Aprendizagem Computacional I

Adriana Oliveira - up202307136 Carolina Leite - up202307856 Lara Gonçalves - up202307857

Table of contents

- Normalizar os dados dos Datasets valores nulos, colunas com elevada correlação, etc
- O2 Implementar Random Forest Padrão E avaliar o desempenho
- O3 Implementar Random Forest Modificado E avaliar o desempenho
- O4 Comparar os algoritmos

E teste de wilcoxon

05 Resultados

06 Complicações e Conclusões

Random Forest

Vantagens

- Alta performance e precisão
- Menor risco de overfitting
- Robustez a dados ruidosos ou incompletos
- Trabalha bem com dados de alta dimensão

Desvantagens

- Menos interpretável
- Mais lento e pesado
- Pode ser enviesado em dados desbalanceados

Porquê o Random Forest?

Class BaseEstimator

Validação e preparação dos dados de entrada (X e y).

Class Tree

Implementa Uma árvore de decisão recursiva para classificação ou regressão, com busca gulosa pelo melhor split.

Class Random Forest

Implementa uma floresta de árvores de decisão, onde várias árvores são treinadas em paralelo com subconjuntos dos dados

Class RandomForestClassifier

Implementa a versão de classificação do RandomForest, com voto majoritário (média de probabilidades) entre árvores.

Class Imbalance in Binary Classification

Random Forest Vs. Class Imbalance

- Tendência para a classe maioritária: o modelo aprende mais facilmente a prever a classe com mais exemplos, ignorando as minoritárias.
- Baixa atenção/sensibilidade às classes raras: o recall para as classes com menos amostras tende a ser baixo, ou seja, o modelo falha em identificá-las corretamente.
- Importância falsa nas features: como a maioria dos dados pertence à classe dominante, o cálculo da importância das variáveis pode ficar enviesado.

Implementação Random Forest Modificado

weighted_focal_entropy

Calcula uma entropia ponderada e focada, usada para medir a impureza de um conjunto de rótulos (y), com mais penalização para erros em classes minoritárias.

calcular_class_weights

Calcula pesos automáticos para cada classe com base no nível de desbalanceamento.

escolher_focal_gamma

Escolhe um valor adequado para o parâmetro gamma do focal loss, com base no desbalanceamento.

Implementação Random Forest Modificado

escolher_parametros

Sugere hiperparâmetros da árvore (max_depth e min_samples_split) com base no desbalanceamento dos dados.

encontrar_melhor_thresfold

Encontra o melhor limiar de decisão por classe (threshold) com base na curva de precisão-recall.

Implementação Random Forest Modificado

Class Tree2

- Utiliza entropia focal ponderada
- Incentiva divisões (splits) que ajudam a classe minoritária (min_class)
- Calcula o melhor split com base no ganho de entropia ponderado
- Faz previsões enquanto percorre os nós das ávores (predict_row e predict)

Class RandomForestClassifier

- Treina várias árvores (Tree2) em paralelo com amostragem bootstrap (fit)
- Uso entropia focal e pesos de classe para favorecer a classe minoritária
- Cada árvore recebe um peso baseado no desempenho da minoria (f1-score e recall)
- A predição final é feita por votação ponderada das árvores

Hiperparâmetros: Decision Tree

Hiperparâmetros	Antes: Tree	Depois: Tree2
criterion	entropy	Depende do dataset
max_depth	None	Depende do dataset
min_sample_split	10	Depende do dataset
gamma	0	Depende do dataset

Hiperparâmetros: Random Forest

Hiperparâmetros	Antes	Depois
n_estimators	10	50
criterion	entropy	Depende do dataset
max_depth	None	Depende do dataset
min_sample_split	10	Depende do dataset
gamma	0	Depende do dataset

Desempenho dos Algoritmos

Antes

Antes

Depois

Depois

Desempenho dos Algoritmos

Antes

Antes

Depois

Depois

Desempenho dos Algoritmos

Antes

Antes

Depois

Depois

1.0

Desempenho Dos Algoritmos - Teste Estatístico

Teste de Wilcoxon

Métricas	Estatística	p_valor	Confiança
precision	238.00	0.00033	99.97%
recall	349.00	0.01423	98.58%
f1-score	445.00	0.14246	85.75%
recall minoritária	0.00	3.52107 e-9	100.00%
precision minoritária	333.00	0.03729	96.27%
f1-score minoritária	98.00	5.01494 e-7	100.00%

Desempenho Dos Algoritmos - Teste Estatístico

Teste de Wilcoxon

Métricas	Estatística	p_valor	Confiança
Métricas Combinadas	9823.00	9.12250 e-14	100.00%

Desempenho Dos Algoritmos - Melhoria Percentual

Métricas	Média Padrão	Média Modificado	Melhoria
precision	0.8971	0.9177	+ 2.30 % 🔼
recall	0.9325	0.8992	-3.57 % 🔽
f1-score	0.9097	0.9028	-0.75 % 🔽
recall minoritária	0.3679	0.6773	+ 84.09 % 🔼
precision minoritária	0.5124	0.6074	+ 18.54 % 🔼
f1-score minoritária	0.4076	0.6098	+ 49.62 %

Complicações durante o Desenvolvimento do Projeto

- Desbalanceamento extremo de classes
- Trade-offs entre métricas
- Diferenças marfinasi de desempenho
- Limitações computacional

Conclusão Final e Trabalho Futuro

Ciclos Iterativos com Interpretabilidade

- Técnicas explicativas como SHAP ou LIME podem ser usadas não apenas para interpretar decisões do modelo, mas também como ferramentas para detectar sinais de overfitting, por exemplo, quando certas variáveis dominam excessivamente as decisões nas árvores.
- **Resultado:** seria possível construir um ciclo de feedback onde o modelo é ajustado iterativamente, com foco em generalizar melhor sem comprometer a identificação da classe minoritária.

Robustez Adversarial Focada na Classe Minoritária

- Uma proposta inovadora seria aplicar testes adversariais direcionados à classe minoritária, de forma a avaliar o impacto que pequenas perturbações nos exemplos dessa classe causam na estabilidade do modelo.
- **Resultado:** Esse tipo de teste revelaria o quanto o modelo realmente aprendeu os padrões da classe minoritária, e não apenas memorizações ajudando a combater o overfitting de forma mais inteligente e focada.