Formulário Teoria de Controlo:

f(t)	$F(s) = L\{f(t)\}$	f(t)	$F(s) = L\{f(t)\}$
$\delta(t)$	1	$t^n e^{-at}$	n!
			$\overline{(s+a)^{n+1}}$
u(t)	1	$\sin \omega t$	<u>ω</u>
	<u>-</u> S		$s^2 + \omega^2$
t	1	$\cos \omega t$	<u> </u>
	$\overline{s^2}$		$s^2 + \omega^2$
t^n	n!	$e^{-at}\sin \omega t$	ω
	$\overline{S^{n+1}}$		$(s+a)^2+\omega^2$
e^{-at}	1	$e^{-at}\cos\omega t$	s + a
	$\overline{s+a}$		$\overline{(s+a)^2+\omega^2}$
te^{-at}	1		·
	$\overline{(s+a)^2}$		

Teorema da Linearidade:

$$L\{af(t)\} = aL\{f(t)\} = aF(s)$$

$$L\{af(t) + bg(t)\} = aF(s) + bG(s)$$

Teorema da diferenciação:

$$L\left\{\frac{d^n f(t)}{dt^n}\right\} = s^n F(s) - s^{n-1} f(0) - \dots - \frac{d^{n-1}}{dt^{n-1}}\Big|_{t=0}$$

Teorema da Integração Real:

$$L\left\{\int_0^t f(t)dt\right\} = \frac{1}{s}F(s)$$

Teorema da Translação Real:

$$L\{f(t-t_0)\} = e^{-st_0}F(s)$$

Teorema do Valor Final:

$$\lim_{t\to\infty}f(t)=\lim_{t\to0}sF(s)$$

Teorema da Translação Complexa:

$$L\{e^{at}f(t)\}=F(s-a)$$

Teorema do Valor Inicial:

$$\lim_{t\to 0} f(t) = \lim_{t\to \infty} sF(s)$$

Cálculo dos coeficientes se uma raiz r1 é repetida m vezes:
$$A_k = \lim_{s \to r_1} \frac{1}{(k-1)!} \frac{d^{k-1}}{ds^{k-1}} [(s-r^1)^m Y(s)]$$

Tempo de subida:

$$t_s=\frac{\pi-\beta}{\omega_a}$$
 Onde $\beta=\tan^{-1}\frac{\omega_a}{\sigma}$, $\sigma=\zeta\omega_n$ e $\omega_a=\omega_n\sqrt{1-\zeta^2}$

Tempo de pico:

$$t_p = \frac{\pi}{\omega_a}$$

Tempo de estabelecimento a 2%:

$$t_{ss} = \frac{4}{\zeta \omega_n}$$

Mp – sobre-elongação normalizada:

$$M_p = \frac{y_p}{y(\infty)} = 1 + e^{-\frac{\zeta \pi}{\sqrt{1 - \zeta^2}}}$$

PO – sobre-elongação percentual ('percent overshoot'):

$$overshoot = \frac{y_p - y(\infty)}{y(\infty)} \times 100\% = e^{-\frac{\zeta \pi}{\sqrt{1 - \zeta^2}}} \times 100$$

Tabela PID 1º método:

Tipo de controlador	K_p	T_i	T_d
Р	$\frac{ au}{L}$	8	0
PI	$0.9\frac{\tau}{L}$	$\frac{L}{0.3}$	0
PID	$1.2\frac{\tau}{L}$	2 <i>L</i>	0.5 <i>L</i>

$$G_c(s) = K_p \left(1 + \frac{1}{T_i s} + T_d s \right) = 1.2 \frac{\tau}{L} \left(1 + \frac{1}{2Ls} + 0.5 Ls \right) = 0.6 \tau \frac{\left(s + \frac{1}{L} \right)^2}{s}$$

Tabela PID 2º método:

Tipo de controlador	K_p	T_i	T_d
Р	0,5 <i>K_{cr}</i>	8	0
PI	0,45 <i>K_{cr}</i>	$\frac{1}{1,2}P_{cr}$	0
PID	0,6 <i>K_{cr}</i>	0,5 <i>P_{cr}</i>	0,125 <i>P_{cr}</i>

$$G_c(s) = K_p \left(1 + \frac{1}{T_i s} + T_d s \right) = 0.6 K_{cr} \left(1 + \frac{1}{0.5 P_{cr} s} + 0.125 P_{cr} s \right) = 0.075 K_{cr} P_{cr} \frac{\left(s + \frac{4}{P_{cr}} \right)^2}{s}$$