Automates et Langages

Automates

101

Automate à états finis (exemple)

Automate à états finis (exemple)

- un automate est un graphe orienté
- il a des états (\odot) et des transitions (\rightarrow)
- certains états peuvent être initiaux ou finaux

Automate à états finis (exemple)

- les étiquettes des transitions sont les symboles d'un alphabet, Σ
- les *mots* sont des séquences, dans Σ^* , e.g. $a\ b\ a\ b\ b$

Automate à états finis (glossaire)

autre noms:

- finite state automata (FSA)
- DFA / NFA (dét. et undét.)
- machines à états
- finite state machine (FSM)
- ≈ finite state transducer

• ...

Automate à états finis (syntaxe)

Le même automate dans l'outil VCSN

```
aut1 = vcsn.automaton('''
context = lan(abc), b
s \rightarrow 0
0 -> 1 a
1 -> 2 b
2 -> 1 a
2 -> 3 b
2 -> $
3 -> 4 b
4 -> 3 a
4 -> 2 a
```

https://www.lrde.epita.fr/wiki/Vcsn

Automates

sémantique

Entrée:

Entrée:

Entrée:

Entrée:

abab

on peut imaginer une machine lisant ses entrées sur *un ruban* et possédant *un registre* interne

Entrée:

Entrée:

abab

on stoppe sur un état final ! $a b a b \in \mathcal{L}(A)$

Entrée:

a b a

on stoppe sur un état non final ! $a b a \notin \mathcal{L}(A)$

- run acceptant: $a\ b\ a\ b$
- run non-acceptant: $a\ b\ a$
- run bloquant: a b a b b a

- \rightarrow OK
- \rightarrow KO
- \rightarrow KO

Entrée:

Entrée:

Entrée:

- run acceptant: $a\ b\ a\ b$
- run non-acceptant: a b a
- run bloquant: a b a b b a

- \rightarrow OK
- \rightarrow KO
- \rightarrow KO

Entrée:

Entrée:

Entrée:

blocage: l'automate n'est pas complet

- run acceptant: a b a b
- run non-acceptant: a b a
- run bloquant: ababba
- run ambigu: $a\ b\ a\ b\ b\ a$

- \rightarrow OK
- \rightarrow KO
- \rightarrow KO
- \rightarrow OK / KO (!?)

Entrée:

Entrée:

deux choix possible depuis 4: l'automate est non déterministe

si on choisit 3, on stoppe, mais sur un état non final

Entrée:

- run acceptant: $a b a b \rightarrow OK$
- run bloquant: $a b a b b a \rightarrow KO$
- run non-acceptant: $a b a b b b a \rightarrow OK / KO (!?)$

• run concurrent (multi-têtes) et non-dét.

Entrée:

ababbba

on peut aussi decider d'avoir plusieures "têtes de recherches" ($\leq |Q|$)

FSA: run de l'automate

Entrée:

ababbba

Runs:

01212342

0 1 2 1 2 3 4 3

 $\{0\}\ \{1\}\ \{2\}\ \dots \{4\}\ \{2,3\}$

FSA: dét. ⊂ unamb ⊂ undét.

Entrée:

ababbba

Runs:

$$0\ 1\ 2\ 1\ 2\ 3\ 4\ 2$$

l'automate n'est pas ambigu ≡ au plus un run est acceptant

FSA: language

FSA = machine à accepter des mots

FSA = machine à *générer* des mots


```
In [44]: aut1.shortest(6)
Out[44]: ab ⊕ abab ⊕ abbb ⊕ abbba ⊕ ababab ⊕ ababbb
```

Automates

l'introduction qu'il vous manquait

Un domaine ...

- riche en applications
- riche en histoire
- toujours actif

• fait partie naturelle d'un cours de compilation

un domaine riche en littérature

"le rôle des automates en informatique est \propto à celui de l'étude des fonctions en mathématiques." $_{[moi, 2019]}$

Networking

TCP Connection State Diagram Figure 6.

