Digital Image Processing (CSE 478) Lecture 22: Content aware image resizing

Vineet Gandhi

Center for Visual Information Technology (CVIT), IIIT Hyderabad

Image resizing

We want to perform 1/3rd reduction in width

Image resizing: Cropping

Image resizing (cropping in videos): Pan and scan

Image resizing: Scaling

Image resizing: Letterboxing

Image resizing: Letterboxing

How do we do it?

Many algorithms.....

We will discuss a particular one today, called seam carving!

Compute some sort of importance characteristic: gradient magnitude, entropy, visual saliency, eye-gaze movement

Overview: step 2

Find the path of minimum cost in the importance image

Delete the minimum cost seam

Repeat step 1, 2 and 3 until reaching the desired size

Repeat step 1, 2 and 3 until reaching the desired size

Video Illustration

How to find the minimum cost seam?

How to find the minimum cost seam?

Find minimum cost connected path from top to bottom (width reduction)

Naïve algorithm

- Check all possible paths
 - foolish and infeasible

Dynamic programming

1	4	3	5	2
3	2	5	2	3
5	2	4	2	1
1	7	3	9	4

1	4	3	5	2
4	3	8	4	5
8	5	7	6	5
6	12	8	14	9

Importance image (M)

Cost matrix (C)

$$C(i,j) = M(i,j) + \min \begin{cases} C(i-1,j-1) \\ C(i-1,j) \\ C(i-1,j+1) \end{cases}$$

Deleting a column

67	87	255	88	24
69	65	59	221	23
74	72	70	222	190
77	78	90	94	49

Example cost matrix

Last seam

Changing the importance criteria

Gradient magnitude

Saliency

Can we do more?

Can we do more?

Can we do more?

Failure: regular structures

Failure: regular structures

Seam carving for videos

• Also need to compensate for temporal coherency

Other methods for content aware image resizing

- Shift map image editing (Pritch et al. ICCV 2009)
- Patch match (Barnes et al. SIGGRAPH 2009)
- Content aware warping (Krahenbuhl et al. SIGGRAPH ASIA 2009)
- A comparative study (Rubinstein et al. SIGGRAPH ASIA 2010)

More

Image Quilting for Texture Synthesis & Transfer, SIGGRAPH 2001

B1 B2

Random placement of blocks

Neighboring blocks constrained by overlap

Minimal error boundary cut

parmesan

