Progetto software e Modellazione dei dati

Fasi per la produzione di un prodotto

studio

▶ Si approfondisce la conoscenza dell'area di competenza

ideazione

Si definisce il modello astratto del prodotto e si specificano le caratteristiche

progettazione

▶ Si formalizza il modello astratto tramite schemi

realizzazione

Si creano i primi prodotti

produzione

Termina il progetto inizia la produzione

Ciclo di vita del prodotto software

Prodotto software: insieme dei programmi e dati (archivi) necessari per soddisfare le richieste del cliente

Es. Metodologia in cascata

Ciclo di vita del prodotto software

La progettazione di un DB

La progettazione di una base di dati fa parte della progettazione di un software e ha lo scopo di realizzare un database a partire da un insieme di specifiche che formalizzano le esigenze dell'utente.

Prevede:

- Attività tra loro collegate
- Prodotti intermedi e finali di tali attività
- Criteri di verifica di qualità di tali fasi e prodotti

Modellazione dei dati

- La modellazione dei dati si occupa di realizzare il modello di dati che è la rappresentazione astratta delle strutture di dati di un DB.
- Il modello è indipendente dall'hardware e dal linguaggio che si vuole utilizzare.
- Questa fase serve per tradurre i dati dal punto di vista dell'utente al punto di vista delle applicazione e del DB

Modellazione dei dati Fasi

Progettazione Concettuale (analisi)

 a partire dai requisiti informativi (specificati in linguaggio naturale) viene creato uno schema concettuale (E/R o a oggetti), cioè una descrizione formalizzata e integrata delle esigenze aziendali, espressa in modo indipendente dal DBMS

Progettazione Logica (progettazione)

• si determinano le strutture logiche dei dati derivandole dal livello concettuale; operazione di *mapping*. Si sceglie lo schema logico in base al tipo di DBMS (nel caso di DB relazionale definisco le tabelle)

Progettazione Fisica (realizzazione)

 implementa lo schema logico definendo tutti gli aspetti fisici di memorizzazione e rappresentazione nel DBMS scelto (per esempio creo le tabelle in Access)

Modellazione dei dati Modelli logici

Nello sviluppo della teoria dei DB si possono individuare i seguenti modelli logici:

- Flat file: un solo file per l'intero DB (fogli di calcolo)
- Modello gerarchico: il modello logico è rappresentato con uno schema ad albero in cui le entità sono i nodi e gli archi le relazioni. È possibile definire solo relazioni I:N, rigidità.
- Modello reticolare: il modello logico è rappresentato con un grafo orientato in cui le entità sono i nodi e gli archi le relazioni. È difficile l'implementazione del grafo e la costruzione del software applicativo.

Modellazione dei dati Modelli logici

- Relazionale: il modello logico è costituito da tabelle. Derivato dalla matematica. È il più semplice ed efficace, il più utilizzato. (Edward Codd 1970)
- OODB (Object Oriented DataBase): il modello logico è costituito da oggetti e classi. È possibile definire sottoclassi. Adatto a gestire DB non solo testuali (multimediali)
- XML: non è un vero modello, ma costituisce lo standard per l'interscambio di informazioni tra DBMS diversi

Analisi delle funzioni

- Si realizza una gerarchia tra le funzioni con un processo di raffinamenti successivi (come top-down). Si schematizza con un **funzionigramma**:
- Dgni nodo descrive sinteticamente una funzione con operazione da eseguire e oggetto su cui agisce (non si indica chi lo esegue)
- Le funzioni relative ad attività complesse (funz. **Madre**) si scompongono in funzioni (almeno 2) con maggiori dettagli (funz. **Figlie**)
- La funzione **radice** contiene il nome del progetto
- Tra le funz. Figlie dello stesso livello non esiste relazione (possono essere in alternativa o no)

Analisi delle funzioni

