toronto, Canada distillation recovery NDCEE

No. = Reference Source

Unfavorable

+ = Favorable
O = Neutral

Runway De-icing Chemicals

Albany County - Albany, NY potassium acetate and urea

hey + = Favorable

O = Neutral

UnfavorableNo. = Reference Source

Detroit Metro Wayne Co. Airport
Detroit, MI
potassium acetate

Runway De-icing Equipment

Detroit Metro Wayne Co. Airport
Detroit, MI
new Batts sprayer/spreader for
potassium acetate

NDCEE

= Reference Source

O = Neutral

I = Unfavorable

+ = Favorable

Runway De-icing Operational Modifications

Lester B. Pearson Int'I, Toronto, Canada Spray anti-icer before storms

Aircraft De-icing Operational Modifications

- Baltimore/Washington Int'I, Baltimore, MD centralize de-icing activities
- Calgary Int'l Airport, Calgary, Canada remove snow prior to de-icing
- Minneapolis-St. Paul Int'I, Minneapolis, MN improve aircraft positioning when de-icing

Indicators of Technology Alternatives Patent Search* Results as Trend for Aircraft De-icing

*Patent search performed by HSC

Indicators of Technology Alternatives Patent Search* Results as Trend for Runway De-icing

*Patent search performed by HSC

NDCEE

Factors Considered When Choosing Alternatives **Case Studies Results**

Aircraft De-icing

- Regulations
- Cost (capital)
- Operational requirements
- Cost (operating)
- Application rate (de-icing time)
- Glycol use
- Subsequent treatment
- Size and space requirements
- De-icing results

ranked by frequency of use

Runway De-icing

- Environmental impact of urea
- Regulations
- Cost
- Application rate Availability
- De-icing results
- Equipment needs

Benefits of Switching to Alternatives **Case Studies Results**

Aircraft De-icing

- Speed up de-icing
- Improved de-icing quality
- BOD down or within imposed criteria
- De-icing fluid use decreased
- Collection of fluid increased

Runway De-icing

- Ammonia and nitrates down
- BOD down or within imposed criteria
- Improved application rate
- Collection of fluid increased

NDCEE.

De-icing Alternatives In Use **Case Studies Results**

Aircraft De-icing

Propylene glycol

Chemical

Runway De-icing

- Potassium acetate
 - Sodium formate
- Sprayer/spreader trucksSpecialized liquid spray bars

Manhole control inserts

Airblast unit

Adjustable flow nozzle

Equipment

- Airblast unit

Ponds

Capture of

Run-Off

- Trenches and dedicated drains
 - Plug system in existing drains
- Modular tanks
- Glycol recovery vehicules (vacuum)

De-icing Alternatives In Use **Case Studies Results**

Aircraft De-icing

Runway De-icing

Reclamation Recycling & Treatment

- Evaporator/distillation unit
- Public treatment plant

- Aerobic digester Land farming
- Natural pond system
 - Lined pond
- Aerated pond
- Public treatment plant

Anti-icer sprayed before storm

Centralized de-icing

Operational

- Snow blown off before de-icing
- Aircraft positioning when Remove snow prior to de-icing de-iced
- Aircraft in hangar when not

NDCEE_

NDCEE

NDCEE Recommendations

- Continue promotion of information sharing
- Expand reference source
- Short-term: consider the following alternatives where possible;
 - Air blast systems
- Centralized de-icing
- Containment system
- Optimized disposal method
- Potassium acetate and sodium formate
 - Improved operations
- Long-term: promote development of alternative technologies for anti-icing and de-icing of aircrafts

_NDCEE _

Appendix 1

Definitions

Rating Criteria

Issue

BOD

systems or receiving body of water. Low oxygen level has Increases load on municipal wastewater treatment detrimental effects on aquatic life.

> toxicity/Hazard Regulatory **Ecological**

Associated with the manufacturing, transport, storage, and use of the de-icer/anti-icer (chemical toxicity)

Generates a waste stream that must meet

Issues

certain regulations

Implementation Ice melting efficiency

to a variety of aircraft, quick assembly and disassembly, Requires efforts, training, and re-writing of procedures. For capture systems, the flexibility of the application Must be able to melt ice or prevent ice formation. and mobility are desired. NDCEE

Rating Criteria

Issue

Maintenance

Can be a substantial part of the operating cost. Down time of equipment can create congestion or delays.

Cost efficiency

Can be high for the alternatives (exclusive of waste generation charges)

Can reduce the toxicity of the waste stream.

Recyclability

Material compatibility Promotion of corrosion of aircraft aluminum surfaces or runway construction materials can happen.

Maturity

A technology/practice that has been proven in commercial/ Air Force applications is considered mature.

Urea degrades to ammonia and then to nitrate. Ammonia is toxic to aquatic life, and nitrate causes eutrophication of

waters.

Ammonia / Nitrate

NDCEE

NDCEE

Appendix 2

De-icing Case Studies

AIRCRAFT AND RUNWAY DE-ICING/ANTI-ICING CASE STUDY RESULTS DMW-1

Detroit Metro Wayne Co. Airport, Detroit, Michigan, Contact: Catherine S. Morse (313) 942-3996 Fax: (313) 942-0689

	Aircraft	Runwave
Chemicals	A10.10.10.10.10.10.10.10.10.10.10.10.10.1	Marrays
De/Anti-icing chemical(s) now used	Ethylene Glycol, Propylene Glycol	Potassium Acetate (E-36)
Vendor	several, ordered by tenants	Chevron, Ashland Chemicals, Warren, Mi
Amount of de-icing fluid used	Propylene Glycol: 855,000 gal/yr (1995-1996) Ethylene Glycol: 86,520 gal/yr	163,368 gal/yr
Previous chemical used	None	An Ethylene Glycol and Urea mixture
Equipment		
Type used now	Hundreds of trumps de-icing trucks	Four Batts de-icer, one International de-icer 3,000 gallons capacity
Vendor	FMC (Orlando, FL)	CE Pollard, Detroit, MI
Previous equipment used	Trumps	Two 2,000 gallons tankers/GM tractors
Containment System		
Type used now	Hold in pond, discharged to sanitary sewer	Held in ponds, discharged to local county drains.
Vendor		
Previous equipment used		
Run-off Treatment or Recycling Equipment		
Type used now		
Vendor		
Previous equipment used		
Recyclability		
Operational Modifications		
Changes made	All runoff goes to Apron collection system	Changed chemical used
Gain	85% of glycol is captured and goes to sanitary	Better water quality re: stormwater runoff
Factors that were considered in selecting the above alternatives	Compliance with Federal NPDES permit	(same as with aircraft)
Other alternatives considered	Recycling	(same as with aircraft)
Testing done before or after implementation	Yes, some	Yes, some
Impact of alternatives on operations (de-icing time, quality and maintenance)		None to minor
Impact of alternatives on runoff BOD, nitrates, ammonia	Improved water quality	Great improvement in BOD, ammonia & DO
formation, ecological toxicity, or hazard levels.		levels
Problems implementing alternatives	Minor	Minor
Cost of alternatives compared to previous process	+\$3.5 million	
Material compatibility problems with alternatives	No	No
How long have you used the alternative	Three-four years	Two years
Any additional information you feel should be stated here		

179

AIRCRAFT AND RUNWAY DE-ICING/ANTI-ICING CASE STUDY RESULTS PIT-2

U.S. Air & Pittsburgh International Airport, Pittsburgh, PA,
Contacts: Mike Athanas (Aircraft) (412) 472-1690 Fax: (412) 472-1690 Brad Penrod (Runways) (412) 472-3677 Fax: (412) 472-3636

	Aircraft	Runways
Chemicals		
De/Anti-icing chemical(s) now used	Propylene Glycol	Ethylene Glycol, Urea Potassium Acetate
Vendor	Arco Chemical	Old World Industries, Hydrocurb, Old World Industries
Amount of de-icing fluid used	1.3 millions gal/yr	84,800 gal/yr EG, 700 tons/yr Urea, 56,950 gal/yr PA
Previous chemical used	Ethylene Glycol	None
Equipment		
Type used now	Telescoping Booms, De-icing trucks	Sand spreaders/ 4,000 gallons liquid container trucks
Vendor	Simon R.O./ FMC, Lewylln	Ford/Chevy Dodge Duer Brother/Batts corp
Previous equipment used	De-icing Trucks	Not Applicable
Containment System		
Type used now	Modular Tanks	None
Vendor	Modutank	
Previous equipment used	None	
Run-off Treatment or Recycling Equipment		
Type used now	Distillation, Biotreatment of condensate	None
Vendor	Zenon/Coastal Fluid Tech.	
Previous equipment used	None	
Recyclability	30-70%	
Operational Modifications		
Changes made	Increase size of reflux column	None
Gain	Less downtime for recycling	Not Applicable
Factors that were considered in selecting the above	Length of time required to de-ice	Not Applicable
alternatives	Quality of de-icing	
Other alternatives considered	Collection followed by direct release to local POTW	None
Testing done before or after implementation	None	None
Impact of alternatives on operations (de-icing time, quality and maintenance)	Improved quality of de-icing as well as timing	None
Impact of alternatives on runoff BOD, nitrates, ammonia formation, ecological toxicity, or hazard levels.		

180

	Aircraft	Runways
Problems implementing alternatives	No	No
Cost of alternatives compared to previous process	\$12 million	Not Applicable
Material compatibility problems with alternatives	No	No
How long have you used the alternative	Approximately 3 years	Not Applicable
Any additional information you feel should be stated here		

AIRCRAFT AND RUNWAY DE-ICING/ANTI-ICING CASE STUDY RESULTS MSP-3

MSP, Minneapolis-St. Paul International Airport Contact: Richard B. Keinz (612) 726-8134 Fax: (612) 726-5296

	Aircraft	Runways
Chemicals		
De/Anti-icing chemical(s) now used	Type I, Type II, and UCAR ULTRA (Type IV)	Prilled Urea is primary chemical utilized. Field testing has been performed with potassium acetate (liquid product) and sodium formate (granular product).
Vendor	Arco (PG products), Union Carbide (EG products), Octagon (PG products)	Urea- Local vendor, Sodium Formate - Hoechst Canada Inc., Potassium acetate-Cryotech
Amount of de-icing fluid used	1995/96 season: 365,400 gallons pure product 1994/95 season: 392,000 gallons pure product 1993/94 season: 450,000 gallons pure product	Urea- approximately 750-1,000 tons per winter season. Sodium formate and Potassium acetate-test amounts
Previous chemical used	Same as above	Urea only
Equipment		
Type used now	Boom trucks with open and closed baskets for operator.	Urea- dump trucks with broadcast components (applied with sand). Sodium formate- dump trucks with broadcast components. Potassium acetate- trucks with specialized liquid spray hars
Vendor	Unknown-contact airlines.	Dump trucks unknown, Liquid spray application trucks- Batts Equipment
Previous equipment used	Unknowncontact airlines.	Unknown
Containment System		
Type used now	Plug structures installed in existing storm sewer lines at aircraft de-icing locations. Night evacuation from in-line storage with tanker trucks and transfer to storage ponds. From ponds meter to local POTW.	Not applicable
Vendor	Not applicable	Not applicable
Previous equipment used	None	Not applicable

Run-off Treatment or Recycling Equipment		
Type used now	Glycol-impacted storm water (GISW) is contained as described in above and metered to local POTW treatment plant.	Run-off from all four watersheds on the airport is routed through detention ponds prior to discharge. However, these currently are not large enough to achieve treatment in the cold winter/spring months.
Vendor	Not Applicable	Not applicable
Previous equipment used	None	Not applicable

	Aircraft	Runways
Recyclability	Dependant upon glycol concentration in GISW	Not recyclable
Operational Modifications		
Changes made	Plug/pump containment program began in	Field testing with alternative (to urea) products.
	1993/94 winter. Has been enhanced every year	
	by adding the number of plug installations,	
	improving drainage infrastructure around some	
	containment locations, and improving aircraft	
	positioning over contained storm water intakes.	
Gain	Significant improvements in glycol capture	Generally positive results, particularly with sedium
	performance from year to year.	formate.
Factors that were considered in selecting the above	Environmental regulatory requirements,	Desire to ultimately eliminate the use of urea
alternatives	operational considerations, long-term planning	because of its nitrogen content and potential for
	issues (capital expenditures vs. operating	environmental impact.
	expenditures), other factors.	
Other alternatives considered	GISW containment: vacuum sweepers, dedicated	None, really. Considered treatment, but not viable.
	de-icing pads, synthetic pads, trench drains, and	
	glycol impacted snow containment. GISW	
	management: on-site aerobic and anaerobic	
	treatment; and recycling reclamation (on-airport	
	reuse, third party re-sale, or direct resal for coal	
	pile freeze point depressant).	
Testing done before or after implementation	Lab-scale testing has been done on the use of	Testing is currently being performed.
	reverse osmosis as a potential bulk dewatering	
	step in a glycol reclamation process. Lab and	
	pilot-scal testing was also done on GISW	
	treatability (biological treatment). At this point	
	neither on-site glycol reclamation nor on-site	
	GISW treatment have been implemented. They	
	may be in the future.	
Impact of alternatives on operations (de-icing time,	Minimal impact on operations	Limited impact on operationsfield testing only
quality and maintenance)		
Impact of alternatives on runoff BOD, nitrates, ammonia	During the 1995/96 season, approximately 66	Expect replacement of urea with alternative
formation, ecological toxicity, or hazard levels.	percent of glycol entering the storm system was	product(s) to decrease nitrates, ammonia formation,
	captured and treated. During the 1994/95 season	aquatic toxicity, and overall BOD. CBOD is
	this figure was approximately 55 percent and for	expected to increase with full-scale usage of
	the 1993/94 season it was approximately 36	alternative product(s).
	percent.	
Problems implementing alternatives	No major problems.	Field testing only

	Aircraft	Rinwaye
Cost of alternatives compared to previous process	Annual costs for plug installation/removal, trucking, project management/oversight, and GISW disposal (combined) approximately \$600,000 - \$650,000 per winter season.	It is estimated that using sodium formate on a full scale would likely be three to four times more expensive per season for material purchase than has been the case with urea. There would also be additional product storage/handling development costs associated with the anticipated switch to sodium formate
Material compatibility problems with alternatives	No	Not to our knowledge
How long have you used the alternative	Three winter seasons	Testing with potassium acetate: three seasons. Testing with sodium formate: one season
Any additional information you feel should be stated here	Co-operative efforts with all aircraft de-icing fluid users and regulators is crucial to successful GISW containment and management. Retrofitting existing facilities to optimize GISW containment creates unique challenges.	Preference for a primarily liquid product based runway de-icer system vs. a primarily granular product runway de-icer system is highly airport specific. There are significant material storage (caking) and handling (dusting) difficulties associated with sodium formate relative to urea.

AIRCRAFT AND RUNWAY DE-ICING/ANTI-ICING CASE STUDY RESULTS LBP-4

Lester B. Pearson International, Toronto, Canada Contact: Randy McGill (905) 676-5091 Fax: (905) 676-3555

	Aircraft	Runways
Chemicals		
De/Anti-icing chemical(s) now used	Ethylene Glycol	Potassium Acetate Sodium Formate
Vendor	UCAR	Hoechst
Amount of de-icing fluid used	3.5 million liters	51546 gallons
Previous chemical used	Same	Urea
Equipment		
Type used now	Cherry picker	Computer spray bar, sander/spreader
Vendor	Various makes	
Previous equipment used		Sander/spreader
Containment system		
Type used now	Sweepers + trench, drain dedicated	
Vendor	Pads + ponding, Transport Canada design	Ponds - drain to sanitary
Previous equipment used	prior to 1991 nothing	
Run-off Treatment or Recycling Equipment		
Type used now	Majority to sani some recycled	
Vendor	CCR Inland	
Previous equipment used	Evaporator/distill	ponds - drain to sanitory
Recyclability	<30%, depends on collection facilities and ability to collect high object concentration run-off	
Operational Modifications	19.9	
Changes made	Flow control	Anti-icer sprayed before storm
Gain	yes	Quicker than urea application
Factors that were considered in selecting the above alternatives	Meet laws	Environment Improved application rate
Other alternatives considered	Yes	Yes, see Transport Caneda HQ Reports
Testing done before or after implementation	Testing major Factor in evaluation + improvement	Yes
Impact of alternatives on operations (de-icing time, quality and maintenance)	Quicker de-icing, better quality	:
Impact of alternatives on runoff BOD, nitrates, ammonia formation, ecological toxicity, or hazard levels.	BOD down significant	BOD appears up but stili under limits. NH3 + N is down

	Aircraft	Runways
Problems implementing alternatives	Yes, but normal	Yes, learning curve
Cost of alternatives compared to previous process	De-icer usage down, collection up	More expensive than Urea,
		cost going down now
Material compatibility problems with alternatives	No.	No
How long have you used the alternative	Four years	Two years
Any additional information you feel should be stated here		

 ∞

AIRCRAFT AND RUNWAY DE-ICING/ANTI-ICING CASE STUDY RESULTS ANY-5

Albany County, Albany, NY Contact: Dave Logan, Ops Mgr. (518) 869-5481 Fax: (518) 452-3330

	Aircraft	Runways
Chemicals		
De/Anti-icing chemical(s) now used	Propylene Glycol	Urea, Potassium Acetate
Vendor		
Amount of de-icing fluid used	100,000 gal/yr	10-15 tons, 3,000 gal/yr
Previous chemical used		
Equipment		
Type used now		Waltes sander, Epoke spreader
Vendor		
Previous equipment used		
Containment System		
Type used now	Collection grates and pumped to two holding bassins. Capacity of 6 and 2.3 million gal	Not Applicable
Vendor		
Previous equipment used	Not Applicable	
Run-off Treatment or Recycling Equipment		
Type used now	Aerobic digester (to be implemented)	
Vendor	Zenon environmental services	
Previous equipment used		
Recyclability	<30%	
Operational Modifications		
Changes made	Aerobic digestion, Land farming	
Gain		
Factors that were considered in selecting the above alternatives	Cost, modifications to existing NPDES permit	
Other alternatives considered		
Testing done before or after implementation	Extensive analyticals for benchmark establishment	MSDS submittals, Environmental certification
Impact of alternatives on operations (de-icing time, quality and maintenance)		
Impact of alternatives on runoff BOD, nitrates, ammonia formation,	Odor production	
ecological toxicity, or hazard levels.	Aerobic supply for activation	
Problems implementing afternatives	To be determined	
Cost of alternatives compared to previous process	To be determined	
Material compatibility problems with alternatives	To be determined	
How long have you used the alternative	To be determined	
Any additional information you feel should be stated here	To be determined	

AIRCRAFT AND RUNWAY DE-ICING/ANTI-ICING CASE STUDY RESULTS CAL-6

Calgary Airport Authority, Calgary International Airport, Calgary, Canada Contact: Clark Norton (403) 735-1405 Fax: (403) 735-1418

	Aircraft	Runways
Chemicals		
De/Anti-icing chemical(s) now used	Ethylene Glycol (XLS4) Propylene Glycol (Killfrost)	Potassium Acetate (E36), Urea
Vendor	Union Carbide Canada Arco Chemical Co.	
Amount of de-icing fluid used	1,000,000 litres (1995/96)	
Previous chemical used		
Equipment		
Type used now	Trump DD1200:D40 John Beam	Batts sprayer for E36 Truck monted spreader for Urea
	Trump TD36,NTD40	
Vendor	Stanray 2180, FMC TM1800, Superior	
Previous equipment used		
Containment System		
Type used now		
Vendor		
Previous equipment used		
Runoff treatment or recycling equipment		
Type used now	Natural pond control and treatment system	
Vendor	Vacuum swept product discharged under permit to city of Calgary sanitary sewer	
Previous equipment used		
Recyclability		
Operational Modification		
Changes made	Remove snow with brooms prior to de-icing	Use of E36 vs Urea
	Adjustable flow nozzles Manhole control inserts, less glycol enters drainage system	
Gain		More environmentally friendly
Factors that were considered in selecting the above alternatives	Glycol use and subsequent treatment	Environmental impact of urea
Other alternatives considered	We will be installing a permanent sanitary sewer discharge.	
Testing done before or after implementation	Water management program determines sampling	

	Aircraft	Runways
Impact of alternatives on operations (de-icing time, quality and maintenance)	No impact on de-icing activities	
Impact of alternatives on runoff BOD, nitrates, ammonia formation, ecological toxicity, or hazard levels.	Effluent is normally within BOD criteria for sanitary sewer	Using E36 reduces nitrates, ammonia: E36 consideration is acetate BOD
Problems implementing alternatives	No	No
Cost of alternatives compared to previous process	Some capital costs associated with infrastructure modifications	Costs E36 are four times higher
Material compatibility problems with alternatives	No	
How long have you used the alternative	1661	1995/96 season
Any additional information you feel should be stated here		

AIRCRAFT AND RUNWAY DE-ICING/ANTI-ICING CASE STUDY RESULTS BWI-7

Baltimore\Washington International, Maryland Aviation Administration Contact: Mark Williams (410) 859-7448 Fax: (410) 859-7119

	Aircraft	Runways
Chemicals		
De/Anti-icing chemical(s) now used	Ethylene Glycol Type I + II 4% Propylene Glycol Type I + II 96%	Potassium acetate (P36) Urea
Vendor	Union carbide - Ethylene Arco-propylene	Cryotech (P36), Urea- varies
Amount of de-icing fluid used	Avg 217,000 gallons of mixture 94/95- 76,000 gal 95/96- 417,458 gal	94/95 95/96 P36 17,300 gal 56,000 gal urea 31.9 tons 107 tons
Previous chemical used	Shifted from ethylene glycol to mostly propylene glycol	R Ethylene g
Equipment		
Type used now	Performed by individual airlines and FBO's using "cherry picker" style de-icing trucks	Boom arm spray truck (P36) Vbox solid spreader truck for
Vendor	Various	Unknown
Previous equipment used	Same as above	Same
Containment System		
Type used now	Two centralized de-icing facilities designed by Greigner Engineering. Three Glycol recovery vehicles (GRV)	None
Vendor	GRV- Vector Manufacturing Inc.	
Previous equipment used	None	
Run-off Treatment or Recycling Equipment		17. T.
Type used now	Collect in a 600,000 gallon storage facility - discharge to sanitary; investigating recycling	none
Vendor		
Previous equipment used	none	
Recyclability		
Operational Modifications		
Changes made	U.S.Air/U.S.Air Express have shifted de-icing	Switch to potassium acetate
	operations to centralized de-icing facilities. USAIR operates 50% of passenger flights from BWI.	Irom UCAK
Gain		

	Aircraft	Runways
Factors that were considered in selecting the above alternatives	Location, size, space, operational requirements,	Cost, availability, equipment
	cost, sited at end of runway 15R, which handles	requirements, de-icing results
	72% of flights during de-icing operations.	
Other alternatives considered	Recycling was considered but at the time was not	Application rates are
	considered cost effective	controlled
Testing done before or after implementation	De-icing storm event water quality monitoring	Would be seen in storm water
	performed prior to management practices being	monitoring. We don't test for
	installed. Required to perform study again with	potassium acetate.
	BMP's in place.	
Impact of alternatives on operations (de-icing time, quality and	De-icing shifted to end of runway, less secondary	
maintenance)	de-icing. Five aircraft can be de-iced	
	simultaneously.	
Impact of alternatives on runoff BOD, nitrates, ammonia formation,	Six storm events monitored, it appears glycol levels	less glycol in runoff, should
ecological toxicity, or hazard levels.	and BOD decreased but TKN (total nitrogen) levels	translate into lower BOD and
	still high.	toxicity.
Problems implementing alternatives	Yes, design problem in diversion vaults allowed	No
	water to enter dry chamber and damage valve	
	controls.	
Cost of alternatives compared to previous process	Cost \$15 million	Not considerably different
	Two de-icing facilities, storage facility, sewer	
	connection, three Vactor glycol Recovery	
	vehicules.	
Material compatibility problems with alternatives	No	No
How long have you used the alternative	One year	Three years
Any additional information you feel should be stated here		We may test sodium formate
		96/97 and evaluate urea

AIRCRAFT AND RUNWAY DE-ICING/ANTI-ICING CASE STUDY RESULTS VIA-8

Vancouver International Airport, Richmond, BC, Canada Contact: Laura Patrick (604) 276-6138 Fax: (604) 276-6699

	Aircraft	Runways
Chemicals		
De/Anti-icing chemical(s) now used	Glycol based	Urea
Vendor	Union carbide	
Amount of de-icing fluid used	55,000 litres	
Previous chemical used		
Equipment		8
Type used now	Airline provide equipment	Spreaders
Vendor		
Previous equipment used		
Containment System		
Type used now	Trench drains diverted to ponds with liners and	None
	vacuum irucks	
Vendor	Hudson General supplies vacuum trucks and operates them	
Previous equipment used		
Run-off Treatment or Recycling Equipment		
Type used now	All fluid trucked to sanitary plant with secondary treatment	None
Vendor		
Previous equipment used		
Recyclability	<30%	
Operational Modifications		
Changes made	Airlines experimenting with type II anti-icing	Airport looking at Potassium acetate for '97
Gain	Anti-icing	Anti-icing
Factors that were considered in selecting the above alternatives	Product effectiveness	Product effectiveness
Other alternatives considered	None	None
Testing done before or after implementation	Limited testing in 1995/96 winter	1996/97 tests
Impact of alternatives on operations (de-icing time, quality and maintenance)	Type II if used at the gate will save time	Unknown
Impact of alternatives on runoff BOD, nitrates, ammonia formation, ecological toxicity, or hazard levels.	Minimal	Not known
Problems implementing alternatives	Need new equipment	Need new equipment
Cost of alternatives compared to previous process	Unknown	Unknown

	Aircraft	Runways
Material compatibility problems with alternatives		Yes
How long have you used the afternative	One season	Not yet
Any additional information you feel should be stated here Airline	Airlines are responsible for application	

AIRCRAFT AND RUNWAY DE-ICING/ANTI-ICING CASE STUDY RESULTS MTL-9

Montreal Mirabel and Dorval Airport Contact: Lyne Michaud (514) 633-3108 Fax: (514) 633-3708

	Aircraft	Runways
Chemicals		
Dc/Anti-icing chemical(s) now used	Ethylene Glycol	Urea
Vendor	Union Carbide	Stanchem
Amount of de-icing fluid used	Dorval 1.4 million liters Mirabel 0.9 million liters	500 tons, each airport
Previous chemical used		
Equipment		
Type used now	Mirabel: one Elephant Beta	
Vendor		
Previous equipment used	Std trucks	Regular spreader truck
Containment System		
Type used now	Mirahal: Centralized de-icing center tranches to	
Apr asca now	containment, fluid truck carried for outside disposition	
	Dorval: Blocked drains in de-icing areas, vacuum truck	
	pickup trapped fluid (will move toward centralized pads in	
	the future)	
Vendor		
Previous equipment used	None	
Run-off Treatment or Recycling Equipment		
Type used now	Outside treatment, setting up recycling (remaining fluid after recycling will be sent to sanitary), will eventually take other surrounding smaller airports collected fluids for treatment	
Vendor		
Previous equipment used		
Recyclability		
Operational Modifications		
Changes made		
Gain		
Factors that were considered in selecting the above alternatives	Quality of water Operational (de-icing time)	
Other alternatives considered		Looking at potassium acetate
Testing done before or after implementation	Tested in use	

	Aircraft	Runways
Impact of alternatives on operations (de-icing time, quality and maintenance)	Some problems where encountered, alternative areas where set-up for peek periods (central de-icing pads not enough), glycol recovery vehicules pick up fluids Elephant beta truck: enables to get closer to aircraft, less glycol used.	
Impact of alternatives on runoff BOD, nitrates, ammonia formation, ecological toxicity, or hazard levels.		
Problems implementing alternatives	Minor	
Cost of alternatives compared to previous process	Built in airport in the '70s but started two years ago, no exact cost available	
Material compatibility problems with alternatives		
How long have you used the alternative	Two to three years	
Any additional information you feel should be stated here		

AIRCRAFT AND RUNWAY DE-ICING/ANTI-ICING CASE STUDY RESULTS EAF-10

Ellsworth AFB, South Dakota Contact: Jerry Styles (Aircraft: Tsgt. Gary Vance, Runway: Mr. Grueschon) J Styles (605) 385-2683 Fax: (605) 385-6619

Tsgt. Vance (605) 385-4441 Fax: (605) 385-4872

Mr. Gruschon (605) 385-4340 Fax: (605) 385-4375

	Aircraft	Runways
Chemicals		
De/Anti-icing chemical(s) now used	Milspec: MIL-A-8243D NSN: 6850-01-281-0339	Propylene Glycol, Isopropyl
Vendor		
Amount of de-icing fluid used	2839 gallons	2200 gallons
Previous chemical used	same	Isopropyl EC-36
Equipment		
Type used now	Air blast system-9	Airblast system de-icing
	(NSN: 1730-01-333-4365)	unit
	De-icing spray unit - II (NSN: 1730-01-200-0730)	
Vendor		
Previous equipment used	Same	
Containment system		7.
Type used now	De-icing allowed in one area that drains to a collection	N/A
Vendor		
Previous equipment used	None	
Runoff treatment or recycling equipment		
Type used now	Collection pond with aerator	
Vendor		
Previous equipment used	None	
Recyclability	N/A	
Operational modifications		
Changes made	Only allow de-icing in one designated area	
Gain	Runoff limited to one collection pond, can contain and	
	mon one point	
Factors that were considered in selecting the above alternatives	The policy letter was considered to increase retention and exposure time before leaving base property	
Other alternatives considered	Replumb all drains to outfall 1, no capability to handle all drainage	
Testing done before or after implementation	DOD testing found high levels of BOD at ponds 2 and 3	

	Aircraft	Runways
Impact of alternatives on operations (de-icing time, quality and	Aircraft must be towed or prepositioned by dedicated de-	
maintenance)	icing areas	
Impact of alternatives on runoff BOD, nitrates, ammonia	BOD levels are much lower, from 1260 to 130	
formation, ecological toxicity, or hazard levels,		
Problems implementing alternatives		
Cost of alternatives compared to previous process	The previous process had no cost but new dedicated de-	
	icing tanks with recycle capabilities cost \$1,000,000	
Material compatibility problems with alternatives	No	
How long have you used the alternative	The policy letter was written Oct '95, alternative	
	implemented shortly after.	
Any additional information you feel should be stated here	The dedicated de-icing tanks will let the chemicals be	
	captured to be reused and recycled. Tanks will be placed	
	at north and south ends of hammerhead project number	
	FXBM963006	

AIRCRAFT AND RUNWAY DE-ICING/ANTI-ICING CASE STUDY RESULTS DIA-11

Denver International Airport, CO. Contact: Mylcs Carter (303) 342-2628 Fax: (303) 342-2617

	Aircraft	Runways
Chemicals		
De/Anti-icing chemical(s) now used	Type I, Propylene glycol formulation	Potassium Acetate
Vendor	Various, but principally ARCO	Unknown
Amount of de-icing fluid used	800,000gal/yr	Unknown
Previous chemical used		Urea
Equipment		
Type used now	Ten stationary booms and 30+ truck boom units	Three to four trucks with spray hooms
Vendor	A.D.S.I.	city
Previous equipment used	same	Broadcast spreaders on trucks
Containment System		
Type used now	Nine lined ponds at five locations	N/A
Vendor	N/A	N/A
Previous equipment used	One lined pond	N/A
Run-off Treatment or Recycling Equipment		
Type used now	Chemical conditioning followed by distillation	N/A
Vendor	ADSI	N/A
Previous equipment used	same	N/A
Recyclability	>10%	
Operational modifications		
Changes made	New airport and de-icing facilities	
Gain		
Factors that were considered in selecting the above alternatives	Outgrew old facility now is more environmental friendly	
Other alternatives considered	Considered pretreatment by aeration, also land application	
Testing done before or after implementation	Routinely test for COD to estimate BOD in waste stream	
Impact of alternatives on operations (de-icing time, quality and maintenance)	Disposal cost savings	
Impact of alternatives on runoff BOD, nitrates, ammonia formation, ecological toxicity, or hazard levels.	Ecologically compatible, possible cost savings	
Problems implementing alternatives	Initial capital costs to the city	
Cost of alternatives compared to previous process	Alternatives probably cost more	

	Aircraft	Runways
Material compatibility problems with alternatives	No	
How long have you used the alternative	N/A	
Any additional information you feel should be stated here	No	

AIRCRAFT AND RUNWAY DE-ICING/ANTI-ICING CASE STUDY RESULTS WAF-12

Whiteman AFB, Missouri Contact: Maj Steven Smith (Aircraft) (816) 687-6101 Fax: (816) 687-6106 Jerry Whitford (Runway) (816) 687-6709 Fax: (816) 687-5164

	Aircraft	Runways
Chemicals		
De/Anti-icing chemical(s) now used	Propylene Glycol	Urea
Vendor	Purchased through Base Supply	Purchased under NSN 6810-00-182- 6521/AA 2590
Amount of de-icing fluid used	<500 gal	67,550 lbs in 1996
Previous chemical used		
Equipment		
Typc used now	TM 1800 Landoll De-icers seven units	Six-Rollovers-Oshkosh Five-Multipurpose Plow/Blower - Oshkosh Two Towed snow broom - Sicard Three Front mount snow broom -
		International dump with Idaho & Sweepster broom Three 10-ton dump with plow-International Six 5-ton dump with plow and spreader -
Vendor		International
Previous equipment used		
Containment System		
Type used now	Diverter valve directs flow to Industrial Wastewater Treatment Plant	None
Vendor		
Previous equipment used	None	None
Run-off Treatment or Recycling Equipment		
Type used now	Same as item 3	None
Vendor		
Previous equipment used		
Recyclability		
Operational Modifications		
Changes made	Installation of diverter valve	Plan to use potassium acetate
Gain	Reduce quantity of de-icing fluid going to the storm sewer	Reduce ammonia levels in streams due to runoff from urea:

	Aircraft	Runways
Factors that were considered in selecting the above alternatives	Stop flow of de-icing fluids to the storm	Eliminate elevated ammonia levels in
	sewer	receiving streams
Other alternatives considered	None	Potassium Acetate
Testing done before or after implementation	None	None
Impact of alternatives on operations (de-icing time, quality and	de-icing location inside secure area. De-	N/A
maintenance)	ice one aircrast at a time.	
Impact of alternatives on runoff BOD, nitrates, ammonia	Reduce chances of elevated BOD in	N/A
formation, ecological toxicity, or hazard levels.	receiving waters	
Problems implementing alternatives	Physical operation of manual valve has	Purchase of equipment and storage pending
	been difficult	
Cost of alternatives compared to previous process	Additional time for taking/towing aircraft	\$132,000 (est.) to purchase equipment for
	and operating diverter valve	using potassium acetate
Material compatibility problems with alternatives	No	No
How long have you used the alternative	Two years	Plan to begin use winter of 1996-1997
Any additional information you feel should be stated here		

Appendix 3

References

References

- Exploring Available De-icing Technologies, Air Force Logistics Management Agency (ALFMA)
- Draft Report on the requirements analysis for de-icing, Human Systems Center (HSC)
- De-icing Chemicals (Web page, Pro-act site)/fact/text/6159.txt က
- Getting Ready for Winter, AEM November 1995
- Exploring Available De-icing Technologies (Web page, Pro-act site) Ŋ.
- De-icing Technologies, AFMC slides

ဖ

- . First Full Demo for InfraTek, Airports International
- AiRefrigeration Systems Inc, Jane's Airports, Equipment and Services 1995/1996 ထဲ
- Technology Crossfeed on De-icing/Anti-icing slides, Carroll Herring <u>ი</u>
- 10. NDCEE De-icing Case Studies (1996)
- Environmental, Safety, Occupational Health Technology Needs Survey. Wright Laboratory, Pollution Prevention Pillar Needs Assessment Report for FY 96. U.S. Air Force Wright-Patterson AFB, OH. July, 1996.

NDCEE

Briefing: De-icing / Anti-icing Technologies and Case Studies

Briefed by: Brian Greene

National Defense Center for Environmental Excellence (NDCEE)

Concurrent Technologies Corp.

1450 Scalp Ave

Johnstown PA 15904

814-269-2761 FA

FAX: 814-269-6218

greene@ctc.com

Summary:

Regulatory compliance is driving the need for the US Air Force and commercial airlines and airports to identify and evaluate technologies for reducing the environmental impact of de-icing fluids.

Two recent Air Force reports provide analysis of de-icing needs and potential alternatives: "Report on the Requirements Analysis for De-icing" (Draft version dated June 28, 1996) by the Human Systems Center/XRE (HSC) of Brooks AFB, and "Exploring available De-icing Technologies" (October 1995) by the Air Force Logistics Management Agency (AFLMA).

This briefing summarizes the technologies identified in the two Air Force reports, and includes an independent analysis of the information in the reports by the National Defense Center for Environmental Excellence (NDCEE).

The briefing covers alternative technologies, materials, and operational procedures for both aircraft and runway de-icing.

In addition, the briefing includes a discussion of deicing case studies developed by the NDCEE through surveys of various airports, military bases, and airline companies. Information is included from these locations:

Detroit Metro Wayne Co. Airport

Detroit, Michigan Contact: Catherine S. Morse (313) 942-3996 Fax: (313) 942-0689

US Air & Pittsburgh International Airport

Pittsburgh, PA,
Contacts: Mike Athanas (**Aircraft**)
(412) 472-1690 Fax: (412) 472-1690
Brad Penrod (**Runways**)
(412) 472-3677 Fax: (412) 472-3636

Minneapolis-St. Paul International Airport

Minneapolis MN

Contact: Richard B. Keinz

(612) 726-8134 Fax: (612) 726-5296

Lester B. Pearson International

Toronto, Ontario, Canada

Contact: Randy McGill

(905) 676-5091 Fax: (905) 676-3555

Albany County

Albany, NY

Contact: Dave Logan, Ops Mgr.

(518) 869-5481 Fax: (518) 452-3330

Calgary Airport Authority

Calgary International Airport

Calgary, Alberta, Canada

Contact: Clark Norton

(403) 735-1405 Fax: (403) 735-1418

Baltimore\Washington International Maryland Aviation Administration

Contact: Mark Williams

(410) 859-7448 Fax: (410) 859-7119

Vancouver International Airport

Richmond, BC, Canada

Contact: Laura Patrick

(604) 276-6138 Fax: (604) 276-6699

Montreal Mirabel and Dorval Airports

Montreal Quebec Canada

Contact: Lyne Machaud

(514) 633-3108 Fax: (514) 633-3708

Ellsworth AFB

South Dakota

Contact: Jerry Styles

(605) 385-2683 Fax: (605) 385-6619

Aircraft: TSgt. Gary Vance

(605) 385-4441 Fax: (605) 385-4872

Runway: Mr. Grueschon

(605) 385-4340 Fax: (605) 385-4375

Denver International Airport

Denver CO

Contact: Myles Carter

(303) 342-2628 Fax: (303) 342-2617

Whiteman AFB

Missouri

Contact: Maj. Steven Smith (Aircraft)

(816) 687-6101 Fax: (816) 687-6106

Jerry Whitford (Runways)

(816) 687-6709 Fax: (816) 687-5164

AIR FORCE BASIC RESEARCH:

DEICER/ANTI-ICER MATERIALS ENVIRONMENTALLY BENIGN FOR HAZARD-FREE CHEMISTRY FOR

MAINTENANCE (HFO&M) Directorate of Chemistry and Life Sciences Air Force Office of Scientific Research Dr Frederick L. Hedberg 21 August 1996

ALTERNATIVE MATERIALS AND PROCESSES FOR HFO&M

RATIONALE:

- **MATERIALS & PROCESSES CRITICAL TO AIR FORCE** INCREASINGLY REGULATED DUE TO ASSOCIATED **OPERATIONS & MAINTENANCE ARE BEING ENVIRONMENTAL HAZARDS**
- **DECADES WITH LITTLE DRIVE FOR DEVELOPMENT** REQUIREMENTS ENCOURAGED THEIR USE FOR COMPLIANCE WITH CONTEMPORARY SAFETY SATISFACTORY PERFORMANCE, COST, AND **ALTERNATIVES**

ALTERNATIVE DEICER/ANTI-ICER **MATERIALS FOR HFO&M**

UNDERSTANDING AND MOLECULAR CONCEPTS FOR OBJECTIVE: A TECHNOLOGY BASE OF MECHANISTIC **DEVELOPMENT OF SAFE ALTERNATIVES FOR AIR** FORCE APPLICATIONS

AIR FORCE LAB COORDINATION:

AIRCRAFT DEICER/ANTI-ICER MATERIALS - AL/EQ, WL/ML FUEL DEICER/ANTI-ICER MATERIALS - WL/PO

DEICER/ANTI-ICER MATERIALS PROBLEMS WITH CURRENT

AIRCRAFT DEICER/ANTI-ICER MATERIALS:

ETHYLENE GLYCOL

TOXIC

HIGH BIOLOGICAL OXYGEN DEMAND (BOD)

PROPYLENE GLYCOL

HIGHER BOD THAN ETHYLENE GLYCOL

FUEL DEICER/ANTI-ICER MATERIALS:

- **ETHYLENE GLYCOL MONOMETHYL ETHER (EGME)**
- **ETHYLENE GLYCOL DIMETHYL ETHER (DIEGME)**

TOXIC

SEPARATION FROM FUEL IN STORAGE TANKS

AIRCRAFT DEICER/ANTI-ICER MATERIALS APPROACHES TO ALTERNATIVE

- USE LESS MATERIAL!!
- **BIOLOGICAL ANTIFREEZE PROTEINS THAT PREVENT CLOGGING** OF BLOOD VESSELS - INHERENT NON-TOXICITY
- MIMIC NATURE'S OPTIMIZATION OF MATERIALS
- POLAR FISH UNIV. OF ILLINOIS (PROF. CHENG-DEVRIES)
- POLAR INSECTS NOTRE DAME UNIV. (PROF. DUMAN)
- FEEDS INFO TO LAB-SUPPORTED ASPEN SYSTEMS PROGRAM
- SPECIALIZED EVERGREEN VEGETATION
- **DEVELOP BIOTIC ENVIRONMENT AROUND ROOT SYSTEMS TO DEGRADE CURRENT GLYCOL MATERIALS - IOWA STATE** UNIVERSITY (PROFS. ANDERSON & COATS)

EFFECTIVENESS OF BIOLOGICAL **DEICER/ANTI-ICER MATERIALS**

POTENTIAL TO USE MUCH LESS MATERIAL: A NEWLY PURIFIED, NON-ACTIVATED INSECT AFP HAS BEEN FOUND TO BE 167 TIMES MORE EFFECTIVE THAN ETHYLENE GLYCOL (NOTRE DAME UNIV. RESEARCH):

DEICER/ANTI-ICER MATERIAL / CONCENTRATION	WATER FREEZING POINT DEPRESSION (DEGREES C)
ETHYLENE GLYCOL / 1 MG/ML	0.03
INSECT AFP / 1 MG/ML	5 (167 TIMES GREATER)

CONVENTIONAL DEICER/ANTI-ICER "COLLIGATIVE" MECHANISM OF **MATERIALS**

ANTIFREEZE MOLECULE ASSOCIATES STRONGLY WITH WATER = ANTIFREEZE MOLECULE ASSOCIATING WITH EACH OTHER TO FORM ICE CRYSTALS **MOLECULES, INHIBITING THE WATER MOLECULES FROM** $= H_2 0$

POSTULATED "NON-COLLIGATIVE" **DEICER/ANTI-ICER MATERIALS MECHANISM FOR BIOLOGICAL**

ANTIFREEZE PROTEIN (AFP)

BENEFITS FROM "NON-COLLIGATIVE" DEICER/ANTI-ICER MATERIALS

SURFACE RATHER THAN BULK MECHANISM WOULD ALLOW USE OF ORDERS OF MAGNITUDE LESS MATERIAL

COMPUTATIONAL MODELING & SYNTHESIS TO **DESIGN/PREPARE IMPROVED FUEL DEICERS/ANTI-ICER MATERIALS**

INTEGRATED
COMPUTATIONAL MODELING
(WL/ML - DR PACHTER) &
SYNTHESIS (GEORGE MASON
UNIV. - PROF. MUSHRUSH)
PROGRAMS SEEK MORE
EFFICIENT MOLECULAR
DESIGN AND LOWER

TARGETS BIOLOGICALLY-BASED MOLECULES

REQUIRES MISCIBILITY WITH FUEL

Calculate partition coefficients

Predict toxicities

Predict phase diagrams & investigate de-icing mechanisms

Guide specific synthesis

MOST PROMISING TO DATE:

Briefing: Air Force Basic Research in Deicer/Anti-icer Chemistry

Briefed by: Dr. Fred Hedberg, Ph.D.

Directorate of Chemistry and Life Sciences

Air Force Office of Scientific Research (AFOSR)

110 Duncan Ave, Suite B115 Bolling AFB, DC 20332-8080

(202) 767-4963 FAX: (202) 404-7475

Summary:

The Air Force Office of Scientific Research is currently supporting basic research programs relating to deicer/anti-icer chemistry as a key component of its thrust on alternative materials and processes for hazard free operations and maintenance.

Conventional deicers/anti-icers are good examples of materials that have been used for many years because they are inexpensive and effective. In contrast to expensive, high performance materials for structural or electronic applications where improved performance is a continuing motivation for new materials, there has been very little motivation for R&D expenditures for a tech base for new deicers/anti-icer materials. Because of recent and growing environmental regulations, the standard materials: ethylene glycol and propylene glycol for aircraft deicers and ethylene glycol monomethyl and dimethyl ethers for fuel deicers face increasingly costly use restrictions or complete elimination.

The objectives of the AFOSR research efforts are a better understanding of the deicer chemistry and novel directions toward improved molecular concepts. The work is coordinated with the Air Force Armstrong Lab (aircraft deicers) and with the Wright Lab (fuel deicers). The fundamental concepts obtained are proving to be applicable to both types.

Problems identified for current aircraft deicer/anti-icer materials include toxicity and biological oxygen demand for ethylene glycol, and biological oxygen demand for propylene glycol. Problems identified for current fuel deicer/anti-icer materials, ethylene glycol monomethyl and dimethyl ethers, include separation from the fuel in storage tanks to provide a toxic waste.

The primary approach to overcoming this problem is new chemical concepts that require much less material. To accomplish this, researchers are looking at Nature, the great economizer. Organisms that live in polar environments manufacture minimal amounts of antifreeze agents to inhibit formation of ice particles that could clog blood vessels. These are large biological molecules that are obviously not toxic to the organism. A program funded at the University of Illinois is looking at fish antifreeze agents, and one at Notre Dame University is studying insect antifreeze agents. These programs provide fundamental technical information to a program at Aspen Systems that has been funded by

both Armstrong Lab and Wright Lab. An alternative approach, carried out at Iowa State University, is a study of evergreen plants that could be grown around airfields with biotic root systems that could degrade existing glycol materials.

The potential to use much less material is illustrated by a recently isolated insect antifreeze protein that is 167 times more effective than ethylene glycol.

Conventional agents such as glycols or salts are postulated to utilize a so-called colligative mechanism whereby the agent distributes itself evenly throughout the water, coordinates with the water, and provides an energy barrier to the water molecules coming together into an ice crystal. This bulk type mechanism requires substantial material.

By contrast, the biological agents are postulated to allow ice crystals to grow to a nanoscale size. At this point, it becomes energetically favorable for them to attach to the crystal in a lock and key arrangement and inhibit further addition of water to the crystal. An even greater inhibition to crystal growth has been found to result from the presence of antibodies to the protein such as immunoglobulin G, and even antibodies to the immunoglobulin G antibodies.

The "non-colligative" mechanism postulated for the biological molecules affords the potential for use of orders of magnitude less material.

Fuel deicer/anti-icer materials have an additional requirement beyond that for the aircraft materials: in addition to inhibiting freezing of water unavoidably present in fuel, they must also be miscible with the fuel. The approach in this effort has been design of biologically-based molecules through computational modeling for antifreeze capabilities and low toxicity by a group at Wright Laboratory in conjunction with synthesis by researchers at George Mason University. The optimum materials will transition into a formulation and testing program at the Propulsion Directorate of Wright Laboratory. In addition to identifying new materials, the modeling may also identify promising commercially available materials manufactured for completely different applications that would otherwise not ever be considered for deicer/anti-icer applications.

One of the most intriguing possibilities to derive from the fuel deicer/anti-icer modeling effort is an indication that so-called colligative materials like the glycols may actually operate by the same mechanism as the large biological materials. It appears that clusters of six or seven water molecules form and are surrounded by ethylene glycol molecules. Whether this is an optimum size "crystal" for the ethylene glycol to fit on the surface in a lock and key arrangement analogous to the antifreeze proteins needs to be verified by further studies such as nuclear magnetic resonance.

Note: Dr. Hedberg is retiring from the federal civil service. His replacement will be Dr. Walt Kozumbo.

De-Icing/Anti-Icing R&D

De-Icing/Anti-Icing R&D

ification of De-Icing/Anti-

sing Technology Needs

* ID 9 1 Environmenta Improvements 以

Aircraft De-icing Operations

1978: Improvements to Road

Operations

* ID 2501: Use of Sodium Formate for 1 icing of Pavements * ID 2504: Degradation Rates and Products/for

De-icipg Compounds

concerned with aircraft devicing T.Os and erational Requirements qualifying AMS 1428 (anti-icers) for A * Air Mobility Command (AMC) is AMC requests assistance from WI during 96/97 snow season/

On-going Projects

cer Program Paneed Aircraff Anti

NASM (Need ID 91年)

/Ames (FY93年数95) 3 year effort with MA

¥396:

AM commercializing/qualifying ahti-ilee

meet AMS 1428

WL/ML/performing matérial compatibility

on AMS 1428 for AF Use/

Goal: To qualify anti-Yeers for AF Use in the

96√97 snow season

-going Projects (continued)

nvixonmental Impact Study of Glycols in Groundwater (6/95/64/96) (Need ID 25/04)

drame-specific compatibility tests Reviewing request from the field to

AMS 1428 anti-icers

* Forded air de-icer program with FM

Corporation

De-Icing/Anti-Icing R&D

Summary

Cufrent on-going phojects at WL will be completed by the end of this fiscal year * Potential solutions to out deriging problems are inamediate, site-speciffe solutions rather than/R&D solutions

* WL/ML will now play a consulting role in this arena/while retaihing/membership in various, deicing/anti-icing related organikations

ENVIRONMENT FRIENDLY ANTI-ICING / DEICING FLUID AMES

BY

LEN HASLIM JOHN ZUK

BASIC FORMULATION

- Freezing Point Depressant Propylene Glycol
- Carrier Water
- Thickener Patent Proprietary
- Synergist Patent Proprietary
- Coloring Agent (if needed)

ATTRIBUTES

- Simple True-Solution
- Food-grade Ingredients
- Non-toxic
- Biodegradeable
- Non-electrolytic / Chemically Neutral
- Highly Effective
- Applications Tailorable
- Long Shelf Life
- Easy to Manufacture
- Recyclable
- Current Equipement Compatible
 Modify Nozzle

KEY TEST RESULTS

Passed Major SAE Type IV A/C Fluid **Certification Tests**

- Holdover Time (113 Min.)

- Aerodynamic Shedding (all Temperatures)

- High Humidity Endurance (> 13 Hours)

- Corrosion Resistance

Verified More-Environment-Friendly Claims (U of PA)

STATUS / PLANS

- Transfer & Commericalize Technology
 - Aircraft Type IV Fluid
- Construction Productivity Advanced Support U.S. Army Corps of Engrs Research (CPAR) Program
 - Roads, Bridges, Canals
- **Demonstrate Use on Airport Runways**
- Friction (FAA)
- Effectiveness (NASA/FAA/Transport Canada)
- Continue Air Force Cooperative Program
- Environmental Testing (U. of Pa)
 - Corrosion Testing (Wright Lab)
- Support Future A.F. Runway Evaluations

Ames Fluid Comparison with Ultra

- Higher Apparent Viscosity
- Better Shear Rate Behavior (Less Temperature Sensitivity)
- Solution (No Mineral Oil Micro-emulsifier). Simpler Fluid - Thickener & Precipitation Resistance Surface Modifier are in True
- No Long Term Storage Degradation Under Freezing Conditions
- Non-toxic Freezing Point Depressent & Additives

P 02

HEZ

NASA AMES ENVIRONMENT-FRIENDLY ANTI-ICING FLUID

NASA Ames has invented a highly effective and non-toxic, nonelectrolytic, freezing point depressant (FPD) fluid for use in ice removal and/or for protection against ice formation (anti-freeze). Ice formation and adhesion is prevented by applying (e.g. spraying) this fluid as a thin coating onto a surface where it adheres and forms a protective barrier to ice accretion. This fluid coating strongly resists removal by precipatation (also dilution) and surface winds. The fluid is designed so that it can be applied to aircraft, runway, roadway, bridge, and has automotive and marine uses. Compared to currently used commerical fluids, the new Ames version performs more effectively, is inherently less corrosive, and has minimum adverse effects on the environment. (Currently used fluids are toxic to aquatic life, animals and humans due to the freezing point depressant (such as ethylene glycol) and the additives (Reference 1).) Further, this formulation can be directly substituted for the currently used fluids, so that little or no change in operations or equipment is anticipated (a different nozzle may be required). US and international patent applications have been filed by NASA. The US patent award is anticapated in CY96. Development and evaluation work has been sponsored by the US Air Force's Wright Labs. A license to commericalize the fluid is being presently negotiated.

The composition consists of water, propolyene glycol as the freezing point depressant, a synergist, and a select thickener (all of which may be food grade), with all constituents in a continuous, single phase solution. The small amount of thickener (0.25 - 0.70 wt. %) radically changes the fluid from Newtonian to a Non-Newtonian pseudoplastic behavior, i.e., an Ellis-type fluid. When a thin film of the fluid (0.02 in. thick) is sprayed onto the surface of an object, this fluid film has a very high static (at rest) viscosity (one or two orders of magnitude higher than the currently used anti-icing fluids); and when sheared, the viscosity rapidly drops. Thus, the high static viscosity produces a fluid protective barrier to ice accretion that is very durable and long lasting as an anti-icer. The rapid viscosity drop induced by an increase in shear rate is a desirable feature that both enables ease of fluid application and uniformity of distribution and enables critical airspeed shedding, as required by aircraft

2

ground deicing applications. (The fluid must shed from the aircraft surfaces at lift-off to ensure clean lifting surfaces.)

Since all constituents can be food grade, the fluid is essentially non-toxic and is biodegradeable under normal atmospheric temperature, soil, and aquatic conditions. Also, since the fluid is inherently neutral (pH of 7) and non-electrolytic, it should not be corrosive to surface materials, such as aircraft, pavements, bridges, and ground vehicles. It should not be harmful to plants. Additional attributes of the fluid are that it 's viscosity - shear rate behavior has relatively low temperature sensitivity in the range of practical applications, and is not prone to being damaged due to mechanical shearing (pumping) as are other Type II fluids. The fluid is recyclable. Since the fluid ingredients can be simply blended, the manufacturing costs should be low. Also, the continuous, single-phase solution yields long, stable, storage life.

The initial fluid application being evaluated is for use as anti-icing protection of aircraft prior to take-off, and is being pursued in consort with a potential commericalization licensee. Presently used aircraft anti-icing fluids are governed by SAE Spec AMS 1428 and are known as Type II fluids. The current Type II specification requires a minimum 30 minutes holdover time (HOT) protection, as measured at the official certification facility at the University of Quebec at Cheicoutimi. Certification testing of the Ames fluid yielded the following results: 1) holdover time of 113 minutes, and 2) high humidity endurance time (HHET) > 13 hours. These results exceed the new SAE Type IV spec (which is in process of being approved) requirement of 90 minutes HOT, and 8 hours (HHET). The Ames fluid has also passed the very important aerodynamic shedding criteria (This test simulates an aircraft wing taking-off.) Critical corrosion resistance tests were also passed at another SAE certified facility - Scientific Material International Inc. (SMI) of Miami, FL. The Ames fluid will probably have to meet the proposed Type IV spec, currently known as SAE 1428B. (SAE1428A is the first Type IV fluid spec and the one that Union Carbide's UltraR fluid must meet -Ultra^R's freezing point depressant is toxic eythelene glycol.) In addition to meeting the SAE spec, the fluid must also be acceptible to the customer including such subjective areas such as dryout and "slipperiness".

The University of Pennsylvania, has performed laboratory investigations assessing the environmental compatibility and

3

biodegradability of the Ames fluid and other commercially available fluids (Reference 2). In addition to characterizing the fluids in terms of their environmental implications, the biodegradability of the fluids were assessed under experimental conditions that simulated surface The university's work verified water and subsurface environments. that the Ames fluid was more environmentally benign than the other fluids tested, and was determined by measured specific oxygen uptake rate (SOUR) and EC₅₀ values. However, as expected with all glycol based fluids, the Biological Oxygen Demand (BOD) did yield high values. Hence the rapid exertion of BOD at the early stages would have profound impact on the oxygen inventory of a receiving water body in the vicinity of the point of discharge, that would be detrimental to aquatic life and higher than average sewage treatment plant capabilities. But more significantly, among the fluids tested, the Ames fluid was most easily degraded under both anoxic and anaerobic conditions. The Ames fluid had an order of magnitude higher rate of biodegradation under anaerobic conditions than any of the other commercial fluids tested.

Since the Ames fluid is readily biodegradable, it has a high BOD, as described in the previous paragraph. For effective deicing under severe icing conditions, a large volume of fluid is required per aircraft - 400 to 1000 gallons of diluted fluid depending on aircraft size. Hence, deicing/anti-icing a large number of aircraft will result in a large volume of fluid concentrated in a relatively small area (dedicated pad or gate area). Even athough the Ames fluid is non-toxic and diluted, the BOD may have a negative impact on aquatic life at the discharge point. Hence, a drainage capture system may be needed. The collected fluid can then be recycled or treated by promising methods such as high rate anaerobic treatment. However, once the aircraft leaves the deicing containment area, there still remains the environmental runoff concerns in the proximity of the airport. The non-toxic Ames fluid offers promise to have minimal or no adverse impact on this environment.

This winter the FAA Technical Center plans to evaluate the effectiveness of the fluid for runway applications at the Brunswick Naval Air Station airport in Maine. The main purpose of the test is to evaluate the Ames anti-icing fluid for tire friction or "slipperiness". The FAA Boeing 727 Instrumented aircraft will be used to measure the runway friction coefficient. (This is the only aircraft in the world instrumented to give friction readings.) Also the KJ Law Runway Friction Tester - a ground vehicle, will measure the friction

132L

4

coefficient. Results will be compared with both dry and water wet runway pavement readings. The Ames fluid data then will be compared with previously obtained measurements using conventional runway deicing liquid and solid materials, as well as other experimental materials. Later in the winter of 1997, a runway anti-icing effectiveness test may be conducted at Thunder Bay, Ontario as part of the Transport Canada, NASA, and FAA winter operations research program. These results will also directly support the Wright Labs runway icing protection efforts.

The Army Corps of Engineers' Cold Regions Research and Engineering Laboratory in Hanover. New Hampshire has implemented a Construction and Productivity And Research program (CPAR) to evaluate the Ames fluid for terrestrial applications. applications include highways, bridges, railways, canals, and transportation and communication structures. This three year program also includes a commercialization partner, and the University of Pennsylvania, with particapation from the City of Philadelphia. The University of Penn, will measure friction factors using a lab device to assure compliance with standards and to validate field tests conducted under the auspices of the Corps of Engineers. Compatibility and stability tests will be conducted on a wide range of materials that are found on aircraft, automobiles, and transportation surfaces, and under a variety of weather conditions. Then tests will be performed to measure pavement friction using a SAAB friction tester vehicle on a test track. Comparison tests will be run against existing (corrosive - salts) deicing materials such as calcium magnesium acetate. If these tests are successful, the fluid will be evaluated on a highway test strip.

To date the cooperative program with the Air Force has been critical to the success. In the future, Ames will support Wright Labs corrosion testing and any Air Force ice protected runway evaluations. Also, it is anticipated that the expertise and testing capability of Armstrong Labs in the area of toxicity will be utilized.

In summary, the Ames anti-icing fluid improves safety, is cost effective, and helps the environment by both being relatively non-toxic and requiring less fluid per application than those currently being used.

5

References

- 1. Hartwell, S.I. et al.: "Toxicity of Aircraft De-Icer and Anti-Icer Solutions to Aquatic Organisims", Maryland Dept. of Natural Resources Report No. CBRM-TX-93-1, May 1993.
- 2. Shieh, W. K.: "Task 009-3: Environmental Compatibility Study of Deicing/Anti-icing Fluids", University of Pennsylvania Final Report, Contract F33615-194-C-5800, June 1996.

પ્રકર

NASA'S ENVIRONMENTALLY FRIENDLY ANTI-ICING FLUID

Researchers at NASA Ames Research Center have invented a highly effective, non-toxic, non-electrolytic, freezing point depressant (FPD) fluid for ice removal (de-ice) and/or protection against ice formation (anti-ice). Ice formation and adhesion is prevented by spraying the fluid as a thin coating onto a surface where it adheres and forms a protective barrier to ice accretion. This fluid coating strongly resists removal by surface winds and removal/dilution by precipatation. The fluid can be applied to aircraft, runways, roadways and bridges, and has other automotive and marine uses. It not only outperforms current commercial fluids, it is inherently less corrosive, and has minimum adverse effects on the environment. (Commercially available fluids are corrosive, toxic to acquatic life, animals, and humans and do not meet Clean Water Act criteria.) Further, this formulation can be directly substituted for the currently used fluids, so that little or no change in operations or equipment is anticipated. (A different spray nozzle may be required on some equipment.)

US Air Force Wright Laboratory has sponsored development and evaluation work and has been instrumental in readying the fluid for commercialization. US and international patent applications have been filed by NASA. The US patent award is anticapated in CY96. Negotiations are underway with a Fortune 500 chemical company to manufacturer the Ames fluid under license.

The composition consists of water, freezing point depressant, hydrophobic surface modifier, and a select thickener in a continuous, single phase solution. Since all constituents are food grade, the fluid is essentially non-toxic and is biodegradeable under normal atmospheric temperature, soil, and aquatic conditions. The fluid is inherently neutral (pH of 7) and is not corrosive to surface materials such as bridges, pavements and automobiles, and it is not harmful to plants. The continuous, single phase solution yields long, stable storage life. A minute amount (0.5 wt %) of surface modifier additive forms a thin hydrophobic monolayer on the surface of the fluid applied to the structure. A small amount of thickener (0.25 - 0.70 wt. %) radically changes the fluid from Newtonian to a Non-Newtonian pseudoplastic flow behavior, i.e. an Ellis fluid. When a thin film of the fluid (0.02 in.) is sprayed onto the surface of an object, the film has a very high near-static viscosity, one or two orders of magnitude higher than current fluids, but when a predetermined shear point is reached, the viscosity drops rapidly. The static viscosity produces a very durable and long lasting anti-icing barrier, while the rapid viscosity drop induced by an increase in shear force eases application and ensures uniform coverage. This tailorable property also allows critical speed shedding, as required in aircraft applications where the fluid must shed from the wing surface before lift-off.

Current SAE AMS 1428 Type II specifications require a minimum 30 minutes holdover time protection measured at the official certification facility at the University of Quebec at Cheicoutimi. In these tests the Ames fluid set two new records: 1) a holdover time of 113 minutes, and 2) a high humidity endurance time over 13 hours. Hence, this fluid already exceeds the newly proposed SAE Type IV spec requirement of 90 minutes. The fluid also passed the aerodynamic shedding criteria test (simulating an aircraft wing in takeoff conditions) with no remaining undesirable residue. Critical corrosion resistance tests were also passed at another SAE certified facility, Scientific Material International Inc., Miami, FL. A major commercial company is in the process of making minor modifications to the fluid formulation to meet thermal, hard water, and air stability tests. The Ames fluid, being non-toxic, biodegradable and more effective than any existing de-icing/anti-icing fluid, is a quantum jump in safety and environmental compatability.

