

(10) International Publication Number

(43) International Publication Date 15 June 2000 (15.06.2000)

C12N 1/00, 1/15, 1/21, 5/10, 15/12, 15/63

(51) International Patent Classification7:

PCT

WO 00/34318 A 1

- 117465 (RU), JIANG, Xin; 1133 Raikovich Way, San Jose, CA 95120 (DE). DUONG, Tommy; 2491 Glen Elm Way, San Jose, CA 95148 (US).

CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,

11 April 2002

- (21) International Application Number: PCT/US99/29291
 - 10 December 1999 (10.12.1999)

C07K 14/435.

(74) Agent: ADLER, Benjamin, A.; McGregor & Adler, 8011 Candle Ln., Houston, TX 77071 (US).

(25) Filing Language:

- English

(26) Publication Language:

(22) International Filing Date:

- English
- (81) Designated State (national): JP. (84) Designated States (regional): European patent (AT, BE,

- (30) Priority Data: 09/210.330 Not furnished
- 11 December 1998 (11.12.1998) US 9 December 1999 (09.12.1999)
- Published: with international search report

NL. PT. SE).

- (71) Applicant: CLONTECH LABORATORIES, INC. [US/US]; 1020 East Meadow Drive, Palo Alto, CA 94303 (US).
- (48) Date of publication of this corrected version:
- (72) Inventors: LUKYANOY, Sergev, Anatolievich; ul. Golubinskava 13/1-161, Moscow (RU), FRADKOV, Arcady, Fedorovich; ul. Dnepropetrovskaya, 35/2-14, Moscow, 113570 (RU). LABAS, Yulii Aleksandrovich; ul. Generala Tvuleneva, 35-416, Moscow, 117465 (RU), MATZ, Mikhail Vladimirovich; ul. Teplii stan, 7/2-28, Moscow,
- (15) Information about Correction: see PCT Gazette No. 15/2002 of 11 April 2002, Section II

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: FLUORESCENT PROTEINS FROM NON-BIOLUMINESCENT SPECIES OF CLASS ANTHOZOA, GENES EN-CODING SUCH PROTEINS AND USES THEREOF

(57) Abstract: The present invention is directed to novel fluorescent proteins from non-bioluminescent organisms from the Class Anthozoa. Also disclosed are cDNAs encoding the fluorescent proteins.

FLUORESCENT PROTEINS FROM NON-BIOLUMINESCENT SPECIES OF CLASS ANTHOZOA, GENES ENCODING SUCH PROTEINS AND USES THEREOF

10

20

25

5

BACKGROUND OF THE INVENTION

Cross-reference to Related Application

This is a divisional application of U.S.S.N. 09/210,330 filed 15 on December 11, 1998.

Field of the Invention

This invention relates to the field of molecular biology.

More specifically, this invention relates to novel fluorescent proteins, cDNAs encoding the proteins and uses thereof.

Description of the Related Art

Fluorescence labeling is a particularly useful tool for marking a protein, cell, or organism of interest. Traditionally, a protein of interest is purified, then covalently conjugated to a fluorophore derivative. For *in vivo* studies, the protein-dye complex is then inserted into cells of interest using micropipetting or a method of reversible permeabilization. The dye attachment and insertion steps, however, make the process laborious and difficult to control. An

alternative method of labeling proteins of interest is to concatenate or fuse the gene expressing the protein of interest to a gene expressing a marker, then express the fusion product. Typical markers for this method of protein labeling include β -galactosidase, firefly luciferase and bacterial luciferase. These markers, however, require exogenous substrates or cofactors and are therefore of limited use for in vivo studies.

A marker that does not require an exogenous cofactor or substrate is the green fluorescent protein (GFP) of the jellyfish Aequorea victoria, a protein with an excitation maximum at 395 nm, a second excitation peak at 475 nm and an emission maximum at 510 nm. GFP is a 238-amino acid protein, with amino acids 65-67 involved in the formation of the chromophore.

Uses of GFP for the study of gene expression and protein localization are discussed in detail by Chalfie et al. in Science 263 (1994), 802-805, and Heim et al. in Proc. Nat. Acad. Sci. 91 (1994), 12501-12504. Additionally, Rizzuto et al. in Curr. Biology 5 (1995), 635-642, discuss the use of wild-type GFP as a tool for visualizing subcellular organelles in cells, while Kaether and Gerdes in Febs Letters 369 (1995), 267-271, report the visualization of protein transport along the secretory pathway using wild-type GFP. The expression of GFP in plant cells is discussed by Hu and Cheng in Febs Letters 369 (1995), 331-334, while GFP expression in Drosophila embryos is described by Davis et al. in Dev. Biology 170 (1995), 726-729.

Crystallographic structures of wild-type GFP and the mutant GFP S65T reveal that the GFP tertiary structure resembles a barrel (Ormö et al., Science 273 (1996), 1392-1395; Yang, et al., Nature Biotechnol 14 (1996), 1246-1251). The barrel consists of beta sheets in a compact structure, where, in the center, an alpha helix containing

15

20

the chromophore is shielded by the barrel. The compact structure makes GFP very stable under diverse and/or harsh conditions such as protease treatment, making GFP an extremely useful reporter in general. However, the stability of GFP makes it sub-optimal for determining short-term or repetitive events.

A great deal of research is being performed to improve the properties of GFP and to produce GFP reagents useful and optimized for a variety of research purposes. New versions of GFP have been developed, such as a "humanized" GFP DNA, the protein product of which has increased synthesis in mammalian cells (Haas, et al., Current Biology 6 (1996), 315-324; Yang, et al., Nucleic Acids Research 24 (1996), 4592-4593). One such humanized protein is "enhanced green fluorescent protein" (EGFP). Other mutations to GFP have resulted in blue-, cyan- and yellow-green light emitting versions. Despite the great utility of GFP, however, other fluorescent proteins with properties similar to or different from GFP would be useful in the art. Novel fluorescent proteins result in possible new colors, or produce pH-dependent fluorescence. Other benefits of novel fluorescent proteins include fluorescence resonance energy transfer (FRET) possibilities based on new spectra and better suitability for larger excitation.

The prior art is deficient in novel fluorescent proteins wherein the DNA coding sequences are known. The present invention fulfills this long-standing need in the art.

25

10

15

20

SUMMARY OF THE INVENTION

The present invention is directed to DNA sequences encoding fluorescent proteins selected from the group consisting of:

(a) an isolated DNA from an organism from the Class Anthozoa which encodes a fluorescent protein; (b) an isolated DNA which hybridizes to the isolated DNA of (a) and which encodes a fluorescent protein; and (c) an isolated DNA differing from the isolated DNAs of (a) and (b) in codon sequence due to the degeneracy of the genetic code and that encodes a fluorescent protein. Preferably, the DNA is isolated from a non -bioluminescent organism from Class Anthozoa. More preferably, the DNA has the sequence selected from the group consisting of SEQ ID Nos. 55, 57-60, and the fluorescent protein has the amino acid sequence shown in SEQ ID No. 56.

In another embodiment of the present invention, there is provided a vector capable of expressing the DNA of the present invention in a recombinant cell comprising said DNA and regulatory elements necessary for expression of the DNA in the cell. Preferably, the DNA encodes a fluorescent protein having the amino acid sequence shown in SEQ ID No. 56.

In still another embodiment of the present invention, there is provided a host cell transfected with a vector of the present invention, such that the host cell expresses a fluorescent protein.

Preferably, the cell is selected from the group consisting of bacterial cells, mammalian cells, plant cells and insect cells.

The present invention is also directed to an isolated and purified fluorescent protein coded for by DNA selected from the group consisting of: (a) isolated DNA from an organism from Class Anthozoa which encodes a fluorescent protein; (b) isolated DNA which hybridizes to the isolated DNA of (a) and which encodes a fluorescent protein; and (c) isolated DNA differing from the isolated DNAs of (a) and (b) in codon sequence due to the degeneracy of the genetic code, and which

10

15

20

encodes a fluorescent protein. Preferably, the protein has the amino acid sequence shown in SEQ ID No. 56.

The present invention is also directed to a DNA sequence encoding a fluorescent protein selected from the group consisting of:

(a) an isolated DNA which encodes a fluorescent protein, wherein said DNA is from an organism from Class Anthozoa and wherein said organism does not exhibit bioluminescence; (b) an isolated DNA which hybridizes to isolated DNA of (a) and which encodes a fluorescent protein; and (c) an isolated DNA differing from the isolated DNAs of (a) and (b) in codon sequence due to degeneracy of the genetic code and which encodes a fluorescent protein. Preferably, the organism is from Sub-order Brachycnemina. Even more preferably, the organism is from Sub-order Brachycnemina. Even more preferably, the organism is from Family Zoanthidae, Genus Zoanthus. Most particularly, the present invention is drawn to a novel fluorescent protein from Zoanthus sp., zFP506.

The present invention is further directed to an amino acid sequence which can be used as a basis for designing an oligonucleotide probe for identification of a DNA encoding a fluorescent protein by 20 means of hybridizaton, wherein the amino acid sequence is selected from the group consisting of SEQ ID Nos. 3, 5, 8, 11, 12, 14. Preferably, such an oligonucleotide has a nucleotide sequence selected from the group consisting of SEQ ID Nos. 4, 6, 7, 9, 10, 13, 15, 16.

Other and further aspects, features, and advantages of the present invention will be apparent from the following description of the presently preferred embodiments of the invention given for the purpose of disclosure.

15

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows the modified strategy of 3'-RACE used to isolate the target fragments. Sequences of the oligonucleotides used are shown in Table 2. Dp1 and Dp2 are the degenerate primers used in the first and second PCR, respectively (see Tables 3 and 4 for the sequences of degenerate primers). In the case of Zoanthus sp., the first degenerate primer used was NGH (SEQ ID No. 4), and the second degenerate primer used was GEGa (SEQ ID No. 6).

Figure 2 shows the excitation and emission spectrum of the novel fluorescent protein from Zoanthus sp., zFP506.

10

20

25

Figure 3 shows functional analysis of destabilized zFP506.

It demonstrates that fusion of MODC domain to the zFP506 slightly decreases the fluorescent intensity compared to zFP506 itself and that transient transfection of destabilized zFP506 decreases the fluorescent intensity by 50% after 4-hour treatment with protein synthesis inhibitor cycloheximide (Figure 3B) vs. control (Figure 3A).

