Deducción en Lógica Proposicional

Definiciones

Literal: es un símbolo de predicado p o un símbolo de predicado negado $\neg p$.

CNF: una fómula está en *conjunctive normal form* si es una conjunción de diyunciones de literales, de la forma $(l_{1,1} \lor \ldots \lor l_{1,k_1}) \land \ldots \land (l_{n,1} \lor \ldots \lor l_{n,k_n})$.

DNF: una fórmula está en *disjunctive normal form* si es una disyunción de conjunciones de literanles, de la forma $(l_{1,1} \wedge \ldots \wedge l_{1,k_1}) \vee \ldots \vee (l_{n,1} \wedge \ldots \wedge l_{n,k_n})$.

Cláusula: es una disyunción de literales $l_1 \lor \ldots \lor l_n$. Equivalentemente, una cláusula puede ser una formula $p_1 \lor \ldots \lor p_n \lor \neg q_1 \lor \ldots \lor \neg q_n$ donde p_i y q_j son símbolos de predicado.

Conjunto de cláusulas: una formula en CNF es una conjunción de cláusulas, es decir un conjunto de cláusulas.

Cláusula vacía: es la disyunción de cero literales y se suele denotar por \square .

Cláusula de Horn: es una cláusula que contiene como máximo un literal positivo, es decir $p_1 \lor \neg q_1 \lor \ldots \lor \neg q_n$.

Resolución, corrección y completitud

Resolución

Es una regla deductiva con la que dadas dos cláusulas de la forma $p \lor C$ y $\neg p \lor D$ (premisas) deducimos una nueva cláusula $C \lor D$ (conclusión).

Se suele escribir: $\frac{p \lor C \qquad \neg p \lor D}{C \lor D}$

Clausura bajo resolución

Sea S un conjunto de clásulas, la *clausura de* S *bajo resolución*, denotada por Res(S), es el conjunto de todas las cláusulas que se pueden obtener con cero o más pasos de resolución a partir de S.

Formalmente lo definimos así: $Res_1(S) = \{C \lor D | p \lor C \in S, \neg p \lor D \in S\}.$

Para toda i > 0 definimos:

$$S_0 = S \ S_{i+1} = S_i \cup Res_1(S_i)$$

Con esto podemos definir:

$$Res(S) = igcup_{i=0}^{\infty} S_i$$

Clausura bajo una regla deductiva cualquiera

Sea R una regla deductiva cualquiera y S un conjunto de fórmulas, denotamos R(S) la clausura de S bajo R, es decir el conjunto de todas las fórmulas que se pueden obtener con cero más pasos de deducción de R a partir de S.

Corrección y completitud de una regla deductiva

S es un conjunto de fórmulas $\{F_1, \ldots, F_n\}$.

Definimos: la regla deductiva R es **correcta** si mediante R sólo podemos deducir fórmulas nuevas que son consecuencia lógica de las que ya tenemos. Si para toda fórmula F y todo conjunto de fórmulas S, se cumple que $F \in R(S)$ implica $S \models F$.

Definimos: la regla deductiva R es **completa** si mediante R podemos deducir todas las consecuencias lógicas. Es decir si para toda fórmula F y todo conjunto de fórmulas S se cumple que $S \models F$ implica $F \in R(S)$.

Completitud refutacional de la resolución

La resolución es **refutacionalmente completa** ya que si S es insatisfactible, entonces $\square \in Res(S)$.

Resolviendo problemas con la lógica proposicional

Hay una clase de problemas para los que no se han descubierto algoritmos capaces de resolverlos en tiempo polinomico, se conocen como problemas **NP-completos**.

Uno de los problemas NP-completos más famosos es *SAT*: decidir si una fórmula de lógica proposicional es satisfactible o no. Estos algoritmos están muy estudiados y son capaces de tratar fórmulas muy grandes.

Estos *SAT solvers* pueden usarse para intentar resolver casos concretos de los demás problemas NP-completos.

Procedimiento de Davis-Putnam-Logemann-Loveland (DPLL)

El algoritmo explora de una manera compacta todas las posibles interpretaciones. En cada momento se tiene una **interpretación parcial**, representada como una secuencia de literales M, los que son ciertos en ese momento. M nunca contiene a la vez un literal l y su negado $\neg l$, ni tampoco contiene literales repetidos.

Decimos que una cláusula C es falsa en M si $\neg l \in M$ para todo literal l de C.

La secuencia M se va extendiendo decidiendo nuevos literales y cada vez que una cláusula se vuelve falsa en M se invierte la última decisión tomada.

Las reglas:

- **Propaga:** $M \implies M \ l \ {\bf si}$ en F hay alguna cláusula $l \lor C$ cuya parte C es falsa en M y ni l ni su negado están en M
- **Decide:** $M \implies M l^d$ **si** el literal l o su negado aparece en F y ni l ni su negado están en M
- ullet Falla: $M\Longrightarrow$ "Insat" ${f si}$ en F hay alguna cláusula que es falsa en M y M no contiene literales de decisión
- **Backtrack:** $M \ l^d \ N \implies M \ \neg l \ {\bf si} \ {\rm en} \ F$ hay alguna cláusula que es falsa en $M \ l^d \ N$ y N no contiene literales de decisión