

TENERAL SERVENCE SESTARRICA DEVENDA MENT

EG CONTROL NEUL Y SURESEINE FRANCE

AGARD ADVISORY REPORT No. 156-

MARD Two-Dimensional horoclassic Configurations

THATRIE

ON AND AVAILABILITY
IN MACK COVER

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

AGARD-AR-156

NORTH ATLANTIC TREATY ORGANIZATION

ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT

(ORGANISATION DU TRAITE DE L'ATLANTIQUE NORD)

11) Aug 79

12/19

Advisory Report Address Two-Dimensional Aeroelastic Configurations.

compiled by

National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23665

sion For	7
bution/	
ability Codes	
Avail and/or	
special	1
	ı
	GRAMI AB Dunced Fication bution/

This Advisory Report was sponsored by the Standard Aeroelastic Configurations Working Group of the Structures and Materials Panel. A further Advisory Report covering Three-Dimensional Configurations is planned for publication in early 1980.

400 043

set

THE MISSION OF AGARD

The mission of AGARD is to bring together the leading personalities of the NATO nations in the fields of science and technology relating to aerospace for the following purposes:

- Exchanging of scientific and technical information;
- Continuously stimulating advances in the aerospace sciences relevant to strengthening the common defence posture;
- Improving the co-operation among member nations in aerospace research and development;
- Providing scientific and technical advice and assistance to the North Atlantic Military Committee in the field of aerospace research and development;
- Rendering scientific and technical assistance, as requested, to other NATO bodies and to member nations in connection with research and development problems in the aerospace field;
- Providing assistance to member nations for the purpose of increasing their scientific and technical potential;
- Recommending effective ways for the member nations to use their research and development capabilities for the common benefit of the NATO community.

The highest authority within AGARD is the National Delegates Board consisting of officially appointed senior representatives from each member nation. The mission of AGARD is carried out through the Panels which are composed of experts appointed by the National Delegates, the Consultant and Exchange Programme and the Aerospace Applications Studies Programme. The results of AGARD work are reported to the member nations and the NATO Authorities through the AGARD series of publications of which this is one.

Participation in AGARD activities is by invitation only and is normally limited to citizens of the NATO nations.

The content of this publication has been reproduced directly from material supplied by AGARD or the author.

Published August 1979
Copyright © AGARD 1979
All Rights Reserved
ISBN 92-835-1333-9

Printed by Technical Editing and Reproduction Ltd
Harford House, 7-9 Charlotte St. London, WIP 1HD

PREFACE

At its Fall 1977 meeting in Voss, Norway the AGARD Structures and Materials Panel (SMP) formed a Working Group on "Standard Configurations for Aeroelastic Applications of Transonic Unsteady Aerodynamics". The members were:

S.R. Bland, United States (Coordinator)

F.O.Carta, United States

L.Chesta, Italy

R.Det, France

H.Forsching, Federal Republic of Germany (Deputy Chairman)

H.C.Garner, United Kingdom

W.Geissler, Federal Republic of Germany

J.J.Olsen, United States (Chairman)

J.J.Philippe, France (Fluid Dynamics Panel Representative)

H. Tijdeman, Netherlands

J.C. Uselton, United States (Fluid Dynamics Panel Representative)

The aim of the Working Group was to accelerate the development of new theoretical, numerical and experimental techniques in transonic unsteady aerodynamics and their application to aeroelastic problems of aircraft loads, stability and flutter. The members from six nations obtained numerous suggestions from aeroelasticians and aerodynamicists in their countries and worked diligently to mold the recommendations into a number which was manageable, yet constituted a valid test of newly emerging capabilities. This report constitutes their first product, a standard set of two dimensional airfoils and aerodynamic conditions.

It is the hope of the SMP that this effort will focus the pertinent research activities of the NATO nations; conserve manpower, computer, wind tunnel, and flight test resources; and stimulate further developments.

JAMES J.OLSEN
Chairman, Working Group on
Standard Aeroelastic Configurations

CONTENTS

PREFACE	
1. INTRODUCTION	
2. AIRFOIL GEOMETRY	
3. ANALYTICAL TEST CASES	
4. RECOMMENDATIONS FOR RI	EPORTING RESULTS
5. REFERENCES	To the President Along The Control of the State of the Control of

the section of the se

AGARD Two-Dimensional Agreelestic Configurations Compiled by Samuel R. Bland Untional Agreementies and Space Administration Langley Research Conter Rempton, VA 23665

The aeroelogicism mode reliable, efficient methods for the calculation of unstoody serodynamic forces in the frequently critical transcaic speed regime. The development of such methods can be enhanced by the availability of a limited number of test cases for the comparison of competing methods. This report contains such test cases. Geometric descriptions of seven, two-dimensional airfoils and suggested serodynamic conditions for each are included.

LIST OF STREOLS

airfeil chord, a oscillation frequency, Hs plunge displacement in s-direction, m plunge amplitude, m reduced frequency, uc/27 free stream Mach number not applicable static pressure, M/m² Reynolds number Vc/v . tim, . free stress velocity, a/s streamise coordinate relative to leading edge, s . pitch axis location relative to leading edge, a flap axis location relative to leading edge, m *6 coordinate normal to free stream, positive up, m angle of attack, deg pitch rate da/dt, dog per semichord length travelled . dynamic pitch engle, deg . ratio of specific beats flap angle, dag dynamic flap angle, deg kinematic viscosity, m2/s free stress deadty, hg/s mendimensional time in comichord lengths travelled, 20t/c angular frequency, 21f, rod/s

The coordinate system, force and moment definitions, and sign conventions are given in figure 2.

1. INTRODUCTION

The technology of transmic aerodynamics is currently undergoing rapid development. Significant progress is being unde in the solution of the equations describing the unsteady mation of airfells and vings in transmic flow. The availability of reliable and efficient computational methods will greatly enhance the ability of the analyst to predict the seroelastic behavior of high speed aircraft. In general, the inherent monlinearity of the flow equations for the transmic regime requires the use of the finite-difference or finite-element methods of the computational fluid dynamicist. Those methods tend to be expensive to use, requiring both large computer storage and long machine time. The sero-elemetician needs to examine many cases, both for analysis and for structural design optimization, and therefore is interested in the development of reliable, more approximate methods.

In order to compare and evaluate analytical methods involving various degrees of approximation, the AGAND Structures and Materials Fanal has defined a limited set of test cases to be used in evaluating the competing methods. This activity should serve to estimulate cooperative resourch and to conserve resources by providing a common set of analytical problems. This report centains the recommended test cases for two-dimensional unsteady transcale flow. Detailed geometric descriptions are given for seven airfoils of thicknesses from 6.0 to 16.5% (shown in fig. 1): a biconvex parabolic are airfoil, three symmetric conventional airfoils, and three combered supercritical airfoils. The seredynamic conditions, such as Mach number, mean angle of attack, and oscillation amplitude and frequency are also given. In some cases, experimental data have been published and are available for comparison. Recommendations are also make for uniformity in definitions and reporting to subsect the desired comparisons.

2. AIRPOIL CHIMETRY

Figure 1 shows the seven AGARD sirfoils. Four have conventional, symmetric sections, and three have supercritical sections. The sirfoils MCA CO12, MED-A3, NO A1, and MLR 7301 are among those included in the steady flow data base compiled by the AGARD Fluid Dynamics Fenci is reference 1. (The NO A1 airfoil is referred to an CAST 7 in the reference.) Tabulated airfoil ordinates for five of the airfoils are

given in tables 1 to 5. The other two airfoils have analytic definitions. Because of the sensitivity of transonic calculations to airfoil slopes (and curvature for some methods), care should be taken to ensure that interpolations of the geometric data are as smooth as possible. The use of low-order least-square polynomials or spline functions is recommended in most cases. For densely tabulated data, local finite difference forms may be satisfactory. Reference 2 gives a discussion of the airfoil description problem. In any case, explicit account should be taken of the square root behavior at the sirfoil mose. Whetever airfoil description is actually used in the serodynamic analysis, it should be carefully documented so that the calculations can be duplicated by other analysts.

Comments on each of the airfoils are given in the following subparagraphs. In the case of the supercritical airfoils, the ordinates are given in the coordinate system furnished by the designer; angle of attack is defined to be zero in this system. In each case the airfoil chord c is used as the reference length in the geometric definitions.

2.1 Parabolic are

The 62 parabolic are airfull of unit chord is defined by the equation

2.2 MACA 644006

The ordinates for the symmetric NACA 64A006 sirfoil are given in table 1. The published ordinates of reference 3 (p. 354) have been sugmented by eight new ordinates in the nose region. These additional points are taken from reference 2. The nose radius is 0.00246c.

2.3 MACA 64A010

The ordinates for the MASA Ames Research Center model of the MACA 64A010 airfoil are given in table 2. This model airfoil has an actual thickness of about 10.62.

2.4 MACA 0012

The MACA 0012 sirfoil of unit chord is described (ref. 3, p. 113) by the equation

$$x/c = \pm 0.6(0.2969 \sqrt{x/c} - 0.126(x/c) - 0.3516(x/c)^2 + 0.2843(x/c)^3 - 0.1015(x/c)^4)$$

The nose radius is 0.015867c.

2.5 MB-A3

The MBB-A3 airfoil ordinates are given in table 3. The data for this 8.92-thick supercritical airfoil were furnished by Masserschmitt-Bölhow-Blohm (MBB). Hime additional points in the mose region have been taken from reference 2. The design conditions for this airfoil are Mach number of 0.765, angle of attack of 1.5°, and lift coefficient of 0.519. The mose radius is 0.0087c.

2.6 DO A1

The DO Al airfoil ordinates are given in table 4. The data for this 11.82-thick supercritical airfoil were furnished by Dornier. The airfoil design is described in references 4 and 5. The design conditions are Mach number of 0.76, angle of attack of zero, and lift coefficient of 0.573. The mose radius is 0.0115c.

2.7 MLR 7301

The ordinates for "he MLR 7301 sirfoil are given in table 5. The data for this 16.52-thick supercritical sirfoil wer staked by the Hationeal Lucht-on Ruinteventlabor Forium (MLR). The sirfoil design ig described a ference 6. The design conditions are Mach number 7 0.721 and angle of attack of -0.19.

3. ARALYTICAL TEST CASES

the alterior all the source of author

The serodynamic conditions and the unsteady motions for each sirfoil are given in tables 6 to 12. As is customery in the U.S., the reduced frequency k and corresponding nondimensional time T use the semichord c/2 as reference length. An attempt has been made to cover a range of conditions for each class of sirfoil while at the same time limiting the total number of cases. Hevertheless, there are a total of 81 cases given in the tables. In addition, it is recommended that calculations of the mean steady flow (k = 0) be made for each of the unsteady flow conditions analysed. Published experimental data exist for seem of the cases given; in other cases, tests have recently been completed or are planned; and in other cases, it is unlikely that experimental data will be available.

The cases selected allow for a systematic variation of several parameters for each airfeil. However, the resulting large number of cases tends to limit the usefulness of this report in providing comparisons for enalysts working independently of one another. For this reason, a subset of 15 cases, marked in the tables by an asteriok, has been chosen for priority analysis. Those cases provide for the variation of one parameter (frequency, mode of motion, amplitude, Mach number, or Reynolds number) at a time.

The moins of motion are described as follows. For sirfull pitch about a mean angle of attack

一、我们一个事工。""你在事一点

A metant of

where each a is is degrees and wt - 2kVt/c - kt.

For the plunge mode

For the control surface mode

The ratio of specific heats γ should be 1.4 for air. In performing viscous flow calculations, the boundary layer transition point should be specified. In some cases this information is available with the published experimental data.

3.1 Parabolic are

Analytical test cases for the 62 persbolic arc airfoil are listed in table 6. Several Nach numbers are given for k=0.2 and several frequencies for N=0.8. The Nach numbers include the nonsubscale values N=1.0 and 1.1. The frequencies cover a very large range—from k=0.02 to k=5. Both pitching and plunging modes of motion are included. In addition to calculations for $\gamma=1.4$, calculations for $\gamma=1.14$ (appropriate for Freen-12 in the NASA Langley Transonic Dynamics Tunnel) are of interest for the pitching airfoil (cases 1-9).

One additional case for the parabolic are airfuil is that of the thickening-thinning airfuil of reference 7. The airfuil increases from zero to 10% thickness in 15-chord lengths of travel and then returns to zero thickness in another 15-chord lengths of travel. This is the only case included in this report in which no lift is generated and in which disturbances approach zero as time approaches infinity. The airfuil shape is given by

$$a/c = \begin{cases} 0 & \tau \le 0 \\ \frac{40.2(\pi/c)(1-\pi/c)[1-T^{3}(10-15T+6T^{2})]}{0} & 0 < \tau < 60 \end{cases}$$

where T = |1 - 1

and t - 2Vt/c

The Nach number to 0.85.

3.2 MACA 644006

The analytical cases for the MCA 64A006 sirfoil are given in table 7. All cases are for the sirfoil with flap oscillating about zero mean flap position and with zero angle of attack. Proguency variation is included at five Mach numbers in the range $0.80 \le N \le 0.96$ and also amplitude variation at two Mach numbers. Experimental results for these cases are reported in reference 6. Transition was fixed at $\pi/c = 0.1$ on upper and lower surfaces.

3.3 MCA 64A010

Analytical test cases for the MASA Ames model of the MACA 64A010 sirfoil are listed in table 8. The cases were selected from an extensive set of unassrements recently completed at the MASA Ames Research Conter. Reference 8 presents a summary of these tests. In each case the pitch axis is at the quarter-chord, and the unam angle of attack is zero. At H = 0.8 a range of frequency and two amplitudes and Raymolds axabers are given.

3.4 MICA 0012

The analytical cases for the NACA 0012 strfoil are given in table 9. The cases have been selected from free transition experiments subsequent to the proliminary results reported in reference 9. The first four cases are for pitch oscillation and, with helicopter interests in mind, include the only cases for a symmetric airfoil with sizable mean angles and oscillation amplitudes in this report. Case 4 is for oscillation amplitudes $a_0 = 0$, but a small value of $a_0 = 0.25$ may be taken if the analytical method requires it.

Cases 6 to 8 represent transient angle-of-attack changes at nominally constant pitch rates of and are the only transient cases in the tables in this report. In the experiments the instrumentation cannot provide constant of during the initial growth, and the measured time-dependent angles of attack are represented approximately by

Case 6
$$a(\tau)$$
 = 0.0004825 $\tau^2(72-\tau)$ 0 $\leq \tau \leq 26.0$ Case 7 $a(\tau)$ = 0.0000023 $\tau^2(378-\tau)$ 0 $\leq \tau \leq 133.3$ Case 8 $a(\tau)$ = 0.0000519 $\tau^2(150-\tau)$ 0 $\leq \tau \leq 42.3$

The upper limits of τ correspond to the upper limits of a and the final pitch rates $a' = da/d\tau$ given in table 9.

3.5 100-A3

The analytical cases for the MD-A3 supercritical sirfeil ere listed in table 10. The cases

selected represent variations in N and $q_{\rm m}$ about the design point (N = 0.765, α = 1.5°). Both pitch and plungs examples are included. In addition, frequency is varied up to k=0.9 and, as for the parabolic arc, Mach numbers 0.9, 1.0, and 1.1 are included as a challenge to theoreticisms. Experimental results are given in reference 10.

1.6 DO AT

Analytical cases for the DO Al supercritical airfoil are given in table 11. Pitching oscillations for cases very near the design point (N = 0.76, α = 0°) were selected. Provision is made for variations of Reynolds number and of mean incidence in the range -0.5° $\leq \alpha_{\rm m} \leq 2.5^{\circ}$.

The analytical cases for the MLR 7301 supercritical sirfoil are listed in table 12. Three flow regimes are represented: subcritical flow $(M=0.5, \alpha=0.4^{\circ})$, flow with a strong shock wave $(M=0.7, \alpha=2^{\circ})$, and the design point $(M=0.721, \alpha=-0.19^{\circ})$.

This sirfoil has the distinctive pitch axis x=0.4c. The cases include two amplitudes of pitch oscillation and frequencies up to k=0.453. In addition, there are five cases of flap oscillation in the same flow regimes. Experimental results are available in reference 6. Transition was fixed at x/c=0.3 on both upper and lower surfaces.

4. RECOMMENDATIONS FOR REPORTING RESULTS

Although it is impossible to require a single uniform format for reporting results obtained from different analytical methods, as much uniformity as is practical will certainly enhance the comparisons between various investigations that this AGARD activity is designed to promote. In any case, we again urge that such details as sign conventions, units, and mondimensionalizing factors be clearly reported.

The recommended definitions and sign conventions for pressure, force, and moment coefficients are shown in figure 2. In comparing results from either different methods or from the same nonlinear method at different amplitudes, it is desirable to nondimensionalize further by dividing the pressure coefficient, say, by the amplitude. In this case, a symbol such as C_{/a} should be used for the pressure coefficient per redien.

In unsteady serodynamics the coefficients are, of course, functions of time. The seroelastician has traditionally worked with complex coefficients for harmonic motion. These may be expressed as real (inphase with the motion) and imaginary parts, or, alternatively, as magnitude and phase. For nonlinear serodynamics, this representation is inadequate. In general, the coefficients are computed as functions of time. A Fourier analysis can be made and higher harmonics reported along with the fundamental. In many cases a spectral analysis may be more appropriate. In addition to pressure and force coefficients, the shock wave strength and position, and phase with respect to airful motion are important. A comparison of the mean values of all of the unsteady flow parameters with the corresponding parameters for the mean steady flow is also of interest.

S. REFERENCES

1.	AGARD Fluid	Dynamics	Pane 1	Experimental Page Sace for Computer Program Assessment.
	WG-04	7		AGARD Advisory Report 138, May 1979.

AGARD Standard Configurations for Aeroelastic Applications of Transonic 2. Oleen, James J. Unsteady Asrodynamics, Part III, Candidate Airfoil Data. AFFDL-TN-78-6-FBR, Part III, January 1978.

Theory of Wing Sections. Dover Publications, Inc., Nov York, 1959. 3. Abbott, Ira H. von Doeshoff, Albert E.

The Design of Airfoils for Transport Aircraft with Improved High Speed Characteristics. Dornier Cabil, Report 74/168, 1974. Zimer, H.

Development and Wind Tunnel Toots of Three Supercritical Airfolis for Transport Aircraft. Z. Fluguiss. 23 (1975), Neft 7/8.

Summary of Data Required for the AGARD MCP Activity "Standard Aeroslastic Configurations"--Two-Dimensional Configurations. MLR NP 79015, April 1979.

Implicit Approximate-Factorisation Schemes for the Low-Freque Transcale Equation. MASA TH X-73,002, November 1975.

Experiments in Unstoody Transonic Flow. AZAA Paper 79-0769, Presented at the AZAA/ASHE/ASCE/AMS 20th Structures, Structural Dynamics, and Materials Conference, St. Louis, Missouri, April 4-6, 1979.

A Description of the ARA Two-Dissessional Pitch and Heave Rig and Sectional from the MMCA 0012 Wing. ARA News No. 199, September 1977.

operimentalle Untersuchungen überkrittischer Profile und Tragflägel in ochgeschwindigheitsbereich. 1880-Rep. UFE 1153 (1975) and 1153A (1976).

- 4. Kal. P.
- 5. Stanewsky, E.
- 6. Zvene, R. J.
- 7. Ballhous, William F. Steger, Joseph L.
- 8. Devis, S. Malcola, C.
- 9. Landon, R. H.
- 10. Berle. A.

Table 1.- MACA 64A006

Upper surface

x/c	2/ 0	z/e	a/c	x/c	a/c	z/c	s/c
0.0000	0.0000	.0050	.00405	.2500	.02757	.6500	.02100
.0005	.00158	.0075	.00585	.3000	.02096	.7000	.01907
.0015	.00270	.0125	.01016	.3500	.05444	.7500	50010.
.0020	.00311	.0900	.01399	.4500	.02945	.0500	,00967
.0029	.00347	.0750	.01666	.5000	.02025	.0000	,00000
.0030	.00379	.1500	.01010	.5500	.02436	.9500	.00331
.0040	.00439	1300	.02557	,6000	,05-30	1.0000	.00013
			Lower	urlace			Andria.
1/c	s/e	w/c	1/0	x/ c	s/c	w/c	ANTALS
				1 /c	TO SECURE	- A - W	æ/c
0.0000	0.0000	.0050	00485	.2500	02757	.4500	02100
.0009	00150	.0075	00505	.3000	02000	.7000	01907
.0010	00281	.0125	-,00739	.3500	02977	.7500	01605
.0020	00270	.0250	01016	.4900	02999	.8500	-,01205
.0025	00347	.0750	01664	.3000	02025	.9000	00649
.0030	00379	.1000	01919	.5500	02453	.9500	00331
.0075	-,00409	.1500	05503	.4000	02430	1.0000	00013
.0040	00435	.2000	02557				

Table 2 .- NACA 64A010 (MASA Ames model)

MARCH TO STATE OF	
The same	our face
	BAT INC.

1/ c	s/c	1/ e	2/ c	x/e	s/c	1/c	s/c
0.0000 .00102 .00104 .00300 .00401 .00401 .00401 .00704 .00704 .00000	0.0000 .0042 .00542 .00701 .00409 .00472 .01037 .01094 .01136 .01212 .01409	.01798 .02200 .02401 .03002 .03399 .03400 .04201 .04402 .04999 .07900	.01973 .01722 .01994 .01976 .02004 .02100 .02207 .02372 .02004 .02073 .02004	.0002 .1003 .1004 .1100 .1300 .14001 .2000 .2000 .2000 .30003	.03213 .03364 .03513 .03633 .03707 .03712 .04030 .04526 .04044 .03144 .03206	.4499 .5003 .59001 .60000 .6499 .70003 .75001 .60000 .6499 .90003	.05220 .05000 .04001 .04207 .03033 .03334 .02005 .02207 .01725 .01100 .00040
							E _W
			Lover a	UTTACE			

x/e	s/e	n/c	s/c	z/e	1/ c	#/e	z/e
0,00000 .00100 .00100 .00300 .004000 .004000 .00400 .00400 .00400 .00400 .00400 .00400 .00400 .00	0.00000 00332 00301 0054 00706 00706 0030 01020 01020 01020 01031 01210 01213	.01790 .02200 .02001 .03002 .03000 .03000 .04001 .04000	01304 01731 01005 01900 02003 02301 02300 02470 02470 02000 02000	.00002 .10003 .1000 .11000 .13000 .14001 .20000 .20000 .30003 .30003 .30003	-,03220 -,03379 -,03916 -,03904 -,03703 -,03901 -,04902 -,04902 -,04902 -,05137 -,05321	.00000 .90003 .90000 .00000 .00000 .70003 .70001 .00000 .00000 .00000 .00000 .00000	-,05237 -,05010 -,04015 -,04015 -,03001 -,03300 -,02035 -,02035 -,011735 -,01172 -,00000

Ilm	-	Bur	
~ ~ ~		-ui	

			Upper e	urface			
x/c	s/c	x/c	z/c	x/c	z/c	x/c	z/c
			,032227	.300582	.056673	.702905	.039399
.000000	.001500	.054047	.033591	.391000	.056830	.717314	.037662
.000350	048400.	.068097	.034989	.417129	.056777	.733063	.035670
.000450	.005370	.076146	.030010	.442424	.050500	.750412	.033343
.000950	.006200	.004996	.037045	.467677	.056013	.769512	.030770
.001250	.007000	.094745	.039511	.465652	.055292	.790510	.027015
.001550	.007670	.105445	.040401	.510550	.054325	.413559	.024525
.001850	.008800	.117200	.042310	,540973	.053540	.030950	.050010
.005120	.000780	.130193	.043432	.561455	.052000	.000397	.017414
.002550	.004472	.144443	.045359	.579471	.049720	.907805	.011051
.007550	.017100	.100142	.040397	.611369	,040553	.92A304	.009265
.017949	.021270	.196390	.049876	.025019	.047400	.942053	.007250
.022549	.023440	.217239	.051303	3	.046351	.955402	.005573
.027549	.025270	.240036	.05265	.647768	.045327	.900752	.004149
.032540	.026659	.265487	.053913	.697567	,044364	.978101	.002730
.037548	.020279	.290785	.054931	.667317	.043368	. 789451	.001314
.042548	.029973	.316034	.055725	.078114	415500.	1.000000	0.000000
.040045	.030007	.341333	.056305		.00000		
THE THE S			Lower .	urface			
x/c	a/e	x/c	1/c	x/c	z/c	x/c	z/c
0,000000	.001300	.054097	012379	SOCOAL.	031514	.702905	014000
.000090	0.000000	.060747	012991	.391880	031667	.717314	013032
.000350	001200	.048097	013665	.417129	031539	.733063	011913
.000650	001010	.076146	014400	45959	031117	.750412	010733
.000950	0,002270	.004996	•.015505	.467677	030391	.769512	009503
.001250	-,002600	.094745	014076	.445452	024335	.790510	000234
.001990	002400	.105445	017023	.510224	024549	.013559	005032
002190	003300	.130193	019150	5501022	025100	.064357	004440
.002550	003676	.100003	020320	.579071	023724	.007206	003471
.007950	005750	.160142	021575	.596420	055443	.907805	002689
.012549	007000	.177391	022005	.611369	021500	.926304	002000
.017549	000040	.196390	024247	.655019	020107	.942055	001572
.055244	-,008880	.217230	025435	.636868	014540	,955002	001106
.027569	009590	.200034	02701-	.647768	018380	567440.	000073
.032548	010214	.2654A7 20745	020369	.657567	017603	.909051	000569
.042544	011209	.514034	030619	.670116	-,015900	1.000000	0.000000
.044044	011010	,341333	031094	.600066	015072		
	\$200 miles						
62464	10.00						
dasid.	19030		Table 4.	- DO A1		TO SECURE	
							\$1416.
			Upper e	urface			
z/c	1/c	n/c	z/c	x/c	z/c	x/c	z/c
0.000000	0.000000	.035000	.032730	.335000	.067865	,755000	.046305
.000000	.003367	.047500	.037702	.395000	.068511	.415000	.030055
.001000	.005304	.005000	.043075	.455000	.000105	.075000	.025404
.005000	.007536	.007500	\$15000.	.515000	.066766	.920000	.016511
.003300	.010124	.113000	.053034	.575000	.064155	.950000	.010504
.003000	.018803	.155000	.063124	.635000	.050820	1.000000	.000353
.007300	.019341	-279000	-000107	•	6362	3.0 4.0 5.0	A REPORTED
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	174380					4 4 2 2 3 4 3	
ANTIGAN	1000		Lower 0	urface			
z/c	e/c	z/c	e/c	z/c	z/c	1 /c	e/c
0.000000	0.000000	.017500	010027	.215000	156.000.0	.095000	015660
.000400	003189	.033000	018320	.375000	030266	.799000	008096
.001000	005060	.047300	023626	393000	000363	.073000	.001030
.003500	009271	.045000	027131	.455000	044304	.920000	.000707
.005000	010088	.007500	031055	.315000	030542	.950000	000027
.007300	-,012699	.115000	035101	.575000	031925	.977500	005050
.012500	015053	.155000	040390	.639000	023719	.,,,,,,,	004655

x/c	2/c	x/c	2/c	x/e	z/c	x/c	#/c
\$100000.	0004100	.0511909	.050400	.3506698	.0000000		.0659158
.0002452	.0051408	SSEACCO.	.0600008	.3590045	.0069741	.0919335	.0607960
\$672000.	.0075414	.0404737	SA15100.	.3646593	.0070330	.6987344	.0635075
.0000728	.0094526	.0051155	.0623322	. 3776542	.0070609	.7059354	.0623474
.0011502	.0110534	.0497575	.0633660	.3000003	.0470576	.7131300	.0610761
\$001000	.0120002	50752905	.0045125	.395016A	1550180.	.7203374	.0597789
.0017200	.0136050	.0796317	.0653752	.4049845	.0069547	.7279194	.0503000
.0019873	.0140157	.0434094	.0661200	.4141525	.0468546	.7355010	.0509510
.0022643	.0158465	.0874776	.0664324	\$0555505	.0657220	.7430627	.0554945
P122500.	.0166173	.0012456	.0674974	.4320250	.0665674	.7506645	.0540094
.0027889	.0177100	.0452437	.0681786	.4407313	1506900.	.7507541	.0523972
.0041575	0557150.	.1013356	.0641614	.4494369	.0461643	.7664434	.0507569
.0055279	.0250359	.1073002	.0700970	.4541425	.0059239	.7749336	.0490900
0058400.	.0277496	.1156466	.0713095	.4657682	.0056051	.7630235	.0474003
.0080454	seronen.	4504051	.0720014	.4743940	45506NO.	.7918338	.0455342
.0093373	.0321969	.1274496	1500510.	.4010108	.0651362	.8006444	.0436440
.0105917	.0341309	.1351173	.0734750	.4886457	.0446255	.8094548	.0417320
.0118060	.0350140	.1429045	.0748193	.4950915	.0005432	.4142659	.0398007
4556510	.0372772	.1504520	.0757101	.5015374	.0042451	1010050.	.0376461
.0139749	.0385702	.1995993	.0766549	.5079A33	.0039246	.6377629	.0354699
.0150743	,039A039	.1687466	.0775017	.5144293	.0435674	.4475117	.0332012
.0101020	.0409766	.1731193	.0780035	1295256	.0431474	.0572605	.0310012
.0172444	.0420432	.1402644	.0700009	.5302569	.0026778	.0072670	.0200147
.0182563	.0029666	.1074216	.0793026	,5355324	.045240	.6772736	.0205033
.0191141	.0437224	.1927028	.0797509	.5442195	.0817743	1005188.	.0202773
1550010.	\$000000	.1979041	.0001429	.4324005	.0011010	.9000584	.0213713
.0200101	.0451044	.2032454	.0405993	.5601276	.0806215	.9100650	.0191086
.0220475	2550900	.2005468	.0010003	.5673495	.0400355	.9200719	.0160571
.0530405	.0471471	.2143331	.0014554	.9734910	.0795444	.9300779	.0146213
.0251615	.0480684	.2201193	.0018266	.5796329	.0790140	.9444370	,0110093
.0201500	.0486353	.2259097	.0455134	.5849489	.0705361	.44455492	.0104035
.0270784	.0441572	.5316925	.0425842	.5902653	.0740403	. 9540154	.0093043
.0271003	.0002150	.2380860	.0629741	.5949416	.0775888	.9588047	.0083341
20222205	.0402368	.2444800	.0833443	.5996179	.0771227	.9635940	.0073137
.0275052	,0494030	.2500740	.0836953	.4036891	.0746839	. 9683831	.0063045
.0277475	.0495074	.2572660	\$150080.	.6001605	.0762325	.9731722	.0053076
.0241531	.0497145	.2643395	.0843728	.6160230	.0753675	.9779615	.0043842
.0246460	,0499659	.2714110	.0000961	.6234354	.0745111	.9827504	.0033556
.0292153	10929501	.2764824	.0849974	.6305174	.0756551	.4849066	.0029250
.0295948	.0504224	,2455544	.0052771	.6373704	.0727910	.9470626	.0024974
.0299942	.0506142	.2933046	.0855593	.6441229	.0719073	1015040	.0020730
.0305035	.0508944	.3010629	.0850161	.0507055	.0710047	.0013752	.0016520
.0312124	.0911000	.3000172	.0840480	.6574482	.0700640	.9935315	.0012342
.0324307	5200120.	.3165716	.0862555	.0001310	SEPOPAO.	.9956477	.0008199
.0372600	.0536374	.3250960	.0844557	.6709815	.0000054	. 4978438	5804000.
.041909#	.055625A	.3136205	.0000209	.6778320	.0470059	1.0000000	0.0000000
.0405501	.0572348	.3421451	.0007696				

x/c	s/c	x/c	1/c	z/c	1/e	x/c	z/c
.0000012	-,0004100	.0445476	0460334	.3107782	0757932	.7011072	-,0205353
.0002399	0055393	.0474026	0469776	.3207786	0754666	.7115150	0262375
.0004715	0074887	.0502579	0476767	.3307787	0759290	.7170096	0520550
.0007037	0049079	.0394900	0494775	.3408484	0759155	.7225036	0238108
.0009290	-,0100673	.0611217	0509500	.3500404	0758457	.7279977	0550025
.0011010	0110467	.0445532	0523143	.3600401	0757109	.7334917	0214062
.0013843	0119260	.0719003	0535093	.3700476	0755334	.7393630	0201330
.0010200	0127354	.0759493	0544637	.3000460	0752869	.7452344	0100720
.0017476	0131240	.0709142	0553045	.3908459	0749766	.7511050	0176240
.0014649	0135044	.0434791	0561107	.4008449	0746002	.7569772	0163907
.0021310	0142439	.0078439	0500050	.4108436	0741535	.7636408	0150119
1200500.	0149630	.0915050	0575015	0500050	0736331	.7703044	0136501
.0031200	0166910	.0957477	0582501	.4308404	0730347	.7769660	0153353
.0030523	0101509	.0949497	0500000	.4404364	0723540	.7636316	-,0110377
.0005461	0194669	.1020515	-,0595325	.4525550	0714446	.7919673	0094620
.0051995	1,0200151	.1062731	0601275	.4617635	0706399	.4003429	0079464
.0058423	0216432	.1090946	0007023	.4674619	0701032	.0004907	0064930
.0005252	0226612	.1135166	0612573	.4743467	0609783	.8170548	0051070
50072002	0236440	.1171340	0617936	.4859962	0001139	\$050150.	0035437
.0001113	0247544	.1205061	0020505	.4926739	0673125	.0370460	-,0020917
.0009642	-,0257742	.1310030	0636666	.4991016	-,0665011	\$500000	0007601
.0094070	*.0267117	.1305766	0640552	.5050491	-,0454372	.0570300	.0000489
.0106595	0276093	.1471595	0657053	.5124264	0647085	.0031000	.0011150
.0115521	0245047	.1557673	0667768	.5195435	-,0636965	.0731040	.0020946
.0125048	0200462	.1003750	0677044	.9271003	0025863	.0031010	.0050500
.0137674	0305031	.1729025	0005721	.5350260	0613843	.0931796	.0036086
.0152312	0316596	.1015000	0093827	.5433830	0600725	.9031781	.0041230
.0108304	***********	.1466011	0498340	.5462317	0590150	.9131771	\$500000.
.0176413	-,0334455	.1917724	0702707	.5551425	0561517	.9231766	\$070000
.0185270	0340204	.1944436	0706671	.5640432	0500011	.0331705	.0000032
.0194747	0346411	.2019540	0710059	.9730235	0550136	.9431770	\$68600
.0204215	0352369	.2074710	0715271	.5027536	0533361	.9531700	.0041009
.0216004	0399980	.2137072	0719669	.5920000	0910075	. ****	.0038317
4664220.	0366474	.2197034	0723400	.4014235	0498294	.9091707	.0038499
.0201016	0374166	.2256196	0727127	.41042AS	-,0480676	. 47 56617	.0029000
.0255074	0301520	.2327707	0731341	.6194332	0462616	.9701520	.0023154
.0200913	0306255	.2309218	0735240	\$00000	0444919	.9022076	1051500
.0291700	0300204	.2470724	0738433	.6366829	0426066	. 9049110	10010498
.0310445	-,0011455	.2342236	0742125	1755500	0408666	.9076143	.0015550
.0339997	0418978	.2433423	0745090	.4537724	0390207	. 9889660	.0014010
.0353424	0424210	.2725007	0749195	.0020960	0370703	1715500.	.0010102
.0370090	0433174	.2016391	0752020	.0710211	0391027	. 9954683	.0000030
.0100367	0454845	.2907772	0754377	.0012200	0329730	.0001707	\$111000.
.0416922	-,0450309	.3007770	0756429	.4908188	0300300	1.0000000	0.000000

	Table 6 61 parabolic arc			- 61 parabolic arc				Table 7 NACA 64A006				
Case	×	a.	h _o /c	•	Case	*	6.	t	k			
1	0.7	0.5		6.0	1	0.000	1	30	0.000			
1	0.0	0.5	0	0.08		0.000	1	180	0.254			
10	0.0	0.5		0.2		0.085		30	800.0			
	0.0	0.5		0.5		0.029		30	9000			
•	0.0	0.9		1.0		0.029		180	0.240			
	0.0	0.5				0,050		30				
				5.0					0,060			
	0.	0.5		0.8		0.090		150	0.505			
	1.0	0.5	0	6.0	•	0.875	1	30	0.039			
•	1.1	0.5	0	0,0	•	0.475		30	0.059			
10	0.7		0.01	0.8	100	0.075	1	180	0.239			
110	0.0		0.01	0.0	ii	0.960	1	30	0.054			
11.	0.0	•	0,01	0,8	iż	0,960	i	120	0,217			
Note:			0.25, ad		Note:	• • •	- 6 -		- 0.75,			

Table 8.- MACA 64ADIO

Case		ReX10-6	00	•	
	0.490	2.5	0.96	10.0	0.100
	0.502	10.0	1.02	10.0	0.100
	0.796	12.5	1.03	1.1	0.029
	0.796	12.5	1.02	1.0	0.051
•	0.796	12.9	1.02	11.2	0.101
	0.794	12.5	1.01	34.4	105.0
7	0.796	12.5	0.00	51.5	0.303
•	0.796	12.5	0.51	17.1	0.101
•	0.797	12.5	8.00	17.2	0.101
100	0.00>	3.4	0.94	33,8	0.800
Note:	4 - 0	. x /c -	0.25		

Case	×	٧	ReX10-6	•	٥.	a.	t	
1.	0.601	197	4.4	1.00	2.41	NA	90	0.001
;	0.500	197	4.0	3.10	4,59	MA	50	0.001
1	0.500	197	4.4	0.40	2.44	NA	50	0.001
	0.755	243	1.1	50.0	~0	NA	45	0.001
	0.755	243	5.5	50.0	2.51	NA	45	0.001
٠	0.202	96	7.4	**	0-45	0.03	NA	NA
1	0.000	101	4.6	-	0-40	0.11	NA	- 44
	0.000	194	4.7	-	0.40	0.30	NA	-

		Table 10	MRS-	A3				Table 11	DO A		
Case	×	4	00	hole		Case	×	ReX10-6	٠,	a _o	k
1	0.700	1.5	0.5	•	0.1	1	0.70	•	0.0	0.5	0.2
	0.745	0.9	0.5		0.1		0.74	•	0.0	0.5	9.0
3.	0.765	1.9	0.5		0.1	. 3	0.74	•	-0.5	0.5	0.2
•	0.745	1.5	0.5	•	0.3	4.	0.70		0.0	0.5	0,2
	0.769	1.5	0.9		0.0		0.76	•	0.0	1.0	0.2
	0.765	2.0	0.5		0.1	•	0.70	3	0.5	0.5	0.2
7.	0.780	1.5	0.5		0.1	1	0.76		0.5	0.5	5.0
	0.900	1.5	0.5		0.1		0.74	•	1.5	0.5	0.2
•	1.000	1.9	0.5		0.1	•	0.74	•	2.5	0.5	0.2
10	1.100	1.5	0.5	•	0.1	10	0.70	12	0.0	0.5	9.0
11	0.765	1.5		0.01	0.1		0.76	18	0.5	0.5	5.0
12	0.745	1.5		0.01	0.3	11	0.70		0.0	0.0	0.2
12	0.765	1.5	0	0.01	0.0						
	1 x /c -					Note:	agle .	0.25			

		Table	12 ML	R 7301		
Case	×	4	۹,	8.	•	
1	0.500	0.40	0.5		30	0.090
	0.500	0.40	0.5			6.263
3	0.700	2.00	0.5		10	0.072
	0.700	8.00	1.0		30	0.072
•	0.700	7.00	0.5			501.0
•	0.721	-0.19	0.5		30	0.000
•	0.771	-0.19	1.0		10	0.000
	0.721	-0.19	0.5		-	0.101
•	0.721	-0.19	0.5	ě	200	0,453
10	0.500	0.00		1	30	0.096
11	0.700	2.00	•		30	0.072
12	0.771	-0-19	•		30	0.000
13.	0.721	-0.19	•		80	0.101
i	157.0	-0.19	i		200	0.453
Note:	1/e -					1 1906/01

Figure 1 .- AGARD Standard airfoils.

Pigure 2.- Airfoil force and moment definitions.

	REPORT DOCU	MENTATION PAGE	
1. Recipient's Reference	2. Originator's Reference AGARD-AR-156	3. Further Reference ISBN 92-835-1333-9	4.Security Classification of Document UNCLASSIFIED
North	ry Group for Aerospace R Atlantic Treaty Organization Ancelle, 92200 Neuilly sur	on	
6. Title AGAR	D TWO-DIMENSIONAL A	AEROELASTIC CONFIGU	JRATIONS
7. Presented at	\$ 7 m		
8. Author(s)/Editor(s)			9. Dete
S.R.BI	and		August 1979
Langle	Idress al Aeronautics and Space A y Research Center on, VA 23665, USA	Administration	11. Pages 16
12. Distribution Stateme	policies and regulation	ibuted in accordance with s, which are outlined on the f all AGARD publications	ie
13. Key words/Descriptor			
Aerod	ls ynamic configurations ynamic forces onic flow	Aeroelasticity Two-dimensions Unsteady flow Applications of	
A Abrica			

The aeroelastician needs reliable, efficient methods for the calculation of unsteady aerodynamic forces in the frequently critical transonic speed regime. The development of such methods can be enhanced by the availability of a limited number of test cases for the comparison of competing methods. This report contains such test cases. Geometric descriptions of seven, twodimensional airfoils and suggested aerodynamic conditions for each are included.

This Advisory Report was sponsored by the Standard Aeroelastic Configurations Working Group of the Structures and Materials Panel. A further Advisory Report covering Three-Dimensional Configurations is planned for publication in early 1980.

₹0	AGARD-AR-156	AGARD Advisory Report No.156 Advisory Group for Aerospace Research and	AGARD-AR-156
Development, NATO AGARD TWO-DIMENSIONAL AEROELASTIC CONFIGURATIONS Compiled by S.R.Bland Published August 1979 16 pages The seroelastician needs reliable, efficient methods for the calculation of unstandy serodynamic forces in the frequently critical transceince speed regime. The development of such methods can be enhanced by the availability of a limited number of test cases for the comparison of competing methods. This report contains such test cases. Geometric descriptions of	Airfoils Aerodynamic configurations Aerodynamic forces Transonic flow Aeroelasticity Two-dimensional flow Unsteady flow Applications of mathematics	Development, NATO AGARD TWO-DIMENSIONAL AEROELASTIC CONFIGURATIONS Compiled by S.R.Bland Published August 1979 16 pages The aeroelastician needs reliable, efficient methods for the calculation of unsteady serodynamic forces in the frequently critical transonic speed regime. The development of such methods can be enhanced by the availability of a limited number of test cases for the comparison of competing methods. This report contains such test cases. Geometric descriptions of	Airfoils Aerodynamic configurations Aerodynamic forces Transonic flow Aeroelasticity Two-dimensional flow Unsteady flow Applications of mathematics
AGARD Advisory Report No.156 Advisory Group for Aerospace Research and	AGARD-AR-156	AGARD Advisory Report No.156 Advisory Group for Aerospace Research and	AGARD-AR-156
TWO-DIMENSIONAL JRATIONS by S.R.Bland August 1979 Augu	Airfoils Aerodynamic configurations Aerodynamic forces Transonic flow Aeroelasticity Two-dimensional flow Unsteady flow Application of mathematics	TWO-DIMENSIONAL TWO-DIMENSIONAL YOURS By S.R. Bland August 1979 August 1979 August 1979 August 1979 August 1979 Istician needs reliable, efficie tion of unsteady serodynam critical transonic speed regim ach methods can be enhance a limited number of test n of competing methods. uch test cases. Geometric	Airfolls Aerodynamic configurations Aerodynamic forces Transonic flow Aeroelasticity Two-dimensional flow Unsteady flow Application of mathematics

		seven, two-dimensional airfolis and suggested serodynamic conditions for each are included. This Advisory Report was sponsored by the Standard Aeroelastic Configurations Working Group of the Structures and Materials Panel. A further Advisory Report covering Three-Dimensional Configurations is planned for publication in early 1980. ISBN 92-835-1333-9 ISBN 92-835-1333-9 seven, two-dimensional airfolis and suggested serodynamic conditions for each are included. This Advisory Report was sponsored by the Standard Aeroelastic Configurations Working Group of the Structures and Materials Panel. A further Advisory Report covering Three-Dimensional Configurations is planned for publication in early 1980.	This Advisory Report was sponsored by the Standard Aerost Working Group of the Structures and Materials Panel. A furth covering Three-Dimensional Configurations is planted for public seven, two-dimensional sirfolis and suggested serodynamic conincluded. This Advisory Report was sponsored by the Standard Aerost Working Group of the Structures and Materials Panel. A furth covering Three-Dimensional Configurations is planted for public covering Three-Dimensional Configurations is planted for the Configuration of the Configuration
--	--	--	---