Министерство образования Республики Беларусь Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет компьютерных систем и сетей

Кафедра электронных вычислительных машин

Лабораторная работа №2 «Исследование характеристик полевого транзистора»

Выполнили ст. группы 350503

Губаревич А. В. Ганецкий В. В.

Проверил Горченок А. С.

1 ЦЕЛЬ РАБОТЫ

Для процесса выполнения данной лабораторной работы поставлены следующие цели:

- получение передаточной характеристики полевого транзистора в схеме с общим истоком;
- получение зависимости сопротивления канала полевого транзистора от напряжения затвор-исток;
- получение семейства выходных характеристик полевого транзистора в схеме с общим истоком;
 - исследование работы транзисторного каскада с общим истоком.

2 ВЫПОЛНЕНИЕ РАБОТЫ

- 2.1 Получение передаточной характеристики полевого транзистора в схеме с общим истоком
- **2.1.1** Установим напряжение питания стока E_C , равным 5 В. Получим график зависимости выходного тока I_C транзистора от входного напряжения $U_{3\text{U}}$, изображённый на рисунке 2.1.

Рисунок 2.1 – График зависимости выходного тока I_C транзистора от входного напряжения $U_{3\text{M}}$

- **2.1.2** Изменяя напряжение источника ЭДС затвора E_3 , установили значение тока стока I_C примерно 0,01 мA и напряжение коллектор-эмиттер U_{K3} . Нашли значение напряжения отсечки затвор-исток Uзи.отс = -1,18 В
- **2.1.3** Изменяя напряжение источника ЭДС затвора E_3 , установили значение напряжения затвор-исток $U_{3\text{И}}$ равным 0 В. Нашли значение тока стока $I_{\text{C.Hay}} = 2,89$ мА.
- **2.1.4** По формуле $k = I_{C.нач}/(U_{3и.отс})^2$, вычислим значение коэффициента, учитывающего конструктивные и технологические параметры транзистора:

$$k = 2,07 \frac{MA}{B^2}$$
.

- **2.1.5** Изменяя напряжение источника ЭДС затвора E_3 , установим значение напряжения затвор-исток $U_{3\mu}$ сначала равным $U_{3\mu,1}=-0,1$ B, а затем равным $U_{3\mu,2}=+0,1$ B. Получим значения тока стока $I_{c,1}=2,49$ мА и $I_{c,2}=3,29$ мА для этих точек передаточной характеристики.
- **2.1.6** Вычислим и значение крутизны передаточной характеристики полевого транзистора в окрестности точки $U_{3u} = 0$ по формуле:

$$S = \frac{(I_{c.2} - I_{c.1})}{(U_{3и.2} - U_{3и.1})} = \frac{(3,29 \text{ MA} - 2,49 \text{ MA})}{(0,1 \text{ B} + 0,1 \text{ B})} = 4 \frac{\text{MA}}{\text{B}}.$$

- **2.2** Получение зависимости сопротивления канала полевого транзистора от напряжения затвор-исток
- **2.2.1** Установим значение напряжения питания стока E_c , равным 5 В. Получим график зависимости сопротивления канала R_κ полевого транзистора от напряжения затвор-исток $U_{\scriptscriptstyle 3 \mu}$

Рисунок 2.2 – График зависимости сопротивления канала R_{κ} полевого транзистора от напряжения затвор-исток $U_{\scriptscriptstyle 3\mu}$

- **2.2.3** Изменяя напряжение источника ЭДС затвора E_3 , установим значение тока стока I_c примерно равным 0,01 мА. Получим значение сопротивления $R_{\kappa,\text{макс}} = 379,4$ кОм, соответствующее напряжению $U_{\text{зи.отс}}$ (закрытое состояние транзистора).
- **2.2.4** Изменяя напряжение источника ЭДС затвора E_3 , установим значение напряжения затвор-исток равным 0 В. Получим значение сопротивления $R_{\kappa.\text{мин}} = 1,4$ кОм, соответствующее напряжению $U_{3\mu} = 0$ (открытое состояние транзистора).

2.3 Получение семейства выходных характеристик полевого транзистора в схеме с общим истоком

2.3.1 Полученные семейства выходных характеристик представлены на рисунке 2.3.

Рисунок 2.3 — Семейство выходных характеристик полевого транзистора в схеме с общим истоком

2.3.2 При фиксированном напряжении сток-исток, равном U_{cu} =5 B, определим ток стока I_c , соответствующий значениям напряжения на затворе, при которых снимались выходные характеристики.

Полученные результаты представлены в таблице 2.1.

Таблица 4.1 - 3начения I_c при $U_{cu} = 5$ В

Цвет зависимости	I_c , MA
Синий	0,01
Красный	0,13
Зеленый	1,15
Голубой	2,92
Желтый	5,31

2.3.3 Определим крутизну передаточной характеристики транзистора S при изменении напряжения затвор-исток в диапазоне от -1 B до 0 B по формуле:

$$S = \frac{\Delta I_c}{\Delta U_{3M}} = 4.16 \frac{MA}{B}$$

2.3.4 Выберем сопротивление в цепи стока равным R_c =300 Ом, а величину напряжения источника ЭДС стока E_c =5 В, и построим на графике выходных характеристик транзистора линию нагрузки (см. рисунок 2.4) по двум точкам: точка E_c = 5 В на оси абсцисс и точка I_c = $\frac{E_c}{R_c}$ на оси ординат.

Рисунок 2.4 – Линия нагрузки на графике выходных характеристик полевого транзистора

2.3.5 Оценим границы активного режима транзисторного каскада, которые определяются координатами ($I_{\text{с.макс}}$, $U_{\text{си.мин}}$ и $I_{\text{с.мин}}$, $U_{\text{си.макс}}$) точек пересечения линии нагрузки с выходными характеристиками, полученными, соответственно, при значениях напряжения затвор-исток -1,0 В и +0,5 В:

$$I_{\text{C.MAKC}} = 5,12 \text{ MA};$$

 $I_{\text{C.MUH}} = 0,11 \text{ MA};$
 $U_{\text{CU.MAKC}} = 5 \text{ B};$
 $U_{\text{CU.MUH}} = 3,33 \text{ B}.$

2.3.6 Вычислим ток стока I_c^* для средней точки активного режима, и определим по передаточной характеристике соответствующее значение напряжения затвор-исток $U_{\scriptscriptstyle 3H}$ *:

$$I_{c}{}^{*} = \frac{I_{c.\text{макс}} + I_{c.\text{мин}}}{2} = \frac{5,12 \text{ мA} + 0,11 \text{ мA}}{2} = 2,615 \text{ мA};$$

$$U_{\text{зи}}{}^{*} = U_{\text{зи.голубой}} - \frac{I_{c.\text{голубой}} - I_{c}{}^{*}}{S} = 0 - \frac{2,92 \text{ мA} - 2,615 \text{ мA}}{4,16 \frac{\text{MA}}{\text{B}}} = -0,073 \text{ B}.$$

2.4 Исследование работы транзисторного каскада с общим истоком

2.4.1 Установим амплитуду напряжения источника входного гармонического напряжения $U_{\text{вх.m}}=0$, и величину напряжения источника ЭДС стока $E_{\text{c}}=5~\text{B}$.

На графике выходных характеристик транзистора появится изображение линии нагрузки.

Рисунок 2.5 – Изображение линии нагрузки

2.4.2 Установим напряжение источника ЭДС затвора E_3 , равное значению U_{3u}^* , полученному в п. 2.3.6. Заполним таблицу 2.2 параметрами статического режима транзисторного усилителя с общим истоком.

Таблица 4.2 – Параметры статического режима транзистора с общим истоком

U _{зи} , В	I _c , мA	U _{си} , В
-0,07	2,6	4,22

2.4.3 Плавно увеличивая амплитуду входного сигнала $U_{\text{вх.m}}$ получим максимальный неискаженный выходной сигнал (см. рисунок 2.6).

Рисунок 2.6 – Максимальный неискаженный выходной сигнал транзистора

2.4.4 Измерим значения амплитуд входного $U_{\text{вх}}$ и выходного $U_{\text{вых}}$ сигналов. Для этого определим по осциллограммам входного и выходного сигналов максимальные и минимальные мгновенные значения указанных напряжений. Для определения амплитуды сигналов будем использовать формулу $U_m = \frac{U_{max} + U_{min}}{2}$:

$$U_{\text{BX}} = \frac{0,429 \text{ B} + 0,572 \text{ B}}{2} = 0,5 \text{ B}$$

$$U_{\text{\tiny BMX}} = \frac{4,71 \text{ B} - 3,55 \text{ B}}{2} = 0,58 \text{ B}$$

2.4.5 Используя полученные значения амплитуды входного и выходного сигналов, определим коэффициент усиления транзисторного каскада по формуле:

$$K_y = \frac{0.58 \text{ B}}{0.5 \text{ B}} = 1.16.$$

2.4.6 Вычислим коэффициент усиления транзисторного каскада по формуле $K_y = S \cdot R_c$, где S – значение крутизны, полученное в п. 2.3.3:

$$K_y = S \cdot R_c = 4.16 \frac{MA}{B} \cdot 300 \text{ OM} = 1.24.$$

Сравнив измеренное (п. 2.4.5) и рассчитанное значения коэффициента усиления, видно, что они имеют незначительные отличия. Это объясняется погрешностями измерений.

2.4.7 Исследуем, как влияет положение рабочей точки на работу транзисторного каскада с общим истоком. Для этого, регулируя напряжение источника ЭДС затвора E_3 , изменим значение напряжения затвор-исток примерно на 30% от величины U_{3u}^* , полученной в п. 2.3.6, сначала в сторону увеличения (рисунок 2.7), а затем в сторону уменьшения (рисунок 2.8).

Рисунок 2.7 – Изображение выходного сигнала при увеличении $E_{\scriptscriptstyle 3}$ на 30%

Рисунок 2.8 — Изображение выходного сигнала при уменьшении $E_{\scriptscriptstyle 3}$ на 30%

При увеличении и уменьшении значения E_3 примерно на 30% от величины U_{3u}^* различий практически нет, так как мы оперируем с относительно малыми числами. Таких незначительных изменений не хватает, чтобы исказить график выходного сигнала.

3 ВЫВОД

В данной лабораторной работе были изучены принципы работы полевого транзистора, получены передаточная характеристика транзистора в схеме с общим истоком, зависимости сопротивления канала полевого транзистора от напряжения затвор-исток, семейства выходных характеристик транзистора в схеме с общим истоком, была определена крутизна передаточной характеристики, построена линия нагрузки и установлена рабочая точка.

По итогу расчетов был найден коэффициент усиления транзисторного каскада, и, помимо этого, было проверено поведение выходного сигнала при изменении напряжения источника ЭДС затвора.

При отрицательном напряжения затвор-исток канал полевого транзистора сужается, сопротивление возрастает, ток уменьшается. При нулевом напряжении затвор-исток канал открыт, сопротивление минимально, ток максимален. Таким образом, сопротивление канала полевого транзистора резко возрастает при переходе от открытого к закрытому состоянию, что подтверждает его способность управлять током стока с помощью напряжения на затворе. Полученное значение крутизны позволяет оценить усилительные свойства транзисторного каскада. Пересечения линии нагрузки с выходными характеристиками определяют рабочую область каскада.

Уменьшение и увеличение напряжения затвор-исток на 30% не привело к искажению выходного сигнала, так как транзистор продолжал работать в линейной области. Таким образом, схема устойчива к небольшим изменениям управляющего напряжения. Схема с общим истоком даёт значительное усиление по мощности, благодаря большому входному сопротивлению и усилению по напряжению.