Operações com Polinômios:

Gênesis Soares Araújo

- 1. Adição e subtração
- 2. Multiplicação
- 3. Multiplicação de polinômio por polinômio
- 4. Divisão
- 5. Divisão de polinômio por polinômio

CONCEITUANDO

Ao adicionarmos ou subtrairmos todos os termos de dois ou mais polinômios, estamos fazendo uma soma algébrica.

CONCEITUANDO

Ao adicionarmos ou subtrairmos todos os termos de dois ou mais polinômios, estamos fazendo uma soma algébrica.

$$A = 5x^2 + 2x + 3y e B = x^2 + x - y$$

CONCEITUANDO

Ao adicionarmos ou subtrairmos todos os termos de dois ou mais polinômios, estamos fazendo uma soma algébrica.

$$A = 5x^2 + 2x + 3y \in B = x^2 + x - y$$

$$A + B e A - B$$

CONCEITUANDO

Ao adicionarmos ou subtrairmos todos os termos de dois ou mais polinômios, estamos fazendo uma soma algébrica.

$$A = 5x^2 + 2x + 3y e B = x^2 + x - y$$

$$A + B e A - B$$

a)
$$A + B = (5x^2 + 2x + 3y) + (x^2 + x - y)$$

CONCEITUANDO

Ao adicionarmos ou subtrairmos todos os termos de dois ou mais polinômios, estamos fazendo uma **soma algébrica**.

$$A = 5x^2 + 2x + 3y e B = x^2 + x - y$$

$$A + B e A - B$$

a)
$$A + B = (5x^2 + 2x + 3y) + (x^2 + x - y)$$

 $A + B = 5x^2 + 2x + 3y + x^2 + x - y$

CONCEITUANDO

Ao adicionarmos ou subtrairmos todos os termos de dois ou mais polinômios, estamos fazendo uma **soma algébrica**.

$$A = 5x^2 + 2x + 3y e B = x^2 + x - y$$

a)
$$A + B = (5x^2 + 2x + 3y) + (x^2 + x - y)$$

$$A + B = 5x^2 + 2x + 3y + x^2 + x - y$$

$$A + B = 6x^2 + 3x + 2y$$

CONCEITUANDO

Ao adicionarmos ou subtrairmos todos os termos de dois ou mais polinômios, estamos fazendo uma **soma algébrica**.

$$A = 5x^2 + 2x + 3y e B = x^2 + x - y$$

a)
$$A + B = (5x^2 + 2x + 3y) + (x^2 + x - y)$$

 $A + B = 5x^2 + 2x + 3y + x^2 + x - y$

$$A + B = 6x^2 + 3x + 2y$$

$$5x^2 + 2x + 3y$$

CONCEITUANDO

Ao adicionarmos ou subtrairmos todos os termos de dois ou mais polinômios, estamos fazendo uma **soma algébrica**.

$$A = 5x^2 + 2x + 3y e B = x^2 + x - y$$

$$A + B e A - B$$

a)
$$A + B = (5x^2 + 2x + 3y) + (x^2 + x - y)$$

$$A + B = 5x^2 + 2x + 3y + x^2 + x - y$$

$$A + B = 6x^2 + 3x + 2y$$

$$+$$
 $5x^2 + 2x + 3y$
 $+$ $x^2 + x - y$

CONCEITUANDO

Ao adicionarmos ou subtrairmos todos os termos de dois ou mais polinômios, estamos fazendo uma **soma algébrica**.

$$A = 5x^2 + 2x + 3y e B = x^2 + x - y$$

$$A + B e A - B$$

a)
$$A + B = (5x^2 + 2x + 3y) + (x^2 + x - y)$$

$$A + B = 5x^2 + 2x + 3y + x^2 + x - y$$

$$A + B = 6x^2 + 3x + 2y$$

Observação: Para adicionar ou subtrair dois polinômios, procure escrever termo semelhante embaixo de termo semelhante.

