Arquitectura de Computadoras

(Cód. 5561) 1° Cuatrimestre 2018

Dra. Dana K. Urribarri DCIC - UNS

Un álgebra de Boole es un conjunto no vacío A, junto a dos operaciones Λ y V (definidas sobre A), una operación unaria 'y dos elementos particulares 0 y 1 ($0 \in A$ y $1 \in A$), tales que satisfacen los siguientes axiomas $\forall p,q,r \in A$:

Ley de identidad:

$$p \wedge 1 = p \quad y \quad p \vee 0 = p$$

Existencia de complemento:

$$p \wedge p' = 0$$
 $y p \vee p' = 1$

Ley conmutativa:

$$p \wedge q = q \wedge p \quad y \quad p \vee q = q \vee p$$

Leyes distributivas:

$$p \wedge (q \vee r) = (p \wedge q) \vee (p \wedge r) \quad y \quad p \vee (q \wedge r) = (p \vee q) \wedge (p \vee r).$$

Se pueden probar los siguientes teoremas:

Ley de idempotencia:

$$p \wedge p = p \vee p = p$$

Ley del doble complemento (involución):

$$(p')' = p$$

Ley del complemento:

$$p \vee p' = 1 \quad y \quad p \wedge p' = 0$$

Leyes asociativas:

$$p \wedge (q \wedge r) = (p \wedge q) \wedge r \quad y \quad p \vee (q \vee r) = (p \vee q) \vee r$$

Leyes de De Morgan:

$$(p \land q)' = p' \lor q' \lor (p \lor q)' = p' \land q'$$

Ley de Absorción:

$$p \wedge (p \vee q) = p \vee p \vee (p \wedge q) = p$$

• $0' = 1 \ y \ 1' = 0$

En 1938 Shannon demostró que:

- El álgebra de Boole de dos valores (0 y 1 o falso y verdadero) podía ser utilizado para el análisis y síntesis de circuitos digitales.
- La combinación de estos circuitos podía representar operaciones aritméticas y lógicas complejas.

Variables y literales

- Variable: cada elemento de la expresión con distinto nombre.
 - A.B' + A' C + A (D+E) \rightarrow 5 variables

Determinan los grados de libertad de la expresión.

- <u>Literal</u>: cada aparición de una variable o de su complemento.
 - A. B' + A' C + A (D+E) \rightarrow 7 literales

Determinan la complejidad de la expresión.

Principio de dualidad

Cualquier expresión algebraica deducible de los postulados del álgebra de Boole permanece válida si los operadores binarios y los elementos identidad son intercambiados.

¿Cómo se obtiene el dual?

- Se intercambian ANDs y ORs
- Dual[$(a+b') \cdot (c\cdot b+d)$] = $(a\cdot b') + ((c+b) \cdot d)$

Principio de dualidad

Dual[
$$(a+b') \cdot (c\cdot b+d)$$
] = $(a\cdot b') + ((c+b) \cdot d)$

No hay relación lógica entre una expresión y su dual.

Si dos expresiones son equivalente, entonces sus duales también lo son.

Complemento de una expresión

A través de la ley de De Morgan

$$F_1 = \overline{X}Y\overline{Z} + \overline{X}\overline{Y}Z$$

$$\overline{F}_1 = \overline{X}\overline{Y}\overline{Z} + \overline{X}\overline{Y}Z = (\overline{X}\overline{Y}\overline{Z}) \cdot (\overline{X}\overline{Y}Z)$$

$$= (X + \overline{Y} + Z)(X + Y + \overline{Z})$$

Complemento de una expresión

A través del dual y complementando cada literal

El dual de F₁ es

$$F_1 = \overline{X}Y\overline{Z} + \overline{X}\overline{Y}Z = (\overline{X}Y\overline{Z}) + (\overline{X}\overline{Y}Z)$$

Complementando cada literal

$$(\overline{X} + Y + \overline{Z})(\overline{X} + \overline{Y} + Z)$$

$$(X + \overline{Y} + Z)(X + Y + \overline{Z}) = \overline{F}_1$$

Precedencia de los operadores

- El orden de precedencia de los operadores es:
 - 1) Paréntesis
 - 2) Complemento
 - 3) And
 - 4) Or

Precedencia de los operadores

Álgebra de Boole bivaluada

- Un álgebra de Boole bivaluada (en adelante álgebra de Boole) se define sobre un conjunto de dos elementos B={0,1}.
- Los operadores binarios son (AND) y + (OR).
- El operador unario es ' (NOT).

AND: ·, ∧ , ∩

OR: +, V, U

• NOT: -, '

X	y	x·y
0	0	0
0	1	0
1	0	0
1	1	1

X	y	x + y
0	0	0
0	1	1
1	0	1
1	1	1

х	x'
0	1 0
1	U

Tabla de verdad

(a)
$$F = \overline{X}YZ + \overline{X}Y\overline{Z} + XZ$$

(b)
$$F = \overline{X}Y + XZ$$

X	Υ	Z	(a) F	(b) F
0	0	0	0	0
0	0	1	0	0
0	1	0	1	1
0	1	1	1	1
1	0	0	0	0
1	0	1	1	1
1	1	0	0	0
1	1	1	1	1

Formas estándares

Término suma:

- Suma lógica. Consiste de la operación OR entre literales
- X + Y + Z'
- Término producto:
 - Producto lógico. Consiste de la operación AND entre los literales
 - XYZ'

Observación: ¡suma y producto NO hacen referencia a las operaciones aritméticas!

Formas canónicas y estándares

- Formas canónicas
 - Suma expandida de productos
 - Producto expandido de sumas
- Formas estándares
 - Mínima suma de productos
 - Mínimo producto de sumas

Minitérminos y maxitérminos

Minitérmino:

 Término producto donde todas las variables aparecen exactamente una vez.
 Pueden estar complementadas o no.

Maxitérmino

 Término suma donde todas las variables aparecen exactamente una vez.
 Pueden estar complementadas o no.

Minitérminos y maxitérminos

- Para n variables hay hasta
 - 2ⁿ minitérminos posibles
 - 2ⁿ maxitérminos posibles.
- Para 2 variables A y B
 - Los minitérminos posibles son AB, AB', A'B y A'B'
 - Los maxitérminos posibles son A+B, A'+B, A+B' y A'+B'
- M_j denota el maxitérmino para el cual su combinación binaria se corresponde al decimal j.
- m_j denota el minitérmino para el cual su combinación binaria se corresponde al decimal j.

Minitérminos

Minitérminos para tres variables

X	Υ	z	Produc Term	t Symbol	l m _o	m ₁	m ₂	m ₃	$m_{_4}$	m ₅	$m_{_6}$	m ₇
0	0	0	$\overline{X}\overline{Y}\overline{Z}$	m_0	1	0	0	0	0	0	0	0
0	0	1	$\overline{X}\overline{Y}Z$	$m_{_1}$	0	1	0	0	0	0	0	0
0	1	0	$\overline{X}Y\overline{Z}$	m_2	0	0	1	0	0	0	0	0
0	1	1	$\overline{X}YZ$	m_3	0	0	0	1	0	0	0	0
1	0	0	$X\overline{Y}\overline{Z}$	$m_{_4}$	0	0	0	0	1	0	0	0
1	0	1	$X\overline{Y}Z$	m_5^{τ}	0	0	0	0	0	1	0	0
1	1	0	$XY\overline{Z}$	m_6	0	0	0	0	0	0	1	0
1	1	1	XYZ	m_7	0	0	0	0	0	0	0	1

• Notar que m_j vale 1 para la combinación j y 0 para todas las demás

Maxitérminos para tres variables

X	Υ	Z	Sum Term	Symbol	\mathbf{M}_0	$\mathbf{M_1}$	M_2	M_3	M_4	M_5	M_6	M_7
0	0	0	X + Y + Z	M_0	0	1	1	1	1	1	1	1
0	0	1	$X + Y + \overline{Z}$	M_1	1	0	1	1	1	1	1	1
0	1	0	$X + \overline{Y} + Z$	M_2	1	1	0	1	1	1	1	1
0	1	1	$X + \overline{Y} + \overline{Z}$	M_3	1	1	1	0	1	1	1	1
1	0	0	$\overline{X} + Y + Z$	-	1	1	1	1	0	1	1	1
1	0	1	$\overline{X} + Y + \overline{Z}$	M_5	1	1	1	1	1	0	1	1
1	1	0	$\overline{X} + \overline{Y} + Z$	M_6	1	1	1	1	1	1	0	1
1	1	1	$\overline{X} + \overline{Y} + \overline{Z}$	M_7°	1	1	1	1	1	1	1	0

 Notar que M_j vale 0 para la combinación j y 1 para todas las demás.

Minitérminos

Una función booleana puede representarse algebraicamente a través de la tabla de verdad formando la suma de todos los minitérminos que producen un 1 en la función.

X	Υ	Z	F	
0	0	0	1	$m_0 = X'Y'Z'$
0	0	1	0	
0	1	0	1	$m_2 = X'YZ'$
0	1	1	0	
1	0	0	0	\/\//7
1	0	1	1	$m_5 = XY'Z$
1	1	0	0	\0.4 7
1	1	1	1	$m_7 = XYZ$

$$F = \overline{X}\overline{Y}\overline{Z} + \overline{X}Y\overline{Z} + X\overline{Y}Z + XYZ$$
$$= m_0 + m_2 + m_5 + m_7$$

$$F(X, Y, Z) = \Sigma m(0, 2, 5, 7)$$

Suma expandida de productos

También puede representarse a través del producto de todos los maxitérminos que produzcan un 0 en la función.

Para esto hallamos la suma de productos del complemento de F, F'.

X	Υ	Z	F	$\overline{\mathbf{F}}$
0	0	0	1	0
0	0	1	0	$1 m_1 = X'Y''$
0	1	0	1	0
0	1	1	0	$ \begin{array}{c c} & m_3 = X'YZ \\ \hline & m_4 = XY'Z \end{array} $
1	0	0	0	$m_4 = XY'Z$
1	0	1	1	0
1	1	0	0	$_{1}$ $m_{_{6}} = XYZ$
1	1	1	1	0

$$\overline{F}(X,Y,Z) = \overline{X}\overline{Y}Z + \overline{X}YZ + X\overline{Y}\overline{Z} + XY\overline{Z}$$
$$= m_1 + m_3 + m_4 + m_6$$

$$\overline{F}(X, Y, Z) = \Sigma m(1, 3, 4, 6)$$

Notar la relación entre

y
$$F(X, Y, Z) = \sum m(0, 2, 5, 7)$$

 $\overline{F}(X, Y, Z) = \sum m(1, 3, 4, 6)$

$$\overline{F}(X, Y, Z) = \Sigma m(1, 3, 4, 6)$$

Luego F = (F')'. Aplicando De Morgan:

$$F = \overline{m_1 + m_3 + m_4 + m_6} = \overline{m_1} \cdot \overline{m_3} \cdot \overline{m_4} \cdot \overline{m_6}$$

$$= M_1 \cdot M_3 \cdot M_4 \cdot M_6 \text{ (since } \overline{m_j} = M_j\text{)}$$

$$= (X + Y + \overline{Z})(X + \overline{Y} + \overline{Z})(\overline{X} + Y + Z)(\overline{X} + \overline{Y} + Z)$$

$$F(X, Y, Z) = \prod M(1, 3, 4, 6)$$

Producto expandido de sumas

A partir de la tabla de verdad

	F	Z	Υ	X
= X'Y'Z'	1	0	0	0
$M_1 = X + Y + Z'$	0	1	0	0
$_{2}=X'YZ'$	1	0	1	0
$M_3 = X' + Y + Z$	0	1	1	0
$M_4 = X' + Y + Z$	0	0	0	1
$_{5} = XY'Z$	1	1	0	1
$M_6 = X' + Y' + Z$	0	0	1	1
$_{r}=XYZ$	1	1	1	1
$F(X, Y, Z) = \prod M(1, 3, 4, 6)$				
$F(X, Y, Z) = \Sigma m(0, 2, 5, 7)$				

Dana K. Urribarri AC 2018

Propiedades de los minitérminos (maxitérminos)

- 1) Para *n* variables Booleanas hay 2ⁿ minitérminos (maxitérminos) que se pueden generar a partir de los números binarios entre 0 y 2ⁿ-1.
- 2) Cualquier función booleana puede expresarse como suma expandida de productos (producto expandido de sumas).
- 3) El complemento de una función contiene los minitérminos (maxitérminos) no incluidos en la función original.
- 4) La función que incluye todos los 2^n minitérminos (maxitérminos) es lógicamente igual a 1 (0).

Suma de productos

- Suma lógica de términos productos.
- Cada términos producto puede tener cualquier cantidad de literales.

Ejemplo:

- E = Y' + X'Z' no está expresado como suma expandida de productos.
- Puede expandirse:
 - a través de la tabla de verdad
 - de manera algebraica.

Suma de productos

$$E(X, Y, Z) = \sum m(0, 1, 2, 4, 5)$$

Suma de productos

De manera algebraica:

$$E = Y' + X'Z'$$
= $(X + X')Y' + X'(Y + Y')Z'$
= $XY' + X'Y' + X'YZ' + X'Y'Z'$
= $XY'(Z+Z') + X'Y'(Z+Z') + X'YZ' + X'Y'Z'$
= $XY'Z+XY'Z' + X'Y'Z+X'Y'Z' + X'YZ' + X'Y'Z'$

Producto de sumas

- Producto lógico de sumas.
- Cada suma puede tener cualquier cantidad de literales.

$$F = X(\overline{Y} + Z)(X + Y + \overline{Z})$$

 Se puede expandir utilizando tanto la tabla de verdad como de manera algebraica.

Valores de la salida

- Dada una combinación de entrada, hay 3 posibles valores de salida:
 - Que esa combinación valide la salida (valor 1)
 - Que esa combinación invalide la salida (valor 0)
 - Que no importe el valor de salida (opcional, don't care)
- La salida podrá ser opcional si:
 - Para ciertas combinaciones de entrada no importa el valor de salida.
 - Ciertas combinaciones de entrada son imposibles.

Ejemplo

- Una función F que es verdadero si el mes es parte del invierno
- Los meses se representan con números de 1 a 12 en binario.

	D	С	В	Α	F
	0	0	0	0	*
Enero	0	0	0	1	0
Febrero	0	0	1	0	0
Marzo	0	0	1	1	0
Abril	0	1	0	0	0
Mayo	0	1	0	1	0
Junio	0	1	1	0	1
Julio	0	1	1	1	1
Agosto	1	0	0	0	1
Septiembre	1	0	0	1	1
Octubre	1	0	1	0	0
Noviembre	1	0	1	1	0
Diciembre	1	1	0	0	0
	1	1	0	1	*
	1	1	1	0	*
	1	1	1	1	*

Bibliografía

- <u>Capítulo 2.</u> Morris Mano, Kime & Martin. Logic and computer design fundamentals. Prentice Hall (2015, 5ta Ed)
- <u>Capítulo 2.</u> M. Morris Mano & Michael D. Celetti. Digital Design: With an Introduction to the Verilog HDL. Pearson. (2012, 5ta Ed.)
- <u>Capítulo suplementario "More Optimization".</u>
 Morris Mano, Kime & Martin. Logic and computer design fundamentals.

http://wps.pearsoned.com/ecs_mano_lcdf_5/248/63706/16308896.cw/index.html