Sammanfattning av SF1674 Flervariabelanalys

Yashar Honarmandi 22 januari 2018

Sammanfattning

Denna sammanfattningen innehåller centrala definitioner och satser i SF1672 Flervariabelanalys.

Innehåll

1	Vektoralgebra			
	1.1	Satser	1	
2	Mängdlära 1			
	2.1	Definitioner	1	
	2.2	Satser	2	
3	Funktioner			
	3.1	Definitioner	2	
	3.2	Satser	3	
4	Derivata			
	4.1	Definitioner	3	
	4.2	Satser	4	
5	Kva	dratiska vtor	4	

1 Vektoralgebra

1.1 Satser

Cauchy-Schwarz' olikhet Låt $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Då gäller att

$$|\mathbf{x} \cdot \mathbf{y}| \le |\mathbf{x}||\mathbf{y}|.$$

Bevis

Triangelolikheten Låt $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Då gäller att

$$|\mathbf{x} + \mathbf{y}| \le |\mathbf{x}| + |\mathbf{y}|.$$

Bevis

Omvända triangelolikheten Låt $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Då gäller att

$$||\mathbf{x}| - |\mathbf{y}|| \le |\mathbf{x} + \mathbf{y}|.$$

Bevis

Vektorer och förhållande mellan komponenter Låt $\mathbf{x} \in \mathbb{R}^n$ med komponenter x_1, \dots, x_n . Då gäller att

$$|x_i| \le |\mathbf{x}| \le \sum_{i=1}^n |x_i|, \ i = 1, \dots, n.$$

Bevis

2 Mängdlära

2.1 Definitioner

Öppna klot Ett öppet klot i \mathbb{R}^n centrerad i **a** med radius r är

$$\{\mathbf{x} \in \mathbb{R}^n : |\mathbf{x} - \mathbf{a}| < r\}.$$

Omgivningar till punkter $U \subset \mathbb{R}^n$ är en omgivning till $\mathbf{a} \in \mathbb{R}^n$ om U innehåller något öppet klot med centrum \mathbf{a} .

Inre punkter Låt $M \subset \mathbb{R}^n$. a är en inre punkt till M om det finns ett öppet klot kring a i M.

Yttre punkter Låt $M \subset \mathbb{R}^n$. **a** är en yttre punkt till M om det finns ett öppet klot kring **a** i M:s komplement, definierad som $\mathbb{R}^n \setminus M$.

Randpunkter Låt $M \subset \mathbb{R}^n$. **a** är en randpunkt till M om varje öppet klot kring **a** innehåller punkter i M och M:s komplement.

Rand Mängden av alla randpunkter till en mängd M är randen till M. Denna betecknas ∂M .

Öppna och slutna mängder En mängd är öppen om ∂M är i M:s komplement och sluten om ∂M är i M.

Begränsade mängder En mängd M är begränsad om $\exists c > 0$ så att $|\mathbf{x}| < c \forall \mathbf{x} \in M$.

Kompakta mängder En mängd är kompakt om den är sluten och begränsad.

Bågvis sammanhängande mängder D är en bågvis sammanhängande mängd om varje par punkter $\mathbf{a}, \mathbf{b} \in D$ finns en kurva $\mathbf{x}(t), t \in [\alpha, \beta]$ så att $\mathbf{x}(t) \in D$ för alla t och $\mathbf{x}(\alpha) = \mathbf{a}$ och $\mathbf{x}(\beta) = \mathbf{b}$.

2.2 Satser

3 Funktioner

3.1 Definitioner

Grafen av en funktion Låt $f: D \to \mathbb{R} \mod D \subset \mathbb{R}^2$. Grafen av f är

$$\{(x, y, z) \in \mathbb{R}^3 : z = f(x, y)\}.$$

Kurvor i \mathbb{R}^p En kurva i \mathbb{R}^p är en funktion $t \to \mathbf{x}(t) = (x_1(t), \dots, x_n(t))$.

