M3P11 Galois Theory

Lectured by Prof Alessio Corti Typeset by David Kurniadi Angdinata

Spring 2019

Contents

0	What is Galois theory?	3
1	Main example	6
2	Elementary facts	9
3	Axiomatics	11
4	Galois correspondence	14
5	Normal extensions	17
6	Separable polynomials	18
7	Separable degree	2 0
8	Separable extensions	21
9	Biquadratic polynomials	22
10	Finite fields	2 6
11	Symmetric polynomials	27
12	Irreducible polynomials	2 8
13	Reduction modulo prime	2 9

0 What is Galois theory?

References.

Lecture 1 Thursday 10/01/19

- E Artin, Galois theory, 1994
- A Grothendieck and M Raynaud, Revêtements étales et groupe fondamental, 2002
- I N Herstein, Topics in algebra, 1975
- M Reid, Galois theory, 2014

Notation. If K is a field, or a ring, I denote

$$K[x] = \{a_0 + \dots + a_n x^n \mid a_i \in K\},\,$$

the ring of polynomials with coefficients in K.

Example.

- $\mathbb{Q}, \mathbb{R}, \mathbb{C}$.
- Quadratic fields

$$\mathbb{Q}\left(\sqrt{2}\right) = \left\{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\right\} = \frac{\mathbb{Q}\left[x\right]}{\langle x^2 - 2\rangle}.$$

It is also a field, since

$$\frac{1}{(a+b\sqrt{2})} = \frac{a-b\sqrt{2}}{a^2 - 2b^2}.$$

- If p is prime, $\mathbb{Z}/p\mathbb{Z} = \mathbb{F}_p$ is a finite field. If $f(x) \in K[x]$ is irreducible, $K[x]/\langle f(x)\rangle$ is a field. For example, $x^2 2$. Both \mathbb{Z} and K[x] have a division algorithm. For example, let $[a] \in \mathbb{Z}/p\mathbb{Z}$ and $[a] \neq 0$, that is $p \mid a$. Since p is prime, $\gcd(p, a) = 1$, so there exist $x, y \in \mathbb{Z}$ such that ax + py = 1. Thus $[a] \cdot [x] = 1$ in $\mathbb{Z}/p\mathbb{Z}$.
- For K a field, either for all $m \in \mathbb{Z}$, $m \neq 0$ in K, so K has characteristic ch(K) = 0, or there exists p prime such that m = 0 if and only if $p \mid m$, so K has characteristic ch(K) = p.
- For K a field,

$$K\left(x\right) = Frac\left(K\left[x\right]\right) = \left\{\phi\left(x\right) = \frac{f\left(x\right)}{g\left(x\right)} \mid f, g \in K\left[x\right], \ g \neq 0\right\}.$$

is also a field, the field of rational functions with coefficients in K. For example, $\mathbb{F}_p(x, Y) = \mathbb{F}_p(x)(Y)$.

Example. Consider algebraic equations in a field K.

• Let $ax^2 + bx^2 + c = 0$ for $a, b, c \in K$ be a quadratic. There is a formula

$$x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}.$$

• For a cubic $y^3 + 3py + 2q = 0$,

$$y = \sqrt[3]{-q + \sqrt{q^2 + p^3}} + \sqrt[3]{-q - \sqrt{q^2 + p^3}}.$$

- There is a formula for quartic equations.
- It is a theorem that there can be no such formula for equations of degree at least five.

Galois theory deals with these easily.

Definition 0.1. A field homomorphism is a function $\phi: K_1 \to K_2$ that preserves the field operations, for all $a, b \in K_1$,

$$\phi(a+b) = \phi(a) + \phi(b),$$

$$\phi(ab) = \phi(a) \phi(b),$$

and $\phi(0_{K_1}) = 0_{K_2}$ and $\phi(1_{K_1}) = 1_{K_2}$.

Remark. All field homomorphisms are injective. If $a \in K_1 \setminus \{0\}$, then there exists $b \in K_1$ such that ab = 1, then $\phi(a) \phi(b) = 1$, so $\phi(a) \neq 0$. This easily implies ϕ is injective. If $a_1 \neq a_2$, then $a_1 - a_n \neq 0$, so $0 \neq \phi(a_1 - a_2) = \phi(a_1) - \phi(a_2)$. Then $\phi(a_1) \neq \phi(a_2)$.

We concern ourselves with field extensions $k \subset K$, and every homomorphism is an extension. Consider a field extension $k \subset K$ and $\alpha \in K$. Then $k(\alpha) \subset K$ denotes the smallest subfield of K that contains k, α . Not to be confused with k(x).

Example. There are two very different cases exemplified in $\mathbb{Q} \subset \mathbb{C}$.

- $\alpha = \sqrt{2}, \mathbb{Q}(\sqrt{2}).$
- $\alpha = \pi$, $\mathbb{Q}(\pi)$.

Definition 0.2.

- α is algebraic over k if $f(\alpha) = 0$ for some $0 \neq f \in k[x]$. Otherwise we say that α is **transcendental** over k.
- The extension $k \subset K$ is algebraic if for all $\alpha \in K$, α is algebraic over k.

Definition 0.3. Consider a field k and $f \in k[x]$. We say that $k \subset K$ is a splitting field for f if

- $f(x) = a \prod_{i=1}^{n} (x \lambda_i) \in K[x]$ for $a \in k \setminus \{0\}$, and
- $K = k(\lambda_1, \ldots, \lambda_n)$.

Example.

• If $f(x) = x^2 - 2 \in \mathbb{Q}[x]$, then $K = \mathbb{Q}(\sqrt{2})$ is a splitting field for f. Indeed

$$x^{2}-2=\left(x+\sqrt{2}\right)\left(x-\sqrt{2}\right)\in\mathbb{Q}\left(\sqrt{2}\right)\left[x\right].$$

- If $f(x) = x^2 + 2$, then $K = \mathbb{Q}(\sqrt{-2})$.
- If $f(x) = x^3 2$, then

$$\mathbb{Q}\left(\sqrt[3]{2}\right) = \left\{a + b\sqrt[3]{2} + c\sqrt[3]{4} \mid a, b, c \in \mathbb{Q}\right\}$$

is not a splitting field. $K = \mathbb{Q}(\sqrt[3]{2}, \omega)$, where $\omega = \frac{-1+\sqrt{3}}{2}$, is a splitting field.

$$x^{3} - 2 = (x - \sqrt[3]{2})(x - \omega\sqrt[3]{2})(x - \omega^{2}\sqrt[3]{2}).$$

Theorem 0.4 (Fundamental theorem of Galois theory, Galois correspondence). Assume characteristic zero. Let $k \subset K$ be the splitting field of $f(x) \in k[x]$. Let

$$G = \{ \sigma : K \to K \mid \sigma \text{ field automorphism}, \ \sigma \mid_k = id_k \}.$$

We call this group the Galois group. There is a one-to-one correspondence

Why is this cool? Fields are hard, groups are easy. We will see that there is a good formula for the roots of f(x) if and only if G is a soluble group.

Lecture 3 Tuesday 15/01/19

Example. Let deg (f) = 2 and $f(x) = x^2 + 2Ax + B \in K[x]$. If K already contains the roots then L = K and $G = \{id\}$. Suppose K does not contain the roots. We still have quadratic formula

$$\lambda_{1,2} = -A \pm \sqrt{A^2 - B}.$$

If $\Delta = A^2 - B$ then $\sqrt{\Delta}$ does not exist in K. We must have

$$L = K\left(\sqrt{\Delta}\right) = \left\{a + b\sqrt{\Delta} \mid a, b \in K\right\}.$$

Then $K \subset L$ and

$$G = \{ \sigma : L \to L \mid \sigma \mid_K = id_K \} = C_2$$

is generated by

$$\sigma: a + b\sqrt{\Delta} \mapsto a - b\sqrt{\Delta}.$$

The following is further specialisation.

• Let $K = \mathbb{R}$ and $\Delta = -1$. Then

$$L = \mathbb{C} = \left\{ a + b\sqrt{-1} \mid a, b \in \mathbb{R} \right\},\,$$

and $G = C_2$ is generated by

$$\sigma: a+b\sqrt{-1} \mapsto a-b\sqrt{-1}$$
.

complex conjugation.

• Let $K = \mathbb{Q}$ and $\Delta = 2$. Then

$$L = \left\{ a + b\sqrt{2} \mid a, b \in \mathbb{Q} \right\},\,$$

and $G = C_2$ is generated by

$$\sigma: a + b\sqrt{2} \mapsto a - b\sqrt{2}.$$

The fundamental theorem implies there does not exist

$$K \subsetneq K_1 \subsetneq K\left(\sqrt{\Delta}\right) = L.$$

Is this obvious? Consider $x \in L \setminus K$, so $x = a + b\sqrt{\Delta}$, and $b \neq 0$, and then

$$\sqrt{\Delta} = \frac{x - a}{b},$$

so
$$K(x) = L$$
.

1 Main example

Let $f(x) = x^3 - 2 \in \mathbb{Q}[x]$ and $L = \mathbb{Q}(\sqrt[3]{2}, \omega)$, where $\omega = \frac{-1 + i\sqrt{3}}{2}$ is a solution of $x^2 + x + 1 = 0$. Then

$$\mathbb{Q}\left(\omega\right)=\mathbb{Q}\left(\sqrt{-3}\right),\qquad\mathbb{Q}\left(\sqrt[3]{2}\right)=\left\{a+b\sqrt[3]{2}+c\sqrt[3]{4}\mid a,b,c\in\mathbb{Q}\right\}.$$

Remark. For any splitting field of f, there is always a natural inclusion group homomorphism

$$\rho: G \hookrightarrow S(\lambda_1, \ldots, \lambda_n)$$
,

where $S(\lambda_1, \ldots, \lambda_n)$ is the group of permutations of the roots of $f = x^n + a_1 x^{n-1} + \cdots + a_n$.

• If $\sigma \in G$, $f(\lambda) = 0$, so $\lambda^n + a_1 \lambda^{n-1} + \dots + a_n = 0$.

$$0 = \sigma(0) = \sigma(\lambda^{n} + a_{1}\lambda^{n-1} + \dots + a_{n}) = \sigma(\lambda)^{n} + a_{1}\sigma(\lambda)^{n-1} + \dots + a_{n}.$$

• ρ is injective. If for all i, $\sigma(\lambda_i) = \lambda_i$, then $\sigma = id$ on $K(\lambda_1, \dots, \lambda_n) = L$.

The fundamental theorem and remark gives $G = \mathfrak{S}_3$.

Lecture 4 Thursday 17/01/19

Definition 1.1. $K \subset L$ is **finite** if L is finite-dimensional as a vector space over K. The **degree** of L over K is

$$[L:K] = \dim_K(L).$$

Theorem 1.2 (Tower law). Let $K \subset L \subset F$. Then

$$[F:K] = [F:L][L:K].$$

Theorem 1.3. Suppose $f(x) \in K[x]$ is irreducible of degree $d = \deg(f)$ and $L = K(\lambda)$ where $f(\lambda) = 0$, then $[K(\lambda) : K] = d$.

