심층 신경망 네트워크

EURON 중급 세션 4주차 발표 | 박은혜

1. 더 많은 층의 심층 신경망

목차

- 2. 심층 신경망에서의 정방향 전파
- 3. 행렬의 차원을 알맞게 만들기
- 4. 왜 심층 신경망이 더 많은 특징을 잡아 낼 수 있을까?
- 5. 심층 신경망 네트워크 구성하기
- 6. 정방향전파와 역방향전파
- 7. 변수 vs 하이퍼파라미터
- 8. 인간의 뇌와 어떤 연관이 있을까?

지금까지의 복습

- ✓ 로지스틱 회귀 분석
- ✔ 단일 은닉층을 가진 신경망의 순방향 전파와 역방향 전파
- ✔ 벡터화
- ✔ 왜 랜덤하게 초기값을 초기화 시켜야 하는지

1. 더 많은 층의 심층 신경

심층 신경망이란?

logistic regression

1 hidden layer

지금까지 배운 것은 로지스틱 신경망과 하나의 은닉층을 가진 신경망 로지스틱 신경망과 하나의 은닉층을 가진 신경망은 얕은 신경망이라고 한다

그동안 머신러닝 커뮤니티에서 <u>더 깊은 신경망이 얕은 신경망은 할 수 없는</u> <u>계산을 할 수 있다는 것</u>을 알아냈다.

하지만 얼마나 깊은 신경망을 사용해야 하는지 미리 예측하기는 어렵다.

표기법

- ullet L= number of layers in the network
 - $\circ L=4$
- $n^{[l]}=$ number of nodes/units in layer l

$$\circ \ n^{[0]}=n_x=3$$

$$n^{[1]} = 5$$

$$\circ \ n^{[2]}=5$$

$$n^{[3]} = 3$$

$$n^{[4]} = n^{[L]} = 1$$

• $a^{[l]}=$ activation in layer l

$$\circ \ a^{[l]} = g^{[l]}(z^{[l]})$$

- $ullet \ w^{[l]} = ext{weights for } z^{[l]}$
- $b^{[l]}$

- ullet 입력 특징은 X라고도 불리며, 또한 $X=a^{[0]}$ 이다
- 마지막 층의 활성값인 $a^{[L]}=\hat{y}$ 이다.

2. 심층 신경망에서의 정방향 전파

$$z^{[1]}=W^{[1]}x+b^{[1]}$$
 • $x=a^{[0]}$ 이기 때문에, 위 식은 $z^{[1]}=W^{[1]}a^{[0]}+b^{[1]}$ 와 같다 $a^{[1]}=g^{[1]}(z^{[1]})$

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

$$egin{align} z^{[4]} &= W^{[4]} a^{[3]} + b^{[4]} \ a^{[4]} &= g^{[4]} (z^{[4]}) = \hat{y} \ \end{array}$$

벡터화

$$Z^{[1]} = W^{[1]}A^{[0]} + b^{[1]}$$
 , where $X = A^{[0]}$ $A^{[1]} = g^{[1]}(Z^{[1]})$

$$Z^{[2]} = W^{[2]}A^{[1]} + b^{[2]} \ A^{[2]} = g^{[2]}(Z^{[2]})$$

$$egin{align} Z^{[4]} &= W^{[4]}A^{[3]} + b^{[4]} \ \hat{Y} &= g^{[4]}(Z^{[4]}) = A^{[4]} \ \end{pmatrix}$$

• 신경망은 for 문의 사용을 최대한 피해야하지만, 이 경우 각 층들에서 반복할 수 있게 하는 방법은 for 문을 제외한 마땅한 방법이 없기 때문에, 여기서는 for 문을 사용해 반복시킨다.

3. 행열의 차원을 알맞게 만들기

행열의 차원을 알맞게 만들기

심층 신경망에서 에러를 피하기 위해서는 행렬 차원에 대해 체계적으로 생각해야한다.

 $W^{[1]}$ 의 경우, \underline{om} 층의 노드의 수와 \underline{om} 전 층의 노드의 수의 차원을 갖고 있다.

- $ullet \ W^{[1]}:(n^{[1]},n^{[0]})$
- $ullet \ W^{[l]}:(n^{[l]},n^{[l-1]})$

 $b^{[1]}$ 의 차원은 $W^{[1]}x$ 와 $z^{[1]}$ 의 차원과 같아야한다.

- $b^{[1]}:(n^{[1]},1)$
- $ullet \ b^{[l]}:(n^{[l]},1)$

역방향 전파의 경우, $dW^{[l]}$ 는 $W^{[l]}$ 와, 그리고 $db^{[1]}$ 는 $b^{[1]}$ 와 같은 행열의 차원을 갖게 된다.

- $ullet \ dW^{[l]}:(n^{[l]},n^{[l-1]})$
- $db^{[l]}:(n^{[l]},1)$

또한 $a^{[l]}$ 값이 $z^{[l]}$ 를 활성화 함수에 넣어 만든 값이기 때문에 $z^{[l]}$ 와 $a^{[l]}$ 의 차원이 같아야한다.

- $a^{[l]} = g^{[l]}(z^{[l]})$ 이기 때문에 차원이 같아야 한다는 뜻
- $x=a^{[0]}$ 이라는 것을 까먹지 말기!

$$\circ \; x=a^{[0]}$$
늗 $(n^{[0]},1)$ 이다.

벡터화된 계산식들도 위 식들과 비슷하다.

• W, b, dW, db의 의차원은 같지만, z, a, x의 차원은 조금 달라진다.

$$egin{aligned} z^{[1]} &= W^{[1]} x + b^{[1]} \ & o Z^{[1]} &= W^{[1]} X + b^{[1]} \end{aligned}$$

$$z^{[l]}, a^{[l]}: (n^{[l]}, 1)$$
 $\to Z^{[l]}, A^{[l]}: (n^{[l]}, m)$ $dZ^{[l]}, dA^{[l]}: (n^{[l]}, m)$ $dZ^{[l]}, dZ^{[l]}, dZ^{$

4. 왜 심층 신경망이 더 많은 특징을 잡아 낼 수 있을까?

심층 신경망의 계산

직관적으로 생각하면, 신경망의 초기 층에서 모서리와 같은 간단한 함수를 먼저 감지하게 하고, 그 이후의 신경망 층에서 이것들을 구성해서 더 복잡한 함수를 학습할 수 있도록 한다.

- 이 시각화는 나중에 합성곱 신경망에서 더 자세히 알아볼 수 있다. 이 시각화의 세부 사항을 알아본다면, 초기 층에서 모서리들을 알아볼 때는 더 작은 영역을, 나중에 얼굴의 일부를 감지할 때는 더 넓은 범위를 감지해낸다는 것을 알 수 있다.
- 사진 데이터가 아닌 오디오 데이터일 때는, 첫번째 층에서는 낮은 단계의 파형을 먼저 감지함으로 소리의기본 단위를 찾는 것을 학습하여, 다중에는 단어와 문장들을 인식하게 할 수 있다.

즉, 신경망의 초기 층들은 간단한 함수를 계산하며, 이후 층에서 초기 층에서 계산 한 값들을 모아 얼굴이나 단어처럼 더 복잡한 데이터를 인식할 수 있게 한다.

회로 이론과 딥러닝 Circuit Theory and DL

Informally: There are functions you can compute with a "small" L-layer deep neural network that shallower networks require exponentially more hidden units to compute.

- 회로 이론에서 같은 계산을 할 때, 상대적으로 얕은 신경망으로 활용하면, 깊은 신경망으로 계산할 때보다 은닉층의 개수가 기하급수적으로 증가한다.
- 이렇게 깊은 신경망을 사용하면, O(log n)만에 계산을 완료할 수 있다

회로 이론과 딥러닝 Circuit Theory and DL

Informally: There are functions you can compute with a "small" L-layer deep neural network that shallower networks require exponentially more hidden units to compute.

- 하지만 하나의 은닉층을 활용할 경우, 은닉층의 개수가 기하급수적으로 늘어나 O(2^n)만큼의 계산을 필요로 하게 된다.
- 그렇기 때문에, 적은 층을 활용하기보다, 더 깊은 신경망을 만들면 더 빠르게 계산할 수 있음을 회로이론을 통해 알 수 있다.

5. 심층 신경망 네트워크 구성하기

 $\bullet \ \ \mathsf{Layer} \ L: W^{[l]}, b^{[l]}$

• 정방향 : 입력값 $a^{[l-1]}$, 출력값 : $a^{[l]}$

$$\circ \;\; z^{[l]} = W^{[l]} a^{[l-1]} + b^{[l]}$$
 , cache $z^{[l]}$

$$\circ \ a^{[l]} = g^{[l]}(z^{[l]})$$

• 역방향 : 입력값 $da^{[l]}$, 출력값 $da^{[l-1]}, dw^{[l]}, db^{[l]}$ (cache $z^{[l]}$ 를 사용해서 계산)

- $da^{[0]}$ 도 얻을 수 있지만, 입력값에 대한 도함수이기 때문에 신경망의 가중치를 학습하는데 아무런 의미가 없기 때문에 굳이 계산하지 않아도 괜찮다.
- 박스 안에 있는 값들은 각 박스에서의 결과값을 내기 위해 사용된 변수들이다

- 각 박스에서 계산된 $dw^{[l]}$ 값들로 각 $W^{[l]}$ 와, $db^{[l]}$ 로 $b^{[l]}$ 를 계산한다.
- 여기에서 cache $z^{[l]}$ 는 역방향 전파를 위해 저장하는 값일 뿐만 아니라, $W^{[l]}$ 값과 $b^{[l]}$ 값 도 값이 저장하여, 이 값들을 얻어 역방향 전파에 넣기 위해 사용된다.

6. 정방향 전파와 역방향 전파

정방향 전파

정방향 전파의 입력값 : $a^{[l-1]}$

정방향 전파의 결과값 : $a^{[l]}$, 그리고 cache $z^{[l]}$, 즉 $w^{[l]}, b^{[l]}$ 도 포함된 값

- $z^{[l]} = W^{[l]}a^{[l-1]} + b^{[l]}$
- $a^{[l]} = g^{[l]}(z^{[l]})$, where g is the activation function

위 식을 벡터화한다면,

- $Z^{[l]} = W^{[l]}A^{[l-1]} + b^{[l]}$
- $ullet \ A^{[l]} = g^{[l]}(Z^{[l]})$

역방향 전파

역방향 전파의 입력값 : $da^{[l]}$

역방향 전파의 결과값 : $da^{[l-1]}$ 와 업데이트를 위한 $dW^{[l]}, db^{[l]}$

여기서 $dW^{[l]},db^{[l]}$ 를 계산하기 위해 정방향 전파에서 캐시로 저장해뒀던 $z^{[l]},w^{[l]},b^{[l]}$ 를 사용한다.

- $ullet \ dz^{[l]}=da^{[l]} imes g^{[l]\prime}(z^{[l]})$
 - ullet 마지막 줄의 $da^{[l-1]}=W^{[l]T}dz^{[l]}$ 를 적용한다면 이 식이 나온다
 - $\circ \; dz^{[l]} = W^{[l+1]T} dz^{[l+1]} imes g^{[l]\prime}(z^{[l]})$
 - 。 또한 이 식은 요소별 곱셈이기 때문에 이 4개의 식만 있으면 충분하다
- $dW^{[l]} = dz^{[l]}a^{[l-1]}$
- $\bullet \ db^{[l]} = dz^{[l]}$
- $da^{[l-1]} = W^{[l]T} dz^{[l]}$

위 식을 벡터화하면,

- $ullet \ dZ^{[l]}=dA^{[l]} imes g^{[l]\prime}(Z^{[l]})$
- $dW^{[l]} = \frac{1}{m} dZ^{[l]} A^{[l-1]T}$
- $db^{[l]}=rac{1}{m}$ np.sum $(dZ^{[l]}$, axis=1, keepdims=True)
- $dA^{[l-1]} = W^{[l]T} dZ^{[l]}$

아래 그림은 2개의 은닉층과 하나의 출력층을 가진 신경망의 모습이다

- 정방향 전파는 입력 데이터 X로 초기화한다.
- 정방향 전파에서 \hat{y} 를 결과값으로 가져 비용함수를 계산한 후, 역방향 전파를 한다.
- 역방향 전파는 $da^{[l]} = -rac{y}{a} + rac{(1-y)}{(1-a)}$ 로 초기화한다.
 - ∘ y의 예측값, 즉 a에 대해 손실함수 L을 미분하면 이 값을 구할 수 있다.
 - \circ 위 식을 벡터화하면 $dA^{[l]}=(rac{y^{(1)}}{a^{(1)}}+rac{(a-y^{(1)})}{(1-a^{(1)})}\cdots-rac{y^{(m)}}{a^{(m)}}+rac{(a-y^{(m)})}{(1-a^{(m)})})$

7. 변수 vs 하이퍼파라미터

Hyperparameter

- W와 b를 통제하는 값들, 즉 최종 매개변수(파라미터)들의 최종 값을 결정하는 변수들이다.
- ullet parameters $:W^{[1]},b^{[1]},W^{[2]},b^{[2]},\dots$
- hyperparameters: learning rate α , number of iterations, number of hidden layers L, number of hidden units $n^{[1]}, n^{[2]}, \ldots$, choice of activation function
- 효과적으로 신경망을 학습시키기 위해서는 매개변수들 뿐만 아니라 하이퍼 파라미터들도 잘 업데이트 시켜야 한다.
- 하이퍼파라미터가 많이 없던 딥러닝 초기에는 값이 자주 파라미터라고 불리곤 했는 데, 이제는 잘 구분 지을 필요가 있다.

딥러닝은 경험적인 과정 (empirical process)

- 딥러닝은 많은 분야에서 오디오, 이미지, 텍스트 데이터와 같은 다양한 종류의 데이터를 다루고 있다. 그리고 이다양한 데이터마다 하이퍼파라미터에 대한 직관은 다르기 때문에, 매번 할 때마다 다양한 시도를 해야한다.
- 그렇기 때문에 새로 시작하는 사람들은 다양한 범위의 값을 시도해보고 범위를 좁혀가 는 것을 조언한다.
- 또한 CPU, GPU, 네트워크, 데이터 등 다양한 조건들이 있고 이 것들도 항상 변화하고 있기 때문에, 항상 다양한 하이퍼 파라미터들을 확인해보는 과정이 필요하다.

8. 인간의 뇌와 어떤 연관이 있을까

- 뇌의 신경 세포인 뉴런은 다른 유런으로부터 전기적 신호를 받아 계산을 하고 다른 뉴런으로 전기 신호를 보낸다.
- 이렇게 간단한 로지스틱 유닛과의 비유를 들 수 있다.
- 하지만 현재 인간의 이해력으로는 인간의 뇌의 뉴련이 어떤 방법으로 정보를 계산하는지 알 수 없고, 또한 인간의 뇌가 경사 하강법과 같은 알고리즘을 활용하는지도 불분명하다.
- 인간의 뇌가 활용하는 학습 원리는 신경망의 것과 완전히 다를 수도 있다.
- 초반에는 딥러닝이 인간의 뇌에서 영감을 받아 시작만, 갈 수록 딥러닝과 뇌의 비유는 무너지고 있다.

복습퀴즈

True

False

- 1. iteration의 횟수
- 2. 신경망의 레이어 개수 L
- 3. 활성화 레이어 $a^{[l]}$
- 4. learning rate α
- 5. 가중치 행렬 $W^{[l]}$
- 6. 은닉층의 크기 $n^{[l]}$
- 7. 편향 벡터 $b^{[l]}$

