Exercise 9.9. Let $H \leq G$, the index of H is 2. Show that H is normal.

Proof. Since [G:H]=2, $G=H\cup gH=H\cup Hg$ where $g\notin H$. Also $H\cap gH=H\cap Hg=\varnothing$. Removing H from G we get gH=Hg. Informally, gH and Hg are the another half part of G.

Exercise 9.11. Prove that a quotient group of a cyclic group is cyclic.

Proof. For any cyclic group G and normal subgroup H, let $G = \langle g \rangle$ and $H = \langle g^n \rangle$ for some minimum $n \in \mathbb{N}$. We claim $G/H \approx Z_n$ or $G/H \approx G$ if n = 0 which is trivial.

We claim:

$$QH\rangle = G/H$$

Every element in $\langle gH \rangle$ is a coset of H, thus $\langle gH \rangle \subseteq G/H$.

Any element in G/H has form hH where $h \in G$, therefore $h = g^s$ for some s. Then $hH = g^sH \in \langle gH \rangle$.

We claim |gH| = n. $(gH)^n = g^nH$ where $g^n \in H$, so $g^nH = H$. Suppose $0 < m < n, g^mH = H$. Then $g^m \in H$ and $g^{\gcd(m,n)} \in H$ where $\gcd(m,n) \le m$ and $\gcd(m,n)$ divides n. But this contradict our assumption that n is minimum such that $\langle g^n \rangle = H$, because $\langle g^{\gcd(m,n)} \rangle = H$.

Thus, $\langle gH \rangle$ is cylic and order n, which is isomorphic to Z_n

Exercise 9.12. Prove that a quotient group of an Abelian group is abelian.

Proof. For any Abelian group G and normal subgroup H. For all aH and bH in G/H where $a \ b \in G$. (aH)(bH) = abH = baH = (bH)(aH).

Exercise 9.21. For any Abelian group G of order $p_0p_1 \cdots p_{n-1}$ where p_i are distinct primes. Shows that G is cyclic.

Proof. Since $|G| = p_0 p_1 \cdots p_{n-1}$, there are elements of each prime orders, say, $|g_0| = p_0, |g_1| = p_1 \cdots$. We claim $G = \langle g_0 \rangle \times \langle g_1 \rangle \times \cdots \times \langle g_{n-1} \rangle$.

They are all normal because G is Abelian, so the first property satisfied. Let $H = (\langle g_0 \rangle \langle g_1 \rangle \cdots \langle g_{i-1} \rangle) \cap \langle g_i \rangle$ for some i. H must be the subgroup of both $\langle g_0 \rangle \langle g_1 \rangle \cdots \langle g_{i-1} \rangle$ and $\langle g_i \rangle$, therefore, |H| divides $p_0 p_1 \cdots p_{i-1}$ and p_i . But all p's are distinct prime, so |H| must be 1, thus $H = \{e\}$. Then, since the product of two Abelian subgroups is also a subgroup, and the property we just proved,

it is easy to show
$$G = \langle g_0 \rangle \langle g_1 \rangle \cdots \langle g_{n-1} \rangle$$
 by $\forall H \ K \leq G, |HK| = \frac{|H||K|}{|H \cap K|}$

So G is the internal direct product of $\langle g_0 \rangle \times \langle g_1 \rangle \times \cdots \times \langle g_{n-1} \rangle$, which is isomorphic to $G' = \langle g_0 \rangle \oplus \langle g_1 \rangle \oplus \cdots \oplus \langle g_{n-1} \rangle$. And the order of $\langle g_i \rangle$ are relative primes, so G' is cyclic, so is G.

Exercise 9.41. Let H be proper subgroup of Q, the group of rational numbers under addition. Show that H is infinite index.

Proof. Since Q Abelian, we need to show Q/H is infinite. Suppose |Q/H| is some finite n, let $aH \in Q/H$ and $aH \neq H$, then $(aH)^n = (na)H = H$. But we found that $(\frac{a}{n})H \in Q/H$ since it is a coset of H, but $((\frac{a}{n})H)^n = aH$ which is not identity, contradict the fact that $\forall aH \in G/H, (aH)^n = H$

Another solution: $\forall x \in Q$, we have $xH \in Q/H$, if |Q/H| = n, then $(xH)^n = nxH = H \to nx \in H$. Consider $f(x) = nx : Q \to Q$, it is surjection, thus $Q \subseteq H$.

In fact, these solutions are the same, proving f is surjection is exactly finding f(x/n) = x, which we done in the first proof.

Exercise 9.47. Show that D_{13} is isomorphic to $Inn(D_{13})$. Moreover, show that any group G where $Z(G) = \{e\}$, is isomorphic to Inn(G)

Proof. By Theorem 9.4, $G/Z(G) \approx \operatorname{Inn}(G)$. Since $Z(G) = \{e\}$, $G/Z(G) = G/\{e\} \approx G$, thus $G \approx \operatorname{Inn}(G)$.

Exercise 9.57. Show that the intersection of two normal subgroups of G is also a normal subgroup of G.

Proof. Let $H \triangleleft G$ and $K \triangleleft G$, we need to show $(H \cap K) \triangleleft G$, or equivalently, $\forall g \in G, g(H \cap K)g^{-1} \subseteq (H \cap K)$.

For any $h \in H \cap K$, since H is normal, there is a h' such that $ghg^{-1} = h'gg^{-1}$. Similarly, there is a h'' such that $ghg^{-1} = h''gg^{-1}$. By cancellation, $h' \in H = h'' \in K$, thus $h' = h'' \in H \cap K$, $ghg^{-1} = h'gg^{-1} = h' \in H \cap K$.

Moreover, we can proof that for n normal subgroups of G, the intersection of those subgroups is also a normal subgroup of G.

We induction on n:

- Base: The intersection of 1 normal subgroup is itself, and it is a normal subgroup of G.
- Induction: We have the following induction hypothesis:

The intersection of n-1 normal subgroups is a normal subgroup of G

And we need to show:

The intersection of n normal subgroups is a normal subgroup of G

Let H be the intersection of n-1 normal subgroups, and we know it is normal in G. Let K be the nth normal subgroup, we already prove that $H \cap K$ is also a normal subgroup of G.

Exercise 9.59. Let $N \triangleleft G$ and N is cyclic. Show that any subgroup of N is normal in G.

Proof. Suppose $M = \langle n^k \rangle$ is a subgroup of N, then M is cyclic. For any $g \in G$, $n^{ks} \in M$, $gn^{ks}g^{-1} = (gn^sg^{-1})^k$. By N is normal, $gn^sg^{-1} = n^t$ for some $n^t \in N$. Then $(gn^sg^{-1})^k = (n^t)^k = n^{tk} = (n^k)^t \in M$

Exercise 9.61. Let $H \triangleleft G$ and G a finite group. Let $x \in G$ and |x| is coprime to |G/H|. Show that $x \in H$.

Proof. Let $xH \in G/H$, since G finite, so is G/H. So we suppose the order of |xH| is n. If n doesn't divide |x|, then |x| = nq + r. We have $(xH)^{|x|} = (xH)^{nq+r} = (xH)^r = H$ where r < n, which contradict |xH| = n. So n has to divide |x|, but n also divides |G/H| and we know |x| is coprime to |G/H|. Thus n has to be 1, which implies $xH = H \to x \in H$.

Exercise 9.62. Let G be a group of order pm where p is prime, p > m. If H is a subgroup of G of order p, prove that H is normal.

Proof. We first show H is the only subgroup of G of order p. Let K be another subgroup of G of order p. Since $H \neq K$, we have $H \cap K = \{e\}$. Then $|HK| = \frac{|H||K|}{|H \cap K|} = p^2$ where $HK \subseteq G$. But $p^2 > pm$ since p > m.

For any $x \in G$, ϕ_x sends H to a subgroup of order p in G, but we already prove that H is the only subgroup of G, thus, for any $h \in H$, $\phi_x(h) = xhx^{-1} \in H$.

Exercise 9.63. If a group of order 24 has more than one subgroups of order 3. Show that none of them is normal.

Proof. Suppose $H \triangleleft G$, K is a distinct subgroup of G, and |H| = |K| = 3. By the example of Theorem 9.1, HK is a subgroup of G. But now $|HK| = \frac{|H||K|}{|H \cap K|}$, since $H \neq K$ and |H| = |K| = 3, $|H \cap K| = 1$ and |HK| = 3*3 = 9. Now, |HK| must divides |G| = 24 which doesn't.

Exercise 9.66. Suppose G has a subgroup of order n. Prove that the intersection of all subgroups of order n of G is normal in G.

Proof. We need to show: Let $\phi: G \to G$ an isomorphism, H be the intersection of all subgroups of G of order n, shows that $\phi(H) = \{ \phi(h) \mid h \in H \}$ is the intersection of all subgroups of \overline{G} of order n.

Let $H = H_0 \cap H_1 \cap \cdots \cap H_m$, then $\phi(H) = \phi(H_0 \cap H_1 \cap \cdots \cap H_m) = (\text{since } \phi \text{ is injective}) \ \phi(H_0) \cap \phi(H_1) \cap \cdots \cap \phi(H_m)$. Let K be a subgroup of \overline{G} of order n. Since ϕ is an isomorphism, there is a H_i such that $\phi(H_i) = K$. Thus, $\phi(H)$ is the intersection of all subgroups of \overline{G} of order n.

Now, taking automorphism $\phi_g(h) = ghg^{-1}$, we can prove $\phi_g(H) = H$, then $\forall g \in G, ghg^{-1} \in \phi_g(H) = H$ which implies normal.

Exercise 9.67. If G is non-Abelian, show that Aut(G) is not cyclic.

Proof. We consider the converse of our goal:

If
$$Aut(G)$$
 is cyclic, show that G is Abelian.

For any $a \ b \in G$, consider the automorphisms $T_{ab}(g) = abg$. $T_{ab}(g) = (ab)g = a(bg) = T_a(T_b(g))$. Since Aut(G) is cyclic and T_a , T_b are automorphisms, we can write T_a and T_b in ϕ^i and ϕ^j for some i and j where $Aut(G) = \langle \phi \rangle$. Then $T_{ab}(g) = T_a(T_b(g)) = \phi^i(\phi^j(g)) = \phi^{i+j}(g) = \phi^{j+i}(g) = \phi^j(\phi^i(g)) = T_b(T_a(g)) = T_{ba}(g)$. We take g = e, $T_{ab}(e) = T_{ba}(e) \rightarrow ab = ba$.

Exercise 9.68. Let $|G| = p^n m$ where p is prime and p is coprime to m. Suppose H is a normal subgroup of G of order p^n , if K is a subgroup of G of order p^k , show that $K \subseteq H$.

Proof. Since H is normal, $|G/H| = \frac{|G|}{|H|} = m$. For any $a \in K$, $(aH)^{p^k} = a^{p^k}H = eH = H$, we know |aH| divides p^k . Also, since $aH \in G/H$, |aH| divides |G/H| = m. Thus |aH| divides p^k and m. By p is coprime to m and p is prime, we know p^k is also coprime to m, so $|aH| = 1 \rightarrow a \in H$.

Exercise 9.71. If |G| = 30 and |Z(G)| = 3, which group is G/Z(G) isomorphic to? What about |Z(G)| = 5? What about |G| = 2pq where p and q are distinct odd primes?

Proof. First, we know the group of order 2p where p is prime is isomorphic to Z_{2p} or D_p .

For |G/Z(G)| = 30/3 = 10. Suppose G/Z(G) is cyclic, by Theorem 9.3, G is Abelian, but then |G = Z(G)| = 30. So G/Z(G) can not be cyclic, thus G/Z(G) is isomorphic to D_3 Similarly, G/Z(G) is isomorphic to D_5 if |Z(G)| = 5.

Moreover, suppose |G| = 2pq and |Z(G)| = p. If G/Z(G) is cyclic, then |Z(G)| = 2pq which is not cool. So G/Z(G) is isomorphic to D_q .

Exercise 9.72. If $H \triangleleft G$ and |H| = 2, prove that $H \subseteq Z(G)$.

Proof. Since |H| = 2, we suppose the only non-identity element in H is h. For any $g \in G$, $gh \in gH$, since H is normal, we know there is an h' such that gh = h'g. Suppose h' = e, then gh = g give us h = e which contradicts our assumption. So h' has to be h, then gh = hg, $h \in Z(G)$.

Exercise 9.74. Let $H \triangleleft G$ and the index of H = 2. Show that H contains all the elements of odd order.

Proof. Suppose $g \in G$ is odd order. Then by $(gH)^|g| = H$ we know |gH| divides |g| where |gH| might be 1 or 2. Since |g| is odd, so the only choice is $|gH| = 1 \rightarrow gH = H \rightarrow g \in H$.

Exercise 9.77. Show that A_5 has no normal subgroup of order 12.

Proof. Suppose $H \triangleleft A_5$ and |H| = 12. Then $|A_5/H| = 5$.

Exercise 9.81. Let $g \in G$ and $H \triangleleft G$, if |g|iscoprime to |H|, show that |gH| = |g|.

Proof. Suppose |gH| = n, then $g^n \in H$. Let $|g^n| = m$ which divides |H|, then $(g^n)^m = e$ and |g| divides nm. Since |g| is coprime to |H| and m divides H, |g| is coprime to |m|, so |g| divides n.

Another solution: Since $g^n \in \langle g \rangle$, $|g^n|$ divides |g|. Also, by $g^n \in H$, $|g^n|$ divides |H|. Then by |g| is coprime to |H|, $|g^n| = 1 \rightarrow g^n = e$, Then |g| divides |n|.

Exercise 9.84. For any $n \geq 3$, prove that D_{2n} can be expressed as an internal direct product of D_n and a subgroup of order 2 iff n is odd.

Proof. Suppose $D_{2n} = D_n \times H$ for some normal subgroup H of order 2. Since |H| = 2, $H \subseteq Z(D_{2n})$, we know $Z(D_{2n}) = \{R_0, R_{180}\}$, thus $H = Z(D_{2n})$. If n is even, $R_{180} \in D_n$, and $R_{180} \in H$ since $H = Z(D_{2n})$. $D_n \cap H \neq \{e\}$ which contradicts the requirement of internal direct product.

If n is odd, we claim $D_{2n} = D_n \times \{R_0, R_{180}\}$. It is easy to show $\{R_0, R_{180}\}$ is normal, so we focus on D_n . Let $a \in D_{2n}$ and $b \in D_n$, we need to show $aba^{-1} \in D_n$.

- a and b are rotations, $aba^{-1} = aa^{-1}b = b \in D_n$.
- a is reflection and b is rotation, then ab is reflection, $(ab)a^{-1} = (b^{-1}a^{-1})a^{-1} = b^{-1} \in D_n$.
- a is rotation and b is reflection, then ab is reflection, $(ab)a^{-1} = b^{-1}a^{-1}a^{-1}$, we need to show $a^{-2} \in D_n$. Let Z_{2n} the rotations of D_{2n} and Z_n the rotations of D_n , since Z_{2n} is Abelian (or the index of Z_n is 2), $Z_n \triangleleft Z_{2n}$, $|Z_{2n}/Z_n| = \frac{2n}{n} = 2$ Then $(a^{-1}Z_n)^2 = a^{-2}Z_n = Z_n$ which implies $a^{-2} \in Z_n$.

