#Credit Card Consumers Churn Rate

Data Gathering

I used the website "Kaggle" to search for datasets that can be used. I have chosen three datasets that can be potentially used for the project. In the end, we have chosen the Credit Card customers dataset and downloaded the "BankChurners.csv" file and used this csv file as our main dataset.

Cleansing Data

In order to scrub the data I decided to check for NaN values using the code old_bank.isnull().sum().sum() and then I decided to check if there are any missing values using the code old_bank.isna().sum().sum() in order to filter out and have a clean dataset that can be used. I also renamed some of the column heading.

```
In [1]: import pandas as pd
        import numpy as np
        import seaborn as sns
        import matplotlib.pyplot as plt
        import io
        # importing libraries
In [2]: old_bank = pd.read_csv(r"..\Group 2 - CS170_BM1\old_bank.csv")
        # importing dataset of old bank
In [3]: |print(old_bank.shape)
        # to display number of rows and columns
        (10127, 23)
In [4]: | old bank.isnull().sum().sum()
        # to check if there are any NaN values in the dataset
Out[4]: 0
In [5]: old bank.isna().sum().sum()
        # to check if there are any missing values in the dataset
Out[5]: 0
```

1 818770008 Existing Customer 49 F 5 Gradua 2 713982108 Existing Customer 51 M 3 Gradua 3 769911858 Existing Customer 40 F 4 High Scho 4 709106358 Existing Customer 40 M 3 Uneducate 5 713061558 Existing Customer 44 M 2 Gradua 6 810347208 Existing Customer 51 M 4 Unknow 7 818906208 Existing Customer 32 M 0 High Scho 8 710930508 Existing Customer 37 M 3 Uneducate		CLIENTNUM	Customer_Attrition	Customer_Age	Gender	Dependent_count	Education_Level	Ma
2 713982108 Existing Customer 51 M 3 Gradual 3 769911858 Existing Customer 40 F 4 High School 4 709106358 Existing Customer 40 M 3 Uneducate 5 713061558 Existing Customer 44 M 2 Gradual 6 810347208 Existing Customer 51 M 4 Unknown 7 818906208 Existing Customer 32 M 0 High School 8 710930508 Existing Customer 37 M 3 Uneducate 9 719661558 Existing Customer 48 M 2 Gradual	0	768805383	Existing Customer	45	М	3	High School	
3 769911858 Existing Customer 40 F 4 High School 4 709106358 Existing Customer 40 M 3 Uneducate 5 713061558 Existing Customer 44 M 2 Gradua 6 810347208 Existing Customer 51 M 4 Unknown 7 818906208 Existing Customer 32 M 0 High School 8 710930508 Existing Customer 37 M 3 Uneducate 9 719661558 Existing Customer 48 M 2 Gradua	1	818770008	Existing Customer	49	F	5	Graduate	
4 709106358 Existing Customer 40 M 3 Uneducate 5 713061558 Existing Customer 44 M 2 Gradua 6 810347208 Existing Customer 51 M 4 Unknown 7 818906208 Existing Customer 32 M 0 High School 8 710930508 Existing Customer 37 M 3 Uneducate 9 719661558 Existing Customer 48 M 2 Gradua	2	713982108	Existing Customer	51	М	3	Graduate	
5 713061558 Existing Customer 44 M 2 Gradual 6 810347208 Existing Customer 51 M 4 Unknown 7 818906208 Existing Customer 32 M 0 High School 8 710930508 Existing Customer 37 M 3 Uneducate 9 719661558 Existing Customer 48 M 2 Gradual	3	769911858	Existing Customer	40	F	4	High School	
6 810347208 Existing Customer 51 M 4 Unknown 7 818906208 Existing Customer 32 M 0 High School 8 710930508 Existing Customer 37 M 3 Uneducate 9 719661558 Existing Customer 48 M 2 Gradual	4	709106358	Existing Customer	40	М	3	Uneducated	
7 818906208 Existing Customer 32 M 0 High School 8 710930508 Existing Customer 37 M 3 Uneducate 9 719661558 Existing Customer 48 M 2 Gradua	5	713061558	Existing Customer	44	М	2	Graduate	
8 710930508 Existing Customer 37 M 3 Uneducate 9 719661558 Existing Customer 48 M 2 Gradua	6	810347208	Existing Customer	51	М	4	Unknown	
9 719661558 Existing Customer 48 M 2 Gradua	7	818906208	Existing Customer	32	М	0	High School	
G	8	710930508	Existing Customer	37	М	3	Uneducated	
10 rows × 23 columns	9	719661558	Existing Customer	48	М	2	Graduate	
←	10	rows × 23 col	umns					
	4							•

Exploratory Data Analysis

General Problem Statement: To predict which customers will not be using the amenities of the bank in the future.

Data Science Questions:

- 1. Does gender and marital status influence the churn rate of the bank?
- 2. Is there a correlation between the attrited customers and the number of inactive months?
- 3. Is there a correlation between the total transaction amount and total transaction count?

Data Inspection: Upon inspecting the data, we have confirmed that there are two types of data namely, numerical and nominal data. However, we change the data type of Customer_Attrition to Numerical Data because we needed it for the correlation

Nominal Data: Gender, Education_Level, Marital_Status, Customer_Income, Customer_Card_Category

Numerical Data: Customer_Attrition, CLIENTNUM, Customer_Age, Dependent_count, Months_on_book, Total_Relationship_Count, Months_Inactive, Contacts_Count_Month, Credit_Limit, Total_Revolving_Balance, Total_Credit_used, Total_Amount_Change, Total_Transaction_Amount, Total_Transaction_Count, Total_Count_Change, Average Utiliation Ratio,

Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_coun Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_coun

In [8]: old_bank['Customer_Attrition'].replace({'Existing Customer':0, 'Attrited Customer'
to change the nominal data "Existing Customer" and "Attrited Customer" to numer

```
In [9]: old bank.dtypes
        # to inspect the properties of the updated datset
Out[9]: CLIENTNUM
        int64
        Customer_Attrition
        int64
        Customer Age
        int64
        Gender
        object
        Dependent count
        int64
        Education Level
        object
        Marital_Status
        object
        Customer Income
        object
        Customer_Card_Category
        object
        Months_on_book
        int64
        Total Relationship Count
        int64
        Months_Inactive
        int64
        Contacts_Count_Month
        int64
        Credit Limit
        float64
        Total_Revolving_Balance
        int64
        Total Credit used
        float64
        Total Amount Change
        float64
        Total_Transaction_Amount
        int64
        Total Transaction Count
        int64
        Total_Count_Change
        float64
        Average Utilization Ratio
        float64
        Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Depen
        dent count Education Level Months Inactive 12 mon 1
                                                                 float64
        Naive Bayes Classifier Attrition Flag Card Category Contacts Count 12 mon Depen
        dent count Education Level Months Inactive 12 mon 2
                                                                 float64
        dtype: object
```

Variable Correlation: To show the correlation of the following variables:

1. Customer Attrition with Gender

- 2. Customer Attrition with Marital Status
- 3. Customer Attrition with both Gender and Marital status
- 4. Customer Attrition and Inactive Months
- 5. Total Transaction Amount and Total Transaction Count with Customer Attrition

```
In [10]: old_bank['Customer_Attrition'].value_counts(normalize=True)
    # to show the percentage of current existing customer and attrited customers
    # there is a 16% churn rate of customers

Out[10]: 0     0.83934
     1     0.16066
     Name: Customer_Attrition, dtype: float64

In [11]: old_bank[['Customer_Attrition','Gender']].\
groupby(['Gender']).agg(['mean','count']).round(2)

# to show the correlation of Customer_Attrition with Gender
# the mean is the churn rate of customers
# the count shows the number of Female and Male customers
```

Out[11]:

Customer_Attrition

	mean	count
Gender		
F	0.17	5358
М	0.15	4769

```
In [12]: old_bank[['Customer_Attrition','Marital_Status']].\
groupby(['Marital_Status']).agg(['mean','count']).round(2)

# to show the correlation of Customer_Attrition with Marital_Status
# the mean is the churn rate of customers
# the count shows the number of Divorced, Married, Single, and Unknown customers
```

Out[12]:

Customer_Attrition

count

Marital_Status			
Divorced	0.16	748	
Married	0.15	4687	
Single	0.17	3943	
Unknown	0.17	749	

mean

```
In [13]: old_bank[['Customer_Attrition','Gender','Marital_Status']].\
groupby(['Gender','Marital_Status']).agg(['mean','count']).round(2)

# to show the correlation of Customer_Attrition with both Gender and Marital_Stat
# the mean is the churn rate of customers
# for the Gender F and M, the count shows the number of Divorced, Married, Single
```

Out[13]:

Customer_Attrition

mean	count

Gender	Marital_Status		
F	Divorced	0.17	402
	Married	0.17	2451
	Single	0.18	2125
	Unknown	0.18	380
M	Divorced	0.15	346
	Married	0.13	2236
	Single	0.16	1818
	Unknown	0.16	369

```
In [14]: old_bank[['Customer_Attrition','Months_Inactive']].\
groupby(['Months_Inactive']).agg(['mean','count']).round(2)

# to show the correlation of Customer_Attrition with Months_Inactive
# the mean is the churn rate of customers
# the count shows the number of customers that have been inactive based on the number.
```

Out[14]:

Customer_Attrition

count

Months_Inactive				
0	0.52	29		
1	0.04	2233		
2	0.15	3282		
3	0.21	3846		
4	0.30	435		
5	0.18	178		
6	0.15	124		

mean

```
In [15]: sns.relplot(data=old_bank, kind='scatter', x='Total_Transaction_Amount', y='Total
# to show the correlation between Total_Transaction_Amount and Total_Transaction_
# the '0' is the existing customer
# the '1' is the attrited customer
```

Out[15]: <seaborn.axisgrid.FacetGrid at 0x1e5e1c38610>

Feature Extraction: We filtered the dataset using correlation matrix by using Pearson correlation which is under the Filter Method. We can see the correlation of different variables with each other by plotting using the Pearson correlation heatmap

```
In [16]: hmap = old_bank.corr().round(2)
plt.figure(figsize=(12,8))
sns.heatmap(hmap, annot=True, cmap="summer")

# to display the correlations of the variables with other variables
# the 1st row is highly needed because it shows the correlation of Customer_Attri
# the closer to the value of 1, the stronger the positive correlation
# the closer to the value of -1, the stronger the negative correlation
# the closer to the value of 0, the weaker the correlation or if 0, there is no of
```

Out[16]: <AxesSubplot:>


```
In [17]:
         hmap target = abs(hmap['Customer Attrition']).sort values(ascending=False)
         hmap_target
         # to show the correlation of Customer Attrition with the other variables
         # all the values have been changed to absolute value because all of the correlati
                                                                                           Þ
Out[17]: Naive Bayes Classifier Attrition Flag Card Category Contacts Count 12 mon Depen
         dent count Education Level Months Inactive 12 mon 2
                                                                  1.00
         Customer Attrition
         1.00
         Naive Bayes Classifier Attrition Flag Card Category Contacts Count 12 mon Depen
         dent count Education Level Months Inactive 12 mon 1
                                                                  1.00
         Total_Transaction_Count
         0.37
         Total Count Change
         0.29
         Total Revolving Balance
         0.26
         Contacts_Count_Month
         0.20
         Average_Utilization_Ratio
         0.18
         Total_Transaction_Amount
         0.17
         Total_Relationship_Count
         0.15
         Months_Inactive
         0.15
         Total Amount Change
         0.13
         CLIENTNUM
         0.05
         Dependent count
         0.02
         Customer_Age
         0.02
         Credit_Limit
         0.02
         Months on book
         0.01
         Total_Credit_used
         0.00
         Name: Customer_Attrition, dtype: float64
```

Data Visualization: We wanted to show the data in forms of simple charts such as bar charts and scatter plot chart to get a better understanding of the data

```
In [18]: plt.figure(figsize=(13,7))
    plot=sns.countplot(x=old_bank.Customer_Age,hue=old_bank.Customer_Attrition)
    for p in plot.patches:
        plot.annotate(p.get_height(),(p.get_x()+p.get_width()/2,p.get_height()+50))
    #plt.xticks(rotation=90)
    plt.show()

# to show the count of Customer_Attrition in the Customer_Age: 26, 27, 28, 29, 36
# wherein '0' is the existing customer and '1' is the attrited customer
```



```
In [19]: plt.figure(figsize=(9,6))
    plot=sns.countplot(x=old_bank.Gender,hue=old_bank.Customer_Attrition)
    for p in plot.patches:
        plot.annotate(p.get_height(),(p.get_x()+p.get_width()/2,p.get_height()+50))
        plt.show()

# to show the count of Customer_Attrition in the Gender: M and F
# wherein '0' is the existing customer and '1' is the attrited customer
```


In [20]: plt.figure(figsize=(10,5))
 plot=sns.countplot(x=old_bank.Dependent_count,hue=old_bank.Customer_Attrition)
 for p in plot.patches:
 plot.annotate(p.get_height(),(p.get_x()+p.get_width()/2,p.get_height()+50))
 plt.show()

to show the count of Customer_Attrition in the Dependent_count: 0, 1, 2, 3, 4,
wherein '0' is the existing customer and '1' is the attrited customer

In [21]: plt.figure(figsize=(10,5))
 plot=sns.countplot(x=old_bank.Education_Level,hue=old_bank.Customer_Attrition)
 for p in plot.patches:
 plot.annotate(p.get_height(),(p.get_x()+p.get_width()/2,p.get_height()+50))#p
 plt.show()

to show the count of Customer_Attrion in the Education_Level: High School, Grad
wherein '0' is the existing customer and '1' is the attrited customer

In [22]: plt.figure(figsize=(9,6))
 plot=sns.countplot(x=old_bank.Marital_Status,hue=old_bank.Customer_Attrition)
 for p in plot.patches:
 plot.annotate(p.get_height(),(p.get_x()+p.get_width()/2,p.get_height()+50))
 plt.show()

to show the count of Customer_Attrion in the Marital_Status: Married, Single, I
wherein '0' is the existing customer and '1' is the attrited customer

In [23]: plt.figure(figsize=(10,5))
 plot=sns.countplot(x=old_bank.Customer_Income,hue=old_bank.Customer_Attrition)
 for p in plot.patches:
 plot.annotate(p.get_height(),(p.get_x()+p.get_width()/2,p.get_height()+50))
 plt.show()

to show the count of Customer_Attrion in the Customer_Income: 60k-80k, Less the # wherein '0' is the existing customer and '1' is the attrited customer

In [24]: plt.figure(figsize=(10,5))
 plot=sns.countplot(x=old_bank.Customer_Card_Category,hue=old_bank.Customer_Attrit
 for p in plot.patches:
 plot.annotate(p.get_height(),(p.get_x()+p.get_width()/2,p.get_height()+50))
 plt.show()

to show the count of Customer_Attrion in the Customer_Card_Category: Blue, Gold

In [25]: plt.figure(figsize=(9,6))
 plot=sns.countplot(x=old_bank.Total_Relationship_Count,hue=old_bank.Customer_Attr
 for p in plot.patches:
 plot.annotate(p.get_height(),(p.get_x()+p.get_width()/2,p.get_height()+50))
 plt.show()

to show the count of Customer_Attrion in the Total_Relationshop_Count: 1, 2, 3,


```
In [26]: plt.figure(figsize=(9,6))
    plot=sns.countplot(x=old_bank.Months_Inactive,hue=old_bank.Customer_Attrition)
    for p in plot.patches:
        plot.annotate(p.get_height(),(p.get_x()+p.get_width()/2,p.get_height()+50))
        plt.show()

# to show the count of Customer_Attrion in the Months_Inactive: 0, 1, 2, 3, 4, 5,
# wherein '0' is the existing customer and '1' is the attrited customer
```


In [27]: plt.figure(figsize=(9,6))
 plot=sns.countplot(x=old_bank.Contacts_Count_Month,hue=old_bank.Customer_Attritic
 for p in plot.patches:
 plot.annotate(p.get_height(),(p.get_x()+p.get_width()/2,p.get_height()+50))
 plt.show()

to show the count of Customer_Attrion in the Contacts_Count_Month: 0, 1, 2, 3,
wherein '0' is the existing customer and '1' is the attrited customer

In [28]: sns.relplot(data=old_bank, kind='scatter', x='Total_Transaction_Amount', y='Total
to show the count and compare the Total_Transaction_Amount with the Total_Trans
wherein '0' is the existing customer and '1' is the attrited customer

Out[28]: <seaborn.axisgrid.FacetGrid at 0x1e5e369a940>

Modelling

Features: The columns that I have selected are the following: Customer_Attrition, Gender, Marital_Status, Months_Inactive, Total_Transaction_Amount, and Total_Transaction_Acount. I only selected this columns because they will help me answer my data science questions.

Out[33]:

	Customer_Attrition	Gender	Marital_Status	Months_Inactive	Total_Transaction_Amount	Total_Tra
0	Existing Customer	М	Married	1	1144	
1	Existing Customer	F	Single	1	1291	
2	Existing Customer	М	Married	1	1887	
3	Existing Customer	F	Unknown	4	1171	
4	Existing Customer	М	Married	1	816	
5	Existing Customer	М	Married	1	1088	
6	Existing Customer	М	Married	1	1330	
7	Existing Customer	М	Unknown	2	1538	
8	Existing Customer	М	Single	2	1350	
9	Existing Customer	М	Single	3	1441	
4						•

Train and Test the Model:

to show the first 10 records

```
In [34]: bank['Customer_Attrition'].replace({'Existing Customer':0, 'Attrited Customer':1]
# to change the nominal data "Existing Customer" and "Attrited Customer" to numer
```

```
In [35]: bank.dtypes
         # to show the properties of the dataset
Out[35]: Customer Attrition
                                       int64
         Gender
                                     object
         Marital Status
                                     object
         Months Inactive
                                       int64
         Total_Transaction_Amount
                                       int64
         Total Transaction Count
                                       int64
         dtype: object
In [36]: Total Transaction Amount = bank.iloc[:,4].values.reshape(-1,1)
         # to gather all the rows of the 4th column which is the Total Transaction Amount
         Total Transaction Count = bank.iloc[:,5].values
         # to gather all the rows in the 5th column which is the Total Transaction Count
         # to assign Total Transaction Amount and Total Transaction Count to the specified
In [37]: from sklearn.model selection import train test split
         # to import libraries
         unit train, unit test, gross train, gross test = train test split(Total Transacti
         # to split the dataset into a train and test set
         from sklearn.linear_model import LinearRegression
In [38]:
         regressor = LinearRegression()
         regressor.fit(unit train, gross train)
         # to train the simple linear regression model on the train set
Out[38]: LinearRegression()
```

```
In [39]: plt.figure(figsize=(20,8))
    plt.scatter(unit_train, gross_train, color = 'green')
    plt.plot(unit_train, regressor.predict(unit_train), color = 'blue')
    plt.title('Total_Transaction_Amount vs Total_Transaction_Count')
    plt.xlabel('Total_Transaction_Amount')
    plt.ylabel('Total_Transaction_Count')

# to show the correlation of Total_Transaction_Amount with Total_Transaction_Cour
```

Out[39]: Text(0, 0.5, 'Total_Transaction_Count')

Libraries Needed

- 1. import pandas as pd
- 2. import numpy as np
- 3. import seaborn as sns
- 4. import matplotlib.pyplot as plt
- 5. import io
- 6. from sklearn.model_selection import train_test_split
- 7. from sklearn.linear model import LinearRegression
- 8. import statsmodels.tools.tools as stattools
- 9. from sklearn.tree import DecisionTreeClassifier

Validation and Evaluation Measurement

```
In [40]: import statsmodels.tools.tools as stattools
from sklearn.tree import DecisionTreeClassifier

# importing Libraries

In [41]: y = bank['Customer_Attrition']
X = bank[['Total_Transaction_Amount', 'Total_Transaction_Count']]

# to specify the names of the combined matrix and the target variable
```

```
In [42]: c50 01 = DecisionTreeClassifier(criterion="entropy", min samples split=75, max 1€
         # to identify the best split in the data
In [43]: c50_01_predict = c50_01.predict(bank[['Total_Transaction_Amount', 'Total_Transact
         # to obtain classifications
         bar = pd.crosstab(bank['Customer Attrition'], c50 01 predict)
In [44]:
         # to show the different data in Customer Attrition
Out[44]:
          col_0
                                1
          Customer_Attrition
                        0 7731
                                769
                           548 1079
In [45]: def model eval(matrix, model name):
                 tn = matrix.iloc[0,0]
                 tp = matrix.iloc[1,1]
                 fn = matrix.iloc[1,0]
                 fp = matrix.iloc[0,1]
                 tap = fn+tp
                 tan = tn+fp
                 tpn = tn+fn
                 tpp = fp+tp
                 precision = tp/tpp
                 recall = tp/tap
                 total = tn+tp+fn+fp
                 data = [
                          round((tp+tn)/total,4),
                          round(1-((tp+tn)/total),4),
                          round(tp/tap,4),
                          round(tn/tan,4),
                          round(precision,4),
                          round(2 * (precision * recall) / (precision + recall),4),
                          round(5 * (precision * recall) / ((4 * precision) + recall),4),
                          round(1.25 * (precision * recall) / ((.25 * precision) + recall)
                 return(
                          pd.DataFrame(data, columns=[model_name],
                                       index=['Accuracy','Error Rate','Sensitivity','Specif
                          )
         model bank = model eval(bar, model name = 'model bank')
         # to compute for the evaluation measure
```

```
In [46]: model_bank
# to show the evaluation measure
```

Out[46]:

	model_bank
Accuracy	0.8700
Error Rate	0.1300
Sensitivity	0.6632
Specificity	0.9095
Precision	0.5839
F1	0.6210
F2	0.6456
F0.5	0.5982

Evaluation (Interpreting Results)

```
In [47]: plt.figure(figsize=(20,8))
    plt.scatter(unit_train, gross_train, color = 'green')
    plt.plot(unit_train, regressor.predict(unit_train), color = 'blue')
    plt.title('Total_Transaction_Amount vs Total_Transaction_Count')
    plt.xlabel('Total_Transaction_Amount')
    plt.ylabel('Total_Transaction_Count')

# to show the correlation of Total_Transaction_Amount with Total_Transaction_Cour
```

Out[47]: Text(0, 0.5, 'Total_Transaction_Count')

I have discovered that the Total_Transaction_Amount and the Total_Transaction_Count is highly correlated with each other. As the Total_Transaction_Amount goes up the Total_Transaction Count also goes up.

In [48]: model_bank
to show the evaluation measure

Out[48]:

	model_bank
Accuracy	0.8700
Error Rate	0.1300
Sensitivity	0.6632
Specificity	0.9095
Precision	0.5839
F1	0.6210
F2	0.6456
F0.5	0.5982

Results of the Evaluation Measurement To calibrate the accuracy of model_bank, the all negative model was used as a baseline. The following information was then interpreted

- 1. The model has an Accuracy of 87.00%
- 2. The model has an Error rate of 13.00%
- 3. A Specificity of 0.9095 means the model correctly classifies 90.95% of the actual negative records as negative.
- 4. A Sensitivity of 0.6632 means that 66.32% of the actual positive records were classified as positive.
- 5. A Precision of 0.5839 means that 58.39% of the data would respond positively
- 6. F1 has a value of 0.6210, F2 has a value of 0.6456 which is close to Sensitivity, F0.5 has a value of 0.5982 which is close to the precision.
- 7. The Fscore are compared directly to choose the best model outcome

Useful Findings

General Problem Explanation: In order to solve the general problem statement, we decided to create and answer 3 data science questions that would prove our findings. We used different graphs and correlations of variables to predict which customers will not be using the amenities of the bank in the future.

First Data Science Question: Does gender and marital status influence the churn rate of the bank?

```
In [49]: plt.figure(figsize=(9,6))
    plot=sns.countplot(x=bank.Gender,hue=bank.Customer_Attrition)
    for p in plot.patches:
        plot.annotate(p.get_height(),(p.get_x()+p.get_width()/2,p.get_height()+50))
        plt.show()

# to show the count of Customer_Attrition in the Gender: M and F
# wherein '0' is the existing customer and '1' is the attrited customer
```



```
In [50]: bank[['Customer_Attrition','Gender']].\
groupby(['Gender']).agg(['mean','count']).round(2)

# to show the correlation of Customer_Attrition with Gender
# the mean is the churn rate of customers
# the count shows the number of Female and Male customers
```

Out[50]:

Customer_Attrition

	mean	count
Gender		
F	0.17	5358
М	0.15	4769

The female customers have a 17% churn rate. The male customers have a 15% churn rate.

```
In [51]: plt.figure(figsize=(9,6))
    plot=sns.countplot(x=bank.Marital_Status,hue=bank.Customer_Attrition)
    for p in plot.patches:
        plot.annotate(p.get_height(),(p.get_x()+p.get_width()/2,p.get_height()+50))
        plt.show()

# to show the count of Customer_Attrion in the Marital_Status: Married, Single, I
# wherein '0' is the existing customer and '1' is the attrited customer
```



```
In [52]: bank[['Customer_Attrition','Marital_Status']].\
groupby(['Marital_Status']).agg(['mean','count']).round(2)

# to show the correlation of Customer_Attrition with Marital_Status
# the mean is the churn rate of customers
# the count shows the number of Divorced, Married, Single, and Unknown customers
```

Out[52]:

	Customer_Attrition		
	mean count		
Marital_Status			
Divorced	0.16	748	
Married	0.15	4687	
Single	0.17	3943	
Unknown	n 0.17		

The divorced customers have a 16% churn rate. The married customers have a 15% churn rate. The single customers have a 17% churn rate. The unknown customers have a 17% churn rate.

```
In [53]: bank[['Customer_Attrition','Gender','Marital_Status']].\
groupby(['Gender','Marital_Status']).agg(['mean','count']).round(2)

# to show the correlation of Customer_Attrition with both Gender and Marital_Stat
# the mean is the churn rate of customers
# for the Gender F and M, the count shows the number of Divorced, Married, Single
```

Customer Attrition

Out[53]:

		- · · · · ·	
		mean	count
Gender	Marital_Status		
F	Divorced	0.17	402
	Married	0.17	2451
	Single	0.18	2125
	Unknown	0.18	380
М	Divorced	0.15	346
	Married	0.13	2236
	Single	0.16	1818
	Unknown	0.16	369

First Data Science Question Answer: The female customers have a much higher churn rate than the male customers. Which means that the female customers are more likely to churn than the male customers. An example of a scenario could be that a bank should better improve its amenities to avoid having a high churn rate of its customers.

Second Data Science Question: Is there a correlation between the attrited customers and the number of inactive months?

```
In [54]: plt.figure(figsize=(9,6))
    plot=sns.countplot(x=old_bank.Months_Inactive,hue=old_bank.Customer_Attrition)
    for p in plot.patches:
        plot.annotate(p.get_height(),(p.get_x()+p.get_width()/2,p.get_height()+50))
    plt.show()

# to show the count of Customer_Attrion in the Months_Inactive: 0, 1, 2, 3, 4, 5,
# wherein '0' is the existing customer and '1' is the attrited customer
```



```
In [55]: old_bank[['Customer_Attrition','Months_Inactive']].\
groupby(['Months_Inactive']).agg(['mean','count']).round(2)

# to show the correlation of Customer_Attrition with Months_Inactive
# the mean is the churn rate of customers
# the count shows the number of customers that have been inactive based on the number.
```

Out[55]:

Customer_Attrition mean count Months_Inactive 0 0.52 29 2233 1 0.04 2 0.15 3282 3 0.21 3846 0.30 4 435 0.18 178 5

6

0.15

124

Second Data Science Question Answer: There is a correlation betwen the attrited customers and the number of inactive months because the churn rate of the customers increases as the number of inactive months increases, excluding the months when there were only a few customers. An example of a scenario could be that the bank kasi anticipate the churn rate of customers depending on the months they are inactive and they could prevent some of the churn rate of the customers.

Third Data Science Question: Is there a correlation between the total transaction amount and total transaction count?

```
In [56]: sns.relplot(data=old_bank, kind='scatter', x='Total_Transaction_Amount', y='Total
# to show the correlation between Total_Transaction_Amount and Total_Transaction_
# the '0' is the existing customer
# the '1' is the attrited customer
• **Total_Transaction_Amount and Total_Transaction_*
```

Out[56]: <seaborn.axisgrid.FacetGrid at 0x1e5e57e9ca0>

amount and the total transaction count because as seen from the scatter plot, there is almost no churn for the customers that have done atleast 90 total transactions. An example of a scenario could be that the bank can predict that if a customer have done more than 90 transactions, that customer will keep using the amenities of the bank and will not churn.

Final learnings

I have learned how to use some of the common functions and techniques of the data science exploratory data analysis. I now have a subtle understanding of how to approach this types of dataset.

Recommendations

I recommend to the future users of this dataset to correlate the variables that have not been used yet to get a better understanding of the correlation between variables and if they will affect the churn rate of the customers.

References

https://towardsdatascience.com/practical-data-analysis-with-pandas-and-seaborn-8fec3cb9cd16 (https://towardsdatascience.com/practical-data-analysis-with-pandas-and-seaborn-8fec3cb9cd16)

https://www.kaggle.com/amanpatyal/exploratory-analysis-bankchurners-csv (https://www.kaggle.com/amanpatyal/exploratory-analysis-bankchurners-csv)

https://www.youtube.com/watch?v=LIGLh7H6IFk&ab_channel=JPTomas (https://www.youtube.com/watch?v=LIGLh7H6IFk&ab_channel=JPTomas)

https://www.youtube.com/watch?v=eSA3v5wmRJo&ab_channel=JPTomas (https://www.youtube.com/watch?v=eSA3v5wmRJo&ab_channel=JPTomas)

https://stackabuse.com/linear-regression-in-python-with-scikit-learn/ (https://stackabuse.com/linear-regression-in-python-with-scikit-learn/)

In []:
