TD 1

Exercice 1. Soit $\{u_n\}$ la suite définie pour tout entier naturel par $u_n = n^2 + n + 1$ exprimer en fonction de n les termes suivants : u_{n+1} ; u_{n-1} ; u_{2n} ; u_{3n-1} et la différence $u_{n+1} - u_n$

Exercice 2. Etudier la monotonie des suites suivantes :

i)
$$u_n = 2^n - 1$$
; ii) $u_n = \frac{(0.75)^n}{3^n}$; iii) $u_n = \sqrt{1 + n + n^2}$; iv) $u_n = (-3)^n$

Exercice 3. Soient $\{u_n\}$ et $\{v_n\}$ des suites définies pour tout entier naturel par : $u_n = \frac{3n+1}{n+1}$ d'une part et $v_{n+1} = \ln(2v_n + 1)$ et $v_0 = 1$ d'autre part

- 1) Montrer que $\{u_n\}$ est majorée par 3 et en déduire qu'elle est bornée.
- 2) Montrer que pour tout entier naturel n $1 \le v_n \le 2$

Exercice 4. Montrer, a partir de la définition de limite, que

$$\lim_{n \to +\infty} \frac{n}{n+1} = 1; \quad \lim_{n \to +\infty} \frac{3\sqrt{n}}{4\sqrt{n}+5} = \frac{3}{4} \qquad ; \quad \lim_{n \to +\infty} \frac{4n-5}{n^2} = 0$$

Exercice 5. 1) Montrons que si la suite $\{a_n\}$ $(a_n > 0)$ converge vers a, alors la suite $\{\sqrt{a_n}\}$ converge vers \sqrt{a} .

- 2) Soit $\{u_n\}$ et $\{v_n\}$ deux suites réelles convergeant vers l et l', avec l < l'. Montrer qu'à partir d'un certain rang : $u_n < v_n$.
- 3) Soit $\{u_n\}$ et $\{v_n\}$ deux suites réelles que $\{u_n+v_n\}$ et $\{u_n-v_n\}$ convergent. Montrer que $\{u_n\}$ et $\{v_n\}$ convergent.

Exercice 6. Calculer les limites des suites données par les termes généraux suivants :

1)
$$u_n = 1 + \frac{1}{2^n}$$
; **2)** $u_n = \frac{1}{n} + (\frac{1}{3})^n$; **3)** $u_n = \frac{(-3)^n}{2^{n+2}} - 3$; **4)** $u_n = 5^n - 4^n$; **5)** $u_n = \frac{3^n + 5^n}{7^n - 6^n}$;

6)
$$u_n = \frac{2n^2 - 3n + 2}{1 - n}$$
; **7)** $u_n = \sqrt{n^2 + n} - n$; **8)** $u_n = \frac{n + (-1)^n n^2}{n^3 + 1}$; **9)** $u_n = \frac{7 + 3n\cos(n^2 + 5)}{6n + 2}$;

10)
$$u_n = \frac{2^n}{n^2}$$
; **11)** $u_n = (-1)^n \frac{n^3}{n!}$; **12)** $u_n = \sin\left(\frac{\pi}{6} + \frac{5}{n}\right)$.

Exercice 7. On introduit les suites
$$u_n = \cos\left(\frac{2\pi n}{17}\right)$$
 et $v_n = \frac{1}{n}$ pour $n \ge 1$.

Determiner les limites, quand ells existent, des suites suivantes : u_n , v_n , $u_n + v_n$ et $u_n v_n$

Exercice 8. Pour $n \ge 1$, on définit u_n comme la somme de n termes par la formule

i)
$$u_n = \sum_{k=1}^n (\frac{1}{2})^k$$
; ii) $u_n = \sum_{k=1}^n (\frac{3}{2})^k$; iii) $u_n = \sum_{k=1}^n \frac{1}{n+lnk}$; iv) $u_n = \sum_{k=1}^n \frac{1}{n^2+k^2}$; v) $u_n = \sum_{k=1}^n \frac{n}{n^2+k}$; vi) $u_n = \frac{1}{n^2} \sum_{k=1}^n k^2$

Etudier la convergence de la suite $\{u_n\}$.

Exercice 9.

Soit $\{u_n\}$ la suite réelle définie par : $\begin{cases} u_1 = 2 \\ u_{n+1} = \sqrt{3u_n + 4} \end{cases}$

- 1) Montrer que {u_n} est majorée par 4.
- 2) Montrer que {u_n} est strictement croissante.
- 3) En déduire que {u_n} converge et déterminer sa limite.

Exercice 10. Calculer $\lim_{n\to\infty} a_n$ lorsque $a_n = \frac{(a_{n-1})^2+1}{2}$; $a_1 = 0$.

Exercice 11. Considerons la suite définie par $\begin{cases} u_1 = 1 \\ u_{n+1} = \frac{1}{2} \left(u_n + \frac{2}{u_n} \right) \end{cases}$

- 1) Montrons que $(u_{n+1})^2 \ge 2$
- 2) Montrons que la suite {u_n} est donc décroissante
- 3) En déduire que {u_n} converge et déterminer sa limite

Exercice 12. Montrer que les suites de termes généraux $\{u_n\}$ et $\{v_n\}$ sont adjacentes :

- i) $u_n = \sum_{k=1}^n \frac{1}{k!}$ et $v_n = u_n + \frac{1}{n!}$
- ii) $u_n = \sum_{k=1}^n \frac{1}{k!}$ et $v_n = u_n + \frac{1}{nn!}$
- iii) $u_n = 1 + \sum_{k=1}^{n-1} \frac{1}{k^2(k+1)^2}$ et $v_n = u_n + \frac{1}{3n^2}$

Exercice 13. Etudier la convergence des séries suivantes :

- 1) $\sum_{k=0}^{\infty} \frac{2}{5^k}$; 2) $\sum_{k=0}^{\infty} \frac{5^k}{3^k}$; 3) $\sum_{k=0}^{\infty} \frac{2k+3}{4+6k}$; 4) $\sum_{k=1}^{\infty} \frac{2}{k(k+2)}$;
- 5) $\sum_{k=0}^{\infty} \frac{4^{k+2} 5^k}{7^k}$; 6) $\sum_{k=1}^{\infty} \frac{2}{k(k+1)(k+2)}$; 7) $\sum_{k=0}^{\infty} \frac{k^2 + 3}{6k + 15}$