Chapter 5 Trees

2024 Spring Ri Yu Ajou University

Contents

Introduction
Binary Trees
Binary Tree Traversals
Threaded Binary Trees
Heaps
Binary Search Trees

Trees

- ❖ Definition: A *tree* is a finite set of one or more nodes such that:
 - There is a specially designated node called root
 - The remaining nodes are partitioned into $n \ge 0$ disjoint set T_1 , ..., T_n , where each of these sets is a tree. T_1 , ..., T_n are called the *subtrees* of the root

Terminology

- Node: the item of information plus the branches to other nodes
- Degree of a node: the number of subtrees of a node
- ❖ Degree of a tree: the maximum of the degree of the nodes in the tree
- ❖ Terminal node (or leaf): node with degree zero
- ❖ A node that has subtrees is the parent of the roots of the subtrees, and the roots of the subtrees are the children of the node
- Siblings: children of the same parent
- Ancestors of a node: all the nodes along the path from the root to that node
- Descendants of a node: all the nodes in its subtrees
- **Level** of a node: the level of the node's parent plus one (the root is at level 1)
- Height (or depth): the maximum level of any node in the tree

- * Root node of the tree: A
- ❖ Degree of A: 3
- Leaf or terminal node: {K, L, F, G, M, I, J}
- Parent of D: A
- Children of D: H, I, J
- Siblings of H: I, J
- The depth(height) of the tree is 4
- ❖ The degree of the tree is 3
- ❖ The ancestors of node M: A, D, H
- ❖ The descendants of node D: H, I, J, M

Representation of Trees

- List representation
 - Write the tree as a list in which each of the subtrees is also a list
 - The information in the root node comes first, followed by a list of the subtrees of that node

List representation of the tree (*tag* fields not shown)

Representation of Trees

❖ K-ary Tree Representation

Possible node structure for a tree of degree *k*

Lemma 5.1 If T is k-ary tree with n nodes, each having a fixed size, then $n \cdot (k-1) + 1$ of the $n \cdot k$ child fields are 0, $n \ge 1$


```
# of non-empty child field = n-1

# of child fields = n \cdot k

# of empty child fields

= n \cdot k - (n-1)

= n \cdot (k-1) + 1
```

Representation of Trees

- Left child-right sibling representation
 - > It is easier to work with nodes of a fixed size
 - > Every node has at most one leftmost child and one closest right sibling
 - The leftmost child of A: B
 - The closest right sibling of B: C

 Since the order of children in a tree is not important, any of the children of a node could be the leftmost child, and any of its siblings could be the closest right sibling

Representation as a Degree-Two Tree

Simply rotate the right-sibling pointers in a left child-right sibling tree clockwise by 45 degrees

Left child-right sibling tree

Left child-right child tree = **binary tree**

Binary Trees

- Definition (recursive)
 - A binary tree is a finite set of nodes that is either empty or consists of a root and two disjoint binary trees called the left subtree and the right subtree
- ❖ The chief characteristic of a binary tree is the stipulation that the degree of any given node must not exceed two
- The left subtree and the right subtree are distinguished
- ❖ Any tree can be transformed into binary tree by left child-right sibling representation

Binary Trees

- Differences from Tree
 - Minimum number of nodes: 1 vs. 0
 - Significance of the order of the children: No vs. Yes

Binary Trees

Abstract Data Type Binary_Tree

```
ADT Binary_Tree(abbreviated BinTree) is
  objects: A finite set of nodes either empty or consisting of a root node,
        left Binary_Tree, and right Binary_Tree.
  functions:
 for all bt, bt1, bt2 \inBinTree, item\inelement
 BinTree Create() ::= creates an empty binary tree
 Boolean IsEmpty(bt)
                             ::= if (bt==empty binary tree) return TRUE
                                 else return FALSE
 BinTree MakeBT(bt1, item, bt2)::= return a binary tree whose left subtree is bt1,
                                     whose right subtree is bt2, and
                                     whose root node contains the data item.
 BinTree Lchild(bt)
                             ::= if (IsEmpty(bt)) return error
                                 else return the left subtree of bt
 element Data(bt)
                              ::= if (IsEmpty(bt)) return error
                                 else return the data in the root node of ht
 BinTree Rchild(bt)
                             ::= if (IsEmpty(bt)) return error
                                 else return the right subtree of bt
```

