Milestone 2 Report: Advanced Data Analysis and Feature Engineering

1. Data Analysis Report

Section: Advanced Data Analysis

Data Source:

The dataset used in this analysis was imported from the processed results of Milestone 1, specifically from the file Milestone 1_result_df.csv.

Objective:

To identify statistically significant relationships between customer features and churn behavior using various statistical methods.

Techniques Applied:

1. Independent Samples t-Test

- Used to compare the mean values of numerical features between churned and non-churned customers.
- \circ $\,$ The null hypothesis assumes that there is no significant difference in feature means between the two groups.
- Features with a p-value < 0.05 were considered statistically significant and potentially influential in predicting churn.

2. Chi-Squared Test for Independence

- o Used to evaluate the association between categorical variables and churn.
- A contingency table was constructed for each categorical feature against the churn flag.
- \circ Features with statistically significant associations (p < 0.05) were considered for inclusion in the model.

Summary of Insights:

- The statistical tests revealed that several numerical and categorical features had strong associations with customer churn.
- These insights were used to guide both feature selection and the creation of new derived features in the subsequent engineering phase.

2. Enhanced Visualizations

Section: Advanced Visualizations and Dashboards

Objective:

To visually explore and communicate churn-related trends, customer behaviors, and the importance of various features using advanced graphical techniques.

Techniques and Tools Used:

1. Churn Distribution and Segmentation Analysis

- Bar plots and pie charts were used to show the distribution of churned vs. nonchurned customers.
- These visualizations offered a clear overview of class imbalance and highlighted churn rates across key demographic segments (e.g., gender, segment, marital status).

2. Correlation Matrix (Heatmap)

- o A heatmap was created to visualize the correlation between numerical features.
- This helped identify multicollinearity and informed which features to retain or drop.

3. Customer Segmentation Visualization

- Customers were segmented based on behavioral and demographic factors, then visualized using grouped bar charts and box plots.
- These visualizations revealed patterns such as higher churn rates among customers with low interaction frequency or specific account types.

4. Feature Importance Visualization

- A logistic regression model's coefficients were visualized to show the magnitude and direction of influence for each feature.
- Positive coefficients indicate increased churn likelihood, while negative coefficients suggest customer retention indicators.

5. Interactive Dashboards (Prototype)

- A dashboard prototype was created using plotly and dash to allow dynamic filtering of churned customers based on features like segment, age, and account tenure.
- Though basic, this dashboard demonstrated the potential for business users to interactively explore churn patterns.

Output Highlights:

- Visualizations clearly illustrated key churn drivers like tenure, complaints, and account types.
- The feature importance chart validated the statistical analysis and informed feature selection.

3. Feature Engineering Summary

Section: Feature Creation and Transformation

Objective:

To enhance the predictive performance of churn models by generating new features and transforming existing ones for better representation of customer behavior and engagement.

Techniques and Steps Applied:

1. New Feature Creation

Customer Tenure:

A tenure feature was derived based on account duration, indicating how long a customer has been active. This helped capture customer loyalty patterns.

Interaction Frequency:

Features representing how frequently customers engaged with services were created (e.g., number of complaints, service usage count).

Engagement Metrics:

Additional features such as average balance per active month and normalized income-to-loan ratios were engineered to represent financial activity levels.

2. Handling Missing Data

- Missing values in categorical features were handled using placeholder encoding (e.g., "Unknown" or -1) and later treated during encoding.
- o For numerical features, either median imputation or leaving them for model handling (if tree-based models are used) was applied.

3. Categorical Encoding

One-Hot Encoding:

Applied to categorical variables such as marital status, customer segment, and education level to avoid ordinal misinterpretation.

Label Encoding:

Used for binary features (e.g., gender) where only two categories were present.

4. Numerical Transformation

Log Transformation:

Applied to skewed numerical features such as Balance and Outstanding Loans to normalize their distributions.

Feature Scaling:

StandardScaler was applied to numerical features to ensure uniform scale, especially for models sensitive to feature magnitude (e.g., Logistic Regression).

5. Outlier Handling

 Outliers in features such as Income, Credit Score, and Age were capped using the 1.5×IQR rule to mitigate their influence on the model.

Summary of Feature Engineering Impact:

- Enhanced feature expressiveness led to better model precision and recall.
- Scaling and encoding contributed to model stability and accuracy.