PCT

世界知的所有権機関 国 際 事 務 局 特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6 C12N 15/54, C12P 21/02, C12N 9/12, 1/21

(11) 国際公開番号

WO98/03663

(43) 国際公開日

1998年1月29日(29.01.98)

(21) 国際出願番号

PCT/JP97/01050

A1

(22) 国際出願日

1997年3月27日(27.03.97)

(30) 優先権データ

08/685,625 特顧平8/256747 1996年7月24日(24.07.96)

1996年9月27日(27.09.96)

(71) 出願人

中外製薬株式会社

(CHUGAI SEIYAKU KABUSHIKI KAISYA)[JP/JP]

〒115 東京都北区浮間5丁目5番1号 Tokyo, (JP)

上野直入(UENO, Naoto)[JP/JP]

〒065 北海道札幌市東区北26条東3丁目

北光公務員宿舎1-101 Hokkaido, (JP)

(72) 発明者

松本邦弘(MATSUMOTO, Kunihiro)

〒464 愛知県名古屋市千種区北千種2-1-43

萱場住宅1-205 Aichi, (JP)

入江賢児(IRIE, Kenji)

〒466 愛知県名古屋市昭和区陶生町2-15-B22 Aichi, (JP)

(74) 代理人

弁理士 石田 敏, 外(ISHIDA, Takashi et al.)

〒105 東京都港区虎ノ門三丁目5番1号 虎ノ門37森ビル

背和特許法律事務所 Tokyo, (JP)

(81) 指定国 AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ARIPO特許 (GH, KE, LS, MW, SD, SZ, UG), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), 欧州特許 (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許 (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

添付公開書類

国際調査報告書

(54)Title: HUMAN TAKI DNA ENCODING THE SAME

(54)発明の名称 ヒトTAK!およびそれをコードするDNA

(57) Abstract

A TGF-β activated kinase containing an amino acid sequence corresponding to the sequence ranging from 1-Met to 579-Ser residues of the amino acid sequence represented by SEQ ID NO:5.

(57) 要約

配列番号: 5のアミノ酸配列中の1位の Metから 579位の Serまでのアミノ酸配列を含むTGF- β 活性化キナーゼ、及びそれをコードする DNA。

参考情報 PCTに基づいて公開される国際出願のパンフレット第一頁に記載されたPCT加盟国を同定するために使用されるコード

明細書

ヒトTAK1およびそれをコードする DNA

技術分野

本発明は、トランスフォーミング成長因子 $-\beta$ ($TGF-\beta$)ファミリーの情報伝達系を担う、 $TGF-\beta$ によって活性化されるキナーゼ(T ransforming growth factor- β activated kinasel; TAK1)、及びその製造方法、並びにそれをコードするヒトの遺伝子に関する。TAK1は、MAPKキナーゼのアクチベーター(Activator of MAPK Kinase; AMK-1)とも称され、 $TGF-\beta$ およびBMP(bone morphogenetic protein)により活性化され且つMAPKキナーゼをリン酸化して活性化する酵素である。

背景技術

TGF-βスーパーファミリーの受容体は細胞質内領域に Ser/Thr キナーゼを含み、その膜貫通ドメインに近いアミノ末端側にGly. Serの繰り返し配列(GS box)を有する I 型、及びGS boxを有しない II 型に分類される。TGF-βの場合、リガンドが II 型受容体に結合した後に I 型受容体との複合体を形成し、構成的にリン酸化されている II 型受容体のキナーゼが I 型受容体のGS box付近をリン酸化し、これによって I 型受容体が活性化されることにより前記リガンドからのシグナルが細胞内に伝達されると考えられている。しかしながら、この受容体より下流の伝達分子についてはほとんど知られていない。

真核生物である出芽酵母サッカロミセス・セレビシエー (Saccha romyces cerevisiae) においては、細胞外からの接合フェロモン

(Mating pheromone) により接合が生ずるまでの情報伝達カスケードとして、接合フェロモンにより Gプロテインが活性化され、 Gプロテインが MAPKKキナーゼ (MAPKKK) (Stell) を活性化し、活性化された MAPKKKが MAPKキナーゼ (MAPKK) をリン酸化して活性化し、次にこうして活性化された MAPKK (Ste7)が MAPキナーゼ (マイトジェンー活性化プロテインキナーゼ; mitogen-activated protein kinase; MAPK) をリン酸化して活性化し、最後に MAPKが FUS1蛋白質を活性化して細胞の接合が開始されることが知られている。

このようなMAPKKKとして、マウスより得られたTAK1 (TGF-β Activated Kinasel) がこれまでに知られている (K, Yamaguchi et al., Science (1995) 270, 2008-2011)。

発明の開示

本発明は、哺乳類のTGF-Bの受容体のシグナル伝達系において、 受容体よりも下流に位置し、該シグナルの伝達に関与する新規な因 子、それをコードする遺伝子、及び当該因子の製造方法を提供しよ うとするものである。

本発明者らは、上記の課題を解決すべく、上記接合フェロモンの情報伝達カスケードにおけるMAPKKK (Ssk2/Ssk22, Sho1)の活性が欠損した酵母サッカロミセス・セレビシエーにヒト由来のcDNAを挿入し、活性が欠損したMAPKKKを補完できるcDNAについてスクリーニングし、活性が欠損したMAPKKKを補完し得るcDNAをクローニングすることに成功し、本発明を完成した。

従って、本発明は、配列番号: 5に示す23位の Serから 579位の Serまでのアミノ酸配列を含んでなる、トランスフォーミング成長 因子 (TGF) $-\beta$ によって活性化されるキナーゼ活性を有するポリペプチドを提供する。

また、本発明は、配列番号:5に示す1位の Metから 579位の Serまでのアミノ酸配列を含んでなる、 $TGF-\beta$ によって活性化されるキナーゼ活性を有するポリペプチドを提供する。

また、本発明は、配列番号:5に示す23位の8erから579位の8erまでのアミノ酸配列を含んでなる、 $TGF-\beta$ によって活性化される キナーゼ活性を有するポリペプチドをコードするNAを提供する。

また、本発明は、配列番号:5に示す 249位のTから1919位のAまでのヌクレオチド配列を有する、TGF-Bによって活性化されるキナーゼ活性を有するポリペプチドをコードする DNAを提供する。

また、本発明は、配列番号:5に示す1位の Metから 579位の Serまでのアミノ酸配列を含んでなる、 $TGF-\beta$ によって活性化されるキナーゼ活性を有するポリペプチドをコードする DNAを提供する。

また、本発明は、配列番号:5に示す 183位のAから1919位のAまでのヌクレオチド配列を有する、TGF-Bによって活性化されるキナーゼ活性を有するポリペプチドをコードする DNAを提供する。

また、本発明は、上記のいずれかの DNAを含んでなるベクター、上記のいずれかの DNAを含んでなるベクターにより形質転換された宿主細胞、上記のいずれかの DNAを含んでなるベクターにより形質転換された宿主細胞を培養し、培養物から産生物を採取することからなる、TGF-βによって活性化されるキナーゼ活性を有するポリペプチドの製造方法を提供する。

また、本発明は、上記の方法により製造されるTGF-βによって活性化されるキナーゼ活性を有するポリペプチド、また、配列番号: 5 に示す23位の Serから 579位の Serまでのアミノ酸配列を含んでなる、TGF-βによって活性化されるキナーゼを提供する。

さらに、本発明は上記のポリペプチド、蛋白質と他の蛋白質との 融合蛋白質を提供する。

図面の簡単な説明

図1は、酵母発現ベクター pNV11を示す。

図 2 は、種々のTAKI遺伝子の発現に対するTGF-βの添加効果を、 ルシフェラーゼ遺伝子をリポーター遺伝子として用いて調べた結果 を示すグラフである。

図3は、MC3T3-E1細胞におけるTAK1遺伝子の活性に対するTGF-B及び BMP-4の効果を免疫沈降法およびカップル・キナーゼ法により測定した結果を示すグラフである。

図 4 は、 HA-TAK1遺伝子でトランスフェクトされた細胞における TAK1キナーゼ活性に対する種々の濃度のTGF- β 又は BMP-4の効果を示すグラフである。TAK1 Δ N はTAK1 Δ N 遺伝子でトランスフェクト された細胞をTGF- β 及び BMP-4のいずれによっても刺激しなかった 場合の結果を示す。

図 5 はマウスTAK1をコードする DNAの塩基配列とヒトTAK1をコードする DNAの塩基配列との対比を示す。

図 6 はマウス TAK1をコードする DNAの塩基配列とヒト TAK1をコードする DNAの塩基配列との対比を示す。

図7はマウスTAK1をコードする DNAの塩基配列とヒトTAK1をコードする DNAの塩基配列との対比を示す。

図 8 はマウスTAK1をコードする DNAの塩基配列とヒトTAK1をコードする DNAの塩基配列との対比を示す。

図9はマウスTAK1をコードする DNAの塩基配列とヒトTAK1をコードする DNAの塩基配列との対比を示す。

図10は、マウスTAK1のアミノ酸配列とヒトTAK1のアミノ酸配列の対比を示す。

図11は、マウスTAK1のアミノ酸配列とヒトTAK1のアミノ酸配列の対比を示す。

発明の実施の形態

本発明によれば、目的とする遺伝子のクローニングに際しては、例えば、MAPKKKの活性を欠損しており且つカスケードの末端に容易に検出可能なリポーター遺伝子を有する酵母に哺乳類のcDNAを含む発現ベクターを導入し、欠損したMAPKKK活性を補完するcDNAが挿入されたか否かを、リポーター遺伝子の発現により検出すればよい。さらに、例えば、高浸透圧シグナル伝達系のもとで機能する、Ssk2/Ssk22及びShol活性を欠く他の酵母を使用することもできる。

この様な検出系として、サッカロミセス・セレビシエー(Saccha romyces cerevisiae)中の、接合フェロモン(Mating pheromone)の情報を伝達するMAPK経路(I. Herskowitz, Cell, Vol. 80, 187 (1995); D. E. Lein et., Curr. Opin. Cell Biol. Vol. 7, 197 (1995); J. Schulz et al., Curr. Opin. Gene Dev., Vol. 5, 31 (1995))を用いることができる。この系における正常な情報伝達カスケードはStellキナーゼ、Ste7キナーゼ、及びFus3/Kss1キナーゼから成り、これらはそれぞれ MAPKKK, MAPKK及びMAPKに相当する。 Stell, Ste7、及びFus3/Kss1は逐次的に作用してシグナルを転写因子 Stelに伝達し、この Stel2はFUS1のごとき接合特異的(mating specific) 遺伝子の転写を活性化する。

cDNAのスクリーニングに際しては、上記のカスケード中Ste7の機能的変異(STB7 P368)及び Ste11の欠損変異(Ste11 Δ)を含むカスケードを用いることができ(K.1rie et al., Science Vol.265、1716(1994))、この系においては、接合経路に対応するリポーター遺伝子 FUS1p::HIS3により付与されるヒスチジン表現型(His)によりモニターする場合、哺乳類 Raf又はMBKKの活性化型(それぞれ Raf Δ N 又はMEKK Δ N)がSte7 P368 依存的に Ste11活性の欠損を補完することができることが確認されている。従って、上記の変異したカス

ケードを有する酵母に被験 cDNAを導入して、ヒスチジン表現型を検出することにより Stell Δ (MAKKK欠損)を補完することができる cDNAを選択することができる。

被験cDNAライブラリーとしては、任意の哺乳動物由来のcDNAライブラリーを用いることができるが、一例として、マウスの細胞系、例えばマウス細胞系 BAF-BO3からのcDNA発現ライブラリーを用いることができる。このcDNAライブラリーは、マウス1L-3依存性pro-B細胞系である BAF-BO3から poly(A)-RNAに対するcDNAを、酵母発現ベクター pNV11のTDH3プロモーターの制御下にクローニングすることにより得られる。使用される被験cDNAライブラリーの他の例は、ヒト細胞系、例えばヒト細胞系JurkatからのcDNA発現ライブラリーである。

上記のcDNAライブラリーを前記のスクリーニング系によりスクリーニングすることにより1個の陽性クローンを得た。このクローンのcDNAの塩基配列及びそれによりコードされるアミノ酸配列は、配列番号:1のヌクレオチド番号 223~1893、及びアミノ酸番号23~579 に相対する。

ヒト細胞系からのcDNAライブラリーは上記のスクリーニング系に従ってスクリーニングすることができる。あるいは、ヒト細胞系からのcDNAライブラリーは、前記のようにして得られたマウスcDNAをプローブとして使用してスクリーニングすることができる。

他の陽性クローンのcDNA及びそれによりコードされるアミノ酸配列は配列番号:5に示すヌクレオチド 249-1919及びアミノ酸23-579 に相当する。

さらに長い cDNA(全長 cDNA)を得るため、前記の cDNAをプローブ として用いて、上記の cDNAライブラリーをスクリーニングし、複数 の陽性クローンを得た。これらのクローンは、前記の cDNAに対して 、約 230bpの 5 ′ -延長部分を有していた。この 5 ′ -末端延長部分を有する cDNAを TAK1 cDNAと称し、この 5 ′ -末端延長部分を有しない最初にクローニングした cDNAを TAK1 △ N cDNAと称する。 TAK 1 cDNAのヌクレオチド配列を配列番号:1 の 1 ~2443に示し、それによりコードされているアミノ酸配列により示される蛋白質又はポリペプチドと称する。これに対して、TAK1 △ N cDNAによりコードされているアミノ酸配列により示される蛋白質又はポリペプチドと称する。これに対して、TAK1 △ N cDNAによりコードされているアミノ酸配列によりでする。 さらに、ヒト TAK1 cDNAのヌクレオチド配列は配列番号:5 のヌクレオチド1 -2656により示され、そしてそれによりコードされるアミノ酸配列は配列番号:5 のアミノ酸 1 -579 により示される。

TAK1蛋白質の1次アミノ酸配列から、この蛋白質はN-末端側のプロテインキナーゼ触媒ドメインと約 300アミノ酸残基のC-末端ドメインを有することが示唆される。この触媒ドメインはプロテインキナーゼ・サブドメインI~XI(S.K. Hanks et al., Science 241, 42 (1988)) に対応するコンセンサス配列を含有する。この触媒ドメインはRaf-1(T.I. Bonner et al., Nucleic Acids Res. Vol. 14, 1009 (1986)) 及びMEKK(C. A. Langer-Carter et al., Science Vol. 260, 315 (1993))の触媒ドメインのアミノ酸配列と約30%の同一性を有する。前記触媒ドメインに続くC-末端の 300アミノ酸残基の配列は他の蛋白質との顕著な相同性を有しない。

N-末端の22個のアミノ酸のコドンを欠くTAK1 Δ N cDNAを stell Δ 変異を有する酵母に導入すれば stell Δ 変異(MAPKKK欠損)を補完するが、全長の TAK1 cDNAを stell Δ 変異株に導入した場合 stell Δ 変異を補完しない。従って、TAK1キナーゼはN-末端の22個の

アミノ酸の除去により活性化されると考えられる。

従って本発明は、配列番号:5のアミノ酸配列中の1位の Metから 579位の Serまでのアミノ酸配列を含んで成るポリペプチドをコードする DNAを提供する。この DNAには、典型的な例として、23位のアミノ酸 Serから 579位のアミノ酸 Serまでのアミノ酸配列から成るポリペプチドをコードする DNA、及び30位のアミノ酸 Gluから 295位のアミノ酸 Aspまでのアミノ酸配列からなるポリペプチドをコードする DNAが含まれる。しかしながら、本発明の DNAは、上記のものに限られるものではなく、1位の Met~30位の Gluの間のいずれかのアミノ酸から 295位のアミノ酸 Aspまでのアミノ酸配列から成るポリペプチドをコードする DNAをも包含する。

延長されたNー末端を有するポリペプチドをコードする DNAであっても、発現後のポリペプチドのプロセシングにより活性な酵素を得ることができ、またC末端のキナーゼ以外の領域を欠いていても同様のキナーゼ活性を有すると容易に想像できるからである。

本発明はまた、上記種々の DNAのヌクレオチド配列に対応するアミノ酸配列を有するポリペプチド又は蛋白質、特にTAK1活性を保持しているポリペプチド又は蛋白質を提供する。より具体的な例として、本発明は、上記種々の DNAを、例えばベクター、特に発現ベクターに挿入した状態で宿主細胞、例えば動物細胞又は微生物細胞に導入して発現されるポリペプチド又は蛋白質、特にTAK1活性を有するポリペプチド又は蛋白質に関する。

典型的には、本発明のポリペプチド又は蛋白質は、配列番号:5 に示すアミノ酸配列中の1位のMet(これを含む)~23位のSer(これを含む)の間のいずれかのアミノ酸から 579位のアミノ酸 Serまでのアミノ酸配列を有する。

また、本発明はさらに、上記のポリペプチド又は蛋白質と他の蛋

白質との融合蛋白質を提供する。TAK1活性を有するポリペプチド又は蛋白質と融合される他の蛋白質は、実施例に記載されているヘマグルチニンの他、適宜選択することができる。TAK1活性を有するポリペプチド又は蛋白質と他の蛋白質との融合蛋白質をコードする DNAは、実施例 4 に記載の方法により構築され、発現させることができる。

前記のごとく、ヒトTAK1をコードするcDNAはマウスTAK1をコードするcDNAを用いて得ることができ、そして実施例 5 及び 6 は、ヒトTAK1をコードするcDNAの単離を示す。

前記種々の本発明の DNAは、例えば実施例 2 に記載する方法により動物細胞から、例えばcDNAとしてクローニングすることができる。生来のcDNAに対して変異又は修飾された DNAは、例えば生来のcDNAを鋳型として、 PCR増幅、部位特異的変異誘発、等の常用手段により調製することができる。

本発明のポリペプチド又は蛋白質は、対応する DNAを適当な宿主中で発現させることにより得られる。この場合、宿主としては、真核細胞、例えばヒト、サル、マウス、ハムスター、カエル等の高等真核生物の培養細胞、例えば、 THP-1細胞、MC3T3-E1細胞、 XTC細胞、 Mv1Lu細胞、 CHO細胞、 COS細胞、等;下等真核細胞、例えば、糸状菌、例えばアスペルギルス(Aspergillus)属糸状菌、例えばアスペルギルス・ニガー(Aspergillus niger); あるいは酵母、例えばサッカロミセス(Saccharomyces)属酵母、例えばサッカロミセス・セレビシエー(Saccharomyces cerevisiae)等が使用される。さらに宿主としては、原核細胞、例えば細菌、例えば大腸菌(Bscherichia coli)等が使用される。

これらの宿主において目的 DNAの発現を行う場合、宿主に応じて 適当なプロモーター等の発現制御配列が使用される。例えば動物細

胞内での発現においては pCDM8, pSV, pBF等の各プロモーターを有するプラスミドが使用され、酵母宿主においては、例えば pNV11等のプラスミドが使用され、大腸菌においては例えばpGEMEX, pUEX等のプラスミドが使用される。

形質転換された宿主の培養は常法により行われることができる。また、本発明のポリペプチド又は蛋白質は、トランスジェニック動物(Glaser, V., SPECTRUM Biotechnology Applications, 1993) やカイコ等の昆虫(Maeda, S, et al., Nature (1985) 315, 592-594) を宿主として産生させることができる。産生されたポリペプチド又は蛋白質の回収・精製は、酵素の精製のために常用されている方法、例えば、遠心分離、濾過、ゲル濾過クロマトグラフィー、アフィニティー・クロマトグラフィー等により行うことができる。

本発明のTGF-βファミリーの情報伝達系を担うキナーゼであるTGF-βによって活性化されるキナーゼは、多くの疾患に関わっていることが知られているTGF-βおよびそのスーパーファミリーのシグナル伝達を抑制または促進する薬剤の検索に使用することにおいて有用である。

実施例

次に、本発明を実施例によりさらに具体的に説明する。

実施例1. cDNAライブラリーの作製

マウスIL-3依存性細胞系 BAF-BO3からの poly(A)-RNAから常法に従ってcDNAを合成し、これを図 1 に示す酵母発現ベクターpNV11(Ninomiya-Tsuji, J.ら、Proc.Natl.Acad.Sci. USA 88, 9006-9010 (1991)) に、TDH3プロモーターの制御の下に挿入してcDNAライブラリーを作製した。

実施例 2. cDNAライブラリーのスクリーニング

実施例1において調製したcDNAライブラリーを、サッカロミセス・セレビシエー(Saccharomyces cerevisiae)SY1984-P(his3ム, stell Δ、FUS1p::HIS3、STE7P368)を用いてスクリーニングした。この酵母では、接合フェロモンの情報伝達系において、Stellが変異してその活性が欠損しており、Ste-7の368位のセリンがプロリンにより置換されており、さらにFUS1上流活性化配列がHIS3オープンリーディングフレームに連結されてレポーター遺伝子を形成している。この酵母株は生来のhis3を欠失しており、従って、培地中に外来のヒスチジンが存在する場合、又は変異により欠損したStell活性が補完された場合にのみ増殖し得る。

S. セレビシエーSY1984-Pを種々のプラスミドにより形質転換した。使用したプラスミドはYCp1ac22(ベクター)、pRS314PGKMEKKC T(PGK1プロモーターの下流のNー末端ドメインを欠くMEKK△N(K.J. Blumerら、Proc. Natl. Acad. Sci. USA, Vol. 91, 4925 (1994))を発現する)、及びpADU-Raf△N(ADH1プロモーターからNー末端ドメインを欠く Raf△N を発現する)(K. Irieら、Science Vol. 265, 1716 (1994))である。これらの形質転換体をヒスチジンを欠くSC-Hisプレートに塗布し、そして30℃にてインキュベートした。その結果、YCp1ac22ベクターにより形質転換された酵母は増殖せず、 pRS314PGKMEKKCT又はpADU-Raf△N により形質転換された酵母は増殖した。これにより、このスクリーニング系は有効であることが確認された

次に、前記スクリーニング系酵母株YS1984-Pを、実施例1において作製したcDNAライブラリーにより形質転換し、SC-Hisプレート上でスクリーニングしたところ、1個の陽性クローンpNV11-HU11が得られた。このクローンのcDNAをTAK1ΔN cDNAと称する。このcDNAのヌクレオチド配列をジデオキシヌクレオチド・チェイン・ターミネ

ーション法により決定した。そのヌクレオチド配列は、配列番号: 1中のヌクレオチド 223~1893の配列に相当し、それによりコード されているアミノ酸配列は配列番号:1のアミノ酸配列中23位の S er~ 579位の Serに相当する。

次に、全長cDNAをクローニングすべく、前記TAK1 △N cDNAを放射能標識してプローブとして使用し、実施例1において得たcDNAライブラリーをさらにスクリーニングした。こうして、複数の陽性クローンを得た。このクローンのcDNAを pBSベクター (Stratagene社製)のEcoR I 部位にサブクローニングし、pBS-TAK1-5′を得た。このクローンは開始コドン ATGを含有する全長クローンであった。このcDNAを TAK1 cDNAと称する。そのヌクレオチド配列を配列番号:1に示す。この配列の内ヌクレオチド番号1~2443に全長アミノ酸配列である1位の Met~ 579位の Serがコードされている。

実施例3. TAK1遺伝子の組織分布

マウスの種々の組織から全 RNAを抽出し、前記 TAK1 cDNAを放射能ラベルしたものをプローブとして用いてノーザンブロッティングを行ったところ、 TAK1 cDNAとハイブリダイズする RNAは試験したすべての組織又は器官(脾臓、胸腺、肺、心臓、肝臓及び脳)において発現していた。脾臓、胸腺及び脳には高レベルで存在し、そして肺、心臓及び肝臓には低レベルで存在した。

実施例 4. TAK1キナーゼの性質

哺乳動物細胞でのTGF-βによって活性化されるキナーゼの機能を調べるため、 TAK1 cDNA及びTAKIΔN cDNAを哺乳類発現ベクターpE F (H. Shibuya et al., Nature Vol. 357, 700 (1992))に、ヒトエロンゲーションファクター (EF) プロモーターの制御下に挿入し、発現プラスミドpEF-TAKI及びpEF-TAKIΔN を得た。発現プラスミドpEF-TAKI及びpEF-TAKIΔN と存れる発現プラスミドpEF-TAKIΔN はそれぞれ全長TAKIコード配列及びTAKIΔ

Nコード配列をBFプロモーターの制御のもとに含有している。

すなわち、pNVII-HUIIの 2.3kbの Xho I 断片を pBSの Xho I ギャップに挿入してpBS-TAKI ΔN を得た。pEF-MSS1(H. Shi buyaら、Nature Vol. 357、700(1992))をEcoR I 及び Xba I により開裂せしめ、そしてこれに、合成EcoR I — Xho I リンカー(センス鎖:5′ーAATTCGCCACCATGGC — 3′)(配列番号:2);アンチセンス鎖:5′ーTCGAGCCATGGTGGCG — 3′)(配列番号:3)(開始コドン ATGを含有する)、並びにpBS-TAKI ΔN からの Xho I — Hind III 断片及びHind III — Xba I 断片を挿入することによりpEF-TAKI ΔN を作製した。 pBSをEcoR I 及び Xho I により開裂せしめ、これにpBS-TAKI — 5′からの EcoR I — Sac I 断片、及びpBS-TAKI ΔN からの Sac I — Xho I 断片を挿入することにより、TAKIの全長 CDNA(TAKI cDNA)を含有するpBS-TAKI を得た。pEF-MSS1をBcoR I 及び Sal I により開裂せしめ、これにpBS-TAKIからの EcoR I — Sac I 断片を挿入することによりpEF-TAKI を作製した。

尚、プラスミドpEF-TAK1を含有する大腸菌はEscherichia coli MC1061/P3 (pEF-TAK1) として、そしてプラスミドpEF-TAK1ΔNを含有する大腸菌Escherichia coli MC1061/P3 (pEF-TAK1ΔN)として、工業技術院生命工学工業技術研究所(茨城県つくば市東1丁目1番3号)に平成7年9月28日、それぞれ、受託番号FEFM-BP-5246およびFERM-BP-5245の下ブダペスト条約に基づき国際寄託された。

プラスミドpBF-TAK1に含まれるTAK1遺伝子は適切な制限酵素、例えばBcoRIおよびBamHIを用いて切り出すことができる。

種々のリガンドによる遺伝子発現の誘導に対するTAK1の効果を試験した結果、TAK1はTGF- β による遺伝子誘導に対して効果を有することが見出された。TGF- β に対する初期細胞性応答はプラスミノー

ゲンアクチベーターインヒビター 1 (PAI-1) のmRNAレベルの上昇を誘導する (M.R. Keeton et al., J. Biol. Chem. Vol. 266, 23048 (1991))。

そこで、 $TGF-\beta$ 応答に対するTAK1の効果を検討するため、 $TGF-\beta$ により誘導される PAI-1プロモーターにより制御されるルシフェラーゼ遺伝子を含有する $TGF-\beta$ リポータープラスミドp800neoLUC (M. Abc et al., Analyt. Biochem., Vol. 216, 276 (1994)) を、 Mv1Lu肺上皮細胞に、リン酸カルシウム法(H. Shibuyaら、Nature Vol. 357, 700 (1992)) により一過性トランスフェクションした。この測定法においては、 Mv1Lu肺上皮細胞へのp800neoLUCのトランスフェクションにより $TGF-\beta$ により誘導されるルシフェラーゼ活性の測定が可能となる。p800neoLUCにより一過性にトランスプェクトされた Mv1Lu細胞は、 $4\sim5$ 倍の増強されたリポーター遺伝子活性をもって $TGF-\beta$ に応答した。この結果を図 2 のベクターの欄に示す。

前に作製したTAK1又はTAK1ΔN 発現プラスミドをp800neoLUCと共に Mv1Lu細胞に一過性に同時トランスフェクトした。TAK1の発現によりTGF-β誘導性遺伝子発現がわずかに増強され、そしてTAK1ΔN は PAI-1遺伝子発現を構成的に活性化した(図2のTAK1ΔN の欄)。TAK1ΔN によるリポーター遺伝子の構成的発現のレベルはTGF-βにより処理されたトランスフェクタントにおけるレベルに匹敵する。従って、活性化されたTAK1(すなわちTAK1ΔN)はTGF-βの非存在下でシグナルを伝達することができる。さらに、TAK1ΔN トランスフェクタントにTGF-βを添加した場合 PAI-1遺伝子の発現はさらに増加した。

なお、図 2 において、白い棒はTGF-βによる誘導を行わなかった 場合を示し、斜線を付した棒はTGF-βによる誘導を行った場合を示 す。上記の実験においでは、トランスフェクションの後、細胞をヒ

トTGF-β1(30ng/ml) の存在下又は非存在下で20時間培養し、細胞から抽出液を調製し、そして、 H. Shibuyaら、Mol. Cell. Biol. Vol. 14, 5812 (1994)に記載されているようにしてルシフェラーゼ測定を行った。図2のグラフでは、ベクター(TAK1遺伝子を含有しない)により形質転換された細胞をTGF-β1により誘導しなかった場合のルシフェラーゼ活性を1として、相対活性を示す。棒グラフの結果は、1実験につき3連の実験結果の平均を示す。

上記の結果がTAK1のキナーゼ活性により介在されることを確認するため、触媒的に不活性なTAK1 Δ N-K63Wを作製した。これは、 PCRを用いて部位特異的変異誘発により行った。このベクターにおいては、 ATP結合部位における63位のリジンがトリプトファンにより置換されている。この変異はTAK1 Δ N のキナーゼ活性及びシグナル伝達活性を失活させると予想される。TAK1 Δ N-K63Wをp800neoLUCと共に同時ートランスフェクトすると、 PAI-1遺伝子発現を構成的に刺激する能力が失われた(図 2)。これらの結果が示唆するところによれば、 PAI-1遺伝子のTGF-B非依存的発現のためにはTAK1 Δ N のキナーゼ活性が必要である。さらに、キナーゼ・ネガティブTAK1 Δ N はTGF-B による誘導発現の部分的低下を惹起した。これらの結果が示唆するところによれば、TAK1はTGF-B 介在シグナル伝達経路のメディエーターとして機能すると考えられる。

TAK1がTGF-β介在シグナル伝達経路において機能することの直接的な証拠を得るために、TGF-βによる細胞の処理によってTAK1のキナーゼ活性が活性化されるか否か決定した。適当な外来性基質の同定のため、ヘマグルチニン(HA)エピトープにより標識されたTAK1 (TAK1-HA)(抗ーHAモノクローナル抗体 12CA5により認識されるエピトープをコードする DNA配列を PCRによりTAK1をコードする DNAの 3 ′ - 末端にフレームを合わせて連結したもの)を発現する酵母細

胞から免疫沈降されたTAK1のインビトロ・キナーゼ反応を行った。このイムノコンプレックスキナーゼ測定が示すところによれば、活性形のTAK1は MAPKKの XMEK2/SEK1サブファミリー (B. M. Yasher et al., Nature Vol. 372, 794 (1994))をリン酸化し、そして活性化することができた。他方、もともとのMAPKK-MEK1 (E. Nishida et al., Trends Biochem. Sci., 128 (1993); K. J. Blumer et al., ibid Vol. 19, 286 (1994); R. J. Davis, ibid Vol. 19, 470 (1990); C. L. Marchall, Cell, Vol. 80, 179 (1995))、ヒストン及びミエリン塩基性蛋白質のリン酸化は検出されなかった。従って、TAK1キナーゼ活性は、インビトロで XMEK2を活性化するその能力について測定することができる。

HAエピトープー標識化TAK1(HA-TAK1) の発現用構成物を次の様にして作製した。モノクローナル抗体 12CA5により認識されるHAエピトープTyr-Pro-Tyr-Asp-Val-Pro-Asp-Tyr-Ala(配列番号: 4) をコードする合成オリゴヌクレオチドをpBS-TAK1の Sal I 部位(ATGコドンから+3位) 及びEcoR I 部位にクローニングして pBS-HA-TAK1を作製した。pEF-MSS1をEcoR I 及び Sal I により開裂せしめ、そしてそれに pBS-HA-TAK1からのEcoR I — Xho I 断片を挿入することにより pEF-HA-TAK1を作製した。

pBS-HA-TAK1△N を作製するため、pNVII-HU11を Xho I 及びHind II により消化した。この断片を単離し、そして pBS-HA-TAK1のHinc II — Hind III 部位に挿入した。pEF-MSS1をEcoR I 及び Sal I で開裂せしめ、そしてそれに pBS-HA-TAK1△H からの Pst I — Xho I 断片を挿入することにより pEF-HA-TAK1△N を作製した。これら両構成物はEFプロモーターから発現されるNー末端HAエピトープの 2 つのコピーを有する。

これらの構成物 pBF-HA-TAK1又は pBF-HA-TAK1ΔH をMC3T3-E1マ

ウス骨芽細胞 (S.Ohtaら、FEBS Lett. Vol. 314, 356 (1992)) に一過性にトランスフェクトした。TGF-βl による刺激の後、発現された HA-TAKlを免疫沈降により単離し、そしてその活性をカップル・キナーゼ測定(coupled kinase assay)(S. Matsudaら、J. Biol. Chem. Vol. 270, 12969 (1995)) により測定した。

すなわち、トランスフェクトされた細胞をTGF- β 1(20ng/ml) 又はBMP-4 (100ng/ml) により0分間 (未処理) ~30分間処理した。細胞を緩衝液中にかきとり(S. Matsudaら、J. Biol. Chem. Vol. 270, 12781 (1995); T. Moriguchiら、J. Biol. Chem. Vol. 270, 12969 (1995))、そして細胞抽出液を15,000×gにて10分間遠心分離した。得られた上清を抗HA抗体による免疫沈降にかけた。すなわち、前記上清の 300 μ 1のアリコートを20 μ 1の抗体及び20 μ 1のプロテインAセファロースと混合し、そしてイムノコンプレックスを PBSで2回洗浄し、そしてこれを用いてキナーゼ測定を行った(S. Matsudaら、J. Biol. Chem. Vol. 270, 12781 (1995); T. Moriguchiら、J. Biol. Chem. Vol. 270, 12969 (1995))。

活性は刺激されていない細胞からの HA-TAK1の活性に対する増加倍数として示す。免疫沈降したTAK1の活性は、組換え XMEX2/SEK1を活性化するその能力により測定した。なお、 XMEX2/SEK1の活性は、組換えキナーゼ・ネガティブ(KN) p38/MPK2をリン酸化する能力により測定した(S. Matsudaら、J. Biol. Chem. Vol. 270, 12781 (1995); T. Moriguchiら、J. Biol. Chem. Vol. 270, 12781 (1995))。 HA-TAK1がKN-p38/MPK2を直接リン酸化しないことは確認されている。なお、各免疫沈降の抗ーHA-抗体によるイムノブロッティングによれば、各時点での免疫沈降においてほとんど同量の HA-TAK1が回収された。

上記の実験の結果、TAK1キナーゼ活性はTGF-βによる刺激の後 5

分間以内に増加しはじめ、10分後にピークに達し、そして30分以内にほとんどベースラインにもどった(図3)。さらに、 $TGF-\beta1$ はTAK1キナーゼ活性を投与量依存的に刺激した(図4)。次に、TAK1が $TGF-\beta$ スーパーファミリーの1 員であるBMP(A. H. Reddiら、Curr. Opin. Genet. Dev. Vol. 4, 737(1994))、又は上皮成長因子(EGF)により活性化されるか否かを調べた。興味あることには、BMP-4もまたTAK1キナーゼを時間-及び用量-依存的に活性化した(図4)。

他方、 EGFにより処理された細胞においてはTAK1の活性化は観察されなかった。 EGFがTAK1の活性化を誘導しないのはMC3T3-E1細胞が EGFに応答しないためではなく、 EGFのシグナルがTAK1を介在していないためであると考えられる。それは EGFはMC3T3-E1細胞中でfosの発現を誘導することからもわかる。これらのデータが相俟って、TAK1がTGF-βスーパーファミリーにより活性化されることを示している。

TAKI Δ N はTGF- β 非依存的に PAI-1遺伝子の発現を活性化することができ(図 2)、このことは、細胞のTGF- β 処理が無くてもTAKI Δ N 蛋白質が上昇したキナーゼ活性を有することを示唆している。この可能性を試験するため、HAエピトープで標識されたTAKI Δ N (HA-TAKI Δ N) (前記)をMC3T3-E1細胞に一過性にトランスフェクトし、そしてTAKI Δ N の活性をイムノコンプレックスキナーゼ測定により測定した。すなわち、MC3T3-E1細胞を pEF-HA-TAKI Δ N によりトランスフェクトし、トランスフェクトされた細胞から HA-TAKI Δ N を前記のようにして免疫沈降せしめ、そしてその活性を測定した。

すべてのデータを、刺激されていない細胞からの HA-TAK1の活性に対する増加倍率により示す。

図4に示す通り、TAK1 △N 蛋白質はより高い本質的キナーゼ活性

を示し、 $N-末端の22アミノ酸残基を欠くTAK1<math>\Delta N$ は構成的に(constitutively)活性であるとする仮説を支持している。

実施例 5. cDNAライブラリーの作製

ヒトT細胞株Jurkat細胞からpoly(A)RNAを調製し、常法に従ってcDNAを合成した。これを酵母の発現ベクターpNV7 (Ninomiya-Tsuji, J., ら、Proc.Natl.Acad.Sci. USA 88, 9006-9010 (1991)) のTD H3プロモーターの下流に挿入してcDNAライブラリーを作製した。

実施例 6. cDNAライブラリーのスクリーニング

サッカロマイセス・セレビジエー(Saccharomyces cerevisiae)の高浸透圧ストレスの情報伝達系で働く、Ssk2/Ssk22、およびSholo活性を欠損させた変異株は、YEPD培地(Yeast extract($10g/\ell$)、tryptone($20g/\ell$)、glucose($20g/\ell$))では増殖できるが、この培地に1Mソルビトールを添加した培地中では増殖できない(T.Maeda, ら、Science, 269, 554 (1995))。従って、この変異株にCDNAを導入してスクリーニングを行うことにより、欠損したSsk2/Ssk22 活性を補完できるCDNAが単離できる。

実際に、上述の文献に記載されているSsk2/Ssk22 、およびSho1の活性を欠損させたサッカロマイセス・セレビジエー株(ssk2Δ、sk22Δ、sho1Δ)を実施例2で得たpNV11-HU11(マウスTAK1ΔN)により形質転換した。この形質転換体を1Mソルビトールを含むYEPDプレートに塗布し、30℃にてインキュベートした。その結果、pNV11-HU11により形質転換された酵母は高浸透圧ストレス下でも増殖した。これにより、このスクリーニング系は有効であることが確認された。

そこで、このサッカロマイセス・セレビジエー株($ssk2\Delta$ 、 $ssk2\Delta$ 、 $ssk2\Delta$ 、 $sho1\Delta$)を、実施例 5 において作製した cDNA ライブラリーにより形質転換し、高浸透圧ストレス下でスクリーニングを行った(

1 Mソルビトールを含むYEPD培地中、30℃にてインキュベートした。)。その結果、1個の陽性クローンpNV7-hTAK1が得られた。このクローンに含まれるcDNAを、 PRISM Dye Terminator Cycle Sequen cingキット(Perkin Elmer製)により増幅し、その塩基配列を決定した。その塩基配列及びその対応アミノ酸配列は配列番号:5に示す通りであった。このcDNAの塩基配列はマウスTAK1の塩基配列と92%の相同性を示し、それによりコードされるアミノ酸配列はマウスTAK1のフミノ酸配列と99%の相同性を示した。マウスTAK1とヒトTAK1の塩基配列の対比を図5~図9に示し、これらのアミノ酸配列の対比を図10及び図11に示す。

ヒト TAK1 cDNAを、Sallで消化した pUC19にサブクローニングして、ヒトTAK1の全長cDNAを含有するプラスミドphTAK1を得た。このプラスミドphTAK1を含有する大腸菌は、Escherichia coli JM109 (phTAK1) と称し、工業技術院生命工学工業技術研究所に、FERM BP-5598として、1996年7月19日に、ブダペスト条約に基き国際寄託された。

微生物の寄託

以下の微生物を、工業技術院生命工学工業技術研究所 (茨城県つくば市東1丁目1番3号) の特許微生物寄託センターに寄託し、以下の受託番号を得た。

菌 名:大腸菌 (Escherichia coli) MC1061/P3 (pEF-TAK1)

寄託日:1995年9月28日

受託番号: FERM BP-5246

菌 名:大腸菌(<u>Escherichia</u> <u>coli</u>)MC1061/P3(pEF-TAK1ΔN)

寄託日:1995年9月28日

受託番号: FERM BP-5245

菌 名:Escherichia coli JM109 (phTAK1)

寄託日:1996年7月19日

受託番号: FERM BP-5598

							配	列	j	麦						
配歹	リ番·	号:	1													
配歹	リの:	長さ	: 2	443												
配歹	りの	型 :	核醛	复												
鎖の	数	: —	本釗	į												
トォ	₹ 🗖	ジー	: 道	1鎖:	伏											
配列	」のす	腫 類	: c	DNA												
配	列															
GAA'	TTCG	GCA	CGAG	GAGG.	AG C	CGAA	GCCG	G GA	CTCG	GCGG	TGG	CCCG	GGT	CGGT	CCCGCG	60
CCA	CGGA	GCG	CCGG	GCGG	CG G	GCTG	CGGG	G CT	CCGG	GCTG	AAG	GGCG	CTG	CGCG	AGCCGG	120
AGG	GCGG	GCG	CGGC	CCCC	CG G	GCGC	CGCG	G GG	GATC	ATG	TCG	ACA	GCC	TCC	GCC	174
										Met	Ser	Thr	Ala	Ser	Ala	
										1				5		
GCC	TCG	TCC	TCC	TCC	TCG	тст	тст	GCC	AGT	GAG	ATG	ATC	GAA	GCG	CCG	222
Ala	Ser	Ser	Ser	Ser	Ser	Ser	Ser	Ala	Ser	Glu	Met	He	Glu	Ala	Pro	
			10					15					20			
TCG	CAG	GTC	CTG	AAC	TTC	GAA	GAG	ATC	GAC	TAC	AAG	GAG	ATC	GAG	G TG	270
Ser	Gln	Val	Leu	Asn	Phe	Glu	Glu	He	Asp	Tyr	Lys	Glu	He	Glu	Val	
		25					30					35				
GAA	GAG	GTT	GTC	GGA	AGA	GGA	GCT	TTT	GGA	GTA	CTT	TGC	AAA	GCT	AAG	318
Glu	Glu	Val	Val	Gly	Arg	Gly	Ala	Phe	Gly	Val	Val	Cys	Lys	Ala	Lys	
	40					45					50					

TGG AGA GCA AAA GAT GTC GCT ATT AAA CAG ATA GAA AGT GAG TCT GAG

Trp Arg Ala Lys Asp Val Ala Ile Lys Gin Ile Glu Ser Glu Ser Glu

65

60

55

366

70

AGG	AAG	GCT	TTC	ATT	GTG	GAG	CTC	CGG	CAG	TTG	TCG	CGT	GTG	AAC	CAT	414
Arg	Lys	Ala	Phe	He	Val	Glu	Leu	Arg	Gln	Leu	Ser	Arg	Val	Asn	His	
				75 ,					80					85		
CCT	AAC	ATT	GTC	AAG	TTG	TAC	GGA	GCC	TGC	CTG	AAT	CCA	CTA	TGT	CT T	462
Pro	Asn	lle	Val	Lys	Leu	Tyr	Gly	Ala	Cys	Leu	Asn	Pro	Val	Cys	Leu	
			90					95					100			
GTG	ATG	GAA	TAT	GCA	GAG	GGG	GGC	TCA	TTG	TAT	AAT	GTG	CTG	CAT	GGT	510
Val	Met	Glu	Tyr	Ala	Glu	Gly	Gly	Ser	Leu	Tyr	Asn	Val	Leu	His	Gly	
		105					110					115		-		
GCT	GAA	CCA	TTG	CCT	TAC	TAC	ACT	GCT	GCT	CAT	GCC	ATG	AGC	TGG	TGT	558
Ala	Glu	Pro	Leu	Pro	Tyr	Tyr	Thr	Ala	Ala	His	Ala	Met	Ser	Trp	Cys	
	120					125					130					
ATT	CAG	TGT	TCC	CAA	GGA	GTG	GCT	TAC	CTG	CAC	AGC	ATG	CAG	CCC	AAA	606
Leu	Gln	Cys	Ser	Gln	Gly	Val	Ala	Tyr	Leu	His	Ser	Met	Gln	Pro	Lys	
135					140					145					150	
						CTC										654
Ala	Leu	He	His		Asp	Leu	Lys	Pro		Asn	Leu	Leu	Leu		Ala	
				155					160					165		
						ATC										702
Gly	Gly	Thr		Leu	Lys	He	Cys		Phe	Gly	Thr	Ala		Asp	Ile	•
			170					175					180			25.0
						AAT										750
GIN	Inr		мет	Thr	Asn	Asn		Gly	Ser	Ala	Ala		мет	Ala	Pro	
	000	185	044	O C T	400	4.47	190			440	TO C	195	OTTO	mr.	100	700
						AAT										798
Glu			Glu	Gly	ser	Asn		ser	GIU	Lys		ASP	val	rne	ser	
	200					205					210					

TGG	GGT	` ATI	` ATC	CTC	TGG	GAA	G TG	ATA	ACA	CGC	CGG	AAA	CCC	TTO	GAT	846
Trp	Gly	He	lle	Leu	Trp	Glu	Val	He	Thr	Arg	Arg	Lys	Pro	Phe	e Asp	
215					220					225	,				230	
GAG	ATC	GGT	GCC	CCA	GCT	TTC	AGA	ATC	ATG	TGG	GCT	GTT	CAT	raa '	GCC	894
Glu	lle	Gly	Gly	Pro	Ala	Phe	Arg	ile	Me t	Trp	Ala	Val	His	Asn	Gly	
				235					240					245	i	
ACT	CGA	CCA	CCA	CTG	ATC	AAA	AAT	TTA	CCT	AAG	CCC	ATT	GAG	AGC	TTG	942
Thr	Arg	Pro	Pro	Leu	He	Lys	Asn	Leu	Pro	Lys	Pro	Пe	Glu	Ser	Leu	
			250					255					260			
ATG	ACA	CGC	TGT	TGG	TCT	AAG	GAC	CCA	TCT	CAG	CGC	ССТ	TCA	ATG	GAG	990
Met	Thr	Arg	Cys	Trp	Ser	Lys	Asp	Pro	Ser	Gin	Arg	Pro	Ser	Met	Glu	
		265					270					275				
GAA	ATT	CTG	AAA	ATA	ATG	АСТ	CAC	TTG	ATG	CGG	TAC	TTC	CCA	GGA	GCG	1038
Glu	He	Val	Lys	He	Met	Thr	His	Leu	Me t	Arg	Tyr	Phe	Pro	Gly	Ala	
	280					285					290					
GAT	GAG	CCA	TTA	CAG	TAT	CCT	TGT	CAG	TAC	TCT	GAT	GAA	GGG	CAG	AGC	1086
			Leu													
295					300					305					310	
AAC	TCA	GCC	ACC	AGC	ACA	GGC	TCG	TTC	ATG	GAC	ATT	GCT	тст	ACA	AAT	1134
Asn	Ser	Ala	Thr	Ser	Thr	Gly	Ser	Phe	Me t	Asp	ile	Ala	Ser	Thr	Asn	
				315					320					325		
ACC	AGT	AAT	AAA	AGT	GAC	ACA	AAT	ATG .	GAA	CAG	GTT	ССТ	GCC	ACA	AAC	1182
			Lys			•										
			330					335					340			
GAC	ACT	ATT	AAA	CGC	TTG	GAG	TCA	AAA	CTG	TTG	AAA	AAC		GCA	AAG	1230
			Lys													
		345					350					355		-	• •	

CAA	CAG	AGT	GAA	TCT	GGA	CGC	CTG	AGC	TTG	GGA	GCC	TCT	CGT	GGG	AGC	1278
Gln	Gin	Ser	Glu	Ser	Gly	Arg	Leu	Ser	Leu	Gly	Ala	Ser	Arg	Gly	Ser	
	360					365					370					
AGT	GTG	GAG	AGC	T TG	CCC	CCC	ACT	TCC	GAG	GGC	AAG	AGG	ATG	AGT	GCT	1326
Ser	Val	Glu	Ser	Leu	Pro	Pro	Thr	Ser	Glu	Gly	Lys	Arg	Met	Ser	Ala	
375					380					385					390	
GAC	ATG	TCT	GAA	ATA	GAA	GCC	AGG	ATC	GTG	GCG	ACT	GCA	GGT	AAC	GGG	1374
Asp	Met	Ser	Glu	lle	Glu	Ala	Arg	He	Val	Ala	Thr	Ala	Gly	Asn	Gly	
				395					400					405		
CAA	CCA	AGG	CGT	AGA	TCC	ATC	CAA	GAC	TTG	ACT	GTT	ACT	GGG	ACA	GAA	1422
Gln	Pro	Arg	Arg	Arg	Ser	lle	Gln	Asp	Leu	Thr	Val	Thr	Gly	Thr	Glu	
			410					415					420			
CCT	GGT	CAG	GTG	AGC	AGC	CGG	TÇA	TCC	AGC	CCT	AGT	GTC	AGA	ATG	ATC	1470
Pro	Gly	Gln	Val	Ser	Ser	Arg	Ser	Ser	Ser	Pro	Ser	Vai	Arg	Mc t	He	
		425					430					435				
ACT	ACC	TCA	GGA	CCA	ACC	TCA	GAG	AAG	CCA	GCT	CGC	AGT	CAC	CCA	TGG	1518
Thr	Thr	Ser	Gly	Pro	Thr	Ser	Glu	Lys	Pro	Ala	Arg	Ser	His	Pro	Trp	
	440					445					450		•	-		
ACC	CCT	GAT	GAT	TCC	ACA	GAC	ACC	AAT	GGC	TCA	GAT	AAC	TCC	ATC	CCA .	1566
Thr	Pro	Asp	Asp	Ser	Thr	Asp	Thr	Asn	Gly	Ser	Asp	Asn	Ser	He	Pro	
455					460					465					470	
ATG	GCG	TAT	CTT	ACA	CTG	GAT	CAC	CAG	СТА	CAG	CCT	СТА	GCG	CCG	TGC	1614
Met	Ala	Tyr	Leu	Thr	Leu	Asp	His	Gln	Leu	Gln	Pro	Leu	Ala	Pro	Cys	
				475					480					485		
CCA	AAC	TCC	AAA	GAA	TCC	ATG	GCA	GTG	TTC	GAA	CAG	CAC	TGT	AAA	ATG	1662
Pro	Asn	Ser	Lys	Glu	Ser	Met	Ala	Val	Phe	Glu	Gln	His	Cys	Lys	Met	
			490					495					500			

GCA	CAG	GAG	TAT	ATG	AAA	GTT	CAA	ACC	GAA	ATC	GCA	TTG	TTA	CTA	CAG	1710
Ala	Gln	Glu	Tyr	Met	Lys	Val	Gln	Thr	Glu	He	Ala	Leu	Leu	Leu	Gln	
		505					510					515				
AGA	AAG	CAA	GAA	CTA	GTT	GCA	GAA	TTG	GAC	CAG	GAT	GAA	AAG	GAC	CAG	1758
Arg	Lys	Gln	Glu	Leu	Val	Ala	Glu	Leu	Asp	Gln	Asp	Glu	Lys	Asp	Gln	
	520		-			525					530					
CAA	AAT	ACA	TCT	CGT	CTG	GTA	CAG	GAA	CAT	AAA	AAG	CTT	TTA	GAT	GAA	1806
Gln	Asn	Thr	Ser	Arg	Leu	Val	Gln	Glu	His	Lys	Lys	Leu	Leu	Asp	Glu	
535					540					545					550	
AAC	AAA	AGC	CTT	TCT	ACT	TAT	TAC	CAG	CAA	TGC	AAA	AAA	CAA	CTA	GAG	1854
Asn	Lys	Ser	Leu	Ser	Thr	Tyr	Tyr	Gln	Gln	Cys	Lys	Lys	Gin	Leu	Glu	
				555					560					565	•	
GTC	ATC	AGA	AGC	CAA	CAG	CAG	AAA	CGA	CAA	GGC	ACT	TCA	TGAT	r tctc	TG	1903
Val	lle	Arg	Ser	Gln	Gin	Gln	Lys	Arg	Gln	Gly	Thr	Ser				
			570					575								
GGAC	CCGTT	CAC G	TTT	`AAAA	TA T	GCAA	AGAC	стт	TTT	TAA	GAGA	AGAC	AA A	ACCAT	TATAA	1963
CAGT	TCAT	GA G	TGTT	AGCT	T T	TGGC	GTGT	TCT	GAAT	CCC	AAAT	GCCT	CT (CTTTG	CTGCA	2023
															TGCAG	
CAGA	TGAT	GG C	ACCT	'GTGG	C TT	'GGGA	AGGC	GAG	SGTG	CTC	AGCT	TCAG	GG G	CACA	TGAAG	2143
TGAA	CCTG	GC T	GTAT	GTGC	A TG	CTCC	TGGA	GTG	AGCT	ACC	TAAC	AGGA	GG G	GGTA	GCACA	2203
															GAATT	
															CCAAT	
															AGGCT	
				GTTT	G TG	CCAA	CACA	TCC	TGGC	TTT	AGAG	CACA	AT G	GATC'	TCGAG	2443
配列								٠								
配列																
配列	の型	! : t	亥酸													

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:合成DNA

配 列

AATTCGCCAC CATGGC 16

配列番号: 3

配列の長さ:16

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:合成DNA

配列

TCGAGCCATG GTGGCG 16

配列番号: 4

配列の長さ:27

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:ペプチド

配列

1

Tyr Pro Tyr Asp Val Pro Asp Tyr Ala

配列番号:5

配列の長さ:2656

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類: cDNA

配	列															
GT	CGAG	ATCC	ATTO	GTGC	rct A	AAAG/	CGG	CT GT	rggc	CGCT	G CC	ГСТА	CCCC	CGC	CACGGA'	Т 60
CG	CCGG	GTAG	TAGO	GACTO	GCG (CGGC1	CCAC	GG CT	rgag(GTC	GT(CCGGA	AGGC	GGG'	TGGGCG	C 120
GG	GTCT(CACC	CGGA	TTG T	rcc (GGGTC	GCAC	CC G1	TCCC	CGCC	CCA	CCGC	GCG	CCG	CGAGGG	A 180
TC	ATG	TCT	ACA	GCC	тст	GCC	GCC	тсс	тсс	TCC	TCC	TCG	TCT	TCG	GCC	227
	Me t	Ser	Thr	Ala	Ser	Ala	Ala	Ser	Ser	Ser	Ser	Ser	Ser	Ser	Ala	
	1				5					10					15	
GG1	r GAG	ATO	ATC	GAA	GCC	ССТ	TCC	CAG	GTC	сто	AAC	T T1	GA/	GAC	G ATC	275
Gly	/ Glu	Met	lle	Glu	Λla	Pro	Ser	Gln	Val	Leu	Asn	Phe	Glu	Glu	ılle	
				20	ļ				25	,				30)	
GAC	TAC	AAG	GAG	ATC	GAG	GTG	GAA	GAG	GTT	GTT	GGA	AGA	GGA	GCC	TTT	323
Asp	Tyr	Lys	Glu	He	Glu	Val	Glu	Glu	Val	Val	Giy	Arg	Gly	Ala	Phe	
			35					40			•		45	i		
GGA	GTT	GTT	TGC	AAA	GCT	AAG	TGG	AGA	GCA	AAA	GAT	GTT	GCT	ATT	AAA	371
Gly	Val	Val	Cys	Lys	Ala	Lys	Trp	Arg	Ala	Lys	Asp	Val	Ala	He	Lys	
		50					55					60				
CAA	ATA	GAA	AGT	GAA	TCT	GAG	AGG	AAA	GCG	TTT	ATT	GTA	GAG	CTT	CGG	419
Gin	He	Glu	Ser	Glu	Ser	Glu	Arg	Lys	Ala	Phe	He	Val	Glu	Leu	Arg	
	65					70					75					
CAG	TTA	TCC	CGT	GTG	AAC	CAT	CCT	AAT	ATT	GTA	AAG	CTT	TAT	GGA	GCC	467
		Ser	Arg	Val	Asn	His	Pro	Asn	lle	Val	Lys	Leu	Tyr	Gly	Ala	٠
80					85					90					95	
						CTT										515
Cys	Leu	Asn	Pro	Val	Cys	Leu	Val	Me t	Glu	Tyr	Ala	Glu	Gly	Gly	Ser	
				100					105					110		

TTA	TAT	AAT	GTG	CTG	CAT	GGT	GCT	GAA	CCA	TTG	CCA	TAT	TAT	ACT	GCT	56 3
Leu	Tyr	Asn	Val	Leu	His	Gly	Ala	Glu	Pro	Leu	Pro	Tyr	Tyr	Thr	Ala	
			115					120					125			
GCC	CAC	GCA	ATG	AGT	TGG	TGT	TTA	CAG	TGT	TCC	CAA	GGA	GTG	GCT	TAT	611
Ala	His	Ala	Met	Ser	Trp	Cys	Leu	Gln	Cys	Ser	Gln	Gly	Va J	Ala	Tyr	
		130					135					140				
CTT	CAC	AGC	ATG	CAA	CCC	AAA	GCG	CTA	ATT	CAC	AGG	GAC	CTG	AAΛ	CCA	659
Leu	His	Ser	Met	Gln	Pro	Lys	Ala	Leu	I-l e	His	Arg	Asp	Leu	Lys	Pro	
	145					150		•			155					
CCA	AAC	TTA	CTG	CTG	GTT	GCA	GGG	GGG	ACA	GTT	CTA	AAA	ATT	TGT	GAT	707
Pro	Asn	Leu	Leu	Leu	Val	Ala	Gly	Gly	Thr	Val	Leu	Lys	He	Cys	Asp	
160					165					170					175	
TTT	GGT	ACA	GCC	TGT	GAC	ATT	CAG	ACA	CAC	ATG	ACC	AAT	AAC	AAG	GGG	755
Phe	Gly	Thr	Ala	Cys	Asp	lle	Gln	Thr	His	Met	Thr	Asn	Asn	Lys	Gly	
			-	180					185					190		
AGT	GCT	GCT	TGG	ATG	GCA	CCT	GAA	GTT	TTT	GAA	GGT	AGT	AAT	TAC	.AGT	803
Ser	Ala	Ala	Trp	Met	Ala	Pro	Glu	Val	Phe	Glu	Gly	Ser	Asn	Tyŗ	Ser	
			195					200					205			
GAA	AAA	TGT	GAC	GTC	TTC	AGC	TGG	GGT	ATT	ATT	CTT	TGG	GAA	GTG	ATA	851
Glu	Lys	Cys	Asp	Val	Phe	Ser	Тгр	Gly	He	lle	Leu	Trp	Glu	Val	lle	
		210					215					220			•	
						GAT										899
Thr	Arg	Arg	Lys	Pro	Phe	Asp	Glu	lle	Gly	Gly	Pro	Ala	Phe	Arg	lle	
	225					230					235					
						GGT										947
Met	Trp	Ala	Val	His	Asn	Gly	Thr	Arg	Pro	Pro	Leu	He	Lys	Asn	Leu	
240					245					250					255	

CCT	AAG	CCC	ATT	GAG	AGC	CTG	ATG	ACT	CGT	TGT	TGG	тст	` AAA	GA7	CCT	995
Pro	Lys	Pro	He	Glu	Ser	Leu	Met	Thr	Arg	Cys	Trp	Ser	Lys	Asp	Pro	
				260					265					270)	
TCC	CAG	CGC	CCT	TCA	ATG	GAG	GAA	ATT	GTG	AAA	ATA	ATG	ACT	CAC	TTG	1043
Ser	Gln	Arg	Pro	Ser	Met	Glu	Glu	lle	Val	Lys	He	Me t	Thr	His	Leu	
			275					280					285			
ATG	CGG	TAC	TTT	CCA	GGA	GCA	GAT	GAG	CCA	TTA	CAG	TAT	ССТ	TGT	CAG	1091
Met	Arg	Tyr	Phe	Pro	Gly	Ala	Asp	Glu	Pro	Leu	Gln	Tyr	Pro	Cys	Gin	
		290					295					300				
TAT	TCA	GAT	GAA	GGA	CAG	AGC	AAC	TCT	GCC	ACC	AGT	ACA	GGC	TCA	TTC	1139
Tyr	Ser	Asp	Glu	Gly	Gln	Ser	Asn	Ser	Ala	Thr	Ser	Thr	Gly	Ser	Phe	
	305		•			310					315					
ATG	GAC	ATT	GCT	TCT	ACA	AAT	ACG	AGT	AAC	AAA	AGT	GAC	ACT	AAT	ATG	1187
Met	Asp	lle	Ala	Ser	Thr	Asn	Thr	Ser	Asn	Lys	Ser	Asp	Thr	Asn	Met	
320					325					330					335	
GAG	CAA	GTT	CCT	GCC	ACA	AAT	GAT	ACT	ATT	AAG	CGC	TTA	GAA	TCA	AAA	1235
Glu	GIn	Val	Pro	Ala	Thr	Asn	Asp	Thr	He	Lys	Arg	Leu	Glu	Ser	Lys	
				340					345					350		
TTG	TTG	AAA	TAA	CAG	GCA	AAG	CAA	CAG	AGT	GAA	TCT	GGA	CGT	TTA	AGC	1283
Leu	Leu	Lys		Gln	Ala	Lys	Gin	Gln	Ser	Glu	Ser	Gly	Arg	Leu	Ser	
			355					360					365			
						AGC										1331
Leu			Ser	His	Gly	Ser	Ser	Val	G1 u	Ser	Leu	Pro	Pro	Thr	Ser	
		370					375					380				
						GCT										1379
		Lys	Arg	Met	Ser	Ala	Asp	Met	Ser	Glu	He	Glu	Ala	Arg	lle	
	385					390					395					

GCC	GCA	ACC	ACA	GGC	AAC	GGA	CAG	CCA	AGA	CGT	AGA	TCC	ATC	CAA	GAC	1427
Ala	Ala	Thr	Thr	Gly	Asn	Gly	Gln	Pro	Arg	Arg	Arg	Ser	Ile	Gln	Asp	
400					405					410					415	
TTG	ACT	GTA	ACT	GGA	ACA	GAA	CCT	GGT	CAG	GTG	AGC	AGT	AGG	TCA	TCC	1475
Leu	Thr	Val	Thr	Gly	Thr	Glu	Pro	Gly	Gln	Val	Ser	Ser	Arg	Ser	Ser	
				420					425					430		
AGT	CCC	AGT	GTC	AGA	ATG	ATT	ACT	ACC	TCA	GGA	CCA	ACC	TCA	GAA	AAG	1523
Ser	Pro	Ser	Val	Arg	Met	Ile	Thr	Thr	Ser	Gly	Pro	Thr	Ser	Glu	Lys	
			435					440					445			
CCA	ACT	CGA	AGT	CAT	CCA	TGG	ACC	CCT	GAT	GAT	TCC	ACA	GAT	ACC	AAT	1571
Pro	Thr	Arg	Ser	His	Pro	Trp	Thr	Pro	Asp	Asp	Ser	Thr	Asp	Thr	Asn	
		450					455					460				
GGA	TCA	GAT	AAC	TCC	ATC	CCA	ATG	GCT	TAT	CTT	ACA	CTG	GAT	CAC	CAA	1619
Gly	Ser	Asp	Asn	Ser	lle	Pro	Met	Ala	Tyr	Leu	Thr	Leu	Asp	His	Gln	
	465				•	470					475					
CTA	CAG	CCT	CTA	GCA	CCG	TGC	CCA	AAC	TCC	AAA	GAA	TCT	ATG	GCA	GTG	1667
Leu	Gln	Pro	Leu	Ala	Pro	Cys	Pro	Asn	Ser	Lys	Glu	Ser	Met	Ala	Val	
480					48 5					490					495	
TTT	GAA	CAG	CAT	TGT	AAA	ATG	GCA	CAA	GAA	TAT	ATG	AAA	GTT	CAA	ACA	1715
Phe	Glu	Gln	His		Lys	Met	Ala	Gln		Tyr	Met	Lys	Val		Thr	
				500					505					510		
GAA	ATT	GCA	TTG	TTA	TTA	CAG	AGA	AAG	CAA	GAA	СТА	GTT	GCA	GAA	CTG	1763
Glu	He	Ala			Leu	Gln	Arg	Lys	Gin	Glu	Leu	Val		Glu	Leu	
			5 15					520					525			
										TCT						1811
Asp	Gln	-		Lys	Asp	Gln			Thr	Ser	Arg			Gln	Glu	
		530					535					540				

CAT	AAA	AAG	CTT	TTA	GAT	GAA	AAC	AAA	AGC	CTT	TCT	ACT	TAC	TAC	CAG	1859
His	Lys	Lys	Leu	Leu	Asp	Glu	Asn	Lys	Ser	Leu	Ser	Thr	Tyr	Tyr	Gln	
	545					550					555					
CAA	TGC	AAA	AAA	CAA	CTA	GAG	GTC	ATC	AGA	AGT	CAG	CAG	CAG	AAA	CGA	1907
Gln	Cys	Lys	Lys	Gln	Leu	Glu	Val	lle	Arg	Ser	Gln	Gin	Gln	Lys	Arg	
560					56 5					570					575	
CAA	GGC	ACT	TCA	TGAT	тстс	CTG (GACC	GTTA	с ат	TTT	GAAA	` ATC	CAA	AGAA		1959
Gln-	Gly	Thr	Ser													
AGAC	TTT	T T 1	TTAA	GGAA	A GO	AAAA	CCTT	` ATA	ATGA	CGA	TTCA	TGAG	TG 1	TAGO	TTTTT	2019
GGCG	TGTT	ст с	GAATG	CCAA	с то	CCTA	TATT	TGC	TGCA	TTT	TTTT	CATT	ът 1	TATI	ттсст	2079
TTTC	TCAT	'GG 1	rggac	ATAC	TA A	TTTA	CTGT	TTC	ATTG	CAT	AACA	TGGT	'AG C	САТСТ	GTGAC	2139
TTGA	ATGA	GC A	GCAC	TTTG	C AA	CTTC	AAAA	CAG	ATGC	AGT	GAAC	TGTG	GC T	GTAT	ATGCA	2199
TGCT	CATT	GT G	TGAA	GGCT	A GC	СТАА	CAGA	ACA	GGAG	GTA	ТСАА	ACTA	GC T	GCTA	TGTGC	2259
AAAC	AGCG	TC C	TTTA	TTTC	A TA	TTAG	AGGT	GGA	ACCT	CAA	GAAT	GACT	TT A	TTCT	T GTAT	2319
CTCA	TCTC	AA A	TATA	TAAT	A AT	TTTT	ттсс	CAA	AAGA	TGG	TATA	TACC	AA G	TTAA	AGACA	2379
GGGT	ATTA	TA A	ATTT	AGAG	T GA	TTGG	TGGT	ATA	TTAC	GGA	AATA	CGGA	AC C	TTTA	GGGAT	2439
AGTT	CCGT	GT A	AGGG	CT T T	G AT	GCCA	GCAT	CCT	TGGA	TCA	GTAC	TGAA	ст с	AGTT	CCATC	2499
CGTA	AAAT.	AT G	TAAA	GGTA.	A GT	GGCA	GCTG	СТС	TATT	TAA '	TGAA	AGCA	GT T	TTAC	CGGAT	2559
TTTG	TTAG.	AC T	ΆΑΑΑ	TTTG	A TT	GTGA	TACA	TTG	AACA	AAA '	TGGA	ACTC	АТ Т	TTT	TTAAG	2619
GAGT	AAAG.	AT T	TTCT	T TA G	A GC	ACAA'	TGGA	TCT	CGAC							2656

請求の範囲

- 1. 配列番号: 5 に示す23位の Serから 579位の Serまでのアミノ酸配列を含んでなる、トランスフォーミング成長因子 $(TGF)-\beta$ によって活性化されるキナーゼ活性を有するポリペプチド。
- 2. 配列番号: 5に示す 1 位の Metから 579位の Serまでのアミノ酸配列を含んでなる、TGF- β によって活性化されるキナーゼ活性を有するポリペプチド。
- 3. 配列番号: 5 に示す23位の Serから 579位の Serまでのアミノ酸配列を含んでなる、 $TGF-\beta$ によって活性化されるキナーゼ活性を有するポリペプチドをコードする DNA。
- 4. 配列番号: 5 に示す 249位のTから1919位のAまでのヌクレオチド配列を有する請求項 3 に記載の DNA。
- 5. 配列番号: 5に示す 1 位の Metから 579位の Serまでのアミノ酸配列を含んでなる、TGF- β によって活性化されるキナーゼ活性を有するポリペプチドをコードする DNA。
- 6. 配列番号: 5 に示す 183位のAから1919位のAまでのヌクレオチド配列を有する請求項 5 に記載の DNA。
- 7. 請求項 3 6 のいずれか 1 項に記載の DNAを含んでなるベクター。
- 8. 請求項3-6のいずれか1項に記載の DNAを含んでなるベクターにより形質転換された宿主細胞。
- 9. 請求項3-6のいずれか1項に記載の DNAを含んでなるベクターにより形質転換された宿主細胞を培養し、培養物から産生物を採取することからなる、TGF-βによって活性化されるキナーゼ活性を有するポリペプチドの製造方法。
 - 10. 請求項 9 に記載の方法により製造される $TGF-\beta$ によって活性

化されるキナーゼ活性を有するポリペプチド。

11. 配列番号: 5 に示す23位の Serから 579位の Serまでのアミノ酸配列を含んでなる、TGF- β によって活性化されるキナーゼ。

12. 請求項1, 2, 10および11のいずれか1項に記載の蛋白質と他の蛋白質との融合蛋白質。

Fig.2

□ 対象

図 TGF B30ng/mP添加

Fig.3

Fig.4

化水水水溶液水水水水水水水水水水水水水水水水水 不放 计分类计算机设计 人名 化对对对对对对对对对对对对对对对对对对对对对对对

301" TGTCTTGTGATGGAATATGCAGAGGGGGCTCATTGTATAATGTGCTGCATGGTGCTGAA

F. 0. F.

-1	1' AIGICTACAGCCICTGCCGCCTCCTCCTCCTCGTCGTCGGCCGGTGAGATGATCGAA
-	
61'	GCCCCTTCCCAGGTCCTCAACTTTGAAGAGATCGACTACAAGGAGATCGAGGTGGAAGAGA ** ** ** ****** ***** *********
61"	61" GCGCCGTCGCAGGTCCTGAACTTCGAAGAGATCGACTACAAGGAGATCGAGGTGGAAGAG
121'	GTTGTTGGAAGAGGCCTTTGGAGTTGTTTGCAAAGCTAAGTGGAGAGCAAAAGATGTT ***** ********* ******* ******* *******
121"	_
181	GCTATTAAACAAATAGAAAGTGAATCTGAGAGGAAAGCGTTTATTGTAGAGCTTCGGCAG ******* *** *** *** ***** ***********
181"	GCTATTAAACAGATAGAAAGTGAGTCTGAGAAGGCTTTCATTGTGGAGCTCCGGCAG
241'	TTATCCCGTGTGAACCATCCTAATATTGTAAAGCTTTATGGAGCCTGCTTGAATCCAGTG
241"	•
301	TGTCTTGTGATGGAATATGCTGAAGGGGGCTCTTTATATAATGTGCTGCATGGTGCTGAA

Fig.6

361' CCATTGCCATATTATACTGCTGCCCACGCAATGAGTTGGTGTTTACAGTGTTCCCAAGGA 361" CCATTGCCTTACTACACTGCTGTTGCCATGAGCTGTGTTTACAGTGTTCCCAAGGA GIGGCITATCITCACAGCAIGCAACCCAAAGCGCIAATICACAGGGACCIGAAACCACCA 经存款条件 医医疗 医医疗性医疗性医疗性 医医疗性医疗性医疗 医医疗性医疗性医疗性医疗性 医医疗 医乳球 GTGGCTTACCTGCACACACACACCCAAAGCGCTGATTCACAGGGACCTCAAGCCTCCA GACATCCAAACACACATGACCAATAATAAAGGGAGTGCTGCTTGGATGGCGCCTGAAGTG 601 ' ITTGAAGGTAGTAATTACAGTGAAAATGTGACGTCTTCAGCTGGGGTATTATTCTTTGG 481 * AACTTACTGCTGGTTGCAGGGGGGACAGTTCTAAAAATTTGTGATTTTGGTACAGCCTGT **AACTTGCTGCTGGTTGCAGGAGGGACAGTTCTAAAAATCTGGGATTTTGGTACAGCTTGT** 541 'GACATTCAGACACACATGACCAATAACAAGGGGAGTGCTGCTTGGATGGCACCTGAAGTT **TITGAAGGTAGCAATTACAGTGAAAAGTGTGTGTCTTCAGCTGGGGTATTATCCTCTGG** 421" 481" 421' 541" 601"

т. О.

661'	661' GAAGIGATAACGCGTCGGAAACCCTTTGAIGAGATTGGTGGCCCAGCTTTCCGAATCATG
199	_
721'	TGGGCTGTTCATAATGGTACTCGACCACCACTGATAAAAATTTACCTAAGCCCATTGAG
721"	-
781	781' AGCCTGATGACTCGTTGTTGGTCTAAAGATCCTTCCCAGCGCCCTTCAATGGAGGAAATT
781"	781" AGCTTGATGACACGCTGTTGGTCTAAGGACCCATCTCAGCGCCCTTCAATGGAGGAAATT
841'	GTGAAAATAATGACTCACTTGATGCGGTACTTTCCAGGAGCAGATGAGCCATTACAGTAT
841"	_
901	CCTTGTCAGTATTCAGATGAAGGACAGCAACTCTGCCACCAGTACAGGCTCATTCAT
901"	901" CCTTGTCAGTACTCTGATGAAGGGCAGAACTACACCCACC
961	GACATIGCTTCTACAATACGAGTAACAAAGTGACACTAATATGGAGCAAGTTCCTGCC ******************************
961"	

Fig.8

1021' ACABATGATACTATTAAGCGCTTAGAATCAAAATTGTTGAAAAATCAGGCAAAGCAACAG 医水液溶液 放水 经水积分的分割 化水流分析 水水 计计分分码法 计电子分子记录记录 化化分子的计划分子的 1021" ACAAACGACACTATTAAACGCTTGGAGTCAAAACTGTTGAAAAACCAGGCAAAGCAACAG 1081' AGTGAATCTGGACGTTTAAGCTTGGGAGCCTCCCATGGGAGCAGTGTGGAGAGCTTGCCC 1141' CCAACCTCTGAGGGCAAGAGGATGAGTGCTGACATGTCTGAAATAGAAGCTAGGATCGCC 1081" AGTGAATCTGGACGCCTGAGCTTGGGAGCCTCTCGTGGGAGCAGTGTGGAGAGCTTGCCC 1141" CCCACTTCCGAGGGCAAGAGGATGAGTGCTGACATGTCTGAAATAGAAGCCAGGATCGTG 1261' ACAGAACCTGGTCAGGTGAGCAGTAGGTCATCCAGTCCCAGTGTCAGAATGATTACTACC 1321' ICAGGACCAACCTCAGAAAAGCCAACTCGAAGTCATCCATGGACCCCTGATGATTCCACA 计数据数据数据数据数据数据数据数据数据 化苯酚磺胺 化苯酚磺胺 医拉拉氏性抗性性性性结核性性性性性的 TCAGGACCAACCTCAGAGGCCAGCTCGCAGTCACCCATGGACCCCTGATGATTCCACA 1261" ACAGAACCTGGTCAGGTGAGCAGCCGGTCATCCAGCCCTAGTGTCAGAATGATCACTACC ********** 1321"

