

COMSATS-University Islamabad, Lahore Campus.

CUI, Defence Road, Off Raiwind Road, Lahore.

2 17 1 18 18		Te	rminal Exar	m - Spring 2023		
Course Title:	Linear Algebra			Course Code:		3 Credit Hours: 3(3,0)
Course				Programme	BCS	
Semester:	3 rd	Batch: SP22	Section:	A,B,C	Date:	17-06-2023
Time	180Min			Maximum Marks: 100		100
Question 1:		20021222				(10+10)

(a) Find eigenvalues and eigenvectors of matrix $A = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}$. Redraw following figure of unit square using L(X) = AX. What eigenvalues and eigenvectors predict about new figure.

$\begin{bmatrix} -1 \\ 1 \end{bmatrix}$		$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$
$\begin{bmatrix} -1 \\ -1 \end{bmatrix}$	- 4	$\begin{bmatrix} 1 \\ -1 \end{bmatrix}$

(b) Find a 2 \times 2 matrix A whose eigenvalues are 3 and 4, and the associated eigenvectors are $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$

and $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$, respectively.

Question 2: SID observes a suspicious object V (spying plane) in space from a space station and noted coordinates with reference basis $S = \{v_1 = [6 \ 3 \ 3]; v_2 = [4 \ -1 \ 3]; v_3 = [5 \ 5 \ 2]\}$

as $[V]_S = [4 -5 1]$. He communicated the coordinates of that object to his colleague TED on the ground having a reference basis $T = \{w_1 = [2 \ 0 \ 1]; w_2 = [1 \ 2 \ 0]; w_3 = [1 \ 1 \ 1]\}$.

Help TED to find the matrix from S to T basis and USE THIS MATRIX to compute the coordinates of object V with respect to T basis. (10+10)

(b) For the following matrix, find basis for row space that are not rows (vectors) of A and basis for column space that are columns (vectors) of A

$$A = \begin{bmatrix} 1 & -2 & 7 & 0 \\ 1 & -1 & 4 & 0 \\ 3 & 1 & -3 & 5 \\ 2 & 2 & -1 & 3 \end{bmatrix}$$

Question No 3: (a) Let $L: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation for which we know (10+10)

$$L\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \begin{bmatrix}2\\3\end{bmatrix}; \ L\left(\begin{bmatrix}1\\-1\end{bmatrix}\right) = \begin{bmatrix}3\\-2\end{bmatrix}.$$
 Find $L\left(\begin{bmatrix}u_1\\u_2\end{bmatrix}\right)$

(b) Let $L: M_{22} \to M_{22}$ be the linear transformation defined by

$$L\begin{pmatrix} \begin{bmatrix} a & c \\ b & d \end{bmatrix} \end{pmatrix} = \begin{bmatrix} a+b & b+c \\ a+d & b+d \end{bmatrix}$$

Prove that $Dim(Ker(L) + Dim(Range(L)) = Dim(M_{22})$

Question No 4: (a) Use Gram-Schmidt process to find an orthonormal basis for

(15+5)

vector space
$$\mathbb{R}^3$$
 that contains the vectors $\begin{bmatrix} 2/3 \\ -2/3 \\ 1/3 \end{bmatrix}$, $\begin{bmatrix} 2/3 \\ 1/3 \\ -2/3 \end{bmatrix}$.

(b) Write vector $v = \begin{bmatrix} 9 \\ 2 \\ 7 \end{bmatrix}$ as a linear combination of orthonormal basis found in part (a).

Question No 5: (a) A manufacturer makes three different types of electronic products (10+10)

A, B, and C. Each product must go through three processing machines: X, Y and Z. The products require the following times in machines X, Y and Z:

- 1. Product A requires 2 hours in machine X, 2 hours in machine Y and 1 hours in machine Z.
- 2. Product B requires 3 hours in machine X, 2 hours in machine Y and 1 hours in machine Z.
- 3. Product C requires 4 hours in machine X, 3 hours in machine Y and 1 hours in machine Z.

Machine X is available 80 hours per week, machine Y is available 60 hours per week and machine Z is available 25 hours per week. Since management does not want to keep the expensive machines X, Y and Z idle, it would like to know how many product to make so that the machines are fully utilized.

(b) Find a basis for the subspace W of vector space R_4 consisting of all vectors of the form

$$[a+c \quad a-b \quad b+c \quad b-a]$$