Scilab Textbook Companion for Introductory Fluid Mechanics by J. Katz¹

Created by
Varalaxmi Boge
B.Com
Others
Samatha Degree College, Hyderabad
College Teacher
None
Cross-Checked by
Spandana

June 2, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Introductory Fluid Mechanics

Author: J. Katz

Publisher: Cambridge University Press, Newyork

Edition: 1

Year: 2010

ISBN: 1107617138

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
1	Basic Concepts and Fluid Properties	6
2	The Fluid Dynamic Equation	10
3	Fluid Statics	12
4	Introduction to Fluid in Motion	16
5	Viscous Incompressible Flow Exact Solutions	19
7	The Laminar Boundary Layer	32
8	High Reynolds Number Flow Over Bodies	34
10	Elements of Inviscid Compressible flow	48
11	Fluid Machinary	53

List of Scilab Codes

Exa 1.1	Chapter1 Example1	6
Exa 1.2	Chapter1 Example2	6
Exa 1.4	Chapter1 Example4	7
Exa 1.5	Chapter1 Example5	7
Exa 1.6	Chapter1 Example6	8
Exa 1.7	Chapter1 Example7	9
Exa 2.3	Chapter2 Example3	10
Exa 2.4	Chapter2 Example4	11
Exa 3.1	Chapter3 Example1	12
Exa 3.2	Chapter3 Example2	12
Exa 3.3	Chapter3 Example3	13
Exa 3.4	Chapter3 Example4	14
Exa 3.5	Chapter3 Example5	14
Exa 4.1	Chapter4 Example1	16
Exa 4.2	Chapter4 Example2	17
Exa 4.7	Chapter4 Example7	17
Exa 4.8	Chapter4 Example8	18
Exa 5.2	Chapter5 Example2	19
Exa 5.3	Chapter5 Example3	20
Exa 5.4	Chapter5 Example4	20
Exa 5.5	Chapter5 Example5	21
Exa 5.6	Chapter5 Example6	21
Exa 5.7	Chapter5 Example7	22
Exa 5.8	Chapter5 Example8	23
Exa 5.9	Chapter5 Example9	23
Exa 5.10	Chapter5 Example10	24
Exa 5.11	Chapter5 Example11	25
Eva 5 12	Chapter5 Example12	25

Exa 5.13	Chapter5 Example13	26
Exa 5.14	Chapter5 Example14	27
Exa 5.15	Chapter5 Example15	28
Exa 5.16	Chapter5 Example16	30
Exa 5.17	Chapter5 Example17	30
Exa 7.1	Chapter7 Example1	32
Exa 7.2	Chapter7 Example2	32
Exa 8.1	Chapter8 Example1	34
Exa 8.2	Chapter8 Example2	34
Exa 8.3	Chapter8 Example3	35
Exa 8.6	Chapter8 Example6	36
Exa 8.7	Chapter8 Example7	36
Exa 8.8	Chapter8 Example8	37
Exa 8.9	Chapter8 Example9	37
Exa 8.10	Chapter8 Example10	38
Exa 8.11	Chapter8 Example11	38
Exa 8.12	Chapter8 Example12	39
Exa 8.13	Chapter8 Example13	39
Exa 8.14	Chapter8 Example14	40
Exa 8.15	Chapter8 Example15	40
Exa 8.16	Chapter8 Example16	41
Exa 8.17	Chapter8 Example17	41
Exa 8.18	Chapter8 Example18	42
Exa 8.19	Chapter8 Example19	43
Exa 8.20	Chapter8 Example20	43
Exa 8.21	Chapter8 Example21	44
Exa 8.22	Chapter8 Example22	44
Exa 8.23	Chapter8 Example23	45
Exa 8.24	Chapter8 Example24	46
Exa 8.25	Chapter8 Example25	46
Exa 10.1	Chapter10 Example1	48
Exa 10.2	Chapter10 Example2	48
Exa 10.3	Chapter10 Example3	49
Exa 10.5	Chapter10 Example5	49
Exa 10.6	Chapter10 Example6	51
Exa 11.1	Chapter11 Example1	53
Exa 11.2	Chapter11 Example2	53
Exa. 11.3	Chapter 11 Example 3	54

Exa 11.4	Chapter11 Example4	55
Exa 11.5	Chapter11 Example5	57
Exa 11.6	Chapter11 Example6	57
Exa 11.7	Chapter11 Example7	58
Exa 11.8	Chapter11 Example8	59
Exa 11.9	Chapter11 Example9	60
Exa 11.10	Chapter11 Example10	6.
Exa 11.11	Chapter11 Example11	62
Exa 11 12	Chapter11 Example12	69

List of Figures

5.1	Chapter 5 Example 14												27
5.2	Chapter 5 Example 15												29

Basic Concepts and Fluid Properties

Scilab code Exa 1.1 Chapter1 Example1

```
1 clc
2 //initialization of new variables
3 clear
4 M=29 // Molecular weight of air
5 R=8314.3 // J/mol K Gas constant
6 T=300 //K Temperature
7 P=1 //kg/cm^2 Pressure
8 g=9.8 //m/s^2 Acceleration due to gravity
9 //calculations
10 R=R/M
11 P=P*g*10^4
12 rho=P/(R*T)
13 //result
14 printf(' Density = %.3 f kg/m^3 ',rho)
```

Scilab code Exa 1.2 Chapter1 Example2

```
1 clc
2 //initialization of new variables
3 clear
4 t=2 //cm thickness
5 U=3 //m/s Velocity
6 mu=0.29 //kg/m s Coefficient of Viscocity
7 //calculations
8 tau=mu*U/(t*10^-2)
9 //results
10 printf(' Shear = %d N/m^2', tau)
```

Scilab code Exa 1.4 Chapter1 Example4

```
1 clc
2 //initialization of new variables
3 clear
4 sigma=2.5*10^-2 //N/m
5 D=10 //cm
6 //calculations
7 R=D/2
8 dP=2*sigma/(R*10^-2)
9 //result
10 printf('The pressure difference is = %.1 f N/m^2',dP)
```

Scilab code Exa 1.5 Chapter1 Example5

```
1 clc
2 //initialization of new variables
3 clear
4 R=1 //mm
5 sigma=0.073 //N/m
6 theta=0 //degrees
7 rho=1000 //kg/m^3
```

```
8 \text{ g=9.8} //\text{m/s}^2
9 //calculations
10 theta=theta*%pi/180 / radians
11 h=2*sigma*cos(theta)/(rho*g*R*10^-3)
12 //result
13 printf('The rise of water = \%.3 \, \text{f m',h})
14 R=1 /mm
15 \text{ sigma=0.48 } //N/m
16 theta=130 // degrees
17 rho=13600 // kg/m^3
18 g=9.8 //m/s^2
19 //calculations
20 theta=theta*%pi/180 //radians
21 h=2*sigma*cos(theta)/(rho*g*R*10^-3)
22 //result
23 printf('\n The rise of mercury = \%.4 \, \text{f m',h})
```

Scilab code Exa 1.6 Chapter1 Example6

```
1 clc
2 //initialization of new variables
3 clear
4 E=2.34*10^9 / N/m^2
                           Modulus of Elasticity
5 d=1 //km
                 depth
6 rho=1000 // kg/m^3
                          density
                     Acceleration due to gravity
7 \text{ g=9.8} //\text{m/s}^2
8 //calculations
9 d=d*1000
10 dp=rho*g*d
11 dVV = dp/E
12 //result
13 printf('The change in pressure is \%.2 \,\mathrm{e} \,\mathrm{N/m^2}',dp)
14 printf('\n Change in volume is \%.3e', dVV)
```

Scilab code Exa 1.7 Chapter1 Example7

```
1 clc
2 //initialization of new variables
3 clear
4 T = 300 / K
5 \text{ gama}=1.4
6 R = 286.6
7 //calculation
8 // for air
9 a=sqrt(gama*R*T)
10 // result
11 printf('The speed of sound in air is \%.1 \, f \, m/s',a)
12 // for sea water
13 E=2.34*10^9 // N/m^2
14 rho=1000 // kg/cm^2
15 a=sqrt(E/rho)
16 //result
17 printf('\n The speed of sound in sea waer is %d m/s
       ',a)
```

The Fluid Dynamic Equation

Scilab code Exa 2.3 Chapter 2 Example 3

```
1 clc
2 //initialization of new variables
3 clear
4 A1=30 //\text{cm}^2 Area at station 1
5 \text{ u1=1 } //\text{m/s}
                  Velocity at station 1
6 \text{ A3} = 20 / \text{cm}^2
                  Area at station 3
7 u3=1.2 //m/s
                  Velocity at Station 3
8 A2 = 20 / cm^2
                     Area at station 2
9 rho=1000 // kg/m^3
                         density
10 // Calculations
11 // m stands for mass flow rate which is conserved
12 m1=rho*u1*A1*10^-4
13 m3=rho*u3*A3*10^-4
14 \text{ m} 2 = \text{m} 1 - \text{m} 3
15 u2=m2/(rho*A2*10^-4)
16 //result
17 printf ('Mass flow rate entering station 1 is %.1f kg
      /s',m1)
18 printf('\n Mass flow rate entering station 2 is %.1f
       kg/s', m2)
19 printf('\n The average velocity leaving at station 2
```

Scilab code Exa 2.4 Chapter2 Example4

```
1 clc
2 //initialization of new variables
3 clear
4 Ue=5 //m/s Velocity
5 Ae=20 //cm^2 Area
6 dp=0 // Pressure difference
7 rho=1000 //kg/m^3 density
8 //calculations
9 Ae=Ae*10^-4
10 Fx=rho*Ue^2*Ae
11 //result
12 printf('The force on the water pipe is %d N',Fx)
```

Fluid Statics

Scilab code Exa 3.1 Chapter3 Example1

```
1 clc
2 //initialization of new variables
3 clear
4 h=380 //m
5 T=300 //K
6 g=9.81 //m/s^2
7 R=286.6 //m2/(s^2 K)
8 //calculations
9 Pr=exp(-g*h/(R*T)) //P2/P1
10 P1=1 //atm
11 dP=(P1-Pr)*101325 //N/m^2
12 //result
13 printf('The difference in pressure is %d N/m^2',dP)
```

Scilab code Exa 3.2 Chapter3 Example2

```
1 clc
2 //initialization of new variables
```

```
3 clear
4 d=4 //m Diameter
5 h=10 /m depth
6 \text{ th=}60 // \text{degrees}
                      Wall inclination
7 rho=1000 // \text{kg/m}^3 density
8 g=9.8 //m/s<sup>2</sup> Accelaration due to gravity
9 //calculations
10 p=rho*g*h
11 th=th*%pi/180
12 R=d/2
13 S=\%pi*R^2
14 \text{ Fz=-p*S}
15 Y = \text{%pi*R}^4/(4*h*\text{%pi*R}^2/\sin(th))
16 \text{ M}=\text{Fz}*\text{Y}
17 //result
18 printf ('Hydrostatic force = \%.2e N', Fz)
19 printf('\n Y coordinate of center of pressure with
      respect to centroid is %.4f m',Y)
20 printf('\n The moment required to open it is \%.2 e Nm
       ',-M)
```

Scilab code Exa 3.3 Chapter 3 Example 3

```
1 clc
2 //initialization of new variables
3 clear
4 d=5 //m depth
5 h=11 //m where traingle base is located
6 rho=1000 //kg/m^3 density
7 g=9.8 //m/s^2 Acceleration due to gravity
8 s=6 //m from figure
9 theta=30 //degrees
10 k=8 //m from the figure
11 kk=4 //m from the figure
12 b=6 //m from the figure
```

```
13 //calculations
14 theta=theta*%pi/180
15 \text{ h_bar=d+k*sin(theta)}
16 p=rho*g*h_bar
17 S=0.5*b*(kk+k)
18 \text{ Fz=-p*S}
19 Ixx=b*(kk+k)^3/36
20 Ixy=b*(b-2*s)*(kk+k)^2/72
21 y_bar=h_bar/sin(theta)
22 X = Ixy/(y_bar*S)
23 \text{ Y=Ixx/(y_bar*S)}
24 //results
25 printf ('Force = \%.3 \,\mathrm{e}\,\mathrm{N}', Fz)
26 printf('\n coordinates of center of pressure
      relative to centroid are \n (X, Y) = (\%.3f, \%.3f)
       m', X, Y)
```

Scilab code Exa 3.4 Chapter3 Example4

```
1 clc
2 //initialization of new variables
3 clear
4 F=20.9 //N
5 Vc=310 //cm^3
6 rho_w=1000 //kg/m^3
7 g=9.8 //m/s^2
8 //calculations
9 Wc=F+rho_w*g*Vc*10^-6
10 rho_c=Wc/(Vc*10^-6*g)
11 //result
12 printf('The crown density is %d kg/m^3',rho_c)
```

Scilab code Exa 3.5 Chapter 3 Example 5

```
1 clc
2 //initialization of new variables
3 clear
4 W=275 //kg
5 rho_c=1.22 //kg/m^3
6 D=15 //m
7 g=9.8 //m/s^2
8 Tc=290 //K
9 //calculations
10 L=W*g
11 Tr=1-(6*L/(rho_c*g*%pi*D^3)) // Tc/Th
12 Th=Tc/Tr
13 //result
14 printf('The temperature required is % .1 f K', Th)
```

Introduction to Fluid in Motion

Scilab code Exa 4.1 Chapter4 Example1

```
1 clc
2 //initialization of new variables
3 clear
4 An=1 //\text{cm}^2
5 Un=15 //m/s
6 Ub=10 //m/s
7 U1=5 //m/s
8 \text{ U2=5 } //\text{m/s}
9 th=120 // degrees
10 rho=1000 // \text{kg/m}^3
11 //calculations
12 th=th*%pi/180
13 Fx=rho*U1^2*An*10^-4*(cos(th)-1)
14 Fz=rho*U1^2*An*10^-4*sin(th)
15 \quad W = Fx * Ub
16 / results
17 printf('The forces acting are Fx = \%.2 f N \setminus n Fz = \%
      .2 f N', Fx, Fz)
18 printf('\n The power generated is %.1 f W',-W)
```

Scilab code Exa 4.2 Chapter4 Example2

```
1 clc
2 //initialization of new variables
3 clear
4 u = 15 //m/s
5 D = 0.1 / m
6 \text{ u1=10 } //\text{m/s}
7 u2=10 //m/s
8 rho=1000 // kg/m^3
9 \text{ th=60} // \text{degrees}
10 //calculations
11 th=th*%pi/180
12 A = \%pi * D^2/4
13 Fx=rho*u^2*A*(cos(th)-1)
14 //result
15 printf ('Force on the wedge is Fx = \%.1 f N', Fx)
16 printf('\n Fz = 0 N')
```

Scilab code Exa 4.7 Chapter4 Example7

```
1 clc
2 //initialization of new variables
3 clear
4 m=1 //kg
5 p=10^5 //N/m^2
6 A=1 //cm^2
7 w=0.5 //kg
8 rho=1000 //kg/m^2
9 //calculations
10 Ue=sqrt(2*p/rho)
11 m_0=w+m
```

```
12 m_s=w
13 Uf=Ue*log(m_0/m_s)
14 //results
15 printf('The exit velocity is %.2 f m/s', Ue)
16 printf('\n The final velocity of the system is %.2 f m/s', Uf)
```

Scilab code Exa 4.8 Chapter4 Example8

```
1 clc
2 //initialization of new variables
3 clear
4 h=20 //cm
5 g=9.8 //m/s^2
6 rho_w=1000 //kg/m^3
7 rho_a=1.2 //kg/m^3
8 //calculations
9 dP=rho_w*g*h*10^-2
10 U=sqrt(2*dP/rho_a)
11 //results
12 printf('Air speed is %.2 f m/s ',U)
```

Viscous Incompressible Flow Exact Solutions

Scilab code Exa 5.2 Chapter 5 Example 2

```
1 clc
2 //initialization of new variables
3 clear
4 U=5 //m/s
5 h=1 /cm
6 \text{ mu} = 0.001
7 //calculations
8 \text{ Uav=U/2}
9 Q=U*h*10^-2/2
10 tau_xz=mu*U/(h*10^-2)
11 S=1 //m^2
12 F = tau_xz*S
13 / results
14 printf('Shear stress per unit width at wall is %.1f
      N/m^2', tau_xz)
15 printf('\n The force required is \%.1 \, \text{f N',F})
```

Scilab code Exa 5.3 Chapter 5 Example 3

```
1 clc
2 //initialization of new variables
3 clear
4 Uav=1 //m/s
5 h=1 /cm
6 \text{ mu} = 0.001
7 rho=1000 // kg/m^3
8 //calculations
9 h=h*10^-2
10 Umax = 1.5 * Uav
11 Dp = -12*mu*Uav/h^2
12 tau = -h/2*Dp
13 Re=rho*Uav*h/mu
14 \text{ Cf} = 12/\text{Re}
15 //results
16 printf ('Max velocity = \%.2 \text{ f m/s}', Umax)
17 printf('\n Pressure gradient = \%.2 \text{ f N/m}^3', Dp)
18 printf('\n shear = \%.1 \, f \, N', tau)
19 printf('\n friction coefficient = \%.2e',Cf)
```

Scilab code Exa 5.4 Chapter 5 Example 4

```
1 clc
2 //initialization of new variables
3 clear
4 h1=0.2 //mm gap
5 hr=2.2 //gap ratio
6 u=50 //m/s linear velocity
7 mu=1.8*10^-5 // Coefficient of Viscocity
8 l=1 //cm Length of the magnetic pickup
9 //calculations
10 l=1*10^-2
11 h1=h1*10^-3
```

```
12 L=0.16*mu*u*(1/h1)^2
13 R=4.7*h1/1
14 //results
15 printf('Lift = %.2 f N/m',L)
16 printf('\n Drag to Lift ratio = %.3 f ',R)
```

Scilab code Exa 5.5 Chapter 5 Example 5

```
1 clc
2 //initialization of new variables
3 clear
4 L=3 //m
5 D=1.2 /cm
6 \ Q=0.5 \ //L/min
7 mu=1.9*10^-2
8 rho=814 // kg/m^3
9 //calculations
10 R = D/2 * 10^-2
11 Q = Q/60*10^{-3}
12 Dp = -Q*8*mu/(\%pi*R^4)
13 S=\%pi*R^2
14 Uav=Q/S
15 Re=rho*Uav*D/mu
16 //results
17 printf('The pressure drop is %.1f N/m<sup>2</sup>',Dp)
18 // Answer given in the ext is wrong by a scale of 10
```

Scilab code Exa 5.6 Chapter 5 Example 6

```
1 clc
2 //initialization of new variables
3 clear
4 L=10 //m
```

```
5 D=0.02 //m
6 Uav=0.15 //m/s
7 rho=1000 //kg/m^3
8 mu=10^-3
9 g=9.8 //m/s^2
10 //calculations
11 Re=rho*Uav*D/mu
12 f=64/Re
13 Hf=f*L*Uav^2/(D*2*g)
14 //results
15 printf('Head loss is = %.4f m', Hf)
```

Scilab code Exa 5.7 Chapter 5 Example 7

```
1 clc
2 //initialization of new variables
3 clear
4 Q=6 //L/min
5 D=3 /cm
6 \text{ K=0.32}
7 \text{ g=9.8 } //\text{m/s}^2
8 rho=1000 // kg/m^3
9 //calculations
10 R = D/2 * 10^-2
11 S=\%pi*R^2
12 Q = Q/60*10^{-3}
13 Uav=Q/S
14 Hf = K * Uav^2/(2*g)
15 dP=Hf*rho*g
16 //results
17 printf('The pressure drop is \%.2 \text{ f N/m}^2', dP)
18 printf('\n Head loss is %.2e m', Hf)
```

Scilab code Exa 5.8 Chapter 5 Example 8

```
1 clc
2 //initialization of new variables
3 clear
4 h = 20 / m
5 a=2 /m
6 \text{ f=0.015}
7 D=0.3 / m
8 \ K=0.3
9 g=9.8 //m/s^2
10 rho=804 // kg/m^3
11 mu=1.9*10^-3 / N s/m^2
12 //calculations
13 u2=sqrt((h+a)*2*g/(1+f*202/D+2*K))
14 S = \%pi * D^2/4
15 \ Q=u2*S
16 \text{ Re=rho*u2*D/mu}
17 / results
18 printf('Average discarge velocity = \%.2 f m/s',u2)
19 printf('\n Re = \%.3e', Re)
```

Scilab code Exa 5.9 Chapter 5 Example 9

```
1 clc
2 //initialization of new variables
3 clear
4 h2=0.2 //m
5 D=0.01 //m
6 h1=0.1 //m
7 rho=1254 //kg/m^3
8 mu=0.62 //N s/m^2
9 g=9.8 //m/s^2
10 //calculations
11 // Quadratic equation: a*u^2+b*u+c=0
```

```
12 a=1/(2*g)
13 b=32*mu*h2/(rho*g*D^2)
14 c=-(h1+h2)
15 u2a=(-b+sqrt(b^2-4*a*c))/(2*a)
16 u2b=(-b-sqrt(b^2-4*a*c))/(2*a)
17 u2=max(u2a,u2b)
18 //results
19 printf('Exit velocity is %.3f m/s',u2)
20 // Answer in the text differs by a scale of 10
```

Scilab code Exa 5.10 Chapter 5 Example 10

```
1 clc
2 //initialization of new variables
3 clear
4 h = 20 / m
5 D1=0.3 //m upto 50 m distance
6 D2=0.2 //m
7 K = 0.1
8 L1 = 50 / m
9 L2=100 / m
10 f=0.015
11 g=9.8 //m/s^2
12 //calculations
13 u3=sqrt(h*2*g/(1+f*L1/D1*(D2/D1)^4+K*(D2/D1)^4+f*L2/D1)
     D2))
14 S3 = \%pi * D2^2/4
15 \ Q=u3*S3
16 //results
17 printf ('Average discharge velocity is %.2 f m/s',u3)
18 printf('\n The corresponding flow rate is %.2 f m/s',
      Q)
```

