```
In [1]: import pandas as pd
   import numpy as np
   import seaborn as sns
   import matplotlib.pyplot as plt
   from sklearn.preprocessing import LabelEncoder
   from sklearn.model_selection import train_test_split
   from sklearn.ensemble import RandomForestClassifier
   from sklearn.metrics import classification_report, confusion_matrix, accura
   from sklearn.preprocessing import StandardScaler
   from sklearn.linear_model import LogisticRegression
   from sklearn.svm import SVC
   from imblearn.over_sampling import SMOTE
   from sklearn.model_selection import GridSearchCV
```

```
In [2]: # Load the dataset
    data = "C:/Users/asus/OneDrive/Documents/Assignments/SEM-2/ADSC_2910_Integr
    space_data = pd.read_csv(data)
    # Check for missing values in the dataset
    missing_values = space_data.isnull().sum()
    missing_values[missing_values > 0]
```

dtype: int64

```
space_data.fillna(method='ffill', inplace=True)
In [3]:
         space_data.isnull().sum()
Out[3]: CCSDS_OMM_VERS
                                     0
        COMMENT
                                     0
                                     0
        CREATION DATE
                                     0
        ORIGINATOR
        OBJECT_NAME
                                     0
                                     0
        OBJECT ID
         CENTER NAME
                                     0
         REF_FRAME
                                     0
                                     0
         TIME_SYSTEM
         MEAN_ELEMENT_THEORY
                                     0
                                     0
         EPOCH
                                     0
        MEAN MOTION
                                     0
         ECCENTRICITY
                                     0
         INCLINATION
         RA_OF_ASC_NODE
                                     0
         ARG_OF_PERICENTER
                                     0
                                     0
        MEAN_ANOMALY
         EPHEMERIS_TYPE
                                     0
                                     0
         CLASSIFICATION TYPE
        NORAD_CAT_ID
                                     0
                                     0
         ELEMENT SET NO
         REV_AT_EPOCH
                                     0
         BSTAR
                                     0
                                     0
        MEAN_MOTION_DOT
         MEAN MOTION DDOT
                                     0
         SEMIMAJOR_AXIS
                                     0
                                     0
         PERIOD
                                     0
         APOAPSIS
         PERIAPSIS
                                     0
        OBJECT_TYPE
                                     0
         RCS_SIZE
                                     0
                                     0
         COUNTRY CODE
         LAUNCH_DATE
                                     0
                                     0
         SITE
        DECAY_DATE
                                14372
         FILE
                                     0
        GP_ID
                                     0
                                     0
         TLE_LINE0
                                     0
         TLE_LINE1
         TLE_LINE2
                                     0
         dtype: int64
```

In [4]: selected_columns = ['MEAN_MOTION', 'ECCENTRICITY', 'INCLINATION', 'RA_OF_AS
 data = space_data[selected_columns]
 data

Out[4]:

	MEAN_MOTION	ECCENTRICITY	INCLINATION	RA_OF_ASC_NODE	ARG_OF_PERICEN
0	2.921700	0.652893	7.7156	90.2410	243.
1	13.754973	0.003072	82.9193	299.1120	158.9
2	1.038224	0.023739	12.1717	16.5368	250.
3	14.775907	0.006062	98.4781	8.7205	37.:
4	14.724482	0.006226	98.4232	122.0724	345.
	•••				
14367	15.465781	0.001190	99.0098	214.6827	219. ⁻
14368	14.967557	0.005560	99.0272	141.1159	76.8
14369	12.909691	0.056673	31.9916	262.9339	162.
14370	14.245319	0.005822	98.6758	348.3068	187.0
14371	12.951574	0.002956	90.2762	327.5871	238.9
4.4070	40				

14372 rows × 12 columns

```
In [5]: # Initialize the LabelEncoder
encoder = LabelEncoder()

# Fit and transform the 'OBJECT_TYPE' column with LabelEncoder
data['OBJECT_TYPE'] = encoder.fit_transform(data['OBJECT_TYPE'])

# Custom mapping for RCS_SIZE
custom_mapping = {'SMALL': 1, 'MEDIUM': 2, 'LARGE': 3}

# Apply the custom mapping
data['RCS_SIZE'] = data['RCS_SIZE'].map(custom_mapping)

data
```