Lokala gränsvärden Låt $f: D \to \mathbb{R}^p \mod D \subset \mathbb{R}^n$ och **a** vara en inre punkt eller randpunkt till D. $\lim_{\mathbf{x} \to \mathbf{a}} f(\mathbf{x}) = \mathbf{b}$ om det för varje $\varepsilon > 0$ finns ett $\delta > 0$ så att

$$|\mathbf{x} - \mathbf{a}| < \delta, \mathbf{x} \in D \implies |f(\mathbf{x}) - \mathbf{b}| < \varepsilon.$$

Gränsvärden mot o
ändligheten Låt $f:D\to\mathbb{R}^p$ med $D\subset\mathbb{R}^n$.
 $\lim_{|\mathbf{x}|\to\infty}f(\mathbf{x})=\mathbf{b}$ om det för varje $\varepsilon>0$ finns ett $\omega>0$ så att

$$|\mathbf{x}| > \omega, \mathbf{x} \in D \implies |f(\mathbf{x}) - \mathbf{b}| < \varepsilon.$$

Kontinuitet Låt $f: D \to \mathbb{R}^p \mod D \subset \mathbb{R}^n$. f är kontinuerlig i $\mathbf{a} \in D$ om $\lim_{\mathbf{x} \to \mathbf{a}}$ existerar och $\lim_{\mathbf{x} \to \mathbf{a}} = f(\mathbf{a})$.

Likformig kontinuitet Låt $f: D \to \mathbb{R}^p \mod D \subset \mathbb{R}^n$. f är likformigt kontinuerlig på D om det för varje $\varepsilon > 0$ finns ett $\delta > 0$ så att

$$|\mathbf{x} - \mathbf{y}| < \delta, \mathbf{x}, \mathbf{y} \in D \implies |f(\mathbf{x}) - f(\mathbf{y})| < \varepsilon.$$

3.2 Satser

Gränsvärden av funktioner och deras komponenter Låt $f: D \to \mathbb{R}^p$ med $D \subset \mathbb{R}^n$. $\lim_{\mathbf{x} \to \mathbf{a}} f(\mathbf{x}) = \mathbf{b}$ är ekvivalent med att $\lim_{\mathbf{x} \to \mathbf{a}} f_i(\mathbf{x}) = \mathbf{b}_i$, där subskriptet i indikerar den i-te komponenten av varje vektor.

Bevis Detta följer direkt av att

$$|f_i(\mathbf{x}) - \mathbf{b}_i| \le |f(\mathbf{x}) - \mathbf{b}| \le \sum_{i=1}^p |f_i(\mathbf{x}) - \mathbf{b}_i|.$$

Största och minsta värde för funktioner Låt $f: D \to \mathbb{R}^p \mod D \subset \mathbb{R}^n$ och låt D vara kompakt. Då antar f ett största och ett minsta värde på D.

Bevis

Definitionsmängd och likformig kontinuitet Låt $f: D \to \mathbb{R}^p$ med $D \subset \mathbb{R}^n$ och låt D vara kompakt. Då är f likformigt kontinuerlig på D.

Bevis

Satsen om mellanliggande värden Låt $f: D \to \mathbb{R}^p \mod D \subset \mathbb{R}^n$ och låt D vara bågvis sammanhängande. Om f antar värderna $f(\mathbf{a}), f(\mathbf{b})$ i D, antar f också alla värden mellan $f(\mathbf{a})$ och $f(\mathbf{b})$.

Bevis

4 Derivata

4.1 Definitioner

Partiella derivator Låt $f: D \to \mathbb{R}^p \mod D \subset \mathbb{R}^n$. f är partiellt deriverbar med avseende på x_i i den inre punkten $\mathbf{a} \in D$ om gränsvärdet

$$\lim_{h\to 0} \frac{f(\mathbf{a} + h\mathbf{e}_i) - f(\mathbf{a})}{h}$$

existerar. Gränsvärdet kallas partiella derivatan av f med avseende på x_i i a och betecknas $\frac{\partial f}{\partial x_i}$.

4.2 Satser

5 Kvadratiska ytor

Detta är de flesta kvadratiska ytorna man kan träffa på i \mathbb{R}^3 , komplett med snygga illustrationer.

Ellipsioider En ellipsioid beskrivs av en ekvation på formen

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

Figur 1: Illustration av en ellipsioid.

Koner En kon beskrivs av en ekvation på formen

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2}.$$

Cylindrar En cylinder beskrivs av en ekvation på formen

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

Elliptiska paraboloider En elliptisk paraboloid beskrivs av en ekvation på formen

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z}{c}.$$

Figur 2: Illustration av en kon.

Figur 3: Illustration av en cylinder.

Figur 4: Illustration av en elliptisk paraboloid.

Hyperbolska paraboloider En hyperbolsk paraboloid beskrivs av en ekvation på formen

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = \frac{z}{c}.$$

Figur 5: Illustration av en hyperbolsk paraboloid.

Enmantlade hyperboloider En enmantlad hyperboloid beskrivs av en ekvationpå formen

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1.$$

Figur 6: Illustration av en enmantlad hyperboloid.

Tvåmantlade hyperboloider En tvåmantlad hyperboloid beskrivs av en ekvation på formen

$$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

Figur 7: Illustration av en tvåmantlad hyperboloid.