30分钟学会ggplot2

肖凯

xccds1977@gmail.com

太极剑法和ggplot2

- 招无定式
- 潜力无穷
- 需要忘记
- 容易学习

内容提要:

- 简介
- 基本概念
- 简单示例
- 进阶示例
- 学习资源

ggplot2简介

- 由Hadley Wickham于2005 年创建
- · 于2012年四月进行了重大更新,目前为0.91版
- 作者目前的工作是重写代码, 简化语法,方便用户开发和 使用

ggplot2简介

- ggplot2 is a plotting system for R,
- based on the grammar of graphics,
- which tries to take the good parts of base and lattice graphics and none of the bad parts.
- It takes care of many of the fiddly details that make plotting a hassle,
- It easy to produce complex multilayered graphics.

为什么要使用ggplot2

- 用户能在更抽象层面上控制图形,使创造性绘图更容易;
- 采用图层的设计方式,有利于结构化思维;
- 图形美观,同时避免繁琐细节

ggplot2的基本概念

- 数据 (data)和映射 (mapping)
- 标度(Scale)
- 几何对象 (geometric)
- 统计变换(statistics)
- 坐标系统(Coordinate)
- 图层 (Layer)
- 分面 (Facet)

数据(data)和映射(mapping)

将数据中的变量映射到图形属性。映射控制了二者之间的关系。

length	width	depth	trt
2	3	4	a
1	2	1	a
4	5	15	b
9	10	80	b

X	y	colour
2	3	а
1	2	а
4	5	b
9	10	b

标度(Scale)

标度负责控制映射后图形属性的显示方式。具体形式上来看是图例和坐标刻度。它和mapping是紧密相关的概念。

X	У	colour
2	3	a
1	2	a
4	5	b
9	10	b

Х	У	colour
25	11	red
0	0	red
75	53	blue
200	300	blue

几何对象(geometric)

代表你在图中实际看到的图形元素,如点、线、多边形等。

Geoms

统计变换(statistics)

对原始数据进行某种计算,例如对二元散点图加上一条回归线。

Geoms Stat

坐标系统(Coordinate)

坐标系统控制坐标轴并影响所有图形元素,坐标轴可以进行变换以满足不同的需要。

图层 (Layer)

图层可以允许用户一步步的构建图形,方便单独对图层进行修改、增加统计量、甚至改动数据。

分面 (Facet)

条件绘图,将数据按某种方式分组,然后分别绘图。 分面就是控制分组绘图的方法和排列形式。

ggplot2的基本概念

- 数据 (data)和映射 (mapping)
- 标度(Scale)
- 几何对象 (geometric)
- 统计变换(statistics)
- 坐标系统(Coordinate)
- 图层 (Layer)
- 分面 (Facet)

简单示例

- 散点图
- 直方图
- 条形图
- 拼图
- 箱线图
- 二维直方图

示例数据

```
> str(mpg)
'data.frame':
              234 obs. of 14 variables:
$ manufacturer: Factor w/ 15 levels "audi", "chevrolet",..:
$ model
            : Factor w/ 38 levels "4runner 4wd",..:
$ displ : num 1.8 1.8 2 2 2.8 2.8 3.1 1.8 1.8 2 ...
$ year : int 1999 1999 2008 2008 1999 1999 2008 1999
$ cyl
          : int 4444666444 ...
$ trans
          : Factor w/ 10 levels "auto(av)", "auto(l3)",..:
$ drv : Factor w/ 3 levels "4", "f", "r":
$ cty
          : int 18 21 20 21 16 18 18 18 16 20 ...
$ hwy : int 29 29 31 30 26 26 27 26 25 28 ...
$ fl
         : Factor w/ 5 levels "c", "d", "e", "p", ...:
```

\$ class : Factor w/ 7 levels "2seater", "compact", ..:

> library(ggplot2)

aesthetics

> p <- ggplot(data=mpg, mapping=aes(x=cty, y=hwy))

