Introduction to Proof Assistants

Using Lean4

Christian Benedict Smit

2025-07-08

My Introduction

- 2017: B.Sc. Biology Ruhr University Bochum
- 2021: B.Sc. Computer Science TU Dortmund
- 2025: M.Sc. Computer Science TU Dortmund
 - Masters Thesis: "Congruence Closure in the presence of dependent types"
 - Implementations in Rocq (formerly known as Coq)
- 2025: Start of my Ph.D. in Computer Science
 - ► TU Darmstadt
 - ► Software Technology Group of Mira Mezini
- For my Ph.D. I started using Lean4

What is Proof Assistants

- Programs to write proofs
- Proofs are programs in a typed purely functional programming language
 - Functional meaning the main abstraction are functions
 - Purely meaning those functions are mathematical functions
- Using constructive mathematics with intuitionistic logic
- Underlying is the Calculus of Inductive Constructions (CIC)
 - A typed Lambda Calculus
 - Types can also contain terms
- A small trusted kernel does the type checking

Motivation to use Proof Assistants

- Preventing errors in proofs
 - ▶ 1852: Francis Guthrie proposes the Four Color Theorem
 - ▶ 1879: Alfred Kempe proposes a proof for the Four Color Theorem
 - ▶ 1890: Percy Heawood shows, that Kempe's proof has faults
- Proof automation
 - ▶ 1976: Kenneth Appel and Wolfgang Haken proof the Four Color Theorem computer aided
 - ▶ 2005: Georges Gonthier formalizes a proof for the Four Color Theorem in Coq
- Preventing Bugs in Software

My Masters Thesis

```
1 Goal forall (A: Type) (a a' b: A), (a, b) = (a', b) -> a = a'.
                                                                                  Rocq
2 Proof.
     congruence.
4 Qed.
1 Inductive Vector A : nat -> Type :=
                                                                                 Rocq
  | nil : Vector A 0
3 | cons : forall (h: A) {n: nat}, Vector A n -> Vector A (S n).
1 Goal forall (A: Type) (n: nat) (h: A) (t t': Vector A n),
                                                                                  Rocq
    cons h t = cons h t' \rightarrow t = t'.
3 Proof.
    congruence.
```

Lambda Calculus

untyped

Let M, N be other lambda terms

x: Variable

 $(\lambda x.N)$: Lambda Abstraction

(MN): Application

typed

x:T: Variable

 $(\lambda x:T.N)$: Lambda Abstraction

(MN): Application

reduction

$$((\lambda x.M)N) \underset{\beta}{\to} (M[x/N])$$

typing

$$\frac{}{\Gamma,x:T\vdash x:T}\mathsf{VAR}$$

$$\frac{\Gamma, x: T_1 \vdash t_2: T_2}{\Gamma \vdash \lambda x: T_1.t_2: T_1 \rightarrow T_2} \mathsf{ABS}$$

$$\frac{\Gamma \vdash t_1: T_2 \rightarrow T_{12} \quad \Gamma \vdash t_2: T_2}{\Gamma \vdash t_1 \ t_2: T_{12}} \mathsf{APP}$$

Curry-Howard correspondence

Types \approx Propositions

Terms ≈ Proofs

Let Prop be the Type of propositions

logic	programming	explanation
$A \wedge B$	$A \times B$	product type
$A \lor B$	$A \oplus B$	tagged sum type
$A \Rightarrow B$	$A \rightarrow B \text{ or } \forall_: A, B$	function type
$\forall x:T,P$	$\forall x:T,P$	dependent function type
$\exists x:T,P$	(x:T,Px)	dependent pair type
True	Unit also called True	Type with the one element ()
False	Void also called False	Type with no elements
$\neg A$	$A \to \text{False}$	function to False

Live Coding

Now lets code

Further interesting sources

Cheat sheet:

https://leanprover-community.github.io/papers/lean-tactics.pdf

The Number Game:

- https://adam.math.hhu.de/
- Good for beginners

Glimps of Lean:

- https://github.com/PatrickMassot/GlimpseOfLean
- Shows different arias of Mathlib

Fermats Last Theorem in Lean:

- https://leanprover-community.github.io/blog/posts/FLT-announcement/
- Everyone can contribute

Thank you for listening:-)

Defining new data types

We can define own data types with inductive definitions

```
1 inductive Nat : Type where
2  | zero : Nat
3  | succ : Nat → Nat
```

And we can define our own proposition types

```
1 inductive XOr (A B : Prop) : Prop where
2  | left_not_right : A → ¬B → XOr A B
3  | right_not_left : ¬A → B → XOr A B
```

Abstract structures with type classes

Define properties of structures:

```
1 class JoinSemiLattice (\alpha: Type) : Type where
2 join : \alpha \to \alpha \to \alpha
3 assoc : join a (join b c) = join (join a b) c
4 comm : join a b = join b a
5 idem : join a a = a
```

Abstract structures with type classes

Give concrete implementations for those properties:

```
instance nat_join_semi_lattice : JoinSemiLattice Nat
where

join := max
assoc := by simp
comm := by apply?
idem := by simp
```