For the rest of the story and additional data, contact:
Dr. John Zuk, NASA-Ames Research Center, Ph. 415-604-6568
Dr. Len Haslim, NASA-Ames Research Center, Ph. 415-604-6575
Lt Col Rich Perkins, USAF-NASA Liaison Office, Ph. 415-604-5832

NASA'S ENVIRONMENTALLY FRIENDLY ANTI-ICING FLUID

Researchers at NASA Ames Research Center have invented a highly effective, non-toxic, non-electrolytic, freezing point depressant (FPD) fluid for ice removal (de-ice) and/or protection against ice formation (anti-ice). Ice formation and adhesion is prevented by spraying the fluid as a thin coating onto a surface where it adheres and forms a protective barrier to ice accretion. This fluid coating strongly resists removal by surface winds and removal/dilution by precipatation. The fluid can be applied to aircraft, runways, roadways and bridges, and has other automotive and marine uses. It not only outperforms current commerical fluids, it is inherently less corrosive, and has minimum adverse effects on the environment. (Commercially available fluids are corrosive, toxic to acquatic life, animals, and humans and do not meet Clean Water Act criteria.) Further, this formulation can be directly substituted for the currently used fluids, so that little or no change in operations or equipment is anticipated. (A different spray nozzle may be required on some equipment.)

US Air Force Wright Laboratory has sponsored development and evaluation work and has been instrumental in readying the fluid for commercialization. US and international patent applications have been filed by NASA. The US patent award is anticapated in CY96. Negotiations are underway with a Fortune 500 chemical company to manufacturer the Ames fluid under license.

The composition consists of water, freezing point depressant, hydrophobic surface modifier, and a select thickener in a continuous, single phase solution. Since all constituents are food grade, the fluid is essentially non-toxic and is biodegradeable under normal atmospheric temperature, soil, and aquatic conditions. The fluid is inherently neutral (pH of 7) and is not corrosive to surface materials such as bridges, pavements and automobiles, and it is not harmful to plants. The continuous, single phase solution yields long, stable storage life. A minute amount (0.5 wt %) of surface modifier additive forms a thin hydrophobic monolayer on the surface of the fluid applied to the structure. A small amount of thickener (0.25 - 0.70 wt. %) radically changes the fluid from Newtonian to a Non-Newtonian pseudoplastic flow behavior, i.e. an Ellis fluid. When a thin film of the fluid (0.02 in.) is sprayed onto the surface of an object, the film has a very high near-static viscosity, one or two orders of magnitude higher than current fluids, but when a predetermined shear point is reached, the viscosity drops rapidly. The static viscosity produces a very durable and long lasting anti-icing barrier, while the rapid viscosity drop induced by an increase in shear force eases application and ensures uniform coverage. This tailorable property also allows critical speed shedding, as required in aircraft applications where the fluid must shed from the wing surface before lift-off.

Current SAE AMS 1428 Type II specifications require a minimum 30 minutes holdover time protection measured at the official certification facility at the University of Quebec at Cheicoutimi. In these tests the Ames fluid set two new records: 1) a holdover time of 113 minutes, and 2) a high humidity endurance time over 13 hours. Hence, this fluid already exceeds the newly proposed SAE Type IV spec requirement of 90 minutes. The fluid also passed the aerodynamic shedding criteria test (simulating an aircraft wing in takeoff conditions) with no remaining undesirable residue. Critical corrosion resistance tests were also passed at another SAE certified facility, Scientific Material International Inc., Miami, FL. A major commercial company is in the process of making minor modifications to the fluid formulation to meet thermal, hard water, and air stability tests. The Ames fluid, being non-toxic, biodegradable and more effective than any existing de-icing/anti-icing fluid, is a quantum jump in safety and environmental compatability.

For the rest of the story and additional data, contact:
Dr. John Zuk, NASA-Ames Research Center, Ph. 415-604-6568
Dr. Len Haslim, NASA-Ames Research Center, Ph. 415-604-6575
Lt Col Rich Perkins, USAF-NASA Liaison Office, Ph. 415-604-5832

THE ROLE OF TOXICOLOGY HAZARDOUS MATERIALS: RISK ASSESSMENT OF

Branch Chief/Director of Program David R. Mattie, PhD, DABT **Armstrong Laboratory Toxicology Division Development**

AIR FORCE TOXICOLOGY

EXPOSURE ASSESSMENT

Identify Potential Exposure Determine Exposure Level & Duration Collect Available Tox Data; Determine Deficiencies

HAZARD ASSESSMENT

Perform Additional Toxicity Testing As Needed Investigate Biochemical Mode of Action Develop Methods For Extrapolation,
Animals Tow Dose High Dose

RISK ASSESSMENT

Risk Characterization

AF System Requirements and Options

Development Of Regulatory And Operational Guidelines WPAFB MULTIMEDIA AREA B, BLDG 20 PPT TOXIC

RISK MANAGEMENT

Conceptualized Risk-Based Model For Armstrong Lab

Toxicology

(Modeling/Measurement)

(Sensors)

Risk

<u>Management</u>

(Sensors) Monitor

Bio/Physical/Chemical (Reduction)

Protection

HEALTH-BASED APPROACH

- NEED DATA:
- IN ABSENCE OF DATA USE ASSUMPTIONS, ADDITIONAL SAFETY FACTORS AND BEST SCIENTIFIC(?) JUDGMENT
- WITH LIMITED DATA USE MOST CONSERVATIVE APPROACH
- WITH DATA:
- GREATER CONFIDENCE IN STANDARDS CHOSEN
- **ENGINEERING CONTROLS OR LOWER CLEAN-UP COSTS FOR** REALISTIC STANDARDS RESULTING IN LESS PPE, RESTORATION EFFORTS

WPAFB MULTIMEDIA AREA B, BLDG 20 PPT TOXIC

RISK ASSESSMENT

• Helps Choose Chemical/Material With Lowest Toxicity, When Possible, Without Decreasing Performance

Identifies The Toxic Level So The Chemical Or Material May Still Anything Is Toxic In Too Large A Quantity. Risk Assessment Be Used While Avoiding Adverse Effects

TECHNOLOGY PROGRAM DIRECTIVE 30-6-92 **AIR FORCE MATERIEL COMMAND (AFMC/ST)**

- Acquisition Instructions Outline The Need To Characterize Materials For Life Cycle Environmental, Safety And Occupational Health Management
- Management Analysis As Part Of The Integrated Program Summary Program Managers Must Complete Hazardous Materials Risk At Each Milestone Review

WPAFB MULTIMEDIA AREA B, BLDG 20 BET TOXIC

HEALTH BASED APPROACH

- **ENVIRONMENTAL:**
- **CLEAN-UP STANDARDS**
- EXAMPLE: TOTAL PETROLEUM HYDROCARBON

TRI-SERVICE TOXICOLOGY

- COLLOCATION OF TOXICOLOGY FUNCTIONS FOR 3 MILITARY SERVICES
- USAF TOXICOLOGY DIVISION
 ARMSTRONG LABORATORY
 HUMAN SYSTEMS CENTER
 (OL AL HSC/OET)
- NAVAL MEDICAL RESEARCH INSTITUTE TOXICOLOGY DETACHMENT (NMRI/TD) · USN
- **ARMY MEDICAL RESEARCH DETACHMENT** INSTITUTE OF RESEARCH **WALTER REED ARMY** (USAMRD)

WPAFB MULTIMEDIA AREA B, BLDG 20 PPT TOXIC

MISSION

GOALS

- exposures to hazardous chemicals encountered by Minimize the health risks and mission impact from Department of Defense personnel;
- Reduce the adverse environmental consequences of the use and disposal of hazardous materials by the Department of Defense; and
- Significantly decrease the life cycle costs required to protect human health and the environment.

WPAFB MULTIMEDIA AREA B, BLDG 20

Integrated Product Process Development a.k.a "AF Teaming" **AFMC Model**

TRI-SERVICE CAPABILITIES

- HAZARD EVALUATION
- **PHARMACOKINETICS**
- **MECHANISMS OF ACTION**
- . PATHOLOGY
- ANALYTICAL CHEMISTRY
- RISK ASSESSMENT

TRI-SERVICE CAPABILITIES

IDENTIFIES POTENTIAL HUMAN HEALTH HAZARDS OF NEW AND **CURRENT CHEMICALS AND MATERIALS.**

DEVELOPS INNOVATIVE RISK ASSESSMENT METHODOLOGIES.

INVESTIGATES MECHANISMS OF TOXICITY.

VPAFB MULTIMEDIA RREA B, BLDG 20 PPT TOXIC

PROJECTS

- HALON REPLACEMENT
- **ADVANCED COMPOSITE COMBUSTION TOXICOLOGY**
- **MODULAR ARTILLERY CHARGE**
- PERSIAN GULF VETERANS' RESEARCH PROGRAM
- **BIOLOGICAL EFFECTS OF TRICHLOROETHYLENE (TCE)**
- **METABOLISM OF TCE BY THE JAPANESE MEDAKA MINNOW**
- INHALATION TOXICITY OF VAPOR PHASE LUBRICANTS
- **DEFENSE WOMEN'S HEALTH RESEARCH PROGRAM**
- **ACUTE, SUBCHRONIC & REPRODUCTIVETOXICITY OF QUADRICYCLANE**
- PREDICTIVE TOXICOLOGY
- QUANT. APPROACHES TO MEASURE & MODEL DERMAL PENETRATION
- TOTAL PETROLEUM HYDROCARBON (TPH)

INTERACTIONS

- INDUSTRY
- PSG, EXXON, API
- UNIVERSITIES
- WSU, COL ST, UNIV OF ILL, UNIV OF CINCI
- EPA
- IAGS, TOXICOLOGY CONFERENCE
- ASC/EM
- JANNAF
- ARMY
- NAVY.

- AFOSR
- AF LABORATORIES
- . WL
- . MLSE, MLBT, POS, FIV
- . AL
- OEM: OCC MEDICINE,
 TOXICOLOGY AND IH
 CONSULTANTS
- . EQ: ENVIR. ASSESSMENT
- **HSC/XRE**
- . TPIPT FOR ESOH

TRI-SERVICE TOXICOLOGY

POINTS OF CONTACT:

• DAVID R. MATTIE, PHD, DABT OL AL HSC/OET

(513) 255-5740

· CAPT KENNETH R. STILL, MSC

NMRI/TD

(513)255-6058

LTC ROLAND E. LANGFORD

USAMRD/WP

(513)255-0607

David R. Mattie PhD, DABT Branch Chief/Director of Program Development Toxicology Division Armstrong Laboratory DSN 785-5740 Commercial (513)-255-5740

E-Mail:

DMATTIE @AL.WPAFB.AF.MIL

FAX:

513-255-1474

OL AL HSC/OET BIdg 79 2856 G Street Wright-Patterson AFB, OH 45433-7400 Briefing: Risk Assessment of Hazardous Materials: The Role of Toxicology

Briefed by: David R. Mattie, Ph.D., DABT

Armstrong Laboratory

Chief, Biochemical Toxicology OL AL HSC/OETB Bldg. 79

2856 G Street

Wright-Patterson AFB OH 45433
DSN 785-5740 FAX 785-1474

dmattie@falcon.al.wpafb.af.mil

Summary:

The presentation started with an explanation of the chemical risk assessment process and the need for health-based approaches to identify and characterize potential hazardous substances.

The risk assessment process can be applied to both workplace and environmental settings.

Toxicology was defined and related to the risk assessment process.

Issues were discussed such as requirements for testing and problems with extrapolation of data.

A brief overview of toxicity screens and tests was presented in order to help make toxicity data more meaningful.

Toxicity data for several chemicals of interest were presented as examples.

The presentation concluded with a description of Tri-Service Toxicology; what it is, who points of contact are and what this laboratory can provide to the DOD, industry and academia.

Technologies And Chemicals Runway Deicing

SMSgt Earl LaBonte HQ AFCESA/CEOM

Overview

- Approved deicers today
- Reduction of harmful deicers
- Urea/Ethylene Glycols
- Alternative chemical deicers
- Liquids and Solids
- Runway Ice Detection System
- Future
- Summary

Approved Chemicals

Isopropyl Alcohol

(Federal Specification TT-I-735a)

Propylene Glycol

(SAE AMS 1435)

Potassium Acetate

(SAE AMS 1435)

• Urea

(MIL SPEC DOD-U-10866D or

SAE AMS 1431A)

FAA Grade Sand

Reduction in Harmful Deicers

Urea

- Abuse as a deicer led to fish kills in Europe
- Degradation depletes oxygen in waterways
- Many states restricting urea-laden runoff

Ethylene Glycol Deicers

- AF/CE banned purchases in 1992
- Users were allowed to deplete existing stock

Urea Consumption

Liquid Deicer Alternative: Potassium Acetate (KAc)

- Benign Deicer (Environmentally Friendly)
- 95-96 Use up 300% Over Previous Year
- Price Continues to Decrease
- NSN 6850-01-341-9855 and 6850-01-341-9856
- Ensure Contracting Uses the Correct Specification (AMS 1435)
- Requires Computer-Controlled Application to Properly Dispense

Potassium Acetate Precautions

- Two primary concerns
- Airfield lighting faults observed at JFK
- Corrosion of F-16 ECM Pods at Eielson
- No known adverse effects on pavements
- Slightly corrosive:
- Store in poly or stainless steel tanks
- Wash application equipment thoroughly

KAc Usage Trend

De-Icing Technology Crossfeed, Arlington VA, 20-21 Aug 96

268

Alternative Solid Deicers Testing

- Alternative Solid Deicers
- Sodium Acetate
- Sodium Formate
- Objectives of prospective solid deicer test
- Will they serve as substitute for urea?
- Are they more or less effective?
- Do they require specialized handling?
- Test Shortfall no side by side comparison with urea

Test Results Sodium Acetate

 Tested at Elmendorf AFB AK Snow Seasons 94/95 and 95/96

- OBSERVATIONS

• Cost is high - \$1300/ton

Does not require special application equipment

Environmental Impact

-Oxygen demand lower than Urea (Good)

Good Potential as a Substitute for Urea

Test Results

Sodium Formate

- Tested at Minot AFB ND Snow Season 95/96
- Observations
- Cost is high \$900/ton
- Shape of granules is an advantage
- Does not require special application equipment
- Environmental Impact
- Oxygen demand lower than urea (Better)
- Good Potential as a Substitute for Urea
- Caking problem observed
- Manufacturer states problem corrected

Application Rates

	1/32 in ch 1/16 in ch 1/8 in ch
Sodium	24.67
Formate	47.30
lbs/1000SF	92.55
S o d iu m	23.45
A c e ta te	43.60
1b s / 1 0 0 0 S F	83.89
U rea	60.97
1bs/1000SF@	82.00
20F	124.06

Freeze Point and Environmental Hazard

De-Icing Technology Crossfeed, Arlington VA, 20-21 Aug 96

Comparisons

- Urea
- Environmentally harmful
- Potassium Acetate
- Corrosive
- Sodium Acetate
- Expensive
- Sodium Formate
- Material caking problems

Comparison Report

	Urea	Potassium	Sodium	Sodium
		Acetate	Acetate	Formate
Uffectiveness		Moderate	Moderate	
Unvironmental Fazard			Moderate	
Sost	Tol	Moderate		Moderate
Jase of Fandling	800	Dood	Moderate	
orrosiveness all meet AMS	Low	Moderate	Low	

CEOM Pg 15

Runway Ice Detection System

Information provides

Presence and Location of ice/water/frost

Forecast pavement and air temp

Weather forecast from remote source

Available Option

• Results:

Reduced amount of chemical distribution

- Reduced frequency of operations

Reduces materials and manpower

Snow & Ice Control Challenges

- Right Chemical for Circumstances
- Climatology
- Geography
- Right Application for Conditions
- Freezing Rain, Snow
- Exhaust Mechanical Methods First
- GOAL: Seek alternative deicers rather than costly collection methods

Future

- New chemicals
- Potassium Formate
- Equipment upgrades
- Mobile sensors for pavement temperatures

Summary

- Must decrease urea usage; Draw down to zero by FY98
- Must field alternatives
- Develop integrated approach to operations
- Maximize mechanical snow & ice removal
- Minimize chemical application
- Enhance detection; Deploy new technologies
- Re-think A/C ops: plan for launch delays when possible
- Make incremental improvements annually

References

- USAF S&IC bible: AFI 32-1045
- FAA Advisory Circulars (AC) provide helpful additional information
- Commercial Publications

DEICING VEHICLES

Naval Air Warfare Center, Aircraft Division DSN624-1926/COML 908-323-1926 Lakehurst, New Jersey 08733 Paul Swindell, Team Leader Code 11X714B, Blg. 562/1

CURRENT STATUS

NAVAL AIR WARFARE CENTER AIRCRAFT DIVISION LAKEHURST, NJ

USN HAS TWO TYPES OF DEICERS:

TRUCK MOUNTED - TM1800/D-40D

TACTICAL - TOWABLE

ALL USE ETHYLENE/PROPYLENE GLYCOL ONLY

ALL SPRAY WATER/GLYCOL MIXTURE

NAVAL AIR WARFARE CENTER AIRCRAFT DIVISION

REPLACE D-40D WITH TM1800

USE EXISTING USAF CONTRACT WITH LANDOLL CORP BOUGHT ONE UNIT IN FY96 TO PROTOTYPE HOT AIR SYSTEM UNIT DUE IN MAY 97 TO BE TESTED AT NAS BRUNSWICK

PROTOTYPE TO MIRROR EXISTING USAF CONFIGURATION USED FOR PAST 5 YRS ESTIMATED REDUCTION OF GLYCOL USE OF UP TO 50%

NAVAL AIR WARFARE CENTER AIRCRAFT DIVISION LAKEHURST, NJ

VACUUM RECOVERY TRUCK

ROLL MAT RECOVERY SYSTEM

BIOLOGICAL TREATMENT IN HOLDING PONDS

• IF YOU CAN'T WINTER BASE AT MACDILL, THEN

1

30 Aug 96

ENVIRONMENTAL DRIVERS

- CLEAN WATER ACT DOES NOT PERMIT PROPYLENE GLYCOL TO BE DISCHARGED INTO THE STORM WATER
- WINTER OPERATIONS MUST
 MINIMIZE THE AMOUNT OF
 PROPYLENE GLYCOL DISCHARGED
 TO STORM WATER

2

30 Aug 96

THE INSTALLATION STORM WATER POLLUTION PREVENTION PLAN WILL IDENTIFY THE MATERIALS YOU CAN ALLOW TO ENTER STORM WATER WITHOUT A PERMIT. PROPYLENE GLYCOL IS NOT AMONG THEM.

THE CLEAN WATER ACT DOES NOT PERMIT PROPYLENE GLYCOL TO BE DISCHARGED INTO THE STORM WATER. WE HAD TO GET SMART REAL FAST, TO MEET OUR OBJECTIVES AND MINIMIZE THE AMOUNT OF PROPYLENE GLYCOL USED. THE DAYS OF WASHING THE AIRCRAFT WITH HUNDREDS OF GALLONS OF DEICING FLUID ARE GONE, BOTH FOR ENVIRONMENTAL AND ECONOMIC REASONS: COST IS APPROX. \$4.50 PER GAL.

- OPERATIONS MUST MAKE THE BEST WEATHER DECISION:
 - WEATHER CONDITIONS
 - -RCR
 - PERSONNEL AVAILABILITY
 - HANGAR SPACE
 - MISSION REQUIREMENTS
 - DE-ICING CAPABILITY

3

30 Aug 96

OPERATIONS MUST BE WILLING TO PRIORITIZE ITS MISSIONS TO WORK WITHIN THE CAPABILITY OF THE MAINTENANCE UNIT TO GENERATE AIRCRAFT.

CREATIVE SCHEDULING CAN MINIMIZE THE LOSSES DUE TO WX CANCELLATIONS.

A LOT OF PLANNING AND COOPERATION FROM ALL SECTIONS MUST COME TOGETHER TO MAKE OUR PLAN WORK. OPERATIONS MUST MAKE SOUND WEATHER DECISIONS BEFORE, DURING AND AFTER FLYING. WE CAN GET LAKE EFFECT SNOW THAT CAN CLOSE OUR RUNWAYS DOWN IN A MATTER OF MINUTES. AIR CREW MUST BE FACTORED IN. AS AN EXAMPLE THE BASE MAY NOT HAVE ANY SNOW BUT THE SURROUNDING AREA COULD BE GETTING BURIED, CAN THE AIR CREWS MAKE IT IN? WOULD THEY BE ABLE TO GET HOME? SOME DRIVE 50 TO 100 MILES.

CAN THE RUNWAYS AND TAXI WAYS GET PLOWED? WE HAVE A CONTRACTOR, TATE SERVICES, WHO HAS DONE AN EXCELLENT JOB OF PLOWING, BUT WOULD THIS BE PART OF THE CONTRACT OR OVERTIME? COULD THE PLOW DRIVERS MAKE IT IN?

CAN THE FLYING BE RESCHEDULED? DO WE REALLY NEED TO FLY OR CAN WE ADD THE TRAINING REQUIREMENT ON TO A CROSS COUNTRY?

IF IT WAS SNOWING , AND WE DID DE-ICE , WOULD IT FALL WITHIN THE HOLD OVER TIME BEFORE THE AIRCRAFT TOOK OFF? WE HAVE NO LAST CHANCE DEICING

- IF YOU DECIDE TO FLY:
 - ALTER SCHEDULE TO WORK WITH THE WEATHER:
 - HANGAR AIRCRAFT
 - DELAY DEPARTURES TO PERMIT SOLAR OR MANUAL DE-ICING

6

30 Aug 96

IF WE DO DECIDE TO FLY, AND WE MAKE EVERY EFFORT TO MEET THE FLYING SCHEDULE, OUR FIRST CHOICE WOULD BE TO HANGAR THE AIRCRAFT. OUR RADIANT HEAT IN THE MAIN HANGAR CAN MELT TWO INCHES OF SNOW AND ICE IN TWO HOURS. WE ALTERED OUR ISO SCHEDULES TO KEEP THE MAIN HANGAR OPEN DURING OUR DEICING MONTHS. WE ALSO TOW OUR NEXT DAY FLYERS IN THE HANGARS BEFORE GOING HOME .

IF THE HANGARS CAN'T BE MADE AVAILABLE, BRUSHING OFF THE SNOW AND LETTING THE SUN WARM THE METAL DOES A BETTER JOB THAN PUTTING A COUPLE HUNDRED GALLONS OF FLUID ON THE AIRCRAFT. THIS MAY DELAY DEPARTURE BUT THE AIRCREWS NEED TO UNDERSTAND.

- IF YOU HAVE TO FLY
 - USE YOUR DESIGNATED DE-ICING SPOTS
- NO SPOTS? DE-ICE IN PLACE
 - WORK WITH THE WEATHER
 - BLOCK THE STORM DRAINS
 - USE THE CORRECT MIXTURE
 - CONTINUOUSLY VACUUM

7

30 Aug 96

IF WE HAVE TO FLY AND FOR SOME REASON THE AIRCRAFT WASN'T HANGARED, THEN WE USE THE DESIGNATED DEICING PADS OR SPOT DE-ICE. IF WE CAN'T GET ON THE DE-ICE PADS THEN WE SPOT DE-ICE. WE HAVE WRITTEN PROCEDURES. BASICALLY, WE CLEAR THE DESIGNATED SPOT OF SNOW, USE THE HOT AIR BLASTER TO CLEAR THE AIRCRAFT OF SNOW, AND DE-ICE USING THE PROPER MIXTURE IAW TO 42C-1-2.

FOR OFF-PAD DE-ICING, USE OUR TENANT VACUUM SWEEPER AND OUR MODIFIED TYMCO SWEEPERS TO CLEAN UP THE RUNOFF. WE ALSO INSTALL DRAIN BLOCKERS AND PIGS AROUND THE CLOSEST DRAIN WHERE FLUID MIGHT MIGRATE.

O TO THE TANK

DE-ICING ON A PAD

- PLOW THE RAMP AS CLEAN AS YOU CAN BEFORE YOU BEGIN TO DE-ICE
- REMOVE AS MUCH SNOW AS YOU CAN BEFORE YOU MOVE AIRCRAFT ONTO PADS
- USE HOT AIR BLASTER, BROOMS, ETC.

8

30 Aug 96

WE HAVE 3 DESIGNATED DE-ICING PADS THAT ARE DESIGNED TO HANDLE DE-ICING FLUID RUN OFF. THROUGH THE USE OF A HOLDING PIT AND FLAPPER VALVES, THEY CAN BE CONNECTED TO EITHER THE SANITARY SEWER SYSTEM OR THE STORM WATER DRAINS. WHEN IN THE DE-ICE MODE, THE NIAGARA FALLS SANITARY SEWER DISTRICT, BY PERMIT, WILL ACCEPT 2500 GALLONS OF PRODUCT EACH DAY. THE SAME PROCEDURES AS SPOT DE-ICING APPLY. THE PADS MUST BE PLOWED OF SNOW, AND THE AIRCRAFT MUST BE HOT AIR BLASTED OR SWEPT AS CLEAN AS POSSIBLE TO CUT DOWN ON THE AMOUNT OF FLUID THAT IS SPRAYED, WHICH REDUCES THE AMOUNT OF RUN OFF TO BE COLLECTED AND RUN THROUGH THE SYSTEM.

DEALING WITH ENVIRONMENTAL ISSUES

- WORK WITH YOUR STATE REGULATORS
- ESTABLISH REPORTING CRITERIA
- GET YOUR REGULATOR INVOLVED EARLY
- IF DE-ICING FLUID GETS AWAY FROM YOU, TREAT IT AS A SPILL

9

30 Aug 96

THE STATE REGULATORS MUST BE KEPT IN THE LOOP. THEY WERE PART OF OUR PROCESS IN EVERY WAY FOR GUIDANCE AND INTERPRETATION OF THE REGULATIONS.

DEALING WITH ENVIRONMENTAL ISSUES

- MAKE CLEAR THE OPTION OF LAUNCHING ALL AIRCRAFT INTO THE TEETH OF THE STORM IF A NATIONAL CONTINGENCY EXISTS--EVEN IF YOU HAVE TO SQUIRT GLYCOL EVERYWHERE
- YOUR REGULATOR WILL UNDERSTAND (ALTHOUGH YOUR BOSS MAY STILL GO TO JAIL)

30 Aug 96

NIAGARA FALLS DID MAKE IT CLEAR TO THE STATE REGULATORS THAT IN A NATIONAL EMERGENCY WE WOULD HAVE TO LAUNCH 18 AIRCRAFT (8 C130'S AND 10 KC-135'S) . THE MOST CONSERVATIVE DE-ICING PROCEDURES WOULD BE USED TO SAFELY LAUNCH ALL THE AIRCRAFT WITH A MINIMUM IMPACT TO THE ENVIRONMENT

- TENANT VACUUM TRUCK WORKS WELL
- MODIFY YOUR TYMCO RAMP VEHICLES FOR LARGE DEICING
- PIGS/DRAIN BLOCKS WILL STOP FLUID FROM GETTING INTO THE STORM DRAINS

11

30 Aug 96

NIAGARA FALLS MODIFIED ITS TYMCO RAMP SWEEPERS TO VACUUM UP DEICING FLUIDS AT A COST OF \$5,000.00 EA. THESE SWEEPERS WORK AROUND THE AIRCRAFT DURING AND AFTER DE-ICING. WE ALSO USE A SMALL TENANT VACUUM TRUCK THAT CAN GO UNDER THE AIRCRAFT WHILE WE DE-ICE. SPILLBLOCKER DIKES, DRAINBLOCKERS AND PIGS ARE ALL PART OF THE PROCESS TO KEEP THE DE-ICING FLUID FROM GETTING TO THE STORM WATER DRAINS OR OFF THE RAMP.

- PREVENTION THE BEST MEDICINE
 - FORECAST DE-ICING REQUIREMENTS FOR THE NEXT DAY
 - ALTER FLYING SCHEDULE IF YOU CAN
- ENSURE CHECKLISTS AND EMERGENCY PROCEDURES ARE IN PLACE IF SOMETHING GOES WRONG

12

30 Aug 96

- CONTRACT TO HANDLE YOUR WOES
- NEW TECHNOLOGY
 - ENVIRONMENTALLY FRIENDLY DEICING FLUID
 - RECYCLING: PROPYLENE INTO WATER
 - -INFRARED

13

30 Aug 96

- -- CONTRACTORS ARE AVAILABLE: ZENON CHARGES PEARSON AIRPORT IN TORONTO \$12 MILLION PER YEAR.
- -- WRIGHT LABS AND NASA ARE WORKING ENVIRONMENTALLY FRIENDLY DEICING FLUIDS:
- -- AFLMA FINAL REPORT LM 9416500: EXPLORING AVAILABLE DEICING TECHNOLOGIES (MSG STANLEY MYNCZYWOR)

THE KEYS TO AIRCRAFT **DE-ICING**

914 LG

- MINIMIZE GLYCOL USE:
 - WEATHER CANCEL
 - THERMAL/MECHANICAL DE-ICE
- BLOCK THE DRAINS; VACUUM
- WORK WITH THE REGULATORS

14

30 Aug 96

THE KEYS TO A GOOD PLAN:

MINIMIZE DE-ICING

PLANNING

WEATHER CANCEL

THERMAL AND MECHANICAL DE-ICING

STOP UP DRAINS

VACUUM

WORK WITH REGULATORS

L1 5 NOV 1994

MEMORANDUM FOR CEO

DO

LG

PA

SG

JA

FROM: CE

SUBJECT: De-icing/Anti-icing of Planes, Aprons, and Runways

- 1. The ultimate goal of the storm water regulations (40 CFR 122-124) is zero discharge of industrial pollutants into the waters of the United States. A rigorous interpretation of these regulations indicates that any airport discharging storm water mixed with de-icing/anti-icing compounds from the boundary of the property could receive a Notice of Violation (NOV) from the state or federal Environmental Protection Agency (EPA).
- 2. Zero discharge of de-icing/anti-icing compounds is the long term goal. In the interim, the amount of these compounds in storm water runoff must be minimized by the institution of Best Management Practices (BMPs). These practices minimize the discharge of pollutants into the receiving waters and can include managerial changes, equipment modifications, and large scale construction projects. A point paper describing many of these BMPs is attached for your information.
- 3. HQ AFRES will have to choose BMPs that will minimize the impact of de-icing/anti-icing compounds on water quality while still meeting operational and mobilization requirements. This will require cooperation among various sections of AFRES. A de-icing working group is being established to develop the command policy on de-icing/anti-icing. Request that you appoint a representative to this working group The first meeting is scheduled for 30 Nov 94, at 1330 in the CE conference room.
- 4. The point of contact for this issue is Ms. Susan Stell, CEVC, extension 71078.

BOBBY G. CLARY

The Assistant Civil Engineer

35 Clary

Attachment:

Point Paper

POINT PAPER ON THE MANAGEMENT OF DE-ICING/ANTI-ICING COMPOUND RUNOFF INTO THE WATERS OF THE UNITED STATES

The ultimate goal of the storm water regulations (40 CFR 122-124) is zero discharge of industrial pollutants into the waters of the United States. A rigorous interpretation of these regulations indicates that any airport discharging storm water mixed with de-icing compounds from the boundary of the property could receive a Notice Of Violation (NOV) from the state or federal EPA. This has occurred very infrequently to date because all air traffic during the winter in the northern climes would be effectively prohibited. It must be noted, though, that the Greater Pittsburgh ARS is currently under an administrative order that prohibits the discharge of propylene glycol from aircraft deicing to the waters of the U.S.

Storm water runoff from industrial activities is not prohibited by federal storm water regulations; however, the amount of contaminants in the runoff must be minimized by the institution of Best Management Practices (BMPs). These practices minimize the discharge of pollutants into the receiving waters and can include managerial changes, equipment modifications, and large-scale construction projects.

