

Le transistor à effet de champ (TEC) Field Effect Transistor (FET)

Présentation générale

- Transistor à effet de champ se présente comme une résistance variable commandée par une tension extérieure
- Comparaison avec le transistor bipolaire :
 - fonctionnement lié au déplacement d'un seul type de porteur (porteur majoritaire)
 - Très forte impédance d'entrée ($M\Omega$)
 - Facteur de bruit inférieur au transistor bipolaire
 - > Transistor à canal N

> Transistor PNP

Le sens de la flèche indique le sens du courant de grille

Présentation générale

Constitution du TEC à canal N

Sur un substrat de type P (Grille) fortement dopé (P+) sont déposées :

- ✓ Une zone N faiblement dopée qui constitue le canal
- ✓ Deux zones N fortement dopées (N⁺) qui constitue des bornes d'entrée (Source) et de sortie du canal (Drain)

Elément actif à 3 accès :

Grille (G): électrode de commande,

Source (S): électrode par laquelle les porteurs majoritaires entrent dans le canal,

Drain (D): électrode par laquelle les porteurs majoritaires quittent le canal.

Fonctionnement du transistor à canal N

• $V_{GS} = 0 V$ (grille et source reliées) – $V_{DS} = 0 V$

La mise en contact des zones P et N donne naissance à des zones de charges d'espace qui diminuent la largeur effective du canal

V_{GS} = 0 V (grille et source reliées) – V_{DS} ≥ 0 V faible

La jonction grille drain est polarisée en inverse – Les zones de charge d'espace augmentent – Si V_{DS} faible, le canal se comporte comme une résistance R_{DS}

→ le transistor à un comportement ohmique

Fonctionnement du transistor à canal N

V_{GS} = 0 V (grille et source reliées) – V_{DS} ≥ 0 V élevée

Si V_{DS} \nearrow la section conductrice du canal diminue \Rightarrow R_{DS} \nearrow et le courant I_D entre le drain et la source commence à être limité – Lorsque les deux zones de charge d'espace se rejoignent le canal est pincé $(V_{DS} = V_D)$

Fonctionnement du transistor à canal N

- $V_{GS} < 0 \ V V_{DS} = 0 \ V$
 - ✓ Si $|V_{GS}|$ → l'épaisseur du canal se rétrécit le canal est totalement pincé lorsque $V_{GS} = -V_p$
- $V_{GS} < 0 V V_{DS} > 0 V$
 - ✓ Si $|V_{GS}|$ < Vp le canal ne peut être complètement fermé → le courant I_D qui circule dépend de V_{DS} et V_{GS}
 - ✓ Si $V_{DS} > V_{DScoude} = Vp V_{GS}$ le courant I_D n'augmente plus

Caractéristiques statiques du TEC à canal N

• La caractéristique de transfert est tracée lorsque le transistor est dans la zone de saturation

Paramètres statiques du TEC

Paramètres obtenus en considérant le montage suivant :

- Paramètres d'entrée : I_G et V_{GS}
- Paramètres de sortie : I_D et V_{DS}

La tension V_{GS} est toujours négative

ightharpoonup la jonction Grille-Source est polarisée en inverse donc $I_G \approx 0$

Paramètres statiques du TEC

Loi de variation du courant I_D

 \triangleright Zone ohmique : $V_{DS} < V_{DScoude} = V_p + V_{GS}$

$$I_D = I_{DSS} \left(\frac{2V_{DS}}{V_p} + \frac{2V_{GS}V_{DS}}{{V_p}^2} - \frac{{V_{DS}}^2}{{V_p}^2} \right) \text{ avec V}_p > 0 \text{ et V}_{GS} < 0$$

➤ Zone de saturation : V_{DS} > V_{DScoude}

$$I_D = I_{DSS} \left(1 + \frac{V_{GS}}{V_p} \right)^2$$
 avec $V_p > 0$ et $V_{GS} < 0$

Dans ce cas I_D est indépendant de V_{DS}

- Résistance Grille-Source
 - \rightarrow la jonction Grille-Source est polarisée en inverse donc $l_G \approx 0$

$$R_{GS} = \frac{\Delta V_{GS}}{\Delta I_G} \approx 10 \text{ M}\Omega \implies \text{très grande}$$

Paramètres statiques du TEC

Résistance Drain Source

$$R_{DS} = rac{\Delta V_{DS}}{\Delta I_D}$$
 dépend de la zone d'utilisation du TEC

 Pente de la caractéristique I_D = f(V_{GS}) dans la zone de saturation

$$g_{m} = \left(\frac{\Delta V_{GS}}{\Delta I_{G}}\right)_{V_{DS} = cste} \quad \text{avec} \quad I_{D} = I_{DSS} \left(1 + \frac{V_{GS}}{V_{p}}\right)^{2}$$

$$\Rightarrow g_{m} = \frac{2I_{DSS}}{V_{p}} \left(1 + \frac{V_{GS}}{V_{p}}\right)$$

$$\Rightarrow \text{Pour } V_{GS} = 0 \Rightarrow I_{D} = I_{DSS} \Rightarrow g_{m} = g_{m0} \text{ (valeur maximale)}$$

$$\Rightarrow \text{Pour } -V_{p} < V_{GS} < 0 \Rightarrow g_{m} = g_{m0} \left(1 + \frac{V_{GS}}{V_{p}}\right)$$

Polarisation du TEC à canal N en zone de saturation

▶ Objectif de la polarisation : Fixer les valeurs des tensions V_{GS0}, V_{DS0} et du courant I_{DO} pour l'utilisation du transistor en alternatif

 $V_{DD} > 0$

→ Conditions à respecter : $-V_p < V_{GS} \le 0$ et $V_{DS} \ge 0$

Exemple: polarisation automatique en zone de saturation

- \square $I_S = I_D + I_G$ avec I_G très faible $(I_G \approx 0)$ $\rightarrow I_S \approx I_D$
- R_G élevée
- \square R_D et R_S servent à limiter le continu

Polarisation du TEC à canal N – Droite de polarisation

 $V_{DD} > 0$

Exemple : polarisation automatique en zone de saturation

☐ Equation de la droite de polarisation

$$V_{GS} = -R_G I_G - R_S I_S$$

or
$$I_G \approx 0$$
 et $I_S \approx I_D$

$$ightharpoonup I_D = -\frac{V_{GS}}{R_S}$$
 Equation de la droite

de polarisation ou droite d'attaque

Polarisation du TEC à canal N – Droite de charge statique

de saturation

Exemple : polarisation automatique en zone

☐ Equation de la droite de charge statique

$$V_{DD} - V_{DS} = R_D I_D - R_S I_D$$

Car
$$I_S \approx I_D$$

$$I_D = \frac{V_{DD} - V_{DS}}{R_D + R_S}$$

Equation de la droite de charge statique

Le TEC en régime dynamique

- Schéma équivalent du TEC en alternatif dans la zone de saturation
 - ➤ Le transistor est considéré comme un quadripôle

Le quadripôle est décrit en utilisant les paramètres admittances

$$\begin{cases} \boldsymbol{i}_G = \boldsymbol{Y}_{11} \boldsymbol{v}_{GS} + \boldsymbol{Y}_{12} \boldsymbol{v}_{DS} \\ \boldsymbol{i}_D = \boldsymbol{Y}_{21} \boldsymbol{v}_{GS} + \boldsymbol{Y}_{22} \boldsymbol{v}_{DS} \end{cases} \quad \text{avec} \quad \begin{array}{c} \boldsymbol{i}_G = \Delta \, \boldsymbol{I}_G \\ \boldsymbol{v}_{GS} = \Delta \, \boldsymbol{V}_{GS} \end{array} \quad \boldsymbol{v}_{DS} = \Delta \, \boldsymbol{V}_{DS} \end{cases}$$

Ces grandeurs représentent de petites variations autour du point de fonctionnement

