Question 1

What is the optimal value of alpha for ridge and lasso regression? What will be the changes in the model if you choose double the value of alpha for both ridge and lasso? What will be the most important predictor variables after the change is implemented?

Answer: The optimal value of ridge regression is 5 and for lasso regression it is 0.001.

With the increase in alpha, the penalty on the model increases which makes model too simple which increase the bias.

Below are how the top 10 features change in both the regression models after doubling the optimal alpha value

	Optimal value of alpha			Double of Optimal value of alpha			
Ridge		Features	ridge_coeff		Feature	ridge_coeff	
Regression	2	OverallQual	0.297412	2	OverallQual	0.248857	
	20	GrLivArea	0.241138	20	GrLivArea	0.190164	
	17	1stFlrSF	0.211746	28	TotRmsAbvGrd	0.168814	
	3	OverallCond	0.190709	17	1stFlrSF	0.163394	
	28	TotRmsAbvGrd	0.179420	3	OverallCond	0.150817	
	18	2ndFlrSF	0.162554	23	FullBath	0.148879	
	23	FullBath	0.155383	18	2ndFlrSF	0.135991	
	32	GarageCars	0.147037	32	GarageCars	0.134366	
	21	BsmtFullBath	0.121333	33	GarageArea	0.113490	
	101	Neighborhood_StoneBr	0.120931	21	BsmtFullBath	0.103917	
Lasso Regression		Features la	sso_coeff		Feature	lasso_coeff	
	20	GrLivArea	1.250513	20	GrLivArea	0.692861	
	141	RoofMatl_WdShngl	0.830497	2	OverallQual	0.538423	
	135	RoofMatl_CompShg	0.758039	32	GarageCars	0.226418	
	139	RoofMatl_Tar&Grv	0.707657	28	TotRmsAbvGrd	0.137555	
	136	RoofMatl_Membran	0.686333	9	BsmtQual	0.132846	
	140	RoofMatl_WdShake	0.641092	3	OverallCond	0.121179	
	138	RoofMatl_Roll	0.599780	30	FireplaceQu	0.113192	
	137	RoofMatl_Metal	0.573273	27	KitchenQual	0.097741	
	2	OverallQual	0.380803	21	BsmtFullBath	0.087393	
	60	MSZoning FV	0.375005	23	FullBath	0.085197	

Observations: As expected, the R2 score values got dropped in both the models. Co-efficient got reduced and in both the models there is change in order of the features effecting the SalePrice.

Question 2

You have determined the optimal value of lambda for ridge and lasso regression during the assignment. Now, which one will you choose to apply and why?

Answer:

	Metrics	Linear_Unregularized	Linear_reg_Ridge	Linear_reg_Lasso
0	r2_score_train	9.493273e-01	0.916796	0.938114
1	r2_score_test	-1.945387e+23	0.893687	0.877688
2	rss_train	9.249141e+00	15.186955	11.295871
3	rss_test	9.779682e+24	5.344478	6.148776
4	mse_train	7.918786e-03	0.013003	0.009671
5	mse_test	3.349206e+22	0.018303	0.021057

In Lasso regression, the r2 score of train is very good compared to Ridge regression, but the Ridge does better performance on test set.

Lasso regression does the feature selection and help reduce the dimensionality which helps to interpret the model bit better compared to Ridge regression which tends to include all the available feature by keep their co-efficients close to zero but not zero.

Being said that, in real estate – especially housing domain, many factors or all factors contribute to the SalePrice but some have less effect compared to others. So, I would select Ridge regression.

Question 3

After building the model, you realised that the five most important predictor variables in the lasso model are not available in the incoming data. You will now have to create another model excluding the five most important predictor variables. Which are the five most important predictor variables now?

Answer:

	Actua	Actual - Features			Afte removing Top 5 features			
Ridge		Features	ridge_coeff	_		Features		coeff
Regression	2	OverallQual	0.297412		15	2ndFlr	SF	0.328699
	20	GrLivArea	0.241138		13	TotalBsmt	SF	0.283301
	17	1stFlrSF	0.211746	,	10	BsmtFinS	F1	0.230860
	3	OverallCond	0.190709		19	FullB	ath	0.222683
	28	TotRmsAbvGrd	0.179420)	136	RoofMatl_WdSh	ngl	0.194108
Lasso Regression		Features la	asso_coeff			Features		coeff
	20	GrLivArea	1.250513		17	1stFlrSF	0.39	91060
	141	RoofMatl_WdShngl	0.830497		2	OverallQual	0.35	55067
	135	RoofMatl_CompShg	0.758039		18	2ndFlrSF	0.27	72846
	139	RoofMatl_Tar&Grv	0.707657		3	OverallCond	0.22	27099
	136	RoofMatl_Membran	0.686333		27	TotRmsAbvGrd	0.20)2816

Question 4

How can you make sure that a model is robust and generalisable? What are the implications of the same for the accuracy of the model and why?

Answer:

Model is robust and generalizable when the variance and bias are rightly balanced. An extreme complex model will have high variance and it tends to memorize the noise in the data along with the important patterns.

This would usually result in an overfit model which means the performance is high on trained data, but this fails on unseen data.

And for a simple model, the bias will be too high, and the model fails to identify simple patterns in the data in simple word, underfitting.

So, to make the model robust and generalizable, it is important to find the correct balance between variance and bias. (Btw simple and complex model)

This can be achieved by incorporating regularization techniques.

Regularization helps to bring down the model complexity by shrinking the model coefficient towards 0. Regularization can be done by adding the penalty to the cost function.

Cost = RSS + Penalty

There are two commonly used techniques:

- Ridge Regression
- Lasso Regression

Ridge regression: This model adds the penalty with of summation of squares of co-efficients, multiplied with hyperparameter (lambda or alpha)

$$SSE_{L_2} = \sum_{i=1}^{n} (y_i - \widehat{y_i})^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

Lasso Regression: In this model, the penalty is the absolute sum of all co-efficients multiplied with hyperparameter.

$$C = \sum_{1=1}^N (y_i - \hat{y}_i)^2 + \lambda \sum_{j=1}^F \mid eta_j \mid$$

Hyperparameter is used to fine tune the penalty so we can control the regularization of the model.

Higher value of lambda results in higher penalty and more regularization which results in simple model & underfitting mode. Whereas if lambda is too low, then model will be complex and over fitting.

So, by tuning the hyperparameter, we can bring the right balance on the complexity and result in robust and generalized model.

Implication on the model accuracy:

Accuracy alone on training data does not define the performance of the model. As we have seen in the housing case study, for an unregularized but, the r2 score value on training data is close to 0.95 but on the test data, it got negative r2 score.

A robust and generalized model should give more accurate performance on the unseen data, which in turn gives high accuracy and reliability.