Lineaire Algebra en differentiaalvergelijkingen

College 11: De lineaire structuur van een abstracte vectorruimte, inwendig product ruimtes.

J. Vermeer Les 11

Faculteit EWI

Vectorruimten

Herinner: we hebben het begrip "vectorruimte" geïntroduceerd, een lineaire structuur V, d.w.z. een optelling en een scalaire vermenigvuldiging. Deze operaties moesten aan 8 axioma's voldoen. Afhankelijk van het "scalairenlichaam" (\mathbb{R} of \mathbb{C}), spreken we van een "reële vectorruimte" of van een "complexe vectorruimte".

Standaard reële vectorruimtes:

 \mathbb{R}^n , $M_{m \times n}(\mathbb{R})$, \mathbb{R}^∞ en de functieruimte $\mathcal{F}(D,\mathbb{R})$ met zijn belangrijke deelruimtes.

Standaard complexe vectorruimtes:

 \mathbb{C}^n , $M_{m\times n}(\mathbb{C})$, \mathbb{C}^∞ en de functieruimte $\mathcal{F}(D,\mathbb{C})$ met zijn belangrijke deelruimtes.

_es 11 _______ 2

Lineaire onafhankelijkheid I

Definitie: Stel V is vectorrule over \mathbb{L} .

- De lege verzameling $S = \emptyset$ zullen we een onafhankelijke deelverzameling van V noemen.
- Een niet leeg eindig stelsel $S = \{\mathbf{v}_1, \dots, \mathbf{v}_n\} \subset V$ heet onafhankelijk als de vectorvergelijking

$$c_1\mathbf{v}_1 + \dots + c_p\mathbf{v}_p = \mathbf{0}$$

alleen de triviale oplossing $c_1 = 0, \dots, c_p = 0$ heeft.

• Een oneindige verzameling $S = \{\mathbf{v}_i\}_{i \in I} \subset V$ heet onafhankelijk als iedere eindige deelverzameling van Sonafhankelijk is.

Vraag: Hoe na te gaan of vectoren onafhankelijk zijn? In \mathbb{R}^n en

 \mathbb{C}^n weten we dat, maar hoe in functieruimtes?

Faculteit EWI

Lineaire onafhankelijkheid II

Voorbeeld: Is de verzameling functies (vectoren) $\{f, g, h\}$ met $f(x) = \sin(x)$, $g(x) = \cos(x)$ en $h(x) = \sin(2x)$ lineair afhankelijk of niet in de vectorruimte $V = C([0, 2\pi], \mathbb{R})$? Voorbeeld: Is de verzameling functies $\{f, g, h\}$ met $f(x) = \sin(x)$, $g(x) = \cos(x)$ en $h(x) = \sin(1+x)$ lineair afhankelijk of niet in de vectorruimte $V = \mathcal{F}(\mathbb{R}, \mathbb{R})$?

Vraag: Wat zou er gebeuren als we de methode van voorbeeld 1 zouden toepassen op voorbeeld 2??

TUDelft

Lineaire onafhankelijkheid III

Definitie: Als f_1,\ldots,f_k een k-tal functies is dat k-1 maal gedifferentiëerd kan worden op een domein [a,b] (of heel $\mathbb R$) dan heet de determinant

$$W(x) = \begin{vmatrix} f_1(x) & f_2(x) & \dots & f_k(x) \\ f'_1(x) & f'_2(x) & \dots & f'_k(x) \\ \vdots & \vdots & \dots & \vdots \\ f_1^{(k-1)}(x) & f_2^{(k-1)}(x) & \dots & f_k^{(k-1)}(x) \end{vmatrix}$$

de Wronskiaan van de functies f_1, \ldots, f_k , en wordt soms ook genoteerd met $W[f_1, \ldots, f_k](x)$.

Stelling: Als een x bestaat met $W[f_1, \ldots, f_k](x) \neq 0$, dan zijn de functies f_1, \ldots, f_k lineair onafhankelijk.

Les 11

Faculteit EWI

Het begrip basis

We zijn inmiddels bekend met het begrip "opspanning" en met het begrip "lineair onafhankelijk".

Laat V een vectorruimte zijn over \mathbb{L} .

Definitie. Een basis van V is een deelverzameling $B \subset V$ met:

- (i) $\operatorname{Span}(B) = V$ en:
- (ii) B is een onafhankelijke verzameling.

