Informatik I: Einführung in die Programmierung 10. Bäume

Albert-Ludwigs-Universität Freiburg

Prof. Dr. Peter Thiemann

26. November 2024

1 Der Baum

- Definition
- Terminologie
- Beispiele

Der Baum

Definition

Terminologie Beispiele

Binärbäume

Suchbäume

Bäume in der Informatik

A THE STATE OF THE

- Bäume sind in der Informatik allgegenwärtig.
- Gezeichnet werden sie meistens mit der Wurzel nach oben!

Der Baum

Definition Terminologie

Binärbäume

suchbaum

Zusammenfassung

26. November 2024 P. Thiemann – Info I 4 / 65

1 Der Baum

- Definition
- Terminologie
- Beispiele

Der Baum

Definition

Terminologie Beispiele

Binärbäume

Suchbäume

- Der leere Baum ist ein Baum.
- Wenn $t_1, ..., t_n$, $n \ge 0$ disjunkte Bäume sind und k ein Knoten, der nicht in $t_1, ..., t_n$ vorkommt, dann ist auch die Struktur bestehend aus der Wurzel k mit zugeordneten Teilbäumen $t_1, ..., t_n$ ein Baum.
- Nichts sonst ist ein Baum.

■ Bildlich:

Der Baum Definition

Beispiele

Binärbäume

0 111 11

1 Der Baum

- Definition
- Terminologie
- Beispiele

Der Baum Definition

Terminologie Beispiele

Binärbäume

Suchbäume

Zusammen-

fassung

Terminologie I

- Z
- Alle Knoten, denen keine Teilbäume zugeordnet sind, heißen Blätter.
- Knoten, die keine Blätter sind, heißen innere Knoten.

Die Wurzel kann also ein Blatt sein (keine weiteren Teilbäume) oder ein innerer Knoten.

Der Baum Definition

Terminologie Beispiele

Binärbäum

Terminologie II

Eltern und Kinder

Wenn KP ein Knoten und KC die Wurzel eines zugeordneten Teilbaums ist, dann gilt:

- KP ist Elternknoten von KC (höchstens einer),
 - Der Elternknoten von KP, dessen Elternknoten usw. sind Vorgänger von KC.
 - KC ist Kind von KP.
 - Kinder von KC, deren Kinder, usw. sind Nachfolger von KP.

Der Baum
Definition
Terminologie

Binärbäume

Markierte Bäume

- Bäume sind oft markiert. Die Markierung weist jedem Knoten eine Marke zu.
- Formal: Wenn K die Knotenmenge eines Baums ist und M eine Menge von Marken, dann ist die Markierung eine Abbildung $\mu: K \to M$.

Terminologie

Der Raum

Rinärbäume

1 Der Baum

- Definition
- Terminologie
- Beispiele

Der Baum Definition

Terminologie Beispiele

Binärbäume

Suchbäume

Beispiel: Verzeichnisbaum

In vielen Betriebssystemen ist die Verzeichnisstruktur im Wesentlichen baumartig. Knotenmarkierung: Dateiname

Der Baum

Terminologie Beispiele

Rinärhäume

Dillarbaume

Beispiel: Syntaxbaum

UNI FREIBURG

Wenn die Struktur einer Sprache mit Hilfe einer formalen Grammatik spezifiziert ist, dann kann der Satzaufbau durch Syntaxbäume beschrieben werden.

Der Baum Definition

Beispiele

Rinärhäume

Beispiel: Ausdrucksbaum

- Bäume können Ausdrücke so darstellen, dass ihre Auswertung eindeutig durchführbar ist, ohne dass Klammern notwendig sind.
- Beispiel: (5+6) *3 * 2
- Entspricht: ((5+6)*3)*2
- Operatoren als Markierung innerer Knoten, Zahlen als Markierung der Blätter:

Der Baum Definition

> Terminologi Beispiele

Binärbäume

Binarbaume

Zusammen

- Jede Liste und jedes Tupel kann als Baum angesehen werden, bei dem der Typ die Knotenmarkierung ist und die Elemente die Teilbäume sind.
- Beispiel: [1, [2, (3, 4)], 5]

Der Baum Definition

Beispiele

Binärbäume

0 111 1

2 Binärbäume

- Repräsentation
- Beispiel
- Funktionen auf Bäumen
- Baumeigenschaften
- Traversierung

Der Baum

Binärbäume

Repräsentation

Beispiel Funktionen a

Bäumen Baumeigenschaf-

> ten Traversierung

Traversierung

Suchbäume

Der Binärbaum

- Der Binärbaum ist ein Spezialfall eines Baumes.
- Ein Binärbaum ist entweder leer oder besteht aus einem (Wurzel-) Knoten und zwei Teilbäumen.
- Für viele Anwendungsfälle angemessen.
- Funktionen über solchen Bäumen sind einfach definierbar.

Der Raum

Rinärhäume

2 Binärbäume

- Repräsentation
- Beispiel
- Funktionen auf Bäumen
- Baumeigenschaften
- Traversierung

Der Baum

Binärbäume

Repräsentation

Beispiel

Funktionen au Bäumen

> Baumeigenschaften

Traversierung

Cuchhäumo

_

Binärbäume durch Objekte repräsentieren

- Der leere Baum wird durch None repräsentiert.
- Jeder andere Knoten wird durch ein Node-Objekt repräsentiert.
 - Das Attribut mark enthält die Markierung.
 - Das Attribut left enthält den linken Teilbaum.
 - Das Attribut right enthält den rechten Teilbaum.
- Beispiele:
 - Der Baum bestehend aus dem einzigen Knoten mit der Markierung 8: Node (8, None, None)
 - Der Baum mit Wurzel '+', linkem Teilbaum mit Blatt 5, rechtem Teilbaum mit Blatt 6:

```
Node('+', Node(5, None, None), Node(6, None, None))
```

Der Baum

Binärbäum

Repräsentation

Beispiel

Funktionen auf Bäumen

en

raversierung

No control de discourse de la control de

Suchbaum

Baumobjekte


```
from typing import Optional
@dataclass
class Node[T]:
    mark : T
    left : Optional['Node[T]'] = None
    right: Optional['Node[T]'] = None
type BTree[T] = Optional[Node[T]]
```

Bemerkung zu den Typannotationen

- Node [T]: Typ einer generischen Klasse T ist der Typ der Markierung des Baums
- Optional[t]: entweder t oder None (aber nichts anderes)
- Der Typ Node existiert erst nach Ausführung der class-Anweisung. Python ersetzt den String 'Node [T]' in der Typannotation rückwirkend durch den Typ Node [T].

Der Baum

Binärbäume

Repräsentation

Beispiel

Funktionen auf Bäumen

Bäumen Baumeigenscha

raversierung

uchhäume

Suchbäume

2 Binärbäume

- Repräsentation
- Beispiel
- Funktionen auf Bäumen
- Baumeigenschaften
- Traversierung

Der Baum

Binärbäume

Repräsentation

Beispiel Funktionen auf

Funktionen a Bäumen

> Baumeigenschaften

Traversierung

uchhäumo

Suchbäume

Darstellung mit Node Objekten:

Der Baum

Binärbäume

Repräsentation

Beispiel Eurktionen s

Funktionen a Bäumen

ten

Traversierung

Suchbäume

2 Binärbäume

- Repräsentation
- Beispiel
- Funktionen auf Bäumen
- Baumeigenschaften
- Traversierung

Der Baum

Binärbäume

Repräsentation

Beispiel

Funktionen auf Bäumen

Baumeigenschaften

Traversierung

Suchbäume

Aufgabe

Transformiere einen Baum mit beliebiger Markierung in einen String.

Signatur

```
def tree str(tree : BTree[Any]) -> str:
```

Der Baum

Repräsentation

Eunktionen auf Bäumen

Traversierung

Präzisierung

- Jeder Knoten des Baums muss in einen String transformiert werden.
- BTree[Any] = Optional[Node[Any]] ist ein Uniontyp (Alternative).
- ⇒ Pattern matching
 - Zusätzliches Problem: Node-Objekte enthalten selbst Attribute vom Typ BTree [Any].
- Abhilfe Wunschdenken: nehme an, dass tree_str auf den Teilbäumen schon das Problem löst!
- D.h. verwende die Funktion in ihrer eigenen Definition (Rekursion)!

Der Baum

Binärbäu

Repräsentation

Funktionen auf

Baumeigensch

ten Traversierung

Suchbäum

Funktionsgerüst

```
FREIBUR
P. BUR
```

```
def tree_str(tree : BTree[Any]) -> str:
    match tree:
        case None:
            return "fill in"
        case Node (mark, left, right):
            l_str = tree_str(left)
            r_str = tree_str(right)
            return "fill in"
```

Funktionen auf Bäumen Baumeigenscha

Der Raum

ten Traversierung

Suchhäume

Suchbaume

- Node Objekte enthalten selbst wieder Node Objekte (oder None) in den Attributen left und right.
- Zum Ausdrucken eines Node Objekts müssen auch die Node Objekte in den Attributen ausgedruckt werden.
- tree str ist rekursiv, denn es wird in seiner eigenen Definition aufgerufen!

Drucken von Bäumen erfolgt rekursiv

- Die rekursiven Aufrufe tree_str (left) und tree_str (right) erfolgen nur auf den Kindern des Knotens
- Ergibt sich zwangsläufig aus der induktiven Definition!
- Rekursive Aufrufe auf den Teilbäumen sind Teil des Funktionsgerüsts, sobald eine baumartige Struktur bearbeitet werden soll.
- Die Alternative "case None" ergibt sich zwangsläufig aus dem Typ tree:Optional[Node]: tree ist entweder None oder eine Node-Instanz.
- Alle Funktionen auf Binärbäumen verwenden dieses Gerüst.

Der Baum

Binärbäu

Renräsentation

Beispiel

Funktionen auf Bäumen

Baumeigensch: en

Traversierung

Suchbäume

_

Funktionsdefinition

Der Baum

District Co.

Repräsentation

Beispiel

Funktionen auf Bäumen

Baumeigenscha ten

Traversierung

Suchbäume

2 Binärbäume

- Repräsentation
- Beispiel
- Funktionen auf Bäumen
- Baumeigenschaften
- Traversierung

Der Baum

Binärbäume

Repräsentation Beispiel

Funktionen auf Bäumen

> Baumeigenschaften

Traversierung

Suchbäume

Suchbaume

Tiefe von Knoten, Höhe und Größe von (Binär-)Bäumen

induktiv definiert

- Die Tiefe eines Knotens k (Abstand zur Wurzel) ist
 - 0, falls *k* die Wurzel ist.
 - \blacksquare *i* + 1, wenn *i* die Tiefe des Elternknotens ist.
- Die Höhe eines Baumes ist die maximale Tiefe über alle Blätter:
 - -1 für den leeren Baum.
 - m + 1, wenn m die maximale Höhe aller der Wurzel zugeordneten Teilbäume ist.
- Die Größe eines Baumes ist die Anzahl seiner Knoten.
 - 0 für den leeren Baum.
 - s+1, wenn s die Summe der Größen der Teilbäume ist.

Der Baum

Binärbäu

Dinarbaun

Beispiel

Funktionen auf Räumen

Baumeigenschaf ten

aversierung

Suchhäume

Suchbaume

Induktive Definition von Höhe und Größe von Binärbäumen

$$height(tree) = \begin{cases} -1, & \text{if } tree \text{ is empty} \\ 1 + \max(& height(tree.left), \\ & height(tree.right)), & \text{otherwise.} \end{cases}$$

$$size(tree) = \begin{cases} 0, & \text{if } tree \text{ is empty}; \\ 1 & +size(tree.left) \\ & +size(tree.right)), & \text{otherwise.} \end{cases}$$

Der Baum

Dinärhäum

Binarbaum

Beispiel

Funktionen auf

Baumeigenschaf ten

m raversierung

Secretaria Messaga

Suchbäume

def height(tree : BTree[Any]) -> int:


```
UNI
FREIBURG
```

```
Der Baum
```

Binärbäum

Repräsentation Beispiel

Funktionen auf Bäumen Baumeigenschaf

ten Traversierung

iraversierung

Suchbäume

```
match tree:
        case None:
            return -1
        case Node (m, l, r):
            return(max(height(l), height(r)) + 1)
def size(tree : BTree[Any]) -> int:
    match tree:
        case None:
            return 0
        case Node (m, 1, r):
            return(size(1) + size(r) + 1)
```

