

Blog da Robótica

Como utilizar o teclado matricial 4×4 keypad com Arduino

苗 30 de junho de 2022 💄 Carol Correia Viana

projectos com microconti oladores, como o madino.

Este módulo possui 16 botões dispostos em 4 linhas e 4 colunas e um conector de 8 pinos para ligação, conforme pode ser observado na Figura 1.

Figura 1 – Teclado matricial 4 x 4 Keypad.

No teclado matricial 4 x 4 keypad, cada botão em uma linha é conectado aos outros botões da mesma linha e coluna, formando uma matriz. Para identificar qual botão foi pressionado, o microcontrolador configura todas as colunas como nível ALTO e todas as linhas como nível BAIXO. Quando um botão é pressionado, o pino da coluna é colocado em nível BAIXO e o microcontrolador consegue identificar a coluna em que o botão pressionado está.

Na Figura 2 pode ser observada a combinação da linha 2 e a coluna 3, significando que o botão S7 foi pressionado.

O teclado matricial 4 x 4 keypad é ideal para conjuntos eletrônicos que necessitam de codificações ou para colocação de senhas em sistemas eletrônicos. Ele pode ser aplicado nos mais diversos projetos, apresentando excelente acabamento e perfurações para fixação nas extremidades.

Neste projeto, vamos realizar a leitura dos botões do teclado matricial 4 x 4 keypad e exibir o qual botão foi pressionado no monitor serial.

MATERIAIS NECESÁRIOS

- 1 x Placa UNO SMD R3 Atmega328 compatível com Arduino UNO;
- 1 x Cabo USB;
- 1 x Protoboard;
- 1 x Teclado matricial 4 x 4 keypad;
- Fios de jumper macho-fêmea.

ESQUEMÁTICO DE LIGAÇÃO DOS COMPONENTES

Conecte os componentes na protoboard como ilustra a Figura 3. Lembre-se que a placa UNO deve estar desconectada enquanto você monta o circuito.

Figura 3 – Circuito para Projeto exibir botão pressionado no monitor serial

Ao montar seu circuito na protoboard observe os seguintes pontos:

• Os pinos correspondentes as colunas do teclado matricial são representados por C1, C2, C3 e C4. Estes pinos / devem ser conectados, respectivamente, aos pinos 8, 9, 10 e 11 da placa UNO;

- concectados as portas s, 1, 5 e o aa piaca onto.

ELABORANDO O CÓDIGO

Com o circuito montado, vamos a programação. A proposta deste projeto é realizar a leitura dos botões do teclado matricial 4 x 4 keypad e exibir qual botão foi pressionado no monitor serial. Para entender a lógica de programação acompanhe os seguintes passos:

1. Adicionar a biblioteca **Keypad**.h:

Para o desenvolvimento do nosso projeto, vamos incluir a biblioteca **Keypad**.h, desenvolvida para facilitar o uso de teclados do tipo matriz com o Arduino. Esta biblioteca encontra-se disponível no gerenciador de bibliotecas do Arduino IDE, que pode ser acessado por meio do caminho: Toolbar > Ferramentas > Gerenciar Bibliotecas...> Adicionar biblioteca ZIP, conforme ilustra a Figura 4.

Figura 4 – Caminho para o gerenciador de bibliotecas do Arduino IDE.

Em seguida, no campo de pesquisa busque por keypad e instale a biblioteca clicando em "Instalar", conforme Figura 5.

Figura 5 – Gerenciador de bibliotecas.

2. Incluir a biblioteca no código:

Iniciaremos incluindo a biblioteca através da instrução #include < Keypad.h >.

3. Declarar as variáveis:

Em nosso código, vamos declarar duas variáveis para armazenar o número de linhas e colunas do nosso teclado matricial, numLinhas e numColunas. Estas variáveis serão do tipo const byte, o que significa que elas são variáveis de leitura que podem armazenar um de 0 a 255.

pressionado no tecidado, voce pode acribán os caracteres que preferir.

Logo após, as portas 6, 5, 4 e 3 da placa UNO foram declaradas no array pinosLinhas[numLinhas] e as portas 8, 9, 10 e 11 no array pinosColunas[numColunas].

4. Criar objeto para inicializar o teclado matricial:

As bibliotecas do Arduino normalmente se apresentam em classes que possuem funções para adicionar, configurar ou executar alguma tarefa de algum dispositivo. Desse modo, para usar o teclado matricial 4 x 4 keypad precisamos inicializá-lo.

Nesse caso, criamos o objeto **Keypad** meuteclado = **Keypad**(makeKeymap(teclasMatriz), pinosLinhas, pinosColunas, numLinhas, numColunas); em que:

- makeKeymap: inicializa a matriz de botões do teclado para ser igual a matriz teclasMatriz com os caracteres definidos pelo programador;
- pinosLinhas e pinosColunas: são os pinos da placa UNO conectados as linhas e as colunas do teclado matricial;
- numLinhas e numColunas: são o número de linhas e colunas do teclado.

