第七章

数字带通传输系统

主

主要内容

- 二进制数字调制/解调原理
- 二进制数字调制系统的抗噪性能
- 多进制数字调制原理及抗噪性能
- ■要解决的问题
 - ■调制解调方法
 - ■抗噪性能分析

4

7.1 引言

数字传输系统

■ 数字调制系统

■ 数字调制

数字基带信号调制到正弦载波上,使载波的某个参量(振幅、频率、相位)载有基带信号的信息

7.2 二进制数字调制原理

- 二进制振幅键控2ASK (OOK - 通断键控)
- 二进制移频键控2FSK
- 二进制移相键控2PSK
- 二进制差分移相键控2DPSK

进制振幅键控 (2ASK)

■假设

ullet $\{a_n\}$ 表示一个二元码的随机序列

$$a_n = \begin{cases} 1 & p \\ 0 & 1-p \end{cases}$$

- g(t)为基带信号波形,是一个持续时间为 T_s 的矩形脉冲,幅度为A
- ■由此构成一个单极性不归零的随机脉冲序 列,作为数字基带信号,记作:

$$s(t) = \sum_{n=-\infty}^{\infty} a_n g(t - nT_s)$$

- ■2ASK是利用载波振幅的有无表示1和0
- ■数字基带信号 $s(t) = \sum a_n g(t nT_s)$
- 载波 cos oct
- ■2ASK信号:

$$e_o(t) = s(t)\cos\omega_c t$$

$$= \begin{cases} A\cos\omega_{c}t & p ("1") \\ 0 & 1-p("0") \end{cases} \quad 0 \le t \le T_{s}$$

波形(设 T_s= 2T_c)

2ASK信号产生

■ 模拟调制法

■数字键控法

■ 2ASK解调

■ 非相干解调(包络检波)

■ 相干解调 (同步检测)

■ 2ASK信号功率谱

 $cos\omega_c$

 $e_o(t) = s(t)\cos\omega_c t$

$$P_{E}(f) = \frac{1}{4} [P_{S}(f + f_{c}) + P_{S}(f - f_{c})]$$

■ 当基带信号s(t)为<mark>单极性不归零</mark>码序列, 0、1等概时, s(t)的功率谱

$$P_s(f) = \frac{1}{4} T_S S_a^2(\pi f T_S) + \frac{1}{4} \delta(f)$$

■ *e_o(t)*的功率语

$$P_{E}(f) = \frac{T_{S}}{16} \left\{ Sa^{2} \left[\pi (f + f_{c})T_{S} \right] + Sa^{2} \left[\pi (f - f_{c})T_{S} \right] \right\} + \frac{1}{16} \left[\delta (f + f_{c}) + \delta (f - f_{c}) \right]$$

12A5K = Ra B2A5K 取决于基带依号识形 , Ro=1/5 5荟草依号相同

基常识别: 算极不归。 $B_{2ASK} = 2B_b = 2x\frac{1}{t} = 2x\frac{1}{t}$, $\eta_{2ASK} = \frac{1}{2}$ 举证单 , $B_{2ASK} = 2B_b = 2\cdot\frac{1}{t} = 2\cdot\frac{2}{7s}$, $\eta_{2ASK} = \frac{1}{4}$ 理想# , $B_{2ASK} = 2B_b = 2\cdot\frac{1}{27s} = \frac{1}{7s}$, $\eta_{2ASK} = 1$ (d=1) 并分弦 . $B_{2ASK} = 2B_b = 2\cdot\frac{1}{7s} = \frac{2}{7s}$, $\eta_{2ASK} = \frac{1}{2}$

■ 结论

- ■2ASK功率谱做线性搬移,形成双边带谱
- 2ASK信号带宽为基带信号带宽的2倍 s(t)取谱零点带宽为 B_b = $1/\tau$, B_{2ASK} = $2B_b$
- 有较大载频分量, 调制效率低
- 2ASK码元速率 = 基带信号码元速率
- ■频带利用率取决于基带信号波形

二进制移频键控 (2FSK)

- 利用载波的不同频率表示0和1
- 2FSK信号产生
 - 基带信号s(t)为单极性不归零码序列
 - 模拟调频法

■ 键控法

$$e_{o}(t) = \begin{cases} A\cos(\omega_{1}t + \varphi_{1}) & \text{ 发送 "1"} \\ A\cos(\omega_{2}t + \varphi_{2}) & \text{ 发送 "0"} \end{cases}$$

■2FSK信号的相位在相邻码元之间不一定连续

■ 2FSK信号可以看作是两个2ASK信号的叠加

■功率谱

- 2FSK信号可以看作是两个2ASK信号的叠加
- 设载波初始相位均为0, 载频分别为f,和f。

$$\begin{split} e_o(t) &= \sum_n a_n g(t - nT_S) \cos \omega_1 t + \sum_n \overline{a}_n g(t - nT_S) \cos \omega_2 t \\ a_n &= \begin{cases} 1 & p \\ 0 & 1 - p \end{cases} \\ \overline{a}_n &= \begin{cases} 0 & p \\ 1 & 1 - p \end{cases} \quad \overline{a}_n \stackrel{\text{def}}{=} a_n \text{的反码} \end{split}$$

■ 2FSK信号功率谱

$$P_{E}(f) = \frac{1}{4} \left[P_{S1}(f+f_1) + P_{S1}(f-f_1) \right] + \frac{1}{4} \left[P_{S2}(f+f_2) + P_{S2}(f-f_2) \right]$$

■基带信号为0、1等概单极性不归零码时

$$\begin{split} P_{E}(f) &= \frac{T_{S}}{16} \Big\{ Sa^{2} \Big[\pi (f + f_{1})T_{S} \Big] + Sa^{2} \Big[\pi (f - f_{1})T_{S} \Big] \\ &+ Sa^{2} \Big[\pi (f + f_{2})T_{S} \Big] + Sa^{2} \Big[\pi (f - f_{2})T_{S} \Big] \Big\} \\ &+ \frac{1}{16} \Big[\delta (f + f_{1}) + \delta (f - f_{1}) + \delta (f + f_{2}) + \delta (f - f_{2}) \Big] \end{split}$$

结论

- 2FSK信号的功率谱由连续谱和离散谱组成,
 连续谱由两个中心位于f₁和f₂处的双边谱叠加,
 离散谱位于两个载频f₁和f₂处
- 连续谱的形状随着两个载频之差的大小而变: $|f_2-f_1| \ge 2B_b$, 连续谱无交叠 $|f_2-f_1| < 2B_b$, 连续谱有交叠
- 2FSK信号带宽: $B_{2FSK} = |f_2 f_1| + 2B_b$

■ 2FSK解调

- 相干解调法
- 非相干解调法
 - 包络检波法
 - ■过零检测法
 - ■*差分检测法
 - ■*模拟鉴频法

判决时上下出的识形这替:

 $\cos(\omega_c t + \varphi_n)$

二进制移相键控 (2PSK)

■ 利用载波的不同相位表示0和1,2PSK也称 **绝对移相键控**

■调制原理

• φ_n 表示第n个码元的绝对相位

$$\varphi_n = \begin{cases} 0 & \text{ 发送 "1"} \\ \pi & \text{ 发送 "0"} \end{cases}$$

* 每个码元周期必须包含整数个载波周期,即:每个码元的起始相位与其结束相位相同

■ 设基带信号s(t)为双极性不归零码序列

• **载波\cos \omega_c t**, 设初始相位为0

■ 2PSK信号
$$e_o(t) = s(t)\cos\omega_c t$$

■ 2PSK信号产生

■ 模拟调制法

■ 键控法

■功率谱

$$P_{E}(f) = \frac{1}{4} [P_{s}(f + f_{c}) + P_{s}(f - f_{c})]$$

- s(t)为双极性不归零矩形脉冲序列, 0、1等 概时,s(t)的功率谱 $P_s(f) = T_s S_a^2 (\pi f T_s)$
- 2PSK的功率谱

$$P_{E}(f) = \frac{T_{S}}{4} \left\{ Sa^{2} \left[\pi (f + f_{c})T_{S} \right] + Sa^{2} \left[\pi (f - f_{c})T_{S} \right] \right\}$$