Observação: Para adicionar ou subtrair dois polinômios, procure escrever termo semelhante embaixo de termo semelhante.

$$A = 5x^2 + 2x + 3y e B = x^2 + x - y$$

Observação: Para adicionar ou subtrair dois polinômios, procure escrever termo semelhante embaixo de termo semelhante.

$$A = 5x^2 + 2x + 3y e B = x^2 + x - y$$

$$A + B e A - B$$

Observação: Para adicionar ou subtrair dois polinômios, procure escrever termo semelhante embaixo de termo semelhante.

$$A = 5x^2 + 2x + 3y e B = x^2 + x - y$$

$$A + B e A - B$$

b)
$$A - B = (5x^2 + 2x + 3y) - (x^2 + x - y)$$

Observação: Para adicionar ou subtrair dois polinômios, procure escrever termo semelhante embaixo de termo semelhante.

$$A = 5x^2 + 2x + 3y e B = x^2 + x - y$$

$$A + B e A - B$$

b)
$$A - B = (5x^2 + 2x + 3y) - (x^2 + x - y)$$

 $A - B = 5x^2 + 2x + 3y - x^2 - x + y$

Observação: Para adicionar ou subtrair dois polinômios, procure escrever termo semelhante embaixo de termo semelhante.

$$A = 5x^2 + 2x + 3y e B = x^2 + x - y$$

$$A + B e A - B$$

b)
$$A - B = (5x^2 + 2x + 3y) - (x^2 + x - y)$$

$$A - B = 5x^2 + 2x + 3y - x^2 - x + y$$

$$A - B = 4x^2 + x + 4y$$

Observação: Para adicionar ou subtrair dois polinômios, procure escrever termo semelhante embaixo de termo semelhante.

$$A = 5x^2 + 2x + 3y e B = x^2 + x - y$$

$$A + B e A - B$$

b)
$$A - B = (5x^2 + 2x + 3y) - (x^2 + x - y)$$

 $A - B = 5x^2 + 2x + 3y - x^2 - x + y$

$$A - B = 4x^2 + x + 4y$$

$$5x^2 + 2x + 3y$$

Observação: Para adicionar ou subtrair dois polinômios, procure escrever termo semelhante embaixo de termo semelhante.

$$A = 5x^2 + 2x + 3y e B = x^2 + x - y$$

$$A + B e A - B$$

b)
$$A - B = (5x^2 + 2x + 3y) - (x^2 + x - y)$$

 $A - B = 5x^2 + 2x + 3y - x^2 - x + y$

$$A - B = 4x^2 + x + 4y$$

Observação: Para adicionar ou subtrair dois polinômios, procure escrever termo semelhante embaixo de termo semelhante.

Dados os polinômios:

$$A = 5x^2 + 2x + 3y e B = x^2 + x - y$$

$$A + B e A - B$$

b)
$$A - B = (5x^2 + 2x + 3y) - (x^2 + x - y)$$

$$A - B = 4x^2 + x + 4y$$

 $A - B = 5x^2 + 2x + 3y - x^2 - x + y$

Multiplicação de monômio por monômio

Para multiplicarmos dois ou mais monômios, devemos multiplicar as partes numéricas entre si e multiplicar as partes literais entre si.

Multiplicação de monômio por monômio

Para multiplicarmos dois ou mais monômios, devemos multiplicar as partes numéricas entre si e multiplicar as partes literais entre si.

Exemplos

• Multiplicação do monômio –5m²n pelo monômio 3x⁴y²:

$$-5m^2n \cdot 3x^4y^2 = -15m^2nx^4y^2$$

Multiplicação de monômio por monômio

Para multiplicarmos dois ou mais monômios, devemos multiplicar as partes numéricas entre si e multiplicar as partes literais entre si.

Exemplos

• Multiplicação do monômio -5m²n pelo monômio 3x⁴y²:

$$-5m^2n \cdot 3x^4y^2 = -15m^2nx^4y^2$$

Multiplicação do monômio 2x²y³ pelo monômio 9x⁴y²:

$$2x^2y^3 \, \boldsymbol{\cdot} \, 9x^4y^2 = 18x^2y^3x^4y^2 = 18 \, \boldsymbol{\cdot} \, x^{2\,+\,4} \, \boldsymbol{\cdot} \, y^{3\,+\,2} = 18x^6y^5$$

Propriedade distributiva da multiplicação em relação à adição ou à subtração

O fator que está fora dos parênteses deve ser multiplicado por todos os termos que estão dentro dos parênteses.

Propriedade distributiva da multiplicação em relação à adição ou à subtração

O fator que está fora dos parênteses deve ser multiplicado por todos os termos que estão dentro dos parênteses.

$$a \cdot (b + c) = ab + ac$$

Propriedade distributiva da multiplicação em relação à adição ou à subtração

O fator que está fora dos parênteses deve ser multiplicado por todos os termos que estão dentro dos parênteses.

$$a \cdot (b + c) = ab + ac$$
 ou $a \cdot (b - c) = ab - ac$

$$a \cdot (b - c) = ab - ac$$

Propriedade distributiva da multiplicação em relação à adição ou à subtração

O fator que está fora dos parênteses deve ser multiplicado por todos os termos que estão dentro dos parênteses.

$$a \cdot (b + c) = ab + ac$$
 ou $a \cdot (b - c) = ab - ac$

$$a \cdot (b - c) = ab - ac$$

•
$$3 \cdot (x + y) = 3$$

Propriedade distributiva da multiplicação em relação à adição ou à subtração

O fator que está fora dos parênteses deve ser multiplicado por todos os termos que estão dentro dos parênteses.

$$a \cdot (b + c) = ab + ac$$
 ou $a \cdot (b - c) = ab - ac$

$$a \cdot (b - c) = ab - ac$$

$$\bullet \quad 3 \cdot (x + y) = 3x$$

Propriedade distributiva da multiplicação em relação à adição ou à subtração

O fator que está fora dos parênteses deve ser multiplicado por todos os termos que estão dentro dos parênteses.

$$a \cdot (b + c) = ab + ac$$
 ou $a \cdot (b - c) = ab - ac$

$$a \cdot (b - c) = ab - ac$$

$$3 \cdot (x + y) = 3x + 3y$$

Propriedade distributiva da multiplicação em relação à adição ou à subtração

O fator que está fora dos parênteses deve ser multiplicado por todos os termos que estão dentro dos parênteses.

$$a \cdot (b + c) = ab + ac$$
 ou $a \cdot (b - c) = ab - ac$

$$a \cdot (b - c) = ab - ac$$

$$3 \cdot (x + y) = 3x + 3y$$

$$x + y$$

Propriedade distributiva da multiplicação em relação à adição ou à subtração

O fator que está fora dos parênteses deve ser multiplicado por todos os termos que estão dentro dos parênteses.

$$a \cdot (b + c) = ab + ac$$
 ou $a \cdot (b - c) = ab - ac$

$$a \cdot (b - c) = ab - ac$$

$$3 \cdot (x + y) = 3x + 3y$$

$$x + y$$

$$\times 3$$

Propriedade distributiva da multiplicação em relação à adição ou à subtração

O fator que está fora dos parênteses deve ser multiplicado por todos os termos que estão dentro dos parênteses.

$$a \cdot (b + c) = ab + ac$$
 ou $a \cdot (b - c) = ab - ac$

$$a \cdot (b - c) = ab - ac$$

$$3 \cdot (x + y) = 3x + 3y$$

$$x + y$$

$$\times 3$$

$$3x + 3y$$

Propriedade distributiva da multiplicação em relação à adição ou à subtração

O fator que está fora dos parênteses deve ser multiplicado por todos os termos que estão dentro dos parênteses.

$$a \cdot (b + c) = ab + ac$$
 ou $a \cdot (b - c) = ab - ac$

$$a \cdot (b - c) = ab - ac$$

$$3 \cdot (x + y) = 3x + 3y$$

$$x + y$$

$$\times 3$$

$$3x + 3y$$

•
$$a \cdot (5 - b) =$$

Propriedade distributiva da multiplicação em relação à adição ou à subtração

O fator que está fora dos parênteses deve ser multiplicado por todos os termos que estão dentro dos parênteses.

$$a \cdot (b + c) = ab + ac$$
 ou $a \cdot (b - c) = ab - ac$

$$a \cdot (b - c) = ab - ac$$

$$3 \cdot (x + y) = 3x + 3y$$

$$x + y$$

$$\times \frac{3}{3x + 3y}$$

•
$$a \cdot (5 - b) = 5a$$

Propriedade distributiva da multiplicação em relação à adição ou à subtração

O fator que está fora dos parênteses deve ser multiplicado por todos os termos que estão dentro dos parênteses.

$$a \cdot (b + c) = ab + ac$$
 ou $a \cdot (b - c) = ab - ac$

$$a \cdot (b - c) = ab - ac$$

$$3 \cdot (x + y) = 3x + 3y$$

$$x + y$$

$$\times 3$$

$$3x + 3y$$

•
$$a \cdot (5 - b) = 5a - ab$$

Propriedade distributiva da multiplicação em relação à adição ou à subtração

O fator que está fora dos parênteses deve ser multiplicado por todos os termos que estão dentro dos parênteses.

$$a \cdot (b + c) = ab + ac$$
 ou $a \cdot (b - c) = ab - ac$

$$a \cdot (b - c) = ab - ac$$

$$3 \cdot (x + y) = 3x + 3y$$

$$x + y$$

$$\times \frac{3}{3x + 3y}$$

•
$$a \cdot (5 - b) = 5a - ab$$

5 - b

Propriedade distributiva da multiplicação em relação à adição ou à subtração

O fator que está fora dos parênteses deve ser multiplicado por todos os termos que estão dentro dos parênteses.

$$a \cdot (b + c) = ab + ac$$
 ou $a \cdot (b - c) = ab - ac$

$$a \cdot (b - c) = ab - ac$$

Exemplos

$$3 \cdot (x + y) = 3x + 3y$$

$$x + y$$

$$\times 3$$

$$3x + 3y$$

•
$$a \cdot (5 - b) = 5a - ab$$

 $5 - b$
 $\times a$

Propriedade distributiva da multiplicação em relação à adição ou à subtração

O fator que está fora dos parênteses deve ser multiplicado por todos os termos que estão dentro dos parênteses.

$$a \cdot (b + c) = ab + ac$$
 ou $a \cdot (b - c) = ab - ac$

$$a \cdot (b - c) = ab - ac$$

Exemplos

$$3 \cdot (x + y) = 3x + 3y$$

$$x + y$$

$$\times 3$$

$$3x + 3y$$

•
$$a \cdot (5 - b) = 5a - ab$$

 $5 - b$
 $\times a$
 $5a - ab$

$$4m^2 \cdot (3m-2) = (4m^2) \cdot (3m) - (4m^2) \cdot (2) = 12m^2 - 8m^2$$

$$4m^2 \cdot (3m - 2) = (4m^2) \cdot (3m) \quad (4m^4) \cdot (2) = 12m^4 \cdot 8m^4$$

