Relógio Digital

Lucas de Oliveira e Wesley Ulisses

Sumário

- Introdução
 - Flip Flop
 - Contadores
 - Contadores Assíncronos e Síncronos
- Objetivos
 - Geral
 - Específicos
- Material e Métodos
 - Livros
 - Simulação no Antares
 - Diagrama de Blocos de um Relógio Digital
 - Assíncronos x Síncronos
- Resultados e Discussões
 - o Relógio Digital Síncrono
 - o Relógio Digital Assíncrono com Início Definido
- Conclusão
- Referências Bibliográficas

INTRODUÇÃO

• O que é um flip-flop?

- O que são os contadores?
- Diferença entre as duas categorias de flip-flop (Assíncrono e Síncrono)

OBJETIVOS

Geral

 Projetar e construir um relógio digital, para assim, comprovarmos nosso conhecimento em relação aos flip-flops e suas aplicações, que são vistas em todo o momento na sociedade moderna

Específicos

- Buscar algum atraso de propagação nos contadores dos nossos relógios
- Conseguir simular uma aplicação de eletrônica digital

MATERIAL E MÉTODOS

- Livros
 - Os livros de Tocci, Capuano e Floyd foram utilizados para melhor embasamento teórico
- Simulação no Antares
 - Uma plataforma gratuita e poderosa para projetar e construir nossos relógios digitais
- Diagrama de blocos
 - o Guia para criarmos o relógio
- Assíncronos x Síncronos
 - Quais são as falhas dos dois tipos, e qual é mais apropriado para projetar o relógio

MATERIAL E MÉTODOS

RESULTADOS E DISCUSSÃO

- Relógio Digital Síncrono
- Relógio Digital Assíncrono

Relógio dos Segundos Síncrono

Relógio dos Minutos Síncrono

Relógio das Horas Síncrono

Relógio Síncrono Completo

Relógio dos Segundos Assíncrono

Relógio dos Minutos Assíncrono

Relógio das Horas Assíncrono

Relógio Assíncrono Completo

CONCLUSÃO

REFERÊNCIAS BIBLIOGRÁFICAS

TOCCI, Ronald J. et al. Sistemas digitais: princípios e aplicações. 11 ed. São Paulo: Pearson, f. 402, 2011. 804 p.

CAPUANO, Francisco G.; IDOETA, Ivan Valeije. **Elementos de Eletrônica Digital.** 40ª ed. São Paulo: Érica. 544 p.

FLOYD, Thomas. **Sistemas Digitais: Fundamentos e Aplicações.** 9ª ed. São Paulo: Artmed, 2007. 888 p.