StuDocu.com

Examen 19 Enero 2019, preguntas

Algoritmos (Universidade da Coruña)

Examen de Algoritmos Enero de 2019

Apellidos:	
Nombre:	DNI:

1. (1'5 puntos) La siguiente tabla contiene los tiempos de ejecución de un algoritmo de ordenación rápida (quicksort) con selección del pivote por mediana de 3 y un umbral para detectar vectores pequeños, siendo el algoritmo ad hoc la ordenación por inserción.

El algoritmo se ejecuta sobre un vector con 32000 elementos en tres situaciones iniciales distintas: (a) el vector ya está ordenado en orden ascendente, (b) el vector ya está ordenado en orden descendente, y (c) el vector está inicialmente desordenado.

	umbral = 2	umbral = 20	umbral = 200
(a) ascendente	2117	1148	801
(b) descendente	2246	1270	925
(c) aleatorio	5130	4456	8009

¿Cuál es el mejor umbral para cada una de las distintas situaciones iniciales del vector? ¿Por qué? **Razone su respuesta**.

2. (1'5 puntos) A partir de la siguientes definiciones para la implementación de conjuntos disjuntos:

tipo

```
Elemento = entero;
Conj = entero;
ConjDisj = vector [1..N] de entero
```

y del siguiente pseudocódigo para la unión de dos conjuntos:

- *a*) Escriba el correspondiente pseudocódigo de Buscar (C, x) : Conj, que devuelve el nombre del conjunto (es decir, su representante) de un elemento dado.
- b) Detalle la complejidad computacional de una secuencia de m búsquedas y n-1 uniones.
- c) Rediseñe ahora la operación Buscar con la técnica de *compresión de caminos*. ¿Cuál es la mejora aportada por esta técnica?
- 3. (1 punto) Análisis de la complejidad de la búsqueda binaria: mejor caso y peor caso, aplicando el teorema de resolución de recurrencias divide y vencerás.
- 4. (1'5 puntos) Presente en una tabla los elementos característicos de los algoritmos voraces que pueda identificar en los algoritmos de Kruskal, Prim y Dijkstra.
- 5. (2 puntos) Dado el grafo dirigido pesado G = (N,A), con $N = \{a,b,...,h\}$ y A determinado por la lista de aristas siguiente (se indica cada arista con su peso, o distancia):

(a,d)	(a,f)	(d,h)	(d,f)	(h,e)	(h,g)	(e,g)	(f,e)	(f,g)	(f,b)	(f,c)	(b,c)	(c,g)
1	2	1	4	2	6	2	1	3	4	5	2	1

Dibuje el grafo G, evitando el cruce de sus aristas, y a continuación dibuje:

- a) un árbol asociado a un recorrido en profundidad sobre G, partiendo del nodo a
- b) un árbol expandido mínimo del grafo no dirigido subyacente, junto con su peso total
- c) un árbol con los caminos mínimos entre el nodo a y los demás, indicando en cada nodo la distancia mínima calculada desde el origen
- d) de nuevo el grafo G, pero con sus nodos ordenados topológicamente y en una misma línea
- 6. (2'5 puntos) Considerando un sistema monetario $M = \{v_1, v_2, ..., v_m\}$, se dispone de una función Monedas que utiliza la técnica de Programación Dinámica para encontrar el número mínimo de monedas para pagar la cantidad n, calculando para ello una tabla T con todos los resultados intermedios (solución óptima para pagar la cantidad j con las monedas $v_1...v_i$). El resultado encontrado puede corresponder a una o varias configuraciones (conjuntos de monedas que suman n).

Se plantea el diseño de una función Composición que, a partir de la tabla T ya construida por la función Monedas, devuelva una configuración posible de la solución, especificando el conjunto de monedas que la componen:

- a) Proponga un ejemplo del problema, presentando su tabla T y sus posibles soluciones.
- b) Proponga un tipo de datos adecuado para la salida de la función Composición, que ilustrará con el ejemplo anterior.
- c) Proponga un pseudocódigo de la función Composición.
- d) Determine su complejidad.