

# Instituto Politécnico de Leiria

Escola Superior de Tecnologia e Gestão Matemática Discreta - Componente PL EI (D+PL)

Ano letivo 2018/2019 - 2.º Sem.

Ficha prática 2

# Matrizes e vetores

No Scilab existem várias formas de criar matrizes e operar com as mesmas. Nesta ficha prática são explorados métodos para definir e manipular matrizes, aceder aos seus elementos ou realizar operações elemento a elemento.

• De seguida apresentam-se os símbolos necessários à criação de uma matriz de uma forma simples:

| parêntesis retos | [ ] | Indicam o início e o fim da matriz             |  |
|------------------|-----|------------------------------------------------|--|
| vírgula          | ,   | Separa elementos pertencentes à mesma linha    |  |
| ponto e vírgula  | ;   | Indica a quebra/passagem para a linha seguinte |  |

#### Exemplo:

Uma forma alternativa de definir uma matriz  $\mathbf{m} \times \mathbf{n}$  sem fazer uso da vírgula ou do ponto e vírgula consiste em separar os elementos da mesma linha usando o *space* e definir a mudança de linha usando o *return*:

#### Exemplo:

• No seguinte quadro são apresentadas funções que permitem a criação de certos tipos de matrizes:

| Matrizes específicas |                                                                      |  |
|----------------------|----------------------------------------------------------------------|--|
| eye(m,n)             | Matriz $m \times n$ com 1's na diagonal e 0's nas restantes posições |  |
| ones(m,n)            | Matriz $m \times n$ com todos os elementos iguais a 1                |  |
| zeros(m,n)           | Matriz $m \times n$ com todos os elementos iguais a 0                |  |

#### Exemplo:

• No seguinte quadro são apresentadas funções que permitem obter informação sobre uma matriz ou criar uma nova matriz a partir de outra:

| A                    | Apresenta a matriz A                                                  |  |  |
|----------------------|-----------------------------------------------------------------------|--|--|
| size(A)              | Permite saber a dimensão (n.º de linhas e n.º de colunas) da matriz A |  |  |
| matrix(A,m,n)        | Cria uma nova matriz a partir de A, redistribuindo os k elementos     |  |  |
|                      | desta matriz por m linhas e n colunas (de notar que m×n tem que       |  |  |
|                      | ser igual a k)                                                        |  |  |
| resize_matrix(A,m,n) | Cria uma nova matriz com dimensão m×n, truncando as linhas e/ou       |  |  |
|                      | colunas da matriz original A, ou completando as linhas/colunas em     |  |  |
|                      | falta com 0's                                                         |  |  |

### **Exemplos:**

```
-->B=eye(3,3)
B=
1. 0. 0.
0. 1. 0.
0. 0. 1.
-->size(B)
ans =
3. 3.
-->C=resize_matrix(B,3,2)
C=
1. 0.
0. 1.
0. 0.
```

• No seguinte quadro são apresentadas algumas funções que permitem trabalhar com determinado elemento, determinada linha/coluna ou determinada parte de uma matriz:

| A(i,j)    | Apresenta o elemento da matriz A que se encontra na linha i      |
|-----------|------------------------------------------------------------------|
|           | e coluna j                                                       |
| A(i,j)=k  | Substitui o elemento da matriz A que se encontra na linha i      |
|           | e coluna j por k                                                 |
| A(:,:)    | Apresenta a matriz A                                             |
| A(i,:)    | Apresenta a linha i da matriz A                                  |
| A(:,j)    | Apresenta a coluna j da matriz A                                 |
| A(i:j,k)  | Apresenta os elementos da matriz A que se encontram na coluna k, |
|           | da linha i até à linha j                                         |
| A(i,:)=[] | Faz com que a linha i da matriz A seja truncada                  |

### **Exemplos:**

```
-->A(2,1)
ans =
4.
-->A(12,1)
!-- error 21
Invalid index .
-->A(2,:)
ans=
4. 5. 6.
-->A(:,3)
ans=
З.
6.
-->A = [123
4 5 6
7 0 0]
A =
 1. 2. 3.
 4. 5. 6.
7. 0. 0.
A(2,3)=9
A =
1. 2. 3.
4. 5. 9.
7. 0. 0.
-->A(:,3) = []
A =
1. 2.
4. 5.
7. 0.
-->B = matrix (A ,1 ,6)
```

• No Scilab podem ser aplicados a matrizes vários operadores: a adição, a subtracção, a multiplicação e a potência (os operadores usuais).

| Operadores com matrizes |               |  |
|-------------------------|---------------|--|
| +                       | Adição        |  |
| _                       | Subtração     |  |
| *                       | Multiplicação |  |
| ^                       | Potência      |  |

1. 4. 7. 2. 5. 0.

