

Features

- High resistance to heat and humidity
- Resistance to mechanical shock and pressure
- Accurate dimensions for automatic surface mounting
- Wide impedance range

Applications

- Power supply lines
- IC power lines
- Signal lines

MH Series High Current Chip Ferrite Beads

Model Number	Impedance (Ω) at 100 MHz	RDC (mΩ) Max.	IDC (A) Max.	
MH4532-700Y	70 ±25 %	30	6.0	
MH4532-800Y	80 ±25 %	10	6.0	
MH4532-121Y	120 ±25 %	50	3.0	
MH4532-131Y	130 ±25 %	40	3.0	
MH4532-151Y	150 ±25 %	20	5.0	
MH4532-681Y	680 ±25 %	30	4.0	
MH4532-132Y	1300 ±25 %	60	3.0	
MH4516-600Y	60 ±25 %	10	6.0	
MH4516-750Y	75 ±25 %	25	3.0	
MH4516-800Y	80 ±25 %	50	3.0	
MH4516-102Y	1000 ±25 %	150	1.5	
MH3261-190Y	19 ±25 %	40	3.0	
MH3261-260Y	26 ±25 %	40	3.0	
MH3261-310Y	31 ±25%	40	3.0	
MH3261-500Y	50 ±25 %	25	3.0	
MH3261-700Y	70 ±25 %	30	4.0	
MH3261-800Y	80 ±25 %	30	4.0	
MH3261-900Y	90 ±25 %	40	3.0	
MH3261-101Y	100 ±25 %	30	4.0	
MH3261-121Y	120 ±25 %	100	2.0	
MH3261-151Y	150 ±25 %	100	2.0	
MH3261-301Y	300 ±25 %	200	1.0	
MH3261-471Y	470 ±25 %	200	1.0	
MH3261-501Y	500 ±25 %	40	3.0	
MH3261-601Y	600 ±25 %	100	2.0	
MH3225-650Y	65 ±25 %	30	3.0	
MH2029-070Y	7 ±25 %	30	3.0	
MH2029-100Y	10 ±25 %	10	6.0	
MH2029-300Y	30 ±25%	25	3.0	
MH2029-400Y	40 ±25%	20	5.0	
MH2029-600Y	60 ±25%	20	5.0	
MH2029-800Y	80 ±25 %	40	3.0	
MH2029-101Y	100 ±25 %	100	2.0	
MH2029-121Y	120 ±25 %	100	2.0	
MH2029-151Y	150 ±25 %	100	2.0	
MH2029-221Y	220 ±25 %	100	2.0	
MH2029-301Y	300 ±25 %	200	1.0	
MH2029-401Y	400 ±25 %	100	2.0	
MH2029-471Y	470 ±25 %	200	1.0	
MH2029-601Y	600 ±25 %	200	1.0	
MH1608-100Y	10 ±25 %	100	6.0	
MH1608-300Y	30 ±25 %	60	3.0	
MH1608-600Y	60 ±25 %	40	3.0	
MH1608-800Y	80 ±25 %	40	3.0	
MH1608-101Y	100 ±25 %	40	3.0	
MH1608-121Y	120 ±25 %	100	2.0	
MH1608-151Y	150 ±25 %	100	2.0	
MH1608-221Y	220 ±25 %	100	2.0	
MH1608-301Y	300 ±25 %	200	1.0	
MH1608-471Y	470 ±25 %	200	1.0	
MH1608-601Y	600 ±25 %	200	1.0	

General Specifications
Operating Temperature55 °C to +125 °C
Storage Temperature55 °C to +125 °C Storage Condition
+40 °C max. at 70 % RH
Reflow Soldering230 °C, 50 seconds max.
Resistance to Soldering Heat
260 °C, 5 seconds Rated CurrentBased on max.
temperature rise of +40 °C
Terminal Strength
(Force "F" applied for 30 seconds)
4532 Series1.5 F (Kg)
4516 Series1.0 F (Kg)
3261 Series1.0 F (Kg)
3225 Series1.0 F (Kg)
2029 Series
1608 Series
Materials
Core MaterialFerrite Internal ConductorAg or Ag/Pd TerminalAg/Ni/Sn

BOURNS®

BOURNS®

BOURNS

BOURNS®

BOURNS

Specifications are subject to change without notice.

BOURNS®

Electrical Specifications (continued)

Equivalent Circuit

Recommended Soldering

BOURNS®

Product Dimensions

Recommended Land Pattern

Series	Α	В	С	D	G	Н	I
4532	$\frac{4.5 \pm 0.2}{(.177 \pm .008)}$	$\frac{3.2 \pm 0.2}{(.126 \pm .008)}$	$\frac{1.5 \pm 0.2}{(.059 \pm .008)}$	$\frac{0.5 \pm 0.2}{(.020 \pm .008)}$	3.0 (.118)	3.0 (.118)	1.5 (.059)
4516	$\frac{4.5 \pm 0.2}{(.177 \pm .008)}$	$\frac{1.6 \pm 0.2}{(.063 \pm .008)}$	$\frac{1.6 \pm 0.2}{(.063 \pm .008)}$	$\frac{0.5 \pm 0.2}{(.020 \pm .008)}$	3.0 (.118)	1.4 (.055)	1.5 (.059)
3261	$\frac{3.2 \pm 0.2}{(.126 \pm .008)}$	$\frac{1.6 \pm 0.2}{(.063 \pm .008)}$	$\frac{1.1 \pm 0.2}{(.043 \pm .008)}$	$\frac{0.5 \pm 0.2}{(.020 \pm .008)}$	2.0 (.079)	1.4 (.053)	1.1 (.043)
3225	$\frac{3.2 \pm 0.2}{(.126 \pm .008)}$	$\frac{2.5 \pm 0.2}{(.098 \pm .008)}$	$\frac{1.3 \pm 0.2}{(.051 \pm .008)}$	$\frac{0.5 \pm 0.2}{(.020 \pm .008)}$	<u>2.2</u> (.118)	<u>2.3</u> (.091)	<u>1.1</u> (.043)
2029	$\frac{2.0 \pm 0.2}{(.079 \pm .008)}$	$\frac{1.2 \pm 0.2}{(.047 \pm .008)}$	$\frac{0.9 \pm 0.2}{(.035 \pm .008)}$	$\frac{0.5 \pm 0.2}{(.020 \pm .008)}$	1.0 (.040)	1.0 (.040)	1.0 (.040)
1608	$\frac{1.6 \pm 0.2}{(.063 \pm .008)}$	$\frac{0.8 \pm 0.2}{(.031 \pm .008)}$	$\frac{0.8 \pm 0.2}{(.031 \pm .008)}$	$\frac{0.5 \pm 0.2}{(.020 \pm .008)}$	<u>0.7</u> (.028)	<u>0.7</u> (.028)	<u>0.7</u> (.028)

Reel Dimensions

Series	Pcs. per Reel	Gross Weight (g)	D	E	G	Т
4532	1,000	170	<u>12.0</u> (.472)	<u>8.0</u> (.315)	$\frac{14.0 + 0}{(.551 + 0)}$	<u>16.5</u> (.650)
4516	2,000	180	<u>12.0</u> (.472)	<u>8.0</u> (.315)	$\frac{14.0 + 0}{(.551 + 0)}$	<u>16.5</u> (.650)
3261	3,000	150	<u>8.0</u> (.315)	<u>4.0</u> (.157)	$\frac{10.0 + 0}{(.394 + 0)}$	<u>12.5</u> (.492)
3225	2,500	160	<u>8.0</u> (.315)	<u>4.0</u> (.157)	$\frac{10.0 + 0}{(.394 + 0)}$	<u>12.5</u> (.492)
2029	4,000	120	<u>8.0</u> (.315)	<u>4.0</u> (.157)	$\frac{10.0 + 0}{(.394 + 0)}$	<u>12.5</u> (.492)
1608	4,000	90	<u>8.0</u> (.315)	<u>4.0</u> (.157)	$\frac{10.0 + 0}{(.394 + 0)}$	<u>12.5</u> (.492)