Universidade do Minho

ESCOLA DE ENGENHARIA

Desenvolvimento de Sistemas de Software

Licenciatura em Engenharia Informática

Sistema de Gestão para Centros de Reparação de Equipamentos Electrónicos

Grupo 15

Índice

Introdução	3
Principais Objetivos	3
Descrição da abordagem realizada	3
Alterações dos Modelos	4
Use Cases	4
Especificações dos Use Cases	5
Diagrama de Componentes	10
Diagramas de Classes	11
Diagramas de Sequência	15
Interface com o Utilizador	17
Modelo de Máquina de Estado do Sistema	17
Manual de Utilização	18
Análise Crítica	21
Conclusão	22

Lista de Figuras

1	Diagrama de Use Cases	4
2	Diagrama de componentes	10
3	GestFuncionarios	11
4	GestOrcamentos	11
5	GestPagamentos	12
6	GestTecnicos	12
7	GestGestores	13
8	GestPedidosOrcamento	13
9	GestPlanosTrabalho	14
10	GestEquipamentos	14
11	RegistaFuncionario	15
12	ObtemOrcamentoMaisAntigo	15
13	AdicionaEquipamentosReparados	16
14	ConsertaEquipamento	16
15	GetCustoReparacaoTotal	16
16	Máquina de Estado do Sistema	17
17	Menu Inicial	18
18	Menu Funcionário	18
19	Menu Gestor	19
20	Menu Técnico	19
21	Exemplo - Recebimento de Equipamento	19
22	Exemplo - Registar Orçamento	20
23	Exemplo - Intervenções por técnico	20

Introdução

O Sistema de Gestão para Centros de Reparação de Equipamentos Electrónicos (SGCREE) foi desenvolvido ao longo do semestre, evoluindo de forma iterativa. Segundo o método do desenvolvimento faseado, o programador deverá analisar o problema antes de começar a desenvolver uma solução para o mesmo. Foi este o método implementado para o desenvolvimento do projeto.

A primeira fase do desenvolvimento consistiu na análise dos requisitos pedidos e dos cenários apresentados. Foram definidos os modelos de Domínio e de *Use Cases*, sendo estes também enviados aos docentes da UC como um "checkpoint" do desenvolvimento.

Numa segunda fase do projeto, foram reavaliados estes modelos, fazendo alterações que o grupo considerou necessárias. A terceira fase corresponderá à implementação baseada nas fases anteriores.

Principais Objetivos

Tendo em conta os requisitos propostos, o Sistema de Gestão terá de ser capaz de registar os equipamentos que necessitam de reparação, sendo estes identificados pelo NIF do cliente, será também capaz de registar os orçamentos e pedidos de orçamentos relativos a cada um dos equipamentos, e, por fim, será capaz de registar as reparações efetuadas pelos técnicos.

Além disso, será possível a um gestor aceder às reparações efetuadas por cada técnico, as entregas/receções de equipamentos efetuadas por cada funcionário de balcão, assim como dados referentes ao tempo médio de reparação de cada técnico.

Visto que se trata de um sistema de gestão, a persistência de dados será essencial. Como os elementos do grupo não possuem ainda as competências necessárias para implementar uma base de dados, a persistência de dados foi obtida a partir de um ficheiro denominado estadoApp. No caso de ser a primeira execução do sistema, é criado um ficheiro com este nome, caso contrário, é automaticamente carregada toda a informação contida no ficheiro. Todos os dados referentes ao sistema são gravados no estadoApp no momento em que se termina a execução do mesmo.

Descrição da abordagem realizada

O grupo começou por avaliar os *Use Cases* feitos na primeira fase. Foram feitas alterações para abordar situações que não tinham sido previstas, prevenindo futuros erros que poderiam aparecer.

Finalmente, após todas as análises terem sido efetuadas, o grupo passou para a implementação dos $Use\ Cases.$

Alterações dos Modelos

Após fazer as análises referidas na Introdução, chegou-se à conclusão de que seria necessário reformular os modelos feitos. Devido a esta avaliação, foi-nos possível detetar comportamentos que não teríamos previsto anteriormente, assim como antecipar possíveis problemas relativos à insatisfação dos requisitos.

