SaUCy Reference: Reliable Broadcast

1 Overview

Adaptively secure broadcast [2]. Bracha [1].

2 Ideal Functionalities

Functionality \mathcal{F}_{ACAST}

 \mathcal{F}_{ACAST}^t interacts with an adversary S and a set $\mathcal{P} = \{P_1, \dots, P_N\}$ of parties.

- 1. Upon receiving (Bcast, sid, m) from P_D :
 - If P_D is honest, then, for each P_i in \mathcal{P} , send (Bcast, sid, P_i , m) eventually.
 - If P_D is corrupted, then possibly, for each P_i in \mathcal{P} , send (Bcast, sid, P_i , m) eventually.

```
ILC \mathcal{F}_{ACAST}

1 let \mathbf{F}_{-acast} = \lambda \mathbf{P}.
```

3 Protocol Definition

Protocol Π_{Bracha}

 Π_{Bracha} interacts with a set $\mathcal{P} = \{P_1, \dots, P_n\}$ of parties and can tolerate up to f failures.

- 1. Upon receiving (Value, v) from P_i , send (Initial, v) to all parties in \mathcal{P} .
- 2. Upon receiving an (Initial, v) message or $\left\lceil \frac{n+f}{2} \right\rceil$ (Echo, v) messages or $\left\lceil \frac{f+1}{2} \right\rceil$ (Ready, v) messages, send (Echo, v) to all parties in \mathcal{P} .
- 3. Upon receiving $\left\lceil \frac{n+f}{2} \right\rceil$ (Echo, v) messages or $\left\lceil \frac{f+1}{2} \right\rceil$ (Ready, v) messages, send (Ready, v) to all parties in \mathcal{P} .
- 4. Upon receiving $\left\lceil \frac{f+1}{2} \right\rceil$ (Ready, v) messages, accept v.

4 Protocol Emulation

Theorem 1. Protocol Π_{Bracha} t-securely realizes the functionality $\mathcal{F}_{\mathsf{ACAST}}$ for t < N/3.

Proof sketch. Let A be an adversary attacking Π_{Bracha} . We build a corresponding simulator S as follows.

```
- Simulator S_{ACAST}
```

References

- 1. Gabriel Bracha. Asynchronous byzantine agreement protocols. *Information and Computation*, 75(2):130–143, 1987.
- 2. Juan A Garay, Jonathan Katz, Ranjit Kumaresan, and Hong-Sheng Zhou. Adaptively secure broadcast, revisited. In *Proceedings of the 30th annual ACM SIGACT-SIGOPS symposium on Principles of distributed computing*, pages 179–186. ACM, 2011.