Wintertime Climate Variability in the Lake Michigan Region:

Sensitivity of Snowfall to Temperature and Northern Hemisphere Teleconnection Patterns

Travis Elless, Tony Lyza, Sarah Mustered, and Craig Clark

20th Great Lakes Operational Meteorology Workshop March 15, 2012

Outline

- Introduction
- Adventures with Data
 - Regions and station selection
 - Temperature and snowfall
 - Comparison of sub-regions
 - Sensitivity of snowfall to temperature
 - Sensitivity to tele-connection patterns
- Daily Data Winter Stew: PC1 and PC2
- Conclusions

Introduction

- Wintertime data in northern Indiana and the adjacent southern Lake Michigan region reveals:
 - Tremendous year-to-year noise, with a super-imposed warming trend
 - Strong relationship between snowfall and temperature and tele-connection patterns
 - Decrease of seasonal snowfall at locations like South Bend, which is not obvious at locations with little or no LES
- How localized is this?

South Bend ->

Questions and Charge to the Students

- How should we characterize the snowfall and temperature variability?
- How does the sensitivity of snowfall to temperature vary spatially?
- How do the temperature and snowfall vary with large-scale patterns?
- Charge to the students
 - Design regions, pick stations, download from NCDC, and explore, plot, etc.
 - Compare results with another student group, which is examining November data
 - Experience the joys of working with snowfall data
 - · Changes in observer, observation type, distribution shape, and NAs

