Solution to Mathematics of

Graduate Entrance Examination

考研数学 试题解答

追求卓越排版, 巧解数学难题.

作者:向禹老师

完成时间: 2020年3月4日

Email: 739049687@qq.com

目录

1	2006 年考研数学三	2
2	2007 年考研数学三	11
3	2008 年考研数学三	21
4	2009 年考研数学三	29
5	2010 年考研数学三	38
6	2011 年考研数学三	46
7	2012 年考研数学三	54
8	2013 年考研数学三	62
9	2014 年考研数学三	70
10	2015 年考研数学三	78
11	2016 年考研数学三	86
12	2017 年考研数学三	95
13	2018 年考研数学三	103
14	2019 年考研数学三	111
15	2020 年考研数学三	120

第1章 2006 年考研数学三

一、填空题, $1 \sim 6$ 题, 每题 4 分, 共 24 分.

$$1. \lim_{n \to \infty} \left(\frac{n+1}{n} \right)^{(-1)^n} = \underline{\qquad}.$$

- **解:** $\lim_{n \to \infty} \left(\frac{n+1}{n} \right)^{(-1)^n} = \lim_{n \to \infty} e^{(-1)^n \ln \left(\frac{n+1}{n} \right)} = e^0 = 1.$
- 2. 设函数 f(x) 在 x=2 的某邻域内可导,且 $f'(x)=e^{f(x)}$, f(2)=1,则 f'''(2)=______.
- **解:** 等式两边对 x 求导得 $f''(x) = e^{f(x)} f'(x) = e^{2f(x)}$, 再次求导得 $f'''(x) = 2e^{2f(x)} f'(x) = 2e^{3f(x)}$, 又 f(2) = 1, 故 $f'''(2) = 2e^{3f(2)} = 2e^3$.
- 3. 设函数 f(u) 可微, 且 $f'(0) = \frac{1}{2}$, 则 $z = f(4x^2 y^2)$ 在点 (1,2) 处的全微分 $dz|_{(1,2)} =$ _____.
- **解:** 对 $z = f(4x^2 y^2)$ 两边进行微分得

$$dz = f'(4x^2 - y^2) d(4x^2 - y^2) = f'(4x^2 - y^2)(8x dx - 2y dy),$$

因此 $dz|_{(1,2)} = f'(0)(8dx - 2dy) = 4dx - 2dy.$

- 4. 设矩阵 $A = \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}$, E 是二阶单位矩阵, 矩阵 B 满足 BA = B + 2E, 则 $|B| = _____$.
- 解: 由条件可得

$$B(A - E) = 2E \Rightarrow |B(A - E)| = |2E| \Rightarrow |B||A - E| = 2^2 = 4,$$

因为
$$|\mathbf{A} - \mathbf{E}| = \begin{vmatrix} 1 & 1 \\ -1 & 1 \end{vmatrix} = 2$$
, 所以 $|\mathbf{B}| = 2$.

- 5. 设随机变量 X 与 Y 相互独立, 且均服从区间 [0,3] 上的均匀分布, 则 $P(\max\{X,Y\}) \le 1=$ _____.
- **解:** $P(\max\{X,Y\}) \leqslant 1 = P(X \leqslant 1, Y \leqslant 1) = P(X \leqslant 1) P(Y \leqslant 1) = \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{9}$.
- 6. 设总体 X 的概率密度为 $f(x) = \frac{1}{2} e^{-|x|} (-\infty < x < +\infty), X_1, X_2, \cdots, X_n$ 为总体 X 的简单随机样本, 其样本方差为 S^2 , 则 $ES^2 =$ ______.

解: 样本方差是总体方差的无偏估计,即

$$ES^{2} = D(X) = EX^{2} - (EX)^{2} = \int_{-\infty}^{+\infty} \frac{x^{2}}{2} e^{-|x|} dx - \left(\int_{-\infty}^{+\infty} \frac{x}{2} e^{-|x|} dx \right)^{2}$$
$$= \int_{0}^{+\infty} x^{2} e^{-x} dx - 0 = 2.$$

- 二、选择题, $7 \sim 14$ 题, 每题 4 分, 共 32 分.
- 7. 设函数 y = f(x) 具有二阶导数,且 f'(x) > 0, f''(x) > 0, Δx 为自变量 x 在点 x_0 处的增量, Δy 与 dy 分别为 f(x) 在点 x_0 处对应的增量与微分,若 $\Delta x > 0$,则() A. $0 < \mathrm{d} y < \Delta y$ B. $0 < \Delta y < \mathrm{d} y$ C. $\Delta y < \mathrm{d} y < 0$ D. $\mathrm{d} y < \Delta y < 0$
- 解: 由拉格朗日中值定理知

$$f(x_0 + \Delta x) = f(x_0) + f'(x_0)\Delta x + \frac{1}{2}f''(\xi)(\Delta x)^2 > f(x_0) + f'(x_0)\Delta x,$$

于是 $f(x_0 + \Delta x) - f(x_0) > f'(x_0) \Delta x > 0$, 即 $0 < dy < \Delta y$, 选 A.

- 8. 设函数 f(x) 在 x = 0 处连续, 且 $\lim_{h \to 0} \frac{f(h^2)}{h^2} = 1$, 则
 - A. f(0) = 0且 $f'_{-}(0)$ 存在
- B. f(0) = 1且 $f'_{-}(0)$ 存在
- C. f(0) = 0 且 $f'_{+}(0)$ 存在
- D. f(0) = 1且 $f'_{+}(0)$ 存在
- 9. 若级数 $\sum_{n=1}^{\infty} a_n$ 收敛,则级数 ()
 - A. $\sum_{n=1}^{\infty} |a_n|$ 收敛
 - C. $\sum_{n=1}^{\infty} a_n a_{n+1}$ 收敛

- B. $\sum_{n=1}^{\infty} (-1)^n a_n$ 收敛
- $D.\sum_{n=1}^{\infty} \frac{a_n + a_{n+1}}{2} 收敛$
- 解: 由 $\sum_{n=1}^{\infty} a_n$ 收敛知 $\sum_{n=1}^{\infty} a_{n+1}$ 收敛,因此 $\sum_{n=1}^{\infty} \frac{a_n + a_{n+1}}{2}$ 收敛,选 D. 而 A, B, C 均可取反例 $a_n = \frac{(-1)^n}{\sqrt{n}}$.
- 10.设非齐次线性微分方程 y' + P(x)y = Q(x) 有两个不同的解 $y_1(x), y_2(x), C$ 为任 意常数,则该方程的通解是 ()
 - A. $C[y_1(x) y_2(x)]$

B. $y_1(x) + C[y_1(x) - y_2(x)]$

C. $C[y_1(x) + y_2(x)]$

- D. $y_1(x) + C[y_1(x) + y_2(x)]$
- **解:** $y_1(x) y_2(x)$ 是对应齐次线性微分方程 y' + P(x)y = 0 的非零解,则它的通解为 $Y = C[y_1(x) y_2(x)]$,故原方程的通解为 $y = y_1(x) + Y = y_1(x) + C[y_1(x) y_2(x)]$,选 B.
- 11.设 f(x, y) 与 $\varphi(x, y)$ 均为可微函数, 且 $\varphi'_{y}(x, y) \neq 0$. 已知 (x_{0}, y_{0}) 是 f(x, y) 在约束条件 $\varphi(x, y) = 0$ 下的一个极值点, 下列选项正确的是

C.
$$\exists f'_x(x_0, y_0) \neq 0, \ \emptyset f'_y(x_0, y_0) = 0$$
 D. $\exists f'_x(x_0, y_0) \neq 0, \ \emptyset f'_y(x_0, y_0) \neq 0$

解: 令 $F(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y)$, 并记对应 x_0, y_0 的参数 λ 的值为 λ_0 , 则

$$\begin{cases} F_x'(x_0, y_0, \lambda_0) = 0 \\ F_y'(x_0, y_0, \lambda_0) = 0 \end{cases}, \quad \mathbb{R} \mathbb{I} \quad \begin{cases} f_x'(x_0, y_0) + \lambda_0 \varphi_x'(x_0, y_0) = 0 \\ f_y'(x_0, y_0) + \lambda_0 \varphi_y'(x_0, y_0) = 0 \end{cases},$$

那么当 $f'_x(x_0, y_0) \neq 0$ 时, 必有 $\lambda_0 \neq 0, \varphi'_x(x_0, y_0) \neq 0$, 消去 λ_0 得

$$f_x'(x_0, y_0)\varphi_y'(x_0, y_0) - f_y'(x_0, y_0)\varphi_x'(x_0, y_0) = 0,$$

注意到 $\varphi'_{\nu}(x,y) \neq 0$, 于是 $f'_{\nu}(x_0,y_0) \neq 0$, 选 D.

- 12.设 $\alpha_1, \alpha_2, \dots, \alpha_s$ 均为 n 维列向量, A 是 $m \times n$ 矩阵, 下列选项正确的是)
 - A. 若 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性相关,则 $A\alpha_1, A\alpha_2, \cdots, A\alpha_s$ 线性相关
 - B. 若 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性相关,则 $A\alpha_1, A\alpha_2, \cdots, A\alpha_s$ 线性无关
 - C. 若 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性无关,则 $A\alpha_1, A\alpha_2, \cdots, A\alpha_s$ 线性相关
 - D. 若 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性无关, 则 $A\alpha_1, A\alpha_2, \cdots, A\alpha_s$ 线性无关
- **解:** 注意到 $(A\alpha_1, A\alpha_2, \cdots, A\alpha_s) = A(\alpha_1, \alpha_2, \cdots, \alpha_s)$, 如果 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性相关,则

$$r(A\alpha_1, A\alpha_2, \cdots, A\alpha_s) \leqslant r(\alpha_1, \alpha_2, \cdots, \alpha_s) < s$$

因此 $A\alpha_1, A\alpha_2, \cdots, A\alpha_s$ 线性相关, 选 A.

13.设 A 为三阶矩阵, 将 A 的第 2 行加到第 1 行的 B, 再将 B 的第 1 列的 -1 倍加到第

$$A$$
 为三阶矩阵,将 A 的第 2 行加到第 1 行的 B ,再将 B 的第 1 列的 -1 倍加到第 2 列得 C ,记 $P = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$,则 () A. $C = P^{-1}AP$ B. $C = PAP^{-1}$ C. $C = P^{T}AP$ D. $C = PAP^{T}$ 解: 由初等变换与初等矩阵之间的关系可知

解:由初等变换与初等矩阵之间的关系可知

$$B = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} A, C = B \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} A \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = PAP^{-1},$$

因此选 B.

14.设随机变量 X 服从正态分布 $N(\mu_1,\sigma_1^2),Y$ 服从正态分布 $N(\mu_2,\sigma_2^2),$ 且 $P\left(|X-\mu_1|<$

1) >
$$P(|Y - \mu_2| < 1)$$
, 则必有 ()

A.
$$\sigma_1 < \sigma_2$$
 B. $\sigma_1 > \sigma_2$ C. $\mu_1 < \mu_2$ D. $\mu_1 > \mu_2$

解: 将 X, Y 标准化,则 $\frac{X-\mu_1}{\sigma_1} \sim N(0,1), \frac{Y-\mu_2}{\sigma_2} \sim N(0,1),$ 那么

$$P\left(|X - \mu_1| < 1\right) = P\left(\left|\frac{X - \mu_1}{\sigma_1}\right| < \frac{1}{\sigma_1}\right) = \Phi\left(\frac{1}{\sigma_1}\right) - \Phi\left(-\frac{1}{\sigma_1}\right) = 2\Phi\left(\frac{1}{\sigma_1}\right) - 1,$$

$$P(|Y - \mu_2| < 1) = 2\Phi\left(\frac{1}{\sigma_2}\right) - 1.$$

因此 $P(|X-\mu_1|<1)>P(|Y-\mu_2|<1)\Rightarrow \Phi\left(\frac{1}{\sigma_1}\right)>\Phi\left(\frac{1}{\sigma_2}\right)$,所以 $\frac{1}{\sigma_1}>\frac{1}{\sigma_2}$,即 $\sigma_1<\sigma_2$, 选 A.

三、解答题, $15 \sim 23$ 题, 共 94 分.

15.(本题满分 7 分)

设
$$f(x, y) = \frac{y}{1 + xy} - \frac{1 - y \sin \frac{\pi x}{y}}{\arctan x}, x > 0, y > 0, 求$$

- $(1) g(x) = \lim_{y \to +\infty} f(x, y);$
- (2) $\lim_{x\to 0^+} g(x)$.

解: (1)
$$g(x) = \lim_{y \to +\infty} \left(\frac{y}{1+xy} - \frac{1-y\sin\frac{\pi x}{y}}{\arctan x} \right) = \frac{1}{x} - \frac{1-\pi x}{\arctan x}, x > 0.$$
(2)

$$\lim_{x \to 0^{+}} g(x) = \lim_{x \to 0^{+}} \left(\frac{1}{x} - \frac{1 - \pi x}{\arctan x} \right)$$

$$= \lim_{x \to 0^{+}} \frac{\arctan x - x}{x \arctan x} + \lim_{x \to 0^{+}} \frac{\pi x^{2}}{x \arctan x}$$

$$= \lim_{x \to 0^{+}} \frac{-\frac{1}{3}x^{3}}{x^{2}} + \lim_{x \to 0^{+}} \frac{\pi x^{2}}{x^{2}} = \pi.$$

16.(本题满分 7 分)

计算二重积分 $\iint_D \sqrt{y^2 - xy} \, dx \, dy$, 其中 D 是由直线 y = x, y = 1, x = 0 所围成的平面区域.

$$\iint_{D} \sqrt{y^{2} - xy} \, dx \, dy = \int_{0}^{1} \sqrt{y} \, dy \int_{0}^{y} \sqrt{y - x} \, dx$$

$$= \int_{0}^{1} \sqrt{y} \cdot \left(-\frac{2}{3} (y - x)^{\frac{3}{2}} \right) \Big|_{x=0}^{y} \, dy$$

$$= \frac{2}{3} \int_{0}^{1} \sqrt{y} \cdot y^{\frac{3}{2}} \, dy = \frac{2}{3} \int_{0}^{1} y^{2} \, dy = \frac{2}{9}.$$

17.(本题满分 10 分)

证明: 当 $0 < a < b < \pi$ 时,

 $b\sin b + 2\cos b + \pi b > a\sin a + 2\cos a + \pi a.$

運明: 令 $f(x) = x \sin x + 2 \cos x + \pi x, x \in (0, \pi),$ 则

$$f'(x) = \sin x + x \cos x - 2\sin x + \pi = x \cos x - \sin x + \pi, \quad f'(\pi) = 0,$$

$$f''(x) = \cos x + x \sin x - \cos x = -x \sin x < 0,$$

因此当 $x \in (0,\pi)$ 时, f'(x) 单调递减, $f'(x) > f'(\pi) = 0$, 则 f(x) 单调增加, 于是当 $0 < a < b < \pi$ 时, f(b) > f(a), 即

 $b\sin b + 2\cos b + \pi b > a\sin a + 2\cos a + \pi a.$

18.(本题满分 8 分)

在 xOy 坐标平面上, 连续曲线 L 过点 M(1,0), 其上任意点 P(x,y) ($x \neq 0$) 处的切线斜率与直线 OP 的斜率之差等于 ax (常数 a > 0).

- (1) 求 L 的方程;
- (2) 当 L 与直线 y = ax 所围成平面图形的面积为 $\frac{8}{3}$ 时, 确定 a 的值.
- **解:** (1) 设曲线 *L* 的方程为 y = f(x), 由题意得

$$y' - \frac{y}{x} = ax,$$

因此 $\left(\frac{y}{x}\right)' = \frac{xy' - y}{x^2} = a$, $\frac{y}{x} = ax + C$, $y = ax^2 + Cx$. 再由 f(1) = 0 知 C = -a, 故曲线 L 的方程为 $y = ax^2 - ax$ ($x \neq 0$).

(2) 曲线 L 与直线 y = ax (a > 0) 所围成的平面图形的面积为

$$S = \int_0^2 |ax - (ax^2 - ax)| \, dx$$
$$= a \int_0^2 (2x - x^2) \, dx = \frac{4}{3}a = \frac{8}{3} \Rightarrow a = 2.$$

19.(本题满分 10 分)

求幂级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{2n+1}}{n(2n-1)}$ 的收敛域及和函数.

解: 记 $u_n(x) = \frac{(-1)^{n+1}x^{2n+1}}{n(2n-1)}$, 则

$$\lim_{n \to \infty} \left| \frac{u_{n+1}(x)}{u_n(x)} \right| = \lim_{n \to \infty} \frac{x^{2n+3}}{(n+1)(2n+1)} / \frac{x^{2n+1}}{n(2n-1)} = x^2,$$

令 $x^2 < 1$ 得 -1 < x < 1, 即幂级数的收敛区间为 (-1,1). 当 $x = \pm 1$ 时, 对应的级数也收敛, 因此收敛域为 [-1,1]. 设幂级数的和函数为 S(x), 当 $x \in (-1,1)$ 时,

$$S(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{2n+1}}{n(2n-1)} = 2x \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{2n}}{(2n-1)(2n)} = 2x S_1(x),$$

而

$$S_1'(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{2n-1}}{2n-1} = \arctan x, S_1(0) = 0,$$

因此

$$S_1(x) = \int_0^x S'(t) dt = \int_0^x \arctan t dt$$

= $t \arctan t \Big|_0^x - \int_0^x \frac{t}{1+t^2} dt = x \arctan x - \frac{1}{2} \ln(1+x^2).$

由于级数在 $x = \pm 1$ 处收敛, 则 S(x) 在 $x = \pm 1$ 处均连续, 所以

$$S(x) = 2xS_1(x) = 2x^2 \arctan x - x \ln(1 + x^2), x \in [1, 1].$$

20.(本题满分 13 分)

设 4 维向量组 $\alpha_1 = (1+a,1,1,1)^T$, $\alpha_2 = (2,2+a,2,2)^T$, $\alpha_3 = (3,3,3+a,3)^T$, $\alpha_4 = (4,4,4,4+a)^T$. 问 α 为何值时, α_1 , α_2 , α_3 , α_4 线性相关? 当 α_1 , α_2 , α_3 , α_4 线性相关 时, 求其一个极大线性无关组, 并将其余向量用该极大线性无关组线性表出.

解: 记以 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 为列向量的矩阵为 A, 则

$$|A| = \begin{vmatrix} 1+a & 2 & 3 & 4 \\ 1 & 2+a & 3 & 4 \\ 1 & 2 & 3+a & 4 \\ 1 & 2 & 3 & 4+a \end{vmatrix} = (10+a)a^3.$$

于是当 |A| = 0 即 a = 0 或 a = -10 时, $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性相关.

当 a=0 时, 显然 α_1 是一个极大无关组, 且 $\alpha_2=2\alpha_1,\alpha_3=3\alpha_1,\alpha_4=4\alpha_1.$

当 a = -10 时,

$$A = \begin{pmatrix} -9 & 2 & 3 & 4 \\ 1 & -8 & 3 & 4 \\ 1 & 2 & -7 & 4 \\ 1 & 2 & 3 & -6 \end{pmatrix},$$

由于此时 A 有三阶非零子式 $\begin{vmatrix} -9 & 2 & 3 \\ 1 & -8 & 3 \\ 1 & 2 & -7 \end{vmatrix} = -400$,所以 $\alpha_1, \alpha_2, \alpha_3$ 为极大无关组,且 $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 = 0$,即 $\alpha_4 = -\alpha_1 - \alpha_2 - \alpha_3$.

21.(本题满分 13 分)

设 3 阶实对称矩阵 A 的各行元素之和均为 3, 向量 $\alpha_1 = (-1, 2, -1)^T$, $\alpha_2 = (0, -1, 1)^T$ 是线性方程组 Ax = 0 的两个解.

(1) 求 A 的特征值与特征向量;

(2) 求正交矩阵 Q 与对角矩阵 Λ , 使得 $Q^{T}\Lambda Q = \Lambda$;

(3) 求
$$A$$
 及 $\left(A - \frac{3}{2}E\right)^6$, 其中 E 为 3 阶单位矩阵.

解: (1) 因为 A 的各行元素之和为 3, 即有

$$A \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \\ 3 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix},$$

所以 3 是矩阵 A 的特征值, $\alpha = (1,1,1)^{\mathrm{T}}$ 是 A 的属于 3 的特征向量. 又根据题意, α_1,α_2 是矩阵 A 的属于 $\lambda = 0$ 的两个线性无关的特征向量, 因此矩阵 A 的特征值是 3,0,0.

特征值 $\lambda = 3$ 的特征向量为 $k(1, 1, 1)^{T}, k \neq 0$;

特征值 $\lambda = 0$ 的特征向量为 $k_1(-1, 2, -1)^T + k_2(0, -1, 1)^T, k_1, k_2$ 不全为零.

(2) 先对 α_1, α_2 进行斯密特正交化,

$$\boldsymbol{\beta}_1 = \boldsymbol{\alpha}_1 = (-1, 2, -1)^{\mathrm{T}},$$

$$\boldsymbol{\beta}_2 = \boldsymbol{\alpha}_2 - \frac{(\boldsymbol{\alpha}_2, \boldsymbol{\beta}_1)}{(\boldsymbol{\beta}_1, \boldsymbol{\beta}_1)} \boldsymbol{\beta}_1 = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} - \frac{-3}{6} \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix},$$

单位化得
$$\gamma_1 = \frac{1}{\sqrt{6}} \begin{pmatrix} -1\\2\\-1 \end{pmatrix}, \gamma_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1\\0\\1 \end{pmatrix}, \gamma_3 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\1\\1 \end{pmatrix}, 令$$

$$Q = (\gamma_1, \gamma_2, \gamma_3) = \begin{pmatrix} -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \end{pmatrix}, A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

则 $\boldsymbol{Q}^{\mathrm{T}}\boldsymbol{A}\boldsymbol{Q} = \boldsymbol{\Lambda}.$

(3) 由 (2) 知
$$\mathbf{Q}^{\mathrm{T}} \mathbf{A} \mathbf{Q} = \mathbf{\Lambda}$$
, 那么 $\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathrm{T}}$, $\mathbf{A} - \frac{3}{2} \mathbf{E} = \mathbf{Q}^{\mathrm{T}} \left(\mathbf{\Lambda} - \frac{3}{2} \mathbf{E} \right) \mathbf{Q}$, 则

$$\left(A - \frac{3}{2}E\right)^{6} = Q^{\mathrm{T}}\left(A - \frac{3}{2}E\right)^{6}Q = Q^{\mathrm{T}}\begin{pmatrix} -\frac{3}{2} & \\ & -\frac{3}{2} & \\ & & \frac{3}{2} \end{pmatrix}^{6}Q$$
$$= \left(\frac{3}{2}\right)^{6}Q^{\mathrm{T}}EQ = \left(\frac{3}{2}\right)^{6}E.$$

22.(本题满分 13 分)

随机变量 X 的概率密度为 $f_X(x) =$ $\begin{cases} \frac{1}{2}, & -1 < x < 0 \\ \frac{1}{4}, & 0 \leqslant x < 2 \end{cases}, \diamondsuit Y = X^2, F(x, y)$ 为二维 0 其他

随机变量 (X,Y) 的分布函数, 求:

- (1) Y 的概率密度 $f_Y(y)$;
- (2) Cov(X, Y);

$$(3) F\left(-\frac{1}{2}, 4\right).$$

解: (1) Y 的分布函数为 $F_Y(y) = P(Y \leqslant y) = P(X^2 \leqslant y)$. 当 $y \leqslant 0$ 时, $F_Y(y) = 0$. 当 0 < y < 1 时,

$$F_Y(y) = P\left(-\sqrt{y} \leqslant X \leqslant \sqrt{y}\right) = P\left(-\sqrt{y} \leqslant X < 0\right) + P\left(0 \leqslant X \leqslant \sqrt{y}\right)$$
$$= \frac{1}{2}\sqrt{y} + \frac{1}{4}\sqrt{y} = \frac{3}{4}\sqrt{y}.$$

当
$$y \ge 4$$
 时, $F_Y(y) = 1$, 因此 Y 的概率密度 $f_Y(y) = F_Y'(y) = \begin{cases} \frac{3}{8\sqrt{y}}, & 0 < y < 1 \\ \frac{1}{8\sqrt{y}}, & 1 \leqslant y < 4. \\ 0, & 其他 \end{cases}$

(2) $Cov(X, Y) = Cov(X, X^2) = E(X^3) - E(X)E(X^2),$ 其中

$$E(X) = \int_{-1}^{0} \frac{x}{2} dx + \int_{0}^{2} \frac{x}{4} dx = \frac{1}{4}, E(X^{2}) = \int_{-1}^{0} \frac{x^{2}}{2} dx + \int_{0}^{2} \frac{x^{2}}{4} dx = \frac{5}{6},$$

$$E(X^{3}) = \int_{-1}^{0} \frac{x^{3}}{2} dx + \int_{0}^{2} \frac{x^{3}}{4} dx = \frac{7}{8},$$

因此 $Cov(X, Y) = \frac{7}{8} - \frac{1}{4} \cdot \frac{5}{6} = \frac{2}{3}$.

(3)

$$F\left(-\frac{1}{2}, 4\right) = P\left(X \leqslant -\frac{1}{2}, Y \leqslant 4\right) = P\left(X \leqslant -\frac{1}{2}, X^2 \leqslant 4\right)$$
$$= P\left(X \leqslant -\frac{1}{2}, -2 \leqslant X \leqslant 2\right) = P\left(-2 \leqslant X \leqslant -\frac{1}{2}\right) = \int_{-1}^{-\frac{1}{2}} \frac{1}{2} \, \mathrm{d}x = \frac{1}{4}.$$

23.(本题满分 13 分)

设总体 X 的概率密度为 $f(x;\theta) =$ $\begin{cases} \theta, & 0 < x < 1 \\ 1 - \theta, & 1 \leqslant x < 2,$ 其中 θ 是未知参数 (0 < 0, 其他

 $\theta < 1$), X_1, X_2, \dots, X_n 为来自总体 X 的简单随机样本, 记 N 为样本值 x_1, x_2, \dots, x_n 中小于 1 的个数.

- (1) 求 θ 的矩估计;
- (2) 求 θ 的最大似然估计.
- **解:** (1) 总体均值为 $\bar{X} = \int_0^1 \theta x \, dx + \int_1^2 (1-\theta)x \, dx = \frac{3}{2} \theta$, 令样本均值 $\bar{X} = \frac{3}{2} \theta$, 解得 $\theta = \frac{3}{2} \bar{X}$, 即 θ 的矩估计为 $\hat{\theta} = \frac{3}{2} \bar{X}$.
 - (2) 似然函数为

$$L(\theta) = \prod_{i=1}^{n} f(x_i; \theta) = \theta^N (1 - \theta)^{n-N},$$

取对数得 $\ln L(\theta) = N \ln \theta + (n - N) \ln(1 - \theta)$, 令

$$\frac{\mathrm{d}\ln L(\theta)}{\mathrm{d}\theta} = \frac{N}{\theta} - \frac{n-N}{1-\theta} = 0,$$

解得 $\theta = \frac{N}{n}$, 因此 θ 的最大似然估计为 $\hat{\theta} = \frac{N}{n}$.

第 2 章 2007 年考研数学三

一、选择题, $1 \sim 10$ 题, 每题 4 分, 共 40 分.

- 当 $x \to 0^+$ 时,与 \sqrt{x} 等价的无穷小量是 A. $1 e^{\sqrt{x}}$ B. $\ln \frac{1+x}{1-\sqrt{x}}$ C. $\sqrt{1+\sqrt{x}}-1$ D. $1-\cos\sqrt{x}$ 1. 当 $x \to 0^+$ 时, 与 \sqrt{x} 等价的无穷小量是

$$1 - e^{\sqrt{x}} = -\sqrt{x}, \ln \frac{1+x}{1-\sqrt{x}} = \ln \left(\frac{1+x}{1-\sqrt{x}} - 1 + 1 \right) \sim \frac{1+x}{1-\sqrt{x}} - 1 = \frac{x+\sqrt{x}}{1-\sqrt{x}} \sim \sqrt{x},$$
$$\sqrt{1+\sqrt{x}} - 1 \sim \frac{1}{2}\sqrt{x}, 1 - \cos\sqrt{x} \frac{1}{2}x.$$

因此选 B.

- 2. 设函数 f(x) 在 x = 0 处连续, 下列命题错误的是)

 - A. 若 $\lim_{x\to 0} \frac{f(x)}{x}$ 存在,则 f(0) = 0B. 若 $\lim_{x\to 0} \frac{f(x) + f(-x)}{x}$ 存在,则 f(0) = 0C. 若 $\lim_{x\to 0} \frac{f(x)}{x}$ 存在,则 f'(0) = 0D. 若 $\lim_{x\to 0} \frac{f(x) f(-x)}{x}$ 存在,则 f'(0) = 0
- **解:** A, B 两项中分母的极限均为 0, 因此分子的极限也为 0, 再由 f(x) 的连续性知 f(0) = 0. 若 $\lim_{x\to 0} \frac{f(x)}{x}$ 存在,则

$$f(0) = 0, f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{f(x)}{x},$$

因此 C 正确. 可举反例 f(x) = |x| 说明 D 选项错误, 选 D.

3. 如图, 连续函数 y = f(x) 在区间 [-3, -2], [2, 3]上的图形分别是直径为1的上、下半圆周,在区间 [-2,0],[0,2] 的图形分别是直径为 2 的下、上半圆 周, 设 $F(x) = \int_0^x f(t) dt$. 则下列结论正确的是 $\frac{1}{-3}$ $\frac{1}{-2}$ $\frac{1}{-1}$

第3题图

解: 根据定积分的几何意义知, F(2) 是半径为 1 的半圆面积, $F(2) = \frac{1}{2}\pi$, F(3) 是两个半圆 的面积之差, $F(3) = \frac{1}{2}\pi \left| 1 - \left(\frac{1}{2}\right)^2 \right| = \frac{3}{8}\pi = \frac{3}{4}F(2),$

$$F(-3) = \int_0^{-3} f(x) \, \mathrm{d}x = -\int_{-3}^0 f(x) \, \mathrm{d}x = \int_0^3 f(x) \, \mathrm{d}x = F(3),$$

因此选 C.

4. 设函数
$$f(x, y)$$
 连续, 则二次积分 $\int_{\frac{\pi}{2}}^{\pi} dx \int_{\sin x}^{1} f(x, y) dy$ 等于

A. $\int_{0}^{1} dy \int_{\pi+\arcsin y}^{\pi} f(x, y) dy$
B. $\int_{0}^{1} dy \int_{\pi-\arcsin y}^{\pi} f(x, y) dy$
C. $\int_{0}^{1} dy \int_{\frac{\pi}{2}}^{\pi+\arcsin y} f(x, y) dx$
D. $\int_{0}^{1} dy \int_{\frac{\pi}{2}}^{\pi-\arcsin y} f(x, y) dx$

解: 积分区域 $D: \frac{\pi}{2} \le x \le \pi, \sin x \le y < 1$, 也可表示为

$$0 \le 1, \pi - \arcsin y \le x \le \pi,$$

因此
$$\int_{\frac{\pi}{2}}^{\pi} dx \int_{\sin x}^{1} f(x, y) dy = \int_{0}^{1} dy \int_{\pi-\arcsin y}^{\pi} f(x, y) dy$$
, 选 B.

5. 设某商品的需求函数为 Q = 160 - 2P, 其中 Q, P 分别表示需求量和价格, 如果该 商品需求弹性的绝对值等于1,则商品的价格是)

- D. 40
- **解:** 商品需求弹性的绝对值为 $\left| \frac{\mathrm{d}Q}{\mathrm{d}P} \cdot \frac{P}{Q} \right| = \left| \frac{-2P}{160 2P} \right| = 1 \Rightarrow P = 40$, 选 D.
- 6. 曲线 $y = \frac{1}{x} + \ln(1 + e^x)$ 渐近线的条数为 A 0 B. 1 C. 2 ()
- **解:** 因为 $\lim_{\substack{x\to 0 \ x}} \frac{1}{x} \ln(1+e^x) = \infty$, 所以 x=0 为垂直渐近线. 又 $\lim_{\substack{x\to -\infty \ x}} \frac{1}{x} \ln(1+e^x) = 0$, 所以 y=0 为水平渐近线. 又

$$\lim_{x \to +\infty} \frac{y}{x} = \lim_{x \to +\infty} \left[\frac{1}{x^2} + \frac{\ln(1 + e^x)}{x} \right] = \lim_{x \to +\infty} \frac{\ln(1 + e^x)}{x} = \lim_{x \to +\infty} \frac{e^x}{1 + e^x} = 1.$$

$$\lim_{x \to +\infty} (y - x) = \lim_{x \to +\infty} \left[\frac{1}{x} + \ln(1 + e^x) - x \right]$$

$$= \lim_{x \to +\infty} [\ln(1 + e^x) - x] = \lim_{x \to +\infty} \ln(1 + e^{-x}) = 0,$$

所以有斜渐近线 v = x, 选 D.

7. 设向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,则下列向量组线性相关的是)

A.
$$\alpha_1 - \alpha_2, \alpha_2 - \alpha_3, \alpha_3 - \alpha_1$$

B.
$$\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1$$

C.
$$\alpha_1 - 2\alpha_2$$
, $\alpha_2 - 2\alpha_3$, $\alpha_3 - 2\alpha_1$

C.
$$\alpha_1 - 2\alpha_2, \alpha_2 - 2\alpha_3, \alpha_3 - 2\alpha_1$$
 D. $\alpha_1 + 2\alpha_2, \alpha_2 + 2\alpha_3, \alpha_3 + 2\alpha_1$

解: 不难知 A 中三个向量的和为 0, 因此选 A. B 选项中的向量是线性无关的, 因为

$$(\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1) = (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix},$$

其中 $\begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$ 不可逆, 因此 B 中的向量线性无关, 类似可得 C, D 也线性无关.

- 8. 设矩阵 $\mathbf{A} = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, 则 $\mathbf{A} \ni \mathbf{B}$
 - A. 合同, 且相何

C. 不合同, 但相似

- D. 既不合同, 也不相似
- ◎ **解:** 由 |λE A| = 0 得 **A** 的特征值为 0, 3, 3, 而 **B** 的特征值为 0, 1, 1, 从而 **A** 与 **B** 合同而 不相似, 选B.
- 9. 某人向同一目标独立重复射击,每次设计射击命中目标的概率为p(0 ,则此人第 4 次射击恰好第 2 次命中目标的概率为 A. $3p(1-p)^2$ B. $6p(1-p)^2$ C. $3p^2(1-p)^2$ D. $6p^2(1-p)^2$

- 解: "第 4 次射击恰好第 2 次命中"表示第 4 次射击命中目标,前 3 次中只有 1 次命中目标, 因此所求的概率为 $C_3^1 p^2 (1-p)^2 = 3p^2 (1-p)^2$, 选 C.
- 10.设随机变量 (X,Y) 服从二维正态分布, 且 X 与 Y 不相关, $f_X(x)$, $f_Y(y)$ 分别表示 X,Y 的概率密度,则在 Y=y 的条件下, X 的条件概率密度 $f_{X|Y}(x|y)$ 为 B. $f_Y(y)$ C. $f_X(x) f_Y(y)$
 - A. $f_X(x)$

- **解:** 因为 (X,Y) 服从二维正态分布, 且 X 与 Y 不相关, 故 X 与 Y 相互独立, 于是 $f_{X|Y}(x|y) =$ $f_X(x)$, 因此选 A.
- 二、填空题, $11 \sim 16$ 题, 每题 4 分, 共 24 分.
- 11. $\lim_{x \to +\infty} \frac{x^3 + x^2 + 1}{2^x + x^3} (\sin x + \cos x) = \underline{\hspace{1cm}}$
- **解:** 当 $x \to +\infty$ 时, 2^x 是比 x^3 高阶的无穷大, 而 $\sin x + \cos x$ 有界, 根据无穷小乘以有界 量为无穷小知原极限为0.
- 12.设函数 $y = \frac{1}{2r+3}$,则 $y^{(n)}(0) = _____.$
- **解:** $y = (2x+3)^{-1}$, $y' = -1 \cdot 2(2x+3)^{-2}$, $y'' = -1 \cdot (-2)2^2(2x+3)^{-3}$, 归纳可知 $y^{(n)} = -1 \cdot (-2)2^2(2x+3)^{-3}$ $(-1)^n n! 2^n (2x+3)^{-n-1}$, $\lim_{n \to \infty} y^{(n)}(0) = \frac{1}{3} (-1)^n n! \left(\frac{2}{3}\right)^n$.

13.设
$$f(u,v)$$
 是二元可微函数, $z = f\left(\frac{y}{x}, \frac{x}{y}\right)$, 则 $x\frac{\partial z}{\partial x} - y\frac{\partial z}{\partial y} = \underline{\hspace{1cm}}$.

解:
$$\frac{\partial z}{\partial x} = f_1' \cdot \left(-\frac{y}{x^2}\right) + f_2' \cdot \frac{1}{y}, \frac{\partial z}{\partial y} = f_1' \cdot \frac{1}{x} + f_2' \cdot \left(-\frac{x}{y^2}\right),$$
 于是有
$$x\frac{\partial z}{\partial x} - y\frac{\partial z}{\partial y} = x\left(-\frac{y}{x^2}f_1' + \frac{1}{y}f_2'\right) - y\left(\frac{1}{x}f_1' - \frac{x}{y^2}f_2'\right) = -\frac{2y}{x}f_1' + \frac{2x}{y}f_2'.$$

14.微分方程 $\frac{dy}{dx} = \frac{y}{x} - \frac{1}{2} \left(\frac{y}{x} \right)^3$ 满足 $y|_{x=1} = 1$ 的特解为 y =______.

解: 令 y = xu, 则 $\frac{\mathrm{d}y}{\mathrm{d}x} = u + x \frac{\mathrm{d}u}{\mathrm{d}x}$, 代入原方程得

$$u + x \frac{\mathrm{d}u}{\mathrm{d}x} = u - \frac{1}{2}u^3,$$

 $u + x \frac{\mathrm{d}u}{\mathrm{d}x} = u - \frac{1}{2}u^3,$ 变量分离解得 $\frac{1}{u^2} = \frac{x^2}{y^2} = \ln|x| + C$, 代入 $y\big|_{x=1} = 1$ 得 C = 1. 因此 $y^2 = \frac{x^2}{\ln|x| + 1}$, 注意 到 y(1) > 0, 因此特解为 $y = \frac{|x|}{\sqrt{\ln|x|+1}}$

15.设矩阵
$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
, 则 A^3 的秩为_____.

16.在区间 (0,1) 中随机地取两个数,则这两个数之差的绝对值小于 $\frac{1}{2}$ 的概率为

解: 这是一个几何概型, 设 x, y 为所取的两个数, 则样本空间 $\Omega = \{(x, y) | 0 < x, y < 1\}$, 记

$$A = \left\{ (x, y) \in \Omega, |x - y| < \frac{1}{2} \right\}.$$

于是所求概率为 $P(A) = \frac{S_A}{S_\Omega} = \frac{3}{4}$, 其中 S_A , S_Ω 分别表示 $A \subseteq \Omega$ 的面积.

三、解答题, $17 \sim 24$ 题, 共 86 分.

17.(本题满分 10 分)

设函数 y = y(x) 由方程 $y \ln y - x + y = 0$ 确定, 试判断曲线 y = y(x) 在点 (1,1) 附近的凹凸性.

 \mathbf{M} : 原方程两边对 x 求导得

$$y' \ln y - 1 + 2y' = 0 \Rightarrow y' = \frac{1}{2 + \ln y},$$

因此 $y'(1) = \frac{1}{2}$. 上式两边再对 x 求导得

$$y'' = -\frac{1}{(2 + \ln y)^2} \frac{y'}{y} = -\frac{y'}{y(2 + \ln y)^2}.$$

在点 (1,1) 处, $y''(1) = -\frac{1}{8} < 0$, 且 y'' 在 (1,1) 附近连续, 因此 y'' < 0 在此点的邻域内成立, 所以 y = y(x) 在点 (1,1) 附近是凸的.

18.(本题满分11分)

设二元函数

$$f(x,y) = \begin{cases} x^2, & |x| + |y| \le 1\\ \frac{1}{\sqrt{x^2 + y^2}}, & 1 \le |x| + |y| \le 2 \end{cases}$$

计算二重积分 $\iint_D f(x,y) d\sigma$, 其中 $D = \{(x,y)||x|+|y| \leq 2\}$.

解: 区域 D 如图 (1) 所示, 它关于 x, y 轴对称, f(x, y) 关于 x, y 均为偶函数, 得

$$\iint\limits_{D} f(x, y) d\sigma = 4 \iint\limits_{D_{1}} f(x, y) d\sigma,$$

其中 D_1 是 D 在第一象限的部分.

由于被积函数分块表示,将 D_1 分成如图 (2) 所示的两部分: $D_1 = D_{11} \cup D_{12}$,其中

$$D_{11}: |x| + |y| \le 1, x \ge 0, y \ge 0,$$
 $D_{12}: 1 \le |x| + |y| \le 2, x \ge 0, y \ge 0.$

于是
$$\iint\limits_{D_1} f(x,y) \,\mathrm{d}\sigma = \iint\limits_{D_{11}} f(x,y) \,\mathrm{d}\sigma + \iint\limits_{D_{12}} f(x,y) \,\mathrm{d}\sigma,$$
其中

$$\iint\limits_{D_{11}} f(x,y) \, \mathrm{d}\sigma = \int_0^1 \mathrm{d}x \int_0^{1-x} x^2 \, \mathrm{d}y = \int_0^1 x^2 (1-x) \, \mathrm{d}x = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}.$$

$$\iint_{D_{12}} f(x,y) d\sigma = \iint_{D_{12}} \frac{1}{\sqrt{x^2 + y^2}} d\sigma = \int_0^{\frac{\pi}{2}} d\theta \int_{\frac{1}{\cos\theta + \sin\theta}}^{\frac{2}{\cos\theta + \sin\theta}} \frac{1}{r} \cdot r dr$$

$$= \int_0^{\frac{\pi}{2}} \frac{1}{\cos\theta + \sin\theta} d\theta = \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{2}\sin\left(\theta + \frac{\pi}{4}\right)}$$

$$= \frac{1}{\sqrt{2}} \ln\left|\csc\left(\theta + \frac{\pi}{4}\right) - \cot\left(\theta + \frac{\pi}{4}\right)\right|_0^{\frac{\pi}{2}} = \sqrt{2} \ln\left(1 + \sqrt{2}\right).$$

所以

$$\iint\limits_{D} f(x, y) d\sigma = \frac{1}{3} + 4\sqrt{2} \ln\left(1 + \sqrt{2}\right).$$

19.(本题满分 11 分)

设函数 f(x), g(x) 在 [a,b] 上连续, 在 (a,b) 内具有二阶导数存在相等的最大值, f(a) = g(a), f(b) = g(b), 证明: 存在 $\xi \in (a,b)$, 使得 $f''(\xi) = g''(\xi)$.

证明: 令 F(x) = f(x) - g(x), 由题意有 F(a) = F(b) = 0. 又 f(x), g(x) 在 (a,b) 内具有相等的最大值, 不妨设存在 $x_1 \le x_2, x_1, x_2 \in (a,b)$ 使得

$$f(x_1) = M = \max_{x \in [a,b]} g(x_2) = M = \max_{x \in [a,b]} g(x).$$

若 $x_1 = x_2$, 令 $c = x_1$, 则 F(c) = 0. 若 $x_1 < x_2$, 因 $F(x_1) = f(x_1) - g(x_1) \ge 0$, $F(x_2) = f(x_2) - g(x_2) \le 0$, 从而存在 $c \in [x_1, x_2] \subset (a, b)$, 使得 F(c) = 0.

在区间 [a,c], [c,b] 上分别利用罗尔定理知, 存在 $\xi_1 \in (a,c)$, $\xi_2 \in (c,b)$, 使得

$$F'(\xi_1) = F'(\xi_2) = 0.$$

再对 F'(x) 在区间 $[\xi_1, \xi_2]$ 上应用罗尔定理, 存在 $\xi \in (\xi_1, \xi_2) \subset (a, b)$, 有 $F''(\xi) = 0$, 即 $f''(\xi) = g''(\xi)$.

20.(本题满分 10 分)

将函数 $f(x) = \frac{1}{x^2 - 3x - 4}$ 展开成 x - 1 的幂级数, 并指出其收敛区间.

$$\frac{1}{x^2 - 3x - 4} = \frac{1}{(x - 4)(x + 1)} = \frac{1}{(t - 3)(t + 2)}$$

$$= \frac{1}{5} \left(\frac{1}{t - 3} - \frac{1}{t + 2} \right) = -\frac{1}{15} \frac{1}{1 - \frac{t}{3}} - \frac{1}{10} \frac{1}{1 + \frac{t}{2}}$$

$$= -\frac{1}{15} \sum_{n=0}^{\infty} \left(\frac{t}{3} \right)^n - \frac{1}{10} \sum_{n=0}^{\infty} (-1)^n \left(\frac{t}{2} \right)^n$$

$$= \sum_{n=0}^{\infty} \left[-\frac{1}{15} \left(\frac{1}{3} \right)^n - \frac{1}{10} \left(-\frac{1}{2} \right)^n \right] (x - 1)^n.$$

其收敛区间满足 |x-1| < 3, |x-1| < 2, 即收敛区间为 (-1,3).

21.(本题满分 11 分)

设线性方程组

$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 + 2x_2 + ax_3 = 0 \\ x_1 + 4x_2 + a^2 x_3 = 0 \end{cases}$$
 (1)

与方程

$$x_1 + 2x_2 + x_3 = a - 1 (2)$$

有公共解, 求a 的值及所有公共解.

解: 因为方程 (1)、(2) 有公共解, 将 (1)、(2) 联立组成方程组

$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 + 2x_2 + ax_3 = 0 \\ x_1 + 4x_2 + a^2x_3 = 0 \\ x_1 + 2x_2 + x_3 = a - 1 \end{cases}$$
 (3)

此非齐次线性方程组的解即为所求的公共解. 对增广矩阵 \bar{A} 进行初等行变换得

$$\overline{A} = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 2 & a & 0 \\ 1 & 4 & a^2 & 0 \\ 1 & 2 & 1 & a - 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & a - 1 & 0 \\ 0 & 0 & (a - 2)(a - 1) & 0 \\ 0 & 0 & 1 - a & a - 1 \end{pmatrix}.$$

于是当 a = 1 时, 有 $r(A) = r(\bar{A}) = 2 < 3$, 方程组 (3) 有解, 此时

方程组是齐次的, 基础解系为 $(-1,0,1)^{\mathrm{T}}$, 所以 (1)、(2) 的公共解为 $k(-1,0,1)^{\mathrm{T}}, k \in \mathbb{R}$.

当 a = 2 时, $r(A) = r(\bar{A}) = 3$, 方程组 (3) 有唯一解, 此时

$$\bar{A} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix},$$

故方程 (3) 的解为 $(0,1,-1)^{\mathrm{T}}$, 即 (1)、(2) 的公共解为 $(0,1,-1)^{\mathrm{T}}$.

22.(本题满分 11 分)

设 3 阶实对称矩阵 A 的特征值 $\lambda_1 = 1, \lambda_2 = 2, \lambda_3 = -2$. $\alpha_1 = (1, -1, 1)^T$ 是 A 的属于特征值 λ_1 的一个特征向量, 记 $B = A^5 - 4A^3 + E$, 其中 E 为 3 阶单位矩阵.

- (1) 验证 α_1 是矩阵 **B** 的特征向量, 并求 **B** 的全部特征值与特征向量;
- (2) 求矩阵 B.
- **解:** (1) 由 $A\alpha_1 = \alpha_1$ 得 $A^2\alpha_1 = A\alpha_1 = \alpha_1$, $A^3\alpha_1 = \alpha_1$, $A^5\alpha_1 = \alpha_1$, 故

$$B\alpha_1 = (A^5 - 4A^4 + E)\alpha_1 = A^5\alpha_1 - 4A^4\alpha_1 + \alpha_1 = \alpha_1 - 4\alpha_1 + \alpha_1 = -2\alpha_1.$$

因此 α_1 是矩阵 B 的属于特征值 -2 的特征向量.

因为 $\mathbf{B} = \mathbf{A}^5 - 4\mathbf{A}^4 + \mathbf{E}$, 及 \mathbf{A} 的三个特征值 $\lambda_1 = 1, \lambda_2 = 2, \lambda_3 = -2$, 得 \mathbf{B} 的 3 个特征值为 $\mu_1 = -2, \mu_2 = 1, \mu_3 = 1$.

设 α_2 , α_3 为 B 的属于 $\mu_2 = \mu_3 = 1$ 的两个线性无关的特征向量, 又 A 为对称矩阵, 则 B 也为对称矩阵, 因此 α_1 与 α_2 , α_3 正交, 即

$$\boldsymbol{\alpha}_1^{\mathrm{T}} \boldsymbol{\alpha}_2 = 0, \boldsymbol{\alpha}_1^{\mathrm{T}} \boldsymbol{\alpha}_3 = 0.$$

所以 α_2,α_3 可取为下列齐次线性方程组两个线性无关的解:

$$(1, -1, 1) \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0.$$

其基础解系为 $(1,1,0)^{\mathrm{T}}$, $(-1,0,1)^{\mathrm{T}}$, 故可取 $\boldsymbol{\alpha}_2 = (1,1,0)^{\mathrm{T}}$, $\boldsymbol{\alpha}_3 = (-1,0,1)^{\mathrm{T}}$, 即 \boldsymbol{B} 的全部特征向量为 $k_1(1,-1,1)^{\mathrm{T}}$, $k_2(1,1,0)^{\mathrm{T}} + k_2(-1,0,1)^{\mathrm{T}}$, 其中 $k_1 \neq 0, k_2, k_3$ 不全为零.

23.(本题满分 11 分)

设二维随机变量 (X,Y) 的概率密度为

$$f(x,y) = \begin{cases} 2 - x - y, & 0 < x < 1, 0 < y < 1 \\ 0, & \text{ 其他} \end{cases}.$$

- (1) 求 P(X > 2Y);
- (2) 求 Z = X + Y 的概率密度.

解: (1)
$$P(X > 2Y) = \iint_{x > 2y} f(x, y) dx dy = \int_0^{\frac{1}{2}} dy \int_{2y}^1 (2 - x - y) dx = \frac{7}{24}.$$

(2) 先求 Z 的分布函数:

$$F_Z(z) = P(X + Y \le z) = \iint_{x+y \le z} f(x, y) \, \mathrm{d}x \, \mathrm{d}y.$$

当 z < 0 时, $F_Z(z) = 0$;

$$0 \leqslant z <$$

$$1 \leqslant z < 2$$

$$0 \le z < 1$$

$$\stackrel{\square}{=} 0 \le z < 1 \text{ ff}, F_Z(z) = \iint_{D_1} f(x, y) \, \mathrm{d}x \, \mathrm{d}y = \int_0^z \mathrm{d}y \int_0^{z-y} (2 - x - y) \, \mathrm{d}x = z^2 - \frac{1}{3}z^3;$$

当
$$1 \le z < 2$$
 时, $F_Z(z) = 1 - \iint_{D_2} f(x, y) \, \mathrm{d}x \, \mathrm{d}y = 1 - \int_{z-1}^1 \mathrm{d}y \int_{z-y}^1 (2 - x - y) \, \mathrm{d}x = 1 - \frac{1}{3} (2 - z)^3$;

当 $z \ge 2$ 时, $F_Z(z) = 1$. 故 Z = X + Y 的概率密度为

$$f_{Z}(z) = F'_{Z}(z) = \begin{cases} 2z - z^{2}, & 0 < z < 1 \\ (2 - z)^{2}, & 1 \leqslant z < 2 \\ 0, & \text{其他} \end{cases}$$

24.(本题满分 11 分)

设总体 X 的概率密度为

$$f(x;\theta) = \begin{cases} \frac{1}{2\theta}, & 0 < x < \theta \\ \frac{1}{2(1-\theta)}, & \theta \leqslant x < 1, \\ 0, & \text{其他} \end{cases}$$

其中参数 θ (0 < θ < 1) 未知, X_1, X_2, \cdots, X_n 是来自总体 X 的简单随机样本, \bar{X} 是 样本均值.

- (1) 求参数 θ 的矩估计量 $\hat{\theta}$;
- (2) 判断 $4\bar{X}^2$ 是否为 θ^2 的无偏估计量, 并说明理由.
- 解: (1) 总体均值

$$E(X) = \int_0^\theta \frac{x}{2\theta} \, \mathrm{d}x + \int_\theta^1 \frac{x}{2(1-\theta)} \, \mathrm{d}x = \frac{\theta}{4} + \frac{1}{4}(1+\theta) = \frac{\theta}{2} + \frac{1}{4}.$$

样本均值为 $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$, 令 $\bar{X} = \frac{\theta}{2} + \frac{1}{3}$, 解得 $\theta = 2\bar{X} - \frac{1}{2}$, 即 θ 的矩估计量为 $\hat{\theta} = 2\bar{X} - \frac{1}{2}$.

(2)
$$E(4\bar{X}^2) = 4E(\bar{X}^2) = 4[D(\bar{X}) + (E\bar{X})^2] = 4\left[\frac{D(X)}{n} + (EX)^2\right], \vec{m}$$

$$E(X^2) = \int_0^\theta \frac{x^2}{2\theta} \, \mathrm{d}x + \int_\theta^1 \frac{x^2}{2(1-\theta)} \, \mathrm{d}x = \frac{\theta^2}{3} + \frac{1}{6}\theta + \frac{1}{6},$$
$$D(X) = E(X^2) - (EX)^2 = \frac{\theta^2}{3} + \frac{1}{6}\theta + \frac{1}{6} - \left(\frac{1}{2}\theta + \frac{1}{4}\right)^2 = \frac{1}{12}\theta^2 - \frac{1}{12}\theta + \frac{5}{48}.$$

故 $E(4\bar{X}^2) = 4\left(\frac{D(X)}{n} + (EX)^2\right) = \frac{3n+1}{3n}\theta^2 + \frac{3n-1}{3n}\theta + \frac{3n+5}{12n} \neq \theta^2$, 所以 $4\bar{X}^2$ 不是 θ^2 的无偏估计量.

第 3 章 2008 年考研数学三

- 一、选择题, $1 \sim 8$ 题, 每题 4 分, 共 32 分.
- 1. 设函数 f(x) 在区间 [-1,1] 上连续,则 x = 0 是函数 $g(x) = \frac{\int_0^x f(t) dt}{x}$ 的 () A. 跳跃间断点 B. 可去间断点 C. 无穷间断点 D. 震荡间断点
- **解:** 由洛必达法则知 $\lim_{x\to 0} g(x) = \lim_{x\to 0} f(x) = f(0)$, 因此 x = 0 是 g(x) 的可去间断点, 选 B.
- 2. 如图, 曲线段的方程为 y = f(x), 函数 f(x) 在区间 [0,a] 上有连续的导数,则定积分 $\int_{0}^{a} x f'(x) dx$ 等于

- B. 梯形 ABOD 的面积
- C. 曲边三角形 ACD 的面积
- D. 三角形 ACD 的面积
- ◎ 解:由分部积分知

$$\int_0^a x f'(x) \, \mathrm{d}x = \int_0^a x \, \mathrm{d}f(x) = a f(a) - \int_0^a f(x) \, \mathrm{d}x,$$

其中 af(a) 是矩形面积, $\int_0^a f(x) dx$ 为曲边三角形 ACD 的面积,选C.

第2题图

)

- 3. 己知 $f(x, y) = e^{\sqrt{x^2 + y^4}}$, 则
 - A. $f'_x(0,0), f'_v(0,0)$ 都存在
- B. $f'_x(0,0)$ 不存在, $f'_y(0,0)$ 存在
 - C. $f'_x(0,0)$ 不存在, $f'_y(0,0)$ 存在 D. $f'_x(0,0)$, $f'_y(0,0)$ 都不存在
- 解:由偏导数的定义得

$$f_y'(0,0) = \lim_{y \to 0} \frac{e^{\sqrt{0^2 + y^4}} - 1}{y - 0} = \lim_{y \to 0} \frac{e^{y^2} - 1}{y - 0} = 0,$$

而

$$\lim_{x \to 0^+} \frac{e^{\sqrt{x^2 + 0^4}} - 1}{x - 0} = \lim_{x \to 0^+} \frac{e^x - 1}{x} = 1, \lim_{x \to 0^-} \frac{e^{\sqrt{x^2 + 0^4}} - 1}{x - 0} = \lim_{x \to 0^-} \frac{e^{-x} - 1}{x} = -1.$$

因此 $f_x'(0,0)$ 不存在, 选 C.

4. 设函数 f(x) 连续, 若 $F(u,v) = \iint_{D} \frac{f(x^2 + y^2)}{\sqrt{x^2 + y^2}} dx dy$, 其中区域 D_{uv} 为图中阴影部

分,则
$$\frac{\partial F}{\partial u} =$$
A. $vf(u^2)$ B. $\frac{v}{u}f(u^2)$ C. $vf(u)$ D. $\frac{v}{u}f(u)$

解: 利用极坐标可得

$$F(u, v) = \iint_{D_{uv}} \frac{f(x^2 + y^2)}{\sqrt{x^2 + y^2}} dx dy$$
$$= \int_0^v dv \int_1^u \frac{f(r^2)}{r} r dr = v \int_1^u f(r^2) dr,$$

所以 $\frac{\partial F}{\partial u} = v f(u^2)$, 选 A.

第4题图

5. 设
$$A$$
 为 n 阶非零矩阵, E 为 n 阶单位矩阵, 若 $A^3 = O$, 则 ()

$$A. E - A$$
 不可逆, $E + A$ 不可逆

B.
$$E - A$$
 不可逆, $E + A$ 可逆

$$C. E - A$$
 可逆, $E + A$ 可逆

D.
$$E - A$$
 可逆, $E + A$ 不可逆

解: 因为 $A^3 = O$, 所以 A 的特征值 λ 满足 $\lambda^3 = 0$, 即 $\lambda = 0$. 因此 E - A 和 E + A 的所 有特征值均为1,都可逆,选C.

6. 设
$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$
, 则在实数域上与 \mathbf{A} 合同的矩阵为 ()

A.
$$\begin{pmatrix} -2 & 1 \\ 1 & -2 \end{pmatrix}$$

B.
$$\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$

C.
$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

A.
$$\begin{pmatrix} -2 & 1 \\ 1 & -2 \end{pmatrix}$$
 B. $\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$ C. $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ D. $\begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix}$

解:
$$|\lambda E - A| = \begin{vmatrix} \lambda - 1 & -2 \\ -2 & \lambda - 1 \end{vmatrix} = (\lambda - 1)^2 - 4 = (\lambda + 1)(\lambda - 3) = 0$$
, 则 $\lambda_1 = -1, \lambda_2 = 3$, 记 $\mathbf{D} = \begin{vmatrix} 1 & -2 \\ -2 & 1 \end{vmatrix}$,则

$$|\lambda \boldsymbol{E} - \boldsymbol{D}| = \begin{vmatrix} \lambda - 1 & 2 \\ 2 & \lambda - 1 \end{vmatrix} = (\lambda - 1)^2 - 4 = (\lambda + 1)(\lambda - 3) = 0,$$

则 $\lambda_1 = -1$, $\lambda_2 = 3$, 正负关系指数相同, 选 D.

7. 设随机变量 X, Y 独立同分布, 且 X 的分布函数为 F(x), 则 $Z = \max\{X, Y\}$ 的分布 函数为)

A.
$$F^2(x)$$

B.
$$F(x)F(y)$$

C.
$$1 - [1 - F(x)]^2$$

D.
$$[1 - F(x)][1 - F(y)]$$

解: 由分布函数的定义可得 Z 的分布函数为

$$F_Z(x) = P(Z \leqslant x) = P(\max\{X, Y\} \leqslant x) = P(X \leqslant x, Y \leqslant x)$$

$$= P(X \leqslant x)P(Y \leqslant x) = F(x)F(x) = F^{2}(x),$$

选 A.

- 8. 设随机变量 $X \sim N(0,1), Y \sim N(1,4),$ 且相关系数 $\rho_{XY} = 1,$ 则 ()
 - A. $P{Y = -2X 1} = 1$

B.
$$P{Y = 2X - 1} = 1$$

C. $P{Y = -2X + 1} = 1$

D.
$$P{Y = 2X + 1} = 1$$

- **解:** 由于 X, Y 都服从正态分布,且 $\rho_{XY} = 1$,所以一定存在常数 a, b 使得 P(Y = aX + b) = 1,且 a > 0.那么有 E(Y) = aE(X) + b,即 1 = 0 + b, b = 1.再由 $4 = D(Y) = a^2D(X) = a^2$ 可知 a = 2,选 D.
- 二、填空题, 9~14题, 每题 4分, 共24分.
- 9. 设函数 $f(x) = \begin{cases} x^2 + 1, & |x| \leq c \\ \frac{2}{|x|}, & |x| > c \end{cases}$ 在 $(-\infty, +\infty)$ 内连续, 则 c =______
- **解:** 由条件知 $\lim_{x \to c^+} f(x) = \lim_{x \to c^-} f(x) \Rightarrow c^2 + 1 = \frac{2}{c}, c = 1.$

10.设
$$f\left(x+\frac{1}{x}\right) = \frac{x+x^3}{1+x^4}$$
,则 $\int_2^{2\sqrt{2}} f(x) dx = \underline{\qquad}$.

解: 由题意知 $f\left(x+\frac{1}{x}\right) = \frac{\frac{1}{x}+x}{\frac{1}{x^2}+x^2} = \frac{\frac{1}{x}+x}{\left(\frac{1}{x}+x\right)^2-2}$, 所以 $f(t)=\frac{t}{t^2-2}$, 于是

$$\int_{2}^{2\sqrt{2}} f(x) \, \mathrm{d}x = \int_{2}^{2\sqrt{2}} \frac{x}{x^2 - 2} \, \mathrm{d}x = \left. \frac{1}{2} \ln(x^2 - 2) \right|_{2}^{2\sqrt{2}} = \frac{1}{2} \ln 3.$$

11.设
$$D = \{(x, y) | x^2 + y^2 \le 1\}$$
, 则 $\iint_D (x^2 - y) dx dy = _____.$

$$\text{MF: } \iint\limits_{D} (x^2 - y) \, \mathrm{d}x \, \mathrm{d}y = \iint\limits_{D} x^2 \, \mathrm{d}x \, \mathrm{d}y = \frac{1}{2} \iint\limits_{D} (x^2 + y^2) \, \mathrm{d}x \, \mathrm{d}y = \frac{1}{2} \int_0^1 2\pi r \, \mathrm{d}r = \frac{\pi}{2}.$$

12.微分方程 xy' + y = 0 满足条件 y(1) = 1 的解是 $y = _____.$

解: 由 xy' + y = (xy)' = 0 知 xy = C, 代入 y(1) = 1 知 C = 1, 所以方程的解为 $y = \frac{1}{x}$.

13.设 3 阶矩阵 A 的特征值为 1, 2, 2, E 为 3 阶单位矩阵, 则 $|4A^{-1} - E| = _____.$

解: A^{-1} 的特征值为 $1, \frac{1}{2}, \frac{1}{2}, 4A^{-1} - E$ 的特征值为 3, 1, 1, 因此 $|4A^{-1} - E| = 3$.

14.设随机变量 X 服从参数为 1 的泊松分布,则 $P\{X = EX^2\} = _____.$

解: 因为 $X \sim P(1)$, 所以 EX = DX = 1, 于是 $EX^2 = (EX)^2 + DX = 2$, $P(X = EX^2) = P(X = 2) = \frac{1}{2e}$.

15.(本题满分9分)

求极限 $\lim_{x\to 0} \frac{1}{x^2} \ln \frac{\sin x}{x}$.

◎ 解:

$$\lim_{x \to 0} \frac{1}{x^2} \ln \frac{\sin x}{x} = \lim_{x \to 0} \frac{1}{x^2} \ln \left(\frac{\sin x - x}{x} + 1 \right) = \lim_{x \to 0} \frac{1}{x^2} \frac{\sin x - x}{x}$$
$$= \lim_{x \to 0} \frac{\sin x - x}{x^3} = \lim_{x \to 0} \frac{-\frac{1}{6}x^3}{x^3} = -\frac{1}{6}.$$

16.(本题满分 10 分)

设 z = z(x, y) 是由方程 $x^2 + y^2 - z = \varphi(x + y + z)$ 所确定的函数, 其中 φ 具有 2 阶导数且 $\varphi' \neq -1$.

(1)求 dz;

(2)
$$id u(x, y) = \frac{1}{x - y} \left(\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y} \right), \, \not \propto \frac{\partial u}{\partial x}.$$

解: (1) 在方程 $x^2 + y^2 - z = \varphi(x + y + z)$ 两边求全微分得

$$2x dx + 2y dy - dz = \varphi'(x + y + z) \cdot (dx + dy + dz),$$

解得
$$dz = \frac{-\varphi' + 2x}{\varphi' + 1} dx + \frac{-\varphi' + 2y}{\varphi' + 1} dy$$
.

$$(2) u(x,y) = \frac{1}{x-y} \left(\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y} \right) = \frac{1}{x-y} \left(\frac{-\varphi' + 2x}{\varphi' + 1} - \frac{-\varphi' + 2y}{\varphi' + 1} \right) = \frac{2}{\varphi' + 1}, \exists E$$

$$\frac{\partial u}{\partial x} = \frac{-2\varphi'' \cdot \left(1 + \frac{\partial z}{\partial x} \right)}{(\varphi' + 1)^2} = -\frac{2\varphi'' \cdot \left(1 + \frac{2x - \varphi'}{1 + \varphi'} \right)}{(\varphi' + 1)^2} = -\frac{2\varphi'' \cdot (1 + \varphi' + 2x - \varphi')}{(\varphi' + 1)^3}.$$

17.(本题满分 11 分)

计算
$$\iint_D \max\{xy,1\} dx dy$$
, 其中 $D = \{(x,y)|0 \leqslant x \leqslant 2, 0 \leqslant y \leqslant 2\}.$

解: 曲线 xy = 1 将区域 D 分成如图所示的两个区域 D_1 和 D_2 , 于是

$$\iint_{D} \max\{xy, 1\} \, dx \, dy$$

$$= \iint_{D_1} \max\{xy, 1\} \, dx \, dy + \iint_{D_2} \max\{xy, 1\} \, dx \, dy$$

$$= \int_{\frac{1}{2}}^{2} dx \int_{\frac{1}{x}}^{2} xy \, dy + \int_{0}^{\frac{1}{2}} dx \int_{0}^{2} dy + \int_{\frac{1}{2}}^{2} dx \int_{0}^{\frac{1}{x}} dy$$

$$= \frac{15}{4} - \ln 2 + 1 + 2 \ln 2 = \frac{19}{4} + \ln 2.$$

第 18 题图

18.(本题满分 10 分)

设 f(x) 是连续函数,

- (1) 利用定义证明函数 $F(x) = \int_0^x f(t) dt$ 可导, 且 F'(x) = f(x);
- (2) 当 f(x) 是以 2 为周期的周期函数时,证明函数 $G(x) = 2 \int_0^x f(t) dt x \int_0^2 f(t) dt$ 也是以 2 为周期的周期函数.

$$\lim_{\Delta x \to 0} \frac{F(x + \Delta x) - F(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_0^{x + \Delta x} f(t) dt - \int_0^x f(t) dt}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(\xi) \Delta x}{\Delta x} \quad ($$

$$= \lim_{\xi \to x} f(\xi) = f(x).$$

因此 F(x) 可导, 且 F'(x) = f(x).

因此 g(x) 为常函数, $g(x) = g(0) = 2 \int_0^2 f(t) dt - 2 \int_0^2 f(t) dt = 0$, 即 G(x+2) = G(x), 这说明 G(x) 是以 2 为周期的周期函数.

19.(本题满分 10 分)

设银行存款的年利率为 r=0.05, 并依年复利计算, 某基金会希望通过存款 A 万元, 实现第一年提取 19 万元, 第二年提取 28 万元, …, 第 n 年提取 (10+9n) 万元, 并能按此规律一直提取下去, 问 A 至少应为多少万元?

解: 设 A_n 为第 n 年的提现值,则 $A_n = \frac{10 + 9n}{(1 + r)^n}$,故 A 至少应为

$$A = \sum_{n=1}^{\infty} A_n = \sum_{n=1}^{\infty} \frac{10+9n}{(1+r)^n}$$

$$= 10 \sum_{n=1}^{\infty} \frac{1}{(1+r)^n} + 9 \sum_{n=1}^{\infty} \frac{n}{(1+r)^n} = 200 + 9 \sum_{n=1}^{\infty} n \left(\frac{1}{1+r}\right)^n.$$

注意到
$$S(x) = \sum_{n=1}^{\infty} nx^n = x \left(\sum_{n=1}^{\infty} x^n\right)' = x \frac{x}{1-x} = \frac{x}{(1-x)^2}, x \in (-1,1),$$
所以 $S\left(\frac{1}{1+r}\right) = S\left(\frac{1}{1.05}\right) = 420,$ 故至少应存入 $200 + 9 \times 420 = 3980$ 万元存款.

20.(本题满分 12 分)

设n 元线性方程组Ax = b,其中

$$A = \begin{pmatrix} 2a & 1 & & & & \\ a^2 & 2a & 1 & & & \\ & a^2 & 2a & 1 & & \\ & & \ddots & \ddots & \ddots & \\ & & & a^2 & 2a & 1 \\ & & & & a^2 & 2a \end{pmatrix}, x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, b = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

- (1) 证明行列式 $|A| = (n+1)a^n$;
- (2) 当 a 为何值时,该方程组有唯一解,并求 x_1 ;
- (3) 当 a 为何值时, 该方程组有无穷多解, 并求其通解.
- **解:** (1) 从第 2 行开始, 第 k 行减去上一行的 $\frac{k}{k+1}$ 倍, $k=2,3,\cdots,n$, 可得

$$|A| = \begin{vmatrix} 2a & 1 & & & & \\ & \frac{3}{2}a & 1 & & & \\ & & \frac{4}{3}a & 1 & & \\ & & \ddots & \ddots & & \\ & & & \frac{n}{n-1}a & 1 & \\ & & & \frac{n+1}{n}a \end{vmatrix} = 2a \cdot \frac{3}{2}a \cdot \frac{4}{3}a \cdot \dots \cdot \frac{n}{n-1}a \cdot \frac{n+1}{n}a = (n+1)a^{n}.$$

- (2) 由克拉默法则知当 $a \neq 0$ 时, $|A| \neq 0$, 此时方程组有唯一解, 且 $x_1 = \frac{D_{n-1}}{D_n} = \frac{n}{(n+1)a}$. (3) 当 a = 0 时, 容易得到 r(A) = r(A b) = n - 1, 方程组有无穷多解, 此时的通解为
- $\mathbf{x} = (0, 1, 0 \cdots, 0)^{\mathrm{T}} + k(1, 0, \cdots, 0)^{\mathrm{T}}, k \in \mathbb{R}.$

21.(本题满分 10 分)

设 A 为 3 阶矩阵, α_1 , α_2 为 A 的分别属于特征值 -1, 1 的特征向量, 向量 α_3 满足 $A\alpha_3=\alpha_2+\alpha_3$.

- (1) 证明 $\alpha_1, \alpha_2, \alpha_3$ 线性无关;
- $(2) \diamondsuit \mathbf{P} = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3), \, \mathbb{R} \mathbf{P}^{-1} \mathbf{A} \mathbf{P}.$
- **解:** (1) 设存在数 k₁, k₂, k₃ 使得

$$k_1 \alpha_1 + k_2 \alpha_2 + k_3 \alpha_3 = \mathbf{0},\tag{1}$$

用 A 左乘 (1) 两边, 并由 $A\alpha_1 = -\alpha_1$, $A\alpha_2 = \alpha_2$ 得

$$-k_1\alpha_1 + (k_2 + k_3)\alpha_2 + k_3\alpha_3 = \mathbf{0},\tag{2}$$

(1)-(2), 得

$$2k_1\alpha_1 - k_3\alpha_2 = \mathbf{0}. (3)$$

因为 α_1 , α_2 是 A 的属于不同特征值的特征向量, 所以 α_1 , α_2 线性无关, 从而 $k_1 = k_3 = 0$. 代入 (1) 得 $k_2\alpha_2 = 0$, 由于 $\alpha_2 \neq 0$, 所以 $k_2 = 0$, 故 α_1 , α_2 , α_3 线性无关.

(2) 由题设, 可得

$$AP = A(\alpha_1, \alpha_2, \alpha_3) = (A\alpha_1, A\alpha_2, A\alpha_3)$$

$$= (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = P \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

由 (1) 知 \mathbf{P} 为可逆矩阵, 从而 $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

22.(本题满分 11 分)

设随机变量 X 与 Y 相互独立, X 的概率分布为 $P(X = i) = \frac{1}{3}$ (i = -1, 0, 1), Y 的概率密度为 $f_Y(y) = \begin{cases} 1, & 0 \leq y \leq 1 \\ 0, & \text{其他} \end{cases}$, 记 Z = X + Y.

$$(1) \stackrel{?}{\mathcal{R}} P\left(Z \leqslant \frac{1}{2} \middle| X = 0\right);$$

(2) 求 Z 的概率密度.

◎ 解:(1)

$$P\left(Z \leqslant \frac{1}{2} \middle| X = 0\right) = P\left(X + Y \leqslant \frac{1}{2} \middle| X = 0\right)$$
$$= P\left(Y \leqslant \frac{1}{2} \middle| X = 0\right) = P\left(Y = \frac{1}{2}\right) = \frac{1}{2}.$$

(2) Z 的分布函数为

$$F_{Z}(z) = P(Z \le z) = P(X + Y \le z)$$

$$= P(X + Y \le z, X = -1) + P(X + Y \le z, X = 0) + P(X + Y \le z, X = 1)$$

$$= P(Y \le z + 1, X = -1) + P(Y \le z, X = 0) + P(Y \le z - 1, X = 1)$$

$$= P(Y \le z + 1) P(X = -1) + P(Y \le z) P(X = 0) + P(Y \le z - 1) P(X = 1)$$

$$= \frac{1}{3} [P(Y \le z - 1) + P(Y \le z) + P(Y \le z - 1)]$$

$$= \frac{1}{3} [F_{Y}(z + 1) + F_{Y}(z) + F_{Y}(z - 1)],$$

于是 Z 的概率密度为 $f_Z(z) = F_Z'(z) = \frac{1}{3}[f_Y(z+1) + f_Y(z) + f_Y(z-1)] = \begin{cases} \frac{1}{3}, & -1 \leqslant z \leqslant 2\\ 0, & \text{其他} \end{cases}$

23.(本题满分 11 分)

设 X_1, X_2, \cdots, X_n 是总体为 $N(\mu, \sigma^2)$ 的简单随机样本, 记

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2, T = \bar{X}^2 - \frac{1}{n} S^2.$$

- (1) 证明 T 是 μ^2 的无偏估计量;
- (2) 当 $\mu = 0$, $\sigma = 1$ 时, 求 DT.

解: (1) 因为

$$E(T) = E\left(\bar{X}^2 - \frac{1}{n}S^2\right) = E(\bar{X}^2) - \frac{1}{n}E(S^2)$$
$$= (E\bar{X})^2 + D(\bar{X}) - \frac{1}{n}E(S^2) = \mu^2 + \frac{\sigma^2}{n} - \frac{\sigma^2}{n} = \mu^2,$$

所以 T 是 μ^2 的无偏估计量.

(2) 当 $\mu = 0$, $\sigma = 1$ 时, 由于 \bar{X} 与 S^2 独立, 则有

$$DT = D\left(\bar{X}^2 - \frac{1}{n}S^2\right) = D\left(\bar{X}^2\right) + \frac{1}{n^2}D\left(S^2\right)$$

$$= \frac{1}{n^2}D\left(\sqrt{n}\bar{X}\right)^2 + \frac{1}{n^2}\cdot\frac{1}{(n-1)^2}D\left[(n-1)S^2\right]$$

$$= \frac{1}{n^2}\cdot 2 + \frac{1}{n^2}\cdot\frac{1}{(n-1)^2}\cdot 2(n-1) = \frac{2}{n^2}\left(1 + \frac{1}{n-1}\right) = \frac{2}{n(n-1)}.$$

第 4 章 2009 年考研数学三

一、选择题, $1 \sim 8$ 题, 每题 4 分, 共 32 分.

- 1. 函数 $f(x) = \frac{x x^3}{\sin \pi x}$ 的可去间断点的个数为 A. 1 B. 2 C. 3 D. 无穷多个
- **解:** 显然 f(x) 的间断点为所有整数, 且 $x = 0, x = \pm 1$ 为可去间断点, 其他为无穷间断点, 选 C.
- 2. 当 $x \to 0$ 时, $f(x) = x \sin ax$ 与 $g(x) = x^2 \ln(1 bx)$ 是等价无穷小, 则
 A. $a = 1, b = -\frac{1}{6}$ B. $a = 1, b = \frac{1}{6}$ C. $a = -1, b = -\frac{1}{6}$ D. $a = -1, b = \frac{1}{6}$
- **解:** 首先当 $x \to 0$ 时, $g(x) = x^2 \ln(1 bx) \sim -bx^3$, 利用泰勒公式得

$$f(x) = x - \sin ax = x - \left(ax - \frac{a^3}{6}x^3 + o(x^3)\right) = (1 - a)x + \frac{a^3}{6}x^3 + o(x^3),$$

由 f(x) 与 g(x) 是等价无穷小知 1-a=0, $\frac{a^3}{6}=-b$, 因此 $a=1,b=-\frac{1}{6}$, 选 A.

- 3. 使不等式 $\int_1^x \frac{\sin t}{t} dt > \ln x$ 成立的 x 的范围是 A. (0,1) B. $\left(1,\frac{\pi}{2}\right)$ C. $\left(\frac{\pi}{2},\pi\right)$ D. $(\pi,+\infty)$
- 解: 令 $f(x) = \int_1^x \frac{\sin t}{t} dt \ln x$, 则当 x > 0 时, $f'(x) = \frac{\sin x 1}{x} \le 0$, 因此 f(x) 单调递减, 且 f(1) = 0, 因此当 0 < x < 1 时 f(x) > 0, 当 x > 1 时 f(x) < 0, 选 A.

第4题图

4. 设函数 y = f(x) 在区间 [-1,3] 上的图形如图所示, 则函数 $F(x) = \int_0^x f(t) dt$ 的 图形为

- ◎ 解: 首先 F(x) 是连续函数, 排除 B 选项. 当 -1 < x < 0 时, F'(x) = f(x) = 1 且此时 F(x) < 0, 排除 A, C 选项, 选 D.
- 5. 设 A, B 均为 2 阶矩阵, A^* , B^* 分别为 A, B 的伴随矩阵, 若 |A| = 2, |B| = 3, 则分 块矩阵 $\begin{pmatrix} O & A \\ B & O \end{pmatrix}$ 的伴随矩阵为)
 - A. $\begin{pmatrix} \mathbf{O} & 3\mathbf{B}^* \\ 2\mathbf{A}^* & \mathbf{O} \end{pmatrix}$ B. $\begin{pmatrix} \mathbf{O} & 2\mathbf{B}^* \\ 3\mathbf{A}^* & \mathbf{O} \end{pmatrix}$ C. $\begin{pmatrix} \mathbf{O} & 3\mathbf{A}^* \\ 2\mathbf{B}^* & \mathbf{O} \end{pmatrix}$ D. $\begin{pmatrix} \mathbf{O} & 2\mathbf{A}^* \\ 3\mathbf{B}^* & \mathbf{O} \end{pmatrix}$
- 解: 由 $\begin{vmatrix} O & A \\ B & O \end{vmatrix} = (-1)^{2\times 2} |A| |B| = 6$ 知矩阵 $\begin{pmatrix} O & A \\ B & O \end{pmatrix}$ 可逆, 则

$$\begin{pmatrix} O & A \\ B & O \end{pmatrix}^* = \begin{vmatrix} O & A \\ B & O \end{vmatrix} \begin{pmatrix} O & A \\ B & O \end{pmatrix}^{-1} = 6 \begin{pmatrix} O & B^{-1} \\ A^{-1} & O \end{pmatrix}$$
$$= \begin{pmatrix} O & 6B^{-1} \\ 6A^{-1} & O \end{pmatrix} = \begin{pmatrix} O & 2B^* \\ 3A^* & O \end{pmatrix}.$$

6. 设 A, P 均为 3 阶矩阵, $P^{T}AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$. 若 $P = (\alpha_1, \alpha_2, \alpha_3), Q = (\alpha_1 + \alpha_2, \alpha_3)$

$$C. \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

$$D. \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

解: 由题意可知把
$$P$$
 的第二列加到第一列上得到 Q , 因此有 $P\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = Q$. 记 $E_{21}(1) =$

$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, 于是

$$\mathbf{Q}^{\mathrm{T}} \mathbf{A} \mathbf{Q} = [\mathbf{P} \mathbf{E}_{21}(1)]^{\mathrm{T}} \mathbf{A} [\mathbf{P} \mathbf{E}_{21}(1)] = \mathbf{E}_{21}^{\mathrm{T}}(1) \mathbf{P}^{\mathrm{T}} \mathbf{A} \mathbf{P} \mathbf{E}_{21}(1)
= \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

因此选 A.

7. 设事件 A 与事件 B 互不相容,则

()

A.
$$P(\bar{A} \bar{B}) = 0$$

B.
$$P(AB) = P(A)P(B)$$

C.
$$P(A) = 1 - P(B)$$

D.
$$P(\bar{A} \cup \bar{B}) = 1$$

- **解:** 因为 A 与事件 B 互不相容, 即 $A \cap B = \emptyset$, 于是 $P(\bar{A} \cup \bar{B}) = 1 P(A \cap B) = 1$, 选 D, 其他选项容易判断都不对.
- 8. 设随机变量 X 与 Y 相互独立, 且 X 服从标准正态分布 N(0,1), Y 的概率分布为 $P(Y=0)=P(Y=1)=\frac{1}{2}$. 记 $F_{Z}(z)$ 为随机变量 Z=XY 的分布函数, 则函数 $F_{Z}(z)$ 的间断点个数为

A. 0

- B. 1
- C. 2
- D. 3

解: Z 的分布函数为

$$F_{Z}(z) = P(Z \le z) = P(XY \le z)$$

$$= P(Y = 0) P(XY \le z | Y = 0) + P(Y = 1) P(XY \le z | Y = 1)$$

$$= \frac{1}{2}P(0 \le z | Y = 0) + \frac{1}{2}P(X \le z | Y = 1)$$

$$= \frac{1}{2}P(0 \le z) + \frac{1}{2}P(X \le z) = \begin{cases} \frac{1}{2}\Phi(z), & z < 0\\ \frac{1}{2} + \frac{1}{2}\Phi(z), & z \ge 0 \end{cases}$$

因此 $F_Z(z)$ 在 z=0 处有一个跳跃间断点, 选 B.

二、填空题, 9~14题, 每题 4分, 共24分.

9.
$$\lim_{x \to 0} \frac{e - e^{\cos x}}{\sqrt[3]{1 + x^2} - 1} = \underline{\hspace{1cm}}.$$

$$\text{$\widehat{\mathbf{H}}$: $\lim_{x\to 0}\frac{\mathrm{e}-\mathrm{e}^{\cos x}}{\sqrt[3]{1+x^2}-1}=\lim_{x\to 0}\frac{\mathrm{e}\left(1-\mathrm{e}^{\cos x-1}\right)}{\frac{1}{3}x^2}=3\mathrm{e}\lim_{x\to 0}\frac{1-\cos x}{x^2}=\frac{3\mathrm{e}}{2}.$$

10.设
$$z = (x + e^y)^x$$
,则 $\frac{\partial z}{\partial x}\Big|_{(1,0)} =$ ______.

解: 因为
$$\frac{\partial z}{\partial x} = (x + e^y)^x \left[\ln (x + e^y) + \frac{x}{x + e^y} \right]$$
, 所以 $\frac{\partial z}{\partial x} \Big|_{(1,0)} = 2 \ln 2 + 1$.

- 11.幂级数 $\sum_{n=1}^{\infty} \frac{e^n (-1)^n}{n^2} x^n$ 的收敛半径为______.
- **解:** 记 $a_n = \frac{e^n (-1)^n}{n^2}$,则 $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{n^2 \left[e^{n+1} (-1)^{n+1} \right]}{(n+1)^2 \left[e^n (-1)^n \right]} = e$,因此幂级数的 收敛半径为 $\frac{1}{e}$.
- 12.设某产品的需求函数 Q=Q(p), 对其价格 p 的弹性 $\varepsilon_p=0.2$, 则当需求量为 10000件时, 价格增加 1 元会使产品收益增加_____元.
- 解: 收益函数 R = pQ,则 $\frac{dR}{dp} = Q + p\frac{dQ}{dp}$. 由题意有 $\varepsilon_p = -\frac{p}{Q}\frac{dQ}{dp} = 0.2$,因此 $p\frac{dQ}{dp} = -0.2Q$,于是 $\frac{dR}{dp} = -0.2Q + Q = 0.8Q$. 代入 Q = 10000. 可知当价格增加 1 元会使产品收益增加 8000 元.

13.设
$$\boldsymbol{\alpha} = (1, 1, 1)^{\mathrm{T}}, \boldsymbol{\beta} = (1, 0, k)^{\mathrm{T}}.$$
 若矩阵 $\boldsymbol{\alpha}\boldsymbol{\beta}^{\mathrm{T}}$ 相似于 $\begin{pmatrix} 3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, 则 $k = \underline{\qquad}$.

- 解:相似矩阵有相同的迹,则 $\operatorname{tr}(\boldsymbol{\alpha}\boldsymbol{\beta}^{\mathrm{T}}) = 3 = \operatorname{tr}(\boldsymbol{\beta}^{\mathrm{T}}\boldsymbol{\alpha}) = \boldsymbol{\beta}^{\mathrm{T}}\boldsymbol{\alpha} = 1 + k$,因此 k = 2.
- 14.设 X_1, X_2, \dots, X_m 为来自总体 B(n, p) 的简单随机样本, \bar{X} 和 S^2 分别为样本均值 和样本方差. 记统计量 $T = \bar{X} S^2$, 则 $ET = \dots$
- ⋒ **解:** $ET = E(\bar{X} S^2) = E\bar{X} E(S^2) = np np(1-p) = np^2$.
- 三、解答题,15~23题,共94分.
- 15.(本题满分9分)

求二元函数 $f(x, y) = x^2(2 + y^2) + y \ln y$ 的极值.

解: 令
$$\begin{cases} f'_x(x,y) = 2x(2+y^2) = 0 \\ f'_y(x,y) = 2x^2y + \ln y + 1 = 0 \end{cases}$$
,解得唯一驻点为 $\left(0, \frac{1}{e}\right)$.由于

$$A = f_{xx}''\left(0, \frac{1}{e}\right) = 2(2 + y^2)\Big|_{\left(0, \frac{1}{e}\right)} = 2\left(2 + \frac{1}{e^2}\right),$$
$$B = f_{xy}''\left(0, \frac{1}{e}\right) = 4xy\Big|_{\left(0, \frac{1}{e}\right)} = 0,$$

$$C = f_{yy}''\left(0, \frac{1}{e}\right) = \left(2x^2 + \frac{1}{y}\right)\Big|_{\left(0, \frac{1}{e}\right)} = e,$$

所以 $AC - B^2 = -2e\left(2 + \frac{1}{e^2}\right) < 0$,且 A > 0,所以 f(x,y) 的唯一极小值为 $f\left(0, \frac{1}{e}\right) = -\frac{1}{e}$.

16.(本题满分 10 分)

计算不定积分
$$\int \ln \left(1 + \sqrt{\frac{1+x}{x}}\right) dx (x > 0).$$

◎ 解: 令
$$t = \sqrt{\frac{1+x}{x}} > 1$$
, 则 $x = \frac{1}{t^2-1}$, 于是

$$\int \ln\left(1+\sqrt{\frac{1+x}{x}}\right) dx = \int \ln\left(1+t\right) d\left(\frac{1}{t^2-1}\right)$$

$$= \frac{\ln\left(1+t\right)}{t^2-1} - \int \frac{1}{(t^2-1)(t+1)} dt$$

$$= \frac{\ln\left(1+t\right)}{t^2-1} - \frac{1}{4} \int \left(\frac{1}{t-1} - \frac{1}{t+1} - \frac{2}{(t+1)^2}\right) dt$$

$$= \frac{\ln\left(1+t\right)}{t^2-1} - \frac{1}{4} \ln\frac{t-1}{t+1} + \frac{1}{2(t+1)} + C$$

$$= x \ln\left(1+\sqrt{\frac{1+x}{x}}\right) + \frac{1}{2} \ln\left(\sqrt{1+x} + \sqrt{x}\right)$$

$$- \frac{\sqrt{x}}{2\left(\sqrt{1+x} + \sqrt{x}\right)} + C.$$

17.(本题满分 10 分)

计算二重积分
$$\iint_D (x-y) dx dy$$
, 其中 $D = \{(x,y) | (x-1)^2 + (y-1)^2 \le 2, y \ge x\}$.

解: 方法一 积分区域用极坐标表示为 $D = \left\{ (r, \theta) \left| \frac{\pi}{4} \leqslant \theta \leqslant \frac{3\pi}{4}, 0 \leqslant r \leqslant 2 (\cos \theta + \sin \theta) \right\} \right\}$ 故

$$\iint_{D} (x - y) dx dy = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} d\theta \int_{0}^{2(\sin\theta + \cos\theta)} r^{2} (\cos\theta - \sin\theta) dr$$
$$= \frac{8}{3} \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} (\sin\theta + \cos\theta)^{3} d (\sin\theta + \cos\theta)$$
$$= \frac{2}{3} (\sin\theta + \cos\theta)^{4} \Big|_{\frac{\pi}{4}}^{\frac{3\pi}{4}} = -\frac{8}{3}.$$

方法二 作换元 u = x - 1, v = y - 1, 则 dx = du, dy = dv, 积分区域化为 $D_1 = \{(u, v) | u^2 + v^2 \le 2, v \ge u\}$, 于是

$$\iint\limits_{D} (x-y) \mathrm{d}x \mathrm{d}y = \iint\limits_{D_1} (u-v) \mathrm{d}u \mathrm{d}v = \int_{\frac{\pi}{4}}^{\frac{5\pi}{4}} \mathrm{d}\theta \int_{0}^{\sqrt{2}} (r\cos\theta - r\sin\theta) \, r \mathrm{d}r = -\frac{8}{3}.$$

18.(本题满分 11 分)

- (1) 证明拉格朗日中值定理: 若函数 f(x) 在 [a,b] 上连续, 在 (a,b) 内可导, 则存在 $\xi \in (a,b)$, 使得 $f(b) f(a) = f'(\xi)(b-a)$.
- (2) 证明: 若函数 f(x) 在 x = 0 处连续, 在 $(0, \delta)(\delta > 0)$ 内可导, 且 $\lim_{x \to 0^+} f'(x) = A$, 则 $f'_+(0)$ 存在, 且 $f'_+(0) = A$.
- **证明:** (1) 令 $F(x) = f(x) \frac{f(b) f(a)}{b a}x$, 则

$$F(b) - F(a) = \left(f(b) - \frac{f(b) - f(a)}{b - a} b \right) - \left(f(a) - \frac{f(b) - f(a)}{b - a} a \right)$$
$$= f(b) - f(a) - \frac{f(b) - f(a)}{b - a} (b - a) = 0,$$

因此由罗尔定理知存在 $\xi \in (a,b)$ 使得 $F'(\xi) = f'(\xi) - \frac{f(b) - f(a)}{b - a} = 0$, 即 $f(b) - f(a) = f'(\xi)(b - a)$.

(2) 利用导数的定义与拉格朗日中值定理得

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^{+}} \frac{xf'(\xi)}{x} = \lim_{\xi \to 0} f'(\xi) = A.$$

全 注: 本题第二问的结论叫做导函数极限定理, 它还可以用洛必达法则得出.

19.(本题满分 10 分)

设曲线 y = f(x), 其中 f(x) 是可导函数, 且 f(x) > 0. 已知曲线 y = f(x) 与直线 y = 0, x = 1 及 x = t(t > 1) 所围成的曲边梯形绕 x 轴旋转一周所得的立体体积值是该曲边梯形面积值的 πt 倍, 求该曲线的方程.

解: 旋转体的体积为 $V = \pi \int_1^t f^2(x) dx$, 曲边梯形的面积为 $S = \int_1^t f(x) dx$, 由题意可知

$$V = \pi t S \Rightarrow \pi \int_{1}^{t} f^{2}(x) dx = \pi t \int_{1}^{t} f(x) dx \Rightarrow \int_{1}^{t} f^{2}(x) dx = t \int_{1}^{t} f(x) dx.$$

上式两边对 t 求导得 $f^2(t) = \int_1^t f(x) dx + t f(t)$, 令 t = 1 可得 f(1) = 1. 继续对 t 求导得 2f(t)f'(t) = f(t) + f(t) + t f'(t), 化简可得 (2f(t) - t)f'(t) = 2f(t), 这是 t 关于 y 的一阶 线性方程 $\frac{dt}{dy} + \frac{1}{2y}t = 1$, 解得 $t = \frac{C}{\sqrt{y}} + \frac{2}{3}y$. 由 f(1) = 1 可知 $C = \frac{1}{3}$, 因此 $t = \frac{1}{3\sqrt{y}} + \frac{2}{3}y$, 该曲线的方程为 $2y + \frac{1}{\sqrt{y}} - 3x = 0$.

20.(本题满分 11 分)

设
$$A = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & 1 \\ 0 & -4 & -2 \end{pmatrix}, \xi_1 = \begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix}.$$

- (1) 求满足 $A\xi_2 = \xi_1, A^2\xi_3 = \xi_1$ 的所有向量 ξ_2, ξ_3 ;
- (2) 对 (1) 中的任意向量 ξ_2, ξ_3 , 证明 ξ_1, ξ_2, ξ_3 线性无关.
- **解:** (1) 对增广矩阵 (A, ξ_1) 作初等行变换得

$$(A \ \xi_1) = \begin{pmatrix} 1 & -1 & -1 & -1 \\ -1 & 1 & 1 & 1 \\ 0 & -4 & -2 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & -1 & -1 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix},$$

方程组 $\mathbf{A}\mathbf{x} = \boldsymbol{\xi}_1$ 的通解为 $\mathbf{x} = (0,0,1)^{\mathrm{T}} + k(-1,1,-2)^{\mathrm{T}}$, 从而 $\boldsymbol{\xi}_2 = (-k,k,1-2k)^{\mathrm{T}}$, k 为任意常数.

$$A^2 = \begin{pmatrix} 2 & 2 & 0 \\ -2 & -2 & 0 \\ 4 & 4 & 0 \end{pmatrix}$$
, 对增广矩阵 (A^2, ξ_1) 作初等行变换得

$$(A^{2}, \xi_{1}) = \begin{pmatrix} 2 & 2 & 0 & 1 \\ -2 & -2 & 0 & -1 \\ 4 & 4 & 0 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 2 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix},$$

于是方程组 $A^2x = \xi_1$ 的通解为 $x_1 = -\frac{1}{2} - u, x_2 = u, x_3 = v$, 即 $\xi_3 = \left(-\frac{1}{2} - u, u, v\right)^{\mathrm{T}}$, 其中 u, v 为任意常数.

(2) 对任意的常数 k, u, v 有

$$|\xi_1, \xi_2, \xi_3| = \begin{vmatrix} -1 & -k & -\frac{1}{2} - u \\ 1 & k & u \\ -2 & 1 - 2k & v \end{vmatrix} = \begin{vmatrix} 0 & 0 & -\frac{1}{2} \\ 1 & k & u \\ -2 & 1 - 2k & v \end{vmatrix} = -\frac{1}{2} \neq 0,$$

因此对任意向量 ξ_2, ξ_3 , 恒有 ξ_1, ξ_2, ξ_3 线性无关

21.(本题满分 11 分)

设二次型
$$f(x_1, x_2, x_3) = ax_1^2 + ax_2^2 + (a-1)x_3^2 + 2x_1x_3 - 2x_2x_3$$
.

- (1) 求二次型 f 的矩阵的所有特征值;
- (2) 若二次型 f 的规范形为 $y_1^2 + y_2^2$, 求 a 的值.

解: (1) 二次型
$$f$$
 的矩阵为 $\mathbf{A} = \begin{pmatrix} a & 0 & 1 \\ 0 & a & -1 \\ 1 & -1 & a - 1 \end{pmatrix}$, 由于

$$|\lambda \mathbf{E} - \mathbf{A}| = \begin{vmatrix} \lambda - a & 0 & -1 \\ 0 & \lambda - a & 1 \\ -1 & 1 & \lambda - a + 1 \end{vmatrix} = (\lambda - a) \left(\lambda - (a + 1)\right) \left(\lambda - (a - 2)\right),$$

所以 *A* 的特征值为 $\lambda_1 = a, \lambda_2 = a + 1, \lambda_3 = a - 2$.

(2) 因为二次型 f 的规范形为 $y_1^2 + y_2^2$, 说明正惯性指数 p = 2, 负惯性指数 q = 0, 因此矩阵 A 的特征值为两正一零, 显然 a - 2 < a < a + 1, 因此必有 a = 2.

22.(本题满分 11 分)

设二维随机变量 (X,Y) 的概率密度为 f(x,y) = $\begin{cases} e^{-y}, & 0 < y < x \\ 0, & \text{其他} \end{cases}.$

- (1) 求条件概率密度 $f_{Y|X}(y|x)$;
- (2) 求条件概率 $P(X \leq 1|Y \leq 1)$.
- 解: (1) X 的概率密度为

$$f_{X}(x) = \int_{-\infty}^{+\infty} f(x, y) \, dy = \begin{cases} \int_{0}^{x} e^{-x} dy, & x > 0 \\ 0, & \text{ 其他} \end{cases} = \begin{cases} xe^{-x}, & x > 0 \\ 0, & \text{ 其他} \end{cases},$$

Y的条件概率密度为

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} = \begin{cases} \frac{1}{x}, & 0 < y < x \\ 0, & \text{##} \end{cases}$$

(2) Y 的概率密度为

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \begin{cases} \int_{y}^{+\infty} e^{-x} dx, & y > 0 \\ 0, & \text{ 其他} \end{cases} = \begin{cases} e^{-y}, & y > 0 \\ 0, & \text{ 其他} \end{cases},$$

因此条件概率

$$P(X \le 1, Y \le 1) = \frac{P(X \le 1, Y \le 1)}{P(Y \le 1)} = \frac{\int_{-\infty}^{1} \int_{-\infty}^{1} f(x, y) dx dy}{\int_{0}^{1} e^{-y} dy}$$
$$= \frac{\int_{0}^{1} dx \int_{0}^{x} e^{-x} dy}{1 - e^{-1}} = \frac{e - 2}{e - 1}.$$

23.(本题满分 11 分)

袋中有 1 个红球、2 个黑球与 3 个白球. 现有放回地从袋中取两次,每次取一个球. 以 X,Y,Z 分别表示两次取球所得的红球、黑球与白球的个数.

- (1) $\Re P(X = 1|Z = 0)$;
- (2) 求二维随机变量 (X,Y) 的概率分布.

解: (1)
$$P(X = 1|Z = 0) = \frac{P(X = 1, Z = 0)}{P(Z = 0)} = \frac{C_2^1 \frac{1}{6} \times \frac{1}{3}}{\left(\frac{1}{2}\right)^2} = \frac{4}{9}$$
.

(2) 由题意知 X, Y 的所有可能取值均为 0, 1, 2.

$$P(X = 0, Y = 0) = \frac{3}{6} \times \frac{3}{6} = \frac{1}{4}, \quad P(X = 0, Y = 1) = 2 \times \frac{2}{6} \times 36 = \frac{1}{3},$$

$$P(X = 0, Y = 2) = \left(\frac{2}{6}\right)^2 = \frac{1}{9}, \quad P(X = 1, Y = 0) = 2 \times \frac{1}{6} \times \frac{3}{6} = \frac{1}{6},$$

$$P(X = 1, Y = 1) = 2 \times \frac{1}{6} \times \frac{2}{6} = \frac{1}{9}, \quad P(X = 2, Y = 0) = \left(\frac{1}{6}\right)^2 = \frac{1}{36},$$

$$P(X = 1, Y = 2) = P(X = 2, Y = 1) = P(X = 2, Y = 2) = 0.$$

因此 (X,Y) 的概率分布为

XY	0	1	2
0	$\frac{1}{4}$	$\frac{1}{3}$	$\frac{1}{9}$
1	$\frac{1}{6}$	$\frac{1}{9}$	0
2	$\frac{1}{36}$	0	0

第5章 2010 年考研数学三

一、选择题, $1 \sim 8$ 题, 每题 4 分, 共 32 分.

- 1. 若 $\lim_{x\to 0} \left[\frac{1}{x} \left(\frac{1}{x} a \right) e^x \right] = 1$, 则 a = 0A. 0
 B. 1
 C. 2
 D. 3
- 解: 由 $\lim_{x\to 0} \left[\frac{1}{x} \left(\frac{1}{x} a \right) e^x \right] = \lim_{x\to 0} \left[\frac{1}{x} \left(1 e^x \right) + a e^x \right] = \lim_{x\to 0} \frac{1 e^x}{x} + a = -1 + a = 1$ 可得 a = 2. 选 C.
- 2. 设 y_1, y_2 是一阶线性非齐次微分方程 y' + p(x)y = q(x) 的两个特解, 若常数 λ, μ 使 $\lambda y_1 + \mu y_2$ 是该方程的解, $\lambda y_1 \mu y_2$ 是该方程对应的齐次方程的解, 则 () A. $\lambda = \frac{1}{2}, \mu = \frac{1}{2}$ B. $\lambda = -\frac{1}{2}, \mu = -\frac{1}{2}$ C. $\lambda = \frac{2}{3}, \mu = \frac{1}{3}$ D. $\lambda = \frac{2}{3}, \mu = \frac{2}{3}$
- **解:** $\lambda y_1 + \mu y_2$ 是非齐次方程的解,则 $\lambda + \mu = 1$,而 $\lambda y_1 \mu y_2$ 是对应的齐次方程的解,则 $\lambda \mu = 0$,因此 $\lambda = \mu = \frac{1}{2}$.
- **全** 注: 如果 y_1, y_2, \dots, y_n 是非齐次方程的 n 个解, 则线性组合 $C_1y_1 + C_2y_2 + \dots + C_ny_n$ 仍然是此非齐次方程的解的充要条件是 $C_1 + C_2 + \dots + C_n = 1$, $C_1y_1 + C_2y_2 + \dots + C_ny_n$ 是对应齐次方程的解的充要条件是 $C_1 + C_2 + \dots + C_n = 0$,
- 3. 设函数 f(x), g(x) 具有二阶导数, 且 g''(x) < 0. 若 $g(x_0) = a$ 是 g(x) 的极值, 则 f(g(x)) 在 x_0 处取极大值的一个充分条件是 ()

 A. f'(a) < 0 B. f'(a) > 0 C. f''(a) < 0 D. f''(a) > 0
- **解:** 首先有题意有 $g(x_0) = a, g'(x_0) = 0, g''(x_0) < 0$, 要想 f(g(x)) 在 x_0 处取极大值, 首先 $\left[f\left(g(x)\right)\right]'\big|_{x=x_0} = f'\left(g(x_0)\right)g'(x_0) = 0$, 它的一个充分条件是 $\left[f\left(g(x)\right)\right]''\big|_{x=x_0} < 0$, 即

$$[f''(g(x))g'^{2}(x) + f'(g(x))g''(x)]|_{x=x_{0}} = f'(a)g''(x_{0}) < 0,$$

而 $g''(x_0) < 0$, 因此 f'(a) > 0, 选 B.

- - A. g(x) < h(x) < f(x)

B. h(x) < g(x) < f(x)

C. f(x) < g(x) < h(x)

- D. g(x) < f(x) < h(x)
- **解:** 由洛必达法则知 $\lim_{x \to +\infty} \frac{g(x)}{h(x)} = 0$, $\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{\ln^{10} x}{x} = \left(\lim_{x \to +\infty} \frac{\ln x}{x^{\frac{1}{10}}}\right)^{10} = 0$, 因此当 x 充分大时, f(x) < g(x) < h(x), 选 C.

- 5. 设 A 为 $m \times n$ 矩阵, B 为 $n \times m$ 矩阵, E 为 m 阶单位矩阵, 若 AB = E, 则
 - A. 秩 $r(\mathbf{A}) = m$, 秩 $r(\mathbf{B}) = m$ B. 秩 $r(\mathbf{A}) = m$, 秩 $r(\mathbf{B}) = n$
 - $C. 秩 r(\mathbf{A}) = n, 秩 r(\mathbf{B}) = m$
- D. 秩 $r(\mathbf{A}) = n$, 秩 $r(\mathbf{B}) = n$
- **◎ 解:** 由题意有 $m = r(E) = r(AB) \leqslant r(A) \leqslant \min\{m,n\}$, 因此 $r(A) = m \leqslant n$, 同理 $r(\mathbf{B}) = m \leq n$, 选 A.
- 6. 设 A 为 4 阶实对称矩阵, 且 $A^2 + A = 0$, 若 A 的秩为 3, 则 A 相似于)

B. 1 -1

C. $\begin{bmatrix} 1 & & & \\ & -1 & & \\ & & -1 & \end{bmatrix}$

- **解:** 由 $A^2 + A = 0$ 知 A 的任一特征值 λ 必满足 $\lambda^2 + \lambda = 0$, 则 $\lambda = 0$ 或 -1. 又 r(A) = 3, 所以 A 的特征值为 -1, -1, -1, 0, 且 A 为实对称矩阵, 则它相似于 diag $\{-1, -1, -1, 0\}$, 选 D.
- 7. 设随机变量 X 的分布函数为 $F(x) = \begin{cases} 0, & x < 0 \\ \frac{1}{2}, & 0 \leqslant x < 1, 则 <math>P(X = 1) = () \\ 1 e^{-x}, & x \geqslant 1 \end{cases}$ A. 0
 B. $\frac{1}{2}$ C. $\frac{1}{2} e^{-1}$ D. $1 e^{-1}$

- 解: $P(X = 1) = F(1) F(1-) = 1 e^{-1} \frac{1}{2} = \frac{1}{2} e^{-1}$, 选 C.
- 8. 设 $f_1(x)$ 为标准正态分布的概率密度, $f_2(x)$ 为 [-1,3] 上均匀分布的概率密度, 若

$$f(x) = \begin{cases} af_1(x), & x \le 0 \\ bf_2(x), & x > 0 \end{cases}$$
 (a > 0, b > 0) 为概率密度, 则 a, b 应满足 ()
$$A. 2a + 3b = 4$$
 B. $3a + 2b = 4$ C. $a + b = 1$ D. $a + b = 2$

- **解:** f(x) 需要满足 $\int_{-\infty}^{+\infty} f(x) dx = a \int_{-\infty}^{0} f_1(x) dx + b \int_{0}^{3} f_2(x) dx = \frac{1}{2}a + \frac{3}{4}b = 1$, 即 2a + 3b = 4, & A.
- 二、填空题, $9 \sim 14$ 题, 每题 4 分, 共 24 分.
- 9. 设可导函数 y = y(x) 由方程 $\int_0^{x+y} e^{-t^2} dt = \int_0^x x \sin t^2 dt$ 确定, 则 $\frac{dy}{dx}\Big|_{x=0}$ =

- **解:** 当 x = 0 时 y = 0, 原方程两边对 x 求导得 $e^{x+y} (1 + y') = x \sin x^2 + \int_0^x \sin t^2 dt$, 代 入 x = y = 0 得 y' = -1, 即 $\frac{dy}{dx}\Big|_{x=0} = -1$.
- 10.设位于曲线 $y = \frac{1}{\sqrt{x\left(1 + \ln^2 x\right)}}$ $(e \leqslant x < +\infty)$ 下方, x 轴上方的无界区域为 G, 则

G 绕 x 轴旋转一周所得空间区域的体积为_____.

- **解:** 所求旋转体的体积为 $V = \pi \int_{e}^{+\infty} \frac{\mathrm{d}x}{x\left(1 + \ln^2 x\right)} = \pi \arctan\left(\ln x\right)\Big|_{e}^{+\infty} = \frac{\pi^2}{4}.$
- 11.设某商品的收益函数为 R(p), 收益弹性为 $1 + p^3$, 其中 p 为价格, 且 R(1) = 1, 则 $R(p) = _____$.
- **解:** 由收益弹性的定义知 $\frac{ER}{Ep} = \frac{p}{R} \frac{dR}{dp} = 1 + p^3$,解此变量分离的方程得 $\ln R = \frac{1}{3} p^3 + \ln p + C$,代入 R(1) = 1 得 $C + -\frac{1}{3}$,因此收益函数 $R(p) = pe^{\frac{1}{3}(p^3-1)}$.
- 12.若曲线 $y = x^3 + ax^2 + bx + 1$ 有拐点 (-1,0), 则 $b = _____$.
- **解:** 由条件有 $\begin{cases} y(-1) = -1 + a b + 1 = 0 \\ y''(-1) = -6 + 2a = 0 \end{cases}$, 解得 a = b = 3.
- 13.设 A, B 为 3 阶矩阵, 且 |A| = 3, |B| = 2, $|A^{-1} + B| = 2$, 则 $|A + B^{-1}| = _____$.
- $\Re |A + B^{-1}| = |A(B + A^{-1})B^{-1}| = |A||B + A^{-1}||B^{-1}| = 3 \times 2 \times \frac{1}{2} = 3.$
- 14.设 X_1, X_2, \dots, X_n 是来自总体 $N(\mu, \sigma^2)$ ($\sigma > 0$) 的简单随机样本. 记统计量 $T = \frac{1}{n} \sum_{i=1}^{n} X_i^2$, 则 $ET = \underline{\qquad}$.
- **解:** $E(T) = E\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}\right) = EX_{1}^{2} = (EX_{1})^{2} + DX_{1} = \mu^{2} + \sigma^{2}.$
- 三、解答题,15~23题,共94分.
- 15.(本题满分 10 分)

求极限
$$\lim_{x\to +\infty} \left(x^{\frac{1}{x}}-1\right)^{\frac{1}{\ln x}}$$
.

解: 先取对数利用洛必达法则得

$$\lim_{x \to +\infty} \frac{\ln\left(x^{\frac{1}{x}} - 1\right)}{\ln x} = \lim_{x \to +\infty} \frac{e^{\frac{\ln x}{x}} \frac{1 - \ln x}{x^2}}{\frac{1}{x} \left(x^{\frac{1}{x}} - 1\right)}$$
$$= \lim_{x \to +\infty} \frac{1 - \ln x}{x \left(e^{\frac{\ln x}{x}} - 1\right)} = \lim_{x \to +\infty} \frac{1 - \ln x}{x \cdot \frac{\ln x}{x}} = -1,$$

因此原极限为 e^{-1} .

16.(本题满分 10 分)

计算二重积分 $\iint_D (x+y)^3 dxdy$, 其中 D 由曲线 $x = \sqrt{1+y^2}$ 与直线 $x + \sqrt{2}y = 0$ 及 $x - \sqrt{2}y = 0$ 围成.

解: 显然积分区域是关于 x 轴对称的, 记 $D_1 = \{(x,y)|0 \le y \le 1, \sqrt{2}y \le x \le \sqrt{1+y^2}\}$ 为 D 在第一象限的部分, 则所求二重积分为

$$I = \iint_{D} (x+y)^{3} dxdy = \iint_{D} (x^{3} + 3x^{2}y + 3xy^{2} + y^{3}) dxdy$$

$$= \iint_{D} (3x^{2}y + y^{3}) dxdy + \iint_{D} (x^{3} + 3xy^{2}) dxdy$$

$$= 2 \iint_{D_{1}} (x^{3} + 3xy^{2}) dxdy = 2 \int_{0}^{1} dy \int_{\sqrt{2}y}^{\sqrt{1+y^{2}}} (x^{3} + 3xy^{2}) dx$$

$$= 2 \int_{0}^{1} \left(\frac{1}{4}x^{4} + \frac{3}{2}x^{2}y^{2} \right) \Big|_{\sqrt{2}y}^{\sqrt{1+y^{2}}} dy$$

$$= 2 \int_{0}^{1} \left[\frac{(1+y^{2})^{2} - 4y^{4}}{4} + \frac{3}{2}y^{2} (1+y^{2} - 2y^{2}) \right] dy$$

$$= \int_{0}^{1} \left[\frac{1}{2} (1+2y^{2} - 3y^{4}) + 3y^{2} (1-y^{2}) \right] dy$$

$$= \frac{1}{2} \left(1 + \frac{2}{3} - \frac{3}{5} \right) + 3 \left(\frac{1}{3} - \frac{1}{5} \right) = \frac{14}{15}.$$

17.(本题满分 10 分)

求函数 u = xy + 2yz 在约束条件 $x^2 + y^2 + z^2 = 10$ 下的最大值和最小值.

解: 令 $F(x, y, z, \lambda) = xy + 2yz + \lambda(x^2 + y^2 + z^2 - 10)$, 令

$$\begin{cases} F'_x = y + 2\lambda x = 0 \\ F'_y = x + 2z + 2\lambda y = 0 \\ F'_z = 2y + 2\lambda z = 0 \\ F'_\lambda = x^2 + y^2 + z^2 - 10 = 0 \end{cases}$$

当 $\lambda \neq 0$ 时,由前三个方程消去参数 λ 可得 $\frac{y}{2x} = \frac{2+2z}{2y} = \frac{y}{z}$,代入第四个方程求得四个驻点为 $P_1 = \left(1, -\sqrt{5}, 2\right)$, $P_2 = \left(1, \sqrt{5}, 2\right)$, $P_3 = \left(-1, -\sqrt{5}, -2\right)$, $P_4 = \left(-1, \sqrt{5}, -2\right)$,此时 $u(P_1) = u(P_4) = -5\sqrt{5}$, $u(P_2) = u(P_3) = 5\sqrt{5}$. 当 $\lambda = 0$ 时,不难得到另外两个驻点为 $P_5 = \left(-2\sqrt{2}, 0, \sqrt{2}\right)$, $P_6 = \left(2\sqrt{2}, 0, -\sqrt{2}\right)$,此时 $u(P_5) = u(P_6) = 0$. 因此函数 u = xy + 2yz 在约束条件 $x^2 + y^2 + z^2 = 10$ 下的最大值和最小值分别为 $5\sqrt{5}$ 和 $-5\sqrt{5}$.

18.(本题满分 10 分)

(1) 比较
$$\int_0^1 |\ln t| [\ln(1+t)]^n dt$$
 与 $\int_0^1 t^n |\ln t| dt (n=1,2,\cdots)$ 的大小, 说明理由.

(2)
$$\[u_n = \int_0^1 |\ln t| [\ln(1+t)]^n \, \mathrm{d}t (n=1,2,\cdots), \, \[\[\] \] \] \, \[\] \[\] u_n = \int_0^1 |\ln t| [\ln(1+t)]^n \, \mathrm{d}t (n=1,2,\cdots), \, \[\] \] \, \[\] \[\] \[\] \[$$

- **解:** (1) 当 0 < t < 1 时, 0 < ln(1+t) < t, 所以 $|\ln t| [\ln (1+t)]^n < t^n |\ln t|$, 由定积分保序性可知 $\int_0^1 |\ln t| [\ln (1+t)]^n dt < \int_0^1 t^n |\ln t| dt$.
 - (2) 由 (1) 可知, 当 0 < t < 1 时, $0 < \int_0^1 |\ln^n t \ln(1+t)| dt < \int_0^1 |\ln t| t^n dt$. 由分部积分得

$$\int_0^1 |\ln t| \, t^n \, \mathrm{d}t = -\int_0^1 \ln t \, \mathrm{d}\left(\frac{t^{n+1}}{n+1}\right) = \frac{1}{n+1} \int_0^1 t^n \, \mathrm{d}t = \frac{1}{(n+1)^2},$$

因此 $0 < u_n < \frac{1}{(n+1)^2}$, 由夹逼准则知 $\lim_{n \to \infty} u_n = 0$.

19.(本题满分 10 分)

设函数 f(x) 在 [0,3] 上连续, 在 (),3) 内存在二阶导数, 且

$$2f(0) = \int_0^2 f(x) dx = f(2) + f(3).$$

- (1) 证明存在 $\eta \in (0, 2)$, 使得 $f(\eta) = f(0)$;
- (2) 证明存在 $\xi \in (0,3)$, 使得 $f''(\xi) = 0$.
- **证明:** (1) 令 $F(t) = \int_0^t f(x) dx$, 则由拉格朗日中值定理知存在 $\eta \in (0,2)$, 使得 $F(2) F(0) = 2F'(\eta)$, 即 $2f(0) = \int_0^2 f(x) dx = 2f(\eta)$, $f(\eta) = f(0)$.
 - (2) 设 f(x) 在 [2,3] 上的最小值和最大值分别为 m 和 M, 则 $m \leq \frac{f(2) + f(3)}{2} \leq M$, 因此由介值定理知存在 $\xi \in [2,3]$ 使得 $f(\xi) = \frac{f(2) + f(3)}{2} = f(\eta)$. 根据罗尔定理知存在 $\xi_1 \in (0,\eta), \xi_2 \in (\eta,\xi)$ 使得 $f'(\xi_1) = f'(\xi_2) = 0$, 进一步存在 $\xi \in (\xi_1,\xi_2) \subset (0,2)$ 使得 $f''(\xi) = 0$.

20.(本题满分 11 分)

设
$$\mathbf{A} = \begin{pmatrix} \lambda & 1 & 1 \\ 0 & \lambda - 1 & 0 \\ 1 & 1 & \lambda \end{pmatrix}, \mathbf{b} = \begin{pmatrix} a \\ 1 \\ 1 \end{pmatrix}$$
, 已知线性方程组 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 存在两个不同的解.

- (1) 求 λ , a;
- (2) 求方程组 Ax = b 的通解.

解: (1) 因为方程组 Ax = b 有两个不同的解, 所以 $r(A) = r(\bar{A}) < 3$, 于是

$$|A| = \begin{vmatrix} \lambda & 1 & 1 \\ 0 & \lambda - 1 & 0 \\ 1 & 1 & \lambda \end{vmatrix} = (\lambda - 1) \begin{vmatrix} \lambda & 1 \\ 1 & \lambda \end{vmatrix} = (\lambda + 1) (\lambda - 1)^2 = 0,$$

因此 $\lambda = \pm 1$. 当 $\lambda = 1$ 时, $A = \begin{pmatrix} 1 & 1 & 1 & a \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$, 显然 r(A) = 1, $r(\overline{A}) = 2$, 方程组无解, 因

$$(A, b) = \begin{pmatrix} -1 & 1 & 1 & a \\ 0 & -2 & 0 & 1 \\ 1 & 1 & -1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & \frac{3}{2} \\ 0 & 1 & 0 & -\frac{1}{2} \\ 0 & 0 & 0 & a+2 \end{pmatrix},$$

因为方程组 Ax = b 有解, 所以 a = -2.

(2) 当
$$\lambda = -1, a = -2$$
 时, $\bar{A} = (A, b) \rightarrow \begin{pmatrix} 1 & 0 & -1 & \frac{3}{2} \\ 0 & 1 & 0 & -\frac{1}{2} \\ 0 & 0 & 0 & 0 \end{pmatrix}$, 因此方程组 $Ax = b$ 的通解为 $x = \left(\frac{3}{2}, -\frac{1}{2}, 0\right)^{\mathrm{T}} + k(1, 0, 1)^{\mathrm{T}}$, 其中 k 为任意常数.

21.(本题满分 11 分)

已知二次型 $f(x_1, x_2, x_3) = \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}$ 在正交变换 $x = \mathbf{Q} \mathbf{y}$ 下的标准形为 $y_1^2 + y_2^2$, 且 Q 的第 3 列为 $\left(\frac{\sqrt{2}}{2},0,\frac{\sqrt{2}}{2}\right)$.

- (1) 求矩阵 A;
- (2) 证明 A + E 为正定矩阵, 其中 E 为 3 阶单位矩阵.
- **解:** (1) 二次型 f 在正交变换 x = Qy 下的标准形为 $y_1^2 + y_2^2$, 因此矩阵 A 的特征值为 1,1,0, 于是 $\boldsymbol{Q}^{-1}\boldsymbol{A}\boldsymbol{Q}=\boldsymbol{Q}^{\mathrm{T}}\boldsymbol{A}\boldsymbol{Q}=\mathrm{diag}\{1,1,0\},$ 且矩阵 \boldsymbol{Q} 的第三列就是属于特征值 0 的 特征向量. 设 $(x_1, x_2, x_3)^T$ 是 A 的属于特征值 1 的特征向量, 由于实对称矩阵不同特征值 对应的特征向量互相正交,则 $x_1 + x_3 = 0$,解得 $\boldsymbol{\xi}_1 = \frac{\sqrt{2}}{2}(1,0,-1)^T, \boldsymbol{\xi}_2 = (0,1,0)^T$ 为

 $m{A}$ 的属于特征值 1 的连个正交的单位特征向量,于是可取 $m{Q} = \begin{pmatrix} \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \\ 0 & 1 & 0 \\ \sqrt{2} & 0 & \sqrt{2} \end{pmatrix}$,此时有

 $Q^{T}AQ = diag\{1,1,0\}, 于是$

$$A = Q \begin{pmatrix} 1 & & \\ & 1 & \\ & & 0 \end{pmatrix} Q^{\mathrm{T}} = \frac{1}{2} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 1 \end{pmatrix}.$$

(2) 因为 A 的特征值为 1,1,0, 所以 A + E 的特征值为 2,2,1, 且 A + E 为实对称矩阵, 所以 A + E 为正定矩阵.

22.(本题满分 11 分)

设二维随机变量 (X, Y) 的概率密度为

$$f(x, y) = Ae^{-2x^2 + 2xy - y^2}, -\infty < x < +\infty, -\infty < y < +\infty,$$

求常数 A 及条件概率密度 $f_{Y|X}(y|x)$.

解: X 的边缘概率密度为

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) \, dy = A \int_{-\infty}^{+\infty} e^{-2x^2 + 2xy - y^2} dy$$
$$= A \int_{-\infty}^{+\infty} e^{-(y - x)^2 - x^2} dy = A e^{-x^2} \int_{-\infty}^{+\infty} e^{-(y - x)^2} dy = A \sqrt{\pi} e^{-x^2},$$

于是
$$1 = \int_{-\infty}^{+\infty} f_X(x) dx = A\sqrt{\pi} \int_{-\infty}^{+\infty} e^{-x^2} dx = A\pi \Rightarrow A = \frac{1}{\pi}.$$

当 $x \in (-\infty, +\infty)$ 时,

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} = \frac{\frac{1}{\pi}e^{-2x^2 + 2xy - y^2}}{\frac{1}{\sqrt{\pi}}e^{-x^2}} = \frac{1}{\sqrt{\pi}}e^{-x^2 + 2xy - y^2}$$
$$= \frac{1}{\sqrt{\pi}}e^{-(x-y)^2}, \quad -\infty < y < +\infty.$$

23.(本题满分 11 分)

箱中装有 6 个球, 其中红、白、黑球的个数分别为 1,2,3 个. 现从箱中随机地取出 2 个球, 记 X 为取出的红球个数, Y 为取出的白球个数.

- (1) 求随机变量 (X,Y) 的概率分布;
- (2) 求 Cov(X,Y).
- 解: (1) 由题意可知

$$P(X = 0, Y = 0) = \frac{C_3^2}{C_6^2} = \frac{1}{5}, P(X = 0, Y = 1) = \frac{C_2^1 C_3^1}{C_6^2} = \frac{2}{5},$$

$$P(X = 0, Y = 2) = \frac{C_2^2}{C_6^2} = \frac{1}{15}, P(X = 1, Y = 0) = \frac{C_3^1}{C_6^2} = \frac{1}{5},$$

$$P(X = 1, Y = 1) = \frac{C_2^1}{C_6^2} = \frac{2}{15}, P(X = 1, Y = 2) = 0.$$

因此随机变量 (X,Y) 的概率分布为

XY	0	1	2	P(X=i)
0	$\frac{1}{5}$	$\frac{2}{5}$	$\frac{1}{15}$	$\frac{2}{3}$
1	$\frac{1}{5}$	$\frac{2}{15}$	0	$\frac{1}{3}$
P(Y=j)	$\frac{2}{5}$	$\frac{8}{15}$	$\frac{1}{15}$	

(2) 由
$$(X,Y)$$
 的分布可计算得 $EX = \frac{1}{3}$, $EY = \frac{2}{3}$, $E(XY) = \frac{2}{15}$, 于是 $Cov(X,Y) = E(XY) - (EX)(EY) = \frac{2}{15} - \frac{1}{3} \times \frac{2}{3} = -\frac{4}{45}$.

第 6 章 2011 年考研数学三

- 一、选择题, $1 \sim 8$ 题, 每题 4 分, 共 32 分.
- 1. 已知当 $x \to 0$ 时, $f(x) = 3 \sin x \sin 3x$ 与 cx^k 是等价无穷小,则 A. k = 1, c = 4 B. k = 1, c = -4 C. k = 3, c = 4 D. k = 3, c = -4
- 解: 利用麦克劳林公式得

$$f(x) = 3\left(x - \frac{x^3}{6} + o(x^3)\right) - \left(3x - \frac{(3x)^3}{6} + o(x^3)\right) = 4x^3 + o(x^3) \sim 4x^3,$$

因此 k = 3, c = 4, 选 C.

- **注:** 事实上, 利用正弦函数的三倍角公式 $\sin 3x = 3\sin x \sin^3 x$ 更快.
- 2. 设函数 f(x) 在 x = 0 处可导, 且 f(0) = 0, 则 $\lim_{x \to 0} \frac{x^2 f(x) 2f(x^3)}{x^3} = A. -2f'(0)$ B. -f'(0) C. f'(0) D. 0
- **解:** 注意到 f(0) = 0, 利用导数定义得

$$\lim_{x \to 0} \frac{x^2 f(x) - 2f(x^3)}{x^3} = \lim_{x \to 0} \frac{x^2 f(x)}{x^3} - 2\lim_{x \to 0} \frac{f(x^3)}{x^3} = f'(0) - 2f'(0) = -f'(0),$$

因此选 B.

3. 设 $\{u_n\}$ 是数列,则下列命题正确的是

A. 若
$$\sum_{n=1}^{\infty} u_n$$
 收敛, 则 $\sum_{n=1}^{\infty} (u_{2n-1} + u_{2n})$ 收敛

B. 若
$$\sum_{n=1}^{\infty} (u_{2n-1} + u_{2n})$$
 收敛, 则 $\sum_{n=1}^{\infty} u_n$ 收敛

C. 若
$$\sum_{n=1}^{\infty} u_n$$
 收敛, 则 $\sum_{n=1}^{\infty} (u_{2n-1} - u_{2n})$ 收敛

D. 若
$$\sum_{n=1}^{\infty} (u_{2n-1} - u_{2n})$$
 收敛, 则 $\sum_{n=1}^{\infty} u_n$ 收敛

- **解:** 收敛的级数任意加括号后的级数仍然收敛, A 选项正确; B 选项不正确, 反例可取 $u_n = (-1)^n$; C 选项不正确, 反例可取 $u_n = \frac{(-1)^n}{n}$; D 选项不正确, 反例可取 $u_n = 1$, 因此选 A.
- 4. 设 $I = \int_{0}^{\frac{\pi}{4}} \ln \sin x \, dx$, $J = \int_{0}^{\frac{\pi}{4}} \ln \cot x \, dx$, $K = \int_{0}^{\frac{\pi}{4}} \ln \cos x \, dx$, 则 I, J, K 的大小关)
 - A. I < J < K B. I < K < J C. J < I < K D. K < J < I

)

- **解:** 当 $0 < x < \frac{\pi}{4}$ 时, $\sin x < \cos x < \cot x$, 即 $\ln \sin x < \ln \cos x < \ln \cot x$, 因此 I < K < J,
- 5. 设A为3阶矩阵,将A的第二列加到第一列得矩阵B,再交换B的第二行与第一

设
$$A$$
 为 3 阶矩阵,将 A 的第二列加到第一列得矩阵 B ,再交换 B 的第二行与第一行得单位矩阵。记 $P_1 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $P_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$,则 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ D. $P_2 P_1^{-1}$

- **解:** 由初等变换与初等矩阵的关系知 $AP_1 = B$, $P_2B = E$, 所以 $A = BP_1^{-1} = P_2^{-1}P_1^{-1} = P_2^{-1}P_1^{-1}$ $P_2P_1^{-1}$, 选 D.
- 6. 设 A 为 4×3 矩阵, η_1, η_2, η_3 是非齐次线性方程组 $Ax = \beta$ 的 3 个线性无关的解, k_1, k_2 为任意常数,则 $Ax = \beta$ 的通解为

A.
$$\frac{\eta_2 + \eta_3}{2} + k_1 (\eta_2 - \eta_1)$$

B.
$$\frac{\eta_2 - \frac{2}{3}\eta_3}{2} + k_1(\eta_2 - \eta_1)$$

C.
$$\frac{\eta_2 + \eta_3}{2} + k_1 (\eta_2 - \eta_1) + k_2 (\eta_3 - \eta_1)$$

D.
$$\frac{\eta_2 - \eta_3}{2} + k_1 (\eta_2 - \eta_1) + k_2 (\eta_3 - \eta_1)$$

- \bowtie 解: 首先 A 不是零矩阵, 因此齐次线性方程组 Ax = 0 至多只有两个线性无关的解. 因为 $η_1,η_2,η_3$ 是方程组 Ax=β 的 3 个线性无关的解, 所以 $η_2-η_1,η_3-η_1$ 是方程组 Ax=0的两个线性无关的解,于是方程组 Ax = 0 的通解为 $k_1(\eta_2 - \eta_1) + k_2(\eta_3 - \eta_1)$. 且 $\frac{\eta_2 + \eta_3}{2}$ 仍然是方程组 $Ax = \beta$ 的解, 因此方程组 $Ax = \beta$ 的通解为 $\frac{\eta_2 + \eta_3}{2} + k_1 (\eta_2 - \eta_1) + k_2 (\eta_2 - \eta_2)$ $k_2(\eta_3 - \eta_1)$, 选 D.
- 7. 设 $F_1(x)$ 与 $F_2(x)$ 为两个分布函数, 其相应的概率密度 $f_1(x)$ 与 $f_2(x)$ 是连续函数, 则必为概率密度的是

A.
$$f_1(x) f_2(x)$$

B.
$$2f_2(x)F_1(x)$$

C.
$$f_1(x)F_2(x)$$

D.
$$f_1(x)F_2(x) + f_2(x)F_1(x)$$

解: 概率密度需要满足非负性和归一性, 非负性都满足, 直接验证

$$\int_{-\infty}^{+\infty} \left[f_1(x) F_2(x) + f_2(x) F_1(x) \right] dx = F_1(x) F_2(x) \Big|_{-\infty}^{+\infty} = 1,$$

因此 $f_1(x)F_2(x) + f_2(x)F_1(x)$ 为概率密度, 其他都不满足, 选 D.

- $\stackrel{ extbf{S}}{ extbf{Y}}$ 注: 在此题的条件下, $2f_1(x)F_1(x)$, $2f_2(x)F_2(x)$ 和 $f_1(x)F_1(x) + f_2(x)F_2(x)$ 都是概 率密度.
- 8. 设总体 X 服从参数为 $\lambda(\lambda > 0)$ 的泊松分布, $X_1, X_2, \cdots, X_n (n \ge 2)$ 为来自该总体的简单随机样本,则对于统计量 $T_1 = \frac{1}{n} \sum_{i=1}^n X_i$ 和 $T_2 = \frac{1}{n-1} \sum_{i=1}^{n-1} X_i + \frac{1}{n} X_n$,有 ()

A.
$$ET_1 > ET_2, DT_1 > DT_2$$

B.
$$ET_1 > ET_2, DT_1 < DT_2$$

C.
$$ET_1 < ET_2, DT_1 > DT_2$$

D.
$$ET_1 < ET_2, DT_1 < DT_2$$

解:
$$ET_1 = \frac{1}{n} \sum_{i=1}^n EX_i = \lambda$$
, $ET_2 = \frac{1}{n-1} \sum_{i=1}^{n-1} EX_i + \frac{1}{n} EX_n = \lambda + \frac{\lambda}{n} > ET_1$, $DT_1 = \frac{DX}{n} = \frac{\lambda}{n}$, $DT_2 = D\left(\frac{1}{n-1} \sum_{i=1}^{n-1} X_i\right) + D\left(\frac{1}{n} X_n\right) = \frac{DX}{n-1} + \frac{DX}{n^2} = \frac{\lambda}{n-1} + \frac{\lambda}{n^2} > DT_1$, 选 D.

二、填空题, 9~14题, 每题 4分, 共24分.

解:
$$f(x) = \lim_{t \to 0} x (1+3t)^{\frac{x}{t}} = \lim_{t \to 0} x (1+3t)^{\frac{3x}{3t}} = xe^{3x}$$
, 于是 $f'(x) = e^{3x} + 3xe^{3x}$.

10.设函数
$$z = \left(1 + \frac{x}{y}\right)^{\frac{x}{y}}$$
,则 $dz|_{(1,1)} =$ _____.

解:
$$z = \left(1 + \frac{x}{y}\right)^{\frac{x}{y}} = e^{\frac{x}{y}\ln\left(1 + \frac{x}{y}\right)}$$
,于是

$$\frac{\partial z}{\partial x} = \left(1 + \frac{x}{y}\right) \left[\frac{1}{y} \ln\left(1 + \frac{x}{y}\right) + \frac{x}{y} \cdot \frac{1/y}{1 + x/y}\right],$$

$$\frac{\partial z}{\partial y} = \left(1 + \frac{x}{y}\right)^{\frac{x}{y}} \left[\frac{x}{y^2} \ln\left(1 + \frac{x}{y}\right) + \frac{x}{y} \cdot \frac{-x/y^2}{1 + x/y}\right],$$

所以
$$\frac{\partial z}{\partial x}\Big|_{(1,1)} = 2\ln 2 + 1$$
, $\frac{\partial z}{\partial y}\Big|_{(1,1)} = -1 - 2\ln 2$, 从而 $\mathrm{d}z\Big|_{(1,1)} = (1 + 2\ln 2)(\mathrm{d}x - \mathrm{d}y)$.

- 11.曲线 $\tan\left(x + y + \frac{\pi}{4}\right) = e^y$ 在点 (0,0) 处的切线方程为_____.
- **解:** 原方程两边对 x 求导得 $\sec^2\left(x+y+\frac{\pi}{4}\right)\cdot\left(1+y'\right)=\mathrm{e}^yy'$,代入 x=0,y=0 得 y'(0)=-2,因此曲线在 (0,0) 处的切线方程为 y=-2x.
- 12.曲线 $y = \sqrt{x^2 1}$, 直线 x = 2 及 x 轴所围成的平面图形绕 x 轴选项所成的旋转体的体积为_____.

解: 利用旋转体的体积公式得
$$V = \pi \int_{1}^{2} (x^{2} - 1) dx = \pi \left(\frac{1}{3}x^{3} - x\right)\Big|_{1}^{2} = \frac{4\pi}{3}.$$

- 13.设二次型 $f(x_1, x_2, x_3) = \mathbf{x}^T A \mathbf{x}$ 的秩为 1, \mathbf{A} 的各行元素之和为 3,则 f 在正交变换 $\mathbf{x} = \mathbf{Q} \mathbf{y}$ 下的标准形为_____.
- 解: 由题意 r(A) = 1,因此 A 至少有两个特征值是 0,由于 A 的各行元素之和为 3,即 $A\begin{pmatrix}1\\1\\1\end{pmatrix}=\begin{pmatrix}3\\3\\3\end{pmatrix}=3\begin{pmatrix}1\\1\\1\end{pmatrix}$,因此 3 也是 A 的特征值,则 A 的相似标准形为 $diag\{3,0,0\}$,因此 二次型 f 在正交变换 x=Qy 下的标准形为 $3y_1^2$.

14.设二维随机变量 (X,Y) 服从正态分布 $N(\mu,\mu;\sigma^2,\sigma^2;0)$,则 $E(XY^2) =$ _____.

解: 由条件知 X, Y 相互独立且都服从正态分布 $N(\mu, \sigma^2)$, 于是 $E(XY^2) = E(X)E(Y^2) = \mu((EX)^2 + D(X)) = \mu(\mu^2 + \sigma^2) = \mu^3 + \mu\sigma^2$.

三、解答题, $15 \sim 23$ 题, 共 94 分.

15.(本题满分 10 分)

求极限
$$\lim_{x\to 0} \frac{\sqrt{1+2\sin x} - x - 1}{x\ln(1+x)}$$
.

解: 当
$$x \to 0$$
 时, $x - \sin x \sim \frac{x^3}{6}$, $(1+x)^{\alpha} - 1 - \alpha x \sim \frac{\alpha (\alpha - 1)}{2} x^2$, 因此

$$\lim_{x \to 0} \frac{\sqrt{1 + 2\sin x} - x - 1}{x \ln(1 + x)} = \lim_{x \to 0} \frac{(1 + 2\sin x)^{\frac{1}{2}} - 1 - \frac{1}{2} \cdot 2\sin x + \sin x - x}{x^2}$$

$$= \lim_{x \to 0} \frac{(1 + 2\sin x)^{\frac{1}{2}} - 1 - \frac{1}{2} \cdot 2\sin x}{x^2} + \lim_{x \to 0} \frac{\sin x - x}{x^2}$$

$$= \lim_{x \to 0} \frac{-\frac{1}{8} (2\sin x)^2}{x^2} + \lim_{x \to 0} \frac{\frac{1}{6}x^3}{x^2} = -\frac{1}{2}.$$

16.(本题满分 10 分)

设函数 $z=f\left(xy,yg(x)\right)$, 其中函数 f 具有二阶连续偏导数, 函数 g(x) 可导且在 x=1 处取得极值 g(1)=1, 求 $\left.\frac{\partial^2 z}{\partial x \partial y}\right|_{\substack{x=1\\y \equiv 1}}$.

解: 因为
$$\frac{\partial z}{\partial x} = f_1'(xy, yg(x)) \cdot y + f_2'(xy, yg(x)) \cdot g'(x) \cdot y$$
, 所以 $\frac{\partial z}{\partial x}\Big|_{x=1} = yf_1'(y, y)$. 故
$$\frac{\partial^2 z}{\partial x \partial y}\Big|_{\substack{x=1\\y=1}} = \frac{d}{dy} \left(\frac{\partial z}{\partial x}\Big|_{x=1} \right) \Big|_{y=1} = \frac{d}{dy} \left[yf_1'(y, y) \right] \Big|_{y=1}$$
$$= \left[f_1'(y, y) + y \left(f_{11}''(y, y) + f_{12}''(y, y) \right) \right] \Big|_{y=1}$$
$$= f_1'(1, 1) + f_{11}''(1, 1) + f_{12}''(1, 1) .$$

17.(本题满分 10 分)

求不定积分
$$\int \frac{\arcsin\sqrt{x} + \ln x}{\sqrt{x}} dx$$
.

◎ 解:

$$\int \frac{\arcsin\sqrt{x} + \ln x}{\sqrt{x}} dx = 2 \int \left(\arcsin\sqrt{x} + \ln x\right) d\left(\sqrt{x}\right)$$

$$= 2\sqrt{x} \left(\arcsin\sqrt{x} + \ln x\right) - 2 \int \sqrt{x} \left(\frac{1}{2\sqrt{x}\sqrt{1-x}} + \frac{1}{x}\right) dx$$

$$= 2\sqrt{x} \left(\arcsin\sqrt{x} + \ln x\right) - \int \left(\frac{1}{\sqrt{1-x}} + \frac{2}{\sqrt{x}}\right) dx$$

$$= 2\sqrt{x} \left(\arcsin\sqrt{x} + \ln x\right) + 2\sqrt{1-x} - 4\sqrt{x} + C.$$

18.(本题满分 10 分)

证明方程 $4\arctan x - x + \frac{4\pi}{3} - \sqrt{3} = 0$ 恰有两个实根.

证明: 令 $f(x) = 4 \arctan x - x + \frac{4\pi}{3} - \sqrt{3}$, 则

$$f'(x) = \frac{4}{1+x^2} - 1 = \frac{3-x^2}{1+x^2} \begin{cases} > 0, & -\sqrt{3} < x < \sqrt{3} \\ = 0, & x = \pm\sqrt{3} \\ < 0, & x < -\sqrt{3} \vec{\boxtimes} x > \sqrt{3} \end{cases}.$$

因此 f(x) 在 $\left(-\infty, -\sqrt{3}\right)$ 和 $\left(\sqrt{3}, +\infty\right)$ 内单调递减, 在 $\left(-\sqrt{3}, \sqrt{3}\right)$ 内单调递增. 极小值 $f\left(-\sqrt{3}\right)=0$, 极大值 $f\left(\sqrt{3}\right)=0$, 且 $f\left(+\infty\right)=-\infty$, 因此由零点定理知存在 $x_0\in$ $\left(\sqrt{3},+\infty\right)$ 使得 $f(x_0)=0$. 因此 f(x) 恰有两个根 $x=\sqrt{3}$ 和 $x=x_0$.

19.(本题满分 10 分)

设函数 f(x) 在区间 [0,1] 具有连续导数, f(0) = 1, 且满足 $\iint f'(x+y) dx dy =$

 $\iint\limits_{D_t} f(t) \mathrm{d}x \mathrm{d}y, D_t = \{(x, y) | 0 \leqslant y \leqslant t - x, 0 \leqslant x \leqslant t\} (0 < t \leqslant 1), \, \bar{x} \, f(x) \text{ in \bar{x} \bar{x}.}$

◎ 解: 因为

新子。因为
$$\iint_{D_t} f'(x+y) dx dy = \int_0^t dx \int_0^{t-x} f'(x+y) dy$$

$$= \int_0^t [f(t) - f(x)] dx = t f(t) - \int_0^t f(x) dx$$

$$= \iint_{D_t} f'(t) dx dy = \frac{1}{2} t^2 f(t),$$
 等式两边对 x 求导得 $f'(t) + \frac{2}{t-2} f(t) = 0$,解此变量分离的方程得 $f(t) = \frac{C}{(t-2)^2}$. 由

f(0) = 1 得 C = 4, 所以 f(x) 的表达式为 $f(x) = \frac{4}{(x-2)^2}$, $0 \le x \le 1$.

20.(本题满分 11 分)

设向量组 $\alpha_1 = (1,0,1)^T, \alpha_2 = (0,1,1)^T, \alpha_3 = (1,3,5)^T$ 不能由向量组 $\beta_1 =$ $(1,1,1)^{\mathrm{T}}, \boldsymbol{\beta}_{2} = (1,2,3)^{\mathrm{T}}, \boldsymbol{\beta}_{3} = (3,4,a)^{\mathrm{T}}$ 线性表示.

- (1) 求 a 的值;
- (2) 将 β_1 , β_2 , β_3 用 α_1 , α_2 , α_3 线性表示.
- 解: (1) 首先有 $|\alpha_1, \alpha_2, \alpha_3| = \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 3 \\ 1 & 1 & 5 \end{vmatrix} = 1 \neq 0$, 于是向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关. 因此 $\alpha_1 = (1, 0, 1)^T, \alpha_2 = (0, 1, 1)^T, \alpha_3 = (1, 3, 5)^T$ 不能被 $\boldsymbol{\beta}_1 = (1, 1, 1)^T, \boldsymbol{\beta}_2 = (1, 2, 3)^T, \boldsymbol{\beta}_3 = (1, 3, 5)^T$

$$(3,4,a)^{\mathrm{T}}$$
 线性表示等价于 $\boldsymbol{\beta}_1,\boldsymbol{\beta}_2,\boldsymbol{\beta}_3$ 线性相关,于是 $|\boldsymbol{\beta}_1,\boldsymbol{\beta}_2,\boldsymbol{\beta}_3| = \begin{vmatrix} 0 & 1 & 3 \\ 0 & 1 & 1 \\ 0 & 2 & a-3 \end{vmatrix} = a-5 = 0$, 所以 $a=5$.

(2) 对增广矩阵 $(\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3)$ 作初等行变换得

$$\begin{pmatrix} 1 & 0 & 1 & 1 & 1 & 3 \\ 0 & 1 & 3 & 1 & 2 & 4 \\ 1 & 1 & 5 & 1 & 3 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & 1 & 1 & 3 \\ 0 & 1 & 3 & 1 & 2 & 4 \\ 0 & 1 & 3 & 0 & 2 & 2 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 1 & 1 & 1 & 3 \\ 0 & 1 & 3 & 1 & 2 & 4 \\ 0 & 0 & 1 & -1 & 0 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 2 & 1 & 5 \\ 0 & 1 & 0 & 4 & 2 & 10 \\ 0 & 0 & 1 & -1 & 0 & -2 \end{pmatrix}.$$

于是 $\beta_1 = 2\alpha_1 + 4\alpha_2 - \alpha_3$, $\beta_2 = \alpha_1 + 2\alpha_2$, $\beta_3 = 5\alpha_1 + 10\alpha_2 - 2\alpha_3$.

21.(本题满分 11 分)

设
$$A$$
 为 3 阶实对称矩阵, A 的秩为 2, 且 A $\begin{pmatrix} 1 & 1 \\ 0 & 0 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ 0 & 0 \\ 1 & 1 \end{pmatrix}$.

- (1) 求 A 的所有特征值与特征向量;
- (2) 求矩阵 A.

解: (1) 由条件知
$$A \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = -\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, A \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
, 因此 -1 是一个特征值,且它对应的特征向量为 $k_1(1,0,-1)^T$, $k_1 \neq 0$; 1 是一个特征值,它所对应的特征向量为 $k_2(1,0,1)^T$, $k_2 \neq 0$. 再由 $r(A) = 2$ 知 0 也是 A 的特征值,设它的特征向量为 $(x_1, x_2, x_3)^T$, 那么由对称矩阵不同特征值对应的特征向量的正交性得
$$\begin{cases} x_1 + x_3 = 0 \\ -x_1 + x_3 = 0 \end{cases}$$
, 解得特征值 0 对应的特征向量为

 $k_3(0,1,0)^{\mathrm{T}}, k_3 \neq 0.$

$$A = PAP^{-1} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}^{-1}$$
$$= \frac{1}{2} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ -1 & 0 & 1 \\ 2 & 2 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

22.(本题满分 11 分)

设随机变量 X 与 Y 的概率分布分别为

X	0	1
P	1	2
	$\overline{3}$	$\overline{3}$

Y	-1	0	1
D	1	1	1
P	$\frac{1}{3}$	$\frac{\overline{3}}{3}$	$\frac{1}{3}$

 $\perp P(X^2 = Y^2) = 1.$

- (1) 求二维随机变量 (X, Y) 的概率分布;
- (2) 求 Z = XY 的概率分布;
- (3) 求 X 与 Y 的相关系数 ρ_{XY} .
- 解: (1) 由于 $P(X^2 = Y^2) = 1$, 所以 $P(X^2 \neq Y^2) = 0$, 即 P(X = 0, Y = 1) = P(X = 0, Y = -1) = P(X = 1, Y = 0) = 0, 于是

$$P(X = 1, Y = 1) = P(Y = 1) - P(X = 0, Y = 1) = P(Y = 1) = \frac{1}{3},$$

$$P(X = 1, Y = -1) = P(Y = -1) - P(X = 0, Y = -1) = P(Y = -1) = \frac{1}{3},$$

$$P(X = 0, Y = 0) = P(Y = 0) - P(X = 1, Y = 0) = P(Y = 0) = \frac{1}{3}.$$

因此二维随机变量 (X, Y) 的概率分布为

XY	-1	0	1
0	0	$\frac{1}{3}$	0
1	$\frac{1}{3}$	0	$\frac{1}{3}$

(2) Z = XY 的取值只有 -1,0,1, 且由 (X,Y) 的概率分布不难得到 Z 的概率分布为

Z	-1	0	1
P	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$

(3) $E(X) = \frac{2}{3}$, E(Y) = 0, E(XY) = 0, Cov(X, Y) = E(XY) - E(X)E(Y) = 0, 因此 X 与 Y 的相关系数为 $\rho_{XY} = 0$.

23.(本题满分 11 分)

设二维随机变量 (X,Y) 服从区域 G 上的均匀分布, 其中 G 是由 x-y=0, x+y=2 与 y=0 所围成的三角形区域.

- (1) 求 X 的概率密度 $f_X(x)$;
- (2) 求条件概率密度 $f_{X|Y}(x|y)$.

解: (1) (X,Y) 的概率密度为 $f(x,y) = \begin{cases} 1, & (x,y) \in G \\ 0, & 其他 \end{cases}$, 所以 X 的概率密度为

$$f_{X}(x) = \int_{-\infty}^{+\infty} f(x, y) \, \mathrm{d}y = \begin{cases} \int_{0}^{x} \mathrm{d}y, & 0 \leqslant x \leqslant 1 \\ \int_{0}^{2-x} \mathrm{d}y, & 1 < x \leqslant 2 \end{cases} = \begin{cases} x, & 0 \leqslant x \leqslant 1 \\ 2-x, & 1 < x \leqslant 2. \\ 0, & \text{其他} \end{cases}$$

(2) 因为 Y 的概率密度为

$$f_{Y}(x) = \int_{-\infty}^{+\infty} f(x, y) dx = \begin{cases} \int_{y}^{2-y} dx, & 0 \leqslant y \leqslant 1 \\ 0, \text{ 其他} \end{cases} = \begin{cases} 2(1-y), & 0 \leqslant y \leqslant 1 \\ 0, & \text{ 其他} \end{cases}.$$

所以在 $Y = y(0 \le y < 1)$ 时, X 的条件概率密度为

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)} = \begin{cases} \frac{1}{2-2y}, & y < x < 2-y \\ 0, & \text{ #.} \end{cases}$$

第7章 2012 年考研数学三

一、选择题、 $1 \sim 8$ 题、每题 4 分,共 32 分.

1. 曲线
$$y = \frac{x^2 + x}{x^2 - 1}$$
 的渐近线的条数为
A. 0 B. 1 C. 2 D. 3

- A. 0 B. 1 C. 2 D. 3 **解:** 因为 $\lim_{x \to \infty} \frac{x^2 + x}{x^2 1} = 1$, 所以直线 y = 1 是曲线 $y = \frac{x^2 + x}{x^2 1}$ 的水平渐近线, 从而它没有 斜渐近线. 又 $\lim_{x \to 1} \frac{x^2 + x}{x^2 1} = \infty$, 所以 x = 1 是一条垂直渐近线, 而 x = -1 不是渐近线, 因 此有两条渐近线, 选 C.
- 2. 设函数 $f(x) = (e^x 1)(e^{2x} 2)\cdots(e^{nx} n)$, 其中 n 为正整数, 则 $f'(0) = (1)^{n-1}(n-1)!$ B. $(-1)^n(n-1)!$ C. $(-1)^{n-1}n!$ D. $(-1)^nn!$
- 解:利用导数的定义得

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{(e^x - 1)(e^{2x} - 2) \cdots (e^{nx} - n)}{x}$$
$$= \lim_{x \to 0} \frac{e^x - 1}{x} \cdot \lim_{x \to 0} \left[(e^{2x} - 2) \cdots (e^{nx} - n) \right] = (-1)^{n-1} (n-1)!,$$

选 A.

3. 设函数
$$f(t)$$
 连续, 则二次积分 $\int_0^{\frac{\pi}{2}} d\theta \int_{2\cos\theta}^2 f(r^2) r dr =$

$$A. \int_0^2 dx \int_{\sqrt{2x-x^2}}^{\sqrt{4-x^2}} \sqrt{x^2 + y^2} f(x^2 + y^2) dy$$

$$B. \int_0^2 dx \int_{\sqrt{2x-x^2}}^{\sqrt{4-x^2}} f(x^2 + y^2) dy$$

$$C. \int_0^2 dx \int_{1+\sqrt{2x-x^2}}^{\sqrt{4-x^2}} \sqrt{x^2 + y^2} f(x^2 + y^2) dy$$

$$D. \int_0^2 dx \int_{1+\sqrt{2x-x^2}}^{\sqrt{4-x^2}} f(x^2 + y^2) dy$$

- **解:** 积分区域为 $\{(r,\theta)|2\cos\theta\leqslant r\leqslant 2, 0\leqslant\theta\leqslant\frac{\pi}{2}\}$, 化为直角坐标即 $\{(x,y)|2x\leqslant x^2+y^2\leqslant 4, x\geqslant 0, y\geqslant 0\}$, 此时先对 y 后对 x 的累次积分为 $\int_0^2\mathrm{d}x\int_{\sqrt{2x-x^2}}^{\sqrt{4-x^2}}f\left(x^2+y^2\right)\mathrm{d}y$, 选 B.
- 4. 已知级数 $\sum_{n=1}^{\infty} (-1)^n \sqrt{n} \sin \frac{1}{n^{\alpha}}$ 绝对收敛, 级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{2-\alpha}}$ 条件收敛, 则
 A. $0 < \alpha \leqslant \frac{1}{2}$ B. $\frac{1}{2} < \alpha \leqslant 1$ C. $1 < \alpha \leqslant \frac{3}{2}$ D. $\frac{3}{2} < \alpha < 2$

- **解:** 由 $\sum_{n=1}^{\infty} (-1)^n \sqrt{n} \sin \frac{1}{n^{\alpha}}$ 绝对收敛可得 $\alpha > \frac{3}{2}$, 再由 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{2-\alpha}}$ 条件收敛可知 $1 \leqslant \alpha < 2$, 因此 $\frac{3}{2}$ < α < 2, 选 D.
- 5. 设 $\alpha_1 \begin{pmatrix} 0 \\ 0 \\ c_1 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ c_2 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ -1 \\ c_3 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} -1 \\ 1 \\ c_4 \end{pmatrix}$, 其中 c_1, c_2, c_3, c_4 为任意常数,

- A. $\alpha_1, \alpha_2, \alpha_3$ B. $\alpha_1, \alpha_2, \alpha_4$ C. $\alpha_1, \alpha_3, \alpha_4$ D. $\alpha_2, \alpha_3, \alpha_4$ 解: 显然可得 $|\alpha_1, \alpha_3, \alpha_4| = \begin{vmatrix} 0 & 1 & -1 \\ 0 & -1 & 1 \\ c_1 & c_2 & c_3 \end{vmatrix} = 0$, 所以 $\alpha_1, \alpha_3, \alpha_4 c$ 线性相关, 选 C.
- 6. 设 A 为 3 阶矩阵, P 为 3 阶可逆矩阵, 且 $P^{-1}AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$. 若 $P = (\alpha_1, \alpha_2, \alpha_3)$,
 - A. $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ B. $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ C. $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ D. $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
- **解:** 由初等变换与初等矩阵的关系可知 $Q = P \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, 因此

$$\mathbf{Q}^{-1}A\mathbf{Q} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{-1} \mathbf{P}^{-1}A\mathbf{P} \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\
= \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix},$$

选 B.

7. 设随机变量 X 与 Y 相互独立, 且都服从区间 (0,1) 上的均匀分布, 则 $P(X^2+Y^2\leqslant$

1) = A.
$$\frac{1}{4}$$
 B. $\frac{1}{2}$ C. $\frac{\pi}{8}$ D. $\frac{\pi}{4}$

解: X, Y 的联合概率密度为 $f(x, y) = \begin{cases} 1, & 0 < x < 1, 0 < y < 1 \\ 0, & 其他 \end{cases}$,设区域 $D = \{(x, y) | x^2 + y < 1\}$ $y^2 \le 1, 0 < x < 1, 0 < y < 1\}$, 于是 $P(X^2 + Y^2 < 1) = \iint f(x, y) dx dy = \frac{\pi}{4}$, 选 D.

- 8. 设 X_1, X_2, X_3, X_4 为来自总体 $N(1, \sigma^2)(\sigma > 0)$ 的简单随机样本,则统计量 $\frac{X_1 X_2}{|X_3 + X_4 2|}$ 的分布为
 - A. N(0, 1)
- B. t(1)
- C. $\chi^{2}(1)$
- D. F(1, 1)
- 解:由条件得 $X_1 X_2 \sim N(0, 2\sigma^2)$, $X_3 + X_4 2 \sim N(0, 2\sigma^2)$, 于是 $\frac{X_1 X_2}{\sqrt{2}\sigma}$ 与 $\frac{X_3 + X_4 2}{\sqrt{2}\sigma}$ 都服从标准正态分布,且相互独立,因此 $\frac{\frac{X_1 X_2}{\sqrt{2}\sigma}}{\sqrt{\left(\frac{X_3 + X_4 2}{\sqrt{2}\sigma}\right)^2}} = \frac{X_1 X_2}{|X_3 + X_4 2|} \sim t$ (1), 选 B.
- 二、填空题, $9 \sim 14$ 题, 每题 4 分, 共 24 分.
- 9. $\lim_{x \to \frac{\pi}{4}} (\tan x)^{\frac{1}{\cos x \sin x}} = \underline{\hspace{1cm}}$
- 解: 先取对数用洛必达法则得

$$\lim_{x \to \frac{\pi}{4}} \frac{\ln(\tan x)}{\cos x - \sin x} = \lim_{x \to \frac{\pi}{4}} \frac{\sec^2 x}{(-\sin x - \cos x) \tan x} = -\sqrt{2},$$

因此原极限为 $e^{-\sqrt{2}}$.

10.设函数
$$f(x) = \begin{cases} \ln \sqrt{x}, & x \geqslant 1 \\ 2x - 1, & x < 1 \end{cases}, y = f(f(x)), 则 \left. \frac{\mathrm{d}y}{\mathrm{d}x} \right|_{x=e}$$
_______.

解: 首先有

$$y = f(f(x)) = \begin{cases} \frac{1}{2} \ln f(x), & f(x) \ge 1 \\ 2f(x) - 1, & f(x) < 1 \end{cases} = \begin{cases} \frac{1}{2} \ln \left(\frac{1}{2} \ln x\right), & x \ge e^2 \\ \ln x - 1, & 1 \le x < e^2, \\ 2(2x - 1), & x < 1 \end{cases}$$

因此
$$\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{x=\mathrm{e}} = (\ln x - 1)'\Big|_{x=\mathrm{e}} = \frac{1}{\mathrm{e}}.$$

- 11.设连续函数 z = f(x, y) 满足 $\lim_{\substack{x \to 0 \\ y \to 0}} \frac{f(x, y) 2x + y 2}{\sqrt{x^2 + (y 1)^2}} = 0$, 则 $dz|_{(0,1)} =$ _____.
- 解: 由题意知当 $x \to 0, y \to 1$ 时, $f(x,y) = 2x y + 2 + o\left(\sqrt{x^2 + (y-1)^2}\right)$, 由此可得 $\frac{\partial z}{\partial x}\Big|_{(0,1)} = 2, \frac{\partial z}{\partial y}\Big|_{(0,1)} = -1, \text{ 故 } dz\Big|_{(0,1)} = 2dx dy.$
- 12.由曲线 $y = \frac{4}{x}$ 和直线 y = x 及 y = 4x 在第一象限中围成的平面图形的面积为 .
- **解:** 利用定积分可求得此平面图形的面积为 $S = \int_0^1 (4x x) dx + \int_1^2 \left(\frac{4}{x} x\right) dx = 4 \ln 2.$

13.设 α 为3为单位列向量, E为3阶单位矩阵, 则矩阵 $E - \alpha \alpha^{T}$ 的秩为.

解: $\alpha \alpha^{\text{T}}$ 是秩为 1 的实对称矩阵, 故它可以对角化, 且它的特征值为 $\alpha^{\text{T}}\alpha$, 0, 0, 即 1, 0, 0. 则 $E - \alpha \alpha^{\text{T}}$ 也可以对角化, 且它的特征值为 0, 1, 1, 因此 $r(E - \alpha \alpha^{\text{T}}) = 2$.

14.设
$$A, B, C$$
 是随机事件, $A 与 C$ 互不相容, $P(AB) = \frac{1}{2}, P(C) = \frac{1}{3}$, 则 $P(AB|\bar{C}) =$ ______.

解: 由 $A \subseteq C$ 互不相容可知 P(AC) = P(ABC) = 0, 于是

$$P(AB|\bar{C}) = \frac{P(AB\bar{C})}{P(\bar{C})} = \frac{P(AB) - P(ABC)}{1 - P(C)} = \frac{1/2}{1 - 1/3} = \frac{3}{4}.$$

三、解答题, 15~23题, 共94分.

15.(本题满分 10 分)

求极限
$$\lim_{x\to 0} \frac{e^{x^2} - e^{2-2\cos x}}{x^4}$$
.

☜ 解:

$$\lim_{x \to 0} \frac{e^{x^2} - e^{2 - 2\cos x}}{x^4} = \lim_{x \to 0} e^{2 - 2\cos x} \frac{e^{x^2 - 2 + 2\cos x} - 1}{x^4}$$

$$= \lim_{x \to 0} \frac{x^2 - 2 + 2\cos x}{x^4} = \lim_{x \to 0} \frac{2x - 2\sin x}{4x^3}$$

$$= \lim_{x \to 0} \frac{\frac{1}{6}x^3}{2x^3} = \frac{1}{12}.$$

16.(本题满分 10 分)

计算二重积分 $\iint_D e^x xy dx dy$, 其中 D 是以曲线 $y = \sqrt{x}$, $y = \frac{1}{\sqrt{x}}$ 及 y 轴为边界的无界区域.

解: 积分区域可以写为 $D = \{(x, y) | 0 < x < 1, \sqrt{x} < y < \frac{1}{\sqrt{x}} \}$, 则

$$\iint_{D} e^{x} x y dx dy = \int_{0}^{1} x e^{x} dx \int_{\sqrt{x}}^{\frac{1}{\sqrt{x}}} y dy = \int_{0}^{1} x e^{x} \frac{1}{2} \left(\frac{1}{x} - x \right) dx$$
$$= -\frac{1}{2} e^{x} (x - 1)^{2} \Big|_{0}^{1} = \frac{1}{2}.$$

17.(本题满分 10 分)

某企业为生产甲、乙两种型号的产品投入的固定成本为 10000(万元). 设该企业生产甲、乙两种产品的产量分别为 x(件) 和 y(件), 且这两种产品的边际成本分别为 $20+\frac{x}{2}$ (万元/件) 与 6+y(万元/件).

(1) 求生产甲、乙两种产品的总成本函数 C(x,y)(万元);

- (2) 当总产量为 50 件时, 甲、乙两种产品的产量各位多少时可使总成本最小? 求最小总成本;
- (3) 求总产量为50件时且总成本最小时甲的边际成本,并解释其经济意义.
- 解: (1) 由题意知 $C'_x(x,y) = 20 + \frac{x}{2}$, 对 x 积分得 $C(x,y) = 20x + \frac{x^2}{4} + \varphi(y)$, 再对 y 求导得 $C'_y(x,y) = \varphi'(y) = 6 + y$, 于是对 y 积分得 $\varphi(y) = 6y + \frac{y^2}{2} + C$, 所以 $C(x,y) = 20x + \frac{x^2}{4} + 6y + \frac{y^2}{2} + C$. 又 C(0,0) = 10000, 所以 C = 10000, $C(x,y) = 20x + \frac{x^2}{4} + 6y + \frac{y^2}{2} + 10000$.

(2) 若
$$x + y = 50$$
, 则 $y = 50 - x(0 \le x \le 50)$, 代入到成本函数中得

$$C(x) = 20x + \frac{x^2}{4} + 6(50 - x) + \frac{1}{2}(50 - x)^2 + 10000 = \frac{3}{4}x^2 - 36x + 11550.$$

令 $C'(x) = \frac{3}{2}x - 36 = 0$ 得 x = 24, 不难得知这就是 C(x) 的最小值点. 此时 y = 26, 最小成本为 C(24, 26) = 11118.

(3) 求总产量为 50 件时且总成本最小时甲的边际成本为 $C'_x(24,26) = 32$, 其经济意义为在要求总产量为 50 件条件下, 当甲产品为 24 件时, 若甲产品的产量再增加一件, 则总成本将增加 32 万元.

18.(本题满分 10 分)

证明:
$$x \ln \frac{1+x}{1-x} + \cos x \ge 1 + \frac{x^2}{2} (-1 < x < 1).$$

证明: 注意到 f(x) 是偶函数,因此只需要证明 $f'(x) \ge 0, x \in [0,1)$ 即可. 首先有 $f'(x) = \ln \frac{1+x}{1-x} + \frac{2x}{1-x^2} - \sin x - x, x \in (0,1)$,且 $\ln \frac{1+x}{1-x} > 0$, $\frac{2x}{1-x^2} > 2x > x + \sin x$,因此 $f'(x) > 0, x \in (0,1)$. 而 f(0) = 0,则有 $f(x) \ge 0, x \in [0,1)$,证毕.

19.(本题满分 10 分)

已知函数 f(x) 满足方程 f''(x) + f'(x) - 2f(x) = 0 及 $f''(x) + f(x) = 2e^x$.

- (1) 求 f(x) 的表达式;
- (2) 求曲线 $y = f(x^2) \int_0^x f(-t^2) dt$ 的拐点.
- **解:** (1) 微分方程 f''(x) + f'(x) 2f(x) = 0 的特征方程为 $\lambda^2 + \lambda 2 = 0$, 特征根为 $\lambda_1 = 1$, $\lambda_2 = -2$, 故方程的通解为 $f(x) = C_1 e^x + C_2 e^{-2x}$. 将 $f(x) = C_1 e^x + C_2 e^{-2x}$, $f''(x) = C_1 e^x + 4C_2 e^{-2x}$ 代入方程 $f''(x) + f(x) = 2e^x$ 得 $2C_1 e^x + 5C_2 e^{-2x} = 2e^x$, 所以 $C_1 = 1$, $C_2 = 0$, 故 $f(x) = e^x$.
 - (2) 由 (1) 得到曲线 $y = f(x^2) \int_0^x f(-t^2) dt = e^{x^2} \int_0^x e^{-t^2} dt$, 分别求一阶导数与二阶导数

$$y' = 2xe^{x^2} \int_0^x e^{-t^2} dt + 1$$
, $y'' = 2e^{x^2} (1 + 2x^2) \int_0^x e^{-t^2} dt + 2x$,

令 y'' = 0 得 x = 0, y = 0. 当 x > 0 时, y'' > 0; 当 x < 0 时, y'' < 0, 因此点 (0,0) 就是曲线 y = f(x) 的拐点.

20.(本题满分11分)

设
$$A = \begin{pmatrix} 1 & a & 0 & 0 \\ 0 & 1 & a & 0 \\ 0 & 0 & 1 & a \\ a & 0 & 0 & 1 \end{pmatrix}, \boldsymbol{\beta} = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}.$$

- (1) 计算行列式 |A|;
- (2) 当实数 a 为何值时, 方程组 $Ax = \beta$ 有无穷多解, 并求其通解.
- **解:** (1) 因为 $r(A) = r(A^{T}A) = 2$, 对矩阵 A 作初等行变换得

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & 0 & a \\ 0 & a & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & a + 1 \\ 0 & 0 & -a - 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & a + 1 \\ 0 & 0 & 0 \end{pmatrix},$$

所以 a = -1.

(2) 由
$$a = -1$$
 可得 $A^{T}A = \begin{pmatrix} 2 & 0 & 2 \\ 0 & 2 & 2 \\ 2 & 2 & 4 \end{pmatrix}$, 故矩阵 $A^{T}A$ 的特征多项式为

$$|\lambda E - A^{\mathrm{T}} A| = \begin{vmatrix} \lambda - 2 & 0 & 2 \\ 0 & \lambda - 2 & -2 \\ -2 & -2 & \lambda - 4 \end{vmatrix} = \lambda (\lambda - 2) (\lambda - 6),$$

于是 $A^{T}A$ 的特征值为 $\lambda_{1} = 0, \lambda_{2} = 2, \lambda_{3} = 6$.

当 $\lambda_1 = 0$ 时,解方程组 $A^T A x = \mathbf{0}$ 得 λ_1 的单位特征向量 $\xi_1 = \frac{1}{\sqrt{3}} (1, 1, -1)^T$;

当 $\lambda_2 = 2$ 时,解方程组 $(2E - A^T A)x = 0$ 得 λ_2 的单位特征向量 $\xi_2 = \frac{1}{\sqrt{2}}(1, -1, 0)^T$;

当 $\lambda_3 = 6$ 时,解方程组 $(6E - A^T A)x = 0$ 得 λ_3 的单位特征向量 $\xi_3 = \frac{1}{\sqrt{6}}(1,1,2)^T$.

令 $Q = (\xi_1, \xi_2, \xi_3)$, 则在正交变换 x = Qy 下, 原二次型化为标准形 $f = 2y_2^2 + 6y_3^2$.

21.(本题满分 11 分)

已知
$$A = \begin{pmatrix} -1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & 0 & a \\ 0 & a & -1 \end{pmatrix}$$
, 二次型 $f(x_1, x_2, x_3) = \mathbf{x}^{\mathrm{T}} (\mathbf{A}^{\mathrm{T}} \mathbf{A}) \mathbf{x}$ 的秩为 2.

- (1) 求实数 a 的值;
- (2) 求正交变换 x = Qy 将二次型 f 化为标准形.

解: (1) 行列式按照第一行展开得

$$|A| = \begin{vmatrix} 1 & a & 0 & 0 \\ 0 & 1 & a & 0 \\ 0 & 0 & 1 & a \\ a & 0 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 1 & a & 0 \\ 0 & 1 & a \\ 0 & 0 & 1 \end{vmatrix} - a \begin{vmatrix} 0 & a & 0 \\ 0 & 1 & a \\ a & 0 & 1 \end{vmatrix} = 1 - a^{4}.$$

(2) 对增广矩阵 (A, β) 作初等行变换得

$$(A, \beta) = \begin{pmatrix} 1 & a & 0 & 0 & 1 & 1 \\ 0 & 1 & a & 0 & 1 & -1 \\ 0 & 0 & 1 & a & 0 & 0 \\ a & 0 & 0 & 1 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & a & 0 & 0 & 1 & 1 \\ 0 & 1 & a & 0 & 1 & -1 \\ 0 & 0 & 1 & a & 0 & 0 & 1 \\ 0 & 1 & a & 0 & 1 & -1 \\ 0 & 0 & 1 & a & 0 & 0 & 1 \\ 0 & 0 & a^3 & 1 & -a - a^3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & a & 0 & 0 & 1 & 1 \\ 0 & 1 & a & 0 & 1 & -1 \\ 0 & 0 & 1 & a & 0 & -1 \\ 0 & 0 & 1 & a & 0 & 0 \\ 0 & 0 & 0 & 1 - a^4 & -a - a^2 \end{pmatrix}.$$

由于方程组 $Ax = \beta$ 有无穷多解当且仅当 $r(A) = r(A, \beta) < 4$,因此 $1 - a^4 = -a - a^2 = 0$,解得 a = -1,此时方程组 $Ax = \beta$ 有无穷多解,且容易得到方程组的通解为 $x = (0, -1, 0, 0)^T + k(1, 1, 1, 1)^T$,其中 k 为任意常数.

22.(本题满分 11 分)

设二维离散型随机变量(X,Y)的概率分布为

X	0	1	2
0	$\frac{1}{4}$	0	$\frac{1}{4}$
1	0	$\frac{1}{3}$	0
2	$\frac{1}{12}$	0	$\frac{1}{12}$

- $(1) \stackrel{?}{\cancel{x}} P(X = 2Y)$
 - (2) 求 Cov(X Y, Y).
- **解:** (1) 由 (*X*, *Y*) 的概率分布知 $P(X = 2Y) = P(X = 0, Y = 0) + P(X = 2, Y = 1) = \frac{1}{4}$. (2) 由 (*X*, *Y*) 的概率分布知 *X*, *Y*, *XY* 的概率分布分别为

$$X \sim \begin{pmatrix} 0 & 1 & 2 \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{6} \end{pmatrix}, Y \sim \begin{pmatrix} 0 & 1 & 2 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}, XY \sim \begin{pmatrix} 0 & 1 & 4 \\ \frac{7}{12} & \frac{1}{3} & \frac{1}{12} \end{pmatrix}.$$

所以 $E(X) = \frac{2}{3}$, E(Y) = 1, $E(Y^2) = \frac{5}{3}$, $D(Y) = \frac{2}{3}$, $E(XY) = \frac{2}{3}$, 于是 Cov(X,Y) = E(XY) - E(X)E(Y) = 0, $Cov(X - Y) = Cov(X, Y) - D(Y) = -\frac{2}{3}$.

23.(本题满分 11 分)

设随机变量 X 与 Y 相互独立, 且都服从参数为 1 的指数分布, 记 $U = \max\{X,Y\}, V = \min\{X,Y\}.$

- (1) 求 V 的概率密度 $f_V(v)$;
- (2) 求 E(U + V).
- **解:** (1) X, Y 的分布函数均为 $F(x) = \begin{cases} 1 e^{-x}, & x > 0 \\ 0, & x \leq 0 \end{cases}$, 且 X, Y 相互独立, 于是 V 的分布函数为

$$F_{V}(v) = P(V \le v) = P(\min\{X, Y\} \le v) = 1 - P(\min\{X, Y\} > v)$$

$$= 1 - P(X > v, Y > v) = 1 - P(X > v)P(Y > v) = 1 - [1 - F(v)]^{2}$$

$$= \begin{cases} 1 - e^{-2x}, & x > 0 \\ 0, & x \le 0 \end{cases}$$

因此 V 的概率密度为 $f_V(v) = F_V'(v) = \begin{cases} 2e^{-2x}, & x > 0 \\ 0, & x \leqslant 0 \end{cases}$.

(2) 由于 $U = \max\{X, Y\}$, $V = \min\{X, Y\}$, 所以 U + V = X + Y, 则 E(U + V) = E(X + Y) = E(X) + E(Y) = 2.

第 8 章 2013 年考研数学三

- 一、选择题, $1 \sim 8$ 题, 每题 4 分, 共 32 分.
- 1. 当 $x \to 0$ 时, 用 o(x) 表示比 x 高阶的无穷小量, 则下列式子错误的是

A.
$$x \cdot o(x^2) = o(x^3)$$

$$B. o(x) \cdot o(x^2) = o(x^3)$$

C.
$$o(x^2) + o(x^2) = o(x^2)$$

D.
$$o(x) + o(x^2) = o(x^2)$$

解: 容易判断 A, B, C 都是对的, 而 $o(x) + o(x^2) = o(x)$, 错误的选 D.

2. 函数
$$f(x) = \frac{|x|^x - 1}{x(x+1)\ln|x|}$$
 的可去间断点的个数为 A. 0 B. 1 C. 2 D. 3

解: 由 $f(x) = \frac{|x|^x - 1}{x(x+1)\ln|x|}$ 知 f(x) 的间断点为 $x = 0, \pm 1$. 且

$$\lim_{x \to 0} \frac{|x|^x - 1}{x(x+1)\ln|x|} = \lim_{x \to 0} \frac{e^{x\ln|x|} - 1}{x(x+1)\ln|x|} = \lim_{x \to 0} \frac{x\ln|x|}{x(x+1)\ln|x|} = 1,$$

$$\lim_{x \to 1} \frac{|x|^x - 1}{x(x+1)\ln|x|} = \lim_{x \to 1} \frac{e^{x\ln|x|} - 1}{x(x+1)\ln|x|} = \lim_{x \to 1} \frac{x\ln|x|}{x(x+1)\ln|x|} = \frac{1}{2},$$

$$\lim_{x \to -1} \frac{|x|^x - 1}{x(x+1)\ln|x|} = \lim_{x \to -1} \frac{e^{x\ln|x|} - 1}{x(x+1)\ln|x|} = \lim_{x \to -1} \frac{x\ln|x|}{x(x+1)\ln|x|} = \lim_{x \to 1} \frac{1}{x+1} = \infty.$$

因此 f(x) 的可取间断点是 x = 0, 1, 选 C.

3. 设 D_k 是圆域 $D = \{(x,y)|x^2 + y^2 \le 1\}$ 位于第 k 象限的部分, 记 $I_k = \iint (y - y)^2 dy$

$$(x) dx dy (k = 1, 2, 3, 4),$$
 则

)

A.
$$I_1 > 0$$

B.
$$I_2 > 0$$

C.
$$I_3 > 0$$

D.
$$I_4 > 0$$

- **解:** 根据对称性可知 $I_1 = I_3 = 0$, 而当 $x \in D_2$ 时, y x > 0, 因此 $I_2 = \iint (y x) \, \mathrm{d}x \, \mathrm{d}y > 0$
 - 0. 当 $x \in D_4$ 时, y x < 0, $I_4 < 0$, 选 B.
- 4. 设 $\{a_n\}$ 为正项数列,下列选项正确的是

设
$$\{a_n\}$$
 为正项数列,下列选项正确的是
A. 若 $a_n > a_{n+1}$,则 $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ 收敛

B. 若
$$\sum_{n=1}^{\infty} (-1)^{n-1} a_n$$
 收敛, 则 $a_n > a_{n+1}$

C. 若
$$\sum_{n=1}^{\infty} a_n$$
 收敛, 则存在常数 $p > 1$, 使 $\lim_{n \to \infty} n^p a_n$ 存在

- D. 若存在常数 p > 1, 是 $\lim_{n \to \infty} n^p a_n$ 存在, 则 $\sum_{n=1}^{\infty} a_n$ 收敛
- 解: A 选项中 a_n 不一定趋于 0, A 不对. B 选项可取反例 $a_n = \begin{cases} \frac{1}{n^3}, & n$ 为偶数, $\frac{1}{n^2}, & n$ 为奇数, B 不对. C 选项可取反例 $a_n = \frac{1}{n\ln^2 n} (n \geq 2)$,则对任意 p > 1 有 $\lim_{n \to \infty} n^p a_n = \lim_{n \to \infty} \frac{n^{p-1}}{\ln^2 n} = +\infty$, C 不对. D 选项中存在正数数 a,使得 $\lim_{n \to \infty} n^p a_n = a$,那么当 $n \to \infty$ 时, a_n 为 $\frac{1}{n^p}$ 的同阶或高阶无穷小,因此 $\sum_{n=1}^{\infty} a_n$ 收敛,选 D.
- 5. 设 A, B, C 均为 n 阶矩阵, 若 AB = C, 且 B 可逆, 则 ()
 - A. 矩阵 C 的行向量组与矩阵 A 的行向量组等价
 - B. 矩阵 C 的列向量组与矩阵 A 的列向量组等价
 - C. 矩阵 C 的行向量组与矩阵 B 的行向量组等价
 - D. 矩阵 C 的列向量组与矩阵 B 的列向量组等价
- **解:** 对一个矩阵 A 右乘一个可逆矩阵 B 就是对 A 进行一系列的初等列变换后得到矩阵 C,因此矩阵 C 的行向量组与矩阵 A 的列向量组等价, 选 B.
- 6. 矩阵 $\begin{pmatrix} 1 & a & 1 \\ a & b & a \\ 1 & a & 1 \end{pmatrix}$ 与 $\begin{pmatrix} 2 & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & 0 \end{pmatrix}$ 相似的充分必要条件为
 A. a = 0, b = 2B. a = 0, b 为任意常数
 C. a = 2, b = 0D. a = 2, b 为任意常数
- **解:** 两个同阶实对称矩阵相似的充要条件是它们具有相同的特征值,矩阵 $\mathbf{B} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & 0 \end{pmatrix}$

的特征值为 2, b, 0, 而 $|\lambda E - A| = \begin{vmatrix} \lambda - 1 & -a & -1 \\ -a & \lambda - b & -a \\ -1 & -a & \lambda - 1 \end{vmatrix} = \lambda \left((\lambda - 2) (\lambda - b) - 2a^2 \right)$, 因此

当且仅当 a=0 时, A 的特征值为 2,b,0, 其中 b 可为任意常数, 选 B.

7. 设 X_1, X_2, X_3 是随机变量,且 $X_1 \sim N(0,1), X_2 \sim N(0,2^2), X_3 \sim N(5,3^2), p_i = P(-2 \leqslant X_i \leqslant 2)(i = 1,2,3),则$

A. $p_1 > p_2 > p_3$ B. $p_2 > p_1 > p_3$ C. $p_3 > p_1 > p_2$ D. $p_1 > p_3 > p_2$

解: 利用正态分布的性质可得

$$p_1 = \Phi(2) - \Phi(-2) = 2\Phi(2) - 1,$$

 $p_2 = \Phi\left(\frac{2}{2}\right) - \Phi\left(\frac{-2}{2}\right) = 2\Phi(1) - 1,$

$$p_3 = \Phi\left(\frac{2-5}{3}\right) - \Phi\left(\frac{-2-5}{3}\right) = \Phi\left(-1\right) - \Phi\left(-\frac{7}{3}\right).$$

利用标准正态分布的概率分布函数性质不难得到 $p_1 > p_2 > p_3$, 选 A.

8. 设随机变量 X 和 Y 相互独立, 且 X 和 Y 的概率分布分别为

	X	0	1	2	3	Y	-1	0	1		
	P	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{8}$	P	$\frac{1}{3}$	$\frac{1}{2}$	$\frac{1}{3}$		
则 <i>A</i>	$P(X + Y = 2) = 2$ $\frac{1}{12}$ B. $\frac{1}{8}$			C. $\frac{1}{6}$;	D.	$\frac{1}{2}$	()		

$$P(X + Y = 2) = P(X = 1, Y = 1) + P(X = 2, Y = 0) + P(X = 3, Y = -1)$$

$$= P(X = 1)P(Y = 1) + P(X = 2)P(Y = 0) + P(X = 3)P(Y = -1) = \frac{1}{6},$$

选 C.

- 二、填空题, $9 \sim 14$ 题, 每题 4 分, 共 24 分.
- 9. 设曲线 y = f(x) 与 $y = x^2 x$ 在点 (1,0) 处有公切线, 则 $\lim_{n \to \infty} nf\left(\frac{n}{n+2}\right) =$ ______.
- **解:** 由曲线 y = f(x) 与 $y = x^2 x$ 在点 (1,0) 处有公切线知 f(1) = 0, f'(1) = 1, 则由导数定义得

$$\lim_{n \to \infty} nf\left(\frac{n}{n+2}\right) = \frac{x = \frac{n}{n+2}}{\sum_{x \to 1^{-}} 1 - x} \lim_{x \to 1^{-}} \frac{2x}{1-x} f(x) = -2 \lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x-1} = -2f'(1) = -2.$$

10.设函数 z = z(x, y) 由方程 $(z + y)^x = xy$ 确定,则 $\frac{\partial z}{\partial x}\Big|_{(1,2)} = \underline{\hspace{1cm}}$

解: 当 x = 1, y = 2 时, z = 2. 方程 $(z + y)^x = xy$ 两边分别对 x 求偏导得

$$(z+y)^{2}\left(\ln(z+y) + \frac{x}{z+y}\frac{\partial z}{\partial x}\right) = y,$$

代入 x = 1, y = 2, z = 0 可得 $\frac{\partial z}{\partial x}\Big|_{(1,2)} = 2 - 2 \ln 2.$

$$11. \int_{1}^{+\infty} \frac{\ln x}{(1+x)^2} \mathrm{d}x = \underline{\qquad}.$$

∞ 解:

$$\int_{1}^{+\infty} \frac{\ln x}{(1+x)^2} dx = -\int_{1}^{+\infty} \ln x d\left(\frac{1}{1+x}\right)$$
$$= -\frac{\ln x}{1+x} \Big|_{1}^{+\infty} + \int_{1}^{+\infty} \frac{dx}{x(1+x)}$$
$$= \ln\left(\frac{x}{x+1}\right) \Big|_{1}^{+\infty} = \ln 2.$$

博客: yuxtech.github.io

12.微分方程 $y'' - y' + \frac{1}{4}y = 0$ 的通解为 $y = _____.$

- **解:** 微分方程的特征方程为 $\lambda^2 \lambda + \frac{1}{4} = 0$, 特征根为 $\lambda_1 = \lambda_2 = \frac{1}{2}$, 则方程的通解为 $y = (C_1 + C_2 x) e^{\frac{1}{2} x}, C_1, C_2 \in \mathbb{R}$.
- 13.设 $A = (a_{ij})$ 是 3 阶非零矩阵, |A| 为 A 的行列式, A_{ij} 为 a_{ij} 的代数余子式, 若 $a_{ij} + A_{ij} = 0$ (i, j = 1, 2, 3), 则 |A| =_____.
- **解:** 由 $a_{ij} + A_{ij} = 0$ (i, j = 1, 2, 3) 可知 $A^{\mathrm{T}} = -A^*$, 于是 $|A| = |A^{\mathrm{T}}| = |-A^*| = -|A^*| = -|A^*| = -|A|^2$, 因此 |A| = 0 或 -1. 又 A 是非零矩阵, 不妨设 $a_{11} \neq 0$, 于是 $|A| = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13} = -(a_{11}^2 + a_{12}^2 + a_{13}^2) \neq 0$, 所以 |A| = -1.
- 14.设随机变量 X 服从正态分布 N(0,1),则 $E\left(Xe^{2X}\right) = _____.$

◎ 解:

$$E\left(Xe^{2X}\right) = \int_{-\infty}^{+\infty} xe^{2x} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx$$
$$= \int_{-\infty}^{+\infty} x \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x-2)^2 + 2} dx = e^2 \int_{-\infty}^{+\infty} x \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x-2)^2} dx = 2e^2.$$

三、解答题, 15~23题, 共94分.

15.(本题满分 10 分)

当 $x \to 0$ 时, $1 - \cos x \cdot \cos 2x \cdot \cos 3x$ 与 ax^n 为等价无穷小, 求 n 和 a 的值.

解: 当 $x \to 0$ 时, 利用泰勒公式得

$$f(x) = 1 - \cos x \cos 2x \cos 3x$$

$$= 1 - \left(1 - \frac{x^2}{2} + o\left(x^2\right)\right) \left(1 - \frac{(2x)^2}{2} + o\left(x^2\right)\right) \left(1 - \frac{(3x)^2}{2} + o\left(x^2\right)\right)$$

$$= 1 - \left(1 - \frac{1}{2}\left(1 + 2^2 + 3^2\right)x^2\right) + o\left(x^2\right) \sim 7x^2,$$

因此 a = 7, n = 2

全 注: 此题中有两点指的注意的地方, 一是泰勒公式展开的原则是要保留到最近低阶的非零无穷小, 这样能做到不漏也不多余. 二是此题不建议大家用洛必达法则, 因为在洛必达法则中 $\lim \frac{f(x)}{g(x)} = A$ 是 $\lim \frac{f'(x)}{g'(x)} = A$ 的必要非充分条件, 也就是说由 $\lim_{x\to 0} \frac{f(x)}{ax^n} = 1$ 是不能直接得到 $\lim_{x\to 0} \frac{f'(x)}{nax^{n-1}} = 1$ 的, 中间需要一些麻烦的说明, 因此用泰勒公式直截了当. 此题可以推广为 $\lim_{x\to 0} \frac{1-\prod_{k=1}^n (1-\cos a_k x)}{x^2} = \frac{1}{2} \sum_{k=1}^n a_k^2$.

16.(本题满分 10 分)

设 *D* 是由曲线 $y = x^{\frac{1}{3}}$, 直线 x = a(a > 0) 及 x 轴所围成的平面图形, V_x , V_y 分别 是 *D* 绕 x 轴, y 轴旋转一周所得旋转体的体积. 若 $V_y = 10V_x$, 求 a 的值.

解: 利用旋转体的体积公式得

17.(本题满分 10 分)

设平面区域 D 由直线 x = 3y, y = 3x 及 x + y = 8 围成, 计算 $\iint_{\Sigma} x^2 dx dy$.

解: 积分区域可分为两部分

$$D_{1} = \left\{ (x, y) \left| 0 \leqslant x \leqslant 2, \frac{x}{3} \leqslant y \leqslant 3x \right\}, D_{2} = \left\{ (x, y) \left| 2 \leqslant x \leqslant 6, \frac{x}{3} \leqslant y \leqslant 8 - x \right\} \right\}.$$

则

$$\iint_{D} x^{2} dx dy = \iint_{D_{1}} x^{2} dx dy + \iint_{D_{2}} x^{2} dx dy$$

$$= \int_{0}^{2} x^{2} dx \int_{\frac{x}{3}}^{3x} dy + \int_{2}^{6} x^{2} dx \int_{\frac{x}{3}}^{8-x} dy$$

$$= \int_{0}^{2} x^{2} \left(3x - \frac{x}{3}\right) dx + \int_{2}^{6} x^{2} \left(8 - x - \frac{x}{3}\right) dx$$

$$= \frac{416}{3}.$$

第17题图

18.(本题满分 10 分)

- (1)该商品的边际利润;
- (2) 当 p = 50 时的边际利润, 并解释其经济利益;
- (3) 使得利润最大的定价 p.
- **解:** (1) 商品的利润函数为 $L = pQ (20Q + 60000) = 40Q \frac{Q^2}{1000} 60000$, 边际利润为 $\frac{dL}{dQ} = 40 \frac{Q}{500}$.
 - (2) 当 p = 50 时, 边际利润为 20, 其经济意义为当 p = 50 时, 销售第 10001 件商品时所获得的利润为 20 元.

博客: yuxtech.github.io

(3) 令 $\frac{dL}{dQ} = 40 - \frac{Q}{500} = 0$ 得 Q = 20000, 此时 $p = 60 - \frac{Q}{1000} = 40$, 显然这是使得二次函数取得最大值的点, 因此使得利润最大的定价 p = 40.

19.(本题满分 10 分)

奇函数 f(x) 在 $[0, +\infty)$ 上可导, f(0) = 0, 且 $\lim_{x \to +\infty} f(x) = 2$. 证明:

- (1) 存在 a > 0, 使得 f(a) = 1;
- (2) 对 (1) 中的 a, 存在 $\xi \in (0, a)$, 使得 $f'(\xi) = \frac{1}{a}$.
- **证明:** (1) 由 $\lim_{x\to +\infty} f(x) = 2$ 可知存在 X > 0, 当 x > X 时, f(x) > 1 都成立. 即存在 $x_0 > 0$ 使得 $f(x_0) > 1$ 成立, 因此由连续函数介值定理知存在 $a \in [0, x_0]$ 使得 f(a) = 1.
 - (2) 由拉格朗日中值定理知存在 $\xi \in (0, a)$ 使得 $f'(\xi) = \frac{f(a) f(0)}{a} = \frac{1}{a}$.

20.(本题满分 11 分)

设 $\mathbf{A} = \begin{pmatrix} 1 & a \\ 1 & 0 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 0 & 1 \\ 1 & b \end{pmatrix}$, 当 a, b 为何值时, 存在矩阵 \mathbf{C} 使得 $\mathbf{AC} - \mathbf{CA} = \mathbf{B}$, 并求所有矩阵 \mathbf{C} .

解: 设矩阵 $A = \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix}$, 代入 AC - CA = B 得方程组

$$\begin{cases}
-x_2 + ax_3 = 0 \\
-ax_1 + x_2 + ax_4 = 1 \\
x_1 - x_3 - x_4 = 1 \\
x_2 - ax_3 = b
\end{cases}$$
(*)

对该方程组的增广矩阵作初等行变换得

$$\begin{pmatrix} 0 & -1 & a & 0 & 0 \\ -a & 1 & 0 & a & 1 \\ 1 & 0 & -1 & -1 & 1 \\ 0 & 1 & -a & 0 & b \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & -1 & 1 \\ 0 & 1 & -a & 0 & 0 \\ 0 & 0 & 0 & 0 & a+1 \\ 0 & 0 & 0 & 0 & b \end{pmatrix}.$$

由此可知当 $a \neq -1$ 或 $b \neq 0$ 时,方程组(*)无解. 当 a = -1 且 b = 0 时,方程组(*)有解,且此时方程组的通解为 $\mathbf{x} = (x_1, x_2, x_3, x_4)^{\mathrm{T}} = k_1(1, -1, 1, 0)^{\mathrm{T}} + k_2(1, 0, 0, 1)^{\mathrm{T}} + (1, 0, 0, 0)^{\mathrm{T}}$,其中 k_1, k_2 为任意常数. 因此,当且仅当 a = -1, b = 0 时存在矩阵 $\mathbf{C} = \begin{pmatrix} k_1 + k_2 + 1 & -k_1 \\ k_1 & k_2 \end{pmatrix}$ $(k_1, k_2 \in \mathbb{R})$ 使得 $\mathbf{AC} - \mathbf{CA} = \mathbf{B}$.

