em que f_0 é a **resolução de frequência** [separação entre amostras de G(f)], caso f_0 seja dado, podemos selecionar o valor de T_0 segundo a Eq. (3.106). Conhecidos os valores de T_0 e T_s , determinamos o de N_0 de

$$N_0 = \frac{T_0}{T_s} \tag{3.107}$$

Em geral, se o sinal for limitado no tempo, G(f) não será limitado em frequência e haverá mascaramento no cálculo de G_q . Para reduzir o efeito de mascaramento, precisamos aumentar a frequência de dobramento, ou seja, devemos reduzir o valor de T_s (intervalo de amostragem) tanto quanto praticamente possível. Se o sinal for limitado em frequência, g(t) não será limitado no tempo, de modo que haverá mascaramento (sobreposição) no cálculo de g_k . Para reduzir este mascaramento, precisamos aumentar o valor de T_0 , o período de g_k . Isso implica a redução do intervalo f_0 (em hertz) de amostragem em frequência. Em qualquer dos casos (redução de T_s , no caso de sinal limitado no tempo, ou aumento de T_0 , no caso de sinal limitado em frequência), para maior precisão, precisamos aumentar o número de amostras N_0 , pois $N_0 = T_0/T_s$. Existem, ainda, sinais que não são limitados nem no tempo nem em frequência. Para estes sinais, devemos reduzir T_s e aumentar T_0 .

Pontos de Descontinuidade

Caso g(t) tenha, em um ponto de amostragem, uma descontinuidade do tipo degrau, o valor da amostra deve ser tomado como a média dos valores nos dois lados da descontinuidade, pois a representação de Fourier em um ponto de descontinuidade converge para o valor médio.

Uso de Algoritmo de FFT no Cálculo de DFT

O número de contas necessário para o cálculo de uma DFT foi drasticamente reduzido em um algoritmo desenvolvido por Tukey e Cooley, em 1965. Esse algoritmo, conhecido como **transformada de Fourier rápida*** (**FFT** — *fast Fourier transform*), reduz o número de contas de algo da ordem de N^2 para N_0 log N_0 . Para calcular o valor de uma amostra G_r pela Eq. (3.103a), precisamos de N_0 multiplicações complexas e $N_0 - 1$ adições complexas. Para calcular N_0 valores de G_r ($r = 0, 1, ..., N_0 - 1$), precisamos de um total de N^2 multiplicações complexas e $N_0(N_0 - 1)$ adições complexas. Para grandes valores de N_0 , isto pode exigir um tempo proibitivamente grande, mesmo com o uso de computador de alta velocidade. O algoritmo de FFT é um salva-vidas em aplicações de processamento de sinais. O algoritmo de FFT fica simplificado se escolhermos N_0 como uma potência de 2, embora isto não seja, em geral, necessário. Detalhes da FFT podem ser encontrados em qualquer livro sobre processamento de sinais (por exemplo, Ref. 3).

3.10 EXERCÍCIOS COM O MATLAB

Cálculo de Transformadas de Fourier

Nesta seção de exercícios baseados em computador, consideremos dois exemplos para ilustrar o uso de DFT no cálculo da transformada de Fourier. Usaremos MATLAB para calcular a DFT com o algoritmo de FFT. No primeiro exemplo, o sinal é $g(t) = e^{-2t}u(t)$, com início em t = 0, e no segundo, $g(t) = \Pi(t)$, com início em $t = -\frac{1}{2}$.

EXEMPLO COMPUTACIONAL C3.1

Empreguemos a DFT (implementada pelo algoritmo de FFT) para calcular a transformada de Fourier de $e^{-2t}u(t)$ e, a seguir, tracemos o gráfico do resultante espectro de Fourier.

Primeiro, devemos determinar T_s e T_0 . A transformada de Fourier de $e^{-2t}u(t)$ é $1/(2\pi f + 2)$. Esse sinal passa-faixa não é limitado em frequência. Tomemos sua largura de banda essencial como a frequência em que |G(f)| se torna igual a 1% do valor de pico, que ocorre em f = 0. Observemos que

$$|G(f)| = \frac{1}{\sqrt{(2\pi f)^2 + 4}} \approx \frac{1}{2\pi f}$$
 $2\pi f \gg 2$

O pico de |G(f)| ocorre em f = 0, em que |G(0)| = 0.5. Portanto, a largura de banda essencial B corresponde a f = B, com

$$|G(f)| \approx \frac{1}{2\pi B} = 0.5 \times 0.01 \quad \Rightarrow B = \frac{100}{\pi} \text{ Hz}$$

e, da Eq. (3.105b),

$$T_s \le \frac{1}{2B} = 0.005\pi = 0.0157$$

Arredondemos esse valor para $T_s=0.015625$ segundo, de modo que tenhamos 64 amostras por segundo. Agora, devemos determinar T_0 . O sinal não é limitado no tempo. Precisamos truncá-lo em T_0 , tal que $g(T_0) \ll 1$. Escolhamos $T_0=4$ (oito constantes de tempo do sinal), o que resulta em $N_0=T_0/T_s=256$, que é uma potência de 2. Vale ressaltar que há muita flexibilidade na determinação de T_s e T_0 , dependendo da precisão desejada e da capacidade computacional disponível. Poderíamos ter escolhido $T_0=8$ e $T_s=1/32$, o que também resultaria em $N_0=256$, mas implicaria um erro de mascaramento ligeiramente maior.

Como o sinal tem uma descontinuidade do tipo degrau em t = 0, o valor da primeira amostra (em t = 0) é 0,5, média dos valores nos dois lados da descontinuidade. O programa de MATLAB que implementa a DFT com o algoritmo de FFT é o seguinte:

```
Ts=1/64; T0=4; N0=T0/Ts;

t=0:Ts:Ts*(N0-1);t=t';

g=Ts*exp(-2*t);

g(1)=Ts*0.5;

G=fft(g);

$[Gp,Gm]$=cart2pol($real(G),imag(G)$);

k=0:N0-1; k=k';

w=2*pi*k/T0;

subplot(211),stem(w(1:32),Gm(1:32));

subplot(212),stem(w(1:32),Gp(1:32))
```

Como G_q tem período N_0 , $G_q = G_{(q+256)}$, de modo que $G_{256} = G_0$. Portanto, basta traçar o gráfico de G_q no intervalo q=0 a q=255 (e não 256). Além disso, devido à periodicidade, $G_{-q} = G_{(-q+256)}$, ou seja, os valores de G_q no intervalo q=-127 a q=-1 são idênticos aos valores de G_q no intervalo q=129 a q=255. Logo, $G_{-127} = G_{129}$, $G_{-126} = G_{130}$,..., $G_{-1} = G_{255}$. Adicionalmente, devido à propriedade de simetria conjugada da transformada de Fourier, $G_{-q} = G_q^*$; assim, $G_{129} = G_{127}^*$, $G_{130} = G_{126}^*$,..., $G_{255} = G_1^*$. Consequentemente, para sinais de valores reais, não é necessário marcar no gráfico os valores de G_q com q maior que $N_0/2$ (128, neste caso), pois são os complexos conjugados dos valores de G_q com q=0 a 128.

O gráfico do espectro de Fourier na Fig. 3.40 mostra amplitude e fase das amostras de G(f) tomadas em intervalos de $1/T_0$ = 1/4 Hz, ou ω_0 = 1,5708 rad/s. Na Fig. 3.40, mostramos apenas os primeiros 28 pontos (em vez dos 128 pontos), para evitar o acúmulo excessivo de dados no gráfico.

Figura 3.40 Transformada de Fourier discreta de um sinal exponencial $e^{-2t}u(t)$. O eixo horizontal é ω (em radianos por segundo).

Neste exemplo, dispúnhamos da expressão analítica de G(f), o que nos permitiu fazer escolhas INTELIGENTES para B (ou frequência de amostragem f_s). Na prática, em geral, não conhecemos G(f). Na verdade, isso é exatamente o que desejamos calcular. Nesses casos, para determinar B ou f_s , devemos lançar mão de evidências circunstanciais. Devemos, sucessivamente, reduzir o valor de T_s e calcular a transformada até que o resultado satisfaça o desejado número de algarismos significativos.

A seguir, calcularemos a transformada de Fourier de $g(t) = 8 \Pi(t)$.

EXEMPLO COMPUTACIONAL C3.2

Empreguemos a DFT (implementada pelo algoritmo de FFT) para calcular a transformada de Fourier de $8 \Pi(t)$ e tracemos o gráfico do resultante espectro de Fourier.

Essa função retangular e sua transformada de Fourier são mostradas na Fig. 3.41a e b. Para determinar o valor do intervalo de amostragem T_s , devemos, primeiro, definir a largura de banda essencial B. Da Fig. 3.41b, vemos que G(f) decai lentamente com f. Consequentemente, a largura de banda essencial B é bastante grande. Por exemplo, em B=15,5 Hz (97,39 rad/s), G(f)=-0,1643, o que corresponde a cerca de 2% do valor de pico, G(0). Poderíamos, então, tomar a largura de banda essencial como 16 Hz. No entanto, deliberadamente, tomaremos B=4 Hz, por dois motivos: (1) mostrar o efeito de mascaramento e (2) o uso de B>4 implicaria enorme número de amostras, que não poderiam ser mostradas de forma adequada em uma página de livro sem perda de detalhes fundamentais. Portanto, aceitaremos a aproximação para que possamos esclarecer conceitos de DFT por meio de gráficos.

A escolha B=4 resulta em um intervalo de amostragem $T_s=1/2B=1/8$ segundos. Examinando novamente o espectro na Fig. 3.41b, vemos que a escolha da resolução de frequência $f_0=1/4$ Hz é razoável, e corresponde a quatro amostras em cada lóbulo de G(f). Neste caso, $T_0=1/f_0=4$ segundos, e $N_0=T_0/T_s=32$. A duração de g(t) é de apenas 1 segundo. Devemos repetir g(t) a cada 4 segundos, como indicado na Fig. 3.41c, e tomar amostras a cada 0,125 segundo. Isso nos dará 32 amostras ($N_0=32$). Também temos

$$g_k = T_s g(kT)$$
$$= \frac{1}{8} g(kT)$$

Como $g(t) = 8 \Pi(t)$, os valores de g_k são 1, 0 ou 0,5 (nos pontos de descontinuidade), como mostrado na Fig. 3.41c; nessa figura, por conveniência, g_k é mostrado como função de t e de k.

Na dedução da DFT, supomos que g(t) tem início em t=0 (Fig. 3.39a) e tomamos N_0 amostras no intervalo $(0, T_0)$. No caso em consideração, contudo, g(t) tem início em $t=-\frac{1}{2}$. Essa dificuldade é facilmente resolvida quando observamos que a DFT obtida por este procedimento é, na verdade, a DFT de g_k repetido a cada T_0 segundos. Da Fig. 3.41c, fica claro que a repetição periódica do segmento de g_k no intervalo de -2 a 2 segundos é equivalente à repetição do segmento de g_k no intervalo de 0 a 4 segundos. Portanto, a DFT das amostras colhidas entre -2 e 2 segundos é igual à DFT das amostras colhidas entre 0 e 4 segundos. Assim, independentemente do instante em que g(t) tem início, sempre podemos tomar as amostras de g(t) e repetilas periodicamente no intervalo de 0 a T_0 . No presente exemplo, os valores das 32 amostras são

$$g_k = \begin{cases} 1 & 0 \le k \le 3 & e & 29 \le k \le 31 \\ 0 & 5 \le k \le 27 \\ 0,5 & k = 4.28 \end{cases}$$

Figura 3.41 Transformada de Fourier discreta de um pulso retangular.

Vale ressaltar que a última amostra é tomada em t = 31/8 e não em t = 4, pois a repetição do sinal reinicia em t = 4, de modo que a amostra em t = 4 é igual à amostra em t = 0. Com $N_0 = 32$, $\Omega_0 = 2\pi/32 = \pi/16$. Logo, [ver a Eq. (3.103a)],

$$G_q = \sum_{k=0}^{31} g_k e^{-jq\frac{\pi}{16}k}$$

O programa MATLAB que usa o algoritmo de FFT para calcular a DFT é dado a seguir. Primeiro, escrevemos um programa MATLAB para gerar 32 amostras de g_k e, então, calculamos a DFT.

```
% (c32.m)
                                            f0=1/4;
B=4;
Ts=1/(2*B); T0=1/f0;
N0=T0/Ts;
k=0:N0; k=k';
for m=1:length(k)
                 $ if k(m) $>$=0 & k(m) $<$=3, gk(m)=1; end
                 f(m) = 4 & k(m) = 28 gk(m) = 0.5; end
                 f(m) if k(m) f(m) f(m)
                 f(m) = 29 & k(m) = 31, gk(m) = 1; end
end
gk=gk';
Gr=fft(qk);
subplot(211), stem(k,gk)
subplot(212), stem(k, Gr)
```

A Fig. 3.41d mostra o gráfico de G_q .

