ChemEdXData: experimental and computational data for general and physical chemistry

Xavier Prat-Resina

Center for Learning Innovation

http://goo.gl/892xo0

University of Minnesota Rochester

Outline

- Using the web for data-driven exercises
- Bring educational web resources to common places
- ChemData: Make web resources last
- How to use the API
- GoogleSpreadsheets:
 - Resources for General Chemistry
 - Resources for Physical Chemistry

Data-driven exercises

- 1. Look at this graph
- 2. See what I want you to see
- 3. Explain how everything perfectly fits
- 4. No exceptions

- 1. Choose some data
- 2. Represent it
- 3. Find patterns
- 4. Find exceptions

Skills required: Self-regulation Self-evaluation

Organic molecules

Sorting, filtering tables

Fur

Molecular Properties

- Alkanes Haloalkanes Alcohols Ethers Aldehydes Carboxylic ChemEd X Data http://chemdata.r.umn.edu
 - **Phase Change**
 - Boiling point (K)
 - Melting point (K)
 - Heat capacity liq(J/mol*K)
 - Heat capacity gas(J/mol*K)
 - ΔH_{vaporiz} (kJ/mol)
 - ΔH_{fusion} (kJ/mol)

- Reactions
- ΔH_{form} gas (kJ/mol)
- ΔH_{form} liq (kJ/mol)
- ΔH_{comb} gas (kJ/mol)
- ΔH_{comb} liq (kJ/mol)

- Solubility
- Solubility Henry's K (mol/kg*bar))

J. Chem. Educ., 91(9), 1501-1504, 2014

Periodic table trends

Based on "Periodic Table Live" graphs http://www.chemeddl.org/resources/ptl/charts/

ChemEd X Data

http://chemdata.r.umn.edu

J. Chem. Educ., 91(9), 1501-1504, 2014

Feedback on ChemEdXData web

- Reviewers: It would be nice if you could plot different functional groups with diff. colors.
- Students: How can I add more sets?
- For educational web resources one must optimize the "user friendliness" and avoid any technical barrier: bring them to common places

For student activities

For authors of resources

So I'm going to build a new "database"

Why do we need yet another DB? Depending on what you want, one does not need to build a collection or a database.

http://chemdata.r.umn.edu/jmol/#ch3cl/dichloromethane/chcl3/ccl4

Jmol on the fly

Write any name, formula or identifier in the URL separated by "/"

Example: jmol.html#ch3cl/dichloromethane/chcl3

NMR spectra

(smarts), **Functional groups**

MEP, Dipole

NIVERSITY OF MINNESOTA

How to bring educational data to common places and make them last?

No binary database

Pedagogical Collections

Platform independent No external connections No dependecies JSON: Easy to add/modify/remove ...but not for the uninitiated...

API

http://chemdata.r.umn.edu/api/?collection==organic&name==Chloromethane

```
[ { "Chloromethane": { "cpliq": "81.2", "ncarbons": "1", "natoms":
"5", "elements": [6, 17, 1], "name": "chloromethane", "hfliq":
"-102.4", "bp": "247.", "kh": "0.094", "ids": { "cas": "74-87-3",
"inchi": "InChI=1S/CH3Cl/c1-2/h1H3", "inchikey":
```

ChemEdXData

Third-party

Spreadsheets

For everyoniet": "298", "FG": ["Halforkauthorsar"] } }]

For student activities

API: ChemData Collections

Quantum calculations: Vibrations, MO, Dipoles 918 molecules **Organic**: Experimental data BP, MP, Δ H, C_v, K 355 molecules

Elements: cov, ionic radii, MP, BP consecutive IE, density

ChemData Search Interface Models360 collection Organic ChemData collection Elements collection

Name	Formula	Mass	Atoms	Carbons
Hydrogen	H ₂	2.016	2	0
Beryllium hydride	BeH ₂	11.028	3	0
Boron hydride	BH ₃	13.835	4	0

http://chemdata.r.umn.edu/api/tables.php

For student activities

ChemData on Google Spreadsheets

ChemData+GoogleSpreadsheets

ChemData+GoogleSpreadsheets

Data-driven exercises in PChem

U,Cv,S Θ_{rot}, ZPE

Calculated resonant structures

http://chemdata.r.umn.edu/api/?collection==models360&name==Carbonate%20ion&image==nrt

NRT: Weinhold's Natural Resonance Theory

Calculated resonant structures

5.83%

53.16%

0

5.83%

5.81%

5.81%

$$o^{2^{-}}$$
 $o = s^{2+} o^{-}$
 o

5.81%

http://chemdata.umr.umn.edu/api/?
collection==models360&
name==sulfate%20ion&
image==nrt

Conclusions

- ChemEdXData works on the web but we need to bring Chemistry resources to "common places"
- The ChemData API is designed to make resources last longer, open and independent.
- It can be used in the class for data-driven exercises in General Chemistry and Physical Chemistry using Google SpreadSheets.