Torzijske točke i djelidbeni polinomi

Cilj ovog seminara je dokazati sljedeci teorem:

Teorem 1. Neka je E eliptička krivulja nad poljem K i neka je n prirodan broj. Neka karackteristika od K ne dijeli n ili ako je 0, tada je

$$E[n] \simeq \mathbb{Z}_n \oplus \mathbb{Z}_n. \tag{1}$$

Ako K ima karakteristiku p > 0 i p|n, neka je $n = p^r n'$, gdje p ne dijeli n'. Tada je

$$E[n] \simeq \mathbb{Z}_{n'} \oplus \mathbb{Z}_{n'} \ ili \ \mathbb{Z}_n \oplus \mathbb{Z}_{n'}. \tag{2}$$

Eliptička krivulja E nad poljem karakteristike p se naziva *obična* ako je $E[p] \simeq \mathbb{Z}_p$. E se nativa *supersingularna* a ako je $E[p] \simeq 0$.

Da bi proučavali torzijske podgrupe, trebamo opisati preslikavanje množenja s prirodnim brojem na eliptičkoj krivulji. To je endomorfizam elitičke krivulje i može se opisati racionalnim funnkcijama. Mi ćemo dati formule za te funkcije.

Počinjemo s varijablama A i B. Definiramo $djelidbeni polinom <math>\psi_m \in \mathbb{Z}[x,y,A,B]$ s

$$\begin{array}{l} \psi_0 = 0 \\ \psi_1 = 1 \\ \psi_2 = 2y \\ \psi_3 = 3x^4 + 6Ax^2 + 12Bx - A^2 \\ \psi_4 = 4y(x^6 + 5Ax^4 + 20Bx^3 - 5A^2x^2 - 4ABx - 8B^2 - A^3) \\ \psi_{2m+1} = \psi_{m+2}\psi_m^3 - \psi_{m-1}\psi_{m+1}^3 \text{ za } m \geq 2 \\ \psi_{2m} = (2y)^{-1}(\psi_m)(\psi_{m+2}\psi_{m-1}^2 - \psi_{m-2}\psi_m + 1^2) \text{ za } m \geq 2 \end{array}$$

Lema 2. ψ_n je element prstana $\mathbb{Z}[x, y^2, A, B]$ kada je n neparan, a ψ_n je element od $2y\mathbb{Z}[x, y^2, A, B]$ kada je n paran.

Dokaz:

Lema očito vrijedi $n \leq 4$. Pretpostavimo, indukcijom, da tvrdnja leme vrijedi za sve n < 2m. Možemo pretpostaviti da je 2m > 4, tj. m > 2. Tada vrijedi 2m > m + 2, tako da svi polinomi koji se pojavljuju u definciji od ψ_{2m} zadovoljavaju pretpostavku indukcije. Ako je m paran, tada su $\psi_m, \psi_{m+2}, \psi_{m-2}$ iz $2y\mathbb{Z}[x, y^2, A, B]$, iz čega slijedi da je i ψ_{2m} . Analogno ako je m neparan, tada su ψ_{m-1} i ψ_{m+1} iz $2y\mathbb{Z}[x, y^2, A, B]$, pa je i ψ_{2m} . Dakle lema vrijedi ako je n = 2m. Slučaj n = 2m + 1 je trivijalan. **Q.E.D.**

Definiramo polinome

$$\phi_m = x\psi_m^2 - \psi_{m+1}\psi_{m-1}$$
$$\omega_m = (4y)^{-1}(\psi_{m+2}\psi_{m-1}^2 - \psi_{m-1}\psi_{m+1}^2).$$

Lema 3. $\phi_n \in \mathbb{Z}[x, y^2, A, B], \ \forall n \in \mathbb{N}.$ Ako je n neparan, tada je $\omega_n \in y\mathbb{Z}[x, y^2, A, B].$ Ako je n paran, tada je $\omega_n \in \frac{1}{2}\mathbb{Z}[x, y^2, A, B].$

Dokaz:

Ako je n neparan, tada su ψ_{n+1} i ψ_{n-1} iz $y\mathbb{Z}[x,y^2,A,B]$, pa je njihov umnožak iz $\mathbb{Z}[x,y^2,A,B]$. Slijedi da je $\phi_n \in \mathbb{Z}[x,y^2,A,B]$. Dokaz je analogan kada je n paran.

