	\mathbf{Adv}	Abstract	Algebra:	$\mathbf{A}\mathbf{A}\mathbf{A}$	#Practice	Midtern
--	----------------	----------	----------	----------------------------------	-----------	---------

Due on 2022 at 11:59PM

Prof. Peter Hermann Spr 2022

Xianzhi

2023

Practice Midterm

Let $H \leq G$ and $A \leq G$ such that |G:H| = 3 and |A| = 85. Prove that

- 1. $A \leq H$.
- 2. $\cap_{g \in G} g^{-1} H g \neq 1$.

Solution:

Part A

Observe that the right cosets of H partitions G into equivalent classes, so $x \sim y \iff xy^{-1} \in H$. (Why? say $x, y \in Hb$ for some $b \in G$, then $x = h_1b$ and $y = h_2b$ then

$$xy^{-1} = h_1 b(h_2 b)^{-1} (1)$$

$$=h_1bb^{-1}h_2^{-1} (2)$$

$$= h_1 h_2^{-1} \in H (3)$$

Thus, if we restrict this partition into equivalent class to A, it's still a partition. Let $u, v \in A$, since $A \cap H \leq A$, we have u, v in some coset w.r.t. $A \cap H \iff uv^{-1} \in A \cap H$ which means uv^{-1} in A and in H. since uv^{-1} is automatically in A because A is a group,

$$uv^{-1} \in A \cap H \iff uv^{-1} \in H \tag{4}$$

$$\iff u, v \text{ in the same coset w.r.t. } H \text{ in } G$$
 (5)

This observation implies the number of $A \cap H$ cosets in A is at most the # of H cosets in G, which is 3, since |G:H|=3.

Since # of $A \cap H$ cosets in A need to divide the order of |A| = 85, this number cannot be 3 or 2, so it must be 1. Thus, $|A:A\cap H| = 1$, and since $A\cap H \leq A$, we conclude $A\cap H = A \implies A\cap H \supseteq A$ which implies $A \leq H$.

Part B

We show $a \in \bigcap_{g \in G} g^{-1}Hg$. Take any $a \in A$. Observe that if we let \mathcal{R} be the set of all right cosets of H, then for $g \in G$, we define $g^{\rho} \in Sym\mathcal{R} = S_3$ by $g^{\rho} : Hx \mapsto Hxg$ then $\rho : G \xrightarrow{\rho} Sym\mathcal{R} = S_3$ is a homomorphism because $g \to g^{\rho}$. and $g \in G$ is acting on the right cosets of H in G by right multiplication, and $\ker \rho = \bigcap_{g \in G} g^{-1}Hg$.

If $x \in \bigcap_{g \in G} g^{-1}Hg$, then for all cosets of H, Hb, we can write $x = b^{-1}h_1b$ for some $h_1 \in H$. So $Hb \to Hbx = Hbb^{-1}h_1b = Hh_1b = Hb$, which is the identity permutation, so $x \in ker\rho$ implies $ker\rho \supseteq \bigcap_{g \in G} g^{-1}Hg$. If $x \in ker\rho$, then for all Hb, we have $Hb = Hbx \implies H = Hbxb^{-1}$, thus, $bxb^{-1} \in H \implies bxb^{-1} = h_2$ for some $h_2 \in H$.

- $\implies x = b^{-1}h_2b \in \cap_{g \in G}g^{-1}Hg$
- $\implies ker \rho \subseteq \cap_{g \in G} g^{-1} Hg$

Thus, $ker \rho = \bigcap_{g \in G} g^{-1} Hg$.

We show for any $a \in A, a \in ker \rho$. Let $a \in A \implies |a| \mid |A| = 85$, Also $|\rho(a)|$ divide $|S_3| = 3! = 6$.

Let |a| = k, so $a^k = 1$.

then $(\rho(a))^k = \rho(a^k) = \rho(1) = 1$, so $|\rho(a)|$ divide k.

Thus, $|\rho(a)|$ divide gcd(85,6) = 1.

so $|\rho(a)| = 1 \implies \rho(a) = 1$

so a is in $ker\rho$.

Thus, $A \subseteq ker\rho$, so $ker\rho \neq 1 \implies \bigcap_{g \in G} g^{-1}Hg \neq 1$.

Assume that $\langle c \rangle \lhd G$, $|G:\langle c \rangle| = 3$, c has infinite order, and some $b \in G$ has order 3. Prove that $G = \langle c, b \rangle$ and $G \cong \mathbb{Z}^+ \times \mathbb{Z}_3^+$. (For any ring S, the additive group of S is denoted by S^+ .

Solution:

 $\langle c \rangle \triangleleft G$, $|G:\langle c \rangle|=3$, since $\langle c \rangle$ is infinite cyclic group (c has infinite order), any element that is non identity has infinite order. Thus, $b \notin \langle c \rangle$, since |b|=3.

Thus, we can form distinct cosets $\langle c \rangle$, $b \langle c \rangle$, $b^2 \langle c \rangle$.

 $b\langle c\rangle$ and $b^2\langle c\rangle$ are distinct, since if $b\langle c\rangle = b^2\langle c\rangle$, then $b^{-1}b^2 \in \langle c\rangle$,

 $\implies b \in \langle c \rangle$. Contradiction.

Since $|G:\langle c\rangle|=3$, we found all $\langle c\rangle$ cosets.

since G is partitioned into cosets, we have $G = \langle c \rangle \cup b \langle c \rangle \cup b^2 \langle c \rangle$, and elements $g \in G$ is in one of the cosets, and can be written as $b^i c^j$, and since $\langle c \rangle \triangleleft G$, the left, right cosets of $\langle c \rangle$ in G are the same, so G is indeed generated by $\langle c, b \rangle$.

It's clear that $\langle c \rangle \lhd G, \langle b \rangle \cap \langle c \rangle = 1$, and since G is generated by $\langle c, b \rangle$, and $\langle c \rangle$ is normal, so $\langle b \rangle \cdot \langle c \rangle$ is a group, so $\langle b \rangle \cdot \langle c \rangle \leq G$. but any $g \in G$ can be written as $b^i c^j$, if it's $c^j b^i$, then use normality of $\langle c \rangle$ to get $b^{i'} c^{j'}$. Thus, we only need to show $\langle b \rangle \lhd G$, then G is the internal direct product of $\langle c \rangle$ and $\langle b \rangle$, so it's isomorphic to the external direct product $\langle c \rangle \times \langle b \rangle$, then since $\langle c \rangle \times \langle b \rangle \cong \mathbb{Z}^+ \times \mathbb{Z}_3^+$, by sending $c \mapsto 1$ in \mathbb{Z}^+ , and $b \mapsto 1$ in \mathbb{Z}_3^+ .

so $G \cong \langle c \rangle \times \langle b \rangle \cong \mathbb{Z}^+ \times \mathbb{Z}_3^+$.

Show $\langle b \rangle \lhd G$.

Prove that \mathbb{Q}^+ (the additive group of the rational numbers) is hopfian.

Hint. If $H \nleq \mathbb{Q}^+$ and $|H| > 1 \implies \exists n \in H \text{ such that } n \text{ is a positive integer and } \frac{1}{n} \notin H$. Then $\frac{1}{n} + H$ has finite order in \mathbb{Q}^+/H .

Solution:

We want to show take any subgroup that is not 1, and not \mathbb{Q}^+ , $H \leq \mathbb{Q}^+$, then $\mathbb{Q}^+/H \not\cong \mathbb{Q}^+$. since \mathbb{Q}^+ is abelian, any subgroup is normal.

Thus, we take a proper $H \leq \mathbb{Q}^+, H \neq \mathbb{Q}^+, |H| > 1$, observe that $|H| = \infty$, since if $h \neq e, h \in H$, then all $(h+h+h+\dots)$ with $nh \in H$, so H has infinite many elements. Thus, for some sufficient large positive integer $m \in H$, we have $1/m \notin H$. This is possible since $H \neq \mathbb{Q}^T$. Thus, we could consider coset 1/m + H. This coset has finite order in \mathbb{Q}^+/H , since $m^2(\frac{1}{m}+H)=m^2\frac{1}{m}+H=m+H=H$, so $|\frac{1}{m}+H|$ divides m^2 , so $|\frac{1}{m}+H| < \infty$. However, every non identity element $q \in Q^{-1}$ has infinite order, since adding q to itself many times will never get to zero. Thus, there cannot be an isomorphism between $\frac{Q^+}{H}$ and \mathbb{Q}^+ , since Isomorphism preserves order of the element. We can also obtain a direct contradiction. say $\exists \phi \frac{Q^+}{H} \mapsto Q^+$. such that $\phi(\frac{1}{m}+H)=q\in\mathbb{Q}$ and $q\neq 1$. Let $|\frac{1}{m}+H|=k<\infty$, then $1=\phi(1)=\phi\left((\frac{1}{m}+H)^k\right)=\phi(\frac{1}{m}+H)^k=q^k$ thus q has finite order. Contradiction.

Let a group G have order $5^2 \cdot 7 \cdot 37$. Show that

- 1. G has a unique Sylow 37-subgroup \mathbb{Q} .
- 2. Q < Z(G).
- 3. The mapping $f: G \to G$, $\forall g \in G$, $g \to g^{175}$ is a homomorphism. What is the image of f?

Solution:

G has order $5^2 \cdot 7 \cdot 37$, show G has unique Sylow 37-subgroup Q, let $n_{37} = \#$ of Sylow 37 subgroup in G, by Sylow theorem,

$$n_{37} \equiv 1 \mod 37 \text{ and} \tag{6}$$

$$n_{37}$$
 divide $5^2 \cdot 7 = 175$, (7)

possible choices: 1, 5, 7, 25, 35, 175, but among those, only 1 satisfy $1 \equiv 1 \mod 37$. so $n_{37} = 1$, so G has unique Sylow 37 subgroup, we call \mathbb{Q} .

Part A

G acts on \mathbb{Q} by conjugation, and since unique Sylow-p subgroup is also normal, $\mathbb{Q} \triangleleft G$, thus, $\forall g \in G$, $g^{-1}Qg \subseteq Q$, and since $h^{-1}(g^{-1}Qg)h = (gh)^{-1}Qgh$, this conjugation action could be associated with automorphism on Q.

$$G \xrightarrow{\varphi} Aut(Q) \le Sym(Q)$$
 (8)

$$q \xrightarrow{\varphi} fq \text{ where } Q^{fg} = q^{-1}Qq \subset Q$$
 (9)

similar to a proof in class, $Q \leq Z(G) \iff$ this action is trivial $\iff \varphi$ is trivial: φ maps G to the identity automorphism on Q.

$$\iff Im\varphi = \{e\}.$$

Thus, we show $Q \leq Z(G)$ by showing $Im\varphi = \{e\}$. By 1st Iso Thm

$$G/ker\varphi \cong Im\varphi \implies \frac{|G|}{|ker\varphi|} = |Im\varphi| \implies |Im\varphi| \text{ divide } |G| = 5^2 \cdot 7 \cdot 37$$
 (10)

On the other hand, $Im\varphi \leq Aut(Q)$.

Since |Q| = 37, which is prime $\implies Q$ is cyclic $\implies Q$ is abelian.

thus, except identity, all elements of Q has order 37, and there are 36 of such elements, so |Aut(Q)| = 36. Let $Q = \langle a \rangle$.

$$37 = \operatorname{order}(a^{i}) = \frac{\operatorname{order}(a) = 37}{\gcd(37, i)} \implies \gcd(37, i) = 1$$

$$(11)$$

implies there are 36 such i satisfy this.

Thus, $|Im\varphi|$ divide |Aut(Q)| = 36.

Thus, $|Im\varphi|$ divide both 36 and $5^2 \cdot 7 \cdot 37$

 $\implies |Im\varphi| \text{ divide } qcd(36, 5^2 \cdot 7 \cdot 37) = 1 \implies |Im\varphi| = 1 \implies Im\varphi = \{e\}.$

Part B

Since Q is the unique Sylow 37 subgroup, Q is normal, so get factor group |G/Q|=175, since $Imf=\{g^{175}\mid g\in G\}$. Let $g\in G$

$$Qg^{175} = (Qg)^{175} = e_{G/Q} = Q (12)$$

which implies $g^{175} \in Q$, $\Longrightarrow Imf \subset Q$. Since f is homomorphism, why? Imf is a subgroup of $G \Longrightarrow Imf \leq Q$, thus, |Imf| divide $|Q| = 37 \Longrightarrow |Imf| = 1$ or 37.

Assume $|Imf|=1 \implies Imf=\{e\} \implies \{g^{175}|g\in G\}=\{e\}$, so for all $g\in G, g^{175}=e \implies |g|$ divide 175, but we know $e\neq q\in Q$ has order 37 since Q is prime order cyclic group, and 37/175. Contradiction.

 $\implies |Imf| = 37$. Combine with $Imf \leq Q \implies Imf = Q$.

Let G be a group (infinite or finite). Let $A \neq 1$ be an abelian subgroup of G such that |G:A| = 5. Show that G has some nontrivial normal subgroup.

Solution:

Consider the action of G on the set of right cosets of $A: \mathcal{R}$

$$G \xrightarrow{\rho} Sym\mathcal{R}$$
 (13)

$$g \to g^{\rho}$$
 (14)

$$g^{\rho}: Ab \to Abg$$
 (15)

By 1st iso thm:

$$G/ker\rho \cong Im\rho \le S_5 \tag{16}$$

$$|G/ker\rho| = |Im\rho| \text{ divide } |S_5| = 5! = 120$$
 (17)

first, observe that $ker\rho$ cannot be the whole group G, because if $\rho(G) = 1$, then this contradicts ρ action transitively on the five cosets of A in G.

If |G| > 5! then since $|G/\ker\rho|$ divides 5!, we conclude $\ker\rho > 1$. So we are done in this case.

If $|G| \le 5!$, then we observe if we let $|G| = k \le 5!$, k must have a factor of 5, since |G:A| = 5, $\implies 5 \mid k$. Thus, there exists a Sylow 5-group, we call S.

If # of S is 1, we are done, since unique S is normal.

If # of S is not 1, let's consider it's possibilities.

$$\# \text{ of } S \equiv 1 \mod 5 \tag{18}$$

$$\# \text{ of } S \mid \frac{k}{5},\tag{19}$$

$$\frac{k}{5} \le \frac{120}{5} = 24\tag{20}$$

Since $\frac{k}{5}$ can be any number in $\{1, 2, \dots, 24\}$, # of S could be 6, 11, 17, 22.

If # of S is 6, then we consider Syl_3 subgroup in A, since |A| has a factor of 3. (because $6 \mid \frac{k}{5}$). Then since Syl_3 subgroup are conjugates of each other, if $\exists ! Syl_3$ subgroup, we done, if not, there are 5 of them, because there are 5 cosets of A, but $5 \equiv 2 \mod 3$, which is a contradiction, so $\exists ! Syl_3$ subgroup which is normal. Other case can be done similarly.

for p instead of 3, provided $5 \not\equiv 1 \mod p$, i.e., $p \neq 2$.