PHAS3224/2015: NUMERICAL ANSWERS

Question 7.

- (a) The centre-of-mass energy required is $\sim 2 \times m_t = 346$ GeV.
- (b) Inserting the given masses yields $E_b = 68 \text{ GeV}$ Numerically, $\gamma = E/mc^2 \sim 47.6/5 = 9.5 \text{ and}$:

$$d = 9.5 \times (3.0 \times 10^8) \times (1.5 \times 10^{-12}) = 4.3 \text{ mm}$$

Question 8.

- (c) With $\delta E = 1$ eV we have for tritium $(1/(18.6 \times 10^3))^3 \sim 1.6 \times 10^{-13}$. For rhenium we have $(1/(2.5 \times 10^3))^3 \sim 6.4 \times 10^{-11}$ (The ratio is about 400 although this is not required).
- (d) Putting in the numbers (and taking care to convert from $(yr^{-1}kg^{-1})$ to $(s^{-1}mg^{-1})$ gives an activity of ~ 1 Hz/mg.

Question 9.

- (a) Inserting the given values of L and Δm^2 this gives E=2.6 GeV for the first oscillation maximum and 0.8 GeV for the second maximum.
- (c) $1 \frac{m_{\mu}^2}{m_{\pi}^2} = 0.43$ and hence $E_{\pi} = 3.0/0.43 = 7.0$ GeV

Question 10.

- (d) x = 0.0156.
- (e) x = 0.027.
- (h) $J^P = (5/2)^+$ and $J^P = (3/2)^-$