Stage de Master

Étude de la thèse de Badreddin KOUSSA

Optimisation des performances d'un système de transmission multimédia sans fil basé sur la réduction du PAPR dans des configurations réalistes

Boubacar Diallo

Université de Poitiers Laboratoire XLIM - Equipe RESYST

Le 7 avril 2017

Contexte

Titre

Optimisation des performances d'un système de transmission multimédia sans fil basé sur la réduction du PAPR dans des configurations réalistes

Soutenance

- Soutenu par : Badreddin KOUSSA le 18 avril 2014
- Directeur de thèse : Rodolphe VAUZELLE
- Co-encadrants de thèse :
 - Clency PERRINE
 - Smail BACHIR
 - Claude DUVANAUD
- Laboratoire XLIM Université de Poitiers

Contexte

Évolution des réseaux sans fil

- Augmentation du nombre d'usagers
- Exigences en débit et en QoS
- Besoin accru en mobilité
- Accès à plus d'applications

Limitations

- Faible consommation et réduction des coûts
- Limitation en Puissance, bande passante, capacité de calcul,...
- Limitation des ressources spectrales
- Phénomènes liés à la propagation en environnement réel
 (Attenuation, Bruits, Multi-trajets, Effet Doppler ...)

Canaux multi-trajets sélectifs en fréquence

Modulation OFDM (diversité fréquentielle)

- Modulation multi-porteuses
- Faible ISI Utilise FFT
- Meilleure efficacité spectrale
- Robustesse aux effets du canal
- Applications: DAB, DVB, 802.11a.g.n, WiMax, LTE

Limitations

- Condition d'orthogonalité est très difficile à assurer
- Désynchronisation entraine des ISI (Inter-Symbole Interference)
- Fortes fluctuations de l'enveloppe du signal OFDM : Augmentation du PAPR (Peak to Average Power Ratio)

Emetteur OFDM et AP

Rôle de l'AP

- Élement indispensable
- Accroitre la robustesse aux erreurs
- Composant électronique non-linéaire
 - Le plus consommateur d'énergie
 - Sensibilité aux signaux OFDM à fort PAPR
 - Dégradation de la qualité de transmission

Techniques de réduction du PAPR

Techniques de reduction du PAPR

2 type de traitement de l'impact de la non-linéarité

- Techniques basées sur la fonction d'amplification
 Prédistorsion, contre-réaction, Feed-forward...
- Techniques appliquées sur le signal d'entrée: Réduction du PAPR Clipping, TR, PTS, SLM...

TR Tone Reservation

- Exploitation des sous-porteuses libres du standard
- Pas de dégradation du TEB
- Compatibilité descendante
- Implémentation dans certains standard: DVB-T2

TR Tone Reservation

- Contraintes au contenu
- Dégradations du canal
- Non-linearité de l'AP
- Simulation réaliste d'une chaîne de transmission

TR avec optimisation par gradient conjugé

Tone reservation

• Technique basée sur l'ajout d'un signal de correction noté c(t)

Formulation du problème d'optimisation

- Critère quadratique JAlgorithme du gradient simple
- Algorithme du gradient
- conjugué
- Méthode de Quasi-Newton

TR avec optimisation par gradient conjugé

Simulation de la chaine 802.11a

Standard	802.11a
Sous-porteuses totales	N = 64
Sous-porteuses réservées	L = 12
Intervalle de Garde	M = 16 échantillons
Données	2 ¹⁶ bits aléatoires
Modulation	MAQ-16
Amplificateur Classe AB SZP-2026z	Modèle à effets mémoires
	Gaussien
Canal radio	39 53 59 64
48 sous-porteuses de	
48 sous-porteuses de	39 53 59 64 s données utiles pilotes
48 sous-porteuses de	39 53 59 64 s données utiles pilotes

Optimisation par algorithme du gradient conjugué

- Meilleure convergence
- Convergence vers une valeur optimale A = 1.65
- Réduction PAPR environ 4 dB après 10 itérations
- Respect des spécifications des standards

Simulation sur une chaîne SISO réaliste

Résultats

- Amélioration d'EVM de 4 %
- Amélioration de TEB avec un facteur de 10
- Gain de 2 dB en IBO pour la même qualité de service
- Prise en compte des effets mémoires de l'AP
- Réduction de 18 % de la puissance consommée
- Réduction de l'impact de la non-linéarité de l'AP

Radios-logicielles GNU Radio

* Audio

GNU Radio

- Logiciel libre dédiée à l'implémentation de radios logicielles et de systèmes de traitement du signal
- Les fonctions de traitement du signal sont implémentées en C++ et les modules complémentaires sont en Python.
- Une interface graphique (GNU Radio Companion) permet d'assembler les modules graphiquement.
- Cet ensemble d'outils permet d'effectuer des simulations ou de fonctionner sur des signaux réels

Figure: GNU Radio logo

Options Shing block Security Options: 57 00

Radios-logicielles GNU Radio

Radios-logicielles GNU Radio

GNU Radio conference 2017

7th Annual GRCon

- GRCon is the annual conference for the GNU Radio project community
- June 1, 2017: Deadline for Talk, Tutorial, and Poster Abstract Submissions
- Your abstract submission should include the following information:
 - Submission Type (Talk, Tutorial, Poster)
 - Description of Presentation(100 250 words)
 - Author(s) Names
 - Organization (if any)
 - Follow-Up Contact Information
- https://gnuradio.org/grcon-2017/

GNU Radio Conference 2017

Bahia Resort Hotel, San Diego, California September 11 - 15, 2017