Digitális technika

XII. Regiszterek Gyűrűs számlálók Frekvencia osztók

12.1. Regiszterek

<u>Regiszter</u>

néhány bit tárolására képes áramkör

- jellemzően 4,8,16,32,... bitesek
- felépítésük: több tároló összekapcsolásával alakíthatók ki
- a tárolók jellemzően függetlenek, de közös az órajel → egyszerre váltanak
- általában D tárolókból épülnek fel
- típusai: átmeneti tárolók (pufferregiszterek, latch tárolók), shift regiszterek

Átmeneti tárolók

- minden tárolóba egyszerre, párhuzamosan történik beírás (az órajelre)

4 bites regiszter felépítése

12.1. Regiszterek

Regiszter jelölései

Kapacitás növelése

több regiszter összekapcsolása

pl. 8 bites kialakítása 2db 4 bitesből

12.2. Shift regiszterek

Léptető (shift) regiszter

beírás alapvetően sorosan, a tároló tartalmak mindig lépnek egyet

- léptetés szerint lehetnek: jobbra, balra, jobbra/balra léptetők
- beírás alapján lehetnek: soros, soros/párhuzamos
- kiolvasás alapján lehetnek: soros, soros/párhuzamos
- felhasználásuk: soros-párhuzamos átalakító, párhuzamos-soros átalakító, gyűrűs számlálóként
 - pl. 4 bites jobbra léptető, soros beírású, soros/párhuzamos kiolvasású shiftregiszter

12.2. Shift regiszterek

Léptető (shift) regiszter jelölése

E két alaptípusnak többféle variációja lehet

pl. SN7495, 4 bites léptetőregiszter, de párhuzamos beírás is lehet !!

12.3. Gyűrűs számlálók

Gyűrűs számláló

- léptető regiszterek visszacsatolásával kialakított számláló áramkörök

1. moduló-N számláló

- a kimeneti állapotok száma → N (modulus),
- mindig csak 1 kimenet 1-es → N-ből 1 kód pl. moduló-5

Az órajelre az 1-es körbe lépked

Előnye: gyors (szinkron)

Hátránya: pazarló, N állapot → N tároló, a modulus növelésével egyre több tároló kell

12.3. Gyűrűs számlálók

2. Johnson számláló

- az utolsó tároló negált kimenete van visszacsatolva

Előnye: az egyszerű kódolás $_{\rightarrow}$ minden állapot dekódolható csak két bemenetű AND kapukkal ($\overline{Q}_{A}^{*}\overline{Q}_{D}^{*}Q_{A}^{*}\overline{Q}_{D}^{*}Q_{C}^{*}Q_{D}^{$

12.3. Gyűrűs számlálók

3. Maximális ciklusú számláló

- XOR (antivalencia) kapuval visszacsatolt léptetőregiszter
- kiindulási állapot: minden tároló 1 értékű (preset bemenetek használatával) pl. 4 tárolóval → 1111–0111–0011–0001–1000–0100–0010–1001–1100– --0110--1011--0101--1010--1101--1110--1111--0111--...

Előnye:

- majdnem minden állapot hasznosítható (csak a tiszta 0 nem !) N tároló \rightarrow 2 $^{\text{N}}$ -1 állapot
- a kódszavak látszólag rendszertelenül vannak egymás után → álvéletlen generátor nagy bitszám esetén!

1. feladat

- írd fel az alábbi áramkör vezérlési függvényeit, állapottábláját!
- rajzold fel az állapot diagramot!
- az indítás a reset bemenetre adott rövid 0 impulzussal történik ! helyi értékek: A-4 B-2 C-1

