No.	
Date	

Schur-Horn Theorem.

I. Intro

Given a Hermitian matrix $AQ = (a_{ij}) \in \mathbb{C}^n$ with eigenvalues

 $\lambda = (\lambda_1, \lambda_2, \dots \lambda_n)^T \in \mathbb{R}^n$

We want to see.

Q: What do the diagonal elements

(a11, azz, -- ann) look like?

Obvious Facts A"

Facts | · AH = A => a11, ..., ann EIR (Obvious) · A unitary diag (1, ... In)

 $\Rightarrow \sum_{i=1}^{n} a_{ii} = tr A = tr(diag(\lambda_{i}, \dots \lambda_{n})) = \sum_{i=1}^{n} \lambda_{i}$

· YTES, diag (1, In) uni diag (ATLL), , ATLA)

⇒ WLOG, we can rearrange (1,,...In) s.t

λ, ≥ λ≥ ≥ λ3 ≥··· λη

NOTICE: After that we all assume 1,2123... In

Facts Viesi, n] to an in an ear ist,

(Not Obvious) $\forall k \in \{1, \dots, n\}$ $\sum_{i=1}^{k} a_{ii} \leq \sum_{j=1}^{k} l_{i}$

Issai Schur (Russian) proved the above-mentioned

inequalities in 1923

- Issai Schur, 1875-1941,
worked in Germany for most of his life
student of Frobenius (SYLOW Thm. Proofed)

Student

Schur Lemma (representations & group)

Thm (Schur-Horn) denote 1= (1,... In) E 1R" 1 = diag (1, ... In) ElR" H(n) = FAEC" | AH=A] Hx = FA E H(n) /A uni 13 $\pi: \mathcal{H}(n) \longrightarrow \mathbb{R}^n$ $A = (a_{ij})_{ij=1}^n \mapsto (a_{ij} \cdots a_{nn})^T$ Thm. (Schur-Howrn) π(H_A) is a convex polyhedron in Cⁿ whose vertices are $(\lambda_{\tau(1)}, \dots, \lambda_{\tau(n)})^{\tau} \in \mathbb{C}^{n}$ where TE Sn Alfred Horn (American, UCLA) proved it in 1954. - Doubly stochastic matrices & the diagonal of a rotation matrix - lattice theory & universal algebra → logic programming With these Facts in mind, we will first discuss some examples. - (trivial) when I = (ho, ... ho) we have H, = [A E C TXM] = UEU(M), A=U(1. I)UM = 1. I] = floI] only one element!

We leave z-dim example at last because it's computable. - (3-dim) when $\lambda = (\lambda_1, \lambda_2, \lambda_3)$ It's almost impossible to calculate, So we only draw out the final result: (1,1,6)(1,2,5) (2,1,5)(1,5,2) (5,1,2) (1,6,1) (5,2,1) $(\lambda_1, \lambda_2, \lambda_3) = (5, 2, 1)$ $(\lambda_1, \lambda_2, \lambda_3) = (6, 1, 1)$ "degenerate" -(2-dim) $A = \begin{pmatrix} a_{11} & a_{21} \end{pmatrix} \in \mathbb{C}^{2 \times 2}$ has eigenvalues $\lambda = (\lambda_{11}, \lambda_{22})^{T} \in \mathbb{R}^{2}$ $\Leftrightarrow \exists U = (u_{ij})_{i,j=1}^2 \in U^{(2)},$ A= UAUH = [U11 U12][1,][[U11 U2]]

[U11 U12][]

[U11 U12][[U11 U2] [[U11 U2]] = $[\lambda_1 |u_{11}|^2 + \lambda_2 |u_{12}|^2 + \lambda_1 |u_{11}| + \lambda_2 |u_{12}| = [\lambda_1 |u_{21}|^2 + \lambda_2 |u_{22}|^2 + \lambda_2$ $\frac{1}{\lambda_1} = \lambda_2 I + (\lambda_1 - \lambda_2) \left[\frac{|u_{11}|^2 - u_{11} \overline{u_{21}}}{u_{21} \overline{u_{11}} - |u_{21}|^2} \right]$ $\pi(\mathcal{F}|_{\lambda}) \subseteq \Gamma$ a because $\lambda_1 |u_{11}|^2 + \lambda_2 |u_{12}|^2$ is the convex combination of

· TET(H) because we can take [u" u12] [cost -sint]

· Hore Actually we can compu	· Hore Actually we can compute more.			
NLOG We only consider t	then condition when			
(take the coordinate transformation)				
o $\lambda = (1, \lambda_2)^T = (1, 0)^T$	· 0 5 1 α - α - α 1 α 11			
	$a_{22} = 1 - a$			
$\frac{4 A = \left(u_{11} ^{2} u_{11} \overline{u_{21}} \right)}{ u_{21} u_{11} u_{21} ^{2}}$	· a 21 = \alpha_{12}			
COACH MARKET AND	· a12 = u11 u21 = Lua22			
$\Rightarrow \mathcal{H}_{\lambda} \subseteq \int_{\mathcal{C}} (a e^{i\beta} \int_{a(1-a)}^{a(1-a)} 1-a$ $= \frac{2}{\text{calculate the eigenvalue}}$	1 a E [0,1], 0 < p < 2 Ti			
calculate the significant	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Continue the Engenvalue	gazz			
$U = \begin{pmatrix} \cos \theta & -e^{i} f \sin \theta \\ e^{i} f \sin \theta & \cos \theta \end{pmatrix}$	41			
Now $\pi(\mathcal{H}_{\lambda}) = \beta(a, 1-a) 0 \le a$	$a \leq 1$			
$\gamma \alpha_{12} = \sqrt{\alpha(1-\alpha)}$	1 Re an			
	170 ***			
	(Sept)			
	(a ₁₁			
	L Im an			
May avoy H. is a mild of	tithoners 1: to 52			
More over, \mathcal{H}_{λ} is a mfld of \mathcal{I}_{λ} . $\mathcal{H}_{\lambda} \longrightarrow \mathcal{S}^{*}$	ciffeomorphic to S.			
$ \underline{\Phi}: \mathcal{H}_{\lambda} \longrightarrow S' $				
$ \begin{pmatrix} a & e^{i\gamma} \\ e^{-i\gamma} \\ e^{-i\gamma} \\ a(1-a) & -a \end{pmatrix} \mapsto (\cos) $	P, sinp,a)			
· · · · · · · · · · · · · · · · · · ·				
What is a nfld? Mfld is a VER				
We will find out more informations	always look like IR")			
We will find out more informations	through this isomorphism.			

II. Simple Tools
Before exploring the phenomenon, let us deriate from this phenomenon for a while to obtain the most basic tools. the Lie bracket & Exponential map.
1. Lie bracket $ \begin{array}{c cccc} \hline & Def & the & Lie & bracket & of & Mn(C) & is \\ \hline & & & & & & & & & & & & & & & & & & $
Prop: i) (Skew-Symmetric) [A,B]=-[B,A] (basic) ii) (linear) [c,A,tc,A,B] = C,[A,B]+c,[A,B] iii) (Jacobi-identity) [A,[B,C]]+[B[CA]]+[C,[A,B]]=0 Prop. ' iv) ([AB])+=[B+A+] (used today) v) tr (A[BC])=tr([AB]C)
Proof: Exercise.

No.		

Date		

2. The Ex	ponential	Map	for	Matrix	

Def. | Suppose
$$A \in M_n(C)$$
, then we define $P_n(A) := \sum_{i=0}^{A^i} \frac{A^i}{i!}$ $exp(A) := e^A := \lim_{n \to \infty} P_n(A)$

Rmk. i) By defining the norm on Mn(C);

one is easy to find out the existence & uniqueness

of the limit. ii) Generally $e^{A} \cdot e^{B} \neq e^{A+B}$. We still have $AB = BA \implies e^{A} \cdot e^{B} = e^{A+B}$

iii) like polynomials, some properties are

easily derived from the definition.

· YUEU(n), VexU-=euxu

· detx = Xetx especially delt=0etx=X

iv) sometimes we denote exp(=x)=ex to enlarge superscript.

N). Someone may think the Exp map as

"walking along the N.f. Xet (in ALEGLn(C)) for t times". You can easily check (if you've learned about mfld) that exp(tX) is just an integral curve Yx(t) in GLn(C).

$(\mathcal{H}_{\lambda}, \Omega_{-i}, T^{n}, \pi)$
III Group actions
1. Look at H(n).
We have VERY NICE group action on H(n).
U(n) G H(n)
U·H=UHUH
Rmk. One can check this is really the group action.
· UHUHEH(m)
. J. H = H
$(U, U_2) \cdot H = U_1 \cdot (U_2 \cdot H)$
Q. What is the orbit of this action?
A. From the linear algebra theory,
$A \in \mathcal{H}(n)$ has eigenvalues $\lambda = (\lambda_1, \dots \lambda_n) \in \mathbb{R}^n$
$A \in \mathcal{H}(n)$ has eigenvalues $\lambda = (\lambda_1, \dots \lambda_n) \in \mathbb{R}^n$ $\Leftrightarrow \exists U \in \mathcal{U}(n) A = \mathcal{U} \wedge \mathcal{U}^H$. As a result,
Prop. The orbit of the group action is
Prop. The orbit of the group action is $ \mathcal{H}_{\lambda} = [A \in \mathcal{H}(n)] A \approx \text{has eigenvalues } \lambda = [a_1, \dots, a_n].$
Moreover H(n) is a IR-linear space => mf(d
· U(n) is a Lie group
-(I(n) acts on of H(n) properly & freety (*Goods)
So from the Lie group's theory we can obtain
Prop. 1 Hz is a manifold.
This is not so surprising because we have calculated
the Ha,00 and "verified" that this is a mfld diffeo to S2. Later we will see more structures on Hx, and
these actions structures in all will help us to find out more
informations about $\pi(\mathcal{H}_{\lambda})$.

We have found
$$S' = \begin{cases} e^{i\theta} \\ 1 \end{cases} \quad \theta \in \mathbb{R} \end{cases} \subseteq U(n)$$

$$T'' = S' \times S' \times \cdots S'$$

$$= \begin{cases} \begin{pmatrix} e^{i\theta_{1}} \\ \vdots \\ e^{i\theta_{n}} \end{pmatrix} \middle| \theta_{1}, \dots \theta_{n} \in \mathbb{R} \end{cases} \subseteq U(n)$$

$$A \cdot H = AHA^H$$
 $A \cdot H = AHA^H$

$$\frac{d}{d\theta}(\theta \cdot H) = \begin{pmatrix} 0 & ie^{i\theta}H_{12} \\ -ie^{-i\theta}H_{21} & 0 \end{pmatrix}$$

3. The induced v.f. of group action

Def || Suppose
$$j \in \{1, \dots, n\}$$
, T^nGH_s , then

the induced v.f. X_j at point H in H_s

is the matrix

 $X_j(H) = \frac{d}{dt} \Big|_{t=0} (\{0, \dots, t, \dots\} + H)$

$$E.g.$$
 We have computed
$$X_{+}(H) = \frac{d}{dt}|_{t=0} ((t,0,\cdots 0)\cdot H) = (-iH_{+})$$

Similarly, if
$$f = (hij)i, j=1$$
, then

$$X_j(H) = \begin{cases} -ih_j, & \vdots & -ih_j, \\ ih_{-i}, & \vdots & \end{cases}$$

E.g. When
$$n=2$$
. $H = \begin{pmatrix} a & e^{ip} & a(1-a) \\ e^{ip} & a(1-a) \end{pmatrix}$

$$= \begin{pmatrix} 0 & ie^{i\beta}\sqrt{a(1-a)} \\ -ie^{-i\beta}\sqrt{a(1-a)} & 0 \end{pmatrix}$$

Notice that
$$\frac{\partial H}{\partial \varphi} = \begin{pmatrix} 0 & ie^{i\varphi}\sqrt{a(1-a)} & 0 \end{pmatrix}$$

$$S' = \begin{pmatrix} 0 & ie^{i\varphi}\sqrt{a(1-a)} & 0 \end{pmatrix}$$

$$S' = \begin{pmatrix} 0 & 0 & 0 & 0 \\ -ie^{-i\varphi}\sqrt{a(1-a)} & 0 & 0 \end{pmatrix}$$

No.		
Date		

IV. New Tools.
Symplectic Manifold
Det. Suppose M is a mfld of dim 2n.
Def. A symplectic form on M is
a 2-form WEN'T'M on M s.t
1) w is closed: dw=v
2) w is non-degenerate: w/w/1. 1w to is a Volume form on M.
1 271071. TO 70 B ON VOLUME 90111 ONT 1.
The pair (M, w) is called a symplectic mfld.
Rmk. Compared with Riemann metric g.
i) g can be defined on ANY mfld,
while w CAN'T (dim = 2n, orientable, so on)
ii) g is symmetric
while w is skew-symmetric
ii) By Parboux thm, w Looks like Edxildy near ANY peM.
while a han elected to solve and in the time
(en sunstant)
while g has plenty of local geometric structure (e.g. curvature & connection) iv) gp gives an isomorphism
$q_{\bullet}^{\#}: T_{\bullet}M \longrightarrow T_{\bullet}^{*}M$
$ \begin{array}{ccc} g_p^{\#} : T_p \mathcal{M} & \longrightarrow T_p^{*} \mathcal{M} \\ \chi_p & \longmapsto g_p(\chi_p, -) \end{array} $

while we also gives an isomorphism.
while W_p also gives an isomorphism. $W_p^{\#}. T_p \mathcal{M} \longrightarrow T_p^* \mathcal{M}$
$X_p \mapsto \omega_p(X_p, -)$ We will use this isomorphism to
convert a v.f. (which I have mentioned, induced by
group action) to a exact 1-form.
E.g. 1 (IR2", w) is a sym mfld with
"local chart coord (x',xh, y',yh)
$W = \int_{z=1}^{n} dx i \wedge dy i$
Verify: · WE 12T*M
$dw = \sum_{i=1}^{n} d1 \wedge dx^{i} \wedge dy^{i} = 0$
· w N w. N. · · N w = n! dx' N dy' n · · · dx" N dy" = 0
$E.g. 2. (S^2, w) = d\theta \wedge dh$ is a sym mfld.
the volume form locally
Verify. · we 17th
· dw=o because w is a top form
· w is non-degenerate since
it is already a volume.

Rmk. In general H_{λ} is also a symp mfld whose symp form $(H = U_{\Lambda}U^{H})$ $W_{\lambda} _{H}(X,Y) = i tr (\Lambda [U^{H}X, U^{H}Y])$
whose sump form (H=UNUM)
LULL CV V) - it (ALDHY UHY1)
$W_{\lambda} _{H}(X,Y) = 1 \text{ Tr} (1/LU \times , U \times Y)$
Mororeover, Wit(Xi) is exact, i.e
C
$= f \in C^{\infty}(\mathcal{H}_{\lambda}) \text{ s.t. } w_{\lambda}^{m}(X_{i}) = df.$

No.		
**************	*******	
Date		

Moment Map. 7
Moment Map. Def. Suppose 5' GAL, t, then
the moment map is a map
$\mu: \mathcal{H}_{\lambda} \longrightarrow R $ s.t
$W_{\lambda}^{\#}(\mathscr{A}X_{i}) = d\mu$
From E.g.3 we can see, the moment map of
· S'GH is
$(1,0)^{T} \rightarrow R$
A: F((1,0))
$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \longrightarrow a_{11}$
Dollic Thoul W.
Def. Suppose ThGHx, then
the moment map of the group action is
a map
$M: \mathcal{H}_{\lambda} \longrightarrow IR$ s.t
$ \begin{array}{ccc} & \alpha & map \\ & \mu : \mathcal{H}_{\lambda} \longrightarrow \mathcal{R} & s.t \\ & A \longmapsto (\mu_{\bullet}(A), \cdots \mu_{n}(A)) \end{array} $
$ w_i^{\sharp}(X_i) = d\mu_i \forall i \in \{1, \dots, n\}$
X
Rem. Like the examples we have seen, in general,
if ThGH, in a canonical way, then
$\mu_{:} = \pi_{:} \mathcal{H}_{\lambda} \longrightarrow \mathbb{R}^{n}$
$A \leftarrow (a \rightarrow b)^n \rightarrow diag (a \rightarrow b)^7$
$A = (a_{ij})_{ij=1}^n \longrightarrow diag (a_{ii}, \cdots a_{nn})^T$
is just the projections to its diagonal items!
Its proof require the knowledge of coadjoint
orbit, so I'm regret that I'll skip it.
is just the projections to its diagonal items! Its proof require the knowledge of coadjoint orbit, so Ima regret that I'll skip it. Def: Il We call (Hx, w, Tr, u) as the Hamiltonian
π^n - $mfld$.

After we've introduced the all conceptions, we state the last theorem which is ingenious formally
State the last theorem which is ingenious formally
but its proof need deep symp geometry knowledges.
Thm. (AGS Atiyah-Guillemin-Sternberg Convexity thm) Suppose (M, w, T", M) be a Hamiltonian T'-mfla If M is compact & connected, then M(M) is a convex polyhedron in IR" whose vertices are the images of the T"-fixed points.
Proof of Schur-Horn thm
·(Hz, w, , Th, u) is a Hamiltonian Th-mfld ·Hz is compact: Hy is closed (U(n) GHz)
(Algebraic functions)
Hs is bounded by 1.
· Hi is connected:
VAEH JUE U(n) A=UNUH
U(n) is connected
⇒ ∃U(t): => [o,1] → U(n) s.t. U(o)=I U(1)=U
$\Rightarrow A(t) = U(t) \wedge U'(t) \stackrel{\text{(2)}}{\downarrow} \rightarrow \mathcal{H}(n) \text{s.t.}$
(A(0)=A A(1)=A
$\Rightarrow \mathcal{H}_{\lambda}$ is connected $\Rightarrow \pi(\mathcal{H}_{\lambda})$ is a convex polyhedron oin \mathbb{R}^{n} .

(ATM), - ATM) TEIR" Where TESn. (

whose vertices