Pre-processing of Dataset

Noel C. Sieras

2022-12-16

Preliminaries

This will prevent some errors in loading some of the chunks and laoding of the dataset.

Loading of packages This package tidyverse will help the loading of the packages needed for the pre=processing of data. The package bestNormalize will be used for normalizing the given dataset.

```
pacman::p_load(tidyverse)
pacman::p_load(bestNormalize)
```

Loading of the radiomics dataset using the readr package The radiomics dataset is loaded and assigned to a variable name RDat.

```
library(readr)
RDat=read_csv("radiomics_completedata.csv", show_col_types = FALSE)
```

Checking of null and missing values

```
sum(is.na(RDat))
```

[1] 0

Based from the result 0, the dataset RDat has no null and missing values.

Normality Test Kolmogorov-Smirnov (ks.test()) test is used to check for normality of the dataset.

```
RD1=RDat%>%select_if(is.numeric)
RD1=RD1[,-c(1:2)]
RD2=apply(RD1,2,function(x){ks.test(x,"pnorm")})
```

Unlist the dataset RD2 The unlist produce a vector which containd all the atomic components which occur in RD2 dataset

```
KS_list=unlist(lapply(RD2, function(x) x$p.value))
```

Checking the number of variables that are not normally distributed Counting the number of variables that are not normally distributed.

```
sum(KS_list<0.05)</pre>
```

[1] 428

From the result, there are 428 variables that are not normally distributed.

Checking the number of variables that are normally distributed

```
sum(KS_list>0.05)
## [1] 0
The result of 0 means that there is no nromally distributed variable.
```

The result of 0 means that there is no nromally distributed variable.

Checking the variable with the maximum value p-value in the list

```
which.max(KS_list)
```

```
## Kurtosis_hist.PET
## 9
```

From the result, the variable Kurtosis_hist.PET has the maximum p.value.

Normalization of the dataset and checking of normality The orderNorm is used for normalization. The Kolmogorov-Smirnov test is used for checking the normality of the dataset.

```
tempDFR=RDat[,c(3,5:length(names(RDat)))]
tempDFR=apply(tempDFR,2,orderNorm)
tempDFR=lapply(tempDFR, function(x) x$x.t)
tempDFR=tempDFR%>%as.data.frame()
testRD=apply(tempDFR,2,function(x){ks.test(x,"pnorm")})
testRD=unlist(lapply(testRD, function(x) x$p.value))
```

Checking the number of variables which are normally distributed

```
sum(testRD>0.05)
```

```
## [1] 428
```

From the result, there are 428 variables which are normally normally distributed.

Checking the number of variables of which are not normally distributed

```
sum(testRD<0.05)</pre>
```

```
## [1] 0
```

From the result of the chunk, there is no more variable that is not normally distributed.

Collecting all the variables into one dataset

```
RDat[,c(3,5:length(names(RDat)))]=tempDFR
```

Checking for correlation

```
CorMatrix=cor(RDat[,-c(1,2)])
heatmap(CorMatrix,Rowv=NA,Colv=NA,scale="none",revC = T)
```


Kurtosis, hist per irregularity, sangth, per Jor axis, angth, per Jor axis, and align, and alig

Transforming a some variables as categorical

```
RDat$Institution=as.factor(RDat$Institution)
RDat$Failure.binary=as.factor(RDat$Failure.binary)
```

Saving a normalize dataset as normalRad

write.csv(RDat, "D:/FilesWorkOn&Saved/PhDStat/@MSUIIT/SY20222023/01FirstSemester/STT225_StatisticalComp

```
\#\# Splitting of dataset into a training data and testing data
```

```
splitter <- sample(1:nrow(RDat), round(nrow(RDat) * 0.8))
trainRDat <- RDat[splitter, ]
testRDat <- RDat[-splitter, ]</pre>
```