5. ROLLING CONTACT BEARING

SLIDING CONTACT BEARING	ROLLING CONTACT BEARING
Friction is more	Friction is less
Static Friction > Running friction	Static Friction ≈ Running friction (Antifriction bearing)

Elements of Rolling Contact Bearing:

1) Rotating member 2) Support 3) Inner Race 4) Outer Race 5) Rolling Element 6) Cage

TYPES OF ROLLING CONTACT BEARING:

As Per Rotating Element	
Sphere	Cylinder
Balls as Rotating Element	Cylinder as Rotating Element
Point Contact => Stress ↑ => Life ↓	Line Contact \Rightarrow Stress $\downarrow \Rightarrow$ Life \uparrow
1. Deep Groove Ball Bearing: Radial load and Slight	1. Cylindrical Roller Bearing: Radial space requires
thrust	more and roller size is more.
2. Angular Contact Ball Bearing: Both Radial and One	2. Needle Roller Bearing: More Load can take and roller
directional Thrust Load	size is less.
3. Thrust Ball Bearing: No Radial Bur Thrust Load in	3. Spherical Roller Bearing: Radial and small Thrust.
Both Direction	Used for small miss alignment.
4. Self-Aligning Ball Bearing: Oscillate about axis	4. Tapered Roller Bearing: Radial and thrust Load
	5. Thrust Roller Bearing: Only Thrust load.

DESIGNATION OF ROLLING CONTACT BEARING:

DESIGNATION OF ROLLING COMMET BEARING.		
W-X-Y-Z	d = Bore Diameter	
Y-Z = Shaft Diameter	D = Outside Diameter	
Y-Z*5 = Diameter	B = Bearing Width	
00 = 10mm	H = Bearing Height	
01 = 12mm	r = Chamfer Radius	
02 = 15mm	∝ = Contact Angle	
03 = 17mm		
W = Bearing Type	X = Dimension Series = Load Caring Capacity	
0 = Double raw angular contact ball bearing	1 = Extra light Series	
1 = Self aligning ball bearing	2 = Light Series	
2 = Spherical Roller Bearing	3 = Moderate Series	
3 = Tapered Roller Bearing	4 = Heavy Series	
4 = Double Raw Deep Groove Ball Bearing	5 = Extra Heavy Series	
5 = Thrust Ball Bearing		
6 = Single Raw Deep Groove Ball Bearing		
7 = Single Raw Angular Contact Ball Bearing		
8 = Cylindrical Roller Thrust Bearing		

Static load Caring Capacity (C_o): It's minimum static load that bearing can be withstand to avoid maximum deformation of 0.0001d.

 $C_o = Kd^2\mathbb{Z}/5$ (For ball bearing) Where, K = Constant that accounts for curvature at point of contact and stiffness of bearing element, Z = No of rolling elements, d = diameter of shaft

 $C_0 = 1 \text{Kd}^2 \mathbb{Z}/5$ (Roller Bering) Where, l = length of line of contact in roller bearing

Bearing Life (Life of one bearing): No. of revolution/hours (at constant speed) to fatigue failure.

Reliability: % No. of bearing is in service.

Rating Life (Life of group of bearing): It's minimum possible life of the group of bearings for 90% reliability.

Median Life (Average life) (L_{50}): % No. of bearings in service = 50%

 $L_{50} > L_{10} \\$

Min. Criteria of life (For group of bearing): 10^6 Revolution = 1 Million revolution

Dynamic Load Capacity (**C**): It's maximum load that can be applied over a bearing for a minimum rating life of 10⁶ Revolution. It also called as Dynamic load rating, Catalogue load. Used for selection of bearing.

Equivalent Radial load:

$$F_e = F_r \operatorname{for} \frac{F_a}{F_r} < e,$$
 And $\frac{F_e}{F_r} = C_v \left[\frac{F_a}{F_r} Y + XV \right] \operatorname{For} \frac{F_a}{F_r} > e,$

Where, F_e = Equivalent radial load Y = Axial load factor

 F_r = Radial load V = Race Rotation factor

 F_a = Axial load = 1 (Inner race rotation) C_v = Service Factor (>1) = 1.2 (Outer race rotation)

X = Radial load Factor

Load-Life Relationship: $L_{10} = \left(\frac{C}{F}\right)^{K}$

Where, $L_{10} = \text{Rating Life (in Million revolution)}$ K = 3 (For ball bearing)

C = Dynamic load rating/ Catalogue load/ = 10/3 (For roller bearing)

Dynamic Load Capacity N =Speed of Rotation (RPM)

Life in hours $L_{hr} = \frac{L_{10} \cdot 10^6}{60 \, N}$

Reliability-Life Relationship: $\frac{L}{L_{10}} = \left[\frac{\ln(1/R)}{\ln(1/R_{90})}\right]^{1/b}$, (derived from Weibull Distribution ($R = e^{-(L/a)^b}$))

Where, a = 6.84 R = Reliability

b = 1.17 L = Life of group of bearing

 $R = 90\% => L = L_{10}$. Hence $L_{50} = 5 L_{10}$

Cumulative Damage: $\frac{\sum (NP^K)_i}{\sum N_i} = P_{eq}^K$, Where, $C^K = NP_{eq}^K = LP_{eq}^K$, $N = \sum N_i$

IMPORTANT POINT:

1)
$$L_{hr} = \frac{L_{10}10^6}{60 \, N}$$

Where,
$$L_{10} = \left(\frac{c}{F}\right)^{K} = \text{Life at R} = 90\%$$

Where $F = F_e = C_v[F_aY + XVF_r] = \text{Load Acting on bearings}$

2)
$$\frac{L}{L_{10}} = \left[\frac{\ln(1/R)}{\ln(1/R_{90})}\right]^{1/1.17}$$
 And Average L₅₀ = 5 L₁₀

$$3) \frac{\sum (NP^K)_i}{\sum N_i} = P_{eq}^K$$

Where,
$$K = 3$$
 (For ball bearing)
= 10/3 (For roller bearing)