Prediction and testing of mixtures of features issued from a continuous dictionary

Clément Hardy

joint work with C. Butucea (CREST, ENSAE, IP Paris), J.-F. Delmas (ENPC), A. Dutfoy (EDF)

Workshop Paris, November 21, 2023

Industrial motivation: spectroscopy

Wave numbers (cm-1)	Peak assignment
3690-3400-3364-3200-3014	-OH
2952-2920-2850	$\nu - CH_2, CH_3$ Aliphatic
1731	$\nu - C = O$
1647	$\nu - C = C \operatorname{de} HC = CH_2$
1540	$\nu - C = C \text{ de R-CR=CH-R}, \delta \text{ CH2 Aliphatic}$
1419	δCH_2 , δ -CH Aliphatic
1160-1082	ν Si-O (SiO_2)
1009-909	ν Si-O (Si-OH)
825	C-Cl
664	CH Aromatic

Location of absorption spikes of chemical components for polychloroprene samples ([Tchalla, 2017]).

Infrared signals

The model

A noisy signal $y = (y(t), t \in \mathbb{R})$ is observed on the grid t_1, \dots, t_T :

$$\mathbf{y} = \underbrace{\sum_{k=1}^{s} \beta_k^{\star} \, \phi_T(\theta_k^{\star})}_{\text{mixture of spikes}} + \underbrace{\mathbf{w}}_{\text{noise}}.$$

Goal: recover from y the parameters β^* and $\vartheta^* = (\theta_1^*, \dots, \theta_s^*)$.

Motivation: low-pass filter

Point sources

Low-pass filter (Dirichlet kernel)

$$\mu^{\star} = \sum_{k=1}^{s} \beta_{k}^{\star} \delta_{\theta_{k}^{\star}} \qquad \qquad t \mapsto \sum_{-\ell_{c}}^{\ell_{c}} e^{2i\pi kt} = \frac{\sin(\pi (2f_{c}+1) t)}{\sin(\pi t)}$$

Continuous dictionary $\theta \in \Theta = \mathbb{R}/\mathbb{Z}$ and $T = 2f_c + 1$

The model

A noisy signal $y = (y(t), t \in \mathbb{R}/\mathbb{Z})$ is observed:

$$\mathbf{y} = \sum_{k=1}^{s} \beta_k^{\star} \, \phi_T(\theta_k^{\star}) + \underbrace{\mathbf{w}}_{\text{noise}}.$$

Goal: recover from y the parameters β^* and $\vartheta^* = (\theta_1^*, \cdots, \theta_s^*)$.

Plan of the talk

• I The model

• II Estimation and Prediction

• III Simultaneous reconstruction

• IV Tests

I The model

The model

We observe a random element y of a Hilbert space H_T (e.g.: \mathbb{R}^T , $L^2(\lambda_T)$,...) with scalar product $\langle \cdot, \cdot \rangle_T$ (and norm $\|\cdot\|_T$).

Model

$$\mathbf{y} = \underbrace{\sum_{k=1}^{s} \beta_k^{\star} \, \phi_T(\theta_k^{\star})}_{\text{signal}} \quad + \quad \underbrace{w_T}_{\text{noise}}.$$

Notations

- *T* increases with the amount of information of the observation (number of observation points, 1/noise level...).
- $\theta_k^{\star} \in \Theta \subset \mathbb{R}$ and $\beta_k^{\star} \in \mathbb{R}$, for all k.
- Continuous dictionary $(\phi_T(\theta), \theta \in \Theta)$ of elements of H_T of norm 1. The map ϕ_T is continuous on Θ .
- w_T Gaussian process.

Л

The model: Gaussian noise (I)

Assumptions on the noise (H1)

For all $f \in H_T$, the random variable $\langle f, w_T \rangle_T$ is centered Gaussian with:

$$\operatorname{Var}\left(\langle f, w_T \rangle_T\right) \leq \Delta_T \|f\|_T^2.$$

The model: Gaussian noise (I)

Assumptions on the noise (H1)

For all $f \in H_T$, the random variable $\langle f, w_T \rangle_T$ is centered Gaussian with:

$$\operatorname{Var}\left(\langle f, w_T \rangle_T\right) \leq \Delta_T \|f\|_T^2.$$

Ex: spectroscopy

- Regular grid: $t_1 < \cdots < t_T$ on $\mathbb R$ with step-size $\Delta_T = \frac{t_T t_1}{T}$.
- Observations: $y(t_i) = signal(t_i) + w_T(t_i), 1 \le i \le T$.
- Noise: $w_T(t_i)$ i.i.d $\sim \mathcal{N}(0,1)$.

$$H_T = L^2(\lambda_T)$$
 where $\lambda_T(\mathrm{d}t) = \Delta_T \sum_{j=1}^T \delta_{t_j}(\mathrm{d}t)$.

$$\Delta_T = \text{step-size}$$
 .

The model: Gaussian noise (II)

Assumptions on the noise (H1)

For all $f \in H_T$, the random variable $\langle f, w_T \rangle_T$ is centered Gaussian with:

$$\operatorname{Var}(\langle f, w_T \rangle_T) \leq \Delta_T \|f\|_T^2.$$

Ex: low-pass filter

- Observations: $(y(t), t \in \mathbb{R}/\mathbb{Z})$ s.t $y \in L^2(\text{Leb})$.
- Truncated white noise: $w_T = \frac{1}{\sqrt{T}} \sum_{k=1}^{T} G_k \psi_k$,
 - $-G_k$ i.i.d $\sim \mathcal{N}(0,1)$,
 - $-(\psi_k, k \in \mathbb{N})$ o.n.b. of $L^2(\text{Leb})$.

