Date	12 November 2022
Team ID	PNT2022TMID12899
Project Name	Fertilizers Recommendation System
	for disease prediction

```
# -*- coding: utf-8 -*-
```

Automatically generated by Colaboratory.

Original file is located at

https://colab.research.google.com/drive/1EyjsABIaXDXTPgUeZJgEBKqYVryamZZi

from tensorflow.keras.preprocessing.image import ImageDataGenerator

train_datagen=ImageDataGenerator(rescale=1./255,zoom_range=0.2,horizontal_flip=True,vertical_flip=False)

test_datagen=ImageDataGenerator(rescale=1./255)

 $x_train=train_datagen.flow_from_directory(r"C:\Users\maris_q3mm6nk\Desktop\FILES\data_for_ibm\Fertilizers_Recommendation_System_For_Disease_Prediction\Dataset\Plant\Disease\Veg-dataset\Veg-dataset\train_set",target_size=(128,128),$

class_mode='categorical',batch_size=24)

 $x_test_test_datagen.flow_from_directory(r'C:\Users\maris_q3mm6nk\Desktop\FILES\data_f or_ibm\Fertilizers_Recommendation_System_For_Disease_Prediction\Dataset\Plant\Disease\Veg-dataset\Veg-dataset\test_set',target_size=(128,128),$

class_mode='categorical',batch_size=24)

[&]quot;""veg data.ipynb

```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Convolution 2D, Max Pooling 2D, Flatten
model=Sequential()
model.add(Convolution2D(32,(3,3),input_shape=(128,128,3),activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Flatten())
model.summary()
model.add(Dense(300,activation='relu'))
model.add(Dense(150,activation='relu'))
model.add(Dense(9,activation='softmax'))
model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy'])
len(x_train)
1238/24
model.fit(x_train,steps_per_epoch=len(x_train),validation_data=x_test,validation_steps=len(
x_test),epochs=10)
model.save('vegetabledata.h5')
import numpy as np
```

```
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
model=load_model('vegetabledata.h5')
img=image.load_img(r"C:\Users\maris_q3mm6nk\Desktop\FILES\data_for_ibm\Fertilizers_
Recommendation_System_For_Disease_Prediction\Dataset Plant Disease\Veg-dataset\Veg-
dataset\test_set\Potato___Early_blight/b817817e-a6b1-4123-88e7-
db98b453ce17___RS_Early.B 6880.jpg")
img
x=image.img_to_array(img)
img=image.load_img(r"C:\Users\maris_q3mm6nk\Desktop\FILES\data_for_ibm\Fertilizers_
Recommendation_System_For_Disease_Prediction\Dataset Plant Disease\Veg-dataset\Veg-
dataset\test_set\Potato___Early_blight/b817817e-a6b1-4123-88e7-
db98b453ce17___RS_Early.B 6880.jpg",target_size=(128,128))
img
x=image.img_to_array(img)
X
x=np.expand_dims(x,axis=0)
\mathbf{X}
y=np.argmax(model.predict(x),axis=1)
x_train.class_indices
```

```
index=['Pepper,_bell___Bacterial_spot', 'Pepper,_bell__healthy', 'Potato___Early_blight', 'Potato___Late_blight', 'Potato___Late_blight', 'Tomato___Late_blight', 'Tomato___Late_blight', 'Tomato__Leaf_Mold', 'Tomato__Septoria_leaf_spot']

img=image.load_img(r"C:\Users\maris_q3mm6nk\Desktop\FILES\data_for_ibm\Fertilizers_
Recommendation_System_For_Disease_Prediction\Dataset Plant Disease\Veg-dataset\Veg-dataset\test_set\Potato__Early_blight/b817817e-a6b1-4123-88e7-db98b453ce17__RS_Early.B 6880.jpg", target_size=(128,128))

x=image.img_to_array(img)

x=np.expand_dims(x,axis=0)

y=np.argmax(model.predict(x),axis=1)

index=['Pepper,_bell__Bacterial_spot', 'Pepper,_bell__healthy', 'Potato__Early_blight', 'Potato__Late_blight', 'Potato__healthy', 'Tomato__Bacterial_spot', 'Tomato__Leaf_Mold', 'Tomato__Septoria_leaf_spot']

index[y[0]]
```