RFC: 793
TRANSMISSION CONTROL PROTOCOL
DARPA INTERNET PROGRAM
PROTOCOL SPECIFICATION
September 1981

Learning

Learning Regular Languages (DFA) using Membership and Equivalence Queries

Angluin's L* Algorithm

Learned state machine for Windows8 TCP Client*

^[*] Fiterau-Brostean, P., Janssen, R., Vaandrager, F. Combining model learning and model checking to analyze TCP implementations. In CAV'16, LNCS 9780 (2016). Springer, 454–471

Data Structures

Binary Decision Diagram for the function $f(x_1, x_2, x_3) = \overline{x_1} \overline{x_2} \overline{x_3} + x_1 x_2 + x_2 x_3$

A trie for keys "A", "to", "tea", "ted", "ten", "i", "in", and "inn".

[Wikipedia]

Computer Imaging

 $\textbf{Fig. 4.4.} \ \textbf{Sample structures generated by a parametric D0L-system with different values of constants } \\$

Fig. 4.2. Visual interpretation of the production for the snowflake curve, and the curve after $n=0,\,1,\,2,$ and 3 derivation steps

Visual models of plant developmentPrzemyslaw Prusinkiewicz¹, Mark Hammel¹, Jim Hanan², and Radomir Mech¹

People, history and geography

1940s

Andrey Markov

Warren McCulloch and Walter Pitts

Norbert Wiener

John von Neumann and Stephen Cole Kleene

Alan Turing

V. M. Glushkov

Brzozowski et McCluskey

G.H. Mealy and E.F. Moore

1960s

John Myhill and Anil Nerode

Büchi and Elgot

Marcel-Paul Schützenberger

Noam Chomsky

1970s

Turing award 1976 Rabin, Michael O. Scott, Dana Stewart

Alexandra Silva (2019)

On étudie quoi ici?

- Le cours se concentre sur l'aspect acceptation / generation de langages
- On répond ≈ à quelques questions:
 - à quoi peut ressembler une machine abstraite et uniforme.
 - c'est quoi la puissance d'un *instrument de calcul* qui à des ressources finies ?
 - c'est quoi la puissance du non-déterminisme ?
- On aborde des premieres questions de complexité

Puissance du non-déterminisme ?

En général, le non-déterminisme augmente la puissance d'un système ⇒ sur un ordinateur (une machine de Turing), il permettrait de:

- tester tous les mots de passe d'un seul coup.
- ⇔ trouver un mot de passe inconnu en un seul essai
- trouver rapidement des séquences génétiques particulières
- trouver rapidement la forme d'une protéine
- factoriser rapidement les grands nombres
- ⇒ casser les protocoles cryptographiques

Extensions

plus de bandes

Streaming (online)
Counters, FIFO

Tapes, Turing machines

d'autres types de mondes

Tree automata
Two-dimensional automata
Cellular automata (Conway)

 ∞ et N

Weights, rational series
Transducers, I/O and values ω -languages (mots infinis)

probabilité, temps, concurrence

Bayesian networks
Markov chains

Time Automata

Petri nets synchronous languages

Quelques sujets d'études

• Le problème de l'*

• Les mots synchronisant et la conjecture de Černý

• Quelques propriétés des langages unaires ($\Sigma = \{a\}$)

Complémentation pour les automates non-ambigu

Automata theory

lorsque les choses deviennent formelle

Le monoïde Σ^*

- un mot w est une séquence de symboles de Σ
- on peut concaténer deux mots w_1 . w_2 on écrira plus simplement w_1 w_2 c'est une operation de produit, associative
- |w|, la taille de w, est le nombre de symboles de w
- on note ϵ la sequence vide, $|\epsilon| = 0$ ϵ est l'élément neutre pour le produit, $w \cdot \epsilon = \epsilon \cdot w = w$

```
Exemple: \Sigma = \{0,1\} (binaire), \{1\} (unaire), ASCII, UTF-8 (texte), \int (musique), ...
```

Propriétés du monoïde Σ^* (ex.)

• si Σ est ordonné, $a \leq b$, alors on obtient un ordre (dit lexicographique) sur Σ^* , $\epsilon \leq a$ a $b \leq a$ b

• le mot u est dit *préfixe* de w si il existe v tel que u v = w; de la même manière v est un *suffixe de w* on peut noter $u \sqsubseteq w$ cet ordre préfixe*

Lemme (ex.): si $u \sqsubseteq w$ et $v \sqsubseteq w$ (u et v sont deux prefixes de w), alors soit $u \sqsubseteq v$, soit $v \sqsubseteq u$.

Automate fini, A

 \mathcal{A} est un quintuplet $(Q, \Sigma, \delta, q_I, F)$ où :

- Q : ensemble (fini) d'états
- Σ : alphabet
- $q_I \in Q$: état initial de l'automate (parfois $I \subseteq Q$)
- $F \subseteq Q$: états finaux (ou terminaux)
- $\delta \in (Q \times \Sigma) \to Q$: fonction de transition

Syntaxe concrète: graphe

 \mathcal{A} est un quintuplet $(Q, \Sigma, \delta, q_I, F)$

Syntaxe concrète: matricielle

 \mathcal{A} est un quintuplet $(Q, \Sigma, \delta, q_I, F)$

	\$	0	1	2	3
\$	ϵ	Т	-	-	-
0	-	ϵ	a, b	-	-
1	Т	-	ϵ	b	-
2	Т	-	a, b	ϵ , b	b
3	-	-	-	-	ϵ , a

quel est le sens de $\mathcal{A} \times \mathcal{A}$? $\det(\mathcal{A}) \ ?$ $\mathcal{A}^{-1} \ ?$

Automate complet, \mathcal{A}

 \mathcal{A} est complet si la fonction $\delta \in (Q \times \Sigma) \to Q$ est totale

Automate complet, A

 \mathcal{A} est complet si la fonction $\delta \in (Q \times \Sigma) \to Q$ est totale

On peut toujours compléter un automate en ajoutant un état piège/puit

Un automate complet ne peut pas bloquer.

Langage $\mathcal{L}(\mathcal{A})$

On peut étendre δ à Σ^* simplement:

$$\hat{\delta}(q, \epsilon) = q$$

$$\hat{\delta}(q, a w) = \hat{\delta}(\delta(q, a), w)$$

et donc:

$$\hat{\delta}(q, w_1 w_2) = \hat{\delta}(\hat{\delta}(q, w_1), w_2)$$

Langage $\mathcal{L}(\mathcal{A})$

Plus simplement on écrit $(q, w) \Rightarrow (q', w')$ si w = u w' et $\hat{\delta}(q, u) = q'$

Langage $\mathcal{L}(\mathcal{A})$

Plus simplement on écrit
$$(q, w) \Rightarrow (q', w')$$
 si $w = u w'$ et $\hat{\delta}(q, u) = q'$

Avec ces notations, le langage de l'automate est:

$$\mathcal{L}(\mathcal{A}) = \{ w \in \Sigma^* \mid \hat{\delta}(q_I, w) \in F \}$$

$$\mathcal{L}(\mathcal{A}) = \{ w \in \Sigma^* \mid (q_I, w) \Rightarrow (q', \epsilon), \ q' \in F \}$$

ϵ -transitions

On peut étendre δ aux ϵ -transitions (spontaneous transition)

$$\Delta(q, w) \supseteq \Delta(q', w)$$
 si $\delta(q, \epsilon) \supseteq q'$

Par exemple:

$$(0,a) \Rightarrow 0$$

$$(2, a) \Rightarrow 2$$

$$(3,a) \Rightarrow 2$$

```
$ -> 0

$ -> 1

0 -> 2 a

1 -> 3 \e

2 -> 0 \e

2 -> 3 b

2 -> 4 b

3 -> 1 a

3 -> 2 \e

4 -> 3 a

3 -> $
```


a.proper()

Automate déterministe, DFA

 \mathcal{A} est déterministe si $\delta \in (Q \times \Sigma) \to Q$

 \mathcal{A} non-déterministe implique $\delta \in (Q \times \Sigma) \to 2^Q$

e.g.
$$\delta(4, a) = \{2, 3\}$$

On the powerset construction

• On utilise 2^Q pour dénoter l'ensemble des parties de Q (ou $\mathcal{P}(Q)$ en notation "classique")

• C'est un rappel de la relation entre 2^Q et l'ensemble des fonctions $Q\mapsto \mathcal{B}$

(où $card(\mathcal{B}) = 2$)

Automate non-déterministe, NFA

Il y a 3 critères pour que \mathcal{A} soit non-déterministe:

- δ n'est pas une fonction
- il y a des ϵ -transitions
- I n'est pas un singleton |I| > 1

$$|\delta(q,a)| > 1$$

$$\delta(q,\epsilon) \neq \emptyset$$

Langage $\mathcal{L}(\mathcal{A})$, non-dét.

On peut étendre δ à Q et Σ^* simplement:

$$\hat{\delta}(q, \epsilon) = \{q\}$$

$$\hat{\delta}(q, a w) = \bigcup_{q' \in \delta(q, a)} \delta(q', w)$$

$$\Delta(S, w) = \bigcup_{q \in S} \hat{\delta}(q, w)$$

Langage $\mathcal{L}(\mathcal{A})$, non-dét.

Plus simplement on écrit
$$(q, w) \Rightarrow (q', w')$$
 si $w = u w'$ et $q' \in \hat{\delta}(q, u)$

Avec ces notations, le langage de l'automate est:

$$\mathcal{L}(\mathcal{A}) = \{ w \in \Sigma^* \mid \Delta(I, w) \cap F \neq \emptyset \}$$

$$\mathcal{L}(\mathcal{A}) = \{ w \in \Sigma^* \mid (q, w) \Rightarrow (q', \epsilon), q \in I, q' \in F \}$$

Caractériser $\mathcal{L}(\mathcal{A})$

(question type)

Quel est le langage de

 $(pour \Sigma = \{a, b\})$

Quel est le langage de

L'ensemble des mots se terminant par aL'ensemble $\mathcal{L} = \{ w \mid w = w'a \land w' \in \Sigma^* \}$

Quel est le langage de 0 1 1 0 2 2

★ dans cet exemple le nom des états à une signification utile

L'ensemble $\{x \in \mathbb{N} \mid x \equiv 0 [3]\}$ (x en binaire)

Pressburger arithmetics: $\exists Y . (X = Y + Y + Y) \land ...$

Automates et modélisation

(question type)

- le protocole implique un émetteur et un récepteur.
- Les messages (les symboles de Σ) sont :
 - *b* : début de communication (begin)
 - t : trame de données
 - e : fin des trames (end)
 - *c* : code correcteur
 - *s* : somme de contrôle
- Le protocole permet de mélanger
 - des conversations simplifiée: b t t ... t e
 - et des conversations complètes: bttc ...ttces

b : début de communication (begin)

t : trame de données

e: fin des trames (end)

c : code correcteur

s : somme de contrôle

conversations simplifiée: btt...te

b : début de communication (begin)

t : trame de données

e: fin des trames (end)

c : code correcteur

s : somme de contrôle

conversations complètes: bttc...ttces

conversations simplifiée: btt...te

conversations complètes: bttc...ttces

Protocole de communication

J'oubliais, on peut passer de *simple* à *complexe* en cours d'execution ! b t t t t t c e s

Protocole de communication

J'oubliais, on peut passer de simple à complexe en cours d'execution!

Déterminiser un NFA

 ϵ -fermeture + NFA \Rightarrow DFA

On prouve que undét. ⊆ dét.

Théorèmes

1. Pour tout automate \mathcal{A} , il existe un automate sans ϵ -transitions qui accepte le même langage.

2. Pour tout automate (NFA) \mathcal{A} , il existe un DFA qui accepte le même langage.

Pour un automate, on peut calculer l' ϵ -fermeture d'un état, q, c'est-à-dire l'ensemble des états accessible en suivant les ϵ -trans.

