$\begin{array}{c} {\rm Math}~535~{\rm -~General~Topology}\\ {\rm Fall}~2012\\ {\rm Homework}~1~{\rm Solutions} \end{array}$

Definition. Let V be a (real or complex) vector space. A **norm** on V is a function $\|\cdot\|: V \to \mathbb{R}$ satisfying:

- 1. Positivity: $||x|| \ge 0$ for all $x \in V$ and moreover ||x|| = 0 holds if and only if x = 0.
- 2. Homogeneity: $\|\alpha x\| = |\alpha| \|x\|$ for any scalar α and $x \in V$.
- 3. Triangle inequality: $||x + y|| \le ||x|| + ||y||$ for all $x, y \in V$.

A **normed vector space** is the data $(V, \|\cdot\|)$ of a vector space V equipped with a norm $\|\cdot\|$.

Problem 1. Let $(V, \|\cdot\|)$ be a normed vector space. Define a function $d: V \times V \to \mathbb{R}$ by

$$d(x,y) := ||x - y||.$$

Show that d is a metric on V, called the metric **induced** by the norm $\|\cdot\|$.

Solution. We check the three properties of a metric.

1. Positivity:

$$d(x,y) = ||x - y|| \ge 0 \text{ for all } x, y \in V,$$

$$d(x,y) = 0 \Leftrightarrow ||x - y|| = 0$$

$$\Leftrightarrow x - y = 0$$

$$\Leftrightarrow x = y.$$

2. Symmetry:

$$d(y, x) = ||y - x||$$

$$= ||(-1)(x - y)||$$

$$= |-1|||x - y||$$

$$= ||x - y||$$

$$= d(x, y).$$

3. Triangle inequality:

$$d(x,y) = ||x - y||$$

$$= ||x - z + z - y||$$

$$\leq ||x - z|| + ||z - y||$$

$$= d(x, z) + d(z, y). \square$$

Problem 2. Denote by $\|\cdot\|_2$ the standard (Euclidean) norm on \mathbb{R}^n , defined by

$$||x||_2 := \left(\sum_{i=1}^n x_i^2\right)^{\frac{1}{2}}.$$

Now consider the function $\|\cdot\|_1 \colon \mathbb{R}^n \to \mathbb{R}$ defined by

$$||x||_1 := \sum_{i=1}^n |x_i|.$$

a. Show that $\|\cdot\|_1$ is a norm on \mathbb{R}^n .

Solution. We check the three properties of a norm.

1. Positivity:

$$||x||_1 = \sum_{i=1}^n |x_i| \ge 0$$
 for all $x \in \mathbb{R}^n$,

$$||x||_1 = 0 \Leftrightarrow \sum_{i=1}^n |x_i| = 0$$
$$\Leftrightarrow |x_i| = 0 \text{ for } 1 \le i \le n$$
$$\Leftrightarrow x_i = 0 \text{ for } 1 \le i \le n$$
$$\Leftrightarrow x = 0.$$

2. Homogeneity:

$$\|\alpha x\|_1 = \sum_{i=1}^n |\alpha x_i|$$

$$= \sum_{i=1}^n |\alpha| |x_i|$$

$$= |\alpha| \sum_{i=1}^n |x_i|$$

$$= |\alpha| \|x\|_1.$$

3. Triangle inequality:

$$||x + y||_1 = \sum_{i=1}^n |x_i + y_i|$$

$$\leq \sum_{i=1}^n (|x_i| + |y_i|)$$

$$= \sum_{i=1}^n |x_i| + \sum_{i=1}^n |y_i|$$

$$= ||x||_1 + ||y||_1. \square$$

Remark. The norms $\|\cdot\|_1$ and $\|\cdot\|_2$ are special cases of the so-called p-norm, for any real number $p \ge 1$ or $p = \infty$. See:

 $\verb|http://en.wikipedia.org/wiki/Lp_spaces#The_p-norm_in_finite_dimensions.|$

b. Find constants C, D > 0 satisfying

$$||x||_2 \le C||x||_1$$
$$||x||_1 \le D||x||_2$$

for all $x \in \mathbb{R}^n$.

