CONEXITATE

Definitii:

- graf tare conex
- componenta tare conexa in graf (DFS marcaje de timp, marcaje timp, lider)

- graf conex
- componenta conexa a unui graf • componente conexe (clase de exchivalenta)
- nr. componentelor conexe
- nod punct de articulatie
- nod punct de articulatie <=> eliminarea sa nr. componentelor conexe creste
- (muchie) istm <=>graful partial nu e conex
- conexe creste k-conex relativ la noduri

(muchie) istm <=>eliminarea sa nr. componentelor

- conexitatea relativ la noduri a grafului
- k-conex operatii: stergere, adaugare, diviz.
- Subdiviziune graf

conexa

Proprietati. Teoreme

- -Graf tare conex -> circuit
- -R Relatia binara (multimea nodurilor grafului
- neorientat) ⇔ exista lant
- -R este o relatie de echivalenta (RST) -graf conex ⇔ are o singura componenta

3. CONEXITATE

- Grafuri conexe Conexitate
- Determinarea componentelor conexe ale unui graf Teoreme de caracterizare
- Puncte de articulatie
- k-conexitate; 2-conexitate

Algoritmi (descriere+pseudocod+ex.) det. componenta tare conexa in graf

- DepthFirstSearch (DFS) cu marcaje de timp det. componente tare conexe (1-4)
- DepthFirstSearch cu marcaje de timp si leader det. componente conexe ale unui graf
- BFS si DFS pt. det. componente conexe + modicari

Teoreme de caracterizare

- gradele nodurilor (conditie) => graf conex (+demonstratie)
- numarul de muchii (conditie)=> graf conex (+demonstratie)
- T. Bondy (grade (conditie) =>graf conex)
- graf eulerian fara noduri izolate <=> (gradul int. nod==gr.ext)
- graf eulerian fara noduri izolate <=> gr.noduri pare x punct articulatie <=> exista 2 noduri (y,z) a.i. orice lant (y,z)
- contine nodul x
- T. Bondy (graf k-conex)
- T. Menger (k-conex <=> k lanturi mutual disjuncte)
- T. Menger (2-conex <=>ciclu elementar)
- T. 2-conexitate (construit triunghi (K3) diviz. + adaug. muchii)

Grafuri conexe

Problemă

Într-o organizație sunt persoane care se cunosc sau nu (eventual reciproc). Conducerea organizației are o informație care trebuie să ajungă la toți membrii organizației. O persoană care are informația o poate transmite tuturor cunoscuților săi. Care este numărul minim de persoane care trebuie să dețină informația astfel încât aceasta să ajungă la toată lumea?

- se poate modela ca problemă de teoria grafurilor: G=(X,U) cu X mulțimea nodurilor, câte un nod pentru fiecare persoană, și $(x,y) \in U$ dacă și numai dacă x și y se cunosc.

Definiție

Un graf orientat G = (X, U) se numește **graf tare conex** dacă și numai dacă între oricare două noduri există drum.

a) nu tare conex, b) tare conex

Teoremă

Într-un graf G = (X, U) tare conex oricare două noduri se găsesc pe un circuit.

- se numeste **componenta** tare **conexa** in graful G=(X, U) un subgraf t are conex maximal C=G(Y) al grafului G, adica $Y\subset X$ si intre oricare doua noduri ale lui Y exista drum si in plus, orice subgraf $G(Y_1)$ cu $Y\subset Y_1$ nu este tare conex

- graful a) nu este tare conex și are două componente conexe și anume $G(\{5\})$ respectiv $G(\{1,2,3,4\})$.

