EE910: Digital Communication Systems-I

Adrish Banerjee

Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

May 9, 2022

Lecture #5B: Waveform and vector AWGN channels

Equivalence of Waveform and Vector AWGN channels

• The waveform AWGN channel is described by the input-output relation

$$r(t) = s_m(t) + n(t) \tag{1}$$

where $s_m(t)$ is one of the possible M signals and n(t) is a zero-mean white Gaussian process with power spectral density $N_0/2$.

• Using the Gram-Schmidt procedure, we can derive an orthonormal basis $\{\phi_i(t), 1 \leq j \leq N\}$ for representation of the signals.

Adrish Banerjee EE910: Digital Communication SystemsDepartment of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

Equivalence of Waveform and Vector AWGN channels

- The noise process cannot be completely expanded in terms of the basis $\{\phi_j(t)\}_{j=1}^N$.
- One component, denoted by $n_1(t)$ is part of the noise process that can be expanded in terms of $\{\phi_j(t)\}_{j=1}^N$ and the the other part, denoted by $n_2(t)$, is the part that cannot be expressed in terms of this basis function.
- Thus, we can write $n_1(t) = \sum_{j=1}^N n_j \phi_j(t)$, where $n_j = \langle n(t), \phi_j(t) \rangle$ and $n_2(t) = n(t) n_1(t)$.

4 D > 4 D > 4 E > 4 E > E 990

Equivalence of Waveform and Vector AWGN channels

- $s_m(t)$ can be written as $s_m(t) = \sum_{j=1}^N s_{mj} \phi_j(t)$, where $s_{mj} = \langle s_m(t), \phi_j(t) \rangle$.
- ullet Thus (1) can be written as $r(t) = \sum_{j=1}^N (s_{mj} + n_j) \phi_j(t) + n_2(t)$.
- We define $r_j = s_{mj} + n_j$ where, $r_j = \langle s_m(t), \phi_j(t) \rangle + \langle n(t), \phi_j(t) \rangle = \langle r(t), \phi_j(t) \rangle.$
- Thus we have $r(t) = \sum_{j=1}^N r_j \phi_j(t) + n_2(t)$.

Adrish Banerjee EE910: Digital Communication Systems-I Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

Equivalence of Waveform and Vector AWGN channels

- n_j is defined by $n_j = \int_{-\infty}^{\infty} n(t)\phi_j(t)dt$.
- The mean of n_i is given as,

$$E[n_j] = E\left[\int_{-\infty}^{\infty} n(t)\phi_j(t)dt\right] = \int_{-\infty}^{\infty} E[n(t)]\phi_j(t)dt = 0, \quad (2)$$

where the last equality holds since n(t) is zero-mean.

Equivalence of Waveform and Vector AWGN channels

• The covariance of n_i and n_j is,

$$COV[n_{i}n_{j}] = E[n_{i}n_{j}] - E[n_{i}]E[n_{j}]$$

$$= E\left[\int_{-\infty}^{\infty} n(t)\phi_{i}(t)dt \int_{-\infty}^{\infty} n(s)\phi_{j}(s)ds\right]$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} E[n(t)n(s)]\phi_{i}(t)\phi_{j}(s)dtds$$

$$= \frac{N_{0}}{2} \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} \delta(t-s)\phi_{i}(t)dt\right]\phi_{j}(s)ds$$

$$= \frac{N_{0}}{2} \int_{-\infty}^{\infty} \phi_{i}(s)\phi_{j}(s)ds$$

$$= \begin{cases} \frac{N_{0}}{2}, & i=j\\ 0, & i\neq j \end{cases}$$
(3)

Adrish Banerjee EE910: Digital Communi Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

