HLMA101 - Partie C : Analyse (fonctions réelles)

Chapitre 12 Dérivation

Simon Modeste

Faculté des Sciences - Université de Montpellier

2020-2021

1. Dérivabilité

2. Opération et dérivée

3. Les grands théorèmes

- 3.1 Extremums d'une fonction
- 3.2 Théorème de Rolle
- 3.3 Accroissements finis
- 3.4 Dérivée et variations

Sommaire

1. Dérivabilité

- 2. Opération et dérivée
- 3. Les grands théorèmes

Remarques

- ♦ f est dérivable en x_0 si et seulement si $\lim_{\substack{h \to 0 \\ h \neq 0}} \frac{f(x_0 + h) f(x_0)}{h}$ existe et est finie.
- ϕ f est dérivable en x_0 si et seulement si il existe un réel λ et une fonction φ avec $\lim_{x \to x_0} \varphi(x) = 0$ tels que

$$f(x) = f(x_0) + \lambda(x - x_0) + (x - x_0)\varphi(x)$$
 $(\lambda = f'(x_0))$

- \diamond Pour tout $x_0 \in I$, $x \mapsto \frac{f(x) f(x_0)}{x x_0}$ n'est pas définie en x_0 .
- ♦ Pour tout $x, x_0 \in I$, $x \neq x_0$, $\frac{f(x) f(x_0)}{x x_0}$ est appelé le taux d'accroissement de f entre x et x_0 . C'est le coefficient directeur de la pente de la droite (AB), où A(x; f(x)) et $B(x_0; f(x_0))$.

Dérivabilité en un point

Définition

Soit f une fonction définie sur un intervalle I de \mathbb{R} , et $x_0 \in I$. On dira que f est dérivable en x_0 lorsque $\lim_{\substack{x \to x_0 \\ x \neq x_0}} \frac{f(x) - f(x_0)}{x - x_0}$ existe et est finie. Dans ce cas, cette limite est notée $f'(x_0)$.

Exemples

- ♦ La fonction $x \mapsto x^2$ est dérivable en 1 et on a f'(1) = 2.
- \diamond La fonction $x \mapsto |x|$ n'est pas dérivable en 0

Dérivabilité sur une réunion d'intervalle

Définition

Soit f définie sur une réunion d'intervalles I. f est dite dérivable sur I si f est dérivable en x_0 , pour tout $x_0 \in I$. Dans ce cas, la fonction $x \mapsto f'(x)$ définie sur I est appelée la fonction dérivée de f.

- 1. Pour tout $n \in \mathbb{N}^*$, $x \mapsto x^n$ est dérivable sur \mathbb{R} de dérivée $x \mapsto nx^{n-1}$
- 2. La fonction $x \mapsto |x|$ est dérivable sur \mathbb{R}^* .
- 3. La fonction $x \mapsto \frac{1}{x}$ est dérivable sur \mathbb{R}^* de dérivée $x \mapsto -\frac{1}{x^2}$.

Tangente

Définition

Soit f dérivable en x_0 . La droite passant par $(x_0, f(x_0))$ et de coefficient directeur $f'(x_0)$ est <u>la tangente à la courbe</u> représentative de f en x_0 .

Propriété

Dans ce cas, une équation de cette tangente est $y=f'(x_0)(x-x_0)+f(x_0)$. C'est une "approximation" de f au voisinage de x_0 , et l'"erreur" est de $(x-x_0)\varphi(x)$.

Lien avec la continuité

Propriété:

Si f est dérivable en x_0 , alors f est continue en x_0

Preuve

Soit f une fonction dérivable en x_0 . Alors, il existe un réel λ et une fonction φ avec $\lim_{x \to x_0} \varphi(x) = 0$ tels que : $f(x) = f(x_0) + \lambda(x - x_0) + (x - x_0) \varphi(x)$ Par somme de limite, on en déduit que f a une limite en x_0 , qui vaut $f(x_0)$, et donc que f est continue en x_0 . \blacksquare La réciproque est-elle vraie ?? NON!! $(x \mapsto |x|)$ est continue en x_0 , mais non dérivable en x_0 .

Dérivabilité à gauche et à droite

Définition :

Soit f une fonction définie sur I, et $x_0 \in I$. On dit que f est dérivable à gauche (resp. à droite) en x_0 lorsque $\lim_{\substack{x \to x_0 \\ x < x_0}} \frac{f(x) - f(x_0)}{x - x_0} \text{ (resp. } \lim_{\substack{x \to x_0 \\ x > x_0}} \frac{f(x) - f(x_0)}{x - x_0} \text{) existe et est finie.}$ Dans ce cas, on note $f_g'(x_0)$ (resp. $f_d'(x_0)$) cette limite.

Exemple:

 $f: x \to |x|$ est dérivable à gauche et à droite en 0, et $f'_g(0) = -1$, $f'_d(0) = 1$.

