Quantum algorithms for learning graphs

Ashley Montanaro and Changpeng Shao University of Bristol, UK

Merged with the talk: Troy Lee, Miklos Santha and Shengyu Zhang. "Quantum algorithms for graph problems with cut queries"

arXiv:2011.08611

By learning, we mean identifying all the edges.

- OR query model
- Parity query model [Troy's talk]
- Graph state

By learning, we mean identifying all the edges.

- OR query model
- Parity query model [Troy's talk]
- ► Graph state

The first two models arise from wide applications in chemical reactions, molecular biology, DNA sequencing.

By learning, we mean identifying all the edges.

- OR query model
- Parity query model [Troy's talk]
- ► Graph state

The first two models arise from wide applications in chemical reactions, molecular biology, DNA sequencing.

What we are given:

- ▶ the set of vertices V = [n]
- an oracle or access to the graph state.

By learning, we mean identifying all the edges.

- OR query model
- Parity query model [Troy's talk]
- ► Graph state

The first two models arise from wide applications in chemical reactions, molecular biology, DNA sequencing.

What we are given:

- ▶ the set of vertices V = [n]
- an oracle or access to the graph state.

Goal: use as few queries as possible, and try to get rid of the dependence on n.

OR query: the oracle returns whether a given subset of the vertices contains any edges

OR query: the oracle returns whether a given subset of the vertices contains any edges

	Quantum	Classical	
All graphs	$\Theta(n^2)$	$\Theta(n^2)$	No speedup

OR query: the oracle returns whether a given subset of the vertices contains any edges

	Quantum	Classical	
All graphs	$\Theta(n^2)$	$\Theta(n^2)$	No speedup
m edges	$O(m \log(m \log n))$	$\Omega(m\log\frac{n^2}{m})$	Speedup
	$\Omega(m)$		when $m \ll n$

OR query: the oracle returns whether a given subset of the vertices contains any edges

	Quantum	Classical	
All graphs	$\Theta(n^2)$	$\Theta(n^2)$	No speedup
m edges	$O(m\log(m\log n))$	$\Omega(m\log\frac{n^2}{m})$	Speedup
m eages	$\Omega(m)$	$22(m\log\frac{m}{m})$	when $m \ll n$
Matching	$O(m^{3/4}), \ \Omega(m)$	$\Omega(m\log\frac{n}{m})$	
Cycle	$O(m^{3/4}), \ \Omega(m)$	$\Omega(m\log\frac{n}{m})$	Polynomial
Star	$\Theta(\sqrt{m})$	$\Omega(m\log\frac{\widetilde{n}}{m})$	speedups
k-vertex clique	$\Theta(\sqrt{k})$	$\Omega(k \log \frac{n}{k})$	

Step 1. Decompose $V = V_1 \cup \cdots \cup V_k$ (disjoint union, i.e., k-coloring), such that each V_i includes no edges. (hope: k small)

Step 1. Decompose $V = V_1 \cup \cdots \cup V_k$ (disjoint union, i.e., k-coloring), such that each V_i includes no edges. (hope: k small)

A p-random set S is obtained by including each vertex independently with probability p. Then

 $\mathsf{Prob}[S \text{ includes no edges}] \geq 1 - mp^2.$

Step 1. Decompose $V=V_1\cup\cdots\cup V_k$ (disjoint union, i.e., k-coloring), such that each V_i includes no edges. (hope: k small)

A p-random set S is obtained by including each vertex independently with probability p. Then

 $\operatorname{Prob}[S \text{ includes no edges}] \geq 1 - mp^2.$

Choose $p = 0.1/\sqrt{m}$.

- 1. With probability ≥ 0.99 , we can find V_1 .
- 2. In $V-V_1$, we can similarly find V_2 , and so on.
- 3. $k \approx \sqrt{m} \log n$ (optimal, e.g. complete graph)

Step 1. Decompose $V=V_1\cup\cdots\cup V_k$ (disjoint union, i.e., k-coloring), such that each V_i includes no edges. (hope: k small)

A p-random set S is obtained by including each vertex independently with probability p. Then

 $Prob[S \text{ includes no edges}] \ge 1 - mp^2.$

Choose $p = 0.1/\sqrt{m}$.

- 1. With probability ≥ 0.99 , we can find V_1 .
- 2. In $V-V_1$, we can similarly find V_2 , and so on.
- 3. $k \approx \sqrt{m} \log n$ (optimal, e.g. complete graph)

Step 2. Find all the edges between V_i, V_j .

Step 1. Decompose $V = V_1 \cup \cdots \cup V_k$ (disjoint union, i.e., k-coloring), such that each V_i includes no edges. (hope: k small)

A p-random set S is obtained by including each vertex independently with probability p. Then

 $Prob[S \text{ includes no edges}] \ge 1 - mp^2.$

Choose $p = 0.1/\sqrt{m}$.

- 1. With probability ≥ 0.99 , we can find V_1 .
- 2. In $V V_1$, we can similarly find V_2 , and so on.
- 3. $k \approx \sqrt{m} \log n$ (optimal, e.g. complete graph)

Step 2. Find all the edges between V_i, V_j .

Using quantum algorithms for combinatorial group testing (Belovs, arXiv:1311.6777)

Graph state model: we are given copies of the graph state corresponding to the graph.

Graph state model: we are given copies of the graph state corresponding to the graph.

	Quantum	Classical	
All graphs	$\Theta(n)$	$\Theta(n^2)$	Quadratic speedup

Graph state model: we are given copies of the graph state corresponding to the graph.