2 Binärbäume

- Repräsentation
- Beispiel
- Funktionen auf Bäumen
- Baumeigenschaften
- Traversierung

Der Baum

Binärbäume

Repräsentation

Beispiel

Bäumen
Baumeigenschaf-

ten

Traversierung

Suchbäume

Traversierung von Bäumen

- Oft sollen alle Knoten eines Baumes besucht und bearbeitet werden.
- 3 Vorgehensweisen (Traversierungen) sind üblich:
 - Pre-Order (Hauptreihenfolge): Bearbeite zuerst den Knoten selbst, dann besuche den linken, danach den rechten Teilbaum
 - Post-Order (Nebenreihenfolge): Besuche zuerst den linken, danach den rechten Teilbaum, zum Schluss bearbeite den Knoten selbst
 - In-Order (symmetrische Reihenfolge): Besuche zuerst den linken Teilbaum, dann bearbeite den Knoten selbst, danach besuche den rechten Teilbaum
- Manchmal auch Reverse In-Order (anti-symmetrische Reihenfolge): Rechter Teilbaum, Knoten, dann linker Teilbaum
- Auch das Besuchen nach Tiefenlevel von links nach rechts (level-order) ist denkbar

Der Baum

Binärbäume

Repräsentation Beispiel

Funktionen auf Bäumen Baumeigenscha

Traversierung

Suchbäume

Pre-Order Ausgabe eines Baums

Gebe den Baum *pre-order* aus

■ Ausgabe: A B C D E F G

Der Baum

Binärbäume

Repräsentation

Beispiel

Funktionen auf Bäumen Baumeigenschaf-

ten Traversierung

0 111 1

Suchbaume

Post-Order Ausgabe eines Baums

Gebe Baum post-order aus

Ausgabe: C E F D B G A

Der Baum

Repräsentation

Reispiel

Bäumen Baumeigenschaf-

Traversierung

In-Order Ausgabe eines Baums

Gebe Baum in-order aus.

■ Ausgabe: C B E D F A G

Der Baum

Binärbäume

Repräsentation

Beispiel

Funktionen auf Bäumen Baumelgenschaf-

ten Traversierung

Suchhäume

Die *post-order* Ausgabe eines Ausdrucks heißt auch umgekehrt polnische oder Postfix-Notation (HP-Taschenrechner, Programmiersprachen *Forth* und *PostScript*) Der Baum

Binärbäum

Binarbaum

Repräsentation

Funktionen auf Bäumen

Baumeigensch

Traversierung

Suchbäum

Zusammen-

assung

UPN

HP-35

Von Holger Weihe - Eigenes Werk, CC BY-SA 3.0, https://commons.wikimedia. org/w/index.php?curid=146664 Forth

: DECADE 10 0 DO I . LOOP ;

PostScript

newpath
100 200 moveto
200 250 lineto
100 300 lineto
2 setlinewidth
stroke

Ergebnis:

Der Baum

Binärbäume

Repräsentation

Beispiel Funktionen au Bäumen

Baumeigenschaften

Traversierung

Suchbäume

2

- Definition
- Suche
- Aufbau

Der Baum

Binärbäume

Suchbäume

Definition Suche

Suche

- Definition
- Suche
- Aufbau

Der Baum

Binärbäume

Definition Suche

Aufbau

- Suchbäume dienen dazu, Objekte schnell aufzufinden.
- Ein Suchbaum ist ein binärer Baum, bei dem jeder Knoten *k* die Suchbaumeigenschaft erfüllt:
 - Alle Markierungen im linken Teilbaum sind *kleiner* als die Markierung von *k*, alle Markierungen im rechten Teilbaum sind *größer*.
- Suchen nach einem Objekt *m* beginnend beim Knoten *k*: Vergleiche *m* mit Markierung des aktuellen Knotens *k*,
 - wenn gleich, stoppe und gebe True zurück,
 - wenn *m* kleiner ist, suche im linken Teilbaum,
 - wenn *m* größer ist, such im rechten Teilbaum.
- Suchzeit ist proportional zur Höhe des Baums! Im besten Fall *logarithmisch in der Größe des Baums*.

