1

Example. Consider $(\mathbb{Z}, +)$, $\langle 5 \rangle = \{..., -5, 0, 5, 10, ...\}$. This is called $5\mathbb{Z}$ (integer multiple of 5). Note that this is not \mathbb{Z}_5 . The latter doesn't even have the same operation.

Is \mathbb{Z} generated by 5? No. But 1 would do.

$$\mathbb{Z} = \langle 1 \rangle = \langle -1 \rangle.$$

Lemma

The inverse of a generator of a group is also a generator.

Is \mathbb{Z} cyclic? Yes, it is generated by 1 (or -1).

 $5\mathbb{Z}$ is a cyclic group generated by 5. \mathbb{Z}_5 is generated by 1.

Is \mathbb{Z}_n cyclic? Yes it is generated by 1.

Theorem

Any cyclic group is either isomorphic to $(\mathbb{Z}_n, +_n)$ or to $(\mathbb{Z}, +)$.

Question: Is $(\mathbb{R}, +)$ cyclic?

No. Since \mathbb{R} is uncountable, so there is no bijection between \mathbb{R} and \mathbb{Z} or \mathbb{Z}_n .

Definition: greatest common divisors (gcd)

Note. The gcd of a, b can be written as ra + sb with $r, s \in \mathbb{Z}$.

Example. $28r + 40s = 4 \Rightarrow 28 \times 3 + 40 \times (-2) = 4$.

Example. In \mathbb{Z}_{40} , what is $\langle 28 \rangle$?

This is controlled by the gcd(28,40). The key is r=3. What else is in $\langle 28 \rangle$? $\{0,28,16,4\}$. So $4 \in \langle 28 \rangle$. Then we have $\{0,4,8,\ldots,36\}$ with $\frac{40}{4}=10$ elements

In \mathbb{Z}_{40} , $\langle 28 \rangle = \langle 4 \rangle$.

Theorem

In \mathbb{Z}_n , the subgroup $\langle r \rangle$ is equal to $\langle d \rangle$, where $d=\gcd(r,n)$. Then number

of elements in $\langle d \rangle$ is $\frac{n}{d} = \frac{n}{\gcd(r,n)}$.

Theorem

Every subgroup of a cyclic group is cyclic.

Corollary

Every subgroup of \mathbb{Z}_n is of form $\langle r \rangle$, and in fact we can take r to be a divisor of n.

Example. What are the subgroups of \mathbb{Z}_{18} ?

We just need to choose an appropriate generator from the divisors of 18. $\langle 1 \rangle = \mathbb{Z}_{18}$

 $\langle 2 \rangle = \{0, 2, 4, \ldots\}$ 9 elements.

 $\langle 3 \rangle = \{0, 3, \ldots\}$ 6 elements.

 $\langle 6 \rangle = \{0, 6, 12\}$ 3 elements.

 $\langle 9 \rangle = \{0, 9\}$ 2 elements.

 $\langle 18 \rangle = \{18\} \ 1 \text{ element.}$

 $\langle 10 \rangle = \langle 2 \rangle.$

 $\langle 7 \rangle = \langle 1 \rangle$ because 7 and 18 are coprime.

See iPad for subgroup lattice.

Example. Subgroup lattice of \mathbb{Z}_4 . See iPad.

Notation. Let (G,*) be a group, and let $g \in G$. For multiplication, we define $g^2 = g * g, \ldots, g^n = g * \ldots * g$ with n occurrence of gs. $g^0 = e$. g^{-1} is the inverse. $g^{-2} = (g^{-1})^2 = (g^2)^{-1}$ (this is easy to check). $g^{-n} = (g^{-1})^n = (g^n)^{-1}$.

The subgroup $\langle g \rangle$ is given by

$$\{g^n:n\in\mathbb{Z}\}$$
.

It is true that $g^m * g^n = g^{m+n}$ for all $m, n \in \mathbb{Z}$. Caution: m, n are not elements of G.

If the operation is addition. we write 2g = g + g, 0g = e, $-1g = g^{-1}$,... then

$$\langle g \rangle = \{ ng : n \in \mathbb{Z} \}.$$

Theorem

Every cyclic group is abelian.

Note. The converse is false. V_4 is a counterexample.

Proof

If G is cyclic then $G=\{g^n:n\in\mathbb{Z}\}.$ For some generator g, let $x,y\in G.$ Then $x=g^n$ and $y=g^m.$ Then

$$x * y = g^n * g^m = g^{n+m} = g^{m+n} = g^m * g^n = y * x.$$

So G is abelian.