US Severe Weather Data Analysis

Yinyan Guo October 17, 2015

Synopsis

- Explore the most harmful (with respect to population health) event;
- Explore the temperal and spatial distribution of the most harmful event;
- Explore the types of events have the greatest economic consequences;

Data

U.S. National Oceanic and Atmospheric Administration's (NOAA) storm database recorded from 1950 to Nevember 2011 downloaded at the course web site.

Processing Data

```
if(!file.exists("./data")){
    dir.create("data")
}
#download file
filename = "./data/repdata_data_StormData.csv.bz2"
if (!file.exists(filename)) {
    ## download url and destination file
    file.url <- 'https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2'
    file.dest <- './data/repdata_data_StormData.csv.bz2'
    ## download from the URL
    download.file(file.url, file.dest)
    unlink(file.url)
    require(R.utils)
    bunzip2("./data/repdata_data_StormData.csv.bz2", "./data/repdata_data_StormData.csv", remove = FALSE, skip = TRUE)
}</pre>
```

Results

Explore the most harmful events

```
##calculate the total fatalities and total injuries for each event
stormFatal <- aggregate(FATALITIES ~ EVTYPE, stormData, FUN = sum)</pre>
## top 10 events
stormFatalTop10 <- stormFatal[with(stormFatal, order(-FATALITIES)),][1:10,]</pre>
stormInju <- aggregate(INJURIES ~ EVTYPE, stormData, FUN = sum)</pre>
## top 10 events
stormInjuTop10 <- stormInju[with(stormInju, order(-INJURIES)),][1:10,]</pre>
## top 10 fatalities and injuries events
stormHarmTop <- merge(stormFatalTop10,stormInjuTop10, by="EVTYPE",all=TRUE)
##decended sort by FATALITIES
stormHarmTop <-stormHarmTop[with(stormHarmTop, order(-FATALITIES)),]</pre>
##record the event order
flevel <- stormHarmTop$EVTYPE</pre>
require(reshape2)
stormHarmMelt <- melt(stormHarmTop, id=c("EVTYPE"))</pre>
stormHarmMelt$EVTYPE <- ordered(stormHarmMelt$EVTYPE, levels = flevel)</pre>
#if(!file.exists("./result")){
# dir.create("result")
## make bar graph of top 10 most harmful events
require(ggplot2)
#pnq('./result/plot1.pnq', width=600, height=480)
```


#dev.off() stormHarmTop

##		EVTYPE	FATALITIES	INJURIES
##	12	TORNADO	5633	91346
##	2	EXCESSIVE HEAT	1903	6525
##	3	FLASH FLOOD	978	1777
##	6	HEAT	937	2100
##	9	LIGHTNING	816	5230
##	13	TSTM WIND	504	6957

##	4	FLOOD	470	6789
##	10	RIP CURRENT	368	NA
##	7	HIGH WIND	248	NA
##	1	AVALANCHE	224	NA
##	5	HAIL	NA	1361
##	8	ICE STORM	NA	1975
##	11	THUNDERSTORM WIND	NA	1488

Conclusion: TORNADO is the most harmful (in respect to population health) event.

TORNADO temporal (year, month) distribution

• TORNADO most damaged years and month

```
TORNADO <- stormData[stormData$EVTYPE=="TORNADO", c("BGN_DATE", "STATE", "FATALITIES", "INJURIES")]

TORNADOYearMonth <- TORNADO

TORNADOYearMonth$BGN_DATE <- as.Date(TORNADOYearMonth$BGN_DATE, "%m/%d/%Y")

TORNADOYearMonth$year <- format(TORNADOYearMonth$BGN_DATE, "%Y")

TORNADOYearMonth$month <- format(TORNADOYearMonth$BGN_DATE, "%b")

TORNADOYearFAT <- aggregate(FATALITIES ~ year, TORNADOYearMonth, FUN = sum)

TORNADOYearFATTop10 <- TORNADOYearFAT[with(TORNADOYearFAT, order(-FATALITIES)),][1:10,]

TORNADOYearInju <- aggregate(INJURIES ~ year, TORNADOYearMonth, FUN = sum)

TORNADOYearInjuTop10 <- TORNADOYearInju[with(TORNADOYearInju, order(-INJURIES)),][1:10,]

TORNADOHarmTopYear <- merge(TORNADOYearFATTop10, TORNADOYearInjuTop10, by="year", all=TRUE)

TORNADOHarmTopYear <- TORNADOHarmTopYear[with(TORNADOHarmTopYear, order(-FATALITIES)),]

TORNADOHarmTopYear
```

```
year FATALITIES INJURIES
## 14 2011
                  587
                         6163
## 2 1953
                  519
                         5131
## 10 1974
                  366
                         6824
## 5 1965
                  301
                         5197
## 1 1952
                  230
                           NA
## 4 1957
                 193
                           NA
## 8 1971
                 159
                         2723
## 7 1968
                 131
                         2522
```

```
## 3 1955
                  129
                            NA
## 6 1967
                  NA
                          2144
## 9 1973
                          2406
                   NA
## 11 1979
                   NA
                          3014
## 12 1984
                          2499
                   NA
TORNADOMonthFAT <- aggregate(FATALITIES ~ month, TORNADOYearMonth, FUN = sum)
TORNADOMonthInju <- aggregate(INJURIES ~ month, TORNADOYearMonth, FUN = sum)
TORNADOHarmMonth <- merge(TORNADOMonthFAT, TORNADOMonthInju, by="month", all=TRUE)
TORNADOHarmMonth <- TORNADOHarmMonth[with(TORNADOHarmMonth, order(-FATALITIES)),]
TORNADOHarmMonth
```

##		${\tt month}$	FATALITIES	INJURIES
##	1	Apr	1793	29439
##	9	May	1253	17003
##	8	Mar	662	9559
##	7	Jun	565	9868
##	4	Feb	436	6027
##	10	Nov	251	4946
##	3	Dec	154	2928
##	5	Jan	137	2479
##	2	Aug	121	2804
##	11	Oct	99	2382
##	12	Sep	95	1799
##	6	Jul	67	2112

130

NA

13 1998

Conclusion: TORNADO in Year 2011, 1953, 1974, 1965 were most harmful. TORNADO in April and May were most harmful.

TORNADO damage spatial (states) distribution in US

• TORNADO most harmful 10 tops states

```
## sum FATALITIES for each state
TORNADOStatFat <- aggregate(FATALITIES ~ STATE, TORNADO, FUN = sum)
TORNADOStatFatTop10 <- TORNADOStatFat[with(TORNADOStatFat, order(-FATALITIES)),][1:10,]</pre>
```

```
## sum INJURIES for each state
TORNADOStatInju <- aggregate(INJURIES ~ STATE, TORNADO, FUN = sum)
TORNADOStatInjuTop10 <- TORNADOStatInju[with(TORNADOStatInju, order(-INJURIES)),][1:10,]
TORNADOHarmStateTop10 <- merge(TORNADOStatFatTop10,TORNADOStatInjuTop10, by="STATE",all=TRUE)
TORNADOHarmStateTop10 <-TORNADOHarmStateTop10[with(TORNADOHarmStateTop10,order(-FATALITIES)),]
## TORNADO mosted harmful 10 states
TORNADOHarmStateTop10</pre>
```

```
##
     STATE FATALITIES INJURIES
## 1
        AT.
                   617
                          7929
## 12
        TX
                   538
                           8207
## 8
        MS
                          6244
                   450
## 7
        MO
                   388
                           4330
## 2
                          5116
        AR
                   379
## 11
        TN
                   368
                          4748
## 10
        OK
                   296
                           4829
## 4
        IN
                   252
                           4224
## 6
        ΜI
                   243
                            NA
## 5
        KS
                   236
                            NA
## 3
        IL
                    NA
                          4145
## 9
        OH
                   NA
                           4438
```

• The damaged TORNADO among states

```
## merge FATALITIES and INJURIES for all 50 states
TORNADOHarmState <- merge(TORNADOStatFat,TORNADOStatInju, by="STATE",all=TRUE)
## read in file to get full state name
statename <- read.csv("./data/statesNameID.csv", header=T, sep=";")
TORNADOHarmState <- merge(TORNADOHarmState,statename, by="STATE",all=TRUE)

require(ggplot2)
require(maps)
## state map file
all_states <- map_data("state")
##TORNADOHarmState merged with map file
TORNADOHarmStateMap <- merge(all_states,TORNADOHarmState, by.x="region",by.y="name")
## draw map of FATALITIES
#png('./result/plot2.png', width=900, height=480)</pre>
```

State TORNADO FATALITIES (people) from 1950-2011

#dev.off()

Conclusion: TORNADO in middle parts of US were most harmful.

