

LS1201

Introduction to Biology II

Part B - Evolution

Prof. Sumana Annagiri sumana@iiserkol.ac.in

Support for Theory of Natural Selection

Hierarchical organization of life forms

Time dependent branching and divergence

 Homology – Similarity of structure despite differences in function as a result of modification from common ancestors.

Eg - modification of forelimbs with the same structure but different functions

Eg - Arbitrary genetic code

Embryological similarities

Characters that appear during development and is unnecessary.

Eg - Human embryo – display bronchial pouches similar to gill slits of fish embryo

Eg - Tooth primordia – fetal ant eaters

Eg - Some species of Frogs & Salamanders – hatch with adult morphology, but pass through larval stages inside the egg which is typical of aquatic larvae

Vestigial characters

Organs or part of body that do not have a function. Darwin listed some in the human body

Eg – Appendix, Coccyn (fused tail bones), Muscles that move our ears

Eg - Rudimentary wings in flightless beetles

Eg - Eyes in cave dwelling fishes

 Convergence – Functionally similar organs working on different principles. Expected only if different ancestral forms were modified.

Analogous organs

Eg – wings of butterflies and birds

Eg – Climbing organs in plants

 Suboptimal design – Many organs are not designed in the optimal/best manner

Eg – Food pipe and air pipe cross over each other risking chocking on food.

Eg – Human eye – blind spot as the optical nerve covers a part of the retina

- Origin of life
- Differences between males and females within a species
- Why some organisms never produce their own offspring
- Why some organisms sacrifice their lives

- Write your name and roll number
- What is the expected result in terms of guppies phenotype in the experiment1?
- What is the expected result in terms of guppies phenotype in the experiment2?

Baseline Pool – We build a baseline pool with all kinds of Guppies (big, small and highly colorful to grey colored ones) and have no predators in this pond

Experiment 1

Introduce subset of guppies to another pond with Pike

Experiment 2

Introduce subset of guppies to another pond with Killifish

Remember – Pikes tend to eat large guppies with colorful spots on their body and Killifish tend to eat small guppies which do not have color spots on their body

Results:

Experiment 1 – Males are expected to become smaller and have less coloured tails

Experiment 2 – Males are expected to become larger and have more colourful tails.

Workers do not reproduce they can not mate or lay eggs

For queen and colony

Suicide

Giant Irish Elk

Antlers 11 feet wide and weighted 100 pounds

Showoff

Think of the disadvantages......

Linnaeus's mistake

Linnaeus's mistake

This is the female and male of the same species - Mallard duck

Why are the males and females so different in appearance?

How do extravagant traits evolve in the male as these conspicuous attributes will not improve the animals survival

Secondary sex characteristics

are features that distinguish the two sexes of a species, but that are not directly part of the reproductive system

Sexual dimorphism Special case of polymorphism
based on the distinction
between the secondary sex
characteristics of males and
females

Sexual dimorphism

Its not just about physical appearance

