Not entirely straightforward

Thomas Lumley

Two topics

Interaction/effect modification

Between/within cluster comparisons.

Interactions

 Effect modification describes how the association between X and Y differs for different values of Z

- Effect modification is scale dependent
 - mean vs geometric mean
 - risk difference vs relative risk
- If Z is associated with Y there must be effect modification on most scales, as a simple matter of arithmetic

Interactions vs confounding

- Confounding says that the overall association estimate is wrong, and that stratifying on the confounder is necessary to get the right answer
 - presence of confounding is a scientific issue not just a property of the data
 - confounding by unmeasured variables or by unmodelled variables gives the wrong answer

Interaction vs confounding

- Interaction says that the association is different in different strata
 - this is just a description of the data
 - ignoring interaction corresponds to averaging over the distribution of the effect modifier, which is valid and may even be desirable
 - Unmeasured effect modifiers always exist, but averaging over them is harmless.

Coefficients

 A model for blood pressure with age, dietary potassium (K), and treatment with thiazide diuretics (trt), and interaction

$$E[BP] = \alpha_0 + \alpha_1 \text{age} + \alpha_2 \text{trt} + \beta_1 K + \gamma \text{trt} \times K$$

 Model says that the age association doesn't depend on the other variables but that the association with potassium depends on whether the person takes diuretics (or vice versa)

Contrasts

Difference in E[BP] per unit of K intake, in treated

$$E[BP] = \alpha_0 + \alpha_1 50 + \alpha_2 1 + \beta_1 1 + \gamma 1 \times 1$$

$$E[BP] = \alpha_0 + \alpha_1 50 + \alpha_2 1 + \beta_1 0.5 + \gamma 1 \times 0.5$$

$$\beta_1 0.5 + \gamma 0.5$$

In untreated

$$E[BP] = \alpha_0 + \alpha_1 50 + \alpha_2 0 + \beta_1 1 + \gamma 0 \times 1$$

$$E[BP] = \alpha_0 + \alpha_1 50 + \alpha_2 0 + \beta_1 0.5 + \gamma 0 \times 0.5$$

$$\beta_1 0.5$$

Contrasts: for K as predictor of interest

- Coefficient of K (`main effect') is the slope (difference in E[BP] per unit K) in people with trt=0 (untreated)
- Interaction coefficient is the difference in slope per unit of trt,
 - difference in slope between treated and untreated
 - difference between average difference in E[BP] per unit difference in K intake in treated and untreated

Contrasts: for trt as predictor of interest

- Coefficient of trt (`main effect') is the difference between treated and untreated at K=0,
 - ie, at zero potassium intake, not useful
- Interaction coefficient is the average difference in the treatment effect per unit difference in K intake
 - difference in coefficient per unit K intake
 - average difference in E[BP] between treated and untreated was this much higher for each unit higher K intake

Coding

 Since interpretation depends on coding, it may be useful to code the variable so that zero is a value inside the range of the data

 Important to look at how the variable is coded, to make sure you know where zero is.

Clusters

- Correlation in clusters can increase or decrease precision, depending on whether the comparison is between or within clusters
- Comparing BP for men and women based on 200 measurements
 - more information in 200 measurements on 200 separate people than in 2 measurements from each of 100 people
- Comparing BP before and after treatment
 - more information in before-after pairs on 100 people than
 100 people before and 100 different people after

Separating components

- Can always separate between-cluster and withincluster comparisons for a variable
 - average the variable over a cluster to get the betweencluster variable
 - subtract the cluster average from the individual value to get the within-cluster variable
- Between-cluster variable has the same value for all observations in a cluster
- Within-cluster variable has same mean (zero) for all clusters

Separating components

- Coefficient of between-cluster variable is the difference in mean outcome between clusters whose mean predictor differs by 1 unit
 - incorporates contextual effects
 - confounding by differences between clusters
- Coefficient of within-cluster variable is the difference in mean outcome between observations in the same cluster differing by 1 unit in the predictor.
 - differences between clusters cancel out

Separating components

Useful when one component is likely to be more confounded

Useful if contextual effects are interesting

Useful to see if the associations are similar.

Data collection

- Mark-sense forms: one-dimensional summary statistics are made public
- Yellow sheets: returned only to me, not sent to anyone else.
- Remember to answer the TA questions

That's all, folks