TD n°4

Constructions d'automates et élimination des ε -transitions

Exercice 1 (Détermination d'automate et simplification)

- Donnez un automate non déterministe pour $\mathcal{L} = \{u \in \{a,b\}^* \mid u \text{ contient le facteur abaab}\}.$
- Déterminisez l'automate.
- L'automate obtenu peut-il être simplifié?

Exercice 2 (Complétion d'automates) Complétez les deux automates A_1 et A_2 sur les alphabets $\{a,b\}$ et $\{a,b,c\}$ respectivement.

Automate A_2

Exercice 3 Montrez que si un langage \mathcal{L} est reconnaissable, alors le langage formé des préfixes de tous les mots de \mathcal{L} est lui aussi reconnaissable. Est-ce vrai aussi pour les suffixes? Les facteurs? Les sous-mots? Illustrez ceci dans le cas ou $\mathcal{L} = \{tete, terre\}$.

Exercice 4 (Élimination des ε -transitions) Transformer l'automate suivant en un automate non déterministe équivalent sans ε -transitions.

- Calculez la ε -clôture pour chaque état.
- Quelle est la ε -clôture de $\{0,1\}$?
- Sur la base des ε -clôtures calculées, donnez un automate équivalent sans ε -transitions.