Advanced Calc. Homework 10

Colin Williams

November 5, 2020

18.5

- (a) Let f and g be continuous functions on [a, b] such that $f(a) \ge g(a)$ and $f(b) \le g(b)$. Prove that $f(x_0) = g(x_0)$ for at least one $x_0 \in [a, b]$.
- (b) Show Example 1 can be viewed as a special case of part (a).

Proof. (a)

If f(a) = g(a) or f(b) = g(b), then the result follows immediately, so assume $f(a) \neq g(a)$ and $f(b) \neq g(b)$. Let h(x) = f(x) - g(x), then by Theorem 17.3/Theorem 17.4(i) h is also a continuous function. We can see that h(a) = f(a) - g(a) > 0 and h(b) = f(b) - g(b) < 0. Additionally a < b by the definition of the interval [a, b]. Therefore, by the Intermediate Value Theorem, there exists some $x_0 \in (a, b)$ such that $h(x_0) = 0$. Combining this with the fact that we could possibly have f(a) = g(a) or f(b) = g(b), then we get that $f(x_0) = g(x_0)$ for some $x_0 \in [a, b]$.

Answer. (b)

In Example 1, we showed that for a continuous function $f:[0,1] \to [0,1]$, then $f(x_0) = x_0$ for some $x_0 \in [0,1]$. This is equivalent to part (a) of this question for [a,b] = [0,1] and g(x) = x since $f(a) = f(0) \ge g(0) = 0$ and $f(b) = f(1) \le g(1) = 1$ due to f being contained in [0,1].

18.6

Prove $x = \cos(x)$ for some $x \in (0, \frac{\pi}{2})$.

Proof.

Note that if we let $f(x) = \cos(x)$ and g(x) = x, then we can see that $f(0) = 1 \ge 0 = g(0)$ and $f\left(\frac{\pi}{2}\right) = 0 \le \frac{\pi}{2} = g\left(\frac{\pi}{2}\right)$. Thus, from Exercise 18.5(a) (and the fact that f and g are both continuous), we can conclude that there exists some $x_0 \in \left[0, \frac{\pi}{2}\right]$ such that $f(x_0) = g(x_0)$. However, we have just seen that $f(0) \ne g(0)$ and $f\left(\frac{\pi}{2}\right) \ne g\left(\frac{\pi}{2}\right)$, so that means there does indeed exist some $x \in \left(0, \frac{\pi}{2}\right)$ such that $x = \cos(x)$.

18.7

Prove $xe^x = 2$ for some x in (0,1).

Proof.

Let $f(x) = xe^x$, then f is a continuous function by the continuity of e^x and x and Theorem 17.4(ii). Furthermore, note that $f(0) = 0e^0 = 0 < 2$ and $f(1) = 1e^1 \approx 2.718 > 2$. Thus, by the Intermediate Value Theorem, there exists some $x_0 \in (0,1)$ such that $f(x_0) = 2$, proving the statement.

18.8

Suppose f is a real-valued continuous function on \mathbb{R} and f(a)f(b) < 0 for some $a, b \in \mathbb{R}$. Prove there exists x between a and b such that f(x) = 0.

Proof.

Let I be defined as follows:

$$I := \begin{cases} [a,b] & \text{if } a < b \\ [b,a] & \text{if } b < a \end{cases}$$

Furthermore, without loss of generality, assume that f(a) > f(b) (if not, we can simply reverse the roles of a and b and note that I is defined appropriately to allow this. Also see that we cannot have f(a) = f(b) as this would cause $f(a)f(b) = f(a)^2 \ge 0$). It is clear that $f(a) \ne 0$ and $f(b) \ne 0$ since the opposite of this would cause f(a)f(b) = 0 which is not true. Therefore, since f(a)f(b) < 0, we must have that the sign of f(a) differs from the sign of f(b) because if they were the same, then f(a)f(b) > 0 which is not true. Thus, since f(a) > f(b) and they have different signs, we can conclude that f(a) > 0 and f(b) < 0. Then, by the continuity of f, we can apply the Intermediate Value Theorem to conclude that there exists some $x \in I$ such that f(x) = 0.

18.9

Prove that a polynomial function f of odd degree has at least one real root.

Proof.

Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ be an arbitrary polynomial with $n \in \mathbb{N}$ odd. Without loss of generality, assume that $a_n = 1$ (if not, simply consider the rest of this proof with the function $\left(\frac{1}{a_n}\right) f$). Thus, we are considering $f(x) = x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$. This is equivalent to

$$f(x) = x^n \left(1 + \frac{a_{n-1}x^{n-1} + \dots + a_1x + a_0}{x^n} \right)$$
 (1)

Taking limits as x goes to $\pm \infty$ leaves the bracketed term irrelevant since

$$\lim_{x \to \pm \infty} 1 + \frac{a_{n-1}x^{n-1} + \dots + a_1x + a_0}{x^n} = \lim_{x \to \pm \infty} 1 + \frac{a_{n-1}}{x} + \dots + \frac{a_1}{x^{n-1}} + \frac{a_0}{x^n}$$
$$= 1 + 0 + \dots + 0 + 0$$
$$= 1.$$

Thus, $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} x^n = +\infty$ and $\lim_{x\to-\infty} f(x) = \lim_{x\to-\infty} x^n = -\infty$ since n is odd and any negative number to an odd power is negative (since $p^{2k+1} = p^{2k} \cdot p = c \cdot p < 0$ for c some positive number). In particular, this means that there exists some a < 0 such that f(a) < 0 and there exists some b > 0 such that f(b) > 0 which means we can use the Intermediate Value Theorem to indicate that there exists some $x_0 \in (a,b)$ such that $f(x_0) = 0$, making x_0 a root for $x_0 \in (a,b)$ such that $x_0 \in$

18.10

Suppose f is continuous on [0,2] and f(0)=f(2). Prove there exist $x,y\in[0,2]$ such that |y-x|=1 and f(x)=f(y).

Proof.

Consider g(x) = f(x+1) - f(x) on [0,1]. From this, we have that g(0) = f(1) - f(0) and g(1) = f(2) - f(1) = f(0) - f(1) = -g(0). The important relationship here is that g(1) = -g(0). If g(0) = 0, then clearly we have f(1) = f(0) or if g(1) = 0, then we have that f(2) = f(1) which both satisfy the condition we which to show. Otherwise, g(0) and g(1) have different signs. Thus the point 0 lies in between g(0) and g(1) which indicates (along with the possibility that g(0) = 0 or g(1) = 0) that there exists some $x_0 \in [0,1]$ such that $g(x_0) = 0 \iff f(x_0+1) = f(x_0)$ which clearly satisfies the statement we are trying to prove with $x = x_0$ and $y = x_0 + 1$.

19.1

Which of the following continuous functions are uniformly continuous on the specified set? Justify your answers by using any theorems.

- (a) $f(x) = x^{17}\sin(x) e^x\cos(3x)$ on $[0, \pi]$,
 - This is uniformly continuous since we know that x^{17} , $\sin(x)$, e^x , and $\cos(3x)$ are all continuous functions (thus, their sum and product is continuous). Therefore, since f is continuous on a closed interval, $[0, \pi]$, Theorem 19.2 assures us that f is uniformly continuous on $[0, \pi]$.
- (b) $f(x) = x^3$ on [0, 1],
 - This is uniformly continuous since we know that x^3 is continuous. Thus, f is continuous on [0,1], so Theorem 19.2 assures us that f is uniformly continuous on [0,1].
- (c) $f(x) = x^3$ on (0,1),
 - If we make the extension

$$\tilde{f}(x) = \begin{cases} f(x) & \text{for } x \in (0,1) \\ 0 & \text{for } x = 0 \\ 1 & \text{for } x = 1 \end{cases}$$

Then \tilde{f} is continuous on [0,1] since for any sequence $(s_n) \subset (0,1)$ converging to 0, we have $\tilde{f}(s_n) = f(s_n) = s_n^3$ which converges to $\tilde{f}(0) = 0$ and for any sequence $(t_n) \subset (0,1)$ converging to 1, we have $\tilde{f}(t_n) = f(t_n) = t_n^3$ which converges to $\tilde{f}(1) = 1$ and clearly \tilde{f} is continuous in (0,1) by the continuity of x^3 . Thus, \tilde{f} is continuous on [0,1], so it must be uniformly continuous on [0,1] by Theorem 19.2. Furthermore, this means that f must be uniformly continuous on [0,1].