Seguem-se os modelos e diagramas que foram sujeitos a modificações, assim como novos diagramas que foram criados de forma facilitar a especificação da aplicação.

Use Cases

Após a análise feita ao diagrama de *Use Cases* que tinha sido fornecido aos docentes da UC, decidimos que seria necessário fazer algumas alterações, sendo possível encontrar o novo diagrama na seguinte figura:

Figura 1: Diagrama de Use Cases

Especificações dos Use Cases

Visto que foi feito um novo diagrama, será necessária a especificação de cada um destes *Use Cases*:

• Regista-se:

- Ator: Novo Utilizador.
- Pré-condição: True.
- Pós-Condição: Novo utilizador fica registado no sistema.

– Fluxo normal:

- 1. Utilizador indica que ser quer registar.
- 2. Sistema pede um username e uma password ao novo utilizador.
- 3. Novo utilizador fornece os dados pedidos.
- 4. Sistema valida os dados fornecidos.
- 5. Utilizador fica registado no sistema.
- Fluxo de Exceção 1: [Já existe um utilizador com o username fornecido] (passo 4):
 - 4.1. Sistema indica ao utilizador que esse username já existe.

• Registar Recebimento de Equipamento

- **Ator**: Funcionário de Balcão.
- Pré-condição: Funcionário está autenticado.
- Pós-Condição: Novo equipamento fica registado no sistema assim como o pedido de orçamento.

– Fluxo normal:

- 1. Funcionário indica que quer registar um equipamento.
- 2. Sistema pede o nif e o email do cliente
- 3. Funcionário insere o nif e o email do cliente.
- 4. Sistema pergunta se é pretendido o Serviço Expresso.
- 5. Funcionário indica se pretende ou não que seja realizado o serviço expresso.
- 6. Sistema pede que seja inserido o problema do equipamento.
- 7. Funcionário insere o problema do equipamento.
- 8. O equipamento fica registado no sistema, assim como o seu respetivo pedido de orçamento.

• Autenticação

- Ator: Funcionário de Balcão, Gestor, Técnico.
- **Pré-condição**: O Ator deverá estar registado no sistema.
- Pós-Condição: O Ator fica autenticado.
- Fluxo normal:
 - 1. O Ator indica que se pretende autenticar.
 - 2. O Sistema pede o seu username e a sua password.
 - 3. O Ator fornece as informações pedidas.
 - 4. O Sistema verifica as informações fornecidas.
 - 5. O Ator fica autenticado.
- Fluxo de Exceção 1: [Credenciais fornecidas são inválidas] (passo 4):
 - 4.1. Sistema indica ao Ator de que as credenciais inseridas não são válidas para a autenticação do mesmo.

• Registar Entrega de Dispositivo

- Ator: Funcionário de Balcão.
- **Pré-condição**: O funcionário deverá estar autenticado.
- Pós-Condição: O equipamento deixa de estar registado no sistema.
- Fluxo normal:
 - 1. O Funcionário indica que pretende entregar um dispositivo ao cliente.
 - 2. O sistema pede o nif do cliente ao funcionário.
 - 3. O funcionário fornece o nif do cliente ao sistema.
 - 4. O sistema verifica que existe um equipamento pertencente a esse cliente no sistema.
 - 5. O equipamento é removido do sistema.
- Fluxo de Exceção 1: [Equipamento não está no sistema] (passo 4):
 - 4.1. O sistema indica ao Funcionário que o sistema não contém nenhum equipamento pertencente a esse cliente.

• Registar Pagamento da Reparação

- Ator: Funcionário de Balcão.
- **Pré-condição**: O funcionário deverá estar autenticado.
- Pós-Condição: O pagamento fica registado no sistema.

- Fluxo normal:

- 1. O Funcionário indica que pretende registar um pagamento no sistema.
- 2. O sistema pede o nif do cliente.
- 3. O Funcionário fornece o nif do cliente.
- 4. O sistema verifica se existe um equipamento registado com o nif indicado.
- 5. O sistema pergunta se o pagamento foi efetuado.
- 6. O funcionário indica que o pagamento foi efetuado.
- 7. O pagamento fica registado no sistema.
- Fluxo de Exceção 1: [Equipamento não está no sistema] (passo 4):
 - 4.1. O sistema indica ao Funcionário que o sistema não contém nenhum equipamento pertencente a esse cliente.
- Fluxo de Exceção 2: [Pagamento não foi efetuado] (passo 6):
 - 6.1. O pagamento não fica registado no sistema, visto que não foi efetuado.

• Registar Orçamento

- Ator: Técnico.
- Pré-condição: O técnico deverá estar autenticado.
- Pós-Condição: O orçamento fica registado no sistema.

- Fluxo normal:

- 1. O técnico indica que pretende registar um orçamento.
- 2. O sistema fornece o pedido de orçamento mais antigo ao técnico.
- 3. O problema registado no pedido de orçamento é apresentado ao técnico.
- 4. O técnico elabora um plano de trabalho, descrevendo todos os passos necessários para a reparação, juntamente com o tempo esperado e o custo esperado por cada passo.
- 5. O orçamento fica registado no sistema assim como o plano de trabalho.
- Fluxo de Exceção 1: [Não existem pedidos de orçamento] (passo 2):
 - 1.1. O sistema indica ao técnico de que não existem pedidos de orçamento de momento.

• Registar Reparação

- Ator: Técnico.
- Pré-condição: O técnico deverá estar autenticado.
- Pós-Condição: A reparação fica registada no sistema.

- Fluxo normal:

- 1. O técnico indica que pretende efetuar uma reparação.
- 2. O sistema fornece-lhe o plano de trabalho mais antigo.
- 3. O técnico segue os passos do plano de trabalho, indicando passo a passo o custo real da reparação, juntamente com o tempo demorado.
- 4. A reparação fica registada no sistema.

• Registar Reparação Urgente

- Ator: Técnico.
- Pré-condição: O técnico deverá estar autenticado.
- Pós-Condição: A reparação fica registada no sistema.

– Fluxo normal:

- 1. O técnico indica que pretende efetuar uma reparação urgente.
- 2. São-lhe apresentas todas as opções de reparação.
- 3. O técnico escolhe aquela que lhe parece ser a reparação mais urgente.
- 4. O técnico efetua a reparação.

• Aceder a lista de reparações por técnico

- **Ator**: Gestor.
- **Pré-condição**: O gestor deverá estar autenticado.
- Pós-Condição: O gestor avalia o tempo médio de reparação por técnico.

– Fluxo normal:

- 1. O gestor indica que pretende avaliar a lista de reparações por técnico.
- 2. O sistema fornece-lhe a lista de técnicos, disponibilizando também a informação sobre o tempo médio de reparação e o desvio do tempo esperado nos orçamentos.

• Aceder a lista de entregas e receções por funcionário

- Ator: Gestor.
- **Pré-condição**: O gestor deverá estar autenticado.
- **Pós-Condição**: O gestor avalia as entregas e receções por funcionário de balcão.

– Fluxo normal:

- 1. O gestor indica que pretende obter a lista de entregas e receções por funcionário.
- 2. O sistema fornece-lhe a lista de funcionários, onde é disponibilizada a informação sobre entregas e receções de equipamentos.

• Aceder a lista de intervenções por técnico

- Ator: Gestor.
- **Pré-condição**: O gestor deverá estar autenticado.
- Pós-Condição: O gestor avalia todos os passos realizados pelo técnico nas reparações.

– Fluxo normal:

- 1. O gestor indica que pretende obter a lista de todos os passos realizados pelo técnico em cada reparação.
- 2. O sistema requisita o username do técnico a ser avaliado.
- 3. O gestor fornece o username.
- 4. O sistema disponibiliza todos os passos efetuados em cada uma das reparações efetuadas pelo técnico.

• Promover Funcionário

- **Ator**: Gestor.
- **Pré-condição**: O gestor deverá estar autenticado.
- **Pós-Condição**: O funcionário é promovido para a posição que o gestor escolher.

– Fluxo normal:

- 1. O gestor indica que pretende promover um funcionário.
- 2. O Sistema pede o username do funcionário a promover.
- 3. O gestor indica o username do funcionário.
- 4. O sistema pede que o gestor indique a posição para a qual pretende promover o funcionário.
- 5. O gestor indica a nova posição do funcionário.
- 6. O funcionário é promovido.

Diagrama de componentes

O grupo optou por construir um diagrama de componentes de modo a facilitar a estruturação do programa.

Figura 2: Diagrama de componentes

Deste modo, ficam definidos os seguintes subsistemas:

- GestFuncionarios, que implementa a interface IGestFuncionarios.
- GestOrcamentos, que implementa a interface IGestOrcamentos.
- GestPagamentos, que implementa a interface IGestPagamentos.
- GestTecnicos, que implementa a interface IGestTecnicos.
- GestGestores, que implementa a interface IGestGestores.
- GestPedidosOrcamento, que implementa a interface IGestPedidosOrcamento.
- GestPlanosTrabalho, que implementa a interface IGestPlanosTrabalho.
- GestEquipamentos, que implementa a interface IGestEquipamentos.

Por sua vez, o UI do sistema acede às funcionalidades a partir de uma outra interface: ISistema_GCRE, que implementa as interfaces dos subsistemas já referidos.

Diagramas de Classes

O grupo decidiu que seria necessário elaborar diagramas de classe, de modo a especificar cada um dos subsistemas previamente referidos no Diagrama de Componentes.

GestFuncionarios

Figura 3: GestFuncionarios

GestOrcamentos

Figura 4: GestOrcamentos

GestPagamentos

Figura 5: GestPagamentos

GestTecnicos

Figura 6: GestTecnicos

GestGestores

Figura 7: GestGestores

GestPedidosOrcamento

Figura 8: GestPedidosOrcamento

GestPlanosTrabalho

Figura 9: GestPlanosTrabalho

GestEquipamentos

Figura 10: GestEquipamentos

Deste modo, todos os subsistemas ficam devidamente especificados, facilitando a futura implementação dos mesmos pelo grupo.

Diagramas de Sequência

Para além dos diagramas de classes, também se considerou necessários os Diagramas de Sequência que ajudarão a especificar mais profundamente a forma de como alguns dos métodos interagem entre si.

RegistaFuncionario()

Figura 11: RegistaFuncionario

Os restantes métodos respetivos aos registos (registaTecnico() e registaGestor()), funcionam similarmente, não sendo necessário especifcação de diagrama de sequência para os mesmos.

ObtemOrcamentoMaisAntigo()

Figura 12: ObtemOrcamentoMaisAntigo

AdcionaEquipamentosReparados()

Figura 13: AdicionaEquipamentosReparados

ConsertaEquipamento()

Figura 14: ConsertaEquipamento

GetCustoReparacaoTotal()

Figura 15: GetCustoReparacaoTotal

Interface com o Utilizador

Modelo de Máquina de Estado do Sistema

Figura 16: Máquina de Estado do Sistema

O utilizador começa no menu inicial. A partir daí tem quatro opções: Registar utilizador, Autenticar Gestor, Autenticar Funcionário de balcão e Autenticar técnico. Cada uma das opções - Autenticar Gestor, Autenticar Funcionário e Autenticar Técnico - irá abrir o submenu correspondente às funções atribuidas a cada posição de trabalho do utilizador.

O Gestor poderá escolher entre receber a lista de intervenções por técnico, lista de reparações por técnico, receções e entregas por funcionário, ou promover um funcionário.

O Funcionário poderá escolher entre registar o recebimento de dispositivo, registar a entrega do dispositivo e registar o pagamento da reparação.

Por fim, o Técnico poderá escolher entre Registar uma reparação urgente, registar uma reparação no sistema e registar um orçamento no sistema.

Manual de Utilização

Inicialmente o utilizador depara-se com o menu inicial. Aqui, como demonstrado no Modelo de Máquina de Estado do Sistema, o utilizador tem 4 opções, cada uma delas levando a um submenu diferente, com exceção da primeira opção (registar utilizador).

Figura 17: Menu Inicial

Caso o utilizador escolha a opção 1, o sistema pede-lhe um username e uma password, sendo assim feito o seu registo.

