Lecture 6: Model Selection and Regularization STATS 202: Statistical Learning and Data Science

Linh Tran

tranlm@stanford.edu

Department of Statistics Stanford University

July 9, 2025

Announcements

- ► HW1 is still being graded.
- ► HW2 due Monday (available on both Gradescope & syllabus page).
- ▶ Midterm is in 1 week.
 - Will be in person.
 - ▶ Let the teaching staff know if you need special accomodations.
 - Practice exam will be released tonight.
 - ▶ Solutions to practice midterm will be posted this weekend.

- Bootstrap
- Jackknife
- ► Subset selection
- ► Shrinkage methods
 - ► Ridge
 - ► LASSO
 - ► Elastic net

An example: Standard errors in linear regression

```
Residuals:
   Min 10 Median 30
                                Max
-15.594 -2.730 -0.518 1.777 26.199
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.646e+01 5.103e+00 7.144 3.28e-12 ***
        -1.080e-01 3.286e-02 -3.287 0.001087 **
crim
          4.642e-02 1.373e-02 3.382 0.000778 ***
zn
indus
        2.056e-02 6.150e-02 0.334 0.738288
       2.687e+00 8.616e-01 3.118 0.001925 **
chas
nox -1.777e+01 3.820e+00 -4.651 4.25e-06 ***
        3.810e+00 4.179e-01 9.116 < 2e-16 ***
rm .
age 6.922e-04 1.321e-02 0.052 0.958229
dis
       -1.476e+00 1.995e-01 -7.398 6.01e-13 ***
         3.060e-01 6.635e-02 4.613 5.07e-06 ***
rad
        -1.233e-02 3.761e-03 -3.280 0.001112 **
tax
ptratio -9.527e-01 1.308e-01 -7.283 1.31e-12 ***
black
         9.312e-03 2.686e-03 3.467 0.000573 ***
lstat
        -5.248e-01 5.072e-02 -10.347 < 2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 4.745 on 492 degrees of freedom
Multiple R-Squared: 0.7406, Adjusted R-squared: 0.7338
F-statistic: 108.1 on 13 and 492 DF, p-value: < 2.2e-16
```


More generally: Obtain estimator's sampling distribution

More generally: Obtain estimator's sampling distribution

Example: The variance of a sample $x_1, x_2, ..., x_n$

$$\hat{\sigma}_n^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2 \tag{1}$$

More generally: Obtain estimator's sampling distribution

Example: The variance of a sample $x_1, x_2, ..., x_n$

$$\hat{\sigma}_n^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2 \tag{1}$$

How to get the standard error of $\hat{\sigma}_n^2$

- 1. Assume $x_1, x_2, ..., x_n \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \sigma_0^2)$
- 2. Assume that $\hat{\sigma}_n^2$ is close to σ_0^2 and \bar{x} is close to μ_0
- 3. Then $\hat{\sigma}_n^2(n-1)$ has been shown to have a χ -squared distribution with n degrees of freedom
- 4. The SD of this sampling distribution is the standard error

What if:

- ► The sampling distribution is not easy to derive?
- Our distributional assumptions break down?

What if:

- ► The sampling distribution is not easy to derive?
- Our distributional assumptions break down?

Some possible options:

- 1. Bootstrap
- 2. Jackknife
- 3. Influence functions
 - Beyond scope of this course

Method to simulate generating from the true distribution P_0

- Provides standard error of estimates
- Popularized by Brad Efron (Stanford)
 - Wrote "An Introduction to the Bootstrap" with Robert Tibshirani
- Very popular among practitioners
- Computer intensive (d/t the approach)

Method to simulate generating from the true distribution P_0

Method to simulate generating from the true distribution P_0

- This resampling method is repeated (say, B times) until we have "enough" iterations to get a stable distribution.
 - Results in a simulated sampling distribution

- This resampling method is repeated (say, B times) until we have "enough" iterations to get a stable distribution.
 - Results in a simulated sampling distribution
- ► The SD of this sampling distribution is our estimated standard error

- This resampling method is repeated (say, B times) until we have "enough" iterations to get a stable distribution.
 - Results in a simulated sampling distribution
- The SD of this sampling distribution is our estimated standard error
- n.b. Two approximations are made:

$$SE(\hat{\psi}_n)^2 \stackrel{\text{not so small}}{\approx} \hat{SE}(\hat{\psi}_n)^2 \stackrel{\text{small}}{\approx} \hat{SE}_B(\hat{\psi}_n)^2$$
 (2)

Bootstrap vs Cross-validation

Cross-validation: provides estimates of the (test) error.

