Colles - Semaine 5

Exercice 1

On considère deux pièces de monnaies notées A_1 et A_2 . Lorsqu'on lance la pièce A_1 , la probabilité d'obtenir « face » est p_1 (avec $0 < p_1 < 1$), celle d'obtenir « pile » est $q_1 = 1 - p_1$. De même, lorsqu'on lance la pièce A_2 , la probabilité d'obtenir « face » est p_2 (avec $0 < p_2 < 1$), celle d'obtenir « pile » est $q_2 = 1 - p_2$.

On effectue une suite de parties de la façon suivante : à la première partie, on choisit une pièce au hasard (avec probabilité $\frac{1}{2}$) et on joue avec cette pièce ; si le résultat est « face », on joue la deuxième partie avec A_1 , si le résultat est « pile », on joue la deuxième partie avec A_2 ; ensuite, pour tout entier $n \ge 1$, on joue la $(n+1)^{\text{ième}}$ partie avec A_1 si l'on a obtenu « face » à la $n^{\text{ième}}$ partie, on joue la $(n+1)^{\text{ième}}$ partie avec A_2 si on a obtenu « pile » à la $n^{\text{ième}}$ partie.

Pour tout entier $n \ge 1$, on note u_n la probabilité d'avoir « face » à la $n^{\text{ième}}$ partie.

- 1. Exprimer u_1 , puis u_2 en fonction de p_1 et p_2 .
- **2.** Montrer que, pour tout $n \ge 1$, $u_{n+1} = (p_1 p_2)u_n + p_2$.
- 3. Montrer que la suite $(u_n)_{n\geqslant 1}$ tend, quand n tend vers l'infini, vers une limite u que l'on calculera. Dans quels cas a-t-on $u=\frac{1}{2}$?

Exercice 2

- 1. Considérons n personnes, quelle est la probabilité notée p(n) d'avoir au moins deux personnes nées le même jour de l'année? Pour simplifier, toutes les années sont non- bissextiles.
- 2. En utilisant que, pour tout $x \in \mathbb{R}$, $e^{-x} \ge 1 x$, montrer que

$$p(n) \geqslant 1 - \exp\left(-\frac{n(n-1)}{2 \times 365}\right)$$

3. En déduire le nombre de personnes nécessaires pour avoir une chance sur deux que deux personnes aient leurs anniversaires le même jour.

Exercice 3

On lance successivement une pièce truquée dont la probabilité de faire face est de $p \in]0,1[$. Pour $n \geqslant 1$, notons F_n : « Obtenir Face au n-ième lancer », et P_n : « Obtenir Pile au n-ième lancer ». On note T_n : « le premier Pile est obtenu au n-ième lancer ».

- 1. Pour $n \ge 1$, exprimer l'événement T_n en fonction des F_i et P_i .
- 2. Donner $\mathbb{P}(T_n)$ en fonction de p et n.
- 3. On lance la pièce une infinité de fois. Écrire les événements suivants : A_n : « obtenir au moins un pile au cours des n premiers lancers », A : « obtenir au moins un pile ».
- 4. Parmi les suites (F_n) , (P_n) , (T_n) et (A_n) , lesquelles sont croissantes? décroissantes?
- 5. Parmi les suites (F_n) , (P_n) , (T_n) et (A_n) , lesquelles sont constituées d'événements mutuellement indépendants?
- **6.** Donner la probabilité $\mathbb{P}(A)$. Que peut-on dire de l'événement A?

Exercice 4

N désigne un entier naturel supérieur ou égal à 2. Un joueur lance une pièce équilibrée indéfiniment. On note X_N la variable aléatoire réelle discrète égale au nombre de fois où, au cours des N premiers lancers, deux résultats successifs ont été différents. On peut appeler X_N le « nombre de changements » au cours de N premiers lancers.

Par exemple, si les N=9 premiers lancers ont donné successivement :

Pile, Pile, Face, Pile, Face, Face, Face, Pile, Pile, alors la variable X_9 aura pris la valeur 4 (quatre changements aux $3^{\text{ème}}$, $4^{\text{ème}}$, $5^{\text{ème}}$ et $8^{\text{ème}}$ lancers).

- 1. Justifier que $X_N(\Omega) = [0, N-1]$.
- ${\it 2.}$ Déterminer la loi de X_2 , ainsi que son espérance. Déterminer la loi de X_3 .
- 3. Montrer que $\mathbb{P}([X_N = 0]) = \left(\frac{1}{2}\right)^{N-1}$ et $\mathbb{P}([X_N = 1]) = 2(N-1)\left(\frac{1}{2}\right)^N$
- 4. a) Justifier que pour tout entier $k \in [0, N-1]$, $\mathbb{P}_{[X_N=k]}([X_{N+1}=k]) = \frac{1}{2}$.
 - $\textbf{\textit{b)}} \ \ \text{En d\'eduire que pour tout entier} \ k \in \llbracket 0, N-1 \rrbracket, \mathbb{P}\left([X_{N+1}-X_N=0] \cap [X_N=k]\right) = \frac{1}{2} \, \mathbb{P}([X_N=k]).$
 - c) En sommant cette relation pour k variant de 0 à N-1, montrer que $\mathbb{P}([X_{N+1}-X_N=0])=\frac{1}{2}$.
 - d) Montrer que la variable $X_{N+1} X_N$ suit une loi de Bernoulli de paramètre $\frac{1}{2}$. En déduire la relation $\mathbb{E}(X_{N+1}) = \frac{1}{2} + \mathbb{E}(X_N)$, puis donner $\mathbb{E}(X_N)$ en fonction de N.
- 5. a) Montrer grâce aux résultats 4.b) et $\overline{4.c}$) que les variables $X_{N+1} X_N$ et X_N sont indépendantes.
 - b) En déduire par récurrence sur N que X_N suit une loi binomiale $\mathcal{B}\left(N-1,\frac{1}{2}\right)$ En déduire la variance $\mathbb{V}(X_N)$.