This key should allow you to understand why you choose the option you did (beyond just getting a question right or wrong). More instructions on how to use this key can be found here.

If you have a suggestion to make the keys better, please fill out the short survey here.

Note: This key is auto-generated and may contain issues and/or errors. The keys are reviewed after each exam to ensure grading is done accurately. If there are issues (like duplicate options), they are noted in the offline gradebook. The keys are a work-in-progress to give students as many resources to improve as possible.

1. Construct the lowest-degree polynomial given the zeros below. Then, choose the intervals that contain the coefficients of the polynomial in the form $ax^3 + bx^2 + cx + d$.

$$\frac{-4}{5}$$
, 2, and $\frac{7}{5}$

The solution is $25x^3 - 65x^2 + 2x + 56$, which is option C.

A. $a \in [24, 31], b \in [-72, -62], c \in [1, 7]$, and $d \in [-56, -55]$ $25x^3 - 65x^2 + 2x - 56$, which corresponds to multiplying everything correctly except the constant term.

B. $a \in [24, 31], b \in [57, 69], c \in [1, 7], \text{ and } d \in [-56, -55]$ $25x^3 + 65x^2 + 2x - 56, \text{ which corresponds to multiplying out } (5x - 4)(x + 2)(5x + 7).$

C. $a \in [24, 31], b \in [-72, -62], c \in [1, 7], \text{ and } d \in [53, 61]$ * $25x^3 - 65x^2 + 2x + 56$, which is the correct option.

D. $a \in [24, 31], b \in [-105, -101], c \in [138, 141], \text{ and } d \in [-56, -55]$ $25x^3 - 105x^2 + 138x - 56$, which corresponds to multiplying out (5x - 4)(x - 2)(5x - 7).

E. $a \in [24, 31], b \in [-11, -3], c \in [-87, -79], \text{ and } d \in [53, 61]$ $25x^3 - 5x^2 - 82x + 56$, which corresponds to multiplying out (5x - 4)(x + 2)(5x - 7).

General Comment: To construct the lowest-degree polynomial, you want to multiply out (5x + 4)(x-2)(5x-7)

2. Construct the lowest-degree polynomial given the zeros below. Then, choose the intervals that contain the coefficients of the polynomial in the form $x^3 + bx^2 + cx + d$.

$$2 + 4i \text{ and } -4$$

The solution is $x^3 + 4x + 80$, which is option A.

A. $b \in [-1.82, 0.38], c \in [3.17, 4.11], \text{ and } d \in [79, 85]$ * $x^3 + 4x + 80$, which is the correct option.

B. $b \in [-1.82, 0.38], c \in [3.17, 4.11], \text{ and } d \in [-80, -76]$ $x^3 + 4x - 80$, which corresponds to multiplying out (x - (2 + 4i))(x - (2 - 4i))(x - 4).

C. $b \in [0.07, 1.76], c \in [1.42, 3.02], \text{ and } d \in [-10, -5]$ $x^3 + x^2 + 2x - 8$, which corresponds to multiplying out (x - 2)(x + 4).

D.
$$b \in [0.07, 1.76], c \in [-0.67, 0.1], \text{ and } d \in [-18, -10]$$

 $x^3 + x^2 - 16$, which corresponds to multiplying out $(x - 4)(x + 4)$.

This corresponds to making an unanticipated error or not understanding how to use nonreal complex numbers to create the lowest-degree polynomial. If you chose this and are not sure what you did wrong, please contact the coordinator for help.

General Comment: Remember that the conjugate of a + bi is a - bi. Since these zeros always come in pairs, we need to multiply out (x - (2 + 4i))(x - (2 - 4i))(x - (-4)).

3. Construct the lowest-degree polynomial given the zeros below. Then, choose the intervals that contain the coefficients of the polynomial in the form $x^3 + bx^2 + cx + d$.

$$3+4i$$
 and 2

The solution is $x^3 - 8x^2 + 37x - 50$, which is option B.

A.
$$b \in [0, 2], c \in [-6.65, -5.66], \text{ and } d \in [8, 12]$$

 $x^3 + x^2 - 6x + 8$, which corresponds to multiplying out $(x - 4)(x - 2)$.

B.
$$b \in [-14, -4], c \in [37, 37.08]$$
, and $d \in [-56, -49]$
* $x^3 - 8x^2 + 37x - 50$, which is the correct option.

C.
$$b \in [6, 11], c \in [37, 37.08]$$
, and $d \in [47, 56]$
 $x^3 + 8x^2 + 37x + 50$, which corresponds to multiplying out $(x - (3 + 4i))(x - (3 - 4i))(x + 2)$.

D.
$$b \in [0, 2], c \in [-5.69, -4.9], \text{ and } d \in [3, 7]$$

 $x^3 + x^2 - 5x + 6$, which corresponds to multiplying out $(x - 3)(x - 2)$.

E. None of the above.

This corresponds to making an unanticipated error or not understanding how to use nonreal complex numbers to create the lowest-degree polynomial. If you chose this and are not sure what you did wrong, please contact the coordinator for help.

