On the limitations and possibilities of

practically relevant quantum advantages

TUHH
Hamburg
University of
Technology

Martin Kliesch

ARIC Brown Bag Session, June 24, 2025

What does it take to achieve a practically relevant quantum advantage?

TUHH

1) Q. hardware

2) An application with a separation

3) Implementation (whole stack)

What does it take to achieve a practically relevant quantum advantage?

TUHH

- 1) Q. hardware
- Qubit number

2) An application with a separation

3) Implementation (whole stack)

Superconducting qubits [IBM]

[Google]

Neutral atoms [QuEra]

Managaman Agament Agament

Trapped ions [Quantinuum]

What does it take to achieve a practically relevant quantum advantage?

1) Q. hardware

- Qubit number
- Connectivity & gate set
- Noise→ Circuit depth
- QPU clock rate (incl. QEC \geq 10.000 x slower than CPUs)
- 2) An application with a separation

3) Implementation (whole stack)

Quantum circuits

What does it take to achieve a practically relevant quantum advantage?

1) Q. hardware

- Qubit number
- Connectivity & gate set
- Noise
 - → Circuit depth
- QPU clock rate (≥ 10.000 x slower than CPUs)

NISQ vs. FTQC

Noisy intermediate scale quantum

(NISQ) era [Preskill'18]

- ~ 50 to few 100 qubits
- Noisy devices without quantum error correction (QEC)

Example algorithms

- Overview [Bharti+, Rev. Mod. Phys.'22]
 + Myths [Zimboras+, arXiv:2501.05694]
- Variational quantum algorithms (VQAs)
 [Cerezo+, Nat. Rev. Phys.'21]

•

NISQ vs. FTQC

Noisy intermediate scale quantum

(NISQ) era [Preskill'18]

- ~ 50 to few 100 qubits
- Noisy devices without quantum error correction (QEC)

Example algorithms

- Overview [Bharti+, Rev. Mod. Phys.'22]
 + Myths [Zimboras+, arXiv:2501.05694]
- Variational quantum algorithms (VQAs)
 [Cerezo+, Nat. Rev. Phys.'21]
- ...

VQA challenges

- Classical optimization
 - Barren plateaus [McClean et al, Nat. Comm.'18]
 - Local minima
 → Training NP-hard
 [Bittel & MK, PRL'21]
 - Finding hyperparameters
 is QCMA-complete
 [Bittel, Gharibian, MK, CCC'23]
- Measurement effort Most efficient method: [Gresch, MK, Nat. Comm.'25]
- Gate noise
 → error on objective function

NISQ vs. FTQC

Noisy intermediate scale quantum

(NISQ) era [Preskill'18]

- ~ 50 to few 100 qubits
- Noisy devices without quantum error correction (QEC)

Example algorithms

- Overview [Bharti+, Rev. Mod. Phys.'22]
 + Myths [Zimboras+, arXiv:2501.05694]
- Variational quantum algorithms (VQAs)
 [Cerezo+, Nat. Rev. Phys.'21]
- ...

Fault tolerant quantum computation

(FTQC) e.g. [Gottesman, arXiv:2210.15844]

- 1) Encode k logical qubits into n > k physical qubits
- Measure non-logical part to detect and correct errors
- 3) Implement quantum gates so that error spreading remains under control (challenging!)

Complexity

(time, #gates, #qubits)

 $\leq C T \operatorname{polylog}(T / \epsilon)$

T: nr. logical gates

€: max. error

C: constant (large)

What does it take to achieve a practically relevant quantum advantage?

1) Q. hardware

- Qubit number
- Connectivity & gate set
- Noise→ Circuit depth
- QPU clock rate (≥ 10.000 x slower than CPUs)
- 2) An application with a separation

What does it take to achieve a practically relevant quantum advantage?

Q. hardware

- Qubit number
- Connectivity & gate set
- Noise → Circuit depth
- QPU clock rate (\geq 10.000 x slower than CPUs)

2) An application with a separation

- Fast and practical quantum algorithm
- ... where the **best** classical algorithm is slow

[Hoefler et al, Comm. ACM'23]

Consensus

[Hoeffler+, Comm. ACM'23], [Babbush+, PRXQ'21] At least cubic, better exponential speed-ups are needed

Q. algorithms overview: [Dalzell+'23, arXiv:2310.03011]

What does it take to achieve a practically relevant quantum advantage?

1) Q. hardware

- Qubit number
- Connectivity & gate set
- Noise→ Circuit depth
- QPU clock rate (≥ 10.000 x slower than CPUs)

2) An application with a separation

- Fast and practical quantum algorithm
- ... where the **best** classical algorithm is slow

Potential applications with large end-to-end speed-ups

- Fast integer factoring [Shor '94]
- Simulation of quantum systems [Feynman'81]
 - Condensed matter
 - Quantum chemistry

Recent advancements for quantum chemistry

- FeMoco for biological nitrogen fixation (by the enzyme nitrogenase) iron molybdenum cofactor [Reiher+, PNAS'17]
- Improved double factorization (DF) + tensor hypercontraction (THC)
 [Caesura et al. (PsiQ+Boehringer Ingelheim)'25, arXiv:2501.06165]
- DF + THC + spectrum amplification [Low et al. (Google+)'25, arXiv:2502.15882]

Year	Innovation	FeMoco-54 [37]			FeMoco-76 [38]		
		Qubits	Toffolis	Reference	Qubits	Toffolis	Reference
2017	First resource estimate by Trotterization [37]	111	5.0×10^{13}		-	-	_
2019	Qubitization of Single-Factorization [17]		9.5×10^{10}		3628	1.2×10^{11}	[7]
2020	Qubitization of Double-Factorization (DF) [9]	3600	2.3×10^{10}	[9]	6404	5.3×10^{10}	
2020	Tensor-Hyper-Contraction (THC) [7]	2142	5.3×10^9	[7]	2196	3.2×10^{10}	[7]
2024	Symmetry compression of DF [39]	1994	2.6×10^{9}	[39]	-	-	-
2025	Symmetry compression of THC [8]	-	_	_	1512	4.3×10^9	[8]
This work	Spectrum amplification & DFTHC	1137	3.41×10^8		1459	9.99×10^8	
Improvement of this work over [39] and [8] ^a		1.8×	7.0×		1.0 ×	$4.3 \times$	

[Low et al. (Google+)'25]

What does it take to achieve a practically relevant quantum advantage?

1) Q. hardware

- Qubit number
- Connectivity & gate set
- Noise→ Circuit depth
- QPU clock rate (≥ 10.000 x slower than CPUs)

2) An application with a separation

- Fast and practical quantum algorithm
- ... where the **best** classical algorithm is slow

Potential applications with large end-to-end speed-ups

- Fast integer factoring [Shor '94]
- Simulation of quantum systems [Feynman'81]
 - Condensed matter
 - Quantum chemistry
- Linear system solving [HHL'09] ?
 Challenges
 - control of the condition number
 - I/O: output as quantum state vector

What does it take to achieve a practically relevant quantum advantage?

1) Q. hardware

- Qubit number
- Connectivity & gate set
- Noise→ Circuit depth
- QPU clock rate (≥ 10.000 x slower than CPUs)

2) An application with a separation

- Fast and practical quantum algorithm
- ... where the **best** classical algorithm is slow

Potential applications with large end-to-end speed-ups

- Fast integer factoring [Shor '94]
- Simulation of quantum systems [Feynman'81]
 - Condensed matter
 - Quantum chemistry
- Linear system solving [HHL'09] ?
- Differential equations?
- Machine learning ? [rigorous scaling unclear]
- Big data? [I/O bottleneck]
- Combinatorial optimization ?
 [NP intermedia problem (instances) interesting?]

Recent advancements on combinatorial optimization

Generally accepted hypothesis

Quantum computers cannot solve NP-hard problems in polynomial time

What about approximate solutions?

Example: MaxCut problem

Efficiently solvable up to up to approximation ratio \sim 88%,

NP-hard above (assuming UGC)

Interesting read: [https://scottaaronson.blog/?p=8375]

tion ratio	NP-hard			
Approximation	Classical poly time			

Recent advancements on combinatorial optimization

Generally accepted hypothesis

Quantum computers cannot solve NP-hard problems in polynomial time

What about approximate solutions?

Example: MaxCut problem

Efficiently solvable up to up to approximation ratio ~ 88%,

Interesting read: [https://scottagronson.blog/?p=8375]

Good news

- Decoded Quantum Interferometry (DQI): an approximation algorithm for the max-XORSAT problem with exponential speed-up in comparison to best known classical algorithms. [Jordan et al. (Google+), arXiv:2408.08292, QIP'25 plenary]
- Quartic quantum speedups for the Planted Noisy kXOR problem (crypto related) [Schmidhuber et al. (Google), PRX'25+SODA'25+QIP'25]

What does it take to achieve a practically relevant quantum advantage?

