	Date
E	xpt. No
	STUDIES ON LOUIC GATES:
_	AIM: 30 rudy logie gales
	APPARATUS REQUIRED:
	· carnade Ray Oscillascape
	· multimeter
	· Connecting wives
	· Ac signal generator
	· Printed issuit board
	· DC power supply (5V)
	THEORY:
	togic galis are elementary building blocks of to digital circuits.
	They can be binary (takes in two inputs) or narry (only one
	input. (g: Notgate). Input can be . Low . High.
	There are available in TTL (Transistok-Transistok Aggic)
	or cmos (complementary metal-oxide Silicon). TIL uses
	NPN and PNP BJTs and are utilised in this experiment for
	realising ravious ragic gales. A B A B A B A B A B A B A B A B A B B A B B + A B
	A B A.B A.B A.B A.B A.B A.B A.B A.B

Teacher's Signature:_

O

A

A.B

								Date
Exp	ot. No							Page No.
=								
					NI			
I.	LOGIC (STATES	USING	ONL	YNAT	YDON ATES	•	
1						,	ALL	figures are in volla (V).
*)	AND:							
		A		В		y = A.B		
-		0	0	٥	0	0.16	0	
		0	0	4.93	1	0.17	0	
		4.93	1	4.93	0	3.12	1	
		4.93		4.43		3.12		
*)	OR:							
		A		В	1	Y = A+B		
	<u> </u>	0	0	0	0	0.18	0	
		0	0	4,9	3 1	3,23 3,23	1	
		4.0	23 1	4.9		3.12	l	
*)	NOT : (1	(Juan c				1		
			A		Ā			
			0 0		12	1		
	,		4.93 1	10.	12	0	-	
						Dullian	AL.	
				1	/	1 1450	100	
			,		,			
A						Т	eache	r's Signature :
*								
1						-		

Expt. No	•									Page	No	
*) NOR	م م تر :											
	A		В		Y = A+	B						
	0	0	0	0	2.98							
	0	0	4.93	1	0.08							
	4.93	1	0	0	0.05							
	4.93	1	4.93		0.05	0						
								-				
*) XOR	gate:						_					
	A		0	2	Y= A. C	+ A.	à					
	0	0	0	0	0.08	0						
	0	0	4,90) (2.96	1						
	4.	1 09	0	0	2.99	8 1						
	Ц,	90 1	4,91	1 0	0.08	3 0						
XOR	0 COY					plie	d to on	e of th	ie in	puls	and t	ne
trip	1 KH2 ut is in thigh.	Jung on (o	v) ox	your Tym	r is ap	n thi	L nend	t Tab	de In	nert	inp	ع عد
top	1 KH2	Jung on (o	· wan	your Tym	r is ap	n thi	L nend	t Tab	de In	nert	inp	ع عد
trip	1 KH2 ut is in high.	nn:	· wan	your Inm con	r is ap	n thi	L nend	t Tab	de In	nert	inp	ع عد
trp	1 KH2 ut is in thigh.	squar Jnu : an	wan (V) ox	yorum Infon con	r is ap	n thi	L nend	t Tab	de In	nert	inp	ع عد
trp Kepi 3 9ny	1 KH2 ut is in thigh.	Square (0)	v) ox vice	yorum Información con y	r is ap	n thi	L nend	t Tab	de In	nert	inp	ع عد
trp Kepi 3 9ny	1 KH2 ut is in high. one = 20 A 0 0	Square (0)	v) ox vice	yorum Información con y	r is ap	n thi	L nend	t Tab	de In	nert	inp	ع عد
trp Kepi 3 9ny	1 KH2 ut is in high. one = 20 A 0 0	Square (0) Jhu in : 0 0 4.9	v) ox v tre	Tylon con y 0 0.84	vis ap	n thi	L nend	t Tab	de In	nert	inp	ع عد
trp Kepi 3 9ny	1 KH2 ut is in high. one = 20 A 0 0 1 1 ext = High	Shr :	v) ox v tre	Tylon Long Y 0 0.84	vis ap	n thi	L nend	t Tab	de In	nert	inp	ع عد
trp Kepi 3 9ny	1 KH2 ut is in high. one = 20 A 0 0 1 1 ext = High A	Square (0) Jhu in : 0 0 4.9	v) ox v tre	y 0.84	vis ap	n thi	L nend	t Tab	de In	nert	inp	ع عد
trp Kepi 3 9ny	1 KH2 ut is in high. one = 20 A 0 0 1 1 ext = High A	Square (0) Jhu in : 0 0 4.9	v) ox v tre	y 0.84	vis ap	n thi	L nend	t Tab	de In	nert	inp	ع عد
trp Kepi 3 9ny	1 KH2 ut is in high. one = 20 A 0 0 1 1 ext = High A	Square (0) Jhu in : 0 0 4.9	v) ox v tre	y 0.84	vis ap	n thi	L nend	t Tab	le Tr	in rea	inp	ع عد

Teacher's Signature: __

M. Verification of De-morgan's Triorem;

								Date	*****
Ex	pt. No		-				Page	No	
N	VERIFICAT	TIDN OF	ALGEBRA:						
a)	E=X+X	· y an	d F=>	<	CI				
		X		Y	E = X	+ x. Y	F=		
	0	0	0	0	0.20	. 0	-0	0	
	0	0	4.89	1	0.39	, 0	0	0	
	4.89	3 1	0	0	3.87	1	4,88	1	
	4,89	1	4,88	1	3.89	1	4,88	1	
	Comp aring	c, and	t ca, we	. concl	ude x+x.	γ = X			
(d	6= X-(X+)) and	L F=X		X				
					<u> </u>		C	4	
	X	1		7	F= (x+	x.(r	F=	,	
	0	0	0	0	0.32	0	Ŏ	0	
	0	0	4.72	1	0:29	0	0	0	
	4.89	1	0	0	3.91	1	4,92		
	4.89	1	4,94	1	4.24	I	4,93		
	comparin	g cg ar	id Cay we	Long	mar X·(X	±47) =	Χ.		
01	F = X + X'-	V 000	4 E=X+	ν					
ارب		/ //			^		^		
		<		/	F = X + X'	N	F = X + Y		
	0	0	0	0	0.16	0		0	
	0	0	4.92	ı	2,92	1	3,23		
	4.9.2		0	0	2.93	1	3.23	1	
	4,93	-	4,92	1	2.99	1	3.12	1	
	1						0.5		
	Compa	ing Cs	and C	e uol	concende	× -	+×' y = × +	Y	
					Teach	er's Sign	ature :		
					Teach	er's Sign	ature :		

Expt.	No.							-	
-------	-----	--	--	--	--	--	--	---	--

Page No.

dy F=	(x+x)	· (X+ 7)	a	nd F=	x+7.7			
X		У		7		(x+x).(x	+2)	
0	0	0	0	0	0	0.45	0	
0	0	0	O	4.92	1	0.20	0	
0	0	4.93	1	0	0	0.25	0	
0	0	4.04	1	4-92		3.39	1	
4,94	1	0	0	0	0	3.12	- (
4.93	1	0	0	4,93	1	3 · 32		
4.94	1	4.92	1	0	0	3.01	1	
4.94	1	4,92		4.92	1	3.02		
-						(2		
X	1	7		7	,	x+7.2		
0	0	0	0	0	0	0.40	0	
0	0	0	0	4.92	1	0.31	0	
0	0	4.93	1	0	D	0.29	0	
0	0	4.93	_11	4,92	1	2.60	1	
4.91)	0	0	0	0	2.83	12	
4,92	1	0	0	4,92	1	8.49	1	
4.92	ī	4,88	1	0	0	2.12	1	
4,92	1	4,93		4,93	1	3.43		
							-	

lomparing C1 and C2, we conclude that (x+y). (x+z)=x+y.z.

Teacher's Signature :

	Date
Exp	ot. NoPage No
	DISCUSSION:
	Different logic gales were realised and rerified in the circuit board using NAND and NOR gales. Representative logic gate diagrams were drawn. Since all other gales can be realised using NOR and NAND gales, they are also called universal gales.
	Then we observed function of XOR gale as controlled inverted. Of y invert is kept low and inverted. Of y invert is kept high.
	we recified De-morgan's Theorems and we state the generalised theorem: $(A_1 + A_2 + \cdots A_n)' = A_1' \cdot A_2' \cdot \cdots A_n'$ $(A_1 \cdot A_2 \cdot \cdots A_n)' = A_1' + A_2' + \cdots A_n'$
	poroved using rogic galu.
	Teacher's Signature :

	Date
Exp	ot. No
	Discussion 3-
	By Chelsi Raheja
	16CS10013
L	logic Grates are building blocks of digital circuits made by transistor-transistor logic (TTL) or complementary metal-
2.	NAND and NOR gates are known as universal gates briance gates like OR, AND, XOR can be obtained by combination of several NAND gates and NOR gates. This was realised during the experiment.
8	XOR was obscribed and used to as controlled invertor. by using the input at B to be 0 as invertion disable and 1 as inversion enabled input But inversion blag.
4.	De Morgan's Theorem was verified using 7408 (AND), 7432 (OR) 7400 (NAND), 7402 (NOR). Inversion was done using NAND gate. X - X' (A, 1A2+A3++An) = A1'.A2'-A3'An'
	(A ₁ . A ₂ A _n) = A ₁ + A ₂ + A ₃ + + A _n
5	Verification of Theorems is to switching algebra was proved and it can be concluded that complicated circuit giving some output can be deduced to much simpler sincuit with same output likeline of the input can be derived than combination or that input with another and
	It can be used to derive an input out of their combination. Teacher's Signature: