Table of Contents

EIS Detailed Summary	1
RUN OCV PROCEDURE	. 1
1. OCV	. 1
1. OCV Averages	. 8
3. OCV	. 8
3. OCV Averages	16
5. OCV	16
5. OCV Averages	23
8. OCV	23
8. OCV Averages	31
RUN CA PROCEDURE	31
2. CA	31
RUN LSV PROCEDURE	39
4.1 LSV Plots	39
4.2 LSV Data analysis	45
Find the current @ fVoltage for each replicate of every formula	45
LSV Average Plot	47
RUN MB PROCEDURE	48
7.1 MB PLOTS	48
7.2 MB Data Analysis	55
10.1 MB PLOTS	57
RUN PEIS PROCEDURE	65
6. PEIS	65
9. PEIS (Default view)	72
9. PEIS (Zoomed View)	79
RUN GCPL PROCEDURE	85
11. GCPL	85

EIS Detailed Summary

This document contains the Carbon-Lignen Phase 2 summary graphs and data analysis.

RUN OCV PROCEDURE

1. OCV

Define nProcess

3. OCV

Define nProcess

5. OCV

Define nProcess

8. OCV

Define nprocess

RUN CA PROCEDURE

2. CA

Define x and y variables

Time (hrs)

1.5

2

2.5

-10* 0

0.5

RUN LSV PROCEDURE

4.1 LSV Plots

4.2 LSV Data analysis

The data analysis that we want. This will also include some graphs and whatnot.

Find the current @ fVoltage for each replicate of every formula

Create the excel file

Current at -1.5 V for formula
AH19) of replicate 1: -88.344 mA/g

Current at -1.5 V for formula
AH13) of replicate 2: -105.936 mA/g

Current at -1.5 V for formula
AL06) of replicate 1: -215.397 mA/g

Current at -1.5 V for formula
AL09) of replicate 2: -175.649 mA/g

Current at -1.5 V for formula
AL09) of replicate 1: -76.848 mA/g

Van-HT High (Control) (Cup ID =

Van-HT Low (Cup ID =

Van-A High (Cup ID =

Van-A Hi

Current at -1.5 V for formula BH24) of replicate 2: -80.931	mA/g	Van-A High (Cup ID =
Current at -1.5 V for formula BL18) of replicate 1: -166.004	mA/g	Van-A Low (Cup ID =
Current at -1.5 V for formula BL14) of replicate 2: -130.713	mA/g	Van-A Low (Cup ID =
Current at -1.5 V for formula CH01) of replicate 1: -119.591	mA/g	Van-DCA High (Cup ID =
Current at -1.5 V for formula CH14) of replicate 2: -102.802	mA/g	Van-DCA High (Cup ID =
Current at -1.5 V for formula CL23) of replicate 1: -311.643	mA/g	Van-DCA Low (Cup ID =
Current at -1.5 V for formula CL11) of replicate 2: -256.358	mA/g	Van-DCA Low (Cup ID =
Current at -1.5 V for formula DH25) of replicate 1: -51.136	mA/g	Van-A + Indulin High (Cup ID =
Current at -1.5 V for formula DH18) of replicate 2: -42.397	mA/g	Van-A + Indulin High (Cup ID =
Current at -1.5 V for formula DL16) of replicate 1: -202.957	mA/g	Van-A + Indulin Low (Cup ID =
Current at -1.5 V for formula DL22) of replicate 2: -162.305	mA/g	Van-A + Indulin Low (Cup ID =
Current at -1.5 V for formula EH06) of replicate 1: -41.757	mA/g	S-Drill CL High (Cup ID =
Current at -1.5 V for formula EH22) of replicate 2: -31.519	mA/g	S-Drill CL High (Cup ID =
Current at -1.5 V for formula EL01) of replicate 1: -216.527	mA/g	S-Drill CL Low (Cup ID =
Current at -1.5 V for formula EL15) of replicate 2: -139.814	mA/g	S-Drill CL Low (Cup ID =
Current at -1.5 V for formula FH03) of replicate 1: -36.620	mA/g	Indulin AT High (Cup ID =
Current at -1.5 V for formula FH06) of replicate 2: -25.416	mA/g	Indulin AT High (Cup ID =
Current at -1.5 V for formula FL20) of replicate 1: -195.324	mA/g	Indulin AT Low (Cup ID =

```
Current at -1.5 V for formula
 FL12) of replicate 2: -152.373 mA/q
-88.344024
-105.936423
-215.397441
-175.648839
-76.848159
-80.930587
-166.004429
-130.712773
-119.591466
-102.802120
-311.643036
-256.358481
-51.136226
-42.397030
-202.957185
-162.304645
-41.756742
-31.519119
-216.526893
-139.813648
-36.620304
-25.415895
-195.323737
-152.373304
```

