Variational Interaction Information Maximization for Cross-domain Disentanglement

Accepted in NeurlPs 2020

Kyeong Ryeol, Go M.S. Candidate of OSI Lab

Disentanglement

- What for?
 - Identifying sources of variation for interpretability
 - Obtaining representation invariant to nuisance factors
 - Domain transfer
- Variational Autoencoder (Arxiv 2014)
 - $\log p(x) \ge E_{q_{\phi}(Z|X)}[\log p_{\theta}(x|z)] KL(q_{\phi}(z|x)||p(z))$

Reconstruction term

Compression term

- VAE failures
 - Amortized Inference failures
 - ELBO can be maximized even with inaccurate variational posterior
 - Error in x is more critical than in z due to high dimensionality \rightarrow overfitting
 - Information preference property
 - Complex decoder improves sample quality while neglecting the latent variable

Disentanglement

ELBO variants

- $\mathbb{E}_{q_{\phi}(z|x)}[\log p_{\theta}(x|z)] \beta \cdot KL(q_{\phi}(z|x)||p(z))$
- $\mathbb{E}_{q_{\phi}(z|x)}[\log p_{\theta}(x|z)] \beta \cdot KL\left(q_{\phi}(z) \left\| \prod_{d} q_{\phi}(z_{d}) \right) KL(q_{\phi}(z|x)||p(z))\right)$
- $\mathbb{E}_{q_{\phi}(z|x)}[\log p_{\theta}(x|z)] \beta \cdot HSIC(q_{\phi}(z)) KL(q_{\phi}(z|x)||p(z))$
- ...

Information theory

- $H D \le I_q(x, z) = KL(q_{\phi}(z|x)p(x)||q_{\phi}(z)p(x)) \le R$
- Data entropy : $H = -\int p(x) \log p(x) dx$
- Distortion : $D = -E_{p(x)q_{\phi}(Z|X)}[\log p_{\theta}(x|Z)]$
- Rate : $R = E_{p(x)}[KL(q_{\phi}(z|x)||r_{\psi}(z))]$
- $\max_{\theta,\phi,\psi} -D |R \sigma|$

Cross domain disentanglement

- What for?
 - Successful domain transfer
 - Measuring semantic distance between domains
- Goal
 - Partitioning into domain-invariant(z^s) and domain specific(z^x , z^y) Ex) Images in different styles with similar semantic content
 - 1) Maximizes the joint distribution $p_D(x, y)$ by optimizing θ
 - 2) Disentangle z^x , z^y from z^s

Baseline

Deep Variational Canonical Correlation Analysis (Arxiv 2016)

•
$$p_{\theta}(x, y, z^x, z^s, z^y) = p_{\theta_X}(x|z^x, z^s)p_{\theta_Y}(y|z^y, z^s)p(z^x)p(z^s)p(z^y)$$

•
$$q_{\phi}(z^x, z^s, z^y | x, y) = q_{\phi_X}(z^x | x) q_{\phi_S}(z^s | x, y) q_{\phi_Y}(z^y | y)$$

•
$$L_0 := E_{q_{\phi}(z^x, z^s, z^y | x, y)} \left[\log \frac{p_{\theta}(x, y, z^x, z^s, z^y)}{q_{\phi}(z^x, z^s, z^y | x, y)} \right]$$

 $= E_{q_{\phi_X}(z^x | x) q_{\phi_S}(z^s | x, y)} [\log p_{\theta}(x | z^x, z^s)] + E_{q_{\phi_Y}(z^y | y) q_{\phi_S}(z^s | x, y)} [\log p_{\theta}(y | z^y, z^s)]$
 $- KL(q_{\phi_X}(z^x | x) || p(z^x)) - KL(q_{\phi_S}(z^s | x, y) || p(z^s)) - KL(q_{\phi_Y}(z^y | y) || p(z^y))$

Main idea

- No control over the assignment of generative factors!
- Devise additional regularization term
 - maximize $I(x, y, z^s) = I(x, z^s) I(x, z^s|y) = I(y, z^s) I(y, z^s|x)$
 - minimize $I(z^x, z^s) = I(x, z^x) + I(x, z^s) I(x, \{z^x, z^s\})$
 - minimize $I(z^y, z^s) = I(y, z^y) + I(y, z^s) I(y, \{z^y, z^s\})$

*
$$L_0 + \beta \cdot [I(x, y, z^s) - I(z^x, z^s) + I(x, y, z^s) - I(z^y, z^s)]$$

$$\geq L_0 + \beta \cdot \left(L_0 + KL(q_{\phi_S}(z^s|x,y)||p(z^s)) - KL(q_{\phi_S}(z^s|x,y)||r_{\psi}(z^s|x)) - KL(q_{\phi_S}(z^s|x,y)||r_{\psi}(z^s|y))\right) + C$$

 \times In case of x...

•
$$I(x, y, z^s) - I(z^x, z^s) = I(x, \{z^x, z^s\}) - I(x, z^x) - I(x, z^s|y)$$

1.
$$I(x, \{z^{x}, z^{s}\}) = E_{q_{\phi}(z^{x}, z^{s}|x, y)p(x)} \left[\log \frac{q_{\phi}(x|z^{x}, z^{s})}{p(x)} \right] \ge H(x) + E_{q_{\phi}(z^{x}, z^{s}|x, y)p(x)} [\log p_{\theta}(x|z^{x}, z^{s})]$$
2. $I(x, z^{x}) = E_{q_{\phi_{X}}(z^{x}|x)p(x)} \left[\log \frac{q_{\phi_{X}}(z^{x}|x)}{q_{\phi_{X}}(z^{x})} \right] \le E_{p(x)} \left[KL \left(q_{\phi_{X}}(z^{x}|x) || p(z^{x}) \right) \right]$

2.
$$I(x, z^x) = E_{q_{\phi_X}(z^x|x)p(x)} \left[\log \frac{q_{\phi_X}(z^x|x)}{q_{\phi_X}(z^x)} \right] \le E_{p(x)} \left[KL \left(q_{\phi_X}(z^x|x) || p(z^x) \right) \right]$$

3.
$$I(x, z^s|y) = E_{q_{\phi_S}(z^s|x, y)p(x, y)} \left[\log \frac{q_{\phi_S}(z^s|x, y)}{q_{\phi_S}(z^s|y)} \right] \le E_{p(x, y)} \left[KL \left(q_{\phi_S}(z^s|x, y) \middle\| r_{\psi}(z^s|y) \right) \right]$$

Figure 2: The architecture of Interaction Information Auto-Encoder.

Experiment

- Cross domain Image translation
 - MNIST-CDCB
 - X : variations in the background
 - Y : variations in the foreground

- Cars
 - X : frontal view
 - Y : rotated view

$$X \to Y$$

1.
$$\mu_x^s = r_{\psi}(z^s|x)$$
. mean

2.
$$z^y \sim p(z^y)$$
 or $z^y = q_{\phi_y}(z^y|y)$. mean

3.
$$y' = p_{\theta}(y|\mu_x^s, z^y)$$
. mean

$$XY \rightarrow X$$

1.
$$\mu_y^s = r_{\psi}(z^s|y)$$
. mean

2.
$$z^x \sim p(z^x)$$
 or $z^x = q_{\phi_x}(z^x|x)$. mean

3.
$$x' = p_{\theta}(x|\mu_y^s, z^x)$$
. mean

Experiment

- Cross domain retrieval
 - Maps
 - X: map image
 - Y: satellite image

- \times query : X, database : Y
- 1. $\mu_x^s = r_{\psi}(z^s|x)$. mean
- 2. $\mu_y^s = r_{\psi}(z^s|y)$. mean
- 3. $d(\mu_x^s, \mu_y^s) \rightarrow K \text{ neighbors}$

• Facades

- X : semantic label map
- Y : photo of the same building

Dataset	MNIST-CDCB		Maps		Facades	
Models	$CD \rightarrow CB$	$CB \rightarrow CD$	$S \rightarrow M$	$M \rightarrow S$	$F \rightarrow L$	$L \rightarrow F$
DRIT [26]	_	1520	33.8 (0.09)	37.3 (0.09)	31.1 (0.94)	44.3 (0.94)
CdDN [12]	99.6 (0.0)	99.6 (0.0)	91.4 (0.18)	96.9 (0.09)	84.9 (0.94)	89.6 (0.0)
IIAE	99.7 (0.01)	99.7 (0.01)	96.6 (0.09)	97.3 (0.0)	96.2 (0.94)	99.1 (0.94)

Experiment

- Zero-shot sketch based image retrieval
 - Sketchy(extended)

• X : sketches

• Y: photos

※ query : X, database : Y

1. $\mu_x^s = r_{\psi}(z^s|x)$. mean

2. $\mu_y^s = r_{\psi}(z^s|y)$. mean

3. $d(\mu_x^s, \mu_y^s) \rightarrow K \text{ neighbors}$

	Feature	Evalua	tion metric	External knowledge		
Models	Dimension	mAP	P@100	Attribute	WordEmb.	WordNet [33]
SAE [23]	300	0.216	0.293	✓	✓	-
FRWGAN [9]	512	0.127	0.169	\checkmark	_	-
ZSIH [38]	64	0.258	0.342	-	✓	-
CAAE [22]	4096	0.196	0.284	/2/	_	2
SEM-PCYC [6]	64	0.349	0.463	-	✓	✓
LCALE [27]	64	0.476	0.583	-	✓	-
IIAE	64	0.573	0.659	-	-	-

Summary

- Goal
 - Cross domain disentanglement
 - Partitioning into domain-invariant(z^s) and domain specific(z^x, z^y)

Main idea

- Further regularization on ELBO relying on the information theory
- $I(x, y, z^s) I(z^x, z^s) + I(x, y, z^s) I(z^y, z^s)$
- Derive tractable lower bound