(Optim	ization algorithms	10/10 points (100.00%)
	Quiz, 10 qu	estions	
	~	Congratulations! You passed!	Next Item
~	1/1 points		
1. Which	notation w	ould you use to denote the 3rd layer's activations when the input is the 7th exa	imple from the 8th minibatch?
	$a^{[8]\{7\}(3)}$		
	$a^{[8]\{3\}(7)}$		
	$a^{[3]\{7\}(8)}$		
0	$a^{[3]\{8\}(7)}$		
Cor	Correct		
~	1/1 points		
2. Which	of these st	atements about mini-batch gradient descent do you agree with?	
0	One itera descent.	tion of mini-batch gradient descent (computing on a single mini-batch) is faster	than one iteration of batch gradient
Cor	rect		
		one epoch (one pass through the training set) using mini-batch gradient descen ich gradient descent.	t is faster than training one epoch
		old implement mini-batch gradient descent without an explicit for-loop over diff on processes all mini-batches at the same time (vectorization).	erent mini-batches, so that the
~	1 / 1 points		
3.	a tha a la c		
why is		nini-batch size usually not 1 and not m, but instead something in-between?	aini hatch
ب	n the mil	ni-batch size is 1, you lose the benefits of vectorization across examples in the n	ווווו־שמננוו.

Correct

Optimization algorithms

10/10 points (100.00%)

Quiz 10 questions If the mini-batch size is 1, you end up having to process the entire training set before making any progress.

Un-selected is correct

If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent.

Un-selected is correct

If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making progress.

Correct

1 / 1 points

4.

Suppose your learning algorithm's cost J, plotted as a function of the number of iterations, looks like this:

Which of the following do you agree with?

Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.

Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.

If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is

Optimization algorithms

10/10 points (100.00%)

Correctiiz, 10 questions

If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.

1/1 points

5.

Suppose the temperature in Casablanca over the first three days of January are the same:

Jan 1st: $heta_1 = 10^o C$

Jan 2nd: $heta_2 10^o C$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

$$v_2=10$$
, $v_2^{corrected}=10$

$$v_2=10$$
, $v_2^{corrected}=7.5$

$$igcup v_2=7.5$$
 , $v_2^{corrected}=10$

Correct

$$v_2=7.5$$
, $v_2^{corrected}=7.5$

1/1 points

6.

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

$$\alpha = rac{1}{1+2*t}lpha_0$$

$$\alpha = 0.95^t \alpha_0$$

$$\bigcirc \quad \alpha = e^t \alpha_0$$

Correct

10/10 points (100.00%)

You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t = \beta v_{t-1} + (1-\beta)\theta_t$. The red line below was computed using $\beta = 0.9$. What would happen to your red curve as you vary β ? (Check the two that apply)

Un-selected is correct

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a green line \$\$\beta=0.98\$) that is slightly shifted to the right.

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a yellow line \$\$\beta=0.98\$ that had a lot of oscillations.

Un-selected is correct

Optimization algorithms

10/10 points (100.00%)

Quiz, 10 questions

1/1 points

8.

Consider this figure:

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

(1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)

Correct

(1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent
(1) is gradient descent. (2) is gradient descent with momentum (large β) . (3) is gradient descent with momentum (small β)
(1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)

1/1 points

9.

Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function $\mathcal{J}(W^{[1]},b^{[1]},...,W^{[L]},b^{[L]})$. Which of the following techniques could help find parameter values that attain a small value for \mathcal{J} ? (Check all that apply)

Try tuning the learning rate lpha

Correct

- We usually use "default" values for the hyperparameters eta_1,eta_2 and arepsilon in Adam ($eta_1=0.9$, $eta_2=0.999$, $arepsilon=10^{-8}$)
- Adam should be used with batch gradient computations, not with mini-batches.

Correct

- Adam combines the advantages of RMSProp and momentum
- The learning rate hyperparameter α in Adam usually needs to be tuned.

L