HOGAN & HARTSON – 81864.0068
CHOI, et al., "Magnetic Thin Film For High Frequency,
Composite Magnetic Thin Film and Magnetic Device
Including the Same"
EV 667 738 430 US
Page 1 of 14

FIG. 1

HOGAN & HARTSON – 81864.0068
CHOI, et al., "Magnetic Thin Film For High Frequency,
Composite Magnetic Thin Film and Magnetic Device
Including the Same"
EV 667 738 430 US
Page 2 of 14

FIG. 2

HOGAN & HARTSON – 81864.0068
CHOI, et al., "Magnetic Thin Film For High Frequency,
Composite Magnetic Thin Film and Magnetic Device
Including the Same"
EV 667 738 430 US
Page 3 of 14

FIG. 3

FIG. 4

HOGAN & HARTSON – 81864.0068
t al., "Magnetic Thin Film For High Frequency, site Magnetic Thin Film and Magnetic Device

10/541100

CHOI, et al., "Magnetic Thin Film For High Frequency, Composite Magnetic Thin Film and Magnetic Device Including the Same" EV 667 738 430 US Page 4 of 14

FIG. 5

ARTSON – 81864.0068 ic Thin Film For High Frequency, 40/541100

HOGAN & HARTSON – 81864.0068
CHOI, et al., "Magnetic Thin Film For High Frequency,
Composite Magnetic Thin Film and Magnetic Device
Including the Same"
EV 667 738 430 US
Page 5 of 14

FIG. 6

FIG. 8

HOGAN & HARTSON – 81864.0068
CHOI, et al., "Magnetic Thin Film For High Frequency,
Composite Magnetic Thin Film and Magnetic Device
Including the Same"
EV 667 738 430 US
Page 7 of 14

10/541100

HOGAN & HARTSON – 81864.0068
CHOI, et al., "Magnetic Thin Film For High Frequency,
Composite Magnetic Thin Film and Magnetic Device
Including the Same"
EV 667 738 430 US
Page 8 of 14

8/14

FIG. 10

HOGAN & HARTSON – 81864.0068 CHOI, et al., "Magnetic Thin Film For High Frequency, Composite Magnetic Thin Film and Magnetic Device Including the Same" EV 667 738 430 US Page 9 of 14

FIG. 11

HOGAN & HARTSON – 81864.0068 CHOI, et al., "Magnetic Thin Film For High Frequency, Composite Magnetic Thin Film and Magnetic Device Including the Same" EV 667 738 430 US Page 10 of 14

			10/	14		<u></u>	<u> </u>	· •	<u>-</u>	·
	Magnetic thin lim comiguration	[{(1.0nm CoZrNb/1.0nm FeC) × 2}+(1.0nm FeCoAlO)] × 100	[(1.5nm CoZrNb/1.5nm FeC) \times 3]+(1.0nm FeCoAlO)] \times 50	(20.0nm CoZrNb/5.0nm FeC/2.0nm FeCoAIO) × 18	(20.0nm CoZrNb/50.0nm FeC/5.0nm FeCoAlO)×7	[(1.0nm CoZrNb/1.0nm FeC) × 2]+(1.0nm SiO ₂)] × 100	(1.0nm CoZrNb/1.0nm FeC/1.0nm SiO ₂) \times 100	(20.0nm CoZrNb/50.0nm FeC/5.0nm SiO ₂)×7	[(1.0nm CoZrNb/1.0nm FeC) \times 2}+ (1.0nm Spontaneous oxide film) \times 100	(1.0nm CoZrNb/1.0nm Fe) × 250
nce layer	Thickness T3 (nm)	1.0	1.0		1.0	1.0	5.0	1.0		
High resistance layer 7	Film composition	FeCoAIO	FeCoAlO	FeCoAlO	FeCoAIO	SiO ₂	SiO ₂	SiO ₂	Spontaneous oxide film	
norphous /er 3	Thickness T2 (nm)	1.0	1.5	20.0	20.0	1.0	1.0	20.0	1.0	1.0
Co based amorphous alloy layer 3	Film composition	CoZrNb	CoZrNb	CoZrNb	CoZrNb	CoZrNb	CoZrNb	CoZrNb	CoZrNb	CoZrNb
osition 5	Thickness T1 (nm)	1.0	1.5	2.0	50.0	1.0	1.0	50.0	1.0	1.0
T-L composition layer 5	Film composition	FeC	FeC	FeC	FeC	FeC	FeC	FeC	FeC	Fe
		Example 1	Example 2	Example 3	Example 4	Example 5	Example 6	Example 7	Example 8	Comparative Example 1

HOGAN & HARTSON - 81864.0068 CHOI, et al., "Magnetic Thin Film For High Frequency, Composite Magnetic Thin Film and Magnetic Device Including the Same" EV 667 738 430 US Page 11 of 14

