Lecture A1. Math Review

Sim, Min Kyu, Ph.D., mksim@seoultech.ac.kr

■ 도 서울과학기술대학교 데이터사이언스학과

I. Differentiation and integration

اعاملا معاليد

013 745

II. Numerical methods for finding a root

Vonte Bur.

- III. Matrix algebra
- IV. Series and others

I. Differentiation and integration

I. Differentiation and integration

Differentiation

Definition 1 (differentiation)

Differentiation is the action of computing a derivative.

Definition 2 (derivative)

Morder Iren

The **derivative** of a function y = f(x) of a variable x is a measure of the rate at which the value *y* of the function changes with respect to (wrt., hereafter) the change of the variable x. It is notated as f'(x) and called **derivative** of f wrt. x.

Remark 1

If x and y are real numbers, and if the graph of f is plotted against x, the derivative is the **slope of this graph** at each point.

If
$$\lim_{h\to 0} \frac{f(x+h/2)-f(x-h/2)}{D}$$
 exists for a function f at x , we say the function f is differentiable at x . That is, $f'(x) = \lim_{h\to 0} \frac{f(x+h/2)-f(x-h/2)}{h}$. If f is

differentiable for all x, then we say f is differentiable (everywhere).

Remark 2

I. Differentiation and integration

The followings are popular derivatives.

- $f(x) = x^p \Rightarrow f'(x) = px^{p-1}$ (polyomial)
- $f(x) = e^x \Rightarrow f'(x) = e^x$ (exponential)
- $f(x) = log(x) \Rightarrow f'(x) = 1/x$ (log function; not differentiable at x = 0)

Theorem 1

Differentiation is linear. That is,
$$\underline{h(x)} = \underline{f(x) + g(x)}$$
 implies $h'(x) = f'(x) + g'(x)$.

If
$$h(x) = f(x)g(x)$$
, then $\underline{h'(x)} = f'(x)g(x) + f(x)g'(x)$.

✓ Exercise 1

I. Differentiation and integration 0000000000

Suppose $f(x) = xe^x$, find f'(x).

Theorem 3 (differentiation of fraction)

If
$$h(x)=rac{f(x)}{g(x)}$$
, then $h'(x)=rac{f'(x)g(x)-f(x)g'(x)}{(g(x))^2}$.

Theorem 4 (composite function)

If
$$h(x) = f(g(x))$$
, then $h'(x) = \underbrace{f^{0}(g(x))}_{\text{constant}} \cdot \underline{g'(x)}_{\text{constant}}$.

Exercise 2

I. Differentiation and integration 0000000000

Suppose $f(x) = e^{2x}$, find f'(x).

$$f'(x) = g'(h(x)) \cdot h'(x)$$

= $e^{2x!} \cdot (2x)'$
= $e^{2x!} \cdot (2x)'$

Differentiation

• Oftentimes, finding analytic derivative is hard, but finding numerical derivative is often possible. v for known v

Definition 4

For a function f and a small constant h,

- ullet $f'(x)pprox rac{f(x+h)-f(x)}{h}$ (forward difference formula)
- ullet $f'(x) pprox rac{f(x) f(x-h)}{h}$ (backward difference formula)
- $f'(x) \approx \frac{f(x+h)-f(x-h)}{2h}$ (centered difference formula)

Integration

Definition 5 (integration)

Integration is the computation of an integral, which is a reverse operation of differentiation up to an additive constant.

Definition 6 (integral or antiderivative)

Let's say a function f is a derivative of g or g'(x) = f(x), then we say g is an integral or, antiderivative of f, written as $g(x) = \int f(x) dx + C$, where C is a integration constant.

$$g(m) = f(m)$$

$$g(m) = \int f(m) dn + C$$

Remark 3

The followings are popular integrals.

• For
$$p \neq 1$$
, $f(x) = x^p \Rightarrow \int f(x) dx = \frac{1}{p+1} x^{p+1} + C$ (polyomial)

•
$$f(x) = \frac{1}{x} \Rightarrow \int f(x)dx = log(x) + C$$
 (fraction)

•
$$f(x) = e^x \Rightarrow \int f(x)dx = e^x + C$$
 (exponential)

•
$$f(x) = \frac{g'(x)}{g(x)} \Rightarrow \int f(x)dx = \underbrace{log(g(x))} + C$$
 (See Theorem 4 above)

Exercise 3

Derive $\int f'(x)g(x) dx = f(x)g(x) - \int f(x)g(x)' dx$. (Hint: Use Theorem 2) ahove.)

