The CMOS Inverter:

- PMOS as wall as NMOS.

- Nucleus of ICs
- Same analysis can be extended to study complex gates (NAND, NOR etc.)

- 1 Cost (Area and Complexity)
- 2 Robustness (Static behavior)
- 3 Performance (Dynamic / Transient response)
- 4 Energy Efficiency (Power consumption)

CMOS Inverter (Schematic us Layout):

Schematic

Two Inverters (Schematic us Layout):

Schematic

CMOS Inverter DC Analysis:

$$V_{in} = V_{DD}$$

- Low and High levels equal to V_{DD} and GND.
- Ratio less (logic levels do not debend on device sizes)
- Vous is always connected to either V_{DD} or GIND.
- I/P impedance is very high
- No static power dissipation.

Voltage - Transfer Characteristics:

Impact of Process Variation:

The good device generally has

- Smoller Tox
- Smaller Lg
- Higher W
- Smaller VTH.

