МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Нижегородский государственный университет им. Н.И.Лобачевского

СБОРНИК ЗАДАЧ ПО КВАНТОВОЙ МЕХАНИКЕ И КВАНТОВОЙ ЭЛЕКТРОНИКЕ

Практикум

Рекомендовано методической комиссией радиофизического факультета для студентов ННГУ, обучающихся по направлениям подготовки 03.03.03 «Радиофизика», 02.03.02 «Фундаментальная информатика и информационные технологии» и специальности 10.05.02 «Информационная безопасность телекоммуникационных систем»

Нижний Новгород 2018 УДК **539.18**; ББК В22.314 М-29

М-29 Маругин А.В., Савикин А.П., Шарков В.В., Шаркова О.В. СБОРНИК ЗАДАЧ ПО КВАНТОВОЙ МЕХАНИКЕ И КВАНТОВОЙ ЭЛЕКТРОНИКЕ: Практикум. — Нижний Новгород: Нижегородский университет, 2018. - 34 с.

Данная методическая разработка включает в себя подборку задач по основам квантовой механики и квантовой электроники. В каждом из разделов практикума представлены физические задачи, посвященные изучению основных принципов и эффектов квантовой физики, приведены указания по их решению.

Задачник предназначен в качестве основного методического материала для проведения практических занятий со студентами радиофизического факультета, обучающихся по направлениям «Радиофизика», «Фундаментальная информатика и информационные технологии» и специальности «Информационная безопасность телекоммуникационных систем».

Рецензент:

доцент кафедры общей физики радиофизического факультета Менсов С.Н.

Ответственный за выпуск:

зам. председателя методической комиссии радиофизического факультета ННГУ д.ф.-м.н., профессор **Е.З.Грибова**

УДК **539.18** ББК В22.314

© Нижегородский государственный университет им. Н.И. Лобачевского, 2018

Задачи по квантовой механике

1. Волновая функция и операторы.

- **1.1.** Проверить эрмитовость операторов $\hat{p} = -i\hbar \frac{d}{dx}$, $\hat{T} = -\hbar^2 \frac{d^2}{dx^2}$, $\hat{L}_i = \varepsilon_{ijk} x_j p_k$.
- **1.2.** Найти операторы $(AB)^+, [A,B]^+,$ где A,B произвольные операторы.
- **1.3.** Даны две матрицы \hat{a} и \hat{B} , удовлетворяющие соотношениям $\hat{a} \cdot \hat{a} = 0$, $\hat{a} \cdot \hat{a}^+ + \hat{a}^+ \cdot \hat{a} = I$ и $\hat{B} = \hat{a}^+ \cdot \hat{a}$.
 - 1) Показать, что $\hat{B}^2 = \hat{B}$.
 - 2) Предполагая, что матрица \hat{B} невырожденная, найти матрицы \hat{a} и \hat{B} в представлении, в котором матрица \hat{B} диагональна.
 - 3) Существует ли представление, в котором матрица \hat{a} диагональна?
- **1.4.** Для операторов \hat{A} и \hat{A}^+ выполняются следующие соотношения: $\hat{A} \cdot \hat{A}^+ + \hat{A}^+ \cdot \hat{A} = I$; $\hat{A} \cdot \hat{A} = 0$; $\hat{A}^+ \cdot \hat{A}^+ = 0$. Показать, что собственные значения оператора $\hat{A}^+ \cdot \hat{A}$ есть 0 или 1.
- **1.5.** Волновая функция частицы $\psi(x, y, z) = \delta(x a)\delta(y b)\delta(z)$.
 - 1) Определены ли в этом состоянии координата, энергия и импульс частицы?
 - 2) Найти распределение вероятностей для импульса.
 - 3) Чему равны средние значения импульса и его дисперсия?
 - 4) Чему равно среднее значение кинетической энергии?
- **1.6.** Найти в р-представлении волновую функцию, описывающую состояние свободной частицы с заданной кинетической энергией.
- **1.7.** На частицу массы m действует поле тяготения Земли. Напишите оператор энергии частицы. Какой энергетический спектр у этой частицы непрерывный или дискретный?
- **1.8.** Для частицы в свободном пространстве известно, что в момент времени $t=t_0$ $p_x=p_0$, $y=y_0$ и z=0. Спин частицы равен 1/2. Написать ее волновую функцию в этот момент времени.

2. Движение квантовой частицы в потенциальных полях.

- **2.1.** Электрон находится в одномерной прямоугольной потенциальной яме с бесконечно высокими стенками. Ширина ямы равна $a = 4 \cdot 10^{-10} \, M$. Найти:
- 1) с помощью соотношения неопределённостей минимально возможную энергию;
 - 2) энергетический спектр электрона в стационарных состояниях;
 - 3) число энергетических уровней в интервале (E, E + dE) и длину волны фотона, испускаемого при переходе $E_4 \to E_2$.
- **2.2.** Для частицы в одномерной прямоугольной потенциальной яме с абсолютно непроницаемыми стенками и шириной a
 - 1) найти нормированные волновые функции стационарных состояний;
- 2) вычислить вероятность её нахождения с наименьшей энергией в области $\frac{1}{4}a \le x \le \frac{3}{4}a$;
 - 3) вычислить $\overline{(\Delta x)^2}, \overline{(\Delta p_x)^2}$ и получить соотношение неопределённостей для координаты x и импульса p_x .
- **2.3.** В одномерной прямоугольной потенциальной яме с абсолютно непроницаемыми стенками и шириной a находится электрон, состояние которого описывается волновой функцией $\psi(x) = A \sin^2 \frac{\pi x}{a}$.

Определить:

- 1) нормировочную постоянную A;
- 2) среднее значение кинетической энергии электрона;
- 3) вероятность пребывания электрона в основном состоянии.
- **2.4.** Частица массой m_0 и энергией Е падает на прямоугольный барьер

$$U(x) = \begin{cases} U_0, 0 < x < a, \\ 0, x < 0; x > a. \end{cases}$$

- 1) Найти для случая $E > U_0$ коэффициенты прозрачности D и отражения R;
- 2) вычислить коэффициент прозрачности D при $E \to U_0$;
- 3) определить первые два значения энергии E, при которых частица (электрон) беспрепятственно проходит через барьер, если $U_0 = 15 \mathfrak{I}B$ и $a = 10^{-10} \, \mathrm{M}$.
- **2.5.** Частица массы m движется в одномерном потенциальном поле $U(x) = \frac{kx^2}{2}$ (гармонический осциллятор). Найти энергию частицы в основном состоянии с помощью
 - 1) соотношения неопределённостей ($\Delta x \cdot \Delta p_x \approx \frac{\hbar}{2}$);
 - 2) уравнения Шрёдингера, если волновая функция частицы в этом состоянии $\Psi(x) = Ae^{-\alpha x^2}$, где A нормировочный коэффициент, $\alpha = const > 0$;
 - 3) в условиях предыдущей задачи оценить кинетическую энергию осциллятора. Вычислить среднее значение его потенциальной энергии.
- **2.6.** Стационарное состояние линейного гармонического осциллятора с частотой ω и массой m описывается волновой функцией $\Psi(x) = Ae^{\frac{-\alpha x^2}{2}}$, где $\alpha = \frac{m\omega}{\hbar}$. Вычислить
 - 1) нормировочный коэффициент А;
 - 2) средние значения координаты \bar{x} и импульса $\overline{p_x}$;
 - 3) средние квадратичные отклонения $\overline{(\Delta x)^2}$ и $\overline{(\Delta p_x)^2}$, проверив соотношение неопределённостей для координаты х и импульса p_x .
- **2.7.** Линейный гармонический осциллятор с частотой ω , массой m и зарядом е помещён в постоянное однородное электрическое поле \vec{E} .

- 1) Найти потенциальную энергию заряженного осциллятора и записать стационарное уравнение Шрёдингера;
- 2) какую новую переменную следует ввести, чтобы преобразовать стационарное уравнение Шрёдингера к виду, известному для случая отсутствия электрического поля?
- 3) Найти энергетический спектр и волновые функции стационарных состояний.
- **2.8.** Стационарное состояние линейного гармонического осциллятора с частотой ω и массой m описывается волновой функцией $\Psi(x) = Ae^{-\alpha x^2}$.
 - 1) Найти значение параметра α и энергию E осциллятора;
 - 2) вычислить наиболее вероятное значение координаты х;
 - 3) изобразить примерный график распределения плотности вероятности $\varpi(x)$ различных значений x в этом состоянии.
- **2.9.** Линейный гармонический осциллятор находится в стационарном состоянии с наименьшей энергией. Найти:
 - 1) наиболее вероятное значение координаты $x_{\it sep}$ у осциллятора;
 - 2) значения координаты $x_{\kappa n}$, соответствующие границам классической области движения осциллятора; изобразить примерный график распределения плотности вероятности $\varpi(x)$ различных значений х в этом состоянии;
 - 3) вероятность пребывания осциллятора вне классических границ.
- **2.10.** Используя стационарное уравнение Шредингера, рассмотреть вопрос о непрерывности волновой функции в точке x = 0, в которой потенциальная энергия частицы U(x) а) изменяется на конечное значение, б) $U(x) = \alpha \delta(x)$.
- **2.11.** Найти коэффициент отражения и коэффициент прохождения частицы через потенциальный барьер $V(x) = \alpha \delta(x)$.

2.12. Найти уровни энергии и волновые функции частицы в потенциале $V(x) = -\alpha \delta(x)$.

3. Орбитальный момент. Сферическая система координат.

- **3.1.** Система находится в свободном пространстве и имеет орбитальный момент импульса $L^2 = 2\hbar^2$. Известно также, что вероятность обнаружить любое значение проекции L_z одинакова и равна 1/3. Записать волновую функцию этого состояния. (Состояние "чистое").
- **3.2.** При измерении проекции момента импульса L_z в некотором состоянии получили среднее значение $\langle L_z \rangle = \hbar/2$. Пользуясь шаровыми функциями $Y_{lm}(\theta, \varphi)$, напишите хотя бы одну волновую функцию, которая описывала бы такое состояние.
- **3.3.** Волновая функция некоторой системы в сферических координатах определяется выражением (А нормировочная константа):

$$\Psi(r,\theta,\varphi) = AR(r)\sin\theta\cos\varphi$$
, причем $\int\limits_0^\infty R^2(r)\cdot r^2dr = 1$. Какие значения квадрата момента импульса и его проекции на ось z могут быть измерены в этом состоянии?

- **3.4.** Волновая функция некоторой системы в сферических координатах определяется выражением (A- нормировочная константа): $\Psi(r,\theta,\varphi) = AR(r)\sin^2\theta\sin 2\varphi \ , \quad \text{причем } \int_0^\infty R^2(r)r^2dr = 1. \text{ Какие}$ значения квадрата момента импульса и его проекции на ось z могут быть измерены в этом состоянии и с какой вероятностью?
- **3.5.** Волновая функция некоторой системы в сферических координатах определяется выражением $\Psi(r,\theta,\varphi) = \frac{1}{\sqrt{\pi}} R(r) Y(\theta) \sin \varphi$. Какие

значения проекции момента импульса на ось z могут быть измерены в этом состоянии и с какой вероятностью?

- 3.6. Для частицы, движущейся в центрально-симметричном поле
 - 1) получить выражение оператора \hat{L}_z в сферических координатах, выбрав ось OZ в качестве полярной оси;
 - 2) определите собственные функции и собственные значения оператора \hat{L}_z , найденного в предыдущей задаче.
 - 3) Частица находится в состоянии, описываемом волновой функцией $\Psi(\varphi) = \frac{1}{\sqrt{\pi}} \sin \varphi \text{, где } \varphi \text{--угол вращения вокруг оси } OZ.$ Определите, с какой вероятностью измерение даст различные значения проекций момента импульса L_z .
- 3.7. Для оператора проекции момента импульса \hat{L}_z
 - 1) непосредственными вычислениями убедиться в ортогональности собственных функций, принадлежащих различным собственным значениям; вычислить матричные элементы и показать, что в своём собственном представлении оператор \hat{L}_z диагонален;
 - 2) определить собственные значения и их вероятности для системы, находящейся в состоянии $\Psi(\varphi) = A(1 + \cos \varphi)^2$;
- 3) в состоянии $\Psi(r,\theta,\varphi)$ реализуется его определённое собственное значение. Показать, что средние значения \overline{L}_x и \overline{L}_y в этом состоянии равны 0.
- **3.8.** Частица с массой M движется в свободном трехмерном пространстве с моментом количества движения, равным 0 (S-состояние). Найти энергетический спектр и нормированные функции стационарных состояний. Вычислить средний импульс в стационарном состоянии.

- **3.9.** Частица с массой M движется по окружности радиуса R. Найти волновую функцию этого стационарного состояния и среднее значение проекции момента количества движения.
- **3.10.** Найдите энергетический спектр и волновые функции жесткого плоского ротатора.
- 3.11. Найдите вращательный спектр двухатомной молекулы.

Указания: Выразить вращательную энергию симметричного волчка через полный момент и проекцию орбитального момента на ось вращения.

3.12. Напишите соотношение неопределенностей для различных проекций орбитального момента количества движения.

4. Спиновый момент квантовой частицы.

- **4.1.** Напишите соотношение неопределенностей для различных проекций спинового момента количества движения в состоянии $\bar{S} = \frac{1}{\sqrt{2}} \binom{i}{1}.$
- 4.2. Напишите соотношение неопределенностей для проекций спинового момента количества движения в состоянии $\overset{\leftarrow}{S}(s_z) = \overset{\leftarrow}{\alpha}$.
- **4.3.** Запишите матрицы $\hat{\vec{S}}^2$ и \hat{S}_z в S^2 , S_z представлении для частицы со спином, равным единице.
- **4.4.** Найти уровни энергии и стационарные состояния частицы со спином $\frac{1}{2}$ в постоянном магнитном поле, направленном по z. Пространственное движение частицы не учитывать.
- **4.5.** В S_z представлении найти:
 - 1) оператор проекции спина на ось $z'(\theta, \varphi)$;
 - 2) собственные функции и собственные значения оператора $\hat{S}_{z'}$;

