Distancia y Repaso de Álgebra Matricial

Análisis Multivariable

Santiago Alférez

Agosto de 2020

Análisis Estadístico de Datos MACC

Universidad del Rosario

Contenidos

Distancia Euclidiana

Distancia Estadística

Repaso de Álgebra Vectorial

Repaso de Álgebra Matricial

Distancia Euclidiana

Distancia Euclidiana

La mayoría de técnicas multivariables están basadas en el concepto de distancia

Distancia Euclidiana

Todos los puntos que yacen a la misma distancia (cuadrada) c^2 respecto al origen, se encuentran sobre una hiperesfera.

La distancia Euclidiana entre dos puntos arbitrarios P y Q con coordenadas $P=(x_1,x_2,\ldots,x_p)$ y $Q=(y_1,y_2,\ldots,y_p)$ está dada por:

$$d(P,Q) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_p - y_p)^2}$$

Distancia Euclidiana

¿Es apropiada la distancia Euclidiana?

- Para la mayoría de aplicaciones estadísticas la distancia Euclidiana no es apropiada.
- Porque cada coordenada contribuye igualmente al cálculo de la distancia.
- Cuando las coordenadas representan medidas que pueden presentar variaciones aleatorias de diferentes magnitudes, es conveniente ponderar con mayor peso a aquellas que varían menos, y con menor peso a aquellas con mayor variación.
- El objetivo es desarrollar una distancia estadística que tenga en cuenta tanto las diferencias en variación y la presencia de correlación.

Distancia Estadística

Distancia estadística

Suposiciones

- Hay n pares de medidas sobre dos variables x_1 y x_2 .
- Tiene media cero y varían independientemente.
- La variabilidad en x_1 es mayor que en x_2 .

Distancia estadística

Observaciones

- Los puntos respecto al origen en la dirección de x₁ son más comunes que los puntos (a la misma distancia) en la dirección de x₂.
- Esto se debe a que la variabilidad de x_1 es mayor que la de x_2 .
- Entonces, son más comunes coordenadas grandes en x_1 que en x_2 .
- Tiene sentido entonces, ponderar más a x_2 que a x_1 (en la distancia).

Distancia estadística

Construyendo la distancia estadística

- Procedemos a estandarizar las coordenadas: $x_1^* = x_1/\sqrt{s_{11}}$ y $x_2^* = x_2/\sqrt{s_{22}}$.
- Esto pondera más la coordenada con menor variabilidad y viceversa.
- Ahora aplicamos la distancia euclidiana para definir la distancia estadística entre el punto $P=(x_1,x_2)$ al origen O=(0,0):

$$d(O,P) = \sqrt{(x_1^*)^2 + (x_2^*)^2}$$

$$= \sqrt{\left(\frac{x_1}{\sqrt{s_{11}}}\right)^2 + \left(\frac{x_2}{\sqrt{s_{22}}}\right)^2} = \sqrt{\frac{x_1^2}{s_{11}} + \frac{x_2^2}{s_{22}}}$$

 Si la variabilidad en ambas coordenadas es igual, es mejor usar la distancia Euclidiana.

Interpretación gráfica de la distancia estadística

Consideraciones

Todos los puntos con coordenadas (x_1,x_2) con distancia cuadrada respecto al origen c^2 satisfacen $\frac{x_1^2}{s_{11}} + \frac{x_2^2}{s_{22}} = c^2$ y se encuentran en una elipse centrada en el origen.

Distancia estadística entre dos puntos cualesquiera

$$d(P,Q) = \sqrt{\frac{(x_1 - y_1)^2}{s_{11}} + \frac{(x_2 - y_2)^2}{s_{22}}}$$

Extensión de la distancia estadística

- Sea $P=(x_1,x_2,\ldots,x_p)$ y $Q=(y_1,y_2,\ldots,y_p)$ puntos con p coordenadas.
- ullet Supongamos que Q es un punto fijo y que las coordenadas varían de forma independiente.
- Sean $s_{11}, s_{22}, \ldots, s_{nn}$ las varianzas muestrales construidas a partir de las n medidas de x_1, x_2, \ldots, x_n .
- Entonces la distancia estadística desde P a Q está dada por:

$$d(P,Q) = \sqrt{\frac{(x_1 - y_1)^2}{s_{11}} + \frac{(x_2 - y_2)^2}{s_2 2} + \dots + \frac{(x_p - y_p)^2}{s_{pp}}}$$

Distancia estadística entre dos puntos cualesquiera

$$d(P,Q) = \sqrt{\frac{(x_1 - y_1)^2}{s_{11}} + \frac{(x_2 - y_2)^2}{s_2 2} + \dots + \frac{(x_p - y_p)^2}{s_{pp}}}$$

Consideraciones de la extensión

- Todos los puntos P que están a una distancia cuadrada constante del punto Q yacen sobre una hiper-elipsoide centrada en Q, con ejes mayor y menor paralelos a las (ejes) coordenadas.
- La distancia desde P al origen O se puede obtener mediante $y_1 = y_2 = \cdots = y_p = 0$.
- Si $s_{11} = s_{22} = \cdots = s_{pp}$, es mejor utilizar la distancia Euclidiana.

¿Es siempre la distancia estadística (anterior) adecuada?

$$d(P,Q) = \sqrt{\frac{(x_1 - y_1)^2}{s_{11}} + \frac{(x_2 - y_2)^2}{s_2 2} + \dots + \frac{(x_p - y_p)^2}{s_{pp}}}$$

- La distancia estadística (anterior) supone que las coordenadas son independientes.
- Esto hace, que dicha definición no incluya los casos más importantes.
- ¿Qué sucede si la variabilidad en una coordenada es más grande que la variabilidad de la otra coordenada?

¿Es siempre la distancia estadística (anterior) adecuada?

Un caso de variabilidad correlacionada

¿Es siempre la distancia estadística (anterior) adecuada?

Un caso de variabilidad correlacionada

Una distancia estadística más general

Derivación de la nueva distancia estadística

- 1. $d(O,P) = \sqrt{\frac{\widetilde{x}_1^2}{\widetilde{s}_{11}} + \frac{\widetilde{x}_2^2}{\widetilde{s}_{22}}}$.
- 2. $\tilde{x}_1 = x_1 \cos(\theta) + x_2 \sin(\theta)$ $\tilde{x}_2 = -x_1 \sin(\theta) + x_2 \cos(\theta)$
- 3. Mediante (1) y (2): $d = \sqrt{a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2}$ con $a_{ij} \ge 0$.
- 4. a_{ij} son funciones de θ y de las covarianzas (de los datos originales) $s_{11}, s_{12}, \ y \ s_{22}.$
- El término 2a₁₂x₁x₂ esta relacionado directamente con una correlación no nula.

Una distancia estadística más general

Extendiendo la distancia estadística

• La distancia estadística del punto $P(x_1, x_2)$ al punto fijo $Q(y_1, y_2)$, cuando las variables están correlacionadas, es:

$$d(P,Q) = \sqrt{a_{11}(x_1 - y_1)^2 + 2a_{12}(x_1 - y_1)(x_2 - y_2) + a_{22}(x_2 - y_2)^2}.$$

- Esta distancia puede ser calculada una vez se calculen a_{11}, a_{12} y a_{22} .
- Las coordenadas de todos los puntos $P=(x_1,x_2)$ que están a una distancia cuadrada constante respecto al punto Q, satisfacen: $a_{11}\left(x_1-y_1\right)^2+2a_{12}\left(x_1-y_1\right)\left(x_2-y_2\right)+a_{22}\left(x_2-y_2\right)^2=c^2$ y se encuentran sobre una elipse centrada en Q.

Una distancia estadística más general

Interpretación gráfica de la distancia estadística

Una distancia estadística más general (p-dimensiones)

Extendiendo la distancia estadística a p dimensiones

- Sea $P = (x_1, x_2, ..., x_p)$ un punto cuyas coordenadas representan variables que están correlacionadas y sujetas a variabilidad.
- Sea O = (0, 0, ..., 0) el origen.
- Sea $Q = (y_1, y_2, \dots, y_p)$ un punto fijo especificado.
- La distancia desde P a O es: $d(O,P) = \sqrt{a_{11}x_1^2 + a_{22}x_2^2 + \cdots + a_{pp}x_p^2 + 2a_{12}x_1x_2 + 2a_{13}x_1x_3 + \cdots + 2a_{p-1,p}x_{p-1}x_p}$
- La distancia desde P a Q, d(P,Q) es:

$$\begin{vmatrix}
 [a_{11}(x_1 - y_1)^2 + a_{22}(x_2 - y_2)^2 + \dots + a_{pp}(x_p - y_p)^2 + 2a_{12}(x_1 - y_1)(x_2 - y_2) \\
 + 2a_{13}(x_1 - y_1)(x_3 - y_3) + \dots + 2a_{p-1,p}(x_{p-1} - y_{p-1})(x_p - y_p)]
\end{vmatrix}$$

Una distancia estadística más general (p-dimensiones)

Extendiendo la distancia estadística a p dimensiones

• La distancia desde P a Q, d(P,Q) es:

$$\begin{cases}
 \left[a_{11} (x_1 - y_1)^2 + a_{22} (x_2 - y_2)^2 + \dots + a_{pp} (x_p - y_p)^2 + 2a_{12} (x_1 - y_1) (x_2 - y_2) \right. \\
 \left. + 2a_{13} (x_1 - y_1) (x_3 - y_3) + \dots + 2a_{p-1,p} (x_{p-1} - y_{p-1}) (x_p - y_p) \right]
\end{cases}$$

- Los coeficientes (pesos) a_{ik} determinan completamente la distancia.
- Los coeficientes se pueden reorganizar de forma matricial:

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{12} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1p} & a_{2p} & \cdots & a_{pp} \end{bmatrix}$$

¿Pueden crearse nuevas distancias?

Cualquier medida de distancia d(P,Q) entre dos puntos P y Q es válido si ésta satisface las siguientes propiedades, donde R es cualquier otro punto intermedio:

Propiedades de una distancia

- $\bullet \ d(P,Q) = d(Q,P)$
- d(P,Q) > 0 si $P \neq Q$
- d(P,Q) = 0 si P = Q
- $d(P,Q) \le d(P,R) + d(R,Q)$

Ejemplo: comparación entre distancia Euclidiana y estadística

Ejemplo

Evalúe la distancia del punto P=(-1,-1) al punto Q=(1,0) usando la fórmula de distancia euclidiana con p=2 y usando la distancia estadística:

$$d(P,Q) = \sqrt{a_{11}(x_1 - y_1)^2 + 2a_{12}(x_1 - y_1)(x_2 - y_2) + a_{22}(x_2 - y_2)^2}$$

con $a_{11}=1/3, a_{22}=4/27$, y $a_{12}=1/9$. Dibuje el lugar geométrico de los puntos que están a una distancia estadística cuadrada constante igual 1 respecto al punto Q.

Ejercicio

Ejercicio de distancias

Dados los siguientes pares de medidas sobre dos variables x_1 y x_2 :

- a Grafique los datos como un diagrama de dispersión y calcule s_{11}, s_{22} y s_{12} .
- b Usando $\tilde{x}_1 = x_1 \cos(\theta) + x_2 \sin(\theta)$ y $\tilde{x}_2 = -x_1 \sin(\theta) + x_2 \cos(\theta)$, calcule las medidas correspondientes sobre las variables \tilde{x}_1 y \tilde{x}_2 , asumiendo que los ejes coordenados originales están rotados un ángulo de $\theta = 26^\circ$.
- c Usando las medidas $ilde x_1$ y $ilde x_2$ de (b), calcule las varianzas de muestra $ilde s_{11}$ y $ilde s_{22}$
- d Considere el nuevo par de medidas $(x_1,x_2)=(4,-2)$. Transforme estas medidas en \tilde{x}_1 y \tilde{x}_2 como en (b) y calcule la distancia d(O,P) del nuevo punto $P=(\tilde{x}_1,\tilde{x}_2)$ desde el origen O=(0,0), usando $d(O,P)=\sqrt{\frac{\tilde{x}_1^2}{\tilde{s}_{11}}+\frac{\tilde{x}_2^2}{\tilde{s}_{22}}}$. Nota: Necesitará \tilde{s}_{11} y \tilde{s}_{22} de (c).
- e Calcule la distancia desde P=(4,-2) hasta el origen O=(0,0) usando $d(O,P)=\sqrt{a_{11}x_1^2+2a_{12}x_1x_2+a_{22}x_2^2}$ y las expresiones para $a_{11},a_{22},$ y a_{12} de la siguiente diapositiva. Nota: necesitará $s_{11},s_{22},$ y s_{12} de (a). Compare la distancia calculada aquí con la distancia calculada usando los valores \widetilde{x}_1 y \widetilde{x}_2 en (d). (Dentro del error de redondeo, los números deben ser los mismos).

Expresiones para los coeficientes de la distancia estadística

Coeficientes a_{ij} para la distancia estadística que incluye variabilidad y correlación

La distancia desde $P=(\widetilde{x}_1,\widetilde{x}_2)$ hasta el origen O=(0,0) se puede escribir en términos de las coordenadas originales x_1 y x_2 de P cómo:

$$d(O,P) = \sqrt{a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2}$$

donde los coeficientes están dados por:

$$a_{11} = \frac{\cos^2(\theta)}{\cos^2(\theta)s_{11} + 2\sin(\theta)\cos(\theta)s_{12} + \sin^2(\theta)s_{22}} + \frac{\sin^2(\theta)}{\cos^2(\theta)s_{22} - 2\sin(\theta)\cos(\theta)s_{12} + \sin^2(\theta)s_{11}}$$

$$a_{22} = \frac{\sin^2(\theta)}{\cos^2(\theta)s_{11} + 2\sin(\theta)\cos(\theta)s_{12} + \sin^2(\theta)s_{22}} + \frac{\cos^2(\theta)}{\cos^2(\theta)s_{22} - 2\sin(\theta)\cos(\theta)s_{12} + \sin^2(\theta)s_{11}}$$

$$y$$

$$a_{12} = \frac{\cos(\theta)\sin(\theta)}{\cos^2(\theta)s_{11} + 2\sin(\theta)\cos(\theta)s_{12} + \sin^2(\theta)s_{22}} - \frac{\sin(\theta)\cos(\theta)}{\cos^2(\theta)s_{22} - 2\sin(\theta)\cos(\theta)s_{12} + \sin^2(\theta)s_{11}}$$

Repaso de Álgebra Vectorial

Álgebra vectorial

Vectores

Una matriz ${\bf x}$ de n números reales x_1, x_2, \ldots, x_n se llama vector y se escribe como

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \quad \mathbf{o} \quad \mathbf{x}' = \begin{bmatrix} x_1, x_2, \dots, x_n \end{bmatrix}$$

donde el apóstrofe denota la operación de transponer una columna a una fila.

Algebra vectorial: operaciones

Expansión o contracción

$$c\mathbf{x} = \begin{bmatrix} cx_1 \\ cx_2 \\ \vdots \\ cx_n \end{bmatrix}$$

Suma

$$\mathbf{x} + \mathbf{y} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{bmatrix}$$

Algebra vectorial:operaciones

Producto interno

$$\mathbf{x}'\mathbf{y} = x_1y_1 + x_2y_2 + \dots + x_ny_n$$

Longitud de un vector

La longitud de un vector $\mathbf{x}' = [x_1, x_2, \dots, x_n]$ con n componentes es:

$$L_{\mathbf{x}} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} = \sqrt{\mathbf{x}'\mathbf{x}}$$

Ángulo entre dos vectores

$$\cos(\theta) = \frac{\mathbf{x}'\mathbf{y}}{L_{\mathbf{x}}L_{\mathbf{y}}} = \frac{\mathbf{x}'\mathbf{y}}{\sqrt{\mathbf{x}'\mathbf{x}}\sqrt{\mathbf{y}'\mathbf{y}}}$$

