

Example (Home_Prices.xlsx)

Example (Home_Prices.xlsx)

Example (Home_Prices.xlsx)

- Price of house
- Average number of rooms
- Annual income
- Property tax rate
- % taxable property that is commercial

Example (Home_Prices.xlsx)

- Price of house
- Average number of rooms
- Annual income
- Property tax rate
- % taxable property that is commercial

Example (Home_Prices.xlsx)

- Price of house
- Average number of rooms
- Annual income
- Property tax rate
- % taxable property that is commercial

Example (Home_Prices.xlsx)

- → □ Price of house
 - Average number of rooms
 - Annual income
 - Property tax rate
 - % taxable property that is commercial

Example (Home_Prices.xlsx)

- Price of house
- Average number of rooms
- Annual income
- Property tax rate
- $\ {\ }_{\square}\ \ \%$ taxable property that is commercial

Example (Home_Prices.xlsx)

- Price of house
- Average number of rooms
- Annual income
- Property tax rate
- % taxable property that is commercial

$$Price = \beta_0 + \beta_1 Rooms + \beta_2 Income + \beta_3 Tax_Rate + \beta_4 \%_Commercial$$

Example (Home_Prices.xlsx)

- Price of house
- Average number of rooms
- Annual income
- Property tax rate
- % taxable property that is commercial

$$Price = \beta_0 + \beta_1 Rooms + \beta_2 Income + \beta_3 Tax_Rate + \beta_4 \%_Commercial$$

Example (Home_Prices.xlsx)

- Price of house
- Average number of rooms
- Annual income
- Property tax rate
- % taxable property that is commercial

$$Price = \beta_0 + \beta_1 Rooms + \beta_2 Income + \beta_3 Tax_Rate + \beta_4 \%_Commercial$$

Example (Home_Prices.xlsx)

- Price of house
- Average number of rooms
- Annual income
- Property tax rate
- % taxable property that is commercial

$$Price = \beta_0 + \beta_1 Rooms + \beta_2 Income + \beta_3 Tax_Rate + \beta_4 \%_Commercial$$

Example (Home_Prices.xlsx)

- Price of house
- Average number of rooms
- Annual income
- Property tax rate
- % taxable property that is commercial

$$Price = \beta_0 + \beta_1 Rooms + \beta_2 Income + \beta_3 Tax_Rate + \beta_4 \%_Commercial$$

Example (Home_Prices.xlsx)

- Price of house
- Average number of rooms
- Annual income
- Property tax rate
- % taxable property that is commercial

$$Price = \beta_0 + \beta_1 Rooms + \beta_2 Income + \beta_3 Tax_Rate + \beta_4 \%_Commercial$$

Example (Home_Prices.xlsx)

- Price of house
- Average number of rooms
- Annual income
- Property tax rate
- % taxable property that is commercial

$$Price = \beta_0 + \beta_1 Rooms + \beta_2 Income + \beta_3 Tax_Rate + \beta_4 \%_Commercial$$

Example (Home_Prices.xlsx)

- Price of house
- Average number of rooms
- Annual income
- Property tax rate
- % taxable property that is commercial

$$Price = \beta_0 + \beta_1 Rooms + \beta_2 Income + \beta_3 Tax_Rate + \beta_4 \%_Commercial$$

Example (Home_Prices.xlsx)

- Price of house
- Average number of rooms
- Annual income
- Property tax rate
- % taxable property that is commercial

$$Price = \beta_0 + \beta_1 Rooms + \beta_2 Income + \beta_3 Tax_Rate + \beta_4 \%_Commercial$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$22102.33 \quad 15765.27 \qquad 0.4891 \qquad -3435.26 \qquad -212.19$$

Example (Home_Prices.xlsx)

Given this file, develop a relationship between,

- Price of house
- Average number of rooms
- Annual income
- Property tax rate
- % taxable property that is commercial

$$Price = \beta_0 + \beta_1 Rooms + \beta_2 Income + \beta_3 Tax_Rate + \beta_4 \%_Commercial$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$22102.33 \quad 15765.27 \qquad 0.4891 \qquad -3435.26 \qquad -212.19$$

Ques: Interpret the various estimated coefficients.

$$Price = \beta_0 + \beta_1 Rooms + \beta_2 Income + \beta_3 Tax_Rate + \beta_4 \%_Commercial$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$22102.33 \quad 15765.27 \qquad 0.4891 \qquad -3435.26 \qquad -212.19$$

For every 1% cut in the property tax rate, the home prices would tend to increase by 3435 dollars.

For every 1% cut in the property tax rate, the home prices would tend to increase by 3435 dollars.

The Mayor claims...

For every 1% cut in the property tax rate, the home prices should increase by 5000 dollars.

For every 1% cut in the property tax rate, the home prices would tend to increase by 3435 dollars.

The Mayor claims...

For every 1% cut in the property tax rate, the home prices should increase by 5000 dollars.

Ques: Can your reject/not-reject this claim made by the Mayor.

For every 1% cut in the property tax rate, the home prices would tend to increase by 3435 dollars.

The Mayor claims...

For every 1% cut in the property tax rate, the home prices should increase by 5000 dollars.

Ques: Can your reject/not-reject this claim made by the Mayor.

$$Price = \beta_0 + \beta_1 Rooms + \beta_2 Income + \beta_3 Tax_Rate + \beta_4 \%_Commercial$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$22102.33 \quad 15765.27 \qquad 0.4891 \qquad -3435.26 \qquad -212.19$$

Step 1: Formulate Hypothesis:

$$H_0$$
: $\beta_3 = -5000$

$$H_A$$
: $\beta_3 \neq -5000$

$$Price = \beta_0 + \beta_1 Rooms + \beta_2 Income + \beta_3 Tax_Rate + \beta_4 \%_Commercial$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$22102.33 \quad 15765.27 \qquad 0.4891 \qquad -3435.26 \qquad -212.19$$

Step 1: Formulate Hypothesis:

$$H_0$$
: $\beta_3 = -5000$
 H_{Δ} : $\beta_3 \neq -5000$

Step 2: Consider the 95% confidence interval for β_3

Price =
$$\beta_0 + \beta_1 Rooms + \beta_2 Income + \beta_3 Tax_Rate + \beta_4\%_Commercial$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
22102.33 15765.27 0.4891 -3435.26 -212.19

Step 1: Formulate Hypothesis:

$$H_0$$
: $\beta_3 = -5000$
 H_A : $\beta_3 \neq -5000$

Step 2 : Consider the 95% confidence interval for β_3

Conclusion:

- > Since -5000 falls in the confidence interval, hence do not reject the Null hypothesis.
- > The Mayor's claim may be true.