# Wyznaczanie cyklu Hamiltona

Metody optymalizacji Temat 3, zadanie 2

#### Cykl Hamiltona

Cyklem Hamiltona w grafie G = <V, E> nazywamy taką ścieżkę, która - z wyjątkiem wierzchołka startowego/końcowego - przechodzi przez każdy wierzchołek dokładnie raz i kończy się w wierzchołku początkowym.

Nie każdy graf posiada taki cykl.





#### Cykl Hamiltona - problem NP-trudny

Znalezienie cyklu Hamiltona w grafie jest problemem NP-trudnym. To znaczy, że nie istnieje żaden znany nam algorytm potrafiący rozwiązać ten problem w czasie wielomianowym z uwagi na ilość wierzchołków w grafie.

W praktyce oznacza to, że znalezienie cyklu Hamiltona w grafie o bardzo dużym rozmiarze w rozsądnym czasie jest niemożliwe.

Istnieją twierdzenia pozwalające sprawdzić, czy dany graf posiada cykl Hamiltona, bez jego wyznaczania. Niestety są to twierdzenia w "jedną stronę", zatem nie wykluczają one jego istnienia, a jedynie pomagają sprawdzić, czy takowy cykl musi istnieć.

#### Ograniczenia dla problemu

Dla problemu znalezienia cyklu Hamiltona w grafie zakładamy, że:

- krawędzie w grafie nie mają wag, lub wszystkie wagi są jednakowe
  - o problem znajdujący najkrótszy cykl Hamiltona w grafie to **problem komiwojażera**
- dla uogólnienia, zakładamy że graf posiada krawędzie skierowane
  - jeśli interesuje nas graf nieskierowany, to każdą krawędź nieskierowaną można przedstawić jako parę krawędzi skierowanych

#### Model matematyczny

#### Dane wejściowe:

- $\blacksquare$  Graf G = <V, E>
  - $V = \{v_1, v_2, ..., v_n\}$  zbiór wierzchołków
  - $E = \{ e_1, e_2, ..., e_n \}$  zbiór krawędzi

      $e_k = (v_i, v_j)$  ścieżka  $e_k$  prowadząca z wierzchołka  $v_i$  do wierzchołka  $v_j$

#### Dane wyjściowe:

- $\blacksquare$  Ścieżka s = { s<sub>1</sub>, s<sub>2</sub>, ..., s<sub>n</sub> } taka, że:
  - dla i = 1, 2, ..., n-1 krawędź ( $s_i, s_{i+1}$ )  $\in E$
  - $(s_n, s_1) \in E$
  - $\bullet \quad \mathsf{S}_{i} \neq \mathsf{S}_{j} \quad \Leftrightarrow \ i \neq j$

#### Metoda pełnego przeglądu - idea

Metoda pełnego przeglądu polega na sprawdzeniu wszystkich możliwych permutacji zbioru wierzchołków V i dla każdego z nich sprawdzenie, czy taka kolejność odwiedzania wierzchołków jest możliwa (i tworzy cykl).

Takie rozwiązanie daje złożoność czasową O(n!) i jest bardzo wolne nawet dla grafów rzadkich (posiadających małą ilość krawędzi).

#### Metoda pełnego przeglądu - usprawnienie

Zauważmy, że mając dowolną permutację  $\pi$  ciągu wszystkich wierzchołków:

$$\pi = (p_1 p_2 p_3 ... p_n)$$

To jeśli istnieje k < n, takie że  $(p_1 p_2 ... p_k)$  nie stanowi ścieżki w grafie, to dowolna permutacja zaczynająca się od  $(p_1 p_2 ... p_k)$  **nie** będzie rozwiązaniem tego problemu, tak więc możemy je z góry pominąć.

#### Algorytm z powracaniem - idea

Zamiast generować całe permutacje od razu, będziemy budować je w taki sposób, aby z góry odrzucać te permutacje, których początki nie dają rozszerzyć się do poprawnego rozwiązania.

Takie rozwiązanie dalej pesymistycznie jest o złożoności O(n!), jednak w praktyce działa ono znacznie szybciej, szczególnie dla grafów rzadkich, gdyż nigdy nie rozważamy takiego ciągu, który nie może być prefiksem permutacji wynikowej.

### Algorytm z powracaniem - pseudokod

Algorytm znajdowania cyklu Hamiltona w grafie G = <V, E>:

- 1. HamiltonianCycle(k, n) :=
  - a. Dla każdego y, takiego, że  $(X_{l-1}, y) \subseteq E$ 
    - i. Jeśli k = n oraz  $y = X_0$ 
      - 1. Wypisz rozwiązanie  $(X_0, X_1, ..., X_n)$
    - ii. W przeciwnym przypadku, jeśli y  $\{X_0, X_1, ..., X_{k-1}\}$ 
      - 1.  $X_{\nu} = y$
      - 2. HamiltonianCycle(k + 1)
- 2.  $X_0 = V_0$
- 3. HamiltonianCycle(1, IVI)

#### Algorytm z powracaniem - uwagi

- wybór wierzchołka startowego nie ma wpływu na znalezienie wyniku, gdyż w cyklu Hamiltona znajdują się wszystkie wierzchołki w grafie
- algorytm ten ma pesymistyczną złożoność czasową rzędu O(n!), jednak dla grafów rzadkich jest on znacznie szybszy
- w przypadku grafów gęstych, jeśli interesuje nas sam fakt posiadania cyklu Hamiltona, zamiast go znaleźć, można skorzystać z twierdzeń Diraca (1952) lub twierdzenia Orego (1961)

# Algorytm z powracaniem - przykład



#### Implementacja

- Projekt napisany w C++11
- Dostępny na GitHubie
  - Licencja MIT

#### Najważniejsze klasy projektu:

- Graph
- RandomGraphFactory
- HamiltonianCycleFinder
  - NaiveHamiltonianCycleFinder
  - OptimisedHamiltonianCycleFinder

### Sposób uruchomienia

- "Plug&Play"
  - Brak zewnętrznych zależności
- Kompilacja za pomocą (m. in):
  - Microsoft Visual Studio (≥ 2013)
  - GCC (≥ 4.9)
  - Clang (≥ 3.6)
- Wymagania
  - Kompilator zgodny ze standardem C++11

#### Zestawy danych

- Zestaw danych składa się z pary (ilość\_wierzchołków, ilość\_krawędzi)
- Klasa RandomGraphFactory pozwala na wygenerowanie losowych danych
- Zalecane są obliczenia dla stosunkowo małych danych testowych
  - ∪waga: obliczenia dla n ≥ 15 wymagają bardzo długiej ilości czasu

### Zestawy danych

Wierzchołków: 10

o Krawędzi: 24

o Krawędzi: 45

o Krawędzi: 70

Wierzchołków: 13

Krawędzi: 30

o Krawędzi: 50

o Krawędzi: 80

#### Graph

#### Metody

- void **addEdge** (unsigned int *v*, unsigned int *u*)
- void removeEdge (unsigned int v, unsigned int u)
- o bool hasEdge (unsigned int v, unsigned int u) const
- o std::vector<unsigned int> neighboursOf(unsigned int v) const

#### Pola

- o const unsigned int vertexCount
- o std::vector<std::vector<bool>> edges

### HamiltonianCycleFinder

- Metody
  - o std::vector<unsigned int> **findFirstIn**(const Graph& G)
  - o std::vector<std::vector<unsigned int>> findAllIn(const Graph& G)

- Pola
  - o std::string name

### NaiveHamiltonianCycleFinder

- Implementacja iteracyjna
- Generuje wszystkie permutacje zbioru wierzchołków
- Sprawdza czy któraś nie tworzy poprawnej ścieżki rozszerzalnej do cyklu
  - Jeśli tak, to znaleziono cykl Hamiltona

#### **OptimisedHamiltonianCycleFinder**

- Implementacja rekurencyjna
- Algorytm z nawracaniem
- Na k-tym poziomie rekursji próbuje dopasować k-ty wierzchołek budowanej ścieżki tylko z możliwych
  - o Jeśli dojdzie do n-tego poziomu, znaleziono cykl Hamiltona

### Wyniki testów

- Skupione wokół wydajności
- Porównują algorytmy:
  - naiwny
  - o z nawracaniem
- Małe zestawy testowe
  - Problem, nawet dla małych zestawów testowych, wymaga ogromnych zasobów do obliczenia dokładnych wyników.

## Wyniki testów

| Zestaw testowy |            | Algorytm naiwny |           | Algorytm z nawrotami |           | Poprawa |
|----------------|------------|-----------------|-----------|----------------------|-----------|---------|
| # wierzchołków | # krawędzi | pierwszy        | wszystkie | pierwszy             | wszystkie | Poprawa |
| 10             | 24         | 4 ms            | 12 ms     | <1 ms                | <1 ms     | 12x     |
| 10             | 45         | <1 ms           | 18 ms     | <1 ms                | <1 ms     | 18x     |
| 10             | 70         | 121 ms          | 115 ms    | 2 ms                 | 2 ms      | 57x     |
| 13             | 30         | 1721 ms         | 3738 ms   | <1 ms                | 17 ms     | 220x    |
| 13             | 50         | 641 ms          | 4150 ms   | <1 ms                | 46 ms     | 90x     |
| 13             | 80         | 402 ms          | 4585 ms   | <1 ms                | 298 ms    | 15x     |

Testy przeprowadzone na komputerze z procesorem Intel Core i5 3210M (2.5GHz).

Program skompilowany z optymalizacjami (O2).

#### Wnioski

- Znacznie szybszy od wersji naiwnej
- Im rzadszy graf, tym większy zysk
- Pozwala na obliczenie w sensownym czasie wyniku, dla lekko większych danych wejściowych
  - Nie zmienia złożoności obliczeniowej
  - Dla grafów gęstych nie jest zbyt pomocny
    - Jeśli nam to wystarczy, możliwe że łatwiej będzie udowodnić konieczność istnienia cyklu Hamiltona, aniżeli jego wyznaczenie

#### Literatura

W. Lipski, "Kombinatoryka dla informatyków"

• R. J. Wilson, M. Kubale, "Wprowadzenie do teorii grafów", 1985

#### Dziękujemy za uwagę!

Opracowanie wraz z projektem dostępne na https://github.com/michlord/Metody-optymalizacji

Przygotowali: Damian Dyńdo, Michał Zimniak