$$4m^2 \cdot (3m - 2) = (4m^2) \cdot (3m) - (4m^2) \cdot (2) = 12m^2 - 8m^2$$

$$4m^2 \cdot (3m - 2) = (4m^2) \cdot (3m) - (4m^2) \cdot (2) = 12m^3 - 8m^2$$

$$4m^2 \cdot (3m - 2) = (4m^2) \cdot (3m) - (4m^2) \cdot (2) = 12m^3 - 8m^2$$

$$3m - 2$$

$$\times$$
 4m²

$$12m^3 - 8m^2$$

$$4m^2 \cdot (3m - 2) = (4m^2) \cdot (3m) - (4m^2) \cdot (2) = 12m^3 - 8m^2$$

$$3m-2$$

$$\times$$
 4m²

$$4m^2 \cdot (3m - 2) = (4m^2) \cdot (3m) - (4m^2) \cdot (2) = 12m^3 - 8m^2$$

$$3m - 2$$
 $\times \frac{4m^2}{12m^3 - 8m^2}$

Multiplicação de monômio por polinômio

$$4m^2 \cdot (3m - 2) = (4m^2) \cdot (3m) - (4m^2) \cdot (2) = 12m^3 - 8m^2$$

$$3m - 2$$

$$\times \qquad 4m^2$$

$$12m^3 - 8m^2$$

Para multiplicarmos um monômio por um polinômio, devemos multiplicar o monômio por todos os termos do polinômio; depois, adicionamos os termos semelhantes, se houver.

Multiplicação do polinômio (a + b) pelo polinômio (c + d):

Multiplicação do polinômio (a + b) pelo polinômio (c + d):

Substituindo (c + d) por x:

$$(a + b) \cdot (c + d) = (a + b) \cdot x = ax + bx$$

Multiplicação do polinômio (a + b) pelo polinômio (c + d):

Substituindo (c + d) por x:

$$(a + b) \cdot (c + d) = (a + b) \cdot x = ax + bx$$

Substituindo x por (c + d):

$$ax + bx = a \cdot (c + d) + b \cdot (c + d)$$

Multiplicação do polinômio (a + b) pelo polinômio (c + d):

Substituindo (c + d) por x:

$$(a + b) \cdot (c + d) = (a + b) \cdot x = ax + bx$$

Substituindo x por (c + d):

$$ax + bx = a \cdot (c + d) + b \cdot (c + d)$$

Aplicando a propriedade distributiva da multiplicação em relação à adição:

Multiplicação do polinômio (a + b) pelo polinômio (c + d):

Substituindo (c + d) por x:

$$(a + b) \cdot (c + d) = (a + b) \cdot x = ax + bx$$

Substituindo x por (c + d):

$$ax + bx = a \cdot (c + d) + b \cdot (c + d)$$

Aplicando a propriedade distributiva da multiplicação em relação à adição:

$$ac + ad + bc + bd$$

Multiplicação do polinômio (a + b) pelo polinômio (c + d):

Substituindo (c + d) por x:

$$(a + b) \cdot (c + d) = (a + b) \cdot x = ax + bx$$

Substituindo x por (c + d):

$$ax + bx = a \cdot (c + d) + b \cdot (c + d)$$

Aplicando a propriedade distributiva da multiplicação em relação à adição:

$$ac + ad + bc + bd$$

$$(a + b) \cdot (c + d) = ac + ad + bc + bd$$

$$(a + b) \cdot (c + d) = ac + ad + bc - bd$$

$$(a + b) \cdot (c + d) = ac$$

$$(a + b) \cdot (c + d) = ac + ad$$

$$(a + b) \cdot (c + d) = ac + ad + bc$$

$$(a + b) \cdot (c + d) = ac + ad + bc + bd$$

$$a + b$$

$$+ ad + bc + bd$$

$$(a + b) \cdot (c + d) = ac + ad + bc + bd$$

$$a + b$$
 $c + d$

$$(a + b) \cdot (c + d) = ac + ad + bc + bd$$

$$a + b$$
 $\times c + d$
 $da + db$

$$(a + b) \cdot (c + d) = ac + ad + bc + bd$$

$$\begin{array}{c} a + b \\ \times c + d \\ \hline da + db \\ + ac + bc \end{array}$$

$$(a + b) \cdot (c + d) = ac + ad + bc + bd$$

$$\begin{array}{c|cccc}
 & a + b \\
 & c + d \\
\hline
 & da + db \\
 & + ac + bc \\
\hline
 & ac + ad + bc + bd \\
\end{array}$$

Para multiplicarmos um polinômio por um polinômio, devemos multiplicar cada termo de um deles por todos os termos do outro.

$$(a + b) \cdot (c + d) = ac + ad + bc + bd$$

Observação: Lembre-se de que a adição é comutativa, isto é, a ordem das parcelas não altera a soma.