21.(本题满分11分)

设二次型 $f(x_1, x_2, x_3) = 2(a_1x_1 + a_2x_2 + a_3x_3)^2 + (b_1x_1 + b_2x_2 + b_3x_3)^2$, 记

$$\boldsymbol{\alpha} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}, \boldsymbol{\beta} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}.$$

- (1) 证明二次型 f 对应的矩阵为 $2\alpha\alpha^{T} + \beta\beta^{T}$;
- (2) 若 α , β 正交且均为单位向量, 证明 f 在正交变换下的标准形为 $2y_1^2 + y_2^2$.
- **证明:** (1) 记 $\mathbf{x} = (x_1, x_2, x_3)^{\mathrm{T}}$, 则 $a_1 x_1 + a_2 x_2 + a_3 x_3 = (x_1, x_2, x_3) \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = (a_1, a_2, a_3) \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$. 因此

$$f(x_1, x_2, x_3) = 2(a_1x_1 + a_2x_2 + a_3x_3)^2 + (b_1x_1 + b_2x_2 + b_3x_3)^2$$

= $2(x^{\mathrm{T}}\alpha)(\alpha^{\mathrm{T}}x) + (x^{\mathrm{T}}\beta)(\beta^{\mathrm{T}}x) = x^{\mathrm{T}}(2\alpha\alpha^{\mathrm{T}} + \beta\beta^{\mathrm{T}})x.$

且 $2\alpha\alpha^{\mathrm{T}} + \beta\beta^{\mathrm{T}}$ 为对称矩阵, 所以二次型 f 对应的矩阵为 $A = 2\alpha\alpha^{\mathrm{T}} + \beta\beta^{\mathrm{T}}$.

(2) 因为 α , β 正交且均为单位向量, 所以

$$A\alpha = (2\alpha\alpha^{\mathrm{T}} + \beta\beta^{\mathrm{T}})\alpha = 2\alpha(\alpha^{\mathrm{T}}\alpha) + \beta(\beta^{\mathrm{T}}\alpha) = 2\alpha,$$

$$A\beta = (2\alpha\alpha^{\mathrm{T}} + \beta\beta^{\mathrm{T}})\beta = 2\alpha(\alpha^{\mathrm{T}}\beta) + \beta(\beta^{\mathrm{T}}\alpha) = \beta,$$

故 $\lambda_1 = 2, \lambda_2 = 1$ 是矩阵 A 的特征值. 又 A 的秩 $r(A) = r(2\alpha\alpha^{\mathrm{T}} + \beta\beta^{\mathrm{T}}) \leqslant r(2\alpha\alpha^{\mathrm{T}}) + r(\beta\beta^{\mathrm{T}}) = 2$, 即 A 不是满秩矩阵, 所以 $\lambda_3 = 0$ 也是 A 的特征值, 故二次型 f 在正交变换下的标准形为 $2y_1^2 + y_2^2$.

22.(本题满分 11 分)

设 (X,Y) 是二维随机变量, X 的边缘概率密度为 $f_X(x) = \begin{cases} 3x^2, & 0 < x < 1 \\ 0, & \text{其他} \end{cases}$, 再给 定 X = x(0 < x < 1) 的条件下 Y 的条件概率密度为

$$f_{Y|X}(y|x) = \begin{cases} \frac{3y^2}{x^3}, & 0 < y < x \\ 0, & \text{#th} \end{cases}.$$

- (1) 求 (X, Y) 的概率密度 f(x, y);
- (2) 求 Y 的边缘概率密度 $f_Y(v)$;
- (3) 求 P(X > 2Y).
- **解:** (1) 由 X 的边缘分布知当 $x \le 0$ 或 $x \ge 1$ 时, f(x, y) = 0. 当 0 < x < 1 时,

$$f(x,y) = f_X(x) f_{Y|X}(y|x) = \begin{cases} \frac{9y^2}{x}, & 0 < y < x \\ 0, & \text{ 其他} \end{cases}.$$

因此求
$$(X,Y)$$
 的概率密度 $f(x,y) = \begin{cases} \frac{9y^2}{x}, & 0 < y < x < 1 \\ 0, & 其他 \end{cases}$.

(2) Y 的边缘概率密度为

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx$$

$$= \begin{cases} \frac{1}{y} \frac{9y^2}{x} dx & 0 < y < 1 \\ 0, & \text{ 其他} \end{cases} = \begin{cases} -9y^2 \ln y, & 0 < y < 1 \\ 0, & \text{ 其他} \end{cases}.$$

(3)
$$P(X > 2Y) = \iint_{x > 2Y} f(x, y) xy = \int_0^1 dx \int_0^{\frac{x}{2}} \frac{9y^2}{x} dy = \int_0^1 \frac{3}{8} x^2 dx = \frac{1}{8}.$$

23.(本题满分 11 分)

设总体 X 的概率密度为 $f(x;\theta) = \begin{cases} \frac{\theta^2}{x^3} e^{-\frac{\theta}{x}}, & x > 0 \\ 0, & \text{其中 } \theta \end{cases}$ 为未知参数且大于零,

 X_1, X_2, \cdots, X_n 为来自总体 X 的简单随机样本.

- (1) 求 θ 的矩估计量;
- (2) 求 θ 的最大似然估计量.
- 解: (1) 总体均值 $E(X) = \int_0^{+\infty} x \frac{\theta^2}{x^3} e^{-\frac{\theta}{x}} dx = \theta, \ \$ $\Phi(X) = \overline{X} = \frac{1}{n} \sum_{i=1}^n X_i, \$ 因此 θ 的矩估 计量为 $\hat{\theta}_1 = \overline{X}$.
 - (2) 设 x_1, x_2, \cdots, x_n 为样本 X_1, X_2, \cdots, X_n 的观测值, 则似然函数为

$$L(\theta) = \prod_{i=1}^{n} f(x_i; \theta) = \begin{cases} \frac{\theta^{2n}}{(x_1 x_2 \cdots x_n)^3} e^{-\theta \sum_{i=1}^{n} \frac{1}{x_i}}, & x_1, x_2, \cdots, x_n > 0\\ 0 & \text{#th} \end{cases}$$

当
$$x_1, x_2, \dots, x_n > 0$$
 时, $\ln L(\theta) = 2n \ln \theta - \theta \sum_{i=1}^n \frac{1}{x_i} - 3 \sum_{i=1}^n \ln x_i$, 令 $\frac{d [\ln L(\theta)]}{d \theta} = \frac{2n}{\theta} - \sum_{i=1}^n \frac{1}{x_i} = 0$ 得 $\theta = \frac{2n}{\sum_{i=1}^n \frac{1}{x_i}}$, 所以 θ 的最大似然估计量为 $\hat{\theta}_2 = \frac{2n}{\sum_{i=1}^n \frac{1}{X_i}}$.

第9章 2014 年考研数学三

一、选择题, $1 \sim 8$ 题, 每题 4 分, 共 32 分.

1. 设 $\lim_{n \to \infty} a_n = a$ 且 $a \neq 0$, 则当 n 充分大时有
A. $|a_n| > \frac{|a|}{2}$ B. $|a_n| < \frac{|a|}{2}$ C. $a_n > a - \frac{1}{n}$ D. $a_n < a + \frac{1}{n}$

解: 由于 $\lim_{n\to\infty} a_n = a, a \neq 0$, 那么对任意 $\varepsilon > 0$, 当 n 充分大时, 有

 $||a_n|-|a|| \leq |a_n-a| < \varepsilon,$

即 $|a|-\varepsilon<|a_n|<|a|+\varepsilon$. 取 $\varepsilon=\frac{|a|}{2}$ 可知 A 正确而 B 错误, C 可取反例 $a_n=a-\frac{1}{n}$, D 可 取反例 $a_n = a + \frac{1}{n}$, 选 A.

- 2. 下列曲线中有渐近线的是 A. $y = x + \sin x$ B. $y = x^2 + \sin x$ C. $y = x + \sin \frac{1}{x}$ D. $y = x^2 + \sin \frac{1}{x}$
- **解:** 可以用斜渐近线的定义直接判断 C 选项满足 $\lim_{x\to\infty} (y-x) = \lim_{x\to\infty} \sin\frac{1}{x} = 0$, 从而直线 y = x 是曲线 $y = x + \sin \frac{1}{x}$ 的斜渐近线.
- 3. 设 $p(x) = a + bx + cx^2 + dx^3$, 当 $x \to 0$ 时, 若 $p(x) \tan x$ 是比 x^3 高阶的无穷小, 则下列选项中错误的是 A. a = 0 B. b = 1 C. c = 0

D. $d = \frac{1}{6}$

- **解:** 利用 $\tan x$ 的麦克劳林展开式知当 $x \to 0$ 时, $p(x) \tan x = a + bx + cx^2 + dx^3 x bx$ $\frac{x^3}{3} + o(x^3)$ 是比 x^3 高阶的无穷小, 因此 $a = 0, b = 1, c = 0, d = \frac{1}{3}$, 因此错误的选 D.
- 4. 设函数 f(x) 具有二阶导数, g(x) = f(0)(1-x) + f(1)x, 则在区间 [0, 1] 上

A. 当 $f'(x) \ge 0$ 时, $f(x) \ge g(x)$

B. 当 $f'(x) \ge 0$ 时, $f(x) \le g(x)$

C. 当 $f''(x) \ge 0$ 时, $f(x) \ge g(x)$

D. 当 $f''(x) \ge 0$ 时, $f(x) \le g(x)$

- **解:** 令 F(x) = f(x) g(x) = f(x) f(0)(1-x) f(1)x, 则 F(0) = F(1) = 0, 且 F''(x) = f''(x). 故当 f''(x) > 0 时, F(x) 为凹函数, 它的最大值在端点 x = 0 或 x = 1 处取 到, 而 F(0) = F(1) = 0, 所以 $F(x) = f(x) - g(x) \le 0$, 选 D.
- 5. 行列式 $\begin{vmatrix} 0 & a & b & 0 \\ a & 0 & 0 & b \\ 0 & c & d & 0 \end{vmatrix} =$)

A.
$$(ad - bc)^2$$

B.
$$-(ad - bc)^2$$

C.
$$a^2d^2 - b^2c^2$$

B.
$$-(ad - bc)^2$$
 C. $a^2d^2 - b^2c^2$ D. $b^2c^2 - a^2d^2$

解: 利用行列式的基本性质,分别交换一二列,二三行和二三列可得

$$\begin{vmatrix} 0 & a & b & 0 \\ a & 0 & 0 & b \\ 0 & c & d & 0 \\ c & 0 & 0 & d \end{vmatrix} = - \begin{vmatrix} a & 0 & b & 0 \\ 0 & b & 0 & a \\ c & 0 & d & 0 \\ 0 & d & 0 & c \end{vmatrix} = \begin{vmatrix} a & 0 & b & 0 \\ c & 0 & d & 0 \\ 0 & b & 0 & a \\ 0 & d & 0 & c \end{vmatrix} = - \begin{vmatrix} a & b & 0 & 0 \\ c & d & 0 & 0 \\ 0 & 0 & b & a \\ 0 & 0 & d & c \end{vmatrix} = -(ad - bc)^2,$$

选 B.

- 6. 设 $\alpha_1, \alpha_2, \alpha_3$ 为三维向量,则对任意常数 k, l,向量组 $\alpha_1 + k\alpha_3, \alpha_2 + k\alpha_3$ 线性无关 是向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关的
 - A. 必要非充分条件

B. 充分非必要条件

C. 充分必要条件

- D. 既非充分也非必要条件
- **解:** 如果 $\alpha_1, \alpha_2, \alpha_3$ 线性无关, 令 $\lambda_1(\alpha_1 + k\alpha_3) + \lambda_3(\alpha_2 + l\alpha_3) = \mathbf{0}$, 即

$$\lambda_1 \alpha_1 + \lambda_2 \alpha_2 + (k\lambda_1 + l\lambda_2)\alpha_3 = \mathbf{0} \Rightarrow \lambda_1 = \lambda_2 = k\lambda_1 + l\lambda_2 = 0$$

从而 $\alpha_1 + k\alpha_3, \alpha_2 + k\alpha_3$ 线性无关. 反之, 如果 $\alpha_1 + k\alpha_3, \alpha_2 + k\alpha_3$ 线性无关, 不一定有 $\alpha_1, \alpha_2, \alpha_3$ 线性无关. 如取反例 $\alpha_1 = (1,0,0)^T, \alpha_2 = (0,1,0)^T, \alpha_3 = (0,0,0)^T$, 因此选 A.

- 7. 设随机事件 A 与 B 相互独立, 且 P(B) = 0.5, P(A B) = 0.3, 则 P(B A) = (A. 0.1 D. 0.4
- 解: 由 A, B 相互独立可得

$$P(A - B) = P(A) - P(AB) = P(A) - P(A) P(B)$$
$$= P(A) - 0.5P(A) = 0.5P(A) = 0.3,$$

所以 P(A) = 0.6, P(B - A) = P(B) - P(AB) = 0.5 - 0.5P(A) = 0.2, 选 B.

- 8. 设 X_1, X_2, X_3 为来自正态总体 $N(0, \sigma^2)$ 的简单随机样本, 则统计量 $S = \frac{X_1 X_2}{\sqrt{2}|X_3|}$ 服从的分布为
 - A. N(0, 1)
- B. *t*(1)
- C. $\chi^{2}(1)$
- D. F(1,1)
- 解: 首先 $X_1 X_2 \sim N(0, 2\sigma^2)$, $X_3 \sim N(0, \sigma^2)$, 因此 $\frac{X_1 X_2}{\sqrt{2}\sigma} \sim N(0, 1)$, $\frac{X_3}{\sigma} \sim N(0, 1)$, 则 $\frac{X_3^2}{\sigma^2} \sim \chi^2(1)$, 且 $X_1 X_2 \ni X_3$ 独立, 故 $\frac{(X_1 X_2)/(\sqrt{2}\sigma)}{\sqrt{X_3^2/\sigma^2}} = \frac{X_1 X_2}{\sqrt{2}|X_3|} \sim t$ (1), 选 C.
- 二、填空题, $9 \sim 14$ 题, 每题 4 分, 共 24 分.
- 9. 设某商品的需求函数为 Q = 40 2p (p 为商品的价格), 则该商品的边际收益 为 ____.

- 解: 由 Q = 40 2p 得 $p = \frac{40 Q}{2}$, 于是收益函数为 $R = pQ = \frac{(40 Q)Q}{2}$, 边际收益为 $\frac{dR}{dQ} = 20 Q$.
- $\stackrel{ ext{$\widehat{\circ}$}}{ ext{$\widehat{\circ}$}}$ 注: 边际收益的定义是收益对销售量 Q 的导数, 而不是对价格 p 的导数.
- 10.设 D 是由曲线 xy + 1 = 0 与直线 y + x = 0 及 y = 2 围成的有界区域,则 D 的面积为 .
- **解:** 画出积分区域图不难得到区域 D 的面积为 $S = \int_0^1 \mathrm{d}y \int_{-y}^0 \mathrm{d}x + \int_1^2 \mathrm{d}y \int_{-\frac{1}{y}}^0 \mathrm{d}x = \frac{1}{2} + \ln 2.$

11.设
$$\int_0^a x e^{2x} dx = \frac{1}{4}$$
, 则 $a = \underline{\hspace{1cm}}$.

解: 由条件得
$$\int_0^a xe^{2x} dx = \left(\frac{x}{2} - \frac{1}{4}\right)e^{2x}\Big|_0^a = \left(\frac{a}{2} - \frac{1}{4}\right)e^{2a} + \frac{1}{4} = \frac{1}{4}$$
, 因此 $a = \frac{1}{2}$.

12.二次积分
$$\int_0^1 dy \int_y^1 \left(\frac{e^{x^2}}{x} - e^{y^2} \right) dx = ____.$$

◎ 解:

$$\int_0^1 dy \int_y^1 \left(\frac{e^{x^2}}{x} - e^{y^2} \right) dx = \int_0^1 dy \int_y^1 \frac{e^{x^2}}{x} dx - \int_0^1 dy \int_y^1 e^{y^2} dx$$

$$= \int_0^1 dx \int_0^x \frac{e^{x^2}}{x} dy - \int_0^1 (1 - y) e^{y^2} dy$$

$$= \int_0^1 e^{x^2} dx - \int_0^1 (1 - y) e^{y^2} dy = \int_0^1 y e^{y^2} dy$$

$$= \frac{1}{2} e^{y^2} \Big|_0^1 = \frac{e - 1}{2}.$$

- 13.设二次型 $f(x_1, x_2, x_3) = x_1^2 x_2^2 + 2ax_1x_3 + 4x_2x_3$ 的负惯性指数为 1, 则 a 的取值范围是
- 解:由配方法得

$$f(x_1, x_2, x_3) = x_1^2 + 2ax_1x_3 + a^2x_3^2 - (x_2^2 - 4x_2x_3 + 4x_3^2) + 4x_3^2 - a^2x_3^2$$

= $(x_1 + ax_3)^2 - (x_2 - 2x_3)^2 + (4 - a^2)x_3^2$,

因为负惯性指数为 1, 所以 $4-a^2 \ge 0$, 解得 $-2 \le a \le 2$.

14.设总体 X 的概率密度为

$$f(x;\theta) = \begin{cases} \frac{2x}{3\theta^2}, & \theta < x < 2\theta \\ 0, & \text{其他} \end{cases}$$

博客: yuxtech.github.io

其中 θ 是未知参数, X_1, X_2, \dots, X_n 为来自总体X 的简单随机样本, 若 $E\left(c\sum_{i=1}^n X_i^2\right) = \theta^2$, 则 $c = \dots$

解:由条件得

$$E\left(c\sum_{i=1}^{n} X_{i}^{2}\right) = c\sum_{i=1}^{n} E\left(X_{i}^{2}\right) = cnE\left(X^{2}\right)$$
$$= cn\int_{\theta}^{2\theta} \frac{2x^{3}}{3\theta^{2}} dx = \frac{2cn}{3\theta^{2}} \cdot \frac{1}{4}x^{4}\Big|_{\theta}^{2\theta} = \frac{5cn}{2}\theta^{2} = \theta^{2},$$

因此
$$c = \frac{2}{5n}$$
.

三、解答题, 15~23题, 共94分.

15.(本题满分 10 分)

求极限
$$\lim_{x\to+\infty} \frac{\int_1^x \left[t^2\left(e^{\frac{1}{t}}-1\right)-t\right] dt}{x^2 \ln\left(1+\frac{1}{x}\right)}.$$

解: 当 t > 0 时, $t^2 \left(e^{\frac{1}{t}} - 1 \right) - t > t^2 \left(\frac{1}{t} + \frac{1}{2t^2} \right) - t = \frac{1}{2}$, 因此极限的分子是趋于正无穷的,利用等价无穷小与洛必达法则可得

$$\lim_{x \to +\infty} \frac{\int_{1}^{x} \left[t^{2}\left(e^{\frac{1}{t}}-1\right)-t\right] dt}{x^{2} \ln\left(1+\frac{1}{x}\right)} = \lim_{x \to +\infty} \frac{\int_{1}^{x} \left[t^{2}\left(e^{\frac{1}{t}}-1\right)-t\right] dt}{x^{2} \cdot \frac{1}{x}}$$

$$= \lim_{x \to +\infty} \frac{\int_{1}^{x} \left[t^{2}\left(e^{\frac{1}{t}}-1\right)-t\right] dt}{x}$$

$$= \lim_{x \to +\infty} \left[x^{2}\left(e^{\frac{1}{t}}-1\right)-x\right]$$

$$= \lim_{x \to +\infty} \left[x^{2}\left(e^{\frac{1}{t}}-1\right)-x\right]$$

$$= \lim_{x \to +\infty} \frac{e^{\frac{1}{x}}-1-\frac{1}{x}}{\frac{1}{x^{2}}}$$

$$= \lim_{x \to +\infty} \frac{1}{2x^{2}} \left/\frac{1}{x^{2}}=\frac{1}{2}\right.$$

Ŷ 注: 事实上, 洛必达法则适用于 ? 型的极限, 也就是只需要分母趋于无穷, 不需要验证分子是否趋于无穷, 就可以使用洛必达法则了.

16.(本题满分 10 分)

设平面区域
$$D = \{(x, y) | 1 \le x^2 + y^2 \le 4, x \ge 0, y \ge 0 \}$$
, 计算 $\iint_D \frac{x \sin \left(\pi \sqrt{x^2 + y^2}\right)}{x + y} dx dy$.

 \bowtie 解: 积分区域关于直线 y = x 对称, 利用轮换对称性与极坐标可得

$$I = \iint_{D} \frac{x \sin\left(\pi\sqrt{x^2 + y^2}\right)}{x + y} dxdy = \iint_{D} \frac{y \sin\left(\pi\sqrt{x^2 + y^2}\right)}{x + y} dxdy$$

$$= \frac{1}{2} \left(\iint_{D} \frac{x \sin\left(\pi \sqrt{x^2 + y^2}\right)}{x + y} dx dy + \iint_{D} \frac{y \sin\left(\pi \sqrt{x^2 + y^2}\right)}{x + y} dx dy \right)$$

$$= \frac{1}{2} \iint_{D} \sin\left(\pi \sqrt{x^2 + y^2}\right) dx dy = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} d\theta \int_{1}^{2} r \sin(\pi r) dr$$

$$= -\frac{3}{4}.$$

17.(本题满分 10 分)

设函数 f(u) 具有二阶连续导数, $z = f(e^x \cos y)$ 满足 $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = (4z + e^x \cos y) e^{2x}$, 若 f(0) = 0, f'(0) = 0, 求 f(u) 的表达式.

解: 利用多元复合函数偏导公式得

$$\frac{\partial z}{\partial x} = f'\left(e^x \cos y\right) e^x \cos y, \frac{\partial^2 z}{\partial x^2} = f''\left(e^x \cos y\right) e^{2x} \cos^2 y + f'\left(e^x \cos y\right) e^x \cos y,$$
$$\frac{\partial z}{\partial y} = -f'\left(e^x \cos y\right) e^x \sin y, \frac{\partial^2 z}{\partial y^2} = f''\left(e^x \cos y\right) e^{2x} \sin^2 y - f'\left(e^x \cos y\right) e^x \cos y.$$

所以等式
$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = (4z + e^x \cos y) e^{2x}$$
 化为

$$f''(e^x \cos y) e^{2x} = [4f(e^x \cos y) + e^x \cos y] e^{2x},$$

因此函数 f(u) 满足微分方程 f''(u) = 4f(u) + u,此方程的通解为 $f(u) = C_1 e^{2u} + C_2 e^{-2u} - \frac{u}{4}$. 由 f(0) = f'(0) = 0 得 $C_1 + C_2 = 0$, $2C_1 - 2C_2 - \frac{1}{4} = 0$,解得 $C_1 = \frac{1}{16}$,及 $f(u) = \frac{1}{16} \left(e^{2u} - e^{-2u} - 4u \right)$.

18.(本题满分 10 分)

求幂级数 $\sum_{n=0}^{\infty} (n+1)(n+3)x^n$ 的收敛域及和函数.

解: 令 $a_n = (n+1)(n+3)$, 因为 $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$, 所以幂级数的收敛半径为 R = 1. 当 $x = \pm 1$ 时, $\sum_{n=0}^{\infty} (n+1)(n+3)x^n$ 发散, 因此幂级数的收敛域为 (-1,1). 当 $x \in (-1,1)$ 时,

$$S(x) = \sum_{n=0}^{\infty} (n+1)(n+3)x^n = \sum_{n=0}^{\infty} (n+2)(n+1)x^n + \sum_{n=0}^{\infty} (n+1)x^n$$

$$= \left(\sum_{n=0}^{\infty} x^{n+2}\right)'' + \left(\sum_{n=0}^{\infty} x^{n+1}\right)' = \left(\frac{x^2}{1-x}\right)'' + \left(\frac{x}{1-x}\right)'$$

$$= \left(\frac{1}{1-x} - 1 - x\right)'' + \left(\frac{1}{1-x} - 1\right)'$$

$$= \frac{2}{(1-x)^3} + \frac{1}{(1-x)^2} = \frac{3-x}{(1-x)^3}.$$

19.(本题满分 10 分)

设函数 f(x), g(x) 在区间 [a,b] 上连续, 且 f(x) 单调增加, $0 \le g(x) \le 1$. 证明:

(1)
$$0 \leqslant \int_{a}^{x} g(t) dt \leqslant x - a, x \in [a, b];$$

$$(2) \int_{a}^{a+\int_{a}^{b} g(t)dt} f(x) dx \leqslant \int_{a}^{b} f(x) g(x) dx.$$

解: (1) 因为
$$\leqslant g(x) \leqslant 1$$
, 所以 $0 \leqslant \int_a^x g(t) dt \leqslant \int_a^x dt = x - a, x \in [a, b]$.

(2)
$$\Leftrightarrow F(x) = \int_{a}^{x} f(t) g(t) dt - \int_{a}^{a + \int_{0}^{x} g(u) du} f(t) dt$$
, \mathbb{N}

$$F'(x) = f(x)g(x) - f\left(a + \int_a^x g(u) du\right)g(x) = \left[f(x) - a + \int_a^x g(u) du\right]g(x).$$

由 (1) 知 $a + \int_a^x g(t) dt \le a + x - a = x$, 而 f(x) 单调增加, 所以 $F'(x) \ge 0$, 这说明 F(x)

单调增加. 又
$$F(a) = 0$$
, 所以 $F(b) \ge 0$, 即 $\int_a^{a + \int_a^b g(t) dt} f(x) dx \le \int_a^b f(x) g(x) dx$.

20.(本题满分 11 分)

设矩阵
$$A = \begin{pmatrix} 1 & -2 & 3 & -4 \\ 0 & 1 & -1 & 1 \\ 1 & 2 & 0 & -3 \end{pmatrix}$$
, E 为三阶单位矩阵.

- (1) 求方程 Ax = 0 的一个基础解系;
- (2) 求满足 AB = E 的所有矩阵 B.

解: (1) 对矩阵
$$A$$
 作初等行变换得 $A = \begin{pmatrix} 1 & -2 & 3 & -4 \\ 0 & 1 & -1 & 1 \\ 1 & 2 & 0 & -3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & -3 \end{pmatrix}$,则方程组

Ax = 0的一个基础解系为 $\alpha = (-1, 2, 3, 1)^{\mathrm{T}}$.

(2) 对矩阵 (A E) 作初等行变换得

$$(A E) = \begin{pmatrix} 1 & -2 & 3 & -4 & 1 & 0 & 0 \\ 0 & 1 & -1 & 1 & 0 & 1 & 0 \\ 1 & 2 & 0 & -3 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 & 2 & 6 & -1 \\ 0 & 1 & 0 & -2 & -1 & -3 & 1 \\ 0 & 0 & 1 & -3 & -1 & -4 & 1 \end{pmatrix}.$$

记 $E = (e_1, e_2, e_3)$,则 $Ax = e_1$ 的通解为 $x = (2, -1, -1, 0)^{\mathrm{T}} + k_1 \alpha, k_1 \in \mathbb{R}$; $Ax = e_2$ 的通解为 $x = (6, -3, -4, 0)^{\mathrm{T}} + k_2 \alpha_2, k_2 \in \mathbb{R}$; $Ax = e_3$ 的通解为 $x = (-1, 1, 1, 0)^{\mathrm{T}} + k_3 \alpha, k_3 \in \mathbb{R}$. 因此所求的矩阵为

$$\boldsymbol{B} = \begin{pmatrix} 2 & 6 & -1 \\ -1 & -3 & 1 \\ -1 & -4 & 1 \\ 0 & 0 & 0 \end{pmatrix} + (k_1 \boldsymbol{\alpha}, k_2 \boldsymbol{\alpha}, k_3 \boldsymbol{\alpha}) = \begin{pmatrix} 2 - k_1 & 6 - k_2 & -1 - k_3 \\ -1 + 2k_1 & -3 + 2k_2 & 1 + 2k_3 \\ -1 + 3k_1 & -4 + 3k_2 & 1 + 3k_3 \\ k_1 & k_2 & k_3 \end{pmatrix},$$

其中 $k_1, k_2, k_3 \in \mathbb{R}$.

21.(本题满分 11 分)

证明
$$n$$
 阶矩阵
$$\begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix} = \begin{pmatrix} 0 & \cdots & 0 & 1 \\ 0 & \cdots & 0 & 2 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 0 & n \end{pmatrix}$$
相似.

解: 先证明一个基本结论:

引理

秩为 1 的矩阵 A 可对角化的充要条件是 $tr(A) \neq 0$. 且当 $tr(A) \neq 0$ 时, A 的相似标准形为 $diag\{tr(A), 0, \dots, 0\}$.

● 证明: 由于 r(A) = 1,所以方程组 Ax = 0 有且只有 n-1 个线性无关的解,因此 0 至少是 A 的 n-1 重特征值,且它只有 n-1 个线性无关的特征向量. 特征值的和等于矩阵的迹,因此 A 的最后一个特征值就是 tr(A). 当 $tr(A) \neq 0$ 时,此非零特征值有一个线性无关特征向量,此时 A 可对角化,且其相似标准形为 $diag\{tr(A), 0, \cdots, 0\}$. 若tr(A) = 0,则 0 是 A 的 n 重特征值,但只有 n-1 个线性无关特征向量,此时不可对角化,证毕.

由 r(A) = r(B) = 1, $\operatorname{tr}(A) = \operatorname{tr}(B) = n$ 可知 A = B 都相似于对角阵 $\operatorname{diag}\{n, 0, \dots, 0\}$, 故 A = B 相似.

22.(本题满分 11 分)

设随机变量 X 的概率分布为 $P(X=1)=P(X=2)=\frac{1}{2}$, 在给定 X=i 的条件下,随机变量 Y 服从均匀分布 U(0,i)(i=1,2).

- (1) 求 Y 的分布函数 $F_Y(y)$;
- (2) 求 EY.
- 解: (1) 由分布函数定义得

$$F_{Y}(y) = P(Y \le y)$$

$$= P(X = 1) P(Y \le y | X = 1) + P(X = 2) P(Y \le y | X = 2)$$

$$= \frac{1}{2} P(Y \le y | X = 1) + \frac{1}{2} P(Y \le y | X = 2)$$

$$= \begin{cases} 0, & y < 0 \\ \frac{1}{2} y + \frac{1}{2} \times \frac{1}{2} y, & 0 \le y < 1 \\ \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} y, & 1 \le y < 2 \end{cases} = \begin{cases} 0 & y < 0 \\ \frac{3y}{4}, & 0 \le y < 1 \\ \frac{1}{2} + \frac{y}{4}, & 1 \le y < 2 \end{cases}$$

$$= \begin{cases} \frac{1}{2} + \frac{1}{2} & y \ge 2 \end{cases}$$

(2)
$$Y$$
 的概率密度为 $f_Y(y) = \begin{cases} \frac{3}{4}, & 0 < y < 1 \\ \frac{1}{4}, & 1 \leqslant y < 2,$ 因此 $0,$ 其他

$$E(Y) = \int_{-\infty}^{+\infty} y f_Y(y) \, dy = \int_0^1 \frac{3}{4} y \, dy + \int_1^2 \frac{1}{4} y \, dy = \frac{3}{4}.$$

23.(本题满分 11 分)

设随机变量 X, Y 的概率分布相同, X 的概率分布为 $P(X=0)=\frac{1}{3}, P(X=1)=\frac{2}{3},$ 且 X 与 Y 的相关系数 $\rho_{XY}=\frac{1}{2}.$

- (1) 求 (X, Y) 的概率分布;
- (2) \bar{x} *P*(*X* + *Y* ≤ 1).
- 解: (1) 由条件可得 $E(X) = E(Y) = \frac{2}{3}$, $D(X) = D(Y) = \frac{2}{3} \times \frac{1}{3} = \frac{2}{9}$, 且 E(XY) = P(X = 1, Y = 1), 所以 $\rho_{XY} = \frac{\text{Cov}(X, Y)}{\sqrt{D(X)}\sqrt{D(Y)}} = \frac{9}{2}\left(P(X = 1, Y = 1) \frac{4}{9}\right) = \frac{1}{2}$, 于是 $P(X = 1, Y = 1) = \frac{5}{9}$. 由此以及 X, Y 的边缘分布即可得 (X, Y) 的概率分布为

X Y	0	1
0	$\frac{2}{9}$	$\frac{1}{9}$
1	$\frac{1}{9}$	$\frac{5}{9}$

(2)
$$P(X + Y \le 1) = 1 - P(X + Y > 1) = 1 - \frac{5}{9} = \frac{4}{9}$$
.

第 10 章 2015 年考研数学三

- 一、选择题, $1 \sim 8$ 题, 每题 4 分, 共 32 分.
- 1. 设 $\{x_n\}$ 是数列,下列命题中不正确的是

A. 若
$$\lim_{n \to \infty} x_n = a$$
, 则 $\lim_{n \to \infty} x_{2n} = \lim_{n \to \infty} x_{2n+1} = a$

B.
$$\lim_{n \to \infty} x_{2n} = \lim_{n \to \infty} x_{2n+1} = a$$
, $\lim_{n \to \infty} x_n = a$

C.
$$\lim_{n \to \infty} x_n = a$$
, $\mathbb{M} \lim_{n \to \infty} x_{3n} = \lim_{n \to \infty} x_{3n+1} = a$

A. 若
$$\lim_{n \to \infty} x_n = a$$
, 则 $\lim_{n \to \infty} x_{2n} = \lim_{n \to \infty} x_{2n+1} = a$
B. $\lim_{n \to \infty} x_{2n} = \lim_{n \to \infty} x_{2n+1} = a$, 则 $\lim_{n \to \infty} x_n = a$
C. $\lim_{n \to \infty} x_n = a$, 则 $\lim_{n \to \infty} x_{3n} = \lim_{n \to \infty} x_{3n+1} = a$
D. 若 $\lim_{n \to \infty} x_{3n} = \lim_{n \to \infty} x_{3n+1} = a$, 则 $\lim_{n \to \infty} x_n = a$

- 解: 一个数列收敛的充要条件是它的任意子列都收敛于同一个极限, 因此 A 和 C 都对. 对于 选项 B, 子列 $\{x_{2n}\}$ 和 $\{x_{2n+1}\}$ 刚好是 $\{x_n\}$ 奇数子列和偶数子列, 这两个子列收敛于同一个 极限, 也能说明 $\{x_n\}$ 收敛. 但是 D 选项中少了子列 $\{x_{3n+2}\}$ 的收敛性, 得不到 $\{x_n\}$ 收敛, 错 误的选 D.
- 2. 设函数 f(x) 在 $(-\infty, +\infty)$ 内连续, 其二 阶导函数 f''(x) 的图像如图所示,则曲线 y = f(x) 的拐点个数为
 - B. 1
- C. 2
- D. 3
- 解: 拐点是连续曲线凹凸性发生变化的点, 这里就是二阶导数符号发生变化的点. 从图 中可知 f''(x) 的符号发生变化的点是原点和 y = f''(x) 在 x > 0 时与 x 轴的交点, x < 0时的交点不是拐点, 因此有两个拐点, 选 C.

- 第2题图
- 3. 设 $D = \{(x, y) | x^2 + y^2 \le 2, x^2 + y^2 \le 2y \}$, 函数 f(x, y) 在 D 上连续, 则 $\iint f(x,y) \mathrm{d}x \mathrm{d}y =$)

A.
$$\int_0^{\frac{\pi}{4}} d\theta \int_0^{2\cos\theta} f(r\cos\theta, r\sin\theta) r dr + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} d\theta \int_0^{2\sin\theta} f(r\cos\theta, r\sin\theta) r dr$$

B.
$$\int_{0}^{\frac{\pi}{4}} d\theta \int_{0}^{2\sin\theta} f(r\cos\theta, r\sin\theta) r dr + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} d\theta \int_{0}^{2\cos\theta} f(r\cos\theta, r\sin\theta) r dr$$

C.
$$2 \int_0^1 dx \int_{1-\sqrt{1-x^2}}^x f(x, y) dy$$

D. $2 \int_0^1 dx \int_x^{\sqrt{2x-x^2}} f(x, y) dy$

D.
$$2\int_0^1 dx \int_x^{\sqrt{2x-x^2}} f(x, y) dy$$

解: 积分区域如图. 如果化为直角坐标系下 X 型区域的累次积分, 积分区域可表示为

$$0 \le x \le 1, 1 - \sqrt{1 - x^2} \le y \le \sqrt{2x - x^2},$$

那么累次积分为 $\int_0^1 \mathrm{d}x \int_{1-\sqrt{1-x^2}}^{\sqrt{2x-x^2}} f(x,y) \,\mathrm{d}y$,但是 f(x,y) 在区域的上下部分的积分不一定相等,所以不能写成其中一半区域积分的两倍,C 和 D 都是不对的. 如果化为极坐标,代入 $x=r\cos\theta$, $y=r\sin\theta$ 可知上下两个圆的方程分别为 $r=2\sin\theta$, $r=2\cos\theta$,因此正确答案选 B.

第3题图

4. 下列级数中发散的是

A.
$$\sum_{n=1}^{\infty} \frac{n}{3^n}$$
C.
$$\sum_{n=1}^{\infty} \frac{(-1)^n + 1}{\ln n}$$

$$B. \sum_{\substack{n=1\\ \infty}}^{\infty} \frac{1}{\sqrt{n}} \ln \left(1 + \frac{1}{n} \right)$$

$$D. \sum_{n=1}^{\infty} \frac{n!}{n^n}$$

解: A 选项由比值法有 $\lim_{n\to\infty} \frac{(n+1)/3^{n+1}}{n/3^n} = \frac{1}{3}$, 故 A 选项收敛, B 选项中 $\frac{1}{\sqrt{n}} \ln\left(1 + \frac{1}{n}\right) \sim \frac{1}{n^{\frac{3}{2}}}$, 也收敛, C 选项中 $\sum_{n=2}^{\infty} \frac{(-1)^n + 1}{\ln n} = \sum_{n=1}^{\infty} \frac{2}{\ln(2n)}$ 是发散的, D 选项由比值法有

$$\lim_{n \to \infty} \frac{(n+1)!/(n+1)^{n+1}}{n!/n^n} = \lim_{n \to \infty} \frac{n^n}{(n+1)^n} = \lim_{n \to \infty} \frac{1}{\left(1 + \frac{1}{n}\right)^n} = \frac{1}{e} < 1,$$

所以 D 选项也收敛, 选 C.

5. 设矩阵 $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & a \\ 1 & 4 & a^2 \end{pmatrix}$, $b = \begin{pmatrix} 1 \\ d \\ d^2 \end{pmatrix}$, 若集合 $\Omega = \{1, 2\}$, 则线性方程组 Ax = b 有 无穷多解的充分必要条件为

A. $a \notin \Omega, d \notin \Omega$ B. $a \notin \Omega, d \in \Omega$ C. $a \in \Omega, d \notin \Omega$ D. $a \in \Omega, d \in \Omega$

解: 方程组 Ax = b 有无穷多解 $\Leftrightarrow r(A) = r(A b) < 3$,利用初等行变换得

$$(A \ b) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & a & d \\ 1 & 4 & a^2 & d^2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & a - 1 & d - 1 \\ 0 & 0 & (a - 1)(a - 2) & (d - 1)(d - 2) \end{pmatrix},$$

所以 a = 1 或 2, d = 1 或 2, 选 D.

6. 设二次型 $f(x_1, x_2, x_3)$ 在正交变换 x = Py 下的标准形为 $2y_1^2 + y_2^2 - y_3^2$, 其中 $P = (e_1, e_2, e_3)$. 若 $Q = (e_1, -e_3, e_2)$, 则 $f(x_1, x_2, x_3)$ 在正交变换 x = Qy 下的标准形为

A.
$$2y_1^2 - y_2^2 + y_3^2$$

B.
$$2y_1^2 + y_2^2 - y_3^2$$

C.
$$2y_1^2 - y_2^2 -$$

A.
$$2y_1^2 - y_2^2 + y_3^2$$
 B. $2y_1^2 + y_2^2 - y_3^2$ C. $2y_1^2 - y_2^2 - y_3^2$ D. $2y_1^2 + y_2^2 + y_3^2$

解: 设二次型
$$f(x_1, x_2, x_3)$$
 的矩阵为 A , 由题意知 $P^{T}AP = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$. 由初等变换与初

等矩阵的关系知
$$\mathbf{Q} = \mathbf{P} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} = \mathbf{PC}$$
, 于是

$$\mathbf{Q}^{\mathrm{T}} \mathbf{A} \mathbf{Q} = \mathbf{C}^{\mathrm{T}} (\mathbf{P}^{\mathrm{T}} \mathbf{A} \mathbf{P}) \mathbf{C} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

因此 $f(x_1, x_2, x_3)$ 在正交变换 $\mathbf{x} = \mathbf{Q}\mathbf{y}$ 下的标准形为 $2y_1^2 - y_2^2 + y_3^2$, 选 A.

7. 设
$$A, B$$
 为任意两个随机事件,则

A.
$$P(AB) \leqslant P(A)P(B)$$

C. $P(AB) \leqslant \frac{P(A) + P(B)}{2}$

B.
$$P(AB) \geqslant P(A)P(B)$$

B.
$$P(AB) \geqslant P(A)P(B)$$

D. $P(AB) \geqslant \frac{P(A) + P(B)}{2}$

解: 注意到
$$P(AB) \leqslant P(A), P(AB) \leqslant P(B),$$
 因此 $P(AB) \leqslant \frac{P(A) + P(B)}{2},$ 选 C.

8. 设随机变量
$$X, Y$$
 不相关, 且 $EX = 2, EY = 1, DX = 3, 则 $E[X(X + Y - 2)] = ($ ()$

A.
$$-3$$

C.
$$-5$$

解:由条件可得

$$E[X(X + Y - 2)] = E(X^{2} + XY - 2X) = E(X^{2}) + E(XY) - 2E(X)$$
$$= D(X) + (EX)^{2} + E(X)E(Y) - 2E(X) = 5,$$

选 D.

二、填空题, $9 \sim 14$ 题, 每题 4 分, 共 24 分.

9.
$$\lim_{x \to 0} \frac{\ln(\cos x)}{x^2} = \underline{\hspace{1cm}}$$

解: 利用洛必达法则得
$$\lim_{x\to 0} \frac{\ln(\cos x)}{x^2} = \lim_{x\to 0} \frac{-\sin x}{2x\cos x} = -\frac{1}{2}$$
.

10.设函数
$$f(x)$$
 连续, $\varphi(x) = \int_0^{x^2} x f(t) dt$, 若 $\varphi(1) = 1$, $\varphi'(1) = 5$, 则 $f(1) =$ ______.

解: 由条件
$$\varphi(x) = x \int_0^{x^2} f(t) dt$$
, 求导得 $\varphi'(x) = \int_0^{x^2} f(t) dt + 2x^2 f(x^2)$, 故 $\varphi(1) = \int_0^1 f(t) dt = 1$, $\varphi'(1) = 1 + 2f(1) = 5$, 则 $f(1) = 2$.

- 11.若函数 z = z(x, y) 由方程 $e^{x+2y+3z} + xyz = 1$ 确定,则 $dz|_{(0,0)} =$ _____.
- **解:** 令 x = y = 0 可得 z(0,0) = 0, 原方程两边同时求全微分得

$$e^{x+2y+3z} (dx + 2dy + 3dz) + xydz + yzdx + xzdy = 0.$$

$$\diamondsuit x = y = z = 0 \ \# (dx + 2dy + 3dz) \big|_{(0,0)} = 0, \ \mathbb{P} \ dz \big|_{(0,0)} = -\frac{1}{3} dx - \frac{2}{3} dy.$$

- 12.设函数 y = y(x) 是微分方程 y'' + y' 2y = 0 的解, 且在 x = 0 处取得极值 3, 则 $y(x) = ______$.
- **解:** 由题意知 y(0) = 3, y'(0) = 0. 微分方程 y'' + y' 2y = 0 的特征方程为 $\lambda^2 + \lambda 2 = 0$, 解得 $\lambda_1 = 1$, $\lambda_2 = -2$, 所以微分方程的通解为 $y = C_1 e^x + C_2 e^{-2x}$. 代入 y(0) = 3, y'(0) = 0 得 $C_1 = 2$, $C_2 = 1$, 故 $y = 2e^x + e^{-2x}$.
- 13.设 3 阶矩阵 A 的特征值为 2, -2, 1, $B = A^2 A + E$, 其中 E 为 3 阶单位矩阵, 则行列式 |B| = .
- **解:** A 的特征值为 2, -2, 1 则 $B = A^2 A + E$ 的特征值为 3, 7, 1, 因此 |B| = 21.
- 14.设二维随机变量 (X,Y) 服从正态分布 N(1,0;1,1;0),则 P(XY-Y<0)=_____.
- **解:** 由 $(X,Y) \sim N(1,0;1,1;0)$ 知 $X \sim N(1,1), Y \sim N(0,1),$ 且 X,Y 相互独立,所以

$$P(XY - Y < 0) = P((X - 1)Y < 0) = P(X - 1 > 0, Y < 0) + P(X - 1 < 0, Y > 0)$$
$$= P(X > 1)P(Y < 0) + P(X < 1)P(Y > 0) = \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} = \frac{1}{2}.$$

- 三、解答题, $15 \sim 23$ 题, 共 94 分.
- 15.(本题满分 10 分)

设函数 $f(x) = x + a \ln(1+x) + bx \sin x$, $g(x) = kx^3$, 若 f(x) 与 g(x) 在 $x \to 0$ 时 是等价无穷小, 求 a, b, k 的值.

解: 当 $x \to 0$ 时, $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + o(x^3)$, $\sin x = x - \frac{x^3}{6} + o(x^3)$, 所以

$$f(x) = x + a \ln(1+x) + bx \sin x = x + a \left(x - \frac{x^2}{2} + \frac{x^3}{3}\right) + bx^2 + o(x^3)$$
$$= (1+a)x + \left(b - \frac{a}{2}\right)x^2 + \frac{a}{3}x^3 + o(x^3).$$

因为 f(x) 与 $g(x) = kx^3$ 当 $x \to 0$ 时为等价无穷小, 所以 $1 + a = 0, b - \frac{a}{2} = 0, k = \frac{a}{3}$, 解 得 $a = -1, b = -\frac{1}{2}, c = -\frac{1}{3}$.

全 注: 这题不建议大家用洛必达法则,因为洛必达法则说的是求导前的极限可以继承求导以后的极限的性质,反过来是不对的. 也就是说由 $\lim_{x\to 0} \frac{f(x)}{g(x)} = 1$ 是无法直接得到 $\lim_{x\to 0} \frac{f'(x)}{g'(x)} = 1$ 的,需要一些细节性的推导,所以用泰勒公式一劳永逸.

16.(本题满分 10 分)

计算二重积分
$$\iint_D x(x+y) dx dy$$
, 其中 $D = \{(x,y)|x^2+y^2 \le 2, y \ge x^2\}$.

解: 区域 D 关于 y 轴对称,则由对称性得

$$\iint_{D} x(x+y) dx dy = \iint_{D} x^{2} dx dy = 2 \int_{0}^{1} dx \int_{x^{2}}^{\sqrt{2-x^{2}}} x^{2} dy$$

$$= 2 \int_{0}^{1} x^{2} \left(\sqrt{2-x^{2}} - x^{2}\right) dx$$

$$= 2 \int_{0}^{1} x^{2} \sqrt{2-x^{2}} dx - \frac{2}{5}$$

$$= 2 \int_{0}^{\frac{\pi}{4}} 2 \sin^{2} t \cdot 2 \cos^{2} t dt - \frac{2}{5} \left(x = \sqrt{2} \sin t\right)$$

$$= 2 \int_{0}^{\frac{\pi}{4}} \sin^{2} 2t dt - \frac{2}{5} = \int_{0}^{\frac{\pi}{2}} \sin^{2} u du - \frac{2}{5} = \frac{\pi}{4} - \frac{2}{5}.$$

17.(本题满分 10 分)

为实现利润的最大化,厂商需要对某商品确定其定价模型. 设 Q 为该商品的需求量, P 为价格, MC 为边际成本, η 为需求弹性 ($\eta > 0$).

