Fourier Transform

Prof. George Wolberg

Dept. of Computer Science

City College of New York

10-30 rec start

Objectives

- This lecture reviews Fourier transforms and processing in the frequency domain.
 - Definitions
 - Fourier series
 - Fourier transform
 - Fourier analysis and synthesis
 - Discrete Fourier transform (DFT)
 - Fast Fourier transform (FFT)

Background (1)

- Fourier proved that any periodic function can be expressed as the sum of sinusoids of different frequencies, each multiplied by a different coefficient. → Fourier series
- Even aperiodic functions (whose area under the curve is finite) can be expressed as the integral of sinusoids multiplied by a weighting function. → Fourier transform
- In a great leap of imagination, Fourier outlined these results in a memoir in 1807 and published them in *La Theorie Analitique de la Chaleur* (The Analytic theory of Heat) in 1822. The book was translated into English in 1878.

Background (2)

- The Fourier transform is more useful than the Fourier series in most practical problems since it handles signals of finite duration.
- The Fourier transform takes us between the spatial and frequency domains.
- It permits for a dual representation of a signal that is amenable for filtering and analysis.
- Revolutionized the field of signal processing.

Example

FIGURE 4.1 The function at the bottom is the sum of the four functions above it. Fourier's idea in 1807 that periodic functions could be represented as a weighted sum of sines and cosines was met with skepticism.

Useful Analogy

- A glass prism is a physical device that separates light into various color components, each depending on its wavelength (or frequency) content.
- The Fourier transform is a mathematical prism that separates a function into its frequency components.

Fourier Series for Periodic Functions

10-30 start (late by25mb)

Fourier Transform for Aperiodic Functions

 $.5\pi$

Fourier Analysis and Synthesis

- Fourier analysis: determine amplitude & phase shifts
- Fourier synthesis: add scaled and shifted sinusoids together

Fourier transform pair:

Forward F.T.
$$F(u) = \int_{-\infty}^{\infty} f(x)e^{-i2\pi ux}dx$$
 spacial to freat from $f(x) = \int_{-\infty}^{\infty} F(u)e^{+i2\pi ux}dx$ from $f(x) = \int_{-\infty}^{\infty} F(u)e^{+i2\pi ux}dx$

where
$$i = \sqrt{-1}$$
, and

 $e^{\pm i2\pi ux} = \cos(2\pi ux) \pm i\sin(2\pi ux)$ \(\therefore\) complex exponential at freq. uEuler's formula

Fourier Coefficients

- Fourier coefficients F(u) specify, for each frequency u, the amplitude and phase of each complex exponential.
- F(u) is the frequency spectrum.
- f(x) and F(u) are two equivalent representations of the same signal.

$$F(u) = R(u) + iI(u)$$

$$|F(u)| = \sqrt{R^2(u) + I^2(u)}$$
 \leftarrow magnitude spectrum; aka Fourier spectrum

$$\Phi(u) = \tan^{-1} \frac{I(u)}{R(u)} \leftarrow \text{ phase spectrum}$$

$$P(u) = |F(u)|^2$$

= $R^2(u) + I^2(u) \leftarrow$ spectral density

1D Example

2D Example

Fourier Series (1)

For periodic signals, we have the Fourier series:

$$f(x) = \sum_{n=-\infty}^{\infty} c(nu_0)e^{i2\pi u_0 x} \text{ where } c(nu_0) \text{ is the } n^{th} \text{ Fourier coefficient}$$

$$c(nu_0) = \frac{1}{x_0} \int_{-x_0/2}^{x_0/2} f(x) e^{-i2\pi u_0 x} dx$$

That is, the periodic signal contains all the frequencies that are harmonics of the fundamental frequency.

Fourier Series (2)

$$c(nu_0) = \frac{1}{x_0} \int_{-x_0/2}^{x_0/2} f(x) e^{-i2\pi nu_0 x} dx = \frac{1}{x_0} \int_{-W/2}^{W/2} A e^{-i2\pi nu_0 x} dx$$

$$c(nu_0) = \frac{A}{-i2\pi nu_0 x_0} (e^{-i\pi nu_0 W} - e^{+i\pi nu_0 W})$$

$$c(nu_0) = \frac{A}{\pi n} \sin(\pi nu_0 W) \leftarrow \sin x = \frac{e^{ix} - e^{-ix}}{2i}; u_0 x_0 = 1$$

$$c(nu_0) = \frac{Au_0 W}{\pi nu_0 W} \sin(\pi nu_0 W) = Au_0 W \operatorname{sinc}(\pi nu_0 W)$$
Note that if $\frac{W}{2} = \frac{x_0}{2}$, then we have a square wave and
$$c(nu_0) = Au_0 x_0 \operatorname{sinc}(\pi nu_0 x_0)$$

$$c(nu_0) = \begin{cases} A \operatorname{sinc}(n) & n = \pm 1, \pm 3, \cdots \\ 0 & n = 0, \pm 2, \pm 4, \cdots \end{cases}$$

Fourier Series (3)

- The Fourier transform is applied for aperiodic signals.
- It is represented as an integral over a continuum of frequencies.
- The Fourier Series is applied for periodic signals.
- It is represented as a summation of frequency components that are integer multiples of some fundamental frequency.

Example

Ex: Rectangular Pulse Train

$$f(x) = \begin{cases} A & |x| < \frac{W}{2} \\ 0 & |x| > \frac{W}{2} \end{cases}$$
 in interval[-W/2, W/2]

Discrete Fourier Transform

$$F(u) = \frac{1}{N} \sum_{x=0}^{N-1} f(x) e^{-i2\pi \frac{ux}{N}}$$
 forward DFT

$$f(x) = \sum_{u=0}^{N-1} F(u)e^{+i2\pi \frac{ux}{N}}$$
 inverse DFT

for $0 \le u \le N-1$ and $0 \le x \le N-1$ where N is the number of equi-spaced input samples.

The 1/N factor can be in front of f(x) instead.

$$F(u) = \frac{1}{N} \sum_{i=1}^{N} f(x) e^{-ix^2}$$
for an interpretation of the property of the pro

did le vale a mistale.

€ f(x) [cos(zavx) + isin(zavx) (f(x) cus (2170x))+(f(x)isin(2170x))

 $f(x) = \sum_{n=1}^{N-1} F(u)e^{+i2\pi \frac{ux}{N}}$ inverse DFT

Fourier Analysis Code Signal to Signal coeff

DFT maps N input samples of f into the N frequency terms in F.

```
for(u=0; u<N; u++) { /*compute spectrum over all freq. u */</pre>
 real = imag = 0;  /*reset real, imag component of F(u)*/
  for(x=0; x<N; x++) { /* visit each input pixel */</pre>
         real += (f[x]*cos(-2*PI*u*x/N));
                                                                    F(u) = \frac{1}{N} \sum_{n=1}^{N-1} f(x) e^{-i2\pi \frac{ux}{N}}
                                                                                forward DFT
         imag += (f[x]*sin(-2*PI*u*x/N));
         /* Note: if f is complex, then
         real += (fr[x]*cos()-fi[x]*sin());
                                                                        F(x) cus (2000)+(F(x)isin(2000)
         imag += (fr[x]*sin()+fi[x]*cos());
         because (f_r+if_i)(g_r+ig_i)=(f_rg_r-f_ig_i)+i(f_ig_r+f_rg_i)
         */
                                           F(u) = \frac{1}{N} \sum_{n=0}^{N-1} f(x) e^{-i2\pi \frac{ux}{N}} forward DFT
 Fr[u] = real / N;
 Fi[u] = imag / N;
                                            f(x) = \sum_{n=1}^{N-1} F(u)e^{+i2\pi \frac{ux}{N}} inverse DFT
```

Fourier Synthesis Code

brohowds.

Example: Fourier Analysis (1)

lan

Example: Fourier Analysis (2)

Wolberg: Image Processing Course Notes

lase

Summary

Note: $i=\sqrt{-1}$, $\omega=2\pi/T$, $s[n]=s(t_n)$, N=# of samples

2D Fourier Transform = date in 2 passes Just like bluring in HUZ

Continuous:

$$F\{f(x,y)\} = F(u,v) = \iint f(x,y)e^{-i2\pi(ux+vy)}dx = \iint f(x,y)e^{-i2\pi ux}e^{-i2\pi vy}dx$$
$$F^{-1}\{F(u,v)\} = f(x,y) = \iint F(u,v)e^{+i2\pi(ux+vy)}dx = \iint F(u,v)e^{+i2\pi ux}e^{+i2\pi vy}dx$$

Separable:
$$F(u, v) = F(u)F(v)$$
Discrete:
$$F(u, v) = \frac{1}{MN} \sum_{x=0}^{N-1} \sum_{y=0}^{M-1} f(x, y) e^{-i2\pi(\frac{ux}{N} + \frac{vy}{M})} dx = \frac{1}{M} \sum_{y=0}^{M-1} \left[\frac{1}{N} \sum_{x=0}^{N-1} f(x, y) e^{-i2\pi(\frac{ux}{N})} \right] e^{-i2\pi(\frac{vy}{M})}$$

$$f(x,y) = \sum_{x=0}^{N-1} \sum_{y=0}^{M-1} F(u,v) e^{+i2\pi (\frac{ux}{N} + \frac{vy}{M})} dx = \sum_{y=0}^{M-1} \left[\sum_{x=0}^{N-1} F(u,v) e^{+i2\pi (\frac{ux}{N})} \right] e^{+i2\pi (\frac{vy}{M})}$$

7:21

Separable Implementation

$$F(u,v) = \frac{1}{N} \sum_{y=0}^{N-1} e^{-j2\pi vy/N} \frac{1}{M} \sum_{x=0}^{M-1} f(x,y) e^{-j2\pi ux/M}$$

$$= \frac{1}{N} \sum_{y=0}^{N-1} F(u,y) e^{-j2\pi vy/N} \qquad \text{transform each row}$$

$$\text{transform each column of intermediate result}$$

where
$$F(u, y) = \frac{1}{M} \sum_{x=0}^{M-1} f(x, y) e^{-j2\pi ux/M}$$

The 2D Fourier transform is computed in two passes:

- 1) Compute the transform along each row independently.
- 2) Compute the transform along each column of this intermediate result.

Properties

- Edge
 orientations in
 image appear in
 spectrum,
 rotated by 90°.
- 3 orientations are prominent: 45°,
 -45°, and nearly horizontal long white element.

HU3: Inverse Freir

Role of Magnitude vs Phase (1)

Rick

Linda

Pictures reconstructed using the Fourier phase of another picture

Mag{Linda} Phase{Rick}

magnitude of linda place of Rich

Mag{Rick} Phase{Linda}

why phose heeps edge

than magnitude

Role of Magnitude vs Phase (2)

Wolberg: Image Processing Course Notes

forier Transform can show
noises that has a certain pattern
-> Shows the freq

Noise Removal

Mask to remove periodic noise

Inverse FT with periodic noise removed

Fast Fourier Transform (1)

• The DFT was defined as:

$$F(u) = \frac{1}{N} \sum_{x=0}^{N-1} f(x) e^{-i2\pi \frac{ux}{N}} \quad 0 \le x \le N - 1$$

Rewrite:

$$F_{n} = \frac{1}{N} \sum_{k=0}^{N-1} f_{k} e^{-i2\pi \frac{nk}{N}} \quad 0 \le n \le N-1$$

Let
$$F_n = \sum_{k=0}^{N-1} f_k W^{nk}$$

where
$$W = e^{\frac{-i2\pi}{N}} = \cos(\frac{-2\pi}{N}) + i\sin(\frac{-2\pi}{N})$$

Also, Let
$$N = 2^r$$
 (N is apower of 2)
Let N be a power of 2 will see why Let

Fast Fourier Transform (2)

- W^{nk} can be thought of as a 2D array, indexed by *n* and *k*.
- It represents N equispaced values along a sinusoid at each of N frequencies.
- For each frequency *n*, there are N multiplications (N samples in sine wave of freq. *n*). Since there are *N* frequencies, DFT: $O(N^2)$
- With the FFT, we will derive an $O(N \log N)$ process.

[024.1624 rs 1024.(0?) 31 he vas sight Sonethin like the

Wolberg: Image Processing Course Notes

Computational Advantage

FIGURE 4.42

Computational advantage of the FFT over a direct implementation of the 1-D DFT. Note that the advantage increases rapidly as a function of *n*.

Danielson-Lanczos Lemma (1)

2 groups

1942:
$$F_n = \sum_{k=0}^{N-1} f_k e^{-i2\pi \frac{nk}{N}}$$
 Scollecting add sales

$$F_{n} = \sum_{k=0}^{\frac{N}{2}-1} f_{2k} e^{-i2\pi \frac{n(2k)}{N}} + \sum_{k=0}^{\frac{N}{2}-1} f_{2k+1} e^{-i2\pi \frac{n(2k+1)}{N}} \rightarrow \text{collecting every other value}$$
(even $\frac{N}{2}$)

Even Numbered Terms

$$f_0, f_2, f_4, \cdots$$

Odd Numbered Terms

$$f_1, f_3, f_5, \cdots$$

$$f_1, f_3, f_5, \cdots$$

$$= i2 \text{ IT } \frac{n_2 u}{N} = -i2 \text{ IT } \frac{n_3 u}{N}$$

$$F_{n} = \sum_{k=0}^{\frac{N}{2}-1} f_{2k} e^{\frac{-i2\pi nk}{N/2}} + W^{n} \sum_{k=0}^{\frac{N}{2}-1} f_{2k+1} e^{\frac{-i2\pi nk}{N/2}}$$

$$W = e^{\frac{-i2\pi}{N}}$$

$$F_{n} = F_{n}^{e} + W^{n} F_{n}^{o}$$

Danielson-Lanczos Lemma (2)

$$F_n = \sum_{k=0}^{N-1} f_{2k} e^{\frac{-i2\pi nk}{N/2}} + W^n \sum_{k=0}^{N-1} f_{2k+1} e^{\frac{-i2\pi nk}{N/2}}$$

$$W = e^{\frac{-i2\pi}{N}}$$

$$F_n = F_n^e + W^n F_n^o$$

 n^{th} component of F.T. of length N/2 formed from the **even** components of f

 n^{th} component of F.T. of length N/2 formed from the **odd** components of f

Divide-and-Conquer solution: Solving a problem (F_n) is reduced to 2 smaller ones.

Potential Problem: n in F_n^e and F_n^o is still made to vary from 0 to N-1. Since each sub-problem is no smaller than original, it appears wasteful.

Solution: Exploit symmetries to reduce computational complexity.

