

COMP47590: Advanced Machine Learning Supervised Learning - Evaluation

1

Section Outline

In this section we will cover:

- Why evaluate?
- Choosing appropriate evaluation metrics
- Running machine learning experiments

This lecture largely focuses on supervised machine learning.

Why Evaluate?

3

Prosper-René Blondlot Discoverer of n-Rays

Who has heard of n-rays?

Л

Prosper-René Blondlot Discoverer of n-Rays

Prosper-René Blondlot Discoverer of n-Rays

APS This Month in Physics History: September 1904: Robert Wood debunks N-rays

https://www.aps.org/publications/apsnews/200708/history.cfm

Fantastically Wrong: The Imaginary Radiation That Shocked Science and Ruined Its 'Discoverer'

https://www.wired.com/2014/09/fantastically-wrong-n-rays/

7

Why Evaluate?

It is worth distinguishing between two different types of evaluation that we do in machine learning

- evaluating a model that we would like to deploy for a specific task (industry)
- 2. comparing machine learning methods (research)

Why Evaluate?

The purpose of evaluation when we want to deploy a model (industry) is threefold

- 1. to determine which algorithm (plus hyperparameter values) is the most suitable for a task
- 2. to estimate how a model will perform after deployment
- 3. to convince users that a model will meet their needs

9

Why Evaluate?

The purpose of evaluation when we want to comparing machine learning methods (research) can be different

- 1. to evaluate the performance of a new method against existing baselines
- 2. to determine the *best* machine learning approach for a specific problem
- 3. to perform a benchmark experiment

These almost all reduce to an experiment in which we compare multiple approaches using multiple datasets

11

Hold-Out Test Set

It is important to establish a hold-out test set early on (we'll come back to why)

Training Test
Set Set

Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies (www.machinelearningbook.com) John D. Kelleher, Brian Mac Namee and Aoife D'Arcy

The purpose of evaluation when we want to deploy a model (industry) is threefold

- 1. to determine which algorithm (plus hyperparameter values) is the most suitable for a task
- 2. to estimate how the model will perform after deployment
- 3. to convince users that the model will meet their needs

13

Evaluation For Deployment

Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies (www.machinelearningbook.com) John D. Kelleher, Brian Mac Namee and Aoife D'Arcy

Hyper-parameters

- Hyper-parameters are parameters of the learning algorithm
- All machine learning algorithms have them!
- Hyperparameter values can make a big difference!

Hyper-parameter tuning

- A grid search or random search based on cross validations makes sense
- AutoML approaches are good if you have access to them
- After finding best hyper-parameters we should do one last cross validation experiment with a different shuffle

17

Evaluation For Deployment

The purpose of evaluation when we want to deploy a model (industry) is threefold

- 1. to determine which model is the most suitable for a task
- 2. to estimate how the model will perform after deployment
- 3. to convince users that the model will meet their needs

The purpose of evaluation when we want to deploy a model (industry) is threefold

- 1. to determine which model is the most suitable for a task
- 2. to estimate how the model will perform after deployment
- 3. to convince users that the model will meet their needs

Performance Measures

21

Performance Measures

Machine learning offers us a raft of diffrent performance measures for experiments

- Accuracy

– Precison, Recall, F1 score

Macro-averaged F1 score

Sensitivity, Specificity

- ROC index

- Dunne index

- Gain & Lift

- Kolmogorov smirnoff

- RMSE

 $-R^2$

– ...

It is really important to pick the right performance measure for the problem you are solving

Performance Measures

Model 1 confusion matrix 91%

		Prediction				
		'non-churn' 'churr				
Target	'non-churn'	90	0			
larget	'churn'	9	1			

Model 2 confusion matrix 78%

		Prediction				
		'non-churn'	'churn'			
Target	'non-churn'	70	20			
larget	'churn'	2	8			

23

Performance Measures

Model 1 confusion matrix $\frac{1}{2}(1+0.1)=55\%$

		Predicti	ion			
		'non-churn' 'churn'				
Torget	'non-churn'	90	0			
Target	'churn'	9	1			

Model 2 confusion matrix $\frac{1}{2}(0.778+0.8)=78.889\%$

		Prediction						
		'non-churn' 'churi						
Toract	'non-churn'	70	20					
Target	'churn'	2	8					

Macro Averaging

The specific lesson in this example is to use macro averaging rather than micro averaging when classification datasets are imbalanced

25

Evaluation For Research

Why Evaluate?

