1 Define a function f on [0,1] as

3+3 points

$$f(x) = \begin{cases} x^p & \text{if } x \text{ is rational,} \\ 0 & \text{elsewhere,} \end{cases}$$

where p is a positive constant and $p \neq 1$.

- (a) Prove that f is continuous only at x = 0.
- (b) Find all the points that f is differentiable, and fine the value of derivatives at those points.

2 Define a function f_n on \mathbb{R} as

1+3 points

$$f_n(x) = \begin{cases} 0 & \text{if } x = 0, \\ x^n \sin \frac{1}{x} & \text{elsewhere,} \end{cases}$$

where n is a positive integer.

- (a) Prove that f_n is continuous on \mathbb{R} for all n.
- (b) Is f_n is differentiable at x = 0? If so, find $f'_n(0)$.