

Exercise 1C

Q4

Answer:

1.
LHS =
$$\left\{ \left(\frac{3}{4} + \frac{-2}{5} \right) + \frac{-7}{10} \right\}$$

$$\left\{ \left(\frac{15-8}{20} \right) + \frac{-7}{10} \right\} = \left(\frac{7}{20} + \frac{-7}{10} \right) = \left(\frac{7}{20} + \frac{-14}{20} \right) = \left(\frac{7+(-14)}{20} \right) = \frac{-7}{20}$$

$$\text{RHS} = \left\{ \frac{3}{4} + \left(\frac{-2}{5} + \frac{-7}{10} \right) \right\}$$

$$\left\{ \frac{3}{4} + \left(\frac{-4}{10} + \frac{-7}{10} \right) \right\} = \left\{ \frac{3}{4} + \left(\frac{-4-7}{10} \right) \right\} = \left\{ \frac{3}{4} + \left(\frac{-11}{10} \right) \right\} = \left(\frac{3}{4} + \frac{-11}{10} \right)$$

$$= \left(\frac{15}{20} + \frac{-22}{20} \right) = \left(\frac{15-22}{20} \right) = \frac{-7}{20}$$

$$\therefore \left(\frac{3}{4} + \frac{-2}{5} \right) + \frac{-7}{10} = \frac{3}{4} + \left(\frac{-2}{5} + \frac{-7}{10} \right)$$

2. LHS =
$$\left\{ \left(\frac{-7}{11} + \frac{2}{-5} \right) + \frac{-13}{22} \right\}$$

We will first make the denominator positive.

$$\begin{split} &\left\{ \left(\frac{-7}{11} + \frac{2 \times (-1)}{-5 \times (-1)} \right) + \frac{-13}{22} \right\} = \left\{ \left(\frac{-7}{11} + \frac{-2}{5} \right) + \frac{-13}{22} \right\} \\ &\left\{ \left(\frac{-7}{11} + \frac{-2}{5} \right) + \frac{-13}{22} \right\} = \left\{ \left(\frac{-35}{55} + \frac{-22}{55} \right) + \frac{-13}{22} \right\} = \left\{ \left(\frac{-35 - 22}{55} \right) + \frac{-13}{22} \right\} \\ &= \left(\frac{-57}{55} + \frac{-13}{22} \right) = \frac{-114}{110} + \frac{-65}{110} = \frac{-114 - 65}{110} = \frac{-179}{110} \end{split}$$

$$\text{RHS} = \left\{ \frac{-7}{11} + \left(\frac{2}{-5} + \frac{-13}{22} \right) \right\}$$

We will first make the denominator positive.

$$\begin{cases} \frac{-7}{11} + \left(\frac{2 \times (-1)}{-5 \times (-1)} + \frac{-13}{22}\right) \right\} = \left\{\frac{-7}{11} + \left(\frac{-2}{5} + \frac{-13}{22}\right) \right\} \\ \left\{\frac{-7}{11} + \left(\frac{-2}{5} + \frac{-13}{22}\right) \right\} = \left\{\frac{-7}{11} + \left(\frac{-44}{110} + \frac{-65}{110}\right) \right\} = \left\{\frac{-7}{11} + \left(\frac{-44 + (-65)}{110}\right) \right\} \\ = \frac{-7}{11} + \frac{-109}{110} = \frac{-70}{110} + \frac{-109}{110} = \frac{-70 - 109}{110} = \frac{-179}{110} \end{cases}$$

$$\therefore \left(\frac{-7}{11} + \frac{2}{-5}\right) + \frac{-13}{22} = \frac{-7}{11} + \left(\frac{2}{-5} + \frac{-13}{22}\right)$$

$$\begin{aligned} &\text{LHS} = -1 + \left(\frac{-2}{3} + \frac{-3}{4}\right) \\ &\left\{\frac{-1}{1} + \left(\frac{-2}{3} + \frac{-3}{4}\right)\right\} = \left\{\frac{-1}{1} + \left(\frac{-8}{12} + \frac{-9}{12}\right)\right\} = \left\{\frac{-1}{1} + \left(\frac{-8-9}{12}\right)\right\} \\ &= \left\{\frac{-1}{1} + \left(\frac{-17}{12}\right)\right\} = \left(\frac{-1}{1} + \frac{-17}{12}\right) = \left(\frac{-1 \times 12}{1 \times 12} + \frac{-17 \times 1}{12 \times 1}\right) = \left(\frac{-12 + (-17)}{12}\right) \\ &= \left(\frac{-12 - 17}{12}\right) = \frac{-29}{12} \end{aligned}$$

$$&\text{RHS} = \left\{\left(-1 + \frac{-2}{3}\right) + \frac{-3}{4}\right\}$$

$$&\left\{\left(\frac{-1}{1} + \frac{-2}{3}\right) + \frac{-3}{4}\right\} = \left\{\left(\frac{-3}{3} + \frac{-2}{3}\right) + \frac{-3}{4}\right\} = \left\{\left(\frac{-3 - 2}{3}\right) + \frac{-3}{4}\right\} \\ &= \left\{\left(\frac{-5}{3}\right) + \frac{-3}{4}\right\} = \left(\frac{-5}{3} + \frac{-3}{4}\right) = \left(\frac{-20}{12} + \frac{-9}{12}\right) = \left(\frac{-20 - 9}{12}\right) = \frac{-29}{12} \end{aligned}$$

$$&\therefore -1 + \left(\frac{-2}{3} + \frac{-3}{4}\right) = \left(-1 + \frac{-2}{3}\right) + \frac{-3}{4}$$

Answer:

(i) Addition is commutative, that is, a+b=b+a.

Hence, the required solution is
$$\left(\frac{-3}{17}\right) + \left(\frac{-12}{5}\right) = \left(\frac{-12}{5}\right) + \boxed{\left(\frac{-3}{7}\right)}$$

(ii) Addition is commutative, that is, a+b=b+a.

Hence, the required solution is $-9 + \frac{-21}{8} = \frac{-21}{8} + \boxed{-9}$

(iii) Addition is associative, that is, (a+b)+c=a+(b+c)

Hence, the required solution is
$$\left(\frac{-8}{13} + \frac{3}{7}\right) + \left(\frac{-13}{4}\right) = \left[\left(\frac{-8}{13}\right)\right] + \left[\frac{3}{7} + \left(\frac{-13}{4}\right)\right]$$

(iv) Addition is associative, that is, (a+b)+c=a+(b+c).

Hence, the required solution is
$$-12+\left(\frac{7}{12}+\frac{-9}{11}\right)=\left(-12+\frac{7}{12}\right)+\frac{-9}{11}$$

(iv) Addition is associative, that is, (a+b)+c=a+(b+c).

Hence, the required solution is
$$-12+\left(\frac{7}{12}+\frac{-9}{11}\right)=\left(-12+\frac{7}{12}\right)+\frac{-9}{11}$$

(v) Addition is associative, that is, (a+b)+c=a+(b+c)

Hence, the required solution is
$$\frac{19}{-5} + \left(\frac{-3}{11} + \frac{-7}{8}\right) = \left\{\frac{19}{-5} + \left[\left(\frac{-3}{11}\right)\right]\right\} + \frac{-7}{8}$$
.

(vi) 0 is the additive identity, that is, 0 + a = a.

Hence, the required solution is $\frac{-16}{7} + \boxed{0} = \boxed{0} + \frac{-16}{7} = \frac{-16}{7}$

Answer:

The additive inverse of $\frac{a}{b}$ is $\frac{-a}{b}$. Therefore, $\frac{a}{b}+\left(\frac{-a}{b}\right)=0$

- (i) Additive inverse of $\frac{1}{3}$ is $\frac{-1}{3}$.
- (ii) Additive inverse of $\frac{23}{9}$ is $\frac{-23}{9}$.
- (iii) Additive inverse of -18 is 18.
- (iv) Additive inverse of $\frac{-17}{8}$ is $\frac{17}{8}$.
- (v) In the standard form, we write $\frac{15}{-4}$ as $\frac{-15}{4}$.

Hence, its additive inverse is $\frac{15}{4}$.

(vi) We can write:

$$\frac{-16}{-5} = \frac{-16 \times (-1)}{-5 \times (-1)} = \frac{16}{5}$$

Hence, its additive inverse is $\frac{-16}{5}$.

- (vii) Additive inverse of $\frac{-3}{11}$ is $\frac{3}{11}$.
- (viii) Additive inverse of 0 is 0.
- (ix) In the standard form, we write $\frac{19}{-6}$ as $\frac{-19}{6}$.

Hence, its additive inverse is $\frac{19}{6}$.

(x) We can write:

$$\frac{-8}{-7} = \frac{-8 \times (-1)}{-7 \times (-1)} = \frac{8}{7}$$

Hence, its additive inverse is $\frac{-8}{7}$.

******* END *******