Regression Table

Charles Costanzo

2023-07-18

Data Management

```
setwd("/Users/charlescostanzo/College/Su 2023/Chopra/Poster Code/")
library(tidyverse)
library(readxl)
library(ez)
library(MASS) # for negative binomial glm
library(AER) # for dispersion test
library(gtsummary) # for regression table
library(gt)
elispot <- read_csv("Data/elispot.csv")</pre>
elispot$sex <- factor(elispot$sex)</pre>
elispot$vaccinated <- factor(elispot$vaccinated)</pre>
elispot$id <- factor(elispot$id)</pre>
glm.data <- elispot %>%
  group_by(id) %>%
  mutate(avg_spots = round(mean(spots)),1) %>% # take mean of technical replicates and round to nearest integer
  dplyr::select(id, sex, avg_spots, vaccinated) %>%
  distinct()
```

Negative Binomial GLMs

```
glm.data <- glm.data %>%
  mutate(vaccinated = case_when(vaccinated == "1" ~ "Vaccine",
                                 vaccinated == "0" ~ "Control")) %>%
  rename(Treatment = vaccinated,
         Sex = sex,
         `Mean SFUs` = avg_spots)
# fit full model
nb.mod.full <- glm.nb(`Mean SFUs` ~ Treatment * Sex,</pre>
                      link = "log",
                       data = glm.data)
# summary(nb.mod.full)
# fit main effects model
nb.mod.main <- glm.nb(`Mean SFUs` ~ Treatment + Sex,</pre>
                      link = "log",
                      data = glm.data)
# summary(nb.mod.main)
# fit reduced model
nb.mod.red <- glm.nb(`Mean SFUs` ~ Treatment,</pre>
                 link = "log",
                 data = glm.data)
# summary(nb.mod.red)
```

Create Regression Table

```
put vector in parentheses <- function(values){</pre>
   put_value_in_parentheses <- function(value){</pre>
        if(is.na(value)){
            return(value)
        else{
            return(paste0("[", value, "]"))
       }
   new_values <- sapply(values, put_value_in_parentheses)</pre>
   return(new values)
mytheme <- list(# round large p-values to two places
    "pkgwide-fn:pvalue_fun" = function(x) style_pvalue(x, digits = 2, prepend_p = TRUE))
set_gtsummary_theme(mytheme)
full <- tbl_regression(nb.mod.full, exponentiate = TRUE) %>%
   modify_table_body(~ .x %>% dplyr::mutate(ci = put_vector_in_parentheses(ci))) %>%
 add_global_p() %>%
 bold_p(t = 0.05) \%
  bold_labels() %>%
  add_glance_table(
   label = list(nobs ~ "Num. Obs.", AIC ~ "AIC"),
   include = c(nobs, AIC))
## Warning: glm.fit: algorithm did not converge
main <- tbl_regression(nb.mod.main, exponentiate = TRUE) %>%
   modify_table_body(~ .x %>% dplyr::mutate(ci = put_vector_in_parentheses(ci))) %>%
  add_global_p() %>%
  bold_p(t = 0.05) \%
 bold_labels() %>%
  add glance table(
```

```
label = list(nobs ~ "Num. Obs.", AIC ~ "AIC"),
include = c(nobs, AIC))

## Warning: glm.fit: algorithm did not converge

reduced <- tbl_regression(nb.mod.red, exponentiate = TRUE) %>%
    modify_table_body(~ .x %>% dplyr::mutate(ci = put_vector_in_parentheses(ci))) %>%
    add_global_p() %>%
    bold_p(t = 0.05) %>%
    bold_p(t = 0.05) %>%
    bold_labels() %>%
    add_glance_table(
    label = list(nobs ~ "Num. Obs.", AIC ~ "AIC"),
    include = c(nobs, AIC))

merge <- tbl_merge(
    tbls = list(full, main, reduced),
    tab_spanner = c("**Full Model**", "**Main Effects Model**", "**Reduced Model**")
)</pre>
```

```
merge %>%
  as_gt() %>%
  tab_options(table.align='left')
```

Characteristic	Full Model			Main Effects Model			Reduced Model		
	IRR ¹	95% CI ¹	p-value	IRR ¹	95% CI ¹	p-value	IRR ¹	95% CI ¹	p-value
Treatment			p<0.001			p<0.001			p<0.001
Control	_	_		_	_	·	_	_	·
Vaccine	97.0	[10.2, 1,045]		37.5	[7.87, 175]		40.7	[8.78, 181]	
Sex			p=0.47			p=0.70			
Female	_	_	·	_	_	·			
Male	2.50	[0.20, 36.0]		0.76	[0.19, 3.30]				
Treatment * Sex			p=0.26						
Vaccine * Male	0.19	[0.01, 3.54]	·						
Num. Obs.	10	- · · -		10			10		
AIC	86.3			85.5			83.7		

¹IRR = Incidence Rate Ratio, CI = Confidence Interval