

Privacy protected data visualisations in DataSHIELD

Demetris Avraam

Graphs are very informative but often very disclosive

Graphical functions in DataSHIELD

Released:

- ds.histogram
- ds.heatmapPlot
- ds.contourPlot

Developed:

- ds.scatterPlot
- ds.boxPlot

K-Anonymisation

A release of data is said to have the k-anonymity property if the information for each person contained in the release cannot be distinguished from at least k - 1 individuals whose information also appear in the release.

There are two common methods for achieving k-anonymity: **suppression** and **generalisation**.

Low counts cell suppression: in tabular data, cells with small numbers (lower than a pre-specified threshold) are not displayed:

Actual 2D contingency table

	Gender				
		0	1	Total	
Dis.	0	525	327	852	
	1	3	18	21	
	Total	528	345	873	

DataSHIELD output (with Th = 5)

	Gender				
		0	1	Total	
Dis.	0	NA	NA	852	
	1	NA	NA	21	
	Total	528	345	873	

Deterministic Anonymisation

Algorithm:

- Find the k-1 nearest neighbours of each data point
- Calculate the coordinates of the centroids of each k nearest neighbours
- Replace actual data with the centroids
- Apply scaling by multiplying the coordinates of the centroids with a scaling factor

Non-disclosive scatter plots

Advantages:

- The method is deterministic
- While k increases the disclosure risk decreases
- The information loss is minimum

Non-disclosive histograms

Cell suppression (Th = 5)

k-NN centroids (k = 3)

Non-disclosive heat map plots

The counts in 88 cells were > 0 and < 5 and they replaced by 0

Non-disclosive heat map plots

The counts in 88 cells were > 0 and < 5 and they replaced by 0

Prototyping non-disclosive box plots

Fixed extreme of the whiskers:

- Upper whisker = 95th percentile
- Lower whisker = 5th percentile
- The outliers are not displayed in the graph but their number is returned to the analyst

<u>k-NN (k = 3):</u>

- Upper whisker = $Q_3 + 1.5 IQR$
- Lower whisker = $Q_1 1.5 IQR$
- The outliers are displayed in the graph

Exploring longitudinal data in Virtual Reality

14.17 height (cm) 200 15

Helix visualisation

Ribbon-datashape visualisation

Orbit visualisation

Plot diagnostics for regression models

Residuals vs Fitted

Normal Q-Q

Scale-Location

Residuals vs Leverage

Anonymising and synthesising data

- Methods will include:
 - 'weak' and 'strong' k-anonymization (at different k thresholds)
 - probabilistic anonymization through addition of random noise (at different levels of variance)
 - deterministic anonymization through replacement of true records with the centroids of each k nearest neighbours (at different values of k)
 - simulating synthetic data using existing algorithms
- Disclosure Risk metrics
- Information Loss metrics

Thank you!