The purpose of evaluation when we want to comparing machine learning methods (research) can be different

- to evaluate the performance of a new method against existing baselines
- 2. to determine the *best* machine learning approach for a specific problem
- 3. to perform a benchmark experiment

These almost all reduce to an experiment in which we compare multiple approaches using multiple datasets

27

Why Evaluate?

The purpose of avaluation when we want to comparing ferent

1. to evaluation when we want to comparing ferent
hod
building one specific proach
for a s

3. to per

These almost all reduce to an experiment in which we compare multiple approaches using multiple datasets

Bench	marks
-------	-------

	Data 1	Data 2	Data 3	Data 4	Data 5	Data 6	Data 7	Data 8	Data 9	Data 10
Approach 1										
Approach 2										
Approach 3										
Approach 4										
Approach 5										
Approach 6										
Approach 7										
Approach 8										
Approach 9										
Approach 10										

Benchmarks - Performance Measures

	Data 1	Data 2	Data 3	Data 4	Data 5	Data 6	Data 7	Data 8	Data 9	Data 10
Approach 1	0.50	0.42	0.72	0.63	0.58	0.56	0.79	0.83	0.99	0.70
Approach 2	0.45	0.39	0.61	0.53	0.56	0.41	0.75	0.62	0.89	0.59
Approach 3	0.48	0.42	0.66	0.57	0.60	0.45	0.76	0.65	0.91	0.65
Approach 4	0.52	0.57	0.74	0.58	0.61	0.58	0.76	0.67	1.00	0.69
Approach 5	0.65	0.46	0.79	0.69	0.81	0.64	0.89	0.72	1.00	0.76
Approach 6	0.56	0.40	0.67	0.61	0.67	0.50	0.77	0.70	0.94	0.60
Approach 7	0.48	0.40	0.63	0.54	0.58	0.43	0.77	0.63	0.90	0.60
Approach 8	0.51	0.53	0.66	0.57	0.62	0.46	0.88	0.73	0.93	0.61
Approach 9	0.61	0.57	0.77	0.54	0.70	0.59	0.94	0.75	1.00	0.62
Approach 10	0.50	0.48	0.64	0.53	0.63	0.47	0.84	0.64	0.95	0.67

Benchmarks - Ranks

	Data 1	Data 2	Data 3	Data 4	Data 5	Data 6	Data 7	Data 8	Data 9	Data 10
Approach 1	6	7	4	2	8	4	5	1	4	2
Approach 2	10	10	10	10	10	10	10	10	10	10
Approach 3	8	6	6	5	7	8	9	7	8	5
Approach 4	4	1	3	4	6	3	8	6	1	3
Approach 5	1	5	1	1	1	1	2	4	1	1
Approach 6	3	8	5	3	3	5	6	5	6	9
Approach 7	9	9	9	7	9	9	7	9	9	8
Approach 8	5	3	7	6	5	7	3	3	7	7
Approach 9	2	2	2	8	2	2	1	2	1	6
Approach 10	7	4	8	9	4	6	4	8	5	4

31

Benchmarks - Average Ranks

	Data 1	Data 2	Data 3	Data 4	Data 5	Data 6	Data 7	Data 8	Data 9	Data 10	Avg Rank
Approach 1	6	7	4	2	8	4	5	1	4	2	4.3
Approach 2	10	10	10	10	10	10	10	10	10	10	10.0
Approach 3	8	6	6	5	7	8	9	7	8	5	6.9
Approach 4	4	1	3	4	6	3	8	6	1	3	3.9
Approach 5	1	5	1	1	1	1	2	4	1	1	1.8
Approach 6	3	8	5	3	3	5	6	5	6	9	5.3
Approach 7	9	9	9	7	9	9	7	9	9	8	8.5
Approach 8	5	3	7	6	5	7	3	3	7	7	5.3
Approach 9	2	2	2	8	2	2	1	2	1	6	2.8
Approach 10	7	4	8	9	4	6	4	8	5	4	5.9
Approach 10	/	4	8	9	4	6	4	8	5	4	

