Unit: Relationships between points, lines and planes (1)

The intersection of 2 lines (2 and 3-D)

To check if $\ell_1 \& \ell_2$ represent the same line or intersection of $\ell_1 /\!/ \ell_2$ in 3-space

- 1) Check that $\vec{d_1} = k\vec{d_2} \Rightarrow \ell_1 // \ell_2$
- 2) Substitute the point from $\,\ell_1\,$ into symmetric equation of $\,\ell_2\,.$
- (i) If $t \neq t \neq t$ $\Rightarrow \ell_1 // \ell_2$ and distinct; $\Rightarrow \ell_1 \& \ell_2$ are not the same line; $\Rightarrow \ell_1 \& \ell_2$ have no intersection.
- (ii) If t = t = t $\Rightarrow \ell_1 // \ell_2$ and coincident; l_1 $\Rightarrow \ell_1 \& \ell_2$ represent the same line; l_2 $\Rightarrow \ell_1 \& \ell_2$ have infinite number of intersections.

Ex 1: Intersection of lines in Space

- a) Prove, in each case, $l_1 \parallel l_2$:
- b) Find the intersection of l_1 and l_2 , if any.

i)
$$l_1: \vec{r} = (1, 0, 3) + s(3, -6, 3)$$

 $l_2: \vec{r} = (2, -2, 5) + t(2, -4, 2)$

ii)
$$l_1$$
: $\vec{r} = (1, -1, 1) + s(6, 2, 0)$
 l_2 : $\vec{r} = (-5, -3, 1) + t(-9, -3, 0)$

Test for the Intersection of $l_1 \% l_2$ in 3-Space

- 1) Check that $\vec{d}_1 \neq k\vec{d}_2 \Rightarrow l_1 \not \Vdash l_2$
- 2) Substitute parametric equations of ℓ_1 into symmetric equation of ℓ_2 , (or vice versa)
- 3) 2 equations are formed.
- 4) Solve for t.
 - (i) If $t = t \Rightarrow$ there is a point of intersection.

(ii) If $t \neq t \Rightarrow$ no intersection ($\ell_1 \& \ell_2$ are skew lines). This occurs when the lines are on different dimensional planes. They are not considered parallel.

Ex 2: Intersection of lines in Space

- b) Find the intersection of l_1 and l_2 , if any.

i)
$$l_1: (x, y, z) = (-1, 1, 0) + t(3, 4, -2)$$

 $l_2: x = -1 + 2t$
 $y = 3t$
 $z = -7 + t$

ii)
$$l_1$$
: $\vec{r} = (2, 1, 0) + t(1, -1, 1)$
 l_2 : $\vec{r} = (3, 0, -1) + t(2, 3, -1)$

The intersection of Lines with Plane

Test for the intersection of a line and a plane

- 1) Substitute the parametric equations of the line into scalar equation of plane.
- 2) Solve for t.
 - i) If $t = 5 \Rightarrow$ a point of intersection.

ii) If $0t = 0 \Rightarrow$ line lies on plane \Rightarrow infinite number of intersection

iii) If $0t \neq 0 \Rightarrow$ line // plane and distinct \Rightarrow no intersection

Ex 3: Intersection of lines with plane

Find the intersection of l and π in each case:

a)
$$l:(x, y, z) = (1, -6, -5) + t(2, 3, 2)$$
 & $\pi: 4x - 2y + z - 19 = 0$

b)
$$l: x = 2t$$
, $y = 1 - t$, $z = -4 + t$
 $\pi: x + 4y + 2z - 4 = 0$

c)
$$l: (x, y, z) = (-4, 0, 0) + t(3, 0, 1)$$

 $\pi: x - 2y - 3z + 4 = 0$

THE INTERSECTION OF TWO PLANES (3 CASES)

$\pi_1 // \pi_2$ & distinct \Rightarrow (no intersection)	$\pi_1 // \pi_2 \& \text{ coincident}$ $\Rightarrow \text{ (infinite intersections)}$	$\pi_1 \not \vdash \pi_2$ $\Rightarrow \text{(a line of intersection)}$ Let $z = t$, solve x and y in terms of t	
$\frac{\pi_1}{\pi_2}$	π_1 π_2	π_2	

Ex 4: Intersection of 2 planes

Find the intersection of π_1 and π_2 , if any

a)
$$\pi_1$$
: $2x + y - 3z - 6 = 0$
 π_2 : $4x + 2y - 6z + 5 = 0$

b)
$$\pi_1$$
: $2x + y - 3z - 6 = 0$
 π_2 : $-6x - 3y + 9z + 18 = 0$

c)
$$\pi_1$$
: $2x - 2y + 5z = -10$
 π_2 : $2x + y - 4z = -7$

THE INTERSECTION OF THREE PLANES (8 CASES)

$\pi_1 // \pi_2 // \pi_3$ (All are distinct) (No Intersection)	$\pi_1 // \pi_2$ (Coincident) and $// \pi_3$ (Distinct) No Intersection	$\pi_1 // \pi_2 // \pi_3$ (All are Coincident) (Infinite Intersections)	$\pi_1 // \pi_2$ (Distinct) $\mathcal{H} \pi_3$ (No Intersection)
$ \begin{array}{c c} \hline 1 & \pi_1 \\ \hline & \pi_2 \\ \hline & \pi_3 \end{array} $	$ \begin{array}{c c} \hline 2 \\ \hline \pi_1 \\ \hline \pi_3 \end{array} $	$\begin{bmatrix} 3 \\ \pi_1 \end{bmatrix}$	$\frac{1}{\pi_1}$

$\pi_1 // \pi_2$ (Coincident) $\# \pi_3$	$n_1 + n_2 + n_3$	$\pi_1 \# \pi_2 \# \pi_3$	$\pi_1 \mathcal{H} \pi_2 \mathcal{H} \pi_3$
(Line of Intersection)	(Point of Intersection)	(Line of Intersection)	(No Intersection)
	$\vec{n}_1 \cdot (\vec{n}_2 \times \vec{n}_3) \neq 0$	$\vec{n}_1 \cdot (\vec{n}_2 \times \vec{n}_3) = 0$	$\vec{n}_1 \cdot (\vec{n}_2 \times \vec{n}_3) = 0$
π_1 π_2 π_3	6	7	8

Ex 5: Intersection of 3 planes

Describe geometrically the intersection of π_1 , π_2 , and π_3 in each case:

a)
$$\pi_1$$
: $2x + y - 2z + 6 = 0$
 π_2 : $4x + 2y - 4z - 5 = 0$
 π_3 : $6x + 3y - 6z + 11 = 0$

b)
$$\pi_1$$
: $2x + y - 2z + 6 = 0$
 π_2 : $4x + 2y - 4z + 12 = 0$
 π_3 : $6x + 3y - 6z + 11 = 0$

c)
$$\pi_1$$
: $2x + y - 2z + 6 = 0$
 π_2 : $4x + 2y - 4z + 12 = 0$
 π_3 : $6x + 3y - 6z + 18 = 0$

Calculus and Vectors - Handout 14

d)
$$\pi_1$$
: $2x + y - 2z + 6 = 0$
 π_2 : $4x + 2y - 4z - 5 = 0$
 π_3 : $x + y - z - 2 = 0$

e)
$$\pi_1$$
: $2x + y - 2z + 6 = 0$
 π_2 : $4x + 2y - 4z + 12 = 0$
 π_3 : $x + y - z - 2 = 0$