Universidade Federal do Triângulo Mineiro Departamento de Engenharia Química

Disciplina: Operações Unitárias IV

Prof^a Sandra Cristina Dantas

sandra.dantas@uftm.edu.br

> Referência:

- > Coulson e Richardson Chemical Engineering Volume 2
- > Ruthven, D.M., "Principles of adsorption and adsorption processes", John Wiley & Sons, 1984
- > Geankoplis, "Transport Processes and Separation Process Principles", 4th edition, chapter 12
- Binay K. Dutta Principles of Mass Transfer and Separation Processes

- Adsorção é um processo de separação no qual certo componente da fase fluida é transferido para a superfície de um sólido adsorvente.
- E uma operação de transferência de massa do tipo sólido-fluido na qual se explora a habilidade de certos sólidos em concentrar na sua superfície determinadas substâncias existentes em soluções liquidas ou gasosas, o que permite separa-las dos demais componentes dessas soluções.
- > Se diversos componentes são adsorvidos em graus diferentes, é possível, muitas vezes, separá-los em estados relativamente puros.

- > Adsorvente: sólido que mantém o soluto na sua superfície pela ação das forças físicas.
- > Uma vez que os componentes adsorvidos concentram-se sobre a superfície externa do sólido, quanto maior for a superfície externa por unidade de peso de sólido, tanto mais favorável será a adsorção.
- Por estas razão, os adsorventes são geralmente sólidos com partículas porosas.
- Exemplo: adsorção de vapores orgânicos pelo carvão. Separa-se industrialmente a fração mais leve do gás natural mediante um leito móvel de adsorvente.
- > A maioria dos outros processos industriais usa leitos fixos e processos descontínuos ou cíclicos em lugar de equipamento com vários estágios, pois é difícil movimentar o sólido.

Natureza da adsorção

- Sabe-se da existência de forças na superfície externa dos sólidos onde uma parte das ligações químicas acha-se livre.
- P Quando as moléculas de uma fluido em contato com o sólido incidem nesses pontos ativados de valências parciais, uma força de atração mais ou menos intensa entre o sólido e as moléculas do fluido pode provocar sua concentração na superfície do sólido.

A intensidade das forças de atração depende da natureza do sólido e dos tipo das moléculas adsorvidas, além de variar com: T, P, processo de fabricação do adsorvente.

Natureza da adsorção

Dependendo das circunstâncias, a união entre o sólido adsorvente e o adsorbato (substância adsorvida) poderá ser tão forte que a adsorção apresenta as características de uma reação química.

ADSORÇÃO ATIVADA OU QUIMISORÇÃO

Ligação das moléculas com os sítios ativos é forte, com energias de ligação da mesma ordem das ligações químicas, com ligações estáveis e as vezes irreversíveis. Importante no estudo de catálise heterogênea.

ADSORÇÃO FÍSICA OU DE VAN DER WAALS

Processo rápido facilmente invertível que decorre da ação de forças de atração intermolecular fracas entre o adsorvente e as moléculas adsorvidas.

Só este tipo de adsorção interessa nas <u>operações unitárias</u> porque pode ser desfeito.

Natureza da adsorção

- O adsorbato pode ser removido do adsorvente com facilidade, sendo suficiente aumentar a temperatura ou reduzir a pressão.
- ➤ O sucesso de um adsorvente industrial no campo das operações unitárias depende em grande parte da facilidade com que o adsorbato pode ser retirado, seja para fins de seu aproveitamento, como para regenerar o adsorvente.
- > Adsorções físicas também podem ser realizadas em fase liquida.
- Outro fato característico da adsorção de van Der waals é a possibilidade de haver várias camadas de moléculas adsorvidas, principalmente nas proximidades do ponto de condensação.

Principais adsorventes industriais

- Para ser comercialmente importantes, um adsorvente deve reunir uma série de características favoráveis de eficiência, seletividade, resistência mecânica, perda de carga, custo, aglomeração, inercia química e densidade, porem a propriedade mais importante é a área interfacial (área externa mais área dos poros).
- Muitas vezes os poros tem dimensões da mesma ordem de grandeza das moléculas, resultando em áreas de adsorção elevadíssimas.

De adsorventes mais comuns utilizados à escala industrial são o carvão ativado, a sílica-gel, a alumina ativada (estruturas amorfas com áreas específicas entre 200 e 1200 m²/g e larga distribuição de tamanho de poro) e as peneiras moleculares (tamanhos de poros exatos definidos pela sua estrutura cristalina).

Principais adsorventes industriais

Silica gel

Alumina ativada

Carvão ativado

biomassa

Table 12.1 Commercially important adsorbents and their characteristics (Keller, 1995)

Adsorbent	Characteristics	Commercial uses	Strengths	Weaknesses
Activated carbon	Hydrophobic surface, favours organics over air or water	Removal of organic pollutants from aqueous or gaseous effluents	Cheapest hydrophobic adsorbent, workhorse of pollution control	Difficult to regenerate if fouling occurs, may catch fire during air regeneration.
Carbon molecular sieve (CMS)	Separates on the basis of difference in intraparticle diffusivity	Production of N ₂ from air	The only practical adsorbent for selective adsorption of O ₂ over N ₂	The only commercial application is in air separation
Silica gel	High capacity hydrophilic adsorbent	Drying of air and other gases	Higher capacity than zeolite molecular sieves (ZMS)	Not very effective if the moisture level has to be reduced to very low
Activated alumina	High capacity, hydrophilic adsorbent	Drying of gas streams	Higher capacity than ZMS	Not as effective as ZMS for the removal of moisture in traces
Zeolite molecular sieve (ZMS)	Hydrophilic surface, polar regular channels	Dehydration, air separation, separation of molecules based on size and shape	Separation of molecules based on both polarity and geometry	Lower adsorption capacity than many other adsorbents
Silicalite	Hydrophobic surface	Removal of organics from gas streams	Can be regenerated by burning more easily	Quite expensive
Polymer adsorbents	Styrene/divinyl benzene copolymer is most common	Removal of organics from gas streams	Less prone to fouling than activated carbon	Much more costly than activated carbon

Fonte: Dutta (2007).

Principais adsorventes industriais

- Uma vez que a adsorção é um fenômeno de superfície, é importante que os adsorventes proporcionem uma grande área superficial externa e interna associada à sua estrutura porosa.
- > A capacidade de adsorção depende, portanto, do tipo e tamanho dos poros, bem como da sua distribuição, e da natureza da superfície do adsorvente. Segundo a IUPAC (1982), os poros num adsorvente são classificados em função do diâmetro como:
 - Microporos: Φ < 2 nm
 - Mesoporos: 2 < Φ < 50 nm

■ Macroporos: Φ > 50 nm

Principais adsorventes industriais

Zeolitas

Carvão ativado

[DOI:10.1016/j.saa.2011.10.012]

 $K_{12}[(AIO_2)_{12}(SiO_2)_{12}]:$ drying gases [2.9Å]

 $Na_{12}[(AIO_2)_{12}(SiO_2)_{12}]:$ CO_2 removal [3.8Å]

 $Ca_{43}[(AIO_2)_{86}(SiO_2)_{106}]:$ air separation [8Å]

Equilíbrio Termodinâmico da Adsorção

- A partição do soluto entre a fase fluida e a fase adsorvida envolve um equilíbrio de fases baseado em princípios termodinâmicos.
- A maneira mais comum de descrever este equilíbrio é expressar a quantidade de soluto adsorvido por quantidade de adsorvente (q) em função da concentração do soluto em solução (C) à temperatura constante. Uma expressão deste tipo designa-se por isotérmica de adsorção.
- ➤ A metodologia experimental para determinar isotérmicas consiste em colocar em contato com a solução de concentração conhecida diferentes massas de adsorvente até atingir o equilíbrio.
- Papós a separação do sobrenadante por filtração, avalia-se quantitativamente a quantidade de soluto adsorvido e a concentração de equilíbrio em solução. A representação gráfica de quantidade vs C podem apresentar-se de várias formas e constitui informação relevante para o processo de adsorção em coluna.

Equilíbrio Termodinâmico da Adsorção

Isotermas de adsorção mais comuns

Tipos de isotermas: q é a quantidade máxima de soluto retida no adsorvente no equilíbrio e C é a concentração de equilíbrio.

Isotermas de adsorção

- Isoterma linear: que sai da origem indica que a quantidade adsorvida é proporcional à concentração do fluido, não indicando uma capacidade máxima para adsorção.
- ➤ **Isotermas** côncavas: são chamadas favoráveis, por extrair quantidades relativamente altas mesmo em baixos níveis de concentração de adsorvato no fluido.
- ➤ Isotermas convexas: são chamadas desfavoráveis ou não favoráveis devido à sua baixa capacidade de remoção em baixas concentrações. Isotermas desfavoráveis são raras, mas muito importantes para entender o processo de regeneração, isto é, transferência de massa do sólido de volta para a fase fluida, quando a isoterma é favorável.

Equilíbrio Termodinâmico da Adsorção

Sistemas gás-sólido

Adsorção de único componente a partir de soluções diluídas

- Como a concentração de adsorbato na solução é baixa, a quantidade de moléculas que adsorvem é pequena e estas encontram-se bem distribuídas na superfície do sólido adsorvente.
- \triangleright Assim, a presença de uma molécula não influencia na adsorção de outra molécula e a concentração do soluto no adsorvente sólido (C_s) é proporcional à concentração do soluto na solução fluida (C):

$$C_s = K_a \cdot C$$

Essa expressão é análoga a lei de Henry, sendo que nos sistemas gás-sólido, a constante de proporcionalidade obedece a Lei de Hoff:

$$K_a = K_0.e^{-\Delta H/RT}$$

 \succ Em que ΔH é a variação de entalpia por mol de adsorvente devido à transferência do soluto da fase gasosa para a fase adsorvente.

ISOTERMAS DE LANGMUIR

- Langmuir propôs uma teoria para explicar a adsorção sobre uma superfície uniforme, simples, infinita e não porosa.
- De modelo baseia-se na hipótese de movimento das moléculas adsorvidas pela superfície do adsorvente, de modo que, à medida que mais moléculas são adsorvidas, há uma distribuição uniforme formando uma monocamada que recobre toda a superfície.
- > Utiliza o conceito dinâmico do equilíbrio de adsorção que estabelece a igualdade nas velocidades de adsorção e dessorção.
- > São utilizadas as seguintes aproximações:
- A adsorção é monomolecular;
- A superfície é energeticamente homogênea;
- Não existe interação entre as partículas adsorvidas.

ISOTERMAS DE LANGMUIR

- A altas concentrações de soluto, a taxa de adsorção vai diminuindo por falta de sítios vazios para novas moléculas adsorverem. Assim, a taxa de adsorção se torna proporcional a quantidade de sítios ainda vazios, bem como à concentração do soluto na solução mãe.
- P Quando algumas moléculas têm energia de ativação suficiente, elas se soltam do sólidos, ocasionando o processo de dessorção. O equilíbrio dinâmico é atingido quando as taxas de adsorção e dessorção se igualam.

> Hipóteses:

- Como admite-se a formação de monocamada de moléculas sobre o sólido, a energia de adsorção é a mesma em toda a superfície
- A adsorção ocorre em sítios fixos e as partículas não trocam de sítio
- Não há interações entre moléculas adjacentes na superfície do adsorvente

Isotermas de Langmuir

$$\frac{C_s}{C_{sm}} = \frac{B_1 P}{1 + B_1 P}$$

$$\frac{P}{C_s} = \frac{P}{C_{sm}} + \frac{1}{B_1 C_{sm}}$$
Formalinear

- C_s é a concentração do soluto na fase adsorvente
- C_{sm} é a concentração do soluto na fase adsorvente quando a monocamada está completa
- P é a pressão parcial do soluto na fase gasosa
- $B_1 = B_0 / RT$
- $B_0=k_0/k_1$: razão entre as constantes de velocidade de adsorção nos sítios vazios (k_0) e a constante de velocidade de dessorção da monocamada (k_1).

Equilíbrio Termodinâmico da Adsorção

UFIM

Sistemas gás-sólido

- Em 1938, Brunauer, Emmett e Teller, propuseram uma teoria para o fenômeno de adsorção assumindo o mesmo mecanismo de adsorção da teoria de Langmuir.
- > Întroduzindo algumas hipóteses simplificadoras, que admitem a possibilidade de que uma camada tenha a capacidade de produzir sítios de adsorção gerando a deposição de uma camada sobre a outra.

Figura (a) demonstra a adsorção de uma única camada (teoria de Langmuir) e figura (b) apresenta o modelo de multicamadas (método BET)

Hipóteses:

- Homogeneidade da superfície do sólido. O modelo não considera possíveis distorções no potencial da superfície gerado por impurezas e defeitos.
- Não consideração das forças horizontais entre uma molécula e suas moléculas vizinhas na mesma camada. Considera-se apenas as interações verticais entre o adsorvente e a molécula adsorvida.
- Todas as camadas, exceto a primeira, são tratadas de modo equivalente. O modelo não prevê um mecanismo de declínio do potencial atrativo gerado na superfície.
- · A entalpia de adsorção é igual à entalpia de condensação.

Ajusta todos os 5 formatos encontrados experimentalmente, sendo que só os sistemas gás sólidos apresentam todos os 5 formatos.

> Hipóteses:

- · Não há interações entre moléculas adjacentes na superfície do adsorvente
- A adsorção ocorre em sítios fixos e as partículas não trocam de sítio
- Admite que há possibilidade de formação de várias camadas na adsorção em diferentes posições do sólido, o que implica que as moléculas podem adsorver tanto sobre a superfície do sólido quanto ou sobre uma camada de moléculas.

$$\frac{V_s}{V_s^1} = B_2 \frac{P}{P^0} \frac{[1 - (n+1)(P/P^0)^n + n(P/P^0)^{n+1}]}{(1 - P/P^0)[1 + (B_2 - 1)(P/P^0) - B_2(P/P^0)^{n+1}]}$$

- $ightharpoonup V_s$ é o volume total de soluto adsorvido por área superficial de 1 unidade de massa de adsorvente
- $ightharpoonup V_S^1$ é o volume de soluto contido na monocamada espalhada pela área superficial de 1 unidade de massa de adsorvente
- > P é a pressão parcial do soluto na fase gasosa
- ▶ Pº é a pressão de vapor de saturação
- > n é o número de camadas adsorvidas
- \triangleright B₂= é a constante que relaciona o aumento da área superficial das camadas com a área superficial inicial do sólido

$$\frac{V_s}{V_s^1} = B_2 \frac{P}{P^0} \frac{[1 - (n+1)(P/P^0)^n + n(P/P^0)^{n+1}]}{(1 - P/P^0)[1 + (B_2 - 1)(P/P^0) - B_2(P/P^0)^{n+1}]}$$

- > Quando n=1, adsorção em monocamada → equação reduz a equação de Langmuir
- ➤ Quando $n=\infty$, $(P/P^0)^n$ aproxima de zero e a equação anterior tem a forma linear:

$$\frac{P/P_0}{V(1-P/P_0)} = \frac{1}{V^1 B_2} + \frac{B_2 - 1}{V^1 B_2} \left(\frac{P}{P^0}\right)$$

ightharpoonup Ajuste linear ightharpoonup Equação de BET ightharpoonup pode-se determinar os valores de V¹ (volume de soluto na monocamada) e B₂ (constante que relaciona o aumento da área superficial).

- > Adsorção de líquidos: menos compreendida que a adsorção de gases.
- Em princípio, as equações derivadas de gases podem ser aplicadas a sistemas líquidos (exceto quando ocorre a condensação capilar).
- > Equação de isoterma mais usada para líquido → Freundlich.

ISOTERMA DE FREUNDLICH

$$C_s' = \alpha_2(C^*)^{1/n}$$

- > C's massa de soluto adsorvido/massa de sólido adsorvente
- > C* concentração de soluto na solução líquida em equilíbrio com a fase adsorvente
- \triangleright α_2 constante

Isotermas de adsorção

FIGURE 12.1-1. Some common types of adsorption isotherms.

