continuedFractions

Jon Sporring

October 4, 2019

1 Lærervejledningn

Emne Rekursion

Sværhedsgrad Middel

2 Introduktion

I denne opgave skal I regne med kædebrøker (continued fractions)¹. Kædebrøker er lister af heltal, som repræsenterer reelle tal. Listen er endelig for rationelle tal og uendelig for irrationelle tal.

Decimaltal til kædebrøk En kædebrøk skrives som: $x = [q_0; q_1, q_2, ...]$, hvilket svarer til tallet,

$$x = q_0 + \frac{1}{q_1 + \frac{1}{q_2 + \dots}}. (1)$$

F.eks. svarer kædebrøken [3;4,12,4] til følgende decimaltal:

$$x = 3 + \frac{1}{4 + \frac{1}{12 + \frac{1}{4}}} \tag{2}$$

$$= 3 + \frac{1}{4 + \frac{1}{12.25}}$$

$$= 3 + \frac{1}{4.081632653}$$
(3)

$$=3+\frac{1}{4.081632653}\tag{4}$$

$$= 3.245.$$
 (5)

Altså er [3;4,12,4] = 3.245.

¹https://en.wikipedia.org/wiki/Continued_fraction

Kædebrøk til decimaltal For et givet tal x på decimalform kan dets kædebrøk $[q_0; q_1, q_2, ...]$ udregnes ved følgende algoritme: Lad $x_0 = x$ og $i \ge 0$, udregn

$$q_i = |x_i| \tag{6}$$

$$r_i = x_i - q_i \tag{7}$$

$$x_{i+1} = 1/r_i \tag{8}$$

(9)

indtil $r_i = 0$. F.eks. for decimaltallet x = 3.245 beregnes:

i	x_i	$q_i = \lfloor x_i \rfloor$	$r_i = x_i - q_i$	$x_{i+1} = 1/r_i$
0	3.245	3	0.245	4.081632653
1	4.081632653	4	0.081632653	12.25
2	12.25	12	0.25	4
3	4	4	0	-

Resultatet aflæses i anden søjle: 3.245 = [3;4,12,4].

Heltalsbrøker til kædebrøker Kædebrøken for en heltals brøk t/n udregnes ved følgende algoritme: Lad $r_{-2} = t$ og t = n og t = -2, udregn

$$r_i = r_{i-2} \% r_{i-1}$$
 (rest ved heltalsdivision), (10)

$$q_i = r_{i-2} \text{ div } r_{i-1} \quad \text{(heltals division)}, \tag{11}$$

indtil $r_{i-1} = 0$. Så vil $[q_0; q_1, \dots, q_j]$ vil være t/n som kædebrøk. F.eks. for brøken t/n = 649/200 beregnes:

i	r_{i-2}	r_{i-1}	$r_i = r_{i-2} \% r_{i-1}$	$q_i = r_{i-2} \text{ div } r_{i-1}$
0	649	200	49	3
1	200	49	4	4
2	49	4	1	12
3	4	1	0	4
4	1	0	_	-

Kædebrøken aflæses som højre søjle: 649/200 = [3; 4, 12, 4].

Kædebrøker af heltalsbrøker t/n er særligt effektive at udregne vha. Euclids algoritme for største fællesnævner. Algoritmen i Opgave ?? regner rekursivt på relationen mellem heltalsdivision og rest: Hvis a = t div n er heltalsdivision mellem t og n, og b = t % n er resten efter heltalsdivision, så er t = an + b. For (??)–(??) skal der altså gælde, at $r_{i-2} = q_i r_{i-1} + r_i$. Algoritmen i Opgave ?? regner udelukkende på r_i som transformationen $(r_{i-2}, r_{i-1}) \to (r_{i-1}, r_i) = (r_{i-1}, r_{i-2} \% r_{-1})$ indtil $(r_{i-2}, r_{i-1}) = (r_{i-2}, 0)$. Hvis man tilføjer beregning af q_i i rekursionen, har man samtidigt beregnet brøken som kædebrøk.

Kædebrøker til Heltalsbrøker En kædebrøk kan approximeres som en heltalsbrøk $\frac{t_i}{n_i}$, $i \ge 0$ ved følgende algorime. Lad $t_{-2} = n_{-1} = 0$ og $t_{-1} = n_{-2} = 1$, udregn

$$t_i = q_i t_{i-1} + t_{i-2}, (12)$$

$$n_i = q_i n_{i-1} + n_{i-2}, (13)$$

indtil i er passende stor, eller der ikke er flere cifre q_i . F.eks. for kædebrøken [3;4,12,4] beregnes,

$$\frac{t_0}{n_0} = \frac{q_0 t_{-1} + t_{-2}}{q_0 n_{-1} + n_{-2}} = \frac{3 \cdot 1 + 0}{3 \cdot 0 + 1} = \frac{3}{1} = 3,\tag{14}$$

$$\frac{t_1}{n_1} = \frac{q_1 t_0 + t_{-1}}{q_1 n_0 + n_{-1}} = \frac{4 \cdot 3 + 1}{4 \cdot 1 + 0} = \frac{13}{4} = 3.25,\tag{15}$$

$$\frac{t_2}{n_2} = \frac{q_2 t_1 + t_0}{q_2 n_1 + n_0} = \frac{12 \cdot 13 + 3}{12 \cdot 4 + 1} = \frac{159}{49} = 3.244897959...,$$
 (16)

$$\frac{t_1}{n_1} = \frac{q_1 t_0 + t_{-1}}{q_1 n_0 + n_{-1}} = \frac{4 \cdot 3 + 1}{4 \cdot 1 + 0} = \frac{13}{4} = 3.25,$$

$$\frac{t_2}{n_2} = \frac{q_2 t_1 + t_0}{q_2 n_1 + n_0} = \frac{12 \cdot 13 + 3}{12 \cdot 4 + 1} = \frac{159}{49} = 3.244897959...,$$

$$\frac{t_3}{n_3} = \frac{q_3 t_2 + t_1}{q_3 n_2 + n_1} = \frac{4 \cdot 159 + 13}{4 \cdot 49 + 4} = \frac{649}{200} = 3.245.$$
(15)

Altså kan kædebrøkken [3;4,12,4] approximeres som heltalsbrøkkerne 3/1, 13/4, 159/49 og 649/200 med gradvist stigende nøjagtighed.

3 Opgave(r)

1. Skriv en rekursiv funktion

cfrac2float : lst:int list -> float

som tager en liste af heltal som kædebrøk og udregner det tilsvarende reelle tal.

2. Skriv en rekursiv funktion

float2cfrac : x:float -> int list

som tager et reelt tal og udregner dens repræsentation som kædebrøk.

3. Skriv en rekursiv funktion

frac2cfrac : t:int -> n:int -> int list

som tager tæller og nævner i brøken t/n og udregner dens repræsentation som kædebrøk udelukkende ved brug af heltalstyper.

4. Skriv en rekursiv funktion

cfrac2frac : lst:int list -> i:int -> int * int

som tager en kædebrøk og et index og returnerer t_i/n_i approximationen som tuplen (ti, ni).

5. Saml alle ovenstående funktioner i et bibliotek bestående af dets interface og implementationsfil (continuedFraction.fsi continuedFraction.fs), og lav en applikationsfil, hvor I udfører en white- og black-box test af funktionerne.