Neka je n neparan. Tada su po Lemi 2 ψ_{n-1}^2 i ψ_{n+1}^2 iz $4y^2\mathbb{Z}[x,y^2,A,B]$ iz čega slijedi da je ω_n iz $y\mathbb{Z}[x,y^2,A,B]$.

Ako je n neparan, iz Leme 2 slijedi da je $\omega_n \in \frac{1}{2}\mathbb{Z}[x,y^2,A,B].\mathbf{Q.E.D.}$

Promotrimo eliptičku krivulju

$$E: y^2 = x^3 + Ax + B, \ 4A^3 + 27B^2 \neq 0$$
 (3)

Ne specificiramo iz kojeg su prstena A i B, nego nastavljamo ih promatrati kao varijable. Možemo u navedenim polinomima zamijeniti y^2 s $x^3 + Ax + B$, pa nam svi polinomi koji us bili iz $Z[x,y^2,A,B]$ postaju polinomi iz Z[x,A,B]. Također primjetimo da ψ_n nije nužno polinom samo u varijabli x, dok ψ_n^2 je.

Lema 4. Vodeći član od $\phi_n(x)$ je x^{n^2} , a od $\phi_n^2(x)$ je $n^2x^{n^2-1}$.

Dokaz:

Tvrdimo da vrijedi

$$\psi_n = \begin{cases} y(nx^{n^2 - 4)/2} + \cdots & \text{ako je } n \text{ paran} \\ nx^{n^2 - 1)/2} + \cdots & \text{ako je } n \text{ neparan.} \end{cases}$$

Ovo dokazujemo indukcijom po slučajevima. Iz gornje jednakosti odmah slijedi tvrdnja leme. Mi ćemo dokazati samo slučaj n=2m+1, kada je m paran, ostali slučajevi se dokazuju analogno. Vodeći član od $\psi_{m+2}\psi_m^3$ je

$$(m+2)m^3y^4x^{\frac{(m+2)^2-4}{2}+\frac{3m^2-12}{2}}.$$

Mijenjajući y^4 u $(x^3 + Ax + B)^2$, dobivamo

$$(m+2)m^3x^{\frac{(2m+1)^2-1}{2}}.$$

Na isti način dobivamo da je vodeći koeficijent od $\psi_{m-1}\psi_{m+1}^3$

$$(m-1)(m+1)^3x^{\frac{(2m+1)^2-1}{2}}$$
.

Oduzimanjem druge vrijednosti od prve dobivamo da je vodeći koeficijent od ψ_{2m+1} jednak

$$(2m+1)x^{\frac{(2m+1)^2-1}{2}},$$

što smo i htjeli pokazati. Q.E.D.

Iskažimo sada (bez dokaza) sljedeći bitan teorem.

Teorem 5. Neka je P = (x, y) točka na eliptičkoj krivulji $y^2 = x^3 + Ax + B$ (nad nekim poljem karakteristike različite od 2), te neka je n prirodan broj. Tada je

$$nP = \left(\frac{\phi_n(x)}{\psi_n^2(x)}, \frac{\omega_n(x,y)}{\psi_n(x,y)^3}\right) \tag{4}$$

Korolar 6. Neka je E eliptička krivulja. Endomorfizam množenje s n je stupnja n je stupnja n^2 (tj. najveći stupanj koji se pojavljuje u brojniku ili nazivniku je n^2).

Dokaz:

Iz Leme 4 se lako vidi da je najveći mogući stupanj n^2 . Tvrdnja teorema je ekvivalentna tvrdnji da su $\phi_n(x)$ i $\psi_n^2(x)$ maksimalno skraćeni, tj. da nemaju zajedničkih korijena. Pokazat ćemo da ovo vrijedi. Pretpostavimo suprotno, te neka je n najmanji indeks za koji ova dva polinoma imaju zajednički korijen.

