HY673 - Assignment #1

Yannis Pantazis

Monday February 20th, 2023

Instructions

- Due date: Monday March 6th, 2023
- Submission via e-mail to the class account: hy673@csd.uoc.gr
- Provide one file with the written solutions.
- Provide <u>one folder</u> with code.
 - The name of each file in the folder should indicate the respective exercise (e.g., ex_2c.py or exercise_2c.py).

Exercise 1: Change of variables

- (a) Let $X \sim \mathcal{N}(\mu, \sigma^2)$ and $Y = e^X =: g(X)$. Compute analytically the probability density function (pdf) of Y using the change of variable formula.
- (b) Compute the histogram of the dataset $\{y_i = g(x_i) : x_i \sim \mathcal{N}(1,4)\}_{i=1}^n$ with $n = 100,1000 \& 10^4$. Compare the estimated histogram with $P_Y(y)$ from (a). White down what you observe as n increases.
- (c) Let $U_1, U_2 \sim \mathcal{U}(0, 1)$ two independent random variables and define $Y = -\lambda_1^{-1} \log(U_1) \lambda_2^{-1} \log(U_2)$ with $\lambda_1, \lambda_2 > 0$. Compute analytically the pdf of Y.
- (d) Repeat (b) but for (c) with $\lambda_1 = 1$ and $\lambda_2 = 2$.

Exercise 2: Multivariate Gaussian

- (a) Let X_1, X_2 be two dependent Gaussians with $\mathbb{E}[X_i] = \mu_i$ and $Var(X_i) = \sigma_i^2$ for i = 1, 2 and $\mathbb{E}[(X_1 \mu_1)(X_2 \mu_2)] = \sigma_{12}$. First show that the sum $Y = X_1 + X_2$ is Gaussian and then compute the pdf of Y.
- (b) Compute $p(x_1 + x_2 | x_3)$ given that $p(x_1, x_2, x_3) \equiv \mathcal{N}(\mu, \Sigma), \ \mu \in \mathbb{R}^3$ and $\Sigma \in \mathbb{R}^{3 \times 3}$.
- (c) Using $p(x_1, x_2 | x_3)$ as an intermediate step, numerically validate through histogram comparisons the result in (b) for $\mu = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$ and $\Sigma = \begin{bmatrix} 1 & -0.5 & 0.8 \\ -0.5 & 1 & -0.8 \\ 0.8 & -0.8 & 1 \end{bmatrix}$.

Exercise 3: MLE - Linear case

- (a) Let $x_1, ..., x_n \in \mathbb{R}$ be a given dataset. Assume the parametric model that generates the samples to be $p_{\theta}(x) \equiv \mathcal{N}(0, \theta)$ (i.e., θ corresponds to the variance σ^2). Compute analytically the MLE solution, $\hat{\theta}_{MLE}$.
- (b) Generate samples $x_i \sim \mathcal{N}(0, \theta^*)$ with $\theta^* = 2$ and create one realization of the dataset. For $n = 10, 100 \& 10^3$, plot the log-likelihood as a function of θ . What do you observe (write down at least two observations)?

1

- (c) Repeat (b) averaging over 100 realizations with new data at each realization and plot the average log-likelihood function (again, as a function of θ). For each realization, compute also $\hat{\theta}_{MLE}(n)$ and plot the respective histogram. Comment on the shape of the average log-likelihood function and the shape of the histogram of $\hat{\theta}_{MLE}(n)$.
- (d) Compute analytically the Fisher information

$$\mathcal{I}(\theta) := \mathbb{E}_{p_{\theta}} \left[\left(\frac{d}{d\theta} \log p_{\theta}(x) \right)^{2} \right] = -\mathbb{E}_{p_{\theta}} \left[\frac{d^{2}}{d\theta^{2}} \log p_{\theta}(x) \right].$$

Exercise 4: MLE - Nonlinear case

- (a) Let $p_{\theta}(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2}$ be the 1D logistic distribution with $\theta = \begin{bmatrix} \mu \\ s \end{bmatrix}$ where μ corresponds to the mean parameter while s corresponds to the scaling parameter. Compute the log-likelihood function and its partial derivatives with respect to μ and s.
- (b) For $x_1, ..., x_n$ generated from the logistic distribution with $\mu^* = 1$ and $s^* = 0.5$, plot the 2D contour of the log-likelihood function for n = 100, 1000 and 10^4 .
- (c) For the data generated in (b), estimate iteratively the MLE solution, $\hat{\theta}_{MLE}$, using the gradient ascent algorithm. How mean squared error behaves as a function of n?

Exercise 5: Mixture Model

(a) Let $X = [X_1, ..., X_d]^T$ with each $X_j \sim \text{Bernoulli}_1(\mu_j)$ independent to each other be a multivariate Bernoulli distribution. Recall that $\mu_j \in [0, 1]$. The probability mass function (pmf) of X is given by

Bernoulli_d
$$(x|\mu) = \prod_{j=1}^{d} \mu_j^{x_j} (1 - \mu_j)^{1-x_j}.$$

A Bernoulli mixture model (BMM) with K components and mixing coefficient vector $\pi = [\pi_1, ..., \pi_K]^T$ is given by

$$p_{\theta}(x) = \sum_{k=1}^{K} \pi_k \text{Bernoulli}_d(x|\mu_k),$$

with $\mu_k = [\mu_{k1}, ..., \mu_{kj}, ..., \mu_{kd}]^T \in \mathbb{R}^d$ and $\theta = {\{\pi_k, \mu_k\}_{k=1}^K}$.

- (a) Compute the log-likelihood of the BMM as well as the likelihood assuming that the latent variable (indicating from which component a sample is drawn) is given.
- (b) Derive the expectation step along with the formula for the responsibilities and then the maximization step of the EM algorithm.
- (c) Implement the EM algorithm for the BMM and train it on one of the MNIST digit images. MNIST images have to be down-sampled to 14x14 dimension and binarize. You may adapt available code that implements the EM algorithm for the GMM. Generate new synthetic images using the trained BMM.