Partiel du 8 Mars 2023 9h00-11h00

Instructions:

- Tous les documents, téléphones portables, calculatrices... sont interdits.
- Le barème est donné à titre indicatif et est susceptible d'être modifié.
- La qualité de la rédaction sera prise en compte dans l'évaluation.

Exercice 1. (Question de cours, 4 pts). Rappeler les énoncés des résultats suivants:

- 1. le principe des zéros isolés;
- 2. le théorème du prolongement analytique.

Exercice 2. (7 pts) On rappelle la formule de la détermination principale du logarithme:

Cette fonction est holomorphe sur $\mathbb{C} - \mathbb{R}_-$, de dérivée donnée par $\text{Log}'(z) = \frac{1}{z}$ pour tout $z \in \mathbb{C} - \mathbb{R}_-$. Si $\alpha \in \mathbb{R}$, on considère à présent la fonction

$$\varphi_{\alpha}: \ \mathbb{C} \setminus \mathbb{R}_{-} \longrightarrow \mathbb{C}$$

$$z \longmapsto \exp(\alpha \operatorname{Log}(z))$$

- **1.** (1 pt) Montrer que si $m \in \mathbb{N}^*$, on a $\varphi_{\frac{1}{m}}(z)^m = z$ pour tout $z \in \mathbb{C} \setminus \mathbb{R}_-$.
- **2.** (1.5 pt) Soit $\alpha > 1$. Déterminer l'image $\varphi_{\frac{1}{\alpha}}(\mathbb{C} \setminus \mathbb{R}_{-})$. Faire un dessin.
- **3.** (1.5 pt) Soit $\alpha > 1$, et soit $z \in \mathbb{C} \setminus \mathbb{R}_-$. Montrer que $\varphi_{\frac{1}{\alpha}}(z) \in \mathbb{C} \setminus \mathbb{R}_-$, et montrer que

$$\varphi_{\alpha}(\varphi_{\frac{1}{\alpha}}(z))=z.$$

4. (1.5 pt) Soit $\alpha > 0$. Montrer que φ_{α} est une fonction holomorphe, de dérivée donnée par

$$\varphi'_{\alpha}(z) = \alpha \varphi_{\alpha-1}(z).$$

5. (1.5 pt) Soit C le cercle unité. On paramètre $C-\{-1\}$ par $\gamma:t\in]-\pi,\pi[\longmapsto e^{it}.$ Montrer que

$$\int_{\gamma} \varphi_{\alpha}(z) dz = \begin{cases} \frac{2i \sin((\alpha+1)\pi)}{\alpha+1} & \text{si} \quad \alpha \neq -1\\ 2i\pi & \text{si} \quad \alpha = -1. \end{cases}$$

Exercice 3. (9 pts) Dans tout cet exercice, on définira la fonction exponentielle comme la fonction $\exp : \mathbb{C} \to \mathbb{C}$ donnée par la série entière

$$\exp(z) = \sum_{n=0}^{+\infty} \frac{z^n}{n!}.$$

1. (**Question de cours**) (1.5 pt) Rappeler pourquoi le rayon de convergence de cette série est infini, et pourquoi on a

$$\forall z_1, z_2 \in \mathbb{C}$$
, $\exp(z_1 + z_2) = \exp(z_1) \exp(z_2)$.

et $\exp(-z) = \frac{1}{\exp(z)}$ si $z \in \mathbb{C}$.

2. (1.5 pt) Montrer que $\overline{\exp(z)} = \exp(\overline{z})$ pour tout $z \in \mathbb{C}$, et en déduire que

$$\forall t \in \mathbb{R}, \quad |\exp(it)| = 1.$$

On note

$$\mathbb{U} = \{ z \in \mathbb{C} \mid |z| = 1 \}.$$

C'est un groupe pour la multiplication complexe.

3. (1 pt) Montrer que $\varphi: t \in (\mathbb{R}, +) \to \exp(it) \in (\mathbb{U}, \cdot)$ est une application continue et un morphisme de groupes.

Notons $Z \subset \mathbb{R}$ le noyau de ce morphisme. L'objectif de la question suivante est de montrer que Z peut-être engendré par un unique élément de \mathbb{R} . Pour cela, on rappelle sans démonstration le résultat suivant:

Soit $G \subset \mathbb{R}$ un sous-groupe. Alors ou bien G est dense, ou bien il existe un unique $\tau \in \mathbb{R}_+$ tel que $G = \mathbb{Z}\tau$.

4. (2pt) Supposons par l'absurde que Z soit dense dans \mathbb{R} . En utilisant le principe des zéros isolés, montrer que cela doit impliquer que exp est constante égale à 1, et montrer que l'on obtient une contradiction. Conclure qu'il existe $\tau \in \mathbb{R}_+$ tel que $Z = \mathbb{Z}\tau$.

Dans les deux questions suivantes, on va montrer que φ n'est pas injective, et donc que $\tau \neq 0$. On introduit le groupe des racines de l'unité:

$$\mathbb{U}_{rac} = \{ x \in \mathbb{U} \mid \exists m \in \mathbb{N}, x^m = 1 \}.$$

et on note $\mathbb{U}_{rac}^* = \mathbb{U}_{rac} - \{1\}$. On pourra admettre sans démonstration que les seules parties connexes non vides de $\mathbb{U} - \mathbb{U}_{rac}^*$ sont les singletons.

- **5.** (2 pt) On suppose par l'absurde que φ est injective. Montrer que $\varphi(\mathbb{R}) \cap \mathbb{U}_{rac} = \{1\}$.
- **6.** (1 pt) En déduire que $\varphi(\mathbb{R}) = \{1\}$. (*Indication : montrer d'abord que* $\varphi(\mathbb{R})$ *est connexe*), et conclure à une contradiction.

On a donc démontré que $\tau \neq 0$. Une définition possible de π consiste à poser $\pi = \frac{\tau}{2}$. On a alors

$$\forall t \in \mathbb{R}$$
, $\exp(it) = 1 \iff t \in 2i\pi\mathbb{Z}$.