Equivalence of Waveform and Vector AWGN channels

- $n_2(t) = n(t) n_1(t)$, which is a linear combination of two jointly Gaussian processes, is itself a Gaussian process.
- The covariance at any given t is,

$$COV[n_{j}n_{2}(t)] = E[n_{j}n_{2}(t)]$$

$$= E[n_{j}n(t)] - E[n_{j}n_{1}(t)]$$

$$= E\left[n(t)\int_{-\infty}^{\infty}n(s)\phi_{j}(s)ds\right] - E\left[n_{j}\sum_{i=1}^{N}n_{i}\phi_{i}(t)\right]$$

$$= \frac{N_{0}}{2}\int_{-\infty}^{\infty}\delta(t-s)\phi_{j}(s)ds - \frac{N_{0}}{2}\phi_{j}(t)$$

$$= \frac{N_{0}}{2}\phi_{j}(t) - \frac{N_{0}}{2}\phi_{j}(t)$$

$$= 0$$
(4)

• The AWGN waveform channel of the form $r(t) = s_m(t) + n(t)$, $1 \le m \le M$ is equivalent to the N- dimensional vector channel $\mathbf{r} = \mathbf{s}_m + \mathbf{n}$, $1 \le m \le M$.

EE910: Digital Communication Systems-I

Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

Optimal Detection for the Vector AWGN Channel

• The MAP detector for the AWGN vector channel is given by

$$\begin{array}{ll} h & = & \displaystyle \operatorname*{arg\,max}_{1 \leq m \leq M} \left[P_m \rho(\mathbf{r} | \mathbf{s}_m) \right] \\ & = & \displaystyle \operatorname*{arg\,max}_{1 \leq m \leq M} P_m [p_n(\mathbf{r} - \mathbf{s}_m)] \\ & = & \displaystyle \operatorname*{arg\,max}_{1 \leq m \leq M} \left[P_m \left(\frac{1}{\sqrt{\pi N_0}} \right)^N \mathrm{e}^{-\frac{\|\mathbf{r} - \mathbf{s}_m\|^2}{N_0}} \right] \\ & = & \displaystyle \operatorname*{arg\,max}_{1 \leq m \leq M} \left[P_m \mathrm{e}^{-\frac{\|\mathbf{r} - \mathbf{s}_m\|^2}{N_0}} \right] \\ & = & \displaystyle \operatorname*{arg\,max}_{1 \leq m \leq M} \left[\ln P_m - \frac{\|\mathbf{r} - \mathbf{s}_m\|^2}{N_0} \right] \\ & = & \displaystyle \operatorname*{arg\,max}_{1 \leq m \leq M} \left[\frac{N_0}{2} \ln P_m - \frac{1}{2} \|\mathbf{r} - \mathbf{s}_m\|^2 \right] \\ & = & \displaystyle \operatorname*{arg\,max}_{1 \leq m \leq M} \left[\frac{N_0}{2} \ln P_m - \frac{1}{2} (\|\mathbf{r}\|^2 + \|\mathbf{s}_m\|^2 - 2\mathbf{r}.\mathbf{s}_m) \right] \end{array} \tag{5}$$

Adrish Banerjee EE910: Digital Communication System: Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

Optimal Detection for the Vector AWGN Channel

•

$$\stackrel{\text{(a)}}{=} \underset{1 \leq m \leq M}{\arg \max} \left[\frac{N_0}{2} \ln P_m - \frac{1}{2} \mathcal{E}_m + \mathbf{r}.\mathbf{s}_m \right]$$

$$\stackrel{\text{(b)}}{=} \underset{1 \leq m \leq M}{\arg \max} \left[\eta_m + \mathbf{r}.\mathbf{s}_m \right]$$

$$\text{(6)}$$

where we have used the following steps in simplifying the expression: (a): $\|\mathbf{s}_m\|^2 = \mathcal{E}_m$ and (b): $\eta_m = \frac{N_0}{2} \ln P_m - \frac{1}{2} \mathcal{E}_m$ as the bias term.

