

Chapter 7

Transformers

Attention, please!

- In the last few years, many attention mechanisms were introduced
- Always same idea: Compute attention weights for the input sequence to focus on more relevant input steps

Galassi, Andrea, Marco Lippi, and Paolo Torroni.

[&]quot;Attention, please! A Critical Review of Neural Attention Models in Natural Language Processing." arXiv preprint arXiv:1902.02181 (2019).

Recall: Loung-Attention

Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation.

Attention, please!

Sometimes, new key representations are useful → introducing values

Not the keys are weighted with the resulting distribution, but the values

Galassi, Andrea, Marco Lippi, and Paolo Torroni.

[&]quot;Attention, please! A Critical Review of Neural Attention Models in Natural Language Processing." arXiv preprint arXiv:1902.02181 (2019).

Transformer — Is Attention All You Need?

- Transformer: A new neural network architecture based on attention
- Encoder-Decoder structure
- No recurrence!
 - Parallelizable → faster to train
- The encoded sentence is as long as the input sentence!
 - Capturing more information of input
 - "Transforms" the input into an encoded form

Transformer Key Idea — (Multi-Head Self-)Attention

Scaled Dot-Product Attention:

- Introduced in Vaswani et al., 2017
- Represents attention by matrix multiplication
- Uses a scaling factor $d \rightarrow$ Empirically improves results

Attention
$$(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d}}\right)V$$

Transformer Key Idea — (Multi-Head) Self-Attention

Self-Attention

- Transform an input sequence to a weighted sum of its own timesteps
- Helps to capture long-term dependencies
- Use Scaled Dot-Product Attention (prev. slide)
- Query, Keys, and Values are all computed from the input sequence
- Difference from before:
 Query came from ,outside' (e.g. Decoder hidden state)

Transformer Key Idea — (Multi-Head) Self-Attention

Self-Attention

- Input X
- Transform X into three different "views":

•
$$K = X \cdot W_k$$

• $V = X \cdot W_v$ Trainable weights
• $Q = X \cdot W_q$

• Attention(Q, K, V) as before

Transformer Key Idea — (Multi-Head) Self-Attention

- Multi-Head Attention:
 - Apply self-attention multiple times for the same input sequence (using different weights W_q^i , W_v^i and W_k^i)
 - → Attention with multiple "views" of the original sequence
 - → Enables capturing different kinds of importance

Transformer — Is Attention All You Need?

- A vocabulary of 50,000 words covers ~95% of the text ...
- ... this gets you 95% of the way

- Imagine a translation task:
 - "The sewage treatment plant smells particularly special today"
 - "Die Abwasser Behandlungs Anlage riecht heute besondes speziell"

"Die UNKNOWN riecht heute besonders speziell"

- Traditional NMT has a fixed vocabulary of 30,000 50,000 words
 - Rare words are problematic
 - Out-of-vocabulary words even more so
- NMT is an open-vocabulary problem
 - Especially for languages with productive word formation (compounding)
 - E. g. German
- → Let's go a level deeper and use sub-word tokens
- Character-level tokens seem computationally infeasible
- Can we do better than that?
- → As so often, information theory comes to rescue

- Byte Pair Encoding
 - Starting Point: Character-level representation
 - Repeatedly replace most frequent symbol pair (a, b) with (ab)
 - Hyperparameter m: When to stop → Vocabulary Size
- Bottom-up character merging
- Example with 10 merges (m = original vocab. + 10):

1	Word	Frequency
	I o w	5
	I o w e r	2
	n e w e s t	6
	w i d e s t	3

End-of-word symbol to restore

original tokenization after translation

Vocabulary: I o w </w> e r n s t i d

Pairs		Frequency	
1	0	7	
0	W	7	
•••	•••	•••	Merge e and s
е	S	9	,
•••	•••		
t		9	

- Byte Pair Encoding
 - Starting Point: Character-level representation
 - Repeatedly replace most frequent symbol pair (a, b) with (ab)
 - Hyperparameter **m**: When to stop \rightarrow Vocabulary Size
- Bottom-up character merging
- Example with 10 merges ($\mathbf{m} = \text{original vocab.} + 10$):

2	Word	Frequency
	I o w	5
	I o w e r	2
	n e w es t	6
	w i d es t	3
	T	

End-of-word symbol to restore original tokenization after translation **Vocabulary:** I o w </w> e r n s t i d **es**

