### Sprawozdanie

#### Projekt specjalnościowy ARR

# ${\bf Sterowanie\ obiektem\ nieholonomicznym}$

Marcin Bober, 249426



Prowadzący: Dr inż. Mirela Kaczmarek

Katedra Cybernetyki i Robotyki Wydziału Elektroniki, Fotoniki i Mikrosystemów Politechniki Wrocławskiej

# Spis treści

| 1 | Cel ćwiczenia                       |                                    | 2  |
|---|-------------------------------------|------------------------------------|----|
| 2 | Ste                                 | rownik kinematyczny                | 2  |
| 3 | Sterownik kinematyczny i dynamiczny |                                    |    |
|   | 3.1                                 | Błędy śledzenia trajektorii        | 3  |
|   | 3.2                                 | Zależność od współczynnika $K_1$   | 5  |
|   | 3.3                                 | Zależność od współczynnika $K_2$   | 7  |
|   |                                     | Zależność od współczynnika $K_M$   |    |
|   | 3.5                                 | Zależność od warunków początkowych | 11 |
|   | 3.6                                 | Wnioski                            | 13 |
| 4 | Pod                                 | Isumowanie                         | 13 |

### 1 Cel ćwiczenia

Celem ćwiczenia jest zbadanie i porównanie zachowania obiektu nieholonomicznego sterowanego na dwa sposoby. W sposób czysto kinematyczny oraz kinematyczny i dynamiczny zarazem. W obu przypadkach celem sterowania jest śledzenie trajektorii. Wykorzystany w tym celu zostanie algorytm Samsona dla części kinematycznej oraz algorytm dokładnej linearyzacji dla części dynamicznej.

## 2 Sterownik kinematyczny

W tym doświadczeniu do obiektu został podpięty jedynie sterownik kinematyczny. Wyniki błędów referencyjnych śledzenia trajektorii zostały zaprezentowane na wykresie 1. Trajektoria po której poruszał się obiekt jest przedstawione na wykresie 2.



Rysunek 1: Błędy  $e_x$ ,  $e_y$ ,  $e_\theta$ 



Rysunek 2: Trajektoria

## 3 Sterownik kinematyczny i dynamiczny

## 3.1 Błędy śledzenia trajektorii

Eksperyment ten zakłada wykorzystanie dwóch sterowników kinematycznego i dynamicznego jednocześnie. Profil prędkościowy produkowany przez sterownik kinematyczny jest wykorzystywany przez sterownik dynamiczny, którego zadaniem jest minimalizacja błędów śledzenia trajektorii.



Rysunek 3: Błędy  $e_x$ ,  $e_y$ ,  $e_\theta$ 

Na wykresie 3 można zaobserwować odnotowane błędy śledzenia trajektorii. Liniami ciągłymi oznaczone są błędy dotyczące sterownika kinematycznego, natomiast liniami przerywanymi rysowane są wykresy dotyczące połączenia oby sterowników. Można zaobserwować że połączenie obu sterowników daje wymiernie lepsze efekty. Połączenie sterowników pozwala szybciej i intensywniej reagować na pojawiający się błąd.



Rysunek 4: Trajektoria

Wykres 4 porównuje trajektorie referencyjną do trajektorii ze sterownikiem dynamicznym oraz bez sterownika dynamicznego. Dodanie sterowanika dynamicznego spowodowało bardziej zdecydowaną reakcję obiektu w początkowej fazie ruchu porównując z drugim mniej skomplikowanym rozwiązaniem. Jednakże czas potrzebny na osiągniecie zadanej trajektorii jest bardzo porównywalny.

### 3.2 Zależność od współczynnika $K_1$

Wykres 5 przedstawia jak wpływa zmiana współczynnika  $K_1$  na poszczególne błędy śledzenia, przy zachowaniu współczynników  $K_2$  i  $K_M$  równych 1. Na podstawie tych danych można wywnioskować że wzrost wzmocnienia  $K_1$ :

- $\bullet\,$ znacznie zmniejsza błąd  $E_x$ oraz skraca jego czas stabilizacji,
- powoduje mniej stromy spadek błędów  $E_y$  oraz  $E_\theta$  i wydłuża ich czas stabilizacji, niwelując przesterowania.



Rysunek 5: Błędy  $e_x, e_y, e_\theta$ 



Rysunek 6: Trajektorie zależne od  $K_1$ 

### 3.3 Zależność od współczynnika $K_2$

Wykres 7 przedstawia jak wpływa zmiana współczynnika  $K_2$  na poszczególne błędy śledzenia, przy zachowaniu współczynników  $K_1$  i  $K_M$  równych 1. Na podstawie tych danych można wywnioskować że wzrost wzmocnienia  $K_2$ :

- $\bullet$ znacznie zmniejsza błąd $E_{\theta}$ oraz skraca jego czas stabilizacji,
- $\bullet$ powoduje mniej stromy spadek błędów  $E_x$ oraz  $E_y$ i wydłuża ich czas stabilizacji, niwelując przesterowania.



Rysunek 7: Błędy  $e_x, e_y, e_\theta$ 



Rysunek 8: Trajektorie zależne od  $K_2$ 

### 3.4 Zależność od współczynnika $K_M$

Wykres 9 przedstawia jak wpływa zmiana współczynnika  $K_M$  na poszczególne błędy śledzenia, przy zachowaniu współczynników  $K_1$  i  $K_2$  równych 1. Na podstawie tych danych można wywnioskować że wzrost wzmocnienia  $K_M$ :

- $\bullet\,$ przyśpiesza reakcję sterownika oraz zwiększa błąd  $E_x,$
- $\bullet\,$ nieznacznie przyśpiesza reakcję sterownika oraz zwiększa błędy  $E_y$  i  $E_\theta,$



Rysunek 9: Błędy  $e_x,\,e_y,\,e_\theta$ 10



Rysunek 10: Trajektorie zależne od  $K_M$ 

### 3.5 Zależność od warunków początkowych

Zmiana warunków początkowych pozwala na zmianę miejsca startu algorytmu. Zmiana  $x_0$  wpływa na pozycję na osi OX na trajektorii (patrz wykres 11). W podobny sposób wpływa zmiana  $y_0$  na pozycję na osi OY (patrz wykres 12). Ostatni warunkiem początkowym jest  $\theta_0$  wpływający na kąt ustawienia platformy. Warto zaznaczyć że nie wszystkie ustawienia kąta będą poprawne co można zaobserwować na wykresie 13.



Rysunek 11: Trajektorie zależne od  $\boldsymbol{x}_0$ 



Rysunek 12: Trajektorie zależne od  $y_0$ 



Rysunek 13: Trajektorie zależne od  $\theta_0$ 

#### 3.6 Wnioski

- połączenie sterowników powoduje mniejsze opóźnienie i mocniejsze sterowanie,
- $\bullet$ zmiana współczynnika  $K_1$ ma znaczny wpływ na minimalizację błędu  $E_x,$
- $\bullet$ zmiana współczynnika  $K_2$ ma znaczny wpływ na minimalizację błędu  $E_\theta,$
- $\bullet\,$ zmiana współczynnika  $K_M$ ma znaczny wpływ na minimalizację błędu  $E_x,$

#### 4 Podsumowanie

Sterowanie nieholonomicznym obiektem jakim jest platforma mobilna wymaga sterowania przy użyciu sterowanika kinematycznego i dynamicznego. Zadaniem pierwszego algorytmu jest produkcja profilu prędkościowego zależnego od zadania (trajektorii). Następnie informacja ta wykorzystywana jest przez sterownik dynamiczny, który potrafi uwzględnić masę i bezwładność sterowanego obiektu.