It is likely that federal and state regulations concerning storm water associated with industrial activity will become more stringent in the future. The discharge of storm water contaminated with de-icing/anti-icing compounds will become increasingly regulated and enforcement actions will become more frequent. The bottom line is that de-icing/anti-icing compounds will have to be collected and treated or recycled in the future at all airports. AFRES should be working towards a short-term goal of minimizing the presence of these compounds in storm water runoff and a long-term goal of zero discharge of these compounds from the aprons and runways into the waters of the U.S.

In the interim, AFRES will have to institute both general and base specific BMPs to minimize the impact of de-icing/ anti-icing compounds on stream quality. The BMPs must be consistent with Air Force (AFI) and Federal Aviation Administration (FAA) regulations. They will require cooperation among various sections of AFRES such as CE, DO, LG, PA, and SG. A meeting among these sections is recommended so that a consensus can be reached on mutually acceptable BMPs. Since de-icing/anti-icing is an Air Force wide issue, it is also recommended that a request be made for the establishment of a working group at the USAF/CEV level.

The following is a list of BMPs that might be instituted to minimize the effect of de-icing/anti-icing compounds on receiving water quality. They are in no particular order and any brand names mentioned are for illustrative purposes only, rather than an endorsement of the manufacturer's product.

1. Unless the mission is critical, do not fly during inclement weather.

- 2. If a plane must be flown, place it in the hanger the day before.
- 3. Modify street sweeping equipment to vacuum up the de-icing fluid. (Cost is about \$7000/street sweeper).
- 4. Purchase a dedicated vacuum system for de-icing chemical recovery. (Tennant 1550 Power Scrubber, cost ~\$80,000 or Mobile Recovery Plant De-Icing System or Tymco Model 600 Sweeper, cost ~\$105,000, for example).
- 5. Anti-ice rather than de-ice. If the weather forecast indicates inclement weather, anti-ice aprons and runways regardless of the time of day, rather than de-ice after the precipitation.
- 6. Keep aprons and runways mechanically scrapped clean so that a minimum of deicing/anti-icing is necessary.
- 7. Plug storm sewers with a collapsible, reusable balloon and suck out the fluid. "Stream Saver" by ILC Dover, Inc. is one such apparatus used at Dover AFB and the airport at Philadelphia. (Cost is about \$8000).
- 8. Construct a de-icing pad with a collection system or modify an existing area. This BMP may be necessary at all bases affected by inclement weather. (Cost ~\$300K to 2000K).
- 9. Install a gantry system that has recapture capabilities. (Cost is about \$3-7 million). The KX Kallax De-Icing System is one such system.
- 10. Properly calibrate de-icing dispensers.
- 11. Apply de-icers only where needed.
- 12. Use a washrack attached to the sanitary sewer for de-icing. (This BMP requires prior approval from the POTW).
- 13. Remove snow on airplanes with brooms or other mechanical means prior to de-icing.
- 14. Install a Runway Ice Detection System (RIDS). (Cost ~\$200K).
- 15. Use a distillation unit to recover glycols. The minimum concentration of glycol in the collected solution must be $\sim 10\%$.
- 16. Have a contractor pick up and dispose of the stored solution of glycol and water.
- 17. Install a portable mat with a fluid recapture system. (Pure Mat, for example).

- 18. Build detention ponds for the capture of the de-icing compounds and meltwater.
- 19. Use a package biological treatment unit to treat the de-icing wastewater.
- 20. Irrigate with treated wastewater.

This list is not all inclusive. More than one BMP may be needed and some combination of several of the above BMPs may be the best solution. The process of discussion, choice, and implementation of BMPs to minimize the discharge of de-icing/anti-icing compounds into the waters of the U.S. must begin soon. AFRES needs to show progress so that the risk of another administrative or Notice of violation (NOV) is reduced.

MEMORANDUM FOR 934 OG/CD

934 LG/CC 934 SPTG/CD 934 SPTG/CE 934 SPTG/CEV

FROM: 934 AW/CC

SUBJECT: Minimization of Use of Deicing Fluid

- 1. On 21 Nov 95, we met to discuss the management practices that will be employed by the 934 AW to minimize the use of deicing fluid during the upcoming winter. This memorandum is intended to provide a record of the items discussed and strategies we agreed on at that meeting.
- 2. Two letters from HQ AFRES/CV, which included anti-icing/deicing guidance, were provided to meeting participants prior to our discussion. These letters affirm that AFRES recognizes the scrutiny being applied to deicing operations by the environmental regulatory agencies. The letters also convey AFRES' support of efforts at bases to reduce deicing fluid use.
- 3. We agreed that maintaining operational readiness will at times require us to fly in poor weather conditions. However, we also recognize our potential for impact on the environment. Therefore, the following management techniques were discussed and agreed to as ways to minimize our deicing fluid use:
- a. Aircraft schedule to fly when poor weather conditions are anticipated will be hangared if possible. An infrared heating system was installed on the hangar last year. Hangaring aircraft has proven to be an effective technique at other facilities. This option will require us to maximize our planning and coordination to ensure that the aircraft scheduled to fly can be hangared when needed.
- b. When we know that deicing fluid use cannot be avoided during impending storm conditions, we must coordinate our efforts. Flying schedules need to be communicated to the 934 SPTG/CE. To accomplish this, CE will now be included on the distribution for the flying schedule. We must ensure that the CE is notified when weekend flying is planned, so that personnel are available to respond to deicing with the sweeper trucks. During normal operating hours, CE can be requested to respond to deicing via the

customer service clerk at extension 5360. During off-duty periods, security should be notified to call in the designated personnel.

- c. We must remove snow from aircraft and ramp areas as needed before we begin to use deicing fluid. This will enable us to more effectively accomplish collection of used deicing fluid with our sweeper trucks, and thus reduce the amount of fluid in runoff to storm sewers. This will also help us to alleviate MAC concerns about discharge of excessive volumes into their facilities.
- d. During periods when poor weather conditions are expected, we will discourage transients from flying non-critical missions to this facility. This will enable us to avoid unnecessary deicing of other aircraft.
- 4. Our long term strategy includes construction of a deicing pad, to begin in the Spring of 1996. Upon completion of this project, we will be able to capture deicing fluid when its use cannot be avoided, and will more effectively prevent runoff and discharge of deicing fluid. We will seek to incorporate recycling and reuse of fluid if it is possible and does not compromise the safety of our flyers.
- 5. We will continue to examine opportunities for implementing pollution prevention measures into our deicing operations. The 934 SPTG/CEV will further investigate higher efficiency spray nozzles adopted and used by Northwest Airlines for frost conditions on their aircraft. We will seek to make use of this innovation to reduce the volume of fluid dispensed in frost or light ice conditions.
- 6. All of our management strategies will be best achieved if we strive for effective communication and coordination between organizations that play a role in deicing operations. Through this concerted effort, we can maintain our readiness while fulfilling our obligations to protect the environment.

MICHAEL F. GJEDE, Col USAFR

Commander

cc: HQ AFRES/CEV 934 SPTG/SP

DEPARTMENT OF THE AIR FORCE

AIR FORCE RESERVE

12 1 FEB 1995

MEMORANDUM FOR SEE DISTRIBUTION

FROM: AFRES/CV

155 2nd St

Robins AFB GA 31098-1635

SUBJECT: Anti-icing/De-icing of Planes, Aprons, and Runways

- 1. Storm water mixed with runoff from de-icing operations is receiving increased scrutiny from the United States Environmental Protection Agency (USEPA) and state regulators. The ultimate goal of the storm water regulations is zero discharge of pollutants into the waters of the United States. A rigorous interpretation of these regulations indicates that any airport discharging storm water mixed with anti-icing/de-icing compounds from the boundary of the property into the waters of the United States could receive a Notice Of Violation (NOV) from the state or the USEPA. As emphasized in the past, AFRES facilities can be held liable for fines or penalties assessed by regulators.
- 2. Zero discharge of anti-icing/de-icing compounds is our long-term goal. Bases should plan, program, and execute projects necessary to accomplish this goal. In the interim, the amount of these compounds in storm water runoff must be minimized by the institution of Best Management Practices (BMPs) which reduce the discharge of pollutants into receiving waters. Anti-icing BMPs are defined as practices used prior to or at the start of a storm event, whereas de-icing BMPs are practices used during or after a storm event. Both types of practices can be used on planes, aprons and runways.
- 3. Anti-icing/de-icing guidance for AFRES bases during the 1995 winter season is shown in the attachment.
- 4. All applicable AFIs and T.O.s are to be followed. This guidance is not to be interpreted as superseding any of these instructions. Pilot, crew, and community safety is our first priority. However, the unit commander can and will be held liable, through installation O & M funds, for any fines or penalties assessed by regulators. These can be severe. Unit commanders must weigh all factors before commencing de-icing operations which may discharge pollutants into the waters of the United States.

5. Points of contact for this guidance are Mr. J.E. Dennard, HQ AFRES/CEO, DSN 497-1036; Ms. Susan Stell, HQ AFRES/CEV, DSN 497-1078; Lt Col Whitlow, HQ AFRES/DO, DSN 497-1139; and Mr. Paul White, HQ AFRES/LG, DSN 497-1645. Questions are to be directed to these individuals, depending on the area of concern.

JAMES E. SHERRARD III, Maj Gen, USAF

Vice Commander

Attachment:

Anti-icing/De-icing Guidance

ANTI-ICING/DE-ICING GUIDANCE

- A. Commanders should use anti-icing procedures to the maximum extent possible. In those circumstances when de-icing is necessary, commanders should evaluate the necessity of generating and executing each sortie. He/she should consider the impact of a mission cancellation or delay on such things as combat readiness, aircrew currency, customer requirements, environmental contamination, and safety. Whenever practicable, the commander should consider delaying a mission to avoid excessive de-icing and reducing the potential for damage to the environment.
- B. If the unit commander or OG/CC determines that the mission must be flown, the emphasis is to be on anti-icing best management practices rather than on de-icing practices. Close monitoring of developing weather systems would permit the delay of routine training or the prepositioning of aircraft clear of the freezing precipitation or the hangaring of scheduled aircraft.
- C. Suggested anti-icing/de-icing BMPs for aircraft include the following which are rated in order of preference.
 - (1) Place the aircraft in a hanger if a storm event is expected.
- (2) Educate personnel on proper equipment and operating procedures (T.O. 42C-1-2).
 - (3) Calibrate equipment and chemical usage.
 - (4) Use a de-icing pad, if available.
- (5) Use an aircraft washrack connected to a sanitary sewer, if available and if the Publicly Owned Treatment Works (POTW) agrees to accept the de-icing compounds.
 - (6) Avoid excessive overspray on aircraft.
- D. Anti-icing and de-icing practices for aprons and runways include the following which are rated in order of preference.
- (1) Educate personnel on proper equipment and operating procedures (T.O. 42C-1-2 and AFI 32-1045).
- (2) Start anti-icing when the storm event is imminent or just beginning. Pay overtime if necessary.
 - (3) Anti-ice/de-ice aprons and runways only where needed.

- (4) Attempt to mechanically scrape the areas clean prior to resorting to chemical use.
- (5) Calibrate equipment and chemical usage.
- (6) Potassium acetate is preferred over urea or the glycols.

911 Airlift Wing Pittsburgh International Airport Air Reserve Station

Aircraft De-icing Fluid Collection System

911 Airlift Wing PIA ARS

Aircraft De-icing Fluid Collection System

➤ Background

- ➤ Administrative Order issued by PA DEP (formerly DER) on 12 Mar 93
 - Required to cease unauthorized discharge of deicing fluids
 - Addition to earlier Administrative Order of 19 Jan
 93 issued to major carriers at PIA
 - ➤ Resulted from PIA de-icing operations in Dec 92 which caused fish kills in local waters

Aircraft De-icing Fluid Collection System

➤ Background

- ➤ 911 AW suspended all de-icing operations on 10 Feb 93
 - Aircraft kept in hangers
 - Flights suspended due to bad weather
- Administrative Order stipulated requirements:
 - ➤ Plan for permanent abatement of discharges to be submitted by 1 May 93
 - ➤ Plan implementation to be accomplished by 1 Oct 93

911 Airlift Wing PIA ARS

Aircraft De-icing Fluid Collection System

> Background

- ➤ 911 AW Compliance Plan developed Apr 93
 - Project programmed for collection of de-icing fluid discharges
 - De-icing Operations suspended until completion of project
- ➤ Additional requirements issued by PA DEP on 7 Sep 94
 - Monthly de-icing fluid usage records to be submitted
 - Plan for de-icing pad operation procedures required

Aircraft De-icing Fluid Collection System

- Project Scope

- ➤ 3 collection trenches (12"x12"), valve pit w/diverter valve, 3 catch basins, and drain lines
- ➤ 10,000 gal spent de-icing fluid tank w/dike and overflow controls
- ➤ 4,000 gal de-icing fluid tank w/dispensing system and lean to enclosure
- ➤ Power supply for both tanks

911 Airlift Wing PIA ARS

Aircraft De-icing Fluid Collection System

> Project Milestones

- ➤ Design Start
 - 1 Mar 93
- ➤ Design Complete
 - ► 1 Jun 93 (90 days)
- ➤ Construction Start
 - 16 Dec 93
- ➤ Construction Complete
 - ► 20 Dec 94 (1 year)

Aircraft De-icing Fluid Collection System

➤ Project Cost

- ➤ Apron Modifications
 - ► \$214,300 (incl. \$21,700 for SS mod.)
- ➤ Spent De-icing Fluid Collection System
 - **-** \$37,900
- ➤ New De-icing Fluid Dispensing System
 - **>** \$44,400
- Total Cost
 - **\$296, 600**

911 Airlift Wing PIA ARS

Aircraft De-icing Fluid Collection System

Base Map

Aircraft De-icing Fluid Collection System

**

911 Airlift Wing PIA ARS

Aircraft De-icing Fluid Collection System

Flow Schematic - De-icing Collection System

Aircraft De-icing Fluid Collection System

➤ Operational Procedures

- ➤ Heavy snow removed prior to towing aircraft to de-icing pad
- ➤ De-icing pad valve opened (divert flow to collection system) just prior to spraying aircraft
- ➤ Aircraft de-icing IAW USAF and de-icing system operations manual procedures
- ➤ De-icing pad valve closed NLT 15 min after spraying aircraft

911 Airlift Wing PIA ARS

Aircraft De-icing Fluid Collection System

> Operational Procedures

- ➤ Visual checks of trench drains made before commencing de-icing operation to ensure proper function of collection system
- ➤ De-icing system purged before and after each use to prevent damage from freezing
- De-icing Log maintained documenting all deicing operations
 - Monthly reports forwarded to PA DEP

911 Airlift Wing PIA ARS

Aircraft De-icing Fluid Collection System

> Usage

- ➤ Propylene Glycol Type I
 - CY 94-95 De-icing Season
 - 4,300 gal of new de-icing fluid used
 - 10,200 gal of spent de-icing fluid collected
 - ➤ CY 95-96 De-icing Season
 - 7,400 gal of new de-icing fluid used
 - 14,700 gal of spent de-icing fluid collected

911 Airlift Wing PIA ARS

Aircraft De-icing Fluid Collection System

- Conclusion

- ➤ De-icing system successfully operated for past 2 seasons
 - ➤ All unauthorized discharge of de-icing fluid to local waters eliminated
 - Spent de-icing fluid waste reduced through recycling
- ➤ PA DEP issued congratulatory letter on 31 Mar 95 for 911 AW efforts in preventing pollution

Aircraft De-icing Fluid Collection System 911 Airlift Wing, Pittsburgh International Airport Air Reserve Station

Briefing Summary

The aircraft de-icing fluid collection system at the 911 Airlift Wing (AW), Pittsburgh International Airport (PIA) Air Reserve Station (ARS) was installed in Dec 94 as a result of an Administrative Order (AO) issued by the Pennsylvania Department of Environmental Protection (PA DEP) in Mar 93. The AO cited the 911 AW as a tenant of PIA and required all tenants at PIA to cease any de-icing operations that produced unauthorized discharges into local waters. PA DEP issued the order after fish kills and public complaints regarding odor and discoloration in waters adjacent to PIA occurred during Dec 92. The AO required that compliance plans be developed by all cited parties and submitted to PA DEP for approval.

The 911 AW developed a Compliance Plan in accordance with the AO in Apr 93 that included the design and construction of a de-icing fluid containment and collection system project. Design of the project was completed in-house in Jun 93. Construction of the project was done through a local contract that began in Dec 93 and completed one year later. During project design and construction, the 911 AW halted all de-icing operations and used alternate means to keep aircraft free of ice. The completed project consisted of a 4,000 gallon dispensing tank system for new de-icing fluid, a de-icing pad with surrounding trench drains and collection inlets for runoff collection, and a 10,000 gallon collection tank system for spent de-icing fluid. The total project cost was \$296,600 which included associated piping and power requirements.

The main component of the collection system is a diverter valve which allows runoff from the pad either to flow into the base storm sewer system under normal conditions or to be diverted into the collection tank during de-icing operations. As a result, de-icing fluid runoff is contained and collected by the system. All de-icing operations are performed utilizing the collection system and are done according to Air Force requirements and the 911 AW operating manual for the de-icing collection system. The new collection system has been successfully used for the past two de-icing seasons. To date, approximately 25,000 gallons of spent propylene glycol solution has been collected and sent out to be recycled under separate contract. The de-icing fluid collection system has successfully eliminated unauthorized discharge of de-icing fluid to the local waters and has met the requirements of the original AO issued by PA DEP.

Stormwater Detention Ponds

Wisconsin Air National Guard 128th Air Refueling Wing 1Lt Robert Huelsman

Holding Ponds could do the work with minimal cost.

requiring little maintenance. Ponds are natural systems,

Goal and Objective

 Desired goal is to reduce glycol runoff to the waters of the State.

By capturing the glycol discharge in a holding pond, the runoff can be degraded naturally.

Today's Situation

- solutions prior to remove snow and ice. Aircraft are covered with gylcol
- Glycol runoff creates large BOD problem for receiving waters.
- No suitable method currently

exists to capture and/or treat the runoff.

How Did We Get Here?

- Flight safety requires deicing.
- "Do Nothing" alternative may violate stormwater discharge requirements.
- We need a cost effective method to continue flight operations.
- Typical "solutions" involve high costs in equipment and personnel to operate.

Pond Option

- Holding ponds can store runoff during the winter season.
- Natural processes can treat the holding water during the spring and summer.
- Cost is minimal and personnel requirements are low.

Positive Aspects

- Low to medium cost.
- Minimal personnel needed
- Natural degradation.
- Visually pleasing.
- Can capture other products.
- Decreased liablity.

Negative Aspects

- Significant land usage.
- Potential bird attraction.
- Treatment requires time.
- Degradation may not complete.
- Potential wastewater facility.
- Require single outfall.

Recommendation

effective method to hold and treat glycol Stormwater holding ponds are a cost contaminated runoff. The 128th ARW will pursue this method for stormwater protection.

Deicing / Anti-Icing Technology

Deicing Fluid Systems

Heater Supplies Fluid at 180 Degrees F Premix Fluid System

- Mixture Derived Manually
- Proportional Mix System
- Manually Adjustable Valving Yields Desired Mixture of Water and Glycol
- Provides Hot Water Deicing Capability

Anti-Icing Fluid Systems

No Recirculating Systems Back to Tank Unheated

Neat Tank - 1009

Diaphragm Pump Minimizes Mechanical Neat Tank - 100% Shearing of Fluid

 Low Pressure, Low Flow Application Also Minimizes Shearing

New Equipment Developments

"Type II" Anti-Icing Fluid System Kits FMC Modular Deicers and Options Enclosed Operator's Cabin Kits

"Type II" Anti-Icing Fluid System Kits

Utilizes Existing Tank Compartments in Main Compatible With Existing TM-1800 Deicers Fluid Tank

- 165 Gallon Capacity Is Standard
 - ▶ Diaphragm Pump
- Hydraulically Driven
- Delivers 20 30 gpm @ 70 psi

Enclosed Operator's Cabin Kits

Enclosure Protects Against Overspray and Blowback

Heated With Fuel Fired Heater

Seated Work Position Provides Increased

Operator Endurance

Removable Maintenance Platform

Sliding Right Side Door Provides Easy Center

Engine Inspection

Enclosed Operator's Cabin Kits

(cont'd)

Nozzle Movement Provide by Mechanical Over Hydraulic System

Removable Inside Panel Provides

Accessibility to Electrical Components

> 45 Degrees of Rotation Each Side of Center Provides Excellent Vision for Operator

Windows on Four Sides for Better Viewing

> Laser System Provides Nozzle Aiming

Helps Minimize Fluid Waste

Modular Deicers

- Small and Large Capacity
- · 1200, 1500, And 2000 Gallon Models
- Commonality of Parts
- Commonality Between Large and Small Deicers As Well As Commander 15 Loaders
- Capable of Mounting on Any Type of Chassis
- -- At Any Location
- Deicer Can Be Completely Assembled, Tested and Shipped Without a Chassis

Modular Deicers

(cont'd)

Corrosion Resistant, Easily Removable Aluminum Body

Torsion Bar Provides Stability

Soom Height of 51 Feet

Diesel Chassis and Heater Is Standard

> 24 VDC Electrical System Voltage

Ease of Maintenance and Operation

Minimized Pipe Thread Connections

Forced Air

Research

operative Research and Development Agreement Done in Conjunction With U.S.A.F. Under a Co-With Wright Laboratories at Wright-Patterson A.F.B.

· Testing

In Conjunction With Fed Ex and United Airlines

> Development

Performance by Holding the Column of Air Tighter Improvements in Nozzle Design Has Enhanced for a Greater Distance

Forced Air

(cont'd)

- Non-Turbine Air Source
- Subsonic Air Flow Reduces Noise
- Easier, Less Expensive Maintenance

Results

- As Much As 70% 100% Fluid Savings
- 30% 50% Time Savings
- Usability Has Been Expanded Beyond Dry Snow to Heavy Wet Snow and Frost
- Support Equipment, Containers, and Ramp Areas Useful in Removing Ice and Snow From Ground

Forced Air

(cont'd)

Modular Deicers

- Available As an Option in 1997
- Hydraulically Driven, "On Demand" Air Supply
- Provided As An Addition To Existing Deicing Fluid Systems

AEC/WRIGHT LABORATORY FORCED AIR DE-ICER NOZZLE VELOCITY VECTORS

AIRCRAFT DEICING

AIRCRAFT & AIRFIELD DEICING CONFERENCE & DEICING TECHNOLOGY CROSSFEED

Washington, DC August 18-21, 1996

Aerospace Equipment Systems (AES)

- AES (Torrance, CA) is owned by AlliedSignal
- AES makes aircraft air conditioning systems
- commercial & military aircraft marketshare is 75%+
- Annual sales about 600 million
- AES's products include centrifugal-type air compressors sister Engine division makes APUs
- AES's P3 compressor & Engine's 85 series APU are both ideal air sources for forced air deicing
- both are mature & field-proven equipment

AES's AIR SOURCE

Features of AES's P3 compressor

- robust & compact

light weight

- self-contained lube system

demonstrated reliability thru 35 yrs of aircraft service

Compressor + hydraulic motor package

very rugged & compact

small installation footprint: 16"(W)x30"(L)x18"(H)

- total package weight: 150 lbs.

produces over 100 ppm air @ 23 psi

Easily mounted at base of truck or ground booms

- simplifies air delivery system

AES IS EVALUATING FORCED AIR

- We understand that pure forced air is limited
 - ineffective in many deicing conditions
 - heavy, wet snow & ice can't be handled
- Effort underway to add "punch" to air stream
- AES approach marries two fluid flow technologies
- Our focus is in the following areas:
- keep the system simple & robust
- provide equipment familiar to deice operators
 - greatly reduce glycol consumption
- i.e. to 10% or less of current consumption provide effective deicing
 - provide ease of operation & maintenance

AES DEICE DEMO TEST

- Scheduled to begin after this Labor Day
- Test will be done at AES's laboratory
- will include heavy snow & ice on test wing panel objective is to determine if it works
- the first of several hurdles has been cleared We understand that a successful test means
 - more work must be done

Whisper WashTM

Deicing /Anti-icing System

(U.S. Patent No. 5,104,068; Canadian No. 2,056,120, foreign and other patents pending)

Arm Cross Section

Low Pressure Nozzle: Precise application of Anti-icing fluid

used for deicing wing surface Heated Compressed Air High Pressure Nozzle:

70% savings in Glycol usage over Deicing Trucks Higher Thruput Capacity (~3x's) than trucks Deicing and Anti-icing in a single pass Dual use -- De-icing and Cleaning Adjusts to Aircraft Dimensons Rapid Set-up and Removal

* Low Profile

Features:

For more information contact:

SSS

Phone: 410-569-1200 FAX:410-569-1202 Catalyst & Chemical Services, Inc. 2100 Muir Way, Bel Air, MD 21015

G

Weather, Wings, Wheels-up,

Whisper WashTM

Coming Soon to an Airport Near You!!

One-Step Deicing / Anti-icing System to Set New Standard

BWI will be the site of the Prototype Demonstration this Winter Deicing Season.

Fourteen years and \$2 million after the inception of a new deicing system, Environmental Engineer John Gaughan will realize the completion of a tragedy-inspired invention.

New Technology for New Demands

"The Air Florida accident in 1982 was a wake-up call to the industry" says Mr. Gaughan, "Deicing truck technology was no longer adequate to meet the safety demands of increased traffic in inclement weather operations."

In the decade since then seven major and 162 minor wing ice related take-off accidents occurred, not including three runway "slide-offs" in the 1993-94 deicing season.

These accidents, along with the increased concern for the environmental damage caused by deicing operations provided the inspiration to continue

during the uphill battle to change the industry's thinking towards off-gate (remote) deicing.

"Whisper Wash" was designed to meet all three major concerns: passenger safety, processing speed, and protecting the environment" reports Mr. Gaughan, President of Catalyst & Chemical Services, Inc. (CCSI)

DOE, EPA, and Maryland support Key to Completion

The Maryland Energy Administration (MEA) contacted CCSI about the cost sharing grant program known as NICE3 which fosters energy efficiency and pollution prevention industrial projects. "MEA advice and support has been critical to our success which provided the much needed capital to finish the project." according to Mr. Gaughan whose firm contributed \$1.6 million to the technology's development. "Their assistance put us over the top"

New & Improved

At this point, final construction and testing are underway with several improvements over the original tower design. Most notably, the "clamshell" chassis significantly lowers the overall profile of the equipment. This chassis design also improves the accuracy of the height adjustments for each aircraft and also has a locking failsafe feature in case of power loss. The placement of the equipment, cabling and counterweights allows the boom arm to be shortened by 15 feet. This reduces mechanical load (reduces "bounce") and allows for quicker set-up and disassembly times by only two ground crew personnel (i.e. faster response times to inclement weather events).

The double cantilever extensions at the end of the boom arms allow for greater deicing/anti-icing concentrations at the critical wing root and tail sections for an extra margin of safety. These improvements still carry the original advantages of (a) 70% reduction in glycol usage and (b) three times the thruput capacity of deicing trucks.

Whisper Wash™

Aircraft
Deicing / Anti-icing System

Whisper Wash™ Typical Layout (Overhead View)

A multi-purpose mobile device which provides rapid, efficient aircraft deicing and anti-icing in a single pass. This patented device uses heated, compressed air for deicing immediately followed by a precise application of an anti-icing fluid These fluids can be either Type I, Type II, or aqueous based materials.

This same technology can be used to clean and rinse an aircraft during warmer weather thus providing all-weather utility and cost savings.

The Whisper Wash ** Aircraft Deicing and Cleaning System U.S. Patent #5,104,068

The Whisper Wash is a drive-thru structure which both removes ice from an aircraft (deicing) and lays down a protective coating to prevent ice build-up on an aircraft prior to take-off (anti-icing). Both operations take place in a single "pass". An average 747 can be processed in under four (4) minutes and uses about 350 gallons of fluid. The structure is intended for use at a location remote to the departure gates and close to the end of runways, so that there is a short amount of time between treatment and take-off. Any excess fluid is collected and treated for possible reuse. The device is height, width and profile adjustable to accommodate all aircraft designs.

FLEXIBILITY

The actual system is mounted on flatbed trucks so that it can be moved into position and set up for deicing just prior to the arrival of an inclement weather event. After use, it can be disassembled and removed. The system can also be used to wash and rinse an aircraft during the warmer weather to enhance appearance and fuel efficiency.

The current technology are essentially fire trucks with "cherry pickers" attached that spray the anti-icing fluid (in most cases ethylene glycol--automobile antifreeze) on the aircraft; once to remove ice and a second time to prevent further ice build-up. This operation is performed at the gate. This technology is about 40 years old, uses about 2000+ gallons of fluid, takes about 20 to 30 minutes, and re-treatment is often necessary.

REDUCED OPERATING COSTS

Consequently, the use of Whisper Wash technology can meet several objectives of any airport/airline by reducing operating costs associated with indement weather operations and reducing delays associated with deicing.

ENVIRONMENTAL BENEFITS

In addition to the commercial benefits of updating deicing procedures, the environmental benefits are equally striking. Many states have issued studies which showed that the damage caused by delcing/anti- icing fluids to marine life around airports to be much greater and last much longer than anyone anticipated. It should be noted that the main components of deicing fluids, propylene glycol and ethylene glycol, are listed as non-toxic since they do not technically "poison" aquatic life. These fluids, however, absorb much of the Oxygen from the water in which they are dissolved; thus, suffocating aquatic life.

For this reason the EPA now mandates a clean-up and treatment program for spilled deicing fluids that nearly double the cost per gallon of using these materials. Replacement costs of a single deicing truck average about \$250,000. Each airline at a major airport usually has 15 to 20 of these trucks (average lifespan 4 yrs.) with three to four replaced per year. The manpower costs are also at a premium because these people are often drawn from other emergency functions during inclement weather operations. Long-term liabilities for used glycol are difficult to anticipate but are significant when one includes costs associated with storage and treatment. The Whisper Wash im technology eliminates these costs and liabilities for the airline companies.

REDUCED MATERIAL COSTS

We are currently working towards the installation of the first commercial *Whisper Wash* to system. Based on field tests of prototypes, a commercial system is expected to reduce the use of glycol based deicing chemicals by up to 66% with 95+% of excess material recovered for recycling. This will have a major positive impact on an airports' ability to meet the NPDES Storm Water requirements (i.e. 40 CFR Part 122) as well as meet the newer FAA deicing requirements for Part 121 (commercial carriers) and Part 135 (regional carriers) as well as FAA Advisory Circular on the design of Aircraft Deicing Facilities (A/C 150/5300-14).

IMPROVED SAFTTY

Despite all the operational, economic. environmental, and regulatory reasons that can be listed for the replacement of the current deicing procedures; the most compelling reason is safety. In the decade between the Air Florida crash in Washington (1/82) and the USAir crash in La Guardia (3/92), there were seven other major take-off accidents in which wing ice was cited as the cause (and five more in the decade prior to Air Florida's). In the 1993-94 deicing season, two planes slid off the end of the runways at Dulles, one in LaGuardia, and one in Cleveland for the same reason-- excess wing ice. FAA statistics from 1980 to 1990 show that there were a total of 162 reported icing accidents occurring on takeoff. Despite all the assurances of the aviation community, new technologies are clearly needed. It is for these reasons that the Whisper Wash technology has been developed and is being marketed by Catalyst & Chemical Services, Inc. of Bel Air, MD.

Deicing and Anti-icing

U.S. Patent # 5,104,068

PROCESS TECHNOLOGIES, INC.

PRESENTS

Infratek TM Pre-Flight Deicing

to the

UNITED STATES AIR FORCE ARLINGTON, VIRGINIA

21 AUGUST, 1996

H.Story

- * Process Technologies Inc., an infrared, radiant energy gas research company
- aircraft pre-flight ground deicing technology to the application of Applied the latest patented
- * Both cost effective and environmentally friendly.

Technology

Infrared radiant energy is applied through the use of patented energy process units negative impact on aircraft instruments, Effectively deice aircraft without any materials or occupants.

