STAT 620: Asymptotic Statistics

Spring 2022

Lecture: Apr 14

Lecturer: Xianyang Zhang

1 Donsker Class

A collection \mathcal{F} of functions is called P-Donsker if the process $\{\sqrt{n}(P_n - P)f\}_{f \in \mathcal{F}}$ converges to a tight limit G indexed by \mathcal{F} in $L^{\infty}(\mathcal{F})$. Here G is a gaussian process. In particular,

$$\left(\sqrt{n}(P_n-P)f_1,\cdots,\sqrt{n}(P_n-P)f_k\right)\to (G_{f_1},\ldots,G_{f_k})$$

and

$$cov(G_{f_i}, G_{f_j}) = cov(f_i(X), f_j(X)),$$

where $X \sim P$.

1.1 Example

Let $\Theta \subset \mathbb{R}^d$, where Θ is compact. Let

$$l_{\theta}(\cdot):\Theta\times\mathcal{X}\to\mathbb{R}$$

with $l_{\theta}(\cdot)$ being L(x)-Lispschitz continuous in θ and $\mathbb{E}[L(X)^2] < \infty$. Then $\mathcal{F} = \{l_{\theta}(\cdot)\}_{\theta \in \Theta}$ is P-Donsker and

$$\left\{\sqrt{n}(P_n-P)l_\theta\right\}_{l_\theta\in\mathcal{F}}\xrightarrow{d}G_\theta.$$

where

$$cov(G_{\theta_i}, G_{\theta_j}) = cov(l_{\theta_i}(X), l_{\theta_j}(X))$$

for $X \sim P$.

1.2 Main theorem

Let \mathcal{F} be a class of functions mapping from \mathcal{X} to \mathbb{R} , and let F be an envelop function of \mathcal{F} , (i.e. for any $x \in \mathcal{X}$ and any $f \in \mathcal{F}$, $|f(x)| \leq F(x)$). Suppose $PF^2 < \infty$ and

$$\int_{0}^{\infty} \sup_{Q} \sqrt{\log N\left(\mathcal{F}, L_{2}(Q), \|F\|_{L_{2}(Q)}\epsilon\right)} d\epsilon < \infty,$$

where the sup is over all finitely supported measure Q. Then \mathcal{F} is P-Donsker.

1.3 Idea of the proof

To prove the limit exists, we only need to check two conditions.

- For finite dimensional convergence, we only need to verify the Lindeberg's condition for multidimensional CLT. Here we will need to use the fact that for any $x \in \mathcal{X}$ and any $f \in \mathcal{F}$, $|f(x)| \leq F(x)$.
- Below we sketch the proof for ASEC which is a more difficult part.

Define

$$\mathcal{F}_{\delta} = \{ f - g : f, g \in \mathcal{F}, \| f - g \|_{L_{2}(P)} \le \delta \}$$

and $G_n = \sqrt{n}(P_n - P)$. Note that

$$G_n f = \frac{1}{\sqrt{n}} \sum_{i=1}^n (f(X_i) - \mathbb{E}_p[f(X_i)]).$$

The goal is to show

$$\lim_{\delta \to 0} \limsup_{n} P\left(\sup_{f, g \in \mathcal{F}, \|f - g\|_{L_2(P)} \le \delta} |G_n(f - g)| \ge \epsilon_0\right) \to 0.$$

Verify yourself that this is equivalent to ASEC. Denote

$$||G_n||_{\mathcal{F}_{\delta}} = \sup_{f,g \in \mathcal{F}, ||f-g||_{L_2(P)} \le \delta} |G_n(f-g)|.$$

