

Question 1

Given a CFG $G = (V, \Sigma, R, S)$ with set of variables $V = \{S\}$, where S is the start variable; set of terminals $\Sigma = \{0, 1, (,), \cup, *, \emptyset, \varepsilon\}$.; and rules:

$$S \to S \cup S|SS|S^*|(S)|0|1|\emptyset|\varepsilon$$

Using this G, solve the following questions. (20 marks)

- (1) Give a derivation for the string $(0 \cup (10)^*1)^*$. (11 marks)
- (2) Give the corresponding parse tree for the string $(0 \cup (10)^*1)^*$. (9 marks)

Question 2

Consider the following CFG $G=(V,\Sigma,R,S)$, where $V=\{S,T,X\},\ \Sigma=\{a,b\}$, the start variable is S, and the rules R are:

$$S \to aTXb$$

$$T \to XTS|\varepsilon$$

$$X \to a|b$$

Convert this G to an equivalent PDA. (20 marks)

Question 3

Use the pumping lemma to prove that the language $A = \{0^{2n}1^{3n}0^n \mid n \geq 0\}$ is not context free. (20 marks)

Question 4

The Turing machine M below recognizes the language $A = \{0^{2^n} | n \ge 0\}$.

Give the sequence of configurations when the input string is 000000. (20 marks)

Question 5

Given the language $E_{CFG} = \{\langle G \rangle \mid G \text{ is a CFG with } L(G) = \emptyset\}$, prove that it is decidable (briefly describe the proof idea). (20 marks)