תרגילים 8: רדוקציות

שאלה 1 נתונה השפה הבאה:

$$L_{\geq 3} = \left\{ \langle M \rangle \mid |L(M)| \geq 3 \right\}$$

מכילה 3 מכילה שמקבלות טיורינג שמקבלות מכונות של מכונות ב $L_{\geq 3}$ מכילה ע"י רדוקציה מר $L_{\rm acc}$ מ''י רדוקציה ל $L_{\geq 3}\notin R$

שאלה 2 נתונה השפה הבאה:

$$L = \{ \langle M_1, M_2, w \rangle \mid w \in L(M_1) \land w \notin L(M_2) \}.$$

 $ar{L}_{
m acc}$ -מ"י רדוקציה מL
otin RE הוכיחו כי

שאלה 3 תהי $\,L$ השפה

 $L_{1a} = ig\{\langle M
angle \mid a$ - מקבלת בדיוק מילה אחת המתחילה $M ig\}$

- $.L_{1a}$ ל- ל $.\bar{L}_{
 m acc}$ מצאו פונקצית רדוקציה מ
 - $L_{1a}
 otin RE$ ב) הוכיחו כי
 - $L_{1a}
 otin R$ הוכיחו כי

שאלה 4 תהי $\,L\,$ השפה

 $L_{\geq 1a} = ig\{\langle M
angle \mid a$ -מקבלת לפחות מילה אחת המתחילה ב $M ig\}$

- L_{1a} -ל ל- $L_{
 m acc}$ מצאו פונקצית רדוקציה מ
 - $.L_{1a}
 otin R$ בי הוכיחו כי

שאלה 5 תהי $\,L$ השפה

$$L_{M_1 \subset M_2 \subset M_3} = \left\{ \langle M_1, M_2, M_3 \rangle \mid L(M_1) \subset L(M_2) \subset L(M_3) \right\}$$

- $.L_{M_1\subset M_2\subset M_3}$ ל- ל- $ar{L}_{
 m acc}$ מצאו פונקצית רדוקציה מ-
 - I_{M} הוכיחו בי $\notin R$ הוכיחו בי

שאלה 6 תהי $L_{arepsilon}$ השפה הבאה:

 $L_{arepsilon} = ig\{\langle M
angle \ | \ arepsilon$ עוצרת על מילת הריקה $M ig\}$

- אט כריעה? האם $L_{arepsilon}$
- בילה? האם $L_{arepsilon}$ קבילה?

שאלה 7 נתונה השפה הבאה:

$$L = \{ \langle M \rangle \mid L(M) = \varepsilon \} .$$

 $.L_{
m acc}$ - מ"י רדוקציה מL
otin R הוכיחו כי

שאלה 8 קבעו אם הטענה הבאה נכונה, לא נכונה, או שקולה לבעיה פתוחה. . $\bar{L} \leq L$ שפה או קיימת רדוקציה לב $L \neq \Sigma^*$ כך ש- $L \in R$ לכל שפה

תשובות

שאלה 1

פונקצית הרדוקציה:

$$f(x) = \begin{cases} \langle M' \rangle & x = \langle M, w \rangle \\ \langle M_{\emptyset} \rangle & x \neq \langle M, w \rangle \end{cases}$$

w כאשר M_\emptyset היא מ"ט הדוחה כל קלט ו- M' היא מ"ט שעל כל קלט y, מתעלמת מ- y ומריצה את M על w ועונה מ"ט הדוחה כל קלט ו- M' היא מ"ט שעל כל קלט ו

אבחנה:

$$L(M') = \begin{cases} \Sigma^* & w \in L(M) \\ \emptyset & w \notin L(M) \end{cases}$$

נכונות הרדוקציה:

נוכיח כי

$$x \in L_{\mathrm{acc}} \Leftrightarrow f(x) \in L_{\geq 3}$$
.

