PQ selon orfo 2015 Electricienne de montage CFC Electricien de montage CFC

Technique des systèmes électriques, incl. bases technologiques

Dossier des expertes et experts

60 Minutes 16 Exercices	9 Pages	34 Points
-------------------------	---------	-----------

Moyens auxiliaires autorisés:

- Règle, équerre, chablon
- Recueil de formules sans exemple de calcul
- Calculatrice de poche, indépendante du réseau (tablettes, smartphones, etc. ne sont pas autorisés)

Cotation - Les critères suivants permettent l'obtention de la totalité des points:

- Les formules et les calculs doivent figurer dans la solution.
- · Les résultats sont donnés avec leur unité.
- Le cheminement vers la solution doit être clair.
- Les réponses et leur unité doivent être soulignés deux fois.
- Le nombre de réponses demandé est déterminant.
- Les réponses sont évaluées dans l'ordre.
- Les réponses données en plus ne sont pas évaluées.
- Le verso est à utiliser si la place manque. Par exercice, un commentaire adéquat tel que par exemple « voir la solution au dos » doit être noté.
- Toute erreur induite par une précédente erreur n'entraîne aucune déduction.

Barème

6	5,5	5	4,5	4	3,5	3	2,5	2	1,5	1
34,0-32,5	32,0-29,0	28,5-25,5	25,0-22,5	22,0-19,0	18,5-15,5	15,0-12,0	11,5-8,5	8,0-5,5	5,0-2,0	1,5-0,0

Délai d'attente:

Cette épreuve d'examen ne peut pas être utilisée librement comme exercice avant le 1^{er} septembre 2022.

Créé par:

Groupe de travail PQ d'EIT.swiss pour la profession d'électricienne de montage CFC / électricien de montage CFC

Editeur:

CSFO, département procédures de qualification, Berne

2

2

0,5

0,5

0,5

0,5

2

1. Puissance des moteurs N° d'objectif d'évaluation 3.3.2b

Un moteur ayant un rendement de 0,9 produit une puissance de 30 kW à l'arbre.

Calculez la puissance absorbée.

$$P_{absorb\acute{e}} = \frac{P_{utile}}{\eta} = \frac{30 \text{ kW}}{0.9} = \underline{\frac{33.3 \text{ kW}}{0.9}}$$

(Note pour les experts : 1 pt pour la formule correcte)

2. Sources d'énergie N° d'objectif d'évaluation 3.2.2b

Cocher les réponses correctes

Source d'énergie
Energie renouvelable
Energie fossile

Biomasse
□
□

Pétrole
□
□

Vent
□
□

Soleil
□
□

3. Courant triphasé N° d'objectif d'évaluation 5.3.4b

Le chauffe-eau instantané d'un atelier a les caractéristiques suivantes : $U = 3 \times 400 \text{ V}$; P = 5,10 kW

Calculer le courant de ligne lorsqu'il est enclenché.

$$I = \frac{P}{\sqrt{3} \cdot U} = \frac{5,10kW}{1,73 \cdot 400V} = \frac{7,37 A}{2000}$$

3

1

1

1

4. La loi d'Ohm N° d'objectif d'évaluation 3.2.6b

a) Calculer la résistance équivalente de ce couplage.

$$R_{ToT} = \frac{R_1 \cdot R_2}{R_1 + R_2} = \frac{48\Omega \cdot 64\Omega}{48\Omega + 64\Omega} = \frac{27,43 \Omega}{800}$$

b) Calculer le courant total.

$$I_{Tot} = \frac{U}{R_{Tot}} = \frac{24V}{27,43\Omega} = \underline{0.875 A}$$

c) Calculer le courant I₁.

$$I_1 = \frac{U}{R_1} = \frac{24V}{48\Omega} = \underbrace{\frac{0.5 A}{48\Omega}}$$

5. Dispositif de commutation N° d'objectif d'évaluation 5.3.1b

Nommer les parties A et B du relais dessiné ci-dessous.

A = contact (de commutation)

B = bobine

0,5

0,5

1

2

1

1

2

1

1

6. Grandeurs électriques N° d'objectif d'évaluation 3.2.3b / 3.1.2b

La résistance d'une torche de fil T de 1,5 mm 2 est de 0,9 Ω .

$$\left(\rho_{Cu} = 0.0175 \; \frac{\Omega \cdot mm^2}{m}\right)$$

a) Quel est la longueur du fil T?

$$l = \frac{R_L \cdot A}{\rho} = \frac{0.9 \ \Omega \cdot 1.5 mm^2}{0.0175 \ \frac{\Omega \cdot mm^2}{m}} = \frac{77.14 \ m}{}$$

b) Quel est le diamètre de ce fil de cuivre ?

$$d = \sqrt{\frac{4 \cdot A}{\pi}} = \sqrt{\frac{4 \cdot 1.5 \text{ mm}^2}{\pi}} = \underline{1.38 \text{ mm}}$$

7. Puissance et courant N° d'objectif d'évaluation 3.2.4b

Lors d'un dîner d'entreprise, 5 fours à raclette sont connectés sous 230 V. Deux fours ont une puissance de 1350 W chacun, les trois fours restants ont une puissance de 1380 W chacun.

a) Quelle est la puissance totale des fours connectés ?

$$P_{Tot.} = (2 \cdot P_1) + (3 \cdot P_2) = (2 \cdot 1350 \text{ W}) + (3 \cdot 1380 \text{ W}) = \underline{6840 \text{ W}}$$

b) Quel courant total ces 5 fours à raclette absorbent-ils ensemble ?

$$I = \frac{P_{Tot.}}{U} = \frac{6840 \text{ W}}{230 \text{ V}} = \underline{29,74 \text{ A}}$$

8. Energie calorifique N° d'objectif d'évaluation 3.3.4b

Un chauffe-eau chauffe 80 litres d'eau de 15 °C à 90 °C. Calculer l'énergie calorifique nécessaire en kilojoule [kJ].

$$\left(c = 4.187 \frac{kJ}{kg \cdot {}^{\circ}C}\right)$$

$$\Delta \vartheta = \vartheta_2 - \vartheta_1 = 90 \, ^{\circ}\text{C} - 15 \, ^{\circ}\text{C} = \underline{75 \, ^{\circ}\text{C}}$$

2

$$Q = m \cdot c \cdot \Delta \vartheta = 80 \text{ kg} \cdot 4,187 \frac{kJ}{kg \cdot {}^{\circ}C} \cdot 75 \, {}^{\circ}C = \underbrace{\underline{25 \ 122 \ kJ}}_{\underline{\underline{\underline{}}}}$$

1,5

(Note pour les experts : La solution en MJ est également correcte)

9. Grandeurs d'un signal sinusoïdal N° d'objectif d'évaluation 5.3.1b

2

a) La valeur efficace d'une tension alternative est de 24 V. Quelle est la valeur de crête de cette tension ?

$$\hat{\mathbf{u}} = \mathbf{U} \cdot \sqrt{\mathbf{2}} = \mathbf{24} \, \mathbf{V} \cdot \sqrt{\mathbf{2}} = \mathbf{33}, \mathbf{9} \, \mathbf{V}$$

b) Nommer les valeurs 1 et 2 de ce signal sinusoïdal.

0,5

2 Solution : Valeur efficace ou tension efficace

0,5

3 Période

2 1

1

2

10. Tube fluorescent - TL N° d'objectif d'évaluation 5.2.2b

a) Calculez l'efficacité lumineuse en utilisant les données de ce tube fluorescent :

$$K = \frac{\Phi_L}{P} = \frac{3700 \text{ lm}}{36 \text{ W}} = \underline{\frac{102, 8 \frac{lm}{W}}{}}$$

b) Quelle est la couleur de la lumière de ce tube fluorescent ?

Blanc chaud	Blanc neutre	Lumière du jour

11. Energie N° d'objectif d'évaluation 3.2.4b

Suite à une amélioration, la consommation annuelle d'énergie d'un récepteur est réduite de 179,4 kWh.

Quelle est l'économie annuelle financière réalisée si le prix d'un kWh est de 15 centimes $(T_{kWh}=0.15 \text{ Fr./ kWh})$?

$$K = W \cdot TkWh = 179,4kWh \cdot 0,15 \frac{Fr}{kWh} = \underbrace{26,91 \, Fr}_{}$$

(Note pour les experts : Le prix peut être arrondi à 5 centimes)

3

1

2

2

1

12. Triangle des puissances N° d'objectif d'évaluation 5.3.3b

a) Quel est le nom de la puissance représentée par le côté le plus long de ce triangle (nom et symbole de la grandeur) ?

Solution: Puissance apparente S

b) Calculer la valeur de cette grandeur en indiquant son unité.

$$S = \sqrt{P^2 + Q^2} = \sqrt{(14 \text{ kW})^2 + (11 \text{ kvar})^2} = \underline{17.8 \text{ kVA}}$$

(Note pour les experts : Formule avec les grandeurs correctes 1 pt., résultat 1 pt.)

13. Transformateur monophasé N° d'objectif d'évaluation 5.1.6b

a) Quel est le rapport du nombre de spires de ce transformateur ?

$$n = \frac{U_1}{U_2} = \frac{N_1}{N_2} = \frac{120 V}{12 V} = \underline{10 ou \ 10 : 1}$$

b) Que vaut le courant dans l'enroulement primaire si le courant dans l'enroulement secondaire est de 2,4 A ?

$$\frac{I_2}{I_1} = \frac{U_1}{U_2} \Rightarrow I_{1} = \frac{U_2 \cdot I_2}{U_1} = \frac{12 \ V \cdot 2, 4 \ A}{120 \ V} = \frac{0,24 \ A = 240 \ mA}{200 \ M}$$

1

3

1

1

1

14. Machines électriques N° d'objectif d'évaluation 5.2.4b

La plaque signalétique d'un moteur triphasé à cage d'écureuil (rotor en court-circuit) est la suivante :

- a) Nommer chacune des bornes de ce moteur $(U_1, U_2, ...)$
- b) Dessiner les fils qui alimentent ce moteur.
- c) Dessiner les ponts nécessaires entre les bornes de ce moteur conformément à sa plaque signalétique.

2

1

2

1

1

15. Processus thermique N° d'objectif d'évaluation 3.3.4b

Il existe trois modes de transfert de la chaleur. Cocher les affirmations correctes dans le tableau :

Affirmations concernant les processus thermiques	Conduction thermique	Convection thermique	Rayonnement thermique
Un radiateur (corps de chauffe) transmet principalement sa chaleur par		\boxtimes	
Une plaque de cuisson massive transmet sa chaleur par	\boxtimes		

16. Puissance et rendement N° d'objectif d'évaluation 3.2.2b

a) Calculer la puissance absorbée P₁ de ce moteur électrique :

Grandeurs données:

- Moteur alternatif triphasé 3 x 400 V
- Le moteur a des pertes de 1500 W
- Puissance à l'arbre 18,5 kW

$$P_{absorb\acute{e}} = P_{utile} + \ P_{perdue} = 18,5kW + 1,5kW = \ \underline{20'000 \ W} \ = \ \underline{20 \ kW}$$

b) Calculer le rendement de ce moteur électrique :

$$\eta = \frac{P_{utile}}{P_{absorb\acute{e}e}} = \frac{18,5 \text{ kW}}{20 \text{ kW}} = \frac{0,925 \text{ ou } 92,5 \%}{20 \text{ kW}}$$