Tutorial 4

Rolling Dynamics, Angular momentum

20 August 2024

P1.

Assume friction has the direction shown.

If the disc is only rotating with angular speed ω then the velocity of the bottom-most point on the disc is $v_P = -R\omega$. In addition suppose the disc is translating with velocity v_C . If the disc now touches the surface so that the point P on the disc is at rest,

$$v = v_C - R\omega = 0$$
, $\Longrightarrow v_C = R\omega \implies a = R\alpha$.

Now the disc is subjected to forces and torques about the center as well.

(a) Rolling without slipping: α is the angular acceleration caused by the torque about the center: $\alpha = Rf$.

The acceleration of the center, a is caused by the net force on the disc:

$$F-f=Ma=MR\alpha=MR\frac{Rf}{\frac{1}{2}MR^2}=2f\implies F=3f.$$

The value of $f \leq \mu Mg$, which decides the upper bound on F.

(b) If the point of contact moves as well (rolling and slipping) then the acceleration is greater than $R\alpha$, so that $F > 3\mu Mg$. What is its value?

$$F - \mu Mg = Ma \implies a = F/M - \mu g.$$

$$\tau_C = fR \implies \alpha = \frac{\tau}{I} = \frac{\mu MgR}{MR^2/2} = \frac{2\mu g}{R}$$

P2. Here the only force on the disc is the frictional force. Let's assume it acts in the forward direction. The maximum acceleration and torque can be calculated by taking $f = \mu Mg$.

$$f = \mu Mg = Ma \implies v_C(t) = v(0) + \mu gt.$$

 $\tau_C = \mu MgR \implies \omega(t) = \omega_0 - \frac{2\mu g}{R}t.$

If rolling without slipping occurs at some time t_1 ,

$$v(t_1) = R\omega(t_1) \implies \mu gt_1 = \omega_0 R - 2\mu gt_1$$

 $t_1 = \frac{\omega_0 R}{3\mu g}.$

rolling and slipping for $t < t_1$.

P3. (a) $\overrightarrow{L}_{O_1} = 0$ (b) $\overrightarrow{L}_{O_2} = mvb$

P4.
$$\omega = \sqrt{\frac{k}{I}}; \quad T = 2\pi\sqrt{\frac{MR^2}{2k}}.$$