Minimum Spanning Tree (MST) algorithms

Kortste omspannende boom (Minimum Spanning Tree)

Wat is de goedkoopste optie om alle huizen aan te sluiten op het internet?

Kortste omspannende boom (Minimum Spanning Tree)

 Verbonden, gewogen graaf dat alle knopen met elkaar verbind zonder cycli, met het kleinste totale gewicht

MST – Prim's algorithm

- kies een willekeurige knoop als startnode;
- 2. kies de tak vanuit de geselecteerde knopen met het laagste gewicht, zonder een cycle te maken;
- 3. Herhaal stap 2 tot (n-1) takken (alle knopen) gekozen zijn;

http://www.youtube.com/watch?v=plkWno7_kLQ (vanaf 01:05)

(2 manieren: zonder en met matrix)

Prim's algorithm - voorbeeld

MST: AE ..

MST: AE EC ..

MST: AE EC BC ..

MST: AE EC BC ED

Prim's algorithm - oplossing

Total weight: 18 (2+4+5+7)

MST: AE EC BC ED

Prim's algorithm - oefeningen

Prim's algorithm - oefeningen

Arcs: AC, AB, BE, EG, CF, FD. Total length=34

Arcs: AC, CF, FG, GE, GH, EB, ED, HJ, JI. Total length=54

	Α	В	С	D	E
Α	-	6	4	8	2
В	6	-	5	8	6
C	4	5	-	9	4
D	8	8	9	-	7
E	2	6	4	7	-

- 1. Kies een willekeurige knoop;
- Markeer de nieuwe knoop in de bovenste kolom; verwijder de rij van deze knoop;
- 3. Selecteer de laagste waarde in de gemarkeerde kolommen (negeer de verwijderde rijen), en omcirkel deze waarde, er is een nieuwe knoop;
- 4. Herhaal stap 2 en 3 totdat alle rijen verwijderd zijn;

	1				
	Α	В	C	D	E
Α	-	6	4	8	2
В	6	-	5	8	6
C	4	5	-	9	4
D	8	8	9	-	7
E	2	6	4	7	-

- 1. Kies een willekeurige knoop;
- 2. Markeer de nieuwe knoop in de bovenste kolom; verwijder de rij van deze knoop;
- 3. Selecteer de laagste waarde in de gemarkeerde kolommen (negeer de verwijderde rijen), en omcirkel deze waarde, er is een nieuwe knoop;
- 4. Herhaal stap 2 en 3 totdat alle rijen verwijderd zijn;

	1				2
	Α	В	C	D	E
Α	-	6	4	8	2
В	6	-	5	8	6
C	4	5	-	9	4
D	8	8	9	-	7
E	2	6	4	7	-

- 1. Kies een willekeurige knoop;
- Markeer de nieuwe knoop in de bovenste kolom; verwijder de rij van deze knoop;
- 3. Selecteer de laagste waarde in de gemarkeerde kolommen (negeer de verwijderde rijen), en omcirkel deze waarde, er is een nieuwe knoop;
- 4. Herhaal stap 2 en 3 totdat alle rijen verwijderd zijn;

	1		3		2
	Α	В	C	D	E
Α	-	6	4		2
В	6	-	5	8	6
C	4	5	-	9	4
D	8	8	9	-	7
E	2	6	4	7	-

- 1. Kies een willekeurige knoop;
- Markeer de nieuwe knoop in de bovenste kolom; verwijder de rij van deze knoop;
- 3. Selecteer de laagste waarde in de gemarkeerde kolommen (negeer de verwijderde rijen), en omcirkel deze waarde, er is een nieuwe knoop;
- 4. Herhaal stap 2 en 3 totdat alle rijen verwijderd zijn;

	1	4	3		2
	Α	В	C	D	E
Α	-	6	4		2
В	6	-	5	8	6
C	4	5	-	9	4
D	8	8	9	-	7
E	2	6	4	7	-

- 1. Kies een willekeurige knoop;
- Markeer de nieuwe knoop in de bovenste kolom; verwijder de rij van deze knoop;
- 3. Selecteer de laagste waarde in de gemarkeerde kolommen (negeer de verwijderde rijen), en omcirkel deze waarde, er is een nieuwe knoop;
- 4. Herhaal stap 2 en 3 totdat alle rijen verwijderd zijn;

	1	4	3	5	2
	Α	В	C	D	E
Α	-	6	4		2
В	6	-	5	8	6
C	4	5	-	9	4
D	8	8	9	-	7
E	2	6	4	7	-

- 1. Kies een willekeurige knoop;
- Markeer de nieuwe knoop in de bovenste kolom; verwijder de rij van deze knoop;
- 3. Selecteer de laagste waarde in de gemarkeerde kolommen (negeer de verwijderde rijen), en omcirkel deze waarde, er is een nieuwe knoop;
- 4. Herhaal stap 2 en 3 totdat alle rijen verwijderd zijn;

	1	4	3	5	2	
	Α	В	C	D	E	
Α	-	6	4		2	AE (2)
В	6	-	5	8	6	EC (4) BC (5)
С	4	5	-	9	4	DE (7)
D	8	8	9	-	7	
E	2	6	4	7	-	

- 1. Kies een willekeurige knoop;
- Markeer de nieuwe knoop in de bovenste kolom; verwijder de rij van deze knoop;
- 3. Selecteer de laagste waarde in de gemarkeerde kolommen (negeer de verwijderde rijen), en omcirkel deze waarde, er is een nieuwe knoop;
- 4. Herhaal stap 2 en 3 totdat alle rijen verwijderd zijn;

Oefeningen

Find the Minimum Spanning Tree using Prim's Algorithm starting from vertex A:

a)		A	В	C	D	E
	A	-	28	9	4	1
	В	28	_	12	23	21
	C	9	12	-	8	11
	D	4	23	8	_	7
	E	1	B 28 - 12 23 21	11	7	-

Arcs:

Total length=

b)		A	В	C	D	E	F	G
	A	_	19	15 24 - 13 5 2	10	22	17	29
	В	19	_	24	20	3	25	26
	C	15	24	_	13	5	2	30
	D	10	20	13	_	18	14	16
	E	22	3	5	18	_	27	6
	F	17	25	2	14	27	_	7
	G	29	26	30	16	6	7	-

Arcs:

Total length=

Oefeningen

MST – Kruskal's algorithm

- 1. kies tak met minste gewicht;
- kies een volgende tak met minste gewicht, zonder een cycle te maken;
- herhaal stap 2 totdat n-1 takken gekozen zijn;

http://www.youtube.com/watch?v=T43K2qt0liY

Kruskal's algorithm - voorbeeld

MST: AE ..

kies een volgende tak met minste gewicht, zonder een cycle te maken

MST: AE EC ..

kies een volgende tak met minste gewicht, zonder een cycle te maken

MST: AE EC BC ..

kies een volgende tak met minste gewicht, zonder een cycle te maken

MST: AE EC BC ED

Kruskal's algorithm - oplossing

Total weight: 18 (2+4+5+7)

MST: AE EC BC ED

Kruskal's algorithm - oefeningen

Kruskal's algorithm - oefeningen

Arcs: CF, AD, GH, DG, AE, EC, HI, CB. Total length=53