425A FALL 2020 PROBLEM SET #7

Problem 1.

- (a) Let (M, d) be a metric space, and let $S \subset M$ be a subset. Recall that the closure of S in M, denoted by \overline{S} , is by definition the set of all limits of S in M. Prove that \overline{S} is closed in M, that it contains S, and that it is the smallest closed subset of M which contains S.
- (b) Let (M, d) be a metric space, and let $S \subset M$ be a subset. A point $p \in M$ is called an *interior point* if there is some r > 0 such that the $B_r(p) \subset S$.¹ The *interior of* S, denoted by int(S), is definition of the set of all interior points of S. Prove that S is an open subset of M if and only if S = int(S).

Problem 2. Pugh (2nd edition) chapter 2 problem 28.

Problem 3. Pugh (2nd edition) chapter 2 problem 30.

Problem 4. Pugh (2nd edition) chapter 2 problem 34.

Problem 5. Pugh (2nd edition) chapter 2 problem 38.

Problem 6. Pugh (2nd edition) chapter 2 problem 39.

Problem 7. Pugh (2nd edition) chapter 2 problem 43.

¹Recall that $B_r(p)$ is the open ball centered at p of radius r, i.e. $B_r(p) = \{x \in M : d(x,p) < r\}$.