¥4-10-→ 13-4 80 → 10

4.Divisão

Particularidades da divisão de números inteiros:

•
$$8:2=8\cdot\frac{1}{2}=4$$

Particularidades da divisão de números inteiros:

•
$$8:2=8\cdot\frac{1}{2}=4$$

•
$$15:3=15\cdot\frac{1}{3}=5$$

¥4-10-4 pt > 0

4. Divisão

Particularidades da divisão de números inteiros:

•
$$8:2=8\cdot\frac{1}{2}=4$$

• 15:
$$3 = 15 \cdot \frac{1}{3} = 5$$

•
$$(12+36):6=(12+36)\cdot\frac{1}{6}=\frac{12}{6}+\frac{36}{6}=2+6=8$$

Multiplicação de monômio por polinômio

$$9x^4 - 6x^2 + 24x \text{ por } 3x, \text{ com } x \neq 0$$

Multiplicação de monômio por polinômio

$$9x^4 - 6x^2 + 24x \text{ por } 3x, \text{ com } x \neq 0$$

$$(9x^4 - 6x^2 + 24x) : 3x = (9x^4 - 6x^2 + 24x) \cdot \frac{1}{3x}$$

Multiplicação de monômio por polinômio

$$9x^4 - 6x^2 + 24x \text{ por } 3x, \text{ com } x \neq 0$$

$$(9x^4 - 6x^2 + 24x) : 3x = (9x^4 - 6x^2 + 24x) \cdot \frac{1}{3x}$$

$$(9x^4 - 6x^2 + 24x) : 3x = \frac{9x^4}{3x} - \frac{6x^2}{3x} + \frac{24x}{3x}$$

Multiplicação de monômio por polinômio

$$9x^4 - 6x^2 + 24x \text{ por } 3x, \text{ com } x \neq 0$$

$$(9x^4 - 6x^2 + 24x) : 3x = (9x^4 - 6x^2 + 24x) \cdot \frac{1}{3x}$$

$$(9x^4 - 6x^2 + 24x) : 3x = \frac{9x^4}{3x} - \frac{6x^2}{3x} + \frac{24x}{3x}$$

$$(9x^4 - 6x^2 + 24x) : 3x = 3x^3 - 2x + 8$$

Multiplicação de monômio por polinômio

Acompanhe a divisão:

$$9x^4 - 6x^2 + 24x \text{ por } 3x, \text{ com } x \neq 0$$

$$(9x^4 - 6x^2 + 24x) : 3x = (9x^4 - 6x^2 + 24x) \cdot \frac{1}{3x}$$

$$(9x^4 - 6x^2 + 24x) : 3x = \frac{9x^4}{3x} - \frac{6x^2}{3x} + \frac{24x}{3x}$$

$$(9x^4 - 6x^2 + 24x) : 3x = 3x^3 - 2x + 8$$

Para dividirmos um polinômio por um monômio, devemos dividir cada termo do polinômio pelo monômio.

Se o resto da divisão é 0 (zero), a divisão é chamada **divisão exata**.

Se o resto da divisão é 0 (zero), a divisão é chamada **divisão exata**.

Se o resto da divisão não é 0 (zero), a divisão é chamada **divisão não exata**.

Se o resto da divisão é 0 (zero), a divisão é chamada **divisão exata**.

Se o resto da divisão não é 0 (zero), a divisão é chamada **divisão não exata**.

Dividendo = divisor × quociente + resto

Se o resto da divisão é 0 (zero), a divisão é chamada **divisão exata**.

Se o resto da divisão não é 0 (zero), a divisão é chamada **divisão não exata**.

Dividendo = divisor × quociente + resto

Na divisão de dois números reais, o resto é sempre menor que o divisor.

