# DRIVER DROWSINESS DETECTION USING DEEP LEARNING

By: Saurabh Kumar Singh (222CS029)



Under the Guidance of
Prof. Annappa B
Department of Computer science and Engineering,
NITK. Surathkal

June 6, 2024

- Introduction
- 2 Literature Survey
- 3 Problem Statement
- 4 Proposed Methodology
- Dataset
- 6 Implementation
- Results
- 8 Conclusion
- 9 Future Work

- Introduction
- Literature Survey
- 3 Problem Statement
- 4 Proposed Methodology
- 5 Dataset
- 1 Implementation
- 7 Results
- (B) Conxusion
- 9 Future Worl



#### Introduction

Drowsy driving is a major safety hazard, causing an estimated 100,000 police-reported crashes, 50,000 injuries, and 800 fatalities annually according to the NHTSA. Furthermore, drowsiness is responsible for 21% of fatal collisions, and 60% of drivers admit to driving while fatigued. This study explores a deep learning-based method to detect driver fatigue using live data from an in-car camera, analyzing eve activity, head movements, and facial expressions. By evaluating three pre-trained deep learning architectures (InceptionV3, EfficientNetB2, and MobileNetV2) and comparing single and ensemble models, we aim to enhance non-invasive, economical driver drowsiness detection systems, ultimately contributing to safer roads and reducing collisions.

- Introduction
- 2 Literature Survey
- 3 Problem Statement
- 4 Proposed Methodology
- 5 Dataset
- 6 Implementation
- Results
- (3) Conxusion
- 9 Future Work



# Literature Survey

|   | Paper Name                                                                                        | Method Used                                                        | Conclusion                                               |
|---|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------|
| / | Driver Drowsiness Detection using Deep<br>Learning [3]                                            | CNN Model                                                          | Accuracy of 86.05%                                       |
| / | Driver Drowsiness Detection by Applying<br>Deep Learning Techniques to Sequences of<br>Images [2] | Convolutional recurrent neural network, fuzzy logic based system   | 65% on training 60% on test,<br>93% on fuzzy             |
| / | An Efficient Driver Drowsiness Detection<br>Using Deep Learning [4]                               | Detects driver drowsiness using EEG signals.                       | Required drivers to wear a hand band, which was tedious. |
| / | Drowsy Driver Detection Using Two Stage<br>Convolutional Neural Networks [1]                      | YOLOv3 for face detection and InceptionV3 for drowsiness detection | Accuracy of 89.90%                                       |
| / | Sddd: Stacked ensemble model for driver drowsiness detection [5]                                  | SqueezeNet, ShuffleNet, and MobileNet-V2                           | Highest accuracy of 86.1%                                |

Table 1: Comparison of different driver drowsiness detection methods



- Introduction
- Literature Survey
- Problem Statement
- 4 Proposed Methodology
- 5 Dataset
- 6 Implementation
- 7 Results
- Concusion
- 9 Future Worl



## **Problem Statement**

- To evaluate different models and architectures for the efficient analysis of driver drowsiness detection system.
- To develop CNN models for driver drowsiness detection that enhance accuracy and improve road safety by reliably identifying signs of driver fatigue.

- Introduction
- Literature Survey
- B Problem Statement
- 4 Proposed Methodology
- 5 Dataset
- 6 Implementation
- 7 Results
- Concusion
- 9 Future Worl



# Proposed Methodology



Figure 1: Proposed Methodology



- Introduction
- Literature Survey
- (3) Problem Statement
- 4 Proposed Methodology
- Dataset
- 6 Implementation
- **Results**
- (B) Conxusion
- 9 Future Worl



Media Research Lab (MRL) Eye dataset is used for this study.

Few images from this dataset is shown below.



Figure 2: MRL Eve Dataset



 $s0012\_03054\_0\_1\_0\_2\_1\_01$ 



 $s0014\_07350\_0\_0\_1\_1\_1\_02$ 

- 84,898 images
- subject ID
- image ID
- gender
- glasses
- eye state
- reflections
- lighting conditions
- sensor ID (640 x 480, 1280 x 1024, 752 x 480)



 $s0012\_03054\_0\_1\_0\_2\_1\_01$ 



 $s0014\_07350\_0\_0\_1\_1\_1\_02$ 

- 84,898
- subject ID
- image ID
- gender
- glasses
- eye state
- reflections
- lighting conditions
- sensor ID  $(640 \times 480, 1280 \times 1024, 752 \times 480)$



