

Wireless Personal Area Network

Outline

- Introduction
- Technology
 - Zigbee
 - Bluetooth
 - RFID
- **Industry Analysis**
- Conclusion
- References

Comparison Between Similar Technologies³

Technology analysis

■無線個人服務網路比較

LOW < ACTUAL THROUGHPUT > HIGH

Comparison Between Similar Technologies

·	NFC	RFID	Bluetooth	Zigbee
Maximum Operating Range	10 cm	3 m	100 m	30-100 m
Operating Frequency	13.56 MHz	Varies ¹	2.4 GHz	Varies
Directional Communication	Two way	One way	Two way	Two way
Bit Rate	106/212/ 424 Kbps	Varies ¹³	22 Mbps	250kbps
Potential Uses	e-Tickets, Credit card payment, Membership card	Tracking items, EZ-Pass	Communicate between phones, peripheral devices	Text/IoT

Zigbee

- Zigbee is a low-speed and short-range wireless network protocol
- Its MAC and PHY layer adopt IEEE 802.15.4-based specifications
- Developed by Zigbee Alliance since 1998
- Proposed to IEEE in 2001 to include it in the IEEE 802.15.4 specification
 - IEEE 802.15.4 = LR-WPAN (Low-rate wireless personal area network)
- Zigbee Alliance provides interoperability certification
- ZigBee features:
 - Low speed
 - Low power consumption
 - Low cost
 - Support a large number of network nodes

Solution	Description
Network Protocol	Zigbee PRO
Network Topology	Self-Forming, Self-Healing MESH
Network Device Types	Coordinator (routing capable), Router, End Device
Network Size	Up to 65,000 nodes
Radio Technology	IEEE 802.15.4
Frequency Band	2.4 GHz (ISM band), 16-channels (2 MHz wide)
Data Rate	250 Kbits/sec
Encryption Support	AES-128 at Network Layer
Communication Range (Average)	Up to 300+ meters (line of sight) Up to 75-100 meters indoor
Low Power Support	Sleeping End Devices Zigbee Gree Power Devices (energy harvesting)

Technology analysis

Frequency band

-	Band	Coverage	Data Rate	Channel(s)
2.4 GHz	ISM	Worldwide	250 Kbps	16
868 MHz		Europe	20 Kbps	1
915 MHz	ISM	Americas	40 Kbps	10

IEEE 802.15.4

- 16 channels in 2.4GHz ISM band
- Data rate: 250 kbps
- Modulation:
 - O-QPSK (offset quadrature phase-shift keying)
 - Direct Sequence Spread Spectrum

2.4835 GHz

Technology analysis

ZigBee

Zigbee Network

- → 從網路架構層面來看

 PAN coordinator (FFD)
 管理整個 ZigBee 網路的控制中心

 PAN ID, Security,通道...
- Network Router (FFD) 負責延展整個網路的路由器
- - End Device (RFD) 網路末端裝置(Sensor)

Coordinator

■ The most capable device, the coordinator forms the root of the network tree and may bridge to other networks. It stores information about the network.

Router

a router can act as an intermediate router, passing data on from other devices.

■ End Device

- Only communicate with Router, not with each other
- The MAC layer function can be omitted, saving memory and power
- Asleep most of the time

Technology analy •

Comparison

	Pro	Con
Star	Easy to synchronize No Router, power saving	Not scalable
Tree	multicast \ Fixed Router path, low cost	Router high rebuild cost \ Latency high due to long routing path
Mesh	multicast \ scalable	Router discover cost high \ Need to store routing table

Samsung SmartThings Platform

Applications: Samsung SmartThings

■ SmartThings hub

SmartThings Hub

SmartThings Outlet

SmartThings Multipurpose Sensor

SmartThings Water Leak Sensor

SmartThings Motion Sensor

SmartThings Cam

SmartThings Smart Bulb

SmartThings Button

SmartThings Hub

Processor:

- 32-Bit ARM Cortex-A9 core
- 1GHz
- 128KB RAM + 256KB L2 Cache

SDRAM

- DDR3-1600
- 4Gb

■ZigBee SoC

- 32-Bit ARM Cortex-M3 Core
- 512KB Flash + 64KB RAM
- 2.4GHz IEEE802.15.4-2003 Transceiver

■ Bluetooth Low Energy SoC

■ 2.4GHz

■What is RFID ?

- RFID = Radio Frequency Identification
- Contactless and wireless communication between objects.
- identify and transmit data via radio waves.
- RFID system composed of a reader and a Tag like barcode.

Introduction

- ■What is RFID (Radio Frequency Identification)?
 - Eliminates the universal issues of bar code
 - ■Not require physical sight between reader and tagged item.
 - Can read several tags at a same time
 - Rewritable, reusable, larger storage
 - RFID is used to automatically identifying or tracking object.

RFID Frequency

RFID Frequency

	LF	HF	UHF	Microwave
Frequency Bands	125 kHz – 134 kHz	13.56 MHz	860 MHz – 960 MHz	2.45 GHz & 5.4 GHz
Type	Passive	Passive/ Active	Passive/ Active	Passive/ Active
Data Passing	Electromagnetic induction	Electromagnetic induction	Microwave resonance	Microwave resonance
Read Range	Short to Medium ~10 cm	Short ~10 cm	Medium ~several meters	High ~ 3 meters
Restrict	short distance	Metal	Moisture	Moisture
Usage	Access ControlAnimal TaggingInventory ControlCar Immobilizer	Smart CardsItems level taggingProximity Cards	Pallet level taggingDOD & Walmart Mandates	Container Rail CarAuto Toil RoadsPallet level tracking

System Description

RFID components

- Transponder (RFID Tags)
- Transceiver (Tag Reader)
- Antenna

System Description

■ How it works?

RFID reader is continuously sending radio waves via Antenna Whenever the RFID tag is in the range of the reader, Tag transmit feedback to reader.

Components

■ Transponder (Tags)

A DECONSTRUCTED RFID TAG

https://blog.atlasrfidstore.com/a-tag-a-label-an-inlay

Components – types of Tag

	Active RFID Tag	Passive RFID Tag
Power Source	Internal Battery	Transferred from Reader
Availability of Power	Continuous	Only within range of reader
Required Signal Strength	Weak	Strong
Range	305 meters up	6 meters around
Multi-Tag reading	1000's of tags	100 around (within reader range)
Cost	High (Most at 450~600 NTD)	Low (1.65~6 NTD)

Components

■ Transceiver (Reader)

Digital Signal Processor (DSP)

Network Processor

Power Supply

915MHz Radio

13.56MHz Radio

RFID Communication Principle

Electromagnetic induction Coupling(d = 1cm~at most 1m)

Power at tag Ptag ≈ 1/d6 Preader

d = tag - reader distance

Microwave resonance Coupling(Backscatter, d =1m~4m)

UHF (915MHz): Far field propagation: Pt

1/d2

Market Size (by types)

RFID (Radio Frequency Identification) technology market revenue worldwide from 2014 to 2025 (in billion U.S. dollars), by application

Sources

Grand View Research; Statista estimates © Statista 2020 Additional Information:

Worldwide; Grand View Research; Statista estimates; 2014 to 2016

Competitor

■ NFC (Near Field Communication)

RFID

NFC

	RFID	NFC
Frequency	LF(125~134 kHZ) HF(13.56 MHz) UHF(860~960 MHz) MW(2.45, 5.4 GHz)	13.56 MHz
Data Transfer	One direction	Bidirectional
Range	10~100 cm (Based on Frequency)	5 cm or closer
Security	Low	High
Multi Reading	Yes	Once a time
Popular Uses	Asset Tracking Inventory Tracking Smart cards	E-wallet Mobile pay

Reference (Cont'd)

- 1 www.scansource.eu/es/education.htm?eid=8&elang=en
- 2 http://arstechnica.com/gadgets/guides/2011/02/near-field-communications-a-technology-primer.ars
- 3 http://www.nfc-forum.org/aboutnfc/nfc_and_contactless/
- 4 http://www.theregister.co.uk/2010/06/17/nokia_nfc_commitment/
- 5 http://www.nearfieldcommunicationsworld.com/2011/03/02/36293/e-wallet-icon-sparks-more-apple-nfc-speculation/
- 6 http://news.cnet.com/8301-1035_3-20022912-94.html
- 7 http://www.nearfieldcommunicationsworld.com/2011/02/27/36204/transport-for-london-confirms-plans-to-accept-contactless-cards-in-time-for-olympics/
- 8 http://www.wired.co.uk/news/archive/2011-02/01/visa-iphone-nfc
- 9 http://www.nfc-forum.org/aboutnfc/nfc_in_action/
- 10 http://www.patentlyapple.com/patently-apple/2010/04/apple-introduces-us-to-a-new-itunes-concert-ticket-system.html
- 11 http://www.mobilemag.com/2010/08/20/visa-announces-mobile-payment-trials-in-nyc-this-year/
- 12 http://www.laptopmag.com/review/cellphones/samsung-nexus-s.aspx?page=2
- 13 http://www.hightechaid.com/standards/18000.htm
- 14 http://java.sun.com/developer/technicalArticles/javame/nfc_bluetooth/
- 15 http://www.nfc-forum.org/resources/faqs/
- 16 http://www.nearfieldcommunicationsworld.com/2010/12/07/35385/google-unveils-first-android-nfc-phone-but-nexus-s-is-limited-to-tag-reading-only-for-now/
- 17 http://galaxys2.samsungmobile.com/html/feature.html
- 18 http://events.iaik.tugraz.at/RFIDSec06/Program/papers/002%20-%20Security%20in%20NFC.pdf
- 19 http://intrepidusgroup.com/insight/2010/12/nfc-rfid-enabled-smartphones-and-mobile-devices-are-coming/
- 20 http://www.crypto.rub.de/imperia/md/content/seminare/itsss07/near field communication in cell phones.pdf
- 21 http://www.gamberjohnson.com/assets/images/concept-illustration.jpg
- 22 http://electronics.howstuffworks.com/nfc-phone.htm

