Programación de EDU-CIAA en lenguaje C 5ta Escuela de Sistemas Embebidos Tucumán - Horco Molle 2015 RUSE - ACSE

Manejo de Conversor Analógico- Digital para el microcontrolador LPC 43XX con la librería LPCOpen

En este trabajo, además de todas las funciones empleadas hasta este momento de GPIO, RITimer e IRQ, vamos a incorporar las funciones de uso del conversor Analógico a Digital (pag 1327 del *User Manual*).

Primero hay que configurar la *System Control Unit* (SCU): Algunos pines soportan el multiplexado de funciones digitales y analógicas, sin embargo, todas las entradas y salidas analógicas del ADC y DAC están además ruteadas a pines de función analógica sin necesidad de multiplexado.

Lo que si es necesario, es indicarle que vamos a utilizar el conversor AD mediante la función:

Chip_SCU_ADC_Channel_Config(uint32_t ADC_ID, uint8_t channel);

Para después de eso, utilizar las funciones de LPOpen para el manejo del conversor AD, incorporadas en "adc_18xx_43xx.h":

<u>Chip ADC Init(LPC_ADC_T *pADC, ADC_Clock_Setup_T* ADCSetup);</u>

<u>Chip ADC EnableChannel</u>(LPC_ADC_T *pADC, ADC_CHANNEL_T channel, FunctionalState NewState)

<u>Chip ADC SetStartMode</u>(LPC_ADC_T *pADC, ADC_START_MODE_T mode, ADC_EDGE_CFG_T EdgeOption)

<u>Chip_ADC_ReadStatus</u>(LPC_ADC_T *pADC, uint8_t channel, uint32_t StatusType)

Chip ADC ReadValue(LPC ADC T*pADC, uint8 t channel, uint16 t*data)