Turing Machines

Invented by Alan Turing in 1936.

A simple mathematical model of a general purpose computer.

It is capable of performing any calculation which can be performed by any computing machine.

The Language Hierarchy

Languages accepted by Turing Machines

 $a^nb^nc^n$

WW

Context-Free Languages

 a^nb^n

 ww^R NDPA

Regular Languages

 $a^* a^*b^*$ Finite Automata

A Turing Machine

Tape

Read-Write head

Control Unit

The Tape

No boundaries -- infinite length

Read-Write head

The head moves Left or Right

Read-Write head

The head at each time step:

- 1. Reads a symbol
- 2. Writes a symbol
- 3. Moves Left or Right

Example:

- 1. Reads a
- 2. Writes k
- 3. Moves Left

Time 1

- 1. Reads b
- 2. Writes f
- 3. Moves Right

The Input String

Are treated as left and right brackets for the input written on the tape.

States & Transitions

Example:

Time 1

Time 1

$$q_1 \xrightarrow{a \rightarrow b, R} q_2$$

Example:

Time 1

$$\begin{array}{ccc}
 & a \rightarrow b, L \\
\hline
 & q_2
\end{array}$$

Example:

Time 1

$$\begin{array}{c|c}
\hline
q_1 & & & & \\
\hline
\end{array} \rightarrow g, R \rightarrow q_2$$

Determinism

Turing Machines are deterministic

Allowed

Not Allowed

No lambda transitions allowed

Partial Transition Function

Example:

Allowed:

No transition for input symbol c

Halting

The machine *halts* if there are no possible transitions to follow

Example:

No possible transition

HALT!!!

Final States

- · Final states have no outgoing transitions
- In a final state the machine halts

Acceptance

Accept Input

If machine halts in a final state

Reject Input

If machine halts in a non-final state or

If machine enters an *infinite loop*

Turing Machine Example

A Turing machine that accepts the language:

aa*

Time 0

Time 1

Time 2

Time 3

Time 4

Rejection Example

Time 1

No possible Transition

Infinite Loop Example

Time 1

Time 2

Because of the infinite loop:

The final state cannot be reached

·The machine never halts

·The input is not accepted

Another Turing Machine

Example Turing machine for the language $\{a^nb^n\}$

Time 1

Time 2

Time 3

Time 4

Time 5

Time 6

Time 7

Time 8

Time 9

Time 10

Time 11

Time 12

Time 13

Halt & Accept

Observation:

If we modify the machine for the language $\{a^nb^n\}$

we can easily construct a machine for the language $\{a^nb^nc^n\}$

Formal Definitions for Turing Machines

Transition Function

$$\delta(q_1,c) = (q_2,d,L)$$

Turing Machine:

Configuration

Instantaneous description: $ca q_1 ba$

A Move: $q_2 xayb \succ x q_0 ayb$

 $q_2 xayb \succ x q_0 ayb \succ xx q_1 yb \succ xxy q_1 b$

$$q_2 xayb \succ x q_0 ayb \succ xx q_1 yb \succ xxy q_1 b$$

Equivalent notation: $q_2 xayb \succ xxy q_1 b$

Initial configuration: $q_0 w$

Input string

The Accepted Language

For any Turing Machine M

$$L(M) = \{w : q_0 w \succ x_1 q_f x_2\}$$

Initial state

Final state

Standard Turing Machine The machine we described is the standard:

· Deterministic

· Infinite tape in both directions

·Tape is the input/output file

Design a Turing machine to recognize all strings in which 010 is present as a substring.

DFA for the previous language

Turing machine for odd no of 1's

Recursively Enumerable and Recursive

Languages

Definition:

A language is recursively enumerable if some Turing machine accepts it

Let $\,^L$ be a recursively enumerable language and $\,^M$ the Turing Machine that accepts it

For string W:

if $w \in L$ then M halts in a final state

if $w \not\in L$ then M halts in a non-final state or loops forever

Definition:

A language is recursive (decidable) if some Turing machine accepts it and halts on any input string

In other words:

A language is recursive if there is a membership algorithm for it

Let $\,L\,$ be a recursive language and $\,M\,$ the Turing Machine that accepts it

For string W:

if $w \in L$ then M halts in a final state

if $w \not\in L$ then M halts in a non-final state

We can prove:

1. There is a specific language which is not recursively enumerable (not accepted by any Turing Machine)

2. There is a specific language which is recursively enumerable but not recursive

Non Recursively Enumerable

The Chomsky Hierarchy

The Chomsky Hierarchy

Non-recursively enumerable

Recursively-enumerable

Recursive

Context-sensitive

Context-free

Regular

The Church-Turing thesis

Any intuitive notion of algorithms is equivalent to TM algorithms