Le TEC en régime dynamique

Schéma équivalent du TEC en alternatif dans la zone de saturation

$$Y_{11} = \left. \frac{\Delta I_G}{\Delta V_{GS}} \right|_{\Delta V_{DS} = 0} = \left. \frac{\Delta I_G}{\Delta V_{GS}} \right|_{V_{DS0}} = \frac{1}{R_{GS}}$$
 $\Rightarrow Y_{11} \approx 0$ car jonction Grille Source polarisée en inverse

$$Y_{12} = \frac{\Delta I_G}{\Delta V_{DS}} \Big|_{\Delta V_{GS} = 0} = \frac{\Delta I_G}{\Delta V_{DS}} \Big|_{V_{GSO}}$$

 \rightarrow $Y_{12} \approx 0$ car jonction Grille Source polarisée en inverse

$$Y_{21} = \left. \frac{\Delta I_D}{\Delta V_{GS}} \right|_{\Delta V_{DS} = 0} = \left. \frac{\Delta I_D}{\Delta V_{GS}} \right|_{V_{DS0}} = g_m$$

 \rightarrow pente de la caractéristique $I_D = f(V_{GS})$

$$Y_{22} = \left. \frac{\Delta I_D}{\Delta V_{DS}} \right|_{\Delta V_{GS} = 0} = \left. \frac{\Delta I_D}{\Delta V_{DS}} \right|_{V_{GS0}} = \left. \frac{1}{R_{DS}} \right|_{V_{GS0}}$$

Schéma équivalent du TEC en alternatif BF

• Schéma équivalent général

Schéma équivalent simplifié

$$R_{GS} \rightarrow \infty$$
 et $R_{DS} \rightarrow \infty$

Amplificateur à TEC à polarisation automatique

Montage source commune

- > Les accès d'entrée et de sortie sont 1 et 2
- ➤ Les capacités C₁, C₂ et C_s sont des capacités de découplage

Etude statique du montage (théorème de superposition)

Schéma équivalent en continu

 $V_{DD} > 0$

Détermination des droites d'attaque et statique de sortie (voir diapositives 12 et 13)

Le point de fonctionnement du transistor est imposé par les éléments du montage

- → I_{D0}, V_{GS0} et V_{DS0} sont fixés
- → un signal alternatif v_{GS}(t) peut être superposé au signal continu V_{GS0}

Etude dynamique du montage (théorème de superposition)

Schéma électrique en régime sinusoïdal

Schéma équivalent (R_{GS} et R_{DS} sont négligées)

Etude dynamique du montage (théorème de superposition)

Droite de charge dynamique

$$v_{DS} = -\frac{R_L R_D}{R_L + R_D} i_D$$
 (d'après le schéma de la diapositive 19)

→ La droite de charge dynamique Δ est la droite passant par le point de fonctionnement de coordonnées (I_{D0} , V_{DS0}) et de pente $\frac{-1}{R_L//R_D} = -\frac{R_L + R_D}{R_L R_D}$

$$i_D = -\frac{R_L + R_D}{R_L R_D} (v_{DS} - V_{DS0}) + I_{D0}$$
 \Rightarrow équation de la droite de charge dynamique

→ Une petite variation de la tension d'entrée v_{GS}(t) autour de V_{GS0} entraine des variations de courant i_{DS(t)} autour de I_{D0} et de tensions v_{DS}(t) autour de V_{DS0}

Analyse du circuit : application du théorème de superposition

Caractéristiques électriques de l'amplificateur en fonctionnement alternatif

➢ Gain en tension G_v

$$G_V = -g_m \frac{R_L R_D}{(R_L + R_D)}$$

Gain en courant G_I

$$G_I = -g_m R_G \frac{R_D}{(R_L + R_D)}$$

Résistance d'entrée R_e

$$R_e = R_G$$

Résistance de sortie R_s

$$R_s = R_D$$

Autres types de montage

Comportement du TEC à haute fréquence

- Si la fréquence augmente, des capacités parasites intrinsèques au transistor C_{GS}, C_{GD} et C_{DS} interviennent
 - → Les deux premières sont du même ordre de grandeur (qq pF), la dernière plus faible peut être négligée

25 25