RADIOFREQUENCY CARDIAC ABLATION

Modelling and simulation using COMSOL Multiphysics

OBJECTIVES

- Solving biomedical transport problems using COMSOL Multiphysics
- Simulating radiofrequency ablation for treating cardiac arrhythmias

WHAT IS ARYTHMIA

- Irregular beating of the heart
- Causes decreased blood flow and oxygen supply to the brain and body

RADIOFREQUENCY ABLATION(RFA)

- Ablation is a process of removing body tissues
- RFA -
 - > Destroys tumors that cannot be removed surgically
 - ➤ Through controlled heating
 - ➤ Minimally invasive

PROBLEM FORMULATION

- A cylindrical electrode is introduced into the middle of the selected myocardial tissue.
- Tissue properties are homogenous.
- Joule heat generation by resistive heating.
- Tissue temperature must go more then 50°C.

GOVERNING EQUATIONS

Penne's bioheat transfer equation:

$$\rho C_p \frac{\partial T}{\partial t} + \nabla \cdot (-k \cdot \nabla T) = \rho_b C_b \nu_b (T_b - T) + Q$$

Here, $\rho_b C_b v_b (T_b - T)$ is the blood perfusion term.

Where,

 ρ_b = Blood Density

 C_b = Specific Heat capacity of Blood

 v_b = Blood perfusion Rate

 T_b = Arterial Blood Temperature

T= Local tissue temperature

• $Q = \sigma |\nabla V|^2$ is from the electrode

Where,

 σ = Electrical conductivity

V = Electrical potential

GEOMETRY

Α

BOUNDARY CONDITIONS

- Axisymmetric
- Left surface is the axis
- Initial Temperature 37°C
- Electrode is excluded in the geometry
- Electric potential to the surface of electrode is implemented as a boundary condition
- Heat fluxes at all surface are zero

INPUT PARAMETERS

Parameter	Value
Thermal conductivity of the tissue, k	0.4925+0.001 195T Wm ⁻¹ K ⁻¹
Specific heat of the tissue, C_p	3200 Jkg ⁻¹ K ⁻¹
Density of the tissue, $ ho$	1200 kgm ⁻³
Duration of heating, t	60 s
Blood perfusion coefficient, $\rho_b C_{p,b} \dot{V}_b^{V}$	2000 Wm ⁻³ K ⁻¹
Electrical conductivity, σ	0.222 S m ⁻¹
Arterial blood temperature, Ta	37 °C
Initial tissue temperature, T_i	37 °C
Electric potential at the electrode surface, V	25 V

DEFINITION OF EXPRESSION

- Two most significant expression:
- k thermal conductivity of tissue: 0.4225+0.001195*T
- Q_blood Blood perfusion heat
- Q_dc heat source term due to radiofrequency (not used in Comsol Multiphysics v5.4/v5.5)
- Operational time: 60s

SIMULATION STEPS

Problem type specification:

Model wizard space dimension 2D Axisymmetric

Under Select Physics Heat transfer Electromagnetic
 Joule- heating

Under Select Study time dependent

• Under Model Builder:

Geometry Units

• Geometry Rectangle"

• Geometry _______ "Square"

• Geometry Booleans and Partitions Difference

MESHING

• Mesh Mapped Distribution

MESHING

VARIABLE DECLARATION

K and Q_blood are set as variables.

MATERIALS PROPERTY

Basic properties of tissue are defined under Materials

BOUNDARY CONDITIONS

 Boundary conditions are given of Electric Potential, Electric insulation and Ground under Electric current

BOUNDARY CONDITIONS

INITIAL VALUE

• 310.15 K is set as initial temperature

BOUNDARY CONDITION

• Heat source is defined under Heat Transfer in solid

STUDY

• Time Dependent — Change range — Compute

POST PROCESSING

TEMPERATURE VS TIME PLOT

- 1D Plot>Domain plot parameters>Point (4 selected)
- Y Axis Temperature (K)
- X Axis Time (s)

POST PROCESSING

ISOTHERMAL CONTOURS

PHILOSOPHY OF THE SIMULATION

- To observe the variation of the temperature of the tissue
- Range: 37°C to more than 50°C
- Observe when the desired myocardial injury takes place
- Maintain the temperatures in the tissue below 100°C to avoid unwanted phenomena
- The temperature is controlled by Voltage regulation of the electrode

SO LET'S STUDY THE OBSERVATIONS

V=25V Initial temperature = 310.15k

TEMPERATURE VS TIME GRAPH

Temperature varies from 305K to 350K.

TEMPERATURE CONTOUR

- Accurate Range 310K-348.3K
- Ablation scale3-4 mm

ADDITIONAL SIMULATION

Objective: Adaptive Mesh Refinement

- Mesh is adapted automatically to a finer mesh while the solution runs
- Feature supported only for steady state solution

CONVERTING TO STEADY STATE SOLUTION

Heat Generation Equation by Joule Heating:

$$Q = \sigma |\nabla V|^2$$

Equivalent Heat Generation from steady state diffusion concentration:

SIMULATION STEP VARIATION

BOUNDARY CONDITIONS

INPUT ALTERNATE EQUATION

TIME DEPENDENT SOLUTION

STATIONARY SOLUTION

Mesh is initially set at 'Extremely Coarse' when solution is started:

ADAPTIVE MESH SETTINGS

FINAL ADAPTED MESH AFTER SOLUTION

RESULT VARIATION

At extremely coarse mesh:

At final adaptive mesh:

TEAM MEMBERS AND CONTRIBUTION

THANK YOU!