

Data Mining in Action: Introduction

Data Mining in Action

ПОИСК КАРТИНКИ ВИДЕО КАРТЫ МАРКЕТ ДИСК МУЗЫКА ЕЩЁ

■ Data Mining in Action | ВКонтакте

vk.com > data mining in action v

Москва, Россия Денис Семененко. Администратор сообщества. Data Mining in Action. So it begins. Местоположение: Москва, Россия. . Data Mining in Action запись закреплена. 6 мая в 23:04.

Process Mining: знакомство / Хабрахабр

habrahabr.ru > post/244879/ ▼

Статья подготовлена на основе материалов онлайн курса Process **Mining**: **Data** Science **in Action**, являющихся собственностью Технического университета Эйндховена.

Process Mining: Data science in Action... | Coursera coursera.org > learn/process-mining *

Нашлось 8 млн результатов

Дать объявление Показать все

Направления

Что будет на «Индустрии»

- Постановка задач
- Оценка качества в задачах ML
- Часто используемые на практике ML методы
- Инструменты для анализа данных
- Создание прототипов

Оценка качества

- Обзор существующих метрик качества
- Переход от задачи бизнеса к метрикам качества
- Оценка потенциального экономического эффекта
- Оценка качества в продакшене

А/В-тестирование

Основные алгоритмы ML

Градиентный бустинг

Случайный лес

Линейные модели

Инструменты для анализа данных

- 1. XGBoost
- 2. LigthGBM
- 3. Vawpal Wabbit
- 4. Spark

Инструменты для анализа данных

- 1. XGBoost
- 2. LigthGBM
- 3. Vowpal Wabbit
- 4. Spark

Создание прототипов

Практические кейсы

- Рекомендательные системы
- Анализ тональности отзывов
- Оптимизация техподдержки
- Прогнозирование спроса
- Предсказание оттока
- Оптимизация рекламы

и другие примеры

Вы научитесь:

- Делать правильные с точки зрения бизнеса постановки задач
- Оценивать качество ваших решений как в оффлайн, так и в онлайн экспериментах
- Разбираться в часто используемых на практике методах
- Владеть инструментами для анализа данных
- Создавать прототипы продукта с ML
- Решать реальные практические кейсы, применяя полученные знания

15 Active Competitions

2018 Data Science Bowl

Find the nuclei in divergent images to advance medical discovery

Featured · 2 months to go · > biology

\$100,000 1,223 teams

Mercari Price Suggestion Challenge

Can you automatically suggest product prices to online sellers?

Featured · 12 days to go ·

\$100,000 2,236 teams

Toxic Comment Classification Challenge

Identify and classify toxic online comments

Featured · a month to go · ● arguments, text data

\$35,000 1,780 teams

Nomad2018 Predicting Transparent Conductors

Predict the key properties of novel transparent semiconductors

Research · 6 days to go · ● chemistry, semiconductors

€5,000 851 teams

kaggle.com

Что будет на "Соревнованиях"

- Exploratory Data Analysis
- Извлечение и генерация признаков
- Валидация качества решения
- Утечки в соревнованиях
- Ансамбли моделей

Exploratory Data Analysis

- Визуализировать данные
- Посчитать статистики
- Понять данные и найти новые гипотезы

Генерация признаков

- Время
- Координаты
- Картинки
- Кодирование категориальных признаком средним
- Использование ближайших соседей

Валидация

Утечки в соревнованиях

- Повторяющиеся строки в train и test
- Порядок строк имеет значение
- Временные ряды с признаками "из будущего"
- etc

Ансамбли

Andrew Ng

Специализация по Deep Learning на Kypcepe

Август 2017

DMIA: Trends

Object detection

Object segmentation

Instance segmentation

Neural machine translation

Generative Adversarial Networks

Segmentation & Detection

Neural Machine Translation

Лекции

Что мы обсудим на лекциях

- 1. Введение: стандартные задачи и методы, настройка алгоритмов
- Supervised learning: линейные модели, решающие деревья и ансамбли
- 3. Оценка качества в оффлайне и онлайне
- 4. Unsupervised learning
- 5. Рекомендательные системы
- 6. Предиктивная аналитика
- 7. Анализ текстов
- 8. Нейронные сети

На этой лекции

- І. Стандартные задачи и методы машинного обучения
- II. Настройка параметров алгоритмов
- III. Пример проекта по ML
- IV. Инструменты

I. Стандартные задачи и методы машинного обучения

Классификация

Iris versicolor

Iris virginica

Вход (обучающая выборка):

Признаки N объектов с известными классами

Выход:

Классификатор (алгоритм, прогнозирующий классы новых объектов по их признакам)

Классификация: обучающая выборка

Fisher's Iris Data

I Isliel 5 II IS Data				
Sepal length \$	Sepal width 🔺	Petal length \$	Petal width \$	Species +
5.0	2.0	3.5	1.0	I. versicolor
6.0	2.2	5.0	1.5	I. virginica
6.2	2.2	4.5	1.5	I. versicolor
6.0	2.2	4.0	1.0	I. versicolor
6.3	2.3	4.4	1.3	I. versicolor
5.5	2.3	4.0	1.3	I. versicolor
5.0	2.3	3.3	1.0	I. versicolor
4.5	2.3	1.3	0.3	I. setosa
5.5	2.4	3.8	1.1	I. versicolor
5.5	2.4	3.7	1.0	I. versicolor
4.9	2.4	3.3	1.0	I. versicolor
6.7	2.5	5.8	1.8	I. virginica
5.7	2.5	5.0	2.0	I. virginica
6.3	2.5	5.0	1.9	I. virginica
6.3	2.5	4.9	1.5	I. versicolor
4.9	2.5	4.5	1.7	I. virginica

Регрессия

Вход (обучающая выборка):

Признаки N объектов с известными значениями прогнозируемого вещественного параметра объекта

Выход:

Алгоритм, прогнозирующий значение вещественной величины по признакам объекта

Кластеризация

Вход (обучающая выборка):

Признаки N объектов

Выход:

Найденные в выборке классы (кластеры), метки кластеров для объектов из обучающей выборки и алгоритм отнесения новых объектов к кластеру

Пример: сегментация рынка

Пример классификации (k = 6):

Пример классификации (k = 6):

Пример классификации (k = 6):

Пример классификации (k = 6):

Веса можно определить как функцию от соседа или его номера:

$$w(x_{(i)}) = w(i)$$

Пример классификации (k = 6):

Веса можно определить как функцию от соседа или его номера:

$$w(x_{(i)}) = w(i)$$

$$w(x(i)) = w(d(x, x_{(i)}))$$

Пример классификации (k = 6):

Веса можно определить как функцию от соседа или его номера:

$$w(x_{(i)}) = w(i)$$

$$w(x(i)) = w(d(x, x_{(i)}))$$

$$Z = \frac{w(x_{(1)}) + w(x_{(2)}) + w(x_{(3)})}{w(x_{(1)}) + w(x_{(2)}) + w(x_{(3)}) + w(x_{(4)}) + w(x_{(5)}) + w(x_{(6)})}$$

Пример классификации (k = 6):

Веса можно определить как функцию от соседа или его номера:

$$w(x_{(i)}) = w(i)$$

$$w(x(i)) = w(d(x, x_{(i)}))$$

$$Z = \frac{w(x_{(1)}) + w(x_{(2)}) + w(x_{(3)})}{w(x_{(1)}) + w(x_{(2)}) + w(x_{(3)}) + w(x_{(4)}) + w(x_{(5)}) + w(x_{(6)})}$$

$$Z = \frac{w(x_{(4)}) + w(x_{(5)}) + w(x_{(6)})}{w(x_{(1)}) + w(x_{(2)}) + w(x_{(3)}) + w(x_{(4)}) + w(x_{(5)}) + w(x_{(6)})}$$

Пример классификации (k = 6):

Веса можно определить как функцию от соседа или его номера:

$$w(x_{(i)}) = w(i)$$

$$w(x(i)) = w(d(x, x_{(i)}))$$

$$Z = \frac{|w(x_{(1)}) + w(x_{(2)}) + w(x_{(3)})|}{w(x_{(1)}) + w(x_{(2)}) + w(x_{(3)}) + w(x_{(4)}) + w(x_{(5)}) + w(x_{(6)})}$$

$$Z = \frac{w(x_{(4)}) + w(x_{(5)}) + w(x_{(6)})}{w(x_{(1)}) + w(x_{(2)}) + w(x_{(3)}) + w(x_{(4)}) + w(x_{(5)}) + w(x_{(6)})}$$