Industry Acceptance

FAA Washington, DC review of technology Referred to FAA Technical Center in Atlantic City

Extensive laboratory evaluation of aircraft components

Cooperative Research and Development Technologies, Inc. and FAA for further (CRDA) agreement between Process large scale evaluation

Greater Buffalo International Lirbort

Buffalo, New York

Winter of '94 - '95

Testing with FAA Convair 580 in accordance with CRDA terms Proved Viability of the Technology

Greater Rochester International Airport (GRIA), Rochester NI

Full scale demonstration, March 1996 (continues under CRDA)

FAA Boeing 727-100

InfraTekTM 2000 System installed on active taxiway, Alternative Technology Deicing Conference

200 plus representatives from aviation industry worldwide

InfraTekTM Rochester Airport Demonstration

Results

- Severe Icing (up to 3/16" thickness)
- Melt observed in 30 seconds
- ◆ Ice removed in 180 seconds
- Complete deice and dry in 8 minutes
- Frost Conditions
- Immediate melt during positioning of aircraft
- 3 minutes to total defrost and dry
- System operating energy costs
 - Gas & electricity \$93/hour (US)

InfraTektim System 2000 Cost

For aircraft such as Boeing 727, 737 and up to Boeing 757

Turnkey installation

Cost \$1.8 million (US) includes

- training of operating staff
- service & operation manuals
- 24 hour service hotline support

End user's responsibility to provide utilities to site

Inguiries to:

Process Technologies, Inc. 40 Centre Drive Orchard Park, New York 14127

Phone: 716/662-0022

Fax: 716/662-0033

Technical Center

Atlantic City Int'l Airport New Jersev 08405

Federal Aviation
Administration

June 6, 1996

John Chew Tim Seel Process Technologies Inc. 40 Centre Drive Orchard Park, NY 14127-4102

Dear John and Tim,

We have received and reviewed the *Preliminary Summary Report* which documents the aircraft deicing demonstration conducted at Greater Rochester International Airport during March.

The report accurately records the major events and findings of the demonstration conducted with the FAA's Boeing 727 aircraft. The demonstration at Rochester indicated that the Process Technology Inc. infrared energy system exhibits the ability to remove ice and frost from exposed surfaces of an aircraft in a safe and efficient manner. We expect that a full report with recommendations will be available later this year.

The Federal Aviation Administration's William J. Hughes Technical Center remains committed to continuing our partnership with Process Technologies Inc. under the terms of Cooperative Research and Development Agreement 95-CRDA-0077. As you know the role of the FAA in this partnership is to measure, observe, and provide resources that evaluate the advancement of a chemical-free method to deice aircraft. In this regard we suggest that you collaborate with other interested aviation parties to continue evaluations with a variety of aircraft and operational conditions in commercial applications with airline involvement. Towards this end we encourage you to distribute the *Preliminary Summary Report* to selected parties on a need-to-know basis.

Please contact me at 609 485-5138 if you have any questions or concerns on this issue.

Sincerely,

Jim White, Principal Investigator

Airport Technology R&D Branch, AAR-410

Pages 369-374 have been intentionally left blank

InfraTek™ Pre-Flight Deicing System

July, 1996

Major Components of the InfraTek™ System 2000

The basic InfraTekTM System 2000 includes as a minimum, the following component systems, equipment and labor:

- InfraTek facility, sized for 757 and similar narrow-body aircraft, completely erected on site with lighting, electrical and gas distribution systems included.
- Energy Process Units (EPU) mounted in banks of 4 individual burners depending on the aircraft layout agreed upon. Each individual EPU is fired by natural gas. Total number of EPU units is determined by aircraft fleet serviced. Each EPU runs on 120 VAC, and has a connected load of approximately 1 amp.
- Electrical distribution and control panel as necessary for equipment installed in the system.
 Supply voltage required is 120/240 VAC single phase, 60 hz.
- Gas safety and control valving as necessary for equipment installed in the system.
- All labor, whether provided through local sources or through PTI, to erect the Clamshell structure, install the electrical and gas distribution system in the structure, install and commission the EPU units. Labor to be per allowances established in the contract.
- Training to airport personnel (for a maximum of three days) on the operation, maintenance and troubleshooting of the structure, the EPU units and related systems.
- Access to 24 hour support from PTI technical service personnel.
- Operating manuals and documentation for all mechanical, electrical and system components of the InfraTek system.
- 1 year complete warranty on all components.

BUYER responsible for the following:

- Gas utility hook up and supply piping to the facility. Minimum 2 psi service pressure required.
- Electric utility hook up and supply to the structure control panel.
- Operation labor for the system.
- Permits and other regulatory agency compliance documentation and approvals.
- Obstruction and demarcation lighting, if required.
- Site preparation and foundations.
- Airfield Security during installation, commissioning and operation.

InfraTek™ System 2000 Specification

1. GENERAL:

- 1.1 The system facility shall be a frame supported, tension fabric structure of modular design, providing unobstructed area for aircraft access.
- 1.2 The system facility shall have fabric panels which can be removed from ground level with the structure erected and operational, without affecting the structural integrity of the structure.
- 1.3 The system shall incorporate high output infrared devices specifically designed for deice operations.
- 1.4 The system shall include all necessary control systems for safe and efficient operation.

2. SPECIFICATIONS:

2.1 Facility

- 2.1.1 Dimensions:
 - 2.1.1.1 The structure shall have external dimensions as follows: Width: 166 ft. Height: 56 ft with an eave height of 17 ft. Length: 208 ft. The structure shall consist of thirteen 16 ft long bays.

2.1.2 Structure Operational Characteristics:

- 2.1.2.1 The structure shall withstand steady winds of 90 miles per hour as assessed under the criteria of the U. S. Metal Buildings Manufacturers Association with the recommended Aluminum Association Safety Factor of 1.95.
- 2.1.2.2 The structure shall have an operational service range of -20° to +160° Fahrenheit.
- 2.1.2.3 The minimum structure life span of frame components shall be thirty (30) years. Fabric coverings of the structure are have a minimum service life of seven (7) years.
- 2.1.2.4 The structure shall be erected on a concrete surface prepared per facility manufacturer's recommendations.

2.1.3 Installation/Disassembly:

- 2.1.3..1 The structure shall be capable of being erected/struck by ten-to-twelve untrained persons in four weeks, or less.
- 2.1.3.2 The structure shall be capable of being erected/struck in wind speeds up to twenty-five (25) miles per hour.
- 2.1.3..3 The structure will require cranes and manlifts with 60 foot minimum height reach for assembly.

2.1.3.4 Concrete footings, or a concrete tarmac, suitable to withstand reaction loads provided by the facility manufacturer and local code requirements shall be provided at each arch termination point.

2.1.4 Materials:

2.1.4.1 Weather Barrier Fabric:

2.1.4.1.1	The fabric shall be a laminated PVC fabric of sufficient weight and strength to meet the performance characteristics required of the structure and subject to the following minimum requirements.
2.1.4.1.2	The fabric shall have a minimum tear strength of 120 pounds in the warp and fill directions per FED-STD-191 Textile Test Methods, Test Method 5134.1.
2.1.4.1.3	The fabric shall have minimum tensile strength of 400
	pounds in the warp and fill directions per FED-STD-
	191 Test Method 5100.
2.1.4.1.4	The adhesion of coating on the face side of the fabric
	shall have a minimum adhesion of 10 pounds per two
	(2) inch strip.
2.1.4.1.5	The fabric shall be UV stabilized in high and/or low humidity conditions.
2.1.4.1.6	The fabric shall not be susceptible to rot or mildew.
2.1.4.1.7	The fabric shall be flame resistant per NFPA 701 criteria.
2.1.4.1.8	The fabric shall remain serviceable in temperatures
	from -20°F to +160° Fahrenheit for the life of the structure without tearing.
2.1.4.1.9	The color of the fabric shall be White/White or Ivory/White.
	Weight to be $24 \text{ oz.} -0 + 2 \text{ oz.}$

2.1.5 Frame:

- 2.1.5.1 The frame shall be constructed of 6061-T6 aluminum alloy to U. S. Fedaral Spec. QQ-A-200/8 (equivalent to MIL-E-16053 and ASTM-B221).
- 2.1.5.2 Interchangeability/Modularity Structure components shall be such that like components can be exchanged within or between structures.
- 2.1.5.3 Channels The frame shall have channels which have provisions to accept both inner and outer tensioned fabric panels. The channels shall be smooth and allow the fabric panels to pass through them unobstructed.

- 2.1.5.4 Purlins shall be located on the inside of the fabric/weather barrier.
- 2.1.5.5 The structure shall have an aluminum rain gutter attached to the bays into which weather barrier panels clip, thereby providing a water control system.

2.1.6 Personnel Doors (optional):

- 2.1.6.1 Single personnel doors shall be provided at customer designated bays along the sides of the structure.
- 2.1.6.2 Single personnel doors shall be of heavy duty construction.
- 2.1.6.3 The personnel doors shall have minimum dimensions of 3'-0" wide x 6'8" high.

2.1.7 Support Systems:

2.1.7.1 Electrical Power Distribution:

- 2.1.7.1.1 A weatherproof, power distribution panel shall be provided for controlling electrical operations .
 2.1.7.1.2 All controls shall be clearly marked.
 2.1.7.1.3 The electrical system shall conform to the
 - current National Electrical Code

2.1.7.2 Lighting:

2.1.7.2.1 The lighting system consists of five (5) harnesses, each with two Hi-Bay light fixtures. Lighting provided shall provide 20 F.C. minimum @ 36" above the floor.

2.1.7.2.2 Lights shall be capable of being installed and secured from the ground before the framework is raised into its vertical position.

2.1.7.2.3 Lights shall be provided with pre-wired harness for ease of installation

2.1.7.3 Anchoring:

2.1.7.3.1 The anchoring system shall secure the structure during steady wind loads of 90 mph.

2.2 Energy Process Units

2.2.1 The Energy Process Units (EPU) shall be an unvented forced draft high output infrared radiant process burner designed for aircraft deicing. Total output should be sufficient for fast and economical deice operations.

- 2.2.2 The EPU units shall be suitable for operation in altitudes to 2000 feet above sea level without adjustments. Above 2000 feet above sea level operation with appropriate orifice jet adjustments should be possible.
- 2.2.3 The EPU units shall be capable of being fired with Natural and Propane gas.
- 2.2.4 The EPU Units shall be constructed according to methods listed in the following approval standards:

ANSI Z83.6-1990 ANSI Z83.6a-1992 ANSI Z83.6b-1993 Gas-Fired Infrared Heaters Addenda to ANSI Z83.6-1990 Addenda to ANSI Z83.6-1990

ANSI/NFPA Article 70

National Electric Code

CAN1-2.16-M81

Gas-Fired Infrared Heaters and Interim Requirement No. 24,

Tube Type Radiant Heaters

CAN/CGA-2.17-M91 CAN1-2.21-M85 Gas-Fired Appliances for Use at High Altitude Gas-Fired Appliances for Outdoor Installation

CSA C22.2 No.0-M1991

General Requirements-Canadian Electric Code, Part II

CSA C22.2 No.3- M1988

Electronic Features of Fuel-Burning Equipment

2.2.5 EPUs Units shall be installed according to methods listed in the following approval standards: ANSI Z223.1-1992/(NFPA 54) National Fuel Gas Code

ANSI Z223.1-1992/(NFPA 54) ANSI/NFPA Article 70 CAN/CGA B149.1 and B149.2

National Electric Code General Installation Codes

CSA C22.2 No.0-M1991 General Requirements-Canadian Electric Code

2.2.6 EPU Unit electrical rating shall be as follows:

Standard Equipment:
Optional Equipment

120 VAC; 60 Hz; 1.3 Amps; 1 Phase (North America)

220-240 VAC; 50 Hz; .7 Amps; 1 Phase, Phase-

Neutral System (Europe)

2.2.7 EPU Unit gas pressure ratings shall be as follows:

Minimum Supply Pressure:

Natural Gas - 5.0" W.C.

Propane Gas - 11.0" W.C.

Manifold Pressure:

Natural Gas - 3.5" W.C.

Propane Gas - 10.5" W.C.

2.3 Auxiliary Equipment

- 2.3.1 The facility shall be equipped with a breaker type electrical distribution panel which accepts power from local utilities and distributes it to EPUs, lighting and accessory outlet connections according to local code requirements. The load rating of the panel shall be sufficient to accommodate EPUs and Support Equipment.
- 2.3.2 Integral lighting fixtures shall be provided to supply a minimum 20 foot-candles illumination at a level 3 feet above finished floor within the facility. Typical fixtures are of the 1000 watt, metal halide variety.
- 2.3.3 The facility shall be capable of distributing gas from local utility sources. Both high pressure (2-4 psi) and low pressure (1/2 psi or less) distribution systems shall be accommodated. Metering and safety relief outside the structure shall be according to local code requirements.

2.3.4 Connection between the gas distribution piping and the EPU bank distribution piping shall be provided via flexible, corrugated stainless steel tube wrapped in PVC. Flexible tubing shall be approved for use according to a variety of standards including the Canadian and American Gas Associations.

3. WARRANTY:

Process Technologies, Inc. (PTI) warrants that the equipment delivered hereunder will be free from defects in workmanship and will conform to applicable specifications invoked in this agreement. Subject to the limitations set forth below, PTI agrees to replace or correct within a reasonable time frame and without expense to the Buyer any materials not conforming to the foregoing requirements when notified by the Buyer thereof during a period of 12 months after delivery. Materials returned to PTI for repair/replacement must be so authorized by PTI prior to shipment back to PTI.

This warranty excludes consumable parts, such as hardware, bulbs, fuses, etc., during the warranty period.

Failure of the Buyer to properly complete all pre-installation and installation requirements, system test requirements and maintenance procedures as required by PTI via technical, operational or maintenance manuals shall release PTI from all of its obligations as herein provided.

The foregoing warranties are exclusive and in lieu of all other warranties, whether express or implied, including any warranty of merchantability or fitness for a particular purpose. Failure of the Buyer to promptly notify PTI of any such non-conformity shall release PTI form all of its obligations as herein provided. Further, any repairs or alterations to the equipment by the Buyer not authorized by PTI in advance shall release PTI from its warranty obligations. Any defects or damage resulting from abnormal use, misuse, abuse, or normal wear and tear are not covered under this warranty and shall be the responsibility of the Buyer.

This warranty applies only to the extent that any equipment or process furnished hereunder is in accordance with PTI's goods regularly sold and not (a) supplied according to Buyer's design or instructions; (b) modified to meet particular needs of the Buyer; or (c) combined by Buyer with items not furnished hereunder, where such design, instruction, modification or combination is responsible for the warranty claim. The foregoing states the entire liability of PTI with respect to warranty.

WARRANTY (applicable to services rendered):

PTI warrants that any service rendered hereunder will meet professional standards and will conform to all requirements of this Order. PTI agrees that it will, within a reasonable time frame, correct or reperform without expense to the Buyer any services which do not meet such requirements when notified by the Buyer within a period of 12 months after performance of such services. The remedies provided hereunder are exclusive, and no other warranties, either express or implied, are applicable.

Efficient Pre-Moist Chemical spreaders

De-icing Technology Crossfeed ANSER - U.S. Air Force August 20-21, 1996 in Arlington, Virginia

Epoke A/S, Denmark, 1996

Main figures

- 230 employees
- and 55 employees in 4 subsidiary companies
- 13.500 m2 production facility in Danmark
 - Total sales approx. DKK 150 mio.
- Export share 75%

History in brief

- Ole Christian Thomsen, district engineerat Ribe Amts Vejvæsen (Ribe County Road Administration), invents the sewer cleaner and a sand spreader with spreading disc.

1950 ies.

- Alfred Thomsen invents the roller princip (Epoke princip) and establishes the production plant in Aaskov.
- In 1956 the first dealer agreement is signed with Grindvold in Norway

1990 ies.

- Epoke is now owned by the 3. generation
- Export now to more than 25 different countries
- 100.000 Epoke spreaders now in operation all over Europe, Canada and in the USA.
- Subsidiary companies in Germany, Sweden, France and in the USA

Product development since 1980

Bodö Nato Airport, Bodö, Norway	Ь 60 Н	1980
Schiphol Airport, Amsterdam, Holland	PWB 52 2T	1980
Forsvarets Materiel Värk - Danish Military Airports in Värlöse, Tirstrup, Karup and Skrydstrup, Denmark	PWB 58 2T	1982-1983
Fuhlsbüttel Airport, Hamburg Germany	PB 2T 67 H	1983
Bodö Nato Airport, Bodö, Norway	PB 2T 70 HD	1985
Langenhagen, Hanover, Germany	PWV 87 HKD SH 2000	1993 1994
Forsvarets Materiel Värk -Danish Military Airports in Tirstrup, Denmark	PWV 87 HKD	1995
FMV Forsvarets Materiel Värk, (Swedish Military Airports in Luleå, Østerssund, Såteness, Uppsala, Säve, Ângelshol, Söderhamn, Eskildstuna, Lindköping, Ljunbyhed, Rönneby, Hultsfred, Sweden	SH 4515 2T Runway Combi	1995 - 1996
Billund Airport, Denmark	SE 4515 2T Runway Combi	1995

The above is only some of our european customers

epoke.

MOST COMMON RUNWAY DE-ICERS IN EUROPE

VariousSandVariousGlycolBP Chemicals,Clearway 1				quantities
			(150 g/m2)	
		Nitrogen, Solid de-icer	Anti-icing 20 g/m2 De-icing 40g/m2	7,6 O. /FT.2 15,2 O/FT.2
		Liquid de-icer		
	ay 1	Liquid de-icer based on potassium	Anti-icing 20g/m2	7,6 O. /FT.2
England		acetate.	de-icing 40g/m2	15,2 O/FT.2
BP Chemicals, Clearway 2S		Solid de-icer based on sodium acetate	Anti-icing 20g/m2	7,6 O. /FT.2
England		for use on thick ice and around stand	De-icing 40g/m2.	15,2 O/FT.2
		areas. Is most effective when	Best when prewetted	
		prewetted with Clearway 1	with Clearway 1 (5-	
			25%)	
Hoechst AG, Safeway SD		Solid de-icer based on sodium acetate	Anti-icing 20g/m2	7,6 O. /FT.2
Germany			De-icing 40g/m2.	15,2 O/FT.2
			Best when prewetted	
			with Safeway KA	
			(5-25%)	
Hoechst AG, Safeway KA		Liquid de-icer based on potassium	Anti-icing 20g/m2	7,6 O. /FT.2
Germany		acetate.	de-icing 40g/m2	15,2 O/FT.2
Norsk Hydro A/S, Aviform L50		Liquid de-icer based on	Anti-icing 20g/m2	7,6 O. /FT.2
Norway		potassium acetate	de-icing 40g/m2	15,2 O/FT.2

Airport spreading areas

- 1) Runways
- 2) Taxiways
- 3) Aprons
- 4) Other outdoor areas

epoke e

Epoke material distribution

- Spreading of dry matter:
 The Epoke principle (impellor, delivery roller, spring base and unloaded conveyor belt)
- Spreading of prewetted material: Liquid is added directly to the dry material on the spreading disc.
- Spreading of liquid:

 Fan-shaped spraying via nozzles thus achieving an overlap spraying pattern.

 Delivery at low height from runway surface prevents turbulence and wind problems during spreading.

®EpoMaster controlsystem

- Prepared for data acquisition.
- Spreading quantity per m2., the total, spreading width, date, time and many other data are stored automatically
- All data will be computericed through the EpoVision programme.

Ways of spreading

- 5 known spreading possibilities:
- 1) Dry matter
- 2) Pure liquid
- 3) Combined dry matter & liquid
- 4) Dry matter prewetted
- 5) Dry matter prewetted/combined with liquid

Runway spreaders model nos. SW3500 2T og SE3500 2T

Both models are:

- Road speed related
- Both are available with 4 12 cu. yards (3 9 m3) hoppers for dry material and liquid tanks as desired
- Prepared for data acquisition by means of the EpoMaster control system

- Operated by a hydraulic pump on the "5th wheel"
- Spreading width Sand : 13 52 Ft. (4-16 meters)

De-icers: 13 - 40 FT (4-12 meters)

- Operated by a seperate diesel engine
- Spreading width Sand : 13 79 Ft. (4-24 meters)

De-icers: 13 - 73 Ft. (4-22 meters)

Runway Combi model SH4500 2T

Spreading width

Dry material......33 - 50 - 57,5 Ft. (10-15-17,5 m.)

Liquid.......33 - 50 - 57,5 Ft. (10-15-17,5 m.)

Working width.....30,5 Ft.

(9,30 m.)

Capacity

- Dry material: 7,2 Sq. Yards (5,5

- Liquid. 997 Gallons

(5,5 m3)

(3700 liters)

Road speed related

Prepared for data acquisition.

EpoMaster remote control unit

Runway Combi model SE4500 2T

Operated by a seperate diesel engine.

Road speed related

Prepared for data acquisition.

EpoMaster
remote control unit

EpoJet PWV 87 HKD runway liquid spreader

 Truck mounted liquid spreader with seperate liquid tank. Capacity 2113 or 2641 gallons liquid (8000 or 10000 liter)

• Operated by a (DIN) 27 HP. dieselengine

Road speed related

epoke.

Liquid spreader model SW 2000

- Spreading width:11,5 to 23 FT. (3,5/7 meter)
- To be mounted to existing liquid tank
- Spreading quantity.....10 60 ccm/FT2. (2,5 15 g/m2
- Operated by a hydraulic pump powered by the wheels
- Road speed related

"CITY SPRAYER" Liquid spreader for narrow areas

Capacity: 264 or 396 gallon hopper (1000 or 1500 liter)

Road speed related

Suitable for small tractors like Holder, Izeki etc..

"Pick-up Compact "

Spreading width: 5 to 33 FT. (1,5-10 meter)

Capacity: 1,0 to 1,8 square yards (0,8-1,4 m3)

The spreader can be supplied for operation by version for operation by the hydraulic system a seperate petrol engine or as a hydraulic of the truck

Spreading quantity

salt: 2 - 16 ounces/sq.Ft. (5 - 40 g/m2)

sand: 13 - 66 ounces/sq.Ft. (35-175 g/m2)

with EpoBasic remote control

Road speed related

17,

Model LM 20 for wheel loaders

- Spreading width min.: 6,5 Ft. (2,0 meter)
- Hopper capacity: 2,9 cu. yards (2,2 m3)
- Mountable and demountable in a few minutes.
- Powered by the hydraulics of the wheel loader
- Spreader, snowplough and loader combined in one

Sweeper model B35

- Strong sweeper with large sweeping width
- 8,2 9,8 11,5 Ft. brushes available. (2,5 3,0 and 3,5 m)
- 6,5 8,2 9,8 Ft. sweeping width at 30 gr. angling (2,0 2,5 and 3,0 m
- Mountable on mounting tool of the wheel loader or on trucks
- Operated by the hydraulics of the wheel loader
- Constant and reqular pressure with unique balancing

Epoke snowplows

Clearing width: till 8,8 Ft. (3 m.)

6 models

Mainly for plouwing on low priority areas.

Epoke grass mowers for different vehicles

epoke.

- Many different variants:
- For trucks, tractors, wheel loaders etc.

Epoke's guarantee for quality

The surface treatment of Epoke consists of:

- steel ball blowing

- zinkprimer

- 2-component primer

- 2-component paint

Epoke became ISO 9001 certified in 1993

RO-MAT FLUID CONTAINMENT PAD INSTALLATION AT COPENHAGEN INTERNATIONAL AIRPORT

INSTALLATION UNDERWAY AT MADRID INTERNATIONAL AIRPORT, SPAIN

INSTALLATION OF RO-MAT FLUID CONTAINMENT PAD

LAYOUT OF RO-MAT DEICING PLATFORM AT MADRID, SPAIN AND LEIPZIG, GERMANY

REMOTE DE-ICING PLATFORM SYSTEM

SKETCH I

Page 2-3

AIRCRAFT DE-ICING/WASHDOWN PLATFORM PLAN VIEW

SKETCH VI

AIRCRAFT/WASHDOWN PLATFORM

ELEVATION

INTERNATIONAL
AUTOMATED SYSTEMS, INC.
ST. PAUL, MN USA

DEICING TECHNOLOGY CROSSFEED AUG. 20 & 21, 1996 PRESENTATION BY INTERNATIONAL AUTOMATED SYSTEMS, INC. (IAS)

INTRODUCTION:

INTERNATIONAL AUTOMATED SYSTEMS, INC.'S (IAS) PARTICIPATION AS A SYSTEM SUPPLIER, FOCUSED ON GROUND SUPPORT OF MILITARY AIRCRAFT

- IAS ITS BUSINESS RELATIONSHIP WITH THE DOD. DEVELOP, DESIGN, SUPPLY, AND INSTALL TURNKEY GROUND SUPPORT SYSTEMS UNIQUE TO MILITARY AIRCRAFT.
- 1.1 What is our role in deicing of military aircraft.
- 1.2 Specific to IAS' presentation at this conference:Solutions to storm water runoff problems <u>The Fluid Capturing System</u>

2. APPROACH TO DEVELOPMENT OF A DEICING SYSTEM UNIQUELY SUITED FOR MILITARY APPLICATIONS.

Based on IAS' survey of military bases, the design must have the following features:

- 2.1 Modular and unitized design to allow system modules to meet varying sites' restraints and applications without major redesign.
- 2.2 Design for flexibility in application and capability of redeployment with short notice to respond to mission changes.
- 2.3 Adaptable for change from deicing system to clean water wash down and scrub down cleaning for year-round utilization of the system.
- 2.4 Environmental compliance with the Clean Water Act and with federal, state, and local regulations.
- 2.5 Only performance-tested system modules are used.
- 2.6 Simplicity in installation and maintenance.
- 2.7 Suitable for remote location at the runway.
- 2.8 Cost-effective design.

3. THE PRINCIPAL SUBSYSTEM - FLUID CAPTURING SYSTEM (THE PAD).

Principal design features:

- 3.1 Completely waterproof without seepage to ground.
- 3.2 High fluid retainage and controlled runoff capability of surplus fluid even in high winds and when engines are running.
- 3.3 A close circuit fluid containment, drainage, and collection system.
- 3.4 Easily redeployable without need for replacement of parts.
- 3.5 Same basic product adaptable for deicing pads for fighter, tanker, and transport aircraft.
- 3.6 High vehicle braking characteristics without producing a "carpet-effect" when aircraft or spraying trucks are braking.
- 3.7 Adaptable for mobile spraying, fixed, or automated spraying system.
- 3.8 Able to withstand other chemicals associated with aircraft operation.
- 3.9 Simple installation without need for foundation work beyond the drain system and collection tank.
- 3.10 The pad must be adaptable for watertight installation of spraying nozzles and taxiing lights in the pad.
- 3.11 Conventional snow clearing equipment must be usable for the pad.
- 3.12 Low maintenance cost.
- 3.13 Long service life (15-20 years).
- 3.14 Low initial investment cost. Less than a comparative concrete pad.

4. THE FLUID COLLECTION PRODUCT - THE RO-MAT.

- 4.1 IAS has a product that meets the above stated specifications. It is the RO-MAT manufactured by Roulunds Fabriker, Denmark.
 - -RO-MAT fluid capturing platforms have been installed on major commercial airports in Europe and are used in deicing of commercial passenger aircraft
 - -IAS is the agent for sales of RO-MAT systems to the DOD.
 - -The RO-MAT product will now be introduced by Mr. Lars Kock, Product Manager, Airport Ground Equipment, A/S Roulunds Fabriker.

PRODUCT DESCRIPTION

The central component of an environmentally acceptable aircraft deicing or wash down system is the runoff fluid containment platform—the RO-MAT.

The RO-MAT is a unique product manufactured by Roulunds Fabriker A/S in Denmark.

Roulunds is a 250 year old, diversified international corporation serving a broad spectrum of industries around the world. The company is a leader in several rubber related environmental tools such as in the field of ocean oil spill containment technology and equipment.

The RO-MAT platform has been installed and is in successful operation on commercial airports as the critical item in ecologically acceptable deicing collection and processing systems. These installations have proven that much more fluid can be collected by using the RO-MAT instead of concrete or asphalt pads.

The RO-MAT presents the only fail-safe, close circuit, runoff fluid containment and collection system available and in commercial use today anywhere in the world. RO-MAT containment systems for glycol deicing systems are in use in Europe on large international airports; such as Madrid, Spain; Leipzig, Germany; and Copenhagen, Denmark.

The RO-MAT platform is a deeply ribbed, steel belted, tough rubber matting of virtually indestructible quality that limits the runoff fluid to the mat and the connected drainage system. From there the fluid is channeled into holding tanks for cleaning, processing, storage, and fluid recycling or shipping.

The RO-MAT platform (patent pending) uses the normal slope of the taxiway, which is about 1.5 percent from the center line in both directions, to drain deicer fluid along a series of transverse grooves in its surface and through a drainage system at the bottom of the slope into collection tanks. Since the RO-MAT platform is installed as a large mat, it is easily disassembled and redeployed in case of mission changes.

The principal feature of the RO-MAT is that it provides a <u>performance tested</u>, fluid-capturing platform that meets the current stringent ecological and safety codes:

- 1. Construction. The RO-MAT is molded EPDM (ethylene-propylene elastomers) that offers superior ozone and weather resistance, excellent heat resistance, low compression set, and low temperature flexibility. EPDM has excellent resistance characteristics against abrasion, chemicals, and ultraviolet light. The mat is 3/4" thick and has a rugged surface to prevent skidding and steel reinforcement cables to prevent braking from producing a "carpet-effect" of the mat. The mat is rugged enough to allow the use of conventional snow removal with nylon brush equipment to clean the mat.
- 2. Aircraft and vehicle ability to safely stop on the platform. One of the stringent requirements for authorized use of any fluid collection platform on a commercial airport is the ability of aircraft and heavy service vehicles to <u>safely stop when brakes are applied</u>. The runoff fluid in a deicing operation consists of glycol, snow, crushed ices, oil, and dirt which renders most smooth surfaces extremely slippery and unsafe for vehicle and people traffic. The configuration and selection of the material of the RO-MAT provides a safe and reliable braking surface. Extensive testing in Europe has established the criteria for safe braking characteristics for aircraft and vehicles. The RO-MAT meets the requirements which have cleared the product for application on commercial airports with traffic of large passenger and cargo aircraft. The RO-MAT can be furnished with yellow taxi lines and in the pad, imbedded watertight light fixtures, as required for navigational assistance, and stainless steel spray nozzles for under wing and landing gear deicing.
- 3. Fluid collection and runoff. The configuration of the mat surface allows the runoff fluid to be retained on the mat for runoff even when exposed to wind and air current from the aircraft's jet engines at idle or breakaway power. On commercial airports, the aircraft moves over the platform on its own power. A copy of a performance report for the RO-MAT system issued by Scandinavian Airline Systems, dated 6 August 1993, is copied on page 1-4. This report states that 75% of the sprayed glycol was collected on the platform during the winter of 1992-93. The remaining 25% attached to the aircraft blows off during taxiing and takeoff.

The RO-MAT is designed to provide collection and convenient drainage of fluid runoff into storage tanks for processing and/or disposal. The drainage system is a custom-designed inground system consisting of standard components fitted to the application.

- 4. Installation. Due to the design of the RO-MAT platform, it is well suited for the location of the deicing process at close vicinity to the takeoff point on the runway. The platform can be installed on any concrete or asphalt apron or taxiway surface quickly and without expensive time-consuming surface preparation. The mat will follow the sloped contour of the taxiway, which will facilitate the waste fluid runoff and drainage. Only minor modifications to existing aprons or taxiways are required for installation of the trench drainage system that serves the RO-MAT platform. The RO-MAT is manufactured and shipped in 7 ft wide rolls which are mechanically connected by stainless steel hardware.
- 5. Maintenance. Once the RO-MAT is installed, it is virtually maintenance free. The mat is almost indestructible, and the anchoring hardware components are all fabricated of stainless steel. Only the edges of the platform are anchored to the ground. Each of the 7 ft wide ribbons of mat are connected to each other with stainless steel screws acting as expansion joints.

