Trabajo de Fin de Máster: Coisotropic reduction in Multisymplectic Geometry

Máster en Matemáticas Avanzadas

Alumno: Rubén Izquierdo-López Director: Manuel de León Tutor: Marco Castrillón Tuesday 9th July, 2024

UCM

Outline

- 1. Calculus of Variations
- 2. Symplectic Geometry
- 3. Multisymplectic Manifolds
- 4. Hamiltonian multivector fields and forms
- 5. Coisotropic submanifolds
- 6. Final remarks and future research

Calculus of Variations

The first order variational problem

Take a fibered manifold

$$Y \xrightarrow{\pi} X$$
,

with coordinates

$$(x^\mu,y^i) \xrightarrow{\pi} (x^\mu).$$

We want to find sections $\phi: X \to Y$ that extremize certain functional (the action)

$$S[\phi] := \int_X \mathcal{L}(x^\mu, \phi^i, \frac{\partial \phi^i}{\partial x^\mu})$$

where ${\mathcal L}$ (the Lagrangian density) is an n-form on X, with $\dim X=n$.

For first order field theories, we can interpre-

Lagrangian dentisy
$$\sim \mathcal{L}: J^1\pi \to \bigwedge^n X_1$$

Action $\sim S[\phi] = \int_X \mathcal{L} \circ j^1\phi.$

The first order variational problem

Take a fibered manifold

$$Y \xrightarrow{\pi} X$$
,

with coordinates

$$(x^\mu,y^i) \xrightarrow{\pi} (x^\mu).$$

We want to find sections $\phi: X \to Y$ that extremize certain functional (the action)

$$S[\phi] := \int_X \mathcal{L}(x^\mu,\phi^i,\frac{\partial \phi^i}{\partial x^\mu}),$$

where \mathcal{L} (the Lagrangian density) is an n-form on X, with $\dim X = n$.

For first order field theories, we can interpret

Lagrangian dentisy
$$\sim \mathcal{L}: J^1\pi \to \bigwedge^n X_1$$

Action $\sim S[\phi] = \int_X \mathcal{L} \circ j^1\phi$.

The first order variational problem

Take a fibered manifold

$$Y \xrightarrow{\pi} X$$
,

with coordinates

$$(x^{\mu}, y^i) \xrightarrow{\pi} (x^{\mu}).$$

We want to find sections $\phi: X \to Y$ that extremize certain functional (the action)

$$S[\phi] := \int_X \mathcal{L}(x^\mu,\phi^i,\frac{\partial \phi^i}{\partial x^\mu}),$$

where \mathcal{L} (the Lagrangian density) is an n-form on X, with $\dim X = n$.

For first order field theories, we can interpret

Lagrangian dentisy
$$\sim \mathcal{L}: J^1\pi \to \bigwedge^n X;$$
 Action $\sim S[\phi] = \int_X \mathcal{L} \circ j^1\phi.$

Stationary sections will satisfy

$$\frac{\mathrm{d}}{\mathrm{d}t}\bigg|_{t=0}S[\phi_t]=0,$$

for every possible variation $\phi_t, \phi_0 = \phi$. The Euler-Lagrange equations for ϕ are:

Locally,
$$\frac{\partial L}{\partial y^i}=rac{\mathrm{d}}{\mathrm{d}x^\mu}\left(rac{\partial L}{\partial z^i_\mu}
ight)$$

ntrinsically,
$$(j^1\phi)^*\iota_{\xi}\Omega_{\mathcal{L}}=0, \forall \xi\in\mathfrak{X}(J^1Y),$$

$$\Omega_{\mathcal{L}} = d \left(\frac{\partial L}{\partial z_{\mu}^{i}} \right) \wedge dy^{i} \wedge d^{n-1}x_{\mu} - d \left(\frac{\partial L}{\partial z_{\mu}^{i}} z_{\mu}^{i} - L \right) \wedge d^{n}x$$

Stationary sections will satisfy

$$\frac{\mathrm{d}}{\mathrm{d}t}\bigg|_{t=0} S[\phi_t] = 0,$$

for every possible variation $\phi_t,\,\phi_0=\phi.$ The Euler-Lagrange equations for ϕ are:

Locally,
$$\frac{\partial L}{\partial y^i} = \frac{\mathrm{d}}{\mathrm{d}x^{\mu}} \left(\frac{\partial L}{\partial z^i_{\mu}} \right)$$
,

ntrinsically,
$$(j^1\phi)^*\iota_{\xi}\Omega_{\mathcal{L}}=0, \forall \xi\in\mathfrak{X}(J^1Y),$$

$$\Omega_{\mathcal{L}} = d \left(\frac{\partial L}{\partial z_{\mu}^{i}} \right) \wedge dy^{i} \wedge d^{n-1}x_{\mu} - d \left(\frac{\partial L}{\partial z_{\mu}^{i}} z_{\mu}^{i} - L \right) \wedge d^{n}x$$

Stationary sections will satisfy

$$\frac{\mathrm{d}}{\mathrm{d}t}\bigg|_{t=0} S[\phi_t] = 0,$$

for every possible variation $\phi_t,\,\phi_0=\phi.$ The Euler-Lagrange equations for ϕ are:

Locally,
$$\frac{\partial L}{\partial y^i} = \frac{\mathrm{d}}{\mathrm{d}x^{\mu}} \left(\frac{\partial L}{\partial z^i_{\mu}} \right)$$
,

$$\label{eq:locally} \text{Intrinsically}, \ \ (j^1\phi)^*\iota_\xi\Omega_{\mathcal L}=0, \forall \xi\in\mathfrak X(J^1Y),$$

$$\Omega_{\mathcal{L}} = d \left(\frac{\partial L}{\partial z_{\mu}^{i}} \right) \wedge dy^{i} \wedge d^{n-1}x_{\mu} - d \left(\frac{\partial L}{\partial z_{\mu}^{i}} z_{\mu}^{i} - L \right) \wedge d^{n}x$$

Stationary sections will satisfy

$$\frac{\mathrm{d}}{\mathrm{d}t}\bigg|_{t=0} S[\phi_t] = 0,$$

for every possible variation $\phi_t,\,\phi_0=\phi.$ The Euler-Lagrange equations for ϕ are:

Locally,
$$\frac{\partial L}{\partial y^i} = \frac{\mathrm{d}}{\mathrm{d}x^{\mu}} \left(\frac{\partial L}{\partial z^i_{\mu}} \right)$$
,

$$\label{eq:continuity} \text{Intrinsically}, \ \ (j^1\phi)^*\iota_\xi\Omega_{\mathcal{L}}=0, \forall \xi\in\mathfrak{X}(J^1Y),$$

$$\Omega_{\mathcal{L}} = d \left(\frac{\partial L}{\partial z_{\mu}^{i}} \right) \wedge dy^{i} \wedge d^{n-1}x_{\mu} - d \left(\frac{\partial L}{\partial z_{\mu}^{i}} z_{\mu}^{i} - L \right) \wedge d^{n}x.$$

The importance of multisymplectic geometry

Symplectic Geometry ~ Classical Mechanics

Multisymplectic Geometry ~ Classical Field Theories

Symplectic Geometry

Definition (Symplectic manifold)

A symplectic manifold is a pair (M,ω) , where M is an manifold, and $\omega\in\Omega^2(M)$ is a closed, non-degenerate, 2-form.

Definition

For a subspace $i:W\hookrightarrow T_xM,$ define the symplectic orthogonal as

$$W^{\perp}:=\{v\in T_qM,\ \omega(v,w)=0, \forall w\in W\}=\ker i^*\circ \flat.$$

Important submanifolds
$$\left\{ \begin{array}{l} \text{Lagrangian, } T_xL=(T_xL)^\perp \\ \\ \text{Coisotropic, } (T_xN)^\perp\subseteq T_xN \end{array} \right.$$

Definition (Symplectic manifold)

A symplectic manifold is a pair (M,ω) , where M is an manifold, and $\omega\in\Omega^2(M)$ is a closed, non-degenerate, 2-form.

Definition

For a subspace $i:W\hookrightarrow T_xM$, define the symplectic orthogonal as

$$W^{\perp}:=\{v\in T_qM,\ \omega(v,w)=0, \forall w\in W\}=\ker i^*\circ \flat.$$

$$\text{Important submanifolds} \left\{ \begin{aligned} &\text{Lagrangian, } T_xL = (T_xL)^\perp \\ &\text{Coisotropic, } (T_xN)^\perp \subseteq T_xN \end{aligned} \right.$$

Dynamics = Lagrangian submanifolds (Weinstein's creed)

$$\begin{split} &(M,\omega) \text{ symplectic} \to (TM,\tilde{\omega}) \text{ symplectic}, \\ &\tilde{\omega} = \flat_{\omega}^* \omega_M; \ \flat_{\omega} : TM \to T^*M \text{ (contraction)} \end{split}$$

Definition

· Hamiltonian vector field: $X_H \in \mathfrak{X}(M)$, $(H \in C^{\infty}(M))$ such that

$$\iota_{X_H}\omega=dH.$$

• Locally Hamiltonian vector field: $X \in \mathfrak{X}(M)$ such that

$$d\iota_X\omega=0.$$

Theorem

A vector field $X:M\to TM$ is locally Hamiltonian if and only if it defines a Lagrangian submanifold of $(TM,\tilde{\omega})$.

Dynamics = Lagrangian submanifolds (Weinstein's creed)

$$\begin{split} &(M,\omega) \text{ symplectic} \to (TM,\tilde{\omega}) \text{ symplectic}, \\ &\tilde{\omega} = \flat_{\omega}^* \omega_M; \ \flat_{\omega} : TM \to T^*M \text{ (contraction)} \end{split}$$

Definition

· Hamiltonian vector field: $X_H \in \mathfrak{X}(M)$, $(H \in C^{\infty}(M))$ such that

$$\iota_{X_H}\omega=dH.$$

• Locally Hamiltonian vector field: $X \in \mathfrak{X}(M)$ such that

$$d\iota_X\omega=0.$$

Theorem

A vector field $X: M \to TM$ is locally Hamiltonian if and only if it defines a Lagrangian submanifold of $(TM, \tilde{\omega})$.

Dynamics = Lagrangian submanifolds (Weinstein's creed)

$$\begin{split} &(M,\omega) \text{ symplectic} \to (TM,\tilde{\omega}) \text{ symplectic}, \\ &\tilde{\omega} = \flat_{\omega}^* \omega_M; \ \flat_{\omega} : TM \to T^*M \text{ (contraction)} \end{split}$$

Definition

· Hamiltonian vector field: $X_H \in \mathfrak{X}(M)$, $(H \in C^{\infty}(M))$ such that

$$\iota_{X_H}\omega=dH.$$

• Locally Hamiltonian vector field: $X \in \mathfrak{X}(M)$ such that

$$d\iota_X\omega=0.$$

Theorem

A vector field $X:M\to TM$ is locally Hamiltonian if and only if it defines a Lagrangian submanifold of $(TM,\tilde{\omega})$.

Coisotropic reduction

Given a coisotropic submanifold $i: N \hookrightarrow M$, the distribution

$$x\mapsto (T_xN)^\perp$$

is regular and involutive. Therefore, it arises from a maximal foliation $\mathcal{F}.$ Then,

Theorem

If N/\mathcal{F} admits a smooth manifold structure such that $\pi:N\to N/\mathcal{F}$ defines a submersion $(N/\mathcal{F}$ is a quotient manifold), then there is an unique symplectic form ω_N on N/\mathcal{F} such that

$$\pi^*\omega_N=i^*\omega.$$

Furthermore, if L is a Lagrangian submanifold in M that has clean intersection with $N,\pi(L\cap N)$ is a Lagrangian submanifold in $(N/\mathcal{F},\omega_N)$

Coisotropic reduction

Given a coisotropic submanifold $i: N \hookrightarrow M$, the distribution

$$x\mapsto (T_xN)^\perp$$

is regular and involutive. Therefore, it arises from a maximal foliation $\mathcal{F}.$ Then,

Theorem

If N/\mathcal{F} admits a smooth manifold structure such that $\pi: N \to N/\mathcal{F}$ defines a submersion $(N/\mathcal{F}$ is a quotient manifold), then there is an unique symplectic form ω_N on N/\mathcal{F} such that

$$\pi^*\omega_N=i^*\omega.$$

Furthermore, if L is a Lagrangian submanifold in M that has clean intersection with N, $\pi(L\cap N)$ is a Lagrangian submanifold in $(N/\mathcal{F},\omega_N)$

Poisson brackets

Definition

 (M,ω) symplectic manifold, $f,g\in C^\infty(M)$.

Poisson bracket: $\{f,g\} = \omega(X_f,X_g)$.

Jacobi indentity

$${f,{g,h}} + \text{cycl.} = 0,$$

Leibniz indentity

$${fg,h} = f{g,h} + g{f,h}.$$

Theorem

A submanifold $N \hookrightarrow M$ is coisotropic if and only if

$$I_N=\{f\in C^\infty(M): df=0 \text{ on } N\}$$

defines a Poisson subalgebra of $(C^{\infty}, \{\cdot, \cdot\})$

Poisson brackets

Definition

 (M,ω) symplectic manifold, $f,g\in C^\infty(M)$.

Poisson bracket:
$$\{f,g\} = \omega(X_f,X_g)$$
.

Jacobi indentity

$$\{f, \{g, h\}\} + \text{cycl.} = 0,$$

Leibniz indentity

$$\{fg,h\} = f\{g,h\} + g\{f,h\}.$$

Theorem

A submanifold $N \hookrightarrow M$ is coisotropic if and only if

$$I_N=\{f\in C^\infty(M): df=0 \text{ on } N\}$$

defines a Poisson subalgebra of $(C^{\infty}, \{\cdot, \cdot\})$

Poisson brackets

Definition

 (M,ω) symplectic manifold, $f,g\in C^\infty(M)$.

Poisson bracket: $\{f,g\} = \omega(X_f,X_g)$.

Jacobi indentity

$$\{f, \{g, h\}\} + \text{cycl.} = 0,$$

Leibniz indentity

$$\{fg,h\} = f\{g,h\} + g\{f,h\}.$$

Theorem

A submanifold $N \hookrightarrow M$ is coisotropic if and only if

$$I_N=\{f\in C^\infty(M): df=0 \text{ on } N\}$$

defines a Poisson subalgebra of $(C^{\infty}, \{\cdot, \cdot\})$.

Definition

A multisymplectic manifold of order k is a pair (M,ω) , where M is a smooth manifold, and ω is a closed (k+1)—form.

No non-degeneracy required

Definition

For $W\subseteq T_xM$, and $1\leq j\leq k$ define the multisymplectic orthogonal as

$$W^{\perp,j}:=\{v\in T_xM:\ \iota_{v\wedge w_1\wedge\cdots w_j}\omega=0,\ \forall w_1,\ldots,w_j\in W\}.$$

$$\text{Important submanifolds} \left\{ \begin{aligned} j - \text{Lagrangian}, \ T_x L + \ker \flat_1 &= (T_x L)^{\perp,j} \\ j - \text{Coisotropic}, \ (T_x N)^\perp &\subseteq T_x N + \ker \flat_1 \end{aligned} \right.$$

Definition

A multisymplectic manifold of order k is a pair (M, ω) , where M is a smooth manifold, and ω is a closed (k+1)—form.

No non-degeneracy required

Definition

For $W\subseteq T_xM$, and $1\leq j\leq k$ define the multisymplectic orthogonal as

$$W^{\perp,j}:=\{v\in T_xM:\ \iota_{v\wedge w_1\wedge\cdots w_j}\omega=0,\ \forall w_1,\ldots,w_j\in W\}.$$

$$| \text{Important submanifolds} \left\{ \begin{aligned} j - \text{Lagrangian}, \ T_x L + \ker \flat_1 &= (T_x L)^{\perp,j} \\ j - \text{Coisotropic}, \ (T_x N)^\perp &\subseteq T_x N + \ker \flat_1 \end{aligned} \right.$$

Definition

A multisymplectic manifold of order k is a pair (M,ω) , where M is a smooth manifold, and ω is a closed (k+1)—form.

No non-degeneracy required

Definition

For $W \subseteq T_xM$, and $1 \le j \le k$ define the multisymplectic orthogonal as

$$W^{\perp,j}:=\{v\in T_xM:\ \iota_{v\wedge w_1\wedge\cdots w_j}\omega=0,\ \forall w_1,\ldots,w_j\in W\}.$$

$$\text{Important submanifolds} \left\{ \begin{aligned} j - \text{Lagrangian}, \ T_x L + \ker \flat_1 &= (T_x L)^{\perp,j} \\ j - \text{Coisotropic}, \ (T_x N)^\perp &\subseteq T_x N + \ker \flat_1 \end{aligned} \right.$$

Hamiltonian multivector fields and

forms

Dynamics = Lagrangian submanifolds

$$\begin{split} (M,\omega) \text{ multisymplectic} &\to \left(\bigvee_q M, \widetilde{\Omega}^q\right) \text{ multisymplectic} \\ \widetilde{\Omega}_q &= \flat_q^* \Omega_M^{k+1-q}, \ \flat_q : \bigvee_q M \to \bigwedge^{k+1-q} M \text{ (contraction)} \end{split}$$

Definition

- Locally Hamiltonian multivector field: $U:M o \bigvee_q M$ such that $d\iota_H\omega=0.$

Theorem

A multivector field $U:M o\bigvee_q M$ is locally Hamiltonian if and only if i defines a (k+1-q)—Lagrangian submanifold in $\left(\bigvee_q M,\widetilde{\Omega}^q\right)$

Dynamics = Lagrangian submanifolds

$$\begin{split} (M,\omega) \text{ multisymplectic} &\to \left(\bigvee_q M, \widetilde{\Omega}^q\right) \text{ multisymplectic} \\ \widetilde{\Omega}_q &= \flat_q^* \Omega_M^{k+1-q}, \ \flat_q : \bigvee_q M \to \bigwedge^{k+1-q} M \text{ (contraction)} \end{split}$$

Definition

- Locally Hamiltonian multivector field: $U:M\to \bigvee_q M$ such that

$$d\iota_U\omega=0.$$

Theorem

A multivector field $U:M\to\bigvee_q M$ is locally Hamiltonian if and only if i defines a (k+1-q)-Lagrangian submanifold in $\left(\bigvee_q M,\widetilde{\Omega}^q\right)$

Dynamics = Lagrangian submanifolds

$$\begin{split} (M,\omega) \text{ multisymplectic} &\to \left(\bigvee_q M, \widetilde{\Omega}^q\right) \text{ multisymplectic} \\ \widetilde{\Omega}_q &= \flat_q^* \Omega_M^{k+1-q}, \ \flat_q : \bigvee_q M \to \bigwedge^{k+1-q} M \text{ (contraction)} \end{split}$$

Definition

· Locally Hamiltonian multivector field: $U:M o \bigvee_q M$ such that $d\iota_U \omega = 0.$

Theorem

A multivector field $U:M\to\bigvee_q M$ is locally Hamiltonian if and only if it defines a (k+1-q)-Lagrangian submanifold in $\left(\bigvee_q M,\widetilde{\Omega}^q\right)$

Coisotropic submanifolds

Coisotropic reduction

Given a k-coisotropic submanifold $i: N \hookrightarrow M$, we have

Proposition

The distribution $x \mapsto (T_x N)^{\perp,k} \cap T_x N \subseteq T_x N$ is involutive.

Thus, when it is regular, it arises from a foliation \mathcal{F} .

Theorem

When N/\mathcal{F} admits a smooth manifold structure such that the projection $\pi:N\to N/\mathcal{F}$ defines a submersion (N/\mathcal{F}) is a quotient manifold), there exists an unique multisymplectic form ω_N on N/\mathcal{F} such that

$$\pi^*\omega_N = i^*\omega.$$

What about projection of Lagrangian submanifolds?

Coisotropic reduction

Given a k-coisotropic submanifold $i: N \hookrightarrow M$, we have

Proposition

The distribution $x \mapsto (T_x N)^{\perp,k} \cap T_x N \subseteq T_x N$ is involutive.

Thus, when it is regular, it arises from a foliation \mathcal{F} .

Theorem

When N/\mathcal{F} admits a smooth manifold structure such that the projection $\pi:N\to N/\mathcal{F}$ defines a submersion (N/\mathcal{F}) is a quotient manifold), there exists an unique multisymplectic form ω_N on N/\mathcal{F} such that

$$\pi^*\omega_N=i^*\omega.$$

What about projection of Lagrangian submanifolds?

$\label{eq:multisymplectic} \mbox{Multisymplectic manifolds of type } (k,r)$

Definition

Let L be a manifold and $\mathcal E$ be a regular distribution on L. Define:

$$\bigwedge_{r}^{k}L=\{\alpha\in\bigwedge^{k}L:\ \iota_{e_{1}\wedge\cdots\wedge e_{r}}\alpha=0,\forall e_{1},\ldots,e_{r}\in\mathcal{E}\}.$$

$$\left(igwedge_r^k L, \Omega_L
ight)$$
 is a multisymplectic manifold

Definition

A multisymplectic manifold of type (k,r) (M,ω,W,\mathcal{E}) is a multisymplectic manifold (M,ω) that is locally multisymplectomorphic to $\bigwedge_r^k L$.

 $W \sim \text{vertical distribution}$

$\label{eq:multisymplectic} \mbox{Multisymplectic manifolds of type } (k,r)$

Definition

Let L be a manifold and \mathcal{E} be a regular distribution on L. Define:

$$\bigwedge_{r}^{k}L=\{\alpha\in\bigwedge^{k}L:\ \iota_{e_{1}\wedge\cdots\wedge e_{r}}\alpha=0,\forall e_{1},\ldots,e_{r}\in\mathcal{E}\}.$$

$$\left(\bigwedge_{r}^{k}L,\Omega_{L}\right)$$
 is a multisymplectic manifold

Definition

A multisymplectic manifold of type (k,r) (M,ω,W,\mathcal{E}) is a multisymplectic manifold (M,ω) that is locally multisymplectomorphic to $\bigwedge_r^k L$.

 $W \sim \text{vertical distribution}$

${\bf Multisymplectic\ manifolds\ of\ type}\ (k,r)$

Definition

Let L be a manifold and \mathcal{E} be a regular distribution on L. Define:

$$\bigwedge_{r}^{k}L=\{\alpha\in\bigwedge^{k}L:\ \iota_{e_{1}\wedge\cdots\wedge e_{r}}\alpha=0,\forall e_{1},\ldots,e_{r}\in\mathcal{E}\}.$$

$$\left(\bigwedge_r^k L, \Omega_L\right)$$
 is a multisymplectic manifold

Definition

A multisymplectic manifold of type (k,r) (M,ω,W,\mathcal{E}) is a multisymplectic manifold (M,ω) that is locally multisymplectomorphic to $\bigwedge_r^k L$.

 $W \sim \text{vertical distribution}$

$\label{eq:multisymplectic} \mbox{Multisymplectic manifolds of type } (k,r)$

Definition

Let L be a manifold and $\mathcal E$ be a regular distribution on L. Define:

$$\bigwedge_{r}^{k}L=\{\alpha\in\bigwedge^{k}L:\ \iota_{e_{1}\wedge\cdots\wedge e_{r}}\alpha=0,\forall e_{1},\ldots,e_{r}\in\mathcal{E}\}.$$

$$\left(\bigwedge_{r}^{k}L,\Omega_{L}\right)$$
 is a multisymplectic manifold

Definition

A multisymplectic manifold of type (k,r) (M,ω,W,\mathcal{E}) is a multisymplectic manifold (M,ω) that is locally multisymplectomorphic to $\bigwedge_r^k L$.

 $W \sim \text{vertical distribution}$

An example of coisotropic reduction

Let L be a smooth manifold, $i:Q\subseteq L$ be a submanifold, and $\mathcal E$ be a regular distribution. Then,

Proposition

 $N:=igwedge_r^k Lig|_Q$ defines a k-coisotropic submanifold.

Theorem

For $N = \bigwedge_r^k L|_Q$, where $TQ \cap \mathcal{E}$ has constant rank

$$N/\mathcal{F} \cong \bigwedge_{r}^{k} Q$$

An example of coisotropic reduction

Let L be a smooth manifold, $i:Q\subseteq L$ be a submanifold, and $\mathcal E$ be a regular distribution. Then,

Proposition

 $N:=\bigwedge_r^k L\big|_Q$ defines a k-coisotropic submanifold.

Theorem

For $N=\bigwedge_{r}^{k}L\big|_{Q}$, where $TQ\cap\mathcal{E}$ has constant rank,

$$N/\mathcal{F} \cong \bigwedge_{r}^{k} Q$$

An example of coisotropic reduction

Let L be a smooth manifold, $i:Q\subseteq L$ be a submanifold, and $\mathcal E$ be a regular distribution. Then,

Proposition

 $N := \bigwedge_r^k L|_Q$ defines a k-coisotropic submanifold.

Theorem

For $N = \bigwedge_r^k L|_{Q}$, where $TQ \cap \mathcal{E}$ has constant rank,

$$N/\mathcal{F}\cong \bigwedge_r^k Q.$$

Projection of Lagrangian submanifolds (example)

An important class of Lagrangian submanifold are given by closed forms, since horizontal k-Lagrangian submanifolds are locally the image of closed forms.

$$\begin{cases} N = \bigwedge_r^k L\big|_Q, & \underbrace{\quad \quad \text{Coisotropic reduction} \quad }_{\alpha: L \to \bigwedge_r^k L.} \end{cases} \begin{cases} N/\mathcal{F} = \bigwedge_r^k Q, \\ \\ i^*\alpha: Q \to \bigwedge_r^k Q \end{cases}$$

Theorem

In our example, *k*-Lagrangian submanifolds transversal to the vertical distribution reduce to *k*-Lagrangian submanifolds.

Projection of Lagrangian submanifolds (example)

An important class of Lagrangian submanifold are given by closed forms, since horizontal k-Lagrangian submanifolds are locally the image of closed forms.

$$\begin{cases} N = \bigwedge_r^k L\big|_Q, & \underbrace{\quad \text{Coisotropic reduction} \quad}_{\quad \ Coisotropic reduction} \end{cases} \begin{cases} N/\mathcal{F} = \bigwedge_r^k Q, \\ \\ i^*\alpha : Q \to \bigwedge_r^k Q. \end{cases}$$

Theorem

In our example, *k*-Lagrangian submanifolds transversal to the vertical distribution reduce to *k*-Lagrangian submanifolds.

Projection of Lagrangian submanifolds (example)

An important class of Lagrangian submanifold are given by closed forms, since horizontal k-Lagrangian submanifolds are locally the image of closed forms.

$$\begin{cases} N = \bigwedge_r^k L\big|_Q, \\ \alpha: L \to \bigwedge_r^k L. \end{cases} \xrightarrow{\text{Coisotropic reduction}} \begin{cases} N/\mathcal{F} = \bigwedge_r^k Q, \\ i^*\alpha: Q \to \bigwedge_r^k Q. \end{cases}$$

Theorem

In our example, *k*-Lagrangian submanifolds transversal to the vertical distribution reduce to *k*-Lagrangian submanifolds.

Local characterization of vertical coisotropic submanifolds

Definition

Let (M,ω,W,\mathcal{E}) be a multisymplectic manifold of type (k,r). A submanifold $i:N\hookrightarrow M$ is called vertical if $W|_N\subseteq TN$.

Theorem

Let (M,ω,W,\mathcal{E}) be a multisymplectic manifold of type (k,r), $i:N\hookrightarrow M$ be a vertical k-coisotropic submanifold, and $j:L\hookrightarrow M$ be a k-Lagrangian submanifold complementary to W. Then there is a neighborhood U of L in M, a submanifold $Q\hookrightarrow L$, a neighborhood V of L in $\bigwedge_r^k L$, and a multisymplectomorphism

$$\phi: U \to V$$

satisfying

- a) ϕ is the identity on L:
- b) $\phi(N\cap U)=\bigwedge_{r}^{k}L\big|_{Q}\cap V$

Local characterization of vertical coisotropic submanifolds

Definition

Let $(M, \omega, W, \mathcal{E})$ be a multisymplectic manifold of type (k, r). A submanifold $i: N \hookrightarrow M$ is called vertical if $W|_N \subseteq TN$.

Theorem

Let (M,ω,W,\mathcal{E}) be a multisymplectic manifold of type (k,r), $i:N\hookrightarrow M$ be a vertical k-coisotropic submanifold, and $j:L\hookrightarrow M$ be a k-Lagrangian submanifold complementary to W. Then there is a neighborhood U of L in M, a submanifold $Q\hookrightarrow L$, a neighborhood V of L in $\bigwedge_r^k L$, and a multisymplectomorphism

$$\phi: U \to V$$

satisfying

- a) ϕ is the identity on L;
- b) $\phi(N \cap U) = \bigwedge_{r}^{k} L|_{Q} \cap V$.

Idea of the proof

Lagrangian submanifold projection

This local characterization allows us to prove:

Theorem

Let (M,ω,W,\mathcal{E}) be a multisymplectic manifold of type $(k,r), i:N\hookrightarrow M$ be a vertical k-coisotropic submanifold, and $j:L\hookrightarrow M$ be k-Lagrangian submanifold complementary to W. If $TN/W\cap\mathcal{E}$ has constant rank, so does $(TN)^{\perp,k}$ and we have that, denoting by $\pi:N\to N/\mathcal{F}$ the canonical projection, $\pi(L\cap N)$ is k-Lagrangian in (N,ω_N) .

A general result is not possible, since we can easily find counterexamples.

Definition

Given two Hamiltonian forms $\alpha \in \Omega^{l_1}(M), \beta \in \Omega^{l_2}(M)$ on (M, ω) ,

Poisson bracket:
$$\{\alpha,\beta\}:=(-1)^{l_1l_2+1}\iota_{X_\alpha\wedge X_\beta}\omega,$$

$$\iota_{X_\alpha}\omega=d\alpha,\ \iota_{X_\beta}\omega=d\beta.$$

- Well-defined (independent of the choice of X_{α}, X_{β}),
- Modulo closed-forms, it defines a graded Lie algebra on Hamiltonian forms

$$(-1)^{\deg\widehat{\alpha}\deg\widehat{\gamma}}\{\widehat{\alpha},\{\widehat{\beta},\widehat{\gamma}\}\} + \operatorname{cycl.} = 0$$

for

$$\hat{\alpha} := \alpha + (\text{closed forms}), \ \deg \hat{\alpha} := k - 1 - \operatorname{order}(\alpha)$$

Poisson bracket

Definition

Given two Hamiltonian forms $\alpha \in \Omega^{l_1}(M), \beta \in \Omega^{l_2}(M)$ on (M, ω) ,

Poisson bracket:
$$\{\alpha,\beta\}:=(-1)^{l_1l_2+1}\iota_{X_\alpha\wedge X_\beta}\omega,$$

$$\iota_{X_\alpha}\omega=d\alpha,\ \iota_{X_\beta}\omega=d\beta.$$

- Well-defined (independent of the choice of X_{α}, X_{β}),
- Modulo closed-forms, it defines a graded Lie algebra on Hamiltonian forms

$$(-1)^{\deg \widehat{\alpha} \deg \widehat{\gamma}} \{ \widehat{\alpha}, \{ \widehat{\beta}, \widehat{\gamma} \} \} + \mathrm{cycl.} = 0,$$

for

$$\hat{\alpha} := \alpha + (\text{closed forms}), \ \deg \hat{\alpha} := k - 1 - \operatorname{order}(\alpha).$$

Poisson bracket

· Restricts to a Lie bracket on

$$\widehat{\Omega}_{H}^{k-1}(M) := (\mathsf{Hamiltonian}\ (k-1) - \mathsf{forms}) \big/ (\mathsf{closed}\ (k-1) - \mathsf{forms})$$

Proposition

A k-coisotropic submanifold $i:N\hookrightarrow M$ defines a Lie subalgebra

$$I_N=\{\widehat{\alpha}\in\widehat{\Omega}^{k-1}_H(M),\ i^*d\alpha=0\}$$

of the Lie algebra $\widehat{\Omega}_H^{k-1}(M)$.

Final remarks and future research

Final remarks and future research

- · We gave an interpretation of dynamics as Lagrangian submanifolds.
- We proved a coisotropic reduction theorem in a particular class of multisymplectic manifolds.
- · For future research we have proposed the following:
 - Apply the results obtained to Field Theories (regularization, constraint analysis, etc)
 - Extend these results to multicontact geometry for the study of dissipative fields.
 - Connect these ideas to higher analogues of Dirac structures (giving a unified framework for both the Lagrangian and Hamiltonian formulation of Field Theory).

References

- [1] F. Cantrijn, A. Ibort, and M. De León. "On the geometry of multisymplectic manifolds". In: Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics 66.3 (June 1999), pp. 303–330. ISSN: 0263-6115. DOI: 10.1017/s1446788700036636.
- [2] F. Cantrijn, A. Ibort, and M. de León. "Hamiltonian structures on multisymplectic manifolds". In: Rend. Sem. Mat. Univ. Politec. Torino 54.3 (Jan. 1996), pp. 225–236.
- [3] M. de León and R. Izquierdo-López. *Coisotropic reduction in Multisymplectic Geometry*. Tech. rep. arXiv:2405.12898 [math] type: article. arXiv, June 2024. DOI: 10.48550/arXiv.2405.12898.
- [4] M. de León and R. Izquierdo-López. "Topical review: A review on coisotropic reduction in symplectic, cosymplectic, contact and co-contact Hamiltonian systems". In: Journal of Physics A: Mathematical and Theoretical 57.16 (Apr. 2024), p. 163001. ISSN: 1751-8121. DOI: 10.1088/1751-8121/ad37b2.

Thank you for your attention!

Questions?