Lab. de Circuitos Eletrônicos Analógicos – Exp. 11

FILTRO ATIVO-RC COM AMP.OP. (Filtro Tow-Thomas - TT)

A estrutura TT apresenta saídas passa-baixas e passa-faixa conforme é mostrado na Figura. Uma das vantagens desta topologia é que ω_0 , Q e os ganhos podem ser ajustados por R_1 , R_2 e R_4 , respectivamente. As funções de transferência do passa-baixas e passa-faixa são dadas por (1) e (2), respectivamente.

$$A_1 \equiv A_2 \equiv A_3 \Longrightarrow \text{Amp. Op. 741}$$

$$\frac{V_{PB}(s)}{V_{I}(s)} = \frac{-\frac{R_{3}}{R_{4}} \frac{r_{2}}{r_{1}} \frac{1}{R_{2}R_{3}C_{1}C_{2}}}{s^{2} + \frac{1}{R_{1}C_{1}} s + \frac{r_{2}}{r_{1}} \frac{1}{R_{2}R_{3}C_{1}C_{2}}}$$
(1)
$$\frac{V_{PF}(s)}{V_{I}(s)} = \frac{-\frac{R_{1}}{R_{4}} \frac{1}{R_{1}C_{1}} s}{s^{2} + \frac{1}{R_{1}C_{1}} s + \frac{r_{2}}{r_{1}} \frac{1}{R_{2}R_{3}C_{1}C_{2}}}$$
(2)

PRE-LABORATÓRIO:

- 1) Deduzir as expressões (1) e (2). Para cada caso, identifique o ganho, Q e ω_0 .
- 2) Para $R_1 = 8, 2k\Omega$; $R_2 = R_3 = R_4 = 1, 6k\Omega$; $r_1 = r_2 = 1k\Omega$, $C_1 = C_2 = 100$ nF, calcule numericamente os parâmetros do item anterior.

PARTE EXPERIMENTAL:

Montar o filtro TT:

1) Para a saída passa-faixa:

- 1a) Medir f_0 , $f_{3dB \text{superior}} = f_2$, $f_{3dB \text{inferior}} = f_1$ e $Q = f_0 / (f_2 f_1)$. Documente as formas de onda. Verificar a identidade $f_0 = (f_1 \times f_2)^{1/2}$.
- 1b) Medir o ganho em f_0 .
- 1c) Excite o circuito com um sinal senoidal de freqüência f_0 . Depois, mude a forma de onda para onda quadrada. O que você observa na saída? Por quê? Mude agora a freqüência fundamental da onda quadrada para $f_0/3$. O que você observa na saída? Por quê?

2) Para a saída passa-baixas:

- 2a) Medir o ganho na faixa plana e o ganho no pico da resposta. Qual a relação entre este ganho e o valor de *Q*?
- 2b) Medir a frequência de corte f_{3dB} . Esta frequência deve ser maior, igual ou menor do que f_0 ? Para qual valor de Q esta frequência seria igual a f_0 ?

3) Retirar o R_1 , aterrar a entrada e medir a frequência de oscilação, a partir da ativação da alimentação do circuito. Documente as formas de onda. Por que o circuito oscila? Dica: observe o termo em "s" das equações (1) e (2). Caso o circuito ainda não oscile devido às perdas internas, aumente o ganho de malha fechada atuando no ganho do inversor. Sendo a oscilação aproximadamente senoidal, com uma amplitude constante, o que estaria causando a redução dinâmica do ganho de malha fechada, uma vez que não há explicitamente um circuito limitador no amplificador?