Question Number	Answer		Mark
2(a)	Evidence of frictional force = $(0.35 \times mg)$ Use of $F = mr\omega^2$ Or $F = mv^2/r$ Use of $\omega = 2\pi/T$ Or $v = 2\pi r/T$ t = 3.0 s Example of calculation frictional force = $0.35 \times 20 \text{ kg} \times 9.81 \text{ m s}^{-2} = 68.7 \text{ N}$ $F = mr\omega^2$ $\omega = \sqrt{(68.7 \text{ N} / (20 \text{ kg} \times 0.80 \text{ m})}$ $\omega = 2.1 \text{ rad s}^{-1}$ $t = 2\pi/2.1 \text{ rad s}^{-1}$ t = 3.0 s	(1) (1) (1) (1)	4
2(b)	There would be no difference Both expressions for force depend on mass Or algebraic equation for ω or T derived (could be in the working for (a)) showing ω or T independent of m Or statement that masses cancel if supported by evidence in (a)	(1)	2
	Total for question 13		6

Question Number	Answer	Mark	
4(a)	Conversion from per minute to per second Conversion from revolutions to radians		(1) (1)
	Example of calculation		
	20 revolutions = 20 x 2π /60 (= 2.1 rads s ⁻¹)		
4(b)	Use of $r\omega^2$ Answer in range 6 - 13 ms ⁻²		(1) (1) (1)
	Total for question 13	5	

Question Number	Answer	Mark
5(a)	Use of $F=mv/t$ or $F=ma$ (1) Answer = $2.0 \times 10^5 \text{ N}$ (1) Eg $F=12000 \times 57 / 3.5$	2
5(b)	Arrow down labelled mg / W (1) Arrow up labelled eg R /reaction / force from seat (1) Equal length vertical arrows from a clear single point / centre of mass and "bottom" (1)	3
5(c)	4mg - mg OR 3mg (1) $(m)v^2/r \text{ seen (1)}$ Answer = 110 (m) (1)	3

	Eg $3mg = mv^2/r$ $r = (57)^2/3g$	
	$r = (57)^2 / 3g$	
5(d)	Use of KE / PE conservation (1)	
	Answer = 23 (m s $^{-1}$) (1)	2
	Eg $\frac{1}{2} m(57)^2 = \frac{1}{2} mv^2 + mg139$ $v^2 = \frac{1}{2} (57)^2 - 9.81 \times 139$	
5(e)	Using (m)g only (1)	
	Answer $r = 54$ m [allow ecf] (1)	2
	Eg $mg = mv^2/r$ $r = (23)^2/9.81$	
	Total for question	12

Question Number	Answer		Mark
5(a)	Velocity/direction changing Or (object is) accelerating Force towards centre of circle	(1) (1)	2
5(b)	High(er) speed means large(r) force Or small(er) radius means large(r) force (For sharp bends) centripetal/resultant/required force would need to be greater than maximum frictional force	(1)	
	Or (for sharp bends) friction cannot provide the (required) centripetal/resultant force	(1)	2
5(c)(i)	Resolving forces vertically $\underline{N} \sin \theta = mg$ Resolving forces horizontally $\underline{N} \cos \theta = mv^2/r$ Division of vertical equation by horizontal equation to get correct answer	(1) (1) (1)	3
5(c)(ii)	Use of $\tan \theta = gr/v^2$ $\theta = 57^\circ$ Example of calculation $\tan \theta = (9.81 \text{ m s}^{-2} \times 18.7 \text{ m})/(11.0 \text{ m s}^{-1})^2$ $\theta = 56.6^\circ$	(1) (1)	2
	Total for question 16		10

MCQ Answers:

- 5) B 6) D