UNIVERSITÀ DEGLI STUDI ROMA TRE

Corso di Studi in Ingegneria Informatica

Ricerca Operativa 1 – Primo appello

31 gennaio 2003

SOLUZIONI

Esercizio 1

Portando il problema in forma standard si aggiungono le variabili x_3 e x_4 . Impostando il problema artificiale è sufficiente introdurre una variabile x_5 sul secondo vincolo (come in figura). La base iniziale è quindi $B = \begin{bmatrix} A_3, A_5 \end{bmatrix}$. Al primo pivot entra A_1 ed esce A_5 . Fine della fase 1, inizia la fase 2. Al successivo pivot entra A_2 ed esce A_1 , quindi entra A_4 ed esce A_3 . Al successivo pivot entra A_1 ed il problema risulta inferiormente illimitato.

$$\min x_5$$

$$\begin{cases}
-3x_1 + 2x_2 + x_3 = 6 \\
2x_1 + 3x_2 - x_4 + x_5 = 6 \\
x \ge 0
\end{cases}$$

Esercizio 2

Scrivendo il duale (in figura) ed impostando le condizioni di ortogonalità, si ottiene la soluzione $u^T = \begin{pmatrix} 0 & -2/9 & 20/9 \end{pmatrix}$ che è ammissibile duale. La soluzione $x^T = \begin{pmatrix} 2 & 0 & 1 \end{pmatrix}$ data è quindi ottima.

$$\min \quad 2x_1 - x_2 \qquad \max \quad 5u_1 + 12u_2 + 3u_3$$

$$\begin{cases} 4x_1 + 2x_2 + x_3 \ge 5 \\ x_1 - x_2 + 10x_3 \le 12 \end{cases} \begin{cases} 4u_1 + u_2 + u_3 \le 2 \\ 2u_1 - u_2 - u_3 \le -1 \\ u_1 + 10u_2 + u_3 \le 0 \end{cases}$$

$$x \ge 0 \qquad \qquad u_1 \ge 0; u_2 \le 0; u_3 \ge 0$$

Esercizio 3

In tabella è riportato il peso degli archi di un grafo non orientato con 9 nodi 1...9. Trovare l'albero ricoprente di peso minimo, a partire dal nodo 1, utilizzando l'algoritmo di Prim-Dijkstra. Indicare in quale ordine vengono aggiunti archi all'albero ricoprente (in quale ordine vengono fissati ad 1 i flag dei nodi del grafo).

Archi	(1,2)	(1,4)	(2,3)	(2,4)	(2,5)	(2,6)	(3,6)	(4,5)	(4,7)	(5,6)	(5,7)	(5,8)	(6,8)	(6,9)	(7,8)	(8,9)
Costi	1	6	10	9	8	2	1	1	6	3	7	4	9	10	3	5

I nodi del grafo vengono fissati ad 1 nell'ordine 1,2,6,3,5,4,8,7,9.

Domanda 4

Discutere i problemi di programmazione lineare in forma standard, dimostrando in particolare che se esiste soluzione ottima, esiste un vertice ottimo.

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 – Primo appello 31 gennaio 2003

SOLUZIONI

Esercizio 1

Portando il problema in forma standard si aggiungono le variabili x_3 e x_4 . Impostando il problema artificiale è sufficiente introdurre una variabile x_5 sul secondo vincolo (come in figura). La base iniziale è quindi $B = [A_3, A_5]$. Al primo pivot entra A_1 ed esce A_3 ; al secondo entra A_2 ed esce A_5 . Fine della fase 1, inizia la fase 2. Al successivo pivot entra A_3 ed esce A_1 , quindi entra A_4 ed il problema risulta inferiormente illimitato.

min
$$x_5$$

$$\begin{cases} 3x_1 - x_2 + x_3 = 9 \\ 2x_1 + 3x_2 - x_4 + x_5 = 6 \\ x \ge 0 \end{cases}$$

Esercizio 2

Scrivendo il duale (in figura) ed impostando le condizioni di ortogonalità, si ottiene la soluzione $u^T = \begin{pmatrix} 0 & 2/7 & -3/7 \end{pmatrix}$ che NON è ammissibile duale (viola la condizione $u_2 \le 0$). La soluzione $x^T = \begin{pmatrix} 0 & 2 & 2 \end{pmatrix}$ data quindi NON è ottima.

