04b_python-map-plotting

June 24, 2015

1 Plotting the Walrus Data on a map

```
In [3]: import os
        import pandas as pd
        import numpy as np
In [4]: filename = os.path.join('Walrus_Data', 'Walruses.csv')
       df = pd.read_csv(filename, parse_dates=[1],
                        thousands=',')
        df.head(5)
Out [4]:
          Walrus
                         DateTimeUTC
                                        Xcoord
                                                   Ycoord
                                                             Behav
                                                                     Longitude \
             271 2008-05-31 19:25:00 95616.95 -528324.60 1.00900 -167.956095
        1
             271 2008-06-01 03:24:00 84741.71 -511653.75 1.00050 -168.177987
             271 2008-06-01 11:24:00 71834.45 -491176.95 1.00625 -168.444360
       3
             271 2008-06-01 19:24:00 65275.80 -478935.62 1.02025 -168.580284
             271 2008-06-02 03:24:00 69343.24 -473948.91 1.00775 -168.489215
           Latitude
       0 65.248715
          65.401217
        2 65.587969
        3 65.699143
        4 65.742984
```

1.0.1 Selecting each Walrus

1.0.2 Plotting the walrus behavior

Several steps: 1. Create a map centered around the region 2. Draw coastlines 3. Draw countries 4. Fill oceans and coastline 5. Draw the oberservations of the walrus on map

1.0.3 Drawing an empty map of the region

```
In [20]: lons = w281.Longitude.values
         lats = w281.Latitude.values
         lons_c=np.average(lons)
         lats_c=np.average(lats)
         print (lons_c, lats_c)
(-169.59596290181815, 66.676100493272713)
In [21]: #
         map = Basemap(width=1400000, height=1100000, projection='lcc', resolution='h',
                       lat_0=lats_c+2,lon_0=lons_c)
         fig=plt.figure(figsize=(12,9))
         ax = fig.add_axes([0.05, 0.05, 0.9, 0.85])
         # draw coastlines, country boundaries, fill continents.
         map.drawcoastlines(linewidth=0.25)
         map.drawcountries(linewidth=0.25)
         map.fillcontinents(color='coral', lake_color='blue')
         # draw the edge of the map projection region (the projection limb)
         map.drawmapboundary(fill_color='aqua')
         # create a grid
         # draw lat/lon grid lines every 2 degrees.
         map.drawmeridians(np.arange(0,360,2), labels=[False, True, True, False])
         map.drawparallels(np.arange(-90,90,1), lables=[True, False, False, True])
Out[21]: {63: ([<matplotlib.lines.Line2D at 0x11905ef10>,
            <matplotlib.lines.Line2D at 0x11a464cd0>],
           []),
          64: ([<matplotlib.lines.Line2D at 0x118e0c2d0>], []),
          65: ([<matplotlib.lines.Line2D at 0x118e0c890>], []),
          66: ([<matplotlib.lines.Line2D at 0x118e0ce50>], []),
          67: ([<matplotlib.lines.Line2D at 0x118e24450>], []),
          68: ([<matplotlib.lines.Line2D at 0x118e24a10>], []),
          69: ([<matplotlib.lines.Line2D at 0x118e24fd0>], []),
          70: ([<matplotlib.lines.Line2D at 0x118e345d0>], []),
          71: ([<matplotlib.lines.Line2D at 0x118e34b90>], []),
          72: ([<matplotlib.lines.Line2D at 0x11a315190>], []),
          73: ([<matplotlib.lines.Line2D at 0x11a315750>], [])}
```


1.0.4 Plotting one observation

```
In [16]: #
         map = Basemap(width=1400000,height=1100000,projection='lcc', resolution='c',
                       lat_0=lats_c+2,lon_0=lons_c)
         fig=plt.figure(figsize=(12,9))
         ax = fig.add_axes([0.05, 0.05, 0.9, 0.85])
         # draw coastlines, country boundaries, fill continents.
         map.drawcoastlines(linewidth=0.25)
         map.drawcountries(linewidth=0.25)
         map.fillcontinents(color='coral', lake_color='blue')
         # draw the edge of the map projection region (the projection limb)
         map.drawmapboundary(fill_color='aqua')
         # create a grid
         # draw lat/lon grid lines every 2 degrees.
         map.drawmeridians(np.arange(0,360,2), labels=[False, True, True, False])
         map.drawparallels(np.arange(-90,90,1), lables=[True, False, False, True])
         # Walrus 281
```

```
x, y = map(lons[0],lats[0])
map.scatter(x,y,color='b',label='281')
plt.legend()
```

Out[16]: <matplotlib.legend.Legend at 0x116da3c90>

1.0.5 Plot all walrus observations

```
# create a grid
# draw lat/lon grid lines every 2 degrees.
map.drawmeridians(np.arange(0,360,2), labels=[False, True, True, False])
map.drawparallels(np.arange(-90,90,1), lables=[True, False, False, True])
# Walrus 281
lons = w281.Longitude.values
lats = w281.Latitude.values
x, y = map(lons, lats)
map.scatter(x,y,color='b',label='281')
# now for walrus 271
lons = w271.Longitude.values
lats = w271.Latitude.values
x, y = map(lons, lats)
map.scatter(x,y,color='r',label='271')
# now for walrus 322
lons = w322.Longitude.values
lats = w322.Latitude.values
x, y = map(lons, lats)
map.scatter(x,y,color='g',label='322')
plt.legend()
```

Out[19]: <matplotlib.legend.Legend at 0x119002c10>

In []: