# Ćirić type fixed point theorems

# Adrian Petrușel

Babeş-Bolyai University Cluj-Napoca Faculty of Mathematics and Computer Science

January, 2014

- Introduction
  - Abstract
- Some known results
  - The single-valued case
  - The multi-valued case
- Fixed point theorems in metric spaces endowed with a partial order
  - Basic concepts
  - Some abstract results
  - Fixed point theorems for  $\varphi$ -contractions
- 4 Fixed point theorems in metric spaces endowed with a graph
  - Basic concepts
  - The single-valued case
  - The multi-valued case
- Main works



- Introduction
  - Abstract
- Some known results
  - The single-valued case
  - The multi-valued case
- Sixed point theorems in metric spaces endowed with a partial order
  - Basic concepts
  - Some abstract results
  - Fixed point theorems for  $\varphi$ -contractions
- 4 Fixed point theorems in metric spaces endowed with a graph
  - Basic concepts
  - The single-valued case
  - The multi-valued case
- Main works



The purpose of this talk is to present some fixed point and strict results for (single-valued and multi-valued) generalized contractions of Ćirić type.

The purpose of this talk is to present some fixed point and strict results for (single-valued and multi-valued) generalized contractions of Ćirić type.

Connections with other results given in:

L.B. Ćirić: *Fixed points for generalized multi-valued contractions*, Math. Vesnik, 9(24) (1972), 265-272.

L.B. Ćirić: *Fixed points for generalized multi-valued contractions*, Math. Vesnik, 9(24) (1972), 265-272.

L.B. Ćirić: *A generalization of Banach's contraction principle*, Proc. Amer. Math. Soc., 45 (1974), 267-273.

L.B. Ćirić: *Fixed points for generalized multi-valued contractions*, Math. Vesnik, 9(24) (1972), 265-272.

L.B. Ćirić: *A generalization of Banach's contraction principle*, Proc. Amer. Math. Soc., 45 (1974), 267-273.

L.B. Ćirić: Contractive type non-self mappings on metric spaces of hyperbolic type, J. Math. Anal. Appl., 317 (2006), 28-42.

- L.B. Ćirić: *Generalized contraction and fixed point theorems*, Publ. Inst. Math., 12 (1971), 19-26.
- L.B. Ćirić: *Fixed points for generalized multi-valued contractions*, Math. Vesnik, 9(24) (1972), 265-272.
- L.B. Ćirić: *A generalization of Banach's contraction principle*, Proc. Amer. Math. Soc., 45 (1974), 267-273.
- L.B. Ćirić: Contractive type non-self mappings on metric spaces of hyperbolic type, J. Math. Anal. Appl., 317 (2006), 28-42.
- G.E. Hardy and T.D. Rogers: A generalization of a fixed point theorem of Reich, Canad. Math. Bull., 16(1973), 201-206.
- S. Reich: Fixed point of contractive functions, Boll. Un. Mat. Ital., 5 (1972), 26-42.

- L.B. Ćirić: *Generalized contraction and fixed point theorems*, Publ. Inst. Math., 12 (1971), 19-26.
- L.B. Ćirić: *Fixed points for generalized multi-valued contractions*, Math. Vesnik, 9(24) (1972), 265-272.
- L.B. Ćirić: *A generalization of Banach's contraction principle*, Proc. Amer. Math. Soc., 45 (1974), 267-273.
- L.B. Ćirić: Contractive type non-self mappings on metric spaces of hyperbolic type, J. Math. Anal. Appl., 317 (2006), 28-42.
- G.E. Hardy and T.D. Rogers: A generalization of a fixed point theorem of Reich, Canad. Math. Bull., 16(1973), 201-206.
- S. Reich: Fixed point of contractive functions, Boll. Un. Mat. Ital., 5 (1972), 26-42.

I.A. Rus: *Generalized Contractions and Applications*, Transilvania Press, 2001.

- I.A. Rus: *Generalized Contractions and Applications*, Transilvania Press, 2001.
- I. Beg, A.R. Butt and S. Radojevic: *The contraction principle for set-valued mappings on a metric space with a graph*, Computers Math. Appl., 60(2010), 1214-1219.

- I.A. Rus: *Generalized Contractions and Applications*, Transilvania Press, 2001.
- I. Beg, A.R. Butt and S. Radojevic: *The contraction principle for set-valued mappings on a metric space with a graph*, Computers Math. Appl., 60(2010), 1214-1219.
- A. Petrușel, G. Petrușel: Multivalued Picard operator, J. Nonlinear Convex Anal., 2012

- I.A. Rus: *Generalized Contractions and Applications*, Transilvania Press, 2001.
- I. Beg, A.R. Butt and S. Radojevic: *The contraction principle for set-valued mappings on a metric space with a graph*, Computers Math. Appl., 60(2010), 1214-1219.
- A. Petrușel, G. Petrușel: Multivalued Picard operator, J. Nonlinear Convex Anal., 2012
- T. Dinevari and M. Frigon: Fixed point results for multivalued contractions on a metric space with a graph, J. Math. Anal. Appl., 405(2013), 2, 507-517.

- I.A. Rus: *Generalized Contractions and Applications*, Transilvania Press, 2001.
- I. Beg, A.R. Butt and S. Radojevic: *The contraction principle for set-valued mappings on a metric space with a graph*, Computers Math. Appl., 60(2010), 1214-1219.
- A. Petrușel, G. Petrușel: Multivalued Picard operator, J. Nonlinear Convex Anal., 2012
- T. Dinevari and M. Frigon: Fixed point results for multivalued contractions on a metric space with a graph, J. Math. Anal. Appl., 405(2013), 2, 507-517.
- C. Chifu, G. Petruşel and M. Bota, *Fixed points and strict fixed points for multivalued contractions of Reich type on metric spaces endowed with a graph*, Fixed Point Theory Appl. 2013, 2013:203, doi:10.1186/1687-1812-2013-203.

- I.A. Rus: *Generalized Contractions and Applications*, Transilvania Press, 2001.
- I. Beg, A.R. Butt and S. Radojevic: *The contraction principle for set-valued mappings on a metric space with a graph*, Computers Math. Appl., 60(2010), 1214-1219.
- A. Petrușel, G. Petrușel: Multivalued Picard operator, J. Nonlinear Convex Anal., 2012
- T. Dinevari and M. Frigon: Fixed point results for multivalued contractions on a metric space with a graph, J. Math. Anal. Appl., 405(2013), 2, 507-517.
- C. Chifu, G. Petruşel and M. Bota, *Fixed points and strict fixed points for multivalued contractions of Reich type on metric spaces endowed with a graph*, Fixed Point Theory Appl. 2013, 2013:203, doi:10.1186/1687-1812-2013-203.

- Introduction
  - Abstract
- Some known results
  - The single-valued case
  - The multi-valued case
- Fixed point theorems in metric spaces endowed with a partial order
  - Basic concepts
  - Some abstract results
  - ullet Fixed point theorems for  $\varphi$ -contractions
- Fixed point theorems in metric spaces endowed with a graph
  - Basic concepts
  - The single-valued case
  - The multi-valued case
- Main work



- Introduction
  - Abstract
- Some known results
  - The single-valued case
  - The multi-valued case
- Sixed point theorems in metric spaces endowed with a partial order
  - Basic concepts
  - Some abstract results
  - Fixed point theorems for  $\varphi$ -contractions
- 4 Fixed point theorems in metric spaces endowed with a graph
  - Basic concepts
  - The single-valued case
  - The multi-valued case
- Main works



- Introduction
  - Abstract
- Some known results
  - The single-valued case
  - The multi-valued case
- Fixed point theorems in metric spaces endowed with a partial order
  - Basic concepts
  - Some abstract results
  - ullet Fixed point theorems for  $\varphi$ -contractions
- 4 Fixed point theorems in metric spaces endowed with a graph
  - Basic concepts
  - The single-valued case
  - The multi-valued case
- Main works



- Introduction
  - Abstract
- 2 Some known results
  - The single-valued case
  - The multi-valued case
- Fixed point theorems in metric spaces endowed with a partial order
  - Basic concepts
  - Some abstract results
  - ullet Fixed point theorems for arphi-contractions
- 4 Fixed point theorems in metric spaces endowed with a graph
  - Basic concepts
  - The single-valued case
  - The multi-valued case
- Main works

- Introduction
  - Abstract
- Some known results
  - The single-valued case
  - The multi-valued case
- 3 Fixed point theorems in metric spaces endowed with a partial order
  - Basic concepts
  - Some abstract results
  - ullet Fixed point theorems for arphi-contractions
- 4 Fixed point theorems in metric spaces endowed with a graph
  - Basic concepts
  - The single-valued case
  - The multi-valued case
- Main works



- ▶ **Definition.** Let X be a nonempty set. Then, by definition  $(X, \rightarrow, \leq)$  is an ordered L-space if and only if:
  - (i)  $(X, \rightarrow)$  is an L-space;
  - (ii)  $(X, \leq)$  is a partially ordered set;
  - (iii)  $(x_n)_{n \in \mathbb{N}} \to x$ ,  $(y_n)_{n \in \mathbb{N}} \to y$  and  $x_n \leq y_n$ , for each  $n \in \mathbb{N} \Rightarrow x < y$ .
- ▶ If (X, d) is a metric space, then the triple  $(X, d, \leq)$  will be called an ordered metric space.

Let  $(X, \leq)$  be a partially ordered set. Denote

$$X_{\leq} := \{(x, y) \in X \times X | x \leq y \text{ or } y \leq x\}.$$

Let  $(X, \leq)$  be a partially ordered set. Denote

$$X_{\leq} := \{(x,y) \in X \times X | x \leq y \text{ or } y \leq x\}.$$

▶ In the same setting, consider  $f: X \to X$ . Then:  $(LF)_f := \{x \in X | x \le f(x)\}$  is the lower fixed point set of f,  $(UF)_f := \{x \in X | x \ge f(x)\}$  is the upper fixed point set of f.

Let  $(X, \leq)$  be a partially ordered set. Denote

$$X_{\leq} := \{(x,y) \in X \times X | x \leq y \text{ or } y \leq x\}.$$

- In the same setting, consider  $f: X \to X$ . Then:  $(LF)_f := \{x \in X | x \le f(x)\}$  is the lower fixed point set of f,  $(UF)_f := \{x \in X | x \ge f(x)\}$  is the upper fixed point set of f.
- ▶ If  $f: X \to X$  and  $g: Y \to Y$ , then the cartesian product of f and g is denoted by  $f \times g$  and it is defined in the following way:

$$f \times g : X \times Y \to X \times Y, (f \times g)(x, y) := (f(x), g(y)).$$

**Definition.** (I.A. Rus) Let  $(X, \rightarrow)$  be an L-space.

An operator  $f: X \to X$  is, by definition, a Picard operator if:

- (i)  $F_f = \{x^*\};$
- (ii)  $(f^n(x))_{n\in\mathbb{N}} \to x^*$  as  $n \to \infty$ , for all  $x \in X$ .

**Theorem.** (Ran and Reurings-2004) Let X be a partially ordered set such that every pair  $x, y \in X$  has a lower and an upper bound. Let d be a metric on X such that the metric space (X, d) is complete. Let  $f: X \to X$  be a continuous and monotone (i. e., either decreasing or increasing) operator. Suppose that the following two assertions hold:

- 1) there exists  $a \in ]0,1[$  such that  $d(f(x),f(y)) \leq a \cdot d(x,y)$ , for each  $x,y \in X$  with x < y
  - 2)  $(LF)_f \cup (UF)_f \neq \emptyset$ .
- Then f is a Picard operator.

**Theorem.** (Nieto and Rodríguez-López, 2005) Let X be a partially ordered set such that every pair  $x, y \in X$  has a lower or an upper bound. Let d be a metric on X such that the metric space (X, d) is complete. Let  $f: X \to X$  be an increasing operator. Suppose that the following two assertions hold:

- 1) there exists a  $\in$  ]0,1[ such that  $d(f(x), f(y)) \le a \cdot d(x, y)$ , for each  $x, y \in X$  with  $x \le y$ ;
  - 2) there exists  $x_0 \in X$  such that  $x_0 \leq f(x_0)$ ;
- 3) if an increasing sequence  $(x_n)$  converges to x in X, then  $x_n \leq x$  for all  $n \in \mathbb{N}$ .

Then f is a Picard operator.

- Introduction
  - Abstract
- 2 Some known results
  - The single-valued case
  - The multi-valued case
- 3 Fixed point theorems in metric spaces endowed with a partial order
  - Basic concepts
  - Some abstract results
  - Fixed point theorems for  $\varphi$ -contractions
- 4) Fixed point theorems in metric spaces endowed with a graph
  - Basic concepts
  - The single-valued case
  - The multi-valued case
- Main works

#### Lemma.

- (A. Petrușel and Rus, 2006)
- Let  $(X, \rightarrow)$  be an L-space and U a symmetric subset of  $X \times X$  such that
- $\Delta(X) \subset U$ . Let  $f: X \to X$  be an operator. Suppose that:
- (i) for each  $x, y \in X$  with  $(x, y) \notin U$  there exists  $z \in X$  such that  $(x, z) \in U$  and  $(y, z) \in U$ ;
  - (ii) there exist  $x_0, x^* \in X$  such that  $x_0 \in A_f(x^*)$ ;
  - (iii)  $(x, y) \in U$  and  $x \in A_f(x^*)$  implies  $y \in A_f(x^*)$ .
- Then  $A_f(x^*) = X$ .

Moreover, if f is orbitally continuous, then f is a Picard operator.

where

$$A_f(x^*) := \{ x \in X : (f^n(x))_{n \in \mathbb{N}} \to x^* \text{ as } n \to \infty \}.$$

A natural consequence of the above result follows by choosing  $U:=X_{\leq}$ .

## Lemma.

- (A. Petrușel and Rus, 2006)
- Let  $(X, \rightarrow, \leq)$  be an ordered L-space and  $f: X \rightarrow X$  be an operator. Suppose that:
- (i) for each  $x, y \in X$  with  $(x, y) \notin X_{\leq}$  there exists  $z \in X$  such that  $(x, z) \in X_{\leq}$  and  $(y, z) \in X_{\leq}$ ;
- (ii) there exist  $x_0, x^* \in X$  such that  $x_0 \in A_f(x^*)$ ;
  - (iii)  $(x, y) \in X_{<}$  and  $x \in A_f(x^*)$  implies  $y \in A_f(x^*)$ ;
  - (iv) f is orbitally continuous
- Then f is a Picard opeartor.

- Introduction
  - Abstract
- 2 Some known results
  - The single-valued case
  - The multi-valued case
- 3 Fixed point theorems in metric spaces endowed with a partial order
  - Basic concepts
  - Some abstract results
  - ullet Fixed point theorems for arphi-contractions
- 4 Fixed point theorems in metric spaces endowed with a graph
  - Basic concepts
  - The single-valued case
  - The multi-valued case
- Main works

### Theorem.

- (O'Regan and A. Petrușel, 2008)
- Let  $(X, d, \leq)$  be an ordered metric space and  $f: X \to X$  be an operator. We suppose that:
- (i) For each  $x, y \in X$  with  $(x, y) \notin X_{\leq}$  there exists  $c(x, y) \in X$  such that  $(x, c(x, y)) \in X_{\leq}$  and  $(y, c(x, y)) \in X_{\leq}$ ;
  - (ii)  $f:(X,\leq)\to(X,\leq)$  is increasing;
  - (iii) there exists  $x_0 \in X$  such that  $x_0 \leq f(x_0)$ ;
  - $(iv)_a$  f is orbitally continuous
  - or
- (iv)<sub>b</sub> if an increasing sequence  $(x_n)$  converges to x in X, then  $x_n \le x$  for all  $n \in \mathbb{N}$ ;
- (v) there exists a comparison function  $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$  such that  $d(f(x), f(y)) \le \varphi(d(x, y))$ , for each  $(x, y) \in X_<$ ;
  - (vi) the metric d is complete.
- Then f is a Picard operator.

4□ > 4□ > 4□ > 4□ > 4□ > □

- Introduction
  - Abstract
- 2 Some known results
  - The single-valued case
  - The multi-valued case
- Fixed point theorems in metric spaces endowed with a partial order
  - Basic concepts
  - Some abstract results
  - Fixed point theorems for  $\varphi$ -contractions
- Fixed point theorems in metric spaces endowed with a graph
  - Basic concepts
  - The single-valued case
  - The multi-valued case
- Main works

- Introduction
  - Abstract
- Some known results
  - The single-valued case
  - The multi-valued case
- Fixed point theorems in metric spaces endowed with a partial order
  - Basic concepts
  - Some abstract results
  - Fixed point theorems for  $\varphi$ -contractions
- 4 Fixed point theorems in metric spaces endowed with a graph
  - Basic concepts
  - The single-valued case
  - The multi-valued case
- Main works



Let G be a directed graph such that one can identify G with the pair (V(G), E(G)), where the set V(G) of its vertices coincides with X and the set E(G) of the edges of the graph contains  $\Delta$ .

Let G be a directed graph such that one can identify G with the pair (V(G), E(G)), where the set V(G) of its vertices coincides with X and the set E(G) of the edges of the graph contains  $\Delta$ .

If x and y are vertices of G, then a path in G from x to y of length  $k \in \mathbb{N}$  is a finite sequence  $(x_n)_{n \in \{0,1,2,\cdots,k\}}$  of vertices such that

$$x_0 = x, x_k = y \text{ and } (x_{i-1}, x_i) \in E(G), \text{ for } i \in \{1, 2, \dots, k\}.$$

Let G be a directed graph such that one can identify G with the pair (V(G), E(G)), where the set V(G) of its vertices coincides with X and the set E(G) of the edges of the graph contains  $\Delta$ .

If x and y are vertices of G, then a path in G from x to y of length  $k \in \mathbb{N}$  is a finite sequence  $(x_n)_{n \in \{0,1,2,\cdots,k\}}$  of vertices such that

$$x_0 = x, x_k = y \text{ and } (x_{i-1}, x_i) \in E(G), \text{ for } i \in \{1, 2, \dots, k\}.$$

A graph G is connected if there is a path between any two vertices and it is weakly connected if  $\tilde{G}$  is connected, where  $\tilde{G}$  denotes the undirected graph obtained from G by ignoring the direction of edges.

An operator  $f: X \to X$  is called a Banach *G*-contraction if and only if:

An operator  $f: X \to X$  is called a Banach *G*-contraction if and only if:

- (a) f is edge preserving, i.e., for each  $x, y \in X$  with
- $(x,y) \in E(G)$  we have  $(f(x),f(y)) \in E(G)$ ;

21/27

An operator  $f: X \to X$  is called a Banach *G*-contraction if and only if:

- (a) f is edge preserving, i.e., for each  $x, y \in X$  with
- $(x,y) \in E(G)$  we have  $(f(x),f(y)) \in E(G)$ ;
- (b) there exists  $\alpha \in ]0,1[$  such that for each  $x,y \in X$  the following implication holds:

$$(x,y) \in E(G)$$
 implies  $d(f(x),f(y)) \leq \alpha d(x,y)$ .

An operator  $f: X \to X$  is called a Banach *G*-contraction if and only if:

- (a) f is edge preserving, i.e., for each  $x, y \in X$  with
- $(x,y) \in E(G)$  we have  $(f(x),f(y)) \in E(G)$ ;
- (b) there exists  $\alpha \in ]0,1[$  such that for each  $x,y \in X$  the following implication holds:

$$(x,y) \in E(G)$$
 implies  $d(f(x),f(y)) \leq \alpha d(x,y)$ .

#### Examples:

1) Any Banach contraction is a  $G_0$ -contraction, where the graph  $G_0$  is defined by  $E(G_0) := X \times X$ .

An operator  $f: X \to X$  is called a Banach G-contraction if and only if:

- (a) f is edge preserving, i.e., for each  $x, y \in X$  with
- $(x,y) \in E(G)$  we have  $(f(x),f(y)) \in E(G)$ ;
- (b) there exists  $\alpha \in ]0,1[$  such that for each  $x,y \in X$  the following implication holds:

$$(x,y) \in E(G)$$
 implies  $d(f(x),f(y)) \leq \alpha d(x,y)$ .

#### Examples:

- 1) Any Banach contraction is a  $G_0$ -contraction, where the graph  $G_0$  is defined by  $E(G_0) := X \times X$ .
- 2) Let  $\leq$  be a partial order in X. Define the graph  $G_1$  by

$$E(G_1) := \{(x, y) \in X \times X : x \leq y\}.$$

◆□▶◆□▶◆壹▶◆壹▶ 壹 めなぐ

An operator  $f: X \to X$  is called a Banach G-contraction if and only if:

- (a) f is edge preserving, i.e., for each  $x, y \in X$  with
- $(x,y) \in E(G)$  we have  $(f(x),f(y)) \in E(G)$ ;
- (b) there exists  $\alpha \in ]0,1[$  such that for each  $x,y \in X$  the following implication holds:

$$(x,y) \in E(G)$$
 implies  $d(f(x),f(y)) \leq \alpha d(x,y)$ .

#### Examples:

- 1) Any Banach contraction is a  $G_0$ -contraction, where the graph  $G_0$  is defined by  $E(G_0) := X \times X$ .
- 2) Let  $\leq$  be a partial order in X. Define the graph  $G_1$  by

$$E(G_1) := \{(x, y) \in X \times X : x \leq y\}.$$

3) Let  $\leq$  be a partial order in X. Define the graph  $G_2$  by

$$E(G_2) := \{(x, y) \in X \times X : x \le y \text{ or } y \le x\}.$$

- Introduction
  - Abstract
- Some known results
  - The single-valued case
  - The multi-valued case
- 3 Fixed point theorems in metric spaces endowed with a partial order
  - Basic concepts
  - Some abstract results
  - Fixed point theorems for  $\varphi$ -contractions
- Fixed point theorems in metric spaces endowed with a graph
  - Basic concepts
  - The single-valued case
  - The multi-valued case
- Main works



# Theorem. (J. Jachymski-2008)

Let (X,d) be a complete metric space and let G be a directed graph G such that the triple (X, d, G) has property (P):

for any sequence  $(x_n)_{n\in\mathbb{N}}\subset X$ , if  $x_n\to x$  as  $n\to +\infty$  and

(P)  $(x_n, x_{n+1}) \in E(G)$ , for each  $n \in \mathbb{N}$ , then there exists a subsequence  $(x_{k_n})_{n\in\mathbb{N}}$  of  $(x_n)_{n\in\mathbb{N}}$  such that  $(x_{k_n},x)\in E(G)$ , for each  $n\in\mathbb{N}$ .

Let  $f: X \to X$  be a G-contraction. Then the following statments hold:

1)  $F_f \neq \emptyset$  if and only if  $X_f \neq \emptyset$ ,

where 
$$X_f := \{x \in X : (x, f(x)) \in E(G)\};$$

2) if  $X_f \neq \emptyset$  and G is weakly connected, then f is a Picard operator.

4 D > 4 B > 4 B > 4 B > B

- - Abstract
- Some known results
  - The single-valued case
  - The multi-valued case
- - Basic concepts
  - Some abstract results
  - Fixed point theorems for  $\varphi$ -contractions
- Fixed point theorems in metric spaces endowed with a graph
  - Basic concepts
  - The single-valued case
  - The multi-valued case



#### Theorem.

(Nicolae-O'Regan-A. Petruşel, 2011)

Let (X, d) be a complete metric space and G be a directed graph such that the triple (X, d, G) satisfy property (P). Let  $T: X \to P_{cl}(X)$  be a multi-valued operator. Suppose the following assertions hold:

(i) there exists  $\alpha \in (0,1)$  such that

$$H(T(x), T(y)) \le \alpha d(x, y)$$
 for all  $(x, y) \in E(G)$ .

(ii) for each  $(x,y) \in E(G)$ , each  $u \in T(x)$  and  $v \in T(y)$  satisfying the condition  $d(u, v) \leq ad(x, y)$ , for some  $a \in (0, 1)$ , we have  $(u, v) \in E(G)$ ; Then  $F_T \neq \emptyset$  if and only if  $X_T \neq \emptyset$ , where

$$X_T := \{x \in X; \text{ there exists } y \in T(x) \text{ such that } (x,y) \in E(G)\},$$

4 D > 4 B > 4 B > 4 B > B

- Introduction
  - Abstract
- Some known results
  - The single-valued case
  - The multi-valued case
- Fixed point theorems in metric spaces endowed with a partial order
  - Basic concepts
  - Some abstract results
  - Fixed point theorems for  $\varphi$ -contractions
- Fixed point theorems in metric spaces endowed with a graph
  - Basic concepts
  - The single-valued case
  - The multi-valued case





#### A.C.M. Ran, M.C. Reurings:

A fixed point theorem in partially ordered sets and some applications to matrix equations, *Proc. Amer. Math. Soc.* 132(2004) 1435-1443.

#### A.C.M. Ran, M.C. Reurings:

A fixed point theorem in partially ordered sets and some applications to matrix equations, *Proc. Amer. Math. Soc.* 132(2004) 1435-1443.

## J.J. Nieto, R. Rodríguez-López:

Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, *Order* 22(2005) 223-239.

## A.C.M. Ran, M.C. Reurings:

A fixed point theorem in partially ordered sets and some applications to matrix equations, *Proc. Amer. Math. Soc.* 132(2004) 1435-1443.

## J.J. Nieto, R. Rodríguez-López:

Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, *Order* 22(2005) 223-239.

#### A. Petrușel, I.A. Rus:

Fixed point theorems in ordered *L*-spaces, *Proc. Amer. Math. Soc.* 134(2006) 411-418.

#### A.C.M. Ran, M.C. Reurings:

A fixed point theorem in partially ordered sets and some applications to matrix equations, *Proc. Amer. Math. Soc.* 132(2004) 1435-1443.

# J.J. Nieto, R. Rodríguez-López:

Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, *Order* 22(2005) 223-239.

#### A. Petrușel, I.A. Rus:

Fixed point theorems in ordered *L*-spaces, *Proc. Amer. Math. Soc.* 134(2006) 411-418.

#### D. O'Regan, A. Petrușel:

Fixed point theorems in ordered metric spaces, *J. Math. Anal. Appl.* 341(2008) 1241-1252.

## J. Jachymski:

The contraction principle for mappings on a metric space with a graph, *Proc. Amer. Math. Soc.* 136(2008) 1359-1373.



#### J. Jachymski:

The contraction principle for mappings on a metric space with a graph, *Proc. Amer. Math. Soc.* 136(2008) 1359-1373.

#### A. Nicolae, D. O'Regan, A. Petrușel:

Fixed point theorems for singlevalued and multivalued generalized contractions in metric spaces endowed with a graph, J. Georgian Math. Soc., 18(2011), 307327.