Spatial Data and Analysis in R

A PRISM Workshop

Adam Lauretig

The Ohio State University

Outline

Introduction

Spatial Data Prep

Spatial Autocorrelation

Regression

Spatial Regression

Discussion

Why Are We Here?

► Tobler's first law of geography:

Why Are We Here?

- ► Tobler's first law of geography:
- ► "Everything is related to everything else, but near things are more related than distant things"

Why Are We Here?

- ► Tobler's first law of geography:
- "Everything is related to everything else, but near things are more related than distant things"
- We want to quantify how the spatial relationship between our observations affect our inferences

A Caveat

▶ There are entire disciplines which study these issues (one of them is downstairs)

A Caveat

- ► There are entire disciplines which study these issues (one of them is downstairs)
- ▶ I will be introducing *spatial statistics* with a touch of *GIS*

A Caveat

- ▶ There are entire disciplines which study these issues (one of them is downstairs)
- ▶ I will be introducing *spatial statistics* with a touch of *GIS*
- ▶ I will not be discussing GIS in depth, nor will I discuss remote sensing at all

What are Spatial Data?

▶ Information (attributes) associated with a location

What are Spatial Data?

- Information (attributes) associated with a location
- ▶ Many kinds of spatial data: Points, Lines, Polygons, Raster data

What are Spatial Data?

- Information (attributes) associated with a location
- Many kinds of spatial data: Points, Lines, Polygons, Raster data
- Today, we are working with polygon data

Prepping our data

▶ Spatial data come in *shapefiles* which are really mini-databases

Prepping our data

- Spatial data come in shapefiles which are really mini-databases
- ORDBMS Linking spatial and attribute data

Prepping our data

- Spatial data come in shapefiles which are really mini-databases
- ORDBMS Linking spatial and attribute data
- Six parts, all combine to create a map to represent data

Loading Our data

Percent Black

AIDs Rate per 1000 people

Measuring Spatial Autocorrelation

What is spatial autocorrelation?

Measuring Spatial Autocorrelation

- What is spatial autocorrelation?
- ▶ Observations with more similar values tend to occur more closely together

Measuring Spatial Autocorrelation

- What is spatial autocorrelation?
- ▶ Observations with more similar values tend to occur more closely together
- Most common test: Moran's I

Formula for Moran's I

$$I = \frac{n}{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}} \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}(x_i - \bar{x})(x_j - \bar{x})}{\sum_{i=1}^{n} (x_i - \bar{x})^2},$$

where w_{ij} is the weight between observation i and j

▶ In Moran's I, there was this thing w_{ij}

- ▶ In Moran's I, there was this thing w_{ij}
- ► This is the *weights matrix*

- ▶ In Moran's I, there was this thing w_{ij}
- ► This is the *weights matrix*
- ▶ It allows us to measure the effect neighboring observations *j* have on our observation of interest i

- ▶ In Moran's I, there was this thing w_{ij}
- ► This is the *weights matrix*
- ▶ It allows us to measure the effect neighboring observations *j* have on our observation of interest i
- ► Can be specified in a variety of ways, the simplest of which is binary ("contiguity"): 1 if observations share a boundary, 0 if they do not

- ▶ In Moran's I, there was this thing w_{ij}
- ▶ This is the *weights matrix*
- ▶ It allows us to measure the effect neighboring observations *j* have on our observation of interest i
- ► Can be specified in a variety of ways, the simplest of which is binary ("contiguity"): 1 if observations share a boundary, 0 if they do not
- ▶ The default in R is "row standardized," where $w_{ij} = \frac{i}{\sum j}$

Creating a weights matrix in R

library(rgdal)

Running the Moran's I

Moran I statistic	Expectation	Variance	p-value
0.68	-0.01	0.00	0.00

▶ We can calculate this using a *Local Indicator of Spatial Autocorrelation* (LISA)

- ▶ We can calculate this using a *Local Indicator of Spatial Autocorrelation* (LISA)
- ▶ Measure how similar a value is compared to neighboring values

- ▶ We can calculate this using a *Local Indicator of Spatial Autocorrelation* (LISA)
- Measure how similar a value is compared to neighboring values
- ▶ While the Moran's I detects clustering, the LISA detects *clusters*

LISA Map AIDS Rate; weights: Q1

What About Regression with Spatial Data?