Thus $\|w_T\|_{L^2(\text{Leb})}$ is of order 1 (strong law of large numbers).

$$\Delta_T = 1/T$$
.

II Estimation and Prediction

Estimators

Estimators

$$(\hat{\beta}, \hat{\vartheta}) \in \operatorname*{argmin}_{\beta \in \mathbb{R}^K, \vartheta \in \Theta_T^K} \quad \frac{1}{2} \| y - \beta \, \Phi_T(\vartheta) \|_T^2 + \kappa \| \beta \|_{\ell_1}. \tag{$\mathcal{P}_1(\kappa)$)}$$

- K is an upper bound for s.
- $\Phi_T(\vartheta) \in H_T^K$ is defined by:

• Θ_T is a compact interval.

 $\Phi_{\mathcal{T}}(\vartheta) = (\phi_{\mathcal{T}}(\theta_1), \dots, \phi_{\mathcal{T}}(\theta_K))^{\top}.$

 $\bullet \ \ \, \kappa > 0 \ tuning \ parameter.$

Estimators

Estimators

$$(\hat{\beta}, \hat{\vartheta}) \in \operatorname*{argmin}_{\beta \in \mathbb{R}^K, \vartheta \in \Theta_T^K} \quad \frac{1}{2} \| y - \beta \, \Phi_T(\vartheta) \|_T^2 + \kappa \|\beta\|_{\ell_1}. \tag{$\mathcal{P}_1(\kappa)$)}$$

- K is an upper bound for s. $\Phi_T(\vartheta) \in H_T^K$ is defined by:
- Θ_T is a compact interval.
- $\Phi_T(\vartheta) = (\phi_T(\theta_1), \dots, \phi_T(\theta_K))^{\top}.$
- $\kappa > 0$ tuning parameter.

Ex: spectroscopy

Prediction risk

Estimators

Let $(\hat{\beta}, \hat{\vartheta}) \in \mathbb{R}^K \times \Theta^K$ be measurable functions of y solutions of $(\mathcal{P}_1(\kappa))$ "approximating" $(\beta^* = (\beta_1^*, \cdots, \beta_s^*), \vartheta^* = (\theta_1^*, \cdots, \theta_s^*))$. We define:

Prediction risk

Estimators

Let $(\hat{\beta}, \hat{\vartheta}) \in \mathbb{R}^K \times \Theta^K$ be measurable functions of y solutions of $(\mathcal{P}_1(\kappa))$ "approximating" $(\beta^* = (\beta_1^*, \cdots, \beta_s^*), \vartheta^* = (\theta_1^*, \cdots, \theta_s^*))$. We define:

Prediction risk

$$\left\| \beta^* \Phi_T(\vartheta^*) - \hat{\beta} \Phi_T(\hat{\vartheta}) \right\|_T$$

where $\Phi_{\mathcal{T}}(\hat{\vartheta}) \in H_{\mathcal{T}}^{K}$ is defined by:

$$\Phi_{\mathcal{T}}(\hat{\vartheta}) = (\phi_{\mathcal{T}}(\hat{\theta}_1), \dots, \phi_{\mathcal{T}}(\hat{\theta}_K))^{\top},$$

Estimation: estimation risks (I)

Estimators

Let $(\hat{\beta}, \hat{\vartheta}) \in \mathbb{R}^K \times \Theta^K$ be measurable functions of y solutions of $(\mathcal{P}_1(\kappa))$ "approximating" $(\beta^{\star} = (\beta_1^{\star}, \cdots, \beta_s^{\star}), \vartheta^{\star} = (\theta_1^{\star}, \cdots, \theta_s^{\star}))$. We define:

Estimation risks (I)

$$\sum_{k=1}^{s} \left| \beta_k^{\star} - \sum_{\ell \in S_k(r)} \hat{\beta}_{\ell} \right| \quad \text{and} \quad \sum_{\ell \in S(r)^c} |\hat{\beta}_{\ell}|,$$

where the set S(r) is given by:

$$S(r) = \bigcup_{1 \le k \le s} S_k(r),$$

with

$$S_k(r) = \left\{\ell, \, \hat{\beta}_\ell \neq 0 \text{ and } \mathfrak{d}_T(\hat{\theta}_\ell, \theta_k^\star) \leq r \right\}.$$

Estimation: estimation risks (II)

Estimators

Let $(\hat{\beta}, \hat{\vartheta}) \in \mathbb{R}^K \times \Theta^K$ be measurable functions of y solutions of $(\mathcal{P}_1(\kappa))$ "approximating" $(\beta^* = (\beta_1^*, \dots, \beta_s^*), \vartheta^* = (\theta_1^*, \dots, \theta_s^*))$. We define:

Estimation risks (II)

$$\sum_{k=1}^{s} \left| \left| \beta_k^{\star} \right| - \sum_{\ell \in S_k(r)} \left| \hat{\beta}_{\ell} \right| \right|,$$

with

with
$$S_k(r) = \left\{\ell, \, \hat{\beta}_\ell \neq 0 \text{ and } \mathfrak{d}_T(\hat{\theta}_\ell, \theta_k^\star) \leq r \right\}.$$

The Beurling Lasso [De Castro & Gamboa, 2012]

$$\min_{\mu \in \mathcal{M}(\Theta_T)} \frac{1}{2} \| y - \langle \phi_T, \mu \rangle \|_T^2 + \kappa \| \mu \|_{TV}. \tag{$\mathcal{P}_2(\kappa)$}$$

- $\mathcal{M}(\Theta_T)$ the set of measures on Θ_T .
- $\langle \phi_T, \mu \rangle = \int \phi_T(\theta) \, \mu(\mathrm{d}\theta).$
- $\|\cdot\|_{TV}$ the total variation of a norm.
- $\kappa > 0$ tuning parameter.

