Recurrent Neural Networks for Natural Language Processing

Data Analytics and Machine Learning

Overview

10:00 – 12:00 LECTURE

12:00 – 1:50 LAB SESSION

1:50 – 2:00 SESSION WRAP UP

Lesson Objectives

- Understand how machine learning models handle non-numeric data
- Understand which scenarios these might be applied to
- Work through a practical example

Restricted - Other

Keyword	Description
Machine Learning	A type of artificial intelligence that enables computers to learn from data and make decisions or predictions without being explicitly programmed.
Classification	This is a type of supervised learning task where the goal is to predict a categorical target variable.
Hyperparameter	These are parameters of the learning algorithm itself, not derived from the data, that need to be set before training the model.
Neural Network	A set of algorithms modelled after the human brain, designed to recognize patterns. They interpret sensory data through a kind of machine perception, labelling or clustering raw input.
Recurrent Neural Networks (RNN)	A type of artificial neural network designed to process sequential data. RNNs take information from prior inputs to influence the current input and output.
Long Short-Term Memory (LSTM)	A subtype of RNN that is designed to remember past information while forgetting irrelevant parts, making it effective for tasks involving sequential data.
Gated Recurrent Unit (GRU)	A type of RNN that operates similarly to LSTM but has fewer parameters, making it computationally more efficient.
Text Classification	A machine learning technique that assigns predefined categories to open-ended text, helping to organize and structure any kind of text data.
Early Stopping	A form of regularization used in machine learning to prevent overfitting. It allows training to stop once the model's performance stops improving on a hold-out validation dataset.
Optimizer	A function or algorithm that adjusts the attributes of a neural network, such as weights and learning rates, to minimize the loss function and improve the model's performance.

Introduction to Natural Language Processing

NLP - Natural Language Processing

- A branch of computer science
- Integration of computing and human language
 - Computational linguistics
 - Statistical Computer Science
 - Machine learning
 - Deep learning models
- Facilitates understanding of full meaning including intent and sentiment of speaker or writer

Natural Language Processing (NLP)

- Translate text
- Summarise large volumes of text
- Respond to spoken commands
 - Voice commanded GPS
 - Digital Assistants
 - Speech-to-text dictation
 - Customer service chatbots
- Increasingly being used in enterprise solutions
 - Streamline business operations
 - Simplify mission-critical processes

NLP – Human Language difficulties

- Human language is filled with ambiguities
 - Hard to create software that accurately determines:
 - Intended meaning
 - Context
 - Emotion
- Irregularities take humans years to learn
 - Must be taught to natural language-driven applications from the start for them to be useful

- Challenges include
 - Homonyms
 - Homophones
 - Sarcasm
 - Idiom
 - Metaphors
 - Grammar
 - Usage exceptions
 - Used in a different manner to their definition
 - Sentence structure variations e.g. to avoid monotony or to provide emphasis

Note: Usage exceptions: words used in a different manner to their definition

Sentence Structure: E.g,. To avoid monotony and providing emphasis

NLP - Tasks

Speech recognition

- Converts voice data into text data
 - Implementation
 - Machine learning algorithms to interpret human speech
 - Example
 - Voice-operated GPS systems

Part of speech tagging

- Determines speech of word based on its use and context
 - Implementation
 - Uses linguistic rules and statistical models
 - Example
 - Identifies 'make' as a verb 'I can make a paper plane'

Word sense disambiguation

- Selects the meaning of a word based on context
 - Implementation
 - Uses semantic analysis algorithms
 - Example
 - Distinguishes the meaning of 'make' in 'make the grade'
 - vs. 'make a bet'

NLP - Tasks

Named entity recognition (NEM)

- Identifies words or phrases
 - As useful entities
 - Implementation
 - Machine learning models
 - Trained on annotated data
 - Example
 - Identifies 'Kentucky' as a location
 - Or 'Fred' as a man's name

Co-reference resolution

- Identifies if two words refer to the same entity
 - Implementation
 - Uses rule-based methods
 - And machine learning models
 - Example
 - Determines that 'she' refers to 'Mary'
 - In a given context

NLP - Tasks

Sentiment analysis

- Extracts subjective qualities like attitudes and emotions from text
 - Implementation
 - NLP Text analysis
 - Computational linguistics
 - Example
 - Determines user sentiment
 - From product reviews

Natural language generation

- Converts structured information
 - Into human language
 - Implementation
 - Uses
 - Templates
 - Rules
 - Machine learning models
 - Example
 - A weather app that generates a weather report
 - From meteorological data

NLP – Use Cases

Social media sentiment analysis

- Extracts attitudes and emotions
 - from social media
 - Posts
 - Responses
 - Reviews, etc
- Implementation
 - Natural language processing
 - Text analysis
 - Computational linguistics
- Example
 - Analysing customer sentiment
 - Towards products or promotions on social media platforms

Text summarisation

- Creates summaries
 - Of large volumes of digital text
- Implementation
 - Semantic reasoning
 - Natural language generation
 - To add to summaries
 - Useful context
 - Conclusions
- Example
 - Summarising news articles or research papers
 - For quick reading

NLP – Good Libraries

Hugging Face Transformers

Pre-trained models for tasks on text, vision, audio

spaCy

Supports tokenization and training for 60+ languages

Fairseq

- Train custom models
- Translation, summarisation, language modelling, etc

Jina

Building scalable neural search applications

Gensim

 Topic modelling, document indexing, and similarity retrieval with large corpora

NLTK (Natural Language Toolkit)

Platform for building Python programs to work with human language data

TextBlob

- A simple API for common NLP tasks
- Part-of-speech tagging, noun phrase extraction, sentiment analysis, classification, translation, etc.

CoreNLP

- Group of NLP Programs
- Tokenization, part-of-speech tagging, lemmatization, etc

Polyglot

Perform different NLP operations

Scikit-learn

- Intuitive class methods and numerous algorithms
- To build machine learning models

Pattern

- Implementing Natural Language processing tasks
- Text Mining, NLP, and Machine Learning

NLP Sentiment Analysis and Classification with TensorFlow

- Download the dataset
 - From Kaggle
 - https://www.kaggle.com/datasets/lakshmi25npathi/imdbdataset-of-50k-movie-reviews
 - Place it in the project's home directory
- Read the dataset
 - Convert the sentiment column.
 - To numeric values
 - For binary classification
 - Use np.where()
 - 'positive' sentiment = 1
 - 'negative' sentiment = 0
- Convert the labels and reviews to NumPy arrays
 - Pre-processing methods favour arrays
 - Over Pandas series

Restricted - Other

```
Use pandas to load the IMDB review dataset
    1 reviews = pd.read csv('IMDB Dataset.csv')
    2 reviews.head()

√ 0.5s

                                       review sentiment
  One of the other reviewers has mentioned that ...
                                                 positive
  1 A wonderful little production. <br /> <br /> The...
                                                 positive
  2 I thought this was a wonderful way to spend ti...
                                                 positive
        Basically there's a family where a little boy ...
                                                negative
      Petter Mattei's "Love in the Time of Money" is...
                                                positive
Convert the sentiment column to numeric values for binary classification
Regard 'positive' sentiment as 1 and 'negative' sentiment as 0 using np.where()
    1 # Regard 'positive' sentiment as 1 and 'negative' sentiment as 0
    2 reviews['sentiment'] = np.where(reviews['sentiment'] == 'positive', 1, 0)

√ 0.0s

Convert the labels and reviews(sentences) to NumPy arrays
Note: Pre-processing methods favor arrays over pandas series
    1 # Convert the labels and reviews(sentences) to NumPy arrays
    2 sentences = reviews['review'].to numpy()
    3 labels = reviews['sentiment'].to numpy()

√ 0.0s
```

- Train/Test Split
- Split the dataset (train/test split) before any preprocessing
- 75:25 split
- Dataset is 50,000 reviews
 - Training model using 37500 reviews
 - Testing model accuracy using the unseen 12500 reviews

```
Split the dataset into training and test instances before any pre-processing
Use a 75:25 split for training and testing data, respectively
Dataset is 50,000 reviews
Training LSTM model using 37500 reviews
Testing model accuracy using the unseen 12500 reviews
    1 X_train, X_test, y_train, y_test = train_test_split(sentences, labels, test_size=0.25)
    2 print("Training Data Input Shape: ", X train.shape)
    3 print("Training Data Output Shape: ", y train.shape)
    4 print("Testing Data Input Shape: ", X test.shape)
    5 print("Testing Data Output Shape: ", y test.shape)
  ✓ 0.0s
 Training Data Input Shape: (37500,)
 Training Data Output Shape: (37500,)
 Testing Data Input Shape: (12500,)
 Testing Data Output Shape: (12500,)
```


Tokenisation on the entire text corpus

Includes all the training data reviews

Convert textual data

- Reviews
 - Into numeric values
 - To build a mathematical model
- Specify vocabulary size
 - Tokenisation of training data
- Consider the first 10000 words
 - Based on frequency
 - In the training data
- Specify oov_tok
 - As <OOV>
 - Replaces any unknown word in the text corpus

```
# Set the vocabulary size to 10000
vocab_size = 10000
# Set the out-of-vocabulary token to "<00V>"
oov_tok = "<00V>"
# Initialise the tokenizer with the specified vocabulary size and 00V token
tokenizer = Tokenizer(num_words=vocab_size, oov_token=oov_tok)
```


Tokenise sentences

- Into a set of individual words during tokenisation
- Calculate statistical features for each word
- word counts
 - Dictionary of words with word count in the entire text corpus
- word docs
 - Dictionary of words depicting the number of documents in the text corpus containing a specific word
- word_index
 - A unique index assigned to a dictionary of words
- document_count
 - Number of documents used for fitting the tokenizer

Hyperparameters for tokeniser

- Fit the hyperparameters for Tokenizer() on the training data
 - fit_on_texts()
- Visualise:
 - the count of each word in the overall dictionary
 - The number of documents containing a specific word
- Convert each textual review into a numerical sequence using the fitted tokenizer

Restricted - Other

```
1 # Print the word counts in the tokenizer
   2 tokenizer.word counts
✓ 0.0s
OrderedDict([('once', 3425),
             ('upon', 1354),
             ('a', 242241),
             ('time', 18773),
             ('there', 23618),
             ('was', 71739),
             ('science', 790),
             ('fiction', 727),
             ('author', 331),
             ('named', 1151),
             ('h', 344),
             ('beam', 25),
             ('piper', 108),
             ('who', 30325),
             ('wrote', 821),
             ('classic', 2652),
             ('book', 3474),
             ('little', 9190),
             ('fuzzy', 83),
             ('which', 17549),
             ('about', 25496),
             ('man', 8248),
             ('discovering', 129),
             ('race', 589),
             ('of', 216196),
             ('heels', 87),
             ('private', 397),
             ('detective', 626),
             ('yarn', 48),
             ...])
```

```
1 # Print the word documents in the tokenizer
   2 tokenizer.word docs
 ✓ 0.0s
defaultdict(int,
             ('where': 7088,
              'man': 5707,
              'about': 15482,
              "who's": 895,
              'ewoks': 21,
              'adorable': 137,
              'for': 26690,
              'fuzzy': 78,
              'is': 33473,
             'race': 439,
              'to': 35195,
              'org': 17,
             'this': 33988,
              "today's": 360,
              'free': 946,
              'blatant': 156
             'science': 600,
              'before': 5347,
              'died': 712,
              'mr': 1424,
              'and': 36218,
              'project': 669,
              'upon': 1232,
              'take': 4453,
              'priceless': 134,
              'mark': 793,
              'strongest': 106,
              'producing': 164,
              ...})
```

Convert training data reviews

- Convert each review in the training data
 - Into a numerical sequence
 - For further training purposes
- Note
 - Each review has different lengths of words
 - Will produce diverse numeric sequence lengths

Limit Sequence Lengths

- To a constant value for each review
- Set a nominal sequence length
 - 200 for each review
- Truncate numerical sequences
 - Lengths greater than 200
- Pad sequences
 - Lengths smaller than 200
 - With zeros
- Set the sequence padding for numerical sequences
 - Of textual reviews
- Repeat the same pre-processing steps
 - For test data
 - after training data complete
- Complete pre-processing of the textual reviews
 - Tokenisation, sequence conversion, and padding

```
1 # Convert the tokenised training data into sequences
   2 train sequences = tokenizer.texts to sequences(X train)
   4 # Print the first sequence
   5 print(train_sequences[0])

√ 3.1s

[281, 684, 4, 56, 47, 14, 4, 1092, 1166, 2266, 792, 2194, 1, 5385, 37, 1060, 4, 361, 278, 792, 120, 6531, 61, 14,
   1 sequence length = 200
   2 train padded = pad sequences(train sequences, maxlen=sequence length, padding='post', truncating='post')
 ✓ 0.3s
   1 # Convert the tokenised test data into sequences
     test sequences = tokenizer.texts to sequences(X test)
     # Pad the sequences to ensure uniform length, truncating longer ones and padding shorter ones with zeros
   5 test padded = pad sequences(test_sequences, maxlen=sequence_length, padding='post', truncating='post')
```


Building an RNN using TensorFlow

Initiate a new Sequential model

- This model serves as a linear stack of layers
 - In the neural network
- Each layers output
 - Is the input for the next layer
 - Last layer outputs
 - Prediction label
- Use this model to embed the layers of the LSTM (Long Short-Term Memory) network
- The LSTM layers can be added to this model

Building an RNN using TensorFlow Restricted - Other

Add an embedding layer to the model

- This layer converts each word
 - Into a dense vector
 - Of embedding dimensions
 - Hyperparameters of the layer
- Set vocabulary size and sequence length
 - For each review
- Add a Bidirectional() layer
- Add a LSTM layer to the model
 - Set a unit size in the LSTM layer

Note: Bidirectional LSTM remembers output from:

- Past to future
- And from future to past
- More robust models for time series analysis

```
# Set the embedding dimension to 16
      embedding dim = 16
   3 # Add an Embedding layer to the model
     model.add(Embedding(vocab size, embedding dim, input length=sequence length))
   6 # Set the LSTM output to 32
   7 lstm out = 32
   8 # Add a Bidirectional LSTM layer to the model
     model.add(Bidirectional(LSTM(lstm out)))
     # Add two Dense layers to the model with 'relu' and 'sigmoid' activation functions respectively
  11 model.add(Dense(10, activation='relu'))
 12 model.add(Dense(1, activation='sigmoid'))
 # Compile the model with binary crossentropy loss function, adam optimizer, and accuracy metrics
  14 model.compile(loss='binary crossentropy', optimizer='adam', metrics=['accuracy'])
  15 # Print a summary of the model
  16 model.summary()
  17
  18
 ✓ 0.6s
Model: "sequential"
                            Output Shape
Layer (type)
                                                      Param #
embedding (Embedding)
                            (None, 200, 16)
                                                      160000
bidirectional (Bidirection (None, 64)
                                                      12544
al)
dense (Dense)
                            (None, 10)
                                                      650
dense 1 (Dense)
                            (None, 1)
                                                      11
Total params: 173205 (676.58 KB)
Trainable params: 173205 (676.58 KB)
Non-trainable params: 0 (0.00 Byte)
```

[&]quot;All of the materials and content, include but not limited to the design, appearance, images, videos, course materials is the intellectual property of Bath Spa University"

Building an RNN using TensorFlow Restricted - Other

- Add two Dense layers to the model
 - Specify activation functions
- Add a fully connected layer
 - 10 units
 - 'relu' activation
- Add an output layer
 - 1 unit
 - 'sigmoid' activation
- output layer
 - Outputs probability input belongs to
 - 1 (positive) using the sigmoid filter


```
# Set the embedding dimension to 16
   2 embedding dim = 16
   3 # Add an Embedding layer to the model
      model.add(Embedding(vocab size, embedding dim, input length=sequence length))
   6 # Set the LSTM output to 32
   7 lstm out = 32
   8 # Add a Bidirectional LSTM layer to the model
   9 model.add(Bidirectional(LSTM(lstm out)))
  10 # Add two Dense layers to the model with 'relu' and 'sigmoid' activation functions respectively
  11 model.add(Dense(10, activation='relu'))
  12 model.add(Dense(1, activation='sigmoid'))
  # Compile the model with binary crossentropy loss function, adam optimizer, and accuracy metrics
  14 model.compile(loss='binary crossentropy', optimizer='adam', metrics=['accuracy'])
  15 # Print a summary of the model
  16 model.summary()
  17
  18

√ 0.6s

Model: "sequential"
 Layer (type)
                            Output Shape
                                                      Param #
 embedding (Embedding)
                            (None, 200, 16)
                                                       160000
 bidirectional (Bidirection (None, 64)
                                                      12544
 al)
 dense (Dense)
                            (None, 10)
                                                      650
 dense 1 (Dense)
                            (None, 1)
                                                      11
Total params: 173205 (676.58 KB)
Trainable params: 173205 (676.58 KB)
Non-trainable params: 0 (0.00 Byte)
```

[&]quot; All of the materials and content, include but not limited to the design, appearance, images, videos, course materials is the intellectual property of Bath Spa University"

Building an RNN using TensorFlow Restricted - Other

- Compile the model
 - Optimises the binary_crossentropy
 - During training
- 'adam' optimiser
 - Minimises loss value
 - By tweaking the weights
 - During the training phase
 - Tries to find the global minima
 - For the loss value
 - Across all the local minima
- 'accuracy' of the model
 - Reported for each training batch/epoch
 - Gauge the convergence
 - Of the neural network
- Visualise the summary of the LSTM model


```
# Set the embedding dimension to 16
   2 embedding dim = 16
   3 # Add an Embedding layer to the model
      model.add(Embedding(vocab size, embedding dim, input length=sequence length))
   6 # Set the LSTM output to 32
   7 lstm out = 32
   8 # Add a Bidirectional LSTM layer to the model
   9 model.add(Bidirectional(LSTM(lstm out)))
  10 # Add two Dense layers to the model with 'relu' and 'sigmoid' activation functions respectively
  11 model.add(Dense(10, activation='relu'))
 12 model.add(Dense(1, activation='sigmoid'))
  # Compile the model with binary crossentropy loss function, adam optimizer, and accuracy metrics
  14 model.compile(loss='binary crossentropy', optimizer='adam', metrics=['accuracy'])
  15 # Print a summary of the model
     model.summary()
  18

√ 0.6s

Model: "sequential"
                            Output Shape
 Layer (type)
                                                      Param #
 embedding (Embedding)
                            (None, 200, 16)
                                                      160000
bidirectional (Bidirection (None, 64)
                                                      12544
 al)
 dense (Dense)
                            (None, 10)
                                                      650
 dense 1 (Dense)
                            (None, 1)
                                                      11
Total params: 173205 (676.58 KB)
Trainable params: 173205 (676.58 KB)
Non-trainable params: 0 (0.00 Byte)
```

[&]quot;All of the materials and content, include but not limited to the design, appearance, images, videos, course materials is the intellectual property of Bath Spa University"

Building an RNN using TensorFlow — EarlyStopping()

- EarlyStopping()
 - Halts model training
 - After the model fails to minimise
 - The validation loss value
 - After a set number of epochs
- Helps avoid overfitting the model
 - On the training data
- ModelCheckpoint()
 - Monitor the loss after each epoch
 - Save the best model
 - In terms of validation loss

Building an RNN using TensorFlow — Fit Model

- Fit the model
 - Set the number of epochs
 - Network trained this amount
 - Number of epochs needed
 - Often unknown
 - Requires an educated guess
 - And tweaking
 - Maximum of 10 epochs
 - In example
- Set the validation data
 - Monitor the loss on the validation dataset
- Halt the training
 - If the validation loss is not minimised
 - For two consecutive epochs
 - Specified in the callback
 - Model training may halt before reaching 10 epochs
 - If the validation loss does not improve

Building an RNN using TensorFlow - Model Accuracy

- Model training halted
 - After 5 epochs
 - Loss did not improve
 - After Epoch 3
- Model parameters
 - Saved in 'history' variable
- Achieved 86% validation accuracy
 - On the IMDB review dataset
 - By training a simple bidirectional LSTM network
- Accuracy could be improved
 - Using back-to-back LSTM layers
 - Or using increased word dictionary

```
1 history = model.fit(train padded,
                y train,
                epochs=10,
                validation data=(test padded,
                          y test),
                callbacks=callbacks)

√ 6m 44.8s

Epoch 1/10
Epoch 2/10
1172/1172 [=============] - 85s 72ms/step - loss: 0.4619 - accuracy: 0.7881 - val loss: 0.3759 - val accuracy: 0.8459
Epoch 3/10
Epoch 4/10
1172/1172 [=============] - 67s 57ms/step - loss: 0.2497 - accuracy: 0.9039 - val loss: 0.3566 - val accuracy: 0.8443
Epoch 5/10
1172/1172 [============] - 67s 57ms/step - loss: 0.2222 - accuracy: 0.9162 - val loss: 0.3429 - val accuracy: 0.8664
```

```
1 metrics_df = pd.DataFrame(history.history)
2 print(metrics_df)

✓ 0.0s

loss accuracy val_loss val_accuracy
0 0.649434 0.621227 0.502158 0.77824
1 0.461919 0.788107 0.375894 0.84592
2 0.306105 0.877813 0.321435 0.86280
3 0.249678 0.903947 0.356642 0.84432
4 0.222168 0.916160 0.342907 0.86640
```


Building an RNN using TensorFlow — Model Loss

- Visualise the
- Training/testing data
 - Over the number of epochs
 - Using matplotlib

Building an RNN using TensorFlow — Model Accuracy

- Visualise the accuracy
- Training/testing data
 - Over the number of epochs
 - Using matplotlib

Session Review

- Understand how machine learning models handle non-numeric data
- Understand which scenarios these might be applied to
- Work through a practical example