Exercise 4

I. Differentiation and integration 000000000

Find $\int \underline{x}e^x dx$, and evaluate $\int_0^1 xe^x dx$. (Hint: Use Exercise 3 above.)

I. Differentiation and integration ○○○○○○○○○

II. Numerical methods for finding a root

About - solving an equation

fon=axxb

• For the rest of this section, we consider a <u>nonlinear</u> and <u>differentiable</u> (thus, continuous) function $f: \mathbb{R} \to \mathbb{R}$, we aim to find a point $x^* \in \mathbb{R}$ such that $f(x^*) = 0$. We call such x^* as a <u>solution</u> or a <u>root</u>.

र् गर्टाण्यसम्म

$$\frac{f(x)=0}{f(x)=x}=0$$

for o 1612 72 34CMS!

1. Bisection Method

- The <u>bisection</u> method aims to find a very short interval [a, b] in which \underline{f} changes a sign.
- Why? Changing a sign from a to b means the function crosses the $\{y=0\}$ -axis (in other words x-axis) at least once. It means that x^* such that $f(x^*)=0$ is within this interval. Since [a,b] is a very short interval, We may simply say $x^*=\frac{a+b}{2}$.

Definition 7 (sign function)

 $\underline{sgn(\cdot)}$ is called a $\underline{sign\ function}$ that returns 1 if the input is positive, -1 if negative, and 0 if zero.

- Let tol be the maximum allowable length of the **short interval** and an initial interval [a, b] be such that $sgn(f(a)) \neq sgn(f(b))$.
- The bisection algorithm is the following.

1: while
$$((b-a)>tol)$$
 do
2: $m=\frac{a+b}{2}$ v
3: if $sgn(f(a))=sgn(f(m))$ then
4: $\underline{a=m}$
5: else
6: $b=m$ v

7: end 8: end

> • At each **iteration**, the interval length is halved. As soon as the interval length becomes smaller than tol, then the algorithm stops.

2. Newton Method

- The bisection technique makes no use of the function values other than their signs, resulting in slow but sure convergence.
- More rapid convergence can be achieved by using the function values to obtain a more accurate approximation to the solution, at each iteration.
- Newton method is a method that use both the <u>function value</u> and <u>derivative value</u>.
- \bullet Newton method approximates the function f near x_k by the tangent line at $f(x_k)$.

1:
$$x_0 = initial guess$$

2: for
$$k = 0, 1, 2, ...$$

3:
$$(x_{k+1}) = (x_k) - f(x_k) / f'(x_k)$$

4: break if
$$|x_{k+1} - x_k| < tol$$

5: end

3. Fixed point theorem

Definition 8 (Fixed point)

For a function $f(\cdot)$, x^* is called a fixed point if $f(x^*) = x^*$ holds.

Remark 4

- For example, $x^* = 2$ is a fixed point for $f(x) = x^2 3x + 4$.
- Not all functions have fixed points. For example, f(x) = x + 1.
- In graphical terms, a fixed point x means the point (x, f(x)) is on the line y = x.
- In other words the graph of f has a point in common with that line.

Theorem 1 (contraction mapping theorem)

Let x_0 to be an arbitrary point, and let $x_{k+1} = f(x_k)$ for $k \ge 0$. Under certain condition of f, the sequence of $\{x_n\}$ converges to x^* such that $f(x^*) = x^*$.

1:
$$x_0$$
 = initial guess
2: for k = 0, 1, 2, . .
3: $x_{k+1} = x_k - f(x_k)/f'(x_k)$
4: break if $x_{k+1} - x_k < tol$
5: end

ocesses and Simulation 19 / 39

- Consider f(x) = 1 + 1/x.
- Its solution to $f(x^*) = x^*$ can be solved by x = 1 + 1/x, or $x^2 x 1 = 0$.
- In other words, $x^* = \frac{1 \pm \sqrt{5}}{2} \approx 1.618 \ or \ -0.618$

```
\begin{cases}
f \leftarrow function(x) \\
return(1+1/x) \\
f \leftarrow function(x) \\
f \leftarrow funct
```

```
do - while
repeat{
  x next <- f(x now) V
  if (abs(x_next-x_now) < tol) {</pre>
    break
  x now <- x next
  print(x_next) 
## [1] 11
## [1] 1.090909
## [1] 1.916667
## [1] 1.521739
## [1] 1.657143
## [1] 1.603448
## [1] 1.623656
## [1] 1.615894
## [1] 1.618852
## [1] 1.617722
## [1] 1.618153
## [1] 1.617988
## [1] 1.618051
## [1] 1.618027
```

Exercise 5

Write a python code that does the exactly same thing as the above code block.