From the same symmetrization argument as before, we have

$$P(\|G_n\|_{\mathcal{F}_{\delta}} \ge \epsilon_0) \le \frac{2}{\epsilon_0} \mathbb{E} \left[\sup_{f \in \mathcal{F}_{\delta}} \left| \frac{1}{\sqrt{n}} \sum_{i=1}^n \epsilon_i f(X_i) \right| \right]$$

$$\le \frac{2}{\epsilon_0} \mathbb{E} \left[\sup_{f \in \mathcal{F}_{\delta}} \left| \frac{1}{\sqrt{n}} \sum_{i=1}^n \epsilon_i (f(X_i) - \tilde{f}(X_i)) \right| \right] + \frac{2}{\epsilon_0} \mathbb{E} \left[\left| \frac{1}{\sqrt{n}} \sum_{i=1}^n \epsilon_i \tilde{f}(X_i) \right| \right]$$

$$\le \frac{C}{\epsilon_0} \mathbb{E} \left[\int_0^{\theta_n} \sqrt{\log N(\mathcal{F}_{\delta}, \| \cdot \|_{L_2(P_n)}, \epsilon)} \, d\epsilon \right] + C\delta,$$

where $D_n = \sup_{f,g \in \mathcal{F}_{\delta}} \|f - g\|_{L_2(P_n)} \le 2 \sup_{f \in \mathcal{F}_{\delta}} \|f\|_{L_2(P_n)}$ and $\theta_n = D_n/2 \le \sup_{f \in \mathcal{F}_{\delta}} \|f\|_{L_2(P_n)}$. Denote

$$I := \mathbb{E}\left[\int_0^{\theta_n} \sqrt{\log N(\mathcal{F}_{\delta}, \|\cdot\|_{L_2(P_n)}, \epsilon)} \, d\epsilon\right]$$

One can show that $N(\mathcal{F}_{\delta}, L_2(P_n), \epsilon) \leq N(\mathcal{F}, L_2(P_n), \epsilon/2)^2$. To see this, note that

- Suppose $\{f_i\}_N$ is $\epsilon/2$ -net of \mathcal{F} . Then $\{f_i-f_j: i\leq N, j\leq N\}$ has N^2 elements, which forms an ϵ -net of \mathcal{F}_{δ} .

Replacing ϵ by $||F||_{L_2(P_n)}\epsilon$, we have

$$\begin{split} I &\leq C \mathbb{E} \left[\int_{0}^{\theta_{n}/\|F\|_{L_{2}(P_{n})}} \|F\|_{L_{2}(P_{n})} \sqrt{\log N(\mathcal{F}, L_{2}(P_{n}), \epsilon \|F\|_{L_{2}(P_{n})})} \, d\epsilon \right] \\ &\leq C \mathbb{E} \left[\int_{0}^{\theta_{n}/\|F\|_{L_{2}(P_{n})}} \|F\|_{L_{2}(P_{n})} \sup_{Q} \sqrt{\log N(\mathcal{F}, L_{2}(Q), \epsilon \|F\|_{L_{2}(Q)})} \, d\epsilon \right] \\ &\leq C \sqrt{\mathbb{E}(\|F\|_{L_{2}(P_{n})}^{2})} \sqrt{\mathbb{E} \left[\left(\int_{0}^{\theta_{n}/\|F\|_{L_{2}(P_{n})}} \sup_{Q} \sqrt{\log N(\mathcal{F}, L_{2}(Q), \epsilon \|F\|_{L_{2}(Q)})} \, d\epsilon \right)^{2} \right]}. \end{split}$$

Recall that $\theta_n = D_n/2 \le \sup_{f \in \mathcal{F}_{\delta}} ||f||_{L_2(P_n)}$. Note that

$$\sup_{f \in \mathcal{F}_{\delta}} \|f\|_{L_{2}(P_{n})}^{2} = \sup_{f \in \mathcal{F}_{\delta}} P_{n} f^{2}$$

$$\leq \sup_{f \in \mathcal{F}_{\delta}} |(P_{n} - P)f^{2}| + \sup_{f \in \mathcal{F}_{\delta}} |Pf^{2}|.$$

The first term goes to zero as $n \to +\infty$ because of the entropy condition. The second term goes to zero as $\delta \to 0$. Thus θ_n can be made small for large enough n and small enough δ . By DCT,

$$\mathbb{E}\left[\left(\int_0^{\theta_n/\|F\|_{L_2(P_n)}} \sup_{Q} \sqrt{\log N(\mathcal{F}, L_2(Q), \epsilon \|F\|_{L_2(Q)})} \, d\epsilon\right)^2\right],$$

will be small for large enough n and small enough δ . Thus I can be made arbitrarily small, which completes the proof.

