The inequality $|\int f(x)dx| \le \int |f(x)|dx$ follows from converting to the Riemann sum and applying triangle inequality to the terms in the Riemann sum.

Exercise 8.4.12

Assume f(x,t) is continuous on the rectangle $D = [a,b] \times [c,d]$. Explain why the function $F(x) = \int_{c}^{d} f(x,t)dt$ is defined for $x \in [a,b]$.

Fix $x \in [a, b]$. Since f(x, t) is continuous at $t \in [c, d]$, it is integrable on [c, d], so the integral (which is being taken with respect to t) exists, that is, F(x) is defined.

Theorem 8.4.5

If f(x,t) is continuous on D, then $F(x) = \int_{c}^{d} f(x,t) dt$ is uniformly continuous on [a,b].

Proof:

Since f(x,t) is continuous on D, it is uniformly continuous on D, so for all $\epsilon > 0 \; \exists \; \delta > 0$ s.t. $\forall \; (x,t), (x_0,t_0) \in D$, if $|(x,t)-(x_0,t_0)| < \delta$ then $|f(x,t)-f(x_0,t_0)| < \epsilon/(d-c)$. Now let $\epsilon > 0$, pick the same δ as above, let $x,y \in [a,b]$, and let $|x-y| < \delta$, which certainly implies $|(x,t)-(y,t)| < \delta$. Then,

$$|F(x) - F(y)| = \left| \int_{c}^{d} f(x, t) dt - \int_{c}^{d} f(y, t) dt \right| = \left| \int_{c}^{d} f(x, t) - f(y, t) dt \right|$$

$$\leq \int_{c}^{d} |f(x, t) - f(y, t)| dt < \int_{c}^{d} \frac{\epsilon}{d - c} dt = \epsilon$$

Theorem 8.4.6

If f(x,t) and $f_x(x,t)$ are continuous on D, then $F(x) = \int_c^d f(x,t)dt$ is differentiable and $F'(x) = \int_c^d f_x(x,t)dt$.

Proof:

So $f_x(x,t)$ is continuous on D, it is uniformly continuous on D, so for all $\epsilon>0$ \exists $\delta>0$ s.t. \forall $(x,t),(x_0,t_0)\in D$, if $|(x,t)-(x_0,t_0)|<\delta$ then $|f_x(x,t)-f_x(x_0,t_0)|<\epsilon/(d-c)$. Now let $\epsilon>0$, pick the same δ as above, let $z,x\in[a,b]$, and let $|z-x|<\delta$. Then,

$$\left| \frac{F(z) - F(x)}{z - x} - \int_{c}^{d} f_{x}(x, t) dt \right| = \left| \frac{\int_{c}^{d} f(z, t) dt - \int_{c}^{d} f(x, t) dt}{z - x} - \int_{c}^{d} f_{x}(x, t) dt \right|$$

$$= \left| \int_{c}^{d} \frac{f(z, t) - f(x, t)}{z - x} - f_{x}(x, t) dt \right|$$

Since f(x,t) is continuous on D and $f_x(x,t)$ exists on D, by MVT there exists k in

between x and z such that $f(z,t) - f(x,t) = f_x(k,t)(z-x)$. But then certainly we have $|(k,t) - (x,t)| < \delta$ since $|z-x| < \delta$, therefore,

$$= \left| \int_c^d f_x(k,t) - f_x(x,t) dt \right| \le \int_c^d |f_x(k,t) - f_x(x,t)| dt < \int_c^d \frac{\epsilon}{d-c} dt = \epsilon$$

Hence $F'(x) = \lim_{z \to x} \frac{F(z) - F(x)}{z - x} = \int_{c}^{d} f_{x}(x, t) dt$ as desired.

Definition 8.4.7

Given f(x,t) defined on $\{(x,t):x\in A,c\leq t\}$, assume $F(x)=\int_c^\infty f(x,t)dt$ exists for all $x\in A$. We say the integral $\int_c^\infty f(x,t)dt$ converges uniformly to F(x) on A if $\forall \, \epsilon>0$ $\exists \, M>c$ s.t. $\forall \, d\geq M$ and $\forall \, x\in A$ we have $\left|F(x)-\int_c^d f(x,t)dt\right|<\epsilon$. An immediate consequence of this definition is that the sequence of functions $F_n(x)=\int_c^{c+n} f(x,t)dt$ converges to F(x) uniformly on A.

Theorem 8.4.8

If f(x,t) is continuous on $D=[a,b]\times[c,\infty)$, then $F(x)=\int_c^\infty f(x,t)dt$ is uniformly continuous on [a,b] provided the integral $\int_c^\infty f(x,t)dt$ converges uniformly.

Proof:

Since the integral converges uniformly, $\forall \epsilon > 0 \exists M \geq c \text{ s.t. } \forall d \geq M \text{ and } \forall x \in [a, b] \text{ we have } \left| F(x) - \int_c^d f(x, t) dt \right| < \epsilon/3.$

But since f(x,t) is continuous on $D'=[a,b]\times[c,d]$ for any $d\geq M$, we know $\int_c^d f(x,t)dt$ is uniformly continuous on D' by Theorem 8.4.5 so $\forall \ \epsilon>0 \ \exists \ \delta>0 \ \text{s.t.} \ \forall \ (x,t), (x_0,t_0) \in D', \text{ if } |(x,t)-(x_0,t_0)|<\delta \text{ then } |f(x,t)-f(x_0,t_0)|<\epsilon/(3(d-c)).$

Now let $\epsilon > 0$, pick the same M as above, let $d \geq M$, define $D' = [a,b] \times [c,d]$, choose the above δ corresponding to the aforementioned D' and ϵ , let $x,y \in [a,b]$, and let $|x-y| < \delta$, which certainly implies $|(x,t)-(y,t)| < \delta$. Then,

$$|F(x) - F(y)| = \left| F(x) - \int_{c}^{d} f(x,t)dt + \int_{c}^{d} f(x,t)dt - \int_{c}^{d} f(y,t)dt + \int_{c}^{d} f(y,t)dt - F(y) \right|$$

$$\leq \left| F(x) - \int_{c}^{d} f(x,t)dt \right| + \left| \int_{c}^{d} f(x,t)dt - \int_{c}^{d} f(y,t)dt \right| + \left| \int_{c}^{d} f(y,t)dt - F(y) \right|$$

$$\leq \left| F(x) - \int_{c}^{d} f(x,t)dt \right| + \int_{c}^{d} |f(x,t) - f(y,t)|dt + \left| \int_{c}^{d} f(y,t)dt - F(y) \right|$$

$$< \frac{\epsilon}{3} + \int_{c}^{d} \frac{\epsilon}{3(d-c)}dt + \frac{\epsilon}{3} = \epsilon$$

Theorem 8.4.9

Assume f(x,t) is continuous on $D=[a,b]\times[c,\infty)$ and $F(x)=\int_c^\infty f(x,t)dt$ exists for each $x\in[a,b]$. Further assume $f_x(x,t)$ exists and is continuous on D. Then $F'(x)=\int_c^\infty f_x(x,t)dt$ provided the integral $\int_c^\infty f_x(x,t)dt$ converges uniformly.

Proof:

Since the integral converges uniformly, $\forall \epsilon > 0 \exists M \ge c \text{ s.t. } \forall d \ge M \text{ and } \forall x \in [a, b] \text{ we have } \left| \int_c^\infty f_x(x, t) dt - \int_c^d f_x(x, t) dt \right| < \epsilon/3.$

But since $f_x(x,t)$ is continuous on $D'=[a,b]\times[c,d]$ for any $d\geq M$, we know $\int_c^d f_x(x,t)dt$ is uniformly continuous on D' by Theorem 8.4.5 so $\forall \ \epsilon>0 \ \exists \ \delta>0$ s.t. $\forall \ (x,t), (x_0,t_0)\in D', \ \text{if} \ |(x,t)-(x_0,t_0)|<\delta \ \text{then} \ |f(x,t)-f(x_0,t_0)|<\epsilon/(3(d-c)).$ Now let $\epsilon>0$, pick the same M as above, let $d\geq M$, define $D'=[a,b]\times[c,d], \ \text{choose}$ the above δ corresponding to the aforementioned D' and ϵ , let $z,x\in[a,b], \ \text{and} \ \text{let}$ $|z-x|<\delta.$ Then,

$$\left| \frac{F(z) - F(x)}{z - x} - \int_{c}^{\infty} f_{x}(x, t) dt \right| = \left| \frac{F(z) - F(x)}{z - x} - \int_{c}^{d} f_{x}(x, t) dt + \int_{c}^{d} f_{x}(x, t) dt - \int_{c}^{\infty} f_{x}(x, t) dt \right|$$

$$\leq \left| \frac{F(z) - F(x)}{z - x} - \int_{c}^{d} f_{x}(x, t) dt \right| + \left| \int_{c}^{d} f_{x}(x, t) dt - \int_{c}^{\infty} f_{x}(x, t) dt \right|$$

$$\leq \left| \frac{\int_{c}^{\infty} f(z, t) dt - \int_{c}^{\infty} f(x, t) dt}{z - x} - \int_{c}^{d} f_{x}(x, t) dt \right| + \frac{\epsilon}{3}$$

Since $\int_{c}^{\infty} f(x,t)dt$ exists at x and z, we can use linearity of the integral,

$$= \left| \int_{c}^{\infty} \frac{f(z,t) - f(x,t)}{z - x} dt - \int_{c}^{d} f_{x}(x,t) dt \right| + \frac{\epsilon}{3}$$

Since f(x,t) is continuous on D and $f_x(x,t)$ exists on D, by MVT there exists k between x and z such that $f(z,t)-f(x,t)=f_x(k,t)(z-x)$. But then certainly we have $|(k,t)-(x,t)|<\delta$ since $|z-x|<\delta$, therefore,

$$= \left| \int_{c}^{\infty} f_{x}(k,t)dt - \int_{c}^{d} f_{x}(x,t)dt \right| + \frac{\epsilon}{3}$$

$$= \left| \int_{c}^{\infty} f_{x}(k,t) - \int_{c}^{d} f_{x}(k,t)dt + \int_{c}^{d} f_{x}(k,t)dt - \int_{c}^{d} f_{x}(x,t)dt \right| + \frac{\epsilon}{3}$$

$$\leq \left| \int_{c}^{\infty} f_{x}(k,t) - \int_{c}^{d} f_{x}(k,t)dt \right| + \left| \int_{c}^{d} f_{x}(k,t)dt - \int_{c}^{d} f_{x}(x,t)dt \right| + \frac{\epsilon}{3}$$

As usual, $\left| \int_c^d f_x(k,t) dt - \int_c^d f_x(x,t) dt \right| = \left| \int_c^d f_x(k,t) - f_x(x,t) dt \right| \le \int_c^d |f_x(k,t) - f_x(x,t)| dt < \int_c^d \frac{\epsilon}{3(d-\epsilon)} dt = \epsilon/3,$

$$<\frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon$$

Cauchy Criterion for Improper Integrals

We say $\int_a^\infty f(x,t)dt$ is uniformly Cauchy on A if $\forall \ \epsilon > 0 \ \exists \ M > c \ \text{s.t.} \ \forall \ d_1, d_2 \geq M$ and $\forall \ x \in A$ we have $\left| \int_c^{d_1} f(x,t)dt - \int_c^{d_2} f(x,t)dt \right| < \epsilon$. Then $\int_a^\infty f(x,t)dt$ converges uniformly on A if and only if $\int_a^\infty f(x,t)dt$ is uniformly Cauchy on A.

If $\int_a^\infty f(x,t)dt$ is uniformly Cauchy on A, then by viewing $\left(\int_c^n f(x,t)dt\right)_{n=1}^\infty$ as a sequence of functions of x, we see that $\left(\int_c^{c+n} f(x,t)dt\right)_{n=1}^\infty$ is uniformly Cauchy and hence uniformly convergent on A, so $\forall \ \epsilon > 0 \ \exists \ N \in \mathbb{N} \ \text{s.t.}$ if $n \ge N$ and $x \in A$, then $\left|\int_c^{c+n} f(x,t)dt - \int_c^\infty f(x,t)dt\right| < \epsilon/2$. But $\int_a^\infty f(x,t)dt$ being uniformly Cauchy on A also implies $\forall \ \epsilon > 0 \ \exists \ M > c \ \text{s.t.}$ for all positive integers $n_1, n_2 \ge M$ and $\forall \ x \in A$ we have $\left|\int_c^{c+n_1} f(x,t)dt - \int_c^{c+n_2} f(x,t)dt\right| < \epsilon/2$. Now pick $M = \max\{N,c+1\}$ (so $M \ge N$ and M > c), let $d \ge M$, and let $x \in A$. Then,

$$\left| \int_{c}^{\infty} f(x,t)dt - \int_{c}^{d} f(x,t)dt \right| \leq \left| \int_{c}^{\infty} f(x,t)dt - \int_{c}^{\lceil d \rceil} f(x,t)dt \right| + \left| \int_{c}^{\lceil d \rceil} f(x,t)dt - \int_{c}^{d} f(x,t)dt \right|$$

where $\lceil d \rceil$ is the ceiling of d. We have $\left| \int_c^\infty f(x,t) dt - \int_c^{\lceil d \rceil} f(x,t) dt \right| < \epsilon/2$ since $\left(\int_c^{c+n} f(x,t) dt \right)_{n=1}^\infty$ is uniformly convergent and $\left| \int_c^{\lceil d \rceil} f(x,t) dt - \int_c^d f(x,t) dt \right| < \epsilon/2$ since $\int_c^\infty f(x,t) dt$ is uniformly Cauchy. Hence $\left| \int_c^\infty f(x,t) dt - \int_c^d f(x,t) dt \right| < \epsilon$ as desired. The proof that $\int_a^\infty f(x,t) dt$ is uniformly Cauchy on A if $\int_a^\infty f(x,t) dt$ converges uniformly on A is a classic $\epsilon/2$ proof with the last step being

$$\left| \int_{c}^{d_{1}} f(x,t)dt - \int_{c}^{d_{2}} f(x,t)dt \right| \leq \left| \int_{c}^{d_{1}} f(x,t)dt - \int_{c}^{d} f(x,t)dt \right| + \left| \int_{c}^{d} f(x,t)dt - \int_{c}^{d_{2}} f(x,t)dt \right|$$
$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

and we leave the details to you.

Weierstrass M-Test for Improper Integrals (Ex. 8.4.16)

Let $A \subseteq \mathbb{R}$, suppose f(x,t) defined on $\{(x,t): x \in A, c \le t\}$ satisfies $|f(x,t)| \le g(t)$ for all $x \in A$ and $\int_a^\infty g(t)dt$ converges. Then $\int_a^\infty f(x,t)dt$ converges uniformly on A.

Since $\int_a^\infty g(t)dt$ converges, for all $\epsilon>0$ \exists M>c s.t. \forall $d_1,d_2\geq M$ we have $\left|\int_c^{d_1}g(t)dt-\int_c^{d_2}g(t)dt\right|=\left|\int_{\min\{d_1,d_2\}}^{\max\{d_1,d_2\}}g(t)dt\right|=\int_{\min\{d_1,d_2\}}^{\max\{d_1,d_2\}}g(t)dt<\epsilon$ (note that since $g(t)\geq |f(x,t)|\geq 0$, we can remove the absolute value signs). But then $\left|\int_c^{d_1}f(x,t)dt-\int_c^{d_2}f(x,t)dt\right|=\left|\int_{\min\{d_1,d_2\}}^{\max\{d_1,d_2\}}f(x,t)dt\right|\leq \int_{\min\{d_1,d_2\}}^{\max\{d_1,d_2\}}|f(x,t)|dt\leq \int_{\min\{d_1,d_2\}}^{\max\{d_1,d_2\}}g(t)dt<\epsilon$ for all $x\in A$. Hence $\int_a^\infty f(x,t)dt$ converges uniformly on A.

Sources:

Abbot, Stephen. *Understanding Analysis*. 2nd ed., Springer 2015.