Two Special Kinds of Binary Trees

Skewed Binary Trees

Complete Binary Tree

Properties of Binary Trees

- ❖ Lemma 5.2 [Maximum number of nodes in a binary tree]
 - The maximum number of nodes on level i of a binary tree is 2^{i-1} , i>=1
 - The maximum number of nodes in a binary tree of depth k is 2^{k-1} , k>=1
 - Proof (귀납법)
 - Induction base (귀납 기초)
 - The root is the only node on level i=1. Hence, the maximum number of nodes on level i=1 is $2^{i+1}=2^0=1$
 - Induction hypothesis (귀납 가설)
 - Let i be an arbitrary positive integer greater than 1. Assume that the maximum number of nodes on level i1 is $2^{i}2$
 - Induction step (귀납 과정)
 - The maximum number of nodes on level i1 is $2^{i}2$ by the induction hypothesis. Since each node in a binary tree has a maximum degree of 2, the maximum number of nodes on level i1 is two times the maximum number of nodes on level i1, or $2^{i}1$

$$\sum_{i=1}^{k} (\text{maximum number of nodes on level } i) = \sum_{i=1}^{k} 2^{i-1} = 2^{k} - 1$$

Full & Complete Binary Tree

- ❖ Definition: A *full binary tree* of depth k is a binary tree of depth k having $2^k 1$ nodes, $k \ge 0$
- ❖ Definition: A binary tree with n nodes and depth k is complete iff its nodes correspond to the nodes numbered from 1 to n in the full binary tree of depth k

Full binary tree of depth 4 with sequential node numbers

Complete binary tree

The height of a complete binary tree with n nodes is $\lceil \log_2(n+1) \rceil$ where $\lceil x \rceil$ is the smallest integer $\geq x$

By Lemma 5.2,

$$n = 2^{k} - 1$$

 $n + 1 = 2^{k}$
 $\log_{2}(n + 1) = k$

Array Representation

- ❖ If a complete tree with n nodes is represented sequentially, then for any node with index i, $1 \le i \le n$, we have:
 - parent(i) is at $\lfloor i/2 \rfloor$ if $i \neq 1$. If i = 1, i is at the root and has no parent.
 - leftChild(i) is at 2i if $2i \le n$. If 2i > n, then i has no left child.
 - rightChild(i) is at 2i+1 if $2i+1 \le n$. If 2i+1 > n, then i has no right child

parent(i) is at $\lfloor i/2 \rfloor$ if $i \neq 1$. If i = 1, i is at the root and has no parent. leftChild(i) is at 2i if $2i \leq n$. If 2i > n, then i has no left child. rightChild(i) is at 2i + 1 if $2i + 1 \leq n$. If 2i + 1 > n, then i has no right child

Array Representation

Array Representation

- ❖ Space wastes: In the worst case, a skewed tree of depth k will require 2^{k} -1 spaces. Only k spaces will be occupied
- ❖ Insertion and deletion of nodes from the middle of a tree require the movement of potentially many nodes to reflect the change in level number of these nodes

Linked Representation

- ❖ Although the array representation is good for complete binary trees, it is wasteful for many other binary trees
 - Can be overcome through the use of a linked representation
- Each node has three fields, leftChild, data, and rightChild

Examples of Linked Representation

Binary Tree Traversals

- How to traverse a tree or visit each node in the tree exactly once?
 - Let L, V, and R stand for moving left, visiting the node, and moving right
 - Six possible combinations of traversal

LVR, LRV, VLR, VRL, RVL, RLV

Adopt the convention that we traverse left before right, then only 3 traversals remain
 LVR (inorder), LRV (postorder), VLR (preorder)

Binary Tree Traversals

Inorder: H - D - I - B - E - A - F - C - G

Preorder: A - B - D - H - I - E - C - F - G

postorder: H - I - D - E - B - F - G - C - A

Arithmetic Expression Using Binary Tree

There is a natural correspondence between these traversals and producing the infix, postfix, and prefix forms of an expression

- ❖Inorder traversal
 A / B * C * D + E
 (infix expression)
- ❖Preorder traversal + * * / A B C D E (prefix expression)
- ❖ Postorder traversal A B / C * D * E + (postfix expression)

Inorder Traversal

- Informally, inorder traversal calls for
 - moving down the tree toward the left until you can go no farther
 - Then "visit" the node, move one node to the right and continue
 - If you cannot move to the right, go back one more node.

By recursion

```
void inorder(treePointer ptr)
{/* inorder tree traversal */
    if (ptr) {
        inorder(ptr->leftChild);
        printf("%d", ptr->data);
        inorder(ptr->rightChild);
    }
}
```


output:A /	B ;	* C *	\mathbf{D}	$+$ \mathbf{I}	\exists
------------	-----	-------	--------------	------------------	-----------

Call of inorder	Value in root	Action	inorder	in root	Value Action
1	+		11	С	
2	*		12	NULL	
3	*		11	С	printf
4	/		13	NULL	
5	Α		2	*	printf
6	NULL		14	D	-
5	Α	printf	15	NULL	
7	NULL		14	D	printf
4	/	printf	16	NULL	·
8	В	·	1	+	printf
9	NULL		17	Е	·
8	В	printf	18	NULL	
10	NULL	·	17	Е	printf
3	*	printf	19	NULL	

Figure 5.17

Function call stack

Preorder Traversal

- Visit a node, traverse left, and continue
- When you cannot continue, move right and begin again
- Or move back until you can move right and resume

```
void preorder(treePointer ptr)
{     /* preorder tree traversal */
     if (ptr) {
         printf("%d", ptr->data);
         preorder(ptr->leftChild);
         preorder(ptr->rightChild);
     }
}
```

```
output: + * * / A B C D E
```



```
void preorder(treePointer ptr)
{
    if (ptr) {
        printf("%c", ptr->data);
        preorder(ptr->leftChild);
        preorder(ptr->rightChild);
    }
    return;
}
```

preorder(treeHead);

+ * * / A B C D E

Postorder Traversal

```
void postorder(treePointer ptr)
{     /* postorder tree traversal */
     if (ptr) {
         postorder(ptr->leftChild);
         postorder(ptr->rightChild);
         printf("%d", ptr->data);
     }
}
```

output: A B / C * D * E +


```
void postorder(treePointer ptr)
                                                                       ∕treeHead
   if (ptr) {
      postorder(ptr->leftChild);
      postorder(ptr->rightChild);
      printf("%c", ptr->data);
        return;
postorder(treeHead);
A B / C * D * E +
```

How to rebuild a tree from traversal results

Iterative Inorder Traversal

- We can develop equivalent iterative functions for the inorder, preorder, and postorder traversal functions using a stack
 - > Figure 5.17 implicitly shows the stacking and unstacking
 - A node that has no action indicates that the node is added to the stack
 - A *printf* action indicates that the node is removed from the stack

Call of inorder	Value in root	Action	inorder	in root	Value Action
1	+		11	С	
2	*		12	NULL	
3	*		11	С	printf
4	/		13	NULL	
5	Α		2	*	printf
6	NULL		14	D	-
5	Α	printf	15	NULL	
7	NULL	·	14	D	printf
4	/	printf	16	NULL	
8	В	·	1	+	printf
9	NULL		17	Е	·
8	В	printf	18	NULL	
10	NULL		17	Е	printf
3	*	printf	19	NULL	-

