Variant Calling

BIOL 435/535: Bioinformatics April 7th, 2022

Mutations – Inherited changes in nucleotide sequence

 How to confidently identify true variants

- 2. Low-frequency variants
- 3. Variant annotation

Class brainstorm:

What are some important considerations in variant calling?

Primary considerations

- Sequencing method/approach
- Depth of coverage
- Variant type
- Inheritance mode
- Reference quality
- Bioinformatic tool

Primary considerations

- Sequencing method/approach
- Depth of coverage
- Variant type
- Inheritance mode
- Reference quality
- Bioinformatic tool

Short vs. long read:

Pacbio

Primary considerations

Individual vs. Multiplex vs. PoolSeq

- Sequencing method/approach
- Depth of coverage
- Variant type
- Inheritance mode
- Reference quality
- Bioinformatic tool

Primary considerations

- Sequencing method/approach
- Depth of coverage
- Variant type
- Inheritance mode
- Reference quality
- Bioinformatic tool

DNA Damage (e.g., Ancient DNA)

Most C->T (and A->G) changes are the result of DNA Damage

Primary considerations

- Sequencing method/approach
- Depth of coverage
- Variant type
- Inheritance mode
- Reference quality
- Bioinformatic tool

Goldilocks Principle of Read Depth

Primary considerations

- Sequencing method/approach
- Depth of coverage
- Variant type
- Inheritance mode
- Reference quality
- Bioinformatic tool

Types of Variants

Primary considerations

- Sequencing method/approach
- Depth of coverage
- Variant type
- Inheritance mode
- Reference quality
- Bioinformatic tool

Selfing vs. Outcrossing

Primary considerations

- Sequencing method/approach
- Depth of coverage
- Variant type
- Inheritance mode
- Reference quality
- Bioinformatic tool

Non-model reference genomes are often complex

Primary considerations

- Sequencing method/approach
- Depth of coverage
- Variant type
- Inheritance mode
- Reference quality
- Bioinformatic tool

BCFTOOLS vs. GATK vs. FreeBayes vs. DeepVariant

Low-frequency variants:

Distinguishing between sequencing errors, DNA damage, and true mutations

Types of low-frequency variants:

Illumina error rate ~ 10⁻³

- Somatic mutations
- Heteroplasmy
- Rare polymorphisms in PoolSeq
- DNA Damage

Coverage > 1000x means that you'll have an erroneous base call at **EVERY SITE**

How to mitigate?

Low-frequency variants:

Distinguishing between sequencing errors, DNA damage, and true mutations

Types of low-frequency variants:

- Somatic mutations
- Heteroplasmy
- Rare polymorphisms in PoolSeq
- DNA Damage

Variant annotation:

Effect on function:

- Synonymous vs. Nonsynonymous
- Loss-of-Function

Genomic location:

- Gene of interest
- Position in gene (e.g., exon/intron/UTR)

SnpEff, VEP, ANNOVAR

Visualizing with **IGV**

Structural Variant Detection

Types of Variants

Structural variant detection depends upon context, experimental design

Individual re-sequencing

- Somatic tissue
- Population-level sampling
- Tumor cells
- Plant mitochondria

Structural variant detection depends upon context, experimental design

Sample heterogeneity

- Individual re-sequencing
- Somatic tissue
- Population-level sampling
- Tumor cells
- Plant mitochondria

Three general approaches for structural variant calling

De novo assembly, alignment

Short read mapping

Long read mapping

Assembly-to-assembly comparison

De novo assembly, alignment

- Genome-to-genome alignment
- Low sample heterogeneity
- Easy to visualize with a dot plot
- Diploid assemblies

Short-read mapping to identify structural rearrangements

Short read mapping

- Allow reads to map to multiple locations
- Depth allows for high sample heterogeneity
- Often difficult to visualize, as reads don't often span structure
- Good for finding breakpoints in heterogeneous samples

Long-read mapping to identify structural rearrangements

Long read mapping

- Allow reads to map to multiple locations
- Don't need a ton of depth
- Reads are long enough to span across structural element
- Occasional library artifacts to watch out for
- Good for homogeneous samples

