Workshop 1: GPU computing background

Jeremy Jacobson Lecturer

Department of Quantitative Theory and Methods

Overview

Main points

- (5 minutes) QTM Honors student John Cox: GPU computing lightning talk from Honors thesis
- (20 minutes) **Computing trends**
 - Using a GPU is a big investment in time. We will explain why it is a wise long term investment even if you don't need one now.
- (20 minutes) **GPUs and matrices**
 - GPUs are fast for data science and ML. Why?

Computing Trends

- What is a computer?
- 50 years of architecture with David Patterson

What is a computer?

What is a computer?

- For today's workshop it is:
 - Physical memory and a means of manipulating it

What is a computer?

• For example

David Patterson

 Won ACM Turing Award in 2017 for innovative Reduced Instruction Set Computers (RISC)

David Patterson

- Won ACM Turing Award in 2017 for innovative Reduced Instruction Set Computers (RISC)
- 99 percent of the more than 16 billion microprocessors produced annually are RISC processors, and they are found in nearly all smartphones

David Patterson

- Won ACM Turing Award in 2017 for innovative Reduced Instruction Set Computers (RISC)
- 99 percent of the more than 16 billion microprocessors produced annually are RISC processors, and they are found in nearly all smartphones
- Following slides are from his talk at the Google Faculty Institute 2018

Outline

Part I

History of Architecture

Mainframes, Minicomputers,
Microprocessors, RISC vs
CISC, VLIW

Part II

Current Architecture Challenges

Ending of Dennard Scaling and Moore's Law, Security

Part III

Future Architecture Opportu

Domain Specific Languages Architecture, Open Architecture, Agile Hardware Developmen

loore's Law lowdown in tel Processors

transistor slowing down faster, fab costs.

Technology & Power: Dennard Scaling

What Opportunities Left?

- SW-centric
- Modern scripting languages are interpreted, dynamically-typed and encourage reuse
 - Efficient for programmers but not for execution
- HW-centric
 - Only path left is Domain Specific Architectures
 - Just do a few tasks, but extremely well
- Combination
 - Domain Specific Languages & Architectures

What's the Opportunity?

Matrix Multiply: relative speedup to a Python version (18 core Intel)

from: "There's Plenty of Room at the Top," Leiserson, et. al., to appear.

DSAs require targeting of high level operations to the architecture

- Hard to start with C or Python-like language and recover structure
- Need matrix, vector, or sparse matrix operations
- Domain Specific Languages specify these operations:
 - OpenGL, TensorFlow, P4
- If DSL programs retain architecture-independence, interesting compiler challenges will exist

Deep learning is causing a machine learning revolution

From "A New Golden Age in Computer Architecture: Empowering the Machine-Learning Revolution."

Dean, J., Patterson, D., & Young, C. (2018). IEEE Micro, 38(2), 21-29.

GPUs and matrices

- A look at the QTM GPU
- Matrix operations and machine learning
- Matrix multiply on a GPU

QTM GPU

- Exterior
- Interior
- Silicon die
- Cartoon illustration of die layout
- Table of specs

A6000 (our GPU) exterior

Figure 3. NVIDIA A100 GPU on new SXM4 Module

A6000 (QTM GPU) Die shot

Ampere GPU Architecture In-Depth

	Almost 10X	
L2 Cache Size	a high end	6144 KB
Register File Size	laptop chip	21504 KB
TGP (Total Graphics Power)	NV NV	300W
Transistor Count	28.3 Billion	28.3 Billion
Die Size	628.4 mm ²	628.4 mm ²
Manufacturing Process	Samsung 8 nm 8N NVIDIA	Samsung 8 nm 8N NVIDIA
	Custom Process	Custom Process

- 1. Peak rates are based on GPU Boost Clock.
- 2. Effective TOPS / TFLOPS using the new Sparsity Feature
- 3. TOPS = IMAD-based integer math

NOTE: Refer to Appendix C for RTX A6000 performance data.

