Fundamentos de Estructuras de Datos y Algoritmos

Semestre 2023-1

Laboratorio 5: 31 de Marzo

Profesores: Jérémy Barbay, José Fuentes

Ayudante: Vicente Lermanda

Objetivos

- Familiarizarse con algunas funciones y librerías de la STL de C++.
- Entender, aplicar y analizar a nivel general una función recursiva.
- Realizar un análisis experimental de algoritmos.

I.

Descomprimir el archivo "lab5.zip" y revisar su contenido.

Logre identificar las librerías (o bibliotecas) que están en el archivo y el uso principal que se le da. A medida que vaya avanzando con el laboratorio, al lado de cada 'include' agregue un comentario con el uso que se le está dando en su código.

II.

Implementar una función de ordenamiento 'BubbleSort' la cual reciba un arreglo de enteros y lo ordene. Averiguar sobre la función std::sort de C++. Que librería la implementa? Que algoritmo/s usa por detrás? Qué complejidad temporal tienen estos dos algoritmos de ordenamiento?

III.

Implementar en C++.

- Iterativamente crear arreglos de tamaño n hasta un tamaño máximo N. Considerar que cada valor que toma n debe ser equidistante entre si (por ejemplo $10, 20, \ldots, 1000$).
- Llenar cada arreglo con valores aleatorios utilizando la función rand().
- Ordenar el arreglo creado con la función 'BubbleSort' creada y la función 'sort' de la STL.
- Utilizar la librería chrono para medir el tiempo de ejecución de cada algoritmo (para cada n obtener el tiempo promedio de mínimo 10 ejecuciones).

IV.

Exportar resultados experimentales como archivo .csv, y grafique sus resultados (algunas opciones para graficar son: herramientas de la terminal, Python, Excel, Google Sheet).

 $\ensuremath{\upolin}$ Que diferencias hay entre los resultados de ambos algoritmos? $\ensuremath{\upolin}$ Concuerda el resultado experimental con el análisis teórico de ambos?

¿Por qué ocurre esto?