

Projeto Bom Ar Inteligente: Proposta para spray automatizado.

Gustavo Paulino Alkas, Bruno Villar Barreto, William França Costa

Universidade Presbiteriana Mackenzie (UPM) Rua da Consolação, 930 Consolação, São Paulo - SP, 01302-907 — Brazil

bruno.barreto@ibm.com, gustavoalkas@gmail.com

Abstract. This article aims to use an infrared motion sensor to capture inputs and outputs from a controlled environment, if the sensor captures any movement, an alert will be sent to an url via Wifi.

Resumo. Este artigo tem como objetivo utilizar um sensor de movimento infravermelho para captar entradas e saídas de um ambiente controlado, caso o sensor capte algum movimento, um alerta será enviado para uma url via Wifi.

1. Introdução

O desenvolvimento do projeto será integrar o "esp32" via WiFi, utilizando um sensor de movimento "HC-sr501 pir" para disparar um sinal para a url http://rangecomp.com.br:1880/ui/#!/7 caso alguma ação seja detectada. Junto a isso, teremos a ação do atuador "servo motor mg995", que puxará uma linha presa em um ponto fixo, exercendo pressão em um aparelho "Bom ar".

2. Materiais e Métodos

2.1. Materiais utilizados serão:

- 1- ESP32 Com o propósito de comunicar via Wifi o sinal enviado pelo sensor de movimento. A placa faz do uso de uma interface micro USB].
- 2- Sensor de presença/movimento HC-sr501 pir. Com o propósito de captar movimento via sensor de radiação infravermelha, disparando um sinal que será captado pelo celular caso haja movimento.
- 3- Protoboard 830 furos. Este Protoboard permite que os componentes eletrônicos possam ser interligados em um número quase infinito de maneiras para produzir circuitos eletrônicos em trabalhos de prototipagem.

- 4- Jumpers 10cm macho-macho. Os jumpers são peças fundamentais com funções como, desviar, ligar ou desligar o fluxo elétrico.
- 5- Jumpers 10cm macho-fêmea. Os jumpers são peças fundamentais com funções como, desviar, ligar ou desligar o fluxo elétrico.
- 6- Jumpers 10cm fêmea fêmea. Os jumpers são peças fundamentais com funções como, desviar, ligar ou desligar o fluxo elétrico.

2.2. Métodos utilizados serão:

Para a ligação da ESP32 com o protoboard, foram utilizados 2 jumpers macho-fêmea e foram ligados de forma: positivo(protoboard) com Vin(ESP32) e lado negativo com GND.

Imagem 1- Ligação ESP32 com protoboard

Para a ligação sensor de movimento com a ESP32 e o protoboard, foram utilizados 3 jumpers: 2 macho-fêmea e 1 fêmea-fêmea. As ligações foram feitas da seguinte forma: Output com D12(ESP32), GND com positivo(potoboard) e VCC com negativo(potoboard).

Imagem 2- Ligação do sensor de movimento com ESP31 e protoboard

Para a ligação do servo motor mg955 com a ESP32 e o protoboard, foram utilizados 3 jumpers: 2 macho-macho e 1 macho-fêmea.

Imagem 3- Ligação servo motor com ESP32 e protoboard.

Utilizamos este fluxograma e o diagrama do circuito eletroeletrônico como base para o projeto realizado.

Imagem 4 – Fluxograma

Imagem 5 - diagrama do circuito eletroeletrônico

3. Resultados

Atualmente o projeto se encontra na fase de validação do protótipo. Nosso projeto é composto por um sensor ESP32, um protoboard, um sensor de movimento HC-SR501 e um servo motor MG955. O comportamento ao longo do desenvolvimento foi muito parecido com o esperado. Porém, alguns problemas foram encontrados, tais como: regular a distância que o sensor de movimento iria ativar, assim como o tempo ficaria ativo. Foram realizados alguns testes para validação, tais como: regular a distância entre o objeto ou pessoa em relação ao sensor de movimento e calcular o tempo que o sensor fica ativo. Também foram feitos alguns experimentos para a validação do funcionamento do projeto, sendo um deles a tentativa de ativação do sensor de movimento. Para a confirmação desse

experimento um LED é aceso caso algum movimento seja detectado, bem como a mensagem de confirmação via Wifi.

Pode-se observar que ao detectar algum movimento a data e hora do mesmo são informadas na url, juntamente com uma mensagem de confirmação.

4. Conclusões

Atrás de implementar de maneira funcional o servo motor "mg955" e sensor de movimento "HC-SR501 e para validar a ideação do projeto foi construído o "disparador automático", que tinha como objetivo reagir a um movimento através do sensor infravermelho de movimento, disparando um alerta via Wifi e acionando o motor. Além de atingir os objetivos propostos como mencionados anteriormente, foram encontrados alguns empecilhos durante a construção do projeto, como regular a distância de ativação do sensor de movimento e tempo que ele permaneceria ativo. Tendo em vista o resultado obtidos, percebeu-se possíveis melhorias na parte física do projeto, sendo elas a construção e organização dos componentes.

5. Referências

- 1- Fernando, K. (2017) "Sensor presença nodeMCU ESP8266", https://www.fernandok.com/2017/11/sensor-de-presenca-com-nodemcuesp8266; acessado em 12 de novembro de 2020, às 21:43.
- 2- Tiago Miziara Sisto¹; Eduardo Lobo Lustosa Cabral² "Sistema de captura de movimento com sensores infravermelho", https://maua.br/files/122014/sistema-de-captura-demovimento-comsensores-infravermelho.pdf; acessado em 14 de novembro de 2020, às 13:07.
- 3- C. Gilarranz, S. Altares (2020)"Intelligent Irrigation System Based on Arduino" https://arxiv.org/ftp/arxiv/papers/1803/1803.00097.pdf, acessado em em 7 de outubro de 2020, às 19:30.