Pai	rs	Frequency	
I	0	7	
0	W	7	
•••	•••	•••	Merge es and t
es	t	9	,
	•••		
t		9	

- Byte Pair Encoding
 - Starting Point: Character-level representation
 - Repeatedly replace most frequent symbol pair (a, b) with (ab)
 - Hyperparameter m: When to stop → Vocabulary Size
- Bottom-up character merging
- Example with 10 merges (m = original vocab. + 10):

3	Word	Frequency
	I o w	5
	lower	2
	n e w est	6
	w i d est	3

End-of-word symbol to restore

original tokenization after translation

Vocabulary: I o w </w> e r n s t i d es est

Pair	'S	Frequency	
1	0	7	
0	W	7	
•••		•••	Merge est and
est		9	,
		•••	
d	est	3	

- Byte Pair Encoding
 - Starting Point: Character-level representation
 - Repeatedly replace most frequent symbol pair (a, b) with (ab)
 - Hyperparameter m: When to stop → Vocabulary Size
- Bottom-up character merging
- Example with 10 merges (m = original vocab. + 10):

Word	Frequency
I o w	5
I o w e r	2
n e w est	6
w i d est	3
	l o w l o w e r n e w est

End-of-word symbol to restore

original tokenization after translation

Vocabulary: I o w </w> e r n s t i d es est ...

Pai	rs	Frequency	
I	0	7	
0	W	7	
•••	•••		Merge I and o
W	est	6	,
•••	•••	•••	
d	es	3	

- Byte Pair Encoding
 - Starting Point: Character-level representation
 - Repeatedly replace most frequent symbol pair (a, b) with (ab)
 - Hyperparameter m: When to stop → Vocabulary Size
- Bottom-up character merging
- Example with 10 merges (m = original vocab. + 10):

10	Word	Frequency
	low	5
	low e r	2
	newest	6
	w i d est	3

Vocabulary: I o w </w> e r n s t i d es est est</w> lo low ne new newest</w> low</w> wi

Size: Equal to initial vocabulary + amount merges

End-of-word symbol to restore original tokenization after translation

- How does Tokenization work?
 - Let's look at "Abwasserbehandlungsanlage" again
 - Imagine we learned these merges, best at top to worst at bottom

A b a s e r s er w as Ab was Abwas ser Ве a n dΙ h an n g u ng Be han dl ung Behan dlung Αn a g I ag

- How does Tokenization work?
 - Let's look at "Abwasserbehandlungsanlage" again
 - Imagine we learned these merges, best at top to worst at bottom

```
A b
a s
e r
s er
w as
Ab was
Abwas ser
Ве
a n
dΙ
h an
n g
u ng
Be han
dl ung
Behan dlung
Αn
a g
l ag
```

1. Split word into characters

Abwasserbehandlungsanlage</w>

- How does Tokenization work?
 - Let's look at "Abwasserbehandlungsanlage" again
 - Imagine we learned these merges, best at top to worst at bottom

```
A b
a s
e r
s er
w as
Ab was
Abwas ser
Ве
a n
dΙ
h an
n g
u ng
Be han
dl ung
Behan dlung
Αn
a g
l ag
```

1. Split word into characters

Abwasserbehandlungsanlage</w>

2. Repeatedly pick best merge

Ab wasserbehandlungsanlage</w>

- How does Tokenization work?
 - Let's look at "Abwasserbehandlungsanlage" again
 - Imagine we learned these merges, best at top to worst at bottom

```
A b
a s
e r
s er
w as
Ab was
Abwas ser
Ве
a n
dΙ
h an
n g
u ng
Be han
dl ung
Behan dlung
Αn
a g
l ag
```

1. Split word into characters

Abwasserbehandlungsanlage</w>

2. Repeatedly pick best merge

Ab w **as** s e r b e h a n d l u n g s a n l a g e </w>

- How does Tokenization work?
 - Let's look at "Abwasserbehandlungsanlage" again
 - Imagine we learned these merges, best at top to worst at bottom

```
A b
a s
e r
s er
w as
Ab was
Abwas ser
Ве
a n
dΙ
h an
n g
u ng
Be han
dl ung
Behan dlung
Αn
a g
l ag
```

1. Split word into characters

Abwasserbehandlungsanlage</w>

2. Repeatedly pick best merge

Ab w as s **er** b e h a n d l u n g s a n l a g e </w>

- How does Tokenization work?
 - Let's look at "Abwasserbehandlungsanlage" again
 - Imagine we learned these merges, best at top to worst at bottom

A b a s e r s er w as Ab was Abwas ser Ве a n dΙ h an n g u ng Be han dl ung Behan dlung Αn a g l ag

1. Split word into characters

Abwasserbehandlungsanlage</w>

2. Repeatedly pick best merge

Abwasser b e han dlung s an lag e </w>

3. We now represent our unknown word with ten subtokens

Why Byte Pair Encoding?