Matrix operations and machine learning

- Definition of neural network
- Chain rule and gradient descent
- Matrix multiply and gradient descent is data parallel

Definition II.1. Let $L, N_0, N_1, \ldots, N_L \in \mathbb{N}$, $L \geq 2$. A map $\Phi : \mathbb{R}^{N_0} \to \mathbb{R}^{N_L}$ given by

$$\Phi(x) = \begin{cases}
W_2(\rho(W_1(x))), & L = 2 \\
W_L(\rho(W_{L-1}(\rho(\dots \rho(W_1(x)))))), & L \ge 3
\end{cases} ,$$
(1)

with affine linear maps $W_{\ell}: \mathbb{R}^{N_{\ell-1}} \to \mathbb{R}^{N_{\ell}}, \ \ell \in \{1, 2, \dots, L\}$, and the ReLU activation function $\rho(x) = \max(x, 0), \ x \in \mathbb{R}$, acting component-wise (i.e., $\rho(x_1, \dots, x_N) := (\rho(x_1), \dots, \rho(x_N))$) is called a ReLU neural network. The map W_{ℓ} corresponding to layer ℓ is given by $W_{\ell}(x) = A_{\ell}x + b_{\ell}$, with $A_{\ell} \in \mathbb{R}^{N_{\ell} \times N_{\ell-1}}$ and $b_{\ell} \in \mathbb{R}^{N_{\ell}}$.

trix/vector form. The basic building block of vectorized gradients is the *Jacobian Matrix*. Suppose we have a function $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ that maps a vector of length n to a vector of length m: $\mathbf{f}(\mathbf{x}) = [f_1(x_1, ..., x_n), f_2(x_1, ..., x_n), ..., f_m(x_1, ..., x_n)].$

$$rac{\partial oldsymbol{f}}{\partial oldsymbol{x}} = egin{bmatrix} rac{\partial f_1}{\partial x_1} & \cdots & rac{\partial f_1}{\partial x_n} \ dots & \ddots & dots \ rac{\partial f_m}{\partial x_m} & \cdots & rac{\partial f_m}{\partial x_m} \end{bmatrix}$$

Then its Jacobian is the following $m \times n$ matrix:

That is, $(\frac{\partial \mathbf{f}}{\partial \mathbf{x}})_{ij} = \frac{\partial f_i}{\partial x_j}$ (which is just a standard non-vector derivative). The Jacobian matrix will be useful for us because we can apply the chain rule to a vector-valued function just by multiplying Jacobians.

As a little illustration of this, suppose we have a function $\mathbf{f}(x) = [f_1(x), f_2(x)]$ taking a scalar to a vector of size 2 and a function $\mathbf{g}(\mathbf{y}) = [g_1(y_1, y_2), g_2(y_1, y_2)]$ taking a vector of size two to a vector of size two. Now let's compose them to get $\mathbf{g}(x) = [g_1(f_1(x), f_2(x)), g_2(f_1(x), f_2(x))]$. Using the regular chain rule, we can compute the derivative of \mathbf{g} as the Jacobian

pute the derivative of
$$\boldsymbol{g}$$
 as the Jacobian
$$\frac{\partial \boldsymbol{g}}{\partial x} = \begin{bmatrix} \frac{\partial}{\partial x} g_1(f_1(x), f_2(x)) \\ \frac{\partial}{\partial x} g_2(f_1(x), f_2(x)) \end{bmatrix} = \begin{bmatrix} \frac{\partial g_1}{\partial f_1} \frac{\partial f_1}{\partial x} + \frac{\partial g_1}{\partial f_2} \frac{\partial f_2}{\partial x} \\ \frac{\partial g_2}{\partial f_1} \frac{\partial f_1}{\partial x} + \frac{\partial g_2}{\partial f_2} \frac{\partial f_2}{\partial x} \end{bmatrix}$$

As a little illustration of this, suppose we have a function $f(x) = [f_1(x), f_2(x)]$ taking a scalar to a vector of size 2 and a function $\mathbf{g}(\mathbf{y}) = [g_1(y_1, y_2), g_2(y_1, y_2)]$ taking a vector of size two to a vector of size two. Now let's compose them to get $g(x) = [g_1(f_1(x), f_2(x)), g_2(f_1(x), f_2(x))]$. Using the regular chain rule, we can compute the derivative of q as the Jacobian

$$\frac{\partial \mathbf{g}}{\partial x} = \begin{bmatrix} \frac{\partial}{\partial x} g_1(f_1(x), f_2(x)) \\ \frac{\partial}{\partial x} g_2(f_1(x), f_2(x)) \end{bmatrix} = \begin{bmatrix} \frac{\partial g_1}{\partial f_1} \frac{\partial f_1}{\partial x} + \frac{\partial g_1}{\partial f_2} \frac{\partial f_2}{\partial x} \\ \frac{\partial g_2}{\partial f_1} \frac{\partial f_1}{\partial x} + \frac{\partial g_2}{\partial f_2} \frac{\partial f_2}{\partial x} \end{bmatrix}$$

And we see this is the same as multiplying the two Jacobians:

$$rac{\partial oldsymbol{g}}{\partial x} = rac{\partial oldsymbol{g}}{\partial oldsymbol{f}} rac{\partial oldsymbol{f}}{\partial x} = egin{bmatrix} rac{\partial g_1}{\partial f_1} & rac{\partial g_1}{\partial f_2} \ rac{\partial g_2}{\partial f_1} & rac{\partial g_2}{\partial f_2} \end{bmatrix} egin{bmatrix} rac{\partial f_1}{\partial x} \ rac{\partial f_2}{\partial x} \end{bmatrix}$$

Matrix multiply AB = C

important for inference as well.

Training forward dog" labels =? "human face" labels Forward muman face" waried N forward muman face"

Figure 1: Deep learning training compared to inference. In training, many inputs, often in large batches, are used to train a deep neural network. In inference, the trained network is used to discover information within new inputs that are fed through the network in smaller batches.

Matrix multiply on a GPU

- Block matrices
- Different cores

Block multiplication of matrices

 $C_{11} = A_{11}B_{11} + A_{12}B_{21}$

$$D = AB + C$$

	A _{0,0}	A _{0,1}	A _{0,2}	A _{0,3}		B _{0,0}	B _{0,1}	B _{0,2}	B _{0,3}	1	1	C _{0,0}	C _{0,1}	C _{0,2}	C _{0,3}
D –	A _{1,0}	A _{1,1}	A _{1,2}	A _{1,3}		B _{1,0}	B _{1,1}	B _{1,2}	B _{1,3}		احا	C _{1,0}	C _{1,1}	C _{1,2}	C _{1,3}
υ –	A _{2,0}	A _{2,1}	A _{2,2}	A _{2,3}		B _{2,0}	B _{2,1}	B _{2,2}	B _{2,3}			C _{2,0}	C _{2,1}	C _{2,2}	C _{2,3}
\	A _{3,0}	A _{3,1}	A _{3,2}	A _{3,3}		B _{3,0}	B _{3,1}	B _{3,2}	B _{3,3}			C _{3,0}	C _{3,1}	C _{3,2}	C _{3,3}

Each Tensor Core provides a 4x4x4 matrix processing array which performs the operation **D** = **A** * **B** + **C**

Graphics Card	NVIDIA RTX A6000	NVIDIA A40		
GPU Codename	GA102	GA102		
GPU Architecture	NVIDIA Ampere	NVIDIA Ampere		
GPCs	7	7		
TPCs	42	42		
SMs	84	84		
CUDA Cores / SM	128	128		
CUDA Cores / GPU	10752	10752		
Tensor Cores / SM	4 (3rd Gen)	4 (3rd Gen)		
Tensor Cores / GPU	336 (3rd Gen)	336 (3rd Gen)		
RT Cores	84 (2nd Gen)	84 (2nd Gen)		
GPU Boost Clock (MHz)	1800	1740		
Peak FP32 TFLOPS (non-Tensor):	38.7	37.4		
Peak FP16 TFLOPS (non-Tensor) ¹	38.7	37.4		
Peak BF16 TFLOPS (non-Tensor) ¹	38.7	37.4		
Peak INT32 TOPS (non-Tensor) ^{1,3}	19.4	18.7		
Peak FP16 Tensor TFLOPS	154.8/309.6 ²	149.7/299.4 ²		
with FP16 Accumulate ¹				
Peak FP16 Tensor TFLOPS	154.8/309.6 ²	149.7/299.4 ²		
with FP32 Accumulate ¹				
Peak BF16 Tensor TFLOPS	154.8/309.6 ²	149.7/299.4 ²		
with FP32 Accumulate ¹	2-17-17-18-13-0-18-13-13-13-13-13-13-13-13-13-13-13-13-13-			
Peak TF32 Tensor TFLOPS ¹	77.4/154.8²	74.8/149.6 ²		

References

- GPU programming with CUDA
- Automatic differentiation
- NVIDIA Ampere architecture whitepaper
- <u>CUDA programming guide</u>
- <u>Chapter 1 of Programming massively parallel</u> <u>processors</u>
- <u>Chapter 2 of Programming massively parallel processors</u>
- Benefits of GPU for data science