

28LP/28FDSOI LATCH-UP DRC checks in PDK (1101.1/2.2)

November 16th, 2012

Crolles PDK

C28LP DRM requirements for LUP (1/3)

- LATCH UP rules are defined in cmos28 DRM. ADCS DOCUMENT 8307138, section
 - 7.7.3 LATCH-UP DESIGN RULES (LUP)
- Following rules are checked by DRC:

LUP.W.1	rotection Design Rules for I/O Devices (DRC checked) RX width for all continuous PW strap or NW strap guard rings (with or without T3) must allow	0.200
LOI	a good polarization of the entire guard ring (recommanded Raccess < 20 Ohm) and enable a	0.200
	good carrier collection, for all guard rings surrounding an Emitter	
LUP.R.1	{RX N+ Diffusion ^a inside (PW less than 20um away from an Emitter)} ^b must be fully sur-	
	rounded by a continuous PW strap in the same PW (guard ring) cd	
LUP.R.1.1	NW Emitter must be fully surrounded by a continuous PW strap in the same PW (guard ring) c d	8
LUP.R.2	{RX P+ Diffusion ^e inside (NW less than 20um away from an Emitter)} ^f must be fully surrounded by a continuous NW strap in the same NW (guard ring) ^{g h}	
LUP.R.2.1	RW Emitter must be fully surrounded by a continuous NW strap in the same NW (NW guard ring) ^{g h} .	
LUP.R.3	N+ SD Emitter and NW Emitter must be fully surrounded by a second guard ring (this second ring should be a NW guard ring) ^{g i}	
LUP.R.4	P+ SD Emitter and RW Emitter must be fully surrounded by a second guard ring (this second guard ring should be a PW strap) c i	
LUP.R.5	T3 under NW Emitter is prohibited.	
LUP.R.6	N+ SD of poly bounded diode and N+ SD of field oxide diode must be in an Isolated p-well fully surrounded by a continuous NW strap guard ring.	
LUP.R.7	P+ SD of poly bounded diode and P+ SD of field oxide diode must be fully surrounded by a continuous PW strap guard ring.	8
LUP.R.8	P+ SD of ESDS device must be fully surrounded by a continuous NW strap guard ring.	

C28LP DRM requirements for LUP (2/3)

Latch-Up Protection Design Rules for I/O Devices (DRC checked)			
LUP.D.4	"Hot" NW distance to NWE for 1V a	1.000	
LUP.D.5	"Hot" NW distance to NWE for 2.5V ^a	2.000	
LUP.D.6	"Hot" NW distance to NWE for 3.3V ^a	2.500	
LUP.D.7	"Hot" NW distance to NWE for 5V ^a	6.000	
LUP.D.8	"Hot" NW distance to NWE for 7V ^a	12.000	
LUP.D.9	"Hot" NW distance to RX N+ Diffusion for 1V a	1.000	
LUP.D.10	N+ SD Emitter distance to NWE ^b for 1V ^a	1.000	
LUP.D.11	"Hot" NW distance to RX N+ Diffusion for 2.5V ^a	2.000	
LUP.D.12	N+ SD Emitter distance to NWE ^b for 2.5V ^a	2.000	
LUP.D.13	"Hot" NW distance to RX N+ Diffusion for 3.3V ^a	2.500	
LUP.D.14	N+ SD Emitter distance to NWE ^b for 3.3V ^a	2.500	
LUP.D.15	"Hot" NW distance to RX N+ Diffusion for 5V a	6.000	
LUP.D.16	N+ SD Emitter distance to NWE ^b for 5V ^a	6.000	
LUP.D.17	"Hot" NW distance to RX N+ Diffusion for 7V a	12.000	
LUP.D.18	N+ SD Emitter distance to NWE ^b for 7V ^a	12.000	
LUP.D.19	"Hot" RW distance to PW	1.200	
LUP.D.20	"Hot" PW distance to Isolated p-well	1.200	

C28LP DRM requirements for LUP (3/3)

- Highlight of the LUP rules:
 - 1. DRM defines Latch-up emitter areas in the design:
 - S/D drain RX connected to a pad
 - NW / RW well strap connected do a pad
 - 2. DRM defines rules to protect the design from those latchup emitters:
 - Protection guardring for emitters
 - Protection guardring for devices which are less than 20µm from emitters
 - Latch up rules applied only on signal Pads.
 - Supply pads do not have to meet such latch up rules

C28LP LUP Check in DK 1101.1: Automatic Power Supplies recognition

- Problem Statement: Issue with previous LUP-check in 28nm DRM/DK which may miss some I/O Signals contacting directly the following devices:
 - Nwell resistance
 - Drift MOS
 - Triac Device (ESDT)
- New CAD implementation from 28LP 1101.1 + 28FDSOI 2.2 PDKs

- Compulsory pre-requisite s:
 - "This is connected to a Pad" and "This is a supply" labels must be recognized in all the hierarchy, whatever the hierarchical level => DRC coding.
 - "This is connected to a Pad" must not be prioritary => DRC coding

C28LP LUP Check in previous DK : Limitation

- In previous 28LP DK (earlier 1101.1), LUP check is very dependent on:
 - a. List of labels « *this is a supply* ». If one is forgotten, thousands of errors can be highlighted.
 - b. LVS clean design: if there is a short between a supply and a signal, all nets are considered as signal, so thousands of errors can be highlighted.
- Aim is to converge to have a number of errors acceptable to debug:
 - Not all the design highlighted
 - Only some areas are highlighted
- If it is not the case, designers must work on « this is a supply list » label or to correct short. Example of errors:
 - Vsense (label for probe) not in the list
 - 2 bumps of supply connected together, with only one label on one pad.

C28LP LUP Check : New and Current DRC implementation

- In 28LP/32LP/28FDSOI PDK releases (>= 1101.1/2.2), standard supply is recognized thanks to DRC deck. So, no need anymore of the list of « this is a supply ».
- So only custom supplies should raise LUP errors
- With this new methodology, LUP-debug is easier and has to be done directly with LUP expert

LATCH-UP CAD-Guidelines: Pads definition

- In TRD/DK-DRC, PAD check is defined as an overlap of LV layer and LB layer (as shown in below snapshot)
- To avoid false DRC errors when an active area is connected to a supply pad, a specific label called "This is a supply" must be drawn on all selected pads:
 - "LB drawing" layer has to be used for label drawing
 - Label must be added, by hand, and at SoC/top level design
 - Label must be placed at the intersection of LB and LV layers. As shown on the picture otherwise label is not taken into account (not seen by DRC)

LATCH-UP CAD-Guidelines: Errors Debug (1/3)

- □ 1st Step -> To double check the labels "*This is a supply*" consistency:
 - All supply Pads must have the label "This is a supply" (at top level design hierarchy)
 - If 2 pads are connected together, a label is needed on each single pad

- Label must be in « LB drawing » layer
- If user has sense pads (not a design usage) which are shorted to supply pads, the label must be added on sense pads.

LATCH-UP CAD-Guidelines: Errors Debug (2/3)

- 2nd step -> to get an LVS clean database
- As the DRC is checking the connectivity from the emitter to the pads, LVS should be good 'by construction'
- If there is a short between one signal pads and one supply pads, DRC will consider both pads as not supply pads, and DRC will check Latch up rules on active areas.
 - So false errors should be raised

LATCH-UP CAD-Guidelines: Errors Debug (3/3)

- DRC deck has been developed to ease such a debugging phase:
- In PDK/calibrerun verification utility, there is a switch to help LUP debug

- Highlight of emitters, 20µm area around emitters in C28LP.
- But, there is no automatic way to highlight a net from the emitter to the pad responsible of the LUP failure.
- Debug rules flow is efficient only if labels « this is a supply » are correctly added on supply pads (top-level) and if the LVS is already clean.