N=length of 1st n=0 to N

Danielson-Lanczos Lemma (3)

Given :a DFT of length
$$N, F_{n+N} = F_n$$

$$Proof : F_{n+N} = \sum_{k=0}^{N-1} f_k e^{\frac{-i2\pi nk}{N}} \Rightarrow \sum_{k=0}^{N-1} f_k e^{\frac{-i2\pi nk}{N}} e^{\frac{-i2\pi nk}{N}} = \sum_{k=0}^{N-1} f_k e^{\frac{-i2\pi nk}{N}} = \sum_{k=0}^{N-1} f_k e^{\frac{-i2\pi nk}{N}} (\cos 2\pi k - i \sin 2\pi k) = \sum_{k=0}^{N-1} f_k e^{\frac{-i2\pi nk}{N}} = F_n$$

$$W^{n+\frac{N}{2}} = \cos \left(\frac{-2\pi}{N} \left(n + \frac{N}{2} \right) \right) + i \sin \left(\frac{-2\pi}{N} \left(n + \frac{N}{2} \right) \right)$$

$$W^{n+\frac{N}{2}} = \cos\left(\frac{-2\pi}{N}\left(n+\frac{N}{2}\right)\right) + i\sin\left(\frac{-2\pi}{N}\left(n+\frac{N}{2}\right)\right)$$

$$= \cos\left(\frac{-2\pi n}{N} - \pi\right) + i\sin\left(\frac{-2\pi n}{N} - \pi\right)$$

$$= -\cos\left(\frac{-2\pi n}{N}\right) - i\sin\left(\frac{-2\pi n}{N}\right)$$

$$= -\cos\left(\frac{-2\pi n}{N}\right) - i\sin\left(\frac{-2\pi n}{N}\right)$$

Wolberg: Image Processing Course Notes

Why are they use ful?

> butler Hy

35

Main Points of FFT

$$F_{n} = \sum_{k=0}^{N-1} f_{k} e^{-i2\pi \frac{nk}{N}}$$

$$F_{n} = F_{n}^{e} + W^{n} F_{n}^{o}$$

$$length N \qquad length \frac{N}{2} \qquad length \frac{N}{2}$$

$$but 0 \le n < N$$

$$F_{n}^{e} - F_{n}^{e} + W^{n} F_{n}^{o}$$

Oh ear

FFT Example (1)

• Input: 10, 15, 20, 25, 5, 30, 8, 4

11-11 rec start 2:15 (cane late)

hay is it fast?

FFT Example (2)

Weights

- DFT is a convolution with kernel values e-i2πux/N
- These values are derived from a unit circle.

Code in her stide. Fourier-c in Helosite **DFT Example (1)**

• Input: 10, 15, 20, 25, 5, 30, 8, 4

$$F_{n} = \sum_{k=0}^{N-1} f_{k} e^{-i2\pi \frac{nk}{N}}$$

Weight = 2 You suip the rext might

Weight=3

You ship 2 steps (2 Leight)

$$F_0 = 10 + 15 + 20 + 25 + 5 + 30 + 8 + 4 = 117$$

$$F_1 = 10e^{-i2\pi(1)(0)/8} + 15e^{-i2\pi(1)(1)/8} + 20e^{-i2\pi(1)(2)/8} + \dots + 8e^{-i2\pi(1)(6)/8} + 4e^{-i2\pi(1)(7)/8}$$
$$= 10A + 15B + 20C + 25D + 5E + 30F + 8G + 4H$$

$$F_{2} = 10e^{-i2\pi(2)(0)/8} + 15e^{-i2\pi(2)(1)/8} + 20e^{-i2\pi(2)(2)/8} + \dots + 8e^{-i2\pi(2)(6)/8} + 4e^{-i2\pi(2)(7)/8} = 10\underbrace{A} + 15\underbrace{C} + 20\underbrace{E} + 25\underbrace{G} + 5\underbrace{A} + 30\underbrace{C} + 8\underbrace{E} + 4\underbrace{G} = -13 - 16i$$

$$F_3 = 10e^{-i2\pi(3)(0)/8} + 15e^{-i2\pi(3)(1)/8} + 20e^{-i2\pi(3)(2)/8} + \dots + 8e^{-i2\pi(3)(6)/8} + 4e^{-i2\pi(3)(7)/8}$$

$$=10A+15D+20G+25B+5E+30H+8C+4F$$

40

HS you can see -> get some appren as in FFT!

