MATHÉMATIQUES

ÉPREUVE B

Durée: 3 heures 30 minutes

Chaque candidat est responsable de la vérification de son sujet d'épreuve : pagination et impression de chaque page. Ce contrôle doit être fait en début d'épreuve. En cas de doute, il doit alerter au plus tôt le chef de centre qui contrôlera et éventuellement remplacera le sujet.

L'usage d'une calculatrice est interdit pour cette épreuve. Si, au cours de l'épreuve, un candidat repère ce qui lui semble être une erreur d'énoncé, il le signale sur sa copie et poursuit sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Les parties B, C et D sont indépendantes mais utilisent des résultats et les notations de la partie A

On considère une roulette circulaire, divisée en $s \ge 2$ secteurs angulaires réguliers, et pouvant tourner autour d'un axe fixé en son centre O. Chaque secteur porte un numéro de 1 à s, ceux-ci étant ordonnés suivant le sens trigonométrique inverse. \mathcal{C} désignant le cercle délimitant le bord de la roulette, on note I_k le point de \mathcal{C} situé à l'extrémité du rayon séparant le secteur k du secteur k+1 pour $1 \le k \le s-1$, et I_0 le point correspondant entre les secteurs s et 1. Les **figures 1, 2 et 3** illustrent ces définitions pour le cas s=9.

Un repère fixe triangulaire permet de désigner un unique secteur de la roulette. À l'instant initial, le repère indique un point I de la roulette de sorte que $(\overrightarrow{OI}, \overrightarrow{OI_0}) = \theta_0$ ($\theta_0 = 0$ et $I = I_0$ dans la **figure 1**, θ_0 quelconque dans la **figure 3**). La roulette est lancée dans le sens trigonométrique. Une fois son mouvement terminé, le repère désigne un secteur dont le numéro k est le numéro gagnant (**figure 2**). On admettra ici que la probabilité que le repère désigne un rayon séparant deux secteurs est nulle, ce qui est cohérent avec le modèle qui suit.

On note X la variable aléatoire égale au numéro gagnant, N la variable aléatoire égale au nombre de tours **complets** effectués par la roulette avant de s'arrêter et θ la variable aléatoire égale à l'angle total en radians dont a tourné le point I_0 autour de l'axe au cours du mouvement, en tenant compte du nombre de tours complets. Dans l'exemple de la **figure 2**, on a $\theta = 4\pi + 3\pi/4$: cela signifie que la roue a fait N=2 tours complets plus trois huitièmes de tour avant de s'arrêter, et le numéro gagnant est alors X=4. On supposera dans toute la suite que θ suit la loi exponentielle de paramètre $\frac{1}{\alpha}$ dont une densité est la fonction f définie pour tout $x \in \mathbb{R}$ par

$$\begin{cases} f(x) = \frac{1}{\alpha} \exp\left(-\frac{x}{\alpha}\right) & \text{si } x \ge 0\\ f(x) = 0 & \text{si } x < 0 \end{cases}$$

où $\alpha > 0$ est un réel fixé.

1/4 T.S.V.P.

A. Détermination des lois de X et de N

- **A.1.** On commence par une étude de la loi de θ .
 - a) Calculer l'espérance et la variance de la variable aléatoire θ en fonction de α .
 - b) Calculer la fonction de répartition F de θ .
- **A.2.** On s'intéresse maintenant à la loi de N.
- a) Pour $n \in \mathbb{N}$, à quelles valeurs de θ correspond l'événement $\{N = n\}$? En déduire que N suit une loi géométrique de paramètre $p = 1 e^{-\frac{2\pi}{\alpha}}$. On pose q = 1 p.
 - b) Calculer l'espérance et la variance de N en fonction de q
- **A.3.** Nous déterminons maintenant la loi conjointe du couple (X, N). Soient k un entier entre 1 et s et $n \in \mathbb{N}$. On suppose ici qu'à l'instant initial, le repère désigne le point I_0 , comme sur la **figure 1**.
 - a) Montrer que la probabilité de l'événement conjoint $[X = k \cap N = n]$ est

$$P[X = k \cap N = n] = q^n q^{\frac{k}{s}} \left(q^{-\frac{1}{s}} - 1 \right).$$

b) Montrer que pour k fixé, la série de terme général $u_n = P[X = k \cap N = n]$ est convergente. En déduire que la probabilité de l'événement $\{X = k\}$ est

$$P[X = k] = \frac{q^{\frac{k}{s}} \left(q^{-\frac{1}{s}} - 1 \right)}{1 - q}.$$

- c) Vérifier que $\sum_{k=1}^{s} P[X = k] = 1$.
- d) Montrer que les variables aléatoires X et N sont indépendantes.

B. Numéros gagnants équiprobables.

Nous allons voir ici deux méthodes simples pour tenter de rendre les numéros équiprobables.

- **B.1.** Dans cette question, on examine l'idée intuitive suivante : si la roulette est lancée suffisamment fort pour faire un très grand nombre de tours, la position initiale n'a presque plus d'influence sur le résultat.
 - a) Calculer la limite de P[X = k] quand α tend vers $+\infty$.
 - b) Conclure.
 - **B.2.** Dans cette question et la suivante, nous examinons la possibilité de dessiner sur la roulette des secteurs angulaires non-réguliers dans le cas particulier s=2. On suppose donc la roulette divisée en deux secteurs : le secteur 1 est une portion de disque d'angle $\pi \omega$ (où $\omega \in]0, \pi[$) et le secteur 2 la portion restante. La position initiale est au point I_0 (voir **figure 4** cicontre).

Figure 4

Pour tout $x \in \mathbb{R}$, on définit $\operatorname{ch}(x) = \frac{\mathrm{e}^x + \mathrm{e}^{-x}}{2}$ et $\operatorname{sh}(x) = \frac{\mathrm{e}^x - \mathrm{e}^{-x}}{2}$. On admettra que ch et sh sont des fonctions de classe C^{∞} sur \mathbb{R} , vérifiant pour tout $x \in \mathbb{R}$: $\operatorname{ch}'(x) = \operatorname{sh}(x)$ et $\operatorname{sh}'(x) = \operatorname{ch}(x)$ et la formule $(\operatorname{ch}(x))^2 - (\operatorname{sh}(x))^2 = 1$.

- a) Pour tout $n \in \mathbb{N}$, exprimer $P[X = 1 \cap N = n]$ et $P[X = 2 \cap N = n]$ en fonction de n, α et ω .
- b) En déduire que P[X=1]=P[X=2] si et seulement si

$$\omega = \alpha \ln \left(\operatorname{ch} \left(\frac{\pi}{\alpha} \right) \right)$$
 (*).

c) On suppose que ω est fixé par la relation précédente. X et N sont-elles indépendantes?

B.3. On cherche à déterminer si la relation (*) est bien compatible avec la condition $\omega \in]0,\pi[$. Pour cela, on pose

$$\varphi(\alpha) = \alpha \ln \left(\operatorname{ch} \left(\frac{\pi}{\alpha} \right) \right).$$

- a) Montrer que φ est de classe C^{∞} sur $]0, +\infty[$ et calculer φ' , qu'on exprimera à l'aide de la fonction $\psi: x \mapsto x \frac{\operatorname{sh}(x)}{\operatorname{ch}(x)} \ln(\operatorname{ch}(x)).$
- b) Montrer que $\psi(x) > 0$ pour tout x > 0 et en déduire que φ est décroissante sur $]0, +\infty[$ (on pourra calculer ψ').
 - c) Montrer que $\lim_{\alpha \to 0^+} \varphi(\alpha) = \pi$, et en déduire que $\varphi(\alpha)$ est dans l'intervalle $]0,\pi[$. Conclure.
- d) Montrer que lorsque x tend vers 0, $\operatorname{ch}(x) = 1 + \frac{x^2}{2} + o(x^2)$, et en déduire $\lim_{\alpha \to +\infty} \varphi(\alpha)$. Comment interpréter ce résultat en faisant référence à la question B.1?

