Calcul intégral

QCOP CINT. 1

- 1. Énoncer le théorème fondamental de l'analyse. Que nous apprend-il sur les fonctions continues?
- **2.** Soit *I* un intervalle de \mathbb{R} . Soient $a, b \in I$. Soient $u, v \in \mathcal{C}^1(I, \mathbb{R})$. Montrer que :

$$\int_a^b u(t)v'(t)\,\mathrm{d}t = \left[u(t)v(t)\right]_a^b - \int_a^b u'(t)v(t)\,\mathrm{d}t.$$

3. Déterminer les primitives de la fonction $ln(\cdot)$ sur \mathbb{R}_+^* .

QCOP CINT.2

- 1. Énoncer le théorème fondamental de l'analyse.
- 2. Énoncer la formule donnant la dérivée d'une composée.
- **3.** Soient I, J deux intervalles de \mathbb{R} . Soit $\varphi \in \mathscr{C}^1(J, I)$. Soit $f \in \mathscr{C}^0(I, \mathbb{R})$. Montrer que :

$$\forall a, b \in J, \quad \int_a^b f(\varphi(x))\varphi'(x) dx = \int_{\varphi(a)}^{\varphi(b)} f(t) dt.$$

QCOP CINT.3

- 1. Donner la dérivée de la fonction $arctan(\cdot)$.
- 2. Soit a > 0. À l'aide d'un changement de variable, déterminer une primitive de

$$x \longmapsto \frac{1}{x^2 + a^2}$$
.

 En déduire une méthode pour calculer une primitive d'une fonction

$$x\longmapsto \frac{1}{ax^2+bx+c},$$
 où $a,b,c\in\mathbb{R},\ a\neq 0.$

QCOP CINT.4

- 1. Soit u une fonction définie et dérivable sur un intervalle I de \mathbb{R} . Soit $a \in \mathbb{R}$. Donner l'expression de la dérivée de la fonction u^a .
- 2. Soit $\alpha \in \mathbb{R}$. Déterminer une primitive de la fonction $t \longmapsto \frac{1}{t^{\alpha}} \sup [1, +\infty[$.
- **3.** Soit $\beta \in \mathbb{R}$. Soit $x \in [e, +\infty[$. Calculer : $f^{\times} = 1$.

$$\int_{e}^{x} \frac{1}{t \ln(t)^{\beta}} dt.$$

QCOP CINT.5

Soit f une fonction continue. On note $F: x \longmapsto \int_0^x f(t) \, \mathrm{d} t$ et, pour $a \in \mathbb{R}_+$, $I_a \coloneqq \int_{-a}^a f(t) \, \mathrm{d} t$.

- 1. On suppose que f est une fonction paire.
 - a) Soit $a \in \mathbb{R}_+$. Dessiner et calculer (sans utiliser de primitive) l'intégrale I_a .
 - **b)** Quelle est la parité de *F* ?
- 2. Mêmes questions en supposant que f est une fonction impaire.