What happens for inequality constraints?

- * minimize f(x) such that $g_1(x) \leq 0, ..., g_k(x) \leq 0$.
- \star not all inequality constraints play the same role: at the point x the constraint i is said to be active if $g_i(x) = 0$.
- \star if a constraint g_i (where g_i is C^1) is inactive at a minimizer x^* then $g_i(x) < 0$ in a neighborhood of x^*
- \star if x^* is a minimizer of f(x) under the constraints g_i and $g_i(x^*) < 0$ then g_i does not impose any restriction on f locally: ignoring it produces the same result (locally)
- \star equality constraints generally produced surfaces while inequality constraints can just give bunded regions of \mathbb{R}^n .

Beniamin Bogosel Computational Maths 2 30/62

Qualification of constraints

- \star denote by $I(x) = \{i \in \{1, ..., k\} : g_i(x) = 0\}$ be the indices of active constraints at x
- \star we say that the constraints are qualified at x if the gradients $(\nabla g_i(x))_{i \in I(x)}$ are linearly independent!
- \star geometrically, as in the equality constraints case, if the constraints are qualified at x then we may define a proper tangent space using the family $(\nabla g_i(x))_{i\in I(x)}$
- \star **Special case:** if all g_i are affine constraints then they are automatically qualified. Why?
 - in this case the constraints also define the tangent space themselves
 - the linear independence of the gradients at a point x is equivalent to the removal of redundant constraints

Beniamin BOGOSEL Computational Maths 2 31/62

Optimality conditions: inequalities

Theorem 4

Let x^* be a local minimizer for the inequality constrained problem $\min_{g(x) \le 0} f(x)$

and suppose that the constraints are qualified at x^* . Then the following affirmations are true:

• There exists a uniquely defined vector of Lagrange multipliers $\lambda_i^* \geq 0$, i = 1, ..., k such that

$$\nabla f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla g_i(x^*) = 0.$$

- Moreover, if $g_i(x^*) < 0$ then $\lambda_i = 0$, also called the complementary slackness relations. Equivalent formulation: $\lambda_i g_i(x^*) = 0$.
- \star why are Lagrange multipliers non-negative in this case? x^* would like to "get out of the constraints" to increase the value of f
- \star if x^* is an interior point for $g(x) \leq 0$ then simply $\nabla f(x^*) = 0$

Benjamin Bogosel Computational Maths 2 32/62

Example: qualification of constraints

Consider the set

$$k = \{x = (x_1, x_2) \in \mathbb{R}^2 : -x_1 \le 0, -x_2 \le 0, -(1 - x_1)^3 + x_2 \le 0\}.$$

- * Maximize $J(x) = x_1 + x_2$ for $x \in K$.
- \star making a drawing we find that immediately that the solutions are (0,1) and (1,0).
- * let's check if we can write the optimality condition at the two points:
 - (1,0): constraints not qualified: unable to write the opt. cond
 - (0,1): constraints qualified: the optimality condition can be written!

Beniamin BOGOSEL Computational Maths 2 33/62

The Lagrangian - inequality case

- \star the optimality conditions obtained involve the gradient of the objective function and the constraints.
- \star the optimality condition can be written as the gradient of a function combining the objective and the constraints called the Lagrangian: $\mathcal{L}: \mathbb{R}^n \times \mathbb{R}^m_+$

$$\mathcal{L}(x,\lambda) = f(x) + \sum_{i=1}^{k} \lambda_i g_i(x) = f(x) + \lambda \cdot g(x).$$

 \star if x^* is a local minimum of f on the set $\{g(x) \leq 0\}$ then the optimality condition tells us that there exists $\lambda^* \in \mathbb{R}_+^m$ such that

$$\frac{\partial \mathcal{L}}{\partial x}(x^*, \lambda^*) = 0$$
 and $\frac{\partial \mathcal{L}}{\partial \lambda}(x^*, \lambda^*) = 0$

 $\star \text{ moreover, } \sup_{\lambda \in \mathbb{R}^m_+} \mathcal{L}(x,\lambda) = \begin{cases} f(x) & \text{ if } g(x) \leq 0 \\ +\infty & \text{ otherwise} \end{cases} \text{ which gives}$

$$\min_{g(x) \leq 0} f(x) = \min_{x \in \mathbb{R}^n} \sup_{\lambda \in \mathbb{R}^m_+} \mathcal{L}(x, \lambda).$$

 \star the minimizer of f becomes a saddle point for the Lagrangian

Beniamin BOGOSEL Computational Maths 2 34/62

Come back to the optimal can problem

- \star Area of the can (to be minimized): $A(h,r) = 2\pi r^2 + 2\pi rh$
- * Volume of the can (constraint): $V(h,r) = \pi r^2 h$
- * finally we obtain the problem

$$\min_{V(h,r)\geq c} A(h,r).$$

- * the constraint will be active!
- \star write the optimality condition: find r and h in terms of λ and finish!

- \star in the end we find that the optimal can will have the height h equal to two times its radius r.
- * find now the optimal cup: only one of the two ends is filled with material!

Beniamin BOGOSEL Computational Maths 2 35/62

Saddle points

Definition 5

We say that $(u, p) \in U \times P$ is a saddle point of \mathcal{L} on $U \times P$ if $\forall q \in P \quad \mathcal{L}(u, q) \leq \mathcal{L}(u, p) \leq \mathcal{L}(v, p) \quad \forall v \in U$

- \star when fixing $p: v \mapsto \mathcal{L}(b,p)$ is minimal for v=u
- \star when fixing $u: q \mapsto \mathcal{L}(u,q)$ is minimal for q = p
- \star If J is the objective function and F defines the constraint set K (equality or inequality) then a saddle point (u, p) for the Lagrangian

$$\mathcal{L}(v,q) = J(v) + q \cdot F(v)$$

verifies that u is a minimum of J on K.

 \star moreover, if the Lagrangian is defined on an open neighborhood U of the constraint set K then we also recover the optimality condition

$$\nabla J(u) + \sum_{i=1}^m p_i \nabla F_i(u) = 0.$$

Beniamin BOGOSEL Computational Maths 2 36/62

Sufficient conditions

- * two options: go to the second order or use convexity
- \star it is not enough to look at the second order approximation of f on the tangent space! The curvature of the constraint can also play a role.
- \star the correct way is to look at the Hessian of the Lagrangian with respect to x, reduced to the tangent space!
- * in the convex case, for inequality constraints things are a little bit easier!
- \star why only for inequality constraints? Imagine that equality constraints can produce curved surfaces and the only way to have convexity there is if they are flat!
- \star why the choice $g_i(x) \leq 0$ as the definition of inequality constraints? Because if all g_i are convex functions then

$$K = \{x : g_i(x) \le 0, i = 1, ..., k\}$$
 is a convex set.

Beniamin BOGOSEL Computational Maths 2 37/62

Theorem 6 (Kuhn-Tucker)

Suppose that the functions $f, g_i, i = 1,...,k$ are C^1 and convex. Define K as the set $K = \{x : g_i(x) \le 0\}$ and introduce the Lagrangian

$$\mathcal{L}(v,q) = f(v) + q \cdot g(v), \ v \in \mathbb{R}^n, q \in \mathbb{R}_+^k.$$

Let x^* be a point of K where the constraints are qualified. Then the following are equivalent:

- x^* is a global minimum of f on K
- ullet there exists $\lambda^* \in \mathbb{R}^m$ such that (x^*, λ^*) is a saddle point for the Lagrangian
- $g(x^*) \le 0$, $\lambda^* \ge 0$, $\lambda^* \cdot F(x^*) = 0$, $\nabla f(x^*) + \sum_{i=1}^k \lambda_i^* \nabla g_i(x^*) = 0$.

 \star why the reverse implication works? When $q \geq 0$ the Lagrangian

$$\mathcal{L}(v,q) = f(v) + q \cdot g(v), \ v \in \mathbb{R}^n, q \in \mathbb{R}_+^k$$

is convex when f and $g = (g_i)$ are convex!

* particular case: affine equalities! convex and qualified!

Beniamin BOGOSEL Computational Maths 2 38/62

Handle the constraints numerically

- * we already saw two methods:
 - projected gradient algorithm:

$$x_{i+1} = \mathsf{Proj}_K(x_i - t \nabla f(x_i))$$

ullet penalization: include the constraint $\{g=0\}$ in the objective

$$\min f(x) + \frac{1}{\varepsilon}g(x)^2$$

- * we saw that the projection is not explicit in most cases! In the meantime we learned how to solve non-linear equations. Imagine the following algorithm:
 - Compute x_i and the projection d_i of $-\nabla f(x_i)$ on the tangent space (orthogonal of $(\nabla g_i(x_i))$)
 - advance in the direction of d_i : $x_{i+1} = x_i + \gamma_i d_i$
 - project x_{i+1} on the set of constraints using the Newton method

Beniamin BOGOSEL Computational Maths 2 39/62

Conclusion on Lagrange multipliers

- we may obtain necessary optimality conditions involving equality and inequality constraints: the gradient of f is a linear combination of the gradients of the constraints
- the gradients of the constraints need to be linearly independent at the optimum: proper definition of the tangent space!
- for inequality constraints only the active constraints come into play in the optimality condition
- sufficient conditions can be found in the convex case: Kuhn-Tucker theorem
- the theory gives new ways to handle constraints numerically

Beniamin Bogosel Computational Maths 2 40/62

Constrained optimization

- General theoretical and practical aspects
- A quick intro to linear programming

Beniamin Bogosel Computational Maths 2 41/62

Linear programming

- * maximizing or minimizing a linear function subject to linear constraints!
- ⋆ Example:

$$\max(x_1+x_2)$$

such that $x_1 > 0$, $x_2 > 0$ and

$$x_1 + 2x_2 \le 5$$

 $5x_1 + 2x_2 \le 11$
 $-2x_1 + x_2 < 1$

* we have some non-negativity constraints and the main constraints

Beniamin BOGOSEL Computational Maths 2 42/62

 \star in dimension 2 we can solve the problem by plotting the objective function on the admissible set determined by the constraints!

 \star observe that in this case the solution is situated at the intersection of the lines $5x_1 + 2x_2 = 11$ and $x_1 + 2x_2 = 5$.

Beniamin BOGOSEL Computational Maths 2 43/62

Theoretical observations

- * the gradient of $f(x_1, x_2) = x_1 + x_2$ is (1, 1): it is constant and never zero!
- \star the set K determined by the linear constraints is convex
- \star the minimum or maximum cannot be attained in the interior of K, since $\nabla f(x) \neq 0$!
- \star the optimal value is on the boundary of K. Moreover there exists a vertex of the polygon where it can be found! Why?
 - start at a point x_0 inside K go against the gradient till you meet an edge
 - if the function is constant along an edge then the gradient of the function and the constraint are collinear at that point: Kuhn-Tucker Theorem says that we reached the solution!
 - otherwise, follow the direction where the function decreases till reaching a vertex. Then go to the next edge and repeat the previous reasoning.
 - the process will finish: finite number of edges!
- * same reasoning can be applied in higher dimensions: follow the anti-gradient direction till it is collinear to the gradient of the constraint or no further decrease is possible along further facets!

Beniamin BOGOSEL Computational Maths 2 44/62

Standard formulations

* The Standard Maximum Problem: Maximize $\mathbf{c}^t \mathbf{x} = c_1 x_1 + ... + c_n x_n$ subject to the constraints

$$a_{11}x_1 + \dots + a_{1n}x_n \leq b_1$$

$$\vdots \qquad \text{or } A\mathbf{x} \leq \mathbf{b}$$

$$a_{m1}x_1 + \dots + a_{mn}x_n \leq b_m$$

and $x_1 \geq 0, x_2 \geq 0, ..., x_n \geq 0$ or $\mathbf{x} \geq 0$

* The Standard Minimum Problem: Minimize $\mathbf{y}^t\mathbf{b} = y_1b_1 + ... + y_mb_m$ subject to the constraints

$$a_{11}y_1 + ... + a_{1m}y_m \ge c_1$$
 \vdots or $y^TA \ge \mathbf{c}^T$
 $a_{1n}y_1 + ... + a_{mn}y_m \ge c_n$
and $y_1 > 0, y_2 > 0, ..., y_m > 0$ or $\mathbf{v} > 0$

Benjamin Bogosel Computational Maths 2 45/62

- \star There are I production sites $P_1, ..., P_I$ which supply a product and J markets $M_1, ..., M_J$ to which the product is shipped.
- \star the site P_i contains s_i products and the market M_i must recieve r_i products.
- \star the cost of transportation from P_i to M_j is b_{ij}
- * the objective is to minimize the transportation cost while meeting the market requirements!
- \star denote by y_{ij} the quantity transported from P_i to M_i . Then the cost is

$$\sum_{i=1}^{I} \sum_{j=1}^{J} y_{ij} b_{ij}$$

* the constraints are

$$\sum_{j=1}^J y_{ij} \le s_i \text{ and } \sum_{i=1}^I y_{ij} \ge r_j.$$

Beniamin BOGOSEL Computational Maths 2 46/62

- \star There are I persons available for J jobs. The "value" of person i working 1 day at job j is a_{ii} .
- * Objective: Maximize the total "value"
- \star the variables are x_{ij} : the proportion of person i's time spent on job j
- \star the constraints are $x_{ii} \geq 0$

$$\sum_{j=1}^{J} x_{ij} \le 1, i = 1, ..., I \text{ and } \sum_{i=1}^{I} x_{ij} \le 1, \ j = 1, ..., J \le 1$$

- can't spend a negative amount of time at a job
- a person can't spend more than 100% of its time
- no more than one person working on a job

Beniamin Bogosel Computational Maths 2 47/62

Some Terminology

- * a point is said to be feasible if it verifies all the constraints
- * the set of feasible points is the constraint set
- \star a linear programming problem is feasible if the constraint set is non-empty. If this is not the case then the problem is infeasible
- \star every problem involving the minimization of a linear function under linear constraints can be put into standard form
 - you can change a "≥" inequality into "≤" by changing the signs of the coefficients
 - if a variable x_i has no sign restriction, write it as the difference of two new positive variables $x_i = u_i v_i, \ u_i, v_i \ge 0$
- \star it is possible to pass from inequality constraints to equality constraints (and the other way around)
 - Ax = b is equivalent to $Ax \le b$ and $Ax \ge b$
 - If $Ax \le b$ then add some slack variables $\mathbf{u} \ge 0$ such that Ax + u = b

Beniamin BOGOSEL Computational Maths 2 48/62

Duality in LP

Definition 7

The dual of the standard maximum problem

$$\begin{cases} \max \mathbf{c}^T \mathbf{x} \\ \text{s.t. } A\mathbf{x} \le \mathbf{b} \text{ and } \mathbf{x} \ge 0 \end{cases}$$

is the standard minimum problem

$$\begin{cases} \min \boldsymbol{y}^{\mathcal{T}}\boldsymbol{b} \\ \text{s.t. } \boldsymbol{y}^{\mathcal{T}}\boldsymbol{A} \geq \boldsymbol{c}^{\mathcal{T}} \text{ and } \boldsymbol{y} \geq 0 \end{cases}$$

Beniamin BOGOSEL Computational Maths 2 49/62

Example

⋆ consider the problem

$$\begin{array}{lll} \text{maximize} & x_1 + x_2 \\ \text{such that} & \mathbf{x} \geq 0 \\ & x_1 + 2x_2 & \leq & 5 \\ & 5x_1 + 2x_2 & \leq & 11 \\ & -2x_1 + x_2 & \leq & 1 \end{array}$$

* the dual problem is

minimize
$$5y_1 + 11y_2 + y_3$$

such that $\mathbf{y} \ge 0$
 $y_1 + 5y_2 - 2y_3 \ge 1$
 $2y_1 + 2y_2 + y_3 \ge 1$

Beniamin BOGOSEL Computational Maths 2 50/62

Relation between dual problems

Theorem 8

If ${\bf x}$ is feasible for the standard maximum problem and ${\bf y}$ is feasible for the dual problem then

$$\mathbf{c}^T \mathbf{x} \leq \mathbf{y}^T \mathbf{b}$$
.

* The proof is straightforward:

$$\mathbf{c}^T \mathbf{x} \leq \mathbf{y}^T A \mathbf{x} \leq \mathbf{y}^T \mathbf{b}$$
.

- * important consequences:
 - if the standard maximum problem and its dual are both feasible, they are bounded feasible: the optimal values are finite!
 - If there exist feasible \mathbf{x}^* and \mathbf{y}^* for the standard maximum problem and its dual such that $\mathbf{c}^T \mathbf{x}^* = \mathbf{y}^{*T} \mathbf{b}$ then both are optimal for their respective problems!

Theorem 9 (Duality)

If a standard linear programming problem is bounded feasible then so is its dual, their optimal values are equal and there exist optimal solutions for both problems.

Beniamin BOGOSEL Computational Maths 2 51/62

Solve LP problems numerically

- * the simplex algorithm: travel along vertices of the set defined by the constraints until no decrease is possible
- \star work with the matrix A and with vectors \mathbf{b} and \mathbf{c} and modify them using pivot rules: similar to the ones used when solving linear systems
- \star exploit the connection between the standard formulation and its dual
- * things get more complicated when we restrict the variables to be integers.
- This gives rise to integer programming!
- * algorithms solving the main types of LP problems are implemented in various Python packages: scipy.optimize.linprog, pulp.

Beniamin BOGOSEL Computational Maths 2 52/62

The simplex algorithm

* bring the problem to the case of equality constraints using slack variables

$$\sum_{j=1}^{n} a_{ij} x_j \leq b_i \Longleftrightarrow \sum_{j=1}^{n} a_{ij} x_j + s_i = b_i, s_i \geq 0$$

 \star any free variable $x_i \in \mathbb{R}$ should be replaced with $u_i - v_i$ with $u_i, v_i \geq 0$

* now we can solve

maximize
$$\mathbf{c}^T \mathbf{x}$$
 subject to $A\mathbf{x} = \mathbf{b}$ $\mathbf{x} \ge 0$

- \star start from the origin $\mathbf{x}=\mathbf{0}$ and go through the vertices of the polytype $A\mathbf{x}=\mathbf{b}$
- ★ at each step perform an operation similar to the Gauss elimination
- * Possible issues: cycling, numerical instabilities.

Beniamin BOGOSEL Computational Maths 2 53/62

Practical Example 1

* the first example of a standard maximum problem

$$\max(x_1 + x_2)$$

such that $x_1 \ge 0$, $x_2 \ge 0$ and

$$\begin{array}{rcl} x_1 + 2x_2 & \leq & 5 \\ 5x_1 + 2x_2 & \leq & 11 \\ -2x_1 + x_2 & \leq & 1 \end{array}$$

 \star we saw geometrically that the solution should be the intersection of $x_1 + 2x_2 = 5$ and $5x_1 + 2x_2 = 11$

Beniamin BOGOSEL Computational Maths 2 54/62

Practical Example 2

* An optimal assignment problem: n

	Job 1	Job 2	Job 3
Person 1	100€	120€	80€
Person 2	150€	110€	120€
Person 3	90€	80€	110€

- \star assign Person *i* to Job *j* in order to minimize the total cost!
- \star we can model the situation as an LP problem with 9 variables: $x_{ij}=1$ if and only if Person i has job j, $1 \le i, j \le 3$
- * the constraints are as follows:
 - $\sum_{i=1}^{3} x_{ij} = 1$: exactly one Person for Job j
 - $\sum_{i=1}^{3} x_{ij} = 1$: exactly one Job for Person i
- \star we should also impose that $x_i \in \{0,1\}$: no fractional jobs, but we'll neglect this condition and just suppose $x_i \geq 0$.
- * the cost is just

$$\sum_{1 \le i,j \le 3} c_{ij} x_{ij}$$

Beniamin BOGOSEL Computational Maths 2 55/62

Find the LP parameters

* let's look at the matrix of the problem: 9 variables and 6 constraints!

$$A = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

- \star the matrix c_{ij} is given by the table shown previously: the cost of every person per function \star the vector b is equal to 1 on every component
- * the solution is made of zeros and ones, without imposing this...
- \star this phenomenon always happens: if A is a totally unimodular matrix and b is made of integers then $Ax \leq b$ has all its vertices at points with integer coordinates

A matrix is totally unimodular if every square submatrix has determinant in the set $\{0,1,-1\}$.

