Листок 19

Семинарские задачи

Формула Ньютона-Лейбница

Пусть функция f интегрируема по Риману на [a,b] и пусть на этом отрезке у нее существует первообразная F. Тогда

$$\int_{a}^{b} f(x)dx = F(b) - F(a) = F(x)\Big|_{a}^{b}.$$

Задача 19.1. Вычислите пределы: a) $\lim_{n\to\infty}\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{3n};$ б) $\lim_{n\to\infty}\sqrt[2^n]{\prod_{k=1}^{2^n}\left(1+\frac{k}{2^n}\right)}$

Задача 19.2. Вычислите интегралы:

a)
$$\int_{1}^{2} \ln x dx;$$
 b) $\int_{0}^{1} \frac{x^{2} dx}{1 + x^{6}};$ **b)** $\int_{e}^{e^{2}} \frac{dx}{x \ln x};$ **r)** $\int_{-2\sqrt{3}}^{2} \frac{dx}{(4 + x^{2})^{2}};$ **д)** $\int_{0}^{2\pi} \frac{dx}{2 - \sin x};$ **e)** $\int_{0}^{2\pi} x^{2} \cos x dx;$ **ж)** $\int_{3}^{3} \sin x e^{-x^{2}} dx;$ **3)** $\int_{0.1}^{10} \frac{\ln x}{1 + x^{2}} dx.$

a)
$$\int_0^1 \ln x dx$$
; 6) $\int_{-1}^1 \frac{dx}{\sqrt{1-x^2}}$; b) $\int_0^\infty e^{-ax} \cos bx \, dx (a>0)$.

Задача 19.4. Вычислите интегралы $(n \in \mathbb{N})$: **a)** $\int_0^\infty x^n e^{-x} dx$; **б)** $\int_0^{\pi/2} \sin^n x dx$.

Домашние задачи

Задача 19.5 (ДЗ). Вычислите пределы а) $\lim_{n\to\infty}\sum_{k=0}^{\infty}\frac{k}{k^2+n^2}$; б) $\lim_{n\to\infty}\frac{1}{n^2}\sum_{k=0}^{\infty}\sqrt{k(n-k)}$.

Задача 19.6 (ДЗ). Вычислите интегралы

a)
$$\int_0^{2\pi} \sin^4 x dx$$
; 6) $\int_0^{2\pi} \frac{dx}{4 + \cos^2 x}$; b) $\int_0^{\sqrt{3}} x \arctan x dx$; r) $\int_{1/3}^3 \frac{\arctan x}{x^2 - x + 1} dx$.

Задача 19.7 (ДЗ). Вычислите интегралы
$$(a, b, \alpha > 0, n \in \mathbb{N})$$
:

а) $\int_0^\infty \frac{x \ln x}{(1+x^2)^2} dx$; б) $\int_0^\infty \frac{dx}{(x^2+x+1)^2}$; в) $\int_0^\infty e^{-ax} \sin bx dx$;

$$\Gamma$$
) $\int_0^1 \cos^2(\ln x) dx;$ д) $\int_0^1 x^n (1-x)^{\alpha-1} dx.$

Дополнительные задачи

Задача 19.8 (Доп.). Докажите, что $\int_0^{\pi/2} f(\sin x) dx = \int_0^{\pi/2} f(\cos x) dx$. Вычислите $\int_0^{\pi/2} \ln(\sin x) dx$.

Задача 19.9 (Доп.). Вычислите интегралы a)
$$\int_0^{2\pi} \frac{dx}{\sin^6 x + \cos^6 x}$$
; б) $\int_0^1 x \cdot \arctan^2 x dx$; в) $\int_{-1}^1 (\cos x) \cdot \ln \left(x + \sqrt{1 + x^2} \right) dx$.

Задача 19.10 (Доп.). Найдите значение предела

$$\lim_{n \to \infty} \frac{1 \cdot e^{\frac{1}{n}} + 2 \cdot e^{\frac{2}{n}} + \ldots + n \cdot e^{\frac{n}{n}}}{n^2}$$

Задача 19.11 (Доп.). (Неравенство Пуанкаре). Пусть $f \in C^1[0,1]$. Докажите, что

$$\int_{0}^{1} \left| f(x) - \int_{0}^{1} f(t)dt \right| dx \le \int_{0}^{1} \left| f'(x) \right| dx.$$