

Loose simplicial objects

A useful shape for homotopy limits in (holomorphic) geometry

Introduction

Motivation

Two stories with a common picture

- 1. **Theorem.** If X_{\bullet}^{\star} is a Reedy fibrant cosimplicial simplicial set then the Bousfield-Kan map is a weak equivalence of simplicial sets: $\operatorname{holim} X_{\bullet}^{\star} \xrightarrow{\sim} \operatorname{Tot} X_{\bullet}^{\star}$
- 2. **Theorem.** If \mathscr{F} is a complex of analytic sheaves with coherent cohomology, then there exists a (very nice) complex $\mathscr{R}^{\star}_{\bullet}$ of locally free sheaves on the Čech nerve such that $\mathscr{R}^{\star}_{\bullet} \overset{\sim}{\to} i^* \mathscr{F}^{\star}_{\bullet}$

Proof. [Bousfield-Kan] We can "semi-strictify" the fat simplex to the simplex

Proof. [Green-H] We can "semistrictify" the barycentric subdivision to the pair subdivision

The loose/extruded simplices

Defined via hand-waving (for now)

Consequences

Work in progress (with Cheyne Glass) — conjectural

- We can define a spectrum of constructions that lie in between totalisation and the homotopy limit: $Tot = Tot_0 \hookrightarrow Tot_1 \hookrightarrow Tot_2 \hookrightarrow ... \hookrightarrow Tot_\infty = holim$
- In "nice" cases (e.g. Reedy fibrant), the above spectrum fully collapses; we might be able to define a spectrum of "niceness" for which it partially collapses
- Just as twisting cochains are the $Tot=Tot_0$ of a simplicial presheaf, we can realise simplicial twisting cochains as exactly the Tot_1 of the same simplicial presheaf. (Corollary. They are actually equivalent)
- ... a better understanding of $\mathrm{D}^{\mathrm{b}}(\mathsf{Coh}(X)) \hookrightarrow \mathrm{D}^{\mathrm{b}}_{\mathsf{Coh}}(\mathsf{Sh}(X))$?

Coherent

Generality

What we won't talk about

Many things actually hold for arbitrary (locally) ringed spaces, see

H and Zeinalian, "Simplicial presheaves of Green complexes and twisting cochains", (2023) arXiv:2308.09627

- All of the work is inspired by the complex-analytic (i.e. holomorphic) case:
 - X a (paracompact) holomorphic manifold
 - \mathcal{O}_X the sheaf of holomorphic functions
- In particular, no assumptions about algebraicity (e.g. Kähler, projective)

Locally free complex-analytic sheaves

A sheaf-theoretic version of holomorphic vector bundles

- Complex-analytic manifold (X,\mathscr{O}_X) with (trivialising) (Stein) cover $\mathscr{U}=\{U_lpha\}$
- Locally free sheaf E o X of rank r with trivialisations $\varphi_{lpha} \colon E \,|\, U_{lpha} \overset{\sim}{ o} (\mathscr{O}_X |\, U_{lpha})^r$
- ullet From this, we can also describe E in terms of its transition functions

$$M_{\alpha\beta} = \varphi_{\alpha} \circ \varphi_{\beta}^{-1} \colon (\mathcal{O}_X | U_{\alpha\beta})^r \xrightarrow{\sim} (\mathcal{O}_X | U_{\alpha\beta})^r$$

i.e. "holomorphic function-valued invertible matrices"

• Modulo technical details, these are exactly holomorphic vector bundles, which are exactly "holomorphic $\check{\mathscr{C}}(\mathscr{U}) \to \mathbb{B}\mathrm{GL}_r(\mathbb{C})$ "

Okacoherence

- The definition of a coherent sheaf (not even a complex of such objects, just a single sheaf) is somewhat delicate, e.g. Serre (and thus EGA and Stacks) and Hartshorne give different definitions that actually seem to contradict
 - Hartshorne's definition seems to imply that \mathscr{O}_X itself should always be a coherent sheaf, but this is not true in general, not even for affine schemes
 - The fact that \mathscr{O}_X is coherent in the holomorphic setting is a very deep theorem of Oka
- The problem boils down to Hartshorne considering only *Noetherian* schemes; in general, the notion of pseudo-coherence from SGA 6 is necessary

Nicer than holomorphic vector bundles

- Four non-definitions:
 - In general, the category of vector bundles is not abelian: can't take (co)kernel the category of coherent sheaves is nice because it contains the category of vector bundles, is abelian, and arises "naturally"
 - In the holomorphic world, "quasi-coherent" isn't well behaved (or even well defined, arguably), but "coherent" is a good analogue
 - Coherence allows us to extend from stalks to neighbourhoods: if $\mathcal{F}_x \to \mathcal{G}_x \to \mathcal{H}_x$ is exact then so too is $\mathcal{F} \mid U \to \mathcal{G} \mid U \to \mathcal{H} \mid U$
 - Historically things go in the other direction: coherence comes from complex geometry, in Cartan's Theorems A and B, which imply *lots* of things on Stein (think "affine") manifolds (e.g. extension of holomorphic functions on closed subsets, a sort of Nullstellensatz, every meromorphic function is the quotient of global holomorphic functions, ...)

Perfect complexes

- (Bounded) cochain complex L^{ullet} of sheaves of \mathscr{O}_X -modules is
 - strictly perfect if each L^i is a (finite) locally-free sheaf
 - perfect if it is locally quasi-isomorphic to strictly perfect complex
- The relationship between perfectness and coherence is... complicated (see SGA 6) but for this talk, we can think "perfect" whenever we see "coherent"
- (It is in this definition of strictly perfect that we really need *locally* ringed spaces)

Worse than coherent algebraic sheaves

- Fact. [SGA 6, II, Corollaire 2.2.2.1] Let X be a Noetherian scheme. Then the canonical fully faithful functor $\mathrm{D}^b(\mathsf{Coh}(X)) \hookrightarrow \mathrm{D}(\mathsf{Sh}(X))$ has essential image $\mathrm{D}^b_{\mathsf{Coh}}(\mathsf{Sh}(X))$
- Fact. [SGA 6, II, Exemples 5.11 (+ Corollaire 2.2.2.1)] Let X be a smooth scheme. Then there is a canonical equivalence of triangulated categories $\operatorname{Perf}(X) \overset{\sim}{\to} \operatorname{D}^b(\operatorname{Coh}(X))$
- Fact. [SGA 6, II, Propositions 2.2.7 and 2.2.9] If X is an affine (resp. projective, resp. separated regular Noetherian) scheme, then every perfect complex is quasi-isomorphic to a complex of locally free sheaves (i.e. is strictly perfect)
- **Summary.** In the algebraic world, we can often pick either definition of "coherent complex", and then just work with complexes of locally free sheaves anyway

... but worse than coherent algebraic sheaves

- Fact. (still true) Every coherent sheaf is perfect
- Open problem. Is $D^b(\mathsf{Coh}(X))$ equivalent to $D^b_{\mathsf{Coh}}(\mathsf{Sh}(X))$ when X is a complex-analytic manifold?
- Fact. Complex manifolds have very few holomorphic vector bundles, e.g. [Voisin 2002, Corollary A.5] there exist coherent analytic sheaves that do not admit a resolution by locally free sheaves

... but worse than coherent algebraic sheaves

- So we have two problems:
 - 1. we have to pick which definition of "(complex of) coherent sheaf" to use
 - 2. we cannot reduce to working with locally free sheaves
- (Bonus problem: even if we *could* work with locally free sheaves, we can't do Chern-Weil theory on them because they essentially never admit holomorphic connections!)

