PHYS 402 (Applications of Quantum Mechanics) Notes

Ali Fele Paranj alifele@studnet.ubc.ca *January 18, 2023*

Lecture Notes For: Advanced Linear Algebra

Ali Fele Paranj alifele@student.ubc.ca *January 18, 2023*

Definition: definition box

This is an example of a definition box

$$E = mc^2 (0.1)$$

Theorem: sample theorem box

This is an example of a definition box

$$E = mc^2 (0.2)$$

Lemma: sample lem box

This is an example of a definition box

$$E = mc^2 (0.3)$$

Corollary: sample cor box

This is an example of a definition box

$$E = mc^2 (0.4)$$

Proposition: sample prop box

This is an example of a definition box

$$E = mc^2 (0.5)$$

Axiom: sample axiom box

This is an example of a definition box

$$E = mc^2 (0.6)$$

Proof. Here is an example proof

Example: sample

This is a sample problem in a box

Introduction:

The introduction about the course goes here

Contents

1	Fundamental Concepts		3
	1.1	The Beginnings of Quantum Mechanics	3
	1.2	Kets, Bras, and Hilbert Space	3

1 Fundamental Concepts

1.1 The Beginnings of Quantum Mechanics

Here is a sample file for a chapter tex file Here is an example for the equation:

$$I_{\text{Wien}}(\lambda, T) \sim \frac{1}{\lambda^5} \exp(-\frac{1}{\lambda T})$$
 (1.1)

Looks great! In the following figure you can see a template for inserting images. Images are stored in a seperate folder in the Images.

Figure 1.1: This is the caption of the sample image!

Also here is an example how to include a foot note! In the above discussion, we have introduced Planck's constant. It has numerical value¹.

1.2 Kets, Bras, and Hilbert Space

Here is an example of table!

Quantum states	$\ket{\psi}\in\mathcal{H}$
Evolution	$i\hbarrac{\partial}{\partial t} \psi angle=H \psi angle$
Measurement	$ \psi\rangle \mapsto \frac{\Pi_j \psi\rangle}{\sqrt{\langle\psi \Pi_j \psi\rangle}} p(j) = \langle\psi \Pi_j \psi\rangle$

Table 1: Axioms of quantum mechanics, concerning states, evolution, and measurement.

Here are some examples for boxes

¹which is the set/absolute (rather than measured) value of the Planck constant as per the 2018 redefinition of SI units.

Axiom: : Quantum states

Quantum states $|\psi\rangle$ are vectors (also called "kets") in a complex Hilbert space \mathcal{H} .

Definition: : (Complex) Hilbert spaces

 \mathcal{H} is a (complex) Hilbert space if:

- (i) \mathcal{H} is a vector space over \mathbb{C}
- (ii) \mathcal{H} has an inner product
- (iii) \mathcal{H} is complete (with respect to the metric induced by the norm induced by the inner product)²-For the purposes of this course, this last point can be ignored.

Definition: : Dual correspondence

To each vector space \mathcal{H} , there exists a dual vector space \mathcal{H}^* . There is a one-to-one correspondence one-to-one the kets $|\psi\rangle \in \mathcal{H}$ and the bras $|\psi\rangle \in \mathcal{H}^*$. We call this the *dual correspondence*, and write it as follows:

$$|\psi\rangle \stackrel{DC}{\longleftrightarrow} \langle \psi|.$$
 (1.2)

It has the following properties:

(i)
$$|\psi\rangle + |\varphi\rangle \stackrel{DC}{\longleftrightarrow} \langle \psi| + \langle \varphi|$$

(ii)
$$c|\psi\rangle \stackrel{DC}{\longleftrightarrow} c^*\langle \psi|$$

where the * denotes complex conjugation.

Proposition: : Resolution of the identity

For all ONBs $\{|b_j\rangle\}_{i'}$, the following relation holds:

$$\sum_{j} |b_{j}\rangle\langle b_{j}| = \mathbb{I} \tag{1.3}$$

where I is the identity operator on the Hilbert space.

Here is an example proof

Proof. Recall that $|\psi\rangle=\sum_j\psi_j|b_j
angle$ for any $|\psi
angle\in\mathcal{H}$ and for any basis $\left\{|b_j
angle
ight\}_j$ of \mathcal{H} . Further, recall that

²This is a technical qualification for the mathematicians in the crowd. An intuitive explanation for the curious; the inner product on a Hilbert spaces creates a notion of distance on the space. There are sequences (of vectors) that get closer together over time; completeness tells us that any such sequences (known as Cauchy sequences) must converge to a limit.

⁴Formally, this follows from the Riesz Representation Theorem. But for the purposes of this course, we take this one-to-one correspondence as a postulate. Curious readers can find discussions/proofs of the theorem in any text on functional analysis, or mathematical quantum theory.

⁴Given such names because ⟨|⟩ is a bracket - bra-ket. Physicists remain unmatched in their sense of humour.

Figure 1.2: Here is an example figure using the latex utilities

 $\psi_i = \langle b_i | \psi \rangle$ if the basis is orthonormal. Hence we have that:

$$|\psi\rangle = \sum_{j} \langle b_{j} | \psi \rangle | b_{j} \rangle = \sum_{j} |b_{j}\rangle \left(\langle b_{j} | \psi \rangle \right) = \sum_{j} \left(|b_{j}\rangle \langle b_{j}| \right) |\psi\rangle = \left(\sum_{j} |b_{j}\rangle \langle b_{j}| \right) |\psi\rangle. \tag{1.4}$$

Since the above relation holds for all $|\psi\rangle$, it follows then that $\sum_j |b_j\rangle\langle b_j|$ is the identity as claimed.

At this point in the course, the reader may be wondering what happened to quantum *wavefunctions*⁵; the central objects of interest have instead been quantum states, without a wavefunction in sight. We now elucidate the connection between the two.

 $^{^5}$ Though this nomenclature of "wavefunction" is arguably a misnomer; the Schrödinger equation does not contain second order derivatives in time, as a wave equation would.