

计组课程设计报告

小组姓名学号:赵立	逸豪 20171000216
郑炯 20171004317	张恒 20171004327
院 (部): <u>计算机学院</u>	专业: 计算机科学与技术
指导教师:胡成玉_	

___2019_年**_1**_月

第一部分

1. 实验原理:

- (1)数据运算操作:由 RD1、RD0 选中的寄存器通过 4 选 1 选择器 A 送往 ALU 的 A 端口,由 RS1、RS0 选中的寄存器通过 4 选 1 选择器 B 送往 ALU 的 B 端口;信号 M、S3、S2、S1、S1 和 S0 决定 ALU 的运算类型。ALU 对 A 端口和 B 端口的两个数连同 CIN 的值进行算数逻辑运算,得到的数据运算结果在信号 ABUS 为 1 时送往数据总线 DBUS。
- (2) 寄存器之间进行数据传送操作:由 RS1、RS0 选中的寄存器通过 4 选 1 选择器 B 送往 ALU 的 B 端口;ALU 将 B 端口的数在信号 ABUS 为 1 时送往数据总线 DBUS;在 T3 的上升沿将数据总线上的数写入由 RD1、RD0 选中的寄存器。ALU 进行数据传送操作由一组特定的 M、S3、S2、S1、S0、CIN 的值确定。
- (3)运算操作:由 RS1、RS0 选中的寄存器通过 4 选 1 选择器 B 送往 ALU 的 B 端口;由 RD1、RD0 选中的寄存器通过 4 选 1 选择器 A 送往 ALU 的 A 端口;ALU 对数 A 和 B 进行运算,运算的数据结果在信号 ABUS 为 1 时送往数据总线 DBUS;在 T3 的上升沿将数据总线上的数写入由 RD1、RD0 选中的寄存器。ALU 进行何种运算操作由 M、S3、S2、S1、S0、CIN 的值确定。
- (4) 存储器中取数操作: 由地址 AR7~AR0 指定的存储器单元中的数在信号 MEMW 为 0 时被读出; 在 MBUS 为 1 时送数据总线 DBUS; 在 T3 的上升沿写入由 RD1、RD0 选中的寄存器。

2. 实验步骤

- (1)设置数据通路实验模式首先将"控制转换"开关拨到最下方位置既"微程序" 灯亮。按复位按钮 CLR,使 TEC-8 实验系统复位。指示灯 μA5~μA0 显示 00H。将操作模式开关设置为 SWC=1、SWB=1、SWA=1,准备进入数据通路 实验。按一次 OD 按钮,进入数据通路实验。
- (2)将数 75H 写到寄存器 R0、数 28H 写到 R1、数 89H 写到 R2、数 32H 写到 R3。。指示灯 μ A5~ μ A0 显示 0FH。在数据开关 SD7~SD0 上设置数 75H。在数据总线 DBUS 指示灯 D7~D0 上可以看到数设置得正确不正确,发现错误需及时改正。数设置正确后,按一次 QD 按钮,将 SD7~SD0 上的数写入寄存器 R0,进入下一步。依照写 R0 的方式,在指示灯 μ A5~ μ A0 显示 32H 时,在指示灯 B7~B0 观测寄存器 R0 的值,将数 28H 写入 R1;在指示灯 μ A5~ μ A0 显示 33H 时,在指示灯 B7~B0 上观测 R1 的值,将数 89H 写入 R2;在指示灯 μ A5~ μ A0 显示 34H 时,在指示灯 B7~B0 上观测 R2 的值,将数 32H 写入 R3。
- (3)设置存储器地址 AR 和程序计数器 PC 指示灯 μA5~μA0 显示 35H。此时指示灯 B7~B0 显示寄存器 R3 的值。在数据开关 SD7~SD0 上设置地址20H。在数据总线 DBUS 指示灯 D7~D0 上可以看到地址设置得正确不正确。地址设置正确后,按一次 QD 按钮,将 SD7~SD0 上的地址写入地址寄存器AR 和程序计数器 PC, 进入下一步。
- (4)将寄存器 R0、R1、R2、R3 中的数依次写入存储器 20H、21H、22H 和23H 单元。指示灯 μA5~μA0 显示 36H。此时指示灯 AR7~AR0 和 PC7~PC0分别显示出存储器左、右两个端口的存储器地址。指示灯 A7~A0、B7~B0 和D7~D0 都显示寄存器 R0 的值。按一次 QD 按钮,将 R0 中的数写入存储器 20H 单元,进入下一步。依照此法,在指示灯 μA5~μA0 显示 37H 时,在INS7~INS0 上观测存储器 20H 单元的值,将 R1 中的数写入存储器 21H 单元;在指示灯 μA5~μA0 显示 38H 时,在 INS7~INS0 上观测存储器 21H 单元的值,将 R2 中的数写入存储器 22H 单元;在指示灯 μA5~μA0 显示 39H 时,在 INS7~INS0 上观测存储器 22H 单元的值,将 R3 中的数写入存储器 23H 单元。
- (5)重新设置存储器地址 AR 和程序计数器 PC 指示灯 μA5~μA0 显示 3AH。此时指示灯 PC7~PC0 显示 23H,INS7~INS0 显示存储器 23H 单元中的数。在数据开关 SD7~SD0 上设置地址 20H。按一次 QD 按钮,将地址 20H 写入地址寄存器 AR 和程序计数器 PC,进入下一步。
- (6)将存储器 20H、21H、22H 和 23H 单元中的数依次写入寄存器 R3、R2、R1 和 R0。指示灯 μA5~μA0 显示 3BH。此时指示灯 AR7~AR0 和 PC7~PC0 显示 20H,指示灯 D7~D0 和 INS7~INS0 同时显示存储器 20H 中的数,按一次 QD 按钮,将存储器 20H 单元中的数写入寄存器 R3,进入下一步。依照此法,在指示灯 μA5~μA0 显示 3CH 时,在指示灯 B7~B0 上观测 R3 的值,将存储器 21H 单元中的数写入寄存器 R2;在指示灯 μA5~μA0显示 3DH 时,在指示灯 B7~B0 上观测 R2 的值,将存储器 22H 单元中的数

写入寄存器 R1; 在指示灯 μ A5~ μ A0 显示 3EH 时,在指示灯 B7~B0 上观测 R1 的值,将存储器 23H 单元中的数写入寄存器 R0。

(7)观测 R0 的值指示灯 $\mu A5 \sim \mu A0$ 显示 00H。此时指示灯 A7 \sim A0 显示 R0 的值,指示灯 B7 \sim B0 显示 R3 的值。

3. 实验结果

μ A5~ μ A0	A7~	B7~	D7~	AR	PC	INS	R0	R1	R2	R3
	A0	В0	D0			7				
0FH	00H	00H	20H	00H	00H	FFH	0	0	0	0
32H	89H	32H	75H	00H	00H	FFH	75H	0	0	0
33H	28H	28H	28H	00H	00H	FFH	75H	28H	0	0
34H	75H	89H	89H	00H	00H	FFH	75H	28H	89H	0
35H	00H	32H	32H	00H	00H	FFH	75H	28H	89H	32H
36H	00H	00H	00H	00H	00H	D5H	75H	28H	89H	32H
37H	00H	28H	28H	20H	20H	00H	75H	28H	89H	32H
38H	00H	89H	89H	21H	21H	28H	75H	28H	89H	32H
39H	00H	32H	32H	23H	22H	89H	75H	28H	89H	32H
3AH	00H	20H	20H	24H	23H	32H	75H	28H	89H	32H
3BH	32H	00H	00H	20H	23H	32H	75H	28H	89H	75H
3СН	89H	28H	28H	20H	23H	32H	75H	28H	28H	75H
3DH	28H	89H	89H	89H	23H	32H	75H	89H	28H	75H
3ЕН	00H	32H	32H	32H	23H	32H	32H	89H	28H	75H

00Н 00Н	00Н 00Н	24H 23H	32Н 32Н	89H 2	8H 75H
---------	---------	---------	---------	-------	--------

第二部分

实验目的

- (1) 用微程序控制器控制数据通路,将相应的信号线连接,构成一台能运行测试程序的 CPU。
 - (2) 执行一个简单的程序,掌握机器指令与微指令的关系。
- (3)理解计算机如何取出指令、如何执行指令、如何在一条指令执行结束后自动取出下一条指令并执行,牢固建立的计算机整机概念。

测试代码

00H	LD	R0[R2]	0101 0010 (【R2】->R0))
01H	LD	R1[R3]	0101 0111 (【R3】->R1)
02H	ADD	R1,R2	0001 0110 (R1+R2->R1	(1
03H	SUB	R0,R3	0010 0011 (R0-R3->R0))
04H	INC	R0	0100 00XX (R0+1)	
05H	STOP		1110 XXXX	
06Н	11H		0001 0001	
07H	25H		00100101	

测试结果

	RO	R1	R2	R3
0	00H	00H	06H	07H
1	11H	00H	06H	07H
2	11H	25H	06H	07H
3	11H	2BH	06H	07H
4	0AH	2BH	06H	07H
5	0BH	2BH	06H	07H
6	STOP			

实验测试与计算数值相同,结果正确

第三部分

实验目的

- (1) 融会贯通计算机组成与体系结构课程各章教学内容,通过知识的综合运用,加深对 CPU 各模块工作原理及相互联系的认识。
 - (2) 掌握硬连线控制器的设计方法。
- (3) 学习运用当代的 EDA 设计工具,掌握用 EDA 设计大规模复杂逻辑电路的方法。
 - (4) 培养科学研究能力,取得设计和调试的实践经验。

CPU 设计代码

LIBRARY ieee; --头文件

USE ieee.std_logic_1164.all;

ENTITY CPU IS

PORT(SW:IN std_logic_vector(2 Downto 0);

IR:IN std_logic_vector(7 Downto 4);

W1,W2,W3:IN std logic;

C,Z,CLR,T3:IN std_logic;