1) Q. hardware

- Qubit number
- Connectivity & gate set
- Noise
 - → Circuit depth
- QPU clock rate (≥ 10.000 x slower than CPUs)

2) An application with a separation

- Fast and practical quantum algorithm
- ... where the **best** classical algorithm is slow

Potential applications with large end-to-end speed-ups

- Fast integer factoring [Shor '94]
- Simulation of quantum systems [Feynman'81]
 - Condensed matter
 - Quantum chemistry
- Linear system solving [HHL'09]?
- Differential equations?
- Machine learning ? [rigorous scaling unclear]
- Big data? [I/O bottleneck]
- Combinatorial optimization ?
 [NP intermedia problem (instances) interesting?]
- → Existence of super-quadratic speed-up often unclear

What does it take to achieve a practically relevant quantum advantage?

1) Q. hardware

- Qubit number
- Connectivity & gate set
- Noise→ Circuit depth
- QPU clock rate (≥ 10.000 x slower than CPUs)

2) An application with a separation

- Fast and practical quantum algorithm
- ... where the **best** classical algorithm is slow

3) Implementation (whole stack) optimization of the whole QC stack

- Gate design & compiling
- Noise characterization
- Error mitigation
- •

Noise characterization

Does a quantum computer work as desired?

Quantum system characterization a.k.a. QCVV

 Obtain information from measurements in a platform-independent way

Goals

- Building trust
- Benchmarking
- Error characterization
 - Components (e.g. gates)
 - Interplay of components
- Application:
 Error mitigation /software calibration

e.g., x_1 : Hadamard gate H_1

Components

Interplay

Noise characterization

Example protocols

- Quantum state or process tomography
- Gate set tomography (GST)
 [Merkel et al'13; Blume-Kobeut+ 13;
 Nielsen+, Quantum'21 Brieger, Roth, MK, PRXQ'23; ...]
- Direct fidelity estimation [Flammia & Liu + Silva+, PRL'11]
- Direct certification methods [Pallister+, PRL'18;...]
- Randomized benchmarking (RB)
 [Emerson+'05; Knill+'08; Danker+'09, Magesan+'11; ...
 Helsen+, PRXQ'22; Heinrich, MK, Roth, QIP'23; ...]
- Gate set certification [Nöller, ..., MK, QCTiP'25]
- Shadow estimation for quantum states
 [Huang+, Nat. Phys.'20; Brieger,...,MK, PRL'25]
- Pauli channel estimation [Flammia, Wallman'20; Wagner, Kampermann, Bruß, MK, Q.'22+PRL'23; v.d.Berg+, Nat.Phys.'23; Chen+QIP'25, ...]

Gate set tomography (GST)

Task

Reconstruct the implemented quantum model

$$\mathcal{M} \coloneqq \left(\tilde{\rho}, (\tilde{\mathcal{U}}_i), (\tilde{M}_y) \right)$$

by measuring gate sequences

Challenge

• All components unknown

Idea

Subsample sequences $x \in \{1, ..., n_G\}^L$ and use structure of tensor of Born probabilities

- Tensor completion problem
- Mathematical field: Compressive sensing
- Yields state-of-the-art algorithm
 [Brieger, Roth, MK, PRX Q.'23]

$$\mathbf{p} \in \mathbb{R}^{n_E} \otimes (\mathbb{R}^{n_G})^{\otimes L}$$

$$p_{y|x} = \operatorname{Tr}[\widetilde{M}_y \, \widetilde{\mathcal{U}}_{x_L} \circ \cdots \circ \widetilde{\mathcal{U}}_{x_2} \circ \widetilde{\mathcal{U}}_{x_1}(\widetilde{\rho})]$$

$$= \underbrace{\tilde{\rho}}_{\tilde{\mathcal{U}}} \underbrace{\tilde{\mathcal{U}}}_{\tilde{\mathcal{U}}} \underbrace{\tilde{\mathcal{U}$$

Tensor train / matrix product state (MPS)

Conclusion

Need an application with a separation

- Fast and practical quantum algorithm
- ... where the **best** classical algorithm is slow

Arguable best examples

- Integer factoring
- Simulation of physical systems

Thank you for your attention!

With funding from the:

Federal Ministry of Research, Technology and Space

HQC