Remark

Let
$$\mu = \sum_{k=1}^K \beta_k \, \delta_{\theta_k}$$
 (atomic measure), then:

$$\frac{1}{2} \| \boldsymbol{y} - \langle \phi_T, \boldsymbol{\mu} \rangle \|_T^2 + \kappa \| \boldsymbol{\mu} \|_{TV} = \frac{1}{2} \| \boldsymbol{y} - \beta \, \Phi_T(\vartheta) \|_T^2 + \kappa \| \beta \|_{\ell_1}.$$

The Beurling Lasso [De Castro & Gamboa, 2012]

$$\min_{\mu \in \mathcal{M}(\Theta_T)} \frac{1}{2} \|y - \langle \phi_T, \mu \rangle\|_T^2 + \kappa \|\mu\|_{TV}. \tag{$\mathcal{P}_2(\kappa)$)}$$

The Beurling Lasso [De Castro & Gamboa, 2012]

$$\min_{\mu \in \mathcal{M}(\Theta_T)} \frac{1}{2} \| y - \langle \phi_T, \mu \rangle \|_T^2 + \kappa \| \mu \|_{TV}. \tag{$\mathcal{P}_2(\kappa)$)}$$

$\mathcal{P}_1(\kappa)$ and $\mathcal{P}_2(\kappa)$

- Existence of a solution to $\mathcal{P}_2(\kappa)$ [Bredies & Pikkarainen, 2013].
- If $\mathcal{P}_2(\kappa)$ admits a solution $\hat{\mu} = \sum_{k=1}^K \hat{\beta}_k \delta_{\hat{\theta}_k}$ then $(\hat{\beta}, \hat{\vartheta})$ is a solution to $\mathcal{P}_1(\kappa)$.
- If H_T has finite dimension K, then there exists a solution to $\mathcal{P}_2(\kappa)$ with K atoms at most, [Boyer et al, 2019].

The Beurling Lasso [De Castro & Gamboa, 2012]

$$\min_{\mu \in \mathcal{M}(\Theta_T)} \frac{1}{2} \| y - \langle \phi_T, \mu \rangle \|_T^2 + \kappa \| \mu \|_{TV}. \tag{$\mathcal{P}_2(\kappa)$}$$

$\mathcal{P}_1(\kappa)$ and $\mathcal{P}_2(\kappa)$

- Existence of a solution to $\mathcal{P}_2(\kappa)$ [Bredies & Pikkarainen, 2013].
- If $\mathcal{P}_2(\kappa)$ admits a solution $\hat{\mu} = \sum_{k=1}^K \hat{\beta}_k \delta_{\hat{\theta}_k}$ then $(\hat{\beta}, \hat{\vartheta})$ is a solution to $\mathcal{P}_1(\kappa)$.
- If H_T has finite dimension K, then there exists a solution to $\mathcal{P}_2(\kappa)$ with K atoms at most, [Boyer et al, 2019].

Ex: low-pass filter

The observation space is $H_T = L^2(Leb)$.

The Beurling Lasso [De Castro & Gamboa, 2012]

$$\min_{\mu \in \mathcal{M}(\Theta_T)} \frac{1}{2} \| y - \langle \phi_T, \mu \rangle \|_T^2 + \kappa \| \mu \|_{TV}. \tag{$\mathcal{P}_2(\kappa)$}$$

$\mathcal{P}_1(\kappa)$ and $\mathcal{P}_2(\kappa)$

- Existence of a solution to $\mathcal{P}_2(\kappa)$ [Bredies & Pikkarainen, 2013].
- If $\mathcal{P}_2(\kappa)$ admits a solution $\hat{\mu} = \sum_{k=1}^K \hat{\beta}_k \delta_{\hat{\theta}_k}$ then $(\hat{\beta}, \hat{\vartheta})$ is a solution to $\mathcal{P}_1(\kappa)$.
- If H_T has finite dimension K, then there exists a solution to $\mathcal{P}_2(\kappa)$ with K atoms at most, [Boyer et al, 2019].

Numerical implementation

Modified Frank-Wolfe algorithm [Boyd, Schiebinger & Recht, 2017],
 [Denoyelle, Duval, Peyré & Soubies 2020], [Globabae & Poon, 2022].

Estimation: why gridless methods

Estimation on a grid on the space of parameters

- Discrete grid of K points $\vartheta^{\mathcal{G}} = (\theta_1^{\mathcal{G}}, \cdots, \theta_K^{\mathcal{G}}).$
- Solve the Lasso problems:

$$\hat{\beta} \in \underset{\beta \in \mathbb{R}^K}{\operatorname{argmin}} \quad \frac{1}{2} \|y - \beta \Phi_{\mathcal{G}}\|_{\mathcal{T}}^2 + \kappa \|\beta\|_{\ell_1},$$

where $\Phi_{\mathcal{G}} = (\phi_{\mathcal{T}}(\theta_1^{\mathcal{G}}), \cdots, \phi_{\mathcal{T}}(\theta_K^{\mathcal{G}}))^{\top}$.

Estimation: why gridless methods

Estimation on a grid on the space of parameters

- Discrete grid of K points $\vartheta^{\mathcal{G}} = (\theta_1^{\mathcal{G}}, \cdots, \theta_K^{\mathcal{G}}).$
- Solve the Lasso problems:

$$\hat{\beta} \in \underset{\beta \in \mathbb{R}^K}{\operatorname{argmin}} \quad \frac{1}{2} \|y - \beta \Phi_{\mathcal{G}}\|_{\mathcal{T}}^2 + \kappa \|\beta\|_{\ell_1},$$

where $\Phi_{\mathcal{G}} = (\phi_{\mathcal{T}}(\theta_1^{\mathcal{G}}), \cdots, \phi_{\mathcal{T}}(\theta_K^{\mathcal{G}}))^{\top}$.

Inconvenients related to the refinement of the grid on Θ

- Strong correlations between the lines $\Phi_{\mathcal{G}} \implies$ numerical problems.
- The size of the grid grows exponentially with d when $\Theta \subset \mathbb{R}^d$.
- In the location model: clusters of spikes in the neighbourhood of the true spikes [Duval & Peyré, 2017].

Estimation: numerical aspects (Blasso V Lasso on a grid)

Numerical experiment

• Signal in $H_T = \mathbb{R}^T$ with T=100, mixture of two Gaussian-shaped spikes with $\theta_1^\star = 0$ and $\theta_2^\star = 3$ and amplitudes in [-10,10] uniformly distributed, corrupted by i.i.d. centered Gaussian r. v. with $\sigma = 0.1$.

Results (GitHub: ClementHardy/PySFW)

Estimation: gridless methods

Bibliography

- BLasso: [De Castro and Gamboa, 2012], [Bredies & Pikkarainen, 2013].
- Super-resolution and compressed sensing: [Candès and Fernandez-Granda, 2013, 2014] (BLasso), [Bhaskar, Tang & Recht, 2013] (atomic norm denoising)...
- Prediction and estimation (dictionary composed of complex-valued Fourier basis): [Tang, Bhaskar & Recht 2014], [Boyer, De Castro & Salmon 2017].
- Recover the support of a mesure and robustness of BLasso: [Duval & Peyré, 2015] (spike deconvolution with weak noise $\|w_T\|_T \ll 1$).
- General geometric framework for BLasso: [Poon, Keriven & Peyré, 2021].
- Mixture (density) model: [De Castro, Gadat, Marteau & Maugis, 2020].

Estimation: assumptions (I)

Smoothness of the dictionary functions (H2)

• $\varphi_T : \Theta \to H_T \text{ is } \mathcal{C}^3$. • $\|\varphi_T(\theta)\|_T > 0 \text{ on } \Theta$.

• $\phi_T(\theta) = \varphi_T(\theta) / \|\varphi_T(\theta)\|_T$.

• $\|\partial_{\theta}\phi_T(\theta)\|_T^2 > 0$ on Θ .

Ex: spectroscopy

$$\varphi_{\mathcal{T}}(\theta) = e^{-(\theta - \cdot)^2/2\sigma_{\mathcal{T}}^2}, \quad \theta \in \Theta = \mathbb{R}.$$

Ex: low-pass filter

$$\begin{split} \varphi_T(\theta) &= \frac{\sin(\pi(\theta - \cdot)/\sigma_T)}{\sin(\pi(\theta - \cdot))}, \\ \theta &\in \Theta = \mathbb{R}/\mathbb{Z}, \ \sigma_T = \frac{1}{T} = \frac{1}{2f_{\tau+1}}, \quad T \in 2\mathbb{N}^* + 1. \end{split}$$

Estimation: assumptions (II)

Kernel and approximating kernel

We define a kernel on Θ^2 to measure the correlation between components of the dictionary:

$$\mathcal{K}_{\mathcal{T}}(\theta, \theta') = \langle \phi_{\mathcal{T}}(\theta), \phi_{\mathcal{T}}(\theta') \rangle_{\mathcal{T}},$$

and an approximating symmetric kernel $\mathcal{K}^{\text{prox}}$ sur $\Theta^2_{\infty}.$

Estimation: assumptions (II)

Kernel and approximating kernel

We define a kernel on Θ^2 to measure the correlation between components of the dictionary:

$$\mathcal{K}_T(\theta, \theta') = \langle \phi_T(\theta), \phi_T(\theta') \rangle_T$$

and an approximating symmetric kernel \mathcal{K}^{prox} sur Θ^2_{∞} .

Ex: spectroscopy

If
$$\Delta_T \to 0$$
 and $\sigma_T = cst$, $\mathcal{K}^{\mathsf{prox}} = \lim_{T \to +\infty} \mathcal{K}_T$.

$$\mathcal{K}^{\mathsf{prox}} = \lim_{T \to +\infty} \mathcal{K}_T$$

Estimation: assumptions (II)

Kernel and approximating kernel

We define a kernel on Θ^2 to measure the correlation between components of the dictionary:

$$\mathcal{K}_{\mathcal{T}}(\theta, \theta') = \langle \phi_{\mathcal{T}}(\theta), \phi_{\mathcal{T}}(\theta') \rangle_{\mathcal{T}},$$

and an approximating symmetric kernel \mathcal{K}^{prox} sur Θ^2_{∞} .

Ex: spectroscopy

If
$$\Delta_T \to 0$$
 and $\sigma_T = cst$, $\mathcal{K}^{\mathsf{prox}} = \lim_{T \to +\infty} \mathcal{K}_T$.

$$\mathcal{K}^{\mathsf{prox}} = \lim_{T \to +\infty} \mathcal{K}_T.$$

Assumptions on the approximating (H3)

The kernel $\mathcal{K}^{\text{prox}}$ is $\mathcal{C}^{3,3}$ with bounded derivatives + other **smoothness** assumptions. It is locally concave on the diagonal and strictly less than 1 outside the diagonal.

Estimation: assumptions (III)

Fisher-Rao metric on the space of parameters

$$\mathfrak{d}_{\mathcal{K}}(\theta, \theta') = \inf_{\gamma} \int_{0}^{1} |\dot{\gamma}_{s}| \sqrt{\partial_{x,y} \mathcal{K}(\gamma_{s}, \gamma_{s})} \, \mathrm{d}s$$

inf. on the set of smooth paths $\gamma:[0,1]\to\Theta$ such that $\gamma_0=\theta$ and $\gamma_1=\theta'$. \to invariance $\mathfrak{d}_{\mathcal{K}_{\omega}}(\theta,\theta')=\mathfrak{d}_{\mathcal{K}_{\omega}\circ h}(h^{-1}(\theta),h^{-1}(\theta'))$.

Estimation: assumptions (III)

Fisher-Rao metric on the space of parameters

$$\mathfrak{d}_{\mathcal{K}}(\theta, \theta') = \inf_{\gamma} \int_{0}^{1} |\dot{\gamma}_{s}| \sqrt{\partial_{x,y} \mathcal{K}(\gamma_{s}, \gamma_{s})} \, \mathrm{d}s$$

inf. on the set of smooth paths $\gamma:[0,1]\to\Theta$ such that $\gamma_0=\theta$ and $\gamma_1=\theta'$. \to invariance $\mathfrak{d}_{\mathcal{K}_{\varphi}}(\theta,\theta')=\mathfrak{d}_{\mathcal{K}_{\varphi}\circ h}(h^{-1}(\theta),h^{-1}(\theta'))$.

Univariate examples

• Translated spikes model (spectroscopy / low-pass filter):

$$\mathfrak{d}_{\mathcal{K}_{\mathcal{T}}}(\theta, \theta') \sim |\theta - \theta'|$$
 (Euclidean distance).

• Scale model: $H = L^2(\text{Leb})$ and $\varphi(\theta) = e^{-\cdot \theta}$ with $\Theta = \mathbb{R}_+^*$ and

$$\mathfrak{d}_{\mathcal{K}_{\mathcal{T}}}(\theta, \theta') \propto |\log(\theta/\theta')|.$$

We have $\mathfrak{d}_{\mathcal{K}_{\mathcal{T}}}(\theta, \theta + \varepsilon) \underset{\theta \to 0}{\rightarrow} +\infty \ (\neq \text{ Euclidean distance}).$

Estimation: assumptions (IV)

Proximity of $\mathcal{K}_{\mathcal{T}}$ and $\mathcal{K}^{\text{prox}}$

• Proximity between kernels:

$$\mathcal{V}_{\mathcal{T}} = \mathsf{max}_{i,j \in \{0,\cdots,3\}} \; \mathsf{sup}_{\Theta_{\mathcal{T}}^2} \, |\mathcal{K}_{\mathcal{T}}^{[i,j]} - \mathcal{K}^{\mathsf{prox}[i,j]}|.$$

• equivalent metrics : $\mathfrak{d}_{\mathcal{K}_T}$ and $\mathfrak{d}_{\mathcal{K}^{\text{prox}}}$: $\mathfrak{d}_{\mathcal{K}^{\text{prox}}}/\rho_T \leq \mathfrak{d}_{\mathcal{K}_T} \leq \rho_T \mathfrak{d}_{\mathcal{K}^{\text{prox}}}$

Estimation: assumptions (IV)

Proximity of $\mathcal{K}_{\mathcal{T}}$ and $\mathcal{K}^{\text{prox}}$

• Proximity between kernels:

$$\mathcal{V}_{\mathcal{T}} = \mathsf{max}_{i,j \in \{0,\cdots,3\}} \; \mathsf{sup}_{\Theta_{\mathcal{T}}^2} \, |\mathcal{K}_{\mathcal{T}}^{[i,j]} - \mathcal{K}^{\mathsf{prox}[i,j]}|.$$

 $\bullet \ \ \text{equivalent metrics} \ : \mathfrak{d}_{\mathcal{K}_T} \ \ \text{and} \ \mathfrak{d}_{\mathcal{K}^{\text{prox}}} : \quad \mathfrak{d}_{\mathcal{K}^{\text{prox}}} / \ \rho_T \leq \mathfrak{d}_{\mathcal{K}_T} \leq \rho_T \ \mathfrak{d}_{\mathcal{K}^{\text{prox}}}$

Proximity assumptions between $\mathcal{K}_{\mathcal{T}}$ and $\mathcal{K}^{\mathsf{prox}}$ (H4)

$$s \mathcal{V}_T \leq C$$
 and $\rho_T \leq \rho$.

 \rightarrow This often rewrites : $T \ge sT_0$!

Estimation: bounds on prediction and estimation errors

Theorem 1

We observe $y\in H_T$ with unknown parameters $\beta^\star\in\mathbb{R}^s$ and $\vartheta^\star=(\theta_1^\star,\cdots,\theta_s^\star)\in\Theta_T^s$ avec $s\leq K$ such that assumptions H1-H4 are checked and, for all $\ell\neq k$,

$$\mathfrak{d}_{\mathcal{K}_{\mathcal{T}}}(\theta_{\ell}^{\star}, \theta_{k}^{\star}) \gtrsim \delta(s)$$
 (séparation).

Then, the estimators $\hat{\beta}$ and $\hat{\vartheta}$ defined by $\mathcal{P}_1(\kappa)$ with

$$\kappa \geq \mathcal{C}_1 \sqrt{\Delta_T \log \tau} \quad \text{ and } \quad \tau > 1,$$

with the following bounds on the prediction and estimation risks:

$$\left\|\beta^{\star}\,\Phi_{T}(\vartheta^{\star})-\hat{\beta}\,\Phi_{T}(\hat{\vartheta})\right\|_{T}\leq C_{0}\,\sqrt{s}\,\kappa,$$

$$\sum_{k=1}^{s} \left| |\beta_k^{\star}| - \sum_{\ell \in S_k(r)} |\hat{\beta}_{\ell}| \right| \quad + \quad \sum_{k=1}^{s} \left| \beta_k^{\star} - \sum_{\ell \in S_k(r)} \hat{\beta}_{\ell} \right| \quad + \quad \left\| \hat{\beta}_{S(r)^c} \right\|_{\ell_1} \leq C_0 \, \kappa \, s.$$

with probability larger than: $1-\mathcal{C}_2\left(\frac{|\Theta_T|_{\mathfrak{d}_T}}{\tau\sqrt{\log \tau}}\vee\frac{1}{\tau}\right)$.

Remark: the bounds do not depend on K!

Estimation: separation between parameters

Separation condition

$$\mathfrak{d}_{\mathcal{K}_{\mathcal{T}}}(\theta_{\ell}^{\star},\theta_{k}^{\star})\gtrsim\delta(s),\ \ell\neq k.$$

Estimation: separation between parameters

Separation condition

$$\mathfrak{d}_{\mathcal{K}_{\mathcal{T}}}(\theta_{\ell}^{\star},\theta_{k}^{\star})\gtrsim\delta(s),\ \ell\neq k.$$

Definition of the separation $\delta(s)$

$$\delta(s) = \inf \Big\{ \delta > 0: \ \max_{1 \leq \ell \leq s} \sum_{k=1, k \neq \ell}^{s} |\mathcal{K}^{\mathsf{prox}[i,j]}(\theta_{\ell}, \theta_{k})| \leq u \quad \text{ for all }$$

$$(i,j) \in \{0,1\} \times \{0,1,2\} \text{ and } (\theta_1,\cdots,\theta_s) \in \Theta^s \quad \text{s.t.} \quad \mathfrak{d}_{\mathcal{K}^{\mathsf{prox}}}(\theta_\ell,\theta_k) > \delta, \ell \neq k \Big\}.$$

Estimation: separation between parameters

Separation condition

$$\mathfrak{d}_{\mathcal{K}_{\mathcal{T}}}(\theta_{\ell}^{\star},\theta_{k}^{\star})\gtrsim\delta(s),\ \ell\neq k.$$

Definition of the separation $\delta(s)$

$$\delta(s) = \inf \Big\{ \delta > 0: \ \max_{1 \leq \ell \leq s} \sum_{k=1, k \neq \ell}^{s} |\mathcal{K}^{\mathsf{prox}[i,j]}(\theta_{\ell}, \theta_{k})| \leq u \quad \text{ for all }$$

$$(i,j) \in \{0,1\} \times \{0,1,2\} \text{ and } (\theta_1,\cdots,\theta_s) \in \Theta^s \quad \text{s.t.} \quad \mathfrak{d}_{\mathcal{K}^{\mathsf{prox}}}(\theta_\ell,\theta_k) > \delta, \ell \neq k \Big\}.$$

Ex: spectroscopy

$$\mathfrak{d}_{\mathcal{K}_{\mathcal{T}}}(heta, heta')\sim rac{| heta- heta'|}{\sigma_{\mathcal{T}}} \quad ext{ and } \quad \delta(s)\lesssim 1/u, ext{ for some } u>0.$$

Estimation: bounds on the prediction risk

Ex: spectroscopy

- Grid: $t_1 < \cdots < t_T$ regular on \mathbb{R} with step-size Δ_T .
- Noise: $w_T(t_i)$ i.i.d $\sim \mathcal{N}(0,1)$.
- Dictionary: $(\varphi_T(\theta) = e^{-(\theta \cdot)^2/2\sigma_T^2}, \ \theta \in \Theta = \mathbb{R}).$
- Separation: $|\theta_{\ell}^{\star} \theta_{k}^{\star}| \gtrsim \sigma_{T}$ for $\ell \neq k$.

We have for $\sigma_T \gtrsim \Delta_T$:

$$\frac{1}{\sqrt{T}} \left\| \hat{\beta} \Phi_T(\hat{\vartheta}) - \beta^* \Phi_T(\vartheta^*) \right\|_{\ell_2} \lesssim \sqrt{\frac{s \log(T)}{T}},$$

with probability larger than $1 - C\left(\frac{t_T - t_1}{\sigma_T \ T \sqrt{\log(T)}} \lor \frac{1}{T}\right)$.

Estimation: bounds on the prediction risk

Ex: spectroscopy

- Grid: $t_1 < \cdots < t_T$ regular on \mathbb{R} with step-size Δ_T .
- Noise: $w_T(t_i)$ i.i.d $\sim \mathcal{N}(0,1)$.
- Dictionary: $(\varphi_T(\theta) = e^{-(\theta \cdot)^2/2\sigma_T^2}, \ \theta \in \Theta = \mathbb{R}).$
- Separation: $|\theta_{\ell}^{\star} \theta_{k}^{\star}| \gtrsim \sigma_{T}$ for $\ell \neq k$.

We have for $\sigma_T \gtrsim \Delta_T$:

$$\frac{1}{\sqrt{T}} \left\| \hat{\beta} \Phi_T(\hat{\vartheta}) - \beta^* \Phi_T(\vartheta^*) \right\|_{\ell_2} \lesssim \sqrt{\frac{s \log(T)}{T}},$$

with probability larger than $1 - C\left(\frac{t_T - t_1}{\sigma_T \, T \, \sqrt{\log(T)}} \lor \frac{1}{T}\right)$.

 \rightarrow The upper bound is of the same order as that for the Lasso estimator in the linear regression model (i.e when nonlinear parameters are known).

Estimation: bounds on the prediction risk

Ex: low-pass filter

- Truncated white noise: $w_T = \frac{1}{\sqrt{T}} \sum_{k=1}^T G_k \, \psi_k$.
- Dictionary: $(\varphi_T(\theta) = \frac{\sin(T\pi(\theta \cdot))}{\sin(\pi(\theta \cdot))}, \ \theta \in \Theta = \mathbb{R}/\mathbb{Z}).$
- Separation: $|\theta_{\ell}^{\star} \theta_{k}^{\star}| \gtrsim \delta(s)/T$ pour $\ell \neq k$.

We have for $T \gtrsim s$:

$$\left\| \hat{\beta} \Phi_{\mathcal{T}}(\hat{\vartheta}) - \beta^* \Phi_{\mathcal{T}}(\vartheta^*) \right\|_{L^2(\text{Leb})} \lesssim \sqrt{\frac{s \log(T)}{T}},$$

with probability larger than $1 - \frac{\mathcal{C}}{T\sqrt{\log(T)}}$.

III Simultaneous reconstruction

Common structure of the signals

Model

We observe n signals $(Y(i) \in H_T, \ 1 \le i \le n)$ s.t the union of their features is a set of cardinal s:

$$Y(i) = \sum_{k=1}^{s} B_k^{\star}(i) \phi_T(\theta_k^{\star}) + W_T(i) \quad \text{for} \quad 1 \leq i \leq n,$$

$$W_T(i)$$
 i.i.d $\sim w_T$.

Common structure of the signals

Model

We observe n signals $(Y(i) \in H_T, \ 1 \le i \le n)$ s.t the union of their features is a set of cardinal s:

$$Y(i) = \sum_{k=1}^{s} B_k^{\star}(i) \phi_T(\theta_k^{\star}) + W_T(i) \quad \text{for} \quad 1 \le i \le n,$$

 $W_T(i)$ i.i.d $\sim w_T$.

Question

Is it possible to achieve greater efficiency in reconstruction when the signals share most of their features?

Simultaneous reconstruction

Estimators

$$(\hat{B}, \hat{\vartheta}) \in \underset{B \in \mathbb{R}^{n \times K}, \vartheta \in \Theta_T^K}{\operatorname{argmin}} \quad \frac{1}{2n} \sum_{i=1}^n \|Y(i) - B(i) \Phi_T(\vartheta)\|_T^2 + \kappa \sum_{k=1}^K \sqrt{\sum_{i=1}^n B_k(i)^2}$$

Bibliography

- Group-Lasso for linear models [Yuan & Lin, 2006], minimax bounds [Lounici, Pontil, van de Geer & Tsybakov, 2011].
- Group-BLasso [Golbabae & Poon, 2022].

Simultaneous reconstruction

Theorem

Under H1-H4 and provided $\ell \neq k$,

$$\mathfrak{d}_{\mathcal{T}}(\theta_{\ell}^{\star},\theta_{k}^{\star})\gtrsim\delta(s)$$
 (separation).

Then, for any $\tau > 1$ and a tuning of κ , we get the bound:

$$\frac{1}{n}\sum_{i=1}^{n}\left\|B^{\star}(i)\,\Phi_{T}(\vartheta^{\star})-\hat{B}(i)\,\Phi_{T}(\hat{\vartheta})\right\|_{T}^{2}\lesssim s\,\Delta_{T}\,\left(1+\frac{\log(\tau)}{n}\right),$$

with prob. greater than: $1 - \mathcal{C}_2\left(\frac{1}{\tau^2\log(\tau)} + \frac{|\Theta_{\mathcal{T}}|_{\mathfrak{d}_{\mathcal{T}}} \mathrm{e}^{-n/3}}{\tau\sqrt{\log(\tau)}}\right)\!.$

Simultaneous reconstruction

Theorem

Under H1-H4 and provided $\ell \neq k$,

$$\mathfrak{d}_T(\theta_\ell^\star, \theta_k^\star) \gtrsim \delta(s)$$
 (separation).

Then, for any $\tau > 1$ and a tuning of κ , we get the bound:

$$\frac{1}{n}\sum_{i=1}^{n}\left\|B^{\star}(i)\,\Phi_{T}(\vartheta^{\star})-\hat{B}(i)\,\Phi_{T}(\hat{\vartheta})\right\|_{T}^{2}\lesssim s\,\Delta_{T}\,\left(1+\frac{\log(\tau)}{n}\right),$$

with prob. greater than: $1 - \mathcal{C}_2\left(\frac{1}{\tau^2\log(\tau)} + \frac{|\Theta_T|\mathfrak{d}_T\,\mathrm{e}^{-n/3}}{\tau\sqrt{\log(\tau)}}\right)$.

 \rightarrow The upper bound is of the same order as that for the Group-Lasso estimator in the multi-task linear regression model (i.e when nonlinear parameters are known).

III Tests

Signal detection:

Let
$$(\beta^\star, \vartheta^\star) \in (\mathbb{R}^*)^s \times \Theta^s_T$$
 (unknown).
$$\begin{cases} H_0 & : \quad s = 0, \\ H_1(\rho) & : \quad \|\beta^\star\|_{\ell_2} \geq \rho. \end{cases}$$

How large does ρ have to be to distinguish these hypotheses?

Signal detection:

Let
$$(\beta^\star, \vartheta^\star) \in (\mathbb{R}^\star)^s \times \Theta_T^s$$
 (unknown).
$$\begin{cases} H_0 & : \quad s = 0, \\ H_1(\rho) & : \quad \|\beta^\star\|_{\ell_2} \geq \rho. \end{cases}$$

How large does ρ have to be to distinguish these hypotheses?

Recall

A test Ψ is a measurable function y taking values in $\{0,1\}$: $\Psi=0$ accept H_0 and $\Psi=1$ reject H_0 .

• The maximal testing risk:

$$R_{\rho}(\Psi) = \underbrace{\sup_{\left(\beta^{\star}, \vartheta^{\star}\right) \in \mathcal{H}_{0}} \mathbb{P}_{\left(\beta^{\star}, \vartheta^{\star}\right)}(\Psi = 1)}_{\text{1st type error prob.}} + \underbrace{\sup_{\left(\beta^{\star}, \vartheta^{\star}\right) \in \mathcal{H}_{1}(\rho)} \mathbb{P}_{\left(\beta^{\star}, \vartheta^{\star}\right)}(\Psi = 0)}_{\text{2nd type error prob.}}.$$

• The minimax separation distance for testing at $\alpha \in (0,1)$:

$$\rho^{\star}(\alpha) = \inf\{\rho > 0 : \inf_{\Psi} R_{\rho}(\Psi) \leq \alpha\}.$$

Framework

- Dictionary: $(\varphi_T(\theta) = h(\theta \cdot, \sigma_T), \theta \in \Theta)$.
- Discrete process on a regular grid of T points on \mathbb{R}/\mathbb{Z} with $w_T(t_j)$ i.i.d $\sim \mathcal{N}(0,1)$ for $1 \leq j \leq T$.

Proposition 1

Under the assumptions H1-H4, assuming $|\theta_\ell^\star - \theta_k^\star| \gtrsim \sigma_T \, \delta(s) \quad \forall \ell \neq k$, we have for $|\Theta_T|/\sigma_T \geq 1$ and $\alpha \in (0,1)$:

$$\rho^{\star}(\alpha) \lesssim \min\left(\frac{1}{(\alpha T)^{\frac{1}{4}}}, \sqrt{\frac{s}{T}\log\left(\frac{c}{\alpha \sigma_{T}}\right)}\right).$$

Framework

- Dictionary: $(\varphi_T(\theta) = h(\theta \cdot, \sigma_T), \theta \in \Theta)$.
- Discrete process on a regular grid of T points on \mathbb{R}/\mathbb{Z} with $w_T(t_j)$ i.i.d $\sim \mathcal{N}(0,1)$ for $1 \leq j \leq T$.

Proposition 1

Under the assumptions H1-H4, assuming $|\theta_\ell^\star - \theta_k^\star| \gtrsim \sigma_T \, \delta(s) \quad \forall \ell \neq k$, we have for $|\Theta_T|/\sigma_T \geq 1$ and $\alpha \in (0,1)$:

$$\rho^*(\alpha) \lesssim \min\left(\frac{1}{(\alpha T)^{\frac{1}{4}}}, \sqrt{\frac{s}{T}}\log\left(\frac{c}{\alpha \sigma_T}\right)\right).$$

Remarks

• In the sparse linear regression model, a third regime appears with the rate $\frac{p^{1/4}}{\sqrt{T}}$; Ingster, Verzelen, Tsybakov (2010), Nickl and van de Geer, (2013), showed that the minimax testing rate is $\frac{1}{T^{1/4}} \wedge \sqrt{\frac{s \log(p)}{T}} \wedge \frac{p^{1/4}}{\sqrt{T}}$.

Conclusion and perspectives

Estimation and tests

Under least separation conditions between the true non linear parameters:

- Prediction risks of the same order as for the Lasso-type estimators where ϑ^\star is known.
- Simultaneous reconstruction (analogous to group-Lasso) when many signals share a common structure.
- \bullet Testing separation rate is of the same order as for signal detection with ϑ^\star given.

Perspectives

- $\Theta \subseteq \mathbb{R}^d$
- Improve on the non-linear parameter separation conditions in general
- Extend the testing problems