

Název a adresa školy:	Střední škola průmyslová a umělecká, Opava, příspěvková		
Nazev a adresa skoly.	organizace, Praskova 399/8, Opava, 746 01		
Název operačního programu:	OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5		
Registrační číslo projektu:	CZ.1.07/1.5.00/34.0129		
Název projektu	SŠPU Opava – učebna IT		
T - Y-1-1 11/Y- / -1 -1 -1	V/2 Inovace a zkvalitnění výuky směřující k rozvoji odborných		
Typ šablony klíčové aktivity:	kompetencí žáků středních škol (32 vzdělávacích materiálů)		
Název sady vzdělávacích materiálů:	KOM III		
Popis sady vzdělávacích materiálů:	Konstrukční měření III, 3. ročník.		
Sada číslo:	J-05		
Pořadové číslo vzdělávacího materiálu:	02		
Označení vzdělávacího materiálu:	VAV. F.2. INIOVACE. L. OF. O.2.		
(pro záznam v třídní knize)	VY_52_INOVACE_J-05-02		
Název vzdělávacího materiálu:	Chyby měření 2		
Zhotoveno ve školním roce:	2011/2012		
Jméno zhotovitele:	Ing. Karel Procházka		

Chyby měření

Nejistoty měření

Nově se zavádí místo názvu chyba takzvaná nejistota měření, která nám udává nejpravděpodobnější odchylku naměřené hodnoty od skutečnosti.

Máme tyto typy nejistot:

Standardní nejistota typu A (u_A) – je to hodnota statistická, zmenšuje se, když zvětšujeme počet měření. Odpovídá směrodatné odchylce výběrového průměru, tedy $u_A = s(\overline{X})$.

Standardní nejistota typu B (u_B) – udává kvalitu měřícího pracoviště, zahrnuje například prostředí měření, kvalitu měřicího přístroje, jeho ověření a kvalifikovanost obsluhy měřidel.

Standardní kombinovaná nejistota (u_c) – v podstatě sčítá obě předchozí $u_C = \sqrt{{u_A}^2 + {u_B}^2}$

Nejpravděpodobnější výsledek měření pak zapíšeme ve tvaru:

výsledek měření = výběrový průměr \pm standardní kombinovaná nejistota

$$X = \overline{X} \pm u_C$$

1/5

Například:

$$A = (55,62 \pm 0,87) \text{ mm}$$

Tyto nejistoty (chyby) měření platí pro pravděpodobnost (pásmo pokrytí) p=68.3%. To znamená, že 68,3% naměřených hodnot bude ležet v intervalu $\overline{X} \pm u_C$.

Pro přesné měření je tato pravděpodobnost příliš malá. Proto zavádíme takzvanou **rozšířenou nejistotu**

$$U = k \cdot u_C$$

kde koeficient **k** závisí na pravděpodobnosti, zda naměřená hodnota bude ležet v rozmezí $\overline{X}\pm U$

Koeficient pokrytí (rozšíření) k	Hodnota pravděpodobnosti
1	68.3%
2	95%
3	99.7%

Pro přesná měření obvykle používáme koeficient k=2.

Nejpravděpodobnější výsledek měření pak zapíšeme ve tvaru:

výsledek měření = výběrový průměr \pm rozšířená nejistota

$$X = \overline{X} \pm U$$

Například:

$$A = (55,62 \pm 0,87) \text{ mm}.$$

Poznámky:

- Veškeré výpočty pravděpodobného výsledku nám omezí pouze náhodné chyby, systematické a hrubé chyby musím omezit jinak (například kalibrací měřidla).
- Při běžném dílenském měření žádné výpočty neprovádíme, u důležitých veličin měříme dvakrát nebo třikrát a při shodném výsledku ho považujeme za důvěryhodný.
- Přesnost měřidla by měla být desetkrát větší než požadovaná přesnost měření, ale to nejde vždy dodržet.
- U výsledku měření nesmíme zapomenout napsat jednotky měřené veličiny.