Bootstrap: provides the (standard) error of estimates.

Suppose that X and Y are the returns of two assets.

The returns are observed every day, i.e. $(x_1, y_1), ..., (x_n, y_n)$.

We only have a fixed amount of money to invest, so we'll invest

We only have a fixed amount of money to invest, so we'll invest

▶ α in X and $(1-\alpha)$ in Y, where α is between 0 and 1, i.e. $\alpha X + (1-\alpha)Y \tag{3}$

Our goal: Minimize the variance of our return as a function of α

▶ One can show that the optimal α_0 is:

$$\alpha_0 = \frac{\sigma_Y^2 - \sigma_{XY}}{\sigma_X^2 + \sigma_Y^2 - 2\sigma_{XY}} \tag{4}$$

which we can estimate using our data, i.e.

$$\hat{\alpha}_n = \frac{\hat{\sigma}_{Y,n}^2 - \hat{\sigma}_{XY,n}}{\hat{\sigma}_{X,n}^2 + \hat{\sigma}_{Y,n}^2 - 2\hat{\sigma}_{XY,n}} \tag{5}$$

If: we knew P_0 , we could just resample the n observations and re-calculate $\hat{\alpha}_n$.

- ► We could iterate on this until we have enough estimates to form a sampling distribution
- ▶ Would then estimate the SE via the SD of the distribution

Four draws from P_0 .

Reality: We don't know P_0 and only have n observations.

But: We can mimic as if we did know P_0 .

- ► Iteratively (say, *B* times):
 - Resample from P_n , i.e. sample from the n observations with replacement, n times (call this $P_n^{*,r}$)
 - ► Calculate $\hat{\alpha}_n$ from $P_n^{*,r}$ (call this $\hat{\alpha}_n^{*,r}$)
- ► Calculate the SD of the $\hat{\alpha}_n^{*,r}$ estimates, i.e.

$$\widehat{SE}_B(\hat{\alpha}_n) = \sqrt{\frac{1}{B-1} \sum_{r=1}^B \left(\hat{\alpha}_n^{*,r} - \frac{1}{B} \sum_{r'=1}^B \hat{\alpha}_n^{*,r'} \right)^2}$$

Bootstrap distribution vs true distribution

True (left) and bootstrap (center) sampling distributions

Bootstrap and error rates

Each bootstrap iteration will only have about 2/3 of the original data, i.e.

$$\mathbb{P}(x_j \notin P_n^b) = (1 - 1/n)^n \tag{7}$$

Bootstrap and error rates

Each bootstrap iteration will only have about 2/3 of the original data, i.e.

$$\mathbb{P}(x_j \notin P_n^b) = (1 - 1/n)^n \tag{7}$$

We could use the out of bag observations to calculate estimate our test set error, i.e.

$$\widehat{Err} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{|C^{-i}|} \sum_{b \in C^{-i}} L(y_i, \hat{f}^{*b}(x_i))$$
 (8)

▶ Doing this still encounters 'training-set' bias (i.e. you're using less observations to estimate f_0).

The jackknife

A resampling method (like the Bootstrap), but

- lacktriangle The Bootstrap resamples data from P_n and calculates $\hat{\Psi}(\hat{P}_n^*)$
- ► The Jackknife leaves out (random) partitions from P_n and calculates $\hat{\Psi}(\hat{P}_n^*)$

Both methods use simulated distributions to calculate SE

The jackknife

The general algorithm (applied to our investment example):

- Assume that P_n is a good approximation of P_0 and choose a number of observations d to delete
 - ightharpoonup where 0 < d < n
- Iteratively:
 - Exclude d observations from our data (resulting in $P_n^{*,d}$)
 - ► Calculate $\hat{\alpha}_n$ from $P_n^{*,d}$ (call this $\hat{\alpha}_n^{*,d}$)
- ► Calculate the SD of the $\hat{\alpha}_n^{*,d}$ estimates

