Números Reais

Maria Joana Torres

2021/22

O conjunto dos números reais será indicado por $\mathbb R$

A identificação entre os números reais e os pontos de uma reta, designada por reta real, permite obter uma representação geométrica dos números reais, muito útil na compreensão e visualização de diversos conceitos envolvendo números reais.

A associação que a cada numero real faz corresponder um e um só ponto da reta, permite também usar uma linguagem geométrica, em que *ponto* passará a significar *número real*,

dizer que

- x < y será dizer que x está à esquerda de y
- e, dados
- $x,y\in\mathbb{R}$, |x-y| representará a distância do ponto x ao ponto y.

Nesta representação, dados $x,y\in\mathbb{R}$, com x< y, o intervalo [x,y] será representado pelo segmento de reta cujos extremos são os pontos x e y.

- Na figura os pontos a e b representam números reais (identificados também por a e b) tais que a < b < 0, uma vez que a está à esquerda de b, estando este, por sua vez, à esquerda de zero.
- $lackbox{ O segmento de reta de extremos } a \in b,$ marcado com traço mais carregado, representa o intervalo [a,b].

Na figura está representado um ponto c e o intervalo aberto centrado em c e de raio (semi-amplitude) r>0, ou seja, o intervalo

$$]c-r, c+r[.$$

Este intervalo é o lugar geométrico dos

pontos da reta cuja distância a c é menor do que r

ou, dito de forma equivalente, o conjunto

$$\{x \in \mathbb{R}: |x - c| < r\}.$$

Valor absoluto ou módulo de um número real

Recordemos que, dado $x \in \mathbb{R}$, |x| representa o valor absoluto ou módulo de x, definido da seguinte forma:

$$|x| = \left\{ \begin{array}{ccc} x & \text{se} & x \geq 0 \\ -x & \text{se} & x < 0 \,. \end{array} \right.$$

Propriedades do valor absoluto

O valor absoluto verifica as seguintes propriedades.

Propriedades Sejam $x, y, z \in \mathbb{R}$. Então:

1.
$$|x| \ge 0$$
 e $|x| = 0$ sse $x = 0$

2.
$$|-x| = |x|$$

3.
$$|x| \ge x$$
 e $|x| \ge -x$

4.
$$-|x| \le x \le |x|$$

5. sendo
$$a \ge 0$$
, tem-se que $|x| \le a$ sse $-a \le x \le a$

6. sendo
$$a \geq 0$$
, tem-se que $|x| \geq a$ sse $x \geq a \ \lor \ x \leq -a$

7.
$$|x.y| = |x|.|y|$$

8.
$$\left|\frac{x}{y}\right| = \frac{|x|}{|y|}$$
, sempre que $y \neq 0$

9.
$$|x+y| \le |x| + |y|$$

10.
$$|x| - |y| \le ||x| - |y|| \le |x - y|$$

11.
$$|x-z| \le |x-y| + |y-z|$$

Alguns subconjuntos de $\mathbb R$

o conjunto dos números naturais

$$\mathbb{N} = \{1, 2, 3, \cdots\}$$

o conjunto dos números inteiros

$$\mathbb{Z} = \{ \cdots, -2, -1, 0, 1, 2, \cdots \}$$

o conjunto dos números racionais

$$\mathbb{Q} = \left\{ \frac{p}{q} : \ p \in \mathbb{Z}, \ q \in \mathbb{Z} \setminus \{0\} \right\}$$

▶ aos números reais que não são racionais chamamos números irracionais e denotamos o conjunto dos números irracionais por R\Q.

Propriedade: Todo o intervalo não degenerado de números reais possui uma infinidade de racionais e uma infinidade de irracionais.

