第11回. 多重積分の変数変換公式 (川平先生の本, 第27章の内容)

岩井雅崇, 2020/12/22

1 変数変換公式

定義 1. $E\subset\mathbb{R}^2$ を集合とする. $\underline{\mathbb{R}}(a,b)\in\mathbb{R}^2$ が E の境界であるとは. 任意の正の数 r>0 について $B_{(a,b)}(r)=\{(x,y)\in\mathbb{R}^2:\sqrt{(x-a)^2+(y-b)^2}\le r\}$ とするとき, $B_{(a,b)}(r)\cap E\neq \phi$ かつ $B_{(a,b)}(r)\cap \mathbb{R}^2\setminus E)\neq \phi$ となること. \underline{E} の境界の点からなる集合を $\partial \underline{E}$ とする.

1

例 2. $E = \{(x,y) \in \mathbb{R}^2 : \sqrt{x^2 + y^2} \le 1\}$ とする. このとき E の境界の点の集合は

$$\partial E = \{(x,y) \in \mathbb{R}^2 : \sqrt{x^2 + y^2} = 1\}$$
 となる.

定義 3. $E \subset \mathbb{R}^2$ を面積確定な有界閉集合とし、変数変換 Φ を次の通りとする.

$$\Phi: E \to \mathbb{R}^2$$

$$(u,v) \longmapsto (x(u,v),y(u,v))$$

 Φ が重積分の変数変換の条件を満たすとは、次の条件 (1)-(3) を満たすこと.

[条件 (1).] x(u,v),y(u,v) は C^1 級である.

[条件 (2).] $D = \Phi(E)$ とするとき, E の境界以外で Φ は 1 対 1 写像.

[条件(3).] Φのヤコビ行列

$$D\Phi = \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix}$$

とし、ヤコビアンを $\det D\Phi = \left(\frac{\partial x}{\partial u}\right)\left(\frac{\partial y}{\partial v}\right) - \left(\frac{\partial x}{\partial v}\right)\left(\frac{\partial y}{\partial u}\right)$ とするとき、 $\det D\Phi$ は E の境界以外で 0 にならない.

例 4. • $E = [0,1] \times [0,1]$ とし、

$$\Phi: \quad E \quad \to \quad \mathbb{R}^2$$
$$(u,v) \quad \longmapsto \quad (u+v,v)$$

とすると、条件 (1)-(3) を満たす.特に $D\Phi=\left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right)$ かつ $\det D\Phi=1\neq 0$ である.

• $E = [0,1] \times [0,1] \ge \bigcup$

$$\Phi: E \to \mathbb{R}^2$$

$$(u,v) \longmapsto (u+v, u+v)$$

 $^{^{1}}B_{(a,b)}(r)\cap E\neq \phi$ とは $B_{(a,b)}(r)\cap E$ が空集合でないこと. つまり, ある元 $(c,d)\in B_{(a,b)}(r)\cap E$ が存在すること.

とすると、条件(3) を満たさない. 実際 $D\Phi=\left(egin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right)$ かつ $\det D\Phi=0$ である.

• $E = [0,1] \times [0,2\pi] \succeq \bigcup$,

$$\Phi: \quad E \quad \to \quad \mathbb{R}^2$$
$$(r,\theta) \quad \longmapsto \quad (r\cos\theta, r\sin\theta)$$

とすると、条件 (1)-(3) を満たし、 $D=\Phi(E)=\{(x,y)\in\mathbb{R}^2:\sqrt{x^2+y^2}\le 1\}$ となる、特に $D\Phi=\begin{pmatrix}\cos\theta&-r\sin\theta\\\sin\theta&r\cos\theta\end{pmatrix}$ かつ $\det D\Phi=r$ である. 2

• $E = [0,1] \times [0,4\pi] \succeq \mathsf{L},$

$$\Phi: \quad E \quad \to \quad \mathbb{R}^2$$
$$(r,\theta) \quad \longmapsto \quad (r\cos\theta, r\sin\theta)$$

とすると, 条件(2)を満たさない. 3

定理 ${\bf 5}$ (多重積分の変数変換公式). $E\subset \mathbb{R}^2$ を面積確定な有界閉集合とし, 変数変換 Φ を次の通りとする.

$$\Phi: \quad E \quad \to \quad \mathbb{R}^2$$
$$(u,v) \quad \longmapsto \quad (x(u,v),y(u,v))$$

Φ は重積分の変数変換の条件 (条件 (1)-(3)) を満たすとする.

関数 f(x,y) が $D=\Phi(E)$ 上で積分可能であるとき

$$\iint_D f(x,y) dx dy = \iint_E f(x(u,v),y(u,v)) |\det D\Phi| du dv \ \texttt{となる}.$$

例 6. $D=\{(x,y)\in\mathbb{R}^2:\sqrt{x^2+y^2}\leqq 1\}$ とする. $\iint_D e^{-x^2-y^2}dxdy$ を求めよ. (解.) $E=[0,1]\times[0,2\pi]$ とし、

$$\Phi: \quad E \quad \to \quad \mathbb{R}^2$$

$$(r,\theta) \quad \longmapsto \quad (r\cos\theta, r\sin\theta)$$

とすると、条件 (1)-(3) を満たし. $D = \Phi(E)$ かつ $\det D\Phi = r$ である.

 $^{^2}$ この例では $E \setminus \partial E = \{(r,\theta) \in \mathbb{R}^2: 0 < r < 1, 0 < \theta < 2\pi\}$ であるため, E の境界以外の集合である $E \setminus \partial E$ 上で $\det D\Phi = r$ は 0 ではない.

 $^{^3\}Phi(\frac{1}{2},\pi)=\Phi(\frac{1}{2},3\pi)=(-\frac{1}{2},0)$ であるため 1 対 1 ではない. 1 対 1 に関しては第 4 回授業を参照のこと.

以上より多重積分の変数変換の公式から

$$\begin{split} \iint_D e^{-x^2 - y^2} dx dy &= \iint_E e^{-(r\cos\theta)^2 - (r\sin\theta)^2} |r| dr d\theta \\ &= \iint_E e^{-r^2} r dr d\theta \\ &= \int_0^{2\pi} \left(\int_0^1 e^{-r^2} r dr \right) d\theta = \int_0^{2\pi} \left[\frac{-e^{-r^2}}{2} \right]_0^1 d\theta = \int_0^{2\pi} \frac{1 - e^{-1}}{2} d\theta = \pi \left(1 - \frac{1}{e} \right). \end{split}$$

例 7. $D=\{(x,y)\in\mathbb{R}^2:|x+2y|\leqq 1,|x-y|\leqq 1\}$ とする. $\iint_D(x-y)^2dxdy$ を求めよ. (解.) $E=[-1,1]\times[-1,1]$ とし、

$$\begin{array}{cccc} \Phi: & E & \to & \mathbb{R}^2 \\ & (u,v) & \longmapsto & (\frac{u+2v}{3},\frac{u-v}{3}) \end{array}$$

とすると、条件 (1)-(3) を満たし、 $D=\Phi(E)$ かつ $D\Phi=\left(egin{array}{cc} rac{1}{3} & rac{2}{3} \\ rac{1}{3} & -rac{1}{3} \end{array}
ight)$ かつ $\det D\Phi=-rac{1}{3}\neq 0$ である.以上より多重積分の変数変換の公式から、

$$\iint_{D} (x-y)^{2} dx dy = \iint_{E} \left(\frac{u+2v}{3} - \frac{(u-v)}{3} \right)^{2} \left| -\frac{1}{3} \right| du dv$$

$$= \iint_{E} \frac{v^{2}}{3} du dv = \int_{-1}^{1} \left(\int_{-1}^{1} \frac{v^{2}}{3} dv \right) du = \int_{-1}^{1} \left[\frac{v^{3}}{9} \right]_{-1}^{1} du = \int_{-1}^{1} \frac{2}{9} du = \frac{4}{9}.$$