EE663, Assignment 4

Question 2

Problem Statement. Consider a set of N vectors $\mathcal{X} = \{x_1, x_2, ..., x_N\}$ each in \mathbb{R}^d , with average vector \bar{x} . We have seen in class that the direction e such that $\sum_{i=1}^N \|x_i - \bar{x} - (e \cdot (x_i - \bar{x}))e\|^2$ is minimized, is obtained by maximizing e^tCe , where C is the covariance matrix of the vectors in \mathcal{X} . This vector e is the eigenvector of matrix C with the highest eigenvalue. Prove that the direction f perpendicular to e for which f^tCf is maximized, is the eigenvector of C with the second highest eigenvalue. For simplicity, assume that all non-zero eigenvalues of C are distinct and that $\operatorname{rank}(C) > 2$. [10 points]

Solution. We will use Lagrange Multipliers to show that the statement is true, similar to what was done in class, except with multiple constraints.

We want to maximize $g(\mathbf{f}) = \mathbf{f}^t \mathbf{C} \mathbf{f}$, subject to the constraints that $h(\mathbf{f}) = \mathbf{f}^t \mathbf{f} - 1 = 0$ and $k(\mathbf{f}, \mathbf{e}) = \mathbf{e}^t \mathbf{f} = 0$. Note that the dimension of \mathbf{C} is $d \times d$, and the dimensions of \mathbf{e}, \mathbf{f} are $d \times 1$. Lagrange multipliers give us d + 2 relations for the maxima:

- 1. h(f) = 0
- 2. k(f, e) = 0
- 3. $\nabla_{\mathbf{f}}g(\mathbf{f}) \mu\nabla_{\mathbf{f}}h(\mathbf{f}) \lambda\nabla_{\mathbf{f}}k(\mathbf{e},\mathbf{f}) = 0$ This represents d equations, since it is a vector derivative.

Simplifying the third expression, we get, using $\nabla_f g(f) = 2Cf$, $\nabla_f h(f) = 2f$, $\nabla_f k(e, f) = e$,

$$2Cf - 2\mu f - \lambda e = 0$$

Pre-multiplying by e^t , since $e^t f = 0$, and $e^t e = 1$, we get

$$2e^{t}Cf - \lambda = 0 \implies \lambda = 2e^{t}Cf$$

We note that, since C is a symmetric matrix, $C = C^t$. Let us denote the eigenvalue of e wrt C as γ ; i.e, $Ce = \gamma e$. Taking the transpose of both sides, we get that $e^t C^t = e^t C = \gamma e^t$. Now, using this in the expression of λ ,

$$\lambda = 2\mathbf{e}^t \mathbf{C} \mathbf{f} = 2\gamma \mathbf{e}^t \mathbf{f} = 0.$$

because f and e are assumed to be orthogonal. Hence, we have that $2Cf = 2\mu f$, meaning that f is an eigenvector of C. Since we want to maximize $f^tCf = f^t\mu f = \mu$, we should choose the eigenvector with the largest value that is perpendicular to e. Since C is a square symmetric positive semi-definite matrix, this would be the second largest eigenvalue.