#### Exemplo:

```
A=[3,-24,30];

B=[

9-36 30

-36 192 -180

30-180 180

];

-->A*B

ans =

1791. - 10116. 9810.
```

• Além destes, existem as operações de multiplicação e potenciação elemento a elemento. Neste caso, deve ser adicionado um ponto antes do símbolo do operador. Por exemplo, sendo X e Y matrizes da mesma dimensão, a multiplicação elemento a elemento significa que o resultado de Z = X.\*Y será dado por

$$Z(i,j) = X(i,j) * Y(i,j)$$

e não pela regra habitual da multiplicação de matrizes. Estas operações têm vantagens, por exemplo, quando é necessário realizar operações sobre matrizes de grande dimensão.

| Op | Operadores aritméticos sobre matrizes com a mesma dimensão (elemento a elemento) |  |  |  |  |
|----|----------------------------------------------------------------------------------|--|--|--|--|
| .* | Multiplicação elemento a elemento                                                |  |  |  |  |
| .^ | Potência elemento a elemento                                                     |  |  |  |  |

| Funções Matriciais e Álgebra Linear Numérica |                                                               |  |
|----------------------------------------------|---------------------------------------------------------------|--|
| Α'                                           | Transposta da matriz A                                        |  |
| rank(A)                                      | Característica da matriz A                                    |  |
| det(A)                                       | Determinante da matriz quadrada A                             |  |
| trace(A)                                     | Soma dos elementos da diagonal principal da matriz quadrada A |  |
| inv(A)                                       | Inversa da matriz quadrada A de determinante não nulo         |  |

# **Exemplos:**

```
A=[3,-24,30];
B=[ 9 -36 30
-36 192 -180
30 -180 180];
-->det(B)
ans =
2160.
-->rank(B)
ans =
3.
```

# Programação

O Scilab contém diversos comandos para controlar a sequência dos programas, como por exemplo o teste de condições if ou os ciclos de controlo. Os ciclos permitem repetir instruções um número pré-determinado de vezes ou até que uma condição se verifique.

• Instrução Condicional: If ... else ... end

O teste if avalia uma proposição e executa um grupo de instruções se essa proposição for verdadeira. Se a proposição tiver valor lógico falso, as instruções a executar podem opcionalmente ser definidas através do comando else. O comando end termina o teste. A sintaxe do teste if é:

```
if expressão lógica 1,
   instruções executáveis se a expressão lógica 1 for verdadeira
else
   instruções executáveis se a expressão lógica 1 for falsa
end
```

#### **Exemplo:**

```
a=cos(%pi/5)+ log(1/2)-exp(2);
if a>0
    s=a;
else
    s=0;
end
```

• Ciclo de controlo: for ... end

Este ciclo consiste em atribuir um valor inicial a uma variável, executar instruções especificadas e incrementar a variável, ou em 1 (por defeito), ou em determinado passo. O ciclo repete-se até que seja atingido ou ultrapassado um valor definido inicialmente. O ciclo termina com a instrução end. A sintaxe do ciclo for é:

```
for índice = início:incremento:fim
   instruções executáveis
end
```

#### Exemplo:

```
for i=1:3
    for j=1:3
     H(i,j)=1/(i+j-1);
    end
end
```

• Ciclo de controlo: while ... end

Neste ciclo de controlo as instruções especificadas são executadas enquanto a expressão lógica for verdadeira. A sua sintaxe é:

```
while expressão lógica,
instruções executáveis
end
```

### Exemplo:

```
s=1; i=0;
while s < 19/10
    s = s + 2^(-i)
    i=i+1;</pre>
```

Exemplos de outros comandos relacionados com ciclos: pause, resume, return e abort (ver HELP).

# Funções

• Quando for necessário definir uma função, teremos em consideração a seguinte estrutura:

```
out_var=myfunction(in_var)
```

onde:

- \* out\_var é o nome da variável que contém os dados de saída (por exemplo y)
- \* myfunction é o nome da função (por exemplo f)
- \* in\_var é o nome da variável que contém os dados de entrada (por exemplo x) Assim:

$$y=f(x)$$

Caso a função tenha n dados de entrada e m dados de saída, devemos ter em consideração a seguinte forma:

```
[out_1,...,out_n] = myfunction(in_1,...,in_m)
```

• A função é implementada através dos comandos function e endfunction.

```
function [lista de parâmetros de saída] = nome_função(lista de parâmetros de entrada) instruções endfunction
```

#### Exemplo:

```
function y = f(x)
y = 2*x
endfunction
```

<u>Exemplo:</u> Função soma de dois números: nome da função fun, parâmetros de entrada a e b e parâmetro de saída y.

```
function y = fun(a,b)
//fun(a,b) - Soma de a+b
y=a+b;
endfunction
```

**Exercício:** Guarde a função que implementou anteriormente num ficheiro SciNotes designado por *Exemplo função.sce.* 

Estas formas de definir uma função podem ser implementadas, quer na janela de comandos, quer num ficheiro ".sce". Neste último caso, é relevante salientar que, antes da função ser usada, é necessário executar o ficheiro onde a função foi definida.

```
-->exec ("C:\...\Exemplo_função.sce")
--> f(6)
ans =
12.
```

# Visualização gráfica

• O Scilab tem muitas opções relativas à criação e edição de figuras e gráficos, sejam estes em 2D ou em 3D. Os gráficos em 3D podem ser gerados usando o comando surf (ver help), enquanto que, para criar gráficos em 2D, usamos o comando plot. Este permite diferentes possibilidades de utilização.

| plot(Y)       | Representa a lista de pontos $(X,Y)$ cujas ordenadas são os elementos do vetor $Y$      |
|---------------|-----------------------------------------------------------------------------------------|
|               | e as abcissas são os índices de 1 a $n$ , onde $n$ é o número de elementos do vetor $Y$ |
| plot(X,Y)     | Representa a lista de pontos $(X,Y)$ cujas abcissas são os elementos do vetor $X$       |
|               | e as ordenadas são os elementos do vetor $Y$                                            |
| plot(X,Y,'S') | Igual ao plot(X,Y) onde S é uma sequência de caracteres constituída por                 |
|               | elementos das colunas da tabela seguinte, escritos entre plicas                         |

Nota: O vector X pode ser definido usando qualquer um dos comandos de definição de vectores estudados anteriormente.

Caso tenha sido definida uma função f, o vector Y pode ser definido pelo comando Y=f(X).

A seguinte tabela apresenta os caracteres correspondentes às várias características do gráfico que são possíves de definir através da string 'S', usando o comando plot(X,Y,'S'):

| Símbolo | Cor      | Símbolo  | Marcador                  | Símbolo          | Tipo de linha    |         |  |
|---------|----------|----------|---------------------------|------------------|------------------|---------|--|
| Ъ       | azul     | •        | ponto                     | - linha contínua |                  | ponto - |  |
| g       | verde    | 0        | círculo                   | linha tracejada  |                  |         |  |
| r       | vermelho | х        | X                         |                  | traço e ponto    |         |  |
| С       | ciano    | +        | +                         | :                | linha pontilhada |         |  |
| m       | magenta  | *        | asterisco                 |                  |                  |         |  |
| У       | amarelo  | s        | quadrado                  |                  |                  |         |  |
| k       | preto    | d        | losango                   |                  |                  |         |  |
| w       | branco   | V        | triângulo para baixo      |                  |                  |         |  |
|         |          | $\wedge$ | triângulo para cima       |                  |                  |         |  |
|         |          | <        | triângulo para a esquerda |                  |                  |         |  |
|         |          | >        | triângulo para a direita  |                  |                  |         |  |
|         |          | р        | pentagrama                |                  |                  |         |  |

 O Scilab permite personalizar os gráficos, com diversas opções relacionadas com o controle dos eixos e com a inserção de texto em gráficos. Para saber como funciona cada uma das opções apresentadas a seguir consulte o menu HELP.

| Inserção de texto em gráficos |                                                                 |  |
|-------------------------------|-----------------------------------------------------------------|--|
| legend                        | Legenda das curvas do gráfico                                   |  |
| title                         | Título do gráfico                                               |  |
| xlabel                        | Legenda do eixo dos xx                                          |  |
| ylabel                        | Legenda do eixo dos yy                                          |  |
| xtitle("T1","T2","T3")        | Adiciona o título do gráfico (T1), o título do eixo dos xx (T2) |  |
|                               | e o título do eixo dos yy (T3)                                  |  |

O controle das definições dos eixos e outras definições do gráfico pode ser feito diretamente através do editor da janela gráfica (Graphic Window).

No seguinte quadro são apresentados comandos usados na definição da janela gráfica:

| figure(n) | Esboça o gráfico da função na janela <b>n</b> |
|-----------|-----------------------------------------------|
| clf       | Apaga as figuras anteriores                   |

#### Exemplo:

```
function y = f(x)
  y = x.^2
endfunction
xdata = linspace (1,10,50);
ydata = f(xdata);
plot (xdata,ydata,"+ g")
xtitle ("Função quadrática ", "eixo dos xx", "eixo dos yy");
legend ("y=x^2");
```

# Exercícios

1. Considere as seguintes matrizes:

$$A = \begin{pmatrix} 2 & 1 & -1 \\ -1 & 2 & 1 \\ 1 & 3 & -3 \end{pmatrix}, \quad B = \begin{pmatrix} 3 \\ -1 \\ 0 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 0 & -2 & 2 \\ 0 & 2 & 3 & 0 \\ 1 & 0 & -1 & 0 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & -1 & 0 & 2 \end{pmatrix}.$$

(a) Determine, se possível:

- (b) Obtenha todos os elementos de todas as linhas que se encontram entre as colunas 2 e 3 da matriz C.
- 2. Faca a representação gráfica da função polinomial definida por

$$f(x) = x^5 - 3x^4 - 3x^3 + 7x^2 + 6x$$

no intervalo [-1, 5; 2, 5] com incremento de 0, 125.

- 3. Seja f a função definida por  $f(x) = \cos(x) + e^x$ .
  - (a) Defina/implemente a função f.
  - (b) Determine o valor de f(0) e de  $f(\pi)$ .
  - (c) Construa um vetor linha X cujo primeiro elemento seja 1, o último seja 2 e tenha um total de 98 elementos.
  - (d) Calcule f(X). O que acontece?
  - (e) Faça a representação gráfica da função f
- 4. O polónio tem uma meia-vida de 140 dias, o que significa que, devido ao decaimento radioactivo, a quantidade de polónio restante depois de 140 dias é metade da original. A quantidade restante, após um certo período de tempo t, é dada por

$$r(t) = C_0(0.5)^{t/v}$$
, (t em dias)

sendo  $C_0$  a quantidade inicial e v o tempo de meia-vida. Se hoje tivermos 10 gramas de polónio, qual a quantidade restante ao fim de cada uma das próximas 10 semanas? Elabore um gráfico que mostre o comportamento observado ao longo desse período.

- 5. Considere a sucessão Z definida por  $Z(n) = \sum_{k=1}^n \left(\frac{1}{2}\right)^k$ . Usando comandos do Scilab:
  - (a) faça uma representação gráfica de Z onde se possam visualizar os seus 20 primeiros termos.
  - (b) determine o primeiro valor de n tal que seja verificada a condição  $|Z(n) Z(n-1)| < 10^{-10}$ .
- 6. Elabore um algoritmo que permita determinar a nota final (por avaliação periódica) de um estudante na UC de Matemática Discreta. Os elementos de avaliação, os respectivos pesos e a nota mínima estão descritos na tabela seguinte:

|                    | $N^o$ de provas       | Peso | Nota mínima                        |
|--------------------|-----------------------|------|------------------------------------|
| Componente Teórica | 2  provas  (PT1, PT2) | 60%  | 8.0 na média das 2 provas teóricas |
| Componente prática | 1 prova (PP)          | 40%  | 8.0 na prova prática única         |

Apenas devem ser pedidas ao utilizador as notas parciais.

#### Algoritmo - Pseudo-código

- Dados de entrada: nota PT1, nota PT2 e nota CP
- Dados de saída: classificação final.
- Definir nota  $CT = (nota\_PT1 + nota$  PT2) \* 0.5
- $\bullet~$  Se  $nota\_CT < 8.0$  ou  $nota\_CP < 8.0$  então
  - "Não atingiu o mínimo numa das componentes."
- Caso contrário
  - $-\ resultado = 0.60*nota\_CT + 0.40*nota\_CP.$
  - "A classificação final na UC é resultado."