C:\Users\asus\AppData\Local\Temp\ipykernel_12460\3798038054.py:5: SettingW
ithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

data['OBJECT_TYPE'] = encoder.fit_transform(data['OBJECT_TYPE'])
C:\Users\asus\AppData\Local\Temp\ipykernel_12460\3798038054.py:11: Setting
WithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

data['RCS_SIZE'] = data['RCS_SIZE'].map(custom_mapping)

Out[5]:

	MEAN_MOTION	ECCENTRICITY	INCLINATION	RA_OF_ASC_NODE	ARG_OF_PERICEN
0	2.921700	0.652893	7.7156	90.2410	243.
1	13.754973	0.003072	82.9193	299.1120	158.9
2	1.038224	0.023739	12.1717	16.5368	250.
3	14.775907	0.006062	98.4781	8.7205	37.:
4	14.724482	0.006226	98.4232	122.0724	345.
14367	15.465781	0.001190	99.0098	214.6827	219.
14368	14.967557	0.005560	99.0272	141.1159	76.8
14369	12.909691	0.056673	31.9916	262.9339	162.
14370	14.245319	0.005822	98.6758	348.3068	187.0
14371	12.951574	0.002956	90.2762	327.5871	238.9

14372 rows × 12 columns

```
In [6]: # Count the occurrences of each unique value in 'OBJECT TYPE'
        object_counts = data['OBJECT_TYPE'].value_counts()
        # Mapping for OBJECT TYPE to colors and labels for the legend
        object_type_mapping = {
            0 : ('Debris', 'purple'),
1 : ('Payload', 'violet'),
            2 : ('ROCKET BODY', 'pink'),
            3 : ('TBA', 'lightgrey'),
            # Add more mappings if there are more object types
        }
        # Create the plot
        plt.figure(figsize=(10, 6))
        bars = []
        # Plot each object type count with its specific color
        for object_type, count in object_counts.items():
             bar = plt.bar(object_type, count, color=object_type_mapping[object_type
             bars.append(bar)
        # Create a custom Legend
        plt.legend([bar[0] for bar in bars], [object_type_mapping[object_type][0] f
        plt.title('Count of OBJECT TYPE Categories')
        plt.xlabel('OBJECT_TYPE')
        plt.ylabel('Count')
        plt.xticks(rotation=45)
        plt.show()
```



```
0 8431
```

- 1 8431
- 2 8431
- 3 8431

Name: OBJECT_TYPE, dtype: int64

```
In [8]: # Count the occurrences of each unique value in 'OBJECT TYPE'
        object_counts = balanced_data['OBJECT_TYPE'].value_counts()
        # Mapping for OBJECT TYPE to colors and labels for the legend
        object_type_mapping = {
            0 : ('Debris', 'purple'),
1 : ('Payload', 'violet'),
            2 : ('ROCKET BODY', 'pink'),
            3 : ('TBA', 'lightgrey'),
            # Add more mappings if there are more object types
        }
        # Create the plot
        plt.figure(figsize=(10, 6))
        bars = []
        # Plot each object type count with its specific color
        for object_type, count in object_counts.items():
             bar = plt.bar(object_type, count, color=object_type_mapping[object_type
             bars.append(bar)
        # Create a custom Legend
        plt.legend([bar[0] for bar in bars], [object_type_mapping[object_type][0] f
        plt.title('Count of OBJECT TYPE Categories')
        plt.xlabel('OBJECT_TYPE')
        plt.ylabel('Count')
        plt.xticks(rotation=45)
        plt.show()
```



```
In [9]: balanced_data.describe()
```

Out[9]:

	MEAN_MOTION	ECCENTRICITY	INCLINATION	RA_OF_ASC_NODE	ARG_OF_PERICEN
count	33724.000000	33724.000000	33724.000000	33724.000000	33724.000
mean	11.694865	0.106806	69.736145	162.501443	170.16 ⁻
std	5.284318	0.231139	32.331358	113.537065	100.690
min	0.051783	0.000005	0.001400	0.020000	300.0
25%	12.414438	0.001115	53.050475	52.609577	81.169
50%	14.418234	0.002457	82.584900	157.283356	164.356
75%	15.064096	0.017528	97.543300	266.604029	252.016
max	16.404097	0.897218	144.586200	359.967900	359.989
4					•

In [10]:

```
# Calculate the correlation matrix
corr = balanced_data.corr()

# Create a heatmap
plt.figure(figsize=(8, 6))
sns.heatmap(corr, annot=True, fmt=".2f", cmap='coolwarm')
plt.title('Heatmap of Correlation Matrix')
plt.show()
```



```
In [11]: # Logistic Regression.
         X = balanced_data.drop(['OBJECT_TYPE'], axis=1) # Features
         y = balanced_data['OBJECT_TYPE'] # Target variable
         # Splitting the dataset into training and testing sets
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, ra
         # It's often a good practice to scale the features for models like Logistic
         scaler = StandardScaler()
         X_train_scaled = scaler.fit_transform(X_train)
         X_test_scaled = scaler.transform(X_test)
         # Initialize the Logistic Regression model
         log_reg = LogisticRegression(max_iter=1000, random_state=42)
         # Train the model
         log_reg.fit(X_train_scaled, y_train)
         # Make predictions
         y_pred_log_reg = log_reg.predict(X_test_scaled)
         # Evaluate the model
         print("Logistic Regression Classification Report:")
         print(classification_report(y_test, y_pred_log_reg))
         print(f'The Accuracy Score of the Logistic Regression model is :- {accuracy
```

Logistic Regression Classification Report:

	precision	recall	f1-score	support
0 1	0.73 0.63	0.88 0.63	0.80 0.63	1688 1708
2	0.79	0.67	0.72	1678
3	0.62	0.58	0.60	1671
accuracy			0.69	6745
macro avg	0.69	0.69	0.69	6745
weighted avg	0.69	0.69	0.69	6745

The Accuracy Score of the Logistic Regression model is :- 0.69028910303928

```
In [12]: # Calculate accuracy on the training set
    train_accuracy_log_reg = accuracy_score(y_train, log_reg.predict(X_train_sc

# Calculate accuracy on the test set, using the previously computed 'y_pred
    test_accuracy_log_reg = accuracy_score(y_test, y_pred_log_reg)

print(f"Training Accuracy (Logistic Regression): {train_accuracy_log_reg}")
    print(f"Test Accuracy (Logistic Regression): {test_accuracy_log_reg}")
    print("It is as well fitting model because the model performs well on both
```

Training Accuracy (Logistic Regression): 0.7023610956670002
Test Accuracy (Logistic Regression): 0.6902891030392884
It is as well fitting model because the model performs well on both the training set and the test set, and the accuracies are reasonably close, it suggests a good balance between bias and variance.


```
In [14]: # Fine tuning of Logistic Regression Model.
         parameters = {'C': [0.001, 0.01, 0.1, 1, 10, 100]}
         log reg grid = GridSearchCV(LogisticRegression(max iter=1000, random state=
         log reg grid.fit(X train scaled, y train)
         # Make predictions
         y_pred_log_reg_grid = log_reg_grid.predict(X_test_scaled)
         print(f'The Accuracy Score of the Logistic Regression model after fine tuni
         # Calculate accuracy on the training set
         train_accuracy_log_reg_grid = accuracy_score(y_train, log_reg_grid.predict()
         # Calculate accuracy on the test set, using the previously computed 'y_pred
         test accuracy log reg grid = accuracy score(y test, y pred log reg grid)
         print(f"Training Accuracy (Logistic Regression): {train accuracy log reg gr
         print(f"Test Accuracy (Logistic Regression): {test_accuracy_log_reg_grid}")
         ◀ |
         The Accuracy Score of the Logistic Regression model after fine tuning is :
         - 0.6934025203854707
         Training Accuracy (Logistic Regression): 0.7061047481374403
         Test Accuracy (Logistic Regression): 0.6934025203854707
In [15]: # SVM.(Linear)
         # Initialize the SVM model
         svm model = SVC(kernel='linear', random state=42) # 'linear' kernel is a c
         # Train the model
         svm model.fit(X train scaled, y train)
         # Make predictions
         y pred svm linear = svm model.predict(X test scaled)
         # Evaluate the model
         print("SVM Classification Report(Linear):")
         print(classification_report(y_test, y_pred_svm_linear))
         print(f'The Accuracy Score of the SVM Classification Report(Linear) model i
         SVM Classification Report(Linear):
                                   recall f1-score
                       precision
                                                        support
                    0
                            0.93
                                      0.85
                                                 0.89
                                                           1688
                    1
                            0.71
                                      0.53
                                                 0.61
                                                           1708
                    2
                            0.71
                                      0.82
                                                 0.76
                                                           1678
                    3
                            0.65
                                      0.77
                                                 0.70
                                                           1671
                                                 0.74
                                                           6745
             accuracy
                            0.75
                                      0.74
                                                           6745
            macro avg
                                                 0.74
         weighted avg
                            0.75
                                      0.74
                                                 0.74
                                                           6745
```

The Accuracy Score of the SVM Classification Report(Linear) model is :- 0. 7414381022979986

```
In [16]: # Calculate accuracy on the training set
    train_accuracy_svm_linear = accuracy_score(y_train, svm_model.predict(X_tra
    # Use the previously computed 'y_pred_svm_linear' for test accuracy
    test_accuracy_svm_linear = accuracy_score(y_test, y_pred_svm_linear)

print(f"Training Accuracy (SVM, Linear): {train_accuracy_svm_linear}")
    print(f"Test Accuracy (SVM, Linear): {test_accuracy_svm_linear}")
    print("This SVM (Linear) model neither significantly overfits nor severely
```

Training Accuracy (SVM, Linear): 0.7456169613403018

Test Accuracy (SVM, Linear): 0.7414381022979986

This SVM (Linear) model neither significantly overfits nor severely underfits, but it does lean more towards underfitting due to the not-so-high training accuracy.


```
In [18]: # Fine Tuning of SVM(Linear) Model.

parameters_svm_linear = {'C': [0.1, 1, 10]}
svm_linear_grid = GridSearchCV(SVC(kernel='linear', random_state=42), param
svm_linear_grid.fit(X_train_scaled, y_train)

y_pred_svm_linear_grid = svm_linear_grid.predict(X_test_scaled)
print(f'The Accuracy Score of the SVM Classification Report(Linear) model a

# Calculate accuracy on the training set
train_accuracy_svm_linear_grid = accuracy_score(y_train, svm_linear_grid.pr

# Use the previously computed 'y_pred_svm_linear' for test accuracy
test_accuracy_svm_linear_grid = accuracy_score(y_test, y_pred_svm_linear_gr
print(f"Training Accuracy (SVM, Linear) after fine tuning : {train_accuracy_svm_linear_grid_score(y_test_accuracy_svm_linear_grid_score(y_test_accuracy_svm_linear_grid_score(y_test_accuracy_svm_linear_grid_score(y_test_accuracy_svm_linear_grid_score(y_test_accuracy_svm_linear_grid_score(y_test_accuracy_svm_linear_grid_score(y_test_accuracy_svm_linear_grid_score(y_test_accuracy_svm_linear_grid_score(y_test_accuracy_svm_linear_grid_score(y_test_accuracy_svm_linear_grid_score(y_test_accuracy_svm_linear_grid_score(y_test_accuracy_svm_linear_grid_score(y_test_accuracy_svm_linear_grid_score(y_test_accuracy_svm_linear_grid_score(y_test_accuracy_svm_linear_grid_score(y_test_accuracy_svm_linear_grid_score(y_test_accuracy_svm_linear_grid_score(y_test_accuracy_svm_linear_grid_score(y_test_accuracy_svm_linear_grid_score(y_test_accuracy_svm_linear_grid_score(y_test_accuracy_svm_linear_grid_score(y_test_accuracy_svm_linear_grid_score(y_test_accuracy_svm_linear_grid_score(y_test_accuracy_svm_linear_grid_score(y_test_accuracy_svm_linear_grid_score(y_test_accuracy_svm_linear_grid_score(y_test_accuracy_svm_linear_grid_score(y_test_accuracy_svm_linear_grid_score(y_test_accuracy_svm_linear_grid_score(y_test_accuracy_svm_linear_grid_score(y_test_accuracy_svm_linear_grid_score(y_test_accuracy_svm_linear_grid_score(y_test_accuracy_svm_linear_grid_score(y_test_accuracy_svm_linear_grid_score(y_test_accuracy_svm_linear_grid_scor
```

The Accuracy Score of the SVM Classification Report(Linear) model after fine tuning is :- 0.7457375833951075

Training Accuracy (SVM, Linear) after fine tuning : 0.7479521109010712

Test Accuracy (SVM, Linear) after fine tuning : 0.7457375833951075

```
In [19]: # SVM.(rbf = Radial Basis function)

# Initialize the SVM model
svm_model = SVC(kernel='rbf', random_state=42) # 'linear' kernel is a comm

# Train the model
svm_model.fit(X_train_scaled, y_train)

# Make predictions
y_pred_svm_rbf = svm_model.predict(X_test_scaled)

# Evaluate the model
print("SVM Classification Report:")
print(classification_report(y_test, y_pred_svm_rbf))
print(f'The Accuracy Score of the SVM Classification Report(rbf) model is :
```

SVM Classification Report:

	precision	recall	f1-score	support
0 1 2 3	0.92 0.81 0.77 0.71	0.89 0.60 0.90 0.80	0.90 0.69 0.83 0.75	1688 1708 1678 1671
accuracy macro avg weighted avg	0.80 0.80	0.80 0.80	0.80 0.79 0.79	6745 6745 6745

The Accuracy Score of the SVM Classification Report(rbf) model is :- 0.797 0348406226835

In [20]: # Calculate accuracy on the training set train_accuracy_svm_rbf = accuracy_score(y_train, svm_model.predict(X_train_ # You've already computed 'y_pred_svm_rbf' for the test set test_accuracy_svm_rbf = accuracy_score(y_test, y_pred_svm_rbf) print(f"Training Accuracy (SVM, RBF): {train_accuracy_svm_rbf}") print(f"Test Accuracy (SVM, RBF): {test_accuracy_svm_rbf}") print("This Model indicates a well-fitted model with a good balance between

Training Accuracy (SVM, RBF): 0.8062567181882204

Test Accuracy (SVM, RBF): 0.7970348406226835

This Model indicates a well-fitted model with a good balance between bias and variance.


```
In [22]: # Fine Tuning of SVM(rbf) Model.

parameters_svm = {'C': [0.1, 1, 10], 'gamma': [0.001, 0.01, 0.1, 1]}
svm_rbf_grid = GridSearchCV(SVC(kernel='rbf', random_state=42), parameters_
svm_rbf_grid.fit(X_train_scaled, y_train)

y_pred_svm_rbf_grid = svm_rbf_grid.predict(X_test_scaled)
print(f'The Accuracy Score of the SVM Classification Report(rbf) model afte

# Calculate accuracy on the training set
train_accuracy_svm_rbf_grid = accuracy_score(y_train, svm_rbf_grid.predict(
# Use the previously computed 'y_pred_svm_linear' for test accuracy
test_accuracy_svm_rbf_grid = accuracy_score(y_test, y_pred_svm_rbf_grid)

print(f"Training Accuracy (SVM, rbf) after fine tuning : {train_accuracy_svm_rbf_
print(f"Test Accuracy (SVM, rbf)after fine tuning : {test_accuracy_svm_rbf_
```

The Accuracy Score of the SVM Classification Report(rbf) model after fine tuning is :- 0.9272053372868791
Training Accuracy (SVM, rbf) after fine tuning : 0.9455502427814226
Test Accuracy (SVM, rbf)after fine tuning : 0.9272053372868791

```
In [23]: # Random Forest.

# Split the dataset into features and target variable
X = balanced_data.drop('OBJECT_TYPE', axis=1) # Features
y = balanced_data['OBJECT_TYPE'] # Target variable

# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, ra

# Initialize and train the Random Forest Classifier
clf = RandomForestClassifier(n_estimators=100, random_state=42)
clf.fit(X_train, y_train)

# Predictions
y_pred = clf.predict(X_test)

# Evaluate the model
print("Random Forest Classification Report:")
print(classification_report(y_test, y_pred))
print(f'The Accuracy Score of the Random Forest model is :- {accuracy_score}
```

Random Forest Classification Report:

	precision	recall	f1-score	support
0 1 2 3	0.99 0.96 0.97 0.98	0.96 0.96 0.98 0.99	0.97 0.96 0.98 0.98	1688 1708 1678 1671
accuracy macro avg weighted avg	0.97 0.97	0.97 0.97	0.97 0.97 0.97	6745 6745 6745

The Accuracy Score of the Random Forest model is :- 0.9737583395107487

```
In [24]: # Calculate accuracy on the training set
    train_accuracy = accuracy_score(y_train, clf.predict(X_train))

# Calculate accuracy on the test set
    test_accuracy = accuracy_score(y_test, y_pred)

print(f"Training Accuracy: {train_accuracy}")
    print(f"Test Accuracy: {test_accuracy}")
    print("The Training and Testing Accuracy values are both higher indicates a
```

Training Accuracy: 1.0

Test Accuracy: 0.9737583395107487

The Training and Testing Accuracy values are both higher indicates a well-fitting model with low bias and low variance

```
In [25]: # Confusion Matrix for Random Forest.
cm = confusion_matrix(y_test, y_pred)

# Plot confusion matrix
plt.figure(figsize=(5,4))
sns.heatmap(cm, annot=True, fmt='g', cmap='Blues', xticklabels=encoder.clas
plt.xlabel('Predicted')
plt.ylabel('True')
plt.title('Confusion Matrix for Random Forest')
plt.show()
```



```
In [28]: # Fine Tuning of Random Forest
         parameters_rf = {
             'n_estimators': [50, 100, 150],
             'max_depth': [0, 10, 20],
             'min_samples_split': [2, 5, 8],
             'min_samples_leaf': [1, 2, 4]
         rf_grid = GridSearchCV(RandomForestClassifier(random_state=42), parameters_
         rf grid.fit(X train, y train) # Note: Random Forest doesn't require scaled
         # Predictions
         y_pred = rf_grid.predict(X_test)
         print(f'The Accuracy Score of the Random Forest model after tuning is :- {a
         # Calculate accuracy on the training set
         train_accuracy_rf = accuracy_score(y_train, rf_grid.predict(X_train))
         # Calculate accuracy on the test set
         test_accuracy_rf = accuracy_score(y_test, y_pred)
         print(f"Training Accuracy after tuning:- {train accuracy rf}")
         print(f"Test Accuracy after tuning:- {test_accuracy_rf}")
```

C:\ProgramData\anaconda3\lib\site-packages\sklearn\model_selection_valida
tion.py:378: FitFailedWarning:

135 fits failed out of a total of 405.

The score on these train-test partitions for these parameters will be set to nan.

If these failures are not expected, you can try to debug them by setting e rror score='raise'.

Below are more details about the failures:

135 fits failed with the following error:

Traceback (most recent call last):

File "C:\ProgramData\anaconda3\lib\site-packages\sklearn\model_selection
_validation.py", line 686, in _fit_and_score

estimator.fit(X_train, y_train, **fit_params)

File "C:\ProgramData\anaconda3\lib\site-packages\sklearn\ensemble_fores
t.py", line 340, in fit

self._validate_params()

File "C:\ProgramData\anaconda3\lib\site-packages\sklearn\base.py", line
581, in validate params

validate_parameter_constraints(

File "C:\ProgramData\anaconda3\lib\site-packages\sklearn\utils_param_va
lidation.py", line 97, in validate_parameter_constraints

raise InvalidParameterError(

sklearn.utils._param_validation.InvalidParameterError: The 'max_depth' par ameter of RandomForestClassifier must be an int in the range [1, inf) or N one. Got 0 instead.

warnings.warn(some_fits_failed_message, FitFailedWarning)

C:\ProgramData\anaconda3\lib\site-packages\sklearn\model_selection_searc
h.py:952: UserWarning: One or more of the test scores are non-finite: [

nan	r	nan r	nan r	nan r	nan r	nan
	nan	nan	nan	nan	nan	nan
	nan	nan	nan	nan	nan	nan
	nan	nan	nan	nan	nan	nan
	nan	nan	nan	0.93824841	0.93817428	0.93750712
0.9374	7	0.93554251	0.93550547	0.93428237	0.93583911	0.93602445
0.9359	8736	0.93706224	0.93639504	0.9362838	0.93572781	0.93572782
0.9354	6847	0.9360986	0.93509775	0.93294794	0.93424521	0.93380045
0.9329	4794	0.93424521	0.93380045	0.93294794	0.93424521	0.93380045
0.9686	423	0.96997664	0.97023614	0.96797519	0.96893888	0.9686053
0.9663	0717	0.96678904	0.96652959	0.96627009	0.96660365	0.96715964
0.9667	5186	0.9667519	0.96738202	0.96397201	0.96460217	0.96478744
0.9610	0675	0.96148859	0.96174806	0.96100675	0.96148859	0.96174806
0.9610	0675	0.96148859	0.96174806			
warnings.warn(

The Accuracy Score of the Random Forest model after tuning is :- 0.9739065 974796145

Training Accuracy after tuning:- 0.9988880240186812 Test Accuracy after tuning:- 0.9739065974796145

```
In [29]: accuracies = {
             "Model": ["Logistic Regression", "SVM (Linear)", "SVM (RBF)", "Random F
             "Training Accuracy": [
                 train_accuracy_log_reg,
                 train_accuracy_svm_linear,
                 train_accuracy_svm_rbf,
                 train_accuracy
             "Testing Accuracy": [
                 accuracy_score(y_test, y_pred_log_reg), # Logistic Regression test
                 accuracy_score(y_test, y_pred_svm_linear), # SVM (Linear) test acc
                 accuracy_score(y_test, y_pred_svm_rbf), # SVM (RBF) test accuracy
                 accuracy_score(y_test, y_pred) # Random Forest test accuracy
             ],
             "Tuned Training Accuracy": [
                 train_accuracy_log_reg_grid,
                 train_accuracy_svm_linear_grid,
                 train_accuracy_svm_rbf_grid,
                 train_accuracy_rf
             "Tuned Testing Accuracy": [
                 test_accuracy_log_reg_grid,
                 test_accuracy_svm_linear_grid,
                 test_accuracy_svm_rbf_grid,
                 test_accuracy_rf
             ]
         }
         # Create a DataFrame
         accuracy_df = pd.DataFrame(accuracies)
         # Display the DataFrame
         accuracy_df
```

Out[29]:

	Model	Training Accuracy	Testing Accuracy	Tuned Training Accuracy	Tuned Testing Accuracy
0	Logistic Regression	0.702361	0.690289	0.706105	0.693403
1	SVM (Linear)	0.745617	0.741438	0.747952	0.745738
2	SVM (RBF)	0.806257	0.797035	0.945550	0.927205
3	Random Forest	1.000000	0.973907	0.998888	0.973907