Tema 1. La mesura

1. Anomenem a la variable alçària. Calculem primer la mitjana

$$\bar{a} = \frac{1,85+1,89+1,92+1,94+1,96}{10} = 1,951$$

ara, per calcular la desviació estàndard, podem fer servir una taula de la següent manera (fem servir tots els decimals possibles, al final de tot arrodonirem)

a_i	$a_i - \bar{a}$	$(a_i - \bar{a})^2$
1,85	-0,101	0,010201
1,89	-0.061	0,003721
1,92	-0.031	0,000961
1,94	-0.011	0,000121
1,96	0,009	0,000081
1,98	0,029	0,000841
1,97	0,019	0,000361
1,97	0,019	0,000361
2,04	0,089	0,007921
1,99	0,039	0,001521
	$\sum = 0$	$\sum = 0,02609$

Com es pot veure, hem comprovat que la suma de les desviacions dóna 0 (ja es va comentar a classe que sempre ha de ser així). Llavors,

$$\sigma = \sqrt{\frac{\sum (a_i - \bar{a})^2}{n}} = \sqrt{\frac{0,02609}{10}} = \sqrt{0,002609} = 0,051078371$$

amb els càlculs fets podem dir que el valor més aproximat de l'alçària és

$$a = \bar{a} \pm \sigma = 1,951 \pm 0,0051078371$$

com que les dades tenien tres xifres significatives, el valor de la mitjana s'ha d'arrodonir a 1,95 mentre que el de la desviació estàndard l'arrodonim al mateix nombre de decimals que tingui la mitjana (no xifres significatives). Finalment

$$a = \bar{a} \pm \sigma = 1.95 \pm 0.05 \, m$$

2. Anomenem l la variable longitud. Calculem primer la mitjana

$$\bar{l} = \frac{18,23+18,67+19,21+19,43+19,56}{10} = \frac{+20,18+19,71+19,99+19,15+20,24}{10} = 19,437$$

ara, per calcular la desviació estàndard, podem fer servir una taula de la següent manera (fem servir tots els decimals possibles, al final de tot arrodonirem)

l_i	$ l_i - \bar{l} $	$(l_i - \bar{l})^2$
18,23	-1,207	1,456849
18,67	-0.767	0,588289
19,21	-0.227	0,051529
19,43	-0.007	0,000049
19,56	0,123	0,015129
20,18	0,743	0,552049
19,71	0,273	0,074529
19,99	-0,287	0,082369
19,15	0,803	0,644809
20,24	0,553	0,305809
	$\sum = 0$	$\sum = 3,77141$

Com es pot veure, hem comprovat que la suma de les desviacions dóna 0 (ja es va comentar a classe que sempre ha de ser així). Llavors,

$$\sigma = \sqrt{\frac{\sum (l_i - \bar{l})^2}{n}} = \sqrt{\frac{3,77141}{10}} = \sqrt{0,377141} = 0,614118066$$

amb els càlculs fets podem dir que el valor més aproximat de la longitud és

$$l = \bar{l} \pm \sigma = 19,437 \pm 0,614118066$$

com que les dades tenien quatre xifres significatives, el valor de la mitjana s'ha d'arrodonir a 19,44 mentre que el de la desviació estàndard l'arrodonim al mateix nombre de decimals que tingui la mitjana (no xifres significatives). Finalment doncs

$$l = \bar{l} \pm \sigma = 19,44 \pm 0,61 \, mm$$

3. Anomenem t la variable temps. Calculem primer la mitjana, tenint en compte que com hi ha moltes dades, ens interessa fer servir les freqüències f_i , amb que apareix cada dada t_i

$$\bar{t} = \frac{13 \cdot 1 + 38 \cdot 2 + 33 \cdot 3 + 11 \cdot 4 + 5 \cdot 5}{100} = 2,57$$

ara, per calcular la desviació estàndard, podem fer servir una taula de la següent manera (fem servir tots els decimals possibles, al final de tot arrodonirem)

f_{i}	$\mid t_i \mid$	$t_i - \bar{t}$	$(t_i - \bar{t})^2$
13	1	-1,57	2,4649
38	2	-0,57	0,3249
33	3	0,43	0,1849
11	4	1,43	2,0449
5	5	2,43	5,9049
		$\sum = 0$	$\sum = 102, 51$

Com es pot veure, hem comprovat que la suma de les desviacions dóna 0 (ja es va comentar a classe que sempre ha de ser així). S'ha de tenir en compte que hem de fer les sumes fent servir les freqüències. És a dir, la suma de les desviacions s'ha calculat com

$$13 \cdot (-1,57) + 38 \cdot (-0,57) + 33 \cdot (0,43) + 11 \cdot (1,43) + 5 \cdot (2,43) = 0$$

i la suma de les desviacions al quadrat

$$13 \cdot (2,4649) + 38 \cdot (0,3249) + 33 \cdot (0,1849) + 11 \cdot (2,0449) + 5 \cdot (5,9049) = 102,51$$
 Llavors,

$$\sigma = \sqrt{\frac{\sum (t_i - \bar{t})^2}{n}} = \sqrt{\frac{102, 51}{100}} = \sqrt{0, 10251} = 1,01247222$$

amb els càlculs fets podem dir que el valor més aproximat del temps és

$$t = \bar{t} \pm \sigma = 2,57 \pm 1,01247222$$

com que les dades tenien una xifra significativa, el valor de la mitjana s'ha d'arrodonir a 3 mentre que el de la desviació estàndard l'arrodonim al mateix nombre de decimals que tingui la mitjana (no xifres significatives). Finalment

$$t = \bar{t} \pm \sigma = 3 \pm 1 \, h$$

Tema 2. El moviment

1. a) A partir del vector posició

$$\vec{r}(t) = (6t^3 + 2, 3t^2)$$

i els temps $t_1=1\,s,\,t_2=3\,s,\,$ calculem el vector posició pel temps inicial i final

$$\vec{r}(1) = (6 \cdot 1^3 + 2, 3 \cdot 1^2) = (8, 3)$$

$$\vec{r}(3) = (6 \cdot 3^3 + 2, 3 \cdot 3^2) = (164, 27)$$

Ara podem calcular el vector desplaçament

$$\Delta \vec{r} = (164, 27) - (8, 3) = (156, 24)$$

b) El mòdul del desplaçament val

$$|\Delta \vec{r}| = \sqrt{156^2 + 24^2} = \sqrt{24219} = 157,84 \, m$$

c) La velocitat mitjana es pot trobar com

$$\vec{v}_m = \frac{\Delta \vec{r}}{\Delta t} = \frac{(156, 24)}{3 - 1} = \frac{(156, 24)}{2} = (78, 12)$$

i el seu mòdul

$$|\vec{v}_m| = \sqrt{78^2 + 12^2} = \sqrt{6228} = 78,92 \, m/s$$

d) Amb $\vec{v}(t) = (18t^2, 6t)$ i els valors inicial i final del temps

$$\vec{v}(1) = (18, 6)$$

$$\vec{v}(3) = (162, 18)$$

a partir de la definició d'acceleració mitjana

$$\vec{a}_m = \frac{\Delta \vec{v}}{\Delta t} = \frac{(162, 18) - (18, 6)}{3 - 1} = \frac{(144, 12)}{2} = (72, 6)$$

i el seu mòdul val

$$|\vec{a}_m| = \sqrt{72^2 + 6^2} = \sqrt{5220} = 72,25 \, m/s^2$$

2. a) A partir del vector posició

$$\vec{r}(t) = (t^2 - t, t^5 + 1)$$

i els temps $t_1=2\,s,\,t_2=4\,s,\,$ calculem el vector posició pel temps inicial i final

$$\vec{r}(2) = (2^2 - 2, 2^5 + 1) = (2, 33)$$

$$\vec{r}(4) = (4^2 - 2, 4^5 + 1) = (12, 1025)$$

Ara podem calcular el vector desplaçament

$$\Delta \vec{r} = (12, 1025) - (2, 33) = (10, 992)$$

b) El mòdul del desplaçament val

$$|\Delta \vec{r}| = \sqrt{10^2 + 992^2} = \sqrt{984164} = 992,05 \, m$$

c) La velocitat mitjana es pot trobar com

$$\vec{v}_m = \frac{\Delta \vec{r}}{\Delta t} = \frac{(10,992)}{4-2} = \frac{(10,992)}{2} = (5,496)$$

i el seu mòdul

$$|\vec{v}_m| = \sqrt{5^2 + 496^2} = \sqrt{246041} = 496,03 \, m/s$$

d) Amb $\vec{v}(t)=(2t-1,5t^4)$ i els valors inicial i final del temps

$$\vec{v}(2) = (3, 80)$$

$$\vec{v}(4) = (7, 1280)$$

a partir de la definició d'acceleració mitjana

$$\vec{a}_m = \frac{\Delta \vec{v}}{\Delta t} = \frac{(7,1280) - (3,80)}{4 - 2} = \frac{(4,1200)}{2} = (2,600)$$

i el seu mòdul val

$$|\vec{a}_m| = \sqrt{2^2 + 600^2} = \sqrt{360004} = 600,003 \, m/s^2$$

Tema 3. Cinemàtica del punt

Un sol mòbil 1.

Dos mòbils 1.

Moviment de projectils

- Tir parabòlic
- 1. Moviment circular

Tema 4. Dinàmica del punt

Exercicis introductoris

1.

Calculem l'acceleració del sistema aplicant la segona llei de Newton al conjunt

$$F = (m_1 + m_2)a \rightarrow a = \frac{F}{m_1 + m_2} = \frac{24}{2 + 10} = 2 \, m/s^2$$

Ara apliquem la segona llei de Newton només al bloc m_1

$$F_{21} = m_1 a = 2 \cdot 2 = 4 N = F_{12}$$

Veiem que el valor de les forces de contacte depèn de sobre quin dels cossos s'aplica la força externa. Quan l'apliquem sobre el cos més massiu, les forces de contacte són relativament petites, quan s'aplica sobre el més lleuger, les forces de contacte són més grans.

Noteu que també podíem haver trobat F_{12} primer, d'una forma més complexa. Aplicant la segona llei de Newton a m_2

$$F - F_{21} = m_2 a \rightarrow F_{21} = F - m_2 a = 24 - 10 \cdot 2 = 4 N = F_{21}$$

Calculem primer l'acceleració del conjunt

$$F = (m+m+m)a \rightarrow a = \frac{F}{3m} = \frac{10^4}{300} = 33,33 \, m/s^2$$

Llavors, per trobar les tensions comencem aplicant la segona llei de Newton al vagó 3, l'últim

$$T_{23} = ma = 100 \cdot 33, 33 = 3333 N = T_{32}$$

ara apliquem la segona llei de Newton al conjunt format pel tercer i segon vagons (dels quals estira T_{12}),

$$T_{12} = (m+m)a = 200 \cdot 33, 33 = 6666 N = T_{21}$$

Podem trobar aquesta darrera tensió d'una forma més complexa, aplicant la segona llei de Newton *només* al vagó 2,

$$T_{12} - T_{32} = ma \rightarrow T_{12} = T_{32} + ma = 3333 + 100 \cdot 33, 33 = 6666 N$$

Calculem primer l'acceleració del conjunt

$$F = (m_1 + m_2 + m_3)a$$

$$a = \frac{F}{m_1 + m_2 + m_3} = \frac{200}{10 + 11 + 12} = 6,06 \, m/s^2$$

Llavors, aplicant la segona llei de Newton al $\cos m_3$

$$F_{23} = m_3 a = 12 \cdot 6,06 = 72,72 N = F_{32}$$

ara apliquem la segona llei de Newton al conjunt $m_2\,,m_3$

$$F_{12} = (m_2 + m_3)a = (11 + 12)6,06 = 139,38 N = F_{21}$$

Per calcular l'acceleració apliquem la segona llei de Newton

$$F = ma \rightarrow a = \frac{F}{m} = \frac{100}{40} = 2,5 \, m/s^2$$

La velocitat al cap de $2\,s$ la calculem mitjançant les eines vistes a l'avaluació anterior

$$v = v_o + at = 0 + 2, 5 \cdot 2 = 5 \, m/s$$

5.

De forma semblant a l'exercici anterior

$$F = ma \to m = \frac{F}{a} = \frac{200}{2} = 100 \, kg$$

i en quant al desplaçament efectuat en $10\,s$

$$x = v_0 t + \frac{1}{2}at^2 = 0.10 + \frac{1}{2} \cdot 2 \cdot 10^2 = 100 \, m$$

6.

Per resoldre l'exercici i trobar la força aplicada sobre el cos haurem de fer servir la segona llei de Newton, però necessitem saber l'acceleració. Fem servir les dades cinemàtiques que proporciona l'enunciat per calcular-la A partir de

$$x = v_0 t + \frac{1}{2}at^2$$

podem escriure

$$30 = 0 \cdot 20 + \frac{1}{2}a \cdot 20^2$$

d'on

$$a = \frac{2 \cdot 30}{20^2} = 0,15 \, m/s^2$$

Ara, podem aplicar F=ma per trobar la força aplicada

$$F = ma = 80 \cdot 0, 15 = 12 N$$

7.

Passem primer la velocitat a m/s

$$72\frac{km}{k} \times \frac{1000\,m}{1\,km} \times \frac{1\,k}{3600\,s} = 20\,m/s$$

Calculem ara l'acceleració

$$v^2 = v_0^2 + 2ax \rightarrow 0 = 20^2 + 2a \cdot 60 \rightarrow a = -\frac{20^2}{2 \cdot 60} = -3{,}33 \, m/s^2$$

i finalment la força demanada

$$F = ma = 1300 \cdot (-3, 33) = -4333, 33 N$$

Comencem calculant l'acceleració amb que es mourà el cos

$$F = ma \rightarrow a = \frac{F}{m} = \frac{150}{100} = 1,5 \, m/s^2$$

ara, per calcular la velocitat al cap de 8 s

$$v = v_0 + at = 0 + 1, 5 \cdot 8 = 12 \, m/s$$

Al cap de $10\,s$ d'actuar la força la velocitat és més gran, la calculem

$$v = v_0 + at = 0 + 1, 5 \cdot 10 = 15 \, m/s$$

llavors, quan la força deixa d'actuar sobre el cos, i suposant que no actua cap altra força sobre ell, hem de suposar que mantindrà aquesta velocitat assolida. En $5\,s$ recorrerà doncs

$$x = vt = 15 \cdot 5 = 75 \, m$$

9.

Aplicant la segona llei de Newton

$$T-mg = ma \rightarrow T = mg+ma = m(g+a) = 1200(1+9,8) = 12960 N$$

Notem que la força que hauria de fer el fil per mantenir el cos en equilibri val, $T=mg=10\cdot 9, 8=98\,N$, llavors, en les condicions del problema, s'està accelerant cap amunt, ja que s'està pujant amb $T_{max}=200\,N$. L'acceleració que li correspon a aquesta tensió es pot calcular aplicant la segona llei de Newton al cos

$$T_{max} - mg = ma_{max}$$

$$a_{max} = \frac{T_{max} - mg}{m} = \frac{200 - 10 \cdot 9, 8}{10} = 10, 2 \, m/s^2$$

Si el pal fes una força sobre el bomber igual al seu pes, aquest estaria quiet. Com que baixa, apliquem la segona llei de Newton al bomber, tenint en compte que al estar baixant, el pes té el mateix signe que l'acceleració i la força que li fa el pal, sentit contrari. En aquestes condicions tenim

$$mg - F_{pal} = ma$$

$$F_{pal} = mg - ma = m(g - a) = 70 \cdot (9, 8 - 3) = 476 N$$

12.

Veiem que és el que succeeix quan a un cos que es troba recolzat sobre una superfície amb fregament se li aplica una força variable.

La força aplicada F_1 és més petita que la força de fregament màxima que presenta el cos amb la superfície, de manera que aquesta força de fregament s'adapta al valor de la força aplicada, i el cos roman quiet.

La força aplicada F_2 correspon al valor màxim del fregament entre el cos i la superfície. En aquest cas ens trobem en el límit en que el cos es pot començar a moure. La força aplicada F_3 correspon a un valor més gran que el que pot assolir la força de fregament i llavors, tenim una força neta cap a la dreta $F_3 - F_f$ que provocarà una acceleració del cos.

En l'exercici que ens ocupa, ens parlen de la situació en la que s'aplicaria la força F_2 , que ens diuen que val $500\,N$ i tenim que

$$500 = F_f = \mu_e N = \mu_e mg = \mu_s \cdot 120 \cdot 9,8$$

$$\mu_e = \frac{500}{120 \cdot 9.8} = 0.425$$

on hem usat N=mg, un resultat conegut de teoria.

13.

La situació és semblant a la de l'exercici anterior, i podem escriure

$$F_f = \mu mg \to mg = \frac{F_f}{\mu} = \frac{800}{0.8} = 1000 \, N$$

14.

Calculem la força de fregament estàtic màxima que pot presentar el cos

$$F_f = \mu_e mg = 0, 4 \cdot 60 \cdot 9, 8 = 235, 2 N$$

Com que la força que s'aplica és $F=300\,N$, més gran, el cos es mourà. Ara farem servir la segona llei de Newton per calcular l'acceleració però hem de tenir en compte que com ja

s'està movent, hem de usar el coeficient de fregament dinàmic μ_d

$$F - F_f = ma \to F - \mu_d mg = ma$$

$$a = \frac{F - \mu_d mg}{m} = \frac{300 - 0, 3 \cdot 60 \cdot 9, 8}{60} = 2,06 \, m/s^2$$

15.

Calculem primer l'acceleració

$$v^2 = v_0^2 + 2ax$$

$$0 = 15^2 + 2a \cdot 97, 8 \rightarrow a = \frac{-15^2}{2 \cdot 97, 8} = -1, 15 \, m/s^2$$

Per trobar el coeficient de fregament apliquem la segona llei de Newton, tenint en compte que la única força que està actuant sobre el cos mentre es mou és la de fregament que té sentit contrari al del moviment i per tant, acabarà aturant el cos,

$$-F_f = ma \rightarrow -\mu mg = ma \rightarrow \mu = -\frac{a}{g} = -\frac{-1,15}{9,8} = 0,117$$

En quant a la força de fregament, podem escriure

$$F_f = \mu N = \mu mg = 0, 3 \cdot 10 \cdot 9, 8 = 29, 4$$

i per l'acceleració tenim

$$F - F_f = ma \rightarrow a = \frac{F - f_f}{m} = \frac{300 - 29, 4}{10} = 27,06 \, m/s^2$$

Cossos enllaçats

1. A partir de l'esquema de la teoria, suposant que la massa m_1 es troba a l'esquerra i la massa m_2 a la dreta, les tensions són iguals i valen T i assumint ara que la politja es mou en sentit antihorari llavors, pel cos de l'esquerra tenim

$$m_1g - T = m_1a$$

i per el de la dreta

$$T - m_2 q = m_2 a$$

Sumant les equacions

$$m_1g - m_2g = (m_1 + m_2)a$$

d'on

$$a = \frac{m_1 g - m_2 g}{m_1 + m_2} = g \frac{m_1 - m_2}{m_1 + m_2} = 9, 8 \cdot \frac{4 - 2}{4 + 2} = 3,27 \, m/s^2$$

2. El, procés de resolució està detallat a la teoria, les equacions que s'obtenen són

$$a = g \frac{m_2 + m_3 - \mu m_1}{m_1 + m_2 + m_3} = 9, 8 \cdot \frac{5 + 1 - 0, 2 \cdot 3}{3 + 5 + 1} = 5,88 \, m/s^2$$

$$N_3 = m_3 g \frac{m_1(1+\mu)}{m_1 + m_2 + m_3} = 1 \cdot 9, 8 \cdot \frac{3 \cdot (1+0,2)}{3+5+1} = 3,92 \, N$$

Hem suposat que el sistema es mou $cap\ a\ la\ dreta$. Les equacions per cada massa són

$$T_1 - m_1 g = m_1 a$$

 $T_2 - T_1 - F_f = m_3 a$ $N_3 = m_3 g$
 $m_2 g - T_2 = m_2 a$

que es poden escriure com

$$T_1 - m_1 g = m_1 a$$

$$T_2 - T_1 - \mu N_3 = m_3 a \qquad N_3 = m_3 g$$

$$m_2 g - T_2 = m_2 a$$

i, finalment

$$T_1 - m_1 g = m_1 a$$

$$T_2 - T_1 - \mu m_3 g = m_3 a$$

$$m_2 g - T_2 = m_2 a$$

Sumant-les, obtenim

$$m_2g - m_1g - \mu m_3g = (m_1 + m_2 + m_3)a$$

d'on

$$a = g \frac{m_2 - m_1 - \mu m_3}{m_1 + m_2 + m_3} = 9,8 \cdot \frac{20 - 10 - 0,2 \cdot 8}{10 + 20 + 8} = 2,07 \, m/s^2$$

El pla inclinat

1. Només cal seguir el raonament fet a la teoria i substituir els valors a l'expressió final

$$a = g(\sin \alpha - \mu \cos \alpha) = 3, 2m/s^2$$

2. Posem noms a les masses, representem les forces i escrivim les equacions per cada cos

Pel cos 1 les equacions son,

$$\begin{cases} N_1 = m_1 g \\ T - F_{f1} = m_1 a \end{cases} \to \begin{cases} N_1 = m_1 g \\ T - \mu N_1 = m_1 a \end{cases} \to T - \mu m_1 g = m_1 a$$

Pel cos 2 les equacions son,

$$\begin{cases} N_2 = P_y \\ P_x - T - F_{f2} = m_2 a \end{cases} \rightarrow \begin{cases} N_2 = m_2 g \cos \alpha \\ m_2 g \sin \alpha - T - F_{f2} = m_2 a \end{cases} \rightarrow$$

$$\begin{cases} N_2 = m_2 g \cos \alpha \\ m_2 g \sin \alpha - T - \mu N_2 = m_2 a \end{cases} \rightarrow m_2 g \sin \alpha - T - \mu m_2 g \cos \alpha = m_2 a$$

llavors, obtenim el sistema d'equacions

$$\begin{cases} T - \mu m_1 g = m_1 a \\ m_2 g \sin \alpha - T - \mu m_2 g \cos \alpha = m_2 a \end{cases}$$

que es resol trivialment per donar,

$$m_2g\sin\alpha - \mu m_2g\cos\alpha - \mu m_1g = m_1a + m_2a$$

d'on

$$a = g \cdot \frac{m_2 \sin \alpha - \mu m_2 \cos \alpha - \mu m_1}{m_1 + m_2}$$

$$= 9.8 \cdot \frac{25 \sin 30^\circ - 0.2 \cdot 25 \cos 30^\circ - 0.2 \cdot 8}{8 + 25}$$

$$= 1.95 \, m/s^2$$

Pel cos 1 les equacions son,

$$\begin{cases} N_1 = P_{1y} \\ T - F_{f1} - P_{1x} = m_1 a \end{cases} \rightarrow \begin{cases} N_1 = m_1 g \cos \alpha \\ T - F_{f1} - m_1 g \sin \alpha = m_1 a \end{cases} \rightarrow$$

$$\begin{cases} N_1 = m_1 g \cos \alpha \\ T - \mu N_1 - m_1 g \sin \alpha = m_1 a \end{cases} \rightarrow T - \mu m_1 g \cos \alpha - m_1 g \sin \alpha = m_1 a$$

Pel cos 2 les equacions son,

$$\begin{cases} N_2 = P_{2y} \\ P_{2x} - T - F_{f2} = m_2 a \end{cases} \rightarrow \begin{cases} N_2 = m_2 g \cos \beta \\ m_2 g \sin \beta - T - F_{f2} = m_2 a \end{cases} \rightarrow \begin{cases} N_2 = m_2 g \cos \beta \\ m_2 g \sin \beta - T - \mu N_2 = m_2 a \end{cases} \rightarrow m_2 g \sin \beta - T - \mu m_2 g \cos \beta = m_2 a \end{cases}$$

Obtenim llavors el sistema

$$\begin{cases} T - \mu m_1 g \cos \alpha - m_1 g \sin \alpha = m_1 a \\ m_2 g \sin \beta - T - \mu m_2 g \cos \beta = m_2 a \end{cases}$$

que es resol fàcilment per donar

$$m_2g\sin\beta - \mu m_2g\cos\beta - \mu m_1g\cos\alpha - m_1g\sin\alpha = m_1a + m_2a$$

d'on finalment

$$a = g \cdot \frac{m_2 \sin \beta - \mu m_2 \cos \beta - \mu m_1 \cos \alpha - m_1 \sin \alpha}{m_1 + m_2}$$

Dinàmica del moviment circular

La utilitat dels exercicis 1, 2 i 3 és ser capaç de reproduir els raonaments que porten als resultats finals. No es repetirà aquí el que s'explica a la teoria.

1. Atenció!: Ja es va comentar a la classe (i en breu es corregirà als apunts) que prenguéssim $\omega = \frac{20\pi}{3}$.

En el cas que el cos és a dalt de tot tenim,

$$T = m\omega^2 L - mg = 5\left(\frac{20\pi}{3}\right)^2 2 - 5 \cdot 9, 8 = 4337, 5 N$$

En el cas que el cos és a mitja alçada,

$$T = m\omega^2 L = 5\left(\frac{20\pi}{3}\right)^2 2 = 4386, 5 N$$

Quant el cos és a la part inferior de la trajectòria,

$$T = m\omega^2 L + mg = 5\left(\frac{20\pi}{3}\right)^2 2 + 5 \cdot 9, 8 = 4435, 5 N$$

2. Com a resultat tenim,

$$\omega = \sqrt{\frac{g}{\mu R}} = \sqrt{\frac{9,8}{0,3 \cdot 2}} = 4,04 \, rad/s$$

3. A la teoria s'arriba a l'expressió

$$\omega = \sqrt{\frac{mg}{MR}} = \sqrt{\frac{15 \cdot 9, 8}{10 \cdot 1}} = 3,83 \, rad/s$$

La força normal equilibra al pes, mentre que hi ha d'haver alguna força no equilibrada que proporcioni acceleració centrípeta, per tal que el cotxe pugui descriure la corba, llavors

$$\begin{cases} N = mg \\ F_f = m\frac{v^2}{R} \end{cases} \rightarrow \begin{cases} N = mg \\ \mu N = m\frac{v^2}{R} \end{cases} \rightarrow \mu mg = m\frac{v^2}{R}$$

d'on

$$v_{max} = \sqrt{\mu gR} = \sqrt{0, 3 \cdot 9, 8 \cdot 25} = 8,57 \, m/s$$

Després de posar uns eixos orientats d'acord amb el pes mg veiem que la component vertical de la tensió equilibra al pes i la component horitzontal proporciona l'acceleració centrípeta,

$$\begin{cases} T_x = m\frac{v^2}{R} \\ T_y = mg \end{cases} \rightarrow \begin{cases} T\sin\alpha = m\frac{v^2}{R} \\ T\cos\alpha = mg \end{cases}$$

a) Tenim

$$T = \frac{mg}{\cos \alpha} = \frac{0.5 \cdot 9.8}{\cos 60^{\circ}} = 9.8 \, N$$

b) Dividint les equacions

$$\frac{X\sin\alpha}{X\cos\alpha} = \frac{m\frac{v^2}{R}}{mg}$$

d'on

$$v = \sqrt{Rg \tan \alpha}$$

per una altra banda, del dibuix es veu que és $R = L \sin \alpha$, llavors

$$v = \sqrt{Rg \tan \alpha} = \sqrt{Lg \sin \alpha \tan \alpha} = \sqrt{0.5 \cdot 9, 8 \sin 60^{\circ} \tan 60^{\circ}} = 2,71 \, m/s$$

c) Sabem que la velocitat sempre és tangent a la trajectòria i com l'acceleració centrípeta es dirigeix cap al centre, l'angle que formen velocitat i acceleració és 90°.

6.

Per tal de girar, el pilot de l'avió maniobra amb els alerons per desequilibrar-lo. D'aquesta manera, la força de sustentació, perpendicular al pla de les ales, proporciona la força centrípeta necessària perquè l'avió descrigui el gir. La component vertical de la força de sustentació equilibra el pes.

$$\begin{cases} F_{sx} = m\frac{v^2}{R} \\ F_{sy} = mg \end{cases} \rightarrow \begin{cases} F_s \sin \alpha = m\frac{v^2}{R} \\ F_s \cos \alpha = mg \end{cases}$$

Dividint les equacions

$$\tan \alpha = \frac{v^2}{Rg} \tag{1}$$

a) Les restriccions per l'acceleració màxima ens permeten escriure

$$a_c = \frac{v^2}{R} = 8g$$

d'on

$$R = \frac{v^2}{8g} = \frac{400^2}{8 \cdot 9, 8} = 2040, 82 \, m$$

b) De l'expressió (1), obtinguda abans

$$\alpha = \arctan \frac{v^2}{Rg} = \arctan \frac{8Rg}{Rg} = \arctan 8 = 82,87^{\circ}$$

La corba peraltada

1.

Velocitat màxima

a)
$$\alpha = 0^{\circ}$$

$$v_{max} = \sqrt{\mu g R}$$

Per $\alpha=0^\circ$ la superfície és horitzontal, i el resultat que obtenim és el mateix que vam trobar en un exercici anterior.

b)
$$\alpha = 90^{\circ}$$

$$v_{max} = \sqrt{\frac{-Rg}{\mu}}$$

El resultat no és un nombre real. Ho interpretem com que al ser la superfície vertical no hi ha cap límit superior per la velocitat (sí un valor mínim com veurem després).

Velocitat mínima

a)
$$\alpha = 0^{\circ}$$

$$v_{min} = \sqrt{-\mu g R}$$

Aquest valor no és un nombre real. Per aquest angle no hi ha velocitat mínima per descriure la corba, de fet el vehicle podria estar aturat.

b)
$$\alpha = 90^{\circ}$$

$$v_{min} = \sqrt{\frac{Rg}{\mu}}$$

Quan la superfície és vertical, cal una velocitat mínima perquè el vehicle pugui descriure la corba.

Trobem la velocitat mínima i màxima.

$$v_{min} = \sqrt{Rg \frac{\sin \alpha - \mu \cos \alpha}{\cos \alpha + \mu \sin \alpha}}$$

$$= \sqrt{25 \cdot 9, 8 \cdot \frac{\sin 30^{\circ} - \mu \cos 30^{\circ}}{\cos 30^{\circ} + \mu \sin 30^{\circ}}}$$

$$= 9, 1 \, m/s$$

$$v_{max} = \sqrt{Rg \frac{\sin \alpha + \mu \cos \alpha}{\cos \alpha - \mu \sin \alpha}}$$

$$= \sqrt{25 \cdot 9, 8 \cdot \frac{\sin 30^{\circ} + 0, 2 \cos 30^{\circ}}{\cos 30^{\circ} - 0, 2 \sin 30^{\circ}}}$$

$$= 14,67 \, m/s$$

3.

A mesura que μ va disminuint el rang de velocitats pel qual el vehicle pot descriure la corba es va fent més i més petit. Quan és $\mu=0$ les expressions de la velocitat mínima i màxima coincideixen al valor

$$v = \sqrt{Rg \tan \alpha}$$

Treball i energia

1. Fem un balanç d'energia. En el moment de llançar-se l'objecte podem suposar que es troba a altura zero, de forma que no té energia potencial, però sí cinètica, ja que si no no pujaria. Quan arribi a la altura màxima, tota l'energia cinètica que tenia al principi s'haurà convertit en energia potencial gravitatòria. No ens donen el valor de la massa de l'objecte. Quan passa això, farem servir la lletra (m en aquest cas) de la variable a les equacions i esperarem que al final el resultat no en depengui. Potser que algun cop s'hagi de deixar un resultat en funció d'algun paràmetre desconegut. En qualsevol cas, no podem senzillament ni tan sols deixar d'intentar resoldre l'exercici perquè "falten dades".

$$\frac{1}{2}mv^2 = mgh$$

d'on

$$h = \frac{1}{2g}v^2 = \frac{1}{2 \cdot 9, 8} \cdot (10)^2 = 5, 10 \, m$$

2. Novament establim un balanç d'energia. Prenem h=0 al terra de forma que tenim energia potencial gravitatòria a dalt de tot del tobogan, energia que un cop arribat a baix, trobarem en forma d'energia cinètica i una part perduda en forma de fregament. No cal saber quina llargària ni forma té el tobogan, ja que no ens demanen la força de fregament (ni el coeficient) sino el treball que ha fet, llavors

$$mgh = \frac{1}{2}mv^2 + W_{F_{nc}}$$

d'on

$$W_{F_{nc}} = mgh - \frac{1}{2}mv^2 = 30 \cdot 9, 8 \cdot 2 - \frac{1}{2} \cdot 30 \cdot (4)^2 = 348 J$$

3. La situació es pot representar com

Llavors escrivim un balanç d'energia, tenint en compte que suposem h=0 al punt més baix, que al començament té velocitat v, i que al punt més baix té velocitat v'

$$mgR + \frac{1}{2}mv^2 = \frac{1}{2}mv'^2$$

d'on

$$v' = \sqrt{2gR + v^2} = \sqrt{2 \cdot 9, 8 \cdot 0, 5 + 6^2} = 6,77 \, m/s$$

En quant a la tensió al punt més baix, al tema anterior vam deduir el resultat

$$T - mg = m\frac{v'^2}{R} \to T = mg + m\frac{v'^2}{R} = 0, 5.9, 8 + 0, 5\frac{(6,77)'^2}{0,5} = 50,73 \, N$$

El treball que hem de fer per pujar l'ascensor l'altura demanada és igual a l'energia potencial gravitatòria que aquest guanyi. Llavors,

$$W = mgh = 700 \cdot 9, 8 \cdot 20 = 1,37 \cdot 10^5 J$$

Per calcular la potència

$$P = \frac{W}{t} = \frac{1,37 \cdot 10^5}{28} = 4,9 \cdot 10^3 \, W$$

5.

Podem considerar que el treball que ha fet el motor s'ha invertit en l'energia cinètica que té al final, llavors

$$W = \frac{1}{2}mv^2 = \frac{1}{2} \cdot 800 \cdot \left(\frac{107}{3,6}\right)^2 = 3,53 \cdot 10^5 \, J$$

i la potència val

$$P = \frac{W}{t} = \frac{3,53 \cdot 10^5}{8} = 4,42 \cdot 10^4 W$$

6.

Plantegem un balanç d'energia. Al punt més alt només té energia potencial gravitatòria. En un punt intermedi té potencial gravitatòria i cinètica. Novament la solució de l'exercici no depèn de la massa de l'objecte que es deixa caure.

$$mgH = mgh + \frac{1}{2}mv^2$$

$$H = h + \frac{1}{2q}v^2 = 16,25 + \frac{1}{2 \cdot 9,8} \cdot (30)^2 = 62,17 \, m$$

La velocitat amb que arriba a terra es pot trobar escrivint el balanç d'energia de principi a fi

$$mgH = \frac{1}{2}mv^2 \rightarrow v = \sqrt{2gH} = \sqrt{2 \cdot 9, 8 \cdot 62, 17} = 34,91 \, m/s$$

7.

Quan m_1 ha baixat h = 15 m l'energia potencial gravitatòria que ha perdut s'ha repartit en la potencial que ha guanyat m_2 i en el guany d'energia cinètica de les dues masses, aixi

$$m_1gh = m_2gh + \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2$$

en les condicions que ens van permetre resoldre el problema de la màquina d'Atwood l'acceleració de les dues masses és la mateixa, i si han recorregut el mateix espai, la velocitat també ho serà $(v_1 = v_2 \equiv v)$, llavors podem escriure

$$2gh(m_1 - m_2) = (m_1 + m_2)v^2$$

d'on

$$v = \sqrt{2gh\frac{m_1 - m_2}{m_1 + m_2}} = \sqrt{2 \cdot 9, 8 \cdot 15 \cdot \frac{15 - 5}{15 + 5}} = 12, 12 \, m/s$$

8.

Si l'objecte arriba a una altura h, el treball que haurà fet el fregament serà F_ah . Llavors, plantejant un balanç d'energia

$$\frac{1}{2}mv_0^2 = mgh + F_ah$$

d'on

$$h = \frac{1}{2} \frac{mv_0^2}{mg + F_a}$$

Ara, al tornar a terra el balanç d'energia s'escriu com

$$mgh = \frac{1}{2}mv^2 + F_ah$$

i

$$v = \sqrt{2 \frac{mgh - F_a h}{m}}$$

$$= \sqrt{2 \frac{mg - F_a}{m} h}$$

$$= \sqrt{2 \frac{mg - F_a}{m} \frac{1}{2} \frac{mv_0^2}{mg + F_a}}$$

$$= v_0 \sqrt{\frac{mg - F_a}{mg + F_a}}$$

9.

Plantegem un balanç d'energia de manera que la cinètica que té al peu del pla inclinat s'haurà invertit en energia potencial gravitatòria per una banda, i per l'altra s'haurà perdut en forma de fregament.

$$\frac{1}{2}mv_0^2 = mgh + W_{F_{nc}}$$

$$= mgd\sin\alpha + F_fd$$

$$= mgd\sin\alpha + \mu Nd$$

$$= mgd\sin\alpha + \mu mg\cos\alpha d$$

d'on

$$d = \frac{\frac{1}{2}mv_0^2}{mg\sin\alpha + \mu mg\cos\alpha} = \frac{\frac{1}{2}\cdot(15)^2}{9,8\sin30^\circ + 0,1\cdot 9,8\cos30^\circ} = 19,57\,m$$

10.

En aquest exercici hem de tenir en compte dos factors, primer de tot volem que les vagonetes que circulen descriguin el *loop*, aquesta condició imposa un valor mínim per la velocitat que han de tenir quan es troben a dalt de tot. Després, ens hem d'assegurar que aquesta velocitat s'assoleix.

Quan una vagoneta és a dalt de tot, les forces que hi actuen són el pes i la normal, les dues proporcionen força centrípeta,

$$N + mg = m\frac{v^2}{R}$$

la velocitat mínima per poder descriure el loop es donarà quan N=0, un valor menor de la velocitat faria que la vagoneta caigués descrivint un tir parabòlic (a la realitat les vagonetes tenen un sistema d'anclatge als rails però aquí estem ignorant aquest fet), llavors

$$0 + mg = m\frac{v^2}{R} \to v_{min} = \sqrt{gR}$$

Per tal d'assegurar que la vagoneta té aquesta velocitat en aquell moment, cal que es deixi caure doncs d'una altura H tal que

$$mgH = mg2R + \frac{1}{2}mv_{min}^2$$

$$\mathfrak{A}H = \mathfrak{A}2R + \frac{1}{2}\mathfrak{A}R$$

$$H = 2R + \frac{1}{2}R = \frac{5R}{2} = \frac{5 \cdot 10}{2} = 25 \, m$$

En quant a la força que fa el rail al tornar a passar per la part baixa, calculem primer la velocitat que tindrà llavors aplicant el principi de conservació de l'energia des que es va llençar fins que arriba a baix com si no hagués fet el *loop*,

$$mgH = \frac{1}{2}mv^2 \to v = \sqrt{2gH}$$

Ara, recordant les idees de dinàmica de rotació del tema anterior

$$N - mg = m\frac{v^2}{R}$$

d'on la força que farà el rail sobre la vagoneta serà

$$N = mg + m\frac{v^2}{R}$$

$$= mg + m\frac{2gH}{R}$$

$$= mg\left(1 + \frac{2H}{R}\right)$$

$$= 80 \cdot 9, 8\left(1 + \frac{2 \cdot 25}{10}\right) = 4704 N$$

El moment lineal. Xocs

1.