Twisting

Guiding philosophies: a toolbox

Not always true but often useful

- 1. Things that are *global* in complex-*algebraic* geometry are *local* in complex-*analytic* geometry (e.g. resolutions by locally free sheaves, connections)
- 2. Things that are *local* can be made *simplicially global*, or: let's use *all* of the Čech nerve
- 3. Things that are simplicial are dg (Dold-Puppe/Dold-Kan)

The inspiration

- A complex of locally free sheaves is the data of:
 - locally, complexes of free sheaves
 - isomorphisms on intersections $U_{lphaeta}$

The general idea

- A twisting cochain is the data of:
 - locally, complexes of free sheaves
 - quasi-isomorphisms on intersections $U_{lphaeta}$
 - homotopies witnessing these quasi-isomorphisms on intersections $U_{lphaeta\gamma}$
 - homotopies witnessing the failure of the previous homotopies to commute with the quasi-isomorphisms on intersections $U_{lphaeta\gamma\delta}$
 - ... (and so on)

The main theorem

- **Theorem.** [Toledo, Tong 197?] Any coherent sheaf on a complex-analytic manifold can be resolved by a holomorphic twisting cochain
- **Hidden Theorem.** [Wei, Hosgood, 2016] Any "complex of coherent sheaves" on a complex-analytic manifold can be resolved by a holomorphic twisting cochain

Modern theorems

- **Theorem.** [Wei 2016] The dg-category of twisting cochains is a dg-enhancement of the triangulated category of perfect complexes
- Construction. [H, Zeinalian 2023] The space of twisting cochains (encapsulating e.g. the notion of weak equivalence of twisting cochains)

One of the original definitions

• We formalise the "... and so on" by bundling up all the equations together into a single equation in some graded structure:

$$\mathfrak{a} = \bigoplus_{k \in \mathbb{N}} \mathfrak{a}^{k,1-k} \in \operatorname{Tot}^1 \hat{\mathscr{C}}^{\bullet}(\mathscr{U}, \operatorname{End}^{\star}(V))$$

such that
$$\hat{\delta}a + a^2 = 0$$

We end up recovering the Maurer-Cartan equation

Maurer-Cartan and the dg-nerve

The sea of sign errors

 The Maurer-Cartan equation can be seen as the defining equation of the dg-nerve, and ...

Theorem 2.5.12 ([GMTZ22a, Corollary 3.5]). Let \mathscr{D} be a dg-category of cochain complexes of modules, let $X = X_{\bullet}$ be a simplicial set, and let $\mathscr{L} = \{c_x \in \mathscr{D}\}_{x \in X_0}$ be a labelling of the 0-simplices of X_{\bullet} by \mathscr{D} . Then there is a bijection

$$\left\{f\in \operatorname{Tot}^1(C^{p,q}(X,\mathcal{D};\mathcal{L}))\mid \operatorname{D} f+f\cdot f=0\right\}\longleftrightarrow \left\{F\colon X\to \mathcal{N}^{\operatorname{dg}}(\mathcal{D})\mid F(x)=c_x \ for \ all \ x\in X_0\right\}$$

between Maurer-Cartan elements of $C^{\bullet,*}(X,\mathcal{D};\mathcal{L})$ and morphisms of simplicial sets from X_{\bullet} to dg-nerve of \mathcal{D} that agree with the labelling \mathcal{L} .

Corollary 2.5.13. With the notation and hypotheses of Theorem 2.5.12, we have a bijection

$$\left\{ Maurer-Cartan\ elements\ of\ \mathrm{Tot}^1\left(C^{p,q}(\Delta[n],\mathcal{D};K)\right)\right\} \longleftrightarrow \left\{ n\text{-}simplices\ K\in\mathcal{N}^{\mathrm{dg}}(\mathcal{D})_n\right\}$$

where the n-simplex K defines the labelling $\{i\} \mapsto \operatorname{ver}_i K$.

resolution

A key result in homological algebra

As a consequence/input to Green's construction

- Corollary. (Semi-strictification) [Green* 1980] Let $L^{ullet} \to M^{ullet}$ be a quasi-isomorphism of bounded complexes of free modules. Then there exist \widetilde{L}^{ullet} and \widetilde{M}^{ullet} such that
 - 1. $\widetilde{L}^{\bullet} \simeq L^{\bullet}$ and $\widetilde{M}^{\bullet} \simeq M^{\bullet}$
 - 2. $\widetilde{L}^{\bullet} \cong \widetilde{M}^{\bullet}$

