Machine Learning Soundings

(機器學習深測)

Lecture 2: Activation and Initialization

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

1 Deep Learning Foundations

Lecture 1: Neural Network

automatic pattern feature extraction from layers of neurons with backprop for GD/SGD

Lecture 2: Activation and Initialization

- Traditional Neural Networks Revisited
- Modern Activation Functions
- Initialization w.r.t. Activation
- 2 Deep Learning Models

$d^{(0)}$ - $d^{(1)}$ - $d^{(2)}$ -···- $d^{(L)}$ Neural Network (NNet)

$$w_{ij}^{(\ell)}$$
 : $\left(1+d^{(\ell-1)}\right) imes\left(d^{(\ell)}\right)$ matrix before layer ℓ

score
$$\mathbf{s}_{j}^{(\ell)} = \sum_{i=0}^{d^{(\ell-1)}} \mathbf{w}_{ij}^{(\ell)} \cdot \mathbf{x}_{i}^{(\ell-1)}$$
, transformed $\mathbf{x}_{j}^{(\ell)} = \phi_{j}^{(\ell)} \left(\mathbf{s}_{j}^{(\ell)}\right)$

$$\phi_j^{(\ell)}$$
: transformation (activation) function, e.g. $\phi_1^{(L)} = \bigwedge$ for regression; $\phi_i^{(\ell)} = anh$ for traditional NNet

Backpropagation Revisited

$$\begin{split} \delta_{j}^{(\ell)} &= \frac{\partial e_{n}}{\partial s_{j}^{(\ell)}} \\ &= \sum_{k=1}^{d^{(\ell+1)}} \frac{\partial e_{n}}{\partial s_{k}^{(\ell+1)}} \frac{\partial s_{k}^{(\ell+1)}}{\partial x_{j}^{(\ell)}} \frac{\partial x_{j}^{(\ell)}}{\partial s_{j}^{(\ell)}} \\ &= \sum_{k} \left(\delta_{k}^{(\ell+1)} \right) \left(w_{jk}^{(\ell+1)} \right) \left(\phi' \left(s_{j}^{(\ell)} \right) \right) \\ &= \sum_{k} \left(\sum_{m} \left(\delta_{m}^{(\ell+2)} \right) \left(w_{km}^{(\ell+2)} \right) \phi' \left(s_{k}^{(\ell+1)} \right) \right) \left(w_{jk}^{(\ell+1)} \right) \left(\phi' \left(s_{j}^{(\ell)} \right) \right) \end{split}$$

$$\delta_i^{(1)}$$
: $\delta_1^{(L)}$ multiplied by many $w_{??}^{(\ell+1)}$ and $\phi'(s_?^{(\ell)})$ for $\ell=1,2,\ldots,L-1$

Backpropagation Revisited

$$\delta_{j}^{(\ell)} = \frac{\partial e_{n}}{\partial s_{j}^{(\ell)}}$$

$$= \sum_{k=1}^{d^{(\ell+1)}} \underbrace{\frac{\partial e_{n}}{\partial s_{k}^{(\ell+1)}}}_{\delta_{k}^{(\ell+1)}} \underbrace{\frac{\partial x_{j}^{(\ell)}}{\partial x_{j}^{(\ell)}}}_{w_{jk}^{(\ell+1)}} \underbrace{\frac{\partial x_{j}^{(\ell)}}{\partial s_{j}^{(\ell)}}}_{\delta_{j}^{(\ell)}}$$

$$= \sum_{k} \left(\delta_{k}^{(\ell+1)}\right) \left(w_{jk}^{(\ell+1)}\right) \left(\phi'\left(s_{j}^{(\ell)}\right)\right)$$

$$\delta_i^{(1)}$$
: $\delta_1^{(L)}$ multiplied by many $\mathbf{w}_{??}^{(\ell+1)}$ and $\phi'(\mathbf{s}_?^{(\ell)})$ for $\ell=1,2,\ldots,L-1$

The Vanishing Gradient Issue

gradient
$$\nabla_{ij}^{(\ell)} = x_i^{(\ell-1)} \cdot \delta_j^{(\ell)} = x_i^{(\ell-1)} \sum \sum \sum \delta_1^{(L)} www \phi' \phi' \phi'$$

when
$$\phi = \tanh \Rightarrow x_i^{(\ell-1)} \in (-1,1)$$

- $\phi(s) \to \pm 1$ when $s \to \pm \infty$: saturation
- $\phi'(s) = 1 \tanh^2(s)$
 - ightarrow 0 when $s
 ightarrow\pm\infty$
- vanishing gradient: $w_{??}^{(\ell)}$ too big/small \Rightarrow |s| too big/small $\Rightarrow \phi'(s)$ too small $\Rightarrow \delta_?^{(1)}$ too small $\Rightarrow \nabla_?^{(1)}$ too small

vanishing gradient: early weights not updated ⇒ cannot train 'deep' network

Possible Cures for Vanishing Gradient

- better-behaved network
 - skip connection (escape some $w\phi'$)
- better-behaved weights
 - small-random initialization (next in Lecture 302)
- better-behaved network + better-behaved weights
 - layer-wise pre-training (see MLTech Lecture 213)
- better-behaved (hidden) inputs
 - internal normalization (scale $x_i^{(\ell)}$)
- better-behaved update direction
 - gradient normalization (next in Lecture 303)
- better-behaved activation functions
 - next :-)

vanishing/varying gradients: difficulty of deep learning optimization

Rectified Linear Unit

$$\phi(s) = \max(s, 0)$$

- Rectified Linear Unit (ReLU): $\phi(s) = s \text{ for } s > 0, 0 \text{ for } s = 0, 0 \text{ for } s < 0$ -continuous
- $\phi'(s) = 1$ for s > 0, 0 for s < 0—less gradient vanishing (\approx 'half' of the time)
- $\phi'(s)$ = undefined for s=0—floating point 0.0 hardly encountered, replace by 'sub-gradient' usually okay
- sparse network per example
- fast arithmetic computation

ReLU (with or without some tanh): arguably the most widely-used for deep learning

Dead Neuron Issue

$$\phi(s) = \max(s, 0)$$

- s < 0: $\phi(s) = 0$ and $\phi'(s) = 0$ per example
- s < 0 for every example (dead neuron) if
 - very negative $w_{0?}^{(\ell)}$ (e.g. update from a very big gradient step)
 - all positive $x_i^{(0)}$ (e.g. images without shifting) + negative weights $w_{ii}^{(1)}$

dead neurons worrisome (but not always serious)

Leaky Rectified Linear Unit

$$\phi(s) = \max(s, 0.01s) = \max(s, 0) + 0.01\min(s, 0)$$

- s > 0: $\phi(s) = s$ and $\phi'(s) = 1$ per example
- s < 0: $\phi(s) = 0.01s$ and $\phi'(s) = 0.01$ per example

less likely to have dead neurons, but why 0.01?

Parametric Rectified Linear Unit

$$\phi(\alpha, \mathbf{s}) = \max(\mathbf{s}, \alpha \cdot \mathbf{s})$$

- ReLU: $\alpha = 0$, Leaky ReLU: fixed α
- optimizable α:

$$\frac{\partial e_n}{\partial \alpha_j^{(\ell)}} = \sum_{k=1}^{d^{(\ell+1)}} \frac{\partial e_n}{\partial s_k^{(\ell+1)}} \frac{\partial s_k^{(\ell+1)}}{\partial x_j^{(\ell)}} \frac{\partial x_j^{(\ell)}}{\partial \alpha_j^{(\ell)}}$$

$$= \sum_{k} \left(\delta_k^{(\ell+1)} \right) \left(\mathbf{w}_{jk}^{(\ell+1)} \right) \left(\frac{\partial \phi(\alpha_j^{(\ell)}, \mathbf{s}_j^{(\ell)})}{\partial \alpha_j^{(\ell)}} \right)$$

with $\frac{\partial \phi(\alpha, s)}{\partial \alpha} = s$ if $\alpha s > s$, or 0 otherwise.

'power' of deep learning: anything (loosely) differentiable is 'learnable'

Weight Initialization

- all 0: too symmetric for tanh, not differentiable for ReLU
- constants: 'cloned' neurons
- too large: saturation/gradient vanishing for tanh, (some dying, some overfitting) for ReLU

want

- random: avoid all-0 or constants
- small: 'well-behaved initialization

next small random initialization with zero-mean (easier to analyze)

$$\text{score} \ \ \frac{\mathbf{s}_{j}^{(\ell)}}{\mathbf{s}_{j}^{(\ell)}} = \sum_{i=0}^{d^{(\ell-1)}} \mathbf{w}_{ij}^{(\ell)} \cdot \mathbf{x}_{i}^{(\ell-1)}, \ \, \text{transformed} \ \ \frac{\mathbf{x}_{j}^{(\ell)}}{\mathbf{s}_{j}^{(\ell)}} = \phi_{j}^{(\ell)} \left(\begin{array}{c} \mathbf{s}_{j}^{(\ell)} \end{array} \right)$$

• $w_{ii}^{(\ell)}$ small $\Rightarrow s_i^{(\ell)}$ small \Rightarrow tanh' $(s_i^{(\ell)}) \approx$ 1 (approximately linear)

$$\begin{array}{lcl} \textit{var}(x_j^{(\ell)}) & \approx & \textit{var}(s_j^{(\ell)}) = \textit{var}\left(\sum_{i=0}^{d^{(\ell-1)}} w_{ij}^{(\ell)} \cdot x_i^{(\ell-1)}\right) \\ \\ \textit{(independence)} & = & \textit{var}(w_{0j}^{(\ell)}) + \sum_{i=0}^{d^{(\ell-1)}} \textit{var}(w_{ij}^{(\ell)} \cdot x_i^{(\ell-1)}) \end{array}$$

- (ind.): $var(wx) = E(x)^2 var(w) + E(w)^2 var(x) + var(w) var(x)$
 - E(w) = 0 by construction $\Rightarrow E(x_i^{(\ell)}) = 0$
 - $E(x_i^{(0)}) = 0$ for mean-shifted features

'ideal'
$$var(w) = 1/d^{(\ell-1)}$$
 so $var(x_i^{(\ell)}) \approx var(x_i^{(\ell-1)})$

Small Random Initialization for Backward tanh

$$\delta_{j}^{(\ell-1)} = \sum_{k} \left(\delta_{k}^{(\ell)} \right) \left(\mathbf{w}_{jk}^{(\ell)} \right) \left(\phi' \left(\mathbf{s}_{j}^{(\ell-1)} \right) \right)$$

- assume approximately linear: $\phi' pprox$ 1
- to keep $var(\delta_j^{(\ell-1)})$ similar to $var(\delta_k^{(\ell)})$:

$$var(w) = \frac{1}{d^{(\ell)}}$$

Xavier initialization: let $var(w) = \frac{2}{d^{(\ell-1)} + d^{(\ell)}}$

Small Random Initialization for ReLU

$$var(s_j^{(\ell)}) = var\left(\sum_{i=0}^{d^{(\ell-1)}} w_{ij}^{(\ell)} \cdot x_i^{(\ell-1)}\right)$$

$$(independence) = var(w_{0j}^{(\ell)}) + \sum_{i=1}^{d^{(\ell-1)}} var(w_{ij}^{(\ell)} \cdot x_i^{(\ell-1)})$$

- (ind.): $var(wx) = E(x)^2 var(w) + E(w)^2 var(x) + var(w) var(x)$
 - E(w) = 0 by construction
 - $var(wx) = var(w)E(x^2)$
 - $E(x^2) = 0.5 var(s^2)$ because of 'Re'LU

He initialization:
$$var(w) = 2/d^{(\ell-1)}$$
 so $var(s_j^{(\ell)}) \approx var(s_j^{(\ell-1)})$