Contents

1 Math

1.1 快速冪

```
//x^y % p
int func(int x,int y,int p){
  int res = 1;
  while(y != 0){
    if(y%2==1){
      res *= x;
      res %=p;
    }
    x *= x;
    y /= 2;// 5^8 => (5^2)^4
    x %= p;//((5^2) % 7)^4
}
return res;
}
```

1.2 擴展歐幾里得

2 Graph

2.1 Tarjan SCC

```
class tarjan{
    int time = 1;
    stack<int> s;
    vector<int> dfn;
    vector<int> low;
    vector < bool > in_stack;
    vector<vector<int>> ans;
    void dfs(int node, vector<vector<int>> &graph){
      in_stack[node] = true;
      s.push(node);
      dfn[node] = low[node] = time++;
      for(auto &j : graph[node]){
        if(dfn[j] == 0){
          dfs(j, graph);
           // 看看往下有沒有辦法回到更上面的點
          low[node] = min(low[node], low[j]);
        else if(in_stack[j]){
          low[node] = min(low[node], low[j]);
        }
      }
      vector < int > t; // 儲存這個強連通分量
if(dfn[node] == low[node]){
while(s.top() != node){
          t.push_back(s.top());
          in_stack[s.top()] = false;
          s.pop();
        t.push_back(s.top());
        in_stack[s.top()] = false;
        s.pop();
      if(!t.empty()) ans.push_back(t);
```

3 String

3.1 Hash

```
vector<int> Pow(int num){
  int p = 1e9 + 7;
  vector<int> ans = {1};
  for(int i = 0; i < num; i++)</pre>
    ans.push_back(ans.back() * b % p);
  return ans;
}
vector<int> Hash(string s){
  int p = 1e9 + 7;
  vector<int> ans = {0};
  for(char c:s){
    ans.push_back((ans.back() * b + c) % p);
  return ans;
}
// 閉區間[l, r]
int query
    (vector<int> &vec, vector<int> &pow, int l, int r){
  int p = 1e9 + 7;
  int length = r - l + 1;
  return
       (vec[r + 1] - vec[l] * pow[length] % p + p) % p;
```

3.2 Zvalue

```
vector<int> z_func(string s1){
  int l = 0, r = 0, n = s1.size();
  vector<int> z(n, 0);
  for(int i = 1; i < n; i++){</pre>
    if(i
         <= r and z[i - l] < r - i + 1) z[i] = z[i - l];</pre>
    else{
      z[i] = max(z[i], r - i + 1);
       while(i + z
           [i] < n \text{ and } s1[i + z[i]] == s1[z[i]]) z[i]++;
    if(i + z[i] - 1 > r){
      l = i;
r = i + z[i] - 1;
    }
  }
  return z;
}
```