# DISCIPLINE SPECIFIC CORE COURSE – 12: Developmental Biology of Angiosperms: Form, Anatomy & Function

# CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

| Course title & Code                                                    | Credit<br>s | Credit distribution of the course |              |                        | Eligibility criteria                             | Pre-<br>requisite      |
|------------------------------------------------------------------------|-------------|-----------------------------------|--------------|------------------------|--------------------------------------------------|------------------------|
|                                                                        |             | Lecture                           | Tutoria<br>l | Practical/<br>Practice |                                                  | of the course (if any) |
| Development al Biology of Angiosperms: Form, Anatomy & Function DSC-12 | 4           | 2                                 | 0            | 2                      | Class XII pass with<br>Biology/<br>Biotechnology | Nil                    |

# **Learning Objectives:**

• To understand the basics of plant cell structure, and development, growth and organisation of the plant body.

#### **Learning Outcomes:**

Upon completion of the course, the students will

- become familiar with the structure and functions of various components of plant cell
- understand the process of cell growth and its regulation
- comprehend the structure and functions of tissues organising the various plant organs
- get acquainted with the reproductive processes involved in the life cycle of angiosperms
- be able to appreciate the interactions between the developmental pathways resulting in the differentiation of plant body
- recognise the importance of plant developmental biology in the improvement and conservation of plants.

#### Unit 1: Introduction to diversity of plant forms

05 Hours

Historical perspective, methods/tools and techniques (fixation, sectioning, macerations); terms for describing plant cells; basic plant growth-meristems and cell differentiation; Primary and Secondary plant body (introduce terms); Classification of tissues; Simple and complex tissues, Vascular system.

### Unit 2: Tissue organisation in stem

05 Hours

Organization of shoot apex -Apical cell theory, Histogen theory, Tunica Corpus theory, Neuman's Theory of Continuing Meristematic Residue, Cyto-Histological Zonation Theory; Types of vascular bundles; Structure of dicot and monocot stem; Shoot Chimeras

#### **Unit 3: Tissue organisation in leaf**

03 Hours

Initiation and development of leaf; leaf lamina, venation and vascular differentiation in leaf; dermal tissue system, cuticles and special epidermal cells - cuticle; epicuticular waxes; trichomes (uni-and multicellular, glandular and non-glandular, two examples of each); stomata (classification); structure of dicot and monocot leaf, Kranz anatomy

# **Unit 4: Tissue organisation in root**

04 Hours

Organisation of root apex -Apical cell theory, Histogen theory, Korper - Kappe theory; structure and function of root apex- quiescent centre; root cap; Structure of dicot and monocot root; Endodermis, exodermis and origin of lateral root.

#### **Unit 5: Vascular Cambium**

03 Hours

Structure (Axially and radially oriented elements); function and seasonal activity of cambium; Secondary growth in root and stem, Cambial variants in secondary growth in stem: Included phloem and Phloem wedges.

#### Unit 6: Wood and Periderm

04 Hours

Types of rays and axial parenchyma; Cyclic aspects and reaction wood; Sapwood and heartwood; Ring and diffuse porous wood; Early and late wood, tyloses; Pits and plasmodesmata; Wall ingrowths and transfer cells; Ergastic substances; Development and composition of periderm; rhytidome and lenticels.

# **Unit 7: Adaptive and Defensive Systems**

03 Hours

Anatomical adaptations of xerophytes and hydrophytes.; Adcrustation and incrustation;

#### **Unit 8: Secretory System**

02 Hours

Hydathodes, cavities, lithocysts and laticifers.

#### **Unit 9: Application of Plant Anatomy**

01 hour

Applications in systematics, plant development, physiology, forensics and pharmacognosy. Dendrochronology and dendroclimatology.

Practicals 60 Hours

- 1. Prepare temporary whole mounts/ sections to study organisation of apical meristem of root, shoot and vascular cambium.
- 2. Distribution and types of parenchyma, collenchyma and sclerenchyma through temporary preparations / digital resources/ permanent slides.
- 3. Prepare temporary stained mounts (maceration, sections) to observe xylem: tracheary elements-tracheids, vessel elements; thickenings; perforation plates; xylem fibres.
- 4. Study the types and features of wood: ring porous; diffuse porous; tyloses; heartwood and sapwood through specimens, permanent slides and digital resources.

- 5. Prepare temporary whole mounts/ sections to observe phloem: sieve tubes-sieve plates; companion cells; phloem fibres.
- 6. Study epidermal system: cell types, stomata types; trichomes: non-glandular and glandular through temporary whole mounts/peels/using enamel.
- 7. Prepare temporary whole mounts/ sections to study organisation of root: monocot, dicot, secondary growth in roots.
- 8. Prepare temporary whole mounts/ sections to study organisation of monocot, dicot primary and secondary growth; phloem wedges in *Bignonia*, included phloem in *Leptadenia/Salvadora*; periderm; lenticels.
- 9. Prepare temporary whole mounts/ sections to study organisation of leaf: isobilateral, dorsiventral, Kranz anatomy.
- 10. Study the adaptive anatomy in xerophytes and hydrophytes (two each) through temporary preparations / digital resources/ permanent slides.
- 11. Study secretory tissues: cavities, lithocysts and laticifers through permanent slides / digital resources.
- 12. Project: submission of permanent slides

# **Suggested Reading:**

- 1. Beck, C.B. (2010). Plant Structure and Development. Second edition. Cambridge University Press, Cambridge, UK, New York, USA.
- 2. Dickison, W.C. (2000). Integrative Plant Anatomy. Harcourt Academic Press, USA.
- 3. Esau, K. (1977). Anatomy of Seed Plants. John Wiley & Sons, Inc., Delhi.
- 4. Fahn, A. (1974). Plant Anatomy. Pergmon Press, USA.
- 5. Mauseth, J.D. (1988). Plant Anatomy. The Benjammin/Cummings Publisher, USA.

#### **Additional Resources:**

- 1. Bahadur, B. Rajam, M.V., Sahijram, L., Krishnamurthy, K.V. (2015). Plant Biology and Biotechnology. Volume 1: Plant Diversity, Organization, Function and Improvement.
- 2. Crang, R., Lyons-Sobaski, S., Wise, R. (2018) Plant Anatomy: A Concept-Based Approach to the Structure of Seed Plants 1st ed. Springer
- 3. Cutler, D.F., Botha, T., Stevenson, D.W. (2007). Plant Anatomy An Applied Aspect. Blackwell Publishing, USA
- 4. Evert, R.F. (2017) Esau's Plant Anatomy; Meristems, Cells and Tissues Of The Plant Body-Their Structure, Function And Development. 3rd Edn Wiley India.
- 5. Moza M. K., Bhatnagar A.K. (2007). Plant reproductive biology studies crucial for conservation. Current Science 92:1907.
- Shivanna, K.R., Tandon, R. (2014). Reproductive Ecology of Flowering Plants: A Manual. Springer (India) Pvt. Ltd. New Delhi, Heidelberg, New York, Dordrecht, London

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.