- (1) 证明定价模型为 $P = \frac{MC}{1 \frac{1}{n}}$;
- (2) 若该商品的成本函数为 $C(Q) = 1600 + Q^2$, 需求函数为 Q = 40 P, 试由 (1) 中的定价模型确定此商品的价格.
- **解:** (1) 由于利润函数 L(Q) = R(Q) C(Q) = PQ C(Q), 两边对 Q 求导得

$$\frac{\mathrm{d}L}{\mathrm{d}Q} = P + Q\frac{\mathrm{d}P}{\mathrm{d}Q} - C'(Q) = P + Q\frac{\mathrm{d}P}{\mathrm{d}Q} - \mathrm{MC}.$$

当且仅当 $\frac{\mathrm{d}L}{\mathrm{d}Q}=0$ 时, 利润 L(Q) 最大. 又由于 $\eta=-\frac{P}{Q}\frac{\mathrm{d}Q}{\mathrm{d}P}$, 故当 $P=\frac{\mathrm{MC}}{1-\frac{1}{n}}$ 时, 利润最大.

(2) 由于 MC =
$$C'(Q)$$
 = $2Q$ = $3(40 - P)$, 则 $\eta = -\frac{P}{Q} \frac{dQ}{dP}$, 代入 (1) 中的定价模型, 得 $P = \frac{2(40 - P)}{1 - \frac{40 - P}{Q}}$, 解得 $P = 30$.

18.(本题满分 10 分)

设函数 f(x) 在定义域 I 上的导数大于零, 若对任意的 $x_0 \in I$, 曲线 y = f(x) 在点 $(x_0, f(x_0))$ 处的切线与直线 $x = x_0$ 及 x 轴所围成区域的面积恒为 4, 且 f(0) = 2, 求 f(x) 的表达式.

解: 曲线 y = f(x) 在点 $(x_0, f(x_0))$ 处的切线方程为 $y = f'(x_0)(x - x_0) + f(x_0)$,此切线与 x 轴交点为 $\left(x_0 - \frac{f(x_0)}{f'(x_0)}, 0\right)$. 根据题设条件可知 $\frac{1}{2} \frac{|f(x_0)|}{f'(x_0)} \cdot |f(x_0)| = 4$,即 y = f(x) 满足方程 $y' = \frac{1}{8}y^2$,解得 $y = -\frac{8}{8C + x}$. 因为 f(0) = 2,所以 $C = -\frac{1}{2}$,故 $f(x) = \frac{8}{4 - x}$.

19.(本题满分 10 分)

(1) 设函数 u(x), v(x) 可导, 利用导数定义证明

$$[u(x)v(x)]' = u'(x)v(x) + u(x)v'(x);$$

- (2) 设 $u_1(x), u_2(x), \dots, u_n(x)$ 可导, $f(x) = u_1(x)u_2(x) \dots u_n(x)$, 写出 f(x) 的求导公式.
- **解:** (1) 因为函数 u(x), v(x) 可导, 记 f(x) = u(x)v(x), 则在任意点 x_0 处有

$$f'(x_0) = \lim_{x \to x_0} \frac{u(x) v(x) - u(x_0) v(x_0)}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{u(x) v(x) - u(x) v(x_0) + u(x) v(x_0) - u(x_0) v(x_0)}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{u(x) v(x) - u(x) v(x_0)}{x - x_0} + \lim_{x \to x_0} \frac{u(x) v(x_0) - u(x_0) v(x_0)}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{v(x) - v(x_0)}{x - x_0} u(x) + v(x_0) \lim_{x \to x_0} \frac{u(x) - u(x_0)}{x - x_0}$$

$$= u(x_0) v'(x_0) + v(x_0) u'(x_0).$$

由 x_0 的任意性知 [u(x)v(x)]' = u'(x)v(x) + u(x)v'(x).

$$(2) f'(x) = u'_1(x) u_2(x) \cdots u_n(x) + u_1(x) u'_2(x) \cdots u_n(x) + \cdots + u_1(x) u_2(x) \cdots u'_n(x).$$

20.(本题满分 11 分)

设矩阵
$$A = \begin{pmatrix} a & 1 & 0 \\ 1 & a & -1 \\ 0 & 1 & a \end{pmatrix}$$
, 且 $A^3 = \mathbf{O}$.

- (1) 求 a 的值;
- (2) 若矩阵 X 满足 $X XA^2 AX + AXA^2 = E$, 其中 E 为 3 阶单位矩阵, 求 X.
- **解:** (1) 因为 |A| = 0, 所以 $|A| = \begin{vmatrix} a & 1 & 0 \\ 1 & a & -1 \\ 0 & 1 & a \end{vmatrix} = a^3 = 0$, 所以 a = 0.
 - (2) 由 $X XA^2 AX + AXA^2 = E$ 得 $(E A)X(E A^2) = E$. 由 (1) 知

$$E - A = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 1 \\ 0 & -1 & 1 \end{pmatrix}, E - A^2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 2 \end{pmatrix}.$$

因此

$$X = (E - A)^{-1}(E - A^{2})^{-1} = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 1 & -1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 3 & 1 & -2 \\ 1 & 1 & -1 \\ 2 & 1 & -1 \end{pmatrix}.$$

21.(本题满分11分)

设矩阵
$$\mathbf{A} = \begin{pmatrix} 0 & 2 & -3 \\ -1 & 3 & -3 \\ 1 & -2 & a \end{pmatrix}$$
 相似于矩阵 $\mathbf{B} = \begin{pmatrix} 1 & -2 & 0 \\ 0 & b & 0 \\ 0 & 3 & 1 \end{pmatrix}$.

- (1) 求 a, b 的值;
- (2) 求可逆矩阵 P, 使 $P^{-1}AP$ 为对角矩阵.

解: (1) 由于矩阵
$$\boldsymbol{A}$$
 与矩阵 \boldsymbol{B} 相似,所以
$$\begin{cases} \operatorname{tr}(\boldsymbol{A}) = \operatorname{tr}(\boldsymbol{B}) \\ |\boldsymbol{A}| = |\boldsymbol{B}| \end{cases} \Rightarrow \begin{cases} 3 + a = 2 + b \\ 2a - 3 = b \end{cases}$$
,解得
$$\begin{cases} a = 4 \\ b = 5 \end{cases}$$

(2) 由 (1) 知
$$\mathbf{A} = \begin{pmatrix} 0 & 2 & -3 \\ -1 & 3 & -3 \\ 1 & -2 & 4 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} 1 & -2 & 0 \\ 0 & 5 & 0 \\ 0 & 3 & 1 \end{pmatrix}$, 由 $\mathbf{A} \ni \mathbf{B}$ 相似知 $|\lambda \mathbf{E} - \mathbf{A}| =$

$$|\lambda E - B| = (\lambda - 1)^2 (\lambda - 5)$$
, 故 A 的特征值为 $\lambda_1 = \lambda_2 = 1$, $\lambda_3 = 5$.

当 $\lambda_1 = \lambda_2 = 1$ 时,解方程组 (E - A)x = 0,得线性无关特征向量 $\xi_1 = (2, 1, 0)^T$, $\xi_2 = (-3, 0, 1)^T$.

当 $\lambda_3 = 5$ 时,解方程组 (5E - A)x = 0,得特征向量 $\xi_3 = (-1, -1, 1)^{\mathrm{T}}$.

取
$$\mathbf{P} = (\boldsymbol{\xi}_1, \boldsymbol{\xi}_2, \boldsymbol{\xi}_3) = \begin{pmatrix} 2 & -3 & -1 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix}$$
, 则 $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{pmatrix}$ 为对角阵.

22.(本题满分 11 分)

设随机变量 X 的概率密度为

$$f(x) = \begin{cases} 2^{-x} \ln 2, & x > 0 \\ 0, & x \le 0 \end{cases},$$

对 X 进行独立重复的观测, 直到第 2 个大于 3 的观测值出现时停止, 记 Y 为观测次数.

- (1) 求 Y 的概率分布;
- (2) 求 EY.
- 解: (1) 每次观测中, 观测值大于 3 的概率为 $p = P(X > 3) = \int_3^{+\infty} 2^{-x} \ln 2 dx = \frac{1}{8}$, 则 Y 的概率分布为 $P(Y = k) = C_{k-1}^1 \frac{1}{8} \left(1 \frac{1}{8}\right)^{k-2} \frac{1}{8} = (k-1) \left(\frac{7}{8}\right)^{k-2} \left(\frac{1}{8}\right)^2$, $k = 2, 3, \cdots$.

(2)
$$Y$$
 的数学期望为 $E(Y) = \sum_{k=2}^{\infty} k(k-1) \left(\frac{7}{8}\right)^{k-2} \left(\frac{1}{8}\right)^2 = 16$, 其中我们用到幂级数

$$\sum_{k=2}^{\infty} k (k-1) x^{k-2} = \left(\sum_{k=0}^{\infty} x^k\right)^{"} = \frac{2}{(1-x)^3}, -1 < x < 1.$$

23.(本题满分11分)

设总体 X 的概率密度为

$$f(x;\theta) = \begin{cases} \frac{1}{1-\theta}, & \theta \leqslant x \leqslant 1\\ 0, & \text{ 其他} \end{cases},$$

其中 θ 为未知参数. X_1, X_2, \cdots, X_n 为来自该总体的简单随机样本.

- (1) 求 θ 的矩估计量;
- (2) 求 θ 的最大似然估计量.
- **解:** (1) 由于总体 $X \sim U[\theta, 1]$, 故总体均值 $E(X) = \frac{\theta + 1}{2}$, 令 $E(X) = \bar{X}$ 得 $\theta = 2\bar{X} 1$, 即 θ 的矩估计量为 $\hat{\theta}_1 = 2\bar{X} 1$.
 - (2) 设 x_1, x_2, \dots, x_n 为样本 X_1, X_2, \dots, X_n 的观测值, 则似然函数为

$$L(\theta) = \prod_{i=1}^{n} f(x_i; \theta) = \begin{cases} \frac{1}{(1-\theta)^n}, & \theta \le x_i \le 1 \ (i = 1, 2, \dots, n) \\ 0, & \text{#th} \end{cases}$$
$$= \begin{cases} \frac{1}{(1-\theta)^n}, & \theta \le \min\{x_1, x_2, \dots, x_n\} \le 1 \\ 0, & \text{#th} \end{cases}.$$

当 $\theta \leq \min\{x_1, x_2, \cdots, x_n\}$ 时,显然 $L(\theta)$ 关于 θ 单调递增,则当 $\theta = \min\{x_1, x_2, \cdots, x_n\}$ 时 $L(\theta)$ 最大,即 θ 的最大似然估计量为 $\hat{\theta}_2 = \min\{X_1, X_2, \cdots, X_n\}$.

第 11 章 2016 年考研数学三

- 一、选择题、 $1 \sim 8$ 题、每题 4 分、共 32 分。
- 1. 设函数 f(x) 在 $(-\infty, +\infty)$ 内连续, 其导函数的图形如 图所示,则
 - A. 函数 f(x) 有 2 个极值点, 曲线 y = f(x) 有 2 个拐点
 - B. 函数 f(x) 有 2 个极值点, 曲线 y = f(x) 有 3 个拐点
 - C. 函数 f(x) 有 3 个极值点, 曲线 y = f(x) 有 1 个拐点
 - D. 函数 f(x) 有 3 个极值点, 曲线 v = f(x) 有 2 个拐点

第1题图

- **解:** 拐点是导函数单调性发生改变的点, 图中 v = f'(x) 的图像有两个极值点都是导函数 单调性改变的点, 都是拐点, 而虚线处左右两侧的导函数单调性也相反, 从而也是拐点, 即共 有 3 个拐点. 导函数为零的点有 3 个, 但只有前面 2 个驻点左右两侧导数符号相反, 有 2 个 极值点,选B.
- 2. 己知函数 $f(x) = \frac{e^x}{x v}$, 则 E 知函致 $f(x) = \frac{1}{x - y}$,则 A. $f'_x - f'_y = 0$ B. $f'_x + f'_y = 0$ C. $f'_x - f'_y = f$ D. $f'_x + f'_y = f$

- **解:** 由 $f(x) = \frac{e^x}{x y}$ 得 $f'_x(x, y) = \frac{e^x (x y) e^x}{(x y)^2}$, $f'_y(x, y) = \frac{e^x}{(x y)^2}$, 故 $f'_x(x, y) + \frac{e^x}{(x y)^2}$ $f'_{y}(x, y) = \frac{e^{x}}{x - y} = f(x), \text{ \& D.}$
- 3. 设 $J_i = \iint \sqrt[3]{x-y} \, \mathrm{d}x \, \mathrm{d}y \, (i=1,2,3)$, 其中

 $D_1 = \{(x, y) | 0 \le x \le 1, 0 \le y \le 1\},\$

 $D_2 = \{(x, y) | 0 \le x \le 1, 0 \le y \le \sqrt{x} \},$

 $D_3 = \{(x, y) | 0 \leqslant x \leqslant 1, x^2 \leqslant y \leqslant 1\},\$

则

A. $J_1 < J_2 < J_3$ B. $J_3 < J_1 < J_2$ C. $J_2 < J_3 < J_1$ D. $J_2 < J_1 < J_3$

- **解:** 注意到被积函数 $\sqrt[3]{x-y}$ 当 x>y 时为正, 当 x<y 时为负, 画图比较三个积分区域易 知选 B.
- 4. 级数 $\sum_{n=0}^{\infty} \left(\frac{1}{\sqrt{n}} \frac{1}{\sqrt{n+1}}\right) \sin(n+k) (k)$ 为常数))

A. 绝对收敛

B. 条件收敛

C. 发散

D. 收敛性与 k 有关

解:注意到

$$\left| \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} \right) \sin\left(n+k\right) \right| \leqslant \frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n(n+1)}} = \frac{1}{\sqrt{n(n+1)}\left(\sqrt{n+1} + \sqrt{n}\right)} < \frac{1}{2n\sqrt{n}},$$

由正项级数比较判别法知 $\sum_{k=1}^{\infty} \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} \right) \sin(n+k)$ 绝对收敛, 选 A.

5. 设 A, B 是可逆矩阵, 且 A 与 B 相似, 则下列结论错误的是

$$\mathbf{A}. \mathbf{A}^{\mathrm{T}} 与 \mathbf{A}^{\mathrm{T}}$$
 相似

$$C. A + A^{T} 与 B + B^{T}$$
 相似

D.
$$A + A^{-1} 与 B + B^{-1}$$
 相似

解: 由 A 与 B 相似知存在可逆矩阵 P 使得 $B = P^{-1}AP$, 因此

$$\boldsymbol{B}^{\mathrm{T}} = (\boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{P})^{\mathrm{T}} = \boldsymbol{P}^{\mathrm{T}}\boldsymbol{A}^{\mathrm{T}}(\boldsymbol{P}^{\mathrm{T}})^{-1}, \boldsymbol{B}^{-1} = (\boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{P})^{-1} = \boldsymbol{P}^{-1}\boldsymbol{A}^{-1}\boldsymbol{P},$$

$$B + B^{-1} = P^{-1}AP + P^{-1}A^{-1}P = P^{-1}(A + A^{-1})P$$

因此 A, B, D 都是对的, C 选项是不对的, 如可取 $\mathbf{A} = \begin{pmatrix} 1 & 2 \\ -2 & -4 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 0 & 0 \\ 0 & -3 \end{pmatrix}$, 则 \mathbf{A} 与

$$\mathbf{B}$$
 相似, 但 $\mathbf{A} + \mathbf{A}^{\mathrm{T}} = \begin{pmatrix} 2 & 0 \\ 0 & -8 \end{pmatrix}$ 与 $\mathbf{B} + \mathbf{B}^{\mathrm{T}} = \begin{pmatrix} 0 & 0 \\ 0 & -6 \end{pmatrix}$ 不相似.

6. 设二次型 $f(x_1, x_2, x_3) = a(x_1^2 + x_2^2 + x_3^2) + 2x_1x_2 + 2x_2x_3 + 2x_1x_3$ 的正负惯性指 数分别为 1, 2, 则

A. a > 1

B.
$$a < -2$$

$$C. -2 < a < 1$$

$$C. -2 < a < 1$$
 D. $a = 1$ 或 $a = -2$

解: 二次型 $f(x_1, x_2, x_3)$ 的矩阵 $A = \begin{pmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{pmatrix}$, 由

$$|\lambda E - A| = \begin{vmatrix} \lambda - a & -1 & -1 \\ -1 & \lambda - a & -1 \\ -1 & -1 & \lambda - a \end{vmatrix} = (\lambda - a - 2)(\lambda - a + 1)^2 = 0$$

得 A 的特征值为 $\lambda_1 = a + 2, \lambda_2 = \lambda_3 = a - 1$. 由于 $f(x_1, x_2, x_3)$ 的正负惯性指数分别为 1, 2, 即正负特征值个数分别为 1, 2, 因此 $\begin{cases} a+2>0 \\ a-1<0 \end{cases}, 即 -2 < a < 1, 选 C.$

7. 设 A, B 为两个随机事件, 且 0 < P(A) < 1, 0 < P(B) < 1, 如果 <math>P(A|B) = 1, 则

A.
$$P(\overline{B}|\overline{A}) = 1$$

B.
$$P(A|\bar{B}) = 1$$

A.
$$P(\bar{B}|\bar{A}) = 1$$
 B. $P(A|\bar{B}) = 1$ C. $P(A \cup B) = 1$ D. $P(B|A) = 1$

D.
$$P(B|A) = 1$$

解: 由条件得 $0 = P(B) - P(AB) = P(\overline{A}B) = P(\overline{A}) - P(\overline{A}\overline{B})$, 于是 $P(\overline{B}|\overline{A}) = \frac{P(AB)}{P(\overline{A})} = 1$, 选 A.

8. 设随机变量 X 与 Y 相互独立, 且 $X \sim N(1,2), Y \sim N(1,4), 则 <math>D(XY) =$ ()

A. 6

B. 8

C. 14

D. 15

◎ 解:

$$D(XY) = E(X^{2}Y^{2}) - (EXY)^{2} = (EX^{2})(EY^{2}) - (EX)^{2}(EY)^{2}$$
$$= [DX + (EX)^{2}][DY + (EY)^{2}] - (EX)^{2}(EY)^{2} = 14.$$

二、填空题, $9 \sim 14$ 题, 每题 4 分, 共 24 分.

9. 已知函数
$$f(x)$$
 满足 $\lim_{x\to 0} \frac{\sqrt{1+f(x)\sin 2x}-1}{e^{3x}-1} = 2$, 则 $\lim_{x\to 0} f(x) = \underline{\qquad}$.

解: 原极限存在, 且分母趋于 0, 所以分子趋于 0, 即 $\lim_{x\to 0} f(x) \sin 2x = 0$, 利用等价无穷小替换得

$$2 = \lim_{x \to 0} \frac{\sqrt{1 + f(x)\sin 2x} - 1}{e^{3x} - 1} = \lim_{x \to 0} \frac{\frac{1}{2}f(x)\sin 2x}{3x} = \lim_{x \to 0} \frac{f(x)}{3} \Rightarrow \lim_{x \to 0} f(x) = 6.$$

10.极限
$$\lim_{n\to\infty}\frac{1}{n^2}\left(\sin\frac{1}{n}+2\sin\frac{2}{n}+\cdots+n\sin\frac{n}{n}\right)=$$
_____.

解: 利用定积分定义可得

$$\lim_{n \to \infty} \frac{1}{n^2} \sum_{k=1}^n k \sin \frac{k}{n} = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \frac{k}{n} \sin \frac{k}{n}$$
$$= \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \frac{k}{n} \sin \frac{k}{n} = \int_0^1 x \sin x dx = \sin 1 - \cos 1.$$

- 11.设函数 f(u,v) 可微, z = z(x,y) 由方程 $(x+1)z y^2 = x^2 f(x-z,y)$ 确定, 则 $dz|_{(0,1)} =$ _____.
- 解:原方程两边分别对 x, v 求偏导数得

$$\begin{cases} z + (x+1)z'_x = 2xf(x-z,y) + x^2(1-z'_x)f'_1(x-z,y) \\ (x+1)z'_y - 2y = x^2(-z'_yf'_1(x-z,y) + f'_2(x-z,y)) \end{cases}$$

代入
$$x = 0, y = 1, z = 1$$
 可得 $z'_x(0, 1) = -1, z'_y(0, 1) = 2$, 因此 $dz|_{(0,1)} = -dx + 2dy$.

12.设
$$D = \{(x, y) | |x| \le y \le 1, -1 \le x \le 1\}$$
, 则 $\iint_D x^2 e^{-y^2} dx dy = _____.$

解: 设 D_1 是 D 在第一象限的部分, 根据对称性可得

$$\iint_{D} x^{2} e^{-y^{2}} dx dy = 2 \iint_{D_{1}} x^{2} e^{-y^{2}} dx dy = 2 \int_{0}^{1} dy \int_{0}^{y} x^{2} e^{-y^{2}} dx$$
$$= \frac{2}{3} \int_{0}^{1} y^{3} e^{-y^{2}} dy = \frac{1}{3} - \frac{2}{3e}.$$

13.行列式
$$\begin{pmatrix} \lambda & -1 & 0 & 0 \\ 0 & \lambda & -1 & 0 \\ 0 & 0 & \lambda & -1 \\ 4 & 3 & 2 & \lambda + 1 \end{pmatrix} = \underline{\qquad}$$

解: 直接按照第一列展开得

$$\begin{vmatrix} \lambda & -1 & 0 & 0 \\ 0 & \lambda & -1 & 0 \\ 0 & 0 & \lambda & -1 \\ 4 & 3 & 2 & \lambda + 1 \end{vmatrix} = \lambda \begin{vmatrix} \lambda & -1 & 0 \\ 0 & \lambda & -1 \\ 3 & 2 & \lambda + 1 \end{vmatrix} - 4 \begin{vmatrix} -1 & 0 & 0 \\ \lambda & -1 & 0 \\ 0 & \lambda & -1 \end{vmatrix}$$
$$= \lambda \left(\lambda \begin{vmatrix} \lambda & -1 \\ 2 & \lambda + 1 \end{vmatrix} + 3 \begin{vmatrix} -1 & 0 \\ \lambda & -1 \end{vmatrix} \right) + 4$$
$$= \lambda^4 + \lambda^3 + 2\lambda^2 + 3\lambda + 4.$$

- 14.设袋中有红、白、黑球各1个,从中有放回地取球,每次取1个,直到三种颜色的球都取到时停止,则取球次数恰为4的概率为_____.
- **解:** 4 次取球总的取法数为 $3^4=81$, 要想取 4 次结束, 则前 3 次刚好只取到了两种颜色, 第 4 次取到了第三种颜色, 因此所求概率为 $p=\frac{C_3^2C_3^1\times 2}{81}=\frac{2}{9}$.
- 三、解答题, 15~23题, 共94分.
- 15.(本题满分 10 分)

求极限 $\lim_{x\to 0} (\cos 2x + 2x \sin x)^{\frac{1}{x^4}}$.

解: 首先有 $\lim_{x\to 0} (\cos 2x + 2x \sin x)^{\frac{1}{x^4}} = \exp\left(\lim_{x\to 0} \frac{\ln(\cos 2x + 2x \sin x)}{x^4}\right)$, 其中

$$\lim_{x \to 0} \frac{\ln(\cos 2x + 2x \sin x)}{x^4} = \lim_{x \to 0} \frac{\ln(\cos 2x + 2x \sin x - 1 + 1)}{x^4}$$

$$= \lim_{x \to 0} \frac{\cos 2x + 2x \sin x - 1}{x^4}$$

$$= \lim_{x \to 0} \frac{2x \sin x - 2 \sin^2 x}{x^4}$$

$$= \lim_{x \to 0} \frac{2 \sin x (x - \sin x)}{x^4}$$

$$= \lim_{x \to 0} \frac{2x \cdot \frac{1}{6}x^3}{x^4} = \frac{1}{3},$$

因此原极限为 $e^{\frac{1}{3}}$.

16.(本题满分 10 分)

设某商品最大需求量为 1200 件, 该商品的需求函数 Q = Q(p), 需求弹性 $\eta = \frac{p}{120-p}(\eta > 0)$, p 为单价 (万元).

- (1) 求需求函数的表达式;
- (2) 求 p = 100 万元时的边际收益, 并说明其经济意义.
- **解:** (1) 由弹性的计算公式 $\eta = \left| \frac{p}{Q} \frac{\mathrm{d}Q}{\mathrm{d}p} \right|$ 可知 $\frac{p}{Q} \frac{\mathrm{d}Q}{\mathrm{d}p} = \frac{-p}{120 p}$, 分离变量解方程得到 Q = C(p-120), 其中 C 为任意常数. 又商品的最大需求量为 1200 件, 则 p = 0 时 Q = 1200, 因此 C = -10, 则 Q = 10(120 p).

(2) 收益函数 $R(p) = pQ = \frac{Q(1200-Q)}{10} = 120Q - \frac{Q^2}{10}$, 边际收益为 $R'(Q) = 120 - \frac{Q}{5}$. 当 p = 100 时, Q = 200, 此时边际收益为 R'(200) = 80, 其经济意义为当单价为 100 万元时, 需求量每增加 1 件, 收益将增加 80 万元.

17.(本题满分 10 分)

设函数 $f(x) = \int_0^1 |t^2 - x^2| dt(x > 0)$, 求 f'(x) 并求 f(x) 的最小值.

解: 首先

$$f(x) = \begin{cases} \int_0^x (x^2 - t^2) dt + \int_x^1 (t^2 - x^2) dt = \frac{4}{3}x^3 - x^2 + \frac{1}{3}, & 0 < x < 1 \\ \int_0^1 (x^2 - t^2) dt = x^2 - \frac{1}{3}, & x \ge 1 \end{cases},$$

于是 $f'(x) = \begin{cases} 4x^2 - 2x, & 0 < x < 1 \\ 2x, & x \ge 1 \end{cases}$. 当 $x \ge 1$ 时, f'(x) = 2x > 0; 当 0 < x < 1 时, 令 $f'(x) = 4x^2 - 2x = 0$ 得 $x = \frac{1}{2}$, 且 $f''\left(\frac{1}{2}\right) = 2 > 0$, 因此 $x = \frac{1}{2}$ 是唯一的极小值点, 从而是最小值点, 故 $f_{\min}(x) = f\left(\frac{1}{2}\right) = \frac{1}{4}$.

18.(本题满分 10 分)

设函数 f(x) 连续, 且满足 $\int_0^x f(x-t) dt = \int_0^x (x-t) f(t) dt + e^{-x} - 1$, 求 f(x).

解: 首先有 $\int_0^x f(x-t) dt \xrightarrow{x-t=u} \int_0^x f(u) du$, 因此原方程化为

$$\int_{0}^{x} f(u) du = x \int_{0}^{x} f(t) dt - \int_{0}^{x} t f(t) dt + e^{-x} - 1.$$

上式两边求导得 $f(x) = \int_0^x f(t)dt + xf(x) - xf(x) - e^{-x} = \int_0^x f(t)dt - e^{-x}$. 注意到此方程右边可导, 从而继续求导得 $f'(x) = f(x) + e^{-x}$, 且 f(0) = -1, 解此一阶线性微分方程得 $f(x) = -\frac{1}{2}e^x - \frac{1}{2}e^{-x}$.

19.(本题满分 10 分)

求幂级数 $\sum_{n=0}^{\infty} \frac{x^{2n+2}}{(n+1)(2n+1)}$ 的收敛域及和函数.

解: 记 $u_n(x) = \frac{x^{2n+2}}{(n+1)(2n+1)}$, 则 $\lim_{n\to\infty} \left| \frac{u_n(x)}{u_{n-1}(x)} \right| = \lim_{n\to\infty} \left| \frac{n(2n-1)x^2}{(n+1)(2n+1)} \right| = x^2$. 令 $x^2 < 1$ 得 -1 < x < 1. 因此幂级数的收敛区间为 (-1,1). 且当 $x = \pm 1$ 时.

$$\sum_{n=0}^{\infty} \frac{1}{(n+1)(2n+1)} = 2\sum_{n=0}^{\infty} \frac{1}{(2n+2)(2n+1)}$$

$$= 2\sum_{n=0}^{\infty} \left(\frac{1}{2n+1} - \frac{1}{2n+2}\right) = 2\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = 2\ln 2,$$

因此幂级数的收敛域为 [-1,1]. 当 $x \in (-1,1)$ 时,注意到

$$\sum_{n=0}^{\infty} \frac{x^{2n+2}}{(n+1)(2n+1)} = \sum_{n=0}^{\infty} \frac{x^{2n+2}}{2n+1} - \sum_{n=0}^{\infty} \frac{x^{2n+2}}{n+1} = x \sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1} - \sum_{n=1}^{\infty} \frac{\left(x^2\right)^n}{n},$$

其中
$$\sum_{n=1}^{\infty} \frac{(x^2)^n}{n} = -\ln(1-x^2)$$
, 而

$$\sum_{n=0}^{\infty} \frac{x^{2n+2}}{n+1} = 2 \int_0^x \sum_{n=0}^{\infty} t^{2n} dt = 2 \int_0^x \frac{dt}{1-t^2} = \ln \frac{1+x}{1-x},$$

因此原幂级数的和函数为 $S(x) = \begin{cases} x \ln \frac{1+x}{1-x} + \ln(1-x^2), & x \in (-1,1) \\ 2 \ln 2, & x = \pm 1 \end{cases}$.

20.(本题满分 11 分)

设矩阵
$$\mathbf{A} = \begin{pmatrix} 1 & -1 & -1 \\ 2 & a & 1 \\ -1 & 1 & a \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} 2 & 2 \\ 1 & a \\ -a-1 & -2 \end{pmatrix}$. 当 a 为何值时, 方程 $\mathbf{A}\mathbf{X} = \mathbf{B}$

无解、有唯一解、有无穷多解?在有解时,求解此方程.

解: 对方程的增广矩阵 (A, B) 作初等行变换得

$$(A, B) = \begin{pmatrix} 1 & -1 & -1 & 2 & 2 \\ 2 & a & 1 & 1 & a \\ -1 & 1 & a & -a-1 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & -1 & 2 & 2 \\ 0 & a+2 & 3 & -3 & a-4 \\ 0 & 0 & a-1 & 1-a & 0 \end{pmatrix}.$$

当
$$a \neq 1$$
且 $a \neq -2$ 时, $(A, B) = \begin{pmatrix} 1 & -1 & -1 & 2 & 2 \\ 0 & a+3 & 3 & -3 & a-4 \\ 0 & 0 & 1 & -1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 & \frac{3a}{a+2} \\ 0 & 1 & 0 & 0 & \frac{a-4}{a+2} \\ 0 & 0 & 1 & -1 & 0 \end{pmatrix}$

此时方程
$$\mathbf{A}\mathbf{X} = \mathbf{B}$$
 有唯一解, 且 $\mathbf{X} = \begin{pmatrix} 1 & \frac{3a}{a+2} \\ 0 & \frac{a-4}{a+2} \\ -1 & 0 \end{pmatrix}$.

当
$$a = 1$$
 时, $(A, B) = \begin{pmatrix} 1 & -1 & -1 & 2 & 2 \\ 0 & 3 & 3 & -3 & -3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$, 此时方程 $AX = \begin{bmatrix} 1 & 1 \\ -1 & -1 \\ 0 & 0 \end{bmatrix} + \begin{pmatrix} 0 & 0 \\ k_1 & k_2 \\ -k_1 & -k_2 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ k_1 - 1 & k_2 - 1 \\ -k_1 & -k_2 \end{pmatrix}$, 其中 k_1, k_2 为任

意常数.

当
$$a = -2$$
 时, 由于 $(A, B) = \begin{pmatrix} 1 & -1 & -1 & 2 & 2 \\ 0 & 0 & 3 & -3 & -6 \\ 0 & 0 & -3 & 3 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & -1 & 2 & 2 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$, 此时方程 $AX = B$ 无解.

21.(本题满分 11 分)

已知矩阵
$$A = \begin{pmatrix} 0 & -1 & 1 \\ 2 & -3 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
.

- (1) 求 A^{99} ;
- (2) 设 3 阶矩阵 $B = (\alpha_1, \alpha_2, \alpha_3)$ 满足 $B^2 = BA$, 记 $B^{100} = (\beta_1, \beta_2, \beta_3)$, 将 $\beta_1, \beta_2, \beta_3$ 分别表示为 $\alpha_1, \alpha_2, \alpha_3$ 的线性组合.

解: (1) 首先由
$$|\lambda E - A| = \begin{vmatrix} \lambda & 1 & -1 \\ -2 & \lambda + 3 & 0 \\ 0 & 0 & \lambda \end{vmatrix} = \lambda(\lambda + 1)(\lambda + 2)$$
 知 A 的特征值为 $\lambda_1 = -1, \lambda_2 = -2, \lambda_3 = 0.$

当 $\lambda_1 = -1$ 时,解方程组 (-E - A)x = 0,得特征向量 $\xi_1 = (1, 1, 0)^{\mathrm{T}}$.

当 $\lambda_2 = -2$ 时,解方程组 (-2E - A)x = 0,得特征向量 $\xi_2 = (1,2,0)^{\mathrm{T}}$.

当 $\lambda_3 = 0$ 时,解方程组 Ax = 0,得特征向量 $\xi_3 = (3,2,2)^{\mathrm{T}}$.

$$\Rightarrow \mathbf{P} = (\xi_1, \xi_2, \xi_2) = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 2 & 2 \\ 0 & 0 & 2 \end{pmatrix}, \ \mathbb{P}^{-1}\mathbf{A}\mathbf{P} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \triangleq \mathbf{\Lambda},$$
所以

$$A^{99} = (P \Lambda P^{-1})^{99} = P \Lambda^{99} P^{-1}$$

$$= \begin{pmatrix} 1 & 1 & 3 \\ 1 & 2 & 2 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & (-2)^{99} & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & -1 & -2 \\ -1 & 1 & 1/2 \\ 0 & 0 & 1/2 \end{pmatrix}$$

$$= \begin{pmatrix} 2^{99} - 2 & 1 - 2^{99} & 2 - 2^{98} \\ 2^{100} - 2 & 1 - 2^{100} & 2 - 2^{99} \\ 0 & 0 & 0 \end{pmatrix}.$$

(2)
$$\[\exists B^2 = BA \] \[B^{100} = BA^{99} = (\beta_1, \beta_2, \beta_3), \] \[\beta_1 = (2^{99} - 2)\alpha_1 + (2^{100} - 2)\alpha_2, \beta_2 = (1 - 2^{99})\alpha_1 + (1 - 2^{100})\alpha_2, \beta_3 = (2 - 2^{98})\alpha_1 + (2 - 2^{99})\alpha_2. \]$$

22.(本题满分 11 分)

设二维随机变量 (X,Y) 在区域 $D=\{(x,y)|0< x<1, x^2< y<\sqrt{x}\}$ 上服从均匀分布, 令 $U=\begin{cases} 1, & X\leqslant Y\\ 0, & X>Y \end{cases}$

- (1) 写出 (X,Y) 的概率密度;
- (2) 问 U 与 X 是否相互独立? 并说明理由;
- (3) 求 Z = U + X 的分布函数 F(z).

解: (1)
$$(X,Y)$$
 的概率密度为 $f(x,y) = \begin{cases} \frac{1}{S_D}, & (x,y) \in D \\ 0, & 其他 \end{cases} = \begin{cases} 3, & (x,y) \in D \\ 0, & 其他 \end{cases}$.

(2) 对 0 < t < 1,有

$$P(U \le 0, X \le t) = P(X > Y, X \le t) = \int_0^t dx \int_{x^2}^x 3 dy = \frac{3}{2}t - t^3,$$

$$P(U \le 0) = P(X > Y) = \frac{1}{2}, P(X \le t) = \int_0^t dx \int_{x^2}^{\sqrt{x}} 3 dy = 2t^{\frac{3}{2}} - t^3.$$

由于 $P(U \le 0, X \le t) \ne P(U \le 0) P(X \le t)$, 所以 U = X 不独立.

(3)

$$F(z) = P(U + X \le z) = P(U + X \le z, U = 0) + P(U + X \le z, U = 1)$$

$$= P(X \le z, X > Y) + P(1 + X \le z, X \le Y)$$

$$= \begin{cases} 0, & z < 0 \\ \frac{3}{2}z^2 - z^3, & 0 \le z < 1 + \begin{cases} 0, & z < 1 \\ 2(z - 1)^{\frac{3}{2}} - \frac{3}{2}(z - 1)^2, & 1 \le z < 2 \\ \frac{1}{2}, & z \ge 1 \end{cases}$$

$$= \begin{cases} 0, & z < 0 \\ \frac{3}{2}z^2 - z^3, & 0 \le z < 1 \\ \frac{1}{2} + 2(z - 1)^{\frac{3}{2}} - \frac{3}{2}(z - 1)^2, & 1 \le z < 2 \\ 1, & z \ge 2 \end{cases}$$

23.(本题满分 11 分)

设总体 X 的概率密度为 $f(x;\theta) = \begin{cases} \frac{3x^2}{\theta^3}, & 0 < x < \theta \\ 0, & 其他 \end{cases}$, 其中 $\theta \in (0, +\infty)$ 为未知参

数. X_1, X_2, X_3 为来自总体 X 的简单随机样本, 令 $T = \max\{X_1, X_2, X_3\}$.

- (1) 求 T 的概率密度;
- (2) 确定 a, 使得 $E(aT) = \theta$.
- 解: (1) T 的分布函数为

$$F(t) = P(T \le t) = P\left(\max\{X_1, X_2, X_3\} \le t\right) = P(X_1 \le t, X_2 \le t, X_3 \le t)$$

$$= \begin{cases} 0, & t \le 0 \\ \left(\int_0^t \frac{3x^2}{\theta^3} d\theta\right)^3, & 0 < t < \theta \end{cases} = \begin{cases} 0, & t \le 0 \\ \frac{t^9}{\theta^9}, & 0 < t < \theta \end{cases}.$$

$$1, & t \ge \theta$$

因此
$$T$$
 的概率密度为 $f(t) = F'(t) =$
$$\begin{cases} \frac{9t^2}{\theta^9}, & 0 < t < \theta \\ 0, & \text{其他} \end{cases}.$$

第 12 章 2017 年考研数学三

一、选择题, $1 \sim 8$ 题, 每题 4 分, 共 32 分.

1. 若函数
$$f(x) = \begin{cases} \frac{1 - \cos\sqrt{x}}{ax}, & x > 0 \\ b, & x \le 0 \end{cases}$$
 在 $x = 0$ 处连续,则

A. $ab = \frac{1}{2}$ B. $ab = -\frac{1}{2}$ C. $ab = 0$ D. $ab = 2$

解: 由 f(x) 在 x = 0 处连续得 $\lim_{x \to 0^+} f(x) = f(0)$, 即

$$\lim_{x \to 0^+} \frac{1 - \cos\sqrt{x}}{ax} = \frac{1}{2a} = b \Rightarrow ab = \frac{1}{2},$$

选 A.

2. 二元函数
$$z = xy(3 - x - y)$$
 的极值点是
A. $(0,0)$ B. $(0,3)$ C. $(3,0)$ D. $(1,1)$

解: 由 $\begin{cases} \frac{\partial z}{\partial x} = 3y - 2xy - y^2 = 0 \\ \frac{\partial z}{\partial y} = 3x - x^2 - 2xy = 0 \end{cases}$ 可得四个驻点 (0,0), (0,3), (3,0), (1,1). 令 $A = \frac{\partial^2 z}{\partial x^2} = -2y$, $B = \frac{\partial^2 z}{\partial x \partial y} = 3 - 2x - 2y$, $C = \frac{\partial^2 z}{\partial y^2} = -2x$, 在四个驻点处分别考虑判别式 $AC - B^2$ 的正负, 只有在 (x,y) = (1,1) 处有 $AC - B^2 = 3 > 0$, 且 A = C = -2 < 0, 因此 (1,1) 为极大值点. 其他选项都不满足, 选 D.

3. 设函数
$$f(x)$$
 可导,且 $f(x) \cdot f'(x) > 0$,则
A. $f(1) > f(-1)$
B. $f(1) < f(-1)$
C. $|f(1)| > |f(-1)|$
D. $|f(1)| < |f(-1)|$

解: 由 f(x)f'(x) > 0 可知 $[f^2(x)]' = 2f(x)f'(x) > 0$, 因此 $f^2(x)$ 单调递增, 有 $f^2(1) > f^2(-1)$, 即 |f(1)| > |f(-1)|, 选 C.

4. 若级数
$$\sum_{n=2}^{\infty} \left[\sin \frac{1}{n} - k \ln \left(1 - \frac{1}{n} \right) \right]$$
 收敛, 则 $k =$
A. 1 B. 2 C. -1 D. -2

解: 利用泰勒公式可得知当 $n \to \infty$ 时,

$$\sin\frac{1}{n} - k\ln\left(1 - \frac{1}{n}\right) = \frac{1}{n} - k\left(-\frac{1}{n} - \frac{1}{2n^2}\right) + o\left(\frac{1}{n^2}\right)$$

()

$$= \left(1 + \frac{1}{k}\right)\frac{1}{n} + \frac{k}{2n^2} + o\left(\frac{1}{n^2}\right),$$

因此当且仅当 1+k=0 即 k=-1 时原级数收敛, 选 C.

5. 设 α 为n 维单位列向量, E 为n 阶单位矩阵, 则

A. $\mathbf{E} - \mathbf{\alpha} \mathbf{\alpha}^{\mathrm{T}}$ 不可逆

B. $E + \alpha \alpha^{T}$ 不可逆

 $C. E + 2\alpha\alpha^{T}$ 不可逆

D. $E - 2\alpha\alpha^{\mathrm{T}}$ 不可逆

解: 矩阵 $\alpha \alpha^{\mathrm{T}}$ 的秩为 1, 它有 n-1 个特征值为 0, 第 n 个特征值为 $\lambda = \operatorname{tr}(\alpha \alpha^{\mathrm{T}}) = \|\alpha\|^2 = 1$, 因此 $E - \alpha \alpha^{T}$ 有一个特征值为 0, 不可逆, 其他矩阵都可逆, 选 A.

6. 已知矩阵
$$\mathbf{A} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}, 则$$

A. A 与 C 相似, B 与 C 相似

C. A 与 C 不相似, B 与 C 相似 D. A 与 C 不相似, B 与 C 不相似

- **解:** 注意到 A, B 的特征值都是 2, 2, 1, 要判断 A, B 是否可对角化, 充要条件是矩阵的每一 个特征值对应的线性无关特征向量的个数等于其特征值的重数,因此只需要看特征值 λ = 2 的情形即可. 对矩阵 A 有 r(2E-A)=1, 因此 A 的二重特征值 2 有两个线性无关特征向 量, 可对角化, 即 A 与 C 相似. 对矩阵 B, 有 r(2E - B) = 2, 它是不可对角化的, B 与 C 不 相似, 选 B.
- 7. 设 A, B, C 为三个随机事件, 且 A 与 C 相互独立, B 与 C 相互独立, 则 $A \cup B 与 C$ 相互独立的充分必要条件是

A. A 与 B 相互独立

B. A 与 B 互不相容

C. AB 与 C 相互独立

D. AB 与 C 互不相容

解: $A \cup B$ 与 C 相互独立 $\Leftrightarrow P((A \cup B)C) = P(A \cup B)P(C)$, 由题意有

$$P((A \cup B)C) = P(AC \cup BC) = P(AC) + P(BC) - P(ABC),$$

$$= P(A)P(C) + P(B)P(C) - P(ABC),$$

$$P(A \cup B)P(C) = (P(A) + P(B) - P(AB))P(C)$$

$$= P(A)P(C) + P(B)P(C) - P(AB)P(C),$$

因此得到 P(ABC) = P(AB)P(C), 选 C.

8. 设 $X_1, X_2, \dots, X_n (n \ge 2)$ 为来自正态总体 $N(\mu, 1)$ 的简单随机样本, 记 $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$, 则下列结论中不正确的是

A.
$$\sum_{i=1}^{n} (X_i - \mu)^2$$
 服从 χ^2 分布 B. $2(X_n - X_1)^2$ 服从 χ^2 分布

B.
$$2(X_n - X_1)^2$$
 服从 χ^2 分布

C.
$$\sum_{i=1}^{n} (X_i - \bar{X})^2$$
 服从 χ^2 分布 D. $n(\bar{X} - \mu)^2$ 服从 χ^2 分布

D.
$$n(\bar{X} - \mu)^2$$
 服从 χ^2 分布

- **解:** 对选项 B 有 $X_n X_1 \sim N(0,2)$, $\frac{X_n X_1}{\sqrt{2}} \sim N(0,1)$, $\frac{(X_n X_1)^2}{2} \sim \chi^2(1)$, B 不正确, 选项 A, C, D 都是基本结论, 都正确, 选 B.
- 二、填空题, 9~14题, 每题 4分, 共24分.

9.
$$\int_{-\pi}^{\pi} \left(\sin^3 x + \sqrt{\pi^2 - x^2} \right) dx = \underline{\qquad}.$$

解:利用定积分的区间对称性和几何意义可得

可区间对称性和几何意义可得
$$\int_{-\pi}^{\pi} \left(\sin^3 x + \sqrt{\pi^2 - x^2}\right) dx = \int_{-\pi}^{\pi} \sqrt{\pi^2 - x^2} dx = \frac{\pi^3}{2}.$$

- 10.差分方程 $y_{t+1} 2y_t = 2^t$ 的通解为 $y = ____.$
- **解:** 首先齐次差分方程 $y_{t+1} 2y_t = 0$ 的通解为 $Y_t = C \cdot 2^t$. 设非齐次方程 $y_{t+1} 2y_t = 2^t$ 的一个特解为 $t_t = At \cdot 2^t$,代入方程可得 $A = \frac{1}{2}$,因此差分方程 $y_{t+1} 2y_t = 2^t$ 的通解为 $y_t = C \cdot 2^t + t \cdot 2^{t-1}$,C 为任意常数.
- 11.设生产某产品的平均成本 $\bar{C}(Q) = 1 + e^{-Q}$, 其中 Q 为产量, 则边际成本为_____.
- **解:** 总成本为 $C(Q) = Q(1 + e^{-Q})$, 因此边际成本为 $C'(Q) = 1 + e^{-Q}(1 Q)$.
- 12.设函数 f(x, y) 具有一阶连续偏导数,且 $\mathrm{d}f(x, y) = y\mathrm{e}^{y}\mathrm{d}x + x(1+y)\mathrm{e}^{y}\mathrm{d}y$, f(0, 0) = 0,则 $f(x, y) = ______.$
- **解:** 容易知道 $\mathrm{d}f(x,y) = y\mathrm{e}^y\mathrm{d}x + x(1+y)\mathrm{e}^y\mathrm{d}y = \mathrm{d}(xy\mathrm{e}^y)$, 因此 $f(x,y) = xy\mathrm{e}^y + C$, 再由 f(0,0) = 0 知 C = 0, 因此 $f(x,y) = xy\mathrm{e}^y$.
- 13.设矩阵 $A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \\ 0 & 1 & 1 \end{pmatrix}$, $\alpha_1, \alpha_2, \alpha_3$ 为线性无关的 3 维列向量组,则向量组 $A\alpha_1, A\alpha_2$, $A\alpha_3$ 的秩为 ______.
- 解: 依题意知 (α₁, α₂, α₃) 为可逆矩阵, 所以

$$r(A\alpha_1, A\alpha_2, A\alpha_3) = r(A(\alpha_1, \alpha_2, \alpha_3)) = r(A) = 2.$$

- 14.设随机变量 X 的概率分布为 $P(X = -2) = \frac{1}{2}$, P(X = 1) = a, P(X = 3) = b, 若 EX = 0, 则 $DX = ____$.
- **解:** 由分布律的归一性可知 $\frac{1}{2} + a + b = 1$. 而 $EX = -2 \times \frac{1}{2} + a + 3b = 0$, 所以 $a = b = \frac{1}{4}$. 从而 $EX^2 = (-2)^2 \times \frac{1}{2} + 1^2 \times \frac{1}{4} + 3^2 \times \frac{1}{4} = \frac{9}{2}$, $DX = EX^2 (EX)^2 = \frac{9}{2}$.

三、解答题, 15~23题, 共94分.

15.(本题满分 10 分)

求极限
$$\lim_{x\to 0^+} \frac{\int_0^x \sqrt{x-t} e^t dt}{\sqrt{x^3}}$$
.

解: 令 u = x - t, 则 $\int_0^x \sqrt{x - t} e^t dt = e^x \int_0^x \sqrt{u} e^{-u} du$, 故原极限

$$\lim_{x \to 0^{+}} \frac{\int_{0}^{x} \sqrt{x - t} e^{t} dt}{\sqrt{x^{3}}} = \lim_{x \to 0^{+}} \frac{e^{x} \int_{0}^{x} \sqrt{u} e^{-u} du}{\sqrt{x^{3}}} = \lim_{x \to 0^{+}} \frac{\int_{0}^{x} \sqrt{u} e^{-u} du}{\sqrt{x^{3}}}$$
$$= \lim_{x \to 0^{+}} \frac{\sqrt{x} e^{-x}}{\frac{3}{2} \sqrt{x}} = \frac{2}{3}.$$

16.(本题满分 10 分)

计算积分 $\iint_{D} \frac{y^3}{(1+x^2+y^4)^2} dxdy$, 其中 D 是第一象限中以曲线 $y = \sqrt{x}$ 与 x 轴为 边界的无界区域.

解: 直接化为累次积分得

$$\iint_{D} \frac{y^{3}}{(1+x^{2}+y^{4})^{2}} dx dy = \int_{0}^{+\infty} dx \int_{0}^{\sqrt{x}} \frac{y^{3}}{(1+x^{2}+y^{4})^{2}} dy$$

$$= \frac{1}{4} \int_{0}^{+\infty} \left(-\frac{1}{1+x^{2}+y^{4}} \right) \Big|_{y=0}^{y=\sqrt{x}} dx$$

$$= \frac{1}{4} \int_{0}^{+\infty} \left(\frac{1}{1+x^{2}} - \frac{1}{1+2x^{2}} \right) dx = \frac{\pi}{8} \left(1 - \frac{\sqrt{2}}{2} \right).$$

17.(本题满分 10 分)

$$\vec{x} \lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{n^2} \ln \left(1 + \frac{k}{n} \right).$$

解:利用定积分的定义可得

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{k}{n} \ln\left(1 + \frac{k}{n}\right) = \int_{0}^{1} x \ln(1 + x) \, \mathrm{d}x = \frac{1}{2} \int_{0}^{1} \ln(1 + x) \, \mathrm{d}(x^{2})$$

$$= \frac{\ln 2}{2} - \frac{1}{2} \int_{0}^{1} \frac{x^{2}}{1 + x} \, \mathrm{d}x = \frac{\ln 2}{2} - \frac{1}{2} \int_{0}^{1} \left(x - 1 + \frac{1}{1 + x}\right) \, \mathrm{d}x$$

$$= \frac{1}{4}.$$

18.(本题满分 10 分)

已知方程 $\frac{1}{\ln{(1+x)}} - \frac{1}{x} = k$ 在区间 (0,1) 内有实根, 求 k 的范围.

解: 令 $f(x) = \frac{1}{\ln(1+x)} - \frac{1}{x}$, 方程 f(x) = k 有实根的充要条件是 k 在 f(x) 的值域内. 求导得

$$f'(x) = -\frac{1}{(x+1)\ln^2(1+x)} + \frac{1}{x^2} = \frac{-x^2 + (x+1)\ln^2(1+x)}{x^2(x+1)\ln^2(1+x)},$$

 $\Leftrightarrow g(x) = -x^2 + (x+1)\ln^2(1+x),$ 则

$$g'(x) = -2x + \ln^2(1+x) + 2\ln(1+x),$$

$$g''(x) = -2 + \frac{2\ln(1+x)}{1+x} + \frac{2}{1+x} = \frac{-2x + 2\ln(1+x)}{1+x},$$

因此 g'(x) 在 (0,1) 内单调递减, g'(x) < g'(0) = 0, 故 g(x) 也在 (0,1) 内单调递减, g(x) < g(0) = 0, 即 f'(x), 0. 所以 f(x) 在 (0,1) 内单调递减. 而 $f(1) = \frac{1}{\ln 2} - 1$,

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{x - \ln(1+x)}{x \ln(1+x)} = \lim_{x \to 0^+} \frac{x - \ln(1+x)}{x^2} = \frac{1}{2},$$

故 k 的取值范围是 $\left(\frac{1}{\ln 2} - 1, \frac{1}{2}\right)$

19.(本题满分 10 分)

设 $a_0 = 1, a_1 = 0, a_{n+1} = \frac{1}{n+1}(na_n + a_{n-1})(n = 1, 2, \dots), S(x)$ 为幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的和函数.

- (1) 证明幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径不小于 1;
- (2) 证明 (1-x) $S'(x) xS(x) = 0, x \in (-1,1)$, 并求 S(x) 的表达式.
- **解:** (1) 由递推关系可得 $(n+1)a_{n+1} = na_n + a_{n-1}$, 即 $(n+1)(a_{n+1} a_n) = -(a_n a_{n-1})$, 因此

$$a_{n+1} - a_n = -\frac{1}{n+1} (a_n - a_{n-1}) = \dots = \frac{(-1)^n}{(n+1)!} (a_1 - a_0) = \frac{(-1)^{n+1}}{(n+1)!}$$

于是 $a_n = a_0 + \sum_{k=0}^{n-1} (a_{k+1} - a_k) = \sum_{k=0}^{n} \frac{(-1)^k}{k!} \to e^{-1}$, 因此 $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1$, 这说明原幂级数的收敛半径就是 1.

(2) 因为
$$S(x) = \sum_{n=0}^{\infty} a_n x^n$$
 且 $a_1 = 0$, 所以

$$S'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1} = \sum_{n=2}^{\infty} n a_n x^{n-1}$$

$$= \sum_{n=1}^{\infty} (n+1) a_{n+1} x^n = \sum_{n=1}^{\infty} (n a_n + a_{n-1}) x^n$$

$$= \sum_{n=1}^{\infty} n a_n x^n + \sum_{n=1}^{\infty} a_{n-1} x^n = x \sum_{n=1}^{\infty} n a_n x^{n-1} + \sum_{n=0}^{\infty} a_n x^{n+1}$$

$$= xS'(x) + xS(x).$$

所以有 (1-x)S'(x) - xS(x) = 0, 且 $S(0) = a_0 = 1$, 解此微分方程得 $S(x) = \frac{e^{-x}}{1-x}$, $x \in$ (-1,1).

20.(本题满分 11 分)

设三阶矩阵 $A = (\alpha_1, \alpha_2, \alpha_3)$ 有三个不同的特征值, 且 $\alpha_3 = \alpha_1 + 2\alpha_2$.

- (1) 证明: r(A) = 2;
- (2) 若 $\boldsymbol{\beta} = \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3$, 求方程 $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{\beta}$ 的通解.
- **解:** (1) 由于矩阵 A 有三个不同的特征值 $\lambda_1, \lambda_2, \lambda_3$, 因此 A 与对角阵 diag{ $\lambda_1, \lambda_2, \lambda_3$ } 相似, 且对角阵上至多只有一个零元, 所以 $r(A) \ge 2$. 又 $\alpha_3 = \alpha_1 + 2\alpha_2$ 说明 A 的列向量组线性 相关, 故 $r(A) \leq 2$, 因此 r(A) = 2.
 - $2\alpha_2$ 可知 A $\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} = \mathbf{0}$,即方程组 $Ax = \mathbf{0}$ 的一个解就是 $\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$. 而 $\beta = \alpha_1 + \alpha_2 + \alpha_3$,则方程 组 $Ax = \beta$ 的一个特解为 $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$,进而方程组 $Ax = \beta$ 的通解为 $x = k \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $k \in \mathbb{R}$.

组
$$\mathbf{A}\mathbf{x} = \boldsymbol{\beta}$$
 的一个特解为 $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, 进而方程组 $\mathbf{A}\mathbf{x} = \boldsymbol{\beta}$ 的通解为 $\mathbf{x} = k \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $k \in \mathbb{R}$.

21.(本题满分 11 分)

设实二次型 $f(x_1, x_2, x_3) = 2x_1^2 - x_2^2 + ax_3^2 + 2x_1x_2 - 8x_1x_3 + 2x_2x_3$ 在正交变换 x = Qy 下的标准形为 $\lambda_1 y_1^2 + \lambda_2 y_2^2$, 求 a 的值及一个正交矩阵 Q.

解: 首先二次型的矩阵 $A=\begin{pmatrix}2&1&-4\\1&-1&1\\-4&1&a\end{pmatrix}$. 由于二次型在正交变换下的标准形为 $\lambda_1y_1^2+\lambda_2y_2^2$, 故 A 一定有零特征值,所以 |A|=0,解得 a=2.

由 $|\lambda E - A| = \begin{vmatrix} \lambda - 2 & -1 & 4 \\ -1 & \lambda + 1 & -1 \\ 4 & -1 & \lambda - 2 \end{vmatrix} = \lambda(\lambda + 3)(\lambda - 6)$ 可知 A 的三个特征值为 $\lambda_1 = -3, \lambda_2 = 6, \lambda_3 = 0$.

解方程组 $(-3E - A)x = \mathbf{0}$ 得特征值 $\lambda_1 = -3$ 的一个单位特征向量 $\xi_1 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$.

解方程组 (6E - A)x = 0 得特征值 $\lambda_2 = 6$ 的一个单位特征向量 $\xi_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 0 \end{pmatrix}$.

解方程组
$$\mathbf{A}\mathbf{x} = \mathbf{0}$$
 得特征值 $\lambda_3 = 0$ 的一个单位特征向量 $\boldsymbol{\xi}_3 = \frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$

因此
$$\mathbf{Q} = (\xi_1, \xi_2, \xi_3) = \begin{pmatrix} 1/\sqrt{3} & -1/\sqrt{2} & 1/\sqrt{6} \\ -1/\sqrt{3} & 0 & 2/\sqrt{6} \\ 1/\sqrt{3} & 1/\sqrt{2} & 1/\sqrt{6} \end{pmatrix}$$
 即为所求正交矩阵.

22.(本题满分 11 分)

设随机变量 X, Y 相互独立,且 X 的概率分布为 $P(X = 0) = P(X = 2) = \frac{1}{2}, Y$ 的概率密度为 $f(y) = \begin{cases} 2y, & 0 < y < 1 \\ 0, & 其他 \end{cases}$

- (1) 求概率 $P(Y \leq EY)$;
- (2) 求 Z = X + Y 的概率密度.

解: (1) 首先有
$$EY = \int_{-\infty}^{+\infty} y f(y) dy = \int_{0}^{1} y \cdot 2y dy = \frac{2}{3}$$
, 于是
$$P(Y \leqslant EY) = P\left(Y \leqslant \frac{2}{3}\right) = \int_{0}^{\frac{2}{3}} 2y dy = \frac{4}{9}.$$

(2) Z 的分布函数为

$$\begin{split} F_Z(z) &= P(Z \leqslant z) = P(X + Y \leqslant z) \\ &= P(Y + X \leqslant z | X = 0) P(X = 0) + P(Y + X \leqslant z | X = 2) P(X = 2) \\ &= \frac{1}{2} P(Y \leqslant z | X = 0) + \frac{1}{2} P(Y + 2 \leqslant z) \\ &= \frac{1}{2} P(Y \leqslant z) + \frac{1}{2} P(Y \leqslant z - 2) = \frac{1}{2} F_Y(z) + \frac{1}{2} F_Y(z - 2). \end{split}$$

因此
$$Z$$
 的概率密度为 $f_Z(z) = \frac{1}{2} f_Y(z) + \frac{1}{2} f_Y(z-2) =$
$$\begin{cases} z, & 0 < z < 1 \\ z-2, & 2 < z < 3. \\ 0, & 其他 \end{cases}$$

23.(本题满分 11 分)

某工程师为了解一台天平的精度,用该天平对一物体的质量做了 n 次测量,该物体的质量 μ 是已知的.设 n 次测量的结果 X_1, X_2, \cdots, X_n 相互独立,且均服从正态分布 $N(\mu, \sigma^2)$.该工程师记录的是 n 次测量的绝对误差 $Z_i = |X_i - \mu| (i = 1, 2, \cdots, n)$,利用 Z_1, Z_2, \cdots, Z_n 估计参数 σ .

- (1)求 Z_1 的概率密度;
- (2) 利用一阶矩求 σ 的矩估计量;

(3) 求参数 σ 的最大似然估计量.

解: (1) 由 $X_i \sim N(\mu, \sigma^2)$ 可知 $\frac{X_i - \mu}{\sigma} \sim N(0, 1)$. $Z_i = |X_i - \mu|$ $(i = 1, 2, \dots, n)$ 独立同分布,设 Z_1 的分布函数为 F(z),则

$$F(z) = P(Z_i \leqslant z) = P(|X_i - \mu| \leqslant z) = P\left(-\frac{z}{\sigma} \leqslant \frac{X_i - \mu}{\sigma} \leqslant \frac{z}{\sigma}\right)$$
$$= \Phi\left(\frac{z}{\sigma}\right) - \Phi\left(-\frac{z}{\sigma}\right) = 2\Phi\left(\frac{z}{\sigma}\right) - 1.$$

则 Z_1 的概率密度为

$$f(z) = F'(z) = \begin{cases} \frac{2}{\sigma} \varphi\left(\frac{2}{\sigma}\right), & z \geqslant 0 \\ 0, & z < 0 \end{cases} = \begin{cases} \frac{\sqrt{2}}{\sqrt{\pi}\sigma} e^{-\frac{z^2}{2\sigma^2}}, & z \geqslant 0 \\ 0, & z < 0 \end{cases}.$$

其中 $\Phi(x)$ 为标准正态分布函数, $\varphi(x)$ 为标准正态概率密度.

(2) 设 \bar{Z} 为样本均值,令

$$\bar{Z} = E(Z_1) = \int_0^{+\infty} \sqrt{\pi} \sigma z e^{-\frac{z^2}{2\sigma^2}} dz = \sqrt{\frac{2}{\pi}} \sigma,$$

由此可知 σ 的矩估计量 $\hat{\sigma}_1 = \sqrt{\frac{\pi}{2}} \bar{Z}$.

(3) 设 Z_1, Z_2, \cdots, Z_n 对应的样本值为 z_1, z_2, \cdots, z_n , 则似然函数为

$$L(\sigma) = \prod_{i=1}^{n} f(z_i) = \begin{cases} \left(\frac{2}{\pi}\right)^{\frac{n}{2}} \frac{1}{\sigma^n} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} z_i^2}, & z_1, z_2, \dots, z_n > 0\\ 0, & \text{#th} \end{cases}.$$

当 $z_1, z_2, \dots, z_n > 0$ 时, 取对数得 $\ln L(\sigma) = \frac{n}{2} \ln \frac{2}{\pi} - n \ln \sigma - \frac{1}{2\sigma^2} \sum_{i=1}^n z_i^2$, 令

$$\frac{\mathrm{d}\ln L(\sigma)}{\mathrm{d}\sigma} = -\frac{n}{\sigma} + \frac{1}{\sigma^3} \sum_{i=1}^n z_i^2 = 0,$$

解得
$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} z_i^2}$$
, 故 σ 的最大似然估计量为 $\hat{\sigma}_2 = \sqrt{\frac{1}{n} \sum_{i=1}^{n} Z_i^2}$.

第 13 章 2018 年考研数学三

- 一、选择题, $1 \sim 8$ 题, 每题 4 分, 共 32 分.
- 1. 下列函数中, 在 x = 0 处不可导的是

$$A. f(x) = |x| \sin |x|$$

$$B. f(x) = |x| \sin \sqrt{|x|}$$

$$C. f(x) = \cos|x|$$

D.
$$f(x) = \cos \sqrt{|x|}$$

- **解:** A, B, C 可直接验证可导, D 根据导数的定义可得 $f'_{+}(0) = -\frac{1}{2}$, $f'_{-}(0) = \frac{1}{2}$, 选 D.
- 2. 设函数 f(x) 在 [0,1] 上二阶可导,且 $\int_{0}^{1} f(x) dx = 0$,则

A.
$$\stackrel{\text{def}}{=} f'(x) < 0$$
 时, $f\left(\frac{1}{2}\right) < 0$

B. 当
$$f''(x) < 0$$
 时, $f\left(\frac{1}{2}\right) < 0$

A. 当
$$f'(x) < 0$$
 时, $f\left(\frac{1}{2}\right) < 0$ B. 当 $f''(x) < 0$ 时, $f\left(\frac{1}{2}\right) < 0$ C. 当 $f'(x) > 0$ 时, $f\left(\frac{1}{2}\right) < 0$

D. 当
$$f''(x) > 0$$
 时, $f\left(\frac{1}{2}\right) < 0$

解: 考虑 f(x) 在 $x = \frac{1}{2}$ 处的泰勒展开式:

$$f(x) = f\left(\frac{1}{2}\right) + f'\left(\frac{1}{2}\right)\left(x - \frac{1}{2}\right) + \frac{f''(\xi)}{2}\left(x - \frac{1}{2}\right)^2,$$

因此当 f''(x) > 0 时, $f(x) > f\left(\frac{1}{2}\right) + f'\left(\frac{1}{2}\right)\left(x - \frac{1}{2}\right)$, 不等式两边在 [0,1] 上进行积分 可得 $f\left(\frac{1}{2}\right) < 0$, 选 D.

A.
$$M > N > K$$
 B. $M > K > N$ C. $K > M > N$ D. $N > M > K$

- A. M > N > K B. M > K C. K > M C. K积函数与 1 的大小关系易见 $K > \pi = M >$
- 4. 设某产品的成本函数 C(Q) 可导,其中 Q 为产量,若产量为 Q_0 时平均成本最小,则

A.
$$C'(Q_0) = 0$$

B.
$$C'(Q_0) = C(Q_0)$$

C.
$$C'(Q_0) = Q_0 C(Q_0)$$

D.
$$Q_0C'(Q_0) = C(Q_0)$$

解: 平均成本 $\bar{C} = \frac{C(Q)}{Q}$, $\bar{C}' = \frac{C'(Q)Q - C(Q)}{Q^2}$. 产量为 Q_0 时平均成本最小,则 $\bar{C}'(Q_0) =$ 0, 可得 $Q_0C'(Q_0) = C(Q_0)$, 选 D

5. 下列矩阵中, 与矩阵
$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
 相似的为 $\begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ B. $\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ C. $\begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ D. $\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

- **解:** 易知题中矩阵均有 3 重特征值 1. 若矩阵相似,则不同特征值对应矩阵 $\lambda E A$ 的秩相等,即 E A 的秩相等,选 A.
- 6. 设 A, B 为 n 阶矩阵, 记 r(X) 为矩阵 X 的秩, $(X \ Y)$ 表示分块矩阵, 则

 A. $r(A \ AB) = r(A)$ B. $r(A \ BA) = r(A)$ C. $r(A \ B) = \max\{r(A), r(B)\}$ D. $r(A \ B) = r(A^{\mathrm{T}} \ B^{\mathrm{T}})$
- 解: 对于 A, 有 (A AB) = A (E B), 且 (E B) 为行满秩的矩阵,则 r(A AB) = r(A), 即选 A. B 错误, 反例取 $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$. C 错误, $r(A B) \ge \max\{r(A), r(B)\}$, 反例取 $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$. D 错误, 反例取 $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.
- 7. 设随机变量 X 的概率密度 f(x) 满足 f(1+x) = f(1-x), 且 $\int_0^2 f(x) dx = 0.6$, 则 P(X < 0) = () A. 0.2 B. 0.3 C. 0.4 D. 0.6
- **解:** 由 f(1+x) = f(1-x) 知 f(x) 关于 x = 1 对称,则

$$\int_0^1 f(x) dx = \int_1^2 f(x) dx = \frac{1}{2} \int_0^2 f(x) dx = 0.3,$$

$$\text{F} \not= P\{X < 0\} = \int_{-\infty}^0 f(x) dx = \int_{-\infty}^1 f(x) dx - \int_0^1 f(x) dx = 0.5 - 0.3 = 0.2, \not\to A.$$

8. 设 X_1, X_2, \cdots, X_n $(n \ge 2)$ 为来自总体 $X \sim N\left(\mu, \sigma^2\right)$ $(\sigma > 0)$ 的简单随机样本, 令

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}, S = \sqrt{\frac{1}{n-1}} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}, S^{*} = \sqrt{\frac{1}{n}} \sum_{i=1}^{n} (X_{i} - \mu)^{2},$$

$$A. \frac{\sqrt{n} (\bar{X} - \mu)}{\frac{S}{S^{*}}} \sim t (n)$$

$$B. \frac{\sqrt{n} (\bar{X} - \mu)}{\frac{S}{S^{*}}} \sim t (n-1)$$

$$C. \frac{\sqrt{n} (\bar{X} - \mu)}{S^{*}} \sim t (n)$$

$$D. \frac{\sqrt{n} (\bar{X} - \mu)}{S^{*}} \sim t (n-1)$$

解: 首先由 $X \sim N\left(\mu, \sigma^2\right)$ 可知 $\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right) \Rightarrow \frac{\sqrt{n}\left(\bar{X} - \mu\right)}{\sigma} \sim N\left(0, 1\right)$. 而样本方差 $S^2 = \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \bar{X}\right)^2$ 满足的分布为 $\frac{(n-1)}{\sigma^2} S^2 \sim \chi^2 (n-1)$, 且样本均值与样本方差独

立, 根据
$$t$$
 分布的定义知
$$\frac{\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma}}{\sqrt{\frac{\frac{(n-1)}{\sigma^2}S^2}{n-1}}} = \frac{\sqrt{n}(\bar{X}-\mu)}{S} \sim t \ (n-1), \text{ 选 B}.$$

- 二、填空题, $9 \sim 14$ 题, 每题 4 分, 共 24 分.
- 9. 曲线 $v = x^2 + 2 \ln x$ 在其拐点处的切线方程是 ______.
- **解:** 计算可得 $y' = 2x + \frac{2}{x}$, $y'' = 2 \frac{2}{x^2}$, 由此得曲线的拐点坐标 (1, 1). 曲线在拐点处切线的斜率为 $y'|_{x=1} = 4$, 故切线方程为 y = 4x 3.

$$10. \int e^x \arcsin \sqrt{1 - e^{2x}} dx = \underline{\qquad}.$$

J
解: 令 $\arcsin \sqrt{1 - e^{2x}} = t$, 则 $e^x = \cos t$, $dx = -\frac{\sin t}{\cos t}$ du, 原积分化为

$$-\int t\cos t \frac{\sin t}{\cos t} dt = -\int t\sin t dt = t\cos t - \int \cos t dt = t\cos t - \sin t + C,$$

带回原变量得原不定积分为 $e^x \arcsin \sqrt{1 - e^{2x}} - \sqrt{1 - e^{2x}} + C$.

- 11.差分方程 $\Delta^2 y_x y_x = 5$ 的通解是 _____.
- 解:根据二阶差分的定义可得

$$\Delta^2 y_x = \Delta y_{x+1} - \Delta y_x = (y_{x+2} - y_{x+1}) - (y_{x+1} - y_x) = y_{x+2} - 2y_{x+1} + y_x,$$

由 $\Delta^2 y_x - y_x = 5$ 得 $y_{x+2} - 2y_{x+1} = 5$. 先求齐次方程的通解,齐次差分方程的特征方程 $\lambda - 2 = 0$,齐次方程通解为 $Y = C \cdot 2^x$. 由于 1 不是特征根,于是假设原差分方程的特解为 $y_x^* = A$,带入非齐次方程知特解为 $y_x^* = -5$,于是原方程的通解为 $y_x = C \cdot 2^x - 5$.

- 12.设函数 f(x) 满足 $f(x + \Delta x) f(x) = 2xf(x)\Delta x + o(\Delta x)(\Delta x \to 0)$, 且 f(0) = 2, 则 f(1) =______.
- **解:** 在等式 $f(x + \Delta x) f(x) = 2xf(x)\Delta x + o(\Delta x)$ 两边除以 Δx , 并令 $\Delta x \to 0$ 得 f'(x) = 2xf(x), 解得 $f(x) = Ce^{x^2}$. 由 f(0) = 2 得 C = 2, 于是 f(1) = 2e.
- 13.设 A 为三阶矩阵, α_1 , α_2 , α_3 为线性无关的向量组. 若 $A\alpha_1 = 2\alpha_1 + \alpha_2 + \alpha_3$, $A\alpha_2 = \alpha_2 + 2\alpha_3$, $A\alpha_3 = -\alpha_2 + \alpha_3$, 则 A 的实特征值为 ______.
- **解:** 由题意得 $A(\alpha_1,\alpha_2,\alpha_3) = (\alpha_1,\alpha_2,\alpha_3) \begin{pmatrix} 2 & 0 & 0 \\ 1 & 1 & -1 \\ 1 & 2 & 1 \end{pmatrix}$. 由于向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,

记 $P = (\alpha_1, \alpha_2, \alpha_3), B = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 1 & -1 \\ 1 & 2 & 1 \end{pmatrix}$, 则 P 是可逆矩阵, 因此矩阵 A 与矩阵 B 相似, 它们

有相同的特征值, 易求得 B 的实特征值为 2, 即 A 的实特征值为 2.

14.随机事件 A, B, C 相互独立, 且 $P(A) = P(B) = P(C) = \frac{1}{2}$, 则 $P(AC|A \cup B) = ____.$

解: 直接计算得
$$P(AC|A \cup B) = \frac{P[(AC) \cup (ABC)]}{P(A \cup B)} = \frac{P(AC)}{P(A) + P(B) - P(AB)} = \frac{1}{3}$$
.

三、解答题, 15~23题, 共94分.

15.(本题满分 10 分)

已知实数 a, b 满足 $\lim_{x \to +\infty} \left[(ax + b) e^{\frac{1}{x}} - x \right] = 2$, 求 a, b.

解: 直接利用泰勒公式得

$$\lim_{x \to +\infty} \left[(ax+b) e^{\frac{1}{x}} - x \right] = \lim_{x \to +\infty} \left[(ax+b) \left(1 + \frac{1}{x} + o\left(\frac{1}{x}\right) \right) - x \right]$$

$$= \lim_{x \to +\infty} \left[(a-1)x + a + b + \frac{b}{x} + (ax+b)o\left(\frac{1}{x}\right) \right]$$

$$= 2$$

由于
$$\lim_{x \to +\infty} \frac{b}{x} = 0$$
, $\lim_{x \to +\infty} (ax + b) o\left(\frac{1}{x}\right) = 0$, 所以 $\begin{cases} a - 1 = 0 \\ a + b = 2 \end{cases}$, 解得 $a = b = 1$.

16.(本题满分 10 分)

设平面区域 D 由曲线 $y = \sqrt{3(1-x^2)}$ 与直线 $y = \sqrt{3}x$ 及 y 轴围成, 计算二重积分 $\iint_D x^2 dx dy$.

解:直接化成累次积分计算可得

$$\iint_{D} x^{2} dx dy = \int_{0}^{\frac{\sqrt{2}}{2}} x^{2} dx \int_{\sqrt{3}x}^{\sqrt{3}(1-x^{2})} dy$$

$$= \int_{0}^{\frac{\sqrt{2}}{2}} x^{2} \left(\sqrt{3(1-x^{2})} - \sqrt{3}x\right) dx$$

$$= \int_{0}^{\frac{\sqrt{2}}{2}} x^{2} \sqrt{3(1-x^{2})} dx - \sqrt{3} \int_{0}^{\frac{\sqrt{2}}{2}} x^{3} dx$$

$$= \frac{\sqrt{3}}{32} \pi - \frac{\sqrt{3}}{16}.$$

17.(本题满分 10 分)

"将长为 2 m 的铁丝分成三段, 依次围成圆、正方形与正三角形, 三个图形的面积之和是否存在最小值? 若存在, 求出最小值.

解: 设分成的三段依次为 $x, y, z, y \in \mathbb{Z}$,则 x + y + z = 2,依次围成的圆的半径、正方形的边长与正三角形边长分别为 $\frac{x}{2\pi}, \frac{y}{4}, \frac{z}{3}$,因此三个面积的和为

$$S = \pi \left(\frac{x}{2\pi}\right)^2 + \left(\frac{y}{4}\right)^2 + \frac{\sqrt{3}}{4}\left(\frac{z}{3}\right)^2 = \frac{x^2}{4\pi} + \frac{1}{16}y^2 + \frac{\sqrt{3}}{36}z^2.$$

此题来自裴礼文数学分析中的典型例题与方法 697 页.

方法一 令
$$f(x,y,z,\lambda) = \frac{x^2}{4\pi} + \frac{1}{16}y^2 + \frac{\sqrt{3}}{36}z^2 + \lambda (x+y+z-2)$$
,首先求驻点. 由方程
$$\begin{cases} f'_x = \frac{x}{2\pi} + \lambda = 0 \\ f'_y = \frac{y}{8} + \lambda = 0 \\ f'_z = \frac{\sqrt{3}}{18}z + \lambda = 0 \\ x+y+z=2 \end{cases}$$
可得
$$\begin{cases} x = \frac{2\pi}{\pi + 4 + 3\sqrt{3}} \\ y = \frac{8}{\pi + 4 + 3\sqrt{3}}, \text{并且黑塞矩阵 } Hf = \text{diag} \left\{ \frac{1}{2\pi}, \frac{1}{8}, \frac{\sqrt{3}}{18} \right\} \text{ If } \\ z = \frac{6\sqrt{3}}{\pi + 4 + 3\sqrt{3}} \end{cases}$$

定, 这就是面积和的最小值点, 此时最小面积为 $S_{\min} = \frac{1}{\pi + 4 + 3\sqrt{3}} \text{m}^2$.

18.(本题满分 10 分)

已知
$$\cos 2x - \frac{1}{(1+x)^2} = \sum_{n=0}^{\infty} a_n x^n (-1 < x < 1)$$
,求 a_n .

解: 首先
$$\left(\frac{1}{2}\sin 2x + \frac{1}{1+x}\right)' = \cos 2x - \frac{1}{(1+x)^2}$$
, 而当 $-1 < x < 1$ 时,

$$\sin 2x = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n+1)!} (2x)^{2n+1}, \frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n$$

. 求导得

$$\cos 2x - \frac{1}{(1+x)^2} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} 4^n x^{2n} + \sum_{n=0}^{\infty} (-1)^{n+1} (n+1) x^n.$$

比较系数可得
$$a_n = \begin{cases} 2k+2, & n=2k+1 \\ \frac{(-4)^k}{(2k)!} - (2k+1), & n=2k \end{cases}$$
 $(k \in \mathbb{N}).$

19.(本题满分 10 分)

设数列 $\{x_n\}$ 满足 $x_1 > 0, x_n e^{x_{n+1}} = e^{x_n} - 1 (n = 1, 2, \cdots)$. 证明 $\{x_n\}$ 收敛并求 $\lim_{n \to \infty} x_n$.

解: 首先由 $x_1 > 0$, $x_n e^{x_{n+1}} = e^{x_n} - 1$ ($n = 1, 2, \cdots$) 归纳可知所有 $x_n > 0$. 考虑函数 $f(x) = e^x$, 由拉格朗日中值定理有

$$e^{x_{n+1}} = \frac{e^{x_n} - 1}{x_n} = \frac{f(x_n) - f(0)}{x_n - 0} = e^{\xi_n} < e^{x_n}, \ \xi_n \in (0, x_n).$$

这就说明 $x_n > x_{n+1} > 0$, 因此 $\{x_n\}$ 单调递减有下界, 故收敛. 设 $\lim_{n \to \infty} x_n = x \ge 0$, 在等式 $x_n e^{x_{n+1}} = e^{x_n} - 1$ 两边取极限得 $x e^x = e^x - 1$. 如果 x > 0, 则 $e^x = \frac{e^x - 1}{x} < e^x$, 矛盾, 因此 $\lim_{n \to \infty} x_n = x = 0$.

20.(本题满分 11 分)

设实二次型 $f(x_1, x_2, x_3) = (x_1 - x_2 + x_3)^2 + (x_2 + x_3)^2 + (x_1 + ax_3)^2$, 其中 a 是 参数.

- (1) \bar{x} $f(x_1, x_2, x_3) = 0$ 的解;
- (2) 求 $f(x_1, x_2, x_3)$ 的规范形.
- 解: (1) 由 $f(x_1, x_2, x_3) = 0$ 可得方程组 $\begin{cases} x_1 x_2 + x_3 = 0 \\ x_2 + x_3 = 0 \end{cases}$. 对其系数矩阵进行初等行变 $x_1 + ax_3 = 0$

换得

$$\begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & a \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & a - 2 \end{pmatrix}.$$

如果 a = 2, 则方程组的通解为 $(x_1, x_2, x_3)^{\mathrm{T}} = c(-2, -1, 1)^{\mathrm{T}}$. 如果 $a \neq 2$, 则方程组只有零解 $(x_1, x_2, x_3)^{\mathrm{T}} = (0, 0, 0)^{\mathrm{T}}$.

(2) 如果 $a \neq 2$, 令

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & a \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \mathbf{Q} \mathbf{x}.$$

其中 Q 是可逆矩阵, 所以此时的规范形为 $f(y_1, y_2, y_3) = y_1^2 + y_2^2 + y_3^2$. 如果 a = 2, 配方得

$$f(x_1, x_2, x_3) = (x_1 - x_2 + x_3)^2 + (x_2 + x_3)^2 + (x_1 + 2x_3)^2$$
$$= 2x_1^2 + 2x_2^2 + 6x_3^2 - 2x_1x_2 + 6x_1x_3$$
$$= 2\left(x_1 - \frac{1}{2}x_2 + \frac{3}{2}x_3\right)^2 + \frac{3}{2}(x_2 + x_3)^2.$$

此时的规范形为 $f(y_1, y_2, y_3) = y_1^2 + y_2^2$.

21.(本题满分 11 分)

已知
$$a$$
是常数,且矩阵 $\mathbf{A} = \begin{pmatrix} 1 & 2 & a \\ 1 & 3 & 0 \\ 2 & 7 & -a \end{pmatrix}$ 可经初等列变换化为矩阵 $\mathbf{B} = \begin{pmatrix} 1 & a & 2 \\ 0 & 1 & 1 \\ -1 & 1 & 1 \end{pmatrix}$.

(1)求a;

- (2) 求满足 AP = B 的可逆矩阵 P.
- **解:** (1) 由于矩阵 A 可经过初等列变换化为矩阵 B, 因此 A 和 B 的列向量组等价. 则对增广矩阵做初等行变换得

$$(A, \mathbf{B}) = \begin{pmatrix} 1 & 2 & a & 1 & a & 2 \\ 1 & 3 & 0 & 0 & 1 & 1 \\ 2 & 7 & -a & -1 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & a & 1 & a & 2 \\ 0 & 1 & -a & -1 & 1 - a & -1 \\ 0 & 0 & 0 & 0 & a - 2 & 0 \end{pmatrix}.$$

因此 a=2.

(2) 问题等价于解矩阵方程 AX = B, 也就是解三个非齐次线性方程组. 由 (1) 可得

$$(A, B) \rightarrow \begin{pmatrix} 1 & 0 & 6 & 3 & 4 & 4 \\ 0 & 1 & -2 & -1 & -1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

解得
$$\mathbf{P} = \begin{pmatrix} -6k_1 + 3 & -6k_2 + 4 & -6k_3 + 4 \\ 2k_1 - 1 & 2k_2 - 1 & 2k_3 - 1 \\ k_1 & k_2 & k_3 \end{pmatrix}$$
, k_1, k_2, k_3 为任意常数. 注意到 \mathbf{P} 是可逆矩阵, 因此 $|\mathbf{P}| \neq 0$, 这要求 $k_2 \neq k_3$.

22.(本题满分 11 分)

已知随机变量 X 与 Y 相互独立, X 的概率分布为 $P\{X=1\}=P\{X=-1\}=\frac{1}{2}, Y$ 服从参数为 λ 的泊松分布, 令 Z=XY.

- (1) 求 Cov(X, Z);
- (2) 求 Z 的概率分布.
- **解:** (1) 直接计算可知 E(X) = 0, $E(X^2) = 1$, 而 $Y \sim P(\lambda)$, $E(Y) = \lambda$, 因此

$$Cov(X, Z) = Cov(X, XY) = E(X^2Y) - E(X)E(XY)$$

= $E(X^2)E(Y) - (EX)^2E(Y) = \lambda$.

(2) 首先有

$$P(Z = k) = P(X = 1)P(Z = k|X = 1) + P(X = -1)P(Z = k|X = -1)$$

$$= P(X = 1)P(Y = k) + P(X = -1)P(Y = -k)$$

$$= \frac{1}{2}P(Y = k) + \frac{1}{2}P(Y = -k).$$

当
$$k = 1, 2, 3, \dots$$
 时, $P\{Z = k\} = \frac{1}{2}P\{Y = k\} = \frac{\lambda^k e^{-\lambda}}{2k!};$
当 $k = 0$ 时, $P(Z = 0) = P(Y = 0) = e^{-\lambda};$
当 $k = -1, -2, -3, \dots$ 时, $P\{Z = k\} = \frac{1}{2}P\{Y = -k\} = \frac{\lambda^{-k} e^{-\lambda}}{2(-k)!}.$

因此综上所述可得

$$P(Z = k) = \begin{cases} \frac{\lambda^{|k|} e^{-\lambda}}{2|k|!}, & k = \pm 1, \pm 2, \dots \\ e^{-\lambda}, & k = 0 \end{cases}.$$

23.(本题满分 11 分)

设总体 X 的概率密度为

$$f(x;\sigma) = \frac{1}{2\sigma} e^{-\frac{|x|}{\sigma}}, -\infty < x < +\infty,$$

其中 $\sigma \in (0, +\infty)$ 为未知参数, X_1, X_2, \dots, X_n 为来自总体 X 的简单随机样本, 记 σ 的最大似然估计量为 $\hat{\sigma}$.

- (1)求 $\hat{\sigma}$;
- (2) 求 $E(\hat{\sigma})$, $D(\hat{\sigma})$.
- **解:** (1) 设 X_1, X_2, \cdots, X_n 对应的样本值为 x_1, x_2, \cdots, x_n ,则似然函数为

$$L\left(\sigma\right) = \prod_{i=1}^{n} f\left(x_{i}; \sigma\right) = 2^{-n} \sigma^{-n} e^{-\frac{\sum_{i=1}^{n} |x_{i}|}{\sigma}},$$

取对数得 $\ln L(\sigma) = -n \ln 2 - n \ln \sigma - \frac{1}{\sigma} \sum_{i=1}^{n} |x_i|$. $\diamondsuit \frac{\dim L}{\mathrm{d}\sigma} = \frac{-n}{\sigma} + \frac{1}{\sigma^2} \sum_{i=1}^{n} |x_i| = 0$, 解得 $\sigma = \frac{1}{n} \sum_{i=1}^{n} |x_i|$, 因此 σ 的最大似然估计量为 $\hat{\sigma} = \frac{1}{n} \sum_{i=1}^{n} |X_i|$.

(2) 因为
$$E(|X|) = \int_{-\infty}^{+\infty} |x| f(x) dx = \int_{-\infty}^{+\infty} \frac{|x|}{2\sigma} e^{-\frac{|x|}{\sigma}} dx = \sigma$$
, 所以

$$E(\hat{\sigma}) = \frac{1}{n} \sum_{i=1}^{n} E|X_{i}| = E(|X|) = \sigma,$$

$$E(X^{2}) = \int_{-\infty}^{+\infty} x^{2} f(x) dx = \int_{-\infty}^{+\infty} \frac{x^{2}}{2\sigma} e^{-\frac{|x|}{\sigma}} dx = 2\sigma^{2},$$

$$D(\hat{\sigma}) = \frac{D(|X|)}{n} = \frac{1}{n} \left(E(X^{2}) - (E|X|)^{2} \right) = \frac{\sigma^{2}}{n}.$$

第 14 章 2019 年考研数学三

VL 177 07		—			
一、选择题。	1~8龄。	包 設 4	分.	共 32	分.

1. 当 $x \to 0$ 时, $x - \tan x$ 与 x^k 是同阶无穷小, 则 k =

A. 1

D. 4

- **解:** 当 $x \to 0$ 时, $x \tan x \sim -\frac{1}{2}x^3$, 因此选 C.
- 2. 已知方程 $x^5 5x + k = 0$ 有 3 个不同的实根, 则 k 的取值范围是)

A. $(-\infty, -4)$

- B. $(4, +\infty)$
- $C. \{-4, 4\}$
- D. (-4, 4)
- **解:** 令 $f(x) = x^5 5x + k$, 则 $f'(x) = 5x^4 5$, 由 f'(x) = 0 可得 $x = \pm 1$. 当 -1 < x < 1时, f'(x) < 0; 当 x < -1 或 x > 1 时, f'(x) > 0. 因此有极大值 f(-1) = 4 + k, 极小值 f(1) = k - 4, 且 $\lim_{x \to -\infty} f(x) = -\infty$, $\lim_{x \to +\infty} f(x) = +\infty$. 要想原方程有 3 个不同的实根, 则 有 f(-1) > 0, f(1) < 0, 解得 -4 < k < 4, 选 D.
- 3. 已知微分方程 $y'' + ay' + by = ce^x$ 的通解为 $y = (C_1 + C_2 x)e^{-x} + e^x$, 则 a, b, c 依 次为)

A. 1, 0, 1

- B.1,0,2
- C.2.1.3
- D. 2. 1. 4
- **解:** 从通解的结构可知, $Y=(C_1+C_2x)\mathrm{e}^{-x}$ 是对应齐次方程的通解, 因此 $\lambda=-1$ 是特征 方程的二重特征根, 因此 a=2,b=1. 而 $v^*=e^x$ 是非齐次方程的特解, 将此特解代入方程 $y'' + 2y' + y = ce^x$ 可得 c = 4, 选 D.
- 4. 若 $\sum_{n=1}^{\infty} nu_n$ 绝对收敛, $\sum_{n=1}^{\infty} \frac{v_n}{n}$ 条件收敛, 则)

A. $\sum_{n=1}^{\infty} u_n v_n$ 条件收敛

B. $\sum_{n=1}^{\infty} u_n v_n$ 绝对收敛 D. $\sum_{n=1}^{\infty} (u_n + v_n)$ 发散

 $C.\sum_{n=1}^{\infty}(u_n+v_n)$ 收敛

- **解:** 由于 $\sum_{n=0}^{\infty} \frac{v_n}{n}$ 条件收敛, 故它的通项趋于零, 则存在 M > 0 使得 $\left| \frac{v_n}{n} \right| \leqslant M$, 因此 $|u_n v_n| = 0$ $\left|nu_n\cdot\frac{v_n}{n}\right|\leqslant M|nu_n|$. 由于 $\sum_{n=1}^{\infty}nu_n$ 绝对收敛, 则 $\sum_{n=1}^{\infty}u_nv_n$ 绝对收敛, 选 B. 对于 A 和 C 选 项, 可取反例 $u_n = \frac{1}{n^3}, v_n = (-1)^n$; 对于 D 选项, 可取反例 $u_n = \frac{1}{n^3}, v_n = \frac{(-1)^n}{\ln(n+1)}$.
- 5. 设 A 是四阶矩阵, A^* 是 A 的伴随矩阵, 若线性方程组 Ax = 0 的基础解系中只有 两个向量,则 $r(A^*)$ =) (

- A. 0
- B. 1

- C. 2
- D. 3
- **解:** 由于方程组 Ax = 0 的基础解系中只有两个向量, 故 r(A) = 2, 因此 $r(A^*) = 0$
- 6. 设 A 是 3 阶实对称矩阵, E 是 3 阶单位矩阵, 若 $A^2 + A = 2E$, 且 |A| = 4, 则二次 型 $x^{T}Ax$ 的规范形为

- A. $y_1^2 + y_2^2 + y_3^2$ B. $y_1^2 + y_2^2 y_3^2$ C. $y_1^2 y_2^2 y_3^2$ D. $-y_1^2 y_2^2 y_3^2$
- **解:** 由 $A^2 + A = 2E$ 可知矩阵 A 的特征值 λ 满足 $\lambda^2 + \lambda = 2$, 因此 $\lambda = 1$ 或 -2. 再由 |A| = 4 可知 A 的特征值为 -2, -2, 1. 因此二次型 $x^{T}Ax$ 的正惯性指数为 1, 负惯性指数为 2, 选 C.
- 7. 设 A, B 为随机事件, 则 P(A) = P(B) 的充分必要条件是)
 - $A. P(A \cup B) = P(A) + P(B)$
- B. P(AB) = P(A)P(B)

C. $P(A\overline{B}) = P(B\overline{A})$

- D. $P(AB) = P(\overline{AB})$
- **解:** 显然 P(A) = P(B) 等价于 P(A) P(AB) = P(B) P(AB), 即 $P(A\overline{B}) = P(B\overline{A})$, 选 C. 对于选项 A 和 D, 取 $A = B = \Omega$ 可排除; 对于选项 B, 取 $B = \overline{A}$ 即可排除.
- 8. 设随机变量 X 与 Y 相互独立, 且都服从正态分布 $N(\mu, \sigma^2)$, 则 $P\{|X Y| < 1\}$ ()
 - A. 与 μ 无关, 而与 σ^2 有关
- B. 与 μ 有关, 而与 σ^2 无关

C. 与 μ , σ^2 都有关

- D. 与 μ , σ^2 都无关
- **解:** 由条件可知 $X Y \sim N(0, 2\sigma^2)$, 因此

$$\begin{split} P\left\{\left|X-Y\right|<1\right\} &= P\left\{\left|\frac{X-Y}{\sqrt{2}\sigma}\right|<\frac{1}{\sqrt{2}\sigma}\right\} \\ &= \Phi\left(\frac{1}{\sqrt{2}\sigma}\right) - \Phi\left(-\frac{1}{\sqrt{2}\sigma}\right) = 2\Phi\left(\frac{1}{\sqrt{2}\sigma}\right) - 1, \end{split}$$

此概率与 μ 无关,与 σ^2 有关,选A.

- 二、填空题, $9 \sim 14$ 题, 每题 4 分, 共 24 分.
- 9. $\lim_{n\to\infty} \left(\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{n(n+1)} \right)^n = \underline{\hspace{1cm}}$
- **解:** 首先 $\sum_{k=1}^{n} \frac{1}{k(k+1)} = \sum_{k=1}^{n} \left(\frac{1}{k} \frac{1}{k+1}\right) = 1 \frac{1}{n+1}$, 因此原极限 $\lim_{n \to \infty} \left(1 \frac{1}{n+1}\right)^n = 1$ $\lim_{n\to\infty} n \ln \left(1 - \frac{1}{n+1}\right) = o^{-1}$
- 10.曲线 $y = x \sin x + 2 \cos x \left(-\frac{\pi}{2} < x < \frac{3\pi}{2} \right)$ 的拐点坐标为_____.
- 解: 先求二阶导数

$$y' = \sin x + x \cos x - 2 \sin x, y'' = \cos x + \cos x - x \sin x - 2 \cos x = -x \sin x,$$

令 y'' = 0 可得 x = 0 或 $x = \pi$. 当 $-\frac{\pi}{2} < x < 0$ 或 $0 < x < \pi$ 时 y'' < 0, 当 $\pi < x < \frac{3}{2}\pi$ 时 v'' > 0. 因此 (0,2) 不是拐点, $(\pi, -2)$ 是拐点, 选 C.

11.己知
$$f(x) = \int_1^x \sqrt{1 + t^4} dt$$
, 则 $\int_0^1 x^2 f(x) dx = _____.$

解: 利用二重积分交换次序得

$$\int_0^1 x^2 f(x) dx = -\int_0^1 x^2 dx \int_x^1 \sqrt{1 + t^4} dt = -\int_0^1 \sqrt{1 + t^4} dt \int_0^t x^2 dx$$
$$= -\frac{1}{3} \int_0^1 t^3 \sqrt{1 + t^4} dt = -\frac{1}{18} (1 + t)^{\frac{3}{2}} \Big|_0^1 = \frac{1 - 2\sqrt{2}}{18}.$$

- 12.以 P_A , P_B 分别表示 A, B 两个商品的价格, 设商品 A 的需求函数 $Q_A = 500 P_A^2 P_A P_B + 2 P_B^2$, 则当 $P_A = 10$, $P_B = 20$ 时, 商品 A 的需求量对自身价格的弹性 $\eta_{AA}(\eta_{AA} > 0)$ 为______.
- 解:由需求弹性公式可得

$$\eta_{AA} = \left| \frac{P_A}{P_B} \frac{\partial Q_A}{\partial P_A} \right| = \left| \frac{P_A}{500 - P_A^2 - P_A P_B + 2P_B^2} \left(-2P_A - P_B \right) \right| \\
= \frac{P_A \left(2P_A + P_B \right)}{500 - P_A^2 - P_A P_B + 2P_B^2},$$

代入 $P_A = 10, P_B = 20$ 得 $\eta_{AA} = 0.4$.

13.已知矩阵
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 1 & -1 \\ 0 & 1 & a^2 - 1 \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} 0 \\ 1 \\ a \end{pmatrix}$, 若线性方程组 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 有无穷多解, 则

解:对增广矩阵作初等行变换得

$$(A,b) = \begin{pmatrix} 1 & 0 & -1 & | & 0 \\ 1 & 1 & -1 & | & 1 \\ 0 & 1 & a^2 - 1 & | & a \end{pmatrix} = \begin{pmatrix} 1 & 0 & -1 & | & 0 \\ 0 & 1 & 0 & | & 1 \\ 0 & 0 & a^2 - 1 & | & a - 1 \end{pmatrix},$$

因此当 a = 1 时, r(A) = r(A, b) = 2 < 3, 方程组 Ax = b 有无穷多解.

14.设随机变量 X 的概率密度为 $f(x) = \begin{cases} \frac{x}{2}, & 0 < x < 2 \\ 0, & \text{其他} \end{cases}$, F(x) 为 X 的分布函数, E(X) 为 X 的数学期望, 则 $P(F(X) > E(X) - 1) = _____.$

解: 首先 $E(X) = \int_0^2 x \frac{x}{2} dx = \frac{4}{3}$. 再令 Y = F(X), 则当 $y \le 0$ 时, $P(Y \le y) = 0$; 当 $y \ge 1$ 时, $P(Y \le y) = 1$ (注意分布函数 F(X) 的取值范围). 当 0 < y < 1 时,

$$P(Y\leqslant y)=P\big(F(X)\leqslant y\big)=P\big(X\leqslant F^{-1}(y)\big)=F\big(F^{-1}(y)\big)=y.$$

因此
$$Y = F(X) \sim U(0,1), P(F(X) > E(X) - 1) = P(Y > \frac{1}{3}) = \frac{2}{3}.$$

 $\stackrel{\bullet}{\Sigma}$ 注: 事实上我们在这里证明了一个很重要的结论: 如果 X 是一个连续型随机变量, F(x) 是它的分布函数, 则随机变量 $Y=F(X)\sim U(0,1)$.

三、解答题, $15 \sim 23$ 题, 共 94 分.

15.(本题满分 10 分)

已知函数
$$f(x) = \begin{cases} x^{2x}, & x > 0 \\ xe^x + 1, & x \leq 0 \end{cases}$$
, 求 $f'(x)$, 并求 $f(x)$ 的极值.

解: 首先有 $\lim_{x\to 0^+} x^{2x} = \lim_{x\to 0^+} e^{x \ln x} = 1 = f(0) = \lim_{x\to 0^-} (xe^x + 1)$, 因此 f(x) 在 x = 0 处连续. 当 x > 0 时, $f'(x) = e^{2x \ln x} (2 \ln x + 2)$; 当 x < 0 时, $f'(x) = (x + 1)e^x$. 而在 x = 0

$$\lim_{x \to 0^+} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^+} \frac{x^{2x} - 1}{x} = \lim_{x \to 0^+} \frac{e^{2x \ln x} - 1}{x} = \lim_{x \to 0^+} \frac{2x \ln x}{x} = -\infty,$$

$$x < \frac{1}{e}$$
 时 $f'(x) < 0$, 当 $-1 < x < 0$ 或 $x > \frac{1}{e}$ 时, $f'(x) > 0$. 由单调性可知 $f\left(\frac{1}{e}\right) = \left(\frac{1}{e}\right)^{\frac{2}{e}}$ 和 $f(-1) = 1 - \frac{1}{e}$ 是极小值, $f(0) = 1$ 是极大值.

16.(本题满分 10 分)

已知
$$f(u,v)$$
 具有二阶连续偏导数, 且 $g(x,y) = xy - f(x+y,x-y)$, 求 $\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial x \partial y} + \frac{\partial^2 g}{\partial y^2}$.

解: 直接计算可得

$$\frac{\partial g}{\partial x} = y - f_1' - f_2', \frac{\partial g}{\partial y} = x - f_1' + f_2',$$

$$\frac{\partial^2 g}{\partial x^2} = -f_{11}'' - f_{12}'' - f_{21}'' - f_{22}'' = -f_{11}'' - 2f_{12}'' - f_{22}'',$$

$$\frac{\partial^2 g}{\partial x \partial y} = 1 - f_{11}'' + f_{12}'' - f_{21}'' + f_{22}'' = 1 - f_{11}'' + f_{22}'',$$

$$\frac{\partial^2 g}{\partial y^2} = -f_{11}'' + f_{12}'' + f_{21}'' - f_{22}'' = -f_{11}'' + 2f_{12}'' - f_{22}''.$$

代入即可得
$$\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial x \partial y} + \frac{\partial^2 g}{\partial y^2} = 1 - 3f_{11}''(x+y,x-y) - f_{22}''(x+y,x-y).$$

17.(本题满分 10 分)

设
$$y(x)$$
 是微分方程 $y' - xy = \frac{1}{2\sqrt{x}} e^{\frac{x^2}{2}}$ 满足条件 $y(1) = \sqrt{e}$ 的特解.

- (1) 求 y(x);
- (2) 设平面区域 $D = \{(x, y) | 1 \le x \le 2, 0 \le y \le y(x) \}$, 求 D 绕 x 旋转一周所得旋 转体的体积.

解: (1) 由条件可得 $\left(e^{-\frac{x^2}{2}}y\right)' = e^{-\frac{x^2}{2}}\left(y' - xy\right) = \frac{1}{2\sqrt{x}}$, 于是 $e^{-\frac{x^2}{2}}y = \sqrt{x} + C$. 再由 $y(1) = \sqrt{e}$ 可知 C = 0, 因此 $y = \sqrt{x}e^{\frac{x^2}{2}}$.

(2) 所求旋转体的体积为

$$V = \pi \int_{1}^{2} \left(\sqrt{x} e^{\frac{x^{2}}{2}} \right)^{2} dx = \pi \int_{1}^{2} x e^{x^{2}} dx = \frac{\pi}{2} (e^{4} - e).$$

18.(本题满分 10 分)

『求曲线 $y = e^{-x} \sin x (x \ge 0)$ 与 x 轴之间图形的面积.

解: 利用直角坐标系下的面积公式可得所求面积为

$$S = \int_0^{+\infty} e^{-x} |\sin x| \, dx = \sum_{n=0}^{\infty} \int_{n\pi}^{(n+1)\pi} e^{-x} |\sin x| \, dx$$
$$= \sum_{n=0}^{\infty} \int_0^{\pi} e^{-(n\pi+t)} |\sin (n\pi+t)| \, dt$$
$$= \int_0^{\pi} e^{-t} \sin t \, dt \sum_{n=0}^{\infty} e^{-n\pi}$$
$$= \frac{1 + e^{-\pi}}{2} \cdot \frac{1}{1 - e^{-\pi}} = \frac{e^{\pi} + 1}{2(e^{\pi} - 1)}.$$

其中利用两次分部积分可得 $\int_0^{\pi} e^{-t} \sin t dt = \frac{1 + e^{-\pi}}{2}$.

19.(本题满分 10 分)

设
$$a_n = \int_0^1 x^n \sqrt{1 - x^2} dx (n = 0, 1, 2, \cdots).$$

(1) 证明: 数列
$$\{a_n\}$$
 单调减少, 且 $a_n = \frac{n-1}{n+2} a_{n-2} (n=2,3,\cdots);$

$$(2) \, \vec{\mathcal{R}} \lim_{n \to \infty} \frac{a_n}{a_{n-1}}.$$

解: (1) 当 0 < x < 1 时, $x^n \sqrt{1-x^2} > x^{n+1} \sqrt{1-x^2}$, 因此由 { a_n } 的定义可知 $a_n > a_{n+1}$, 即数列 { a_n } 单调减少. 利用分部积分可得

$$a_n = \int_0^1 x^n \sqrt{1 - x^2} dx = \frac{1}{n+1} \int_0^1 \sqrt{1 - x^2} dx (x^{n+1})$$

$$= \frac{1}{n+1} x^{n+1} \sqrt{1 - x^2} \Big|_0^1 + \frac{1}{n+1} \int_0^1 \frac{x^{n+2}}{\sqrt{1 - x^2}} dx$$

$$= \frac{1}{n+1} \int_0^1 \frac{x^n (x^2 - 1) + x^n}{\sqrt{1 - x^2}} dx = -\frac{1}{n+1} a_n + \frac{1}{n+1} \int_0^1 \frac{x^n}{\sqrt{1 - x^2}} dx$$

$$= -\frac{1}{n+1} a_n - \frac{1}{n+1} \int_0^1 x^{n-1} d(\sqrt{1 - x^2})$$

[☞]此题源自2012年第四届全国大学生数学竞赛非数类考题

$$= -\frac{1}{n+1}a_n - x^{n-1}\sqrt{1-x^2}\Big|_0^1 + \frac{n-1}{n+1}\int_0^1 x^{n-2}\sqrt{1-x^2}dx$$

$$= -\frac{1}{n+1}a_n + \frac{n-1}{n+1}a_{n-2},$$

因此
$$\frac{n+2}{n+1}a_n = \frac{n-1}{n+1}a_{n-2}$$
, 即 $a_n = \frac{n-1}{n+2}a_{n-2}$ $(n=2,3,\cdots)$.

(2) 由于
$$\frac{n-1}{n+2} = \frac{a_n}{a_{n-2}} < \frac{a_n}{a_{n-1}} < \frac{a_n}{a_n} = 1$$
, 由夹逼准则知 $\lim_{n \to \infty} \frac{a_n}{a_{n-1}} = 1$.

20.(本题满分 11 分)

已知向量组 (I)
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 2 \\ a^2 + 3 \end{pmatrix}$, (II) $\beta_1 = \begin{pmatrix} 1 \\ 1 \\ a + 3 \end{pmatrix}$, $\beta_2 = \begin{pmatrix} 0 \\ 2 \\ 1 - a \end{pmatrix}$, $\beta_3 = \begin{pmatrix} 1 \\ 3 \\ a^2 + 3 \end{pmatrix}$. 若向量组 (I) 和向量组 (II) 等价, 求 a 的取值, 并将 β_3 用 $\alpha_1, \alpha_2, \alpha_3$ 线性表示.

解: 记 $A = (\alpha_1, \alpha_2, \alpha_3)$, $B = (\beta_1, \beta_2, \beta_3)$, 由于向量组向量组 (I) 和向量组 (II) 等价, 所以 r(A) = r(B) = r(A, B). 对矩阵 (A, B) 作初等行变换得

$$(A,B) = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 2 & 1 & 2 & 3 \\ 4 & 4 & a^2 + 3 & a + 3 & 1 - a & a^2 + 3 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} 1 & 0 & 2 & 1 & 2 & 3 \\ 0 & 1 & -1 & 0 & -2 & -2 \\ 0 & 4 & a^2 - 5 & a - 1 & -7 - a & a^2 - 9 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} 1 & 0 & 2 & 1 & 2 & 3 \\ 0 & 1 & -1 & 0 & -2 & -2 \\ 0 & 0 & a^2 - 1 & a - 1 & 1 - a & a^2 - 1 \end{pmatrix}.$$

因此当 a = 1 时, r(A) = r(B) = r(A, B) = 2, 两个向量组等价. 当 a = -1 时, $r(A) = 2 \neq r(A, B) = 3$, 此时两个向量组不等价. 当 $a \neq \pm 1$ 时, r(A) = r(B) = 3, 两个向量组等价. 因此, 当且仅当 $a \neq -1$ 时, 两个向量组等价.

令
$$\beta_3 = x_1 \alpha_1 + x_2 \alpha_2 + x_3 \alpha_3$$
, 当 $a = 1$ 时, 由初等行变换得 $(A, \beta_3) \rightarrow \begin{pmatrix} 1 & 0 & 2 & 3 \\ 0 & 1 & -1 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$, 解得 $\beta_3 = (3-2k)\alpha_1 + (-2+k)\alpha_2 + k\alpha_3, k \in \mathbb{R}$.

当
$$a \neq \pm 1$$
 时, $(A, \beta_3) \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$, 此时有 $\beta_3 = \alpha_1 - \alpha_2 + \alpha_3$.

21.(本题满分 11 分) 已知矩阵
$$\mathbf{A} = \begin{pmatrix} -2 & -2 & 1 \\ 2 & x & -2 \\ 0 & 0 & -2 \end{pmatrix}$$
 与 $\mathbf{B} = \begin{pmatrix} 2 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & y \end{pmatrix}$ 相似.

- (1)求x, y;
- (2) 求可逆矩阵 P 使得 $P^{-1}AP = B$.
- 解: (1) 由相似矩阵的性质可得

$$\begin{cases} |A| = |B| \\ \operatorname{tr}(A) = \operatorname{tr}(B) \end{cases} \Rightarrow \begin{cases} 4x - 8 = -2y \\ -2 + x - 2 = 2 - 1 + y \end{cases},$$

解得 x = 3, y = -2.

(2) **B** 是上三角矩阵, 因此 A, B 的特征值均为 2, -1, -2.

对矩阵 \boldsymbol{B} , 当 $\lambda_1 = 2$ 时, 由方程 $(2\boldsymbol{E} - \boldsymbol{B})\boldsymbol{x} = \boldsymbol{0}$ 可得 λ_1 的一个特征向量 $\xi_1 = (1,0,0)^{\mathrm{T}}$; 当 $\lambda_2 = -1$ 时, 由方程 $(-\boldsymbol{E} - \boldsymbol{B})\boldsymbol{x} = \boldsymbol{0}$ 可得 λ_2 的一个特征向量 $\xi_1 = (-1,3,0)^{\mathrm{T}}$; 当 $\lambda_3 = -2$ 时, 由方程 $(-2\boldsymbol{E} - \boldsymbol{B})\boldsymbol{x} = \boldsymbol{0}$ 可得 λ_3 的一个特征向量 $\xi_1 = (0,0,1)^{\mathrm{T}}$.

取
$$P_1 = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, 则 $P_1^{-1}BP_1 = \text{diag}\{2, -1, -2\}$.

同理对矩阵 A,也可求出一组线性无关特征向量,取 $P_2=\begin{pmatrix} -1 & -2 & -1\\ 2 & 1 & 2\\ 0 & 0 & 4 \end{pmatrix}$,则 $P_2^{-1}AP_2=$ diag $\{2,-1,-2\}$. 故

$$P_1^{-1}BP_1 = P_2^{-1}AP_2 \Rightarrow (P_2P_1^{-1})^{-1}A(P_2P_1^{-1}) = B,$$

因此当取

$$\mathbf{P} = \mathbf{P}_2 \mathbf{P}_1^{-1} = \begin{pmatrix} -1 & -2 & -1 \\ 2 & 1 & 2 \\ 0 & 0 & 4 \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & -1 & -1 \\ 2 & 1 & 2 \\ 0 & 0 & 4 \end{pmatrix}$$

时,则有 $P^{-1}AP = B$.

22.(本题满分 11 分)

设随机变量 X 与 Y 相互独立, X 服从参数为 1 的指数分布, Y 的概率分布为 P(Y = -1) = p, P(Y = 1) = 1 - p(0 . 令 <math>Z = XY.

- (1) 求 Z 的概率密度:
- (2) p 为何值时, X 与 Z 不相关;
- (3) *X* 与 *Z* 是否相互独立?

解: (1) X 的分布函数为 $F_X(x) = \begin{cases} 1 - e^{-x}, & x > 0 \\ 0, & x \leq 0 \end{cases}$. 由 X, Y 的独立性可得 Z 的分布函数

$$F_{Z}(z) = P(Z \le z) = P(XY \le z)$$

$$= P(XY \le z | Y = -1) P(Y = -1) + P(XY \le z | Y = 1) P(Y = 1)$$

$$= pP(-X \le z | Y = -1) + (1 - p) P(X \le z | Y = 1)$$

$$= pP(X \ge -z) + (1 - p)P(X \le z)$$

$$= p(1 - F_X(-z)) + (1 - p)F_X(z) = \begin{cases} pe^{z}, & z \le 0\\ 1 + (1 - p)e^{-z}, & z > 0 \end{cases}$$

因此 Z 的概率密度为 $f_Z(z) = F_Z'(z) = \begin{cases} p e^z, & z \leq 0 \\ (1-p)e^{-z}, & z > 0 \end{cases}$

(2) 由条件可得

$$\operatorname{Cov}(X,Z) = E(XZ) - EX \cdot EZ = EX^2 \cdot EY - (EX)^2 \cdot EY = DX \cdot EY = 1 - 2p,$$

因此当 $p = \frac{1}{2}$ 时, $\operatorname{Cov}(X,Z) = 0$, 即 $\rho_{XZ} = 0$. 因此 $p = \frac{1}{2}$ 时, X 与 Z 不相关.

(3) 由 (2) 可知当 $p \neq \frac{1}{2}$ 时, X 和 Z 是相关的, 从而不独立. 而当 $p = \frac{1}{2}$ 时, 只需要注意到事件 $\left\{X \leqslant \frac{1}{2}\right\} \subset \left\{Z \leqslant \frac{1}{2}\right\}$, 所以

$$P\left(X\leqslant\frac{1}{2},Z\leqslant\frac{1}{2}\right)=P\left(X\leqslant\frac{1}{2}\right)\neq P\left(X\leqslant\frac{1}{2}\right)P\left(Z\leqslant\frac{1}{2}\right),$$

因此对任意 $p \in (0,1), X, Z$ 不独立.

23.(本题满分 11 分)

设总体 X 的概率密度为

$$f(x,\sigma^2) = \begin{cases} \frac{A}{\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, & x \geqslant \mu \\ 0, & x < \mu \end{cases},$$

μ 是已知参数, σ > 0 是未知参数, A 是常数. X_1, X_2, \dots, X_n 是来自总体 X 的简单随机样本.

- (1)求A;
- (2) 求 σ^2 的最大似然估计量.
- **解:** (1) 由概率密度的归一性可知 $\int_{-\infty}^{+\infty} f(x) dx = 1$, 即

$$\int_{\mu}^{+\infty} \frac{A}{\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = \frac{A}{\sigma} \int_{0}^{+\infty} e^{-\frac{t^2}{2\sigma^2}} dt$$

$$= \frac{\sqrt{2\pi}A}{2} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{t^2}{2\sigma^2}} dt = A\sqrt{\frac{\pi}{2}} = 1,$$

得
$$A = \sqrt{\frac{2}{\pi}}$$
.

(2) 设样本 X_1, X_2, \cdots, X_n 对应的观测值为 x_1, x_2, \cdots, x_n ,则似然函数

$$L(\sigma^{2}) = \prod_{i=1}^{n} f(x_{i}; \sigma^{2}) = \begin{cases} \prod_{i=1}^{n} \sqrt{\frac{2}{\pi}} \frac{1}{\sigma} e^{-\frac{(x_{i}-\mu)^{2}}{2\sigma^{2}}}, & x_{1}, x_{2} \cdots, x_{n} \geqslant \mu \\ 0, & \text{ #.} \end{cases}$$

当
$$x_1, x_2, \dots, x_n \ge \mu$$
 时,取对数 $\ln L(\sigma^2) = \sum_{i=1}^n \left[\ln \sqrt{\frac{2}{\pi}} - \frac{1}{2} \ln \sigma^2 - \frac{(x_i - \mu)^2}{2\sigma^2} \right]$, 令

$$\frac{\mathrm{d}\ln L\left(\sigma^{2}\right)}{\mathrm{d}\sigma^{2}} = \sum_{i=1}^{n} \left[-\frac{1}{2\sigma^{2}} + \frac{(x_{i} - \mu)^{2}}{2\sigma^{4}} \right] = -\frac{n}{2\sigma^{2}} + \frac{\sum_{i=1}^{n} (x_{i} - \mu)^{2}}{2\sigma^{4}} = 0,$$

解得
$$\sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2$$
, 因此 σ^2 的最大似然估计量为 $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2$.

第 15 章 2020 年考研数学三

一、选择题、 $1 \sim 8$ 题、每题 4 分、共 32 分。

1.
$$\lim_{x \to a} \frac{f(x) - a}{x - a} = b, \quad \lim_{x \to a} \frac{\sin f(x) - \sin a}{x - a} =$$
A.
$$b \sin a$$
B.
$$b \cos a$$
C.
$$b \sin f(a)$$
D.
$$b \cos f(a)$$

解: 利用拉格朗日中值定理得

$$\lim_{x \to a} \frac{\sin f(x) - \sin a}{x - a} = \lim_{x \to a} \cos \xi \frac{f(x) - f(a)}{x - a} = b \cos a.$$

2. 函数
$$f(x) = \frac{e^{\frac{1}{x-1}} \ln|1+x|}{(e^x-1)(x-2)}$$
 的第二类间断点的个数为
A. 1 B. 2 C. 3 D. 4

- **解:** 显然, 所有的间断点为 x = -1, 0, 1, 2, 其中 x = -1, 1, 2 都是无穷间断点, 而 x = 0 则是可去间断点, 选 C.
- 3. 设奇函数 f(x) 在 $(-\infty, +\infty)$ 上有连续导数,则
 A. $\int_0^x [\cos f(t) + f'(t)] dt$ 是奇函数
 B. $\int_0^x [\cos f(t) + f'(t)] dt$ 是偶函数
 C. $\int_0^x [\cos f'(t) + f(t)] dt$ 是奇函数
 D. $\int_0^x [\cos f'(t) + f(t)] dt$ 是偶函数
- **解:** 易知 $\cos f(x)$ 与 f'(x) 都是偶函数, 所以 $\cos f(x) + f'(x)$ 是偶函数, 那么 $\int_0^x [\cos f(t) + f'(t)] dt$ 是奇函数, 选 A.
- 4. 已知幂级数 $\sum_{n=1}^{\infty} na_n(x-2)^n$ 的收敛区间为 (-2,6),则 $\sum_{n=1}^{\infty} a_n(x+1)^{2n}$ 的收敛区间为 () A. (-2,6) B. (-3,1) C. (-5,3) D. (-17,15) **解:** 由题意知幂级数 $\sum_{n=1}^{\infty} na_n x^{n-1}$ 的收敛半径为 4, 那么它逐项积分以后的幂级数 $\sum_{n=1}^{\infty} a_n x^n$
- 解: 由题意知幂级数 $\sum_{n=1}^{\infty} na_n x^{n-1}$ 的收敛半径为 4, 那么它逐项积分以后的幂级数 $\sum_{n=1}^{\infty} a_n x^n$ 的收敛半径仍为 4. 那么幂级数 $\sum_{n=1}^{\infty} a_n (x+1)^{2n}$ 的收敛区间满足 $(x+1)^2 < 4 \Rightarrow -3 < x < 1$, 选 B.
- 5. 设四阶矩阵 $A = (a_{ij})$ 不可逆, a_{12} 的代数余子式 $A_{12} \neq 0$, $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 为矩阵 A 的列向量组, A^* 为 A 的伴随矩阵, 则 $A^*x = 0$ 的通解为

$$A. x = k_1 \alpha_1 + k_2 \alpha_2 + k_3 \alpha_3$$

$$B. x = k_1 \alpha_1 + k_2 \alpha_2 + k_3 \alpha_4$$

C.
$$x = k_1 \alpha_1 + k_2 \alpha_3 + k_3 \alpha_4$$

$$D. x = k_1 \alpha_2 + k_2 \alpha_3 + k_3 \alpha_4$$

- **解:** 因为 A 不可逆, 所以 $A^*A = |A|E = 0$, 因此 A 的列向量组 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 都是 $A^*x = 0$ 的解, 且 $r(A^*) \le 1$. 而 $A_{12} \ne 0$ 说明 $A^* \ne 0$. 且 A 中对应的三列 $\alpha_1, \alpha_3, \alpha_4$ 是线性无关的, 即 $\alpha_1, \alpha_3, \alpha_4$ 是 $A^*x = 0$ 的基础解系, 因此正确答案选 C.
- 6. 设 A 为三阶矩阵, α_1 , α_2 为 A 的属于特征值 1 的线性无关的特征向量, α_3 为 A 的属于特征值 -1 的特征向量, 则满足 $P^{-1}AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ 的可逆矩阵 P 可为

()

A.
$$(\alpha_1 + \alpha_3, \alpha_2, -\alpha_3)$$

B.
$$(\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_2, -\boldsymbol{\alpha}_3)$$

C.
$$(\alpha_1 + \alpha_3, -\alpha_3, \alpha_2)$$

D.
$$(\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2, -\boldsymbol{\alpha}_3, \boldsymbol{\alpha}_2)$$

解: 同一个特征值对应的特征向量的非零线性组合仍然是这个特征值对应的特征向量,于 是

$$A(\alpha_1 + \alpha_2, -\alpha_3, \alpha_2) = (\alpha_1 + \alpha_2, \alpha_3, \alpha_2) = (\alpha_1 + \alpha_2, -\alpha_3, \alpha_2) \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

因此正确答案选 D.

7. 设 A, B, C 为三个随机事件,且

解: 首先所求的概率为 $P(A\bar{B}\bar{C}) + P(\bar{A}B\bar{C}) + P(\bar{A}\bar{B}C)$, 其中

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(AB) - P(AC) - P(BC) - P(ABC) = \frac{7}{12},$$

$$P(A\overline{B}\overline{C}) = P(\overline{B}\overline{C}) - P(\overline{A}\overline{B}\overline{C}) = P(\overline{B} \cup C) - P(\overline{A} \cup B \cup C)$$

$$= 1 - P(B \cup C) - [1 - P(A \cup B \cup C)] = P(A \cup B \cup C) - P(B \cup C)$$

$$= \frac{7}{12} - P(B) - P(C) + P(BC) = \frac{1}{6},$$

$$P(\overline{A}B\overline{C}) = \frac{7}{12} - P(A) - P(C) + P(AC) = \frac{1}{6},$$

$$P(\overline{A}BC) = \frac{7}{12} - P(A) - P(B) + P(AB) = \frac{1}{12},$$

因此 A, B, C 中恰有一个事件发生的概率为 $\frac{1}{6} + \frac{1}{6} + \frac{1}{12} = \frac{5}{12}$, 选 D.

8. 设二维随机变量 (X,Y) 服从 $N\left(0,0;1,4;-\frac{1}{2}\right)$, 则下列服从标准正态分布且与 X 独立的是

A.
$$\frac{\sqrt{5}}{5}(X+Y)$$
 B. $\frac{\sqrt{5}}{5}(X-Y)$ C. $\frac{\sqrt{3}}{3}(X+Y)$ D. $\frac{\sqrt{3}}{3}(X-Y)$

ᢁ 解: 首先有 (X,Y) 服从二维正态部分, $X \sim N(0,1), Y \sim N(0,4)$. 而

$$(X, X + Y) = (X, Y) \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} \neq 0,$$

所以 (X, X + Y) 也服从二维正态分布. 且 E(X + Y) = 0, $D(X + Y) = DX + DY + 2\rho_{XY}\sqrt{DX}\sqrt{DY} = 3$, 所以 $X + Y \sim N(0,3)$, 于是 $\frac{\sqrt{3}}{3}(X + Y) \sim N(0,1)$. 又

$$Cov(X, X + Y) = Cov(X, X) + Cov(X, Y) = DX + \rho_{XY} \sqrt{DX} \sqrt{DY} = 0,$$

因此 $X 与 \frac{\sqrt{3}}{3}(X+Y)$ 独立, 选 C. 而 $Cov(X,X-Y) \neq 0$, 所以 X,X-Y 不独立.

- 二、填空题, $9 \sim 14$ 题, 每题 4 分, 共 24 分.
- 9. 设 $z = \arctan[xy + \sin(x + y)]$, 则 $dz|_{(0,\pi)} =$ _____.
- 解: 直接计算得

$$\frac{\partial z}{\partial x} = \frac{y + \cos(x + y)}{1 + [xy + \sin(x + y)]^2}, \quad \frac{\partial z}{\partial y} = \frac{x + \cos(x + y)}{1 + [xy + \sin(x + y)]^2},$$

于是
$$\frac{\partial z}{\partial x}\Big|_{(0,\pi)} = \pi - 1$$
, $\frac{\partial z}{\partial x}\Big|_{(0,\pi)} = -1$, 因此 $\mathrm{d}z\Big|_{(0,\pi)} = (\pi - 1)\,\mathrm{d}x - \mathrm{d}y$.

- 10.曲线 $x + y + e^{2xy} = 0$ 点 (0, -1) 处的切线方程为_____.
- **解:** 原方程两边对 x 求导得 $1 + y' + e^{2xy}(2y + 2xy') = 0$, 代入 x = 0, y = -1 得 y' = 1, 所以曲线在 (0, -1) 处的切线方程为 y = x 1.
- 11.设产量为 Q,单价为 P,厂商成本函数为 C(Q) = 100 + 13 Q,需求函数为 $Q(P) = \frac{800}{P+3} 2$,则厂商取得最大利润时的产量为_____.
- **解:** 由 $Q = \frac{800}{P+3} 2$ 可知 $P = \frac{800}{Q+2} 3$, 则利润函数为

$$L(Q) = \left(\frac{800}{Q+2} - 3\right)Q - (100 + 13Q).$$

令
$$\frac{\mathrm{d}L(Q)}{\mathrm{d}Q} = \frac{1600}{(Q+2)^2} - 16 = 0 \Rightarrow Q = 8$$
, 且 $\frac{\mathrm{d}^2L(Q)}{\mathrm{d}Q^2} = -\frac{3200}{(Q+2)^3} < 0$, 因此 $Q = 8$ 时, 取得最大利润.

- 12.设平面区域 $D = \left\{ (x, y) \middle| \frac{x}{2} \le y \le \frac{1}{1 + x^2}, 0 \le x \le 1 \right\}$, 则 D 绕 y 轴旋转所成旋转体的体积为______.

$$\begin{vmatrix} a & 0 & -1 & 1 \\ 0 & a & 1 & -1 \\ -1 & 1 & a & 0 \\ 1 & -1 & 0 & a \end{vmatrix} = \underline{\qquad}$$

解:利用行列式的行列变换得

$$\begin{vmatrix} a & 0 & -1 & 1 \\ 0 & a & 1 & -1 \\ -1 & 1 & a & 0 \\ 1 & -1 & 0 & a \end{vmatrix} = \begin{vmatrix} a & 0 & -1 & 1 \\ 0 & a & 1 & -1 \\ -1 & 1 & a & 0 \\ 0 & 0 & a & a \end{vmatrix} = \begin{vmatrix} 0 & a & -1 + a^2 & 1 \\ 0 & a & 1 & -1 \\ -1 & 1 & a & 0 \\ 0 & 0 & a & a \end{vmatrix}$$
$$= - \begin{vmatrix} a & -1 + a^2 & 1 \\ a & 1 & -1 \\ 0 & a & a \end{vmatrix} = - \begin{vmatrix} a & a^2 - 2 & 1 \\ a & 2 & -1 \\ 0 & 0 & a \end{vmatrix} = a^4 - 4a^2.$$

14.随机变量 X 的分布律为 $P(X = k) = \frac{1}{2^k}, k = 1, 2, \dots, Y$ 为 X 被 3 除的余数,则 EY =______.

解: 由题意知 Y 的取值为 0, 1, 2, 且

$$P(Y = 0) = \sum_{n=1}^{\infty} P(X = 3n) = \sum_{n=1}^{\infty} \frac{1}{8^n} = \frac{1}{7},$$

$$P(Y = 1) = \sum_{n=0}^{\infty} P(X = 3n + 1) = \sum_{n=1}^{\infty} \frac{1}{2} \frac{1}{8^n} = \frac{4}{7},$$

$$P(Y = 2) = \sum_{n=0}^{\infty} P(X = 3n + 2) = \sum_{n=1}^{\infty} \frac{1}{4} \frac{1}{8^n} = \frac{2}{7}.$$

所以 $EY = 0 \times \frac{1}{7} + 1 \times \frac{4}{7} + 2 \times \frac{2}{7} = \frac{8}{7}$.

三、解答题, 15~23题, 共94分.

15.(本题满分 10 分)

设 a,b 为常数, 且当 $n \to \infty$ 时, $\left(1 + \frac{1}{n}\right)^n - e$ 与 $\frac{b}{n^a}$ 为等价无穷小, 求 a,b 的值.

解:直接利用等价无穷小得

$$\left(1 + \frac{1}{n}\right)^n - e = e^{n\ln\left(1 + \frac{1}{n}\right)} - e = e\left(e^{n\ln\left(1 + \frac{1}{n}\right) - 1} - 1\right)$$

$$\sim e\left[n\ln\left(1 + \frac{1}{n}\right) - 1\right] = e\left[n\left(\frac{1}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)\right) - 1\right]$$

$$= -\frac{e}{2n} + o\left(\frac{1}{n}\right) \sim -\frac{e}{2n}.$$

因此 $a=1, b=-\frac{\mathrm{e}}{2}$.

16.(本题满分 10 分)

求函数 $f(x, y) = x^3 + 8y^3 - xy$ 的极值.

解:由
$$\begin{cases} \frac{\partial f}{\partial x} = 3x^2 - y = 0\\ \frac{\partial f}{\partial y} = 24y^2 - x = 0 \end{cases}$$
 得 $(x, y) = (0, 0)$ 或 $\left(\frac{1}{6}, \frac{1}{12}\right)$. 进一步有

$$A = \frac{\partial^2 f}{\partial x^2} = 6x, B = \frac{\partial^2 f}{\partial x \partial y} = -1, \frac{\partial^2 f}{\partial y^2} = 48y.$$

于是当 (x,y)=(0,0) 时, A=0, B=-1, C=0, 那么 $AC-B^2=-1<0$, 所以 (0,0) 不是极值点; 当 $(x,y)=\left(\frac{1}{6},\frac{1}{12}\right)$ 时, A=1, B=-1, C=4, 则 $AC-B^2=3>0$ 且 A>0, 所以 $\left(\frac{1}{6},\frac{1}{12}\right)$ 为极小值点, 且极小值 $f\left(\frac{1}{6},\frac{1}{12}\right)=-\frac{1}{216}$.

17.(本题满分 10 分)

设函数 y = f(x) 满足 y'' + 2y' + 5y = 0, 且 f(0) = 1, f'(0) = -1.

(1) 求 f(x);

(2)
$$\mbox{if } a_n = \int_{n\pi}^{+\infty} f(x) \, \mathrm{d}x, \, \mbox{if } \sum_{n=1}^{\infty} a_n.$$

- **解:** (1) 微分方程 y'' + 2y' + 5y = 0 的特征方程为 $\lambda^2 + 2\lambda + 5 = 0$, 特征根为 $\lambda_{1,2} = -1 \pm 2i$, 通解为 $y = e(C_1 \cos 2x + C_2 \sin 2x)$, 代入 f(0) = 0, f'(0) = -1 得 $C_1 = 1$, $C_2 = 0$, 因此 $f(x) = e^{-x} \cos 2x$.
 - (2) 直接计算得

$$a_n = \int_{n\pi}^{+\infty} f(x) \, \mathrm{d}x = \frac{1}{5} \left(-e^{-x} \cos 2x + 2e^{-x} \sin 2x \right) \Big|_{n\pi}^{+\infty} = \frac{1}{5} e^{-n\pi}.$$

$$\text{Fig. } \sum_{n=1}^{\infty} a_n = \frac{1}{n} \sum_{n=1}^{\infty} e^{-n\pi} = \frac{1}{5(e^{\pi} - 1)}.$$

18.(本题满分 10 分)

设区域
$$D = \left\{ (x, y) \middle| x^2 + y^2 \leqslant 1, y \geqslant 0 \right\}$$
, 连续函数 $f(x, y)$ 满足

$$f(x, y) = y\sqrt{1 - x^2} + x \iint\limits_{D} f(x, y) dx dy,$$

计算
$$\iint_{\mathbf{R}} x f(x, y) dx dy$$
.

解: 令 $\iint_D f(x,y) dx dy = A$, 则 $f(x,y) = y\sqrt{1-x^2} + Ax$, 两边在区域 D 上积分可得

$$A = \iint\limits_D f(x, y) \, dx \, dy = \iint\limits_D y \sqrt{1 - x^2} \, dx \, dy + \iint\limits_D Ax \, dx \, dy$$

$$= 2 \iint_{D_1} y \sqrt{1 - x^2} \, dx \, dy = 2 \int_0^1 \sqrt{1 - x^2} \, dx \int_0^{\sqrt{1 - x^2}} y \, dy$$
$$= \int_0^1 (1 - x^2)^{\frac{3}{2}} \, dx = \int_0^{\frac{\pi}{2}} \cos^4 t \, dt = \frac{3\pi}{16}.$$

其中 D_1 为 D 在第一象限的部分. 于是 $f(x,y) = y\sqrt{1-x^2} + \frac{3\pi}{16}x$, 所以

$$\iint_{D} x f(x, y) \, dx \, dy = \iint_{D} x \left(y \sqrt{1 - x^{2}} + \frac{3\pi}{16} x \right) \, dx \, dy$$

$$= \frac{3\pi}{16} \iint_{D} x^{2} \, dx \, dy = \frac{3\pi}{16} \int_{0}^{\pi} d\theta \int_{0}^{1} r^{3} \cos^{2}\theta \, dr$$

$$= \frac{3\pi^{2}}{128}.$$

19.(本题满分 10 分)

设函数 f(x) 在区间 [0,2] 上具有连续导数, f(0) = f(2) = 0, $M = \max_{x \in [0,2]} |f(x)|$, 证明:

- (1) 存在 $\xi \in (0,2)$, 使得 $|f'(\xi)| \ge M$;
- (2) 若对任意 $x \in (0,2), |f'(x)| \leq M, 则 M = 0.$
- **证明:** (1) 设 $M = \max_{x \in [0,2]} |f(x)| = |f(x_0)|$, 由拉格朗日中值定理知存在 $\xi_1 \in (0,x_0), \xi_2 \in (x_0,2)$, 使得

$$|f'(\xi_1)| = \left| \frac{f(x_0) - f(0)}{x - x_0} \right| = \frac{M}{x_0}, |f'(\xi_2)| = \left| \frac{f(2) - f(x_0)}{2 - x_0} \right| = \frac{M}{2 - x_0}.$$

注意到

$$|f'(\xi_1)| + |f'(\xi_2)| = \frac{M}{x_0} + \frac{M}{2 - x_0} \geqslant \frac{2M}{\sqrt{x_0(2 - x_0)}} \geqslant M,$$

那么取 $|f'(\xi)| = \max\{|f'(\xi_1)|, |f'(\xi_2)|\}$ 时, 必有 $|f'(\xi)| \ge M$.

(2) 由条件有 $|f'(\xi_1)| = \frac{M}{x_0} \le M$, 因此 $x_0 \ge 1$; $|f'(\xi_2)| = \frac{M}{2-x_0} \le M$, 因此 $x_0 \le 1$. 于是只能 $x_0 = 1$, 即 |f(1)| = M.

$$M = |f(1) - f(0)| = \left| \int_0^1 f'(x) \, \mathrm{d}x \right| \le \int_0^1 |f'(x)| \, \mathrm{d}x \le \int_0^1 M \, \mathrm{d}x = M,$$

等号成立当且切仅当 $|f'(x)| \equiv M, x \in [0,1]$. 而 f(x) 在 x = 1 处取得极值, 由费马定理可知 f'(1) = 0, 因此 M = 0.

20.(本题满分 11 分)

设二次型
$$f(x_1, x_2) = x_1^2 - 4x_1x_2 + 4x_2^2$$
 经过正交变换 $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \mathbf{Q} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$ 化为二次型 $g(y_1, y_2) = ay_1^2 + 4y_1y_2 + by_2^2$, 其中 $a \ge b$.

- (1) 求 a,b 的值;
- (2) 求正交矩阵 Q.
- 解: (1) 记 $\mathbf{A} = \begin{pmatrix} 1 & -2 \\ -2 & 4 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} a & 2 \\ 2 & b \end{pmatrix}$, 则 $\mathbf{Q}^{\mathrm{T}} \mathbf{A} \mathbf{Q} = \mathbf{B}$, \mathbf{Q} 为正交矩阵. 因为 \mathbf{A} , \mathbf{B} 相似, 所以 $\begin{cases} \operatorname{tr}(\mathbf{A}) = \operatorname{tr}(\mathbf{B}) \\ |\mathbf{A}| = |\mathbf{B}| \end{cases} \Rightarrow \begin{cases} 1 + 4 = a + b \\ 1 \times 4 = ab \end{cases}$, $a \ge b \Rightarrow a = 4, b = 1$.

(2) 易知 A, B 的特征值均为 $\lambda_1 = 0$, $\lambda_2 = 5$. 当 $\lambda_1 = 0$ 时, 方程组 (0E - A)x = 0 的基础解系为 $\alpha_1 = (2, 1)^T$, 方程组 (0E - B)x = 0 的基础解系为 $\beta_1 = (1, -2)^T$; 当 $\lambda_2 = 5$ 时, 方程组 (5E - A)x = 0 的基础解系为 $\alpha_2 = (1, -2)^T$, 方程组 (5E - B)x = 0 的基础解系为 $\beta_2 = (2, 1)^T$. 令 $P_1 = \begin{pmatrix} 2 & 1 \\ 1 & -2 \end{pmatrix}$, $P_2 = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$, 则

$$P_1^{-1}AP_1 = P_2^{-1}BP_2 = \begin{pmatrix} 0 \\ 5 \end{pmatrix}.$$

所以 $B = P_2 P_1^{-1} A P_1 P_2^{-1} = (P_1 P_2^{-1})^{-1} A P_1 P_2^{-1}$, 且

$$P_1 P_2^{-1} = \begin{pmatrix} 2 & 1 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}^{-1} = \frac{1}{5} \begin{pmatrix} 4 & -3 \\ -3 & 4 \end{pmatrix}$$

是正交矩阵, 因此 $Q = \frac{1}{5} \begin{pmatrix} 4 & -3 \\ -3 & 4 \end{pmatrix}$.

21.(本题满分 11 分)

设 A 为二阶矩阵, $P = (\alpha, A\alpha)$, 其中 α 是非零向量, 且不是 A 的特征向量.

- (1) 证明: P 是可逆矩阵;
- (2) 若 $A^2\alpha + A\alpha 6\alpha = 0$, 求 $P^{-1}AP$, 并判断 A 是否相似于对角矩阵.
- **解:** (1) 由题意 α 是非零向量, $A\alpha \neq k\alpha$, 所以 $A\alpha, \alpha$ 线性无关, 即 $P = (A\alpha, \alpha)$ 为可逆矩阵.

$$(2) AP = A(\alpha, A\alpha) = (A\alpha, A^{2}\alpha) = (A\alpha, 6\alpha - A\alpha) = (\alpha, A\alpha) \begin{pmatrix} 0 & 6 \\ 1 & -1 \end{pmatrix} = P \begin{pmatrix} 0 & 6 \\ 1 & -1 \end{pmatrix},$$

所以 $P^{-1}AP = \begin{pmatrix} 0 & 6 \\ 1 & -1 \end{pmatrix}$, 即 $A = B = \begin{pmatrix} 0 & 6 \\ 1 & -1 \end{pmatrix}$ 相似. 不难知 B 有两个不同的特征值 $\lambda_1 = 2, \lambda_2 = -3$, 因此 A 的特征值也是 2, -3, 所以 A 可以相似对角化.

22.(本题满分 11 分)

设二维随机变量 (X,Y) 在区域 $D = \{(x,y): 0 < y < \sqrt{1-x^2}\}$ 上服从均匀分布,且

$$Z_1 = \begin{cases} 1, & X - Y > 0 \\ 0, & X - Y \leqslant 0 \end{cases}, \quad Z_2 = \begin{cases} 1, & X + Y > 0 \\ 0, & X + Y \leqslant 0 \end{cases}.$$

- (1) 求二维随机变量 (Z_1, Z_2) 的概率分布;
- (2) 求 Z_1, Z_2 的相关系数.

解: (1) 如图, 不难得知

第22题图

$$P(Z_1 = 0, Z_2 = 0) = P(X - Y \le 0, X + Y \le 0) = P(Y \ge X, Y \le -X) = \frac{1}{4},$$

$$P(Z_1 = 0, Z_2 = 1) = P(X - Y \le 0, X + Y > 0) = P(Y \ge X, Y > -X) = \frac{1}{2},$$

$$P(Z_1 = 1, Z_2 = 0) = P(X - Y > 0, X + Y \le 0) = P(Y < X, Y \le -X) = 0,$$

$$P(Z_1 = 1, Z_2 = 1) = P(X - Y > 0, X + Y > 0) = P(Y < X, Y > -X) = \frac{1}{4}.$$

因此 (Z_1, Z_2) 的联合分布为

Z_1 Z_2	0	1	
0	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{3}{4}$
1	0	$\frac{1}{4}$	$\frac{1}{4}$
	$\frac{1}{4}$	$\frac{3}{4}$	

(2) 由 (Z_1, Z_2) 的联合分布律可得边缘分布律为

$$Z_1 \sim \begin{pmatrix} 0 & 1 \\ \frac{3}{4} & \frac{1}{4} \end{pmatrix}, \quad Z_2 \sim \begin{pmatrix} 0 & 1 \\ \frac{1}{4} & \frac{3}{4} \end{pmatrix}.$$

于是 $E(Z_1) = \frac{1}{4}$, $E(Z_2) = \frac{3}{4}$, $D(Z_1) = D(Z_2) = \frac{3}{16}$, $E(Z_1Z_2) = \frac{1}{4}$, 因此 Z_1 , Z_2 的相关系数为 $\rho_{Z_1,Z_2} = \frac{\text{Cov}(Z_1,Z_2)}{\sqrt{D(Z_1)}\sqrt{D(Z_2)}} = \frac{E(Z_1Z_2) - E(Z_1)E(Z_2)}{\frac{3}{16}} = \frac{1}{3}.$

23.(本题满分 11 分)

设某种元件的使用寿命 T 的分布函数为

$$F(t) = \begin{cases} 1 - e^{-\left(\frac{t}{\theta}\right)^m}, & t > 0\\ 0, & \text{ 其他.} \end{cases}$$

其中 θ , m 为参数且大于零.

- (1) 求概率 P(T > t) 与 P(T > s + t | T > s), 其中 s > 0, t > 0;
- (2) 任取 n 个这种元件做寿命试验, 测得他们的寿命分别为 t_1, t_2, \dots, t_n , 若 m 已知, 求 θ 的最大似然估计值 $\hat{\theta}$.
- **解:** (1) 当 s > 0, t > 0 时

$$P(T > t) = 1 - F(t) = e^{-\left(\frac{t}{\theta}\right)^{m}},$$

$$P(T > s + t | T > s) = \frac{P(T > s + t, T > s)}{P(T > s)}$$

$$= \frac{P(T > s + t)}{P(T > s)} = \frac{e^{-\left(\frac{s + t}{\theta}\right)^{m}}}{e^{-\left(\frac{s}{\theta}\right)^{m}}} = e^{-\frac{(s + t)^{m} - s^{m}}{\theta^{m}}}.$$

(2) 总体 T 的概率密度为 $f(t) = \begin{cases} e^{-\left(\frac{t}{\theta}\right)^m} \frac{mt^{m-1}}{\theta^m}, & t > 0 \\ 0, & \text{其他} \end{cases}$

$$L(\theta) = \prod_{i=1}^{n} f(t_i) = \begin{cases} e^{-\frac{1}{\theta^m} \sum_{i=1}^{n} t^m m^n (t_1 t_2 \cdots t_n)^{m-1} \theta^{-nm}, & t_1, t_2, \cdots, t_n > 0 \\ 0, & \text{ #$dt} \end{cases}.$$

 $\stackrel{\text{def}}{=} t_1, t_2, \cdots, t_n > 0 \text{ iff, } \ln L(\theta) = -\frac{1}{\theta^m} \sum_{i=1}^n t^m + n \ln m + (m-1) \ln(t_1 t_2 \cdots t_n) - n m \ln \theta, \diamondsuit$

$$\frac{\mathrm{d}\ln(\theta)}{\mathrm{d}\theta} = \frac{m}{\theta^{m+1}} \sum_{i=1}^{n} t_i^m - \frac{nm}{\theta} = 0 \Rightarrow \theta = \left(\frac{1}{n} \sum_{i=1}^{n} t_i^m\right)^{\frac{1}{m}},$$

即 θ 的最大似然估计值为 $\hat{\theta} = \left(\frac{1}{n} \sum_{i=1}^{n} t_i^m\right)^{\frac{1}{m}}$.