Kastrup, 6th August 1993 CPHTS-B/Jens Andersen

REPORT CONCERNING COLLECTION OF DE-ICING FLUID AT CPH IN WINTER 1992-93

In order to protect the environment the Copenhagen Airport Authority installed a de-icing platform (Ro-Mat) before the winter season 1992-93 for collection of the used Glycol.

All used and collected Glycol has been registered by measuring the content of the used Glycol each time we forwarded it to the nearby waste water treatment plant. We found that the Glycol concentration we delivered was between 25,8 and 32,5%.

We had 1822 de-icing operations on the platform. We used 157.000 kg 100% Glycol and collected 120.000 kg 100% Glycol - which means that approx. 75% of the sprayed Glycol was collected on the platform.

The total consumption of Glycol in CPH was:

861.366 kg 40% Type I - and 188.665 kg 50% Type II

corresponding to 439.000 kg 100% Glycol, of which

157.000 kg were used on the platform - and - 36.000 kg were used as prevention after landing (3600 operations).

The remaining 246.000 kg were used at the gates.

Coastal Fluid Technologies, Inc. 102 Magnate St., P.O. Box 81577, Lafayette, LA 70598-1577

Phone:

318-261-0796

Fax Phone:

318-261-0797

Attention: Glenn Vanderlinden - Director, Sales & Business Development

Voicemail:

(800) 535-8412 Ext. 364

Pager:

(800) 829-6991 (905) 643-2622

Return Fax : Phone :

(905) 643-4793 - dial Ext. 364 for voicemail if system prompts

WWW E Mail:

glenny@coastalfluid.com

Subject: Coastal Fluid Technologies, Inc. (CFT) has is an integrated service provider in the field of glycol recycling and contaminated stormwater management. It bases these capabilities on their proprietary and patent pending RampRanger collection technology and their Glyvap mobile evaporation process. Both of these technologies have been field proven for over 5 years now.

The collection experience began 5 years ago in airports that were facing severe environmental pressures but had no technical means of solving the problem of spent deicing fluids from migrating into stormwater systems. The RampRanger was developed to remove as much glycol from the spraying area as possible during a storm event but more importantantly, to clean the residue that remained after the deicing event to allow further precipitation to flow compliantly to the storm drain.

It soon became apparent however that while containing the collected fluid, and stripping residual glycol from the surface, prevented stormwater problems, it also created huge financial liability in paying disposal charges. CFT introduced it's recycling capabilities to the industry 18 months ago and has been piloting it with fluids from Chicago, Detroit, Cleveland and Pittsburgh airport throughout last winter. The operation recently began processing 1,000,000 USG of glycol that remained stored there from last years collection operations.

CFT has packaged these technologies and services in a flexible manner to allow custom solutions to specific airport operations. In addition, any recycling revenues that are possible from a project are used to offset collection and management costs. This approach allows proper staffing of projects with experienced people that concentrate on the three main needs of the client, environmental compliance and an affordable cost for the solution.

Coastal Fluid Technologies, Inc.

Recycling and Treatment Services for Spent Deicing Fluids and Contaminated Stormwater

- Aviation saftey priorities require descing fluid to be sprayed as and when required
- ** Most deloing fluids have extremely high BOD values and some have problem toxicity levels
- → Environmental and drinking water regulations require BOD and toxicity to be controlled to specific levels in stormwater
- → Most airports were not designed to contain, store or treat the large volumes of stormwater that these substances contaminate

Solutions Utilized to Date

- + Direct discharge permits to POTW with surcharges
- + Stormwater retention basin construction
- → Remote delcing central delcing facilities
- → Service contracts to meet stormwater permits
- Multi million dollar fixed process facilities to meet maximum flow conditions
- Expensive trucking solutions to conventional liquid waste disposal facilities

Results Realized to Date

- → Large POTW surcharge bills and spring odor problems due to limitations on discharge rates
- → Multi million dollar infrastructure programs to build deloing facilities that may not succeed in Improving stormwater quality
- → Service and trucking contracts at a cost of hundreds of thousands of dollars per year
- → Expensive treatment facilities that do not meet the loading of the sites they were designed for

Ideal Solution Required

- A service solution that recycles spent glycol and returns a value sufficient to offset program costs
- A fully portable solution that can be mobilized "on site" and adjusted to meet seasonal volume needs
- A flexible purchasing package that can add ramp services for low additional fees as required with costs that are based loaded by equipment used in the recycling operation
- → Proven experience and a 'pay for performance' business arrangement that protects the customer

The CFT - AR Plus Program

- → CFT will provide collection and process services relating to the glycol recycle operation - No Charge
- **CFT may at their option, intercept the resulting contaminated stormwater on a project on a right of first refusal basis at a charge of 75% of the lowest site treatment alternative POTW or offsite discharge
- → CFT may at their option, treat the remaining fluid held in airport retention ponds prior to discharge to POTW or storm 75% of POTW or offsite alternatives
- → Additional ramp services unit priced with minimums

Step 1 - RampRanger Collection

- + 1,200 USG capacity
- → ramp sanitizing to non detectable glycol limits
- + operates in heavy weather & temperatures of < 20 degrees F
- + Improves surface friction & collects FOD

- → CFT will provide 20,000 USG portable tanks
- → CFT can provide 100K USG to 750K USG to remporary tanks.
- → airport needs to provide permanent tanks
- airport needs to provide stormwater retention basins

Step 3 - On Site Processing

- → All recycled product leaves the site non regulated → Recycling reduces POTW surcharge by 30% to 60%
 - → Volume reduction reduces in trucking & waste
 - disposal fees

Step 4 - Uses of Recycled Product

- → CFT uses PG and EG to produce oil field treating products
- → CFT produces Fluidgaurd 50% - 98% EG and PG, high quality automotive coolants
 - Surplus inventory is sold to industrial and other glycol users

Step 5 - Primary Stormwater Treatment

- Cost effective recycling will result in 30% to 70% of fluid sprayed going to water treatment system -POTW or stormwater
- → Due to the extremely high BOD value of EG, PG and other delcing chemicals (potassium acetate, sodium formate) this disposal stream costs millions of dollars annually in large alreads normally billed in landing fees to the dirilines
- + CFT can intercept these streams and treat these volumes, utilizing waste heat and energy from the recycling operation

Net Recycling Benefits to Fluid Sprayers

- → Fee reductions from POTW No charge
- → BOD dilution effect to allow larger volumes of retention pond runoff to go POTW faster and at lower surcharge rates No charge
- → Non recycled volumes of BOD are reduced low enough to make Primary Stormwater Interception and Treatment teasible in many cases 75% of competitive alternative fees on throughput basis
- → POTW capacity becomes a free fall back resource

Primary Storm Treatment Method

- + Biotreatment system and associated processes are physically located by CFT Glyvap process to utilize waste heat and energy
- → Each system is designed to site parameters
- → All operation and management is included with reporting to applicable authorities
- +All capital and maintenance is included based on a term of operation normally 5 to 15 years % savings off competitive disposal increases with term length

AR Plus Advantages in Primary Treatment

- → Control over BOD levels being sent to treatment
- → Recovery of energy
- + Field experience with glycol degradation under winter conditions
- Strong resources in engineering, equipment & blomess supply

Secondary Stormwater Treatment

- → After recycling and primary freatment, stormwater in retention ponds will be very low in glycol / BOD
- → Low tevels of BOD can be treated effectively and quickly as temperatures rise above 40 degrees F
- → In situ treatment of BOD in retention ponds can::
- Improve pond conditions environmentally
- reduce odor problems as weather warms
 turther reduce POTW costs
- Improve rate of stormwater disposal in the spring

426

Customer Commitment Required

→ AR Plus Recycling Services - No Charge

- AR Plus receives a 3 year minimum operating order to collect glycol as and when they choose
- AR Plus receives a right of first refusal to treat stormwater that cannot be effectively recycled
- Primary Treatment a 5 to 15 year operating order is needed to provide incrementally more attractive savings on treatment throughput costs
 - Secondary Treatment can be tied to the same operating order period as the recycling contract as major capital expenditures are not required.

Other Customer Services Available

- → Additional services can be contracted on a P.O. basis as and when required with additional HampRanger operational time:
 - Improve ramp friction for push backs
- ◆ Clean lead in lines
- Contaminated snow control
 - ◆ Plck up FOD
- ◆Control stormwater run off quality from specific ramp surface areas to permitted levels
 - Other miscellaneous sweeping / scrubbing

Glycol Recovery Vehicles were briefed by Vactor Manufacturing Co. No briefing charts were used but brochures were passed out to those in attendance. Additional information is available from the company.

PRESENTATION

at

De-icing Technology Crossfeed ANSER

1215 Jefferson Davis Hwy. Suite 800 Arlington, Va. (Crystal City)

for

Anaerobic BioFiltration Glycol ReductionProcess

presented by

BioFiltration Systems™, Inc.

1800 Second St. Suite 808-13 Sarasota, Florida 34236 (941)953-5200 Fax 953-5353 Toll Free 1-888-Bio-Fltr

21 August 1996

BIO-FILTRATION SYSTEMS, INC

For The
State Of The Art
Most Cost Effective
Waste Water
Treatment Equipment
Available Anywhere

Call Toll Free

1-(888) BIO-FLTR

or

(941) 953-5200 Fax 953-5353 BioFiltration Systems, Inc. (BFS) 1800 Second Street, Suite 808 Sarasota, Florida 34236

BIOFILTRATION SYSTEMS, INC.

HIGH PERFORMANCE BIOFILTERS FOR WASTE WATER TREATMENT

ANAEROBIC BIOFILTER (ANBF)

Industrial Wastewater

Waste "strength" may be measured by five (5) day Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD) or Total Organic Carbon (TOC). Any of these reflect the amount of carbon requiring removal in a given wastewater. Chemical Oxygen Demand (COD) describes the amount of oxygen required to completely oxidize all waste (primarily carbon) to carbon dioxide (CO2) and is usually used to describe the efficiency of biotreatment. Anaerobic biofiltration is generally applicable to the treatment of wastewaters exceeding 2000 mg/l COD.

Wastewater streams vary in strength from a few hundred milligrams per liter (mg/1) COD to hundreds of thousands of mg/l COD. Some examples of wastewaters are:

TYPE OF WASTE Aircraft Deicing / Anti-Icing Fluids	COD 10,000 - 300,000 mg/l
Brewery Wash Waters	-2,000 mg/l
Can Manufacture (Solvent) Waste	-100,000 mg/i
Cheese Plant Wash Waters	2,000 - 5,000 mg/l
Cheese Whey	-60,000 mg/l
Cheese Whey Permeate	50,000 - 100,000 mg/l
Coating Industry (Latex paint)	-100,000 mg/ 1
Distillery Wastewater	-30,000 mg/l
Pharmaceutical Wastewater	10,000 - 100,000 mg/l
Potato Processing Wastewater	-10,000 mg/l
Soft Drink Processing Wastewaters	-2,000 mg/ 1
Vegetable Processing Brine Waste	-10,000 mg/ 1
Waste Beer	-60,000 mg/l
Winery Wastewater	-20,000 mg/l

Most of these wastewaters are extremely expensive to treat by conventional methods and many manufacturers incur very high surcharge costs for discharge to Publicly Owned Treatment Works (POTW). BFS provides a low cost pretreatment option for these manufacturers.

BFS has developed a system design that overcomes the deficiencies of others. BFS's biofilter systems are modular fixed film upflow-downflow type, and use a superior filtration/circulation System which allows for much higher active biomass retention and subsequently much higher waste loading, improved resistance to shock loading and simple operation.

REFERENCE PROJECT:

HAZARDOUS WASTE BIODEGRADATION

A MAJOR NATIONALLY KNOWN BREWERY

Our biosystems specialists were involved in the development, design and start up of an upflow, fixed film, anaerobic biofiltration system for the biodegradation of can manufacturing plant solvent waste. Paint coating solvent wastes had previously been collected, drummed and shipped to hazardous waste incinerators. This system saves the client over \$300,000 per year in hazardous waste hauling, incineration cost and associated liabilities. Our company decided to improve and further develop the system and obtain a U.S. patent. The system has been in operation since 1989 and is working flawlessly.

BIOFILTRATION SYSTEMS, INC.

HIGH PERFORMANCE BIOFILTERS FOR WASTE WATER TREATMENT

AEROBIC BIOFILTER (ABF)

Industrial Wastewater

Waste "strength" may be measured by five (5) day Biological Oxygen Demand (BOD5), Chemical Oxygen Demand (COD)-or Total Organic Carbon (TOC) Any of these reflect the amount of carbon requiring removal in a given wastewater. Chemical Oxygen Demand (COD) describes the amount of oxygen required to completely oxidize all waste (primarily carbon) to C02 and is usually used to describe the efficiency of biotreatment.

Aerobic Biofilters are applicable to wastewaters of less than .2000 mg/l COD or having organic wastes too complex for anaerobic biofiltration.

Some examples of wastewaters for aerobic biofiltration-treatment. are:

TYPE OF WASTE	
Municipal Wastemeters	150 - 300 mg/l
Landfill Leachate	50 - 10,000 mg/l
Oil Operations Wastewater	1,000 - 100,000 mg/l
Solvent Contaminated Wastewater	50 - 2,000 mg/l
Contaminated Groundwater	5 - 2,000 mg/l
ANBF Pretreated Wastewater	50 - 500 mg/l

The BFS aerobic biofilter is a downflow fixed film reactor that uses proprietary technology to achieve high biodegradation rates. The aerobic system is capable of treating a wider variety of wastes than the anaerobic system including solvents, latex paint components, oils, grease and a number of hazardous wastes. Although the BFS aerobic biofifter produces more biosludge than the anaerobic version, it still produces over 20% less biosludge than conventional activated sludge aerobic systems due to the use of fixed film technology. Configuration of the BFS aerobic biofilfer is similar to the anaerobic system with the addition of the aeration system.

BFS modular aerobic units are designed for ease of maintenance and long life. Construction is, in most instances, reinforced fiberglass with (PVC) piping and specialized components. BFS units can be delivered anywhere and provide the most cost efficient and reliable system in existence.

BioFiltration Systems, Inc.

Sequencing Batch Reactor

Sequencing Batch Reactor systems represent a variation of the activated sludge process. Like any other activated sludge process, the SBR works by developing a mixed culture of bacteria which is effective in removing BOD, COD and nutrients commonly found in wastewaters.

The BFS SBR can treat a wide range of municipal and industrial wastewaters, at flows ranging from a few thousand gallons to millions of gallons per day.

The SBR is unique in its ability to act as an **equalization basin, aeration basin and clarifier** within a single reactor. The termination of flow and aeration during the treatment process provides perfectly quiescent setting conditions in the reactor, and permits even very fine particles to settle. Each reactor maintains its own treatment regime and all phases of treatment occur in each reactor.

SBR ADVANTAGES

Sequencing Batch Reactor systems offer many advantages over conventional flowthrough activated sludge systems, which may incorporate separate flow equalization, aeration and final clarifier basins.

- 1. Lower Installation Costs each Sequencing Batch Reactor serves as an aeration basin and final clarifier, and provides the equivalent of flow equalization. This eliminates the need for separate structures for each unit process. The use of fewer structures in the treatment system generally results in lower construction and installation costs. Based upon a recent EPA cost comparison of a 1.0 MGD facility, the installation of an SBR represented a 1 0% costs savings as compared to an oxidation ditch treatment system.
- Consistent Effluent Quality- the use of micro-processors allows the operator to adjust time and/or aeration/mixing based on organic loads and flow conditions to achieve required results.
- 3. Easily Tolerates Variable Organic Loads the SBR easily tolerates variable hydraulic and organic loads since the SBR reactor serves as its own equalization basin. Mixed liquor solids cannot be washed out by hydraulic surges since effluent withdrawal is typically accomplished in a separate phase following the termination of flow to each reactor.

BIOFILTRATION SYSTEMS, INC.

HIGH PERFORMANCE BIOFILTERS FOR

AIR POLLUTION ABATEMENT

Odor/Air Emissions

Many municipal and industrial waste and wastewater processing facilities are plagued with nuisance and often hazardous odor emissions. A variety of compounds are responsible for odor problems, most of which are generated under aseptic or anaerobic conditions by micro-organisms. BFS's approach to the problem is straightforward. If micro-organisms generate the compounds responsible then micro-organisms must also be capable of destroying these compounds. The BFS Odor Biofilter utilizes this ability of microbes fixed on a filtration film to cleanse air streams of odor causing compounds. One of the most common problems is the generation of toxic and corrosive hydrogen sulfide gas (H2S) in wastewater processing lift stations and sludge holding tanks. BFS has demonstrated the efficiencies of biofiltration to remove hydrogen sulfide from the air in these facilities.

In many industrial situations odors are caused by volatile organic acids, which are also the result of uncontrolled aseptic, anaerobic conditions. BFS's modular biofilters have proven effective for the destruction and control of these compounds.

VOC

Many manufacturing processes produce byproduct Volatile Organic Compounds (VOC) that contribute to air pollution in the earth's atmosphere. VOC's are a wide range of organics from ethanol to complex organic solvents which are rapidly coming under environmental regulations and many manufacturing facilities are currently in need of cost effective means of eliminating or reducing sources of VOC. BFS's modular VOC Biofilters provide a highly cost-effective means of control without the use of hazardous chemical treatments (chemical scrubbers) used by many competitors.

Both Odor and VOC Biofilters are BFS's proprietary "gas phase" biotreatment technologies based on the same principle of the use of appropriate micro-organisms fixed on a thin reactor film for the direct treatment of problematic compounds carried in air (gas) streams. Both air scrubbing and biodestruction functions are carried out in a single biofilter.

The advantages of the BFS technology over other air pollution abatement technologies, include complete on-site destruction, no hazardous chemical additions, low maintenance and operating costs, energy efficiency, low capital costs, a natural means of treatment, ease of expansion and simplicity.

STATE OF THE ART PROCESS FOR THE TREATMENT OF AIRFIELD DEICE / STORMWATER RUN-OFF

BioFiltration Systems™, Inc.

1800 Second St.
Suite 808-13
Sarasota, Florida 34236
(941)953-5200 Fax 953-5353
Toll Free 1-888-Bio-Fltr

As everyone involved in airport management is aware, the federal government has mandated several programs designed to improve the quality of streams and rivers. Discharge to streams and rivers of surface water run-off now requires the discharging entity to apply for, and obtain an NPDES (National Pollution Discharge Elimination System) permit from the EPA (Environmental Protection Agency). The EPA has tightened the enforcement of many rules concerning the discharge of pollutants, and discharge of deicing fluids is of particular concern to regulators.

The main ingredients of commercial deicers ethylene and propylene glycol, are high oxygen demand chemicals. This means, in the presence of oxygen dissolved in water, the chemical captures free oxygen, depriving fish and other aquatic plants and animals of this life-giving element. If these chemicals are allowed to enter a waterway, the natural health of the waterway deteriorates and pollution can kill yet another river or stream.

Aircraft deicing compounds are formulated for both Type I and Type II deicing. That is, Type I deicers are formulated from ethylene and diethylene glycols, and are used for immediate or short term deicing. Type II deicers are generally propylene glycol, which tends to stick to aircraft surfaces and provide extended deicing activity. Type II will shed from aircraft surfaces during take off. All of these activities, although necessary from a safety standpoint, result in the distribution of these various glycols into the environment.

The problem then, as mentioned above, becomes the potential pollution of waterways and groundwaters with glycols. Many airports are currently evaluating and developing plans for the management of contaminated stormwater run-off.

This has presented airports with a difficult and complex environmental problem. Some facts have emerged. Deicing operations result in both highly contaminated storm-event waters and less severely contaminated general run-off waters. During a winter storm event, deicing may take place near gates and/or hangers, or possibly at the ends of taxiways. Some commercial airports are attempting to locate deicing activities near the ends of runways in order to provide deicing where it is needed most, and to provide a means of collecting highly

concentrated wastewater streams. Research done by (BFS) and its engineering associates indicates that deicers are used in thirty to fifty percent concentrations, and that where these are applied in confined locations during cold weather storm events (snow, sleet, etc.), the resultant collected run-off can contain glycol concentrations of ten to twenty percent or more. In more disperse applications and in wetter weather, concentrates can fall to the one percent or less range in stormwaters. All of these waters are potential environmental threats.

TREATMENT OPTIONS

After the glycol and precipitation runoff has been collected in storage areas, the more difficult problem of disposal of the glycol compounds is approached. Several options were considered and are enumerated below.

- A. DISTILLATION has been utilized at other installations throughout the world and is being considered at still more airports. Our investigation has shown that for the minimum two or three cut still that would be required at most airports, the hardware cost would be expensive, compared to the cost of biofiltration equipment. This particular installation would require additional engineering as there are, generally, no "off the shelf" distillation units that could be purchased and installed. The further detractions of distillation are the cost of energy to accomplish this process, and the general operation and maintenance costs. Finally, the glycol compounds produced will require additional processing to assure proper application and use characteristics as well as the overriding issue of product liability. Distillation can be considered in geographic areas where reuse liability is diminished such as coal unit train deicing and industrial applications. Other reuse avenues often expose the environment to the same risks that are being addressed by this program. Distillation is not an economically viable approach at this time.
- B: MECHANICAL SEPARATION is also being employed at some installations in the United States. The use of reverse osmosis is touted by some as a method to separate the glycol compounds from the precipitation. Our investigations have shown that the molecular size of the glycol compounds are too close to water to make filtration viable from a technological standpoint. Separation that can be accomplished by filtration methods are not discreet enough to assure the quality of the discharge water nor the purity of the glycol products. We are also concerned about membrane life when considering the background contaminants that will be present when processing the runoff fluids. Mechanical separation is not technically reliable enough to be a viable approach at this time.
- C. ANAEROBIC BIOFILTRATION. The BioFiltrations Systems, Inc. (BFS) patented Anaerobic Biofilter is designed for the cleaning of these waters for discharge, and to obtain useful energy from the contaminant glycols. The BFS modular biofilter converts organic components, such as waste glycols to carbon dioxide and methane gas. The anaerobic removal of pollutants results in very little sludge generation, and appears the most economic alternative for cleansing these run-off waters. The cleaned water may be discharged to Publicly Owned Treatment Works (POTW), or directly to public waterways under a National Pollution Discharge Elimination System (NPDES) permit. In the first case a single BFS Biofilter may be used. In the second, where discharge standards are more stringent, a two-stage patented biofilter will be employed to meet NPDES requirements. As

DEFINITIONS

BIOFILTER (BF)

The biofilter or biofiltration process provides a dynamic means of filtering and simultaneously destroying waste components in a liquid (aqueous) or air stream by entrapped micro-organisms on the filter media. The micro-organisms are responsible for the destruction of waste chemicals and "cleaning" of the fluid.

AEROBIC BIOFILTER (ABF)

The aerobic biofilter can be used to treat wastewater streams that carry waste components (that is, the cause of COD or BOD5) that are either too complex for <u>anaerobic</u> micro-organisms to metabolize, or are of too low a concentration to provide effective **use** of the anaerobic biofilter (ANBF). The aerobic biofilter (ABF) will produce over ten times the amount of biosolids (waste activated sludge) that the anaerobic biofilter (ANBF) produces.

ANAEROBIC BIOFILTER (ANBF)

The apparatus used to entrap methanogenic consortia for the process of treatment or reduction of COD (or BOD5) in wastewaters. For many industrial wastewaters, the ANBF is the most cost effective system available to reduce effluent wastewater COD and city surcharges usually associated with organic-laden wastewater discharge. The ANBF is a form of wastewater pretreatment, usually reducing waste strength by over 90%.

BOD5 (BIOLOGICAL OXYGEN DEMAND - 5 DAY TEST)

Commonly used by municipalities to attempt to describe the amount of oxygen demanding components in a wastewater sample which would be BIOLOGICALLY OXIDIZABLE. The test is performed using a microbial inoculum and measuring oxygen uptake over a 5-day incubation period. BOD5 does not necessarily estimate the COD of a wastewater, but tells only the demand readily required by micro-organisms under the conditions of the test. It is designed to estimate the 'potential" for eutrophication of a public waterway, should the wastewater be added to it untreated. BOD5 should **not** be used directly for treatment process control. It is generally expressed as mg BOD5 per liter of wastewater.

In many industrial wastewaters there exists a rough correlation between BOD5 and COD of about 0.7 in untreated waters. The ratio tends to drop significantly after treatment.

COD (CHEMICAL OXYGEN DEMAND)

The oxygen equivalent required to completely oxidize **chemically** all organic and other oxidizable components of a wastewater sample. Generally expressed as mg COD per liter of wastewater.

Terms and Definitions (Continued)

HYDRAULIC RETENTION (HRT)

The HRT is determined by the flow of liquid to the fixed volume of the BF. If the Hydraulic load-rate is 40,000 gallons/18,000 gallons reactor volume/day or 2.22 gallons/gallon/day then; 24 hours/2.22 = 10.8 hours HRT. HRT can also be calculated by inverting the equation; 18,000 gallon reactor volume/40,000 gallons/day x 24 = 10.8 hours HRT.

LITER (1)

Metric measure of liquid volume (approximately one (1) quart). There are 3.785 liters in each U.S. gallon at Standard Temperature and Pressure (STP).

MELLELITER (ml)

1/1,000 of 1.0 liter. Also known and defined as 1 cubic centimeter (1 cc). There are 1,000 mls or cc in one liter at Standard Temperature and Pressure (STP).

GRAM (g)

The mass of one cubic centimeter (cc) of water at Standard Temperature and Pressure (STP). 'Mere are 454 grams in one pound.

M|ILLIGRAM (mg)

1 / 1,000 of a gram. There are 1,000 grams in one (1) kilogram of mass at Standard Temperature and Pressure (STP).

pH (POWER OF THE HYDROGENION)

A measure of acidity (pH 0-7) or alkinity (pH 7-14) of a wastewater sample. pH is a logarithmic function, therefore every decrease of 1.0 unit of pH Increases the acidic nature of the solution (H +) by an order of magnitude (factor of 10).

EUTROPHICATION ("GOOD FOOD")

The addition of wastewaters high in organic and other oxygen demanding components (e.g- NH3-N) to natural waterways results in rapid oxygen depletion of those waters with concomitant fish kill and further imbalance of the natural ecosystem.

VOC

Volatile Organic Compounds. Organic (carbon-containing) compounds contributing to air pollution.

PRESENTATION

DE-ICING TECHNOLOGY CROSSFEED WASHINGTON ,D.C. AUGUST 21, 1996 1645-1715 HOUR

1. INTRODUCTION

- a. TC
- b. AK
- c. Thank Carroll Herring
- d. Last to speak best for last discuss concept rather than technical because of time constraint - mind can absorb only as much as seat of pants can stand.
- e. Varied audience, military, civilian, vendors -- Will discuss basic concepts but not technical issues -- will discuss technicallities and specific problems on an individual basis and through phone, or fax requests.
- f. We are with BFS from Sarasota Fl.
- g. We have been in business since 1992 developing processes to treat waste water streams in various industries. Landfills, can manufacturing, and many other industries.
- h. We have developed a process to harness bacteria to specifically treat glycol and associated effluent. This was done in conjunction with a major can manufacturer who needed to treat a glycol based solvent. The BOD / COD ratings on paint solvent is comparable to deicer. The process developed to treat this waste has been operational at a DOE certified facility since 1989

and treats the waste to under 250 mgl BOD which meets the waste water requirements and can be further treated down to a level for reuse. This basic technology has now been perfected and patented by BFS specifically for the treatment of deicing fluids and all associated runoff.

The treatment is done through a Biofilter which means;

- a. The effluent is put in contact with a Bacteria contained in media in a tank that biodegrades this waste and turns it into methane gas and carbon dioxide.
- Bacteria is not something new as it has been around since the beginning of time and is older than the dinosaurs.
- c. An article in National Geographic dated August 1993 states:
 - 1. Titled "Teaching old bugs new tricks"
 - Talked about what bugs do ie. ferment bread, beer, cheese, yogurt, create man made insulin for diabetics, snow machines etc., etc.
 - 3. Only one microbe in a thousand is a pathogen -- what we think of as a germ. The rest, neither we nor the planet could live without. They make what we want and they get rid of what we don't want. They are the work horses of biotechnology.
 - 4. Today each of you carry about a quarter pound of bacteria.
 Billions are helping digest your last meal and perhaps
 excavating a cavity where your toothbrush fails to reach.

Therefore, bacteria is nothing new; only the ability to harness a specific

bacteria in a controlled format and properly nurtured to maximize its ability to treat a specific waste, this is new and this is what BFS does.

2. WHERE INDUSTRY IS TODAY

- a. AAAE conference just completed.
 - 1. Very informative with lots of information from many varied sources.
 - 2. From a treatment standpoint anaerobic Biotreatment seemed to garner alot of support, however this is not necessarily the final answer as some treatment may need to be aerobic and/or anaerobic and disc and or sand filters may also be necessary to treat total suspended solids.
 Also other treatment options do exist.

b. Distillation

1. Arco report (a major supplier of glycol)
Objective comparison between BioFiltration and distillation
Distillation may work if circumstances the best like Denver new
airport and very high volume. The variables will always exist as
to what the operational costs will be in the future, what the after market
for reclaimed glycol will be, and most importantly what changes in
regulations and liability will take place.

c. POTW

- 1. POTW and GLYCOL don't mix report.
- 2. Essentially an Aerobic system with the major drawback being sludge production (aerobic 50% anaerobic 2.5%) and high load demands for short periods of time are not in the best interest of the facility. 100

- gallons of glycol are equal to the sewage treatment necessary for a city of 5,000 people.
- Areas of the country where POTW demand is declining ie Buffalo NY they will probably be able to handle the effluent for the long term at reasonble rates.

d. Reverse Osmosis

- Difficult to operate effectively because the molecular size of glycol is too close to water. Therfore the membrane must be under high pressure which is expensive to operate and is vulnerable to foreign material such as brake linings etc.
- e. Many others not worth discussing such as incineration, deep well injection.
- f. BFS(discuss later)

3. YOUR OBJECTIVE IS

- a. Develop an Air Force strategy to comply with the Clean Water Act, State and local regulations.
- Develop a plan that will work for multiple locations that have a quagmire of variables.

4. YOUR PROBLEM IS

- a. Each military installation has a unique set of problems
 - 1. weather
 - 2. topography
 - 3. local government (regulations, odor control etc.)
 - 4. # flights

- 5. type aircraft
- 6. site configuration (for storage pond, tank etc.)
- ability to collect runoff (existing storm, detention ponds etc.) which will effect the collected effluent concentration levels.
- 8. Type of deicing chemicals

Can have more than one type of chemical being used at same time Potential for future change to new chemicals

A system may be designed for one product then the product gets changed

- b. The military in general is in a state of flux
 - 1. Opening, closing, consolidating locations.
 - Changes at installations ie. move C5As from Dover and replace with a fighter wing.
 - 3. Temporary locations ie. Desert Storm, Bosnia.
- c. Environmental regulation has many influencing factors
 - 1. EPA
 - 2. Local regulations
 - Local capacity for treatment (POTW capacity, future local growth/contraction)
 - 4. Type deicing products to be used
 - 5. Disposal liabilities (transportation, reuse, cradle to grave)
- 5. YOUR SOLUTION IS
 - a. FLEXIBILITY

1. Having a system that can be adjusted to be pretreatment or treatment.

SOLVES CHANGING REGULATIONS

2. Having a system on site that can treat multiple products

SOLVES CHANGING DE-ICING CHEMICALS

SOLVES USE OF MULTIPLE DE-ICING CHEMICALS

SOLVES MULTIPLE CONTAMINANT (glycol, jet fuel etc.)

Having a system on site that can be economically changed to increase or decrease throughput capacity.

SOLVES CHANGING VOLUMES

SOLVES RELOCATION / TEMPORARY USE

b. ON SITE TREATMENT

- 1. Eliminates off site regulations and potential liabilities (Cradle to Grave)
- 2. Total control, no off site variables to contend with
- 3. Can adjust system to meet any changes in volume or contaminate.
- 4. Can set up system to be pretreatment or treatment.

