

Figure 2.14: The DFA constructed from the NFA of Fig 2.9

symbols w, the constructed DFA is in one state that is the set of NFA states that the NFA would be in after reading w. Since the accepting states of the DFA are those sets that include at least one accepting state of the NFA, and the NFA also accepts if it gets into at least one of its accepting states, we may then conclude that the DFA and NFA accept exactly the same strings, and therefore accept the same language.

Theorem 2.11: If $D = (Q_D, \Sigma, \delta_D, \{q_0\}, F_D)$ is the DFA constructed from NFA $N = (Q_N, \Sigma, \delta_N, q_0, F_N)$ by the subset construction, then L(D) = L(N).

PROOF: What we actually prove first, by induction on |w|, is that

$$\hat{\delta}_D(\{q_0\}, w) = \hat{\delta}_N(q_0, w)$$

Notice that each of the $\hat{\delta}$ functions returns a set of states from Q_N , but $\hat{\delta}_D$ interprets this set as one of the states of Q_D (which is the power set of Q_N), while $\hat{\delta}_N$ interprets this set as a subset of Q_N .

BASIS: Let |w| = 0; that is, $w = \epsilon$. By the basis definitions of $\hat{\delta}$ for DFA's and NFA's, both $\hat{\delta}_D(\{q_0\}, \epsilon)$ and $\hat{\delta}_N(q_0, \epsilon)$ are $\{q_0\}$.

INDUCTION: Let w be of length n+1, and assume the statement for length n. Break w up as w=xa, where a is the final symbol of w. By the inductive hypothesis, $\hat{\delta}_D(\{q_0\}, x) = \hat{\delta}_N(q_0, x)$. Let both these sets of N's states be $\{p_1, p_2, \ldots, p_k\}$.

The inductive part of the definition of $\hat{\delta}$ for NFA's tells us

$$\hat{\delta}_N(q_0, w) = \bigcup_{i=1}^k \delta_N(p_i, a)$$
(2.2)

The subset construction, on the other hand, tells us that

$$\delta_D(\{p_1, p_2, \dots, p_k\}, a) = \bigcup_{i=1}^k \delta_N(p_i, a)$$
 (2.3)

Now, let us use (2.3) and the fact that $\hat{\delta}_D(\{q_0\}, x) = \{p_1, p_2, \dots, p_k\}$ in the inductive part of the definition of $\hat{\delta}$ for DFA's:

$$\hat{\delta}_D(\{q_0\}, w) = \delta_D(\hat{\delta}_D(\{q_0\}, x), a) = \delta_D(\{p_1, p_2, \dots, p_k\}, a) = \bigcup_{i=1}^k \delta_N(p_i, a)$$
(2.4)

Thus, Equations (2.2) and (2.4) demonstrate that $\hat{\delta}_D(\{q_0\}, w) = \hat{\delta}_N(q_0, w)$. When we observe that D and N both accept w if and only if $\hat{\delta}_D(\{q_0\}, w)$ or $\hat{\delta}_N(q_0, w)$, respectively, contain a state in F_N , we have a complete proof that L(D) = L(N). \square

Theorem 2.12: A language L is accepted by some DFA if and only if L is accepted by some NFA.

PROOF: (If) The "if" part is the subset construction and Theorem 2.11.

(Only-if) This part is easy; we have only to convert a DFA into an identical NFA. Put intuitively, if we have the transition diagram for a DFA, we can also interpret it as the transition diagram of an NFA, which happens to have exactly one choice of transition in any situation. More formally, let $D = (Q, \Sigma, \delta_D, q_0, F)$ be a DFA. Define $N = (Q, \Sigma, \delta_N, q_0, F)$ to be the equivalent NFA, where δ_N is defined by the rule:

• If $\delta_D(q, a) = p$, then $\delta_N(q, a) = \{p\}$.

It is then easy to show by induction on |w|, that if $\hat{\delta}_D(q_0, w) = p$ then

$$\hat{\delta}_N(q_0, w) = \{p\}$$

We leave the proof to the reader. As a consequence, w is accepted by D if and only if it is accepted by N; i.e., L(D) = L(N). \square

2.3.6 A Bad Case for the Subset Construction

In Example 2.10 we found that the DFA had no more states than the NFA. As we mentioned, it is quite common in practice for the DFA to have roughly the same number of states as the NFA from which it is constructed. However, exponential growth in the number of states is possible; all the 2^n DFA states that we could construct from an n-state NFA may turn out to be accessible. The following example does not quite reach that bound, but it is an understandable way to reach 2^n states in the smallest DFA that is equivalent to an n + 1-state NFA.

