

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address COMMISSIONER FOR PATENTS P O Box 1450 Alexandra, Virginia 22313-1450 www.weylo.gov

ELECTRONIC

05/13/2009

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/052,435	01/23/2002	Michael Kagan	3891-0102P	1934
44996 7590 DR. MARK M. FRIEDMAN C/O BILL, POLKINGHORN - DISCOVERY DISPATCH			EXAMINER	
			MADAMBA, GLENFORD J	
	9003 FLORIN WAY UPPER MARLBORO, MD 20772			PAPER NUMBER
			2451	
			NOTIFICATION DATE	DELIVERY MODE

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Notice of the Office communication was sent electronically on above-indicated "Notification Date" to the following e-mail address(es):

mark_f@friedpat.com friedpat@yahoo.com sharon 1@friedpat.com

Application No. Applicant(s) 10/052,435 KAGAN ET AL. Office Action Summary Examiner Art Unit Glenford Madamba 2451 -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS. WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b). Status 1) Responsive to communication(s) filed on 06 January 2009. 2a) This action is FINAL. 2b) This action is non-final. 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213. Disposition of Claims 4) Claim(s) 1-80 is/are pending in the application. 4a) Of the above claim(s) 41-80 is/are withdrawn from consideration. 5) Claim(s) _____ is/are allowed. 6) Claim(s) 1 and 3-40 is/are rejected. 7) Claim(s) _____ is/are objected to. 8) Claim(s) _____ are subject to restriction and/or election requirement. Application Papers 9) The specification is objected to by the Examiner. 10) ☐ The drawing(s) filed on is/are: a) ☐ accepted or b) ☐ objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abevance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d). 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152. Priority under 35 U.S.C. § 119 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received.

PTOL-326 (Rev. 08-06)

1) Notice of References Cited (PTO-892)

Notice of Draftsperson's Patent Drawing Review (PTO-948)

Imformation Disclosure Statement(s) (PTC/G5/08)
 Paper No(s)/Mail Date ______.

Attachment(s)

Interview Summary (PTO-413)
 Paper No(s)/Mail Date.

6) Other:

Notice of Informal Patent Application

Application/Control Number: 10/052,435 Page 2

Art Unit: 2451

DETAILED ACTION

Response to Remarks

1. This action is in response to remarks filed by Applicant's representative on

January 6, 2009.

Response to Arguments

2. With respect to Applicant's latest submission, the Office has given consideration

to the remarks filed on January 6, 2009, but has deemed the arguments unpersuasive

and/or insufficient to overcome the rejection of the claims in view of the applied prior art

reference(s) provided in the previous Office Action, as will be discussed below.

With respect to claims 1, 28, and claim 1 in particular, Applicant remarks that the

Tzeng nor Gasbabarro prior art reference, either individually or in combination, teaches

or suggests recited features of the claim, which recites in part:

"An interface adapter for a packet network, comprising:

a memory interface, for coupling to a memory;

Art Unit: 2451

a first plurality of execution engines, coupled to the memory interface so as to read from the memory work items corresponding to messages to be sent over the network, and to generate gather entries defining packets to be transmitted over the network responsive to the work items; and

a scheduling processor, coupled to assign the work items to the execution engines for generation of the gather entries;

a second plurality of gather engines, which are adapted to generate the packets responsive to the gather entries; and

switching circuitry, coupling the execution engines to the gather engines so as to submit the gather entries to the gather engines for generation of the packets responsive thereto:"

Specifically, with regards to the claim, Applicant primarily argues that the teachings of Tzeng, for example, "perform service level classification of WQEs, whereas the present invention performs service level classification of QPs (or transport service instances)." The Office respectfully disagrees and submits that Applicant has misinterpreted and/or not fully considered all the teachings and disclosures of Brown and/or the Gasbarro prior art references. The Office further submits that Tzeng and/or Gasbarro appropriately and sufficiently discloses the claim requirements in accordance with the language of the claim recitation.

Art Unit: 2451

In response to the argument, the Office asserts and remarks with emphasis that while the Office is aware of the subtleties between the claimed invention and the inventions of Tzeng and/or Gasbarro, the argued feature of "service classification of WQEs" versus "service classification of QPs" is nonetheless nowhere to be found in the claim recitation. In this regard, the Office notes that the present claim language, at most, only requires an 'interface adapter' comprising components such as a memory interface, a first/second plurality of execution engines, and switching circuitry, and this is expressly disclosed by Tzeng, as cited in the Office Action. The Office thus maintains its rejection of the claim for at least this reason.

Secondly, with regards to the claim, Applicant remarks that neither Tzeng nor Gasborro teaches or discloses the recited limitation of "assigning work items (e.g., WQEs) to execution engines by selecting the work items respective transport service instance (e.g., associated QPs)". The Office respectfully disagrees.

In response to the argument, the Office firstly remarks that the recited feature of assigning 'work items' (WQEs) to execution engines (e.g., submodule 42) by a scheduling processor (e.g., Pre-Link Module 40) for processing is expressly disclosed by at least Tzeng [Abstract] [col 2, L38-45] [col 6, L40-44]. However, in this regard, Applicant additionally argues that this is done in view of selecting the WQE's respective (or associated) QP for service. In response, the Office notes that the claim recitation

Art Unit: 2451

clearly specifies that it is the 'work item' (WQE) that is assigned to the execution engine (for processing) in response to or as a result of a transport service instance (QP) being selected or chosen for service, wherein the WQE is directly associated with or "belonging to" the QP being serviced by the adapter [Application: 0021]. This is made clear in light of Applicant's own description for the claimed invention, which states in part:

"A host processor (or host) connects to the IB fabric via a network interface adapter, which is referred to in IB parlance as a host channel adapter (HCA). Client processes running on the host communicate with the transport layer of the IB fabric by manipulating a transport service instance, known as a "queue pair" (QP), made up of a send work queue and a receive work queue. The IB specification permits the HCA to allocate as many as 16 million (2.sup.24) QPs, each with a distinct queue pair number (QPN). A given client may open and use multiple QPs simultaneously. To send and receive communications over the network, the client initiates work requests (WRs), which causes work items, called work queue elements (WQEs), to be placed in the appropriate queues. The channel adapter then executes the work items, so as to communicate with the corresponding QP of the channel adapter at the other end of the link. The "QP" that initiates a particular operation, i.e. injects a message into the fabric, is referred to as the 'requester', while the QP that receives the message is referred to as the 'responder'.

[Application: Background of the Invention: 0004-0005]

Art Unit: 2451

Applicant additionally makes it clear that

"In preferred embodiments of the present invention, a host processor submits work requests (WRs), which cause work queue elements (WQEs) to be placed on multiple different queue pairs (QPs) serviced by a host channel adapter (HCA). Each of the QPs is assigned by the HCA to one of a plurality of schedule queues maintained by the HCA, wherein each schedule queue may correspond to a different class of service provided by the HCA. When a QP reaches the head of its schedule queue, a scheduler assigns the QP to one of an array of execution engines, based on programmable scheduling policies for each of the classes of service."

[Application Summary of the Invention: 0010]

In this regard, the Office notes that at least Tzeng similarly teaches and expressly discloses the same embodiment of the invention as the claimed invention:

The HCA 12 is configured for receiving data from the central processing unit 14 in the form of work queue elements (WQEs), stored in the WQE FIFO 50. Each WQE specifies a corresponding request, from a consumer application executed by the CPU 16 (i.e., "requester"), for a corresponding prescribed operation to be performed by a destination InfiniBand.TM network node (i.e., "responder"), for example a target 18a. The interaction between requester and responder is specified via a queue pair (QP), where a queue pair includes a send work queue and a receive work queue.

The WQE includes service level (SL) information, and a pointer to the location of the actual message in the system memory 48. The InfiniBand.TM. Architecture Specification defines a service level (SL) attribute that permits a packet traversing the InfiniBand.TM, network 10 to operate at one of sixteen available service levels. Hence, the "requester" can

Art Unit: 2451

select an available service level (e.g., quality of service, priority, etc.) based on a selected priority of the WOE.

Based on the above, it is clear that at least Tzeng expressly discloses the argued feature of "wherein each of the work items (WQEs)belongs to a respective transport service instance (QP) among multiple transport service instances served by the adapter, and wherein the scheduling processor is adapted to assign the work items to the execution engines by selecting the respective transport service instances for service".

Dependent claims 9, 15, 16, 18, 19, 20, 21, 23, 27, 32, 35, 36, 38, 39, 40 depend from their respective independent claims, and inherit all of the features of their parent claims. The rejection of the dependent claims are thus maintained for at least the same reasons provided above with respect to independent claims 1 and 28.

With respect to the claim amendments, the Office has given full consideration to the amendments but are now considered moot in light of the following grounds of rejection.

Art Unit: 2451

Claim Rejections - 35 USC § 103

 The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

Claims 1, 3-8, 10-14, 17, 22, 24-26, 28-31, 34, 37 are rejected under 35 U.S.C.
 103(a) as being unpatentable over Tzeng in view of Gasbarro et al (hereinafter Gasbarro), U.S. Patent 6,948,004.

As per claims 1 and 28, Tzeng discloses an interface adapter for a packet network, comprising:

a memory interface, for coupling to a memory (HCA_12 coupled to Memory

Controller_24 and System Memory_26) [Fig. 1] (System/External Memory_48) [Fig. 2];

a first plurality of execution engines (Submodules 68a, 68b, 68c, and 6d of

Transport Service Module_42) [Fig. 1] [col 2, lines 37-45], coupled to the host memory
interface so as to read from the memory work items (or WQEs) corresponding to
messages to be sent over the network, and to generate gather entries (descriptors)
defining packets to be transmitted over the network responsive to the work items [col 6,
line 41 – col 7, line 4] [col 8, lines 40-44] [col 9, lines 29-32]; and

Art Unit: 2451

a scheduling processor, coupled to assign the work items to the execution engines for generation of the gather entries (Pre-Link Module_40) [Fig. 2] [col 2, lines 37-45] [col 4, lines 1-14] [col 4, line 48 – col 5, line 12] [col 8, lines 35-39 & 48-61[[col 9, lines 25-28];

a second plurality of gather engines, which are adapted to generate the packets responsive to the gather entries (Post-Link Module_44) [Fig. 2] [col 2, lines 37-45] [col 7, lines 5-18] [col 8, lines 45-48] [col 9, lines 32-35]; and

switching circuitry (Link-layer arbitration tables and databases) [Fig. 2], coupling the execution engines to the gather engines so as to submit the gather entries to the gather engines for generation of the packets responsive thereto (HCA comprising Pre-link, Transport Service, and Post-link module communicatively coupled to each other) [col 9, lines 24-35];

wherein each of the work items belongs to a respective transport service instance among multiple transport service instances served by the adapter, and wherein the scheduling processor is adapted to assign the work items to the execution engines by selecting the respective transport service instances for service [col 6, lines 16-40].

While Tzeng discloses substantial features of the invention such as the memory interface, for coupling to memory and the first plurality of execution engines, as cited above, he does not expressly disclose the recited feature of a first plurality of execution engines coupled to the host memory interface so as to read from the memory work

Art Unit: 2451

items (or WQEs) corresponding to messages to be sent over the network. The feature is expressly disclosed by Gasbarro.

Gasbarro discloses as his invention a host system that is provided with one or more host-fabric adapters installed therein for connecting to a switched fabric of a data network. The host-fabric adapter may comprise at least one Micro-Engine arranged to establish connections and support data transfer operations, via a switched fabric, in response to work requests that cause instructions in a form of work queue elements "WQEs" posted from a host system for said data transfer operations; and a work queue element "WQE" hardware assist "HWA" mechanism arranged to determine the starting address of each work queue element "WQE" based on queue pair (QP) context information needed for said Micro-Engine (ME) to process work requests for said data transfer operations [Abstract]. In particular, Gasbarro discloses the added feature of a first plurality of execution engines coupled to the host memory interface so as to read from the memory work items (or WQEs) corresponding to messages to be sent over the network [Fig. 6] [col 5, L50-53] [col 12, L46-65].

It would thus be obvious to one of ordinary skill in the art at the time of the invention to combine and/or modify Tzeng's invention with the added feature of a first plurality of execution engines coupled to the host memory interface so as to read from the memory work items corresponding to messages to be sent over the network, as disclosed by Gasbarro, for the motivation of providing a performance-driven host-fabric

Art Unit: 2451

adapter installed at a host system in a data netowork using a channel-based switched fabric architecture for NGIO/Infiniband applications [col 2, L24-32].

As per claims 3 and 29, Tzeng discloses an adapter according to claim 2, wherein the transport service instances comprise queue pairs, and wherein the work items comprise work queue elements [col 5, lines 34-59] [col 6, lines 41-55].

As per claims 4 and 30, Tzeng, discloses an adapter according to claim 2, wherein for each of the transport service instances, the respective work items are maintained in a list in the memory (Create L4 info in ext-memory) [Fig. 2], and wherein the execution engines are configured so as to generate in succession the gather entries corresponding to the work items in the list maintained for the transport service instance selected by the scheduling processor [col 8, lines 40-44] [col 9, lines 29-35] [Fig. 2].

As per claim 5, Tzeng discloses an adapter according to claim 2, wherein the scheduling processor is adapted to maintain a third plurality of scheduling queues (Queue Pair FIFO_62) [Fig. 2] in which are entered the transport service instances to which the work items belong, the scheduling queues having respective heads and tails, and to select the instances from the heads of the queues for assignment to the execution engines [col 5, lines 34-42] [col 6, line 41 – col 7, line 4].

Art Unit: 2451

As per claim 6, Tzeng discloses an adapter according to claim 5, wherein the scheduling queues are associated with respective classes of service provided by the adapter, and wherein the transport service instances are assigned to the scheduling queues according to the classes of services to which the corresponding transport services belong [col 5, line 61 – col 6, line 40].

As per claims 7 and 31, Tzeng discloses an adapter according to claim 6, wherein the scheduling processor is adapted to determine the scheduling queues from which the transport service instances are to be assigned to the execution engines in accordance with a scheduling policy relating to the respective classes of service of the scheduling queues [col 5, line 61 – col 6, line 40].

As per claim 8, Tzeng discloses an adapter according to claim 7, wherein the switching circuitry is coupled to arbitrate among the execution engines so as to submit the gather entries to the gather engines in an order responsive to the classes of service [col 5, lines 13-33].

As per claims 10 and 34, Tzeng discloses an adapter according to claim 5, wherein context information regarding each of the transport service instances is recorded in the memory, and wherein the scheduling processor is adapted to maintain the scheduling queues by directing pointers in the context information of each of the instances, except the instances at the tails of the scheduling queues, to point to the context information of

Art Unit: 2451

succeeding instances in the gueues [Tzeng: col 6, lines 41-65].

As per claim 11, Tzeng discloses an adapter according to claim 2, wherein the transport service instances are assigned to respective classes of service provided by the adapter, and wherein the scheduling processor is adapted to select the transport service instances for service by the execution engines responsive to the assigned classes of service [col 4, line 63 – col 5, line33] [col 6, lines 16-47].

As per claim 12, Tzeng discloses an adapter according to claim 11, wherein the switching circuitry is coupled to arbitrate among the execution engines so as to submit the gather entries to the gather engines in an order responsive to the classes of service [col 5, lines 13-33].

As per claim 13, Tzeng discloses an adapter according to claim 1, wherein the work items belong to different transport service instances, which are associated with respective classes of service, and wherein the scheduling processor is adapted to select the work items to be assigned to the execution engines responsive to the classes of service [col 4, line 63 – col 5, line 33] [col 6, lines 16-47].

As per claim 14, Tzeng discloses an adapter according to claim 13, wherein the switching circuitry is coupled to arbitrate among the execution engines so as to submit

Art Unit: 2451

the gather entries to the gather engines in an order responsive to the classes of service (col 5. lines 13-33).

As per claim 17, Tzeng discloses an adapter according to claim 1, wherein the work items comprise descriptors indicating data to be read from the memory for inclusion in the packets, and wherein the gather engines are coupled to read the data from the memory by direct memory access (DMA) [Fig. 2].

As per claim 22, Tzeng discloses an adapter according to claim 1, wherein the work items belong to different transport service instances, and wherein the scheduling processor comprises a microprocessor (embedded processor_80), which is programmed by software code to select the transport service instances for assignment to the execution engines, and wherein the switching circuitry comprises [col 4, line 63 – col 5. line 131:

one or more registers, containing respective weight factors associated with the execution engines [col 5, lines 13-33] [col 8, lines 11-24] [col 9, lines 24-35]; and one or more hardware logic circuits, coupled to arbitrate among the execution engines to submit the gather entries to each of the gather engines responsive to the

weight factors [col 5, lines 13-33] [col 8, lines 11-24] [col 9, lines 24-35].

As per claim 24, Tzeng discloses an adapter according to claim 22, wherein the one or more hardware logic circuits comprise a respective arbiter circuit connected to each one

Art Unit: 2451

of the second plurality of gather engines, and wherein the arbiter circuit is coupled to arbitrate among the execution engines whose gather entries are to be submitted to the one of the gather engines connected thereto [col 5, lines 13-33] [col 8, lines 11-24].

As per claim 25, Tzeng discloses an adapter according to claim 24, wherein the scheduling processor is adapted to determine which of the execution engines are to submit the gather entries to each of the gather engines, and to assign the execution engines to submit the gather entries accordingly, and wherein the arbiter circuit connected to each of the gather engines is coupled to arbitrate among the execution engines assigned thereto [col 6, line 41 – col 7, line 45] [col 8, lines 11-24].

As per claim 26, Tzeng discloses an adapter according to claim 1, wherein the first plurality is greater than the second plurality [Fig. 2].

As per claim 37, Tzeng discloses an adapter according to claim 28, wherein at least some of the messages comprise data to be read from the memory and sent to a recipient via the network, and wherein the work items indicate the data to be sent [col 4, lines 28-39][Fig.1].

Art Unit: 2451

 Claims 9, 27, and 32 are rejected under 35 U.S.C. 103(a) as being unpatentable over Tzeng in view of Gasbarro et al (hereinafter Gasbarro), U.S. Patent 6,594,712 and in further view of Pettey et al (hereinafter Pettey), U.S. Patent 6,594,712.

As per claims 9 and 32, Tzeng in view of Gasbarro and in further view of Pettey discloses an adapter according to claim 5, wherein the scheduling processor is further adapted to enter the transport service instances at the tails of the scheduling queues to which they are assigned when work items belonging to the transport service instances are written to the memory.

Tzeng discloses as his invention a method of determining an order of received work queue entries based on respective service levels, and outputting the received work queue entries according to the determined order. One aspect of the present invention provides a host channel adapter comprising a pre-link module, a transport service module, and a post-link module. The pre-link module is configured for determining an order of received work queue entries based on respective service levels, the pre-link module outputting the received work queue entries according to the determined order. The transport service module is configured for generating transport layer headers for the work queue entries output from the pre-link module according to the determined order, and the post-link module is configured for generating, in the determined order, transmit packets having the respective transport layer headers for output onto a network [col 2, line 46 – col 3, line 3].

Art Unit: 2451

Gasbarro discloses as his invention a host system that is provided with one or more host-fabric adapters installed therein for connecting to a switched fabric of a data network. The host-fabric adapter may comprise at least one Micro-Engine arranged to establish connections and support data transfer operations, via a switched fabric, in response to work requests that cause instructions in a form of work queue elements "WQES" posted from a host system for said data transfer operations; and a work queue element "WQE" hardware assist "HWA" mechanism arranged to determine the starting address of each work queue element "WQE" based on queue pair (QP) context information needed for said Micro-Engine (ME) to process work requests for said data transfer operations [Abstract]. In particular, Gasbarro discloses the added feature of a first plurality of execution engines coupled to the host memory interface so as to read from the memory work items (or WQEs) corresponding to messages to be sent over the network [Fig. 6] [col 5, L50-53] [col 12, L46-65].

While the combination of Tzeng and Gasbarro discloses substantial features of the invention such as the adapter of claim 5, neither explicitly discloses the adapter wherein the scheduling processor is further adapted to enter the transport service instances at the tails of the scheduling queues to which they are assigned when work items belonging to the transport service instances are written to the memory. This feature is disclosed by Pettev in his invention of an Infiniband channel adapter for

Art Unit: 2451

performing direct data transfers between a PCI bus and Infiniband link without double-

buffereing the data in system memory [Fig. 23] [col 23, lines 21-47].

It would therefore be obvious to one of ordinary skill in the art at the time of the invention to modify the invention resulting from the combination of Tzeng and Gasbarro with the feature of entering the transport service instances at the tails of the scheduling queues to which they are assigned when work items are written to the memory, as disclosed by Pettey for the motivation of reducing host memory bandwidth

consumption [col 25, lines 17-26].

As per claim 27, Tzeng in view of Gasbarro and in further view of Petty discloses an adapter according to claim 1, wherein the packets generated by the gather engines are transmitted over the network at a given transmission speed of the network, and wherein the first plurality and the second plurality are chosen so as to be capable of generating the packets at a speed greater than the given transmission speed.

While the combination of Tzeng and Gasbarro discloses substantial features of the invention such as the adapter of claim 1, neither explicitly discloses the adapter wherein packets generated by the gather engines are transmitted over the network at a given transmission speed of the network, and wherein the first plurality and the second

Art Unit: 2451

plurality are chosen so as to be capable of generating the packets at a speed greater than the given transmission speed.

This feature is disclosed by Pettey in his invention of an Infiniband channel adapter for performing direct data transfers between a PCI bus and Infiniband link without double-buffering the data in system memory [Abstract]. Pettey teaches that the minimum data transfer speed specified by the IBA is 2.5 Gbps, but can also go as high as 10-30 Gbps between IB-capable computers and I/O units [col 1, lines 19-30] [col 2, lines 22-43].

It would therefore be obvious to one of ordinary skill in the art at the time of the invention to modify the invention resulting from the combination of Tzeng and Gasbarro with the feature of the adapter wherein packets generated by the gather engines are transmitted over the network at a given transmission speed of the network, and wherein the first plurality and the second plurality are chosen so as to be capable of generating the packets at a speed greater than the given transmission speed, as disclosed by Pettey for the motivation of reducing host memory bandwidth consumption [col 25, lines 17-26] and maximizing the transmission speed [col 1, lines 28-39 & 54-65].

Art Unit: 2451

 Claims 18 and 19 are rejected under 35 U.S.C. 103(a) as being unpatentable over Tzeng in view of Applicant's Admitted Prior Art (AAPA).

As per claim 18, Tzeng in view AAPA discloses an adapter according to claim 17, wherein the messages comprise remote direct memory access (RDMA) requests, and wherein the work items are written to the memory by a host processor submitting the requests.

Tzeng discloses as his invention a method of determining an order of received work queue entries based on respective service levels, and outputting the received work queue entries according to the determined order, the invention featuring a host channel adapter comprising a pre-link module, a transport service module, and a post-link module. The pre-link module is configured for determining an order of received work queue entries based on respective service levels, the pre-link module outputting the received work queue entries according to the determined order. The transport service module is configured for generating transport layer headers for the work queue entries output from the pre-link module according to the determined order, and the post-link module is configured for generating, in the determined order, transmit packets having the respective transport layer headers for output onto a network [col 2, line 46 – col 3, line 3].

Art Unit: 2451

While Tzeng discloses substantial features of the invention such as the adapter of claim 17 wherein the work items comprise descriptors indicating data to be read from the memory for inclusion in the packets, and wherein the gather engines are coupled to read the data from the memory by direct memory access, he does not explicitly disclose the adapter wherein the messages comprise remote direct memory access (RDMA) requests, and wherein the work items are written to the memory by a host processor submitting the requests.

This feature is disclosed by Applicant in the background disclosure for his invention. Applicant discloses that the messages comprise RDMA request/response messages for writing and/or reading data to/from memory [0005]. It would therefore be obvious to one of ordinary skill in the art at the time of the invention to modify and/or combine Tzeng's invention with the feature of messages comprising remote direct memory access (RDMA) requests, and wherein the work items are written to the memory by a host processor submitting the requests, as disclosed by AAPA for the motivation of data transfer efficiency and performing the well-known operation of injecting messages into a fabric in an IB network architecture [0005].

As per claim 19, Tzeng in view of AAPA discloses an adapter according to claim 17, wherein the messages comprise remote direct memory access (RDMA) responses, and

Art Unit: 2451

wherein the work items are written to the memory responsive to RDMA request packets received by the adapter via the network.

Tzeng discloses as his invention a method of determining an order of received work queue entries based on respective service levels, and outputting the received work queue entries according to the determined order, the invention featuring a host channel adapter comprising a pre-link module, a transport service module, and a post-link module. The pre-link module is configured for determining an order of received work queue entries based on respective service levels, the pre-link module outputting the received work queue entries according to the determined order. The transport service module is configured for generating transport layer headers for the work queue entries output from the pre-link module according to the determined order, and the post-link module is configured for generating, in the determined order, transmit packets having the respective transport layer headers for output onto a network [col 2, line 46 – col 3, line 3].

While Tzeng discloses substantial features of the invention such as the adapter of claim 17 wherein the work items comprise descriptors indicating data to be read from the memory for inclusion in the packets, and wherein the gather engines are coupled to read the data from the memory by direct memory access, he does not explicitly disclose the adapter wherein the messages comprise remote direct memory access (RDMA)

Art Unit: 2451

responses, and wherein the work items are written to the memory responsive to RDMA request packets received by the adapter via the network.

This feature is disclosed by Applicant in the background disclosure for his invention. Applicant discloses that the messages comprise RDMA request/response messages for writing and/or reading data to/from memory [0005]. It would therefore be obvious to one of ordinary skill in the art at the time of the invention to modify and/or combine Tzeng's invention with the feature of messages comprising remote direct memory access (RDMA) responses, and wherein the work items are written to the memory responsive to RDMA request packets received by the adapter via the network, as disclosed by AAPA, for the motivation of data transfer efficiency and performing the well-known operation of injecting messages into a fabric in an IB network architecture [0005].

4. Claims 15, 20, 21, 23, 35, 36, and 38 are rejected under 35 U.S.C. 103(a) as being unpatentable over Tzeng in view of Gasbarro et al (hereinafter Gasbarro), U.S. Patent 6,594,712 and in further view of Parthasarathy et al (hereinafter Parthasarathy), U.S. Patent 6,831,916.

Art Unit: 2451

As per claims 15 and 38, Tzeng in view of Gasbarro and in further in view of Parthasarathy discloses an adapter according to claim 13, and comprising an execution access arbiter, coupled between the execution engines and the memory interface so as to control an order of access to the memory by the execution engines in reading the work items, responsive to the classes of service.

Tzeng discloses as his invention a method of determining an order of received work queue entries based on respective service levels, and outputting the received work queue entries according to the determined order, the invention featuring a host channel adapter comprising a pre-link module, a transport service module, and a post-link module. The pre-link module is configured for determining an order of received work queue entries based on respective service levels, the pre-link module outputting the received work queue entries according to the determined order. The transport service module is configured for generating transport layer headers for the work queue entries output from the pre-link module according to the determined order, and the post-link module is configured for generating, in the determined order, transmit packets having the respective transport layer headers for output onto a network [col 2, line 46 – col 3, line 3].

Gasbarro discloses as his invention a host system that is provided with one or more host-fabric adapters installed therein for connecting to a switched fabric of a data

Art Unit: 2451

network. The host-fabric adapter may comprise at least one Micro-Engine arranged to establish connections and support data transfer operations, via a switched fabric, in response to work requests that cause instructions in a form of work queue elements "WQES" posted from a host system for said data transfer operations; and a work queue element "WQE" hardware assist "HWA" mechanism arranged to determine the starting address of each work queue element "WQE" based on queue pair (QP) context information needed for said Micro-Engine (ME) to process work requests for said data transfer operations [Abstract]. In particular, Gasbarro discloses the added feature of a first plurality of execution engines coupled to the host memory interface so as to read from the memory work items (or WQEs) corresponding to messages to be sent over the network [Fig. 6] [col 5, L50-53] [col 12, L46-65].

While the combination of Tzeng and Gasbarro discloses substantial features of the invention such as the adapter of claim 5, neither explicitly discloses the adapter comprising an execution access *arbiter*, coupled between the execution engines and the memory interface so as to control an order of access to the memory by the execution engines in reading the work items, responsive to the classes of service. This feature is disclosed by Parthasarathy in his invention of an Infiniband channel adapter for performing direct data transfers between a PCI bus and Infiniband link without double-buffereing the data in system memory [Fig. 23] [col 23, lines 21-47].

Art Unit: 2451

Parthasarathy discloses as his invention a host system that comprises one or more host-fabric adapters installed therein for connecting to a switched fabric of a data network [Abstract]. Referring to Figure 7, Parthasarathy discloses that the host interface 712 provides an interface to either an I/O bus 205 of a host system 130 (FIG. 3), or an I/O and memory controller 204 of a host system 130 (FIG. 4) for host transactions, including controlling arbitration and data/control multiplexing between different requesters, read and write transactions to the host system 130 and facilitating read completions [col 10, lines 6-12].

It would therefore be obvious to one of ordinary skill in the art at the time of the invention to modify the invention resulting from the combination of Tzeng and Gasbarro with the added feature of the adapter comprising an execution access *arbiter*, coupled between the execution engines and the memory interface so as to control an order of access to the memory by the execution engines in reading the work items, responsive to the classes of service, as disclosed by Parthasarathy, for the motivation of increased performance and efficiency and optimizing NGIO/Infiniband functionality with minimal hardware investment [Parthasarathy: col 9, lines 37-43].

As per claims 20 and 35, Tzeng in view of Gasbarro and in further in view of Parthasarathy discloses an adapter according to claim 17, and comprising a data

Art Unit: 2451

access arbiter, coupled between the gather engines and the memory interface so as to control an order of access to the memory by the gather engines for reading the data.

While the combination of Tzeng and Gasbarro discloses substantial features of the invention such as the adapter of claim 17, neither explicitly discloses the adapter comprising a data access arbiter, coupled between the gather engines and the memory interface so as to control an order of access to the memory by the gather engines for reading the data.