DETAILED DESCRIPTION OF THE INVENTION

As used herein, the term "GFP" refers to the basic green fluorescent protein from Aequorea victoria, including prior art versions of GFP engineered to provide greater fluorescence or fluoresce in different colors. The sequence of Aequorea victoria GFP (SEQ ID No. 54) has been disclosed in Prasher et al., Gene 111 (1992), 229-33.

As used herein, the term "EGFP" refers to mutant variant of GFP having two amino acid substitutions: F64L and S65T (Heim et al., Nature 373 (1995), 663-664). The term "humanized" refers to changes

made to the GFP nucleic acid sequence to optimize the codons for expression of the protein in human cells (Yang et al., *Nucleic Acids Research* 24 (1996), 4592-4593).

As used herein, the term "NFP" refers to novel fluorescent protein, and the term "GNFP" refers to green novel fluorescent protein. Specifically, "GNFP" refers to zFP506.

In accordance with the present invention there may be employed conventional molecular biology, microbiology, and recombinant DNA techniques within the skill of the art. Such techniques are explained fully in the literature. See, e.g., Maniatis, Fritsch & Sambrook, "Molecular Cloning: A Laboratory Manual (1982); "DNA Cloning: A Practical Approach," Volumes I and II (D.N. Glover ed. 1985); "Oligonucleotide Synthesis" (M.J. Gait ed. 1984); "Nucleic Acid Hybridization" (B.D. Hames & S.J. Higgins eds. (1985)); "Transcription and Translation" (B.D. Hames & S.J. Higgins eds. (1984)); "Animal Cell Culture" (R.I. Freshney, ed. (1986)); "Immobilized Cells and Enzymes" (IRL Press, (1986)); B. Perbal, "A Practical Guide To Molecular Cloning" (1984).

A "vector" is a replicon, such as plasmid, phage or cosmid, to which another DNA segment may be attached so as to bring about the replication of the attached segment.

A "DNA molecule" refers to the polymeric form of deoxyribonucleotides (adenine, guanine, thymine, or cytosine) in either single stranded form or a double-stranded helix. This term refers only to the primary and secondary structure of the molecule, and does not limit it to any particular tertiary forms. Thus, this term includes double-stranded DNA found, inter alia, in linear DNA molecules (e.g., restriction fragments), viruses, plasmids, and chromosomes.

15

A DNA "coding sequence" is a DNA sequence which is transcribed and translated into a polypeptide in vivo when placed under the control of appropriate regulatory sequences. The boundaries of the coding sequence are determined by a start codon at the 5' (amino) terminus and a translation stop codon at the 3' (carboxyl) terminus. A coding sequence can include, but is not limited to, prokaryotic sequences, cDNA from eukaryotic mRNA, genomic DNA sequences from eukaryotic (e.g., mammalian) DNA, and synthetic DNA sequences. A polyadenylation signal and transcription termination sequence may be located 3' to the coding sequence.

As used herein, the term "hybridization" refers to the process of association of two nucleic acid strands to form an antiparallel duplex stabilized by means of hydrogen bonding between residues of the opposite nucleic acid strands.

The term "oligonucleotide" refers to a short (under 100 bases in length) nucleic acid molecule.

"DNA regulatory sequences", as used herein, are transcriptional and translational control sequences, such as promoters, enhancers, polyadenylation signals, terminators, and the like, that provide for and/or regulate expression of a coding sequence in a host cell.

A "promoter sequence" is a DNA regulatory region capable of binding RNA polymerase in a cell and initiating transcription of a downstream (3' direction) coding sequence. For purposes of defining the present invention, the promoter sequence is bounded at its 3' terminus by the transcription initiation site and extends upstream (5' direction) to include the minimum number of bases or elements necessary to initiate transcription at levels detectable above background. Within the promoter sequence will be found a

15

20

transcription initiation site, as well as protein binding domains responsible for the binding of RNA polymerase. Eukaryotic promoters will often, but not always, contain "TATA" boxes and "CAT" boxes. Various promoters, including inducible promoters, may be used to drive the various vectors of the present invention.

As used herein, the terms "restriction endonucleases" and "restriction enzymes" refer to bacterial enzymes, each of which cut double-stranded DNA at or near a specific nucleotide sequence.

5

10

15

25

A cell has been "transformed" or "transfected" by exogenous or heterologous DNA when such DNA has been introduced inside the cell. The transforming DNA may or may not be integrated (covalently linked) into the genome of the cell. In prokaryotes, yeast, and mammalian cells for example, the transforming DNA may be maintained on an episomal element such as a plasmid. With respect to eukaryotic cells, a stably transformed cell is one in which the transforming DNA has become integrated into a chromosome so that it is inherited by daughter cells through chromosome replication. This stability is demonstrated by the ability of the eukaryotic cell to establish cell lines or clones comprised of a population of daughter cells containing the transforming DNA. A "clone" is a population of cells derived from a single cell or common ancestor by mitosis. A "cell line" is a clone of a primary cell that is capable of stable growth *in vitro* for many generations.

A "heterologous" region of the DNA construct is an identifiable segment of DNA within a larger DNA molecule that is not found in association with the larger molecule in nature. Thus, when the heterologous region encodes a mammalian gene, the gene will usually be flanked by DNA that does not flank the mammalian genomic DNA in the genome of the source organism. In another example,

heterologous DNA includes coding sequence in a construct where portions of genes from two different sources have been brought together so as to produce a fusion protein product. Allelic variations or naturally-occurring mutational events do not give rise to a heterologous region of DNA as defined herein.

As used herein, the term "reporter gene" refers to a coding sequence attached to heterologous promoter or enhancer elements and whose product may be assayed easily and quantifiably when the construct is introduced into tissues or cells.

10

20

The amino acids described herein are preferred to be in the "L" isomeric form. The amino acid sequences are given in one-letter code (A: alanine; C: cysteine; D: aspartic acid; E: gluetamic acid; F: phenylalanine; G: glycine; H: histidine; I: isoleucine; K: lysine; L: leucine; M: metionine; N: asparagine; P: proline; Q: gluetamine; R: arginine; S: 15 serine; T: threonine; V: valine; W: tryptophane; Y: tyrosine; X: any residue). NH2 refers to the free amino group present at the amino terminus of a polypeptide. COOH refers to the free carboxy group present at the carboxy terminus of a polypeptide. In keeping with standard polypeptide nomenclature, J Biol. Chem., 243 (1969), 3552-59 is used.

The present invention is directed to an isolated DNA selected from the group consisting of: (a) isolated DNA from an organism from the Class Anthozoa which encodes a fluorescent protein; (b) isolated DNA which hybridizes to isolated DNA of (a) and 25 which encodes a fluorescent protein; and (c) isolated DNA differing from the isolated DNAs of (a) and (b) in codon sequence due to the degeneracy of the genetic code, and which encodes a fluorescent protein. Preferably, the DNA has the sequence selected from the group consisting of SEQ ID Nos. 55, 57-60, and the fluorescent protein has the

amino acid sequence shown in SEQ ID No. 56. More preferably, the DNA is non-humanized or humanized zFP506 or N65M.

In another embodiment of the present invention, there is provided a vector capable of expressing the DNA of the present invention in a recombinant cell comprising said DNA and regulatory elements necessary for expression of the DNA in the cell. Specifically, the DNA encodes a fluorescent protein having the amino acid sequence shown in SEQ ID No. 56. Preferably, the vector is constructed by amplifying the DNA and then inserting the amplified DNA into EGFP-N1 backbone, or by fusing different mouse ODC degradation domains such as d1, d2 and d376 to the C-terminal of the DNA and then inserting the fusion DNA into EGFP-N1 backbone.

10

15

20

25

In still another embodiment of the present invention, there is provided a host cell transfected with the vector of the present invention, which expresses a fluorescent protein of the present invention. Preferably, the cell is selected from the group consisting of bacterial cells, mammalian cells, plant cells, insect cells and yeast cells. A representative example of mammalian cell is HEK 293 cell and an example of bacterial cell is an *E. coli* cell.

The present invention is also directed to a DNA sequence encoding a fluorescent protein selected from the group consisting of:

(a) an isolated DNA which encodes a fluorescent protein, wherein said DNA is from an organism from Class Anthozoa and wherein said organism does not exhibit bioluminescence; (b) an isolated DNA which hybridizes to isolated DNA of (a) and which encodes a fluorescent protein; and (c) an isolated DNA differing from the isolated DNAs of (a) and (b) in codon sequence due to degeneracy of the genetic code and which encodes a fluorescent protein. Preferably, the organism is from Sub-class Zoantharia, Order Zoanthidea. More preferably, the

organism is from Sub-order Brachycnemina. Even more preferably, the organism is from Family Zoanthidae, Genus Zoanthus.

The present invention is also directed to an isolated and purified fluorescent protein coded for by DNA selected from the group consisting of: (a) an isolated protein encoded by a DNA which encodes a fluorescent protein wherein said DNA is from an organism from Class Anthozoa and wherein said organism does not exhibit bioluminescence; (b) an isolated protein encoded by a DNA which hybridizes to isolated DNA of (a); and (c) an isolated protein encoded by a DNA differing from the isolated DNAs of (a) and (b) in codon sequence due to degeneracy of the genetic code. Preferably, the isolated and purified fluorescent protein is zFP506.

The present invention is further directed to an amino acid sequence which can be used as a basis for designing an oligonucleotide probe for identification of a DNA encoding a fluorescent protein by means of hybridizaton, wherein the amino acid sequence is selected from the group consisting of SEQ ID Nos. 3, 5, 8, 11, 12, 14. Preferably, such an oligonucleotide has a nucleotide sequence selected from the group consisting of SEQ ID Nos. 4, 6, 7, 9, 10, 13, 15, 16 and is used as a primer in polymerase chain reaction. Alternatively, it can be used as a probe for hybridization screening of the cloned genomic or cDNA library.

The following examples are given for the purpose of illustrating various embodiments of the invention and are not meant to 25 limit the present invention in any fashion.

Biological Material

Novel fluorescent proteins were identified from several genera of Anthozoa which do not exhibit any bioluminescence but have fluorescent color as observed under usual white light or ultraviolet light. Six species were chosen (see Table 1).

TABLE 1

Anthozoa Species Used in This Study

Species	Area of Origination	Fluorescent Color
Anemonia	Western Pacific	bright green tentacle tips
majano		
Clavularia sp.	Western Pacific	bright green tentacles and
		oral disk
Zoanthus sp.	Western Pacific	green-yellow tentacles and
		oral disk
Discosoma sp.	Western Pacific	orange-red spots oral disk
"red"		
Discosoma	Western Pacific	blue-green stripes on oral
striata		disk
Discosoma sp.	Western Pacific	faintly purple oral disk
"magenta"	,	
Discosoma sp.	Western Pacific	green spots on oral disk
"green"		
Anemonia	Mediterranean	purple tentacle tips
sulcata		

cDNA Preparation

Total RNA was isolated from the species of interest according to the protocol of Chomczynski and Sacchi (Chomczynski P., et al., Anal. Biochem. 162 (1987), 156-159). First-strand cDNA was synthetized starting with 1-3 µg of total RNA using SMART PCR cDNA synthesis kit (CLONTECH) according to the provided protocol with the only alteration being that the "cDNA synthesis primer" provided in the kit was replaced by the primer TN3 (5'- CGCAGTCGACCG(T)13, SEO ID 10 No. 1) (Table 2). Amplified cDNA samples were then prepared as described in the protocol provided except the two primers used for PCR were the TS primer (5'-AAGCAGTGGTATCAACGCAGAGT, SEQ ID No. 2) (Table 2) and the TN3 primer (Table 2), both in 0.1 µM concentration. 15 Twenty to twenty-five PCR cycles were performed to amplify a cDNA sample. The amplified cDNA was diluted 20-fold in water and 1 µl of this dilution was used in subsequent procedures.

TABLE 2

Oligos Used in cDNA Synthesis and RACE

5 TN3: 5'-CGCAGTCGACCG(T)₁₃ (SEQ ID No. 1)

T7-TN3: 5'-GTAATACGACTCACTATAGGGCCGCAGTCGACCG(T)₁₃
(SEQ ID No. 17)

10
TS-primer: 5'-AAGCAGTGGTATCAACGCAGAGT
(SEO ID No. 2)

T7-TS:
15 5'-GTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT
(SEQ ID No. 18)

T7: 5'-GTAATACGACTCACTATAGGGC (SEQ ID No. 19)

TS-oligo 5'-AAGCAGTGGTATCAACGCAGAGTACGCrGrGrG (SEQ ID No. 53)

Oligo Design

To isolate fragments of novel fluorescent protein cDNAs,

5 PCR using degenerate primers was performed. Degenerate primers were designed to match the sequence of the mRNAs in regions that were predicted to be the most invariant in the family of fluorescent proteins. Four such stretches were chosen (Table 3) and variants of degenerate primers were designed. All such primers were directed to the 3'-end of mRNA. All oligos were gel-purified before use. Table 2 shows the oligos used in cDNA synthesis and RACE.

TABLE 3

Key Amino Acid Stretches and Corresponding Degenerate Primers Used for Isolation of Fluorescent Proteins

Stretch Position	Amino Acid		
according to	Sequence of	Degenerated Primer Name	
A. victoria GFP (7)	the Key Stretch	and Sequence	
20-25	GXVNGH	NGH: 5'- GA(C,T) GGC TGC	
	(SEQ ID No. 3)	GT(A,T,G,C) $AA(T,C)$ $GG(A,T,G)$	
		CA (SEQ ID No. 4)	
31-35	GEGEG	GEGa: 5'- GTT ACA GGT GA(A,G)	
	(SEQ ID No. 5)	GG(A,C) GA(A,G) GG	
		(SEQ ID No. 6)	
		GEGb: 5'- GTT ACA GGT GA(A,G)	
		GG(T,G) GA(A,G) GG	
		(SEQ ID No. 7)	
	GEGNG	GNGa: 5'- GTT ACA GGT GA(A,G)	
	(SEQ ID No. 8)	GG(A,C) AA(C,T) GG	
		(SEQ ID No. 9)	
		GNGb: 5'- GTT ACA GGT GA(A,G)	
		GG(T,G) AA(C,T) GG	
		(SEQ ID No. 10)	
127-131	GMNFP	NFP: 5' TTC CA(C,T) GGT	
	(SEQ ID No. 11)	(G,A)TG AA(C,T) TT(C,T) CC	
	GVNFP	(SEO ID NO. 13)	
	(SEQ ID No. 12)	, ,	
134-137	GPVM	PVMa: 5' CCT GCC (G,A)A(C,T)	
	(SEQ ID No. 14)	GGT CC(A.T.G.C) GT(A.C) ATG	
		(SEQ ID NO. 15)	
		PVMb: 5' CCT GCC (G,A)A(C,T)	
		GGT CC(A,T,G,C) GT(G,T) ATG	
		(SEO ID NO. 16)	

Isolation of 3'-cDNA Fragments of nFPs

5

The modified strategy of 3'-RACE was used to isolate the target fragments (see Figure 1). The RACE strategy involved two consecutive PCR steps. The first PCR step involved a first degenerate primer (Table 4) and the T7-TN3 primer (SEQ ID No. 17) which has a 3' portion identical to the TN3 primer used for cDNA synthesis (for sequence of T7-TN3, Table 2). The reason for substituting the longer T7-TN3 primer in this PCR step was that background amplification which occurred when using the shorter TN3 primer was suppressed effectively, particularly when the T7-TN3 primer was used at a low concentration (0.1 _M) (Frohman et al., (1998) PNAS USA, 85, 8998-9002). The second PCR step involved the TN3 primer (SEQ ID No. 1, 15 Table 2) and a second degenerate primer (Table 4).

TABLE 4

Combinations of Degenerate Primers for First and Second PCR Resulting in Specific Amplification of 3'-Fragments of nFP cDNA

Species	First	Second Degenerate Primer
	Degenerate	
	Primer	
Anemonia majano	NGH	GNGb
	(SEQ ID No. 4)	(SEQ ID No. 10)
Clavularia sp.	NGH	GEGa
	(SEQ ID No. 4)	(SEQ ID No. 6)
Zoanthus sp.	NGH	GEGa
	(SEQ ID No. 4)	(SEQ ID No. 6)
Discosoma sp. "red"	NGH	GEGa (SEQ ID No. 6),
	(SEQ ID No. 4)	NFP (SEQ ID No. 13) or
		PVMb (SEQ ID No. 16)
Discosoma striata	NGH	NFP
	(SEQ ID No. 4)	(SEQ ID No. 13)
Anemonia sulcata	NGH	GEGa (SEQ ID No. 6)
	(SEQ ID No. 4)	or NFP (SEQ ID No. 13)

The first PCR reaction was performed as follows: 1 µl of 20-fold

dilution of the amplified cDNA sample was added into the reaction
mixture containing 1X Advantage KlenTaq Polymerase Mix with
provided buffer (CLONTECH), 200 µM dNTPs, 0.3 µM of first degenerate

primer (Table 4) and 0.1 µM of T7-TN3 (SEQ ID No. 17) primer in a total volume of 20 µl. The cycling profile was (Hybaid OmniGene Thermocycler, tube control mode): 1 cycle for 95°C, 10 sec.; 55°C, 1 min.; 72°C, 40 sec; 24 cycles for 95°C, 10 sec.; 62°C, 30 sec.; 72°C, 40 sec. The reaction was then diluted 20-fold in water and 1 µl of this dilution was added to a second PCR reaction, which contained 1X Advantage KlenTag Polymerase Mix with the buffer provided by the manufacturer (CLONTECH), 200 µM dNTPs, 0.3 µM of the second degenerate primer (Table 4) and 0.1 µM of TN3 primer. The cycling profile was (Hybaid OmniGene Thermocycler, tube control mode): 1 cycle for 95°C, 10 sec.; 55°C (for GEG/GNG or PVM) or 52°C (for NFP), 1 min.: 72°C. 40 sec; 13 cycles for 95°C. 10sec.; 62°C (for GEG/GNG or PVM) or 58°C (for NFP), 30 sec.; 72°C, 40 sec. The product of PCR was into PCR-Script vector (Stratagene) according to the manufacturer's protocol.

10

15

20

25

Different combinations of degenerate primers were tried in the first and second PCR reactions on the DNA from each species until a combination of primers was found that resulted in specific amplification--meaning that a pronounced band of expected size (about 650-800 bp for NGH and GEG/GNG and 350-500 bp for NFP and PVM--sometimes accompanied by a few minor bands) was detected on agarose gel after two PCR reactions. The primer combinations of choice for different species of the Class Anthozoa are listed in Table 4. Some other primer combinations also resulted in amplification of fragments of correct size, but the sequence of these fragments showed no homology to the other fluorescent proteins identified or to Aeguorea victoria GFP.

Obtaining Full-Length cDNA Copies

Upon sequencing the obtained 3'-fragments of novel fluorescent protein cDNAs, two nested 5'-directed primers 5 synthesized for cDNA (Table 5), and the 5' ends of the cDNAs were then amplified using two consecutive PCRs. In the next PCR reaction, the novel approach of "step-out PCR" was used to suppress background amplification. The step-out reaction mixture contained 1x Advantage KlenTag Polymerase Mix using buffer provided by the manufacturer 10 (CLONTECH), 200 µM dNTPs, 0.2 µM of the first gene-specific primer (see Table 5), 0.02 µM of the T7-TS primer (SEQ ID No. 18), 0.1 µM of T7 primer (SEQ ID No. 19) and 1 µl of the 20-fold dilution of the amplified cDNA sample in a total volume of 20 µl. The cycling profile was (Hybaid OmniGene Thermocycler, tube control mode): 23-27 .15 cycles for 95°C, 10 sec.; 60°C, 30 sec.; 72°C, 40 sec. The product of amplification was diluted 50-fold in water and one µl of this dilution was added to the second (nested) PCR. The reaction contained 1X Advantage KlenTaq Polymerase Mix with provided buffer (CLONTECH), 200 μM dNTPs, 0.2 μM of the second gene-specific primer and 0.1 μM 20 of TS primer (SEQ ID No. 2) in a total volume of 20 µl. The cycling profile was (Hybaid OmniGene Thermocycler, tube control mode): 12 cycles for 95°C, 10 sec.; 60°C, 30 sec.; 72°C, 40 sec. The product of amplification was then cloned into pAtlas vector (CLONTECH) according to the manufacturer's protocol. 25