5. Inicializar a comunicação serial:

Dentro da função setup(), inicializamos a comunicação serial através da instrução: Serial.begin(9600);.

Tra tarição toopy, charilos a valtavel pressionado para recolhar o socao pressionado, se hoavell rara verificar se o

botão foi pressionado, usamos a estrutura condicional if. Se o botão for pressionado, o caractere correspondente será impresso no monitor serial.

Ao final, o código do projeto proposto ficará da seguinte maneira:

```
/*
1.
2.
       = TECLADO MATRICIAL 4x4 KEYPAD COM ARDUINO
3.
       _____
4.
       == BLOG DA ROBOTICA - www.blogdarobotica.com ==
5.
       _____
6.
       Autor: Carol Correia Viana
7.
       E-mail: contato@blogdarobotica.com
8.
       Facebook: facebook.com/blogdarobotica
9.
       Instagram:@blogdarobotica
10.
       YouTube: youtube.com/user/blogdarobotica
       _____
11.
12.
       == CASA DA ROBOTICA - www.casadarobotica.com ==
       _____
13.
14.
       Facebook: facebook.com/casadaroboticaoficial
15.
       Instagram:@casadarobotica
16.
       ______
17.
18.
19.
     #include <Keypad.h> //Biblioteca para uso de teclados matriciais
20.
21.
     const byte numLinhas = 4; //Quantidade de linhas do teclado
22.
     const byte numColunas = 4; //Quantidade de colunas do teclado
23.
24.
     //Matriz de caracteres referente aos botões do teclado
25.
     char teclasMatriz[numLinhas][numColunas] = {
26.
      {'1', '2', '3', '4'},
27.
      {'5', '6', '7', '8'},
      { '9', '0', '*', '+'},
28.
       {'#', '$', '%', '@'}
29.
30.
     };
```

```
34.
35.
      //Cria um objeto do tipo Keypad
36.
      Keypad meuteclado = Keypad (makeKeymap (teclasMatriz), pinosLinhas, pinosColunas, numLinhas, numColunas);
37.
38.
      void setup() {
39.
        Serial.begin(9600); //Inicia a comunicação serial
        Serial.println("Aperte um botão..."); //Imprime mensagem no monitor serial
40.
41.
42.
      void loop() {
43.
        char pressionado = meuteclado.getKey(); ///Verifica se alguma tecla foi pressionada
44.
45.
46.
        if (pressionado) { //Se alguma tecla foi pressionada
          Serial.print("Botão pressionado: "); //Imprime mensagem no monitor serial
47.
          Serial.println(pressionado); //Imprime tecla pressionada
48.
49.
50.
```

Espero que tenham gostado deste tutorial. Em caso de dúvidas, deixe seu comentário abaixo.

Carol Correia Viana

(0)

Carol Correia Viana

Bacharel em Engenharia Elétrica com ênfase em Eletrônica, mestra em Engenharia Industrial e especialista em Docência com ênfase em Educação Inclusiva. Atua no setor de Desenvolvimento de Produtos na Casa da Robótica. Editora chefe e articulista no Blog da Robótica. Fanática por livros, Star Wars e projetos Maker.

Detectando campo magnético com reed switch e Arduino →

... Você pode gostar também

Controle de Acesso via RFID e Arduino

a 20 de março de 2020

Expandindo as portas digitais do Arduino utilizando o registrador de deslocamento CI74HC595

30 de junho de 2022

O que é e para que serve uma placa BMS?

a 7 de março de 2025

Você precisa fazer o login para publicar um comentário.

Este site utiliza o Akismet para reduzir spam. Saiba como seus dados em comentários são processados.

Posts recentes

Jogo de Páscoa com Scratch e Makey Makey: Ajude o Coelhinho da Páscoa

O que é e para que serve uma placa BMS?

CONVERSORES / REGULADORES STEP UP: O QUE SÃO?

Circuito com massinha de modelar

Sobre

Política de privacidade

Sobre

Nuvem de Tags

7segmentos arduino Arduino Uno attiny85 bc548 bluetooth hc-05 BNCC buzzer carregamento rápido ch340 DC-DC Dia Internacional da Mulher digispark

dispositivos eletrônicos Educação e Tecnologia eficiência de conversão eficiência energética energia solar ESP8266 fontes de

alimentação Inteligência Artificial LED Makey Makey Micro:bit NODEMCU pensamento computacional Pictoblox Planos de aula

programação Arduino Programação em blocos projeto Arduino Projeto de robótica projeto eletrônico proteção contra curto-circuito raspbarry pi pico relé RFID

Robótica desplugada Robótica Educacional Scratch SemanadasCrianças Sensor de distância para Arduino sim900 sistemas de energia solar veículos elétricos

Apoio

Copyright © 2025 Blog da Robótica. Todos os direitos reservados.

Tema: ColorMag por ThemeGrill. Powered by WordPress.