

Cotas Superiores e Inferiores

Semana 01 - Clase 003

Definición

Considérese un CPO (A,R) y un subconjunto B de A, tal que existen dos extremos denominados cota superior e inferior, que se definen:

- Un elemento $a \in A$ es una cota superior de B si $bRa \equiv b \leq a$ para toda $b \in B$.
- Un elemento $a \in A$ es una cota inferior de B si $aRb \equiv a \leq b$ para toda $b \in B$.

Como dato podemos decir que el conjunto de \mathbb{Z}^+ siempre tendran como máxima cota inferior al número 1 para los casos de divisibilidad y multiplicación.

MCS y MCI

Un elemento $a \in A$ es una mínima cota superior (MCS) de B si cumple con las siguientes características:

- ullet a es una cota superior de B .
- ullet $a \leq c$, siempre y cuando $\,c\,$ sea una cota superior de $\,B\,$.

Un elemento $a\in A$ es una máxima cota superior (MCI) de B si cumple con las siguientes características:

- a es una cota inferior de B.
- $c \leq a$, siempre y cuando c sea una cota inferior de B .

- Sea un CPO (S, R), podemos identificar:
 - ▶ Maximales: si $\nexists b \in S$ tal que a R b. $a \neq b$
 - ▶ Minimales: si $\nexists b \in S$ tal que $b \ Ra$. $\land \neq b$
 - ▶ Máximo: si bRa, $\forall b \in S$. Es único cuando existe.
 - ▶ Mínimo: si aRb, $\forall b \in S$. Es único cuando existe.
- Sea un CPO (A, R) y un subconjunto B de A.
 - ► Cota Superior: $a \in A$ es una cota superior de B si $b \not R$ $a \forall b \in B$.
 - ▶ Cota Inferior: $a \in A$ es una cota inferior de B si a R $b \forall b \in B$.
 - Mínima Cota Superior: El mínimo elemento de las cotas superiores.
 - Máxima Cota Inferior: El máximo elemento de las cotas inferiores.

Teorema de las cotas nos dice que dada la relación aRb, la mínima cota superior del conjunto $\{a,b\}$ será b, mientras que la máxima cota inferior será $\{a\}$.