 $K = \mathbb{Q}\left(\sqrt[3]{2}\right)$ is a field, and $[K : \mathbb{Q}] = 3$. Let $L = \mathbb{Q}\left(\sqrt[3]{2}, \omega\right)$ be the splitting field of $x^3 - 2$ over \mathbb{Q} . The lattice of subfields is

Then (Exercise)

$$\mathbb{Q}\left(\sqrt[3]{2}+\omega\right)=L,\qquad \mathbb{Q}\left(\omega^2\sqrt[3]{2}\right)\cap\mathbb{Q}\left(\omega\sqrt[3]{2}\right)=\mathbb{Q},\qquad \mathbb{Q}\left(\sqrt[3]{2},\omega\sqrt[3]{2}\right)=L.$$

What is $[L:\mathbb{Q}\left(\sqrt[3]{2}\right)]$? Note that $L=\mathbb{Q}\left(\sqrt[3]{2}\right)\left(\sqrt{-3}\right)$. Could $\sqrt{-3}\in\mathbb{Q}\left(\sqrt[3]{2}\right)$? Consider $x^2+3\in\mathbb{Q}\left(\sqrt[3]{2}\right)[x]$. By the tower law,

$$\begin{cases} [L:\mathbb{Q}] = [L:\mathbb{Q}\left(\omega\right)] \left[\mathbb{Q}\left(\omega\right):\mathbb{Q}\right] = 2\left[L:\mathbb{Q}\left(\omega\right)\right] &\Longrightarrow & 2\mid [L:\mathbb{Q}] \\ [L:\mathbb{Q}] = \left[L:\mathbb{Q}\left(\sqrt[3]{2}\right)\right] \left[\mathbb{Q}\left(\sqrt[3]{2}\right):\mathbb{Q}\right] = 3\left[L:\mathbb{Q}\left(\sqrt[3]{2}\right)\right] &\Longrightarrow & 3\mid [L:\mathbb{Q}] \end{cases} \Longrightarrow \qquad 6\mid [L:\mathbb{Q}].$$

- Either $x^2 + 3$ is irreducible over $\mathbb{Q}\left(\sqrt[3]{2}\right)$, so by Theorem 1.3 $\left[L:\mathbb{Q}\left(\sqrt[3]{2}\right)\right] = 2$ and $\left[L:\mathbb{Q}\right] = 6$.
- Or $x^2 + 3$ is not irreducible, so $\mathbb{Q}\left(\sqrt[3]{2}\right) = L$ and $[L:\mathbb{Q}] = 3$, a contradiction.

Are there any other fields? Claim that there are no other fields. Suppose $\mathbb{Q} \subsetneq K \subsetneq L$ is such a field. By the tower law $[K:\mathbb{Q}]=2$ or $[K:\mathbb{Q}]=3$.

• Suppose $[K:\mathbb{Q}]=2$.

- Either $\omega \in K$, that is $\mathbb{Q}(\omega) \subset K$, so by the tower law $\mathbb{Q}(\omega) = K$.
- Or $ω \notin K$ gives [K(ω) : K] = 2, so $[K(ω) : \mathbb{Q}] = 4$ contradicts the tower law for $\mathbb{Q} \subset K(ω) \subset L$.
- Suppose $[K:\mathbb{Q}]=3$.

Claim that $x^3-2\in K[x]$ splits. Suppose that it were irreducible, then $\left[K\left(\sqrt[3]{2}\right):K\right]=3$, which contradicts the tower law for $K\subset K\left(\sqrt[3]{2}\right)\subset L$. So it has a root in K. Either $\sqrt[3]{2}\in K$, $\omega\sqrt[3]{2}\in K$, or $\omega^2\sqrt[3]{2}\in K$. Thus $\mathbb{Q}\left(\sqrt[3]{2}\right)=K$, $\mathbb{Q}\left(\omega\sqrt[3]{2}\right)=K$, or $\mathbb{Q}\left(\omega^2\sqrt[3]{2}\right)=K$.

I want to prove that

$$G = Aut_{\mathbb{Q}}(L) = \{\sigma : L \to L \mid \sigma \mid_{\mathbb{Q}} = id_{\mathbb{Q}}\} = \mathfrak{S}_3.$$

Lecture 5 Friday 18/01/19

Proof of Theorem 1.2. Suppose $y_1, \ldots, y_m \in F$ is a basis of F as a vector space over L. Suppose $x_1, \ldots, x_n \in L$ is a basis of L as a vector space over K. Claim that $\{x_iy_j\}$ is a basis of F over K.

• $\{x_iy_j\}$ generates F. Let $z \in F$. There exist $\mu_1, \ldots, \mu_n \in L$ such that

$$z = \mu_1 y_1 + \dots + \mu_n y_n. \tag{1}$$

 $\mu_j \in L$ so for all j there exists $\lambda_{ij} \in K$ such that

$$\mu_i = x_1 \lambda_{1i} + \dots + x_m \lambda_{mi}. \tag{2}$$

Plug in (2) into (1),

$$z = \sum_{i,j} \lambda_{ij} x_i y_j.$$

• $\{x_iy_j\}$ are linearly independent over K. Suppose there exists $\lambda_{ij} \in K$ such that

$$0 = \sum_{i,j} \lambda_{ij} x_i y_j = \sum_{j} \left(\sum_{i} \lambda_{ij} x_i \right) y_j,$$

so for all j, $\sum_{i} \lambda_{ij} x_i = 0$, so for all j and all i, $\lambda_{ij} = 0$.

Example. To show $G = \mathfrak{S}_3$. Let $\sigma = \begin{pmatrix} 1 & 2 \end{pmatrix}$. A basis of L/\mathbb{Q} is

$$1, \sqrt[3]{2}, \sqrt[3]{4}, \omega, \omega, \omega, \sqrt[3]{2}, \omega, \sqrt[3]{4}.$$

- $\sigma(1) = 1$.
- $\sigma\left(\sqrt[3]{2}\right) = \omega\sqrt[3]{2}$.
- $\sigma\left(\omega\sqrt[3]{2}\right) = \sqrt[3]{2}$.
- $\sigma(\sqrt[3]{4}) = \sigma(\sqrt[3]{2} \cdot \sqrt[3]{2}) = \omega\sqrt[3]{2} \cdot \omega\sqrt[3]{2} = \omega^2\sqrt[3]{4} = (-\omega 1)\sqrt[3]{4} = -\omega\sqrt[3]{4} \sqrt[3]{4}$
- $\sigma(\omega) = \sigma(\omega\sqrt[3]{2}/\sqrt[3]{2}) = \sigma(\omega\sqrt[3]{2})/\sigma(\sqrt[3]{2}) = \sqrt[3]{2}/\omega\sqrt[3]{2} = 1/\omega = -1 \omega$.
- $\sigma\left(\omega\sqrt[3]{4}\right) = \sigma\left(\omega\sqrt[3]{2} \cdot \sqrt[3]{2}\right) = \sigma\left(\omega\sqrt[3]{2}\right) \cdot \sigma\left(\sqrt[3]{2}\right) = \sqrt[3]{2} \cdot \omega\sqrt[3]{2} = \omega\sqrt[3]{4}$.

Thus

$$\sigma = \begin{pmatrix} 1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 1 \end{pmatrix}.$$

A question is if there were $\sigma \in G$ such that $\rho(\sigma) = \begin{pmatrix} 1 & 2 \end{pmatrix}$ then we have written the matrix of σ as a \mathbb{Q} -linear map of L in a basis. But how to check that this \mathbb{Q} -linear map is a field homomorphism? We know the Galois correspondence for extensions of degree two.

$$Gal\left(L/\mathbb{Q}\left(\sqrt[3]{2}\right)\right), Gal\left(L/\mathbb{Q}\left(\omega^2\sqrt[3]{2}\right)\right), Gal\left(L/\mathbb{Q}\left(\omega\sqrt[3]{2}\right)\right) \subset G$$

contain an element of order two, and

$$\rho: \quad \begin{array}{ccc} Gal\left(L/\mathbb{Q}\left(\sqrt[3]{2}\right)\right) & \mapsto \left(2 & 3\right) \\ Gal\left(L/\mathbb{Q}\left(\omega^2\sqrt[3]{2}\right)\right) & \mapsto \left(1 & 2\right) \\ Gal\left(L/\mathbb{Q}\left(\omega\sqrt[3]{2}\right)\right) & \mapsto \left(1 & 3\right). \end{array}$$

The lattice of subgroups is

 $\mathbb{Q}(\omega)/\mathbb{Q}$ is the splitting field of $x^2 + x + 1$ and of $x^2 + 3$.

We can learn the following. Let $k \subset L$ be a splitting field. Consider $k \subset K \subset L$. Then $K \subset L$ is also a splitting field. The corresponding $H \leq G$ is the Galois group Gal(L/K). On the other hand $k \subset K$ is not always a splitting field. It is a splitting field if and only if the corresponding $H \leq G$ is a normal subgroup and in that case Gal(K/k) = G/H.

2 Elementary facts

Let $K \subset L$ and $a \in L$. The evaluation homomorphism

Lecture 6 Tuesday 22/01/19

$$e_a: K[x] \rightarrow K[a] \subset L$$

 $f(x) \mapsto f(a)$

is a surjective ring homomorphism, where K[a] is the smallest subring of L containing K and a.

Definition 2.1. $f(x) = a_0 x^n + \cdots + a_n \in K[x]$ is monic if $a_0 = 1$.

Lemma 2.2.

• If a is transcendental, e_a is injective and it extends to $\widetilde{e_a}: K(x) \to K(a)$, by

$$\begin{array}{ccc} K\left(x\right) & & \\ & & \\ & & \\ K\left[x\right] & \xrightarrow{e_{a}} & L \end{array}.$$

• If a is algebraic, then $Ker(e_a) = \langle f_a \rangle$, where $f_a \in K[x]$ is irreducible, or prime, and unique if monic, then called the minimal polynomial of $a \in L/K$. In this case

$$K[x] \xrightarrow{e_a} K[a] \cong K(a) \subset L$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad$$

Proof. There is nothing to prove.

Remark. Let $g(x) \in K[x]$ and $g(a) \neq 0$. Claim that $1/g(a) \in K[a]$. Indeed $\gcd(f,g) = 1$ in K[x] and $f \nmid g$. There exists $\phi, \psi \in K[x]$ such that $f\phi + g\psi = 1$ and $g(a) \psi(a) = 1$. All of this is saying

- $K[a] \cong K(a)$, and
- $K[x]/\langle f_a \rangle \cong K(a)$.

