计算方法

2019年1月14日

题面是英文(相信都已经适应了)。判断题很大一部分来自作业题目的改编,其余的也都很基础;计算题需要记住重点讲的算法的细节,证明题有一些课件上原封不动的,总之,课件上不是很难记的算法和推导都过一遍,理解性地记忆就好。剩下的就看数学功底了(手动害怕)

- 1. 判断题(20道)
- 2. 分析多步算法

$$w_{i+1} = 4w_i - 5w_{i-1} + 2h(f(t_i, w_i) + 2hf(t_{i-1}, w_{i-1}))$$

的稳定性

3. 将矩阵

$$\left(\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array}\right)$$

写成 PDP-1 的形式

- 4. 求证 ||·||_F 是范数
- 5. 梯度下降法求 $\cos(x+y) \sin(x) \sin(y)$ 的最小值,初值 (0,0) 迭代 1 步
- 6. 求证: 如果 x^* 是方程 Ax + b = 0 的解(其中 A 是正定的),那么 x^* 也使得 $g(x) = \langle Ax, x \rangle 2\langle x, b \rangle$ 取得最小值.
- 7. 已知 $A_{n\times n}$ 有特征值 λ_1 及对应的特征向量 v_1 ,求证

$$B = A - \lambda_1 \frac{v_1 v_1^T}{v_1^T v_1}$$

的 n 个特征值分别为为 0 和 A 除 λ_1 之外的 n-1 个特征值