La conservació de la quantitat de moviment es pot escriure de la següent forma

$$0 = m_1 v_1' + m_2 v_2'$$

ja que al principi el patinador i la pilota es troben junts i en repòs. Llavors, incorporant les dades de l'enunciat

$$0 = 45v_1' + 3 \cdot 6 \rightarrow v_1' = \frac{-3 \cdot 6}{45} = -0.4 \, m/s$$

2.

La conservació de la quantitat de moviment s'escriu

$$mv = \frac{m}{2}v_1' + \frac{m}{2}v_2'$$

simplificant la massa,

$$mv = \frac{m}{2}v_1' + \frac{m}{2}v_2'$$

fent servir les dades de l'enunciat,

$$5 = \frac{2}{2} + \frac{1}{2}v_2' \to v_2' = 8\,m/s$$

el segon tros es mou en la mateixa direcció i sentit que el cos original.

3. En el procés que el primer patinador llança la pilota, la conservació de la quantitat de moviment s'escriu

$$0 = m_A v_1' + m_p v_2' \to 0 = 40v_1' + 6 \cdot 2$$

d'on

$$v_1' = \frac{-12}{40} = -0.3 \, m/s$$

Quan el segon patinador captura la pilota,

$$m_p v_2' = (m_A + m_p)v' \to v' = \frac{m_p v_2'}{m_A + m_p} = \frac{6 \cdot 2}{40 + 6} = 0,26 \, m/s$$

4. La conservació de la quantitat de moviment i de l'energia s'escriuen

$$\begin{cases} m_1 v_1 + m_2 v_2 = m_1 v_1' + m_2 v_2' \\ v_2 - v_1 = v_1' - v_2' \end{cases}$$

fent servir les dades de l'enunciat

$$\begin{cases} 4 \cdot 8 + 6(-12) = 4v_1' + 6v_2' \\ -12 - 8 = v_1' - v_2' \end{cases} \rightarrow \begin{cases} -40 = 4v_1' + 6v_2' \\ -20 = v_1' - v_2' \end{cases}$$

multiplicant la segona equació per 6 i sumant-les

$$\begin{cases}
-40 = 4v_1' + 6v_2' \\
-120 = 6v_1' - 6v_2'
\end{cases} \to -160 = 10v_1' \to v_1' = -16 \, m/s$$

i
$$v_2' = v_1' + 20 = -16 + 20 = 4 \, m/s$$

Com es veu, les dues boles canvien el sentit de moviment després del xoc.

5. La conservació de la quantitat de moviment i de l'energia s'escriuen

$$\begin{cases} m_1 v_1 + m_2 v_2 = m_1 v_1' + m_2 v_2' \\ v_2 - v_1 = v_1' - v_2' \end{cases}$$

fent servir les dades de l'enunciat

$$\begin{cases} m_1 \cdot 5 = m_1 v_1' + 1 \cdot v_2' \\ 0 - 5 = v_1' - v_2' \end{cases}$$

com veiem tenim tres incògnites i dues equacions. Si plantegem el balanç d'energia posterior al xoc,

$$\frac{1}{2}mv_2'^2 = W_{F_{nc}} = \mu mgd$$

d'on la velocitat del bloc

a)

$$v_2' = \sqrt{\frac{2\mu mgd}{m}} = \sqrt{2 \cdot 0, 2 \cdot 9, 8 \cdot 2} = 2,8 \, m/s$$

Tornant al sistema d'equacions anterior

$$\begin{cases} m_1 \cdot 5 = m_1 v_1' + 1 \cdot 2, 8 \\ 0 - 5 = v_1' - 2, 8 \end{cases}$$

llavors la velocitat de la bola després del xoc,

$$v_1' = 2, 8 - 5 = -2, 2 \, m/s$$

i la seva massa

b)
$$m_1 = \frac{2,8}{5 - v_1'} = \frac{2,8}{5 - (-2,2)} = 0,39 \, kg$$

c) Per calcular l'energia cinètica perduda per la bola fem,

$$E_{perd} = E_i - E_f$$

$$= \frac{1}{2}m_1v_1^2 - \frac{1}{2}m_1v_1'^2$$

$$= \frac{1}{2}0,39 \cdot 5_1^2 - \frac{1}{2}0,39 \cdot (-2,2)^2 = 3,93 J$$

6. El pèndol balístic és un dispositiu inercial que es fa servir per mesurar la velocitat de projectils. Es dispara un projectil de massa m coneguda contra un bloc de fusta, per exemple, de massa M de forma que el projectil queda incrustat al pèndol. Llavors, per efecte del xoc el pèndol descriurà un arc de circumferència fins una certa alçada H, que es pot relacionar amb la longitud del pèndol L i l'angle màxim α que forma amb la vertical en la seva ascensió.

En el moment de l'impacte podem escriure

$$mv = (m+M)v'$$

en el procés d'ascensió del pèndol

$$\frac{1}{2}(m+M)v'^2 = (m+M)gH \to v' = \sqrt{2gH}$$

amb $H = L - L \cos \alpha$.

Llavors,

$$\begin{split} v &= \frac{(m+M)v'}{m} \\ &= \frac{m+M}{m} \sqrt{2gH} \\ &= \frac{m+M}{m} \sqrt{\cdot 2gL(1-\cos\alpha)} \\ &= \frac{0,015+1,5}{0,015} \sqrt{2\cdot 9,8\cdot 2(1-\cos60^\circ)} = 447,15\,m/s \end{split}$$

Força elàstica i energia

1. a) A partir de la conservació de la quantitat de moviment

$$m_1v_1 + m_2v_2 = m_1v_1' + m_1v_2'$$

podem escriure

$$0, 6 \cdot 4 + 0, 2 \cdot 0 = (0, 6 + 0, 2) \cdot v'$$

on no hem distingit les velocitats després del xoc ja que queden junts.

$$v' = \frac{0, 6 \cdot 4 + 0, 2 \cdot 0}{0, 6 + 0, 2} = 3 \, m/s$$

Calculem l'energia cinètica del sistema abans del xoc

$$E_i = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \frac{1}{2}0, 2 \cdot 0^2 + \frac{1}{2}0, 6 \cdot 4^2 = 4, 8J$$

Calculem l'energia cinètica del sistema després del xoc

$$E_f = \frac{1}{2}(m_1 + m_1)v_1^2 = \frac{1}{2}(0, 2 + 0, 6)3^2 = 3, 6J$$

Llavors l'energia perduda val

$$E_{perd} = E_i - E_f = 4, 8 - 3, 6 = 1, 2J$$

b) Ara escrivim un balanç d'energia ja que el conjunt comprimirà la molla amb l'energia cinètica que ha adquirit

$$\frac{1}{2}kx^2 = \frac{1}{2}(m_1 + m_2)v'^2$$

d'on

$$x = v'\sqrt{\frac{m_1 + m_2}{k}} = 3\sqrt{\frac{0, 6 + 0, 2}{500}} = 0, 12 \, m$$

2. La conservació de la quantitat de moviment s'escriu

$$m_1v_1 + m_2v_2 = m_1v_1' + m_1v_2'$$

fent servir les dades del problema

$$5 \cdot 0 + 2 \cdot 0 = 5v_1' + 2v_2' \tag{1}$$

Ara, el balanç d'energia entre l'energia potencial elàstica i la cinètica dels blocs després de separar-se de la molla

$$\frac{1}{2}kx^2 = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2$$

fent servir les dades del problema

$$\frac{1}{2} \cdot 2000 \cdot 0, 1^2 = \frac{1}{2} \cdot 5v_1^{'2} + \frac{1}{2} \cdot 2v_2^{'2} \tag{2}$$

Agrupant (1) i (2)

$$\begin{cases}
0 = 5v_1' + 2v_2' \\
20 = 5v_1'^2 + 2v_2'^2
\end{cases}$$

aïllant $v_2' = -\frac{5}{2}v_1'$ de la primera i substituïnt a la segona

$$20 = 5v_1^{'2} + 2\left(-\frac{5}{2}v_1'\right)^2 \to 20 = 5v_1^{'2} + \frac{25}{2}v_1^{'2}$$

$$v_1^{'2} = \frac{20}{5 + \frac{25}{2}} \to v_1 = \pm \sqrt{\frac{20}{5 + \frac{25}{2}}} = \pm 1,07 \, m/s$$

finalment,

$$v_2' = -\frac{5}{2}v_1' = -\frac{5}{2} \cdot (\pm 1,07) = \mp 2,67 \, m/s$$

3. Resolem el problema amb el mètode general. Escrivim el balança d'energia,

$$mg(h+y) = \frac{1}{2}ky^2$$

a partir d'aquí obtenim una equació de segon grau

$$ky^2 - 2mqy - 2mqh = 0$$

amb solucions

$$y = \frac{2mg \pm \sqrt{(2mg)^2 + 8kmgh}}{2k}$$

$$= \frac{2 \cdot 5 \cdot 9, 8 \pm \sqrt{(2 \cdot 5 \cdot 9, 8)^2 + 8 \cdot 100 \cdot 5 \cdot 9, 8 \cdot 3}}{2 \cdot 100}$$

$$= \frac{98 \pm 356, 66}{200}$$

$$y_1 = 2, 27 m \qquad y_2 = -1, 29 m$$

La segona solució no té sentit.

