RELATIONAL ALGEBRA

CS 564- Fall 2018

WHAT IS THIS LECTURE ABOUT?

- Relational Algebra
 - query language for relations
- Basic Operations
 - selection, projection
 - difference, union
 - cross-product, renaming
- Derived Operations
 - join, natural join, equi-join, division, etc

RELATIONAL QUERY LANGUAGES

- allow the manipulation and retrieval of data from a database
- two types of query languages:
 - Declarative: describe what a user wants, rather than how to compute it
 - Tuple Relational Calculus (TRC)
 - Domain Relational Calculus (DRC)
 - Procedural: operational, useful for representing execution plans
 - Relational Algebra (RA)

WHAT IS RELATIONAL ALGEBRA?

- algebra: mathematical system consisting of
 - operands: variables or values from which new values can be constructed
 - operators: symbols denoting procedures that construct new values from given values
- relational algebra: an algebra whose operands are relations or variables that represent relations
 - operators do the most common things that we need to do with relations in a database
 - can be used as a query language for relations

RELATIONAL ALGEBRA: PRELIM

Query:

- Input: relational instances
- Output: relational instances
- specified using the schemas
 - may produce different results for different instances
 - the schema of the result is fixed
- there are two types of notation for attributes:
 - positional (e.g. 2, 4)
 - named-field (e.g. C.name, Person.SSN)

RELATIONAL ALGEBRA: PRELIM

- Basic operations:
 - *Selection* $\{\sigma\}$: selects a subset of rows
 - *Projection* $\{\pi\}$: deletes columns
 - Cross-product {×}: combines two relations
 - Set-difference {-}
 - − *Union* {U}
- When the relations have named fields:
 - Renaming $\{\rho\}$
- Additional operations:
 - Intersection, join, division

KEEP IN MIND!

• SQL uses multisets, however in Relational Algebra we will consider relations as **sets**

• We will consider the **named perspective**, where every attribute must have a unique name

The attribute order in a relation does not matter!

BASIC OPERATIONS

SELECTION

Notation: $\sigma_C(R)$

- C is a condition that refers to the attributes of R
- outputs the rows of R that satisfy C
- output schema: same as input schema

Example

- $\sigma_{age>24}(Person)$ —
- $\sigma_{age>24 \ and \ age\leq28}(Person)$
- $\sigma_{age>24 \ and \ name="Paris"}(Person)$

```
SELECT *
FROM Person
WHERE age > 24;
```

SELECTION: EXAMPLE

Person

SSN	name	age	phoneNumber
934729837	Paris	24	608-374-8422
934729837	Paris	24	603-534-8399
123123645	John	30	608-321-1163
384475687	Arun	25	206-473-8221

$$\sigma_{age>24}(Person)$$

SSN	name	age	phoneNumber
123123645	John	30	608-321-1163
384475687	Arun	25	206-473-8221

PROJECTION

Notation:
$$\pi_{A_1,A_2,...,A_n}(R)$$

- outputs only the columns $A_1, A_2, ..., A_n$
- removes any duplicate tuples
- output schema: $R(A_1, A_2, ..., A_n)$

Example

- $\pi_{SSN,age}(Person)$ ______
- $\pi_{SSN,phoneNumber,age}(Person)$

SELECT DISTINCT SSN, age **FROM** Person;

PROJECTION: EXAMPLE

Person

SSN	name	age	phoneNumber
934729837	Paris	24	608-374-8422
934729837	Paris	24	603-534-8399
123123645	John	30	608-321-1163
384475687	Arun	20	206-473-8221

 $\pi_{SSN,name}(Person)$

SSN	name
934729837	Paris
123123645	John
384475687	Arun

RA OPERATORS ARE COMPOSITIONAL

```
SELECT DISTINCT SSN,age
FROM Person
WHERE age > 24;
```

Two logically equivalent expressions in RA:

- $\pi_{SSN,age}\left(\sigma_{age>24}(Person)\right)$
- $\sigma_{age>24}(\pi_{SSN,age}(Person))$

UNION

Notation: $R_1 \cup R_2$

- outputs all tuples in R_1 or R_2
- both relations must have the same schema!
- output schema: same as input

A	В
a_1	b_1
a ₂	b_1
a_2	b_2

U

A	В
a_1	b_1
a_3	b_1
a ₄	b_4

 A
 B

 a_1 b_1
 a_2 b_1
 a_2 b_2
 a_3 b_1
 a_4 b_4

DIFFERENCE

Notation: $R_1 - R_2$

- outputs all tuples in R_1 and not in R_2
- both relations must have the same schema!
- output schema: same as input

A	В		A	В		A	В
a_1	b_1		a_1	b_1		a ₂	b_1
a_2	b_1	_	a_3	b_1	_	a ₂	b ₂
a_2	b_2		a_4	b_4			

CROSS-PRODUCT

Notation: $R_1 \times R_2$

- matches each tuples in R_1 with each tuple in R_2
- input schema: $R_1(A_1, A_2, ..., A_n)$, $R_2(B_1, B_2, ..., B_m)$
- output schema: $R(A_1, ..., A_n, B_1, ..., B_m)$

Example

• Person × Department — SELECT *
FROM Person, Department;

CROSS-PRODUCT: EXAMPLE

Person

SSN	name
934729837	Paris
123123645	John

Dependent

depSSN	depname
934729837	Helen
934729837	Bob

 $Person \times Dependent$

SSN	name	depSSN	depname
934729837	Paris	934729837	Helen
123123645	John	934729837	Bob
934729837	Paris	934729837	Bob
123123645	John	934729837	Helen

RENAMING

Notation: $\rho_{A_1,A_2,...,A_n}(R)$

- does not change the instance, only the schema!
- input schema: $R(B_1, B_2, ..., B_n)$
- output schema: $R(A_1, ..., A_n)$

Why is it necessary?

named perspective: when joining relations, we need to distinguish between attributes with the same name!

RENAMING: EXAMPLE

Person

SSN	name
934729837	Paris
123123645	John

Dependent

SSN	name
934729837	Helen
934729837	Bob

 $Person \times \rho_{depSSN,depname}$ (Dependent)

SSN	name	depSSN	depname
934729837	Paris	934729837	Helen
123123645	John	934729837	Bob
934729837	Paris	934729837	Bob
123123645	John	934729837	Helen

DERIVED OPERATIONS

INTERSECTION

Notation: $R_1 \cap R_2$

- outputs all tuples in R_1 and R_2
- output schema: same as input

SELECT R.A, R.B FROM R,S WHERE R.A = S.A AND R.B = S.B;

• can be expressed as: $R_1 - (R_1 - R_2)$

R

A	В
a_1	b_1
a_2	b_1
a_2	b_2

	A	В
_	a_1	b_1

JOIN (THETA JOIN)

Notation:
$$R_1 \bowtie_{\theta} R_2 = \sigma_{\theta}(R_1 \times R_2)$$

- cross-product followed by a selection
- θ can be any boolean-valued condition
- might have less tuples than the cross-product!

```
SELECT *
FROM R_1, R_2
WHERE \theta;
```

THETA JOIN: EXAMPLE

Person

SSN	name	age
934729837	Paris	26
123123645	John	22

Dependent

dSSN	dname	dage
934729837	Helen	23
934729837	Bob	28

 $Person \bowtie_{Person.age>Dependent.dage} Dependent$

SSN	name	age	dSSN	dname	dage
934729837	Paris	26	934729837	Helen	23

EQUI-JOIN

Notation: $R_1 \bowtie_{\theta} R_2$

- special case of join where the condition θ contains only equalities between attributes
- output schema: same as the cross-product

Example for R(A,B), S(C,D)

- $R \bowtie_{B=C} S$
- output schema: T(A, B, C, D)

```
SELECT *
FROM R, S
WHERE R.B = S.C;
```

NATURAL JOIN

Notation: $R_1 \bowtie R_2$

- equi-join on all the common fields
- the output schema has one copy of each common attribute

Person

SSN	name	age
934729837	Paris	26
123123645	John	22

SELECT SSN,name,age,dname
FROM Person P,
Department D
WHERE P.SSN = D.SSN;

Dependent

SSN	dname
934729837	Helen
934729837	Bob

$Person \bowtie Dependent$

SSN	name	age	dname
934729837	Paris	26	Helen
934729837	Paris	26	Bob

NATURAL JOIN

Natural Join $R \bowtie S$

- Input schema: R(A, B, C, D), S(A, C, E)
 - Output schema: *T(A, B, C, D, E)*
- Input schema: R(A, B, C), S(D, E)
 - Output schema: *T(A, B, C, D, E)*
- Input schema: R(A, B, C), S(A, B, C)
 - Output schema? *T(A, B, C,)*

SEMI-JOIN

Notation: $R_1 \ltimes R_2$

• natural join followed by projection on the attributes of R_1

Example:

- R(A,B,C),S(B,D)
- $R \bowtie S = \pi_{A,B,C}(R \bowtie S)$
- output schema: *T(A, B, C)*

```
SELECT A,B,C
FROM R, S
WHERE R.B = S.B;
```

DIVISION

Notation: R_1/R_2

- suppose $R_1(A,B)$ and $R_2(B)$
- the output contains all values **a** such that for every tuple (**b**) in R_2 , tuple (**a**, **b**) is in R_1
- output schema: *R(A)*

DIVISION: EXAMPLE

A

Α	В
a_1	b_1
a_1	b_2
a_1	\mathbf{b}_3
a ₂	b_1

 $\mathbf{B_1}$

—
В
b ₂
b_3
b_1

 \mathbf{B}_2

B b₁

 A/B_1 a_1

 A/B_2 $\begin{vmatrix} A \\ a_1 \\ a_2 \end{vmatrix}$

EXTENDING RELATIONAL ALGEBRA

GROUP BY AGGREGATE

- is part of the so-called extended RA
- helps us to compute counts, sums, min, max, ...

Examples

- What is the average age of the customers?
- How many people bought an iPad?

GROUP BY AGGREGATE

Notation: $\gamma_{X,Agg(Y)}(R)$

- group by the attributes in X
- aggregate the attribute in Y
 - SUM, COUNT, AVG (average), MIN, MAX
- Output schema: X + an extra (numerical) attribute

EXAMPLE

Person

SSN	name	age
934729837	Paris	24
123123645	John	30
384475687	Arun	21

 $\gamma_{AVG(age)}(Person)$

AVG(age)
25

SELECT AVG(age)
FROM Person;

EXAMPLE

Person

SSN	name	age	phoneNumber
934729837	Paris	24	608-374-8422
934729837	Paris	24	603-534-8399
123123645	John	30	608-321-1163
384475687	Arun	21	206-473-8221

SELECT SSN,
 COUNT(phoneNumber)
FROM Person
GROUP BY SSN;

 $\gamma_{SSN,COUNT(phoneNumber)}(Person)$

SSN	COUNT(phoneNumber)
934729837	2
123123645	1
384475687	1

CONSTRUCTING RA QUERIES

COMBINING RA OPERATORS

- We can build more complex queries by combining RA operators together
 - e.g. standard algebra: $(x + 1) * y z^2$
- There are 3 different notations:
 - sequence of assignment statements
 - expressions with operators
 - expression trees

COMBINING RA OPERATORS

Input schema: R(B,C), S(A,B)

expressions with operators

$$\pi_A(\sigma_{C=1}(R) \bowtie S)$$

sequence of assignment statements

$$R' = \sigma_{C=1}(R)$$

$$R'' = R' \bowtie S$$

$$R''' = \pi_A(R'')$$

expression trees

EXPRESSIVE POWER OF RA

RA cannot express transitive closure!

Edges

From	То
a	b
b	С
a	d
С	d

Transitive closure computes all pairs of nodes connected by a directed path