DFT Example (2)

$$F_{4} = 10e^{-i2\pi(4)(0)/8} + 15e^{-i2\pi(4)(1)/8} + 20e^{-i2\pi(4)(2)/8} + \dots + 8e^{-i2\pi(4)(6)/8} + 4e^{-i2\pi(4)(7)/8}$$

$$= 10A + 15E + 20A + 25E + 5A + 30E + 8A + 4E = -31$$

$$F_{5} = 10e^{-i2\pi(5)(0)/8} + 15e^{-i2\pi(5)(1)/8} + 20e^{-i2\pi(5)(2)/8} + \dots + 8e^{-i2\pi(5)(6)/8} + 4e^{-i2\pi(5)(7)/8}$$

$$= 10A + 15F + 20C + 25H + 5E + 30B + 8G + 4D$$

$$F_{6} = 10e^{-i2\pi(6)(0)/8} + 15e^{-i2\pi(6)(1)/8} + 20e^{-i2\pi(6)(2)/8} + \dots + 8e^{-i2\pi(6)(6)/8} + 4e^{-i2\pi(6)(7)/8}$$

$$= 10A + 15G + 20E + 25C + 5A + 30G + 8E + 4C = -13 + 16i$$

$$F_{7} = 10e^{-i2\pi(7)(0)/8} + 15e^{-i2\pi(7)(1)/8} + 20e^{-i2\pi(7)(2)/8} + \dots + 8e^{-i2\pi(7)(6)/8} + 4e^{-i2\pi(7)(7)/8}$$

$$= 10A + 15H + 20G + 25F + 5E + 30D + 8C + 4B$$

TABLE 4.1
Summary of some important properties of the 2-D Fourier transform.

Property	Expression(s)	
Fourier transform	$F(u,v) = rac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(ux/M + vy/N)}$ = arenge at	tals then to fire!?-
Inverse Fourier transform	$f(x, y) = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u, v) e^{j2\pi(ux/M + vy/N)}$	
Polar representation	$F(u,v) = F(u,v) e^{-j\phi(u,v)}$	
Spectrum	$ F(u,v) = [R^2(u,v) + I^2(u,v)]^{1/2}, R = \text{Real}(F) \text{ and } I = \text{Imag}(F)$	
Phase angle	$\phi(u,v) = \tan^{-1} \left[\frac{I(u,v)}{R(u,v)} \right]$	
Power spectrum	$P(u,v) = F(u,v) ^2$	
Average value	$\overline{f}(x,y) = F(0,0) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) $ ever of all pixels	cy =0
Translation	$f(x, y)e^{j2\pi(u_0x/M+v_0y/N)} \Leftrightarrow F(u - u_0, v - v_0)$ $f(x - x_0, y - y_0) \Leftrightarrow F(u, v)e^{-j2\pi(ux_0/M+vy_0/N)}$ When $x_0 = u_0 = M/2$ and $y_0 = v_0 = N/2$, then $f(x, y)(-1)^{x+y} \Leftrightarrow F(u - M/2, v - N/2)$ $f(x - M/2, y - N/2) \Leftrightarrow F(u, v)(-1)^{u+v}$	

