

Cálculo I - Segunda Prova 29/06/2023 (7:00 – 8:40)

Nome:
Todas as questões devem ser justificadas através de cálculos e/ou argumentação.
Utilize resultados estudados na disciplina em todas as questões. BOA PROVA!!!
Questão 01 (6,0): Uma reta é dita normal a uma curva em um ponto se for perpendicular à reta tangente à curva neste ponto. Encontre em que outro ponto a reta normal à curva de equação $x^2 + 2xy - 3y^2 = 0$ em (1,1) cruza a curva.

Questão 02 (6,0): O gás de um balão esférico escapa à razão de 1,5 dm^3/min . Mostre que a taxa de variação da superfície S do balão, em relação ao tempo, é inversamente proporcional ao raio.		
Obs.: O volume de uma esfera de raio r é dado por $V=\frac{4}{3}\pi r^3$, e sua superfície tem área $S=4\pi r^2$.		

ezes o segundo número seja 1000, e o produto dos número	os seja o maior possivei.
Questão 04 (8,0): Na figura ao lado está o gráfico de $v = v(x)$ (velocidade), que é a derivada de $y = s(x)$ posição). Com base nas informações desse gráfico:	3
a) Determine os intervalos em que a função $y = s(x)$ é crescente. Justifique sua escolha.	
	-2 - 0 1 X

(b) Indique para que valores de x a função $y = s(x)$ tem um máximo ou um mínimo. Justifique.
(c) Indique para que valores de x o gráfico da função $y = s(x)$ é côncavo para cima. O que isto
representa, em termos de aceleração?

(d) Na mesma tela de y = s'(x), esboce um possível gráfico da função y = s(x).

