Shortest paths; Dijkstra's algorithm

CS 2860: Algorithms and Complexity

Magnus Wahlström and Gregory Gutin

October 15, 2017

- ► Ubiquitous question What is the best/fastest/cheapest way to get from A to B?
- Natural graph interpretation
- Variants:
 - Directed or undirected?
 - Weights: No weights, positive weights, positive and negative weights?
 - ▶ Questions: From A to B? From A to everywhere? All-to-all?

- ► Ubiquitous question What is the best/fastest/cheapest way to get from A to B?
- Natural graph interpretation
- Variants:
 - Directed or undirected?
 - Weights: No weights, positive weights, positive and negative weights?
 - ▶ Questions: From A to B? From A to everywhere? All-to-all?

- ► Ubiquitous question What is the best/fastest/cheapest way to get from A to B?
- Natural graph interpretation
- Variants:
 - Directed or undirected?
 - Weights: No weights, positive weights, positive and negative weights?
 - Questions: From A to B? From A to everywhere? All-to-all?

- ► Ubiquitous question What is the best/fastest/cheapest way to get from A to B?
- Natural graph interpretation
- Variants:
 - Directed or undirected?
 - Weights: No weights, positive weights, positive and negative weights?
 - Questions: From A to B? From A to everywhere? All-to-all?

Distinction 1: Directed, undirected?

- ▶ Directed edge (arc): $u \rightarrow v$
 - ► Can be followed in the given direction only
- ▶ Undirected edge: *uv*, {*u*, *v*}
 - ► Can be followed in either direction
- ► Common reduction:
 - ▶ Replace edge uv by two arcs $u \rightarrow v$, $v \rightarrow u$ bidirectional arcs
 - ▶ No shortest path will want to use both arcs uv and vu
- Our algorithms assume directed

Distinction 1: Directed, undirected?

- ▶ Directed edge (arc): $u \rightarrow v$
 - ► Can be followed in the given direction only
- ▶ Undirected edge: uv, {u, v}
 - ► Can be followed in either direction
- Common reduction:
 - ▶ Replace edge uv by two arcs $u \rightarrow v$, $v \rightarrow u$ bidirectional arcs
 - ▶ No shortest path will want to use both arcs uv and vu
- Our algorithms assume directed

Distinction 1: Directed, undirected?

- ▶ Directed edge (arc): $u \rightarrow v$
 - Can be followed in the given direction only
- ▶ Undirected edge: uv, {u, v}
 - ► Can be followed in either direction
- Common reduction:
 - ▶ Replace edge uv by two arcs $u \rightarrow v$, $v \rightarrow u$ bidirectional arcs
 - ▶ No shortest path will want to use both arcs uv and vu
- Our algorithms assume directed

- ▶ Weights abstract cost notion
 - ► Roads: Distance, time, cost, ...
 - Abstract graphs: e.g., time offset (see later)
- ▶ Unit weights all edges are equal
 - We care only about the number of hops in our paths
- ▶ Non-negative weights natural notion
 - ► Example: Roads long or short, but not (e.g.) minus five meters
- ► Arbitrary weights positive or negative
 - ► Sounds odd but useful in abstract problems
 - ► Example (will see): Currency arbitrage

- ▶ Weights abstract cost notion
 - ► Roads: Distance, time, cost, ...
 - Abstract graphs: e.g., time offset (see later)
- ▶ Unit weights all edges are equal
 - ▶ We care only about the number of hops in our paths
- ► Non-negative weights natural notion
 - ► Example: Roads long or short, but not (e.g.) minus five meters
- ► Arbitrary weights positive or negative
 - ► Sounds odd but useful in abstract problems
 - ► Example (will see): Currency arbitrage

- ▶ Weights abstract cost notion
 - ► Roads: Distance, time, cost, ...
 - Abstract graphs: e.g., time offset (see later)
- ▶ Unit weights all edges are equal
 - ▶ We care only about the number of hops in our paths
- ► Non-negative weights natural notion
 - ► Example: Roads long or short, but not (e.g.) minus five meters
- Arbitrary weights positive or negative
 - ► Sounds odd but useful in abstract problems
 - Example (will see): Currency arbitrage

