All-Pairs Shortest Path using Fox's Algorithm

Project Overview

This project implements a parallel solution to the All-Pairs Shortest Path Problem using Fox's Algorithm for distributed matrix multiplication with MPI (Message Passing Interface). The implementation uses the Repeated Squaring Algorithm with min-plus matrix multiplication to efficiently compute shortest paths between all pairs of nodes in a directed graph.

Problem Description

What the Project Does

The program solves the all-pairs shortest path problem for directed graphs by:

- 1. **Input**: Reading an adjacency matrix representing a directed graph where each element (i,j) represents the weight of the edge from node i to node j
- 2. **Processing**: Using Fox's algorithm to perform min-plus matrix multiplications in parallel across multiple MPI processes
- 3. **Output**: Producing a distance matrix where each element (i,j) represents the shortest path distance from node i to node j

The Problem It Solves

Given a directed graph G=(V,E) with: - V: Set of vertices (nodes) - E: Set of edges (links) with weights

The goal is to find the shortest path distance between every pair of vertices. This is fundamental in: - Network routing protocols - Transportation systems - Social network analysis - Game AI pathfinding - Supply chain optimization

Parallel Computing Implementation

Fox's Algorithm

Fox's Algorithm is a parallel matrix multiplication algorithm designed for distributed memory systems. Key characteristics:

- Process Grid: Arranges P processes in a $\sqrt{P} \times \sqrt{P}$ grid
- Matrix Partitioning: Divides $N \times N$ matrices into $(N/\sqrt{P}) \times (N/\sqrt{P})$ blocks
- Communication Pattern: Each process communicates only with processes in the same row and column
- Scalability: Reduces communication overhead compared to naive parallel approaches

Min-Plus Matrix Multiplication

Instead of traditional matrix multiplication $(\times, +)$, we use **min-plus algebra**: - Multiplication operation \rightarrow Addition - Addition operation \rightarrow Minimum

For matrices A and B, element (i,j) of result C:

 $C[i][j] = min\{A[i][k] + B[k][j]\}$ for all k

Repeated Squaring Algorithm

To find all shortest paths, we compute: - D_1 = initial adjacency matrix - $D_2 = D_1 \otimes D_1$ (shortest paths with ≤ 2 edges) - $D_4 = D_2 \otimes D_2$ (shortest paths with ≤ 4 edges) - ... - D_n = final result (shortest paths with $\leq N$ edges)

Where \otimes represents min-plus matrix multiplication.

Code Structure and Organization

Main Components

- 1. Main Function (main)
 - MPI Initialization: Sets up MPI environment
 - Input Validation: Checks Fox's algorithm constraints
 - Process Grid Setup: Creates 2D Cartesian topology
 - Orchestration: Coordinates the overall algorithm execution

2. Matrix Operations

- allocate_matrix: Dynamic memory allocation for 2D matrices
- free matrix: Memory cleanup
- read_input_matrix: Input parsing with zero-to-infinity conversion
- print_matrix: Output formatting

3. Core Algorithm Functions

- min_plus_multiply: Performs min-plus multiplication on matrix blocks
- min_plus_square: Implements Fox's algorithm for min-plus matrix squaring
- fox_algorithm: Main Fox's algorithm implementation

4. Communication Setup

- Grid Topology: 2D Cartesian process grid with periodic boundaries
- Row Communicators: For broadcasting blocks within rows
- Column Communicators: For shifting blocks within columns

Data Structures

Algorithm Flow

- 1. Initialization
 - Read matrix dimension and validate constraints
 - Create 2D process grid topology
 - Distribute matrix blocks to processes
- 2. Repeated Squaring Loop

```
for (int iter = 0; iter < ceil(log2(n)); iter++) {
    min_plus_square(local_result, local_result, ...);
}</pre>
```

- 3. Fox's Algorithm Steps (within each squaring operation)
 - Stage Loop: For each stage (0 to \sqrt{P} 1)
 - Broadcast: Send appropriate A-block within row
 - Multiply: Perform local min-plus multiplication
 - Shift: Circularly shift B-blocks within column
- 4. Result Collection
 - Gather all matrix blocks to process 0
 - Reconstruct complete result matrix

Compilation and Execution Instructions

Prerequisites

- MPI Implementation: OpenMPI, MPICH, or Intel MPI
- C Compiler: GCC or Intel C Compiler
- System: Linux/Unix environment

Installing MPI (if not available) On Ubuntu/Debian systems:

```
sudo apt update
sudo apt install openmpi-bin openmpi-common openmpi-doc libopenmpi-dev
On CentOS/RHEL systems:
sudo yum install openmpi openmpi-devel
# or
sudo dnf install openmpi openmpi-devel
Note: If MPI is not available, the Makefile will automatically build a sequential
```

Note: If MPI is not available, the Makefile will automatically build a sequential version (fox_sequential) that validates the algorithm correctness using the Floyd-Warshall algorithm.

