The mean for X_2 is n, so in order to have $X_1 - X_2 > c\sqrt{n}$, we need $X_2 < E[X_2] - \frac{c}{2}\sqrt{n} = (1 - \delta)E[X_2]$ for $\delta = \frac{c}{2\sqrt{n}}$. Plugging this into the Chernoff lower bound, the probability this happens is

 $e_{-\frac{1}{2}\delta^2 E[X_2]} = e^{-c^2/4}.$

This can be made smaller than a constant ε by choosing the undetermined constant c large enough.

 $^{^{1}}$ ex646.944.578