EE 238

Power Engineering - II

Power Electronics

Lecture 5

Instructor: Prof. Anshuman Shukla

Email: ashukla@ee.iitb.ac.in

Constant switching frequency

Period, $T_S = 1/f_S = 5$ us

Pulse width modulation

- PWM: Control of average (CCA) quantity by controlling (modulating) the pulse width in a switching cycle (duty ratio control)
- Normally constant switching frequency

Period, $T_S = 1/f_S = 5$ us

Given $T_{ON} = 2$ us d = 0.4

Duty ratio is the main control variable

d = 5/14

 $\overline{v}_A = 5V$

10V

 $v_A(t)$

14V

CONTROL OF dc-dc CONVERTERS: PWM Implementation

PWM switching:

- the switch control signal is generated by comparing a signallevel control voltage *vcontrol*, with a repetitive waveform.
- *vcontrol* is obtained by amplifying the error.
- The frequency of the repetitive waveform with a constant peak establishes *f*.
- f is chosen to be in a few kilohertz to a few hundred kilohertz range.

A CHOPPER

Assuming ideal switch, constant Vd, and a purely resistive load R.

The average output voltage:

$$V_o = \frac{1}{T_s} \int_0^{T_s} v_o(t) \ dt$$

$$= \frac{1}{T_s} \left(\int_0^{t_{on}} V_d dt + \int_{t_{on}}^{T_s} 0 dt \right)$$

$$=\frac{t_{\rm on}}{T_s}\,V_d=DV_d$$

$$D = \frac{t_{\rm on}}{T_s} = \frac{v_{\rm control}}{\hat{V}_{\rm st}}$$

$$\frac{t_{\text{on}}}{T_s} = \frac{v_{\text{control}}}{\hat{V}_{\text{st}}} \quad V_o = \frac{V_d}{\hat{V}_{\text{st}}} v_{\text{control}} = k v_{\text{control}} \quad k = \frac{V_d}{\hat{V}_{\text{st}}} = \text{constant}$$

$$k = \frac{V_d}{\hat{V}_{st}} = \text{constant}$$

By varying D of the switch, V0 can be controlled.

The average output volt. V_0 varies linearly with the $v_{control}$.

A CHOPPER

In actual applications, the foregoing circuit has two drawbacks:

- (1) In practice the load would be inductive. Even with a resistive load, there would always be certain associated stray inductance. This means that the switch would have to absorb (or dissipate) the inductive energy and therefore it may be destroyed.
- (2) The output voltage fluctuates between zero and *Vd*, which is not acceptable in most applications.

The problem of stored inductive energy is overcome by using a diode.

✓ The output voltage fluctuations are very much diminished by using a low-pass filter, consisting of C & L.

Cycle-by-cycle averaging (CCA)

- Average over a switching period referred to as cycle-by-cycle average (CCA)

 Control objectives achieved accordingly by controlling the
- Control objectives achieved essentially by controlling the CCA value of different quantities
- Average models, steady-state analysis & controller design use CCA quantities
- Average over a switching period
- CCA values denoted by a bar () on top, like $\overline{v}_{A\!N}$, $\overline{i_d}$

$$\overline{x}(t) = \frac{1}{T_s} \int_{t-T_s}^t x(\tau) d\tau$$
• CCA quantities can be time varying

CCA value of q_A and v_{AN} Some properties of CCA $q_A(t) = \frac{1}{T_S} \int_{t-T_s}^{t} v_{AN}(t) dt = \frac{1}{T_S} \int_{t-T_s}^{t} v_{AN}(t) dt = V_d q_A(t)$ Some properties of CCA

*Just like instantaneous quantities, KCL and KVL apply for CCA quantities too KCL KVL $\sum_{i} \overline{i}_{k} = 0 \quad \sum_{k} \overline{v}_{k} = 0$ At a node

*Around a loop Van tiles too KCL KVL $\sum_{i} \overline{i}_{k} = 0 \quad \sum_{k} \overline{v}_{k} = 0$ At a node

*Just like instantaneous quantities, KCL and KVL apply for CCA quantities too KCL KVL $\sum_{i} \overline{i}_{k} = 0 \quad \sum_{k} \overline{v}_{k} = 0$ At a node

*Around a loop Van tiles, KCL and KVL apply for CCA quantities too KCL KVL $\sum_{i} \overline{i}_{k} = 0 \quad \sum_{k} \overline{v}_{k} = 0$ At a node