Пример классификации (k = 6):

Веса можно определить как функцию от соседа или его номера:

$$w(x_{(i)}) = w(i)$$

$$w(x(i)) = w(d(x, x_{(i)}))$$

$$Z = \frac{w(x_{(1)}) + w(x_{(2)}) + w(x_{(3)})}{w(x_{(1)}) + w(x_{(2)}) + w(x_{(3)}) + w(x_{(4)}) + w(x_{(5)}) + w(x_{(6)})}$$

$$Z = \frac{w(x_{(4)}) + w(x_{(5)}) + w(x_{(6)})}{w(x_{(1)}) + w(x_{(2)}) + w(x_{(3)}) + w(x_{(4)}) + w(x_{(5)}) + w(x_{(6)})}$$

if
$$Z_{\bigcirc} > Z_{\bigcirc}$$
:

if
$$Z_{\bullet} < Z_{\bullet}$$

Центроидный классификатор

Центроидный классификатор

Центроидный классификатор

Взвешенный kNN для регрессии

Пример (k = 6):

Веса можно определить как функцию от соседа или его номера:

$$w(x_{(i)}) = w(i)$$

$$w(x(i)) = w(d(x, x_{(i)}))$$

kNN для задачи регрессии

Пример (k = 6):

Веса можно определить как функцию от соседа или его номера:

$$w(x_{(i)}) = w(i)$$

$$w(x(i)) = w(d(x, x_{(i)}))$$

Простой алгоритм кластеризации: kMeans

Часто используемые алгоритмы

- Линейные модели
- Решающие деревья
- Ансамбли решающих деревьев
- Нейронные сети*

Часто используемые алгоритмы

- Линейные модели
- Решающие деревья
- Ансамбли решающих деревьев
- Нейронные сети*

* В задачах анализа изображений, звука, текста и прогнозировании временных рядов

Линейные модели

Линейные модели

Особенно хороши на разреженных признаках

Решающие деревья

Ансамбли решающих деревьев

Нейронные сети

Нейронные сети

hidden layer 1 hidden layer 2

Нейронные сети

GoogLeNet

II. Настройка параметров алгоритмов

Оптимизационные задачи в ML

 x_1, x_2, \dots, x_l - точки, в которых известны значения некоторой величины:

$$y_1, y_2, ..., y_l$$

Мы строим прогнозирующий алгоритм:

$$y_i \approx a(x_i)$$

Но что значит «примерно равно»?

Задача регрессии

 x_1, x_2, \dots, x_l - точки, в которых известны значения некоторой величины:

$$y_1, y_2, \dots, y_l$$

Мы строим прогнозирующий алгоритм:

$$y_i \approx a(x_i)$$

Но что значит «примерно равно»?

Например, это:

$$\sum_{i=1}^{l} (y_i - a(x_i))^2 \to min$$

Оптимизационные задачи в ML

 x_1, x_2, \dots, x_l - точки, в которых известны значения некоторой величины:

$$y_1, y_2, \dots, y_l$$

Мы строим прогнозирующий алгоритм:

$$y_i \approx a(x_i)$$

Но что значит «примерно равно»?

Например, это:

$$\sum_{i=1}^{l} |y_i - a(x_i)| \to min$$

Оптимизационные задачи в ML

 x_1, x_2, \dots, x_l - точки, в которых известны значения некоторой величины:

$$y_1, y_2, \dots, y_l$$

Мы строим прогнозирующий алгоритм:

$$y_i \approx a(x_i)$$

Но что значит «примерно равно»?

В общем случае:

$$\sum_{i=1}^{l} L(y_i, a(x_i)) \rightarrow min$$

Градиентный спуск

Градиентный спуск

Переобучение (overfitting)

Переобучение (overfitting)

Оценка качества

Кривые обучения

Кросс-валидация

K-Fold cross validation:

На картинке k = 10. Другие частые варианты — 3 и 5.

Учет разброса в CV

 $80 \pm 4.5\%$

Предупреждение: будьте осторожны с CV

История про танки

Классификатор: есть танки на снимке или нет

История про танки

Классификатор: есть танки на снимке или нет

Задача

Для некоторой задачи построили алгоритм обучения с учителем и он работает очень плохо.

- а) Как понять, проблема в недостаточном размере обучающей выборки или в чем-то еще?
- b) В чем еще может быть проблема?

Ответ

Увеличить обучающую выборку — дорого, зато легко можем уменьшить и посмотреть, вышло ли качество на «плато»

III. Пример проекта

Блок рекомендаций

Товар 1	Товар 2	Товар З	Товар 4

Возможный вариант заполнения

Puma Ветровка 3 490 руб. Crocs Сланцы 1 990 руб. Топу-р Слипоны 1 999 руб. 1 590 руб. Champion Брюки спортивные 3 599 руб. 1 970 руб.

Использование прогноза: пример про UX

Сопутствующие товары		Похожие товары		
Товар 1	То	вар 2	Товар 3	Товар 4

История про одинаковое качество

- Интегрировали чужое решение, чтобы сравнить качество со своим
- Оценили качество у обоих
- Совпало до тысячных долей
- Не стали использовать чужое решение
- Позже выяснили, в чем дело

Поставим диагноз

Пациент:

Система, рекомендующая пользователям товары

Что знаем:

Качество решений двух команд совпало

Какие еще «анализы» назначим, чтобы понять, в чем дело?

История про статзначимость

Суммарная выручка

История про статзначимость

Суммарная выручка

Одна кривая отличается от других на 10% Но разбиение на самом деле – случайное

Рекомендации товаров: вопросы

- 1. Какой экономический эффект может дать модель в этой задаче? Как он связан с качеством модели? (и как его измерять)
- 2. Будет ли оценка ожидаемого экономического эффекта на исторических данных совпадать с реальным экономическим эффектом? Как можно измерить его?
- 3. Какие данные нужны для построения модели?

История о постановке задач

На входе:

- Туроператор хочет персонализировать рассылки своим клиентам
- Данных мало
- Заказчику интересно увеличить конверсию

История о постановке задач

На входе:

- Туроператор хочет персонализировать рассылки своим клиентам
- Данных мало
- Заказчику интересно увеличить конверсию

На выходе:

- Не стали надеяться на какое-то умное обучение
- Попытались кластеризовать и выделить топ рекомендаций по кластерам
- Отдали заказчику в надежде, что в любом случае лучше, чем всем рассылать одно и то же
- Про А/В тесты вообще не слышали

IV. Инструменты

Python

На чем будут примеры

- Почему Python? Потому что можно всего в 5 30 строк очень простого кода продемонстрировать интересные явления
- Библиотеки: numpy, scipy, sklearn, matplotlib, pandas и др.
- Что использовать на практике ваш выбор
- Под Windows проще всего установить Anaconda Python

Scikit-learn

Scikit-learn

Home

Installation

Documentation -

Examples

Google" Custom Search

Search

scikit-learn

Machine Learning in Python

- Simple and efficient tools for data mining and data analysis
- Accessible to everybody, and reusable in various contexts
- Built on NumPy, SciPy, and matplotlib
- Open source, commercially usable BSD license

Машинное обучение в несколько строк

from sklearn.linear_model import LogisticRegression

```
model = LogisticRegression()
model.fit(X_train, y_train)
predictions = model.predict(X_test)
```

Резюме

- І. Стандартные задачи и методы машинного обучения
- II. Настройка параметров алгоритмов
- III. Пример проекта по ML
- IV. Инструменты

Конкурс

Найти ошибку на этой картинке и написать комментарий в соответствующей записи в группе DMIA в ВК

Победитель (первый, кто ответит верно) получит приз

Machine Learning

what society thinks I do

what my friends think I do

what my parents think I do

what other programmers think I do

what I think I do

>>> from sklearn import svm

what I really do

Контакты

dmia@applieddatascience.ru

https://t.me/joinchat/B1OlTk74nRV56Dp1TDJGNA

https://goo.gl/forms/1k17ALSW2urgM91m2