MTH5105 Differential and Integral Analysis 2010-2011

Solutions 9

1 Exercises

- 1) (a) Show that for all $x \in \mathbb{R}$, the sum $\sum_{k=1}^{\infty} \frac{1}{k} \sin\left(\frac{x}{k}\right)$ converges. [You may use that $|\sin(t)| \le |t|$ for all $t \in \mathbb{R}$.]
 - (b) Show that the sum $\sum_{k=1}^{\infty} \frac{1}{k^2} \cos\left(\frac{x}{k}\right)$ converges uniformly for all $x \in \mathbb{R}$.
 - (c) Deduce that $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \sum_{k=1}^{\infty} \frac{1}{k} \sin\left(\frac{x}{k}\right)$$

is differentiable.

Solution:

(a) As $|\sin t| \le |t|$ for all $t \in \mathbb{R}$, we have

$$\left| \sum_{k=1}^{\infty} \left| \frac{1}{k} \sin\left(\frac{x}{k}\right) \right| \le |x| \sum_{k=1}^{\infty} \frac{1}{k^2}$$

 $\sum \frac{1}{k^2}$ converges, so that the sum converges absolutely (for fixed x).

(b) As $|\cos t| \le 1$ for all $t \in \mathbb{R}$, we have

$$\left| \sum_{k=1}^{\infty} \frac{1}{k^2} \cos \left(\frac{x}{k} \right) \right| \le \sum_{k=1}^{\infty} \frac{1}{k^2} .$$

Thus the sum converges uniformly by the Weierstraß criterion, as the bound $\sum \frac{1}{k^2}$ is independent of x.

- (c) Let $f_k(x) = \frac{1}{k} \sin\left(\frac{x}{k}\right)$. Then $f_k'(x) = \frac{1}{k^2} \cos\left(\frac{x}{k}\right)$. As $\sum f_k$ converges pointwise and $\sum f_k'$ converges uniformly, $f = \sum f_k$ is differentiable and $f' = \sum f_k'$.
- 2) Is the function $f: \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = \sum_{k=1}^{\infty} \sin^2(x/k)$$

differentiable?

Solution:

If $\sum f_k$ converges pointwise and $\sum f'_k$ converges uniformly, then $f = \sum f_k$ is differentiable and $f' = \sum f'_k$.

Let $f_k(x) = \sin^2(x/k)$. Then $f'_k(x) = 2\sin(x/k)\cos(x/k)/k$.

As $|\sin t| \le |t|$ for all $t \in \mathbb{R}$, we have

$$\sum_{k=1}^{\infty} |\sin^2(x/k)| \le x^2 \sum_{k=1}^{\infty} \frac{1}{k^2} .$$

 $\sum \frac{1}{k^2}$ converges, so that the sum converges absolutely (for fixed x).

[We could have proven uniform convergence on bounded intervals, but we don't need to. In fact, it would have sufficed to prove convergence at a single point, say at x = 0, where it is immediately obvious.]

As also $|\cos t| \le 1$ for all $t \in \mathbb{R}$, we have

$$\left| \sum_{k=1}^{\infty} 2\sin(x/k)\cos(x/k)/k \right| \le |x| \sum_{k=1}^{\infty} \frac{1}{k^2} .$$

If we restrict x to [-A, A] for some A > 0, then the sum converges uniformly on [-A, A] by the Weierstraß criterion, as the upper bound $A \sum \frac{1}{k^2}$ is independent of x.

Thus we can conclude that $f = \sum f_k$ is differentiable with $f' = \sum f'_k$ on any interval [-A, A], and hence on \mathbb{R} .

- 3) Let $f_n:[0,1]\mapsto\mathbb{R}$ be a sequence of differentiable functions, and let $f:[0,1]\mapsto\mathbb{R}$. Consider the statements
 - (a) $f_n \to f$ pointwise,
 - (b) $f_n \to f$ uniformly,
 - (c) f'_n converges pointwise,
 - (d) $f'_n \to f'$ pointwise,
 - (e) f continuous,
 - (f) f differentiable,
 - (g) $\lim_{n\to\infty} \int_0^1 f_n(x) dx = \int_0^1 f(x) dx$,

The only valid implications are:

- (b) implies (a),(e),(g)
- (d) implies (c)
- (f) implies (e)

*4) Let $f_n:[0,\infty)\mapsto\mathbb{R}$ be a sequence of continuous functions that converge uniformly to f(x)=0. Show that if

$$0 \le f_n(x) \le e^{-x}$$

for all $x \geq 0$ and for all $n \in \mathbb{N}$, then

$$\lim_{n \to \infty} \int_0^\infty f_n(x) \, dx = 0 \; .$$

[Recall from Calculus I the definition of the improper integral $\int_0^\infty f(x) dx = \lim_{A \to \infty} \int_0^A f(x) dx$.] Solution:

As f_n converges uniformly to zero, we have that

$$\lim_{n \to \infty} \int_0^M f_n(x) \, dx = 0$$

for any fixed M > 0.

To deal with the improper integral, we split the integral $\int_0^\infty f_n(x) dx$ into two pieces by writing

$$\int_0^\infty f_n(x) \, dx = \int_0^M f_n(x) \, dx + \int_M^\infty f_n(x) \, dx \; .$$

As we are dealing with improper integrals, we need to be precise with the limits involved, so we write for A>M

$$\int_0^A f_n(x) \, dx = \int_0^M f_n(x) \, dx + \int_M^A f_n(x) \, dx \, ,$$

and take the appropriate limit of $A \to \infty$.

We have therefore

$$\lim_{n \to \infty} \int_0^\infty f_n(x) \, dx = \lim_{n \to \infty} \lim_{A \to \infty} \left(\int_0^M f_n(x) \, dx + \int_M^A f_n(x) \, dx \right)$$
$$= \lim_{n \to \infty} \int_0^M f_n(x) \, dx + \lim_{n \to \infty} \lim_{A \to \infty} \int_M^A f_n(x) \, dx$$
$$= \lim_{n \to \infty} \lim_{A \to \infty} \int_M^A f_n(x) \, dx .$$

Now by assumption $0 \le f_n(x) \le e^{-x}$, and therefore

$$0 \le \int_{M}^{A} f_n(x) \, dx \le \int_{M}^{A} e^{-x} \, dx < e^{-M} \, .$$

Thus

$$0 \le \lim_{n \to \infty} \lim_{A \to \infty} \int_{M}^{A} f_n(x) \, dx \le e^{-M} \, .$$

This holds for any chosen M > 0, whence the upper bound is $\inf_{M>0} (e^{-M}) = 0$.