

Adaptive Embedding for Long-Range High-Order Dependencies via Time-Varying Transformer on fMRI

Rundong Xue¹, Xiangmin Han^{2,*}, Hao Hu¹, Zeyu Zhang², Shaoyi Du^{1,*}, and Yue Gao² 1 Xi'an Jiaotong University, 710049, Xi'an, Shaanxi, China 2 Tsinghua University, 100084, Beijing, China

Introduction

- Existing methods for modeling dynamic brain networks typically analyze pairwise relationships through sliding window or time-frequency coherence, failing to capture long-range high-order information flow beyond immediate neighbors.
- Recent studies introduce random-walk kernels to model long range dependencies, the designed static kernels exhibit two critical shortcomings: 1) inability to adapt to the time-varying nature of functional connectivity and 2) failure to encode neurophysiological multi-scale long-range dependency patterns corresponding to different steps.

Method

We propose LHDFormer, a physiologically grounded framework that combines neuroadaptive long-range dependency embedding with temporal dynamic integration. Specifically, we develop a biased random walk sampling strategy with a time-varying NeuroWalk kernel that enables dynamically regulating the process of multistep information propagation to generate long-range highorder dependency embeddings. Subsequently, local spatial dependencies within the brain and global dynamic connectivity patterns are integrated via a time-varying transformer based on the long-range embed dings.

Adaptive Embedding for Long-Range High-Order Dependencies

- k-Walk Neuroadaptive Factors: $\mathbf{F}_k^{(t)} = e^{\beta(1-k)} \cdot \sigma(\|\mathbf{F}^{(t)}\|_F / \sqrt{N}),$
- Time-varying NeuroWalk Kernel: $\mathbf{R}^{(t,k)} = (\mathbf{F}_k^{(t)} \odot \mathbf{A}^{(t)})(\mathbf{D}^{(t)})^{-1}$
- NeuroWalk Long-Range Dependency Embedding: $e_i^{(t)} = \left[\mathbf{I}, \mathbf{R}^{(t,1)}, \prod_{k=1}^2 \mathbf{R}^{(t,k)}, \dots, \prod_{k=1}^{K-1} \mathbf{R}^{(t,k)}\right]_{i,i}$. **Time-Varying Transformer**
 - Local Spatial-Domain Feature Encoding: $(\mathbf{X}^{(t)},h^{(t)}) o (\mathbf{X}_{spa}^{(t)}.h_{spa}^{(t)}).$
- $Q_{i}^{(t)}, K_{i}^{(t)}, V_{i}^{(t)} = \text{ReLU}((\mathbf{D}^{(t)})^{-1/2} \mathbf{A}^{(t)} (\mathbf{D}^{(t)})^{-1/2} \mathbf{X}^{(t)}) (W_{Q}, W_{K}, W_{V}), \quad \mathbf{X}_{spa}^{(t)} = W_{o}(\Vert_{i=1}^{D} \mathbf{X}_{i}^{(t)}), \quad \mathbf{X}_{i}^{(t)} = \text{softmax} \left(\frac{Q_{i}^{(t)} (K_{i}^{(t)})^{\top}}{\sqrt{d}}\right) V_{i}^{(t)},$ • Global Time-Varying Feature Integrating: $(\|_{t=1}^{M} \mathbf{X}_{spa}^{(t)}, \|_{t=1}^{M} h_{spa}^{(t)}) \to \mathbf{X}_{tem}$.

Result

Table 1. Experimental Results of the Comparison Methods.

Dataset	M				
	Method	ACC(%)	SEN(%)	CDD(00)	
	STGCN [15]	65.52±2.46		SPE(%)	AUC
ABIDE	BrainIB [16] RGTNET [17] MSSTAN [7]	$69.21_{\pm 8.64}$ $69.75_{\pm 1.41}$ $71.40_{\pm 1.49}$	$62.96_{\pm 7.51}$ $65.32_{\pm 5.70}$ $70.30_{\pm 4.71}$	$67.74_{\pm 5.00}$ $72.94_{\pm 5.32}$ $68.87_{\pm 3.84}$	0.6628±0.0243 0.6902±0.0327
	ALTER [9] LHDFormer	$71.23_{\pm 2.86}$ $74.29_{\pm 1.17}$	$70.35_{\pm 1.80}$ $71.27_{\pm 3.84}$ 73.49	$72.55_{\pm 1.83}$ $71.22_{\pm 2.02}$	$0.7051_{\pm 0.0117}$ $0.7678_{\pm 0.0076}$ 0.7547
ADNI	STGCN [15] BrainIB [16] RGTNET [17] MSSTAN [7]	62.82±4.46 64.68±2.94 65.75±3.23 67.88±2.84	$73.48_{\pm 1.10}$ $65.23_{\pm 5.49}$ $66.36_{\pm 9.01}$ $66.32_{\pm 4.28}$	$75.09_{\pm 2.04}$ $60.36_{\pm 4.65}$ $63.62_{\pm 8.14}$ $64.54_{\pm 3.15}$	$\begin{array}{c} 0.7547_{\pm 0.0207} \\ 0.7978_{\pm 0.0103} \\ \hline 0.6254_{\pm 0.0582} \\ 0.6583_{\pm 0.0390} \\ \end{array}$
	ALTER [9]	68.50±1.17 71.42±1.70	69.38±3.83 69.32±2.28 72.52 ±2.02	$66.40_{\pm 2.73}$ $67.33_{\pm 2.58}$ $70.27_{\pm 1.10}$	$0.6826_{\pm 0.0449}$ $0.7130_{\pm 0.0457}$ $0.7200_{\pm 0.0181}$ $0.7347_{\pm 0.0209}$
					±0.0209

Connect

xuerundong@stu.xjtu.edu.cn hanxiangmin@tsinghua.edu.cn dushaoyi@xjtu.edu.cn

DeepHypergraph Code: i Moon Lab / LHD Former