CEU	

EXAMEN DE ANÁLISIS (1ª PARTE)	
$1^{ m Q}$ Grado en Ingeniería Matemática	Nombre:
Asignatura: ANÁLISIS III	DNI:
Fecha: 2024-01-24	Modelo A

Duración: 1 hora y 15 minutos.

- 1. (3 puntos) Una moto se mueve siguiendo la trayectoria dada por la función vectorial $\mathbf{f}(t) = 2t^3\mathbf{i} + (3t t^3)\mathbf{j}$.
 - a) ¿Con qué rapidez se mueve en el instante t = 1?
 - b) Calcular la curvatura de la trayectoria en el instante t = 1.
 - c) Calcular las componentes tangencial y normal de la aceleración en el instante t=1.
- 2. (3 puntos) La temperatura de una placa de inducción térmica en cada punto (x,y) de su superficie viene dada por la función $T(x,y) = ye^{-x^2-2y^2}$.
 - a) ¿Cuál es la tasa de variación instantánea de la temperatura en el punto (0,0) si empezamos a movernos en la dirección en la que x decrece un tercio de lo que aumenta y?
 - b) ¿En qué puntos la temperatura será máxima y mínima? ¿Cuál será la temperatura en esos puntos?
- 3. (4 puntos) La superficie de una función f(x,y) contiene las trayectorias dadas por las funciones vectoriales $\mathbf{f} = (e^{-t}, 2t + 2, 3 2t + t^2)$ y $\mathbf{g}(t) = \left(\sqrt(t), \frac{t^2 + 3}{2}, 4t^4 t\right)$.
 - a) Calcular la ecuación de la recta tangente a la trayectoria de g en el punto (1,2,3).
 - b) Calcular la ecuación del plano tangente a la superficie de f en el punto (1,2,3).
 - c) En ese mismo punto, ¿cuál es la tasa de variación de f con respecto a x si y se mantiene constante? ¿Cuál es la tasa de variación instantánea de f con respecto a y si x se mantiene constante?