Algebra vectorial:independencia lineal

Independencia lineal

• Un conjunto de vectores $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ es linealmente dependiente si existen constantes c_1, c_2, \dots, c_k , no todos cero, de modo que

$$c_1\mathbf{x}_1 + c_2\mathbf{x}_2 + \dots + c_k\mathbf{x}_k = \mathbf{0}$$

- La dependencia lineal implica que al menos un vector en el conjunto puede escribirse como una combinación lineal de los otros vectores.
- Vectores de la misma dimensión que no son linealmente dependientes son linealmente independientes.

Algebra vectorial:independencia lineal

Ejemplo

Compruebe que el siguiente conjunto de vectores son linealmente independientes:

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \quad \mathbf{x}_2 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \quad \mathbf{x}_3 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$

Algebra vectorial: proyección

Proyección vectorial

Proyección de x sobre y =

$$\frac{(\mathbf{x}'\mathbf{y})}{\mathbf{y}'\mathbf{y}}\mathbf{y} = \frac{(\mathbf{x}'\mathbf{y})}{L_{\mathbf{y}}}\frac{1}{L_{\mathbf{y}}}\mathbf{y}$$

Longitud de la proyección

Longitud de proyección =

$$\frac{|\mathbf{x}'\mathbf{y}|}{L_{\mathbf{y}}} = L_{\mathbf{x}} \left| \frac{\mathbf{x}'\mathbf{y}}{L_{\mathbf{x}}L_{\mathbf{y}}} \right| = L_{\mathbf{x}} |\cos(\theta)|$$

donde θ es el ángulo entre x y y.

Repaso de Álgebra Matricial

Matriz

$$\mathbf{A}_{(n \times p)} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{np} \end{bmatrix}$$

Suma

La suma de dos matrices de dimensiones iguales $\mathbf{A} + \mathbf{B}$ tiene el elemento (i,j) dado por $a_{ij} + b_{ij}$

Multiplicación por c

$$c\mathbf{A}_{(n\times p)} = \begin{bmatrix} ca_{11} & ca_{12} & \cdots & ca_{1p} \\ ca_{21} & ca_{22} & \cdots & ca_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ ca_{n1} & ca_{n2} & \cdots & ca_{np} \end{bmatrix}$$

Transpuesta

La transpuesta A' de una matriz cambia las columnas en filas. Así, la columna 1 de A se convierte en la fila 1 de A', la columna 2 se convierte en la fila 2, y así sucesivamente.

9 / 36

Producto matricial

 $\begin{aligned} \mathbf{AB}_{(n\times k)(k\times p)} &= \text{la matriz } (n\times p) \text{ cuya entrada en la } i\text{-}\text{\'esima fila y} \\ j\text{-}\text{\'esima columna es el producto interno de la } i\text{-}\text{\'esima} \end{aligned}$ fila de \mathbf{A} y la j-'esima columna de \mathbf{B} . $(i,j) \text{ elemento de } \mathbf{AB} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{ik}b_{kj} = \sum_{k=1}^{k} a_{i\ell}b_{\ell j}$

$$\mathbf{A} \mathbf{B}_{(n \times 4)(4 \times p)} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ \vdots & \vdots & \vdots & \vdots \\ \underline{a_{i1}} & a_{i2} & a_{i3} & a_{i4} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & a_{n4} \end{bmatrix} \begin{bmatrix} b_{11} & \cdots & b_{1p} \\ b_{21} & \cdots & b_{2p} \\ b_{31} & \cdots & b_{3p} \\ b_{4j} & \cdots & b_{3p} \\ \vdots & \cdots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & a_{n4} \end{bmatrix}$$

$$\mathbf{Column}$$

$$\vdots$$

Ejemplo de productos típicos

Dada las siguientes matrices:

$$\mathbf{A} = \begin{bmatrix} 1 & -2 & 3 \\ 2 & 4 & -1 \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} 7 \\ -3 \\ 6 \end{bmatrix} \quad \mathbf{c} = \begin{bmatrix} 5 \\ 8 \\ -4 \end{bmatrix} \quad \mathbf{d} = \begin{bmatrix} 2 \\ 9 \end{bmatrix}$$

Realice las siguientes multiplicaciones: Ab, bc', b'c, y d'Ab.

Matriz simétrica

Una matriz cuadrada es simétrica si A = A' o $a_{ij} = a_{ji}$ para todos los i y j.

Matriz identidad

Es una matriz con unos en la diagonal y ceros en el resto. Se denota por ${\bf I}$ y cumple con la propiedad de identidad:

$$\mathbf{I}_{(k\times k)(k\times k)} = \mathbf{A}_{(k\times k)(k\times k)} = \mathbf{A}_{(k\times k)} \quad \text{ para cualquier } \mathbf{A}_{(k\times k)(k\times k)}$$

Inversa de una matriz

Si existe una matriz B tal que,

$$\mathbf{B}_{(k\times k)(k\times k)} = \mathbf{A}_{(k\times k)(k\times k)} = \mathbf{I}_{(k\times k)} \quad \text{sólo si las columnas} \quad \text{de } \mathbf{A} \text{ son linealment}$$

 ${\bf B}$ es la inversa de ${\bf A}$ y se denota por ${\bf A}^{-1}$

A es invertible si y sólo si las columnas de A son linealmente independientes.

Inversa de una matriz diagonal

$$\begin{bmatrix} a_{11} & 0 & 0 & 0 & 0 \\ 0 & a_{22} & 0 & 0 & 0 \\ 0 & 0 & a_{33} & 0 & 0 \\ 0 & 0 & 0 & a_{44} & 0 \\ 0 & 0 & 0 & 0 & a_{55} \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & 0 & 0 & 0 & 0 \\ 0 & a_{22} & 0 & 0 & 0 \\ 0 & 0 & a_{33} & 0 & 0 \\ 0 & 0 & 0 & a_{44} & 0 \\ 0 & 0 & 0 & 0 & a_{55} \end{bmatrix} \text{ tiene inversa } \begin{bmatrix} \frac{1}{a_{11}} & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{a_{22}} & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{a_{33}} & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{a_{44}} & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{a_{55}} \end{bmatrix}$$

Matriz ortogonal

Una matriz (cuadrada) ortogonal se caracteriza por:

$$\mathbf{Q}\mathbf{Q}' = \mathbf{Q}'\mathbf{Q} = \mathbf{I} \circ \mathbf{Q}' = \mathbf{Q}^{-1}$$

Las filas (columnas) de Q tienen longitud unitaria y son mutuamente perpendiculares (ortogonales).

Valores propios y vectores propios

- Son un concepto esencial en el análisis estadístico multivariable.
- Una matriz ${\bf A}$ tiene un valor propio con su correspondiente vector propio ${\bf x} \neq {\bf 0}$, si ${\bf A}{\bf x} = \lambda {\bf x}$.
- Si A es una matriz simétrica cuadrada de $k \times k$. Entonces A tiene k pares de valores propios y vectores propios: $\lambda_1, \mathbf{e}_1 \quad \lambda_2, \mathbf{e}_2 \quad \dots \quad \lambda_k, \mathbf{e}_k$. Los vectores propios se pueden elegir tal que sean unitarios, es decir, $1 = \mathbf{e}_1' \mathbf{e}_1 = \dots = \mathbf{e}_k' \mathbf{e}_k$ y siendo mutuamente perpendiculares.
- Los vectores propios son únicos a menos que dos o más valores propios sean iguales.

Ejemplo

Determine los valores propios y vectores propios (unitarios) para la matriz:

$$\mathbf{A} = \left[\begin{array}{cc} 1 & 0 \\ 1 & 3 \end{array} \right]$$

Ejercicio

Determine los valores propios y vectores propios (unitarios) para la matriz:

$$\mathbf{A} = \left[\begin{array}{cc} 1 & 2 \\ 2 & -2 \end{array} \right]$$