TABLE 5

Gene-Specific Primers Used for 5'-RACE

Species	First Primer	Second (Nested) Primer	
Anemonia	5'-GAAATAGTCAGGCATACTGGT	5'-GTCAGGCATAC	
majano	(SEQ ID No. 20)	TGGTAGGAT	
		(SEQ ID No. 21)	
Clavularia	5'-CTTGAAATAGTCTGCTATATC	5'-TCTGCTATATC	
sp.	(SEQ ID No. 22)	GTCTGGGT	
		(SEQ ID No. 23)	
Zoanthus	5'-	5'-GTCTACTATGTCTT	
sp.	GTTCTTGAAATAGTCTACTATGT	GAGGAT	
	(SEQ ID No. 24)	(SEQ ID No. 25)	
Discosoma	5'-CAAGCAAATGGCAAAGGTC	5'-CGGTATTGTGGCC	
sp. "red"	(SEQ ID No. 26)	TTCGTA	
		(SEQ ID No. 27)	
Discosoma	5'-TTGTCTTCTTCTGCACAAC	5'-CTGCACAACGG	
ŝtriata	(SEQ ID No. 28)	GTCCAT	
		(SEQ ID No. 29)	
Anemonia	5'-CCTCTATCTTCATTTCCTGC	5'-TATCTTCATTTCCT	
sulcata	(SEQ ID No. 30)	GCGTAC	
	7	(SEQ ID No. 31)	
Discosoma	5'-TT'CAGCACCCCATCACGAG	5'-ACGCTCAGAGCTG	
sp.	(SEQ ID No. 32)	GGTTCC	
"magenta"	· · · · · · · · · · · · · · · · · · ·	(SEQ ID No. 33)	
Discosoma	5'-CCCTCAGCAATCCATCACGTTC	5'-ATTATCTCAGTGGA	
sp. "green"	(SEQ ID No. 34)	TGGTTC	
		(SEQ ID No. 35)	

Expression of nFP in E.coli

5

15

20

25

To prepare a DNA construct for novel fluorescent protein expression, two primers were synthesized for each cDNA: a 5'-directed "downstream" primer with the annealing site located in the 3'-UTR of the cDNA and a 3'-directed "upstream" primer corresponding to the site of translation start site (not including the first ATG codon) (Table Primers with SEQ ID Nos. 41 and 42 were the primers used to prepare the zFP506 DNA. Both primers had 5'-heels coding for a site for a restriction endonuclease; in addition, the upstream primer was designed so as to allow the cloning of the PCR product into the pQE30 vector (Oiagen) in such a way that resulted in the fusion of reading frames of the vector-encoded 6xHis-tag and nFP. The PCR was performed as follows: 1 µl of the 20-fold dilution of the amplified cDNA sample was added to a mixture containing lx Advantage KlenTaq Polymerase Mix with buffer provided by the manufacturer (CLONTECH), 200 μM dNTPs, 0.2 μM of upstream primer and 0.2 μM of downstream primer, in a final total volume of 20 µl. The cycling profile was (Hybaid OmniGene Thermocycler, tube control mode): 23-27 cycles for 95°C, 10 sec.; 60°C, 30 sec.; 72°C, 40 sec. The product of this amplification step was purified by phenol-chlorophorm extraction and ethanol precipitation and then cloned into pOE30 vector using restriction endonucleases corresponding to the primers' sequence according to standard protocols.

All plasmids were amplified in XL-1 blue *E. coli* and purified by plasmid DNA miniprep kits (CLONTECH). The recombinant clones were selected by colony color, and grown in 3 ml of LB medium

(supplemented with 100 μ g/ml of ampicillin) at 37°C overnight. 100 μ l of the overnight culture was transferred into 200 ml of fresh IB medium containing 100 μ g/ml of ampicillin and grown at 37°C, 200 rpm up to OD₆₀₀ 0.6-0.7. I mM IPTG was then added to the culture and incubation was allowed to proceed at 37°C for another 16 hours. The cells were harvested and recombinant protein, which incorporated 6x His tags on the N-terminus, was purified using TALONTM metal-affinity resin according to the manufacturer's protocol (CLONTECH).

TABLE 6

Primers Used to Obtain Full Coding Region of nFPs for Cloning into Expression Construct

Species	Upstream Primer	Downstream Primer
Anemonia majano	5' -acatggatecgetettteaaaca agtttate (SEQ ID No. 36) BamHI	5'-tagtactcgagcttattcgta tttcagtgaaatc (SEQ ID No. 37) XhoI
Clavularia sp.	L: 5'-acatggatcaacattitttga gaaacg (SEQ ID No. 38) BamHI S: 5'-acatggatcaaagctctaacc accatg (SEQ ID No. 39) BamHI	5'-tagtactcgagcaacacaa accetcagacaa (SEQ ID No. 40) XhoI
Zoanthus sp.	5'- acatggatccgctcagtcaaag cacggt (SEQ ID No. 41) BamHI	5'-tagtactcgaggttggaactacat tcttatca (SEQ ID No. 42) XhoI
Discosoma sp. "red"	5'- acatggatccaggtcttccaagaat gttatc (SEQ ID No. 43) BamHI	5'-tagtactcgaggagccaagttc agcetta (SEQ ID No. 44) XhoI
Discosoma striata	5'- acatggatccagttggtccaagagtgtg (SEQ ID No. 45) BamHI	5'-tagcgagctctatcatgcctc gtcacct (SEQ ID No. 46) SacI
Anemonia sulcata	5'- acatggatccgcttcctttttaaagaagact (SEQ ID No. 47) BamHI	5'-tagtactcgagtccttgggagc ggcttg (SEQ ID No. 48) XhoI
Discosoma sp. "magenta"	5'- acatggatccagttgttccaagaatgtgat (SEQ ID No. 49) BamHI	5'-tagtactcgaggccattacg ctaatc (SEQ ID No. 50) XhoI
Discosoma sp. "green"	5'-acatggatccagtgcacttaaagaagaaatg (SEQ ID No. 51)	5'-tagtactcgagattcggtttaat gccttg (SEQ ID No. 52)

Novel Fluorescent Proteins and cDNAs Encoding the Proteins

One of the full-length cDNAs encoding fluorescent proteins found is described herein (zFP506). The nucleic acid sequence and deduced amino acid sequence are SEQ ID Nos. 55 and 56, respectively. The spectral properties of zFP506 is listed in Table 7, and the emission and excitation spectra for the ZFP506 is shown in Figure 2.

10

TABLE 7

Spectral Properties of the Isolated zFP506 nFP

	Species:	Zoanthus sp.	Max. Extinction Coefficient:	35,600
15	nFP Name:	zFP506	Quantum Yield	0.63
	Absorbance Max. (nm):	496	Relative Brightness:*	1.02
20	Emission Max. (nm):	506		

*relative brightness is extinction coefficient multiplied by quantum yield divided by the same value for A. victoria GFP.

25

30

EXAMPLE 8

Construction of zFP506 Mutant

One mutant of zFP506 was generated, N65M. Compared with wild type zFP506, N65M has the mutation of from "AAC" to "ATG" which results in the corresponding amino acid change from Asparagine

(N) to Methionine (M) at the position of 65. The spectral properties of N65M are listed in Table 8.

TABLE 8

Spectral Properties of the Isolated N65M

	Species:	Zoanthus sp.	Max. Extinction Coefficient:	62,000
10	nFP Name:	N65M	Quantum Yield	0.63
	Absorbance Max. (nm):	496	Relative Brightness:*	1.78
15	Emission Max. (nm):	506		

*relative brightness is extinction coefficient multiplied by quantum yield divided by the same value for A. victoria GFP.

20

30

5

1

EXAMPLE 9

Construction and Functional Analysis of Vectors

Non-humanized zFP506 DNA was amplified via PCR and 25 reconstructed into EGFP-N1 backbone. This vector has the same multiple cloning sites as EGFP-N1.

Functional test of the generated vector was performed by transient transfection in 293 cells. 24 hours post transfection, expression of zFP506 was examined under fluorescent microscope. zFP506 showed good fluorescent intensity and comparable to EGFP-N1.

Generation of Destabilized zFP506 Vectors as Transcription Reporters

Since zFP506 is very stable, it is necessary to generate destabilized versions of zFP506 in order to observe the rapid turnover of the protein. By using the same technology for destabilized EGFP, two destabilized zFP506 vectors were constructed by fusing mouse ODC degredation domain to the C-terminal of zFP506. The d1 version of destablized zFP506 (SEQ ID No. 57) has three E to A mutations within MODC degredation domain comparing to d2 version (SEQ ID No. 58), therefore result in a shorter half-life of the protein to which MODC degradation domain fused to. Destablized d1zFP506 and d2zFP506 were constructed in EGFP-N1 backbone

15

20

25

5

EXAMPLE 10

Functional Analysis of Destabilized zFP506

Wildtype d1zFP506 was transiently transfected into 293 cells. 24 hours after transfection, CHX was added to stop protein synthesis. After 4 hour treatment, cells were examined under fluorescent microscope. It shows that fusion of MODC domain to the zFP506 slightly decreases the fluorescent intensity compared to zFP506 itself. After 4 hour treatment, there is 50% fluorescent intensity decrease (Figure 3B vs. Figure 3A).

Application of Destabilized d1zFP506 as Transcription Reporters

Destabilized d1zFP506 was constructed into pCRE-d1GNFP and pNF- κ B-d1GNFP vectors. Its expression was regulated under cAMP response element (CRE) or NF- κ B response element, respectively. These vectors were transiently transfected into 293 cells, and 24 hours post transfection, the expression of d1GNFP was induced by Forskolin or TNF- α . 6 hours after induction, the culture was analysed by FACS. CRE-d1GNFP showed 7 fold of induction in fluorescence intensity, while 4 fold of induction was obtained in NF- κ B-d1GNFP (data not shown). This demonstrated that the destabilized form of GNFP is applicable as transcription reporters.

15

20

25

10

EXAMPLE 12

Construction and Functional Test for Humanized zFP506 and Humanized N65M

Since mammalian expression is a very popular tool, human favored codon version is needed for better expression in mammalian cells. Each piece of human favored codon oligos was linked to form the full length of wild type and/or mutant zFP506 (hGNFP-zFP506, SEQ ID No. 59, hGNFP-N65M, SEQ ID No. 60). This humanized zFP506 was constituted into EGFP-N1 backbone.

Any patents or publications mentioned in this specification are indicative of the levels of those skilled in the art to which the invention pertains. These patents and publications are incorporated by

reference to the same extent as if each individual publication was specifically and individually indicated to be incorporated by reference.

One skilled in the art will appreciate readily that the present invention is adapted to carry out the objects and obtain the ends and 5 advantages mentioned, as well as those objects and ends inherent therein. The present examples, along with the methods, procedures, treatments, molecules, and specific compounds described herein, are presently representative of preferred embodiments, are exemplary, and are not intended as limitations on the scope of the invention. Changes to the methods and compounds, and other uses, will occur to those skilled in the art and are encompassed within the spirit of the invention as defined by the scope of the claims.

WHAT IS CLAIMED IS:

5

10

- 1. A DNA sequence encoding a fluorescent protein selected from the group consisting of:
- (a) an isolated DNA which encodes a fluorescent protein, wherein said DNA is from an organism from a Class Anthozoa and wherein said organism does not exhibit bioluminescence;
- (b) an isolated DNA which hybridizes to isolated DNA of
 (a) above and which encodes a fluorescent protein; and
- (c) an isolated DNA differing from the isolated DNAs of

 (a) and (b) above in codon sequence due to degeneracy of the genetic

 code and which encodes a fluorescent protein.
- The DNA sequence of claim 1, wherein said organism
 is from Sub-class Zoantharia.
 - The DNA sequence of claim 2, wherein said organism is from Order Zoanthidea.
- 20 4. The DNA sequence of claim 3, wherein said organism is from Sub-order Brachycnemina.
 - 5. The DNA sequence of claim 4, wherein said organism is from Family Zoanthidae.
 - $\begin{tabular}{lll} 6. & The DNA sequence of claim 5, wherein said organism is from Genus Zoanthus. \end{tabular}$

- 7. A DNA sequence encoding a fluorescent protein selected from the group consisting of:
- (a) an isolated DNA which encodes a fluorescent protein having a nucleotide sequence selected from the group consisting of SEQ 5 ID Nos. 55, 57-60;
 - (b) an isolated DNA which hybridizes to isolated DNA of (a) above and which encodes a fluorescent protein; and
 - (c) an isolated DNA differing from the isolated DNAs of

 (a) and (b) above in codon sequence due to degeneracy of the genetic

 code, and which encodes a fluorescent protein.
 - 8. The DNA sequence of claim 7, wherein said DNA encodes a fluorescent protein having an amino acid sequence shown in SEQ ID No. 56.
 - 9. The DNA sequence of claim 7, wherein said DNA is selected from the group consisting of non-humanized and humanized DNA.
 - The DNA sequence of claim 9, wherein said DNA is zFP506 or N65M.
- 11. A vector capable of expressing the DNA sequence of claim 1 in a recombinant cell, wherein aid vector comprising said DNA 25 and regulatory elements necessary for expression of the DNA in the cell.

15

- 12. The vector of claim 11, wherein said DNA encodes a fluorescent protein having the amino acid sequence shown in SEQ ID No. 56.
- 5 13. The vector of claim 11, wherein said vector is constructed by amplifying said DNA and then inserting the amplified DNA into EGFP-N1 backbone.
- The vector of claim 13, wherein said DNA is selected
 from the group consisting of non-humanized and humanized DNA.
 - \$15.\$ The vector of claim 14, wherein said DNA is zFP506 or N65M.
- 16. The vector of claim 11, wherein said vector is constructed by fusing different mouse ODC degradation domains to the C-terminal of said DNA and then inserting the fusion DNA into EGFP-N1 backbone.
- 20 17, The vector of claim 16, wherein said mouse ODC degradation domains are selected from the group consisting of d1, d2 and d376.
- 18. The vector of claim 16, wherein said DNA is selected 25 from the group consisting of non-humanized and humanized DNA.
 - $19.\,$ The vector of claim 18, wherein said DNA is zFP506 or N65M.

- 20. A host cell transfected with the vector of claim 11, wherein said cell is capable of expressing a fluorescent protein.
- 21. The host cell of claim 20, wherein said cell is selected
 5 from the group consisting of bacterial cells, mammalian cells, plant
 cell, yeast and insect cells.
 - $\,$ 22. The host cell of claim 21, wherein said mammalian cell is HEK 293 cell.

10

- 23. The host cell of claim 21, wherein said bacterial cell is an E. coli cell.
- 24. An isolated and purified fluorescent protein coded for 15 by DNA selected from the group consisting of:
 - (a) an isolated DNA which encodes a fluorescent protein from an organism from Class Anthozoa, wherein said organism does not exhibit bioluminescence;
- (b) an isolated DNA which hybridizes to isolated DNA of 20 (a) above and which encodes a fluorescent protein; and
 - (c) an isolated DNA differing from the isolated DNAs of (a) and (b) above in codon sequence due to degeneracy of the genetic code and which encodes a fluorescent protein.
 - 25. The isolated and purified fluorescent protein of claim24, wherein said organism is from Sub-class Zoantharia.
 - 26. The isolated and purified fluorescent protein of claim25, wherein said organism is from Order Zoanthidea.

- 27. The isolated and purified fluorescent protein of claim 26, wherein said organism is from Sub-order Brachycnemina.
- 28. The isolated and purified fluorescent protein of claim 27, wherein said organism is from Family Zoanthidae.

5

10

15

20

- 29. The isolated and purified fluorescent protein of claim 28, wherein said organism is from Genus Zoanthus.
- \$30\$. An isolated and purified fluorescent protein coded for by DNA selected from the group consisting of:
- (a) isolated DNA which encodes a fluorescent protein having an amino acid sequence shown in SEQ ID No. 56;
- (b) isolated DNA which hybridizes to isolated DNA of (a) above and which encodes a fluorescent protein; and
- (c) isolated DNA differing from said isolated DNAs of (a) and (b) above in codon sequence due to degeneracy of the genetic code and which encodes a fluorescent protein.
- 31. The isolated and purified fluorescent protein of claim 30, wherein said protein is zFP506.
- 32. An amino acid sequence which can be used as a basis
 25 for designing an oligonucleotide probe for identification of a DNA
 encoding a fluorescent protein by means of hybridizaton, wherein said
 sequence is selected from the group consisting of SEQ ID Nos. 3, 5, 8,
 11, 12, 14.

33. The amino acid sequence of claim 32, wherein said oligonucleotide has a nucleotide sequence selected from the group consisting of SEQ ID Nos. 4, 6, 7, 9, 10, 13, 15, 16.

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

FIG. 3A

FIG. 3B

3/3

SUBSTITUTE SHEET (RULE 26)

SEQUENCE LISTING

```
Lukvanov, Sergey A.
         <110>
                    Labas, Yulii A.
                    Matz, Mikhail V.
                    Fradkov, Arcady F.
5
                    Jiang, Xin
                    Duong, Tommy
                    Fluorescent proteins from non-bioluminescent
         <120>
                    species of Class Anthozoa, genes encoding such
                    proteins and uses thereof
10
                    D6196D3/PCT
         <130>
         <141>
                    1999-12-09
         <150>
                    09/210,330
                    1998-12-11
         <151>
                    60
15
         <160>
                    1
         <210>
                    25
         <211>
         <212>
                    DNA
20
         <213>
                    artificial sequence
         <220>
                    primer_bind
         <221>
                    primer TN3 used in cDNA synthesis and RACE
         <223>
         <400>
                                                          25
    cgcagtcgac cgttttttt tttt
25
         <210>
         <211>
                    23
         <212>
                    ANG
                    artificial sequence
30
         <213>
         <220>
                    primer_bind
         <221>
                    primer TS used in cDNA synthesis and RACE
         <223>
         <400>
                                                          23
    aagcagtggt atcaacgcag agt
35
                     3
         <210>
         <211>
                    6
          <212>
                    PRT
```

```
Aequorea victoria
         <213>
         <220>
         <222>
                    21
         <223>
                    amino acid sequence of a key stretch on which
                    primer NGH is based; Xaa at position 21
5
                    represents unknown
         <400>
                    3
    Gly Xaa Val Asn Gly His
                     5
10
         <210>
                    4
         <211>
                    20
                    DNA
         <212>
         <213>
                    artificial sequence
15
         <220>
         <221>
                    primer_bind
         <222>
                    12
                    primer NGH used for isolation of fluorescent
         <223>
                    protein; n at position 12 represents any of the
                    four bases
20
         <400>
                                                        20
    gayggetgeg tnaayggdca
         <210>
                    5
         <211>
                    5
25
         <212>
                    PRT
         <213>
                    Aequorea victoria
         <220>
                    31...35
         <222>
                    amino acid sequence of a key stretch on which
30
          <223>
                    primers GEGa and GEGb are based
         <400>
    Gly Glu Gly Glu Gly
                     5
35
          <210>
                    6
          <211>
                    20
```

SEQ 2/23

```
<212>
                    DNA
         <213>
                    artificial sequence
         <220>
         <221>
                    primer_bind
5
         <223>
                    primer GEGa used for isolation of fluorescent
                    protein
         <400>
                    6
    gttacaggtg arggmgargg
                                                      . 20
10
         <210>
                    7
         <211>
                    20
         <212>
                    DNA
         <213>
                    artificial sequence
         <220>
         <221>
                    primer_bind
15
                    primer GEGb used for isolation of fluorescent
         <223>
                    protein
                    7
         <400>
                                                         20
    gttacaggtg arggkgargg
20
         <210>
                    8
                    5
         <211>
         <212>
                    PRT
         <213>
                    Aequorea victoria
25
         <220>
                    31...35
         <222>
                    amino acid sequence of a key stretch on which
         <223>
                    primers GNGa and GNGb are based
         <400>
                    8
    Gly Glu Gly Asn Gly
                    5
         <210>
                    9
         <211>
                    20
35
         <212>
                    DNA
         <213>
                    artificial sequence
         <220>
```

SEQ 3/23

```
<221>
                    primer_bind
                    primer GNGa used for isolation of fluorescent
         <223>
                    protein
         <400>
                    9
    gttacaggtg arggmaaygg
                                                         20
5
         <210>
                    10
                    20
         <211>
         <212>
                    DNA
10
         <213>
                    artificial sequence
         <220>
         <221>
                    primer_bind
         <223>
                    primer GNGb used for isolation of fluorescent
                    protein
                    10
15
         <400>
                                                         20
    gttacaggtg arggkaaygg
                    11
         <210>
         <211>
                    5
         <212>
                    PRT
20
         <213>
                    Aequorea victoria
         <220>
         <222>
                    127...131
                    amino acid sequence of a key stretch on which
         <223>
                    primer NFP is based
25
         <400>
                    11
    Glv Met Asn Phe Pro
                    5
         <210>
                    12
30
         <211>
                    5
         <212>
                    PRT
         <213>
                    Aeguorea victoria
         <220>
35
         <222>
                    127...131
         <223>
                    amino acid sequence of a key stretch on which
                    primer NFP is based
```

```
12
         <400>
   Gly Val Asn Phe Pro
                    5
                    13
         <210>
5
         <211>
                    20
         <212>
                    DNA
                   artificial sequence
         <213>
         <220>
                  primer_bind
         <221>
10
                    primer NFP used for isolation of fluorescent
         <223>
                    protein
         <400>
                    13
                                                         20
    ttccayggtr tgaayttycc
15
                    14
         <210>
         <211>
         <212>
                    PRT
                    Aequorea victoria
         <213>
20
         <220>
         <222>
                    134...137
                    amino acid sequence of a key stretch on which
          <223>
                    primers PVMa and PVMb are based
         <400>
                    14
   Gly Pro Val Met
25
          <210>
                    15
          <211>
                    21
30
          <212>
                    DNA
                    artificial sequence
          <213>
          <220>
          <221>
                    primer_bind
                    15
          <222>
                    primer PVMa used for isolation of fluorescent
35
          <223>
                    protein; n at position 15 represents any of the
```

```
gtaatacgac tcactatagg gcaagcagtg gtatcaacgc agagt
                                                                    45
                    19
         <210>
                    22
         <211>
         <212>
                   DNA
                   artificial sequence
         <213>
5
         <220>
         <221>
                   primer_bind
                   primer T7 used in cDNA synthesis and RACE
         <223>
         <400>
                   19
                                                       22
10 gtaatacgac tcactatagg gc
       <210>
                    20
         <211>
                    21
         <212>
                    DNA
                    artificial sequence
15
         <213>
         <220>
         <221>
                   primer_bind
                    gene-specific primer used for 5'-RACE for
         <223>
                    Anemonia majano
                    20
20
         <400>
                                                         21
    gaaatagtca ggcatactgg t
                    21
         <210>
                    20
         <211>
25
         <212>
                    DNA
                    artificial sequence
         <213>
         <220>
                    primer_bind
         <221>
                    gene-specific primer used for 5'-RACE for
         <223>
                    Anemonia majano
30
                    21 -
         <400>
                                                        20
    gtcaggcata ctggtaggat
         <210>
                    22
35
         <211>
                    21
```

```
DNA
         <212>
         <213>
                    artificial sequence
         <220>
         <221>
                    primer_bind
         <223>
                    gene-specific primer used for 5'-RACE for
5
                    Clavularia sp.
         <400>
                    22
                                                        21
    cttgaaatag tctgctatat c
                    23
10
         <210>
         <211>
                    19
         <212>
                    DNA
         <213>
                    artificial sequence
         <220>
                    primer bind
15
         <221>
                    gene-specific primer used for 5'-RACE for
         <223>
                    Clavularia sp.
         <400>
                    23
                                                        19
    tctgctatat cgtctgggt
20
         <210>
                    24
                    23
         <211>
         <212>
                    DNA
         <213>
                    artificial sequence
25
         <220>
         <221>
                    primer bind
         <223>
                    gene-specific primer used for 5'-RACE for
                    Zoanthus sp.
         <400>
                    24
30
    gttcttgaaa tagtctacta tgt
                                                        23
         <210>
                    25
         <211>
                    20
         <212>
                    DNA
35
         <213>
                    artificial sequence
```

```
<220>
                    primer_bind
         <221>
                    gene-specific primer used for 5'-RACE for
         <223>
                    Zoanthus sp.
         <400>
                    25
5
                                                         20
    gtctactatg tcttgaggat
         <210>
                   . 26
         <211>
                    19
10
         <212>
                    DNA
         <213>
                    artificial sequence
         <220>
         <221>
                    primer_bind
         <223>
                    gene-specific primer used for 5'-RACE for
15
                    Discosoma sp. "red"
         <400>
                    26
                                                         19
    caagcaaatg gcaaaggtc
         <210>
                    27
20
         <211>
                    19
         <212>
                    DNA
                    artificial sequence
         <213>
         <220>
         <221>
                    primer_bind
                    gene-specific primer used for 5'-RACE for
2.5
         <223>
                    Discosoma sp. "red"
         <400>
                    27
                                                         19
    cggtattgtg gccttcgta
30
         <210>
                    28
         <211>
                    19
         <212>
                    DNA
         <213>
                    artificial sequence
         <220>
35
         <221>
                    primer_bind
         <223>
                    gene-specific primer used for 5'-RACE for
```

		Discosoma striata				
	<400>	28				
	ttgtcttctt	ctgcacaac			19	
	7					
5	<210>	29				
	<211>	17				
	<212>	DNA				
	<213>	artificial sequence				
	<220>					
10	<221>	primer_bind				
	<223>	gene-specific primer us	sed :	for	5'-RACE	for
		Discosoma striata				
	<400>	29				
	ctgcacaacg	ggtccat			- 17	
15						
	<210>	30				
	<211>	20				
	<212>	DNA				
	<213>	artificial sequence				
20	<220>					
	<221>	primer_bind				
	<223>	gene-specific primer us	sed :	for	5'-RACE	for
		Anemonia sulcata				
	<400>	30				
25	cctctatctt	catttcctgc			20	
	<210>	31				
	<211>	20				
	<212>	DNA				
30	<213>	artificial sequence				
	<220>	•				
	<221>	primer_bind				
	<223>	gene-specific primer us	sed :	for	5'-RACE	for
		Anemonia sulcata				
35	<400>	31				
	tatcttcatt	tcctgcgtac			20	

SEQ 10/23

```
<210>
                    32
         <211>
                    19
         <212>
                    DNA
5
         <213>
                    artificial sequence
         <220>
         <221>
                    primer_bind
         <223>
                    gene-specific primer used for 5'-RACE for
                    Discosoma sp. "magenta"
10
         <400>
                    32
                                                        19
    ttcagcaccc catcacgag
         <210>
                    33
         <211>
                    19
15
         <212>
                    DNA
                    artificial sequence
         <213>
         <220>
         <221>
                    primer_bind
                    gene-specific primer used for 5'-RACE for
         <223>
20
                    Discosoma sp. "magenta"
         <400>
                    33
                                                        19
    acgctcagag ctgggttcc
         <210>
                    34
25
         <211>
                    22
         <212>
                    DNA
         <213>
                    artificial sequence
         <220>
         <221>
                    primer_bind
30
                    gene-specific primer used for 5'-RACE for
         <223>
                    Discosoma sp. "green"
         <400>
                    34
                                                        22
    ccctcagcaa tccatcacgt tc
35
         <210>
                    35
         <211>
                    20
         <212>
                    DNA
```

SEO 11/23

```
<213>
                    artificial sequence
         <220>
                    primer_bind
         <221>
                    gene-specific primer used for 5'-RACE for
         <223>
5
                    Discosoma sp. "green"
                    35
         <400>
                                                       20
    attatctcag tggatggttc
                    36
         <210>
         <211>
                    31
10
         <212>
                    DNA
                    artificial sequence
         <213>
         <220>
                    primer_bind
         <221>
                    upstream primer used to obtain full coding region
15
         <223>
                    of nFPs from Anemonia majano
                    36
         <400>
                                                       31
    acatggatec getettteaa acaagtttat c
                    37
20
         <210>
         <211>
                    34
         <212>
                    DNA
                    artificial sequence
         <213>
         <220>
25
         <221>
                    primer_bind
                    downstream primer used to obtain full coding
         <223>
                    region of nFPs from Anemonia majano
         <400>
                    37.
                                                       34
    tagtactcga gcttattcgt atttcagtga aatc
30
         <210>
                    38
         <211>
                    29
         <212>
                    DNA
         <213>
                    artificial sequence
35
         <220>
         <221>
                    primer_bind
                    upstream primer used to obtain full coding region
         <223>
```

```
of nFPs from Clavularia sp.
         <400>
                   38
    acatggatcc aacatttttt tgagaaacg
                                                        29
5
         <210>
                   39
         <211>
                   28
         <212>
                   DNA
         <213>
                   artificial sequence
         <220>
         <221>
                   primer bind
10
                   upstream primer used to obtain full coding region
         <223>
                   of nFPs from Clavularia sp.
         <400>
                   39
    acatggatcc aaagctctaa ccaccatg
                                                       28
15
                   40
         <210>
         <211>
                   31
         <212>
                   DNA
                   artificial sequence
         <213>
20
         <220>
         <221>
                   primer_bind
                   downstream primer used to obtain full coding
         <223>
                    region of nFPs from Clavularia sp.
         <400>
                    40
                                                       31
    tagtactega gcaacacaaa ccctcagaca a
         <210>
                    41
         <211>
                   28
         <212>
                   DNA
                   artificial sequence
30
         <213>
         <220>
         <221>
                   primer_bind
                    upstream primer used to obtain full coding region
         <223>
                    of nFPs from Zoanthus sp.
35
         <400>
                    41
                                                        28
    acatggatcc gctcagtcaa agcacggt
```

```
<210>
                    42
         <211>
                    32
         <212>
                    DNA
5
         <213>
                    artificial sequence
         <220>
         <221>
                    primer_bind
                    downstream primer used to obtain full coding
         <223>
                    region of nFPs from Zoanthus sp.
10
         <400>
                    42
    tagtactcga ggttggaact acattcttat ca
                                                         32
         <210>
                    43
                    31
         <211>
15
         <212>
                    DNA
         <213>
                    artificial sequence
         <220>
         <221>
                    primer_bind
                    upstream primer used to obtain full coding region
         <223>
                    of nFPs from Discosoma sp. "red"
20
                    43
         <400>
                                                         31
    acatggatcc aggtcttcca agaatgttat c
         <210>
                    44
25
         <211>
                    29
         <212>
                    DNA
         <213>
                    artificial sequence
         <220>
                    primer bind
         <221>
30
                    downstream primer used to obtain full coding
         <223>
                    region of nFPs from Discosoma sp. "red"
         <400>
                    44
                                                         29
    tagtactcga ggagccaagt tcagcctta
35
         <210>
                    45
         <211>
                    28
         <212>
                    DNA
```

SEQ 14/23

```
<213>
                    artificial sequence
         <220>
         <221>
                    primer_bind
                    upstream primer used to obtain full coding region
         <223>
                    of nFPs from Discosoma striata
5
         <400>
                    45
    acatggatcc agttggtcca agagtgtg
                                                       28
                    46
         <210>
                    28
10
         <211>
         <212>
                    DNA
                    artificial sequence
         <213>
         <220>
         <221>
                    primer bind
15
         <223>
                    downstream primer used to obtain full coding
                    region of nFPs from Discosoma striata
         <400>
                    46
                                                       28
    tagegagete tateatgeet egteacet
                    47
20
         <210>
         <211>
                    31
         <212>
                    DNA
         <213>
                    artificial sequence
         <220>
                    primer bind
25
         <221>
                    upstream primer used to obtain full coding region
         <223>
                    of nFPs from Anemonia sulcata
         <400>
                    47
    acatggatcc gcttcctttt taaagaagac t
                                                      31
30
         <210>
                    48
                    28
         <211>
         <212>
                    DNA
         <213>
                    artificial sequence
35
         <220>
         <221>
                   primer_bind
                    downstream primer used to obtain full coding
         <223>
```

		region of nFPs from Anemonia sulcata
	<400>	48
	tagtactcga	gtccttggga gcggcttg 28
5	<210>	49
	<211>	30
	<212>	DNA
	<213>	artificial sequence
	<220>	•
10	<221>	primer_bind
	<223>	upstream primer used to obtain full coding region
		of nFPs from Discosoma sp. "magenta"
	<400>	49
	acatogatoc	agttgttcca agaatgtgat 30
15	acacggacco	
	<210>	50
	<211>	26
	<212>	DNA
	<213>	artificial sequence
20	<220>	-
	<221>	primer_bind
	<223>	downstream primer used to obtain full coding
		region of nFPs from Discosoma sp. "magenta"
	<400>	50
25	tagtagtaga	ggccattacg ctaatc 26
23	cagcacccga	ggccaccacg ccaucc
	<210>	51
	<211>	31
	<212>	DNA
30	<213>	artificial sequence
	<220>	
	<221>	primer_bind
	<223>	upstream primer used to obtain full coding region
		of nFPs from Discosoma sp. "green"
35	<400>	51
	acatomaton	agtgcactta aagaagaaat g 31

SEQ 16/23

```
<210>
                    52
         <211>
                    29 .
         <212>
                    DNA
 5
          <213>
                    artificial sequence
         <220>
         <221>
                    primer bind
                    downstream primer used to obtain full coding
          <223>
                    region of nFPs from Discosoma sp. "green"
10
         <400>
                    52
                                                       29
    tagtactcga gattcggttt aatgccttg
         <210>
                    53
         <211>
                    33
15
         <212>
                    DNA
         <213>
                    artificial sequence
         <220>
         <221>
                    primer_bind
         <223>
                    TS-oligo used in cDNA synthesis and RACE
                    53
20
         <400>
                                                         33
    aagcagtggt atcaacgcag agtacgcrgr grg
         <210>
                    54
         <211>
                    238 -
25
         <212>
                    PRT
         <213>
                    Aequorea victoria
         <220>
         <223>
                    amino acid sequence of GFP
         <400>
                    54
    Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu
30
                                          10
                                                               15
    Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser
                     20
                                          25
                                                               30
    Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys
35
                     35
                                          40
                                                               45
    Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu
                                                               60
                     50
                                          55
```

	Val	Thr	Thr	Phe	Ser	Tyr	Gly	Val	Gln		Phe	Ser	Arg	Tyr	
					65					70		_			75
	Asp	His	Met	Lys	Gln 80	His	Asp	Phe	Phe	Lys 85	Ser	Ala	Met	Pro	G1u 90
5	Gly	Tyr	Val	Gln	Glu	Arg	Thr	Ile	Phe	Phe	Lys	Asp	Asp	Gly	Asn
					95					100					105
	Tyr	Lys	Thr	Arg	Ala	Glu	Val	Lys	Phe	Glu	Gly	Asp	Thr	Leu	Val
	-				110					115					120
	Asn	Arg	Ile	Glu	Leu	Lys	Gly	Ile	Asp	Phe	Lys	Glu	Asp	Gly	Asn
10					125					130				•	135
	Ile	Leu	Gly	His	Lys	Leu	Glu	Tyr	Asn	Tyr	Asn	Ser	His	Asn	Val
					140					145					150
	Tyr	Ile	Met	Ala	Asp	Lys	Gln	Lys	Asn	Gly	Ile	Lys	Val	Asn	Phe
	_				155					160					165
15	Lys	Ile	Arg	His	Asn	Ile	Glu	Asp	Gly	Ser	Val	Gln	Leu	Ala	Asp
					170					175					180
	His	Tyr	Gln	Gln	Asn	Thr	Pro	Ile	Gly	Asp	Gly	Pro	Val	Leu	Leu
					185					190					195
	Pro	Asp	Asn	His	Tyr	Leu	Ser	Thr	Gln	Ser	Ala	Leu	Ser	Lys	Asp
20					200					205					210
	Pro	Asn	Glu	Lys	Arg	Asp	His	Met	Val	Leu	Leu	Glu	Phe	Val	Thr
					215					220					225
	Ala	Ala	Gly	Ile	Thr	His	Gly	Met	Asp	Glu	Leu	Tyr	Lys		
					230					235					
25															
		<2	10>		55										
		<2	11>		858										
		<2	12>		DNA										
		<2	13>		Zoan	thus	sp.								
30		<2	20>												
		<2	21>		CDS										
		<2	23>		CDNA	seç	uenc	e of	zFF	506					
		<4	00>		55										
	ccc	aaag	cta	ctcg	actt	tt g	tatc	acct	t tg	gggc	atca	agc	gatc	tgt	50
35	tct	caac	atg 🤉	gctc	agtc	aa a	gcac	ggtc	t aa	caaa	agaa	atg	acaa	tga	100
	aat	accg	tat (ggaa	gggt	gc g	tcga	tgga	c at	aaat	ttgt	gat	cacg	gga	150
	gag	ggca	ttg (gata	tccg	tt c	aaag	ggaa	a ca	ggct	atta	atc	tgtg	tgt	200
	ggt	cgaa	ggt (ggac	catt	gc c	attt	gccg	a ag	acat	attg	tca	gctg	cct	250

ttaactacgg aaacagggtt ttcactgaat atcctcaaga catagttgac 300 tatttcaaga actcgtgtcc tgctggatat acatgggaca ggtcttttct 350 ctttgaggat ggagcagttt gcatatgtaa tgcagatata acagtgagtg 400 ttgaagaaaa ctgcatgtat catgagtcca aattttatgg agtgaatttt 450 cetgetgatg gacetgtgat gaaaaagatg acagataact gggagecate 500 ctgcgagaag atcataccag tacctaagca ggggatattg aaaggggatg 550 totocatgta cotocttotg aaggatggtg ggcgtttacg gtgccaattc 600 gacacagttt acaaagcaaa gtctgtgcca agaaagatgc cggactggca 650 cttcatccag cataagctca cccgtgaaga ccgcagcgat gctaagaatc 700 agaaatggca totgacagaa catgotattg catcoggatc tgcattgccc 750 10 tgataagaat gtagetecag cattetaatg catgtgettg ccaattatte 800 tgataaatat gtagttgagt tggaaacaga ctagtacaaa taaaagcaca 850 858 tttaaatc 15 <210> 56 <211> 230 <212> PRT

<213> Zoanthus sp. <220> 20 <223> amino acid sequence of zFP506 <400> 56 Ala Gln Ser Lys His Gly Leu Thr Lys Glu Met Thr Met Lys Tyr 10 15 Arg Met Glu Gly Cys Val Asp Gly His Lys Phe Val Ile Thr Gly 25 30 25 20 Glu Gly Ile Gly Tyr Pro Phe Lys Gly Lys Gln Ala Ile Asn Leu 35 40 45 Cys Val Val Glu Gly Gly Pro Leu Pro Phe Ala Glu Asp Ile Leu 60 55 50 Ser Ala Ala Phe Asn Tyr Gly Asn Arg Val Phe Thr Glu Tyr Pro 30 75 65 70 Gln Asp Ile Val Asp Tyr Phe Lys Asn Ser Cys Pro Ala Gly Tyr 85 90 80 Thr Trp Asp Arg Ser Phe Leu Phe Glu Asp Gly Ala Val Cys Ile 35 95 100 Cys Asn Ala Asp Ile Thr Val Ser Val Glu Glu Asn Cys Met Tyr 115 120 110

```
His Glu Ser Lys Phe Tyr Gly Val Asn Phe Pro Ala Asp Gly Pro
                                        130
                    125
    Val Met Lys Lys Met Thr Asp Asn Trp Glu Pro Ser Cys Glu Lys
                                        145
                                                             150
                    140
    Ile Ile Pro Val Pro Lys Gln Gly Ile Leu Lys Gly Asp Val Ser
5
                                                             165
                                        160
                    155
   Met Tyr Leu Leu Leu Lys Asp Gly Gly Arg Leu Arg Cys Gln Phe
                                        175
                    170
    Asp Thr Val Tyr Lys Ala Lys Ser Val Pro Arg Lys Met Pro Asp
                    185
                                         190
                                                             195
10
   Tro His Phe Ile Gln His Lys Leu Thr Arg Glu Asp Arg Ser Asp
                                                             210
                                         205
                    200
    Ala Lys Asn Gln Lys Trp His Leu Thr Glu His Ala Ile Ala Ser
                                                             225
                    215
                                         220
15 Glv Ser Ala Leu Pro
                    230
                   57
         <210>
                   826
         <211>
                   DNA
20
         <212>
         <213>
                   artificial sequence
         <220>
                   497
         <222>
                   nucleic acid sequence of d1-zFP506, n at position
         <223>
                   497 represents unknown
25
         <400>
                   57
    atggctcagt caaagcacgg tctaacaaaa gaaatgacaa tgaaataccg
    tatggaaggg tgcgtcgatg gacataaatt tgtgatcacg ggagagggca
    ttggatatcc gttcaaaggg aaacaggcta ttaatctgtg tgtggtcgaa
    ggtggaccat tgccatttgc cgaagacata ttgtcagctg cctttaacta
30
    cggaaacagg gttttcactg aatatcctca agacatagtt gactatttca
    agaactcgtg tcctgctgga tatacatggg acaggtcttt tctctttgag
    gatggagcag tttgcatatg taatgcagat ataacagtga gtgttgaaga
    aaactgcatg tatcatgagt ccaaatttta tggagtgaat tttcctgctg
35
    atggacctgt gatgaaaaag atgacagata actgggagcc atcctgcgag
    aagatcatac cagtacctaa gcaggggata ttgaaagggg atgtctncat
    gtacctcctt ctgaaggatg gtgggcgttt acggtgccaa ttcgacacag
```

```
cagcataagc tcacccgtga agaccgcagc gatgctaaga atcagaaatg
   gcatctgaca gaacatgcta ttgcatccgg atctgcattg cccaagctta
   gccatggctt cccgccggcg gtggcggcgc aggatgatgg cacgctgccc
   atgtettgtg cccaggagag cgggatggac cgtcaccctg cagcetgtgc
                                                 826
    ttctgctagg atcaatgtgt agatgc
         <210>
                   58
         <211>
                   826
         <212>
                   DNA
10
                   artificial sequence
         <213>
         <220>
         <222>
                   497
                   nucleic acid sequence of d2-zFP506, n at position
         <223>
15
                   497 represents unknown
         <400>
                   58
    atggctcagt caaagcacgg tctaacaaaa gaaatgacaa tgaaataccg 50
    tatggaaggg tgcgtcgatg gacataaatt tgtgatcacg ggagagggca 100
    ttggatatcc gttcaaaggg aaacaggcta ttaatctgtg tgtggtcgaa 150
   ggtggaccat tgccatttgc cgaagacata ttgtcagctg cctttaacta 200
20
    cqqaaacagg gttttcactg aatatcctca agacatagtt gactatttca 250
    agaactcgtg teetgetgga tatacatggg acaggtettt tetetttgag 300
    gatggagcag tttgcatatg taatgcagat ataacagtga gtgttgaaga 350
    aaactgcatg tatcatgagt ccaaatttta tggagtgaat tttcctgctg 400
    atggacctgt gatgaaaaag atgacagata actgggagcc atcctgcgag 450
25
    aagatcatac cagtacctaa gcaggggata ttgaaagggg atgtctncat 500
    gtacctcctt ctgaaggatg gtgggcgttt acggtgccaa ttcgacacag 550
    tttacaaagc aaagtctgtg ccaagaaaga tgccggactg gcacttcatc 600
    cagcataagc tcacccgtga agaccgcagc gatgctaaga atcagaaatg 650
    gcatctgaca gaacatgcta ttgcatccgg atctgcattg cccaagctta 700
30
    gccatggett cccgccggag gtggaggagc aggatgatgg cacgctgccc 750
    atgtettgtg cccaggagag cgggatggac cgtcaccctg cagcetgtgc 800
                                                  826
    ttctgctagg atcaatgtgt agatgc
35
         <210>
                    59
                    696
         <211>
```