Solution. Claim: $||x||_2 \le ||x||_1$ for all $x \in \mathbb{R}^n$. In other words, we can take the constant C = 1.

Proof 1. The claim is equivalent to

$$||x||_{2}^{2} \leq ||x||_{1}^{2}$$

$$\sum_{i=1}^{n} x_{i}^{2} \leq \left(\sum_{i=1}^{n} |x_{i}|\right)^{2}$$

$$\sum_{i=1}^{n} x_{i}^{2} \leq \sum_{i=1}^{n} x_{i}^{2} + \sum_{i \neq j} |x_{i}| |x_{j}|$$

$$0 \leq \sum_{i \neq j} |x_{i}| |x_{j}|$$

which holds for all $x \in \mathbb{R}^n$.

Proof 2. Write e_i for the standard basis vector $e_i = (0, \dots, 0, \underbrace{1}^{i^{\text{th}}}, 0, \dots, 0)$. Then we have

$$||x||_{2} = ||\sum_{i=1}^{n} x_{i} e_{i}||_{2}$$

$$\leq \sum_{i=1}^{n} ||x_{i} e_{i}||_{2}$$

$$= \sum_{i=1}^{n} |x_{i}|||e_{i}||_{2}$$

$$= \sum_{i=1}^{n} |x_{i}|$$

$$= ||x||_{1}. \quad \Box$$

For the bound $||x||_1 \leq D||x||_2$, here are two solutions.

Solution 1: Crude bound. Noting $|x_i| \leq ||x||_2$, we obtain

$$||x||_1 = \sum_{i=1}^n |x_i|$$

$$\leq \sum_{i=1}^n ||x||_2$$

$$= n||x||_2$$

so that we can take the constant D = n.

Solution 2: Better bound. The 1-norm can be expressed as a dot product

$$||x||_1 = \sum_{i=1}^n |x_i|$$

$$= \sum_{i=1}^n \operatorname{sign}(x_i) x_i$$

$$= s \cdot x$$

where $s \in \mathbb{R}^n$ is the vector with entries ± 1 given by $s_i = \text{sign}(x_i)$. Let's say sign(0) = +1 by convention.

The Cauchy-Schwarz inequality yields

$$||x||_1 = s \cdot x$$

$$\leq ||s||_2 ||x||_2$$

$$= \sqrt{n} ||x||_2$$

so that we can take the constant $D = \sqrt{n}$.

Remark. In fact, this is the best possible bound, because equality is achieved by the vector u = (1, 1, ..., 1). Indeed, we have $||u||_1 = n$ whereas $||u||_2 = \sqrt{n}$.

Definition. Two norms $\|\cdot\|_1$ and $\|\cdot\|_2$ on a vector space V are **equivalent** if they can be compared as in Problem 2b.

Definition. Two metrics d_1 and d_2 on a set X are **topologically equivalent** if for every $x \in X$ and $\epsilon > 0$, there is a $\delta > 0$ satisfying

$$d_1(x,y) < \delta \Rightarrow d_2(x,y) < \epsilon$$

$$d_2(x,y) < \delta \Rightarrow d_1(x,y) < \epsilon.$$

In other words, the identity function $(X, d_1) \to (X, d_2)$ is a homeomorphism.

Problem 3. Show that equivalent norms on a vector space V induce topologically equivalent metrics.

Solution. Let $\|\cdot\|_1$ and $\|\cdot\|_2$ be two norms on V, and let C, D > 0 be constants satisfying

$$||x||_2 \le C||x||_1$$
$$||x||_1 \le D||x||_2$$

for all $x \in V$. Thus the induced metrics satisfy

$$d_2(x, y) = ||x - y||_2$$

$$\leq C||x - y||_1$$

$$= Cd_1(x, y)$$

and likewise $d_1(x,y) \leq Dd_2(x,y)$ for all $x,y \in V$.

