Today's Agenda:-
·
1. Space Complexity
2. Dritsoduction To Arrays
3. Reverse the array.
4. Rotate away h strinet.
1. Space Complexity 2. Dritsoduction To Arrays 3. Reverse the array. 4. Rotate array K times. 5. Dynamic Drays.
Starting at 7:05 AM.
Space Complexity.
utilised at any port en bone
That space that is utilised at any port cen brue during running the algorithm.
7 Con be determined
ung Big O

Input ALGORITHM Hursillar / Extoa tpace my also so umy other than Input / Output is called Sic. Example: Void int 9; 114B

Duig 2:

func (int N) { // 4 B x int x = N; // 4 B int y = x(xx; // 4 B long 3 = x + y; // 8 B int () au = new nt (N); // 4 N B long ()() L = new long (N)(N); 3 // 8 x N B

Another Question:

int max Har (int au (), nt N) {

int ans = au (o); 4B x

for (i from / to N-1) {

48. ans = max (ans, au (i));

3

seturn ans; 11 Pat & output

3

at [=1',

i 7

nt au CsJ; T. (Su O(1) 10 accers on elevet × (au). x (au + i). x (au + c-1). $\frac{0}{1234}$ port (au(o) + au(u)); Problem 1: Reverse aray. the

```
Topel !-
         0
                        C
  a(i) = a(j); / ×
  a (i) = a (i);
 temp = a (i);
 a(i) = a[j];
  a (j) = terp;
                   [ 7
                    (nt au C), nt N
       void severe
T.C -70(N)-
S. ( -) O(1.)
               au (i) = au (j);
```

Reverie au = 21, 2, 3, 4, 53Ex:-01239 0153Out put > void severe (nt au C), nt N, nt I, nt I)

1 i = l; j = r; nt tep; while (i<j) au (i) = au (j); T. (-) O(N) S. (-7 0 (1) 8:30.

Problem	2:-	Rotate	K tin	es.	
size right	N.	Given an Rotate left	the the	'an' avay iner.	Jeon
Ex:-		$au = \begin{cases} \\ K = 4 \end{cases}$	1,2,3,	4,53	
		012512	3 4 3 4.	K =	- .
temp =	au 1	(47)			Y. Z. Z.
a CoJ		Leep'; 0 1 2 4.5 1	3. 4 2. 3.	K 2 2	f f

Code Totate (pt au C), nt N, nt K) $\int \nabla \left(\int z - 1 \right) dz = K \left(\int z \right) + + \int \zeta dz$ $\int dz = \int z - \Delta u \left(N - I \right) dz$ T. C -> 0 (K*N) S. C -> 0 (1) ophise it 2. K = 3: 1234567. Styp 1:- Renre ettre aug. 7654321

boson 0 to K-1 molex Output 4. 567.1234. Expected Oulput Code: Totate (rt anc), rt N, rt K) {. revue (au, N, O, N-1); revere (au, N, D, K-1); Jenne (ar, N, K, N-1); T.(-> O(N). S.C -7 0(1). K = 215 N= 10, 215 -1.10 0. + p' T 1

Dynami	ic Arrays!	
	What is the drawbaci	k of
	What is the drawbaci Static arrays ?	
	It has a fixed lige	. •
	A Lander West-Bi	
	Automatic verizing.	
Strenk	か・ -	
Strent	-) par 100 mg	
	-7 Size & flixibles	
1110 10 10		
Weakree	s: Corporatively Slow	vel',
Java	. Ang list.	
<u>C++</u> :	Vector.	
	List.	
Python		
vecto.	6 Cnt 7 V.	
	5 -7 516	171
	✓/	
		•

Doubts: !-

 $k = 100^{\circ}$, $M = 100^{\circ}$

void solve (ne N) { f = c', j = -1; j = -1;

+2+3+4+5+·..2^N

 $2^{N}(2^{N}+1) = 2^{N} + 2^{N}$

Z CIN X L.

/ 2 \ \
/2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

KHN - K - Mighed mulliple of N

which is been How

K.