DEPARTMENT OF MATHEMATICS

Indian Institute of Technology Guwahati

MA 224 (Real Analysis)

Time: 10 hours

20th June, 2020

Maximum marks:

50

End-Semester Examination

Answers without proper justification will fetch zero marks

- 1. Prove or disprove the following statements:
 - (a) If $f: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable then for $a, b \in \mathbb{R}^n$, there is a linear map $T: \mathbb{R}^n \to \mathbb{R}^m$ such that f(b) f(a) = T(b a).
 - (b) If (X, d) is a metric space such that any closed and bounded subset of X is compact then X complete.
 - (c) The normed linear space $(\ell^1, \|\cdot\|_2)$ is complete.
 - (d) Uniform limit of a sequence of differentiable functions is differentiable.
 - (e) For $1 the set <math>G = \{x = (x_1, x_2, \dots,) \in \ell^p : \sum_{n=1}^{\infty} x_n = 0\}$ is closed in ℓ^p .
 - (f) For $k = 1, 2, \dots$, let $f : A_k \subset \mathbb{R} \to [-\infty, \infty]$ be a measurable function. Then $f : \bigcup_{k=1}^{\infty} A_k \to [-\infty, \infty]$ is measurable.
 - (g) Let $F:[0,1] \to \mathbb{R}$ be Lebesgue integrable. Then for every $\epsilon > 0$, $\int_0^1 f^2 dx \le \epsilon^2 m\{x \in [0,1]: |f(x)| > \epsilon\}$.
 - (h) Let $F: \mathbb{R} \to \mathbb{R}$ be Lebesgue integrable. Then $\lim_{k \to \infty} \int_k^{k+1} f(x) dx = 0$. 2×8
- 2. Let $S = \{ f \in C[0,1] : f(x) = f(1-x), \forall x \in [0,1] \}$. Show that S is complete with respect to supremum norm.
- 3. Let $\{f_n\}$ be a sequence of continuous real valued functions defined on [a,b]. Let $\{a_n\}, \{b_n\}$ be two sequences in [a,b] such that $\lim_{n\to\infty} a_n = a$ and $\lim_{n\to\infty} b_n = b$. If $f_n \to f$ uniformly as $n\to\infty$ then show that $\lim_{n\to\infty} \int_{a_n}^{b_n} f_n(x) dx = \int_a^b f(x) dx$.
- 4. Let $F_n: \mathbb{R} \to [0,1], n \geq 0$, be continuous functions satisfying
 - (i) $F_n(x) \leq F_n(y)$ for all $x \leq y$,
 - (ii) $\lim_{x\to-\infty} F_n(x) = 0$, and
 - (iii) $\lim_{x \to \infty} F_n(x) = 1$.

If $F_n^{x\to\infty}$ converges pointwise to F_0 on \mathbb{R} , then show that F_n converges uniformly to F_0 on \mathbb{R} .

- 5. Let A and B be two nonempty disjoint closed sets in a metric space (X, d). Show that there are disjoint open sets U, V with $A \subset U$ and $B \subset V$.
- 6. For $A, B \subset \mathbb{R}$, define the distance $d(A, B) := \inf\{|x y| : x \in A, x \in B\}$. Let C, D be two nonempty disjoint closed subsets of \mathbb{R} . If d(C, D) = 0 then both C and D are unbounded.
- 7. If $f: \mathbb{R} \to \mathbb{R}$ is Lebesgue measurable, then there exists a Borel measurable function $g: \mathbb{R} \to \mathbb{R}$ such that g = f a.e.
- 8. Let $f: \mathbb{R} \to \mathbb{R}$ be Lebesgue integrable. Show that the function $F(x) = \int_{-\infty}^{x} f(x) dx$ is continuous on \mathbb{R} . Further define $\psi(x) = \sum_{n=1}^{\infty} f(2^n x + \frac{1}{n})$. Is ψ measurable? Is ψ integrable? If yes, calculate $\int_{\mathbb{R}} \psi(x) dx$.

-: Paper Ends:-