Take $K := \max\{C, D\}$. Let $x \in V$ and $\epsilon > 0$ be given. Pick $\delta := \frac{\epsilon}{K}$ (which in this case can be chosen uniformly, independently of x). Then we have

$$d_1(x,y) < \delta \Rightarrow d_2(x,y) \le Cd_1(x,y)$$

$$< C\delta$$

$$\le K\delta$$

$$= \epsilon$$

and likewise

$$d_2(x,y) < \delta \Rightarrow d_1(x,y) \le Dd_2(x,y)$$

$$< D\delta$$

$$\le K\delta$$

$$= \epsilon. \quad \Box$$

Problem 4. (Bredon Prop. I.1.3) Show that topologically equivalent metrics induce the same topology (which explains the terminology). In other words, if d_1 and d_2 are topologically equivalent metrics on X, then a subset $U \subseteq X$ is open with respect to d_1 if and only if it is open with respect to d_2 .

Solution. By symmetry of the situation, it suffices to show one side of the equivalence. Let $U \subseteq X$ be a subset which is open with respect to d_1 . We want to show that U is open with respect to d_2 .

Let $x \in U$. Because U is open with respect to d_1 , there is an ϵ -ball (in the d_1 metric) around x entirely contained in U, i.e. $B_{\epsilon}^1(x) \subseteq U$, for some $\epsilon > 0$.

Because d_2 is topologically equivalent to d_1 , there is some $\delta > 0$ satisfying $B^2_{\delta}(x) \subseteq B^1_{\epsilon}(x)$. In particular we have

$$B^2_{\delta}(x) \subseteq B^1_{\epsilon}(x) \subseteq U$$

so that U is open with respect to d_2 .

Definition. Let (X, \mathcal{T}) be a topological space. A subset $C \subseteq X$ is **closed** (with respect to \mathcal{T}) if its complement $C^c := X \setminus C$ is open (with respect to \mathcal{T}).

Problem 5. Show that the collection of closed subsets of X satisfies the following properties.

- 1. The empty subset \emptyset and X itself are closed.
- 2. An arbitrary intersection of closed subsets is closed: C_{α} closed for all α implies $\bigcap_{\alpha} C_{\alpha}$ is closed.
- 3. A finite union of closed subsets is closed: C, C' closed implies $C \cup C'$ is closed.

Solution.

- 1. The empty set \emptyset is closed because its complement $\emptyset^c = X$ is open. The entire set X is closed because its complement $X^c = \emptyset$ is open.
- 2. Let C_{α} be closed for all α and consider the intersection $\bigcap_{\alpha} C_{\alpha}$. Its complement

$$\left(\bigcap_{\alpha} C_{\alpha}\right)^{c} = \bigcup_{\alpha} C_{\alpha}^{c}$$

is a union of open sets, therefore open. Thus $\bigcap_{\alpha} C_{\alpha}$ is closed.

3. Let C, C' be closed and consider the union $C \cup C'$. Its complement

$$(C \cup C')^c = C^c \cap C'^c$$

is a finite intersection of open sets, therefore open. Thus $C \cup C'$ is closed.

Remark. In fact, a collection of subsets satisfies these properties if and **only if** their complements form a topology. Moreover, open subsets and closed subsets determine each other.

Upshot: One might as well define a topology via a collection of "closed subsets" satisfying the three properties above. Their complements then form the topology in question.

Problem 6. Let X be a set. Consider the collection of **cofinite** subsets of X together with the empty subset:

$$\mathcal{T}_{\text{cofin}} := \{ U \subseteq X \mid X \setminus U \text{ is finite} \} \cup \{\emptyset\}.$$

Show that $\mathcal{T}_{\text{cofin}}$ is a topology on X, called the **cofinite topology**.

Solution. By problem 5, it suffices to check that the collection of subsets

$$\{F \subseteq X \mid F \text{ is finite}\} \cup \{X\}.$$

satisfies the axioms of closed subsets.