LSV Average Plot

Issue: Not all the replicates have the same amount of data Solution: Find the one with the lowest amount of data

Indulin AT Low (Cup ID =

RUN MB PROCEDURE 7.1 MB PLOTS

Define x and y variables

7.2 MB Data Analysis

Final Capacity Value AH19) of replicate	for 1:	formula 162.378	Van-HT High (Control) (Cup ID =
Final Capacity Value AH13) of replicate		formula 162.702	Van-HT High (Control) (Cup ID =
Final Capacity Value AL06) of replicate	for 1:	formula 158.808	Van-HT Low (Cup ID =
Final Capacity Value AL09) of replicate		formula 148.494	Van-HT Low (Cup ID =
Final Capacity Value BH12) of replicate	for 1:	formula 170.278	Van-A High (Cup ID =
Final Capacity Value BH24) of replicate		formula 159.957	Van-A High (Cup ID =
Final Capacity Value BL18) of replicate		formula 162.445	Van-A Low (Cup ID =
Final Capacity Value BL14) of replicate		formula 163.656	Van-A Low (Cup ID =
Final Capacity Value CH01) of replicate	for 1:	formula 158.877	Van-DCA High (Cup ID =
Final Capacity Value CH14) of replicate		formula 158.087	Van-DCA High (Cup ID =
Final Capacity Value CL23) of replicate	for 1:	formula 153.439	Van-DCA Low (Cup ID =
Final Capacity Value CL11) of replicate		formula 153.906	Van-DCA Low (Cup ID =
Final Capacity Value DH25) of replicate			Van-A + Indulin High (Cup ID =
Final Capacity Value DH18) of replicate			Van-A + Indulin High (Cup ID =
Final Capacity Value DL16) of replicate			Van-A + Indulin Low (Cup ID =
Final Capacity Value DL22) of replicate		formula 154.705	Van-A + Indulin Low (Cup ID =
Final Capacity Value EH06) of replicate	for 1:	formula 147.643	S-Drill CL High (Cup ID =

Final Capacity Value EH22) of replicate		S-Drill CL High	(Cup	ID	=
Final Capacity Value EL01) of replicate		S-Drill CL Low	(Cup	ID ·	=
Final Capacity Value EL15) of replicate		S-Drill CL Low	(Cup	ID ·	=
Final Capacity Value FH03) of replicate		Indulin AT High	(Cup	ID	=
Final Capacity Value FH06) of replicate		Indulin AT High	(Cup	ID	=
Final Capacity Value FL20) of replicate		Indulin AT Low	(Cup	ID	=
Final Capacity Value FL12) of replicate		Indulin AT Low	(Cup	ID ·	=
162.377808					
162.701503					
158.808211					
148.494063					
170.277660 159.956719					
162.444922					
163.656439					
158.876975					
158.087379					
153.438603					
153.906205					
156.172565					
154.468132					
158.399668					
154.705064					
147.642884					
153.522555					
158.985942					
150.252079					
152.030407					
159.749510 150.416015					
148.142506					
140.142500					

10.1 MB PLOTS

Define x and y variables

RUN PEIS PROCEDURE 6. PEIS

9. PEIS (Default view)

Real Z (ohm)

Real Z (ohm)

9. PEIS (Zoomed View)

RUN GCPL PROCEDURE 11. GCPL

Define x and y variables

