

May 07, 2021

Loading Tn5 Enzyme with sci-protocol Oligonucleotides

Ryan Mulqueen¹, Andy Fields¹, Andrew Adey¹

¹Oregon Health & Science University

Works for me

dx.doi.org/10.17504/protocols.io.6zahf2e

Andrew Adey

Oregon Health & Science University

ABSTRACT

Loading of Tn5 enzyme for sci-ATAC and s3 protocols.

DOI

dx.doi.org/10.17504/protocols.io.6zahf2e

PROTOCOL CITATION

Ryan Mulqueen, Andy Fields, Andrew Adey 2021. Loading Tn5 Enzyme with sci-protocol Oligonucleotides. protocols.io

https://dx.doi.org/10.17504/protocols.io.6zahf2e

LICENSE

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

CREATED

Aug 30, 2019

LAST MODIFIED

May 07, 2021

PROTOCOL INTEGER ID

27394

PARENT PROTOCOLS

In steps of

s3-ATAC

s3-WGS

s3-GCC

https://dx.doi.org/10.17504/protocols.io.6zahf2e

Prepare Reagents

Prepare 30 mL 2.125X Tn5 Dilution buffer for protein dilution.

mprotocols.io 05/07/2021

Citation: Ryan Mulqueen, Andy Fields, Andrew Adey (05/07/2021). Loading Tn5 Enzyme with sci-protocol Oligonucleotides.

Reagent	Stock Concentration	Final Concentration	Amount of Stock
HEPES-KOH (pH 7.2)	1M	100mM	5mL
NaCl	5M	200mM	2mL
Glycerol	100%	25%	12.5mL
Triton-X100	100%	0.2%	100uL
ddH2O			30.4mL
			(to
			50mL)
DTT	Dry	2mM	15.4
			mg

Tn5 Dilution buffer can be stored at 4C for up to 2 months.

2 Prepare Mosaic End reverse compliment (ME'), i7, i5 oligonucleotides at

[M]100 Micromolar (µM) Tris-HCl buffer (pH 8.0)

See attached spreadsheet for oligonucleotide sequences.

Three sets of oligonucleotides are listed for both i5 and i7 Tn5 loading.

This yields (3 i5 sets) x (3 i7 sets)=9 uniquely identifiable 96 well plates or 864 unique well barcode combinations.

Mosaic End oligonucleotide sequence used for Tn5 loading is also listed within the spreadsheet.

Example_sciTn5_Oligos.xlsx

Synthesis quality of these oligonucleotides is critical. HPLC purification is essential. We find that Eurofins oligos outperform IDT by roughly 10 fold in library complexity.

All indexes are designed to be 2 or greater Hamming distance from all others to allow for sequencing errors.

Anneal Indexed Oligoes to Mosaic End Reverse Compliment

3 Preparation of dsDNA through annealing.

Volumes are adjusted for a single 96-well plate loading.

1. For each i5 barcoded oligo prepare the following reaction (8 total):

protocols.io
2
05/07/2021

12.5 uL	100 uM i5	
	Tn5	
	Indexed	
	oligo	
12.5 uL	100 uM	
	Mosaic End	
	Reverse	
	Compliment	
	oligo	
53.125	2.125x Tn5	
uL	Dilution	
	Buffer	

Henceforth refered to as i5/ME'

2. For each i7 barcoded oligo prepare the following reaction (12 total):

8.5 uL	100 uM i7
	Tn5
	Indexed
	oligo
8.5 uL	100 uM
	Mosaic End
	Reverse
	Compliment
	oligo
36.125	2.125x Tn5
uL	Dilution
	Buffer

Henceforth refered to as i7/ME'

- 4 Anneal Oligo mixtures within a Thermocycler with the following reaction.
 - 895 °C © 00:05:00
 - Slow ramp down to § 20 °C at a rate of -2.5C/min
 - § 20 °C hold

This results in [M] 16 Micromolar (µM) annealed oligo species per reaction (i7/ME' and i5/ME').

Oligoes should be freshly annealed prior to loading Tn5 transposome

Plate Annealed Oligos

- 5 Prepare a 96-well plate with the following loading schema.
 - 1. Add **35 μl** of i5/ME' ([M]**16 Micromolar (μM)**) to each respective wells in a row-wise fashion.

This results in ■10 µl i5/ME' and i7/ME' Indexed Oligos at [M]8 Micromolar (µM) /well

Adjust Salt Concentration on Tn5 and Load

6 Prepare Tn5 protein as described in "Generation and Purification of pTXB1.Tn5" protocol.

Prior to loading Tn5 protein adjust NaCl concentration. Combine:

1152	Prepared
uL	Tn5
144 uL	5M NaCl

This adjusts salt to a final concentration of [M]555.55 Milimolar (mM) NaCl

7 Add **□12** µl of salt-corrected Tn5 to each well of the 96 well plate.

 Assemble the Tn5/oligo mixture via incubation at § 25 °C for © 01:00:00 .

Store at -20C for no more than 8 months.