Fifth Chapter

Back on Recursion

Avoiding Recursion
 Non-Recursive Form of Tail Recursion
 Transformation to Tail Recursion
 Generic Algorithm Using a Stack

Back-tracking

Conclusion on Recursion

Combinatorial Search and Optimization

Large class of Problems with similar algorithmic approach

- Solutions are really numerous; A set of constraints make some solution invalids
- Combinatorial Search → look for any valid solution Combinatorial Optimization → look for the solution maximizing a function

Examples

- Open the lock: Find the right 4-digits combination out of 10000
- Knapsac: Ali-Baba searches object set fitting in bag maximizing the value
- Minimum Spanning Tree of a given graph
- Traveling Salesman: visit *n* cities in order minimizing the total distance

First Resolution Approach: Exhaustive Search

- Study every solutions
 - → Test all lock combinations
 - \sim Enumerate all possible knapsack contents + get max value
- This often reveals to be exponential and thus infeasible

Guessing the right number can become difficult that way

- ▶ $0001 \rightsquigarrow no$; $0002 \rightsquigarrow no$; $0003 \rightsquigarrow no$; $0004 \rightsquigarrow no$; $0005 \rightsquigarrow no$; Boooring
- Let's more information: length of correct suffix instead of yes/no answers $0001 \rightarrow 0$; $0002 \rightarrow 0$; $0004 \rightarrow 1$; $0024 \rightarrow 2$; $0424 \rightarrow 3$; $5424 \rightarrow 4$, bingo

Guessing the right number can become difficult that way

- ▶ $0001 \rightsquigarrow no$; $0002 \rightsquigarrow no$; $0003 \rightsquigarrow no$; $0004 \rightsquigarrow no$; $0005 \rightsquigarrow no$; Boooring
- Let's more information: length of correct suffix instead of yes/no answers $0001 \rightsquigarrow 0$; $0002 \rightsquigarrow 0$; $0004 \rightsquigarrow 1$; $0024 \rightsquigarrow 2$; $0424 \rightsquigarrow 3$; $5424 \rightsquigarrow 4$, bingo

This leads to a much more efficient algorithm:

Guess each position by testing every digit in that pos until response increases

Guessing the right number can become difficult that way

- ▶ $0001 \rightsquigarrow no$; $0002 \rightsquigarrow no$; $0003 \rightsquigarrow no$; $0004 \rightsquigarrow no$; $0005 \rightsquigarrow no$; Boooring
- Let's more information: length of correct suffix instead of yes/no answers $0001 \rightsquigarrow 0$; $0002 \rightsquigarrow 0$; $0004 \rightsquigarrow 1$; $0024 \rightsquigarrow 2$; $0424 \rightsquigarrow 3$; $5424 \rightsquigarrow 4$, bingo

This leads to a much more efficient algorithm:

- Guess each position by testing every digit in that pos until response increases
- That's even easy to write by mixing recursion with a for loop:

```
search(current,pos,len): // initial values: search(\{0,0,0,0\}, 0, 0)

for n \in [0;9] do

put n into current at position pos

if try(current) > len then search(current,pos+1, try(current))

else // no luck. Let's test the next value of n
```

Guessing the right number can become difficult that way

- ▶ $0001 \rightsquigarrow no$; $0002 \rightsquigarrow no$; $0003 \rightsquigarrow no$; $0004 \rightsquigarrow no$; $0005 \rightsquigarrow no$; Boooring
- Let's more information: length of correct suffix instead of yes/no answers $0001 \rightsquigarrow 0$; $0002 \rightsquigarrow 0$; $0004 \rightsquigarrow 1$; $0024 \rightsquigarrow 2$; $0424 \rightsquigarrow 3$; $5424 \rightsquigarrow 4$, bingo

This leads to a much more efficient algorithm:

- Guess each position by testing every digit in that pos until response increases
- ► That's even easy to write by mixing recursion with a for loop:

```
search(current,pos,len): // initial values: search(\{0,0,0,0\}, 0, 0)

for n \in [0;9] do

put n into current at position pos

if try(current) > len then search(current,pos+1, try(current))

else // no luck. Let's test the next value of n
```

This is Backtracking

- ightharpoonup Tentative choices + cut branches leading to invalid solutions (backtrack)
- ightharpoonup Restrict study to valid solutions only ightharpoonup if bag is full, don't stuff something else
- ► Also factorize computations ~ only sum up once the N first objects' value

Characterization

- Search for a solution in given space:
 - Choice of a (valid) partial solution
 - Recursive call for the rest of the solution
- Some built solutions are dead-ends
 (no way to build a valid solution with choices made so far)
- Backtracking then mandatory for another choice
- ► General Schema: Recursive Call within an Iteration

- Sets of vertices not interconnected by any graph edge
- ▶ <u>Init</u>: set of 1 element; Algo: increase size as much as possible then backtrack

Characterization

- Search for a solution in given space:
 - Choice of a (valid) partial solution
 - Recursive call for the rest of the solution
- Some built solutions are dead-ends
 (no way to build a valid solution with choices made so far)
- Backtracking then mandatory for another choice
- General Schema: Recursive Call within an Iteration

First example: Independent Sets

- Sets of vertices not interconnected by any graph edge
- ▶ <u>Init</u>: set of 1 element; Algo: increase size as much as possible then backtrack

▶ {1}

Characterization

- Search for a solution in given space:
 - Choice of a (valid) partial solution
 - Recursive call for the rest of the solution
- Some built solutions are dead-ends
 (no way to build a valid solution with choices made so far)
- Backtracking then mandatory for another choice
- ► General Schema: Recursive Call within an Iteration

First example: Independent Sets

- Sets of vertices not interconnected by any graph edge
- ▶ <u>Init</u>: set of 1 element; Algo: increase size as much as possible then backtrack

► {1}, {1,3}

Characterization

- Search for a solution in given space:
 - Choice of a (valid) partial solution
 - Recursive call for the rest of the solution
- Some built solutions are dead-ends
 (no way to build a valid solution with choices made so far)
- Backtracking then mandatory for another choice
- General Schema: Recursive Call within an Iteration

First example: Independent Sets

- Sets of vertices not interconnected by any graph edge
- ▶ <u>Init</u>: set of 1 element; Algo: increase size as much as possible then backtrack

► {1}, {1,3}. Stuck. Remove 3. {1,6}.

Characterization

- Search for a solution in given space:
 - Choice of a (valid) partial solution
 - Recursive call for the rest of the solution
- Some built solutions are dead-ends
 (no way to build a valid solution with choices made so far)
- Backtracking then mandatory for another choice
- General Schema: Recursive Call within an Iteration

First example: Independent Sets

- Sets of vertices not interconnected by any graph edge
- ▶ <u>Init</u>: set of 1 element; Algo: increase size as much as possible then backtrack

► {1}, {1,3}. Stuck. Remove 3. {1,6}. Stuck. Removing 6 is not enough, remove everything.

Characterization

- Search for a solution in given space:
 - Choice of a (valid) partial solution
 - Recursive call for the rest of the solution
- Some built solutions are dead-ends
 (no way to build a valid solution with choices made so far)
- Backtracking then mandatory for another choice
- ► General Schema: Recursive Call within an Iteration

- Sets of vertices not interconnected by any graph edge
- ▶ <u>Init</u>: set of 1 element; Algo: increase size as much as possible then backtrack

- ► {1}, {1,3}. Stuck. Remove 3. {1,6}. Stuck. Removing 6 is not enough, remove everything.
- **▶** {2}

Characterization

- Search for a solution in given space:
 - Choice of a (valid) partial solution
 - Recursive call for the rest of the solution
- Some built solutions are dead-ends
 (no way to build a valid solution with choices made so far)
- Backtracking then mandatory for another choice
- ► General Schema: Recursive Call within an Iteration

- Sets of vertices not interconnected by any graph edge
- ▶ <u>Init</u>: set of 1 element; Algo: increase size as much as possible then backtrack

- ► {1}, {1,3}. Stuck. Remove 3. {1,6}. Stuck. Removing 6 is not enough, remove everything.
- **▶** {2}, {2,4}

Characterization

- Search for a solution in given space:
 - Choice of a (valid) partial solution
 - Recursive call for the rest of the solution
- Some built solutions are dead-ends
 (no way to build a valid solution with choices made so far)
- Backtracking then mandatory for another choice
- General Schema: Recursive Call within an Iteration

- Sets of vertices not interconnected by any graph edge
- ▶ <u>Init</u>: set of 1 element; Algo: increase size as much as possible then backtrack

