The Questions of Our Time

- · Y is a non-negative continuous random variable
 - Probability Density Function: $f_Y(y)$
 - Already knew that:

$$E[Y] = \int_{-\infty}^{\infty} y \, f_Y(y) \, dy$$

But, did you know that:

$$E[Y] = \int_{0}^{\infty} P(Y > y) dy ?!?$$

- No, I didn't think so...
- Analogously, in the discrete case, where X = 1, 2, ..., n

$$E[X] = \sum_{i=1}^{n} P(X \ge i)$$

Life Gives You Lemmas, Make Lemma-nade!

· A lemma in the home or office is a good thing

Discrete Joint Mass Functions

 For two discrete random variables X and Y, the Joint Probability Mass Function is:

$$p_{X,Y}(a,b) = P(X = a, Y = b)$$

Marginal distributions:

$$p_X(a) = P(X = a) = \sum_{x} p_{X,Y}(a, y)$$

$$p_Y(b) = P(Y = b) = \sum p_{X,Y}(x,b)$$

• Example: X = value of die D₁, Y = value of die D₂

$$P(X=1) = \sum_{y=1}^{6} p_{X,Y}(1,y) = \sum_{y=1}^{6} \frac{1}{36} = \frac{1}{6}$$

A Computer (or Three) in Every House

- · Consider households in Silicon Valley
 - A household has C computers: C = X Macs + Y PCs
 - Assume each computer equally likely to be Mac or PC

			YX	0	1	2	3	p _Y (y)	
$P(C=c) = \langle$	0.16	c = 0	0	0.16	0.12	0.07	0.04	0.39	
	0.24	c = 1	1	0.12	0.14	0.12	0	0.38	
	0.28	c = 2	2	0.07	0.14 0.12	0	0	0.19	
	0.32	c = 3	3	0.04	0	0	0	0.04	
			p _X (x)	0.39	0.38	0.19	0.04	1.00	
				Marginal distributions					

Continuous Joint Distribution Functions

• For two continuous random variables X and Y, the **Joint Cumulative Probability Distribution** is:

 $F_{X,Y}(a,b) = F(a,b) = P(X \le a, Y \le b)$ where $-\infty < a, b < \infty$

· Marginal distributions:

$$F_X(a) = P(X \le a) = P(X \le a, Y < \infty) = F_{X,Y}(a, \infty)$$

$$F_{Y}(b) = P(Y \le b) = P(X < \infty, Y \le b) = F_{X,Y}(\infty, b)$$

· Let's look at one:

Demo

Joint

This is a joint

- · A joint is not a mathematician
 - It did not start doing mathematics at an early age
 - It is not the reason we have "joint distributions"
 - · And, no, Charlie Sheen does not look like a joint
 - But he does have them...
 - He also has joint custody of his children with Denise Richards

Computing Joint Probabilities

• Let $F_{X,Y}(x,y)$ be joint CDF for X and Y

$$P(a_1 < X \le a_2, b_1 < Y \le b_2)$$

$$= F(a_2, b_2) - F(a_1, b_2) + F(a_1, b_1) - F(a_2, b_1)$$

$$a_1 \quad a_2$$

Jointly Continuous

Random variables X and Y, are **Jointly Continuous** if there exists PDF $f_{X,Y}(x,y)$ defined over $-\infty < x$, $y < \infty$ such that:

$$P(a_1 < X \le a_2, b_1 < Y \le b_2) = \int_{a_1}^{a_2} \int_{b_1}^{b_2} f_{X,Y}(x, y) \, dy \, dx$$

· Cumulative Density Function (CDF):

$$F_{X,Y}(a,b) = \int\limits_{a}^{b} \int\limits_{b}^{b} f_{X,Y}(x,y) \, dy \, dx \qquad f_{X,Y}(a,b) = \frac{\partial^2}{\partial a \, \partial b} \, F_{X,Y}(a,b)$$

· Marginal density functions:

$$f_X(a) = \int_{-\infty}^{\infty} f_{X,Y}(a, y) \, dy \qquad f_Y(b) = \int_{-\infty}^{\infty} f_{X,Y}(x, b) \, dx$$

