5. Waagerechte und senkrechte Asymptoten

Bisher: Wir haben hauptsächliche Ganzrationele Funktinen betrachtet. Es gibt aber auch Funktionen, mit ganzrationaler Funktion im Nenner, z.B.:

$$f(x) = \frac{2x^2 + 1}{3x^3 - x + 1}$$

Dies Funktionen heißen gebrochenrationale Funktionen

Definition:

Funktionen der Art $f(x) = \frac{g(x)}{h(x)}$, bei denen g und g ganzrationele Funktionen sind und h einen Grad größer gleich 1 hat, heißen **gebrochenrationale Funktionen**.

Beispiele:

1.

Beobachtung:

Ganzrationale Funktionen haben Definitionslücken, da nicht durch 0 geteilt werden darf.

Die Untersuchung und Angabe der Defintionsmenge ist folgliche obligatorisch. Dafür reicht es aus den Nenner zu betrachten.

Wie verläuft der Graph bei sochen Definitionslücken?

Beispiel:

$$f(x)=\frac{2x^2+1}{3x^3-x+1},\quad D=\mathbb{R}\smallsetminus\{-1\}$$

Beobachtung

Die Graphen von gebrochen
rationalen Funktionen besitzen an den Defintionslücken senkrechte Asymptoten.

Untersuchung des Verhaltens an den Definitionslücken

Idee: Man nähert sich in einer Umgebung der Defintionslücke von beiden Seiten an und betrachtet die Veränderung der Funktionswerte.

$$f(x)=\frac{2x^2+1}{3x^3-x+1},\quad D=\mathbb{R}\smallsetminus\{-1\}$$

$$\lim_{x\searrow -1}f(x)=?$$

$$\lim_{x\nearrow -1}f(x)=?$$

 $x \searrow -1$:

x	f(x)
0	?
-0, 5	?
-0, 9	?
-0,99	?

 $x \nearrow -1$:

\overline{x}	f(x)
0	?
-0, 5	?
-0, 9	?
-0,99	?