- 3) вероятность получить при измерении проекции спина на ось z' значения $+\frac{\hbar}{2}$ и $-\frac{\hbar}{2}$, если первоначально частица находилась в состоянии α (или β).
- **4.6.** Какие из спиновых функций в системе из двух электронов: $\frac{1}{\sqrt{2}}\alpha_1(\alpha_2+\beta_2); \ \frac{1}{\sqrt{2}}(\alpha_1\beta_2+\beta_1\alpha_2); \ \frac{1}{\sqrt{2}}(\alpha_1\beta_2-\beta_1\alpha_2); \ \alpha_1\alpha_2; \ \alpha_1\beta_2 \ \text{и} \ \beta_1\beta_2 \ \text{-}$ являются собственными функциями операторов $\hat{S}_z=\hat{s}_{1z}+\hat{s}_{2z}$ и $\hat{S}^2=(\vec{s}_1+\vec{s}_2)^2$. Определить средние значения S_z и S^2 в состояниях, описываемых собственными функциями операторов \hat{S}_z и \hat{S}^2 .
- **4.7.** Спиновое состояние частицы со спином ½ описывается нормированной волновой функцией вида $\binom{a}{b}$. Чему равно среднее значение проекции спина на ось x в этом состоянии?
 - **4.8.** Пучок частиц в опыте Штерна-Герлаха распространяется вдоль оси X. Состояние каждой отдельной частицы описывается следующими функциями: $\psi(s_z,t=0)=\frac{1}{\sqrt{2}}\binom{i}{-i}, \ \psi(s_z,t=0)=\frac{1}{\sqrt{2}}\binom{1}{0}, \ \psi(s_z,t=0)=\frac{1}{\sqrt{2}}\binom{1}{i}.$ Определить количество пучков и их интенсивность после прохождения магнитного поля, градиент которого направлен по оси Y.

5. Атом водорода. Радиальные зависимости для волновой функции.

- **5.1.** Частица массой m_0 с нулевым орбитальным моментом (s-состояние) находится в сферически-симметричном потенциальном ящике радиуса r_0 с абсолютно непроницаемыми стенками. Определить:
 - 1) волновые функции стационарных состояний;

- 2) наиболее вероятное значение расстояния r_{eep} и вероятность нахождения частицы в области $r \le r_{eep}$;
- 3) энергетический спектр частицы. Используя соотношение неопределённостей $\overline{(\Delta r)^2}\cdot\overline{(\Delta p)^2}\geq \frac{\hbar^2}{4}$, подтвердить вывод о том, что $E_{\min}=E_1\neq 0$.
- 5.2. Для атома водорода в основном состоянии определить:
 - 1) энергию ионизации;
- 2) как изменятся с учётом движения ядра выражения энергии ионизации и постоянной Ридберга;
- 3) напряжённость $\vec{E}(\vec{r})$ электрического поля, созданного электронным облаком, если волновая функция электрона $\Psi_{100}(\vec{r}) = \frac{1}{\sqrt{\pi a_0^3}} e^{-\frac{r}{a_0}}$, где a_0 -первый боровский радиус.

5.3. В атоме водорода:

- 1) с помощью соотношения неопределённостей $\Delta r \cdot \Delta p \approx \hbar$ оценить минимально возможную энергию электрона и соответствующее эффективное расстояние его от ядра;
- 2) волновая функция электрона в основном состоянии имеет вид $\Psi(r) = Ae^{\frac{-r}{a_0}}, \ \text{где} \ a_0 \ \text{-} \ \text{первый боровский радиус.} \ \text{Определить наиболее}$ вероятное расстояние между электроном и ядром;
- 3) в условиях предыдущей задачи вычислить среднее значение потенциальной энергии электрона в поле ядра.
- **5.4.** Электрон в атоме водорода находится в стационарном состоянии, описываемом сферически симметричной волновой функцией $\Psi(r) = A(1+ar)e^{\alpha r}$, где A, α, a некоторые постоянные.
 - 1) С помощью уравнения Шрёдингера найти значение постоянных α , a и энергию E электрона.

- 2) Определить, в каком квантовом состоянии находится электрон. Какова кратность вырождения энергетического уровня.
- 3) Вычислить среднее расстояние \bar{r} электрона от ядра.
- 5.5. Для основного состояния атома водорода вычислить:
 - 1) наиболее вероятное расстояние r_{eep} электрона от ядра и вероятность пребывания электрона в области $r \le r_{eep}$;
 - 2) вероятность нахождения электрона вне классических границ поля;
 - 3) средний электростатический потенциал поля, создаваемого электронным облаком в центре атома. Оценить среднюю энергию взаимодействия электронного облака с ядром.
- **5.6.** Электрон в атоме водорода находится в состоянии |*n*, *l*, *m*>. Чему равны средние значения проекций момента импульса? Написать соотношение неопределенностей для различных проекций момента количества движения в этом состоянии.
- **5.7.** Электрон в атоме водорода находится в состоянии $\Psi(\vec{r}) = \frac{1}{\sqrt{\pi a_0^3}} e^{-\frac{r}{a_0}}$, Вычислить среднее кинетической энергии электрона.
- 6. Вычисление средних значений и дисперсий физических величин.
- **6.1.** Волновая функция состояния квантовой частицы имеет вид $\Psi(x) = \varphi(x)e^{\frac{ip_0x}{h}}, \text{ где } \varphi(x) \text{ действительная функция, нормированная к единице. Найти среднее значение импульса частицы.}$
- **6.2.** Свободная частица описывается волновой функцией $\Psi(x) = A$. Sin $(\pi x/a)$ при $|x| \le a$ и $\Psi(x)=0$ при |x| > a. Найдите нормированное распределение вероятностей по импульсам. Движение считать одномерным.
- **6.3.** Свободная частица имеет равномерное распределение вероятностей по импульсам в интервале значений $(-P_o \div + P_o)$: C(p) = C, если $|p| \le 1$

- p_o и C(p) = 0, если $|p| > p_o$. Найдите ее нормированную волновую функцию. Движение считать одномерным.
- **6.4.** Свободная частица массы m находится в стационарном состоянии. Найти распределение вероятностей для импульса, средний импульс и дисперсию импульса (движение считать одномерным).
- **6.5.** Спиновая волновая функция электрона равна $\bar{S} = \frac{1}{\sqrt{2}} \binom{i}{1}$. Найти среднее значение проекций спина S_x , S_y , S_z .
- **6.6.** Вычислите среднее значение $\langle S_x \rangle$ в состоянии электрона $S(s_z) = \alpha$
- **6.7.** Для частицы массой m_0 , находящейся на n-ом энергетическом уровне в одномерной прямоугольной потенциальной яме с абсолютно непроницаемыми стенками вычислить средние значения \overline{x} и $\overline{p_x}$; определить средние значения квадрата импульса $\overline{p_x^2}$ и кинетической энергии $\overline{E_k}$; получить распределение вероятностей по импульсам
- **6.8.** Состояние частицы описывается функцией $\psi(x,y,z) = \frac{1}{2\pi\hbar} \exp\left(\frac{ip_0 x}{\hbar}\right) \delta(y).$

Найти распределение вероятностей для проекции импульсов и координат частицы. Вычислить средние значения и дисперсии импульса и координат.

- **6.9.** Волновая функция частицы $\Psi(r,\theta,\varphi) = R(r)Y_{l,m}(\theta,\varphi)$.Найдите среднее значение проекции момента количества движения на ось X.
- **6.10.** Плоский жесткий ротатор находится в состоянии $\Psi(\varphi) = \frac{1}{\sqrt{\pi}} \sin(k\varphi)$ где k целое число. Найти среднее значение проекции момента ротатора L_z (z ось вращения).

- **6.11.** Волновая функция некоторой системы в сферических координатах определяется выражением (А нормировочная константа): $\Psi(r,\theta,\phi) = AR(r)\sin\theta \cdot cos\phi \text{, причем } \int\limits_{0}^{\infty} R^{2}(r) \cdot r^{2}dr = 1 \text{. Чему равно}$ среднее значение проекции момента импульса L_{z} в этом состоянии?
- **6.12.** Волновая функция некоторой системы в сферических координатах определяется выражением $\Psi(r,\theta,\varphi) = \frac{1}{\sqrt{\pi}} R(r) Y(\theta) \sin \varphi$. Найти среднее значение и дисперсию проекции момента импульса на ось z в этом состоянии?
- **6.13.** Найти дисперсию проекции спина на ось y в состоянии $\bar{S} = \frac{1}{\sqrt{2}} \begin{pmatrix} i \\ -1 \end{pmatrix}$
- **6.14.** Твердое тело вращается относительно оси *ог* и находится в состоянии с волновой функцией $\psi(\varphi) = \frac{1}{\sqrt{\pi}} \sin \varphi$. Найти среднее значение и дисперсию энергии вращения и проекции момента импульса L_z .
- **6.15.** Частица с зарядом е (спин равен 0) описывается волновой функцией $\Psi(r,\theta,\phi) = \frac{1}{\sqrt{2}} R_{21}(r) \Big[Y_{1,1}(\theta,\phi) Y_{1,-1}(\theta,\phi) \Big] \quad \text{(Y-орбиталь)}. \quad \text{Найти средние}$ значения электрического и магнитного моментов этой частицы.

Указание: использовать соотношения для операторов повышения \hat{L}_+ и понижения \hat{L}_- орбитального момента частицы и условие ортогональности сферических полиномов.

- **6.16.** Электрон в атоме водорода находится в состоянии |n, l, m>. Найти средние значения z и p_z в этом состоянии.
 - **6.17.** Электрон в атоме водорода находится в состоянии |n, l, m>. Найти средние значения x и p_x в этом состоянии.

7. Стационарная теория возмущений.

- **7.1.** На систему с двумя энергетическими уровнями $E_I^{(0)}$ и $E_2^{(0)}$ наложено однородное электрическое поле, энергия взаимодействия с которым $\hat{V} = -\hat{\vec{d}} \cdot \vec{E}$. Определить уровни энергии системы в этом поле, если $d_{II} = d_{22} = 0$.
- **7.2.** Применяя стационарную теорию возмущений, найти поправки к уровням энергии квантовой частицы в потенциальной яме с бесконечно-высокими стенками, связанные с наличием в центре ямы δ образного потенциального барьера:
 - $V(x) = \alpha \delta(x a/2), 0 < x < a, \alpha > 0; U(x) = \infty, x > a, x < 0.$
- **7.3.** К квантовому кольцу, расположенному в плоскости (x,y), приложено постоянное электрическое поле ε , направленное по оси x, энергия взаимодействия с которым описывается оператором $V(\phi) = -e\varepsilon x = -e\varepsilon r_o \cos \phi$. Здесь e- заряд частицы, запертой на кольце радиуса r_o . В рамках теории возмущений вычислить сдвиг энергетических уровней, а также изменение волновой функции данной частицы.
- **7.4.** На одномерный гармонический осциллятор с единичным зарядом и массой M действует однородное постоянное электрическое поле с напряженностью $\vec{E} = E_0 \vec{x}_0$. Вычислить поправки к уровням энергии в первом и во втором порядке теории возмущений.
- **7.5.** Как изменятся уровни энергии осциллятора при учете ангармонизма колебаний, описываемого возмущением вида $V(x) = \lambda x^3 + \zeta x^4$? Расчет провести с точностью до второго порядка по малому параметру λ и с точностью до первого порядка по малому параметру ζ . Оценить пределы применимости полученных результатов.
- **7.6.** В первом порядке теории возмущений рассчитайте поправку к основному энергетическому уровню заряженной частицы в

- потенциальном ящике под действием однородного статического электрического поля.
- 7.7. На частицу в одномерной бесконечно глубокой потенциальной яме шириной a наложено возмущение вида $V(x) = V_0 \sin^2\left(\frac{\pi x}{a}\right)$. В первом порядке теории возмущений найти сдвиг энергии основного состояния $\Psi_1(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{\pi x}{a}\right)$.
 - **7.8.** В первом порядке теории возмущений рассчитайте поправку к основному уровню энергии электрона в атоме водорода при наложении на атом однородного статического электрического поля.
 - **7.9.** Рассмотреть эффект Штарка (расщепление энергетических уровней во внешнем однородном электрическом поле, направленном по оси z) в атоме водорода для состояния с главным квантовым числом n=2. Полностью ли при этом снимается вырождение энергетических уровней электрона?
 - **7.10.**Найти расщепление энергетических уровней атома водорода в 1S-состоянии за счет взаимодействия магнитных моментов электрона и ядра, полагая оператор возмущения равным $V = A(\vec{\sigma}^e \cdot \vec{\sigma}^p)$, где $\vec{\sigma}^e, \vec{\sigma}^p$ матрицы Паули электрона и протона, A- постоянная размерности энергии. Какова кратность вырождения каждого из уровней?
 - **7.11.** Нормальный эффект Зеемана. Бесспиновая частица находится в сферически симметричном поле, уровни энергии E_{nl} . В первом порядке теории возмущений найти сдвиг энергетических уровней частицы и ее волновую функцию при наложении внешнего магнитного поля, направленного по z.

8. Нестационарная теория возмущений.

- **8.1.** Частица с зарядом е и массой М находится в свободном одномерном пространстве, имея в момент времени t=0 волновую функцию вида 1) $\psi(x,0) = \frac{1}{\sqrt{2\pi\hbar}} \exp(\frac{ip_0x}{\hbar}) \quad \text{или 2}) \quad \psi(x,0) = \frac{1}{\sqrt{\pi\hbar}} \sin(\frac{p_0x}{\hbar}). \quad \text{Какое из этих состояний является стационарным? Найти волновую функцию и среднюю плотность электрического тока данной частицы в момент t>0.$
- **8.2.** Волновая функция электрона в атоме водорода в начальный момент времени t=0 имеет вид: $\Psi(r,\theta,\varphi)=\frac{1}{\sqrt{2}}\big[R_{10}(r)Y_{00}(\theta,\varphi)+R_{21}(r)Y_{11}(\theta,\varphi)\big]$. Записать волновую функцию для t>0. Будет ли излучать атом? На какой частоте?
- **8.3.** В начальный момент времени t=0 система находится в состоянии $\psi_1^{(0)}$, относящемся к двукратно вырожденному энергетическому уровню E_0 . Определить вероятность того, что в момент t>0 система будет находиться в состоянии $\psi_2^{(0)}$ при условии, что переход возможен под действием постоянного возмущения $V_{12}=V_{21}=V_0$.