结论

- 2PSK可看作是双极性不归零的基带信号进 行双边带抑制载波调制
- 带宽为基带信号的2倍,即: $B_{2PSK}=2B_b$

■ 2PSK解调

■ 相干解调法

判决门限为0

■ 存在相位模糊问题

二进制差分移相键控 (2DPSK)

- 利用前后码元相位的相对变化表示0和1, 与载波的初始相位无关,也称相对移相 键控
- 调制原理

■用前后码元的相位差表示0和1,以前一码元的末相位作为参考相位

- $\frac{\{a_n\}}{\text{码变换}}$ $\frac{\{b_n\}}{\text{2PSK}}$ $\frac{e_o(t)}{\text{2PSK}}$
- ■功率谱
 - 与2PSK完全相同, **B**_{2DPSK} = **2B**_b

- 2DPSK解调
 - ■相干解调法
 - 2PSK相干解调十码反变换

■码反变换: 微分器→全波整流→脉冲展宽

判决门限为0

- ■相位比较法
 - 差分相干解调

■ 判决: $+ \rightarrow 0$, $- \rightarrow 1$ 判决门限为0

7.3 二进制数字调制系统抗噪性能

■ 指标: 误码率

- 误码率与信噪比的关系
 - ■系统信噪比越高, 误码率越低
 - ■对同一系统,相干解调比包络检波误码率略低,抗噪性稍好 发"I"码的信噪比

$$\frac{S_i}{N_i} = \frac{a^2}{2\sigma_n^2} = r$$

■ 从**带宽和频带利用率**上来看, 2ASK、2PSK、2DPSK的有效性相同, 2FSK最低

7.5 多进制数字调制系统

- 目的:提高频带利用率
 - 若以 $\eta_b = R_b/B$ 表示频带利用率, $R_b = R_B \log_2 M$ 当 R_B 不变,带宽B相同时,通过增加进制数 M,可以增大 R_b ,从而在相同带宽内传输多个比特的信息,因而 η_b 高
 - = 当 R_b 相同时,通过增加进制数M,可以降低 R_B ,从而减小信号带宽,节约频带资源
 - 代价:相同信噪比时,多进制调制系统抗噪性低于二进制系统;要保持与二进制系统相同的抗噪性能,需要更大的发射信号功率

-. 多电平调制MASK

■ 原理

• 设M电平信号的码元宽度为 T_S ,基带波形为g(t),则MASK信号可以表示为

基带四电平双极性不归零信号

(调制效率高,不能用包络检波解调,只能用相干解调)

频域特性

■ MASK可以看成是时间上 不重叠的M个不同幅度的 2ASK信号叠加

■基带信号s(t)为M进制不归零矩形波

$$e_{MASK}(t) = s(t)\cos\omega_c t$$

$$P_{MASK}(f) = \frac{1}{4} [P_s(f + f_c) + P_s(f - f_c)]$$

$$B_{MASK} = B_{2ASK} = 2B_b$$
 码元速率相同时

MASK抗噪性能

■ 误码率 P_e 与进制数 M 和信噪比 r 的关系

结论

- ■优点: 若MASK信号的带宽和2ASK信 号的带宽相同,则单位频带的信息传 输速率 (bps) 高, 即频带利用率高
- ■缺点:判决门限多,抗噪性能差
- MASK系统牺牲可靠性换取有效性

多相调制MPSK/MDPSK

 \blacksquare 设M 进制信号码元宽度为 T_s , M 种码元用M种相位值 ρ_k 表示,则在一个码元持续期间 T_s 内,多相调制信号可表示为:

$$e_o(t) = \cos(\omega_c t + \varphi_k) \qquad k = 1 \cdots M$$
$$= \cos \varphi_k \cos \omega_c t - \sin \varphi_k \sin \omega_c t$$
$$= I_k \cos \omega_c t - Q_k \sin \omega_c t$$

■ MPSK可看作是2个MASK信号之和, 其带宽 应与MASK相同,是多电平基带信号的2倍

1. 四相绝对移相键控4PSK (QPSK)

■ 用载波的4种不同相位表示四进制码元,每 一种相位可表示 2bit 信息

■ OPSK两种编码方式及矢量图

_						
双比特码元		相位差 φ_k				
a	b	A方式		B方式		
0	0	0°	0	225°	$-3\pi/4$	
1	0	90°	$\pi/2$	315°	$-\pi/4$	
1	1	180°	π	45°	$\pi/4$	
0	1	270°	$-\pi/2$	135°	$3\pi/4$	

■ 以载波相位为参考相位

QPSK信号波形 (A方式)

■ QPSK信号产生(B方式)

■ 调相法(OPSK正交调制)

- QPSK可看作两个正交的2PSK调制合成
- QPSK带宽为四电平基带信号带宽的2倍

■电平变换

- ■二进制码元"1"→双极性不归零脉冲"+1"
- ■二进制码元"0"→双极性不归零脉冲"-1"

$$e_o(t) = I_k \cos \omega_c t - Q_k \sin \omega_c t$$
$$= \sqrt{I_k^2 + Q_k^2} \cos(\omega_c t + \varphi_k)$$

■此正交载波实现B方式调相

■正交调制合成矢量

a	b	I_k	Q_k	$\varphi_{\scriptscriptstyle k}$
0	0	-1	-1	$-3\pi/4$
		+1		
1	1		+1	$\pi/4$
0	1	-1	+1	$3\pi/4$

Z交调制x券半层理:

$$e_0(t) = I_k \cos w \cdot t - \partial_k \sin w \cdot t$$

= $\int I_k^+ + \partial_k^+ \cos (w \cdot t + q_k)$

② 邮变换

利用公司
$$S \text{ TR } \text{ UT} = \text{ UT} \left(\text{ Word} - \frac{2}{2} \right)$$

$$-\text{ Sin } \text{wit} = \text{ UD} \left(\text{wit} + \frac{2}{2} \right)$$

60 (t) = Ik ws wt - Oksinwit

$$3ab=11 \quad p_{3} \quad J_{k}=+1, \quad Q_{k}=+1$$

$$e_{0}(t)= coswt-sinwt$$

$$= coswt+cos(wt+\frac{2}{2})$$

$$= \sqrt{2}cos(wt+\frac{2}{4})$$

$$= \frac{7}{4}$$

图 建运令裁

ab	Ikak	Px
	-1 -1	
10	+1 -1	-7
11	+1 +/	7
01	-1+1	3-Z
		1

当正裁版为Losust和一simust时,实现Bisi调相。

运调制波形 Cot) = Ik cos wt - Oksinwit

⑥ A方扩调相

BZ对我国色时针地以下。

② A分析 QPSK 调制原理图

Ik (rs(wt+32) + Qx (rs(wt-32) = Ix vs (vd+===) - Qx sn (wd+====)

2. 四相相对移相键控 4DPSK (QDPSK)

■ 解决OPSK的相位模糊

- 利用前后码元相位差表示码元的值
- QDPSK两种编码方式

双比特码元		相位差 △ φ ,			
a	b	A方式		B方式	
0	0	0°	0	225°	$-3\pi/4$
1	0	90°	$\pi/2$	315°	-π/4
1	1	180°	π	45°	$\pi/4$
0	1	270°	-π/2	135°	$3\pi/4$

■ 以前一码元相位为参考相位

QDPSK信号波形(A方式)

3. 多相调制抗噪性能

MDPSK

■例:设信息码为01011000110100,设信息速率等于载波频率,画A方式的QPSK和QDPSK信号波形,参考相位为0°

双比特	持码元	φ_k 或 $\triangle \varphi_k$		
a	b	A方式		
0	1	Oo		
0	0	90°		
1	0	180°		
1	1	270°		

本章小结

- 数字调制系统的模型,及主要解决的问题
- 二进制调制系统的调制和解调原理、已调信号 频域特性
- 二进制调制系统抗噪声性能结论
- 多进制调制的基本概念
- MASK调制基本概念
- QPSK正交调制原理, QPSK/QDPSK波形
- 多进制调制的抗噪性能结论

作业

- 结合PPT,阅读教材第七章内容
- ■第七章习题
 - **1**, 2, 3, 13