Benchmarks - Average Ranks

	Data 1	Data 2	Data 3	Data 4	Data 5	Data 6	Data 7	Data 8	Data 9	Data 10	Avg Rank
Approach 1	6	7	4	2	8	4	5	1	4	2	4.3
Approach 2	10	10	10	10	10	10	10	10	10	10	10.0
Approach 3	8	6	6	5	7	8	9	7	8	5	6.9
Approach 4	4	1	3	4	6	3	8	6	1	3	3.9
Approach 5	1	5	1	1	1	1	2	4	1	1	1.8
Approach 6	3	8	5	3	3	5	6	5	6	9	5.3
Approach 7	9	9	9	7	9	9	7	9	9	8	8.5
Approach 8	5	3	7	6	5	7	3	3	7	7	5.3
Approach 9	2	2	2	8	2	2	1	2	1	6	2.8
Approach 10	7	4	8	9	4	6	4	8	5	4	5.9

33

Benchmarks - Significance Testing

Another characteristic of acdemic evaluations versus industry evaluations is the use of significance testing

- Is the best method really best?

Benchmarks - Significance Testing

We recommend a two step process:

- Friedman aligned rank test to first test whether a significant difference between the performance of the algorithms over the datasets exists
 - Compared against a significance level (e.g. 0.05)
- If a difference does exist then a pairwise Nemenyi test should be performed to show between which algorithm pairs the significant differences exist
 - Compared against a significance level (e.g. 0.05)

35

Benchmarks - Significance Testing

Nemenyi test gives us a significance matrix

– Which approaches are significantly different from which others?

Significance matrix can give rise to a **critical differences plot** which shows groups of
approaches which are significantly different from each other

Benchmarks - Significance Testing

Friedman's Aligned Rank Test for Multiple Comparisons

-T = 57.609, df = 9, p-value = 3.862e-09

Nemenyi test

- Critical difference = 4.393, k = 10, df = 90

37

Benchmarks - Significance Testing

	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10
M1	0	-5.6	-2.7	0.25	2.45	-1	-4.05	-0.85	1.55	-1.55
M2	-5.6	0	2.9	5.85	8.05	4.6	1.55	4.75	7.15	4.05
M3	-2.7	2.9	0	2.95	5.15	1.7	-1.35	1.85	4.25	1.15
M4	0.25	5.85	2.95	0	2.2	-1.25	-4.3	-1.1	1.3	-1.8
M5	2.45	8.05	5.15	2.2	0	-3.45	-6.5	-3.3	-0.9	-4
M6	-1	4.6	1.7	-1.25	-3.45	0	-3.05	0.15	2.55	-0.55
M7	-4.05	1.55	-1.35	-4.3	-6.5	-3.05	0	3.2	5.6	2.5
M8	-0.85	4.75	1.85	-1.1	-3.3	0.15	3.2	0	2.4	-0.7
M9	1.55	7.15	4.25	1.3	-0.9	2.55	5.6	2.4	0	-3.1
M10	-1.55	4.05	1.15	-1.8	-4	-0.55	2.5	-0.7	-3.1	0

Benchmarks - Significance Testing													
	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10			
M1	False	True	False										
M2	True	False	False	True	True	True	False	True	True	False			
M3	False	False	False	False	True	False	False	False	False	False			
M4	False	True	False										
M5	False	True	True	False	False	False	True	False	False	False			
M6	False	True	False										
M7	False	False	False	False	True	False	False	False	True	False			
M8	False	True	False										
M9	False	True	False	False	False	False	True	False	False	False			
M10	False												

Summary

Evaluation

- Choosing appropriate evaluation mechanisms is crucial in doing machine learning properly
- Macro versus micro averaging is a mistake too often made
- One of the key differences between industry evaluations and research evaluations is the need for significance testing
- Lots of research evaluations reduce to a benchmark across multiple methods on multiple datasets

43

Discussion

"Why do tree-based models still outperform deep learning on typical tabular data?", Grinsztajn et al https://openreview.net/pdf?id=Fp7 phQszn

