Dimensionality Reduction: Principal Component Analysis (주성분 분석)

Table of Contents

Feature Extraction

Principal Component Analysis

Dimensionality Reduction

Why is dimensionality reduction necessary?

 To make large problems computationally efficient (conserving computation, storage and network resources)

- To improve the quality of data mining results
 - Improve classification accuracy or clustering modularity
 - Reduce the amount of training data needed to obtain a desired level of performance

Dimensionality Reduction

A simplified taxonomy of dimensionality reduction techniques

Dimensionality Reduction

- Feature selection vs. feature extraction
 - Feature selection: select a small subset of original variables
 - Feature extraction: construct/extract a new set of features based on the original variables

Feature Selection

V ₅	V ₈

Feature Extraction

Z ₂	Z_3

$$Z_1 = V_1 + 0.2 * V_2$$

 $Z_2 = V_3 - 2 * V_5$
 $Z_3 = V_4 + V_6 - V_9$

Feature Extraction

Why feature extraction than feature selection?

- Features in a data space are highly correlated and every feature contains relevant information
- The intrinsic dimension may be small

Table of Contents

Feature Extraction

Principal Component Analysis

Why PCA?

- Feature Extraction
 - Extract useful features among a large number of features
- Data Compression
 - Efficient storage and retrieval
- Visualization
 - Projection of high-dimensional data onto 2D or 3D

Principal Component Analysis: PCA

To find a set orthogonal bases to preserve the variance of the original data

Principal Component Analysis: PCA

Projection onto a basis

If \vec{a} is unit vector

$$p \Box \vec{b}^{\mathrm{T}} \vec{a} \implies \vec{x} \Box p \vec{a} \Box (\vec{b}^{\mathrm{T}} \vec{a}) \vec{a}$$

Principal Component Analysis: PCA

- Covariance
 - X: a data set (m by n, m: # of variables, n: # of records)

$$Cov(\mathbf{X}) \square \frac{1}{n} (\mathbf{X} - \overline{\mathbf{X}}) (\mathbf{X} - \overline{\mathbf{X}})^{\mathrm{T}}$$

- $Cov(\mathbf{X})_{ij} = Cov(\mathbf{X})_{ji}$
- Total variance of the data set

$$= tr[Cov(X)]$$

=
$$Cov(X)_{11} + Cov(X)_{22} + Cov(X)_{33} + ... + Cov(X)_{mm}$$

Principal Component Analysis: PCA

Eigenvalue and eigenvector

When matrix **A** is given, scalar value λ and vector **x** that satisfy $\mathbf{A}\mathbf{x} \square \lambda \mathbf{x}$ or $(\mathbf{A}-\lambda \mathbf{I})\mathbf{x} \square \mathbf{0}$ are called eigenvalue and eigenvector, respectively.

- If a matrix A is an m by m diagonalizable matrix,
 - There exist m eigenvalues and eigenvectors
 - Eigenvectors are orthogonal to each other
 - $tr(\mathbf{A}) = \lambda_1 + \lambda_2 + \lambda_3 + ... + \lambda_m$

PCA Procedure

1

Step 1: data centering

Make the mean of the variables equal to o

X_1	2.5	0.5	2.2	1.9	3.1	2.3	2	1	1.5	1.1	
X ₂	2.4	0.7	2.9	2.2	3	2.7	1.6	1.1	1.6	0.9	
											-
X_1	0.69	-1.31	0.39	0.09	1.29	0.49	0.19	-0.81	-0.31	-0.71	
X ₂	0.49	-1.21	0.99	0.29	1.09	0.79	-0.31	-0.81	-0.31	-1.01	

Step 2: Formulate the optimization problem

■ If a vector x is projected onto a basis w, then the variance after the projection becomes

$$\mathbf{V} \square (\mathbf{w}^{\mathsf{T}} \mathbf{X}) (\mathbf{w}^{\mathsf{T}} \mathbf{X})^{\mathsf{T}} \square \mathbf{w}^{\mathsf{T}} \mathbf{X} \mathbf{X}^{\mathsf{T}} \mathbf{w} \square n \mathbf{w}^{\mathsf{T}} \mathbf{S} \mathbf{w}$$

S is the sample covariance matrix where x is normalized.

