3 rd Canadian ed Whiskey jack on cover (pages below are for the hard copy)	2019 UBC custom ed. – Frog on cover	2014-2018 UBC custom ed. – Steller's Jay on cover	
INTRODUCTION TO ECOLOGY			
 Chapter 49: An Introduction to Ecology (1084+) Introduction 49.1 Levels of Ecological Study 49.2 What determines the distribution and abundance of organisms 	 An Introduction to Ecology (356+) Introduction 1 Levels of Ecology 2 What Determines the Distribution and Abundance of Organisms 	 Chapter 50: An Introduction to Ecology (1088+) Introduction 50.1 Levels of Ecological Study 50.5 Biogeography: Why Are Organisms Found Where They Are? Abiotic Factors Biotic Factors 	
POPULATION ECOLOGY			
Chapter 51: Population Ecology (1130+) Introduction 51.1 Distribution and Abundance 51.2 Demography Introduction Life Tables > Survivorship The Role of Life History 51.3 Population Growth (all)	Population Ecology (408+) Introduction 1 Distribution and Abundance 2 Demography:	 Chapter 52: Population Ecology (1141+) Introduction 52.1 Demography Introduction Life Tables > Survivorship The Role of Life History 52.2 Population Growth (all) 	
COMMUNITY ECOLOGY			
 Chapter 52: Community Ecology (1160+) Introduction 52.1 Species Interactions (NOT the section on defences) 52.3 Community Dynamics 	 Community Ecology (436+) Introduction 1 Species Interactions (NOT the section on defences) 3 Community Dynamics 	 Chapter 53: Community Ecology (1166+) Introduction 53.1 Species Interactions (not section on defences) 53.3 Community Dynamics 	
ECOSYSTEM ECOLOGY		Cl. 1 54 5 1 (4100)	
 Chapter 53: Population Ecology (1130+) Introduction 53.1 How Does Energy Flow through Ecosystems (not Biomagnification or Global patterns in productivity) 	 Ecosystems and Global Ecology (466+) Introduction 1 How Does Energy Flow Through Ecosystems (not Biomagnification or Global patterns in productivity) 	 Chapter 54: Ecosystems (1193+) Introduction 54.2 How Does Energy Flow through Ecosystems? (not Trophic Cascades, 	

•	53.2 How Do Nutrients Cycle through
	Fcosystems

- o Introduction
- o Global Nitrogen Cycle
- o Global Carbon Cycle

- 2 How Do Nutrients Cycle through Ecosystems
 - o Introduction
 - o Global Nitrogen Cycle
 - o Global Carbon Cycle

Biomagnification or Global Patterns in Productivity)

- 54.2 How Do Nutrients Cycle through Ecosystems?
 - Introduction
 - o Global Nitrogen Cycle
 - o Global Carbon Cycle

LEARNING OBJECTIVES

Course Goals	Broad Student Outcome	Specific Student Outcome
E. Evaluate and make predictions about the abundance and distribution of populations and communities over different time scales.	E1 Identify and evaluate how abiotic, biotic (including human), stochastic and historical factors can influence species distribution patterns and population size.	FOR ALL ECOLOGY: Describe or summarize in words key features of experimental or observational data from figures or tables. Given a scenario E1-1 Identify the abiotic factors that are most likely to affect the distribution and abundance of a species of interest. E1-2 Describe types of species interactions and their effects on the fitness. E1-3 Identify the type(s) of interaction(s) between species and justify your conclusion with evidence and clear reasoning. E1-4 Identify the fundamental or realized niche of one or more species and justify your conclusion with evidence and clear reasoning. E1-5 Explain how species interactions affect the niche occupied by a species and justify your conclusion with evidence and clear reasoning
	E2 Predict how species distribution or population size might change in response to changes in abiotic and biotic (including human) factors.	Given a scenario E2-1 Predict how biotic, abiotic or stochastic factors are likely to affect the distribution or abundance of a species and justify your conclusion with evidence and clear reasoning. E2-2 Identify resources that are likely limiting in a particular environment, predict how altering resource availability may affect species and justify your conclusion with evidence and clear reasoning. E2-3 Propose possible outcome(s) of competition both in the short term and over evolutionary timescales and provide a reasoned justification for your proposal. E2-4 Predict how invasive species could affect native species within a community.
	E3 Using mathematical models and biological concepts explain and predict how demographic patterns, species life history traits, and population dependent and independent factors affect population growth rate.	Given a scenario E3-* Be able to estimate population size using the Lincoln-Peterson Index. E3-1 Draw or identify the correct type of survivorship curve for a species. E3-2 Describe life history traits associated with different types of survivorship curves and how trade offs constrain life histories in organisms. E3-3 Identify logistic and exponential growth. E3-* Identify specific abiotic and biotic factors that may affect birth rates, death rates in a population. E3-4 Explain how density dependent and density independent factors affect population growth. E3-5 Identify when a population has reached carrying capacity. E1-6 Identify or describe or explain how changes in habitat quality, habitat size or other features of

	E4 Predict how changes in abiotic or biotic factors or disturbances can affect patterns of succession and community composition over various time scales.	 E4-1 Describe types of disturbance, severity and frequency. E4-2 Describe general characteristics of types of species found at different successional stages in a forest biome (e.g. dispersal ability, competitive ability). E4-3 Describe patterns of succession following a major disturbance (e.g. fire) in a temperate forest biome from early to late successional stages. E4-4 Explain the processes responsible for change in species composition of a forest biome from disturbance to climax community. E4-5 Given a scenario, identify the successional stage of a community. E4-6 Predict and explain how disturbance will change resource availability and abiotic conditions in a location and how these changes will affect community composition.
F. Explain the roles and interactions among individuals, populations, communities and abiotic factors in building and changing an ecosystem.	F1 Identify and describe relevant interactions between pairs of species within a community in terms of the fitness impacts that each species has on the other.	Given a scenario F1-1 Predict the type of interactions among species and the fitness effects for each species, justifying with evidence and clear reasoning.
	F2 Identify the trophic level and energy sources of an organism based on information about organisms present in an ecosystem.	Given a scenario F2-1 Construct a food web or food chain, including links to the detritus food chain or food web. F2-2 Identify the trophic level or levels for each organism.
	F3 Describe the flow of energy and nutrients though a food web or ecosystem and predict the consequences of changes to these systems at the level of species and whole ecosystems.	F3-1 Diagram the movement of carbon and nitrogen through a food web including movement to and from inorganic, unfixed or atmospheric pools. F3-2 Given a scenario, predict how the addition or removal of nutrients could affect productivity or organism biomass and justify with evidence and clear reasoning.
	F4 Explain how human effects or other disruptions to nutrient cycling can alter ecosystems.	F4-1 Describe how humans have affected global biogeochemical cycles (carbon, nitrogen). F4-3 Describe evidence for the effect of humans on species abundance and distribution.