Default with Policy – Randomness Overestimation (PRO)

Pivoted Pricing, Deleveraging, and a Stability Illusion

Chen Gao

October 15

National School of Development, Peking University

Roadmap

Motivation

Model

Pivot Intuition

Quantitative Results

Microfoundation (RI)

Policy & Information

Computation

Conclusion

A Persistent Puzzle

- Some sovereigns face persistently high spreads despite moderate debt and improving fundamentals.
- Event evidence (e.g., Argentina's inflation misreporting) shows spread decoupling beyond direct balance-sheet effects.
- Standard models struggle to match elevated average premia with lower volatility.
- This paper: a single pricing operator with a second-moment belief wedge (PRO) that *pivots* price/spread schedules.

Argentina: Data Misreporting and Spread Decoupling

Official CPI vs. alternative measures

EMBI+ spreads: Argentina vs. LA peers

• Interpretation: reputational channel (type) + PRO (policy dispersion) likely both active.

Environment

- . Time: $t=0,1,2,\ldots$ Endowment $\ln y'=(1-\rho_y)\mu_y+\rho_y\ln y+\sigma_y\varepsilon'$, $\varepsilon'\sim\mathcal{N}(0,1).$
- Long-term debt with coupon κ , decay δ , risk-free rate r.
- Default exclusion probability $1-\gamma$; output cost $h(y)=y-\max\{0,\lambda_0y+\lambda_1y^2\}.$
- Sovereign utility $u(c)=(c^{1-\sigma}-1)/(1-\sigma)$, discount β .

Discrete Choice: Default and Borrowing

Taste shocks (Gumbel) deliver closed-form aggregator and logit probabilities.

$$\begin{split} V(y,B) &= \eta \, \ln \Bigl(e^{V^D(y)/\eta} + e^{V^R(y,B)/\eta} \Bigr), \\ \mathbb{P}\{d {=} 1 \mid y,B\} &= \frac{e^{V^D(y)/\eta}}{e^{V^D(y)/\eta} + e^{V^R(y,B)/\eta}} \, = \, \mathsf{L}\Bigl(-\frac{\Delta V(y,B)}{\eta} \Bigr), \\ V^R(y,B) &= \rho \, \ln \sum_{B' \in \mathcal{B}} e^{W(y,B,B')/\rho}, \quad \mathbb{P}\{B' \mid y,B\} = \frac{e^{W/\rho}}{\sum e^{W/\rho}}, \end{split}$$

where
$$\Delta V \equiv V^R - V^D$$
 ,
$$W(y,B,B') = u\big(y - \kappa B + [B' - (1-\delta)B]q(y,B')\big) + \beta \mathbb{E}V(y',B').$$

Lenders and Pricing Operator

PRO scales the taste-shock parameter in the *default logit* via a tail weight $\theta \geq 1$:

$$P_{\theta}(y,B') \; = \; \mathsf{L}\Big(-\tfrac{\Delta V(y,B')}{\theta\,\eta}\Big), \qquad \mathsf{L}(z) = \tfrac{1}{1+e^{-z}}.$$

Pricing operator (unique fixed point):

$$(\mathcal{T}_{\theta}q)(B',y) = \frac{1}{1+r} \operatorname{\mathbb{E}}_{y'|y} \Big[(1-P_{\theta}(y',B')) \big(\kappa + (1-\delta) \operatorname{\mathbb{E}}_{B''|y',B'}q(y',B'') \big) \Big].$$

One-Line Schematic of Pivot

Compact schematic anchoring the single-crossing:

$$\begin{split} P_{\theta}(y,B') &= \mathsf{L}\Big(-\frac{\Delta V(y,B')}{\theta\eta}\Big), \quad \Delta V \equiv V^R - V^D, \\ &\Rightarrow \quad \mathsf{sign}(P_1 - P_{\theta}) = -\,\mathsf{sign}(\Delta V), \\ &\Rightarrow \quad \mathsf{sign}(q_{\theta} - q_1) = \mathsf{sign}\,\mathbb{E}[(P_1 - P_{\theta})\Pi] \, = \, -\,\mathsf{sign}(\Delta V), \, \Pi > 0. \end{split}$$

Define the state-dependent threshold $B^*(y): \Delta V(y, B^*(y)) = 0$. Then:

- $B' < B^*(y)$ (safe region, $\Delta V > 0$): $q_{\theta} < q_1$ (costlier borrowing).
- \cdot $B'>B^*(y)$ (near default, $\Delta V<0$): $q_{\theta}>q_1$ (softened doom).

Calibration (Quarterly, EM stylized)

- Preferences and endowment: $\sigma = 2$, $\beta = 0.9775$, $\rho_{\nu} = 0.95$, $\sigma_{\nu} = 0.005$.
- Debt: $\delta = 0.04$ (5y duration), $\kappa = \delta + r$, r = 1%/qtr, $\gamma = 0.125$.
- Default cost: $h(y)=y-\max\{0,\lambda_0y+\lambda_1y^2\}$ with $(\lambda_0,\lambda_1)=(-0.48,0.525).$
- Taste shocks small: $\eta=5\times 10^{-4}$, $\rho=10^{-5}$; grids: N_y =201, N_B =600.
- Scenarios: $\theta \in \{1, 10, 100\}$.

Business Cycle Moments

Table 1: Simulation Moments Comparison

Moment	Baseline $(\theta = 1)$	Med θ ($\theta = 10$)	High θ ($\theta = 100$)
Mean Debt/GDP	7.646	5.520	2.695
Std Debt/GDP	1.301	0.864	0.754
Mean Spread (ann.)	2.028	2.762	4.153
Std Spread (ann.)	0.804	0.496	0.592
Std log C	3.580	3.586	3.464
Std log GDP	3.164	3.236	3.236
Corr(Sp,GDP)	-0.336	-0.802	-0.894
Corr(TB/GDP,GDP)	-0.003	-0.284	-0.259
Mean TB/GDP	0.268	0.320	0.177
Std TB/GDP	0.835	0.437	0.326
Corr(Debt/GDP,GDP)	0.697	0.858	0.839
Default Rate	3.947	0.000	0.000

- Higher avg spreads with deleveraging (pivot wedge dominates composition).
- Spreads more countercyclical; volatility of spreads/debt falls (illusion of stability).
- Consumption volatility nearly unchanged; risk insurance impaired.

Price, Spread, and Default Risk

Bond prices

Spreads

Default probabilities

Single-crossing pivot around $B^{st}(y)$; PRO discounts safe region and softens near-doom.

Impulse Responses: Transitory Shock

Debt

Impulse Responses: Persistent Shock

Output

Debt

Microfoundation (RI)

Rational Inattention: Tail Weight from Attention

- · Lenders choose precisions (a_{μ},a_{σ}) at convex cost $\Phi(a_{\mu},a_{\sigma})$.
- $\cdot \text{ Closed-form linear map: } \theta_{\mathrm{RI}}(y,B') = \min \Big\{ \, 1 + \frac{\varphi^2}{\kappa_\sigma} \, \mathcal{S}(y,B') \, , \; \bar{\theta} \, \Big\}.$
- Pricing remains the same operator evaluated at $\theta_{\rm RI}(\cdot)$; comparative statics inherit.

$$q(B',y) = \mathcal{T}_{\theta_{\mathrm{RI}}(y,B')}[q](B',y), \qquad \mathcal{S} = \mathbb{E}\Big[\partial U/\partial \theta\Big] \geq 0.$$

Empirical Hook: Misreporting ⇒ Higher Dispersion Attention

- Degraded mean-information (a_{μ}) raises marginal value of dispersion info \mathcal{S} .
- $\uparrow \mathcal{S} \Rightarrow \uparrow a_{\sigma} \Rightarrow \uparrow \theta_{RI}$: higher average spreads, steeper pivot, decoupling.

Policy & Information

Ramsey with PRO: Transfers Cannot Undo Price Wedge

$$\begin{split} c_t + \kappa B_t + \tau_t &= y_t + \left(B_{t+1} - (1 - \delta)B_t\right)q_\theta(y_t, B_{t+1}), \\ \mathbb{E}_0 \sum_t \beta^t \tau_t &= 0, \quad u'(\cdot) > 0, \ u''(\cdot) < 0. \end{split}$$

- Intertemporal trade price distorted by PRO persists in implementability; wedge creates deadweight loss.
- Result: $W_{\theta}^{R} < W_{1}^{R}$ even with optimal transfers.

Endogenous Beliefs and Transparency

Belief dynamics with negativity bias:

$$\theta_{t+1} = \lambda \, \theta_t + (1-\lambda) \, \hat{\theta}(\{d_s\}), \quad \xi(y,B) = \max \Big\{0, \frac{P_1 - P_{\theta_t}}{P_1} \Big\}, \quad \text{defaults move beliefs more}.$$

Effective transparency:

$$\theta_{\rm eff}(\alpha,\theta) = \alpha \cdot 1 + (1-\alpha) \cdot \theta, \qquad \alpha^* : \frac{\rm d}{{\rm d}\alpha} W(\alpha) = \gamma \alpha.$$

 Persistent PRO in invariant beliefs; optimal transparency rises with PRO severity.

Computation and Stability

- · Value and price iteration on $(N_y=201,N_B=600)$ grid; OpenMP parallel.
- Stabilized log-sum-exp for borrowing/default logits; infeasible-consumption guard.
- \cdot Convergence tolerances 10^{-6} ; long simulation for moments and IRFs.

Takeaways

- · Single operator with PRO produces a pivot in price/spread schedules.
- Sovereigns deleverage yet face higher average spreads; volatility falls (stability illusion).
- RI microfoundation endogenizes the tail tilt; policy/info extensions clarify limits and levers.
- Event hooks (Argentina) align with pivot, threshold, and decoupling predictions.

Operator View (Sketch)

- \mathcal{T}_{θ} is positive and order-preserving; fixed point unique under slope condition.
- · Fixed-point differentiation signs $\partial_{\theta}q_{\theta}$; monotone propagation yields pivot.