# CSC 540 T14 Project 1 Report

# **Team Members:**

Ashok Kumar Selvam

**Arvind Srinivas Subramanian** 

Sumedh Sanjay Salvi

Aakash Satish Poliyath

## **ER Model:**

#### **Customer Loyalty Marketplace Application**



# **SQL Queries:**

1. DDL Queries:

540-P1-team name/DBMSProject1/DDL.sql

2. DML Queries:

540-P1-team name/DBMSProject1/DML.sql

## **Constraints:**

## **Constraints handled in DB:**

#### **Check Constraints:**

1. TIER:

check if points and multiplier  $\geq 0$ 

2. Wallet:

Check if points  $\geq 0$ 

3. Rewards for Loyalty program:

Check if reward count and reward value  $\geq 0$ 

4. Customer redeem activity:

Check if points  $\geq 0$ 

5. Customer reward activity:

Check if points  $\geq 0$ 

#### **Procedures:**

1. update\_customer\_tier(customer\_id, loyalty\_program\_id)

This procedure takes customer id and loyalty program as parameters and calculate and update the tier of the customer for a loyalty program based on the points in the wallet.

# **Triggers:**

1. update\_reward\_count\_and\_wallet

This trigger is set to execute when the customer performs a redeem activity.

This trigger performs 3 activities

- a. Decrement reward count
- Decrease the points used by the customer to redeem reward from the customer's wallet

c. Update the tier of the customer based on the updated points (execute update customer tier)

#### 2. calc\_points

This trigger is set to execute when the customer performs a reward activity.

This trigger performs 3 activities

- a. Fetch the points set for the performed activity from the rules table and update it in the activities table.
- b. Add the points earned by the customer from the activity in the wallet.
- c. Update the tier of the customer based on the updated points (execute update\_customer\_tier)

#### 3. brand\_insert\_trigger

This trigger creates an entry in the actor table(used for credentials) whenever a brand is added. Default password is set to 'abcd1234'

4. customer\_insert\_trigger

This trigger creates an entry in the actor table(used for credentials) whenever a customer is added. Default password is set to 'abcd1234'

5. customer\_wallet\_trigger

This trigger creates an entry in the wallet table whenever a customer enrolls in a loyalty program.

### Constraints not handled in DB:

1. A loyalty program can only have 3 tiers

There is no way to add a check constraint to limit number of rows with a particular value in a table. Therefore, this constraint cannot be handled in the DB. We added a check in the application which will enforce this constraint.

# **Functional Dependencies:**

```
1. Actor(username, password, role name)
  FD = {username->password,role name}
  CK = username
  NF = BCNF
2. Activity category(id, activity name)
  FD = {id->activity name}
  CK = id
  NF = BCNF
3. Re rule(re rule code, activity category code, num points, version, status,
  lp_Code)
  FD = {re rule code, version-
  >activity category code,nums points,version,status,lp code
  activity_category_code, version, lp_Code -> num_points, re_rule_code, status}
  CK = {(re rule code, version), (activity category code, version, lp Code)}
  NF = BCNF
4. Rr_rule(rr_rule_code, reward, num_points, version, status, lp_code)
  FD = {rr rule code, version->reward,num points,version,status,lp code
  reward, version, lp_Code -> num_points, rr_rule_code, status}
  CK = {(rr rule code, version), (reward, version, lp code)}
  NF = BCNF
5. Brand(id,name,address,join date,user name)
  FD = {id->name,address,join date,user name
  name -> id, address, join_date, user_name}
  CK = id
  NF = BCNF
```

```
6. Loyalty_program(id,program_name,brand_id,tier_type,state)
    FD = {id->program name,brand id,tier type,state
    brand id -> id,program name,tier type,state)}
    CK = {id, brand id}
    NF = BCNF
 7. activities for loyalty program(activity lp map id,
    loyalty_program_code,activity_category_code)
    FD = {activity_lp_map_id->loyalty_program_code,activity_category_code
    loyalty_program_code, activity_category_code->activity_lp_map_id}
    CK = {activity lp map id, (loyalty program code, activity category code)}
    NF = BCNF
 8. Customer(id,name,phone,address,user_name)
    FD = {id->name,phone,address,user name}
    CK = id
    NF = BCNF
 9. Tier(id,name, points, multiplier, lp program id)
    FD = {id-> name, points, multiplier, lp program id}
    CK = id
    NF = BCNF
10. customer_redeem_activity(id,customer_id,activity_date,redeem_lp_map_id,points)
    FD = {id -> customer id,activity date,redeem lp map id,points}
    CK = id
    NF = BCNF
11. customer activity(id,customer id,activity date,activity lp map id,
    customer_redeem_activity_id,points)
    FD = {id -> customer _id,activity_date,activity_lp_map_id,
    customer_redeem_activity_id,points}
    CK = id
```

```
NF = BCNF
12. reward category(id, reward value)
    FD = {id -> reward name}
    CK = id
    NF = BCNF
13. Wallet(id,points,customer id,loyalty program code, tier id)
    FD = {id -> points, customer id, loyalty program code, tier id
    customer_id, loyalty_program_code -> id, points, tier_id}
    CK = {id, (customer id, loyalty program code)}
    NF = BCNF
14. customer lp enroll(customer id,loyalty program code)
    FD = \{\}
    CK = (customer id, loyalty program code)
    NF = BCNF
15. rewards for loyalty program(reward lp map id,
    loyalty program code, reward category code, reward count, reward value)
    FD = {reward | p map id-
    >loyalty program code,reward_category_code,reward_count,reward_value
    reward category code, loyalty program code ->
    reward lp map id,reward count,reward value}
    CK = {reward lp map id, (reward category code, loyalty program code)}
```

In all the above relations, all the functional dependencies are either driven by the primary key or by a candidate key.

Hence, we can conclude that all the relations are in BCNF.

NF = BCNF