Energy Storage Materials

Dr. James Cumby

Room 269

james.cumby@ed.ac.uk

Lecture Overview

Lecture	Topic
~	Introduction to energy storage materials
1-2	Batteries
က	(Super) capacitors
4-5	Fuel Cells

Recommended Reading

Basic Solid State Chemistry, A. R. West, Wiley, 1988.

References given during course.

Introduction

Meeting global energy demand is one of the big challenges facing society.

BTU = British Thermal Unit ≈ 1055 J

Energy sources

To meet this demand will require a combination of energy sources:

- FossilFuels
- o Coal o Oil o Gas

- NuclearRenewable
- WindSolarHydro

Energy sources

To meet this demand will require a combination of energy sources:

All sources have problems...

Fossil fuels

- Finite supply
 Environmental cost (i.e. climate
 - change) Political uncertainty

All sources have problems...

Fossil fuels

- Finite supply
 Environmental cost (i.e. climate change)
 - Political uncertainty

- "Finite" supply
- Concerns over waste storage Political issues

All sources have problems..

Fossil fuels

- Finite supply
 Environmental cost (i.e. climate change)
 - Political uncertainty

- "Finite" supply
- Concerns over waste storage
 - Political issues

- Intermittent source
- (Relatively) expensive (although this is changing)
 - Limited lifespan of components

Drivers behind change

- Problems with energy supply/demand
 - Climate change
- \circ CO₂ emissions
 - Other emissions
- ° NO×
- SO_xParticulatesOthers
- Dwindling oil and gas resources
 - Poltical aspects of fuel supply

Energy storage

If we aim to increase renewable sources, we need a way to store this energy.

- Supply cannot immediately respond to changes in demand
 - Inefficient to waste "excess" energy (e.g. on a windy day)

How can we store this energy?

Energy storage

If we aim to increase renewable sources, we need a way to store this energy.

- Supply cannot immediately respond to changes in demand
 - Inefficient to waste "excess" energy (e.g. on a windy day)

How can we store this energy?

Historic approaches:

Technology	Energy conversion
- Burning wood	Chemical potential → Heat
- Firebrick (Used since the Hittites)	Heat → Heat
- Gravity!	Gravitational potential → Kinetic
e.g. Irrigation (Hanging Gardens of Babylon)	
e.g. Mill ponds (modifying existing rivers)	

Energy storage history

The discovery of electricity introduced much more variety into energy storage methods:

Technology	Energy	Energy conversion
- Burning wood	Chemical potential → Heat	→ Heat
- Firebrick (Used since the Hittites)	Heat	Heat → Heat
Gravity!	Gravitational potential → Kinetic	→ Kinetic
e.g. Irrigation, Mill ponds		
- Batteries	Chemical	Chemical → Electrical
- (Super-) Capacitors	Electrical	Electrical → Electrical
- Fuel Cells	Chemical	Chemical → Electrical
- Cryogenic / Liquid air	Kinetic (from electrical) → 'Heat'	→ 'Heat'
- Mechanical (e.g. flywheels)	Kinetic	Kinetic → potential

Efficient energy storage relies on materials

Important properties for energy storage:

- Cost
- (Long-term) stability; reactivityDurability
- Compatibility of different materials
 - Material performance
- lonic conduction
- Electronic conduction

Batteries

Battery History

ca. 190 AD: Baghdad (or Parthian) battery

· Iron and copper electrodes, filled with vinegar or wine

Possible uses: medicinal, religious or electro-plating!

1800: Volta created the voltaic pile

Alternating Ag and Zn discs, NaCl electrolyte

Enabled *chemistry* e.g. $2H_2O \rightarrow H_2 + O_2$

Corrosion limited battery life

1836: Daniell cell: $Zn|Zn^{2+},SO_4^{2-}||SO_4^{2-}|Cu^{2+}|Cu$

First practical electricity source (used to power telegraphs)

1859 Lead-acid battery (first rechargeable)

1886 The first dry cell, $Zn \mid NH_4CI \mid MnO_2$

NH₄Cl immobilised with plaster of Paris (CaSO₄·0.5 H₂O)

1899 The first alkaline battery NiO(OH) | KOH | Cd

Higher energy density than lead-acid, but expensive

1991 Li-ion battery commercialised by Sony

Battery Operation

Charge Anode Cathode Cathode OH-Lit OH-Lit

Discharge

NOTE: In rechargeable cells, naming of anode and cathode is often unclear. Here we define:

- Cathode is **positive** electrode under **discharge**
- Anode is negative electrode under discharge

Improving batteries

The most important parameter in improving batteries is the total energy capacity, E

• Combination of cell voltage (V) and amount of charge (Q) stored in material:

$$E_{
m bat}=QV$$

Q is expressed in units of Ah (1 mAh = 3.6 C), so E_{bat} is in Wh (watt-hours)