Pretpostavimo da je n=2m. Prvo primjetimo da vrijede sljedeće jednakosti

$$\phi_2(x) = x^4 - 2Ax^2 - 8Bx + A^2,$$

$$\psi_2^2 = 4y^2 = 4(x^3 + Ax + B).$$

Sada želimo izračunati x-koordinatu od nP. Nju dobivamo prvo množenjem s m, pa zatim s 2. Ona će biti jednaka

$$\frac{\phi_{2m}^{2}}{\psi_{2m}^{2}} = \frac{\phi_{2}(\phi_{m}/\psi_{m}^{2})}{\psi_{2}^{2}(\phi_{m}/\psi_{m}^{2})} = \frac{\phi_{m}^{4} - 2A\phi_{m}^{2}\psi_{m}^{4} - 8B\phi_{m}\psi_{m}^{6} + A^{2}\psi_{m}^{8}}{(4\psi_{m}^{2})(\phi_{m}^{3} + A\phi_{m}\psi_{m}^{4} + B\psi_{m}^{6})}.$$

Označimo brojnik ovog razlomka sU,a nazivnik s $V.\,$ Koristit ćemo sljedeću lemu

Lema 7. Neka je $\Delta = 4A^3 + 27B^3$ i neka je

$$\begin{split} F(x,z) &= x^4 - 2Ax^2z^2 - 8Bxz^3 + A^2z^4 \\ G(x,z) &= 4z(x^3 + Axz^2 + Bz^3) \\ f_1(x,z) &= 12x^2z + 16Az^3 \\ g_1(x,z) &= 3x^3 - 5Axz^2 - 27Bz^3 \\ f_2(x,z) &= 4\Delta x^3 - 4A^2Bx^2z + 4A(3A^3 + 22B^2)xz^2 + 12B(A^3 + 8B^2)z^3 \\ g_2(x,z) &= \\ A^2Bx^3 + A(5A^3 + 32B^2)x^2z + 2B(13A^3 + 96B^2)xz^2 - 3A^2(A^3 + 8B32)z^3. \end{split}$$

Tada vrijedi

$$Ff_1 - Gg_1 = 4\Delta z^7 \ i \ Ff_2 + Gg_2 = 4\Delta x^7.$$

Dokaz:

Ovo se lako dokaže izravnim računom. Ove jednakosti dolaze iz činjenice da su F(x,1) i G(x,1) relativno prosti, tj. nemaju zajedničkih korijenova, pa su f_1 i g_1 funkcije dobivene Euklidovim algoritmom takve da vrijedi

 $F(x,1)f_1(x) + G(x,1)g_1(x) = 1$. Zamjenom x s x/z, te množenjem s z^7 i 4Δ , dobivamo prvu jednakost. Zamjenom uloga od x i z, na isti način dobivamo drugu jednakost. **Q.E.D.**

Iz ove leme slijedi da je

$$U \cdot f_1(\phi_m, \psi_m^2) - V \cdot g_1(\phi_m, \psi_m^2) = 4\psi_m^{14}\Delta,$$

$$U \cdot f_2(\phi_m, \psi_m^2) + V \cdot g_2(\phi_m, \psi_m^2) = 4\phi_m^7 \Delta.$$

Vidimo da ako V i U imaju zajednički korijen, tada imaju i ϕ_m i ψ_m^2 . Pošto je n=2m prvi index za koji ovi polinomi imaju zajednički korijen, ovo je kontradikcija.

Još moramo pokazati da vrijedi $U=\phi_{2m}$ i $V=\psi_{2m}^2$. Pošto je $\frac{U}{V}=\frac{\phi_{2m}}{\psi_{2m}^2}$, te U i V nemaju zajednički korijen, slijedi da U dijeli ϕ_{2m} i V dijeli ψ_{2m}^2 . Međutim, lako vidimo, koristeći Lemu 4 da je vodeći član od U jednak $4m^2$. Slijedi da je $U=\phi_{2m}$, te $V=\psi_{2m}^2$. Dakle ϕ_{2m} i ψ_{2m}^2 nemaju zajedničkih korijena.

Pretpostavimo sada da je najmanji indeks za koji ovi polinomi imaju zajednički korijen neparan, tj. n=2m+1. Neka je r korijen od ϕ_n i ψ_n^2 . Iz

$$\phi_n = x\psi_n^2 - \psi_{n-1}\psi_{n+1},$$

te pošto je $\psi_{n-1}\psi_{n+1}$ polinom u x, slijedi da je $\psi_{n-1}\psi_{n+1}(r)=0$, pa pošto su $\psi_{n\pm 1}^2$ polinomi u x, r je također nultočka njihovog umnoška. Slijedi da je $\psi_{n+\delta}^2(r)=0$, za $\delta=1$ ili -1.