As amostras G_q são espaçadas de $f_0 = 1/T_0$ Hz. Neste exemplo, $T_0 = 4$ segundos, de modo que a resolução de frequência f_0 é ¼ Hz, como desejado. A frequência de dobramento $f_s/2 = B = 4$ Hz corresponde a $q = N_0/2 = 16$. Como G_a tem período N_0 ($N_0 = 32$), os valores de G_q para q entre -16 e -1 são iguais àqueles para q entre 16 e 31. A DFT nos fornece amostras do espectro G(f).

Para facilitar a comparação, a Fig. 3.41d também mostra a curva hachurada $8 \operatorname{sinc}(\pi f)$, que é a transformada de Fourier de $8 \Pi(t)$. Os valores de G_q calculados pela DFT exibem erro de mascaramento, o que fica claro quando comparamos os

dois graticos. O erro em G_2 e da ordem de apenas 1,3%. No entanto, o erro de mascaramento aumenta rapidamente com r. Por exemplo, o erro em G_6 é de cerca de 12%, e o erro em G_{10} , 33%. O erro em G_{14} é de assustadores 72%. O erro percentual aumenta de forma muito rápida nas proximidades da frequência de dobramento (r=16), pois g(t) tem uma descontinuidade degrau, o que faz com que G(f) decaia muito lentamente, como 1/f. Assim, nas proximidades da frequência de dobramento, a cauda invertida (devido ao mascaramento) é quase igual a G(f). Além disso, os valores extremos são a diferença entre os valores exato e da parte que sofreu dobra (quase iguais aos exatos). Consequentemente, o erro percentual nas proximidades da frequência de dobramento (r=16, neste exemplo) é muito alto, embora o erro absoluto seja muito pequeno. Fica claro que, para sinais com descontinuidades do tipo degrau, o erro de mascaramento nas proximidades da frequência de dobramento sempre será grande (em termos percentuais), qualquer que seja o valor escolhido para N_0 . Para garantir erro de mascaramento desprezível para qualquer valor de q, devemos assegurar que N_0 $\gg q$. Essa observação se aplica a todos os sinais com descontinuidade do tipo degrau.

Filtragem

Quando pensamos em filtragem, em geral, o fazemos em termos de uma solução orientada a hardware (ou seja, montagem de um circuito com componentes RLC e amplificadores operacionais). Contudo, a filtragem também admite uma solução orientada a software [algoritmo computacional que fornece a saída filtrada y(t), para uma dada entrada g(t)]. Isso pode ser implementado de modo conveniente via DFT. Seja g(t) o sinal a ser filtrado; então, os valores G_q , DFT de g_k , são calculados. O espectro G_q é formatado (filtrado) como desejado através da multiplicação de G_q por H_q , em que H_q são as amostras da função de transferência do filtro, H(f) [$H_q = H(qf_0)$]. Por fim, calculamos a DFT inversa (ou IDFT) de G_qH_q e obtemos a saída filtrada y_k [$y_k = T_s y(kT)$]. O próximo exemplo ilustra este procedimento.

EXEMPLO COMPUTACIONAL C3.3

O sinal g(t) na Fig. 3.42a é aplicado a um filtro passa-baixos ideal, cuja função de transferência H(f) é mostrada na Fig. 3.42b. Usemos a DFT para calcular a saída do filtro.

Já calculamos a DFT de g(t) com 32 amostras (Fig. 3.41d). Agora, devemos multiplicar G_q por H_q . Para calcular H_q , recordemos que, na determinação da DFT de g(t) com 32 amostras, usamos $f_0=0.25$ Hz. Como G_q tem período $N_0=32$, H_q deve ter o mesmo período e, portanto, amostras espaçadas de 0.25 Hz. Isso significa que H_q deve se repetir a cada 8 Hz ou 16π rad/s (ver Fig. 3.42c). Assim, as 32 amostras de H_q são produzidas, no intervalo $0 \le f \le 8$, como

$$H_q = \begin{cases} 1 & 0 \le q \le 7 & \text{e} & 25 \le q \le 31 \\ 0 & 9 \le q \le 23 \\ 0.5 & q = 8.24 \end{cases}$$

Multiplicamos G_q por H_q e calculamos a DFT inversa. O resultante sinal de saída é mostrado na Fig. 3.42d. A Tabela 3.4 lista valores de g_k , G_q , H_q , Y_q e y_k .

No Exemplo C.32, já calculamos a DFT de g(t) com 32 amostras (G_q) . O programa MATLAB do Exemplo C3.2 pode ser armazenado como um arquivo.m (por exemplo, "c32.m"). Podemos importar G_q no ambiente MATLAB via comando "c32". A seguir, geramos 32 amostras de H_q , multiplicamos G_q por H_q e, para obter y_k , calculamos a DFT inversa. Também podemos obter y_k calculando a convolução de g_k e h_k .

```
c32;
q=0:32; q=q';
for m=1:length(q)
    if q(m)$>$=0 & q(m)$<$=7, Hq(m)=1; end
    if q(m)$>$=25 & q(m)$<$=31, Hq(m)=1; end
    if q(m)$>$=9 & q(m)$<$=23, Hq(m)=0; end
    if q(m)==8 & q(m)==24, Hq(m)=0.5; end
end
Hq=Hq';
Yq=Gq.*Hq;
yk=ifft(Yq);
clf,stem(k,yk)
```

Tabela 3.4

No.	gk	G_q	H_q	G_qH_q	y_k
0	1	8,000	1	8,000	0,9285
1	1	7,179	1	7,179	1,009
2	1	5,027	1	5,027	1,090
3	1	2,331	1	2,331	0,9123
4	1	0,000	1	0,000	0,4847
5	0,5	-1,323	1	-1,323	0,08884
6	0	-1,497	1	-1,497	-0,05698
7	0	-0,8616	1	-0,8616	-0,01383
8	0	0,000	0,5	0,000	0,02933
9	0	0,5803	0	0,000	0,004837
10	0	0,6682	0	0,000	-0,01966
11	0	0,3778	0	0,000	-0,002156

		0.000		0.000	0.01.501
12	0	0,000	0	0,000	0,01534
13	0	-0,2145	0	0,000	0,0009828
14	0	-0,1989	0	0,000	-0,01338
15	0	-0,06964	0	0,000	-0,0002876
16	0	0,000	0	0,000	0,01280
17	0	-0,06964	0	0,000	-0,0002876
18	0	-0,1989	0	0,000	-0,01338
19	0	-0,2145	0	0,000	0,0009828
20	0	0,000	0	0,000	0,01534
21	0	0,3778	0	0,000	-0,002156
22	0	0,6682	0	0,000	-0,01966
23	0	0,5803	0	0,000	0,004837
24	0	0,000	0,5	0,000	0,03933
25	0	-0,8616	1	-0,8616	-0,01383
26	0	-1,497	1	-1,497	-0,05698
27	0	-1,323	1	-1,323	0,08884
28	0,5	0,000	1	0,000	0,4847
29	1	2,331	1	2,331	0,9123
30	1	5,027	1	5,027	1,090
31	1	7,179	1	7,179	1,009

REFERÊNCIAS

- 1. R. V. Churchill and J. W. Brown, Fourier Series and Boundary Value Problems, 3rd ed., McGraw-Hill, New York, 1978.
- 2. R. N. Bracewell, Fourier Transform and Its Applications, rev. 2nd ed., McGraw-Hill, New York, 1986.
- 3. B. P. Lathi, Signal Processing and Linear Systems, Oxford University Press, 2000.
- 4. E. A. Guillemin, Theory of Linear Physical Systems, Wiley, New York, 1963.
- 5. F. J. Harris, "On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform," *Proc. IEEE*, vol. 66, pp. 51–83, Jan. 1978.
- 6. J. W. Tukey and J. Cooley, "An Algorithm for the Machine Calculation of Complex Fourier Series," *Mathematics of Computation*, Vol. 19, pp. 297–301, April 1965.

EXERCÍCIOS

3.1-1 Mostre que a transformada de Fourier de g(t) pode ser expressa como

$$G(f) = \int_{-\infty}^{\infty} g(t) \cos 2\pi f t \, dt - j \int_{-\infty}^{\infty} g(t) \sin 2\pi f t \, dt$$

A seguir, mostre que, caso g(t) seja uma função par de t,

$$G(f) = 2\int_0^\infty g(t)\cos 2\pi f t \, dt$$

e, caso g(t) seja uma função impar de t,

$$G(f) = -2j \int_0^\infty g(t) \operatorname{sen} 2\pi f t \, dt$$

Então G(f) é:

Agora, mostre que:

Se g(t) for: