The Growth of Functions

Section 3.2

Section Summary

- Big-O Notation
- Big-O Estimates for Important Functions
- Big-Omega and Big-Theta Notation

The Growth of Functions

- In both computer science and in mathematics, there are many times when we care about how fast a function grows
 - In computer science, we want to understand how quickly an algorithm can solve a problem as **the size of the input** grows.
 - We can compare the efficiency of two different algorithms for solving the same problem. (An Example in the next slide).
 - We can also determine whether it is practical to use a particular algorithm as the input grows.
 - We'll study these questions in Section 3.3.
 - Two of the areas of mathematics where questions about the growth of functions are studied are:
 - number theory (covered in Chapter 4)
 - combinatorics (covered in Chapters 6 and 8)

Example of Orders of Growth

Suppose you are designing a web site to process user data (e.g., financial records).

Suppose database program A takes $f_A(n)=30n+8$ microseconds to process any n records, while program B takes $f_B(n)=n^2+1$ microseconds to process the n records.

Which program do you choose, knowing you'll want to support millions of users?

Visualizing Orders of Growth

On a graph, as you go to the right, a faster growing function eventually becomes larger...

Concept of order of growth

- We say $f_A(n)=30n+8$ is order n, or O(n). It is, at most, roughly proportional to n.
- $f_{\rm B}(n)=n^2+1$ is order n^2 , or $O(n^2)$. It is roughly proportional to n^2 .
- Any $O(n^2)$ function is faster-growing than any O(n) function.
- For large numbers of user records, the $O(n^2)$ function will always take more time.

Big-O Notation

Definition: Let f and g be functions from Z(or R) to R. We say that "f(x) is O(g(x))" if there are constants C and K such that

$$|f(x)| \le C/g(x)|$$

whenever $x > k$.

- "f(x) is O(g(x))" is read as: "f(x) is big-oh of g(x)"
- The constants C and k are called *witnesses* to the relationship f(x) is O(g(x)). Only one pair of witnesses is needed.

Some Important Points about Big-O Notation

- ◆ If one pair of witnesses is found, then there are infinitely many pairs.
 - We can always make the k or the C larger and still maintain the inequality $|f(x)| \leq C|g(x)|$
 - Any pair C' and k' where C < C' and k < k' is also a pair of witnesses since $|f(x)| \le C|g(x) \le C'|g(x)|$ whenever x > k' > k.
- You may see " f(x) = O(g(x))" instead of " f(x) is O(g(x))."
 - But this is an abuse of the equals sign since the meaning is that there is an inequality relating the values of f and g, for sufficiently large values of x.
 - It is ok to write $f(x) \in O(g(x))$, because O(g(x)) represents the set of functions that are O(g(x)).
- Usually, we will drop the absolute value sign since we will always deal with functions that take on positive values.

Using the Definition of Big-O Notation

Example: Show that $f(x) = x^2 + 2x + 1$ is $O(x^2)$.

Solution:

1)
$$f(x) = x^2 + 2x + 1$$

 $\leq x^2 + 2x^2 + 1$ For all $x > 1$
 $\leq x^2 + 2x^2 + x^2$ For all $x > 1$
 $= 4x^2 = Cx^2 = Cg(x)$
We have: $C = 4$, $k = 1$, $g(x) = x^2$
 $f(x)$ is $O(x^2)$ (see graph on next slide)

2)
$$0 \le x^2 + 2x + 1 \le x^2 + x^2 + x^2 = 3x^2$$
 whenever $x > 2$

3)
$$x^2$$
 is $O(x^2+2x+1)$

Illustration of Big-O Notation

$$f(x) = x^2 + 2x + 1$$
 is $O(x^2)$

The part of the graph of $f(x) = x^2 + 2x + 1$ that satisfies $f(x) < 4x^2$ is shown in blue.

Big-O Notation

- Both $f(x) = x^2 + 2x + 1$ and $g(x) = x^2$ are such that f(x) is O(g(x)) and g(x) is O(f(x)). We say that the two functions are of the *same order*. (More on this later)
- If f(x) is O(g(x)) and h(x) is larger than g(x) for all positive real numbers, then f(x) is O(h(x)).
 - Note that if $|f(x)| \le C|g(x)|$ for x > k and if |h(x)| > |g(x)| for all x, then $|f(x)| \le C|h(x)|$ if x > k. Hence, f(x) is O(h(x))
- For many applications, the goal is to select the function g(x) in O(g(x)) as small as possible (up to multiplication by a constant, of course).

Using the Definition of Big-O Notation

Example: Show that $7x^2$ is $O(x^3)$. Is it also true x^3 is $O(7x^2)$?

Solution:

1) Note that when x>7, we have $7x^2 < x^3$. Consequently, we can take C=1, and k=7, and to establish the relation $7x^2$ is $O(x^3)$.

$$2) x^3 \le C(7x^2)$$
$$x \le 7C$$

Note that no C exists for which $x \le 7C$ for all x > k.

Big-O Estimates for Polynomials

Theorem: Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$, where a_0, a_1 ,..., a_n are real numbers. Then f(x) is $O(x^n)$.

Proof:

The leading term $a_n x^n$ of a polynomial dominates its growth.

Using the triangle inequality, if x>1 we have

$$|f(x)| = |a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0|$$

$$\leq |a_n| x^n + |a_{n-1}| x^{n-1} + \dots + |a_1| x + |a_0|$$

$$= x^n (|a_n| + |a_{n-1}| / x + \dots + |a_1| / x^{n-1} + |a_0| / x^n)$$

$$\leq x^n (|a_n| + |a_{n-1}| + \dots + |a_1| + |a_0|)$$

It follows that $|f(x)| \le Cx^n$

Big-O Estimates for some Important Functions

Example: Use big-*O* notation to estimate the sum of the first *n* positive integers.

Solution:
$$1 + 2 + \dots + n \le n + n + \dots + n = n^2$$

 $1 + 2 + \dots + n$ is $O(n^2)$ taking $C = 1$ and $k = 1$.

Example: Use big-O notation to estimate the factorial function $f(n) = n! = 1 \times 2 \times \cdots \times n$.

Solution:

$$n! = 1 \times 2 \times \cdots \times n \le n \times n \times \cdots \times n = n^n$$

 $n! \text{ is } O(n^n) \text{ taking } C = 1 \text{ and } k = 1.$

Big-O Estimates for some Important Functions

Example: Use big-O notation to estimate $\log n!$

Solution: Given that $n! \leq n^n$ (previous slide)

then $\log(n!) \le n \cdot \log(n)$

Hence, $\log(n!)$ is $O(n \cdot \log(n))$ taking C = 1 and k = 1.

Display of Growth of Functions

Note the difference in behavior of functions as n gets larger

Useful Big-O Estimates Involving Logarithms, Powers, and Exponents

- If d > c > 1, then $n^c \text{ is } O(n^d), \text{ but } n^d \text{ is not } O(n^c).$
- If b > 1 and c and d are positive, then $(\log_b n)^c$ is $O(n^d)$, but n^d is not $O((\log_b n)^c)$.
- If b > 1 and d is positive, then n^d is $O(b^n)$, but b^n is not $O(n^d)$.
- If c > b > 1, then b^n is $O(c^n)$, but c^n is not $O(b^n)$.

Combinations of Functions

- ♦ If $f_1(x)$ is $O(g_1(x))$ and $f_2(x)$ is $O(g_2(x))$, then $(f_1+f_2)(x)$ is $O(\max(g_1(x),g_2(x)))$.
- lacktriangle If $f_1(x)$ and $f_2(x)$ are both O(g(x)), then $(f_1 + f_2)(x)$ is O(g(x)).
 - By the definition of big-O notation, there are constants C_1 , C_2 , k_1 , k_2 such that $|f_1(x)| \le C_1 |g_1(x)|$ when $x > k_1$ and $f_2(x) \le C_2 |g_2(x)|$ when $x > k_2$.
 - $|(f_1 + f_2)(x)| = |f_1(x) + f_2(x)|$ $\leq |f_1(x)| + |f_2(x)|$ by the triangle inequality $|a + b| \leq |a| + |b|$

 - Therefore $|(f_1 + f_2)(x)| \le C/g(x)|$ whenever x > k, where $k = \max(k_1, k_2)$.

Combinations of Functions

Example: What is the complexity of the function $n^2 + \log(n!)$?

Solution:

$$n^{2} = O(n^{2})$$

$$\log(n!) = O(n \log n)$$
Since $O(n^{2}) > O(n \log n)$,
$$n^{2} + n \log(n!) = O(n^{2})$$

Combinations of Functions

lacklash If $f_1(x)$ is $O(g_1(x))$ and $f_2(x)$ is $O(g_2(x))$, then $(f_1f_2)(x)$ is $O(g_1(x)g_2(x))$.

Example: What is the complexity of the function $3n\log(n!)$?

