0.0.1 Problemi complessi

$$P = (X, \Omega, F, f, D, \Pi)$$

Figure 1: Definizione formale di problema di decisione.

Queste variabili rappresentano:

- 1. X rappresenta l'insieme delle alternative, o delle soluzioni o anche delle soluzioni ammissibili.
- 2. Ω rappresenta insieme degli **scenari** o **esiti**.
- 3. F rappresenta l'insieme degli impatti.
- 4. f rappresenta la **funzione dell'impatto**.
- 5. *D* rappresenta l'insieme dei **decisori**, tipicamente un insieme finito e di dimensione bassa. Un decisore è un'entità umana, modellata quanto possibile matematicamente.
- 6. Π insieme delle **preferenze**.

X viene definito come:

$$X \subseteq \mathbb{R}^n$$
 se $x \in X \Rightarrow x = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}$

con ogni termine x_i viene chiamato o **elemento di alternativa** o **variabile di decisione**.

 Ω viene definito come:

$$\Omega \subseteq \mathbb{R}^r \text{se } \omega \in \Omega \Rightarrow \omega = \begin{bmatrix} \omega_1 \\ \omega_2 \\ \dots \\ \omega_r \end{bmatrix}$$

con ogni termine ω_i viene chiamato o **elemento di scenario** o **variabile esogene**, cioè variabili che influiscono sulla configurazione del nostro sistema, non decise arbitrariamente ma provenienti dall'esterno.

F viene definito come:

$$F \subseteq \mathbb{R}^p$$
 se $\mathbf{f} \in F \Rightarrow \mathbf{f} = \begin{bmatrix} f_1 \\ f_2 \\ \dots \\ f_n \end{bmatrix}$

Le $f_l \in \mathbb{R}$ vengono ipotizzate ad essere intere e vengono chiamate **indicatore**, **attributo**, **criterio** o **obbiettivo**. Un **indicatore** per esempio potrebbe essere un *valore ottimo*.

La *f* viene definita come:

$$f(x,\omega): X \times \Omega \to F$$

La matrice di tutte le combinazioni viene chiamata matrice delle valutazioni.

La Π viene definita come

$$\Pi: D \to 2^{F \times F}$$

, dove $\pi_d \subseteq F \times F$. $F \times F$ rappresenta l'insieme delle **coppie ordinate di impatti**, mentre $2^{F \times F}$ rappresenta l'insieme delle **relazioni binarie**.

Per esempio, ponendo $F = \{f, f', f''\}$, otteniamo un prodotto cartesiano:

$$F \times F = \{(f, f'), (f, f''), (f', f), (f, f''), (f'', f), (f'', f'), (f, f), (f', f'), (f'', f'')\}$$

La **preferenza** è la volontà per cui il decisore risulta disponibile a fare uno scambio.

Un esempio di preferenza è:

$$f' \preccurlyeq_d f' \Leftrightarrow (f', f'') \in \Pi_d$$

. In un ambiente ingegneristico si usa il \leq_d , minimizzando i costi, mentre in un ambiente economico si cerca di massimizzare i costi \succeq_d .

Definizione 0.0.1 (indifferenza) Due preferenze f' e f'' sono dette **indifferenti** quando:

$$f' f'' \Leftrightarrow \begin{cases} f' \preccurlyeq_d f'' \\ f' \succcurlyeq_d f'' \end{cases}$$

Definizione 0.0.2 (Preferenza Stretta) *Una preferenza* f' è detta **preferenza stretta** quando:

$$f' <_d f'' \Leftrightarrow \begin{cases} f' \leq_d f'' \\ f' \not\succ_d f'' \end{cases}$$

Definizione 0.0.3 (Incomparabilità) Due preferenze f' e f'' sono dette **incomparabili** quando:

$$f' \bowtie_d f'' \Leftrightarrow \begin{cases} f' \not\prec_d f'' \\ f' \not\prec_d f'' \end{cases}$$

