modelo

cokelitocokelito

April 2025

1 Parametros

 $\boldsymbol{n_s}$: numero de fuentes

 n_t : numero de tanques

 n_{nt} : numero de nodos de transición

 n_{nf} : numero de nodos finales

 d_i^t : demanda del nodo de transicion i

 d_i^f : demanda del nodo final i

 \boldsymbol{c}_i : capacidad de una cañeria del tipo i

 λ_{ij}^{st} : Costo de enviar 1 Litro entre la fuente i y el tanque j

 λ_{ij}^{tnt} : Costo de enviar 1 Litro el tanque i y el nodo de transicion j

 λ_{ij}^{ntnf} : Costo de enviar 1 Litro el nodo de transicion i y el nodo final j

 σ_k : Costo de una cañeria del tipo k

2 Variables

Se define $x_{ijk} \in \{0,1\}$, para $(i,j,k) \in I_s \times I_t \times I_3$ si se instala un nodo del tipo k entre la fuente i y el tanque j. Análogamente se define $y_{ijk} \in \{0,1\}$, $(i,j,k) \in I_t \times I_{nt} \times I_3$ para denotar si se instala una cañería del tipo k entre el tanque i y el nodo de transición j, análogamente para z_{ijk} entre nodos de transición y finales.

Se denota por $x'_{ij} \in \mathbf{R}^{\geq 0}$ para la cantidad de flujo en la cañeria entre la fuente i y el nodo j. y'_{ij} y z'_{ij} son lo mismo.

3 Restricciones

$$\sum_{i=1}^{n_s} x'_{ij} - \sum_{i=1}^{n_{nt}} y'_{ij} = 0, \forall j \in I_t$$
 (1)

$$\sum_{i=1}^{n_t} y'_{ij} - \sum_{i=1}^{n_{n_f}} z'_{ij} = d_j^t, \forall j \in I_{nt}$$
(2)

$$\sum_{i=1}^{n_{nt}} z'_{ij} = d_j^f, \forall j \in I_{nf}$$

$$\tag{3}$$

$$\sum_{k=1}^{3} x_{ijk} \le 1, \forall (i,j) \in I_s \times I_t \tag{4}$$

$$\sum_{k=1}^{3} y_{ijk} \le 1, \forall (i,j) \in I_t \times I_{nt}$$
 (5)

$$\sum_{k=1}^{3} z_{ijk} \le 1, \forall (i,j) \in I_{nt} \times I_{nf}$$

$$\tag{6}$$

$$x'_{ij} \le \sum_{k=1}^{3} x_{ijk} \cdot c_k, \forall (i,j) \in I_s \times I_t$$
 (7)

$$y'_{ij} \le \sum_{k=1}^{3} y_{ijk} \cdot c_k, \forall (i,j) \in I_t \times I_{nt}$$
(8)

$$z'_{ij} \le \sum_{k=1}^{3} z_{ijk} \cdot c_k, \forall (i,j) \in I_{nt} \times I_{nf}$$

$$\tag{9}$$

$$x_{ijk} \in \{0,1\}, \forall (i,j,k) \in I_s \times I_t \times I_3 \tag{10}$$

$$y_{ijk} \in \{0, 1\}, \forall (i, j, k) \in I_t \times I_{nt} \times I_3$$
 (11)

$$z_{ijk} \in \{0, 1\}, \forall (i, j, k) \in I_{nt} \times I_{nf} \times I_3$$
 (12)

$$x'_{ij} \ge 0, \forall (i,j) \in I_s \times I_t$$
 (13)

$$y'_{ij} \ge 0, \forall (i,j) \in I_t \times I_{nt} \tag{14}$$

$$z'_{ij} \ge 0, \forall (i,j) \in I_{nt} \times I_{nf} \tag{15}$$

4 Función objetivo

$$\min z = \sum_{i=1}^{n_s} \sum_{j=1}^{n_t} (\lambda_{ij}^{st} x_{ij}' + \sum_{k=1}^{3} \sigma_k x_{ij}) + \sum_{i=1}^{n_t} \sum_{j=1}^{n_{nt}} (\lambda_{ij}^{tnt} y_{ij}' + \sum_{k=1}^{3} \sigma_k y_{ij}) + \sum_{i=1}^{n_{nt}} \sum_{j=1}^{n_{nf}} (\lambda_{ij}^{ntnf} z_{ij}' + \sum_{k=1}^{3} \sigma_k z_{ij})$$