Math 421, Section 1 Homework 3 Harry Luo

Problem 1. Determine whether each of the following functions are injective, surjective, and bijective, and prove your answer.

- (a) $f: \mathbb{Z} \to \mathbb{Z}$, f(x) = 2x.
- (b) $g: \mathbb{R} \to \mathbb{R}, g(x) = 2x$.

Solution: (a) Injectivity: Suppose $\exists x_1, x_2 \in \mathbb{Z}, s.t. f(x_1) = f(x_2)$, want to show: $x_1 = x_2$.

$$f(x_1) = f(x_2) \implies 2x_1 = 2x_2 \implies x_1 = x_2.$$
 (1)

The function is thus injective.

Surjectivity: Want to show $\forall y \in \mathbb{Z}, \exists x \in \mathbb{Z} \text{ s.t. } f(x) = y$. Suppose $x, y \in \mathbb{Z}$, and let f(x) = y. i.e.,

$$2x = y \implies x = \frac{y}{2} \in \mathbb{Z}. \tag{2}$$

However, $\frac{y}{2} \in \mathbb{Z}$ only if y is even. So the above is not true for an arbiturary $y \in \mathbb{Z}$, contradictory to our assumption. Thus, the function is not surjective.

Collecting the above, the function is not bijective.

(b) Injectivity: Suppose $\exists x_1, x_2 \in \mathbb{R}, s.t. g(x_1) = g(x_2)$, want to show: $x_1 = x_2$.

$$g(x_1) = g(x_2) \implies 2x_1 = 2x_2 \implies x_1 = x_2.$$
 (3)

The function is thus injective.

Surejectivity: Suppose $y \in \mathbb{R}$, we want to find $x \in \mathbb{R}$, s.t. g(x) = y.

$$2x = y \implies x = \frac{y}{2} \in \mathbb{R}. \tag{4}$$

So the function is surjective.

Collecting the above, the function g(x) is bijective.

Problem 2. Let $f: A \to B$ be a function and $A_1, A_2 \subseteq A$ and $B_1, B_2 \subseteq B$ be subsets. Prove the following statements:

- (a) $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$.
- (b) $f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$.
- (c) $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$.
- (d) $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$.

Solution: (a) *Proof.* \subseteq : Let $y \in f(A_1 \cup A_2)$. By definition of image, $\exists x \in A_1 \cup A_2$ s.t. f(x) = y.

Hence, $x \in A_1$ or $x \in A_2$. Thus, $y \in f(A_1)$ or $y \in f(A_2)$, implying $y \in f(A_1) \cup f(A_2)$. Therefore, $f(A_1 \cup A_2) \subseteq f(A_1) \cup f(A_2)$

 \supseteq : Let $y \in f(A_1) \cup f(A_2)$. Then $y \in f(A_1)$ or $y \in f(A_2)$.

Thus, $\exists x \in A_1 \text{ or } x \in A_2 \text{ s.t. } f(x) = y.$

Therefore, $x \in A_1 \cup A_2$ and $y = f(x) \in f(A_1 \cup A_2)$.

Thus, $f(A_1) \cup f(A_2) \subseteq f(A_1 \cup A_2)$.

Hence, $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$.

(b) Proof. Let $y \in f(A_1 \cap A_2)$. Then $\exists x \in A_1 \cap A_2$ s.t. f(x) = y. Since $x \in A_1$ and $x \in A_2$, $y \in f(A_1)$ and $y \in f(A_2)$. Thus, $y \in f(A_1) \cap f(A_2)$. Therefore, $f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$.

(c) Proof. \subseteq : Let $x \in f^{-1}(B_1 \cup B_2)$. Then $f(x) \in B_1 \cup B_2$, so $f(x) \in B_1$ or $f(x) \in B_2$. Hence, $x \in f^{-1}(B_1)$ or $x \in f^{-1}(B_2)$, implying $x \in f^{-1}(B_1) \cup f^{-1}(B_2)$. Thus $f^{-1}(B_1 \cup B_2) \subseteq f^{-1}(B_1) \cup f^{-1}(B_2)$

 \supseteq : Let $x \in f^{-1}(B_1) \cup f^{-1}(B_2)$.

Then $x \in f^{-1}(B_1)$ or $x \in f^{-1}(B_2)$, meaning $f(x) \in B_1$ or $f(x) \in B_2$.

Thus, $f(x) \in B_1 \cup B_2$ and $x \in f^{-1}(B_1 \cup B_2)$.

So $f^{-1}(B_1) \cup f^{-1}(B_2) \subseteq f^{-1}(B_1 \cup B_2)$

Therefore, $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$.

- (d) Proof. \subseteq : Let $x \in f^{-1}(B_1 \cap B_2)$. Then $f(x) \in B_1 \cap B_2$, so $f(x) \in B_1$ and $f(x) \in B_2$. Hence, $x \in f^{-1}(B_1)$ and $x \in f^{-1}(B_2)$, implying $x \in f^{-1}(B_1) \cap f^{-1}(B_2)$. So, $f^{-1}(B_1 \cap B_2) \subseteq f^{-1}(B_1) \cap f^{-1}(B_2)$
 - \supseteq : Let $x \in f^{-1}(B_1) \cap f^{-1}(B_2)$. Then $f(x) \in B_1$ and $f(x) \in B_2$, so $f(x) \in B_1 \cap B_2$. Thus, $x \in f^{-1}(B_1 \cap B_2)$.

Therefore, $f^{-1}(B_1) \cap f^{-1}(B_2) \subseteq f^{-1}(B_1 \cap B_2)$.

Therefore, $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$.

Problem 3. Let $f: A \to B$ be a function. Prove that f is injective if and only if $f(A_1 \cap A_2) = f(A_1) \cap f(A_2)$ for all subsets $A_1, A_2 \subseteq A$.

Solution: We will prove the equivalence by demonstrating both implications.

1. f is injective $\Rightarrow \forall A_1, A_2 \subseteq A, f(A_1 \cap A_2) = f(A_1) \cap f(A_2)$

Proof. Assume f is injective.

 \subseteq Let $y \in f(A_1 \cap A_2)$. Then $\exists x \in A_1 \cap A_2$ such that f(x) = y. Since $x \in A_1$ and $x \in A_2$, it follows that $y \in f(A_1)$ and $y \in f(A_2)$. Therefore, $y \in f(A_1) \cap f(A_2)$.

 \supseteq Let $y \in f(A_1) \cap f(A_2)$. Then $\exists x_1 \in A_1 \text{ and } \exists x_2 \in A_2 \text{ such that } f(x_1) = y \text{ and } f(x_2) = y$. Since f is injective, $x_1 = x_2$. Let $x = x_1 = x_2$. Then $x \in A_1 \cap A_2$, and hence $y = f(x) \in f(A_1 \cap A_2)$.

Thus,
$$f(A_1 \cap A_2) = f(A_1) \cap f(A_2)$$
 when f is injective.

2. $\forall A_1, A_2 \subseteq A, f(A_1 \cap A_2) = f(A_1) \cap f(A_2) \Rightarrow f$ is injective

Proof. Assume $\forall A_1, A_2 \subseteq A$, $f(A_1 \cap A_2) = f(A_1) \cap f(A_2)$. We aim to show that f is injective. Suppose for contradiction that f is not injective. Then $\exists x_1, x_2 \in A$ with $x_1 \neq x_2$ and

Suppose, for contradiction, that f is not injective. Then $\exists x_1, x_2 \in A$ with $x_1 \neq x_2$ and $f(x_1) = f(x_2) = y$.

Consider the subsets $A_1 = \{x_1\}$ and $A_2 = \{x_2\}$.

Since $x_1 \neq x_2$,

$$A_1 \cap A_2 = \emptyset$$
.

Thus,

$$f(A_1 \cap A_2) = f(\emptyset) = \emptyset.$$

$$f(A_1) = \{f(x_1)\} = \{y\}, \quad f(A_2) = \{f(x_2)\} = \{y\},$$

SO

$$f(A_1) \cap f(A_2) = \{y\} \cap \{y\} = \{y\}.$$

We have

$$f(A_1 \cap A_2) = \emptyset \neq \{y\} = f(A_1) \cap f(A_2),$$

3

which contradicts the assumption. Therefore, f must be injective.

Problem 4. Let $f: A \to B$ be a function. Prove that the following two statements are equivalent:

- (a) The function f is surjective.
- (b) For every set C and for any functions $g: B \to C$ and $h: B \to C$ such that $g \circ f = h \circ f$, we have g = h.

Solution: (1) implies (2):

Assume f is surjective. Let C be an arbitrary set, and let $g, h : B \to C$ satisfy $g \circ f = h \circ f$. For any $b \in B$, since f is surjective, there exists $a \in A$ such that f(a) = b. Therefore,

$$g(b) = g(f(a)) = (g \circ f)(a) = (h \circ f)(a) = h(f(a)) = h(b).$$

Hence, g = h.

(2) implies (1):

Assume statement 2 holds. Suppose, for contradiction, that f is not surjective. Then there exists $b_0 \in B$ such that $b_0 \notin \text{Image}(f)$. We will use this element to construct specific functions g and h that satisfy the premise of statement 2 but are not equal, leading to a contradiction:

Let $C = \{0, 1\}$ and define the functions $g, h : B \to C$ as follows:

$$g(b) = \begin{cases} 0 & \text{if } b = b_0, \\ 1 & \text{otherwise,} \end{cases} \quad h(b) = 1 \text{ for all } b \in B.$$

Since $b_0 \notin \text{Image}(f)$, for all $a \in A$, g(f(a)) = 1 = h(f(a)). Thus, $g \circ f = h \circ f$. However, $g \neq h$ because $g(b_0) = 0$ while $h(b_0) = 1$, which contradicts the uniqueness condition.