Llei d'Ohm.

1. A partir de la llei d'Ohm V = IR

$$I = \frac{V}{R} = \frac{90}{30} = 3 A$$

2. Com es tracta d'una font d'alimentació, calculem la potència com

$$P = VI = 15 \cdot 3 = 45 W$$

3. A partir de l'expressió que relaciona potència amb tensió i resistència,

$$P = \frac{V^2}{R} \to R = \frac{V^2}{P} = \frac{220^2}{80} = 605 \, W$$

4. A partir de la llei d'Ohm V = IR,

$$I = \frac{V}{R} = \frac{100}{20} = 5 A$$

ara, fent servir l'expressió que relaciona potència amb intensitat i resistència,

$$P = I^2 R = 5^2 \cdot 20 = 500 \, W$$

5. Tal com es comenta als apunts de teoria, per sumar tres resistències en paral·lel fem

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

d'on

$$\frac{1}{R_{eq}} = \frac{R_2 R_3 + R_1 R_3 + R_1 R_2}{R_1 R_2 R_3}$$

i finalment

$$R_{eq} = \frac{R_1 R_2 R_3}{R_2 R_3 + R_1 R_3 + R_1 R_2}$$

En el cas de tenir cinc resistències, observem el resultat anterior; al numerador apareix el producte de les resistències i al denominador apareixen les sumes de totes les combinacions possibles dels productes agafats de dos en dos, llavors, en el cas de cinc resistències, la resistència equivalent val

$$\frac{R_1R_2R_3R_4R_5}{R_1R_2R_3R_4 + R_1R_2R_3R_5 + R_1R_2R_5R_4 + R_1R_5R_3R_4 + R_5R_2R_3R_4}$$

6. Per cada bombeta podem escriure

$$R_1 = \frac{V_1^2}{P_1} = \frac{220^2}{20} = 2420 W$$

$$R_2 = \frac{V_1^2}{P_2} = \frac{220^2}{50} = 968 W$$

$$R_3 = \frac{V_1^2}{P_2} = \frac{220^2}{100} = 484 W$$

Quan es connecten en sèrie

$$R_{eq} = R_1 + R_2 + R_3 = 2420 + 968 + 484 = 3872 \,\Omega$$

Quan es connecten en paral·lel

$$R_{eq} = \frac{R_1 R_2 R_3}{R_2 R_3 + R_1 R_3 + R_1 R_2}$$

$$= \frac{2420 \cdot 968 \cdot 484}{968 \cdot 484 + 2420 \cdot 484 + 2420 \cdot 968}$$

$$= 284, 7 \Omega$$

- 7. Únicament per agilitzar la correcció de l'exercici, adoptem els següents criteris per establir una notació algebraica adequada (els dibuixos els heu de fer)
 - Dues resistències connectades en sèrie les representarem com $R_1 + R_2$
 - \bullet Dues resistències connectades en paral·lel les representarem com $R_1//R_2$
 - Farem servir parèntesis per tal d'establir la prioritat en els esquemes de connexió

Per exemple, l'associació

la representarem per $(R_1 + R_2)//R_3$

Amb aquest conveni provisional, els possibles esquemes de connexió i valor de la resistència equivalent en cada cas per les tres resistències de l'exercici són

1.
$$R_1 + R_2 + R_3 \rightarrow R_{eq} = 60 \,\Omega$$

2.
$$R_1 + (R_2//R_3) \rightarrow R_{eq} = 22 \Omega$$

3.
$$R_2 + (R_1//R_3) \rightarrow R_{eq} = 27,5 \Omega$$

4.
$$R_3 + (R_1//R_2) \rightarrow R_{eq} = 36,67 \Omega$$

5.
$$(R_1 + R_2)//R_3 \rightarrow R_{eq} = 15 \Omega$$

6.
$$(R_2 + R_3)//R_1 \rightarrow R_{eq} = 8,33 \,\Omega$$

7.
$$(R_3 + R_1)//R_2 \rightarrow R_{eq} = 13,33 \,\Omega$$

8.
$$R_1//R_2)//R_3 \rightarrow R_{eq} = 5,45 \,\Omega$$

8. Fent servir la notació de l'exercici anterior,

1.
$$R + R + R + R \rightarrow R_{eq} = 40 \,\Omega$$

2.
$$R + R + (R//R) \to R_{eq} = 25 \Omega$$

3.
$$R + ((R+R)//R) \rightarrow R_{eq} = 16,67 \Omega$$

4.
$$(R+R)//R//R \to R_{eq} = 4 \Omega$$

5.
$$(R+R)//(R+R) \to R_{eq} = 10 \Omega$$

6.
$$(R + R + R)//R \to R_{eq} = 7,5 \Omega$$

7.
$$R//R//R \to R_{eq} = 2.5 \Omega$$

8.
$$(R//R) + (R//R) \rightarrow R_{eq} = 10 \Omega$$

9.
$$(R//R//R) + R \rightarrow R_{eq} = 16,67 \Omega$$

Circuits elèctrics simples.

1. La font d'alimentació té resistència interna r, al connectarla a una altra resistència R el que tenim és un circuit amb una font ideal i dues resistències en sèrie.

Apliquem la llei d'Ohm a aquest circuit

$$\mathcal{E} = I(R+r)$$

d'on

a) $I = \frac{\mathcal{E}}{R+r} = \frac{4,5}{220+0.5} = 0,02041 A$

i la tensió en borns V_b

$$V_b = \mathcal{E} - Ir = 4, 5 - 0,02041 \cdot 0, 5 = 4,4898 V$$

b)
$$I = \frac{\mathcal{E}}{R+r} = \frac{4,5}{1+0,5} = 3A$$

i la tensió en borns V_b

$$V_b = \mathcal{E} - Ir = 4, 5 - 3 \cdot 0, 5 = 3 V$$

Veiem que la tensió en borns depèn del valor de la càrrega (la resistència externa R) que es connecta, ja que quan més gran sigui aquesta, la intensitat circulant és més petita i la tensió que cau dins la font d'alimentació (Ir) també, de forma que la tensió en borns s'aproxima a la força electromotriu que proporciona la bateria.

2.

Recordem de la teoria l'expressió que relaciona la tensió en borns i els altres paràmetres de l'enunciat

$$V_b = \mathcal{E} \frac{R}{R+r}$$

i plantegem un sistema d'equacions amb les dades

$$\begin{cases} 3 \Re = \mathcal{E} \frac{\Re}{3+r} \\ 2 \Re = \mathcal{E} \frac{\Re}{7+r} \end{cases} \rightarrow \begin{cases} 3(3+r) = \mathcal{E} \\ 2(7+r) = \mathcal{E} \end{cases} \rightarrow 9+3r = 14+2r \rightarrow r = 5 \Omega$$

finalment

$$\mathcal{E} = 3(3+r) = 3(3+5) = 24 V$$

3.

Podem representar la situació amb un dibuix

llavors la resistència equivalent del circuit val (amb la notació d'exercicis anteriors)

$$R = 10//(10+10) \rightarrow R = 10//20 = \frac{10 \cdot 20}{10+20} = 6,67 \,\Omega$$

i la intensitat que circularà pel circuit

$$V = IR \rightarrow I = \frac{V}{R} = \frac{20}{6,67} = 3A$$

4.

Les bombetes (\otimes) es comporten com a resistències de valor

$$P = \frac{V^2}{R_{\odot}} \to R_{\odot} = \frac{V^2}{P} = \frac{3^2}{\frac{9}{20}} = 20 \,\Omega$$

L'esquema de connexió es pot representar com

llavors, a la resistència desconeguda R han de caure $3\,V$ per tal que les bombetes estiguin sotmeses a la seva tensió nominal de $3\,V$. Les dues bombetes en paralel presenten una resistència equivalent

$$R_{eq} = \frac{20 \cdot 20}{20 + 20} = 10 \,\Omega$$

i per tant passa per elles una intensitat

$$3 = I \cdot 10 \rightarrow I = \frac{3}{10} = 0,3$$

plicant ara la llei d'Ohm a R

$$3 = I \cdot R \to R = \frac{3}{0.3} = 10 \,\Omega$$

5.

- Terra en A $V_A = 0 V$, $V_B = -80 V$, $V_C = -86 V$, $V_D = -100 V$
- Terra en B $V_B = 0 V, V_C = -6 V, V_D = -20 V, V_A = 80 V$
- Terra en C $V_C = 0 V, V_D = -14 V, V_A = 86 V, V_B = 6 V$
- Terra en D $V_D = 0 V, V_A = 100 V, V_B = 20 V, V_C = 14 V$

6.

Trobem la resistència equivalent del circuit

$$R_{eq} = 2 + (1 + (24//8)) / / (33 + (90//10))$$

$$= 2 + \left(1 + \frac{24 \cdot 8}{24 + 8}\right) / / \left(33 + \frac{90 \cdot 10}{90 + 10}\right)$$

$$= 2 + (1 + 6) / / (33 + 9)$$

$$= 2 + 7 / / 42 = 2 + \frac{7 \cdot 42}{7 + 42} = 2 + 6 = 8\Omega$$

Ara calculem la intensitat que passa pel circuit

$$\mathcal{E} = IR_{eq} \to I = \frac{\mathcal{E}}{R_{eq}} = \frac{80}{8} = 10 \, A$$

Ara podem anar seguint $el\ cam i$ que fa la intensitat i calcular la tensió que cau en cada resistència

Per trobar les intensitats a les derivacions aplicarem el resultat que vam deduir a la teoria pel divisor de intensitat (secció 7.2, pàgina 87).

