හියලු ම හිමිකම් ඇවිරිනි / $(\psi\psi\psi)$ பதிப்புரிமையுடையது $|All\ Rights\ Reserved]$

ලි ලංකා විභාග දෙපාර්තමේන්තුව ලි ලංකා විභාග දෙපාර්ත**ල් වැඩි කිරීම විභාග දෙපාර්තාමේන්තුව ලි ලංකා විභාග දෙපාර්තමේන්තුව** இலங்கைப் பரீட்சைத் திணைக்களம் இலங்கைப் ப**ட்**றைத் திணைக்களும் இலங்கைப் பரீட்கைத் திணைக்களம் இலங்கைப் பரீட்கைத் திணைக்களும் Department of Examinations, Sri *L*anka Department of **இலங்கைப் Sri Ultimas of** rub (Spin) இலங்கையில் Sri Lanka Department of Examinations. Sri Lanka g ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව ලේකා විභාග දෙපාර දෙපාර්තමේන්තුව ලේකා විභාග දෙපාර්තමේන්තුව ලේකා විභාග දෙපාර දෙපාර

අධානයන පොදු සහනික පතු (උසස් පෙළ) විභාගය, 2016 අගෝස්තු கல்னிப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2016 ஓகஸ்ந் General Certificate of Education (Adv. Level) Examination, August 2016

සංයුක්ත ගණිතය இணைந்த கணிதம் Combined Mathematics

\bigcap		
11011	6	
LU	D	_H_

පැය තුනයි மூன்று மணித்தியாலம் Three hours

චිභාග	අංකය					
le .		1	100	10000		1000

උපදෙස්:

* මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ;

A කොටස (පුශ්න 1 - 10) සහ B කොටස (පුශ්න 11 - 17).

* A කොටස:

සියලු ම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියත්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

* B කොටස:

පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.

- st නියමිත කාලය අවසන් වූ පසු f A කොටසෙහි පිළිතුරු පතුය, f B කොටසෙහි පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- # පුශ්න පනුයෙහි B කොටස පමණක් විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

කාටස	පුග්න අංකය	ලකුණු
A	1	
	2	4
	3	9.7
	4	
	5	12.
	6	
	7	
Ī	8	
	9	
	10	
	11	
	12	
	13	
В	14	
	15	
	16	
	17	
	එකතුව	
	පුතිශත ග	

I පතුය	
II පතුය	
එකතුව	
අවසාන ලකුණු	

අවසාන ලකුණු

ඉලක්කමෙන්	
අකුරින්	

සංකේත අංක

උත්තර පතු පරීක්ෂ	ාක	
පරීක්ෂා කළේ:	2	
අධීක්ෂණය කළේ:		

L	A 65006
1.	ගණිත අභපුභන මූලධර්මය භාවිතයෙන්, සියලු $n\!\in\!\mathbb{Z}^+$ සඳහා $\sum_{r=1}^n r(r+1)=rac{n}{3}(n+1)(n+2)$ බව සාධනයකරන්න.

2.	එක ම රූප සටහනක $y=\left x\right +1$ හා $y=2\left x-1\right $ හි පුස්තාරවල දළ සටහන් අඳින්න. ඒ නගින් හෝ අන් අගුරකින් හෝ, $\left x\right +1>2\left x-1\right $ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන් සොයන්න.
	······································
	······································

3.	එක ම ආගන්ඩ් සටහනක
	(i) $ z-i =1$, (ii) $Arg(z-i)=\frac{\pi}{6}$
	සපුරාලන z සංකීර්ණ සංඛාහ නිරූපණය කරන ලක්ෂායන්හි පථවල දළ සටහන් ඇඳ, මෙම පථයන්හි ඡේදන ලක්ෂාය මගින් නිරූපණය කරනු ලබන සංකීර්ණ සංඛාාව $r\left(\cos heta+i\sin heta ight)$ ආකාරයෙන් සොයන්න;
	මෙහි $r>0$ හා $0< heta<rac{\pi}{2}$ වේ.
	· · · · · · · · · · · · · · · · · · ·
4.	එක් එක් සංඛාහාංකය එක් වරක් පමණක් භාවිත කරයි නම්, 1,2,3,4 හා 5 යන සංඛාහාංකවලින්, සංඛාහාංක
	පහකින් යුත් වෙනස් සංඛාා කීයක් සෑදිය හැකි ද? මෙම සංඛාාවලින් (i) කොපමණක් ඉරට්ටේ සංඛාා වේ ද?
	(ii) කොපමණක 3 හා 4 සංඛාහාංක එක ළඟ තිබේ ද?
	(11) මකාපමණක 3 හා 4 සංකෝගයක් එක් ළැගි නම්මේ ද
	More Past Papers at
	tamilguru.lk

5.	$\alpha > 0$ යැයි ගනිමු. $\lim_{x \to 0} \frac{1 - \cos(\alpha x)}{\sqrt{4 + x^2} - \sqrt{4 - x^2}} = 16$ වන පරිදි වූ α හි අගය සොයන්න.
6.	$y=x^2$ හා $y=2x-x^2$ වකු මගින් ආවෘත පෙදෙසෙහි වර්ගඵලය වර්ග ඒකක $\frac{1}{3}$ බව පෙන්වන්න.

7.	$0 < heta < rac{\pi}{4}$ සඳහා $x = 3 \sin^2 rac{ heta}{2}$, $y = \sin^3 heta$ යන පරාමිතික සමීකරණ මගින් C වකුයක් දෙනු ලැබේ.
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \sin 2\theta$ බව පෙන්වන්න.
	C මත වූ P ලක්ෂායක දී ස්පර්ශකයෙහි අනුකුමණය $\dfrac{\sqrt{3}}{2}$ වේ නම්, P ට අනුරූප $ heta$ පරාමිතියෙහි අගය
	සොයන්න.

8.	මූල ලක්ෂායත්, $2x+3y-k=0$ හා $x-y+1=0$ සරල රේඛාවල ඡේදන ලක්ෂායත් හරහා යන සරල
Ο.	
	රේඛාව l යැයි ගනිමු; මෙහි k (\neq 0) නියකයකි. l හි සමීකරණය k ඇසුරෙන් සොයන්න. $(1,1)$ හා $(3,4)$ ලක්ෂා දෙක l හි එක ම පැත්තේ වන බව දී ඇත. $k<18$ බව පෙන්වන්න.
	රේඛාව l යැයි ගනිමු; මෙහි k ($ eq 0$) නියතයකි. l හි සමීකරණය k ඇසුරෙන් සොයන්න.
	රේඛාව l යැයි ගනිමු; මෙහි k ($ eq 0$) නියකයකි. l හි සමීකරණය k ඇසුරෙන් සොයන්න.
	රේඛාව l යැයි ගනිමු; මෙහි k ($ eq 0$) නියකයකි. l හි සමීකරණය k ඇසුරෙන් සොයන්න.
	රේඛාව l යැයි ගනිමු; මෙහි k ($ eq 0$) නියකයකි. l හි සමීකරණය k ඇසුරෙන් සොයන්න.
	රේඛාව l යැයි ගනිමු; මෙහි k ($ eq 0$) නියකයකි. l හි සමීකරණය k ඇසුරෙන් සොයන්න.
	රේඛාව l යැයි ගනිමු; මෙහි k ($ eq 0$) නියකයකි. l හි සමීකරණය k ඇසුරෙන් සොයන්න.
	රේඛාව l යැයි ගනිමු; මෙහි k ($ eq 0$) නියකයකි. l හි සමීකරණය k ඇසුරෙන් සොයන්න.
	රේඛාව l යැයි ගනිමු; මෙහි k ($ eq 0$) නියකයකි. l හි සමීකරණය k ඇසුරෙන් සොයන්න.
	රේඛාව l යැයි ගනිමු; මෙහි k ($ eq 0$) නියකයකි. l හි සමීකරණය k ඇසුරෙන් සොයන්න.
	රේඛාව l යැයි ගනිමු; මෙහි k ($ eq 0$) නියකයකි. l හි සමීකරණය k ඇසුරෙන් සොයන්න.
	රේඛාව l යැයි ගනිමු; මෙහි k ($ eq 0$) නියකයකි. l හි සමීකරණය k ඇසුරෙන් සොයන්න.
	රේඛාව l යැයි ගනිමු; මෙහි k ($ eq 0$) නියකයකි. l හි සමීකරණය k ඇසුරෙන් සොයන්න.
	රේඛාව l යැයි ගනිමු; මෙහි k ($ eq 0$) නියකයකි. l හි සමීකරණය k ඇසුරෙන් සොයන්න.
	රේඛාව l යැයි ගනිමු; මෙහි k ($ eq 0$) නියකයකි. l හි සමීකරණය k ඇසුරෙන් සොයන්න.

9	$A\equiv (1,2), B\equiv (-5,4)$ හා S යනු AB විෂ්කම්භයක් ලෙස වූ වෘත්තය යැයි ගනිමු.
	(i) S වෘත්තයේ ද
	$({ m ii})$ S වෘත්තය පුලම්බ ව ඡේදනය කරන, කේන්දුය $(1,1)$ ලෙස ඇති වෘත්තයේ ද
	සමීකරණ සොයන්න.
10.	$0 \le x \le \frac{\pi}{2}$ සඳහා $\cos x + \cos 2x + \cos 3x = \sin x + \sin 2x + \sin 3x$ සමීකරණය විසඳන්න.
	2
	······································
	······································
	'

සියලු ම හිමිකම් ඇවිරීම /(மුඟුට පුන්ට්පුතිකණයුකෙ.පානු/All Rights Reserved)

இ ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තම්න්තුවේ ප්රචාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව இலங்கைப் பரீட்சைத் திணைக்களம் இலங்கைப் படி இந்த திணைக்களம் இருப்பைத்த திணைக்களம் இலங்கைப் பரீட்சைத் திணைக்களம் Department of Examinations, Sri Lanka Department of இவங்களை இருப்படு இருப

අධායන පොදු සහනික පතු (උසස් පෙළ) විභාගය, 2016 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2016 ஓகஸ்ந் General Certificate of Education (Adv. Level) Examination, August 2016

<mark>සංයුක්ත ගණිතය I</mark> இணைந்த கணிதம் I Combined Mathematics I

B කොටස

* පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න.

11. (a) $a \neq 0$ හා $a + b + c \neq 0$ වන පරිදි වූ $a, b, c \in \mathbb{R}$ යැයි ද $f(x) = ax^2 + bx + c$ යැයි ද ගනිමු. f(x) = 0 සමීකරණයෙහි, 1 මූලයක් **හොවන** බව පෙන්වන්න.

f(x) = 0 හි මූල α හා β යැයි ගනිමු.

 $(\alpha-1)$ $(\beta-1)=rac{1}{a}(a+b+c)$ බව ද $rac{1}{lpha-1}$ හා $rac{1}{eta-1}$ මූල ලෙස ඇති වර්ගජ සමීකරණය g(x)=0 මගින් දෙනු ලබන බව ද පෙන්වන්න; මෙහි $g(x)=(a+b+c)\,x^2+(2a+b)\,x+a$ වේ.

දැන්, a > 0 හා a + b + c > 0 යැයි ගනිමු.

f(x) හි අවම අගය වන m_1 යන්න $m_1=-rac{\Delta}{4a}$ මගින් දෙනු ලබන බව පෙන්වන්න; මෙහි $\Delta=b^2-4ac$ වේ. g(x) හි අවම අගය m_2 යැයි ගනිමු. $(a+b+c)m_2=am_1$ බව අපෝහනය කරන්න.

ඒ නගීන්, සියලු $x\in\mathbb{R}$ සඳහා $g(x)\geq 0$ ම නම් පමණක් සියලු $x\in\mathbb{R}$ සඳහා $f(x)\geq 0$ බව පෙන්වන්න.

- (b) $p(x) = x^3 + 2x^2 + 3x 1$ හා $q(x) = x^2 + 3x + 6$ යැයි ගනිමු. ශේෂ පුමේයය භාවිතයෙන්, p(x) යන්න (x-1) මගින් බෙදූ විට ශේෂයක්, q(x) යන්න (x-2) මගින් බෙදූ විට ශේෂයක් සොයන්න. p(x) = (x-1) q(x) + 5 බව සතහාපනය කර, p(x) යන්න (x-1) (x-2) මගින් බෙදූ විට ශේෂය සොයන්න.
- 12.(a) $n\in \mathbb{Z}^+$ යැයි ගතිමු. සුපුරුදු අංකනයෙන්, $(1+x)^n$ සඳහා ද්විපද පුසාරණය පුකාශ කරන්න. සුපුරුදු අංකනයෙන්, $r=0,1,2,\ldots,n-1$ සඳහා $\frac{{}^nC_{r+1}}{{}^nC}=\frac{n-r}{r+1}$ බව පෙන්වන්න.

 $(1+x)^n$ හි ද්විපද පුසාරණයේ x^r, x^{r+1} හා x^{r+2} හි සංගුණක එම පිළිවෙළට ගත් විට 1:2:3 අනුපාත වලින් යුතු වේ. මෙම අවස්ථාවේ දී n=14 හා r=4 බව පෙන්වන්න.

 $(b) \ r \in \mathbb{Z}^+$ සඳහා $U_r = \frac{10r+9}{(2r-3)(2r-1)(2r+1)}$ හා f(r) = r(Ar+B) යැයි ගනිමු; මෙහි A හා B තාත්ත්වික නියන වේ.

 $r\in\mathbb{Z}^+$ සඳහා $U_r=rac{f(r)}{(2r-3)(2r-1)}-rac{f(r+1)}{(2r-1)(2r+1)}$ වන පරිදි A හා B නියකවල අගයන් සොයන්න.

 $n \in \mathbb{Z}^+$ සඳහා $\sum_{r=1}^n U_r = -3 - \frac{(n+1)(2n+3)}{(4n^2-1)}$ බව පෙන්වන්න.

 $\sum_{r=1}^{\infty} U_r$ අපරිමිත ශ්ලේණිය අභිසාරී බව තවදුරටත් පෙන්වා එහි ඓකාංය සොයන්න.

$$egin{aligned} \mathbf{13}.(a) & \mathbf{A} = \begin{pmatrix} -4 & -6 \\ 3 & 5 \end{pmatrix}, & \mathbf{X} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$
 හා $\mathbf{Y} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ යැයි ගනිමු.

 $\mathbf{A}\mathbf{X}=\lambda\mathbf{X}$ හා $\mathbf{A}\mathbf{Y}=\mu\mathbf{Y}$ වන පරිදි λ හා μ තාත්ත්වික නියත සොයන්න.

$$\mathbf{P}=\left(egin{array}{ccc} -1 & -2 \ 1 & 1 \end{array}
ight)$$
 යැයි ගනිමු. \mathbf{P}^{-1} හා \mathbf{AP} සොයා, $\mathbf{P}^{-1}\mathbf{AP}=\mathbf{D}$ බව පෙන්වන්න; මෙහි $\mathbf{D}=\left(egin{array}{ccc} 2 & 0 \ 0 & -1 \end{array}
ight)$ වේ.

(b) අාගන්ඩ් සටහනක, A ලක්ෂාය 2+i සංකීර්ණ සංඛාභව නිරූපණය කරයි. B ලක්ෂාය, OB=2 (OA) හා $A\hat{O}B=\frac{\pi}{4}$ වන පරිදි චේ; මෙහි O යනු මූලය ද $A\hat{O}B$ මැන ඇත්තේ OA සිට වාමාවර්තව ද චේ. B ලක්ෂාය මගින් නිරූපණය කරනු ලබන සංකීර්ණ සංඛාභව සොයන්න.

OACB සමාන්තරාසුයක් වන පරිදි වූ C ලක්ෂාය මගින් නිරූපණය කරනු ලබන සංකීර්ණ සංඛාාව ද සොයන්න.

- (c) $z \in \mathbb{C}$ යැයි ද $w = \frac{2}{1+i} + \frac{5z}{2+i}$ යැයි ද ගනිමු. Im w = -1 හා $\left| w 1 + i \right| = 5$ බව දී ඇත. $z = \pm (2+i)$ බව පෙන්වන්න.
- **14**.(a) $x \neq \pm 1$ සඳහා $f(x) = \frac{(x-3)^2}{x^2-1}$ යැයි ගනිමු.

f(x) හි වයුත්පන්නය, f'(x) යන්න, $f'(x) = \frac{2(x-3)(3x-1)}{(x^2-1)^2}$ මගින් දෙනු ලබන බව පෙන්වන්න. y = f(x) හි ස්පර්ශෝන්මුබවල සමීකරණ ලියා දක්වන්න.

තිරස් ස්පර්ශෝන්මුඛය, y=f(x) වකුය ඡේදනය කරන ලක්ෂායේ ඛණ්ඩාංක සොයන්න. ස්පර්ශෝන්මුඛ හා හැරුම් ලක්ෂා දක්වමින් y=f(x) පුස්තාරයේ දළ සටහනක් අඳින්න.

(b) අරය $5r~{\rm cm}$ හා උස $h~{\rm cm}$ වූ සෘජු වෘත්ත සිලින්ඩරයක හැඩය ඇති තුනී ලෝහ බඳුනකට, අරය $r~{\rm cm}$ වූ වෘත්තාකාර සිදුරක් සහිත අරය $5r~{\rm cm}$ වූ වෘත්තාකාර පියනක් ඇත. (රූපය බලන්න.) බඳුනෙහි පරිමාව $245\,\pi~{\rm cm}^3$ වන බව දී ඇත. සිදුර සහිත පියන සමග බඳුනෙහි පෘෂ්ඨ වර්ගඵලය $S~{\rm cm}^2$ යන්න r>0 සඳහා $S=49\pi\left(r^2+\frac{2}{r}\right)$ මගින් දෙනු ලබන බව පෙන්වන්න.

15.(a) (i)
$$\int \frac{dx}{\sqrt{3+2x-x^2}}$$
 මසායන්න.

(ii)
$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\sqrt{3+2x-x^2}\right)$$
 ඉසායා, **ඒ නයින්**, $\int \frac{x-1}{\sqrt{3+2x-x^2}}\,\mathrm{d}x$ ඉසායන්න.

ඉහත අනුකල භාවිතයෙන් $\int \frac{x+1}{\sqrt{3+2x-x^2}} \, \mathrm{d}x$ සොයන්න.

- (b) $\frac{2x-1}{(x+1)(x^2+1)}$ හින්න භාග ඇසුරෙන් පුකාශ කර, **ඒ නගින්**, $\int \frac{(2x-1)}{(x+1)(x^2+1)} \, \mathrm{d}x$ සොයන්න.
- (c) (i) n
 eq -1 යැයි ගනිමු. කොටස් වශයෙන් අනුකලනය භාවිතයෙන්, $\int x^n (\ln x) \, \mathrm{d}x$ සොයන්න.
 - (ii) $\int_{1}^{3} \frac{\ln x}{x} dx$ අගයන්න.

- 16.(a) ABCD රොම්බසයක AC විකර්ණයෙහි සමීකරණය 3x-y=3 ද $B\equiv (3,1)$ ද වේ. තව ද CD හි සමීකරණය x+ky=4 වේ; මෙහි k යනු තාත්ත්වික නියතයකි. k හි අගය හා BC හි සමීකරණය සොයන්න.
 - (b) පිළිවෙළින් $x^2+y^2=4$ හා $(x-1)^2+y^2=1$ යන සමීකරණ මගින් දෙනු ලබන C_1 හා C_2 වෘත්තවල දළ සටහන්, ඒවායේ ස්පර්ශ ලක්ෂාය පැහැදිලිව දක්වමින් අඳින්න.

 C_3 වෘත්තයක් C_1 අභාාන්තරව ද C_2 බාහිරව ද ස්පර්ශ කරයි. C_3 හි කේන්දුය $8x^2+9y^2-8x-16=0$ වකුය මත පිහිටන බව පෙන්වන්න.

17.(a) an lpha හා an eta ඇසුරෙන් an(lpha+eta) සඳහා වූ තිකෝණමිතික සර්වසාමාය ලියා දක්වන්න.

ඒ නයින්, $\tan \theta$ ඇසුරෙන් $\tan 2\theta$ ලබා ගෙන, $\tan 3\theta = \frac{3 \tan \theta - \tan^3 \theta}{1 - 3 \tan^2 \theta}$ බව පෙන්වන්න.

අවසාන සමීකරණයෙහි $\theta=\frac{5\pi}{12}$ ආදේශ කිරීමෙන්, $\tan\frac{5\pi}{12}$ යන්න $x^3-3x^2-3x+1=0$ හි විසඳුමක් බව සතාාපනය කරන්න.

 $x^3 - 3x^2 - 3x + 1 = (x + 1)(x^2 - 4x + 1)$ බව තවදුරටත් දී ඇති විට, $\tan\frac{5\pi}{12} = 2 + \sqrt{3}$ බව අපෝහනය කරන්න.

(b) $0 < A < \pi$ සඳහා $\tan^2 \frac{A}{2} = \frac{1 - \cos A}{1 + \cos A}$ බව පෙන්වන්න.

සුපුරුදු අංකනයෙන්, ABC තිුකෝණයක් සඳහා කෝසයින නීතිය භාවිත කර,

 $(a+b+c)(b+c-a) \tan^2 \frac{A}{2} = (a+b-c)(a+c-b)$ බව මෙන්වන්න.

(c) $\sin^{-1}\left(\frac{3}{5}\right) + \sin^{-1}\left(\frac{5}{13}\right) = \sin^{-1}\left(\frac{56}{65}\right)$ බව පෙන්වන්න.

**

More Past Papers at tamilguru.lk

இ ලංකා විභාග දෙපාර්තමේත්තුව මූ ලංකා විභාග දෙපාර්තමේන්තුව මු ලංකා විභාග දෙපාර්තමේන්තුව මූ ලංකා විභාග දෙපාර්තමේන්තුව වූ ලංකා විභාග දෙපාර්තමේන්තුව වූ ලංකා විභාග දෙපාර්තමේන්තුව මූ ලේක් ලේක් විභාග දෙපාර්තමේන්තුව මූ ලේක් විභාග දෙපාර දෙපාර්තමේන්තුව මූ ලේක් විභාග දෙපාර්තමේන්තුව මූ ලේක් විභාග දෙපාර්තමේන්තුව විභාග දෙපාර දෙපාර විභාග දෙපාර්තමේන්තුව විභාග දෙපාර දෙපාර දෙපාර

අබනයන පොදු සහකික පසු (උසස් පෙළ) විභාගය, 2016 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2016 ஓகஸ்ந் General Certificate of Education (Adv. Level) Examination, August 2016

සංයුක්ත ගණිතය II இணைந்த கணிதம் II Combined Mathematics II

ு மூ வுகி மூன்று மணித்தியாலம் Three hours

උපදෙස් :

දැස් : * මෙම පුශ්න පනුය කොටස් දෙකකින් සමන්විත වේ;

A කොටස (පුශ්න 1 - 10) සහ B කොටස (පුශ්න 11 - 17).

* A කොටස:

සීයලු ම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

* B කොටස:

පුශ්න පහකට පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.

- * නියමිත කාලය අවසන් වූ පසු A කොටසෙහි පිළිතුරු පතුය, B කොටසෙහි පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- st පුශ්න පතුයෙහි f B **කොටස පමණක්** විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.
- 🗱 මෙම පුශ්න පතුයෙහි g මගින් ගුරුත්වජ ත්වරණය දැක්වෙයි.

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

(1	(10) සංයුක්ත ගණිතය II		
කොටස	පුශ්න අංකය	ලකුණු	
	1		
	2		
	3		
1	4		
A	5		
	6		
	7		
	8		
	9		
	10		
	11		
	12		
	13		
В	14		
	15		
	16		
	17		
	එකතුව		
	පුතිශතය		

I පතුය	
II පතුය	
එකතුව	
අවසාන ලකුණු	

අවසාන ලකුණු

	•	 _	 	
ඉලක්කමෙන්		 _	 	
අකුරින්				

සංකේත අංක

උත්තර පතු පරීක්ෂක	ລ	
පරීක්ෂා කළේ:	1 2	
අධීක්ෂණය කළේ:		

	A GWOOD
l.	එක් කෙළවරක් O අවල ලක්ෂායකට ගැට ගසන ලද දිග l වූ සැහැල්ලු අවිතනා තන්තුවක අනෙක් කෙළවරෙහි ස්කන්ධය m වූ අංශුවක් සමතුලිතව එල්ලෙයි. ස්කන්ධය $2m$ වූ තවත් අංශුවක් u පුවේගයකින් ති්රස් ව පළමු අංශුව සමග ගැටී එය සමග හාවේ. සංයුක්ත අංශුව චලිතය අරඹන පුවේගය සොයන්න.
	$u=\sqrt{gl}$ නම්, සංයුක්ත අංශුව එහි ආරම්භක මට්ටමෙන් ඉහළට $\frac{2l}{9}$ උපරිම උසක් කරා ළඟා $\frac{2m}{u}$ වන බව පෙන්වන්න.
	රූපයේ දැක්වෙන පරිදි, ස්කන්ධය m වූ P අංශුවක් හා ස්කන්ධය $3m$ වූ Q අංශුවක් සුමට තිරස් මේසයක්
	මත එක ම සරල රේඛාවක් දිගේ පිළිවෙළින් $5u$ හා u වේගවලින් එකිනෙක දෙසට චලනය වේ. ඒවායේ
	ගැටුමෙන් පසු ව, P හා Q එකිනෙකින් ඉවතට පිළිවෙළින් u හා v වේගවලින් චලනය වේ. u ඇසුරෙන් v සොයා,
	P හා Q අතර පුතාහගති සංගුණකය $rac{1}{3}$ බව පෙන්වන්න.
	$5u \stackrel{P}{\longleftrightarrow} \qquad \qquad 0 \qquad u$
	(m) $(3m)$
	······

	•••••••••••••••••••••••••••••••••••••••
	······································

3.	P අංශුවක්, අවල පඩි පෙළක පඩියක දාරයෙහි වූ A ලක්ෂායක සිට එම
	දාරයට ලම්බව $u=rac{3}{2}\sqrt{ga}$ මගින් දෙනු ලබන u පුවේගයකින් තිරස් ව
	පුක්ෂේප කරනු ලැබ, ගුරුත්වය යටතේ චලනය වේ. එක් එක් පඩියේ උස
	a හා දිග $2a$ වේ (රූපය බලන්න). P අංශුව A ට පහළින් පළමු පඩියේ $2a$
	නොවදින බවත් A ට පහළින් දෙවන පඩියේ A සිට $3a$ තිරස් දුරකින් වදින $2a$ බවත් පෙන්වන්න.
	······································
4.	R N නියත විශාලත්වයකින් යුත් පුතිරෝධයකට එරෙහිව සෘජු සමතලා පාරක් දිගේ ස්කන්ධය M kg වූ කාරයක් චලනය වේ. කාරය v m s $^{-1}$ වේගයෙන් චලනය වන මොහොතක දී එහි ත්වරණය a m s $^{-2}$ වේ. මෙම මොහොතේ දී එහි එන්ජිමේ ජවය $(R+Ma)v$ W බව පෙන්වන්න.
4.	කාරයක් චලනය වේ. කාරය v m s $^{-1}$ වේගයෙන් චලනය වන මොහොතක දී එහි ත්වරණය a m s $^{-2}$ වේ. මෙම මොහොතේ දී එහි එන්ජිමේ ජවය $(R+Ma)v$ W බව පෙන්වන්න. කාරය ඊළඟට එම R N නියන විශාලත්වයෙන් ම යුත් පුතිරෝධයකට එරෙහිව එම ජවයෙන් ම කිුයා
4.	කාරයක් චලනය වේ. කාරය v m s ⁻¹ වේගයෙන් චලනය වන මොහොතක දී එහි ත්වරණය a m s ⁻² වේ. මෙම මොහොතේ දී එහි එන්ජිමේ ජවය $(R+Ma)v$ W බව පෙන්වන්න. කාරය ඊළඟට එම R N නියන විශාලත්වයෙන් ම යුත් පුතිරෝධයකට එරෙහිව එම ජවයෙන් ම කි්යා කරමින් තිරසට α කෝණයකින් ආනත වූ ඍජු පාරක ඉහළට v_1 m s ⁻¹ නියන වේගයක් සහිත ව චලනය වේ.
4.	කාරයක් චලනය වේ. කාරය v m s $^{-1}$ වේගයෙන් චලනය වන මොහොතක දී එහි ත්වරණය a m s $^{-2}$ වේ. මෙම මොහොතේ දී එහි එන්ජිමේ ජවය $(R+Ma)v$ W බව පෙන්වන්න. කාරය ඊළඟට එම R N නියන විශාලත්වයෙන් ම යුත් පුතිරෝධයකට එරෙහිව එම ජවයෙන් ම කිුයා
4.	කාරයක් චලනය වේ. කාරය v m s ⁻¹ වේගයෙන් චලනය වන මොහොතක දී එහි ත්වරණය a m s ⁻² වේ. මෙම මොහොතේ දී එහි එන්ජිමේ ජවය $(R+Ma)v$ W බව පෙන්වන්න. කාරය ඊළඟට එම R N නියන විශාලත්වයෙන් ම යුත් පුතිරෝධයකට එරෙහිව එම ජවයෙන් ම කි්යා කරමින් තිරසට α කෝණයකින් ආනත වූ ඍජු පාරක ඉහළට v_1 m s ⁻¹ නියන වේගයක් සහිත ව චලනය වේ.
4.	කාරයක් චලනය වේ. කාරය v m s ⁻¹ වේගයෙන් චලනය වන මොහොතක දී එහි ත්වරණය a m s ⁻² වේ. මෙම මොහොතේ දී එහි එන්ජිමේ ජවය $(R+Ma)v$ W බව පෙන්වන්න. කාරය ඊළඟට එම R N නියන විශාලත්වයෙන් ම යුත් පුතිරෝධයකට එරෙහිව එම ජවයෙන් ම කි්යා කරමින් තිරසට α කෝණයකින් ආනත වූ ඍජු පාරක ඉහළට v_1 m s ⁻¹ නියන වේගයක් සහිත ව චලනය වේ.
4.	කාරයක් චලනය වේ. කාරය v m s ⁻¹ වේගයෙන් චලනය වන මොහොතක දී එහි ත්වරණය a m s ⁻² වේ. මෙම මොහොතේ දී එහි එන්ජිමේ ජවය $(R+Ma)v$ W බව පෙන්වන්න. කාරය ඊළඟට එම R N නියන විශාලත්වයෙන් ම යුත් පුතිරෝධයකට එරෙහිව එම ජවයෙන් ම කි්යා කරමින් තිරසට α කෝණයකින් ආනත වූ ඍජු පාරක ඉහළට v_1 m s ⁻¹ නියන වේගයක් සහිත ව චලනය වේ.
4.	කාරයක් චලනය වේ. කාරය v m s ⁻¹ වේගයෙන් චලනය වන මොහොතක දී එහි ත්වරණය a m s ⁻² වේ. මෙම මොහොතේ දී එහි එන්ජිමේ ජවය $(R+Ma)v$ W බව පෙන්වන්න. කාරය ඊළඟට එම R N නියන විශාලත්වයෙන් ම යුත් පුතිරෝධයකට එරෙහිව එම ජවයෙන් ම කි්යා කරමින් තිරසට α කෝණයකින් ආනත වූ ඍජු පාරක ඉහළට v_1 m s ⁻¹ නියන වේගයක් සහිත ව චලනය වේ.
4.	කාරයක් චලනය වේ. කාරය v m s ⁻¹ වේගයෙන් චලනය වන මොහොතක දී එහි ත්වරණය a m s ⁻² වේ. මෙම මොහොතේ දී එහි එන්ජිමේ ජවය $(R+Ma)v$ W බව පෙන්වන්න. කාරය ඊළඟට එම R N නියන විශාලත්වයෙන් ම යුත් පුතිරෝධයකට එරෙහිව එම ජවයෙන් ම කි්යා කරමින් තිරසට α කෝණයකින් ආනත වූ ඍජු පාරක ඉහළට v_1 m s ⁻¹ නියන වේගයක් සහිත ව චලනය වේ.
4.	කාරයක් චලනය වේ. කාරය v m s ⁻¹ වේගයෙන් චලනය වන මොහොතක දී එහි ත්වරණය a m s ⁻² වේ. මෙම මොහොතේ දී එහි එන්ජිමේ ජවය $(R+Ma)v$ W බව පෙන්වන්න. කාරය ඊළඟට එම R N නියන විශාලත්වයෙන් ම යුත් පුතිරෝධයකට එරෙහිව එම ජවයෙන් ම කි්යා කරමින් තිරසට α කෝණයකින් ආනත වූ ඍජු පාරක ඉහළට v_1 m s ⁻¹ නියන වේගයක් සහිත ව චලනය වේ.
4.	කාරයක් චලනය වේ. කාරය v m s ⁻¹ වේගයෙන් චලනය වන මොහොතක දී එහි ත්වරණය a m s ⁻² වේ. මෙම මොහොතේ දී එහි එන්ජිමේ ජවය $(R+Ma)v$ W බව පෙන්වන්න. කාරය ඊළඟට එම R N නියන විශාලත්වයෙන් ම යුත් පුතිරෝධයකට එරෙහිව එම ජවයෙන් ම කි්යා කරමින් තිරසට α කෝණයකින් ආනත වූ ඍජු පාරක ඉහළට v_1 m s ⁻¹ නියන වේගයක් සහිත ව චලනය වේ.
4.	කාරයක් චලනය වේ. කාරය v m s ⁻¹ වේගයෙන් චලනය වන මොහොතක දී එහි ත්වරණය a m s ⁻² වේ. මෙම මොහොතේ දී එහි එන්ජිමේ ජවය $(R+Ma)v$ W බව පෙන්වන්න. කාරය ඊළඟට එම R N නියන විශාලත්වයෙන් ම යුත් පුතිරෝධයකට එරෙහිව එම ජවයෙන් ම කි්යා කරමින් තිරසට α කෝණයකින් ආනත වූ ඍජු පාරක ඉහළට v_1 m s ⁻¹ නියන වේගයක් සහිත ව චලනය වේ.
4.	කාරයක් චලනය වේ. කාරය v m s ⁻¹ වේගයෙන් චලනය වන මොහොතක දී එහි ත්වරණය a m s ⁻² වේ. මෙම මොහොතේ දී එහි එන්ජිමේ ජවය $(R+Ma)v$ W බව පෙන්වන්න. කාරය ඊළඟට එම R N නියන විශාලත්වයෙන් ම යුත් පුතිරෝධයකට එරෙහිව එම ජවයෙන් ම කි්යා කරමින් තිරසට α කෝණයකින් ආනත වූ ඍජු පාරක ඉහළට v_1 m s ⁻¹ නියන වේගයක් සහිත ව චලනය වේ.
4.	කාරයක් චලනය වේ. කාරය v m s ⁻¹ වේගයෙන් චලනය වන මොහොතක දී එහි ත්වරණය a m s ⁻² වේ. මෙම මොහොතේ දී එහි එන්ජිමේ ජවය $(R+Ma)v$ W බව පෙන්වන්න. කාරය ඊළඟට එම R N නියන විශාලත්වයෙන් ම යුත් පුතිරෝධයකට එරෙහිව එම ජවයෙන් ම කි්යා කරමින් තිරසට α කෝණයකින් ආනත වූ ඍජු පාරක ඉහළට v_1 m s ⁻¹ නියන වේගයක් සහිත ව චලනය වේ.
4.	කාරයක් චලනය වේ. කාරය v m s ⁻¹ වේගයෙන් චලනය වන මොහොතක දී එහි ත්වරණය a m s ⁻² වේ. මෙම මොහොතේ දී එහි එන්ජිමේ ජවය $(R+Ma)v$ W බව පෙන්වන්න. කාරය ඊළඟට එම R N නියන විශාලත්වයෙන් ම යුත් පුතිරෝධයකට එරෙහිව එම ජවයෙන් ම කි්යා කරමින් තිරසට α කෝණයකින් ආනත වූ ඍජු පාරක ඉහළට v_1 m s ⁻¹ නියන වේගයක් සහිත ව චලනය වේ.
4.	කාරයක් චලනය වේ. කාරය v m s ⁻¹ වේගයෙන් චලනය වන මොහොතක දී එහි ත්වරණය a m s ⁻² වේ. මෙම මොහොතේ දී එහි එන්ජිමේ ජවය $(R+Ma)v$ W බව පෙන්වන්න. කාරය ඊළඟට එම R N නියන විශාලත්වයෙන් ම යුත් පුතිරෝධයකට එරෙහිව එම ජවයෙන් ම කි්යා කරමින් තිරසට α කෝණයකින් ආනත වූ ඍජු පාරක ඉහළට v_1 m s ⁻¹ නියන වේගයක් සහිත ව චලනය වේ.

5.	සුපුරුදු අංකනයෙන්, $\mathbf{a}=3\mathbf{i}+4\mathbf{j},\ \mathbf{b}=4\mathbf{i}+3\mathbf{j}$ හා $\mathbf{c}=\alpha\mathbf{i}+(1-\alpha)\mathbf{j}$ යැයි ගනිමු; මෙහි $\alpha\in\mathbb{R}$ වේ. (i) $ \mathbf{a} $ හා $ \mathbf{b} $,
	(ii) α ඇසුරෙන් a·c හා b·c
	සොයන්න.
	${f a}$ හා ${f c}$ අතර කෝණය ${f b}$ හා ${f c}$ අතර කෝණයට සමාන නම්, ${f lpha}=rac{1}{2}$ බව පෙන්වන්න.
6.	දිග $2l$ වූ සැහැල්ලු අවිතනෳ තන්තුවක එක් කෙළවරක්, සිරස් තලයක සවි කර ඇති අරය a $\left(>\sqrt{2}l\right)$ වූ සිහින්, සුමට දෘඪ වෘත්තාකාර කම්බියක උච්චතම ලක්ෂෳයට ඈඳා ඇත. කම්බිය දිගේ චලනය වීමට නිදහස ඇති බර w වූ කුඩා සුමට පබළුවක් තන්තුවේ අනෙක් කෙළවරට ඈඳා ඇත. රූපයේ දැක්වෙන පරිදි, තන්තුව
6.	දිග $2l$ වූ සැහැල්ලු අවිතනා තන්තුවක එක් කෙළවරක්, සිරස් තලයක සවි කර ඇති අරය $a\left(>\sqrt{2}l\right)$ වූ සිහින්, සුමට දෘඪ වෘත්තාකාර කම්බියක උච්චතම ලක්ෂායට ඈඳා ඇත. කම්බිය දිගේ චලනය වීමට නිදහස ඇති
6.	දිග $2l$ වූ සැහැල්ලු අවිතනෳ තන්තුවක එක් කෙළවරක්, සිරස් තලයක සවි කර ඇති අරය $a > \sqrt{2} l$ වූ සිහින්, සුමට දෘඪ වෘත්තාකාර කම්බියක උච්චතම ලක්ෂෳයට ඈඳා ඇත. කම්බිය දිගේ චලනය වීමට නිදහස ඇති බර w වූ කුඩා සුමට පබළුවක් තන්තුවේ අනෙක් කෙළවරට ඈඳා ඇත. රූපයේ දැක්වෙන පරිදි, තන්තුව තදව, පබළුව සමතුලිතතාවයේ පවතී. පබළුව මත කිුියා කරන බල ලකුණු කර, තන්තුවේ ආතතිය $\frac{2wl}{a}$
6.	දිග $2l$ වූ සැහැල්ලු අවිතනෳ තන්තුවක එක් කෙළවරක්, සිරස් තලයක සවි කර ඇති අරය $a > \sqrt{2} l$ වූ සිහින්, සුමට දෘඪ වෘත්තාකාර කම්බියක උච්චතම ලක්ෂෳයට ඈඳා ඇත. කම්බිය දිගේ චලනය වීමට නිදහස ඇති බර w වූ කුඩා සුමට පබළුවක් තන්තුවේ අනෙක් කෙළවරට ඈඳා ඇත. රූපයේ දැක්වෙන පරිදි, තන්තුව තදව, පබළුව සමතුලිතතාවයේ පවතී. පබළුව මත කිුියා කරන බල ලකුණු කර, තන්තුවේ ආතතිය $\frac{2wl}{a}$
6.	දිග $2l$ වූ සැහැල්ලු අවිතනෳ තන්තුවක එක් කෙළවරක්, සිරස් තලයක සවි කර ඇති අරය $a > \sqrt{2} l$ වූ සිහින්, සුමට දෘඪ වෘත්තාකාර කම්බියක උච්චතම ලක්ෂෳයට ඈඳා ඇත. කම්බිය දිගේ චලනය වීමට නිදහස ඇති බර w වූ කුඩා සුමට පබළුවක් තන්තුවේ අනෙක් කෙළවරට ඈඳා ඇත. රූපයේ දැක්වෙන පරිදි, තන්තුව තදව, පබළුව සමතුලිතතාවයේ පවතී. පබළුව මත කිුියා කරන බල ලකුණු කර, තන්තුවේ ආතතිය $\frac{2wl}{a}$
6.	දිග $2l$ වූ සැහැල්ලු අවිතනෳ තන්තුවක එක් කෙළවරක්, සිරස් තලයක සවි කර ඇති අරය $a > \sqrt{2} l$ වූ සිහින්, සුමට දෘඪ වෘත්තාකාර කම්බියක උච්චතම ලක්ෂෳයට ඈඳා ඇත. කම්බිය දිගේ චලනය වීමට නිදහස ඇති බර w වූ කුඩා සුමට පබළුවක් තන්තුවේ අනෙක් කෙළවරට ඈඳා ඇත. රූපයේ දැක්වෙන පරිදි, තන්තුව තදව, පබළුව සමතුලිතතාවයේ පවතී. පබළුව මත කිුියා කරන බල ලකුණු කර, තන්තුවේ ආතතිය $\frac{2wl}{a}$
6.	දිග $2l$ වූ සැහැල්ලු අවිතනෳ තන්තුවක එක් කෙළවරක්, සිරස් තලයක සවි කර ඇති අරය $a > \sqrt{2} l$ වූ සිහින්, සුමට දෘඪ වෘත්තාකාර කම්බියක උච්චතම ලක්ෂෳයට ඈඳා ඇත. කම්බිය දිගේ චලනය වීමට නිදහස ඇති බර w වූ කුඩා සුමට පබළුවක් තන්තුවේ අනෙක් කෙළවරට ඈඳා ඇත. රූපයේ දැක්වෙන පරිදි, තන්තුව තදව, පබළුව සමතුලිතතාවයේ පවතී. පබළුව මත කිුියා කරන බල ලකුණු කර, තන්තුවේ ආතතිය $\frac{2wl}{a}$
6.	දිග $2l$ වූ සැහැල්ලු අවිතනෳ තන්තුවක එක් කෙළවරක්, සිරස් තලයක සවි කර ඇති අරය $a > \sqrt{2} l$ වූ සිහින්, සුමට දෘඪ වෘත්තාකාර කම්බියක උච්චතම ලක්ෂෳයට ඈඳා ඇත. කම්බිය දිගේ චලනය වීමට නිදහස ඇති බර w වූ කුඩා සුමට පබළුවක් තන්තුවේ අනෙක් කෙළවරට ඈඳා ඇත. රූපයේ දැක්වෙන පරිදි, තන්තුව තදව, පබළුව සමතුලිතතාවයේ පවතී. පබළුව මත කිුියා කරන බල ලකුණු කර, තන්තුවේ ආතතිය $\frac{2wl}{a}$
6.	දිග $2l$ වූ සැහැල්ලු අවිතනෳ තන්තුවක එක් කෙළවරක්, සිරස් තලයක සවි කර ඇති අරය $a > \sqrt{2} l$ වූ සිහින්, සුමට දෘඪ වෘත්තාකාර කම්බියක උච්චතම ලක්ෂෳයට ඈඳා ඇත. කම්බිය දිගේ චලනය වීමට නිදහස ඇති බර w වූ කුඩා සුමට පබළුවක් තන්තුවේ අනෙක් කෙළවරට ඈඳා ඇත. රූපයේ දැක්වෙන පරිදි, තන්තුව තදව, පබළුව සමතුලිතතාවයේ පවතී. පබළුව මත කිුියා කරන බල ලකුණු කර, තන්තුවේ ආතතිය $\frac{2wl}{a}$
6.	දිග $2l$ වූ සැහැල්ලු අවිතනෳ තන්තුවක එක් කෙළවරක්, සිරස් තලයක සවි කර ඇති අරය $a > \sqrt{2} l$ වූ සිහින්, සුමට දෘඪ වෘත්තාකාර කම්බියක උච්චතම ලක්ෂෳයට ඈඳා ඇත. කම්බිය දිගේ චලනය වීමට නිදහස ඇති බර w වූ කුඩා සුමට පබළුවක් තන්තුවේ අනෙක් කෙළවරට ඈඳා ඇත. රූපයේ දැක්වෙන පරිදි, තන්තුව තදව, පබළුව සමතුලිතතාවයේ පවතී. පබළුව මත කිුියා කරන බල ලකුණු කර, තන්තුවේ ආතතිය $\frac{2wl}{a}$
6.	දිග $2l$ වූ සැහැල්ලු අවිතනෳ තන්තුවක එක් කෙළවරක්, සිරස් තලයක සවි කර ඇති අරය $a > \sqrt{2} l$ වූ සිහින්, සුමට දෘඪ වෘත්තාකාර කම්බියක උච්චතම ලක්ෂෳයට ඈඳා ඇත. කම්බිය දිගේ චලනය වීමට නිදහස ඇති බර w වූ කුඩා සුමට පබළුවක් තන්තුවේ අනෙක් කෙළවරට ඈඳා ඇත. රූපයේ දැක්වෙන පරිදි, තන්තුව තදව, පබළුව සමතුලිතතාවයේ පවතී. පබළුව මත කිුියා කරන බල ලකුණු කර, තන්තුවේ ආතතිය $\frac{2wl}{a}$
6.	දිග $2l$ වූ සැහැල්ලු අවිතනෳ තන්තුවක එක් කෙළවරක්, සිරස් තලයක සවි කර ඇති අරය $a > \sqrt{2} l$ වූ සිහින්, සුමට දෘඪ වෘත්තාකාර කම්බියක උච්චතම ලක්ෂෳයට ඈඳා ඇත. කම්බිය දිගේ චලනය වීමට නිදහස ඇති බර w වූ කුඩා සුමට පබළුවක් තන්තුවේ අනෙක් කෙළවරට ඈඳා ඇත. රූපයේ දැක්වෙන පරිදි, තන්තුව තදව, පබළුව සමතුලිතතාවයේ පවතී. පබළුව මත කිුියා කරන බල ලකුණු කර, තන්තුවේ ආතතිය $\frac{2wl}{a}$
6.	දිග $2l$ වූ සැහැල්ලු අවිතනෳ තන්තුවක එක් කෙළවරක්, සිරස් තලයක සවි කර ඇති අරය $a > \sqrt{2} l$ වූ සිහින්, සුමට දෘඪ වෘත්තාකාර කම්බියක උච්චතම ලක්ෂෳයට ඈඳා ඇත. කම්බිය දිගේ චලනය වීමට නිදහස ඇති බර w වූ කුඩා සුමට පබළුවක් තන්තුවේ අනෙක් කෙළවරට ඈඳා ඇත. රූපයේ දැක්වෙන පරිදි, තන්තුව තදව, පබළුව සමතුලිතතාවයේ පවතී. පබළුව මත කිුියා කරන බල ලකුණු කර, තන්තුවේ ආතතිය $\frac{2wl}{a}$
6.	දිග $2l$ වූ සැහැල්ලු අවිතනෳ තන්තුවක එක් කෙළවරක්, සිරස් තලයක සවි කර ඇති අරය $a > \sqrt{2} l$ වූ සිහින්, සුමට දෘඪ වෘත්තාකාර කම්බියක උච්චතම ලක්ෂෳයට ඈඳා ඇත. කම්බිය දිගේ චලනය වීමට නිදහස ඇති බර w වූ කුඩා සුමට පබළුවක් තන්තුවේ අනෙක් කෙළවරට ඈඳා ඇත. රූපයේ දැක්වෙන පරිදි, තන්තුව තදව, පබළුව සමතුලිතතාවයේ පවතී. පබළුව මත කිුියා කරන බල ලකුණු කර, තන්තුවේ ආතතිය $\frac{2wl}{a}$
6.	දිග $2l$ වූ සැහැල්ලු අවිතනෳ තන්තුවක එක් කෙළවරක්, සිරස් තලයක සවි කර ඇති අරය $a > \sqrt{2} l$ වූ සිහින්, සුමට දෘඪ වෘත්තාකාර කම්බියක උච්චතම ලක්ෂෳයට ඈඳා ඇත. කම්බිය දිගේ චලනය වීමට නිදහස ඇති බර w වූ කුඩා සුමට පබළුවක් තන්තුවේ අනෙක් කෙළවරට ඈඳා ඇත. රූපයේ දැක්වෙන පරිදි, තන්තුව තදව, පබළුව සමතුලිතතාවයේ පවතී. පබළුව මත කිුියා කරන බල ලකුණු කර, තන්තුවේ ආතතිය $\frac{2wl}{a}$

7.	A හා B යනු Ω නියැදි අවකාශයක සිද්ධි දෙකක් යැයි ගනිමු. සුපුරුදු අංකනයෙන්, $P(A)=p,\; P(B)=rac{p}{2}$
	හා $P(A \cup B) - P(A \cap B) = \frac{2p}{3}$ වේ; මෙහි $p > 0$ වේ. p ඇසුරෙන් $P(A \cap B)$ සොයන්න.
	A හා B ස්වායත්ත සිද්ධි නම්, $P=rac{5}{6}$ බව අපෝහනය කරන්න.

	,

8.	මල්ලක, පාටින් හැර අත් සෑම අයුරකින් ම සමාන වූ, සුදු බෝල 6 ක් හා කළු බෝල n අඩංගු වේ. එකකට
8.	පසු ව අනෙක ලෙස පුතිස්ථාපනයෙන් තොරව බෝල දෙකක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ.
8.	මල්ලක, පාටින් හැර අන් සෑම අයුරකින් ම සමාන වූ, සුදු බෝල 6 ක් හා කළු බෝල n අඩංගු වේ. එකකට පසු ව අනෙක ලෙස පුතිස්ථාපනයෙන් තොරව බෝල දෙකක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ. පළමු බෝලය සුදු හා දෙවන බෝලය කළු වීමේ සම්භාවිතාව $\frac{4}{15}$ වේ. n හි අගය සොයන්න.
8.	පසු ව අනෙක ලෙස පුතිස්ථාපනයෙන් තොරව බෝල දෙකක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ.
8.	පසු ව අනෙක ලෙස පුතිස්ථාපනයෙන් තොරව බෝල දෙකක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ.
8.	පසු ව අනෙක ලෙස පුතිස්ථාපනයෙන් තොරව බෝල දෙකක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ.
8.	පසු ව අනෙක ලෙස පුතිස්ථාපනයෙන් තොරව බෝල දෙකක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ.
8.	පසු ව අනෙක ලෙස පුතිස්ථාපනයෙන් තොරව බෝල දෙකක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ.
8.	පසු ව අනෙක ලෙස පුතිස්ථාපනයෙන් තොරව බෝල දෙකක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ.
8.	පසු ව අනෙක ලෙස පුතිස්ථාපනයෙන් තොරව බෝල දෙකක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ.
8.	පසු ව අනෙක ලෙස පුතිස්ථාපනයෙන් තොරව බෝල දෙකක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ.
8.	පසු ව අනෙක ලෙස පුතිස්ථාපනයෙන් තොරව බෝල දෙකක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ.
8.	පසු ව අනෙක ලෙස පුතිස්ථාපනයෙන් තොරව බෝල දෙකක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ.
8.	පසු ව අනෙක ලෙස පුතිස්ථාපනයෙන් තොරව බෝල දෙකක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ.
8.	පසු ව අනෙක ලෙස පුතිස්ථාපනයෙන් තොරව බෝල දෙකක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ.
	පසු ව අනෙක ලෙස පුතිස්ථාපනයෙන් තොරව බෝල දෙකක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ.
	පසු ව අනෙක ලෙස පුතිස්ථාපනයෙන් තොරව බෝල දෙකක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ.
	පසු ව අනෙක ලෙස පුතිස්ථාපනයෙන් තොරව බෝල දෙකක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ.

	මම නිබීල පහේ		තය 3 වේ.	නිබීල පහ			නිබිල පහේර
*************		**********					
**************	 • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •					
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •				• • • • • • • • • • • • • • • • • • • •	
	•••••••	• • • • • • • • • • • • • • • • • • • •					******
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		· · · · · · · · · · · · · · · · · · ·		******		
• • • • • • • • • • • • • • • • • • • •				• • • • • • • • • • • • • • • • • • • •	******	* * * * * * * * * * * * * * * * * * * *	
• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •					***********
	*******		******				********
• • • • • • • • • • • • • • • • • • • •	***********		*******		• • • • • • • • • • • • • • • • • • • •	£*********	**********
			*******		,,,,,,,,,,,,	******	

	*************					***********	***********
					• • • • • • • • • • • • • • • • • • • •	**********	• * • • • • • • • • • • • • • • • • • •
*************	*****************		• • • • • • • • • • •			* • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
	**************	***********		*********			• • • • • • • • • • • • • • • • • • • •
*******		••••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
	ා රතලයක වදද න් දෙනු ලැබේ; 				් ඊතලය 8	වදින වාර	ගණන පහස
					්	වදින වාර 	ගණන පහස
ංඛාාත වගුවෙ	න් දෙනු ලැබේ; අංකය සංබාහනය	මෙහි <i>p</i> තා <u>1</u> 1	<i>q</i> නියත 2 . <i>p</i>	වේ. 3 q	5	5 2	
ංඛාෳාත වගුවෙ	න් දෙනු ලැබේ; අංකය	මෙහි <i>p</i> තා <u>1</u> 1	<i>q</i> නියත 2 . <i>p</i>	වේ. 3 q	5	5 2	
ංඛාාත වගුවෙ	න් දෙනු ලැබේ; අංකය සංබාහනය	මෙහි <i>p</i> තා <u>1</u> 1	<i>q</i> නියත 2 . <i>p</i>	වේ. 3 q	5	5 2	
ංඛාහත වගුවෙ	න් දෙනු ලැබේ; අංකය සංබාහනය	මෙහි <i>p</i> තා <u>1</u> 1	<i>q</i> නියත 2 . <i>p</i>	වේ. 3 q	5	5 2	
ංඛාාත වගුවෙ	න් දෙනු ලැබේ; අංකය සංබාහනය	මෙහි <i>p</i> තා <u>1</u> 1	<i>q</i> නියත 2 . <i>p</i>	වේ. 3 q	5	5 2	
ංඛාාත වගුවෙ	න් දෙනු ලැබේ; අංකය සංබාහනය	මෙහි <i>p</i> තා <u>1</u> 1	<i>q</i> නියත 2 . <i>p</i>	වේ. 3 q	5	5 2	
ංඛාහත වගුවෙ	න් දෙනු ලැබේ; අංකය සංබාහනය	මෙහි <i>p</i> තා <u>1</u> 1	<i>q</i> නියත 2 . <i>p</i>	වේ. 3 q	5	5 2	
ංඛාහත වගුවෙ	න් දෙනු ලැබේ; අංකය සංබාහනය	මෙහි <i>p</i> තා <u>1</u> 1	<i>q</i> නියත 2 . <i>p</i>	වේ. 3 q	5	5 2	
ංඛාහත වගුවෙ	න් දෙනු ලැබේ; අංකය සංබාහනය	මෙහි <i>p</i> තා <u>1</u> 1	<i>q</i> නියත 2 . <i>p</i>	වේ. 3 q	5	5 2	
ංඛාහත වගුවෙ	න් දෙනු ලැබේ; අංකය සංබාහනය	මෙහි <i>p</i> තා <u>1</u> 1	<i>q</i> නියත 2 . <i>p</i>	වේ. 3 q	5	5 2	
ංඛාහත වගුවෙ	න් දෙනු ලැබේ; අංකය සංබාහනය	මෙහි <i>p</i> තා <u>1</u> 1	<i>q</i> නියත 2 . <i>p</i>	වේ. 3 q	5	5 2	
ංඛාහත වගුවෙ	න් දෙනු ලැබේ; අංකය සංබාහනය	මෙහි <i>p</i> තා <u>1</u> 1	<i>q</i> නියත 2 . <i>p</i>	වේ. 3 q	5	5 2	
ංඛපාත වගුවෙ	න් දෙනු ලැබේ; අංකය සංබාහනය	මෙහි <i>p</i> තා <u>1</u> 1	<i>q</i> නියත 2 . <i>p</i>	වේ. 3 q	5	5 2	
ංඛාහත වගුවෙ	න් දෙනු ලැබේ; අංකය සංබාහනය	මෙහි <i>p</i> තා <u>1</u> 1	<i>q</i> නියත 2 . <i>p</i>	වේ. 3 q	5	5 2	
ංඛාහත වගුවෙ	න් දෙනු ලැබේ; අංකය සංබාහනය	මෙහි <i>p</i> තා <u>1</u> 1	<i>q</i> නියත 2 . <i>p</i>	වේ. 3 q	5	5 2	

1

සියලු ම හිමිතම් ඇවරුම් / மුඟුට பதිට්பුநිமையுடையது |All Rights Reserved|

ල් ලංකා විතාහ දෙපාර්තමේන්තුව ල් ලංකා විතාශ දෙපාර්ත**ේ අඩුදුන් ලේකාවේ වැඩි අතර** இலங்கைப் பநிட்சைத் திணைக்களம் இலங்கைப் பதிணைக்கும் இறுக்கும் இருந்தைப் பநிட்சைத் திணைக்களம் இலங்கைப் பநிட்சைத் திணைக்களம் Department of Examinations, Sri Lanka Department of **இலங்கைப் Library இருந்தைப் பநிட்சைத் திணை**க்களம் ල් ලංකා විතාශ දෙපාර්තමේන්තුව ල් ලංකා විතාශ දෙපාර්තමේන්තුව ලේකා විතාශ දෙපාර්තමේන්තුව ල් ලංකා විතාශ දෙපාර්තමේන්තුව இலங்கைப் பநிட்சைத் திணைக்களம் இலங்கைப் பநிட்சைத் திணைக்களம் இலங்கைப் பநிட்சைத் திணைக்களம்

අධාායන පොදු සහනික පතු (උසස් පෙළ) විභාගය, 2016 අගෝස්තු க்ல்விப் பொதுத் தராதரப் பத்திர் (உயர் தர)ப் பரீட்சை, 2016 ஓகஸ்ந் General Certificate of Education (Adv. Level) Examination, August 2016

II සංයුක්ත ගණිතය இணைந்த கணிதம் Combined Mathematics

II

B කොටස

* පුශ්න පහකට පමණක් පිළිතුරු සපයන්න.

(මෙම පුශ්න පතුයෙහි g මගින් ගුරුත්වජ ත්වරණය දැක්වෙයි.)

 ${f 11}.(a)$ අපුතාහස්ථ ති්රස් ගෙබීමකට 3h උසක් ඉහළින් සවි කර ඇති කුඩා සුමට කප්පියක් මතින් යන සැහැල්ලු අවිතනා තන්තුවක් මගින්, ස්කන්ධය m වූ Pඅංශුවක් ස්කන්ධය 3m වූ Q අංශුවකට සම්බන්ධ කර ඇත. ආරම්භයේ දී අංශු දෙක ගෙබිමට h උසකින් තන්තුව තදව ඇතිව අල්වා තබා නිශ්චලතාවයේ සිට මුදා හරිනු ලැබේ. (යාබද රූපය බලන්න.) P හා Q හි චලිතයන්ට වෙන වෙන ම තිව්ටන් දෙවෙති තියමය යෙදීමෙන්, එක් එක් අංශුවේ ත්වරණයෙහි විශාලත්වය $\frac{g}{2}$ බව පෙත්වත්ත.

 $\overline{t_0}$ කාලයකට පසු ව Q අංශුව ගෙබිම සමග ගැටී ක්ෂණිකව තිශ්චලතාවයට පැමිණ, තවත් t, කාලයක් නිශ්චලතාවයේ තිබී උඩු අතට චලිතය ආරම්භ කරයි. Q අංශුව උඩු අතට චලිතය ආරම්භ කරන තෙක් P හා Q අංශු දෙකෙහි චලිත සඳහා පුවේග-කාල පුස්තාරවල දළ සටහන් වෙන වෙන ම අඳින්න.

මෙම පුස්තාර භාවිතයෙන්, $t_0=2\sqrt{\frac{h}{g}}$ බව පෙන්වා, g හා h ඇසුරෙන් t_1 සොයන්න.

P අංශුව ගෙබිමේ සිට $rac{5h}{2}$ උපරිම උසකට ළඟා වන බව තවදුරටත් පෙන්වන්න.

(b) පළල a වූ සෘජු ගඟක් ඒකාකාර u චේගයකින් ගලයි. ගඟ ගලන දිශාවට ACරේඛාව ලම්බ වන පරිදි A හා C ලක්ෂාා ගඟේ පුතිවිරුද්ධ ඉවුරු දෙකෙහි පිහිටා ඇත. තව ද ABC සමපාද තිුකෝණයක් වන පරිදි AC ගෙන් උඩු ගං අතට B අචල බෝයාවක් ගඟ මැද සවි කර ඇත. (යාබද රූපය බලන්න.) ජලයට සාපේක්ෂව $v\left(>u
ight)$ වේගයෙන් චලනය වන බෝට්ටුවක් A සිට ආරම්භ කර B වෙත ළඟා වන තෙක් චලනය වේ. ඊළඟට එය B සිට C දක්වා චලනය වේ. A සිට B දක්වාත් Bසිට C දක්වාත් බෝට්ටුවේ චලිත සඳහා පුවේග තිුකෝණවල දළ සටහන් අඳින්න.

A සිට B දක්වා චලිතයේ දී බෝට්ටුවේ චේගය $rac{1}{2}\left(\sqrt{4v^2-u^2}-\sqrt{3}u
ight)$ බව පෙන්වා, B සිට C දක්වා චලිතයේ දී එහි වේගය සොයන්න.

ඒ නයින්, AB හා BC පෙත් සඳහා බෝට්ටුව ගන්නා මුළු කාලය $\frac{a\sqrt{4v^2-u^2}}{v^2-u^2}$ බව පෙන්වන්න.

 ${f 12.}$ (a) රූපයේ දැක්වෙත ABC තිුකෝණය, ස්කන්ධය ${f 2}m$ වූ ඒකාකාර කුඤ්ඤයක ගුරුත්ව කේත්දුය හරහා වූ සිරස් හරස්කඩකි. AB රේඛාව එය අයත් මුහුණතෙහි උපරිම බැවුම් රේඛාවක් වන අතර $\hat{ABC} = rac{\pi}{4}$ වේ. BC අයත් මුහුණත රළු තිරස් ගෙබිමක් මත ඇතිව කුඤ්ඤය තබා ඇත. AB අයත් මුහුණත සුමට වේ. ස්කන්ධය m වූ අංශුවක් රූපයේ දැක්වෙන පරිදි ABමත අල්වා තබා පද්ධතිය නිශ්චලතාවයේ සිට මුදා හරිනු ලැබේ. කුඤ්ඤය

 \overrightarrow{BC} හි දිශාවට චලනය වන බවත් ගෙබීම මගින් කුඤ්ඤය මත ඇති කරන ඝර්ෂණ බලයෙහි විශාලත්වය විශාලත්වයයි. m හා g ඇසුරෙන්, R නිර්ණය කිරීමට පුමාණවත් වන සමීකරණ ලබා ගන්න.

(b) රූපයේ දැක්වෙන OAB යනු OA සිරස් ව ඇති, O කේන්දයෙහි $\frac{\pi}{6}$ කෝණයක් අාපාතනය කරන අරය a වූ වෘත්ත බණ්ඩයකි. එය, ස්වකීය අක්ෂය තිරස් ව සවි කර ඇති සුමට සිලින්ඩරාකාර බණ්ඩයක අක්ෂයට ලම්බ හරස්කඩකි. B හි සවි කර ඇති කුඩා සුමට කප්පියක් මතින් යන සැහැල්ලු අවිතනා තන්තුවක එක් කෙළවරක් ස්කන්ධය 3m වූ P අංශුවකට ඇඳා ඇති අතර එහි අනෙක් කෙළවර ස්කන්ධය m වූ Q අංශුවකට ඇඳා ඇත. ආරම්භයේ දී P අංශුව A හි අල්වා ඇති අතර Q අංශුව O හි තිරස් මට්ටමේ නිදහසේ එල්ලෙයි. තන්තුව තදව ඇතිව, මෙම පිහිටීමෙන්, පද්ධතිය නිශ්චලතාවයේ සිට මුදා හරිනු ලැබේ.

OP උඩු අත් සිරස සමග $heta\left(0< heta<rac{\pi}{6}
ight)$ කෝණයක් සාදන විට $2a\dot{ heta}^2=3g(1-\cos heta)+g heta$ බව හා තන්තුවේ ආතතිය $rac{3}{4}mg\left(1-\sin heta
ight)$ බව පෙන්වා, P අංශුව මත අභිලම්බ පුතිකිුිිිියාව සොයන්න.

13. ස්වාභාවික දිග a හා පුතාහස්ථතා මාපාංකය 4mg වූ සැහැල්ලු පුතාහස්ථ තත්තුවක එක් කෙළවරක් අවල O ලක්ෂායකට ද අනෙක් කෙළවර ස්කත්ධය m වූ P අංශුවකට ද ගැට ගසා ඇත. P අංශුව, O හි තිශ්වලතාවයේ සිට මුදා හරිනු ලැබේ. P අංශුව A ලක්ෂාය පසු කර යන විට එහි පුවේගය සොයන්න; මෙහි OA = a වේ.

තත්තුවේ දිග x(≥ a) යන්න $\ddot{x} + \frac{4g}{a}\left(x - \frac{5a}{4}\right) = 0$ සමීකරණය සපුරාලන බව පෙන්වන්න.

 $X=x-rac{5a}{4}$ ලෙස ගෙන, ඉහත සමීකරණය $\ddot{X}+\omega^2X=0$ ආකාරයෙන් පුකාශ කරන්න; මෙහි $\omega(>0)$ නිර්ණය කළ යුතු නියතයකි.

 $\dot{X}^2 = \omega^2 \left(c^2 - X^2\right)$ බව උපකල්පනය කරමින්, මෙම සරල අනුවර්තී චලිතයෙහි විස්තාරය වන c සොයන්න. P අංශුව ළඟා වන පහළ ම ලක්ෂාය L යැයි ගනිමු. A සිට L දක්වා චලනය වීමට P මගින් ගනු ලැබූ කාලය $\frac{1}{2} \sqrt{\frac{a}{g}} \left\{ \pi - \cos^{-1} \left(\frac{1}{3}\right) \right\}$ බව පෙන්වන්න.

P අංශුව L හි තිබෙන මොහොතේ දී ස්කන්ධය $\lambda m~(1 \le \lambda < 3)$ වූ තවත් අංශුවක් සීරුවෙන් P ට ඇඳනු ලැබේ. ස්කන්ධය $(1 + \lambda)~m$ වූ සංයුක්ත අංශුවේ චලිත සමීකරණය $\ddot{x} + \frac{4g}{(1 + \lambda)a}\left\{x - (5 + \lambda)\frac{a}{4}\right\} = 0$ බව පෙන්වන්න.

සංයුක්ත අංශුව, $(3-\lambda)rac{a}{4}$ විස්තාරය සහිත පූර්ණ සරල අනුවර්තී චලිතයේ යෙදෙන බව තවදුරටත් පෙන්වන්න.

- 14.(a) O මූලයක් අනුබද්ධයෙන් A හා B ලක්ෂා දෙකක පිහිටුම් දෛශික පිළිවෙළින් \mathbf{a} හා \mathbf{b} වේ; මෙහි O,A හා B **ජික රේඛීය හෝ වේ**. C යනු $\overrightarrow{OC} = \frac{1}{3} \overrightarrow{OB}$ වන පරිදි පිහිටි ලක්ෂාය ද D යනු $\overrightarrow{OD} = \frac{1}{2} \overrightarrow{AB}$ වන පරිදි පිහිටි ලක්ෂාය ද යැයි ගනිමු. \mathbf{a} හා \mathbf{b} අසුරෙන් \overrightarrow{AC} හා \overrightarrow{AD} පුකාශ කර, $\overrightarrow{AD} = \frac{3}{2} \overrightarrow{AC}$ බව පෙන්වන්න. P හා Q යනු පිළිවෙළින්, AB හා OD මත $\overrightarrow{AP} = \lambda \overrightarrow{AB}$ හා $\overrightarrow{OQ} = (1-\lambda) \overrightarrow{OD}$ වන පරිදි පිහිටි ලක්ෂා යැයි ගනිමු; මෙහි $0 < \lambda < 1$ වේ. $\overrightarrow{PC} = 2 \overrightarrow{CQ}$ බව පෙන්වන්න.
 - (b) ABCD සමාත්තරාසුයක AB=2 m හා AD=1 m යැයි ද $B\hat{A}D=\frac{\pi}{3}$ යැයි ද ගතිමු. තව ද CD හි මධාන ලක්ෂාය E යැයි ගතිමු. විශාලත්ව තිව්ටන 5,5,2,4 හා 3 වූ බල පිළිවෙළින් AB,BC,DC,DA හා BE දිගේ අක්ෂර අනුපිළිවෙළින් දැක්වෙන දිශාවන්ට කිුිියා කරයි. ඒවායේ සම්පුයුක්ත බලය \overrightarrow{AE} ට සමාත්තර බව පෙන්වා එහි විශාලත්වය සොයන්න. සම්පුයුක්ත බලයේ කිුිියා රේඛාව B සිට $\frac{3}{2}$ m දුරක දී දික්කරන ලද AB ට හමුවන බවත් පෙන්වන්න.

දැන් C හරහා කිුිිියා කරන අමතර බලයක් ඉහත බල පද්ධතියට එකතු කරනු ලබන්නේ නව පද්ධතියේ සම්පුයුක්ත බලය \overrightarrow{AE} දිගේ වන පරිදි ය. අමතර බලයේ විශාලත්වය හා දිශාව සොයන්න.

- 15.(a) එක එකක බර w_1 වූ සමාන ඒකාකාර දඬු හතරක්, ABCD රොම්බසයක් සෑදෙන පරිදි, ඒවායේ අන්තවල දී සුමට ලෙස සන්ධි කර ඇත. $B\hat{A}D=2\theta$ වන පරිදි BC හා CD හි මධා ලක්ෂා සැහැල්ලු දණ්ඩක් මගින් යා කර ඇත. B හා D එක් එක් සන්ධිය සමාන w_2 හාර දරයි. පද්ධතිය, A සන්ධියෙන් සමමිතික ලෙස එල්ලෙමින්, සැහැල්ලු දණ්ඩ තිරස් ව ඇතිව සිරස් තලයක සමතුලිතතාවයේ පවතියි. සැහැල්ලු දණ්ඩෙහි තෙරපුම $2(2w_1+w_2)\tan\theta$ බව පෙන්වන්න.
 - (b) යාබද රූපයෙන්, අන්තවල දී සුමට ලෙස සන්ධි කළ AB,BC, CD,AC හා AD සැහැල්ලු දඬු පහකින් සමන්විත රාමු සැකිල්ලක් නිරූපණය වේ. AC=CB හා $B\hat{A}C=30^\circ=A\hat{D}C$ බව දී ඇත. රාමු සැකිල්ල D හි දී සුමට ලෙස අසව් කර ඇත. B සන්ධියේ දී W බරක් එල්ලා AB තිරස් ව ද AD සිරස් ව ද ඇතිව රාමු සැකිල්ල සිරස් තලයක සමතුලිතව තබා ඇත්තේ A හි දී කිුයා කරන විශාලත්වය X වූ තිරස් බලයක් මගිනි. බෝ අංකනය භාවිතයෙන් B,C හා A සන්ධි සඳහා පුතාහබල සටහන් එක ම රූපයක අදින්න. ඒ නයීන්, X හි අගය හා සියලු දඬුවල පුතාහබල, ආතති හා තෙරපුම් වශයෙන් වෙන් කර දක්වමින් සොයන්න.

16. අරය r හා O කේන්දුය වූ ඒකාකාර අර්ධ වෘත්තාකාර ආස්තරයක ස්කන්ධ කේන්දුය O සිට $\frac{4r}{3\pi}$ දුරකින් ඇති බව පෙන්වන්න.

යාබද රූපයේ දැක්වෙන පරිදි, L ඒකාකාර තල ආස්තරයක් සාදා ඇත්තේ ABCD සෘජුකෝණාසුයක් PQRS සම්වතුරසුයකට DC හා PQ ඒවායේ මධා ලක්ෂා සම්වාත වෙමින් එක ම රේඛාවේ පිහිටන පරිදි දෘඪ ලෙස සවි කර, RS හි මධා ලක්ෂාය වන T හි කේන්දුය ඇති අරය $\frac{a}{2}$ වන XYZ අර්ධ වෘත්තාකාර පෙදෙසක් ඉවත් කිරීමෙනි. AB=a හා AD=PQ=2a බව දී ඇත. L ආස්තරයෙහි ස්කන්ධ කේන්දුය සමමිතික අක්ෂය මත, RS සිට ka දුරකින් පිහිටන බව පෙන්වන්න; මෙහි $k=\frac{238}{3(48-\pi)}$ වේ.

යාබද රූපයේ දැක්වෙන පරිදි, L ආස්තරය තිරසට α කෝණයකින් ආනත වූ රළු තලයක් මත ස්වකීය තලය සිරස් ව ද P ලක්ෂාය S ට පහළින් පිහිටන පරිදි PS දාරය උපරිම බෑවුම් රේඛාවක් මත ද ඇතිව සමතුලිතව පිහිටයි. $\tan \alpha < (2-k)$ හා $\mu \ge \tan \alpha$ බව පෙන්වන්න; මෙහි μ යනු ආස්තරය හා ආනත තලය අතර සර්ෂණ සංගුණකයයි.

17.(a) නොනැඹුරු සනකාකාර A දාදු කැටයක් එහි වෙන් වෙන් මුහුණත් හය මත 1,2,3,3,4,5 පෙන්වයි. A දාදු කැටය දෙවරක් උඩ දමනු ලැබේ. ලැබුණු සංඛාහ දෙකෙහි ඓකාස 6 වීමේ සම්භාවිතාව සොයන්න. මුහුණත් මත වූ සංඛාහ හැරුණු විට, අන් සෑම අයුරකින් ම A ට සර්වසම තවත් B දාදු කැටයක් එහි වෙන් වෙන් මුහුණත් හය මත 2,2,3,4,4,5 පෙන්වයි. B දාදු කැටය දෙවරක් උඩ දමනු ලැබේ. ලැබුණු සංඛාහ දෙකෙහි ඓකාසය 6 වීමේ සම්භාවිතාව සොයන්න.

දැන්, A හා B දාදු කැට දෙක පෙට්ටියකට දමනු ලැබේ. එක් දාදු කැටයක් සසම්භාවී ලෙස පෙට්ටියෙන් ඉවතට ගෙන දෙවරක් උඩ දමනු ලැබේ. ලැබුණු සංඛාහ දෙකෙහි ඓකාය 6 බව දී ඇති විට, පෙට්ටියෙන් ඉවතට ගත් දාදු කැටය, A දාදු කැටය වීමේ සම්භාවිතාව සොයන්න.

(b) x_1, x_2, \ldots, x_n යන සංඛාහ n වල මධානාසය හා සම්මත අපගමනය පිළිවෙළින් μ_1 හා σ_1 ද $, y_1, y_2, \ldots, y_m$ යන සංඛාහ m වල මධානාසය හා සම්මත අපගමනය පිළිවෙළින් μ_2 හා σ_2 ද වේ. මෙම සියලු ම n+m සංඛාහවල මධානාසය හා සම්මත අපගමනය පිළිවෙළින් μ_3 හා σ_3 යැයි ගනිමු.

$$\mu_3=rac{n\mu_1+m\mu_2}{n+m}$$
 බව පෙන්වන්න.

$$d_1 = \mu_3 - \mu_1$$
 ලෙස ගනිමු. $\sum_{i=1}^n \left(x_i - \mu_3\right)^2 = n\left(\sigma_1^2 + d_1^2\right)$ බව පෙන්වන්න.

 $d_2=\mu_3-\mu_2$ ලෙස ගැනීමෙන්, $\sum_{j=1}^m \left(y_j-\mu_3\right)^2$ සඳහා එබඳු පුකාශනයක් ලියා දක්වන්න.

$$\sigma_3^2 = \frac{\left(n\sigma_1^2 + m\sigma_2^2\right) + \left(nd_1^2 + md_2^2\right)}{n+m}$$
 බව අපෝහනය කරන්න.

අලුත් පොතක් පුකාශයට පත් කිරීමෙන් පසු පළමු දින 100 ඇතුළත දිනකට විකිණී තිබුණු පිටපත් සංඛාහචේ මධානාගය 2.3 ක් ද විචලතාව 0.8 ක් ද විය. ඊළඟ දින 100 ඇතුළත දිනකට විකිණී තිබුණු පිටපත් සංඛාහචේ මධානාගය 1.7 ක් ද විචලතාව 0.5 ක් ද විය. පළමු දින 200 ඇතුළත දිනකට විකිණී තිබුණු පිටපත් සංඛාහචේ මධානාගය හා විචලතාව සොයන්න.

More Past Papers at tamilguru.lk