Algoritmi e Strutture di Dati

Grafi

Jocelyne Elias, Alberto Montresor e Gianluigi Zavattaro

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

Esempi di grafi

Grafi orientati e non orientati: definizione

- Un grafo orientato G è una coppia (V, E) dove:
 - Insieme finito dei vertici V
 - Insieme degli archi E: relazione binaria tra vertici

$$V = \{ 1, 2, 3, 4, 5, 6 \}$$

 $E = \{ (1,2), (1,4), (2,3), (4,1), (4,3), (4,5), (5,3) \}$

- * Un *grafo non orientato* G è una coppia (V, E) dove:
 - * Insieme finito dei vertici V
 - Insieme degli archi E:
 coppie non ordinate

$$V = \{1, 2, 3, 4, 5, 6\}$$

 $E = \{ [1,2], [1,4], [2,3], [3,4],$
 $[3,5], [4,5] \}$

Definizioni: incidenza e adiacenza

- In un grafo orientato un arco (u,v) si dice incidente da u in v
- In un grafo non orientato la relazione di adiacenza tra vertici è simmetrica
- Un vertice v si dice adiacente a u se e solo se $(u, v) \subseteq E$

L'arco (1,2) è incidente da 1 a 2 (1,4) è incidente da 1 a 4 (4,1) è incidente da 4 a 1

- 2 è adiacente ad 1
- 3 è adiacente a 2, 4, 5
- 1 è adiacente a 4 e viceversa
- 2 non è adiacente a 3,4
- 6 non è adiacente ad alcun vertice

Rappresentazione grafi

- Poniamo
 - \circ n = |V| numero di vertici (o nodi) di un grafo
 - \circ m = |E| numero di archi
- Matrice di adiacenza
 - \circ Spazio richiesto $O(n^2)$
 - \circ Verificare se il vertice u è adiacente a v richiede tempo O(1)
 - \circ Elencare tutti gli archi costa $O(n^2)$
- Liste di adiacenza
 - \circ Spazio richiesto O(n+m)
 - \circ Verificare se il vertice u è adiacente a v richiede tempo O(n)
 - \circ Elencare tutti gli archi costa O(n+m)

Matrice di adiacenza: grafo orientato o non orientato

$$m_{uv} = \begin{cases} 1, & \text{se } (u, v) \in E, \\ 0, & \text{se } (u, v) \notin E. \end{cases}$$

	_					_
1	0	1	0	1	0	0
2	0	0	1	0	0	0
3	0	0	0	1	0	0
4	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$	0	0	0	1	0
5	0	0	1	0	0	0
6	$\bigcup_{i=1}^{n} 0_{i}$	0	0	0	0	0

Lista di adiacenza: grafo orientato

$$G.adj(u) = \{ v \mid (u,v) \subseteq E \}$$

Spazio:
$$a \cdot n + b \cdot m$$

Lista e matrice di adiacenza: altri esempi ...

Liste di adiacenza: grafi orientati

$G.\mathsf{adj}(u) = \{v | (u,v) \in E\}$

Spazio =
$$an + bm$$
 bit

Matrice di adiacenza: grafi non orientati

$$m_{uv} = \begin{cases} 1 & (u, v) \in E \\ 0 & (u, v) \notin E \end{cases}$$

Spazio =
$$n^2$$
 oppure $n(n-1)/2$ bit

	0	1	2	3	4	5
0	(1	0	1	0	0)
1			1	0	0	0
1 2 3				1	1	0
3					1	0
4						0
5						-)

Matrice di adiacenza: grafi orientati

$$m_{uv} = \begin{cases} 1 & (u, v) \in E \\ 0 & (u, v) \notin E \end{cases}$$

Spazio =
$$n^2$$
 bit

Liste di adiacenza: grafo non orientato

$$G.\mathsf{adj}(u) = \{v | (u,v) \in E\}$$

$$\mathrm{Spazio} = an + 2 \cdot bm$$

Grafi pesati

- +In alcuni casi ogni arco ha un peso (costo, lunghezza, guadagno) associato
 - +Il peso può essere determinato tramite una funzione

 $p: V \times V \rightarrow \mathbb{R}$, dove \mathbb{R} è l'insieme dei numeri reali

+Quando tra due vertici non esiste un arco, il peso è infinito

$$m_{uv} = \begin{cases} p_{uv}, & \text{se } (u, v) \in E, \\ +\infty \text{ (oppure } -\infty) & \text{se } (u, v) \notin E. \end{cases}$$

	2	3	4	3	0
*	3	*	1	*	*
3	*	4	*	*	*
*	4	*	4	7	*
1	*	4	*	8	*
*	*	7	8	*	*
*	*	*	*	*	*

Specifica

- Complessità
 - + O(n+m) liste di adiacenza
 - + $O(n^2)$ matrice di adiacenza
 - + O(m) "operazioni"

Definizioni: Alberi

- **+**Un *albero libero* è un grafo non orientato connesso e aciclico (⇔ connesso col minimo numero di archi ⇔ connesso con una sola catena tra ogni coppia di nodi)
- +Se qualche vertice è detto radice, otteniamo un albero radicato
- +Un insieme di alberi è detta foresta

Definizioni: Alberi di copertura

+In un grafo non orientato G=(V, E)

+un albero di copertura T è un albero libero T = (V, E') composto da tutti i nodi di V e da un sottoinsieme di [n-1] archi $(E' \subseteq E)$ [ogni coppia di nodi del grafo è connessa da una sola catena nell'albero]

Problema: Attraversamento grafi

- +Definizione del problema
 - +Dato un grafo G=(V, E) ed un vertice r di V (detto sorgente o radice), visitare ogni vertice raggiungibile nel grafo dal vertice r
 - +Ogni nodo deve essere visitato una volta sola
- +Visita in ampiezza (breadth-first search)
 - +Visita i nodi "espandendo" la frontiera fra nodi scoperti / da scoprire
 - +Esempi: Cammini più brevi da singola sorgente
- +Visita in profondità (depth-first search)
 - +Visita i nodi andando il "più lontano possibile" nel grafo
 - +Esempi: Ordinamento topologico (per DAG, iniziando la visita dai nodi senza archi entranti)

