ACCOMPLISH - Numerical Differentiation

Dr. Zheng Chen, Mathematics Department, University of Massachusetts Dartmouth

Goal

In this module, students will finish building a MATLAB App Designer application that approximates derivatives of arbitrary functions. Starting from the provided template (Numerical_Differentiation_App.mlapp), they will implement all finite-difference algorithms in the numerical_differentiation.m file.

Overview of the GUI

1. User inputs

- Function: Enter the formula, for example $f(x) = \sin(x)$
- Evaluation Point: Specify the value of x_0
- Method: Select a finite-difference formula from the drop-down menu

2. App framework

- Starter File: Numerical_Differentiation_App.mlapp
- Algorithm Library: All differentiation routines are implemented as separate functions in numerical_differentiation.m
- Instructor Version: A complete app (with working code) is provided to the advisor only

3. Student assignment

- Review the mathematical background for each finite-difference formula
- Fill in the missing code blocks in numerical_differentiation.m
- Detailed guidance and derivations will be provided in the sections that follow

MATLAB GUI Resources

- App Designer YouTube tutorial (recommended) https://youtu.be/nb0jHVXKY2w
- App Designer documentation

https://www.mathworks.com/help/matlab/app-designer.html

- Create and Run a Simple App Using App Designer tutorial
 https://www.mathworks.com/help/matlab/creating_guis/create-a-simple-app-or-gui-using-app-designer.html
- MATLAB App Designer product page
 https://www.mathworks.com/products/matlab/app-designer.html

Included Differentiation Methods

Students will implement these finite-difference formulas:

- Two-point formulas
 - Forward-difference
 - Backward-difference
- Three-point formulas
- Five-point formulas
- Second-derivative midpoint formula (optional)

Next, we will provide mathematical derivations and coding hints for each method so you can seamlessly integrate them into the GUI.

Table of Contents

To approximate $f'(x_0)$:

- Two-point formulas
- Three-point formulas
- Five-point formulas

To approximate $f''(x_0)$ (optional):

· Second-derivative midpoint formula

Two-point_formulas

Derivation

• Forward-difference: From the Taylor expansion of $f(x_0 + h)$, we have

$$f(x_0+h)=f(x_0)+h\,f'(x_0)+O(h^2)$$
.

Rearranging gives

$$f'(x_0) \; pprox \; rac{f(x_0+h)-f(x_0)}{h} + O(h) \, ,$$

a first-order accurate formula.

• Backward-difference: Similarly, expanding $f(x_0 - h)$ yields

$$f(x_0 - h) = f(x_0) - h f'(x_0) + O(h^2),$$

so

$$f'(x_0) \; pprox \; rac{f(x_0) - f(x_0 - h)}{h} + O(h) \, ,$$

also first-order accurate.

Coding hints

- Inside your Calculate_pushbutton_Callback, branch on handles.Method to distinguish forward vs. backward.
- For forward, you will need f(x0 + h) and f(x0).
- For backward, you will need f(x0) and f(x0 h).
- Compute the difference of those two values and then divide by h.

Three-point_formulas

Derivation

• Central-difference: Using Taylor series for $f(x_0 \pm h)$ and subtracting gives

$$f'(x_0) \ pprox \ rac{f(x_0+h)-f(x_0-h)}{2h} + O(h^2) \, ,$$

a second-order accurate midpoint formula.

• Endpoint (forward/backward): At boundaries, the three-point endpoint formula is

$$f'(x_0) \, pprox \, rac{-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h)}{2h} + O(h^2)$$

(and its backward analogue).

Coding hints

- Branch on the three sub-methods (central, forward-endpoint, backward-endpoint).
- Central uses f(x0 + h) and f(x0 h).
- Endpoint uses three sample points: at $\times 0$, at one step away ($\pm h$), and at two steps away ($\pm 2 \times h$).
- Combine those three function values with the weights from the derivation, then divide by 2*h.

Five-point_formulas

Derivation

The fourth-order accurate central five-point formula comes from combining Taylor expansions at $x_0 \pm h$ and $x_0 \pm h$ to cancel lower-order error terms:

$$f'(x_0) \, pprox \, rac{f(x_0-2h) \, - \, 8 \, f(x_0-h) \, + \, 8 \, f(x_0+h) \, - \, f(x_0+2h)}{12 \, h} \, + \, O(h^4).$$

Coding hints

- This central formula requires four off-grid evaluations: $x0 \pm h$ and $x0 \pm 2*h$, plus x0 itself (if you verify consistency).
- Look back at the derivation to pick the four coefficients $\{1, -8, 8, -1\}$.
- Form the weighted sum of those four f(...) calls and divide by 12*h.

Second-derivative_midpoint_formula

Derivation

• From the Taylor expansions at $x_0 \pm h$, the second-derivative midpoint formula is

$$f''(x_0) \ pprox \ rac{f(x_0+h) \ - \ 2 \, f(x_0) \ + \ f(x_0-h)}{h^2} \ + \ O(h^2).$$

Coding hints

- Evaluate the function at $x_0 + h$, x_0 , and $x_0 h$ to obtain the three sample values.
- Multiply these values by the weights $\{1, -2, 1\}$ to form the numerator of the approximation.
- Divide the weighted sum by h^2 to compute the second-derivative estimate.
- Store the result in its own variable (for example, secondDerivative) to keep it separate from any firstderivative outputs.