MATH 31AH - Homework 8

Merrick Qiu

November 25, 2021

1 Quotients and matrices

Proof. $\overline{T}: V/W \to V/W$ with $\overline{T}(v+W) = T(v) + W$ is well defined.

Let $\tilde{T}: V \to V/W$ with $\tilde{T}(v) := T(v) + W$. If $w \in W$, then $T(w) \in W$ since W is T-invariant. For all $w \in W$, $\tilde{T}(w) = T(w) + W = 0 + W$, so $W \subseteq \ker \tilde{T}$. Because of the universal property of quotient spaces, the function $\overline{T}: V/W \to V/W$ with $\overline{T}(v+W) = \tilde{T}(v) = T(v) + W$ is well-defined.

Since the first m indexes are an ordered basis for W and W is T-invariant, A represents T restricted to W. $\mathcal{B} - \mathcal{C}$ is a basis of V/W and $\overline{T}(v+W) = T(v) + W$, so C represents what \overline{T} does to $v \in V - W$.

2 Quotients and Direct Sums

Proof. $(V \oplus W)/W \cong V$.

To avoid notational abuse, we will use $W := \{(0, w) : w \in W\}$. Let $T : V \to (V \oplus W)/W$ with T(v) := (v, 0) + W be a function. Every coset in $(V \oplus W)/W$ can uniquely be written as (v, w) + W = (v, 0) + W, so T is surjective. Let $v_1 \in V$ and $v_2 \in V$ be different vectors.

$$T(v_1) = (v_1, 0) + \mathcal{W}$$
 and $T(v_2) = (v_2, 0) + \mathcal{W}$

Since $(v_2 - v_1, 0) \notin \mathcal{W}$, T is injective. Since T is injective and surjective, T is bijective.

T is linear since

$$T(c_1v_1 + c_2v_2) = (c_1v_1 + c_2v_2, 0) + \mathcal{W}$$

= $c_1((v_1, 0) + \mathcal{W}) + c_2((v_2, 0) + \mathcal{W})$
= $c_1T(v_1) + c_2T(v_2)$

Since T is bijective and linear, it is an isomorphism. Therefore, $(V \oplus W)/W \cong V$.

3 Quotients and Duals

Proof. U is a subspace of V^*

The zero functional has $\lambda_0(w) = 0$ for all $w \in W$, so $\lambda_0 \in U$.

For all $\lambda, \mu \in U$ and for all $w \in W$,

$$(\lambda + \mu)(w) = \lambda(w) + \mu(w)$$
$$= 0 + 0$$
$$= 0$$

Therefore, $\lambda + \mu \in U$.

For all $\lambda \in U$, for all $c \in \mathbb{F}$, and for all $w \in W$,

$$(c\lambda)(w) = c\lambda(w)$$
$$= c \cdot 0$$
$$= 0$$

Therefore, $c\lambda \in U$.

Since U has a zero, it is closed under addition, and it is closed under scalar multiplication, U is a subspace of V^* .

Proof. W^* and V^*/U are isomorphic.

Let $T: W^* \to V^*/U$ with T(w) := w + U be a function. From the definition of U, W^* and U span V and $W^* \cap U = 0$ so $W^* \oplus U = V^*$. Therefore each coset in V^*/U can be uniquely written as (w + u) + U = w + U with $w \in W^*$ and $u \in U$, so T is surjective. Let $w_1 \in W^*$ and $w_2 \in W^*$ be different functionals.

$$T(w_1) = w_1 + U$$
 and $T(w_2) = w_2 + U$

Since $w_2 - w_1 \notin U$, T is injective. Since T is injective and surjective, T is bijective.

T is linear since

$$T(c_1w_1 + c_2w_2) = (c_1w_1 + c_2w_2) + U$$

= $c_1(w_1 + U) + c_2(w_2 + U)$
= $c_1T(w_1) + c_2T(w_2)$

Since T is bijective and linear, it is an isomorphism. Therefore, $W^* \cong V^*/U$.

Proof. $(V/W)^*$ and U are isomorphic.

Let $T: U \to (V/W)^*$ with $T(\lambda)(v+W) := \lambda(v)$ with $v \in V$ be a function. T is well-defined since for v = v' + w.

$$T(\lambda)(v+W) = \lambda(v)$$

$$= \lambda(v'+w)$$

$$= \lambda(v') + \lambda(w)$$

$$= \lambda(v')$$

$$= T(\lambda)(v'+W)$$

T has an inverse $T^{-1}:(V/W)^*\to U$ with $T^{-1}(\lambda)(v):=\lambda(v+W)$ for $\lambda\in (V/W)^*$ and $v\in V$, so T is bijective.

T is also linear since

$$T(c_1\lambda + c_2\mu)(v + W) = (c_1\lambda + c_2\mu)(v)$$

= $c_1\lambda(v) + c_2\mu(v)$
= $c_1T(\lambda)(v + W) + c_2T(\mu)(v + W)$

Since T is bijective and linear, T is a isomorphism. Therefore, $(V/W)^* \cong U$.

4 Matrix Direct Sum

If A is a $m \times n$ matrix and B is a $p \times q$ matrix, then the first m entries of $(A \oplus B)x$ are $Ax_{1:n}$ and the last p entries of $(A \oplus B)x$ are $Bx_{n+1:q}$. This "segregates" the linear transformations of A and B to only acting on the first n entires and last q entries in the same way that T only acts on v and v only acts on v' in v in

5 Matrix Tensor Product

Proof. $(A \otimes B) \cdot (C \otimes D) = (AC) \otimes (BD)$

The *ij*th block of $(A \otimes B) \cdot (C \otimes D)$ is

$$\sum_{k=1}^{n} (a_{ik}B)(c_{kj}D) = \sum_{k=1}^{n} a_{ik}c_{kj}BD$$

The *ij*th block of $(AC) \otimes (BD)$ is

$$\left(\sum_{k=1}^{n} a_{ik} c_{kj}\right) BD = \sum_{k=1}^{n} a_{ik} c_{kj} BD$$

Since both expressions result in the same summation, they are equal.

6 Representing Tensor Transformations

Let $\mathcal{B} = \{(1,0), (0,1)\}$ be the standard basis of \mathbb{R}^2 , $\mathcal{C} = \{x^2, x, 1\}$ be basis for V_2 , and $\mathcal{D} = \{x, 1\}$ be a basis for V_1 . The basis of $\mathbb{R}^2 \otimes V_2$ is $\mathcal{B} \otimes \mathcal{C}$ and the basis of $\mathbb{R}^2 \otimes V_1$ is $\mathcal{B} \otimes \mathcal{D}$. Since a tensor transformation can be defined by what it does to the basis vectors, we have that

$$[T \oplus U]_{\mathcal{B} \otimes \mathcal{D}}^{\mathcal{B} \otimes \mathcal{C}} = \begin{pmatrix} (1,0) \otimes x & (1,0) \otimes 1 & (0,1) \otimes x^2 & (0,1) \otimes x & (0,1) \otimes 1 \\ 2 & 0 & 0 & 4 & 0 & 0 \\ 0 & 1 & 0 & 0 & 2 & 0 \\ -2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} (1,0) \otimes x & (0,1) \otimes x & (0,1) \otimes x \\ (1,0) \otimes x & (1,0) \otimes x & (0,1) \otimes x \\ (1,0) \otimes x & (0,1) \otimes x & (0,1) \otimes x \\ (0,1) \otimes x$$

7 Tensors and Duals

Proof. φ is a well-defined linear map.

Let $\psi: V \times V^* \to \mathbb{F}$ be a linear map with $\psi(v, \lambda) := \lambda(v)$ for $v \in V$ and $\lambda \in V^*$. ψ is linear in the first term since

$$\psi((v+v'),\lambda) = \lambda(v+v')$$

$$= \lambda(v) + \lambda(v')$$

$$= \psi(v,\lambda) + \psi(v',\lambda)$$

 ψ is linear in the second term since

$$\psi(v, \lambda + \lambda') = (\lambda + \lambda')(v)$$

$$= \lambda(v) + \lambda'(v)$$

$$= \psi(v, \lambda) + \psi(v, \lambda')$$

From the universal property of tensor spaces, $\varphi: V \otimes V^*$ is well-defined with $\varphi(v \otimes \lambda) := \psi(v, \lambda) = \lambda(v)$.

8 Determinants and Tensors

Proof. ψ is well defined.

Let $\varphi: V \times ... \times V \to \mathbb{F}$ be a linear map with $\varphi(v_1, ..., v_n) = \det(v_1...v_n)$. Since the determinant is multilinear, φ is multilinear. By the universal property of tensor spaces, $\psi: V \otimes ... \otimes V \to \mathbb{F}$ is well-defined with $\psi(v_1 \otimes ... \otimes v_n) := \varphi(v_1, ..., v_n) = \det(v_1...v_n)$.