Sommaire

- 1. Dérivabilité
- 2. Opération et dérivée
- 3. Les grands théorèmes

Remarques

- Ce théorème a une version "globale": tous les énoncés restent vrais en remplaçant "en x₀" par "sur un ensemble I"
- Exercice: écrire proprement l'énoncé dans le cas de la composée de deux fonctions dérivables (sur quels domaines de définitions?).

Plan de preuve du point 2 (produit)

$$f(x) = f(x_0) + (x - x_0)f'(x_0) + (x - x_0)\varphi_1(x)$$
 et
$$g(x) = g(x_0) + (x - x_0)g'(x_0) + (x - x_0)\varphi_2(x)$$

♦ On calcule alors
$$f(x)g(x)$$
, et on trouve $fg(x) = fg(x_0) + (x - x_0)(f'(x_0)g(x_0) + f(x_0)g'(x_0)) + (x - x_0)\varepsilon(x)$

Théorème

Une fonction f est dérivable en x_0 si et seulement si f est dérivable à gauche et à droite en x_0 ET $f'_{\sigma}(x_0) = f'_{\sigma}(x_0)$.

Exemples

La fonction f définie sur \mathbb{R} par $f(x) = \begin{cases} x^2 \text{ si } x \le 0 \\ x^3 \text{ si } x > 0 \end{cases}$ est dérivable en 0.

Théorème

- Soient f et g deux fonctions définies sur I, et soit $x_0 \in I$. On suppose que f et g sont dérivables en x_0 .
- 1. $\forall \lambda, \ \mu \in \mathbb{R}, \ \lambda f + \mu g$ est dérivable en x_0 et $(\lambda f + \mu g)'(x_0) = \lambda f'(x_0) + \mu g'(x_0)$.
- 2. fg est dérivable en x_0 et $(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$.
- 3. Si $g(x_0) \neq 0$, $\frac{f}{g}$ est dérivable en x_0 et $\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) f(x_0)g'(x_0)}{g(x_0)^2}$.
- Soient $f:I \to J$ et $g:J \to \mathbb{R}$ deux fonctions et $x_0 \in I$. On suppose f dérivable en x_0 et g dérivable en $f(x_0)$. Alors $g \circ f$ est dérivable en x_0 et on a

$$(g \circ f)'(x_0) = f'(x_0)g'(f(x_0))$$

Plan de preuve du point 1 (combinaison linéaire)

 \diamond Pour λf :

$$f(x) = f(x_0) + (x - x_0)f'(x_0) + (x - x_0)\varphi(x)$$

$$\lambda f(x) = \lambda f(x_0) + (x - x_0)\lambda f'(x_0) + (x - x_0)\lambda \varphi(x)$$

 On pose $\gamma = \lambda \varphi$ et on a $\lim_{x \to x_0} \gamma(x) = 0$

 \diamond Pour f + g:

$$f(x) = f(x_0) + (x - x_0)f'(x_0) + (x - x_0)\varphi_1(x)$$

$$g(x) = g(x_0) + (x - x_0)g'(x_0) + (x - x_0)\varphi_2(x)$$
On calcule alors $(f + g)(x)$, et on trouve $(f + g)(x)$

$$= f(x_0) + g(x_0) + (x - x_0)(f'(x_0) + g'(x_0)) + (x - x_0)(\varphi_1 + \varphi_2)(x)$$

Plan de preuve du point 3 (quotient)

 \diamond On montre d'abord que $(\frac{1}{g})'(x_0) = -\frac{g'(x_0)}{(g(x_0))^2}$.

$$\begin{array}{l} \frac{1}{g(x)}-\frac{1}{g(x_0)}\\ \frac{1}{x-x_0}=\frac{1}{g(x)g(x_0)}\frac{g(x_0)-g(x)}{x-x_0} \text{ (au voisinage de } x_0,\\ g(x)\neq 0 \text{ car } g \text{ continue en } x_0 \text{ et } g(x_0)\neq 0) \end{array}$$

Par passage à la limite, on obtient le résultat car g dérivable en x_0 .

 Le cas du quotient se déduit du cas précédent et du produit. Preuve pour la composition de fonctions.

Exemple

On admet que la fonction sin est dérivable sur $\ensuremath{\mathbb{R}}.$

La fonction
$$f: x \mapsto \begin{cases} x^2 \sin(\frac{1}{x}) & \text{si } x \neq 0 \\ 0 & \text{sinon} \end{cases}$$
 est dérivable sur \mathbb{R} .

Réciproque

Théorème

Soit f une application strictement monotone d'un intervalle Isur l'intervalle J = f(I), dérivable en $x_0 \in I$. La fonction f^{-1} est dérivable en $y_0 = f(x_0)$ si et seulement si $f'(x_0) \neq 0$ et on a

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)} = \frac{1}{f'(f^{-1}(y_0))}$$

Exemple

La fonction racine est dérivable sur \mathbb{R}_+^* et de dérivée $x \mapsto \frac{1}{2\sqrt{x}}$

Corollaire

Soit f une application strictement monotone d'un intervalle Isur l'intervalle J = f(I), dérivable sur I et telle que f' ne s'annule pas sur I. La fonction f^{-1} est dérivable sur J et on a

$$(f^{-1})' = \frac{1}{f' \circ f^{-1}}$$

Exemples

- > Réciproque des fonctions puissances entières
- Réciproque des fonctions trigonométriques

Définition

Soit f une fonction définie sur un intervalle I de \mathbb{R} , et soit a un point intérieur à I. On dit que f a un maximum (resp. minimum) local en a s'il existe un intervalle lo ouvert centré en a tel que, pour tout $x \in I_0$, $f(x) \le f(a)$ (resp. $f(x) \ge f(a)$). Si $I_0 = I$, on parle d'extremum (maximum ou minimum) global.

Théorème "des valeurs extrêmes" (admis)

Soit f une fonction continue sur un segment fermé [a;b]. Alors f admet un maximum et un minimum sur [a;b].

Plan de la preuve

- \diamond On a $f^{-1} \circ f = Id$ donc $(f^{-1} \circ f)'(x_0) = 1$
- \Rightarrow Alors $f'(x_0) \neq 0$ et $(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$

- On suppose $f'(x_0) \neq 0$, montrons que $\lim_{y \to y_0} \frac{f^{-1}(y) f^{-1}(y_0)}{y y_0} = \frac{1}{f'(x_0)}.$
- $\Rightarrow f \text{ est dérivable en } x_0 \text{ donc } f'(x_0) = \lim_{x \to x_0} \frac{f(x) f(x_0)}{x x_0}$

$$f^{-1} \text{ est continue en } y_0 \text{ donc}$$

$$f'(x_0) = \lim_{y \to y_0} \frac{f(f^{-1}(y)) - f(x_0)}{f^{-1}(y) - x_0} = \lim_{y \to y_0} \frac{y - y_0}{f^{-1}(y) - f^{-1}(y_0)}$$

♦ Comme cette limite n'est pas nulle, on compose par la fonction inverse.

Sommaire

- 3. Les grands théorèmes
- 3.1 Extremums d'une fonction
- 3.2 Théorème de Rolle
- 3.3 Accroissements finis
- 3.4 Dérivée et variations

Lien avec la dérivée

Théorème

Soit f une fonction dérivable sur un intervalle I, et soit aintérieur à I. Si la fonction f a un extremum local en a, alors f'(a) = 0

Remarque

La réciproque est-elle vraie? NON: $x \mapsto x^3$ en 0!

Plan de la preuve

Supposons que a est un maximum; $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ Alors $f'(a) \ge 0$ et $f'(a) \le 0$: f'(a) = 0.

Remarques

- ♦ On a une condition nécessaire pour être un extremum local à l'intérieur de I: on cherche les extremums locaux parmi les x intérieurs à I tels que f'(x) = 0.
- ♦ Attention, ça ne dit rien sur les "bords" de l'intervalle, qui **peuvent** être des extremums : Exemple : $x \mapsto \sqrt{x}$.

Théorème des Accroissements finis

Soit f une fonction continue sur I = [a; b] et dérivable sur]a; b[. Alors il existe $c \in]a; b[$ tel que $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Idée de la preuve

On applique le théorème de Rolle à $x \mapsto f(x) - \left(\frac{f(b) - f(a)}{b - a}(x - a) + f(a)\right)$

Propriété 1 (dérivée nulle)

Soit f une fonction continue et dérivable sur un intervalle I et telle que f'(x) = 0 pour tout $x \in I$. Alors f est constante.

Propriété 2 (signe de la dérivée)

Soit f une fonction définie et continue sur I, dérivable sur l'intérieur de I.

- \diamond Si f'(x) > 0 pour tout x intérieur à I, alors f est strictement croissante sur I.
- \Leftrightarrow Si f'(x) < 0 pour tout x intérieur à I, alors f est strictement décroissante sur I.

Remarque : tableau de variations

Ces propriétés justifient ce que l'on écrit dans les tableaux de variations.

Théorème de Rolle

Soit f une fonction continue sur I = [a;b] et dérivable sur]a;b[, et telle que f(a) = f(b). Alors il existe $c \in]a;b[$ tel que f'(c) = 0.

Preuve.

Inégalité des accroissements finis

Soit $f:[a,b]\to\mathbb{R}$ continue sur [a,b] et dérivable sur]a,b[. Supposons que $:\exists M>0, \forall x\in]a,b[,|f'(x)|\leqslant M.$ Alors,

$$|f(b)-f(a)| \leq M|b-a|$$