▶ Remember, a key regression assumption is that our observations are IID

What About Regression with Spatial Data?

- Remember, a key regression assumption is that our observations are IID
- ▶ If there is spatial autocorrelation in our data, we have fewer independent data points than we initially supposed

What About Regression with Spatial Data?

- Remember, a key regression assumption is that our observations are IID
- ▶ If there is spatial autocorrelation in our data, we have fewer independent data points than we initially supposed
- ▶ This shrinks our standard errors, making variables appear significant

What About Regression with Spatial Data?

- Remember, a key regression assumption is that our observations are IID
- ▶ If there is spatial autocorrelation in our data, we have fewer independent data points than we initially supposed
- This shrinks our standard errors, making variables appear significant
- Once we adjust our variance-covariance matrix, previously significant covariates might lose their significance

What About Regression with Spatial Data?

- Remember, a key regression assumption is that our observations are IID
- ▶ If there is spatial autocorrelation in our data, we have fewer independent data points than we initially supposed
- This shrinks our standard errors, making variables appear significant
- Once we adjust our variance-covariance matrix, previously significant covariates might lose their significance
- ► Addtionally, with spatial autocorrelation, our coefficients may be biased

What About Regression with Spatial Data?

- Remember, a key regression assumption is that our observations are IID
- ▶ If there is spatial autocorrelation in our data, we have fewer independent data points than we initially supposed
- ▶ This shrinks our standard errors, making variables appear significant
- Once we adjust our variance-covariance matrix, previously significant covariates might lose their significance
- Addtionally, with spatial autocorrelation, our coefficients may be biased
- ▶ Two ways of handling this: Spatial Error Models, and Spatial Autoregressive models

▶ Normally: $y_i = x_i\beta + e_i$, where $e = I(Y - X\beta)$

- ▶ Normally: $y_i = x_i\beta + e_i$, where $e = I(Y X\beta)$
- But, we want to model spatial dependence in the residuals

- ▶ Normally: $y_i = x_i\beta + e_i$, where $e = I(Y X\beta)$
- ▶ But, we want to model spatial dependence in the residuals
- $e_i = \sum_{j=1}^n w_{ij} + e_j + \varepsilon_i$, where $w_{ii} = 0$

- ▶ Normally: $y_i = x_i\beta + e_i$, where $e = I(Y X\beta)$
- ▶ But, we want to model spatial dependence in the residuals
- $e_i = \sum_{j=1}^n w_{ij} + e_j + \varepsilon_i$, where $w_{ii} = 0$
- ightharpoonup Basically, we regress the error e_i on the surrounding errors

- ▶ Normally: $y_i = x_i\beta + e_i$, where $e = I(Y X\beta)$
- ▶ But, we want to model spatial dependence in the residuals
- $e_i = \sum_{j=1}^n w_{ij} + e_j + \varepsilon_i$, where $w_{ii} = 0$
- \blacktriangleright Basically, we regress the error e_i on the surrounding errors
- We wind up with $e = (I W)(Y X\beta)$

- ▶ Normally: $y_i = x_i\beta + e_i$, where $e = I(Y X\beta)$
- ▶ But, we want to model spatial dependence in the residuals
- $e_i = \sum_{j=1}^n w_{ij} + e_j + \varepsilon_i$, where $w_{ii} = 0$
- ightharpoonup Basically, we regress the error e_i on the surrounding errors
- ▶ We wind up with $e = (I W)(Y X\beta)$
- ε is the residual of residuals, with $\sum_{\varepsilon} = \sigma^2 I$