Compilation

```
# Using the provided Makefile
make

# Or manually
mpicc -Wall -Wextra -O3 -std=c99 fox.c -o fox -lm
```

Execution

Basic Usage

```
# Run with 4 processes
mpirun -np 4 ./fox < input.txt
# Run with 9 processes
mpirun -np 9 ./fox < input.txt</pre>
```

Input Format

Using Makefile Targets

```
# Create test input file
make test_input

# Run with different process counts
make run1  # 1 process
make run4  # 4 processes
```

make run9 # 9 processes

Performance benchmark

make benchmark

Expected Outputs and Performance Analysis

Example Output

For the sample 6×6 graph input:

0 2 9 5 6 14 0 0 0 0 0 0 0 9 2 0 14 6 5 4 6 4 0 1 9

3 5 3 8 0 8

4 6 4 9 1 0

Performance Characteristics

Time Complexity

• Sequential: O(N3) for Floyd-Warshall

• Parallel: $O(N^3/P + log N \times communication_cost)$

• Communication: $O(\sqrt{P} \times N^2/P)$ per iteration

Space Complexity

• Per Process: O(N²/P) for local matrix blocks

• Total: O(N²) distributed across all processes

Expected Speedup For ideal conditions with P processes: - **Theoretical Maximum**: P (perfect scaling) - **Realistic**: 0.7P to 0.9P (considering communication overhead)

Performance Factors

- 1. Matrix Size: Larger matrices show better parallel efficiency
- 2. Process Count: Must be perfect squares $(1, 4, 9, 16, 25, \ldots)$
- 3. Network Latency: Affects communication-intensive phases
- 4. Load Balance: Fox's algorithm provides excellent load distribution

Benchmark Results Format

Execution time: X.XX ms

Process Count: P Speedup: S.SS Efficiency: E.EE%

Algorithms and Techniques Used

1. Fox's Algorithm

- Purpose: Parallel matrix multiplication for distributed memory
- Key Idea: 2D block decomposition with systematic communication
- Advantage: $O(\sqrt{P})$ communication complexity vs O(P) for naive approaches

2. Min-Plus Algebra

- Operations: $(\min, +)$ semiring instead of $(+, \times)$ ring
- Properties: Associative, commutative (min), distributive
- Application: Shortest path problems map naturally to min-plus algebra

3. Repeated Squaring

- Concept: Compute A, A^2 , A^4 , A^8 , ... until $A^{2^k} \ge A^N$
- Efficiency: $O(\log N)$ matrix multiplications vs O(N) for naive approach
- Convergence: Result stabilizes when all shortest paths are found

4. MPI Cartesian Topology

- Grid Creation: MPI_Cart_create for 2D process arrangement
- **Subcommunicators**: Row and column communicators for efficient broadcasting
- Coordinates: Logical process positioning for algorithm coordination

5. Communication Patterns

- Broadcast: Row-wise distribution of A-blocks
- Circular Shift: Column-wise rotation of B-blocks
- Point-to-Point: Final result gathering

Error Handling and Constraints

Validation Checks

- 1. Perfect Square Processes: $P = Q^2$ where Q is integer
- 2. Matrix Divisibility: $N \mod Q = 0$
- 3. **Input Format**: Proper matrix dimension and values
- 4. Memory Allocation: Robust error checking for malloc failures

Error Messages

Error: Number of processes (X) must be a perfect square Error: Matrix dimension (N) must be divisible by sqrt(processes) (Q) Error reading matrix element [i][j] Memory allocation failed

Implementation Notes

Optimizations Applied

- 1. Memory Layout: Contiguous allocation for better cache performance
- 2. Communication Overlap: Asynchronous operations where possible
- 3. Compiler Optimizations: -O3 flag for aggressive optimization
- 4. Infinity Handling: Efficient representation using INT_MAX

Debugging Features

- Timing Information: Execution time measurement (excluding I/O)
- Error Reporting: Detailed error messages with context
- Rank-based Output: Process 0 handles all I/O operations

Scalability Considerations

- Memory Per Process: O(N²/P) scaling
- Communication Volume: $O(N^2/\sqrt{P})$ per process
- Synchronization Points: Minimized barrier operations

This implementation provides a robust, scalable solution to the all-pairs shortest path problem, demonstrating key concepts in parallel computing, distributed algorithms, and high-performance computing with MPI.