Bump Function, Test Function, $C_c^{\infty}(\mathbb{R}^n)$

February 21, 2020

Bump function, 或者说test function, 是指 \mathbb{R}^n 上具有紧支集的光滑函数(无穷阶可微). 将全体bump function 记为 $C_c^{\infty}(\mathbb{R}^n)$.

注: 应该有推广的情况, 暂时不关心这个.

Example 0.1. 定义 $\phi: \mathbb{R}^n \to \mathbb{R}^n$,

$$\phi(x) := \begin{cases} \exp\left(\frac{1}{1 - |x|^2}\right), & |x| < 1, \\ 0, & otherwise. \end{cases}$$

 $\phi \not\equiv bump function.$

Example 0.1 中 ϕ 是bump function 的证明有点麻烦, 暂且略去. 下面给出赫赫有名的Urysohn 引理.

Theorem 0.2. 设 $F \subset \mathbb{R}^n$ 是紧集, $G \subset \mathbb{R}^n$ 是开集且 $F \subset G$. 存在 $f \in C_c^{\infty}(\mathbb{R}^n)$, 使得f 的值域为[0,1] 且f 在F 中恒等于1, 在G 中恒等于0.

Proof. 设 $\delta := d(F, G^c)$,不难证明 $\delta > 0$. 定义 $U := \{x \in \mathbb{R}^n : d(x, F) < \frac{\delta}{2}\}$. 用Example 0.1 中的 ϕ 来构造卷积核 φ ,对 $\forall x \in \mathbb{R}^n$, $\forall \varepsilon \in (0, \infty)$,

$$\varphi(x) := \frac{1}{\varepsilon^n} \phi\left(\frac{x}{\varepsilon}\right) / \|\phi\|_{L^1(\mathbb{R}^n)}.$$

则 $\varphi \in C_c^{\infty}(\mathbb{R}^n)$ 是非负函数, $\|\varphi\|_{L^1(\mathbb{R}^n)} = 1$. 取 $\varepsilon \in (0, \frac{\delta}{2})$, 此时对 $\forall x \in \mathbb{R}^n$ 且 $|x| \geq \frac{\delta}{2}$, $\varphi(x) = 0$.

 $\bar{\mathbf{p}}f := \mathbf{1}_U * \varphi, \, \mathbf{y} \in C_c^{\infty}(\mathbb{R}^n).$ 注意到对 $\forall x \in \mathbb{R}^n,$

$$f(x) = (1_U * \varphi)(x) = \int_{\mathbb{R}^n} 1_U(x - y)\varphi(y)dy. = \int_{|y| < \frac{\delta}{2}} 1_U(x - y)\varphi(y)dy.$$

因此f 的值域为[0,1] 且f 在F 中恒等于1, 在 G^c 中恒等于0.