MA378: Assignment 2 (Version 2.0) with solutions Deadline: 5pm, Monday 20 March.

Your solutions must be clearly written, and neatly presented. You can submit an electronic copy, through blackboard, or a hard copy. If submitting a hard copy, please do so at the 10am lecture in the 10th. Also, make sure pages should be stapled together. Marks will be given for quality and clarity of exposition ([15 Marks]). Usual collaboration policy applies.

Chapter 2: Piecewise Polynomial Interpolation

- Exer 3.2 [20 Marks] Let $f(x) = \ln(x^2) x^4$. Let l and S be the piecewise linear and Hermite cubic spline interpolants (respectively) to f on N+1 equally spaced points $1=x_0 < x_1 < \cdots < x_N=2$. What value of N would you have to take to ensure that
 - (i) $\max_{1 \le x \le 2} |f(x) l(x)| \le 10^{-6}$?

Answer: From Thm 1.3 of Chapter 3, the error is bounded as

$$\|f-l\|_{\infty}\leqslant \frac{h^2}{8}\|f''\|_{\infty}.$$

Since $f''(x) = -2(6x^2 + x^{-2})$ is negative and decreasing for on $1 \le x \le 2$, $\|f - l\|_{\infty} = -f''(2) = 97/2 = 48.5$. So we need to choose h so that $(h^2)(48.5)/8 \le 10^{-6}$. That gives $h \le \sqrt{8 \times 10^{-6}/48.5} = 4.06 \times 10^{-4}$. Since N = 1/h, this gives $N \ge 2462.2$. As N must be an integer, we choose N = 2463.

(ii) $\max_{1 \le x \le 2} |f(x) - S(x)| \le 10^{-6}$?

Answer: From Thm 3.2 of Chapter 3, the error is bounded as

$$\|f-S\|_{\infty}\leqslant \frac{h^4}{384}\|f^{(i\nu)}\|_{\infty}.$$

Since $f^{(i\nu)}(x)=-12(2+x^{-4})$ is negative but increasing for on $1\leqslant x\leqslant 2$, $\|f-l\|_{\infty}=-f''(1)=36$. So we need to choose h so that $(h^4)(36)/384\leqslant 10^{-6}$. That gives $h\leqslant \big(384\times 10^{-6}/36\big)^{1/4}=5.715\times 10^{-2}$. Since N=1/h, this gives $N\geqslant 17.498$. As N must be an integer, we choose N=18.

Chapter 3: Numerical Integration

Exer 1.1 [10 Marks] (For simplicity, you may assume that the quadrature rule is integrating f on the interval [-1,1].) Let q_0 , q_1 , ..., q_n be the quadrature weights for the Newton-Cotes rule $Q_n(f)$. Show that $q_i = q_{n-i}$ for i = 0, ... n.

Answer: There are a few possible ways of answering this one. Here is one. Recall that $q_i = \int_{-1}^1 L_i(x) dx$, where L_i is the ith Lagrange polynomial associated with the points $-1 = x_0 < x_1 < \dots < x_n = 1$. That is, $L_i(x)$ and $L_{n-i}(x)$ are the unique polynomials of degree n with the properties that

$$L_i(x_j) = \begin{cases} 1 & x_j = x_i \\ 0 & x_j \neq x_i, \end{cases} \quad \text{and} \quad L_{n-i}(x_j) = \begin{cases} 1 & x_j = x_{n-i} \\ 0 & x_j \neq x_{n-i}. \end{cases}$$

Since the x_i are uniformly spaced on [-1,1] we can see that $x_i=-x_{n-i}.$ Therefore,

 $L_{n-i}(-x_j) = \begin{cases} 1 & x_j = -x_{n-i} = x_i \\ 0 & x_j \neq -x_{n-i} = x_i \end{cases}. \text{ Thus } L_{n-i}(x) = L_i(-x). \text{ With the substitution } y = -x, \text{ we can see that } q_{n-i} = \int_{-1}^1 L_{n-i}(x) dx = \int_{-1}^1 L_i(-x) dx = -\int_1^{-1} L_i(y) dy = \int_{-1}^1 L_i(y) dy = q_i \text{ (note the change in the limits of integration)}. \text{ So } q_i = q_{n-i}.$

Exer 3.5 [15 Marks] Consider the rule (which is not, strictly speaking, a Newton-Cotes rule):

$$R(f)=q_0f\big(\frac{1}{3}\big)-f\big(\frac{1}{2}\big)+q_2f\big(\frac{3}{4})$$

for approximating $\int_0^1 f(x) dx$.

(a) Determine values of q_0 and q_2 that ensure this rule has precision 2.

Answer: We need to find q_0 and q_2 so that $R(f) = \int_0^1 p_2(x) dx$ where p_2 is any polynomial of degree 2. Since that space of polynomials is spanned by the set $\{1,x,x^2\}$, we take q_0 and q_2 to satisfy the equations $q_0 - 1 + q_2 = 1$, $q_0/2 - 1/2 + q_2(3/4) = 1/2$, and $q_0/9 - 1/4 + q_2(9/16) = 1/3$. These equations are not linearly independent (since there are only two unknowns. Solving any pair of them should give $q_0 = 6/5$ and $q_2 = 4/5$. So $R(f) = \frac{6}{5}f(\frac{1}{3}) - f(\frac{1}{2}) + \frac{4}{5}f(\frac{3}{4})$.

(b) What is the maximum precision of $R(\cdot)$ with the values of q_1 and q_2 that you have determined?

Answer: Could this method be exact for some higher degree polynomials? Checking with $f(x) = x^3$, we should find that $R(x^3) = 37/144 \neq \int_0^1 x^4 dx$. So the precision is at most 2.

Exer 3.4 [20 Marks] Determine the precision of the following schemes for estimating $\int_0^1 f(x) dx$.

Answer: In the following solutions, $I(f) := \int_0^1 f(x) dx$. For each method the precision is $\mathfrak n$ if $Q(x^k) = I(x^k)$ of $k = 0, \dots n$, but $Q(x^{n+1}) \neq I(x^{n+1})$.

(i) $Q(f) = f(\frac{1}{2})$.

Answer: Q(1) = 1 = I(1) and Q(x) = 1/2 = I(x), but $Q(x^2)1/4 \neq I(x^2)$. So this method has precision 1. FYI, this is the so-called mid-point rule. It is the 1-point Gaussian Quadrature Rule.

(ii) $Q(f) = \frac{1}{4}f(0) + \frac{3}{4}f(\frac{2}{3})$.

Answer: Q(1) = 1 = I(1), Q(x) = 1/2 = I(x), $Q(x^2)1/3 = I(x^2)$. But $Q(x^3) = 2/9 \neq I(x^3)$. So this method has precision 2.

(iii) $Q(f) = \frac{3}{2}f(\frac{1}{3}) - 2f(\frac{1}{2}) + \frac{3}{2}f(\frac{2}{3}).$

Answer: $Q(x^k) = 1/(k+1) = I(x^k)$, for k = 0, 1, 2, 3. But $Q(x^4) = 41/216 \neq I(x^4)$. So $Q(\cdot)$ has precision 3.

Exer 4.3 [20 Marks] Derive a 3-point Gaussian Quadrature Rule to estimate $\int_{-1}^{1} f(x) dx$. Hint: $x_1 = 0$.

Answer: The method is $G_2(f) := w_0 f(x_0) + w_1 f(x_1) + w_2 f(x_2)$, and, since it has 6 degrees of freedom, it should be exact for each of the polynomials in $\{1, x, x^2, x^3, x^4, x^5\}$. These 6 polynomials will lead to 6 (nonlinear) equations. However, since we know that $x_1 = 0$, we need only 5. In any case the equations are

(i)
$$w_0 + w_1 + w_2 = 2$$

(ii)
$$w_0 x_0 + w_2 x_2 = 0$$

(iii)
$$w_0 x_0^2 + w_2 x_2^2 = 2/3$$

$$(iv)$$
 $w_0x_0^3 + w_2x_2^3 = 0$

(v)
$$w_0 x_0^4 + w_2 x_2^4 = 2/5$$

(vi)
$$w_0 x_0^5 + w_2 x_2^5 = 0$$

(ii) Gives that $w_0x_0=-w_2x_2$. Substitute this into (iv) to get that $(-w_2x_2)x_0^2-w_2x_2^3=0$. Since $x_2\neq 0$, and $w_2\neq 0$, we can deduce that $x_0^2=x_2^2$. So $x_0=-x_2$, because $x_0< x_2$. Again using (ii) we get $w_0=w_2$. Next use (iii) to see that $w_0x_0^2=1/3$, and (v) to give $w_0x_0^4=1/5$. Combining those leads to $x_0^2=3/5$. So now we have that $x_0=-\sqrt{3/5}$ and $x_1=\sqrt{3/5}$. Reusing $w_0x_0^2=1/3$, we have that $w_0=5/9=w_2$. Finally, (i) gives $w_1=8/9$. That is, the method is

$$\mathsf{G}_2(\mathsf{f}) = \frac{5}{9} \mathsf{f} \big(- \sqrt{\frac{3}{5}} \big) + \frac{8}{9} \mathsf{f}(0) + \frac{5}{9} \mathsf{f} \big(\sqrt{\frac{3}{5}} \big).$$