9. p.i.d

1381'	GATACCAATGGATCAGATAACTCCCATCGCTTATCTTACACTGGATCACCAACTA ** ****** ***************************
1441'	CAGCCTCTAGCACCGTGCCCAAACTCCAAAGAATCTATGGCAGTGTTTGAACAGCATTGT ******** *** **********************
1441"	1441" CAGCCTCTAGCGCCGTGCCCAAACTCCAAGAATCCATGGCAGTGTTCGAACAGCACTGT
1501'	1501' AAAATGGCACAAGAATATATGAAAGTTCAAACAGAAATTGCATTGTTATTACAGAGAAAG *****************************
1501"	1501" AAAATGGCACAGGAGTATATGAAAGTTCAAACCGAAATCGCATTGTTACTACAGAGAAAG
1561'	CAAGAACTAGTTGCAGAACTGGACCAGGATGAAAAGGACCAGCAAAATACATCTCGCCTG
1561"	CAAGAACTAGTTGCAGAATTGGACCAGGATGAAAAGGACCAGCAAAATACATCTCGTCTG
1621	GTACAGGAACATAAAAAGCTTTTAGATGAAAACAAAAGCCTTTCTACTTACT
1621"	GTACAGGAACATAAAAAGCTTTTAGATGAAAACAAAAGCCTTTCTACTTATTACCAGCAA
1681	TGCAAAAACAACTAGAGGTCATCAGAAGTCAGCAGCAGAAACGACAAGGCACTTCATGA ***********************************
1681"	1681" IGCAAAAACAACTAGAGGTCATCAGAAGCCAACAGCAGAAACGACAAGGCACTTCAIGA

Fia.10

<u>-</u>	MSTASAASSSSSSAGEMIEAPSQVLNFEEIDYKEIEVEEVVGRGAFGVVCKAKWRAKDV ***************,*********************
H	MSTASAASSSSSSASEMIEAPSQVLNFEEIDYKEIEVEEVVGRGAFGVVCKAKWRAKDV
61'	61' AIKQIESESERKAFIVELRQLSRVNHPNIVKLYGACLNPVCLVMEYAEGGSLYNVLHGAE ************************************
61"	61" AIKQIESESERKAFIVELRQLSRVNHPNIVKLYGACLNPVCLVMEYAEGGSLYNVLHGAE
121'	PLPYYTAAHAMSWCLQCSQGVAYLHSMQPKALIHRDLKPPNLLLVAGGTVLKICDFGTAC
121"	PLPYYTAAHAMSWCLQCSQGVAYLHSMQPKALIHRDLKPPNLLLVAGGTVLKICDFGTAC
181	DIQTHMINNKGSAAWMAPEVFEGSNYSEKCDVFSWGIILWEVITRRKPFDEIGGPAFRIM ************************************
181"	DIQTHMINNKGSAAWMAPEVFEGSNYSEKCDVFSWGIILWEVITRRKPFDEIGGPAFRIM
241'	WAVHNGTRPPLIKNLPKPIESLMTRCWSKDPSQRPSMEEIVKIMTHLMRYFPGADEPLQY ************************************
241"	241" WAVHNGTRPPLIKNLPKPIESLMTRCWSKDPSORPSMEEIVKIMTHLMRYFPGADEPLQY

<u>.</u>. б.

301	301' PCQYSDEGQSNSATSTGSFMDIASTNTSNKSDTNMEQVPATNDTIKRLESKLLKNQAKQQ
301"	PCQYSDEGQSNSATSTGSFMDIASTNTSNKSDTNMEQVPATNDTIKRLESKLLKNQAKQQ
361'	SESGRLSLGASHGSSVESLPPTSEGRRMSADMSEIEARIAATTGNGQPRRRSIQDLTVTG
361"	SESGRLSLGASRGSSVESLPPTSEGKRMSADMSEIEARIVATAGNGQPRRRSIQDLTVTG
421'	TEPGQVSSRSSSPSVRMITTSGPTSEKPTRSHPWTPDDSTDTNGSDNSIPMAYLTLDHQL ************************************
421"	TEPGQVSSRSSSPSVRMITTSGPTSEKPARSHPWTPDDSTDTNGSDNSIPMAYLTLDHQL
481	481' QPLAPCPNSKESMAVFEQHCKMAQEYMKVQTEIALLLQRKQELVAELDQDEKDQQNTSRL ************************************
481"	481" QPLAPCPNSKESMAVFEQHCKMAQEYMKVQTEIALLLQRKQELVAELDQDEKDQQNTSRL
541	VQEHKKLLDENKSLSTYYQQCKKQLEVIRSQQQKRQGTS ************************************
541"	541" VQEHKKLLDENKSLSTYYQQCKKQLEVIRSQQQKRQGTS

11/11

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP97/01050

	SSIFICATION OF SUBJECT MATTER	C12N9/12 C12N1/21			
	Int. C1 ⁶ C12N15/54, C12P21/02, C12N9/12, C12N1/21 According to International Patent Classification (IPC) or to both national classification and IPC				
		ational classification and IPC			
	DS SEARCHED				
	cumentation searched (classification system followed by				
Int.	C16 C12N15/54, C12P21/02,	C12N9/12, C12N1/21	·		
	on searched other than minimum documentation to the ext				
	Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CAS ONLINE, BIOSIS, WPI/WPI,L				
C. DOCU	MENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.		
Y	Science 270 1995 K. Yamaguch "Identification of a member as a potential mediator of transduction" p. 2008-2011	of the MAPKKK Family	1 - 12		
Y	Hyuga Saito and others "New for Bio-Science (in Japanese p. 235-236	Molecular Genetics e)" (Nankodo) 1987	12		
A	Cell 80 1995 C.J. Marshall receptor tyrosine kinase side versus sustained extracellukinase activation" p. 179-1	gnaling: transient lar signal-regulated	1 - 12		
A	Science 265 1994 J.F. Smoth "Stimulatory effects of yea 14-3-3 proteins on the raf p. 1716-1719	st and mammalian	1 - 12		
A	Science 241 1988 Steven K. protein kinase family: cons	Hanks et al. "The erved features and	1 - 12		
X Furth	er documents are listed in the continuation of Box C.	See patent family annex.			
 Special categories of cited documents: "I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand to be of particular relevance 			cation but cited to understand		
"L" docum	document but published on or after the international filing date ent which may throw doubts on priority claim(a) or which is o establish the publication date of another citation or other	"X" document of particular relevance; the considered novel or cannot be consi- step when the document is taken alon	dered to involve an inventive		
special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "O" document referring to an oral disclosure, use, exhibition or other means "O" document referring to an oral disclosure, use, exhibition or other means "O" document referring to an oral disclosure, use, exhibition or other means "O" document referring to an oral disclosure, use, exhibition or other means with one or more other such documents, such combination being obvious to a person skilled in the art			step when the document is documents, such combination		
"P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family					
1	actual completion of the international search e 24, 1997 (24. 06. 97)	Date of mailing of the international sea July 8, 1997 (08.	•		
Name and mailing address of the ISA/ Authorized officer					
Jap	anese Patent Office				
Facsimile I	No.	Telephone No.			

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP97/01050

		PCT/J	P97/01050	
C (Continu	(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where appropriate, of the rele	vant passages	Relevant to claim No	
	deduced phylogeny of the catalytic domains" p. 42-52 Nature 324 1986 Randall K. Saiki et al. "Analysis of enzymatically amplified 8-globin and HLA-DQQ DNA with allete-specific oligonucleotide probes" p. 163-166		1 - 12	
·				

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

	图除阿奎林丁	国家田原香ラ 1 01/ 31 0 /		
A. 発明の属する分野の分類(国際特許分類(IPC))				
Intel ⁶ C12N15	Intel® C12N15/54, C12P21/02, C12N9/12, C12N1/21			
B. 調査を行	デった分野 W小限資料(国際特許分類(IPC))			
の日本に て 11 つ たま			ļ	
Intel® C12N15	/54, C12P21/02, C12N9/12, C12N1/21			
最小限資料以外	トの資料で調査を行った分野に含まれるもの		:	
国際調査で使用	目した電子データベース(データベースの名称、)	調査に使用した用語)		
CAS ON LINE,	BIOSIS, WPI/WPI,L	•		
	5と認められる文献		服金・エ	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連すると	タけ その間 流する部所の表 示	関連する 請求の範囲の番号	
Y	Science 270 1995 K. Yamaguchi et al. [Ident	ification of a member of the MAPKK	1-12	
	K Family as a potential mediator of TGF- β	signal transduction, p. 2008-2011		
Y ,	斎藤日向他編「バイオサイエンスのための新し 236	い分子遺伝学」(南江堂) 1987 p. 235-	12	
A	Cell 80 1995 C. J. Marshall 「Specificity of :transient versus sustained extracellular j p. 179-185	receptor tyrosine kinase signaling signal-regulated kinase activation	1-12	
A	Science 265 1994 J.F. Smothers et al. Stimmanmalian 14-3-3 proteins on the raf proteins		1-12	
X C欄の続	さにも文献が列挙されている。	□ パテントファミリーに関する別	紙を参照。	
* 引用文献のカテゴリー の日の後に公表された文献 「A」特に関連のある文献ではなく、一般的技術水準を示す 「T」国際出願日又は優先日後に公表された文献であって もの て出願と矛盾するものではなく、発明の原理又は理 第0理解のために引用するもの				
n	「「」 毎先増主視に延禁を提記する文献又は他の文献の琴行 の新規性又は進歩性がないと考えられるもの			
ロード 日若し	主張に始義を発起する文献人は他の文献の発行くは他の特別な理由を確立するために引用する	「Y」特に関連のある文献であって、	当該文献と他の1以	
文献(理由を付す)	上の文献との、当業者にとって	自明である組合せに	
「O」ロ頭による開示、使用、展示等に言及する文献 よって進歩性がないと考えられるもの 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献				
国際調査を完	了した日 24.06.97	国際調査報告の発送日 08.0	7.97	
国際調査機関	の名称及びあて先	特許庁審査官(権限のある職員)	4B 9359	
	国特許庁(ISA/JP)	田中 美奈子		
	郵便番号100 都千代田区霞が関三丁目4番3号	電話番号 03-3581-1101	内線 3449	

国際出願番号 PCT/JP97/01050

C(続き). 用文献の	関連すると認められる文献	
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 Science 241 1988 Steven K Hanks et al. 「The	関連する
	Science 241 1988 Steven K. Hanks et al. 「The protein kinase family:conserv features and deduced phylogeny of the catalytic domains」p. 42-52	請求の範囲の番号 ed 1-12
	Nature 324 1986 Randall K.Saiki et al. [Analysis of enzymatically amplifies β -globin and HLA-DQ α DNA with allele-specific oligonucleotide probes] p. 3-166	d 16 1-12
		·