•	, .		1	1/14	·					·
T T	Kesistivity (μΩcm)	280	240	230	210	350	200	300	350	70
perties	Q (at 1GHz)	30	25	20	21	37	40	20	37	1
eability pro	μ" (at 1GHz)	15	20	25	20	12	10	20	12	
High frequency permeability properties	μ' (at 1GHz)	450	200	490	420	450	400	405	450	150
High free	Resonance frequency (GHz)	>>2.0	>>2.0	>>2.0	>>2.0	>>2.0	>>2.0	>>2.0	>>2.0	1
lagnetic properties	Coercive force Hce (Oe)	0.8	1.0	1.3	1.5	0.0	1.0	1.8	0.9	4.2
Magnetic p	Saturation magnetization (T)	1.45	1.50	1.45	1.55	1.43	1.40	1.45	1.45	2.07
High resistance	layer proportion (vol%)	20.00	10.00	7.41	6.67	20.00	33.30	6.67	20.00	1
	T1/T2	1.00	1.00	0.25	2.50	1.00	1.00	2.50	1.00	1
		Example 1	Example 2	Example 3	Example 4	Example 5	Example 6	Example 7	Example 8	Comparative Example 1

10/541100

HOGAN & HARTSON – 81864.0068
CHOI, et al., "Magnetic Thin Film For High Frequency,
Composite Magnetic Thin Film and Magnetic Device
Including the Same"
EV 667 738 430 US
Page 12 of 14

FIG. 14

HOGAN & HARTSON – 81864.0068 CHOI, et al., "Magnetic Thin Film For High Frequency, Composite Magnetic Thin Film and Magnetic Device Including the Same" EV 667 738 430 US Page 13 of 14

4	\mathbf{a}	1	4	A
1	.⊀	/	1	4
	v	/		

	Ž F		13/1	4	· · · · · · · · · · · · · · · · · · ·		,	
	κεsistivity (μΩcm)	270	220	350	340	280	280	270
perties	Q (at 1GHz)	21	30	30	19	17	22	11
neability pro	μ" Q (at 1GHz) (at 1GHz)	20	15	14	20	15	20	20
High frequency permeability properties	μ' (at 1GHz)	420	450	450	380	320	440	350
High fre	Resonance frequency (GHz)	>>2.0	>>2.0	>>2.0	>>2.0	>>2.0	>>2.0	>>2.0
properties	Coercive force Hce (Oe)	0.9	1.1	1.0	1.8	1.3	0.8	1.4
Magnetic properties	Saturation magnetization (T)	1.46	1.52	1.43	1.45	1.51	1.46	1.50
Y and the state of	Magnetic thin film configuration	[{(1.0nm CoZrNb/1.0 nmFeB) x 2}+(1.0nm FeCoAIO)] x 100	(20.0nm CoZrNb/5.0nm FeB/2.0nm FeCoAIO) × 18	[(1.0nm CoZrNb/1.0nm FeB) \times 2]+ (1.0nm SiO ₂)] \times 100	Example 12 (20.0nm CoZrNb/50.0nm FeB/5.0nm SiO ₂) \times 7	Example 13 [{(1.0nm CoZrNb/1.0nm FeBN) × 2}+ (1.0nm FeCoAIO)] × 100	[(1.0nm CoZrNb/1.0nm FeBC) × 2]+(1.0nm FeCoAIO)] × 100	[{(1.0nm CoZrNb/1.0nm FeCN)× 2]+(1.0nm FeCoAlO)] × 100
:	. 202	Example 9	Example 10	Example 11	Example 12	Example 13	Example 14	Example 15

FIG. 15

				14	/14					<u></u>		
ć	Kesistivity (μΩcm)	270	270	220	220	340	340	300	300	260	250	260
perties	Q (at 1GHz)	20	17	14	16	26	25	12	11	16	15	16
eability pro	μ" (at 1GHz)	20	20	25	20	15	15	25	25	25	25	22
High frequency permeability properties	μ' (at 1GHz)	400	350	360	320	400	380	300	280	400	380	350
High free	Resonance frequency (GHz)	>>2.0	>>2.0	>>2.0	>>2.0	>>2.0	>>2.0	>>2.0	>>2.0	>>2.0	>>2.0	>>2.0
roperties	Coercive force Hce (Oe)	1.2	1.4	1.5	1.7	1.6	1.8	2.5	2.7	1.2	1.4	1.3
Magnetic properties	Saturation magnetization (T)	1.61	1.60	1.62	1.61	1.63	1.62	1.65	1.64	1.62	1.60	1.63
	Magnetic thin film configuration	[[(1.0nm CoZrNb/1.0nm FeCoC) × 2]+(1.0nm FeCoAlO)] × 100	[{(1.0nm CoZrNb/1.0nm FeCoB) x 2}+(1.0nm FeCoAIO)] x 100	(20.0nm CoZrNb/5.0nm FeCoC/2.0nm FeCoAIO) × 18	(20.0nm CoZrNb/5.0nm FeCoB/2.0nm FeCoAIO) × 18	[(1.0nm CoZrNb/1.0nm FeCoC) × 2 +(1.0nm SiO ₂)] × 100	[(1.0nm CoZrNb/1.0nm FeCoB) × $2+(1.0nm SiO_2)$] × 100	(20.0nm CoZrNb/50.0nm FeCoC/5.0nm SiO ₂)×7	(20.0nm CoZrNb/50.0nm FeCoB/5.0nm SiO ₂) \times 7	[(1.0nm CoZrNb/1.0nm FeCoBN) × 2]+(1.0nm FeCoAlO)] × 100	[{(1.0nm CoZrNb/1.0nm FeCoBC) × 2}+(1.0nm FeCoAIO)] × 100	[[(1.0nm CoZrNb/1.0nm FeCoCN)× 2]+(1.0nm FeCoAlO)]×100
		Example 16	Example 17	Example 18	Example 19	Example 20	Example 21	Example 22	Example 23	Example 24	Example 25	Example 26