General Comment: Remember that the conjugate of a + bi is a - bi. Since these zeros always come in pairs, we need to multiply out (x - (3 + 4i))(x - (3 - 4i))(x - (2)).

4. Construct the lowest-degree polynomial given the zeros below. Then, choose the intervals that contain the coefficients of the polynomial in the form $ax^3 + bx^2 + cx + d$.

$$-6, \frac{-7}{4}, \text{ and } \frac{1}{4}$$

The solution is $16x^3 + 120x^2 + 137x - 42$, which is option A.

A.
$$a \in [11, 21], b \in [117, 121], c \in [134, 138], \text{ and } d \in [-47, -41]$$

* $16x^3 + 120x^2 + 137x - 42$, which is the correct option.

B.
$$a \in [11, 21], b \in [-122, -115], c \in [134, 138], \text{ and } d \in [42, 43]$$

 $16x^3 - 120x^2 + 137x + 42$, which corresponds to multiplying out $(x - 6)(4x - 7)(4x + 1)$.

- C. $a \in [11, 21], b \in [-72, -70], c \in [-152, -143], \text{ and } d \in [42, 43]$ $16x^3 - 72x^2 - 151x + 42$, which corresponds to multiplying out (x - 6)(4x + 7)(4x - 1).
- D. $a \in [11, 21], b \in [117, 121], c \in [134, 138]$, and $d \in [42, 43]$ $16x^3 + 120x^2 + 137x + 42$, which corresponds to multiplying everything correctly except the constant term.
- E. $a \in [11, 21], b \in [-131, -122], c \in [197, 201], \text{ and } d \in [-47, -41]$ $16x^3 - 128x^2 + 199x - 42$, which corresponds to multiplying out (x - 6)(4x - 7)(4x - 1).

General Comment: To construct the lowest-degree polynomial, you want to multiply out (x+6)(4x+7)(4x-1)

5. Describe the zero behavior of the zero x = -7 of the polynomial below.

$$f(x) = 9(x+7)^8(x-7)^9(x+3)^4(x-3)^5$$

The solution is the graph below, which is option C.

General Comment: You will need to sketch the entire graph, then zoom in on the zero the question asks about.

6. Which of the following equations *could* be of the graph presented below?

The solution is $12(x+4)^7(x-1)^7(x+2)^5$, which is option E.

A.
$$12(x+4)^{10}(x-1)^{11}(x+2)^5$$

The factor -4 should have been an odd power.

B.
$$14(x+4)^{10}(x-1)^6(x+2)^{11}$$

The factors -4 and 1 have have been odd power.

C.
$$-6(x+4)^6(x-1)^5(x+2)^9$$

The factor (x + 4) should have an odd power and the leading coefficient should be the opposite sign.

D.
$$-9(x+4)^9(x-1)^7(x+2)^5$$

This corresponds to the leading coefficient being the opposite value than it should be.

E.
$$12(x+4)^7(x-1)^7(x+2)^5$$

* This is the correct option.

General Comment: General Comments: Draw the x-axis to determine which zeros are touching (and so have even multiplicity) or cross (and have odd multiplicity).

7. Describe the zero behavior of the zero x = 7 of the polynomial below.

$$f(x) = -4(x+2)^{5}(x-2)^{3}(x+7)^{7}(x-7)^{6}$$

The solution is the graph below, which is option B.

General Comment: You will need to sketch the entire graph, then zoom in on the zero the question asks about.

8. Which of the following equations *could* be of the graph presented below?

The solution is $-12(x+3)^{10}(x+4)^6(x+1)^4$, which is option B.

A.
$$10(x+3)^{10}(x+4)^8(x+1)^{10}$$

This corresponds to the leading coefficient being the opposite value than it should be.

B.
$$-12(x+3)^{10}(x+4)^6(x+1)^4$$

* This is the correct option.

C.
$$7(x+3)^8(x+4)^8(x+1)^{11}$$

The factor (x + 1) should have an even power and the leading coefficient should be the opposite sign.

D.
$$-6(x+3)^4(x+4)^{11}(x+1)^9$$

The factors (x + 4) and (x + 1) should both have even powers.

E.
$$-19(x+3)^6(x+4)^8(x+1)^7$$

The factor (x + 1) should have an even power.

General Comment: General Comments: Draw the x-axis to determine which zeros are touching (and so have even multiplicity) or cross (and have odd multiplicity).

9. Describe the end behavior of the polynomial below.

$$f(x) = -8(x+2)^3(x-2)^8(x-5)^5(x+5)^5$$

The solution is the graph below, which is option A.

General Comment: Remember that end behavior is determined by the leading coefficient AND whether the **sum** of the multiplicities is positive or negative.

10. Describe the end behavior of the polynomial below.

$$f(x) = -5(x-3)^4(x+3)^7(x-5)^5(x+5)^6$$

The solution is the graph below, which is option B.

General Comment: Remember that end behavior is determined by the leading coefficient AND whether the **sum** of the multiplicities is positive or negative.