Design and Implementation of Vectorized Pseudorandom Number Generators and their Application to Simulations of Photon Propagation

Markus Pawellek

May 16, 2020

Outline

Introduction and Motivation

Pseudorandom Number Generators

Fundamentals of Computer Architecture

Design

Implementation

Tests and Benchmarks

Evaluation and Results

Conclusions and Future Work

Introduction and Motivation

Preliminaries

- ▶ no c++ code shown
- why c++
- only two generators
- a few things will not be shown
- no theory shown why prngs good

Monte-Carlo Methods and Physical Simulations

Computation of π

Pseudorandom Number Generators

Concepts

Mersenne Twister MT19937

Xoroshiro128+

Fundamentals of Computer Architecture

Processor and Memory

Memory Hierarchy

SIMD and Intrinsics

Uniform Floating-Point Numbers

Design

C++ Design Concepts for Libraries

Implementation

Xoroshiro 128+ Scalar and Vectorized

MT19937 Scalar and Vectorized

MT19937 SIMD

Tests and Benchmarks

Statistical Performance

API Tests

Photon Simulation

Previous Work

Evaluation and Results

Evaluation and Results

Conclusions and Future Work

Conclusions and Future Work

- possible applications in simulations
- ► mt19937 vs. xoroshiro128+

References