- http://blog.xuite.net/jack101257/twblog/138494907-RFID%E7%84%A1%E7%B7%9A%E5%B0%84%E9%A0%BB% E8%BE%A8%E8%AD%98%E7%B0%A1%E4%BB%8B%E5%8 F%8A%E7%B3%BB%E7%B5%B1%E6%87%89%E7%94%A8 %E8%AA%AA%E6%98%8E
- http://hkc168.blogspot.tw/2014/07/blog-post_4.html
- http://www.shs.edu.tw/works/essay/2011/11/201111114130421 21.pdf
- http://nfuba.nfu.edu.tw/ezfiles/31/1031/img/90/RFID.pdf
- http://www.centrenational-rfid.com/docs/applicationsrfid/RFID%20Markets%20Toulouse%20IDTechEx%20V2%20 GOOD%20ONE.pdf
- http://www.xerafy.com/blog/2015rfid%E5%85%B3%E9%94% AE%E9%A2%86%E5%9F%9F%E7%9A%84%E5%8F%91%E5 %B1%95%E9%A2%84%E6%B5%8B/

References

[1]熊貓賢的RFID+: http://samrfid.blogspot.tw/

[2]IMPINJ- RFID Technology primer : http://www.impinj.com/resources/about-rfid/

[3]RFID Applied(電子書):

https://books.google.com.tw/books?id=7TTHouZ5ExwC&pg=PA82&lpg=PA82&dq=rfid+bank+crc&source=bl&ots=Lg7dVQqi4V&sig=k-l5R1yW0S_9ojownqq4KN0H0S8&hl=zh-TW&sa=X&ved=0ahUKEwiHhJWHvrrTAhUEX5QKHRXUAK0Q6AEIVDAG#v=onepage&q=rfid+bank%20crc&f=false

[4]EPC Information: http://www.epc-rfid.info/

[5]Types of Memory in RFID Tags:

http://blog.atlasrfidstore.com/types-of-memory-in-gen-2-uhf-rfid-tags

[6] Verasset RFID Overview: https://www.slideshare.net/Verasset/verasset-rfid-overview

[7]RFID manufacturers : http://www.rfidtags.com/manufacturer-directory

[8]零售行業RFID市場: http://3smarket-info.blogspot.tw/2015/06/rfid-39.html

[9]RAIN RFID 2015-2020: Market size, growth opportunities and trends(pdf online):

http://www.rainrfid.org/wp-content/uploads/2015/07/Das-RAIN_RFID.pdf

Reference

- https://read01.com/eMOOKm.html
- http://technews.tw/2014/11/10/internet-of-thingsage-wireless-communication-war/
- http://www.digitimes.com.tw/iot/article.asp?cat=13 0&id=0000404545_GT441V4R5OQLKZ4RU2UI0
- http://www.zigbee.org
- http://eshare.stust.edu.tw/EshareFile/2010_6/2010 _6_3e0233ac.pdf
- http://eshare.stust.edu.tw/EshareFile/2013_12/2013_12_38a1474d.pdf

Reference

- www.cs.nccu.edu.tw/~jang/teaching/SoftEng-DH.../Zigbee%20position%20system.ppt
- http://www.ercba.ntu.edu.tw/weifang/WSN/WSN_ZigBee%20intro.pdf
- http://www.homerayopti.com/en/layout/zigbeeintro duce.pdf