Указание: Решить задачу в рамках нестационарного уравнения Шредингера, представив волновую функцию системы в виде суперпозиции $\psi_1^{(0)}$ и $\psi_2^{(0)}$.

- **8.4.** Вычислить вероятность возбуждения заряженного гармонического осциллятора электрическим импульсом вида $E(t) = A_0 \frac{1}{\sqrt{\pi \tau}} \exp\left(-\frac{t^2}{\tau^2}\right)$. Считать, что осциллятор до включения поля находился в основном состоянии.
 - **8.5.** На заряженную частицу с массой m и зарядом е, движущуюся в свободном пространстве, действует электромагнитный импульс:

$$\vec{E} = \begin{cases} E_0 \vec{i}_0 \sin \omega t; 0 \leq t \leq \tau \\ 0; t \leq 0 \\ 0; t \geq \tau \end{cases}$$
. В первом порядке теории возмущений найдите

вероятность перехода к моменту времени $t \ge 0$ частицы из состояния с

импульсом p_0 в состояние с импульсом p (движение считать одномерным).

- **8.6.** Заряженная частица (заряд е) находится в одномерном потенциальном ящике размером а в состоянии $\psi(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{\pi nx}{a}\right)$. На
 - частицу действует электромагнитный импульс $\vec{E} = \begin{cases} E_0 \vec{i_0} \sin \omega t; 0 \leq t \leq \tau \\ 0; t \leq 0 \\ 0; t \geq \tau \end{cases}$. В

первом порядке теории возмущений найдите к моменту времени t > 0 вероятность перехода с уровня n на уровень m (n, m - целые числа).

8.7. Плоский жесткий заряженный (заряд e) ротатор находится в состоянии $\Psi(\varphi) = \frac{1}{\sqrt{\pi}} \sin(k\varphi)$ где k – целое число. В момент времени t на

него накладывается магнитное поле
$$\vec{H} = \begin{cases} H_0 \vec{i}_0 \sin \omega t; 0 \leq t \leq \tau \\ 0; t \leq 0 \end{cases}$$
 где \vec{i}^0 - $0; t \geq \tau$

единичный вектор вдоль оси вращения на (ось z). В первом порядке теории возмущений найдите к моменту времени t > 0 вероятность перехода ротатора с уровня n на уровень m.

Задачи по квантовой электронике

9. Уравнение Шредингера для двухуровневой системы.

- **9.1.** Обосновать возможность применения теории возмущения к модели взаимодействия атома водорода с возбуждающим его на длине волны $\lambda = 121 \ \text{нм}$ электрическим полем с интенсивностью $1 \ \kappa Bm/cm^2$
- **9.2.** Вычислить частоту Раби осцилляций при точном резонансе для перехода с 1 на 2 энергетический уровень идеальной одномерной квантовой ямы. Ширина ямы 10 нм, интенсивность внешнего поля 10 Вт/см².

Ответ: 3·10¹⁰ рад/с.

- **9.3.** Для двухуровневой системы получить временную зависимость для вероятности нахождения электрона на уровнях от времени под действием внешнего переменного электрического поля на частоте $\omega = \omega_{12} + \delta \omega$, где ω_{12} частота перехода, $\delta \omega$ отстройка.
- **9.4.** Двухуровневая система с частотой перехода ω_{12} находится под воздействием электромагнитного поля с напряженностью $E = E_0 \cdot cos$ ωt , где $\omega \approx \omega_{12}$ (резонансное поле). В момент включения поля квантовая система находилась на нижнем энергетическом уровне E_1 . Найти волновую функцию системы в произвольный момент времени t>0 и определить вероятность перехода квантовой системы к моменту времени t_0 на верхний уровень.

Указание: Использовать исходную систему уравнений для коэффициентов разложения волновой функции ($\Psi = c_1 \Psi_1 + c_2 \Psi_2$), возникающую из нестационарного уравнения Шредингера подстановкой Ψ в виде суперпозиции состояний. Затем свести систему к единому дифференциальному уравнению второго порядка, для определения констант использовать начальное условие.

9.5. На двухуровневую систему, находящуюся в верхнем состоянии, действует переменное поле на частоте перехода в течение трех четвертей периода осцилляций Раби. Какова будет величина и зависимость от времени дипольного момента перехода после выключения поля в этом случае. Что изменится, если длительность внешнего электрического импульса имеет произвольное значение τ_0 ?

10. <u>Квантовая теория излучения и поглощения. Матричные элементы</u> оператора взаимодействия. Правила отбора.

10.1. Можно ли одновременно измерить напряженности квантованных электрического и магнитного полей? Ответ обосновать расчетом.

Указание: Использовать разложение напряженностей электрического и магнитного полей по модам вектор-потенциала, а также условия ортогональности мод.

- **10.2.** Покажите, что в рамках кулоновской калибровки поля операторы канонического импульса заряженной частицы \hat{p}_k и оператор вектор-потенциала $\hat{\vec{A}}(r_k)$ перестановочны между собой.
- 10.3. На систему возбужденных двухуровневых атомов с дипольным моментом d_{ba} , направленным по оси OZ, падает внешнее резонансное ($w = w_{ba}$) электромагнитное поле, состоящее из двух плоских волн. Эти плоские волны имеют одинаковую интенсивность I, но распространяются под углом 90° друг к другу (по осям OZ и OY). Как происходит взаимодействие этих волн с диполей? Какова системой вероятность электродипольного излучения такой группы возбужденных атомов в направлении под углом 45° между падающими внешними волнами?

- **10.4.** Покажите, что однофотонные переходы между уровнями *2S* и *1S* атома водорода запрещены в электродипольном, магнитодипольном и электроквадрупольном приближениях.
- **10.5.** Можно ли получить индуцированное (лазерное) излучение в линейном гармоническом осцилляторе (ансамбль одинаковых частиц) в электродипольном приближении? Ответ обосновать расчетом.
- **10.6.** Используя ортогональность шаровых (сферических) функций Y_{lm_l} , покажите, что правила отбора для магнитодипольного (орбитального) излучения атома сводятся к соотношениям: $\Delta l = 0$, $\Delta m_l = 0, \pm 1$, $\Delta S = 0$, $\Delta m_s = 0$, $n_a = n_b$.

Указание: Использовать представление волновой функции электрона в сферической системе координат и условия ортогональности сферических и спиновых функций.

10.7. Используя ортогональность спиновых функций $\chi_{s,ms}$, покажите, что правила отбора для магнитодипольного (спинового) излучения сводятся к соотношениям:

$$\Delta S=0$$
, $\Delta m_l=0$, $\Delta l=0$, $\Delta m_s=0,\pm 1$, $n_a=n_b$.

10.8. Сформулировать правила отбора для электродипольных переходов в квантовом гармоническом осцилляторе.

Указание: Использовать свойство полиномов Чебышева-Эрмита $\Psi_n(x)$:

$$\xi\cdot\Psi_n(\xi)=\sqrt{\frac{n}{2}}\cdot\Psi_{n-1}(\xi)+\sqrt{\frac{n+1}{2}}\cdot\Psi_{n+1}(\xi)\,,\quad \text{где}\quad \xi=x/x_0\quad -\quad \text{безразмерная}\quad \kappa oopдината,$$

$$x_0=\sqrt{\frac{\hbar}{m\omega_0}}\;(m\;\;u\;\omega_0-\text{масса}\;u\;\text{частота}\;\text{осциллятора}\;\text{соответственно}).$$

10.9. Для идеальной одномерной квантовой ямы (потенциальный двусторонний барьер с бесконечно высокими стенками) указать незапрещенные в электродипольном приближении переходы. Вычислить матричные элемент оператора электродипольного

взаимодействия для перехода с 1-ого на 2-ой энергетические уровни для ямы с шириной $50 \ нм$.

10.10. Для электрона в атоме водорода, находящегося в *3P* возбуждённом состоянии указать переход при электродипольном взаимодействии с максимальным значением частоты. Найти матричный элемент оператора взаимодействия для этого перехода.

Указание: Учесть правила отбора для электродипольного перехода. Выражение для радиальной части волновой функции начального состояния имеет вид:

$$R_{31}(r) = \frac{4}{27\sqrt{6}} \cdot \exp(-\frac{r}{3r_B}) \cdot \frac{r}{r_B} \cdot (1 - \frac{r}{6r_B})$$

- **10.11.** Атом находится в поле теплового электромагнитного излучения. Напишите выражения для вероятности индуцированного излучения и поглощения для такого атома.
- **10.12.** Для двухуровневого парамагнетика со спином 1/2, помещенного в систему из постоянного \vec{H}_0 и резонансного переменного магнитных полей \vec{H}_{\sim} , найти матричный элемент перехода и показать, что его значение равно 0 при $\vec{H}_{\sim} \parallel \vec{H}_0$.

11. Уширение спектральных линий. Ширина линии излучения.

- **11.1.** Известно, что время жизни электрона в возбужденном состоянии двухуровневой системы равно τ_0 . Получить выражение для наблюдаемой на данном переходе спектральной формы линии люминесценции.
- **11.2.** Рассчитать ширину линии для 2P-1S перехода (случай $0 \Rightarrow 0$ перехода), в атоме водорода.

Ответ:
$$A_{sp}=\Delta\omega=(2/3)^8\cdot \frac{q^8}{r_Bc^3\hbar^4}$$
, где q –заряд электрона, r_B –боровский радиус. $\Delta\omega\sim 8\cdot 10^8$ рад/с

- **11.3.** Для выбранного конкретного физического механизма получить спектральное выражение для неоднородно уширенного контура спектральной линии. Оценить её ширину для типичных параметров одной из возможных неоднородных лазерных сред.
- **11.4.** Типичное время жизни для разрешённого электродипольного перехода в видимой части оптического спектра составляет *10 нс*. Что можно сказать об оценке значения для естественной ширины линии активной среды для ультрафиолетового лазера, излучающего на длине волны *100 нм*.
- 11.5. Доплеровская ширина линии в двухуровневом газе $500~M\Gamma u$. Оценка времени жизни верхнего уровня $\sim 10^{-8}~c$. Предложить метод (возможную оптическую схему) измерения ширины внутридоплеровского однородного лоренцевского контура.
- **11.6.** Оценить ширину лэмбовского провала для *He-Ne* лазера и сравнить полученное значение с доплеровской шириной линии усиления. Использовать для оценки типичные количественные параметры такого излучателя.
- 11.7. Определить естественную, доплеровскую и столкновительную ширину линии для перехода неона $3S_2 \rightarrow 2P_4$ (λ =632,8 нм) в He-Ne разряде при давлениях $P_{He}=1$ mop, $P_{Ne}=0,2$ mop и температуре смеси $T=400^{\circ}K$. Остальные параметры: времена жизни $\tau(3S_2)=60$ нс, $\tau(2P_4)=20$ нс, эффективное сечение молекулы неона $S_{9\phi\phi}=6\cdot10^{\circ}$ 18 см².

11.8. Что является доминирующим механизмом уширения линии в поглощающей ячейке SF_6 , облучаемого CO_2 -лазером (λ = 10,6 мкм, мощность 50 Вт), если лазерный пучок в фокусе имеет диаметр 0,5 мм, сечение молекулы $SF_6 \sim 5 \cdot 10^{-14} \ cm^2$, температура ячейки T=300°K, давление $P=100 \ mop$, эффективное сечение взаимодействия $\sigma=3\cdot 10^{-17} \ cm^2$

Ответ: Сравнение доплеровской, столкновительной, естественной линий и полевого уширения показывает, что доминирующий вклад вносит столкновительный эффект.

11.9. Найти ширину линии спонтанного излучения квантового гармонического осциллятора при переходе E_1 - E_0 . Можно ли зарегистрировать это значение экспериментально при облучении такой среды внешним полем на частоте перехода?

Ответ: $\Delta \omega = \frac{2}{3} \frac{\omega^2 q^2}{mc^3}$. Использовать для расчетов прямые вычисления матричных элементов для гармонического осциллятора или свойства волновых функций осциллятора, связывающие их между собой.

11.10. Линия люминесценции иона Nd^{3+} в стекле для рабочего перехода Nd-лазера имеет ширину ~ 10 нм. Нижний уровень рабочего перехода дезактивируется со скоростью 10^8 c^{-1} . Что можно сказать о ширине верхнего уровня и характере уширения линии люминесценции?

12. Взаимодействие двухуровневой среды с резонансным полем.

12.1. Исходя из уравнений для матрицы плотности 2-х уровневой среды и предполагая среду электродипольной, выведите уравнения для поляризации и разности населенностей этой среды в условиях ее взаимодействия с внешним квазимонохроматическим резонансным электромагнитным полем.

- **12.2.** Исходя из уравнений Блоха, для изотропного парамагнетика, помещенного в высокочастотное резонансное магнитное поле, найти выражение для вектора намагниченности \vec{M} и динамической магнитной восприимчивости χ .
- **12.3.** Для 2-х уровневой среды без диссипации $(T_1 = T_2 = \infty)$ найдите выражение для поляризации при наложении на среду резонансного внешнего поля $E = E_o \cdot cos \ (\omega_{21}t)$.
- **12.4.** Используя стационарные решения материальных уравнений для двухуровневой электродипольной среды, взаимодействующей с резонансным электромагнитным полем, получите выражение для энергии, передаваемой этой средой диссипативной подсистеме (термостату).
- **12.5.** На 2-х уровневый атомный газ в ячейке воздействует поле $E(t) = E_o \cdot \cos(\omega_0 t)$, ω_0 частота атомного перехода. В условиях стационарного режима получите выражение для мощности наблюдаемого при этом спонтанного излучения (соударениями в газе пренебречь). Что изменится при учете столкновений между молекулами газа и стенками ячейки.
- 12.6. Исходя из стационарных решений уравнений для двухуровневой среды во внешнем поле, получите выражение для диэлектрической проницаемости ε на частотах ω вблизи резонанса ω₁₂, а также связь мощности, поглощаемой 2-х уровневой средой при взаимодействии с резонансным полем, и мнимой части восприимчивости этой среды.

13. <u>Коэффициент усиления двухуровневой среды. Инверсия</u> населенностей.

13.1. Отношение населенностей двух уровней для вещества, находящегося в состоянии равновесия при температуре 300°K, равно 10. Вычислить частоту излучения, соответствующую переходу между этими уровнями. Что можно сказать о равновесной разности населенностей для перехода в видимой части оптического спектра?

Ответ: 1,4·10¹³ Гц

13.2. Оценить минимальную мощность оптической накачки с полным поглощением световой энергии в кристалле, необходимую для получения инвертированной среды в твердотельном лазере с концентрацией активных частиц $N = 2 \cdot 10^{19} \text{ см}^{-3}$, объемом кристалла $V = 10 \text{ см}^3$. Частота середины полосы оптической накачки равна $v = 5.45 \cdot 10^{14} \text{ } \Gamma \text{u}$, время жизни частиц на верхнем рабочем уровне $\tau_{cn} = 3 \cdot 10^{-3} \text{ сек}$.

Ответ: 12 кВт.

13.3. Для соседних продольных мод резонатора Фабри-Перо длиной I_M , заполненного активной средой с шириной лоренцевой линии излучения на рабочем переходе $\Delta \omega = 2 \cdot 10^{12}$ рад/сек, сделайте оценку относительной разницы коэффициентов (показателей) усиления.

Ответ: Относительная разность усиления для центральной и соседней моды $\cos (\delta \omega_p/\Delta \omega)^2 \approx 10^{-6}$.

13.4. Линия перехода в двухуровневой среде на длине волны $\lambda = 0,5$ мкм имеет форму Лоренца с шириной, определяемой спонтанным излучением. Определить линейный коэффициент усиления слабого сигнала, если концентрация инверсии $\Delta N = 10^9~\text{см}^{-3}$, а вероятность спонтанного излучения $10^7~\text{сек}^{-1}$. Зависит ли коэффициент усиления от дипольного момента перехода?

Ответ: ~ 1 см⁻¹

13.5. Используя уравнение переноса излучения в стационарной активной среде квантового усилителя: $\frac{dI}{dz} = -\alpha I + \frac{g_0 I}{1 + u^2 + I}, \quad \text{где } z \quad -\text{ось}$ распространения волны, найдите выражение для максимально возможной величины $I_{\text{макс}}$ на выходе усилителя.

Обозначения: I — безразмерная интенсивность, полученная нормировкой на насыщающую интенсивность рабочего перехода $I_{\text{нас}}$; α — коэффициент нерезонансных потерь в среде; $g_0 = \frac{\hbar\omega \cdot N_{\text{инв}}}{2T_1I_{\text{нас}}}$ - коэффициент ненасыщенного усиления, $u = (\omega - \omega_0) \cdot T_2$ - безразмерная расстройка частоты.

Ombem:
$$I_{\text{MAKC}} = I_{\text{HAC}} \cdot \left(\frac{g_0}{\alpha} - 1 - u^2\right)$$

- 13.6. Возбужденный уровень молекулы E_4 связан с тремя ниже расположенными уровнями E_I , E_2 и E_3 радиационными переходами с вероятностями $A_{43} = 5 \cdot 10^7 c^{-1}$, $A_{42} = 3 \cdot 10^7 c^{-1}$ и $A_{41} = 2 \cdot 10^7 c^{-1}$. Вычислить время жизни, обусловленное спонтанным распадом верхнего уровня и относительные населенности $N_{I(2,3)}$ / N_4 для случая непрерывного возбуждения уровня E_4 при условии, что времена жизни остальных уровней составляют $\tau_I = 10^{-8}$ с, $\tau_2 = 5 \cdot 10^{-7}$ с, $\tau_3 = 5 \cdot 10^{-9}$ с. На каком-то из переходов можно в рамках данной схемы создать инверсию? Какая требуется накачка из основного состояния E_0 , чтобы обеспечить инверсию населенностей на переходе $E_4 \rightarrow E_I$?
- **13.7.** Считая для рубинового лазера, что $W_{32} > P_{31}$, A_{31} и используя уравнения баланса населенностей, покажите, что разность населенностей на рабочей паре уровней E_2 и E_1 удовлетворяет уравнению: $\frac{dN}{dt} = \frac{N N_{0 \ni \phi \phi}}{T_{1 \ni \phi \phi}}$ при отсутствии лазерной генерации. Найдите выражения для $N_{o \ni \phi \phi}$ и $T_{1 \ni \phi \phi}$. Как эти выражения зависят

от мощности поля накачки ?

Обозначения: $P_{13} = P_{31}$ - вероятность поглощения фотона накачки и индуцированного излучения на этой частоте ; W_{32} - вероятность безызлучательного перехода между уровнями 3 и 2, A_{31} – вероятность спонтанного излучения на рабочем переходе

14. Оптические лазерные резонаторы.

- **14.1.** Используя определение добротности резонатора (контура) Q: $\frac{dW}{dt} = -\frac{\omega_{pes}}{Q}W \qquad (где \ W \ запасенная \ в \ резонаторе \ энергия \ моды) \ и$ концепцию плоских волн в оптическом резонаторе Фабри-Перо с коэффициентом отражения зеркал по мощности R_I и R_2 , покажите, что добротность такого резонатора равна $Q = -\frac{2L\omega_{pes}}{c \cdot \ln(R_1R_2)}$, где L длина резонатора.
- **14.2.** Рассчитать добротность Q_p и время жизни фотона τ_{ϕ} в резонаторе Фабри-Перо с плоскими зеркалами. Расстояние между зеркалами L=0,2 м, коэффициенты отражения зеркал $R_1=R_2=0,95$, рабочая длина волны $\lambda=0,6$ мкм. Коэффициент поглощения среды, заполняющей резонатор, $\alpha=0,01$ см⁻¹. Дифракционными потерями пренебречь.

Ответ: $\tau_{\Phi} \approx 3.10^{-9} \, c$, $Q_{D} \approx 8.10^{6}$.

- **14.3.** В рамках одномерной модели распространения лазерного пучка в резонаторе Фабри-Перо, исходя из определения добротности, показать, что абсолютная ширина линии открытого оптического резонатора с плоскими зеркалами не зависит от частоты. Оценить частотный интервал между продольными модами и ширину линии такого резонатора для R=0,99 и L=1 м.
- **14.4.** Для гелий-неонового лазера ($\lambda = 632,8$ нм) с типичными для этого типа лазеров параметрами сделайте оценку для числа продольных мод, попадающих в контур спектральной линии усиления.

14.5. Показать, что абсолютная ширина линии оптического резонатора с плоскими зеркалами при условии отсутствия дифракционных потерь не зависит от частоты. Оценить (в cm^{-1}) интервал между продольными модами и ширину линии такого резонатора для R=0,99 и L=1 m.

15. Пороговое условие лазерной генерации.

15.1. Лазер работает на однородно-уширенном переходе на длине волны λ = 1 мкм, ширина линии усиления 500 МГ μ . Вероятность спонтанного излучения на рабочем переходе составляет $A_{cn} = 10^7 \ c^{-1}$. Параметры резонатора Фабри-Перо: длина $L = 0.5 \ M$, полные потери на проход 0.02. Определить пороговую концентрацию инверсии.

Ответ: 8·10⁷ см⁻³

15.2. Найти значение ненасыщенного коэффициента усиления для работающего полупроводникового лазера на *GaAs* с минимальным уровнем внутренних потерь, длиной активной области *300 мкм* при использовании сколов по кристаллическим поверхностям в качестве зеркал.

