1 Exercises to do before tutorials.

- Ex.1.1) Show that sum (f+g) of two functions (f,g) which are individually continuous at a point (x_0) is continuous at that point.
- Ex.1.2) Compute the following left-hand side limits, right-hand side limits, and limits (if they exist):

(a)
$$\lim_{x \to 0} \frac{|x|}{x},$$

(d)
$$\lim_{h\to 0} \frac{(t+h)^2 - t^2}{h}$$
 $(t \in \mathbb{R} \text{ is fixed}),$

(b)
$$\lim_{x \to 0} \frac{\sqrt{x^2}}{x}$$
,

(e)
$$\lim_{x \to a} \frac{\sin x - \sin a}{x - a}$$
 ($a \in \mathbb{R}$ is fixed),

(c)
$$\lim_{x \to 1} \frac{2x^2 - 3x + 1}{x - 1},$$

(f)
$$\lim_{x \to 0} \frac{\sin 5x}{\sin x}.$$

- Ex.1.3) Use the fact¹ that $|\sin(x)| < |x|$ for all $0 < |x| < \frac{\pi}{2}$ to show that sin is continuous at 0. Next, use the identity $\cos 2x = 1 - 2\sin^2 x \ (\forall x \in \mathbb{R})$ to show that cos is also continuous at 0. Finally, use the standard formula for $\sin(x+h)$ and $\cos(x+h)$ to show that sin and cos are continuous everywhere in \mathbb{R} .
- Ex.1.4) Let f be a polynomial function of degree n > 0 such that the last and first coefficients have opposite signs. Prove² that there exists a positive x(i.e. $x \in \mathbb{R}_+^*$) such that f(x) = 0.

Exercises to do during or after tutorials. 2

Ex.2.1) Let f and g be given below and let $h = f \circ g$. In each case, determine the domains of f, g, and h and given direct formula for h. Finally, investigate the continuity of h:

(i)
$$f(x) = x^2 - 2x$$
, $g(x) = x + 1$, (iii) $f(x) = \sqrt{x}$, $g(x) = x + \sqrt{x}$,

(iii)
$$f(x) = \sqrt{x}, g(x) = x + \sqrt{x},$$

(ii)
$$f(x) = \sqrt{x}, g(x) = x^2,$$

(iv)
$$f(x) = \sqrt{x}, g(x) = \sin(x).$$

Ex.2.2) If n is an odd positive integer $(n \in 2\mathbb{N} + 1)$ and a < 0 prove that there is exactly one negative b < 0 such that $b^n = a$. And what happens if n is even?

¹You can also *try to* prove that fact, by the mean of your choice.

 $^{^{2}}$ You should start by giving name to all these coefficients, and reason by contradiction (if fhas no zero, then ...)

- Ex.2.3) Let $f = \tan$ (on a certain domain you should precise). Although $f(\pi/4) = 1$ and $f(3\pi/4) = -1$, there is no x in $[\pi/4, 3\pi/4]$ such that f(x) = 0. Why does this not contradict the *intermediate value theorem*?
- Ex.2.4) Let $f: \mathbb{R} \to \mathbb{R}, x \mapsto x \sin\left(\frac{1}{x}\right)$ if $x \neq 0$. What should be the value of f(0) so that f is continuous at 0.
- Ex.2.5) For $a, b \in \mathbb{R}$, a < b, let $f : [a, b] \to \mathbb{R}$ be such that $\forall x, y \in [a, b], |f(x) f(y)| \leq L \times |x y|$, for some $L \geq 0$. Show that f is continuous everywhere.
- Ex.2.6) Let $f: \mathbb{Z} \to \mathbb{R}$ be well-defined. Show that f is continuous⁴ everywhere on \mathbb{Z} .

3 Bonus exercises.

- Ex.3.1) Let $f: \mathbb{R} \to \mathbb{R}, x \mapsto \sin\left(\frac{1}{x}\right)$ if $x \neq 0$. Can we choose f(0) such that f is continuous at 0? What about limit?
- Ex.3.2) For $x \in \mathbb{R}$, show that the series $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ is convergent (this shows that e^x is well-defined for all $x \in \mathbb{R}$). Next, show that there exists $\lambda > 0$ such that $e^x \le 1 + \lambda x$ for all $x \in [0,1]$. Finally, show that $\exp : x \mapsto e^x$ is continuous at 0, and subsequently everywhere in \mathbb{R} .
- Ex.3.3) Use the fact that $\exp: x \mapsto e^x$ is continuous to show that $\ln: x \mapsto \ln x$ is continuous in its domain.
- Ex.3.4) Let $f:[0,1] \to \mathbb{R}$ be continuous on [0,1]. Assume that $\forall x \in [0,1], 0 \le f(x) \le 1$. Show that there exists $c \in [0,1]$ such that f(c) = c.
- Ex.3.5) Is it possible to have a function $f: \mathbb{R} \to \mathbb{R}$, well-defined everywhere, but continuous **nowhere**? Remember that \mathbb{Q} is the set of rationals numbers, dense in \mathbb{R} . Show that $\mathbb{1}_{\mathbb{Q}}$ ($\mathbb{R} \to \mathbb{R}, x \mapsto 1$ if $x \in \mathbb{Q}, 0$ otherwise) is continuous nowhere, by using a sequence $(r_n)_{n \in \mathbb{N}} \in \mathbb{Q}^{\mathbb{N}}, r_n \xrightarrow[n \to +\infty]{} \alpha$ for a $\alpha \in \mathbb{R} \setminus \mathbb{Q}$, to show that $\mathbb{1}_{\mathbb{Q}}$ is not continuous at α , (and conversely $(\beta_n)_{n \in \mathbb{N}} \in (\mathbb{R} \setminus \mathbb{Q})^{\mathbb{N}}, b_n \xrightarrow[n \to +\infty]{} q$ for a $q \in \mathbb{Q}$, for non-continuity at q).

 $^{^{3}}f$ is said to be L-Lipschitz, or Lipschitz continuous of ratio L on [a,b].

⁴You should use the " ε , $\delta(\varepsilon)$ " definition, because if $\varepsilon < 1, x, y \in \mathbb{Z}$, then $(|x-y| < \varepsilon \implies x = y)$.