- \triangleright Isoterma linear: q = Kc
- \triangleright Isoterma de Freundlich: $q = Kc^n$
- > Isoterma de Langmuir: $q = \frac{q_o c}{K + c}$

Isotermas

não linear: $q_e = \frac{q_{máx} \; \kappa_L \; c_e}{1 + \kappa_L c_e}$ linear: $1 \qquad 1 \qquad 1 \qquad 1 \qquad 1$	q _{máx} : quantidade máxima de adsorção (mg/g)	LANGMUIR (1916) MELO et al. (2020)
$\frac{1}{q_e} = \frac{1}{q_{m\acute{a}x}} + \frac{1}{q_{m\acute{a}x}K_L} \frac{1}{C_e}$	K _L : constante de equilíbrio de Langmuir	NASCIMENTO et al. (2020)
não linear: $a = K_{-} C e^{1/n}$	n: constante de Freundlich	FREUNDLICH (1906)
$q_e = R_F ce$ linear:	K _F : constante de equilíbrio de Freundlich	NASCIMENTO et al. (2020)
$\log (q_e) = \frac{1}{n} \log (C_e) + \log (K_F)$	$(mg/g).(L/mg)^{1/n}$	MELO et al. (2020)
não linear: $q_e = \frac{q_{m\acute{a}x \ K_S \ C_e^{\gamma}}}{1 + K_S \ C_e^{\gamma}}$	q _{máx} : quantidade máxima de adsorção (mg/g)	SIPS (1948)
linear: $\begin{array}{cccccccccccccccccccccccccccccccccccc$	γ: parâmetro de heterogeneidade Ks: constante de	KUMARA et al. (2014)
$\frac{1}{q_e} = \frac{1}{q_{m\acute{a}x}} + \frac{1}{q_{m\acute{a}x} K_S} \left(\frac{1}{C_e} \right)$	equilíbrio de Sips ((L/mg) ^γ)	MELO et al. (2020)
	$q_e = \frac{q_{m\acute{a}x} \ K_L \ c_e}{1 + K_L \ c_e}$ linear: $\frac{1}{q_e} = \frac{1}{q_{m\acute{a}x}} + \frac{1}{q_{m\acute{a}x} K_L} \frac{1}{C_e}$ não linear: $q_e = K_F \ Ce^{1/n}$ linear: $\log{(q_e)} = \frac{1}{n} \log{(C_e)} + \log{(K_F)}$ não linear: $q_e = \frac{q_{m\acute{a}x} \ K_S \ c_e^{\gamma}}{1 + K_S \ C_e^{\gamma}}$	$q_e = \frac{q_{m\acute{a}x} \ K_L \ C_e}{1 + K_L \ C_e}$ máxima de adsorção (mg/g) linear: $\frac{1}{q_e} = \frac{1}{q_{m\acute{a}x}} + \frac{1}{q_{m\acute{a}x} K_L} \frac{1}{C_e}$ K _L : constante de equilíbrio de Langmuir n: constante de Freundlich $q_e = K_F \ Ce^{1/n}$ K _F : constante de equilíbrio de Freundlich (mg/g).(L/mg) ^{1/n} linear: $q_e = \frac{1}{n} \log (C_e) + \log (K_F)$ $q_{m\acute{a}x}$: quantidade máxima de adsorção (mg/g) linear: $q_e = \frac{q_{m\acute{a}x} \ K_S \ C_e^{\gamma}}{1 + K_S \ C_e^{\gamma}}$ $q_{m\acute{a}x}$: quantidade máxima de adsorção (mg/g) linear: $\frac{1}{q_e} = \frac{1}{q_{m\acute{a}x}} + \frac{1}{q_{m\acute{a}x} \ K_S} \left(\frac{1}{C_e}\right)^{\gamma}$ γ : parâmetro de heterogeneidade Ks: constante de equilíbrio de

PRINCIPAIS MODELOS DE ISOTERMAS DE ADSORÇÃO

 α_R : constante de

		Redlich-	
	não linear:	Peterson	REDLICH &
D - JU-1	$q_e = \frac{K_R C_e}{R}$	$((L/mg)^{\beta})$	PETERSON
Redlich- Peterson	$q_e = \frac{K_R C_e}{1 + \alpha_R C_e^{\beta}}$	β: expoente de Redlich-	(1958)
	linear: $\ln\left(K_R \frac{C_e}{q_e} - 1\right) = \ln(\alpha_R) + \beta \ln(C_e)$	Peterson, varia de 0 a 1	KUMARA et al. (2014)
	16	K _R : constante de	
		equilíbrio de	MELO et al.
		Redlich-	(2020)
		Peterson (L/g)	

Exemplo 1:

Você deve projetar um adsorvedor batelada para remover um contaminante orgânico (A), de 400 L de uma solução aquosa contendo 0,05 g/L do contaminante. Para facilitar, você fez um experimento em escala de bancada com uma solução de 1 litro na mesma concentração (0,05 g/L) e 3 g de um adsorvente. No experimento em escala de bancada você encontrou que 96% do contaminante foi removido. É necessário remover 99% do contaminante no projeto de larga escala.

Você pode supor que uma isoterma linear pode ser aplicada.

Para o sistema de larga escala:

- 1. No final da batelada, qual será a concentração da solução no adsorvedor e a concentração de A no adsorvente?
- 2. Quanto adsorvente será necessário?

CINÉTICA DE ADSORÇÃO

UFIN

As leis cinéticas permitem estudar o comportamento do processo em regime transiente, ou seja, em condições de não-equilíbrio, durante o qual se desenvolvem perfis de concentração do soluto através do filme da interface sólido-fluido e no interior das partículas do adsorvente. Podem distinguir-se 4 etapas sucessivas de transferência de massa:

1- transferência de massa externa do seio da solução (com concentração C) para o filme ao redor da partícula, que na interface do filme tem concentração C_i . Nesse caso, o fluxo de transferência de massa (N) é:

$$N = k_F (C - C_i)$$

Onde k_F é o coeficiente convectivo de TM

CINÉTICA DE ADSORÇÃO

- 2- transferência através do filme (difusão externa);
- 3 + transferência através da estrutura de poros do adsorvente (difusão interna) e que, pode combinar a difusão molecular através do fluido contido no interior dos poros e a difusão ao longo da superfície do adsorvente. O fluxo de massa na parede do sólido para o interior dos poros para uma partícula esférica de raio r_i :

$$N = -D_e \, \frac{C_s}{r_i}$$

Onde C_S é a concentração de soluto no sólido e D_e é o coeficiente de difusividade efetiva do soluto

CINÉTICA DE ADSORÇÃO

4- adsorção sobre a superfície interna intraparticular envolvendo diferentes mecanismos, tais como, adsorção física, adsorção química, permuta iónica, complexação e precipitação química. Para um caso mais simples (1 componente) a taxa de adsorção do soluto A pode ser escrita como:

$$r_A = k_1 C \left(C_{s,\text{max}} - C_s \right) - k_2 C_s$$

Onde: $C_{S,max}$ é a concentração máxima de A no adsorvente;

 C_S é a concentração de A retida no adsorvente;

 k_1 , k_2 são as constantes de velocidade de adsorção e dessorção respectivamente.

Geralmente, a transferência de massa externa controla o processo de adsorção, assim, pode-se assumir que o equilíbrio é atingido durante a adsorção no estágio.

Modelo	Equação	Parâmetros	Referências				
Cinética							
Pseudo- primeira ordem	não linear: $q_t = q_1(1-e^{-k_1t})$ linear: $\ln(q_1-q_t) = \ln(q_1) - k_1t$	q ₁ : quantidade de adsorvato adsorvido no equilíbrio (mg/g) k ₁ : constante da taxa de reação do modelo de pseudo-primeira	LAGERGREN (1898) MELO et al. (2020) NASCIMENTO et al. (2020)				
Pseudo- segunda ordem	não linear: $q_t = \frac{t}{\frac{1}{k_2 q_2^2} + \frac{t}{q_2}}$ linear: $\frac{t}{q_t} = \frac{t}{q_2} + \frac{1}{k_2 q_2^2}$	ordem q2: quantidade de adsorvato adsorvido no equilíbrio (mg/g) k2: constante da taxa de reação do modelo de	HO & MCKAY (1998) MELO et al. (2020) NASCIMENTO et al. (2020)				
	$q_t q_2 \kappa_2 q_2$	pseudo-segunda ordem α: taxa inicial de	Cr ui. (2020)				
Elovich	não linear: $q_t = \frac{1}{\beta} \ln (1 + \alpha \beta t)$	adsorção (mg/mg.min) β: constante de dessorção	ZELDOWITSCH (1934)				
Liovicii	linear: $q_t = \frac{1}{\beta} \ln(\alpha \beta) + \frac{1}{\beta} \ln(t)$	relacionada à dimensão de cobertura da superfície e energia de	NASCIMENTO et al. (2020) ROSSET et al.				
	Р Р	ativação para a quimissorção	(2020)				

PRINCIPAIS MODELOS PARA CINÉTICA DE ADSORÇÃO

Operação da adsorção em estágios

<u>Único estágio de equilíbrio</u>

UFIM

- Esse é o método mais simples de operação.
- De acordo com o esquema a seguir, a corrente fluida contendo o soluto e a corrente de alimentação do sólido entram em contato em um estágio que proporciona um contato eficiente entre as fases, acarretando na transferência de massa do soluto para o sólido, de forma que as correntes que deixam o estágio estejam em equilíbrio (estágio ideal).

$$C_{s,1} = -\frac{V_1}{L_1}C_1 + \left(C_{s,0} + \frac{V_0}{L_1}C_0\right)$$

L. OPERAÇÃO

Operação da adsorção em estágios

Estágios de equilíbrio em série

A partir do balanço de massa para um estágio genérico i, temos as i linhas de operação

$$C_{s,i} = -\frac{V_1}{L} C_i + \left(C_{s,0} + \frac{V_0}{L} C_{i-1} \right)$$

A partir do balanço de massa para um estágio genérico i, temos as i linhas de operação

$$C_{s,i} = -\frac{V_1}{L}C_i + \left(C_{s,0} + \frac{V_0}{L}C_{i-1}\right)$$

Operação da adsorção em estágios

U.FI.M.

Múltiplos estágios em contracorrente

BM GLOBAL

$$L_0 + V_{N+1} = V_1 + L_N$$

BM p/A

$$L_0C_{s,0} + V_{N+1}C_{N+1} = V_1C_1 + L_NC_{s,N}$$

L. OPERAÇÃO

$$C_{s,n} = \frac{V}{L} C_{n+1} + \left(C_{s,0} - \frac{V}{L} C_1 \right)$$

L. OPERAÇÃO

$$C_{s,n} = \frac{V}{L} C_{n+1} + \left(C_{s,0} - \frac{V}{L} C_1 \right)$$

Exercício 2:

Em uma série de experimentos em laboratório, diferentes quantidades de carbono ativado foram adicionadas a uma solução com 10 ° Brix de suco, que corresponde a uma absorbância de 0,646, até que o equilíbrio fosse atingido, obtendo os seguintes dados.

A_{420}	0.646	0.532	0.491	0.385	0.288	0.180
b	0	0.01	0.02	0.06	0.12	0.26

Em que A420 é a absorbância/kg de solução e b é kg de carvão/kg de solução. Determine:

- a) A isoterma de equilíbrio
- b) O número de estágios requeridos, em uma operação em repetidos estágios de contato para reduzir a absorbância até 0,200, usando em cada estágio 0,025 kg de carbono/kg de solução de suco.
- c) A vazão de alimentação de carvão para um leito móvel de multiestágios em contracorrente para tratar 1000 kg de suco/h, se está operando com uma vazão de sólidos o dobro da quantidade mínima, a fim de obter um suco com uma absorbância de 0,2.

A maior parte da adsorção tem lugar em uma camada pouco espessa de leito, chamada de zona de adsorção (za), na qual a concentração da solução decresce

rapidamente.