\checkmark	1	~
\checkmark	2	✓
] 3	
\checkmark	4	✓
] 5	
\checkmark	6	✓
] 7	

~	2. forward propagation과 back propagation의 구현에서 캐시(cache)는 어 *1/1디에 쓰이나요?
C) 훈련 과정에서 비용함수의 중간 값을 계산하기 위해 쓰인다.
C) 우리가 찾고 있는 하이퍼파라미터를 추적하여 계산을 빠르게 하기 위해 쓰인다.
•	forward propagation을 할 때의 변수를 해당하는 backward propagation 단계에 🗸 전달한다. 미분값을 계산할 때 유용한 정보를 담고 있기 때문이다.
С	backward propagation을 할 때 계산한 변수를 해당하는 forward propagation 단계에 전달한다. activation을 계산할 때 유용한 정보를 담고 있기 때문이다.
×	5. forward propagation을 할 때, 레이어 I에서의 활성화 함수를 알아야 하 *0/고, backpropagation을 할 때 그래디언트가 레이어 I의 활성화 함수에 의존하기 때문에 해당하는 backward function 을 알아야 한다.

✓ 7. layer_dims = [n_x, 4, 3, 2, 1]인 레이어들의 배열이 있을 때(layer 1은 4 *1/1 개의 hidden unit이 있고, layer 2는 3개의 hidden unit이 있고 등등...), 이 배열에 n^[l] 의 값을 저장한다고 가정해봅시다. 다음 중 모델의 파라미터를 초기화하는 for-loop는 무엇일까요?

```
# 1
for(i in range(1, len(layer_dims))):
    parameter['W' + str(i)] = np.random.randn(layers[i-1], layers[i]) * 0.01
    parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01

# 2
for(i in range(1, len(layer_dims))):
    parameter['W' + str(i)] = np.random.randn(layers[i], layers[i - 1]) * 0.01
    parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01

# 3
for(i in range(1, len(layer_dims)/2)):
    parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1]) * 0.01
    parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01

# 4
for(i in range(1, len(layer_dims)/2)):
    parameter['W' + str(i)] = np.random.randn(layers[i-1], layers[i]) * 0.01
    parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```

- 0
- 2
- 0
- \bigcirc

✓ 8. 다음과 같은 신경망이 있을 때, 이 네트워크에는 몇 개의 레이어와, 몇개 *1/1의 hidden layer가 있나요?

- O 레이어: 3개 / hidden layer: 3개
- 레이어: 4개 / hidden layer: 3개
- O 레이어: 4개 / hidden layer: 4개
- O 레이어: 5개 / hidden layer: 3개
- O 레이어: 5개 / hidden layer: 4개
- O 레이어: 6개 / hidden layer: 3개
- O 레이어: 6개 / hidden layer: 4개

✓ 9. 다음과 같이 두개의 은닉층을 가진 신경망이 있을 때, 옳은 것을 모두 골 *1/1 라주세요.

- 1. W^[1]의 shape는 (4,4)이다.
- 2. $W^{[1]}$ 의 shape는 (3,4)이다.
- 3. W [2]의 shape는 (3,4)이다.
- 4. W [2]의 shape는 (3,1)이다.
- 5. W ^[3]의 shape는 (3,1)이다.
- 6. W ^[3]의 shape는 (1,3)이다.
- 7. $b^{[1]}$ 의 shape는 (4,1)이다.
- 8. b^[1]의 shape는 (3,1)이다.
- 9. b^[2]의 shape는 (1,1)이다.
- 10. b^[2]의 shape는 (3,1)이다.
- 11. $b^{[3]}$ 의 shape는 (1,1)이다.
- 12. $b^{[3]}$ 의 shape는 (3,1)이다.

10. 9번에서는 특정한 네트워크를 사용했지만, 일반적인 경우의 레이어 l에서 weight matrix $oldsymbol{W}^{[l]}$ 의 차원으로 옳은 것을 골라주세요.

- 1. $W^{[l]}$ 의 shape는 $(n^{[l-1]}, n^{[l]})$ 이다.
- 2. W [l]의 shape는 (n[l], n[l-1])이다.
- 3. W^[l]의 shape는 (n^[l], n^[+1])이다.
- 4. $W^{[l]}$ 의 shape는 $(n^{[l+1]}, n^{[l]})$ 이다.
- \bigcirc
- 2

O 4