Map of Regions and Stations

Regional Temperature Composite

NOV to MAR Regional Temperature

NOV to MAR Regional Temperature

DEC to FEB Regional Temperature

DEC to FEB Regional Temperature

Sensitivity of Temperature to Teleconnection Patterns

ENSO vs Lake Michigan Regional Composite Temperature

PNA vs Lake Michigan Regional Composite Temperature

NAO vs Lake Michigan Regional Composite Temperature

PDO vs Lake Michigan Regional Composite Temperature

Northeast Region

Northeast Lake Michigan Temperature vs Composite Snowfall

NAO vs Northeast Lake Michigan Composite Snowfall

ENSO vs Northeast Lake Michigan Composite Snowfall

PNA vs Northeast Lake Michigan Composite Snowfall

Northeast Region

Eastern Region

East Central Lake Michigan Temperature vs Composite Snowfall

NAO vs East Central Lake Michigan Composite Snowfall

ENSO vs East Central Lake Michigan Composite Snowfall

PNA vs East Central Lake Michigan Composite Snowfall

Eastern Region

Northwest Region

NW Sector Seasonal Composite Snowfall and Temperature

Green Bay, WI Seasonal Snowfall and November-March Composite Temperature

Northwest Region

NW Sector Seasonal Composite Snowfall and ENSO

NW Sector Seasonal Composite Snowfall and NAO

Green Bay, WI Seasonal Snowfall and DJF ENSO

Green Bay, WI Seasonal Snowfall and DJF Mean NAO

Northwest Region

NW Sector Seasonal Composite Snowfall and PDO

NW Sector Seasonal Composite Snowfall and PNA

Green Bay, WI Seasonal Snowfall and DJF Mean PDO

Green Bay, WI Seasonal Snowfall and DJF Mean PNA

Western Region

W Sector Seasonal Composite Snowfall and Temperature

Sheboygan, WI Seasonal Snowfall and November-March Composite Temperature

Western Region

Sheboygan, WI Seasonal Snowfall and DJF ENSO

W Sector Seasonal Composite Snowfall and NAO

Sheboygan, WI Seasonal Snowfall and Mean DJF NAO

Western Region

W Sector Seasonal Composite Snowfall and PDO

W Sector Seasonal Composite Snowfall and PNA

Sheboygan, WI Seasonal Snowfall and Mean DJF PDO

Sheboygan, WI Seasonal Snowfall and Mean DJF PNA

Southwest Region

Regional Temperature and Chicago Midway IL Snowfal

Regional Temperature and Aurora IL Snowfall

Regional Temperature and Rockford IL Snowfall

Southwest Region

ENSO and SW Composite Snowfall

NAO and SW Composite Snowfall

PNA and SW Composite Snowfall

PDO and SW Composite Snowfall

Southeast Region

Regional Temperature and SE Composite Snowfall

Regional Temperature and South Bend IN Snowfall

Regional Temperature and Winamac IN Snowfall

Regional Temperature and Cold Water MI Snowfall

NAO and SE Composite Snowfall

PNA and SE Composite Snowfall

PDO and SE Composite Snowfall

Regional Snowfall Composite

Composite Seasonal Snowfall

Composite Seasonal Snowfall

Daily Threshold Data

- Using their stations, regional composites were calculated for the seasonal number of days with:
 - High temperature
 - Thresholds of 10, 4.5, 0, -6.5 °C
 - Low temperature
 - Thresholds of -12, -17.5 °C
 - Snowfall
 - Thresholds of >T, 2.5 cm, 5 cm, 15 cm
 - Snow cover
 - Thresholds of 2.5 cm, 5 cm, 15 cm
 - Precipitation Days
- NAs are fairly common with daily data:
 - Used standardized anomalies per station for each month to compute the regional composite – this reduces the NA bias relative to a simple average

Composite Temperature Thresholds

Composite Snow Days and Days with Snow Cover

Numerical Approaches

Regression

Regression for most of the variables suggests that the tele-connection patterns together
 explain ~35% or more of the variance

Classification

Supervised, unsupervised

Trend Assessment

- Trends are significant in most of the regional temperature variables, and some of the snow-related metrics in the more southern zones (especially on the tales of the season)
- The residuals are mostly auto-correlation free, and thus independent

Principal Component Analysis

PCA Fever

Loadings PC1 PC2 0.28 DJF T -0.32Snowfall -0.29 -0.270.17 -0.10 Days ≥ 50 Days ≤ 32 -0.29 0.16 -0.25 0.35 Days < 20 Lows < 10-0.280.33 Lows ≤ 0 -0.260.35 Snow Days -0.30 -0.08 SnowD 2.5 -0.30 -0.23SnowD 5 -0.28 -0.28 -0.19 -0.40 SnowD 15 Snow Cover -0.30 -0.05 -0.30 Snow C 15 -0.02PrecipD DJF -0.20 -0.37

1000-500 hPa Thickness Top and Bottom 10 PC1

Conclusions

- Substantial wintertime variability, along with a trend toward milder winters (with a later start to the snow season in the southern zones)
- Snowfall dependence on temperature is robust, but varies with latitude and local role of LES
 - For the NW sector, some of the least-snowy winters are actually some of their coldest!
- Clear dependence on tele-connection patterns, but snowfall data is quite noisy.
 - ENSO warm events have clearest statistical impact.
 - The NAO/snowfall correlation is fairly weak, but there is a notable dearth of snowy winters in positive NAO-dominant winters
- Number of snowfall and snow cover days are helpful metrics, and they correlate well with temperature
- Future work: more statistical analysis, comparison with November group, trying to separate LES from non-les seasonal snow.

Extra slides

May be useful if people have questions

Basic Regression with Winter T

(if someone asks - not using interaction terms, for simplicity)

Coefficients:

	Estimate	Pr(> t)
(Intercept)	-2.6433	6.06e-07 ***
nao\$DJF	0.9201	0.000597 ***
pna\$DJF	0.5515	0.091981 .
mei\$DJFlanina	-1.8166	0.021844 *
mei\$DJFneutral	-1.6765	0.002483 **
pdo\$DJF	-0.6301	0.043793 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.469 on 55 degrees of freedom Multiple R-Squared: 0.3588, Adjusted R-squared: 0.3005 F-statistic: 6.154 on 5 and 55 DF, p-value: 0.0001348

Basic Regression with LN (Winter Snowfall)

(if someone asks - not using interaction terms, for simplicity)

Coefficients:

	Estimate	Pr(> t)
(Intercept)	4.87357	< 2e-16 ***
nao\$DJF	0.04106	0.081807.
pna\$DJF	-0.07816	0.010499*
mei\$ensolanina	0.23292	0.001704 **
mei\$neutral	0.19338	0.000198 ***
pdo\$DJF	0.05432	0.057575.

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1348 on 55 degrees of freedom Multiple R-Squared: 0.3827, Adjusted R-squared: 0.3265 F-statistic: 6.819 on 5 and 55 DF, p-value: 5.178e-05

ACF

Lag

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

Residuals

Temperature for Individual Months

Precipitation Days

Composite DJF Precipitation Days

Number of Days Year

Composite DJF Precipitation Days

Fraction of Snow/Precipitation Days

Seasonal Snow Days/NDJFM Precipitation Days

Seasonal Snow Days/NDJFM Precipitation Days

Relationship to Temperature

8

NOV to MAR Temperature and 15 cm Seasonal Snow Days

NOV to MAR Temperature and Precip Days

Temperature (C)

-3

NOV to MAR Temperature and Seasonal Snow Cover Days

November

Daily T Thresholds