$$\min 3x_1 + x_3 \qquad \max 3u_1 + 10u_2 + 2u_3
\begin{cases}
2x_1 - 2x_2 + 4x_3 \ge 3 \\
-x_1 + 3x_2 + 2x_3 \le 10
\end{cases}
\begin{cases}
2u_1 - u_2 + u_3 \le 3 \\
-2u_1 + 3u_2 + 2u_3 \le 0
\end{cases}$$

$$\begin{cases}
x_1 + 2x_2 - x_3 \ge 2 \\
x \ge 0
\end{cases}$$

$$\begin{cases}
4u_1 + 2u_2 - u_3 \le 1 \\
u_1 \ge 0; u_2 \le 0; u_3 \ge 0
\end{cases}$$

Esercizio 3

In tabella sono riportati gli archi di un grafo con 8 nodi, e sono dati i valori di capacità degli archi ed un flusso ammissibile. A partire dal flusso dato trovare il massimo flusso inviabile dal nodo 1 al nodo 8 con l'algoritmo di Ford e Fulkerson.

Archi	(1,2)	(1,3)	(2,4)	(2,5)	(3,7)	(4,3)	(4,6)	(5,6)	(6,8)	(7,6)	(7,8)
Capacità	10	8	4	6	7	5	3	2	10	4	1
Flussi	4	0	4	0	4	4	0	0	4	4	0

Il flusso iniziale entrante nel nodo 8 è pari a 4. Cercando dei cammini aumentanti si ottengono i cammini:

 $1 \rightarrow 3 \rightarrow 7 \rightarrow 8$ (flusso aumentante: 1); $1 \rightarrow 3 \xrightarrow{\mathit{INV}} 4 \rightarrow 6 \rightarrow 8$ (flusso aumentante: 3); $1 \rightarrow 2 \rightarrow 5 \rightarrow 6 \rightarrow 8$ (flusso aumentante: 2). La successiva ricerca si arresta dopo aver raggiunto I nodi 1,2,3,4,5,7. Il taglio di capacità minima è quindi dato dagli archi: (4,6); (5,6); (7,6); (7,8). Infatti la capacità degli archi tagliati è 10, pari al flusso trovato.

Domanda 4

Discutere il problema dell'albero ricoprente di peso minimo, dimostrando in particolare la correttezza degli algoritmi di Prim e di Kruskal.

UNIVERSITÀ DEGLI STUDI ROMA TRE

Corso di Studi in Ingegneria Informatica

Ricerca Operativa 1 - Primo appello

31 gennaio 2003

SOLUZIONI

Esercizio 1

Portando il problema in forma standard si aggiungono le variabili x_3 e x_4 . A questo punto è possibile utilizzare come base iniziale la base $B = \begin{bmatrix} A_1, A_4 \end{bmatrix}$ e procedere direttamente con la fase 2. Altrimenti, impostando il problema artificiale, è sufficiente introdurre una variabile (ad esempio x_5) sul primo vincolo, come in figura. La base iniziale è quindi $B = \begin{bmatrix} A_5, A_4 \end{bmatrix}$. Al primo pivot entra A_1 ed esce A_5 . Fine della fase 1, inizia la fase 2. Al successivo pivot entra A_2 ed esce A_1 . Al successivo pivot entra A_3 ed esce A_4 . Al

successivo pivot entra A_1 ed il problema risulta inferiormente illimitato.

$$\min x_5 \begin{cases} x_1 + 2x_2 - x_3 + x_5 = 4 \\ x_2 + x_4 = 3 \\ x \ge 0 \end{cases}$$

Esercizio 2

Scrivendo il duale (in figura) ed impostando le condizioni di ortogonalità, si ottiene la soluzione $u^T = \begin{pmatrix} 1/18 & -1/3 & 10/18 \end{pmatrix}$ che è ammissibile duale. La soluzione $x^T = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$ data è quindi ottima.

$$\min x_1 - x_3 \qquad \max 4u_1 + 4u_2 + 2u_3$$

$$\begin{cases} 2x_1 - 2x_2 + 4x_3 \ge 4 \\ -x_1 + 3x_2 + 2x_3 = 4 \end{cases} \begin{cases} 2u_1 - u_2 + u_3 \le 1 \\ -2u_1 + 3u_2 + 2u_3 \le 0 \end{cases}$$

$$\begin{cases} x_1 + 2x_2 - x_3 \ge 2 \\ x \ge 0 \end{cases} \begin{cases} 4u_1 + 2u_2 - u_3 \le -1 \\ u_1 \ge 0; u_3 \ge 0 \end{cases}$$

Esercizio 3

In tabella è riportato il peso degli archi di un grafo con 8 nodi 1...8. Trovare l'albero dei cammini minimi dal nodo 1 a tutti gli altri nodi utilizzando l'algoritmo di Dijkstra. Indicare in quale ordine vengono fissati ad 1 i flag dei nodi del grafo. Evidenziare il cammino minimo dal nodo 1 al nodo 8.