Figure 5.17

iterInorder(treeHead);

```
int top = -1;
treePointer stack[MAX STACK SIZE];
                                                                                   ∕treeHead
void iterInorder(treePointer node)
   for (;;) {
      for (; node; node = node->leftChild)
         push (node) ;
      node = pop();
                                                                                     Ε
      if (!node) break;
      printf("%c", node->data);
      node = node->rightChild;
   return;
                                                                            D
[5]
[4]
[3]
                                                          В
[2]
[1]
[0]
           stack
```

```
int top = -1;
treePointer stack[MAX STACK SIZE];
void iterInorder(treePointer node)
  for (;;) {
     for (; node; node = node->leftChild)
        push (node);
     node = pop();
     if (!node) break;
     printf("%c", node->data);
     node = node->rightChild;
  return;
                                                     H D J I B L A K F C G
```

Level Order Traversal (=Breadth-first traversal)

- ❖ A traversal requiring a queue
 - Visit the root first, then the root's left child, followed by the root's right child

```
void levelOrder(treePointer ptr)
{/* level order tree traversal */
     int front = rear = 0;
     treePointer queue[MAX_QUEUE_SIZE];
     if (!ptr) return; /* empty tree */
     addq( ptr );
     for (;;) {
                                                    (10)
                                                             (12)
                                                        (11)
        ptr = deleteq();
        if (ptr) {
                printf("%d", ptr->data);
                if (ptr->leftChild)
                         addq(ptr->leftChild);
                if (ptr->rightChild)
                         addq(ptr->rightChild);
        else break;
```


Representation of Trees

K-ary Tree Representation

DATA	CHILD1	•••	CHILD k
------	--------	-----	---------

Possible node structure for a tree of degree *k*

Lemma 5.1 If T is k-ary tree with n nodes, each having a fixed size, then $n \cdot (k-1) + 1$ of the $n \cdot k$ child fields are 0, $n \ge 1$


```
# of non-empty child field = n-1

# of child fields = n \cdot k

# of empty child fields

= n \cdot k - (n-1)

= n \cdot (k-1) + 1
```

- There are more null links than actual pointers at the linked representation of any binary tree
 - *n*: number of nodes
 - number of non-null links: n-1
 - total links: 2*n*
 - null links: 2n-(n-1) = n+1
 - Replace the null links by pointers, called *threads*, to other nodes
- Rules for constructing the threads
 - If ptr->leftChild is null
 - Replace it with a pointer to the node visited before ptr in an inorder traversal
 - : inorder predecessor of ptr (중위 선행자)
 - If ptr->right_child is null
 - Replace it with a pointer to the node visited after ptr in an inorder traversal
 - *inorder successor* of *ptr* (중위 후속자)

An Example of Threaded Binary Tree

- Two additional fields of the node structure
 - leftThread and rightThread
 - If *ptr->leftThread*=TRUE
 - ptr->leftChild contains a thread
 - Otherwise it contains a pointer to the left child
 - Similarly for the ptr->rightThread

```
typedef struct threadedTree *threadedPointer;
typedef struct threadedTree {
    short int leftThread;
    threadedPointer leftChild;
    char data;
    threadedPointer rightChild;
    short int rightThread;
};
```


Avoid being dangling pointers

- The left pointer of H and the right pointer of G
- Create a root node and make these pointers point the root node

Inorder traversal of a threaded binary tree

- We can perform an inorder traversal without making use of a stack
- 1. If *ptr->rightThread = TRUE*, the inorder successor of *ptr* is *ptr->rightChild*
- 2. Otherwise, follow a path of left-child links from the right-child of *ptr* until we reach a node with *leftThread* = *TRUE*

Example

return temp;

temp = temp->leftChild;

- Inserting a node into a threaded binary tree
 - ➤ Inserting *D* as the right child of a node *B*
 - If *B* has an empty right subtree, then the insertion is simple