Example 2.13: Consider the NFA N of Fig. 2.15. L(N) is the set of all strings of 0's and 1's such that the nth symbol from the end is 1. Intuitively, a DFA D that accepts this language must remember the last n symbols it has read. Since any of 2^n subsets of the last n symbols could have been 1, if D has fewer

than 2^n states, then there would be some state q such that D can be in state q after reading two different sequences of n bits, say $a_1a_2\cdots a_n$ and $b_1b_2\cdots b_n$.

Since the sequences are different, they must differ in some position, say $a_i \neq b_i$. Suppose (by symmetry) that $a_i = 1$ and $b_i = 0$. If i = 1, then q must be both an accepting state and a nonaccepting state, since $a_1 a_2 \cdots a_n$ is accepted (the nth symbol from the end is 1) and $b_1 b_2 \cdots b_n$ is not. If i > 1, then consider the state p that p enters after reading i = 1 0's. Then p must be both accepting and nonaccepting, since $a_i a_{i+1} \cdots a_n 0 0 \cdots 0$ is accepted and $b_i b_{i+1} \cdots b_n 0 0 \cdots 0$ is not.

Figure 2.15: This NFA has no equivalent DFA with fewer than 2^n states

Now, let us see how the NFA N of Fig. 2.15 works. There is a state q_0 that the NFA is always in, regardless of what inputs have been read. If the next input is 1, N may also "guess" that this 1 will be the nth symbol from the end, so it goes to state q_1 as well as q_0 . From state q_1 , any input takes N to q_2 , the next input takes it to q_3 , and so on, until n-1 inputs later, it is in the accepting state q_n . The formal statement of what the states of N do is:

- 1. N is in state q_0 after reading any sequence of inputs w.
- 2. N is in state q_i , for i = 1, 2, ..., n, after reading input sequence w if and only if the ith symbol from the end of w is 1; that is, w is of the form $x1a_1a_2...a_{i-1}$, where the a_j 's are each input symbols.

We shall not prove these statements formally; the proof is an easy induction on |w|, mimicking Example 2.9. To complete the proof that the automaton accepts exactly those strings with a 1 in the nth position from the end, we consider statement (2) with i=n. That says N is in state q_n if and only if the nth symbol from the end is 1. But q_n is the only accepting state, so that condition also characterizes exactly the set of strings accepted by N. \square

2.3.7 Exercises for Section 2.3

* Exercise 2.3.1: Convert to a DFA the following NFA:

	0	1
$\rightarrow p$	$\{p,q\}$	{ <i>p</i> }
q	$\{r\}$	$\{r\}$
r	$\{s\}$	Ø
*s	$\{s\}$	$\{s\}$

The Pigeonhole Principle

In Example 2.13 we used an important reasoning technique called the $pigeonhole\ principle$. Colloquially, if you have more pigeons than pigeonholes, and each pigeon flies into some pigeonhole, then there must be at least one hole that has more than one pigeon. In our example, the "pigeons" are the sequences of n bits, and the "pigeonholes" are the states. Since there are fewer states than sequences, one state must be assigned two sequences.

The pigeonhole principle may appear obvious, but it actually depends on the number of pigeonholes being finite. Thus, it works for finite-state automata, with the states as pigeonholes, but does not apply to other kinds of automata that have an infinite number of states.

To see why the finiteness of the number of pigeonholes is essential, consider the infinite situation where the pigeonholes correspond to integers $1,2,\ldots$. Number the pigeons $0,1,2,\ldots$, so there is one more pigeon than there are pigeonholes. However, we can send pigeon i to hole i+1 for all $i\geq 0$. Then each of the infinite number of pigeons gets a pigeonhole, and no two pigeons have to share a pigeonhole.

Exercise 2.3.2: Convert to a DFA the following NFA:

	0	1
$\rightarrow p$	$\{q,s\}$	$\{q\}$
*q	$\{r\}$	$\{q,r\}$
r	$\{s\}$	$\{p\}$
*s	Ø	$\{p\}$

! Exercise 2.3.3: Convert the following NFA to a DFA and informally describe the language it accepts.

	0	1
$ \begin{array}{c} $		$ \begin{cases} p \\ \{t\} \\ \{t\} \end{cases} $
*t	Ø	Ø

! Exercise 2.3.4: Give nondeterministic finite automata to accept the following languages. Try to take advantage of nondeterminism as much as possible.

Dead States and DFA's Missing Some Transitions

We have formally defined a DFA to have a transition from any state, on any input symbol, to exactly one state. However, sometimes, it is more convenient to design the DFA to "die" in situations where we know it is impossible for any extension of the input sequence to be accepted. For instance, observe the automaton of Fig. 1.2, which did its job by recognizing a single keyword, then, and nothing else. Technically, this automaton is not a DFA, because it lacks transitions on most symbols from each of its states.

However, such an automaton is an NFA. If we use the subset construction to convert it to a DFA, the automaton looks almost the same, but it includes a *dead state*, that is, a nonaccepting state that goes to itself on every possible input symbol. The dead state corresponds to \emptyset , the empty set of states of the automaton of Fig. 1.2.

In general, we can add a dead state to any automaton that has no more than one transition for any state and input symbol. Then, add a transition to the dead state from each other state q, on all input symbols for which q has no other transition. The result will be a DFA in the strict sense. Thus, we shall sometimes refer to an automaton as a DFA if it has at most one transition out of any state on any symbol, rather than if it has exactly one transition.

- * a) The set of strings over alphabet $\{0, 1, \dots, 9\}$ such that the final digit has appeared before.
 - b) The set of strings over alphabet $\{0, 1, ..., 9\}$ such that the final digit has *not* appeared before.
 - c) The set of strings of 0's and 1's such that there are two 0's separated by a number of positions that is a multiple of 4. Note that 0 is an allowable multiple of 4.

Exercise 2.3.5: In the only-if portion of Theorem 2.12 we omitted the proof by induction on |w| that if $\hat{\delta}_D(q_0, w) = p$ then $\hat{\delta}_N(q_0, w) = \{p\}$. Supply this proof.

! Exercise 2.3.6: In the box on "Dead States and DFA's Missing Some Transitions," we claim that if N is an NFA that has at most one choice of state for any state and input symbol (i.e., $\delta(q,a)$ never has size greater than 1), then the DFA D constructed from N by the subset construction has exactly the states and transitions of N plus transitions to a new dead state whenever N is missing a transition for a given state and input symbol. Prove this contention.

Exercise 2.3.7: In Example 2.13 we claimed that the NFA N is in state q_i , for i = 1, 2, ..., n, after reading input sequence w if and only if the ith symbol from the end of w is 1. Prove this claim.

2.4 An Application: Text Search

In this section, we shall see that the abstract study of the previous section, where we considered the "problem" of deciding whether a sequence of bits ends in 01, is actually an excellent model for several real problems that appear in applications such as Web search and extraction of information from text.

2.4.1 Finding Strings in Text

A common problem in the age of the Web and other on-line text repositories is the following. Given a set of words, find all documents that contain one (or all) of those words. A search engine is a popular example of this process. The search engine uses a particular technology, called *inverted indexes*, where for each word appearing on the Web (there are 100,000,000 different words), a list of all the places where that word occurs is stored. Machines with very large amounts of main memory keep the most common of these lists available, allowing many people to search for documents at once.

Inverted-index techniques do not make use of finite automata, but they also take very large amounts of time for crawlers to copy the Web and set up the indexes. There are a number of related applications that are unsuited for inverted indexes, but are good applications for automaton-based techniques. The characteristics that make an application suitable for searches that use automata are:

- 1. The repository on which the search is conducted is rapidly changing. For example:
 - (a) Every day, news analysts want to search the day's on-line news articles for relevant topics. For example, a financial analyst might search for certain stock ticker symbols or names of companies.
 - (b) A "shopping robot" wants to search for the current prices charged for the items that its clients request. The robot will retrieve current catalog pages from the Web and then search those pages for words that suggest a price for a particular item.
- 2. The documents to be searched cannot be cataloged. For example, Amazon.com does not make it easy for crawlers to find all the pages for all the books that the company sells. Rather, these pages are generated "on the fly" in response to queries. However, we could send a query for books on a certain topic, say "finite automata," and then search the pages retrieved for certain words, e.g., "excellent" in a review portion.