- pentru determinarea componentelor tare conexe ale unui graf orientat G se folosește algoritmul DFS cu timpi de marcare
- acest algoritm se aplică atât grafului inițial G cât și grafului G^{rev} obținut prin inversarea sensurilor arcelor grafului inițial
- fiecare vârf x are două marcaje de timp:
 - ti[x] momentul când x este atins prima oară (gri, moment inițial)
 - tf[x] momentul când căutarea termină de examinat lista de succesorilor lui x (se colorează x negru, moment final)
 - marcajele de timp sunt valori întregi între 0 și $2 \cdot |X| 1$ (eveniment de descoperire și de terminare pentru fiecare $x \in X$)
 - $\forall x \in X$, ti[x] < tf[x]
 - x este alb înainte de momentul ti[x], gri între momentul ti[x] și momentul tf[x] și negru după aceea

vf. alb: initial: inainte de timp initial ti vf. gri intre timp initial ti si timp final tf vf negru: la final

DepthFirstSearch cu marcaje de timp

```
Pentru x \in X execută  color[x] = alb; \qquad \text{vf. alb initializare: vf. nevizitat}  Sfârșit pentru;  timp=0; \\ Pentru \ x \in X \text{ execută} \\ Dacă \ (color[x] = alb) \text{ atunci} \\ DFS(x); \\ Sfârșit dacă; \\ Sfârșit pentru; \\ Sfârșit algoritm;
```

```
DFS recursiv
DFS(x)
                                           vf. gri intre timp initial ti si timp final tf
     color[x] = gri;
                                           timpul initial al vf.x = timpul curent
     ti[x] = timp;
                                           timpul se incrementeaza
     timp = timp + 1:
     Pentru fiecare y \in X cu (x, y) \in U execută
                                                          fiecare y vecin a lui x
          Dacă color[y] = alb atunci
                                                       daca y este nevizitat (alb) se
                                                       aplica recursiv DFS
                                     DFS(v):
          Sfârsit dacă:
     Sfârșit pentru;
                                      vf. negru daca s-a inchieiat cu toti vecnii lui x
     culoare[x] = negru;
                                      timp final vf x = timp curent
     tf[x] = timp;
                                      momentul de timp se incrementeaza
     timp = timp + 1;
Sfârșit DFS;
```

4 0 7 4 60 7 4 5 7 4 5 7 5

Determinarea componentelor tare conexe

- 1. Construiește graful G^{rev} .
- 2. Execută DFS în graful G^{rev} pentru a calcula timpii finali $tf[x], x \in X$.
- Execută DFS pentru graful G, considerând nodurile în ordinea descrescătoare a timpilor tf calculați la pasul 2 pentru a atașa fiecărui nod x ∈ X un nod leader.
- 4. Componentele conexe sunt formate din acele noduri care au un leader comun.

Figure: Grafurile G și G^{rev}

- 1. construire graf reverse orientat 2. DFS G rev, calcul timpi finali
- ai fiecarui vf.
- 3. Descrescator noduri in ordinea timpilor finali - DFS pe G

DepthFirstSearch cu marcaje de timp și leader initializari Pentru $x \in X$ execută

color[x] = alb;

leader[x] = 0;

Sfârșit pentru;

timp=0; Pentru $x \in X$ execută

Dacă (color[x] = alb) atunci

Sfârsit dacă:

Sfârșit pentru;

- atasare fiecare nod, un leader 4. Componente conexe=noduri cu leader comun

fiecare nod

daca este nevizitat (alb) devine leader

 $nod_leader = x$; se aplica DFS(x) DFS(x);

```
DFS recursiv
DFS(x)
                                                       gri=intre ti si tf
     color[x] = gri;
                                                       vf x timp initial=timp curent
     ti[x] = timp;
                                                       timp incrementat
     timp = timp + 1;
     Pentru fiecare y \in X cu (x, y) \in U execută
                                                       y fiecare vecin a lui x
          Dacă color[y] = alb atunci
                                                       daca y nevizitat (alb)
                          leader[y] = nod\_leader;
                                                          leader(y)=nod leader
                          DFS(y);
                                                          aplica DFS pe acest nod y
          Sfârsit dacă:
     Sfârșit pentru;
                                       vf. negru daca s-a inchieiat cu toti vecnii lui x
     culoare[x] = negru;
                                       timp final vf x= timp curent
     tf[x] = timp;
     timp = timp + 1:
                                       momentul de timp se incrementeaza
```

- aplicând DFS grafului G^{rev} se obțin timpii inițiali respectiv finali pentru fiecare nod
- cercetarea nodurilor în G^{rev} începe cu nodul 1

Figure: G^{rev} cu timpi inițiali și finali

- se aplică DFS pentru G cercetând nodurile în ordinea descrescătoare a timpilor finali: ordinea 8, 9, 1, 2, 5, 7, 6, 3, 4

Definiție

Un graf neorientat G = (X, U) se numește **graf conex** dacă și numai dacă între oricare două noduri există lanț.

$$G = (X, U)$$

este graf conex.

- se numește componentă conexă a unui graf o mulțime maximală de noduri $Y\subset X$ cu proprietatea că subgraful G(Y) al lui G este graf conex

 $C_1=\{1,2,5,6\},\ C_2=\{3,4,8,9,10,11,13\},\ C_3=\{12,14\},\ C_4=\{7\}$ componente conexe

- pe mulțimea nodurilor grafului neorientat G=(X,U) se definește relația binară $R\subset X\times X$ astfel: xRy dacă și numai dacă există lanț de la x la y
- relația R este o relație de echivalență
 - R este reflexivă, adică $xRx, \forall x \in X$.
- dacă $\exists \mu = \{x = x_{i_1}, x_{i_2}, ..., x_{i_k} = y\}$ de la $x \in X$ la $y \in X$, atunci $\mu' = \{y = x_{i_1}, ..., x_{i_2}, x_{i_1} = x\}$ lanț de la y la $x \Rightarrow R$ simetrică
- $\begin{array}{l} -x,y,z\in X \text{ \sharp i $\mu_{xy}=\{x=x_{i_1},x_{i_2},...,x_{i_k}=y\}$ lant de la x la y,}\\ \text{respectiv $\mu_{yz}=\{y=y_{j_1},y_{j_2},...,y_{j_l}=z\}$ lant de la y la z} \\ \mu_{xz}=\{x=x_{i_1},x_{i_2},...,x_{i_k}=y=y_{j_1},y_{j_2},...,y_{j_l}=z\}=\mu_{xy}\cdot\mu_{yz} \text{ lant de la x la z} \Rightarrow R \text{ este } \frac{1}{2} \left\{ \frac{1}{2} \left$
- clasele de echivalență determinate de relația de echivalență R pe mulțimea nodurilor grafului neorientat G=(X,U) se numesc componente conexe ale grafului G

- numărul claselor de echivalență determinate de relația R pe mulțimea X a nodurilor unui graf este **numărul componentelor conexe** ale grafului G și se notează cu p

$$C_1 = \{1, 2, 5, 6\} = [1], C_2 = \{3, 4, 8, 9, 10, 11, 13\} = [3],$$

 $C_3 = \{12, 14\} = [12], C_4 = \{7\} = [7], p = 4$

- graful neorientat G=(X,U) se numește graf conex dacă și numai dacă are o singură componentă conexă, adică p=1

Determinarea componentelor conexe ale unui graf

- se pune problema determinării componentelor conexe ale unui graf
- se pot folosi algoritmi de tipul celor de parcurgere, *BFS* și *DFS* pentru determinarea componentelor conexe, cu mici modificări:
 - se începe prelucrarea cu un nod s al grafului
- se marchează cu un același număr toate nodurile accesibile din s folosind BFS sau DFS (acestea vor forma componenta conexă ce conține nodul s)
 - se continuă procedeul până nu mai sunt noduri nemarcate în graf

Determinarea componentelor conexe ale unui graf cu BFS

```
Pentru x \in X execută compc[x] = 0;
p = 0; // numărul curent de componente conexe
Câttimp (\exists s \in X \text{ cu } compc[s] = 0) execută
    p = p + 1; // o nouă componentă conexă
// se aplică BFS cu nod de pornire s și se marchează nodurile din componenta p
    Adaugă s într-o coadă Q initial vidă;
    compc[s] = p; // nodul s se marchează vizitat în componenta conexă p
    Cât timp (Q \neq \emptyset) execută // mai există noduri nemarcate
      x = cap(Q):
       Pentru toți y \in X cu (x, y) \in U execută
         Dacă (compc[y] = 0) atunci
                  compc[y] = compc[x]; // y în aceeași componentă cu x
                  Adaugă y în coada Q; // y ultimul nod marcat
         Sfârșit dacă;
       Sfârșit pentru;
       Se scoate x din coada Q;
    Sfârșit cât timp;
Sfârșit cât timp;
```