Der Baum

Binärbäume

Definition

uche ufbau

Zusammen

Höhe und Größe eines Binärbaums

Lemma

Ist h = h(t) die Höhe eines Binärbaums, so gilt für seine Größe $s(t) \le 2^{h+1} - 1$.

Beweis (Induktion)

IA: Ist der Baum leer, so ist seine Höhe −1 und seine Größe 0.

IS: Besteht ein Baum t aus einem Knoten und zwei Teilbäumen l und r mit Höhen h(l) und h(r), so gilt nach IV $s(l) < 2^{h(l)+1} - 1$ und $s(r) < 2^{h(r)+1} - 1$.

Wegen s(t) = 1 + s(l) + s(r) und $h(t) = 1 + \max(h(l), h(r))$ gilt

$$s(t) = 1 + s(l) + s(r) \le 1 + (2^{h(l)+1} - 1) + (2^{h(r)+1} - 1) \le 2 \cdot 2^{\max(h(l)+1,h(r)+1)} - 1 = 2^{h(t)+1} - 1$$

Der Baum

Binärbäume

Definition

Aufbau

- Definition
- Suche
- Aufbau

Der Baum

Binärbäume

Biridibadirie

Definition Suche

Aufbau

Suche im Suchbaum


```
def search[T : (int, float, str)](tree: BTree[T], item: T) -> bool:
    match tree:
        case None:
           return False
        case Node(m, 1, r) if m > item:
            return search(l, item)
        case Node(m, 1, r) if m < item:
            return search(r, item)
        case : \# m == item
            return True
# smaller values left, bigger values in right subtree
nums = Node(10, Node(5, Node(1), None),
                Node(15. Node(12). Node(20)))
print(search(nums, 12))
```

Der Baum

Binärbäume

Definition
Suche

Suche Aufbau

- Definition
- Suche
- Aufbau

Der Baum

Binärbäume

Suchbäu Definition

Suche

Aufbau

Aufbauen eines Suchbaums

- Aufruf insert(tree. item) für das Einsortieren von item in tree
- Ist tree leer, so wird der Knoten Node(item) zurückgegeben.
- Wenn die Markierung tree.mark größer als item ist, wird item in den linken Teilbaum eingesetzt und der Baum rekonstruiert (das erhält die Suchbaumeigenschaft!).
- Falls tree.mark kleiner als item ist, entsprechend.
- Falls tree.mark == item ist nichts zu tun!

Der Baum

Binärbäume

Suchbäum

Suche

Aufbau

```
FREIBURG
```

```
def insert[T : (str, int, float)](
         tree: BTree[T], item: T
        ) -> Node[T]:
    match tree:
        case None:
            return Node(item)
        case Node(m, 1, r) if item < m:
            return Node(m, insert(1, item), r)
        case Node(m, 1, r) if m < item:
            return Node(m, 1, insert(r, item))
        case _: # m == item
            return tree</pre>
```

Der Baum

Binärbäume

Definition Suche

Aufbau

Der Baum

Binärbäume

Definition Suche

Aufbau

Der Baum

Binärbäume Suchbäume

Zusammenfassung

- Der Baum ist eine Struktur, die in der Informatik allgegenwärtig ist.
- Operationen über Bäumen lassen sich einfach als rekursive Funktionen implementieren.
- In einem Binärbaum besitzt jeder Knoten genau zwei Teilbäume.
- Es gibt drei Hauptarten der Traversierung von Binärbäumen: pre-order, post-order, in-order.
- Suchbäume sind Binärbäume, die die Suchbaumeigenschaft besitzen, d.h. im linken Teilbaum sind nur kleinere, im rechten nur größere Markierungen als an der Wurzel
- Das Suchen und Einfügen kann durch einfache rekursive Funktionen realisiert werden. Sortierte Ausgabe ist auch sehr einfach!

Der Baum

7.......