

Permutations Ex 16.4 Q9

Let two husbands A,B be selected out of seven males in = 7C_2 ways. excluding their wives, we have to select two ladies C,D out of remaining 5 wives is = 5C_2 ways. Thus, number of ways of selecting the players for mixed double is = $^7C_2 \times ^5C_2$ = 21×10 = 210

Now, suppose A chooses C as partner (B will automatically go to D) or A chooses D as partner (B will automatically go to C)

Thus we have, A other ways for teams.

Required number of ways = $210 \times 4 = 840$

Permutations Ex 16.4 Q10

m men can be seated in a row in ${}^{m}P_{m} = m!$ ways.

Now, in the (m+1) gaps n women can be arranged in $^{m+1}P_n$ ways.

Hence, the number of ways in which no two women sit together

$$= m! \times \frac{m+1}{n}$$

$$= m! \times \frac{(m+1)!}{(m+1-n)!}$$

$$= m! \times \frac{(m+1)!}{(m-n+1)!}$$

Hence, proved

Permutations Ex 16.4 Q11

(i) MONDAY has 6 letters with no repetitions, so

Number of words using 4 letters at a time with no repetitions = ${}^{6}P_{4}$

- $=\frac{6!}{2!}$
- = 360

(ii) Number of words using all 6 letters at a time with no repetitions = 6P_6

$$= \frac{6!}{(6-6)!}$$
= $6 \times 5 \times 4 \times 3 \times 2 \times 1$
= 720

(iii) Number of words using all 6 letters, starting with vowels

=
$$2.5P_5$$

= $2 \times 5 \times 4 \times 3 \times 2 \times 1$
= 240

Permutations Ex 16.4 Q12

There are 8 letters in the word 'ORIENTAL'. The total number of three letter words is the number of arrangements of 8 items, taken 3 at a time, which is equal to

$${}^{8}P_{3} = \frac{8!}{(8-3)!}$$

$$= \frac{8!}{5!}$$

$$= \frac{8 \times 7 \times 6 \times 5!}{8!}$$

$$= 336.$$

Hence, the total number three letter words are 336.

******* END ********