Intelligence II: Advanced Decision-Making Mechanisms

Advanced Decision-making Mechanisms for this Class

• More on Behavior Trees

• Planning to Achieve the Goal

Planning with Uncertainty to Achieve the Goal

Advanced Decision-making Mechanisms for this Class

More on Behavior Trees

• Planning to Achieve the Goal

Planning with Uncertainty to Achieve the Goal

- Additional task: *Decorator*
- Has only one child whose execution it controls in a special way

Example:

"y deterrators" decide whether to execute its children based on some conditions

- Additional task: *Decorator*
- Has only one child whose execution it controls in a special way

Example:

"Loop decorators" loop until failure

from "Artificial Intelligence for Games" by

- Additional task: *Decorator*
- Has only one child whose execution it controls in a special way

- Additional task: *Parallel*
- Executes tasks in parallel until first fails or all succeed

Example:

- Additional task: *Parallel*
- Executes tasks in parallel until first fails or all succeed

Advanced Decision-making Mechanisms for this Class

• More on Behavior Trees

Planning to Achieve the Goal

Planning with Uncertainty to Achieve the Goal

- Beyond hard-coding stimulus-response pairs
- Seeks to satisfy internal goals (e.g., hunger, threat, gold, etc.)

- Beyond hard-coding stimulus-response pairs
- Seeks to satisfy internal goals (e.g., hunger, threat, gold, etc.)

Three components:

Goals (motives),

How Pressing each Goal is (insistence)

Actions with Expected Impact on the Insistence of Each Goal

- Beyond hard-coding stimulus-response pairs
- Seeks to satisfy internal goals (e.g., hunger, threat, gold, etc.)

Example:

Goals with Insistence Values:

Eat = 9, $Kill\ Enemy = 8$, $Get\ Healthy = 4$

Actions with Impact on Insistence Values of Goals:

Get Food (Eat: -5)

Kill Enemy (Kill Enemy: -8, Get Healthy: +4)

Get Health Pack (Get Healthy: -2)

- Beyond hard-coding stimulus-response pairs
- Seeks to satisfy internal goals (e.g., hunger, threat, gold, etc.)

Example:

Goals with Insistence Values:

Eat = 9, $Kill\ Enemy = 8$, $Get\ Healthy = 4$

Actions with Impact on Insistence Values of Go

Get Food (Eat: -5)

Kill Enemy (Kill Enemy: -8, Get Healthy: +4)

Get Health Pack (Get Healthy: –2)

Pick action that has the best net effect (could be weighted) Negative side effect of the action

- Beyond hard-coding stimulus-response pairs
- Seeks to satisfy internal goals (e.g., hunger, threat, gold, etc.)

Example:

Potential problems?

Goals with Insistence Values:

Eat = 9, $Kill\ Enemy = 8$, $Get\ Healthy = 4$

Actions with Impact on Insistence Values of Go

Get Food (Eat: -5)

Kill Enemy (Kill Enemy: -8, Get Healthy: +4)

Get Health Pack (Get Healthy: -2)

Pick action that has the best net effect (could be weighted) Negative side effect of the action

- Beyond hard-coding stimulus-response pairs
- Seeks to satisfy internal goals (e.g., hunger, threat. gold, etc.)

 $Optimal\ sequence?$

Example:

Suppose the character is under attack and can pick a weapon that allows it to more effectively shoot the enemies

Goals with Insistence Values:

Eat = 7, $Kill\ Enemy = 8$, $Get\ Healthy = 4$, NewWeapons = 1

Actions with Impact on Insistence Values of Goals:

Get Food (Eat: -5, Get Healthy: +2)

Kill Enemy (Kill Enemy: -8, Get Healthy: +7)

Get Health Pack (Get Healthy: -2, Eat: +2)

Get Weapon (NewWeapons: -1, Get Healthy: +8

plus Kill Enemy action will have no impact on Health)

- Beyond hard-coding stimulus-response pairs
- Seeks to satisf *Optimal sequence: Get Health Pack, Get Weapon, Kill Enemy*

Example:

How to compute it?

Suppose the character is under attack and can pick a weapon that allows it to more effectively shoot the enemies

Goals with Insistence Values:

Eat = 7, Kill Enemy = 8, Get Healthy = 4, NewWeapons=1

Actions with Impact on Insistence Values of Goals:

Get Food (Eat: -5, Get Healthy: +2)

Kill Enemy (Kill Enemy: -8, Get Healthy: +7)

Get Health Pack (Get Healthy: -2, Eat: +2)

Get Weapon (NewWeapons: -1, Get Healthy: +8

plus Kill Enemy action will have no impact on Health)

Beyond single-step decisions

• Beyond single-step decisions

What could be the transition costs?

Search-space (graph) for finding a goal that satisfies the necessary constraints:

The validity of a transition depends on the source state (e.g., can't shoot enemy weapon was picked up)

Example:

initial state is 0000

goal state is 1111

(e.g., bit 0: food is picked up,

bit 1: health pack is picked up,

bit 2: weapon is picked up,

Beyond single-step decisions

What if the goal is to shoot enemy (whether health pack and food are picked up or not)?

Search-space (graph) for finding a goal that satisfies the necessary constraints:

Example:

initial state is 0000 goal state is 1111

(e.g., bit 0: food is picked up,

bit 1: health pack is picked up,

bit 2: weapon is picked up,

Beyond single-step decisions

What if the goal is to shoot enemy (whether health pack and food are picked up or not)?

Search-space (graph) for finding a partially-defined goal:

Example:

initial state is 0000

goal state is 1111

(e.g., bit 0: food is picked up,

bit 1: health pack is picked up,

bit 2: weapon is picked up,

• Beyond single-step decisions

What are the efficient way to represent the state vectors?

Search-space (graph) for finding a partially-defined goal:

partially-defined goal:

Example:

initial state is 0000 goal state is 1111

(e.g., bit 0: food is picked up,

bit 1: health pack is picked up,

bit 2: weapon is picked up,

Working out Example with some non-binary variables:

Goals with Insistence Values:

Eat = 7, $Kill\ Enemy = 8$, $Get\ Healthy = 4$, NewWeapons = 1

Actions with Impact on Insistence Values of Goals:

Get Food (Eat: -5, Get Healthy: +2)

Kill Enemy (Kill Enemy: -8, Get Healthy: +7)

Get Health Pack (Get Healthy: -2, Eat: +2)

Get Weapon (NewWeapons: -1, Get Healthy: +8

plus Kill Enemy action will have no impact on Health)

Working out Example with some non-binary variables:

Goals with Insistence Values:

Eat = 7, $Kill\ Enemy = 8$, $Get\ Healthy = 4$, NewWeapons = 1

Actions with Impact on Insistence Values of Goals:

Get Food (Eat: -5, Get Healthy: +2)

Kill Enemy (Kill Enemy: -8, Get Healthy: +7)

Get Health Pack (Get Healthy: -2, Eat: +2)

Get Weapon (NewWeapons: -1, Get Healthy: +8

plus Kill Enemy action will have no impact on Health)

• Beyond single-step decisions

How to search the graph?

Search-space (graph) for finding a partially-defined goal:

Example:

initial state is 0000

goal state is 1111

(e.g., bit 0: food is picked up,

bit 1: health pack is picked up,

bit 2: weapon is picked up,

Beyond single-step decisions

How to search the graph?

Search-space (grap. partially-defined goal:

Example: initial state is 0000

goal state is 1111

(e.g., bit 0: food is picked up,

bit 1: health pack is picked up,

bit 2: weapon is picked up,

• Beyond single-step decisions

• IDA*: Very popular search for state-spaces with large branching

factors and shallow goals

- Beyond single-step decisions
- **IDA***: Very popular search for state-spaces with large branching factors and shallow goals

IDA* (Iterative Deepening A*)

- 1. $set f_{max} = 1$ (or some other small value)
- 2. traverse the graph in DFS fashion without expanding states with $f > f_{max}$
- 3. If path to the goal found, return the best path it finds
- 4. Otherwise $f_{max} = f_{max} + 1$ and go to step 2

- Beyond single-step decisions
- IDA*: Very popular search for state-spaces with large branching factors and shallow goals

IDA* (Iterative Deepening A*)

- 1. $set f_{max} = 1$ (or some other small value)
- 2. traverse the graph in DFS fashion without expanding states with $f > f_{max}$
- 3. If path to the goal found, return the best path it finds
- 4. Otherwise $f_{max} = f_{max} + 1$ and go to step 2

Proof?

- Complete and optimal in any state-space (with positive costs)
- Memory: O(bl), where $b \max$ branching factor, l length of optimal path
- Complexity: $O(kb^l)$, where k is the number of times DFS is called

Advanced Decision-making Mechanisms for this Class

More on Behavior Trees

• Planning to Achieve the Goal

Planning with Uncertainty to Achieve the Goal

Goal-Oriented Planning Under Uncertainty

• Dealing with uncertainty in outcomes

Example:

Suppose the character is under attack and can pick a weapon that allows it to more effectively shoot the enemies

How do we represent

Suppose also there is 50% chance of getting health pack at each attempt

Goals with Insistence Values:

Eat = 7, Kill Enemy = 8, Get Healthy = 4, NewWeapons=1

Actions with Impact on Insistence Values of Goals:

Get Food (Eat: -5, Get Healthy: +2)

Kill Enemy (Kill Enemy: -8, Get Healthy: +7)

Get Health Pack (Get Healthy: -2, Eat: +2)

Get Weapon (NewWeapons: -1, Get Healthy: +8 plus Kill Enemy action will have no impact on Health)

Goal-Oriented Planning Under Uncertainty

• Dealing with uncertainty in outcomes

Markov Decision Processes (MDP)

Example:

Suppose the character is under attack and can pick a weapon that allows it to more effectively shoot the enemies

Suppose also there is 50% chance of getting health pack at each attempt

Hunger: 9; Enemy shot: 0; Hunger: 9; Enemy shot: 0;

Health: 2; Weapon: 1 Health: 4; Weapon: 1

Planning in MDPs

- What plan to compute?
 - Plan that minimizes the worst-case scenario (minimax plan)
 - Plan that minimizes the expected cost
 - Plan that minimizes cost while guaranteeing $P(goal\ reached) > t$

- Without uncertainty, plan is a single path: a sequence of states (a sequence of actions)
- In MDPs, plan is a policy π : mapping from a state onto an action

Planning in MDPs

• What plan to compute?

- Which ones are policies?
- Plan that minimizes the worst-case scenario (minimax plan)
- Plan that minimizes the expected cost
- Plan that minimizes cost while guaranteeing $P(goal\ reached) > t$

Why?

- Without uncertainty, plan is a single path: a sequence of states (a sequence of actions)
- In MDPs, plan is a policy π : mapping from a state onto an action

Minimax Formulation

- Optimal policy π^* :

 minimizes the worst cost-to-goal $\pi^* = argmin_{\pi} \max_{outcomes\ of\ \pi} \{cost-to-goal\}$
- worst cost-to-goal for $\pi_1 = (s_{start}, s_2, s_4, s_3, s_{goal})$ is: 1+1+3+1=6
- worst cost-to-goal for π_2 =(try to go through s_1) is: $1+2+2+2+2+2+2+\dots = \infty$

Minimax Formulation

- Optimal policy π^* :

 minimizes the worst cost-to-goal $\pi^* = argmin_{\pi} \max_{outcomes\ of\ \pi} \{cost-to-goal\}$
- Optimal minimax policy $\pi^* = \pi_1 = (s_{start}, s_2, s_4, s_3, s_{goal})$

Expected Cost Formulation

• Optimal policy π^* : minimizes the *expected* cost-to-goal $\pi^* = argmin_{\pi} E\{cost-to-goal\}$

expectation over outcomes

• expected cost-to-goal for $\pi_1 = (s_{start}, s_2, s_4, s_3, s_{goal})$ is

• cost-to-goal for π_2 =(try to go through s_1) is:

 $0.9*(1+2+2) + 0.9*0.1*(1+2+2+2+2) + 0.9*0.1*0.1*(1+2+2+2+2+2+2) + \dots = 5.44\overline{4}$

Expected Cost Formulation

• Optimal policy π^* : minimizes the *expected* cost-to-goal $\pi^* = argmin_{\pi} E\{cost-to-goal\}$

expectation over outcomes

- expected cost-to-goal for $\pi_1 = (s_{start}, s_2, s_4, s_3, s_{goal})$ is 1+1+3+1=6
- cost-to-goal for π_2 =(try to go through s_1) is: 0.9*(1+2+2) + 0.9*0.1*(1+2+2+2+2) + 0.9*0.1*0.1*(1+2+2+2+2+2+2) + ...=5.44 $\overline{4}$

Expected Cost Formulation

- Optimal policy π^* :

 minimizes the *expected* cost-to-goal $\pi^* = argmin_{\pi} E\{cost-to-goal\}$
- Optimal expected cost policy $\pi^* = \pi_2 = (go \ through \ s_1)$

Minimizing Cost with P(success) > t constraint

- Optimal path π^* is a path that minimizes the cost-to-goal assuming some outcomes $\pi^* = argmin_{\pi} \{ cost-to-goal \}$
 - s.t. $P(assumed\ outcomes) > t$
- for $\pi_1 = (s_{start}, s_2, s_4, s_3, s_{goal})$: cost-to-goal = 1+1+3+1 = 6, P(success) = 1
- for π_2 =(try to go through s_1) is: cost-to-goal = 1+2+2 = 5, P(success) = 0.9

Minimizing Cost with P(success) > t constraint

- Optimal path π^* is a path that minimizes the cost-to-goal assuming some outcomes $\pi^* = argmin_{\pi} \{ cost-to-goal \}$
 - s.t. $P(assumed\ outcomes) > t$
- for t > 0.9, $\pi^* = \pi_1 = (s_{start}, s_2, s_4, s_3, s_{goal})$
- for $t \le 0.9$, $\pi^* = \pi_2 = (\text{try to go through } s_1)$

- Optimal policy π^* : minimizes the *expected* cost-to-goal $\pi^* = argmin_{\pi} E\{cost-to-goal\}$
- Let $v^*(s)$ be minimal expected cost-to-goal for state s

• Optimal policy π^* :

$$\pi^*(s) = argmin_a y$$
 $(s,a,s')+v^*(s')$ } (expectation over outcomes s'of action a executed at state s)

• Optimal expected cost-to-goal values v^* satisfy:

$$v^*(s_{goal})=0$$

 $v^*(s)=min_a y$ $(s,a,s')+v^*fo')$ all $s\neq s_{goal}$
(expectation over outcomes s' of action a executed at state s)

Bellman optimality equation

• Value Iteration (VI):

Initialize *v*-values of all states to finite values;

$$v(s_{goal}) = 0$$

 $v(s) = min_a y$ $s, a, s') + for s' hy s \neq s_{goal}$

• Value Iteration (VI):

best to initialize to admissible values (under-estimates of the actual costs-to-goal)

Initialize *v*-values of all states to finite values;

Iterate over all *s* in MDP and re-compute until convergence:

converges to an optimal value function $(v(s)=v^*(s) \text{ for all } s)$ for any iteration order

convergence time does depend a lot on iteration order

• Value Iteration (VI):

best to initialize to admissible values (under-estimates of the actual costs-to-goal)

Initialize *v*-values of all states to finite values; Iterate over all *s* in MDP and re-compute until convergence:

$$v(s_{goal}) = 0$$
 $v(s) = min_a y$ $s, a, s') + fo(s') hy s \neq s_{goal}$

converges to an optimal value function $(v(s)=v^*(s) \text{ for all } s)$ for any iteration order

convergence time does depend a lot on iteration order

• Value Iteration (VI):

Initialize *v*-values of all states to finite values;

$$v(s_{goal}) = 0$$
 $v(s) = min_a y$
 $s, a, s') + fo(s') hy s \neq s_{goal}$

Bellman update equation
(or backup)

• Value Iteration (VI):

Initialize *v*-values of all states to finite values;

$$egin{align} v(s_{goal}) &= 0 \ v(s) &= \min_a y \ &s,a,s') + for (s') & y \ s
eq s_{goal} \ & s,a,s' \ & s$$

• Value Iteration (VI):

Initialize *v*-values of all states to finite values;

$$egin{align} v(s_{goal}) &= 0 \ v(s) &= \min_a y \ &s,a,s') + for (s') & y \ s
eq s_{goal} \ & s,a,s' \ & s$$

• Value Iteration (VI):

Initialize *v*-values of all states to finite values;

$$egin{align} v(s_{goal}) &= 0 \ v(s) &= \min_a y \ &s,a,s') + for (s') & y \ s
eq s_{goal} \ & s,a,s' \ & s$$

• Value Iteration (VI):

Initialize *v*-values of all states to finite values;

$$egin{align} v(s_{goal}) &= 0 \ v(s) &= \min_a y \ &s,a,s') + for (s') & y \ s
eq s_{goal} \ & s,a,s' \ & s$$

• Value Iteration (VI):

Initialize *v*-values of all states to finite values;

Iterate over all *s* in MDP and re-compute until convergence:

$$egin{align} v(s_{goal}) &= 0 \ v(s) &= \min_a y \ &s,a,s') + fo(s') hy \ s
eq s_{goal} \ &s,a,s' \end{pmatrix}$$

• Value Iteration (VI):

Initialize *v*-values of all states to finite values;

Iterate over all *s* in MDP and re-compute until convergence:

$$v(s_{goal}) = 0$$

 $v(s) = min_a y$ $s, a, s') + for s \partial y y s \neq s_{goal}$

• Value Iteration (VI):

Initialize *v*-values of all states to finite values;

Iterate over all *s* in MDP and re-compute until convergence:

$$v(s_{goal}) = 0$$

 $v(s) = min_a y$ $s, a, s') + fo(s') hy s \neq s_{goal}$

How to select backups

• Value Iteration (VI):

Initialize *v*-values of all states to finite values, more effectively? Iterate over all *s* in MDP and re-compute until convergence:

$$egin{align} v(s_{goal}) &= 0 \ v(s) &= \min_a y \ &s,a,s') + fo(s') hy \ s
eq s_{goal} \ &s,a,s' \end{pmatrix}$$

• Value Iteration (VI):

Initialize *v*-values of all states to finite values;

Iterate over all *s* in MDP and re-compute until convergence:

$$v(s_{goal}) = 0$$

 $v(s) = min_a y$ $s, a, s') + for s \partial y y s \neq s_{goal}$

• Value Iteration (VI):

Initialize *v*-values of all states to finite values;

Iterate over all *s* in MDP and re-compute until convergence:

$$v(s_{goal}) = 0$$

 $v(s) = min_a y$ $s, a, s') + fo(s') hy s \neq s_{goal}$

• Value Iteration (VI):

Initialize *v*-values of all states to finite values;

Iterate over all *s* in MDP and re-compute until convergence:

$$v(s_{goal}) = 0$$

 $v(s) = min_a y$ $s, a, s') + fo(s') hy s \neq s_{goal}$

• Value Iteration (VI):

Initialize *v*-values of all states to finite values;

Iterate over all *s* in MDP and re-compute until convergence:

$$egin{align} v(s_{goal}) &= 0 \ v(s) &= \min_a y \ &s,a,s') + fo(s') hy \ s
eq s_{goal} \ &s,a,s' \end{pmatrix}$$

• Value Iteration (VI):

Initialize *v*-values of all states to finite values;

Iterate over all *s* in MDP and re-compute until convergence:

$$egin{align} v(s_{goal}) &= 0 \ v(s) &= \min_a y \ &s,a,s') + fo(s') hy \ s
eq s_{goal} \ &s,a,s' \end{pmatrix}$$

• Value Iteration (VI):

Initialize *v*-values of all states to finite values;

Iterate over all *s* in MDP and re-compute until convergence:

$$egin{align} v(s_{goal}) &= 0 \ v(s) &= \min_a y \ &s,a,s') + fo(s') hy \ s
eq s_{goal} \ &s,a,s' \end{pmatrix}$$

• Value Iteration (VI):

Initialize *v*-values of all states to finite values;

Iterate over all *s* in MDP and re-compute until convergence:

$$egin{align} v(s_{goal}) &= 0 \ v(s) &= \min_a y \ &s,a,s') + fo(s') hy \ s
eq s_{goal} \ &s,a,s' \end{pmatrix}$$

At convergence...

• Value Iteration (VI):

Initialize *v*-values of all states to finite values;

Iterate over all *s* in MDP and re-compute until convergence:

$$egin{align} v(s_{goal}) &= 0 \ v(s) &= \min_a y \ &s,a,s') + fo(s') hy \ s
eq s_{goal} \ &s,a,s' \end{pmatrix}$$

one more decimal point

optimal policy is given by greedy policy: always select an action that minimizes y = (s,a,s')+v(s')

At convergence...

Initialize v-values of all states to finite values;

re-compute until convergence:

expected cost of executing greedy policy is at most:

$$v*(s_{start})c_{min}/(c_{min}-\Delta)$$

where c_{min} is minimum edge cost

four in
$$s \neq s_{goal}$$

VI converges in finite number of iterations (assuming goal is reachable from every state)

• Value Iteration (VI):

Initialize *v*-values of all states to finite values, *Why condition?* Iterate over all *s* in MDP and re-compute until convergence:

$$egin{align} v(s_{goal}) &= 0 \ v(s) &= \min_a y \ &s,a,s') + fo(s') hy \ s
eq s_{goal} \ &s,a,s' \end{pmatrix}$$

• Value Iteration (VI):

How many backups required in a graph with no stochastic actions?

Initialize *v*-values of all states to finite values; Iterate over all *s* in MDP and re-compute until convergence:

$$egin{align} v(s_{goal}) &= 0 \ v(s) &= \min_a y \ &s,a,s') + fo(s') hy \ s
eq s_{goal} \ &s,a,s' \end{pmatrix}$$