

Problem 2
- Cylinder radius a , height L regimed about z-axis her Uniform polarization P=Po2
Find Electric field & Electric displacement everywhere on its axis
21-0
MI OT
ZOI1
- There a uniform allows how as you the Wolume about his
- There a uniform followsorther; so we know the volume prometion. Change density = $O: g_p = -V. \vec{p} = O$ - $Op \in Z = \frac{1}{2} = Po$ * $Op \in Puducontinuous @ upp + lower end$ $Op \in Z = \frac{1}{2} = -Po$ of cylinder. There is only \vec{p} inside the cylinder
- Ope z= 42 = Po * pre Puducontravous @ upor + lower end
Op @ 2=-42=-Po d cylinder. There is only p inside the cylinder
- We can bouncally treat this like 2 dues of charge where the
electric field for a disk of change 10: == k0211 [1- 2 * k = 4120 = = 021 (1- 2) [22+ 62]
411 EO E= 48EO (JZZ+BZ')
- Calculating E for each disc, top and bottom:
$\overline{E}_{top} = \frac{Q}{2E_0} \left(1 - \frac{(z+\frac{1}{2})^2}{\sqrt{(z+\frac{1}{2})^2 + a^2}} \right) + z \text{ be comes } (z+\frac{1}{2}) \text{ by } $ we have a account that the cylinder is confered
Etop = Po (1- (z+ \frac{1}{2})) e origin. Ara /c a is the radius
280 (T21 = 12) of available 1 0. = 0
- Evotion us the some but $(z-\frac{z}{z})$ and $-\rho_0$
$\frac{1}{2} = \frac{-\rho_0}{2\xi_0} \left(1 - \frac{(2-\frac{1}{2})^2}{(2-\frac{1}{2})^2 + a^2} \right)$
Chothan LEO (E-2) (a)
- Add then together to get total E: * & done in Mathematica
$\frac{E_{total}}{24} = \frac{1}{24} \left(\frac{(2-\frac{1}{2})}{(2-\frac{1}{2})^2 + \alpha^2} + \frac{(2+\frac{1}{2})}{(2+\frac{1}{2})^2 + \alpha^2} \right)$
16 1 (= 2) + 6 1

Problem 2 (continue)

$$\vec{p}_{total} = \frac{1}{2} \left(\frac{(z-\frac{1}{2})}{(z-\frac{1}{2})^2 + \alpha^2} - \frac{(z+\frac{1}{2})}{(z+\frac{1}{2})^2 + \alpha^2} \right)$$

b) Pressure is force over onea so plug in \hat{F} divide by onea: $P = \frac{\hat{F}}{A} \qquad P = \frac{\partial^2 A}{\partial F_{F}}$ $P = \frac{\partial^2 A}{\partial F_{F}} \qquad P = \frac{\partial^2 A}{\partial F_{$

Soft Met 70s 302 HW6 Poblen 4 (contrad) C) Find \vec{p} of each slab: $\vec{v}/\vec{0}$ \vec{k} we can we s $\vec{p} = \vec{k} \cdot \vec{k} + \vec{p} + \vec{k} \cdot \vec{k$ 1= 40 - 20 $\hat{l}_{2} = \frac{210^{2}}{24} - \frac{6}{50} \left(\frac{30}{24x} \right)$ $\hat{l}_{2} = \frac{210}{24} \frac{360}{24}$ $\hat{l}_{2} = \frac{-1500}{24}$ d) The potential is V=Ed: V= (E,+Ez)d $V = (E_1 + E_2)O$ V = (Q + 30) 2a = (40) 2a V = (40) 2a V = (40) 2a V = (40) 2ae) location is amount of board charge: $O_{10} = \vec{p} \cdot \hat{n}$ $\vec{O}_{10} = \vec{p} \cdot \hat{n}$ $\vec{O}_{10} = -\vec{p} \cdot \hat{n}$ Opz= Pz. A + Pz ports down 1 A points down so charge sign Opz = 150 pottern of 24 slab? Slab 2 f) recalcular b) w/ burd & face charges: a diagram is easiest to vullable. Slab 1: S(4b):

S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4b):
S(4

at get some value for Ez, somethings off

Problem 5
- point charge, Q sitting @ center of a spherical, inverdillectine
Shell V/ permitively & I move radios, a, other radius, b.
a) Vx Gauss Law to find D + È for all 3 regions:
rza, akrub, rob
b) Find Polanzation P & band volume change donsilies in the chelectric
as well as the band surface change devites a the two
Surfaces (FEQ + FEb)
c) what is the energy of this configuration? Gauss Law for D
5 Dido = Rose
(Na)
a) To find the D for Ica
- substitute in the surface over of a sphere for class and Que 15
just Q, so: \$ (41112) = Q
D= Trap
for akreb
- some goes for acreb, except r is (b-a)
D= Q acreb
For 106
- Some for 17b, but (8 (F-b):
$\overline{V} = \frac{Q}{4\pi(r-b)^2} + \frac{Q}{r-b}$