A la derivació A necessitem tenir calculades les associacions de resistències següents (podem aprofitar els càlculs parcials que hem hagut de fer per trobar la resistència equivalent del circuit)

- 24//8 = 6
- 1 + 24//8 = 7
- 90//10 = 9
- 33 + 90//10 = 42

llavors, per I_1

$$I_1 = I \frac{42}{42 + 7} = 10 \cdot \frac{42}{49} = 8,57 A$$

per
$$I_2$$

$$I_2 = I \frac{7}{42 + 7} = 10 \cdot \frac{7}{49} = 1,43 A$$

per I_3

$$I_3 = I_1 \frac{8}{8+24} = 8,57 \cdot \frac{8}{32} = 2,1425 A$$

per I_4

$$I_4 = I_1 \frac{24}{24 + 8} = 8,57 \cdot \frac{24}{32} = 6,4275 A$$

per I_5

$$I_5 = I_2 \frac{10}{10 + 90} = 1,43 \cdot \frac{10}{100} = 0,143 A$$

per I_6

$$I_6 = I_2 \frac{90}{90 + 10} = 1,43 \cdot \frac{90}{100} = 1,287 A$$

I en quant a les caigudes de tensió

$$V_{1\Omega} = I_1 \cdot 1 = 8,57 \cdot 1 = 8,57 V$$

$$V_{24\Omega} = I_3 \cdot 24 = 2,1425 \cdot 24 = 51,42 V$$

$$V_{8\Omega} = I_4 \cdot 8 = 6,4275 \cdot 8 = 51,42 V$$

$$V_{33\Omega} = I_2 \cdot 33 = 1,43 \cdot 33 = 47,19 V$$

$$V_{90\Omega} = I_5 \cdot 90 = 0,143 \cdot 90 = 12,87 V$$

$$V_{10\Omega} = I_6 \cdot 10 = 1,287 \cdot 10 = 12,87 V$$

i finalment la caiguda de tensió a la resistència interna de la bateria

$$V_{2\Omega} = I \cdot 2 = 10 \cdot 2 = 20 V$$

7.

a) En les condicions d'aquest apartat la llei d'Ohm aplicada al circuit s'escriu

$$\mathcal{E} = I(R+r+6) \to 12 = 0,75(1+R+6)$$

d'on

$$R = \frac{12}{0.75} - 7 = 9\,\Omega$$

b) La potència dissipada en forma de calor a la resistència interna val

$$P = I^2 r = 0,75^2 \cdot 1 = 0,5625 W$$

c) Quant els dos interruptors es troben tancats la resistència equivalent del circuit val

$$R_{eq} = R + r + 3//6 = 9 + 1 + \frac{3 \cdot 6}{3 + 6} = 10 + 2 = 12 \Omega$$

i la intensitat que passa llavors pel circuit

$$\mathcal{E} = I' R_{eq} \to I' = \frac{\mathcal{E}}{R_{eq}} = \frac{12}{12} = 1 A$$

d) Si l'interruptor S_1 es troba obert no hi ha pas de corrent pel circuit i l'amperímetre marcaria zero.

La llum.

1. Calculem la potència total que emet l'antena amb

$$P = \frac{E}{t} \to E = P \cdot t = 1 \cdot 10^3 \cdot 60 = 6 \cdot 10^4 J$$

Per una altra banda, l'energia d'un sol fotó és

$$E = hf = 6,626 \cdot 10^{-34} \cdot 98 \cdot 10^6 = 6,49 \cdot 10^{-26} J$$

per tant el nombre de fotons (γ) serà

$$\# \gamma = \frac{6 \cdot 10^4}{6,49 \cdot 10^{-26}} = 9,24 \cdot 10^{29}$$

2. Comencem passant el MeV a Joule

$$200 \, MeV \cdot \frac{10^6 \, eV}{1 \, MeV} \cdot \frac{1, 6 \cdot 10^{-19} \, J}{1 \, eV} = 3, 2 \cdot 10^{-11} \, J$$

llavors la freqüència

$$f = \frac{3.2 \cdot 10^{-11}}{6.626 \cdot 10^{-34}} = 4.83 \cdot 10^{22} \, Hz$$

la longitud d'ona serà

$$\lambda = \frac{c}{f} = \frac{3 \cdot 10^8}{4,83 \cdot 10^{22}} = 6,21 \cdot 10^{-15} \, m$$

Aquesta radiació és a la zona dels raigs γ .

3. Fent servir la llei d'Snell per la refracció

$$n_1\sin\theta_1=n_2\sin\theta_2$$

d'on, tenint en compte que per l'aire és $n_1=1$

$$n_2 = \frac{n_1 \sin \theta_1}{\sin \theta_2} = \frac{1 \cdot \sin 20^\circ}{\sin 14,90^\circ} = 1,33$$

4. El fenomen de l'angle límit es dóna quan la llum passa d'un medi a un altre i l'índex de refracció del primer és més gran que el del segon medi.

$$n_1 \sin \alpha_L = n_2 \sin 90^\circ \rightarrow n_1 \sin \alpha_L = n_2$$

d'on

$$\alpha_L = \arcsin \frac{n_2}{n_1} = \arcsin \frac{1,33}{1,54} = 59,73^{\circ}$$

5. Podem representar la situació en el següent diagrama

de la llei d'Snell pel raig reflectit sabem que $\theta_1=\theta_1'$ i observant el diagrama es veu que

$$\theta_1' + \alpha + \theta_2 = 180^{\circ}$$

$$30^{\circ} + 135^{\circ} + \theta_2 = 180^{\circ} \rightarrow \theta_2 = 15^{\circ}$$

llavors, a partir de la llei d'Snell de la refracció

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

$$n_2 = \frac{n_1 \sin \theta_1}{\sin \theta_2} = \frac{1 \cdot \sin 30^\circ}{\sin 15^\circ} = 1,932$$

on hem suposat que el medi 1 era aire $(n_1 = 1)$, com és habitual si no es diu res.

6. La doble refracció en una làmina plano-paral·lela es pot representar com

És fàcil veure que en els triangles rectangles que han quedat definits es pot escriure

$$\cos \theta_2 = \frac{l}{y} \qquad \sin \alpha = \frac{d}{y}$$

d'on

$$l = y \cos \theta_2 = \frac{d}{\sin \alpha} \cos \theta_2 = \frac{d \cos \theta_2}{\sin(\theta_1 - \theta_2)}$$
 (2)

Per una altra banda, amb la lei d'Snell de la refracció

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

$$\theta_2 = \arcsin\left(\frac{n_1\sin\theta_1}{n_2}\right) = \arcsin\left(\frac{1\cdot\sin45^\circ}{1,5}\right) = 28,123^\circ$$

llavors, substituïnt en (2)

$$l = \frac{d\cos\theta_2}{\sin(\theta_1 - \theta_2)} = \frac{0,18 \cdot \cos 28,123^{\circ}}{\sin(45^{\circ} - 28,123^{\circ})} = 0,547 \, cm$$

7. Quan la llum passa d'un medi a un altre amb índexs de refracció diferents, la freqüència de la llum no canvia, si no que ho fa la longitud d'ona. En el buit, (o de forma equivalent en l'aire, on considerem n=1), la relació entre freqüència i longitud d'ona s'escriu

$$\lambda = \frac{c}{f}$$

on c és a velocitat de la llum en el buit. En un medi qualsevol, l'índex de refracció es definia com el quocient de la velotitat de la llum en el buit i la velocitat de la llum dins el medi

$$n = \frac{c}{v}$$

Llavors, la longitud d'ona en un medi on la velocitat no és la de la llum sinó v, és

$$\lambda = \frac{v}{f}$$

Amb les dades de l'exercici calculem la freqüència de la radiació, ja que aquest valor no canviarà

$$f = \frac{3 \cdot 10^8}{5890 \cdot 10^{-10}} = 5,09 \cdot 10^{14} \, Hz$$

En l'alcohol, com l'índex de refracció és 1,36, la velocitat de la llum en ell val

$$n = \frac{c}{v} \to v = \frac{c}{n} = \frac{3 \cdot 10^8}{1,36} = 2,206 \cdot 10^8 \, m/s$$

i per tant la longitud d'ona

$$\lambda = \frac{v}{f} = \frac{2,206 \cdot 10^8}{5,09 \cdot 10^{14}} = 4,33 \cdot 10^{-7} \, m$$

En el benzè, com l'índex de refracció és 1,50, la velocitat de la llum en ell val

$$n = \frac{c}{v} \to v = \frac{c}{n} = \frac{3 \cdot 10^8}{1,50} = 2 \cdot 10^8 \, m/s$$

i per tant la longitud d'ona

$$\lambda = \frac{v}{f} = \frac{2 \cdot 10^8}{5,09 \cdot 10^{14}} = 3,93 \cdot 10^{-7} \, m$$

8. De forma semblant a l'exercici 4.

$$n_1 \sin \alpha_L = n_2 \sin 90^\circ \rightarrow n_1 \sin \alpha_L = n_2$$

d'on

$$\alpha_L = \arcsin \frac{n_2}{n_1} = \arcsin \frac{1,45}{1,52} = 72,54^{\circ}$$

9. Fent servir la lei d'Snell de la refracció

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

Ara bé, al incidir llum blanca (que és composta d'una barreja de tots els colors) cada raig patirà un desviament diferent ja que l'índex de refracció té un valor per cada freqüencia (color). Calculem l'angle de refracció pel vermell

$$\theta_2 = \arcsin\left(\frac{n_1\sin\theta_1}{n_{ver}}\right) = \arcsin\left(\frac{1\cdot\sin30^\circ}{1,61}\right) = 18,0929^\circ$$

De forma semblant, pel violat

$$\theta_2 = \arcsin\left(\frac{n_1\sin\theta_1}{n_{vio}}\right) = \arcsin\left(\frac{1\cdot\sin30^\circ}{1,67}\right) = 17,4216^\circ$$

De forma que l'angle que formen aquests dos raigs refractats val

$$\alpha = 18,0929^{\circ} - 17,4216^{\circ} = 0,67132^{\circ}$$

Miralls. Lents primes.

1.

Les representacions de cada cas estan fetes amb detall als apunts i no es repetiran aquí, en quant als càlculs analítics de les imatges

a) L'equació que ens permet trobar la imatge és

$$\frac{1}{s} + \frac{1}{s'} = \frac{2}{r}$$

fent servir les dades de l'apartat

$$\frac{1}{-8} + \frac{1}{s'} = \frac{2}{-6}$$

d'on

$$\frac{1}{s'} = \frac{-2}{6} + \frac{1}{8} = \frac{-16+6}{48} = \frac{-10}{48} \rightarrow s' = \frac{48}{-10} = -4,8 \text{ cm}$$

Si calculem l'augment lateral β' , (en miralls $\beta' = -\frac{s'}{s}$)

$$\beta' = -\frac{s'}{s} = -\frac{-4.8}{-8} = -0.6$$

cosa que ens diu que la imatge és real (es forma a l'esquerra del mirall còncau), invertida i més petita que l'original tal com es comprova a la solució gràfica.

b) Ara tenim

$$\frac{1}{-4} + \frac{1}{s'} = \frac{2}{-6}$$

d'on

$$\frac{1}{s'} = -\frac{2}{6} + \frac{1}{4} = \frac{-8+6}{24} = \frac{-2}{24} \to s' = \frac{24}{-2} = -12 \, cm$$

Si calculem l'augment lateral β' ,

$$\beta' = -\frac{s'}{s} = -\frac{-12}{-4} = -3$$

la imatge és real, invertida i més gran que l'original.

c) En aquest darrer cas

$$\frac{1}{-2} + \frac{1}{s'} = \frac{2}{-6}$$

d'on

$$\frac{1}{s'} = \frac{2}{-6} + \frac{1}{2} = \frac{4-6}{-24} = \frac{-2}{-24} \to s' = \frac{24}{2} = 12 \, cm$$

L'augment lateral β' val ara,

$$\beta' = -\frac{s'}{s} = -\frac{12}{-2} = 6$$

la imatge és virtual (es forma a la dreta del mirall còncau), dreta i més gran que l'original.

2.

Quan $s=-6\,cm$, l'objecte es troba situat sobre el centre del mirall. El càlcul analític de la imatge proporciona

$$\frac{1}{-6} + \frac{1}{s'} = \frac{2}{-6}$$

llavors

$$\frac{1}{s'} = -\frac{2}{6} + \frac{1}{6} = -\frac{1}{6} \rightarrow s' = -6 cm$$

i l'augment lateral

$$\beta' = -\frac{s'}{s} = -\frac{-6}{-6} = -1$$

cosa que ens diu que la imatge és real, invertida i d'igual mida que l'objecte.

mostrem només el raig que, sent paral·lel a l'eix òptic, passarà pel punt focal després de reflectir-se al mirall.

Quan $s=-3\,cm,$ l'objecte es troba sobre el punt focal. el càlcul analític proporciona

$$\frac{1}{-3} + \frac{1}{s'} = \frac{2}{-6}$$

llavors

$$\frac{1}{s'} = -\frac{2}{6} + \frac{1}{3} = 0 \to s' = \frac{1}{0} = \infty$$

la imatge es forma a l'infinit i es diu que el sistema és afocal.

3.

Fent servir l'equació dels miralls

$$\frac{1}{s} + \frac{1}{s'} = \frac{2}{r}$$

amb les dades de l'exercici

$$\frac{1}{-6} + \frac{1}{s'} = \frac{2}{4}$$

llavors

$$\frac{1}{s'} = \frac{2}{4} + \frac{1}{6} = \frac{12+4}{24} = \frac{16}{24} \rightarrow s' = 1,5 cm$$

en quant a l'augment lateral

$$\beta' = -\frac{s'}{s} = -\frac{1,5}{-4} = 0,375$$

cosa que ens diu que la imatge és virtual (ja que es forma a la dreta del mirall, on podria haver-hi qualsevol material), dreta i de mida més petita que l'objecte.

L'obtenció gràfica de la imatge està detallada als apunts.

4.

A partir de l'equació de les lents primes

$$-\frac{1}{s} + \frac{1}{s'} = \frac{1}{f'}$$

a) Amb les dades de l'apartat

$$-\frac{1}{-7} + \frac{1}{s'} = \frac{1}{3}$$

d'on

$$\frac{1}{s'} = \frac{1}{3} - \frac{1}{7} = \frac{7-3}{21} = \frac{4}{21} \to s' = \frac{21}{4} = 5,25 \, cm$$

Calculem l'augment lateral

$$\beta = \frac{s'}{s} = \frac{5,25}{-7} = -0.75$$

Veiem que la imatge és real (es forma a l'altra banda de la lent), invertida ($\beta < 0$) i més petita ($|\beta| < 1$).

Per trobar l'altura de la imatge fem servir l'augment lateral

$$-0.75 = \beta = \frac{y'}{y} \rightarrow y' = y \cdot \beta = 3 \cdot (-0.75) = -2.25 \, cm$$

b) Fent servir les dades de l'apartat

$$-\frac{1}{-2} + \frac{1}{s'} = \frac{1}{3}$$

d'on

$$\frac{1}{s'} = \frac{1}{3} - \frac{1}{2} = \frac{2-3}{6} = \frac{-1}{6} \rightarrow s' = -6 cm$$

Calculem l'augment lateral

$$\beta = \frac{s'}{s} = \frac{-6}{-2} = 3$$

Veiem que la imatge és virtual (es forma a l'espai objecte), dreta ($\beta>0$)i més gran ($|\beta|>1$).

Per trobar l'altura de la imatge fem servir l'augment lateral

$$3 = \beta = \frac{y'}{y} \rightarrow y' = y \cdot \beta = 3 \cdot 3 = 9 \, cm$$

a) En aquest cas la imatge serà real, invertida i de la mateixa mida, tal com veurem.

A partir de l'equació de les lent primes i demanant $s=-2f^{\prime}$

$$-\frac{1}{-2f'} + \frac{1}{s'} = \frac{1}{f'}$$

d'on

$$\frac{1}{s'} = \frac{1}{f'} - \frac{1}{2f'} = \frac{1}{2f'} \to s' = 2f'$$

Calculem l'augment lateral

$$\beta = \frac{s'}{s} = \frac{2f'}{-2f'} = -1$$

Per trobar l'altura de la imatge fem servir l'augment lateral

$$-1 = \beta = \frac{y'}{y} \to y' = y \cdot \beta = y \cdot (-1) = -y \, cm$$

tot i que no sabem l'altura original de l'objecte, és clar que la imatge té la mateixa altura i està invertida.

b) A partir de l'equació de les lent primes i demanant $s=-f^\prime$

$$-\frac{1}{-f'}+\frac{1}{s'}=\frac{1}{f'}$$

d'on

$$\frac{1}{s'} = 0 \to s' = \infty$$

i el sistema és afocal.

6.

En aquest cas es tracta d'una lent divergent. L'equació de les lent primes és per tots els apartats

$$-\frac{1}{s} + \frac{1}{s'} = \frac{1}{f'}$$

a) Fent servir les dades de l'enunciat

$$-\frac{1}{-9} + \frac{1}{s'} = \frac{1}{-4}$$

$$\frac{1}{s'} = \frac{1}{-4} - \frac{1}{9} = \frac{-1}{4} - \frac{1}{9} = \frac{-9 - 4}{36} = \frac{-13}{36} \to s' = \frac{36}{-13} = -2,77 \, cm$$

Calculem l'augment lateral

$$\beta = \frac{s'}{s} = \frac{-2,77}{-9} = 0,3078$$

Per trobar l'altura de la imatge fem servir l'augment lateral

$$0,3078 = \beta = \frac{y'}{y} \rightarrow y' = y \cdot \beta = 3 \cdot (0,3078) = 0,923 \, cm$$

veiem que la imatge és virtual, dreta i més petita que l'objecte.

b) La solució gràfica d'aquest cas és molt semblant al de l'apartat anterior i al que mostren els apunts de teoria. Fem amb detall la resolució analítica

$$-\frac{1}{-6} + \frac{1}{s'} = \frac{1}{-4}$$

$$\frac{1}{s'} = \frac{1}{-4} - \frac{1}{6} = \frac{-1}{4} - \frac{1}{6} = \frac{-6 - 4}{24} = \frac{-10}{24} \to s' = \frac{-24}{10} = -2, 4 \text{ cm}$$

Calculem ara l'augment lateral

$$\beta = \frac{s'}{s} = \frac{-2,4}{-6} = 0,4$$

Per trobar l'altura de la imatge fem servir l'augment lateral

$$0, 4 = \beta = \frac{y'}{y} \rightarrow y' = y \cdot \beta = 3 \cdot (0, 4) = 1, 2 cm$$

veiem que la imatge és virtual, dreta i més petita que l'objecte.

c) La solució gràfica d'aquest cas és molt semblant al del primer apartat i l'anterior. Fem aquí només la resolució analítica

$$-\frac{1}{-2} + \frac{1}{s'} = \frac{1}{-4}$$

$$\frac{1}{s'} = \frac{1}{-4} - \frac{1}{2} = \frac{-1}{4} - \frac{1}{2} = \frac{-2 - 4}{8} = \frac{-6}{8} \to s' = \frac{-8}{6} = -1,33 \, cm$$

Calculem ara l'augment lateral

$$\beta = \frac{s'}{s} = \frac{-1,33}{-2} = 0,667$$

Per trobar l'altura de la imatge fem servir l'augment lateral

$$0,667 = \beta = \frac{y'}{y} \rightarrow y' = y \cdot \beta = 3 \cdot (0,667) = 2 \, cm$$

veiem que la imatge és virtual, dreta i més petita que l'objecte.