Instituto Tecnológico de Buenos Aires

22.59 Electrónica I

Experiencia de laboratorio 2

Grupo 1

González Orlando, Tomás Agustín	57090
Parra, Rocío	57669
Pierdominici, Matías Nicolás	57498
Stewart Harris, María Luz	57676

Profesores

Alcocer, Fernando Gardella, Pablo Jesús Oreglia, Eduardo Víctor

Presentado: 14/11/2018

$\mathbf{\acute{I}ndice}$

1	Intr	oducci	ón																2
2	Am	plificac	lor																2
	2.1		s del amplificador																
			Polarización																
		2.1.2	Modelo incremental																5
		2.1.3	Circuito incremental																5
	2.2	Medici	ón del amplificador .		٠		٠	٠							٠	٠			7
3	Con	clusiór	1																7

1 Introducción

En el presente informe se desarrollará el análisis teórico de un amplificador implementado a partir de transistores, la construcción de dicho amplificador y la medición de sus características. El objetivo de este análisis es comprobar en la práctica algunos de los aspectos más destacados de los circuitos estudiados durante el curso de Electrónica I, dentro de un marco de simulación de recursos escasos.

2 Amplificador

Se construyó el amplificador de la figura 1. Tal como se observa en ella, el circuito es un colector común con una fuente de corriente, cuyo objetivo es polarizar y ser carga activa.

Figura 1: Amplificador

Los valores de los componenetes del circuito son los indicados en la siguiente tabla:

Componente	Valor
R_S	560Ω
R_L	$2.2 \mathrm{k}\Omega$
R_B	$680 \mathrm{k}\Omega$
R_1	$10 \mathrm{k}\Omega$
C	$1\mu F$
V_{POL}	20V
$Q_1 = Q_2 = Q_3$	BC547

Table 1: Tabla de componentes

Las caracterisiticas de los transistores son las siguientes ¹ :

$H_{FE}(DC)$	h_{fe} (AC)	V_A				
110	165	98V				

Table 2: Caracterísiticas de los transistores

2.1 Análisis del amplificador

En esta sección se analizará la polarización y las características de pequeñas señales del amplificador.

2.1.1 Polarización

Para analizar la polarización del circuito, se pasivarán las fuentes del alterna. Lo primero a calcular es la fuente de corriente de la figura 2.

Figura 2: Fuente de corriente constante

Suponiendo que Q_2 y Q_3 son transistores iguales, tambien sus corrientes de base son iguales, y por ende sus corriente de colector también lo son, y asumiendo que la corriente de base es despreciable frente a la de colector, entonces $I_{OUT} = I_{REF}$.

Recorriendo la malla de entrada de Q_3 obtenemos que:

$$I_{REF} = \frac{V_{POL} - V_{BE}}{R_1} \tag{1}$$

Conociendo las características de la fuente de corriente, se analizará la polarización del circuito:

¹Datasheet del BC547: Sparkfun.com. (2018). [online] Disponible en: https://www.sparkfun.com/datasheets/Components/BC546.pdf [Accedido 10 Nov. 2018].

Figura 3: Polarización del amplificador

Como $I_E=I_O,$ e I_O se obtiene a partir de la ecuación 1, entonces:

$$I_E = (H_{FE} + 1) I_B = I_O$$
 (2)

despejando I_B se obtiene:

$$I_B = \frac{I_O}{H_{FE} + 1} \tag{3}$$

$$I_C \cong I_O$$
 (4)

La tensión colector emisor se puede calcular de la siguiente manera:

$$V_C = V_{POL} \tag{5}$$

$$V_E = V_{POL} - R_B I_B - V_{BE} \tag{6}$$

Restando ambas expresiones obtenemos:

$$V_{CE} = I_B R_B + V_{CE} \tag{7}$$

Finalmente reemplazando con los valores de los componentes de las tablas 1 y 2, obtenemos :

$$I_B = 17.5 \mu A$$

$$I_C = 1.93 \text{mA}$$

$$V_{CE} = 12.6 V$$

2.1.2 Modelo incremental

Los tres transistores comparten la misma corriente de colector y también de base, ya que los tres transistores son iguales. Por ende poseen los mismos parámetros híbridos.

$$\frac{\widehat{1}}{h_{oe}} \cong \frac{V_A}{I_{Cq}}$$

$$\widehat{h_{ie}} \cong (h_{fe} + 1) \frac{V_T}{I_{Cq}}$$

Evaluando las expresiones anteriores con los resultados obtenidos anteriormente, y con el contenido de las tablas 1 y 2, obtenemos :

$$\frac{1}{h_{oe}} \cong 50.8 \text{k}\Omega$$
$$h_{ie} \cong 2.2 \text{k}\Omega$$

2.1.3 Circuito incremental

En la siguiente figura se puede observar el circuito incremental del amplificador. $R_{OS} \cong \frac{1}{h_{oe}} \cong 50.8 \text{k}\Omega$ es la impedancia de salida de la fuente espejo.

Figura 4: Circuito incremental

A partir del circuito incremental se obtuvieron las siguientes relaciones:

$$R_D = \left(R_L / / \frac{1}{h_{oe}} / / R_{OS}\right) \tag{8}$$

$$v_O = (h_{fe} + 1) i_B R_D \tag{9}$$

$$v_I = (h_{fe} + 1) i_B R_D + h_{ie} i_B \tag{10}$$

Defieniendo $\Delta v = \frac{v_O}{v_I}$ y simplificando:

$$\Delta v = \frac{v_O}{v_I} = \frac{(h_{fe} + 1) R_D}{(h_{fe} + 1) R_D + h_{ie}}$$
(11)

Tambien se define $\Delta v_S = \frac{v_O}{v_S}$

$$\Delta v_S = \frac{v_O}{v_S} = \frac{v_I}{v_S} \frac{v_O}{v_I} = \frac{v_I}{v_S} \Delta V \tag{12}$$

Donde

$$\frac{v_I}{v_S} = \frac{R_{IA}}{R_{IA} + R_S} \tag{13}$$

Dividiendo la ecuación 10 por i_B obtenemos R_I

$$R_I = \frac{v_I}{i_B} = (h_{fe} + 1) R_D + h_{ie}$$
(14)

$$R_{IA} = R_I / / R_B = \frac{R_I R_B}{R_I + R_B} \tag{15}$$

Para hallar la impedancia de salida se pasivó la fuente v_S , se conectó a la salida un generador y se calculó el cociente entre la tensión y la corriente.

$$R_O = \left(\frac{h_{ie} + (R_S//R_B)}{h_{fe} + 1}\right) / \frac{1}{h_{oe}}$$
 (16)

$$R_{OA} = R_O / / R_{OS} \tag{17}$$

En cuanto a la ganancia de corriente $\Delta i = \frac{i_{R_L}}{i_{IN}}$:

$$\Delta i = \frac{R_B}{R_B + R_I} \frac{\left(\frac{1}{h_{oe}} / / R_{OS}\right)}{\left(\frac{1}{h_{oe}} / / R_{OS}\right) + R_L} (h_{fe} + 1) \tag{18}$$

Finalemente reemplazando por los valores obtenidos de las tablas 1 y 2, en las ecuaciones, se obtuvieron los siguientes valores:

$$\Delta v = 0.994$$

$$\Delta v_S = 0.991$$

$$R_I = 338 \mathrm{k}\Omega$$

$$R_{IA} = 226 k\Omega$$

$$R_O = 13.3\Omega$$

 $R_{OA} = 13.3\Omega$
 $\Delta i = 102$

2.2 Medición del amplificador

Se realizó el amplificador en protoboard (figura 5) y se midieron los parametros calculados anteriormente:

Figura 5: Circuito implementado

$$\Delta v = 0.99$$

$$\Delta v_S = 0.99$$

$$R_{IA} = 175 \text{k}\Omega$$

$$R_{OA} = 145\Omega$$

$$\Delta i = 78$$

3 Conclusión

Comparando los resultados de la medición se observa que hay gran diferencia en las impedancias de entrada y de salida comparando con las teóricas. Esto se pudo deber a que el h_{fe} utilizado no sea el correcto, debido a que el fabricante lo da en un rango, y los cálculos se realizaron con el típico.

Las características más sobresalientes del circuito son su alta impedancia de entrada, su baja impedancia de salida, la ganancia de tensión es prácticamente uno y su alta ganancia de corriente.