- ▶ Weights abstract cost notion
 - ► Roads: Distance, time, cost, . . .
 - Abstract graphs: e.g., time offset (see later)
- ▶ Unit weights all edges are equal
 - ▶ We care only about the number of hops in our paths
- ► Non-negative weights natural notion
 - ► Example: Roads long or short, but not (e.g.) minus five meters
- Arbitrary weights positive or negative
 - Sounds odd but useful in abstract problems
 - Example (will see): Currency arbitrage

- ▶ Weights abstract cost notion
 - ► Roads: Distance, time, cost, ...
 - Abstract graphs: e.g., time offset (see later)
- Unit weights all edges are equal
 - ▶ We care only about the number of hops in our paths
- ► Non-negative weights natural notion
 - ► Example: Roads long or short, but not (e.g.) minus five meters
- Arbitrary weights positive or negative
 - Sounds odd but useful in abstract problems
 - Example (will see): Currency arbitrage

- One-to-one From London to Novosibirsk
 - ► Usually no faster solution than single-source
 - ► (But see A* heuristic)
- ► Single-source: From London to anywhere
 - ► Focus today
- ► All-pairs shortest paths
- ▶ Dijkstra's algorithm
 - ▶ Directed graph, non-negative weights
 - Single source, all destinations

- One-to-one From London to Novosibirsk
 - ► Usually no faster solution than single-source
 - ► (But see A* heuristic)
- ► Single-source: From London to anywhere
 - Focus today
- ► All-pairs shortest paths
- ▶ Dijkstra's algorithm
 - ▶ Directed graph, non-negative weights
 - Single source, all destinations

- One-to-one From London to Novosibirsk
 - Usually no faster solution than single-source
 - ► (But see A* heuristic)
- Single-source: From London to anywhere
 - Focus today
- ► All-pairs shortest paths
- ▶ Dijkstra's algorithm
 - ▶ Directed graph, non-negative weights
 - ► Single source, all destinations

- One-to-one From London to Novosibirsk
 - ► Usually no faster solution than single-source
 - ► (But see A* heuristic)
- Single-source: From London to anywhere
 - Focus today
- All-pairs shortest paths
- Dijkstra's algorithm
 - ▶ Directed graph, non-negative weights
 - Single source, all destinations

- One-to-one From London to Novosibirsk
 - Usually no faster solution than single-source
 - ► (But see A* heuristic)
- Single-source: From London to anywhere
 - Focus today
- All-pairs shortest paths
- Dijkstra's algorithm
 - ▶ Directed graph, non-negative weights
 - Single source, all destinations

Single-source shortest paths

Shortest paths tree

For any graph G, with a source vertex s and non-negative edge lengths, shortest paths from s to all other vertices can be captured via a rooted spanning out-tree (branching).

Observations

- 1. There can be several shortest paths from s to v but we only need one.
- 2. Any prefix of a shortest path is a shortest paths
 - ▶ If the shortest paths from s to v ends in the arc uv, then the sub-path to u is a shortest path from s to u
- 3. Don't need to consider cycles/loops (shortcut

Shortest paths tree

For any graph G, with a source vertex s and non-negative edge lengths, shortest paths from s to all other vertices can be captured via a rooted spanning out-tree (branching).

Observations:

- 1. There can be several shortest paths from s to v but we only need one.
- 2. Any prefix of a shortest path is a shortest paths
 - ▶ If the shortest paths from s to v ends in the arc uv, then the sub-path to u is a shortest path from s to u
- 3. Don't need to consider cycles/loops (shortcut

Shortest paths tree

For any graph G, with a source vertex s and non-negative edge lengths, shortest paths from s to all other vertices can be captured via a rooted spanning out-tree (branching).

Observations:

- 1. There can be several shortest paths from s to v but we only need one.
- 2. Any prefix of a shortest path is a shortest paths
 - ▶ If the shortest paths from s to v ends in the arc uv, then the sub-path to u is a shortest path from s to u
- Don't need to consider cycles/loops (shortcut)

Shortest paths tree

For any graph G, with a source vertex s and non-negative edge lengths, shortest paths from s to all other vertices can be captured via a rooted spanning out-tree (branching).

Observations:

- 1. There can be several shortest paths from s to v but we only need one.
- 2. Any prefix of a shortest path is a shortest paths
 - ▶ If the shortest paths from s to v ends in the arc uv, then the sub-path to u is a shortest path from s to u
- 3. Don't need to consider cycles/loops (shortcut)

Example

Example graph – We'll find the out-tree and distances from s afterwards, but the result is shown now

Example

Example graph – We'll find the out-tree and distances from s afterwards, but the result is shown now

Shortest path trees

- Representing the shortest paths efficiently (small space, quick information extraction)
- ▶ Logically we think of the representation as a tree
- ▶ Physically we can use the following:
 - ► Array distanceTo[n] storing the distance from *s* to every vertex
 - Array parentOf[n] storing the last vertex u in the shortest path from s to the vertex v
- Reconstructing path walk backwards along parentOf

Shortest path trees

- Representing the shortest paths efficiently (small space, quick information extraction)
- ▶ Logically we think of the representation as a tree
- ▶ Physically we can use the following:
 - ► Array distanceTo[n] storing the distance from s to every vertex
 - ► Array parentOf[n] storing the last vertex u in the shortest path from s to the vertex v
- Reconstructing path walk backwards along parentOf

Shortest path trees

- Representing the shortest paths efficiently (small space, quick information extraction)
- ▶ Logically we think of the representation as a tree
- Physically we can use the following:
 - ► Array distanceTo[n] storing the distance from s to every vertex
 - Array parentOf[n] storing the last vertex u in the shortest path from s to the vertex v
- Reconstructing path walk backwards along parentOf

Example

parentOf distanceTo

Example

	s	а	b	С	d	е	f
parentOf		S	а	S	а	b	С
distanceTo	0	1	2	2	4	3	3

Correctness criterion for shortest paths

Correctness criterion: Non-improvement

The array distanceTo[v] encodes correct shortest single-source paths if and only if

$$\mathsf{distanceTo}[v] \leq \mathsf{distanceTo}[u] + \mathsf{weight}(\mathit{uv})$$

holds for every edge uv in the graph.

- Condition is clearly necessary (it must hold)
- ► Can show sufficiency see course book ★

Correctness criterion for shortest paths

Correctness criterion: Non-improvement

The array distanceTo[v] encodes correct shortest single-source paths if and only if

$$distanceTo[v] \le distanceTo[u] + weight(uv)$$

holds for every edge uv in the graph.

- Condition is clearly necessary (it must hold)
- ► Can show sufficiency see course book ★

Correctness criterion for shortest paths

Correctness criterion: Non-improvement

The array distanceTo[v] encodes correct shortest single-source paths if and only if

$$distanceTo[v] \le distanceTo[u] + weight(uv)$$

holds for every edge uv in the graph.

- Condition is clearly necessary (it must hold)
- ► Can show sufficiency see course book ★

Dijkstra's algorithm

Warm-up: No weights

- Let's assume:
 - 1. Directed graph
 - 2. Single-source shortest paths problem
 - 3. Unit-weight case (no weights)
- Problem easiest solved by:

Warm-up: No weights

- Let's assume:
 - 1. Directed graph
 - 2. Single-source shortest paths problem
 - 3. Unit-weight case (no weights)
- Problem easiest solved by:

Warm-up: No weights

- Let's assume:
 - 1. Directed graph
 - 2. Single-source shortest paths problem
 - 3. Unit-weight case (no weights)
- Problem easiest solved by: BFS

- Easier algorithm with unit weights only: BFS
- ► Initialise:
 - 1. All vertices unmarked
 - 2. Array distanceTo[n] initialised to ∞
 - 3. Array parentOf[n] initialised with null
- ▶ Start BFS from vertex s:
 - 1. Create empty Queue q
 - 2. Mark s, add to queue
 - 3. distanceTo[s]=0
 - 4. Until q is empty:
 - 4.1 Dequeue vertex u from queue
 - 4.2 For every unmarked neighbour v of u:

Mark v, add to queue
Set parentOf[v]=u
Set distanceTo[v]=distanceTo[u]+

- Easier algorithm with unit weights only: BFS
- Initialise:
 - 1. All vertices unmarked
 - 2. Array distanceTo[n] initialised to ∞
 - 3. Array parentOf[n] initialised with null
- ▶ Start BFS from vertex s:
 - 1. Create empty Queue q
 - 2. Mark s, add to queue
 - 3. distanceTo[s]=0
 - 4. Until q is empty
 - 4.1 Dequeue vertex u from queue
 - 4.2 For every unmarked neighbour v of u:
 - Mark v, add to queue Set parentOf[v]=u
 - Set distanceTo[v]=distanceTo[u]+1

- Easier algorithm with unit weights only: BFS
- Initialise:
 - 1. All vertices unmarked
 - 2. Array distanceTo[n] initialised to ∞
 - 3. Array parentOf[n] initialised with null
- Start BFS from vertex s:
 - 1. Create empty Queue q
 - 2. Mark s, add to queue
 - 3. distanceTo[s]=0
 - 4. Until q is empty:
 - 4.1 Dequeue vertex u from queue
 - 4.2 For every unmarked neighbour v of u:
 - Mark v, add to queue Set parentOf[v]=u
 - Set distanceTo[v]=distanceTo[u]+1

- Easier algorithm with unit weights only: BFS
- Initialise:
 - 1. All vertices unmarked
 - 2. Array distanceTo[n] initialised to ∞
 - 3. Array parentOf[n] initialised with null
- Start BFS from vertex s:
 - 1. Create empty Queue q
 - 2. Mark s, add to queue
 - 3. distanceTo[s]=0
 - 4. Until q is empty:
 - 4.1 Dequeue vertex u from queue
 - 4.2 For every unmarked neighbour v of u:

```
Mark v, add to queue Set parentOf[v]=u Set distanceTo[v]=distanceTo[u]+1
```

Dijkstra: Idea and pseudocode

- ► Idea:
 - Modify BFS to visit closest vertices first
 - ▶ Paths with more hops can still be shorter vertices may overtake each other in the queue
- ▶ Implementation: Three vertex types:
 - 1. Marked vertices (finished path locked)
 - 2. Queued vertices (seen, but not finished yet)
 - 3. Unseen vertices (far away/other components)
- ► Main loop:
 - 1. Pull closest vertex u from queue
 - 2. Consider all edges uv incident with u
 - 3. Push any newly discovered vertex v into queue
 - 4. Update any already queued vertex v if uv gives a shorter patl

Dijkstra: Idea and pseudocode

- ► Idea:
 - Modify BFS to visit closest vertices first
 - ► Paths with more hops can still be shorter vertices may overtake each other in the queue
- Implementation: Three vertex types:
 - 1. Marked vertices (finished path locked)
 - 2. Queued vertices (seen, but not finished yet)
 - 3. Unseen vertices (far away/other components)
- ► Main loop:
 - 1. Pull closest vertex u from queue
 - 2. Consider all edges uv incident with u
 - 3. Push any newly discovered vertex v into queue
 - 4. Update any already queued vertex v if uv gives a shorter path

Dijkstra: Idea and pseudocode

- ► Idea:
 - Modify BFS to visit closest vertices first
 - ► Paths with more hops can still be shorter vertices may overtake each other in the queue
- Implementation: Three vertex types:
 - 1. Marked vertices (finished path locked)
 - 2. Queued vertices (seen, but not finished yet)
 - 3. Unseen vertices (far away/other components)
- Main loop:
 - 1. Pull closest vertex u from queue
 - 2. Consider all edges uv incident with u
 - 3. Push any newly discovered vertex v into queue
 - 4. Update any already queued vertex v if uv gives a shorter path

Update step

Illustration of update step (called "Relax" above)

Dijkstra: code

Very close to Advanced Prim:

- Data structures:
 - 1. Min-Priority Queue pq containing queued vertices
 - 2. parentOf[v] array encoding shortest-path tree
 - 3. distanceTo[v] array
- ► Main loop:
 - 1. Select initial vertex v, call pq.insert(v,0)
 - 2. Until pq is empty:
 - 2.1 u=pq.deleteMin(); mark u
 - 2.2 For every neighbour *v* of *u*:

Dijkstra: code

Very close to Advanced Prim:

- Data structures:
 - 1. Min-Priority Queue pq containing queued vertices
 - 2. parentOf[v] array encoding shortest-path tree
 - 3. distanceTo[v] array
- ► Main loop:
 - 1. Select initial vertex v, call pq.insert(v,0)
 - 2. Until pq is empty:
 - 2.1 u=pq.deleteMin(); mark u
 - 2.2 For every neighbour v of u:

Call Update(v, uv)