This limitation is disclosed by Parthasarathy in the disclosure for his invention of a host system that comprises one or more host-fabric adapters installed therein for connecting to a switched fabric of a data network [Abstract]. Referring to Figure 7, Parthasarathy discloses that the host interface 712 provides an interface to either an I/O bus 205 of a host system 130 (FIG. 3), or an I/O and memory controller 204 of a host system 130 (FIG. 4) for host transactions, *including controlling arbitration* and data/control multiplexing between different requesters, read and write transactions to the host system 130 and facilitating read completions [col 10, lines 6-12].

It would therefore be obvious to one of ordinary skill in the art at the time of the invention to modify the invention resulting from the combination of Tzeng and Gasbarro with the added feature of the adapter comprising a data access arbiter, coupled between the gather engines and the memory interface so as to control an order of

Art Unit: 2451

access to the memory by the gather engines for reading the data, as disclosed by Parthasarathy, for the motivation of increased performance and efficiency and optimizing NGIO/Infiniband functionality with minimal hardware investment [Parthasarathy; col 9, lines 37-43].

As per claims 21 and 36, Tzeng discloses an adapter according to claim 20, wherein the work items belong to different transport service instances, which are associated with respective classes of service, and wherein the data access arbiter is programmable so as to give priority in the order of access to one or more of the gather engines responsive to the classes of service [col 5, lines 13-33] [col 8, lines 11-24] [col 9, lines 24-35].

As per claim 23, Tzeng in view of Gasbarro and in further in view of Parthasarathy discloses an adapter according to claim 22, wherein the memory interface, execution engines, scheduling processor, gather engines and switching circuitry are comprised in a single integrated circuit chip.

While the combination of Tzeng and Gasbarro discloses substantial features of the invention such as the adapter of claim 22, wherein the work items belong to different transport service instances, and wherein the scheduling processor comprises a microprocessor, which is programmed by software code to select the transport service instances for assignment to the execution engines, and wherein the switching circuitry comprises one or more registers, containing respective weight factors

Art Unit: 2451

associated with the execution engines; and one or more hardware logic circuits, coupled to arbitrate among the execution engines to submit the gather entries to each of the gather engines responsive to the weight factors; neither reference explicitly discloses the adapter wherein the memory interface, execution engines, scheduling processor, gather engines and switching circuitry are comprised in a single integrated circuit chip.

This limitation is disclosed by Parthasarathy in the disclosure for his invention of a host system that comprises one or more host-fabric adapters installed therein for connecting to a switched fabric of a data network [Abstract]. Parthasarathy expressly discloses that the invention is applicable for use with all types of data networks, I/O hardware adapters and *chipsets*, including follow-on *chip designs* which link together end stations and communication devices for data communications [col 3, lines 20-24].

It would therefore be obvious to one of ordinary skill in the art at the time of the invention to modify the invention resulting from the combination of Tzeng and Gasbarro with the added feature of an adapter having components such as the memory interface, execution engines, scheduling processor, gather engines and switching circuitry comprised in a single integrated circuit chip, as disclosed by Parthasarathy, for the motivation of increased performance and efficiency and optimizing NGIO/Infiniband functionality with minimal hardware investment [Parthasarathy: col 9, lines 37-43].

Art Unit: 2451

5. Claim 33 is rejected under 35 U.S.C. 103(a) as being unpatentable over Tzeng in view of in view of Gasbarro et al (hereinafter Gasbarro), in view of Pettey et al (hereinafter Pettey), and in further view of Parthasarathy et al (hereinafter Parthasarathy), U.S. Patent 6,831,916.

As per claim 33, Tzeng in view of Gasbarro et al (hereinafter Gasbarro), U.S. Patent 6,594,712 in view of Pettey and in further view of Parthasarathy discloses an adapter according to claim 32, wherein the scheduling processor is adapted to enter the transport service instance in the scheduling queues responsive to a host processor having written to a doorbell address of the adapter.

Tzeng discloses as his invention a method of determining an order of received work queue entries based on respective service levels, and outputting the received work queue entries according to the determined order, the invention featuring a host channel adapter comprising a pre-link module, a transport service module, and a post-link module. The pre-link module is configured for determining an order of received work queue entries based on respective service levels, the pre-link module outputting the received work queue entries according to the determined order. The transport service module is configured for generating transport layer headers for the work queue entries output from the pre-link module according to the determined order, and the post-link module is configured for generating, in the determined order, transmit packets having

Art Unit: 2451

the respective transport layer headers for output onto a network [col 2, line 46 - col 3, line 31.

Gasbarro discloses as his invention a host system that is provided with one or more host-fabric adapters installed therein for connecting to a switched fabric of a data network. The host-fabric adapter may comprise at least one Micro-Engine arranged to establish connections and support data transfer operations, via a switched fabric, in response to work requests that cause instructions in a form of work queue elements "WQES" posted from a host system for said data transfer operations; and a work queue element "WQE" hardware assist "HWA" mechanism arranged to determine the starting address of each work queue element "WQE" based on queue pair (QP) context information needed for said Micro-Engine (ME) to process work requests for said data transfer operations [Abstract]. In particular, Gasbarro discloses the added feature of a first plurality of execution engines coupled to the host memory interface so as to read from the memory work items (or WQEs) corresponding to messages to be sent over the network [Fig. 6] [col 5, L50-531 [col 12, L46-65].

Pettey discloses as his invention an Infiniband channel adapter for performing direct data transfers between a PCI bus and Infiniband link without double-buffereing the data in system memory [Fig. 23] [col 23, lines 21-47]. As discussed for claim 32, Tzeng in view of Pettey discloses the adapter wherein the scheduling processor is adapted to enter the transport service instance in the scheduling queues. But while

Art Unit: 2451

the combination of Tzeng, Gasbarro and Pettey disclose substantial features of the invention, such as the adapter described by claims 28 and 32, none of them expressly discloses the adapter wherein the scheduling processor is adapted to enter the transport service instance (WQEs) in the scheduling queues responsive to a host processor having written to a doorbell address of the adapter.

This feature is disclosed by Parthasarathy in the disclosure of his invention of a host system that comprises one or more host-fabric adapters installed therein for connecting to a switched fabric of a data network [Abstract]. Referring to Figure 7, Parthasarathy discloses that the host fabric adapter (120) includes a micro-controller subsystem (700) which itself contains one or more programmable DMA engines (Micro-Engine {ME}) utilized to build, send, receive, and acknowledge NGIO/Infiniband cells between the host memory (206) and a serial link, and special purpose hardware logic blocks such as host interface (712), address translation interface (714), a VI context memory interface (716), local bus interface (716) and a completion queue/doorbell manager interface (720)[col 9, lines 44-64] [col 10, 37-40] [Fig. 7].

It would therefore be obvious to one of ordinary skill in the art at the time of the invention to modify the invention resulting from the combination of Tzeng Gasbarro and Petty with the added feature of the adapter wherein the scheduling processor is adapted to enter the transport service instance (WQEs) in the scheduling queues responsive to a host processor having written to a doorbell address of the adapter, as

Art Unit: 2451

disclosed by Parthasarathy, for the motivation of increased performance and efficiency and optimizing NGIO/Infiniband functionality with minimal hardware investment [Parthasarathy: col 9, lines 37-43].

 Claim 16 is rejected under 35 U.S.C. 103(a) as being unpatentable over Tzeng in view of Gasbarro et al (hereinafter Gasbarro), U.S. Patent 6,594,712 and in further view of Grun, U.S. Patent 6,272,591.

As per claim 16, Tzeng in view of Gasbarro and in further iew of Grun discloses an adapter according to claim 1, wherein the execution engines are adapted to generate multiple gather entries corresponding to a single one of the work items, each of the gather entries defining no more than a single packet to be generated by one of the gather engines.

Tzeng discloses as his invention a method of determining an order of received work queue entries based on respective service levels, and outputting the received work queue entries according to the determined order, the invention featuring a host channel adapter comprising a pre-link module, a transport service module, and a post-link module. The pre-link module is configured for determining an order of received work queue entries based on respective service levels, the pre-link module outputting the received work queue entries according to the determined order. The transport

Art Unit: 2451

service module is configured for generating transport layer headers for the work queue entries output from the pre-link module according to the determined order, and the post-link module is configured for generating, in the determined order, transmit packets having the respective transport layer headers for output onto a network [col 2, line 46 – col 3, line 3].

Gasbarro discloses as his invention a host system that is provided with one or more host-fabric adapters installed therein for connecting to a switched fabric of a data network. The host-fabric adapter may comprise at least one Micro-Engine arranged to establish connections and support data transfer operations, via a switched fabric, in response to work requests that cause instructions in a form of work queue elements "WQES" posted from a host system for said data transfer operations; and a work queue element "WQE" hardware assist "HWA" mechanism arranged to determine the starting address of each work queue element "WQE" based on queue pair (QP) context information needed for said Micro-Engine (ME) to process work requests for said data transfer operations [Abstract]. In particular, Gasbarro discloses the added feature of a first plurality of execution engines coupled to the host memory interface so as to read from the memory work items (or WQEs) corresponding to messages to be sent over the network [Fig. 6] [col 5, L50-53] [col 12, L46-65].

Art Unit: 2451

While the combination of Tzeng and Gasbarro discloses substantial features of the invention such as the adapter of claim 1 comprising a memory interface, a first plurality of execution engines to generate gather entries (descriptors) defining packets to be transmitted over the network responsive to the work items, a scheduling processor, and switching circuitry to submit the gather entries to the gather engines for generation of the packets responsive thereto; neither explicitly discloses the adapter wherein the execution engines are adapted to generate multiple gather entries corresponding to a single one of the work items, each of the gather entries defining no more than a single packet to be generated by one of the gather engines.

This feature is disclosed by Grun in his invention of a RAID device for striping a data block across N disk drives. Grun teaches that in most RAID devices, a host computer sends an entire data block in one piece to the RAID controller. The RAID device receives a storage request from a host computer for the data block, and creates N virtual interface ("VI") queue pairs. The queue pairs form N virtual channels to the host computer. Further, the RAID device posts a descriptor to each of the queue pairs, with each descriptor referring to 1/Nth of the data block. Further, the RAID device receives 1/Nth of the data block over each of the virtual channels and writes each received 1/Nth data block to a different one of the N disk drives. Thus, if a single drive on a RAID device fails, the piece of data block that was stored on the failed drive can be restored/reassembled [col 1, lines 20-59]. Grun further discloses "descriptors" that are used to accomplish the actual data movement from host computer (10) to RAID

device (40). Data transfer is initiated using VI RDMA transfer facility [col 3, lines 14-45] [Fig. 2]

Page 36

It would therefore be obvious to one of ordinary skill in the art at the time of the invention to modify the invention resulting from the combination of Tzeng and Gasbarro with the added feature of the adapter wherein the execution engines are adapted to generate multiple gather entries corresponding to a single one of the work items, each of the gather entries defining no more than a single packet to be generated by one of the gather engines, as disclosed by Grun, for the motivation of reducing data transmission delay and efficiently striping data for data redundancy [col 1, lines 33-46].

7. Claims 39 and 40 are rejected under 35 U.S.C. 103(a) as being unpatentable over Tzeng in view of Gasbarro et al (hereinafter Gasbarro), U.S. Patent 6,594,712 and in further view of Snyder II et al, (hereinafter Snyder), U.S. Patent 6,888,830.

As per claim 39, Tzeng in view of Gasbarro and in further view of Snyder II discloses an adapter according to claim 28, wherein each of the execution engines comprises: a buffer for holding the work items to be processed, the buffer having a programmable watermark level; an execute machine, coupled to read the work items from the buffer and to generate the gather entries corresponding thereto; and a fetch machine, coupled

Art Unit: 2451

to fetch the work items from the memory to the buffer responsive to a volume of the work items in the buffer having fallen below the watermark level.

Tzeng discloses as his invention a method of determining an order of received work queue entries based on respective service levels, and outputting the received work queue entries according to the determined order, the invention featuring a host channel adapter comprising a pre-link module, a transport service module, and a post-link module. The pre-link module is configured for determining an order of received work queue entries based on respective service levels, the pre-link module outputting the received work queue entries according to the determined order. The transport service module is configured for generating transport layer headers for the work queue entries output from the pre-link module according to the determined order, and the post-link module is configured for generating, in the determined order, transmit packets having the respective transport layer headers for output onto a network [col 2, line 46 – col 3, line 3].

Gasbarro discloses as his invention a host system that is provided with one or more host-fabric adapters installed therein for connecting to a switched fabric of a data network. The host-fabric adapter may comprise at least one Micro-Engine arranged to establish connections and support data transfer operations, via a switched fabric, in response to work requests that cause instructions in a form of work queue elements "WQES" posted from a host system for said data transfer operations; and a work

Art Unit: 2451

queue element "WQE" hardware assist "HWA" mechanism arranged to determine the starting address of each work queue element "WQE" based on queue pair (QP) context information needed for said Micro-Engine (ME) to process work requests for said data transfer operations [Abstract]. In particular, Gasbarro discloses the added feature of a first plurality of execution engines coupled to the host memory interface so as to read from the memory work items (or WQEs) corresponding to messages to be sent over the network [Fig. 6] [col 5, L50-53] [col 12, L46-65].

While the combination of Tzeng and Gasbarro discloses substantial features of the invention such as the adapter of claim 28 comprising a memory interface, a first plurality of execution engines to generate gather entries (descriptors) defining packets to be transmitted over the network responsive to the work items, a scheduling processor, and switching circuitry to submit the gather entries to the gather engines for generation of the packets responsive thereto; neither explicitly discloses the adapter wherein each of the execution engines comprises: a buffer for holding the work items to be processed, the buffer having a programmable watermark level; an execute machine, coupled to read the work items from the buffer and to generate the gather entries corresponding thereto; and a fetch machine, coupled to fetch the work items from the memory to the buffer responsive to a volume of the work items in the buffer having fallen below the watermark level.

Art Unit: 2451

This feature is disclosed by Snyder in his invention of an integrated circuit that processes a communication packet and comprises a core processor and scheduling circuitry. The core processor executes a software application that directs the core processor to process the communication packet. The scheduling circuitry retrieves first scheduling parameters cached in a context buffer for the packet and executes a first algorithm based on the first scheduling parameters to schedule subsequent transmission of the communication packet.

[Abstract]. Snyder further discloses a buffer having programmable watermark level [col 8, 22-40], hardware engines performing sophisticated searches for channel identifiers and automatic fetching of context information from the buffers [col 5, line 58 – col 6, line 20] [col 7, line 55 –col 8, line 40] [Figs 1-3].

It would therefore be obvious to one of ordinary skill in the art at the time of the invention to modify the invention resulting from the combination of Tzeng and Gasbarro with the added feature of the adapter wherein each of the execution engines comprises: a buffer for holding the work items to be processed, the buffer having a programmable watermark level; an execute machine, coupled to read the work items from the buffer and to generate the gather entries corresponding thereto; and a fetch machine, coupled to fetch the work items from the memory to the buffer responsive to a volume of the work items in the buffer having fallen below the watermark level, as disclosed by Snyder, for the motivation of providing robust functionality in extremely high-speed packet streams, via a Stream Processor integrated circuit [col 1, lines 33-46].

Art Unit: 2451

As per claim 40, Tzeng in view of Gasbarro and in further view of Snyder II discloses an adapter according to claim 39, wherein the watermark level is programmable responsive to the classes of service of the transport service instances assigned to each of the execution engines for generation of the corresponding gather entries.

While the combination of Tzeng and Gasbarro discloses substantial features of the invention such as the adapter of claim 39 comprising a memory interface, a first plurality of execution engines to generate gather entries (descriptors) defining packets to be transmitted over the network responsive to the work items, a scheduling processor, and switching circuitry to submit the gather entries to the gather engines for generation of the packets responsive thereto; he does not explicitly disclose the adapter wherein each of the execution engines comprises: a buffer for holding the work items to be processed, the buffer having a programmable watermark level; an execute machine, coupled to read the work items from the buffer and to generate the gather entries corresponding thereto; and a fetch machine, coupled to fetch the work items from the memory to the buffer responsive to a volume of the work items in the buffer having fallen below the watermark level.

This feature is disclosed by Snyder in his invention of an integrated circuit that processes a communication packet and comprises a core processor and scheduling circuitry. The core processor executes a software application that directs the core

Art Unit: 2451

processor to process the communication packet. The scheduling circuitry retrieves first scheduling parameters cached in a context buffer for the packet and executes a first algorithm based on the first scheduling parameters to schedule subsequent transmission of the communication packet.

[Abstract]. Snyder further discloses a buffer having programmable watermark level [col 8, 22-40], hardware engines performing sophisticated searches for channel identifiers and automatic fetching of context information from the buffers [col 5, line 58 – col 6, line 20] [col 7, line 55 –col 8, line 40] [Figs 1-3].

It would therefore be obvious to one of ordinary skill in the art at the time of the invention to modify the invention resulting from the combination of Tzeng and Gasbarro with the added feature of the adapter wherein each of the execution engines comprises: a buffer for holding the work items to be processed, the buffer having a programmable watermark level; an execute machine, coupled to read the work items from the buffer and to generate the gather entries corresponding thereto; and a fetch machine, coupled to fetch the work items from the memory to the buffer responsive to a volume of the work items in the buffer having fallen below the watermark level, as disclosed by Snyder, for the motivation of providing robust functionality in extremely high-speed packet streams, via a Stream Processor integrated circuit [col 1, lines 33-46].

Application/Control Number: 10/052,435 Page 42

Art Unit: 2451

Conclusion

 Applicant's amendment necessitated the new ground(s) of rejection presented in this Office Action. Accordingly, THIS ACTION IS MADE FINAL. See MPEP 706.06(a).
 Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the mailing date of this final action.

 Any inquiry concerning this communication or earlier communications from the examiner should be directed to Glenford Madamba whose telephone number is 571-272-7989. The examiner can normally be reached on M-F 8:30-5:00.

Art Unit: 2451

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Valencia Wallace Martin can be reached on 571-272-3440. The fax phone number for the organization where this application or proceeding is assigned is 703-872-9306.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

Glenford Madamba Examiner Art Unit 2451

/John Follansbee/

Supervisory Patent Examiner, Art Unit 2451