

DUBLIN INSTITUTE OF TECHNOLOGY

BSc. (Honours) Degree in Computer Science (Infrastructure)

Year 4

BSc. (Honours) Degree in Computer Science

Year 4

WINTER EXAMINATIONS 2015/2016

Distributed Systems [CMPU4021]

Ms. E. Hatunic-Webster Dr. D. Lillis Mr. T. Nolan – DT211C Mr. K. Foley – DT228

Thursday 7th Jan 2016 4.00-6.00

Attempt **3 questions**All questions carry **equal** marks
One complimentary mark is available

1. (a) Describe and illustrate with examples *two* design requirements for distributed architectures.

(8 marks)

(b) Using sample code, show how to create a simple TCP server that will receive a Java object of type *Voter*, where the *Voter* class has *name*, *address* and *voterPPS* attributes, all of which are <code>java.lang.String</code>.

(12 marks)

(c) With the help of a diagram and examples, explain the Message Oriented Middleware (MOM) paradigm and discuss its advantages and disadvantages.

(13 marks)

2. (a) IP provides a *multicast* facility. Explain what this means, then *discuss* the situations where multicast is used.

(8 marks)

- (b) Explain the *three* alternative approaches to external data representation and marshalling. (12 marks)
- (c) The code shown is a partial implementation of a server that broadcasts the time to the clients every few seconds.

 Complete the implementation of this code, and write a client that can receive the message (i.e. the time) by passively listening for messages on a MulticastSocket. Multiple client processes should be able to run concurrently, with *all* of them receiving the message.

```
import java.net.*;
import java.io.*;
import java.util.Date;
public class q2C{
   public static void main(String[] args) {
     DatagramSocket socket = new DatagramSocket(12345);
     DatagramPacket packet;
     InetAddress addrToSendTo = // WRITE THE MISSING CODE
     while(true) {
       byte[] buffer = new Date().toString().getBytes();
       packet = new DatagramPacket(buffer, buffer.length, addrToSendTo, port);
                     socket.send(packet);
        // sleep for a second
            Thread.sleep((long)(Math.random() * 3000));
           } catch (InterruptedException e) { }
        } catch (Exception e) {}
    }
                                                                          (13 marks)
```

- **3.** (a) The EU election interface provides two remote methods:
 - *vote*: It has two parameters through which the client supplies the name of a candidate (a string) and the 'voter's number' (an integer used to ensure each user votes once only).
 - resultCount: It has two return parameters through which the server supplies the client with the name of a candidate and the number of votes for that candidate.

Define the interface to the EU election service in Java RMI.

(8 marks)

(b) The failure model for distributed object systems provides three alternative guarantees for method invocation.

Explain, compare and contrast *maybe*, *at-least-once* and *at-most-once* invocation semantics in this context.

(12 marks)

(c) Discuss in detail *distributed event based* systems, such as those implemented using Jini. In your answer you should explain the roles of the participating objects.

(13 marks)

4. (a) Explain the purpose of UDDI. What are the *four* different data structures that support UDDI? Describe their uses.

(8 marks)

(b) Explain the core technologies of the *web service* approach as middleware and Internetwide distributed computing and discuss its strengths and weaknesses when compared with competing approaches.

(12 marks)

(c) Managing a *distributed transaction* involves many transaction managers and is made difficult because the state of one system can change suddenly, unknown to the other participants in the transaction.

Using examples and diagrams *show* how the *two phase commit* protocol addresses the problem outlined here.

(13 marks)