Problema 18. En un reactor se deshidrogena propano para dar propileno:

$$C_3H_8 \longrightarrow C_3H_6 + H_2$$

El proceso se va a diseñar para una conversión total de 95 % del propano. Los productos de reacción son alimentados a una unidad de separación donde se originan dos corrientes. La primera, el producto, contiene H_2 , C_3H_6 y $0.555\,\%$ (mol) del C_3H_8 que sale del reactor. La segunda corriente contiene el balance del C_3H_8 sin reaccionar y $5\,\%$ del C_3H_6 de la primera corriente, se recircula al reactor.

- a) Presenta el diagrama de flujo del proceso con corrientes, equipos y todos los datos e incógnitas.
- b) Presenta explícitamente los cálculos relevantes para la determinación de los grados de libertad del reactor. ¿Qué puedes concluir?
- c) Calcule:
 - i. La composición del producto.
 - ii. La relación (moles recirculados) / (moles de alimentación fresca).
 - iii. Conversión en un paso.
- d) Presentar una tabla de flujos molares en todas las corrientes de todos los compuestos.

a)

Como es un proceso continuo en estado estacionario reaccionante, entonces la ecuación general de balance es: o Sistema general y Reactor:

• Reactivos:

$$\begin{aligned} \text{Entrada} + \frac{\text{Generaci\'on}}{\text{Consumo}} - \text{Salida} - \text{Consumo} &= \frac{\text{Acumulaci\'on}}{\text{Entrada}} = \text{Salida} + \text{Consumo} \end{aligned}$$

• Productos:

$$\label{eq:entrada} \begin{split} \text{Entrada} + \text{Generación} &- \text{Salida} - \frac{\text{Consumo}}{\text{Consumo}} = \frac{\text{Acumulación}}{\text{Entrada}} \\ &= \text{Salida} - \text{Generación} \end{split}$$

o Separador y Mezclador:

$$\label{eq:consumo} \begin{aligned} \text{Entrada} + & \frac{\text{Generaci\'on}}{\text{Consumo}} = & \frac{\text{Acumulaci\'on}}{\text{Entrada}} = & \text{Salida} \end{aligned}$$

- b) Sea ξ el grado de avance de la reacción.
- Sistema general:

Ecuaciones independientes (4):

• Balance de C_3H_8 :

Corriente 1 = Corriente 4 + Consumo
A mol
$$C_3H_8$$
 = D_1 mol C_3H_8 + ξ mol C_3H_8

• Balance de H₂:

$$0 = \text{Corriente } 4$$
 - Generación
 $0 \text{ mol } H_2 = C_3 \text{ mol } H_2$ - $\xi \text{ mol } H_2$

• Balance de C₃H₆:

$$0 = \text{Corriente 4 - Generación}$$

$$0 \text{ mol } C_3H_6 = D_2 \text{ mol } C_3H_6 - \xi \text{ mol } C_3H_6$$

• Conversión del propano:

$$0.95 = \frac{Consumido}{Suministrado} = \frac{A \ mol \ C_3H_8 - D_1 \ mol \ C_3H_8}{A \ mol \ C_3H_8}$$

En donde hay 5 incógnitas = $\{A, D_1, D_2, C_3, \xi\}$. Entonces, el grado de libertad es:

$$GL = \#$$
 Incógnitas - $\#$ Ecuaciones independientes = 5 - 4 = 1

• Reactor:

Ecuaciones independientes (3):

• Balance de C_3H_8 :

$$\begin{aligned} & \text{Corriente 2} = \text{Corriente 3} + \text{Consumo} \\ & \text{B}_3 \text{ mol } \text{C}_3\text{H}_8 = \text{C}_1 \text{ mol } \text{C}_3\text{H}_8 + \xi \text{ mol } \text{C}_3\text{H}_8 \end{aligned}$$

• Balance de H₂:

$$0 = \mbox{Corriente 3 - Generación}$$

$$0 \mbox{ mol } \mbox{H}_2 = \mbox{C}_3 \mbox{ mol } \mbox{H}_2 - \xi \mbox{ mol } \mbox{H}_2$$

• Balance de C₃H₆:

$$\label{eq:corriente} \begin{array}{l} {\rm Corriente}~2 = {\rm Corriente}~3 \mbox{ - Generación} \\ {\rm E}_2~{\rm mol}~{\rm C}_3{\rm H}_6 = {\rm C}_2~{\rm mol}~{\rm C}_3{\rm H}_6 \mbox{ - }\xi~{\rm mol}~{\rm C}_3{\rm H}_6 \end{array}$$

En donde hay 6 incógnitas = $\{B_3, C_1, C_2, C_3, E_2, \xi\}$. Entonces, el grado de libertad es:

$$\mathrm{GL}=\#$$
 Incógnitas - $\#$ Ecuaciones independientes = 6 - 3 = 3

• Separador:

Corriente
$$3 = \text{Corriente } 4 + \text{Corriente } 5$$

Ecuaciones independientes (4):

- \bullet Balance de C_3H_8 : C_1 mol $C_3H_8=D_1$ mol $C_3H_8+E_1$ mol C_3H_8
- Balance de C_3H_6 : C_2 mol $C_3H_6 = D_2$ mol $C_3H_6 + E_2$ mol C_3H_6
- Relación de C_3H_8 : $(0.00555)(C_1 \text{ mol } C_3H_8) = D_1 \text{ mol } C_3H_8$
- Relación de C_3H_6 : $(0.05)(D_2 \text{ mol } C_3H_6) = E_2 \text{ mol } C_3H_6$

En donde hay 6 incógnitas = $\{C_1, C_2, D_1, D_2, E_1, E_2\}$. Entonces, el grado de libertad es:

$$\mathrm{GL}=\#$$
 Incógnitas - $\#$ Ecuaciones independientes = 6 - 4 = 2

• Mezclador:

Corriente
$$1 + \text{Corriente } 5 = \text{Corriente } 2$$

Ecuaciones independientes (1):

• Balance de C_3H_8 : A mol $C_3H_8 + E_1$ mol $C_3H_8 = B_1$ mol C_3H_8

En donde hay 3 incógnitas = $\{A, E_1, B_1\}$. Entonces, el grado de libertad es:

$$\mathrm{GL}=\#$$
 Incógnitas - $\#$ Ecuaciones independientes = 3 - $1=2$

Con los cálculos de grados de libertad anteriores podemos ver que primero hay que asignar una base de cálculo. Sea A = 100. Así el Sistema general tiene GL = 0 y se halla D_1, D_2, C_3, ξ , de aquí el Separador tiene GL = 0 y se calcula C_1, C_2, E_1, E_2 y finalmente el Mezclador tiene GL = 0 y se obtiene B_1 .

c) y d)

o Sistema general:

Con la conversión del propano:

$$0.95 = \frac{100 \ \text{mol} \ C_3H_8 - D_1 \ \text{mol} \ C_3H_8}{100 \ \text{mol} \ C_3H_8}$$

$$D_1 \ \text{mol} \ C_3H_8 = 100 \ \text{mol} \ C_3H_8 - (0.95)(100 \ \text{mol} \ C_3H_8) = 5 \ \text{mol} \ C_3H_8$$

En el balance de C_3H_8 :

$$100~mol~C_3H_8=5~mol~C_3H_8+\xi~mol~C_3H_8$$

 $\xi~mol~C_3H_8=100~mol~C_3H_8-5~mol~C_3H_8=95~mol~C_3H_8$

En el balance de H_2 :

0 mol
$$\mathrm{H}_2=\mathrm{C}_3$$
 mol H_2 - 95 mol H_2
$$\mathrm{C}_3 \text{ mol } \mathrm{H}_2=95 \text{ mol } \mathrm{H}_2$$

En el balance de C_3H_6 :

0 mol
$$C_3H_6=D_2$$
 mol C_3H_6 - 95 mol C_3H_6
$$D_2 \text{ mol } C_3H_6=95 \text{ mol } C_3H_6$$

• Separador:

Con la relación de C_3H_6 :

$$(0.05)(95 \text{ mol } C_3H_6) = E_2 \text{ mol } C_3H_6 = 4.75 \text{ mol } C_3H_6$$

En el balance de C_3H_6 :

$$C_2 \text{ mol } C_3H_6 = 95 \text{ mol } C_3H_6 + 4.75 \text{ mol } C_3H_6 = 99.75 \text{ mol } C_3H_6$$

Con la relación de C_3H_8 :

$$\begin{array}{l} (0.00555)(C_1 \ mol \ C_3H_8) = 5 \ mol \ C_3H_8 \\ C_1 \ mol \ C_3H_8 = \frac{5 \ mol \ C_3H_8}{0.00555} = 900.9009 \ mol \ C_3H_8 \end{array}$$

En el balance de C_3H_8 :

$$900.9009 \ mol \ C_3H_8 = 5 \ mol \ C_3H_8 + E_1 \ mol \ C_3H_8$$

$$E_1 \ mol \ C_3H_8 = 900.9009 \ mol \ C_3H_8 - 5 \ mol \ C_3H_8 = 895.9009 \ mol \ C_3H_8$$

o Mezclador;

En el balance de C_3H_8 :

$$100 \text{ mol } C_3H_8 + 895.9009 \text{ mol } C_3H_8 = B_1 \text{ mol } C_3H_8 = 995.9009 \text{ mol } C_3H_8$$

i) El producto es la Corriente 4:

Cantidad molar (mol)							Fracción molar						
	1	2	3	4	5			1	2	3	4	5	
C_3H_8	100	995.9009	900.9009	5	895.9009		C_3H_8	1	0.9953	0.8223	0.0256	0.9947	
C_3H_6	0	4.75	99.75	95	4.75		C_3H_6	0	0.0047	0.0910	0.4872	0.0053	
H_2	0	0	95	95	0		H_2	0	0	0.0867	0.4872	0	
Total	100	1000.6509	1095.6509	195	900.6509								

ii) Los moles recirculados son la Corriente 5 y los moles de alimantación fresca son la Corriente 1.

$$\frac{\text{Moles recirculados}}{\text{Moles de alimentación fresca}} = \frac{900.6509 \text{ mol}}{100 \text{ mol}} = 9.007$$

iii)

Conversión en un paso =
$$\frac{\text{Reactivo consumido}}{\text{Reactivo suministrado}} \ge 100\% = \frac{95 \text{ mol}}{995.9009 \text{ mol}} \ge 100\% = 9.5391\%$$