Dividir o polinômio P pelo polinômio não nulo S, em que o grau de P é maior que ou igual ao grau de S, significa determinar os polinômios Q e R tais que:

$$P = S \cdot Q + R$$

Dividir o polinômio P pelo polinômio não nulo S, em que o grau de P é maior que ou igual ao grau de S, significa determinar os polinômios Q e R tais que:

$$P = S \cdot Q + R$$
 ou $R = Q$

Dividir o polinômio P pelo polinômio não nulo S, em que o grau de P é maior que ou igual ao grau de S, significa determinar os polinômios Q e R tais que:

$$P = S \cdot Q + R$$
 ou

- P é chamado dividendo;
 Q é o quociente;
- Séodivisor;

- Réoresto.

Dividir o polinômio P pelo polinômio não nulo S, em que o grau de P é maior que ou igual ao grau de S, significa determinar os polinômios Q e R tais que:

$$P = S \cdot Q + R$$
 ou $P = S$ Q

- P é chamado dividendo;
 Q é o quociente;
- S é o divisor;

- Réoresto.

CONCEITUANDO

Dizemos que o polinômio P é divisível por S se, e somente se, R = 0.

Dividir o polinômio P pelo polinômio não nulo S, em que o grau de P é maior que ou igual ao grau de S, significa determinar os polinômios Q e R tais que:

$$P = S \cdot Q + R$$
 ou $P = S$ Q

- P é chamado dividendo;
 Q é o quociente;
- Séodivisor;

- Réoresto.

CONCEITUANDO

Dizemos que o polinômio P é divisível por S se, e somente se, R = 0.

Na divisão de dois polinômios, o grau do resto deve ser sempre menor que o grau do divisor ou o resto é nulo.

Divisão de
$$P = 4x^3 - x^2 - x + 2$$
 por $S = x + 1$, com $x \ne -1$:

$$4x^3 - x^2 - x + 2 x + 1$$

Divisão de
$$P = 4x^3 - x^2 - x + 2$$
 por $S = x + 1$, com $x \ne -1$:

$$(4x^3)$$
 - x^2 - x + 2 (x) + 1 $(4x^2)$

Divisão de P =
$$4x^3 - x^2 - x + 2$$
 por S = $x + 1$, com $x \ne -1$:
$$4x^3 - x^2 - x + 2 x + 1$$
$$4x^3 + 4x^2 4x^2$$

Divisão pelo método da chave

Divisão de $P = 4x^3 - x^2 - x + 2$ por S = x + 1, com $x \ne -1$:

Divisão de
$$P=4x^3-x^2-x+2$$
 por $S=x+1$, com $x\neq -1$:

Divisão de
$$P = 4x^3 - x^2 - x + 2$$
 por $S = x + 1$, com $x \ne -1$:

Divisão de
$$P = 4x^3 - x^2 - x + 2$$
 por $S = x + 1$, com $x \ne -1$:

Divisão de
$$P = 4x^3 - x^2 - x + 2$$
 por $S = x + 1$, com $x \ne -1$:

Divisão de
$$P = 4x^3 - x^2 - x + 2$$
 por $S = x + 1$, com $x \ne -1$:

Divisão de
$$P = 4x^3 - x^2 - x + 2$$
 por $S = x + 1$, com $x \ne -1$:

Divisão de
$$P = 4x^3 - x^2 - x + 2$$
 por $S = x + 1$, com $x \ne -1$:

Divisão de
$$P = 4x^3 - x^2 - x + 2$$
 por $S = x + 1$, com $x \ne -1$:

$$4x^3 - x^2 - x + 2 = (x + 1) \cdot (4x^2 - 5x + 4) + (-2)$$

Divisão pelo método da chave

Divisão de
$$P = 4x^3 - x^2 - x + 2$$
 por $S = x + 1$, com $x \ne -1$:

$$4x^3 - x^2 - x + 2 = (x + 1) \cdot (4x^2 - 5x + 4) + (-2)$$

Dividendo = divisor × quociente + resto

