AULA 12 – INTERPOLAÇÃO (PARTE 2)

Prof. Gustavo Resque gustavoresqueufpa@gmail.com

■ Na forma de Newton o polinômio $p_n(x)$ que interpola f(x) em $x_0, x_1, ..., x_n$, (n+1) pontos distintos, é:

$$p_n(x) = d_0 + d_1(x - x_0) + d_2(x - x_0)(x - x_1) + \dots + d_n(x - x_0)(x - x_1) \dots (x - x_{n-1})$$

■ Onde d são diferenças divididas de ordem k entre os pontos $\left(x_j, f\left(x_j\right)\right)$, $\forall j=0,1,\ldots,k$.

lacktriangle E que este polinômio $p_n(x)$ é construído por etapas

Operador das Diferenças Divididas

$$f[x_0] = f(x_0)$$
 (Ordem Zero)
$$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0} = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$
 (Ordem 1)
$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$$
 (Ordem 2)
$$f[x_0, x_1, x_2, x_3] = \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_3 - x_0}$$
 (Ordem 3)
$$\vdots$$

$$\vdots$$

- Operador das Diferenças Divididas
 - Dizemos que $f[x_0, x_1, ..., x_k]$ é a diferença dividida de ordem k sobre os k+1 pontos $x_0, x_1, ..., x_k$.
 - Dados os valores conhecidos de f(x) podemos construir a seguinte tabela (próximo slide)

Operador das Diferenças Divididas

x	Ordem 0	Ordem 1	Ordem 2	Ordem 3		Ordem n
\mathbf{x}_0	$f[x_0]$					
		$f[x_0, x_1]$				
\mathbf{x}_1	f[x ₁]		$f[x_0, x_1, x_2]$			
		$f[x_1, x_2]$		$f[x_0, x_1, x_2, x_3]$		
\mathbf{x}_2	f[x2]		$f[x_1, x_2, x_3]$			
		$f[x_2, x_3]$		$f[x_1, x_2, x_3, x_4]$	٠.	
\mathbf{x}_3	f[x ₃]		$f[x_2, x_3, x_4]$			$f[x_0, x_1, x_2,, x_n]$
		$f[x_3, x_4]$				
x ₄	f[x4]		÷	f[x _{n-3} , x _{n-2} , x _{n-1}	, x _n]	
			$f[x_{n-2}, x_{n-1}, x_n]$			
		$f[x_{n-1}, x_n]$				
$\mathbf{x}_{\mathbf{n}}$	f[x _n]					

Operador das Diferenças Divididas – Exemplo 4 Seja f(x) tabelada abaixo

x	-1	0	1	2	3
f(x)	1	1	0	-1	-2

x	Ordem 0	Ordem 1	Ordem 2	Ordem 3	Ordem 4
1	1				
		0			
0	1		$-\frac{1}{2}$		
		-1	-	$\frac{1}{6}$	
1	0		0	o	$-\frac{1}{24}$
		-1		0	24
2	-1		0		
		-1			

Operador das Diferenças Divididas - Exemplo 4

Onde
$$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0} = \frac{1 - 1}{1} = 0$$

$$f[x_1, x_2] = \frac{f[x_2] - f[x_1]}{x_2 - x_1} = \frac{0 - 1}{1 - 0} = -1$$

$$\vdots$$

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0} = \frac{-1 - 0}{1 + 1} = \frac{-1}{2}$$

Operador das Diferenças Divididas - Exemplo 4

$$f[x_{1}, x_{2}, x_{3}] = \frac{f[x_{2}, x_{3}] - f[x_{1}, x_{2}]}{x_{3} - x_{1}} = \frac{-1 + 1}{2 - 0} = 0$$

$$\vdots$$

$$f[x_{0}, x_{1}, x_{2}, x_{3}] = \frac{f[x_{1}, x_{2}, x_{3}] - f[x_{0}, x_{1}, x_{2}]}{x_{3} - x_{0}} = \frac{0 + 1/2}{2 + 1} = \frac{1}{6}$$

