Dr. R. Käppeli D-ITET, D-MATL Sommer 2020 Prüfung Numerische Methoden

Name	:	
Vorname	:	
Legi-Nummer	:	
Studiengang	:	
Datum		22 08 2020

1	2	3	4	5	Punkte
10	15	10	10	5	50

Wichtige Hinweise

- Die Prüfung dauert 90 Minuten.
- Erlaubte Hilfsmittel: 5 A4-Blätter doppelseitig (=10 Seiten) eigenhändig und handschriftlich verfasste Zusammenfassung, nicht ausgedruckt, nicht kopiert. Sonst keine Hilfsmittel zugelassen.
- Begründen Sie jeweils Ihre Aussagen. Unbegründete Lösungen (ausser bei Multiple-Choice-Aufgaben falls nicht explizit gefordert) werden nicht akzeptiert!
- Legen Sie Ihre Legi auf den Tisch. Schalten Sie Ihr Handy aus.
- Schreiben Sie nicht mit Bleistift. Verwenden Sie einen Stift mit blauer oder schwarzer Farbe (keinesfalls rot oder grün).
- Versuchen Sie Ihren Lösungsweg möglichst klar darzustellen und arbeiten Sie sorgfältig!
- Schauen Sie das Prüfungsblatt erst an, wenn der Assistent das Signal dazu gibt!

Viel Erfolg!

Aufgaben:

1. Wahr oder Falsch [10 Punkt(e)]

Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in das entsprechende Kästchen und zwar so:

wahr	falsch		
×			

Als Markierungen sind ausschliesslich Kreuzchen \times erlaubt. Wenn Sie ein Kreuzchen rückgängig machen wollen, streichen Sie es klar erkennbar durch.

Jedes richtig gesetzte Kreuzchen ergibt **2 Punkte**, falsch gesetzte Kreuzchen geben *keine* negative Punkte.

		wahr	falsch
1)	Das folgende Anfangswertproblem (AWP)		
	$\dot{y}(t) = 2\sqrt{ y }, \ y(0) = 0$		
	für $t\in[0,\infty)$ besitzt die beiden Lösungen $y(t)=0$ und $y(t)=t t $. Deshalb genügt das AWP dem Satz von Picard-Lindelöf.		
2)	Das explizite Euler Verfahren gehört zur Familie der Runge-Kutta Einschrittverfahren und das zugehörige Butcher-Tableau ist		
	$ \begin{array}{c c} 0 & 0 \\ \hline & 1 \end{array} $		
3)	3) Nur lineare Anfangswertprobleme können steif sein.		
4)	4) Wir approximieren das Integral		
	$I[\sqrt{x}] = \int_0^1 \sqrt{x} \mathrm{d}x$		
	mit der summierten Simpson-Regel mit N Teilintervallen $Q_2^N[\sqrt{x}]$. Da die Simpson-Regel Genauigkeitsgrad $q=3$ hat, erwarten wir einen Fehler der Form		
	$E^{N}[\sqrt{x}] = I[\sqrt{x}] - Q_2^{N}[\sqrt{x}] = \mathcal{O}\left(\frac{1}{N^4}\right)$		
	für N gross genug.		
5)	Falls das Bisektion-Verfahren gegen eine Nullstelle konvergiert, tut es dies mit linearer Konvergenzordnung.		

2. Fragen aus den Übungen [15 Punkt(e)]

a) [4 Punkt(e)] (Serie 1, Aufgabe 2) Gegeben ist die Quadraturregel

$$Q[f] = \sum_{j=0}^{2} \omega_j f(x_j) \approx \int_a^b f(x) dx = I[f],$$

mit Knoten

$$x_0 = a,$$
 $x_1 = \frac{a+b}{2},$ $x_2 = b.$

- i) Berechnen Sie die Lagrange-Polynome $L_0^2(x)$, $L_1^2(x)$ und $L_2^2(x)$ passend zu den Knoten x_0 , x_1 und x_2 .
- ii) Berechnen Sie mit i) die Quadratur Gewichte ω_0 , ω_1 und ω_2 .
- **b)** [2 Punkt(e)] (Serie 5, Aufgabe 4) Autonomisieren Sie das Anfangswertproblem

$$\dot{y}(t) = -y(t) + \cos(t)e^{-t},$$

 $y(0) = 7.$

c) [4 Punkt(e)] (Serie 7, Aufgabe 3)

Geben Sie für das folgende Runge-Kutta Einschrittverfahren an ob es (i) explizit oder implizit ist, (ii) das zugehörige Butcher-Tableau und (iii) skizzieren Sie das Verfahren im Richtungsfeld:

$$k_{1} = f(t_{j}, y_{j}),$$

$$k_{2} = f\left(t_{j} + \frac{h}{2}, y_{j} + \frac{h}{2}k_{1}\right),$$

$$k_{3} = f(t_{j} + h, y_{j} + hk_{2}),$$

$$k_{4} = f(t_{j} + h, y_{j} + hk_{3}),$$

$$y_{j+1} = y_{j} + h\left(\frac{1}{6}k_{1} + \frac{2}{3}k_{2} + \frac{1}{6}k_{4}\right).$$

Schreiben Sie Ihre Antworten direkt hier:

- (i)
- (ii)
- (iii) Richtungsfeld:

d) [2 Punkt(e)] (Serie 8, Aufgabe 3)

Ist das folgende Verfahren autonomisierungsinvariant?

Begründen Sie Ihre Antwort.

e) [3 Punkt(e)] (Serie 12, Aufgabe 1)

Berechnen Sie die Stabilitätsfunktion des Verfahrens von Heun

$$\begin{array}{c|cccc}
0 & & & \\
1 & 1 & & \\
& \frac{1}{2} & \frac{1}{2} & \\
\end{array}$$

3. Konsistenzordnung [10 Punkt(e)]

Wir betrachten folgendes Butcher-Tableau eines zweistufigen Runge-Kutta Einschrittverfahrens (ESV), wobei a, b_1 und b_2 Parameter sind.

$$\begin{array}{c|cc}
0 \\
a & a \\
\hline
 & b_1 & b_2
\end{array} \tag{1}$$

- a) [1 Punkt(e)] Schreiben Sie das gegebene ESV (1) in Stufenform um.
- **b)** [6 Punkt(e)] Bestimmen Sie die Konsistenzordnung des ESVs (1) als Funktion der Parameter a, b_1 und b_2 .

Hinweis: Ein zweistufiges explizites ESV hat höchstens Konsistenzordnung p=2.

c) [3 Punkt(e)] Bestimmen Sie alle möglichen Parameter a, b_1 und b_2 , damit das ESV Konsistenzordnung p = 2 hat.

4. Stabilität und Steifigkeit [10 Punkt(e)]

Wir betrachten das Anfangswertproblem (AWP) bestehend aus den gekoppelten Differentialgleichungen (DGL)

$$\dot{y}_1 = -\varepsilon y_1 + \frac{1}{\varepsilon} y_2$$

$$\dot{y}_2 = -\frac{1}{\varepsilon} y_2$$
(2)

und den Anfangswerten (AW)

$$y_1(0) = \sqrt{2}$$
 , $y_2(0) = \pi$. (3)

Hier ist $\varepsilon>0$ ein positiver Parameter und das AWP soll im Zeitintervall $t\in[0,1000]$ gelöst werden.

Zur numerischen Lösung des AWPs (2)-(3) soll folgendes Einschrittverfahren (ESV) verwendet werden

$$\begin{array}{c|cccc}
\gamma & \gamma \\
\hline
1 - \gamma & 1 - 2\gamma & \gamma \\
\hline
& \frac{1}{2} & \frac{1}{2}
\end{array}$$
(4)

Hier ist γ ein Parameter der nicht relevant für die folgenden Teilfaufgaben ist.

- a) [3 Punkt(e)] Ist das AWP (2)-(3) global steif für beliebig kleine Parameter $\varepsilon > 0$? Begründen Sie Ihre Antwort.
- b) [5 Punkt(e)] Berechnen Sie die Stabilitätsfunktion des ESV (4).
- c) [2 Punkt(e)] Das Stabilitätsgebiet (schwarzes Gebiet) des ESVs (4) ist in der folgenden Abbildung skizziert:

Ist das ESV (4) geeignet um das AWP (2)-(3) mit $\varepsilon=10^{-2}$ für $t\in[0,1000]$ und mit einer Schrittweite von $h=\frac{1}{20}$ zu lösen? Begründen Sie Ihre Antwort.

Falls Sie a) nicht gelöst haben: Ist das ESVs (4) geeignet um das folgende AWP

$$\dot{y} = -1000y(t),$$

$$y(0) = 1$$

für $t \in [0,1]$ mit einer Schrittweite von $h = 10^{-3}$ zu lösen?

5. *Nullstellensuche* [**5 Punkt**(**e**)]

Wir betrachten folgende skalare nicht-lineare Gleichung

$$f(x) = x^x - 5 = 0. (5)$$

Aus dem folgenden Graphen schliessen wir, dass eine Lösung im Interval [1, 3] existiert:

- a) [2 Punkt(e)] Schlagen Sie eine zwecksmässige Methode vor um (5) näherungsweise zu lösen. Geben Sie alle nötigen Komponenten der von Ihnen gewählten Methode an.
- b) [3 Punkt(e)] Implementieren Sie Ihre in a) vorgeschlagene Methode in MATLAB. Als Abbruchkriterium soll ein absolutes Kriterium $|x^{(k+1)} x^{(k)}| <$ atol verwendet werden. Die Iteration soll abgebrochen werden falls das Abbruchkriterium innert Nmax = 100 noch nicht erreicht wurde.

Verwenden Sie folgendes Template für die Implementierung.

% Die Funktion deren Nullstelle wir suchen $f = @(x) x^x - 5;$
% Abbruchkriterium Toleranz und maximale Anzahl Iterationen
atol = 1.e-6; Nmax = 100;