4 D > 4 D > 4 E > 4 E > E 990

EE910: Digital Communication Systems-

Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

Optimal Detection for the Vector AWGN Channel

• In the special case where the signals are equiprobable, i.e., $P_m = 1/M$ for all m,

$$\hat{m} = \underset{1 \leq m \leq M}{\arg \max} \left[\frac{N_0}{2} \ln P_m - \frac{1}{2} \|\mathbf{r} - \mathbf{s}_m\|^2 \right]$$

$$= \underset{1 \leq m \leq M}{\arg \max} \left[-\|\mathbf{r} - \mathbf{s}_m\|^2 \right]$$

$$= \underset{1 \leq m \leq M}{\arg \min} \|\mathbf{r} - \mathbf{s}_m\|$$
(7)

• When the signals are both equiprobable and have equal energy, the bias terms defined as $\eta_m = \frac{N_0}{2} \ln P_m - \frac{1}{2} \mathcal{E}_m$ are independent of m and can be dropped. The optimal detection rule in this case reduces to

$$\hat{m} = \underset{1 \le m \le M}{\text{arg max } \mathbf{r} \cdot \mathbf{s}_m} \tag{8}$$

| ◀□▶ ◀圖▶ ◀圖▶ ▲圖 | 釣魚@

Adrish Banerjee FF910: Digital Communication SystemsDepartment of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

Optimal Detection for the Vector AWGN Channel

ullet The decision region D_m is given as

$$\mathbf{D}_m = \{ \mathbf{r} \in \mathcal{R}^N : \mathbf{r.s}_m + \eta_m > \mathbf{r.s}_{m'} + \eta_{m'}, \text{ for all } 1 \leq m' \leq M \text{ and } m' \neq m \}$$

- The boundaries of the decision regions in general are hyperplanes and are of the form $\mathbf{r}.(\mathbf{s}_m \mathbf{s}_{m'}) \geq \eta_{m'} \eta_m$.
- The optimal MAP detection rule in an AWGN channel can be written in the form

$$\hat{m} = \underset{1 \le m \le M}{\arg \max} \left[\frac{N_0}{2} \ln P_m + \int_{-\infty}^{\infty} r(t) s_m(t) dt - \frac{1}{2} \int_{-\infty}^{\infty} s_m^2(t) dt \right] \quad (9)$$

where we have used the relation $\mathbf{r}.\mathbf{s}_m = \int_{-\infty}^{\infty} r(t)s_m(t)dt$ and $\mathcal{E} = \|\mathbf{s}\|^2 = \int_{-\infty}^{\infty} s_m^2(t)dt$.

Optimal Detection for the Vector AWGN Channel

• The ML detector has the following form

$$\hat{m} = \underset{1 \le m \le M}{\arg \max} \left[\int_{-\infty}^{\infty} r(t) s_m(t) dt - \frac{1}{2} \int_{-\infty}^{\infty} s_m^2(t) dt \right]$$
 (10)

• The distance metric is defined as

$$D(\mathbf{r}, \mathbf{s_m}) = \|\mathbf{r} - \mathbf{s}_m\|^2 = \int_{-\infty}^{\infty} (r(t) - s_m(t))^2 dt$$
 (11)

• Modified distance metric is defined as $D'(\mathbf{r}, \mathbf{s}_m) = -2\mathbf{r}.\mathbf{s}_m + \|\mathbf{s}_m\|^2$

Adrish Banerjee
EE910: Digital Communication Systems-I

Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

Optimal Detection for the Vector AWGN Channel

- The correlation metric is defined as the negative of the modified distance metric and is denoted by $C(\mathbf{r}, \mathbf{s}_m)$.
- With these definitions the optimal detection rule (MAP rule) in general can be written as

$$\hat{m} = \arg\max_{1 \leq m \leq M} \left[N_0 \ln P_m - D(\mathbf{r}, \mathbf{s}_m) \right] = \arg\max_{1 \leq m \leq M} \left[N_0 \ln P_m + C(\mathbf{r}, \mathbf{s}_m) \right]$$

• The ML detection rule becomes $\hat{m} = \underset{1 \leq m \leq M}{\text{arg max }} C(\mathbf{r}, \mathbf{s}_m)$

Adrish Banerjee EE910: Digital Communication Systems-I Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India