Solution:

$$3n = O(n)$$

$$\log(n!) = O(n \log n)$$

$$3n\log(n!) = O(n \times n \log n) = O(n^2\log n)$$

Ordering Functions by Order of Growth

- ◆ Put the functions below in order so that each function is big-O of the next function on the list.
- $f_1(n) = (1.5)^n$
- $f_2(n) = 8n^3 + 17n^2 + 111$
- $f_3(n) = (\log n)^2$
- $f_4(n) = 2^n$
- $f_5(n) = \log(\log n)$
- $f_6(n) = n^2 (\log n)^3$
- $f_7(n) = 2^n (n^2 + 1)$
- $f_8(n) = 10000$
- $f_9(n) = n!$

We solve this exercise by successively finding the function that grows slowest among all those left on the list.

```
f_8(n) = 10000 (constant, does not increase with n)
f_5(n) = \log (\log n) (grows slowest of all the others)
f_3(n) = (\log n)^2 (grows next slowest)
f_6(n) = n^2 (\log n)^3 (next largest, (\log n)^3 factor smaller than any power of n)
f_2(n) = 8n^3 + 17n^2 + 111 (tied with the one below)
f_1(n) = (1.5)^n (next largest, an exponential function)
f_4(n) = 2^n (grows faster than one above since 2 > 1.5)
f_7(n) = 2^n (n^2 + 1) (grows faster than above because of the n^2 + 1 factor)
f_9(n) = n! (n! grows faster than c^n for every c)
```

Big-Omega Notation

Definition: Let f and g be functions from the set of integers or the set of real numbers to the set of real numbers. We say that f(x) is $\Omega(g(x))$

if there are constants C and k such that

$$|f(x)| \ge C|g(x)|$$
 when $x > k$.

We say that "f(x) is big-Omega of g(x)."

 Ω is the upper case version of the lower case Greek letter ω .

Big-Omega Notation

- ◆ Big-O gives an upper bound on the growth of a function, while Big-Omega gives a lower bound. Big-Omega tells us that a function grows at least as fast as another.
- \blacklozenge f(x) is $\Omega(g(x))$ if and only if g(x) is O(f(x)). This follows from the definitions. See the text for details.

Big-Omega Notation

Example :Show that $f(x) = 8x^3 + 5x^2 + 7$ is $\Omega(x^3)$.

Solution:

$$f(x) = 8x^3 + 5x^2 + 7$$

 $\geq 8x^3$ For all $x > 1$
 $= Cx^3 = Cg(x)$
We have: $C = 8$, $k = 1$, $g(x) = x^3$

$$f(x)$$
 is $\Omega(x^3)$

Big-Theta

 Θ is the upper case version of the lower case Greek letter θ .

- Definition: Let f and g be functions from the set of integers or the set of real numbers to the set of real numbers. The function f(x) is $\Theta(g(x))$ if f(x) is O(g(x)) and f(x) is $\Omega(g(x))$.
- We say that "f is big-Theta of g(x)" and also that "f(x) is of *order* g(x)" and also that "f(x) and g(x) are of the *same order*."
- f(x) is $\Theta(g(x))$ if and only if there exists constants C_1 , C_2 and k such that $C_1g(x) < f(x) < C_2g(x)$ if x > k. This follows from the definitions of big-O and big-Omega.

Big-Theta

Big-Theta Notation

[Example 7] Show that $f(x) = 3x^2 + 8x \log x$ is $\Theta(x^2)$.

Solution:

$$f(x) = 3x^{2} + 8x \log x$$

$$\leq 3x^{2} + 8x^{2} \qquad \text{For } x > 1$$

$$= 11x^{2} = C_{2}x^{2} = C_{2}g(x)$$

$$f(x) = 3x^{2} + 8x \log x$$

$$\geq 3x^{2} \qquad \text{For } x > 1$$

$$= C_{1}x^{2} = C_{1}g(x)$$

$$f(x) \text{ is } \Omega(x^{2})$$

$$\text{We have:} \quad C_{1} = 3, C_{2} = 11, k = 1, g(x) = x^{2}$$

$$f(x) \text{ is } \Theta(x^{2})$$

Big-Theta Notation

- lacktriangle When f(x) is $\Theta(g(x))$ it must also be the case that g(x) is $\Theta(g(x))$.
- lacktriangle Note that f(x) is $\Theta(g(x))$ if and only if it is the case that f(x) is O(g(x)) and g(x) is O(f(x))
- ◆ Sometimes writers are careless and write as if big-O notation has the same meaning as big-Theta.

