Question 6 (30 points):

Dec	Char		Dec	Char	Dec	Char	Dec	Char
0	NUL	(null)	32	SPACE	64	@	96	`
1	SOH	(start of heading)	33	!	65	A	97	a
2	STX	(start of text)	34	"	66	В	98	b
3	ETX	(end of text)	35	#	67	С	99	С
4	EOT	(end of transmission)	36	\$	68	D	100	d
5	ENQ	(enquiry)	37	8	69	E	101	е
6		(acknowledge)	38	&	70	F	102	f
7	BEL	(bell)	39	1	71	G	103	g
8	BS	(backspace)	40	(72	H	104	h
9	TAB	(horizontal tab)	41)	73	I	105	i
10	$_{ m LF}$	(NL line feed, new line)	42	*	74	J	106	j
11	VT	(vertical tab)	43	+	75	K	107	k
12	FF	(NP form feed, new page)	44	,	76	L	108	1
13	CR	(carriage return)	45	-	77	M	109	m
14	so	(shift out)	46	•	78	N	110	n
15	SI	(shift in)	47	/	79	0	111	0
16	DLE	(data link escape)	48	0	80	P	112	р
17	DC1	(device control 1)	49	1	81	Q	113	q
18	DC2	(device control 2)	50	2	82	R	114	r
19	DC3	(device control 3)	51	3	83	S	115	s
20	DC4	(device control 4)	52	4	84	T	116	t
21	NAK	(negative acknowledge)	53	5	85	U	117	u
22	SYN	(synchronous idle)	54	6	86	V	118	v
23	ETB	(end of trans. block)	55	7	87	W	119	W
24	CAN	(cancel)	56	8	88	X	120	x
25	EM	(end of medium)	57	9	89	Y	121	У
26	SUB	(substitute)	58	:	90	\mathbf{z}	122	Z
27	ESC	(escape)	59	;	91	[123	{
28	FS	(file separator)	60	<	92	\	124	
29	GS	(group separator)	61	=	93]	125	}
30	RS	(record separator)	62	>	94	^	126	~
31	US	(unit separator)	63	?	95	_	127	DEL

Figure 1: ASCII Table

In this question you will create two functions to print a string that may include a variable number of integers. The PrintString function receives three parameters: the address of a null-terminated string S; the address of the first position of a vector of integer values V; and the address of an output buffer B. Whenever the sequence of characters %d appears in the string, these characters must be replaced by a substring that represents the value of one of the integers in the vector V. Here are some examples (S is the input string, V is the vector of integer values, B is the output string:

```
S = Sift %d pounds and %d ounces of flour.
 V = \{2, 4\}
```

B = Sift 2 pounds and 4 ounces of flour.

S = She got almost %d million more votes than him. She got %d (%d%) and he got %d (%d%). Still, he was elected.

 $V = \{3, 65844954, 48, 62979879, 46\}$

B = She got almost 3 million more votes than him. She got 65844954 (48%) and he got 62979879 (46%). Still, he was elected.

The relevant portion of the ASCII table is shown in Figure ??.

The solution must work for any null-terminated strings, including the empty string.

All functions must follow all the RISC-V register saving/restoring conventions.

1. (10 points) The first function that you will create is called intToString. It has two parameters: an integer value and the memory address to the byte in memory that will contain the first character of the string representation of the integer value. intToString will create a null-terminated string starting at that address and will return the address of the null character at the end of the created string.

parameters:

- a0: integer value
- a1: memory address where string should start

return value:

- a0: memory address of the NULL byte at the end of the created string
- 2. (20 points) Now you will write PrintString, which has three parameters. The address of the first character of a null-terminated string S that may contain %d sequences in it. The address to the first position of a vector of integer values V. And the address to the first position of a buffer B that will contain the output string.

parameters:

- a0: address of null-terminated string S
- a1: address of vector of integers V
- a2: output string buffer B

return value: None

RISC-V code for intToString

RISC-V code for PrintString