Group 7

Braun Fabian, Marija Nikolic, Tiago de Freitas Pereira

KNN+PCA

- Simple strategy
- PCA for dimensionality reduction
- Selected configuration: K=9 and PCA=10 (25.91% of the energy)
- Good tradeoff between dimensionality and CER with 10 PC

```
python mini_project.py -PCA -c 10 -kNN -nn 9
CER Train: 28.50%
CER Dev: 38.07%
CER Eval: 37.91%
```

KNN+PCA

Confusion matrix

GMM+PCA

- Generative approach to model the digits
- PCA for dimensionality reduction
- Number of gaussian components 150

```
python mini_project.py -PCA -c 10 -GMM -nb_gaus
150
```

CER Train: 36.45%

CER Dev: 66.68%

CER Eval: 65.62%

GMM+PCA

Confusion matrix

GMM+PCA

Clear overfitting, but modelling with less gaussian components:

```
python mini_project.py -PCA -c 10 -GMM -nb_gaus
16
```

CER Train: 62.54%

CER Dev: 67.70%

CER Eval: 65.46%

We have a question regarding the strategy adopted