Set 2

Claire Goeckner-Wald

October 9, 2016

Hoeffding Inequality

1) B. 0.01

See the Hoeffding code. For 100,000 repititions, the average value of v_{min} was about 0.0376.

2) D. c_1 and c_{rand}

See the Hoeffding code. For 100,000 repititions, the average value of c_1 and c_{rand} were about 0.5. This satisfies the single-bin Hoeffding Inequality because it

Error and Noise

3) E. $\lambda \mu + (1 - \lambda)(1 - \mu)$

Function h approximates f with error μ . But there is a $1 - \lambda$ chance that f is wrong. We can determine the probability that h incorrectly approximates y with a decision tree.

4)

$$\begin{split} P(h(x) \neq y) &= \lambda \mu + (1 - \lambda)(1 - \mu) \\ &= \lambda \mu + (1 - \lambda - \mu + \lambda \mu) \\ &= 2\lambda \mu - \lambda - \mu + 1 \\ &= \mu(2\lambda - 1) - \lambda + 1 \\ 2\lambda - 1 &= 0 \\ 2\lambda &= 1 \\ \lambda &= \frac{1}{2} \end{split}$$

Thus, when $\lambda = \frac{1}{2}$, μ is irrelevant to the output of $P(h(x) \neq y)$.

Linear Regression

- 5) C. 0.01 See the linear regression code. For 10,000 repititions, the average in-sample error was 0.039185.
- 6) C. 0.01
 See the linear regression code. For 10,000 repititions, the average out-sample error was 0.0484795.

7)

Nonlinear Transformation

- 8)
- 9)
- 10)