

Algoritmica grafurilor

II. Reprezentări, parcurgeri în grafuri, drumuri

Mihai Suciu

Facultatea de Matematică și Informatică (UBB) Departamentul de Informatică

Martie, 9, 2023

1/41

Reprezentarea / memorarea grafurilor

Reprezentarea / memorarea grafurilor

- în general se alege una din două variante pentru a reprezenta un graf G=(V,E):
 - liste de adiacență
 - matrice de adiacență
- ambele variante pot fi folosite pentru grafuri orientate sau neorientate
- deoarece reprezentarea prin listă de adiacență este mult mai compactă este de preferat în cazul grafurilor rare

Graf rar

un graf este rar dacă $|E| \ll |V|^2$

Conținut

- Reprezentarea / memorarea grafurilor
 - Lista de adiacenta
 - Matrice de adiacenta
 - Exemple
- Parcurgeri in latime si adancime
 - Parcurgere in latime
 - Parcurgere in adancime
 - Exemple
 - Kosaraju
- 3 Cel mai scurt drum

2/41

Reprezentarea / memorarea grafurilo

Reprezentări (II)

 reprezentarea prin matrice de adiacență este preferată în cazul grafurilor dense

Graf dens

un graf este dens dacă $|E| pprox |V|^2$

 sau când trebuie să stabilim rapid dacă o muchie (sau un arc) leagă două vârfuri

3/41 4/41

Listă de adiacență

• pentru un graf G = (V, E) lista de adiacentă reprezintă o matrice de |V| liste

Lista de adiacentă pentru un nod

fie $x \in V(G)$, lista de adiacență pentru nodul x, Adj[x], conține toate vârfurile i astfel încât $\{x, i\} \in E(G)$

- Adi[x] constă din toate nodurile adiacente lui x din G
- suma lungimilor fiecărei liste într-un
 - graf orientat este |E|
 - graf neorientat este 2|E|
- pentru un graf ponderat se salvează ponderea împreună cu vârful în listă
- reprezentarea sub formă de lista de adiacentă necesită $\Theta(V+E)$ memorie

5 / 41

Reprezentarea / memorarea grafurilor Matrice de adiacenta

Matrice de adiacență (II)

- matricea de adiacență necesită $\Theta(V^2)$ memorie
- pentru un graf neorientat A este simetrică de-a lungul diagonalei principale
- pentru grafuri ponderate aji este ponderea muchiei
- avantaie:
 - reprezentare mai simplă
 - pentru un graf neorientat si neponderat este nevoie de un singur bit pentru un element din matrice

Matrice de adiacență

- un dezavantaj al listei de adiacentă este: nu putem determina rapid dacă muchia $\{x, y\}$ apartine grafului G
- trebuie cautat vârful y în Adj[x]
- pentru a elimina acest dezavantaj se foloseste matricea de adiacentă

Matrice de adiacentă

fie un graf G = (V, E), reprezentarea sub formă de matrice de adiacentă $A = (a_{ii})$ pentru G este o mtrice de dimensiune |V|x|V| unde

$$a_{ij} = \left\{ egin{array}{ll} 1, & (i,j) \in E \\ 0, & (i,j) \notin E \end{array} \right.$$

6/41

Reprezentarea / memorarea grafurilor Matrice de adiacenta

Matrice de incidență

matrice de incidentă

matricea de incidentă pentru un graf simplu orientat G = (V, E) este o matrice, $B = (b_{ii})$, de dimensiunea |V|x|E| unde

$$b_{ij} = \begin{cases} 1, & \exists j \in V | e = \{i, j\}, \\ -1, & \exists j \in V | e = \{j, i\}, i \in V, e \in E \\ 0, & \textit{altfel} \end{cases}$$

F fiind sortată.

7 / 41 8/41

Exemplu - graf neorientat

Lista de adiacență și matricea de adiacență

 $\operatorname{graf} \to \operatorname{list} \check{\operatorname{a}} \operatorname{diacent} \check{\operatorname{a}} \to \operatorname{matrice} \operatorname{de} \operatorname{adiacent} \check{\operatorname{a}}$

9 / 41

10 / 41

Reprezentarea / memorarea grafurilor Exemple

Exemplu - graf orientat

 $\operatorname{graf} o \operatorname{list}$ adiacență o matrice de adiacență

Lista de adiacență și matricea de adiacență

$$A = \left(egin{array}{cccccc} 0 & 1 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 1 & 1 \ 0 & 1 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 1 \end{array}
ight)$$

11 / 41 12 / 41

Exemplu - graf orientat, matricea de incidență

13 / 41

Parcurgeri in latime si adancime Parcurgere in latime

BFS (II)

• se numeste căutare în lătime deoarece algoritmul BFS descoperă toate vârfurile accesibile la distanță k de vârful sursă după care trece la vârfurile de distanță k+1

Exemplu:

- pentru a urmări progresul sunt trei tipuri de vârfuri: albe, gri si negre:
 - alb nu a fost vizitat
 - negru dacă $\{u,v\} \in E$, vârful u este negru, vârful v este negru sau gri
 - gri poate avea adiacent vârfuri albe (vârfurile gri reprezintă frontiera între vârfurile descoperite și cele nedescoperite)
- BFS construieste initial un arbore ce contine doar vârful sursă s, sunt adăugate vârfuri noi pe măsura ce sunt descoperite

Parcurgere în lățime (Breadth-first search BFS)

- un algoritm simplu de căutare în grafuri
- mai multi algoritmi folosesc idei similare BFS (Prim's minimum-spanning-tree, Dijkstra's single-source shortest-path)

algoritmul BFS

dându-se un graf G = (V, E) și un vârf sursă s, algoritmul de parcurgere în lățime explorează sistematic muchiile lui G pentru a descoperi fiecare vârf accesibil din s

- algoritm pentru grafuri orientate / neorientate
- algoritmul construiește un arbore cu rădăcina în s, arbore ce conține toate vârfurile accesibile
- pentru fiecare vârf v accesibil din s, lantul simplu din arbore reprezintă lantul minim dintre s si v

14 / 41

Parcurgeri in latime si adancime Parcurgere in latime

BFS (III)

- procedura presupune graful reprezentat ca și listă de adiacență
- atributul π tine vârful predecesor, atributul d tine distanta de la sursă la nodul curent

15 / 41 16 / 41

BFS (IV) - procedura


```
BFS(G, s)
  for fiecare varf u \in G, V - \{s\} do
      u.color = alb
      u.d = \infty
      u.\pi = NIL
  end for
  s.color = gri
  s.d = 0
  s.\pi = NIL
  Q = \emptyset
  Enqueue(Q,s)
  while Q \neq \emptyset do
      u = Dequeue(Q)
      for fiecare v \in G.Adj[u] do
         if v.color == alb then
             v.color = gri
             v.d = u.d + 1
             v.\pi = u
             Enqueue(Q,v)
          end if
      end for
      u.color = negru
  end while
```

17 / 41

Parcurgeri in latime si adancime Parcurgere in latime

BFS - drumuri / lanţuri elementare minime

ullet BFS găsește distanța de la nodul sursă s la nodurile accesibile din G

Lanț elementar de distanță minimă

se defineste lantul elementar de distantă minimiă $\delta(s, v)$ de la vârful s la vârful v ca si lantul elementar între s si v ce contine numărul minim de muchii. Dacă nu există un lanț elementar între vârfurile s și v atunci $\delta(s, v) = \infty$

Lema

fie G = (V, E) un graf orientat sau neorientat si $s \in V$ un vârf ales arbitrar. Pentru oricare arc / muchie $\{u, v\} \in E$

$$\delta(s, v) \leq \delta(s, u) + 1.$$

BFS

• durata în timp a algoritmului este O(V + E)

Exemplu

18 / 41

Parcurgeri in latime si adancime Parcurgere in latime

BFS - drumuri / lanţuri elementare minime (II)

Lema

fie G = (V, E) un graf orientat sau neorientat si BFS e rulat pe G din nodul sursă $s \in V$. După ce a terminat BFS, pentru fiecare $v \in V$, valoarea v.d calculată de BFS satisface

$$v.d \geq \delta(s, v).$$

Lema

dacă în timpul execuției BFS pe un graf G = (V, E) coada Q conține vârfurile $\{v_1, v_2, ..., v_r\}$, unde v_1 este în vârful cozii și v_r este vârful din coada. $v_r.d \le v_1.d + 1$ și $v_i.d \le v_{i+1}.d$ pentru i = 1, 2, ..., r - 1.

19 / 41 20 / 41

BFS - drumuri / lanţuri elementare minime (III)

Parcurgere în adâncime (Depth-first search DFS)

Corolar

fie vârfurile v_i si v_i introduse în coadă pe parcursul executiei BFS, vârful v_i este prelucrat înaintea lui v_i . Atunci v_i . $d < v_i$. d în momentul în care v_i este prelucrat.

Teorema: corectitudine BFS

fie G = (V, E) un graf orientat sau neorientat si BFS e rulat pe G din nodul sursă $s \in V$. Pe parcursul executiei BFS descoperă fiecare vârf $v \in V$ accesibil din s si la final $v.d = \delta(s, v), \forall v \in V$. Pentru orice vârf $v \neq s$ care e accesibil din s, unul din lanturile elementare de dimensiune minimă din s în v este un lant elementar de dimensiune minimă din s în $v.\pi$ urmat de muchia $\{v.\pi, v\}$.

