Homework 3

ALECK ZHAO

February 14, 2017

Section 5.2: Principal Ideal Domains

- 13. (a) Show that $\mathbb{Z}[\sqrt{-2}]$ is euclidean with $\delta(a) = |N(a)|$.
 - (b) If $a = 4 + 3\sqrt{-2}$ and $b = 3 \sqrt{-2}$, write a = qb + r, where r = 0 or $\delta(r) < \delta(b)$.

Section 6.1: Vector Spaces

- 21. If $u = a_1v_1 + a_2v_2 + \cdots + a_nv_n$ in a vector space V, and if $a_1 \neq 0$, show that span $\{v_1, v_2, \cdots, v_n\} = \text{span}\{u, v_2, \cdots, v_n\}$.
- 23. (a) Show that an independent set $\{v_1, \dots, v_n\}$ in FV with n maximal basis is a basis.
 - (b) Show that a spanning set $\{v_1, \dots, v_n\}$ of ${}_FV$ with n minimal basis is a basis.
- 31. A linear transformation $\varphi : {}_FV \to {}_FW$ is a map such that $\varphi(v+w) = \varphi(v) + \varphi(w)$ and $\varphi(av) = a\varphi(v)$ for all $a \in F$ and all $v, w \in V$.
 - (a) Show that $\ker \varphi$ and $\operatorname{im} \varphi$ are subspaces of V and W, respectively.
 - (b) If V is finite dimensional, show that im φ is also finite dimensional.
 - (c) If V is finite dimensional, show that $\dim V = \dim(\ker \varphi) + \dim(\operatorname{im} \varphi)$.
- 32. Vector spaces ${}_FV$ and ${}_FW$ are called isomorphic if a one-to-one, onto linear transformation $V \to W$ exists. If ${}_FV$ has dimension n, show that $V \cong F^n$.