

Low-Energy High-Precision Experiments Standard Model

Kanishk¹ Kirana. K.K²

¹Undergraduate Indian Institute of Science

 2 Ph.D. Indian Institute of Science

7 April, 2025

Table of Contents

Non-Newtonian Gravitational Interactions

Neutron Lifetime Measurement

Table of Contents

Non-Newtonian Gravitational Interactions

Neutron Lifetime Measurement

► Newton's law of gravity (at large scale)

► Newton's law of gravity (at large scale)

$$F=G\tfrac{m_1m_2}{r^2}$$

$$V = -G \tfrac{m_1 m_2}{r}$$

where $G = 6.6743 \cdot 10^{-11} \text{m}^3/\text{kg} \cdot \text{s}^2$

► Newton's law of gravity (at large scale)

$$F = G \frac{m_1 m_2}{r^2}$$

$$V = -G \frac{m_1 m_2}{r}$$

where $G = 6.6743 \cdot 10^{-11} \text{m}^3/\text{kg} \cdot \text{s}^2$

➤ Yukawa-like modified potential (at small scale)

► Newton's law of gravity (at large scale)

$$\begin{split} F &= G \frac{m_1 m_2}{r^2} \\ V &= -G \frac{m_1 m_2}{r} \end{split}$$

where $G = 6.6743 \cdot 10^{-11} \text{m}^3/\text{kg} \cdot \text{s}^2$

► Yukawa-like modified potential (at small scale)

$$V = -G\frac{m_1 m_2}{r} (1 + \alpha \cdot e^{-r/\lambda})$$

where, $\alpha = \text{Strength Factor}$ $\lambda = \text{Yukawa distance}$

▶ To learn more about α and λ we need to probe the small distance gravitational interaction of particles.

▶ To learn more about α and λ we need to probe the small distance gravitational interaction of particles.

▶ The Institut Laue Langevin (ILL), Grenoble, France

In this slide			
the text will	be partially	y visible	

In this s	lide			
the text	will be par	rtially visib	le	
And fina	ally everyth	ning will be	there	

Table of Contents

Non-Newtonian Gravitational Interactions

Neutron Lifetime Measurement

Sample frame title

In this slide, some important text will be highlighted because it's important. Please, don't abuse it.

Remark

Sample text

Important theorem

Sample text in red box

Examples

Here's a super important example.

Two-column slide

This is a text in first column.

$$E = mc^2$$

- ► First item
- ► Second item

This text will be in the second column and on a second tought this is a nice looking layout in some cases.