Karnaugh Maps(K- Map)

- A Karnaugh map is a graphical representation of the logic system.
- It can be drawn directly from either minterm (sum-of-products) or maxterm (product-of-sums) Boolean expressions
- It is desired to have a minimized sum-of-products or a minimized product-of-sums expression.
- Types of K- Map
- Two-variable Karnaugh map.

Construction of a Karnaugh Map(K- Map)

- An n-variable Karnaugh map has 2n squares
 - In the case of a minterm Karnaugh map,
 - '1' is placed in all those squares for which the output is '1',
 - '0' is placed in all those squares for which the output is '0'. Os are omitted for simplicity.
 - An 'X' is placed in squares corresponding to 'don't care' conditions.
- In the case of a maxterm Karnaugh map,
 - '1' is placed in all those squares for which the output is '0',
 - '0' is placed for input entries corresponding to a '1' output. Again, 0s are omitted for simplicity,
 - an 'X' is placed in squares corresponding to 'don't care' conditions.

• Two-variable Karnaugh map.

Three-variable Karnaugh map.

ABC	00	01	11	10
0	000	001	011	010
1	100	101	1111	110
		(8	a)	

• Four-variable K- map.

CD				
AB	(00)	01)	11	(10
700	0000	0001	0011	0010
01	0100	0101	0111	0110
11	1100	1101	1111	1110
10 ;	1000	1001	1011	1010

• five-variable K- map.

DE	00 (01	11	10_	BC	00	01	11	10
00 BC	0	1	3	2	00	16	17	19	1
01	4	5	7	6	01	20	21	23	2
11	12	13	15	14	11	28	29	31	3
10	8	9	11	10	10	24	25	27	2

• six-variable K- map.

For minterms (sum of product)table .

Decimal	Varia	bles	Minterms	Minterm	
Number	Α	В		Designation	
0	0	0 /A	ĀB	m_0	
1	0	1	ĀB	m ₁	
2	1	0	AB	-A m ₂	
3	1	1	AB	m_3	

For maxterms (product of sum)table .

Maxterms table is as shown	(with corresponding minterms also))
----------------------------	------------------------------------	---

Decimal	Varia	ables	Minterms	Minterm	Maxterms	Maxterm
Number	A	В	3, 4	Designation		Designation
0	0	0	ĀB	<i>m</i> ₀	A + B	M ₀
1	0	1	A B	m_1	$A + \overline{B}$	M ₁
2	1	0	ΑB	m_2	A + B	M ₂
3	1	1	AB	m ₃	$\overline{A} + \overline{B}$	M ₃

So the corresponding K-map will be

A	B 0	1
0	A+B	A+B
1	Ā+B	Ā+B

AB	Marine I	0.
	Mo	M ₁
	M ₂	M ₃

Three-variable K map.

Decimal	V	Variables		s Minterms Minterm Maxterms		Maxterms	Maxterm
Number	A	В	С		Designation	Designation Designation	
0	0	0	0	ĀBC	m ₀	A+B+C	Mo
1	0	0	1	ĀBC	m ₁	A + B + C	M ₁
2	0	1	0	ĀBĒ	m ₂	$A + \overline{B} + C$	M ₂
3	0	1	1	ABC	m ₃	$A + \overline{B} + \overline{C}$	M ₃
4	1	0	0	ABC	m ₄	A + B + C	M ₄
5	1	0	1	ABC	m_5	$\overline{A} + B + \overline{C}$	M ₅
6	1	1	0	ABC	m ₆	$\overline{A} + \overline{B} + C$	M ₆
7	1	1	1	ABC	m ₇	$\overline{A} + \overline{B} + \overline{C}$	M ₇

mm shove table the K-man is given by

For minterms (sum of product)table •

AB	C BC	BC	ВС	BC		AB	C 00	01	11	10
Ā	ABC	ĀBC	ABC	ĀBĒ	or	0	000	001	011	010
A	ABC	ABC	ABC	ABC	Oi	1	100	101	111	:10

Grouping of adjacent one pair.

- If we consider the minterm of K map. Then
- Output of the K map is Y = B

$$Y = \overline{A}B + AB$$

$$= B(\overline{A} + A)$$

$$= B.1 = B$$

Three variable K map

• Output of the K map is $Y = \overline{AB}$

Output of the K map is Y = BC

Output of the K map is $Y = \overline{A}.\overline{C}$

Output of the K map is Y =

• Output of the K map is $Y = \overline{B}$

Output of the K map is Y = C

Output of the K map is Y = B

• Output of the K map is Y = \bar{C}

Four-variable K- map.

• Example:

Minimize the flowwing function using K – map. Right truth table and Drow the logic ckt diagram,

$$f(A,B,C,D) = \sum m(0,1,2,3,6,8,9,10,11,12,13)$$

CI	CD	CD	CD	CD
ĀB	1 0	1	1 ,	1 2
ĀB	0	0 5	0 7	1/
AB	1	1 (13	0 15	0 14
AB	1 ,	1 ,	1 ,,	1 10

C	DCD	ĒD		CD	CD
ĀВ	1 0	1	1	1 ,	1 2
ĀB	0 4	0	5	0 ,	1/6
AB	1 12	1	13	0 15	0 4
AB	1 ,	1	9	1 ,	1 10

	Α	В	C	D	F
0	0	0	0	0	
1	0	0	0	1	
2	0	0	1	0	
3	0	0	1	1	
4	0	1	0	0	
5	0	1	0	1	
6	0	1	1	0	
7	0	1	1	1	
8	1	0	0	0	
9	1	0	0	1	
10	1	0	1	0	
11	1	0	1	1	
12	1	1	0	0	
13	1	1	0	1	
14	1	1	1	0	
15	1	1	1	1	

	C	D .	CD CD	CD	
	AB	0	0	0	0
B{	ĀB	0	1	1	0
٤,	AB	0	1	1	0
	A IS	0	0	0	0
	75.1		Y =	B.D	7. 4 (

CI		CD	CD	yeran Sector
AB	0	0	0	0
iss con	0	0	0	0
, SAB	0	1 111	1	0
$^{\prime\prime}$ $^{A\overline{B}}$	0	1	1	0
IHA-		Y =	A.D	

26-09-2015

13

A B	1	1	1	8/1
▼ B	0	0	0	0
	0	0	0	0
↑ AB	1	1	1	1

26-09-2015

14

• Example:

Minimize the flowing function using K – map. Right truth table and Drown the logic ckt diagram,

$$f(A, B, C, D) = \sum m(3, 4, 5, 7, 9, 13, 14, 15)$$

Five-variable K- map.

	A=0 i.e. A				A=1 i.e. A				
BC	DE	DE	DE	DE	BC	DE	DE	DE .	DE
BC	0	ht î	3	2	BC	16	17	19	18
BC	4	5	7	6	BC	20	21	23	22
BC	12	13	15	14	BC	28	29	31	30
BC	8	9	11	10	BC	24	25	27	50

• Example:

Minimize the flowing function using K – map. Right truth table and Drown the logic ckt diagram,

$$f(A,B,C,D,E) = \sum m(3,5,6,8,9,12,13,14,19,22,23,24,25,30)$$

• Example:

Minimize the flowing function using K – map. Right truth table and Drown the logic ckt diagram,

$$f(A,B,C,D,E) = \sum m(\,0,5,6,8,9,10,11,16,20,24,25,26,27\,)$$

