Epigenetics and the Lifecourse

Bas Heijmans
Molecular Epidemiology
Leiden University Medical Center
The Netherlands
bas.heijmans@lumc.nl

Roles epigenetics: variation and memory

- Development and cell differentiation
 → 1 DNA molecule, many cell types within an individual.
- 2. Interface DNA and environment
 - → 1 DNA molecule, multiple possible phenotypes.

Epigenetics of coat color

Inbred agouti mice: same DNA sequence

- Methyl supplementation diet pregnant females
- Recorded as higher methylation of agouti gene
- Expressed as no synthesis of yellow colour

Propagated across tissues

Epigenetics: the memory of the DNA

Waterland and Jirtle. Mol Cell Biol 2003

Dutch Hunger Winter

- Severe famine during the winter of 1944-45 in WW2.
- Exposure during intra-uterine life associated with cardiometabolic health (overweight, diabetes, unfavourable lipid levels) and schizophrenia.

Study design

- Quasi-experimental: daily rations <700 kcal/day set for whole population.
- Prospective: traced back exposed individuals at age 60y from records at institutions in affected cities; timing known.
- Best possible controls: unexposed, same-sex siblings.

Study design

Focus on early gestation (ie. conception during Famine)

- Sensitive window? Critical stage in establishing and maintaining epigenetic marks.
- Soma-wide occurrence? Mitotic inheritance resulting in cross-tissue epigenetic differences (incl. peripheral tissues).

Methylation of a growth gene

- DNA from blood of 60 individuals who were periconceptionally exposed to the Famine 6 decades ago.
- IGF2: Prenatal growth factor, also implicated in metabolic regulation and memory; epigenetically controlled.

Looking across 16 genes

Gene	Early	Late
IGF2	↓	
GNAS	†	↓
INSIGF	↓	
IL10	†	
LEP	†	†
ABCA1	†	

Tobi et al. Hum Mol Genet 2009

Picture: Terese Winslow, 2001

Genome-scale studies

Genes Genome

Bisulfite sequencing

GTCGTTTAG

TTTGGTCGTT

GTTGTTTAG

GGTCGTTTAG

TTGGTTGTTT

Bisulfite sequencing

Bisulfite conversion

HT sequencing & Alignment

This fake example 10x coverage, 4/10=40% (95% CI, 17-70%) methylated

Genome-scale study of prenatal famine

- Focus on periconceptional exposure: 24 exposed + 24 sibling controls
- Reduced-Representation Bisulfite Sequencing (RRBS)
- Methylation of 1.2M CpG sites after QC and exclusion uninformative sites (mean coverage 28x; call rate 0.998)
- Mapping to genomic features to decrease multiple testing, accumulate evidence over adjacent CpGs and increase interpretability.

Validated top-hits

Gene	Location	Function
SMAD7 SMAD family member 7	25kb downstream	TGFβ signaling, colorectal cancer, β-cell function & development
CDH23 cadherin-related 23	Intragenic	Inner ear development, hearing loss
INSR insulin receptor	Intragenic	Insulin signaling, growth, height
CPT1A carnitine palmitoyltransferase-1	Intragenic	Fatty acid β-oxidation, fatty acid-induced IR and inflammation in adipocytes
KLF13 Krüppel-like factor 13	Intragenic	LDLR regulation, schizophrenia
RFTN1 raftlin	Intragenic	Eye development, obesity

Towards causality

In silico annotation-based predictions of DMR functionality

Towards causality

- In silico annotation-based predictions of DMR functionality
- In vitro testing DMR functionality

DMR/Suspected enhancer

Luciferase

Genome-scale view

Tobi et al. Nat Commun 2014

Towards causality

- In silico annotation-based predictions of DMR functionality
- In vitro testing DMR functionality
- *In vivo* experiments in animals (moving from principles to testing specific human outcomes), short-term interventions in humans, human cells.
- Integrative genomics from genome and epigenome to transcriptome and further
- Causal inference testing statistical approach to evaluate whether DNA methylation mediates associations between prenatal adversity and laterlife outcomes

Epigenetic changes after prenatal famine

- Exposure to famine during early development is associated with persistent epigenetic differences in humans.
- DNA methylation differences are modest but extend into biological pathways.
- DNA methylation signatures identified link prenatal famine exposure to growth and metabolism.

First 1000 days

Governmental program Kansrijke start

A natural experiment

Identical twin, discordant intra-uterine environment

The twin study of the LUMC

National referral center for complicated twin pregnancies (~50 deliveries per year)

Twinlife (**)

2. Epigenetic Disturbances

3. Childhood health

Mesenchymal stromal cells

2. Epigenetic Disturbances

An advanced proxy for epigenetic dysregulation

- Single cell-type: cellular heterogeneity
- Alive and many: wide range of (epi)genomics and functional assays
- Multipotent: can be differentiated into relevant cell types

MSCs differences reported for singleton births dependent prenatal environment in regenerative medicine field

Mesenchymal stromal cells

2. Epigenetic Disturbances

Twinlife (**)

2. Epigenetic Disturbances

3. Childhood health

The nature epigenetic signatures

DNA methylation signature of an adverse prenatal environment

The nature epigenetic signatures

Transgenerational epigenetics?

Lamarckism revisited – the inheritance of acquired traits

Jean-Baptiste Lamarck (1744-1829)

Transgenerational epigenetics?

Unlikely, certainly in humans

Evolutionary arguments

No evidence for advantage

Mechanistic arguments

Extensive reprogramming

CHICAGO S THAT THE STREET WAS AND A PURE OF THE PERSON TO STREET, STREET WAS A PURE OF THE PERSON TO STREET, S

PARTY OF THE PARTY AND PARTY AND PARTY.

... but a gift to science

Principle methylation array

To think through

 In the study of smoking-induced DNA methylation changes in blood, counts of the various white cells occurring in blood were measured for every individual and included as confounder in the statistical model. Why?

Smoking sticks epigenetically

Maternal smoking affects fetus

Methylation (450k array) in 1062 newborns vs. maternal plasma cotinine, a biomarker of smoking.

Joubert et al. Environ Health Perspect 2012

DNA methylation and age

An exceptional case: methylation at CpGs near *ELOVL2* change with age in any tissue.

DNA methylation and age

DNAm at 450 thousand CpGs →

Our age is in our DNA methylation

Epigenetic clock by Horvath of 353 CpGs (*Genome Biol* 2013) applied to own data (N>3000).

DNAm changes and mortality

blood pressure, and diabetes. Cl: confidence interval, FHS: Framingham Heart Study, HR: hazard ratio, LBC: Lothian Birth Cohort, NAS: Normative

.... 40% of inter-individual differences in \triangle age can be attributed to genetic factors.

Aging Study, W: fixed effect weight.

Biological implications?

Time

Conclusions

- Across the whole lifecourse, from intrauterine life to adulthood, the environment and stochastic effects continuously influence the epigenome.
- DNA methylation changes precisely track chronological age and may also mark biological age.