C. Parties enchaînées

On supposera dans toute cette partie s=3 (voir figure 5 ci-contre). La roulette est maintenant lancée plusieurs fois de suite, la position initiale avant le premier lancer étant en I_0 . À l'issue de chaque mouvement :

- \bullet si le numéro gagnant est 1, la roulette est relancée depuis la position I_1
- \bullet si le numéro gagnant est 2, la roulette est relancée depuis la position I_2
- \bullet si le numéro gagnant est 3, la roulette est relancée depuis la position I_0

Figure 5

Pour le lancer numéroté $i \ge 1$, on notera X_i le numéro gagnant, et Y_i le vecteur $Y_i = \begin{pmatrix} P[X_i = 1] \\ P[X_i = 2] \\ P[X_i = 3] \end{pmatrix}$

On utilisera les notations suivantes (q étant défini dans la partie \mathbf{A}):

$$U = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \quad ; \quad q_0 = \frac{1 - q^{\frac{1}{3}}}{1 - q} \quad ; \quad r = q^{\frac{1}{3}} \quad ; \quad I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad ; \quad J = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

- **C.1.** Soit $i \ge 1$. On cherche à obtenir une relation de récurrence entre Y_{i+1} et Y_i .
 - a) Pour $1 \leq k \leq 3$, Calculer $P[X_{i+1} = k \mid X_i = 1]$.
 - b) Montrer ensuite que la matrice $A=q_0\left(\begin{array}{ccc} r^2 & r & 1\\ 1 & r^2 & r\\ r & 1 & r^2 \end{array}\right)$ contient à l'intersection de la ligne

k et de la colonne k' la probabilité conditionnelle $P[X_{i+1} = k | X_i = k']$.

c) En déduire $Y_{i+1} = AY_i$, puis l'expression de Y_i en fonction de A et U.

- C.2. On étudie maintenant le comportement de ce modèle lorsque le nombre de lancers devient très grand.
 - a) Exprimer A en fonction de q_0 , r, I, J et J^2 .
 - b) Montrer que les valeurs propres de J sont 1, $j = e^{i\frac{2\pi}{3}}$ et j^2
 - c) Vérifier les relations suivantes : $j^3 = 1$, $1 + j + j^2 = 0$, $\overline{j} = j^2$.
 - d) Trouver une matrice inversible complexe P dont la première ligne est composée de 1, telle que

$$J = PDP^{-1} \text{ où } D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & j & 0 \\ 0 & 0 & j^2 \end{pmatrix}$$

e) On note \overline{P} la matrice conjuguée de P, c'est-à-dire la matrice dont les coefficients sont les conjugués

- P. Calculer $\overline{P} \times P$ et en déduire l'expression de P^{-1} .

 f) Déterminer alors une matrice complexe $\Delta = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \delta_2 & 0 \\ 0 & 0 & \delta_3 \end{pmatrix}$ telle que $A = P\Delta P^{-1}$.

 g) Vérifier que $\delta_2 = \overline{\delta_3}$. Montrer que $(r^2 + j + j^2r)(r^2 + j^2 + rj) = (1 r)(1 r^3)$.
- En déduire que $|\delta_2| < 1$, $|\delta_3| < 1$.
- h) En déduire $\lim_{i \to +\infty} P[X_i = k]$ pour tout $k \in \{1, 2, 3\}$.

D. Autre modèle de parties enchaînées

La roulette est lancée l fois de suite ($l \ge 2$). La position initiale avant le premier lancer est en I_0 . La seconde fois, la roulette est lancée depuis la position exacte atteinte à la fin du premier mouvement, et ainsi de suite (cette situation diffère donc de celle étudiée dans la partie C). Pour tout entier naturel i entre 1 et l, on désigne par θ_i l'angle total décrit par I_0 pendant les i premiers lancers. On note N_l la variable aléatoire égale au nombre de tours complets effectués par I_0 au cours des l lancers.

a) On suppose l grand. Dans l'application numérique (c) qui suit on prendra l = 100.

Quelle loi est-il possible d'utiliser pour obtenir des valeurs approchées d'événements relatifs à θ_l ? On donnera la variance et l'espérance de cette loi.

b) On donne ci-dessous le graphe de la fonction de répartition G de la loi normale centrée réduite. Déterminer graphiquement une valeur approchée à 10^{-1} près de r > 0 tel que G(r) - G(-r) = 0,95. En déduire, en utilisant l'approximation précédente, un intervalle [a,b] tel que $P[a \le \theta_l \le b] = 0,95$ (on donnera a et b en fonction de r, l et α).

c) Application numérique : pour $\alpha=10\pi$ et l=100, donner des entiers naturels n_1 et n_2 tels que $P[n_1 \leqslant N_l \leqslant n_2] \geqslant 0,95$ et que l'intervalle $[n_1,n_2]$ soit de longueur minimale.

FIN DE L'ÉPREUVE