$12a_{0151} \ (K12a_{0151})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{74} + 41u^{72} + \dots + b + 1, -u^{76} + 2u^{75} + \dots + a - u, u^{77} - 2u^{76} + \dots - u + 1 \rangle$$

$$I_2^u = \langle b + 1, -u^3 + u^2 + a - 3u + 1, u^4 - u^3 + 3u^2 - 2u + 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 81 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle u^{74} + 41u^{72} + \dots + b + 1, -u^{76} + 2u^{75} + \dots + a - u, u^{77} - 2u^{76} + \dots - u + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{76} - 2u^{75} + \dots + 5u^{2} + u \\ -u^{74} - 41u^{72} + \dots + 3u^{2} - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{76} - 2u^{75} + \dots + 5u^{2} + 2u \\ -u^{73} + u^{72} + \dots + u - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{5} - 2u^{3} + u \\ u^{5} + 3u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{10} - 5u^{8} - 6u^{6} + u^{4} + u^{2} + 1 \\ u^{10} + 6u^{8} + 11u^{6} + 6u^{4} + u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{76} - 2u^{75} + \dots + 2u + 1 \\ u^{74} - 2u^{73} + \dots + u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{11} - 6u^{9} - 12u^{7} - 10u^{5} - 5u^{3} \\ -u^{13} - 7u^{11} - 17u^{9} - 16u^{7} - 4u^{5} + u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-u^{76} + 2u^{75} + \cdots + 2u 5$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{77} + 41u^{76} + \dots + 5u + 1$
c_2, c_4	$u^{77} - 5u^{76} + \dots - 5u + 1$
c_3, c_8	$u^{77} - u^{76} + \dots + 8u + 16$
c_5	$u^{77} - 2u^{76} + \dots - 1449u + 389$
c_6, c_7, c_{11} c_{12}	$u^{77} - 2u^{76} + \dots - u + 1$
<i>c</i> ₉	$u^{77} - 27u^{76} + \dots - 4544u + 256$
c_{10}	$u^{77} + 20u^{76} + \dots + 465u + 19$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{77} - 5y^{76} + \dots + 41y - 1$
c_2, c_4	$y^{77} - 41y^{76} + \dots + 5y - 1$
c_3, c_8	$y^{77} + 27y^{76} + \dots - 4544y - 256$
c_5	$y^{77} - 16y^{76} + \dots + 6370043y - 151321$
c_6, c_7, c_{11} c_{12}	$y^{77} + 88y^{76} + \dots + 3y - 1$
<i>c</i> ₉	$y^{77} + 39y^{76} + \dots + 1101824y - 65536$
c_{10}	$y^{77} - 4y^{76} + \dots + 22843y - 361$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.147502 + 0.868411I		
a = 1.00045 + 1.34841I	0.75106 + 6.34655I	0
b = 0.178842 - 0.009385I		
u = 0.147502 - 0.868411I		
a = 1.00045 - 1.34841I	0.75106 - 6.34655I	0
b = 0.178842 + 0.009385I		
u = 0.520795 + 0.686903I		
a = 0.21130 + 1.67245I	-1.56675 - 12.64520I	0. + 10.71218I
b = -2.20006 - 1.58322I		
u = 0.520795 - 0.686903I		
a = 0.21130 - 1.67245I	-1.56675 + 12.64520I	0 10.71218I
b = -2.20006 + 1.58322I		
u = 0.497864 + 0.685888I		
a = -0.556603 - 1.182010I	1.29389 - 7.48427I	0. + 7.68149I
b = 1.38750 + 0.81038I		
u = 0.497864 - 0.685888I		
a = -0.556603 + 1.182010I	1.29389 + 7.48427I	0 7.68149I
b = 1.38750 - 0.81038I		
u = 0.413130 + 0.737541I		
a = -0.490546 + 0.140022I	4.73817 - 5.59106I	0. + 8.14504I
b = -0.797872 - 0.479732I		
u = 0.413130 - 0.737541I		
a = -0.490546 - 0.140022I	4.73817 + 5.59106I	0 8.14504I
b = -0.797872 + 0.479732I		
u = 0.357537 + 0.755900I		
a = 0.294340 - 0.397674I	5.09245 - 0.54892I	0
b = 0.702726 + 0.957885I		
u = 0.357537 - 0.755900I		
a = 0.294340 + 0.397674I	5.09245 + 0.54892I	0
b = 0.702726 - 0.957885I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.495825 + 0.664107I		
a = -0.62922 + 1.27595I	-2.95420 + 6.44351I	-7.08625 - 7.32729I
b = 2.40846 - 1.04658I		
u = -0.495825 - 0.664107I		
a = -0.62922 - 1.27595I	-2.95420 - 6.44351I	-7.08625 + 7.32729I
b = 2.40846 + 1.04658I		
u = 0.193399 + 0.795349I		
a = -0.537195 - 1.091020I	3.19115 + 1.49818I	1.97075 + 0.I
b = 0.135236 + 0.414324I		
u = 0.193399 - 0.795349I		
a = -0.537195 + 1.091020I	3.19115 - 1.49818I	1.97075 + 0.I
b = 0.135236 - 0.414324I		
u = 0.488823 + 0.646835I		
a = 1.51179 + 1.29272I	-3.35350 - 3.73810I	-7.27072 + 6.60342I
b = -1.85197 + 0.68898I		
u = 0.488823 - 0.646835I		
a = 1.51179 - 1.29272I	-3.35350 + 3.73810I	-7.27072 - 6.60342I
b = -1.85197 - 0.68898I		
u = -0.527611 + 0.599110I		
a = -1.47399 + 0.63795I	-3.33467 - 1.17240I	-7.69005 + 0.66623I
b = 1.46102 + 1.13607I		
u = -0.527611 - 0.599110I		
a = -1.47399 - 0.63795I	-3.33467 + 1.17240I	-7.69005 - 0.66623I
b = 1.46102 - 1.13607I		
u = -0.456080 + 0.623390I		
a = 0.606942 - 0.737172I	-0.30493 + 2.30855I	-4.02531 - 3.57138I
b = -0.997890 + 0.562471I		
u = -0.456080 - 0.623390I		
a = 0.606942 + 0.737172I	-0.30493 - 2.30855I	-4.02531 + 3.57138I
b = -0.997890 - 0.562471I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.329535 + 0.645278I		
a = 0.213272 - 0.767135I	0.51022 + 2.21242I	-2.24825 - 6.81811I
b = 0.431356 + 0.788245I		
u = -0.329535 - 0.645278I		
a = 0.213272 + 0.767135I	0.51022 - 2.21242I	-2.24825 + 6.81811I
b = 0.431356 - 0.788245I		
u = -0.119692 + 0.706613I		
a = 0.02252 + 1.42872I	-0.802285 - 0.992180I	-3.49623 + 0.26671I
b = -0.852997 + 0.030726I		
u = -0.119692 - 0.706613I		
a = 0.02252 - 1.42872I	-0.802285 + 0.992180I	-3.49623 - 0.26671I
b = -0.852997 - 0.030726I		
u = -0.476481 + 0.477330I		
a = 0.396437 + 0.236890I	-0.84037 + 1.67654I	-2.17669 - 5.36545I
b = 0.1231540 + 0.0259316I		
u = -0.476481 - 0.477330I		
a = 0.396437 - 0.236890I	-0.84037 - 1.67654I	-2.17669 + 5.36545I
b = 0.1231540 - 0.0259316I		
u = -0.569974 + 0.326103I		
a = 1.24611 + 0.92452I	-4.13049 + 4.94098I	-9.85658 - 6.91642I
b = 0.93980 - 1.46984I		
u = -0.569974 - 0.326103I		
a = 1.24611 - 0.92452I	-4.13049 - 4.94098I	-9.85658 + 6.91642I
b = 0.93980 + 1.46984I		
u = 0.601381 + 0.214453I		
a = 0.66955 + 1.97747I	-2.95096 + 8.82146I	-8.76825 - 5.53788I
b = -1.60236 + 0.47260I		
u = 0.601381 - 0.214453I		
a = 0.66955 - 1.97747I	-2.95096 - 8.82146I	-8.76825 + 5.53788I
b = -1.60236 - 0.47260I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.239459 + 0.553343I		
a = 0.05250 + 2.04681I	-1.30165 - 0.91702I	-0.765784 - 0.785173I
b = -1.230210 - 0.268136I		
u = 0.239459 - 0.553343I		
a = 0.05250 - 2.04681I	-1.30165 + 0.91702I	-0.765784 + 0.785173I
b = -1.230210 + 0.268136I		
u = 0.567780 + 0.198342I		
a = -0.318817 - 0.964786I	-0.12372 + 3.82886I	-5.59925 - 2.44752I
b = 1.073270 + 0.085750I		
u = 0.567780 - 0.198342I		
a = -0.318817 + 0.964786I	-0.12372 - 3.82886I	-5.59925 + 2.44752I
b = 1.073270 - 0.085750I		
u = -0.550902 + 0.231672I		
a = -0.39744 + 2.34421I	-4.21089 - 2.83361I	-10.84511 + 1.35497I
b = 1.41177 - 0.10713I		
u = -0.550902 - 0.231672I		
a = -0.39744 - 2.34421I	-4.21089 + 2.83361I	-10.84511 - 1.35497I
b = 1.41177 + 0.10713I		
u = 0.533622 + 0.257110I		
a = -1.21401 + 0.94791I	-4.48641 + 0.19420I	-11.14123 - 0.15034I
b = -1.41362 - 1.14182I		
u = 0.533622 - 0.257110I		
a = -1.21401 - 0.94791I	-4.48641 - 0.19420I	-11.14123 + 0.15034I
b = -1.41362 + 1.14182I		
u = -0.05638 + 1.41840I		
a = 1.17528 + 2.58800I	1.23925 + 7.06140I	0
b = -0.34737 - 1.83289I		
u = -0.05638 - 1.41840I		
a = 1.17528 - 2.58800I	1.23925 - 7.06140I	0
b = -0.34737 + 1.83289I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.488667 + 0.304473I		
a = 0.150993 - 0.782541I	-1.23510 + 1.00162I	-7.18292 - 3.69576I
b = -0.654382 + 0.514959I		
u = -0.488667 - 0.304473I		
a = 0.150993 + 0.782541I	-1.23510 - 1.00162I	-7.18292 + 3.69576I
b = -0.654382 - 0.514959I		
u = 0.01005 + 1.44330I		
a = -0.56482 + 3.02578I	0.59076 - 1.36180I	0
b = -0.09064 - 2.16022I		
u = 0.01005 - 1.44330I		
a = -0.56482 - 3.02578I	0.59076 + 1.36180I	0
b = -0.09064 + 2.16022I		
u = -0.03666 + 1.45665I		
a = -0.21997 - 2.07372I	4.29158 + 2.58426I	0
b = 0.12168 + 1.71437I		
u = -0.03666 - 1.45665I		
a = -0.21997 + 2.07372I	4.29158 - 2.58426I	0
b = 0.12168 - 1.71437I		
u = 0.534715 + 0.043976I		
a = -0.299545 + 1.301610I	2.72042 + 2.38215I	-3.39829 - 3.47176I
b = 0.001572 + 0.505363I		
u = 0.534715 - 0.043976I		
a = -0.299545 - 1.301610I	2.72042 - 2.38215I	-3.39829 + 3.47176I
b = 0.001572 - 0.505363I		
u = -0.11215 + 1.52782I		
a = 0.045420 + 0.186861I	5.84388 + 3.68403I	0
b = 0.157790 + 0.134911I		
u = -0.11215 - 1.52782I		
a = 0.045420 - 0.186861I	5.84388 - 3.68403I	0
b = 0.157790 - 0.134911I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.14882 + 1.56363I		
a = -2.27040 + 0.02252I	3.91086 + 1.27549I	0
b = 1.78461 + 0.69724I		
u = -0.14882 - 1.56363I		
a = -2.27040 - 0.02252I	3.91086 - 1.27549I	0
b = 1.78461 - 0.69724I		
u = 0.07520 + 1.58182I		
a = 1.07795 + 1.47054I	6.12632 - 2.09774I	0
b = -1.31557 - 0.54304I		
u = 0.07520 - 1.58182I		
a = 1.07795 - 1.47054I	6.12632 + 2.09774I	0
b = -1.31557 + 0.54304I		
u = -0.12847 + 1.58382I		
a = 1.00018 - 1.87505I	7.18665 + 4.43566I	0
b = -1.19047 + 1.69046I		
u = -0.12847 - 1.58382I		
a = 1.00018 + 1.87505I	7.18665 - 4.43566I	0
b = -1.19047 - 1.69046I		
u = 0.13987 + 1.58706I	4 20100 - 0 04400 T	
a = 2.38629 + 0.78813I	4.20190 - 6.04430I	0
b = -2.00944 + 0.20089I $u = 0.13987 - 1.58706I$		
	4 20100 ± 6 04420T	0
	4.20190 + 6.04430I	U
b = -2.00944 - 0.20089I $u = -0.09303 + 1.59051I$		
a = -0.09303 + 1.39031I a = -1.17833 - 1.13689I	8.15557 + 3.76836I	0
	0.19991 + 9.100301	
b = 1.52083 + 1.18697I $u = -0.09303 - 1.59051I$		
a = -1.17833 + 1.13689I	8.15557 - 3.76836I	0
b = 1.52083 - 1.18697I	0.10001 0.100001	
0 = 1.02000 = 1.100911		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.06060 + 1.59336I		
a = 1.69546 - 0.16765I	6.99743 - 0.14653I	0
b = -2.23387 + 0.64752I		
u = -0.06060 - 1.59336I		
a = 1.69546 + 0.16765I	6.99743 + 0.14653I	0
b = -2.23387 - 0.64752I		
u = -0.14352 + 1.59232I		
a = -2.38022 + 2.82434I	4.67971 + 8.80327I	0
b = 3.13268 - 2.26053I		
u = -0.14352 - 1.59232I		
a = -2.38022 - 2.82434I	4.67971 - 8.80327I	0
b = 3.13268 + 2.26053I		
u = 0.14523 + 1.59970I		
a = -1.14163 - 2.15168I	9.03599 - 9.87352I	0
b = 1.43776 + 1.73418I		
u = 0.14523 - 1.59970I		
a = -1.14163 + 2.15168I	9.03599 + 9.87352I	0
b = 1.43776 - 1.73418I		
u = 0.15340 + 1.59954I		
a = 1.61377 + 3.30142I	6.1639 - 15.1531I	0
b = -2.51838 - 2.69954I		
u = 0.15340 - 1.59954I		
a = 1.61377 - 3.30142I	6.1639 + 15.1531I	0
b = -2.51838 + 2.69954I		
u = 0.05996 + 1.61405I		
a = 0.104728 - 1.032870I	11.39780 + 0.51480I	0
b = -0.455343 + 0.714306I		
u = 0.05996 - 1.61405I		
a = 0.104728 + 1.032870I	11.39780 - 0.51480I	0
b = -0.455343 - 0.714306I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.11610 + 1.61439I		
a = 0.905099 + 0.726337I	12.7656 - 7.5677I	0
b = -1.64446 - 0.61307I		
u = 0.11610 - 1.61439I		
a = 0.905099 - 0.726337I	12.7656 + 7.5677I	0
b = -1.64446 + 0.61307I		
u = 0.10031 + 1.61635I		
a = -0.69833 - 1.55637I	13.20050 - 2.26533I	0
b = 1.33076 + 1.58550I		
u = 0.10031 - 1.61635I		
a = -0.69833 + 1.55637I	13.20050 + 2.26533I	0
b = 1.33076 - 1.58550I		
u = 0.04244 + 1.62116I		
a = -0.585045 + 0.293685I	9.19349 + 5.63914I	0
b = 1.363650 + 0.283002I		
u = 0.04244 - 1.62116I		
a = -0.585045 - 0.293685I	9.19349 - 5.63914I	0
b = 1.363650 - 0.283002I		
u = -0.288406		
a = 2.15149	-1.03844	-10.4690
b = -0.395080		

II.
$$I_2^u = \langle b+1, -u^3+u^2+a-3u+1, u^4-u^3+3u^2-2u+1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{3} - u^{2} + 3u - 1 \\ -1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{3} - u^{2} + 2u - 1 \\ u - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1 \\ u^{3} - u^{2} + 2u - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2} + 1 \\ u^{3} - u^{2} + 2u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ -u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{3} - u^{2} + 3u - 1 \\ -1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2} + 1 \\ u^{3} - u^{2} + 2u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $5u^3 5u^2 + 14u 16$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^4$
c_3,c_8,c_9	u^4
c_4	$(u+1)^4$
c_5, c_{10}	$u^4 - u^3 + u^2 + 1$
c_{6}, c_{7}	$u^4 - u^3 + 3u^2 - 2u + 1$
c_{11}, c_{12}	$u^4 + u^3 + 3u^2 + 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^4$
c_3,c_8,c_9	y^4
c_5, c_{10}	$y^4 + y^3 + 3y^2 + 2y + 1$
c_6, c_7, c_{11} c_{12}	$y^4 + 5y^3 + 7y^2 + 2y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.395123 + 0.506844I		
a = 0.043315 + 1.227190I	-1.85594 - 1.41510I	-11.17855 + 5.62908I
b = -1.00000		
u = 0.395123 - 0.506844I		
a = 0.043315 - 1.227190I	-1.85594 + 1.41510I	-11.17855 - 5.62908I
b = -1.00000		
u = 0.10488 + 1.55249I		
a = 0.956685 + 0.641200I	5.14581 - 3.16396I	-6.32145 + 1.65351I
b = -1.00000		
u = 0.10488 - 1.55249I		
a = 0.956685 - 0.641200I	5.14581 + 3.16396I	-6.32145 - 1.65351I
b = -1.00000		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^4)(u^{77} + 41u^{76} + \dots + 5u + 1)$
c_2	$((u-1)^4)(u^{77} - 5u^{76} + \dots - 5u + 1)$
c_3, c_8	$u^4(u^{77} - u^{76} + \dots + 8u + 16)$
c_4	$((u+1)^4)(u^{77} - 5u^{76} + \dots - 5u + 1)$
c_5	$(u^4 - u^3 + u^2 + 1)(u^{77} - 2u^{76} + \dots - 1449u + 389)$
c_6, c_7	$ (u^4 - u^3 + 3u^2 - 2u + 1)(u^{77} - 2u^{76} + \dots - u + 1) $
c_9	$u^4(u^{77} - 27u^{76} + \dots - 4544u + 256)$
c_{10}	$(u^4 - u^3 + u^2 + 1)(u^{77} + 20u^{76} + \dots + 465u + 19)$
c_{11}, c_{12}	$(u^4 + u^3 + 3u^2 + 2u + 1)(u^{77} - 2u^{76} + \dots - u + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^4)(y^{77} - 5y^{76} + \dots + 41y - 1)$
c_{2}, c_{4}	$((y-1)^4)(y^{77} - 41y^{76} + \dots + 5y - 1)$
c_3, c_8	$y^4(y^{77} + 27y^{76} + \dots - 4544y - 256)$
c_5	$(y^4 + y^3 + 3y^2 + 2y + 1)(y^{77} - 16y^{76} + \dots + 6370043y - 151321)$
c_6, c_7, c_{11} c_{12}	$(y^4 + 5y^3 + 7y^2 + 2y + 1)(y^{77} + 88y^{76} + \dots + 3y - 1)$
c_9	$y^4(y^{77} + 39y^{76} + \dots + 1101824y - 65536)$
c_{10}	$(y^4 + y^3 + 3y^2 + 2y + 1)(y^{77} - 4y^{76} + \dots + 22843y - 361)$