Project Design Phase-II Technology Stack (Architecture & Stack)

Date	31 January 3035	
Team ID	LTVIP2025TMID45044	
Project Name	traffictelligence: advanced traffic volume estimation with machine	
Maximum Marks	4 Marks	

Technical Architecture:

The Deliverable shall include the architectural diagram as below and the information as per the table 1 & table 2

Example: Order processing during pandemics for offline mode

Reference: https://developer.ibm.com/patterns/ai-powered-backend-system-for-order-processing-during-pandemics/

S.No	Component	Description	Technology
1.	User Interface		HTML, CSS
		Web interface where users input features to get traffic volume prediction	
2.	Application Logic-1	Backend logic to receive form data, load model, and return predictions	Flask,Python
3.	Application Logic-2	Preprocessing input and encoding categorical features (e.g., weather)	Scikit-learn encoder (joblib/pickle)
4.	Application Logic-3	Model prediction logic using trained ML model	Scikit-learn, Pandas, NumPy
5.	Database	Storing historical traffic data (CSV or tabular format)	(Optional) Hosting traffic data in a cloud
6.	Cloud Database		IBM DB2, IBM Cloudant etc.
		(Optional) Hosting traffic data in a cloud environment	
7.	File Storage	Model and encoder pickle files stored locally	Local File System
8.	External API-1	(Optional) Real-time weather information can be pulled to enhance predictions	IBM Weather API / OpenWeather API

9.	External API-2	Not applicable	Not used
10.	Machine Learning Model	Predict traffic volume based on weather/time features	Random Forest Regressor, Decision Tree, SVM
11.	Infrastructure (Server / Cloud)		local server.
		Application deployed locally using Flask	

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source Frameworks	Open-source libraries and frameworks used in model building and web development	Flask, Scikit-learn, Pandas, NumPy, Matplotlib
2.	Security Implementations	Model files and user inputs are locally handled; Flask provides route-based access. Optional: SHA-256 hashing	e.g. SHA-256, Encryptions, IAM Controls, OWASP etc.
3.	Scalable Architecture	Justify the scalability of architecture (3 – tier, Microservices)	3-Tier Architecture using Flask + REST API
4.	Availability	Justify the availability of application (e.g. use of load balancers, distributed servers etc.)	Nginx, Cloud Load Balancer (optional)
S.No	Characteristics	Description	Technology
5.	Performance	Design consideration for the performance of the application (number of requests per sec, use of Cache, use of CDN's) etc.	Flask multithreading,pickle loading

References:

https://c4model.com/ https://developer.ibm.com/patterns/online-order-processing-system-during-pandemic/ https://www.ibm.com/cloud/architecture https://aws.amazon.com/architecture https://medium.com/the-internal-startup/how-to-draw-useful-technical-architecture-diagrams-2d20c9fda90d