Dijkstra: Code (final part)

Very close to Advanced Prim:

- Data structures:
 - 1. Min-Priority Queue pq containing queued vertices
 - 2. parentOf[v] array encoding shortest-path tree
 - 3. distanceTo[v] array
- ► Main loop: Pull closest vertex u, make calls Update(v,uv)
- ► Support code: Update(Vertex v, Edge uv):
 - Let newDistance = distanceTo[u] + weight(uv)
 - 2. If v marked: return, do nothing
 - 3. If v not in pq:
 - 3.1 parentOf[v] = u
 - 3.2 distanceTo[v] = newDistance
 - 3.3 pq.insert(v, newDistance)
 - If newDistance < pq.currentValue(v):
 - 4.1 parentOf[v] = u
 - 4.2 distanceTo[v] = newDistance
 - 4.3 pq.decreaseValue(v, newDistance)

Dijkstra: Code (final part)

Very close to Advanced Prim:

- Data structures:
 - 1. Min-Priority Queue pg containing queued vertices
 - 2. parentOf[v] array encoding shortest-path tree
 - 3. distanceTo[v] array
- Main loop: Pull closest vertex u, make calls Update(v,uv)
- Support code: Update(Vertex v, Edge uv):
 - 1. Let newDistance = distanceTo[u] + weight(uv)
 - 2. If v marked: return, do nothing
 - 3. If v not in pq:
 - 3.1 parentOf[v] = u
 - 3.2 distanceTo[v] = newDistance
 - 3.3 pq.insert(v, newDistance)
 - 4. If newDistance < pq.currentValue(v):
 - 4.1 parentOf[v] = u
 - 4.2 distanceTo[v] = newDistance
 - 4.3 pq.decreaseValue(v, newDistance)

Illustration

Dijkstra in action: black=marked; gray=current; ∞ =unseen Thick edges=Best known path at the time

Dijkstra: Correctness

Suppose we added arc uv in the last iteration.

We know that the array distanceTo[v] encodes correct shortest single-source paths if and only if

$$\mathsf{distanceTo}[\mathsf{v}] \leq \mathsf{distanceTo}[\mathsf{u}] + \mathsf{weight}(\mathit{uv})$$

holds for every edge *uv* in the graph. Note that the inequality holds. QED

Dijkstra: Correctness

Suppose we added arc *uv* in the last iteration.

We know that the array distance To[v] encodes correct shortest single-source paths if and only if

$$\mathsf{distanceTo}[v] \leq \mathsf{distanceTo}[u] + \mathsf{weight}(\mathit{uv})$$

holds for every edge uv in the graph.

Note that the inequality holds. QED.

Dijkstra: Correctness

Suppose we added arc uv in the last iteration. We know that the array distance To[v] encodes correct shortest single-source paths if and only if

$$\mathsf{distanceTo}[\mathsf{v}] \leq \mathsf{distanceTo}[\mathsf{u}] + \mathsf{weight}(\mathit{uv})$$

holds for every edge uv in the graph. Note that the inequality holds. QED.

Running time of Dijkstra

- ▶ $\mathcal{O}(|E|\log|V|)$ if a "normal" heap+hash implementation of Min-Priority Queue+decreaseValue is used
- ▶ $\mathcal{O}(|E| + |V| \log |V|)$ if "theoretical" Fibonacci heaps are used
- ► The algorithm performs:
 - 1. |V| insert operations
 - 2. |V| deleteMin operations
 - 3. |E| decrease Value operations (at most)
- ▶ There are at most |V| = n entries in pq
- Data structure profiles:
 - ▶ Binary heaps: $\mathcal{O}(\log n)$ for insert, deleteMin, decreaseValue
 - ▶ Fibonacci: $\mathcal{O}(\log n)$ for insert, deleteMin; $\mathcal{O}(1)$ on average over time (amortized) for decreaseValue

Running time of Dijkstra

- ▶ $\mathcal{O}(|E|\log|V|)$ if a "normal" heap+hash implementation of Min-Priority Queue+decreaseValue is used
- $ightharpoonup \mathcal{O}(|E| + |V| \log |V|)$ if "theoretical" Fibonacci heaps are used
- ▶ The algorithm performs:
 - 1. |V| insert operations
 - 2. |V| deleteMin operations
 - 3. |E| decrease Value operations (at most)
- ▶ There are at most |V| = n entries in pq
- Data structure profiles:
 - ▶ Binary heaps: $\mathcal{O}(\log n)$ for insert, deleteMin, decreaseValue
 - ► Fibonacci: O(log n) for insert, deleteMin; O(1) on average over time (amortized) for decreaseValue

