(C) WPI / Thomson

AN - 1992-412409 [50]

AP - JP19910100345 19910405

CPY - ASAG

DC - L01

DW - 199250

IN - ARAI N; KAMEI F; KUDO T

LNKA- 1992-183176

MC - L01-A01 L01-A03A L01-A03C L01-A05 L01-L01 L01-L02

PA - (ASAG) ASAHI GLASS CO LTD

PN - JP4310539 A 19921102 DW199250

PR - JP19910100345 19910405

xic - c03C-003/076; c03C-003/087; c03C-003/095; c03C-004/00; c03C-004/08

AB - The glass comprises (by wt.) 65-75 % 8102, 0.1-5% A1203, 10-18% Na20, 0-5% K20, 5-15% CaO, 1-6% MgO, 0.1-3.0 % CeO2, 0.5-1.2% Fe203, 0.05-1.0% 503, and 0-1.0% Ti02, but 20-40% FeO in total Fe-content.

- USE : Used for architectures, and vehicles having high visible ray transmittance.

ICAI- C03C3/087; C03C3/095; C03C4/08

ICCI- C03C3/076; C03C4/00

INW - ARAI N; KANKI F; KUDO T

- IW INFRARED ULTRAVIOLET ABSORB GLASS BUILD CAR HIGH VISIBLE TRANSMITTANCE CONTAIN OXIDE SILICON ALUMINIUM SODIUM POTASSIUM CALCIUM MAGNESIUM CERIUM SULPHUR TITANIUM IRON SPECIFIED CONTENT
- IWW INFRARED ULTRAVIOLET ABSORB GLASS BUILD CAR HIGH VISIBLE TRANSMITTANCE CONTAIN OXIDE SILICON ALUMINIUM SODIUM POTASSIUM CALCIUM MAGNESIUM CERIUM SULPHUR TITANIUM IRON SPECIFIED COMFENT

NC - 1

NPN - 1

OPD - 1991-04-05

PAW - (ASAG) ASAHI GLASS CO LTD

PD - 1992-11-02

TI - IR and UV absorbing glass for buildings, cars etc. with high visible transmittance - contains oxide(s) of silicon, aluminium, sodium, potassium, calcium magnesium cerium, sulphur, titanium and iron with specified iron (II) oxide content

Page 1

EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER : 04310539 PUBLICATION DATE : 02-11-92

APPLICATION DATE : 05-04-91 APPLICATION NUMBER : 03100345

APPLICANT: ASAHI GLASS CO LTD;

INVENTOR: ARAI NAOKI;

INT.CL. : C03C 4/08 C03C 3/087 C03C 3/095

TITLE : INFRARED AND ULTRAVIOLET ABSORBING GLASS

ABSTRACT: PURPOSE: To provide a plate glass having high infrared absorption and ultraviolet

absorption characteristics and sufficiently high visible light transmittance.

CONSTITUTION: The objective infrared and ultravlolet absorbing glass is essentially composed of 65-75wt.% of SiO₂, 0.1-5wt.% of Al₂O₃, 10-18wt.% of Na₂O, 0-5wt.% of K₂O, 5-15-wt.% of CaO, 1-6wt.% of MgO, 0.1-3.0wt.% of CeO₂, 0.5-1.2wt.% of Fe₂O₃, 0.05-1.0wt.% of SO₃ and 0-1.0wt.% of TiO₂ (in terms of oxides), wherein ferrous oxide

(FeO) accounts for 20-40wt.% of the total iron content expressed by Fe₂O₃.

COPYRIGHT: (C)1992, JPO& Japio

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平4-310539

(43)公開日 平成4年(1992)11月2日

(51) Int.Cl. ⁵		識別記号	庁内整理番号	FΙ	技術表示箇所
C 0 3 C	4/08		6971-4G		
	3/087		6971-4G		
	3/095		6971-4G		

審査請求 未請求 請求項の数1(全 4 頁)

(21)出願番号	特願平 3-100345	(1.1)	00000044
		4	旭硝子株式会社
(22)出願日	平成3年(1991)4月5日		東京都千代田区丸の内2丁目1番2号
		(72)発明者	亀井 文夫
			神奈川県横浜市鶴見区末広町1丁目1番地
			旭硝子株式会社京浜工場内
		(72)発明者	工藤 透
			神奈川県横浜市鶴見区末広町1丁目1番地
			旭硝子株式会社京浜工場内
		(72)発明者	新井 直樹
			神奈川県横浜市鶴見区末広町1丁目1番地
			旭硝子株式会社京浜工場内
		(74)代理人	中理士 泉名 議 治
		(14/10年入	77年上 水石 駅位

(54) 【発明の名称】 赤外線・紫外線吸収ガラス

(57)【要約】

【目的】高い赤外線吸収特性及び紫外線吸収特性を有し、かつ充分な可視光線透過率も併せ持つ板ガラスを提供する。

【構成】次記酸化物換算で、SiO₂ 65 ~75重量米、Al₂O₃ 0.1 ~ 5重量米、Na₂O₃ 10 ~18重量米、K₂O₃ 0~5 重量米、CaO₅ ~15重量米、MgO₁~6 重量米、CeO₂ 0.1 ~ 3.0重量米、Fe₂O₃ 0.5 ~ 1.2重量米、SO₃ 0.05 ~ 1.0重量米、TiO₂ 0~1.0 重量米から本質的になり、かつ、Fe₂O₃ として表わされた全鉄分含有量のうち、重量で20~40米が酸化第一鉄(FeO₃) であることを特徴とする赤外線・紫外線吸収ガラス。

【特許請求の範囲】

【請求項1】下記酸化物換算で

SiO_2	65 ∼ 75	重量%
Al ₂ O ₃	0.1 ~ 5	重量%
Na ₂ O	10 ~18	重量%
K₂ 0	0 ~ 5	重量%
Ca0	5 ~ 15	重量%
Mg0	1 ~ 6	重量%
CeO ₂	0.1~ 3.0	重量%
Fe ₂ O ₃	$0.5 \sim 1.2$	重量%
SO ₃	0.05 ~ 1.0	重量%
T i O2	0 ~ 1.0	重量%

から本質的になり、かつ、FezOs として表わされた全鉄 分含有量のうち、重量で20~40%が酸化第一鉄 (FeO) であることを特徴とする赤外線・紫外線吸収ガラス。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、赤外線の吸収が高く、 且つ自動車用のガラスとして使用できる高い可視光線透 過率を有する赤外線・紫外線吸収ガラスの組成に関す 20 る。

[0002]

【従来の技術】従来、Ce3+で紫外線を、Fe2+で赤外線を 吸収することからなる紫外線・赤外線吸収ガラスは知ら れている(特公昭52-49010号公報)。しかし、この公報 記載の発明では、中灰色の熱線吸収ガラスを目的として いるため、赤外線・紫外線の吸収が不十分であった。

【0003】これらイオンの組み合わせでガラスに、更 に大きな紫外線・赤外線吸収性能を高めようとする場合 れを防ぐための還元剤の使用が不可欠である。この還元 剤として、一般的に炭素、金属粉、有機物等が用いられ る。例えば、特開昭64-18938号では、石炭等の炭素含有 物を用いている。

【0004】しかし、これら還元剤により、通常ソーダ ・ライム・シリカ系のガラスで清澄剤として用いられて いる芒硝(Na2 SO4)は、原料が粉末状態の比較的低温度の 時に還元され分解するため、清澄剤としての効果が失わ れる。即ち、気泡のないガラスを得ることが非常に困難 であった。このため、前述の特許では減圧下で気泡を除 40 去する方法を提案している。しかし、減圧下で脱泡する には特殊な設備が必要となること、また理由は不明であ るが、ガラスの酸化・還元度(Redox)が変化するため、 色調及び赤外線吸収能を安定化することが困難であっ

【0005】また、紫外線の吸収を高めるためにT102を 添加し、また全鉄分中のFeO の割合を高めるための還元 剤としてSnOz を用いた紫外線・赤外線吸収を持つガラス が提示されている (米国特許第 4,701,425号)。しか め、ガラスのコストが高くなるという問題点があった。 [0006]

【発明が解決しようとする課題】本発明は、上記従来技 術の問題点を除去するためになされたものであり、通常 のフロート・ガラス製造設備と、芒硝等の通常の清澄剤 を使用でき、且つ優れた赤外吸収性能と紫外吸収性能 を、更に自動車のガラスとして充分な可視光線透過率を 有する赤外線・紫外線吸収ガラスを提供するものであ

10 [0007]

【課題を解決するための手段】本発明は、前述の課題を 達成すべくなされたものであり、下記酸化物換算で、か つ重量%で表わして

65 ~75%、好ましくは 68 ~73% SiO₂ Al 2 03 0.1 ~ 5%、好ましくは 1.0 ~ 5% 10 ~18%、好ましくは 12 ~15% Na₂O 0~5%、好ましくは 0~3% **K₂** 0 Ca0 5 ~15%、好ましくは 7 ~12% 1 ~ 6%、好ましくは 2 ~ 5% Mg0 CeO₂ 0.1 ~ 3.0%、好ましくは 0.3~2.0 % 0.5 ~ 1.2%、好ましくは0.7 ~1.0 % Fe2 03 SO₃ 0.05~ 1.0%、好ましくは0.05~0.50% TiO2 $0 \sim 1.0\%$

から本質的になり、かつ、Fe2Os として表わされた全鉄 分含有量のうち、重量で20~ 40 %が酸化第一鉄 (Fe0)) であることを特徴とする赤外線・紫外線吸収ガラス を提供するものである。

【0008】次に、本発明の赤外線・紫外線吸収ガラス の組成を構成する各成分の限定理由を以下に述べる。Si には、 Ce^4+ が Fe^2+ を酸化して Fe^3+ としてしまうため、こ 30 O_2 の割合が、65 重量%より少ないと耐候性が悪くなり、 また75重量%より多いと失透し易く、いずれも好ましく ない。Al203 の割合が、0.1 重量%より少ないと耐水性 を低下して好ましくなく、またその含有量が5重量%を 越えると溶解性が低下するので好ましくない。

> 【0009】Na20、K20 は原料の溶解を促進する成分で あるが、Na20が10重量%より少ないとその効果が小さく 好ましくなく、また18重量%より多いと耐候性が悪くな るので好ましくない。なお、K20 は少し添加することに より、上述の効果以外に失透を抑制する効果があるが、 5 重量%より多いとガラスの高温における粘度が高くな り、泡が脱けにくくなるので好ましくない。

> 【0010】Ca0、Mg0 も原料の溶解を促進し、耐候性を 改善する成分であるが、CaO が5重量%より少ないと上 述の効果が小さく、また15重量%よりも多くなると失透 し易くなり、いずれも好ましくない。なお、MgO も少量 添加すると上述の効果が増大するが、6 重量%より多い と失透し易くなるので好ましくない。

【0011】また、硫黄含有量は、SO3 として表わして 0.05~1.0 重量%が好ましい。SO3が0.05重量%より少 し、このガラスは、還元剤としてSnOzを用いているた 50 なくするためには、清澄化剤としての硫黄化合物の量を

少なくしなければならず、清澄が不充分となり、残存気 泡の数が増加して好ましくなく、また 1.0重量%より多 くするためには、同様の硫黄化合物の量が多くなってし まって、硫黄がガラス中の成分と反応し、褐色またはこ はく色が濃くなって望ましい可視光透過率が得られない ので好ましくない。

【0012】酸化セリウムは、Ce3+、Ce4+ ともに紫外線 を吸収する効果がある成分であるがCeO2に換算して、0. 1重量%より少ないとその効果が小さく、また3重量% より多いとその効果が飽和するので、0.1 重量%~3 重 10 量%の範囲が好ましい。また、紫外線を吸収する効果が ある成分として、TiO2、またはV2Os、MoO3をO~ 1.0重 量%の範囲で加えても良い。

【0013】本発明におけるガラス組成中の鉄の全量 は、Fez O3 として表わして重量で0.5~ 1.2%の範囲であ るのが好ましい。そして、FezOz として表わした全鉄分 含有量のうち、Fe₂O₂ に換算した重量で20~40%が酸化 第一鉄の状態として(FeO として)存在しているのが好 ましい。

在するが、Pe²⁺の状態で存在するものは赤外線に吸収帯 を持ち、赤外線を吸収する成分である。全鉄含有量のう ち、FeO が、Fe2O3 に換算して20重量%より少ないとそ の効果は小さく、また、Fe2O3 に換算して40重量%より 多くなるとガラスの均質な溶解が困難となるとともに、 ガラスの色がアンパーとなるので、いずれも好ましくな 11.

【0015】また上述の組成範囲のガラスに着色剤とし て、NiO, CoO、MnO、V2Os、MoOs 等を1種類または2種類以 上の合計量が 0~1.5 重量%の範囲で添加しても良い。 更に、紫外線による色調の変化(solarization) やアン バーの発色を防止するため、必要に応じZnO を 0~3 重 量%添加しても良い。

[0016]

【作用】本発明のガラスにおいては、全鉄中の FeOの割 合、即ち還元割合を通常のフロートガラス板の還元割合 とほぼ同程度に維持したままではあるが、ガラス組成中 の鉄の全量を、Fe₂O₃ として表わして重量で0.5 ~ 1.2 %の範囲と通常のガラスにおける鉄の含有量よりも多く することによって、赤外線の吸収性能が高い酸化第一鉄 40

(FeO) の絶対量を増やして赤外線の吸収性能を高める ことができる。

【0017】従って、全鉄中での酸化第一鉄(Fe0)の 割合を、例えば50%以上というような還元割合を通常よ りも高めるための特別な還元条件とすることなく、赤外 線の吸収性能の高いガラスを得ることができる。従っ て、常法フロートガラス製造プロセスにより、通常の板 ガラス溶解条件で、通常の芒硝などの清澄剤用いて板ガ ラスを製造することができる。

【0018】また、上記した様に還元割合が低いので、 特に強い還元条件とすることがなく、そのため鉄成分と 硫黄成分との反応によるこはく色または褐色の発生、こ れに伴う透過率の低下を防ぐことができる。従って、溶 解時の硫黄成分を特に低く維持する必要がなく、溶解時 の気泡の除去に効果的な芒硝 (Naz SO4) を清澄剤として 有効に使うことができる。

[0019]

【実施例】珪砂、長石、石灰石、苦灰石、水酸化マグネ シウム、ソーダ灰、芒硝を主原料とし、酸化第二鉄粉 【0014】鉄は、 Fe³⁺、 Fe³⁺の状態でガラス中に存 20 末、酸化セリウム粉末、酸化チタン粉末、還元材として カーボン粉末、更に着色剤としてNi、Co、Mu、V、Mo の酸化 物粉を用いた。なお、原料として、例えば芒硝を他の硫 酸化合物等の複合化合物に置き換えて使用してもよい し、また芒硝と上記複合化合物と併用してもよい。上記 原料を目標の組成となるよう調合した混合物 (バッチ) 500gを電気炉を用いて、1500℃で3時間溶解し、型に流 し、徐冷した。この様にして得られた板ガラスのサンプ ルの光学的特性及び残存気泡数を測定した結果を表1に 示す。

> 【0020】また、比較例として同様に調合し、溶融し 30 た板ガラスのサンブルの光学的特性及び残存気泡数も表 1にまとめて示す。なお、光学特性は厚さ5㎜ の試料で 測定された値であり、表中の記号TVa は可視透過率(380 ~780nm)、TEは太陽放射透過率(340~1800nm)、Dwは主 波長、Peは色純度をそれぞれ表わす。また、 FeO/Fe2O 3 は試料中の全鉄分含有量をFe2O3に換算した値に対す る、試料中の FeOをFe2O3 に換算した値の割合を示す。

> > [0021]

【表1】

	本発明の	ガラス板(多	比較例		
No.	1	2	3	4	5
組成					
SiO ₂	71.0	71.0	71.3	72. 3	71.8
Al ₂ O ₈	1.8	1. 74	1.70	0. 4	0.1
CaO	7.8	7. 79	7.8	8. 6	8.4
Mg0	4.0	3. 9	3.9	3. 7	3. 9
Na ₂ O	13.1	13. 1	12.8	14. 0	13. 3
K ₂ 0	0.7	0.7	0.6	0.1	0.1
Fe ₂ O ₈	0.81	0. 82	0.77	0.45	0. 35
CeO₂	0.77	0.80	0.96	0.48	_
TiO ₂	0.01	0. 01	0.04	_	0. 92
SO ₃	0.10	0.09	0.09	0. 01	_
(SnO_{z})	-		-	-	0.92
Fe0/Fe ₂ 0 ₃	24, 2%	23.7%	28.6%	48. 0	50. 5
残存気泡(個/kg)	5~10	5~10	5~10	>500	>150
可視透過率 TVa(%)	66. 8	66. 1	66.7	71	72
太陽熱透過率 TE(%)	38. 4	37.7	38.4	39	39
主被長 D _s (nm)	503	503	501	488	541
	(縁色)	(緑色)	(緑色)	(青色)	(黄緑)
色純度 Pe(%)	3. 7	3. 8	4.1	10.1	5.0

[0022]

ため運転者の視界を損なうことなく、赤外線を吸収する ので冷暖房効果を高め、また紫外線も吸収するので、紫 外線による自動車の内装材やシート、搭乗者の皮膚への 悪影響を軽減することから、建築用、車両用の窓ガラス 等として特に有用である。

【0023】また、本発明の赤外線・紫外線吸収ガラス は、赤外線をFe²⁺で、また紫外線をCe³⁺, Ce⁴⁺ で吸収さ

せる一方、全鉄分含有量のうち酸化第一鉄の割合が20重 【発明の効果】本発明のガラスは、可視光透過率が高い 30 量%~40重量%となるように還元条件を低めに抑えたこ とにより、緑色系の板ガラス、例えば主波長 490nm~53 0mm を持つ緑色の板ガラスが容易に得られ、また清澄剤 として芒硝が使用可能となり、また清澄剤として芒硝が 使用できるので、特殊な装置を使用することなく、従来 のガラス溶解装置、例えばフロートガラス製造設備が使 用でき、従って容易にそして安価に、生産効率良く、泡 のないガラス板を製造可能である。