Coco: Runtime Reasoning About Conflicting Commitments

Nirav Ajmeri, Jiaming Jiang, Rada Chirkova, Jon Doyle, Munindar P. Singh

Department of Computer Science North Carolina State University

July 15, 2016

< ロ > ∢母 > ∢差 > ∢差 > 差 のQで

July 15, 2016

1 / 19

Introduction

Formal Language

Formalizing Healthcare Scenario

Commitment Schema

▶ For effective interactions, agents enter into commitments

3 / 19

Commitment Instances

Problem

How to detect and resolve runtime conflicts?

Contributions

- Representations for commitments and dominance
- Decision procedures for determining compliance of actions with commitment instances
 - apply ASP to identify nondominated commitments
 - ▶ apply Alechina et al.'s [2013] techniques to determine compliance of agent actions with nondominated commitment instances

Introduction

Formal Language

Formalizing Healthcare Scenario

An Example Commitment Schema

Definition of the gCom schema

```
1 schema(gCom)

2 guardianR(C, G, T) \rightarrow dbt(gCom, G, T)

3 guardianR(C, G, T) \rightarrow crd(gCom, C, T)

4 [sick(C, T) \land crd(gCom, C, T)] \rightarrow ant(gCom, T)

5 [bring(G, C, Ped, T) \land pedR(C, Ped, T) \land dbt(gCom, G, T) \land crd(gCom, C, T)] \rightarrow con(gCom, T)

6 dDuration(gCom, 3)
```

4□ > 4□ > 4□ > 4□ > 4□ > 4□

7 / 19

Schema Predicates

Schema predicates	
schema(S)	ant(S,T)
dbt(S, P, T)	con(S, T)
crd(S, P, T)	dDuration(S, T)
Instance predicates	
sInst(Si)	violated(Si, T)
isInstOf(Si, S)	satisfied(Si, T)
dbtI(Si, P)	becomesDetached(Si, T)
crdI(Si, P)	becomesViolated(Si, T)
antI(Si, T)	becomesSat(Si, T)
conl(Si, T)	$conflicting(Si_1, Si_2, T)$
dDurationI(Si, T)	$dominates(Si_1, Si_2, T)$
detached(Si, T)	dominated(Si, T)
sameDbtl	$conINotHold(Si, T_1, T)$
sameCrdI	

Satisfaction and Violation

Satisfaction

 $[\textit{detached}(\textit{Si}, \textit{T}') \land \textit{conl}(\textit{Si}, \textit{T}) \land \textit{difference}(\textit{T}, \textit{T}', 1)] \rightarrow \textit{becomesSat}(\textit{Si}, \textit{T})$

Violation

```
1 [becomesDetached(Si, T_1) \land dDurationI(Si, T_2)
\land addition(T_1, T_2, T) \land conINotHold(Si, T_1, T)
\land \neg dominated(Si, T)] \rightarrow becomesViolated(Si, T)
```


Conflict between Commitment Instances

1 [$detached(Si_1, T) \land detached(Si_2, T) \land \neg(conl(Si_1, T) \leftrightarrow conl(Si_2, T))$] $\rightarrow conflicting(Si_1, Si_2, T)$

Dominance between Commitment Instances

1 [isInstOf(Si_1 , gCom) \land isInstOf(Si_2 , wCom) \land detached(Si_1 , T) \land detached(Si_2 , T) \land sameDbtI(Si_1 , Si_2)] \rightarrow dominates(Si_1 , Si_2 , T)

Introduction

Formal Language

Formalizing Healthcare Scenario

Possible Enactments

 $[atLocation(P, L_1, T) \land (L_1 \neq L_2)] \rightarrow \neg atLocation(P, L_2, T)$

Conflict-detection, Formally

Example Basis for Dominance: Availability

 $[isInstOf(Si_1, gCom) \land isInstOf(Si_2, gCom) \land detached(Si_1, T) \land detached(Si_2, T)]$ \land same $CrdI(Si_1, Si_2) \land dbtI(Si_1, G_1) \land dbtI(Si_2, G_2) \land (G_1 \neq G_2)$ \land available(G_1, T) $\land \neg$ available(G_2, T)] \rightarrow dominates(Si_1, Si_2, T)

Example Basis for Dominance: Proximity

distance(Bob, Alice, 3)

 $\begin{array}{ll} 1 & [\textit{isInstOf}(Si_1, \textit{gCom}) \land \textit{isInstOf}(Si_2, \textit{gCom}) \land \textit{detached}(Si_1, T) \land \textit{detached}(Si_2, T) \\ & \land \textit{sameCrdI}(Si_1, Si_2) \land \textit{crdI}(Si_1, C) \land \textit{dbtI}(Si_1, G_1) \land \textit{dbtI}(Si_2, G_2) \land (G_1 \neq G_2) \\ & \land \neg \textit{available}(G_1, T) \land \neg \textit{available}(G_2, T) \land \textit{dist}(G_1, C, D_1, T) \land \textit{dist}(G_2, C, D_2, T) \\ & \land (D_1 \leq D_2)] \rightarrow \textit{dominates}(Si_1, Si_2, T) \end{array}$

Introduction

Formal Language

Formalizing Healthcare Scenario

Conclusion and Future Directions

Coco provides

- Flexible formalization of instances
- Reasoning about conflicts between commitments and dominance at runtime

Subsequent work

- Human-subject study to elicit normative requirements
- Participants using Coco-based methodology
 - produce specifications with higher coverage and correctness;
 - expend equal time; and
 - ▶ feel Coco-based methodology is easy

Future directions

- ▶ Dealing with cycles in dominance
- ▶ Applying priority to a set of dominance relations

Thank you

Multiagent Systems and Service-Oriented Computing Laboratory, NCSU http://research.csc.ncsu.edu/mas/

