Floer theory: Homework 4

Paramjit Singh

Problem 1. Let f be a Morse function on a closed manifold M. Suppose $\xi : \mathbb{R} \to \mathbb{R}^n$ is a (trivialized) vector field path along a Morse trajectory γ (that is, a section of $\gamma^*TM \simeq \mathbb{R} \times \mathbb{R}^n$). Consider the linear operator $A : \text{Hom}(\mathbb{R}, \mathbb{R}^n) \to \text{Hom}(\mathbb{R}, \mathbb{R}^n)$, given by

$$\xi \mapsto \nabla_{\xi} \operatorname{grad}(f)$$
, or more precisely, $(t \to \xi(t)) \mapsto (t \to (\nabla_{\xi(t)} \operatorname{grad}(f))(t))$

Since ∇_{\bullet} is tensorial, we can think of A as the time dependent operator $A(t): T_{\gamma(t)}M \to T_{\gamma(t)}M$, given by $v \mapsto (\nabla_v \operatorname{grad} f)(\gamma(t))$. Show that $\lim_{t\to\pm\infty} A(t)$ are symmetric and non-degenerate.

Solution. We show the result for $t \to \infty$ and the proof is similar for $t \to -\infty$.

We use $\langle \cdot, \cdot \rangle$ to denote the Riemannian metric and \tilde{X} to denote for a tangent vector $X \in T_pM$, its extension to a local vector field near p with $\tilde{X}_p = X$. We shall show in fact, that $A(t) : T_{\gamma(t)}M \to T_{\gamma(t)}M$ is symmetric for all t. For $v, w \in T_{\gamma(t)}M$, (all computations occurring at $\gamma(t)$)

$$\langle A(t)v, w \rangle = \langle (\nabla_v \operatorname{grad}(f)), w \rangle$$

$$= v \langle \operatorname{grad}(f), \tilde{w} \rangle - \langle \operatorname{grad}(f), \nabla_v \tilde{w} \rangle$$

$$= v(\tilde{w}(f)) - \operatorname{d}f(\nabla_v \tilde{w})$$

In particular, since $\langle A(t)v, w \rangle$ is $\mathscr{C}^{\infty}(M)$ -linear in both v and w and depends locally on v, w, it suffices to prove symmetry taking $\tilde{v} = \partial/\partial x_i$, $\tilde{w} = \partial/\partial x_j$. In particular, $[\tilde{v}, \tilde{w}]$ would then by 0, so

$$\langle A(t)v, w \rangle = v(\tilde{w}(f)) - df(\nabla_v \tilde{w}) = w(\tilde{v}(f)) - df(\nabla_w \tilde{v}) = \langle v, A(t)w \rangle.$$

Thus, A(t) is symmetric for all t. Now, to show non-degeneracy at the limit, take $v, w \in T_{\gamma(\infty)}$. Consider the expression $\langle A(t)\tilde{v}_{\gamma(t)},\tilde{w}_{\gamma(t)}\rangle = \tilde{v}_{\gamma(t)}(\tilde{w}(f)) - \mathrm{d}f_{\gamma(t)}(\nabla_{\tilde{v}_{\gamma(t)}}\tilde{w})$ as a function of t. As f,\tilde{v},\tilde{w} are smooth on M, these are smooth in t; moreover, $\lim_{t\to\infty} A(t)$ exists as A as a family of maps $\xi\to\nabla_\xi \operatorname{grad}(f)$ is bounded. So (using: if $A_t\to A$ in the operator norm, $v_t\to v$ then $A_tv_t\to Av$) taking limits as $t\to\infty$, we get:

$$\left\langle \left(\lim_{t\to\infty} A(t)\right) v, w\right\rangle = v(\tilde{w}(f))$$
 as $\lim_{t\to\infty} df_{\gamma(t)} = 0$.

But the above limit is the Hessian at $\gamma(\infty)$, which is a critical point. Since f is Morse, this Hessian is non-degenerate.