4.

- 1 无符号整型 unsigned int 数据范围 [0, 2^(16-1)-1]
- 2 有符号整型 signed 数据范围 [-2^(15-1), 2^(15-1)-1]
- 3 有符号短整型 short 数据范围 [-2^(15-1), 2^(15-1)-1]

数据类型	16位平台	32位平台	64位平台	
char	1(个字节)	1	1	
short	2	2	2	
int	2	4	4	
unsigned int	2	4	4	
float	4	4	4	
double	8	8	8	
long	4	4	8	
long long	8	8	8	
unsigned long	4	4	8	
指针	2	4	8	
最大存储空 间	2^16	2^32	2^64	

9.

```
CS_HW > c5 > C t8.c > ☆ main()
     #include<stdlib.h>
     #include<stdio.h>
     void main(){
          int x=-1;
          unsigned int uy=4294967295UL;
          int a=(x^uy);
          int b=(x \&\& uy);
 8
          printf("unsigned x is : %u \n",x);
          printf("signed uy is : %d \n",uy);
11
          printf("a = %d \n",a);
          printf("b = %d \n",b);
12
          return;
```

unsigned x is : 4294967295 signed uy is : -1

a = 0

b = 1

将 x 作为无符号整数来输出的话, -1 的第一位符号位被改变, 就变成了 4294967295, uy 作 为整数输出也同理变成了-1.

逻辑与的汇编实现: (X && uy) 逻辑就是判断两个数是否为 0; 如果其中一个树为 0, 返 回 0; 都不为 0, 返回 1。 汇编还是用了分支结构跳转来实现,通过与 0 比较,实现 了最 好情况只用比较一次的方法, 避免重复设置符号位 Z 之后再与 1 相与, 最后用 0 扩展把结 果放回到32位寄存器里面。

11.

Sign	Ехр	Frac							
0	1	1	1	1	1	1	1	1	1

在不算正无穷的情况下:

8 位采用偏置表示, 偏置一般为 28-1-1=127 2^{8-1}-1=127。指数全 0 和全 1 分别保留 用于非正规数和特殊值(如无穷大、NaN), 因此正规数的指数编码范围是 1 到 254。 因此, 最大正规数为+1.5的 127次方。

17.

A [1011110] =B [1001111]

19.

- 1 正数中最小的非规格化数 0 0000 0001 2. 正数中最大的非规格化数 0 0000 1111
- 3. 正数中最小的规格化数 0 0001 0000 4. 正数中最大的规格化数 0 1110 1111