T1: Interpretabilidade de Modelos de Aprendizado de Máquina

Aprendizado de Máquina

Prof. Me. Otávio Parraga

Objetivo:

Dentre as várias propriedades desejáveis em um modelo de aprendizado de máquina, a interpretabilidade é uma das mais importantes. Modelos interpretáveis são mais fáceis de entender, depurar e confiar, o que é essencial em muitas aplicações críticas como nas áreas da saúde e direito.

O objetivo deste trabalho é explorar e compreender o que são modelos interpretáveis e como extrair informações relevantes do processo e aprendizado. Você deverá treinar e interpretar modelos já estudados (**KNN**, **Naïve Bayes**, **Árvore de Decisão**) relatando e analisando os resultados encontrados.

GRUPOS: mínimo 2 alunos e máximo de 5.

Atenção: Trabalhos individuais NÃO SERÃO CONSIDERADOS!

Etapas:

1. Escolha do Dataset:

- Os alunos devem escolher um dataset público (por exemplo, do UCI Machine Learning Repository, Kaggle, ou outro) que seja adequado para classificação. O dataset deve:
 - ter um número razoável de features (pelo menos 5) para permitir a análise de importância de features;
 - resolver um problema de classificação, ou seja, a variável a ser predita deve ser categórica.
- O conjunto de dados deve incluir tanto variáveis numéricas quanto categóricas, e deve ser suficientemente grande para permitir uma análise significativa (pelo menos 100 instâncias).
- Não serão considerados datasets comumente usados em exemplos de aula, como: Iris,
 Titanic, Adult, Breast Cancer, Wine Quality, etc.
- Exemplos de sites que podem ser utilizados para procurar dados:
 - UCI Machine Learning Repository

- Kaggle Datasets
- Google Dataset Search

2. Treinamento dos Modelos:

- Você deverá montar o fluxo de treinamento de um modelo de aprendizado de máquina, incluindo:
 - Pré-processamento dos dados (tratamento de valores ausentes, normalização, codificação de variáveis categóricas, etc.).
 - Divisão do dataset em conjuntos de treinamento e teste (80/20 ou 70/30).
 - Treinamento dos modelos KNN, Naïve Bayes e Árvore de Decisão.
 - Avaliação do desempenho dos modelos utilizando métricas apropriadas (acurácia, precisão, recall, F1-score, etc.).
 - Justifique as escolhas feitas durante o pré-processamento e treinamento dos modelos.
- Garanta que os modelos possuem uma performance suficiente para que a análise de interpretabilidade seja significativa.

3. Interpretabilidade dos Modelos:

- Você deverá explicar as decisões de cada um dos modelos, para isso, utilize ferramentas variadas de interpretabilidade para cada um dos modelos. Algumas sugestões são:
 - Árvore de Decisão: Analisar a árvore gerada e identificar as features mais importantes.
 - Naïve Bayes: Analisar as probabilidades condicionais e discutir como elas influenciam as previsões.
 - KNN: Discutir a dificuldade de interpretação do KNN e explorar técnicas como SHAP ou LIME para interpretar as previsões.
- Tenha em mente que ferramentas como Análise de Permutação, SHAP e LIME podem ser usadas independentemente do modelo.

4. Comparação e Análise:

- Comparar a interpretabilidade dos três modelos. Tente responder algumas perguntas:
 - Os resultados fizeram sentido?
 - Os modelos concordaram em quais as variáveis mais relevantes?
- Explicar as ferramentas de interpretabilidade utilizadas nos modelos.
- Discutir as limitações de cada modelo em termos de interpretabilidade.

Apresentação:

- Os alunos devem gravar e postar um vídeo de uma breve apresentação (10-15 minutos) para explicar o desenvolvimento do trabalho. A apresentação deve incluir:
 - Descrição do dataset e do problema.
 - Metodologia de treinamento e avaliação dos modelos.

- Análise de interpretabilidade para cada modelo.
- Discussão sobre a comparação dos modelos e a importância da interpretabilidade.
- Conclusões e reflexões finais.

Critérios de Avaliação:

Aspecto	Escolha dos Dados	Pré- Processamento e Treinamento	Interpretabilidade	Análise	Apresentação
Pontos	1	1	2	3	3

Entregáveis:

- O código desenvolvido deve ser enviado via GitHub ou uma pasta compactada no Moodle.
- O vídeo da apresentação deve ser enviado via YouTube (não listado) ou outra plataforma de compartilhamento de vídeo. Utilize um arquivo txt para indicar o link.

Apontamentos Gerais:

- Justificativas ou discussões, como necessário ao analisar a interpretabilidade, devem estar presentes no código em formato de README, comentários ou Markdown.
- Principais bibliotecas de aprendizado de máquina ou utilitárias, são:
 - Scikit-learn: https://scikit-learn.org/stable/
 - Pandas: https://pandas.pydata.org/
 - NumPy: https://numpy.org/
 - Matplotlib: https://matplotlib.org/
 - Seaborn: https://seaborn.pydata.org/
- Dentre as bibliotecas de interpretabilidade, alguns exemplos, além do próprio Sklearn são:
 - SHAP (SHapley Additive exPlanations): https://github.com/slundberg/shap
 - LIME (Local Interpretable Model-agnostic Explanations): https://github.com/marcotcr/lime
 - ELI5 (Explain Like I'm 5): https://github.com/eli5-org/eli5

Prazo:

O trabalho deve ser entregue, impreterivelmente, até 16/09/2025.