Nome:	Número:	TP:
**************************************	minutos. Não é perr seis exercícios. Os e s ser resolvido numa ciado, cada resposta c	nitido o uso de xercícios I - V folha separada. certa conta 0,75
I. Indique quais das seguintes fórmulas são tautologias ($ \begin{array}{ccc} T & N \\ \hline \times & \Box & (p \Leftrightarrow \neg p) \Leftrightarrow (q \land \neg q) \\ \hline \Box & \times & (p \Rightarrow q) \Rightarrow q \\ \hline \times & \Box & p \Leftrightarrow (\neg p \Rightarrow (q \land \neg q)) \\ \hline \times & \Box & (p \Rightarrow q) \lor (p \land \neg q) \\ \hline \Box & \times & ((p \land q) \lor r) \Leftrightarrow (p \land (q \lor r)) \end{array} $		
II. (1 valor) Considere a seguinte proposição sobre os números reais: $p: \forall x \forall y \forall z (x \geq 0 \land y \leq z) \in \mathbb{R}$ Indique em linguagem simbólica, sem recorrer a símbolo seja equivalente à negação da proposição p .	$\Rightarrow xy \le xz$	
$\exists x\exists y\exists z (x\geq 0 \land y\leq z) \land (y\leq z) \land (y\leq z) \land (y\leq z) \land (y\leq z) \land (z\leq z)$ III. Considere os conjuntos $A=\{1,2,\{1\},\{2\}\}\ e\ B=\mathbb{Z}$ seguintes afirmações são verdadeiras (V) e quais são fals	$\mathbb{S} \cup \{\{1,2\}, (1,2)\}$. Ind	dique quais das
$\begin{array}{c c} V & F \\ \hline & \times & \{(1,2)\} \in B \\ \hline \times & \hline & \{(1,2)\} \subseteq B \setminus A \\ \hline \times & \hline & \{1,2\} \subseteq A \in \{1,2\} \in B \\ \hline \times & \hline & A \cap B \notin \mathbb{Z} \end{array}$		

IV. Sejam A, B, C três conjuntos tais que $A \cap B = B \setminus C$. Indique quais das seguintes afirmações são necessariamente verdadeiras (V) e quais podem ser falsas (F):

V	\mathbf{F}	
×		$A\cap B\cap C=\emptyset$
×		$\forall x \in B x \notin C \Rightarrow x \in A$
	×	$A\cap C=\emptyset$
×		$\forall x \in B x \notin A \Rightarrow x \in C$

V. Considere os seguintes conjuntos:

$$A = \{X \subseteq \mathbb{N} \mid \exists x \in \mathbb{N}, \ X = \{x\}\}, \quad B = \{\emptyset, 1\} \quad \text{e} \quad C = \{x \in \mathbb{Z} \mid x^2 \in B\}.$$

Indique os seguintes conjuntos em extensão:

(a) (1 valor)
$$C = \{-1, 1\}$$

(b) (1 valor)
$$B^2 = \{(\emptyset, \emptyset), (\emptyset, 1), (1, \emptyset), (1, 1)\}$$

(c) (1 valor)
$$\mathcal{P}(B) \cap A = \underline{\{\{1\}\}}$$

(d) (1 valor)
$$\mathcal{P}(C) \setminus A = \{\emptyset, \{-1\}, \{-1, 1\}\}\$$

VI. [Resposta em folha separada] Sejam $A, B \in C$ três conjuntos.

- (a) (2,5 valores) Mostre que, se $A \setminus C \subseteq A \setminus B,$ então $A \cap B \subseteq A \cap C.$
- (b) (2 valores) **Justificando a sua resposta**, diga se a seguinte afirmação é verdadeira ou falsa.

Se $C \subseteq A \times B$ então existem $X \subseteq A$ e $Y \subseteq B$ tais que $C = X \times Y$.

Nome:	Número:	_TP:
**************************************	eutos. Não é permitido exercícios. Os exercí resolvido numa folha o, cada resposta certa o	$o\ o\ uso\ de$ $cios\ I$ - V $separada.$ $conta\ 0,75$
I. Indique quais das seguintes fórmulas são tautologias (T) e	e quais não são tautol	ogias (N).
$\begin{array}{c c} T & N \\ \hline & \times & (q \Rightarrow p) \Rightarrow p \\ \hline \times & \hline & (p \Rightarrow q) \lor (p \land \neg q) \\ \hline \times & \hline & (q \Leftrightarrow \neg q) \Leftrightarrow (p \land \neg p) \\ \hline \hline & \times & (r \land (p \lor q)) \Leftrightarrow ((r \land p) \lor q) \\ \hline \times & \hline & p \Leftrightarrow (\neg p \Rightarrow (q \land \neg q)) \\ \end{array}$		
II. (1 valor) Considere a seguinte proposição sobre os elemnúmeros reais: $p: \forall x \forall y \forall z (x \geq y \land z \geq 0) \Rightarrow x$		niverso de
Indique em linguagem simbólica, sem recorrer a símbolos de seja equivalente à negação da proposição p .		osição que
$\exists x \exists y \exists z (x \ge y \land z \ge 0) \land (xz < 0)$	$\leq yz)$	
III. Considere os conjuntos $A = \mathbb{Z} \cup \{(1,3), \{1,3\}\}$ e $B = \{1 seguintes afirmações são verdadeiras (V) e quais são falsas (San Carlotte) e quais são falsas (San Carlott$		quais das
$\begin{array}{c c} V & F \\ \hline \times & \boxed{} & \{(1,3)\} \subseteq A \setminus B \\ \hline \hline & \times & \{(1,3)\} \in A \\ \hline \times & \boxed{} & \{(1,3)\} \in A \\ \hline \hline & \times & A \cap B \nsubseteq \mathbb{Z} \\ \hline & \times & A \cap B \in A \\ \hline \end{array}$		