Esta zona vai se movendo ao longo do leito com o tempo de operação, como uma verdadeira onda que se propaga com velocidade muito inferior à velocidade superficial da solução através do leito.

Adsorção em leito fixo ZA A ZA Zona de transferência de massa ₹ ZA Concentração do soluto no efluente Caso real Caso ideal Ponto de rotura Tempo

L= length; $\theta=$ time; $\theta_0=$ start-up time on a regenerated bed

- C_{A,S} = concentration of adsorbate on adsorbent
- $C_{A,S}^e$ = concentration at equilibrium on the adsorbent (equil loading)
- $C_{A,S}^0 =$ concentration on the regenerated adsorbent at time 0
- θ_b = breakthrough time: "time to stop using the packed bed!"; usually when $C_A = 0.05 C_{A,F}$
- θ_e = the bed at equilibrium time; packed bed is completely used
- C_{A,S} values are not easy measured; outlet concentration C_A is easy

 $\theta = \theta_e$

Equilibrium zone

MTZ

(a)

(b)

(c)

(d)

(e)

(f)

Unused bed

Analysis of Effluent (Concentration of sorbable component vs. time)

CAS

↑ CeA,S

 $C_{A,S}^0$

(m)

 θ_b θ_s θ_e

[Ghosh (adapted), p144]

- MTZ: mass transfer zone is where adsorption takes place.
- It is S-shaped: indicates there is mass-transfer resistance and axial dispersion and mixing. Contrast to the ideal shape: is a perfectly vertical line moving through the bed
- Equilibrium zone: this is where the isotherm applies!
- Breakthrough: arbitrarily defined as time when either (a) the lower limit of adsorbate detection, or (b) the maximum allowable adsorbate in effluent leaves the bed. Usually around 1 to 5% of C_{A,F}.

Capacidade da coluna e scale-up

A capacidade adsortiva total ou estequiométrica do leito (máxima quantidade de soluto que pode ser adsorvida pelo adsorvente - mg de soluto/L adsorvente) ocorre quando a saturação acontece, e é proponcional a área entre a curva e a linha a c/c₀ =1.

FIGURE 12.3-2. Determination of capacity of column from breakthrough curve.

t₊: tempo equivalente à capacidade total

t_u: tempo equivalente à capacidade útil

$$t_t = \int_0^\infty \left(1 - \frac{c}{c_o}\right) dt$$

$$t_{u} = \int_{0}^{t_{b}} \left(1 - \frac{c}{c_{o}} \right) dt$$

 t_u/t_t : fração da capacidade total do leito ou comprimento utilizado até o break-point

H_B: comprimento do leito usado até o break-point

 $H_B = \frac{t_u}{t_s} H_T$

 H_{UNB} : comp. do leito não usado (zona de transferência de massa)

 $H_{UNB} = \left(1 - \frac{t_u}{t_t}\right)H_T$

 H_T : comprimento do total do leito

$$H_T = H_{IJNR} + H_R$$

Exercício:

Uma corrente de vapor de álcool no ar foi adsorvido por partículas de carvão em um leito empacotado de diâmetro de 4 cm e comprimento de 14 cm contendo 79,2 g de carvão. A corrente de gás na entrada tem uma concentração c_0 de 600 ppm e densidade de 0,00115 g/ cm³ e entrou no leito com uma taxa de 754 cm³/s.

TABLE 12.3-1. Breakthrough Concentration for Example 12.3-1

Time, h	c/co	Time, h	clco
0	0	5.5	0.658
3	0	6.0	0.903
3.5	0.002	6.2	0.933
4	0.030	6.5	0.975
4.5	0.155	6.8	0.993
5	0.396		

O break-point da concentração é fixado a c/c_0 = 0,01.

- 1- Determine o tempo de break-point, a fração da capacidade total utilizada até o ponto de ruptura e o comprimento de leito não usado. Determine também a capacidade de saturação do carvão.
- 2- Se o tempo de break-point necessário para uma nova coluna é 6hs, qual é o novo comprimento total da coluna?

