Out[1]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

```
In [2]: 1 df.shape
```

Out[2]: (150, 6)

```
In [3]: 1 df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype		
0	Id	150 non-null	int64		
1	SepalLengthCm	150 non-null	float64		
2	SepalWidthCm	150 non-null	float64		
3	PetalLengthCm	150 non-null	float64		
4	PetalWidthCm	150 non-null	float64		
5	Species	150 non-null	object		
<pre>dtypes: float64(4), int64(1), object(1)</pre>					
memory usage: 7.2+ KB					

In [4]: 1 df.describe()

Out[4]:

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000
75%	112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000

In [5]: 1 df.isnull().sum()

Out[5]: Id 0
SepalLengthCm 0
SepalWidthCm 0
PetalLengthCm 0
PetalWidthCm 0
Species 0

dtype: int64

Out[6]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
50	51	7.0	3.2	4.7	1.4	Iris-versicolor
100	101	6.3	3.3	6.0	2.5	Iris-virginica

In [7]: 1 df.value_counts("Species")

Out[7]: Species

Iris-setosa 50 Iris-versicolor 50 Iris-virginica 50

dtype: int64

Comparing Sepal Length and Sepal Width

```
In [9]:
              # importing packages
           2
              import seaborn as sns
           3
              import matplotlib.pyplot as plt
           4
           5
           6
              sns.scatterplot(x='SepalLengthCm', y='SepalWidthCm',
           7
                                 hue='Species', data=df, )
           8
           9
              # Placing Legend outside the Figure
              plt.legend(bbox_to_anchor=(1, 1), loc=2)
          10
          11
              plt.show()
             4.5
                                                                                      Iris-setosa
                                                                                      Iris-versicolor
                                                                                      Iris-virginica
             4.0
          SepalWidthCm
             3.5
             3.0
             2.5
             2.0
                      4.5
                              5.0
                                     5.5
                                             6.0
                                                     6.5
                                                             7.0
                                                                     7.5
                                                                            8.0
```

Comparing Petal Length and Petal Width

SepalLengthCm

```
In [10]:
              # importing packages
           2
              import seaborn as sns
           3
              import matplotlib.pyplot as plt
           4
           5
           6
              sns.scatterplot(x='PetalLengthCm', y='PetalWidthCm',
           7
                              hue='Species', data=df, )
           8
           9
              # Placing Legend outside the Figure
              plt.legend(bbox_to_anchor=(1, 1), loc=2)
          10
          11
              plt.show()
```


Multivariate Analysis.

Out[11]: <seaborn.axisgrid.PairGrid at 0x1cf044d7110>

Histograms

```
In [12]:
```

```
# importing packages
   import seaborn as sns
 2
 3
   import matplotlib.pyplot as plt
4
 5
 6
   fig, axes = plt.subplots(2, 2, figsize=(10,10))
   axes[0,0].set title("Sepal Length")
8
   axes[0,0].hist(df['SepalLengthCm'], bins=7)
9
10
11
   axes[0,1].set_title("Sepal Width")
   axes[0,1].hist(df['SepalWidthCm'], bins=5);
12
13
   axes[1,0].set_title("Petal Length")
14
15
   axes[1,0].hist(df['PetalLengthCm'], bins=6);
16
17
   axes[1,1].set_title("Petal Width")
   axes[1,1].hist(df['PetalWidthCm'], bins=6);
18
```


Box Plots

```
In [13]:
             # importing packages
              import seaborn as sns
           2
           3
              import matplotlib.pyplot as plt
           4
           5
              def graph(y):
           6
                  sns.boxplot(x="Species", y=y, data=df)
           7
              plt.figure(figsize=(10,10))
           8
           9
             # Adding the subplot at the specified
          10
          11 # grid position
              plt.subplot(221)
          12
              graph('SepalLengthCm')
          13
          14
          15
              plt.subplot(222)
          16
             graph('SepalWidthCm')
          17
          18 plt.subplot(223)
          19
              graph('PetalLengthCm')
          20
          21 plt.subplot(224)
          22 graph('PetalWidthCm')
          23
          24 plt.show()
```


In []: 1