6. OUR SYSTEM AT BFS

- 1. Hardware
 - a. Pretreatment (treat down to 250 mgl BOD or to POTW specs)
 Treatment (treat down to reuse level)
 - b. Modular (Can be transported in C130, C5A) Increased or decreased depending on requirements
 - c. Aerobic / Anaerobic

2. process

- a. Bacteria biodegrades contaminate and converts it into Methane gas and carbon dioxide.
- b. Essentially RECYCLE the waste stream into a usable energy source that is used to operate our system. The excess gas can be used at the base or sold to outside sources. As Webster dictionary says recycle is "to pass again through a series of changes or treatments to regain material for human use."
- c. If necessary we can intall an ultraviolet censor in the influent line that will divert the waste stream at the first sign of glycol so the glycol free flow in the waste stream can be sent to the storm system until deicing occurs eliminating unnecessary treatment. This same censor will also test the output from our system to verify compliance to the pre established parameters.
- d. An in place system can be started up in two to four weeks depending on the parameters established, as bacteria will double every 20 minutes creating 1.2 sextillion in 72 hours.

3. history

a. Technology developed at a major can manufacturing plant that uses a glycol based solvent which is comparable in BOD and COD to airport deicer. This system has been in operation since 1989 and takes the BOD and COD down to

448

250 mgl or less.

- b. An airport prototype was set up and operated with test results being conducted by an outside independent test lab, reducing the COD by 99.9999047%.
- c. Bacteria is a natural process that occurs every day in nature and what we have done is controlled this process to speed up nature work.
- 4. throughput -- determined by individual needs, however from the information I heard this week the military used 138,000 gallons of glycol last year; will generally require inexpensive small multi stage units.
- cost, hardware / operational -- determined by individual needs but no need for energy
- 6. advantages -- modular, on site, low operational cost.

6. SUMMARY

- 1. Call us a recycler, a biotech company or whatever the end result is
 - a. An economically viable solution to a complex ever changing problem.
 - a. treat multiple deicing wastes at varying concentrations
 - b. flexible for change; whether it be the product, volume, location
 - c. We feel our system is very viable for most military scenarios.

CONTACT LIST

One of the most important things we did in conjunction with this effort is to develop a listing of individuals who are knowledgeable in de-icing matters for inclusion in the minutes. The purpose of this list is to be a reference tool to be used by Air Force personnel who are working de-icing problems. Reference to this list will provide the problem researcher with the names of individuals who can be contacted for discussion relative to the problem.

included in this list are individuals whom we had occasion to become familiar with as we did our research for the de-icing technology crossfeed. Some of the names on the list were extracted from old minutes of meetings pertaining to de-icing. Others were found in the literature. Others were provided by word of mouth by people who had worked de-icing problems earlier. Still others were extracted from company literature sent to us after we ran an add in the Commerce Business Daily. Still others were added from business cards provided to us during the Annual De-icing Conference and Exposition.

Obviously, the list is not complete but it provides a good point of departure for individuals who have to work de-icing problems.

The list was last updated on 16 Sep 1996.

De-cing Contact List

In today's Air Force, communication is key. This listing is intended to make communication easier.

This listing identifies people who are knowledgeable about de-icing and can be contacted for ideas about how to best work de-icing problems.

Included in the list are people who work for the military services, other Government organizations and for private industry.

Index of Military Contacts In this section, names are listed by organization or discipline. In the next section, the names are listed alphabetically and phone numbers, fax numbers and e-mail adressess are provided.

Wright-Patterson AFB

Al Baca (contr)
Mike Bickett
Terry Black
Teresa Finke
Carroll Herring
Denny Jarvi (contr)
Jerry Mongelli (contr)
Maj Kent Nonaka
Lt Col Gil Wendt

Air Force R&D Contacts

Tom Bond Capt Gretchen Brockfeld Capt Mike Chipley Capt Jeff Cornell Dave Ellicks Msat Mary Fields Capt Paul Fronapfel Dr Len Haslim Dr Fred Hedbera Dr Walt Kozumbo Dick Kinze Dr David Mattie Lt Dennis O'Sullivan LTC Rich Perkins Maj Al Rhodes 1 Lt Uduak Udo-Aka Lt Col Alan Weiner Jody Wireman Dr John Zuk

HQ ACC Langley AFB

Gary Bagshaw
Chief George Ellison
Drew Francis
CMSgt Phil Granier
Charlie Nault (contr)
Gary Nault

HQ AMC Scott AFB

SMSgt Garrick Burnie
Capt R Murphy
Maj Gary Phillips
CMSgt Joe Proffitt
H Sanghavi
Capt Gregg Sims
CMSgt Dave Young

HQ USAFE Ramstein AFB

MSgt Darrell Poff Debby Locklair

HQ PACAF Hickam AFB

Mano Husain Gorden Kawelo

AFMC Single Manager Contacts

Jim Bean KC-10
Greg Garcia C-5
Rick Jones C-130
Maj Spacy C-17
Ralph Tyner C-141

AFMC Center Environmental Managers

OC-ALC/EM
OO-ALC/EM
SA-ALC/EM
SM-ALC/EM
WR-ALC/EM
ASC/EM
ESC/EN-2
HSC/EM
SMC/SDZB
AGMC/EM

ALC/TI Technical Management and Engineering Support Managers

OC-ALC/TI OO-ALC/TI SA-ALC/TI SM-ALC/TI WR-ALC/TI

Reserve and ANG Contacts

CMSgt Paul Antkowiac Capt Dave Arthur SMSgt Robert Boyer

Col Alan Clune Wayne De Bor 1Lt Bob Huelsman Skip Iao Mai Lynn Jobes RickJozwick SMSqt Paul LaCourciere Cathy Makofski Capt Mike Moore Robert Moesline Mai Pedro rivas Susan Stell John Tower 1 Lt Jack Wall Paul White Kari Wildgruber Alvin Zatezalo

Air Staff Contacts

Keith Glass (spt contr)
Lt Col Sherm Forbes
Lt Col John Garland
Maj David Guadalupe
Norm Guenthen
Lt Col Judy Munley
Jay Shah
Ray Vaselich

Elmendorf AFB Contacts

Dan Collins SMSgt Bruce Cremer Joseph Cross Bob Giroux

Minot AFB Contact

CMSgt Wayne McGothlin

Offutt AFB Contacts

Ed Lueninghoerner Frank Tabor

Grand Forks AFB Contact

Rose Fraley

Pope AFB Contacts

Bob Dalzell

SA-ALC Contacts

Brian Ballew john King Pete Palmer Jim Vasil Gus Zachariades

HSC Contacts

John Biggs Lt Col Brian McCarty 1 Lt Yvonne Spencer

AFLMA Contacts

Maj Norm Murray MSgt Stanley Mynczywor

AF Safety Agency Contacts

Britt Covington Ron McGreggor

AFCESA Contacts

SMSgt Earl Labonte Dave Wagner

AFCEE Contacts

Johnny Combs Col Patrick Fink Carl Leighman Skip Sowards Vic Verma

AFFTC (Det 3 Contact

Tim Johnson

AFCSA Contact

Eric Eklund

Army Contacts

Bob Eaton Jerry Oliver Paul Pantelis Dr Charles Ryerson Maj Dave Sheets

Navy Contacts

Dave Asiello
Phil Bevilacqua
Dave Brock
Pat Doyle
Paul Helms
Walt Koehle
Maj Mike Landryr
Lt Felipe Lopez
Tami McVey
Pete Mullenhard
Jim Muller
Bob Sandoval
Paul Swindel
ASC (AW) Jack Yon
John Ziegra

Marines Contact

Mahlon Yokley

Coast Guard Contact

Richard Peri

DLA (DSCR) Contact

Cliff Myers

Index of other US Government Contacts

EPA Contacts

Don Brown Kelly Conrad Nancy Cunningham Bill Swietlik

FAA Contacts

Katherine Hakala George Legarreta Wayne Marsey Charles Masters Nelson Miller Tom O'Brien Edward Pugacg Cynthia Rich Kenneth Stone Larry Youngblut

Nat'l Transportation Safety Board

Robert Macintosh

Index of Canadian Government Contacts

Canadian Armed Forces Contacts

Lewis Cocks Bob Danahy Sgt R. A. Lawless

Transport Canada Contact

Alec Simpson

Environment Canada Contact

Robert Kent

Government De-icing
Contacts (includes US and
Canada) By Name, Address,
Phone Number, Fax Number,
E-Mail, etc

Note: an asterisk indicates person attended the 1996 de-icing crossfeed

ROBERT ABERNETHY
AL/OEBW (water quality branch)
2402 E DRIVE
BROOKS AFB TX 78235-5114
DSN: 240-3668 FAX: 240-3945

rabernethy@guardian.brooks.af.mil
project engineer

CMSGT RON ANSEL
USAF/LGMM
1260 AIR FORCE PENTAGON
WASHINGTON DC 20330-1260
DSN: 225-5266
Maintenance of aircraft GSE

CMSGT PAUL ANTKOWIAK *
914TH LG/CC
10315 WAGNER DR
NIAGARA FALLS NY 14304-5205
DSN 238-2263 FAX: 238-2119
LSS superintendent and resident expert on de-icing

CAPT DAVE ARTHUR * 317AS/DOLT 105 EAST HILL BLVD CHARLESTON SC 29404

DSN: 673-2436 FAX: 673-5867 C-17 reserve pilot Flies for American.

DAVE ASIELLO
OPNAV Code N451H
CRYSTAL PLAZA #5 Rm 678
2222 JEFFERSON DAVIS HWY
ARLINGTON VA 22244-5108
DSN: 332-5334

asiellod@ny.opnav.navy.mil

JDEP rep

GARY BAGSHAW *
ACC/CEOO
129 ANDREWS ST STE 102
LANGLEY AFB VA 23665-2769
DSN: 574-6270 FAX: 574-5363
bagshawq@hqaccce.langley.af.mil

BRIAN BALLEW
SA-ALC/TIEM
450 QUENTIN ROOSEVELT RD
KELLY AFB TX 78241-6416
DSN: 945-7391 FAX: 945-4916
bballew@sadis05.kelly.af.mil
Environmental engineer

PHIL BEVILACQUA *
NAVAL AIR WARFARE CENTER
BLDG 2188 STOP 3
PATUXENT RIVER NAS MD 20670
301-342-8056 FAX: 301-342-8062
bevilacqua_philip%pax5@mr.nawcad
.navy.mil
chemical engineer

MIKE BICKETT *
AFMC/LG-EV
4375 CHIDLAW RD STE 6
WRIGHT-PATTERSON AFB.OH 45433
DSN: 787-3487 FAX: 787-4244
bickett@wpgate1.wpafb.af.mil
envirinment logistics

JOHN BIGGS HSC/EMP BROOKS AFB TX 78235-5128

DSN: 240-5452 FAX: 240-3228

biggs@emgate.brooks.af.mil

TERRY BLACK *
HQ AFMC/ENBE
4375 CHIDLAW RD STE 6
WRIGHT-PATTERSON AFB OH 45433
DSN: 787-O011 FAX: 986-1650
tblack@wpgate1.wpafb.af,mil
environment engineering support

TOM BOND
NASA-LEWIS RESEARCH FACILITY
ICING TECHNOLOGY BRANCH
CLEVELAND OH
216-433-3414
Research in ice protection systems

SMSGT ROBERT BOYER *
171 AGS/LGGGGB AIR LIFT WING/CE
PITTSBURG INTERNAT'L AIRPORT
300 TANKER RD M 34209
CORAPOLIS PA 15108-4209
DSN: 277-7341 FAX: 277-7270

DAVE BROCK
NAVAL AVIATION DEPOT
CODE 4.3.4.10
WRIGHT STREET BLDG 793
JACKSONVILLE FL 32212-0016
904-633-4155
brock@pso.mram.navair.navy.mil

CAPT GRETCHEN BROCKFELD formerly at WL, now at HSC DSN: 240-2703 Knows de-icing.

DON BROWN
US EPA
26 W MARTIN LUTHER KING DR
CINCINNATI OH 43268
513-569-7630
Data base on wetland treatment system

SMSGT GARRICK BURNIE HQ AMC/CEOX 507 A STREET

OOTT AFRIL COO

SCOTT AFB IL 62225-5022 DSN: 576-3950 FAX: 576-2468

burneyg@mhs.safb.af.mil

CAPT MIKE CHIPLEY *
AFOSR/NI

BOLLING AFB DC 20332-6600

DSN: 297-0468 FAX 202-404-7475

michael.chipley@afosr.af.mil

COL ALAN CLUNE * 914TH LG/CC 10315 WAGNER DR

NIAGARA FALLS NY 14304-5205

DSN 238-2271

FAX: 238-2119

aclune@iag.afres.af.mil

Zero discarge in stormwater runoff Case study containment system

LEWIS COCKS *
AIR COMMAND HEADQUARTERS
-WINNIPEG

WESTWIN MANITOBA R3J 020

CANADA

DSN: 257-5238 FAX: 257-2566 Air Command environmental officer

DAN COLLINS 3CE/CEORH BLDG 32-187 ARCASIA AVE ELMENDORF AFB AK 99506 907-552-2994 FAX 907-552-1407 Superintendent Elmendorf

JOHNNY D COMBS *
AFCEE/CCR-D
525 GRIFFIN ST STE505
DALLAS TX 75202-5023
214-767-4671 FAX; 214-767-4661
jcombs@afceeb1.brooks.af.mil
Regional environmental manager
Checking with state regulators about what is required by each state

KELLY CONRAD

US EPA FEDERAL FACILITIES ENFORCEMENT OFFICE

MAIL: 401 M STREET SW

CODE:2261A

WASHINGTON DC 20460

202-564-2459 FAX: 202-501-0069

EPA law interptetation

CAPT JEFF CORNELL *

PO BOX 2147

BOULDER CO 80306

303-492-2910

FAX: 303-492-5991

cornellj@ucsu.colorado.edu

Basic research

SMSGT BRUCE CREMER *

632 AIR MOB SPT

42-336 BURNS RD

ELMENDORF AFB AK 99506

DSN: 317-552-2622

cremerb@denali.topcover.af.mil

en route maintenance superintendent

JOSEPH CROSS *

3CE/CEORH

BLDG 32-187 ARCASIA AVE

ELMENDORF AFB AK 99506

907-552-2228

FAX: 907-552-1407

K Acetate primarily used. Not deplete oxygen. Don't use in freezing rain. Too

much slimes up runway.

NANCY CUNNINGHAM
US EPA OFFICE OF WASTEWATER
MANAGEMENT

401 M ST

MAIL CODE 2403

WASHINGTON DC 20460

202-260-9535

FAX: 202-260-1460

BOB DALZELL *

23 CES/CEVC

POPE AFB NC

910-394-1654

456

BOB DANAHY 8 WING

TRENTON ONTARIO CANADA

DSN: 827-3930 FAX: 613-695-2788 Use 70% ethylene and 30% propylene mixed 60-40 with warm water.

WAYNE DE BOR *
171 ARW PA ANG
3651 MAPLEVIEW DR
PITTSBURG PA 15012
412-474-7477

PAT DOYLE NAVAL AIR WARFARE CENTER CODE 414B120-3 LAKEHURST NJ 08733 DSN: 624-1281

doyleps@lakehurst.navy.mil Owns military de-icer spec

BOB EATON
Army Cold Regions Research Eng Lab
USA CRREL
72 LYME RD
HANOVER NH 03755-1290
603-646-4209

DSN: 220-4209 FAX: 220-4820 runway de-icing program CPAR for roadway deicing w/NASA, U of PA, 3M

ERIC EKLUND *
AFCSA/JACE
1801 WILSON BLVD STE 629
ARLINGTON VA
703-696-9190 FAX: 703-696-9184

DAVE ELLICKS *
WL-MLS-OL
BLDG 165 RM14
2nd & BYRON ST
ROBBINS AFB GA 31098
DSN: 468-3284

Op Loc AF Corrossion Lab Office

CMSGT GEORGE ELLISON
ACC/DOTO
205 DODD BLVD STE 101
LANGLEY AFB VA 33665-2789
DSN: 574-8164 FAX: 574-3385
ellisong@hqaccdo.langley.af.mil

MSGT MARY FIELDS *
AL/OEBW
2402 E DR
BROOKS AFB TX 78244
DSN: 240-4859 FAX: 240-3945
mfields@guardian.brooks.af.mil

COL PATRICK FINK
AFCEE
210-536-3332
Chief of Pollution Prevention

TERESA FINKE
AFMC/CEVC
4225 LOGISTICS AVE STE 8
WRIGHT-PATTERSON AFB OH 45433
DSN: 787-5878
finket@afmcce.wpafb.af.mil
Water compliance

LTC SHERMAN FORBES SAF/AQRE 1260 AIR FORCE PENTAGON WASHINGTON DC 20330-1260 DSN: 426-8536 sforbes@aqpo.hq.af.mil

ROSE FRALEY
319 CES/
GRAND FORKS AFB ND
DSN: FAX:
fraleyr@gfces-cev.gf-net.af.mil
Participated in AFLMA de-icing study

DREW FRANCIS *
ACC/LGOV
11817 CANON BLVD STE 306
NEWPORT NEWS VA 23606-1988
DSN: 574-9454 FAX: 574-9153
francisd@acclsg.langley.af.mil
Works environmental matters for
ACC/LG

AL/OEBW (WATER QUALITY BRANCH) 2402 E DRIVE BROOKS AFB TX 78235-5114 DSN: 240-4938 FAX: 240-3945 pfronapfel@quardian.brooks.af.mil

CAPT PAUL FRONAPFEL*

BOB GIROUX *
3 EMS/LGMG
ELEMDORF AFB AK 99506-2725
DSN: 317-552-3930/1308
giroux@3wgmail.topcover.af.mil
Alaska currently has no glycol regs

CMSGT PHIL GRANIER ACC/CEO LANGLEY AFB VA 23665 DSN: 574-6270

granierp@hqaccce.langley.af.mil

MAJ DAVID GUADALUPE *
HQ USAF/CEVQ
1260 AIR FORCE PENTAGON
WASHINGTON DC 20330-1260
DSN 227-2797 FAX 225-8943
guadalud@afce.hq.af.mil
Water program manager

NORM GUENTHEN *
SAF/MIQ
1262 AIR FORCE PENTAGON
WASHINGTON DC 20330-1260
DSN: 227-9297 FAX: 703-614-2884

KATHERINE HAKALA
FAA FLIGHT STANDARDS SERVICE
800 INDEPENDENCE AVE, S.W.
WASHINGTON DC 20591
202-267-3760
De-icing and anti-icing requirements
and procedures

DR LEN HASLIM *
NASA-AMES
MS 237-11
MOFFETT FIELD CA 94035
415-604-6575
Research scientist

DR FRED HEDBERG *
AFOSR/NL
BOLLING AFB DC 20332-6600
DSN: 297-5024 FAX 202-404-7475
fred.hedberg@afosr.af.mil
Funding basic research for deicing
alternatives at colleges and universities

PAUL HELMS
NAWC A/C DIVISION
CODE 4.A.2.5
LAKEHURST NAS NJ 08733-5009
DSN 624-2209 FAX: 908-323-1661
helms1@lakehurst.navy.mil
Writing spec to buy de-icing equipment

CARROLL HERRING *
HQ AFMC/ENBE
4375 CHIDLAW RD
WRIGHT-PATTERSON AFB OH 45433
DSN: 787-6448 FAX: 986-1650
cherring@wpgate1.wpafb.af,mil
de-icing crossfeed project officer

I LT BOB HUELSMAN *
WISCONSIN ANG
128 ARW/EM
1723 EAST GRANGE AVE
MILWAUKEE, WI 53207-6149
DSN: 580-8186 FAX: 580-8495
rhuelsman@wimke.ang.af.mil
Wisconsin controls de-icing fluid that
leaves base

MANO K HUSAIN *
HQ PACAF/CEV
25 E ST STE D-306
HICKAM AFB HI 96853
DSN 315-448-0474 FAX:315-449-0427
husainm@hqpacaf.af.mil

LARRY ISSACS ACC/CEVC LANGLEY AFB VA 23665 DSN: 574-3668

SKIP IGO *
910 AW/LGM
YOUNGSTON AIR RESERVE BASE
VIENNA OH 44473-0910
DSN: 346-1250 FAX: 346-1350
aircraft maintenance flight chief

MAJ LYNN W JOBES *
910 AW/LGM
YOUNGSTON AIR RESERVE BASE
VIENNA OH 44473-0910
DSN: 346-1144 FAX: 346-1350
ljobes@yng.afres.af.mil

TIM JOHNSON
AFFTC DET 3
1900 FLAMINGO RD STE 266
LAS VEGAS NV 89132
702-382-9051 ext 53601

RICK JOZWICK *
911AW/MXS
316 DEFENSE AVE STE 101
CORAPOLIS PA 15108-4402
412-474-8189 FAX: 412-474-4525

GORDON KAWELO
HQ PACAF/LGMFE
HICKAM AFB HI
315-449-8862 FAX: 315-348-7842
kawelog@hqpacaf.af.mil
A/C maintenance environmental mgr

ROBERT A KENT M. SC.
HEAD, AQUATIC GUIDELINES AND
ASSESSMENTS SECTION
EVALUATION AND INTERPRETATION
BRANCH

ENVIRONMENT CANADA
351 ST JOSEPH BLVD 8th FLOOR
HULL QUEBEC K1A 0H3 CANADA
(819) 953-1554 FAX: (819) 953-0461

JOHN KING *
SA-ALC/TIEM
450 QUENTIN ROOSEVELD RD
KELLY AFB TX 78241-6416
DSN: 945-7391 FAX: 945-4916
jking@sadis01.kelly.af.mil

DICK KINZE
WL-MLS-OL
BLDG 165 RM14
2nd & BYRON ST
ROBBINS AFB GA 31098
DSN: 468-3284
Op Loc AF Corrossion Office

WALTER KOEHLER *
NAWC A/C DIVISION
CODE SR41
LAKEHURST NAS NJ 08733-5009
DSN 624-7907 FAX 909-323-1988
koehler@lakehurst.navy.mil
Environ poc / navy glycol use

DR WALTER KOZUMBO *
AFOSR/NL
BOLLING AFB DC 20332-6600
DSN: 297-4281 FAX 202-404-7475
kozumbo@afosr.af.mil
Funding basic research for deicing
alternatives at colleges and universities

SMSGT EARL LABONTE *
HQ AFCESA/CEOM
139 BARNES DR STE 1
TYNDALL AFB FL 32403
DSN: 523-6386 FAX: 523-6499
labontee@afcesa.af.mil
De-icng of runways

SMSGT PAUL LACOURCIERE *
440TH AW/LGM
300 EAST COLLEGE ST
MILWAUKEE WI 53207
DSN 950-5550 FAX 950-5576
Wants to buy de-icer fluid locally
instead of shipping it from east coast

MAJ MIKE LANDRY * NAVAIR CODE: PMA-2602C1

703-604-3344 FAX: 703 604-4505

SGT R. A. LAWLESS 8 AIR WING MAINTENANCE SQDN TRENTON ONTARIO KOK 1B0 CANADA

DSN: 827-3930 FAX: (613) 695-2788

GEORGE LEGARRETA *
FAA OFFICE OF AIRPORT SAFETY
AND STANDARDS
800 INDEPENDENCE AVE, S.W.
WASHINGTON DC 20591
202-267-8766 FAX 202-267-5383
Runway de-icing, de-icing facilities

CARL LEIGHMAN
PRO-ACT
HQ AFCEE/EP
8106 CHENNAULT RD, BLDG 1161
BROOKS AFB, TX 78235-5318
DSN 240-4243
proact@osiris.cso.uiuc.edu

locklaid@usafe22.ramstein.af.mil

DEBORAH A LOCKLAIR *
HQ USAFE/CEVC
UNIT 3050 BOX 10
APO AE 09094
DSN: 314-480-6382
FAX: DSN 314-480-7306

LT FELIPE LOPEZ
NAWC A/C DIVISION CODE 11X71LB
LAKEHURST NAS NJ 08733-5052
DSN: 624-4702 FAX: 624-4028
lopezf1@lakehurst.navy.mil
Working on truck replacement effort

(high pressure, hot heat, less glycol)

ED LUENINGHOERNER 55CEB/CEV OFFUTT AFB NE DSN: 271-4807

ROBERT MACINTOSH
SR. AIR TRAFFIC INVESTIGATOR
NAT'L SAFETY TRANSPORT BOARD
NTSB/AS-10
490 L'ENFANT PLAZA EAST SW
WASHINGTON DC 20594
202-382-6877
Chief investigator on several major
crashes involving improper ground deicing and anti-icing procedures.

KATHY MAKOFSKI *
ANGRC/CEVC
3500 FETCHET AVE, BLDG R-47
ANDREWS AFB MD 20762
DSN: 278-8695 FAX: 278-8151
kmakofski@angrc.ang.af.mil
Storm water issues

WAYNE MARSEY
FAA AAR-410
ATLANTIC CITY INT'L AIRPORT
ATLANTIC CITY NJ 08045
609-485-5297
FAX: 609-485-4845
research, runway surfaces, heated
pavements, friction measurement

CHARLES MASTERS *
FAA FLT TEST CENTER
ATLANTIC CITY INT'L AIRPORT
ATLANTIC CITY NJ 08045
609-485-4000 ext 4135
FAX: 609-485-5138
Runway friction test for deicers. Has worked well with AF.

DR DAVID MATTIE *
ARMSTRONG LABORATORY
CHIEF, BIOCHEMICAL TOXICOLOGY
OL AL HSC/OETB BLDG 79
2856 G STREET
WRIGHT-PATTERSON AFB OH 45433
DSN 785-5740 FAX 785-1474
dmattie@falcon.al.wpafb.af.mil
Tri-service tox group. Has served as consultant on toxicity of de-icers and fuel system inhibitors.

LT COL BRIAN MCCARTY
HSC/XRE
2510 KENNEDY CIRCLE STE 220
BROOKS AFB TX 78235-5120
DSN: 240-4466 FAX: 240-4475
mccarty@emgate.brooks.af.mil

CMSGT WAYNE MCGLOTHLIN 5 CES/CEO 320 PEACEKEEPER PLACE MINOT AFB ND 58705-5006 DSN: 453-4644 FAX: 453-1879 mcglothw@ces5.minot.af.mil AFCESA runway deicing expert who is now stationed at Minot.

RON MCGREGGOR AF SAFETY AGENCY KIRTLAND AFB NM 87117 DSN: 246-1373 Ice accident investigator TAMI MCVEY *
CHIEF OF NAVAL OPERATIONS
CODE: N45701
2211 S CLARK PLACE ROOM 644
ARLINGTON VA
703-602-9434 FAX: 703-602-5547

NELSON MILLER
MGR A/C SAFETY
FAA TECH CENTER
ATLANTIC CITY INT'L AIRPORT
ATLANTIC CITY NJ 08045
609-485-4464

ROBERT MOESLEIN
911 AIR LIFT WING/CE
PITTSBURG IAP AIR RES STA
1113 HARMON AVE
COREAPOLIS PA 15108-4421
DSN: 277-8571 FAX: 277-8572
civil engineer

CAPT MIKE MOORE
ANGRC/LGMA
3500 FETCHET AVE, BLDG R-47
ANDREWS AFB MD 20762
DSN: 278-8491 FAX: 278mmoore@angrc.ang.af.mil

PETE MULLENHARD NAVY 703-769-1983 CFC Info Clearinghouse

LTC JUDY MUNLEY
HQ USAF/LGMM
1260 AIR FORCE PENTAGON
WASHINGTON DC 20330-1260
DSN: 225-0844 FAX 225-9811
munleyj@afsync.hq.af.mil

CAPT RICK MURPHY
AMC/LGFB
402 SCOTT DR UNIT 2A2
SCOTT AFB IL 62225-5308
DSN: 576-8953 FAX: 576-5734
murphyr@hqamclg.safb.af.mil

MAJ NORMAN MURRAY AFLMA/LGM 501 WARD ST MAXWELL AFB, GUNTER ANNEX AL

36114

DSN 596-4581

FAX 596-4638

nmurray@b205s1.ssc.af.mil

Chief, Environmental Initiatives Branch

CLIFF MYERS *
DLA/DSCR-JDT
8000 JEFFERSON DAVIS HWY
RICHMOND VA 23297-5810
DSN: 695-3995 FAX: 695-6008
gst5029@dcsr.dla.mil
Chemist/Integrated manager for deicing fluid technical quality, supply

Chemist/Integrated manager for deicing fluid technical quality, supply procurement issues.

MSGT STANLEY MYNCZYWOR AFLMA/LGM 501 WARD ST MAXWELL AFB, GUNTER ANNEX, AL 36114

DSN 596-4581 FAX 596-4638 smynczywor@b205s1.ssc.af.mil Performed deicing study in 95

GARY NAULT *
ACC/CEVCM
129 ANDREWS ST STE 102
LANGLEY AFB VA 23665-2769
DSN: 574-3668 FAX: 574-8033
naultg@hqaccce.langley.af.mil
Funds water compliance de-icing
solutions for ACC bases.

MAJ KENT NONAKA *
AFMC/CEVV
4225 LOGISTICS AVE
WRIGHT-PATTERSON AFB OH 45433
DSN: 787-7414 FAX: 986-1650
nonakak@afmcce.wpafb.af.mil

TOM O'BRIEN

FAA TECH CEN

ATLANTIC CITY INT'L AIRPORT

ATLANTIC CITY NJ 08405

609-485-4129

Special assistant

JERRY OLIVER *
12 AV BATTALION
DAVISON ARMY AIRFIELD
FT BELVOIR VA 22060
DSN 656-7110 FAX: 703-806-7538

LT DENNIS O'SULLIVAN
AL/EQS-OL
139 BARNES DR, STE 2
TYNDALL AFB FL 32403-5323
DSN 523-6232 FAX: 523-6064
Replaces Maj Rhodes as deicer POC
dennis.osullivan@ccmail.aleq.tyndall.
af.mil

PETE PALMER *
SA-ALC/LDEE
485 QUENTIN ROOSEVELT RD STE 7
KELLY AFB TX 78241
DSN: 945-0239 FAX: 945-8606
ppalmer@sadis01.kelly.af.mil
Cognizant engineer for aircraft de-icing equipment.

PAUL PANTELIS *

AATD/AMSAT-R-TL

FT EUSTIS VA 23604-5577

DSN: 927-5777 FAX: 927-3029

pantelis@eustis-aatds1.army.mil

Army aircraft cleaning and de-icing equipment R&D.

RICHARD PERI
HQ USCG (G-EAE-37)
2100 SECOND ST SW
WASHINGTON DC 20593-0001
202-267-0796
r.peri/g-eae2@cgsmt.comdt.uscg.mil
JDEP rep USCG doesn't de-ice much
Uses ethylene and propylene C-130s

LTC RICH PERKINS *

AFLO CODE U MS210-6

NASA AMES RESEARCH CENTER

MOFFET FIELD CA 94035

DSN 359-5832 FAX: 415-604-0967

It_col_rich_perkins@qmgate.arc.

nasa.gov

AF liaison officer for Wright Labs

MAJ GARY PHILLIPS
AMC/DOTK
402 SCOTT DR UNIT 3A1
SCOTT AFB IL 62225-5302
DSN: 576-5924 FAX: 576-2773
phillipg@hqamc.safb.af.mil
Base Ops aircraft de-icing decisisons

MSGT DARRELL POFF HQ USAFE/LGMM RAMSTEIN AFB GE APO AE 09094 poffd@usafe5.ramstein.af.mil

CMSGT JOE PROFFITT
AMC/DOTK
402 SCOTT DR UNIT 3A1
SCOTT AFB IL 62225-5302
DSN: 576-5924 FAX: 576-2773
proffitj@hqamc.safb.af.mil
Base Ops aircraft de-icing decisisons

EDWARD PUGACG
PROJ MGR
FAA TECH CENTER
ATLANTIC CITY INT'L AIRPORT
ATLANTIC CITY NJ 08405
609-485-5707

MAJ AL RHODES
AL/EQS-OL
139 BARNES DR, STE 2
TYNDALL AFB FL 32403-5323
DSN 523-6232
al.rhodes@ccmail.aleq.tyndall.af.mil
Env. compatible deicing programs Will
provide navy contacts for modified
monosaccharides and methyl
cellosolves

CYNTHIA RICH
FAA
800 INDEPENDANCE AVE SW
ARP-1
WASHINGTON DC 20591
202-267-9471
Ass't administrator for airports

MAJ PEDRO RIVAS *
317AS/DOLT
105 EAST HILL BLVD
CHARLESTON SC 29404
DSN: 673-2436 FAX: 673-5867
C-17 reserve pilot Flies for Delta

DR CHARLES RYERSON *
US ARMY CRREL
72 LYME ROAD
HANOVER NH 03755-1290
603-646-4487 FAX: 603-646-4644
cryerson@crrel.usace.army.mil

BOB SANDOVAL *
NAVAL FACILITIES ENGINEERING
SERVICE CENTER
CODE ESC421
1100 23rd AVE
PORT HUENEME CA 93043-4370
DSN: 551-1466 FAX: 805-982-4304
bsandov@nfesc.navy.mil
Pollution prevention technical
development

H SANGHAVI *
HQ AMC/CEVCM
507 A STREET
BLDG P-40 WEST
SCOTT AFB IL 62225-5022
DSN: 576-5764 ext 516 FAX: 576-2693
sanghavh@hqamc.safb.af.mil
AMC water program manager for compliance, infrastructure and O&M issues.

JAYANT SHAH *
HQ USAF/CEVC
1260 AIR FORCE PENTAGON
WASHINGTON DC 20330-1260
DSN 227-2797 FAX 227-3378
shahj@afce.hq.af.mil

Air Force water program manager.

MAJ DAVE SHEETS
AMCIO-EQM
ROCK ISLAND IL 61229-6000
DSN: 793-1958 FAX: 793-1457
dsheets@ria-emhz.army.mil
JDEP rep

CAPT GREG SIMS *
AMC/DOTK
402 SCOTT DR UNIT 3A1
SCOTT AFB IL 62225-5302
DSN: 576-5924 FAX: 576-2773
simsgr@hqamc.safb.af.mil
base ops

ALEC SIMPSON
MANAGER, ENVIRONMENTAL
PROTECTION
ENVIRONMENT CANADA
PLACE DE VILLE
OTTAWA ONTARIO K1A 0N8
CANADA
(613) 990-0512 FAX: (613) 990-9589

SKIP SOWARDS
PRO-ACT
HQ AFCEE/EP
8106 CHENNAULT RD, BLDG 1161
BROOKS AFB, TX 78235-5318
DSN 240-4243
proact@osiris.cso.uiuc.edu

1 LT YVONNE SPENCER *
HSC/YAL
8107 13th STREET
BROOKS AFB TX 78235-5218
DSN: 240-6354 FAX: 240-2993
spencery@diamond.brooks.af.mil

SUSAN STELL *
AFRES/CEVC
ROGINS AFB GA 31098
DSN: 497-1078 FAX: 497-0108
sstell@wrb.afres.af.mil
Concerned about environmental
impacts in AFRES northern bases

FAA 513-569-7474

pollution prevention technology

BILL SWIETLIK
US EPA OFFICE OF WASTEWATER
MANAGEMENT

401 M St SW
Mail Code 2403
Washington DC 20460
202-260-9529 FAX: 202-260-1460
Issues storm water regulations

PAUL SWINDELL *
NAWC A/C DIVISION CODE 11X71LB
LAKEHURST NAS NJ 08733-5052
DSN: 624-1926 FAX: 624-4029
@lakehurst.navy.mil

FRANK TABOR
CIVIL ENGINEERING
OFFUTT AFB NE
DSN 271-5369
PM for deicing pad installed at offutt

JOHN TOWER *
171ARW/EM
300 TANKER ROAD
PITTSBURGH IAP
COREAPOLIS,PA 15008-4257
DSN: 277-7640 FAX: 277-7221
jtower@papit.ang.af.mil

1 LT UDUAK UDO-AKA (ITA) *
WL/MLSE
WRIGHT-PATTERSON AFB OH 45433
DSN: 785-3953 FAX: 476-4378
udoakaui@ml.wpafb.af.mil
De-icing R&D at WL.

RAY VASELICH *
SAF/AQRE
8804 LAKE HILL DR
LORTON VA 22079
703-690-1986 FAX: 703-690-4572

JIM VASIL
SA-ALC/SFTT
KELLY AFB TX 78241
DSN 945-7613 FAX: 945-9964
jvasil@sadis01.kelly.af.mil

VIC VERMA *
AFCEE/CCD-A
77 FORSYTH STREET SW STE 295
ATLANTA GA 30335-6801
404-331-0590 FAX: 404-331-2537
vverma@afceeb1.brooks.af.mil

DAVE WAGNER
AFCESA/CEOM
139 BARNES DR STE 1
TYNDAL AFB FL 32403
DSN: 523-6388 FAX: 523-6499
wagnerd@afcesa.af.mil
De-icing runways

1 LT JACK WALL *
151 ARW/EM
765 NORTH 2200 WEST
SALT LAKE CITY UT 84116
801-595-2157 FAX: 801-595-2178
jwall@utslc.ang.af.mil

DON WEBB
OC-ALC/EM
7701 SECOND ST
TINKER AFB OK
DSN: 336-2157 FAX 336-4381
dwebb@po25.tinker.af.mil

LT COL ALLAN W WEINER PH.D. *
AL/EQ
ENVIRONMETRICS DIRECTORATE
139 BARNES DR STE 2
TYNDALL AFB FL 32403
DSN: 523-6308 FAX: 904-283-6064
allan_weiner@ccmail.aleq.tyndall.af.
mil

LT COL GIL WENDT
HQ AFMC/ENBE
4375 CHIDLAW RD
WRIGHT-PATTERSON AFB OH 45433
DSN: 787-5567 FAX: 986-1650
wendtg@wpgate1.wpafb.af.mil

PAUL WHITE AFRES/LGMAU ROBINS AFB GA 31098 DSN: 497-1645 pwhite@wrb.afres.af.mil

KARI WILDGUBER
ANGRC/CEVC
3500 FETCHET AVE, BLDG R-47
ANDREWS AFB MD 20762
DSN: 278-8197 FAX: 278-8151
Pollution Prevention

JODY WIREMAN
AL/OEMH
2402 E DRIVE
BROOKS AFB TX 78245-5114
DSN: 240-6123 FAX: 240-2315
Toxicology review for QPL
jody.wireman@guardian.brooks.af.mil

MAHLON YOKLEY MARINES DSN: 582-4594 JDEP rep ASC(AW) JACK P YON *
NAS BRUNSWICK, AIMD
1251 ORION ST SOUTH
BRUNSWICK ME 04011-5000
DSN: 476-2138 FAX: 476-2306

CMSGT DAVE YOUNG
HQ AMC/LGAB
402 SCOTT DR UNIT 2A2
SCOTT AFB IL 62225-5308
DSN: 576-6770 FAX: 576-5544
youngd@hqamclg.safb.af.mil
LG environmental matters

LARRY YOUNGBLUT
FAA FLIGHT STANDARDS SERVICE
800 INDEPENDENCE AVE, S.W.
WASHINGTON DC 20591
202-267-3755
Expert in de-icing and anti-icing
requirements and procedures

(GUS) ZACHARIADES *
SA-ALC/SFTT
KELLY AFB TX 78241
DSN 945-7613 FAX: 945-9964
czachari@sadis05.kelly.af.mil
Air Force de-icer T.O. manager

ALVIN ZATEZALO *
911 AW
316 DEFENSE AVE STE 101
CORAPOLIS PA 15108-4403
412-474-8191 FAX: 412-474-8709

JOHN ZIEGRA
PUBLIC WORKS DEPT
ENVIRONMENTAL DIVISION
400 ORION ST
BRUNSWICK NAS ME 04011
207-921-9445 FAX: 201-921-2649

DR JOHN ZUK *
NASA-AMES
MOFFETT FIELD CA 94035
415-604-6568
Project officer for new type II fluid

ALC /TI Technical Management and Engineering Support Managers

OC-ALC/TI 3001 STAFF DRIVE, STE 2AF69A TINKER AFB OK 73145-3001 DSN: 336-3184

OO-ALC/TI 5851 F AVE HILL AFB UT 84056-5713 DSN: 777-4504

SA-ALC/TI 450 QUENTIN ROOSEVELT RD KELLY AFB TX 78241-6416 DSN: 945-7391

SM-ALC/TI 5225 BAILEY LOOP MCCLELLAN AFB CA 95652-2510 DSN: 633-2010

WR-ALC/TI 420 SECOND ST., STE 100 ROBINS AFB GA 31098-1640 DSN: 468-4930

AFMC Center Environmental Managers

OC-ALC/EM 7701 SECOND ST., STE 220 TINKER AFB OK 73145-9100 DSN: 336-5102

OO-ALC/EM 7276 WADLEIGH ROAD HILL AFB UT 84056-5137 DSN: 775-2325 SA-ALC/EM

307 TINKER DRIVE

KELLY AFB TX 78241-5917

DSN: 945-3100

SM-ALC/EM

5050 DUDLEY BLVD., STE 3 MCCLELLAN AFB CA 95652-1389

DSN: 633-0830

WR-ALC/EM

216 OCMULGEE CT.

ROBINS AFB GA 31098-1646

DSN: 468-1124

ASC/EM

1801 TENTH ST. STE 2

WRIGHT-PATTERSON AFB OH

45433-7626

DSN: 785-3059

ESC/EN-2

5 EGLIN ST (BLDG 1624)

HANSCOM AFB MA 01731-2116

DSN: 478-8127

HSC/EMP

2909 NORTH RD

BROOKS AFB TX 78235-5128

DSN: 240-2346

SMC/SDZB

160 SKYNET ST STE 2315 LOS ANGELES AFS CA 90245

DSN: 833-0293

AGMC/EM

813 IRVING WICK DRIVE WEST

NEWARK AFB OH 43057-7506

DSN: 346-7077

NDCEE Contacts

JIM BEARDEN

Concurrent Technologies Corp

(NDCEE)

1450 Scalp Ave

Johnston PA 15904

814-269-2855

FAX: 814-269-6218

DENIS DIONNE

Concurrent Technologies Corp

(NDCEE)

1450 Scalp Ave

Johnston PA 15904

814-269-2855

FAX: 814-269-6218

BRIAN GREENE

Concurrent Technologies Corp

(NDCEE)

1450 SCALP AVE

JOHNSTON PA 15904

814-269-2761

FAX: 814-269-6218

greene@ctc.com

Air Force Support Contractors

ALBERT B. BACA

HQ AFMC/ENBE

4375 CHIDLAW RD STE 6

WRIGHT-PATTERSON AFB OH 45433

DSN: 787-0350

FAX: 986-1650

abbaca@wpgate1.wpafb.af,mil

DENNIS W. JARVI

HQ AFMC/DRMA

4375 CHIDLAW RD STE 6

WRIGHT-PATTERSON AFB OH 45433

DSN: 787-6220

FAX: 986-1650

djarvi@wpgate1.wpafb.af,mil

JERRY MONGELLI
HQ AFMC/LG-EV
4375 CHIDLAW RD STE 6
WRIGHT-PATTERSON AFB OH 45433
DSN: 787-3487 FAX: 787-4244
mongelli@wpgate1.wpafb.af,mil

CHARLIE NAULT
ACC/LGOV
11817 CANON BLVD STE 306
NEWPORT NEWS VA 23606-1988
DSN: 574-9454 FAX: 574-9153
naultc@acclsg.langley.af.mil
Works environmental matters for
ACC/LG

KEITH GLASS
SAF/AQRI
1060 AIR FORCE PENTAGON
WASHINGTON DC 20330-1060
DSN: 227-7579 FAX: 227-4936
WHEN IN CRYSTAL CITY OFFICE
(703) 416-3356 FAX: (703) 416-3329
glassk@aqpo.hq.af.mil

De- icing Contacts By Name at Industry Associations

ADPA

(GEN) RON BECKWITH

Aircraft De-icing Systems Corp

2001 JEFFERSON DAVIS HWY

ARLINGTON VA 22202

703-418-1702 FAX 703-418-0034

NSIA ENVIRONMENTAL COMMITTEE

PETER CARELAS 1025 CONNECTICUT AVE NW

SUITE 300 WASHINGTON DC 20036

202-775-1440 FAX: 202-775-1309

Chair, ADPA Environment Committee

VINCE CICCONE

RASCO

1635-2 WOODSIDE DR WOODBRIDGE VA 22191

703-643-2952 FAX: 703-497-2905

REGIONAL AIR LINES ASSOCIATION

WALT COLEMAN

1200 19th STREET NW STE 300 WASHINGTON DC 20036-2412 202-857-1170

Commuter airlines in regional airlines assoc

Chair, NSIA Environment Committee

AMMY HOEBER

AMH CONSULTING

3318 SECOND ST SOUTH ARLINGTON VA 22204

703-271-9527 FAX: 703-271-4267

AIRPORTS COUNCIL INTERNATIONAL

DICK MARCHI

1775 K STREET NW WASHINGTON DC 20006 202-293-8500

Does technical & environmental affairs

AAAE

CARTER MORRIS KATI SCHNELL DENISE KING

4212 KING ST ALEXANDRIA VA 22302

703-824-0500 FAX: 703-820-1395

AIR TRANSPORT ASSOCIATION

DON R. MINNIS

1301 PENNSYLVANIA AVE NW SUITE 1100 WASHINGTON DC20004

202-626-4103

Dir, Airport Plan and Develop. All major airlines belong to ATA Has committee focusing on de-icing.

AIR TRANSPORT ASSOCIATION OF CANADA

JACK SQUIRES

99 BANK ST STE 747 OTTAWA ONT K1P 6B9

613-233-7727 FAX: 613-230-8648

SAE-G-12 COMMITTEE

JAY MYERS GINA SAXTON

400 COMMONWEALTH DR WARRENDALE PA 15096 412-776-4841 ext 7319 FAX: 412-776-0243

Primary SAE contact point.

NATA

FRED WORKLEY

4226 KING ST ALEXANDRIA VA 22302 800-808-6282 Training packages approved by FAA. On disc. Being updated.

NATA

ANDREW CEBULA

4226 KING ST ALEXANDRIA VA 22302 703-845-9000 FAX: 703-845-8176 VP govt-industry affairs

The following are contacts at specific companies involved with de-icing.

Appearance of a company on this list does not mean that the Air Force endorses the product or service sold by that company. All it means is that in our research, we were referred to the company. The list only provides a starting point for Air Force people working de-icing problems to begin seeking solutions.

3M

WARREN VOLLMAR

612-733-0384 Works with NASA Ames

AIRCRAFT DE-ICING SERVICES

7850 HARRY B COMBS PARKWAY DENVER IAP

DENVER CO 80249

303-342-5600 FAX: 303-342-5653

AIRCRAFT DE-ICING SYSTEMS INC

(GEN) RON BECKWITH

2001 JEFFERSON DAVIS HWY

ARLINGTON VA 22202

703-418-1702 FAX 703-418-0034

AIREFFRIGERATION SYSTEMS

BILL YOUNG

1351 HARBOR BAY PKWY STE 2000 ALAMEDA CA 94502

(510) 748-1100 FAX 510-748-1110

ALLIED SIGNAL AEROSPACE

DAN FOLEY

AEROSPACE EQUIPMENT SYSTEMS 2525 W 190TH STREET TORRANCE CA 90509 310-512-1390

ALLIED SIGNAL AEROSPACE

BOB SHEPARD

% NAVICP BLDG 1 ROOM 2222 700 ROBBINS AVE PHILADELPHIA PA 19111 215-697-3995

ALLIED SIGNAL AEROSPACE

JOHN STANKO

AEROSPACE EQUIPMENT SYSTEMS 2525 W 190TH STREET TORRANCE CA 90509 310 512 4613

AMR COMBS

RICHARD LEAHY

DENVER INT'L AIRPORT 7850 HARRY B COMBS PARKWAY DENVER CO 80249 303-342-5654 FAX: 303-342-5653

recycle systems

ARCO CHEMICAL CO

ANDREW LEWIS

3601 WESTCHESTER PIKE NEWTON SQUARE PA 19073 610-359-2264 FAX: 610-359-7207

De-icing fluid manufacturer

A/S ROULUNDS FABRIKER

HESTERHAVEN, DK-5260 ODENSE S DENMARK

45-63-11-50-00 FAX: 45-66-11-23-80

ASCENT TECHNOLOGIES GROUP

DAVID NEWMAN BRIDGETTE BARKER

ONE MILL ST

PARISH NY 13131-9715

315-625-7299 FAX: 315 625-4226

ATHEY PRODUCTS CORP

WES BRANT

1839 S MAIN ST

WAKE FORREST NC 27587

919-556-5171 FAX: 919-556-0122

airport sweepers

AUGIAS

JIM McDONALD

1381 PARK CENTER RD HERNDON VA 22071

703-471-4952 FAX: 301-229-5916

AVIATION ENVIRONMENTAL INC

LARRY HINEBAUGH

4335 S. INDUSTRIAL RD STE 400

LAS VEGAS NV 89103

800-788-6450 FAX: 702-262-2994

AVIATION ENVIRO COMPLIANCE CO

LEE WILLIAMS

DAYTON OH 513-294-1861

B A LEISCH ASSOCIATES

HARRY SUMMITT

13400 15TH AVE NORTH MINNEAPOLIS MN 55441

612-559-1423 FAX: 612-559-2202

BATTS INC

JOHN BATTS Sr JOHN BATTS Jr

BOX 1

108 S MAIN ST ADVANCE IN 46102

(317) 676-5123 FAX: (317) 676-5275

BF GOODRICH

DAVE SWEET

339-374-3707

BG PRODUCTS INC

GALEN MYERS

PO BOX 1282

WICHITA KS 67201

316-265-2686 FAX: 316-265-1082

BIOFILTRATION SYSTEMS INC

TOM CANNON

1800 SECOND ST STE 808-13

SARASOTA FL 34236

(813) 953-5200 FAX: 813-953-5353

BIOTRONIC TECHNOLOGIES

BERNARD BEEMSTER

W226 N555B EASTMOUND DR WAUKESHA WI 53186

414-896-2650 FAX: 414-896-2644

CANMET MINERAL LAB

BOB HARGREAVES

613-992-7782

CATALYST and CHEMICAL SERVICE

JOHN GAUGHAN

2100 MUIR WAY BEL AIR MD 21015

410-569-1200 FAX: 410-569-1202 aircraft de-icing and cleaning system

CENTECH GROUP INC

JIM HAMILTON

4200 WILSON BLVD STE 700 ARLINGTON VA 22203

1703-812-5363 FAX: 703-525 2349

De-icing programs

CH2M HILL

GINGER EVANS

6060 SOUTH WILLOW DRIVE GREENWOOD VILLAGE CO 80111 303-771-0900

Airport deicing operations

COASTAL FLUID TECHNOLOGIES

MIKE GROTEFEND

PO BOX 81577

LAFEYETTE LA 70598-1577

(318) 261-0796 FAX: (318) 261-0797

CRYOTECH DE-ICING TECHNOLOGY

6103 ORTHWAY

FORT MADISON IA 52627

319-372-6012

FAX:

800-346-7237

CRYOTECH DE-ICING TECHNOLOGY

KEITH JOHNSON

3550 GENERAL ATOMICS CT SAN DIEGO CA 92186-9784

619-455-3446 FAX: 619-455-4217

CRYOTECH DE-ICING TECHNOLOGY

BOB STRAWN TONY MYHRA

11100 ASH STE 208 LEAWOOD KS 66221

800-255-0401 FAX: 913-491-1621

DAVID CLARK CO

STEPHEN KENNEDY

360 FRANKLIN ST

WORCESTER MA 06150

508-756-6216 FAX: 508 753 5827

DELTA ROCKY MOUNTAIN PETRO

MARK ALDRICH

9155 BOSTON ST

HENDERSON CO 80640

303-289-4483 FAX: 303-287-2541

ECCO INC

JOHN BRADFORD

3601 C STREET STE 1414

ANCHORAGE AK 99503

800-301-4311 FAX: 907-563-7926

ECOLOGY AND ENVIRONMENT INC

PATRICIA MALINOWSKI

368 PLEASANT VIEW DR

LANCASTER NY 14086

716-684-8060 FAX: 716-684 8060

EFX SYSTEMS

ROGER OWENS

1300 SHANES DR

WESTBURY NY 11590

516-997-2100

FAX: 516-997-2129

Biological technologies

ELGIN SWEEPER CO

1300 W BARTLETT RD ELGIN IL 60121-0537

708-741-5370 FAX: 708-742-3035

ENERGETICS

TERRY BATES

7164 COLUMBIA GATEWAY DR COLUMBIA MD 21046

410-290-0370 FAX: 410-290-0377

ENVIRONMENTAL ENGINEERING CENTER

North Dakota Env Research Center

FRANK BEAVER

701-777-5125 or off DSN 362-1110 Tied in with U of ND Studying distillation of glycol

EQ-ENVIRONMENTAL QUALITY CO

PAT SULLIVAN

1349 S HURON ST YPSILANTI MI 48197

313-485-6460 FAX: 313-485-6493

ENVIROTECH SERVICES

MATT DURAN

PO BOX 275

WESTMINSTER CO 80030(303)

(303) 465-3808 FAX: (303) 465-4208

EPOKE A/S

LARS MATHIASEN

VEJENVES 50 ASKOV

POSTBOX 230 DK-660 VEJEN

DENMARK

45 76 96 22 00 FAX: 45 75 36 38 67

FEDERAL SIGNAL

BILL ACKENDORF

51 FERNWOOD LANE

GRAND ISLAND NY 14072

716-773-7057 FAX: 716-773-8054

FMC-ORLANDO

CLIFF FOSTER DAVE PHILLIPS

7300 PRESIDENTS DR ORLANDO FL 32809

407-850-2844

FAX: 407-850-2839

Engineer, de-ice equipment

FMW INTERNATIONAL INC

BOB MUELLER

77 WEST PORT PLAZA STE 304 ST LOUIS MO 63146

314-434-9747

FAX: 314-434-9713

FOSTER-MILLER INC

DR HARRIS GOLD CAROLYN WESTMARK

195 BEAR HILL RD

WALTHAM MA 02154-1196

617-684-4419

FAX: 617-290-0693

Carolyn Westmark worked de-icing at Wright Lab while on active duty.

G. VESTERGAARD A/S

BILLY VESTERGAARD

SKULLEBJERG 31, GEVNINGE DK-4000 ROSKILD

DENMARK

011-454-642-2222

Danish company manufactures efficient

de-icing trucks

GLYCOL SPECIALISTS INC

5915 N BROADWAY

DENVER CO 80216

303-292-2000

FAX: 303-292-0429

HNTB CORP

JAMES PARKS

111 MONUMENT CIRCLE STE 1200

INDIANAPOLIS IN 46204

317-636-4682 FAX: 317-633-0505

HOECHST CANADA INC

KURT ENGLEHARDT

4045 COTE VERTU MONTREAL QUEBEC H4R 1R6 CANADA

(514) 333-3630 FAX: 514-333-3751

HUDSON GENERAL

IAN SHARKEY

AIRWAY CENTER 5915 AIRPORT RD STE 400 MISSISSAUGA ONTARIO L4V 1T1 CANADA

905-676-0511 FAX: 905-676-0533

INDEPENDENT EVALUATORS

RAY VASELICH

8804 LAKEHILL DR LORTON VA 22079-3211

INLAND TECHNOLOGIES INC

DARYL GOLBECK CRAIG COLLINS

5925 AIRPORT RD STE 200 MISSISSAUGA, ONTARIO L4V 1W1 CANADA

(905) 405-6222 FAX: 905-672-8630 Environmental support managers

INTERNATIONAL AUTOMATED SYSTEMS

JORGEN S BILDSOE 2233 HAMLINE AVE N STE 220 ST PAUL MN 55113

(612) 636-3853 FAX: (612) 636-0309

JAYCOR

BOBBIE THOMPSON 4035 COL GLENN HWY ste 100 BEAVERCREEK OH 45431 (513) 427-9690 FAX: (513) 427-9673 Research and recommend de-icing projects

LABAT-ANDERSON INC

EVELYN MCDONALD

8000 WESTPARK DR STE 400 MCCLEAN VA 22102

703-506-1400

FAX:703-506-4646

HSC de-icingstudy

LANDOLL CORP

TOM JOYCE

1900 NORTH ST

MARYSVILLE KA 66508

913-562-5381 FAX: 913-562-5381 Manufacturer of de-icing equipment

MERCURY GSE

TIM GARVIN

135 SHELDON ST

EL SEGUNDO CA 90245

310-335-0082 FAX: 310-335-0155

MOBILE PROCESS TECHNOLOGY

FRANK CRAFT

2070 AIRWAYS BLVD MEMPHIS TN 38114

901-744-1142 FAX: 901-743-2361

MOBILE PROCESS TECHNOLOGY

SCOTT CARPENTER

800-238-2038

NORTH AMERICAN BIOINDUSTRIES CORP

BOB LITZAU

3068 S CALHOUN RD NEW BERLIN WI 53151 414-796-8448 FAX:

800-395-8070 Working with WI ANG

OCTAGON PROCESS INC

JANE HINKLE

THE MARKET PLACE 725 RIVER RD

EDGEWATER NJ 07020

201-945-9400 FAX: 201-945-1203 Company manufactures de-icing fluids

and chemicals

OGDEN ENVIRONMENTAL AND ENERGY SERVICES

JERRY SHOEMAKE MIKE COCHRANE

3325 PERIMETER HILL DR NASHVILLE TN 37211

615-333-0630 FAX: 615-331-4715

Works water issues for ANG

OGDEN ENVIRONMENTAL AND ENERGY SERVICES

DOUG NOEL

690 COMMONWEALTH CENTER 11003 BLUE GRASS PARKWAY LOUISVILLE KY

502-267-0700 FAX: 502-267-5900

dnoel@nc5.infi.net

Works water issues for ANG

OLD WORLD INDUSTRIES

MIKE REED

4065 COMMERCIAL AVE

NORTHBROOK IL 60062-1051

847-559-2085 FAX: 847-559-2038

PHOENIX BIOSYSTEMS

DR JOE RUOCCO

310 N FIRST PO BOX 397

COLWICH KS 67030

(316) 796-0900 FAX: (316) 796-0944

PROCESS TECHNOLOGIES INC

JOHN CHEW

40 CENTRE DR

ORCHARD PARK NY 14127

(716) 662-0022 FAX: 716-662-0033

PURE MAT RECOVERY SYSTEMS

JACK HENNESSY

PO BOX 22203 PHEONIX AZ 85028

602-996-4500 FAX: 602-837-3799

RICHMOND DE-ICER CO

DENYSE DU BRUCQ

51 WILLARD ST QUINCY MA 02169

(617) 646-5056 FAX: (617) 471-7561

RVSI

CARL BARANISHYN

516-273-9700

Testing a vision system to detect ice on aircraft wings. Must be aluminum or aluminum paint.

SAIC

CHRISTINA CARLSON

11251 ROGER BACON DR

RESTON VA 20190

(703) 318-4596 FAX: (703) 736-0826

SIMON AVIATION GROUND EQUIP

BILL DEMPSEY

55 OLD 56 HIWAY

OLATHE KS 66061-2110

913-780-0300 FAX: 913-782-8675

Manufactures de-icing trucks

SMITH AND LOVELESS INC

GARY WOTLI

3240 N BROADWAY

ST LOUIS MO 63147-3515

314-621-2536 FAX: 314-621-1952

SPAR AEROSPACE LTD

CHRIS BUTT

9445 AIRPORT RD

BRAMPTON ONTARIO L6S 4J3

CANADA

905-790-4497 FAX: 905-790-4430

recycle systems

SWEEPER JENKINS

TOM BALL

2800 N ZEB RD DEXTER MI 48130 800-456-7100

THOMSEN PRODUCTS INC

TORBEN ZERLANG ALICIA DAWSON

604 HAYDEN STATION RD WINDSOR CT 06095

(203) 688-8331 FAX: 203-683-2314

TYMCO

DON BLASCHE

PO BOX 2368 WACO TX 76703

817-799-5546 FAX: 817-799-2722

UNION CARBIDE CORP

DANIEL GARSKA

PO BOX 8361 SOUTH CHARLESTON WV 25303 304-747-4631 Tech mgr for ADAF

VACTOR MANUFACTURING INC

STEVE BAKER

1621 SOUTH ILLINOIS ST STREATOR IL 61634

815-672-3171 FAX: 815-672-2779

VELCO

BARRY JOHNSON

2804 W SAN RAFAEL ST TAMPA FL 33629

813-251-2104 FAX: 813-251 2101

WESTON

BILL FREEMAN

1 WESTON WAY WEST CHESTER PA 19380-1499 610-701-3616 FAX: 610-701-7597

WRIGHT TECHNICAL NETWORK

DR BILL HIRT

3155 RESEARCH BLVD SUITE 201 DAYTON OH 45420-4015 (513) 253-0217 FAX: (513) 253-7238

ZENON ENVIRONMENTAL SYSTEMS

DICK SMALLWOOD

1533 SEA BREEZE TR STE 101
VIRGINIA BEACH VA
804-486-8183
Complete fluid capturing service.
Company certified ramp meets local

US Airlines De-icing
Contacts.
This listing also includes
contacts at city airports

FED EX

MICHAEL FINK

PO BOX 727 MEMPHIS TN 38194 901-360-3146 Flight manager

environmental law

FED EX

JIM GWALTNEY

3796 LAMAR AVE MEMPHIS TN 38118

901-2226 8271 FAX: 901-224-8278 global operations control manager

UNITED AIRLINES

MURRAY KUPERMAN MAINTENANCE OPERATIONS SAN FRANCISCO INT'L AIRPORT SAN FRANCISCO CA 94128-3800

415-634-5149 FAX: 415-634-7117 Chairman, SAE G-12 fluids committee

DELTA AIRLINES

WARNER UNDERWOOD

HARTSFIELD AIRPORT ENGINEERING DEPT 563

ATLANTA GA 30320

404-714-3151 FAX: 404-714-3304

SAE G-12 group leader

AMERICAN AIR TRANSPORT

PHILIP McBRIDE

OHARE INTERNATIONAL AIRPORT CHICAGO IL 60666

312-686-6550 FAX: 312-686-4907

Maintenance manager

O'HARE INT'L AIRPORT

FRANK GRIMALDI

DEPT OF AVIATION TERMIMAL 2 PO BOX 66142 CHICAGO IL 60666-0142

312-686-2255 FAX: 312-686-2303

RHODE ISLAND AIRPORT CORP

JAMES ZISIADES

TF GREEN AIRPORT WARWICK RI 02886-1533 401-737-4000 x237 FAX:401-739-4204

DAYTON INTERNATIONAL AIRPORT

DONNA GORBY-LEE

VANDALIA OH 45377 513-454-8212

Environmental compliance coordinator

DAYTON INTERNATIONAL AIRPORT

DAVID MASON

VANDALIA OH 45377 513-454-8208

De-icer spill into watershed.

PORTLAND INT'L AIRPORT

BILL LONG

BOX 3529

PORTLAND OR 97208

503-335-1134 FAX: 503-335-1124

SYRACUSE DEPT OF AVIATION

CHARLES EVERETT

HANCOCK INT'L AIRPORT SYRACUSE NY 13212

315-454-3263 FAX 315-454-3263

CONTACTS AT COLLEGES AND UNIVERSITIES

GEORGIAN COLLEGE

TED SYME

ONE GEORGIAN DRIVE BARRIE ONTARIO L4M 3X9 **CANADA** 705-728-1968 x1424 fax:705-722-5175

UNIVERSITY OF COLORADO

DR DOBROSLAV ZNIBARCIC DR MARK HERNANDEZ

CIVIL ENGINEERING DEPT BOULDER CO 80309

303-492-7577 FAX: 303-492-7317