The Čech nerve

My favourite simplicial thing

- Idea. Take a cover of a space and stretch it out; if the cover is nice enough then this should be the same as the space
- ("nice enough" = good*, and this implies cofibrant resolution)

$$\dots \coprod U_{\alpha\beta\gamma} \longleftrightarrow \coprod U_{\alpha\beta} \longleftrightarrow \coprod U_{\alpha}$$

Locally free sheaves on the Čech nerve In detail, and succinctly

• A sheaf \mathscr{E}^{ullet} on a simplicial space Y_{ullet} is a family of sheaves $\mathscr{E}^p\in\operatorname{Sh}(Y_p)$ along with morphisms

$$\mathscr{E}^{\bullet}(\varphi): (Y_{\bullet})^*\mathscr{E}^p \to \mathscr{E}^q$$

for all $\varphi\colon [p] o [q]$ in Δ , and functorially so; note that we do not require these $\mathscr E^ullet \varphi$ to be isomorphisms or weak equivalences (but in Green's resolution they will be)

- Alternatively [H, 2024] we can just say that they are lifts along $\Delta^{op} o Space$ of the Grothendieck construction of the functor $Sh\colon Space^{op} o Cat$
- Alternatively [H 2016] we can define them as lax limit objects of the cosimplicial diagram of categories ${
 m Sh}(\check{\mathscr{C}}(\mathscr{U}))$

$$E_{lpha}^{ullet}$$

$$E_{\alpha}^{\bullet} | U_{\alpha\beta} \neq E_{\beta}^{\bullet} | U_{\alpha\beta}$$

$$E_{lpha}^{ullet}$$

$$\widetilde{E}_{\alpha}^{\bullet} | U_{\alpha\beta} \quad \stackrel{\cong}{\longrightarrow} \quad \widetilde{E}_{\beta}^{\bullet} | U_{\alpha\beta}$$

Pair subdivision

A cubical factorisation of the barycentric subdivision

0-simplex of $\Delta[2]_{bary}$	subset of [2] = {0 < 1 < 2}	sub-simplex of $\Delta[2]$
A A A A A A A A A A A A A A A A A A A	{0} ⊆ [2]	٠,^^ ٠,
Ø ≥0	{1 < 2} ⊆ [2]	ø -
Ø, 1, b Ø, 1, b Ø, 1, b	{0 < 1 < 2} ⊆ [2]	

A Dold-Kan style result

But not exactly... maybe?

- **Theorem.** [Green 1980] Let \mathscr{F} be a coherent analytic sheaf on a complex-analytic manifold with a "nice" Stein cover \mathscr{U} . Then we can inductively modify any twisting cochain resolving \mathscr{F} to obtain a "very nice" complex of locally free sheaves on $\check{\mathscr{E}}(\mathscr{U})$ that resolves \mathscr{F} .
- In other words, we can package up dg data (quasi-isomorphisms and chain homotopies and ... i.e. a Maurer-Cartan element) into simplicial data (a single "global" simplicial object)
- Open question. Can we explicitly state an equivalence between twisting cochains and Green complexes as an example of some Dold-Kan statement?

Simplicial twisting cochains

A meeting place for twisting cochains and Green complexes

- Toledo-Tong's summary of Green's thesis [1986] defines a *simplicial twisting* cochain as a sort of ad-hoc common generalisation of twisting cochains and locally free sheaves on the Čech nerve ("simplicial vector bundles")
- Simplest definition: like Green's resolution, but we now label the *full* pair subdivision instead of just the 1-skeleton
- Question. What can we say about $\mathcal{T}wist \hookrightarrow \mathcal{S}Twist \leftrightarrow \mathcal{G}reen$ in terms of category/homotopy theory?

