92586 Computational Linguistics

Lesson 4. More Math

Alberto Barrón-Cedeño

Alma Mater Studiorum-Università di Bologna a.barron@unibo.it @_albarron_

10/03/2020

Previously

- Pre-processing
- BoW representation

Previously

- Pre-processing
- BoW representation
- One rule-based sentiment model
- One statistical model (Naïve Bayes)

Table of Contents

1 From BoW to tf

2 Zipf's Law

3 Inverse Document Frequency

These slides cover roughly chapter 3 of Lane et al. (2019)

From BoW to tf

Intuition

The frequency of a token in a document is an important factor of its relevance

Intuition

- The frequency of a token in a document is an important factor of its relevance
- 2 The relative frequency of a word in a document wrt all other documents in the collection provide better information

Binary Bag of Words

We departed from a binary representation.

We are simply interested in the existence (or not) of a word in a document.

Binary Bag of Words

We departed from a binary representation.

We are simply interested in the existence (or not) of a word in a document.

The more times a word occurs, the more meaning it contributes to the document

The more times a word occurs, the more meaning it contributes to the document

A document with many occurrences of "good", "awesome", "best" is more **positive** than one in which they occur only once.

The more times a word occurs, the more meaning it contributes to the document

A document with many occurrences of "good", "awesome", "best" is more **positive** than one in which they occur only once.

$$d_1 = \begin{bmatrix} 0 & 1 & 0 & 0 & 2 & 0 & 1 & 3 & 0 & 0 & 0 & 0 & 0 \\ d_2 = \begin{bmatrix} 2 & 3 & 5 & 0 & 0 & 0 & 0 & 4 & 0 & 0 & 4 & 2 \end{bmatrix}$$

The more times a word occurs, the more meaning it contributes to the document

A document with many occurrences of "good", "awesome", "best" is more **positive** than one in which they occur only once.

Let us see the difference...

The more times a word occurs, the more meaning it contributes to the document

A document with many occurrences of "good", "awesome", "best" is more **positive** than one in which they occur only once.

Let us see the difference...

Already a useful representation to diverse tasks, such as detecting **spam** and computing **"sentiment"**

The number of times a word occurs in a document

The number of times a word occurs in a document (In general!) the times a word occurs depends on the length of the document.

- ullet Shorter document o lower frequencies
- Longer document → higher frequencies

The number of times a word occurs in a document (In general!) the times a word occurs depends on the length of the document.

- ullet Shorter document o lower frequencies
- Longer document → higher frequencies

Ideally, our counting should be document-length independent.

The number of times a word occurs in a document (In general!) the times a word occurs depends on the length of the document.

- Shorter document → lower frequencies
- Longer document → higher frequencies

Ideally, our counting should be document-length independent.

Normalisation!

Why should we normalise?

 d_1 contains word dog 3 times d_2 contains word dog 100 times

dog is way more important for d_2 than for d_1 , right?

Why should we normalise?

 d_1 contains word dog 3 times d_2 contains word dog 100 times

dog is way more important for d_2 than for d_1 , right?

 d_1 is an email by a veterinarian (30 words) d_2 is War & Peace (580,000 words!)

Why should we normalise?

 d_1 contains word dog 3 times d_2 contains word dog 100 times

dog is way more important for d_2 than for d_1 , right?

 d_1 is an email by a veterinarian (30 words) d_2 is War & Peace (580,000 words!)

$$tf(dog, d_1) = 3/30 = 0.1$$

 $tf(dog, d_2) = 100/580000 = 0.00017$

Why should we normalise?

 d_1 contains word dog 3 times d_2 contains word dog 100 times

dog is way more important for d_2 than for d_1 , right?

 d_1 is an email by a veterinarian (30 words) d_2 is War & Peace (580,000 words!)

$$tf(dog, d_1) = 3/30 = 0.1$$

 $tf(dog, d_2) = 100/580000 = 0.00017$

Remember: normalised frequencies are indeed probabilities

Playing with a longer text

https://en.wikipedia.org/wiki/Coronavirus_disease_2019

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS coronavirus 2, or SARS-CoV-2), a virus closely related to the SARS virus. The disease was discovered and named during the 2019{20 coronavirus outbreak. Those affected may develop a fever, dry cough, fatigue, and shortness of breath. A sore throat, runny nose or sneezing is less common. While the majority of cases result in mild symptoms, some can progress to pneumonia and multi-organ failure.

