Date: 2024/05/27 ~ 2024/06/02

	Drawage	To do (about town)	Cool(long town)
	Progress	To-do(short term)	Goal(long term)
김지윤	 BNN 훈련 진행중 (XNOR-Net) ResNet18_Binary(WAQ)/Cifar10/Adversarial Attack 실험 및 발표 Duncan, Kirsty, et al. "Relative robustness of quantized neural networks against adversarial attacks." 2020 International Joint Conference on Neural Networks (IJCNN). IEEE, 2020. 리뷰 	 Dong, Yinpeng, et al. "Learning accurate low-bit deep neural networks with stochastic quantization." arXiv preprint arXiv:1708.01001 (2017). 리뷰 / 확률론적 양자화 Bi-real Net 코드 분석 및 실험 Moosavi-Dezfooli, Seyed-Mohsen, Alhussein Fawzi, and Pascal Frossard. "Deepfool: a simple and accurate method to fool deep neural networks." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. 리뷰 / CW Attack (Adversarial Attack의 4가지 주요 공격 중 하나) 	● BNN의 Adversarial Robustness 연구
박형동	 Reparameterization 리뷰 논문 본문 작성 RepVGG 실험 	 Reparameterization 리뷰 논문 본문 작성 Reparameterization 실험 세팅-진행 "Protecting Page Tables from RowHammer Attacks using Monotonic Pointers in DRAM True-Cells" 리뷰 Bit-flip 에 의한 aliasing 확률 계산 	● BNN 에 majority voter 적용시키기 ● Reparameterization 논문 완성 ● Bit-flip simulation(가제) 논문 완성
여인국	 Reparameterization 리뷰 논문 본문 작성 Systematic Binary SEC code for in-dram ecc 작성 	 Reparameterization 리뷰 논문 본문 작성 완료 Systematic Binary SEC code for in-dram ecc 시뮬레이션 	 Aliasing현상에 효과적인 in dram ecc code 작성 Reparameterization 논문 완성 Bit-flip simulation(가제) 논문 완성
이수학	• LDPC 기본 내용 이해(진행중)	● LDPC 강의(3) 시청 및 정리, 추가 자료 정리	 생성형 AI 특성과 한계 분석을 통한 새로운 프롬프트 작성 시도 및 적용 LDPC Survey 논문 작성
이수현	● TPU, systolic array 재정리	● Scale sim 시뮬레이터 활용.	● 아키텍처 관점에서 DNN accelerators 이해 ○ Survey 논문 작성
여희주	Lattice-Based Cryptography 이해(발표)	● 2023 LDPC 강의 시청 및 정리	● LDPC Survey 논문 작성
이성현	 YOLOv5 아키텍쳐와 이에 관련된 코드 분석 Yolov5를 이용한 차간의 거리 코드 분석(진행중) 	● Integrated Multiscale Domain Adaptive YOLO 논문 리뷰	● 한이음 ADAS Survey 논문 작성 또는 공모전 출작