EECS545 Lecture 3 Quiz Solutions

January 17, 2025

1. Let $D = \{(x_i, y_i)\}_{i=1,...,3} = \{(-1, -0.5), (0, 0), (1, 1)\}$. Suppose that we want to fit a linear regression model with a 1-degree polynomial function with $\hat{y} = w_0 + w_1 x$. After convergence, what would be the solution of w_0 and w_1 ? Hint: write down the objective function and set the derivative with respective to w_0 and w_1 to zero to find the optimal solution.

Solution: Plugging in for the objective function:

$$E(w) = \frac{1}{2} \left[(w_0 - w_1 + 0.5)^2 + (w_0)^2 + (w_0 + w_1 - 1)^2 \right]$$

Partial derivatives:

$$\frac{\partial E(w)}{\partial w_0} = (w_0 - w_1 + 0.5) + w_0 + (w_0 + w_1 - 1) = 3w_0 - 0.5$$

$$\frac{\partial E(w)}{\partial w_1} = -(w_0 - w_1 + 0.5) + (w_0 + w_1 - 1) = 2w_1 - 1.5$$

Setting these to zero, we get $w_0 = \frac{1}{6}, w_1 = \frac{3}{4}$.

2. Continued. Suppose instead we used ridge linear regression with $\lambda = 1$. Find w_0 and w_1 after convergence.

Solution: Plugging in for the objective function:

$$E(w) = \frac{1}{2} \left[(w_0 - w_1 + 0.5)^2 + (w_0)^2 + (w_0 + w_1 - 1)^2 \right] + \frac{1}{2} (w_0^2 + w_1^2)$$

Partial derivatives:

$$\frac{\partial E(w)}{\partial w_0} = (w_0 - w_1 + 0.5) + w_0 + (w_0 + w_1 - 1) + w_0 = 4w_0 - 0.5$$

$$\frac{\partial E(w)}{\partial w_1} = -(w_0 - w_1 + 0.5) + (w_0 + w_1 - 1) + w_1 = 3w_1 - 1.5$$

Setting these to zero, we get $w_0 = \frac{1}{8}, w_1 = \frac{1}{2}$.

3. Consider polynomial regression by optimizing the least-squares objective function with regularization term λ . Choose all options that apply:

1

(a) As λ increases, the curve formed by polynomial regression will become flatter.

(b)	Best practice indic	ates that	we s	should	keep	tuning	λ	until	we	find	a f	inal	value	λ^*	that	minim	izes
	error on the test se	et.															

((c)	It	is	not	valid	to	use	the	L1	norm	in	place	of	the	L2	norm	in	the	regu	larize	d o	bied	ctive	func	tion.
١	\sim $_{I}$	- 10	10	1100	v carra	UU	abo	ULIC	$_{L}$	1101111	111	prace	O.	ULLU		1101111	111	ULIC	1050	LIGHT 12C	u o			Tunc	/0101

Solution:			
(a) True.			
(b) False.			
(c) False.			