Отчет по лабораторной работе №5

Модель хищник-жертва

Лебедев Ярослав Борисович 2022 Mar 10th

Содержание

Цель работы	
Задание	
Теоретическое введение	
Выполнение лабораторной работы	
Выводы	10
Список литературы	11

Цель работы

Построить график зависимости численности хищников от численности жертв, а также графики изменения численности хищников и численности жертв. Найти стационарное состояние системы. Для этого написать программу в OpenModelica.

Задание

Вариант 15. Для модели «хищник-жертва»:

$$\frac{dx}{dt} = -0.22x(t) + 0.066x(t)y(t)$$

$$\frac{dy}{dt} = 0.66y(t) - 0.022x(t)y(t)$$

Постройте график зависимости численности хищников от численности жертв, а также графики изменения численности хищников и численности жертв при следующих начальных условиях:

$$x_0 = 7, y_0 = 15$$

. Найдите стационарное состояние системы [1].

Теоретическое введение

Простейшая модель взаимодействия двух видов типа «хищник — жертва» - модель Лотки-Вольтерры [2]. Данная двувидовая модель основывается на следующих предположениях:

- 1. Численность популяции жертв х и хищников у зависят только от времени (модель не учитывает пространственное распределение популяции на занимаемой территории)
- 2. В отсутствии взаимодействия численность видов изменяется по модели Мальтуса, при этом число жертв увеличивается, а число хищников падает
- 3. Естественная смертность жертвы и естественная рождаемость хищника считаются несущественными
- 4. Эффект насыщения численности обеих популяций не учитывается
- 5. Скорость роста численности жертв уменьшается пропорционально численности хищников

$$\frac{dx}{dt} = ax(t) - bx(t)y(t)$$

$$\frac{dy}{dt} = -cy(t) + dx(t)y(t)$$
(1)

Формула (1)

В этой модели x – число жертв, y - число хищников. Коэффициент а описывает скорость естественного прироста числа жертв в отсутствие хищников, c - естественное вымирание хищников, лишенных пищи в виде жертв. Вероятность взаимодействия жертвы и хищника считается пропорциональной как количеству жертв, так и числу самих хищников (ху). Каждый акт взаимодействия уменьшает популяцию жертв, но способствует увеличению популяции хищников (члены -bxy и dxy в правой части уравнения).

Рис.1: Эволюция популяции жертв и хищников в модели Лотки-Вольтерры

Математический анализ этой (жесткой) модели показывает, что имеется стационарное состояние (А на Рис.1), всякое же другое начальное состояние (В) приводит к периодическому колебанию численности как жертв, так и хищников, так что по прошествии некоторого времени система возвращается в состояние В.

Стационарное состояние системы (1) (положение равновесия, не зависящее от времени решение) будет в точке:

$$x_0 = \frac{c}{d}, y_0 = \frac{a}{b}$$

. Если начальные значения задать в стационарном состоянии

$$x(0) = x_0, y(0) = y_0$$

, то в любой момент времени численность популяций изменяться не будет. При малом отклонении от положения равновесия численности как хищника, так и жертвы с течением времени не возвращаются к равновесным значениям, а совершают периодические колебания вокруг стационарной точки. Амплитуда колебаний и их период определяется начальными значениями численностей х(0), у(0). Колебания совершаются в противофазе.

Выполнение лабораторной работы

Работу я выполнял в OpenModelica. Для решения поставленной задачи необходимо было написать программу (Рис.2).

```
model lab5
 1
       parameter Real a = -0.22;
 3
      parameter Real b = -0.066;
 4
      parameter Real c = -0.66;
 5
      parameter Real d = -0.022;
       parameter Real x 01 = 7;
 6
 7
      parameter Real y 01 = 15;
      parameter Real x 02 = c/d;
 9
      parameter Real y 02 = a/b;
10
      Real x(start = x 01);
11
      Real y(start = y 01);
12
      //Real x(start = x 02);
13
      //Real y(start = y 02);
14 equation
15
      der(x) = a*x - b*x*y;
16
      der(y) = -c*y + d*x*y;
17
    end lab5;
```

Рис.2. Программа

Результаты выполнения программы: график зависимости численности хищников от численности жертв (Рис.3), графики изменения численности хищников и численности жертв (Рис.4), стационарное состояние системы (Рис.5).

Рис.З.График зависимости численности хищников от численности жертв

Рис.4. График изменения численности хищников и численности жертв

Рис.5. Стационарное состояние системы

Выводы

Построен график зависимости численности хищников от численности жертв, а также график изменения численности хищников и численности жертв. Найдено стационарное состояние системы. Для этого написана программа в OpenModelica.

Список литературы

- 1. Методические материалы курса
- 2. Модель Лотки Вольтерры, URL: https://ru.wikipedia.org/wiki/%D0%9C%D0%BE%D0%B4%D0%B5%D0%BB%D1% 8C_%D0%9B%D0%BE%D1%82%D0%BA%D0%B8_%E2%80%94_%D0%92%D0%BE %D0%BB%D1%8C%D1%82%D0%B5%D1%80%D1%80%D1%8B