```
Introducción:
```

Qué es un algoritmo? Es un conjuto de reglas muy específicas que describen cómo realizar ma tarea. Un algoritmo es más que una "tarea a realitar" es una receta de como hacerla (y prede haben mucha. necetas dishitas por el mismo objetivo) Ejemplo: (Multiplicación de enteros) Dados dos enteros x, y queremos calcular a producto x.y INPUT: enkos x,g de _____ OUTPUT:
longitud n algortus x.y Algo 1: (del colegio) 5678 22712cn 17034 11356 5678 7006.6 5 2 (1) Siempre leva a respusta corecta? [Correct NESS] PREGUNTAS: (2) Cuantus operaciones requiere? multiplicar dos entres de logitudos \(\frac{1}{2}n + \frac{1}{2}n + \hdots n-veces , cada región sumas requirio < n mult y (n sumas) filas inkenedias multiplicado Trabajo cece cuadraticonente & dipheanos la long. ~ 4x talejo 3× long mos 9x " (3) Es esto lo mejor posible? O habri maneras "prejeribles" tipicanto queeno solvienes mas exicutes peo no siempre, a veces knems otros

robustez, etc...).

```
Oto método: (recursión)
    Suponga que N=2 (qu'hito xiy a potin gh z)
    def product (x, y):

If length (x) = 1:
         else:
               a,b = Principal y seguda mitades de <math>x = (5678)

c,d = Principal y y y
                 Calculanos recursivamento
                         ac := poduct (a, c)
                          ad := product (a,d)
                          bc = poduct (b, c)
                          bd := podret (b,d)
               Con algo de sumas del colegio calculumos
                  10°. (ac) + 10° [ad+bc] + bd
(1) Es un método conecto? Si porque
      x = 10^{\frac{n}{2}} a + b as i \in s como funciona y = 10^{\frac{n}{2}} c + d el sistema decimal...
       x \cdot y = 10^{n} ac + 10^{\frac{n}{2}} ad + 10^{\frac{n}{2}} bc + bd
= (10^{n} ac + 10^{\frac{n}{2}} [ad + bc] + bd + extitant x \cdot y
  (2) Cvántus operaciones? ... Ya veremos després
   (3) Es óptimo? Obs: Para el catalo solo nos intresa
          ad + bc pero no ad y bc individualment
          IDEA: [gauss]
             (a+b)\cdot(c+d) - a\cdot c - b\cdot d = ad + bc
                         y no 4 (a.c., b.d, ad y b.c)
```

Otro metodo [KARATSUBA] (1) $a \cdot c = 56 \times 78 = 672$ (2) $b \cdot d = 78 \times 34 = 2652$ (3) $(a+b) \cdot (c+d) = 134 \times 46 = 6164$ (4) (3)-(1)-(2)=6164-672-2652=2840(5) $10^4(1) + 10^2(4) + (2) = 6720000 + 284000 + 2652 = 7006652$ Demostremos que el núneo de operaciones del algoritmo de Karatsuloa es & C n^{1.59}, mucho mejor que 4 n² para n gode. Ejempo 2: [Merge Sort] INPUT: Lista de n entros distritos 54187263 Outrut: Lista de los mismos n entros, escritos en orden creciente. 12345678 Algortmo [Merge sort, canaido en 1945 John Von Newmann] 5418 7263 7263 5418 12345678 La parte más intresente es merge (C, D) INPUT: Listas ardenadas C, D de lagghod no cada uno OUTPUT: Lista ordinada con entradas CUD.

Esta obs lleva a oho método...

el tiempo de ejecución
Para nuesto análisis de Valgoitmos seguiemos
Vaios pincipios:
(1) Queremos tener una cota que sea "worst-case" analysis
(válida pou todos los in pets de una longitad dada)
(2) Queenos garar una descripción "a vuelo de pajaro"
(2) Queenos garar una descripción "a vielo de pajaro" (big picture) (ejemplo 4l + 2 < 6l)) que ignare constitus y característicos popias
que ignare constitus y características popias
de la implementacion
(3) Queremos entender comportamiento asintófico
(n log (n) + 1000 () N ²) A pour valors gards de M
pou valois gardes de n
"Un algoritmo es rápido si su tiempo de ejecución
crece lentamente con el tamaño del input
incluso en el peo- de los casos as into hicarente" (par inputs genda).
(par uput grand).
Formalismo de notación O-gande
Sea T: N -> N
Def:
T(n) ~ O(f(n) (=>] CER>0, n, EN
tal que $T(n) \leq C f(n)$, si $n \geq n$
"T es <u>eventualmente</u> menor que <u>un multiplo</u> de f "
de f "
IMPORTANTE: C y no no dependen de n.
Def: De manua remejante, para cotas inferiores decinos
T(n) ~ S2(g(n) => = E ER>0, NO EIN
tal que T(n) > Eg(n) si n> no.
"T es eventialmente mas aande ave un multiple de q'

Def:
$$T(n) \sim \Theta(g(n)) \iff T(n) = \Omega(g(n))$$

"There el mismo and asintotico que g"

Ejemplo: Si $T(n) = n^k + a_{k-1}n^{k-1} + \dots + a_1$

es un polironio entrus

 $T \sim \Theta(n^k)$

Ejemplo:

max { f (n) g(n)} $\sim \Theta(f(n) + g(n))$