CSEN 1002

Task 3: Fallback Deterministic Finite Automata

Table of Contents

Operation

Table of Contents

Operation

Operation

- A fallback DFA with actions operates like the standard DFA, moving only L, and pushing every state it enters onto the stack with every transition.
- This continues until the DFA runs out of input.
- If it runs out of input in state $q_a \in F$, it executes $A(q_a)$ and halts.
- If it runs out of input in $q_r \notin F$, it
 - 1. continues to simultaneously pop the stack and move L one step to the left until the stack gets empty or some $q_a \in F$ is popped.
 - 2. In the first case, the DFA executes A(q_r) and halts.
 - 3. In the second case it does the following.
 - 1. Executes A(q_a) (with lex being the string extending from R to L).
 - 2. Moves L one step to the right.
 - 3. Moves R to where L is.
 - 4. Empties the stack.
 - 5. Enters q0.

Table of Contents

Operation

• simultaneously pop the stack and move L one step to the left until the stack gets empty or some $q_a \in F$ is popped

Stack 3 2 0

0

- Move L to the left
- Pop 3 and save *A*(3)
- 3 ∉ *F*

Stack

3	
3	
2	
1	
0	
2	
1	
0	

Example I: 0;1;2;3#a;b#0,a,0;0,b,1;1,a,2;1,b,1;2,a,0;2,b,3;3,a,3;3,b,3#0#1;2

- Move L to the left
- Pop 3
- 3 ∉ *F*

Example I: 0;1;2;3#a;b#0,a,0;0,b,1;1,a,2;1,b,1;2,a,0;2,b,3;3,a,3;3,b,3#0#1;2

- Move L to the left
- Pop 2
- 2 ∈ *F*

a

0

Stack

- Executes A(2)
- *lex*="baaba"

Example I: 0;1;2;3#a;b#0,a,0;0,b,1;1,a,2;1,b,1;2,a,0;2,b,3;3,a,3;3,b,3#0#1;2 Output: baaba,2 b a b b b

- Move L one step to the right
- Move R to where L is

• Enter q_0

Empty the stack

• simultaneously pop the stack and move L one step to the left until the stack gets empty or some $q_a \in F$ is popped

 $1 \in F$

0

Stack

- Executes A(1) and halts.
- *lex*="bb"

• simultaneously pop the stack and move L one step to the left until the stack gets empty or some $q_a \in F$ is popped

a

Example II: 0;1;2;3#a;b#0,a,0;0,b,1;1,a,2;1,b,1;2,a,0;2,b,3;3,a,3;3,b,3#0#1;2

- Move L to the left
- Pop 0 and save A(0)
- 0 ∉ *F*

Example II: 0;1;2;3#a;b#0,a,0;0,b,1;1,a,2;1,b,1;2,a,0;2,b,3;3,a,3;3,b,3#0#1;2

- Move L to the left
- Pop 0
- 0 ∉ *F*

Example II: 0;1;2;3#a;b#0,a,0;0,b,1;1,a,2;1,b,1;2,a,0;2,b,3;3,a,3;3,b,3#0#1;2

- Move L to the left
- Pop 0
- 0 ∉ *F*

Stack θ

- Pop 0
- $0 \notin F$

Example II: 0;1;2;3#a;b#0,a,0;0,b,1;1,a,2;1,b,1;2,a,0;2,b,3;3,a,3;3,b,3#0#1;2

a

- Stack is Empty
- Executes A(0) (Saved previously) and halts.
- *lex*="aaa"

Example III: 0;1;2;3#a;b#0,a,0;0,b,1;1,a,2;1,b,1;2,a,0;2,b,3;3,a,3;3,b,3#0#1;2 a a, ba b b

• simultaneously pop the stack and move L one step to the left until the stack gets empty or some $q_a \in F$ is popped

a

a

- Move L to the left
- Pop 0 and save A(0)
- 0 ∉ *F*

Example III: 0;1;2;3#a;b#0,a,0;0,b,1;1,a,2;1,b,1;2,a,0;2,b,3;3,a,3;3,b,3#0#1;2

1

R ↑

- Move L to the left
- Pop 2
- 2 ∈ *F*

Example III: 0;1;2;3#a;b#0,a,0;0,b,1;1,a,2;1,b,1;2,a,0;2,b,3;3,a,3;3,b,3#0#1;2

- Executes A(2)
- *lex*="aba"

0 0

Stack

- Move L one step to the right
- Move R to where L is

0

Stack

- Empty the stack
- Enter q_0

• simultaneously pop the stack and move L one step to the left until the stack gets empty or some $q_a \in F$ is popped

- Move L to the left
- Pop 0 and save A(0)
- 0 ∉ *F*

Pop 0

 $0 \notin F$

Example III: 0;1;2;3#a;b#0,a,0;0,b,1;1,a,2;1,b,1;2,a,0;2,b,3;3,a,3;3,b,3#0#1;2

- Stack is Empty
- Executes A(0) (Saved previously) and halts.
- *lex*="a"