Scilab code Exa 5.11 Chapter 5 Example 11

```
1 clc
2 //initialization of new variables
3 clear
4 L=20 /m
5 D=6 /cm
6 th=40 // degrees
7 Q=7.63 //L/s
8 \text{ rho=900}^{-1}/\text{kg/m}^3
9 mu = 0.18 / N s/m^2
10 g=9.8 //m/s^2
11 //calculations
12 th=th*%pi/180
13 R = D/2 * 10^-2
14 S = \%pi * R^2
15 \ U=Q*10^-3/S
16 \text{ Re=rho*U*D*10^--2/mu}
17 f = 64/Re
18 Hf = f * L/D * U^2/(2 * g) * 10^2
19 Dp=rho*g*(L*sin(th)+Hf)
20 P = Dp *Q *10^{-3}
21 // result
22 printf('Power = \%.1 \text{ f W',P})
```

Scilab code Exa 5.12 Chapter 5 Example 12

```
1 clc
2 //initialization of new variables
3 clear
4 Q=5 //L/min
5 L=10 //m
6 D=5 //cm
7 UD=3 //cm
8 L1=12 //m
```

```
9 K1 = 0.9
10 \text{ K2=0.2}
11 f = 0.025
12 //calculations
13 \ Q = Q * 10^{-3}
14 D = D * 10^{-2}
15 R = D/2
16 UD=UD*10^-2
17 \text{ UR=UD/2}
18 Ur=f*L/D/(f*L1/UD+2*K1+2*K2)
19 Ur=sqrt(Ur)
20 Ul=Q/\%pi*1/(R^2+Ur*UR^2)
21 Ql=%pi*R^2*Ul*10^3
22 // results
23 printf ('Velocity and flow rate in the lower pipe are
         respectively \%.2 \, \text{f} \, \text{m/s} \, \%.2 \, \text{f} \, \text{L/s}, Ul,Ql)
```

Scilab code Exa 5.13 Chapter 5 Example 13

```
1 clc
2 //initialization of new variables
3 clear
4 z=0.8 / m
5 b=1 /m
6 th=60 //degrees
7 n = 0.012
8 phi=0.3 // degrees
9 //calculations
10 th=th*\%pi/180
11 phi=phi*%pi/180
12 S=(1+z/tan(th))*z
13 Ph=1+2*z/sin(th)
14 Rh = S/Ph
15 Uav=1/n*Rh^(2/3)*sqrt(tan(phi))
16 \ Q=Uav*S
```


Figure 5.1: Chapter5 Example14

```
// results
printf('Average velocity is %.2 f m/s', Uav)
printf('\n Flow rate = %.2 f m^3/s',Q)
```

Scilab code Exa 5.14 Chapter5 Example14

```
1 clc
2 //initialization of new variables
3 clear
4 n = 0.012;
5 S = 1;
```

```
6 \text{ alpha} = 1; // \text{degrees}
7 Z = 0.00005:0.05:5;
8 k = (5-0.00005)/0.05 +1;
9 \text{ for } i = 1:k
10
       R_h(i) = S/((1/Z(i))+2*Z(i));
11
       U_{av}(i) = (1/n)*(R_h(i)^(2/3))*sqrt(tan(alpha*
           %pi/180));
       Q(i) = U_av(i)*S;
12
       b(i) = S/Z(i);
13
       AR(i) = Z(i)/b(i);
14
15 end
16
17 plot(AR(1:46), U_av(1:46));
18 xlabel('Aspect ratio');
19 ylabel('Q (m^3/s)');
```

Scilab code Exa 5.15 Chapter 5 Example 15

```
1 clc
2 //initialization of new variables
3 clear
4 D=1 //m
5 alpha=0.5 //degrees
6 n=0.012
7 //calculations
8 R=D/2
9
10
11 theta = 1:1:180;
12 R_h = 0.5*R - (45*R/%pi)*(sin(2*theta*%pi/180))./(theta*180/%pi);
13 Z = R*(1-cos(theta*%pi/180));
14 U_av = (1/n)*(R_h^(2/3))*sqrt(tan(alpha));
```


Figure 5.2: Chapter 5 Example
15 $\,$

Scilab code Exa 5.16 Chapter 5 Example 16

```
1 clc
2 //initialization of new variables
3 clear
4 \text{ u1=8 } //\text{m/s}
5 z1=1 /m
6 \text{ g=9.8} / \text{/m/s}^2
7 //calculations
8 Fr1=u1/sqrt(g*z1)
9 zr = (-1 + sqrt (1 + 8 * Fr1^2))/2
10 z2=z1*zr
11 u2=u1*z1/z2
12 Fr2=u2/sqrt(g*z2)
13 hr=1-zr+u1^2/(2*g*z1)-u2^2/(2*g*z1)
14 loss=hr*z1/(z1+u1^2/(2*g))
15 //results
16 printf ('Fr1 = \%.3 \, f', Fr1)
17 printf('\n Fr2 = \%.3 \, f', Fr2)
18 printf('\n percent of loss = \%.1f percent', loss*100)
```

Scilab code Exa 5.17 Chapter 5 Example 17

```
1 clc
2 //initialization of new variables
3 clear
4 D=0.5 //m
5 H=0.5 //m
6 d=1 //m
7 g=9.8 //m/s^2
8 //calculations
9 Cd=0.399+0.0598*H/D
10 Q=Cd*d/2*sqrt(2*g)*H^(3/2)
11 //results
12 printf('Flow rate is Q = %.3f m^3/s',Q)
```

The Laminar Boundary Layer

Scilab code Exa 7.1 Chapter 7 Example 1

```
1 clc
2 //initialization of new variables
3 clear
4 \text{ w=1} / \text{m}
5 L=0.5 / m
6 u=2 //m/s
7 rho=1000 // kg/m^3
8 \text{ mu} = 10^{-3}
9 //calculations
10 \text{ ReL=rho*u*L/mu}
11 Cd=2*0.664/sqrt(ReL)
12 D=2*Cd*1/2*rho*u^2*(w*L)
13 del=1.721*L/sqrt(ReL)
14 th=0.664*L/sqrt(ReL)
15 //results
16 printf('The drag on teh plate is %.3 f N',D)
```

Scilab code Exa 7.2 Chapter 7 Example 2

```
1 clc
2 //initialization of new variables
3 clear
4 u=12 //m/s
5 w=10 //m
6 L=4 //m
7 rho=1.22 //kg/m^3
8 mu=1.8*10^-5
9 //calculations
10 ReL=rho*u*L/mu
11 Cd=0.0032 //from figure
12 D=2*Cd*1/2*rho*u^2*(w*L)
13 //results
14 printf('Total drag on plates is %.2f N',D)
```

Chapter 8

High Reynolds Number Flow Over Bodies

Scilab code Exa 8.1 Chapter8 Example1

```
1 clc
2 //initialization of new variables
3 clear
4 sigma=5 //m^2/s
5 x0=1
6 y0=1 //(x0,y0) location of source
7 x=0
8 y=-1
9 //calculations
10 u=sigma/(2*%pi)*(x-x0)/((x-x0)^2+(y-y0)^2)
11 w=sigma/(2*%pi)*(y-y0)/((x-x0)^2+(y-y0)^2)
12 //results
13 printf('u = %.3 f m/s',u)
14 printf('\n w = %.3 f m/s',w)
```

Scilab code Exa 8.2 Chapter8 Example2

Scilab code Exa 8.3 Chapter8 Example3

```
1 clc
2 //initialization of new variables
3 clear
4 gama=5 //\text{m}^2/\text{s}
5 x0=1
6 y0=1 //(x0,y0) location of source
7 \quad x = 0
8 y = -1
9 //calculations
10 w = -gama/(2*\%pi)*(x-x0)/((x-x0)^2+(y-y0)^2)
11 u=gama/(2*\%pi)*(y-y0)/((x-x0)^2+(y-y0)^2)
12 //results
13 printf ('u = \%.3 \, \text{f m/s}', u)
14 printf('\n w = \%.3 \text{ f m/s',w})
15 \quad x=3
16 y=0
17 //calculations
```

```
18 w=-gama/(2*%pi)*(x-x0)/((x-x0)^2+(y-y0)^2)
19 u=gama/(2*%pi)*(y-y0)/((x-x0)^2+(y-y0)^2)
20 //results
21 printf('\n for the second point')
22 printf('\n u = %.3 f m/s',u)
23 printf('\n w = %.3 f m/s',w)
```

Scilab code Exa 8.6 Chapter8 Example6

```
1 clc
2 //initialization of new variables
3 clear
4 Re=3*10^6
5 CdT=0.004
6 x=0.4 //40%
7 //calculations
8 Cd=2*0.664/sqrt(Re)
9 Cd=x*Cd+(1-x)*CdT
10 Cd=2*Cd
11 //results
12 printf('For two sides the drag coefficient is estimated as %.4f',Cd)
```

Scilab code Exa 8.7 Chapter8 Example7

```
1 clc
2 //initialization of new variables
3 clear
4 h=15 //m
5 D=0.25 //m
6 u=30 //m/s
7 rho=1.2 //kg/m<sup>3</sup>
8 mu=1.81*10<sup>5</sup>-5
```

```
9 Cd=0.7

10 Re=rho*u*D/mu

11 D=Cd*1/2*rho*u^2*(h*D)

12 M=h/2*D

13 //results

14 printf('D = %.1 f N',D)

15 printf('\n M = %d N m',M)
```

Scilab code Exa 8.8 Chapter8 Example8

```
1 clc
2 //initialization of new variables
3 clear
4 D=0.5 //cm
5 rA1=2700 //kg/m^3
6 mu=0.29
7 rOil=919 //kg/m^3
8 g=9.8 //m/s^2
9 //calculations
10 D=D*10^-2
11 R=D/2
12 U=2/(9*mu)*(rA1-rOil)*g*R^2
13 //result
14 printf('The ball will sink with %.3 f m/s',U)
```

Scilab code Exa 8.9 Chapter8 Example9

```
1 clc  
2 //initialization of new variables  
3 clear  
4 Cd=1.2  
5 r=1.2 //kg/m^3  
6 u=15 //km/h
```

```
7 l=1 //m
8 b=1 //m
9 //calculations
10 D=Cd*1/2*r*(u/3.6)^2*(1*b)
11 //result
12 printf('The force on the plate is %.1 f N',D)
```

Scilab code Exa 8.10 Chapter8 Example10

```
1 clc
2 //initialization of new variables
3 clear
4 u = 25 //km/h
5 t=1 /h
6 \text{ S=0.36} //\text{m}^2
7 \text{ Cd} = 0.88
8 r=1.2 / kg/m^3
9 //calculations
10 D=Cd*1/2*r*(u/3.6)^2*(S)
11 P=D*u/3.6
12 E=P*t*3600
13 //results
14 printf('Drag force = \%.2 \,\mathrm{f} N',D)
15 printf('\n Power = \%.2 \text{ f W',P})
16 printf('\n Energy spent is %.1 f KJ', E/1000)
```

Scilab code Exa 8.11 Chapter8 Example11

```
1 clc
2 //initialization of new variables
3 clear
4 u=20 //km/h
5 Cd=0.15
```

```
6 S=4 //m^2
7 r=1025 //kg/m^3
8 //calculations
9 D=Cd*1/2*r*(u/3.6)^2*(S)
10 P=D*u/3.6
11 //results
12 printf('Drag force = %d N',D)
13 printf('\n Power = %.2 f KW',P/1000)
```

Scilab code Exa 8.12 Chapter8 Example12

```
1 clc
2 //initialization of new variables
3 clear
4 m=90 //kg
5 D=6 //m
6 g=9.8 //m/s^2
7 r=1.2 //kg/m^3
8 Cd=1.2
9 //calculations
10 R=D/2
11 S=%pi*R^2
12 U=sqrt(2*m*g/(Cd*r*S))
13 //results
14 printf('U = %.2 f m/s',U)
```

Scilab code Exa 8.13 Chapter8 Example 13

```
1 clc
2 //initialization of new variables
3 clear
4 Cd=0.32
5 S=1.8 //m^2
```

```
6 Pe=300 //hp
7 u=100 //km/h
8 r=1.2 //kg/m^3
9 //calculations
10 D=Cd*1/2*r*(u/3.6)^2*(S)
11 P=D*u/3.6
12 //result
13 printf('Power required = %.1 f kW = %.1 f hp',P/1000,P
     *1.341/1000)
```

Scilab code Exa 8.14 Chapter8 Example14

```
1 clc
2 //initialization of new variables
3 clear
4 D=0.3 //m
5 u=35 //m/s
6 r=1.2 //kg/m^3
7 mu=1.81*10^-5
8 St=0.23
9 //calculations
10 Re=r*u*D/mu
11 f=St*u/D
12 //results
13 printf('So there are %d full cycles per second',f)
```

Scilab code Exa 8.15 Chapter8 Example 15

```
1 clc
2 //initialization of new variables
3 clear
4 w=2 //m
5 u=100 //km/h
```

```
6  r=1.2 //kg/m^3
7  mu=1.81*10^-5
8  //calculations
9  D=w
10  Re=r*u*D/(3.6*mu)
11  St=0.23 //based on Re
12  f=St*u/(3.6*D)
13  l=u/(3.6*f)
14  //results
15  printf('Oscillation frequency is %.2 f Hz',f)
16  printf('\n The distance between two cycles is %.2 f m ',1)
```

Scilab code Exa 8.16 Chapter8 Example16

```
1 clc
2 //initialization of new variables
3 clear
4 D=0.65 //cm
5 u=50 //km/h
6 r=1.2 //kg/m^3
7 mu=1.81*10^-5
8 //calculations
9 D=D*10^-2
10 Re=r*u*D/(3.6*mu)
11 St=0.21 //based on Re
12 f=St*u/(3.6*D)
13 //results
14 printf('So there are %d full cycles per second',f)
```

Scilab code Exa 8.17 Chapter8 Example17

```
1 clc
```

```
2 //initialization of new variables
3 clear
4 D=3 /cm
5 u = 11 //m/s
6 \text{ w} = 7000 / \text{RPM}
7 r=1.2 / kg/m^3
8 //calculations
9 D=D*10^-2
10 R=D/2
11 S=\%pi*R^2
12 Rw = R * 2 * \%pi * w / 60 * 1 / u
13 Cl=0.27 //based on Rw
14 \text{ Cd=0.63} // \text{based on Rw}
15 L=C1*0.5*r*u^2*S
16 D = Cd * 0.5 * r * u^2 * S
17 //results
18 printf ('Lift = \%.3 \, \text{f N',L})
19 printf('\n Drag = %.3 f N',D)
```

