# Оптимальный метод решения седловых билинейных задач

Владимиров Игорь Викторович
Гаврилов Олег Алексеевич
Дёмина Анна Андреевна

Филиал МГУ в Сарове

2022



## Постановка задачи

Найти седловую точку функции

$$F(x,y) = f(x) + y^{T} A x - g(y) \to \min_{x \in \mathbb{R}^{d_x}} \max_{y \in \mathbb{R}^{d_y}},$$

где  $f(x):\mathbb{R}^{d_x} o\mathbb{R},\quad g(y):\mathbb{R}^{d_y} o\mathbb{R}$  — выпуклые функции;  $A\in\mathbb{R}^{d_y imes d_x}$  — матрица.

#### Основная работа:

Dmitry Kovalev, Alexander Gasnikov, and Peter Richtárik. Accelerated primal-dual gradient method for smooth and convex-concave saddle-point problems with bilinear coupling.

## Конкретная задача

В качестве  $f(x),\ g(y)$  возьмём квадратичные функции:

$$f(x) = \frac{\mu_x}{2} \|x\|_2^2, \quad g(y) = \frac{\mu_y}{2} \|y\|_2^2,$$

 $\mu_x, \; \mu_y > 0$  — константы сильной выпуклости. Можно также заметить, что  $L_x = \mu_x, \; L_y = \mu_y.$  Тогда функция

$$F(x,y) = \frac{\mu_x}{2} \|x\|_2^2 + y^T A x - \frac{\mu_y}{2} \|y\|_2^2$$

является сильно выпуклой по x и сильно вогнутой по y.

#### Точное решение

Пусть  $(x^*, y^*)$  — искомая седловая точка F(x, y). Тогда  $\nabla_x F(x^*, y^*) = \nabla_y F(x^*, y^*) = 0,$  $\begin{cases} \mu_x \, x^* + A^T y^* = 0, \\ Ax^* - \mu_y \, y^* = 0, \end{cases}$  $\left(\mu_x I + \frac{1}{\mu_{xx}} A^T A\right) x^* = 0.$ 

Отсюда следует, что  $x^* = 0$ ,  $y^* = 0$  для любой матрицы A.

# Алгоритм 1 (APDG)

Задача эквивалентна вычислению корня  $G_1(x,y) + G_2(x,y) = 0$ , где

$$G_1: (x,y) \mapsto (\nabla f(x), \nabla g(y)),$$
  
 $G_2: (x,y) \mapsto (A^T y, -Ax).$ 

Итерационный процесс:

$$(x^+, y^+) = J_{G_2}((x, y) - G_1(x, y)), \quad J_{G_2} = (I + G_2)^{-1}.$$

Здесь (x,y) — значения на текущей итерации,  $(x^+,y^+)$  — на следующей. Это эквивалентно решению линейной системы

$$\begin{cases} x^+ = x - \nabla f(x) - A^T y^+, \\ y^+ = y - \nabla g(y) + Ax^+. \end{cases}$$

В первом уравнении  $y^+$  заменяется на  $y_m = y + \theta(y - y^-)$ , где  $\theta \in (0,1]$ ,  $y^-$  — значение y с предыдущей итерации (линейная экстраполяция).

Далее система модифицируется с помощью ускоренного метода Нестерова.

## Специальные предположения

Предположение 1.1. Функция f(x) является  $L_x$ -гладкой и  $\mu_x$ -сильно выпуклой,  $L_x\geqslant \mu_x\geqslant 0$ .

**Предположение 1.2.** Функция g(y) является  $L_y$ -гладкой и  $\mu_y$ -сильно выпуклой,  $L_y\geqslant \mu_y\geqslant 0$ .

**Предположение 1.3.** Существуют константы  $L_{xy}>\mu_{xy},\mu_{yx}\geqslant 0$ , такие что

$$\begin{split} \mu_{xy}^2 &\leqslant \begin{cases} \lambda_{\min}^+(AA^T), \ \nabla g(y) \in \operatorname{Im} A, \ \forall y \in \mathbb{R}^{d_y}, \\ \lambda_{\min}(AA^T), \ \text{ иначе}, \end{cases} \\ \mu_{yx}^2 &\leqslant \begin{cases} \lambda_{\min}^+(A^TA), \ \nabla f(x) \in \operatorname{Im} A^T, \ \forall x \in \mathbb{R}^{d_x}, \\ \lambda_{\min}(A^TA), \ \text{ иначе}, \end{cases} \\ L_{xy}^2 &\geqslant \lambda_{\max}(A^TA) = \lambda_{\max}(AA^T). \end{split}$$

## Сходимость алгоритма 1

#### Теорема 1

Пусть выполнены предположения 1.1–1.3 и условие

$$\min\{\max\{\mu_x, \mu_{yx}\}, \max\{\mu_y, \mu_{xy}\}\} > 0.$$

Тогда существуют параметры алгоритма, такие что справедлива следующая оценка: если число итераций

$$k \geqslant \frac{1}{1-\theta} \log \frac{C}{\varepsilon},$$

то получено  $\varepsilon$ -точное решение, то есть

$$\max \left\{ \|x^k - x^*\|_2^2, \ \|y^k - y^*\|_2^2 \right\} \leqslant \varepsilon.$$

Здесь  $\theta$  — константа, зависящая от  $\mu_x, \mu_y, \mu_{xy}, \mu_{yx}, L_x, L_y, L_{xy}$  и от параметров алгоритма, а C зависит также от начального приближения  $(x^0, y^0)$ .

