```
In [1]: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
In [2]: df = pd.read csv(r"C:\Users\VICTUS\Desktop\Food Delivery Times (1).csv")
In [3]: df.head()
Out[3]:
           Order_ID Distance_km Weather Traffic_Level Time_of_Day Vehicle_Type Preparation_Time_min Courier_Experience_yrs Delivery_Time
        0
                522
                            7.93
                                    Windy
                                                  Low
                                                          Afternoon
                                                                         Scooter
                                                                                                  12
                                                                                                                        1.0
                738
                           16.42
                                     Clear
                                               Medium
                                                                            Bike
                                                                                                  20
                                                                                                                        2.0
        1
                                                            Evening
        2
                741
                            9.52
                                                              Night
                                                                         Scooter
                                                                                                  28
                                                                                                                        1.0
                                    Foggy
                                                  Low
                                                          Afternoon
                                                                                                                        1.0
         3
                661
                            7.44
                                     Rainy
                                               Medium
                                                                         Scooter
                                                                                                   5
         4
                412
                           19.03
                                                                            Bike
                                                                                                  16
                                                                                                                        5.0
                                     Clear
                                                  Low
                                                           Morning
```

In [4]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype			
0	Order_ID	1000 non-null	int64			
1	Distance_km	1000 non-null	float64			
2	Weather	970 non-null	object			
3	Traffic_Level	970 non-null	object			
4	Time_of_Day	970 non-null	object			
5	Vehicle_Type	1000 non-null	object			
6	Preparation_Time_min	1000 non-null	int64			
7	Courier_Experience_yrs	970 non-null	float64			
8	Delivery_Time_min	1000 non-null	int64			
dtypos, $floot(A(2))$ $int(A(2))$ $object(A)$						

dtypes: float64(2), int64(3), object(4)

memory usage: 70.4+ KB

In [5]: df.describe()

		_		
\cap	п±	Γ5	7	
0	ис	LΖ	J	

•		Order_ID	Distance_km	Preparation_Time_min	Courier_Experience_yrs	Delivery_Time_min
	count	1000.000000	1000.000000	1000.000000	970.000000	1000.000000
	mean	500.500000	10.059970	16.982000	4.579381	56.732000
	std	288.819436	5.696656	7.204553	2.914394 0.000000	22.070915 8.000000
	min	1.000000	0.590000	5.000000		
	25%	250.750000	5.105000	11.000000	2.000000	41.000000
	50%	500.500000	10.190000	17.000000	5.000000	55.500000
	75%	750.250000	15.017500	23.000000	7.000000	71.000000
	max	1000.000000	19.990000	29.000000	9.000000	153.000000

In [6]: df.shape

Out[6]: (1000, 9)

```
In [7]: df.duplicated()
 Out[7]: 0
                 False
                 False
          1
          2
                 False
          3
                 False
                 False
                 . . .
          995
                 False
          996
                 False
                False
          997
          998
                False
          999
                 False
         Length: 1000, dtype: bool
 In [8]: df.isnull().sum()
 Out[8]: Order_ID
                                     0
         Distance km
                                     0
         Weather
                                    30
         Traffic Level
                                    30
         Time_of_Day
                                    30
         Vehicle Type
         Preparation Time min
         Courier_Experience_yrs
                                    30
         Delivery Time min
                                     0
         dtype: int64
 In [9]: def outliertreat(df,col):
             Q1 = df[col].quantile(0.25)
             Q3 = df[col].quantile(0.75)
             IQR = Q3 - Q1
             UL = Q3 + IQR
             LL = Q1 - IQR
             df.loc[df[col]>UL,col] = df[col].median()
             df.loc[df[col]<LL,col] = df[col].median()</pre>
In [10]:
         plt.figure(figsize=(20,10))
         sns.boxplot(df)
```



```
In [15]: plt.figure(figsize=(20,10))
          sns.boxplot(df)
          plt.show()
         30
         25 -
         20 -
         15
         10 -
                       Order_ID
                                                 Distance_km
                                                                           Preparation_Time_min
                                                                                                       Courier_Experience_yrs
                                                                                                                                     Delivery_Time_min
In [16]: from sklearn.preprocessing import LabelEncoder
In [17]: LE = LabelEncoder()
In [18]: df['Weather'] = LE.fit_transform(df['Weather'])
```

```
In [19]: df['Traffic Level'] = LE.fit transform(df['Traffic Level'])
In [20]: df['Time of Day'] = LE.fit transform(df['Time of Day'])
In [21]:
         df['Vehicle Type'] = LE.fit transform(df['Vehicle Type'])
In [22]: df.head()
Out[22]:
            Order ID Distance_km Weather Traffic_Level Time_of_Day Vehicle_Type Preparation_Time_min Courier_Experience_yrs Delivery_Time
          0 0.521522
                             7.93
                                         4
                                                                  0
                                                                               2
                                                                                                   12
                                                                                                                        1.0
                                                                                                                                     0.24
         1 0.737738
                            16.42
                                                      2
                                                                                                   20
                                                                                                                        2.0
                                                                                                                                     0.52
                                         0
                                                                  1
                                                                               0
                                                                                                   28
                                                                                                                        1.0
                                                                                                                                     0.35
          2 0.740741
                             9.52
                                         1
                                                      1
                                                                  3
                                                                               2
          3 0.660661
                                                                                                                        1.0
                                         2
                                                      2
                                                                  0
                                                                               2
                                                                                                    5
                                                                                                                                     0.20
                             7.44
                                         0
                                                                  2
                                                                               0
                                                                                                   16
                                                                                                                        5.0
          4 0.411411
                            19.03
                                                                                                                                      0.41
         df.drop(columns=['Courier Experience yrs'], inplace=True)
In [23]:
In [24]: df.isnull().sum()
Out[24]: Order ID
                                  0
          Distance km
          Weather
          Traffic Level
          Time_of_Day
          Vehicle Type
          Preparation Time min
          Delivery Time min
          dtype: int64
In [25]: df.hist()
         plt.show()
```


In [26]: df.skew(numeric_only=True)

In [27]:

Out[26]: Order_ID -1.096752e-15 Distance km 3.884047e-02 Weather 7.708209e-01 Traffic_Level -1.383483e-01 Time_of_Day 4.518274e-01 Vehicle Type 4.017149e-01 Preparation_Time_min 3.000816e-02 Delivery_Time_min 5.072512e-01 dtype: float64

from sklearn.preprocessing import PowerTransformer

```
In [28]: PT = PowerTransformer()
In [29]: PT.fit transform(df[['Traffic Level', 'Preparation Time min', 'Delivery Time min']])
Out[29]: array([[-0.31438592, -0.64489576, -0.57624906],
                [0.93145906, 0.46559741, 1.21564784],
                [-0.31438592, 1.44926602, 0.19712054],
                 . . . ,
                [-1.56398662, 1.21220682, 1.10374233],
                [-0.31438592, -1.27912648, 0.01385886],
                [-0.31438592, 0.96965152, 0.15189201]])
In [30]: df[['Traffic Level', 'Preparation Time min', 'Delivery Time min',]] = PT.fit transform(df[['Traffic Level', 'Preparation Time min'])
In [31]: df.skew(numeric only=True)
Out[31]: Order ID
                                -1.096752e-15
         Distance km
                              3.884047e-02
         Weather
                                7.708209e-01
         Traffic Level
                               -1.419601e-01
         Time_of_Day
                               4.518274e-01
         Vehicle Type
                                 4.017149e-01
         Preparation Time min -1.285052e-01
         Delivery Time min
                                 8.900913e-03
         dtype: float64
In [32]: df.corr(numeric only=True)
```

]:	Order ID	Distance km	Weather	Traffic Level	Time_of_Day	Vehicle Type	Preparation_Time_min	Delivery Time m
	Oldel_ID	Distance_kin	vvcatilei	marric_Lever	Time_or_bay	venicle_type	Treparation_time_time	Delivery_Time_ii
Orde	er_ ID 1.000000	-0.024483	-0.035785	-0.050806	-0.027034	-0.045030	-0.035859	-0.0328
Distance	.km -0.024483	1.000000	0.029756	-0.036625	0.009034	0.003319	-0.012127	0.7984
Wea	ther -0.035785	0.029756	1.000000	-0.031329	0.006595	-0.019231	-0.037662	0.1097
Traffic_L	.evel -0.050806	-0.036625	-0.031329	1.000000	0.022548	0.032533	0.004215	-0.0866
Time_of	Day -0.027034	0.009034	0.006595	0.022548	1.000000	-0.054988	0.004447	0.0164
Vehicle_	Гуре -0.045030	0.003319	-0.019231	0.032533	-0.054988	1.000000	0.018661	-0.0042
Preparation_Time	_min -0.035859	-0.012127	-0.037662	0.004215	0.004447	0.018661	1.000000	0.3190
Delivery_Time	_min -0.032890	0.798499	0.109796	-0.086679	0.016430	-0.004227	0.319076	1.0000
4			_				_	-

In [33]: sns.heatmap(df.corr(numeric_only=True))

Out[33]: <Axes: >


```
In [35]: X = df.drop('Delivery_Time_min',axis=1)
y = df.Delivery_Time_min
```

```
In [36]: X train,X test,y train,y test=train test split(X,y,test size=0.25,random state=42)
In [37]: from sklearn.linear model import LinearRegression
In [38]:
         LR = LinearRegression()
        LR.fit(X train, y train)
In [39]:
Out[39]:
             LinearRegression
         LinearRegression()
In [40]: LR_pred = LR.predict(X_test)
        from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
In [42]: mean_absolute_error(y_test,LR_pred)
Out[42]: 0.3354891852033775
In [43]: mean_squared_error(y_test,LR_pred)
Out[43]: 0.21446556795516905
In [44]: r2_score(y_test, LR_pred)
Out[44]: 0.793097088496856
In [45]: LR.score(X_train,y_train)*100
Out[45]: 74.54719561652814
In [46]: LR.score(X_test,y_test)+
```

```
Cell In[46], line 1
           LR.score(X_test,y_test)+
       SyntaxError: invalid syntax
        from sklearn.neighbors import KNeighborsRegressor
In [ ]:
       KNR = KNeighborsRegressor(n neighbors=7)
       KNR.fit(X train,y train)
        KNR pred = KNR.predict(X test)
In [ ]: mean absolute error(y test, KNR pred)
       mean_squared_error(y_test,LR_pred)
       r2_score(y_test, KNR_pred)
In [ ]:
        KNR.score(X train,y train)*100
        KNR.score(X_test,y_test)
In [ ]:
In [ ]: from sklearn.tree import DecisionTreeRegressor
     ]: DTC = DecisionTreeRegressor(random_state=42)
In [ ]: DTC.fit(X_train , y_train)
In [ ]: y_pred_dt = DTC.predict(X_test)
In [ ]: mean_absolute_error(y_test, y_pred_dt)
In [ ]: mean_squared_error(y_test, y_pred_dt)
```

```
In [ ]: r2 score(y test,y pred dt )
In [ ]: DTC.score(X train,y train)*100
       DTC.score(X test,y test)
In [ ]:
In [ ]: from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
        RFR=RandomForestRegressor(n_estimators=100, random_state=42)
    RFR.fit(X train, y train)
       RFR_pred = RFR.predict(X_test)
       mean_absolute_error(y_test, RFR_pred)
In [ ]: mean squared error(y test, RFR pred)
       r2_score(y_test, RFR_pred)
In [ ]:
       RFR.score(X train,y train)*100
    ]: RFR.score(X_test,y_test)
In [ ]: GBL = GradientBoostingRegressor(random_state=42, n_estimators=100, learning_rate=0.1)
In [ ]: GBL.fit(X_train, y_train)
       gbl_pred = GBL.predict(X_test)
In [ ]: mean_squared_error(y_test, gbl_pred)
```

```
In [ ]: mean absolute error(y test, gbl pred)
 In [ ]: r2 score(y test,gbl pred)
 In [ ]: GBL.score(X train,y train)*100
 In [ ]: GBL.score(X test,y test)
In [60]: from sklearn.model selection import GridSearchCV, RandomizedSearchCV
In [56]: param grid = {
             'n estimators': [50,100,200],
             'max depth' : [None, 10,20,30],
In [58]: rf model = RandomForestRegressor(random state=42)
                                                  Traceback (most recent call last)
        NameError
        Cell In[58], line 1
        ----> 1 rf model = RandomForestRegressor(random state=42)
        NameError: name 'RandomForestRegressor' is not defined
 In [ ]:
```