University of Toronto Scarborough Department of Computer & Mathematical Sciences

MAT B41H 2013/2014

Solutions #2

- 1. (a) We first note that the angle formed by $\mathbf{u} = (u_1, u_2, u_3)$ and the x-axes is the same as the angle between \mathbf{u} and \mathbf{e}_1 . From our discussion of projection and orthonormal bases, we have $u_1 = \mathbf{u} \cdot \mathbf{e}_1 = ||\mathbf{u}|| \cos \alpha$. Similarly we have $u_2 = ||\mathbf{u}|| \cos \beta$ and $u_3 = ||\mathbf{u}|| \cos \gamma$. Now $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = \frac{u_1^2}{||\mathbf{u}||^2} + \frac{u_2^2}{||\mathbf{u}||^2} + \frac{u_3^2}{||\mathbf{u}||^2} = \frac{u_1^2 + u_2^2 + u_3^2}{||\mathbf{u}||^2} = 1$.
 - (b) (i) Since $\boldsymbol{x} = \|\boldsymbol{w}\| \, \boldsymbol{v} + \|\boldsymbol{v}\| \, \boldsymbol{w}$ is described in terms of \boldsymbol{v} and \boldsymbol{w} , we know that \boldsymbol{x} is in the same plane as \boldsymbol{v} and \boldsymbol{w} . To show that \boldsymbol{x} bisects the angle $\boldsymbol{\theta}$ between \boldsymbol{v} and \boldsymbol{w} , we need to show that the angle $\boldsymbol{\theta}_a$ between \boldsymbol{v} and \boldsymbol{x} , and the angle $\boldsymbol{\theta}_b$ between \boldsymbol{x} and \boldsymbol{w} are each $\frac{1}{2}\boldsymbol{\theta}$. Since the components of \boldsymbol{x} along both \boldsymbol{v} and \boldsymbol{w} are positive, it is sufficient to show that $\cos \boldsymbol{\theta}_a = \cos \boldsymbol{\theta}_b$. Now $\cos \boldsymbol{\theta}_a = \frac{\boldsymbol{v} \cdot \boldsymbol{x}}{\|\boldsymbol{v}\| \|\boldsymbol{x}\|} = \frac{\boldsymbol{v} \cdot (\|\boldsymbol{w}\| \, \boldsymbol{v} + \|\boldsymbol{v}\| \, \boldsymbol{w})}{\|\boldsymbol{v}\| \|\boldsymbol{w}\| \, \boldsymbol{v} + \|\boldsymbol{v}\| \, \boldsymbol{w}\|} = \frac{\|\boldsymbol{v}\|^2 \|\boldsymbol{w}\| + \|\boldsymbol{v}\| \, \boldsymbol{v} \cdot \boldsymbol{w}}{\|\boldsymbol{w}\| \|\boldsymbol{v} + \|\boldsymbol{v}\| \, \boldsymbol{w}\|} = \frac{\|\boldsymbol{v}\|^2 \|\boldsymbol{v}\| + \|\boldsymbol{v}\| \, \boldsymbol{w}\|}{\|\boldsymbol{w}\| \|\boldsymbol{v} + \|\boldsymbol{v}\| \, \boldsymbol{w}\|} = \frac{\|\boldsymbol{w}\|^2 \|\boldsymbol{v}\| + \|\boldsymbol{w}\| \, \boldsymbol{v} \cdot \boldsymbol{w}}{\|\boldsymbol{w}\| \|\boldsymbol{w}\| \, \boldsymbol{v} + \|\boldsymbol{v}\| \, \boldsymbol{w}\|} = \frac{\|\boldsymbol{w}\|^2 \|\boldsymbol{v}\| + \|\boldsymbol{v}\| \, \boldsymbol{w}\|}{\|\boldsymbol{w}\| \|\boldsymbol{v} + \|\boldsymbol{v}\| \, \boldsymbol{w}\|} = \frac{\|\boldsymbol{w}\|^2 \|\boldsymbol{v}\| + \|\boldsymbol{v}\| \, \boldsymbol{w}\|}{\|\boldsymbol{w}\| \|\boldsymbol{v} + \|\boldsymbol{v}\| \, \boldsymbol{w}\|} = \frac{\|\boldsymbol{w}\|^2 \|\boldsymbol{v}\| + \|\boldsymbol{v}\| \, \boldsymbol{w}\|}{\|\boldsymbol{w}\| \|\boldsymbol{v} + \|\boldsymbol{v}\| \, \boldsymbol{w}\|} = \frac{\|\boldsymbol{w}\|^2 \|\boldsymbol{v}\| + \|\boldsymbol{v}\| \, \boldsymbol{w}\|}{\|\boldsymbol{w}\| \|\boldsymbol{v}\| \, \boldsymbol{v}\| \, \boldsymbol{w}\|} = \frac{\|\boldsymbol{w}\|^2 \|\boldsymbol{v}\| + \|\boldsymbol{v}\| \, \boldsymbol{w}\|}{\|\boldsymbol{w}\| \|\boldsymbol{v}\| \, \boldsymbol{v}\| \, \boldsymbol{w}\|} = \frac{\|\boldsymbol{w}\|^2 \|\boldsymbol{v}\| + \|\boldsymbol{v}\| \, \boldsymbol{w}\|}{\|\boldsymbol{w}\| \|\boldsymbol{v}\| \, \boldsymbol{v}\| \, \boldsymbol{w}\| \, \boldsymbol{w}\|} = \frac{\|\boldsymbol{w}\|^2 \|\boldsymbol{v}\| \, \boldsymbol{w}\| \, \boldsymbol{w}\|}{\|\boldsymbol{w}\| \|\boldsymbol{v}\| \, \boldsymbol{v}\| \, \boldsymbol{w}\| \, \boldsymbol{w}\|} = \frac{\|\boldsymbol{w}\|^2 \|\boldsymbol{v}\| \, \boldsymbol{w}\| \, \boldsymbol{w}\| \, \boldsymbol{w}\|}{\|\boldsymbol{w}\| \, \boldsymbol{w}\| \, \boldsymbol{w}\| \, \boldsymbol{w}\|} = \frac{\|\boldsymbol{w}\|^2 \|\boldsymbol{v}\| \, \boldsymbol{w}\| \, \boldsymbol{w}\| \, \boldsymbol{w}\| \, \boldsymbol{w}\|}{\|\boldsymbol{w}\| \, \boldsymbol{w}\| \, \boldsymbol{w}\| \, \boldsymbol{w}\| \, \boldsymbol{w}\|} = \frac{\|\boldsymbol{w}\| \, \boldsymbol{w}\| \, \boldsymbol{w}\|$
 - (ii) Using the properties of the dot product we have $(\|\boldsymbol{w}\|\boldsymbol{v} + \|\boldsymbol{v}\|\boldsymbol{w}) \cdot (\|\boldsymbol{w}\|\boldsymbol{v} \|\boldsymbol{v}\|\boldsymbol{w}) = \|\boldsymbol{w}\|^2 \boldsymbol{v} \cdot \boldsymbol{v} \|\boldsymbol{w}\| \|\boldsymbol{v}\| \boldsymbol{v} \cdot \boldsymbol{w} + \|\boldsymbol{v}\| \|\boldsymbol{w}\| \boldsymbol{w} \cdot \boldsymbol{v} \|\boldsymbol{v}\|^2 \boldsymbol{w} \cdot \boldsymbol{w} = \|\boldsymbol{w}\|^2 \boldsymbol{v} \cdot \boldsymbol{v} \|\boldsymbol{v}\|^2 \boldsymbol{w} \cdot \boldsymbol{w} = \|\boldsymbol{w}\|^2 \|\boldsymbol{v}\|^2 \|\boldsymbol{v}\|^2 \|\boldsymbol{w}\|^2 = 0$. Hence the vectors are orthogonal.
- 2. Let $\mathbf{x} = (x, y, z)$. Now $\mathbf{x} \cdot \mathbf{x} \mathbf{x} \cdot (1, -2, 3) = x^2 + y^2 + z^2 x + 2y 3z \le 1$. After completing the square we have $\left(x \frac{1}{2}\right)^2 + \left(y + 1\right)^2 + \left(z \frac{3}{2}\right)^2 \le \frac{9}{2}$. This inequality describes the solid ball (sphere together with its interior) centered at $\left(\frac{1}{2}, -1, \frac{3}{2}\right)$ with radius $\frac{3}{\sqrt{2}}$.
- 3. $\det(A \lambda I) = \det \begin{pmatrix} 1 \lambda & -2 & 3 \\ -2 & -\lambda & 0 \\ 3 & 0 & -4 \lambda \end{pmatrix} \stackrel{expand on}{\underset{column \, 2}{\rightleftharpoons}} (-2) \det \begin{pmatrix} -2 & 0 \\ 3 & -4 \lambda \end{pmatrix} +$

MATB41H Solutions # 2 page 2

$$(-\lambda)\det\begin{pmatrix}1-\lambda & 3\\ 3 & -4-\lambda\end{pmatrix} = 2(8+2\lambda) - \lambda(\lambda^2+3\lambda-13) = -\lambda^3-3\lambda^2+17\lambda+16.$$
To solve we need Newton's Method.

Let $f(\lambda) = -\lambda^3-3\lambda^2+17\lambda+16.$

Now $f'(\lambda) = -3\lambda^2-6\lambda+17=0$

if $\lambda = \frac{6\pm\sqrt{36+204}}{-6} = -1\pm\frac{2\sqrt{15}}{3}.$
 $f''(x) = -6\lambda-6=0$ if $\lambda = -1$. $f'(\lambda) > 0$ if $\lambda \in \left(-1-\frac{2\sqrt{15}}{3}, -1+\frac{2\sqrt{15}}{3}\right)$ and $f'(\lambda) < 0$ if $\lambda \in \left(-\infty, -1-\frac{2\sqrt{15}}{3}\right) \cup \left(-1+\frac{2\sqrt{15}}{3}, \infty\right).$

f''(x) > 0 if $\lambda \in (-\infty, -1)$ and f''(x) < 0 if $\lambda \in (-1, \infty)$. Hence we get the graph shown and we see that there are three roots. Using the Newton algorithm, $x_i = x_{i-1} - \frac{f(x_{i-1})}{f'(x_{i-1})}$, we get $\lambda_1 \approx -5.54532927$, $\lambda_2 \approx -0.84983068$ and $\lambda_3 \approx 3.39515995$.

4. Since $\det A = \det \begin{pmatrix} 1 & 2 & -1 \\ 2 & 2 & 4 \\ 1 & 3 & -3 \end{pmatrix}$ $r_2 \rightarrow r_2 - 2r_1$ $\det \begin{pmatrix} 1 & 2 & -1 \\ 0 & -2 & 6 \\ 0 & 1 & -2 \end{pmatrix}$ $\underset{on \ c_1}{expand}$

 $(1) \det \begin{pmatrix} -2 & 6 \\ 1 & -2 \end{pmatrix} = (1)(4-6) = -2 \neq 0$, A has an inverse. The cofactor matrix C is

This C is
$$C = \begin{pmatrix} +\det\begin{pmatrix} 2 & 4 \\ 3 & -3 \end{pmatrix} & -\det\begin{pmatrix} 2 & 4 \\ 1 & -3 \end{pmatrix} & +\det\begin{pmatrix} 2 & 2 \\ 1 & 3 \end{pmatrix} \\ -\det\begin{pmatrix} 2 & -1 \\ 3 & -3 \end{pmatrix} & +\det\begin{pmatrix} 1 & -1 \\ 1 & -3 \end{pmatrix} & -\det\begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} \\ +\det\begin{pmatrix} 2 & -1 \\ 2 & 4 \end{pmatrix} & -\det\begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix} & +\det\begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix} \end{pmatrix}$$

$$= \begin{pmatrix} -18 & 10 & 4 \\ 3 & -2 & -1 \\ 10 & -6 & -2 \end{pmatrix}.$$

Now the (classical) adjoint of A, $adj(A) = C^t = \begin{pmatrix} -18 & 3 & 10 \\ 10 & -2 & -6 \\ 4 & -1 & -2 \end{pmatrix}$, and

$$A^{-1} = \frac{1}{\det A} \operatorname{adj}(A) = \left(-\frac{1}{2}\right) \begin{pmatrix} -18 & 3 & 10\\ 10 & -2 & -6\\ 4 & -1 & -2 \end{pmatrix}.$$