> p + geom_point()


```
> summary(p)
data: manufacturer, model, displ, year, cyl, trans, drv, cty, hwy,
fl, class [234x11]
mapping: x = cty, y = hwy
faceting: facet null()
> summary(p+geom_point())
data: manufacturer, model, displ, year, cyl, trans, drv, cty, hwy,
 fl, class [234x11]
mapping: x = cty, y = hwy
faceting: facet null()
geom point: na.rm = FALSE
stat identity:
position_identity: (width = NULL, height = NULL)
```


> p + geom_point() + stat_smooth()

> p <- ggplot(mpg, aes(x=cty,y=hwy))
 p + geom_point(aes(colour=factor(year)))+
 stat_smooth()</pre>

> p + geom_point(aes(colour=factor(year)))+
 stat_smooth()+
 scale_color_manual(values =c('blue','red'))

> p + geom_point(aes(colour=factor(year),size=displ))+
 stat_smooth()+
 scale_color_manual(values =c('blue2','red4'))


```
>p + geom_point(aes(colour=factor(year),size=displ),
alpha=0.5,position = "jitter")+ stat_smooth()+
scale_color_manual(values =c('blue2','red4'))+
scale_size_continuous(range = c(4, 10))+
coord_cartesian(xlim = c(15, 25),ylim=c(15,40))
```


>p + geom_point(aes(colour=class, size=displ), alpha=0.5, position = "jitter")+ stat_smooth()+ scale_size_continuous(range = c(4, 10))+ facet_wrap(~ year, ncol=1)


```
> p <- ggplot(mpg, aes(x=cty, y=hwy))
> p + geom point(aes(colour=class, size=displ),
       alpha=0.5, position = "jitter")+
    stat smooth()+
    scale size continuous(range = c(4, 10))+
    facet wrap(~ year,ncol=1)+
    opts(title='汽车油耗与型号')+
    labs(y='每加仑高速公路行驶距离',
       x='每加仑城市公路行驶距离')+
    guides(size=guide legend(title='排量'),
      colour = guide legend(title='车型',
      override.aes=list(size=5)))
```


> P <- ggplot(mpg,aes(x=hwy))
p + geom_histogram()</pre>


```
> summary(p + geom_histogram())
data: manufacturer, model, displ, year, cyl, trans,
drv, cty, hwy, fl, class [234x11]
mapping: x = hwy
faceting: facet null()
geom_histogram:
stat_bin:
position stack: (width = NULL, height = NULL)
```

> p + geom_histogram(aes(fill=factor(year),y=..density..), alpha=0.3,colour='black')+ stat_density(geom='line',position='identity',size=1.5, aes(colour=factor(year)))+ facet_wrap(~year,ncol=1)

> p <- ggplot(mpg, aes(x=class))
p + geom_bar()</pre>

- > class2 <- mpg\$class; class2 <- reorder(class2,class2,length)</pre>
- > mpg\$class2 <- class2
- > P <- ggplot(mpg, aes(x=class2))
- > p + geom_bar(aes(fill=class2))

> p <- ggplot(mpg, aes(class2,fill=factor(year)))
p + geom_bar(position='identity',alpha=0.5)</pre>

> P + geom_bar(position='dodge')

> p+geom_bar(position='stack')

> p+geom_bar(position='fill')

> p+ geom_bar(aes(fill=class2))+facet_wrap(~year)

> p <- ggplot(mpg, aes(class,hwy,fill=class)) p+geom_boxplot()</pre>

> P + geom_violin(alpha=0.3,width=0.9)+ geom_jitter(shape=21)

> p <- ggplot(diamonds,aes(carat,price))
p + geom_point()</pre>

观察密集散点的方法

- 増加扰动 (jitter)
- 増加透明度 (alpha)
- 二维直方图 (stat_bin2d)
- 密度图 (stat_density2d)

> p + stat_bin2d(bins = 60)

> p + stat_density2d(aes(fill = ..level..), geom="polygon") + coord_cartesian(xlim = c(0, 1.5),ylim=c(0,6000))+ scale fill continuous(high='red2',low='blue4')

进阶示例

- 风向风速
- 插入数学符号
- 时间序列
- 水资源分布
- OpenStreetMap
- 日历热图

风向风速玫瑰图

#随机生成100次风向,并汇集到16个区间内dir <- cut_interval(runif(100,0,360),n=16)

