EECS/BioE C106A/206A Introduction to Robotics

Lost Section 2

Sep 25 Fri 7 – 9 PM

Contents

- Theory
 Forward kinematics
- Example

Types of Joints and Twists

Prismatic joint

Revolute joint

Screw joint

$$\xi = \begin{bmatrix} v \\ \omega \end{bmatrix} = \begin{bmatrix} v \\ 0 \end{bmatrix}$$

$$\xi = \begin{bmatrix} v \\ \omega \end{bmatrix} = \begin{bmatrix} -\omega \times q \\ \omega \end{bmatrix}$$

$$\xi = \begin{bmatrix} v \\ \omega \end{bmatrix} = \begin{bmatrix} -\omega \times q + h\omega \\ \omega \end{bmatrix}$$

 ω : rotation axis, v: translational direction/velocity, q: a point on the rotation axis (center of the rotation), h: pitch

Product of exponentials

A two degree of freedom manipulator

$$g_{ST}(\theta_1, \theta_2) = e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} g_{ST}(0)$$

 $\xi_1=(v_1,\omega_1)$ and $\xi_2=(v_2,\omega_2)$ are coordinates with respect to frame S.

Step1. Fix
$$\theta_1=0$$
 and move θ_2
$$g_{ST}(0,\theta_2)=e^{\hat{\xi}_2\theta_2}g_{ST}(0)$$

Step2. Move
$$\theta_1$$

$$g_{ST}(\theta_1,\theta_2) = e^{\hat{\xi}_1\theta_1}g_{ST}(0,\theta_2)$$

Why $g_{ST}(\theta_1, \theta_2) = e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} g_{ST}(0)$?

Why not $g_{ST}(\theta_1, \theta_2) = e^{\hat{\xi}_2 \theta_2} e^{\hat{\xi}_1 \theta_1} g_{ST}(0)$? Instead, $g_{ST}(\theta_1, \theta_2) = e^{\hat{\xi}_2' \theta_2} e^{\hat{\xi}_1 \theta_1} g_{ST}(0)$

Summary

Consider a higher DOF robot arm.

Forward kinematics:

$$g_{ST}(\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}, \theta_{5}, \theta_{6})$$

$$= e^{\hat{\xi}_{1}\theta_{1}} e^{\hat{\xi}_{2}\theta_{2}} e^{\hat{\xi}_{3}\theta_{3}} e^{\hat{\xi}_{4}\theta_{4}} e^{\hat{\xi}_{5}\theta_{5}} e^{\hat{\xi}_{6}\theta_{6}} g_{ST}(0)$$

Step 0. Fix
$$(\theta_1, \theta_2, \theta_3, \theta_4, \theta_5, \theta_6) = 0$$
 and find $g_{ST}(0)$.

Step 1. Fix
$$(\theta_1, \theta_2, \theta_3, \theta_4, \theta_5) = 0$$
 and move θ_6 (find $\xi_6 = (v_6, \omega_6)$ with respect to frame S)

Step 2. Fix
$$(\theta_1, \theta_2, \theta_3, \theta_4) = 0$$
 and move θ_5 (find $\xi_5 = (v_5, \omega_5)$ with respect to frame S)

:

Step 6. Move
$$\theta_1$$
 (find $\xi_1=(v_1,\omega_1)$ with respect to frame S)

Example

Forward kinematics:

$$g_{03}(\theta_1, \theta_2, \theta_3) = e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} e^{\hat{\xi}_3 \theta_3} g_{03}(0)$$

Find $g_{03}(0)$, ξ_1 , ξ_2 , ξ_3 .