§ 11.7 圆孔衍射

光学仪器的分辨本领

一、圆孔Fraunhofer衍射

Airy 斑 $\begin{cases} + 角宽度: \theta_1 = \frac{1.22\lambda}{D} \\$ 线 宽 $e: f \cdot 2\theta_1 = \frac{2.44\lambda}{D} f$

二、光学仪器的分辨本领

Rayleigh判据:

$$\theta = \delta\theta = \frac{1.22\lambda}{D}$$
 时,恰可分辨!

最小分辨角: $\delta\theta = \frac{1.22\lambda}{D}$

可分辨: $\theta \geq \delta \theta$

可分辨的高度: $h \approx l \cdot \theta \ge l \cdot \delta \theta$

可分辨的距离: $l \approx \frac{h}{\theta} \leq \frac{h}{\delta \theta}$

最小分辨角:
$$\delta\theta = \frac{1.22\lambda}{D}$$

可分辨: $\theta \geq \delta \theta$

可分辨的高度: $h \approx l \cdot \theta \geq l \cdot \delta \theta$

可分辨的距离: $l \approx \frac{h}{\theta} \leq \frac{h}{\delta \theta}$

光学仪器的分辨本领: $R = \frac{1}{\delta \theta} = \frac{D}{1.22 \lambda}$

提高分辨本领的两个途径: $使 D \uparrow 或 \lambda \downarrow !$

Chapter 11. 光的干涉与衍射 § 11. 7 圆孔衍射 光学仪器的分辨本领

大型现代天文望远镜

电子显微镜(减小波长)

左起: E. Ruska, Gerd Binnig 和

Heinrich Rohrer分别因发明电子

显微镜和扫描隧道显微镜而分享1986年诺贝尔物理学奖。

例 在通常亮度下,人眼瞳孔直径约3mm,则人眼的最小分辨角为多大? 若要看清相距2mm的两物点,则人与物点间距至多为多少?

 \mathbf{m} 人眼对黄绿光最敏感: $\lambda = 550$ nm

最小分辨角:

$$\delta\theta = \frac{1.22\lambda}{D}$$

$$= 2.24 \times 10^{-4} \text{ rad}$$

$$\approx 1'$$

设:两物点间距为h,人与两物点间距为l,则

$$l \approx \frac{h}{\theta} \leq \frac{h}{\delta\theta} = \frac{2 \times 10^{-3} \text{ m}}{2.24 \times 10^{-4}} \approx 8.9 \text{ m}$$

1. Rayleigh判据:

$$\theta = \delta\theta = \frac{1.22\lambda}{D}$$
 时,恰可被分辨!

2. 光学仪器最小分辨角: $\delta \theta = \frac{1.22 \lambda}{D}$

分辨本领:
$$R = \frac{1}{\delta \theta} = \frac{D}{1.22 \lambda}$$

 $D \uparrow$ 或 $\lambda \downarrow \longrightarrow R \uparrow$

 $(\ The\ end\)$