Exploratory Data Analysis -

- 1) Device Laptop
- 2) Target Feature Classification (conversion)
 - a. Count plot Yes/No
 - b. Value counts check the distribution skewed or not? **Insights** (we will tackle in the modelling Notes-2)
 - a. Pair plot
 - b. Separate the categorical and numerical features
 - c. Categorical
 - i. Univariate Analysis -
 - 1) Jaipur/Jaipure hygiene checks in the data
 - a) Check the categories of the columns more than expected categories like adult (convert it into two categories)
 - b) Suppose city 60% Delhi, 1% Ahmedabad try to merge for later purpose
 - 2) Missing values Treat them with a method Mode/Max freq/KNN imputer from sklearn
 - 3) Check that "?"/special characters value counts on each of the categorical if you can run a loop
 - 4) Create a few count plots to show freq run a loop to get all the plots in 1 go **Insights**
 - ii. Bi-variate Analysis -
 - 1) Categorical to categorical (X1 v/s X2) stack bar plot
 - 2) Categorical to numerical (X1 cat v/s X2 num) bar plot/swarm/violin/bar **Insights**
 - 3) Categorical to Target Feature (X1_cat v/s Target_conversion) stackbar **Insights**
 - d. Numerical
 - i. Univariate Analysis -
 - 1) Hygiene checks on the data
 - 2) Missing values Mean/Median/KNN imputer/simple imputer
 - 3) Distribution and box plots with a loop **Insights**
 - 4) Outliers boxplot IQR method/percentile method (99%,95%)
 - 5) Distribution and box plots with a loop verify the outliers are removed **Insights**
 - 6) Skewness in the data right skewed take a log else take a squareroot
 - ii. Bi-variate Analysis -
 - 1) Correlation
 - a) Correlation between (X1_num v/s X2_num) heatmap **Insights**
 - b) Scatter plots (X1_num v/s X2_num) regplot **Insights**
 - 2) Relation with target feature (X1_num v/s Target) BOX/Swarm/violin **Insights**
 - 3) Relation with Categorical feature (X1_num v/s X1_cat) BOX/Swarm/violin-**Insights**
 - iii. Try to see the separation between the creation the distribution plot with a hue of target Pair plot
- 3) Device Mobile
 - a. Pair plot
 - b. Separate the categorical and numerical features
 - c. Categorical
 - i. Univariate Analysis -
 - 1) Jaipur/Jaipure hygiene checks in the data
 - 2) Missing values Treat them with a method Mode/Max freq/KNN imputer from sklearn
 - 3) Check that "?"/special characters value counts on each of the categorical if you can run a loop
 - 4) Create a few count plots to show freq run a loop to get all the plots in 1 go **Insights**
 - ii. Bi-variate Analysis -
 - 1) Categorical to categorical (X1 v/s X2) stack bar plot
 - 2) Categorical to numerical (X1 cat v/s X2 num) bar plot/swarm/violin/bar-**Insights**
 - 3) Categorical to Target Feature (X1_cat v/s Target_conversion) stackbar **Insights**
 - d. Numerical
 - i. Univariate Analysis -
 - 1) Hygiene checks on the data
 - 2) Missing values Mean/Median/KNN imputer/simple imputer
 - 3) Distribution and box plots with a loop **Insights**
 - 4) Outliers boxplot IQR method/percentile method (99%,95%)
 - 5) Distribution and box plots with a loop verify the outliers are removed **Insights**

- 6) Skewness in the data rigth skewed take a log else take a squareroot
- ii. Bi-variate Analysis -
 - 1) Correlation
 - a) Correlation between (X1_num v/s X2_num) heatmap **Insights**
 - b) Scatter plots (X1 num v/s X2 num) regplot **Insights**
 - 2) Relation with target feature (X1_num v/s Target) BOX/Swarm/violin **Insights**
 - 3) Relation with Categorical feature (X1_num v/s X1_cat) BOX/Swarm/violin-**Insights**
- iii. Try to see the separation between the creation the distribution plot with a hue of target Pair plot

Optional - Github update

do it pythonic way - try to use as many functions and loops as possible