## 1 Theta $\Theta$

**Defintion 1.** For a given complexity function, f(n),  $\theta(f(n))$  is the set of complexity functions g(n) for which there exists 2 positive real constants,  $C_1$  and  $C_2$ , and a non-negative integer  $n_0$  such that for all  $n \geq 0$ 

$$C_1 \cdot f(n) \le g(n) \le C_2 \cdot f(n)$$

Theta is the intersection of Big-O and Big- $\Omega$ : it is an upper and lower bound on f(n). There are two constants  $C_1$  and  $C_2$  associated with theta rather than just one, as with Big-O and Big- $\Omega$ .  $C_1$  makes the lower bound and  $C_2$  makes the upper.



To show  $g(n) \in \Theta(f(n))$ , one must show that  $g(n) \in O(f(n))$  AND  $g(n) \in \Omega(f(n))$ . In order to show that  $g(n) \notin \Theta(f(n))$ , one can show  $g(n) \notin O(f(n))$  OR  $g(n) \notin \Omega(f(n))$ . This can be visualized easily using a set diagram.



**Example 1.1.** Show that  $5n^2 \in \Theta(n^2)$ .

First show  $5n^2 \in O(n^2)$ :

$$5n^2 < C \cdot n^2$$

Letting C = 5 will make both sides of the equation equal.

$$5^2 < 5n^2$$

No matter the value of n, the sides will be the same, so we will make the arbitrary choice to let  $n_0 = 0$ .

Now, show that  $5n^2 \in \Omega(n^2)$ .

$$5n^2 \ge C \cdot n^2$$

Once again, letting C=5 will make both sides the same, so we can let  $n_0=0$  again. Since  $5n^2 \in O(n^2)$  and  $5n^2 \in \Omega(n^2)$ ,  $5n^2 \in \Theta(n^2)$ . For  $n \ge 0$ :

$$5n^2 \le 5n^2 \le 5n^2$$

Note that  $C_1$  and  $C_2$  do not have to share the same value as they do in this case. We could let C=6 for  $5n^2 \in O(n^2)$  and C=4 for  $5n^2 \in \Omega(n^2)$ , for example  $(n_0$  remains 0) and still have a valid inequality:

$$4n^2 \le 5n^2 \le 6n^2$$

Example 1.2. Show  $n \notin \Theta(n^2)$ .

To show  $n \notin \Theta(n^2)$ , we can show  $n \notin \Omega(n^2)$ . In order to do so, we can perform a proof by contradiction. To do a proof by contradiction:

Assume the claim  $n \notin \Omega(n^2)$  is false.

If it is false, then  $n \in \Omega(n^2)$ .

By the definition of  $\Omega$ , there is a positive real constant C and a non-negative integer  $n_0$  such that for all  $n \geq n_0$ 

$$n \ge C \cdot n^2$$

Divide both sides by Cn:

$$\frac{1}{C} \geq n$$

As n grows unbounded, this will become false, no matter what value we give to C. Specifically, it will become false when  $n > \frac{1}{C}$ .

This contradicts the statement  $n \in \Omega(n^2)$ , therefore

$$n \notin \Omega(n^2)$$

and by the definition of  $\Theta$ 

$$n\notin\Theta(n^2)$$

## 2 Little-o

**Defintion 2.** For a given complexity function, f(n), o(f(n)) is the set of complexity functions g(n) that satisfies the following: For every positive real constant C, there exists a non-negative integer  $n_0$  such that for all  $n \ge n_0$ 

$$g(n) \le C \cdot f(n)$$

The distinction between little-o and the previous definitions for Big-O, Big- $\Omega$ , and  $\Theta$  is that there must be an  $n_0$  for all possible values of C, rather than requiring that there exists at least one valid set of values. Obviously, we can't find an  $n_0$  for each C by hand; instead, define the value of n using C as in the following example.

**Example 2.1.** Show  $n \in o(n^2)$ . Let C > 0 be given.

Solve for n.

$$n \le C \cdot n^2$$

Divide both sides by Cn.

$$\frac{1}{C} \leq n$$

So,  $n \ge \frac{1}{C}$ . We can define  $n_0$  as a function of C. In order to make sure n is an integer, we can use either a floor or ceiling function on  $\frac{1}{C}$  to round it either down or up, respectively. Either works here; we will make the arbitrary choice to use floor.

$$n_0 = \lfloor \frac{1}{C} \rfloor$$

To prove  $g(n) \notin o(f(n))$ , we can do a proof by contradiction following a similar logic as with theta.

**Example 2.2.** Show  $n \notin o(5n)$ . To prove by contradiction, suppose  $n \in o(5n)$ .

By the definition of Little-o, there must exist a non-negative integer  $n_0$  for every value of C.

$$n \le C \cdot 5n$$

Let  $C = \frac{1}{6}$ :

$$n \le \frac{1}{6} \cdot 5n$$

$$n \leq \frac{5}{6}n$$

$$1 \le \frac{5}{6}$$

This is a contradiction. Therefore,  $n \notin o(5n)$ .

## 3 Little-omega $\omega$

**Defintion 3.** For a given complexity function, f(n),  $\omega(f(n))$  is the set of complexity functions g(n) that satisfies the following: For every positive real constant C, there exists a non-negative integer  $n_0$  such that for all  $n \geq n_0$ 

$$g(n) \ge C \cdot f(n)$$

Similar to Little-o, this means that a function g(n) is considered  $\omega(f(n))$  if an initial value  $n_0$  can be found that satisfies the equation for every positive real constant C. Proving a statement true or false is done in the same way as Little-o.

**Example 3.1.** Show  $2n^2 \in \omega(n)$ . Let C > 0 be given.

Solve for n.

$$2n^2 \ge C \cdot n$$

Divide both sides by 2n:

$$n \ge \frac{C}{2}$$

As with the example with little-o, we will define  $n_0$  as a function of C. This time, we'll choose the ceiling function, but as before, either would work.

$$n_0 = \left\lceil \frac{C}{2} \right\rceil$$

## 4 Final Notes

The introduction of Little-o and Little-omega allows our set diagram to display a more complete picture.



The complexity functions can be thought of analogous to the relationships between x and y:

$$\begin{vmatrix} x < y & g(n) \in o(f(n)) \\ x \le y & g(n) \in O(f(n)) \\ x = y & g(n) \in \Theta(f(n)) \\ x \ge y & g(n) \in \Omega(f(n)) \\ x < y & g(n) \in \omega(f(n)) \end{vmatrix}$$

(If this doesn't make sense to you, ignore it; it's just another way to think about the complexity functions that some may find more intuitive.)