Imperfection on a Disk

- · Disk surface is a circle of radius R
 - · A single point imperfection uniformly distributed on disk

• A single point imperfection uniformly distributed on disk
$$f_{X,Y}(x,y) = \begin{cases} \frac{1}{\pi R^2} & \text{if } x^2 + y^2 \le R^2 \\ 0 & \text{if } x^2 + y^2 > R^2 \end{cases} \quad \text{where } -\infty < x, y < \infty$$

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dy = \frac{1}{\pi R^2} \int_{x^2 + y^2 \le R^2} dy = \frac{1}{\pi R^2} \int_{y = -\sqrt{R^2 - x^2}}^{\sqrt{R^2 - x^2}} \int_{\pi R^2} dy = \frac{2\sqrt{R^2 - x^2}}{\pi R^2}$$

$$f_Y(y) = \frac{2\sqrt{R^2 - y^2}}{\pi R^2} \quad \text{where } -R \le y \le R, \text{ by symmetry}$$
Distance to existing $R = \sqrt{X^2 + X^2} = R(R - x) = \frac{\pi a^2}{\pi R^2} = \frac{a^2}{\pi R^2}$

• Distance to origin: $D = \sqrt{X^2 + Y^2}$, $P(D \le a) = \frac{\pi a^2}{D^2} = \frac{a^2}{D^2}$

$$E[D] = \int_{0}^{R} P(D > a) da = \int_{0}^{R} (1 - \frac{a^{2}}{R^{2}}) da = \left(a - \frac{a^{3}}{3R^{2}} \right) \Big|_{0}^{R} = \frac{2R}{3}$$

Welcome Back the Multinomial!

- Multinomial distribution
 - n independent trials of experiment performed
 - Each trial results in one of *m* outcomes, with respective probabilities: $p_1, p_2, ..., p_m$ where $\sum_{i=1}^{m} p_i = 1$
 - X_i = number of trials with outcome

$$\begin{split} P(X_1 = c_1, X_2 = c_2, ..., X_m = c_m) = &\binom{n}{c_1, c_2, ..., c_m} p_1^{c_1} p_2^{c_2} ... p_m^{c_m} \\ \text{where } \sum_{i=1}^m c_i = n \text{ and } \binom{n}{c_1, c_2, ..., c_m} = \frac{n!}{c_1! c_2! \cdots c_m!} \end{split}$$

Hello Die Rolls, My Old Friend...

- · 6-sided die is rolled 7 times
 - Roll results: 1 one, 1 two, 0 three, 2 four, 0 five, 3 six

$$P(X_1 = 1, X_2 = 1, X_3 = 0, X_4 = 2, X_5 = 0, X_6 = 3)$$

$$= \frac{7!}{1!1!0!2!0!3!} \left(\frac{1}{6}\right)^1 \left(\frac{1}{6}\right)^0 \left(\frac{1}{6}\right)^0 \left(\frac{1}{6}\right)^0 \left(\frac{1}{6}\right)^3 = 420 \left(\frac{1}{6}\right)^7$$

- This is generalization of Binomial distribution
 - Binomial: each trial had 2 possible outcomes
 - Multinomial: each trial has m possible outcomes

Probabilistic Text Analysis

- Ignoring order of words, what is probability of any given word you write in English?
 - P(word = "the") > P(word = "transatlantic")
 - P(word = "Stanford") > P(word = "Cal")
 - Probability of each word is just multinomial distribution
- What about probability of those same words in someone else's writing?
 - P(word = "probability" | writer = you) > P(word = "probability" | writer = non-CS109 student)
 - After estimating P(word | writer) from known writings, use Bayes Theorem to determine P(writer | word) for new writings!

Old and New Analysis

- · Authorship of "Federalist Papers"
 - 85 essays advocating ratification of US constitution
 - Written under pseudonym "Publius"
 - Really, Alexander Hamilton, James Madison and John Jay
 - Who wrote which essays?
 - Analyzed probability of words in each essay versus word distributions from known writings of three authors
- · Filtering Spam
 - P(word = "Viagra" | writer = you)<< P(word = "Viagra" | writer = spammer)

