6.2

Type 1 · cmråde:

 $\iint_A f(x,y) dx dy = \iint_A f(x,y) dy dx,$

Type 2- område: la [c,d] væe et interall. la þ,, þ.: [c,d] → IR være kontinuerlige funksjone

s.a. 4 (y) < \$ (4) -

A= $\{(x_1y) \in \mathbb{R}^2: y \in [c_1d], \phi_1(y) \in x \in \phi_2(y)\}$ La f vove en kontinuelig

funksjon på f.

Da ev $f(x_1y) = f(x_1y) = f(x_$

Eks:
$$\lambda_{\alpha} \left[c_{1} d \right] = \left[o_{1} \frac{\pi}{4} \right]$$
 $\phi_{1}(y) = \sin y$
 $\phi_{2}(y) = \cos y$
 $\phi_{2}(y) = \cos y$
 $\phi_{3}(y) = x \cdot y$

So $\phi_{3}(y) = x \cdot y$
 $\phi_{3}(y) = x \cdot y$

Integrasjon i polarkoordinate

La A være området som i polakoordinate e beskevet ved a < r < b

 $\theta_1 \le \xi \le \theta_2$.

La f være en kontinuelig funksjon på A.

Lag porhisjon:

Som maskeridals es liter

Aveal
$$(\widetilde{R}_{ij})$$
 = $\frac{1}{2}(t_{i-1})(t_{i-1})(t_{i-1})$

$$= \frac{1}{2}(t_{i-1})(t_{i-1})(t_{i-1})(t_{i-1})$$

$$= (t_{i-1})(t_{i-1})(t_{i-1})(t_{i-1})$$

Sa
$$\iint f(x_iy) dx dy \simeq \int_{c_{i,j}} f(c_{i,j}) \cdot f_{i-1}(x_j - t_{j-1}) (f_i - f_{i-1})$$

$$\simeq Riemonn - sum for$$

$$\iint f(r. \omega s(t), isin(t)). \Gamma dr dt$$

SETNING: La 0:01(02:21t, og
0:acb < 9),
og la A vove området som
i polarkoordinate e beobevet
ved 01:2:02, a:r:b.
La f vove en konhinvellg
funksjon på A. Da e

Eks 1: $0 \le k \le \pi/4$, $1 \le r \le 2$, $f(r,y) = x^2 \cdot y$. $\int_{1}^{2} f(r,y) \, dx \, dy$ $\int_{$

Mer genvelt: 0, st = 02

4, d2: [0, 02] → 1K kontinuelige funkcijone mel (1(x) 5 (2(t).

For f kontinuerlig på A: If f(riy) dxdy = [() f(ricost, risint)-r dr) At. D, 4(+)

la A voie området begrenset Eks: av den parametrisete kurven

r(t) = ((cost-sint).cost, (cost-sint).sint)

for $t \in [0, \frac{1}{2}]$. $\frac{\cos t \cdot \sin t}{\cos t} \cdot (\cos t, \sin t)$.

Rugh W avealet hil A.

II 1. drdy = avalet.

Ty2 cost-sint "

 $\frac{\pi}{2} \qquad \text{costsint} \qquad \frac{\pi}{2}$ $\frac{1}{2} \int \left[r^2 \right] dt = \frac{1}{2} \int \cos^2 t \cdot \sin^2 t dt,$ $\frac{\pi}{2} \qquad 0 \qquad 1 - \sin^2 t$

$$= \frac{1}{2} \int \sin^2 t - \sin^4 t \, dt.$$

Forst
$$\int_{0}^{\infty} \sin^{2}t \, dt$$
 $\sin^{2}t = \frac{1-\cos(2t)}{2}$
 $\cos^{2}t = \frac{1}{2}$
 $\sin^{2}t = \cos^{2}t$
 $\sin^{2}t = \cos^{2}t$

6.4 Anvendelser.

Arealer til parametriserte flater.

T(u,v)=(x(u,v),y(u,v),z(v,v)).

R

Anta at 7 es désverbou med kontinuelige partiell déscrite.

Lag en gastisjon av R.

Areal $(\vec{r}(R)) = \sum_{i,j} Areal(\vec{r}(R_{ij}))$ stal estimue disse.

· Arealet 61 F(Rij) burde voue ombrent det samme

som avealet til pavalellogrammet Utspent av vektorense

 $\vec{\Gamma}(u_{i}, V_{j-1}) - \vec{\Gamma}(u_{i-1}, V_{j-1})$ og $\vec{\Gamma}(u_{i-1}, V_{j}) - \vec{\Gamma}(u_{i+1}, V_{j-1})$

Areale til pavalellogram:

$$\sum_{i,j} \frac{\partial u}{\partial t} (u^{i-1} \wedge i^{j-1}) \times \frac{\partial v}{\partial t} (u^{i-1} \wedge i^{j-1}) \left(u^{i-1} \wedge i^{j-1} \right) \left($$

SETNING: La T: [9,6] x [c,d] - R3 paramemisere en glate og anta at F hav tonhimerlige partiellerive le. Da es avealet til flaten lik (() St. (Lu) x St. (Lu)) dudu.

R= [ab] × [ga]

Eks:

Regn ut avealet til overflaten av en kule med radius 1.

Fra kulekoordinate :

 $\Gamma(\phi,\theta) = \left(\sin \phi \cdot \cos \theta, \sin \phi \cdot \sin \theta, \cos \phi \right),$ $\phi \in [0,\Pi]$ og $\theta \in [0,2\pi]$.

 $= \int \int \sin \phi \, d\phi d\theta = 4TT$