

جامعة برج العرب التكنولوجية

IT Essentials

د/ اسامه النحاس

- How do computers represent data?
 - Most computers are digital

BINARY DIGIT (BIT)	ELECTRONIC CHARGE	ELECTRONIC STATE
1		ON
0		OFF

- Recognize only two discrete states: on or off
- Use a binary system to recognize two states
- Use number system with two unique digits: 0 and 1, called bits (short for binary digits)
 - Smallest unit of data computer can process

- What is a byte?
 - Eight bits grouped together as a unit
 - Provides enough different combinations of 0s and 1s to represent 256 individual characters
 - Numbers
 - Uppercase and lowercase letters
 - Punctuation marks

Number Systems

Number systems are very important to understand because the design and organization of a computer depends on the number systems. The four kind of number system used by the digital computer –

- 1.Decimal number system
- 2.Binary number system
- 3.Octal number system
- 4. Hexadecimal number system

Decimal Number System

- > The decimal number system consists of 10 digits namely 0 to 9.
- ➤ Since the decimal number system consists of 10 digits, the base or radix of this system is 10.

e.g
$$(405)_{10}$$
, $(145.25)_{10}$

Octal Number System

- The octal number system consists of 8 digits namely 0 to 7.
- Since the Octal number system consists of 8 digits, the base or radix of this system is 8.

$$e.g(76)_8, (55.25)_8$$

Binary Number System

- The binary number system consists of 2 digits namely 0 and 1.
- ➤ Since the binary number system consists of 2 digits, the base or radix of this system is 2.

e.g
$$(101)_2$$
, $(1001.11)_2$

Hexadecimal Number System

- The Hexadecimal number system, popularly known as Hex system has 16 symbols, therefore its base/radix in 16.
- The 16 symbols used in Hexadecimal system are 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

e.g
$$(45)_{16}$$
, $(11A)_{16}$

Conversion between Number Systems

Decimal into Binary

Step 1. Divide the decimal number by the base of binary using the repeated-division method.

Step 2. Note the remainder separately.

Step 3. Arrange the remainder in an order where the first remainder noted is LSD and the last remainder is MSD.

Conversion between Number Systems

> Decimal into Binary

	Decin	nal number 225	
Division	Quotient	Remainder	1
225 / 2	112	1 ←	LSB
112 / 2	56	0	1
56 / 2	28	0	1
28 / 2	14	0] [
14 / 2	7	0]
7/2	3	1	1
3/2	1	1	1
1/2	0	1	1
В	inary number	11100001	
	Deci	mal number 77	
Division	Quotient	Remainder	1
77 / 2	38	1 ←	LSB
38 / 2	19	0	1
19/2	9	1	1
9/2	4	1	1
4/2	2	0	1
2/2	1	0	1 I
1/2	0	1	1
1/2			-
1/2		0	

Converting Binary to Decimal

- Decimal number system is base 10
 - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 - Uses 10 numbers

23625

Power of 10 representation	104	10 ³	102	10 ¹	100
Decimal representation	10000	1000	100	10	1
Base 10 representation	20,000	3,000	600	20	5

Converting Binary to Decimal

Binary number system is base 2

- ▶ 0, 1
- Uses 2 numbers

10010001

Base 2 representation	27	26	2 ⁵	24	23	22	21	20
Decimal representation	128	64	32	16	8	4	2	1
Base 2 representation	1	0	0	1	0	0	0	1

Converting Binary to Decimal

Binary number system is base 2

- **▶** 0, 1
- Uses 2 numbers

$$10010001 = 145$$

Base 2 representation	27	26	25	24	23	22	21	20
Decimal representation	128	64	32	16	8	4	2	1
Base 2 representation	1	0	0	1	0	0	0	1

Converting Decimal to Binary

- Convert decimal 35 to binary
 - 1. Using 8 bits, find largest power of 2 that will "fit" into 35
 - 2.Place a 1 into that slot
 - 3.If the # doesn't fit, place a 0 into that slot

Power of 2 representation	27	26	2 ⁵	24	23	22	21	20
Decimal representation	128	64	32	16	8	4	2	1
Base 2 representation								

Converting Decimal to Binary

- Convert decimal 35 to binary
 - 1. Using 8 bits, find largest power of 2 that will "fit" into 35
 - 2.Place a 1 into that slot
 - 3.If the # doesn't fit, place a 0 into that slot

Power of 2 representation	27	26	2 ⁵	24	23	22	21	20
Decimal representation	128	64	32	16	8	4	2	1
Base 2 representation	0	0	1	0	0	0	1	1

Convert Binary to Decimal

- 1.Choose an 8 bit binary number = 10101110
- 2. Write the binary digits under the correct column
- 3. For each column with a 1, you will add that decimal value
- 4. You will not add the values of the columns you entered 0

Power of 2 representation								
Decimal representation								
Base 2 representation	1	0	1	0	1	1	1	0

Convert Binary to Decimal

- 1.Choose an 8 bit binary number = 10101110
- 2. Write the binary digits under the correct column
- 3. For each column with a 1, you will add that decimal value
- 4. You will not add the values of the columns you entered 0

Power of 2 representation	27	26	2 ⁵	24	23	22	21	20
Decimal representation	128	64	32	16	8	4	2	1
Base 2 representation	1	0	1	0	1	1	1	0

- •What are three popular coding systems to represent data?
 - > ASCII—American Standard Code for Information Interchange
 - **EBCDIC**—Extended Binary Coded Decimal Interchange Code
 - Unicode—coding scheme capable of representing all world's languages

ASCII	Symbol	EBCDIC	
00110000	0	11110000	
00110001		11110001	
00110010			

ASCII TABLE

Decimal	Hex	Char	Decimal	Hex	Char	_I Decimal	Нех	Char	_I Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	`
1	1	[START OF HEADING]	33	21	1	65	41	Α	97	61	a
2	2	[START OF TEXT]	34	22	"	66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	С	99	63	c
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27	1	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	H	104	68	h
9	9	(HORIZONTAL TAB)	41	29)	73	49	1	105	69	i i
10	Α	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	C	[FORM FEED]	44	2C	,	76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	М	109	6D	m
14	E	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	/	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	Т	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	v
23	17	[END OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	X
25	19	[END OF MEDIUM]	57	39	9	89	59	Υ	121	79	у
26	1A	(SUBSTITUTE)	58	3A	:	90	5A	Z	122	7A	z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	\	124	7C	1
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F	_	127	7F	[DEL]

How is a letter converted to binary form and back?

Step 1.

The user presses the capital letter **D** (shift+D key) on the keyboard.

Step 2.

An electronic signal for the capital letter **D** is sent to the system unit.

Step 4.

After processing, the binary code for the capital letter **D** is converted to an image, and displayed on the output device.

The signal for the capital letter **D** is converted to its ASCII binary code (01000100) and is stored in memory for processing.