*Around a loop Van tiles, KCL and KVL apply for CCA quantities too KCL KVL $\sum_{i} \overline{i}_{k} = 0 \quad \sum_{i} \overline{v}_{k} = 0$ At a node

*Around a loop Van tiles, KCL and KVL apply for CCA quantities too KCL KVL $\sum_{i} \overline{i}_{k} = 0 \quad \sum_{k} \overline{v}_{k} = 0$ At a node

*Around a loop Van tiles, KCL and KVL apply for CCA quantities, KCL and KVL apply for CCA quantities, KCL and KVL apply for CCA quantities too KCL KVL $\sum_{i} \overline{i}_{k} = 0 \quad \sum_{i} \overline{v}_{k} = 0$ At a node

*Around a loop Van tiles, KCL and KVL apply for CCA quantities, KCL and KVL apply for CCA quantities too KCL KVL $\sum_{i} \overline{i}_{k} = 0 \quad \sum_{i} \overline{v}_{i} = 0$ At a node

*Around a loop Van tiles, KCL and KVL apply for CCA quantities too KCL KVL $\sum_{i} \overline{i}_{k} = 0 \quad \sum_{i} \overline{v}_{i} = 0$ At a node

*Around a loop Van tiles, KCL and KVL apply for CCA quantities too Value of CCA quantities too Value

- CCA can be used in both steady-state and transient analysis
 - sometimes orders of magnitude fasterSince the process of CCA removes the

Simulations based on CCA models are

- •Since the process of CCA removes the switching frequency component and its harmonics, phasor analysis can be applied (at fundamental frequency) in sinusoidal
- CCA analysis cannot be used for studying switching frequency ripple, switch stress and other high frequency effects

STEP-DOWN (BUCK) CONVERTER

- The converters are analyzed in steady state.
- The switches are treated as being ideal, and the losses in L and C are neglected.

- A small filter is treated as an integral part in the output stage of the converter
- The output is assumed to supply a load that can be represented by an equivalent resistance. A dc motor load (the other application of these converters) can be represented by a dc voltage in series with the motor winding resistance and inductance.

- The dc input voltage to the converters is assumed to have zero internal impedance. It could be a battery source.
- However, in most cases, the input is a diode rectified ac line voltage with a large filter capacitance to provide a low internal impedance and a low-ripple dc voltage source.

BUCK CONVERTER APPLICATIONS

POL Converter for PCs and Laptops

Solar Chargers

USB On-The-Go

Battery Chargers

The buck is widely used in low power consumption small electronics to step-down from 24/12V down to 5V. They are sold as a small finish product chip for well less than US\$1 having about 95% efficiency.

STEP-DOWN (BUCK) CONVERTER

A dc component V₀, and the harmonics at the switching frequency f_s and its multiples,

The corner frequency fc of the low-pass filter is selected to be much lower than the switching frequency, thus essentially eliminating the switching frequency ripple in the output voltage.

The low-pass filter characteristic

Thought process in analyzing basic DC/DC converters

- Basic operation principle (qualitative analysis)
 - How does current flow during different switching states
 - How is energy transferred during different switching states

Verification of small ripple approximation

- Derivation of inductor voltage waveform during different switching states
- Quantitative analysis according to inductor volt-second balance or capacitor charge balance

$$\frac{dI}{dt} = \frac{V}{I}$$

In most Power Electronics cases V=constant over time period of interest

$$\frac{\Delta I}{\Delta t} = \frac{V}{L};$$

$$\Delta I = \frac{V}{I} \Delta t;$$

Inductor in Switched-mode Converters

Average Signals

Most important equation in Power Electronics:

Correct for average too:

Yower Electronics: $\frac{d\overline{I}}{I} = \frac{\overline{V}}{I}$

$$\overline{X} = \frac{1}{T} \int_{0}^{T} X dt$$

 \overline{X} - average

$$\overline{V} = \frac{V_m \cdot t_{on}}{T} = V_m D_{on}$$

Implication

For any practical system in steady state:

Average voltage on inductor $\overline{V}_L = 0$

Proof: If $\overline{V}_L \neq 0$ then $\overline{I}_L \rightarrow \infty$

That/is:

System must be designed such that:

$$\overline{V}_L = 0$$

Inductor in Switched-mode Converters

