Data Mining & Differential Privacy

Mihai Maruseac

June 4, 2014

▶ big data, stream of information

- ▶ big data, stream of information
- important applications publishing sensitive data about individuals

- big data, stream of information
- important applications publishing sensitive data about individuals
 - medical research

- big data, stream of information
- important applications publishing sensitive data about individuals
 - medical research
 - best treatments

- big data, stream of information
- important applications publishing sensitive data about individuals
 - medical research
 - best treatments
 - better diagnosis

- big data, stream of information
- important applications publishing sensitive data about individuals
 - medical research
 - best treatments
 - better diagnosis
 - mapping drugs to phenotypes

- big data, stream of information
- important applications publishing sensitive data about individuals
 - medical research
 - best treatments
 - better diagnosis
 - mapping drugs to phenotypes
 - public health

- big data, stream of information
- important applications publishing sensitive data about individuals
 - medical research
 - best treatments
 - better diagnosis
 - mapping drugs to phenotypes
 - public health
 - patterns of disease spreading

- big data, stream of information
- important applications publishing sensitive data about individuals
 - medical research
 - best treatments
 - better diagnosis
 - mapping drugs to phenotypes
 - public health
 - patterns of disease spreading
 - web search

- big data, stream of information
- important applications publishing sensitive data about individuals
 - medical research
 - best treatments
 - better diagnosis
 - mapping drugs to phenotypes
 - public health
 - patterns of disease spreading
 - web search
 - better search results

- big data, stream of information
- important applications publishing sensitive data about individuals
 - medical research
 - best treatments
 - better diagnosis
 - mapping drugs to phenotypes
 - public health
 - patterns of disease spreading
 - web search
 - better search results
 - better recommendations

- big data, stream of information
- important applications publishing sensitive data about individuals
 - medical research
 - best treatments
 - better diagnosis
 - mapping drugs to phenotypes
 - public health
 - patterns of disease spreading
 - web search
 - better search results
 - better recommendations
 - authoritative answers

- big data, stream of information
- important applications publishing sensitive data about individuals

- big data, stream of information
- important applications publishing sensitive data about individuals
 - urban planning

- big data, stream of information
- important applications publishing sensitive data about individuals
 - urban planning
 - home, workplace, leisure tracked by GPS

- big data, stream of information
- important applications publishing sensitive data about individuals
 - urban planning
 - home, workplace, leisure tracked by GPS
 - travel patterns, experience, cost (time and money)

- big data, stream of information
- important applications publishing sensitive data about individuals
 - urban planning
 - home, workplace, leisure tracked by GPS
 - travel patterns, experience, cost (time and money)
 - energy conservation

- big data, stream of information
- important applications publishing sensitive data about individuals
 - urban planning
 - home, workplace, leisure tracked by GPS
 - travel patterns, experience, cost (time and money)
 - energy conservation
 - patterns of usage

- big data, stream of information
- important applications publishing sensitive data about individuals
 - urban planning
 - ▶ home, workplace, leisure tracked by GPS
 - travel patterns, experience, cost (time and money)
 - energy conservation
 - patterns of usage
 - changing the behaviour to better via smart appliances / on demand energy sources

- big data, stream of information
- important applications publishing sensitive data about individuals
 - urban planning
 - home, workplace, leisure tracked by GPS
 - travel patterns, experience, cost (time and money)
 - energy conservation
 - patterns of usage
 - changing the behaviour to better via smart appliances / on demand energy sources
 - networking

- big data, stream of information
- important applications publishing sensitive data about individuals
 - urban planning
 - home, workplace, leisure tracked by GPS
 - travel patterns, experience, cost (time and money)
 - energy conservation
 - patterns of usage
 - changing the behaviour to better via smart appliances / on demand energy sources
 - networking
 - pattern of infrastructure usage

- big data, stream of information
- important applications publishing sensitive data about individuals
 - urban planning
 - home, workplace, leisure tracked by GPS
 - travel patterns, experience, cost (time and money)
 - energy conservation
 - patterns of usage
 - changing the behaviour to better via smart appliances / on demand energy sources
 - networking
 - pattern of infrastructure usage
 - handle exceptional traffic

- big data, stream of information
- important applications publishing sensitive data about individuals
 - urban planning
 - home, workplace, leisure tracked by GPS
 - travel patterns, experience, cost (time and money)
 - energy conservation
 - patterns of usage
 - changing the behaviour to better via smart appliances / on demand energy sources
 - networking
 - pattern of infrastructure usage
 - handle exceptional traffic
 - relationships between people (Facebook, etc.)

- big data, stream of information
- important applications publishing sensitive data about individuals
 - urban planning
 - home, workplace, leisure tracked by GPS
 - travel patterns, experience, cost (time and money)
 - energy conservation
 - patterns of usage
 - changing the behaviour to better via smart appliances / on demand energy sources
 - networking
 - pattern of infrastructure usage
 - handle exceptional traffic
 - relationships between people (Facebook, etc.)
 - census data, society evolution

- big data, stream of information
- important applications publishing sensitive data about individuals
 - urban planning
 - home, workplace, leisure tracked by GPS
 - travel patterns, experience, cost (time and money)
 - energy conservation
 - patterns of usage
 - changing the behaviour to better via smart appliances / on demand energy sources
 - networking
 - pattern of infrastructure usage
 - handle exceptional traffic
 - relationships between people (Facebook, etc.)
 - census data, society evolution
 - industrial data

- big data, stream of information
- important applications publishing sensitive data about individuals
 - urban planning
 - home, workplace, leisure tracked by GPS
 - travel patterns, experience, cost (time and money)
 - energy conservation
 - patterns of usage
 - changing the behaviour to better via smart appliances / on demand energy sources
 - networking
 - pattern of infrastructure usage
 - handle exceptional traffic
 - relationships between people (Facebook, etc.)
 - census data, society evolution
 - industrial data
 - details about sales, income, customers, costs, etc.

- big data, stream of information
- important applications publishing sensitive data about individuals
 - urban planning
 - home, workplace, leisure tracked by GPS
 - travel patterns, experience, cost (time and money)
 - energy conservation
 - patterns of usage
 - changing the behaviour to better via smart appliances / on demand energy sources
 - networking
 - pattern of infrastructure usage
 - handle exceptional traffic
 - relationships between people (Facebook, etc.)
 - census data, society evolution
 - industrial data
 - details about sales, income, customers, costs, etc.
 - workflows

Access strictly controlled

only inside company/agency which collected the data

- only inside company/agency which collected the data
- only after signing a special contract (taxi, click streams)

- only inside company/agency which collected the data
- only after signing a special contract (taxi, click streams)
- only in coarse-grained summaries (health)

- only inside company/agency which collected the data
- only after signing a special contract (taxi, click streams)
- only in coarse-grained summaries (health)
- only after a long wait (census)

- only inside company/agency which collected the data
- only after signing a special contract (taxi, click streams)
- only in coarse-grained summaries (health)
- only after a long wait (census)
- only with 3-letters-organisations approval

Context :: Issues

- access to data strictly controlled
- data released with privacy issues (AOL click stream)

Society would benefit if we could publish useful data without worrying about privacy and access issues.

Privacy

▶ naïve solution: remove sensitive columns

Privacy

- naïve solution: remove sensitive columns
- cross table references

Privacy

- naïve solution: remove sensitive columns
- cross table references
- ▶ 87% Americans uniquely identified by zip, gender, birthdate

Privacy

- naïve solution: remove sensitive columns
- cross table references
- ▶ 87% Americans uniquely identified by zip, gender, birthdate
- ▶ 2002, medical records of Governor of MA

query logs: useful for CS researchers, system admins, etc.

- query logs: useful for CS researchers, system admins, etc.
- ▶ find all AOL logs of user 4417749

- query logs: useful for CS researchers, system admins, etc.
- ▶ find all AOL logs of user 4417749
- multiple queries for services in Lilburn, GA

- query logs: useful for CS researchers, system admins, etc.
- ▶ find all AOL logs of user 4417749
- multiple queries for services in Lilburn, GA
- ▶ population 11,000

- query logs: useful for CS researchers, system admins, etc.
- ▶ find all AOL logs of user 4417749
- multiple queries for services in Lilburn, GA
- population 11,000
- some queries for Jarret Arnold

- query logs: useful for CS researchers, system admins, etc.
- ▶ find all AOL logs of user 4417749
- multiple queries for services in Lilburn, GA
- population 11,000
- some queries for Jarret Arnold
- ▶ 14 people with this name in Lilburn

- query logs: useful for CS researchers, system admins, etc.
- find all AOL logs of user 4417749
- multiple queries for services in Lilburn, GA
- population 11,000
- some queries for Jarret Arnold
- ▶ 14 people with this name in Lilburn
- contact each of them / social engineering

- query logs: useful for CS researchers, system admins, etc.
- find all AOL logs of user 4417749
- multiple queries for services in Lilburn, GA
- population 11,000
- some queries for Jarret Arnold
- ▶ 14 people with this name in Lilburn
- contact each of them / social engineering
- ► AOL user 4417749 = Thelma Arnold

Netflix prize (2009, 1M\$)