- 5. (a) $f(x,y) = 5x^2 + 2y^2 3$.
 - (i) The domain of f(x,y) is $\{(x,y) \in \mathbb{R}^2\}$ and its range is $\{z \in \mathbb{R} \mid z \geq -3\}$.

- (ii) One possible domain on which f(x,y) is one-to-one is $\{(x,x) \mid x \geq 0\}$. There many other possibilities.
- (iii) To ensure that f(x, y) is onto, we put the codomain of f to be equal to the range of f.
- (b) (i) $f(x,y) = \log_2(x-y)$. The domain of f(x,y) is $\{(x,y) \in \mathbb{R}^2 \mid x-y > 0\}$. (This is the part of \mathbb{R}^2 to the right of the line y = x). The range of f(x,y) is \mathbb{R} .

y = x.

(ii) $f(x,y) = \frac{1}{\sqrt{9-x^2-y^2}}$. The domain of f(x,y) is $\left\{ \boldsymbol{x} \in \mathbb{R}^2 \mid \|\boldsymbol{x}\| < 3 \right\}$. (This is the region of \mathbb{R}^2 which lies inside the circle $x^2+y^2=9$ excluding the circle itself.) The range of f(x,y) is $\left\{ z \in \mathbb{R} \mid z \geq \frac{1}{3} \right\}$.

6. (a) $F(x,y) = (2x^2 + 3y^2 - 7)(3xy - 1)$ is defined for all $(x,y) \in \mathbb{R}^2$. $(2x^2 + 3y^2 - 7)$ is 0 on the ellipse $2x^2 + 3y^2 = 7$ (in red) and (3xy - 1) is 0 on the hyperbola 3xy = 1 (in blue); hence, F(x,y) is 0 on both.

(b) $F(x,y) = \frac{y+x^2-5}{y+2x+2}$ is not defined on the dashed line y=-2x-2 (in blue). $(y+x^2-5)$, and consequently, F(x,y) is 0 on the parabola $y=5-x^2$ (in red).

MATB41H Solutions # 2 page 4

(c) F(x,y) = |x+y| - |x-y| is defined for all $(x,y) \in \mathbb{R}^2$. We will consider 4 cases: $x+y>0, \ x-y>0$: F(x,y)=x+y-x+y=2y $x+y>0, \ x-y<0$: F(x,y)=x+y+x-y=2x $x+y<0, \ x-y>0$: F(x,y)=-x-y-x+y=-2x $x+y<0, \ x-y<0$: F(x,y)=-x-y+x-y=-2y. F(x,y)=0 when x=0 or y=0 (in red).

(d) $F(x,y) = \sin(y^2 - x^2)$ is defined for all $(x,y) \in \mathbb{R}^2$. F(x,y) = 0 if $y^2 - x^2 = k\pi$, $k \in \mathbb{Z}$.

7. We first complete the square. $z = 3x^2 + 3y^2 - 6x + 12y + 15 = 3(x^2 - 2x) + 3(y^2 + 4y) + 15 = 3(x^2 - 2x + 1) + 3(y^2 + 4y + 4) + 15 - (3)(1) - (3)(4) = 3(x - 1)^2 + 3(y + 2)^2$. This a paraboloid opening upward with vertex at (1, -2, 0). Note that the cross sections perpendicular to the x-axis and the y-axis are parabolas opening upward, while the cross sections perpendicular to the z-axis (contours at height z) are circles centered at (1, -2, z) with radius $\sqrt{\frac{z}{3}}$.

8. The matchups are $A \longleftrightarrow II$, $B \longleftrightarrow IV$, $C \longleftrightarrow I$ and $D \longleftrightarrow III$.