期末模拟卷

- 一、选择题(在各小题四个备选答案中选出一个正确答案,填在题末的括号中, 本大题共6个小题,每小题3分,总计18分)
 - 1. 已知 $X \sim 1/t(n)$,则以下选项正确的是()

A $X^2 \sim F(n,1)$

B $X^2 \sim F(n,n)$

C $X^2 \sim F(1, n-1)$

- **D** $X^2 \sim F(1,n)$
- 2. 设 $X_1, X_2,, X_n$ 是 取 自 总 体 X 的 一 个 随 机 样 本 , $E(X) = \mu, D(X) = \sigma^2$,

 $\hat{\theta}^2 = C \sum_{i=1}^{n-1} (X_{i+1} - X_i)^2 \,$ 为 σ^2 的无偏估计,则 C = ()

A. 1/n

B. 1/(n-1)

C. 1/2(n-1) D. 1/(n-2)

- 3. 对正态总体的数学期望 μ 进行假设检验, 如果在显著性水平 0.05 下接受 $H_0: \mu = \mu_0$, 那 么在显著性水平 0.01 下,下列结论中正确的是(

 - A 必须接受 H_0 B 可能接受,也可能拒绝 H_0

 - \mathbf{C} 必定拒绝 H_0 **D** 不接受,也不拒绝 H_0
 - 4. 设 $X_1, X_2, ..., X_n$ 为来自正态总体 $N(\mu, \sigma^2)$ 的一个简单随机样本,若进行假设检验,当

_时,检验使用的统计量是 $t = \frac{\overline{X} - \mu_0}{S / \sqrt{\pi}}$.

A μ 未知,检验 $\sigma^2 = \sigma_0^2$ B μ 已知,检验 $\sigma^2 = \sigma_0^2$

 \mathbf{C} σ^2 未知, 检验 $\mu = \mu_0$ **D** σ^2 已知, 检验 $\mu = \mu_0$

- 5. 设 $X_1, X_2, ..., X_n$ 为来自正态总体 $N(\mu, \sigma^2)$ 的一个简单随机样本,按给定的显著性水平 α 检验 $H_0: \mu = \mu_0$ (已知), $H_1: \mu \neq \mu_0$ 时,判断是否接受 H_0 与 () 有关.
 - A 样本值,显著性水平 α

 \mathbf{B} 样本值,样本容量n

 \mathbf{C} 样本容量n,显著性水平 α \mathbf{D} 样本值,样本容量n,显著性水平 α

- - A 有相同的数学期望

B 有相同的方差

C 服从同一指数分布

。 (用 \overline{X} 和 Q 表示)

D服从同一离散型分布

- 二、填空题(本大题共6小题,每小题3分,总计18分)
- 1. 设 $X \sim N(\mu, 0.3^2)$,容量 n=9 ,均值 $\overline{X}=5$,则未知参数 μ 的置信度为 **0.95** 的置信区间是 。 (查表 $z_{0.025}=1.96, z_{0.05}=1.64$)
- 2. 设 $X_1, X_2,, X_n$ 为来自正态总体 $N(\mu, \sigma^2)$ 的一个简单随机样本,其中参数 μ 和 σ^2 均未知, 记 $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$, $Q^2 = \sum_{i=1}^n \left(X_i \overline{X} \right)^2$,则 假 设 $H_0: \mu = 0$ 的 t 检 验 使 用 的 统 计 量 是
 - 3. 设在显著性检验中, 若要使犯两类错误的概率同时变小, 则只有
- 5. 设在总体 $X \sim N(\mu, \sigma^2)$ 中抽得一容量为 21 的样本,这里 μ, σ^2 均未知,则 $D(S^2) =$ ______
- **6.** 设 $X \sim N(\mu_X, \sigma_X^2)$, $Y \sim N(\mu_Y, \sigma_Y^2)$, 且 X 与 Y 相互独立,设 $X_1, X_2,, X_m$ 为来自总体 X 的一个样本, $Y_1, Y_2,, Y_n$ 为来自总体 Y 的一个样本, S_X^2 和 S_Y^2 分别是其无偏样本方差,则 $\frac{S_X^2/\sigma_X^2}{S_Y^2/\sigma_Y^2}$ 服从的分布是_____。
- 三、(8分)设某车间有200台车床相互独立地工作着,若因换料、检修等原因,每台车床的开工各为0.6,开工时耗电各位1千瓦,问供电所至少要供给这个车间多少千瓦电,才能以99.9%的概率保证这个车间不会因供电不足而影响生产?

四、(8 分)设 $X \sim N(\mu, \sigma^2)$ 抽取简单随机样本 $X_1, X_2,, X_{2n} (n \ge 2)$,样本均值 $X = \frac{1}{2n} \sum_{i=1}^{2n} X_i, \quad Y = \sum_{i=1}^{n} (X_i + X_{i+n} - 2X)^2 \, \bar{\chi} \, E(Y).$

五、(14 分) 设随机变量 x 的密度函数为 $f(x) = \begin{cases} (\lambda+1)x^2, 0 < x < 1 \\ 0, else \end{cases}$,求 λ 的极大似 然估计。

六、 $(14 \, \text{分})$ 某矿地出产的矿石含有某种少量元素,其含量服从正态分布。抽取 $12 \, \text{个样本进行调查}$,算得 S=0.2,求 σ 的置信区间。

(
$$\alpha = 0.1, \chi_{\alpha/2}^2(11) = 19.68, \chi_{1-\alpha/2}^2(11) = 4.57$$
)

七、(10 分)设某电子元件使用寿命(单位:小时)服从正态分布 $N(\mu,80^2)$. 从该种电子元件中随机抽取 25 个进行测试,测得平均使用寿命为 968 小时,标准差不变. 问:在显著性水平 $\alpha=0.05$ 条件下,是否可以认为该种电子元件平均使用寿命为 1000 小时?

八、 $(10 \, f)$ 设已知随机变量 $X_1, X_2, ..., X_n$ 相互独立,且其均值一致有界,即是存在常数 AB 使得 $E(X_i) < A, D(X_i) < B$,证明 $X_1, X_2, ..., X_n$ 服从大数定律。