Yehan Ma 马叶涵

Ph.D. Candidate (fifth-year)

Department of Computer Science & Engineering

Washington University in St. Louis

Email: yehan.ma@wustl.edu

Date of birth: Feb.17, 1991

Homepage: https://yehancpsl.github.io/

Mobile: +1 314-250-8968

RESEARCH INTERESTS

Industrial Internet of Things (IIoT).

Cyber-Physical Systems.

Embedded Systems.

Edge Computing.

Wireless Sensor Networks.

Machine Learning.

EDUCATION

Washington University in St. Louis

St. Louis, MO, U.S. Aug. 2015 – present

• Ph.D. candidate in Computer Science; Advisor: Prof. Chenyang Lu

GPA: 3.95/4.0

Harbin Institute of Technology

Harbin, China

• M.S. in Control Science and Engineering; Advisor: Prof. Changhong Wang

Aug. 2013 - Jul. 2015

GPA: 95.2/100, Rank: 3/161

Harbin Institute of Technology

Harbin, China

• B.S. in Automation

Aug. 2009 - Jul. 2013

GPA: 93.2/100, Rank: 1/123

Professional Experience

Washington University in St. Louis

St. Louis, MO, U.S.

Graduate Research Assistant

Teaching Assistant of Wireless Sensor Networks (CSE 521S)

Teaching Assistant of Real-Time Systems (CSE 520S)

Aug. 2015 – present 2017 Spring, 2018 Spring

2017 Fall

Mitsubishi Electric Research Laboratories

Boston, MA, U.S.

Research Intern May. 2017 - Aug. 2017, May. 2018 - Aug. 2018

Harbin Institute of Technology

Harbin, China

Graduate Research Assistant

May. 2013 - Jul. 2015

RESEARCH EXPERIENCE

Cyber-Physical Systems Laboratory

Washington University in St. Louis

Research Assistant

Aug. 2015 - Present

1. Learning-based optimization for multi-tier control of cyber-physical systems

(Nov. 2019 - Aug. 2020)

We establish a learning-based approach that dynamically optimizes control performance by switching between local and edge controllers in response to changing network conditions, while guaranteeing system stability based on an extended Simplex approach tailored for two-tier platforms. The data-driven approach addresses the theoretical challenges of analyzing control performance over various control systems and network characteristics. (Submitted Publication:[10])

2. Implementation of dynamic network scheduling for cyber-physical systems (Jan. 2019 - Jan. 2020)

We design and implement the dynamic TDMA scheduling protocol for IEEE 802.15.4 network. To evaluate dynamic wireless scheduling for control over real-world wireless dynamics, we develop network-in-the-loop simulations. (Collaboration with Mitsubishi Electric Research Laboratories)

3. Exploring edge computing for multi-tier industrial control

(Sep. 2018 - Oct. 2019)

We explore edge computing as a multi-tier computing platform for holistic control. We propose a *switching multi-tier* control architecture to dynamically optimize the control performance. To evaluate the proposed systems, we build a real-time hybrid simulator, WCPS-EC, which integrates real local/edge computation platforms, real or simulated wired/wireless networks, and physical plants simulated by MATLAB/Simulink.

4. Efficient holistic control over industrial wireless sensor-actuator networks (Mar. 2017 - May. 2018)

We explore efficient holistic control designs to maintain control performance while reducing the communication cost. We introduce a holistic control architecture that integrates low-power wireless bus (LWB) and two control strategies, rate adaptation and self-triggered control, specifically proposed to reduce communication cost. We design robust network reconfiguration protocols to support rate adaptation and self-triggered control, respectively, in a multi-hop WSAN. We build a real-time network-in-the-loop simulator, WCPS-RT, which integrates MATLAB/Simulink and a three-floor WSAN testbed to evaluate efficient holistic control designs. (Publication:[1,6])

5. Holistic management for dependable wireless control system

(Mar. 2016 - Apr. 2017)

To enhance the dependability of industrial wireless control, we propose a holistic cyber-physical management framework that employs run-time coordination between the plant control and network management. Our design includes a holistic controller that generates actuation signals to physical plants and reconfigures the WSAN. The framework can enhance the dependability of wireless control system in the face of both physical disturbance and wireless interference. (Publication:[2])

6. Cyber-physical case study of wireless routing and control

(Aug. 2015 - Feb. 2016)

The control design of wireless control system integrates extended Kalman Filter (EKF), model predictive controller (MPC), and buffered actuation to eliminate the packet loss in wireless network. In network side, we propose a flexible asymmetric routing approach tailored for wireless control system. Open source WCPS v3.0 (Docker): http://wcps.cse.wustl.edu. (Publication:[7])

Mitsubishi Electric Research Laboratories

Mitsubishi Electric Research Laboratories

Research Intern

May. 2017 - Aug. 2017, May. 2018 - Aug. 2018

1. Optimal dynamic scheduling of wireless networked control systems

(May. 2018 - Aug. 2018)

Suffering from limited bandwidth and nondeterministic link quality, in order to bridge the gap between network design and control system performance, we propose an optimal dynamic scheduling strategy that optimizes performance of multi-loop control systems by allocating network resources based on predictions of both link quality and control performance at run-time. (**Publication:**[4])

2. A smart actuation architecture for wireless networked control systems (May. 2017 - Aug. 2017)

In order to addresses the safety concern of closing the control loop using wireless network, we present a smart actuation architecture, which deploys (1) a remote controller, which communicates with physical plant via wireless network,

accounting for optimality, adaptation, and constraints by conducting computationally expensive operations; (2) a smart actuator, which co-locates with the physical plant, executing a local control policy and accounting for system safety in the view of network imperfections. (**Publication:**[5])

Space Control and Inertial Technology Research Center

Harbin Institute of Technology

Research Assistant

1. Build the analysis system for office health based on Kinect

(Jun. 2014 - Jun. 2015)

May. 2012 - July 2015

It is my thesis of M.S. degree, which aims at designing a product for office workers by correcting seat positions and counting common actions and their frequencies, using learning-based approaches such as HMM and DTW. (It is awarded Gold-medal Master Thesis of Harbin Institute of Technology.)

2. Design and implement real-time semi-physical simulations of OTV

(Nov. 2012 - Jul. 2013)

Real-time simulation systems of the model of orbital transfer vehicle (OTV) were designed in two ways based on xPC Target and mix-programming of LabVIEW/SIT companied with MATLAB/Simulink, respectively. Set the real-time simulation system of OTV in the spacecraft ground test system via fiber-optic reflective memory, and the test bed was driven to realize the 3 degrees of freedom translation. (**Publication:**[8])

3. Participate in designing the real-time control program of 3-DoF robot

(May. 2012 - Aug. 2012)

The control program could drive the motors of robot to realize different forms of motion according to the external command, such as monotone-increasing wave, sine wave, square wave and trapezoidal wave. Satisfy the requirements of the properties such as stability, rapidity, overshoot and accuracy of the 3-degree-of-freedom robot by adjusting the control parameters of the controller and filtering of the signal.

Honors and Awards

Fullgraf Fellowship (20 named fellowships in Engineering School)	2020,2019,2018,2017,2016
Honors Award (top 15-20%) in annual Periodic Review of Doctoral Students (Star	rted 2020) 2020
Gold-medal Master Thesis of HIT	2015
Samsung Scholarship	2014
First Level Graduate Student Scholarship	2014,2013
National Postgraduate Mathematic Contest in Modeling: Second Prize	2014
Excellent Graduate	2013
National Scholarship of China	2011
Outstanding Student	2014,2011,2010
People Scholarship	2013, 2012, 2011, 2010
Excellent Student Leader	2010
88412 Scholarship	2010

Publications

Journals:

- 1. **Yehan Ma**, Chenyang Lu and Yebin Wang, "Efficient Holistic Control: Self-Awareness across Controllers and Wireless Networks." *ACM Transactions on Cyber-Physical Systems (TCPS)*, accepted.
- 2. **Yehan Ma**, Dolvara Gunatilaka, Bo Li, Humberto Gonzalez, and Chenyang Lu. "Holistic cyber-physical management for dependable wireless control systems." *ACM Transactions on Cyber-Physical Systems* (TCPS) 3, no. 1 (2018): 3.

3. Jiayu Li, Haoran Li, **Yehan Ma**, Yang Wang, Ahmed A. Abokifa, Chenyang Lu, and Pratim Biswas. "Spatiotemporal distribution of indoor particulate matter concentration with a low-cost sensor network." *Building and Environment* 127 (2018): 138-147.

Conferences:

- 4. Yehan Ma, Jianlin Guo, Yebin Wang, Ankush Chakrabarty, Heejin Ahn, Philip Orlik, and Chenyang Lu. "Optimal dynamic scheduling of wireless networked control systems." In *Proceedings of the 10th ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS 2019)*, pp. 77-86. ACM, 2019. (acceptance rate: 23.0%)
- Yehan Ma, Yebin Wang, Stefano Di Cairano, Toshiaki Koike-Akino, Jianlin Guo, Philip Orlik, and Chenyang Lu. "A smart actuation architecture for wireless networked control systems." In 2018 IEEE Conference on Decision and Control (CDC 18), pp. 1231-1237. IEEE, 2018.
- Yehan Ma, and Chenyang Lu. "Efficient holistic control over industrial wireless sensor-actuator networks."
 In 2018 IEEE International Conference on Industrial Internet (ICII 2018), pp. 89-98. IEEE, 2018.
 (acceptance rate: 27.3%)
- 7. Bo Li*, Yehan Ma*, Tyler Westenbroek, Chengjie Wu, Humberto Gonzalez, and Chenyang Lu. "Wireless routing and control: a cyber-physical case study." In 2016 ACM/IEEE 7th International Conference on Cyber-Physical Systems (ICCPS 16), pp. 1-10. IEEE, 2016.(co-first-author)(acceptance rate: 27.8%)
- 8. **Yehan Ma**, Mingxiang Ling, Changhong Wang, and Qingshuang Zeng. "Design and implementation of real-time simulation system of OTV based on xPC target and SIT." In *Proceeding of the 11th World Congress on Intelligent Control and Automation (WCICA 14)*, pp. 5896-5900. IEEE, 2014.
- 9. An Zou, Hui Zhao, **Yehan Ma**, and Da Li. "Analysis calculation and testing of rotary inductosyn angle measuring errors." In *Proceedings of the 33rd Chinese Control Conference (CCC 14)*, pp. 8091-8096. IEEE, 2014.
- 10. Yehan Ma, Chenyang Lu, Bruno Sinopoli, and Shen Zeng. "[Title omitted for blind review]." In 2020 International Conference on Embedded Software (EMSOFT 2020)(Journal-Track: Accepted paper will be published on IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD)). IEEE, (Under the second round of review).

Professional Service Activities

IFAC Reviewer	2019
IEEE TII Reviewer	2019
IEEE RTAS Secondary Reviewer	2018
ACM TCPS Reviewer	2017
IEEE ESL Reviewer	2017

TECHNIQUE SKILLS

Programming Languages: C/C++; M language; Python; SQL; Latex Software: MATLAB; TOSSIM; VIM; Gurobi; LabVIEW; PostgreSQL Operating System: Linux; Contiki OS; Mac OS X; Windows; TinyOS