환경시료의 방사성핵종분석에 대한 연구

박철순, 리주연

위대한 수령 김일성동지께서는 다음과 같이 교시하시였다.

《환경오염을 미리막는것은 사람들의 생활에 유리한 자연환경을 유지보존하고 인민들의 건강을 보호증진시키기 위한 중요한 방도로 됩니다.》(《김일성전집》제83권 291폐지)

eta 방사성물질을 측정분석하여 시료의 방사능을 핵종별로 결정하는것은 매우 중요한 문제이다. 화학적인 분리방법, eta 방사능측정과 γ 핵종분석을 결합하는 방법들은 요구되는 시료량과 분석의 신속성, 정확성을 보장하는 측면에서 일련의 부족점들을 가지고있다.[1,2]

론문에서는 매우 적은 량의 시료를 가지고도 방사성핵종을 분석하기 위한 방법에 대하여 고찰하였다.

1. 방사성핵종의 요방사능

통로수가 n인 다통로진폭분석기로 최대에네르기가 E_i , 방사능이 A(i)인 i번째 β 방출핵종의 스펙트르를 측정할 때 i째 통로에 기록되는 계수속도의 수학적기대값은

$$S_0(i, j) = f(i, j)A(i, j)\varepsilon(E_i)$$
(1)

이다. 여기서 $\varepsilon(E_i)$ 는 다통로진폭분석기의 β 선기록효률, f(i,j) 는 기준화된 응답함수이다. 즉

$$\sum_{j=1}^{n} f(i, j) = 1 \tag{2}$$

이다.

시료에 에네르기가 E_1, E_2, \cdots, E_m 이고 방사능이 $A_0(1), A_0(2), \cdots, A_0(m)$ 인 m 종의 β 방사성핵들이 포함되여있다면 j째 통로에 기록되는 계수속도의 수학적기대값은

$$S_0(j) = \sum_{i=1}^m S_0(i, j) = \sum_{i=1}^m f(i, j) A_0(i) \varepsilon(E_i)$$
 (3)

이다. 이 식에서 $S_0(j)$ 대신에 측정값 S(j)를 넣으면 웃식은 다음과 같이 된다.

$$S(j) = \sum_{i=1}^{m} f(i, j) A_0(i) \varepsilon(E_i)$$
(4)

식 (4)로부터

$$\frac{f(1,j)S(j)}{\sum_{i=1}^{m} f(i,j)A(i)\varepsilon_f(E_i)} = f(1,j)$$
(5)

$$\sum_{j=1}^{n} \frac{f(1, j)S(j)}{\sum_{i=1}^{m} f(i, j)A(i)\varepsilon_{f}(E_{i})} = \sum_{j=1}^{n} f(1, j) \equiv 1$$

이다.

웃식의 량변에 A(1)을 곱하면 다음과 같다.

$$A(1) \cdot \sum_{j=1}^{n} \frac{f(1,j)S(j)}{\sum_{i=1}^{m} f(i,j)A(i)\varepsilon_f(E_i)} = A(1)$$

$$(6)$$

식 (6)으로부터 반복과정을 다음과 같이 쓸수 있다.

$$A^{k+1}(1) = A^{k}(1) \cdot \sum_{j=1}^{n} \frac{f(1, j)S(j)}{\sum_{i=1}^{m} f(i, j)A(i)\varepsilon_{f}(E_{i})}$$
(7)

기준화된 응답함수 f(i,j)와 효률 $\varepsilon_f(E_i)$ 는 측정장치의 특성, 시료의 량과 모양, β 선의 스펙트르모양에 관계된다. 이 량들은 i째 핵종만을 포함하고있는 표준시료를 측정하여 얻은 통로별계수값들을 식 (1)에 넣어 결정한다.

시료에 포함될수 있는 모든 핵종들에 대하여 반복을 시작하는 초기방사능값 $A^{1}(I)$ 을 다음과 같이 표시할수 있다.

$$A^{1}(1) = \frac{\sum_{j=1}^{n} S(j)}{\sum_{i=1}^{m} \varepsilon_{f}(E_{i})}$$
(8)

2. 시료의 두께에 따르는 비방사능결정

측정에서는 NE-102계렬의 수지섬광체와 다통로진폭분석기 《TN7200》을 리용하였다. β 스펙트르가 시료의 두께에 따라 어떻게 변하는가를 먼저 고찰하였다. KCl이 각각 0.4, 0.8, 1.2g씩 담겨진 3개의 시편을 만들고 β 방사능을 측정하였다. 스펙트르를 13개 구간으로 나누었다. 장치잡음이 겹쳐있을수 있으므로 첫 구간을 50으로 하였으며 마지막구간은 대상하는 환경시료의 β 선가운데서 에네르기가 가장 큰 90 Sr - 90 Y 표준원천의 최대에네르기 2.284MeV에 해당하는 360통로에 놓이도록 증폭결수를 설정하고 375통로로 제한하였다.(표 1)

표 1. 스펙트르구간설정

구간번호 1 2 3 … 13
통로구간 51~75 76~100 101~125 351~375

표 2에 KCl시편에 대한 스펙트르측정값을 주었다.

표 2에서 보는바와 같이 측정값들은 11개의 스펙트르구간에 놓인다. 이 측정값들이 같은 분포를 하는가 아니면 다른 분포를 하는가 하는것을 알기 위하여 통계적검정법을 적용하였다. 무게가 서로 다른 시료를 놓고 잰 스펙트르의 분포가 같다면 다음의 량

$$S_1 \cdot S_2 \sum_{i=1}^k \frac{1}{n_{1i} + n_{2i}} \cdot \left(\frac{n_{1i}}{S_1} - \frac{n_{2i}}{S_2}\right)^2 \tag{9}$$

은 자유도가 f=k-1인 χ^2 분포에 따른다. 여기서 $n_{\mathrm{l}i},\; n_{2i}$ 는 i 번째 스펙트르구간에서 측

정된 첫번째 시료와 두번째 시료의 측정값이고 $S_1,\ S_2$ 는 전구간에서의 측정값들의 합, k는 스펙트르구간의 수이다.

ᅲ	2	$KC1\lambda$	I편에	내하	스펙트르측정값

표 2. REI지단에 대한 _ ㅋ드트=80								
통로구간	질량/g(질량두께/(g·cm ⁻²))							
궁도구신	0.4(0.056 5)	0.8(0.113 0)	1.2(0.165 9)	합				
1	8	10	7	25				
2	4	27	22	53				
3	20	27	26	73				
4	20	44	55	119				
5	34	62	61	157				
6	52	92	97	241				
7	81	112	139	332				
8	95	146	180	421				
9	93	149	172	414				
10	54	93	96	243				
11	6	8	10	24				
12	0	0	0	0				
13	0	0	0	0				
총합	467	770	865	2 102				

표 3. χ² 값

분석	대상	구간별합		
1	2	十七 三 日		
0.4g	0.8g	8.34		
0.4g	1.2g	3.50		
0.8g	1.2g	2.25		

측정값들로부터 구한 값이

 $\chi^2 \le \chi_{0.05}^2(f) \tag{10}$

이면 유의수준에서 서로 같다고 본다. 표 2의 측정값들 을 식 (9)에 넣고 계산한 χ^2 값들은 표 3에 주었다. 이 값들은 자유도 f 가 10인 때의 $\chi^2_{0.05}(f)=18.307$ 보다 작 으므로 KCI시료의 β스펙트르는 질량이 0.4~1.2g에서

변하여도 분포모양이 달라지지 않는다는것을 알수 있다.

표 4. 세가지 원천들에 대한 측정값(개)

THE TOTAL TO							
구간	원천			구간	원천		
1 ~1	KCl	Sr	Cs	-	KCl	Sr	Cs
1	25	604	168	8	621	3 106	391
2	53	915	258	9	414	3 305	320
3	73	1 507	407	10	243	3 551	3
4	119	2 226	624	11	24	3 643	0
5	157	3 122	724	12	0	2 328	3
6	241	3 646	743	13	0	135	0
7	332	3 571	513	합	2 102	31 658	4 152

3. ⁴⁰K, ⁹⁰Sr, ¹³⁷Cs핵종들의 β스펙트르특성

⁹⁰Sr , ¹³⁷Cs 표준원천들과 비방사능이 14.7Bq/g인 KCl가루를 리용하였다. 우의 세가지 원천들에 대한 측정값들과 γ^2 값들을 표 4,5에 주었다.

표 5에서 보여준 값들은 $\chi^2_{0.05}(f)$ = 21.026 보다 훨씬 크므로 이 원천들의 eta스펙트르 는 서로 완전히 구별되는 분포모양을 가진다는것을 알수 있다.

다음으로 비방사능이 14 700Bq/kg인 KCl시편들의 스펙트르를 1 000s 측정하여 방사능 을 결정하였다.(표 6)

표 5. χ² 값 원천 KCl Sr Cs KC1 774.02 1 207.48 Sr 0 2 274.55 Cs

0

표 6에서 보는바와 같이 ⁴⁰K의 비방사 능값은 실제값과 2%미만의 편차로 잘 결정 되였으며 시료에 없어야 하는 ⁹⁰Sr , ¹³⁷Cs 핵 종들은 ⁴⁰K 의 비방사능값에 비하여 2%보 다 작은 값으로 나타났다. 그러므로 이 측 정방법은 시료의 비방사능이 10Bg/kg정도 로 낮은 경우에도 좋은 결과를 준다.

표 6.KCI시료의 분석결과							
No	KCl질 량/g	비방사능/(Bq·kg ⁻¹)					
		4	⁴⁰ K	⁹⁰ Sr	¹³⁷ Cs		
1	0.1	14	648.03	20.75	70.13		
2	0.1	14	582.88	36.73	18.31		
3	0.2	14	744.72	10.96	0.73		
4	0.2	14	821.34	23.54	1.71		
5	0.3	14	701.01	85.22	0.40		
6	0.3	14	677.71	80.44	1.11		
7	0.5	14	760.62	37.03	11.5		
8	0.5	14	564.84	57.48	39.68		

맺 는 말

- 1) 환경시료속의 β방사성핵종과 그것의 방사능을 결정하기 위한 방법을 제기하였다.
- 2) 시료의 두께와 핵종에 따르는 β스펙트르의 분포특성을 밝히고 비방사능을 높은 정확도로 측정하였다.

참 고 문 헌

- [1] J. W. Mietelski; J. Radioanal. Nucl. Chem., 262, 645, 2004.
- [2] Alojz Slaninka et al.; Radiation Physics and Chemistry, 112, 56, 2015.

주체110(2021)년 3월 5일 원고접수

On the Analysis of Radioactive Nuclides in Environmental Samples

Pak Chol Sun, Ri Ju Yon

We proposed the method for determining the β radioactive nuclide in environmental samples and its radioactivity. We verified the distribution characteristics of β spectra according to the thickness of sample and each kind of nuclide, and determined the specific radioactivity with high accuracy.

Keywords: β radioactive nuclide, β spectra, specific radioactivity