DISPOSITIVOS SEMICONDUCTORES Última actualización: 2^{do} Cuatrimestre de 2022

Guía de Ejercicios Nº 4: Juntura MOS

Constante	Valor
\overline{q}	$1,602 \times 10^{-19} \mathrm{C}$
m_0	$9{,}109 \times 10^{-31} \mathrm{kg}$
k	$1,381 \times 10^{-23} \mathrm{J/K} = 8,617 \times 10^{-5} \mathrm{eV} \mathrm{K}$
h	$6.626 \times 10^{-34} \mathrm{J s} = 4.136 \times 10^{-15} \mathrm{eV s}$
ϵ_0	$88.5\mathrm{fF/cm}$
$\epsilon_r(\mathrm{Si})$	11,7
$\epsilon_r(\mathrm{SiO}_2)$	3,9
$T_{ m amb}$	$27^{\circ}\text{C} = 300\text{K}$

Parte I: Juntura N+P

- 1. Dada una juntura MOS con $t_{ox}=150\,\text{Å}$ y construida en un sustrato tipo P con una concentración de $N_A=5\times 10^{16}\,\text{cm}^{-3}$:
 - a) Calcule la capacidad por unidad de área, C_{ox} , y el body factor coefficient, γ .
 - b) Calcule el espesor de la región de vaciamiento en equilibrio térmico.
 - c) Calcule la caída de potencial en la capa de óxido.
 - d) Calcule la caída de potencial en la región de vaciamiento.
 - e) Calcule el potencial electroestático en la interfaz $SiO_2 Si$ en equilibrio térmico.
 - f) Repita los puntos anteriores para $V_{GB} = 2 \text{ V y } V_{GB} = -2 \text{ V}.$
- 2. Dada un juntura MOS de canal N y sustrato tipo P, realice diagramas cualitativos de: a) densidad de portadores libres, b) densidad de carga, c) campo eléctrico y d) potencial, para los siguientes casos casos: a) $V_{GB} < V_{FB}$ b) $V_{GB} = V_{FB}$ c) $V_{GB} = 0$ d) $V_{GB} = V_{T}$ e) $V_{GB} > V_{T}$ Para este ejercicio puede utilizar los conjuntos de ejes de la figura 4 que se encuentra sobre el final de la guía. En este conjunto de ejes incluye, a modo de ayuda, el caso para $V_{GB} = 0$.
- 3. Si se tiene una juntura MOS con $t_{ox}=200\,\text{Å}$ construida en un sustrato tipo P con una concentración de $N_A=5\times 10^{16}\,\text{cm}^{-3},$
 - a) Determine para qué rango de tensiones aplicadas el capacitor se encuentra en acumulación, vaciamiento e inversión.
 - b) Calcule el campo eléctrico en el óxido y la carga por unidad de área en el sustrato de silicio para $V_{GB}=-2.5\,\mathrm{V}.$
 - c) Calcule el espesor de la región de vaciamiento, la carga por unidad de área en el sustrato y el campo eléctrico en el óxido cuando el capacitor está polarizado con $V_{GB}=2.5\,\mathrm{V}$.
 - d) Sabiendo que la ruptura dieléctrica del óxido se produce para $E_{ox} = 5 \,\mathrm{MV/cm}$, calcule el rango de tensiones V_{GB} admisibles.
- 4. Considere una juntura MOS con $V_{FB} = -0.97 \, \text{V}$, $V_T = 0.466 \, \text{V}$, $C'_{ox} = 0.28 \, \mu\text{F/cm}^2$, $\gamma = 0.65 \, \text{V}^{0.5}$. Al aplicarle $V_{GB} = 0 \, \text{V}$:
 - a) Indique en qué régimen se encuentra la juntura.
 - b) Calcule el nivel de dopaje del sustrato.
 - c) Calcule el espesor de la capa de óxido.
 - d) Determine el ancho de la zona desierta.

DISPOSITIVOS SEMICONDUCTORES

Última actualización: 2^{do} Cuatrimestre de 2022

- e) Calcule la caída de potencial en el óxido y en el sustrato.
- f) Calcule la densidad de carga superficial en el gate, en la interfaz óxido-sustrato y la carga por unidad de área en el sustrato.
- g) Repetir para $V_{GB} = -2 \text{ V}$ y $V_{GB} = -2 \text{ V}$.

Parte II: Juntura P+N y otras configuraciones

- 5. Suponga una juntura MOS con polisilicio tipo P⁺ y sustrato tipo N con una concentración $N_A = 8.5 \times 10^{15} \, \mathrm{cm}^{-3}$ y espesor de óxido $t_{ox} = 70 \, \mathrm{nm}$, a la que se le aplica una tensión $V_{GB} = 0 \, \mathrm{V}$.
 - a) Calcule los parámetros $\gamma,\,C'_{ox},\,V_{FB}$ y $V_{T}.$
 - b) Indique en qué régimen se encuentra la juntura.
 - c) Determine el ancho de la zona desierta de la misma.
 - d) Calcule la caída de potencial en el óxido y en el sustrato.
 - e) Graficar log p(x), log n(x), $\rho(x)$, E(x) y $\phi(x)$.
 - f) Repetir para $V_{GB} = -2 \text{ V} \text{ y } V_{GB} = 2 \text{ V}.$
- 6. Considere una juntura MOS con polisilicio tipo P⁺ y sustrato tipo N con parámetros $\gamma=1,32\,\mathrm{V}^{0.5},$ $C'_{ox}=24,65\,\mathrm{nF/cm^2},\,V_{FB}=0,892\,\mathrm{V}$ y $V_T=-1,157\,\mathrm{V}.$ Si se le aplica una tensión $V_{GB}=0\,\mathrm{V}:$
 - a) Indique en qué régimen se encuentra la juntura.
 - b) Determine el ancho de la zona desierta de la misma.
 - c) Calcule la caída de potencial en el óxido y en el sustrato.
 - d) Calcule la densidad de carga superficial en el gate, en la interfaz óxido-sustrato y la carga por unidad de área en el sustrato.
 - e) Repetir para $V_{GB} = -2.5 \text{ V}$ y $V_{GB} = 2.5 \text{ V}$.
- 7. Considere una juntura MOS con polisilicio tipo P⁺ y sustrato de silicio tipo P con parámetros $t_{\text{ox}} = 20 \text{ nm}$ y $N_a = 1 \times 10^{15} \text{ cm}^{-1}$:
 - a) Considere el caso $V_{GB} = 0$ y realice los diagramas de I. densidad de portadores libres, II. densidad de carga, III. campo eléctrico y IV. potencial,
 - b) ¿En que régimen se encuentra la juntura en este caso?
 - c) Calcule: ϕ_B , C'_{ox} , γ , x_{d0} , V_T y V_{FB} .

Parte III: Capacidad de juntura

- 8. Dada una juntura N⁺P actuando como capacitor MOS con una concentración de $N_A = 10^{17}$ cm⁻³, cuya curva de capacidad es la de la figura 1:
 - a) A partir de la expresión de la capacidad, $C(V) = \partial Q/\partial V$, explique cómo se obtiene la curva de Capacidad vs. V_{GB} de la figura 1.
 - b) Calcule el espesor de la capa de óxido.
 - c) Calcule C_{min} .
 - d) Calcule el campo eléctrico en el óxido cuando $V_{GB} = V_T + 1 \, \text{V}$.
 - e) Calcule el campo eléctrico en el óxido cuando $V_{GB} = V_{FB} 1 \, \text{V}$.
 - f) Dibujar la curva de capacidad si ahora el capacitor es P^+N con igual t_{ox} e igual concentración de dopantes en el sustrato, solo que esta vez de tipo donor en lugar de aceptor.
- 9. Se tiene el circuito RC de la figura 2, donde $V_S = 0.3 \,\mathrm{V}$, $R = 1 \,\mathrm{k}\Omega$, el capacitor se encuentra realizado mediante una juntura MOS N⁺P. Los parámetros de la juntura son $t_{ox} = 100 \,\mathrm{\mathring{A}}$ y $N_A = 10^{16} \,\mathrm{cm}^{-3}$. La fuente v_s satisface:

$$v_s(t) = \begin{cases} 0 & \text{si } t < t_0 \\ 1 \text{ mV} & \text{si } t \ge t_0 \end{cases}$$

Figura 1

- a) Suponiendo que el escalón de tensión no modifica la capacidad de la juntura, hallar la constante de tiempo y graficar $V_c(t)$.
- b)¿Seguiría siendo válida la suposición del ítem anterior si ahora la amplitud del escalón de $v_s(t)$ fuera $100\,\mathrm{mV?}$ ¿Por qué?
- c) ¿Y si ahora $V_S=1\,\mathrm{V}$ y la amplitud del escalón $v_s(t)$ es de 100 mV? Hallar la constante de tiempo y graficar $V_c(t)$.

Figura 2

DISPOSITIVOS SEMICONDUCTORES Última actualización: 2^{do} Cuatrimestre de 2022

Parte IV: Integradores

10. A una estructura MOS cuyo gate está construido en poli-silicio P^+ se le aplica un potencial $V_{GB} = 0.8 \,\mathrm{V}$ y resultan las densidades de carga que se muestran en la figura 3.

Figura 3

- a) ¿En qué estado de polarización (acumulación, inversión, etc.) se encuentra la juntura?
- b) ¿El sustrato es tipo n o tipo p?
- c) ¿Cuánto vale la concentración de dopantes en el sustrato?
- d) Para $V_{GB} = V_T$ explique cuánto debe valer $\phi(x=0)$ e indique la concentración de portadores mayoritarios y minoritarios en x=0.
- e) Para $V_{GB} = V_T$ dibuje en forma cualitativa el diagrama del potencial $\phi(x)$ en la juntura, señalando en el diagrama t_{ox} , x_{dmax} y V_{ox} .
- f) Sabiendo que el espesor de óxido es $t_{ox}=10\,\mathrm{nm},$ calcule la tensión umbral (V_T) de la juntura.

DISPOSITIVOS SEMICONDUCTORES

Última actualización: $2^{\rm do}$ Cuatrimestre de 2022