- ► {1}, {1,3}. Stuck. Remove 3. {1,6}. Stuck. Removing 6 is not enough, remove everything.
- ► {2}, {2,4}, {2,4,5}

Characterization

- Search for a solution in given space:
 - Choice of a (valid) partial solution
 - Recursive call for the rest of the solution
- Some built solutions are dead-ends
 (no way to build a valid solution with choices made so far)
- Backtracking then mandatory for another choice
- General Schema: Recursive Call within an Iteration

- Sets of vertices not interconnected by any graph edge
- ▶ <u>Init</u>: set of 1 element; Algo: increase size as much as possible then backtrack

- ► {1}, {1,3}. Stuck. Remove 3. {1,6}. Stuck. Removing 6 is not enough, remove everything.
- \triangleright {2}, {2,4}, {2,4,5} (Stuck; remove 5 then 4) {2,5}

Characterization

- Search for a solution in given space:
 - Choice of a (valid) partial solution
 - Recursive call for the rest of the solution
- Some built solutions are dead-ends
 (no way to build a valid solution with choices made so far)
- Backtracking then mandatory for another choice
- General Schema: Recursive Call within an Iteration

- Sets of vertices not interconnected by any graph edge
- ▶ <u>Init</u>: set of 1 element; Algo: increase size as much as possible then backtrack

- ► {1}, {1,3}. Stuck. Remove 3. {1,6}. Stuck. Removing 6 is not enough, remove everything.
- \triangleright {2}, {2,4}, {2,4,5} (Stuck; remove 5 then 4) {2,5}
- ► {3}, {3,4}, {3,4,5}, {3,5}; {4}, {4,5}; {5}, {6}

Algorithm Computation Time

Solution Tree of this Algorithm

- Traverse every nodes (without building it explicitly)
- Amount of algorithm steps = amount of solutions
- Let *n* be amount of nodes

Amount of solutions for a given graph?

- ▶ Empty Graph (no edge) $\sim I_n = 2^n$ independent sets
- Full Graph (every edges) $\sim I_n = n+1$ independent sets
- On average $\rightsquigarrow I_n = \sum_{k=0}^{\infty} {k \choose n} 2^{-k(k-1)/2}$

n	2	3	4	5	10	15	20	30	40
I_n	3,5	5,6	8,5	12,3	52	149,8	350,6	1342,5	3862,9
2 ⁿ	4	8	16	32	1024	32768	1048576	1073741824	1099511627776

- \triangleright Backtracking algorithm traverses I_n nodes on average
- \triangleright An exhaustive search traverses 2^n nodes

Other example: *n* queens puzzle

Goal:

Put n queens on a $n \times n$ board so than none of them can capture any other

Algorithm:

- ▶ Put a queen on first line There is *n* choices, any implying constraints for the following
- Recursive call for next line

Other example: *n* queens puzzle

Goal:

ightharpoonup Put n queens on a $n \times n$ board so than none of them can capture any other

Algorithm:

- Put a queen on first line
 There is n choices, any implying constraints for the following
- Recursive call for next line

Pseudo-code put_queens(int line, board)

```
If line > line_count, return board (success)
```

- \forall cell \in line,
 - Put a queen at position cell × line of board
 - ► If conflict, then return (stopping descent failure)
 - ► (else) call put_queens(ligne+1, board ∩ {cell, line})
 - ⇒ Recursive Call within a Loop

► At each step of recursion, iterate on differing solutions

- At each step of recursion, iterate on differing solutions
- ► Each choice induces impossibilities for the following

- ► At each step of recursion, iterate on differing solutions
- ► Each choice induces impossibilities for the following
- ► For each iteration, one descent

- At each step of recursion, iterate on differing solutions
- ► Each choice induces impossibilities for the following
- For each iteration, one descent
- When stuck, climb back

- ► At each step of recursion, iterate on differing solutions
- Each choice induces impossibilities for the following
- ► For each iteration, one descent
- When stuck, climb back (and descent in following iteration)

- ► At each step of recursion, iterate on differing solutions
- Each choice induces impossibilities for the following
- For each iteration, one descent
- When stuck, climb back (and descent in following iteration)

- ► At each step of recursion, iterate on differing solutions
- Each choice induces impossibilities for the following
- ► For each iteration, one descent
- When stuck, climb back (and descent in following iteration)

- ► At each step of recursion, iterate on differing solutions
- Each choice induces impossibilities for the following
- ► For each iteration, one descent
- When stuck, climb back (and descent in following iteration)

- ► At each step of recursion, iterate on differing solutions
- Each choice induces impossibilities for the following
- For each iteration, one descent
- When stuck, climb back (and descent in following iteration)

- ► At each step of recursion, iterate on differing solutions
- Each choice induces impossibilities for the following
- ► For each iteration, one descent
- When stuck, climb back (and descent in following iteration)

- ► At each step of recursion, iterate on differing solutions
- Each choice induces impossibilities for the following
- ► For each iteration, one descent
- When stuck, climb back (and descent in following iteration)

- ► At each step of recursion, iterate on differing solutions
- Each choice induces impossibilities for the following
- ► For each iteration, one descent
- When stuck, climb back (and descent in following iteration)

- ► At each step of recursion, iterate on differing solutions
- Each choice induces impossibilities for the following
- ► For each iteration, one descent
- When stuck, climb back (and descent in following iteration)

- ► At each step of recursion, iterate on differing solutions
- Each choice induces impossibilities for the following
- For each iteration, one descent
- When stuck, climb back (and descent in following iteration)

- ► At each step of recursion, iterate on differing solutions
- Each choice induces impossibilities for the following
- ► For each iteration, one descent
- When stuck, climb back (and descent in following iteration)

- ► At each step of recursion, iterate on differing solutions
- Each choice induces impossibilities for the following
- ► For each iteration, one descent
- When stuck, climb back (and descent in following iteration)

- ► At each step of recursion, iterate on differing solutions
- Each choice induces impossibilities for the following
- ► For each iteration, one descent
- When stuck, climb back (and descent in following iteration)

- ► At each step of recursion, iterate on differing solutions
- Each choice induces impossibilities for the following
- For each iteration, one descent
- When stuck, climb back (and descent in following iteration)
- Until we find a solution (or not)

- ► At each step of recursion, iterate on differing solutions
- Each choice induces impossibilities for the following
- For each iteration, one descent
- When stuck, climb back (and descent in following iteration)
- Until we find a solution (or not)

- ► At each step of recursion, iterate on differing solutions
- Each choice induces impossibilities for the following
- For each iteration, one descent
- When stuck, climb back (and descent in following iteration)
- Until we find a solution (or not)

Scala implementation of n queens puzzle

```
def Solution(board:Array[Array[Boolean]], line:Int) {
   if (line >= board.length) // Base Case
      return true;

   for (col <- 0 to board.length - 1) { // loop on possibilities
      if (validPlacement(board, line, col)) {
        putQueen(board, line, col);
      if (Solution(plateau, line + 1)) // Recursive Call
            return true; // Let solution climb back
        removeQueen(board, line, col);
      }
   }
   return false;
}</pre>
```

Some Principles on Backtracking

- Study "depth first" of solution tree
- On backtracking, restore state as before last choice
 Trivial here (parameters copied on recursive call), harder in iterative
- Strategy on branch ordering can improve things
- Progressive Construction of boolean function
- ▶ If function returns false, there is no solution

Some Principles on Backtracking

- Study "depth first" of solution tree
- On backtracking, restore state as before last choice
 Trivial here (parameters copied on recursive call), harder in iterative
- Strategy on branch ordering can improve things
- Progressive Construction of boolean function
- If function returns false, there is no solution
- Probable Combinatorial Explosion (4⁴ boards)
 - ⇒ Need for heuristics to limit amount of tries

Conclusion on Recursion Essential Tool for Algorithms

- Recursion in Computer Science, induction in Mathematics
- Recursive Algorithms are frequent because easier to understand . . .
 (and thus easier to maintain)
 - ... but maybe slightly more difficult to write (that's a practice to get)
- Recursive programs maybe slightly less efficient...
 ... but always possible to transform a code to non-recursive form (and compilers do it)
- Classical Functions: Factorial, gcd, Fibonacci, Ackerman, Hanoï, Syracuse, ...
- Sorting Functions: MergeSort and QuickSort are amongst the most used (because efficient)
- ► BackTracking: exhaustive search in space of *valid* solutions
- ▶ Data Structure module: several recursive datatypes with associated algorithms
- Recursion is the root of computation since it trades description for time.
 - "Epigrams in Programming", by Alan J. Perlis of Yale University.