

禪譜科技

2.3 電化學修飾電極

2.3 銅的電化學

銅金屬有趣且複雜的特性深深吸引著全球想要使用研發成感測器材料的研究人員,文獻發表記載著修飾銅網版印刷碳電極可被應用偵測鄰二酚(o-diphenols)、葡萄糖、胺基酸及溶氧等分析物,其製備方法可簡單且快速將銅奈米粒子修飾在網版印刷碳電極表面,可藉由電化學參數與濃度控制銅奈米粒子大小約為100-500nm,如圖1所示, 其標準的電化學圖譜呈現於圖2,還原波峰發生在 ~ -0.2 V(C1),反應方程式如Cu^{II}O \rightarrow Cu^I2O,另一還原波峰在 ~ -0.2 5V(C2),方程式為 Cu^I2O \rightarrow Cu⁰,氧化反應波峰(A1/A2)則為Cu⁰氧化成Cu^{II}O及Cu^I2O⁽¹⁾。

圖1 修飾銅網版印刷碳電極及其電顯圖

圖2 典型修飾銅網版印刷碳電極的循環伏安圖譜 (a) 充氮環境(b)一般環境(c)充氧環境

Reference

2.3.1修飾銅網版印刷碳電極應用於光電化學溶氧感測器

修飾銅網版印刷碳電極(CuSPE)應 用於溶氧(dissolved oxygen,DO) 的感測器由中興大學曾志明教授 成功開發完成,感測器開發原理 主要是利用銅對溶氧的光電化學 特性進行分析,反應步驟分成三 個步驟,銅首先在適當電位(-0.3V vs Ag/AgCl).施加下將溶氧還原成 雙氧水,然後產牛之雙氧水在黑 暗的環境中會將銅化學氧化成p型 半導體氧化亞銅(Cul₂O),接著第 三步會施予一光源能量,將氧化 亞銅激發(Cul₂O*)進而將溶氧還原 成雙氧水, 因此可應用於偵測地 下水與自來水中1-8 ppm的溶氧 濃度。

圖3 (A)光電化學還原溶氧反應方程式 (B)光電化學 還原溶氧反應示意圖

2.3.2 修飾銅網版印刷碳電極應用於鄰二酚感測器

圖4修飾銅網版印刷碳電極氧化鄰二酚反應機構

2.3.2 修飾銅網版印刷碳電極應用於鄰二酚感測器

修飾銅網版印刷碳電極可應用於鄰二酚類(o-diphenols)之化合物,如鄰苯二酚 (catechol)、多巴胺(dopamine)及鄰苯三酚(pyrogallol),同時可避掉在臨床或生化 測試時會同時存在的干擾物如雙酚(diphenol)及抗壞血酸(ascorbic acid)等。可能的氧化反應機構如圖4所示,有三個步驟會進行,首先是鄰二酚會與二價銅(Cu(II))形成五員環的中間體,然後進行電子轉移與去氫反應,第三步驟會與還原的一價銅(Cu(I))形成鄉醌(o-quinone)衍生體,然後會再被氧化成二價銅。最終可以使用安培法進行性的偵測定量,如圖5所示。(1)

圖5 選擇性偵測鄰二酚的安培圖譜

Reference

(1)Jyh-Myng Zen,* Hsieh-Hsun Chung, and Annamalai Senthil Kumar, Anal. Chem. 2002, 74, 1202-1206

2.3.3 修飾銅網版印刷碳電極應用於葡萄糖的研究

修飾銅網版印刷碳電極(CuSPE)對雙氧水有強大的催化能力,可使用安培法語以定量分析,此外,同時可修飾葡糖氧化酵素(Glucose oxidase, GOD)於修飾銅網版印刷碳電極表面進而間接偵測葡萄糖。氧化銅與葡萄糖氧化酵素之間的作用反應式此感測器很重要的因素,研究結果顯示此感測器可以偵測線性範圍至26.7 mM的葡萄糖線性迴歸斜率與係數分別為4.5 µA/mM 與 0.9902。然而藉由非線性曲線計算出來的米式動力學(Michaelis-Menten kinetics)參數值Km顯示其完整性與一致性,其反應示意圖與反應機構方程式分別如圖6及圖7所示。

圖6種類一與種類二之葡萄糖感測器

圖7 (A) 葡萄糖感測器反應機構. (B)米式動力學反應方程

Reference

(1)Annamalai Senthil Kumar and Jyh-Myng Zen, Electroanalysis 2002, 14, No. 10

2.3.5 修飾銅網版印刷碳電極應用於偵測胺基酸

奈米銅修飾網版印刷電極(Cuⁿ-SPE_{100-nm})提供一個強力的平台可應用於胺基酸的偵測,100nm的奈米銅可經由一適當強度之光束照射與還原電位施予形成於碳電極表面,如圖9所示。20種未衍生化的胺基酸可在0.0 V vs. Ag/AgCl in pH 8 PBS緩衝一的條件下被奈米銅電極進行氧化還原。銅一價與銅二價的氧化還原訊號(Cu^{ll}O/Cu^l₂O redox signal)如圖8所示,其反應機構如圖10所示,二價銅會以1:1的比例與胺基酸形成錯合物(Cu^{ll}O-amino acid complex),之後進行第二步驟氧化脫附而產生電子轉移,因此第一步驟為反應機構關鍵。此電極可搭配高效能液相層析儀與安培法同時定量多種氨基酸,線性範圍為24 nM-2.7 μM。

圖8 典型銅的循環伏安圖譜及其與胺基酸反應示意圖

Reference

2.3.5 修飾銅網版印刷碳電極應用於偵測胺基酸

圖9 (A) 奈米銅電極電顯圖SEM及其循環伏安圖譜 (B) 奈米銅形成示意圖

圖10 奈米銅電極與胺基酸反應機構示意圖

Reference

(1) Jyh-Myng Zen,* Cheng-Teng Hsu, Annamalai Senthil Kumar, Hueih-Jing Lyuu and Ker-Yun Lin, Analyst, 2004, 129,841-845

2.3.6 碘化亞銅之半導體特性研究應用

碘化亞銅(γ -Cul)是一種重要的半導體材料,其能量間隙約為3.1eV,可適用於可見光區,因此常用於光電化學材料研究與太陽能系統開發。中興大學曾志明教授與徐振騰博士開發一快速製備碘化亞銅修飾碳電極的方法,可精準控制其顆粒大小與分佈程度於可拋棄式網版印刷碳電極表面,如圖12所示,其中一重要關鍵因素是使用三羟甲基氨基甲烷緩衝液(tris(hydroxymethyl)-aminomethane (Tris) buffer)當作控制溶劑,它扮演著幫助維持一價銅的狀態以利於一價銅(Cul₂O)與碘進行錯合而形成碘化亞銅,示意圖如圖11所示,最終可利用此一材料產生之光電效應進行光化學反應的實驗與應用,在13~400 Klux的光源照射下,產生之光電流如圖13所示,依據光能量的大小成線性反應。

Reference

(1) Cheng-Teng Hsu, Hsieh-Hsun Chung, Annamalai Senthil Kumar, Jyh-Myng Zen, Electroanalysis 17, 2005, No. 20, 1822 – 1827

2.3.6 碘化亞銅之半導體特性研究應用

圖12 奈米銅電極於pH 8 PBS (A)與 Tris buffer(B) 之循環伏安掃描圖譜與電顯圖

圖13 碘化亞銅光電反應圖譜.

Reference

(1) Cheng-Teng Hsu, Hsieh-Hsun Chung, Annamalai Senthil Kumar, Jyh-Myng Zen, Electroanalysis 17, 2005, No. 20, 1822 – 1827

2.3.7 修飾銅網版印刷碳電極應用於尿液有機酸偵測與尿結石風險 評估

中興大學曾志明教授、周濟眾教授與徐振騰博士成功發展腎結石的早期可靠性檢測 方法,此方法利用修飾銅網版印刷碳電極(CuSPE)搭配高效能液相層析儀(High performance liquid chromatography)快速偵測分析四種結石有機酸進而能提供給 醫生早期診斷腎結石發生風險。作者收集206位患者之尿液樣品進行檢測,測試項目 包含肌酐(creatinine)、胱氨酸(cysteine)、尿酸(uric acid)及檸檬酸(citric acid),其 最大優點是不須經過任樣品前處理步驟即可直接並準確地分析病患樣品,分析時間 僅需11分鐘即可完成且可不受抗壞血酸(ascorbic acid)的干擾,如圖14所示。偵測 原理亦分為三步驟,首先銅與分析物形成四配位錯合中間物,如CullO與鄰位-OH或 者-NH相接,然後進行氧化還原反應,經由兩個步驟的氧化還原與脫氫離子反應, CuSPE 獲得兩個電子而產生兩個當量的Cul,同時進行步驟3的鄰位-OH 或-NH 被氧 化,最後Cu^I在被氧化成Cu^{II}而形成循環。此方法可提供精確且準確地量測,其真實 樣品回收率可達99.5%,變異係數在7.7%以下,相關資料請參考圖15,不同種類的 動物測試與患病測試其風險評估相關性可達70-90%,因此可適用於未來快速篩檢高 風險腎結石發病之人體或動物檢測應用。

Reference

(1) Chung-Wei Yang, Jyh-Myng Zen, Yu-Lin Kao, Cheng-Teng Hsu, Tung-Ching Chung, Chao-Chin Chang, Chi-Chung Chou, Analytical Biochemistry 395 (2009) 224–230

修飾銅網版印刷碳電極應用於尿液有機酸偵測與尿結石風險 評估

圖14 典型修飾銅網版印刷碳電極偵測搭配高效能液相層 析圖譜,人類與犬類真實樣品分析尿液樣品與尿結石萃取 分析訊號分別為(a) cystine, (b) creatinine, (c) oxalic acid, (d) uric acid, 及 (e) citric acid.

圖15 正常樣品與病患樣品之有機酸濃度分析

Reference

(1) Chung-Wei Yang, Jyh-Myng Zen, Yu-Lin Kao, Cheng-Teng Hsu, Tung-Ching Chung, Chao-Chin Chang, Chi-Chung Chou, Analytical Biochemistry 395 (2009) 224–230