

1.Let $\{X_t: t \in \mathbf{Z}\}$ be strictly stationary. Then, show that the joint distribution function of $X_{t_1},...,X_{t_n}(t_1,...,t_n \in \mathbf{Z})$ depends only on $t_2-t_1,...,t_n-t_{n-1}$

2. Suppose that $\{X_t : t \in \mathbf{Z}\}$ is a Gaussian stationary process with zero mean, autocovariance function $\{R(t)\}$ and spectral density $f(\lambda)$. We assume that

$$\sum_{j=-\infty}^{\infty} |j| |R(j)| < \infty$$

Let $I_n(\lambda) = (2\pi n)^{-1} |\sum_{t=1}^n X_t e^{it\lambda}|^2$. Then, show that

$$\lim_{n\to\infty} E\{I_n(\lambda)\} = f(\lambda)$$

3.Let $\{X_t : t \in \mathbf{Z}\}\$ be a Gaussian stationary process with zero mean, autocovariance function $\{R()\}$. Then, show that

$$E\{X_t X_s X_u X_v\} = R(s-t)R(v-u) + R(u-t)R(v-s) + R(v-t)R(u-s)$$

4.Suppose that $\{X_t : t \in \mathbf{Z}\}$ is a Gaussian stationary process with zero mean, autocovariance function $\{R(t)\}$ and spectral density $f(\lambda)$. We assume that

$$\sum_{j=-\infty}^{\infty} |j| |R(j)| < \infty$$

Let $I_n(\lambda) = (2\pi n)^{-1} |\sum_{t=1}^n X_t e^{it\lambda}|^2$. Then, show that $I_n(\lambda)$ does not converge to $f(\lambda)$ in probability.

5. Suppose that $\{X_t\}$ is generated by

$$X_t = u_t \sqrt{a_0 + \sum_{j=1}^q a_j X_{t-j}^2}, \{u_t\} \sim i.i.d.N(0,1)$$

where $a_0 > 0, a_j \ge 0, j = 1, ...q$. Let $\mathcal{F}_t(q)$ be the σ -algebra generated by $\{X_s : t - q \le s \le t - 1\}$, and let

$$Q(\theta) = \sum_{t=q+1}^{n} [X_t^2 - E\{X_t^2 | \mathcal{F}_t(q)\}]^2$$

where $\theta = (a_0, a_1, ..., a_q)'$. We define the conditional least squares estimator of θ by

$$\hat{\theta} = argmin_{\theta}Q(\theta).$$

Then, derive the explicit form of $\hat{\theta}$.

6. Suppose that $\{X_t\}$ is generated by

$$X_t + b_1 X_{t-1} + ... + b_p X_{t-p} = u_t, \{u_t\} \sim i.i.d.N(0,\sigma^2),$$

where $1 + b_1 z + ... + b_p z^p \neq 0$ on $|z| \leq 1$. Then, show that $\hat{X}_t = -(b_1 X_{t-1} + ... + b_p X_{t-p})$ is the best linear predictor of X_t .

7. Derive the Whittle likelihood

$$\int_{-\infty}^{\infty} \{\log f_{\theta}(\lambda) + I_n(\lambda)/f_{\theta}(\lambda)\} d\lambda$$

8. State what you know about Akaike's information criteria (AIC) and the other criteria.