CMPSC 465 Data Structures and Algorithms Spring 2022

Instructor: Chunhao Wang

Greedy algorithms

Greedy algorithms

Matroid, Task Scheduling (Cormen et al. 16.4, 16.5)

Warning

Very abstract!

— Alfred Aho

Matroid

Matroid is a combinatorial structure

Many problems for which a greedy approach provides optimal solution can be formulated as some problems involve matroids

A more abstract view of graph vs. matroid

Graph
$$G = (V, E)$$

- 1. V: finite nonempty set
- 2. E: a collection of subsets of V (or $E \subseteq \mathcal{P}(V)$) each $e \in E$ has two elements of V called an edge

Matroid
$$M = (S, \mathcal{I})$$

- 1. *S*: finite nonempty set
- 2. $\mathcal{I} \subseteq \mathcal{P}(S)$ s.t.
 - if $A \subseteq B$ and $B \in \mathcal{I}$ then $A \in \mathcal{I}$ (Hereditary property)
 - if $A, B \in \mathcal{I}$ and |A| < |B|then $\exists x \in B - A$ s.t. $A \cup \{x\} \in \mathcal{I}$ (Exchange property)

For a matroid $M = (S, \mathcal{I})$, each $A \in \mathcal{I}$ is called an **independent subset**

Graphic Matroid

Given undirected G = (V, E), construct graphic matroid $M_G = (S, \mathcal{I})$ via

- S = E
- $\mathcal{I} = \{A \subseteq E : A \text{ is acyclic}\}$ A is a forest

Why M_G is a matroid?

- Hereditary: a subset of forest is still a forest
- Exchange: demonstrate by example

$$\mathcal{I} = \{\emptyset, \{(1,2)\}, \{(2,3)\}, \{(1,3)\}, \{(1,2), (2,3)\}, \{(1,3), (1,2)\}, \{(1,3), (2,3)\}\}\}$$

$$Say A = \{(2,3)\}, B = \{(1,3), (1,2)\}$$

$$x \in B - A, \text{ for example, } x = (1,3)$$

then $A \cup \{x\} = \{(2,3), (1,3)\} \subset \mathcal{I}$

 $S = \{(1,2), (2,3), (3,1)\}$

Connection to spanning tree

Definition

For all $A \in \mathcal{I}$, $x \in S$ is an **extension** of A if $A \cup \{x\} \in \mathcal{I}$

Definition

 $A \in \mathcal{I}$ is **maximal** if it has no extension

Theorem

All maximal $A \in \mathcal{I}$ have the same size

Proof.

Suppose $A, B \in \mathcal{I}$ are both maximal, but |B| > |A|. Then by exchange property, there exists an $x \in B - A$ s.t. $A \cup \{x\} \in \mathcal{I}$, which is a contradiction of A being maximal

For connected undirected G, every maximal independent subset of M_G must be a tree with |V|-1 edges. Hence it is a spanning tree

Weighted matroid

Definition

A **weighted matroid** $M = (S, \mathcal{I})$ is one that has a strictly positive weight w(x) for all $x \in S$. The weight function w extends to \mathcal{I} as for all $A \in \mathcal{I}$:

$$w(A) = \sum_{a \in A} w(a)$$

Note: for graphic matroids, weight of M_G is corresponding to edge weights

Optimization problem for matroids

Problem (Maximum-weighted Independent Subset)

Given a weighted matroid M, the goal is to find the maximum-weighted independent subset of M

Remark: because weights are positive, it always helps to find a subset as large as possible

Application: MST of $G o ext{max-weighted}$ independent subset of M_G via

- G with $w(e) \to M_G$ with w'(e) = c w(e) where c is a constant larger than the largest w(e)
- For M_G , w'(e) are positive
- For max-weighted independent subset A w'(A) = (|V| 1)c w(A), so w(A) is minimized

Hence a max-weighted indep. subset of M_G corresponds to an MST of G

Pseudocode for finding max-weighted independent subset

Proof of correctness: Cormen et al. 16.4

Running time: let n = |S|

Assume checking if $A \cup \{x\} \in \mathcal{I}$ takes O(f(n)). Lines 5-6 takes $O(n \cdot f(n))$

Total running time: $O(n \log n + n \cdot f(n))$

Application: task scheduling

Problem (Task scheduling)

Setup:

- n unit-time tasks a_1, \ldots, a_n
- d_1, \ldots, d_n deadlines for each task, $1 \le d_i \le n$
- $w_1, \ldots, w_n > 0$ penalties if a_i is not completed by d_i

Goal: Find a **schedule** (i.e., permutation of tasks) that minimizes the penalties incurred

The canonical form of a schedule

Definition

In a schedule, a task is **early** if it finishes before its deadline; a task is **late** if it finishes after its deadline

We can transfer any schedule into the **early-first** form, i.e., early tasks before late ones

Definition

A schedule is in the **canonical form** if it's early-first and its early tasks are ordered by increasing deadlines

We can transfer any schedule into its canonical form

Finding optimal schedule using matroid

How to find an optimal schedule?

- 1. Optimizing over tasks in the canonical form:
 - 1.1 Find a set A of tasks that are early
 - 1.2 Sort the tasks of A in increasing deadlines
 - 1.3 Add late tasks in any order
- 2. Minimize penalties of late tasks \equiv maximize penalties of early tasks

Modeled by a matroid $M = (S, \mathcal{I})$, where

$$S = \{a_1, \ldots, a_n\}$$

 $\mathcal{I} = \{A \subseteq S : \exists \text{ a way to schedule the tasks in } A \text{ s.t. no task is late}\}$

w : penalty

Finding an optimal schedule \equiv finding max-weighted indep. subset of M