

Software Testing and Quality Assurance

Theory and Practice Chapter 2

Theory of Program Testing

Outline of the Chapter

- Basic Concepts in Testing Theory
- Theory of Goodenough and Gerhart
- Theory of Weyuker and Ostrand
- Theory of Gourlay
- Adequacy of Testing
- Limitations of Testing
- Summary

Basic Concepts in Testing Theory

- Testing theory puts emphasis on
 - Detecting defects through program execution
 - Designing test cases from different sources: requirement specification, source code, and input and output domains of programs
 - Selecting a subset of tests cases from the entire input domain
 - Effectiveness of test selection strategies
 - Test oracles used during testing
 - Prioritizing the execution of test cases
 - Adequacy analysis of test cases

Fundamental Concepts

– Let P be a program, and D be its input domain. Let $T \subseteq D$. P(d) is the result of executing P with input d.

Figure 2.1: Executing a program with a subset of the input domain.

- OK(d): Represents the acceptability of P(d). $OK(d) = true \ iff \ P(d)$ is acceptable.
- SUCCESSFUL(T): T is a successful test iff $\forall t \in T$, OK(t).
- Ideal Test: T is an ideal test if OK(t), $\forall t \in T => OK(d)$, $\forall d \in D$.

- Fundamental Concepts (Contd.)
 - Reliable Criterion: A test selection criterion C is reliable iff either every test selected by C is successful, or no test selected is successful.
 - Valid Criterion: A test selection criterion C is valid iff whenever P is incorrect,
 C selects at least one test set T which is not successful for P.
 - Let C denote a set of test predicates. If $d \in D$ satisfies test predicate $c \in C$, then c(d) is said to be true.
 - $COMPLETE(T, C) \equiv (\forall c \in C)(\exists t \in T) c(t) \land (\forall t \in T)(\exists c \in C) c(t)$

Fundamental Theorem

- (∃T ⊆ D) (COMPLETE(T,C) ∧ RELIABLE(C) ∧ VALID(C) ∧ SUCCESSFUL(T)) => (∀d ∈ D) OK(d)

- Program faults occur due to our
 - inadequate understanding of all conditions that a program must deal with.
 - failure to realize that certain combinations of conditions require special care.
- Kinds of program faults
 - Logic fault
 - Requirement fault
 - Design fault
 - Construction fault
 - Performance fault
 - Missing control-flow paths
 - Inappropriate path selection
 - Inappropriate or missing action
- Test predicate: It is a description of conditions and combinations of conditions relevant to correct operation of the program.

- Conditions for Reliability of a set of test predicates C
 - Every branching condition must be represented by a condition in C.
 - Every potential termination condition must be represented in C.
 - Every condition relevant to the correct operation of the program must be represented in C.
- Drawbacks of the Theory
 - Difficulty in assessing the reliability and validity of a criterion.
 - The concepts of reliability and validity are defined w.r.t. to a program. The goodness of a test should be independent of individual programs.
 - Neither reliability nor validity is preserved throughout the debugging process.

Theory of Weyuker and Ostrand

- $d \in D$, the input domain of program P and $T \subseteq D$.
- $OK(P, d) = true \ iff \ P(d)$ is acceptable.
- SUCC(P, T): T is a successful test for P iff for all $\forall t \in T$, OK(P, t).
- Uniformly valid criterion: Criterion C is uniformly valid iff
 - $(\forall P) \left[(\exists d \in D)(\neg OK(P,d)) => (\exists T \subset D) (C(T) \land \neg SUCC(P,T)) \right].$
- Uniformly reliable criterion: Criterion C is uniformly reliable iff $(\forall P) \ (\forall T1, \ \forall T2 \subseteq D) \ [\ \underline{(C(T_1) \land C(T_2))} => \underline{(SUCC(P, T_1) <==> SUCC(P, T_2))} \].$
- Uniformly Ideal Test Selection
 - A uniformly ideal test selection criterion for a given specification is both uniformly valid and uniformly reliable.
- A subdomain S is a subset of D.
 - Criterion C is revealing for a subdomain S if whenever S contains an input which is processed incorrectly, then every test set which satisfies C is unsuccessful.
 - *REVEALING(C, S) iff*

$$(\exists d \in S) \ (\neg OK(d)) \Longrightarrow (\forall T \subset S)(C(T) \Longrightarrow \neg SUCC(T))$$
.

Theory of Gourlay

- The theory establishes a relationship between three sets of entities
 - specifications, programs and tests.
- Notation
 - -P: The set of all programs $(p \in P \subseteq P)$
 - -S: The set of all specifications ($s \in S \subseteq S$)
 - -T: The set of all tests $(t \in T \subseteq T)$
 - "p ok(t) s" means the result of testing **p** with **t** is judged to be acceptable by **s**.
 - "p ok(T) s" means "p ok(t) s," \forall t ∈ T.
 - "p corr s" means p is correct w.r.t. s.
- A **testing system** is a collection $\langle P, S, T, \text{corr}, \text{ok} \rangle$, where corr \subseteq $P \times S$ and ok $\subseteq T \times P \times S$, and $\forall p \forall s \forall \underline{t(p \text{ corr } s)} => \underline{p \text{ ok}(t) \text{ s}}$.
- A **test method** is a function M: $P \times S \rightarrow T$
 - Program dependent: $\Upsilon = M(P)$
 - Specification dependent: T = M(S)
 - Expectation dependent

Theory of Gourlay

- Power of test methods: Let M and N be two test methods.
 - For M to be at least as good as N, we want the following to occur:
 - Whenever N finds an error, so does M.
 - (F_M and F_N are sets of faults discovered by test sets produced by test methods M and N, respectively.)
 - (T_M and T_N are test sets produced by test methods M and N, respectively.)
 - Two cases: (a) $T_N \subseteq T_M$ and (b) T_M and T_N overlap

Figure 2.3: Different ways of comparing the power of test methods.

Adequacy of Testing

- **Reality:** New test cases, in addition to the planned test cases, are designed while performing testing. Let the test set be T.
- If a test set T does not reveal any more faults, we face a dilemma:
 - P is fault-free. OR
 - T is not good enough to reveal (more) faults.
 - → Need for evaluating the adequacy (i.e. goodness) of T.
- Some *ad hoc* stopping criteria
 - Allocated time for testing is over.
 - It is time to release the product.
 - Test cases no more reveal faults.

11

Adequacy of Testing

Figure 2.4: Context of applying test adequacy.

Adequacy of Testing

- Two practical methods for evaluating test adequacy
 - Fault seeding
 - Program mutation
- Fault seeding
 - Implant a certain number (say, X) of known faults in P, and test P with T.
 - If k% of the X faults are revealed, T has revealed k% of the unknown faults.
 - (More in Chapter 13)
- Program mutation
 - A mutation of P is obtained by making a small change to P.
 - Some mutations are faulty, whereas the others are equivalent to P.
 - T is said to be adequate if it causes every faulty mutations to produce unexpected results.
 - (More in Chapter 3)

Limitations of Testing

- Dijkstra's famous observation
 - Testing can reveal the presence of faults, but not their absence.
- Faults are detected by running P with a **small** test set T, where |T| << |D|, where |.| denotes the "size-of" function and "<<" denoted "much smaller."
 - Testing with a small test set raises the concern of testing efficacy.
 - Testing with a small test set is less expensive.
- The result of each test must be verified with a **test oracle**.
 - Verifying a program output is not a trivial task.
 - There are **non-testable** programs. A program is non-testable if
 - There is no test oracle for the program.
 - It is too difficult to determine the correct output.

Summary

- Theory of Goodenough and Gerhart
 - Ideal test, Test selection criteria, Program faults, Test predicates
- Theory of Weyuker and Ostrand
 - Uniformly ideal test selection
 - Revealing subdomain
- Theory of Gourlay
 - Testing system
 - Power of test methods ("at least as good as" relation)
- Adequacy of Testing
 - Need for evaluating adequacy
 - Methods for evaluating adequacy: fault seeding and program mutation
- Limitations of Testing
 - Testing is performed with a test set T, s.t. $|T| \ll |D|$.
 - Dijkstra's observation
 - Test oracle problem