 $ARINC, CIN, DRW, LPC, LAR, LIR, LDZ, LDC, PCINC, PCADD, SELCTL, M, MEMW, STOP: OUT\ std_logic; \\SHORT, LONG, ABUS, SBUS, MBUS: OUT\ std_logic; \\$

```
S,SEL:OUT std_logic_vector(3 Downto 0));
END CPU;
ARCHITECTURE cont OF CPU IS
          signal ST0:std logic;
          signal SST0:std_logic;
BEGIN
      PROCESS(ST0,SST0,SW,IR,CLR,T3,W1,W2,W3)
      BEGIN
          IF (CLR='0') THEN
                               --清空
              ST0<='0';
              SST0<='0';
              CIN<='0';
              DRW<='0';
              LPC<='0';
              LAR<='0';
              LIR<='0';
              LDZ<='0';
              LDC<='0';
              PCINC<='0';
              PCADD<='0';
              SELCTL<='0';
              M<='0';
              S<="0000";
              SEL<="0000";
              MEMW<='0';
              STOP<='0';
              SHORT<='0';
              LONG<='0';
              ABUS<='0';
              MBUS<='0';
              ARINC<='0';
          ELSE
              CIN<='0';
              DRW<='0';
              LPC<='0';
              LAR<='0';
              LIR<='0';
              LDZ<='0';
              LDC<='0';
              PCINC<='0';
              PCADD<='0';
              SELCTL<='0';
              M \le 0';
              S<="0000";
```

```
SEL <= "0000";
                   MEMW <= '0';
                   STOP<='0';
                   SHORT<='0';
                   LONG<='0';
                   ABUS<='0';
                   SBUS<='0';
                   MBUS<='0';
                   ARINC<='0';
                   SST0 \!\! < \!\! = \!\! (NOT - ST0)AND - ((SW(2)AND(NOT(SW(1)))AND(NOT - SW(0))AND
W2)OR((NOT\ SW(2))AND\ SW(1)AND(NOT\ SW(0))AND\ W1)OR((NOT\ SW(2))
    AND (NOT SW(1)) AND SW(0) AND W1));
                IF(SST0='1') THEN
                IF (T3'EVENT AND (T3='0'))THEN
                    ST0<='1';
                END IF;
                END IF;
    CASE SW IS
         WHEN "100" =>
         IF (ST0='0') THEN
         IF (W1='1') THEN
         SBUS<='1';
         SEL<="0011";
         SELCTL<='1';
         DRW<='1';
         STOP<='1';
         END IF;
         IF (W2='1') THEN
         SBUS<='1';
         SEL<="0100";
         SELCTL <= '1';
         DRW<='1';
         STOP<='1';
         SST0<='1';
         END IF;
         END IF;
         IF (ST0='1') THEN
         IF (W1='1') THEN
         SBUS<='1';
         SEL<="1001";
         SELCTL<='1';
         DRW<='1';
         STOP<='1';
         END IF;
```

```
IF (W2='1') THEN
SBUS<='1';
SEL<="1110";
SELCTL<='1';
DRW<='1';
STOP<='1';
END IF;
END IF;
WHEN "011" =>
IF (W1='1') THEN
SEL<="0001";
SELCTL<='1';
STOP<='1';
END IF;
IF (W2='1') THEN
SEL<="1011";
SELCTL<='1';
STOP<='1';
END IF;
WHEN "010"=>
IF (ST0='0') THEN
IF (W1='1') THEN
SBUS<='1';
LAR<='1';
STOP<='1';
SHORT<='1';
SELCTL<='1';
SST0<='1';
END IF;
END IF;
IF (ST0='1') THEN
IF (W1='1') THEN
MBUS<='1';
ARINC<='1';
STOP<='1';
SHORT<='1';
SELCTL<='1';
END IF;
END IF;
WHEN "001"=>
IF (ST0='0') THEN
IF (W1='1') THEN
SBUS<='1';
```