Caso escolha a opção 2, é pedido ao utilizador que se autentique. No caso de a autenticação ser efetuada com sucesso, é apresentado o submenu do funcionário de balcão, onde este pode efetuar todas as operações correspondentes ao seu trabalho.

```
1 - Registar recebimento de dispositivo
2 - Registar entrega de dispositivo
3 - Registar pagamento de reparação
0 - Sair
Opção:
```

Figura 18: Menu Funcionário

A opção 3 corresponderá ao Menu do Gestor, onde tal como no menu do funcionário, são-lhe apresentadas todas as opções correspondentes às funções do mesmo.

```
1 - Aceder a lista de reparações por técnico.
2 - Aceder a lista de receções e entregas por funcionário.
3 - Aceder a lista de todas as intervenções realizadas por técnico.
4 - Promover Funcionário.
0 - Sair
Opção:
```

Figura 19: Menu Gestor

Por fim, a opção 4 corresponderá ao menu do técnico, representado na seguinte figura:

```
1 - Registar orçamento no sistema
2 - Registar reparação no sistema
3 - Registar reparação urgente
0 - Sair
Opção:
```

Figura 20: Menu Técnico

Em cada um dos submenus apresentados, serão pedidos dados ao utilizador, sendo que aquilo que o utilizador deve fazer é simplesmente seguir os passos indicados de modo a completar as tarefas pretendidas, conforme pode ser visto nos seguintes exemplos:

```
1 - Registar recebimento de dispositivo
2 - Registar entrega de dispositivo
3 - Registar pagamento de reparação
0 - Sair
Opção: 1
Insira o nif do cliente:
1233331452
Insira o email do cliente:
cliente23@gmail.com
Pretende que seja realizado o Serviço Expresso?
1- Sim
2- Não
2
Insira o problema descrito pelo cliente:
A bateria dura pouco tempo.
Pedido de orçamento foi registado.
```

Figura 21: Exemplo - Recebimento de Equipamento

Figura 22: Exemplo - Registar Orçamento

Figura 23: Exemplo - Intervenções por técnico

Análise Crítica

Ao longo deste projeto o grupo tentou usar sempre as metodologias mais corretas de programação. Foi rejeitada por completo a metodologia "Code and Fix" logo desde o início. Ao longo do tempo várias ideias foram surgindo, sendo alguns aspetos da implementação mudados ou até mesmo descartados, algo que seria muito complicado de se fazer seguindo essa metodologia.

Deste modo, o uso de diagramas e especificações revelaram-se muito melhores, facilitando a organização de raciocínio.

Comparando o desenvolvimento do projeto de Programação Orientada a Objetos com o atual projeto, o grupo sentiu uma enorme diferença. Foi possível a todos os elementos do grupo debaterem as suas ideias, assim como implementá-las sem grande complicação. Isto deve-se às novas metodologias de trabalho que foram adquiridas este ano na UC de Desenvolvimento de Sistemas de Software, em que a discussão e planeamento prévio da implementação do sistema tornam-na muito mais simples.

Um dos desejos do grupo era criar um *email* pertencente à aplicação para que se pudesse enviar os *emails* aos clientes a partir da dita conta. No entanto, isto acabou por não se realizar devido a dificuldades que o grupo teve com alguns *packages* necessários para a implementação desta funcionalidade.

Infelizmente nem todos os requisitos estabelecidos pelos docentes foram cumpridos. A funcionalidade de o sistema enviar email ao cliente com o orçamento e esperar pela sua confirmação não foi implementada. Em vez disso, na altura da reparação, o sistema confirma com o técnico que o cliente de facto quer que a reparação seja realizada tornando este processo um pouco menos automatizado.

Conclusão

O trabalho prático da UC de Dsenvolvimento de Sistemas de Software consistiu em desenvolver um Sistema de Gestão de Centros de Reparação de Equipamentos Eletrónicos. A metodologia usada para a realização do projeto nunca tinha sido usada pelo grupo, mas mostrou-se ser bastante útil. As definições dos diagramas juntamente com as suas respetivas especificações permitem desenvolver uma solução, podendo esta ser modificada sempre que necessário, o que é uma enorme vantagem em comparação aos métodos que o grupo conhecia e implementou previamente.

Deste modo, o grupo considera que realizou um bom trabalho, uma vez que teve o cuidado de verificar que o funcionamento do programa se mantinha o mais fiel possível ao que era pedido pelos docentes.