Cosimplicial simblicialsets

Totalisation of cosimplicial simplicial sets

Lots of definitions

• Right adjoint to the functor $L \colon \mathsf{sSet} \to \mathsf{csSet}$ given by $L \colon X_{\bullet} \mapsto X_{\bullet} \times \Delta[\star]$

•
$$\underline{\text{Hom}}_{csSet}(\Delta[\star], -)$$

$$\operatorname{Tot} X_{\bullet}^{\star} = \operatorname{eq} \left(\prod_{[p]} \operatorname{Hom}_{\operatorname{sSet}}(\Delta[p], X_{\bullet}^p) \rightrightarrows \prod_{[p] \to [q]} \operatorname{Hom}_{\operatorname{sSet}}(\Delta[p], X_{\bullet}^q) \right)$$

"Dual to geometric realisation"

Totalisation of cosimplicial simplicial sets

Lots of definitions

Figure 2.3.i. Visualising a point $y = (y^0, y^1, y^2, ...)$ in the totalisation of a cosimplicial simplicial set Y_{\bullet}^{\star} . For aesthetic purposes, we have not drawn the codegeneracy maps, nor anything above degree 2.

Čech totalisation of simplicial presheaves

A method of sheafification* [Glass, Miller, Tradler, Zeinalian 2022]

- The (opposite) of the Čech nerve gives a functor $\check{\mathcal{N}}^{\mathrm{op}}$: $\mathrm{Space}^{\mathrm{op}}_{\mathscr{U}} \to [\Delta, \mathrm{Space}^{\mathrm{op}}]$ and so we can precompose any simplicial presheaf $\mathscr{F}: \mathrm{Space}^{\mathrm{op}} \to \mathrm{sSet}$ by this to get a cosimplicial simplicial set $\mathscr{F}(\check{\mathcal{N}}\mathscr{U}_{\star})$ whenever we fix some $(X,\mathscr{U}) \in \mathrm{Space}_{\mathscr{U}}$
- **Definition.** The **Čech totalisation** of a simplicial presheaf \mathscr{F} at the cover \mathscr{U} (of a space X) is the simplicial set $\mathrm{Tot}\,\mathscr{F}(\check{\mathscr{N}}\mathscr{U}_{\star})$
- This generalises sheafification in terms of taking sections of the espace étalé
- **Lemma.** Čech totalisation sends presheaves of Kan complexes to Kan complexes, and weak equivalences between such presheaves to weak equivalences.
- Corollary. [GMTZ 2022] If ${\mathcal F}$ is a presheaf of Kan complexes, then its Čech totalisation is equivalent to its Čech homotopy limit

Čech totalisation of simplicial presheaves

Relating to existing results in the literature

• **Lemma.** [H, Zeinalian 2023] Let \mathcal{F} be a presheaf of dg-categories that sends finite products to coproducts. Then there is a weak equivalent of Kan complexes

$$\operatorname{Tot}\langle \mathcal{N}^{\operatorname{dg}}\mathcal{F}(\check{\mathcal{N}}\mathcal{U})\rangle \simeq \langle \mathcal{N}^{\operatorname{dg}}\operatorname{Tot}\mathcal{F}(\check{\mathcal{N}}\mathcal{U})\rangle$$

where on the left we take the totalisation of cosimplicial simplicial sets, and on the right we take the totalisation of cosimplicial dg-categories

• **Corollary.** Working with simplicial presheaves recovers analogous results about homotopy limits of dg-categories of chain complexes in the language of presheaves of dg-categories [Block, Holstein, Wei 2017]

Encoding structures in simplicial presheaves

Vector bundles

- $\mathscr{B}un_{\mathrm{GL}_r(\mathbb{R})} = \mathrm{Tot}((\mathring{\mathscr{N}}^{\mathrm{op}}) * \mathscr{N}\mathbb{B}y)(\mathrm{GL}_r(\mathbb{R})) : \mathrm{Space}_{\mathscr{U}} \to \mathrm{sSet}$
- **Theorem.** ["folklore"] $\pi_0(\mathcal{B}\mathrm{un}_{\mathrm{GL}_r(\mathbb{R})}(X,\mathcal{U}))$ consists of isomorphism classes of principal $\mathrm{GL}_r(\mathbb{R})$ -bundles on X (with \mathcal{U} trivialising); $\pi_1(\mathcal{B}\mathrm{un}_{\mathrm{GL}_r(\mathbb{R})}(X,\mathcal{U}),[E])$ is the gauge group $\mathrm{Aut}(E)$ of E; higher homotopy groups are zero.

