Exploratory Data Analysis:

- 1) Total 57 Mocked Primary Care Consultations, with 7 clinicians and 57 actors posing as patients.
- 2) Total duration of approximately 8 hours and 38 Minutes.
- 3) Utterance level transcriptions with Start and end times, stored in TextGrid format.

Data Pre-Processing Needed:

- 1) Both Doctor and Patient files are given separately (one recorded on Laptop and one recorded on Phone).
 - a) Need to combine the channels, tool used: SOX
- 2) Since Utterance-level transcriptions are given, the data is stored in TextGrid format along with start and end times. Two type of formats needed here:
 - a) .rttm: For computing Diarization Error rate
 - b) **.txt**: Which contains start time, end time and speaker label, needed for audacity analysis.
- 3) For Pyannote fine-tuning, we need the data structure according to it's format to predict the outcome and compute DER from the reference using : pyannote.metrics
 - a) <u>GitHub pyannote/pyannote-metrics: A toolkit for reproducible evaluation, diagnostic, and error analysis of speaker diarization systems</u>
 - b) This includes creating appropriate folder structure, creating train, dev and test set.
 - c) Placing .rttm files in the expected format, and creating a .uem file for each of the audio, which denotes the time range in the audio file considered to compute the Diarization Error Rate.

TASK 1): Zero-Shot Pre-trained Model Evaluation

Took two of the most popular models in the Industry currently,

- 1) NEMO (GitHub NVIDIA/NeMo: NeMo: a framework for generative AI).
- 2) PYANNOTE (GitHub pyannote/pyannote-audio: Neural building blocks for speaker diarization: speech activity detection, speaker change detection, overlapped speech detection, speaker embedding

	pyannote	NeMo
Voice Activity Detection (VAD)	Pyannet derived from Syncnet	MarbleNet
Audio embedding	ECAPA-TDNN	TitaNet
Clustering	Hidden Markov Model clustering	Multi-scale clustering (MSDD)

Both explored open source algorithms have a:

- Voice Activity Detection which differentiates between speech and non-speech regions.
- Audio Embedding, representing a speaker in the form of a vector representation.
- Clustering: to represent more similar embeddings as one speaker representation.

DER Computation done on 6 Core Intel i-7 CPU

Pre-trained Models	Dataset (TEST-FULL)	NEMO	PYANNOTE
Diarization Error Rate (DER)	Full Primok57 Dataset (Approximately 8 hours of Data).	28.49 %	26.23 %

TASK 1 Outcomes: PYANNOTE performs slightly better overall then NEMO.

TASK 2: Fine-tune PYANNOTE on a Domain Specific dataset.

PRIMOK57, which is approximately 8 hours of data, is splitted into Train, Test and Dev, with 80%, 10% and 10% Split respectively.

Models	Dataset	NEMO	PYANNOTE	PYANNOTE	PYANNOTE
	(TEST)	Pre-trained-1	Pre-trained	Fine-tuned-1	Fine-tuned-2
Diarizati on Error Rate (DER)	10% of Full Primok5 7 Dataset	31.02 %	23.16 %	8.3%	7.3%

PYANNOTE Fine-tuned-1: Model with segmentation and clustering threshold optimized, fine-tuned on 20 Epochs

PYANNOTE Fine-tuned-2: Model with segmentation and clustering threshold optimized, fine-tuned on 25 Epochs