XSPICE.

Code Model Subsystem Interface Design Document

F.L. Cox, III., W.B. Kuhn, H.W. Li, J.P. Murray, S.D. Tynor

Georgia Tech Research Institute
Georgia Institute of Technology

Georgia Tech Research Corporation

Office of Technology Licensing Atlanta, Georgia 30332-0415

Telephone (404) 894 - 6287

Facsimile (404) 894 - 9728

404 894-7046

Contents

1	Sco	pe				1
	1.1	Identification	n			1
	1.2	System Over	rview			1
	1.3	Document C	Overview			3
	1.4	Acknowledge	ement			4
2	Ref	erenced Do	cuments			5
3	Inte	rface Desig	ζn			7
	3.1	Interface Dia	agram			7
	3.2	Code Model	Development			8
		3.2.1 Mod	lel Directory Generator Files			8
		3.2.2 Inter	face Specification File			8
		3.2.2				8
		3.2.2	2.2 Name Table			12
		3.2.2	2.3 Port Table			13
		3.2.2	2.4 Parameter Table			15
		3.2.2	2.5 Static Variable Table			18
		3.2.3 Com	piled Interface Specification File			18
		3.2.4 Mod	lel Definition File			19
		3.2.5 Tran	slated Model Definition File			19
		3.2.6 Acce	essor Macros			19
	3.3		d Node Development			21
		3.3.1 User-	-Defined Node Directory Generator Files			21
			-Defined Node Definition File			21
		3.3.2				22
		3.3.2				2 2
		3.3.2				22
		3.3.2	·			23
		3 3 2				23

XSPICE Code Model Subsystem Interface Design Document

		3.3.2.6	Function udn_XXX_invert
		3.3.2.7	Function udn_XXX_resolve
		3.3.2.8	Function udn_XXX_plot_val
		3.3.2.9	Function udn_XXX_print_val
		3.3.2.10	Function udn_XXX_ipc_val
	3.3.3	Accessor	Macros
3.4	Simula	tor Develo	ppment
	3.4.1	Simulator	r Directory Generator Files
	3.4.2	Model Pa	ath File
	3.4.3	User-Defi	ned Node Path File
3.5	Code I	Model Libr	ary
	3.5.1	Analog M	10dels
		3.5.1.1	Gain
		3.5.1.2	Summer
		3.5.1.3	Multiplier
		3.5.1.4	Divider
		3.5.1.5	Limiter
		3.5.1.6	Controlled Limiter
		3.5.1.7	Piecewise Linear Controlled Source
		3.5.1.8	Analog Switch
		3.5.1.9	Zener Diode
		3.5.1.10	Current Limiter
		3.5.1.11	Hysteresis Block
		3.5.1.12	Differentiator
		3.5.1.13	S-Domain Transfer Function
		3.5.1.14	Slew Rate Block
		3.5.1.15	Inductive Coupling
		3.5.1.16	Magnetic Core
		3.5.1.17	
		3.5.1.18	Controlled Triangle Wave Oscillator
		3.5.1.19	Controlled Square Wave Oscillator
		3.5.1.20	Controlled One-shot
			Capacitance Meter
		3.5.1.22	Inductance Meter
	3.5.2	Hybrid M	
		3.5.2.1	Digital-to-Analog Node Bridge
		3.5.2.2	Analog-to-Digital Node Bridge 66
		3.5.2.3	Controlled Digital Oscillator
	3.5.3	•	1odels
		3.5.3.1	Buffer
		3.5.3.2	Inverter
		3.5.3.3	And

CONTENTS

XSPICE Code Model Subsystem Interface Design Document

3.5.3.4 N	land														73
3.5.3.5)r												•		74
3.5.3.6 N	lor														75
3.5.3.7 ×	(or				•										76
3.5.3.8 ×	(nor														77
3.5.3.9	ristate														78
3.5.3.10 F	Pullup														80
_	•														81
3.5.3.12	Flip Flop												•		82
															85
3.5.3.14	Toggle Flip Flop														88
3.5.3.15 F	Reset-Set Flip Flo	р.,													91
3.5.3.16	Latch														94
3.5.3.17	et-Reset Latch .														97
3.5.3.18	itate Machine .														100
3.5.3.19 F	requency Divider														103
3.5.3.20 F	RAM														105
3.5.3.21	Digital Source														108
User-Defined Node	Library														109
3.6.1 Real															109
3.6.2 Int															110
tes															111
Glossary															111
															114
•	3.5.3.5	3.5.3.5 Or	3.5.3.5 Or	3.5.3.5 Or	3.5.3.5 Or 3.5.3.6 Nor 3.5.3.7 Xor 3.5.3.8 Xnor 3.5.3.9 Tristate 3.5.3.10 Pullup 3.5.3.11 Pulldown 3.5.3.12 D Flip Flop 3.5.3.13 JK Flip Flop 3.5.3.14 Toggle Flip Flop 3.5.3.15 Reset-Set Flip Flop 3.5.3.16 D Latch 3.5.3.17 Set-Reset Latch 3.5.3.18 State Machine 3.5.3.19 Frequency Divider 3.5.3.20 RAM 3.5.3.21 Digital Source User-Defined Node Library 3.6.1 Real 3.6.2 Int tes Glossary Acronyms	3.5.3.5 Or 3.5.3.6 Nor 3.5.3.7 Xor 3.5.3.8 Xnor 3.5.3.9 Tristate 3.5.3.10 Pullup 3.5.3.11 Pulldown 3.5.3.12 D Flip Flop 3.5.3.13 JK Flip Flop 3.5.3.14 Toggle Flip Flop 3.5.3.15 Reset-Set Flip Flop 3.5.3.16 D Latch 3.5.3.17 Set-Reset Latch 3.5.3.18 State Machine 3.5.3.19 Frequency Divider 3.5.3.20 RAM 3.5.3.20 RAM 3.5.3.21 Digital Source User-Defined Node Library 3.6.1 Real 3.6.2 Int tes Glossary Acronyms	3.5.3.5 Or 3.5.3.6 Nor 3.5.3.7 Xor 3.5.3.8 Xnor 3.5.3.9 Tristate 3.5.3.10 Pullup 3.5.3.11 Pulldown 3.5.3.12 D Flip Flop 3.5.3.13 JK Flip Flop 3.5.3.14 Toggle Flip Flop 3.5.3.15 Reset-Set Flip Flop 3.5.3.16 D Latch 3.5.3.17 Set-Reset Latch 3.5.3.18 State Machine 3.5.3.19 Frequency Divider 3.5.3.20 RAM 3.5.3.21 Digital Source User-Defined Node Library 3.6.1 Real 3.6.2 Int tes	3.5.3.5 Or	3.5.3.5 Or 3.5.3.6 Nor 3.5.3.7 Xor 3.5.3.8 Xnor 3.5.3.9 Tristate 3.5.3.10 Pullup 3.5.3.11 Pulldown 3.5.3.12 D Flip Flop 3.5.3.13 JK Flip Flop 3.5.3.14 Toggle Flip Flop 3.5.3.15 Reset-Set Flip Flop 3.5.3.16 D Latch 3.5.3.17 Set-Reset Latch 3.5.3.18 State Machine 3.5.3.19 Frequency Divider 3.5.3.20 RAM 3.5.3.21 Digital Source User-Defined Node Library 3.6.1 Real 3.6.2 Int tess Glossary Acronyms	3.5.3.5 Or 3.5.3.6 Nor 3.5.3.7 Xor 3.5.3.8 Xnor 3.5.3.8 Xnor 3.5.3.9 Tristate 3.5.3.10 Pullup 3.5.3.11 Pulldown 3.5.3.12 D Flip Flop 3.5.3.13 JK Flip Flop 3.5.3.14 Toggle Flip Flop 3.5.3.15 Reset-Set Flip Flop 3.5.3.16 D Latch 3.5.3.17 Set-Reset Latch 3.5.3.18 State Machine 3.5.3.19 Frequency Divider 3.5.3.20 RAM 3.5.3.21 Digital Source User-Defined Node Library 3.6.1 Real 3.6.2 Int tes Glossary Acronyms	3.5.3.5 Or 3.5.3.6 Nor 3.5.3.7 Xor 3.5.3.8 Xnor 3.5.3.8 Znor 3.5.3.10 Pullup 3.5.3.11 Pulldown 3.5.3.12 D Flip Flop 3.5.3.13 JK Flip Flop 3.5.3.14 Toggle Flip Flop 3.5.3.15 Reset-Set Flip Flop 3.5.3.16 D Latch 3.5.3.17 Set-Reset Latch 3.5.3.18 State Machine 3.5.3.19 Frequency Divider 3.5.3.20 RAM 3.5.3.21 Digital Source User-Defined Node Library 3.6.1 Real 3.6.2 Int tes Glossary Acronyms	3.5.3.5 Or 3.5.3.6 Nor 3.5.3.7 Xor 3.5.3.8 Xnor 3.5.3.8 Xnor 3.5.3.9 Tristate 3.5.3.10 Pullup 3.5.3.11 Pulldown 3.5.3.12 D Flip Flop 3.5.3.13 JK Flip Flop 3.5.3.14 Toggle Flip Flop 3.5.3.15 Reset-Set Flip Flop 3.5.3.16 D Latch 3.5.3.17 Set-Reset Latch 3.5.3.18 State Machine 3.5.3.19 Frequency Divider 3.5.3.20 RAM 3.5.3.21 Digital Source User-Defined Node Library 3.6.1 Real 3.6.2 Int tes Glossary Acronyms	3.5.3.5 Or 3.5.3.6 Nor 3.5.3.7 Xor 3.5.3.8 Xnor 3.5.3.9 Tristate 3.5.3.10 Pullup 3.5.3.11 Pulldown 3.5.3.12 D Flip Flop 3.5.3.13 JK Flip Flop 3.5.3.14 Toggle Flip Flop 3.5.3.15 Reset-Set Flip Flop 3.5.3.16 D Latch 3.5.3.17 Set-Reset Latch 3.5.3.18 State Machine 3.5.3.19 Frequency Divider 3.5.3.20 RAM 3.5.3.21 Digital Source User-Defined Node Library 3.6.1 Real 3.6.2 Int tes Glossary Acronyms	3.5.3.5 Or 3.5.3.6 Nor 3.5.3.7 Xor 3.5.3.8 Xnor 3.5.3.9 Tristate 3.5.3.10 Pullup 3.5.3.11 Pulldown 3.5.3.12 D Flip Flop 3.5.3.13 JK Flip Flop 3.5.3.14 Toggle Flip Flop 3.5.3.15 Reset-Set Flip Flop 3.5.3.16 D Latch 3.5.3.17 Set-Reset Latch 3.5.3.18 State Machine 3.5.3.19 Frequency Divider 3.5.3.20 RAM 3.5.3.20 RAM 3.5.3.21 Digital Source User-Defined Node Library 3.6.1 Real 3.6.2 Int stes Glossary Acronyms	3.5.3.5 Or

List of Figures

2 1	Code Model	Subsystem	External Interfaces	
J.1	Code Model	Subsystem	External interfaces	

List of Tables

3.1	Engineering Suffixes																	9
3.2	Interface Specification Name Table														Ĭ	Ī	·	19
3.3	Interface Specification Port Table									•	Ī	•	•	•	•	•	•	13
3.4	Port Types				•		Ī	·	•	•	•	•	•	•	•	•	•	1.4
3.5	Interface Specification Parameter Table	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	14
3.6	Parameter Types	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	10
3.7	Interface Specification Static Variable Table.	•	•	•	•	٠.	•	•	•	•	•	٠	•	•	•	•	•	10
3.8	Static Variable Types	٠	•	•	•	• •	•	•	•	٠	•	•	•	•	•	•	•	10
3.9	Model Definition File Macros	•	•	•	•	• •	٠	•	•	٠	•	•	•	•	•	•	•	19
3 10	User-Defined Node Macros	•	•	•	•	• •	٠	٠	٠	•	•	•	•	٠	٠	•	•	20
0.10	Ober-Denned Hode Macros		٠															-24

1 Scope

1.1 Identification

This Interface Design Document describes the external interfaces of the XSPICE Code Model Subsystem Computer Software Configuration Item (CSCI) of version 2 of the Automatic Test Equipment Software Support Environment (ATESSE). This design is governed by the Software Requirements Specification for the Simulator of the Automatic Test Equipment Software Support Environment (ATESSE).

1.2 System Overview

The ATESSE is an integrated set of software tools designed to support all stages of the life cycle of software used to control Automatic Test Equipment (ATE) in testing analog and hybrid (analog/digital) circuit cards.

The ATESSE includes a mixed-mode (analog/digital) simulator called XSPICE which performs mathematical simulation of a circuit specified by the user. The XSPICE simulator takes input in the form of commands and circuit descriptions and produces output data which predicts the circuit's behavior. The simulator is based on the industry standard SPICE program developed at the University of California at Berkeley and is enhanced and modified to provide mixed-mode, board-level, and system-level simulation capabilities.

The XSPICE Code Model Subsystem described in this document works in conjunction with the XSPICE simulator to provide "code models" and "user-defined node" data types used in simulating circuits and systems.

Scope
System Overview -

Several predefined models and node types are delivered with the system. These components of the Code Model Subsystem are referred to as the Code Model Library and the User-Defined Node Library respectively. The following predefined code models are contained in the Code Model Library.

Analog Models:

Gain Summer Multiplier Divider Limiter Controlled Limiter Piecewise Linear Controlled Source Analog Switch Zener Diode Current Limiter Hysteresis Block Differentiator Integrator S-Domain Transfer Function Slew Rate Block Inductive Coupling Magnetic Core Controlled Sine Wave Oscillator Controlled Triangle Wave Oscillator Controlled Square Wave Oscillator Controlled Oneshot Capacitor Capacitance Meter Inductor Inductance Meter

Hybrid Models:

Digital-to-Analog Node Bridge Analog-to-Digital Node Bridge Controlled Digital Oscillator

Digital Models:

Buffer
Inverter
And
Nand
Or
Nor
Ior
Inor
Tristate
Open-collector Buffer

XSPICE Code Model Subsystem Interface Design Document

Scope
Document Overview

Open-Emitter Buffer
Pullup
Pulldown
D Flip Flop
JK Flip Flop
Toggle Flip Flop
Set-Reset Flip Flop
D Latch
Set-Reset Latch
State Machine
Frequency Divider
RAM
Digital Source

The following predefined node types are contained in the User-Defined Node Library.

Real Int

The set of available code models and node types in the XSPICE simulator can also be modified and extended by a user through the use of the Code Model Subsystem's "Code Model Toolkit". The Code Model Toolkit consists of the Model Directory Generator, the User-Defined Node Directory Generator, the Code Model Preprocessor, and the Simulator Directory Generator utilities. These utilities work with the host computer operating system software (UNIX) to assist the user in the process of creating new models, node types, and customized simulator executables.

