Machine Learning for 3D IC Floorplanning

Dima Al Saleh

ECSE 689

3D ICs – Overview

- Three dimensional Integrated Circuits
 - Exploit vertical dimension
 - Connected using Through Silicon Vias TSVs
- Thickness increases but not impactfully (each layer 150 μm)

3D ICs – Advantages

- Advantages
 - More heterogeneity
 - Less area
 - Less wirelength
 - Less communication power
 - Ideal for complex applications

3D ICs – Design Challenge

- Design of circuit is crucial
 - Impacts performance & lifetime
- Floorplanning
 - Main step in IC design
 - Outputs coordinates (x, y, and z) of circuit components

3D ICs – Floorplanning

- Circuit components
 - CPU, Memory, Caches, Branch predictors, ...
 - Referred to as blocks
- Input of floorplanner: the netlist
 - List of blocks & dimensions
 - Power (for thermal)
 - Connections (for wirelength and TSVs)

Layer 1

Layer 1

3D IC Floorplanners – Gap and Research Question

- Exponentially increase of runtime
 - With each added layer
 - More blocks to floorplan
 - Failure to converge of search-based algorithms
- No ML based 3D IC floorplanner
 - Even though exists in 2D

ML-Based 3D Floorplanner

- Need for dataset
 - ML models require datasets
- Train models on different circuits
 - Circuits properties (number of blocks, average width, aspect ratio (width/height)...)
- Purpose of dataset
 - Width & height: Area optimization
 - Power: Thermal optimization
 - Connections: Wirelength and number of TSV optimization

Dataset Sources

- Lack of reputable repositories
 - Circuits are proprietary (not available)
 - Need for netlists with industry significance
 - Practical characteristics
- Snowballing technique

Data Extraction

- Manual for UM and SMU
- Scripts for GitHub repositories
- Uniformization process
 - Raw netlist written differently

```
MODULE bk1;
TYPE GENERAL;
DIMENSIONS 336 0 336 133 0 133 0 0;
IOLIST;
 P_0 PWR 175 0 1 METAL2 CURRENT 0.003 VOLTAGE 2.000;
  P_1 PWR 105 0 1 METAL2 CURRENT 0.003 VOLTAGE 2.000;
  P 2 B 336 14 1 METAL2;
  P_3 B 0 14 1 METAL2;
  P_4 B 336 7 1 METAL2;
  P_5 B 0 7 1 METAL2;
  P 6 B 336 105 1 METAL2;
  P_7 B 0 105 1 METAL2;
  P_8 B 336 112 1 METAL2;
  P_9 B 0 112 1 METAL2;
  P_10 B 112 133 1 METAL2;
 P_11 B 0 42 1 METAL2;
 P_12 B 273 133 1 METAL2;
 ENDIOLIST;
ENDMODULE;
```

```
# Line Format: <unit-name>\t<area-in-m2>\t<min-aspect-ratio>\t<max-aspect-ratio>\t<rotable>

Icache 8.3459e-6 1 3 1

Dcache 7.8240e-6 1 3 1

Bpred 2.2690e-6 1 5 1
```

Statistics – Collected Data

Statistics – Collected Data

Collected Data – Challenge

- Small dataset
 - Only 11 netlists were found
- Data augmentation
 - Based on circuit properties

Conclusions & Next Steps

- 3D ICs are powerful
 - Floorplanning is essential
- What is the performance of the best-known ML optimization models for 3D IC floorplanning?
- Dataset is needed
 - Reputable sources
 - Small dataset available
- Adapt popular 2D floorplanners to floorplan in 3D
 - Determine performance on area, WL, TSVs, thermal

Thank you for Listening! Any Questions?