Inserting a right child of a parent in a threaded binary tree

Inserting a Node as a Right Child

```
void insertRight(threadedPointer s, threadedPointer r)
/* insert r as the right child of s */
   threadedPointer temp;
   r->rightChild = s->rightChild;
   r->rightThread = s->rightThread;
   r->leftChild = s;
   r->leftThread = TRUE;
   s->rightChild = r;
   s->rightThread = FALSE;
   if (!r->rightThread){
      temp = insucc(r);
      temp->leftChild = r;
```


Inorder traversal

Before insertion: A C B E D F After insertion: A C B X E D F

Inserting a Node as a Right Child

```
void insertRight(threadedPointer s, threadedPointer r)
/* insert r as the right child of s */
  threadedPointer temp;
   r->rightChild = s->rightChild;
   r->rightThread = s->rightThread;
   r->leftChild = s;
   r->leftThread = TRUE;
   s->rightChild = r;
   s->rightThread = FALSE;
   if (!r->rightThread){
      temp = insucc(r);
      temp->leftChild = r;
```


Heaps

- ❖ Priority queues (우선순위 큐)
 - Heaps are frequently used to implement *priority queues*
 - The element to be deleted is the one with highest (or lowest) priority

```
ADT MaxPriorityQueue iS
objects: a collection of n>0 elements, each element has a key
functions:
   for all q \in MaxPriorityQueue, item \in Element, n \in integer
MaxPriorityQueue create( max_size )
                                              ::= create an empty priority queue
Boolean is Empty(q, n)
                                  ::= if(n>0) return FALSE
                                       else return TRUE
                                  ::= if(!isEmpty(q, n)) return an instance
Element top(q, n)
                                       of the largest element in q
                                       else return error
                                  ::= if(!isEmpty(q, n)) return an instance of the
Element pop(q, n)
                                       largest element in q and remove it from the heap
                                       else return error
MaxPriorityQueue push(q, item, n) ::= insert item into q and return the resulting priority queue
```

Heaps

- Example: selling the services of a machine
 - Each user pays a fixed amount per use
 - The time needed by each user is different
 - How to maximize the returns from this machine under the assumption that the machine is not to be kept idle unless no user is available
 - This can be done by maintaining a priority queue of all persons waiting to use the machine
 - The user with the smallest time requirement is selected
 - A min priority queue is required

Max Heap

- A max tree is a tree in which the key value in each node is no smaller than the key values in its children (if any)
- ❖ A max heap is a complete binary tree that is also a max tree
- ❖ A min tree is a tree in which the key value in each node is no larger than the key values in its children (if any)
- ❖ A min heap is a complete binary tree that is also a min tree
- The basic operations are the same as those for a max priority queue
- Since a max heap is a complete binary tree, we represent it using an array heap

Heaps

Examples of max heap

Examples of min heap

Are these trees max heaps?

Are these trees min heaps?

Priority Queues

- Priority queue
 - The items added to a queue have a priority associated with them (payment, importance, ...)
 - A queue in which the items are sorted so that the highest priority item is always the next one to be extracted
- ❖ We could use a tree structure
 - It generally provides O(log *n*) performance for both insertion and deletion (*n* is the number of node in a tree)
 - Unfortunately, if the tree becomes unbalanced, performance will degrade to O(*n*) in pathological cases
 - → This will probably not be acceptable when dealing with time critical cases.
- ❖ Heap will provide guaranteed O(log *n*) performance for both insertion and deletion

Representations of Priority Queues

Representation	Insertion	Deletion
Unordered array	Θ(1)	$\Theta(n)$
Unordered linked list	Θ(1)	$\Theta(n)$
Sorted array	0(n)	Θ(1)
Sorted linked list	O(n)	Θ(1)
Max heap	O(log ₂ n)	$O(\log_2 n)$

Figure 1.8 Plot of function values

Implementation of Max Heap

```
#define MAX_ELEMENTS 200 /* maximum size of heap+1 */
#define HEAP_FULL(n) (n == MAX_ELEMENTS-1)
#define HEAP_EMPTY(n) (!n)

typedef struct {
    int key;
    /* other fields */
} element;
element heap[MAX_ELEMENTS];
int n = 0;
[2]
```


Insertion into a Max Heap

Insertion into a Max Heap

```
#define MAX_ELEMENTS 200 /* maximum heap size + 1 */
#define HEAP FULL(n) (n==MAX ELEMENTS-1)
#define HEAP EMPTY(n) (!n)
typedef struct{
         int key;
         /* other fields */
}element;
element heap[MAX ELEMENTS];
int n=0;
void push(element item, int *n)
         /* insert item into a max heap of current size * n */
         int i;
         if (HEAP FULL(*n)) {
             fprintf(stderr, "the heap is full.\n");
             exit( EXIT FAILURE );
         i = ++(*n);
         while ( (i!=1) && (item.key>heap[i/2].key) ) {
                  heap[i] = heap[i/2];
                  i /= 2;
         heap[i]= item;
```

Example

```
element e;
e.key=14;
no=5;
push(e, &no);
```

```
void push(element item, int *n)
{
   int i;
   if (HEAP_FULL(*n)) {
      fprintf(stderr, "The heap is full. ");
      exit(EXIT_FAILURE);
   }
   i = ++(*n);   no=6  i=6
   while ((i != 1) && (item.key > heap[i/2].key)) {
      heap[i] = heap[i/2];
      i /= 2;  i=3
   }
   heap[i] = item;
}
```


Analysis of push

❖ Complete Binary tree with n nodes ⇒ its height is $\lceil \log_2(n+1) \rceil$ The height of a complete binary tree with n nodes is $\lceil \log_2(n+1) \rceil$ where $\lceil x \rceil$ is the smallest integer $\geq x$

By Lemma 5.2,

$$n = 2^k - 1$$

 $n + 1 = 2^k$
 $\log_2(n + 1) = k$

- \clubsuit The while loop is iterated ($\log_2 n$) times.
 - \Rightarrow The complexity of the insertion functions is O(log₂ n)

Deletion from a Max Heap

- When an element is to be deleted from a max heap, it is taken from the root of the heap
- ❖ Remove '20'

Trickle down

Deletion from a Max Heap

```
element pop(int *n)
        /* delete element with the highest key from the heap */
         int parent, child;
         element item, temp;
         if (HEAP EMPTY(*n))
                  fprintf(stderr, "The heap is empty.\n");
                  exit(EXIT FAILURE);
         item = heap[1];    /* save value of the element with the highest key */
         temp = heap[(*n)--]; /* use last element in heap to adjust heap */
         parent = 1;
         child = 2;
         while (child <= *n) { /* find the larger child of the current parent */
                  if ( (child < *n) && (heap[child].key<heap[child+1].key) )</pre>
                           child++;
                  if ( temp.key >= heap[child].key )
                           break;
                  heap[parent] = heap[child]; /* move to the next lower level */
                  parent = child;
                  child *= 2;
         heap[parent] = temp;
         return item;
```

Example

```
int no=5;
element e=pop(&no);
```



```
element pop(int *n)
  int parent, child;
  element item, temp;
  if (HEAP EMPTY(*n)) {
     fprintf(stderr, "The heap is empty");
     exit(EXIT FAILURE);
  item = heap[1];
  temp = heap[(*n)--];
  parent = 1;
  child = 2;
  while (child <= *n) {
    if((child<*n)&&</pre>
        (heap[child].key<heap[child+1].key))</pre>
       child++; child=3
    if (temp.key >= heap[child].key) break;
     heap[parent] = heap[child];
     parent = child; parent=3
     child *= 2; child=6
 heap[parent] = temp;
 return item;
```

Binary Search Tree

- A binary search tree is a binary tree. It may be empty. If it is not empty, then it satisfies the following properties:
 - 1) Each node has exactly one key and the keys in the tree are distinct
 - 2) The keys (if any) in the left subtree are smaller than the key in the root
 - 3) The keys (if any) in the right subtree are larger than the key in the root
 - 4) The left and right subtrees are also binary search trees

Examples of Binary Search Tree

Features of BST

- Searching, insertion, deletion is bounded by O(h) where h is the height of the BST
- These operations can be performed both
 - by key value
 e.g.) delete the element with key x
 - by rank e.g.) delete the fifth smallest element
- Inorder traversal of BST generates a sorted list

Searching a Binary Search Tree

```
typedef struct element {
   int key;
};

typedef struct node *treePointer;
typedef struct node {
   element data;
   treePointer leftChild;
   treePointer rightChild;
};
```

Example

treePointer tr = search(treeHead, 17);

There is not 17 in this tree

search(, 17)	NULL
search(16, 17)	NULL
search(18, 17)	NULL
search((15), 17)	NULL
main()	NULL

Function call stack

Example

```
treePointer tr = iterSearch(treeHead, 17);
element* iterSearch (treePointer tree, int k)
  while (tree) {
     if (k == tree->data.key) return &(tree->data);
    if (k < tree->data.key)
                                                                    treeHead
        tree = tree->leftChild;
    else
        tree = tree->rightChild;
   } /* while */
   return NULL;
                                                    10
                                                                   18
                                                                        20
                                                              16
```

Time Complexity of Searching BST

- Average case
 O(h), where h is the height of BST
- Worst case
 O(n), where n is the number of nodes

Inserting into A Binary Search Tree

- ❖ Insert a key 80 into the tree
 - First search the tree for 80
 - The last node examined has a key 40
 - Insert the key 80 as the right child of the node
- ❖ Insert a key 35 into the resulting tree

Insertion into A Binary Search Tree

```
void insert (treePointer *node, int k)
        /* if k is in the tree pointed at by node do nothing;
            otherwise add a new node with data =(k) */
        treePointer ptr;
         /* searches the binary search tree *node for the key k */
        treePointer temp = modifiedSearch( *node, k );
        if ( temp || !(*node) ) {
                /* k is not in the tree */
                MALLOC( ptr, sizeof(*ptr) );
                ptr->data.key = k;
                ptr->leftChild = prt->rightChild = NULL;
                if ( *node ) /* insert as child of temp */
                         if (k<temp->data.key)
                                 temp->leftChild = ptr;
                         else
                                 temp->rightChild = ptr;
                else
                         *node = ptr;
```

```
modifiedSearch():

if (a tree is empty | | k is in the tree)

return NULL

else

return the pointer of the last examined node during the search.
```

Insertion into A Binary Search Tree

```
void insert(treePointer *node, int k) {
   treePointer ptr, temp = modifiedSearch(*node, k);
   if (temp || !(*node)) {
      MALLOC(ptr, sizeof (*ptr));
      ptr->data.key = k;
     ptr->leftChild = ptr->rightChild = NULL;
      if (*node) {
         if (k < temp->data.key) {
            temp->leftChild = ptr;
         } else {
            temp->rightChild = ptr; }
      } else { *node = ptr; }
```


Deletion from A Binary Search Tree

- deletion of a leaf node
- deletion of a node with 1 child
- deletion of a node with 2 children

Deleting a Node with 1 Child Node

Deleting a Node with 1 Child Node

Deleting a Node with 2 Child Nodes

Smallest right subtree node Largest left subtree node

 \rightarrow Time complexity : O(h), where h is the height of BST

Height of BST

- ❖ The height of a BST with n elements
 - average case: O(log₂ n)
 - worst case: O(n)

e.g.) Use insert() to insert the keys 1,2,3,..., n into an initially empty BST

Balanced Search Trees

- Worst case height : O(log₂ n)
- Searching, insertion, deletion are bounded by O(h), where h is the height of a binary tree
- e.g.) AVL tree, 2-3 tree, red-black tree

Next Topic

Graphs