ולכן
$$L\left(M'
ight)=\Sigma^*$$
 ולכן $f(x)=\langle M'
angle \iff w\in L(M)$ - ו $x=\langle M,w
angle \iff x\in L_{\mathrm{acc}}$ ולכן $f(x)=\langle M'
angle \iff x\in L(M)$ ולכן $f(x)\in L_{\geq 3} \iff |L\left(M'
ight)|=\infty$

אם מקרים: $\Leftarrow x \notin L_{\mathrm{acc}}$

$$f(x)
otin L_{\geq 3} \quad \Leftarrow \quad |L\left(M_{\emptyset}
ight)| = 0 \quad \Leftarrow \quad f(x) = \langle M_{\emptyset}
angle \quad \Leftarrow \quad x
eq \langle M, w
angle \quad :1$$
 מקרה ב

$$|L\left(M'\right)|=0\quad \Leftarrow\quad L\left(M'\right)=\emptyset \text{ האבחנה } f(x)=\left\langle M'\right\rangle \quad \Leftarrow\quad w\notin L(M) \text{ -1 } x\neq \left\langle M,w\right\rangle \text{ ...}$$
 מקרה בי $f(x)\notin L$

 $L_{\geq 3}
otin R$ מתקיים, $L_{
m acc}
otin R$, מכיוון ש- ב $L_{
m acc}
otin L_{
m acc}
otin L_{
m acc}
otin L_{
m acc}$

שאלה 2

פונקצית הרדוקציה:

$$f(x) = \begin{cases} \langle M^*, M, w \rangle & x = \langle M, w \rangle \\ \langle M^*, M_{\emptyset}, \varepsilon \rangle & x \neq \langle M, w \rangle \end{cases}$$

כאשר

- היא מ"ט שמקבלת כל קלט M^*
 - . היא מ"ט שדוחה כל קלט. M_{\emptyset}

נכונת הרדוקציה:

ראשית, f חשיבה כי ניתן לבנות מ"ט שתבדוק האם $x=\langle M,w\rangle$ האם שתבדוק מ"ט שתבדוק מ"ט לבנות מ"ט $x=\langle M,w\rangle$ ואם $x=\langle M,w\rangle$ ואם כן, תחזיר קידוד $x=\langle M^*,M,w\rangle$.

:שני מקרים $\Leftarrow x \in ar{L}_{
m acc}$

$$f(x)\in ar{L} \quad \Leftarrow \quad arepsilon
otin L\left(M_{\emptyset}
ight)$$
 - ו $arepsilon \in L\left(M^{st}
ight)$ - $arepsilon \in L\left(M^{st}
ight)$ - ו $arepsilon \in L\left(M^{st}
ight)$ - $arepsilon \in L\left(M^{st}
ight)$ - ا $arepsilon \in L\left(M^{st}
ight)$

$$w \notin L\left(M
ight)$$
 -ו $w \in L\left(M^*
ight)$ ו- $f(x) = \langle M^*, M, w \rangle \quad \Leftarrow \quad w \notin L(M)$ - $x = \langle M, w \rangle$: $f(x) \in L \quad \Leftarrow$

$$w \notin L\left(M\right)$$
 -1 $w \in L\left(M^*\right)$ -1 $f(x) = \langle M^*, M, w \rangle \quad \Leftarrow \quad w \in L(M)$ -1 $x = \langle M, w \rangle \quad \Leftarrow \quad x \notin \bar{L}_{\mathrm{acc}}$ אם $f(x) \notin L \Leftarrow$

L
otin RE ממשפט הרדוקציה מתקיים, ומכיוון ש $ar{L}_{
m acc}
otin RE$ ממשפט הרדוקציה מתקיים, ומכיוון ש

שאלה 3

א) פונקצית הרדוקציה:

$$f(x) = \begin{cases} \langle M' \rangle & x = \langle M, w \rangle \\ \{\text{"ab"}\} & x \neq \langle M, w \rangle \end{cases}$$

:כאשר M' המ"ט הבאה

y על כל קלט =M'

. אם "ab" אם (1

. ועונה כמוה w על M מריצה מריצה (2

אבחנה:

$$L(M') = \begin{cases} \Sigma^* & w \in L(M) \\ \{ab\} & w \notin L(M) \end{cases}$$

הוכחת הנכונות:

אם שני מקרים: $\Leftarrow x \in \bar{L}_{\mathrm{acc}}$

$$f(x) \in L_{1a} \quad \Leftarrow \quad f(x) = \{\text{"ab"}\} \quad \Leftarrow \quad x \neq \langle M, w \rangle \quad \text{:1}$$
מקרה ב

$$f(x) \in L_{1a} \quad \Leftarrow \quad L\left(M'
ight) = \{\text{``ab''}\}$$
 מקרה 2: $w
otin L(M) - 1$ מקרה 2: מקרה 2:

$$L\left(M'
ight)=\Sigma^*$$
 אם $f(x)=\langle M'
angle \iff w\in L(M)$ - $x=\langle M,w
angle \iff x\notin \bar{L}_{\mathrm{acc}}$ אם $\langle M'
angle \notin L_{1a} \iff a$ מכילה יותר ממילה אחת המתחילה ב- $L\left(M'
ight) \iff f(x)\notin L_{1a} \iff f(x)\notin L_{1a}$

 $ar{L}_{
m acc} \leq L_{1a}$ לסיכום, הוכחנו רדוקציה

 $L_{1a}
otin RE$ מכיוון ש- $ar{L}_{
m acc}
otin ar{L}_{
m acc}$ ממשפט הרדוקציה מתקיים

שאלה 4

א) פונקצית הרדוקציה:

$$f(x) = \begin{cases} \langle M' \rangle & x = \langle M, w \rangle \\ \langle M_{\emptyset} \rangle & x \neq \langle M, w \rangle \end{cases}$$

:כאשר M' המ"ט שדוחה כל קלט ו- M' המ"ט הבאה

y על כל קלט =M'

- . דוחה $\Leftarrow y \neq "ab"$ אם (1
- . על w ועונה כמוה M אחרת מריצה M

אבחנה:

$$L\left(M'\right) = \begin{cases} \{\text{``ab''}\} & w \in L(M) \\ \emptyset & w \notin L(M) \end{cases}$$

הוכחת הנכונות:

$$L\left(M'
ight)=\left\{ "ab"
ight\}$$
 ולפי האבחנה ול $f(x)=\langle M'
angle \quad \Leftarrow\quad w\in L(M)$ - ו $x=\langle M,w
angle \quad \Leftarrow\quad x\in L_{
m acc}$ אם $f(x)\in L_{>1a}\quad \Leftarrow\quad \langle M'
angle \in L_{>1a}$

אם מקרים: $\Leftarrow x \notin L_{\mathrm{acc}}$

$$L\left(M_{\emptyset}
ight)=\emptyset$$
 -1 $f(x)=\langle M_{\emptyset}
angle \quad x
eq \langle M,w
angle \quad :1$ בקרה $f(x)
otin L_{\geq 1a} \quad \Leftarrow \quad L\left(M_{\emptyset}
ight)
otin L_{\geq 1a} \quad \Leftarrow \quad L\left(M_{\emptyset}
ight)$ בא מכילה מילה המתחילה ב- $f(x)
otin L_{\geq 1a} \quad \Leftrightarrow \quad L\left(M_{\emptyset}
ight)$

$$L\left(M_{\emptyset}
ight)
otin L_{1a} \;L\left(M'
ight)=\emptyset$$
 לפי האבחנה $w
otin L(M)$ -1 $x=\langle M,w \rangle$ $x=\langle M,w \rangle$ בקרה $x=\langle M,w \rangle$ בקרה $x=\langle M,w \rangle$ בי

 $L_{
m acc} \leq L_{\geq 1a}$ לסיכום, הוכחנו רדוקציה

 $L_{\geq 1a}
otin R$ מכיוון ש- ב $L_{
m acc}
otin R$ ממשפט הרדוקציה מתקיים

שאלה 5

א) פונקצית הרדוקציה:

$$f(x) = \begin{cases} \langle M_{\emptyset}, M', M^* \rangle & x = \langle M, w \rangle \\ \langle M_{\emptyset}, M_{\text{even}}, M^* \rangle & x \neq \langle M, w \rangle \end{cases}$$

כאשר

- ,היא מ"ט שדוחה כל קלט, $M_\emptyset ullet$
- ,היא מ"ט שמקבלת כל קלט M^*

y על כל קלט =M'

.אם
$$|y|$$
 אי-זוגי אם (1

. על w ועונה כמוה מריצה M אחרת מריצה (2

אבחנה:

$$L\left(M'\right) = \begin{cases} \Sigma^* & w \in L(M) \\ \{y \ : \ |y| \mod 2 = 0\} & w \notin L(M) \end{cases}$$

הוכחת הנכונות:

אם אפני מקרים: $x \in \bar{L}_{\mathrm{acc}}$ אם

:1 מקרה

$$x \neq \langle M, w \rangle$$

$$L\left(M_{\emptyset}\right) \subset L\left(M_{\mathrm{even}}\right) \subset L\left(M^{*}\right) \text{ -1 } f(x) = \langle M_{\emptyset}, M_{\mathrm{even}}, M^{*} \rangle \quad \Leftarrow \quad .f(x) \in L_{M_{1} \subset M_{2} \subset M_{3}} \quad \Leftarrow \quad .f(x) \in L_{M_{1} \subset M_{2} \subset M_{3}}$$

מקרה 2:

$$w
otin L(M')=\{y:|y|\mod 2=0\}$$
 ולפי האבחנה $f(x)=\langle M'
angle$ $f(x)=\langle M'
angle$ $L(M_\emptyset)\subset L(M')\subset L(M^*)$ \Leftrightarrow
$$f(x)\in L_{M_1\subset M_2\subset M_2}$$

$$x
otin ar{L}_{
m acc}$$
 אם $x
otin ar{L}_{
m acc}$ אם $w\in L(M)$ -1 $x=\langle M,w
angle$ \Leftrightarrow $L\left(M'
ight)=\Sigma^*$ ולפי האבחנה $f(x)=\langle M_\emptyset,M',M^*
angle$ \Leftrightarrow $L\left(M'
ight)
otin L\left(M^*
ight)$ \Leftrightarrow $f(x)
otin L_{M_1\subset M_2\subset M_3}$ \Leftrightarrow

 $ar{L}_{
m acc} \leq L_{M_1 \subset M_2 \subset M_3}$ לסיכום, הוכחנו רדוקציה

- $L_{M_1\subset M_2\subset M_3}
 otin R$ מכיוון ש- ממשפט הרדוקציה מתקיים ב ממשפט במ
- $L_{M,CM,CM}
 otin RE$ מכיווו ש- $\bar{L}_{con}
 otin RE$ ממשפט הרדוקציה מתקיים

 $:L_{
m acc}$ -ל $L_{arepsilon}$ ל ל-

$$f(x) = \begin{cases} \langle M' \rangle & x = \langle M, w \rangle \\ \langle M_{\text{loop}} \rangle & x \neq \langle M, w \rangle \end{cases}$$

:כאשר M' -מ"ט שלא עוצרת על אף קלט שלא מ"ט מ"ט מ"ט מ

y על כל קלט =M'

- .arepsilon מריצה M על
- . מקבלת $M' \Leftarrow M'$ מקבלת M
 - .אם $M' \Leftarrow$ מקבלת אם (3

<u>אבחנה:</u>

$$L\left(M'
ight) = egin{cases} \Sigma^* & arepsilon & arepsilon \ \emptyset & arepsilon & arepsilon \ \end{pmatrix}$$
 עוצרת על M

הוכת הנכונות:

$$\langle M'
angle \in L_{
m acc} \quad \Leftarrow \quad L\left(M'
ight) = \Sigma^* \quad \Leftarrow \quad arepsilon \quad w$$
עוצרת על א ווארת על א M -ו $x = \langle M, w
angle \quad \Leftrightarrow \quad x \in L_arepsilon \quad f(x) \in L_{
m acc} \quad \Leftarrow$

:שני מקרים $\Leftarrow x \notin L_{\varepsilon}$

$$f(x)
otin L_{\mathrm{acc}} \quad \Leftarrow \quad f(x) = \langle M_{\mathrm{loop}}
angle \quad \Leftarrow \quad x
otin \langle M, w
angle \quad :1$$
 מקרה ב

מקבלת M' ו- M' אשר שר לא $\Leftrightarrow L\left(M'\right)=\emptyset \Leftrightarrow \varepsilon$ לא עוצרת על M ו- $x=\langle M,w\rangle$ בערה בינ מקרה בינ M' לא עוצרת על M'

שאלה **7** פונקצית הרדוקציה:

$$f(x) = \begin{cases} \langle M' \rangle & x = \langle M, w \rangle \\ \langle M_{\emptyset} \rangle & x \neq \langle M, w \rangle \end{cases}$$

כאשר לכל מכונת טיורינג שדוחה כל קלט. באשר M_{\emptyset} כאשר y קלט M'

- .שומרת את y על סרט נוסף \bullet
 - w על M על \bullet
- y=arepsilon אם M מקבלת $M' \Leftarrow M$ מקבלת ס
 - * אם כו. מקבלת.

אם M דוחה $M' \Leftarrow \circ$

אבחנה

$$L(M') = \begin{cases} \{\varepsilon\} & w \in L(M) \\ \emptyset & w \notin L(M) \end{cases}.$$

נכונות הרדוקציה

- . $\langle M_\emptyset \rangle$ אם אירה קידוד קבוע מכונת טיורינג שבודקת האם אם $x=\langle M,w \rangle$ אם אם טיורינג שכונת טיורינג שבודקת אם אם אם כן, מחזירה קידוד של y ע"י הוספת קוד שמעתיק את או לסרט לסרט לסרט של אם כן, מחזירה קידוד של לy
 - $w \in L_{\mathrm{acc}} \Leftrightarrow f(x) \in L$ נראה כי (2)

 $x \in L_{\mathrm{acc}}$ אם

$$w \in L(M)$$
 -1 $x = \langle M, w \rangle \Leftarrow$

$$L(M') = \{ \varepsilon \}$$
 ולפי האבחנה $f(x) = \langle M' \rangle \Leftarrow$

$$f(x) \in L \Leftarrow$$

 $x \notin L_{\mathrm{acc}}$ אם $x \notin L_{\mathrm{acc}}$

- $f(x) \notin L \Leftarrow L(M_{\emptyset}) = \emptyset$ -1 $f(x) = \langle M_{\emptyset} \rangle \Leftarrow x \neq \langle M, w \rangle$ •
- $f(x) \notin L \Leftarrow L\left(M'
 ight) = \emptyset$ ולפי האבחנה ולפי $f(x) = \langle M' \rangle \Leftarrow w \notin L(M)$ ולפי ה $x = \langle M, w \rangle$

 $L \notin R$, ומכיוון שר הרדוקציה ממשפט הרדוקציה ומכיוון שר בוקציה ומכיוון שר ומכיוון שר ומכיוו

 $L=L_{
m acc}$: הטענה לא נכונה. דוגמה נגדית אטענה שאלה 8

נניח בשלילה כי $ar{L} \leq L$. אזי

 $L_{
m acc}\in RE$ - בסתירה לכך ש, $L_{
m acc}
otin T_{
m acc}
otin T_{
m acc}
otin RE$ אז $\overline{L_{
m acc}}
otin RE$ אז המשפט הרדוקציה, מכיוון ש. $\overline{L_{
m acc}}
otin RE$