Archi	(1,2)	(1,3)	(2,4)	(2,5)	(3,7)	(4,3)	(4,6)	(5,6)	(6,8)	(7,6)	(7,8)
Costi	1	6	2	3	3	1	9	5	2	1	4

I nodi del grafo vengono fissati ad 1 nell'ordine 1,2,4,3,5,7,6,8.

Domanda 4

Discutere il problema dell'albero ricoprente di peso minimo, dimostrando in particolare che l'algoritmo di Prim-Dijkstra ha complessità $O(n^2)$. UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 – Primo appello 31 gennaio 2003

SOLUZIONI

Esercizio 1

Portando il problema in forma standard si aggiungono le variabili x_3 e x_4 . Impostando il problema artificiale è sufficiente introdurre una variabile x_5 sul primo vincolo (come in figura). La base iniziale è quindi $B = [A_5, A_4]$. Al primo pivot entra A_1 ed esce A_5 . Fine della fase 1, inizia la fase 2. Al successivo pivot entra A_2 ed esce A_1 . Al successivo pivot entra A_3 ed esce A_4 . La soluzione trovata $x^T = \begin{pmatrix} 0 & 4 & 9 & 0 \end{pmatrix}$ risulta ottima.

.

$$\min x_5 \begin{cases} x_1 + 3x_2 - x_3 + x_5 = 3 \\ x_1 + x_2 + x_4 = 4 \\ x \ge 0 \end{cases}$$

Esercizio 2

In tabella sono riportate le 8 attività di un progetto, con durate e vincoli di precedenza tra attività. Rappresentare graficamente il progetto, calcolare il minimo tempo di completamento dello stesso e lo slittamento di tutte le attività. Infine, rappresentare il diagramma di Gantt del progetto evidenziando le attività critiche e gli slittamenti delle attività non critiche.

Attività	A_1	A_2	A_3	A_4	A_5	A_6	A_7	A_8
Durata	4	4	6	3	6	4	2	5
Predecessori	-	A_1	-	A_1	A_3	A_2	A_5	A_4
				A_3		A_4	A_6	A_7
Min inizio	0	4	0	6	6	9	13	15
slittamento	1	1	0	0	1	0	0	0

Min tempo di completamento: $\overline{20}$. Sono critiche le attività A_3 , A_4 , A_6 , A_7 , A_8 . nel Gantt in figura sono indicati in grassetto gli slittamenti delle attività A_1 , A_2 ed A_5 .

Esercizio 3

State applicando l'algoritmo di Floyd e Warshall ad un grafo con 5 nodi. Alla fine del passo 3 ottenete le matrici in figura (quella di sinistra indica i cammini minimi, quella di destra i predecessori). Effettuate i passi 4 e 5 dell'algoritmo e mostrate i cammini minimi dal nodo 5 al nodo 4 e dal nodo 3 al nodo 1. In presenza di cicli negativi arrestate l'algoritmo e mostrate un ciclo negativo.

0	∞	2	5	1		1	1	1	3	1		
∞	0	1	4	∞		2	2	2	3	2		
8	∞	0	3	~		3	3	3	3	3		
1	∞	3	0	2		4	4	1	4	1		
∞	2	4	7	0		5	5	2	3	5		
					PASSO 4							
0	∞	2	5	1		1	1	1	3	1		
5	0	1	4	6		4	2	2	3	1		
4	∞	0	3	5		4	3	3	3	1		
1	∞	3	0	2		4	4	1	4	1		
8	2	4	7	0		4	5	2	3	5		
					PASSO 5							
0	3	2	5	1		1	5	1	3	1		
5	0	1	4	6		4	2	2	3	1		
4	7	0	3	5		4	5	3	3	1		
1	4	3	0	2		4	5	1	4	1		
8	2	4	7	0		4	5	2	3	5		
5		2	3		4	3	4	-	1			
0-	-	—	→ ○		→ ○	0—	→ C)——	▶○			
	Domanda 4											

Illustrare la teoria della dualità, dimostrando in particolare che valgono le condizioni di ortogonalità.

SOLUZIONI

31 gennaio 2003

Esercizio 1

Portando il problema in forma standard si aggiungono le variabili x_3 e x_4 . Impostando il problema artificiale è sufficiente introdurre una variabile x_5 sul primo vincolo (come in figura). La base iniziale è quindi $B = \begin{bmatrix} A_5, A_4 \end{bmatrix}$. Al primo pivot entra A_1 ed esce A_5 . Fine della fase 1, inizia la fase 2. Al successivo pivot entra A_2 ed esce A_1 . Al successivo pivot entra A_3 ed esce A_4 . La soluzione trovata $x^T = \begin{pmatrix} 0 & 4 & 1 & 0 \end{pmatrix}$ risulta ottima.

$$\min x_5$$

$$\begin{cases} 3x_1 + x_2 - x_3 + x_5 = 3 \\ -x_1 + 4x_2 + x_4 = 16 \\ x \ge 0 \end{cases}$$

Esercizio 2

In tabella sono riportate le 8 attività di un progetto, con durate e vincoli di precedenza tra attività. Rappresentare graficamente il progetto, calcolare il minimo tempo di completamento dello stesso e lo slittamento di tutte le attività. Infine, rappresentare il diagramma di Gantt del progetto evidenziando le attività critiche e gli slittamenti delle attività non critiche.

Attività	A_1	A_2	A_3	A_4	A_5	A_6	A_7	A_8
Durata	5	7	2	4	3	8	4	7
Predecessori	-	A_1	A_1	A_1	A_3	A_4	A_2	A_6
					A_4		A_5	A_7
Min inizio	0	5	5	5	9	9	12	17
slittamento	0	1	3	0	1	0	1	0

Min tempo di completamento: 24. Sono critiche le attività A_1 , A_4 , A_6 , A_8 . Nel Gantt in figura sono indicati in grassetto gli slittamenti delle attività A_2 , A_3 , A_5 ed A_7 .

Esercizio 3

State applicando l'algoritmo di Floyd e Warshall ad un grafo con 5 nodi. Alla fine del passo 3 ottenete le matrici in figura (quella di sinistra indica i cammini minimi, quella di destra i predecessori). Effettuate i passi 4 e 5 dell'algoritmo e mostrate i cammini minimi dal nodo 5 al nodo 4 e dal nodo 3 al nodo 1. In presenza di cicli negativi arrestate l'algoritmo e mostrate un ciclo negativo.

Illustrare la teoria della dualità, dimostrando che i problemi di programmazione lineare godono della proprietà di dualità forte.

Università degli Studi Roma Tre

Corso di Studi in Ingegneria Informatica

Ricerca Operativa 1 – Primo appello

31 gennaio 2003

SOLUZIONI

Esercizio 1

Portando il problema in forma standard si aggiungono le variabili x_3 e x_4 . Impostando il problema artificiale è sufficiente introdurre una variabile x_5 sul primo vincolo (come in figura). La base iniziale è quindi $B = \begin{bmatrix} A_5, A_4 \end{bmatrix}$. Al primo pivot entra A_1 ed esce A_5 . Fine della fase 1, inizia la fase 2. Al successivo pivot entra A_2 ed esce A_1 . Al successivo pivot entra A_3 ed esce A_4 . La soluzione trovata $x^T = \begin{pmatrix} 0 & 5 & 3 & 0 \end{pmatrix}$ risulta ottima.

$$\min x_5$$

$$\begin{cases} x_1 + x_2 - x_3 + x_5 = 2\\ 5x_1 + 3x_2 + x_4 = 15\\ x \ge 0 \end{cases}$$

Esercizio 2

Scrivendo il duale (in figura) ed impostando le condizioni di ortogonalità, si ottiene la soluzione $u^T = \begin{pmatrix} 0 & -2/7 & 3/7 \end{pmatrix}$ che NON è ammissibile duale (viola la condizione $u_3 \le 0$). La soluzione $x^T = \begin{pmatrix} 1 & 1 \end{pmatrix}$ data quindi NON è ottima.

$$\min x_1 - x_3 \qquad \max 3u_1 + 4u_2 + 2u_3$$

$$\begin{cases} 2x_1 - 2x_2 + 4x_3 \ge 3 \\ -x_1 + 3x_2 + 2x_3 = 4 \end{cases} \begin{cases} 2u_1 - u_2 + u_3 \le 1 \\ -2u_1 + 3u_2 + 2u_3 \le 0 \end{cases}$$

$$\begin{cases} x_1 + 2x_2 - x_3 \le 2 \\ x \ge 0 \end{cases} \begin{cases} 4u_1 + 2u_2 - u_3 \le -1 \\ u_1 \ge 0; u_3 \le 0 \end{cases}$$

Esercizio 3

In tabella è riportato il peso degli archi di un grafo con 8 nodi 1...8. Trovare l'albero dei cammini minimi dal nodo 1 a tutti gli altri nodi utilizzando l'algoritmo di Dijkstra. Indicare in quale ordine vengono fissati ad 1 i flag dei nodi del grafo. Evidenziare il cammino minimo dal nodo 1 al nodo 8.

_											
Archi	(1,2)	(1,3)	(2,4)	(3,5)	(3,6)	(4,7)	(5,2)	(5,7)	(6,8)	(7,6)	(7,8)
Costi	6	1	1	2	9	2	1	5	1	3	5

I nodi del grafo vengono fissati ad 1 nell'ordine 1,3,5,2,4,7,6,8.

Domanda 4

Illustrare i problemi di programmazione convessa, dimostrando in particolare che in questi problemi un punto di minimo locale è punto di minimo globale.

Università degli Studi Roma Tre

Corso di Studi in Ingegneria Informatica

Ricerca Operativa 1 - Primo appello 31 gennaio 2003

SOLUZIONI

Esercizio 1

Portando il problema in forma standard si aggiungono le variabili x₃ e x₄. Impostando il problema artificiale è sufficiente introdurre una variabile x5 sul secondo vincolo (come in figura). La base iniziale è quindi $B = [A_3, A_5]$. Al primo pivot entra A_1 ed esce A_5 . Fine della fase 1, inizia la fase 2. Al successivo pivot entra A₄ ed esce A₃. La soluzione trovata $x^{T} = \begin{pmatrix} 3 & 0 & 0 & 2 \end{pmatrix}$ risulta ottima.

$$\min x_5
\begin{cases}
10x_1 + 3x_2 + x_3 = 30 \\
x_1 + x_2 - x_4 + x_5 = 1 \\
x \ge 0
\end{cases}$$

Esercizio 2

Scrivendo il duale (in figura) ed impostando le condizioni di ortogonalità, si ottiene la coppia di

equazioni:
$$\begin{aligned} 4u_1 + u_2 + u_3 &= 2 \\ u_1 + 10u_2 + u_3 &= 0 \end{aligned}$$
 Sottraendo la

ottima.

equazioni:
$$\begin{aligned} & 4u_1 + u_2 + u_3 = 2 \\ & u_1 + 10u_2 + u_3 = 0 \end{aligned} \qquad \text{min} \quad 2x_1 - x_2 \qquad \text{max} \quad 9u_1 + 12u_2 + 3u_3 \\ & \text{seconda eq. alla prima si ottiene l'eq.} \quad 3u_1 - 9u_2 = 2 \;, \\ & \text{che non è compatibile con i vincoli} \quad u_1 \leq 0; \quad u_2 \geq 0 \;, \\ & \text{Pertanto, la soluzione} \quad x^T = \begin{pmatrix} 2 & 0 & 1 \end{pmatrix} \; \text{data NON è} \end{aligned} \qquad \begin{aligned} & \text{min} \quad 2x_1 - x_2 \\ & \begin{cases} 4x_1 + 2x_2 + x_3 \leq 9 \\ x_1 - x_2 + 10x_3 \geq 12 \end{cases} \\ & \begin{cases} 4u_1 + u_2 + u_3 \leq 2 \\ 2u_1 - u_2 - u_3 \leq -1 \end{cases} \\ & \begin{cases} x_1 - x_2 + x_3 \geq 3 \\ x_1 - x_2 + x_3 \geq 3 \end{cases} \\ & \begin{cases} x_1 + 2x_2 + x_3 \leq 9 \\ x_1 - x_2 + x_3 \geq 3 \end{cases} \\ & \begin{cases} x_1 + 2x_2 + x_3 \leq 9 \\ x_1 - x_2 + x_3 \geq 3 \end{cases} \\ & \begin{cases} x_1 + 2x_2 + x_3 \leq 9 \\ x_1 - x_2 + x_3 \geq 3 \end{cases} \end{aligned} \qquad \begin{cases} x_1 + 2x_2 + x_3 \leq 9 \\ x_1 - x_2 + x_3 \geq 3 \end{cases} \end{aligned}$$

Esercizio 6

In tabella sono riportati gli archi di un grafo con 8 nodi, e sono dati i valori di capacità degli archi ed un flusso ammissibile. A partire dal flusso dato trovare il massimo flusso inviabile dal nodo 1 al nodo 8 con l'algoritmo di Ford e Fulkerson.

Archi	(1,2)	(1,3)	(2,4)	(3,5)	(3,6)	(4,7)	(5,2)	(5,7)	(6,8)	(7,6)	(7,8)
Capacità	1	18	3	6	8	2	4	5	7	3	10
Flussi	0	2	2	2	0	2	2	0	2	2	0

Il flusso iniziale entrante nel nodo 8 è pari a 2. Cercando dei cammini aumentanti si ottengono i cammini:

$$1 \rightarrow 3 \rightarrow 6 \rightarrow 8$$
 (flusso aumentante: 5); $1 \rightarrow 2 \xrightarrow{\mathit{INV}} 5 \rightarrow 7 \rightarrow 8$ (flusso aumentante: 1); $1 \rightarrow 3 \rightarrow 5 \rightarrow 7 \rightarrow 8$ (flusso aumentante: 4); $1 \rightarrow 3 \rightarrow 6 \xrightarrow{\mathit{INV}} 7 \rightarrow 8$ (flusso aumentante: 2). La successiva ricerca si arresta dopo aver raggiunto I nodi 1, 3, 6. Il taglio uscente di capacità minima è quindi dato dagli archi: (1,2); (3,5); (6,8). Infatti la capacità degli archi tagliati è 14, pari al flusso trovato.

Domanda 4

Discutere il problema del cammino minimo, dimostrando in particolare la correttezza dell'algoritmo di Floyd-Warshall.

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica

Ricerca Operativa 1 – Primo appello 31 gennaio 2003

SOLUZIONI

Esercizio 1

Portando il problema in forma standard si aggiungono le variabili x_3 e x_4 . Impostando il problema artificiale è sufficiente introdurre una variabile x_5 sul secondo vincolo (come in figura). La base iniziale è quindi $B = [A_3, A_5]$. Al primo pivot entra A_1 ed esce A_3 ; al secondo entra A_2 ed esce A_5 . Fine della fase 1, inizia la fase 2. Al successivo pivot entra A_3 ed esce A_1 , quindi entra A_4 ed il problema risulta inferiormente illimitato.

$$\min x_5
\begin{cases}
x_1 - x_2 + x_3 = 2 \\
x_1 + 3x_2 - x_4 + x_5 = 3 \\
x \ge 0
\end{cases}$$

Esercizio 2

Scrivendo il duale (in figura) ed impostando le condizioni di ortogonalità, si ottiene la soluzione $u^T = \begin{pmatrix} 1/3 & 0 & 1/3 \end{pmatrix}$ che è ammissibile duale. La soluzione $x^T = \begin{pmatrix} 0 & 2 & 2 \end{pmatrix}$ data è quindi ottima.

$$\begin{aligned} & \min & 3x_1 + x_3 & \max & 4u_1 + 11u_2 + 2u_3 \\ & \begin{cases} 2x_1 - 2x_2 + 4x_3 \ge 4 \\ -x_1 + 3x_2 + 2x_3 \le 11 \end{cases} \begin{cases} 2u_1 - u_2 + u_3 \le 3 \\ -2u_1 + 3u_2 + 2u_3 \le 0 \end{cases} \\ & \begin{cases} x_1 + 2x_2 - x_3 \ge 2 \\ x \ge 0 \end{cases} \end{cases} \begin{cases} 4u_1 + 2u_2 - u_3 \le 1 \\ u_1 \ge 0; u_2 \le 0; u_3 \ge 0 \end{cases}$$

Esercizio 3

In tabella è riportato il peso degli archi di un grafo non orientato con 9 nodi 1...9. Trovare l'albero ricoprente di peso minimo, a partire dal nodo 1, utilizzando l'algoritmo di Prim-Dijkstra. Indicare in quale ordine vengono aggiunti archi all'albero ricoprente (in quale ordine vengono fissati ad 1 i flag dei nodi del grafo).

Archi	(1,4)	(1,6)	(1,7)	(2,3)	(2,4)	(2,7)	(2,8)	(3,4)	(3,5)	(3,8)	(3,9)	(4,5)	(4,6)	(4,7)	(5,6)	(5,9)
Costi	1	4	7	9	3	4	8	6	9	1	4	10	5	6	7	8

I nodi del grafo vengono fissati ad 1 nell'ordine 1,4, 2, 6, 7, 3, 8, 9, 5.

Domanda 4

Discutere i problemi di flusso visti durante il corso, dimostrando in particolare il teorema di Ford e Fulkerson.