	Quantum	Classical	
All graphs	$\Theta(n)$	$\Theta(n^2)$	Quadratic speedup
m edges	$O(m\log\frac{n^2}{m})$	$\Omega(m\log\frac{n^2}{m})$	No speedup

Graph state model: we are given copies of the graph state corresponding to the graph.

	Quantum	Classical	
All graphs	$\Theta(n)$	$\Theta(n^2)$	Quadratic speedup
m edges	$O(m\log\frac{n^2}{m})$	$\Omega(m\log\frac{n^2}{m})$	No speedup
Degree d	$O(d\log\frac{m}{d})$	$\Omega(nd\log\frac{n}{d})$	
Matching	$O(\log m)$	$\Omega(m\log\frac{\tilde{n}}{m})$	
Cycle	$O(\log m)$	$\Omega(m\log\frac{n}{m})$	Exponential
Star	O(1)	$\Omega(m\log\frac{m}{m})$	speedups
k-vertex clique	O(1)	$\Omega(k\log\frac{n}{k})$	

Main idea

The graph state:

$$|G\rangle = \prod_{(i,j)\in E} CZ_{ij} |+\rangle^{\otimes n}.$$

Main idea

The graph state:

$$|G\rangle = \prod_{(i,j)\in E} CZ_{ij}|+\rangle^{\otimes n}.$$

Stabilizers:

$$\{X_v \prod_{w \in N(v)} Z_w : v \in V\}$$

where N(v) denotes the set of vertices neighbouring v.

Main idea

The graph state:

$$|G\rangle = \prod_{(i,j)\in E} CZ_{ij}|+\rangle^{\otimes n}.$$

Stabilizers:

$$\{X_v \prod_{w \in N(v)} Z_w : v \in V\}$$

where N(v) denotes the set of vertices neighbouring v.

We use a procedure called Bell sampling (Montanaro, arXiv:1707.04012), which returns a uniformly random stabilizer of $|G\rangle$

$$\prod_{v \in S} X_v \prod_{u \in N(v)} Z_u = \prod_{u \in [n]} X_u^{[u \in S]} Z_u^{|N(u) \cap S|}$$

Denote A as the adjacency matrix, then each Bell sample returns $A\mathbf{s}$ modulo 2 for a random $\mathbf{s} \in \{0,1\}^n$.

Denote A as the adjacency matrix, then each Bell sample returns $A\mathbf{s}$ modulo 2 for a random $\mathbf{s} \in \{0,1\}^n$. If we take k samples, we obtain an $n \times k$ boolean matrix B and the matrix AB modulo 2.

Denote A as the adjacency matrix, then each Bell sample returns As modulo 2 for a random $\mathbf{s} \in \{0,1\}^n$. If we take k samples, we obtain an $n \times k$ boolean matrix B and the matrix AB modulo 2.

Theorem 1 (Arbitrary graphs)

Let \mathcal{F} be a family of graphs. Then, for any $G \in \mathcal{F}$, G can be identified by applying Bell sampling to $O(\log |\mathcal{F}|)$ copies of $|G\rangle$.

Denote A as the adjacency matrix, then each Bell sample returns As modulo 2 for a random $s \in \{0,1\}^n$. If we take k samples, we obtain an $n \times k$ boolean matrix B and the matrix AB modulo 2.

Theorem 1 (Arbitrary graphs)

Let \mathcal{F} be a family of graphs. Then, for any $G \in \mathcal{F}$, G can be identified by applying Bell sampling to $O(\log |\mathcal{F}|)$ copies of $|G\rangle$.

e.g. If G is a graph with at most m edges, it can be identified with $O(m\log(n^2/m))$ copies of $|G\rangle$.

Denote A as the adjacency matrix, then each Bell sample returns As modulo 2 for a random $\mathbf{s} \in \{0,1\}^n$. If we take k samples, we obtain an $n \times k$ boolean matrix B and the matrix AB modulo 2.

Theorem 1 (Arbitrary graphs)

Let \mathcal{F} be a family of graphs. Then, for any $G \in \mathcal{F}$, G can be identified by applying Bell sampling to $O(\log |\mathcal{F}|)$ copies of $|G\rangle$.

e.g. If G is a graph with at most m edges, it can be identified with $O(m\log(n^2/m))$ copies of $|G\rangle$.

By information-theoretic arguments, $\Omega(\log |\mathcal{F}|)$ is the lower bound to learn graphs in the classical setting. In the quantum setting, the lower bound is $\Omega(\sqrt{\log |\mathcal{F}|})$.

Theorem 2 (Bounded-degree graphs)

For an arbitrary graph G, there is a quantum algorithm which uses $O(d\log m)$ copies of $|G\rangle$, and

- For each vertex v that has degree at most d, outputs all the neighbours of v and that v has degree at most d.
- For each vertex w that has degree larger than d, the algorithm outputs "degree larger than d".

Theorem 2 (Bounded-degree graphs)

For an arbitrary graph G, there is a quantum algorithm which uses $O(d\log m)$ copies of $|G\rangle$, and

- For each vertex v that has degree at most d, outputs all the neighbours of v and that v has degree at most d.
- For each vertex w that has degree larger than d, the algorithm outputs "degree larger than d".

If G is a subgraph of a fixed bounded-degree graph, the algorithm can be made time-efficient.

Theorem 2 (Bounded-degree graphs)

For an arbitrary graph G, there is a quantum algorithm which uses $O(d\log m)$ copies of $|G\rangle$, and

- For each vertex v that has degree at most d, outputs all the neighbours of v and that v has degree at most d.
- For each vertex w that has degree larger than d, the algorithm outputs "degree larger than d".

If G is a subgraph of a fixed bounded-degree graph, the algorithm can be made time-efficient.

Thanks very much for your attention!