

Sistemas Numéricos Posicionais

Universidade Federal de Uberlândia Faculdade de Computação Prof. João Henrique de Souza Pereira

Créditos dos slides para o Prof. Dr. Daniel D. Abdala

Na Aula passada ...

- Apresentação da disciplina;
- Introdução aos SDs;
- O processo de Abstração em SD;
- Revisão dos conceitos de eletrônica básica;
- Sinais Analógicos vs Digitais.

Nesta Aula

- Fundamentação dos sistemas Numéricos Posicionais
- Sistema Numéricos
 - Decimal
 - Binário
 - Octal
 - Hexadecimal
- Conversão de bases

Sistemas Numéricos Posicionais

- Associam um "peso" ou potência a cada um dos algarismos do número, dependendo da sua posição;
- Permitem a representação de quantidades infinitas.

Exemplos: (Base Decimal)

$$\frac{4}{10^3} \frac{2}{10^2} \frac{4}{10^1} \frac{2}{10^0}$$

$$= 4x10^3 + 2x10^2 + 4x10^1 + 2x10^0$$

Base dos Sistemas Numéricos

- A base, ou alfabeto dos sistemas numéricos posicionais define quantos símbolos distintos são utilizados:
 - Decimal {1,2,3,4,5,6,7,8,9,0}
 - Binária {1,0}
 - Octal {1,2,3,4,5,6,7,0}
 - Hexadecimal {1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,0}

Base Numérica Binária

- Utiliza apenas dois algarismos {1,0};
- Requer mais casas para representar uma mesma quantidade em comparação à base Decimal;
- Muito útil para lidar com números em sistemas digitais.

$$\frac{1}{2^3} \frac{0}{2^2} \frac{1}{2^1} \frac{0}{2^0} = 1x2^3 + 0x2^2 + 1x2^1 + 0x2^0 = 10_{10}$$

Base Numérica Binária

 Embora seja possível representar infinitas quantidades, em geral, do ponto de vista de SD é interessante limitarmos o número de casas a serem utilizadas por motivos de implementação de hardware

Contagem em Binário

Decimal	Binário		
0	0000		
1	0001		
2	0010		
3	0011		
4	0100		
5	0101		
6	0110		
7	0111		
8	1000		
9	1001		
10	1010		
11	1011		
12	1100		
13	1101		
14	1110		
15	1111		

Conversão Binário-Decimal

Exemplos:

- Converta 42₁₀ para ?₂
- Converta 1024₁₀ para ?₂
- Converta 10000001₂ para ?₁₀
- Converta 1011₂ para ?₁₀
- Quantos algarismos são necessário para representar o número 4242₁₀ em base binária?

Base Numérica Octal

- Utiliza algarismos {1,2,3,4,5,6,7,0};
- Requer mais casas para representar uma mesma quantidade em comparação à base Decimal, porém menos casas em comparação a base binária;
- Note que a base octal é uma base potência da base binária $(2^3 = 8)$.

$$\frac{1}{8^3} \frac{0}{8^2} \frac{7}{8^1} \frac{0}{8^0} = 1x8^3 + 0x8^2 + 7x8^1 + 0x8^0 = 568_{10}$$

Contagem em Octal

Decimal	Octal			
0	00			
1	01			
2	02			
3	03			
4	04			
5	05			
6	06			
7	07			
8	10			
9	11			
10	12			
11	13			
12	14			
13	15			
14	16			
15	17			

Conversão Octal-Decimal

Conversão Binário-Octal

 Note que qualquer algarismo em octal pode ser representado por 3 dígitos binários;

em octal (5252₈)

Binário	Octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

Base Numérica Hexadecimal

- Utiliza dezesseis algarismos {1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,0};
- Requer menos casas para representar uma mesma quantidade em comparação à base Decimal;
- Menos suscetível a erros de leitura que a base binária;
- Também é uma base potência de 2 (2⁴ = 16).

$$\frac{A}{16^3} \frac{O}{16^2} \frac{O}{16^1} \frac{1}{16^0} = 10x16^3 + 1x16^0 = 40961_{10}$$
Prof. Dr. rer. nat . Daniel Duarte Abdala

Contagem em Binário e Hexadecimal

Decimal	Binário	Hexadecimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	Α
11	1011	В
12	1100	C
13	1101	D
14	1110	Е
15	1111	F

Prof. Dr. rer. nat . Daniel Duarte Abdala

Conversão Hexadecimal-Decimal

1 A 2

$$16^2 ext{ } 16^1 ext{ } 16^0$$

 $1A2_{16} = 1x16^2 + 10x16^1 + 2x16^0 = 418_{10}$

Conversão Binário-Hexadecimal

 Note que qualquer algarismo octal pode ser representado por 3 dígitos binários

Comparativo Entre Bases Posicionais

Decimal	Binário	Octal	Hexadecimal
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

Prof. Dr. rer. nat . Daniel Duarte Abdala

Tabela de Correspondência para Diferentes Bases Numéricas

potência	valor	potência	valor	potência	valor
10 ⁰	1	20	1	16 ⁰	1
10 ¹	10	21	2	16 ¹	16
10 ²	100	2 ²	4	16 ²	256
10 ³	1.000	2 ³	8	16 ³	4096
104	10.000	24	16	16 ⁴	65536
10 ⁵	100.000	2 ⁵	32	16 ⁵	1048576
10 ⁶	1.000.000	2 ⁶	64	16 ⁶	16777216
10 ⁷	10.000.000	27	128	16 ⁷	268435456
10 ⁸	100.000.000	28	256	16 ⁸	4294967296
10 ⁹	1000.000.000	2 ⁹	512	16 ⁹	68719476736
10 ¹⁰	10000.000.000	210	1024	16 ¹⁰	1099511627776

Exercícios:

$$\rightarrow$$
?₂ \rightarrow ?₂

3. 511₁₀

$$\rightarrow$$
?₂

$$\rightarrow$$
?

$$\rightarrow$$
?₁₀

$$\rightarrow$$
?₁₀

$$\rightarrow$$
?

$$\rightarrow$$
?₂

 \rightarrow ?

$$\rightarrow$$
?₂

$$\rightarrow$$
?₂

$$\rightarrow$$
?₂

$$\rightarrow$$
?₂

$$\rightarrow$$
?₂

$$\rightarrow$$
?₁₀

$$\rightarrow$$
?

$$\rightarrow$$
?₁₆

$$\rightarrow$$
?₁₆

Pro Lar

- Leitura: (Tocci) 1.4 até 1.5 (pgs. 9-14)
- Leitura: (Capuano) 1.1 até 1.5.3 (pgs. 15-42)
- Leitura Optativa: (Tocci) 1.6 até 1.0 (pgs. 14-21)
- Lista de exercícios 1:
- Exercícios: (Tocci): E={1.3, 1.4, ..., 1.12}
- Exercícios: (Capuano): E={1.2.1.3, 1.2.2.1, 1.2.3.5, 1.3.1.2, 1.3.3.2, 1.3.4.2, 1.3.1.2, 1.4.4.2, 1.4.3.2, 1.4.4.2, 1.5.1.2, 1.5.2.2}

Bibliografia Comentada

TOCCI, R. J., WIDMER, N. S., MOSS, G. L.
 Sistemas Digitais – Princípios e Aplicações.
 11ª Ed. Pearson Prentice Hall, São Paulo,
 S.P., 2011, Brasil.

- CAPUANO, F. G., IDOETA, I. V. **Elementos de Eletrônica Digital**. 40º Ed. Editora Érica.
- São Paulo. S.P. 2008. Brasil.