Glacier report

Fig. 1 Regions (1-4, 6-18) of Randolph Glacier Inventory (RGI) Version 6.0 [1]. References:

Table 1: Regional areas and mass budgets. I, ICESat; C, Cryosat-2.

	Region Name	Total area	Mass balance	Density	Method
		(km²)	changes (Gt yr ⁻¹)	(kg m³)	
1	Alaska	86725.053	-65.06±5.3	750 [2]	I,C
2	Western Canada and US	14524.224	-13.1±1.67	900	I,C
3	Arctic Canada North	105110.642	-30.13±5.29	900	I,C
4	Arctic Canada South	40888.228	-17.03±2.76	900	I,C
6	Iceland	11059.7	-0.41 ± 1.13	900	I,C
7	Svalbard	33958.934	-5.39 ± 2.23	900	I,C
8	Scandinavia	2949.103	-0.45 ± 0.31	900	I,C
9	Russian Arctic	51591.6	-1.23 ± 2.77	900	I,C
10	North Asia	2410.051	-1.81±0.88	900	1
11	Central Europe	2092.146	-2.36 ± 0.4	900	I,C
12	Caucasus and Middle East	1306.992	-0.11±0.54	900	1
13-15	HMA	97605.706	-16.55 ± 6.97	850 [3]	I,C
16	Low Latitudes	2341.036	-0.08±0.53	900	I,C
17	Southern Andes	29429.08	-20.21±4.27	900	I,C
18	New Zealand	1161.801	-0.17±0.22	900	I,C
Global Total		483154.507	-173.98±12.19		

Table 2. Height change difference between ICESat and Cryosat-2.

Region Name	Diff. (m)	

1	Alaska	-39.2
2	Western Canada and US	-35.63
3	Arctic Canada North	-8.0
4	Arctic Canada South	-24.38
6	Iceland	-15.4
7	Svalbard	-8.08
8	Scandinavia	-43.56
9	Russian Arctic	-12.78
10	North Asia	NA
11	Central Europe	-41.17
12	Caucasus and Middle East	NA
13-15	НМА	-47.53
16	Low Latitudes	-73.48
17	Southern Andes	-9.95
18	New Zealand	-42.04

Table 3.

	Region Name	Mass Balance (Gt yr ⁻¹)	Re f.	New result (2003-2017, Gt yr ⁻¹)	Method
1	Alaska	-75±11 (1994-2013)	[2]	-65.06±5.3	I,C
		-50±17 (2003-2009)	[4]		
2	Western Canada and US	-14±3 (2003-2009)	[4]	-13.1±1.67	I,C
3	Arctic Canada North	-33±4 (2003-2009)	[4]	-30.13±5.29	I,C
4	Arctic Canada South	-27±4 (2003-2009)	[4]	<mark>-17.03±2.76</mark>	I,C
6	Iceland	-10±2 (2003-2009)	[4]	-0.41 ± 1.13	I,C
7	Svalbard	-5±2 (2003-2009)	[4]	-5.39 ± 2.23	I,C
8	Scandinavia	-2±0 (2003-2009)	[4]	-0.45 ± 0.31	I,C
9	Russian Arctic	-11±4 (2003-2009)	[4]	-1.23 ± 2.77	I,C
10	North Asia	-2±1 (2003-2009)	[4]	-1.81±0.88 (2003-2009)	1
11	Central Europe	-2±0 (2003-2009)	[4]	-2.36 ± 0.4	I,C
12	Caucasus and Middle East	-1±0 (2003-2009)	[4]	-0.11±0.54 (2003-2009)	1
13-15	HMA	-26±12 (2003-2009)	[4]	-16.55 ± 6.97	I,C
		-16.3±3.5 (2000-2016)	[3]	1 20.55 = 0.57	
16	Low Latitudes	-4±1 (2003-2009)	[4]	-0.08±0.53	I,C
17	Southern Andes	-29±10 (2003-2009)	[4]	-20.21±4.27	I,C
18	New Zealand	0±1 (2003-2009)	[4]	-0.17±0.22	I,C

ICESat/GLAS elevation accuracy is reported to be 15 cm over flat terrain [5]. However, the computed elevation accuracy varies from 30 cm to 80 cm over ice-sheet regions [6]. Average error of 20cm has been reported in estimating glacier ice thickness change in the Alps/Himalaya [5]. The vertical error from Level 2 product of Cryosat-2 SARIn data is reported can be nearly 30 cm in West Antarctic Ice Sheet [7]. In **Fig. 2**, we used 50 cm as vertical error for both ICESat and Cryosat-2 elevations.

Fig. 2 Mountain glacier mass balance estimates combining ICESat and CryoSat-2 altimeter data (10/22/2003–16/01/2017, with 1.5 year data gap).

References:

[1] RGI Consortium (2017). Randolph Glacier Inventory – A Dataset of Global Glacier Outlines: Version 6.o: Technical Report, Global Land Ice Measurements from Space, Colorado, USA. Digital Media. DOI: https://doi.org/10.7265/N5-RGI-60.

- [2]. Larsen, C. F., E. Burgess, A. A. Arendt, S. O'Neel, A. J. Johnson, and C. Kienholz (2015), Surface melt dominates Alaska glacier mass balance, Geophys. Res. Lett., 42, 5902–5908, doi:10.1002/2015GL064349.
- [3]. F. Brun, E. Berthier, P. Wagnon, A. Kääb, D. Treichler (2017), A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016, Nature geoscience 10 (9), 668-673.
- [4]. Gardner, A. S., Moholdt, G., Cogley, J. G., Wouters, B., Arendt, A. A., Wahr, J., et al. (2013), A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340, 852–857. doi: 10.1126/science.1234532.
- [5]. Ritesh Agrawal, Gunjan Rastogi and Ajai (2017), Estimation of change in glacier ice thickness using ICESat laser altimetry data, Journal of Geomatics, Vol 11 No. 1.
- [6] Toutin, T. (2011), Digital elevation model generation over glacierized region, Encyclopedia of Snow, Ice and Glaciers, edited by Singh, P. H., Umesh Kumar Dordrecht, Netherlands: Springer, (p204).
- [7] Seung Hee Kim and Duk-jin Kim (2017), Combined Usage of TanDEM-X and CryoSat-2 for Generating a High Resolution Digital Elevation Model of Fast Moving Ice Stream and Its Application in Grounding Line Estimation, Remote Sens. 2017, 9, 176; doi:10.3390/rs9020176.