Exercises for Section 11.1

Ex 1. The set $R = \{(5,0), (5,1), (5,2), (5,3), (5,4), (4,0), (4,1), (4,2), (4,3), (3,0), (3,1), (3,2), (2,0), (2,1), (1,0)\}$ is the > relation on A. Diagram of R:

Ex 2. The set $R = \{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,2), (2,4), (2,6), (3,3), (3,6), (4,4), (5,5), (6,6)\}$ is the | (divides) relation on A. Diagram of R:

Ex 3. The set $R = \{(0,0), (1,0), (1,1), (2,0), (2,1), (2,2), (3,0), (3,1), (3,2), (3,3), (4,0), (4,1), (4,2), (4,3), (4,4), (5,0), (5,1), (5,2), (5,3), (5,4), (5,5)\}$ is the \geq relation on A. Diagram of R:

Ex 4.

 $A = \{0, 1, 2, 3, 4, 5\} \text{ and } R = \{(0, 0), (0, 4), (1, 1), (1, 3), (1, 5), (2, 2), (2, 4), (3, 3), (3, 1), (4, 4), (4, 0), (4, 2), (5, 5), (5, 1)\}.$

Ex 5. $A = \{0, 1, 2, 3, 4, 5\}$ and $R = \{(1, 2), (2, 5), (3, 3), (4, 2), (4, 3), (5, 0)\}.$

Ex 6. $R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : x \equiv y \pmod{5}\}.$

Ex 7. $R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : y - x \in \mathbb{N}\}.$

 $\mathbf{Ex}\ \mathbf{8.}\ \mathrm{Diagram}\ \mathrm{of}\ \mathrm{R} \mathrm{:}$

Ex 9. The number of relations on A is equivalent to the number of subsets of $A \times A$. Because |A| = 6, it follows that $|A \times A| = |A| \cdot |A| = 6^2 = 36$. The number of subsets of a set with 36 elements is then 2^{36} . Thus there are 2^{36} different relations on A.

Ex 10. The set $\{(x,x):x\in\mathbb{R}\}$ is the equality relation on \mathbb{R} . When we subtract that from cartesian product of \mathbb{R} with itself we get the inequality relation on \mathbb{R} .

Ex 11. There are $2^{|A^2|}$ different relations on A.

Ex 12. R is the \geq relation on \mathbb{R} .

Ex 13. R is the inequality relation on \mathbb{R} .

Ex 14. R is the < relation on \mathbb{Z} .

Ex 15. $R = \{(x, y) \in \mathbb{Z} : 3|abs(x - y)\}.$