 $[\ldots]$

Note. The examples use NLTK. Nowadays, there are better tools. For instance, parsing with spaCy is faster and more accurate

Playing with a longer text

- Loading frequencies into a dictionary
- Vectorising frequencies
- Normalising frequencies

From a single to multiple documents

ullet The vectors have to be comparable across documents o **normalisation**

From a single to multiple documents

- The vectors have to be comparable across documents → normalisation
- Each value in the vectors must represent the same word

From a single to multiple documents

- ullet The vectors have to be comparable across documents o **normalisation**
- Each value in the vectors must represent the same word

This is when representations become sparse: many values become 0

Sparse vector most of the elements are **zero**Dense vector most of the elements are **nonzero**

From a single to multiple documents

- ullet The vectors have to be comparable across documents o **normalisation**
- Each value in the vectors must represent the same word

This is when representations become sparse: many values become 0

Sparse vector most of the elements are **zero**Dense vector most of the elements are **nonzero**

Vectors

- Primary building blocks of linear algebra
- Ordered list of numbers, or coordinates, in a vector space

Vectors

- Primary building blocks of linear algebra
- Ordered list of numbers, or coordinates, in a vector space
- They describe a location or position in that space. . .
- or identify a particular direction/magnitude/distance in that space

Vectors

- Primary building blocks of linear algebra
- Ordered list of numbers, or coordinates, in a vector space
- They describe a location or position in that space. . .
- or identify a particular direction/magnitude/distance in that space

A space is the collection of all possible vectors that could appear in that space

 $[1,4] \rightarrow 2D$ vector space $[1,4,9] \rightarrow 3D$ vector space

Vectors

- Primary building blocks of linear algebra
- Ordered list of numbers, or coordinates, in a vector space
- They describe a location or position in that space. . .
- or identify a particular direction/magnitude/distance in that space

A space is the collection of all possible vectors that could appear in that space

 $[1,4] \rightarrow 2D$ vector space $[1,4,9] \rightarrow 3D$ vector space

We have a 18D vectors space (we have seen 1kD and bigger ones!)

Cosine similarity

The cosine of the angle between two vectors (θ theta)

Cosine similarity

The cosine of the angle between two vectors (θ theta)

Cosine similarity

The cosine of the angle between two vectors (θ theta)

$$\cos \theta = \frac{A \cdot B}{|A||B|} \tag{1}$$

Cosine similarity

The cosine of the angle between two vectors (θ theta)

$$\cos \theta = \frac{A \cdot B}{|A||B|} \tag{1}$$

where

 $A \cdot B$ is the **dot product** (we know it!)

Cosine similarity

The cosine of the angle between two vectors (θ theta)

$$\cos \theta = \frac{A \cdot B}{|A||B|} \tag{1}$$

where

 $A \cdot B$ is the **dot product** (we know it!)

|A| is the **magnitude** of vector A

Let us see an implementation (but there are efficient libraries to do it)

Cosine similarity

- It is ranged in [-1,1]
- This is a very convenient range for ML

Cosine similarity

- It is ranged in [-1,1]
- This is a very convenient range for ML
- cos = 1 represents identical normalized vectors that point in exactly the same direction

Cosine similarity

- It is ranged in [-1,1]
- This is a very convenient range for ML
- cos = 1 represents identical normalized vectors that point in exactly the same direction
- cos = 0 represents two vectors that share no components (they are perpendicular in all dimensions)the closer the two vectors are in angle

Cosine similarity

- It is ranged in [-1,1]
- This is a very convenient range for ML
- cos = 1 represents identical normalized vectors that point in exactly the same direction
- $occite{}{occite{}}{occite{}$
- In NLP, at least for tf-like representation, it is ranged in [0,1] (frequencies are not negative)