- ▶ Normally: $y_i = x_i\beta + e_i$, where $e = I(Y X\beta)$
- ▶ But, we want to model spatial dependence in the residuals
- $e_i = \sum_{j=1}^n w_{ij} + e_j + \varepsilon_i$, where $w_{ii} = 0$
- ightharpoonup Basically, we regress the error e_i on the surrounding errors
- ▶ We wind up with $e = (I W)(Y X\beta)$
- ε is the residual of residuals, with $\sum_{\varepsilon} = \sigma^2 I$
- ▶ The full model: $y_i = x_i \beta + \sum_{j=1}^n w_{ij} e_j + \varepsilon_i$

▶ Option 2: the Spatial autoregressive model

- ▶ Option 2: the Spatial autoregressive model
- Instead of lagging the error term, lag y, the DV

- ▶ Option 2: the Spatial autoregressive model
- ▶ Instead of lagging the error term, lag y, the DV

$$y_i = x_i \beta + \sum_{j=1}^n w_{ij} y_j + \varepsilon_i$$

- ▶ Option 2: the Spatial autoregressive model
- ▶ Instead of lagging the error term, lag y, the DV
- $y_i = x_i \beta + \sum_{j=1}^n w_{ij} y_j + \varepsilon_i$
- ► SAR vs. SEM

Plain OLS

	Model 1	
(Intercept)	-3.05***	
	(0.80)	
PctWht	-0.01***	
	(0.00)	
PctHisp	0.02***	
	(0.00)	
Gini	7.97***	
	(0.71)	
PctHSEd	0.02**	
	(0.01)	
PctFemHH	0.01	
	(0.01)	
R ²	0.57	
Adj. R ²	0.55	
Num. obs.	174	
RMSE	0.54	
***p < 0.001, **p < 0.01, *p < 0.05		

Table: Statistical models

Did we model out our autocorrelation?

Did we model out our spatial autocorrelation?

Moran I statistic	Expectation	Variance	p-value
0.63	-0.01	0.00	0.00

No! This statistic didn't change much from before we ran our regression: .68 vs .63

Where is the residual autocorrelation?

Can we Model this Spatial Autocorrelation?

One option is to use fixed effects

Can we Model this Spatial Autocorrelation?

- One option is to use fixed effects
- ▶ But this removes something interesting the spatial relationship

Can we Model this Spatial Autocorrelation?

- One option is to use fixed effects
- ▶ But this removes something interesting the spatial relationship
- Another option is to explicitly model the spatial relationship

Spatial Autoregressive Model

	Model 1	
(Intercept)	-1.52*	
	(0.63)	
PctWht	-0.01***	
	(0.00)	
PctHisp	0.01**	
	(0.00)	
Gini	4.48***	
	(0.64)	
PctHSEd	0.01	
	(0.01)	
PctFemHH	0.00	
	(0.01)	
ρ	0.54***	
	(0.06)	
Num. obs.	174	
Parameters	8	
Log Likelihood	-101.93	
AIC (Linear model) 285.7		
AIC (Spatial model) 219.85		
LR test: statistic	st: statistic 67.86	
LR test: p-value 0.00		

A A 1 1 1 1

^{***}p < 0.001, **p < 0.01, *p < 0.05

Spatial Error Model

	Model 1		
(Intercept)	-0.28		
	(88.0)		
PctWht	-0.01**		
	(0.00)		
PctHisp	0.01**		
	(0.00)		
Gini	4.25***		
	(0.90)		
PctHSEd	0.01		
	(0.01)		
PctFemHH	0.01		
	(0.01)		
λ	0.66***		
	(0.06)		
Num. obs.	174		
Parameters	8		
Log Likelihood	-107.85		
AIC (Linear model)	285.72		
AIC (Spatial model)	231.70		
LR test: statistic	56.01		
LR test: p-value	0.00		
***p < 0.001, **p < 0.01, *p < 0.05			

Table: SEM model output

Comparing Findings - OLS

Comparing Regression Results

Did These Resolve our Spatial Autocorrelation?

Moran I statistic	Expectation	Variance	p-value
-0.10	-0.01	0.00	0.08

YES!

▶ Model the spatial relationship according to a Markov Random Field (MRF)

- ▶ Model the spatial relationship according to a Markov Random Field (MRF)
- ► Each observation depends only on values at neighboring locations, not global values

- ▶ Model the spatial relationship according to a Markov Random Field (MRF)
- ▶ Each observation depends only on values at neighboring locations, not global values
- ▶ Written out:

- ▶ Model the spatial relationship according to a Markov Random Field (MRF)
- ► Each observation depends only on values at neighboring locations, not global values
- ▶ Written out:
- $ightharpoonup c_{ii}$ is the weight matrix

- Model the spatial relationship according to a Markov Random Field (MRF)
- ▶ Each observation depends only on values at neighboring locations, not global values
- Written out:
- ► c_{ii} is the weight matrix

1

$$E(y_i|y_{-i}) = x_i\beta + \sum_{i=1}^n + c_{ij}[y_j - x_i\beta]$$

- ▶ Model the spatial relationship according to a Markov Random Field (MRF)
- ► Each observation depends only on values at neighboring locations, not global values
- Written out:
- $ightharpoonup c_{ij}$ is the weight matrix

1

$$E(y_i|y_{-i}) = x_i\beta + \sum_{i=1}^{n} + c_{ij}[y_j - x_i\beta]$$

$$\operatorname{var}(y_i|y_{-i}) = \sigma_i^2$$

▶ This defines a joint multivariate normal distribution with variance

▶ This defines a joint multivariate normal distribution with variance

$$\Sigma_Y = (I - C)^{-1} \sum_C$$

▶ This defines a joint multivariate normal distribution with variance

$$\Sigma_Y = (I - C)^{-1} \sum_C$$

$$\Sigma_{CAR} = \sigma^2 (I - C)^{-1} V_C$$

▶ This defines a joint multivariate normal distribution with variance

1

$$\Sigma_Y = (I - C)^{-1} \sum_C$$

$$\Sigma_{CAR} = \sigma^2 (I - C)^{-1} V_C$$

$$=\sigma^2 V_{CAR}$$

SAR vs. CAR

► SAR:

$$y_i \sim N(0, (I - W)^{-1}D^{\sim}(I - W)'^{-1})$$

 $\Sigma_{SAR} = \sigma^2(I - W)^{-1}V_{\epsilon}(I - W')^{-1}$

► SAR:

$$y_i \sim N(0, (I - W)^{-1}D^{\sim}(I - W)'^{-1})$$

 $\Sigma_{SAR} = \sigma^2(I - W)^{-1}V_{\epsilon}(I - W')^{-1}$

► CAR:

$$y_i \sim N(0, (I-C)^{-1}D)$$

 $\Sigma_{CAR} = \sigma^2(I-C)^{-1}V_C$

► CAR only requires the variance to estimate, SAR requires the full variance-covariance matrix

- ► CAR only requires the variance to estimate, SAR requires the full variance-covariance matrix
- CAR is computationally less intensive

- ► CAR only requires the variance to estimate, SAR requires the full variance-covariance matrix
- CAR is computationally less intensive
- ► CAR: local/first order dependency

- ► CAR only requires the variance to estimate, SAR requires the full variance-covariance matrix
- CAR is computationally less intensive
- CAR: local/first order dependency
- ► CAR: fit with MCMC can fit GLMs

- ► CAR only requires the variance to estimate, SAR requires the full variance-covariance matrix
- CAR is computationally less intensive
- CAR: local/first order dependency
- ► CAR: fit with MCMC can fit GLMs
- ► SAR: global/higher order dependency

- ► CAR only requires the variance to estimate, SAR requires the full variance-covariance matrix
- CAR is computationally less intensive
- CAR: local/first order dependency
- ► CAR: fit with MCMC can fit GLMs
- SAR: global/higher order dependency
- ► SAR: fit with MLE

Fitting a CAR (1)

	Median	2.5%	97.5%	n.sample	% accept	n.effective	Geweke.diag
(Intercept)	-0.60	-2.35	1.08	18000.00	100.00	2417.70	0.50
PctWht	-0.01	-0.02	-0.01	18000.00	100.00	2973.70	1.40
PctHisp	0.01	0.01	0.02	18000.00	100.00	2592.00	-0.80
Gini	3.98	2.10	5.97	18000.00	100.00	1628.90	-0.30
PctHSEd	0.02	0.00	0.03	18000.00	100.00	3252.90	-0.90
PctFemHH	0.01	-0.01	0.03	18000.00	100.00	2006.10	0.20
nu2	0.01	0.00	0.06	18000.00	100.00	1599.50	0.70
tau2	0.50	0.34	0.65	18000.00	100.00	3907.90	-0.80
rho	0.81	0.61	0.94	18000.00	44.10	5196.60	0.90

Table: uninformative priors

Fitting a CAR (2)

	Median	2.5%	97.5%	n.sample	% accept	n.effective	Geweke.diag
(Intercept)	-0.81	-2.48	0.86	18000.00	100.00	11033.20	1.40
PctWht	-0.01	-0.02	-0.01	18000.00	100.00	13600.70	0.20
PctHisp	0.01	0.01	0.02	18000.00	100.00	13780.40	0.30
Gini	4.03	2.12	5.93	18000.00	100.00	7508.30	-2.00
PctHSEd	0.02	0.00	0.03	18000.00	100.00	15248.50	-0.70
PctFemHH	0.01	-0.01	0.03	18000.00	100.00	10575.60	1.30
nu2	0.08	0.06	0.13	18000.00	100.00	10732.90	-1.30
tau2	0.25	0.16	0.38	18000.00	100.00	10628.20	2.70
rho	0.91	0.75	0.98	18000.00	43.80	10169.70	0.50

Table: weakly informative priors

▶ A non-parametric method for inference with non-stationary spatial data

- ▶ A non-parametric method for inference with non-stationary spatial data
- Non-stationarity: spatial variation is not constant across the data

- ▶ A non-parametric method for inference with non-stationary spatial data
- ▶ Non-stationarity: spatial variation is not constant across the data
- Use kernel regression to model local spatial variation

- ▶ A non-parametric method for inference with non-stationary spatial data
- Non-stationarity: spatial variation is not constant across the data
- Use kernel regression to model local spatial variation
- ▶ A weighted moving window regression:

$$Y(x) = \alpha(u_i, v_i) + \sum_{k} \beta_k(u_i, v_i) x_k + e_i$$

▶ A Kernel as a way of weighting observations which are closer together

The concept of a kernel

data point

dij is the distance between regression point i and data point j

- ▶ A Kernel as a way of weighting observations which are closer together
- ▶ Usually, fit adaptively different "sizes" depending on the density of the data

The concept of a kernel

data point

dij is the distance between regression point i and data point j

Fitting a Geographically Weighted Regression

Usually, we represent the results from a GWR visually

▶ GWR usually more of an exploratory tool than a hypothesis-testing tool

- ▶ GWR usually more of an exploratory tool than a hypothesis-testing tool
- ▶ Danger: overfitting the data

- ▶ GWR usually more of an exploratory tool than a hypothesis-testing tool
- Danger: overfitting the data
- Extensions: GWR + Ridge regression, GWR GLMs, GWPCA

► In addition to normal EDA, do some ESDA (Exploratory Spatial Data Analysis), mapping out variables

- ► In addition to normal EDA, do some ESDA (Exploratory Spatial Data Analysis), mapping out variables
- Check for spatial autocorrelation

- ► In addition to normal EDA, do some ESDA (Exploratory Spatial Data Analysis), mapping out variables
- Check for spatial autocorrelation
- ▶ Run your normal regression, with the variables you think are necessary

- ► In addition to normal EDA, do some ESDA (Exploratory Spatial Data Analysis), mapping out variables
- Check for spatial autocorrelation
- ▶ Run your normal regression, with the variables you think are necessary
- Check once more for spatial autocorrelation, in your residuals

- ► In addition to normal EDA, do some ESDA (Exploratory Spatial Data Analysis), mapping out variables
- Check for spatial autocorrelation
- ▶ Run your normal regression, with the variables you think are necessary
- Check once more for spatial autocorrelation, in your residuals
- ▶ If there's still autocorrelation, run a spatial model