# Примеры работы алгоритма 1

Далее будем подбирать случайным образом конкретные матрицы A разных размерностей. Для каждой такой функции F(x,y) получим число итераций k алгоритма 1, необходимых для достижения точности  $\varepsilon$ . Это число k должно не превосходить теоретической оценки

$$\frac{1}{1-\theta}\log\frac{C}{\varepsilon}.$$

# Примеры для различных матриц A (здесь $\mu_x = \mu_y = 2$ )









# Примеры для различных $\mu_x, \mu_y$ (A — фикс. квадратная)









# Алгоритм 2 (GDAE)

Рассмотрим более общую задачу

$$\min_{x \in \mathbb{R}^{d_x}} \max_{y \in \mathbb{R}^{d_y}} F(x, y),$$

где F выпукла по x и вогнута по y.

Итерации строятся следующим образом:

$$\begin{cases} x^+ = x - \eta_x \nabla_x F(x, y^+), \\ y^+ = y + \eta_y \nabla_y F(x^+, y), \end{cases}$$

где  $abla_x F(x,y^+)$  заменяется на

$$\Delta_x = \nabla_x F(x, y) + \theta \left( \nabla_x F(x^-, y) - \nabla_x F(x^-, y^-) \right), \quad \theta \in (0, 1].$$

## Специальные предположения

Предположение 2.1. Функция F(x,y) является  $L_x$ -гладкой и  $\mu_x$ -сильно выпуклой по x и  $L_y$ -гладкой и  $\mu_y$ -сильно выпуклой по y, где  $L_x\geqslant \mu_x\geqslant 0, L_y\geqslant \mu_y\geqslant 0.$ 

**Предположение 2.2.** Существует  $L_{xy}>0$ , такая что  $\forall x,x_1,x_2\in\mathbb{R}^{d_x}$  и  $\forall y,y_1,y_2\in\mathbb{R}^{d_y}$  выполнены неравенства

$$\|\nabla_x F(x, y_1) - \nabla_x F(x, y_2)\| \le L_{xy} \|y_1 - y_2\|,$$
  
$$\|\nabla_y F(x_1, y) - \nabla_y F(x_1, y)\| \le L_{xy} \|x_1 - x_2\|.$$

Предположение 2.3. Существуют  $\mu_{xy},\mu_{yx}\geqslant 0$ , такие что  $\forall x,x_1,x_2\in\mathbb{R}^{d_x}$  и  $\forall y,y_1,y_2\in\mathbb{R}^{d_y}$  выполнены неравенства

$$\|\nabla_x F(x, y_1) - \nabla_x F(x, y_2)\| \geqslant \mu_{xy} \|y_1 - y_2\|,$$
  
$$\|\nabla_y F(x_1, y) - \nabla_y F(x_1, y)\| \geqslant \mu_{yx} \|x_1 - x_2\|.$$

# Сходимость алгоритма 2

Справедлива аналогичная оценка достаточного числа итераций для достижения точности arepsilon:

$$k \geqslant \frac{1}{1-\theta} \log \frac{C}{\varepsilon},$$

где константы heta,C зависят от начального приближения  $(x^0,y^0)$  и свойств функции F(x,y).

Будем рассматривать функции того же вида

$$F(x,y) = \frac{\mu_x}{2} \|x\|_2^2 + y^T A x - \frac{\mu_y}{2} \|y\|_2^2$$

с разными матрицами A и параметрами  $\mu_x, \mu_y.$ 

# Примеры алгоритма 2 (здесь $\mu_x = \mu_y = 2$ )









# Примеры алгоритма 2 (здесь A фиксирована)









# Сравнение двух алгоритмов

Из результатов статьи следует, что для сильно выпуклых-сильно вогнутых задач (в частности, для нашей конкретной задачи), алгоритм 1 является ускоренным, то есть число итераций пропорционально величинам  $\sqrt{L_x/\mu_x}$  и  $\sqrt{L_y/\mu_y}$ , в то время как для алгоритма 2 число итераций связно с  $L_x/\mu_x$ ,  $L_y/\mu_y$ . В нашей задаче, для которой

$$f(x) = \frac{\mu_x}{2} \|x\|_2^2, \quad g(y) = \frac{\mu_y}{2} \|y\|_2^2,$$

выполнены равенства

$$L_x = \mu_x, \quad L_y = \mu_y,$$

поэтому для такой задачи алгоритм 1 *не обязательно* даёт более лучшие результаты, чем алгоритм 2.

# Сравнение двух алгоритмов, пример



# Модифицированная задача

Рассмотрим функции

$$f(x) = \frac{1}{2} ||Bx||_2^2, \quad g(y) = \frac{1}{2} ||By||_2^2.$$

с некоторой квадратной матрицей B (для простоты считаем, что  $d_x=d_y$ ). Для их констант сильной выпуклости и гладкости выполнены равенства

$$\mu_x = \mu_y = \lambda_{\min}(B^T B), \quad L_x = L_y = \lambda_{\max}(B^T B).$$

# Модифицированная задача, пример

Пусть 
$$d_x = d_y = 5$$
,  $B = diag\{1, 2, 3, 4, 5\}$ .



#### Заключение

- 1. Реализованы два алгоритма, предложенные в статье, для решения конкретной седловой задачи.
- 2. Исследована сходимость обоих алгоритмов для разных параметров задачи. Установлено, что число итераций для достижения требуемой точности удовлетворяет теоретической оценке.
- 3. Проведено сравнение двух алгоритмов на основе модифицированной задачи. Алгоритм 1 показал оптимальную сходимость.

#### Основная работа:

Dmitry Kovalev, Alexander Gasnikov, and Peter Richtárik. Accelerated primal-dual gradient method for smooth and convex-concave saddle-point problems with bilinear coupling.