COMPLETE SET OF CLAIMS

1	1. (Currently Amended) A semiconductor laser, comprising:
2	an n-type cladding layer that has n-type conductivity;
3	an active layer formed on top of the n-type cladding layer;
4	a p-type cladding base layer that is formed on top of the active layer and has
5	p-type conductivity;
6	a current-blocking layer that is formed on specified parts of an upper surface of
7	the p-type cladding base layer and substantially has n-type conductivity, wherein the current-
8	blocking layer includes either $Al_{0.5}In_{0.5}P$ or $(Al_xGa_{1-x})_{0.5}In_{0.5}P$, where $0.7 < x < 1$; and
9	
10	a p-type buried cladding layer that has p-type conductivity and is formed so as to
11	cover the current-blocking layer and contact remaining parts of the upper surface of the p-type
12	cladding base layer,
13	wherein the current-blocking layer has at least two regions having different
14	concentrations (hereafter "N1" and "N2" where N1 <n2) a="" adjacent="" carriers,="" n-type="" of="" region="" td="" to<=""></n2)>
15	an interface between the p-type cladding base layer and the p-type buried cladding layer having
16	the N1 concentration of n-type carriers and a part or all of a remaining region of the current-
17	blocking layer region having the N2 concentration, and the current-blocking layer (13) having a
18	lower refractive index than the cladding base layer (5) and the buried cladding layer (7).
1	2. (Original) A semiconductor laser according to Claim 1,
2	wherein the current-blocking layer includes a first layer that contacts the p-type
3	cladding base layer and a second layer that is provided on top of the first layer, a concentration

- of n-type carriers in the first layer being N1 and a concentration of n-type carriers in the second
- 5 layer being N2.
- 1 3. (Original) A semiconductor laser according to Claim 2,
- wherein the first layer has a different composition to the second layer.
- 1 4. (Original) A semiconductor laser according to Claim 2,
 - wherein one of the first layer and the second layer is composed of a plurality of sublayers that have at least two different compositions.

- wherein the second layer is co-doped with a p2 concentration of p-type carriers
- 3 and an n2 (where n2>p2) concentration of n-type carriers, and n2 and p2 are set so that
- 4 n2-p2=N2.
- 1 6. (Original) A semiconductor laser according to Claim 5,
- 2 wherein $0cm-3 \le N1 \le 1017cm-3$ and N2 > 1017cm-3.
- 1 7. (Original) A semiconductor laser according to Claim 4,
- 2 wherein $0cm-3 \le N1 \le 1017cm-3$ and N2 > 1017cm-3.
- 1 8. (Original) A semiconductor laser according to Claim 3,
- 2 wherein $0 \text{cm}^{-3} \le \text{N1} \le 10^{17} \text{cm}^{-3}$ and $\text{N2} > 10^{17} \text{cm}^{-3}$.
- 1 9. (Original) A semiconductor laser according to Claim 2,
- 2 wherein $0 \text{cm}^{-3} \le \text{N1} \le 10^{17} \text{cm}^{-3}$ and $\text{N2} > 10^{17} \text{cm}^{-3}$.

	1	10.	(Original) A semiconductor laser according to Claim 1,
	2		wherein $0 \text{cm}^{-3} \le \text{N} 1 \le 10^{17} \text{cm}^{-3}$ and $\text{N} 2 > 10^{17} \text{cm}^{-3}$.
	1	11.	(Currently Amended) A semiconductor laser, comprising:
	2		an n-type cladding layer that has n-type conductivity;
1	3		an active layer formed on top of the n-type cladding layer;
1	4		a p-type cladding base layer that is formed on top of the active layer and has
	5	p-type conduc	tivity;
	6		a current-blocking layer that is formed on specified parts of an upper surface of
	7	the p-type cla	adding base layer and substantially has n-type conductivity, wherein the current-
	8	blocking layer	r includes either $Al_{0.5}In_{0.5}P$ or $(Al_xGa_{1-x})_{0.5}In_{0.5}P$, where $0.7 < x < 1$; and
	9		a p-type buried cladding layer that has p-type conductivity and is formed so as to
	10	cover the curr	rent-blocking layer and contact remaining parts of the upper surface of the p-type
	11	cladding base	layer,
	12	·	the current-blocking layer having a region with p-type conductivity adjacent to
	13	the interface	between the p-type cladding base layer and the p-type buried cladding layer and
	14	another regio	n with n-type conductivity, and the current-blocking layer (13) having a lower
	15	refractive inde	ex than the p-type cladding base layer (5) and the p-type buried cladding layer (7).
	1	12.	(Currently Amended) A semiconductor laser, comprising:
	2		an n-type cladding layer that has n-type conductivity;
	3		an active layer formed on top of the n-type cladding layer;
	4	-	a p-type cladding base layer that is formed on top of the active layer and has
	5	p-type conduc	etivity:

	524/8.9100
6	an interjacent layer that has p-type conductivity and is formed on specified parts
7	of an upper surface of the p-type cladding base layer and contacts the p-type cladding base layer;
8	a current-blocking layer that is formed on the interjacent layer and has n-type
9	conductivity, wherein the current-blocking layer includes either Al _{0.5} In _{0.5} P or (Al _x Ga _{1-x}) _{0.5} In _{0.5} P
10	where $0.7 < x < 1$; and
11	a p-type buried cladding layer that has p-type conductivity and is formed so as to
12	cover the current-blocking layer and contact remaining parts of the upper surface of the p-type
13	cladding base layer,
14	the interjacent layer being positioned between the current-blocking layer and the
15	p-type cladding base layer so that a lower surface of the current-blocking layer is separated from
16	an upper surface of the p-type cladding base layer, and the current-blocking layer (13) having a
17	lower refractive index than the p-type cladding base layer (5) and the p-type buried cladding
18	layer (7).
1	13. (Original) A semiconductor laser according to Claim 12,
2	wherein the p-type buried cladding layer has a higher refractive index of light
3	than the current-blocking layer.

- 14. (Original) A semiconductor laser according to Claim 11,
- wherein the p-type buried cladding layer has a higher refractive index of light than the current-blocking layer.
 - 15. (Original) A semiconductor laser according to Claim 10,

		52478.9100
2		wherein the p-type buried cladding layer has a higher refractive index of light
3	than the curre	nt-blocking layer.
1	16.	(Original) A semiconductor laser according to Claim 9,
2		wherein the p-type buried cladding layer has a higher refractive index of laser
3	light than the	current-blocking layer.
1	17.	(Original) A semiconductor laser according to Claim 8,
2		wherein the p-type buried cladding layer has a higher refractive index of light
3	than the curre	ent-blocking layer.
1	18.	(Original) A semiconductor laser according to Claim 7,
2		wherein the p-type buried cladding layer has a higher refractive index of light
3	than the curre	ent-blocking layer.
1	19.	(Original) A semiconductor laser according to Claim 6,
2		wherein the p-type buried cladding layer has a higher refractive index of light
3	than the curre	ent-blocking layer.

- 1 (Original) A semiconductor laser according to Claim 5, 20.
- wherein the p-type buried cladding layer has a higher refractive index of light ż than the current-blocking layer. 3
 - (Original) A semiconductor laser according to Claim 4, 21.
- wherein the p-type buried cladding layer has a higher refractive index of light 2 than the current-blocking layer. 3

1	22.	(Original) A semiconductor laser according to Claim 3,
2		wherein the p-type buried cladding layer has a higher refractive index of light
3	than the curre	ent-blocking layer.
1	. 23.	(Original) A semiconductor laser according to Claim 2,
2		wherein the p-type buried cladding layer has a higher refractive index of light
3	than the curre	ent-blocking layer.
1	24.	(Original) A semiconductor laser according to Claim 1,
2		wherein the p-type buried cladding layer has a higher refractive index of light
3	than the curre	ent-blocking layer.
1	25.	(Currently Amended) A semiconductor laser manufacturing method, comprising:
2		a first process for successively forming an n-type cladding layer having n-type
3	conductivity,	an active layer, and a p-type cladding base layer having p-type conductivity on top
4	of one anot	her, before forming a current-blocking layer, which substantially has n-type
5	conductivity,	on specified parts of an upper surface of the p-type cladding base layer;
.6		a second process for performing thermal cleaning in a presence of a specified gas
7	after the first	process has finished;
8		a third process for forming, after the second process has finished, a p-type buried

cladding layer, which has p-type conductivity, so as to cover the current-blocking layer and

contact remaining parts of the upper surface of the p-type cladding base layer,

9

the first process including:

12

13

14

15

16

17

19

1

2

3

4

a first subprocess for forming a region of the current-blocking layer that is adjacent to the interface between the p-type cladding base layer and the p-type buried cladding layer with a concentration (hereafter, "N1") of n-type carriers, wherein the current-blocking layer includes either $Al_{0.5}In_{0.5}P$ or $(Al_xGa_{1-x})_{0.5}In_{0.5}P$, where 0.7 < x < 1; and

a second subprocess for forming another region in at least part of the current-blocking layer with a concentration (hereafter, "N2") of n-type carriers, where N1<N2, and wherein the current-blocking layer (13) has a lower refractive index than the p-type cladding base layer (5) and the p-type buried cladding layer (7).

- 26. (Original) A semiconductor laser manufacturing method according to Claim 25, wherein the first process produces the current-blocking layer by forming a first layer that contacts the p-type cladding base layer and a second layer on top of the first layer, a concentration of n-type carriers being N1 in the first layer and N2 in the second layer.
- 1 27. (Original) A semiconductor laser manufacturing method according to Claim 26,
 2 wherein the first process forms the first layer from a different composition of
 3 materials to the second layer.
- 1 28. (Original) A semiconductor laser manufacturing method according to Claim 26,
 2 wherein the first process produces one of the first layer and the second layer by
 3 forming sublayers from at least two different compositions of materials.

1	29.	(Original) A semiconductor laser manufacturing method according to Claim 26,
2		wherein the first process co-dopes the second layer with a p2 concentration of
3	p-type carriers	s and an n2 (where n2>p2) concentration of n-type carriers, and N2=(n2-p2).

- 30. (Original) A semiconductor laser manufacturing method according to Claim 29,
 wherein 0cm⁻³≤N1≤10¹⁷cm⁻³ and N2>10¹⁷cm⁻³.
 - 31. (Original) A semiconductor laser manufacturing method according to Claim 28, wherein 0cm⁻³≤N1≤10¹⁷cm⁻³ and N2>10¹⁷cm⁻³.
 - 32. (Original) A semiconductor laser manufacturing method according to Claim 27, wherein 0cm⁻³≤N1≤10¹⁷cm⁻³ and N2>10¹⁷cm⁻³.
- 1 33. (Original) A semiconductor laser manufacturing method according to Claim 26, 2 wherein 0cm⁻³≤N1≤10¹⁷cm⁻³ and N2>10¹⁷cm⁻³.
- 1 34. (Original) A semiconductor laser manufacturing method according to Claim 25, 2 wherein 0cm⁻³≤N1≤10¹⁷cm⁻³ and N2>10¹⁷cm⁻³.
 - a first process for successively forming an n-type cladding layer having n-type conductivity, an active layer, and a p-type cladding base layer having p-type conductivity on top of one another, before forming a current-blocking layer, which substantially has n-type conductivity, on specified parts of an upper surface of the p-type cladding base layer;

2

1

2

3

4

6	a second process for performing thermal cleaning in a presence of a specified gas
7	after the first process has finished;
8	a third process for forming, after the second process has finished, a p-type buried
9	cladding layer, which has p-type conductivity, so as to cover the current-blocking layer and
0	contact remaining parts of the upper surface of
.1	the p-type cladding base layer,
2	the first process forming the current-blocking layer so as to include a region with
3	n-type conductivity and a region with p-type conductivity, the first process including:
4	a first subprocess for forming a region with p-type conductivity adjacent to an
5	interface between the p-type cladding base layer and the p-type buried cladding layer; and
16	a second subprocess for forming a region with n-type conductivity in at least part
17	of a remainder of the current-blocking layer,
18	wherein the current-blocking layer (13) has a lower refractive index than the p-
19	type cladding base layer (5) and the p-type buried cladding layer (7), and
20	wherein the current-blocking layer includes either Al _{0.5} In _{0.5} P or (Al _x Ga _{1-x}) _{0.5} In _{0.5} P,
21	where $0.7 < x < 1$.
1	36. (Currently Amended) A semiconductor laser manufacturing method, comprising:
2	a first process for successively forming an n-type cladding layer having n-type
3	conductivity, an active layer, a p-type cladding base layer having p-type conductivity, and an
4	interjacent layer that has p-type conductivity and contacts the first p-type cladding base layer on
5	top of one another, before forming a current-blocking layer, which substantially has n-type

conductivity, on an upper surface of the interjacent layer;

7	a second process for performing thermal cleaning in a presence of a specified gas
8	after the first process has finished;
9	a third process for forming, after the second process has finished, a p-type buried
10	cladding layer, which has p-type conductivity, so as to cover the current-blocking layer and
11	contact remaining parts of the upper surface of the p-type cladding base layer,
12	the interjacent layer being formed between the current blocking layer and the
13	p-type cladding base layer so that a lower surface of the current-blocking layer is separated from
14	an upper surface of the p-type cladding base layer,
15	wherein the current-blocking layer (13) has a lower refractive index than the p-
16	type cladding base layer (5) and the p-type buried cladding layer (7), and
17	wherein the current-blocking layer includes either Al _{0.5} In _{0.5} P or (Al _x Ga _{1-x}) _{0.5} In _{0.5} P
18	where $0.7 < x < 1$.
1	37. (Previously Presented) A semiconductor laser according to Claim 2,
2	wherein the second layer is co-doped with p-type impurities and n-type impurities
3	and has substantially n-type conductivity, and such that the concentration of n-type carriers is
4	N2.
. 1	38. (Previously Presented) A semiconductor laser manufacturing method according
2	to Claim 26,
3	wherein the first process co-dopes the second layer with p-type impurities and
4	n-type impurities, such that the concentration of n-type carriers is N2.
1	39-43. (Cancelled)

