本科生毕业论文格式规范

论文主体内容包括:

(注意严格按要求修改论文,若到期限前仍不符合要求,可能会被取消成绩!有问题及时与答辩秘书沟通咨询)

1. 中文摘要及关键词 2. 英文摘要及关键词 3. 目录 4. 正文 5. 参考文献 6. 附录(根据需要)

一、论文页面设置

- 1. 毕业论文(设计、创作)要用 A4 复印纸双面打印。
- 2. 页边距:上边距 2.8cm、下边距 2.2cm、左边距 2.5cm、右边距 2.5cm。

二、页眉和页码

- 1. 页眉: 从正文开始添加页眉 "河南大学本科毕业论文"字样, 民生的学生添加 "河南大学民生学院本科毕业论文"。(注意检查页眉字样是否符合要求!)
- 2. 页码: **封面、中英文设计(论文摘要)和目录不编入论文页码**。从**引言**开始,至附录,用阿拉伯数字连续编排,页码位于页面底部**居中**。(**封面、摘要、目录都无页码,从正文开始有页码和页眉!!**)

三、封面

请采用封面模板,下载后添加自己的信息。

四、论文摘要和关键词

- 1. 中文摘要和关键词
- (1) 摘要:两字(三号黑体,加粗,中间空两格)。段前段后1行。**独立一行,居中**。
 - (2) 摘要正文: 小四号宋体, 1.5倍行距。摘要正文后下空一行。
 - (3) 关键词: 三字(四号黑体,加粗)。段前空两个字符。
- (4) 关键词正文: 一般为 3~5 个, 小四号宋体, 1.5 倍行距。每一关键词 之间用分号: 隔开, 最后一个关键词后不打标点符号。

2. 英文摘要和关键词

英文和汉语拼音一律为 Times New Roman 体,格式、字号与中文摘要相同.

河南大学 2023 届本科毕业论文

(注意是"2023"届,不可写做"2019")

基于主成分回归模型研究影响郑州市房价 的主要因素

(注意姓名学号等信息居中, 下方有横线)

(封面无页码, 无页眉)

论文作者姓名:	艾殊雪				
作者学号:	20191010209				
所在学院:	<u>数学与统计学院</u>				
所 学专业:	金融数学				
导 师姓名:	刘水生				
	副教授				
(答辩日期	为5月6号!!)				
2022 年	5 月 6 日				

摘要

(注意摘要中间必须且只能空两格,摘要字体为三号!摘要里不可有引用)

字体采用小四号宋体,段首空两格。摘要两字用三号黑体加粗,中间空两格, 段前、段后空一行。关键字段前空两格,关键词三字采用四号黑体加粗。关键词 之间用分号隔开,小四号宋体,最后一个关键词不加标点。 英文摘要需要另起 一页。字号与中文摘要相同,字体用 times new roman。

关键词: Banach 不动点定理; Lax 方程; 雅可比迭代; 高斯一赛德尔迭代

(关键词注意字体、标点、行间距!!)

(英文与数字都用 times new roman!!)

Abstract

We study Lie bialgebroid crossed modules which are pairs of Lie algebroid crossed modules in duality that canonically give rise to Lie bialgebroids. A one one correspondence between such Lie bialgebroid crossed modules and coquadratic Manin triples (K, P, Q) is established, where K is a coquadratic Lie algebroid and (P, Q) is a pair of transverse Dirac structures in K.

Keywords: Banach donot theological theorem; Linear equation; Jacobi iteration; Gauss-Siddle iteration

(英文摘要必须自己看一遍确保通顺,切记不可有复制带来的不适宜格式!)

五、目录

- 1. 目录:两字(三号黑体,加粗,中间空两格)。段前段后1行。独立一行,居中。
- 2. 目录正文: 使用"插入/引用/索引和目录"菜单中的"目录"项,选择各级标题设置(标题 1、标题 2、标题 3)。

目录中各章题序的阿拉伯数字用 Times New Roman 体,第一级标题用小四号 黑体,其余用小四号宋体。

目 录

第	1章	引言	1
第:	2章	预备知识	. 5
	2.1	初边值问题	5
	2.2	Fourier 分析	8
		1.2.2 表格	8
		1.2.3 插图	23
	2.3	可视化计算2	24
参	考文i	载	28

(目录页无页码无页眉,目录中不可含有摘要!)