Long-reads are better than short reads for identifying structural rearrangements

Assembly-based methods are more sensitive than mapping-based methods

Three general approaches for structural variant calling

Structural variant callers

Reconstructing tandem duplications – problems with consensus


```
Nanopore Read 1
                   CCGCCGGACCTCGTCCTGATTTTGCTTCACCGGATATGTCTTTCGATGTTGACTTCAGT
  Nanopore Read 2
                   CTGGCGGAGCTGGTCCCGATTTTGGTTCACCGGATATGTCTTTCGATGTTGACTTGAGT
  Nanopore Read 3
                   CTGGCGGAGCTGGTCCTGATTTTGGTTCACCGGATATGTCTTTCGATGTTGACT
  Nanopore Read 4
                   CTGGCGGAGCTGGTCCTGATTTTGGTTCACCGGATATGTCTTTCGATGTTGACTTCAGT
  Nanopore Read 5
                   CTGGCGGAGCTGGTCCTGATTTTGGTTCACCGGATATGTCTTTCGATGTTGACTTGAGT
Nanopore Consensus
                   GTGGTGGAGCTGGCCCTGATTCTGGTTCAGCGGATTCTTCTCTCGATATTGACTTGGGT
                   CTGGCGGAGCTGGTCCTGATTTTGGTTCACCGGATATGTCTTTCGATGTTGACTTGACT
  Illumina Read 1
                   CTGGCGGAGCTGGTCCTGATTTTGGTTCACCGGATATGTCTTTCGATGTTGACCTGAGT
  Illumina Read 2
                   CTGGCGGAGCTGGTCCTGATTTTGGTTCACCGGATATGTCTTTCGATGTTGACTT
   Illumina Read 3
  Illumina Road 4
  Illumina Read 5
  Illumina Read 6
                   GTGCTGCAGCTGGCCCTGATTCTGATTCAGCGCATTCTTCTCTCGATATTGACTTGGCT
  Illumina Read 7
                   GTGCTCTCGCTGGCCCTGATTCTCCTTCAGCGGATTCTTCTCCGATATTGACTTCGCT
  Illumina Read 8
                   Illumina Read 9
                   CTGCTGCAGCTGGCCCTGATTCTGCTTCAGCGGATTCTTCTCTCGATATTGACTTGGCT
                   CTGCTCGAGCTCGCCCTGATTCTGATTCAGCCGCATTCTTCTCTCGCTATTTGACTTCGCT
  Illumina Read 10
 Illumina Read 11
                   GTGCTGGAGCTGGCCCTGATTCTGATTCAGCGGATTCTTCTCTCGATATTGACT
 Illumina Read 12
                   GTGTATTAGCTGGCCCTGATTCTGGTTCAGCGGATTCTTTTCTCGATATTGACTTGGGT
 Illumina Read 13
                   CTGCTGCAGCTGGCCCTGATTCTGGTTCAGCGGATTCTTCTCTCGATATTGACTTTGGT
 Illumina Read 14
                   CTGCTGCAGCTGGCCCTGATTCTGGTTCAGCGGATTCTTCTCTTGATATTGACTTGGGT
 Illumina Read 15
                   CTGCTGCAGCTGGCCCTGATTCTGGTTCAGCGGATTCTTCTCTCGATATTGACTTGGCT
                   GTGCTGCAGCTGGCCCTGATTCTGATTCAGCGCATTCTTCTCTCGATATTGACTTGGCT
 Illumina Read 16
 Illumina Read 17
                   GTGCTGGAGCTGGCCCTGATTCTGATTCAGCGGATTCTTCTCTAGATATTGACTTGGGT
 Illumina Read 18
                   GTGCTGGAGCTGGCCCTGATTCTGATTCAGCGGATTCTTCTCTCGATATTGACT
 Illumina Read 19
                   CTCCTCCCCCCCCCCATTCTCCTTAAGCCGATTCTTCTCCCATATTCACTTAGGT
 Illumina Read 20
                   GTGCTGGAGCTGGCCCTGATTCTGATTCAGCGGATTCTTCTCTCGATATTGACTTGGGT
```

Reconstructing tandem duplications – problems with consensus

Next up: Performing variant calling with GATK

Next week's homework:

- 1. GATK "best practices" pipeline on Stickleback Illumina reads,
- 2. SV detection w/ PB reads