Definitie. De vectorruimte V heet eindig dimensionaal als V een eindige basis heeft. Zo niet, dan heet V oneindig dimensionaal.

Voorbeelden

Voorbeeld. Beschouw $V = Pol_n(\mathbb{R}, \mathbb{R})$. Dan is de verzameling $B = \{1, x, \dots, x^n\}$ een basis van $Pol_n(\mathbb{R}, \mathbb{R})$). (De zogeheten standaardbasis van $Pol_n(\mathbb{R}, \mathbb{R})$.)

Voorbeeld. Beschouw $V = Pol_n([a,b],\mathbb{R})$. Ook dan is de verzameling $B = \{1,x,\ldots,x^n\}$ een basis van $Pol_n([a,b],\mathbb{R})$). Voorbeeld. Beschouw $V = M_{m \times n}(\mathbb{C})$. Dan is de verzameling $E = \{E_{i,j} : i = 1 \ldots m, j = 1 \ldots n\}$ een basis. Hierbij staat $E_{i,j}$ voor die matrix met allemaal nullen, op het i,j kental na. Die is 1. Ook dit heet de standaardbasis van $M_{m \times n}(\mathbb{C})$.

De vectorruimten $Pol_n(\mathbb{R},\mathbb{R})$ en $M_{m\times n}(\mathbb{C})$ zijn dus eindig dimensionaal.

Les 11

Faculteit EWI

Dimensie

Het verhaal over uit §6.2 over coördinaten t.o.v. een basis slaan we over.

Stelling: Stel dat V een eindig dimensionale vectorruimte is met basis $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$. Dan geldt: iedere basis van V bestaat precies uit n vectoren.

Definitie. Als V vectorruimte met basis $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$, dan zeggen we: de dimensie van V is n en noteren we dit met $\dim(V) = n$.

Als V geen eindige basis heeft dan heet V oneindig dimensionaal: $\dim(V) = \infty$

$$\dim(\mathbb{P}ol_n([a,b],\mathbb{R})) =? \quad \text{en} \quad \dim(\mathbb{P}ol_n([a,b],\mathbb{C})) =? \\ \dim(\mathcal{M}_{m\times n}(\mathbb{R})) =? \quad \text{en} \quad \dim(\mathcal{M}_{m\times n}(\mathbb{C})) =? \\ \Box$$

Les 11

Basis-kennis

Stelling: Als V een eindig dimensionale vectorruimte met $\dim(V) = n$, dan geldt:

- 1. leder n+1 tal vectoren in V is afhankelijk.
- 2. leder onafhankelijk stelsel bestaat uit tenhoogste n vectoren.

Stelling: (De dimensiestelling) Stel V eindig dimensionaal met $\dim(V) = n$. Dan geldt:

- 1. leder n-tal onafhankelijke vectoren in V is een basis van V.
- 2. leder n-tal opspannende vectoren in V is een basis van V.

Les 11

Faculteit EWI

TUDelft

Voorbeelden uit DV

Stelling: Als $y^{(n)}+p_{n-1}(t)y^{(n-1)}+\cdots++p_0(t)y=0$ een homogene $n^{\mbox{de}}$ -graads lineaire differentiaalvergelijking is (met $p_i(t)$ continue op interval I) dan is de oplossingsverzameling Op een lineaire deelruimte van $C(I,\mathbb{R})$ met $\dim(Op)=n$. In Boyce of DuPrima is de dimensiestelling vaak toegepast. Om te zien of n oplossingen Op opspannen werd gecontroleerd (via de Wronskiaan) of de oplossingen onafhankelijk waren!

Stelling: Als X' = P(t)X een homogeen $n \times n$ lineair stelsel is (met $p_{i,j}(t)$ continue op I) dan is de oplossingsverzameling Op een lineaire deelruimte van $C(I, \mathbb{R}^n)$ (dan wel $C(I, \mathbb{C}^n)$) met $\dim(Op) = n$.