(目录也有字体格式要求,不可自动生成后直接不管了!)

(目录中"第1章"必须是阿拉伯数字,不可以是"第一章")

六、毕业论文(设计、创作)正文

1. 正文格式

正文的字体小四号字体, 行距 1.5倍

表 6.1 正文格式

专业类型	第 一 层	第二层(节)	第三层 (子节)	正文	
マ亚天主	(章)				
字体格式	三号黑体,	小三号黑	四号黑体,加粗	小四号	
于仲俗八	加粗	体,加粗		宋体	
<u>γ</u> πΕ	段前段后 1	段前段后	段前段后 0.5 行	1.5 倍行	
行距	行	0.5行		距	
	居中	顶格	顶格	首行缩	
对齐格式				进2字符	
理工类	第1章	1.1	1.1.1	=	

(1) 章节及各章标题

毕业论文(设计、创作)正文分章节(或部分)撰写,一般理工类**每章应另起** 一页(使用"插入/分隔符/分页符)

各章标题要突出重点、简明扼要,**不得使用标点符号**。标题中尽量不采用**英 文缩写词**,对必须采用者,应使用本行业的通用缩写词。

(2) 层次

层次以少为宜,根据实际需要选择。正文层次的编排和代号要求统一。用到哪一层次视需要而定,"节"段前、段后各设为 0.5 行。

2. 公式、表格、插图的使用

(1) 公式

公式一律使用 Mathtype 公式编辑器编写。 转行,如难实现,则可在遇=、十、一、×、÷运算符号前转行,公式的序号用圆括号(英文状态下)括起来放在公式右边行末。公式序号按章编排,如公式序号为"(2.1)",附录 A 中的第一个公式为"(A1)"等。

第2章 逼近定理的四种证明

由于理论和实际的需要,函数逼近论正向前蓬勃发展着,其研究核心就是用简单的函数来逼近一类复杂的函数,而多项式函数计算、求导、求积比较方便,所以进一步研究复杂函数可以用多项式来逼近,从而使问题简化,有着重要的意义.

在预先给定的精度下,能否用多项式逼近任意给定的连续函数? 1885 年,Weierstrass 就此问题给出了肯定回答,即 Weierstrass 第一逼近定理,该定理保证了闭区间上的任意连续函数都可以用多项式来逼近,而且可以达到任意要求的精度.(从第一章开始有页码有页眉,标题最多到第三级(2.2.1.1),不要有第四级(2.2.1.1))

2.1 逼近定理的证明

2.2.1 Weierstrass 逼近定理的第一种证明

下面给出的第一种证明,是由前苏联数学家 Korovkin 在 1953 年给出的[1]. 为此,我们先做一些准备工作. 设 X 为[0,1]上连续函数的全体所构成的集合,记为 X = C([0,1]),而 Y 是多项式的全体构成的集合. (引用的方式为右上角!!!)

定义 1.1^[2] 定义映射

$$B_n: X \to Y$$
,

$$f(t) \mapsto B_n(f,x) = \sum_{k=0}^n f\left(\frac{k}{n}\right) C_n^k x^k \left(1-x\right)^{n-k}, \qquad (1.1)$$

其中 $B_n(f,x)$ 表示 $f \in X$ 在映射 B_n 作用之下的像,它是以 x 为变量的 n 次多项式,称为 Bernstein 多项式. (公式必须用 mathtype! 编号必须右侧对齐! 公式中需要有标点!) 为了后面应用的方便,我们把映射 B_n 的性质归纳为下面三个引理.

引理 1.1 (1)
$$B_n(1,x)=1$$
; (2) $B_n(t,x)=x$; (3) $B_n(t^2,x)=x^2+\frac{x-x^2}{n}$.

证明 直接验算,易知

$$B_{n}(1,x) = \sum_{k=0}^{n} C_{n}^{k} x^{k} (1-x)^{n-k} = \left[x + (1-x)\right]^{n} = 1;$$

$$B_{n}(t,x) = \sum_{k=0}^{n} \frac{k}{n} C_{n}^{k} x^{k} (1-x)^{n-k} = x \sum_{k=1}^{n} C_{n-1}^{k-1} x^{k-1} (1-x)^{n-k} = x \left[x + (1-x)\right]^{n-1} = x;$$

$$B_{n}(t^{2},x) = \sum_{k=0}^{n} \frac{k^{2}}{n^{2}} C_{n}^{k} x^{k} (1-x)^{n-k} + \sum_{k=1}^{n} \frac{k}{n} C_{n-1}^{k-1} x^{k} (1-x)^{n-k}$$

$$= \sum_{k=2}^{n} \frac{k-1}{n} C_{n-1}^{k-1} x^{k} (1-x)^{n-k} + \sum_{k=1}^{n} \frac{1}{n} C_{n-1}^{k-1} x^{k} (1-x)^{n-k}$$

$$+ \frac{n-1}{n} x^{2} + \frac{x}{n}$$

$$= x^{2} + \frac{x-x^{2}}{n}.$$

(2) 表格

文中表格使用如下示例格式编写。每个表格有表题(表序和表名),并应在文中进行说明,如插表的序号按章编排例如"表 1.1"等。表序与表名之间空一格,表名中不允许使用标点符号,表名后不加标点。表题置于表上居中(五号黑体不加粗,数字和字母为五号 Times New Roman 体),段前 1 行。表内文字说明(五号宋体),起行空一格、转行顶格、句末不加标点。表中数据空缺的格内加"一"字线(占 2 个数字),不允许用"""、"同上"之类的写法。

表头与表格不得拆开排写于两页。表格应遵循专业要求。表中若有附注时,用小五号宋体,写在表的下方,句末加标点。仅有一条附注时写成: "注: ···"; 有多条附注时, 附注各项的序号一律用阿拉伯数字, 写成: "注: 1. ···"。

	序号设置	名称	题目格式	对齐格式	换行换页	注意
公式	(第一章	序号		公式右边行末	公式较长时	附录 A 中的第一个公式
	第一个)				最好在等号	为"(A1)
	(1.1)				和四则运	
					算"=、十、	
					-,×,÷"	
					前转行	
表格	表 1.1	表序(空	黑 体 5	表上居中, 句末	表头与表格	正文格式: 五号宋
		一格)表	号,段前	不能加标点	不得拆开排	体,起行空一格、转行
		名	1 行		写于两页	顶格、句末不加标点。
						表格不加左右边线。表
						中数据空缺的格内加
						"一"字线(占2个数
						字)
插图	图 1.1	图号 (空	黑 体 5	图题置于图下,	不得拆开排	分图号用(a)、(b)等置
		一格)图	号, 段后	句末不能加标	写于两页	于分图之下
		名	1 行	点		
坐标				有数字标注的坐	标图,必须注明	坐标单位

表 2.2 公式表格和插图 Picture 的使用说明

(3) 插图

插图为嵌入式居中,每幅插图均有图题(由图号和图名组成)。图号按章编排,如第一章第一图的图号为"图 1.1"等。图题置于图下,用五号黑体。有图注或其他说明

时应置于图题之上,用小五号宋体。图名在图号之后空一格排写。引用图应在图题右上 角加引用文献号。图中若有分图时,分图号用(a)、(b)等置于分图之下。

插图编排:插图与其图题为一个整体,不得拆开排写于两页。插图处的该页空白不够排写该图整体时,可将其后文字部分提前排写,将图移至次页最前面。

(4) 坐标与坐标单位

对坐标轴必须进行说明,有数字标注的坐标图,必须注明坐标单位。

3. 注释

毕业论文(设计、创作)中有个别名词或情况需要解释时,可加注说明,注释采用页末注(将注文放在加注页的页脚)或篇末注(将全部注文集中在文章末尾),不可行中加注(夹在正文中的注)。注释编号选用带圈阿拉伯数字,注文使用小五号宋体字。若在同一页中有两个以上的注时,按各注出现的先后,顺序编列注号,注释只限于写在注释符号出现的同页,不得隔页。(表格注意命名编号,三线表注意上下两线粗,中间线细!表内数据可根据表格大小调整保留位数,确保美观。表头、表页整体都必须在同一页,不可分页!从R、EViews等软件上导出的东西不可直接放入论文中,它既不是表也不是图,需要自己重新做表,需要英译汉的地方就翻译!!!)

 ZX_1 ZX_2 ZX_3 ZX_6 ZX_{8} ZX_4 ZX_5 ZX_7 ZX_1 1.000 ZX_2 -0.937 1.000 ZX_3 -0.667 0.469 1.000 ZX_4 -0.925 0.882 0.512 1.000 ZX_{c} -0.855 0.672 0.891 0.746 1.000 ZX_{ϵ} -0.606 0.384 0.911 0.463 0.921 1.000 ZX_7 -0.908 0.755 0.721 0.816 0.883 0.727 1.000 ZX_{α} -0.985 0.882 0.714 0.917 0.890 0.670 0.942 1.000

表 0.1 相关系数矩阵

相关性矩阵是一个对称矩阵,对角线上的元素是变量的方差,由于数据经过了标准 化处理,因此相关性矩阵对角线上的元素为 1,非对角线上的元素表示变量之间的协方 差,且协方差的绝对值越大,变量对彼此的影响就越大。从**表 0.1 相关系数矩阵**中我们可以看出,本文选取的变量之间具有较强的相关性,但仍需要接受检验,对数据进行 KMO 和巴特利特球形度检验。

在从 8 个变量中提取出主成分之后,就可以对两个主成分进行回归分析建立模型, SPSS 输出结果如下:

农 4.9 拥山侯空									
模型	未标准化系数	标准误差	标准化系数	t	显著性				
常量	-4.593E-16	0.054	-	0.000	1.000				
-	0.974	0.056	0.974	17.465	0.000				
-	-0.116	0.056	-0.116	-2.076	0.060				

表 4.9 输出模型

得到关于两个主成分的回归模型:

$$ZY = 0.974F_1 - 0.116F_2$$
.

将上述求得的两个主成分F,和F,代入,可得出模型为:

$$ZY = -0.16983X_1 + 0.174296X_2 + 0.07087X_3 + 0.171672X_4 + 0.11734X_5 + 0.058624X_6 + 0.143712X_7 + 0.163708X_8.$$

模型结果显示估计的回归方程的判定系数 R^2 为 0.981, \bar{R}^2 = 0.963,均接近 1,说明模型的拟合度较高。

方差分析表可以显示出该模型的回归平方和以及残差平方和等信息,能够通过 F 检验来判断回归模型的回归效果,即检验被解释变量与所有解释变量之间的线性关系是否显著。从错误!未找到引用源。的结果来看, F 统计量对应的 P 值为0.000 < 0.05, 可知得到的回归模型的回归结果具有显著性。

(论文中的公式都必须用 math type!正文中出现的数字字母必须都为 times new roman!!!)

图 2.1 2018 年我国钢铁出口金额及同比增长图

图 2.1 为 2018 年中国钢铁出口金额及同比情况,数据来自中国海关总署. 由图可以看出,美方对进口钢铁额外征收 25%的关税后,3 月份中国钢铁出口总金额并未发生太大变化,3 月之后出口总金额相比于 2017 年在稳步增长. 事实上,中国对美国的钢铁直接出口量很小,2017 年中国直接出口到美国的钢材约占美国钢材总进口 2.2%,所以美方提高进口钢铁关税对我国钢铁行业的冲击不是很大,但股票市场的反应却比较明显,相关板块股票的收益率显著降低. 这可能与我国股票市场的组成结构较为特殊有关,因为散户在我国股市中占主导地位,相比于机构,散户投资者的信息来源更为单一,所以对于国家或行业等相关的新闻报道给予了更大的关注,此消息对于他们的心理影响远大于可能带来的收益损失影响.

(插图注意命名编号,图题位置与表题位置不同!) (全文每一章都需另起一页!!!不可不同章内容出现在同一页)

七、参考文献

参考文献的著录均应符合国家有关标准(按GB/T 7714-2005《文后参考文献著录规则》执行)。"参考文献"用三号黑体字,加粗居中标识;参考文献正文字体参照下表

类型	参考文献	参考文 献正文	附录 A	附录 A 正文
字体格式	三号黑体,	小四号	三号黑	小四号
	加粗	宋体	体,加粗	宋体
行距	段前段后1	1.5 倍行	段前段	1.5 倍行
	行	距	后1行	距
对齐格式	换页,居中	顶格	换页,居	

中

参考文献的序号左顶格,并用数字加方括号表示(其后不加空格),如[1],[2],…。每一参考文献条目的最后均以"."结束。

参考文献著录格式及示例如下。

1. 普通杂志

[序号]作者,论文题目[J].杂志.年,卷(期):引文页码.

- [1] 陈酌. 弱 Lie-2 代数胚[J]. 河南大学学报. 2012, 43(5): 43-108.
- [2] Zhuo Chen, Mathieu Stienon, and Ping Xu. Weak Lie 2-bialgebras. J. Geom. Phys. 2013, 68(2): 59–68.

2. 普通图书

[序号]主要责任者. 题名[M]. 出版地, 出版社, 出版年: 引文页码.

- [2] 唐绪军. 报业经济与报业经营[M]. 北京, 新华出版社, 1999: 117-121.
- 3. 学位论文

[序号]主要责任者. 文献题名[D]. 保存地,保存单位,年份:引文页码.

- [4] 张志祥. 间断动力系统的随机扰动及其在守恒律方程中的应用[D]. 北京,北京大学数学学院,1998.
- 4. 报纸中析出的文献

[序号]主要责任者. 文献题名[N]. 报纸名, 出版日期(版次). 获取和访问路径.

- [2] 丁文祥. 数字革命与竞争国际化[N]. 中国青年报, 2000-11-20(15).
- 5. 电子文献(包括专著或连续出版物中析出的电子文献)

[序号]主要责任者. 题名. 出版地, 出版社, 出版年. 获取和访问路径. 示例:

[6] 江向东. 互联网环境下的信息处理与图书管理系统解决方案[J/0L]. 情报学报, 1999, 2000-01-18. http://www.Chinainfo.Gov.cn/gbxb990203.

6. 专利文献

[序号]专利申请者或所有者. 专利题名. 专利国别,专利号[P],公告日期或公开日期.

[5] 刘加林. 多功能一次性压舌板. 中国,92214985. 2[P],1993-04-14.

7. 科技报告

[序号]主要责任者. 文献题名[R]. 报告地,报告主办单位,年份:引文页码.示例:

[3] World Health Organization. Factors regulating the immune response, report of WHO ScientificGroup[R]. Geneva:WHO: 1970.

8. 论文集、会议录

[序号]主要责任者. 题名:其他题名信息[C]. 出版地:出版者,出版年:引文页码.

[5] 辛希孟. 信息技术与信息服务国际研讨会论文集: A集[C]. 北京中国社会科学出版社, 1994.

9. 专著中析出的文献

[序号]析出主要责任者. 文献题名[文献类型标志]. 其他责任者//专著主要责任者.专著题名:其他题名信息. 版本项. 出版地: 出版者, 出版年: 析出文献的页码. 示例.

[6] 国家标准局信息分类编码研究所. GB/T 2659-1986世界各国和地区名称代码[S]//全国文献工作标准化技术委员会. 文献工作国家标准汇编:3. 北京:中国标准出版社,1988:59-92.

引用参考文献类型及其标识,如下表:

表 1 参数文献类型和标志代码

参考文献类型	普通图书	会议录	汇编	报纸	期刊	学 位 论文	报告	标准	专利	数据库	计 算 机 程 序	电子公告
标志代码	М	С	G	N	J	D	R	S	Р	DB	СР	EB

表 2 电子文献载体和标志代码

载体类型	磁带(magnetic tape)	磁盘(disk)	光盘(CD-ROM)	联机网络(online)
标志代码	MT	DK	CD	OL

参考文献

- [1] 陈酌. 弱 Lie-2 代数胚[J]. 河南大学学报. 2012, 43(5): 43-108.
- [2] Chen Zhuo, Stienon Mathieu, and Xu Ping. Weak Lie 2-bialgebras[J]. J. Geom. Phys. 2013, 68(2): 59–68.
- [3] 张志祥. 间断动力系统的随机扰动及其在守恒律方程中的应用[D]. 北京, 北京大学数学学院, 1998.
- [4] 唐绪军. 报业经济与报业经营[M]. 北京, 新华出版社, 1999: 117-121.
- [5] World Health Organization. Factors regulating the immune response, report of WHO ScientificGroup[R]. Geneva:WHO: 1970.

(注意同一条参考文献断行时上行必须顶到头,换行后空两格!) (参考文献数量最低为十篇!!!参考文献列出后必须引用!)

(咱们的论文无需写致谢!)

八、附录

对于一些不宜放在正文中,但有与论文正文密切相关的材料,可编入毕业论文(设计、创作)的附录中。附录依序用大写正体 A, B, C······编序号, 如: 附录 A。附录中的图、表、式等另行编序号,与正文分开,也一律用阿拉伯数字编码,但在数码前冠以附录序码,如:图 A1;表 B2;式(B3)等。

附表 参考文献(附录)格式

类型	参考文献	参考文献 参考文 献正文		附录 A 正文
字体格式	三号黑体,	小四号	三号黑	小四号
	加粗	宋体	体,加粗	宋体
行距	段前段后1	1.5 倍行	段前段	1.5 倍行
	行	距	后1行	距
对齐格式	换页,居中	顶格	换页,居	
			中	

(附录中为数据的也要三线表,格式须符合要求!)

(注意附录中公式、表、图的命名问题!)

附录 A

表 A1 河南省物流发展评价指标原始数据

城市	X_1	X_2	Х3	X_4	<i>X</i> ₅	Х ₆	X_7	X ₈	<i>X</i> ₉	X ₁₀
郑州	11589.72	35942	42087	23536	5324.44	103.1	500.00	13827	201.72	30.8
开封	2364.14	21795	31305	14473	1030.60	102.6	116.63	9512	15.12	12.5
洛阳	5034.85	27101	38630	14973	2170.79	102.4	345.23	19756	42.34	28.9
平顶山	2372.64	24020	34266	14587	1033.25	103.0	187.13	14762	11.18	18.6
安阳	2229.29	24647	34959	16095	900.09	103.2	498.72	12994	23.16	12.7
鹤壁	988.69	26105	32836	18275	299.25	103.2	181.66	4582	5.97	19.0
新乡	2918.18	24562	33626	16344	996.14	102.7	343.99	13540	29.54	18.7
焦作	2761.11	27116	33956	19374	920.23	103.0	483.60	8107	33.69	14.1
濮阳	1581.49	21592	21592	13894	689.09	102.7	202.86	6979	12.95	24.2
许昌	3395.68	25949	34376	18558	1271.65	103.0	168.59	10019	20.27	13.7
漯河	1578.82	24625	31169	16878	673.32	102.8	216.20	5430	22.33	11.9
三门峡	1443.82	23924	32178	15645	501.82	102.2	165.60	10134	6.50	22.9
南阳	3814.98	22638	33442	15167	2077.16	102.8	504.50	40149	34.54	17.3
商丘	2911.20	20175	32336	12668	1480.74	102.8	417.01	24884	58.51	8.1
信阳	2758.47	20928	30425	14010	1214.21	102.5	86.31	26824	16.68	11.1
周口	3198.49	18321	28231	12196	1679.62	102.8	598.31	24038	24.35	7.2
驻马店	2742.06	19644	30409	13020	1022.37	102.8	206.17	21769	28.60	9.5
济源	686.96	29065	36039	20235	191.36	102.9	77.24	2527	3.01	20.2

附录 B

这组基下的矩阵, α 可表示为 $\alpha = (\varepsilon_1, ..., \varepsilon_n)\alpha$,则有:

$$A(A\alpha) = A(\varepsilon_1, ..., \varepsilon_n) A\alpha = (\varepsilon_1, ..., \varepsilon_n) BA\alpha = BA\alpha$$
 (B1)

$$AA\alpha = AA(\varepsilon_1, ..., \varepsilon_n)\alpha = A(\varepsilon_1, ..., \varepsilon_n)B\alpha = AB\alpha$$
 (B2)

因此对比(B1)和(B2)两式可得AB=BA,又因为矩阵A是任意矩阵,因此矩阵B是数乘矩阵,因此线性变换A是数乘变换.