Fitting a Model: Maximum Likelihood Estimation (MLE)

Florian M. Schönleitner

Recap: generative modeling

Last talk:

- ✓ Building a model
- √ Simulating data

This talk:

? Fitting the model to observed data

Recap: Bayesian workflow

MLE: maximum likelihood estimator

Principle:

Find the parameters θ for which the acquired data Y is most likely under the model m.

$$\theta_{MLE} = \underset{\theta \in \Theta}{\operatorname{arg\,max}} \quad \underbrace{p(Y \mid \theta, m)}_{\text{Likelihood}}$$

where

$$p(Y \mid \theta, m) = p(y_{1...T} \mid \theta, m)$$

m	model
Θ	parameter space
heta	model parameters
$ heta_{MLE}$	mle estimate of $ heta$
Y	observed dataset
y_t	single observation
T	number of trials

Example: slot machines

Understand how people learn to maximize their rewards in a case where the most rewarding choice is initially unknown.

$$p(||\hat{a}|||\hat{a}|) = 0.8$$

$$p(||\hat{a}|||) = 0.2$$

Observations

Dataset:

Choice y_t in each trial t

$$Y = (y_1, \dots, y_T)$$

choice

Experiment

Specifying the likelihood function

Model 1

Random choice

$$p_t^1 = b$$

$$p_t^0 = 1 - b$$

$$0 \le b \le 1$$

$$\theta = \{b\}$$

For a single trial t:

$$Y \stackrel{iid}{=} \{y_1, \dots, y_T\}$$

For all trials 1 ... T:

$$p(y_t \mid \theta, m) = \theta^{y_t} (1 - \theta)^{(1 - y_t)}$$
$$= Bernoulli$$

$$p(Y \mid \theta, m) = p(y_{1...T} \mid \theta, m) = \prod_{t=1}^{T} \theta^{y_t} (1 - \theta)^{(1 - y_t)}$$

Maximising the likelihood function

Likelihood function

$$p(Y \mid \theta, m) = \prod_{t=1}^{T} p(y_t \mid \theta, m)$$

Analytical solution

Is the likelihood tractable?
Is the likelihood differentiable?

⇒ Solve $\frac{d}{d\theta}p(Y \mid \theta, m) \stackrel{!}{=} 0$ and find maximum

Numerical solution

Use numerical optimization routines available in different software (MATLAB, Python, Julia, etc.)

 \rightarrow Implement $p(Y \mid \theta, m)$ and find the maximum

Maximising the likelihood function Analytic solution

$$p(Y \mid \theta, m) = \prod_{t=1}^{T} \theta^{y_t} (1 - \theta)^{(1 - y_t)}$$

$$\log p(Y \mid \theta, m) = \log \prod_{t=1}^{T} \theta^{y_t} (1 - \theta)^{(1 - y_t)}$$

$$= \sum_{t=1}^{T} \log \theta^{y_t} (1 - \theta)^{(1 - y_t)}$$

1. Change product to sum by log-transformation:

$$\log\left(\prod_{t} x_{t}\right) = \sum_{t} \log x_{t}$$

Maximising the likelihood function Analytic solution

$$p(Y \mid \theta, m) = \prod_{t=1}^{T} \theta^{y_t} (1 - \theta)^{(1 - y_t)}$$

$$\log p(Y \mid \theta, m) = \log \prod_{t=1}^{T} \theta^{y_t} (1 - \theta)^{(1 - y_t)}$$

$$= \sum_{t=1}^{T} \log \theta^{y_t} (1 - \theta)^{(1 - y_t)}$$

$$= \sum_{t=1}^{T} y_t \log(\theta) + (1 - y_t) \log(1 - \theta)$$

1. Change product to sum by log-transformation:

$$\log\left(\prod_{t} x_{t}\right) = \sum_{t} \log x_{t}$$

2. Logarithm of a power: $\log(\sqrt{a}) = 2 \log a$

$$\log(x^a) = a \log x$$

Maximising the likelihood function Analytic solution

$$\frac{d}{d\theta} \sum_{t=1}^{T} y_t \log(\theta) + (1 - y_t) \log(1 - \theta) \stackrel{!}{=} 0$$

$$\left(\frac{d}{d\theta}\log(\theta)\right)\left(\sum_{t=1}^T y_t\right) + \left(\frac{d}{d\theta}\log(1-\theta)\right)\left(\sum_{t=1}^T 1 - y_t\right) \stackrel{!}{=} 0$$

$$\frac{1}{\theta(1-\theta)} \left(\sum_{t=1}^{T} y_t - \theta \sum_{t=1}^{T} y_t - \theta T + \theta \sum_{t=1}^{T} y_t \right) \stackrel{!}{=} 0$$

$$\sum_{t=1}^{T} y_t - \theta T \stackrel{!}{=} 0$$

MLE estimate is arithmetic mean of data!

1. Easy to compute: simple optimisation problem

- 1. Easy to compute: simple optimisation problem
- 2. Interpretable: often θ_{MLE} is intuatively interpretable wrt. model parameters (see MLE of random choice model)

- 1. Easy to compute: simple optimisation problem
- 2. Interpretable: often θ_{MLE} is intuatively interpretable wrt. model parameters (see MLE of random choice model)
- 3. Asymptotic properties: consistency (true parameter value recovered) and efficiency (lowest possible parameter variance)

- 1. Easy to compute: simple optimisation problem
- 2. Interpretable: often θ_{MLE} is intuatively interpretable wrt. model parameters (see MLE of random choice model)
- 3. Asymptotic properties: consistency (true parameter value recovered) and efficiency (lowest possible parameter variance)
- **4.** Invariant to reparameterization: if $\theta_{MLE} = \text{MLE}(\theta)$ for $\theta \in \Theta$, then $g(\theta_{MLE}) = \text{MLE}(g(\theta))$ for $g: \mathbb{R} \to \mathbb{R}$

1. Point estimate: θ_{MLE} is a point estimate \rightarrow no representation of uncertainty

- 1. Point estimate: θ_{MLE} is a point estimate \rightarrow no representation of uncertainty
- 2. Existence & uniqueness: The MLE might not be unique or even non existent, depending on properties of the likelihood function and parameter space

- 1. Point estimate: θ_{MLE} is a point estimate \rightarrow no representation of uncertainty
- 2. Existence & uniqueness: The MLE might not be unique or even non existent, depending on properties of the likelihood function and parameter space
- Overfitting: MLE is limited to a finite set of observed datapoints

3. Overfitting: MLE is limited to observed data but does not (explicitly) take into account prior information

Example

Polynomial model of order P with Gaussian noise

$$y=\theta_0+\theta_1x+\cdots+\theta_Px^P+\epsilon=x\pmb{\theta}+\epsilon$$
 where
$$\epsilon\sim\mathcal{N}(0,\sigma^2)$$

Maximum likelihood vs. full Bayesian inference

$$p(\theta \mid y, m) = \frac{p(y \mid \theta, m)p(\theta, m)}{p(y \mid m)}$$

Maximum-a-posteriori (MAP) estimation:

- → Point estimate of the posterior
- → Under a flat prior MAP=MLE

Variational Bayes (VB), sampling-based (MCMC) techniques

→ Full posterior densities

Acknowledgement

Special thanks to my TNU colleagues

Stefan Frässle

Katharina Wellstein

Jakob Heinzle

Klaas Enno Stephan

QUESTIONS?

Schoenleitner@biomed.ee.ethz.ch

https://github.com/computational-psychiatry-course/cpc2024

https://www.linkedin.com/in/florian-schönleitner-34201210a/