Let

$$Em_{K}\left(K\left(a\right),F\right)=\left\{ \sigma:K\left(a\right)\rightarrow F\mid\sigma\text{ field homomorphism, }\sigma_{K}=id_{K}\right\} ,$$

where

Corollary 2.3. For $K \subset L$ and $a \in L$ algebraic over K,

- $[K(a):K] = \deg(f_a)$, and
- If $K \subset F$ is an extension,

$$Em_K(K(a), F) = \{b \in F \mid f_a(b) = 0\}.$$

Proof. Since K(a) = K[a], $[K(a) : K] = \dim_K (K(a)) = \dim_K [K(a)]$. Suppose

$$f(x) = x^n + \mu_1 x^{n-1} + \dots + \mu_n \in K[x]$$

is the minimal polynomial of a over K. Claim that $1, \ldots, a^{n-1}$ is a basis of K[a] over K.

• The set generates K[a]. Let $c \in K[a]$. There exists $g \in K[x]$ such that g(a) = c. Long division gives

$$g(x) = f(x) q(x) + r(x), \qquad m = \deg(r(x)) < n.$$

Then $r(x) = \lambda_0 + \cdots + \lambda_m x^m$ and $g(a) = r(a) = \lambda_0 + \cdots + \lambda_m a^m$.

• The set is linearly independent, otherwise there exists

$$g(x) = \lambda_0 + \dots + \lambda_{n-1} x^{n-1} \in K[x], \quad g(a) = 0,$$

and f was not the minimal polynomial.

 $\sigma(a)$ is a root of f, since applying σ to f(a) = 0 gives

$$0 = \sigma (a^{n} + \mu_{1}a^{n-1} + \dots + \mu_{n}) = \sigma (a)^{n} + \mu_{1}^{n-1}\sigma (a)^{n-1} + \dots + \mu_{n} = f(\sigma (a)).$$

Vice versa, if $b \in F$ is a root of f,

$$K(b) \stackrel{[e_b]}{\leftarrow} \frac{K[x]}{\langle f \rangle} \stackrel{[e_a]}{\sim} K(a),$$

then $\sigma = [e_b][e_a]^{-1}$. Thus there is a one-to-one correspondence

$$Em_{K}\left(K\left(a\right),F\right) \quad \leftrightarrow \quad \left\{b \in F \mid f\left(b\right)=0\right\} \\ \sigma \quad \mapsto \quad \sigma\left(a\right) \\ \left[e_{b}\right]\left[e_{a}\right]^{-1} \quad \leftarrow \quad b \\ \end{array}.$$

Corollary 2.4. Let K be a field and $f \in K[x]$. Then there exists $K \subset L$ such that f has a root in L.

Proof. Take g a prime factor of f. Take $L = K[x]/\langle g \rangle$. In here a = [x] is a root of g hence a root of f. \square

From now on in this course, we study field extensions $K \subset L$, always assumed to be finite, so $[L:K] = \dim_K(L) < \infty$.

Lecture 7 Thursday 24/01/19

Remark. $K \subset L$ is finite if and only if

- it is algebraic, that is for all $a \in L$, a is algebraic over K, and
- it is finitely generated, that is there exist $a_1, \ldots, a_m \in L$ such that $L = K(a_1, \ldots, a_m)$.

An important point of view is that we study all possible field homomorphisms

$$Em(K, L) = \{ \sigma : K \to L \mid \sigma \text{ field homomorphism} \}.$$

Often there is a field $k \subset K, L$ in the background which we want to stay fixed, so let

$$Em_k(K, L) = \{\sigma : K \to L \mid \sigma \text{ field homomorphism}, \ \sigma \mid_k = id_k \}.$$

Example. Let $K = \mathbb{Q}(\sqrt[3]{2})$. The minimal polynomial of $\sqrt[3]{2}$ is $x^3 - 2$. Let $L = \mathbb{Q}(\sqrt[3]{2}, \sqrt{-3})$ be the splitting field of $x^3 - 2$. Then

$$Em_{\mathbb{Q}}\left(K,L\right)=Em\left(K,L\right)=\left\{ \text{roots of }x^{3}-2\text{ in }L\right\} =\left\{ \sqrt[3]{2},\omega\sqrt[3]{2},\omega^{2}\sqrt[3]{2}\right\} .$$

Remark. Suppose $k \subset K$. $Em_k(K, K) = G = Gal(K/k)$. Indeed every k-homomorphism $\sigma : K \to K$ is automatically invertible. We know σ is injective. σ is also surjective because σ is a k-linear endomorphism of a finite-dimensional k-vector space.

3 Axiomatics

Proposition 3.1. Fix $k \subset K$ and $k \subset L$. Then $\#Em_k(K, L) \leq [K : k]$.

Proof.

Special case. If K = k(a), let $f(x) \in k[x]$ be the minimal polynomial of a. Then $Em_k(k(a), L)$ is the roots of f(x) in L, so

$$\#Em_k(K, L) = \#\{\text{roots}\} \le \deg(f) = [k(a) : k],$$

as proved last time.

General case. If k = K, nothing to do. Otherwise choose $a \in K \setminus k$.

Consider the restriction map

$$\rho: Em_k(K, L) \to Em_k(k(a), L)$$
.

Fix $y \in Em_k(k(a), L)$. Then

$$\rho^{-1}(y) = \{x : K \to L \mid x \mid_{k(a)} = id_{k(a)} \}.$$

Since [k(a):k] > 1, by the tower law [K:k(a)] < [K:k]. By induction we may assume $\#\rho^{-1}(y) \le [K:k(a)]$. So

$$\#Em_{k}(K,L) \leq \sum_{y \in Em_{k}(k(a),L)} \#\rho^{-1}(y) \leq [k(a):k][K:k(a)] = [K:k],$$

by the tower law.

Proposition 3.2. Suppose given two field extensions $k \subset K$ and $k \subset L$. Then there is a non-unique bigger common field

that contains both.

Remark.

- More formally, suppose given $\sigma_1 \in Em(k, K)$ and $\sigma_2 \in Em(k, L)$, then there exists Ω , $\phi_1 \in Em(K, \Omega)$, and $\phi_2 \in Em(L, \Omega)$ such that $\phi_1 \circ \sigma_1 = \phi_2 \circ \sigma_2$.
- I never said that Ω is unique. For example, let $K = \mathbb{Q}(\sqrt[3]{2})$ and $L = \mathbb{Q}(\sqrt[3]{2})$. One choice is $\Omega = k$. Another choice is $\Omega = \mathbb{Q}(\sqrt[3]{2}, \sqrt{-3})$, where

Another more precise way to state this is there exists $k \subset \Omega$ such that $Em_k(K,\Omega)$ and $Em_k(L,\Omega)$ are both non-empty.

Lecture 8 Friday 25/01/19

Proof.

Special case. If K = k(a), let $f(x) \in k[x]$ be the minimal polynomial of a over k. Let $L \subset E$ be such that $f(x) \in L[x]$ has a root $\alpha \in E$. Then there exists $\sigma \in Em_k(k(a), E)$ such that $\sigma(a) = \alpha$.

General case. By induction on [K:k]. If [K:k]=1, take $\Omega=L$. If [K:k]>1, take $a\in K\setminus k$.

By special case there exists E as in the diagram. By tower law [K:k(a)] < [K:k] hence by induction find Ω as in the diagram. Ω solves the original problem.

Proposition 3.3. Let L be any field and G be a finite group acting on L as automorphisms. Let

$$K=G^{*}=Fix\left(G\right) =L^{G}=\left\{ \lambda\in L\mid\forall\sigma\in G,\ \sigma\left(\lambda\right) =\lambda\right\} .$$

Consider $Aut_K(L) = K^{\dagger}$. Then the obvious inclusion $G \subset K^{\dagger} = (G^*)^{\dagger}$ is an equality, so G is all of K^{\dagger} .

Remark. Contextualising, this thing is half of the Galois correspondence.

$$\begin{array}{cccc} \left\{ F \mid k \subset F \subset \Omega \right\} & \leftrightarrow & \left\{ G \mid G \leq Aut_k\left(\Omega\right) \right\} \\ F & \mapsto & Aut_F\left(\Omega\right) = F^{\dagger} \\ Fix\left(G\right) = G^* & \leftrightarrow & G \end{array} .$$

Then to prove the Galois correspondence, we need for all G, $G = (G^*)^{\dagger}$. We also need for all F, $F = (F^{\dagger})^*$. Proposition 3.3 follows from the following lemma.

Lemma 3.4. $K \subset L$ is a finite extension of degree $[L:K] \leq |G|$.

Proof of Proposition 3.3. From Proposition 3.1, $Aut_K(L) = Em_K(L, L)$ because $K \subset L$ is finite, and $\#Em_K(L, L) \leq [L:K]$. By Lemma 3.4,

$$[L:K] < \#Em_K(L,L) < [L:K],$$

so $|G| = \#Em_K(L, L)$. By what we said, $G \subset Em_K(L, L)$, so $G = Em_K(L, L)$.

Lecture 9 is a problem class.

Lecture 9 Tuesday 29/01/19 Lecture 10 Thursday 31/01/19

Proof of Lemma 3.4. Write $G = \{\sigma_1, \dots, \sigma_n\}$ for n = |G|. Want that all (n+1)-tuples $a_1, \dots, a_{n+1} \in L$ are linearly dependent over K. Let $a_1, \dots, a_{n+1} \in L$. Consider the n+1 vectors in L^n . Let

$$\overline{a_1} = \begin{pmatrix} \sigma_1(a_1) \\ \vdots \\ \sigma_n(a_1) \end{pmatrix}, \dots, \overline{a_{n+1}} = \begin{pmatrix} \sigma_1(a_{n+1}) \\ \vdots \\ \sigma_n(a_{n+1}) \end{pmatrix} \in L^n.$$

These are linearly dependent over L. There exist $x_1, \ldots, x_{n+1} \in L$ not all zero such that

$$x_1\overline{a_1} + \dots + x_{n+1}\overline{a_{n+1}} = \overline{0}.$$

By reordering the $\overline{a_i}$, may assume

$$x_1\overline{a_1} + \dots + x_k\overline{a_k} = \overline{0},\tag{3}$$

for some $1 \le k \le n+1$ with

- for all $i \in \{1, ..., k\}, x_i \neq 0$,
- \bullet such k is the smallest, and
- $x_1 = 1$.

Claim that all these $x_i \in K$. This does it, by reading j-th row where $\sigma_j = id_G$. We need to show for all i, $x_i \in L^G$. Take $\sigma \in G$.

$$\sigma(x_1) \begin{pmatrix} \sigma(\sigma_1(a_1)) \\ \vdots \\ \sigma(\sigma_n(a_1)) \end{pmatrix} + \dots + \sigma(x_k) \begin{pmatrix} \sigma(\sigma_1(a_k)) \\ \vdots \\ \sigma(\sigma_n(a_k)) \end{pmatrix} = \overline{0} \in L^n.$$

Note that

$$\begin{array}{ccc} G & \to & G \\ \tau & \mapsto & \sigma \circ \tau \end{array}$$

is a bijective function and $\{\sigma \circ \sigma_1, \dots, \sigma \circ \sigma_n\} = G$. Multiplying by σ reshuffles the rows. So in fact,

$$\sigma(x_1)\overline{a_1} + \dots + \sigma(x_k)\overline{a_k} = \overline{0}. \tag{4}$$

Claim that for all i, $\sigma(x_i) = x_i$. Otherwise (3) – (4),

$$(x_2 - \sigma(x_2))\overline{a_2} + \cdots + (x_k - \sigma(x_k))\overline{a_k} = \overline{0}$$

is a shorter solution, contradicting k minimal.

4 Galois correspondence

Definition 4.1. $k \subset K$ is normal if

$$\forall k \subset \Omega, \ \forall \sigma_1, \sigma_2 \in Em_k(K, \Omega), \ \exists \sigma \in Em_k(K, K), \ \sigma_2 = \sigma_1 \circ \sigma. \tag{5}$$

$$\begin{array}{ccc}
\Omega \\
C & \sigma & \searrow \\
\sigma_1(K) & \stackrel{\longleftarrow}{\longleftarrow} K & \stackrel{\longrightarrow}{\longrightarrow} \sigma_2(K) \\
\searrow & \cup & C \\
k
\end{array}$$

Equivalently, $k \subset K$ is normal if

$$\forall k \subset \Omega, \ \forall \sigma_1, \sigma_2 \in Em_k(K, \Omega), \ \sigma_2(K) \subset \sigma_1(K).$$
 (6)

Example. $\mathbb{Q} \subset \mathbb{Q}\left(\sqrt[3]{2}\right)$ is not normal. Take $\Omega = \mathbb{Q}\left(\sqrt[3]{2}, \sqrt{-3}\right)$.

- (5) \Longrightarrow (6) Indeed for all $\lambda \in K$, $\sigma_2(\lambda) = \sigma_1(\sigma(\lambda)) \in \sigma_1(K)$, so $\sigma_2(K) \subset \sigma_1(K)$.
- (6) \Longrightarrow (5) Work inside Ω , so $k \subset \sigma_2(K) \subset \sigma_1(K) \subset \Omega$. Tower law gives

$$[K:k] = [\sigma_1(K):k] = [\sigma_1(K):\sigma_2(K)] [\sigma_2(K):k] = [\sigma_1(K):\sigma_2(K)] [K:k].$$

So $[\sigma_1(K):\sigma_2(K)]=1$, so $\sigma_1(K)=\sigma_2(K)$. Take $\sigma=\sigma_1^{-1}\circ\sigma_2$. σ is clearly bijective and it is more or less obvious that $\sigma\in Em_k(K,K)$.

Equivalently, $k \subset K$ is normal if for all $K \subset \Omega$, for all $\sigma \in Em_k(K,\Omega)$, $\sigma(K) \subset K$.

Lecture 11 Friday 01/02/19

$$\begin{array}{ccc}
\Omega \\
\zeta & \searrow \\
K & \xrightarrow{\sigma} & \sigma(K) \\
\searrow & \zeta \\
k
\end{array}$$

Remark. We will see that $k \subset K$ is normal if and only if there exists $f(x) \in K[x]$ such that K is a splitting field of f.

Lemma 4.2. Suppose $k \subset K$ is normal. Consider $k \subset L \subset K$. Then also $L \subset K$ is normal.

Proof. If
$$\sigma \in Em_L(K,\Omega)$$
, then $\sigma \in Em_k(K,\Omega)$.

Warning.

• It is not true in general that $k \subset K$ is normal gives that $k \subset L$ is normal. For example, let

$$k=\mathbb{Q}\subset\mathbb{Q}\left(\sqrt[3]{2}\right)\subset\mathbb{Q}\left(\sqrt[3]{2},\sqrt{-3}\right)=K.$$

 $k \subset K$ is normal because it is a splitting field but $\mathbb{Q} \subset \mathbb{Q}(\sqrt[3]{2})$ is not normal.

• Suppose $k \subset L$ is normal and $L \subset K$ is normal. This does not imply $k \subset K$ is normal. This will be in an example sheet.

Definition 4.3. $k \subset K$ is **separable** if for all $k \subset K_1 \subset K_2 \subset K$, if $K_1 \neq K_2$, there exist $k \subset \Omega$ and embeddings $x \in Em_k(K_1, \Omega)$ and $y_1, y_2 \in Em_k(K_2, \Omega)$ such that

That is, $y_1 |_{K_1} = y_2 |_{K_1} = x$ but $y_1 \neq y_2$.

Slogan is that embeddings separate fields. We will see that

- in characteristic zero everything is separable, and
- \bullet in characteristic p we will have good ways to decide if something is separable.

Lemma 4.4. Suppose $k \subset K \subset L$. Then $k \subset L$ is separable if and only if $k \subset K$ and $K \subset L$ are separable. Proof.

- \implies Obvious. $K \subset K_1 \subset K_2 \subset L$ leads to $k \subset K_1 \subset K_2 \subset L$.
- \iff I will do later.

Theorem 4.5 (Fundamental theorem of Galois theory, Galois correspondence). Let $k \subset K$ be normal and separable. Let $G = Em_k(K, K)$. Then there is a one-to-one correspondence

$$\begin{cases} k \subset L \subset K \} & \leftrightarrow & \{H \leq G \} \\ L & \mapsto & L^\dagger = \{\sigma \in G \mid \forall \lambda \in L, \ \sigma \left(\lambda \right) = \lambda \} \end{cases} .$$

$$H^* = \{\lambda \in K \mid \forall \sigma \in H, \ \sigma \left(\lambda \right) = \lambda \} \quad \leftrightarrow \quad H$$

Proof. We show that for all $H \leq G$, $(H^*)^{\dagger} = H$ and for all $k \subset L \subset K$, $(L^{\dagger})^* = L$. We already did the former. We just prove the latter now. Note that $L \subset K$ is normal and separable so all I need to show is $(k^{\dagger})^* = k$, that is $k = G^*$ is the fixed field of G. That is, if $\lambda \notin k$, there exists $\sigma : K \to K$ in G such that $\sigma(\lambda) \neq \lambda$. By separability, there exists Ω and $x_1 \neq x_2 \in Em_k(k(\lambda), \Omega)$ such that

so $x_1(\lambda) \neq x_2(\lambda)$. Two steps.

- There exist $\widetilde{x_1}, \widetilde{x_2}: K \to \Omega$ extending $x_1, x_2: k(\lambda) \to \Omega$, by the following lemma.
- Because $k \subset K$ is normal there exists $\sigma \in Em_k(K,K)$ such that $\widetilde{x_2} = \widetilde{x_1} \circ \sigma$ then clearly $\sigma(\lambda) \neq \lambda$.

Lemma 4.6. Suppose $k \subset K$ is normal. Then for all towers $k \subset F \subset K \subset \Omega$, the natural restriction $\rho: Em_k(K,\Omega) \to Em_k(F,\Omega)$ is surjective.

Lemma 4.6 says for all $\sigma \in Em_k(F,\Omega)$, there exists $\widetilde{\sigma} \in Em_k(K,\Omega)$ such that $\widetilde{\sigma}|_{F} = \sigma$.

Lecture 12 Tuesday 05/02/19

Proof. We know that there exists $\widetilde{\Omega}$ as follows.

There are two $K \subset \widetilde{\Omega}$,

$$\phi_1: K \subset \Omega \stackrel{\psi}{\hookrightarrow} \widetilde{\Omega}, \qquad \phi_2: K \hookrightarrow \widetilde{\Omega}.$$

Because $k \subset K$ is normal $\phi_2(K) \subset \phi_1(K) \subset \psi(\Omega)$. That proves that $\widetilde{\sigma}$ exists.

Corollary 4.7. Suppose $k \subset K$ is normal. Then for all towers $k \subset F \subset K \subset \Omega$, $Em_k(F,K) \to Em_k(F,\Omega)$ is also surjective.

Corollary 4.7 states that for all $\sigma \in Em_k(F,\Omega)$, $\sigma(F) \subset K$.

Proof. This clearly follows from Lemma 4.6. $\sigma(F) \subset \widetilde{\sigma}(K) \subset K$ by definition of normal.

5 Normal extensions

Theorem 5.1. For finite $k \subset K$, the following are equivalent.

- 1. For all $f \in k[x]$ irreducible either f has no root in K or f splits completely in K.
- 2. There exists $f \in k[x]$ not necessarily irreducible such that K is a splitting field of f.
- 3. $k \subset K$ is normal.

Proof.

1 \Longrightarrow 2 There are $\lambda_1, \ldots, \lambda_m \in K$ such that $K = k(\lambda_1, \ldots, \lambda_m)$. For all i let $f_i \in k[x]$ be the minimal polynomial of λ_i . f_i is irreducible and by 1 it splits completely. K is the splitting field of

$$f\left(x\right) = \prod_{i=1}^{m} f_i\left(x\right).$$

- 2 \Longrightarrow 3 Suppose $K \subset \Omega$. Let $\sigma: K \to \Omega$ be another embedding. For all λ_i , $\sigma(\lambda_i)$ is a root of f, so $\sigma(\lambda_i) \subset K$ hence $\sigma(K) \subset K$.
- 3 \Longrightarrow 1 Let $f(x) \in k[x]$ be irreducible. Suppose there exists $\lambda \in K$ such that $f(\lambda) = 0$. Let Ω be a splitting field of $f(x) \in K[x]$. Let $\mu \in \Omega$ be a root of f. There exists a unique $\sigma \in Em_k(k(\lambda), \Omega)$ such that $\sigma(\lambda) = \mu$.

By Corollary 4.7, $\sigma(F) \subset K$, so $\mu \in K$.

(Exercise: prove that any two splitting fields of $f \in k[x]$ are k-isomorphic, not necessarily in a unique way)

Lecture 13 Thursday 07/02/19

Proposition 5.2. Let $k \subset L$ be a field extension. Then there exists a tower $k \subset L \subset K$ such that $k \subset K$ is normal

Proof. We use normal if and only if splitting field. Pick $\lambda_1, \ldots, \lambda_n \in L$ such that $L = k(\lambda_1, \ldots, \lambda_n)$. Let $f_i \in k[x]$ be the minimal polynomial of λ_i over k. Let K be the splitting field of

$$f = \prod_{i=1}^{n} f_i \in L[x].$$

Claim that K is the splitting field of f over k. Key point is argue that K is generated by the roots of f over k.

6 Separable polynomials

Definition 6.1. A polynomial $f \in k[x]$ is **separable** if it has $n = \deg(f)$ distinct roots in any field $k \subset K$ such that $f \in K[x]$ splits completely.

Remark. It is not completely obvious that this definition is independent of K. To see this, use the fact that any two splitting fields are isomorphic.

Example.

- Let $k = \mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$. Then $x^p a = (x a)^p$ is not separable, since in characteristic p, $(a + b)^p = a^p + b^p$.
- Let $k = \mathbb{F}_p(t)$. Then $x^p t$ is an irreducible polynomial. Why? Let

$$K = \frac{\mathbb{F}_{p}(t)[u]}{\langle u^{p} - t \rangle} = \mathbb{F}_{p}(u).$$

In K[x], $x^p - t = (x - u)^p$.

For all k, define the **derivation** as

$$D: k[x] \to k[x] x^n \mapsto nx^{n-1} ,$$

and extend linearly to all of k[x]. The following are some properties.

• D is k-linear, that is for all $\lambda, \mu \in k$, for all $f, g \in k[x]$,

$$D(\lambda f + \mu g) = \lambda Df + \mu Dg.$$

• Leibnitz rule, that is for all $f, g \in k[x]$,

$$D(fg) = fDg + gDf.$$

Most important thing to know in characteristic p, if $p \mid n$ then $Dx^n = nx^{n-1} = 0$. If Df = 0 that does not mean f is constant. This just means that there exists $h \in k[x]$ such that $f(x) = h(x^p)$.

Proposition 6.2. $f(x) \in k[x]$ is separable if and only if gcd(f, Df) = 1.

In $\mathbb{R}[x]$, f is inseparable if and only if there exists a multiple root, a critical point, which is a root of Df. **Lemma 6.3.** Let $f, g \in k[x]$ and $c = \gcd(f, g)$ in k[x]. Let $k \subset L$ be an extension. Then $c = \gcd(f, g)$ in L[x].

Lecture 14 Friday 08/02/19

Proof. Indeed, if $c \mid f, c \mid g$ in k[x] then also in L[x]. We also know that there exists $\phi, \psi \in k[x]$ such that

$$f\phi + g\psi = c \tag{7}$$

in k[x], and hence also in L[x]. Suppose that $u \mid f$, $u \mid g$ in L[x], so $u \mid c$ in L[x] by (7).

Proof of Proposition 6.2. Let $k \subset L$ be any field where f splits completely. We can do the proof in L[x]. That is, we may assume that f splits completely, so

$$f(x) = \prod_{i} (x - \lambda i).$$

 \iff Assume for a contradiction that f is not separable then $f(x) = (x - \lambda)^2 g(x)$.

$$Df(x) = 2(x - \lambda)g(x) + (x - \lambda)^{2}Dg(x) = (x - \lambda)(2y(x) + (x - \lambda)Dg(x)).$$

That is, $(x - \lambda) \mid f$ and $(x - \lambda) \mid Df$, so $\gcd(f, Df) \neq 1$.

 \implies For all $i \neq j$, $\lambda_i \neq \lambda_j$.

$$Df = \sum_{i=1}^{j} \left(\prod_{j \neq i} (x - \lambda_j) \right).$$

Claim that for all i, $(x - \lambda_i) \nmid Df$. I hope you see this. This shows $\gcd(f, Df) = 1$.

Theorem 6.4. $f \in k[x]$ irreducible is inseparable if and only if

- ch(k) = p > 0, and
- there exists $h \in k[x]$ such that $f(x) = h(x^p)$.

Proof. Indeed f is inseparable if and only if $\gcd(f, Df) \neq 1$, if and only if Df = 0, since f is irreducible so $\gcd(f, Df) \neq 1$ if and only if $f \mid Df$, and $\deg(Df) < \deg(f)$.

Definition 6.5. A field k in ch(k) = p > 0 is **perfect** if for all $a \in k$ there exists $b \in k$ such that $b^p = a$.

Proposition 6.6. If k is perfect then $f \in k[x]$ is irreducible gives that f(x) is separable.

Proof. If f were inseparable then $f(x) = h(x^p)$. For all i, find $b_i^p = a_i$,

$$h(x) = x^n + a_1 x^{n-1} + \dots + a_n = x^n + b_1^p x^{n-1} + \dots + b_n^p$$

Thus

$$f(x) = h(x^p) = (x^n + b_1 x^{n-1} + \dots + b_n)^p$$
,

so f is not irreducible.

Example. All finite fields are perfect. Suppose F is a finite field. Then ch(F) = p > 0 so $\mathbb{F}_p \subset F$ therefore $[\mathbb{F} : \mathbb{F}_p] = n < 0$. $\dim_{\mathbb{F}_p}(F) = n < \infty$, so $F \cong (\mathbb{F}_p)^n$ as a vector space over \mathbb{F}_p gives that F has p^n elements. The group $F^{\times} = F \setminus \{0\}$ has $p^n - 1$ elements. So for all $a \in F^{\times}$, $a^{p^n - 1} = 1$. For all $a \in F$, $a^{p^n} = a$, so

$$\left(a^{p^{n-1}}\right)^p = a,$$

and this shows F is perfect.

Definition 6.7. Consider $k \subset K$. An element $a \in L$ is **separable** over k if the minimal polynomial $f(x) \in k[x]$ of a is a separable polynomial.

Lecture 15 is a problem class.

Lecture 16 is a problem class.

Lecture 17 is a test.

Lecture 15 Tuesday 12/02/19 Lecture 16 Thursday 14/02/19 Lecture 17 Friday 15/02/19

7 Separable degree

Definition 7.1. Let $k \subset K$. Choose $K \subset \Omega$ such that $k \subset \Omega$ is normal. Define the **separable degree** as

Lecture 18 Tuesday 19/02/19

$$[K:k]_{s} = |Em_{k}(K,\Omega)|.$$

Remark. $[K:k]_s$ does not depend on $K \subset \Omega$. Suppose $k \subset \Omega_1$ and $k \subset \Omega_2$ are normal. Then there exists a bigger field $\widetilde{\Omega}$ such that $\Omega_1 \subset \widetilde{\Omega}$ and $\Omega_2 \subset \widetilde{\Omega}$. Then

$$Em_k(K, \Omega_1) = Em_k(K, \widetilde{\Omega}) = Em_k(K, \Omega_2),$$

by Corollary 4.7 a while ago,

$$\begin{array}{ccc} \Omega_1 & & & \\ \cup & & \widetilde{\sigma} & \\ K & & \xrightarrow{\sigma} & \widetilde{\Omega} \end{array} \cdot \\ \cup & & & \\ k & & & \end{array}$$

Remark. We can restate the definition of separable extension. Recall that $k \subset K$ is separable if for all towers $k \subset K_1 \subset K_2 \subset K$, there exist Ω , $y: K_1 \to \Omega$, and $x_1, x_2: K_2 \to \Omega$ such that $x_1 \neq x_2$ and $x_1 \mid_{K_1} = x_2 \mid_{K_2} = y$, so

$$K_2$$
 \cup
 x_1, x_2
 $K_1 \xrightarrow{y} \Omega$,
 \cup
 k

that is $[K_2:K_1]_s \neq 1$. Thus $k \subset K$ is separable if for all towers $k \subset K_1 \subset K_2 \subset K$,

$$[K_2:K_1]_s = 1 \implies K_1 = K_2.$$

Theorem 7.2 (Tower law). For all $k \subset K \subset L$,

$$[L:k]_{a} = [L:K]_{a} [K:k]_{a}$$
.

Proof. Choose $L \subset \Omega$ and $k \subset \Omega$ normal, so

Study

$$\rho: Em_k(L,\Omega) \to Em_k(K,\Omega)$$
.

 ρ is surjective. For all $x \in Em_k(K,\Omega)$, there exists $y \in Em_k(L,\Omega)$ such that $y \mid_{K} = x$. $\rho^{-1}(x) = Em_K(L,\Omega)$. Then

$$\left[L:k\right]_{s}=\left|Em_{k}\left(L,\Omega\right)\right|=\sum_{x\in Em_{k}\left(K,\Omega\right)}\left|\rho^{-1}\left(x\right)\right|=\sum_{x\in Em_{k}\left(K,\Omega\right)}\left[L:K\right]_{s}=\left[L:K\right]_{s}\left[K:k\right]_{s}.$$

8 Separable extensions

Recall that for $k \subset K$, we said $a \in K$ is separable over k if the minimal polynomial $f(x) \in k[x]$ of a is a separable polynomial.

Theorem 8.1. $k \subset K$ is separable if and only if $[K:k]_s = [K:k]$.

Proof.

- Step 1. $[K:k]_s = [K:k]$ gives $k \subset K$ is separable. Recall $[K:k]_s \leq [K:k]$. Statement follows from two tower laws for $k \subset K_1 \subset K_2 \subset K$, so $[K_2:K_1]_s = [K_2:K_1]$. So if $[K_2:K_1]_s = 1$ then $[K_2:K_1] = 1$ then $K_1 = K_2$.
- Step 2. Suppose that $k \subset k$ (a) is separable then a is separable. Let $f(x) \in k$ [x] be the minimal polynomial. Suppose for a contradiction that it is not a separable polynomial. f is irreducible and $f \mid Df$ gives that $Df \equiv 0$ so ch(k) = p and there exists $h(x) \in k$ [x] irreducible such that $f = h(x^p)$. Let $b = a^p$ and consider $k \subset k$ (b) $\subset k$ (a). a is a root of $x^p b \in k$ (b) [x].

$$p \deg(h) = [k(a) : k] = [k(a) : k(b)] [k(b) : k] = [k(a) : k(b)] \deg(h)$$

so [k(a):k(b)] = p. Thus $x^p - b = (x-a)^p$ is the minimal polynomial of a over k(b), so $[k(a):k(b)]_s = 1$ contradicts step 1 and two tower laws.

- Step 3. For $k \subset k(a)$, $k \subset k(a)$ is separable gives $[k(a):k]_s = [k(a):k]$. This is obvious from step 2. [k(a):k] is the degree of the minimal polynomial and $[k(a):k]_s$ is the number of roots of minimal polynomial.
- Step 4. End of proof, by a familiar method. Let us do the general case by induction on [K:k]. If k=K then there is nothing to prove. Otherwise pick $a \in K \setminus k$. We know that both $k \subset k$ (a) and k (a) $\subset K$ are separable. [K:k(a)] < [K:k] by tower law, hence by induction $[K:k(a)]_s = [K:k(a)]$. We also know $[k(a):k]_s = [k(a):k]$. Two tower laws give $[K:k]_s = [K:k]$.

Lecture 19 Thursday 21/02/19

Corollary 8.2. For all towers $k \subset K \subset L$, if $k \subset K$ and $K \subset L$ are separable then $k \subset L$ is separable.

Corollary 8.3. $k \subset K$ is separable if and only if for all $a \in K$, a is separable over k.

Proof. Suppose $k \subset K$ is separable. Pick $a \in K$ then $k \subset k(a)$ is also separable. By step 2 last time, a is separable. Conversely, suppose for all $a \in K$, a is separable over k. Pick $a \in K \setminus k$. I claim $k \subset k(a)$ is separable. Then

$$[k(a):k]_s = |\{\text{roots of minimal polynomial } f\}| = \deg(f) = [k(a):k],$$

so $k \subset k(a)$ is separable. We want to show that $k(a) \subset K$ is separable, by the following lemma.

Lemma 8.4. Let $k \subset L \subset K$. For $\lambda \in K$, λ is separable over k gives that λ is separable over L.

Proof. The minimal polynomial over L divides the minimal polynomial over k.

9 Biquadratic polynomials

Let

$$K \subset K\left(\sqrt{a \pm \sqrt{b}}\right) = L, \qquad c = a^2 - b, \qquad \beta = \sqrt{b} \notin K, \qquad \alpha = \sqrt{a + \beta} \in L, \qquad \alpha' = \sqrt{a - \beta} \in L.$$

We know that $\pm \alpha, \pm \alpha'$ are the roots of

$$f(x) = x^4 - 2ax^2 + c. (8)$$

This time we are not assuming (8) is irreducible. Let

$$\delta = \alpha + \alpha', \qquad \delta' = \alpha - \alpha', \qquad \gamma = \alpha \alpha' = \sqrt{c}.$$

Then

$$\gamma^2 = c, \qquad \delta^2 = 2\left(a + \gamma\right), \qquad \delta'^2 = 2\left(a - \gamma\right), \qquad \delta\delta' = 2\beta, \qquad \alpha = \frac{\delta + \delta'}{2}, \qquad \alpha' = \frac{\delta - \delta'}{2},$$

and $\pm \delta, \pm \delta'$ are the roots of

$$g(y) = y^4 - 4ay^2 + 4b.$$

L is the splitting field of g. Assume

- 1. $ch(K) \neq 2$, and
- 2. b is not a square in K, that is $[K(\beta):K]=2$.

Claim that the extension $K \subset L$ is separable. It is the splitting field of f(x). I need to check $\gcd(f, Df) = 1$.

$$Df = 4x^3 - 4ax = 4x(x^2 - a).$$

f, Df have no common roots, since x = 0 is not a root of f and $x = \pm \sqrt{a}$ is not a root of f, since $b \neq 0$.

Theorem 9.1. Assume 1 and 2.

1. Suppose bc, c are not squares. Then

$$[L:K] = 8, \qquad G = D_8,$$

and f(x) is irreducible.

2. Suppose bc is a square, so c is not a square. Then

$$[L:K] = 4, \qquad G = C_4,$$

and f(x) is irreducible.

- 3. Suppose c is a square, so bc is not a square. Then
 - either $2(a + \gamma)$, $2(a \gamma)$ both not squares in K, then

$$[L:K] = 4, \qquad G = C_2 \times C_2,$$

and f(x) is irreducible.

• or one of $2(a+\gamma)$, $2(a-\gamma)$ is a square in K, but not the other, then

$$[L:K] = [K(\beta):K] = 2, \qquad G = C_2,$$

and f(x) is reducible.

Lemma 9.2. Let $B \in F$ and $A \in F$ be not square in F. If B is square in $F\left(\sqrt{A}\right)$ then either B is square in F or AB is square in F.

Proof. Let
$$B = (x + y\sqrt{A})^2 = (x^2 + Ay^2) + 2xy\sqrt{A}$$
. Then

- either x = 0, so $B = Ay^2$ gives that $AB = (Ay)^2$ is square in F,
- or y = 0, so $B = x^2$ gives that $B = x^2$ is square in F.

Proof of Theorem 9.1.

1. Strategy is $[K(\alpha):K(\beta)]=[K(\alpha'):K(\beta)]=2$ and $K(\alpha)\neq K(\alpha')$.

• Key idea is that suppose $\alpha \in K(\beta) = \{x + y\beta \mid x, y \in K\}$. There exist $x, y \in K$ such that $\alpha = x + y\beta$. $(x + y\beta)^2 = a + \beta$ and $(x - y\beta)^2 = a - \beta$ gives

$$K \ni (x^2 - y^2 b)^2 = ((x + y\beta)(x - y\beta))^2 = (a + \beta)(a - \beta) = a^2 - b = c,$$

so c is a square in K. Similarly, $\alpha' \in K(\beta)$ gives $\alpha \in K(\beta)$, so c is a square in K. c is not a square therefore $\alpha \notin K(\beta)$ and $\alpha' \notin K(\beta)$, that is $[K(\alpha) : K(\beta)] = [K(\alpha') : K(\beta)] = 2$.

• Suppose for a contradiction $\alpha' \in K(\alpha)$, that is $a - \beta$ is square in $K(\alpha) = K(\beta)(\sqrt{a + \beta})$. Apply Lemma 9.2 with

$$F = K(\beta), \qquad A = a + \beta, \qquad B = a - \beta.$$

Then either B is square in F, a contradiction, or AB is square in F, that is $(a + \beta)(a - \beta) = a^2 - b = c$ is a square in $K(\beta)$. Apply Lemma 9.2 again with

$$F = K$$
, $A = b$, $B = c$.

Then either c is square in K or bc is square in K, which are contradictions. Thus $K(\alpha) \neq K(\alpha')$.

|G| = 8. Let $\sigma \in G$. Then

- either $\sigma(\beta) = \beta$, so there are four possibilities $\sigma(\alpha) = \pm \alpha$ and $\sigma(\alpha') = \pm \alpha'$,
- or $\sigma(\beta) = -\beta$, so there are four possibilities $\sigma(\alpha) = \pm \alpha'$ and $\sigma(\alpha') = \pm \alpha$, since $\sigma(y^2 a \beta) = y^2 a + \beta$.

Because |G| = 8 all these permutations are elements of G. Thus $G = D_8$ is the group of symmetries of the square

The lattice of subgroups is

The lattice of subfields is

Lecture 21 Tuesday 26/02/19

2. $K(\beta\gamma) = K$, so $K(\beta) = K(\gamma)$. $\beta \notin K$. Suppose $a + \beta$ is square in $K(\beta)$. There exist $x, y \in K$ such that $a + \beta = (x + y\beta)^2 = x^2 + y^2b + 2xy\beta$, so $(x - y\beta)^2 = a - \beta$, then

$$K \ni (x^2 - by^2)^2 = ((x + y\beta)(x - y\beta))^2 = (a + \beta)(a - \beta) = a^2 - b = c,$$

so c is square in K, a contradiction.

$$L = K(\alpha) = K(\alpha') = K(\delta) = K(\delta')$$

$$2 \mid K(\beta) = K(\gamma) = K(\beta, \gamma)$$

$$2 \mid K = K(\beta \gamma)$$

Claim that $G = C_4$. What's different? $\alpha \alpha' = \gamma$ and $\beta \gamma \in K$. Let $\sigma \in G$. If $\sigma(\beta) = \beta$ then $\sigma(\alpha) = \pm \alpha$.

- $\sigma(\alpha) = \alpha$ gives $\sigma(\alpha') = \alpha'$, and
- $\sigma(\alpha) = -\alpha$ gives $\sigma(\alpha') = -\alpha'$.

If $\sigma(\beta) = -\beta$ then $\sigma(\alpha) = \pm \alpha'$.

- $\sigma(\alpha) = \alpha'$ gives $\sigma(\alpha') = -\alpha$, and
- $\sigma(\alpha) = -\alpha'$ gives $\sigma(\alpha') = \alpha$.

Thus $G = C_4$.

3. $L = K\left(\sqrt{2(a \pm \gamma)}\right)$ is the splitting field of $g(y) = (y^2 - 2a - 2\gamma)(y^2 - 2a + 2\gamma)$.

If [L:K]=4 then $G=C_2\times C_2$. Note that [L:K] cannot be 1. Can it be [L:K]=2? At least one of $2(a+\gamma)$, $2(a-\gamma)$ is not square in K. Suppose $2(a-\gamma)$ is not square in K. Can it be that $2(a+\gamma)$ is square in $K\left(\sqrt{2(a-\gamma)}\right)=K\left(\delta'\right)$? By Lemma 9.2

- either $2(a + \gamma)$ is square in K, which is possible,
- or $2(a+\gamma)2(a-\gamma)=4(a^2-c)=4b$ is square in K, which is impossible.

Conclusion is

- either [L:K]=4, f(x) is irreducible, and $G=C_2\times C_2$,
- or one of $2(a + \gamma)$, $2(a \gamma)$ is square in K but not the other, [L:K] = 2, f(x) is not irreducible, and $G = C_2$.

Example. All over \mathbb{Q} .

• Let

$$f(x) = x^4 - 2, \qquad L = \mathbb{Q}\left(\sqrt{\pm\sqrt{2}}\right).$$

Then $[L:\mathbb{Q}]=8$ and $G=D_8$.

• Let

$$f(x) = x^4 - 4x^2 + 2, \qquad L = \mathbb{Q}\left(\sqrt{2 + \sqrt{2}}\right).$$

Then $[L:\mathbb{Q}]=4$ and $G=C_4$.

• Let

$$f(x) = x^4 - x^2 + 1,$$
 $L = \mathbb{Q}\left(e^{\frac{2\pi i}{12}}\right) = \mathbb{Q}\left(i, \sqrt{3}\right).$

Then $[L:\mathbb{Q}]=4$ and $G=C_2\times C_2$.

• Let

$$f(x) = x^4 - 10x^2 + 1,$$
 $L = \mathbb{Q}\left(\sqrt{5 + 2\sqrt{6}}\right) = \mathbb{Q}\left(\sqrt{2} + \sqrt{3}\right) = \mathbb{Q}\left(\sqrt{2}, \sqrt{3}\right).$

Then $[L:\mathbb{Q}]=4$ and $G=C_2\times C_2$.

• Let

$$f(x) = x^4 - 6x^2 + 1 = (x^2 - 2x - 1)(x^2 + 2x - 1), \qquad L = \mathbb{Q}\left(\sqrt{3 + 2\sqrt{2}}\right) = \mathbb{Q}\left(\sqrt{2}\right).$$

Then $[L:\mathbb{Q}]=2$ and $G=C_2$.

10 Finite fields

Lecture 22 Thursday

If F is finite, then it has ch(F) = p for some prime p. Then $F_p \subset F$. Because F is finite, it is a finite dimensional vector space over \mathbb{F}_p . As a vector space $F \cong (\mathbb{F}_p)^m$ where $m = \dim_{\mathbb{F}_p} (F) = [F : \mathbb{F}_p]$, so |F| is a power of p.

28/02/19

Theorem 10.1. Fix a prime p > 0. Then for all $m \in \mathbb{Z}_{>1}$, there exists a unique, up to non-unique isomorphism, finite field with $q = p^m$ elements. Notation is \mathbb{F}_q . Moreover, $G = Gal(\mathbb{F}_q/\mathbb{F}_p) = \mathbb{Z}/m\mathbb{Z}$.