- 1. The empty set \emptyset is finite, and therefore belongs to the collection, whereas X belongs to the collection by definition.
- 2. Let C_{α} be a family of subsets that are either finite or all of X. Then the intersection $\bigcap_{\alpha} C_{\alpha}$ is finite (if at least one C_{α} is finite) or all of X (if all C_{α} are X).
- 3. Let C, C' be subsets that are either finite or all of X. Then the union $C \cup C'$ is finite (if both C and C' are finite) or all of X (if at least one of C or C' is X).

b. Assuming X is infinite, show that the cofinite topology on X cannot be induced by a metric on X.

Solution. Let $B_r(x)$ be an open ball not containing all of X. If the complement $B_r(x)^c$ is infinite, then we are done: we have found an open subset which is not cofinite.

If the complement $B_r(x)^c$ is finite, then pick a point $y \in B_r(x)^c$ and choose a radius $\epsilon > 0$ small enough so that the open ball $B_{\epsilon}(y)$ does not intersect $B_r(x)$; any value $\epsilon \leq d(x,y) - r$ will do. Then $B_{\epsilon}(y)$ is finite, and thus its complement $B_{\epsilon}(y)^c$ is infinite, since X is infinite. We are done: we have found an open subset $B_{\epsilon}(y)$ which is not cofinite.

Slightly different solution. If X is infinite, then:

- Any cofinite subset of X is infinite;
- Any cofinite subset and any infinite subset must intersect.

In particular, any two non-empty open subsets of X intersect.

However, in any metric space containing at least two points, we can find non-empty open subsets that do not intersect. Indeed, pick distinct points x and y, and take small enough open balls $B_r(x)$ and $B_r(y)$ around them; any radius $r \leq \frac{d(x,y)}{2}$ will guarantee $B_r(x) \cap B_r(y) = \emptyset$.

Therefore the cofinite topology on X cannot be induced by a metric.

Remark. In a few lectures, we will say that such a topology is not Hausdorff, hence not metrizable.

Definition. Let X be a set.

• The **discrete** topology on X is the one where all subsets are open:

$$\mathcal{T}_{\text{disc}} = \mathcal{P}(X) = \{ U \subseteq X \}.$$

• The **anti-discrete** (or **trivial**) topology on X is the one where only the empty subset and X itself are open:

$$\mathcal{T}_{\text{anti}} = \{\emptyset, X\}.$$

Problem 7. Let D be a discrete topological space and A an anti-discrete topological space.

a. Describe all continuous maps $f: D \to X$, where X is an arbitrary topological space.

Solution. The condition that $f^{-1}(V)$ be open in D for any open $V \subseteq X$ is automatically satisfied, since every subset of D is open. Thus every function $f: D \to X$ is continuous.

Remark. We will come back to the question of mapping into a discrete space when discussing the notion of connectedness.

b. Describe all continuous maps $f: X \to A$, where X is an arbitrary topological space.

Solution. For any function $f: X \to A$, we have $f^{-1}(\emptyset) = \emptyset$ and $f^{-1}(A) = X$, both of which are open in X. Since \emptyset and A are the only open subsets of A, every function $f: X \to A$ is continuous.

c. Describe all continuous maps $f: A \to X$, where X is a metric space.

Solution. Let $f: A \to X$ be a continuous. We claim that f is a *constant* function.

Pick some $a \in A$ and look at its value $x := f(a) \in X$. For any other point $y \in X$, pick an open subset $V \subseteq X$ satisfying $x \in V$ but $y \notin V$. Since f is continuous, the preimage $f^{-1}(V)$ is open in A. The condition $f(a) = x \in V$ yields $a \in f^{-1}(V)$ so that $f^{-1}(V)$ is non-empty and must therefore be all of A, the only non-empty open subset of A.

Now the condition $f(A) \subseteq V$ implies that f never takes the value $y \notin V$. Since y was an arbitrary point distinct from x, we conclude that f is the constant function with value x. \square

Remark. The proof still holds whenever X is a T_1 space, a property that will be discussed in a few lectures.

Problem 8. Let $f: X \to Y$ be a function between topological spaces, and let $x \in X$.

 $\overline{\mathbf{a}}$. Show that the following conditions (defining continuity of f at x) are equivalent.