 $s0012\_03054\_0\_1\_0\_2\_1\_01$ 



 $s0014\_07350\_0\_0\_1\_1\_1\_02$ 

- 84,898 images
- subject ID
- image ID
- gender
- glasses
- eye state
- reflections
- lighting conditions
- sensor ID  $(640 \times 480, 1280 \times 1024, 752 \times 480)$







 $s0014\_07350\_0\_0\_1\_1\_1\_02$ 

- 84,898 images
- subject ID
- image ID
- gender
- glasses
- eye state
- reflections
- lighting conditions
- sensor ID  $(640 \times 480, 1280 \times 1024, 752 \times 480)$



 $s0012\_03054\_0\_1\_0\_2\_1\_01$ 



 $s0014\_07350\_0\_0\_1\_1\_1\_02$ 

- 84,898 images
- subject ID
- image ID
- gender
- glasses
- eye state
- reflections
- lighting conditions
- sensor ID  $(640 \times 480, 1280 \times 1024, 752 \times 480)$



 $s0012\_03054\_0\_1\_0\_2\_1\_01$ 



 $s0014\_07350\_0\_0\_1\_1\_1\_02$ 

- 84,898 images
- subject ID
- image ID
- gender
- glasses
- eye state
- reflections
- lighting conditions
- sensor ID  $(640 \times 480, 1280 \times 1024, 752 \times 480)$



 $s0012\_03054\_0\_1\_0\_2\_1\_01$ 



 $s0014\_07350\_0\_0\_1\_1\_1\_02$ 

- 84,898 images
- subject ID
- image ID
- gender
- glasses
- eye state
- reflections
- lighting conditions
- sensor ID  $(640 \times 480, 1280 \times 1024, 752 \times 480)$





 $s0012\_03054\_0\_1\_0\_2\_1\_01$ 



 $s0014\_07350\_0\_0\_1\_1\_1\_02$ 

- 84,898 images
- subject ID
- image ID
- gender
- glasses
- eye state
- reflections
- lighting conditions
- sensor ID  $(640 \times 480, 1280 \times 1024, 752 \times 480)$





 $s0012\_03054\_0\_1\_0\_2\_1\_01$ 



 $s0014\_07350\_0\_0\_1\_1\_1\_02$ 

- 84,898 images
- subject ID
- image ID
- gender
- glasses
- eye state
- reflections
- lighting conditions
- sensor ID (640 x 480, 1280 x 1024, 752 x 480)



- Introduction
- Literature Survey
- 3 Problem Statement
- 4 Proposed Methodology
- 5 Datase
- 6 Implementation
- Results
- (3) Conxusion
- 9 Future Worl



# **Pre-Processing**

## Pre-Processing

- Dataset is divided into:
  - train (90%)
  - test (10%)
- train data is again splitted into:
  - train (80%)
  - validation (20%)
- Data Augmentation
  - Rescaling
  - Rotation Range
  - Shear Zoom
  - Zoom Range
  - Width Shift Range
  - Height Shift Range
- input image is set to 80x80x3 resolution.

# Implementation

#### **Stand-Alone Models:**

- InceptionV3
- EfficientNetB2
- MobileNetV2

#### Stacked Ensemble:

InceptionV3 + EfficientNetB2 + MobileNetV2

#### Model Details:



Figure 3: InceptionV3 Architecture

#### InceptionV3

- 48 layers
- 24 million parameters
- Inception modules(1x1, 3x3, 5x5 convolutions)

## Model Details:



Figure 4: MobileNetV2 Architecture

#### MobileNetV2

- 53 layers
- 3.4 million parameters
- Lightweight Model

#### Model Deatils:

#### EfficientNetB2

- 130 layers
- 9.2 million parameters
- MBConv Blocks



Figure 5: Stacked Ensemble Model

#### Stacked Ensemble Model

InceptionV3 + EfficientNetB2 + MobileNetv2

#### **Customizations:**

#### Stand-Alone Model

- Flatten Layer
- Dense Layer (64 units)
- Dropout Layer (0.2)
- Dense Layer

#### Stacked Ensemble:

- Base Models
- GlobalAveragePooling2D
- Concatenation
- BatchNormalization layer
- Dropout Layer (0.2)
- Dense Layer

# **Customizations**

#### Hyperparameters and Callbacks:

- batchsize: 8
- epochs: 10
- Optimizer: Adam
- loss: Binary Crossentropy
- EarlyStopping : val\_loss
- ReduceLROnPlateau : val loss

- Introduction
- Literature Survey
- B Problem Statement
- 4 Proposed Methodology
- 5 Datase
- 6 Implementation
- Results
- **8** Concusion
- 9 Future Work



# InceptionV3:

|   | Activation Function | Training Accuracy | Training Loss |
|---|---------------------|-------------------|---------------|
| 1 | RELU                | 0.9568            | 0.1161        |
| 1 | Leaky_ReLU          | 0.9495            | 0.1320        |
| , | selu                | 0.9567            | 0.1147        |
|   | Relu6               | 0.9382            | 0.1564        |
|   | silu                | 0.9411            | 0.1515        |
|   | gelu                | 0.9410            | 0.1525        |

 Table 2: Inception V3's Training Accuracy and Training Loss

|              | 1        |
|--------------|----------|
| Val Accuracy | Val Loss |
| 0.9100       | 0.2350   |
| 0.9117       | 0.2233   |
| 0.9051       | 0.2527   |
|              | 0.2343   |
|              | 0.2456   |
| 0.9020       | 0.2208   |
|              | 0.9117   |

Table 3: InceptionV3's Validation Accuracy and Validation Loss



| Activation Function | Test Accuracy | Test Loss |
|---------------------|---------------|-----------|
| RELU                | 0.9488        | 0.1327    |
| Leaky_ReLU          | 0.9542        | 0.1278    |
| selu                | 0.9577        | 0.1211    |
| Relu6               | 0.9488        | 0.1327    |
| silu                | 0.9456        | 0.1452    |
| gelu                | 0.9467        | 0.1403    |

Table 4: InceptionV3's Test Accuracy and Test Loss

# EfficientNetB2:

| / | Activation Function | Training Accuracy | Training Loss |
|---|---------------------|-------------------|---------------|
|   | RELU                | 0.6434            | 0.4287        |
|   | Leaky_ReLU          | 0.6523            | 0.4312        |
| 1 | selu                | 0.6513            | 0.4211        |
| - | Relu6               | 0.6612            | 0.3825        |
|   | silu                | 0.6264            | 0.4633        |
|   | gelu                | 0.6234            | 0.4473        |

Table 5: EfficientNetB2's Training Accuracy and Training Loss



| Activation Function | Val Accuracy | Val Loss |
|---------------------|--------------|----------|
| RELU                | 0.6123       | 0.4322   |
| Leaky ReLU          | 0.6212       | 0.4421   |
| selu                | 0.6624       | 0.4623   |
| Relu6               | 0.6223       | 0.3712   |
| silu                | 0.6032       | 0.3823   |
| gelu                | 0.6112       | 0.4208   |

Table 6: EfficientNetB2's Validation Accuracy and Validation Loss

| ^                   |               |           |
|---------------------|---------------|-----------|
| Activation Function | Test Accuracy | Test Loss |
| RELU                | 0.6231        | 0.4623    |
| Leaky ReLU          | 0.6543        | 0.4234    |
| selu                | 0.6312        | 0.4211    |
| Relu6               | 0.6253        | 0.3921    |
| silu                | 0.6242        | 0.4532    |
| gelu                | 0.6246        | 0.4112    |

Table 7: EfficientNetB2's Test Accuracy and Test Loss



# MobileNetV2:

| Activation Function | Training Accuracy | Training Loss |
|---------------------|-------------------|---------------|
| RELU                | 0.9425            | 0.1431        |
| Leaky_ReLU          | 0.9421            | 0.1340        |
| selu                | 0.9423            | 0.1237        |
| Relu6               | 0.9354            | 0.1544        |
| silu                | 0.9421            | 0.1235        |
| gelu                | 0.9354            | 0.1465        |

Table 8: MobileNetV2's Training Accuracy and Training Loss

| $\wedge$            | 0            |          |
|---------------------|--------------|----------|
| Activation Function | Val Accuracy | Val Loss |
| RELU                | 0.9160       | 0.2270   |
| Leaky_ReLU          | 0.9187       | 0.2433   |
| şelu                | 0.9081       | 0.2647   |
| Relu6               | 0.9054       | 0.2753   |
| śilu                | 0.9022       | 0.2566   |
| gelu                | 0.9060       | 0.2278   |

 Table 9: MobileNetV2's Validation Accuracy and Validation Loss



| Activation Function | Test Accuracy | Test Loss |
|---------------------|---------------|-----------|
| RELU                | 0.9458        | 0.1427    |
| Leaky_ReLU          | 0.9642        | 0.1268    |
| selu                | 0.9527        | 0.1241    |
| Relu6               | 0.9418        | 0.1537    |
| silu                | 0.9386        | 0.1322    |
| gelu                | 0.9427        | 0.1543    |

Table 10: MobileNetV2's Test Accuracy and Test Loss

# Stacked Ensemble:

| Activation Function | Training Accuracy | Training Loss |
|---------------------|-------------------|---------------|
| RELU                | 0.9513            | 0.1676        |
| Leaky_ReLU          | 0.9558            | 0.1218        |
| selu                | 0.9405            | 0.1556        |
| ReLU6               | 0.9408            | 0.1609        |
| silu                | 0.9323            | 0.1439        |
| gelu                | 0.9421            | 0.1643        |

Table 11: Ensemble Model's Training Accuracy and Training Loss



| Activation Func | tion Val Accuracy | Val Loss |
|-----------------|-------------------|----------|
| RELU            | 0.9289            | 0.2206   |
| Leaky ReLU      | J 0.9154          | 0.2853   |
| selu            | 0.9340            | 0.2544   |
| ReLU6           | 0.9241            | 0.2578   |
| silu            | 0.9112            | 0.2524   |
| gelu            | 0.9220            | 0.2743   |

Table 12: Ensemble Model's Validation Accuracy and Validation Loss

| Activation Function | Test Accuracy | Test Loss |
|---------------------|---------------|-----------|
| RELU                | 0.9557        | 0.1992    |
| Leaky_ReLU          | 0.9510        | 0.1494    |
| selu                | 0.9621        | 0.1395    |
| ReLU6               | 0.9505        | 0.1585    |
| silu                | 0.9494        | 0.1432    |
| gelu                | 0.9581        | 0.1893    |

Table 13: Ensemble Model's Test Accuracy and Test Loss



- Introduction
- Literature Survey
- 3 Problem Statement
- 4 Proposed Methodology
- 5 Datase
- 6 Implementation
- Results
- 8 Conclusion
- 9 Future Work



## Conclusion

#### Conclusion

- Successful integration of state-of-the-art methodologies for driver drowsiness detection.
- Highest accuracies obtained:
  - InceptionV3: 95.77%
  - EfficientNetB2: 65.43%
  - MobileNetV2: 95.27%
  - Stacked Ensemble Model: 96.21%

- Introduction
- Literature Survey
- 3 Problem Statement
- 4 Proposed Methodology
- 5 Datase
- 6 Implementation
- 7 Results
- Condusion
- 9 Future Work



# **Future Work**

- Investigating more complex CNN designs, including recurrent neural networks (RNNs) or attention mechanisms, can provide better temporal modeling and context-aware sleepiness detection capabilities.
- The adaptability and responsiveness of the model can be improved by using adaptive learning systems that dynamically modify model parameters and thresholds in response to real-time feedback and driver behavior patterns.
- Low-latency inference and real-time decisionmaking can be made possible by integrating the sleepiness detection model with edge computing platforms or onboard vehicle technologies. This improves the system's usefulness in realistic driving circumstances.

#### References



Aishwarya Biju and Anitha Edison.

Drowsy driver detection using two stage convolutional neural networks.

In 2020 IEEE Recent Advances in Intelligent Computational Systems (RAICS), pages 7–12, 2020.



Elena Magán López, M. Paz Sesmero Lorente, Juan Alonso-Weber, and Araceli Sanchis de Miguel.

Driver drowsiness detection by applying deep learning techniques to sequences of images.

Applied Sciences, 12:1145, 01 2022.



Yeresime Suresh, Rashi Khandelwal, Matam Nikitha, Mohammed Fayaz, and Vinaya Soudhri.

Driver drowsiness detection using deep learning.

In 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC), pages 1526–1531, 2021.





# References

- Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbignièw Wojna. Rethinking the inception architecture for computer vision. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2818–2826, 2016.
- Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks, 05 2019
- Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and LiangChieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4510–4520, 2018.
- National Safety Council. Drivers are falling asleep behind the wheel, 2020. Accessed: 2024-05-20.

## THANK YOU



Thank you for your attention

Contact: somu.222cs029@nitk.edu.in