Ответ : ~ 40 см⁻¹

15.3. Рассчитайте величину минимальной концентрации активных ионов Cr^{3+} в работающем рубиновом ОКГ. Необходимые для расчета параметры взять из справочной литературы

Ответ: $\sim 5 \cdot 10^{16} \, \text{см}^{-3}$

15.4. Рассчитайте минимально необходимую мощность источника накачки для неодимового лазера на кристалле YAG, если эффективность преобразования энергии накачки ($\lambda \sim 800~\text{нм}$) в возбуждение рабочего перехода составляет 20%. Как изменится оценка порогового уровня

накачки, если использовать для возбуждения продольную накачку лазерным пучком.

Указание: Использовать для исходного расчета следующий набор параметров этого ОКГ: вероятность спонтанного излучения на рабочем переходе $A_{32}=5\cdot 10^3~c^{-1}$, пороговая разность населенностей $N_{09\phi\phi}=10^{16}~{\rm cm}^{-3}$, объем рабочей среды, взаимодействующий с полем $V{=}10~{\rm cm}^3$.

15.5. Рассчитать необходимую пороговую инверсию перехода газового лазера ($\lambda = 500 \text{ нм}$), если спонтанное время жизни на рабочем переходе $\tau = 2 \cdot 10^{-8} \text{ c}^{-1}$, ширина линии усиления $\Delta v = 1 \text{ ГГи}$, длина резонатора L = 25 см, а потери в резонаторе при двойном проходе составляют 5%.

Ответ: \sim 1,5·10⁸ см⁻³.

15.6. Лазерная среда имеет доплеровский профиль усиления с шириной $\Delta v = 2 \ \Gamma \Gamma u$. Однородная ширина равна $\Delta v_0 = 50 \ M \Gamma u$, а вероятность спонтанного перехода $A = 10^8 \ c^{-1}$. Пусть частота одной из мод резонатора ($L = 30 \ cm$) совпадает с центральной частотой профиля усиления. Какова пороговая инверсия для центральной моды и при какой инверсии генерация начнется на соседних модах, если потери в резонаторе составляют 10%?

16. <u>Лазерная генерация. Параметры стационарного режима лазерной генерации.</u>

- **16.1.** Покажите, исходя из уравнений лазера, что в стационарном режиме одномодовой генерации разность населенностей равна пороговому значению.
- **16.2.** Резонатор инжекционного полупроводникового лазера образован естественными гранями кристалла с коэффициентами отражения $R_1 = R_2 = 0.37$. Определите пороговый уровень усиления для резонаторов длиной L = 400 мкм и L = 100 мкм, если внутренние потери составляют $\alpha_{\text{внут}} = 5$ см⁻¹. Что произойдет, если на грани

резонатора нанести дополнительные отражающие покрытия с $R_1 = 0.98$ и $R_2 = 1$? Нарисуйте качественно и сравните вид зависимости мощности генерации от тока для таких лазеров.

- **16.3.** Считая одно зеркало в резонаторе Фабри-Перо "глухим" ($R_1 = 1$), а другое полупрозрачным ($R_2 = R$), найдите зависимость мощности лазера от R. Существует ли оптимальная величина R ?
- **16.4.** Оценить квантовый КПД Не-Ne лазеров, работающих на разных переходах с мощностью порядка 10 мВт. Что можно сказать об электронном КПД накачки в разряде, если известно, что потребляемая от сети мощность составляет 15 Вт.
- **16.5.** Сделайте численные оценки насыщающей интенсивности для рабочих переходов в рубиновом и неодимовом лазерах. Как связана с этим параметром мощность, генерируемая лазером? Какой из этих лазеров обладает большей мощностью?

Указание : Использовать выражение насыщающей интенсивности в виде

$$I_{hac} = rac{c\hbar^2}{8\pi \cdot d_{12}^2 \cdot T_1 T_2}$$
 и типичные параметры для указанных твердотельных сред.

16.6. Мощность непрерывной генерации полоскового полупроводникового лазера равна 10~MBm, длина волны излучения $\lambda = 0.8~M\kappa M$, ширина спектральной линии генерации $\Delta v = 100~M\Gamma u$, размеры ближнего поля составляют $1 m\kappa M \times 10~M\kappa M$. До какой температуры надо нагреть тепловой источник света, чтобы его спектральная яркость в заданном диапазоне достигла яркости на зеркале лазера?

Указание: Пересчитать мощность лазерного излучения в спектральную яркость $(Дж/см^3 \cdot \Gamma \mathbf{u})$, использовать для сравнительной оценки выражение для равновесного теплового спектра излучения.

Ответ: ~2·10¹⁰ град.

- **16.7.** Нарисуйте качественно график и объясните зависимость выходной мощности лазера от величины отражения выходного зеркала резонатора.
- **16.8.** Оцените максимально возможную величину затягивания частоты генерирующей моды в лазере на рубине. При проведении оценок руководствоваться типичными для данного вида лазеров количественными параметрами.

Ответ: Оценки для сдвига частоты из-за эффекта затягивания для типичных параметров Cr^{3+} - лазера лежат в к Γ μ -диапазоне

16.9. Частота моды пассивного плоскопараллельного Фабри-Перо резонатора (L=15~cM) сдвинута на $0.5 \cdot \Delta v_{Doppl}$ от центра гауссовской линии усиления газового лазера с $\lambda=633~\mu M$. Оценить эффект затягивания моды генерации, если ширина моды резонатора $\Delta v_p=20~M\Gamma u$, а $\Delta v_{Doppl}=1~\Gamma\Gamma u$.

Ответ: ~ 10 МГц

16.10. Определить оптимальные коэффициенты отражения зеркал резонатора лазера, позволяющие получить максимальную выходную мощность. Длина резонатора L = 50 см, коэффициент ненасыщенного усиления на проход $g_o = 0.2$ см $^{-1}$, коэффициент потерь на проход $\alpha = 0.05$ см $^{-1}$. Дифракционными потерями пренебречь.

Литература

- 1. Давыдов А.С. *Квантовая механика*. М.: Наука, 1973. 703 с.
- 2. Блохинцев Д.И. *Основы квантовой механики*. М.: Наука, 1983. 664 с.
- 3. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т. 3. Квантовая механика
- M.: Физматлит, 2001. 808 c.
- 4. Страховский Г.Н., Успенский А.В. *Основы квантовой электроник*и М.: «Высшая школа», 1979, 336с.
- 5. Карлов Н.В. Лекции по квантовой электронике М.: «Наука», 1983, 320с.
- 6. Ярив А. Квантовая электроника М.: «Сов.радио», 1980, 460с.
- 7. Я.И.Ханин *Лекции по квантовой радиофизике* Нижний Новгород, ИПФ РАН, 2005г., 224с.

Алексей Валентинович **Маругин,** Александр Павлович **Савикин,** Валерий Валерьевич **Шарков,** Ольга Витальевна **Шаркова**

СБОРНИК ЗАДАЧ ПО КВАНТОВОЙ МЕХАНИКЕ И КВАНТОВОЙ ЭЛЕКТРОНИКЕ

Практикум

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского». 603950, Нижний Новгород, пр. Гагарина, 23.