Improving batteries

The most important parameter in improving batteries is the total energy $\mathit{capacity},~E$

Combination of cell voltage (V) and amount of charge (Q) stored in material:

$$E_{
m bat}=QV$$

Q is expressed in units of Ah (1 mAh = 3.6 C), so $E_{\rm bat}$ is in Wh (watt-hours)

- E_{bat} is dependent on the amount of material. More useful:
- $\circ~$ *Gravimetric* energy density (Wh g $^{ extsf{-}1}$): Q is charge per unit mass (Ah g $^{ extsf{-}1}$)
- Volumetric energy density (Wh L⁻¹): Q is charge per unit volume (Ah L⁻¹)

We want to maximise volumetric and gravimetric energy densities

Increase E_{bat}: voltage

Faraday's Law:

$$Q_{
m theoretical} = rac{nF}{3.6 M_w} ~~{
m (in~mAh~g}^{-1})$$

Faraday's Law:

$$Q_{
m theoretical} = rac{nF}{3.6 M_w} ~~{
m (in~mAh~g}^{-1})$$

e.g. for
$${\rm LiCoO_2} \longrightarrow {\rm Li^+} + {\rm e^-} + {\rm CoO_2}$$
:

Faraday's Law:

$$Q_{
m theoretical} = rac{n F}{3.6 M_w} ~~{
m (in~mAh~g}^{-1})$$
 e.g. for LiCoO $_2 \longrightarrow {
m Li}^+ + {
m e}^- + {
m CoO}_2$: $n=1, F=96485.3~{
m sA~mol}^{-1}$ $M_w=97.873~{
m g\,mol}^{-1}$ $\therefore Q=274~{
m mAh~g}^{-1}$

Faraday's Law:

$$Q_{
m theoretical}=rac{nF}{3.6M_w}~~{
m (in~mAh~g}^{-1})$$
 e.g. for LiCoO $_2$ $ightarrow$ Li $^+$ + e $^-$ + CoO $_2$: $n=1,F=96485.3~{
m sA~mol}^{-1}$

 $M_w = 97.873 \mathrm{\ g \ mol^{-1}}$

 $\therefore Q = 274 \, \mathrm{mAh \, g}^{-1}$

In reality, the charge stored is less than the theoretical maximum

- For LiCoO $_2$, CoO $_2$ is *very* unstable: $2\,{
 m Co^{IV}O_2} \longrightarrow {
 m Co_2^{III}O_3} + {1\over 2}{
 m O_2}$
- $^{\circ}$ We can only safely reach Li $_{0.5}$ CoO $_2$, so the useful capacity is 137 mAh g $^{-1}$

Charging rates

Ideally we want to charge batteries quickly

Define charge rate, $C=rac{I}{Q}$, the ratio of discharge current to capacity

- i.e. for a 100 mAh battery:
- $\circ~1C$ => current of 100 A, which could be sustained for 1 hour $\circ~2C$ => 200 A (for 30 mins)
 - \circ 2C => 200 A (for 30 mins \circ $\frac{1}{6}C$ => 50 A (for 2 hours)
- This allows us to describe charging rates independent of battery capacity.

Effect of rate on capacity

High charging rates reduce capacity

- Electrons can move much faster than ions, so at high C-rates strain occurs in the lattice
- lons get stuck, reducing the overall discharge capacity
- Irreversible damage to crystal structure can occur, preventing future

7

Ragone (ru-GO-nee) plot

Quantifies the trade-off between energy density (E) and power density (P)

$$ullet$$
 $P=IV$, whereas $E=QV$

accelerating) while others need more sustained energy supply (long-range electric Some applications require fast discharge over short times (e.g. electric sports car

Characterising capacity

Typically we use Galvanostatic (constant current) measurements to characterise battery response, and measure the resulting voltage. Charging rates have a big impact on device performance, so potentiostatic (i.e. constant voltage) measurements would be difficult to attribute to chemistry vs. rate effects.

Characterising capacity

e.g. for a 2.2 Ah battery:

Characterising capacity

e g for a 2.2 Ah battery:

Capacity can be expressed in a number of formats

What can we learn from galvanostats?

Solid Solution

Two-phase region

Phase change

material without a structural added/removed from the lons can be continously transition

relative proportions change Two distinct compositions exist together, and the

structure) change between stable y phase with narrow Abrupt voltage (and α and β due to a morecomposition window.

22

Key materials properties

Anode

Good electronic conductor

Electrolyte

- Good ionic conductor
 - Negligible electronic conduction

Good ionic conductor Structural stability on

Cathode

- Good electronic conductor
- Good ionic conductor
 - Structural stability on ionic movement

ionic movement

 Compatibility between materials (particularly under volume changes during charge/discharge)

Charge

Discharge

