

Wir haben die zwei Geradengleichungen gegeben.

$$g: \vec{x} = \vec{p} + r\vec{u}$$
 und $h: \vec{x} = \vec{q} + t\vec{v}$

Für die gegenseitige Lage dieser zwei Geraden gilt folgendes

g und h . . .

- + ... haben genau einen Schnittpunkt, wenn die Vektorgleichung bzw. das dazugehörige Gleichungssystem $\vec{p}+r\vec{u}=\vec{q}+t\vec{v}$ eine Lösung besitzt.
- $+ \ldots$ sind gleich, wenn die Vektorgleichung bzw. das dazugehörige Gleichungssystem $\vec{p}+r\vec{u}=\vec{q}+t\vec{v}$ <u>unendlich viele</u> Lösungen besitzt.
- + ... haben keinen Schnittpunkt, wenn die Vektorgleichung bzw. das dazugehörige Gleichungssystem $\vec{p}+r\vec{u}=\vec{q}+t\vec{v}$ keine Lösungen besitzt. Sind ferner die Richtungsvektoren \vec{u} und \vec{v} ...
 - \circ_1 ... linear abhängig, so sind g und h parallel
 - \circ_2 ... linear unabhängig, so sind g und h zueinander windschief