Operations on Relations-Division

pm jat @ daiict

Division operation

- Following are example queries that require division
 - SupplyParts Schema: Suppliers that supply all parts
 - Company Schema: List employees who work on all projects controlled by dno=4.
- Division is typically required when you want to find out entities that are interacting with all entities of a set.
- It is not supported by SQL implementations .. can be represented using other operations ... bit complex

Division- definition

Given two relations; r(x,y), s(y)

r DIV s gives all distinct values of x from r that are associated with all values of y in s.

Division operation – example#1

Given following two relations; supplies(sid,pid) parts(pid)

supplies DIV parts gives us SIDs that supply all PIDs?

sid integer	pid integer
101	1
102	1
101	3
103	2
102	2
102	3
102	4
102	5

	pid integer
	1
	2
	3
Î	4
	5

Division operation – example#2

Given following two relations; works(ssn,pno)

proj(pno)

works DIV proj

gives you SSNs that work on all PNOs?

ssn numeric(9,0)	pno smallint
101	2
101	3
101	10
101	20
101	1
102	30
102	20
103	30
103	10
104	3
105	1
105	2
106	10
106	30
107	1
107	2
108	20

pno smallint
10
30

Division – computation

 Let us take relations shown here works (left) and proj (right) and compute following-

$$r1 \leftarrow \Pi_{ssn}(works) \times proj = ?$$

 $r2 \leftarrow r1 - works = ?$
 $r2x \leftarrow \Pi_{ssn}(r2) = ?$
 $r3 \leftarrow \Pi_{ssn}(works) - r2x = ?$

ssn numeric(9,0)	pno smallint
101	2
101	3
101	10
101	20
101	1
102	30
102	20
103	30
103	10
104	3
105	1
105	2
106	10
106	30
107	1
107	2
108	20

pno smallint
10
30

DA-IICT DA-IIICT DA-IICT DA-IICT DA-IICT DA-IICT DA-IICT DA-IICT DA-IICT DA-II

Division – computation

- R(x,y) div S(y) gives you distinct values of x from R that are associated with every value of y in S.
- <u>SQL does not support DIVISION operations</u>; needs to computed using other operation. Can be derived as following^[Elmasri/Navathe]—
 - Find out all possible combinations of S(y) with R(x) by computing $R(x) \times S(y)$, say r1
 - Subtract actual R(x,y) from r1, say r2,
 - x in r2 are those that are not associated with every value in S(y); therefore R(x)-r2(x) gives us x that are associated with all values in S

$$R \operatorname{div} S = \pi_{x}(R) - \pi_{x}((\pi_{x}(R) \times S) - R)$$

Division computation

sid integer	pid integer
101	1
102	1
101	3
103	2
102	2
102	3
102	4
102	5

sid
integer
101
102
103

pid integer	
1	
2	
3	
4	
5	

sid integer	pid integer
101	1
101	2
101	3
101	4
101	5
102	1
102	2
102	3
102	4
102	5
103	1
103	2
103	3
103	4
103	5

All possible combinations $r1 \leftarrow \pi_x(R) \times S$ x values with "incomplete combinations", $r2x \leftarrow \pi_x(r1-R)$ and result - $\pi_x(R)$ -r2x

$$\pi_{\mathsf{x}}(\mathsf{R}) - \pi_{\mathsf{x}}((\pi_{\mathsf{x}}(\mathsf{R}) \times \mathsf{S}) - \mathsf{R})$$

sid integer	pid integer
101	2
101	4
101	5
103	1
103	3
103	4
103	5

sid integer
101
103

sid integer

vision

Computation of Division

 It should be visible that division may not be directly performed on full relations; relations needs to be brought down to fit them in division form.

 For example, actual relations for query "Suppliers that supply all parts". Given relations are Supplies(sid,pid,cost), and Parts(pid,pname,color); necessary projections are needed; this

query solution is expressed as-

 $\Pi_{\text{sid,pid}}$ (Supplies) div π_{pid} (Parts)

pid	pname	color
1	PART-1	RED
2	PART-2	GREEN
3	PART-3	RED
4	PART-4	BLUE
5	PART-5	GREEN

SQL Solution (Strategy) - 1

R(x,y) DIV S(y) be expressed as

```
SELECT x FROM R

WHERE x NOT IN (

SELECT x FROM (

( All possible; i.e. S x π<sub>x</sub>(R) )

MINUS

( Actual R )

)

):
```

SELECT x that are

Strategy#1 applied

"Suppliers that supply all parts"

```
SELECT sid FROM Suppliers
WHERE sid NOT IN (
    SELECT sid FROM (
        ( All possible sid, pid combinations)
          MINUS
        ( Actual sid, pid pairs from Supplies )
);
```

"Suppliers that supply all parts"

```
SELECT * FROM suppliers
WHERE sid not in (
SELECT sid FROM (
 (SELECT sid, pid FROM (select pid from
 parts) as p cross join (select distinct sid
 from supplies) as sp)
 EXCEPT
 (SELECT sid, pid FROM supplies)
 ) AS r
```

R(x,y) DIV S(y) be expressed as

```
SELECT x FROM R
WHERE empty-set (
    ( all y, i.e. S )
     MINUS
     ( y that are associate with the x)
);
```

Strategy#2 applied

"Suppliers that supply all parts"

```
SELECT suppliers
WHERE empty-set (
    ( All Parts )
    MINUS
    ( Parts Supplied by the Supplier )
);
```

Strategy#2 applied

"Suppliers that supply all parts"

```
SELECT * FROM suppliers as s
WHERE NOT EXISTS (
    (SELECT p.pid FROM parts as p)
    EXCEPT
    (SELECT sp.pid FROM supplies sp WHERE sp.sid = s.sid)
);
```

For division correlated query seems simpler to write but may expensive to execute

<u>List employees who work on all projects controlled by dno=4</u>

- PNOs controlled by dno = 4 p4 $\leftarrow \pi_{PNO}(\sigma_{DNO=4}(PROJECTS))$
- Have ESSN, PNO project of WORKS on relation $SSN_PNOS(SSN, PNO) \leftarrow \pi_{ESSN, PNO}(WORKS_ON)$
- SSN of employees works on PNOs in p4
 SSN_PNOS div p4

List employees who work on all projects controlled by dno=4

```
SELECT employee
WHERE empty-set (
    (all PNOs controlled by dno=4, i.e. p4)
    MINUS
    (PNOs on which the employee works)
);
```

List employees who work on all projects controlled by dno=4

```
SELECT * FROM employee AS e
WHERE NOT EXISTS (
(SELECT pno FROM project WHERE dno = 4)

EXCEPT
(SELECT pno FROM works_on WHERE essn = e.ssn)
);
```

<u>List employees who work on all projects controlled by dno=4</u>

```
SELECT * FROM EMPLOYEE

WHERE ssn NOT IN (

SELECT essn FROM (

( All possible essn, pno combinations)

MINUS

( Actual essn, pno pairs from WORKS_ON )
);
```

<u>List employees who work on all projects controlled by dno=4</u>

```
SELECT * FROM employee AS e

WHERE ssn NOT IN (

SELECT essn FROM (

(SELECT essn, pno FROM (select pno from project where dno=4) as p cross join (select distinct essn from works_on) as w)

EXCEPT

(SELECT essn, pno FROM works_on)

) AS r

);
```

Students taken all courses that PMJ offered from academic year 2007-08 to 2011-12.

```
r1 \leftarrow \sigma_{\text{iname='PMJ'}}(\text{instructor})

r2 \leftarrow \sigma_{\text{acadyr}>=2007 \text{ and acadyr}<=2011}(\text{offers})

r3 \leftarrow r1 * r2 * registers

r4 \leftarrow \Pi_{\text{sid,course,acadyear,semester}}(\text{r3})

r5 \leftarrow \Pi_{\text{course,acadyear,semester}}(\text{r3})

result \leftarrow r4 div r5
```

Students taken all courses that PMJ offered from academic year 2007-08 to 2011-12.

```
[Using Strategy#1]
    SELECT Students
    WHERE sid NOT IN (
        (All possible combination of sid, cno, yr, sem for PMJ and
          during specified acad-years)
          MINUS
        (actual combination of sid, cno, yr, sem in registers for PMJ
          and during specified acad-years)
```

Students taken all courses that PMJ offered from academic year 2007-08 to 2011-12.

[Using Strategy#1]

```
SELECT * FROM student AS s

WHERE studentid NOT IN (

SELECT studentid FROM (

SELECT studentid, courseno, acadyear, semester from

((select courseno, acadyear, semester FROM offers NATURAL JOIN instructor

WHERE instructorname = 'P M Jat' AND acadyear >= 2007 AND acadyear <= 2011) as co

CROSS JOIN (select distinct studentid from registers) as sr)

EXCEPT

(SELECT studentid, courseno, acadyear, semester FROM

registers WHERE acadyear >= 2007 AND acadyear <= 2011)
) as r
);
```

Students taken all courses that PMJ offered from academic year 2007-08 to 2011-12.

```
[Using Strategy#2]
    SELECT Students
    WHERE empty-set (
        ( All courses by PMJ and during specified acad-years)
            MINUS
        ( Courses taken by the StudID during specified acad-years)
        );
```

Students taken all courses that PMJ offered from academic year 2007-08 to 2011-12.

More queries requiring DIVISION

- Retrieve the names of employees, who work on all the projects that 'John Smith' works
- List supplier who supply all 'Red' Parts
- List students who registered for all courses offered for BTech
 2011 Autumn Semester