Encoding structures in simplicial presheaves

Green complexes, twisting cochains, and simplicial twisting cochains

- Aim: generalise $\operatorname{Tot}(N\operatorname{Free}(N\mathcal{U}_{\star}))$, which is the space of locally free sheaves
- Inspired by Dold-Kan, we can try two things [H, Zeinalian 2023]

 - 2. do "something simplicial" ~ label the pair subdivision ~ Green complexes
- Bonus fact: if we do both then we get simplicial twisting cochains

Summary / unanswered questions

Can we do everything pre-geometry? In a "neat" way?

- We can define three simplicial presheaves on the category of locally ringed spaces such that their Čech totalisation recovers twisting cochains, Green complexes, and simplicial twisting cochains (respectively)
- We can show an equivalence on π_0 before Čech totalisation ("pre-geometry")
- ... but doing anything else is hard because the construction $\mathscr{G}\text{reen}$ is so ad-hoc, with lots of combinatorics to keep track of

Homotopy 1.

Some intuition for homotopy limits

"Homotopy-universal homotopy-cone"

Homotopy equalisers

A particularly simple (and relevant) type of homotopy limit

• 1-categorical: we have $X \rightrightarrows Y$ and want to find Z such that the images are isomorphic

Homotopy equalisers

A particularly simple (and relevant) type of homotopy limit

• Homotopical: we have $X \rightrightarrows Y$ and want to find Z such that the images are homotopic

Fat Delta and Bousfield-Kan

Proving that the totalisation (sometimes) computes the homotopy limit

• As an equaliser, Tot uses $\Delta[p]$ as a cotensor

$$\operatorname{Tot} X_{\bullet}^{\star} = \operatorname{eq} \left(\prod_{[p]} \operatorname{Hom}_{\operatorname{sSet}}(\Delta[p], X_{\bullet}^p) \Rightarrow \prod_{[p] \to [q]} \operatorname{Hom}_{\operatorname{sSet}}(\Delta[p], X_{\bullet}^q) \right)$$

and holim can be written in the same way [Hirschhorn 2003] but replacing Δ by the fat simplex, defined by $\Delta[p] = \mathcal{N}(\Delta/[p])$

• Both Δ and Δ are cofibrant replacements of * but not fibrant cofibrant, so Bousfield-Kan built a map directly between them to witness the weak equivalence

SIMOLICES

*in progress

Back to simplicial twisting cochains

The nerve inside the dg-nerve and the equaliser inside the homotopy equaliser

Back to simplicial twisting cochains

The nerve inside the dg-nerve and the equaliser inside the homotopy equaliser

just like we do for Tot

The reoccurring picture

Hopefully somewhat familiar now

Homotopy colimit of skeletal filtration

We get non-trivial 2-dimensional data from composites

"Bounded-homotopy" colimit

Only allowing homotopical data up to dimension 1

"Bounded-homotopy" colimit

Only allowing homotopical data up to dimension 1

- Solution: come up with a "loose" skeleton, and take the homotopy colimit of these in a specific way
- Claim. This gives a formal definition of the cosimplicial simplicial set called the "extruded simplex"

Sitting between holim and Tot

Are simplicial twisting cochains twisting cochains?

- The extruded simplex sits in between the simplex and the fat simplex
- So if we use it as a cotensor then we can place Tot_1 in between Tot and holim and study $Tot = \mathcal{T}wist \to \mathcal{S}Twist = Tot_1$
- Conjecture. Some sort of squeezing/sandwich theorem shows that $\mathscr{T}wist \simeq \mathscr{S}Twist$

Back to simplicial twisting cochains

The nerve inside the dg-nerve and the equaliser inside the homotopy equaliser

Thankyou