1. feladat

vezérlési függvények

$$D_A = \overline{Q}_C$$

$$D_B = Q_A$$

$$D_C = Q_B$$

Állapot tábla

Jelenlegi állapot

következő	ءااء	anot
KUVELKEZU	allo	ipui

- 44	QΑ	q в	qc	Da	D в	Dc	Qа	Qв	Qс
start	0	0	0	1	0	0	1	0	0
	0	0	1	0	0	0	0	0	0
	0	1	0	1	0	1	1	0	1
	0	1	1	0	0	1	0	0	1
	1	0	0	1	1	0	1	1	0
	1	0	1	0	1	0	0	1	0
	1	1	0	1	1	1	1	1	1
	1	1	1	0	1	1	0	1	1

Állapot diagram

Bináris állapot diagram

2. feladat

- írd fel az alábbi áramkör vezérlési függvényeit, állapottábláját!
- rajzold fel az állapot diagramot, a teljeset is!
- az indítás a reset bemenetre adott rövid 0 impulzussal történik ! helyi értékek: A-1 B-2 C-4

2. feladat

vezérlési függvények

$$D_A = \overline{Q_B * Q_C}$$

$$D_B = Q_A$$

$$D_C = Q_B$$

Állapot diagram

4 1 3 6 7

Állapot tábla Jelenlegi állapot

következő állapot

qс	Q b	Q а	Dc	D в	Da	Qс	Qв	QΑ
0	0	0	0	0	1	0	0	1
0	0	1	0	1	1	0	1	1
0	1	0	1	0	1	1	0	1
0	1	1	1	1	1	1	1	1
1	0	0	0	0	1	0	0	1
1	0	1	0	1	1	0	1	1
1	1	0	1	0	0	1	0	0
1	1	1	1	1	0	1	1	0

teljes állapot diagram

start

12.5. Frekvenciaosztók

Felező (1:2) osztó

a kimenet az órajel lefutó élénél vált → a periódusideje kétszerese az órajelének

1:2ⁿ osztó

n darab J-K (vagy T) tároló sorba kapcsolásával

pl. 1:4 arányú osztó

12.5. Frekvenciaosztók

1:3 osztó

Egyéb esetekben célszerű számlálót alkalmazni

1. feladat

- Rajzold fel az alábbi áramkör kimeneteinek idődiagramjait, ha szinkron beíró és törlő (reset) bemenetek vannak!
- Mennyi a QD kimeneti jel frekvenciája, kitöltési tényezője, ha az órajel frekvencia 100 kHz ?
- Hogyan kell módosítani a kapcsolást, hogy a QD kimeneti jel frekvenciája ne változzon, de a kitöltési tényezője 12,5% legyen ?

1. feladat Megoldás

1. feladat Megoldás, folytatás

Állapot diagram

kimenetek idődiagramjai

Q_{D} frekvenciája:

Q_D kimenet periódusideje 8 órajel periódusig tart, tehát 8-as frekvencia osztó, frekvenciája →

$$f_D = f_{be} / 8$$

$$f_D = 100 \text{ kHz} / 8 = 12,5 \text{ kHz}$$

Q_D kitöltési tényezője:

A 8 állapotból Q_D kimenet

- 2 órajel alatt 0 értékű (6,7)
- 6 órajel alatt 1-es (8-13)
 kitöltési tényező →

$$k = 100 * ti / T$$

$$k = 100 * 6 / 8 = 75 \%$$

1. feladat Megoldás, folytatás 2.

Új állapot diagram kitöltési tényező 12,5 % legyen: Hogy a frekvencia ne változzon → továbbra is 8 állapotnak kell lennie! k = 100 * ti / T = 12,5 % \rightarrow $ti/T = 0.125 = ti/8 \rightarrow ti = 8*0.125 = 1 \rightarrow$ Tehát: - 1 órajel alatt 1 értékű - 7 órajel alatt 0 értékű legyen Qp!! **Q**D !! csak itt 1-es CT2 ΕN ---> órajel Q_A Сp fbe Q_B A 8. állapot legyen kikapuzva, és Q_{C} ezután az órajellel szinkronban az ₋oad 8 1-es állapot íródjon be Q_{D} 1. áll. D (8) (4)B (2) A (1) 8. állapot SR reset