cfel xilyonorn mostfag raing

What Is Pattern Discovery?

- ूर क्रम् इस्मिली
- What are patterns?
 ¬אַסְיְיִישְׁ עַבְּיִילְּשִׁיִּיִּ
 Patterns: A set of items, subsequences, or substructures that occur frequently together (or strongly correlated) in a data set
 - Patterns represent intrinsic and important properties of datasets
- □ Pattern discovery: Uncovering patterns from massive data sets
- Motivation examples:
 - What products were often purchased together? สิงสังจำเพื่อนมังจะ จึงถึงปรัจเมื่อน
 - What are the subsequent purchases after buying an iPad?
 - What code segments likely contain copy-and-paste bugs?
 - What word sequences likely form phrases in this corpus?

Pattern Discovery: Why Is It Important?

- ☐ Finding inherent regularities in a data set
- Foundation for many essential data mining tasks
 - Association, correlation, and causality analysis
 - Mining sequential, structural (e.g., sub-graph) patterns
 - Pattern analysis in spatiotemporal, multimedia, time-series, and stream data
 - Classification: Discriminative pattern-based analysis
 - Cluster analysis: Pattern-based subspace clustering
- Broad applications

6

Market basket analysis, cross-marketing, catalog design, sale campaign analysis, Web log analysis, biological sequence analysis

JRWONWILL JUN

Basic Concepts: k-Itemsets and Their Supports

งจกางขางการ สื่อ เกองากจะได้ ตั้นดีว่าในมาที่ ดาม ตักจะ จังมมกัน ltemset: A set of one or more items

k-itemset: $X = \{x_1, ..., x_k\}$

■ Ex. {Beer, Nuts, Diaper} is a 3-itemset

under the number of occurrences of an itemset X

Fx	sun	[Reer]	} = 3	YNW RHIUMY
LA.	SUD	וסככו		V · ·

■ Ex. sup{Diaper} = 4

Ex. sup{Beer, Diaper} = 3

 \Box Ex. sup{Beer, Eggs} = 1

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

(relative) support, s{X}: The fraction of transactions that contains X (i.e., the probability that a transaction contains X)

$$\Box$$
 Ex. s{Beer} = 3/5 = 60%

 \Box Ex. s{Beer, Eggs} = 1/5 = 20%

Basic Concepts: Frequent Itemsets (Patterns)

- An itemset (or a pattern) X is *frequent* if the support of X is no less than a minsup threshold σ
- Let $\sigma = 50\%$ (σ : minsup threshold) For the given 5-transaction dataset
 - All the frequent 1-itemsets:
 - □ Beer: 3/5 (60%); Nuts: 3/5 (60%)
 - □ Diaper: 4/5 (80%); Eggs: 3/5 (60%)
 - All the frequent 2-itemsets:
 - □ {Beer, Diaper}: 3/5 (60%)
 - All the frequent 3-itemsets?
 - None

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

- Why do these itemsets (shown on the left) form the complete set of frequent k-itemsets (patterns) for any k?
- Observation: We may need an efficient method to mine a complete set of frequent patterns

From Frequent Itemsets to Association Rules

- Comparing with itemsets, rules can be more telling
 - Ex. Diaper → Beer on to Dia Ma: Who hat a Bear
 - Buying diapers may likely lead to buying beers
- How strong is this rule? (support, confidence)
 - \square Measuring association rules: $X \rightarrow Y$ (s, c)
 - Both X and Y are itemsets
 - Support, s: The probability that a transaction contains X ∪ Y ก็ตั้ง × y กล โบน ข้อมกัน
 - \Box Ex. s{Diaper, Beer} = 3/5 = 0.6 (i.e., 60%)
 - Confidence, c: The conditional probability that a transaction containing X also contains Y
 - \Box Ex. $c = \sup{\text{Diaper, Beer}/\sup{\text{Diaper}}} = \frac{34}{4} = 0.75$

Tid	Items bought	
10	Beer, Nuts, Diaper	
20	Beer, Coffee, Diaper	
30	Beer, Diaper, Eggs	
40	Nuts, Eggs, Milk	
50	Nuts, Coffee, Diaper, Eggs, Milk	

Note: $X \cup Y$: the union of two itemsets

■ The set contains both X and Y

Mining Frequent Itemsets and Association Rules

- Association rule mining
 - ☐ Given two thresholds: *minsup*, *minconf*
 - \Box Find all of the rules, $X \rightarrow Y$ (s, c)
 - □ such that, $s \ge minsup$ and $c \ge minconf$
- Let minsup = 50%
 - □ Freq. 1-itemsets: Beer: 3, Nuts: 3,Diaper: 4, Eggs: 3
 - ☐ Freq. 2-itemsets: {Beer, Diaper}: 3
- Let minconf = 50%
 - Beer → Diaper (60%, 100%)
 - □ Diaper → Beer (60%, 75%)

(Q: Are these all rules?)

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

Observations:

- Mining association rules and mining frequent patterns are very close problems
- Scalable methods are needed for mining large datasets

Efficient Pattern Mining Methods

- ☐ The Downward Closure Property of Frequent Patterns
- The Apriori Algorithm
- Extensions or Improvements of Apriori
- Mining Frequent Patterns by Exploring Vertical Data Format
- ☐ FPGrowth: A Frequent Pattern-Growth Approach
- Mining Closed Patterns

The Downward Closure Property of Frequent Patterns

- Observation: From TDB_{1:} T_1 : { a_1 , ..., a_{50} }; T_2 : { a_1 , ..., a_{100} }
 - \square We get a frequent itemset: $\{a_1, ..., a_{50}\}$
 - □ Also, its subsets are all frequent: $\{a_1\}$, $\{a_2\}$, ..., $\{a_{50}\}$, $\{a_1, a_2\}$, ..., $\{a_1, ..., a_{49}\}$, ...
 - There must be some hidden relationships among frequent patterns!
- The downward closure (also called "Apriori") property of frequent patterns
 - □ If **{beer, diaper, nuts}** is frequent, so is **{beer, diaper}**
 - Every transaction containing {beer, diaper, nuts} also contains {beer, diaper}
 - Apriori: Any subset of a frequent itemset must be frequent
- Efficient mining methodology
 - □ If any subset of an itemset S is infrequent, then there is no chance for S to be frequent—why do we even have to consider S!? ♠ A sharp knife for pruning!

Apriori Pruning and Scalable Mining Methods

- Apriori pruning principle: If there is any itemset which is infrequent, its superset should not even be generated! (Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)
- Scalable mining Methods: Three major approaches
 - Level-wise, join-based approach: Apriori (Agrawal & Srikant@VLDB'94)
 - Vertical data format approach: Eclat (Zaki, Parthasarathy, Ogihara, Li @KDD'97)
 - □ Frequent pattern projection and growth: FPgrowth (Han, Pei, Yin @SIGMOD'00)

Apriori: A Candidate Generation & Test Approach

- Outline of Apriori (level-wise, candidate generation and test)
 - ☐ Initially, scan DB once to get frequent 1-itemset
 - □ Repeat on well

25/2 R+1/26/01

- ☐ Generate length-(k+1) candidate itemsets from length-k frequent itemsets
- ☐ Test the candidates against DB to find frequent (k+1)-itemsets
- □ Set k := k +1
- Until no frequent or candidate set can be generated
- Return all the frequent itemsets derived

The Apriori Algorithm (Pseudo-Code)

```
C_k : \text{Candidate itemset of size k}
K := 1;
F_k := \{\text{frequent items}\}; \text{ // frequent 1-itemset}
While (F_k != \emptyset) \text{ do } \{\text{ // when } F_k \text{ is non-empty}}
C_{k+1} := \text{candidates generated from } F_k; \text{ // candidate generation}
\text{Derive } F_{k+1} \text{ by counting candidates in } C_{k+1} \text{ with respect to } TDB \text{ at minsup;}
k := k+1
\}
\text{return } \bigcup_k F_k \text{ // return } F_k \text{ generated at each level}
```

The Apriori Algorithm—An Example