Beniamin Bogosel Computational Maths 2 56/6

Practical Example 3

* solving a Sudoku with LP

								_
					3		8	5
		1		2				
			5		7			
		4				1		
	9							
5							7	3
		2		1				
				4				9

- \star Remember the rules: $\{1,2,3,4,5,6,7,8,9\}$ should be found on every line, column and 3×3 square
- \star in order to make this solvable via LP a different formulation should be used!
- ★ classical idea: use binary variables

Beniamin BOGOSEL Computational Maths 2 57/62

Sudoku in Binary variables

- * how to represent a Sudoku puzzle using 0s and 1s?
- * build a 3D array $X = (x_{ijk})$ of size $9 \times 9 \times 9$ such that

 $x_{ijk} = 1$ if and only if on position (i, j) we have the digit k; else $x_{ijk} = 0$

- * what are the constraints in this new formulation?
 - $x_{ijk} \in \{0,1\}$: again to be relaxed to $x_{ijk} \ge 0$ 729 constraints
 - fixing i, j: $\sum_{k=1}^{9} x_{ijk} = 1$ one number per cell 81 constraints
 - fixing i, k: $\sum_{i=1}^{9} x_{ijk} = 1 k$ appears exactly once on line i 81 constraints
 - fixing j, k: $\sum_{i=1}^{9} x_{ijk} = 1 k$ appears exactly once on column j 81 constraints
 - small 3×3 squares condition: for $u, v \in \{0, 3, 6\}$

$$\sum_{i=1}^{3} \sum_{j=1}^{3} x_{i+u,j+v,k} = 1, \ k = 1,...,9 - 81 \text{ constraints}$$

- the initial given information for the puzzle may be written in the form $s_{ii} = k$ for some i, j, k. This gives the constraints $x_{i,j,s_{ii}} = 1$.
- ★ we are interested in finding a feasible solution: no objective function is needed!

Beniamin Bogosel Computational Maths 2 58/62

Solving the Sudoku

- * a feasible solution can be found using the simplex algorithm
- * sometimes we may get non-integer results: apparently, the constraint matrix is not always a Totally Unimodular matrix
- * there are LP algorithms which will return integer solutions: integer programming
- * before solving we should check that the constraint matrix should be of maximal rank: eliminate redundant constraints
- \star we could also eliminate fixed variables: the data $s_{ij} = k$ should eliminate all unknowns with first index i, second index j or third index k!
- * if the solution is unique: the algorithm will find it
- \star if the solution is not unique: the algorithm will find one of the solutions. We may repeat with the constraint that the solution should be different than the previous one, until no other solutions are found!
- * check out the PuLP Python library: an example of Sudoku solver is given!

Beniamin BOGOSEL Computational Maths 2 59/62

Conclusions on LP

- minimize/maximize linear functions under linear constraints
- many practical applications from an industrial point of view!
- there exist optimizers which are vertices of the constraint set
- simplex algorithm: travel along vertices decreasing the objective function
- computational complexity: worst case is exponential: Klee-Minty cube
- polynomial-time average case complexity: most of the LP problems will be solved very fast!

Beniamin Bogosel Computational Maths 2 60/62

Conclusion of the course

- * numerical optimization (unconstrained case):
 - derivatives-free algorithms: no-regularity needed, slow convergence
 - gradient descent algorithms: linear convergence, sensitive to the condition number
 - Newton, quasi-Newton: super-linear convergence in certain cases
 - when dealing with large problems use L-BFGS
 - Conjugate Gradient: solve linear systems, better than GD
 - Gauss-Newton: useful when minimizing a non-linear least squares function
- * constrained case
 - for simple constraints: use the projected gradient algorithm
 - general smooth constraints: use the tangential part of the gradient and come back to the constraint set using the Newton method
 - other options available: SQP, etc...
 - Linear Programming: use specific techniques: the simplex algorithm → to be continued next year in the course dealing with Convex Optimization!

Beniamin BOGOSEL Computational Maths 2 61/62

Conclusion of the course

- know your options when looking at an optimization problem: choose the right algorithm depending on: the size of the problem, the number of variables, the regularity, the conditioning, etc.
- learn how to use existing solutions: scipy.optimize is a good starting point
- know how to code your own optimization algorithm if necessary: use gradients when possible, limit the number of function evaluations, choose a good stopping criterion, limit the number of iterations, etc.

Beniamin Bogosel Computational Maths 2 62/62