- (d) $f(x) = x^3$ on \mathbb{R} ,
 - Assume that f is uniformly continuous on \mathbb{R} . Then by Definition 19.1, we know that that there exists some $\delta > 0$ such that $x, y \in \mathbb{R}$ and $|x y| < \delta$ implies that $|x^3 y^3| < 1$. In this case, choose $y = x + \frac{\delta}{2}$ which gives the following:

$$|x_3 - y^3| = |x - y||x^2 + xy + y^2| = \left|x - \left(x + \frac{\delta}{2}\right)\right| \left|x^2 + x\left(x + \frac{\delta}{2}\right) + \left(x + \frac{\delta}{2}\right)^2\right|$$

$$= \frac{\delta}{2} \left|3x^2 + \frac{3\delta}{2}x + \frac{\delta}{4}\right|$$

$$> \frac{\delta}{2} \left|\frac{2}{\delta} + \frac{3\delta}{2}\sqrt{\frac{2}{3\delta}} + \frac{\delta}{4}\right|$$
whenever $x > \sqrt{\frac{2}{3\delta}}$

$$> \frac{\delta}{2} \left|\frac{2}{\delta}\right|$$

$$= \frac{\delta}{2} \left|\frac{2}{\delta}\right|$$
where $\frac{3\delta}{2} \sqrt{\frac{2}{3\delta}} + \frac{\delta}{4} > 0$

Thus, we have shown that for $y=x+\frac{\delta}{2}$ and $x>\sqrt{\frac{2}{3\delta}}$ that |f(x)-f(y)|>1 which means that f is not uniformly continuous.

- (e) $f(x) = \frac{1}{x^3}$ on (0,1],
 - Theorem 19.4 tells us that if f is uniformly continuous on a set S and (s_n) is a Cauchy sequence in S, then $(f(s_n))$ is a Cauchy sequence. However, taking $(s_n) = \frac{1}{n}$ gives us $s_n \in (0,1]$ for all n and (s_n) is a Cauchy sequence. However, $f(s_n) = \frac{1}{(1/n)^3} = n^3$ which is not a Cauchy sequence since it is not convergent; thus, f is not uniformly continuous.
- (f) $f(x) = \sin(\frac{1}{x^2})$ on (0, 1],
 - Let's once again use Theorem 19.4. In this case, take $(s_n) = \sqrt{\frac{2}{\pi + 2n\pi}}$. It is easy to see that $s_n \in (0,1]$ for all n and it is easy to see that (s_n) is Cauchy since it is a convergent sequence. However, $f(s_n) = \sin\left(\frac{1}{\sqrt{\frac{2}{\pi + 2n\pi}}}\right) = \sin\left(\frac{\pi}{2} + n\pi\right)$. We can see that $f(s_n)$ is not Cauchy since the subsequence with odd indices converges to -1 and the subsequence with even indices convergest o 1. Thus, $f(s_n)$ is not convergent, so it is not Cauchy which implies that f is not uniformly convergent.
- (g) $f(x) = x^2 \sin(\frac{1}{x})$ on (0, 1].
 - Let's make the following extension of f:

$$\tilde{f}(x) = \begin{cases} f(x) & \text{for } x \in (0, 1] \\ 0 & \text{for } x = 0 \end{cases}$$

I will first show that \tilde{f} is continuous in its domain, [0,1]. Note for all $x \in (0,1]$, \tilde{f} is clearly continuous since x^2 , $\sin(x)$, and $\frac{1}{x}$ are all continuous when $x \neq 0$. Thus, the only point of contention is x = 0, so I will examine the continuity of \tilde{f} at x = 0. Let $\varepsilon > 0$ be fixed and consider $|\tilde{f}(x) - \tilde{f}(0)| = |\tilde{f}(x)| = |x^2 \sin\left(\frac{1}{x}\right)| \leq |x^2|$. Thus choosing $\delta = \sqrt{\varepsilon}$ we get $|x - 0| = |x| < \sqrt{\varepsilon}$ which implies that $|\tilde{f}(x) - \tilde{f}(0)| \leq |x^2| < |\sqrt{\varepsilon^2}| = \varepsilon$. Thus, \tilde{f} is continuous at x = 0, so \tilde{f} is continuous in all of [0,1], so Theorem 19.2 tells us that \tilde{f} is uniformly continuous on [0,1] which further means that f is uniformly continuous on [0,1].

19.2

Prove each of the following functions is uniformly continuous on the indicated set by directly verifying the ε - δ property in Definition 19.1.

- (a) f(x) = 3x + 11 on \mathbb{R} ,
 - Let $\varepsilon > 0$ be fixed and let $x, y \in \mathbb{R}$. Let's first consider the following:

$$|f(x) - f(y)| = |3x + 11 - (3y + 11)| = 3|x - y|$$

Thus, choosing $\delta = \frac{\varepsilon}{3}$ gives us $|x-y| < \frac{\varepsilon}{3}$. Therefore, we have $|f(x)-f(y)| = 3|x-y| < 3 \cdot \frac{\varepsilon}{3} = \varepsilon$ satisfying the definition of uniform continuity.

- (b) $f(x) = x^2$ on [0, 3],
 - Let $\varepsilon > 0$ be fixed and let $x, y \in [0, 3]$. Let's first consider the following:

$$|f(x) - f(y)| = |x^2 - y^2| = |x - y||x + y|$$

Note that since $x,y\in[0,3], |x+y|\leq 6$ for any x,y. Thus, choosing $\delta=\frac{\varepsilon}{6}$ gives $|x-y|<\frac{\varepsilon}{6}$ which in turn leads to $|f(x)-f(y)|=|x-y||x+y|\leq |x-y|\cdot 6<\frac{\varepsilon}{6}\cdot 6=\varepsilon$, satisfying the definition of uniform continuity.

- (c) $f(x) = \frac{1}{x}$ on $\left[\frac{1}{2}, \infty\right)$.
 - Let $\varepsilon > 0$ be fixed and let $x, y \in \left[\frac{1}{2}, \infty\right)$. Let's first consider the following:

$$|f(x) - f(y)| = \left|\frac{1}{x} - \frac{1}{y}\right| = \left|\frac{y - x}{xy}\right| = \frac{|x - y|}{|xy|}$$

Note that since $x,y \geq \frac{1}{2}, \ |xy| \geq \frac{1}{4} \implies \frac{1}{|xy|} \leq 4$. With this in mind, choose $\delta = \frac{\varepsilon}{4}$ which gives $|x-y| < \frac{\varepsilon}{4}$. Using this with the estimate above we get $|f(x)-f(y)| = \frac{|x-y|}{|xy|} \leq 4|x-y| < 4 \cdot \frac{\varepsilon}{4} = \varepsilon$, satisfying the definition of uniform continuity.

19.5

Which of the following continuous functions is uniformly continuous on the specified set? Justify your answers, using appropriate theorems.

- (a) $\tan(x)$ on $\left[0, \frac{\pi}{4}\right]$,
 - Since $\tan(x) = \frac{\sin(x)}{\cos(x)}$ and $\sin(x)$ and $\cos(x)$ are both continuous in $\left[0, \frac{\pi}{4}\right]$ and $\cos(x) \neq 0$ for any $x \in \left[0, \frac{\pi}{4}\right]$, then we can apply Theorem 17.4(iii) to conclude that $\tan(x)$ is continuous on $\left[0, \frac{\pi}{4}\right]$. From this, we can use Theorem 19.2 to conclude that $\tan(x)$ is uniformly continuous on $\left[0, \frac{\pi}{4}\right]$.
- (b) $\tan(x)$ on $[0, \frac{\pi}{2})$,
 - According to Exercise 19.4(a), if a function is uniformly continuous on a bounded set S, then that function is also bounded on S. In our case here $S = \left[0, \frac{\pi}{2}\right)$ is our bounded set. However, $\lim_{x \to \frac{\pi}{2}^-} \tan(x) = +\infty$, which indicates that $\tan(x)$ is not bounded on S, thus $\tan(x)$ is not uniformly continuous.
- (c) $\frac{1}{x}\sin^2(x)$ on $(0,\pi]$,
 - In Example 9 on Page 149, they defined

$$\tilde{h}(x) = \begin{cases} \frac{\sin(x)}{x} & \text{for } x \neq 0\\ 1 & \text{for } x = 0 \end{cases}$$

where the domain of \tilde{h} was \mathbb{R} . They find that that \tilde{h} is uniformly continuous on this domain. If instead, we restrict the domain to $[0, \pi]$ then it would still be a uniformly continuous function. Thus, define the following function:

$$f(x) = \begin{cases} \frac{\sin^2(x)}{x} & \text{for } x \in (0, \pi] \\ 0 & \text{for } x = 0 \end{cases}$$

It is clear that $f(x) = \sin(x)\tilde{h}(x)$ for \tilde{h} restricted to the domain $[0,\pi]$. Thus, by the continuity of $\sin(x)$ and the Example 9 determining that \tilde{h} was also continuous, we can conclude that f is continuous on $[0,\pi]$. Using Theorem 19.5 therefore tells us that $\frac{\sin^2(x)}{x}$ on $(0,\pi]$ is a uniformly continuous function.

- (d) $\frac{1}{x-3}$ on (0,3),
 - Using exercise 19.4(a), we can note that this function is not bounded on (0,3), specifically as x approaches 3, so it must be not uniformly continuous.
- (e) $\frac{1}{x-3}$ on $(3, \infty)$,
 - Using the same reasoning we did for part (d) of this question, we can note that this function is not bounded on $(3, \infty)$, once again where x approaches 3, so Exercise 19.4(a) tells us that this function must be not uniformly continuous
- (f) $\frac{1}{x-3}$ on $(4,\infty)$.
 - Recall the derivative of $\frac{1}{x-3}$ is $\frac{-1}{(x-3)^2}$. Furthermore, note that this derivative is bounded on $(4,\infty)$ since $\left|\frac{-1}{(x-3)^2}\right| < 1$ for all x > 4. Thus, by using Theorem 19.6, we can say that this function is uniformly continuous.

19.6

- (a) Let $f(x) = \sqrt{x}$ for $x \ge 0$. Show f' is unbounded on (0,1] but f is nevertheless uniformly continuous on (0,1]. Compare with Theorem 19.6.
 - By using the power rule, $f'(x) = \frac{1}{2\sqrt{x}}$. This is unbounded on (0,1] because for any M>0, we can find a $\delta>0$ such that $|x|<\delta$ implies that |f'(x)|>M. Let $\delta=\frac{1}{4M^2}$. This yields, $|f'(x)|=\left|\frac{1}{2\sqrt{x}}\right|>\left|\frac{1}{2\sqrt{1/(4M^2)}}\right|=\left|\frac{2M}{2}\right|=M$, which shows f' is unbounded. Despite this, f is still uniformly continuous on (0,1]. We can show this by noting that \sqrt{x} is continuous on [0,1] thus, by Theorem 19.2, \sqrt{x} is uniformly continuous on [0,1] and by Theorem 19.5 this shows that f is uniformly continuous on (0,1]. This shows that the converse to Theorem 19.6 is not true just because a function has an unbounded derivative does not mean it must be not uniformly continuous.
- (b) Show f is uniformly continuous on $[1, \infty)$.
 - Let $\varepsilon > 0$ be fixed and let $x, y \in [1, \infty)$, then let's examine the following:

$$|f(x) - f(y)| = |\sqrt{x} - \sqrt{y}| = \left| \frac{x - y}{\sqrt{x} + \sqrt{y}} \right| = \frac{|x - y|}{\sqrt{x} + \sqrt{y}}$$

Note that $\sqrt{x} + \sqrt{y} \ge 2$ for all $x, y \ge 1$ which means that $\frac{1}{\sqrt{x} + \sqrt{y}} \le \frac{1}{2}$ for all $x, y \ge 1$. This motivates the choice of $\delta = 2\varepsilon$, i.e. $|x - y| < 2\varepsilon$. From this, we get $|f(x) - f(y)| = \frac{|x - y|}{\sqrt{x} + \sqrt{y}} \le \frac{1}{2}|x - y| < \frac{1}{2}(2\varepsilon) = \varepsilon$, proving that f is uniformly continuous on $[1, \infty)$.

20.1

Sketch the function $f(x) = \frac{x}{|x|}$. Determine, by inspection, the limits: $\lim_{x \to \infty} f(x)$, $\lim_{x \to 0^+} f(x)$, $\lim_{x \to 0^-} f(x)$, $\lim_{x \to -\infty} f(x)$, and $\lim_{x \to 0} f(x)$ if they exist, or indicate when they do not exist.

From this picture, we can conclude the following:

- $\bullet \lim_{x \to \infty} f(x) = 1$
- $\bullet \lim_{x \to 0^+} f(x) = 1$
- $\bullet \lim_{x \to 0^-} f(x) = -1$
- $\lim_{x \to -\infty} f(x) = -1$
- $\lim_{x\to 0} f(x)$ does not exist.

20.2

Sketch the function $f(x) = \frac{x^3}{|x|}$. Determine, by inspection, the limits: $\lim_{x \to \infty} f(x)$, $\lim_{x \to 0^+} f(x)$, $\lim_{x \to 0^-} f(x)$, $\lim_{x \to -\infty} f(x)$, and $\lim_{x \to 0} f(x)$ if they exist, or indicate when they do not exist.

From this picture, we can conclude the following:

- $\lim_{x \to \infty} f(x) = \infty$
- $\bullet \lim_{x \to 0^+} f(x) = 0$
- $\bullet \lim_{x \to 0^-} f(x) = 0$
- $\lim_{x \to -\infty} f(x) = -\infty$
- $\bullet \lim_{x \to 0} f(x) = 0$

20.3

Sketch the function $f(x) = \frac{\sin(x)}{|x|}$. Determine, by inspection, the limits: $\lim_{x \to \infty} f(x)$, $\lim_{x \to 0^+} f(x)$, $\lim_{x \to 0^-} f(x)$, $\lim_{x \to -\infty} f(x)$, and $\lim_{x \to 0} f(x)$ if they exist, or indicate when they do not exist.

From this picture, we can conclude the following:

$$\bullet \lim_{x \to \infty} f(x) = 0$$

$$\bullet \lim_{x \to 0^+} f(x) = 1$$

$$\bullet \lim_{x \to 0^-} f(x) = -1$$

•
$$\lim_{x \to -\infty} f(x) = 0$$

•
$$\lim_{x\to 0} f(x)$$
 does not exist.

20.4

Sketch the function $f(x) = x \sin\left(\frac{1}{x}\right)$. Determine, by inspection, the limits: $\lim_{x \to \infty} f(x)$, $\lim_{x \to 0^+} f(x)$, $\lim_{x \to 0^-} f(x)$, $\lim_{x \to -\infty} f(x)$, and $\lim_{x \to 0} f(x)$ if they exist, or indicate when they do not exist.

From this picture, we can conclude the following:

•
$$\lim_{x \to \infty} f(x) = 1$$

$$\bullet \lim_{x \to 0^+} f(x) = 0$$

$$\bullet \lim_{x \to 0^-} f(x) = 0$$

•
$$\lim_{x \to -\infty} f(x) = -1$$

$$\bullet \lim_{x \to 0} f(x) = 0$$