Thus, by $b^{-1} \in D_n$ and $a^{-1}a^{-1} \in D_n$, $b^{-1}a^{-1}a^{-1} \in D_n$.

• a and b are reflections, let $H \in D_n$ and H is reflection. Then we can write a and b in RH and R'H for some R and R' which are rotations. Then

$$aba^{-1} = RHR'H(RH)^{-1}$$

 $= RHR'HHR^{-1}$ (a is reflection)
 $= RHR'R^{-1}$
 $= R(HR')R^{-1}$

where $H \in D_n$ and $R' \in D_n$, this is the last case we just proved.

Then $\forall a \in D_{2n}, aD_na^{-1} \subseteq D_n \to D_n \triangleleft D_{2n}.$

And, I just realized that the index of D_n is 2, then $D_n \triangleleft D_{2n}$. LOL. Since n is odd, $R_{180} \notin D_n$, $D_n \cap \{R_0, R_{180}\} = \{R_0\}$.

$$|D_n\{R_0, R_{180}\}| = \frac{|D_n||\{R_0, R_{180}\}|}{|D_n \cap \{R_0, R_{180}\}|} = (2n) \times 2 = |D_{2n}|, \text{ thus } D_n\{R_0, R_{180}\} = D_{2n}.$$

Exercise 9.85. Suppose G is an Abelian group and H_0, H_1, \dots, H_{k-1} are subgroups of G such that for any $g \in G$ is uniquely expressible in the form $h_0h_1 \cdots h_{k-1}$ where $h_i \in H_i$. Prove that $G = H_0 \times H_1 \times \cdots \times H_{k-1}$.

Proof. It is trivial that H_i are normal and the product of them is exactly G. We need to show $\forall i, (H_0H_1\cdots H_i)\cap H_{i+1}=\{e\}$. Suppose $g\in (H_0H_1\cdots H_i)\cap H_{i+1}$ and $g\neq e$. Then g can be expressed in form $h_0h_1\cdots h_i$ and h_{i+1} which contradict the assumption.

Exercise 9.86 (Normalizer). Let G be a group and H be a subgroup of G. Define $N(H) = \{x \in G \mid xHx^{-1} = H\}$. Prove that N(H) is a subgroup of G.

Proof. By two-steps:

- $e \in N(H)$ since H = H.
- For any $a \ b \in N(H)$, $abHab^{-1} = abHb^{-1}a^{-1} = aHa^{-1} = H$.
- For any $a \in N(H)$, $H = a^{-1}aHa^{-1}a = a^{-1}Ha$.

Exercise 9.89. Let G be a group of order pm where p is prime and p is coprime to m. Suppose G has a normal subgroup of p, show that it is the only subgroup of order p.

Proof. Let $H \triangleleft G$ and |H| = p, if $K \leq G$, |K| = p and $H \neq K$. Then HK is a subgroup of G since H is normal. It is easy to show $H \cap K = \{e\}$ since they are order p. Thus $|HK| = |H||K| = p^2$, and since HK is a subgroup of G, |HK| divides G, that is, p^2 divides pm, which implies p divides m, but p is coprime to m.

Exercise 9.90. For any group G, show that $Inn(G) \triangleleft Aut(G)$.

Proof. Let $\phi \in \text{Aut}(G)$ and $\phi_g \in \text{Inn}(G)$ for some $g \in G$.

$$(\phi \phi_g \phi^{-1})(x)$$

$$= \phi(\phi_g(\phi^{-1}(x)))$$

$$= \phi(g\phi^{-1}(x)g^{-1})$$

$$= \phi(g)\phi(\phi^{-1}(x))\phi(g^{-1})$$

$$= \phi(g)x\phi(g)^{-1}$$

$$= \phi_{\phi(g)} \in \text{Inn}(G)$$

Exercise 9.91. Let G be an Abelian group of order 2^n where n is positive integer. If G has exactly one element of order 2, show that G is cyclic.