- ► In addition to normal EDA, do some ESDA (Exploratory Spatial Data Analysis), mapping out variables
- Check for spatial autocorrelation
- Run your normal regression, with the variables you think are necessary
- Check once more for spatial autocorrelation, in your residuals
- ▶ If there's still autocorrelation, run a spatial model
- ▶ One final check for autocorrelation in your residuals

 Voting and Political Behavior patterns (Data available at the Census Tract level (or less))

- Voting and Political Behavior patterns (Data available at the Census Tract level (or less))
- Agricultural/industrial data (economic output)

- Voting and Political Behavior patterns (Data available at the Census Tract level (or less))
- Agricultural/industrial data (economic output)
- ► Conflict/Political Violence data (ex: ACLED)

- Voting and Political Behavior patterns (Data available at the Census Tract level (or less))
- Agricultural/industrial data (economic output)
- Conflict/Political Violence data (ex: ACLED)
- ► Anything with an address or lon/lat coordinates can be georeferenced

► Spatial/Spatio-temporal scan statistics

- Spatial/Spatio-temporal scan statistics
- ► Kernel Density Estimation

- Spatial/Spatio-temporal scan statistics
- Kernel Density Estimation
- Kriging/Geostatistics

- Spatial/Spatio-temporal scan statistics
- Kernel Density Estimation
- Kriging/Geostatistics
- Spatio-temporal approaches

➤ Yuri Zhukov's Spatial Workshop: http://www.people.fas.harvard.edu/~zhukov/spatial.html

- Yuri Zhukov's Spatial Workshop: http://www.people.fas.harvard.edu/~zhukov/spatial.html
- ▶ Bivand, Roger S., and Edzer J. Pebesma. *Applied Spatial Data Analysis with R.* Springer, 2013.

- Yuri Zhukov's Spatial Workshop: http://www.people.fas.harvard.edu/~zhukov/spatial.html
- ▶ Bivand, Roger S., and Edzer J. Pebesma. *Applied Spatial Data Analysis with R.* Springer, 2013.
- ▶ Brunsdon, Chris, and Lex Comber. *An introduction to R for spatial analysis & mapping.* Sage, 2015.

- Yuri Zhukov's Spatial Workshop: http://www.people.fas.harvard.edu/~zhukov/spatial.html
- ▶ Bivand, Roger S., and Edzer J. Pebesma. *Applied Spatial Data Analysis with R.* Springer, 2013.
- ▶ Brunsdon, Chris, and Lex Comber. *An introduction to R for spatial analysis & mapping.* Sage, 2015.
- ► Cressie, Noel. Statistics for spatial data. John Wiley & Sons, 1993.

- Yuri Zhukov's Spatial Workshop: http://www.people.fas.harvard.edu/~zhukov/spatial.html
- ▶ Bivand, Roger S., and Edzer J. Pebesma. *Applied Spatial Data Analysis with R.* Springer, 2013.
- ▶ Brunsdon, Chris, and Lex Comber. *An introduction to R for spatial analysis & mapping.* Sage, 2015.
- ► Cressie, Noel. Statistics for spatial data. John Wiley & Sons, 1993.
- ▶ Darmofal, David. *Spatial Analysis for the Social Sciences*. Cambridge University Press, 2015.

- Yuri Zhukov's Spatial Workshop: http://www.people.fas.harvard.edu/~zhukov/spatial.html
- ▶ Bivand, Roger S., and Edzer J. Pebesma. *Applied Spatial Data Analysis with R.* Springer, 2013.
- ▶ Brunsdon, Chris, and Lex Comber. *An introduction to R for spatial analysis & mapping.* Sage, 2015.
- ► Cressie, Noel. Statistics for spatial data. John Wiley & Sons, 1993.
- ▶ Darmofal, David. *Spatial Analysis for the Social Sciences*. Cambridge University Press, 2015.
- ▶ Waller, Lance A., and Carol A. Gotway. *Applied spatial statistics for public health data*. John Wiley & Sons, 2004.

Acknowledgements

Thank you to Jan Box-Steffensmeier for this opportunity, and to Elisabeth Root, whose code I drew heavily from.

