Airbnb Case Study – Methodology Overview

Methodology Summary

The analysis for this case study was conducted using **Jupyter Notebook** for data preprocessing and **Tableau** for visualization and data analysis. The dataset used was **AB_NYC_2019.csv**, which contains **48,895 rows** and **16 columns**.

Step 1: Data Cleaning and Preparation

Preprocessing in Jupyter Notebook

• Columns Removed: Id , Name , Last Review (as they provided minimal value to the analysis).

- Duplicate Data Check: No duplicate rows were found in the dataset.
- Handling Missing Values:
 - Columns such as name, host-name, last review, and review-per-month contained missing values.

```
# Checking for missing values
air.isnull().sum()
                                      0
id
                                      16
name
host id
                                      0
                                      21
host_name
neighbourhood_group
                                      0
neighbourhood
                                      0
latitude
                                      0
longitude
                                      0
                                      0
room_type
price
                                      0
minimum_nights
                                      0
number_of_reviews
                                      0
                                  10052
last_review
                                  10052
reviews_per_month
calculated_host_listings_count
                                      0
                                      0
availability_365
dtype: int64
```

 The name column was dropped since the number of missing values was negligible, making its removal insignificant to the analysis.

```
id
name
16
host_id
0
host_name
21
neighbourhood_group
0
neighbourhood
0
latitude
0
longitude
0
room_type
0
price
0
minimum_nights
0
last_review
10052
reviews_per_month
10052
rediews_per_month
10052
rediews_per_month
10052
rediews_per_month
10052
rediews_per_month
10053
0
availability_365
0
dtype: int64

# Now we have the missing values, there are certain columns that are not efficient to the dataset
air.drop(['id','name','last_review'], axis = 1, inplace = True)
```

• **Formatting and Outlier Identification**: The dataset was checked for inconsistencies and outliers.

```
air.reviews_per_month.isnull().sum()

# Now reviews per month contains more missing values which should be replaced with 0 respectively
air.fillna(('reviews_per_month':0),implace=True)

air.reviews_per_month.isnull().sum()

# There are no missing values present in reviews_per_month column
# Now to check the unique values of other columns'
air.room_type.unique()

array(['Private room', 'Entire home/apt', 'Shared room'], dtype=object)

len(air.room_type.unique())

3

air.neighbourhood_group.unique()
array(['Brooklyn', 'Manhattan', 'Queens', 'Staten Island', 'Bronx'],
dtype=object)

len(air.neighbourhood_group.unique())

5

len(air.neighbourhood_unique())

221
```

Step 2: Data Analysis & Visualization Using Tableau

Key Insights and Visualizations

1. Top 10 Hosts Analysis

• A Tree Map was created to visualize the Top 10 Hosts by Host ID count.

2. Room Type Preferences by Neighborhood Group

- A Pie Chart was generated to show the percentage distribution of room types across different neighborhood groups.
- The Room Type attribute was assigned different colors to distinguish each type, and Host ID count was used for size representation.

3. Price Variance by Neighborhood Group

- A **Box-and-Whisker Plot** was used, placing **Neighborhood Groups** on the x-axis and **Price** on the y-axis.
- Instead of using the **sum of prices**, the **median price** was calculated for better representation.

4. Average Price by Neighborhood Group

- A Bubble Chart was created with Neighborhood Groups as categories and Price as the numeric variable.
- The **Average Price** was displayed using labels, and different colors were assigned to each **Neighborhood Group**.

5. Customer Booking Trends by Minimum Nights

• Bins were created for the Minimum Nights column to visualize the distribution of bookings based on the duration of stays across different neighborhoods.

```
Min Nights BINs

IF [Minimum Nights] = 1 THEN "1"

ELSEIF [Minimum Nights] = 2 THEN "2"

ELSEIF [Minimum Nights] = 3 THEN "3"

ELSEIF 4 <= [Minimum Nights] AND [Minimum Nights] <= 5 THEN "4-5"

ELSEIF 6 <= [Minimum Nights] AND [Minimum Nights] <= 7 THEN "6-7"

ELSEIF 8 <= [Minimum Nights] AND [Minimum Nights] <= 29 THEN "8-29"

ELSEIF 30 <= [Minimum Nights] AND [Minimum Nights] <= 31 THEN "30-31"

ELSE ">31"

END

The calculation is valid.
```

6. Most Popular Neighborhoods

- A **Bar Chart** was developed using **Neighborhood names** on the y-axis and **Total Review Count** on the x-axis.
- The Top 20 neighborhoods were filtered based on the highest number of reviews.

7. Neighborhood vs. Availability

- A **Dual-Axis Chart** was created:
 - A Bar Chart represented the Availability (365 days) for top neighborhoods.
 - A Line Chart overlaid the Price variation for the top 10 neighborhoods sorted by price.

Step 3: Additional Visualizations (Methodology PPT 2)

1. Room Type Preferences by Neighborhood Group (Revisited)

 The Pie Chart from the previous analysis was replicated for crossvalidation.

2. Customer Booking Trends by Minimum Nights (Revisited)

 The binning approach was re-examined to further refine booking distribution trends across neighborhoods.

3. Neighborhood vs. Availability (Revisited)

• The dual-axis chart was revisited for further insights.

4. Price Range Preferences by Customers

• A Bar Chart was created to analyze customer pricing preferences.

• **Bins** were generated for the Price column at **\$20 intervals** to understand how price influences booking volume.

```
Price Bins

IF [Price] >= 0 AND [Price] < 20 THEN "$0 - $19"

ELSEIF [Price] >= 20 AND [Price] < 40 THEN "$20 - $39"

ELSEIF [Price] >= 40 AND [Price] < 60 THEN "$40 - $59"

ELSEIF [Price] >= 60 AND [Price] < 80 THEN "$60 - $79"

ELSEIF [Price] >= 80 AND [Price] < 100 THEN "$80 - $99"

ELSEIF [Price] >= 100 AND [Price] < 120 THEN "$100 - $119"

ELSEIF [Price] >= 120 AND [Price] < 140 THEN "$120 - $139"

ELSEIF [Price] >= 140 AND [Price] < 160 THEN "$140 - $159"

ELSEIF [Price] >= 160 AND [Price] < 180 THEN "$160 - $179"

ELSEIF [Price] >= 180 AND [Price] < 200 THEN "$180 - $199"

The calculation is valid.
```

5. Price Variation by Room Type & Neighborhood

- A Heatmap was created using a Highlights Table:
 - Room Type on the y-axis.
 - Neighborhood Group on the x-axis.
 - Average price was color-coded to reveal variations.

6. Price Variation by Geography

 A Geo-Location Map was used to plot neighborhoods, allowing for a geographical representation of price differences across different areas.

7. Most Popular Neighborhoods (Revisited)

 The Bar Chart with review counts was revisited to verify the Top 20 mostreviewed neighborhoods.

Conclusion

This study utilized **Jupyter Notebook** for initial data processing and **Tableau** for advanced analysis and visualization. Key insights included identifying **top hosts, room type preferences, price variances, popular neighborhoods, and customer booking behaviors**. The **dual-axis charts, pie charts, heatmaps, and geo-location maps** provided an in-depth understanding of the dataset.