Scilab code Exa 8.18 Chapter8 Example18

```
1 clc
2 //initialization of new variables
3 clear
4 c=3.5 //m
5 u=20 //km/h
6 alpha=5 //degrees
7 r=1.2 //kg/m^3
8 //calculations
9 alpha=alpha*%pi/180
10 Cl=2*%pi*alpha
11 L=0.5*Cl*r*(u/3.6)^2*c*1
12 //results
13 printf('Lift per unit span is %.2 f N',L)
```

Scilab code Exa 8.19 Chapter8 Example19

```
1 clc
2 //initialization of new variables
3 clear
4 m=50 //kg
5 r=1.2 //kg/m^3
6 u=150 //km/h
7 Cl=0.5
8 g=9.8 //m/s^2
9 //calculations
10 c=m*g/(0.5*r*(u/3.6)^2*Cl)
11 Cd=0.005 //from figure
12 r=Cl/Cd
13 //results
14 printf('The chord length required is %.2 f m',c)
15 printf('\n Lift to Drag ratio is %d',r)
```

Scilab code Exa 8.20 Chapter8 Example 20

```
1 clc
2 //initialization of new variables
3 clear
4 c=3.5 //m
5 b=10 //m
6 u=20 //km/h
7 r=1.2 //kg/m^3
8 a=5 //degrees
9 //calculations
10 a=a*%pi/180
11 Cl=2*%pi*a/(1+2*c/b)
12 L=Cl*0.5*r*(u/3.6)^2*(c*b)
```

```
13 AR=b/c

14 Cdi=Cl^2/(%pi*AR)

15 Di=Cdi*0.5*r*(u/3.6)^2*(c*b)

16 //results

17 printf('Lift = %.2 f N',L)
```

Scilab code Exa 8.21 Chapter8 Example21

```
1 clc
2 //initialization of new variables
3 clear
4 m=100 //tonne
5 u=200 //km/h
6 b=47 //m
7 r=1.22 //kg/m^3
8 g=9.8 //m/s^2
9 //calculations
10 gama=m*1000*g/(r*u/3.6*b)
11 w=2*gama/(%pi*b/2)
12 //results
13 printf('Downwash = %.2 f m/s',w)
```

Scilab code Exa 8.22 Chapter8 Example22

```
9 a=a*%pi/180

10 AR1=b1/c

11 AR2=b2/c

12 Cla1=2*%pi/(1+b1/AR1)

13 Cla2=2*%pi/(1+b2/AR2)

14 Cl1=Cla1*a

15 Cl2=Cla2*a

16 Cd1=Cl1^2/(%pi*AR1)

17 Cd2=Cl2^2/(%pi*AR2)

18 r1=Cl1/Cd1

19 r2=Cl2/Cd2

20 //results

21 printf('Lift to induced drag ratios are respectively %.2 f and %.2 f ',r1,r2)
```

Scilab code Exa 8.23 Chapter8 Example23

```
1 clc
2 //initialization of new variables
3 clear
4 \text{ m=}250 // tonne Weight}
5 b = 64.4 / m
                   wing span
6 \text{ S} = 541 / \text{m}^2
                  Wing area
7 c=8.4 / m
                Wing chord
8 r=1.1 //kg/m^3
                     Air density
9 u = 600 / km/h
                  air speed
10 g=9.8 //m/s^2 Acceleration due to gravity
11 //calculations
12 u=u/3.6
13 Cl=m*g*1000/(0.5*r*u^2*S)
14 \text{ AR=b^2/S}
15 Cla=2*\%pi/(1+2/AR)
16 aa=Cl/Cla
17 aa=aa*180/%pi
18 // results
```

```
19 printf('Airplane angle of attack is %.1f degrees',aa
)
20 printf('\n Lift slope is %.2f ',Cla)
```

Scilab code Exa 8.24 Chapter8 Example24

```
1 clc
2 //initialization of new variables
3 clear
4 b=4 /m
              wide
5 c = 0.5 / m
                chord
6 \text{ a=5} // \text{degrees}
                     angle of inclination
7 u=12 //m/s speed
8 r = 1030 / kg/m^3
                    density
9 //calculations
10 \ a=a*\%pi/180
11 \quad AR=b/c
12 Cla=2*\%pi/(1+2/AR)
13 Cl=Cla*a
14 \ W=Cl*0.5*r*u^2*b
15 Cdi=Cl^2/(%pi*AR)
16 Di=0.5*Cdi*r*u^2*b
17 P = Di * u
18 printf ('The power required is %.2 f kW', P/1000)
19 printf('\n The weight of the boat is %.d N', W)
```

Scilab code Exa 8.25 Chapter 8 Example 25

```
1 clc
2 //initialization of new variables
3 clear
4 u=70 //m/s
5 a=20 //degrees
```

```
6 b=15 //m
7 c=25 //m
8 r=1.2 //kg/m^3
9 //calculations
10 AR=b^2/(0.5*b*c)
11 a=a*%pi/180
12 Cl=(0.963+1.512*AR)*sin(a)
13 W=Cl*0.5*r*u^2*(b*c/2)
14 D=W*tan(a)
15 //results
16 printf('Airplane weight is %.1f N',W)
17 printf('\n Drag is %.1f N',D)
```

Chapter 10

Elements of Inviscid Compressible flow

Scilab code Exa 10.1 Chapter10 Example1

```
1 clc
2 //initialization of new variables
3 clear
4 T=300 //k
5 gama=1.4
6 R=286.6
7 //calculations
8 a=sqrt(gama*R*T)
9 //results
10 printf('The speed of sound in air is %.2f m/s',a)
```

Scilab code Exa 10.2 Chapter10 Example2

```
1 clc
2 //initialization of new variables
3 clear
```

```
4 T0=850 //k

5 T=270 //k

6 gama=1.4

7 //calculations

8 M=sqrt(2/(gama-1)*(T0/T-1))

9 //results

10 printf('M = %.2f',M)
```

Scilab code Exa 10.3 Chapter10 Example3

```
1 clc
2 //initialization of new variables
3 clear
4 M=1
5 T0=300 //k
6 P0=4 //atm
7 gama=1.4
8 //calculations
9 Tr=1+(gama-1)*M^2/2
10 Pr=Tr^(gama/(gama-1))
11 P=P0/Pr
12 T=T0/Tr
13 //results
14 printf('At the section:')
15 printf('\n Pressure is %.2 f atm',P)
16 printf('\n Temperature is %.2 f K',T)
```

Scilab code Exa 10.5 Chapter 10 Example 5

```
1 clc
2 //initialization of new variables
3 clear
4 P0=4 //atm
```

```
5 \text{ T0} = 300 \text{ //K}
6 \text{ At=5} //\text{cm}^2
7 Ae=10 //\text{cm}^2
8 //calculations
9 // case (1)
10 P1=3.8 //atm
11 Pr=P0/P1
             //from the figure
12 M1 = 0.26
13 \text{ Ar} = 2.32
14 Aa=Ae/Ar
              //A*
15 Art=At/Aa //At/A*
16 \text{ Mt} = 0.64 //\text{from the figure}
17 printf('case (1)')
18 printf('\n Exit Mach = \%.2 \, \text{f}', Mt)
19 // case (2)
20 Aer=2.00 //from figure
21 M2=0.3 //based on the area ratio
22 \text{ Pr} = 0.939
23 P2=Pr*P0
24 printf('\n case (2)')
25 printf('\n back Pressure is \%.2 \, \text{f} atm',P2)
26 printf ('\n Exit Mach = \%.2 \,\mathrm{f}', M2)
27 printf('\n So when the pressure at the exit is
      lowered a bit, the velocity at the throat becomes
        sonic.')
28 // case (3)
29 Ar=2.00 //from figure
30 \text{ M2=2.2} //based on area ratio
31 Pr=0.094
32 P2=Pr*P0
33 printf('\n case (3)')
34 printf('\n back pressure is \%.2 \, \text{f atm'}, P2)
35 printf('\n Exit Mach = \%.2 \,\mathrm{f}', M2)
36 printf('\n The pressure ratio has to be very smaller
        to create a supersonic nozzle')
```

Scilab code Exa 10.6 Chapter10 Example6

```
1 clc
2 //initialization of new variables
3 clear
4 T0 = 2100 / k
5 \text{ PO} = 3.5 / \text{atm}
6 At=4 //\text{cm}^2
7 Ar=4.0 // Ae/At
8 Pa=1 //atm
9 \text{ gama}=1.4
10 R=286.6
11 //calculations
12 \text{ Me} = 2.94
13 Pr=0.030
14 \text{ Tr} = 0.366
15 // from Isentropic table for Area ratio = 4
16 Pe=Pr*P0
17 \text{ Te=T0*Tr}
18 ue=Me*sqrt(gama*R*Te)
19 re=Pe*10^5/(R*Te)
20 Ae=At*Ar
21 \quad Ae = Ae * 10^- - 4
22 Fx=re*ue^2*Ae+(Pe*10^5-0)*Ae
23 printf('The thrust in space is %.2 f N',Fx)
24 // at sea level
25 \quad M1 = 2.9
26 M2 = sqrt((2 + (gama - 1) * M1^2) / (gama * (2 * M1^2 - 1) + 1))
27 \text{ POr} = 0.358
28 Ar=3.85 //Isentropic table
29 \text{ Aer} = 1.433
30 \text{ Me} = 0.45
31 \text{ Per} = 0.870
32 \text{ Tr} = 0.961
```

```
33  // All the values from isentropic table
34  Pe=P0*P0r*Per
35  Te=T0*Tr
36  ue=Me*sqrt(gama*R*Te)
37  re=Pe*10^5/(R*Te)
38  Fx=re*ue^2*Ae+(Pe*10^5-Pa*10^5)*Ae
39  printf('\n The thrust at sea level is %.2 f N',Fx)
```

Chapter 11

Fluid Machinary

Scilab code Exa 11.1 Chapter11 Example1

```
1 clc
2 //initialization of new variables
3 clear
4 r=0.3 //m
5 w=3000 //RPM
6 Cz=61 //m/s
7 th=45 //degrees
8 //calculations
9 U=%pi*2*r*w/60
10 beta1=atan(U/Cz)
11 beta1=beta1*180/%pi
12 beta2=th
13 DCth=U-Cz
14 //results
15 printf('Beta_1 = %d degrees',beta1)
```

Scilab code Exa 11.2 Chapter11 Example2

```
1 clc
2 //initialization of new variables
3 clear
4 Cz = 120 //m/s
5 R_av = 0.5 / m
6 \text{ T01=300 } //k
7 \text{ w} = 4000 / \text{RPM}
8 alpha1=22 // degrees
9 beta2=27 // degrees
10 \text{ eta} = 0.98
11 Cp=0.24 // kcal/kg C
12 \text{ gama} = 1.4
13 //calculations
14 Cp=Cp*4200 //1 kcal= 4200 J
15 alpha1=alpha1*%pi/180
16 beta2=beta2*%pi/180
17 \ U=2*\%pi*R_av*w/60
18 DCth=U-Cz*(tan(alpha1)+tan(beta2))
19 Pr=(1+eta*U*DCth/(Cp*T01))^(gama/(gama-1))
20 //results
21 printf ('The pressure rise (compression ratio) is \%.2
      f', Pr)
```

Scilab code Exa 11.3 Chapter11 Example3

```
1 clc
2 //initialization of new variables
3 clear
4 beta_d=15 //degrees flow turn angle
5 r2=0.5 //m tip radius
6 r1=0.2 //m hub radius
7 w=5500 //RPM rotaion speed
8 Cz=120 //m/s Axial velocity
9 T=350 //k Temperature
10 eta=0.98 //Efficiency
```

```
11 // air properties
12 \text{ gama} = 1.4
13 R=286.6
14 \text{ cp=0.24}
15 //calculatons
16 cp=cp*4200
17 TO1=T
18 Uhub=2*%pi*r1*w/60
19 Utip=2*%pi*r2*w/60
20 \text{ w1} = \text{sqrt}(\text{Utip}^2 + \text{Cz}^2)
21 a1=sqrt(gama*R*T)
22 M1 = w1/a1
23 //Hub
24 beta1=atan(Uhub/Cz)
25 beta2=beta1*180/%pi-beta_d
26 \text{ beta2=beta2*\%pi/180}
27 Cp=1-cos(beta1)^2/cos(beta2)^2
28 DCth=Uhub-Cz*tan(beta2)
29 Pr=(1+eta*Uhub*DCth/(cp*T01))^(gama/(gama-1))
30 printf('Hub:')
31 printf('\n The pressure rise coefficient is \%.2 \,\mathrm{f}',Cp
32 printf('\n Compression ratio = \%.3 \, f', Pr)
33 // tip
34 beta1=atan(Utip/Cz)
35 beta2=beta1*180/%pi-beta_d
36 beta2=beta2*%pi/180
37 \text{ Cp=1-cos(beta1)^2/cos(beta2)^2}
38 DCth=Utip-Cz*tan(beta2)
39 Pr=(1+eta*Utip*DCth/(cp*T01))^(gama/(gama-1))
40 printf('\n tip:')
41 printf('\n The pressure rise coefficient is \%.2 \,\mathrm{f}',Cp
42 printf('\n Compression ratio = \%.3 \, f', Pr)
```

Scilab code Exa 11.4 Chapter11 Example4

```
1 clc
2 //initialization of new variables
3 clear
4 r = 0.5 / m
               average radius
5 Cz=140 //m/s Axial velocity
6 \text{ w}=4000 / \text{RPM} \text{ turn rate}
7 \text{ T01} = 300 / \text{K}
                  Stagnation temperature ahead of rotor
8 alpha1=20 //degrees Incoming velocity angle
             //Pressure rise coefficient
9 Cp = 0.45
             //efficiency
10 eta=0.98
11 cp=0.24 // specific heat
12 \text{ gama}=1.4
13 //calculations
14 temp=alpha1 //just to store it
15 \text{ cp=cp*}4200
16 \ \text{U=r*w*2*\%pi/60}
17 alpha1=alpha1*%pi/180
18 beta1=atan(U/Cz-tan(alpha1))
19 beta2=acos(sqrt(cos(beta1)^2/(1-Cp)))
20 DCth=U-Cz*(tan(alpha1)+tan(beta2))
21 Pr=(1+eta*U*DCth/(cp*TO1))^(gama/(gama-1))
22 printf('part (1)')
23 printf('\n stagnation pressure rise (ratio) is \%.2 f',
      Pr)
24 // part (2)
25 \text{ Cz} = 100 \text{ //m/s}
26 alpha1=atan(U/Cz-tan(beta1))
27 Dalpha=alpha1*180/%pi-temp
28 printf('\n Stator ahead of this stage must be
      rotated by %.1f degrees', Dalpha)
29 DCth=U-Cz*(tan(alpha1)+tan(beta2))
30 Pr=(1+eta*U*DCth/(cp*T01))^(gama/(gama-1))
31 printf('\n part (2)')
32 printf('\n stagnation pressure rise (ratio) is \%.2 f',
      Pr)
```

Scilab code Exa 11.5 Chapter11 Example5

```
1 clc
2 //initialization of new variables
3 clear
4 R = 0.5
5 \text{ U} = 290 //\text{m/s}
6 \text{ c1=150} / \text{m/s}
7 alpha1=37 // degrees
8 beta2=alpha1
9 \text{ cp} = 0.24
10 eta=0.85
11 \text{ gama} = 1.4
12 T01=280 //k
13 //calculations
14 \text{ cp} = \text{cp} * 4200
15 alpha1=alpha1*%pi/180
16 Cth1=c1*sin(alpha1)
17 DCth=U-2*c1*sin(alpha1)
18 beta1=atan((U-Cth1)/c1*cos(alpha1))
19 Cp=1-cos(beta1)^2/cos(beta2)^2
20 Pr=(1+eta*U*DCth/(cp*T01))^(gama/(gama-1))
21 / results
22 printf('The compression ratio is \%.2 \,\mathrm{f}',Pr)
```

Scilab code Exa 11.6 Chapter 11 Example 6

```
1 clc

2 //initialization of new variables

3 clear

4 r1=0.1 //m

5 r2=0.4 //m
```

```
6 bet=15 // degrees
7 \text{ eta} = 0.9
8 \text{ cp} = 0.24
9 \text{ w} = 5000 / \text{RPM}
10 Cth1=0
11 \text{ gama} = 1.4
12 T01=300 / K
13 //calculations
14 bet=bet*%pi/180
15 \quad U2=r2*w*2*\%pi/60
16 \quad U1=r1*w*2*\%pi/60
17 \text{ wr} 2 = U2/2
18 \text{ cp=cp*4200}
19 Cth2=wr2*tan(bet)+U2
20 Tr = (U2 * Cth2 - U1 * Cth1) / (cp * T01)
21 Pr=(1+eta*Tr)^(gama/(gama-1))
22 //results
23 printf('The pressure rise is \%.2 \, \mathrm{f}',Pr)
```

Scilab code Exa 11.7 Chapter11 Example7

```
1 clc
2 //initialization of new variables
3 clear
4 w=1000 //RPM
5 r1=0.05 //m
6 r2=0.10 //m
7 bet=0 //degrees
8 eta=0.9
9 r=1000 //kg/m^3
10 //calculations
11 bet=bet*%pi/180
12 U2=r2*w*2*%pi/60
13 Cth2=U2
14 dp=r*eta*U2*Cth2
```

Scilab code Exa 11.8 Chapter11 Example8

```
1 clc
2 //initialization of new variables
3 clear
4 S=3 //\text{cm}^2
5 \text{ m}=15 \text{ } //\text{kg/s}
6 alpha2=68.5 // degrees
7 r = 0.3 / m
8 \text{ w} = 1000 / \text{RPM}
9 \text{ ma=100} //\text{kg}
10 rho=1000 // kg/m^3
11 g=9.8 //m/s^2
12 //calculations
13 S = S * 10^{-4}
14 alpha2=alpha2*%pi/180
15 \ \text{U=r*w*2*\%pi/60}
16 c2=m/(rho*S)
17 cz=c2*cos(alpha2)
18 beta2=atan((c2*sin(alpha2)-U)/cz)
19 P=m*U*2*cz*tan(beta2)
```

```
20 v=P/(ma*g)
21 //results
22 printf('beta_2 = %.1 f degrees',beta2*180/%pi)
23 printf('\n v = %.2 f m/s',v)
```

Scilab code Exa 11.9 Chapter11 Example9

```
2 //initialization of new variables
 3 clear
4 r = 0.3 / m
 5 \text{ w} = 7000 / \text{RPM}
 6 \text{ T01=1200 } //\text{K}
7 rho2=0.5 //kg/m^3
8 R = 0.5
9 beta2=30 // degrees
10 \text{ eta} = 0.9
11 \text{ gama} = 1.4
12 \text{ cp=0.24}
13 //calculations
14 cp=cp*4200
15 \ \text{U=r*w*2*\%pi/60}
16 beta2=beta2*%pi/180
17 // to solve for c2 and w2
18 / Ax = b
19 A = [-\sin(\%pi/2-beta2) - \sin(beta2)]
       cos(%pi/2-beta2) -cos(beta2)]
20
21 b = [-U; 0]
22 x = inv(A)*b
23 \text{ w} 2 = \text{x} (2)
24 c2=x(1)
25 \text{ wt=U*(U-2*w2*sin(beta2))}
26 \text{ Tr=wt/(cp*T01)}
27 Pr=(1-Tr/eta)^(gama/(gama-1))
28 // results
```

Scilab code Exa 11.10 Chapter11 Example10

```
1 clc
2 //initialization of new variables
3 clear
4 \text{ r2=0.1} / \text{m}
5 \text{ m=1} //\text{kg/s}
6 \text{ T01=1200 } / \text{K}
7 alpha2=65 // degrees
8 c2 = 330 / m/s
9 rho2=0.5 // kg/m^3
10 \text{ eta=0.9}
11 \text{ gama} = 1.4
12 \text{ cp=0.24}
13 //calculations
14 alpha2=alpha2*%pi/180
15 \text{ cp} = \text{cp} * 4200
16 Cthd=c2*sin(alpha2)
17 U = Cthd/2
18 P=m*U*Cthd
19 Tr=U*Cthd/(cp*T01)
20 Pr=(1-Tr/eta)^(gama/(gama-1))
21 RPM=U/(2*\%pi*r2)
22 / results
23 printf('part (a)')
24 printf('\n Power generated is \%.1 \, \text{f W',P})
25 printf('part (b)')
26 printf('\n Stagnation pressure drop is \%.3 \, \text{f}',Pr)
27 printf('\n In rotor, zero static pressure drop takes
```

```
place')
28 printf('\n part (c)')
29 printf('\n RPM = %d RPM', RPM*60)
```

Scilab code Exa 11.11 Chapter11 Example11

```
1 clc
2 //initialization of new variables
3 clear
4 r = 0.1 / m
 5 \text{ RPM} = 1000 / \text{RPM}
 6 c2=30 //m/s
7 \text{ S=2 } //\text{cm}^2
8 beta3=60 // degrees
9 alpha2=90 // degrees
10 rho=1000 // kg/m^3
11 //calculations
12 beta3=beta3*%pi/180
13 alpha2=alpha2*%pi/180
14 S = S * 10^{-4}
15 \ U=RPM*r*2*\%pi/60
16 w2 = c2 - U
17 w3 = w2
18 CthD=w2*sin(alpha2)+w2*sin(beta3)
19 \text{ m=rho*c2*S}
20 \quad T = m * r * CthD
21 P = m * U * CthD
22 // results
23 printf('mass flow rate is \%.2 \, f \, kg/s',m)
24 printf ('\n Torque T = \%.2 f N m', T)
25 printf('\n Power P = \%.2 f W', P)
```

Scilab code Exa 11.12 Chapter11 Example12

```
1 clc
2 //initialization of new variables
3 clear
4 P=5 //kW
5 U=30 //km/h
6 eta=70 //percent
7 rho=1.22 //kg/m^3
8 //calculations
9 eta=eta/100
10 P=P*1000
11 R=sqrt(P*27/(8*eta*rho*(U/3.6)^3*%pi))
12 //results
13 printf('R = %.2 f m',R)
```