If you scale

 $F(u,v) = F^*(-u,-v)$ Conjugate |F(u,v)| = |F(-u,-v)|symmetry $\frac{\partial^n f(x,y)}{\partial x^n} \Leftrightarrow (ju)^n F(u,v)$ Differentiation $(-jx)^n f(x,y) \Leftrightarrow \frac{\partial^n F(u,v)}{\partial u^n}$ $\nabla^2 f(x, y) \Leftrightarrow -(u^2 + v^2) F(u, y)$ Laplacian $\Im[f_1(x, y) + f_2(x, y)] = \Im[f_1(x, y)] + \Im[f_2(x, y)]$ Distributivity $\Im[f_1(x,y)\cdot f_2(x,y)] \neq \Im[f_1(x,y)]\cdot \Im[f_2(x,y)]$ $af(x, y) \Leftrightarrow aF(u, v), f(ax, by) \Leftrightarrow \frac{1}{|ab|}F(u/a, v/b)$ Scaling Rotation $x = r \cos \theta$ $v = r \sin \theta$ $u = \omega \cos \varphi$ $v = \omega \sin \varphi$ notate ing = notate forier trans $f(r, \theta + \theta_0) \Leftrightarrow F(\omega, \varphi + \theta_0)$ F(u, v) = F(u + M, v) = F(u, v + N) = F(u + M, v + N)Periodicity f(x, y) = f(x + M, y) = f(x, y + N) = f(x + M, y + N)Separability See Eqs. (4.6-14) and (4.6-15). Separability implies that we can

compute the 2-D transform of an image by first computing 1-D transforms along each row of the image, and then computing a 1-D transform along each column of this intermediate result.

The reverse, columns and then rows, yields the same result.

if you scale the input vals of input > output is also scales Linear

space of = frequency space 1 = frequency space of = frequency space of the space of

If you strect d at that MU
TABLE 4.1 You have the frew
(continued) | Space ⇒ I frew
43

Property	Expression(s)
Computation of the inverse Fourier transform using a forward transform algorithm	$\frac{1}{MN}f^*(x,y) = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F^*(u,v) e^{-j2\pi(ux/M+vy/N)}$ This equation indicates that inputting the function $F^*(u,v)$ into an algorithm designed to compute the forward transform (right side of the preceding equation) yields $f^*(x,y)/MN$. Taking the complex conjugate and multiplying this result by MN gives the desired inverse.
Convolution [†]	$f(x,y) * h(x,y) = \frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m,n)h(x-m,y-n)$
Correlation [†]	$f(x,y) \circ h(x,y) = \frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f^*(m,n)h(x+m,y+n)$
Convolution theorem [†]	$f(x,y) \circ h(x,y) = \frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f^*(m,n)h(x+m,y+n)$ $\underbrace{\sum_{p \in \mathcal{U}} \text{kernel slide reeded}}_{f(x,y) * h(x,y)} \Leftrightarrow F(u,v)H(u,v); (\text{consulting in all density}) \text{ with}$ $f(x,y)h(x,y) \Leftrightarrow F(u,v)*H(u,v) \text{ a Dont need to slide Kernel}$ $f(x,y)h(x,y) \Leftrightarrow F(u,v)*H(u,v);$ $f^*(x,y)h(x,y) \Leftrightarrow F^*(u,v)H(u,v);$
Correlation theorem [†]	$f(x,y)h(x,y) \leftrightarrow f(u,v) \cdot H(u,v)$
-	TABLE 4.1 (continued)

Some useful FT pairs:

Impulse
$$\delta(x,y) \Leftrightarrow 1$$
Gaussian
$$A\sqrt{2\pi}\sigma e^{-2\pi^2\sigma^2(x^2+y^2)} \Leftrightarrow Ae^{-(u^2+v^2)/2\sigma^2}$$
Rectangle
$$\operatorname{rect}[a,b] \Leftrightarrow ab \frac{\sin(\pi ua)}{(\pi ua)} \frac{\sin(\pi vb)}{(\pi vb)} e^{-j\pi(ua+vb)}$$
Cosine
$$\cos(2\pi u_0 x + 2\pi v_0 y) \Leftrightarrow \frac{1}{2} \left[\delta(u+u_0,v+v_0) + \delta(u-u_0,v-v_0)\right]$$
Sine
$$\sin(2\pi u_0 x + 2\pi v_0 y) \Leftrightarrow j\frac{1}{2} \left[\delta(u+u_0,v+v_0) - \delta(u-u_0,v-v_0)\right]$$

TABLE 4.1 (continued)

^{*} Assumes that functions have been extended by zero padding.