2 Goodness of fit statistics

2.1 Kolmogorov-Smirnoff test

Suppose we observe $X_1, \ldots, X_n \sim^{i.i.d} F$. We aim to test the null hypothesis that

$$H_0: F = F_0.$$

Let F_n be the empirical cdf. The Kolmogorov-Smirnoff test statistic is defined as

$$KS_n = \sqrt{n} \sup_{t \in \mathbb{R}} |F_n(t) - F_0(t)|,$$

Under the null hypothesis,

$$KS_n = \sqrt{n} \sup_{t \in \mathbb{R}} |F_n(t) - F(t)| = \sup_{f \in \mathcal{F}} |\sqrt{n}(P_n - P)f|$$

where $\mathcal{F} = \{1[\cdot \leq t], t \in \mathbb{R}\}.$

2.2 Claim

 \mathcal{F} is a Donsker class. To see this, we first note that the envelop function can be taken as $F \equiv 1$. Second, one can show

$$\int_0^\infty \sup_Q \sqrt{\log N(\mathcal{F}, L_2(Q), \epsilon ||F||_{L_2(Q)})} \, d\epsilon < \infty.$$

Thus we have $\sqrt{n}(P_n - P)f \rightarrow^d G_P(f)$ or equivalently

$$\sqrt{n}(F_n(t) - F(t)) \xrightarrow{d} G_F(t),$$

where G_F is a Brownian Bridge with

$$Cov(G_F(t), G_F(s)) = F(t \wedge s) - F(t)F(s).$$

Note that the map $f \mapsto \sup_{t \in \mathbb{R}} |f(t)|$ is continuous in $\|\cdot\|_{\infty}$ as $\|f\|_{\infty} - \|g\|_{\infty} \le \|f - g\|_{\infty}$. By the continuous mapping theorem

$$KS_n = \sup_{t \in \mathbb{R}} |\sqrt{n}(F_n(t) - F(t))| \to \sup_{t \in \mathbb{R}} |G_F(t)| = \sup_{t \in \mathbb{R}} |G_\lambda(F(t))| = \sup_{u \in (0,1)} |G_\lambda(u)|,$$

where λ is the uniform distribution/measure on (0,1). We can see that

$$Cov(G_{\lambda}(F(t)), G_{\lambda}(F(s))) = \lambda(F(t) \wedge F(s)) - \lambda(F(t))\lambda(F(s)) = F(t \wedge s) - F(t)F(s) = Cov(G_{F}(t), G_{F}(s)).$$

2.3 Cramer-Von Mises Statistics

The Cramer-Von Mises Statistic is defined as

$$CV_n = n \int (F_n(t) - F_0(t))^2 dF_0(t).$$

Under the null,

$$CV_n = n \int (F_n(t) - F(t))^2 dF(t) = \int {\{\sqrt{n}(F_n(t) - F(t))\}}^2 dF(t).$$

The map $f \mapsto \int f^2(t) dF(t)$ is continuous w.r.t. $\|\cdot\|_{\infty}$. By the continuous mapping theorem

$$CV_n \xrightarrow{d} \int G_F(t)^2 dF(t) = \int G_{\lambda}(F(t))^2 dF(t) = \int G_{\lambda}(u)^2 du.$$

2.4 Simulate the limiting distributions

Let $X_1, \ldots, X_n \sim^{i.i.d} N(0,1)$. Then we have

$$\frac{1}{\sqrt{n}} \sum_{i=1}^{\lfloor nt \rfloor} (X_i - \bar{X}_n) \stackrel{t}{\to} G_{\lambda}(t), \quad t \in (0,1),$$

where $\bar{X}_n = n^{-1} \sum_{i=1}^n X_i$.

2.5 Summary of Empirical Process

	Consistency	Inference
Classical Probability Theory	LLN	CLT
Empirical Process Theory	ULLN (Glivenko-Cantelli class)	Uniform CLT (Donsker class)

Some key techniques:

- covering number, bracketing number
- discretization, approximation of an infinite class by finite/countable class
- VC-dimnesion
- Concerntration inequality
- Rademacher complexity
- Symmetrization
- Chaining argument
- Peeling device...