CPP Problem Design Example

Subject: Collatz Conjecture		
Contributor: 溫勇威,陳靖升,鍾賢廣		
Main testing concept: Basic Number	Operator Operator	
Basics	Functions	
C++ BASICS	☐ SEPARATE COMPILATION AND NAMESPACES	
■ FLOW OF CONTROL	☐ STREAMS AND FILE I/O	
FUNCTION BASICS	☐ RECURSION	
☐ PARAMETERS AND OVERLOADING	☐ INHERITANCE	
☐ ARRAYS	☐ POLYMORPHISM AND VIRTUAL FUNCTIONS	
☐ STRUCTURES AND CLASSES	☐ TEMPLATES	
☐ CONSTRUCTORS AND OTHER TOOLS	☐ LINKED DATA STRUCTURES	
☐ OPERATOR OVERLOADING, FRIENDS, AND REFERENCES	☐ EXCEPTION HANDLING	
☐ STRINGS	☐ STANDARD TEMPLATE LIBRARY	
☐ POINTERS AND DYNAMIC ARRAYS	☐ PATTERNS AND UML	
Description		

Description:

Collatz conjecture, which also known as 3N+1 conjecture, is a conjecture in mathematics that concerns a sequence defined as follows:

- (1) Input N
- (2) If N equals 1, end calculation
- (3) $\begin{cases} N/2, & \text{if } N \text{ is even number} \\ N+2+1, & \text{if } N \text{ is odd number} \end{cases}$
- (3) $\{N*3+1, if N \text{ is odd number}\}$
- (4) Goto Step 2

All the positive number that smaller than 1 million use this method to calculate will finally equal 1. You need to find out how many times you check if N equal 1 (include the number itself). The times of calculation is cycle length.

For example, if 22 is inputted,

the result will be: 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1 $\,$

the cycle length of 22 is 16.

Input:

Enter a pair of positive integer i and j, separate by space. This program allows multiple test. User can enter until read EOF. $(0 \le i, j \le 1,000,000)$

Output:

Find the maximum cycle length that can be produced by any numbers between i and j (include i and j). Print i, j and the maximum cycle length, separate by space.

Sample Input / Output:

Sample Input	Sample Output
1 10	1 10 20
200 100	200 100 125
201 210	201 210 89
900 1000	900 1000 174

Eazy, Only basic programming syntax and structure are required.

☐ Medium, Multiple programming grammars and structures are required.☐ Hard, Need to use multiple program structures or complex data types.
Expected solving time:
10 minutes
Other notes: