HW3

Kevin Chang

October 11, 2025

1

Recall that for a vector $w \in \mathbb{R}^d$, $\mathcal{H}_w := \{z : \langle w, z \rangle = 0\}$. Let $S = \{(xi, yi)\}$ be a set of linearly separable data in \mathbb{R}^d (i.e., $x_i \in \mathbb{R}^d$ and $y_i \in \{-1, 1\}$). Define the set \mathcal{M}_S to be the set of all vectors which separate the data with large dot product: $\mathcal{M}_S = \{w : yi < w, xi > \ge 1 \text{for } i = 1, \dots, n\}$.

ullet Let w_* denote the element of \mathcal{M}_S with smallest norm. Show that for any other w that separates the data

$$\min_{1 \le i \le n} dist(x_i, \mathcal{H}_w) \le \min dist(x_i, \mathcal{H}_{w_*}).$$

- Show that there are real numbers α_i such that $w_* = \sum_{i=1}^n \alpha_i x_i$.
- Show that the α_i can be chosen so that $y_i\alpha_i$ are all nonnegative.