 $\epsilon F(3)$ = états accessible instantanément depuis 3

Pour un automate, on peut calculer l' ϵ -fermeture d'un état, q, c'est-à-dire l'ensemble des états accessible en suivant les ϵ -trans.

 $\epsilon F(3)$ = états accessible instantanément depuis 3

Pour un automate, on peut calculer l' ϵ -fermeture d'un état, q, c'est-à-dire l'ensemble des états accessible en suivant les ϵ -trans.

 $\epsilon F(3)$ = états accessible instantanément depuis 3

- Pour un automate, on peut calculer l' ϵ -fermeture d'un état, q, c'est-à-dire l'ensemble des états accessible en suivant les ϵ -trans.
- c'est le plus petit ensemble $\epsilon F(q)$ tel que:

```
\epsilon F(q) \supseteq \{q\}

\epsilon F(q) \supseteq \{q'' | \exists q' \in \epsilon F(q), \delta(q', \epsilon) = q''\}
```

• la definition se généralise à $\epsilon F(S)$, pour $S \subseteq Q$

$$\epsilon F(q) \supseteq \{q\}$$

$$\epsilon F(q) \supseteq \{q'' \mid \exists q' \in \epsilon Fq, \ \delta(q', \epsilon) = q''\}$$

Idée: pour calculer le *run* dans un NFA on peut utiliser "plusieures têtes" (au plus n = |Q|)

- il suffit de se rappeler, à chaque instant, de l'ensemble des états sur lesquels on pointe: $S \subseteq Q$
- il y a un nombre fini de configuration possible $\leq 2^n$
- on peut calculer "statiquement" la fonction de transition δ' sur ces "états quotients"

$$\delta'(S, a) = \bigcup_{q \in S, q' \in \epsilon F(q)} \delta(q', a)$$

• le successeur de S est l'ensemble S' qui contient les états q' tels que $q \in S$ et $(q, a) \Rightarrow q'$ (en suivant les ϵ -transitions)

$$\delta'(S, a) = \bigcup_{q \in S, q' \in \epsilon F(q)} \delta(q', a)$$

- l'état quotient S est final si $S \cap F \neq \emptyset$
- l'état initial est I (plus précisément $\epsilon F(I)$)

$$\epsilon F(I) = \{0\}$$

$$\delta(0, a) = \emptyset$$

$$\delta(0,b) = \{1,3\}$$

$$\delta(1,t) = \{1,3\}$$

$$\delta(3,t) = \{4\}$$

$$\delta(1, e) = \{2\}$$

$$\delta(3, e) = \{6\}$$

$$6 \in F$$

$$\delta(1,t) = \{1,3\}$$
 $\delta(3,t) = \{4\}$ $\delta(4,t) = \{5\}$

$$\delta(3,t) = \{4\}$$

$$\delta(4,t) = \{5\}$$

$$\delta(5,t) = \emptyset$$

 $\det(\mathcal{A})$ est un tuple $(Q', \Sigma, \delta', q'_I, F')$ où :

- $Q' = 2^Q = \mathcal{P}(Q)$ (powerset)
- $\Sigma =$ même alphabet que \mathcal{A}
- $q'_I = \epsilon F(I)$
- $F' = \{ S \mid S \cap F \neq \emptyset \}$
- $\delta' \in (Q' \times \Sigma) \to Q'$: fonction de transition

 \triangle det(\mathcal{A}) est complet, car \emptyset est un état valide et c'est un état puit.

Explosion du nombre d'états

Si l'automate \mathcal{A} à n états, l'automate $\det(\mathcal{A})$ a potentiellement 2^n états.

La famille d'automates *De Bruijn(n)* fournie un exemple avec \approx le pire cas en complexité (i.e. $\det(\mathcal{A})$ a 2^{n-1} états)

accepte les mots de la forme $\{a, b\}^*$ a $\{a, b\}^3$

Explosion du nombre d'états

Si l'automate \mathcal{A} à n états, l'automate $\det(\mathcal{A})$ a potentiellement 2^n états

