CS341

LECTURE 5

Yaro Gorban

September 28, 2015

What if we can't solve a recurrence via the master theorem

- We can solve the recurrence directly by using the recursion tree method.
- Start with Root node T(n) and expand
- $T(2^j) = 2^j \left[\frac{j(j+1)}{2} + 1 \right]$

• $T(n) \in \Theta(n(\log n)^2)$

Example:

- $T(n) = T(\lfloor \frac{n}{2} \rfloor) + T(\lfloor \frac{n}{3} \rfloor) + n$
- Base cases: T(1) = 1, T(2) = 2
- Guess and Check

- lets guess that $T(n) \in O(n)$
- \bullet prove by induction that $T(n) \leq cn$ for all $n \geq 1$
- $T(1) = 1 \le c * 1 \Rightarrow c \ge 1$
- $T(1) = 1 \le c * 1 \Rightarrow c \ge 1$
- Induction Assumption: $T(n) \le cn$ for n < m
- $T(m) = T(\lfloor \frac{m}{2} \rfloor) + T(\lfloor \frac{m}{3} \rfloor) + m$
- $\bullet \le c \lfloor \frac{m}{2} \rfloor + c \lfloor \frac{m}{3} \rfloor + m$
- $\bullet \le c \frac{m}{2} + c \frac{m}{3} + m$
- $\bullet = c(\frac{5m}{6} + m \le cm)$
- So the inequality is true if $\frac{5m}{6} + 1 \le c$
- $1 \le c/6$
- $c \ge 6$
- So we can take c = 6 and then:
- $T(n) \leq 6n$ for all $n \geq 1$ by induction