Resumen del Proyecto

Este documento presenta un resumen detallado del trabajo realizado durante el curso, enfocado en el diseño, implementación y control de diversos motores mediante una Raspberry Pi. El objetivo principal fue desarrollar sistemas eficientes para controlar motores con diferentes configuraciones, explorando conceptos como aceleración gradual, multithreading y el uso de pantallas LCD para interacción en tiempo real.

Descripción General del Proyecto

Durante el curso, trabajamos con tres tipos principales de motores: un motor de corriente continua, un motor paso a paso unipolar (28BYJ-48) y un motor paso a paso bipolar (NEMA 17). Cada motor requería un enfoque específico de control, lo que permitió desarrollar habilidades en la gestión de diferentes configuraciones de hardware y software. A continuación, se describen las actividades principales realizadas durante el curso.

Actividades Realizadas

1. **Control de un motor de corriente continua:**

Se implementó un sistema para controlar la velocidad y dirección de un motor de corriente continua mediante señales PWM provenientes de la Raspberry Pi. Este ejercicio inicial permitió familiarizarnos con el control básico de motores y la interacción con hardware externo.

2. **Control de un motor paso a paso unipolar (28BYJ-48):**

Utilizando el driver ULN2003, se diseñó un sistema para controlar el motor unipolar. Se implementaron funciones para ajustar la velocidad y el sentido de giro de forma dinámica, utilizando inputs del usuario. Este proyecto permitió comprender la lógica detrás del control por pasos y la importancia de los retrasos entre pulsos.

3. **Control de un motor paso a paso bipolar (NEMA 17):**

Este fue uno de los proyectos más avanzados. Se diseñaron múltiples versiones de scripts (Nema3, Nema4 y Nema6) para implementar funcionalidades como el aumento gradual de la velocidad mediante una función sigmoide y el ajuste dinámico de microstepping. El driver utilizado fue el DRV8825, configurado para soportar diferentes niveles de microstepping según las necesidades del proyecto.

4. **Proyecto del Posicionador:**

Este proyecto consistió en utilizar un motor paso a paso lineal para dividir una distancia total de 5 mm en 20 posiciones discretas. El sistema estaba diseñado para asumir cada posición en 0,5 segundos, ajustando la velocidad del motor según la distancia a recorrer. El input principal era una lista de 100 posiciones discretas, procesadas en tiempo real.

5. **Implementación de multithreading:**

Para optimizar los sistemas y permitir la interacción dinámica con los usuarios, se

implementó multithreading. Esto permitió que el sistema respondiera a inputs mientras los motores estaban en operación, mejorando significativamente la eficiencia.

6. **Integración de una pantalla LCD:**

Se añadió una pantalla LCD al sistema para mostrar información en tiempo real, como velocidad, dirección y estado actual de los motores. Esto mejoró la usabilidad y brindó al usuario una interfaz visual para interactuar con el sistema.

Conclusiones

El curso permitió desarrollar una comprensión profunda sobre el control de motores utilizando Raspberry Pi. Las habilidades adquiridas incluyeron la configuración y uso de hardware específico, el diseño de algoritmos de control eficientes, y la implementación de técnicas avanzadas como el aumento gradual de velocidades y multithreading. Los proyectos realizados sentaron una base sólida para aplicaciones futuras en automatización y robótica.