Ejercicio 5

Consigna

- (a) Enumere todas las subfórmulas de las proposiciones del Ejercicio 2.
- (b) Defina la función sub : PROP $ightarrow 2^{\text{PROP}}$, que a cada proposición φ le asigna el conjunto de sus subfórmulas.
- (c) Demuestre que la relación "ser subfórmula de" es transitiva.

Resolución (parte a)

Proposición 1

$$\neg(\neg(\neg\bot))$$

Las subfórmulas son:

- $\begin{array}{ccc} \bullet & \neg (\neg (\neg \bot)) \\ \bullet & \neg (\neg \bot) \end{array}$

- 1

Es decir, tenemos 4 subfórmulas.

Proposición 2

$$(p_0 \to \bot) \to ((p_0 \leftrightarrow p_1) \land p_5)$$

Las subfórmulas son:

- $\begin{array}{l} \bullet \ (p_0 \to \bot) \to ((p_0 \leftrightarrow p_1) \land p_5) \\ \bullet \ (p_0 \to \bot) \end{array}$
- p₀
- $\begin{array}{l} \overset{-}{\bullet} \ (p_0 \leftrightarrow p_1) \wedge p_5 \\ \bullet \ (p_0 \leftrightarrow p_1) \end{array}$
- *p*₀
- p₁

Es decir, tenemos 9 subfórmulas.

Proposición 3

$$\neg(\neg p_1 \to \neg p_1)$$

Las subfórmulas son:

- $\bullet \ \neg (\neg p_1 \to \neg p_1)$
- $\bullet \ \neg p_1 \xrightarrow{} \neg p_1$
- $\neg p_1$
- *p*₁

Es decir, tenemos 4 subfórmulas.

Resolución (parte b)

Esta parte se hizo en el teórico (clase 5), la definición inductiva es la siguiente:

 $SUB: PROP \rightarrow 2^{PROP}$

- 1. $SUB(\varphi) = \{\varphi\} \text{ con } \varphi \in AT$
- 2. $SUB((\alpha * \beta)) = SUB(\alpha) \cup SUB(\beta) \cup \{(\alpha * \beta)\}$
- 3. $SUB((\neg \alpha)) = SUB(\alpha) \cup \{(\neg \alpha)\}\$

Resolución (parte c)

Tenemos que demostrar que la relación de "ser subfórmula de" es transitiva, es decir que:

$$\forall \alpha, \beta, \varphi \in PROP : \alpha \in SUB(\beta) \text{ y } \beta \in SUB(\varphi) \Rightarrow \alpha \in SUB(\varphi)$$

Para demostrar esto usaremos el PIP sobre PROP, en este caso sobre φ , ya que es el más fácil para los casos base. Vamos a probar la propiedad:

$$P(\varphi): (\forall \alpha, \beta \in PROP) \quad \alpha \in SUB(\beta) \text{ y } \beta \in SUB(\varphi) \Rightarrow \alpha \in SUB(\varphi)$$

PASO BASE

PARTE 1 $P(p_i): (\forall \alpha, \beta \in PROP) \quad \alpha \in SUB(\beta) \text{ y } \beta \in SUB(p_i) \Rightarrow \alpha \in SUB(p_i)$ Observemos lo siguiente:

- $\beta \in SUB(p_i)$ implica que $\beta = p_i$ por la definición de subfórmula
- $\alpha \in SUB(\beta)$ implica que $\alpha \in SUB(p_i)$ por lo anterior, y en consecuencia $\alpha = p_i$

Juntando lo anterior, la implicancia final quedaría como:

• $\alpha \in SUB(p_i)$ pero $\alpha = p_i$, por lo que se cumple la propiedad de forma trivial

PARTE 2
$$P(\bot): (\forall \alpha, \beta \in PROP)$$
 $\alpha \in SUB(\beta)$ y $\beta \in SUB(\bot) \Rightarrow \alpha \in SUB(\bot)$ Es exactamente análoga a la parte anterior.

PASO INDUCTIVO

(H)
$$P((\varphi)): (\forall \alpha, \beta \in PROP) \quad \alpha \in SUB(\beta) \text{ y } \beta \in SUB((\varphi)) \Rightarrow \alpha \in SUB((\varphi))$$

PARTE 1

(T)
$$P((\varphi_1 * \varphi_2)) : (\forall \alpha, \beta \in PROP) \quad \alpha \in SUB(\beta) \text{ y } \beta \in SUB((\varphi_1 * \varphi_2)) \Rightarrow \alpha \in SUB((\varphi_1 * \varphi_2))$$

Observemos que para que $\beta \in SUB((\varphi_1 * \varphi_2))$ solo hay tres posibilidades, o bien:

- $\beta = (\varphi_1 * \varphi_2)$ $\beta \in SUB(\varphi_1)$

• $\beta \in SUB(\varphi_2)$

El primer caso es trivial, ya que si $\beta=(\varphi_1*\varphi_2)$, entonces $\alpha\in SUB(\varphi_1*\varphi_2)$ y se cumple la propiedad.

Los siguientes dos casos también son bastante directos, utilizando la hipótesis, sabemos que lo siguiente es cierto:

 $\begin{array}{ll} \bullet \ (\forall \alpha, \beta \in PROP) & \alpha \in SUB(\beta) \ \text{y} \ \beta \in SUB((\varphi_1)) \Rightarrow \alpha \in SUB((\varphi_1)) \\ \bullet \ (\forall \alpha, \beta \in PROP) & \alpha \in SUB(\beta) \ \text{y} \ \beta \in SUB((\varphi_2)) \Rightarrow \alpha \in SUB((\varphi_2)) \end{array}$

Y como $\alpha \in SUB(\varphi_1)$ o $\alpha \in SUB(\varphi_2)$, entonces $\alpha \in SUB((\varphi_1 * \varphi_2))$, por la construcción de la función SUB

PARTE 2

(T)
$$P((\neg \varphi)): (\forall \alpha, \beta \in PROP) \quad \alpha \in SUB(\beta) \text{ y } \beta \in SUB((\neg \varphi)) \Rightarrow \alpha \in SUB((\neg \varphi))$$

Este caso es análogo al anterior, solo que en este caso solo hay dos posibilidades para β :

- $\beta = (\neg \varphi)$
- $\beta \in SUB(\varphi)$

Y nuevamente, si $\beta = (\neg \varphi)$, entonces $\alpha \in SUB(\neg \varphi)$ y se cumple la propiedad.

Si $\beta \in SUB(\varphi)$, entonces $\alpha \in SUB(\varphi)$ por la hipótesis inductiva, y por lo tanto $\alpha \in SUB((\neg \varphi))$, por la construcción de la función SUB.

Esto demuestra la propiedad para todos los casos, por lo que la relación de "ser subfórmula de" es transitiva.

Conclusión

Para estos ejercicios lo más importante es escribir lo que queremos probar formalmente, y entender bien que proposición de PROP tomar para hacer el PIP. La buena elección de este nos llevará a demostraciones más simples