Matematika szintfelmérő

2020. szeptember 2.

Munkaidő: 90 perc. Függvénytáblázat használható, számológép nem. Karikázza be az

Pontszám:

Neptun-kód:

indoklással alátámasztott válasz betűjelét.

Név:

Minden jó válasz, megfelelő indoklással: 4 pont, hibás válasz: -1 pont, indoklás nélkül, vagy nincs válasz 0 pont.					
Max.pontszám 60 pont, a dolgozat sikeres 30 ponttól.					
1. Számítsa ki - azonosságok alkalmazásával - a következő kifejezés értékét! $\left(\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}\right)^2=$					
	$\mathbf{A} 0$	B $8 - 4\sqrt{3}$	C 4	D 12	${f E}$ ezek egyike sem
2.	2. Hozza a legegyszerűbb alakra a következő kifejezést! $x > 0$: $\frac{\sqrt[4]{x \cdot \sqrt[3]{x}}}{\sqrt[6]{x}} = $ $\mathbf{A} x^{-\frac{1}{6}} \qquad \mathbf{B} x^{-\frac{1}{3}} \qquad \mathbf{C} x^{-\frac{1}{4}} \qquad \mathbf{D} x^{\frac{1}{6}} \qquad \mathbf{E} x^{\frac{1}{4}}$				
	A $x^{-\frac{1}{6}}$	${\bf B} \; x^{-\frac{1}{3}}$	$\mathbf{C} \ x^{-\frac{1}{4}}$	$\mathbf{D} x^{\frac{1}{6}}$	$\mathbf{E} \ x^{rac{1}{4}}$
3.	3. Hozza a legegyszerűbb alakra a következő kifejezést, ha $x \in (0, \frac{\pi}{2})$:				
	$\frac{1}{\cos^2 x} - \operatorname{tg}^2 x - \mathbf{A} = 0$	$\sin^2 x =$ $\mathbf{B} \ 1$	$\mathbf{C} \cos^2 x$	$\mathbf{D} - \sin^2 x$	$\mathbf{E} \cos 2x$
4.	4. Ha az $f(x) = x^2$, akkor mivel egyenlő az: $\frac{f(x+h) - f(x)}{h} = $ $\mathbf{A} 2x - h \qquad \mathbf{B} 2x - h + 1 \qquad \mathbf{C} 2x + h \qquad \mathbf{D} 2x - 2 + h \qquad \mathbf{E} x - 2 + 2h$				
	$\mathbf{A} \ 2x - h$	$\mathbf{B}\ 2x - h + 1$	$\mathbf{C} 2x + h$	D $2x - 2 + h$	$\mathbf{E} \ x - 2 + 2h$
5. Egy másodfokú függvényről tudjuk, hogy: $f(-1) = 0$ és $f(0) = -3$ és $f(1) = 0$. Írja és rajzolja fel az $f(x)$ függvényt, majd adja meg $f(2)$ értékét!					
	$\mathbf{A} f(2) = 7$	$\mathbf{B} f(2) = 9$	$\mathbf{C} f(2) = 16$	$\mathbf{D}\ f(2) = 16$	E ezek egyike sem
6. Milyen távol van az origótól az $(x+3)^2 + (y+2)^2 = 25$ egyenletű kör és a $2y+x=3$ egyenletű egyenes azon metszéspontja, melynek mindkét koordinátája pozitív? A 1 B 2 C $\sqrt{2}$ D több ilyen pont is van E nincs ilyen pont					
7. Mekkora szöget zár be a $\underline{z} = \underline{u} - \underline{v}$ vektor az x tengely pozitív félegyenesével, ha $\underline{u}(2\sqrt{3} - 1, 5)$ és $\underline{v}(\sqrt{3} - 1, 4)$ vektorok?					
	A 20^{o}	B 30^{o}	$C \ 45^{o}$	D 60^{o}	E 120°
8.	-	0- 0	ba áll, akkor két e agasabb törpe, ha C 54	0-	örpe közti magasságkülönbség o 45 cm? E 47,5

9. Ha $a_n = \frac{3 \cdot 5^n}{(n+1)!}$, akkor mivel egyenlő az $\frac{a_{n+1}}{a_n}$ hányados?

A $\frac{15}{n}$ B $\frac{5}{n}$ C $\frac{15}{n+1}$ D $\frac{5}{n+2}$

E ezek egyike sem

10. Ha $A = \lg 2 - \frac{1}{2} \lg 9$, akkor mennyi 1000^A

 $\mathbf{B} \frac{2}{3}$

 $\mathbf{C} 10$

D 100

E ezek egyike sem

11. Adja meg fokban a $\theta = \frac{5\pi}{3}$ szöget! **A** 150⁰ **B** 240⁰ **C** 270⁰ **D** 300⁰ **E** 330⁰

12. A következő függvények közül melyik szigorúan monoton csökkenő a [1, 2] intervallumon? (Az indokláshoz ábrázolja is a függvényeket!)

f(x) = |x - 2|

 $g(x) = \sin x$

 $\mathbf{A} f(x)$ $\mathbf{B} q(x)$

 $f(x) = \sin x$ $h(x) = 2^{-x+3}$ $f(x) = 2^{-x+3}$ $f(x) = 2^{-x+3}$ $f(x) = 2^{-x+3}$ $f(x) = 2^{-x+3}$ D pontosan kettő, mégpedig:

E mindhárom

13. Mely valós értékekre értelmezhető az $f(x) = \frac{1}{\sqrt{2+x-x^2}}$? $\mathbf{A} (-2,\infty) \ \mathbf{B} (-1,\infty) \ \mathbf{C} (-1,2) \ \mathbf{D} (-\infty,-2) \cup (0,2) \ \mathbf{E} (-\infty,-1) \cup (2,\infty)$

14. Írja fel a következő kifejezést a legegyszerűbb alakban (negatív kitevők használata nélkül): $b \neq 0$

 $\left(\frac{5^{-2}b^{-1}}{b^{-4}}\right)^3 \cdot \frac{5b^{-2}}{5^{-3}b} =$

 $\mathbf{C} \; \frac{b^8}{125} \qquad \qquad \mathbf{D} \; \frac{25}{b^8}$

 $\mathbf{E} \frac{b^6}{125}$

15. Egy téglalap kerülete 68 cm, átlója 26 cm. Mekkora a téglalap területe?

A $120cm^2$ **B** $144cm^2$ **C** $244cm^2$ **D** 288cm **E** ezek egyike sem