习题课

二、选择题

- 1. 设 C 是圆周 $x^2 + y^2 = 2x$,则 $\int_C x ds = ()$ 。
 - (A) 0; (B) 1; (C) π ; (D) 2π .
- 2. 设Σ: $x^2 + y^2 + z^2 = a^2(z \ge 0)$, Σ_1 为Σ在第一卦限的部分,则有()

 - (A) $\iint_{\Sigma} x dS = 4 \iint_{\Sigma_1} x dS ; \qquad (B) \iint_{\Sigma} y dS = 4 \iint_{\Sigma_1} x dS ;$

 - (C) $\iint_{\Sigma} z dS = 4 \iint_{\Sigma_1} x dS; \qquad (D) \iint_{\Sigma} xyz dS = 4 \iint_{\Sigma_1} xyz dS .$
- 3. 圆柱面 $x^2 + z^2 = a^2$ 被圆柱面 $x^2 + y^2 = a^2$ 所截部分的面积为().
 - $(A) 8a^2, \qquad (B) 4a^2, \qquad (C) 2a^2, \qquad (D) a^2.$

二、填空题

在柱面坐标系下的三次积分为_____;

在球面坐标系下的三次积分为。

- 2. 质量均匀分布的球体 Ω : $x^2 + y^2 + z^2 \le R^2$ 对 z 轴的转动惯量为______。
- 3. 设曲面 Σ 为 $x^2+y^2+z^2=4$,则 $(x^2+y^2)dS=$ _____。
- 4. 设 L 为圆锥螺线 $x=t\cos t$, $y=t\sin t$, z=t ($0\le t\le 1$) , 则 $\int_I z\mathrm{d}s=$ ______。

三、解答题

1. 求曲面 $z=1-x^2-y^2$, x+y+z=1, x=0, y=0, z=0所围成的立体的体积。

1

- 2. 计算三重积分 $I=\iiint_{\Omega}(x+2yz+z^2)dV$,其中 Ω 是由曲线 $\begin{cases} y^2+z^2=2z \\ x=0 \end{cases}$ 转一周所生成的曲面所围成的区域。
- 3. 计算 $\iint_{\Omega} (z+2xy) dV$,其中 Ω 为由半椭球面 $x^2+4y^2+z^2=1(z>0)$ 与锥面 $z=\sqrt{x^2+y^2}$ 所围成的区域。
- 4. Σ 是椭球面 $\frac{x^2}{2} + \frac{y^2}{2} + z^2 = 1$ 的上半部分,点 $M(x,y,z) \in S$, π为 Σ 在点 M 处 的切平面, $\rho(x,y,z)$ 为点 (0,0,0) 到平面 π的距离,求 $\iint_{\Sigma} \frac{z}{\rho(x,y,z)} dS$ 。

三、应用题

- 1. 计算球面上的三角形 $x^2 + y^2 + z^2 = a^2(x > 0, y > 0, z > 0)$ 的边界曲线的形心坐标。
- 2. 球体 $x^2 + y^2 + z^2 \le 2Rz$ 内,各点处的密度等于该点到原点距离的平方,试求这球体的质心。