Folland Measure Theory Sections 2.4-2.6

@sean#8765 March 2023

Review of Uniform and Pointwise Convergence

Let X be a non-empty set. Consider a sequence of functions $\{f_n\}$ with each $f_n: X \to \mathbb{C}$ that converges (uniformly or pointwise) to a function $f: X \to \mathbb{C}$.

Review of Uniform and Pointwise Convergence

Let X be a non-empty set. Consider a sequence of functions $\{f_n\}$ with each $f_n: X \to \mathbb{C}$ that converges (uniformly or pointwise) to a function $f: X \to \mathbb{C}$.

Pointwise Convergence: We say that $\{f_n\}$ converges pointwise to f if for all $\varepsilon > 0$ and $x \in X$, there is an integer N(x) (note the dependency on x) such that

$$n \geq N(x) \implies |f_n(x) - f(x)| < \varepsilon.$$

1

Review of Uniform and Pointwise Convergence

Let X be a non-empty set. Consider a sequence of functions $\{f_n\}$ with each $f_n: X \to \mathbb{C}$ that converges (uniformly or pointwise) to a function $f: X \to \mathbb{C}$.

Pointwise Convergence: We say that $\{f_n\}$ converges pointwise to f if for all $\varepsilon > 0$ and $x \in X$, there is an integer N(x) (note the dependency on x) such that

$$n \geq N(x) \implies |f_n(x) - f(x)| < \varepsilon.$$

Uniform Convergence: We say that $\{f_n\}$ converges uniformly to f if for all $\varepsilon > 0$, there exists an integer N (note that it is independent of x) such that

$$n \ge N \implies |f_n(x) - f(x)| < \varepsilon,$$

for all $x \in X$.

1

Convergence in Measure

• We say a sequence $\{f_n\}$ of measurable functions with $f_n: X \to \mathbb{C}$ is **Cauchy in measure** if for every $\varepsilon > 0$,

$$\mu(\lbrace x \in X : |f_n(x) - f_m(x)| \ge \varepsilon \rbrace) \to 0 \text{ as } m, n \to \infty.$$

• The sequence **converges in measure** to $f: X \to \mathbb{C}$ if for every $\varepsilon > 0$,

$$\mu(\lbrace x \in X : |f_n(x) - f(x)| \ge \varepsilon \rbrace) \to 0 \text{ as } n \to \infty.$$

Preliminary Lemmas/Theorems

Theorem

If $f_n \to f$ in L^1 , then $f_n \to f$ in measure.

Preliminary Lemmas/Theorems

Theorem

If $f_n \to f$ in L^1 , then $f_n \to f$ in measure.

Theorem

 $\{f_n\}$ Cauchy in measure. Then there is a measurable function f such that $f_n \to f$ in measure, and there is a subsequence f_{n_j} that converges to f a.e. If $f_n \to g$ in measure, then g = f a.e.

Egoroff's Theorem

Theorem (Egoroff's Theorem)

Suppose that (X, \mathcal{M}, μ) is a finite measure space, and $\{f_n\}$ and f are complex-valued measurable functions on X such that $f_n \to f$ a.e. For every $\varepsilon > 0$, there exists $E \subset X$ such that $\mu(E) < \varepsilon$ and $f_n \to f$ uniformly on E^C . This is called **almost uniform convergence**, and it implies p.w. convergence a.e. and convergence in measure.

4

Egoroff's Theorem (Proof)

Proof.

WLOG let $f_n \to f$ on X. For $k, n \in \mathbb{N}$, define

$$E_n(k) = \bigcup_{m=n}^{\infty} \{x \in X : |f_m(x) - f(x)| \ge \frac{1}{k} \}.$$

For fixed k, $E_n(k)$ decreases as $n \to \infty$, and $\bigcap_n E_n(k) = \emptyset$, so since $\mu(X) < \infty$, we have that $\mu(E_n(k)) \to 0$ as $n \to \infty$. Given $\varepsilon > 0$ and $k \in \mathbb{N}$, choose n_k so large enough so that

$$\mu(E_{n_k}(k)) < \frac{\varepsilon}{2^k},$$

and let $E = \bigcup_k E_{n_k}(k)$. Then $\mu(E) < \varepsilon$, and we have

$$|f_n(x)-f(x)|<\frac{1}{k}$$

for $n > n_k$ and $x \in E^C$. Thus $f_n \to f$ uniformly on E^C .

5

Pointwise, Uniform, and L^1 Convergence

We saw from **Problem 2** in our last HW that L^1 convergence implies pointwise convergence almost everywhere for a subsequence. Let us summarize the relationships between different modes of convergence.

Pointwise, Uniform, and L^1 Convergence

We saw from **Problem 2** in our last HW that L^1 convergence implies pointwise convergence almost everywhere for a subsequence. Let us summarize the relationships between different modes of convergence.

- Uniform convergence

 pointwise

 pointwise convergence

 pointwise

 pointwi
- ullet L¹ convergence \Longrightarrow pointwise convergence a.e. for a subsequence
- Uniform convergence $\iff L^1$ convergence (unless the measure space is finite, then unif $\implies L^1$)
- Pointwise convergence (a.e.) $\iff L^1$ convergence

The Product Measure

Recall from last HW that we can construct a product measure on the product measurable space (X, \mathcal{M}) with

$$X = \prod_{j=1}^{n} X_j, \quad \mathcal{M} = \bigotimes_{j=1}^{n} \mathcal{M}_j.$$

This measure μ is unique on \mathcal{M} and when the components μ_j are σ -finite, then μ is σ -finite. We want to define integration for this product space (X, \mathcal{M}, μ) and relate it to integration on the individual component spaces $(X_j, \mathcal{M}_j, \mu_j)$.

The Monotone Class Lemma

Definition

A monotone class on a space X is a collection of subsets $\mathcal C$ that's closed under countable increasing unions and countable decreasing unions. In other words, if $E_i \in \mathcal C$ and

$$E_1 \subset E_2 \subset \cdots, \text{ then } \bigcup_{j=1}^\infty E_j \in \mathcal{C}$$

and similarly for intersections. We denote the monotone class generated by a collection of subsets $\mathcal A$ by $\mathcal M(\mathcal A)$.

8

The Monotone Class Lemma

Definition

A monotone class on a space X is a collection of subsets $\mathcal C$ that's closed under countable increasing unions and countable decreasing unions. In other words, if $E_i \in \mathcal C$ and

$$E_1 \subset E_2 \subset \cdots, \text{ then } \bigcup_{j=1}^\infty E_j \in \mathcal{C}$$

and similarly for intersections. We denote the monotone class generated by a collection of subsets A by $\mathcal{M}(A)$.

Theorem (Monotone Class Lemma)

If A is an algebra of subsets of X, then $\mathcal{M}(A) = \sigma(A)$.

8

The Monotone Class Lemma (Proof)

Proof.

Since $\sigma(A)$ is a monotone class, we have that

$$\mathcal{M}(\mathcal{A}) \subset \sigma(\mathcal{A}),$$

so if we can show that $\mathcal{M}(\mathcal{A})$ is a σ -algebra, we are done. For $E \in \mathcal{M}(\mathcal{A})$, define

$$C(E) = \{ F \in \mathcal{M}(A) : E \setminus F, F \setminus E, E \cap F \in \mathcal{M}(A) \}.$$

Clearly, \varnothing , $E \in \mathcal{C}(E)$ and $E \in \mathcal{C}(F)$ iff $F \in \mathcal{C}(E)$. $\mathcal{C}(E)$ is a monotone class. If $E \in \mathcal{A}$, then $F \in \mathcal{C}(E)$ for all $F \in \mathcal{A}$ because it is an algebra. Hence, $\mathcal{M}(\mathcal{A}) \subset \mathcal{C}(E)$. This means that $E \in \mathcal{C}(F)$ for all $E \in \mathcal{A}$, so $\mathcal{M}(\mathcal{A}) \subset \mathcal{C}(F)$. Hence, $\mathcal{M}(\mathcal{A})$ is an algebra. But if $\{E_j\} \subset \mathcal{M}(\mathcal{A})$, we have that $\bigcup_1^n E_j \in \mathcal{M}(\mathcal{A})$ for every n, and since it is a monotone class, $\bigcup_1^\infty E_j \in \mathcal{M}(\mathcal{A})$.

Definitions

Definition

Suppose (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) are measure spaces, and f a function on $X \times Y$. If $E \subset X \times Y$, then for fixed $x \in X, y \in Y$:

• The x-section E_x of E

$$E_x = \{ y \in Y : (x, y) \in E \}.$$

• The *y*-**section** E^y of E is

$$E^{y} = \{x \in X : (x, y) \in E\}.$$

• The x and y sections f_x and f^y of f are

$$f_{\times}(y) = f^{y}(x) = f(x, y).$$

Preliminary Results

Theorem

The x and y sections are measurable sets in their respective σ -algebra, and if f is $\mathcal{M} \otimes \mathcal{N}$ -measurable, then f_x is \mathcal{N} -measurable and f^y is \mathcal{M} -measurable for all $x \in X$ and $y \in Y$ respectively.

Preliminary Results

Theorem

The x and y sections are measurable sets in their respective σ -algebra, and if f is $\mathcal{M} \otimes \mathcal{N}$ -measurable, then f_x is \mathcal{N} -measurable and f^y is \mathcal{M} -measurable for all $x \in X$ and $y \in Y$ respectively.

Theorem (2.36)

Suppose (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) are σ -finite measure spaces. If $E \in \mathcal{M} \otimes \mathcal{N}$, then $x \mapsto \nu(E_x)$ and $y \mapsto \mu(E^y)$ are measurable X and Y respectively, and

$$(\mu \times \nu)(E) = \int \nu(E_x) \,\mathrm{d}\mu(x) = \int \mu(E^y) \,\mathrm{d}\nu(y) \,.$$

Preliminary Result Theorem (2.36) (Proof)

Proof.

We shall not present a full proof as it is quite long.

- Suppose the measures are finite. Let $\mathcal C$ be the set of all $E \in \mathcal M \otimes \mathcal N$ such that the conclusions of the thm are true. It can be proved that this collection contains the algebra of finite disjoint unions of rectangles.
- Show that $\mathcal C$ is a monotone class, which shows that $\mathcal C$ is the σ -algebra generated by the algebra of finite disjoint unions of rectangles by the **MCL**, using the **MCT**, showing that the result is true for finite measure spaces.
- Rewrite X × Y as a disjoint union of X_j × Y_j with finite measure.
 Use the MCT to conclude that this works for σ-finite measure spaces.

The Fubini-Tonelli Theorem

Theorem (Fubini-Tonelli)

Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be σ -finite measure spaces.

1. **(Tonelli)** If $f \in L^+(X \times Y)$, then $g(x) = \int f_x d\nu$ and $h(y) = \int f^y d\mu$ are in $L^+(X)$ and $L^+(Y)$ respectively, and

$$\int f d(\mu \times \nu) = \int \left[\int f(x, y) d\nu(y) \right] d\mu(x)$$
$$= \int \left[\int f(x, y) d\mu(x) \right] d\nu(y).$$

The Fubini-Tonelli Theorem

Theorem (Fubini-Tonelli)

Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be σ -finite measure spaces.

1. **(Tonelli)** If $f \in L^+(X \times Y)$, then $g(x) = \int f_x d\nu$ and $h(y) = \int f^y d\mu$ are in $L^+(X)$ and $L^+(Y)$ respectively, and

$$\int f d(\mu \times \nu) = \int \left[\int f(x, y) d\nu(y) \right] d\mu(x)$$
$$= \int \left[\int f(x, y) d\mu(x) \right] d\nu(y).$$

2. **(Fubini)** If $f \in L^1(\mu \times \nu)$, then $f_x \in L^1(\nu)$ for a.e. $x \in X$, $f^y \in L^1(\mu)$ for a.e. $y \in Y$, the a.e.-defined functions $g(x) = \int f_x d\nu$ and $h(x) = \int f^y d\mu$ are in $L^1(\mu)$ and $L^1(\nu)$ respectively, and the formulas in 1. are valid.

The Fubini-Tonelli Theorem (Proof)

Proof.

Tonelli's theorem is **Theorem 2.36** when f is a characteristic function, and since simple functions are linear combinations of char functions, the result holds for nonnegative simple functions by linearity. If $f \in L^+(X \times Y)$, let $\{f_n\}$ be a sequence of simple functions that increase pointwise to f (recall **Theorem 2.10**). The **MCT** implies that the corresponding g_n and h_n increase to g and g

$$\int g \, d\mu = \lim \int g_n \, d\mu = \lim \int f_n \, d(\mu \times \nu) = \int f \, d(\mu \times \nu),$$

$$\int h \, d\nu = \lim \int h_n \, d\nu = \lim \int f_n \, d(\mu \times \nu) = \int f \, d(\mu \times \nu).$$

Hence, $f \in L^+(X \times Y)$ and $\int f \, \mathrm{d}(\mu \times \nu) < \infty$, then $g,h < \infty$ a.e. meaning that $f_x \in L^1(\nu)$ a.e. and $f^y \in L^1(\mu)$ a.e. For Fubini, just take the positive/negative/real/imaginary parts of f.

Fubini-Tonelli for Complete Measures

Even if μ and ν are complete measures, then $\mu \times \nu$ is usually never complete. Hence, we must take extra care when dealing with the completion of product spaces.

Theorem

Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be complete, σ -finite measure spaces, and let $(X \times Y, \mathcal{L}, \lambda)$ be the completion of $(X \times Y, \mathcal{M} \otimes \mathcal{N}, \mu \times \nu)$. If f is \mathcal{L} -measurable and either

- (a) $f \ge 0$
- (b) $f \in L^1(\lambda)$

then f_x and f^y are measurable in their respective σ -algebras for a.e. x and y (if (a) holds), and if (b) holds, then f_x and f^y are also integrable for a.e. x and y. Moreover, $x \mapsto \int f_x \, \mathrm{d} \nu$ and $y \mapsto \int f^y \, \mathrm{d} \mu$ are measurable, and in case (b) also integrable, and

$$\int f \, \mathrm{d}\lambda = \iint f(x,y) \, \mathrm{d}\mu(x) \, \mathrm{d}\nu(y) = \iint f(x,y) \, \mathrm{d}\nu(y) \, \mathrm{d}(\mu(x) \, .$$

Lebesgue Measure on \mathbb{R}^n

As described so far, we know how to construct measures on the product of measure spaces. Hence, we are ready to construct the Lebesgue measure on \mathbb{R}^n .

Lebesgue Measure on \mathbb{R}^n

As described so far, we know how to construct measures on the product of measure spaces. Hence, we are ready to construct the Lebesgue measure on \mathbb{R}^n .

Definition

The **Lebesgue measure on** \mathbb{R}^n is denoted λ^n and is defined as the completion of the product of the one-dimensional Lebesgue measure λ with itself n times on $(\mathbb{R}^n, \mathcal{L}^n)$ where

$$\mathbb{R}^n = \mathbb{R} \times \cdots \times \mathbb{R}, \ \mathcal{L}^n = \mathcal{L} \otimes \cdots \otimes \mathcal{L}.$$

Properties of the *n*-dimensional Lebesgue Measure

Theorem (Approximations)

 λ^n has the following properties (note the similarities to the 1-dim case):

• λ^n is regular.

Properties of the *n*-dimensional Lebesgue Measure

Theorem (Approximations)

 λ^n has the following properties (note the similarities to the 1-dim case):

- λ^n is regular.
- We may write $E \in \mathcal{L}^n$ in the form

$$E = A_1 \cup N_1 = A_2 \setminus N_2$$

where A_1 is F_{σ} and A_2 is G_{δ} and N_1 , N_2 are null sets.

Properties of the *n*-dimensional Lebesgue Measure

Theorem (Approximations)

 λ^n has the following properties (note the similarities to the 1-dim case):

- λ^n is regular.
- We may write $E \in \mathcal{L}^n$ in the form

$$E = A_1 \cup N_1 = A_2 \setminus N_2$$

where A_1 is F_{σ} and A_2 is G_{δ} and N_1 , N_2 are null sets.

• If $\lambda^n(E) < \infty$, for any $\varepsilon > 0$, there is a finite collection $\{R_j\}_1^N$ of disjoint rectangles whose sides are intervals such that

$$\lambda^n\left(E\triangle\bigcup_1^N R_j\right)<\varepsilon.$$

Properties of the *n*-dimensional Lebesgue Measure (cont.)

Theorem (Invariance)

 λ^n has the following properties (note the similarities to the 1-dim case):

1. Translation invariance: for $a \in \mathbb{R}^n$ define the addition map $\tau_a : \mathbb{R}^n \to \mathbb{R}^n$ by $\tau_a(x) = x + a$. Then

$$E\in\mathcal{L}^n \implies \tau_{\mathsf{a}}(E)\in\mathcal{L}^n \text{ and } \lambda^n(\tau_{\mathsf{a}}(E))=\lambda^n(E).$$

Properties of the *n*-dimensional Lebesgue Measure (cont.)

Theorem (Invariance)

 λ^n has the following properties (note the similarities to the 1-dim case):

1. Translation invariance: for $a \in \mathbb{R}^n$ define the addition map $\tau_a : \mathbb{R}^n \to \mathbb{R}^n$ by $\tau_a(x) = x + a$. Then

$$E \in \mathcal{L}^n \implies \tau_a(E) \in \mathcal{L}^n \text{ and } \lambda^n(\tau_a(E)) = \lambda^n(E).$$

2. Scaling under linear maps: if $E \in \mathcal{L}^n$, then $T(E) \in \mathcal{L}^n$ and

$$\lambda^n(T(E)) = |\det T|\lambda^n(E).$$

Properties of the *n*-dimensional Lebesgue Measure (cont.)

Theorem (Invariance)

 λ^n has the following properties (note the similarities to the 1-dim case):

1. Translation invariance: for $a \in \mathbb{R}^n$ define the addition map $\tau_a : \mathbb{R}^n \to \mathbb{R}^n$ by $\tau_a(x) = x + a$. Then

$$E \in \mathcal{L}^n \implies \tau_a(E) \in \mathcal{L}^n \text{ and } \lambda^n(\tau_a(E)) = \lambda^n(E).$$

2. Scaling under linear maps: if $E \in \mathcal{L}^n$, then $T(E) \in \mathcal{L}^n$ and

$$\lambda^n(T(E)) = |\det T|\lambda^n(E).$$

3. Rotation invariance: if $E \in \mathcal{L}^n$, then rotations are linear maps T such that $TT^T = I$. Let T be one such map. Then

$$\lambda^n(T(E)) = \lambda^n(E).$$

Change of Variables

Now that we know some properties of the Lebesgue measure, we want to investigate how it interacts with integration in general. One such result from the 1-dim case that we are interested in generalizing is u-substitution, or change of variables.

Change of Variables

Now that we know some properties of the Lebesgue measure, we want to investigate how it interacts with integration in general. One such result from the 1-dim case that we are interested in generalizing is *u*-substitution, or change of variables.

Theorem (CoV for Linear Maps)

Suppose $T \in GL(n,\mathbb{R})$ $(T : \mathbb{R}^n \to \mathbb{R}^n)$. If $f : \mathbb{R}^n \to \mathbb{R}$ is a Lebesgue measurable function on \mathbb{R}^n , so is $f \circ T : \mathbb{R}^n \to \mathbb{R}$. If $f \geq 0$ or $f \in L^1(\lambda^n)$, then

$$\int f(x) dx = |\det T| \int (f \circ T)(x) dx.$$

It can be proved using the Fubini-Tonelli theorem.

Change of Variables (cont.)

The previous theorem applies only to linear maps, a very restrictive condition. We want to generalize this result, and it turns out \mathcal{C}^1 diffeomorphisms are functions "nice" enough that our formula holds similarly.

Change of Variables (cont.)

The previous theorem applies only to linear maps, a very restrictive condition. We want to generalize this result, and it turns out C^1 diffeomorphisms are functions "nice" enough that our formula holds similarly.

Definition

Let $G=(g_1,\ldots,g_n)$ be a map from an open set $\Omega\subset\mathbb{R}^n$ into \mathbb{R}^n , whose components g_j are C^1 (continuous first order partials). Let $D_x(G)$ be the linear map defined by the Jacobian matrix of G at x. G is a C^1 diffeomorphism if G is injective and D_xG is invertible for all $x\in\Omega$.

Change of Variables (cont.)

We are now finally ready to present the change of variables theorem.

Theorem (Change of Variables)

Let $G: \Omega \to \mathbb{R}^n$ be a C^1 diffeomorphism. If f is Lebesgue measurable on $G(\Omega)$, then $f \circ G$ is Lebesgue measurable on Ω . If $f \geq 0$ or $f \in L^1(G(\Omega), \lambda^n)$, then

$$\int_{G(\Omega)} f(x) dx = \int_{\Omega} (f \circ G)(x) |\det D_x G| dx.$$

Furthermore, if $\Omega \supset E \in \mathcal{L}^n$, then $G(E) \in \mathcal{L}^n$ and

$$\lambda^n(G(E)) = \int_E |\det D_x G| \, \mathrm{d}x.$$

The proof is long and difficult, so it shall be omitted.