PRÁCTICA 3

Tiempo de carga y descarga del condensador:

Valores de los elementos usados en el circuito:

 $R = 10 \text{ K}\Omega$

C = 10 nF

Constante de tiempo teórica τ = R*C = 0,1 ms

Señal cuadrada:

Período de la señal = 10 * τ = 1 ms

Medida de los tiempos de subida y bajada:

Tiempo de subida = $t_{90\%}$ - $t_{10\%}$ = 218,53492 μs ≈ 2,2 * τ

Tiempo de bajada = $t_{10\%}$ - $t_{90\%}$ = 217,72345 μs ≈ 2,2 * τ

Constante de tiempo experimental τ :

$$\tau$$
 = ((217,72345 μs + 218,53492 μs) / 2) / 2,2 = = 99,14962954545455 μs ≈ 0,1 ms

¿Son iguales los tiempos de subida y de bajada? ¿Coincide la constante de tiempo experimental con la teórica? Razona los resultados obtenidos.

Sí, tanto el tiempo de subida como el de bajada son prácticamente iguales. Además, la constante τ experimental coincide con la τ teórica.