IV. Sejam A, B, C três conjuntos tais que $A \cap C = C \setminus B$. Indique quais das seguintes afirmações são necessariamente verdadeiras (V) e quais podem ser falsas (F):

V	F	
×		$\forall x \in C x \notin B \Rightarrow x \in A$
	×	$A \cap B = \emptyset$
×		$A\cap B\cap C=\emptyset$
×		$\forall x \in C x \notin A \Rightarrow x \in B$

V. Considere os seguintes conjuntos:

$$A = \{\emptyset, 4\}, \quad B = \{x \in \mathbb{Z} \mid x^2 \in A\}, \quad e \quad C = \{X \subseteq \mathbb{N} \mid \exists x \in \mathbb{N}, X = \{x\}\}.$$

Indique os seguintes conjuntos em extensão:

(a) (1 valor)
$$A^2 = \{(\emptyset, \emptyset), (\emptyset, 4), (4, \emptyset), (4, 4)\}$$

(b) (1 valor)
$$B = \{-2, 2\}$$

(c) (1 valor)
$$\mathcal{P}(A) \cap C = \underline{\{\{4\}\}}$$

(d) (1 valor)
$$\mathcal{P}(B) \setminus C = \{\emptyset, \{-2\}, \{-2, 2\}\}\$$

VI. [Resposta em folha separada] Sejam $A, B \in C$ três conjuntos.

(a) (2,5 valores) Mostre que, se $A \setminus C \subseteq A \setminus B$, então $A \cap B \subseteq A \cap C$.

Seja $x \in A \cap B$. Por definição da interseção, temos $x \in A$ e $x \in B$. Logo podemos dizer que $x \notin A \setminus B$ pois, caso contrário, teriamos $x \in B$ e $x \notin B$. Como $A \setminus C \subseteq A \setminus B$ e $x \notin A \setminus B$ obtemos $x \notin A \setminus C$ pois, por contraposição, $A \setminus C \subseteq A \setminus B$ é equivalente à implicação $z \notin A \setminus B \Rightarrow z \notin A \setminus C$ onde z é um objecto qualquer. Como $x \notin A \setminus C$ e $x \in A$ podemos agora concluir $x \in C$ e assim obtemos $x \in A \cap C$.

Resolução alternativa:

Admitamos que $A \setminus C \subseteq A \setminus B$. Pretendemos mostrar que $A \cap B \subseteq A \cap C$. Uma vez que, para todo o objeto x,

$$x \in A \cap B \implies x \in A \land x \in B$$

$$\Rightarrow x \in A \land \neg (x \in A \land x \notin B)$$

$$\Rightarrow x \in A \land \neg (x \in A \setminus B)$$

$$\Rightarrow x \in A \land \neg (x \in A \setminus C)$$

$$\Rightarrow x \in A \land \neg (x \in A \land x \notin C)$$

$$\Rightarrow x \in A \land (x \notin A \land x \notin C)$$

$$\Rightarrow (x \in A \land x \notin A) \lor (x \in A \land x \in C)$$

$$\Rightarrow (x \in A \land x \notin C)$$

$$\Rightarrow (x \in A \land x \in C)$$

$$\Rightarrow (x \in A \land x \in C)$$

$$\Rightarrow (x \in A \land C)$$

$$(9)$$

tem-se $A \cap B \subseteq A \cap C$.

Nota:

- (1) Definição de interseção.
- (2) Sendo p e q proposições, $(p \land q) \Rightarrow (p \land \neg (p \land \neg q))$ é uma tautologia.
- (3) Definição de complementação.
- (4) Tem-se $A \setminus C \subseteq A \setminus B$. Então,

$$\forall x, x \in A \setminus C \Rightarrow x \in A \setminus B$$
,

o que, por contraposição, é equivalente a termos

$$\forall x, x \notin A \setminus B \Rightarrow x \notin A \setminus C.$$

- (5) Definição de complementação.
- (6) Sendo $p \in q$ proposições, $\neg (p \land \neg q) \Leftrightarrow (\neg p \lor q)$.
- (7) Propriedade distributiva da conjução relativamente à disjunção.
- (8) Sendo p uma proposição, $p \land \neg p$ é o elemento neutro da disjunção.
- (9) Definição de interseção.
- (b) (2 valores) **Justificando a sua resposta**, diga se a seguinte afirmação é verdadeira ou falsa.

Se
$$C \subseteq A \times B$$
 então existem $X \subseteq A$ e $Y \subseteq B$ tais que $C = X \times Y$.

A afirmação é falsa.

Contra-exemplo: Sejam $A = \{1,2\}$, $B = \{3,4\}$ e $C = \{(1,3),(2,4)\}$. Então não existem $X \subseteq A$ e $Y \subseteq B$ tais que $C = X \times Y$. Com efeito, se admitirmos que existem conjuntos X e Y tais que $C = X \times Y$ segue que $\{1,2\} \subseteq X$ e $\{3,4\} \subseteq Y$, pelo que $\{(1,3),(2,3),(1,4),(2,4)\} \subseteq X \times Y$ (o que contradiz $C = X \times Y$).