Summary

- The above mentioned root-finding numerical methods share a few common properties.
 - It is characterized as a *iterative process* (such as $x_0 \to x_1 \to x_2 \to \cdots$).
 - ② In each *iteration*, the current candidate for the solution *gets closer* to the true value.
 - It converges. That is, it is theoretically reach the *exact value* up to tolerance.
- Many iterative numerical methods share the properties above.
- The famous back propagation in deep neural network is also motivated by Newton method.
- Major algorithms for dynamic programming are called policy iteration and value iteration that also share the properties above.

Matrix multiplication

Exercise 6

Solve the followings.

$$(.6 \quad .4) \begin{pmatrix} .7 & .3 \\ .5 & .5 \end{pmatrix} =$$

What is P^2 ?

$$P = \begin{pmatrix} .7 & .3 \\ .5 & .5 \end{pmatrix}$$

Solution to system of linear equations

Exercise 8

Solve the followings.

$$\begin{aligned} (\mathbf{v}_1 & \mathbf{v}_2) \begin{pmatrix} .7 & .3 \\ .5 & .5 \end{pmatrix} &= (\mathbf{v}_1 & \mathbf{v}_2) \\ \mathbf{v}_1 + \mathbf{v}_2 &= 1 \end{aligned}$$

Solve the following system of equations.

$$\begin{aligned} x &= y \\ y &= 0.5z \\ z &= 0.6 - 0.4x \\ x + y + z &= 1 \end{aligned}$$

Exercise 10

Solve the following system of equations.

$$\begin{aligned} (\mathbf{v}_0 & \ \mathbf{v}_1 & \ \mathbf{v}_2) \begin{pmatrix} -2 & 2 \\ 3 & -5 & 2 \\ 3 & -3 \end{pmatrix} &= (0 \ 0 \ 0) \\ \\ \mathbf{v}_0 + \mathbf{v}_1 + \mathbf{v}_2 &= 1 \end{aligned}$$

Exercise 11

Solve the following system of equations.

$$(\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3 \ \mathbf{v}_4) \begin{pmatrix} .7 & .3 & \\ .5 & .5 & \\ & & .6 & .4 \\ & & .3 & .7 \end{pmatrix} = (\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3 \ \mathbf{v}_4)$$

$$\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3 + \mathbf{v}_4 = 1$$
$$\mathbf{v}_1 + \mathbf{v}_2 = \mathbf{a}$$

Solve following and express \mathbf{v}_i for i = 0, 1, 2, ...

$$\begin{array}{rcl} \mathbf{v}_0 + \mathbf{v}_1 + \mathbf{v}_2 + \dots & = & 1 \\ 0.02\mathbf{v}_0 + 0.02\mathbf{v}_1 + 0.02\mathbf{v}_2 + \dots & = & \mathbf{v}_0 \\ 0.98\mathbf{v}_0 & = & \mathbf{v}_1 \\ 0.98\mathbf{v}_1 & = & \mathbf{v}_2 \\ 0.98\mathbf{v}_2 & = & \mathbf{v}_3 \\ \dots & = & \dots \end{array}$$

IV. Series and others

Exercise 13 (Infinite geometric series)

Simplify the following. When
$$|r| < 1$$
, $S = a + ar + ar^2 + ar^3 + ...$

Simplify the following. When $r \neq 1$, $S = a + ar + ar^2 + ar^3 + ... + ar^{n-1}$

$$S = \alpha + \alpha v + \alpha v^{2} + \dots + \alpha v^{n-1} + \alpha v^{n}$$

$$- (v) = \alpha - \alpha v^{n}$$

$$S = \alpha \cdot \frac{1 - v^{n}}{(-v)^{n}}$$

Exercise 15 (Power series)

Simplify the following. When |r| < 1, $S = r + 2r^2 + 3r^3 + 4r^4 + \dots$

$$S = \frac{1}{1 - r}$$

$$(1 - r)S = \frac{1 - r}{r}$$

$$(1 - r)S = \frac{r}{r} + 3r^{3} + 3r^{4} + \cdots$$

$$S = \frac{r}{r} + 3r^{3} + 4r^{4} + \cdots$$

Formulation of time varying function

Exercise 16

During the first hour $(0 \le t \le 1)$, $\lambda(t)$ increases linearly from 0 to 60. After the first hour, $\lambda(t)$ is constant at 60. Draw plot for $\lambda(t)$ and express the function in math form.

+ R. Python + Latex

"Man can learn nothing unless he proceeds from the known to the unknown. - Claude Bernard"