Cálculo da concentração ou massa ou número nanopartículas ou mols por CÉLULA mediante RELAXOMETRIA – IMAGEM POR RESSONANCIA MAGNÉTICA

Para o cálculo do teor de ferro por IRM será necessário:

- 1) Cálculo do valor da relaxatividade transversal r2 ou (r2*), que será obtido do ajuste linear da taxa de relaxação transversal 1/T2 (ou 1/T2*) para diferentes concentrações do SPION suspensos no meio de cultura.
- 2) Cálculo dos T2 (T2*) das células não marcadas com SPION (amostra controle) e das células marcadas com SPION

PARÂMETROS ENVOLVIDOS NO CÁLCULO

Laboratório

Altura da amostra no well H (mm) Número de células Nc Volume da amostra Va (ml)

Ressonância

Espessura da fatia	$\boldsymbol{arepsilon}_{\!$
T2 (ou T2*) com Fe	$(T_2)_{[Fe]\neq 0}^{c\'elulas\ marcadas}$ (ms)
T2 (ou T2*) sem Fe	$(T_2)_{[Fe]=0}^{c\'elulas\ n\~ao\ marcadas}$ (ms)
Relaxatividade	r2 (ou r2*) (ms ⁻¹ .ml/mg)

Cálculo da concentração do ferro nas células marcadas (g/ml)

$$[Fe]_{internalizado} = \frac{\frac{1}{(T_2)_{[Fe] \neq 0}^{c\'elulas\ marcadas}} - \frac{1}{(T_2)_{[Fe] = 0}^{c\'elulas\ n\~ao\ marcadas}}}{r_2}$$
(5)

Cálculo do número de células na espessura da fatia selecionada ($Nc_-\varepsilon_f$) na IRM

$$Nc_{-}\varepsilon_{f} = \frac{\varepsilon_{f} \times Nc}{H} \tag{6}$$

Volume de amostra contido na fatia ε_f ($Va_-\varepsilon_f$)

$$Va_{-}\varepsilon_{f} = \frac{Va \times \varepsilon_{f}}{H} \tag{7}$$

Cálculo do teor de Fe no volume correspondente à fatia $\varepsilon_f([Teor_Fe]_{Va_\varepsilon_f})$, a partir da eq. (5) e (7)

$$[Teor_Fe]_{Va_\mathcal{E}f} = [Fe]_{internalizado} \times Va_\mathcal{E}_f$$
 (8)

Cálculo do teor de ferro por célula ([$Teor_Fe$] $_{c\acute{e}lula}^{Va_\varepsilon f}$). Será obtido a partir das eq. (6) e(8).

$$[Teor_Fe]_{c\'elula}^{Va_\varepsilon f} = \frac{[Teor_Fe]_{Va_\varepsilon f}}{Nc_\varepsilon_f}$$
(9)

A partir do teor de Fe obtido na equação (9) será possível obter o Número de Nanopartículas ou massa ou mols a partir das eq.(1) a (4)

