#### pip install pandas

Looking in indexes: <a href="https://pypi.org/simple">https://us-python.pkg.dev/colab-wheels/r</a> Requirement already satisfied: pandas in /usr/local/lib/python3.7/dist-packages (1.3 Requirement already satisfied: numpy>=1.17.3 in /usr/local/lib/python3.7/dist-packages Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-packages Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.7/dist-packages (from the following processes already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packages (from the following pytz) satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packag



import pandas as pd
import numpy as np
import seaborn as sns

from google.colab import files
uploaded=files.upload()

Choose Files Enrollments...092022.csv

• **Enrollments\_28092022.csv**(text/csv) - 11329 bytes, last modified: 10/6/2022 - 100% done Saving Enrollments\_28092022.csv to Enrollments\_28092022.csv

dataset = pd.read\_csv('Enrollments\_28092022.csv')

#### dataset

|     | StudentNo | DEGREE | INTERMEDIATE | SSC  | INTERNSHIP                     | 1 |
|-----|-----------|--------|--------------|------|--------------------------------|---|
| 0   | 1001      | 8.10   | 76.0         | 92.0 | Data Science                   |   |
| 1   | 1002      | 8.10   | 76.0         | 92.0 | MEAN Stack Web Development     |   |
| 2   | 1003      | 7.80   | 94.6         | 92.0 | MEAN Stack Web Development     |   |
| 3   | 1004      | 9.03   | 89.5         | 89.0 | Data Science                   |   |
| 4   | 1005      | 8.38   | 87.0         | 90.0 | MEAN Stack Web Development     |   |
|     |           |        |              |      |                                |   |
| 292 | 2188      | 8.70   | 94.1         | 93.0 | Data Science                   |   |
| 293 | 2189      | 8.45   | 90.0         | 93.0 | Data Science                   |   |
| 294 | 2190      | 8.40   | 94.9         | 98.0 | Data Science                   |   |
| 295 | 2191      | 7.06   | 90.6         | 88.0 | Cloud Computing Services (AWS) |   |
| 296 | 2192      | 7.50   | 95.5         | 95.0 | Cloud Computing Services (AWS) |   |
|     |           |        |              |      |                                |   |

297 rows × 5 columns

# 1. Identify Variables and their types (Qualitative and Quantitaive analysis)

```
dataset.columns
    Index(['StudentNo', 'DEGREE', 'INTERMEDIATE', 'SSC', 'INTERNSHIP'], dtype='object')
Double-click (or enter) to edit
dataset.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 297 entries, 0 to 296
    Data columns (total 5 columns):
                 Non-Null Count Dtype
       Column
    ---
                     -----
                    297 non-null
297 non-null
                                    int64
     0
       StudentNo
         DEGREE
                      297 non-null
                                    float64
       INTERMEDIATE 297 non-null float64
     2
                                    float64
     3
         SSC
                      297 non-null
         INTERNSHIP 297 non-null
                                    object
     4
    dtypes: float64(3), int64(1), object(1)
    memory usage: 11.7+ KB
```

#### Size of Data

```
dataset.shape (297, 5)
```

#### 3. Histogram for Degree, Inter and 10th class

```
import matplotlib.pyplot as plt

df=dataset.drop('StudentNo',axis=1)
df.hist(figsize=(10,10),bins=10)
```





SSC

#### 4. Create Pie-Chart to represent the Enrollments for each Internship program

```
INTERNSHIPS = ['Data Science', 'MEAN Stack Web Development', 'Cloud Computing Services (Al
data = [156, 51, 90]
plt.pie(data, labels = INTERNSHIPS)

# show plot
plt.show()
```



## 5. Find No. of enrollments in each program



dataset['INTERNSHIP'].value\_counts()['MEAN Stack Web Development'] #no.of enrollments for
51

dataset['INTERNSHIP'].value\_counts()['Cloud Computing Services (AWS)'] #no.of enrollments
90

#### 6. Find Measure of Central Tendancy: Mean, Mode, Median for Degree, 10th and Inter

dataset.describe() #for mean

|       | StudentNo   | DEGREE     | INTERMEDIATE | SSC        |
|-------|-------------|------------|--------------|------------|
| count | 297.000000  | 297.000000 | 297.000000   | 297.000000 |
| mean  | 1727.585859 | 7.928081   | 88.662626    | 88.106734  |
| std   | 502.019415  | 0.785579   | 7.355733     | 9.027984   |
| min   | 1001.000000 | 5.800000   | 65.000000    | 38.400000  |
| 25%   | 1075.000000 | 7.400000   | 83.000000    | 85.000000  |
| 50%   | 2044.000000 | 8.000000   | 90.800000    | 90.000000  |
| 75%   | 2118.000000 | 8.560000   | 94.600000    | 95.000000  |
| max   | 2192.000000 | 9.530000   | 99.400000    | 99.000000  |

median\_degree = dataset['DEGREE'].median() #median for degree
print(median\_degree)

8.0

median\_inter = dataset['INTERMEDIATE'].median() #median for inter
print(median\_inter)

90.8

```
median ssc = dataset['SSC'].median() #median for 10th
print(median_ssc)
     90.0
mode_degree = dataset['DEGREE'].mode() #median for degree
print(mode_degree)
          7.0
     dtype: float64
mode_inter = dataset['INTERMEDIATE'].mode() #median for inter
print(mode_inter)
     0
          95.0
     dtype: float64
mode_ssc = dataset['SSC'].mode()
print(mode_ssc)
     0
          95.0
     dtype: float64
```

# 7. Find Measure of Variance: Minimum, Maximum, Range, Mean Deviation, Standard Deviation, Co-efficient of Variation for Degree, Inter And 10th class

dataset.describe() #for min,max values,mean,std deviation

|       | StudentNo   | DEGREE     | INTERMEDIATE | SSC        |
|-------|-------------|------------|--------------|------------|
| count | 297.000000  | 297.000000 | 297.000000   | 297.000000 |
| mean  | 1727.585859 | 7.928081   | 88.662626    | 88.106734  |
| std   | 502.019415  | 0.785579   | 7.355733     | 9.027984   |
| min   | 1001.000000 | 5.800000   | 65.000000    | 38.400000  |
| 25%   | 1075.000000 | 7.400000   | 83.000000    | 85.000000  |
| 50%   | 2044.000000 | 8.000000   | 90.800000    | 90.000000  |
| 75%   | 2118.000000 | 8.560000   | 94.600000    | 95.000000  |
| max   | 2192.000000 | 9.530000   | 99.400000    | 99.000000  |

range\_degree=dataset.DEGREE.max()-dataset.DEGREE.min() #range for degree
print(range\_degree)

#### 3.729999999999995

range\_inter=dataset.INTERMEDIATE.max()-dataset.INTERMEDIATE.min() #range for inter
print(range\_inter)

#### 34.400000000000006

```
\label{lem:condition} $$ range\_ssc=dataset.SSC.max()-dataset.SSC.min() $$ \#range for 10th $$ print(range\_ssc)$
```

60.6

#Co-efficient of Variation for Degree
cov\_degree = 0.784255/7.928080808080809\*100 #Formula for co-efficient of variation is stan
print(cov\_degree)

9.89211662929365

#Co-efficient of Variation for Intermediate
cov\_inter = 7.343339/88.66262626262626\*100
print(cov\_inter)

8.282338691669706

#Co-efficient of Variation for SSC
cov\_ssc = 9.027984/88.10673400673402\*100
print(cov\_ssc)

10.246644710845814

#### 8. Measures of Position

```
import scipy.stats as stats
```

```
data_score = pd.DataFrame(np.random.randint(0, 10, size=(298,3)), columns=['DEGREE', 'INT
data_score
data_score.apply(stats.zscore)
```

|   | DEGREE    | INTERMEDIATE | SSC       | 1 |
|---|-----------|--------------|-----------|---|
| 0 | -0.282674 | 1.586798     | -1.173672 |   |
| 1 | -1.675019 | -0.511719    | 0.496597  |   |

## **Inter Quartile Range**

```
q1 = np.percentile(dataset.DEGREE, 25)
q3 = np.percentile(dataset.DEGREE, 75)
iqr = q3 - q1
print('Q1 :' + str(q1))
print('Q3 :' + str(q3))
print("IQR equals: " + str(iqr))

Q1 :7.4
Q3 :8.56
IQR equals: 1.16000000000000001
```

# 9. Create Box Plot and Identify Outliers for Degree, Inter and 10th calss

```
df3=dataset.drop('StudentNo',axis=1)
df3.boxplot(figsize=(10,10))
```





| HIP  | INTERNS                     | SSC  | INTERMEDIATE | DEGREE | StudentNo |    |
|------|-----------------------------|------|--------------|--------|-----------|----|
| nce  | Data Scie                   | 89.0 | 89.5         | 9.03   | 1004      | 3  |
| NS)  | Cloud Computing Services (A | 98.0 | 95.0         | 9.07   | 1015      | 14 |
| nent | MEAN Stack Web Developr     | 93.1 | 98.2         | 9.53   | 1017      | 16 |
| nent | MEAN Stack Web Developr     | 83.0 | 95.2         | 9.08   | 1018      | 17 |
| nce  | Data Scie                   | 87.0 | 98.0         | 9.16   | 1020      | 19 |
| nce  | Data Scie                   | 99.0 | 96.8         | 9.00   | 1021      | 20 |
| nce  | Data Scie                   | 97.0 | 97.2         | 9.08   | 1025      | 24 |
| NS)  | Cloud Computing Services (A | 83.0 | 89.7         | 8.92   | 1029      | 28 |
| nce  | Data Scie                   | 97.0 | 96.5         | 9.03   | 1040      | 39 |
| nce  | Data Scie                   | 97.0 | 97.7         | 9.34   | 1041      | 40 |

dataset[dataset.INTERMEDIATE>96.5]



|     | StudentNo | DEGREE | INTERMEDIATE | SSC  | INTERNSHIP                 |
|-----|-----------|--------|--------------|------|----------------------------|
| 16  | 1017      | 9.53   | 98.2         | 93.1 | MEAN Stack Web Development |
| 19  | 1020      | 9.16   | 98.0         | 87.0 | Data Science               |
| 20  | 1021      | 9.00   | 96.8         | 99.0 | Data Science               |
| 24  | 1025      | 9.08   | 97.2         | 97.0 | Data Science               |
| 40  | 1041      | 9.34   | 97.7         | 97.0 | Data Science               |
| 60  | 1061      | 8.80   | 97.3         | 92.0 | Data Science               |
| 96  | 1097      | 9.20   | 97.8         | 90.0 | Data Science               |
| 127 | 2023      | 9.20   | 97.2         | 92.0 | MEAN Stack Web Development |
| 138 | 2034      | 9.38   | 98.2         | 87.0 | Data Science               |

dataset[dataset.SSC>97.0]

|     | StudentNo | DEGREE   | INTERMEDIATE | SSC      | INTERNSHIP                     | 77. |
|-----|-----------|----------|--------------|----------|--------------------------------|-----|
|     |           |          |              |          |                                |     |
| 14  | 1015      | 9.07     | 95.00        | 98.0     | Cloud Computing Services (AWS) |     |
| 20  | 1021      | 9.00     | 96.80        | 99.0     | Data Science                   |     |
| 21  | 1022      | 8.00     | 95.20        | 98.0     | Data Science                   |     |
| 76  | 1077      | 8.70     | 93.00        | 98.0     | Data Science                   |     |
| 95  | 1096      | 8.83     | 94.70        | 98.0     | Data Science                   |     |
| 122 | 2018      | 7.00     | 92.00        | 98.0     | Cloud Computing Services (AWS) |     |
| 126 | 2022      | 7.03     | 72.00        | 98.0     | Cloud Computing Services (AWS) |     |
| 145 | 2041      | 8.76     | 94.50        | 98.0     | Data Science                   |     |
| 147 | 2043      | 8.60     | 94.00        | 98.0     | MEAN Stack Web Development     |     |
| 153 | 2049      | 8.38     | 87.00        | 98.0     | MEAN Stack Web Development     |     |
| 162 | 2058      | 9.10     | 94.00        | 98.0     | Data Science                   |     |
| 174 | 2070      | 6.33     | 84.80        | 98.0     | Cloud Computing Services (AWS) |     |
| 188 | 2084      | 7.76     | 97.40        | 98.0     | Cloud Computing Services (AWS) |     |
| 191 | 2087      | 7.30     | 98.80        | 98.0     | Cloud Computing Services (AWS) |     |
| 196 | 2092      | 6 50     | 77 62        | 98 0     | MFAN Stack Web Development     |     |
|     |           | <b>~</b> | 0s completed | d at 7:5 | 6 PM                           | • × |