✓ The purpose of PCA is to maximize the variance V after projection

$$\begin{array}{ll} \text{max} & \mathbf{w}^{\mathsf{T}} \mathbf{S} \mathbf{w} \\ \text{s.t.} & \mathbf{w}^{\mathsf{T}} \mathbf{w} \square 1 \end{array}$$

$$S \square \begin{pmatrix} 0.6166 & 0.6154 \\ 0.6154 & 0.7166 \end{pmatrix}$$

Step 3: Obtain the solution

By employing Lagrangian multiplier,

$$\max \quad \mathbf{w}^{\mathsf{T}} \mathbf{S} \mathbf{w}$$
s.t.
$$\mathbf{w}^{\mathsf{T}} \mathbf{w} \square 1$$

$$L \square \mathbf{w}^{\mathsf{T}} \mathbf{S} \mathbf{w} - \lambda (\mathbf{w}^{\mathsf{T}} \mathbf{w} - 1),$$

$$\frac{\partial L}{\partial \mathbf{w}} \square 0 \quad \Rightarrow \quad \mathbf{S} \mathbf{w} - \lambda \mathbf{w} \square 0 \quad \Rightarrow \quad (\mathbf{S} - \lambda \mathbf{I}) \mathbf{w} \square 0$$

$$Eigenvectors \ \Box \begin{bmatrix} -0.7352 & 0.6779 \\ 0.6779 & 0.7352 \end{bmatrix}$$

$$Eigenvalues \ \Box \ \boxed{0.0491} \ 1.2840 \ \Box$$

Step 4: Find the base set of bases

Sort the eigenvectors in a descending order of eigenvalues

FeatureVector
$$\Box$$
 ($eig_1, eig_2, \cdots eig_n$)

FeatureVector \Box $\begin{pmatrix} 0.6779 & -0.7352 \\ 0.7352 & 0.6779 \end{pmatrix}$

✓ One basis can preserve 96% of the original variance in this example (1.2840/(0.0491+1.2840))

Let
$$w_1$$
 be one of the eigenvectors and λ_1 be the corresponding eigenvalue. The variation of the samples projected onto w_1 is
$$(w_1^T X)(w_1^T X)^T \Box w_1^T X X^T w_1 \Box w_1^T S w_1$$
 Since $Sw_1 \Box \lambda_1 w_1$,
$$w_1^T Sw_1 \Box w_1^T \lambda_1 w_1 \Box \lambda_1 w_1^T w_1 \Box \lambda_1$$

Step 5: Extract new features

Project the original data onto the selected bases

• If each eigenvector has elements e_{ik} :

$$\mathbf{e}_1 = \left[egin{array}{c} e_{11} \ e_{21} \ dots \ e_{p1} \end{array}
ight], \mathbf{e}_2 = \left[egin{array}{c} e_{12} \ e_{22} \ dots \ e_{p2} \end{array}
ight], \ldots, \mathbf{e}_p = \left[egin{array}{c} e_{1p} \ e_{2p} \ dots \ e_{pp} \end{array}
ight]$$

• Then the principal components are formed by:

$$Y_{1} = e_{11}X_{1} + e_{21}X_{2} + \dots + e_{p1}X_{p}$$

$$Y_{2} = e_{12}X_{1} + e_{22}X_{2} + \dots + e_{p2}X_{p}$$

$$\vdots$$

$$Y_{p} = e_{1p}X_{1} + e_{2p}X_{2} + \dots + e_{pp}X_{p}$$

5

-0.71

-1.01

PCA Procedure

Step 5: Extract new features

Project the original data onto the selected bases

PCA Example

■ 원래 데이터

시리얼 이름	제조업체명	유형	칼로리	단백질	지방	나트륨	식이섬유	복합탄수화물	설탕	칼륨	비타민
100% Bran	N	C	70	4	1	130	10	5	6	280	25
100% Natural Bran	Q	С	120	3	5	15	2	8	8	135	0
All-Bran	K	C	70	4	1	260	9	7	5	320	25
All-Bran with Extra Fib	er K	C	50	4	0	140	14	8	0	330	25
Almond Delight	R	C	110	2	2	200	1	14	8		25
Apple Cinnamon Chee	rios G	C	110	2	2	180	1.5	10.5	10	70	25
Apple Jacks	K	C	110	2	0	125	1	11	14	30	25
Basic 4	G	C	130	3	2	210	2	18	8	100	25
Bran Chex	R	С	90	2	1	200	4	15	6	125	25
Bran Flakes	Р	С	90	3	0	210	5	13	5	190	25
Cap'n'Crunch	Q	C	120	1	2	220	0	12	12	35	25
Cheerios	G	C	110	6	2	290	2	17	1	105	25
Cinnamon Toast Crune	ch G	C	120	1	3	210	0	13	9	45	25
Clusters	G	С	110	3	2	140	2	13	7	105	25
Cocoa Puffs	G	С	110	1	1	180	0	12	13	55	25
Corn Chex	R	C	110	2	0	280	0	22	3	25	25
Corn Flakes	ĸ	С	100	2	0	290	1	21	2	35	25
Corn Pops	K	C	110	1	0	90	1	13	12	20	25
Count Chocula	G	C	110	1	1	180	0	12	13	65	25
Cracklin' Oat Bran	K	С	110	3	3	140	4	10	7	160	25

6

PCA Example

Eigenvectors eigenvalues for each principal component

변수이름	1	2	3	4	5	6	7
calories	0.2995424	0.39314792	0.11485746	0.20435865	0.20389892	-0.25590625	-0.02559552
protein	-0.30735639	0.16532333	0.27728197	0.30074316	0.319749	0.120752	0.28270504
fat	0.03991544	0.34572428	-0.20489009	0.18683317	0.58689332	0.34796733	-0.05115468
sodium	0.18339655	0.13722059	0.38943109	0.12033724	-0.33836424	0.66437215	-0.28370309
fiber	-0.45349041	0.17981192	0.06976604	0.03917367	-0.255119	0.0642436	0.11232537
carbo	0.19244903	-0.14944831	0.56245244	0.0878355	0.18274252	-0.32639283	-0.26046798
sugars	0.22806853	0.35143444	-0.35540518	-0.02270711	-0.31487244	-0.15208226	0.22798519
potass	-0.40196434	0.30054429	0.06762024	0.09087842	-0.14836049	0.02515389	0.14880823
vitamins	0.11598022	0.1729092	0.38785872	-0.6041106	-0.04928682	0.12948574	0.29427618
shelf	-0.17126338	0.26505029	-0.00153102	-0.63887852	0.32910112	-0.05204415	-0.17483434
weight	0.05029929	0.45030847	0.24713831	0.15342878	-0.22128329	-0.39877367	0.01392053
cups	0.29463556	-0.21224795	0.13999969	0.04748911	0.12081645	0.09946091	0.74856687
rating	-0.43837839	-0.25153893	0.1818424	0.0383162	0.05758421	-0.18614525	0.06344455
Гни	3 63360572	3 1480546	1 90934956	1 01947618	0.98935974	0.72206175	0.67151642

14.6873045

66.85391998

7.61045933

82.3065033

5.55432129

87.86082458

7.84212446

74.69604492

6

분산비(%)

27.95081329

27.95081329

24.21580505

52.16661835

5.16551113

93.02633667

PCA Example

In a 2-dimensional space

6

PCA Procedure

PCA Example: Face Image Data

Average

Original Image

Eigenvectors

6

PCA Procedure

- How to determine the optimal number of features
 - Use the scree plot
 - In general, select the principal component around the saddle point

Limitation

- May not perform well for some classification task
 - Lose the class information by preserving the variance as much as possible