Therefore, f must be surjective.

Problem 5. Let A be a nonempty set and $f: A \to A$ a function. We call f an *involution* if $(f \circ f)(a) = a$ for all $a \in A$. Prove that if $f: A \to A$ is an involution, then f is bijective. What is the inverse function f^{-1} in terms of f?

Solution: 1. Injectivity

Assume that for some $a_1, a_2 \in A$,

$$f(a_1) = f(a_2).$$

Applying f to both sides of the equation:

$$f(f(a_1)) = f(f(a_2)).$$

Given that f is an involution:

$$(f \circ f)(a_1) = (f \circ f)(a_2)a_1 = a_2.$$

Thus, f is injective.

2. Surjectivity

Take any element $b \in A$. Since f is an involution:

$$f(f(b)) = b.$$

Let a = f(b). Then:

$$f(a) = f(f(b)) = b.$$

Therefore, for every $b \in A$, there exists an $a \in A$ (specifically, a = f(b)) such that f(a) = b. Therefore f is surjective.

Since f is both injective and surjective, it is bijective.

Inverse Function

By definition, the inverse function f^{-1} satisfies:

$$f^{-1}(f(a)) = a$$
 and $f(f^{-1}(a)) = a$ for all $a \in A$.

Given that f is an involution:

$$f(f(a)) = a.$$

Comparing the two conditions, we observe that f itself satisfies the properties required of an inverse function. Therefore:

$$f^{-1} = f.$$

Problem 6. Prove or disprove the following statements:

- (a) The set $\{x \in \mathbb{R} : x \ge 2\}$ is an interval.
- (b) The set $\{x \in \mathbb{R} : x \neq 2\}$ is an interval.

(Hint: In order to disprove a statement, you must prove that the negation of the statement is true.)

1. The Set $\{x \in \mathbb{R} \mid x \geq 2\}$ is an Interval Proof: To confirm that $S = [2, \infty)$ is indeed an interval, we verify the interval definition.

Solution: (a) Take any two elements $a, b \in S$ with a < b:

$$a, b \ge 2$$
 and $a < b$.

(b) Consider any $c \in \mathbb{R}$ such that a < c < b:

$$a < c < b$$
 and $a \ge 2$ \Rightarrow $c > a \ge 2$ \Rightarrow $c \ge 2$.

(c) Thus, $c \in S$ since $c \geq 2$.

Since every number between any two elements of S is also contained within S, S satisfies the definition of an interval.

Conclusion: The set $\{x \in \mathbb{R} \mid x \geq 2\}$ is an interval, specifically the closed and unbounded interval $[2, \infty)$.

2. The Set $\{x \in \mathbb{R} \mid x \neq 2\}$ is an Interval

Statement: The set $T = \{x \in \mathbb{R} \mid x \neq 2\}$ is an interval.

Proof:

We aim to determine whether the set $T = \mathbb{R} \setminus \{2\}$ satisfies the definition of an interval.

Assumption for Contradiction: Suppose T is an interval.

Analysis:

1. **Structure of T^{**} :

$$T = (-\infty, 2) \cup (2, \infty)$$

This is the real line with the single point x = 2 removed.

- 2. **Interval Properties**: For T to be an interval, it must be connected; that is, there should be no "gaps" in T. However, T explicitly excludes the point x=2, creating a discontinuity.
- 3. **Violation of Interval Definition**: Consider two points a=1 and b=3 in T, with a<2< b. According to the interval definition, every c such that a< c< b must be in T. Take c=2, which satisfies a< c< b, but $c=2\notin T$. This contradicts the requirement that all intermediate points must be included in the interval.

Conclusion: The set $T = \{x \in \mathbb{R} \mid x \neq 2\}$ is not an interval because it fails to include all real numbers between certain pairs of its elements, specifically excluding the point x = 2.

Summary

- (a) **True**: The set $\{x \in \mathbb{R} \mid x \geq 2\}$ is an interval, precisely the closed and unbounded interval $[2, \infty)$.
- (b) **False**: The set $\{x \in \mathbb{R} \mid x \neq 2\}$ is not an interval, as it excludes the point x = 2, resulting in a disconnected set.

Final Answer:

- (a) **True**. The set $\{x \in \mathbb{R} \mid x \ge 2\}$ is the interval $[2, \infty)$.
- (b) False. The set $\{x \in \mathbb{R} \mid x \neq 2\}$ is not an interval.