- Operador das Diferenças Divididas
 - Esse operador tem a propriedade de simetria nos argumentos:

$$f[x_0, x_1, ..., x_k] = f[x_{j_0}, x_{j_1}, ..., x_{j_k}]$$

- Onde j_0, j_1, \dots, j_n é qualquer permutação de $0, 1, \dots, k$
- Por exemplo:

$$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0} - \frac{f[x_0] - f[x_1]}{x_0 - x_1} = f[x_1, x_0].$$

Para k = 2 teremos

$$f[x_0, x_1, x_2] = f[x_0, x_2, x_1] = f[x_1, x_0, x_2] = f[x_1, x_2, x_0] = f[x_2, x_0, x_1] = f[x_2, x_1, x_0].$$

- Seja
 - f(x) contínua e com tantas derivadas contínuas quantas necessárias num intervalo [a,b]
 - $a = x_0 < x_1 < x_2 < \dots < x_n = b, (n+1)$ pontos
- Podemos construir o polinômio $p_n(x)$ que interpola f(x) em x_0, x_1, \dots, x_n
 - Iniciamos a construção em $p_0(x)$ que interpola f(x) em x_0
 - Então construiremos $p_1(x)$ que interpola f(x) em x_0 e x_1
 - E assim sucessivamente até $p_n(x)$ em x_0 , x_1 , ..., x_n

■ Seja $p_0(x)$ o polinômio de grau 0 que interpola f(x) em x_0 . Então:

$$p_0(x) = f(x_0) = f[x_0]$$

■ Temos que para todo $x \in [a, b], x \neq x_0$

$$f[x_0, x] = \frac{f[x] - f[x_0]}{x - x_0} = \frac{f(x) - f(x_0)}{x - x_0} \Rightarrow$$

$$\Rightarrow (x - x_0)f[x_0, x] = f(x) - f(x_0) \Rightarrow$$

$$\Rightarrow f(x) = \underbrace{f(x_0) + (x - x_0) f[x_0, x]}_{p_0(x)} \xrightarrow{E_0(x)}$$

$$\Rightarrow E_0(x) = f(x) - p_0(x) = (x - x_0)f[x_0, x].$$

■ Agora, para construir $p_1(x)$ que interpola f(x) em x_0 e x_1 temos que

$$f[x_0, x_1, x] = f[x_1, x_0, x] = \frac{f[x_0, x] - f[x_1, x_0]}{x - x_1} = \frac{f(x) - f(x_0)}{x - x_0} - f[x_1, x_0] = \frac{f(x) - f(x_0) - (x - x_0)f[x_1, x_0]}{(x - x_1)} = \frac{f(x) - f(x_0) - (x - x_0)f[x_1, x_0]}{(x - x_1)(x - x_0)}$$

$$\Rightarrow f[x_0, x_1, x] = \frac{f(x) - f(x_0) - (x - x_0)f[x_1, x_0]}{(x - x_0)(x - x_1)} \Rightarrow f(x) = f(x_0) + (x - x_0)f[x_1, x_0] + (x - x_0)(x - x_1)f[x_0, x_1, x].$$

$$\Rightarrow f(x) = f(x_0) + (x - x_0)f[x_1, x_0] + (x - x_0)(x - x_1)f[x_0, x_1, x].$$

■ Verificação:

$$p_1(x) \text{ interpola } f(x) \text{ em } x_0 \text{ e em } x_1?$$

$$p_1(x_0) = f(x_0)$$

$$p_1(x_1) = f(x_0) + (x_1 - x_0) \frac{f(x_1) - f(x_0)}{x_1 - x_0} = f(x_1).$$

■ Agora, para construir $p_2(x)$ que interpola f(x) em x_0 , x_1 e x_2 temos que

$$f[x_0, x_1, x_2, x] = f[x_2, x_1, x_0, x] = \frac{f[x_1, x_0, x] - f[x_2, x_1, x_0]}{x - x_2} = \frac{\frac{f[x_0, x] - f[x_1, x_0]}{x - x_1} - f[x_2, x_1, x_0]}{x - x_2} = \frac{\frac{f(x_0, x] - f[x_1, x_0]}{x - x_1} - f[x_2, x_1, x_0]}{\frac{(x - x_0)}{(x - x_1)} - f[x_1, x_0]} = \frac{\frac{f(x_0, x_1, x_0) - f[x_1, x_0]}{(x - x_2)}}{(x - x_2)} = \frac{\frac{f(x_0, x_1, x_0, x_1, x_0)}{(x - x_2)}}{(x - x_2)} = \frac{\frac{f(x_0, x_1, x_0, x_1, x_0, x_1, x_0)}{(x - x_2)}}{(x - x_2)} = \frac{\frac{f(x_0, x_1, x_0, x_1, x_0$$

■ Agora, para construir $p_2(x)$ que interpola f(x) em x_0 , x_1 e x_2 temos que (continuação)

$$= \frac{f(x) - f(x_0) - (x - x_0)f[x_1, x_0] - (x - x_0)(x - x_1)f[x_2, x_1, x_0]}{(x - x_0)(x - x_1)(x - x_2)} \Rightarrow$$

$$\Rightarrow f(x) = f(x_0) + (x - x_0)f[x_0, x_1] + (x - x_0)(x - x_1)f[x_0, x_1, x_2] + (x - x_0)(x - x_1)(x - x_2)f[x_0, x_1, x_2, x].$$

Então,

$$p_2(x) = \underbrace{f(x_0) + (x - x_0)f[x_0, x_1]}_{p_1(x)} + \underbrace{(x - x_0)(x - x_1)f[x_0, x_1, x_2]}_{q_2(x)} e$$

$$E_2(x) = (x - x_0) (x - x_1) (x - x_2) f[x_0, x_1, x_2, x].$$

■ Observamos que, assim como para $p_1(x)$ e $p_2(x)$,

$$p_k(x) = p_{k-1}(x) + q_k(x)$$

- Onde $q_k(x)$ é um polinômio de grau k
- Aplicando sucessivamente o mesmo raciocínio até x_0, x_1, \dots, x_n teremos a forma de Newton

$$p_n(x) = f(x_0) + (x - x_0)f[x_0, x_1] + (x - x_0)(x - x_1)f[x_0, x_1, x_2] + \dots + \dots + (x - x_0)(x - x_1) \dots (x - x_{n-1})f[x_0, x_1, \dots, x_n]$$

Exemplo 5

Usando a forma de Newton, o polinômio p₂(x), que interpola f(x) nos pontos dados abaixo

$$p_2(x) = f(x_0) + (x - x_0) f[x_0, x_1] + (x - x_0) (x - x_1) f[x_0, x_1, x_2].$$

Exemplo 5

	Ordem 0	Ordem 1	Ordem 2
-1	4		
		-3	
0	1		$\frac{2}{3}$
		-1	-
2	-1		

- Exemplo 5
 - Agrupando os termos semelhantes temos

$$p_2(x) = \frac{2}{3}x^2 - \frac{7}{3}x + 1$$

- Que é a mesma expressão obtida pelos métodos anteriores
- É conveniente deixar o polinômio na forma de Newton, sem agrupar os termos semelhantes, pois, quando calcularmos o valor numérico evitaremos o cálculo de potências.
- O número de operações pode ser ainda reduzido se utilizarmos a forma de parênteses encaixados

- Forma de parênteses encaixados
 - Dado

$$\begin{split} p_n(x) &= f(x_0) + (x - x_0) \ f[x_0, x_1] + (x - x_0) \ (x - x_1) \ f[x_0, x_1, x_2] \ + \\ &+ (x - x_0) \ (x - x_1) \ (x - x_2) \ f[x_0, x_1, x_2, x_3] \ + ... \ + \\ &+ (x - x_0) \ (x - x_1) ... \ (x - x_{n-1}) \ f[x_0, x_1, x_2, ..., x_n] \end{split}$$

Temos

$$p_n(x) = f(x_0) + (x - x_0) \{f[x_0, x_1] + (x - x_1) \{f[x_0, x_1, x_2] + (x - x_2) \{f[x_0, x_1, x_2, x_3] + ... + (x - x_{n-1}) f[x_0, x_1, ..., x_n]...\}\}.$$