Parcurgeri in latime si adancime Parcurgere in adancime

21 / 41

DFS (II)

Exemplu

- algoritmul colorează vârfurile pe parcursul căutării similar cu BFS, prin culoare se indică starea nodului
- pe lângă stare DFS marchează și timpul când a fost descoperit vârful si timpul când a fost explorat complet arborele din vârful descoperit
 - pentru a masura performanta algoritmului
 - pentru a descoperi structura grafului
- u.d marchează timpul când a fost descoperit vârful u
- u.f marchează timpul când a fost explorat vârful u
- starea unui vârf: alb u.d gri u.f negru

- algoritm de parcurgere care exploreaza muchiile vârfurilor nou descoperite
- dupa ce au fost explorate toate muchiile dintr-un vârf v, algoritmul se întoarce la vârful muchiei care a dus în v si continuă explorarea
- procesul se repetă până au fost explorate toate vârfurile accesibile din sursă
- dacă rămân vârfuri neexplorate, DFS alege unul dintre ele ca si sursă si continua execuția

22 / 41

Parcurgeri in latime si adancime Parcurgere in adancime

DFS - procedura


```
DFS(G)
  for fiecare vârf u \in G.V do
      u.color = alb
      \Pi \pi = N\Pi
  end for
  time = 0
  for fiecare u \in G.V do
      if u.color == alb then
         DFS_VISIT(G,u)
      end if
  end for
```

23 / 41 24 / 41

DFS - procedura (II)

DFS

25 / 41

Parcurgeri in latime si adancime Parcurgere in adancime

DFS - proprietăți

Teoremă

fie G = (V, E) un graf orientat sau neorientat, în DFS pentru oricare noduri *u* si *v* una din următoarele conditii este adevărată:

- intervalele [u.d, u.f] și [v.d, v.f] sunt disjuncte, u și v nu sunt descendenti unul altuia
- intervalul [u.d, u.f] este inclus [v.d, v.f], u este un descendent al lui v
- intervalul [v.d, v.f] este inclus in [u.d, u.f] și v este un descendent al lui *u*

• durata în timp a algoritmului este:

• în timpul execuției bucla din DFS_VISIT se execută de |Adj[v]| ori, deoarece

$$\sum_{v \in V} |Adj[v]| = \Theta(E)$$

costul buclei este $\Theta(E)$

• durata de executie a algoritmului este $\Theta(V + E)$

26 / 41

Parcurgeri in latime si adancime Exemple

Exemple

• Relația: Din orice punct puteți ajunge la orice punct

• Câte componente conexe are următorul graf?

27 / 41 28 / 41

Exemple

• Relația: Din orice punct puteți ajunge la orice punct

Parcurgeri in latime si adancime Exemple

• Câte componente conexe are următorul graf?

29 / 41

Parcurgeri in latime si adancime Exemple

30 / 41

Exemple (II)

Exemple (II)

- facebook sugestie de noi prieteni pe baza BFS
- numărul Kevin Bacon / Erdős Pál

Exemple (III) - prelucrare de imagini

• să se caute stelele mai mari din imagine

31 / 41 32 / 41

Exemple (IV) - parcurgerea unui labirint

Fie un graf orientat G = (V, E)

Graf tare conex, slab conex

Algortmul lui Thremaux - secolul 19, bazat pe DFS

Graf tare conex

un graf orientat este tare conex dacă între oricare două vârfuri ale grafului există un drum.

• graf tare conex - prin oricare două vârfuri trece cel puțin un circuit

Graf slab conex

între oricare două vârfuri u și v ale grafului exista un drum de la u la v sau de la v la u, nu există ambele drumuri.

33 / 41

34 / 41

Parcurgeri in latime si adancime Exemple

Exemplu

• componente conexe pe grafuri orientate / neorientate (DFS)

Parcurgeri in latime si adancime Exemple

Exemplu DFS

Închiderea tranzitivă a unui graf

35 / 41 36 / 41

Algoritmul Kosaraju - Sharir

- algoritm pentru determinarea componentelor tare conex dintr-un graf orientat
- pasi
 - DFS cu vârfurile puse pe o stiva
 - DFS pe complementul grafului

Exemplu - click

• pentru un graf neponderat, orientat sau neorientat, putem folosi algoritmul lui Moore pentru a găsi cel mai scurt drum / lant

Cel mai scurt drum

- notatii
 - *u* nodul sursă
 - I(v) lungimea drumului
 - p(v) părintele vârfului v
 - Q o coadă

37 / 41

Cel mai scurt drum

Algoritmul lui Moore

MOORE(G, u)I(u) := 0

Algoritmul lui Moore (II)

38 / 41

• stiind I, p, v cum putem afla drumul

MOORE_DRUM(I, p, v)

- 1. k := l(v)
- 2. $u_k := v$
- while $k \neq 0$ do
- $u_{k-1} := p(u_k)$
- k := k 15.
- 6. return u

for toate vârfurile $v \in V(G)$, $v \neq u$ **do** $I(v) := \infty$ 3. $Q = \emptyset$ $u \rightarrow Q$ 5. while $Q \neq \emptyset$ do 6. 7. $Q \rightarrow x$ 8. **for** toți vecinii $y \in N(x)$ **do** 9. if $I(y) = \infty$ then p(y) := x10. I(y) := I(x) + 111. 12. $y \rightarrow Q$ 13. **return** *l*, *p*

> 39 / 41 40 / 41

Exemplu

	1	2	3	4	5	6	7	8	9	10	11	12
										∞	∞	∞
p		1	2	1	4	2	6	6	5			