Pošto je n neparan, ψ_n i $\psi_{n+2\delta}$ su polinomi u x, te je r nultočka od $(\psi_n\psi_{n+2\delta})^2$, a time i od $\psi_n\psi_{n+2\delta}$. Iz

$$\phi_{n+\delta} = x\psi_{n+\delta}^2 + \psi_n\psi_{n+2\delta},$$

slijedi da je $\phi_{n+\delta}(r) = 0$.

Pošto je $n+\delta$ paran, te pošto smo već pokazali da ako ϕ_{2m} i ψ_{2m}^2 imaju zajedničku nultočku, tada imaju i ϕ_m i ψ_m^2 . Pošto smo pretpostavili da je n najmanji takav indeks, mora vrijediti da je $n \leq m = \frac{n+\delta}{2}$. Jedina mogućnost da ova nejednakost vrijedi je $n=\delta=1$. Međutim, $\phi_1=x$, a $psi_1^2=1$, te očito nemaju zajedničkih korijenova. Dakle, dokazali smo korolar. **Q.E.D.** Poznato je da ako je $\alpha(x,y)=(R(x),yS(x))$ endomorfizam eliptičke krivulje, tada je alpha separabilno preslikavanje ako je $R'(x)\neq 0$. Pošto iz Teorema 5 znamo da je za množenje s n

$$R(x) = \frac{x^{n^2} + \cdots}{n^2 x^{n^2 - 1} + \cdots},$$

lako se vidi da ako karakteristika p ne dijeli n, tada je brojnik od $R'(x) = n^2 x^{2n^2-2} + \cdots \neq 0$. Slijedi da je množenje sn separabilno, pa pošto je, po Korolaru 6, stupanj tog preslikavanja n^2 , slijedi da jezgra ima n^2 korijena.

Po teoremu o konačno generiranim Abelovim grupama, slijedi da je E[n] izomorfan s $\mathbb{Z}_{n_1} \oplus \cdots \mathbb{Z}_{n_k}$, gdje je $n_i|n_{i+1}$ za sve *i*-ove.

Neka je q prost broj koji dijeli n_1 . Slijedi da q dijeli n_i za svaki i. Tada $E[q] \leq E[n]$ reda q^k . Međutim, dokazali smo da je E[q] reda q^2 , tj. k=2. Slijedi da je $E[n] \simeq \mathbb{Z}_{n_1} \oplus \mathbb{Z}_{n_2}$. Međutim, pošto je svaki elemsnt maksimalno reda n, slijedi da $n_2|n$. Slijedi da je $n_1 = n_2 = n$, tj.

$$E[n] \simeq \mathbb{Z}_n \oplus \mathbb{Z}_n$$

kada karakteristika p ne dijeli n.

Ostaje nam za promotriti slučaj kada je p|n. Iz svojstava endomorfizma znamo da E[p] je reda manjeg od p^2 . Dakle, moguć nosti su da je |E[p]| jednak ili 1 ili p. Ako je E[p] trivijalna grupa, slijedi da je $E[p^k]$ trivijalna za sve k-ove.

Pretpostavimo da je $E[p] \simeq \mathbb{Z}_p$. Tvrdimo da je $E[p^k] \simeq \mathbb{Z}_{p^k}$. To ćemo dokazati tako da pokažemo da postoji element reda p^k . Neka je P element reda p^j . Pošto je množenje s p surjekcija, postoji točka Q takva da je pQ = P. Pošto vrijedi

$$p^{j}Q = p^{j-1}P \neq O \text{ i } p^{j+1}Q = p^{j}P = O,$$

slijedi da je Q reda p^{j+1} . Dakle postoji točka reda p^k za svaki k. Slijedi, zbog $E[p] \simeq \mathbb{Z}_p$, da je $E[p^k] \simeq \mathbb{Z}_{p^k}$.

Neka je sada $n = p^r n'$, gdje p ne dijele n' i $r \ge 0$. Lako se vidi da je

$$E[n] \simeq E[n'] \oplus E[p^r]$$

Pošto karakteristika p ne dijeli n' znamo da je $E[n'] \simeq \mathbb{Z}_{n'} \oplus \mathbb{Z}_{n'}$. Pošto je $\mathbb{Z}_{n'} \oplus \mathbb{Z}_{p^r} \simeq \mathbb{Z}_n$, zaključujemo da je

$$E[n] \simeq \mathbb{Z}_n \oplus \mathbb{Z}_{n'}$$
 ili $\mathbb{Z}_{n'} \oplus \mathbb{Z}_{n'}$.

Time je dokazan Teorem 1. Q.E.D.