Majorante, minorante, máximo e mínimo

Definição: Sejam $X\subseteq\mathbb{R}$ e $a\in\mathbb{R}$. Diz-se que a é

- majorante de X se $\forall x \in X$ $x \leq a$;
- minorante de X se $\forall x \in X$ $a \leq x$;
- máximo de X se a é majorante de X e $a \in X$. Representa-se $a = \max X$;
- **mínimo de** X se a é minorante de X e $a \in X$. Representa-se $a = \min X$.

Nota:

Observemos que, se a é majorante de X, qualquer elemento maior do que a é também majorante de X. Analogamente, se a é minorante de X, qualquer elemento menor do que a é minorante de X.

Conjunto limitado

Definição:

- Um conjunto $X\subseteq\mathbb{R}$ diz-se majorado ou limitado superiormente se possui algum majorante.
- Um conjunto $X\subseteq\mathbb{R}$ diz-se **minorado** ou **limitado inferiormente** se possui algum minorante.
- Um conjunto $X\subseteq\mathbb{R}$ diz-se **limitado** quando X é, simultaneamente, majorado e minorado, isto é, quando

$$\exists c, d \in \mathbb{R}, \quad \forall x \in X, \quad c \le x \le d,$$

ou, equivalentemente, quando

$$\exists c, d \in \mathbb{R}, \quad X \subseteq [c, d].$$

Supremo e ínfimo

Definição:

Seja X um subconjunto de $\mathbb R$. Um elemento $a\in\mathbb R$ diz-se **supremo de** X e representa-se $a=\sup X$, se verifica as duas condições seguintes:

- $\forall x \in X \quad x \leq a \quad (a \text{ \'e majorante de } X);$
- se $b\in\mathbb{R}$ é tal que $\,\,\forall\,x\in X,\,\,x\leq b,$ então $\,a\leq b\,\,$ (a é o menor dos majorantes).

Definição:

Seja X um subconjunto de \mathbb{R} . Um elemento $a \in \mathbb{R}$ diz-se **ínfimo de** X e representa-se $a = \inf X$, se verifica as duas condições seguintes:

- $\forall x \in X \quad a \leq x \quad (a \text{ \'e minorante de } X);$
- se $b \in \mathbb{R}$ é tal que $\forall x \in X, \ b \leq x$, então $b \leq a$ (a é o maior dos minorantes).

Consequências das definições

Nota:

- O supremo e o ínfimo de um conjunto, quando existem, são únicos.
- Um subconjunto X de $\mathbb R$ majorado tem máximo se e só se $\sup X \in X$. Em particular, se $a = \sup X$ e $a \in X$, então $a = \max X$.
- Um subconjunto X de $\mathbb R$ minorado tem mínimo se e só se $\inf X \in X$. Em particular, se $a=\inf X$ e $a\in X$, então $a=\min X$.

Topologia da reta real: ponto de acumulação

Definição:

Dado um conjunto $X\subseteq \mathbb{R}$, um ponto $x\in \mathbb{R}$ diz-se ponto de acumulação de X se

$$\forall \epsilon > 0, \quad (]x - \epsilon, x + \epsilon[\setminus \{x\}) \cap X \neq \emptyset.$$

Em particular, dizemos que x é **ponto de acumulação à direita de** X quando

$$\forall \epsilon > 0, \quad]x, x + \epsilon[\cap X \neq \emptyset$$

e que x é ponto de acumulação à esquerda de X quando

$$\forall \epsilon > 0, \quad]x - \epsilon, x[\cap X \neq \emptyset.$$

O conjunto dos pontos de acumulação de X designa-se por **derivado** de X e representa-se por $X^{\prime}.$

O conjunto dos pontos de acumulação à direita representa-se por X_+^\prime e o conjunto dos pontos de acumulação à esquerda por X_-^\prime .

Um ponto $x \in \mathbb{R}$ é ponto isolado de X se pertencer a X mas não for ponto de acumulação de X, isto é,

$$\exists\,\epsilon>0\qquad]x-\epsilon,\,x+\epsilon[\,\cap\,X=\{x\}.$$