

Funkcionalna specifikacija: MVP Aplikacija "National Landfill Watch" Verzija: 1.1

Datum: 22. septembar 2025.

1.0 Uvod i cilj projekta

Cilj ovog dokumenta je da definiše funkcionalne zahteve za MVP veb aplikacije pod nazivom "National Landfill Watch". Aplikacija služi kao javna platforma za podizanje svesti o lokacijama, kao i o klimatskom i lokalnom ekološkom uticaju deponija na teritoriji Republike Srbije. MVP će se fokusirati na prikazivanje podataka prikupljenih tokom studentskog izazova.

2.0 Ciljni korisnici

- 1. **Građani / Šira javnost:** Korisnici koji žele da se informišu o postojanju deponija u svom okruženju i potencijalnim rizicima po zdravlje i kvalitet života.
- Studenti, istraživači, NVO sektor: Korisnici kojima su potrebni centralizovani i vizualizovani podaci o deponijama za dalje analize, izveštavanje i aktivnosti zagovaranja.

3.0 Funkcionalni zahtevi

Aplikacija će se sastojati od tri ključna modula.

3.1 Modul 1: Interaktivna mapa deponija

- Opis: Osnovna komponenta aplikacije koja prikazuje geografsku rasprostranjenost deponija.
- Ciljevi:
 - o FR1.1 Prikaz mape: Aplikacija mora prikazati interaktivnu mapu Srbije (npr. koristeći Leaflet.js, OpenStreetMap ili sličnu biblioteku).
 - o FR1.2 Učitavanje podataka o deponijama: Sistem mora biti u stanju da učita i prikaže lokacije deponija. Svaka deponija treba da bude predstavljena vizuelno prepoznatljivim markerom ili poligonom, u zavisnosti od njenog statusa.
 - o FR1.3 Osnovne kontrole mape: Korisnik mora imati mogućnost zumiranja (zoom in/out) i pomeranja (pan) mape.
 - FR1.4 Legenda mape: Mapa treba da sadrži jednostavnu legendu koja objašnjava simbole za sve tri kategorije deponija:
 - **Divlia deponiia** (npr. crveni marker)
 - Javna nesanitarna deponija (npr. narandžasti marker)
 - Sanitarna deponija (npr. plavi marker)

3.2 Modul 2: Prikaz podataka o deponiji

- Opis: Omogućava korisniku da dobije detaljnije informacije o svakoj pojedinačnoj deponiji.
- Ciljevi:
 - o FR2.1 Interakcija sa markerom: Klikom na marker ili poligon deponije na mapi, mora se otvoriti iskačući prozor (pop-up) ili bočni panel sa informacijama.
 - FR2.2 Sadržaj panela sa informacijama: Panel mora prikazivati sledeće podatke za izabranu deponiju:
 - Naziv ili ID deponije.

- Status: Mora jasno navesti jednu od tri kategorije: "Divlja deponija", "Javna nesanitarna deponija" ili "Sanitarna deponija".
- Procenjena površina (u m² ili hektarima).
- Procenjena količina otpada u m³
- Procenjena godišnja emisija metana (CH4) u tonama.
- Procenjena godišnja emisija u CO2 ekvivalentu (tone CO2eq).

3.3 Modul 3: Procena lokalnog uticaja zagađenja

- Opis: Pruža korisnicima personalizovanu informaciju o potencijalnom uticaju deponija na njihovu neposrednu okolinu.
- Ciljevi:
 - o FR3.1 Unos lokacije: Aplikacija bi trebalo da ima mogućnost selektovanja željene adrese (geolociranje, klik na mapu...)
 - FR3.2 Geolokacija: Aplikacija može da ima opciju "Koristi moju trenutnu lokaciju" koje, uz dozvolu korisnika, koristi geolokacijski API pregledača za određivanje pozicije.
 - FR3.3 Analiza blizine: Nakon selektovanja lokacije, sistem bi trebalo da izračuna udaljenost do najbliže mapirane deponije. Definiše se radijus uticaja (npr. 2 km).
 - FR3.4 Prikaz rezultata analize:
 - Ako je korisnik van radijusa: Prikazati poruku: "Vaša lokacija se ne nalazi u neposrednoj blizini mapiranih deponija."
 - Ako je korisnik unutar radijusa: Prikazati poruku upozorenja: "PAŽNJA: Vaša lokacija se nalazi u radijusu od 2 km od deponije [Naziv deponije], koja je klasifikovana kao."
 - FR3.5 Edukativni sadržaj: Poruka upozorenja mora sadržati link "Saznajte više o potencijalnim uticajima" koji otvara stranicu ili modalni prozor sa opštim informacijama o lokalnim zagađivačima sa deponija (npr. vodonik-sulfid, suspendovane čestice) i njihovim mogućim uticajima na zdravlje. Sadržaj poruke treba da zavisi od procene lokalnog uticaja deponije.