18 / 37

Determinarea componentelor conexe ale unui graf

```
Pentru x \in X execută compc[x] = 0;
p = 0; // numărul curent de componente conexe
Câttimp (există x \in X cu compc[x] = 0) execută //există încă noduri
nemarcate (nevizitate)
    p = p + 1; //se construiește o nouă componentă conexă p
    compc[x] = p; // se adaugă nodul la componenta respectivă
    Câttimp (există y \in X nemarcat adiacent cu z \in X marcat) execută
             compc[y] = compc[z];
        // vecinii nemarcați ai nodurilor marcate deja se pun în aceeași
componentă conexă
Sfârșit câttimp;
```

Determinarea componentelor conexe ale unui graf

- cercetarea muchiilor grafului
- inițial p=0, nodurile grafului sunt nemarcate
- la citirea unei muchii $u \in U$ ne putem afla în una din următoarele situații:
 - ambele capete ale sale sunt nemarcate apare o componentă conexă nouă ce va conține cele două noduri, p=p+1, cele două noduri se marchează cu p
 - un capăt este marcat și celălalt nemarcat nodul nemarcat se marchează cu aceeași valoare cu cel marcat
 - cele două extremități ale muchiei sunt marcate cu valori diferite cele două componente conexe se vor reuni și p=p-1; este posibil să fie nevoie de o renumerotare a componentelor conexe
- marcarea nodurilor izolate

Teoremă

Fie G = (X, U) un graf cu n = |X| noduri. Dacă gradele nodurilor îndeplinesc condiția $g(x) \ge n/2$, $\forall x \in X$, atunci graful G este conex.

Demonstrație:

- presupunem că G nu conex și fie $G_1=(X_1,U_1),\ G_2=(X_2,U_2)$ două componente conexe ale sale
- fie $x \in X_1, y \in X_2 \Rightarrow$ între cele două noduri nu există lanț
- y nu are sigur ca noduri adiacente pe x și nici pe vreunul dintre cele g(x) noduri adiacente cu x
- atunci

$$g(y) \le n-1-1-g(x) \le n-2-n/2 = n/2-2 < n/2,$$

contradicție cu faptul că $g(y) \ge n/2$

- graful este deci conex.

Teoremă

Fie G=(X,U) un graf cu n=|X| noduri și m=|U| muchii. Dacă numărul de muchii $m>\frac{(n-1)(n-2)}{2}$ atunci graful G este conex.

Demonstrație:

- se calculează numărul maxim de muchii într-un graf neconex cu n noduri
- 1. dacă într-un graf cu nr. fixat noduri numărul componentelor conexe crește atunci numărul maxim de muchii scade \Rightarrow numărul maxim de muchii se obține pentru 2 componente conexe
- 2. dacă un graf are 2 componente conexe, numărul maxim de muchii se obține când una dintre componente este un nod izolat

Teoremă Bondy

Fie un graf G cu $n=|X|\geq 2$ noduri și fie $d_1\leq ...\leq d_2\leq d_n$ gradele celor n noduri. Dacă $d_j\leq j-1$ implică $d_n\geq n-j$ pentru orice $1\leq j\leq \lfloor n/2\rfloor$ atunci graful G este conex.

Teoremă

Fie G=(X,U) graf orientat cu |X|=n>1 noduri. Atunci G este graf eulerian fără noduri izolate dacă și numai dacă gradul interior al fiecărui nod este egal cu cel exterior, $g^-(x)=g^+(x)>0, \ \forall \ x\in X$.

Teoremă

Fie G=(X,U) graf neorientat cu |X|=n>1 noduri. Atunci G este graf eulerian fără noduri izolate dacă și numai dacă gradele nodurilor sunt pare, $g(x)=par>0, \ \forall \ x\in X.$

Puncte de articulație

- un nod x al unui graf conex G=(X,U) se numește **punct de articulație** al grafului G dacă și numai dacă subgraful $G(X\setminus\{x\})$ nu este conex
- un nod al unui graf este punct de articulație dacă și numai dacă prin eliminarea sa numărul componentelor conexe ale grafului crește
- muchie u a unui graf conex G=(X,U) se numește **istm** al grafului G dacă și numai dacă graful parțial $G^{\overline{I}}=(X,U\setminus\{u\})$ nu este conex
- muchie u a unui graf G se numește istm al grafului dacă și numai dacă prin eliminarea sa din graf numărul componentelor conexe crește

Puncte de articulație

- puncte de articulație x_1, x_2, x_3, x_4
- muchii istm u_1, u_2, u_3, u_4, u_5

Teoremă

Un nod x al grafului conex G=(X,U) este punct de articulație dacă și numai dacă există două noduri $y,\ z\in X\setminus\{x\}$ astfel încât orice lanț între y și z conține nodul x.

Definiție

Un graf G=(X,U) se numește k-conex relativ la noduri dacă și numai dacă are cel puțin k+1 noduri și prin eliminarea oricăror k-1 noduri rămâne conex.

Definiție

Valoarea maximă a lui k pentru care graful G = (X, U) este k-conex relativ la noduri se numește **conexitatea relativ la noduri** a grafului G.

Definiție

Un graf G = (X, U) se numește k-conex relativ la muchii dacă și numai dacă are cel puțin k+1 muchii și prin eliminarea oricăror k-1 muchii rămâne conex.

Definiție

Valoarea maximă a lui k pentru care graful G = (X, U) este k-conex relativ la muchii se numește **conexitatea relativ la muchii** a grafului G.

ana ZELINA 30 / 37

Teoremă Bondy

Fie un graf G cu $n=|X|\geq 2$ noduri, $d_1\leq ...\leq d_2\leq d_n$ gradele celor n noduri și $1\leq j\leq n-1$. Dacă $d_j\leq j+k-2$ implică $d_{n-k+1}\geq n-j$ pentru orice $1\leq j\leq \lfloor (n-k+1)/2\rfloor$ atunci graful G este k-conex.

- dacă graful este o reprezentare a unei rețele pubice de transport, de telefonie,... conexitatea sa definește numărul de componente/legături care se pot defecta fără a afecta funcționarea rețelei

Fie
$$G = (X, U)$$
 cu $X = \{x_1, ..., x_n\}$ și $U = \{u_1, u_2, ..., u_m\}$

- se definesc asupra grafului G următoarle operații:
 - stergere a unui nod: se elimină un nod $x \in X$ din graf; se obține subgraful $G(X \setminus \{x\})$, G x;
 - stergere a unei muchii: se elimină o muchie $u \in U$ din graf; se obține graful parțial cu muchiile $U \setminus \{u\}$, $G(U \setminus \{u\})$, G u;
 - adăugare a unei muchii: se adaugă o muchie între noduri neadiacente în G, $u' \notin U$; graful obținut este $G' = (X, U \cup \{u'\}), G + u'$;
 - divizare a unei muchii: se adaugă un nod $z \notin X$ pe o muchie $u = (x, y) \in U$; se obține $G' = (X \cup \{z\}, U \setminus \{(x, y)\} \cup \{(x, z), (z, y)\})$, G%u.

- un graf G' se numește subdiviziune a grafului G dacă se obține din G prin aplicarea de operații de divizare

Teoremă (Menger)

Un graf G = (X, U) este k-conex dacă și numai dacă oricare ar fi $x, y \in X$ două noduri ale sale, există k lanțuri mutual disjuncte între nodurile x și y (nodurile x și y sunt singurele noduri comune).

Definiție

Un graf G = (X, U) se numește 2-conex dacă și numai dacă are cel puțin 3 noduri și prin eliminarea oricărui nod rămâne conex.

Teoremă (Menger)

Un graf G=(X,U) este 2-conex dacă și numai dacă oricare două noduri $x,\ y\in X$ se află pe un ciclu elementar.

Teoremă

Un graf G este 2-conex dacă și numai dacă poate fi construit dintr-un triunghi (graful K_3) prin operații de divizare și adăugare de muchii.

