Introduction of OpenFoam 12 Programming:

- 1. Scaled Viscosity Power Law
- 2. Custom Boundary Condition
- 3. Scalar Transport

Viscosity:

The viscosity power law, often referred to as the power law model or the Ostwald-de Waele relationship, is a mathematical framework used to describe the flow behavior of non-Newtonian fluids—fluids whose viscosity changes with the applied shear rate. Unlike Newtonian fluids (e.g., water, air), which have a constant viscosity regardless of the shear rate, non-Newtonian fluids exhibit varying viscosity based on the deformation rate they experience.

The viscosity power law is typically expressed by the following equation:

$$\tau = K \cdot (\dot{\gamma})^{n-1}$$

where:

- τ (tau) = Shear stress (force per unit area) applied to the fluid.
- \mathbf{y} (gamma) = Shear rate (the rate at which adjacent layers of fluid move relative to each other).
- **K** = Flow consistency index (a measure of the fluid's viscosity).
- **n** = Flow behavior index (dimensionless parameter indicating the type of fluid behavior).

Interpretation of Parameters

- Flow Consistency Index (K):
 - o Represents the viscosity of the fluid at a shear rate of 1 s⁻¹.
 - o Higher KKK values indicate a thicker (more viscous) fluid.
- Flow Behavior Index (n):
 - o **n=1**: The fluid behaves as a Newtonian fluid with constant viscosity.
 - n<1: The fluid is shear-thinning (pseudoplastic), meaning its viscosity decreases with increasing shear rate. Examples include ketchup, blood, and many polymer solutions.
 - n>1: The fluid is shear-thickening (dilatant), meaning its viscosity increases with increasing shear rate. Examples include certain suspensions like cornstarch in water.

Custom power law:

The custom viscosity power law model is defined by the following equation:

$$\tau = K \cdot (\dot{\gamma})^{\frac{n-1}{S}}$$

where:

- τ = Shear stress (force per unit area) applied to the fluid.
- γ (gamma) = Shear rate (the rate at which adjacent layers of fluid move relative to each other).
- **K** = Flow consistency index (a measure of the fluid's viscosity).
- **n** = Flow behavior index (dimensionless parameter indicating the type of fluid behavior).
- **S** = Scaling factor (dimensionless parameter introduced to modify the exponent).