System diagram

Actuator Motor selection & Capstan reducer Tendon based reducer

Actuator requirements Good back-drive-ability
High power density

Brushless motor - 6.8g 130kv

Torque control via current feedback When friction of reducer is small enough to ignore

Finger module Force feedback

3 DOF mechanic provides force feedback for user's fingertip 3 actuated joints with 1 passive joint

Finger module's workspace Red – User finger Blue – Finger module

Fingertip module Tactile feedback

A parallel 3DOF translate mechanism in order to deliver useable tactile feedback to the user's fingertip.

Design 2

Fingertip module Tactile feedback

Fingertip module can be used alone, without finger module Example of thumb/index fingertip module assembly

Device mounted on user

Finger & Fingertip module assembly Force & Tactile feedback

Thumb/index assembly

Encoder & Driver & Controller

AMS magnetic encoder 12bit via IIC, easy to mount

Encoder hub
Read encoder data and sent to host computer

STM32F103 Motor driver, off the shelf part Version 1

No phase current feedback – no torque control mode

Encoder & Driver & Controller

STM32F446RE Driver & Controller 3*IIC \ 1*CAN \ 1*SPI \ 3*DRV8313 Version 2 with phase current feedback

Smaller encoder

FOC driver

Device tracking by vision

Using Apriltag https://april.eecs.umich.edu/software/apriltag.html
to get device's 3d pose

Apriltag on device

Vision camera

Other possible tracking solutions

OptiTrack

Device tracking by hardware tracker

6DOF passive tracking arm to get device's pose

Higher refresh rate/accuracy compare to vision tracking solution

Application chai3d & Feedback force rendering

FΚ

$$\boldsymbol{P}_{hip} = \begin{bmatrix} \boldsymbol{R} & \boldsymbol{P} \\ \boldsymbol{0} & \boldsymbol{1} \end{bmatrix} \boldsymbol{T}_{base} \cdot \boldsymbol{T}_{1}^{\boldsymbol{0}} \cdot \boldsymbol{T}_{2}^{1} \cdot \boldsymbol{T}_{3}^{2} \cdot \boldsymbol{T}_{4}^{3}$$

Device's force to torque
$$\boldsymbol{\tau} = \begin{bmatrix} \tau_{j1} \\ \tau_{j2} \\ \tau_{j3} \end{bmatrix} = \boldsymbol{J}^T \begin{bmatrix} F_{\chi} \\ F_{y} \\ F_{z} \end{bmatrix}$$

For interacting with point cloud

$$V_{\rm k} = P_{hip} - P_{k}$$

$$\mathbf{F}_k = k \cdot \mathbf{V}_k$$

$$F_{hip} = \sum_{k=1}^{N} F_k$$

For interacting with mesh

Finger-proxy algorithm by Ruspini and Khatib