0.0.2 Proprietà delle preferenze

Proprietà riflessiva

$$f \preccurlyeq f \quad \forall f \in F$$

Proprietà di completezza

Un decisore può sempre concludere una decisione (ipotesi molto forte che talvolta porta a risultati impossibili):

$$f \not\prec f' \Rightarrow f' \preccurlyeq f \quad \forall f, f' \in F$$

Proprietà di anti-simmetria

$$f \leq f' \wedge f' \leq f \Rightarrow f' = f \quad \forall f, f' \in F$$

Proprietà Transitiva

Solitamente i decisori non possiedono questa proprietà, anche perché è necessario modellare lo scorrere del tempo, per cui le proprietà valgono potenzialmente solo in un determinato periodo temporale. Viene generalmente considerata verificata.

$$f \preccurlyeq f' \land f' \preccurlyeq f'' \Rightarrow f \preccurlyeq f'' \qquad \forall f, f', f'' \in F$$

0.0.3 Ipotesi funzione del valore

Un decisore che ha in mente una funzione valore v, ha in mente una relazione di preferenza Π **riflessiva**, **completa**, **non necessariamente anti simmetrica** e **transitiva**. Quando una relazione possiede queste proprietà viene chiamata **ordine debole**, debole perché possono esiste dei *pari merito*. Un campo di applicazione sono i campionati sportivi.

$$\exists v : F \to \mathbb{R} : f \leq f' \Leftrightarrow v_{(f)} \geq v_{(f')}$$

Condizioni di preordine

Avendo le condizioni di **riflessività**, **transitività** si ottiene la condizione di **preordine**.

Ordini deboli

Avendo le condizioni di **riflessività**, **transitività** e **completezza** si ha la condizione di ordine debole, che è molto utilizzata.

Ordine parziale

Avendo le condizioni di riflessività, transitività e antisimmetria si ottiene la condizione di ordine parziale.

Ordine totale

Avendo le condizioni di riflessività, transitività, completezza e antisimmetria si ottiene la condizione di ordine totale.

0.0.4 Tabella riassuntiva

Proprietà	Preordine	Ordine debole	Ordine parziale	Ordine totale
Riflessività	✓	✓	✓	✓
Transitività	✓	✓	✓	✓
Completezza		✓		✓
Antisimmetria			✓	✓

0.1 Conto di Borda

La formula in figura 2 utilizzato per costruire una funzione valore:

$$v(f) = |\{f' \in F : f \preccurlyeq f'\}|$$

Figure 2: Conto di Borda

Il valore di un impatto è pari al numero di impatti cui esso è preferibile, compreso l'impatto stesso.

Quando la cardinalità dell'insieme è $\mathbb{N} \times \mathbb{R}$ è possibile ottenere una **funzione valore**, ma quando ci si trova in condizioni come $\mathbb{R} \times \mathbb{R}$ che non risultano più mappabili sull'insieme \mathbb{R} non risulta più possibile realizzare una **funzione valore**.

0.2 Problemi semplici

Un problema viene detto semplice quando essi possiedono queste caratteristiche:

- 1. $\exists v(f)$ conforme
- 2. $|\Omega| = 1 \Rightarrow f: X \to \mathbb{R}$, cioè esiste un f(x)
- 3. |D| = 1
- 4. $X = \{x \in \mathbb{R}^n : g_j(x) \le 0 \forall j = 1, ..., n\} \text{ con } g_j \in C^1(\mathbb{R}^n)$

0.2.1 Esempio: programmazione matematica

Minimizzo f(x), con la condizione di $g_j(x) \le 0 \forall j = 1...n$.

Supponiamo di voler identificare la posizione migliore di una discarica, e che il punto in cui i rifiuti vengono prodotti sia R = (1,0), che in punto C = (0,0) vi sia in una città e che si debba avere una distanza di almeno 2 dalla città. Inoltre, la nostra discarica deve trovarsi a sinistra di $\frac{3}{2}$, cioè $x_0 < \frac{3}{2}$, perché li vi è un confine.

La funzione di minimo che vado a definire risulta:

