Overlapping Domain
Decomposition Finite
Element
Method (FE-DDM) of
Electrostatic Problem

TEAM 10

Junda Feng (jundaf2@illinois.edu)

What is FEM?

The finite element method (FEM) is a widely used method for numerically solving partial differential equations (PDEs) arising in engineering and mathematical modeling.

-- Wikipedia

https://www.ansys.com/products/electronic s/ansys-hfss

Poisson Equation

The governing PDE of the electrostatic problem is Poisson equation.

$$-\nabla \cdot (\varepsilon(x,y)\nabla \Phi) = \rho_e(x,y)$$

FEM Formulation

$$-\int_{\Omega} \omega_i \left[\nabla \cdot (\varepsilon(x, y) \nabla \Phi) \right] d\Omega = \int_{\Omega} \omega_i \rho_e(x, y) d\Omega \tag{3}$$

$$\int_{\Omega} \varepsilon(x, y) \nabla \omega_i \cdot \nabla \Phi d\Omega = \int_{\Omega} \omega_i \rho_e(x, y) d\Omega + \oint_{\Gamma_D} \hat{n} \cdot (\varepsilon(x, y) \nabla \Phi) \omega_i d\Gamma_D \tag{4}$$

$$\sum_{j=1}^{N} \phi_{j} \int_{\Omega} \varepsilon(x, y) \nabla N_{j} d\Omega = \int_{\Omega} N_{i} \rho_{e}(x, y) d\Omega - \sum_{j=1}^{N_{D}} \phi_{j}^{D} \int_{\Omega} \varepsilon(x, y) \nabla N_{i} \cdot \nabla N_{j}^{D} d\Omega$$
 (5)

$$\sum_{j=1}^{N} K_{ij}\phi_j = b_i, \qquad i = 1, \dots, N$$

$$(6)$$

$$K_{ij} = \begin{cases} 1 & \text{if } i = j \text{ and node } j \text{ is on } \Gamma_D \\ \int_{\Omega} \xi(x, y) \nabla N_i \cdot \nabla N_j d\Omega & \text{if } \phi_j \text{ is unknown} \end{cases}$$
 (7)

$$b_{i} = \begin{cases} \int_{\Omega} N_{i} \rho_{e}(x, y) d\Omega - \sum_{j=1}^{N_{D}} \phi_{j}^{D} \int_{\Omega} \varepsilon(x, y) \nabla N_{i} \cdot \nabla N_{j}^{D} d\Omega & \text{if } \phi_{i} \text{is unknown} \\ \phi_{i}^{D} - \sum_{j=1, j \neq i}^{N_{D}} \phi_{j}^{D} \int_{\Omega} \varepsilon(x, y) \nabla N_{i} \cdot \nabla N_{j}^{D} d\Omega & \text{if } \phi_{i} \text{is prescribed (the potential of ground is zero)} \end{cases}$$
(8)

Basis function

Solution Process

(Simplified)

- Use the equations to formulate the linear sparse system.
- Solve it using conjugated gradient method for the coefficients of the corresponding basis functions.

$$K\phi = b$$

Conjugated Gradient Method

Pseudo-code.

Many parallel versions studied in detail.

Simply using OpenMP.

Algorithm 1 CG algorithm

- 1: Initialize $r_0 = b K\phi_0$ and $p_0 = r_0$ 2: **for** k = 1, 2, ... **do** 3: $\rho_k = \|r_k, r_k\|_2$ 4: $q_k = Kp_k$ 5: $\alpha_k = \frac{\rho_k}{\|p_k, q_k\|_2^2}$ 6: $\phi_{k+1} = \phi_k + \alpha_i p_i$ 7: $r_{k+1} = r_k - \alpha_i q_i$ 8: $r_{k+1} = M^{-1} r_{k+1}$ 9: $\rho_{k+1} = \|r_{k+1}, r_{k+1}\|_2^2$ 10: $\beta_{k+1} = \frac{\rho_{k+1}}{\rho_k}$ 11: $p_{k+1} = r_{k+1} + \beta_{k+1} p_k$ 12: Check convergence status 13: **end for**
 - vector update (SAXPY)
 - inner product
 - matrix-vector multiplication

Domain Decomposition

Some thing like this picture in the course slides.

Using MPI between ranks.

Spatial Decomposition

- Atoms distributed to cubes based on their location
 - Relatively uniform atom density
- Size of each cube
 - Just a bit larger than cut-off radius
 - Communicate only with neighbors
 - Work: for each pair of neighbor objects
- Communication to computation ratio: O(1)
 - ▶ E.g. imagine 1 cube per process
- However:
 - Load imbalance
 - Limited parallelism

Domain Decomposition

To be more specific (as an example).

Divide the original domain into 2x2 sub-region.

Artificial boundary (ghost boundary)

But this time the ghost is in the interior region of its nearby sub-regions.

If some sub-region is not on the outer boundary, it may have 8 adjacent sub-regions.

Electric potential visualization 2 by 2

Electric potential visualization 3 by 3

Electric potential visualization 4 by 4

Electric potential visualization 5 by 5

Electric potential visualization 6 by 6

Benchmarking: Increase the number of unknowns

Comparison of time consumption

Serial version vs Parallel version

Speed up and parallel efficient According to the definition.

Benchmarking: Scaling

Increase decomposition, more sub-regions

Scaling Result (Weak & Strong)

Increasing number of ranks (different color)

Code Demonstration

Let me open the VS Code if needed.

Q&A Session