

Grimeton, early 1920s

Ernst F. W. Alexandersson Civ. Ing., KTH

Outline

3

- Introduction
- LTE (4G)
- LTE evolution
- NR (5G)
- $-\hspace{0.1cm}$ NR evolution and beyond
- Standardization in practice

Mobile subscriptions 6.2B

^{*} India region includes India, Nepal and Bhutan

^{**} Excluding China and India

Total traffic 38 EB/month, +68% year-to-year

Inauguration of a new Pope

4G — mobile broadband

LTE — worldwide standard for mobile broadband

High peak data rates
300 Mbit/s DL, 75 Mbit/s UL initially
25 Gbit/s DL, 9.6 Gbit/s UL currently

Low latency
5 ms user plane, 50 ms control plane

LTE – 4G mobile broadband in 3GPP

From early studies...

...via trials...

~2005

...to commercial operation!

Public | © Ericsson AB 2018 | 2018-05-02

2009

Truly global standard

- LTE is a *global* technology for mobile broadband
 - Convergence of 3GPP and 3GPP2 technology tracks
 - Convergence of FDD and TDD into a single technology track

LTE - 4G

- Coverage
- Mobility
- High data rates
- High capacity
- Low latency
- High connection density
- High reliability

— ..

4G
"The van diagram"

5G "The spider diagram"

How do we get it?

- Multiple cells
- Rate control
- Channel-dependent scheduling
- Hybrid-ARQ
- Diversity
- Fast processing
- Low overhead
- ...

— To whom do we give the radio resources?

- To whom do we give the radio resources?
- Dedicated channel
 - Resources assigned at "call setup"
 - Independent of instantaneous traffic
 - "Circuit-switched"

=

- To whom do we give the radio resources?
- Dedicated channel
 - Resources assigned at "call setup"
 - Independent of instantaneous traffic
 - "Circuit-switched"

- Shared channel
 - Dynamic sharing of common resource
 - Adapts to instantaneous traffic situation.
 - "Packet-switched"

- Scheduling determines at each time instant...
 - ...to whom to assign the shared channel
 - ...which data rate to use (rate adaptation)
- Basic idea: transmit at fading peaks (and with a high data rate)
 - In time domain only...

Effective channel variations seen by the base station

User #1
User #2
User #3

User #3

...or in time and frequency domains

- Round Robin (RR)
 - Cyclically assign the channel to users, not taking quality conditions into account
 - Simple but poor performance

- Max C/I
 - Assign the channel to the user with the best **absolute** quality
 - High system throughput but not fair

- Proportional Fair (PF)
 - Assign the channel to the user with the best relative quality
 - High throughput, fair

— The larger the unfairness, the higher the system throughput... ...true for full buffers but realistic traffic complicates the picture

How do we get it?

- Multiple cells
- Rate control
- Channel-dependent scheduling
- Hybrid-ARQ
- Diversity
- Fast processing
- Low overhead
- ...

Why is it called 'cellular'?

3

- Multiple cells used to cover a large area
 - capacity and coverage
- LTE uses frequency reuse one
 - The same frequency is used in all cells
- Inter-cell interference
 - suppressed through processing gain (channel coding)
 - interference experienced in one cell depends on the instantaneous activity in neighboring cells

LTE network architecture

- Core Network
 - Authentication, charging, setting up end-to-end connections, ...

- Radio-Access Network
 - Radio-related functionality, e.g. scheduling, radio-resource handling, retransmission protocols, coding/modulation, multi-antenna schemes

LTE waveform

- Downlink OFDM
 - Cyclic prefix → robust to time dispersion
 - Many subcarriers → power-amplifier inefficiency
- Subcarrier spacing $\Delta f = 15$ kHz in LTE
 - Small $\Delta f \Rightarrow$ long cyclic prefix, sensitive to phase noise
 - Large $\Delta f \Rightarrow$ short cyclic prefix, robust to phase noise

- Uplink DFT-spread OFDM
 - Improves transmitter power-amplifier efficiency at the cost of a more complex receiver

Time-domain structure

- In LTE, transmissions are organized into 1 ms long subframes
- Each subframe consists fo 14 OFDM symbols
- Scheduling, link adaptation, hybird-ARQ retransmissions, etc operate on subframe level

Uplink – power control and timing advance

 Power control – adjust uplink transmission power (assuming a reference data rate) to control interference

 Timing advance – adjust uplink timing to ensure subframe alignment at the base station

LTE protocol stack

- Packet Data Convergene Protocol
 - Header compression to reduce overhead
 - Ciphering for security
- Radio Link Control
 - Segmentation/concatenation
 - RLC retransmissions
 - In-sequence delivery
- Medium Access Control
 - Multiplexing of radio bearers
 - Hybrid-ARQ retransmissions
- Physical Layer
 - Coding, Modulation
 - Multi-antenna processing
 - Resource mapping

LTE protocol stack

How to do scheduling and link adaptation?

- Scheduling
 - which UE to recevie/transmit data
 - at what data rate
 - from which radio bearers (in downlink)
- The scheduler impacts the processing at multiple protocol layers

How to do scheduling and link adaptation?

- The UE must know if it is scheduled or not
- Downlink control information (DCI) informs the UE about (among other things)
 - time/frequency resources
 - MIMO layers
 - modulation scheme and code rate
- Each UE monitors a set of control channels for potential scheduling information

How to do scheduling and link adaptation?

- Downlink scheduling
 - Control and data in the same 1 ms subframe

- Uplink scheduling
 - Uplink data in a later subframe (the UE needs time to prepare)

What does the scheduler need to know?

- Downlink scheduling
 - The UE periodically (a few ms apart)
 measures and reports Channel-State
 Information (CSI) to the base station
 - Schedulign based on CSI and amount of data awaiting transmission

Downlink

What does the scheduler need to know?

- Uplink scheduling
 - Schedulign request one-bit flag indicating presence of data
 - Upon detecing a schedulign request, the base station requests
 - Buffer status report (BSR) amount of data in the transmission buffers
 - Power headroom report (PHR) –
 amount of available output power
 - Scheduling based on BSR, PHR, and (optionally) any channel knowledge

How to handle occasional reception errors?

3

- RLC retransmissions reliable
 - Handles errors missed by the hybrid-ARQ
 - Selective repeat protocol, status reports sent inband
 - Roundtrip time depends on configuration,
 - ~several 10 ms to 100 ms

- Hybrid-ARQ retransmissions fast
 - Handles most errors
 - Success/failure indicated outband after reception of each 1 ms subframe of data
 - Retransmissions scheduled 8 ms later

Hybrid-ARQ supports soft combining and incremental redundancy

What about spectrum?

- Licensed spectrum
 - Exclusive right to a certain frequency range
 - Control of the interference situation
 - 'High' output power ➡ long range
 - Typically associated with a license cost
 - Examples:LTE, NR (and other cellular systems)

- Unlicensed spectrum
 - Anyone can use the radio frequencies
 - Unpredictable interference situation
 - Relatively low output power ⇒ short range
 - No license cost
 - Examples:
 WiFi, Bluetooth, LTE (later releases), NR

What about spectrum?

- Operators have different spectrum allocations
 - LTE supports both FDD and TDD with a single radio-access technology
 - Core specifications support any bandwidth from 1.4 to 20 MHz
 - Radio requirements defined for a limited set of spectrum allocations

What about spectrum?

3

- Paired spectrum (FDD)
 - UL and DL separated in frequency
 - Typically licensed bands
 - Most (wide area) cellular systems

- Unpaired spectrum (TDD)
 - UL and DL separeted in time
 - Unlicensed and some licensed bands

Time-domain structure — FDD vs TDD

- FDD
 - Frequency separation of UL and DL

- TDD
 - Guard period to separate UL and DL in time domain

Time-domain structure — FDD vs TDD

— FDD

Frequency separation of UL and DL

- TDD
 - Guard period to separate UL and DL in time domain
 - Timing advance distributes the guard between DL-to-UL and UL-to-DL switch

Inter-cell interference in TDD networks

- Large power difference between DL and UL in wide-area networks
 - BS: above-rooftop antennas, $Tx: \sim +46 \text{ dBm}$, $Rx: \sim -90 \text{ dBm}$
 - UE: non-elevated antennas, Tx: +23 dBm

→ huge difference!

- Solution: same UL/DL allocation in all cells
 - "DL collides with DL"; avoids DL-to-UL interference
 - Guard period set taking inter-site distance into account

Inter-cell interference in TDD networks

- Remote interference
 - DL-to-UL interference requiring very large gaurd period at specific qeather conditions

What abou the battery lifetime?

— UE states; most of the time the UE is in IDLE (low power consumption)

Discontinuous reception (DRX) in connected mode and idle mode

- At power-up, the UE enters IDLE mode
- Need to obtain system information (the configuration fo the network)
- Cell search downlink time synchronization
 - Scan for synchronization signals (PSS and SSS), transmitted every 5 ms
 - Provides frame and subframe sync, as well as cell ID

- Once downlink sync is found, read system information
- Periodically transmitted, always present
 - Master information block (MIB), once every 40 ms
 - System information blocks (SIBs), once every 80 640 ms

- Random access –
 UE-initiated connection esablishment
- Step 1 preamble transmission
 - select on of 64 preambles and transmit
- Step 2 random-access response
 - obtain network response, adjust uplink timing
- Step 3, 4 contention resolution
 - transmit (on regular data channel) UE identity and request a connection

- Paging network-initiated connection establishment for UEs in idle state
- The UE regularly (~once per second) wakes up to check for paging
 - Paging message containign the identity of the paged UE scheduled on the data channel
- If paged, perform random access and connect to the network

What happens when I move around?

=

- Mobility is a cornerstone of cellular systems
- The UE regularly performs cell search to find 'better' cells
- Connected state mobility
 - The network determines when to connect to a different cell
 - The network knows the UE Icoation on a cell level
- Idle state mobility
 - The UE determines when to select a different cell
 - The network does not know the UE location on a cell level

Mobility in connected state

3

- Search for candidate cells
- If a stronger cell is detected ⇒ inform the network
- The networks decides if a handover to a neighboring cell is needed or not
- Send handover command to the UE
- The UE uses random access to connect to the new cell
- The network reroutes data to the new cell

Mobility in idle state

- Search for candidate cells
- If a stronger cell is detected ⇒
 camp on the new cell ('cell reselection')
- If the new cell is in a new tracking area ➡
 inform the network
- UE position knwon on tracking-area level only
 - needed for paging purposes don't want to page across the whole network

Extensions please!

LTE has been continously evolving over more than 10 years

To incorporate new technologies

To meet new requirements

Dual connectivity

((((())))

MBMS

Rel-8	Rel-9	Rel-	Rel-10		Rel-11		Rel-13		Rel-14	Rel-15	Rel-16	
2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Basic LTE functionality		LTE Advanced		LTE Advanced Pro								

Carrier aggregation

- What?
 - Multiple component carriers in parallel

- Why?
 - Exploitation of fragmented spectrum
 - Higher bandwidth → higher data rates

Intra-band aggregation, non-contiguous component carriers

Carrier aggregation

- Baseband implementation
 - Processing per component carrier
 - Relatively straightforward,
 Complexity ~ aggregated data rate

- RF implementation
 - Challenging, especially on the terminal side
 - True for any radio-access technology!
 - Complexity depends on band combinations
 - Insertion loss, harmonics, intermodulation, ...

License-assisted access

- Operator-deployed small cells in 5 GHz band
- License-assisted access
 - Using carrier aggregation to combine licensed and unlicensed spectrum
 - Licensed carrier for initial access, mobiblity, critical data, ...
 - Unlicensed carrier(s) to boost data rates and capacity
- Listen-before-talk on the unlicensed carrier
- Initially downlink-only (Rel-13) but supports uplink as well in later releases

Massive machine-type communication

- Internet of Things (IoT)
 - Sensors, actuators, ...
- Large number of devices
- Low data rates (10 100 kbit/s)
- Wide-area coverage
- Low cost
- Low power consumption (\sim 10 years on an AA battery)
- Two technologies; cat-M1 and NB-IoT
 - Both have evolved over multiple releases

Cat-m1 and NB-IoT

- NB-IoT; 21/63 kbps in 200 kHz, 164 dB MCL, idle-mode mobility
- Cat-M1; 300/375 kbps in 1.4 MHz, 160 dB MCL, idle and active-mode mobility, voice
- Integral parts of 5G NB-IoT/Cat-M1 can be deployed on the same carrier as NR
 - Multiple NR tools; same subcarrier spacing, reserved resources, ...

Migration

So...what's next?

Non-limiting access; The foundation of Mobile broadband Mobile telephony The foundation of anywhere, anytime, mobile telephony for everyone mobile broadband for everyone anyone, anything **1G** 2G 4G **3G** 5G NMT, AMPS, TACS GSM LTE NR **WCDMA HSPA** ~1980 ~2000 ~2010 ~1990 ~2020

For further information...

Open the 3GPP specifications...

Available in English, Chinese, Korean and Japanese.

