

Polar3[™] HiperFET[™] Power MOSFET

IXFT50N60P3 IXFQ50N60P3 IXFH50N60P3

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Rectifier

Symbol	Test Conditions	Maximum R	atings
V _{DSS}	T _J = 25°C to 150°C	600	V
V _{DGR}	$T_J = 25^{\circ}C$ to 150°C, $R_{GS} = 1M\Omega$	600	V
$V_{\rm gss}$	Continuous	± 30	V
V _{GSM}	Transient	± 40	V
I _{D25}	T _C = 25°C	50	Α
I _{DM}	$T_{_{\rm C}}$ = 25°C, Pulse Width Limited by $T_{_{\rm JM}}$	125	Α
I _A	T _c = 25°C	25	A
E _{AS}	$T_{c} = 25^{\circ}C$	1	J
dv/dt	$I_{_{\mathrm{S}}} \leq I_{_{\mathrm{DM}}}, V_{_{\mathrm{DD}}} \leq V_{_{\mathrm{DSS}}}, T_{_{\mathrm{J}}} \leq 150^{\circ}\mathrm{C}$	35	V/ns
P_{D}	T _C = 25°C	1040	W
T _J		-55 +150	°C
T_{JM}		150	°C
T _{stg}		-55 +150	°C
T,	Maximum Lead Temperature for Soldering	300	°C
T _{SOLD}	Plastic Body for 10s	260	°C
\mathbf{M}_{d}	Mounting Torque (TO-247 & TO-3P)	1.13 / 10	Nm/lb.in
Weight	TO-268 TO-3P	4.0 5.5	g
	TO-247	6.0	g g

Symbol (T _J = 25°C U	Test Conditions Inless Otherwise Specified)	Charac Min.	teristic Typ.		
BV _{DSS}	$V_{GS} = 0V, I_D = 1mA$	600			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 4mA$	3.0		5.0	V
I _{GSS}	$V_{GS} = \pm 30V, V_{DS} = 0V$			±100	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$			25	μΑ
	$T_J = 125$ °C			2	mA
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \bullet I_{D25}, Note 1$			160	mΩ

 $V_{DSS} = 600V$ $I_{D25} = 50A$ $R_{DS(on)} \le 160m\Omega$

TO-3P (IXFQ)

G
D
S

D (Tab)

G = Gate D = DrainS = Source Tab = Drain

Features

- Fast Intrinsic Rectifier
- Avalanche Rated
- $^{\bullet}$ Low $\rm R_{\rm DS(ON)}$ and $\rm Q_{\rm G}$
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode Power Supplies
- DC-DC Converters
- Laser Drivers
- AC and DC Motor Drives
- Robotics and Servo Controls

Symbol	Test Conditions	Char	acteristic	Values
$(T_J = 25^{\circ}C Ur$	nless Otherwise Specified)	Min.	Тур.	Max.
g _{fs}	$V_{DS} = 20V, I_{D} = 0.5 \bullet I_{D25}, Note 1$	32	55	S
C _{iss}			6300	pF
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		630	pF
C _{rss}			2.5	pF
R _{Gi}	Gate Input Resistance		1.0	Ω
t _{d(on)}			31	ns
t, (Resistive Switching Times		20	ns
t _{d(off)}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		62	ns
t _r	$R_{G} = 1\Omega$ (External)		17	ns
$Q_{g(on)}$			94	nC
Q _{gs}	$V_{\rm GS} = 10 \text{V}, V_{\rm DS} = 0.5 \bullet V_{\rm DSS}, I_{\rm D} = 0.5 \bullet I_{\rm D25}$		27	nC
Q_{gd}			23	nC
R _{thJC}				0.12 °C/W
R _{thCS}	(TO-247 & TO-3P)		0.25	°C/W

Source-Drain Diode

Symbol	Test Conditions	Characteristic Values			
$(1_{J} = 25^{\circ}C U)$	nless Otherwise Specified)	Min.	Тур.	Max.	
l _s	$V_{GS} = 0V$			50	A
I _{SM}	Repetitive, Pulse Width Limited by T_{JM}			200	A
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.4	V
t _{rr}	L = 25A -di/dt = 100A/us			250	ns
I _{RM}	$I_F = 25A$, -di/dt = 100A/ μ s $V_R = 100V$, $V_{GS} = 0V$		11		Α
\mathbf{Q}_{RM}	V _R = 100V, V _{GS} = 0V		1.1		μC

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

Terminals: 1 - Gate 2 - 3 - Source

Dim.	Millimeter		Inches	
	Min.	Max.	Min.	Max.
Α	4.7	5.3	.185	.209
A_1	2.2	2.54	.087	.102
A_2	2.2	2.6	.059	.098
b	1.0	1.4	.040	.055
b,	1.65	2.13	.065	.084
b,	2.87	3.12	.113	.123
С	.4	.8	.016	.031
D	20.80	21.46	.819	.845
Е	15.75	16.26	.610	.640
е	5.20	5.72	0.205	0.225
L	19.81	20.32	.780	.800
L1		4.50		.177
ØP	3.55	3.65	.140	.144
Q	5.89	6.40	0.232	0.252
R	4.32	5.49	.170	.216
S	6.15	BSC	242	BSC

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

4.0

3.5

4.5

80

70 60 lo - Amperes 40 30 20 10 0

5.0 V_{GS} - Volts

Fig. 7. Input Admittance

Fig. 8. Transconductance

Fig. 9. Forward Voltage Drop of Intrinsic Diode

5.5

6.0

6.5

7.0

Fig. 10. Gate Charge

Fig. 11. Capacitance

Fig. 12. Forward-Bias Safe Operating Area

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Maximum Transient Thermal Impedance

