静 电场是无旋的, 电 剪	
$\varphi(p_2) - \psi(p_1) = -\int_{p_1}^{p_2} \vec{E} \cdot d\vec{l}$	
◆ Ēdī = 0 . 与路径无关.	
$d\varphi = -\vec{E} \cdot d\vec{l} .$	
$(d\varphi = \frac{\partial V}{\partial x}dx + \frac{\partial V}{\partial y}dy + \frac{\partial V}{\partial z}dz = \nabla \varphi \cdot dt)$	
$\nabla \varphi = -\vec{E} \cdot \vec{E} = -\nabla \varphi$	
$\psi(p) = \int_{p}^{\infty} \tilde{E} \cdot d\tilde{t}$	
V与 产在研究问题中是等价的.	
$\overrightarrow{E} = \frac{Q \overrightarrow{r}}{4ab_0} = -\frac{Q}{4ab_0} \nabla \frac{1}{\Gamma}$	
$\overrightarrow{E} = \nabla \varphi \cdot \varphi = \frac{Q}{4\pi k_B r}$	
静电学核心问题	
$ \rho \longrightarrow \varphi \longrightarrow \vec{E} $	
eg. 均匀电场	
取 x =0 为 电剪 o.t.、	
$\varphi_{\omega} = \int_{\rho}^{\sigma} \vec{E} \cdot d\vec{l} = \vec{E} \cdot (-\vec{x})$	
· 能量	
後性介质 静电场无磁场。	
W= \$\left(\vec{E}\) \vec{D}\ dV \(\vec{E}\) \vec{E}\[\vec{E}\]	
$\vec{E} \cdot \vec{D} = -\nabla \varphi \cdot \vec{D} = -\nabla (\varphi \vec{D}) + \varphi \nabla \cdot \vec{D} = \varrho \varphi - \nabla \cdot (\varphi \vec{D})$	
「□(yō)dV = ∫yō dŠ 在 r→ popt. を決ちめの。	
$ \oint \mathcal{D} dS = Q $	
the $W = \frac{1}{2} \int \rho \varphi dV$ $\varphi = \int \frac{\rho'(\vec{r})}{4\pi \epsilon_0 r} dV'$	

静电势的微分对	隆和边值关系.						
Y = 5	P dV 4240 r						
10	₹ E ⇒ ∇	j²φ=- β 液松	治 解				
\ □	$\vec{p} = \ell_{f}$.	2 VA 1 0	70 12				
边值美新,							
	1 1 (D-D)	= 0 = 0	4 6 dr 1 -				
	Ezt = Ert Y	$= \int_{l}^{\infty} \bar{E}_{t} dl_{t} \implies \psi_{\Delta} =$	Ψ,				
	P.	游 名 Ē- P是滗量	-18 BCH Z HC	115体结合 克尼			
-		•					
而且九日	711 版 1 4 8 阿 11 版 2.	→ 极 4.走导	神國 3元 50.	$\mathcal{E} \frac{\partial \mathcal{V}_{s}}{\partial \vec{k}} = 0$	$= -\sigma \cdot \frac{\partial \gamma_i}{\partial \vec{n}}$	=- 5	
	边值袋: 求解E吸 边界条件: 体条边边	成内, 分階的影响. 素					