- 1. For all neighborhood N of f(x), there is a neighborhood M of x such that $f(M) \subseteq N$.
- 2. For all open neighborhood V of f(x), there is an open neighborhood U of x such that $f(U) \subseteq V$.
- 3. For all neighborhood N of f(x), the preimage $f^{-1}(N)$ is a neighborhood of x.

Solution. $(1 \Rightarrow 2)$ Let V be an open neighborhood of f(x). Since V is in particular a neighborhood of f(x), the assumption (1) guarantees that there is a neighborhood M of x such that $f(M) \subseteq V$. Let U be an open of X satisfying $x \in U \subseteq M$. Then U is an open neighborhood of x satisfying $f(U) \subseteq f(M) \subseteq V$.

 $(2 \Rightarrow 3)$ Let N be a neighborhood of f(x). Let V be an open of Y satisfying $f(x) \in V \subseteq N$. Then we have $x \in f^{-1}(V) \subseteq f^{-1}(N)$. By the assumption (2), $f^{-1}(V)$ is an open neighborhood of x, so that $f^{-1}(N)$ is a neighborhood of x.

 $(3 \Rightarrow 1)$ Let N be a neighborhood of f(x) and take $M := f^{-1}(N)$. By the assumption (3), $f^{-1}(N)$ is a neighborhood of x, and moreover it satisfies $f(f^{-1}(N)) \subseteq N$.

b. Find an example of function $f: X \to Y$ between *metric* spaces which is continuous at a point $x \in X$, but there is an open neighborhood V of f(x) such that the preimage $f^{-1}(V)$ is *not* an open neighborhood of x.

Upshot: The description "preimage of open is open" is really about global continuity, not pointwise continuity (or even local continuity).

Solution. Consider the "step" function $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} 0 & \text{if } x \le 43 \\ 1 & \text{if } x > 43. \end{cases}$$

Then f is continuous at x = 0 (in fact everywhere except at 43). However, take the open neighborhood $\left(-\frac{1}{2}, \frac{1}{2}\right)$ of f(0) = 0. Its preimage under f is

$$f^{-1}\left(\left(-\frac{1}{2}, \frac{1}{2}\right)\right) = \left(-\infty, 43\right]$$

which is not open in \mathbb{R} .

Problem 9. Let X be a topological space and \mathcal{B} a collection of open subsets of X.

[a.] Show that \mathcal{B} is a basis for the topology of X if and only if for every open subset $U \subseteq X$ and $x \in U$, there is a $B \in \mathcal{B}$ satisfying $x \in B \subseteq U$.

Solution. (\Rightarrow) Assume \mathcal{B} is a basis for the topology. Let $U \subseteq X$ be open (WLOG non-empty) and $x \in U$. Because \mathcal{B} is a basis, U can be written as a union $U = \bigcup_{\alpha} B_{\alpha}$ for some family of subsets $B_{\alpha} \in \mathcal{B}$. Thus x is in at least one of those subsets B_{α_x} , yielding $x \in B_{\alpha_x} \subseteq U$.

- (\Leftarrow) To show that \mathcal{B} is a basis, there are two things to check.
- 1) Every union of members of \mathcal{B} is open in X. This is automatic, because each $B \in \mathcal{B}$ was assumed to be open.
- 2) Let $U \subseteq X$ be open (WLOG non-empty). We want to show that U is a union of subsets in the collection \mathcal{B} . By assumption on \mathcal{B} , for each $x \in U$, there is some $B_x \in \mathcal{B}$ satisfying $x \in B_x \subseteq U$. Thus we have $U = \bigcup_{x \in U} B_x$.
- $oxed{b.}$ Assuming X is a metric space, show that the collection of open balls

$$\mathcal{B} = \{B_{\frac{1}{n}}(x) \mid x \in X, n \in \mathbb{N}\}$$

is a basis for the topology of X.

Solution. We use the criterion from part (a).

Let $U \subseteq X$ be open and $x \in U$. Then there is some radius r > 0 such that the open ball of radius r centered at x is contained within U, i.e. $B_r(x) \subseteq U$.

Pick n large enough so that $\frac{1}{n} \leq r$. Then we have $x \in B_{\frac{1}{n}}(x) \subseteq B_r(x) \subseteq U$.

Problem 10. Let X be a set and S a collection of subsets of X.

a. Show that the collection

$$\mathcal{T} := \left\{ \bigcup_{\alpha} \bigcap_{i=1}^{n_{\alpha}} S_{\alpha,i} \mid S_{\alpha,i} \in \mathcal{S} \right\}$$

of (arbitrary) unions of finite intersections of members of S is a topology on X.

Solution. We check the properties of a topology.

1. Because unions indexed by the empty family are allowed, the empty set $\emptyset = \bigcup_{\emptyset} S_{\alpha}$ is in \mathcal{T} .

Because intersections indexed by the empty family are allowed, the entire set $X = \bigcap_{\emptyset} S_{\alpha}$ is in \mathcal{T} .

2. Finite intersections of members of \mathcal{T} are in \mathcal{T} . Let $U = \bigcup_{\alpha} \bigcap_{i=1}^{n_{\alpha}} S_{\alpha,i}$ and $V = \bigcup_{\beta} \bigcap_{j=1}^{n_{\beta}} S_{\beta,j}$ be members of \mathcal{T} . Their intersection is

$$U \cap V = \left(\bigcup_{\alpha} \bigcap_{i=1}^{n_{\alpha}} S_{\alpha,i}\right) \cap \left(\bigcup_{\beta} \bigcap_{j=1}^{n_{\beta}} S_{\beta,j}\right)$$
$$= \bigcup_{\alpha,\beta} \left(\bigcap_{i=1}^{n_{\alpha}} S_{\alpha,i} \cap \bigcap_{j=1}^{n_{\beta}} S_{\beta,j}\right)$$

which is in \mathcal{T} since each $S_{\alpha,i}$ and $S_{\beta,j}$ is in \mathcal{S} .

3. Arbitrary unions of members of \mathcal{T} are in \mathcal{T} . Let $\{U^{\gamma} = \bigcup_{\alpha} \bigcap_{i=1}^{n_{\alpha}^{(\gamma)}} S_{\alpha,i}^{\gamma}\}_{\gamma}$ be a family of members of \mathcal{T} . Then their union is

$$\bigcup_{\gamma} U^{\gamma} = \bigcup_{\gamma} \left(\bigcup_{\alpha} \bigcap_{i=1}^{n_{\alpha}^{(\gamma)}} S_{\alpha,i}^{\gamma} \right)$$
$$= \bigcup_{\gamma,\alpha} \left(\bigcap_{i=1}^{n_{\alpha}^{(\gamma)}} S_{\alpha,i}^{\gamma} \right)$$

which is in \mathcal{T} .

b. Show that \mathcal{T} is the topology $\mathcal{T}_{\mathcal{S}}$ generated by \mathcal{S} . In other words: \mathcal{T} contains \mathcal{S} and any other topology \mathcal{T}' containing \mathcal{S} must satisfy $\mathcal{T} \leq \mathcal{T}'$.

Solution.

- 1. \mathcal{T} contains \mathcal{S} : Any $S \in \mathcal{S}$ can be viewed as the union of one set which is the intersection of one set, namely S itself, which is in \mathcal{S} . Therefore we have $\mathcal{S} \subseteq \mathcal{T}$.
- 2. Let \mathcal{T}' be a topology containing \mathcal{S} . For any family of subsets $S_{\alpha,i} \in \mathcal{S}$, the finite intersection $\bigcap_{i=1}^{n_{\alpha}} S_{\alpha,i}$ is in \mathcal{T}' , since \mathcal{T}' is a topology. Moreover, the union

$$\bigcup_{\alpha} \bigcap_{i=1}^{n_{\alpha}} S_{\alpha,i}$$

is also in \mathcal{T}' , since T' is a topology. Thus we have $\mathcal{T} \subseteq \mathcal{T}'$, as claimed.