4.0 Nefunkcionalni zahtevi

- NFI Performanse: Mapa i podaci moraju se učitavati brzo, čak i sa nekoliko stotina tačaka. Vreme odziva aplikacije mora biti optimalno.
- NF2 Korisnički interfejs (UI/UX): Interfejs mora biti jednostavan, intuitivan i prilagođen korisnicima koji nisu tehnički potkovani.
- NF3 Prilagodljivost (Responsiveness): Aplikacija mora biti potpuno funkcionalna i pregledna na različitim uređajima (desktop, tablet, mobilni telefon).
- NF4 Tehnološki stek (preporuka):
 - o Mašinsko učenje: Python, Keras/PyTorch.
 - o Frontend: React ili Angular.
 - o Backend: SpringBoot ili .NET za serviranje podataka i API.
 - o **Baza podataka:** PostgreSQL sa PostGIS ekstenzijom za efikasne geoprostorne upite.
 - o Mapa: OpenStreetMap, Leaflet.js ili Mapbox GL JS.

5.0 Podaci

- Geoprostorni podaci o deponijama: Generisani GeoJSON fajl sa poligonima ili tačkama lokacija deponija.
- Atributivni podaci o deponijama: Baza podataka ili JSON fajl koji povezuje ID svake deponije sa njenom površinom, statusom (jedna od tri kategorije) i izračunatim emisijama gasova.
- Statički edukativni sadržaj: Unapred pripremljen tekst o uticajima zagađenja sa deponija na zdravlje.

Dodatne informacije:

Kada precizni podaci ne postoje, cilj nije pronaći tačan broj, već napraviti **naučno utemeljenu i odbranjivu procenu**. Najvažniji deo zadatka je da studenti **jasno dokumentuju svaku pretpostavku** koju su napravili.

1. Kako proceniti početnu godinu deponije (x)?

Pošto za divlje deponije ne postoje zvanični zapisi, jedini pouzdan alat za procenu početne godine je analiza istorijskih satelitskih snimaka.

• Metodologija:

- o Koristiti arhivske snimke: Studenti treba da koriste platforme koje nude pristup istorijskim satelitskim snimcima, kao što su Google Earth Pro (sa funkcijom "istorijski snimci") ili naprednije platforme poput Google Earth Engine.
- o **Vremenska analiza:** Kada lociraju deponiju na najnovijem snimku, treba da se vraćaju unazad kroz vreme, godinu po godinu.
- o Tražiti prve znake aktivnosti: Početna godina (x) se definiše kao godina u kojoj se na snimcima prvi put vide jasni znaci formiranja deponije. To može biti:
 - Prva pojava odloženog otpada.
 - Čišćenje terena ili uklanjanje vegetacije na toj lokaciji.
 - Pojava novih, nerutabanih puteva koji vode do lokacije.
- **Dokumentacija:** Potrebno je zabeležiti: "Na osnovu analize dostupnih satelitskih snimaka, procenjeno je da je deponija počela sa radom približno [godina], jer je to prva godina u kojoj su vidljive promene na terenu."
- Ukoliko ne postoje satelitski snimci na kojima se vidi kada je nastala deponija uzeti za početnu godinu 2005 zbog činjenice da metan 20 godina ima pun emisioni potencijal.

2. Kako proceniti količinu otpada koja se dodaje svake godine (MSWx)?

Ovo je najkompleksniji deo procene. Pošto ne postoje podaci o merenju, potrebno je koristiti kombinaciju podataka sa terena i zvaničnih statističkih podataka.

Metod prosečne stope

Ovaj metod je najdirektniji i oslanja se na ukupnu masu deponije koju su studenti već izračunali.

- 1. Izračunati ukupnu masu deponije (MSWukupno):
 - a. Izračunati površinu deponije sa Sentinel-2 snimaka.
 - b. Proceniti prosečnu **visinu** otpada koristeći Digitalni model elevacije (DEM).

- c. Izračunati **zapreminu** (Površina x Visina).
- d. Izračunati **ukupnu masu** množenjem zapremine sa prosečnom gustinom komunalnog otpada (npr. 0.6 t/m³).
- 2. Izračunati životni vek deponije:
 - a. Životni vek = Tekuća godina Početna godina (x).
- 3. Izračunati prosečnu godišnju stopu:
 - a. MSWx (godišnje) = MSWukupno / Životni vek.
- **4. Primena:** Koristiti ovu **istu, konstantnu vrednost** za MSWx za svaku godinu rada deponije u svojoj FOD jednačini.
- Opravdanje: Ova metoda pretpostavlja da je deponija rasla ravnomerno, što je razumna polazna tačka kada drugi podaci ne postoje.