Proof. Suppose |F| = q. $F^{\times} = F \setminus \{0\}$ is a group with q-1 elements. That is, if $\lambda \in F \setminus \{0\}$ then $\lambda^{q-1} = 1$.

$$\mathbb{F}_{p}\left[x\right]\ni x^{q-1}-1=\prod_{\lambda\in F\backslash\{0\}}\left(x-\lambda\right)\in\mathbb{F}_{q}\left[x\right].$$

Every such field is a splitting field of $x^{q-1}-1$. Any two splitting fields are isomorphic. This does the uniqueness part. As for the existence part, let F be a splitting field over \mathbb{F}_p of $f(x) = x^{q-1} - 1 \in \mathbb{F}_p[x]$. Let us prove that F has q elements. \mathbb{F}_p is a perfect field, so for all $\lambda \in \mathbb{F}_p$ there exists $\mu \in \mathbb{F}_p$ such that $\mu^p = \lambda$. In particular f(x) has q-1 distinct roots in F. Let us call them $\lambda_1, \ldots, \lambda_{q-1}$. Claim that

$$F' = \{0, \lambda_1, \dots, \lambda_{q-1}\}$$

is a field, then clearly F' = F. We need to show that

- F is closed under addition,
- F is closed under multiplication, and
- things in $F \setminus \{0\}$ have inverses.

F is closed under multiplication and inverses since for all n, $\{\lambda \mid \lambda^n = 1\}$ is a group. F is closed under addition since for all $a, b \in F$, $(a + b)^q = a^q + b^q$, for example

$$(a+b)^p = a^p + \binom{p}{1}a^{p-1}b + \dots + \binom{p}{p-1}ab^{p-1} + b^p, \quad \forall 1 \le k \le p-1, \ p \mid \binom{p}{k}.$$

Claim that the function

$$F: \quad \mathbb{F}_q \quad \to \quad \mathbb{F}_q \\ \quad a \quad \mapsto \quad a^p$$

is a field automorphism, that is $F \in G$, of order exactly m. It is a field automorphism, since

$$F(ab) = (ab)^p = a^p b^p = F(a) F(b), \qquad F\left(\frac{a}{b}\right) = \left(\frac{a}{b}\right)^p = \frac{a^p}{b^p} = \frac{F(a)}{F(b)},$$

$$F(a+b) = (a+b)^p = a^p + b^p = F(a) + F(b), F(1) = 1, F(0) = 0$$

Certainly $F^m = F \circ \cdots \circ F = id$, since for all $\lambda \in \mathbb{F}_q$, $\lambda^q = \lambda$. Otherwise if order is k < m then for all $\lambda \in \mathbb{F}_q$, $\lambda^{p^k} = \lambda$, so $x^{p^k} - x$ has $q > p^k$ roots, a contradiction.

11 Symmetric polynomials

Consider

$$f(x) = (x - x_1) \dots (x - x_n) = x^n - \sigma_1 x^{n-1} + \dots \pm \sigma_n \in K(x_1, \dots, x_n)[x],$$

Lecture 23 Friday 01/03/19

where

$$\sigma_1 = \sigma_1(x_1, \dots, x_n) = \sum_{i \le i \le n} x_i, \qquad \sigma_2 = \sigma_2(x_1, \dots, x_n) = \sum_{i \le i \le j \le n} x_i x_j, \qquad \dots$$

Here $\sigma_1 \in K[x_1, \dots, x_n]$ are the elementary symmetric polynomials. Let

$$\delta = \prod_{\text{roots of } f} (x_i - x_j), \qquad \Delta = \delta^2 = \prod_{\text{roots of } f} (x_i - x_j)^2.$$

Definition 11.1. $\sigma \in K[x_1, \dots, x_n]$ is **symmetric** if and only if for all $g \in \mathfrak{S}_n$

$$\sigma\left(x_{q(1)},\ldots,x_{q(n)}\right) = \sigma\left(x_1,\ldots,x_n\right).$$

Example. Consider a degree two polynomial $(x - x_1)(x - x_2) = x^2 - \sigma_1 x + \sigma_2$.

- $\delta = x_1 x_2$ is not symmetric, for $g = \begin{pmatrix} 1 & 2 \end{pmatrix}$, $\delta \left(x_{g(1)}, x_{g(2)} \right) = \delta \left(x_2, x_1 \right) = x_2 x_1 = -\delta \left(x_1, x_2 \right)$.
- But $\Delta = \delta^2 = (x_1 x_2)^2 = (x_1 + x_2)^2 4x_1x_2 = \sigma_1^2 4\sigma_2$ is symmetric.

Example. Let $f(x) = x^3 - \sigma_1 x^2 + \sigma_2 x - \sigma_3$. Plan is to write an invariant telling us when a cubic has repeated roots. $\delta = (x_1 - x_2)(x_1 - x_3)(x_2 - x_3)$ is not symmetric under \mathfrak{S}_3 , but it is invariant under $\mathfrak{A}_3 = \langle \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \rangle \cong C_2$. Can I write $\delta^2 = \Delta$ as a polynomial in

$$\sigma_1 = x_1 + x_2 + x_3, \qquad \sigma_2 = x_1 x_2 + x_1 x_3 + x_2 x_3, \qquad \sigma_3 = x_1 x_2 x_3$$
?

Yes,

$$\Delta = \sigma_1^2 \sigma_2^2 - 4\sigma_1^3 \sigma_3 - 4\sigma_2^3 + 18\sigma_1 \sigma_2 \sigma_3 - 27\sigma_3^2.$$

For $x^3 + 3px + 2q$,

$$\Delta = -2^2 3^3 \left(p^3 + q^2 \right).$$

The exact expression is totally relevant.

Can we find a formula for discriminant of a degree n polynomial? It is a general fact that all symmetric polynomials are polynomials in the elementary symmetric polynomials, so

$$K[x_1,\ldots,x_n]^{\mathfrak{S}_n}=K[\sigma_1,\ldots,\sigma_n]\subset K(\sigma_1,\ldots,\sigma_n).$$

Theorem 11.2. Consider a degree n separable polynomial $f(x) = x^n + a_1 x^{n-1} + \cdots + a_n \in k[x]$. Let $k \in L$ be the splitting field of f. Then $G \subset \mathfrak{A}_n$ if and only if Δ is a square in k.

By Galois theory $\Delta \in k$, because Δ is symmetric, that is \mathfrak{S}_n -invariant, and hence G-invariant.

Proof. $G \subset \mathfrak{A}_n$ if and only if δ is G-invariant, if and only if $\delta \in k$.

Remark.

- We know $K \subset L$ is a normal and separable splitting field of $f \in K[x]$ gives $G \subset \mathfrak{S}_n$.
- If in addition $f \in k[x]$ is irreducible then G is transitive, that is for all λ, μ roots of f there exists $\sigma \in G$ such that $\sigma(\lambda) = \mu$.

Theorem 11.3. Consider an irreducible cubic polynomial $x^3 - \sigma_1 x^2 + \sigma_2 x - \sigma_3$ and $k \subset L$ be the splitting field then $G = \mathfrak{S}_3$ iff Δ is not square in k, and $G = \mathfrak{A}_3 = C_3$ iff Δ is square in k.

Example. For $K = \mathbb{Q}$,

$$\begin{array}{c|c|c|c} f\left(x\right) & \Delta & G \\ \hline x^3 - x - 1 & -23 & \mathfrak{S}_3 \\ x^3 - 3x - 1 & 81 & \mathfrak{A}_3 \\ x^3 - 4x - 1 & 229 & \mathfrak{S}_3 \\ x^3 - 5x - 1 & 473 & \mathfrak{S}_3 \\ x^3 - 6x - 1 & 837 & \mathfrak{S}_3 \\ \end{array}.$$

12 Irreducible polynomials

Proposition 12.1. Suppose $f(x) = a_0 + \cdots + a_d x^d \in \mathbb{Z}[x]$ has a root $p/q \in \mathbb{Q}$ with gcd(p,q) = 1, then $p \mid a_0$ and $q \mid a_d$.

Lecture 24 Tuesday 05/03/19

Example.

- $x^5 5$ has no rational roots. Note that this does not show $x^5 5$ is irreducible over \mathbb{Q} .
- $x^3 2$ is irreducible over \mathbb{O} .

Proof. $f(p/q) = a_0 + \cdots + a_d (p/q)^d = 0$. Multiplying by q^d , $a_0 q^d + \cdots + a_d p^d = 0$. q divides $a_0 q^d + \cdots + a_{d-1} q p^{d-1}$, so $q \mid a_d p^d$. Note that if $c \mid ab$ and $\gcd(c, a) = 1$ then $c \mid b$. Then $\gcd(q, p^d) = 1$, so $q \mid a_d$. Similarly $p \mid a_0$.

Remark. If K is a field then K[x] is a Euclidean domain, in particular unique factorisation holds, in particular K[x] is an integral domain, that is for all $a, b \in K[x]$ if ab = 0, then either a = 0 or b = 0.

Suppose that you want to show $n \in \mathbb{Z}$ is prime. Try to factor by all primes $p < \sqrt{n}$.

Example. 97 is prime because $2 \nmid 97$, $3 \nmid 97$, $5 \nmid 97$, and $7 \nmid 97$.

A question is can such a method work with polynomials $f(x) \in \mathbb{Q}[x]$? Yes but we will not go there because it is not very practical. This method is ok in $\mathbb{F}_p[x]$, where p is prime, and this leads to a useful strategy.

Example. Is $x^5 - 5 \in \mathbb{Q}[x]$ irreducible?

- Is it irreducible in $\mathbb{F}_2[x]$? $x^5 5 \equiv x^5 + 1 \mod 2$ and x = 1 is a root, so not irreducible.
- Is it irreducible in $\mathbb{F}_3[x]$? $x^5 5 \equiv x^5 + 1 \mod 3$ and x = -1 is a root, so not irreducible.
- It is not irreducible in $\mathbb{F}_5[x]$ since $x^5 5 \equiv x^5 \mod 5$.
- Is it irreducible in $\mathbb{F}_7[x]$? (Exercise)

Lemma 12.2 (Gauss' lemma). Suppose $f(x) = a_0 + \cdots + a_d x^d \in \mathbb{Z}[x]$, where $gcd(a_0, \dots, a_d) = 1$, factorises non-trivially in $\mathbb{Q}[x]$. Then it factors non-trivially in $\mathbb{Z}[x]$.

Corollary 12.3. If f(x) is prime in $\mathbb{F}_p[x]$, for some p, then it is prime in $\mathbb{Q}[x]$.

Proof. Otherwise f(x) factors in $\mathbb{F}_p[x]$.

Proof of Lemma 12.2. Suppose f(x) = g(x)h(x) in $\mathbb{Q}[x]$ for $g(x),h(x) \in \mathbb{Q}[x]$. There is a $c \in \mathbb{Z}$ such that

$$cf(x) = q'(x)h'(x), (9)$$

where $g'(x), h'(x) \in \mathbb{Z}[x], g' = \lambda g$, and $h' = \mu h$ for $\lambda, \mu \in \mathbb{Q}$. There is a smallest such c. I claim c = 1. Otherwise there exists p prime such that $p \mid c$, so (9) is

$$0 = \overline{g'}(x) \overline{h'}(x) \in \mathbb{F}_p[x].$$

Either $p \mid g'(x)$, that is p divides all coefficients of g', or $p \mid h'(x)$, a contradiction.