LAR<='1';

```
STOP <= '1';
SHORT<='1';
SELCTL<='1';
SST0<='1';
END IF;
END IF;
IF (ST0='1') THEN
IF (W1='1') THEN
SBUS<='1';
MEMW<='1';
ARINC<='1';
STOP<='1';
SHORT<='1';
SELCTL<='1';
END IF;
END IF;
WHEN "000"=>
IF (W1='1') THEN
LIR<='1';
PCINC<='1';
END IF;
CASE IR IS
WHEN "0001"=>
                  --add
IF (W2='1') THEN
S<="1001";
CIN<='1';
ABUS<='1';
                  --将数据送往指定寄存器
DRW<='1';
LDZ<='1';
LDC<='1';
END IF;
WHEN "0010"=>
                  --sub
IF (W2='1') THEN
S<="0110";
ABUS<='1';
DRW<='1';
LDZ<='1';
LDC<='1';
END IF;
WHEN "0011"=>
                --and
IF (W2='1') THEN
M<='1';
S<="1011";
ABUS<='1';
```

```
DRW<='1';
LDZ<='1';
END IF;
WHEN "0100"=>
                --inc
IF (W2='1') THEN
S<="0000";
ABUS<='1';
DRW<='1';
LDZ<='1';
LDC<='1';
END IF;
WHEN "0101"=> --ld
IF (W2='1') THEN
M<='1';
S<="1010";
ABUS<='1';
                --将数据总线上的数写入地址寄存器 AR
LAR<='1';
LONG<='1';
END IF;
IF (W3='1') THEN
DRW<='1';
MBUS <= '1';
END IF;
WHEN "0110"=> --st
IF (W2='1') THEN
M<='1';
S<="1111";
ABUS<='1';
LAR<='1';
LONG<='1';
END IF;
IF (W3='1') THEN
S<="1010";
M \le 1';
ABUS<='1';
MEMW<='1';
END IF;
WHEN "0111"=>
                --jc
IF(W2='1') THEN
IF(C='1') THEN
PCADD<='1';
END IF;
END IF;
WHEN "1000"=>
                 --jz
```

```
IF(W2='1') THEN
   IF(Z='1') THEN
   PCADD<='1';
   END IF;
   END IF;
    WHEN "1001"=>
                   --jmp
   IF (W2='1') THEN
   M<='1';
   S<="1111";
    ABUS<='1'; --运算结果送往数据总线
               --数据总线送往程序计数器
    LPC<='1';
   END IF;
   WHEN "1010"=>
   IF (W2='1') THEN
   M \le 1';
   S<="0000";
                   --增添新模块实现 A-
    ABUS<='1';
    DRW<='1';
    END IF;
    WHEN "1110"=>
   IF (W2='1') THEN
    STOP<='1';
   END IF;
    WHEN OTHERS=>SBUS<='0';
   END CASE;
    WHEN OTHERS=>SBUS<='0';
   END CASE;
   END IF;
   END PROCESS;
   END cont;
1. 验证程序:
00H 1010 00XX (非RO)
01H 1010 01XX (非R1)
02H 0001 0001 (非R0+非R1)
03H 1110 XXXX (STOP)
```

结果

RO R1

01 11111001 11110111

02 00000110 11110111

03 00000110 00001000

04 00001110 00001000

05 STOP

问题回答:M 的作用是控制逻辑运算和数字运算。其中 0 为算术运算, 1 为逻辑运算。 第三个实验中, w1~w3 每个相当于一个位置领周期或硬连线的控制器的一拍,即 w1~w3 每个可以执行硬连线控制器的一条机器指令。每个置 1 时即为执行该指令。

第四部分

近几天感想:这几天的实验和课设总天来说过得非常充实, 其忙碌程度不亚于考试前的备考时间。所以......在考试之后就接 上这个实验真的是有一些小累的。不过,不管怎样现在是已经结 束了,一切都已经结束了,而现在写报告的我们,真的是感觉非 常舒服的。 之所以会这样,是因为当一群人一起努力的、各自分工的完成一件事,而且这件事情在刚开始就会让你们觉得无法轻易完成时,但在最后他却被你们完成了,即便不完美,但每个人都出了那一份力的时候,那种感觉真的是非常棒的。

课设和实验总共进行了整十个半天,其中有俩半天是夹杂在数据结构考试的前一天,那两个半天也真的是最绝望的半天吧,因为刚到那里就听到那么多的内容,以及隔天的数据结构考试没底更是绝望,不过现在想起当时的感觉,心里又是一阵舒坦,哈哈,也许这就是把一切事情整完之后的感觉吧。在实验室的这几天,最大的感觉就是合作与相互促进。本来第一天的实验在那种绝望与消极的态度下真的好难进行的,但当看到班里一些同学在仅仅两个半天的时间里,整完了第一个实验后,忽然感觉我们不能再继续怠惰下去了,于是便开始问那些懂了的同学,那时候一遍又一遍的跑前跑后,一遍又一遍的问,也真的是感谢那些为我们不厌其烦讲解的大佬们吧~

最后,这几天虽说是有些累,但是在自己进行完这一些列的 实验与课设之后,真的还是很开心的。感谢同学们对我们耐心讲解,也感谢老师这几天来一直陪我们进行这些实验,也感谢老师 在闲暇之余为我们买来水果,还为我们修理试验箱等等。这次课 设的进行完毕,让我们受益匪浅!