 U výsledku výpočtu to nepřeháníme s počtem desetinných míst, zaokrouhlujeme maximálně o jeden řád přesněji, než jsme měřili.

V následujícím příkladu je uvedeno možné zpracování celého měření do přehledné tabulky.

Příklad

Vzdálenost os hřídelí se měřila pětkrát. Určete nejpravděpodobnější výsledek.

Naměřené hodnoty zapíšeme do tabulky a vypočteme jejich součet.

číslo měření	naměřeno $X_i\left[mm ight]$	odchylka $e_i = X_i - \overline{X} \ [mm]$		e_i^2 $[mm^2]$
		kladná odchylka	záporná odchylka	e_i [mm]
1	50.2			
2	50.4			
3	50.0			
4	50.2			
5	50.1			
počet měření n	$\sum_{i=1}^{n} X_{i} [mm]$	$\sum_{i=1}^{n} + e_i \ [mm]$	$\sum_{i=1}^{n} -e_{i} [mm]$	$\sum\nolimits_{i=1}^{n}e_{i}^{2}\left[mm^{2}\right]$
5	250.9			

Dále vypočteme výběrový průměr (průměrnou hodnotu) měřené veličiny

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n} = \frac{250.9}{5} = 50.18mm$$

a vypočteme odchylku jednotlivých měření $e_i=X_i-\overline{X}$. Do zvláštního sloupce zapisujeme kladné a záporné odchylky. Je to pro kontrolu, jejich součet by měl být v absolutní hodnotě stejný (případně s drobnou nepřesností danou zaokrouhlením). Vypočteme také druhé mocniny odchylek, které budeme potřebovat pro výpočet.

Tabulka potom vypadá takto:

Xíala na X Xanaí	naměřeno	odchylka $e_i = X_i - \overline{X} \ [mm]$		$e_i^2 \left[mm^2 \right]$
	X_i [mm]	kladná odchylka	záporná odchylka	ϵ_i [mm]
1	50.2	+0.02		0.0004
2	50.4	+0.22		0.0484
3	50.0		-0.18	0.0324
4	50.2	+0.02		0.0004
5	50.1		-0.08	0.0064
počet měření n	$\sum\nolimits_{i=1}^{n}X_{i}\ [mm]$	$\sum_{i=1}^{n} + e_i \ [mm]$	$\sum_{i=1}^{n} -e_{i} [mm]$	$\sum\nolimits_{i=1}^{n}e_{i}^{2}\left[mm^{2}\right]$
5	250.9	+0.26	-0.26	0.0880

Nyní můžeme vypočítat směrodatnou odchylku výběrového průměru a standardní nejistoty.

$$s(\overline{X}) = \pm \sqrt{\frac{\sum_{i=1}^{n} \varepsilon_i}{n(n-1)}} = \pm \sqrt{\frac{0.0880}{5(5-1)}} = 0,066mm$$

$$u_A = s(\overline{X})$$

 $u_B = 0.02mm$ (odhadnuto)

$$u_C = \sqrt{{u_A}^2 + {u_B}^2} = \sqrt{0.066^2 + 0.02^2} = 0,069mm$$

Pro pravděpodobnost pokrytí 95% dostaneme rozšířenou nejistotu měření.

$$U = k \cdot u_C = 2 \cdot 0,069 = 0,14mm$$

Naměřená vzdálenost os hřídelí je (50,18 \pm 0,14) mm.

Z uvedeného příkladu je vidět rozdíl mezi maximální odchylkou jednotlivého měření (0,22 mm pro měření číslo 2) a rozšířenou nejistotou měření (0,14 mm). Tím, že jsme měřili pětkrát, jsme výsledek zpřesnili.

Seznam použité literatury

- MARTINÁK, M.: Kontrola a měření. Praha: SNTL, 1989. ISBN 80-03-00103-X.
- ŠULC, J.: Technologická a strojnická měření. Praha: SNTL, 1982. ISBN 04-214-82.