Proof. Induction on n. If n = 1, |G| = 2, it is obviously that G is cyclic. So we focus on induction step.

Let $g \in G$ be the element of order 2, $H = \langle g \rangle$. Since G is Abelian, G/H is also Abelian. So there is an element aH of order 2 in G/H. We will prove that it is the unique element of order 2.

Suppose $bH \in G/H$ and |bH| = 2. Since $(aH)^2 = H$, we know $a^2 \in H$. If $a^2 = e$, then |a| = 1 or 2, both cases indicate that $a \in H \to |aH| = 1$, so $a^2 = g$. Similarly, $b^2 = g$. Then $a = ga^{-1}$ and $b = gb^{-1}$. By $a^{-1}b = ag^{-1}gb^{-1} = ab^{-1}$, we know $(a^{-1}b)^2 = a^{-1}bab^{-1} = a^{-1}abb^{-1} = e$, that is, $|a^{-1}b| = 1$ or $2 \to a^{-1}b \in H \to aH = bH$.

Since G is Abelian, so is G/H, and $|G/H| = 2^{n-1}$ where n-1 is positive since n > 1. And we proved G/H has exactly one element of order 2, by induction hypothesis, G/H is cyclic.

Consider $aH \in G/H$ that $|aH| = 2^{n-1}$. Then $a^{2^{n-1}} \in H$. If $a^{2^{n-1}} = e$, $(a^{2^{n-2}})^2 = a^{2^{n-2} \times 2} = a^{2^{n-1}} = e$. This implies $|a^{2^{n-2}}| = 1$ or 2, both cases indicate that $(aH)^{2^{n-2}} = H$ which contradicts $|aH| = 2^{n-1}$. Thus $a^{2^{n-1}} = g$ and $a^{2^n} = a^{2^{n-1} \times 2} = (a^{2^{n-1}})^2 = g^2 = e$. Since $|aH| = 2^{n-1}$ implies $|a| \ge 2^{n-1}$ and we proved that $|a| \ne 2^{n-1}$, $|a| = 2^n$, G is cyclic.

We can generalize the induction step and show that G is cyclic if G has exactly $\phi(p) = p - 1$ element of order p where p is prime.

Exercise 9.92. Let G be finite Abelian group of order mn, where m is coprime to n. Define $G^d = \{x \in G \mid x^d = e\}$, show that $G = G^m \times G^n$.

Proof. We first show G^m and G^n are subgroups. By two-steps:

- $e \in G^m$
- $\forall x \ y \in G^m, (xy)^m = x^m y^m = e$
- $\forall x \in G^m, (x^{-1})^m = x^{-m} = (x^m)^{-1} = e$

Same for G^n .

Then we show G^m and G^n are normal. For any $g \in G$, $x \in G^m$. $(gxg^{-1})^m = gx^mg^{-1} = geg^{-1} = e \to gxg^{-1} \in G^m$, same for G^n .

Then we show $G^m \cap G^n = \{e\}$. Let $g \in G$ and $g^m = g^n = e$, then |g| divides m and n, since m is coprime to n, $|g| = 1 \rightarrow g = e$.

Finally we show that $G = G^m G^n$. For any $g \in G$, |g| = d. d must divides mn. Let $s = \gcd(m, d)$ and $t = \gcd(n, d)$. In other words, we separate d into two parts: the factors of m and the factors of n. Then $g^d = g^{st} = g^s g^t$ where $(g^s)^n = e$ since t divides n, and $(g^t)^m = e$ since s divides m. Then $g^s g^t = e \to g \in G^m G^n$. Thus $G \subseteq G^m G^n$.