#随机生成100次风速,并划分成4种强度 mag <- cut_interval(rgamma(100,15),4) sample <- data.frame(dir=dir,mag=mag)

#将风向映射到X轴,频数映射到Y轴,风速大小映射到填充色,生成条形图后再转为极坐标形式即可p <- ggplot(sample,aes(x=dir,y=..count..,fill=mag))p + geom_bar()+ coord_polar()

插入数学符号


```
使用的是老版本ggplot2,新版未测试
intercept <- sin(4)-slope*4
x <- seq(from=0,to=2*pi,by=0.01)
y <- sin(x)
p <- ggplot(data.frame(x,y),aes(x,y))
p + geom_area(fill=alpha('blue',0.3))+
geom_abline(intercept=intercept,slope=slope,linetype=2)+
scale_x_continuous(breaks=c(0,pi,2*pi),
```

```
scale_x_continuous(breaks=c(0,pi,2*pi),
labels=c('0',expression(pi),expression(2*pi)))+
geom_text(parse=T,aes(x=pi/2,y=0.3,label='integral(sin(x)*dx, 0, pi)'))+
geom_line()+
geom_point(aes(x=4,y=sin(4)),size=5,colour=alpha('red',0.5))
```

时间序列


```
library(quantmod)
library(ggplot2)
getSymbols('\sSEC',\src='yahoo',from = '1997-01-01')
close <- (Cl(SSEC))
time <- index(close)
value <- as.vector(close)</pre>
yrng <- range(value)</pre>
xrng <- range(time)</pre>
data <- data.frame(start=as.Date(c('1997-01-01','2003-01-01')),end=as.Date(c('2002-
12-30','2012-01-20')),core=c('jiang','hu'))
timepoint <- as.Date(c('1999-07-02','2001-07-26','2005-04-29','2008-01-10','2010-03-
31'))
events <- c('证券法实施','国有股减持','股权分置改革','次贷危机爆发','融资融券试
点')
data2 <- data.frame(timepoint,events,stock=value[time %in% timepoint])
p <- ggplot(data.frame(time,value),aes(time,value))
p + geom line(size=1,colour='turquoise4')+
geom_rect(alpha=0.2,aes(NULL,NULL,xmin = start, xmax = end, fill = core),ymin =
yrng[1],ymax=yrng[2],data = data)+
scale fill manual(values = c('blue','red'))+
geom text(aes(timepoint, stock, label = events), data = data2, vjust = -2, size = 5)+
geom_point(aes(timepoint, stock),data = data2,size = 5,colour = 'red',alpha=0.5)
```

水资源分布


```
library(ggplot2)
library(gpclib)
library(maptools)
load(url("http://gadm.org/data/rda/CHN adm1.RData"))
water <- c(1085,325,1473,3524,1079,2935,3989,2790,4147,358,2046,434
 ,1652,2490,451,3362,1467,871,2145,182,1000,12278,448,377,
 182,1221,3135,152,4976,10000,5298,2005)
gpclibPermit()
china.map <- fortify(gadm,region='ID 1')
vals <- data.frame(id =unique(china.map$id),val=water)</pre>
ggplot(vals, aes(map id = id)) +
  geom map(aes(fill = val), map =china.map) +
  expand limits(x = china.map$long, y = china.map$lat) +
 scale fill continuous(limits=c(0,2200),low = 'red2',high ='yellow',
    guide = "colorbar") +
 opts(title='中国人均水资源拥有量',
    axis.line=theme blank(),axis.text.x=theme blank(),
    axis.text.y=theme blank(),axis.ticks=theme blank(),
    axis.title.x=theme blank(),
    axis.title.y=theme blank()) +
 xlab("") + ylab("")
```

OpenStreetMap

日历热图

学习资源

- 教材
- 官方网站

http://had.co.nz/ggplot2/

• 0.9新功能说明

http://cloud.github.com/dow nloads/hadley/ggplot2/guide -col.pdf

学习资源

- http://learnr.wordpress.com/
- http://wiki.stdout.org/rcookbook/Graphs/
- http://xccds1977.blogspot.com
- http://r-ke.info/
- http://r-blogger.com
- http://Stackoverflow.com
- http://www.youtube.com/watch?v=vnVJJYi1
 mbw

谢谢

