10.02.2023, 14:20 OneNote

Ренормализация в арифметическом кодировании

5 января 2023 г. 1:23

Реализация арифметического кодирования

F - кумулятивная вероятность, которую вычисляем на каждом шаге

G - произведение вероятностей

- \bullet Обозначим через L (low) регистр, в котором хранится F, через R(range) регистр, в котором хранится G и введем регистр H = L + R (high).
- ullet В начале работы алгоритма $L=0, H=2^b-1$, где b разрядность
- В результате операции $R=p_iR$ регистр R может обнулиться.
- Задача ренормализации держать регистры $H \geq \frac{3}{4}2^b$, $L \leq \frac{1}{4}2^b$, т.е.

В алгоритме присутствует умножение R на вероятность р, то есть на число от 0 до 1, это приводит к тому, что R становится дробным, и если из раза в раз выполнять это умножение, в какой-то момент регистр R обнулится. Чтобы этого избежать, выполняется ренормализация. Ее суть в том, чтобы держать регистры в положении, из которого они не могут переполниться. Если они выходят из этого положения, то мы выдаем соответствующее количество бит на выход выполняем сдвиг в регистрах.

Принимаем во внимание модифицированную кумулятивную вероятность (формула была в "Код Гилберта-Мура",

- **1** $H < \frac{1}{2}2^b$.
- Тогда $\sigma < \frac{1}{2}2^b$.

 Выдаём 0. $H = H \times 2$, $L = L \times 2$. $H \ge \frac{1}{2}2^b$, $L \ge \frac{1}{2}2^b$ Тогда $\sigma > \frac{1}{2}2^b$.

 Выдаём 1. $H = H \times 2 2^b$, $L = L \times 2 2^b$.

 Torga $\sigma > \frac{1}{2}2^b$. $\sigma = \frac{1}{2}2^b$.
- $\frac{1}{2}2^b < H < \frac{3}{4}2^b, \frac{1}{4}2^b \le L < \frac{1}{2}2^b$
 - ▶ Тогда $\sigma <> \frac{1}{2}2^b$ (неопределённость).
 - \triangleright btf = btf + 1
 - $H = H \times 2 \frac{1}{2}2^b, L = L \times 2 \frac{1}{2}2^b.$

3 случай - неопределенность, т.е. не выполняется ни 1, ни 2. Старшие разряды кодового слова не определены на данном шаге. Это происходит в случае, когда у нас запись либо ...011111..., либо ...100000... Тогда мы ничего не делаем, а только накапливаем bits to follow - число, которое показывает, сколько раз в записи встречается 1 или 0 соответственно в ...

См. ренормализацию двоичного арифметического кодирования в "Реализация двоичного арифметического кодирования без умножений'

Байтовая ренормализация (range coder) для недвоичного³ и двоичного⁴ алфавита

1: while
$$(L \oplus (L+R)) < 2^{24}$$
 or $R < 2^{16}$ do

- if $R < 2^{16} \land$ 3: $R \leftarrow R \ll 8$ ($L \oplus (L+R)$) $\geq 2^{24}$ then 4: $L \leftarrow L \ll 8$ $R \leftarrow (!L+1) \land (2^{16}-1)$ 5: else if $R < 2^{16}$ then
- 4: end if
- 5: PUTBYTE ($L\gg 24$) 7: PUTBYTE ($L\gg 24$)
- 6: $R \leftarrow R \ll 8$
- $L \leftarrow L \ll 8$
- 8: end while

- 6: $R \leftarrow (!L+1) \wedge (2^{16}-1)$
- 8: $R \leftarrow R \ll 8$
- 9: *L* ← *L* ≪ 8
- 10: end if

1: while $(L \oplus (L+R)) < 2^{24}$ or 1: if $(L \oplus (L+R)) < 2^{24}$ then $R < 2^{16}$ do 2: PUTBYTE $(L \gg 24)$ 3: $R \leftarrow P < 0$