

PCB 제조공정 환경 데이터분석

유환호 이수정 호인성 황 희

INDEX

- 1. 프로젝트 배경
 - PCB 소개
 - 문제 정의 및 주제 선정
- 2. 데이터 정제
 - 데이터 설명
 - 데이터 전처리
 - 데이터 병합
- 3. 데이터 분석
 - 노광공정 기기별 불량률 차이
 - 이물질 관리기준 정의
- 4. 결론 및 문제점
 - 결론
 - 연구한계

프로젝트 배경 1) PCB 소개

PCB란?

Printed Circuit Board

절연판 위와 그 내부에 회로를 형성하여 그 위에 탑재된 부품을 전기적으로 연결시켜 동작시키는 기판

용도

프로젝트 배경

반도체 후공정(패키징 단계)에서 직접회로를 탑재될 기기에 적합한 형태로 연결하는 역할

프로젝트 배경 1) PCB 소개

PCB 제조 공정

노광공정?

프로젝트 배경

Dry film이 입혀진 동판(Copper) 위에 회로의 이미지를 형성하는 작업

Dry film은 노광 빛(UV자외선)에 노출되면 감광되는 특징이 있어 이를 활용해 회로가 될 곳은 빛에 노출시키고 공간이 될 곳은 빛을 차단하는 방법으로 상을 형성

미세회로 작업이기 때문에 외부 환경요인을 통제하고 빛에너지 노출의 일정한 강도와 시간의 유지가 중요

프로젝트 배경 1) PCB 소개

노광에서 발생하는 불량 유형 파악

프로젝트 배경 2) 문제 정의 및 주제 선정

노광공정 기기별 불량률 차이

- 엔지니어분들의 도메인 지식에 의존한 관리 규정 검토
- 노광기기 별로 외부 환경 요인을 잘 통제하고 있을까?

이물질 사이즈 관리기준 정의

- 이물질 사이즈와 불량률과의 관계 파악

더이터 정제 1) 데이터 설명

노광기기별 이물질 데이터 (예시 : 1호기)

장비번호	날짜시간(yyyymmddhhmmss)	>0.3µm∆	>0.5µm∆	>1.0µm∆	>5.0µm∆	>0.3μmΣ	>0.5μmΣ	>1.0μmΣ
노광1호기	2020-07-23 16:23:29	23	2	0	0	25	2	0
노광1호기	2020-07-23 16:23:30	21	7	0	0	28	7	0
노광1호기	2020-07-23 16:23:31	21	2	1	0	24	3	1
노광1호기	2020-07-23 16:23:32	22	6	0	0	28	6	0
노광1호기	2020-07-23 16:23:33	22	4	0	0	26	4	0

노광공정 후의 불량데이터

장비 번호	일자	총 검사 수	총 불량 수	오픈	슬릿(상)	슬릿(하)	쇼트	Yield(%)
노광1호기	2020-04-01	10368	65	1061	96	675	193	99.37
노광1호기	2020-04-04	39636	221	202	101	303	429	99.44
노광1호기	2020-04-22	10696	161	1028	93	654	467	98.49
노광1호기	2020-04-23	10752	160	651	0	1395	1953	98.51
노광1호기	2020-04-24	16128	285	434	372	434	992	98.23
노광1호기	2020-04-25	10752	298	2418	465	930	2883	97.23
노광1호기	2020-04-27	22032	405	817	182	227	1589	98.16
노광1호기	2020-04-28	5376	132	2232	1302	186	5022	97.54

프로젝트 배경

1) 데이터 설명

불량데이터

■ 노광기별 공정 후 불량 발생

No.	필드명	데이터형	내용
1	일자	날짜	검사일자
2	장비번호	일련번호	노광기 4대에 대한 정보 (1,2,4,5호기)
3	총 검사 수	수치형	노광공정 후 검사한 제품 개수
4	총 불량 수	수치형	검사에서 발견된 모든 불량 수
5	오픈	수치형	여러 불량 유형 중 파티클에 민감한 유형1
6	슬릿(상)	수치형	여러 불량 유형 중 파티클에 민감한 유형2
7	슬릿(하)	수치형	여러 불량 유형 중 파티클에 민감한 유형3
8	쇼트	수치형	여러 불량 유형 중 파티클에 민감한 유형4
9	Yield	수치형	수율 = 1-불량률

Table Size: 429x10

EX)

일자	장비번호	총 검사 수	총 불량수	오픈	슬릿(상)	슬릿(하)	쇼트	Yield
2020-04-01	1	10368	65	1061	96	675	193	99.37

환경데이터

■ 노광기 호기별 이물질 측정

No.	필드명	데이터형	내용
1	Time	시간	단위 시간
2	장비번호	일련번호	장비 호기 표시
3	0.3μmΔ	수치형	개별 파티클 개수
i	1	1	1
6	5.0μmΔ	수치형	개별 파티클 개수
7	>0.3μmΣ	수치형	합산 파티클 개수
i	1	1	
9	>1.0μmΣ	수치형	합산 파티클 개수

Table Size: 12710230x9

Warning

No.	필드명	데이터형	내용
상동	상동	상동	상동

Table Size: 1423x9

불량데이터 조정

특정 4가지 요인에 의한 불량 검출 수 및 수율 컬럼 생성

Ex) 노광 1호기

•	단우	:ppm —		
오픈	슬릿(상)	슬릿(하)	쇼트	Yield(%)

일자	총 검사수	총 불량수	오픈	슬릿(상)	슬릿(하)	쇼트	Yield(%)
2020-04-01	10368	65	1061	96	675	193	99.37
2020-04-04	39636	221	202	101	303	429	99.44

ppm을 개수로 환산

불량건수 = (PPM 수치 X 총 검사수량) / 1,000,000

결론 및 문제점

3) 데이터 병합

환경데이터 시간 병합

- 각각의 환경데이터의 시간을 일단위로 병합 후 통합 환경데이터 생성
- record축소 효과

환경데이터 시간 병합

최종 데이터

	이물실 + 불당				
₽	일자				
* ***********************************	장비번호				
	총 검사 수				
	총 불량 수				
오픈					
슬릿(상)					
슬릿(하)					
쇼트					
Yield					
	>0.3μmΔ				
	i i				
	>5.0μmΔ				
	>0.3μmΣ				
	i i				
	>1.0μmΣ				

Table Size: 312x60

1) 노광공정 기기별 불량률 차이

노광기기별 특징

1. 수동 아날로그, 자동 디지털 방식의 차이

- 1,2호기: 아날로그

- 4,5호기: 디지털

2. 연식의 차이

- 4호기: 연식 5년

- 5호기: 연식 2년

3. 출입문과 장비 거리

- 1,2호기: 통로 앞

<노광실 도면>

프로젝트 배경

프로젝트 배경 데이터 정제 **데이터 분석**

1) 노광공정 기기별 불량률 차이

노광호기별 모부적합품률의 차이 검정

- ✓ 디지털 기기와 아날로그 기기 간 불량률의 차이가 있는지 통계적으로 검정
 - 1,2호기(아날로그) / 4,5호기(디지털)
 - 아날로그 방식은 사람이 직접 기기 개폐 후 Dry film 부착
- ✓ 1호기와 2호기 간 모부적합품률에 차이가 존재하는지 검정
 - 상대적으로 출입문과 가까운 아날로그 기기의 부적합품률이 실제로 높은지 검정
- ✓ 디지털 기기의 연식 차이가 불량률과 관련이 있는지 검정
 - 4호기(5년) 5호기(2년)

결론 및 문제점

1) 노광공정 기기별 불량률 차이

프로젝트 배경

노광호기별 모부적합품률의 차이 검정

1. 이항분포의 정규분포 근사 조건 :

 $nP_0 \ge 5$ 이고, $n(1 - P_0) \ge 5$ 일때, 혹은 샘플의 수 n이 매우 클 때

2. 가설 설정

 $H_0: P_A \geq P_B$ (집단 A의 모부적합품률보다 집단 B의 모부적합품률이 크다)

 $H_1: P_A < P_B$ (집단 A의 모부적합품률보다 집단 B의 모부적합품률이 작다)

 P_A : 집단 A의 모부적합품률

 P_R : 집단 B의 모부적합품률

3. 검정통계량 계산

$$u_0 = \frac{\hat{p}_A - \hat{p}_B}{\sqrt{\hat{p}(1 - \hat{p})(\frac{1}{n_A} + \frac{1}{n_B})}}$$

 $x_A = A 집단의 부적합품 수$ n_A = A집단의 총 검사 수량

 x_B = B집단의 부적합품 수 n_B = B집단의 총 검사 수량

$$\hat{p}_A = \frac{x_A}{n_A}$$

$$\hat{p} = \frac{x_A + x_B}{n_A + n_B}$$

데이터 분석

1) 노광공정 기기별 불량률 차이

노광호기별 모부적합품률의 차이 검정

4. 기각역 설정

$$u_0 < -u_{1-\alpha}$$

$$u_0 < -1.645$$

5. 판정

ex) 유의수준 α = 0.05이고, 검정통계량이 -4.2882인 경우

$$u_0 = -4.28823 < -1.645$$

 $u_0 = -4.28823 < -1.645$: 귀무가설(H0) 기각, 대립가설(H1) 채택

결론 : 집단 A의 모부적합품률은 집단B의 모부적합품률보다 작다고 할 수 있다.

1) 노광공정 기기별 불량률 차이

노광호기별 모부적합품률의 차이 검정 결과

구분		아날로그 vs 디지털	1호기 vs 2호기	4호기 vs 5호기
검정통계랑		-10.503996	-4.28823	-10.40706
검정 결과		디지털기기의 모부적합품률이 더 크다	2호기의 모부적합품률이 더 크다	5호기의 모부적합품률이 더 크다
	오픈	<	<	<
	エ	-14.70788	-4.38562	-7.77205
	슬릿(상)	>	>	<
물 량	르자(6)	3.79329	6.535939	-6.715724
개 하 아 정	스리(하)	<	<	=
	슬릿(하)	-9.9696	-7.943023	0.764496
	쇼트	>	Ш	<
	ш=	3.174542	-0.22536	-7.30648

✓ 기기의 연식이 오래 됨에 따라 부적합품률이 증가한다고 볼 수 없음

2) 이물질 사이즈 관리기준 정의

불량 데이터 사유별 비중

* 불량건수 = (PPM 수치 X 총 검사수량) / 1,000,000

데이터 분석

결론 및 제언

2) 이물질 사이즈 관리기준 정의

프로젝트 배경

환경데이터와 불량데이터 간 동일성 검정

- Mann-whitney U test (비모수 검정)

정규성을 만족하지 않는 두 데이터의 분포에 대해 두 집단의 차이를 분석하는 방법 두 그룹의 자료를 혼합한 뒤 순위를 매기고 (동점인 경우 평균 사용), 그것의 통계적 차이가 유의한지를 파악한다

- 특징
- 1. 치우친 분포에도 사용이 가능함
- 2. 가정이 필요 없음 (표준편차, 평균 상관X)

가설

 H_0 :두 집단의 분포는 동일하다 H_1 :두 집단의 분포는 동일하지 않다

통계량 두 모집단의 혼합표본
$$W = \sum_{j=1}^{n} R_{j} \longrightarrow \{ \ X_{1}, X_{2}, \cdots X_{i} \cdots, X_{m} \ , \ Y_{1}, Y_{2}, \cdots Y_{j} \cdots, Y_{n} \ \}$$
 에서 Yj 의 순위
$$U = W - \frac{n(n+1)}{2}$$

2) 이물질 사이즈 관리기준 정의

환경데이터와 불량데이터 간 동일성 검정

두 데이터 분포의 동일성을 Mann-whitney U test를 통해 검정

결론 및 문제점

데이터 분석

2) 이물질 사이즈 관리기준 정의

노광기: 노광기 전체

불량데이터 column: 노광공정 내 불량 수

환경데이터 column : > 0.5μmΔ_sum(일별 합계)

분포 동일성 통계량 : 45961.5, pvalue=0.33027

Pearson's corr: 0.29349

2) 이물질 사이즈 관리기준 정의

프로젝트 배경

프로젝트 배경 데이터 정제 데이터 분석 **결론 및 문제점**

노광기별 관리기준 데이터

노광기 번호	불량데이터	환경데이터	유의한 변수 개수
1	노광공정 내 불량 수	> 0.3μm Δ_max(일별 최대값), ···	25
2	노광공정 내 슬릿(상)불량 수	> 0.3μmΔ_max(일별 최대값), ···	8
4	노광공정 내 불량 수	> 1.0μmΔ_max(일별 최대값), ···	7
5	노광공정 내 오픈불량 수	> 5.0μmΔ_sum(일별 합계), ···	12
전체	노광공정 내 불량 수	> 0.3μmΔ_max(일별 최대값), ···	18

0.3 μm Δ_max(일별 최대값)가 분포 유사도 가장 많이 확인

요약

데이터 수집 조건 세분화가 필요

ex) 2020.06.02의 0.3Σ 데이터

데이터 수 : <mark>89000</mark>

불량 데이터의 시간기준을 세분화할 필요가 있다

데이터 수 : <mark>1</mark>

날짜	2020.06.02
Sum	148100
Mean	1422
Max	4881
•••	•••

노광기 내 생산 불량 수량 (2020.06.02) 63.03024

💽 <mark>연</mark>구 한계

데이터 수집 조건 세분화가 필요

문의결과 이상값이 아님

제품별로 검사 PCS수가 다른데, 제품별 검사, 불량 구분은 되어있지 않음

불량 데이터를 제품별로 구분할 필요가 있다

말 방법론 검토

이물질 데이터 개수 선정 방식

<u>정리</u>

X = 이물질 사이즈별 대표값

y = 슬릿(상)에 대한 등급

- PASS: 50% 이하 / ERROR: 50% 이상

중앙값: 9,49개

1. Grid Search -> Dept: 3

2. 훈련 데이터 정확도: 76.38%

3. 검증 데이터 정확도: 66%

차이: 10.38%

- 하계

:입력 데이터의 정밀도만큼 관리 기준 모델 정확도를 개선할 수 있음

결론 및 문제점