

A Directed Spanning Tree Adaptive Control Framework for Time-Varying Formations

Dongdong Yue^{1,3}, Simone Baldi^{2,3}, Jinde Cao^{1,2}, Qi Li¹, Bart De Schutter³

¹School of Automation; ²School of Mathematics, Southeast University

 3 Delft Center for Systems and Control, Delft University of Technology

The 16th China Networks Science Forum, May 10, 2020

OUTLINE

BACKGROUND

MOTIVATION & PROBLEMS

METHOD & RESULTS

NUMERICAL EXAMPLE

CONCLUSIONS

BACKGROUND MOTIVATION & PROBLEMS METHOD & RESULTS NUMERICAL EXAMPLE CONCLUSIONS

MULTI-AGENT SYSTEM

- ► Agents (Able to send/receive data, take actions, · · ·)
- ► Communications (Among agents, controller&actuator, · · ·)
- ► Group Behaviors (Consensus, formation, · · ·)

(a) Synchronised swim- (b) Formation vehicles (c) Sensor network ming

(The pictures were taken from un-copyrighted websites with thanks)

SYNCHRONIZATION→FORMATION

X. Dong and G. Hu, "Time-varying formation tracking for linear multiagent systems with multiple leaders," *IEEE Trans. Autom. Control*, vol. 62, no. 7, pp. 3658–3664, 2017.

Figure 1: A digraph with a Directed Spanning Tree (DST)

TIME-VARYING FORMATION CONTROL

$$\dot{x}_i = Ax_i + Bu_i \quad i \in \mathcal{I}_N \triangleq \{1, 2, \cdots, N\} \tag{1}$$

 $x_i(t) \in \mathbb{R}^n$: state; $u_i(t) \in \mathbb{R}^m$: controller; (A, B): compatible and stabilizable pair of matrices.

Definition 1 (TVF)

The multi-agent system (1) is said to achieve the time-varying formation defined by the time-varying vector $h(t) = (h_1^T(t), h_2^T(t), \cdots, h_N^T(t))^T$ if, for any initial states, there holds

$$\lim_{t \to \infty} ((x_i - h_i) - (x_j - h_j)) = 0, \ \forall i, j \in \mathcal{I}_N.$$
 (2)

Assumption 1 (DST)

The weighted digraph $\mathcal{G}(\mathcal{V}, \mathcal{E}, \mathcal{A})$ has at least one DST $\bar{\mathcal{G}}(\mathcal{V}, \bar{\mathcal{E}}, \bar{\mathcal{A}})$.

TIME-VARYING FORMATION TRACKING

$$\dot{x}_l = Ax_l, \qquad l \in \mathcal{I}_M,
\dot{x}_i = Ax_i + Bu_i, \quad i \in \mathcal{I}_N \setminus \mathcal{I}_M.$$
(3)

Definition 2 (TVFT)

BACKGROUND

The multi-agent system (3) is said to achieve the time-varying formation tracking defined by $h^F(t) = \operatorname{col}(h_{M+1}(t), h_{M+2}(t), \cdots, t)$ $h_N(t)$) and by positive constants β_l , $l \in \mathcal{I}_M$, satisfying $\sum_{l=1}^{M} \beta_l = 1$ if, for any initial states, there holds

$$\lim_{t\to\infty} \left(x_i - h_i - \sum_{l=1}^M \beta_l x_l\right) = 0, \ \forall i \in \mathcal{I}_N \setminus \mathcal{I}_M. \tag{4}$$

For the special case M = 1, (4) becomes

$$\lim_{t\to\infty} (x_i - h_i - x_1) = 0, \quad i = 2, \cdots, N.$$

TVF CONTROLLER DESIGN

$$u_{i} = K_{0}x_{i} + K_{1}d_{i} + K_{2}\sum_{i \in \mathcal{N}_{1}(i)} \alpha_{ij}(t)(d_{i} - d_{j})$$
 (6)

$$\alpha_{ij}(t) = \begin{cases} a_{ij}, & \text{if} \quad e_{ji} \in \mathcal{E} \setminus \bar{\mathcal{E}}, \\ \bar{a}_{k+1,i_k}(t), & \text{if} \quad e_{ji} \in \bar{\mathcal{E}} \end{cases}$$
(7)

$$\dot{\bar{a}}_{k+1,i_k} = \rho_{k+1,i_k} \Big((d_{i_k} - d_{k+1}) - \sum_{j \in \bar{\mathcal{N}}_2(k+1)} (d_{k+1} - d_j) \Big)^T \Gamma(d_{i_k} - d_{k+1})$$

(8)

 $d_i = x_i - h_i$: local formation deviation of agent i; $\mathcal{N}_1(i)$ ($\mathcal{N}_2(i)$): in-neighbor (out-neighbor) of i; i_k : the unique in-neighbor of node k+1 in $\bar{\mathcal{G}}$, $k=1,\cdots,N-1$; K_0 , K_1 , K_2 , Γ , ρ_{k+1,i_k} : feedback gains.

NUMERICAL EXAMPLE

TVF CONTROLLER DESIGN

MOTIVATION & PROBLEMS

Algorithm 1

1. Find a K_0 such that the formation feasibility conditions

$$(A + BK_0)(h_{i_k}(t) - h_{k+1}(t)) - (\dot{h}_{i_k}(t) - \dot{h}_{k+1}(t)) = 0$$
 (9)

hold, $\forall k \in \{1, \dots, N-1\}$, for any DST $\bar{\mathcal{G}}$. If such K_0 exists, continue; else, the algorithm terminates without solutions;

2. Choose K_1 such that $(A + BK_0 + BK_1, B)$ is stabilizable. For some η , $\theta \in \mathbb{R}^+$, solve the following LMI:

$$(A + BK_0 + BK_1)P + P(A + BK_0 + BK_1)^T - \eta BB^T + \theta P \le 0$$

to get a P > 0;

3. Set $K_2 = -B^T P^{-1}$, $\Gamma = P^{-1} B B^T P^{-1}$ and choose $\rho_{k+1,i_k} \in \mathbb{R}^+$.

MAIN RESULT FOR TVF

Theorem 1

Under Assumption 1, and feasibility condition (9), the TVF problem in Definition 1 is solved by controller (6) with adaptive coupling weights (7)-(8), along the designs in Algorithm 1.

Remark 1

In state-of-the-art TVF, the number of feasibility conditions is of the order $\frac{N(N-1)}{2}$:

$$(A + BK_0)(h_i(t) - h_j(t)) - (\dot{h}_i(t) - \dot{h}_j(t)) = 0, \ \forall i \to j.$$

The proposed number of feasibility conditions in (9) is N-1, i.e., exploiting the DST structure leads to the minimum number of conditions.

EXAMPLE: TVF

Agents:
$$N = 12$$
, $A = \begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$;

Communication topology: Figure 1;

Required formation: a pair of nested hexagons.

Figure 2: Trajectories of the agents $x_i(t)$ with snapshots at t = 0, 10, 20.

BACKGROUND MOTIVATION & PROBLEMS METHOD & RESULTS NUMERICAL EXAMPLE CONCLUSION:

EXAMPLE: TVF

Figure 3: Coupling weights $\alpha_{ij}(t)$ and global formation error E(t) with proposed adaptive method ($\rho_{k+1,i_k} = 0.1$).

BACKGROUND MOTIVATION & PROBLEMS METHOD & RESULTS NUMERICAL EXAMPLE CONCLUSION:

EXAMPLE: TVF

Figure 4: Coupling weights α_{ij} and global formation error E(t) with nonadaptive control ($\rho_{k+1,i_k} = 0$, same initial α_{ij} as in Fig. 3).

EXAMPLE: TVFT WITH A SINGLE LEADER

Figure 5: A digraph with a DST rooting at the leader.

EXAMPLE: TVFT WITH A SINGLE LEADER

Figure 6: Trajectories of the agents $x_i(t)$ with snapshots at t = 0, 10, 20, where the pentagram is the leader.

BACKGROUND MOTIVATION & PROBLEMS METHOD & RESULTS NUMERICAL EXAMPLE CONCLUSIONS

EXAMPLE: TVFT WITH THREE LEADERS

Figure 7: A digraph with a generalized DST rooting at the leadership, and the induced graph G' with a single leader.

BACKGROUND

Figure 8: Trajectories of the agents $x_i(t)$ with snapshots at t = 0, 20, 30, 50, where three filled pentagrams and an unfilled pentagram are used to mark the leaders and their average.

► DST-based adaptive TVF algorithm is developed WITHOUT knowing the network Laplacian eigenvalues;

- ► DST-based adaptive TVF algorithm is developed WITHOUT knowing the network Laplacian eigenvalues;
- ► MINIMUM number of distributed formation feasibility conditions are derived;

- ► DST-based adaptive TVF algorithm is developed WITHOUT knowing the network Laplacian eigenvalues;
- ► MINIMUM number of distributed formation feasibility conditions are derived;
- ► A natural unifying framework for the DST adaptive method in the presence of one or more leaders;

- ► DST-based adaptive TVF algorithm is developed WITHOUT knowing the network Laplacian eigenvalues;
- MINIMUM number of distributed formation feasibility conditions are derived;
- ► A natural unifying framework for the DST adaptive method in the presence of one or more leaders;
- ► Future works?

- ► DST-based adaptive TVF algorithm is developed WITHOUT knowing the network Laplacian eigenvalues;
- MINIMUM number of distributed formation feasibility conditions are derived;
- ► A natural unifying framework for the DST adaptive method in the presence of one or more leaders;
- ► Future works?
- ► Further reading: https://arxiv.org/abs/2005.01349.

BACKGROUND

