CHEM1300 Principles of General Chemistry

Semester B 2021/22

Dr. C. K. Andy Siu (Course Examiner)

Dr. Will Y. K. Peng

Dr. Peggy P. K. Lo

Prof. Michael C. W. Chan

Fridays, 09:00 – 10:50 BOC LT401 **Chemistry** is unique among all the sciences because it is the only discipline that routinely and on a daily basis **creates entirely new forms of matter**.

Because it plays a vital role in shaping so many aspects of modern life, serious study of chemistry at a fundamental level should be part of every well-educated person's university experience.

Recommended Reading

"Chemistry: The Central Science", Global Edition, 14th Ed, Brown / LeMay, Jr. / Bursten / Murphy / Woodward / Stoltzfus, Pearson (ISBN 9781292057712)

• Lectures 1–2 / Tutorial 1: Chapter 2: Atoms, Molecules, and lons

Dr. Andy Siu (AS) Chapter 6: Electronic Structure of Atoms

G6622, YEUNG Chapter 8: Basic Concepts of Chemical Bonding

• Lectures 3–4 / Tutorial 2: Chapter 7: Periodic Properties of the Elements

Dr. Will YK Peng (YKP) Chapter 8: Basic Concepts of Chemical Bonding

B6704, YEUNG Chapter 9: Molecular Geometries and Bonding Theories

• Lectures 5–8 / Tutorial 3: Chapter 5: Thermochemistry

Dr. Peggy PK Lo (PLo) Chapter 10: Gases

B6523, YEUNG Chapter 14: Chemical Kinetics

Chapter 15: Chemical Equilibrium

• Lectures 9–12 / Tutorial 4: Chapter 11: Liquids and Intermolecular Forces

Prof. Michael CW Chan (MC) Chapter 13: Properties of Solutions

G6615, YEUNG Chapter 24: Chemistry of Life: Organic and Biological Chemistry

Class Schedule of CHEM1300 Semester B 2021/22

CHEM1300 Principles of General Chemistry		Lecture	Tutorial		Laboratory	
		C01	T01	T02	L01	L02
Week	Period (Sun-Sat)	F 0900-1050 BOC LT401	W 1000-1150 YEUNG LT-3	W 1500-1650 YEUNG LT-4	W 0900-1250 YEUNG P4813	W 1400-1750 YEUNG P4813
	Teaching Staff	AS/YK	P / PLo / MC (Lecture +	Tutorial)	MC	PLo
1	10/1 - 15/1	Lec 1 (AS)	Tutorials and lab sessions will begin in Week 3		2	
2	16/1 - 22/1	Lec 2 (AS)			3	
3	23/1 - 5/2 31/1-6/2(M-S) Lunar New Year Break	Lec 3 (YKP)	Tut 1 (AS)	Tut 1 (AS)		
4	6/2 - 12/2	Lec 4 (YKP)			Lab 1 Safety Briefing	Lab 1 Safety Briefing
5	13/2 - 19/2	Lec 5 (PLo)	Tut 2 (YKP)	Tut 2 (YKP)		
6	20/2 - 26/2	Lec 6 (PLo)				
7	27/2 - 5/3	Lec 7 (PLo)			Lab 2 (Expt 1)	Lab 2 (Expt 1)
8	6/3 - 12/3	Lec 8 (PLo)	Tut 3 (PLo)	Tut 3 (PLo)		
9	13/3 - 19/3	Lec 9 (MC)				
10	20/3 - 26/3	Lec 10 (MC)			Lab 3 (Expt 2)	Lab 3 (Expt 2)
11	27/3 - 2/4	Lec 11 (MC)			Lab 4 (Expt 3)	Lab 4 (Expt 3)
12	3/4 - 9/4 5/4(T) Ching Ming Festival	Lec 12 (MC)	Tut 4 (MC)	Tut 4 (MC)		
13	10/4 - 23/4 15-21/4(F-R) Easter Break	Holiday				

Assessment

- 30% in Coursework
 - Assignments (via Canvas)
 - Laboratory performance and lab quizzes
- 70% in Final Examination (2 hours)
 - 90 Multiple-choice questions

Minimum Passing Requirement

A minimum of 40% in both coursework and examination components

<u>COURSE WORK AND EXAMINATION</u> ARE **BOTH** IMPORTANT!

Atoms

Democritus (460 – 370 BC) Plato (427 – 347 BC) Aristotle (384 – 322 BC) John Dalton (1766 – 1844 AC)

Matters made up of indivisible particles, called atomos.

There can be no indivisible particles

— an idea that hindered the development of chemistry?!

Matters consisted of tiny particles, called **atoms**.

CHEM1300 2021/22 Sem B - Lecture 1

A Simplified View of Atomic Structure / 1

- Later, scientists have realized that an atom is made up of smaller particles, including
 - protons (positively charged)
 - electrons (negatively charged,
 - neutrons (electrically neutral),

from which ALL atoms are made.

 Number of protons and electrons in a given atom are equal, so that the overall charge of the atom is zero (electrically neutral).

Table 2.1 Comparison of the Proton, Neutron, a
--

Particle	Charge	Mass (amu)
Proton	Positive (1+)	1.0073
Neutron	None (neutral)	1.0087
Electron	Negative (1–)	5.486×10^{-4}

A Simplified View of Atomic Structure / 2

- Most of the <u>mass</u> of an atom resides in the nucleus (the central part of the atom), which consists of protons and neutrons.
- The masses of a proton and a neutron are almost equal.
- Most of the <u>volume</u> of an atom is due to the electrons, which move around the nucleus.

The mass of an electron is so small that we can ignore it.

Table 2.1	Comparison of the Proton, Neutron, and Electron		
Particle	Charge	Mass (amu)	
Proton	Positive (1+)	1.0073	
Neutron	None (neutral)	1.0087	
Electron	Negative (1-)	5.486×10^{-4}	

Elements

- An *element* is composed of only one type of atom.
- The atom of an element is represented by a chemical symbol.

Atoms of a given element must have the <u>same</u> atomic number (i.e. same number of protons), but can have <u>different mass numbers</u> (i.e. different number of neutrons), called as <u>isotopes</u> of that given element.

TABLEAA	The second secon	THE RESIDENCE AND ADDRESS OF THE PARTY OF TH
	• Sama Isarabas at	Maria a la
	Some Isotopes of	Gaiboil

Symbol	Number of Protons	Number of Electrons	Number of Neutrons
¹¹ C	6	6	5
¹² C	6	6	6
¹³ C	6	6	7
¹⁴ C	6	6	8

Periodic Table

A systematic catalog of the elements

How Tiny Is an Atom?

The mass of a 12 C atom is defined as 12 atomic mass units (amu), which have been measured to be 1.992647 x 10^{-23} g / 12 C atom.

12 g of a pure carbon-12 sample =
$$\frac{12g}{1.992647 \times 10^{-23} g / {}^{12}\text{C atom}}$$
$$= 6.02214 \times 10^{23} {}^{12}\text{C atoms (also defined as 1 mole of } {}^{12}\text{C atoms})$$

A mole (mol) is defined as the amount of a substance that contains 6.02214 x 10²³ particles (Avogadro's Number).

Or, we can say the mass of one mole (or the molar mass) of 12 C atoms is 12 g mol $^{-1}$.

Nowadays We Can Visualize Individual Atom by Advanced Techniques

"Iron on Copper"

 Image originally created by IBM Corporation

Chemical Bonds

All these materials are only composed of carbon atoms, which are linked together by chemical bonds; these are results of rearranging electrons when reactive atoms encounter each other.

An atomic resolution image of the surface of a graphite

Understanding Chemical Bonding Provides Opportunities to Develop New Materials

Carbon Nanotube Gears

Reference:

J. Han, A. Globus, R. Jaffe, G. Deardorff, "Molecular Dynamics Simulations of Carbon Nanotube-based Gears" *Nanotechnology* **1997**, *8*, 95-102.

Molecular motors

Reference:

U. G. E. Perera, F. Ample, H. Kersell, Y. Zhang, G. Vives, J. Echeverria, M. Grisolia, G. Rapenne, C. Joachim, S-W. Hla "Controlled clockwise and anticlockwise rotational switching of a molecular motor" *Nature Nanotechnology* **2013**, *8*, 46–51.

Types of Chemical Bonding

There are three major types of chemical bonds:

Metallic bond:

Delocalization of valence electrons throughout metal atoms in the three-dimensional lattice.

• Ionic bond:

Electrostatic forces between oppositely charged **ions**.

- > cations: positively charged ions
- > anions: negatively charged ions

Covalent bond:

Sharing of valence electrons between two atoms.

 Two or more atoms of different elements joined together by chemical bonds form chemical compounds.

Joining Groups of Atoms Together by Covalent Bonds Will Form Molecules

For examples:

- Water molecule is a covalent compound formed from one oxygen atom and two hydrogen atoms.
- **Methane molecule** is also a covalent compound formed from one carbon atom and four hydrogen atoms.

Water H₂O

Methane CH₄

Methane hydrates are cage compounds formed between water molecules and methane molecules in deep oceans.

- They are potential extra sources of fossil fuel.
- Combustion of methane molecules in air (oxygen molecules) produces water molecules and carbon dioxide molecules and also heat.

$$CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O + heat$$

A flaming gas snow bal

Biomass As a Replacement of Fossil Fuel

"Photosynthesis for Fuel"

- Combustion of agricultural waste,
- fermentation of starch and sugar molecules from plants to ethanol molecules, and
- bacterial breakdown of plants to **methane molecules** have all being used as sources of renewable energy.

• Biodiesel can be produced by reacting methanol or ethanol with molecules of vegetable oils or animals fats (**triglyceride molecules**)

Plastics — Giant Molecules

• Polycarbonates (a type of plastics) are lightweight but very strong molecules, made from, for example, phosgene and bisphenol A (BPA).

 Chronic toxicity could be induced by the leached BPA molecules, which act like an estrogenic hormone.

CHEM1300 2021/22 Sem B - Lecture 1

Ions Are Atoms or Groups of Atoms with Charges

Atoms and ions are distinctively different.

- When atoms *lose* electrons, they become positive ions, called as cations.
- When atoms gain electrons, they become negative ions, called as anions.
- We will definitely not take the elemental form of iron (Fe) as iron supplement.
- A common pharmacological form of iron is ferrous sulfate (or iron(II) sulfate), which is an *ionic compound* formed between an iron(II) cation (Fe²⁺) and a sulfate anion (SO_4^{2-}).
- Can you name some common pharmacological forms of calcium (Ca) supplements?

Photochromic Lenses contain silver chloride (AgCl) and copper(I) chloride (CuCl) crystals embedded in the glass.

In the presence of sunlight,

 Chloride ions react with silver ions to form chlorine atoms and silver atoms, which can darken the lenses.

$$Cl^- + Ag^+ \rightarrow Cl + Ag$$

In the absence of sunlight,

Chlorine atoms react with copper(I) ions to form chloride ions and copper(II) ions.

$$Cl + Cu^+ \rightarrow Cl^- + Cu^{2+}$$

The resulting copper(II) ions react with silver atoms to form silver ions again.

$$Ag + Cu^{2+} \rightarrow Ag^{+} + Cu^{+}$$

Molecular-based Photochromic Lenses

PHOTOCHROMIC REACTION

When a naphthopyran dye is exposed to UV light, a weak bond (red) breaks and the molecule rearranges to a species that absorbs light at longer wavelengths.

"Self-Darkening Eyeglasses: The science behind dual-purpose lenses"

B. Erickson, Chemical & Engineering News, 2009, 87, 54.

Hemoglobin: A Big Biomolecule for Transportation of Small Oxygen Molecules (O_2) and Carbon Dioxide Molecules (CO_2) in Blood

• The ionic part of the hemoglobin molecule (i.e. the **iron(II) ion**, Fe²⁺) in our red blood cells is responsible for carrying the **oxygen molecules** and **carbon dioxide molecules** throughout our body.