

## **AEROELASTICIDADE**

AE-249 – Prof. Roberto Gil A. Silva

(gil@ita.br), R: 6482 - IAE/ALA-L (Túnel de Vento)

Instituto Tecnológico de Aeronáutica – ITA/IEA

- AEROELASTICIDADE é a ciência que estuda as consequências da interação de forças de inércia, elásticas e aerodinâmicas, agindo simultaneamente na estrutura de um corpo.
- Forças de inércia decorrentes das acelerações às quais a massa do corpo está sujeita;
- Forças elásticas decorrentes das reações elásticas do corpo que se desloca (deforma);
- Forças aerodinâmicas decorrentes do escoamento de fluido ao qual o corpo está sujeito;

- □ AEROELASTICIDADE ESTÁTICA:
- Quando o movimento varia pouco com o tempo; sem aceleração e/ou velocidade significativas.





Deflexão das asas de aeronaves em vôo em função do carregamento aerodinâmico.



Note que asas podem ser bastante flexíveis!

(teste estrutural da asa do Boeing 747)

- □ AEROELASTICIDADE DINÂMICA:
- Quando o movimento varia significativamente com o tempo;
- Acelerações e velocidades significativas o que implica no surgimento das componentes de inércia que interagem com as componentes elásticas e aerodinâmicas



- Ou seja, uma aeronave é um corpo flexível, portanto pode ser deformada, sua aerodinâmica será alterada;
- Estas alterações aerodinâmicas em função das deformações da estrutura, caracterizam o comportamento aeroelástico;
- O sistema dinâmico que caracteriza o corpo e o meio que o envolve (escoamento de fluido), passa a ser chamado de sistema aeroelástico, e pode ser representado matematicamente através de modelos adequados, fundamentados nas teoria a serem apresentadas neste curso.
- ☐ Obs: O termo *AEROELASTICIDADE* foi formalmente introduzido por Roxbee Cox e Pugsley em 1932.

- Para o entendimento do fenômeno físico de uma forma elementar, note o esquema ao lado ->
- A mudança de ângulo de ataque devido a flexibilidade promove um aumento da sustentação, que por sua vez deforma ainda mais asa, realimentando o processo na forma do aumento do ângulo de ataque proporcionando novamente o aumento da sustentação.



## Aeroelasticidade

- A interação mútua entre as forças elásticas, de inércia e aerodinâmicas pode ser representada graficamente através de um diagrama conhecido como diagrama dos três anéis
- Obs: Collar em 1946, inicialmente definiu aeroelasticidade em termos de um triângulo de forças análogo ao diagrama ao lado.



#### Fenômenos Aeroelásticos

| Os fenômenos físicos associados aos dois tipos de        |
|----------------------------------------------------------|
| comportamento de um sistema, estático ou dinâmico, podem |
| ser subdivididos como:                                   |
| Associados a estabilidade do sistema aeroelástico:       |

- □ Divergência (estático)
- ☐ Flutter (dinâmico)
- Associados à resposta (aeroelástica) no tempo:
  - □ Redistribuição de Cargas (estático)
  - □ reversão de comandos (estático)
  - □ cargas de rajadas (dinâmico)
  - Buffeting (dinâmico)
- Cada um dos fenômenos físicos serão apresentados ao longo do curso, bem como a forma de modela-los matematicamente.

# Divergência

- Conforme apresentou-se anteriormente, o aumento de sustentação ocorre devido ao aumento do ângulo de ataque.;
- Se a pressão dinâmica do escoamento for suficientemente alta, este processo realimentado pode levar ao colapso da estrutura devido a "divergência" do movimento da asa;
- Caso contrário, a asa permanece estaticamente deformada.



#### Flutter

□ Flutter é uma auto-excitação de dois ou mais modos de vibração de um sistema, devidamente alterada e realimentada pelo escoamento de um fluido. Pode vir a causar oscilações de amplitude que crescem exponencialmente levando a estrutura a uma falha dinâmica.







# Redistribuição de Cargas

Quando a asa é flexível, o carregamento aerodinâmico ao longo da envergadura pode ser alterado devido a deformação da asa em ângulo de ataque.



## Reversão (eficiência) de comandos

 Pode causar ineficiência, perda ou até a reversão de uma ação de comando de uma superfície de controle



# Cargas de rajada

- Cargas dinâmicas:
  - Devido rajadas de vento, pouso, disparo de armamentos, alijamento, choques e etc.;
  - O aumento do carregamento aerodinâmico devido uma rajada de vento ocorre devido ao aumento do ângulo de ataque instantâneo, podendo elevar o fator de carga a limites além dos autorizados para a aeronave;
  - Modela-se o sistema aeroelástico considerando a presença da rajada também para o projeto de sistemas de alívio de cargas desta natureza.

## Buffeting

- Fenômeno típico de aeronaves de alta manobrabilidade;
- Vibrações causadas pela esteira gerada por outras partes da aeronave, por exemplo interferência da esteira da asa na empenagem;
- □ Fenômeno altamente não linear, difícil de modelar matematicamente, sendo necessária investigação em túnel de vento



# Um Pouco de História da Aeroelasticidade....

O primeiro incidente aeronáutico documentado e relacionado a um problema aeroelástico implicou na catastrófica do Aerodrome de Samuel Langley, em 1903. O acidente foi causado por uma divergência devido ao alto camber da asa



# O "Wright Flyer"

Wing morphing (warping = distorção) é um conceito que hoje está sendo estudado de novo.





## Controle Aeroelástico

Bleriot XI – monoplano controlado por "wing warping". Requer asa flexível em torção, muito sujeita a divergência!







# Wing Morphing

Modificação da forma em planta da asa, bem como do camber não é algo inédito, a natureza nos ensina...



## Opção pelos Biplanos

- Possivelmente, a falha de Langley com seu monoplano e o sucesso dos irmão Wright com o seu biplano influenciou a preferência por biplanos;
- Porém, analisando tecnicamente, a montagem das asas de um biplano gera um conjunto de superfícies de sustentação mais rígido em torção do que uma asa única. O lembre-se que o maior problema das asas na ocasião era a rigidez em torção.
- A rigidez em um biplano era aumentada pelos estais e barras que conectam as duas asas, compondo uma caixa rígida.

## Flutter na I Guerra Mundial

- □ Lanchester e Bairstow flutter dos aviões Handley Page O-400 e DeHavilland DH-9 (1916);
- Este de fato foi um flutter resultante da coalescência de dois modos estruturais, um associado a torção da fuselagem a rotação antisimétrica do profundor.
  - "... at certain critical speeds of flight a tail wobble is set up, involving heavy torsional stresses on the fuselage, the type of vibration being an angular oscillation approximately about the axis of the fuselage; I am informed that the angular magnitude of this oscillation amounts at times to something approaching 15°, and is undoubtedly extremely dangerous to the structure of the machine. I gather that the experience of the pilots when this vibration is at its worst is terrifying ..."



# Flutter de superfícies de controle

- von Baumhauer e Köning flutter de aileron do van Berkel WB Seaplane causado pelo acoplamento dinâmico entre o modo de flexão da asa com o modo de rotação do aileron
- Este problema está relacionado com a posição do centro de gravidade do aileron, e para tal empregou-se o balanceamento mássico para a solução do problema (1923).



# Flutter de superfícies de controle

Lockheed 14H Super Electra (1938), apresentou problemas de flutter no leme. Uma tentativa prévia de correção antes da entrega da aeronave mostrou-se ineficaz, causando um acidente com vítimas fatais.



## Outros incidentes

- Jato T-33 durnate teste em vôo com tanques nas pontas das asas. Flutter resultante do acoplamento entre modos de torção e flexão da asa
- ☐ Flutter do tipo "ciclo limite" da empenagem vertical do KC-135.
- E-6A TACAMO, perda da metade superior empenagem vertical. Problema "resolvido", nova falha no vôo seguinte.
- Aeronave de transporte militar ARAVA (Israel) – Flutter devido a uma parafuso de fixação da asa com torque inadequado.

#### Whirl Flutter

- Decorrente da interação entre a hélice e a asa.
- Caso clássico –Lockheed Electra
- Muitos acidentes fatais.



# Programa do Curso AE-249

- Introdução e conceitos básicos
- Aeroelasticidade estática
  - Divergência
  - Redistribuição de cargas
  - Reversão de comandos
- Aerodinâmica não estacionária
  - Equação do Potencial Aerodinâmico Linearizado
  - Modelos de Theodorsen, Wagner, Küssner e Sears
- Aeroelasticidade dinâmica
  - Estabilidade Aeroelástica (flutter)
  - Resposta Aeroelástica
- Formulação do problema aeroelástico na base modal.
  - Modelo dinâmico estrutural
  - Métodos de elementos discretos em aeroelasticidade
- Aeroelasticidade no Espaço de Estados
  - Aproximação aerodinâmica por funções racionais
  - Modelo aeroservoelástico

## O que não veremos no curso

- Aeroelasticidade não linear (devido ao regime de escoamento e/ou a estrutura);
- Aeroelasticidade de placas e cascas;
- Aeroelasticidade de asas rotativas e sistemas rotativos (hélices);
- Dinâmica do vôo integrada a aeroelasticidade.

# Cronograma Tentativo

| <b>Dia</b> 29/07 | <b>Assunto</b><br>Introdução e Histórico                                   | S<br>E<br>M | <b>Dia</b> 30/09 | <b>Assunto</b><br>Aeroelasticidade dinâmica |
|------------------|----------------------------------------------------------------------------|-------------|------------------|---------------------------------------------|
| 05/08            | Aeroelasticidade estática.                                                 | A<br>N      | 07/10            | Aeroelasticidade dinâmica                   |
| 12/08            | Aeroelasticidade estática.                                                 | A           | 14/10            | Aeroelasticidade dinâmica.                  |
| 19/08            | Aeroelasticidade estática.                                                 | de          | 21/10            | Resposta Aeroelástica.                      |
| 27/08            | Prova 1 (com consulta)  Aerodinâmica não- estacionária.  Aerodinâmica não- | R<br>E      | 28/10            | Exemplo de Aplicação.                       |
| 02/09            |                                                                            | C<br>U<br>P | 4/11             | Prova 2 (com consulta)                      |
| 09/09            |                                                                            | E<br>R      | 11/11            | Aeroelasticidade no espaço                  |
| 16/09            | estacionária.<br>Aerodinâmica não-                                         | A<br>Ç      | 18/11            | de estados<br>Aeroelasticidade no espaço    |
| 10/03            | estacionária.                                                              | Ã<br>O      | 02/12            | de estados<br>Exame (sem consulta)          |

## Avaliação

- Preparo para as provas baseado na distribuição de séries nas seguintes datas:
  - 1ª Série em 13/08
  - 2ª Série em 17/09
  - 3ª Série em 22/10
- Duas provas
- Exame Final

$$NP_1$$
 = nota prova 1

$$NP_2$$
 = nota prova 2

$$NE$$
 = nota do exame

$$\frac{\left(\frac{NP_1 + NP_2}{2}\right) + NE}{2} = MF$$

# Bibliografia e referências

- □ Textos básicos do curso:
  - Bismarck-Nasr, M. N. Structural Dynamics in Aeronautical Engineering. Reston, VA: AIAA, 1999. (AIAA Education Series).
  - Bisplinghoff, R.L. Ashley, H. and Halfman, R. Aeroelasticity. Addison Wesley, 1955.
  - Dowell, E. H. et al. A Modern Course in Aeroelasticity. 4. ed. Kluwer Academic, 2005.
  - Fung, Y. C. An Introduction to the Theory of Aeroelasticity, Wiley, 1955
- Mais um conjunto de referências a serem passadas durante o curso, de acordo com o assunto.