HW₃

1.14 Prove that $X \mapsto CX$ defines a functor $\mathbf{Top} \to \mathbf{Top}$. (Hint: use exercise 1.11)

Proof. If $f: X \to Y$ is continuous, then $f \times 1: X \times I \to Y \times I$ is continuous. Since $f \times 1$ maps (x,1) to (f(x),1) for all x, it preserves the relation \sim from the definition of the cone over a space. Hence, by Exercise 1.11, we get a map $\overline{f}: CX \to CY$.

To see that the association $f \mapsto \overline{f}$ is functorial, we need to check that it preserves identities and composition. It is clear from the definition that $\overline{1}_x = 1_{CX}$. For composition, for $t \neq 1$, we have $\overline{fg}(x,t) = ((fg)(x),t) = (\overline{f} \circ \overline{g})(x,t)$. For the other case, we have $\overline{fg}(x,1) = (*,1) = (\overline{f} \circ \overline{g})(*,1)$ where (*,1) denotes the vertex of the cone.

1.19

- (i) A space X is path connected iff every two constant maps $X \to X$ are homotopic.
- (ii) If X is contractible and Y is path connected, then any two continuous maps $X \to Y$ are homotopic (and each is nullhomotopic).

Proof. For (i), first suppose X is path connected. Let $c_x, c_y : X \to X$ be the constant maps at x and y. Since X is path connected, there exists a path $p: I \to X$ from x to y. The map $H: X \times I \to X$ by H(x,t) = p(t) is a homotopy from c_x to c(y).

Conversely, every two constant maps $X \to X$ are homotopic. Let $x, y \in X$ and $H: c_x \simeq c_y$. Define $p: I \to X$ by $p(t) = H(x_0, t)$ for any fixed $x_0 \in X$. Then p is a path from x to y.

For (ii), let $f, g: X \to Y$. Since X is contractible there exists $x_0 \in X$ with a homotopy $H: 1_X \simeq c_{x_0}$. Let p be a path from $f(x_0)$ to $g(x_0)$. Let $G: X \times I \to Y$ be defined by the concatenation $(f \circ H) * p(t) * (g \circ H^{-1})$. Then $G: f \simeq g$.

1.23

- (i) The $\sin(1/x)$ space X has exactly two path components: the vertical line A and the graph G.
- (ii) Show that the graph G is not closed. Conclude that, in contrast to components (which are always closed), path components may not be closed.
- (iii) Show that the natural map $\nu: X \to X/A$ is not an open map. (Hint: Let U be the open disk with center $(0/\frac{1}{2})$ and radius $\frac{1}{4}$; show that $\nu(X \cap U)$ is not open in $X/A (\approx [0, \frac{1}{2\pi}])$.)

- Proof. (i) It is clear that A and G are both path connected. Hence it suffices to show that there is no path in X from (0,1) to $(1/\pi,0)$. Suppose such a path p exists. Then $\lim_{t\to 0} p(t) = (0,1)$. Hence, there exists t_0 such that the y(p(t)) > 1/2 for all $t < t_0$, where $y(\cdot)$ denotes the projection on the y-coordinate. Pick n so large that $(2\pi n)^{-1} < t_0$. Then since $\sin(1/x) < 0$ for $(2\pi n + 2\pi)^{-1} < x < (2\pi n + \pi)^{-1}$, the graph of p cannot meet this strip. Thus, the graph of p is disconnected, a contradiction.
- (ii) The sequence $(1/(n\pi), 0)$ lies in G, but its limit is the origin.
- (iii) Following the hint, let U be the open disk with center $(0, \frac{1}{2})$ and radius $\frac{1}{4}$. I claim that $\nu(X \cap U)$ is not open in X/A. If it were, then $\nu^{-1}\nu(X \cap U) = A \cup (X \cap U)$ is open in X. This is not true since any neighborhood of, say, $(0, -\frac{1}{2})$ must intersect G below the x-axis.

1.32 Assume that X, Y, and Z are spaces with $X \subset Y$. If X is a retract, then every continuous map $f: X \to Z$ can be extended to a continuous map $\tilde{f}: Y \to Z$, namely, $\tilde{f} = fr$, where $r: Y \to X$ is a retraction. Prove that if X is a retract of Y and if f_0 and f_1 are homotopic continuous maps $X \to Z$, then $\tilde{f}_0 \simeq \tilde{f}_1$.

Proof. Let $F: f_0 \simeq f_1$. Let $G: Y \times I \to Z$ be defined by G(y,t) = F(r(y),t). Then $G(y,0) = F(r(y),0) = f_0r(y) = \tilde{f}_0(y)$, and similarly for G(y,1). Hence G is the desired homotopy.

1.34

(i) Define $i: X \to M_f$ by i(x) = [x, 0] and $j: Y \to M_f$ by j(y) = [y]. Show that i and j are homeomorphisms to subspaces of M_f .

Proof. It is easy to see that i, j are continuous. The map i is injective since the relation \sim does not affect its image. The map j is also injective since the fibers of f are disjoint (hence only one $g \in Y$ is in each equivalence class of \sim). Thus it suffices to show that i, j are open maps.

Let $U \subset X$ be open. Then $i(U) = \pi_X^{-1}(U) \cap i(X)$ is open, where $\pi_X : X \times I \to X$ is the canonical projection. Hence i is an open map.

Let $U \subset Y$ be open. Let $\nu: (X \times I) \sqcup Y \to M_f$ be the quotient map, and $i_1: X \times I \to (X \times I) \sqcup Y$ and $i_2: Y \to (X \times I) \sqcup Y$ be the canonical injections. Then $\nu^{-1}j(U) = i_1(f^{-1}(U) \times \{1\}) \cup i_2(U) = (i_1(f^{-1}(U)) \cap j(Y)) \cup i_2(U)$ is open, hence j(U) is open.

(ii) Define $r: M_f \to Y$ by r[x,t] = f(x) for all $(x,t) \in X \times I$ and r[y] = y. Prove that r is a retraction $rj = 1_Y$. *Proof.* If $y \in Y$ and $[x,1] \sim y$, then r[x,1] = f(x) = y = r[y]. Hence r is well-defined.

It is also clear that $rj = 1_Y$. To see that r is continuous, note that $r = \nu \circ ((f\pi_X) \sqcup id_Y)$, where ν is the quotient map defined above and $\pi_X : X \times I \to X$ is the canonical projection.

(iii) Prove that Y is a deformation retract of M_f . (Hint: Define $F: M_f \times I \to M_f$ by

$$F([x,t],s) = [x,(1-s)t+s] \text{ if } x \in X, t \in I;$$

$$F([y],s) = [y] \text{ if } y \in Y, s \in I$$

.)

Proof. Let F be defined as in the hint. To see that F is a well-defined continous map, let $G: ((X \times I) \sqcup Y) \times I \to ((X \times I) \sqcup Y) \times I$ be defined by G(x,t,s) = (x,(1-s)t+s) and G(y,s) = y for $(x,t) \in X \times I$ and $y \in Y$. Then G is continuous, and G(x,1,s) = (x,1) and G(y,s) = y for all $x \in X$ and $y \in Y$. Thus, G respects the identification map defining M_f . Hence F, the induced map, is a continuous map.

Moreover, F([x,t],0) = [x,t] and F([y],0) = [y], so $F(\cdot,0) = 1_{M_f}$. Lastly, $F([x,t],1) = [x,1] \in Y$ and F([y],1) = [y]. Thus, Y is a deformation retract of M_f .

(iv) Show that every continuous map $f: X \to Y$ is homotopic to $r \circ i$, where i is an injection and r is a homotopy equivalence.

Proof. Let i be the injection i from part (i). Let r be defined as in (ii). The proof of (iii) shows that $j \circ r \simeq 1_{M_f}$, so r is a homotopy equivalence. \square

2.8 Let $A \subset \mathbb{R}^n$ be an affine set and let $T: A \to \mathbb{R}^k$ be an affine map. If $X \subset A$ is affine (or convex), then $T(X) \subset \mathbb{R}^k$ is affine (or convex). In particular, if a, b are distinct points in A and if l is the line segment with endpoints a, b, then T(l) is the line segment with points T(a), T(b) if $T(a) \neq T(b)$, and T(l) collapses to the point T(a) if T(a) = T(b).

Proof. To see that T(X) is affine (convex), let $T(a), T(b) \in T(X)$. Then for any $\alpha + \beta = 1$ (with α, β nonnegative in the convex case), we have $\alpha T(a) + \beta T(b) = T(\alpha a + \beta b) \in T(X)$ since $\alpha a + \beta b \in X$ since X is affine (convex).