Was versteht man unter einer Zielfunktion?	Die Funtktion $f:G\to\mathbb{R},$ die minimiert wird.
aufgabenstellung KOMOT::Optimierungsprobleme UUID	
Was ist der zulässiger Bereich G ?	Definitionsbereich der Zielfunktion. $G \subseteq \mathbb{R}^n$.
aufgabenstellung KOMOT::Optimierungsprobleme UUID	
Was verstehen wir unter einer (globalen) Lösung einer OA Aufgabe.	Ein $x^* \in G$ das die Zielfunktion minimiert.
aufgabenstellung KOMOT::Optimierungsprobleme UUID	aufgabenstellung KOMOT::Optimierungsprobleme UUID
Was ist eine lokale Lösung x^* einer OA Aufgabe?	$f(x^*) \le f(x) \forall x \in G \cap U(x^*),$
	und es existiert so eine Umgebung von x^* .
aufgabenstellung KOMOT::Optimierungsprobleme UUID	

Was ist eine isolierte Lösung?		Es existiert eine Umgebung $U(x*)$, so dass $f(x^*) < f(x)$. Bzw. es gibt keine witeren lokalen Loßungen in der Umgebung.
aufgabenstellung KOMOT::Optimierungsprobleme	UUID	
Wie heißt $f_{\min}\coloneqq f(x^*)$?		Optimalwert oder Minimalwert
aufgabenstellung KOMOT::Optimierungsprobleme	UUID	aufgabenstellung KOMOT::Optimierungsprobleme UUID
Eine Menge $G\subseteq\mathbb{R}^n$ heißt $\mathit{konvex},$ wenn		$\forall_{x,y\in G}$ die Verebindungstrecke zwischen den Punkten auch in G liegt. Formel: $\lambda x + (1-\lambda)y \in G, \forall (x,y,\lambda) \in (G\times G\times (0,1))$
konvexitaet KOMOT::Optimierungsprobleme	UUID	
Sei G konvex. Eine Funktion $f:G \to \mathbb{R}$ heißt konvex an wenn	uf G,	$\forall (x, y, \lambda) \in (G \times G \times (0, 1)):$ $f(\lambda x + (1 - \lambda)y \le \lambda f(x) + (1 - \lambda)f(y).$
konvexitaet KOMOT::Optimierungsprobleme	UUID	

Wann ist eine Funktion $streng\ konvex$ auf einer kompakten Menge G ?	Wie bei normalen konvexität, aber mit $<$ statt \le .
konvexitaet	konvexitaet
Sei G konvex. Eine Funktion $f:G o \mathbb{R}$ heißt $gleichmäeta ig$ $konvex$ auf G , wenn	$\exists \gamma > 0, \text{ so dass } \forall (x,y,\lambda) \in (G \times G \times (0,1)) :$ $f(\lambda x + (1-\lambda)y \leq \lambda f(x) + (1-\lambda)f(y) - \gamma \lambda (1-\lambda)\ x-y\ ^2$
konvexitaet KOMOT::Optimierungsprobleme UUID	
B offen G konvex und $G\subseteq B\subseteq \mathbb{R}^n, f:B\to \mathbb{R}$ diff'bar. f $konvex$ g.d.w	$\forall_{x,y \in G}: f(y) - f(x) \ge \nabla f(x)^{T} (y - x)$.
B offen G konvex und $G\subseteq B\subseteq \mathbb{R}^n, f:B\to \mathbb{R}$ diff'bar. f $streng~konvex$ g.d.w	$\forall x, y \in G, x \neq y:$ $f(y) - f(x) > \nabla f(x)^{T} (y - x)$.

B offen G konvex und $G\subseteq B\subseteq \mathbb{R}^n, f:B\to \mathbb{R}$ diff'bar. f gleichmäßig konvex g.d.w	$\exists \gamma > 0, \text{ so dass } \forall_{x,y \in G}:$ $f(y) - f(x) \ge \nabla f(x)^{T} (y - x) + \gamma x - y ^2$.