Hotel booking Cancelation Prediction Model

by Muhammad Firza Alfajri as part of learning journey in Data Scientist program at Purwadhika

Structure of the Presentation

- Case Overview
 - Business Problem

- Data preprocessing
 - Data Cleaning
 - Feature Engineering
- Analytics
 - Metrics
 - Modeling
 - Conclusion
 - Cost-benefit analysis
 - Recommendation

Case Overview

Business Overview

A **Mid-Sized Hotel** in Portugal

- Focused on development in **tourist** areas
- Utilizes multiple reservation channels

Stakeholders:

- Hotel manager
- Reservation management system
- Operation : reservation team

Business problem

Actual vs Booked

Revenue Discrepancies

Traveler Accommodation Discrepancies

<u>https://skift.com/2024/07/23/summer-travels-hidden-hurdle-the-impacts-of-cancellations-and-no-shows/?utm_source=chatgpt.com</u>

"A common discrepancy in hotel booking data comes from modifications after the initial reservation.

Onyx Insights data shows that roughly 10 percent of all bookings undergo modifications, representing a meaningful percentage of potential commissions.

Extrapolated out to the entire industry, <u>Skift</u>
Research estimates that hotels paid more than \$75 billion for indirect distribution costs in 2023. If 10 percent of all of those bookings see potential data discrepancies, that's a significant chunk of revenue that could be impacted."

Problem Statement

"A high cancellation rate causes revenue leakage through missed opportunity cost and wasted operational expense.

This project will support preemptive effort to minimize cost and expense by developing a classification machine learning model to predict booking cancellations through recorded booking behaviour

Data preprocessing

Data Overview

83573 entries
351 missing
values in
country
columns

Initial Features	
country	days_in_waiting_list
market_segment	customer_type
previous_cancellations	reserved_room_type
booking_changes	required_car_parking_space
deposit_type	total_of_special_request
Target:	is_canceled

Data Cleaning

Columns	Row / Value	method	Justification
country	NaN	fillna	may help the ML model to recognize missing value in 'country'
country	Alpha 2 country code	replace with its Alpha 3 country code	will help in feature engineering later by mapping country into continent or subregion
Market_seg ment	Unidentified	drop	only 1 row contain this may identify test data

• • • •

Feature engineering

Columns	feature generated	description
country	Subregion	change country unto its respective subregion
country	continent	change country unto its respective continent
Previous_cancelation	prev_cancelation_bin	bin into yes or no
Booking_changes	Booking_changes_bin	bin into yes or no
days_in_waiting_list	waitlist_bin	bin into yes or no
Total_special_request	request_bin	bin into yes or no

Feature Selection

Subregion	market_segment
deposit_type	prev_cancelation_bin
reserved_room_type	required_car_parking_spaces
Booking_changes_bin	waitlist_bin
total_of_special_requests	customer_type

• • • •

Analytics: Metrics & Modeling

Metrics to be focused

0 : no cancelation 1: cancelation	Actual : True	Actual : False
Predicted: True	True Negative (+109\$)	False Positive (-109\$ for opportunity cost)
Predicted: False	False Negative (-109\$ for opportunity cost and another -18\$ for preparation = -127\$)	True Positive (0\$, but may be able to find/market the room)

According to : https://www.budgetyourtrip.com/hotels/portugal/lisbon-2267057

The average hotel price in Lisbon based on data from 1,691 hotels is an affordable \$109 with high season averages around \$204, and the median price is \$96

roomkeeping cost need to bee calculated ar 18\$ according to: https://www.hotelmanagement.net/housekeeping/what-true-cost-clean-guestroom?utm_source=chatgpt.com

Because FN are more costly, this model would choose **recall** as its main metrics

- Recall measures how many actual cancellations the model successfully identifies.
- the goal is to capture as many cancellations as possible to avoid losses from mistakenly assuming guests will show up.
- A model with high recall is less likely to make False Negative errors.

Pipeline

Data Preparation

Features (X): Selected from columns_3, representing relevant booking behavior.

Target (y): is_canceled – a binary label indicating whether a booking was canceled (1) or not (0).

Train-Test Split

Training Set: 70% of the data
Testing Set: 30% of the data

Stratified Sampling: Maintains the original cancellation rate in both training and testing datasets.

Random State = 42: Ensures reproducibility of the

split

Feature Grouping:

Numerical Features:

- total of special requests,
- required car parking spaces

Ordinal Features:

 market segment, deposit type, customer type, reserved room type, un subregion

Binary / One-Hot Encoded Features:

• <u>booking changes bin,</u> <u>prev cancelation bin, waitlist bin</u>

Preprocessing Pipelines:

Numerical Pipeline:

• Simple imputer (fill with 0)

Ordinal Pipeline:

- Imputer
- OrdinalEncoder (preserve order, handle unknowns)

OHE Pipeline:

- Imputer
- OneHotEncoder

Model

Model: XGBoost Classifier

A robust and scalable gradient boosting method for classification problems, especially with tabular data.

eval_metric='logloss'

• Log loss is used to optimize probabilistic predictions in binary classification.

use_label_encoder=False

• Avoids deprecation warnings and uses the updated scikit-learn API.

random_state=42

• Ensures reproducibility of results.

Parameter Tuning

1. n_estimators = [200]

- Number of boosting rounds (trees)
- fixed at 200 to reduce search complexity

2. max_depth = [11]

- Maximum depth of each tree
- Controls how detailed each decision rule can be

3. learning_rate = [0.1, 0.01]

- Step size at each boosting round
- Lower value = slower but more stable learning

4. scale_pos_weight = [ratio, 1.2 × ratio]

- Balances the importance of minority class (canceled bookings)
- Essential to handle class imbalance (e.g., far more non-cancelled than cancelled bookings)
- Ratio = (negative samples / positive samples)

Tuning Strategy

Grid Search with Cross Validation

 Cross-validated to ensure results generalize across folds (here: cv=3)

Refit Strategy: refit='recall'

- Model is re-trained using the hyperparameters that gave best recall
- Why Recall?
 - False negatives are costlier (missed cancellations)
 - Prioritizing recall helps minimize them

Model Evaluation

Model Performance – Test Set (Threshold = 0.5)

- Class 0 Not Canceled:
 - Precision 0.88 → Most predictions for non-canceled bookings are correct.
 - Recall 0.72 → It correctly captures 72% of actual non-canceled bookings.
- Class 1 Canceled Bookings (our focus):
 - Recall 0.83 → Model successfully identifies 83% of actual cancellations, which is crucial to prevent losses.
 - Precision 0.64 → Among those predicted as cancellations, 64% are correct.
- Overall Accuracy: 76%
 - But more importantly, macro and weighted F1-scores are around 76–77%, reflecting good balance across both classes.

Conclusion: The model is tuned for high recall on cancellations, making it effective in flagging most risky bookings for follow-up actions.

Feature Importance

- Most Important Features:
 - waitlist_bin_No waiting and prev_cancelation_bin_previously canceled are the strongest signals.
 - total_of_special_requests ranks third guests making fewer special requests tend to cancel more, indicating lower commitment.
- Other Key Factors:
 - Lack of booking changes (booking_changes_bin_No booking changes) and no prior cancellations (prev_cancelation_bin_No previous cancelation) also play a role.
- Interestingly, even deposit type and room type contribute, though to a lesser extent.
 Takeaway: The model focuses on behavioral indicators (waitlists, past cancellations,

booking changes) — which are valuable for early risk detection and proactive engagement.

Conclusion

0 : no cancelation 1: cancelation	Predicted: false	Predicted: true
Actual :	True negative:	False Positive
false	11420	4419
Actual :	False Negative	True positve
true	1531	7702

Revenue gain:

TN: \$109 * 11420 = 1,244,780

Loss from:

FN: \$127 * 1531 = \$194,437 FP: \$109 * 4419 = \$481,671

total cost : \$ 676,108 Net Impact : \$568.672

with no model, assump all cancelation are not predicted:

FP + TP = 1531 + 7702 = 9,233 * \$127 = \$1.172.591

benefit gained:

\$1,172,591 - \$676,108 = \$496.483

• • • •

Recommendation

- Model performs well (recall-focused
 → detects cancellations accurately)
- Ready for integration into reservation system
- Threshold tuning = customize based on season or occupancy target
- Set alerts for high-risk bookings → proactive action

Thank you

Do you have any questions?