The types of events have the greatest economic consequences

- Property damage and crop damage were recorded in NOAA database
- PROPDM (Proportional damage) and PROPDMGEXP (Proportional damage exponential) variables. The first variable has a proportion damage value, and the second variable has a measurement unit; for example, k category means thousands, m category means millions and b category billions.
- PROPTotalDamage = PROPDM * PROPDMGEXP while CROPTotalDamage = CROPDMG * CROPDMGEXP

```
mystormData1<- mystormData
## change PROPDMGEXP to number based on k, m, b etc in PROPDMGEXP
mystormData1$PROPDMGEXP[(mystormData1$PROPDMGEXP == "h") | (mystormData1$PROPDMGEXP == "H")] <- 100
mystormData1$PROPDMGEXP[(mystormData1$PROPDMGEXP == "k") | (mystormData1$PROPDMGEXP == "K")] <- 1000
mystormData1$PROPDMGEXP[(mystormData1$PROPDMGEXP == "m") | (mystormData1$PROPDMGEXP == "M")] <- 1000000
mystormData1$PROPDMGEXP[(mystormData1$PROPDMGEXP == "B")] <- 1000000000
mystormData1$PROPDMGEXP[(mystormData1$PROPDMGEXP == "0") | (mystormData1$PROPDMGEXP == "")] <- 1
mystormData1$PROPDMGEXP[(mystormData1$PROPDMGEXP == "+") | (mystormData1$PROPDMGEXP == "-") | (mystormData1$PROPDMGEXP == "?")] <- 0
## change CROPDMGEXP to number based on k, m, b etc in CROPDMGEXP
mystormData1$CROPDMGEXP[(mystormData1$CROPDMGEXP == "h") | (mystormData1$CROPDMGEXP == "H")] <- 100
mystormData1$CROPDMGEXP[(mystormData1$CROPDMGEXP == "k") | (mystormData1$CROPDMGEXP == "K")] <- 1000
mystormData1$CROPDMGEXP[(mystormData1$CROPDMGEXP == "m") | (mystormData1$CROPDMGEXP == "M")] <- 1000000
mystormData1$CROPDMGEXP[(mystormData1$CROPDMGEXP == "B")] <- 1000000000
mystormData1$CROPDMGEXP[(mystormData1$CROPDMGEXP == "0" | (mystormData1$CROPDMGEXP == ""))] <- 1
mystormData1$CROPDMGEXP[(mystormData1$CROPDMGEXP == "+") | (mystormData1$CROPDMGEXP == "-") | (mystormData1$CROPDMGEXP == "?")] <- 0
mystormData1$PROPDMGEXP <- as.numeric(mystormData1$PROPDMGEXP)</pre>
mystormData1$CROPDMGEXP <- as.numeric(mystormData1$CROPDMGEXP)</pre>
## calculate total USD damage amount
PROPTotalDamage <- mystormData1$PROPDMG * mystormData1$PROPDMGEXP
CROPTotalDamage <- mystormData1$CROPDMG * mystormData1$CROPDMGEXP
mystormData2 <- cbind(mystormData1,PROPTotalDamage, CROPTotalDamage)
## calculate total USD damage on each event
PROPDMG <- aggregate(PROPTotalDamage ~ EVTYPE, mystormData2, FUN = sum)
PROPDMGTop10 <- PROPDMG[with(PROPDMG, order(-PROPTotalDamage)),][1:10,]
CROPDMG <- aggregate(CROPTotalDamage ~ EVTYPE, mystormData2, FUN = sum)
CROPDMGTop10 <- CROPDMG[with(CROPDMG, order(-CROPTotalDamage)),][1:10,]</pre>
## top most damaged events on property or crop
```

```
DMGTop10 <- merge(PROPDMGTop10, CROPDMGTop10, by="EVTYPE", all=TRUE)</pre>
DMGTop10 <- DMGTop10[with(DMGTop10, order(-CROPTotalDamage)),]</pre>
flevels <- DMGTop10$EVTYPE</pre>
##melt DMGTop10 on EVTYPE to be used in facet
DMGTop10Melt <- melt(DMGTop10, id=c("EVTYPE"))</pre>
DMGTop10Melt$EVTYPE <- ordered(DMGTop10Melt$EVTYPE, levels=flevels)</pre>
##make graph
require(ggplot2)
#png('./result/plot3.png', width=600, height=480)
g <- ggplot(DMGTop10Melt, aes(EVTYPE, value/1000000))</pre>
g <- g + geom_bar(stat="identity", fill="red") +</pre>
 facet_grid(. ~ variable, scales="free_y") +
 theme_bw() +
 xlab("Top 10 damaged events") +
  theme(axis.text.x=element_text(angle = -90, hjust = 0),
        strip.text.x = element_text(size=8, angle=0),
        strip.background = element_rect(fill="white")
  ) +
 ylab('Total damage millions of USD ') +
 ggtitle('Property and Crop damage in the 10 events')
g
```


#dev.off() DMGTop10

##		EVTYPE	PROPTotalDamage	CROPTotalDamage
##	1	DROUGHT	NA	13972566000
##	4	FLOOD	144657709800	5661968450
##	11	RIVER FLOOD	NA	5029459000
##	10	ICE STORM	NA	5022113500
##	6	HAIL	15732267606	3025954470
##	8	HURRICANE	11868319010	2741910000

##	9	HURRICANE/TYPHOON	69305840000	2607872800
##	3	FLASH FLOOD	16140812348	1421317100
##	2	EXTREME COLD	NA	1292973000
##	5	FROST/FREEZE	NA	1094086000
##	7	HIGH WIND	5270046260	NA
##	12	STORM SURGE	43323536000	NA
##	13	TORNADO	56937161125	NA
##	14	TROPICAL STORM	7703890550	NA
##	15	WINTER STORM	6688497251	NA

Conclusion: The most damaged event to crop is drought while the most damaged event to property is Flood.