1.3 Document Overview

This document defines the external interfaces of the Code Modeling Toolkit, Code Model Library, and User-Defined Node Library. Section 2 provides a list of applicable documents. Section 3 includes the detailed design of the interfaces to each of the components manipulated by the Code Model Toolkit: Interface Specification Files, Compiled Interface Specification Files, Model Definition Files, User-Defined Node Definition Files, Model Path Files, User-Defined Node Directory Generator Files, User-Defined Node Directory Generator Files, and Simulator Directory Generator Files. Also included in Section 3 is the external interface definition of each of the supplied code models and node types in the Code Model Library and User-Defined Node Library. Section 4 includes a glossary of technical terminology used throughout this document, a list of acronyms, and a summary of all Project Unique Identifiers (PUIs) related to the Code Model Subsystem.

Scope Acknowledgement

XSPICE Code Model Subsystem Interface Design Document

1.4 Acknowledgement

The XSPICE simulator is based on the SPICE3 program developed by the Electronics Research Laboratory, Department of Electrical Engineering and Computer Sciences, University of California at Berkeley.

2 Referenced Documents

- Software Requirements Specification for the Simulator of the Automatic Test
 <u>Equipment Software Support Environment (ATESSE)</u>, F. L. Cox, W. B. Kuhn,
 J. P. Murray, S. D. Tynor, Georgia Tech Research Institute, Atlanta, GA,
 November, 1991.
- Software User's Manual for the XSPICE Simulator of the Automatic Test Equipment
 Software Support Environment (ATESSE), F. L. Cox, W. B. Kuhn, H. W. Li, J.

 P. Murray, S. D. Tynor, M. J. Willis Georgia Tech Research Institute, Atlanta,
 GA, September, 1992.
- 3. SPICE3C.1 Nutmeg Programmer's Manual, Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, April, 1987.
- 4. SPICE3 Version 3C1 User's Guide, Thomas L. Quarles, Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, April, 1989.
- 5. SPICE 3C1 Nutmeg Programmer's Guide, Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, April, 1989.
- 6. The Front End to Simulator Interface, Electronics Research Laboratory, College of Engineering, University of California, Berkeley, CA, April, 1989.
- 7. The SPICE3 Implementation Guide, Thomas L. Quarles, Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, April, 1989.
- 8. Adding Devices to SPICE3, Thomas L. Quarles, Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, April, 1989.

- 9. The C Programming Language, Second Edition, Brian Kernighan and Dennis Ritchie, Prentice-Hall, Englewood Cliffs, NJ, 1988.
- Software Design Document for the XSPICE Code Model Subsystem of the <u>Automatic Test Equipment Software Support Environment (ATESSE)</u>, F. L. Cox, W. B. Kuhn, H. W. Li, J. P. Murray, S. D. Tynor, Georgia Tech Research Institute, Atlanta, GA, September, 1992.
- 11. Interface Design Document for the XSPICE Simulator of the Automatic Test Equipment Software Support Environment (ATESSE), F. L. Cox, W. B. Kuhn, H. W. Li, J. P. Murray, S. D. Tynor, Georgia Tech Research Institute, Atlanta, GA, September, 1992.
- 12. Software Design Document for the XSPICE Simulator of the Automatic Test Equipment Software Support Environment (ATESSE), F. L. Cox, W. B. Kuhn, H. W. Li, J. P. Murray, S. D. Tynor, Georgia Tech Research Institute, Atlanta, GA, September, 1992.
- 13. Program Design Specification (Volumes 1 and 2) for the Automatic Test Equipment Software Support Environment (ATESSE), F. L. Cox, R. M. Ingle, J. E. Doss, G. T. Fulton, A. M. Gilchrist, R. W. Kearney, W. B. Kuhn, D. A. Moreland, P. P. Warren, B. D. Williams, Georgia Tech Research Institute, Atlanta, GA, October 1988.
- Data Base Design Document for the Automatic Test Equipment Software Support
 <u>Environment (ATESSE)</u>, F. L. Cox, R. M. Ingle, J. E. Doss, G. T. Fulton, A.
 M. Gilchrist, R. W. Kearney, W. B. Kuhn, D. A. Moreland, P. P. Warren, B.
 D. Williams, Georgia Tech Research Institute, Atlanta, GA, October 1988.
- 15. Analysis of Performance and Convergence Issues for Circuit Simulation, Thomas L. Quarles, Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, April, 1989.
- SPICE2: A Computer Program to Simulate Semiconductor Circuits, Lawrence W. Nagel, Electronics Research Laboratory, College of Engineering, University of California, Berkeley, CA, May, 1975.

3 Interface Design

3.1 Interface Diagram

Figure 3.1 illustrates the interfaces between the Code Model Subsystem and the rest of the ATESSE system. A user interacts with the Code Model Subsystem through the Simulator Interface (SI) process which provides menus and forms for creating and compiling code models and linking them into a simulator executable.

Figure 3.1 Code Model Subsystem External Interfaces.

Code Model Interface Specification files, Code Model Definition files, and User-Defined Node Definition files are created and read by the Simulator Interface editing facilities through the interfaces CM-SI-IN and CM-SI-OUT. The Code Model Subsystem is responsible for processing and compiling these files so that they can be linked with the simulator through interface SIM-CM-IN.

The XSPICE simulator and the Code Model Subsystem can also be used in a "stand-alone" fashion, independent of the ATESSE Simulator Interface process. In this case, the interfaces CM-SI-IN and CM-SI-OUT are replaced by the Operating System command line interface and text editing facilities.

3.2 Code Model Development

The following subsections detail the files and data involved in developing code models. A description of the steps required to create code models can be found in the <u>Software Design Document for the XSPICE Code Model Subsystem of the Automatic Test Equipment Software Support Environment (ATESSE)</u>.

3.2.1 Model Directory Generator Files

The 'mkmoddir' utility creates a code model directory and installs a template Interface Specification File, template Model Definition File, and a Makefile. These files are created from the templates stored in /atesse/lib/cmt/mkmoddir and are placed in the newly created directory as:

Makefile ifspec.ifs cfunc.mod

3.2.2 Interface Specification File

A code model's external interface is described in an Interface Specification (IFS) file (if-spec.ifs). The IFS file contains the name of the code model, the name of its C function, and a description of valid ports, parameters, and static variables. The IFS file is a user-editable text file.

The information stored in an interface specification file is translated by the Code Model Preprocessor into data structures which are incorporated into the run-time XSPICE simulator executable. These data structures allow XSPICE to parse SPICE deck records associated with the code model and call the code model's C function, passing the expected model parameters and inputs and outputs as function arguments.

An Interface Specification File consists of a Name Table, one or more Port Tables, zero or more Parameter Tables, and zero or more Static Variable Tables. C-style (/* */) comments may be interspersed throughout the file.

3.2.2.1 Syntactic Conventions

3.2.2.1.1 Case Insensitivity

Keywords in the Interface Specification are recognized in any combination of lower and upper case. Case is preserved within string literals and for engineering suffixes (e.g. "12M" is read as "12 MEG" whereas "12m" is read as "12 milli").

3.2.2.1.2 Engineering Suffixes

Numeric constants may contain an optional scaling factor (engineering suffix). These largely correspond to standard SPICE scaling factors, but the Interface Specification File makes a distinction between capital M and lowercase m. All other suffixes are case insensitive. Table 3.1 summarizes the valid scaling factors:

Suffix	Scaling Factor
t	1e12
g	1e9
M (case sensitive)	1e6
MEG	1e6
k	1e3
m (case sensitive)	1e-3
u	1e-6
n	1e-9
p	1e-12
f	1e-15
mil	25.4e-6

Table 3.1 Engineering Suffixes.

Alphanumeric literals following an engineering suffix are ignored. Thus, the following all specify the same value: 2000.0, 2.0k, 2.0kOhms.

3.2.2.1.3 Comments

C-style comments may be added anywhere in the Interface Specification file. As in C, comments start with "/*" and are terminated by a "*/". Comments may not be nested. Hence, "/* /* this */ is an error */" consists of the comment "/* /* this */" followed by "is an error */". Comments may span multiple lines. Comments are treated as whitespace; they are ignored.

3.2.2.1.4 Ranges

The following range syntax is used whenever a range of values is required (for example, to specify the limits on a parameter value or to specify the minimum and maximum vector sizes for ports and parameters). A range is specified by a square bracket followed by a value separated by space from another value and terminated with a closing square bracket. For example, "[0 10]". The lower and upper bounds are inclusive; thus, the previous example

is read as "the range of values from 0 to 10, inclusive". Either the lower or upper bound may be replaced by a hyphen ("-") to indicate that bound is unconstrained. Hence, "[10 -]" is read as "the range of values greater than or equal to 10". For a totally unconstrained range, a single hyphen with no surrounding brackets may be used. So, "-" is read as "any value".

3.2.2.1.5 Keywords

Interface Specification keywords all contain a colon as a suffix (e.g. "Port_Table:"). The colon may be separated from the alphanumeric portion of the keyword by any amount of whitespace (e.g. "Port_Table:"). Keywords always occur at the beginning of a line.

3.2.2.1.6 Table Format

The Interface Specification is made up of a number of tables. Each table is introduced by a table name keyword (e.g. "Port_Table:") and is comprised of a number of fields. Each field starts with a keyword and is followed by any number of values appropriate to that keyword. The first field of a table defines its width. All subsequent fields within the table must have the same number of elements. A table may be split up into any number of subtables by reintroducing the table name keyword:

Port_Table:

Wame: "in" "out" "inout"
Vector: yes no yes

may be rewritten as:

Port_Table:

Wame: "in" "out"
Vector: yes no

Port_Table:

Name: "inout" Vector: yes

3.2.2.1.7 Value Literals

Whenever a numeric, boolean, complex, or string value is required, the value is written as described in the following sections.

3.2.2.1.7.1 Integer Literals

Integer literals are sequences of digits followed by an optional engineering suffix. The digits and suffix may not be separated by whitespace. The following examples show valid integer literals:

252 1K 1GB

The following examples are invalid integer literals:

24e3 - Integer constants may not contain an exponent

1 A - Digits and suffix may not be separated by space

1.1 - Integers may not contain a decimal point

3.2.2.1.7.2 Real Literals

Real literals are sequences of digits with an optional decimal point, a power of ten exponent, and an optional engineering suffix. A real literal may not contain any embedded whitespace. The following examples show valid real literals:

252.2 2e20 6.02e23 12.3MB 23.4mA

The following examples are invalid real literals:

12 e10 - Embedded whitespace is invalid 12e10 mA - Embedded whitespace is invalid

3.2.2.1.7.3 Complex Literals

A complex literal is delimited by angle brackets (< >) and contains two real literals (the real and imaginary parts, in cartesian space) separated by a comma and/or whitespace. The following examples show valid complex literals:

<1 0> <1.1 -2.2> <2.2,1> <2, 33>

3.2.2.1.7.4 Boolean Literals

A boolean literal is one of the keywords: True, False, Yes, No. True is equivalent to Yes. False is equivalent to No. The interpretation of these keywords is case insensitive.

3.2.2.1.7.5 String Literals

A string literal is a sequence of characters delimited by double quotes. Embedded double quotes must be escaped (preceded by a backslash (e.g. "\"). The following examples show valid string literals:

```
"Hello world"
"Embedded single quotes (') are ok"
"Embedded double quotes (\") require an escape"
```

The following example is an invalid string literal:

"Mon-escaped embedded double quotes (") are MOT ok"

3.2.2.2 Name Table

The Name Table is introduced by the "Name_Table:" keyword. It defines the code model's C function name, its SPICE deck model name, and an optional textual description. The following sections define the valid fields that may be specified in the Name Table as shown in Table 3.2.

Field name	Value	Purpose
C_Function_Name:	Identifier	Name of C implementation function
Description: String		Short description of the Code Model
SPICE_Model_Name:	Identifier	Name of SPICE .model card

Table 3.2 Interface Specification Name Table.

3.2.2.2.1 Description

The description string is used to describe the purpose and function of the code model. It is introduced by the "Description:" keyword followed by a string literal.

3.2.2.2.2 Model Name

The Model name is a valid SPICE identifier which will be used on SPICE deck .model records to refer to this code model. It may or may not be the same as the C function name. It is introduced by the "SPICE_Model_Name:" keyword followed by a valid SPICE identifier.

3.2.2.2.3 C Function Name

The C Function name is a valid C identifier which is the name of the main entry point (function) for the code model. It may or may not be the same as the SPICE model name. It is introduced by the "C_Function_Name:" keyword followed by a valid C identifier. To reduce the chance of name conflicts (not only with other code models, but also with variables and functions defined in the XSPICE simulator core), it is recommended that user-written code model names use the prefix "UCM_" for "user code model" (e.g. "UCM_gizmo"), or use the user's initials. The following prefixes are used by the XSPICE simulator core and should not be used for user code models: ASRC, BJT, BSIM, CAP, CCCS, CCVS, CKT, CM, CP, CSW, DEV, DIO, ENH, EVT, FTE, HLP, ICM, IDN, IND, INP, IPC, ISRC, JFET, MES, MFB, MIF, MOS1, MOS2, MOS2, NI, RES, SMP, SW, TRA, URC, VCCS, VCVS, VSRC.

3.2.2.3 Port Table

The port table is introduced by the "Port_Table:" keyword. It defines the set of valid ports available to the code model. Table 3.3 and the following sections define the valid fields that may be specified in the Port Table.

Field name	Value	Purpose
Allowed_Type:	Port Type Set	Specify allowed port types
Vector:	Boolean	Is this port a bus?
Vector_Bounds:	Int Range	Valid sizes for the port
Port_Name:	Identifier	Name of the port
Default_Type: Port Type		Specify default port type
Description:	String	Short description of the port
Direction: Direction		Specify dataflow of this port
Null_Allowed:	Boolean	Can this port be left unconnected?

Table 3.3 Interface Specification Port Table.

3.2.2.3.1 Description

The description string is used to describe the purpose and function of the port. It is introduced by the "Description:" keyword followed by a string literal.

3.2.2.3.2 Port Name

The port name must be a valid SPICE identifier. It is introduced by the "Port_Name:" keyword followed by a valid identifier.

3.2.2.3.3 Direction

The direction of a port specifies the dataflow direction through the port. A direction value must be one of in, out or inout. It is introduced by the "Direction:" keyword followed by a valid direction value.

3.2.2.3.4 Allowed Types

A port must specify the allowed types to which it can be connected. An allowed type value must be a list of type names (a blank or comma separated list of names delimited by square brackets, e.g. "[v vd i id]") from Table 3.4.

Type Name	Valid Directions	Description
d	in, out	digital
g	inout	Conductance
gd	inout	Differential Conductance
h	inout	Resistance
hd	inout	Differential Resistance
i	in, out	Current
id	in, out	Differential Current
v	in, out	Voltage
vd	in, out	Differential Voltage
vnam	in	Current through named voltage source
<identifier></identifier>	in, out	User-defined type

Table 3.4 Port Types.

User-defined type names are any valid SPICE identifier except for the predefined types listed above.

The allowed types are introduced by the "Allowed_Types:" keyword followed by a valid type set as described above.

3.2.2.3.5 Default Type

The default type field specifies the type used for the port when no type is explicitly specified on a SPICE card. The default type is introduced with the "Default_Type:" keyword followed by a valid type. The type name must be a member of the Allowed_Types set.

3.2.2.3.6 Vector

A port can have any number of subports. A port which is a vector can be thought of as a bus. The vector field is introduced with the "Vector:" keyword followed by a boolean value: yes, true, no, or false. The values yes and true are equivalent and specify that this port is a vector. Likewise, no and false specify that the port is not a vector. Vector ports must have a corresponding Vector Bounds field which specifies valid sizes of the vector port.

3.2.2.3.7 Vector Bounds

If a port is a vector, its valid size must be specified by the Vector Bounds field. The Vector Bounds field specifies the upper and lower bounds on the size of the vector. The Vector Bounds field is introduced by the "Vector_Bounds:" keyword followed by a range of integers. If the range is unconstrained or the associated port is not a vector, the vector bounds may be specified by a hyphen ("-"). The lower bound of the vector specifies the minimum number of elements in the vector, and the upper bound specifies the maximum number of elements.

3.2.2.3.8 Null Allowed

In some cases, it is desirable to permit a port to be left unconnected. The Null Allowed field specifies whether it is an error to leave a port unconnected. The Null Allowed field is introduced by the "Null-Allowed:" keyword and is followed by a boolean constant: yes, true, no, or false. The values yes and true are equivalent and specify that it is legal to leave this port unconnected. No and false specify that the port must be connected.

3.2.2.4 Parameter Table

The parameter table is introduced by the "Parameter Table:" keyword. It defines the set of valid parameters available to the code model. Table 3.5 and the following sections define the valid fields that may be specified in the Parameter Table.

Field name	Value	Purpose
Vector:	Boolean	Is the parameter a vector?
Vector_Bounds:	Int Range	Valid sizes for the parameter or vector
Data_Type:	Data Type	Specifies underlying data type for the parameter values
Default_Value:	<pre><context dependent=""></context></pre>	If explicit value not specified in SPICE deck, use this value
Description:	String	Short description of the parameter
Limits:	Range	Valid range of values
Null_Allowed:	Boolean	Can this parameter remain unspecified?
Parameter_Name:	Identifier	Name of the parameter

Table 3.5 Interface Specification Parameter Table.

3.2.2.4.1 Description

The description string is used to describe the purpose and function of the parameter. It is introduced by the "Description:" keyword followed by a string literal.

3.2.2.4.2 Parameter Name

The parameter name must be a valid SPICE identifier which will be used on SPICE deck .model cards to refer to this parameter. It is introduced by the "Parameter_Name:" keyword followed by a valid SPICE identifier.

3.2.2.4.3 Data Type

The parameter's data type is specified by the Data Type field. This data type corresponds to the underlying C data type (e.g., double), not the conceptual type of the parameter (e.g., voltage). The Data Type field is introduced by the keyword "Data Type:" and is followed by a valid data type. Valid data types and their corresponding C implementations are shown in the Table 3.6.

3.2.2.4.4 Default Value

If Null Allowed is true, a default value may be specified. This value is supplied for the parameter in the event that the SPICE deck model line does not supply a value for the parameter. The default value must be of the correct type. The Default Value field is introduced by the "Default-Value:" keyword followed by a numeric, boolean, complex or string literal, as appropriate.

IFS Data Type	C Data Type
boolean	Boolean_t
complex	Complex_t
int	int
real	double
string	char*

Table 3.6 Parameter Types.

3.2.2.4.5 Limits

Integer and Real parameters may be constrained to accept a limited range of values. The parameter value limits are introduced by the "Limit:" keyword followed by a range.

3.2.2.4.6 Vector

The Vector field is used to specify whether a parameter is a vector or a scalar. Like the Port Vector field, it is introduced by the "Vector:" keyword and followed by a boolean value. True or yes specifies that the parameter is a vector. False or no specifies that it is a scalar.

3.2.2.4.7 Vector Bounds

The valid sizes for a vector parameter are specified in the same manner as those for ports. In addition to using a numeric range to specify valid vector bounds, it is possible to refer to the name of a port. When a parameter's vector bounds are specified in this way, the bounds on the vector size will be the same as the bounds of the specified vector port.

3.2.2.4.8 Null Allowed

The Null Allowed field is introduced by the "Null Allowed:" keyword followed by a Boolean literal. A value of true or yes specifies that it is valid for the corresponding SPICE deck model card to omit a value for this parameter. If the parameter is omitted, the default value is used. If there is no default value, an undefined value is passed to the code model. If the value of Null Allowed is false or no, then XSPICE will flag an error if the SPICE deck model card includes no value for this parameter.

3.2.2.5 Static Variable Table

The Static Variable table is introduced by the "Static_Variable." keyword. It defines the set of valid Static variables available to the code model. Table 3.7 and the following sections define the valid fields that may be specified in the Static Variable Table.

Field name	Value	Purpose
Description:	String	Short description of the static variable
Static_Var_Name:	Identifier	Name of the static variable
Data_Type:	Data Type	Type of the variable

Table 3.7 Interface Specification Static Variable Table.

3.2.2.5.1 Description

The description string is used to describe the purpose and function of the static variable. It is introduced by the "Description:" keyword followed by a string literal.

3.2.2.5.2 Name

The Static variable name must be a valid C identifier which will be used in the code model to refer to this static variable. It is introduced by the "Static_Var_Name:" keyword followed by a valid C identifier.

3.2.2.5.3 Data Type

The static variable's data type is specified by the Data Type field. This data type corresponds to the underlying C data type (e.g., double), not the conceptual type of the parameter (e.g., voltage). The Data Type field is introduced by the keyword "Data_Type:" followed by a valid data type. Table 3.8 provides a summary of valid data types and their corresponding C implementations. Note that the type "pointer" is used for Static Var arrays. The code model allocates space for the array and assigns the pointer to the Static Var so that it can be retrieved on subsequent code model calls.

3.2.3 Compiled Interface Specification File

The Interface Specification File described above is translated by the Code Model Preprocessor (cmpp -ifs) into a C language file (ifspec.c) which is compiled and linked into the XSPICE simulator executable. The specification for this file is given in the Interface Design

IFS Data Type	C Data Type
boolean	Boolean_t
complex	Complex_t
int	int
real	double
string	char*
pointer	void*

Table 3.8 Static Variable Types.

<u>Document for the XSPICE Simulator of the Automatic Test Equipment Software Support Environment (ATESSE).</u>

3.2.4 Model Definition File

The model definition file (cfunc.mod) defines the C function which implements the code model. It is processed by the Code Model Preprocessor (cmpp -mod) to produce a C language file which is compiled and linked into the XSPICE simulator executable. A Model Definition File is a C language file using special "accessor macros" which are expanded by the Code Model Preprocessor.

3.2.5 Translated Model Definition File

The translated model definition file (cfunc.c) is the generated C file produced by the code model preprocessor (cmpp -mod) from the model definition file (cfunc.mod). Each of the accessor macros is translated as described in the <u>Interface Design Document for the XSPICE</u> Simulator of the Automatic Test Equipment Software Support Environment (ATESSE).

3.2.6 Accessor Macros

Table 3.9 describes the accessor macros available to the Model Definition File programmer and their C types. Those accessor macros with types labeled CD (context dependent) return the type as specified for that port or parameter in the Interface Specification File. Arguments listed with "[i]" take an optional square bracket delimited index in the case that the corresponding port or parameter is a vector. The index may be any C expression possibly involving calls to other accessor macros (e.g. "OUTPUT(out[PORT_SIZE(out) - 1])").

Jane	Type	Args	Description
AC_GAIN	Complex_t	y[i],x[i]	AC gain of output y with respect to input x
AMALYSIS	enus	none	Type of analysis: DC, AC, TRANSIENT
ARGS	Mif_Private_t	none	Standard argument to all code model functions
CALL_TYPE	enus	none	Type of model evaluation call: ANALOG or EVENT
INIT	Boolean_t	none	Is this the first call to the model?
IMPUT	double or woid *	name[i]	Value of analog input port, or value of structure pointer for user-defined node port.
IMPUT_STATE	enus	name[i]	State of a digital input: ZERO, ONE, or UNKNOWN.
IMPUT_STRENGTH	enum	name[i]	Strength of digital input: STRONG, RESISTIVE, HILIMPEDANCE, or UNDETERMINED
INPUT_TYPE	char *	name[i]	The port type of the input
LOAD	double	name[i]	The digital load value placed on a port by this model.
MESSAGE	char *	name[i]	A message output by a model on an event-driven node.
MEW_TIMEPOINT	Booleant	<none></none>	First call at this analysis point?
OUTPUT	double or woid *	name[i]	Value of the analog output port or value of structure pointer for user-defined node port.
OUTPUT_CHANGED	Booleant	name[i]	Has a new value been assigned to this event-driven output by the model?
OUTPUT_DELAY	double	name[i]	Delay in seconds for an event-driven output
OUTPUT_STATE	enum	name[i]	State of a digital output: ZERO, ONE, or UNKNOWN.
OUTPUT_STRENGTH	enum	name[i]	Strength of digital output: STRONG, RESISTIVE, HILIMPEDANCE, or UNDETERMINED
OUTPUT_TYPE	char *	name[i]	The port type of the output
PARAM	CD	name[i]	Value of the parameter
PARAM_NULL	Boolean_t	name[i]	Was the parameter not included on the SPICE .model card?
PARAM_SIZE	int	name	Size of parameter vector
PARTIAL	double	y[i],x[i]	Partial derivative of output y with respect to input x
PORT_NULL	Boolean_t	name[i]	Has this port been specified as unconnected?
PORT_SIZE	int	name	Size of port vector
RAD_FREQ	double	<none></none>	Current analysis frequency in radians per second
STATIC_VAR	CD	name	Value of a static variable
STATIC_VAR_SIZE	int	name	Size of static var vector (currently unused).
T [<n>]</n>	double	<none></none>	History of the previous 8 analysis times (TIME = T[0])
TEMPERATURE	double	<none></none>	Current analysis temperature
TIME	double	<none></none>	Current analysis time (same as T[0])
TOTALLOAD	double	name[i]	The total of all loads on the node attached to this event-driven port.

Table 3.9 Model Definition File Macros.

3.3 User-Defined Node Development

The following subsections detail the files and data involved in developing user-defined nodes. A description of the steps required to create user-defined nodes can be found in the <u>Software Design Document for the XSPICE Code Model Subsystem of the Automatic Test Equipment Software Support Environment (ATESSE)</u>.

3.3.1 User-Defined Node Directory Generator Files

The 'mkudndir' utility creates a user-defined node directory and installs a template User-Defined Node Definition File, and a Makefile. These files are created from the templates stored in xspice/lib/cmt/mkudndir and are placed in the newly created directory as:

Makefile udnfunc.c

3.3.2 User-Defined Node Definition File

The User-Defined Node Definition file (udnfunc.c) defines the C functions which implement basic operations on user-defined nodes such as data structure creation, initialization, copying, and comparison. Unlike the Model Definition File which uses the Code Model Preprocessor to translate Accessor Macros, the User-Defined Node Definition File is a pure C language file. This file uses macros to isolate the user from data structure definitions. These macros are defined in a standard header file (EVTudn.h) and translations are performed by the standard C preprocessor, rather than by the Code Model Preprocessor.

When a directory is created for a new user-defined node with 'mkudndir', a structure of type 'Evt_Udn_Info_t' is placed at the bottom of the User-Defined Node Definition File. This structure contains the type name for the node, a description string, and pointers to each of the functions that define the node type. This structure is complete except for a text string that describes the node type. This string is stubbed out and may be edited by the user if desired.

The functions (required and optional) that define a user-defined node are listed below. Optional functions can be deleted from the udnfunc.c file template created by 'mkudndir' and the corresponding pointers in the Evt_Udn_Info_t structure can be changed to NULL.

Required functions:

create Allocate data structure used as input and output of code models.

Set structure to appropriate initial value for first use as model input.

copy Make a copy of a structure's contents into created but possibly uninitialized

structure.

compare Determine if two structures are equal in value.

Optional functions:

dismantle Free allocations referenced by structure (but not structure itself).

Invert logical value of structure.

resolve Determine the resultant when multiple outputs are connected to a node.

plot_val Output a real value for specified structure component for use in plotting.

print_val Output a string value for specified structure component for use in printing.

Output a binary representation for the data and an integer giving its size.

The required actions for each of these functions are described in the following subsections. In each function, 'mkudndir' replaces the XXX with the node type name specified by the user when mkudndir is invoked. The macros used in implementing the functions are described in a later section.

3.3.2.1 Function udn_XXX_create

Allocate space for the data structure defined for the user-defined node to pass data between models. Then, assign pointer created by the storage allocator (e.g., malloc) to MALLOCED_PTR.

3.3.2.2 Function udn_XXX_initialize

Assign STRUCT_PTR to a pointer variable of the defined type, and then initialize the value of the structure.

3.3.2.3 Function udn_XXX_compare

Assign STRUCT_PTR_1 and STRUCT_PTR_2 to pointer variables of the defined type. Compare the two structures and assign either TRUE or FALSE to EQUAL.

3.3.2.4 Function udn_XXX_copy

Assign INPUT_STRUCT_PTR and OUTPUT_STRUCT_PTR to pointer variables of the defined type, and then copy the elements of the input structure to the output structure.

3.3.2.5 Function udn_XXX dismantle

Assign STRUCT_PTR to a pointer variable of defined type, and then free any allocated substructures (but not the structure itself!). If there are no substructures, the body of this function may be left null.

3.3.2.6 Function udn_XXX_invert

Assign STRUCT_PTR to a pointer variable of the defined type, and then invert the logical value of the structure.

3.3.2.7 Function udn_XXX_resolve

Assign INPUT_STRUCT_PTR_ARRAY to a variable declared as an array of pointers of the defined type - e.g.:

```
<type> **struct_array;
struct_array = IMPUT_STRUCT_PTR_ARRAY;
```

Then, the number of elements in the array may be determined from the integer valued INPUT_STRUCT_PTR_ARRAY_SIZE macro.

Assign OUTPUT_STRUCT_PTR to a pointer variable of the defined type.

Scan through the array of structures, and compute the resolved value and assign it into the output structure.

3.3.2.8 Function udn_XXX_plot_val

Assign STRUCT_PTR to a pointer variable of the defined type. Then, access the member of the structure specified by the string in STRUCT_MEMBER_ID, and assign some real valued quantity for this member to PLOT_VALUE.

lu•	Type	Description
RALLOCED_PTR	void .	Assign pointer to alloced structure to this macro
STRUCT_PTR	void ◆	A pointer to a structure of the defined type
STRUCT_PTR_1	void *	A pointer to a structure of the defined type
STRUCT_PTR_2	woid *	A pointer to a structure of the defined type
EQUAL	Hif_Boolean_t	Assign TRUE or FALSE to this macro according to the results of structure comparison
IMPUT_STRUCT_PTR	void *	A pointer to a structure of the defined type
OUTPUT_STRUCT_PTR	void *	A pointer to a structure of the defined type
IMPUT_STRUCT_PTR_ARRAY	void **	An array of pointers to structures of the defined type
INPUT_STRUCT_PTR_ARRAY_SIZE	int	The size of the array
STRUCT_MEMBER_ID	char *	A string naming some part of the structure
PLOT_VAL	double	The value of the specified structure member for plotting purposes
PRIET_VAL	char *	The value of the specified structure member for printing purposes

Table 3.10 User-Defined Node Macros.

3.3.2.9 Function udn_XXX_print_val

Assign STRUCT_PTR to a pointer variable of the defined type. Then, access the member of the structure specified by the string in STRUCT_MEMBER_ID, and assign some string valued quantity for this member to PRINT_VALUE.

If the string is not static, a new string should be allocated on each call. Do not free the allocated strings.

3.3.2.10 Function udn_XXX_ipc_val

Use STRUCT_PTR to access the data, and then assign a pointer to a binary representation of the data to IPC_VAL, and assign an integer giving the size of this binary representation to IPC_VAL_SIZE. Typically STRUCT_PTR is assigned directly to IPC_VAL, and the sizeof() operator is used to get the structure size and assign it to IPC_VAL_SIZE.

3.3.3 Accessor Macros

The macros used in the User-Defined Node Definition file to access and assign data are defined in Table 3.10. These macros do not take arguments. The translations of the macros, and of macros used in the function argument lists, are defined in the document Interface Design Document for the XSPICE Simulator of the Automatic Test Equipment Software Support Environment (ATESSE).

3.4 Simulator Development

The following subsections detail the files and data involved in developing a new XSPICE executable. A description of the steps required to create new executables can be found in the Software Design Document for the XSPICE Code Model Subsystem of the Automatic Test Equipment Software Support Environment (ATESSE).

3.4.1 Simulator Directory Generator Files

The 'mkmoddir' utility creates a simulator directory and installs a template Model Path File, template User-Defined Node Path File, and a Makefile. These files are created from the templates stored in /atesse/lib/cmt/mksimdir and are placed in the newly created directory as:

Makefile modpath.lst udnpath.lst

3.4.2 Model Path File

The Model Path file (modpath.lst) is used to specify the set of code models to be linked into a given XSPICE simulator executable. It is a text file, with a complete pathname, one per line, of each code model's directory. Each of these directories is assumed to contain an Interface Specification file named ifspec.ifs and object files for the compiled Interface Specification and Model Definition File.

3.4.3 User-Defined Node Path File

The User-Defined Node Path file (udnpath.lst) is used to specify the set of event-driven, user-defined node types to be linked into a given XSPICE simulator executable. It is a text file, with a complete pathname, one per line, of each user-defined node's directory. Each of these directories is assumed to contain an object file for the compiled User-Defined Node Definition File.

3.5 Code Model Library

The interface for each of the prewritten XSPICE code models is given in the following subsections in the form of an Interface Specification file. A definition of the model's operation

XSPICE Code Model Subsystem Interface Design Document

Interface Design Code Model Library

can be found in the Software Design Document for the XSPICE Code Model Subsystem of the Automatic Test Equipment Software Support Environment (ATESSE).

XSPICE Code Model Subsystem Interface Design Document

3.5.1 Analog Models

3.5.1.1 Gain

HAME_TABLE:

C_Function_Wame: cm_gain Spice_Model_Wame: gain

Description: "A simple gain block"

PORT_TABLE:

Port_Name: in out
Description: "input" "output"
Direction: in out
Default_Type: v v

Allowed_Types: [v,vd,i,id,vnam] [v,vd,i,id]
Vector: no no

Vector: no no

PARAMETER_TABLE:

out_offset in_offset gain Parameter_Name: "output offset" "input offset" "gain" Description: real real real Data_Type: 0.0 1.0 Default_Value: 0.0 Limits: no no Vector: no Vector_Bounds: yes yes Mull_Allowed: yes

Interface Design Code Model Library

3.5.1.2 Summer

HAME_TABLE:

C_Function_Hame: CR_SUBBET Isamus Spice_Model_Hame:

"summer block" Description:

PORT_TABLE:

out in Port_Name: "input array" "output" Description: out Direction: in

Default_Type:

[v,vd,i,id,vnam] [v,vd,i,id] Allowed_Types:

no yes Vector: [2 -] Vector_Bounds: no Wull_Allowed: no

PARAMETER_TABLE:

in_offset in_gain Parameter_Name:

"input gain array" "input offset array" Description:

real real Data_Type: 1.0 0.0 Default_Value: Limits: yes yes Vector: in Vector_Bounds: in yes Mull_Allowed: yes

PARAMETER_TABLE:

out_offset Parameter_Name: out_gain "output gain" "output offset" Description:

real real Data_Type: 0.0 1.0 Default_Value: Limits: no no Vector: Vector_Bounds: yes yes Hull_Allowed:

3.5.1.3 Multiplier

MAME_TABLE:

C_Function_Name: cm_mult Spice_Model_Name: mult

Description: "multiplier block"

PORT_TABLE:

Port_Name: in out
Description: "input array" "output"
Direction: in out
Default_Type: v v

Allowed_Types: [v,vd,i,id,vnam] [v,vd,i,id]

Vector: yes no
Vector_Bounds: [2 -] Hull_Allowed: no no

PARAMETER_TABLE:

Parameter_Hame: in_offset in_gain

Description: "input offset array" "input gain array"

real Data_Type: real 0.0 1.0 Default_Value: Limits: Vector: yes yes Vector_Bounds: in in Mull_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Hame: out_gain out_offset
Description: "output gain" "output offset"

 Data_Type:
 real
 real

 Default_Value:
 1.0
 0.0

 Limits:

 Vector:
 no
 no

 Vector_Bounds:

 Mull_Allowed:
 yes
 yes

Interface Design Code Model Library

3.5.1.4 Divider

HAME_TABLE:

C_Function_Name: Spice_Model_Name: cm_divide divide

Description:

"divider block"

PORT_TABLE:

Port_Name: Description:

num "numerator"

den "denominator" out "output" out

Direction: Default_Type: in

in

Allowed_Types:

[v,vd,i,id,vnam] [v,vd,i,id,vnam] [v,vd,i,id]

no

Vector: Vector_Bounds: Mull_Allowed:

no

no

PARAMETER_TABLE:

Parameter_Name: num_offset Description:

"numerator offset"

num_gain

Data_Type: Default_Value: 0.0

real

"numerator gain" real 1.0

Limits: Vector: Vector_Bounds: Null_Allowed:

no yes

no yes

PARAMETER_TABLE:

Parameter_Name: Description:

den_offset

den_gain

"denominator offset"

"denominator gain"

Data_Type: Default_Value: Limits:

real 0.0 no

1.0 no

real

Vector_Bounds: Wull_Allowed:

Vector:

yes

yes

XSPICE Code Model Subsystem Interface Design Document

PARAMETER_TABLE:

Parameter_Name: den_lower_limit den_domain

"denominator lower limit" "denominator smoothing domain" Description:

real Data_Type: real Default_Value: 1.0e-10 Limits: [1.0e-10 -] 1.0e-16

Vector: no no Vector_Bounds: Mull_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Name: fraction

"smoothing fraction/absolute value switch"

Default_Value: false

Limits: Vector: no Vector_Bounds: -Null_Allowed: yes

PARAMETER_TABLE:

out_offset Parameter_Name: out_gain

Description: "output gain" "output offset" real Data_Type: real 1.0 0.0

Default_Value: Limits: Vector: no no Vector_Bounds: yes Mull_Allowed: yes

3.5.1.5 Limiter

MAME_TABLE:

C_Function_Name: cm_limit Spice_Model_Hame: limit

Description:

"limit block"

PORT_TABLE:

Port_Name: in out "output" "input" Description: in Direction: out Default_Type:

[v,vd,i,id,vnam] [v,vd,i,id] Allowed_Types:

Vector: no no Vector_Bounds: Mull_Allowed: no no

PARAMETER_TABLE:

Parameter_Name: in_offset gain "input offset" "gain" real Default_Value: 0.0 1.0 Limits: Vector: no no Vector_Bounds: Mull_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Name: out_lower_limit out_upper_limit "output lower limit" real Description: "output upper limit" real Data_Type: Default_Value: -Limits: Vector: no no

Vector_Bounds: Hull_Allowed: yes yes

XSPICE Code Model Subsystem Interface Design Document

Interface Design Code Model Library

PARAMETER_TABLE:

Mull_Allowed:

yes

Parameter_Name: Description: Data_Type: Default_Value: Limits: Vector: Vector_Bounds:	limit_range "upper & lower sm. range" real 1.0e-6 -	fraction "smoothing percent/abs switch" boolean FALSE - no
AACTOL BOINGS:	•	-

yes

3.5.1.6 Controlled Limiter

MAME_TABLE:

C_Function_Wame: cm_climit
Spice_Model_Wame: climit

Description: "controlled limiter block"

PORT_TABLE:

Port_Name: in cntl_upper

Description: "input" "upper lim. control input"

Direction: in in Default_Type: v v

Allowed_Types: [v,vd,i,id,vnam] [v,vd,i,id,vnam]

Vector:nonoVector_Bounds:--Bull_Allowed:nono

PORT_TABLE:

Port_Name: cntl_lower out

Description: "lower limit control input" "output"

Direction: in out

Default_Type: v v

Allowed_Types: [v,vd,i,id,vnam] [v,vd,i,id]

PARAMETER_TABLE:

in_offset Parameter_Name: gain "input offset" "gain" Description: real real Data_Type: 1.0 Default_Value: 0.0 Limits: Vector: no no Vector_Bounds: Bull_Allowed: yes yes

XSPICE Code Model Subsystem Interface Design Document

PARAMETER_TABLE:

Parameter_Name: upper_delta lower_delta

Description: "output upper delta" "output lower delta"

 Data_Type:
 real
 real

 Default_Value:
 0.0
 0.0

 Limits:

 Vector:
 no
 no

 Vector_Bounds:

 Hull_Allowed:
 yes
 yes

PARAMETER_TABLE:

Parameter_Name: limit_range fraction

Description: "upper & lower sm. range" "smoothing %/abs switch"

Data_Type: real boolean
Default_Value: 1.0e-6 FALSE

 Limits:

 Vector:
 no
 no

 Vector_Bounds:

 Mull_Allowed:
 yes
 yes

3.5.1.7 Piecewise Linear Controlled Source

HAME_TABLE:

C_Function_Hame:

cm_pwl

Spice_Model_Name:

pwl

Description:

"piecewise linear controlled source"

PORT_TABLE:

Port_Name:

in

out

Description: Direction:

"input" in

"output" out

Default_Type:

[v,vd,i,id]

Vector:

Allowed_Types:

[v,vd,i,id,vnam] no

no

Vector_Bounds: Hull_Allowed:

no

PARAMETER_TABLE:

Parameter_Name: x_array

y_array

Description:

"x-element array" real

"y-element array" real

Data_Type: Default_Value:

Limits:

Vector: Vector:
Vector_Bounds:

yes [2 -]

Null_Allowed:

no

yes

[2 -]

no

PARAMETER_TABLE:

Parameter_Name:

input_domain

fraction

Description:

"input sm. domain"

"smoothing %/abs switch"

Data_Type:

real 0.01 boolean

Default_Value:

[1e-12 0.5]

TRUE

Limits: Vector:

no

no

Vector_Bounds: Wull_Allowed: yes

yes

STATIC_VAR_TABLE:

Static_Var_Name:

last_x_value

Data_Type:

pointer

XSPICE Code Model Subsystem Interface Design Document

Interface Design Code Model Library

Description:

"iteration holding variable for limiting"

STATIC_VAR_TABLE:

Static_Var_Hame:

Description:

Data_Type: pointer pointer

Description: "x-coefficient array" "y-coefficient array"

pointer

3.5.1.8 Analog Switch

HAME_TABLE:

C_Function_Hame: Spice_Model_Hame:

cm_aswitch asvitch

Description:

"analog switch"

PORT_TABLE:

Port_Name:

cntl_in

out

Description:

"input"

"resistive output"

Direction:

in

no

inout gd

no

Default_Type:

[v,vd,i,id,vnam] [gd]

Allowed_Types: Vector:

Vector_Bounds:

Hull_Allowed:

no no

PARAMETER_TABLE:

Parameter_Name:

cntl_off

cntl_on

Description:

"control 'off' val"

"control 'on' val" real

Data_Type: Default_Value:

0.0 no

real

1.0 no

Vector: Vector_Bounds: Hull_Allowed:

Limits:

yes

yes

PARAMETER_TABLE:

Parameter_Name:

r_off log

Description:

"Log-linear switch" "off resistance"

Data_Type:

boolean

real 1.0e12

Default_Value: TRUE Limits:

Vector:

no

no

Vector_Bounds:

Hull_Allowed: yes

yes

XSPICE Code Model Subsystem Interface Design Document

Interface Design Code Model Library

PARAMETER_TABLE:

Parameter_Name: r_on

Description: "on resistance"

Data_Type: real
Default_Value: 1.0
Limits: Vector: no
Vector_Bounds: Bull_Allowed: yes

XSPICE Code Model Subsystem Interface Design Document

3.5.1.9 Zener Diode

WAME_TABLE:

C_Function_Name:
Spice_Model_Name:

Cm_zener zener

Description:

"zener diode"

PORT_TABLE:

Port_Name:

Z

Description:
Direction:
Default_Type:

Allowed_Types:

"zener" inout gd [gd]

Vector: Vector_Bounds: Null_Allowed: no no

real

no

PARAMETER_TABLE:

Parameter_Name:

v_breakdown

i_breakdown

Description:

"breakdown voltage"

"breakdown current" real

Data_Type:
Default_Value:

-[1e-6 1e6]

2e-2 [1e-9 -]

Limits: Vector: Vector_Bounds:

Mull_Allowed:

no -

no yes

PARAMETER_TABLE:

Parameter_Name:

r_breakdown

i_rev

Description:

"breakdown resistance" real

"reverse current" real

Data_Type: Default_Value: Limits:

1.0 [1e-12 -] 1e-6 [1e-9 -] no

Vector: Vector_Bounds: Mull_Allowed: no yes

yes

XSPICE Code Model Subsystem Interface Design Document

PARAMETER_TABLE:

Parameter_Name: i_sat n_forward

Description: "saturation current" "forward emission co"

 Data_Type:
 real
 real

 Default_Value:
 1e-12
 1.0

 Limits:
 [1e-15-]
 [.1 10]

 Vector:
 no
 no

 Vector_Bounds:

 Hull_Allowed:
 yes
 yes

PARAMETER_TABLE:

Parameter_Wame: limit_switch

Description: "switch for on-board limiting (convergence aid)"

Description:
Data_Type: boolean
Default_Value: FALSE
Limits:

Vector: no
Vector_Bounds: Mull_Allowed: yes

STATIC_VAR_TABLE:

Static_Var_Name: previous_voltage

Data_Type: pointer

Description: "iteration holding variable for limiting"

3.5.1.10 Current Limiter

MAME_TABLE:

C_Function_Hame:

cm_ilimit

Spice_Model_Name:

ilimit

Description:

"current limiter block"

PORT_TABLE:

Port_Name:

in

pos_per

Description:

"input"

"positive power supply"

Direction:
Default_Type:

in

inout

Allowed_Types:

v [v,vd,i,id,vnam]

[g,gd]

Vector:

no - no -

Vector_Bounds:
Bull_Allowed:

no

yes

PORT_TABLE:

Port_Name: Description: neg_pwr

out

Direction:

"negative power supply" inout

"output" inout

Default_Type:
Allowed_Types:

g [g,gd]

[g,gd]

Vector:
Vector_Bounds:

no - no -

Mull_Allowed:

yes

no

PARAMETER_TABLE:

Parameter_Name:

in_offset

gain

Description:
Data_Type:
Default_Value:

Limits:

"input offset" real

"gain"
real
i.0
no

Vector:
Vector_Bounds:
Bull_Allowed:

no yes

0.0

yes

PARAMETER_TABLE:

Parameter_Name:

r_out_source

r_out_sink

Description:

"sourcing resistance"

"sinking resistance"

XSPICE Code Model Subsystem Interface Design Document

Data_Type: real real
Default_Value: 1.0 1.0
Limits: [1e-9 1e9] [1e-9 1e9]

Vector:nonoVector_Bounds:--Hull_Allowed:yesyes

PARAMETER_TABLE:

Parameter_Wame: i_limit_source i_limit_sink

Description: "current sourcing limit" "current sinking limit"

 Data_Type:
 real
 real

 Default_Value:
 10.0e-3
 10.0e-3

 Limits:
 [1e-12-]
 [1e-12-]

 Vector:
 no
 no

Vector_Bounds: - - Tull_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Hame: v_pwr_range i_source_range

Description: "pwr. smoothing range" "sourcing cur sm. rng"

Data_Type: real real Default_Value: 1e-6 1e-9 Limits: [1e-15 -] [ie-i5 -] Vector: no no Vector_Bounds: Mull_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Name: i_sink_range r_out_domain

Description: "sinking cur sm. rng" "output resistance sm. domain"

 Data_Type:
 real
 real

 Default_Value:
 1e-9
 1e-9

 Limits:
 [1e-15-]
 [1e-15-]

 Vector:
 no
 no

Vector: no no
Vector_Bounds: -
Mull_Allowed: yes yes

3.5.1.11 Hysteresis Block

MAME_TABLE:

C_Function_Name:

cm_hyst

Spice_Model_Hame:

hyst

Description:

"hysteresis block"

PORT_TABLE:

Port_Name: Description: in "input" in

out "output" out

Direction: Default_Type:

Allowed_Types: Vector:

[v,vd,i,id,vnam] [v,vd,i,id] no no

Vector_Bounds: Mull_Allowed:

no

no

PARAMETER_TABLE:

Parameter_Name: in_low

in_high

Description:

"input low value"

"input high value"

Data_Type: Default_Value: 0.0

real

real 1.0

Vector: Vector_Bounds:

Limits:

no

no

Mull_Allowed: yes

yes

PARAMETER_TABLE:

Parameter_Name:

hyst

out_lower_limit

Description:

"hysteresis"

"output lower limit" real

Data_Type: Default_Value: Limits:

real 0.1 [0 -] no

0.0

Vector: Vector_Bounds:

Hull_Allowed: yes

yes

no

PARAMETER_TABLE:

Parameter_Name:

out_upper_limit

input_domain

Description:

"output upper limit"

"input smoothing domain"

Data_Type:

real

real

XSPICE Code Model Subsystem Interface Design Document

0.01 Default_Value: 1.0 Limits: no no Vector: yes

PARAMETER_TABLE:

Parameter_Wame: fraction

Description: "smoothing percent/abs switch"

Data_Type: boolean

Default "Java" Default_Value: TRUE Limits: Vector: no Vector_Bounds: -Mull_Allowed: yes

3.5.1.12 Differentiator

MAME_TABLE:

C_Function_Hame:
Spice_Model_Hame:

cm_d_dt d_dt

Description:

"differentiator block"

PORT_TABLE:

Port_Wame: in out
Description: "input" "output"
Direction: in out
Default_Type: v v

Allowed_Types: [v,vd,i,id,vnam] [v,vd,i,id]

Vector: no no
Vector_Bounds: -
Mull_Allowed: no no

PARAMETER_TABLE:

Parameter_Name: out_offset gain Description: "output offset" "gain" Data_Type: real real Default_Value: 0.0 1.0 Limits: Vector: no no Vector_Bounds: Mull_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Name: out_lower_limit out_upper_limit
Description: "output lower limit" "output upper limit"
Data_Type: real real

XSPICE Code Model Subsystem Interface Design Document

PARAMETER_TABLE:

Parameter_Hame: limit_range

Description: "upper & lower sm. range"

Description:
Data_Type: real
Default_Value: 1.0e-6

Limits: Vector: no
Vector_Bounds: Hull_Allowed: yes

3.5.1.13 S-Domain Transfer Function

MAME_TABLE:

Spice_Model_Hame:

s_xfer

C_Function_Hame:

cm_s_xfer

Description:

"s-domain transfer function block"

PORT_TABLE:

out

Description: "input"
Direction:

"output"

Direction:

Default_Type: v v

Allowed_Types: [v,vd,i,id] [v,vd,i,id]

no no Direction:

in

out

Vector_Bounds:

Wull_Allowed:

no

no

PARAMETER_TABLE:

Parameter_Name: in_offset

Description: "input offset"

Data_Type: real

gain

"gain"

Default_Value: 0.0

real 1.0

Limits:

no

yев

PARAMETER_TABLE:

Parameter_Name: num_coeff

den_coeff

Description:

"numerator poly coef"

"denominator poly coef"

Data_Type:

real

real

Default_Value:

Limits:

yes [1 -] yes

Vector: [1 - [1 - yes

[1 -]

yes

XSPICE Code Model Subsystem Interface Design Document

Interface Design Code Model Library

PARAMETER_TABLE:

Parameter_Name: int_ic

Description: "int stage init. cond"

Data_Type: real
Default_Value: 0.0

Default_Value: 0. Limits: -

Vector: yes
Vector_Bounds: Hull_Allowed: yes

PARAMETER_TABLE:

Parameter_Name: denormalized_freq

Description: "freq. (rads/s) at which to denormalize coeffs"

Data_Type: real
Default_Value: 1.0
Limits:

Limits: Vector: no
Vector_Bounds: -

Wull_Allowed: yes

3.5.1.14 Slew Rate Block

HAME_TABLE:

C_Function_Name:

cm_slew

Spice_Model_Hame:

slev

Description:

"a simple slew rate follower block"

PORT_TABLE:

Port_Name:

in

out

Description: Direction:

"input" in

"output" out

Default_Type:

Allowed_Types:

[v,vd,i,id,vnam]

[v,vd,i,id]

Vector: Vector_Bounds: no

no

Hull_Allowed:

no

no

PARAMETER_TABLE:

Parameter_Name: rise_slope

fall_slope

Description:

"rising slew limit"

"falling slew limit"

Data_Type: Default_Value: real 1.0e9 real 1.0e9

Limits: Vector: Vector_Bounds:

Hull_Allowed:

no yes

no yes

3.5.1.15 Inductive Coupling

MAME_TABLE:

C_Function_Name: cm_lcouple
Spice_Model_Name: lcouple

Description: "inductive coupling (for use with 'core' model)"

PORT_TABLE:

Port_Name: 1 mmf_out

Description: "inductor" "manf output (in Ampere-turns)"

inout inout Direction: Default_Type: hđ hd [h,hd] [hd] Allowed_Types: no Vector: no Vector_Bounds: Null_Allowed: no no

PARAMETER_TABLE:

Parameter_Name: num_turns

Description: "number of inductor turns"

Data_Type: real
Default_Value: 1.0
Limits: Vector: no
Vector_Bounds: Hull_Allowed: yes

3.5.1.16 Magnetic Core

HAME_TABLE:

C_Function_Hame:

cm_core

Spice_Model_Hame:

"magnetic core"

Description:

246......

PORT_TABLE:

Port_Name:

≥C

Description:

"magnetic core"

Direction:

inout gd

Default_Type:

[g,gd]

Allowed_Types: Vector:

no

Vector_Bounds:

no

Mull_Allowed:

-

HUII_MIIOTEU.

no

PARAMETER_TABLE:

Parameter_Name:

H_array

B_array

Description:

"magnetic field array"

"flux density array" real

Data_Type:
Default_Value:

real -

-

Limits: Vector:

yes [2 -] **у**ев [2 **-**]

no

Vector_Bounds: Eull_Allowed:

no

PARAMETER_TABLE:

area

length

Parameter_Name:
Description:

"cross-sectional area"

"core length"

Data_Type:

real

real

Default_Value: Limits:

-no

no

no

Vector_Bounds:
Bull_Allowed:

Vector:

no

PARAMETER_TABLE:

Parameter_Name:

input_domain

Description:

"input sm. domain"

Data_Type:

real

Default_Value:

0.01

Limits:

[1e-12 0.5]

Vector: Vector_Bounds:

no

Hull_Allowed: yes

PARAMETER_TABLE:

Parameter_Name: fraction

Description:

"smoothing fractional/abs switch"

Data_Type:

boolean

Default_Value: TRUE

Limits:

Vector:

no

Vector_Bounds:

Mull_Allowed: yes

PARAMETER_TABLE:

Parameter_Name: mode

Description: "mode switch (1 = pwl, 2 = hyst)"

Data_Type:

int 1 [1 2]

Default_Value:

Limits: Vector:

no

Vector_Bounds:

Mull_Allowed: yes

PARAMETER_TABLE:

Parameter_Name:

in_low

in_high

Description:

"input low value"

"input high value"

Data_Type:

real

real

Default_Value: 0.0

1.0

Limits:

no

Vector:

Vector_Bounds: Eull_Allowed: yes

no

yes

0.0

no

PARAMETER_TABLE:

Parameter_Hame:

hyst

out_lower_limit

Description:

Limits:

"hysteresis"

"output lower limit"

Data_Type:

real

real

Default_Value:

0.1

[0 -]

Vector:

no

Vector_Bounds:

XSPICE Code Model Subsystem Interface Design Document

Mull_Allowed:

yes

yes

PARAMETER_TABLE:

Parameter_Name: out_upper_limit
Description: "output upper limit"

Data_Type: Default_Value:

real

Limits:

1.0

Vector:

Vector:
Vector_Bounds:
Vector_Bounds:
yes

3.5.1.17 Controlled Sine Wave Oscillator

MAME_TABLE:

C_Function_Hame: cm_sine
Spice_Model_Hame: sine

Description: "controlled sine wave oscillator"

PORT_TABLE:

 Port_Name:
 cntl_in
 out

 Description:
 "input"
 "output"

 Direction:
 in
 out

 Default_Type:
 v
 v

Allowed_Types: [v,vd,i,id,vnam] [v,vd,i,id]

Vector: no no Vector_Bounds: - - - Null_Allowed: no no

PARAMETER_TABLE:

Parameter_Name: cntl_array freq_array Description: "control in array" "frequency array" Data_Type: real real Default_Value: 0.0 1.0e3 Limits: [0 -] yes Vector: yes Vector_Bounds: [2 -] [2 -] Mull_Allowed: no no

PARAMETER_TABLE:

Parameter_Name: out_low out_high

Description: "output low value" "output high value"

 Data_Type:
 real
 real

 Default_Value:
 -1.0
 1.0

 Limits:

 Vector:
 no
 no

 Vector_Bounds:

 Hull_Allowed:
 yes
 yes

3.5.1.18 Controlled Triangle Wave Oscillator

HAME_TABLE:

C_Function_Name: cm_triangle Spice_Model_Name: triangle

Description: "controlled triangle wave oscillator"

PORT_TABLE:

Port_Name: cntl_in out
Description: "input" "output"
Direction: in out
Default_Type: v

Allowed_Types: [v,vd,i,id,vnam] [v,vd,i,id]

Vector: no no
Vector_Bounds: -
Full_Allowed: no no

PARAMETER_TABLE:

Parameter_Name: cntl_array freq_array

Description: "control in array" "frequency array"

real real Data_Type: Default_Value: 0.0 1.0e3 [0 -] _ Limits: yes yes Vector: [2 -] [2 -] Vector_Bounds: no **Tull_Allowed**: no

PARAMETER_TABLE:

Parameter_Name: out_low out_high

Description: "output low value" "output high value"

Data_Type: real real
Default_Value: -1.0 1.0

Default_Value: -1.0 1...
Limits: - 7
Vector: no no

Vector_Bounds: - - yes yes

PARAMETER_TABLE:

Parameter_Name: duty_cycle

Description: "rise time duty cycle"

Data_Type: real
Default_Value: 0.5

Limits: [1e-6 .999999]

XSPICE Code Model Subsystem Interface Design Document

Vector:

no

Vector_Bounds:
Bull_Allowed:

yes

3.5.1.19 Controlled Square Wave Oscillator

HAME_TABLE:

C_Function_Hame:

cm_square

Spice_Model_Hame:

square

Description:

"controlled square wave oscillator"

PORT_TABLE:

Port_Hame: Description: cntl_in "input"

out "output"

Direction: Default_Type: in

out

Allowed_Types:

[v,vd,i,id,vnam]

[v,vd,i,id]

Vector: Vector_Bounds: Mull_Allowed:

no no

no no

PARAMETER_TABLE:

freq_array

"frequency array"

Data_Type:

Parameter_Name: cntl_array control in array" real

no

real 1.0e3

no

Default_Value: Limits: Vector:

0.0 [0 -]yes yes [2 -]

Vector_Bounds: [2 -] Wull_Allowed:

PARAMETER_TABLE:

Parameter_Name:

out_high out_low

Description:

"output high value" "output low value"

real Data_Type: Default_Value: -1.0 real 1.0

Limits: Vector:

no

Vector_Bounds:

no _

Mull_Allowed:

yes yes

PARAMETER_TABLE:

Parameter_Name: Description:

duty_cycle "duty cycle"

rise_time "rise time"

Data_Type: Default_Value:

real 0.5

real 1.0e-9

Limits:

[1e-6 .999999]

XSPICE Code Model Subsystem Interface Design Document

 Vector:
 no
 no

 Vector_Bounds:

 Bull_Allowed:
 yes
 yes

PARAMETER_TABLE:

Parameter_Name: fall_time
Description: "fall time"
Data_Type: real
Default_Value: 1.0e-9

Limits: Vector: no
Vector_Bounds: Mull_Allowed: yes

3.5.1.20 Controlled One-shot

HAME_TABLE:

C_Function_Name: Spice_Model_Hame: cm_oneshot oneshot "one-shot"

Description:

PORT_TABLE:

Port_Hame: Description:

clk "clock input" cntl_in "input" in

[v, vnam, vd, i, id]

Direction: Default_Type: in

[v,vd,vnam,i,id]

Allowed_Types: Vector: Vector_Bounds:

no

Mull_Allowed: no no yes

PORT_TABLE:

Port_Name:

clear

yes

out "output"

Description: Direction:

"clear signal" out

Default_Type: Allowed_Types:

[v,vd,i,id] [v,vd,vnam,i,id]

Vector: Vector_Bounds: Mull_Allowed:

no

PARAMETER_TABLE:

Parameter_Name:

pw_array cntl_array

Description: real

"control in array" "pulse width array" real 1.0e-6

[0 -]

yes [2 -]

no

no

Data_Type: Default_Value: Limits:

0.0 yes [2-]

Vector_Bounds: Mull_Allowed:

Vector:

PARAMETER_TABLE:

Parameter_Name:

clk_trig

pos_edge_trig

Description:

Limits:

"clock trigger value"

"pos/neg edge trigger switch"

Data_Type: Default_Value: real 0.5

no

boolean TRUE

XSPICE Code Model Subsystem Interface Design Document

Vector: no no
Vector_Bounds: -
Full_Allowed: no no

PARAMETER_TABLE:

Parameter_Wame: out_low out_high

Description: "output low value" "output high value"

 Data_Type:
 real
 real

 Default_Value:
 0.0
 1.0

 Limits:

 Vector:
 no
 no

 Vector_Bounds:

PARAMETER_TABLE:

Mull_Allowed:

Parameter_Name: rise_time

Description: "output rise time"

yes

Data_Type: real
Default_Value: 1.0e-9
Limits: Vector: no
Vector_Bounds: Mull_Allowed: yes

PARAMETER_TABLE:

Parameter_Wame: rise_delay fall_delay

Description: "output delay from trigger" "output delay from pw"

yes

 Data_Type:
 real
 real

 Default_Value:
 1.0e-9
 1.0e-9

 Limits:

Vector: no no
Vector_Bounds: - Hull_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Name: fall_time retrig

Description: "output rise time" "retrigger switch"

Data_Type: real boolean
Default_Value: 1.0e-9 FALSE
Limits: - - Vector: no no
Vector_Bounds: - Wull_Allowed: yes yes

3.5.1.21 Capacitance Meter

MAME_TABLE:

cmeter Spice_Model_Hame: C_Function_Hame:

cm_cmeter

Description:

"ATESSE 1 compatible capacitance meter"

PORT_TABLE:

Port_Name: Description:

in "input"

out "output"

Direction: Default_Type: in

out

Allowed_Types:

[v, **v**d]

[v, vd, i, id] no

Vector: Vector_Bounds: Hull_Allowed: no no

no

PARAMETER_TABLE:

Parameter_Name:

gain

Description:

"C to voltage conversion factor"

Data_Type: Default_Value: real 1.0

Limits: Vector:

no

Vector_Bounds:

Mull_Allowed:

yes

STATIC_VAR_TABLE:

Static_Var_Name:

Ç real

Data_Type: Description:

"capacitance connected to input node"

3.5.1.22 Inductance Meter

WAME_TABLE:

Spice_Model_Name: lmeter C_Function_Name: cm_lmeter

Description: "ATESSE 1 compatible inductance meter"

PORT_TABLE:

Port_Name: in out
Description: "input" "output"
Direction: in out
Default_Type: v v

Allowed_Types: [v, vd] [v, vd, i, id]

Vector: no no
Vector_Bounds: - Wull_Allowed: no no

PARAMETER_TABLE:

Parameter_Name: gain

Description: "L to voltage conversion factor"

Data_Type: real
Default_Value: 1.0
Limits: Vector: no
Vector_Bounds: Null_Allowed: yes

STATIC_VAR_TABLE:

Static_Var_Name: 1
Data_Type: real

Description: "inductance connected to input node"

3.5.2 Hybrid Models

3.5.2.1 Digital-to-Analog Node Bridge

MAME_TABLE:

C_Function_Wame: cm_dac_bridge Spice_Model_Name: dac_bridge

"digital-to-analog converter node bridge" Description:

PORT_TABLE:

in "input" Port_Name: out Description: "output" Direction: out Default_Type:

Allowed_Types:
Vector: [4] [v,vd,i,id]

Vector: yes yes Vector_Bounds: Full_Allowed: no no

PARAMETER_TABLE:

Parameter_Name: out_low

heacription: "analog output for 'ZERO' digital input"

Data_Type: Default_Value: 0.0 Limits: Vector: no Vector_Bounds: Bull_Allowed: yes

PARAMETER_TABLE:

Parameter_Name: out_high

"analog output for 'ONE' digital input" Description:

Data_Type: real Default_Value: 1.0 Limits: **Vector:** no Vector_Bounds: Mull_Allowed: yes

XSPICE Code Model Subsystem Interface Design Document

PARAMETER_TABLE:

Parameter_Name: out_undef

"analog output for 'UNDEFINED' digital input" Description:

Data_Type: real 0.5 Default_Value: Limits: Vector: no

Vector_Bounds: Mull_Allowed: yes

PARAMETER_TABLE:

Parameter_Name: input_load

"capacitive input load (F)" Description:

Data_Type: real

Default_Value: 1.0e-12 Limits:

Vector: no Vector_Bounds: Null_Allowed: yes

PARAMETER_TABLE:

Parameter_Name: t_rise t_fall

"rise time 0 -> 1" Description: "fall time 1 -> 0"

real real Data_Type: Default_Value: 1.0e-9 1.0e-9 Limits: [1e-12 -] [1e-12 -]

Vector: no no Vector_Bounds: Eull_Allowed: yes yes

3.5.2.2 Analog-to-Digital Node Bridge

MAME_TABLE:

Spice_Model_Hame:

adc_bridge

C_Function_Name:

cm_adc_bridge

Description:

"analog-to-digital converter node bridge"

PORT_TABLE:

Port_Name:

in

out

Description: Direction:

"input"

"output"

Default_Type:

in

out

Allowed_Types: [v,vd,i,id,vnam] [d]

đ

Vector: Vector_Bounds:

yes

yes

Eull_Allowed:

no

no

PARAMETER_TABLE:

Parameter_Name: in_low

Description:

"maximum 0-valued analog input"

Data_Type:

real

Default_Value: 0.1

Limits:

Vector:
Vector_Bounds: Tinged: yes

PARAMETER_TABLE:

Parameter_Name:

in_high

Description:

"minimum 1-valued analog input"

Data_Type:

real

Default_Value:

0.9

Limits: Vector:

no

Vector_Bounds:

Mull_Allowed:

yes

PARAMETER_TABLE:

Parameter_Name: rise_delay

fall_delay "fall delay"

Description: "rise delay" Data_Type:

real

real

Interface Design Code Model Library

 Default_Value:
 1.0e-9
 1.0e-9

 Limits:
 [1e-12 -]
 [1e-12 -]

 Vector:
 no
 no

Vector_Bounds: - - - - - yes yes

3.5.2.3 Controlled Digital Oscillator

MAME_TABLE:

Spice_Model_Name:

d_osc

C_Function_Name:

cm_d_osc

Description:

"controlled digital oscillator"

PORT_TABLE:

Port_Name: Description: Direction:

cntl_in out "control input"

in

"output"

Default_Type: Allowed_Types: Vector: Vector_Bounds:

[v,vd,i,id] no

[d] no

Null_Allowed:

no

PARAMETER_TABLE:

Parameter_Name: cntl_array Description:

"control array"

freq_array

1.0e6 [0 -]

real

"frequency array" real

Data_Type: Default_Value: 0.0 Limits: Vector:

yes

Vector_Bounds: [2 -]
Hull_Allowed: no

yes [2 -] no

PARAMETER_TABLE:

Parameter_Name:

duty_cycle init_phase

Description:

"output duty cycle" "initial phase of output"

Data_Type:

real real

Default_Value: 0.5 Limits:

[1e-6 0.999999] [-180.0 +360.0]

Vector:

no no

Vector_Bounds: Mull_Allowed:

yes yes

PARAMETER_TABLE:

Parameter_Name: Description:

rise_delay "rise delay"

fall_delay "fall delay"

Data_Type:

real

real

XSPICE Code Model Subsystem Interface Design Document

Default_Value: Limits:	1e-9 [0 -]	1e-9 [0 -]
Vector:	no	no
Vector_Bounds:	-	-
Eull_Allowed:	yes	yes

3.5.3 Digital Models

3.5.3.1 Buffer

BAME_TABLE:

Spice_Model_Name:

d_buffer

C_Function_Wame: cm_d_buffer Description:

"digital one-bit-wide buffer"

PORT_TABLE:

Port_Name: Description:

in "input"

out "output"

Direction: Allowed_Types: [d]
Vector:

in

out [d] no

Vector_Bounds: Wull_Allowed: no

-

PARAMETER_TABLE:

Parameter_Name: rise_delay
Description: "rise delay"
Data_Type: real

fall_delay "fall delay"

Data_Type:
Default_Value: 1.0e-9
Iimits: [1e-12 -] Limits:

real 1.0e-9 [1e-12 -]

Vector: Vector_Bounds: Hull_Allowed: yes

no

no yes

PARAMETER_TABLE:

Parameter_Name:

Description:

input_load
"input load value (F)"

Data_Type: Default_Value: 1.0e-12

real

Limits: Vector:

Vector_Bounds: Bull_Allowed: yes

no

3.5.3.2 Inverter

HAME_TABLE:

C_Function_Name: cm_d_inverter
Spice_Model_Name: d_inverter

Description: "digital one-bit-wide inverter"

PORT_TABLE:

out Port_Name: "input" "output" Description: out in Direction: Default_Type: d [d] [d] Allowed_Types: no no Vector: Vector_Bounds: no Wull_Allowed:

PARAMETER_TABLE:

fall_delay rise_delay Parameter_Name: "fall delay" Description: "rise delay" real real Data_Type: 1.0e-9 1.0e-9 Default_Value: [1e-12 -] [1e-12 -] Limits: nο Vector: no

Vector_Bounds: - - yes yes

PARAMETER_TABLE:

Parameter_Name: input_load

Description: "input load value (F)"

Data_Type: real
Default_Value: 1.0e-12

Limits: Vector: no
Vector_Bounds: Hull_Allowed: yes

3.5.3.3 And

HAME_TABLE:

C_Function_Name: cm_d_and Spice_Model_Name: d_and

"digital n-input and gate" Description:

PORT_TABLE:

out Port_Name: in "input" "output" Description: out Direction: Default_Type: Allowed_Types: [d] [d] yes no Vector: Vector_Bounds: [2 -] Wull_Allowed: no no

PARAMETER_TABLE:

Parameter_Wame: rise_delay fall_delay Parameter_____
Description: "rise
Type: real "rise delay" "fall delay" real Default_Value: 1.0e-9 1.0e-9 [1e-12 -] [1e-12 -] Limits: no Vector: no Vector_Bounds: Hull_Allowed: yes

PARAMETER_TABLE:

input_load Parameter_Name:

"input load value (F)" Description:

real Data_Type: Default_Value: 1.0e-12 Limits: Vector: no

Vector_Bounds: Bull_Allowed: yes

yes

3.5.3.4 Nand

HAME_TABLE:

C_Function_Name: cm_d_namd
Spice_Model_Name: d_namd

Description: "digital n-input nand gate"

PORT_TABLE:

out Port_Name: "input" "output" Description: out Direction: in d Default_Type: đ [d] Allowed_Types: [d] no Vector: yes [2 -] Vector_Bounds: no Null_Allowed: no

PARAMETER_TABLE:

fall_delay rise_delay Parameter_Name: "fall delay" "rise delay" Description: real Data_Type: real 1.0e-9 Default_Value: 1.0e-9 [1e-12 -] Limits: [1e-12 -] no Vector: no Vector_Bounds: yes Wull_Allowed: yes

PARAMETER_TABLE:

Parameter_Name: input_load

Description: "input load value (F)"

Data_Type: real
Default_Value: 1.0e-12
Limits: -

Vector: no
Vector_Bounds: Hull_Allowed: yes

3.5.3.5 Or

MAME_TABLE:

cm_d_or C_Function_Name: d_or Spice_Model_Hame:

"digital n-input or gate" Description:

PORT_TABLE:

out in Port_Name: "input" "output" Description: out Direction: in Default_Type: [4] [d] Allowed_Types: no yes Vector: [2 -] Vector_Bounds: no no Wull_Allowed:

PARAMETER_TABLE:

fall_delay Parameter_Name: rise_delay "fall delay" "rise delay" Description: real real Data_Type: 1.0e-9 1.0e-9 Default_Value: [1e-12 -] [1e-12 -] Limits: no Vector: no

Vector_Bounds: yes Null_Allowed: yes

PARAMETER_TABLE:

input_load Parameter_Name:

"input load value (F)" Description:

real Data_Type: 1.0e-12 Default_Value: Limits:

Vector: no Vector_Bounds: Mull_Allowed: yes

3.5.3.6 Nor

WAME_TABLE:

C_Function_Name: cm_d_nor
Spice_Model_Name: d_nor

Description: "digital n-input nor gate"

PORT_TABLE:

out Port_Name: in "input" "output" Description: out in Direction: đ Default_Type: [d] [d] Allowed_Types: no yes Vector: [2 -] Vector_Bounds: no Mull_Allowed: no

PARAMETER_TABLE:

fall_delay Parameter_Name: rise_delay "fall delay" "rise delay" Description: real real Data_Type: 1.0e-9 Default_Value: 1.04-9 [1e-12 -] Limits: [1e-12 -] no Vector: no Vector_Bounds: yes Mull_Allowed: yes

PARAMETER_TABLE:

Parameter_Name: input_load

Description: "input load value (pF)"

Data_Type: real
Default_Value: 1.0e-12

Limits: Vector: no
Vector_Bounds: Sull_Allowed: yes

Interface Design Code Model Library

3.5.3.7 Xor

MAME_TABLE:

C_Function_Hame: cm_d_xor Spice_Model_Hame:

d_xor

Description:

"digital n-input wor gate"

out

out

[d]

no

no

"output"

PORT_TABLE:

Vector:

Port_Name: Description: Direction: Default_Type: Allowed_Types:

in "input" in d [d] yes

[2 -]

PARAMETER_TABLE:

Vector_Bounds:

Hull_Allowed:

Parameter_Name: rise_delay Description: Data_Type:

Default_Value:

Limits:

Vector:

"rise delay" real

1.0e-9 [1e-12 -] no

Vector_Bounds: Wull_Allowed: yes

fall_delay "fall delay"

real 1.0e-9 [1e-12 -]

no yes

PARAMETER_TABLE:

Parameter_Name:

input_load

Description:

"input load value (F)"

Data_Type: Default_Value:

real 1.0e-12

Limits: Vector:

no

Vector_Bounds:

Hull_Allowed:

yes

3.5.3.8 Xnor

MAME_TABLE:

C_Function_Name: cm_d_xnor
Spice_Model_Name: d_xnor

Description: "digital n-input xnor gate"

PORT_TABLE:

out Port_Name: in "output" "input" Description: out Direction: in Default_Type: d [d] Allowed_Types: [4] Vector: yes пo [2 -] Vector_Bounds: Mull_Allowed: no

PARAMETER_TABLE:

rise_delay fall_delay Parameter_Name: "fall delay" "rise delay" Description: real real Data_Type: 1.0e-9 1.0e-9 Default_Value: [1e-12 -] [1e-12 -] Limits: Vector: no no Vector_Bounds: Hull_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Name: input_load

Description: "input load value (pF)"

Data_Type: real
Default_Value: 1.0
Limits: [0.0 -]
Vector: no
Vector_Bounds: Mull_Allowed: yes

3.5.3.9 Tristate

HAME_TABLE:

Spice_Hodel_Bame: d_tristate C_Function_Bame: cm_d_tristate

Description: "digital one-bit-wide tristate buffer"

PORT_TABLE:

enable Port_Name: out in "input" "enable" "output" Description: out Direction: in in ď Default_Type: ď [4] [d] [4] Allowed_Types: Vector: no no Vector_Bounds: -Hull_Allowed: no no

PARAMETER_TABLE:

Parameter_Name: delay
Description: "delay"
Data_Type: real
Default_Value: 1.0e-9
Limits: [1e-12 -]
Vector: no

Vector_Bounds: Wull_Allowed: yes

PARAMETER_TABLE:

Parameter_Wame: input_load

Description: "input load value (F)"

Data_Type: real
Default_Value: 1.0e-12
Limits: -

Vector: no
Vector_Bounds: Wull_Allowed: yes

PARAMETER_TABLE:

Parameter_Name: enable_load

Description: "enable load value (F)"

Data_Type: real
Default_Value: 1.0e-12

XSPICE Code Model Subsystem Interface Design Document

Limits: Vector: no
Vector_Bounds: Hull_Allowed: yes

Interface Design Code Model Library

3.5.3.10 Pullup

MAME_TABLE:

Spice_Model_Hame: d_pullup C_Function_Name:

cm_d_pullup

Description:

"digital pullup resistor"

PORT_TABLE:

Port_Name:

Description:

out "output"

Direction: Default_Type: out

Allowed_Types: [d] Vector:

Vector_Bounds:

no

Wull_Allowed: no

PARAMETER_TABLE:

Parameter_Name:

load

"load value (F)"

Description: "load Data_Type: real

Default_Value: 1.0e-12

Limits: Vector:

Vector_Bounds:

no

Null_Allowed: yes

Interface Design Code Model Library

3.5.3.11 Pulldown

WAME_TABLE:

Spice_Model_Hame: d_pulldown C_Function_Hame: cm_d_pulldown

Description: "digital pulldown resistor"

PORT_TABLE:

Port_Name: out
Description: "output"
Direction: out
Default_Type: d
Allowed_Types: [d]
Vector: no
Vector_Bounds: Mull_Allowed: no

PARAMETER_TABLE:

Parameter_Name: load

Description: "load value (F)"

Data_Type: real
Default_Value: 1.0e-12

Limits: Vector: no
Vector_Bounds: Mull_Allowed: yes

3.5.3.12 D Flip Flop

HAME_TABLE:

C_Function_Hame: cm_d_dff
Spice_Model_Hame: d_dff

Description: "digital d-type flip flop"

PORT_TABLE:

clk data Port_Name: "clock" "input data" Description: Direction: in in Default_Type: [d] [d] Allowed_Types: no Vector: Vector_Bounds: Mull_Allowed: no

PORT_TABLE:

Port_Name: set reset

Description: "asynch. set" "asynch. reset"

Direction: in in

Default_Type: d d

Allowed_Types: [d] [d]

Vector: no no

Vector_Bounds: -
Bull_Allowed: yes yes

PORT_TABLE:

Port_Name: out Nout

Description: "data output" "inverted data output"

Direction: out out

Default_Type: d d

Allowed_Types: [d] [d]

Vector: no no

Vector_Bounds: -
Bull_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Name: clk_delay - set_delay

Description: "delay from clk" "delay from set"

 Data_Type:
 real
 real

 Default_Value:
 1.0e-9
 1.0e-9

 Limits:
 [1e-12 -]
 [1e-12 -]

 Vector:
 no
 no

 Vector_Bounds:

 Hull_Allowed:
 yes
 yes

PARAMETER_TABLE:

Parameter_Name: reset_delay ic

Description: "delay from reset" "output initial state"

PARAMETER_TABLE:

Parameter_Name: rise_delay fall_delay Description: "rise delay" "fall delay" Data_Type: real real Default_Value: 1.0e-9 1.0e-9 Limits: [1e-12 -] [1e-12 -] Vector: no no Vector_Bounds: Mull_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Name: data_load clk_load

Description: "data load value (F)" "clk load value (F)"

 Data_Type:
 real
 real

 Default_Value:
 1.0e-12
 1.0e-12

 Limits:

 Vector:
 no
 no

 Vector_Bounds:

 Hull_Allowed:
 yes
 yes

PARAMETER_TABLE:

Parameter_Wame: set_load reset_load

Description: "set load value (F)" "reset load value (F)"

 Data_Type:
 real
 real

 Default_Value:
 1.0e-12
 1.0e-12

 Limits:

 Vector:
 no
 no

Interface Design Code Model Library

Vector_Bounds:

Hull_Allowed: y

yes

yes

3.5.3.13 JK Flip Flop

MAME_TABLE:

C_Function_Wame: cm_d_jkff
Spice_Model_Wame: d_jkff

Description: "digital jk-type flip flop"

PORT_TABLE:

Port_Name: "j input" "k input" Description: Direction: in in Default_Type: ď d [d] [d] Allowed_Types: Vector: no Vector_Bounds: Null_Allowed: no

PORT_TABLE:

Port_Name: clk
Description: "clock"
Direction: in
Default_Type: d
Allowed_Types: [d]
Vector: no
Vector_Bounds: Hull_Allowed: no

PORT_TABLE:

Port_Name: set reset "asynch. set" "asynch. reset" Description: Direction: in in Default_Type: Allowed_Types: [b] [4] Vector: no no Vector_Bounds:

PORT_TABLE:

Mull_Allowed:

Port_Name: out Nout

yes

Description: "data output" "inverted data output"

yes

Direction:	out	out
Default_Type:	ď	đ
Allowed_Types:	[4]	[d]
Vector:	no	no
Vector_Bounds:	-	-
Hull_Allowed:	yes	yes

PARAMETER_TABLE:

Parameter_Hame:	clk_delay	set_delay
Description:	"delay from clk"	"delay from set"
Data_Type:	real	real
Default_Value:	1.0e-9	1.0e-9
Limits:	[1e-12 -]	[1e-12 -]
Vector:	no	no
Vector_Bounds:	-	-
Hull_Allowed:	yes	yes

PARAMETER_TABLE:

Parameter_Name:	reset_delay	ic
Description:	"delay from reset"	"output initial state"
Data_Type:	real	int
Default_Value:	1.0e-9	0
Limits:	[1e-12 -]	[0 2]
Vector:	no	no
Vector_Bounds:	-	-
Mull_Allowed:	уев	yes

PARAMETER_TABLE:

Parameter_Name:	rise_delay	fall_delay
Description:	"rise delay"	"fall delay"
Data_Type:	real	real
Default_Value:	1.0e-9	1.0e-9
Limits:	[1e-12 -]	[1e-12 -]
Vector:	no	no
Vector_Bounds:		-
Hull_Allowed:	yes	yes

PARAMETER_TABLE:

Parameter_Name:	<pre>jk_load "j,k load values (F)"</pre>	<pre>clk_load "clk load value (F)"</pre>
Description: Data_Type:	real	real
Default_Value:	1.0e-12	1.0e-12
Limits:	-	•
Vector:	no	no

Interface Design Code Model Library

Vector_Bounds: Mull_Allowed:

yes

yes

PARAMETER_TABLE:

Parameter_Hame:

set_load

reset_load

Description:

"set load value (F)" "reset load value (F)"

Data_Type: Default_Value:

real 1.0e-12 real

Limits:

no

1.0e-12 no

Vector: Vector_Bounds: Null_Allowed: yes

yes

3.5.3.14 Toggle Flip Flop

MAME_TABLE:

C_Function_Hame: cm_d_tff
Spice_Hodel_Hame: d_tff

Description: "digital toggle flip flop"

PORT_TABLE:

clk Port_Name: "toggle input" "clock" Description: Direction: in in Default_Type: d d [d] Allowed_Types: [d] Vector: no no Vector_Bounds: Mull_Allowed: no

PORT_TABLE:

Port_Name: set reset

Description: "asynch. set" "asynch. reset"

Direction: in in

Default_Type: d d

Allowed_Types: [d] [d]

 Allowed_Types:
 [d]
 [d]

 Vector:
 no
 no

 Vector_Bounds:

 Bull_Allowed:
 yes
 yes

PORT_TABLE:

Port_Name: out Nout

Description: "data output" "inverted data output"

PARAMETER_TABLE:

Parameter_Name: clk_delay set_delay

Description: "delay from clk" "delay from set"

real real Data_Type: Default_Value: 1.04-9 1.0e-9 Limits: [1e-12 -] [1e-12 -] Vector: no no Vector_Bounds: Mull_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Hame: reset_delay ic

Description: "delay from reset" "output initial state"

Data_Type: real int 1.0e-9 Default_Value: 0 Limits: [1e-12 -] [0 2] Vector: no no Vector_Bounds: _ Hull_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Name: rise_delay fall_delay "fall delay" Description: "rise delay" Data_Type: real real Default_Value: 1.0e-9 1.0e-9 Limits: [1e-12 -] [1e-12 -] Vector: no no Vector_Bounds: Mull_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Name: t_load clk_load

Description: "toggle load value (F)" "clk load value (F)".

 Data_Type:
 real
 real

 Default_Value:
 1.0e-12
 1.0e-12

 Limits:

 Vector:
 no
 no

 Vector_Bounds:

 Hull_Allowed:
 yes
 yes

PARAMETER_TABLE:

Parameter_Name: set_load reset_load

Description: "set load value (F)" "reset load value (F)"

Data_Type: real real
Default_Value: 1.0e-12 1.0e-12

XSPICE Code Model Subsystem Interface Design Document

Vector_Bounds:
Mull_Allowed:

yes

yes

90

3.5.3.15 Reset-Set Flip Flop

MAME_TABLE:

C_Function_Wame: cm_d_srff
Spice_Model_Wame: d_srff

Description: "digital set-reset flip flop"

PORT_TABLE:

Port_Name: "s input" "r input" Description: Direction: in in Default_Type: đ d [d] [4] Allowed_Types: Vector: no no Vector_Bounds: Mull_Allowed: no

PORT_TABLE:

Port_Name: clk

Description: "clock"

Direction: in

Default_Type: d

Allowed_Types: [d]

Vector: no

Vector_Bounds:
Hull_Allowed: no

PORT_TABLE:

Port_Name: set reset

Description: "asynch. set" "asynch. reset"

Direction: in in

Default_Type: d d

Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - Eull_Allowed: yes yes

PORT_TABLE:

Port_Name: out Nout

Description: "data output" "inverted data output"

Interface Design Code Model Library

Direction:	out	out
Default_Type:	ď	đ
Allowed_Types:	[d]	[d]
Vector:	no	no
Vector_Bounds:	-	-
Hull_Allowed:	yes	yes

PARAMETER_TABLE:

Parameter_Hame:	clk_delay	set_delay
Description:	"delay from clk"	"delay from set"
Data_Type:	real	real
Default_Value:	1.0e-9	1.0e-9
Limits:	[1e-12 -]	[1e-12 -]
Vector:	no	no
Vector_Bounds:	-	-
Null_Allowed:	yes	yes

PARAMETER_TABLE:

Parameter_Wame: Description: Data_Type: Default_Value:	reset_delay "delay from reset" real 1.0e-9	int O
Limits:	[1e-12 -]	[0 2]
Vector:	no	no
Vector_Bounds:	-	-
Mull_Allowed:	Yes	y es
Mull_Allowed.	Jes	, 00

PARAMETER_TABLE:

Parameter_Name:	rise_delay	fall_delay
Description:	"rise delay"	"fall delay"
Data_Type:	real	real
Default_Value:	1.0e-9	1.0e-9
Limits:	[1e-12 -]	[1e-12 -]
Vector:	no	no
Vector_Bounds:	-	-
Hull_Allowed:	yes	yes

PARAMETER_TABLE:

Parameter_Name:	sr_load	clk_load
Description:	"s,r load values (F)"	"clk load value (F)"
Data_Type:	real	real
Default_Value:	1.0e-12	1.0e-12
Limits:	-	-
Vector:	no	no

XSPICE Code Model Subsystem Interface Design Document

Vector_Bounds:
Mull_Allowed:

yes

yes.

PARAMETER_TABLE:

Parameter_Name:

set_load

reset_load

Description:

"set load value (F)"

"reset load value (F)"

Data_Type:

real

real

Default_Value: Limits: 1.0e-12

1.0e-12

Vector: Vector_Bounds: no yes no yes

Wull_Allowed:

3.5.3.16 D Latch

MAME_TABLE:

C_Function_Name:
Spice_Model_Name:

cm_d_dlatch
d_dlatch

Description:

"digital d-type latch"

PORT_TABLE:

enable data Port_Name: "input data" "enable" Description: in in Direction: ď Default_Type: [d] [d] Allowed_Types: no Vector: no Vector_Bounds: Mull_Allowed: no no

PORT_TABLE:

reset Port_Name: set "asynch. set" "asynch. reset" Description: Direction: in Default_Type: [d] Allowed_Types: [d] Vector: no no Vector_Bounds: Null_Allowed: yes yes

PORT_TABLE:

Nout out Port_Name: "data output" "inverted data output" Description: out Direction: out ď Default_Type: d [d] Allowed_Types: [d] no Vector: no Vector_Bounds: yes yes Mull_Allowed:

PARAMETER_TABLE:

Parameter_Name: data_delay

Description: "delay from data"

Data_Type: real
Default_Value: 1.0e-9
Limits: [1e-12 -]
Vector: no

Vector_Bounds: Hull_Allowed: yes

PARAMETER_TABLE:

enable_delay set_delay Parameter_Name: "delay from clk" "delay from set" Description: real real Data_Type: Default_Value: 1.0e-9 1.0e-9 [1e-12 -] [1e-12 -] Limits: Vector: no no Vector_Bounds: Mull_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Name: reset_delay ic

Description: "delay from reset" "output initial state"

 Data_Type:
 real
 int

 Default_Value:
 1.0e-9
 0

 Limits:
 [1e-12 -]
 [0 2]

 Vector:
 no
 no

 Vector_Bounds:

 Hull_Allowed:
 yes
 yes

PARAMETER_TABLE:

fall_delay Parameter_Name: rise_delay Description: "rise delay" "fall delay" Data_Type: real real 1.0e-9 1.0e-9 Default_Value: [1e-12 -] [1e-12 -] Limits: Vector: no no

Vector_Bounds: - - - Bull_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Name: data_load enable_load

Description: "data load value (F)" "clk load value (F)"

 Data_Type:
 real
 real

 Default_Value:
 1.0e-12
 1.0e-12

XSPICE Code Model Subsystem Interface Design Document

Vector_Bounds: - - yes yes

PARAMETER_TABLE:

Parameter_Name: set_load reset_load

Description: "set load value (F)" "reset load value (F)"

Data_Type: real real
Default_Value: 1.0e-12 1.0e-12
Limits:

Vector: no no
Vector_Bounds: - Eull_Allowed: yes yes

3.5.3.17 Set-Reset Latch

MAME_TABLE:

C_Function_Name: cm_d_srlatch
Spice_Model_Name: d_srlatch

Description: "digital sr-type latch"

PORT_TABLE:

Port_Name: Description: "s input" "r input" Direction: in in Default_Type: đ Allowed_Types: [d] [d] Vector: no no Vector_Bounds: Mull_Allowed: no no

PORT_TABLE:

Port_Name: enable
Description: "enable"
Direction: in
Default_Type: d
Allowed_Types: [d]
Vector: no
Vector_Bounds: Wull_Allowed: no

PORT_TABLE:

Port_Name: set reset

Description: "asynch. set" "asynch. reset"

Direction: in in

Default_Type: d d

 Default_Type:
 d
 d

 Allowed_Types:
 [d]
 [d]

 Vector:
 no
 no

 Vector_Bounds:

 Hull_Allowed:
 yes
 yes

PORT_TABLE:

Port_Name: out Nout

Description: "data output" "inverted data output"

XSPICE Code Model Subsystem Interface Design Document

Direction:	out	out
Default_Type:	đ	đ
Allowed_Types:	[4]	[4]
Vector:	no	no
Vector_Bounds:	-	-
Mull_Allowed:	yes	yes

PARAMETER_TABLE:

Parameter_Hame: sr_delay

Description: "delay from s or r input change"

Hull_Allowed: yes

PARAMETER_TABLE:

Parameter_Name: enable_delay set_delay Description: "delay from clk" "delay from set" Data_Type: real real Default_Value: 1.0e-9 1.0e-9 Limits: [1e-12 -] [1e-12 -] Vector: no no Vector_Bounds: yes Mull_Allowed: yes

PARAMETER_TABLE:

Parameter_Name: reset_delay ic

Description: "delay from reset" "output initial state"

Data_Type: real int Default_Value: 1.0e-9 Limits: [1e-12 -] [0 2] Vector: no no Vector_Bounds: _ Mull_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Name: rise_delay fall_delay

Description: "rise delay" "fall delay"

Data_Type: real real

Default_Value: 1.0e-9 1.0e-9

Limits: [1e-12 -] [1e-12 -]

Vector: no no

XSPICE Code Model Subsystem Interface Design Document

PARAMETER_TABLE:

Parameter_Name: sr_load enable_load

Description: "s & r load values (F)" "clk load value (F)"

 Data_Type:
 real
 real

 Default_Value:
 1.0e-12
 1.0e-12

 Limits:

 Vector:
 no
 no

Vector_Bounds: - - Yes

Mull_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Name: set_load reset_load

Description: "set load value (F)" "reset load value (F)"

Data_Type: real real
Default_Value: 1.0e-12 1.0e-12

Limits: - - no no Vector_Bounds: - -

Hull_Allowed: yes yes

3.5.3.18 State Machine

MAME_TABLE:

C_Function_Name:
Spice_Model_Name:

cm_d_state
d_state

Description:

"digital state machine"

PORT_TABLE:

Port_Name: in clk "input" "clock" Description: Direction: in in Default_Type: [d] Allowed_Types: [d] Vector: yes no Vector_Bounds: Hull_Allowed: no yes

PORT_TABLE:

Port_Name: reset out Description: "reset" "output" Direction: in out Default_Type: ď ď Allowed_Types: [d]
Vector: no [d] yes Vector_Bounds: [1 -] -Null_Allowed: yes no

PARAMETER_TABLE:

Parameter_Wame: clk_delay reset_delay

Description: "delay from CLK" "delay from reset"

PARAMETER_TABLE:

Parameter_Name: state_file

Description: "state transition specification file name"
Data_Type: string

Default_Value: "state.txt"

Limits: Vector: no Vector_Bounds: Mull_Allowed: no

PARAMETER_TABLE:

Parameter_Name: reset_state

"default state on RESET & at DC" int Description:

Data_Type: Default_Value: Limits: Vector: no Vector_Bounds: no Mull_Allowed:

PARAMETER_TABLE:

Parameter_Name: input_load

"input loading capacitance (F)" Description:

Data_Type: real Default_Value: 1.0e-12 Limits: Vector: no

Vector_Bounds: Mull_Allowed: no

PARAMETER_TABLE:

clk_load Parameter_Name:

Description: "clock loading capacitance (F)"

Data_Type: real Default_Value: 1.0e-12

Limits: Vector: no Vector_Bounds: Mull_Allowed: no

Interface Design Code Model Library

PARAMETER_TABLE:

reset_load Parameter_Name:

Description: "reset loading capacitance (F)"
Data_Type: real

Default_Value: 1.0e-12

Limits:

no Vector: Vector_Bounds: Hull_Allowed: no

3.5.3.19 Frequency Divider

MAME_TABLE:

cm_d_fdiv C_Function_Name: Spice_Model_Hame: d_fdiv

"digital frequency divider" Description:

PORT_TABLE:

Port_Name:

freq_in freq_out
"frequency input" "frequency output" Description:

out Direction: in Allowed_Types: [d]
Vector: [d] no Vector_Bounds: Wull_Allowed: no no

PARAMETER_TABLE:

high_cycles Parameter_Name: div_factor

Description: "divide factor" "number of high clock cycles"

int Data_Type: int Default_Value: 2 [1 -] Limits: [1 -] Vector: no no Vector_Bounds: Hull_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Name: i_count

"output initial count value" Description:

int Data_Type: Default_Value: [0 -] Limits: Vector: no Vector_Bounds: Bull_Allowed: yes Vector_Bounds:

PARAMETER_TABLE:

fall_delay Parameter_Hame: rise_delay fall_uell,
"fall delay" "rise delay" Description:

real Data_Type: real

XSPICE Code Model Subsystem Interface Design Document

Interface Design Code Model Library

Default_Value: 1.0e-9 1.0e-9 Limits: [1e-12 -] [1e-12 -]

Vector: no no
Vector_Bounds:
Eull_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Hame: freq_in_load

Description: "freq_in load value (F)"
Data_Type: real

Data_Type: real
Default_Value: 1.0e-12
Limits: -

Limits: Vector: no
Vector_Bounds: Hull_Allowed: yes

3.5.3.20 RAM

MAME_TABLE:

C_Function_Hame: cm_d_ram Spice_Hodel_Hame: d_ram

Description: "digital random-access memory"

PORT_TABLE:

Port_Name: data_in data_out

Description: "data input line(s)" "data output line(s)"

 Direction:
 in
 out

 Default_Type:
 d
 d

 Allowed_Types:
 [d]
 [d]

 Vector:
 yes
 yes

 Vector_Bounds:
 [i -]
 [1 -]

 Null_Allowed:
 no
 no

PORT_TABLE:

Port_Name: address write_en Description: "address input line(s)" "write enable" Direction: in in Default_Type: đ [d] Allowed_Types: [d] Vector: no yes Vector_Bounds: [1 -]

no

PORT_TABLE:

Mull_Allowed:

Port_Name: select

Description: "chip select line(s)"

no

Direction: in
Default_Type: d
Allowed_Types: [d]
Vector: yes
Vector_Bounds: [i 16]
Hull_Allowed: no

PARAMETER_TABLE:

Parameter_Name: select_value

Description: "decimal active value for select line comparison"

Interface Design Code Model Library

XSPICE Code Model Subsystem Interface Design Document

Data_Type: int Default_Value: 1

Limits: [0 32767]

Vector: no
Vector_Bounds: Bull_Allowed: yes

PARAMETER_TABLE:

Parameter_Name: ic

Description: "initial bit state € DC"

Data_Type: int
Default_Value: 2
Limits: [0 2]
Vector: no
Vector_Bounds: Bull_Allowed: yes

PARAMETER_TABLE:

Parameter_Name: read_delay

Description: "read delay from address/select/write_en active"

Data_Type: real
Default_Value: 100.0e-9
Limits: [1e-12 -]

Vector: no
Vector_Bounds: Bull_Allowed: yes

PARAMETER_TABLE:

Parameter_Name: data_load address_load

Description: "data_in load value (F)" "address line load value (F)"

 Data_Type:
 real
 real

 Default_Value:
 1.0e-12
 1.0e-12

 Limits:

 Vector:
 no
 no

 Vector Bounds:

PARAMETER_TABLE:

Parameter_Name: select_load enable_load

Description: "select load value (F)" "enable line load value (F)"

Data_Type: real real
Default_Value: 1.0e-12 1.0e-12

 XSPICE Code Model Subsystem Interface Design Document

Interface Design Code Model Library

Vector_Bounds: Mull_Allowed:

yes

yes

XSPICE Code Model Subsystem Interface Design Document

Interface Design Code Model Library

3.5.3.21 Digital Source

HAME_TABLE:

C_Function_Hame: cm_d_source
Spice_Model_Hame: d_source
Description: "digital signal source"

PORT_TABLE:

out "output" Port_Name: Description: Direction: out Allowed_Types: [d]
Vector: [d] yes Vector_Bounds: Mull_Allowed: no

PARAMETER_TABLE:

Parameter_Name: input_file

Description: "digital input vector filename"
Data_Type: string
Default_Value: "source.txt"

Limits: Vector:
Vector_Bounds: no Vector:

PARAMETER_TABLE:

Parameter_Name: input_load

Description: "input loading capacitance (F)"

real Data_Type: Default_Value: 1.0e-12

Limits: Vector: no Vector_Bounds: Mull_Allowed: no

3.6 User-Defined Node Library

The following two predefined user-defined node types are included in the User-Defined Node Library.

real int

Unlike the code models described above, there is no Interface Specification file associated with user-defined nodes. Instead, a structure of type 'Evt_Udn_Info_t' is placed at the bottom of the User-Defined Node Definition file by the utility 'mkudndir' when a user-defined node directory is created. This structure contains the type name for the node, a description string, and pointers to each of the functions that define the node.

The following subsections give the definition of the 'Evt_Udn_Info_t' structure associated with the 'real' and 'int' node types. The functions that define each of these user-defined nodes are documented in the Software Design Document for the XSPICE Code Model Subsystem of the Automatic Test Equipment Software Support Environment (ATESSE).

3.6.1 Real

```
Evt_Udn_Info_t udn_real_info =
    "real",
    "real valued data",

    udn_real_create,
    udn_real_dismantle,
    udn_real_initialize,
    udn_real_invert,
    udn_real_copy,
    udn_real_copy,
    udn_real_resolve,
    udn_real_plot_val,
    udn_real_print_val,
    udn_real_ipc_val
;
```

3.6.2 Int

;

```
"int",
"integer valued data",

udn_int_create,
udn_int_dismantle,
udn_int_initialize,
udn_int_invert,
udn_int_copy,
udn_int_resolve,
udn_int_compare,
udn_int_plot_val,
udn_int_print_val,
udn_int_ipc_val
```

4 Notes

4.1 Glossary

ATESSE	Automatic Test Equipment Software Support Environment. An integrated set of software tools designed to aid in development of programs for testing mixed-mode (analog/digital) printed circuit cards.
C	A programming language developed in the early 70's at Bell Labs. It is the standard programming language used for system development on Unix machines.
Code Model Library	The set of code models supplied with the XSPICE simulator.
Code Model Preprocessor	A code model development tool that assists in adding new code models to the XSPICE simulator. It is automatically run by 'make' to convert user-written files into C language source files that are compiled and linked with the simulator.
Code Model Toolkit	A set of tools that assist in adding new code models to the XSPICE simulator.
Interprocess Communication	Communication between two separate programs running simultaneously on one or more computers.
Make	A UNIX software development tool that automates the compilation and linking of a program.
Makefile	A file that instructs the UNIX make utility how to compile and link a program.

Notes Glossary XSPICE Code Model Subsystem Interface Design Document

malloc

A standard C library function for dynamically allocating

memory in a program.

Model Directory Generator A code model development tool that assists in adding new code models to the XSPICE simulator. It creates a directory

in which a code model will be created.

Simulator Directory Generator A code model development tool that assists in adding new code models to the XSPICE simulator. It creates a directory in which a copy of the simulator will be built.

SPICE

An analog simulation program developed at the University of

California at Berkeley.

User-Defined Node Directory

Directory Generator A development tool that assists in adding new user-defined nodes to the XSPICE simulator. It creates a directory in which a new node type will be created.

User-Defined Node Library The set of user-defined node types supplied with the XSPICE simulator.

XSPICE Code Model Subsystem Interface Design Document

4.2 Acronyms

ANSI American National Standards Institute

ATE Automatic Test Equipment

ATESSE Automatic Test Equipment Software Support Environment

CDRL Contract Deliverable Requirement List

CSCI Computer Software Configuration Item

IFS Interface Specification File

IPC Interprocess Communication

PUI Project Unique Identifier

PWL Piecewise-Linear

SPICE Simulation Program with Integrated Circuit Emphasis

UDN User-Defined Node

XSPICE Extended SPICE

4.3 Project Unique Identifiers

This section lists the Project Unique Identifiers (PUI) referred to in this document.

	-									
CM-SI-IN	Interface bet	ween	the	Cod	le :	Model	(CM)	Subsystem	and	the
O111 D1 11 1		_	_			(01)				

ATESSE Simulator Interface (SI).

CM-SI-OUT Interface between the Code Model (CM) Subsystem and the

ATESSE Simulator Interface (SI).

SIM-CM-IN Interface between the Simulator (SIM) and the Code Model

Subsystem (CM). This interface is defined in the Interface

Design Document for the Simulator of the ATESSE.