Inwendig product

Definitie: Laat V een vectorruimte V over $\mathbb L$ zijn. Een inwendig product op V is een voorschrift dat aan twee vectoren $\mathbf u$ en $\mathbf v$ een getal $\langle \mathbf u, \mathbf v \rangle \in \mathbb L$ toekent met de volgende eigenschappen :

- 1. $\langle \mathbf{u}, \mathbf{v} \rangle = \overline{\langle \mathbf{v}, \mathbf{u} \rangle}$, voor alle \mathbf{u} en \mathbf{v} in V
- 2. $\langle \mathbf{u}, \mathbf{v}_1 + \mathbf{v}_2 \rangle = \langle \mathbf{u}, \mathbf{v}_1 \rangle + \langle \mathbf{u}, \mathbf{v}_2 \rangle$, voor alle \mathbf{u}, \mathbf{v}_1 en \mathbf{v}_2 in V
- 3. $\langle \mathbf{u}, c\mathbf{v} \rangle = c \langle \mathbf{u}, \mathbf{v} \rangle$, voor alle \mathbf{u}, \mathbf{v} in V en $c \in \mathbb{L}$
- 4. $\langle \mathbf{u}, \mathbf{u} \rangle$ is reëel en $\langle \mathbf{u}, \mathbf{u} \rangle > 0$, voor elke $\mathbf{u} \neq \mathbf{0}$ uit V. (Positief definiet)

De vectorruimte V met dit inwendig product heet een inwendig productruimte. Als V een reële vectorruimte, dan: $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$, voor alle \mathbf{u} en \mathbf{v} in V.

200 11

11

Faculteit EWI

Rekenregels inwendig product

Laat \langle , \rangle een i.p. op V zijn. Dan:

- 1. $\langle \mathbf{u}_1 + \mathbf{u}_2, \mathbf{v} \rangle = \langle \mathbf{u}_1, \mathbf{v} \rangle + \langle \mathbf{u}_2, \mathbf{v} \rangle$, voor alle \mathbf{u}_1 , \mathbf{u}_2 en \mathbf{v} in V.
- 2. Als $\mathbb{L} = \mathbb{C}$ dan $\langle c\mathbf{u}, \mathbf{v} \rangle = \overline{c} \langle \mathbf{u}, \mathbf{v} \rangle$, voor alle \mathbf{u}, \mathbf{v} in V en $c \in \mathbb{C}$.

Als $\mathbb{L} = \mathbb{R}$ dan $\langle c\mathbf{u}, \mathbf{v} \rangle = c \langle \mathbf{u}, \mathbf{v} \rangle$, voor alle \mathbf{u}, \mathbf{v} in V en $c \in \mathbb{R}$.

- 3. $\langle \mathbf{u}, \mathbf{0} \rangle = \langle \mathbf{0}, \mathbf{u} \rangle = 0$, voor alle \mathbf{u} in V.
- 4. $\langle \mathbf{u}, \mathbf{u} \rangle = 0$, als en slechts als $\mathbf{u} = \mathbf{0}$.
- 5. Als voor alle ${\bf u}$ in V geldt dat $\langle {\bf x}, {\bf u} \rangle = \langle {\bf y}, {\bf u} \rangle$, dan ${\bf x} = {\bf y}$. \square

Standaard inwendig producten

Op \mathbb{R}^n is $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \mathbf{y}$ als standaard inwendig product.

Op \mathbb{C}^n kennen we $\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{x}^* \mathbf{y}$ als standaard inwendig product.

Op \mathbb{R}^{∞} of \mathbb{C}^{∞} kennen we geen (standaard) inwendig product.

Op $C([a,b],\mathbb{R})$ (en de deelruimtes) kennen we

$$\langle \mathbf{f}, \mathbf{g} \rangle = \int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(\mathbf{x}) \mathbf{g}(\mathbf{x}) \, d\mathbf{x}$$

als standaard inwendig product.

Op $C([a,b],\mathbb{C})$ (en de deelruimtes) kennen we

$$\langle \mathbf{f}, \mathbf{g} \rangle = \int_{\mathbf{a}}^{\mathbf{b}} \overline{\mathbf{f}(\mathbf{x})} \mathbf{g}(\mathbf{x}) \, d\mathbf{x}$$

als standaard inwendig product.

Les 11 13

Faculteit EWI

Introductie meetkunde

V inwendig product ruimte met i.p.: \langle , \rangle . Dan:

- ullet Lengte vector: $\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v}
 angle}$
- Rekenregel: $||c\mathbf{v}|| = |c| ||\mathbf{v}||$ en $\mathbf{v} = \mathbf{0} \Leftrightarrow ||\mathbf{v}|| = 0$.
- Eenheidsvectoren.
- Normeren vector.
- Afstand vectoren: $d(\mathbf{v}, \mathbf{w}) = \|\mathbf{v} \mathbf{w}\|$.

Vraag: wat stellen begrippen als lengte, afstand voor in functie-

ruimtes?

Orthogonaliteit

V inwendig product ruimte met inwendig product \langle , \rangle . Dan:

Definitie: De vectoren \mathbf{u} en \mathbf{v} zijn orthogonaal als $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.

Notatie: $u \perp v$.

Stelling: (Pythagoras) Als de vectoren ${\bf u}$ en ${\bf v}$ orthogonaal zijn,

dan geldt $\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 = \|\mathbf{u} + \mathbf{v}\|^2$.

In een reële inwendig productruimte geldt het omgekeerde.

Als $\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 = \|\mathbf{u} + \mathbf{v}\|^2$. dan zijn \mathbf{u} en \mathbf{v} orthogonaal. \square

Les 11

Faculteit EWI

Beroemde standaard stellingen

De volgende stelling bewijzen we niet.

Stelling: (Cauchy-Schwarz)

Als $\mathbf{v}, \mathbf{w} \in V$ dan geldt:

$$|\langle \mathbf{v}, \mathbf{w} \rangle| \le ||\mathbf{v}|| \cdot ||\mathbf{w}||$$

Er treedt gelijkheid op als en slechts als v en w afhankelijk zijn.

De volgende stelling wordt ook ook niet bewezen.

Stelling: (Driehoeksongelijkheid) Als $\mathbf{v}, \mathbf{w} \in V$ dan geldt:

$$\|\mathbf{v} + \mathbf{w}\| \le \|\mathbf{v}\| + \|\mathbf{w}\|.$$

Orthogonaal complement

Laat V een i.p.ruimte zijn, reëel of complex, met deelruimte W.

Definitie: We zeggen dat $\mathbf{x} \in V$ loodrecht op W als $\mathbf{x} \bot \mathbf{w}$, voor

iedere $\mathbf{w} \in W$. Notatie: $\mathbf{x} \perp W$.

Definitie: Het orthogonale complement van W is de verzameling

van alle vectoren die loodrecht staan op W. Notatie: W^{\perp} .

Stelling: Het orthogonaal complement van W is deelruimte V.

Stelling: Als $W = \operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p, \dots\}$ deelruimte van V,

dan $\mathbf{w} \in W^{\perp}$ als en slechts als $\mathbf{w} \perp \mathbf{v}_i$, voor alle i.

In het algemeen is het lastig W^{\perp} te bepalen.

Les 11 17

Faculteit EWI

Projecteren op een vector

Definitie: Laat V een i.p.ruimte zijn met vectoren \mathbf{x} en \mathbf{a} in V. Die vector $c\mathbf{a}$ in $\mathrm{Span}\,a$ met $\mathbf{x}-c\mathbf{a}\bot\mathbf{a}$ heet de (orthogonale) projectie van \mathbf{x} op \mathbf{a} en wordt genoteerd met:

$$\operatorname{proj}_{\mathbf{a}}(\mathbf{x}).$$

De vector $\mathbf{x} - \mathrm{proj}_{\mathbf{a}}(\mathbf{x})$ heet de component van \mathbf{x} loodrecht op a.

Notatie boek:

$$perp_{\mathbf{a}}(\mathbf{x}).$$

Stelling: Er geldt:

$$\operatorname{proj}_{\mathbf{a}}(\mathbf{x}) = \left(\frac{\langle \mathbf{a}, \mathbf{x} \rangle}{\langle \mathbf{a}, \mathbf{a} \rangle}\right) \mathbf{a}.$$

Het getal $\frac{\langle \mathbf{a}, \mathbf{x} \rangle}{\langle \mathbf{a}, \mathbf{a} \rangle}$ heet de Fourriercoëfficient.

Les 11 18

Decompositiestelling

Stelling: Laat V een i.p.ruimte zijn, reëel of complex, met eindig dimensionale deelruimte W. Stel $\mathbf{x} \in V$. Er geldt:

- 1. \mathbf{x} is te schrijven als $\mathbf{x} = \mathbf{w} + \mathbf{w}^{\sharp}$ met $\mathbf{w} \in W$, $\mathbf{w}^{\sharp} \in W^{\perp}$ en dit op unieke wijze.
- 2. Er geldt: als $\{\mathbf{b}_1, \dots, \mathbf{b}_k\}$ een orthogonale basis W, dan:

$$\mathbf{w} = \left(\frac{\langle \mathbf{b}_1, \mathbf{x} \rangle}{\langle \mathbf{b}_1, \mathbf{b}_1 \rangle}\right) \mathbf{b}_1 + \dots + \left(\frac{\langle \mathbf{b}_n, \mathbf{x} \rangle}{\langle \mathbf{b}_n, \mathbf{b}_n \rangle}\right) \mathbf{b}_n.$$

Stelling: In de decompositiestelling (met W eindig dimensionaal)

is w de unieke vector in W met kleinste afstand tot x.

Les 11 19

Faculteit EWI

Orthogonaal projecteren

Definitie: Laat V een i.p.ruimte zijn, reëel of complex, met eindig dimensionale deelruimte W. Stel $\mathbf{x} \in V$. Als $\mathbf{x} = \mathbf{w} + \mathbf{w}^{\sharp}$ met $\mathbf{w} \in W$, $\mathbf{w}^{\sharp} \in W^{\perp}$ dan:

$$\operatorname{proj}_W(\mathbf{x}) = \mathbf{x}.$$

Stelling: Als $\{\mathbf{b}_1,\ldots,\mathbf{b}_k\}$ een orthogonale basis W, dan:

$$\operatorname{proj}_{W}(\mathbf{x}) = \left(\frac{\langle \mathbf{b}_{1}, \mathbf{x} \rangle}{\langle \mathbf{b}_{1}, \mathbf{b}_{1} \rangle}\right) \mathbf{b}_{1} + \dots + \left(\frac{\langle \mathbf{b}_{n}, \mathbf{x} \rangle}{\langle \mathbf{b}_{n}, \mathbf{b}_{n} \rangle}\right) \mathbf{b}_{n}.$$

Het vervelende van deze stelling is dat men een een orthogonale basis nodig heeft.

Definitie: De vector $\mathbf{w}^\sharp = \mathbf{x} - \mathrm{proj}_W(\mathbf{x})$ heet de component van \mathbf{x} loodrecht op W.

Gram-Schmidt proces

Het Gram-Schmidt proces levert weer een orthogonale basis op een eindig dimensionale deelruimte.

Stelling: (Het Gram-Schmidt proces) Als $\{{f v}_1,\ldots,{f v}_n\}$ een basis is van W dan vormen de vectoren:

$$\mathbf{w}_{1} = \mathbf{v}_{1}$$

$$\mathbf{w}_{2} = \mathbf{v}_{2} - \left(\frac{\langle \mathbf{w}_{1}, \mathbf{v}_{2} \rangle}{\langle \mathbf{w}_{1}, \mathbf{w}_{1} \rangle}\right) \mathbf{w}_{1}$$

$$\mathbf{w}_{3} = \mathbf{v}_{3} - \left(\frac{\langle \mathbf{w}_{1}, \mathbf{v}_{3} \rangle}{\langle \mathbf{w}_{1}, \mathbf{w}_{1} \rangle}\right) \mathbf{w}_{1} - \left(\frac{\langle \mathbf{w}_{2}, \mathbf{v}_{3} \rangle}{\langle \mathbf{w}_{2}, \mathbf{w}_{2} \rangle}\right) \mathbf{w}_{2}$$

$$\vdots$$

$$\mathbf{w}_{n} = \mathbf{v}_{n} - \left(\frac{\langle \mathbf{w}_{1}, \mathbf{v}_{n} \rangle}{\langle \mathbf{w}_{1}, \mathbf{w}_{1} \rangle}\right) \mathbf{w}_{1} - \dots - \left(\frac{\langle \mathbf{w}_{n-1}, \mathbf{v}_{n} \rangle}{\langle \mathbf{w}_{n-1}, \mathbf{w}_{n-1} \rangle}\right) \mathbf{w}_{n-1}$$

een orthogonale basis voor W.

Faculteit EWI

Aanbevolen opgaven

College 3	behandeld	aanbevolen opgaven
	§6.2	??
	§7.1	??