tttacaaagc aaagtctgtg ccaagaaaga tgccggactg gcacttcatc

DNA

<212>

```
<213>
                   artificial sequence
         <220>
                   nucleic acid sequence of humanized zFP506
         <223>
         <400>
                   59
    atggcccagt ccaagcacgg cctgaccaag gagatgacca tgaagtaccg 50
5
    catggagggc tgcgtggacg gccacaagtt cgtgatcacc ggcgagggca 100
    teggetacce etteaaggge aageaggeea teaacetgtg egtggtggag 150
    ggcggcccct tgcccttcgc cgaggacatc ttgtccgccg ccttcaacta 200
   eggeaacege gtgtteaceg agtacececa ggacategte gactacttea 250
    agaactcctg ccccgccggc tacacctggg accgctcctt cctgttcgag 300
10
    gacggegeeg tgtgcatetg caacgeegae atcacegtga gegtggagga 350
    gaactgcatg taccacgagt ccaagttcta cggcgtgaac ttccccgccg 400
    acggccccgt gatgaagaag atgaccgaca actgggagcc ctcctgcgag 450
    aagatcatcc ccgtgcccaa gcagggcatc ttgaagggcg acgtgagcat 500
   gtacctgctg ctgaaggacg gtggccgctt gcgctgccag ttcgacaccg 550
15
    tgtacaaggc caagtccgtg ccccgcaaga tgcccgactg gcacttcatc 600
    cagcacaagc tgacccgcga ggaccgcagc gacgccaaga accagaagtg 650
    gcacctgacc gagcacgcca tcgcctccgg ctccgccttg ccctga
                                                           696
                   60
20
         <210>
         <211>
                   696
         <212>
                   DNA
                   artificial sequence
         <213>
         <220>
                   nucleic acid sequence of humanized N65M
25
         <223>
         <400>
                   60
    atggcccagt ccaagcacgg cctgaccaag gagatgacca tgaagtaccg 50
    catggagggc tgcgtggacg gccacaagtt cgtgatcacc ggcgagggca 100
    teggetacce etteaaggge aageaggeea teaacetgtg egtggtggag 150
    ggeggeeest tgeeettege egaggacate ttgteegeeg eetteatgta 200
30
    cggcaaccgc gtgttcaccg agtaccccca ggacatcgtc gactacttca 250
    agaactcotg coccgoogge tacacotggg accgotcott cotgttogag 300
    gacggcgccg tgtgcatctg caacgccgac atcaccgtga gcgtggagga 350
    gaactgcatg taccacgagt ccaagttcta cggcgtgaac ttccccgccg 400
35
    acggccccgt gatgaagaag atgaccgaca actgggagcc ctcctgcgag 450
    aagatcatcc ccgtgcccaa gcagggcatc ttgaagggcg acgtgagcat 500
    gtacetgetg etgaaggaeg geggeegett gegetgeeag ttegaeaceg 550
```

tgtacaaggc caagtccgtg ccccgcaaga tgcccgactg gcacttcatc 600 cagcacaagc tgacccgcga ggaccgcagc gacgccaaga accagaagtg 650 gcacctgacc gagcacgcca tcgcctcgg ccctga ccctga 696

A. CLASSIFICATION OF SUBJECT MATTER						
IPC(6) Please See Extra Sheet. US CL Please See Extra Sheet.						
According to International Patent Classification (IPC) or to both national classification and IPC						
	DS SEARCHED					
Minimum d	ocumentation searched (classification system followe					
U.S. :	435/ 320.1, 252.3, 252.33, 325, 410, 254.11, 348, 3					
Documentat	ion searched other than minimum documentation to th	e extent that such documents are included	in the fields searched			
	ata base consulted during the international search (n : Extra Sheet.	ame of data base and, where practicable.	, search terms used)			
c. Doc	UMENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where an	propriate, of the relevant passages	Relevant to claim No.			
X , P	MATZ et al. Fluorescent protei Anthozoa species. Nature Biotechno 17, No. 10, pages 969-673, entire doc		1-33			
Х , Р	DE 197 18 640 A1 (WIEDENMA document.	NN) 22 July 1999, entire	24-25, 30			
X Furth	er documents are listed in the continuation of Box (See patent family annex.				
·A* 30	scial causpones of crisid documents: cument defining the general state of the art which is not considered be of particular reservance	"T" least document published after the inti- date and not in conflict with the sop the principle or theory underlying the	e raveunou			
'E' car	ther document published on or after the insumational filling data remeant which may throw double on priority cleans to or writch is not to studish the publication data of anouner criation or other least reason (as specified). The manufacture of the control of	VY increases of practicular relevance, the claimed unvestoor estatos to consumed moves or estatos be consumed universe as minestere eap when the document is taken alone. YY demander of pursular relevance; the claimed investome estatos to considered to verbire as investors size when the document is combined with one or more other trust of course, used combination of combined with one or more other trust of course, used combination.				
means being ob to e person sculed in the art "P" Jocument published prior to the unternational filling data but later than a document member of the same pitated family						
On property case customs Date of the actual completion of the international search 23 FEBRUARY 2000 Date of mailing of the international search 17 MAR 2000						
Nanc as mailing address of the ISA/US Commausorer of Patrons and Trademaras Box PCT Washington, D.C. 20231 Factorial No. (703) 303-2320 GABRIELE ELISABETH BUGAISKY Telephone No. (703) 308-0196						

International application No. PCT/US99/29291

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No	
Caugury	ANDERLUH et al. Cloning, sequencing, and expression of equinatoxin II. Biochemical and Biophysical Research Communications. 1996, Volume 220, No. 2, pages 437-442, entire document.	1-2, 7, 11, 20-21, 23-25, 30 24-25, 30 1-2, 7, 11, 20-21, 23	
_	MACEK et al. Intrinsic tryptophan fluorescence of equinatoxin II, a pore-forming polypeptide from the sea anemone, Actinia equina L, monitors its interaction with lipid membranes. European Journal of Biochemistry. 1995, Volume 234, pages 329-335, entire document.		
	ŵ		
	·		
	·		
	'		
	100		
	(1	
	* * .		
	1	1	

Form PCT/ISA/210 (continuation of second sheet)(July 1992)*

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/29291

A. CLASSIFICATION OF SUBJECT MATTER: IPC (7):

C07K 14/435; C12N 1/00, 1/15, 1/21, 5/10, 15/12, 15/63

A. CLASSIFICATION OF SUBJECT MATTER: US CL :

435/320.1, 252.3, 252.33, 325, 410, 254.11, 348, 369; 530/350; 536/23.5

B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

Dialog files 155, 5, 434, 44, 357, 35 (Medilae, Biosis, Sciesarch, Oceanic Abs., Derwent Biotech Abs., Dissertation Abs., STN-CAS files Registry, CAPLUS; WEST, files USPT, Derwent WPI search terras: fluoresc?, bioluminesc?, protein, authozo?, Zoandh?, Corralimorph?, Discosom?, Coral?, alga, algae, Cnidar?, Invert?, Rhodast?, Actinodisc?, magenta, Clavularia, Zoanthus, Aeamonia, majano, asemon?, Zoanthar?, Actinodifý, Stolonie?, Atoyonan?, achthefactograp, p55065, striata, sulcata, henchyonan?, lastender.

Form PCT/ISA/210 (extra sheet)(July 1992)*

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

D	efects in the images include but are not limited to the items checked:
	BLACK BORDERS
	\square image cut off at top, bottom or sides
	☐ FADED TEXT OR DRAWING
	blurred or illegible text or drawing
	SKEWED/SLANTED IMAGES
	☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
	☐ GRAY SCALE DOCUMENTS
	\square LINES OR MARKS ON ORIGINAL DOCUMENT
	\square reference(s) or exhibit(s) submitted are poor quality
	□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.