

BRITTANY STUART • ALEX HEIN • ABHIJITH RAVISHANKAR • STEPHEN BURD

FINAL REPORT: AMPHIBIOUS BICYCLE KIT

Overview

- Research Overview and Problem Statement
- Concept Generation
- Product Design and Function
- Engineering Analysis and Design for Assembly
- Manufacturing and Materials
- Comparison to Benchmarks
- Economic Analysis

Research

Market Research

 VQDT found out that 96.8 million people are affected by floods annually. The poor and rural areas of cities are largely affected by this disaster.

Customer Research

 In addition to the cost and widespread affects, one of the biggest complications associated with flooding is lack of available transportation to safer locations in areas with no immediate aid.

Patent Research

The existing paddle boat was very expensive. This would limit the market size as cost would become a factor.

Problem Definition

Updated problem definition

- The transportation of people in post-flood situations using attachments to a bicycle. This is concentrated to people in rural and poor areas.
- •Creating a list of materials and manufacturing parts required in the Bill Of Materials, making CAD models for our attachments and analyzing an economic model of the design.

Results of Problem Definition

- Low cost
- Light Weight
- Easy to use
- Low maintenance
- Durable
- Takes less than five minutes to install
- Supports up to 115 kilograms
- Takes less than 60 seconds to deploy

Concept Generation (Chart 1: Function Tree)

Concept Generation (Chart 2: Morphological Chart)

Functions	Possible Solutions				
Turning	Back Rudder	Front Rudder			
Increase Surface Area	Pontoon	Ripcord Floats	Stabilizers	Pool Noodle	
Resist Water	Silicone Spray	Zinc Powder Coat	Paint	PVC Parts	
Propel Forward	Fins in Spokes	Sail	Enclosed Propeller	Open Propeller	Paddle
Maneuver Through Water	Front Wedge				
Deploy/Retract Floatation	Ripcord	Zip Tie	Snaps	Hand Pump	Motor Pump
Deploy/Retract Propulsion	Slip Fins into Spokes	Fold Fins out of Spokes	Mount Propeller On Wheel		
Prevent Tipping	Wide Base	Square Pontoon Base	Triangle Pontoon Base	Ring of Pool- Noodles	

Final Concept

Final Concept:

- Front Rudder
- Clamp
- Inflatable Pontoon
- T − Base
- Pump
- Front Wedge

Primary Concept:

- Front Rudder
- Paint
- Snaps
- Rip Cord
- Triangle Base
- Fold Fins
- Front Wedge

Datum Concept

- Front Rudder
- Paint
- Clamps
- Inflatable Pontoon
- Square Base
- Propeller

The Design: Front Unit

- Connects to bicycle on front axle and on steering column
- Has support for pontoons
- Comes to point at front, acting as wedge
- Disk is inserted into front tire
- Unit rotates as steering column is rotated, acting as a rudder

The Design: Rear Unit

- Attaches to bicycle on rear axle and seat post
- Has support for pontoons

The Design: Centrifugal Pump

- Rotates as pedals are rotated
- Additional gear is mounted to chain to drive a second axle
- This axle drives another chain which drives the pump
- Forced rotation of fins inside of pump accelerates internal water velocity
- Water exits pump at maximum speed, forcing bicycle in opposite direction

The Design: Pontoons

- Flexible PVC inflatable tubes
- •Have standard valve stems for use with bicycle tire pumps

Concept: Front Wedge

- Function
 - Moving debris from path
- How it works
 - Forms wedge to cut through water
- Model Findings
 - Can be helpful in steering
 - Must be made of thin metal

Diagram: Laminar Flow

Concept: Front Rudder

- Function
 - To allow the bicycle to turn
- How it works
 - Using the surface area created
- Model Findings
 - Consider using hollow rudder
 - Rudder adds 3.2kg of mass

Concept: Centrifugal Pump

Function

- Enclosed fin system
- Water cycles within case and forced out one outlet.

How

- Fins are attacked to rear wheel
- Pressure from fins and case's cylindrical shape causes water to flow in circle
- Water is released at one outlet for maximum speed

Model Findings

Most energy is conserved in this method for weight purposes Diagram: Centrifugal Pump

Concept: Flotation Device

- Function
 - To provide a buoyant force for the whole device
- How
 - Airtight compartment fills with air to provide buoyant force while in water

Design for Assembly

Materials

Aluminum 6061

- Pipes and Front Wedge
 - Corrosion Resistant
 - Easy to manufacture with (bend)
 - Light Weight
 - Lower Cost

PVC 10 oz. Fabric

- Pontoons
 - Water Resistant
 - Tear and Puncture Resistant
 - Similar material used on inflatable life rafts

ABS plastic

- Pump
 - Easy to manufacture with
 - Water Resistant

Chart 3: Use of Material by Mass

Manufacturing

Pontoons

Cut Fabric

Sew Fabric

Front Wedge

Bend Sheet Metal
Drill Holes for Mounting

Mounts

Cut Pipes to Length
Bend Pipes
Weld on Axle Mounts
Drill Holes and Chamfer

Pump

CNC Mill pump case and fins

*only assembly is the pump and case

Chart 4: Pump Assembly Flow Diagram

Comparison to Benchmarks

- The Shuttle Bike is the only comparable product on the market
- **Costs \$5000**
- Can be stored in backpack
- Takes 15 minutes to deploy
- Not amphibious

Economic Analysis

- Pay Back Period:7th Quarter
- Net Present Value: \$294k
- Min production: 1061
- Return on Investment: 74%

Questions

Alex Hein – heina@purdue.edu

Stephen Burd – sburd@purdue.edu

Brittany Stuart – stuartb@purdue.edu

Abhijith Ravishankar – ravishan@purdue.edu

References

- [1] Eric Guyer (2011). Expert Witness Painting Aluminum Paint Failure and Defects. Retrieved from http://www.the-coatings-expert.com/painting-aluminum.htm
- [2] SBK-KIT (2014). Shuttle Bike. Retrieved from http://www.shuttlebike.it/index.html

