# Resolução de exercícios do Livro:

# Cálculo e Álgebra Linear (Wilfred Kaplan, Donald L. Lewis)

por

### Igo da Costa Andrade



#### Referência

KAPLAN, W.; LEWIS, D. L. Cálculo e Álgebra Linear: Vetores no plano e funções de uma variável. Vol. 1. Rio de Janeiro: LTC, 2013.

# Capítulo 1: Geometria vetorial em duas dimensões

#### **PROBLEMAS**

**1.1** Seja dado o triângulo  $\overrightarrow{ABC}$ . Seja  $\overrightarrow{AB} = \mathbf{u}$  e  $\overrightarrow{AC} = \mathbf{v}$ , e sejam os pontos P, Q escolhidos de modo que  $\overrightarrow{AP} = 3\mathbf{u}$ ,  $\overrightarrow{AQ} = 2\mathbf{v}$ , como na Fig. 1.13.



Exprima os seguintes vetores em função de  $\mathbf{u}$  e  $\mathbf{v}$ : (a)  $\overrightarrow{BC}$ , (b)  $\overrightarrow{PB}$ , (c)  $\overrightarrow{PQ}$ , (d)  $\overrightarrow{PC}$ , (e)  $\overrightarrow{BQ}$ , (f)  $\overrightarrow{AM}$ , onde M é o ponto médio de  $\overrightarrow{BC}$ , (g)  $\overrightarrow{BD} + \overrightarrow{DC} + \overrightarrow{CQ}$ .

Solução:

(a)  $\overrightarrow{BC}$ 

$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} \Rightarrow \overrightarrow{BC} = \overrightarrow{AC} - \overrightarrow{AB}$$
$$\Rightarrow \overrightarrow{BC} = \mathbf{v} - \mathbf{u}$$

(b)  $\overrightarrow{PB}$ 

$$\overrightarrow{AP} = \overrightarrow{AB} + \overrightarrow{BP} \Rightarrow \overrightarrow{AP} = \overrightarrow{AB} - \overrightarrow{PB}$$

$$\Rightarrow \overrightarrow{PB} = \overrightarrow{AB} - \overrightarrow{AP}$$

$$\Rightarrow \overrightarrow{PB} = \mathbf{u} - 3\mathbf{u}$$

$$\Rightarrow \overrightarrow{PB} = -2\mathbf{u}$$

(c)  $\overrightarrow{PQ}$ 

$$\overrightarrow{AP} = \overrightarrow{AQ} + \overrightarrow{QP} \Rightarrow \overrightarrow{AP} = \overrightarrow{AQ} - \overrightarrow{PQ}$$
$$\Rightarrow \overrightarrow{PQ} = \overrightarrow{AQ} - \overrightarrow{AP}$$
$$\Rightarrow \overrightarrow{PQ} = 2\mathbf{v} - 3\mathbf{u}$$

(d)  $\overrightarrow{PC}$ 

$$\overrightarrow{AP} = \overrightarrow{AC} + \overrightarrow{CP} \Rightarrow \overrightarrow{AP} = \overrightarrow{AC} - \overrightarrow{PC}$$
$$\Rightarrow \overrightarrow{PC} = \overrightarrow{AC} - \overrightarrow{AP}$$
$$\Rightarrow \overrightarrow{PC} = \overrightarrow{AC} - \overrightarrow{AP}$$
$$\Rightarrow \overrightarrow{PC} = \mathbf{v} - 3\mathbf{u}$$

(e)  $\overrightarrow{BQ}$ 

$$\overrightarrow{AQ} = \overrightarrow{AB} + \overrightarrow{BQ} \Rightarrow \overrightarrow{BQ} = \overrightarrow{AQ} - \overrightarrow{AB}$$
  
 $\Rightarrow \overrightarrow{BQ} = 2\mathbf{v} - \mathbf{u}$ 

(f)  $\overrightarrow{AM}$ , onde M é o ponto médio de  $\overrightarrow{BC}$  Podemos escrever  $\overrightarrow{AM}$  das seguintes formas:

$$\begin{cases} \overrightarrow{\overrightarrow{AM}} = \overrightarrow{\overrightarrow{AB}} + \overrightarrow{\overrightarrow{BM}}, \text{ ou} \\ \overrightarrow{\overrightarrow{AM}} = \overrightarrow{AC} + \overrightarrow{CM} \end{cases}$$

Como M é o ponto médio de  $\overrightarrow{BC}$ , devemos ter  $\overrightarrow{CM}=-\overrightarrow{BM}$ . Assim, substituindo nas expressões acima, tem-se:

$$\begin{cases} \overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{BM} \\ \overrightarrow{AM} = \overrightarrow{AC} - \overrightarrow{BM} \end{cases} \Rightarrow 2\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{AC}$$
$$\Rightarrow \overrightarrow{AM} = \frac{\overrightarrow{AB} + \overrightarrow{AC}}{2}$$
$$\Rightarrow \overrightarrow{AM} = \frac{\mathbf{u} + \mathbf{v}}{2}$$

(g)  $\overrightarrow{BD} + \overrightarrow{DC} + \overrightarrow{CQ}$ 

$$\overrightarrow{BD} + \overrightarrow{DC} + \overrightarrow{CQ} = \overrightarrow{BQ} = 2\mathbf{v} - \mathbf{u}$$