If d > 1:

$$\widehat{SE}_B(\hat{\alpha}_n) = \sqrt{\frac{n-d}{d\binom{n}{d}}} \sum_{z} \left(\hat{\alpha}_n^{*,z} - \frac{1}{\binom{n}{d}} \sum_{z'} \hat{\alpha}_n^{*,z'} \right)^2$$
(9)

When d = 1, this simplifies to:

$$\widehat{SE}_B(\hat{\alpha}_n) = \sqrt{\frac{n-1}{n} \sum_{i=1}^n \left(\hat{\alpha}_n^{*,i} - \frac{1}{n} \sum_{i'=1}^n \hat{\alpha}_n^{*,i'} \right)^2}$$
(10)

Jackknife vs Bootstrap

Some similarities:

- ► The Jackknife and Bootstrap are asymptotically equivalent
- ► The theoretical arguments proving the validity of both methods rely on large samples

Jackknife vs Bootstrap

Some similarities:

- ► The Jackknife and Bootstrap are asymptotically equivalent
- ► The theoretical arguments proving the validity of both methods rely on large samples

Some differences:

- ► The jackknife is less computationally expensive
- The jackknife is a linear approximation to the bootstrap
- ► The jackknife doesn't work well for sample quantiles like the median
- ► The bootstrap procedure has lots of variations
 - e.g. You can bootstrap the bootstrapped samples to try and get second-order accuracy (aka bootstrap-t)

Review

What we know so far

► In linear regression, adding predictors always decreases the training error or RSS.

$$RSS = (\mathbf{Y} - \mathbf{X}\beta)^{\top} (\mathbf{Y} - \mathbf{X}\beta)$$
 (11)

• We can estimate β by minimizing the RSS.

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} y \tag{12}$$

- However, adding predictors does not necessarily improve the test error.
- ► Selecting significant predictors is hard when *n* is not much larger than *p*.

Singular matrices

- ▶ When our matrix is not of *full column rank* (e.g. n < p), we have that $(\mathbf{X}^{\top}\mathbf{X})^{-1}$ is not invertible.
- Consequently, there is no least squares solution:

$$\hat{\boldsymbol{\beta}} = \underbrace{(\mathbf{X}^{\top}\mathbf{X})}_{\text{Singular}}^{-1}\mathbf{X}^{\top}\boldsymbol{y} \tag{13}$$

► So, we must find a way around this.

Accounting for singularity

$$\hat{\boldsymbol{\beta}} = \underbrace{(\mathbf{X}^{\top}\mathbf{X})}_{\text{Singular}}^{-1}\mathbf{X}^{\top}\boldsymbol{y} \tag{14}$$

Three common approaches for dealing with this:

- 1. Subset selection
 - ▶ Select a subset k of the p predictors $(k \leq p)$.
 - ▶ Use criteria to help select which subset *k* we want.

Accounting for singularity

$$\hat{\boldsymbol{\beta}} = \underbrace{(\mathbf{X}^{\top}\mathbf{X})}_{\text{Singular}}^{-1}\mathbf{X}^{\top}\boldsymbol{y} \tag{14}$$

Three common approaches for dealing with this:

- 1. Subset selection
 - ▶ Select a subset k of the p predictors $(k \le p)$.
 - ightharpoonup Use criteria to help select which subset k we want.
- 2. Shrinkage methods
 - Constrain the parameters we're estimating in some way

Accounting for singularity

$$\hat{\boldsymbol{\beta}} = \underbrace{(\mathbf{X}^{\top}\mathbf{X})}_{\mathsf{Singular}}^{-1}\mathbf{X}^{\top}\boldsymbol{y} \tag{14}$$

Three common approaches for dealing with this:

- 1. Subset selection
 - ▶ Select a subset k of the p predictors $(k \leq p)$.
 - ightharpoonup Use criteria to help select which subset k we want.
- 2. Shrinkage methods
 - Constrain the parameters we're estimating in some way
- 3. Dimension reduction
 - Project all our predictors to a smaller dimension space
 - Not covered in this class

Subset selection

- ightharpoonup Simple idea: Compare all models with k predictors
- ▶ **Note**: There are $\binom{p}{k} = p!/(k!(p-k)!)$ possible models
- ► Choose the model with the smallest RSS
 - ▶ Doing this for every possible *k*:

Note: As expected, the RSS and R^2 improve with higher k.

The optimal k

Two approaches:

- 1. Use a hold out set (e.g. validation or test set)
 - c.f. Cross-validation
- 2. Use *modified* metrics that account for the size of k, e.g.
 - Akaike Information Criterion (AIC)
 - Bayesian Information Criterion (BIC)
 - Adjusted R²

The optimal k

Two approaches:

- 1. Use a hold out set (e.g. validation or test set)
 - c.f. Cross-validation
- 2. Use *modified* metrics that account for the size of k, e.g.
 - Akaike Information Criterion (AIC)
 - Bayesian Information Criterion (BIC)
 - Adjusted R²

How the modified metrics compare to using hold out sets

- ► Can be (much) less expensive to compute
- Motivated by asymptotic arguments and rely on model assumptions (e.g. normality of the errors)
- ► Equivalent concepts for other models (e.g. logistic regression)

Akaike Information Criterion (AIC)

Similar to Mallow's C_p :

$$C_p = \frac{1}{n} (RSS + 2k\hat{\sigma}^2) \tag{15}$$

- ▶ i.e. Adds the penalty $2k\hat{\sigma}^2$ to the RSS
- Can be shown to be unbiased estimate of test set error

But, also normalizes for $\hat{\sigma}^2$:

$$AIC = \frac{1}{n\hat{\sigma}^2}(RSS + 2k\hat{\sigma}^2) = \frac{C_p}{\hat{\sigma}^2}$$
 (16)

Since the two are proportional, (for least squares models) both are optimized at the same k.

Bayesian Information Criterion (BIC)

Similar to Mallow's C_p , but derived from Bayesian POV:

$$BIC = \frac{1}{n}(RSS + \log(n)k\hat{\sigma}^2)$$
 (17)

- n.b. $\log(n) > 2$ for n > 7
 - ▶ BIC will penalize more for large k (i.e. optimizes for smaller k)

Adjusted R^2

Recall:

$$R^2 = 1 - \frac{RSS}{TSS} \tag{18}$$

The adjusted R^2 penalizes for larger k:

$$R_{adj}^2 = 1 - \frac{RSS/(n-d-1)}{TSS/(n-1)}$$
 (19)

Adjusted R^2

Recall:

$$R^2 = 1 - \frac{RSS}{TSS} \tag{18}$$

The adjusted R^2 penalizes for larger k:

$$R_{adj}^2 = 1 - \frac{RSS/(n-d-1)}{TSS/(n-1)}$$
 (19)

Maximizing R_{adj}^2 is equivalent to minimizing $1 - R_{adj}^2$, i.e.:

$$\frac{RSS}{n-d-1} \tag{20}$$

Best subset selection for the Credit data set

Best subset selection for the Credit data set

n.b. The curve is pretty flat for $k \ge 4$

BIC vs validation sets

n.b. The curves are also pretty flat for $k \ge 4$.

BIC vs validation sets

n.b. The curves are also pretty flat for $k \ge 4$.

Can use the one-standard-error rule

► Choose the parsimonious model (i.e. lowest *k*) such that the test error is within 1-SE of the lowest point

Stepwise selection methods

Best subset selection has 2 problems:

- 1. It is often very expensive computationally. We have to fit 2^p different models!
- 2. If for a fixed k, there are too many possibilities, we increase our chances of overfitting
 - ▶ i.e. the model selected has high variance.

Stepwise selection methods

Best subset selection has 2 problems:

- 1. It is often very expensive computationally. We have to fit 2^p different models!
- 2. If for a fixed k, there are too many possibilities, we increase our chances of overfitting
 - ▶ i.e. the model selected has high variance.

One solution: Restrict our search space for the best model

► This reduces the variance of the selected model at the expense of an increase in bias.

Forward stepwise selection

Algorithm 6.2 Forward stepwise selection

- 1. Let \mathcal{M}_0 denote the *null* model, which contains no predictors.
- 2. For $k = 0, \ldots, p 1$:
 - (a) Consider all p-k models that augment the predictors in \mathcal{M}_k with one additional predictor.
 - (b) Choose the *best* among these p-k models, and call it \mathcal{M}_{k+1} . Here *best* is defined as having smallest RSS or highest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .

Forward selection vs best subset

# Variables	Best subset Forward stepwise	
One	rating	rating
Two	rating, income	rating, income
Three	rating, income, student	rating, income, student
Four	cards, income	rating, income,
	student, limit	student, limit

TABLE 6.1. The first four selected models for best subset selection and forward stepwise selection on the Credit data set. The first three models are identical but the fourth models differ.

Backward stepwise selection

Algorithm 6.3 Backward stepwise selection

- 1. Let \mathcal{M}_p denote the full model, which contains all p predictors.
- 2. For $k = p, p 1, \dots, 1$:
 - (a) Consider all k models that contain all but one of the predictors in M_k, for a total of k - 1 predictors.
 - (b) Choose the *best* among these k models, and call it \mathcal{M}_{k-1} . Here *best* is defined as having smallest RSS or highest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .

Forward vs backward selection

- ightharpoonup You cannot apply backward selection when p > n
 - ► Though should still have a "reasonable" number of observations
- ► **Important**: they may not produce the same sequence of models.

Example: $X_1, X_2 \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2)$

$$X_3 = X_1 + 3X_2 (21)$$

$$Y = X_1 + 2X_2 + \epsilon \tag{22}$$

Regressing Y onto X_1, X_2, X_3 :

- ▶ Forward: $\{X_3\} \rightarrow \{X_3, X_2\} \rightarrow \{X_3, X_2, X_1\}$
- ▶ Backward: $\{X_1, X_2, X_3\} \rightarrow \{X_1, X_2\} \rightarrow \{X_2\}$

Other stepwise selection methods

- Mixed stepwise selection: Do forward selection, but at every step, remove any variables that are no longer "necessary"
 - e.g. using p-values
- Forward stagewise selection: Do forward selection, but after every step, modify the remaining predictors such that they are uncorrelated to the selected predictors.
- etc.

Issues with stepwise methods

Important things to keep in mind:

- ▶ The selected model is not guaranteed to be optimal
 - ► There are often several equally good models
- ► The procedure does not take into account a researcher's knowledge about the predictors
- Outliers can have a large impact on the procedure
- Some predictors should be considered together as a group (e.g. dummy indicators for seasons of the year)
- ▶ The coefficients, R^2 , p-values, CI's, etc are all biased/invalid
- ► Should not over-interpret the order that the predictors are included
- Cannot conclude that all variables included are important, or all excluded variables are unimportant

Shrinkage methods

Allows us to use all p predictors, but will regularize (i.e. shrink) their coefficients in some way.

Common to shrink them towards 0

Shrinkage methods

Allows us to use all p predictors, but will regularize (i.e. shrink) their coefficients in some way.

Common to shrink them towards 0

Question: Why would shrunk coefficients be better?

- ▶ Will introduce bias, but can significantly reduce the variance
 - If the variance is noticeably larger, this decreases the test error
- ► There are Bayesian motivations to do this: the prior tends to shrink the parameters.

Shrinkage methods

Allows us to use all p predictors, but will regularize (i.e. shrink) their coefficients in some way.

Common to shrink them towards 0

Question: Why would shrunk coefficients be better?

- ▶ Will introduce bias, but can significantly reduce the variance
 - ▶ If the variance is noticeably larger, this decreases the test error
- ► There are Bayesian motivations to do this: the prior tends to shrink the parameters.

Three common shrinkage methods:

- 1. Ridge regression
- 2. Lasso regression
- 3. Elastic net

Ridge regression

Ridge regression solves the following optimization:

$$\min_{\beta} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{i,j} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$
 (23)

In blue: the model RSS

In red: the squared ℓ_2 norm of β , or $\|\beta\|_2^2$

The parameter $\lambda > 0$ is a tuning parameter. It modulates the importance of fit vs. shrinkage.

► Typically determined via e.g. cross-validation

Ridge regression

Writing our loss function in matrix form

$$(\mathbf{Y} - \mathbf{X}\beta)^{\top}(\mathbf{Y} - \mathbf{X}\beta) + \lambda\beta^{\top}\beta \tag{24}$$

it can be shown that

$$\hat{\beta}_n^{ridge} = (\mathbf{X}^{\top} \mathbf{X} + \lambda \mathbf{I_n})^{-1} \mathbf{X}^{\top} \mathbf{Y}$$
 (25)

► So ridge regression simply adds a positive constant to $\mathbf{X}^{\top}\mathbf{X}$, making it non-singular.

Ridge regression

Under the linear model, the mean and covariance of $\hat{\beta}_n^{ridge}$ are:

$$\mathbb{E}[\hat{\beta}_n^{ridge}|\mathbf{X}] = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I_n})^{-1}\mathbf{X}^{\top}\mathbb{E}[\mathbf{Y}|\mathbf{X}]$$
$$= (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I_n})^{-1}\mathbf{X}^{\top}\mathbf{X}\beta$$
 (26)

$$Cov[\hat{\beta}_{n}^{ridge}|\mathbf{X}] = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_{n})^{-1}\mathbf{X}^{\top}Cov[\mathbf{Y}|\mathbf{X}]$$

$$\mathbf{X}^{\top}(\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_{n})^{-1}$$

$$= \sigma^{2}(\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_{n})^{-1}\mathbf{X}^{\top}\mathbf{X}(\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_{n})^{-1}$$
(27)

Scaling predictors

In least-squares regression, scaling the variables has no effect on the fit of the model:

$$Y = X_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p$$
 (28)

- e.g. Multiplying X_1 by c can be compensated by dividing $\hat{\beta}_1$ by c
 - ▶ i.e. Doing this results in the same RSS

Scaling predictors

In least-squares regression, scaling the variables has no effect on the fit of the model:

$$Y = X_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p$$
 (28)

- e.g. Multiplying X_1 by c can be compensated by dividing $\hat{\beta}_1$ by c
 - ▶ i.e. Doing this results in the same RSS

This is not true for ridge regression!

- ▶ Due to $\|\beta\|_2^2$
- ▶ In practice: standardize all predictors (i.e. center and scale such that it has sample variance 1)
 - e.g. *glmnet* (by Hastie, Tibshirani, and Friedman)

Example: Ridge regression

Ridge regression of default in the Credit dataset.

Bias variance trade-off

Computing the bias, variance, and test error as a function of λ (in simulation).

Cross validation would yield an estimate of the test error.

Selecting λ by cross-validation

The Lasso

The Least Absolute Shrinkage and Selection Operator regression solves the following optimization:

$$\min_{\beta} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{i,j} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$
 (29)

In blue: the model RSS

In red: the ℓ_1 norm of β , or $\|\beta\|_1$

The Lasso

The Least Absolute Shrinkage and Selection Operator regression solves the following optimization:

$$\min_{\beta} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{i,j} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$
 (29)

In blue: the model RSS

In red: the ℓ_1 norm of β , or $\|\beta\|_1$ Note: Unlike ridge regression, LASSO does not have a closed form solution.

Why would we use the Lasso instead of Ridge regression?

- ▶ Ridge regression shrinks all the coefficients to a non-zero value
- ▶ The Lasso shrinks some of the coefficients all the way to zero.
 - ► Similar to subset selection: will select variables for you

Ridge regression of default in the Credit dataset.

Lasso regression of default in the Credit dataset.

An alternative formulation for regularization

▶ **Ridge:** for every λ , there is an s such that $\hat{\beta}_{\lambda}^{R}$ solves:

$$\min_{\beta} \left\{ \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{i,j} \right)^2 \right\} \text{ subject to } \sum_{j=1}^{p} \beta_j^2 < s(30)$$

Lasso: for every λ , there is an s such that $\hat{\beta}_{\lambda}^{L}$ solves:

$$\min_{\beta} \left\{ \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{i,j} \right)^2 \right\} \text{ subject to } \sum_{j=1}^{p} |\beta_j| < s(31)$$

An alternative formulation for regularization

When is the Lasso better than Ridge?

Example 1. Most of the coefficients are non-zero.

- ▶ Bias, Variance, MSE. The Lasso (—), Ridge (· · ·).
- ▶ The bias is about the same for both methods.
- ▶ The variance of Ridge regression is smaller, so is the MSE.