Cosine similarity

- It is ranged in [-1,1]
- This is a very convenient range for ML
- cos = 1 represents identical normalized vectors that point in exactly the same direction
- $occite{}{occite{}}{occite{}$
- In NLP, at least for tf-like representation, it is ranged in [0,1] (frequencies are not negative)

Given some corpus of natural language utterances, the frequency of any word is inversely proportional to its rank in the frequency table.¹

¹George K. Zipf; 1930s

Given some corpus of natural language utterances, the frequency of any word is inversely proportional to its rank in the frequency table. $^{\rm 1}$

pos(w) freq(w)

¹George K. Zipf; 1930s

Given some corpus of natural language utterances, the frequency of any word is inversely proportional to its rank in the frequency table. $^{\rm 1}$

$$\frac{pos(w) \quad freq(w)}{1st \quad k}$$

Given some corpus of natural language utterances, the frequency of any word is inversely proportional to its rank in the frequency table. $^{\rm 1}$

pos(w)	freq(w)
1st	k
2nd	k/2

Given some corpus of natural language utterances, the frequency of any word is inversely proportional to its rank in the frequency table.¹

pos(w)	freq(w)	
1st	k	
2nd	k/2	
3rd	k/3	
	• • •	

¹George K. Zipf; 1930s

Given some corpus of natural language utterances, the frequency of any word is inversely proportional to its rank in the frequency table. 1

freq(w)	
k	
k/2	
k/3	

The system behaves "roughly" exponentially

Given some corpus of natural language utterances, the frequency of any word is inversely proportional to its rank in the frequency table.¹

pos(w)	freq(w)	
1st	k	
2nd	k/2	
3rd	k/3	
	• • •	

The system behaves "roughly" exponentially

Examples population dynamics, economic output

¹George K. Zipf: 1930s

Given some corpus of natural language utterances, the frequency of any word is inversely proportional to its rank in the frequency table.¹

pos(w)	freq(w)	
1st	k	
2nd	k/2	
3rd	k/3	

The system behaves "roughly" exponentially

Examples population dynamics, economic output and COVID-19

Given some corpus of natural language utterances, the frequency of any word is inversely proportional to its rank in the frequency table.¹

pos(w)	freq(w)	
1st	k	
2nd	k/2	
3rd	k/3	

The system behaves "roughly" exponentially

Examples population dynamics, economic output and COVID-19

Let's see this in words

¹George K. Zipf: 1930s

Frequencies of the Brown corpus

W	$f_{exp}(w)$	$f_{act}(w)$	
the	_	69,971	
of	34,985	36,412	
and	23,323	28,853	
to	17,492	26,158	
а	13,994	23,195	
in	11,661	21,337	
that	9,995	10,594	
is	8,746	10,109	
was	7,774	9,815	
he	6,997	9,548	
for	6,361	9,489	
it	5,830	8,760	
with	5,382	7,289	
as	4,997	7,253	
his	4,664	6,996	

Stats

 This distribution only holds with large volumes of data (not in a sentence, not in a couple of texts)

- This distribution only holds with large volumes of data (not in a sentence, not in a couple of texts)
- By computing this distribution, we can obtain an a priori likelihood that a word w will appear in a document of the corpus

Inverse Document Frequency

idf-Inverse Document Frequency

There are two ways to count tokens

Per document (tf)

idf—Inverse Document Frequency

There are two ways to count tokens

- Per document (tf)
- Across the entire corpus: idf

idf—Inverse Document Frequency

There are two ways to count tokens

- Per document (tf)
- Across the entire corpus: idf
- 🖊 Let's see. . .

idf—Inverse Document Frequency

There are two ways to count tokens

- Per document (tf)
- Across the entire corpus: idf
- Let's see...

IDF How strange is it that this token is in this document?

idf-Inverse Document Frequency

There are two ways to count tokens

- Per document (tf)
- Across the entire corpus: idf
- Let's see...

IDF How strange is it that this token is in this document?

If w appears in d a lot of, but rarely un any $d' \in D \mid d' \neq d$ w is quite important for d!

idf-Inverse Document Frequency

There are two ways to count tokens

- Per document (tf)
- Across the entire corpus: idf
- Let's see. . .

IDF How strange is it that this token is in this document?

If w appears in d a lot of, but rarely un any $d' \in D \mid d' \neq d$ w is quite important for d!

Let's see

Let us assume a corpus D, such that |D| = 1M

• 1 document $d \in D$ contains "cat" idf(cat) = 1,000,000 /1 = 1,000,000

Let us assume a corpus D, such that |D| = 1M

- 1 document $d \in D$ contains "cat" idf(cat) = 1,000,000 /1 = 1,000,000
- 10 document $\{d_1, d_2, \dots, d_{10}\} \in D$ contain "dog" idf(dog) = 1,000,000 / 10 = 100,000

Let us assume a corpus D, such that |D| = 1M

- 1 document $d \in D$ contains "cat" idf(cat) = 1,000,000 /1 = 1,000,000
- 10 document $\{d_1, d_2, \dots, d_{10}\} \in D$ contain "dog" idf(dog) = 1,000,000 / 10 = 100,000

According to Zipf's Law, when comparing w_1 and w_2 , even if $f(w_1) \sim f(w_2)$, one will be **exponentially higher** than the other one!

Let us assume a corpus D, such that |D| = 1M

- 1 document $d \in D$ contains "cat" idf(cat) = 1,000,000 /1 = 1,000,000
- 10 document $\{d_1, d_2, \dots, d_{10}\} \in D$ contain "dog" idf(dog) = 1,000,000 /10 = 100,000

According to Zipf's Law, when comparing w_1 and w_2 , even if $f(w_1) \sim f(w_2)$, one will be **exponentially higher** than the other one!

We need the inverse of exp() to mild the effect: log()

Let us assume a corpus D, such that |D| = 1M

- 1 document $d \in D$ contains "cat" idf(cat) = 1,000,000 /1 = 1,000,000
- 10 document $\{d_1, d_2, \dots, d_{10}\} \in D$ contain "dog" idf(dog) = 1,000,000 / 10 = 100,000

According to Zipf's Law, when comparing w_1 and w_2 , even if $f(w_1) \sim f(w_2)$, one will be **exponentially higher** than the other one!

We need the inverse of exp() to mild the effect: log()

$$idf = log(1,000,000/1) = 6$$

 $idf = log(1,000,000/10) = 5$

$$tf(t,d) = \frac{count(t)}{count(d)}$$
 (2)

$$tf(t,d) = \frac{count(t)}{count(d)}$$
 (2)

$$idf(t, D) = log \frac{\text{number of documents}}{\text{number of documents containing } t}$$
 (3)

$$tf(t,d) = \frac{count(t)}{count(d)}$$
 (2)

$$idf(t, D) = log \frac{\text{number of documents}}{\text{number of documents containing } t}$$
 (3)

$$tfidf(t,d,D) = tf(t,d) * idf(t,D)$$
 (4)

$$tf(t,d) = \frac{count(t)}{count(d)}$$
 (2)

$$idf(t, D) = log \frac{\text{number of documents}}{\text{number of documents containing } t}$$
 (3)

$$tfidf(t,d,D) = tf(t,d) * idf(t,D)$$
 (4)

• The more often t appears in d, the higher the TF (and hence the TF-IDF)

$$tf(t,d) = \frac{count(t)}{count(d)}$$
 (2)

$$idf(t, D) = log \frac{\text{number of documents}}{\text{number of documents containing } t}$$
 (3)

$$tfidf(t,d,D) = tf(t,d) * idf(t,D)$$
(4)

- The more often t appears in d, the higher the TF (and hence the TF-IDF)
- The higher the number of documents containing t, the lower the IDF (and hence the TF-IDF)

Outcome The importance of a token in a specific document given its usage across the entire corpus.

Outcome The importance of a token in a specific document given its usage across the entire corpus.

"TF-IDF, is the humble foundation of a simple search engine" (Lane et al., 2019, p. 90)

■ Let's see

Coming Next

Towards "semantics"

References

Lane, H., C. Howard, and H. Hapkem2019. Natural Language Processing in Action. Shelter Island, NY:Manning Publication Co.