Corollary 12.4 (Eisenstein). $f(x) = a_0 + \cdots + a_d x^d \in \mathbb{Z}[x]$ is irreducible in $\mathbb{Q}[x]$ if there exists p prime such that $p \nmid a_d$ but $p \mid a_i$ for i < d and $p^2 \nmid a_0$.

Proof. Work in $\mathbb{F}_p[x]$. Then $f(x) \equiv a_d x^d \mod p$. If f(x) = h(x) g(x) in $\mathbb{Z}[x]$, then $h(x) \equiv b_k x^k \mod p$ and $g(x) \equiv c_{d-k} x^{d-k} \mod p$, and that means that $h(x) = b_0 + \cdots + b_k x^k$ and $p \mid b_i$ for all i < k and $h(x) = c_0 + \cdots + c_{d-k} x^{d-k}$ and $p \mid c_i$ for all i < d-k. Thus $p^2 \mid a_0 = b_0 c_0$, a contradiction.

Example. $x^5 - 5$ is irreducible by Eisenstein and p = 5.

Lecture 25 is a problem class.

Lecture 26 is a problem class.

Lecture 25 Thursday 07/03/19 Lecture 26 Friday 08/03/19

13 Reduction modulo prime

Theorem 13.1. Let $f(x) \in \mathbb{Z}[x]$ be monic of degree n, $\mathbb{Q} \subset K$ be the splitting field of f, and $G = Gal(K/\mathbb{Q}) \subset \mathfrak{S}_n$. For p prime, denote by \overline{f} as f viewed in $\mathbb{F}_p[x]$. If there exists p such that $\overline{f} \in \mathbb{F}_p[x]$ has n distinct roots in a splitting field and

Lecture 27 Tuesday 12/03/19

$$\overline{f} = \prod_{i=1}^{k} \overline{f_i}(x) \in \mathbb{F}_p[x],$$

with $\overline{f_i} \in \mathbb{F}_p[x]$ irreducible of degree n_i , then there exists $\sigma \in G \subset \mathfrak{S}_n$ of cycle decomposition type $(n_1) \dots (n_k)$.

Plan is to understand the statement and prove it, following Jacobson Basic Algebra I page 301. I want to use Theorem 13.1 to write down an explicit degree five polynomial $f \in \mathbb{Z}[x]$ such that $G = \mathfrak{S}_5$.

Proposition 13.2. Suppose that r is prime and let $G \subset \mathfrak{S}_r$ be a subgroup. If G contains an r-cycle and one transposition, then $G = \mathfrak{S}_r$.

Proof. Say $\sigma = (1 \ 2 \ 3 \ 4 \ 5) \in G$ and $(1 \ 2) \in G$, by relabelling. Then $\sigma^{-i} (1 \ 2) \sigma^i = (1 - i \ 2 - i)$ gives $(1 \ 2), (2 \ 3), (3 \ 4), (4 \ 5) \in G$. A general fact is that for all $n, (1 \ 2), \ldots, (n-1 \ n)$ generate \mathfrak{S}_n , since a < b gives $(a \ b) = (a \ a+1) (a+1 \ b) (a \ a+1)$.

Plan is the following.

- Find irreducible monic degree five $\phi(x) \in \mathbb{F}_2[x]$.
- Find irreducible monic degree two $\psi(x) \in \mathbb{F}_3[x]$.
- Find $f \in \mathbb{Z}[x]$ such that $f \equiv \phi$ in $\mathbb{F}_2[x]$ and $f \equiv x(x-1)(x+1)\psi$ in $\mathbb{F}_3[x]$.

Theorem 13.1 gives $G = \mathfrak{S}_5$.

- The irreducible degree two polynomial in $\mathbb{F}_2[x]$ is $x^2 + x + 1$.
- The irreducible degree two polynomial in $\mathbb{F}_3[x]$ are $x^2 + 1$, and two more.

Claim that $\phi(x) = x^5 + x^3 + 1 \in \mathbb{F}_2[x]$ is irreducible. Need to check that ϕ has no root in \mathbb{F}_2 and ϕ is not divisible by $x^2 + x + 1$. Then $f \equiv x^5 + x^3 + 1$ in $\mathbb{F}_2[x]$ and $f \equiv x(x-1)(x+1)(x^2+1) = x^5 - x$ in $\mathbb{F}_3[x]$. Thus

$$f(x) = x^5 + 3x^3 + 2x + 3.$$

Lecture 28 Thursday 14/03/19

Definition 13.3. The **character** of a monoid to K is $\chi: P \to K$ such that

- $\chi(0) = 1$, and
- for all $p_1, p_2 \in P$, $\chi(p_1 + p_2) = \chi(p_1) \chi(p_2)$.

Remark. If K is a field and A is a set then $\{f:A\to K\}$ is a K-vector space.

Theorem 13.4 (Linear independence of characters, Dedekind independence theorem). Let K be a field and P be a monoid, such as $P = \mathbb{N}$. Any set of distinct non-zero characters

$$\chi_1: P \to K, \qquad \dots, \qquad \chi_n: P \to K, \qquad \dots$$

is linearly independent in the vector space $\{f: P \to K\}$.

Proof. Assume for a contradiction that

$$\lambda_1 x_1 + \dots + \lambda_n x_n = 0. \tag{10}$$

We may assume (10) to be the shortest. We may assume for all i, $\lambda_i \neq 0$. $n \geq 2$, since all are not zero. There exists p such that $\chi_1(p) \neq \chi_2(p)$, so

$$\lambda_1 \chi_1(p) \chi_1 + \dots + \lambda_n \chi_n(p) \chi_n = 0. \tag{11}$$

Because (10) is the shortest then (10) and (11) are multiples of each other, so $\chi_1(p) = \chi_2(p)$, a contradiction.

Theorem 13.5. Let $f(x) \in \mathbb{Z}[x]$ be degree n monic, $\mathbb{Q} \subset K$ be the splitting field of f, $G = Gal(K/\mathbb{Q}) \subset \mathfrak{S}_n$, and $\lambda_1, \ldots, \lambda_n \in K$ be the roots of f(x). Let p be a prime. Denote by \overline{f} image of f mod p. Assume \overline{f} is separable. Let $\mathbb{F}_p \subset F$ be a splitting field for \overline{f} , so \overline{f} has n distinct roots in F. Let $R \subset K$ be the subring generated by the roots of f, so $R = \mathbb{Z}[\lambda_1, \ldots, \lambda_n]$. Then

- 1. there exists a ring homomorphism $\psi: R \to F$,
- 2. if $\psi': R \to F$ is a ring homomorphism then ψ' induces a bijection

$$\phi': \{ roots \ of \ f(x) \ in \ R \} \to \{ roots \ of \ \overline{f}(x) \ in \ F \},$$

3. $\psi': R \to F$ is a ring homomorphism if and only if there exists $\sigma \in G$ such that $\psi' = \psi \circ \sigma$.

Lecture 29 is a test.

Proof.

Lecture 29 Friday 15/03/19 Lecture 30 Tuesday

19/03/19

- Step 1. R is a finitely generated free \mathbb{Z} -module, since R is generated as a \mathbb{Z} -module by $\lambda_1^{e_1}, \ldots, \lambda_n^{e_n}$ where $0 \le e_i < n$.
- Step 2. Let u_1, \ldots, u_d be a basis of R as \mathbb{Z} -module. This is a basis of K as a \mathbb{Q} -vector space, so $d = [K : \mathbb{Q}]$. u_1, \ldots, u_d are clearly linearly dependent over \mathbb{Q} . Next let $\mathbb{Q} \subset \mathbb{Q}R \subset K$. Then $\mathbb{Q}R$ is a subring containing \mathbb{Q} , so $\mathbb{Q}R$ is a field. (Exercise: if $K \subset L$ is finite and $K \subset R \subset L$ then R is a ring gives that R is a field) $\mathbb{Q}R$ contains all roots of f, so $\mathbb{Q}R = K$, that is u_1, \ldots, u_d generate K over \mathbb{Q} .
- Step 3. Proof of 1. Let $\mathfrak{m} \supset \langle p \rangle$ be a maximal ideal in R then $\mathbb{F}_p \subset R/\mathfrak{m}$ is a finite field. $\pi: R \to R/\mathfrak{m}$ gives

$$f(x) = \prod_{i=1}^{n} (x - \lambda_i) \mapsto \overline{f}(x) = \prod_{i=1}^{n} (x - \pi(\lambda_i)),$$

that is $\overline{f}(x)$ splits in $R/\mathfrak{m}[x]$. R is generated by λ_i gives that R/\mathfrak{m} is generated by $\pi(\lambda_i)$, so R/\mathfrak{m} is a splitting field for $\overline{f} \in \mathbb{F}_p[x]$, so $R/\mathfrak{m} \cong F$. Thus

- Step 4. Proof of 2. Easy. $\psi': R \to F$ gives $f(x) \mapsto \overline{f}(x)$, so $\{\lambda_i\} \mapsto \{\pi(\lambda_i)\}$.
- Step 5. Proof of 3. Converse is obvious. Let $\sigma \in G$ and $G = \{\sigma_1, \ldots, \sigma_N\}$ for $rk_{\mathbb{Z}}(R) = N = [K : \mathbb{Q}]$. Consider $\psi_i = \psi \circ \sigma_i : P \to F$ where $P = (R \setminus \{0\}, \times)$ is a semigroup. Suppose $\psi_{N+1} : P \to F$ is another character. If for all $i, \psi_{N+1} \neq \psi_i$, we will derive a contradiction. Let r_1, \ldots, r_N be a basis of R as a \mathbb{Z} -module. Solve for $x_i \in F$, for $i = 1, \ldots, N$, in

$$\left\{ \sum_{i=1}^{N+1} x_i \psi_i \left(r_j \right) = 0 \mid 1 \le j \le N \right\},\,$$

N equations in (N+1) variables in F. Since r_j is a \mathbb{Z} -basis this implies $\sum_{i=1}^{N+1} x_i \psi_j = 0$ and this contradicts Dedekind.

Proof of Theorem 13.1. Let R and $\psi: R \to F$ be as above. Consider $Fr \in Gal(F/\mathbb{F}_p)$ then $\psi' = Fr \circ \psi: R \to F$ is a ring homomorphism. By Theorem 13.5.3 there exists $\sigma \in G$ such that $Fr \circ \psi = \psi \circ \sigma$. Thus

$$\sigma \circlearrowleft \{ \text{roots of } f \text{ in } R \} \xrightarrow{\psi} \{ \text{roots of } \overline{f} \text{ in } F \} \circlearrowleft Fr.$$