When is the Lasso better than Ridge?

Example 2. Only 2 coefficients are non-zero.

- ▶ Bias, Variance, MSE. The Lasso (—), Ridge (···).
- ▶ The bias, variance, and MSE are lower for the Lasso.

Elastic Net

Combines $\|\beta\|_2^2$ (ridge) and $\|\beta\|_1$ (lasso) penalties.

Elastic net solves the following optimization:

$$\min_{\beta} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{i,j} \right)^2 + \lambda_2 \sum_{j=1}^{p} \beta_j^2 + \lambda_1 \sum_{j=1}^{p} |\beta_j| \quad (32)$$

In blue: the model RSS

In red: both $\|\beta\|_2^2$ and $\|\beta\|_1$

This provides a nice trade off between sparsity and grouping.

Elastic Net

Combines $\|\beta\|_2^2$ (ridge) and $\|\beta\|_1$ (lasso) penalties.

Elastic net solves the following optimization:

$$\min_{\beta} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{i,j} \right)^2 + \lambda_2 \sum_{j=1}^{p} \beta_j^2 + \lambda_1 \sum_{j=1}^{p} |\beta_j| \quad (32)$$

In blue: the model RSS

In red: both $\|\beta\|_2^2$ and $\|\beta\|_1$

This provides a nice trade off between sparsity and grouping.

Typically, we define $\alpha = \frac{\lambda_2}{\lambda_2 + \lambda_1}$ and instead optimize:

$$\min_{\beta} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{i,j} \right)^2 + \alpha \sum_{j=1}^{p} \beta_j^2 + (1 - \alpha) \sum_{j=1}^{p} |\beta_j| (33)$$

An alternative formulation for regularization

Elastic net:

$$\min_{\beta} \left\{ \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{i,j} \right)^2 \right\} \text{ s.t. } \alpha \|\beta\|_2^2 + (1 - \alpha) \|\beta\|_1 < s(34)$$

2-dimensional illustration $\alpha = 0.5$

- Singularities at the vertexes (to encourage sparsity)
- Strict convex edges (to encourage grouping)
 - The strength of convexity varies with α

Example: Elastic net

Shrinkage summaries

$$\min_{\beta} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{i,j} \right)^2 + \lambda_2 \sum_{j=1}^{p} \beta_j^2 + \lambda_1 \sum_{j=1}^{p} |\beta_j| \quad (35)$$

Method	Shrinkage parameters
OLS	$\lambda_1 = \lambda_2 = 0$
Ridge	$\lambda_1=0,\lambda_2>0$
LASSO	$\lambda_1 > 0, \lambda_2 = 0$
Elastic net	$\lambda_1>0,\lambda_2>0$
$\hat{\beta}_n = 0$	$\lambda_1=\infty$ or $\lambda_2=\infty$

Things to consider

- ▶ If desired, we could instead consider L_q penalties for values other than 0, 1, and 2 (e.g. $q \in (1,2)$ or q > 2).
- Regularization methods such as the elastic net have been extended to generalized linear models (GLM) as well.
- ▶ L_1 and L_2 penalties are also used in contexts other than linear models (e.g. neural networks).
- As usual, we are faced with the bias-variance tradeoff when choosing our shrinkage parameters, λ_1 and λ_2 .
- Other regularized methods are also available, e.g.
 - ► Non-negative Garotte Regression
 - ► Least Angle Regression
 - Best subset

Degrees of freedom

Degrees of freedom give us a measure of our model's complexity, i.e. the number of free parameters to fit on our data.

- ▶ For OLS, the degrees of freedom is equal to p + 1.
- ▶ In regularized regression, our parameters are estimated in a restricted manner, controlled by λ_1 and λ_2 .
 - Effectively reduced the degrees of freedom in our model
- We can still compare across models using an effective degrees of freedom:

$$df(y, \hat{y}) = \frac{1}{\sigma^2} \sum_{i=1}^{n} Cov[y_i, \hat{y}_i | x_i]$$
 (36)

▶ In the case of OLS, this can be shown to reduce to the "standard" degrees of freedom, i.e. p + 1.

References

- [1] ISL. Chapters 6.
- [2] ESL. Chapter 18.