THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY Department of Electronic and Computer Engineering ELEC 1100

Laboratory 3: Pulse Width Modulation (PWM) (4%)

A) Objectives:

- To get familiar with breadboard circuit construction and circuit drawings.
- To generate controllable PWM signal for your project.

B) Equipment:

• 74HC161 (4-bit binary counter), 74HC85 (4-bit comparator)

C) Prelab (solution included)

- Q1 What is the decimal value of the binary number 1001? 9
- Q2 Which pins of the 74HC161 is/are the output of the IC? 11-14
- Q3 Describe the function of 74HC85. Compare two 4-bit binary numbers and output whether one is larger, equal, or smaller than the other.
- Q4 Draw the breadboard connections of Lab 3. Check with your partner or refer to the tutorial slides

D) Experimental Procedures:

Optimize the layout of your breadboard to save space for future labs

Review: Confirm the Pulse Signal (~10 mins)

- Step 1: Confirm the pulse signal you obtained at Lab#02. Use oscilloscope to display the waveform of Schmitt Trigger output (pin 2 of the Schmitt Trigger 74HC14).
- Step 2: Adjust the variable resistor to obtain 2kHz frequency if necessary. Demo to your TA and obtain his/her signature.

Experiment 1: 4-bit Binary Counter (74HC161) (~30 mins)

Step 1: Take a 4-bit Binary Counter (74HC161) and connect the circuit as shown below. Leave pins 3-6 and 15 unconnected. You may refer to the tutorial notes for the breadboard arrangement.

- Step 2: Connect pin 2 of the counter (shown above) to the Schmitt Trigger output (Pin 2 of Schmitt Trigger from Lab#02).
- Step 3: Connect CH1 of the DSO to record the frequency at pin 14, 13, 12 & 11, respectively.
- Q1: What is the frequency of the signal at pin 14/13/12/11?

Experiment 2: 4-bit Comparator (74HC85) (~60 mins)

- Step 1: Add a 4-bit comparator 74HC85 <u>as shown in the figure next page</u>. The DIP switch is for your convenience. [Floor-planning is strongly recommended.]
- Step 2: Set Q to the binary number $Q_3 Q_2 Q_1 Q_0 = 1 \ 1 \ 0 \ 0$ using the DIP switch.
- Q2: Sketch the waveform at Pin 7 (P < Q), including the scales.

What is the frequency of the signal at Pin 7 (P < Q)?

What is the duty cycle of the signal at Pin 7 (P < Q)?

- Q3: Sketch the waveform at Pin 6 (P = Q), including the scales.
- Q4: Sketch the waveform at Pin 5 (P > Q), including the scales.
- Step 3: Now play around the circuit by modifying the value of Q.
- Q5: Which setting of Q₃Q₂Q₁Q₀ gives 50% duty cycle at Pin 7?

The PWM circuit is part of your project.

Arrange it nicely and keep it on your breadboard.

Remember to clean up your bench! A messy table will cost 3 points!

ELEC 1100 Laboratory 3: Summary Sheet

Group Numbe	er:
Name:	Lab Partner:
Student ID:	Student ID:
Experimental Part	
Review: Confirm the Pulse Signal	
TA's Signature:	
Experiment 1: Binary Counter (74HC161)	
Q1: What is the frequency of the signal a	at pin 14/13/12/11, respectively?
Frequency at pin 14	<u> </u>
Frequency at pin 13	
Frequency at pin 12	
Frequency at pin 11	_
Experiment 2: 4-bit Comparator (74HC85)	
Q2: Sketch the waveform at Pin 7 (P < Q), including the scales.	
	
What is the frequency of the signal at Pin 7 (P < Q)?	

What is the duty cycle of the signal at Pin 7 (P < Q)? _____

Q3: Sketch the waveform at Pin 6 (P = Q), including the scales.

Q4: Sketch the waveform at Pin 5 (P > Q), including the scales.

Q5: Which setting of Q₃ Q₂ Q₁ Q₀ gives 50% duty cycle at Pin 7? _____