Big-Theta Estimates for Polynomials

Theorem: Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_o$ where a_0, a_1, \ldots, a_n are real numbers with $a_n \neq 0$. Then f(x) is of order x^n (or $\Theta(x^n)$). (The proof is an exercise.)

Example:

The polynomial $f(x) = 8x^5 + 5x^2 + 10$ is order of x^5 (or $\Theta(x^5)$).

The polynomial $f(x) = 8x^{199} + 7x^{100} + x^{99} + 5x^2 + 25$ is order of x^{199} (or $\Theta(x^{199})$).

Complexity of Algorithms

Section 3.3

The Complexity of Algorithms

- Given an algorithm, how efficient is this algorithm for solving a problem given input of a particular size?
 - How much time does this algorithm use to solve a problem?
 - How much computer memory does this algorithm use to solve a problem?

time complexity space complexity

 In this course, we focus on time complexity. The space complexity of algorithms is studied in later courses.

The Complexity of Algorithms

- We will measure time complexity in terms of the number of operations an algorithm uses and we will use big-O and big-Theta notation to estimate the time complexity.
 - We can use this analysis to see whether it is practical to use this algorithm to solve problems with input of a particular size.
 - We can also compare the efficiency of different algorithms for solving the same problem.
 - We ignore implementation details (including the data structures used and both the hardware and software platforms) because it is extremely complicated to consider them.

Time Complexity

- To analyze the time complexity of algorithms, we determine the number of operations, such as comparisons and arithmetic operations (addition, multiplication, etc.). We can estimate the time a computer may actually use to solve a problem using the amount of time required to do basic operations.
- We will focus on the *worst-case time* complexity of an algorithm. This provides an upper bound on the number of operations an algorithm uses to solve a problem with input of a particular size.
- It is usually much more difficult to determine the *average case time complexity* of an algorithm. This is the average number of operations an algorithm uses to solve a problem over all inputs of a particular size.

Complexity Analysis of Algorithms

Example: Describe the time complexity of the algorithm for finding the maximum element in a finite sequence.

```
procedure max(a_1, a_2, ...., a_n): integers)

max := a_1

for i := 2 to n

if max < a_i then max := a_i

return max\{max \text{ is the largest element}\}
```

Solution: Count the number of comparisons.

The $max < a_i$ comparison is made n - 1 times.

Each time *i* is incremented, a test is made to see if $i \le n$.

One last comparison determines that i > n.

Exactly 2(n-1) + 1 = 2n-1 comparisons are made.

Hence, the time complexity of the algorithm is $\Theta(n)$.

Worst-Case Complexity of Linear Search

Example: Determine the time complexity of the linear search

algorithm.

```
procedure linear search(x:integer, a_1, a_2, ...,a_n: distinct integers)
i := 1
while (i \le n \text{ and } x \ne a_i)
i := i + 1
if i \le n then location := i
else location := 0
return location{location is the subscript of the term that equals x, or is 0 if x is not found}
```

Solution: Count the number of comparisons.

At each step two comparisons are made; $i \le n$ and $x \ne a_i$.

To end the loop, one comparison $i \le n$ is made.

After the loop, one more $i \le n$ comparison is made.

If $x = a_i$, 2i + 1 comparisons are used. If x is not on the list, 2n + 1 comparisons are made and then an additional comparison is used to exit the loop. So, in the worst case 2n + 2 comparisons are made. Hence, the complexity is $\Theta(n)$.

Average-Case Complexity of Linear Search

Example: Describe the average case performance of the linear search algorithm. (Although usually it is very difficult to determine average-case complexity, it is easy for linear search.)

Solution: Assume the element is in the list and that the possible positions are equally likely. By the argument on the previous slide, if $x = a_i$, the number of comparisons is 2i + 1.

$$\frac{3+5+7+\ldots+(2n+1)}{n} = \frac{2(1+2+3+\ldots+n)+n}{n} = \frac{2\left[\frac{n(n+1)}{2}\right]}{n} + 1 = n+2$$

Hence, the average-case complexity of linear search is $\Theta(n)$.

Understanding the Complexity of Algorithms

TABLE 1 Commonly Used Terminology for the Complexity of Algorithms.

Complexity	Terminology
$\Theta(1)$	Constant complexity
$\Theta(\log n)$	Logarithmic complexity
$\Theta(n)$	Linear complexity
$\Theta(n \log n)$	Linearithmic complexity
$\Theta(n^b)$	Polynomial complexity
$\Theta(b^n)$, where $b > 1$	Exponential complexity
$\Theta(n!)$	Factorial complexity

Homework:

Seventh Edition: P. 216 8,26,31,54,71