- ▶ Netflix prize (2009, 1M\$)
- training data: 100M ratings from 18K movies of 500K customers

- Netflix prize (2009, 1M\$)
- training data: 100M ratings from 18K movies of 500K customers
- ▶ 10% of data slightly disturbed

- ► Netflix prize (2009, 1M\$)
- training data: 100M ratings from 18K movies of 500K customers
- ▶ 10% of data slightly disturbed
- use blogs, FB posts, twitters post, IMDB profiles to identify users

- Netflix prize (2009, 1M\$)
- training data: 100M ratings from 18K movies of 500K customers
- ▶ 10% of data slightly disturbed
- use blogs, FB posts, twitters post, IMDB profiles to identify users
 - ▶ 8 ratings, dates within 2 weeks 99% of raters

- Netflix prize (2009, 1M\$)
- training data: 100M ratings from 18K movies of 500K customers
- ▶ 10% of data slightly disturbed
- use blogs, FB posts, twitters post, IMDB profiles to identify users
 - ▶ 8 ratings, dates within 2 weeks 99% of raters
 - ▶ 2 ratings, dates within 3 days 68% of raters

- Netflix prize (2009, 1M\$)
- training data: 100M ratings from 18K movies of 500K customers
- ▶ 10% of data slightly disturbed
- use blogs, FB posts, twitters post, IMDB profiles to identify users
 - ▶ 8 ratings, dates within 2 weeks 99% of raters
 - ▶ 2 ratings, dates within 3 days 68% of raters
 - all raters of top 100 movies

- Netflix prize (2009, 1M\$)
- training data: 100M ratings from 18K movies of 500K customers
- ▶ 10% of data slightly disturbed
- use blogs, FB posts, twitters post, IMDB profiles to identify users
 - ▶ 8 ratings, dates within 2 weeks 99% of raters
 - ▶ 2 ratings, dates within 3 days 68% of raters
 - all raters of top 100 movies
 - IMDB comments Netflix reidentification

One customer ... sued Netflix, saying she thought her rental history could reveal that she was a lesbian before she was ready to tell everyone.

Edges from call & email logs: what did they know and when did they know it?

Nodes

ID	Age	HIV
Alice	25	Pos
Bob	19	Neg
Carol	34	Pos
Dave	45	Pos
Ed	32	Neg
Fred	28	Neg
Greg	54	Pos
Harry	49	Neg

Edges

ID1	ID2	
Alice	Bob	
Bob	Carol	
Bob	Dave	
Bob	Ed	
Dave	Ed	
Dave	Fred	
Dave	Greg	
Ed	Greg	
Ed	Harry	
Fred	Greg	
Greg	Harry	

Important note

Just because data looks hard to re-identify, doesn't mean it is.

Solution

Publish a distorted version of the data.

Solution

Publish a distorted version of the data.

privacy privacy "adequately" protected utility information is useful for its intended purpose

Solution

Publish a distorted version of the data.

privacy privacy "adequately" protected utility information is useful for its intended purpose

privacy ≥, utility >

Privacy protection needs

- ▶ membership disclosure: is *X* in *Xs*?
- sensitive attribute disclosure: has X a?
- ▶ identity disclosure: does *i* belong to *X*? are *x* and *y* the same?

k-anonymity

Your quasi-identifiers are indistinguishable from at least other k people's.

k-anonymity

Your quasi-identifiers are indistinguishable from at least other k people's.

- easy to understand
- easy to attack
 - doesn't say anything about operations done on data
 - join on other columns
 - no protection against background knowledge
 - updates (age) destroy protection

Other approaches

```
/-diversity : each group must have at least / distinct values probabilistic /-diversity : frequency of the most frequent value in a class is bounded by 1/I entropy /-diversity : entropy of distribution of values inside a class is at least \log(I) recursive (c, I)-diversity ... (> 100 related approaches)
```

Other approaches

```
/-diversity : each group must have at least / distinct values probabilistic /-diversity : frequency of the most frequent value in a class is bounded by 1/I entropy /-diversity : entropy of distribution of values inside a class is at least \log(I) recursive (c, I)-diversity ... (> 100 related approaches)
```

- hard to achieve
- underkill/overkill

Fatal flaws of privacy by syntactic transformation of data

- insecure against attackers with too much background info
- ▶ no composition
- no meaningful definitions for privacy and utility
- no mathematic guarantees of protection.

Fatal flaws of privacy by syntactic transformation of data

- insecure against attackers with too much background info
- no composition
- no meaningful definitions for privacy and utility
- no mathematic guarantees of protection.

Privacy is **not** a property of the data.

- privacy depends on the analysis done on the data
- identity transformation

Differential Privacy

An analysis result should not change much when adding/removing a single tuple.

Differential Privacy

An analysis result should not change much when adding/removing a single tuple.

Each user should not be worse off by having its record in the database.

Differential Privacy

An analysis result should not change much when adding/removing a single tuple.

Each user should not be worse off by having its record in the database.

$$e^{-\epsilon} \leq rac{Pr(\mathcal{A}(Q, D_1) = R)}{Pr(\mathcal{A}(Q, D_2) = R)} \leq e^{\epsilon}$$

Add noise to analysis result.

Add noise to analysis result.

- sensibility of result (query)
- the more sensible the result, the more noise needs to be added
- sensibility is worst-case measure
- sensibility is independent of data in database
- sensibility of how many people have this disease? is 1
- sensibility of what's the average salary of employees is very high (sum, max, min, ...)

How to define sensibility?

How to define sensibility?

what can we publish?

How to define sensibility?

what can we publish?

YES average height NO individual height

How to define sensibility?

what can we publish?

YES average height NO individual height

add 1m to height of one person: what changes?

How to define sensibility?

what can we publish?

YES average height NO individual height

add 1m to height of one person: what changes?

$$\Delta(f) = \max_{D_1, D_2} \|f(D_1) - f(D_2)\|$$

Laplace mechanism

Laplace mechanism

$$\tilde{x} = x + Lap(\lambda)$$
 $Lap(\lambda) = \frac{1}{2\lambda} \exp(-\frac{|x|}{\lambda})$
 $\lambda = \frac{\Delta(f)}{\epsilon}$

▶ How many users viewed more than 10 movies?

- ▶ How many users viewed more than 10 movies?
- sensibility: $\Delta(f) = 1$

- ▶ How many users viewed more than 10 movies?
- ▶ sensibility: $\Delta(f) = 1$
- ightharpoonup actual result: x = 42

- ▶ How many users viewed more than 10 movies?
- ▶ sensibility: $\Delta(f) = 1$
- ▶ actual result: x = 42
- $\epsilon = 0.1, \ \lambda = 10$

- ▶ How many users viewed more than 10 movies?
- ▶ sensibility: $\Delta(f) = 1$
- ▶ actual result: x = 42
- $\epsilon = 0.1, \ \lambda = 10$
- (possible) output: $\tilde{x} = 37$ (noise -5)

Exponential mechanism

Exponential mechanism

- Laplace mechanism works for numerical data
- Exponential mechanism works for categorical data
- each item has a quality function q(x)
- randomly output item with probability $\sim \exp(\frac{q(x)}{\lambda})$
- $\lambda = \frac{2\Delta(q)}{\epsilon}$

Exponential mechanism :: example

Could set the price of apples at \$1.00 for profit: \$4.00

Could set the price of apples at \$4.01 for profit \$4.01

Best price: \$4.01 2nd best price: \$1.00 Profit if you set the price at \$4.02: \$0 Profit if you set the price at \$1.01: \$1.01

Composability

Composability

```
sequential composition \epsilon_t = \epsilon_1 + \epsilon_2 + \ldots + \epsilon_k parallel composition \epsilon_t = \max{\{\epsilon_1, \epsilon_2, \ldots, \epsilon_k\}}
```

How to use the mechanisms?

How to use the mechanisms?

- using them directly gives not so good results
- composability properties help
- we can generate synthetic data and apply all algorithms on that
- we can interleave dp mechanisms with the original data-mining algorithm
- optimization problems

Workflow

Paths in organisation.

Workflow (2)

How many docs go through $i \rightarrow j \rightarrow k$

	_1	 k	 Ν
(1, 1)			
:			
(i, j)			
:			
N, N)			

Workflow (3)

How many triangle paths $(i \rightarrow j \rightarrow i)$

	1	 k	 N
(1,1)			
:			
(1, N)			
÷			
(k,1)			
:			
(k, N)			
:			
· (N,1)			
: (N, N)			

Workflow (4)

How many returned docs $(i \rightarrow \ldots j \rightarrow \ldots i)$

	(1, 1)	 (1, N)	(1, k)	 (N, 1))	(N, N)
(1, 1)							
÷							
(1, N)							
:							
(k, 1)							
÷							
(k, N)							
÷							
(N, 1)							
÷							
(N, N)							

Workflow (5)

- n-gram model for higher dimensionality
- integrity constraints

Limitations

- results are worse for highly-corellated data
- no extensions for complex models
- ▶ how to properly set ϵ
- expensive computations
- error bounds
- no direct relationship between utility and privacy
- inconsistencies