Running time of Dijkstra

- ▶ $\mathcal{O}(|E|\log|V|)$ if a "normal" heap+hash implementation of Min-Priority Queue+decreaseValue is used
- $ightharpoonup \mathcal{O}(|E| + |V| \log |V|)$ if "theoretical" Fibonacci heaps are used
- ▶ The algorithm performs:
 - 1. |V| insert operations
 - 2. |V| deleteMin operations
 - 3. |E| decrease Value operations (at most)
- ▶ There are at most |V| = n entries in pq
- Data structure profiles:
 - ▶ Binary heaps: $\mathcal{O}(\log n)$ for insert, deleteMin, decreaseValue
 - ► Fibonacci: O(log n) for insert, deleteMin; O(1) on average over time (amortized) for decreaseValu

Running time of Dijkstra

- ▶ $\mathcal{O}(|E|\log|V|)$ if a "normal" heap+hash implementation of Min-Priority Queue+decreaseValue is used
- $ightharpoonup \mathcal{O}(|E| + |V| \log |V|)$ if "theoretical" Fibonacci heaps are used
- The algorithm performs:
 - 1. |V| insert operations
 - 2. |V| deleteMin operations
 - 3. |E| decreaseValue operations (at most)
- ▶ There are at most |V| = n entries in pq
- Data structure profiles:
 - ▶ Binary heaps: $O(\log n)$ for insert, deleteMin, decreaseValue
 - ▶ Fibonacci: $\mathcal{O}(\log n)$ for insert, deleteMin; $\mathcal{O}(1)$ on average over time (amortized) for decreaseValue

Running time of Dijkstra

- ▶ $\mathcal{O}(|V|^2 + |E|) = \mathcal{O}(|V|^2)$ if we did not use priority queues (original version)
- ▶ Original version (1956)¹
 - ▶ insert is mark vertex as queued, $\mathcal{O}(1)$ time
 - ightharpoonup deleteMin is scan through all vertices, $\mathcal{O}(|V|)$ time
 - ightharpoonup decreaseValue is reassign distanceTo array, $\mathcal{O}(1)$ time
- $(|V| \cdot \mathcal{O}(1)) + (|V| \cdot \mathcal{O}(|V|)) + (|E| \cdot \mathcal{O}(1)) = \mathcal{O}(|V|^2 + |E|)$
- Dijkstra was a strong motivation for developing fast decreaseValue operations

¹Heapsort was published 1964, AVL trees 1962

Running time of Dijkstra

Dijkstra's algorithm (as described here) has a running time of

- ▶ $\mathcal{O}(|V|^2 + |E|) = \mathcal{O}(|V|^2)$ if we did not use priority queues (original version)
- ▶ Original version (1956)¹
 - ▶ insert is mark vertex as queued, $\mathcal{O}(1)$ time
 - lacktriangle deleteMin is scan through all vertices, $\mathcal{O}(|V|)$ time
 - decreaseValue is reassign distanceTo array, $\mathcal{O}(1)$ time

$$(|V| \cdot \mathcal{O}(1)) + (|V| \cdot \mathcal{O}(|V|)) + (|E| \cdot \mathcal{O}(1)) = \mathcal{O}(|V|^2 + |E|)$$

 Dijkstra was a strong motivation for developing fast decreaseValue operations

¹Heapsort was published 1964, AVL trees 1962

Running time of Dijkstra

- ▶ $\mathcal{O}(|V|^2 + |E|) = \mathcal{O}(|V|^2)$ if we did not use priority queues (original version)
- ▶ Original version (1956)¹
 - ▶ insert is mark vertex as queued, $\mathcal{O}(1)$ time
 - lacktriangle deleteMin is scan through all vertices, $\mathcal{O}(|V|)$ time
 - ightharpoonup decreaseValue is reassign distanceTo array, $\mathcal{O}(1)$ time
- $(|V| \cdot \mathcal{O}(1)) + (|V| \cdot \mathcal{O}(|V|)) + (|E| \cdot \mathcal{O}(1)) = \mathcal{O}(|V|^2 + |E|)$
- Dijkstra was a strong motivation for developing fast decreaseValue operations

¹Heapsort was published 1964, AVL trees 1962

Running time of Dijkstra

- ▶ $\mathcal{O}(|V|^2 + |E|) = \mathcal{O}(|V|^2)$ if we did not use priority queues (original version)
- ▶ Original version (1956)¹
 - ▶ insert is mark vertex as queued, $\mathcal{O}(1)$ time
 - ightharpoonup deleteMin is scan through all vertices, $\mathcal{O}(|V|)$ time
 - ightharpoonup decreaseValue is reassign distanceTo array, $\mathcal{O}(1)$ time
- $(|V| \cdot \mathcal{O}(1)) + (|V| \cdot \mathcal{O}(|V|)) + (|E| \cdot \mathcal{O}(1)) = \mathcal{O}(|V|^2 + |E|)$
- ▶ Dijkstra was a strong motivation for developing fast decreaseValue operations

¹Heapsort was published 1964, AVL trees 1962

An example of Dijkstra's use

Go to Slide 9.

- Paths in directed acyclic graphs
 - ▶ Can compute in $\mathcal{O}(|E| + |V|)$ time
 - ► Can also find longest paths (normally difficult)
- ► Application: job scheduling
 - ► Collection of jobs with processing times and precedence
 - ▶ Nodes: Job *i* starts and Job *i* ends
 - ▶ Arcs $Start(i) \rightarrow End(i)$, weight = processing time of job
 - ightharpoonup Arcs End(i) ightharpoonup Start(j), weight 0: Precedence
 - Longest path determines critical path minimum processing time
- ▶ Can even use negative weight arc $Start(i) \rightarrow End(j)$ to say "Job j must end at the earliest X minutes before job i starts"
 - ightharpoonup l.e., "no cooldown" job i starts not-too-long after job j ends

- Paths in directed acyclic graphs
 - ▶ Can compute in $\mathcal{O}(|E| + |V|)$ time
 - ► Can also find longest paths (normally difficult)
- Application: job scheduling
 - Collection of jobs with processing times and precedence
 - ► Nodes: Job *i* starts and Job *i* ends
 - ▶ Arcs $Start(i) \rightarrow End(i)$, weight = processing time of job
 - ▶ Arcs $End(i) \rightarrow Start(j)$, weight 0: Precedence
 - Longest path determines critical path minimum processing time
- ▶ Can even use negative weight arc $Start(i) \rightarrow End(j)$ to say "Job j must end at the earliest X minutes before job i starts"
 - ▶ l.e., "no cooldown" job i starts not-too-long after job j ends

- Paths in directed acyclic graphs
 - ▶ Can compute in $\mathcal{O}(|E| + |V|)$ time
 - ► Can also find longest paths (normally difficult)
- Application: job scheduling
 - Collection of jobs with processing times and precedence
 - ► Nodes: Job *i* starts and Job *i* ends
 - ▶ Arcs $Start(i) \rightarrow End(i)$, weight = processing time of job
 - ▶ Arcs $End(i) \rightarrow Start(j)$, weight 0: Precedence
 - Longest path determines critical path minimum processing time
- ▶ Can even use negative weight arc $Start(i) \rightarrow End(j)$ to say "Job j must end at the earliest X minutes before job i starts"
 - ightharpoonup l.e., "no cooldown" job i starts not-too-long after job j ends

- Paths in directed acyclic graphs
 - ▶ Can compute in $\mathcal{O}(|E| + |V|)$ time
 - Can also find longest paths (normally difficult)
- Application: job scheduling
 - Collection of jobs with processing times and precedence
 - ► Nodes: Job *i* starts and Job *i* ends
 - ▶ Arcs $Start(i) \rightarrow End(i)$, weight = processing time of job
 - ▶ Arcs $End(i) \rightarrow Start(j)$, weight 0: Precedence
 - Longest path determines critical path minimum processing time
- ► Can even use negative weight arc $Start(i) \rightarrow End(j)$ to say "Job j must end at the earliest X minutes before job i starts"
 - ▶ l.e., "no cooldown" job i starts not-too-long after job j ends