Előadások beosztása

Adott eseményeknek egy N elemű halmaza, amelyek egy közös erőforrást, például egy előadótermet kívánnak használni, amit egy időben csak egyik használhat. Adott továbbá az ütemezési időtartam K kezdési és B befejezési ideje. Minden i eseményhez adott a k_i kezdő időpontja és a b_i befejező időpontja. Ha az i eseményt kiválasztjuk, akkor ez az esemény a $[k_i, b_i]$ zárt időintervallumot foglalja le. Az i és j események kompatibilisek, ha a $[k_i, b_i]$ és $[k_j, b_j]$ intervallumoknak nincs közös pontja (azaz i és j kompatibilisek, ha $b_i < k_j$ vagy $b_j < k_i$). A terem legjobb kihasználtsága a lehető legkevesebb azon $K \le t \le B$ egész értékű időpontok száma, amelyek egyik kiválasztott eseményhez tartozó intervallumban sincsenek benne, azaz bármely kiválasztott a_i esemény esetén nem teljesül, hogy $k_i \le t \le b_i$.

Írj programot, amely kiszámít egy legjobb teremkihasználást adó, kölcsönösen kompatibilis eseményekből álló részhalmazt!

Bemenet

A standard bemenet első sorában az események száma ($1 \le N \le 10~000$), a kezdési és a befejezési időpont ($1 \le K < B \le 1000$) van. A következő N sor mindegyikében egy esemény kezdő időpontja és befejező időpontja van ($K \le k_i < b_i \le B$), befejezési idejük szerint nemcsökkenő sorrendben.

Kimenet

A standard kimenet első sorába a legjobb teremkihasználás esetén a ki nem osztott ülőhelyek számát kell írni! A második sor a kiválasztott események M számát tartalmazza! A harmadik sor pontosan M számot tartalmazzon, a kiválasztott események sorszámát! Több megoldás esetén bármelyik megadható.

Példa

Bemenet	Kimenet
5 1 100 2 10 8 21 22 30 25 40 33 70	39 3 2 3 5 ————

Korlátok

Időlimit: 0.1 mp.

Memórialimit: 16 MB