- Open Vocabulary
 - Operations learned on training set can be applied to unknown words
- Compression of frequent character sequences (efficiency)
- → Trade-off between text length and vocabulary size

- Position and order of words are essential in any language
- RNNs model these inherently
- Transformers (intentionally) don't have recurrence
 - Massive improvements in speed
 - Potentially longer dependencies are covered
 - But: Inputs loses sequence information
- How can structure be preserved alternatively?
 - Unique encoding for each position in a sentence
 - Distances between positions must be consistent across different length sentences
 - Generalization to longer sentences

- Idea: Encode this information into our embeddings
 - Add a signal to each embedding that allows meaningful distances between vectors
 - The model learns this pattern

https://jalammar.github.io/illustrated-transformer/

- Vaswani et al. use sines and cosines of different frequencies
 - There are multiple other options, even learned ones, e. g. Shaw et al.

$$PE_{(pos,2i)} = \sin\left(\frac{pos}{10000^{\frac{2i}{d_{model}}}}\right)$$

$$PE_{(pos,2i+1)} = \cos\left(\frac{pos}{10000^{\frac{2i}{d_{model}}}}\right)$$

- pos = Word Position, $d_{model} = Embedding Dimension$, i = i-th Dimension
- Longest sequence with unique position representations: 10000 steps
- For any fixed offset k, PE_{pos+k} can be represented as linear function of PE_{pos}

A visualization helps to understand how this works

Transformer — Is Attention All You Need?

Transformer — Results

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

M - 1-1	BLEU		Training Cost (FLOPs)	
Model	EN-DE	EN-FR	EN-DE	EN-FR
ByteNet [15]	23.75			
Deep-Att + PosUnk $[\overline{32}]$		39.2		$1.0 \cdot 10^{20}$
$GNMT + RL[\overline{31}]$	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$
ConvS2S [8]	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5\cdot 10^{20}$
MoE [26]	26.03	40.56	$2.0 \cdot 10^{19}$	$1.2\cdot 10^{20}$
Deep-Att + PosUnk Ensemble [32]		40.4		$8.0 \cdot 10^{20}$
GNMT + RL Ensemble [31]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1\cdot 10^{21}$
ConvS2S Ensemble [8]	26.36	41.29	$7.7 \cdot 10^{19}$	$1.2 \cdot 10^{21}$
Transformer (base model)	27.3	38.1	$3.3\cdot 10^{18}$	
Transformer (big)	28.4	41.0	2.3 ·	10^{19}

Next Step: The Evolved Transformer

- Transformer architecture is hand-engineered
- Why not let the computer find the best architecture?
- Apply a neural architecture search using an Evolution Strategy
 - Randomly create different architectures and test them on the data
 - Mutate the best architectures and repeat testing
- → The Evolved Transformer

The Transformer

The Evolved Transformer

Evolved Transformer vs. Transformer — Results

Model	Embedding Size	Parameters	Perplexity	BLEU	Δ BLEU
Transformer ET	128 128	7.0M 7.2M	8.62 ± 0.03 7.62 ± 0.02	21.3 ± 0.1 22.0 ± 0.1	+ 0.7
Transformer ET	432 432	45.8M 47.9M	4.65 ± 0.01 4.36 ± 0.01	27.3 ± 0.1 27.7 ± 0.1	+ 0.4
Transformer ET	512 512	61.1M 64.1M	4.46 ± 0.01 4.22 ± 0.01	27.7 ± 0.1 28.2 ± 0.1	+ 0.5
Transformer ET	768 768	124.8M 131.2M	4.18 ± 0.01 4.00 ± 0.01	28.5 ± 0.1 28.9 ± 0.1	+ 0.4
Transformer ET	1024 1024	210.4M 221.7M	4.05 ± 0.01 3.94 ± 0.01	28.8 ± 0.2 29.0 ± 0.1	+ 0.2

Machine Translation — State of the Art

- Neural Machine Translation beats SMT
- Large differences between language pairs:
 Translating between English and Frensh is much easier than between English and German!
- Current research:
 - Machine Translation without parallel data
 - Machine Translation in low resource languages