Programovací jazyk SVGER

October 30, 2016

Contents

1	Gramatiky												
	1.1	Identifikátory											
	1.2	Čísla											
	1.3	Řetězce											
	1.4	Závorky											
	1.5	Gramatika bílých znaků											
	1.6	Komentáře											
2	Lek	ální analyzátor											

1 Gramatiky

V této sekci se nachází popis jednotlivých gramatik, které jsou zpracovány lexikálním analyzátorem.

1.1 Identifikátory

Identifikátor začíná na kterýkoliv znak z množiny $z = \{a..z, A..Z, +, -, /, *, <\}$ a pokračuje v kterémkoliv ze znaků z množiny $m = z \cup \{0..9\}$

Z tohoto popisu nám vyplyne následující gramatika $G_{identifikatory}(\{S, A, B\}, \{z, m\}, P, S)$

$$S \to zA|z$$
$$A \to mA|m$$

1.2 Čísla

Validním číslem je jakákoliv sekvence znaků, které se nachází v množině d=0..9. Které jsou

Ná základě tohoto můžeme vytvořit následující gramatiku $G_{cisla}(\{S, B, C\}, \{d, .\}, P, S)$

$$S \to dB|d$$

$$B \to dB|d|d.C$$

$$C \to dC|d$$

1.3 Řetězce

Řetězce začínají a končí na znak ". V samotném řetězci se pak může nacházet jakýkoliv znak kterému předchází \ nebo cokoliv v množině \blacksquare , která reprezentuje všechny tisknutelné znaky, které nejsou \ ". Toto lze reprezentovat následující gramatikou $G_{retezce}(\{S, D, E\}, \{\setminus, ", \blacksquare\}, P, S)$

$$S \to "D$$

$$D \to "|\backslash E| \blacksquare E$$

$$E \to "D|\backslash D| \blacksquare D$$

1.4 Závorky

Závorky jsou důležitou součástí programovacího jazyků, které patří do rodiny lispu. Z důvodu přehlednosti jsem se rozhodl, že programovací jazyk bude podporovat nejen "kulaté "závorky tedy (a) ale i [] a $\{\}$. Popisuje je následující gramatika $G_{zavorky}(\{S\}, \{(,), [,], \{,\}\}, P, S)$

$$S \to (|)|[|]|\{|\}$$

1.5 Gramatika bílých znaků

Je gramatika popisující všechny bílé znaky $G_{bileznaky}(\{S\}, \{ \iota \mid \mapsto | \sqcup \}, P, S)$

$$S \rightarrow \sqcup | \mapsto | \sqcup$$

1.6 Komentáře

Jazyk má jednoduché komentáře začínající na ; a končící novým řádkem $G_{komentare}(\{S, F\}, \{ \downarrow, ;, \Box \}, P, S)$

$$S \to ; F$$

$$F \to \Box F | \mathrel{\checkmark} S$$

2 Lekální analyzátor

Nyní je třeba z předem definované gramatiky spojit a převést na automat. Pokud tento automat nebude deterministický je třeba jej determinizovat.

Samotný jazyk se skládá z jazyku oddělováčů (komentáře, bílé znaky) $L_{od} = G_{komentare} \cup G_{bileznaky}$ a jazyku významových tokenů

$$L_{vt} = G_{identifikatory} \bigcup G_{cisla} \bigcup G_{retezce} \bigcup G_{zavorky}$$

Celý jazyk pak lze zapsat tímto způsobem

$$L = (L_{od}^*.L_{vt})^*.L_{od}^*$$

Po spojení nám vzniká gramatika

 $G_{vt}(\{S,\,S_{identifikatory},\,S_{cisla},\,S_{retezce},\,S_{zavorky},\,A,\,B,\,C,\,D,\,E,\,F,\,G\},\,\{d,\,z,\,m,\,(,\,),\,\{,\,\},\,[,\,],\,\setminus\,\},\,P,\,S),\,která reprezentuje významové tokeny$

$$S \rightarrow S_{identifikatory} | S_{cisla} | S_{retezce} | S_{zavorky} | S_{od}$$

kde S_{od} je definované v gramatice oddělovačů $G_{od}(\{S_{od}\}, \{; | \downarrow | \mapsto | \sqcup | \sqcup | \downarrow \}, P, S)$

$$S \to \sqcup |\mapsto |\sqcup|; A|\Box$$
$$A \to \Box A|; A| \; \sqcup$$

Po odstranění jednoduchých symbolů dostaneme následující gramatiku

$$S \to zA|z|dB|d|"D|;G| \to |\Box|(|)|[|]|\{|\}$$

$$A \to mA|m$$

$$B \to dB|d|d.C$$

$$C \to dC|d$$

$$D \to "|\backslash E| \blacksquare E$$

$$E \to "D|\backslash D| \blacksquare D$$

$$F \to \Box F| \hookleftarrow S$$

	d	z	m	()	{	}	[]	•		\	;		•	4	\mapsto	Ш
Q_S	$\{Q_B, Q_{\hat{F}}\}$	$\{Q_A, Q_{\hat{F}}\}$	Ø	$Q_{\hat{F}}$	$Q_{\hat{F}}$	$Q_{\hat{F}}$	$Q_{\hat{F}}$	$Q_{\hat{F}}$	$Q_{\hat{F}}$	Ø	Ø	Ø	Q_F	Ø	Q_D	$Q_{\hat{F}}$	$Q_{\hat{F}}$	$Q_{\hat{F}}$
Q_A	Ø	Ø	$\{Q_A, Q_{\hat{F}}\}$	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
Q_B	$\{Q_C, Q_{\hat{F}}, Q_B\}$	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
Q_C	$\{Q_C, Q_{\hat{F}}\}$	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
Q_D	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Q_E	Ø	Q_E	Ø	Ø	$\{Q_{\hat{F}}\}$	Ø	Ø	Ø
Q_E	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Q_D	Ø	Q_D	Ø	Ø	Q_D	Ø	Ø	Ø
Q_F	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Q_F	Ø	Ø	Ø	Ø	$Q_{\hat{F}}$	Ø	Ø
$Q_{\hat{F}}$	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø

Q	d	z	m	()	{	}	[]			\	;	0		4	\mapsto	П
$\overline{Q_S}$	$Q_{B\hat{F}}$	$Q_{A\hat{F}}$	Ø	$Q_{\hat{F}}$	$Q_{\hat{F}}$	$Q_{\hat{F}}$	$Q_{\hat{F}}$	$Q_{\hat{F}}$	$Q_{\hat{F}}$	Ø	Ø	Ø	Q_F	Ø	Q_D	$Q_{\hat{F}}$	$Q_{\hat{F}}$	$Q_{\hat{F}}$
Q_A	Ø	Ø	$Q_{A\hat{F}}$	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
Q_B	$Q_{C\hat{F}B}$	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
Q_C	$Q_{C\hat{F}B}$	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
Q_D	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Q_E	Ø	Q_E	Ø	Ø	$Q_{\hat{F}}$	Ø	Ø	Ø
Q_E	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Q_D	Ø	Q_D	Ø	Ø	Q_D	Ø	Ø	Ø
Q_F	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Q_F	Ø	Ø	Ø	Ø	$Q_{\hat{F}}$	Ø	Ø
$Q_{\hat{F}}$	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	ø	Ø	Ø
$Q_{B\hat{F}}$	$Q_{C\hat{F}B}$	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
$Q_{A\hat{F}}$	Ø	Ø	$Q_{A\hat{F}}$	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
$Q_{C\hat{F}B}$	$Q_{C\hat{F}B}$	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
$Q_{A\hat{F}}$	Ø	Ø	$Q_{A\hat{F}}$	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø

