Introduction au Calcul Quantique - 7 - Opérateurs (mono qubit)

JM.Torres - IBM Quantum Ambassador

21 mars 2023

intro

Nous disposons d'un modèle mathématique pour représenter les états d'un qubit, ainsi que du support "visuel" de la sphère de Bloch :

$$|\Psi\rangle=\alpha\,|0\rangle+\beta\,|1\rangle\,,$$
 avec $|\alpha|^2+|\beta|^2=1$

$$|\Psi\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \alpha |0\rangle + \beta |1\rangle$$

Les opérations que l'on peut appliquer sont des transformations linéaires dans l'espace des vecteurs d'état et se représentent donc par des matrices (à coefficients complexes), et qui préservent la norme.

les quatre opérations classiques sur un qubit?

Les quatre opérations que l'on peut appliquer sur un bit classique sont :

×	identité	non	set	maz
0	0	1	1	0
1	1	0	1	0

En nommant les matrices ID, NOT, SET, UNSET, on peut écrire :

$$\textit{ID} \left| 0 \right\rangle = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \left| 0 \right\rangle \text{ et } \textit{ID} \left| 1 \right\rangle \\ = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \times \begin{pmatrix} 0 \\ 1 \end{pmatrix} \\ = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \left| 1 \right\rangle$$

$$\textit{NOT} \hspace{0.05cm} |0\rangle = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \times \begin{pmatrix} 1 \\ 0 \end{pmatrix} \hspace{0.1cm} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = |1\rangle \hspace{0.1cm} \text{et} \hspace{0.1cm} \textit{NOT} \hspace{0.05cm} |1\rangle = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \times \begin{pmatrix} 0 \\ 1 \end{pmatrix} \hspace{0.1cm} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = |0\rangle = |0\rangle$$

$$SET |0\rangle = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = |1\rangle \text{ et } SET |1\rangle = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \times \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = |1\rangle$$

$$\textit{UNSET} \, |0\rangle = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \times \begin{pmatrix} 1 \\ 0 \end{pmatrix} \, = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = |0\rangle \ \, \text{et} \, \, \textit{UNSET} \, |1\rangle = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \times \begin{pmatrix} 0 \\ 1 \end{pmatrix} \, = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = |0\rangle$$

Titre

Pour les cas ID et NOT, les calculs ci-dessus correspondent à des opérations légitimes.

Par contre les opérations SET et UNSET sont impossibles pour des états quelconques de qubit :

- ces opérations ne sont pas réversibles (les matrices ne sont pas inversibles)
- elles ne produisent pas (pour un état quantique quelconque en entrée) un état quantique valide en sortie, par exemple :

$$\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \times \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} \alpha + \beta \\ 0 \end{pmatrix}$$

Et bien sûr, en général $|\alpha + \beta|^2 \neq 1$ (étant donné que $|\alpha|^2 + |\beta|^2 = 1$)

NB : en réalité, on "sait" mettre les qubits à l'état $|0\rangle$: il "suffit" d'attendre un temps suffisant pour que qu'ils soient revenus naturellement à leur état d'énergie minimale, avec une certaine probabilité. Il ne s'agit pas ici d'un opérateur. Ceci signifie également que l'état de départ d'un ordinateur quantique est : tousles qubits à l'état $|0\rangle$. Ce sera l'hypothèse par défaut pour la suite.

4/15

Circuit quantique

D'une manière générale un opérateur U appliqué à un état quantique $|\Psi\rangle$ pour effet de produire l'état $|\Phi\rangle$:

$$U|\Psi\rangle = |\Phi\rangle$$

Ce qui nous conduit aux conditions suivantes sur les propriétés de la matrice d'un opérateur quantique valide :

- la matrice doit être inversible (sont déterminant ne doit pas être nul)
- la matrice doit être unitaire (le module du déterminant vaut 1, et $U^{\dagger}U=I$)

Circuit quantique

Circuit quantique : une suite de séquences qui modifient le vecteur d'état. Ces séquences sont constituées de blocs valides, que l'on appelle "porte quantique" ou "gate".

$$|\psi\rangle$$
 — Circuit — $|\phi\rangle$

par exemple:

Par exemple, avec un bit classique : NOT

Les portes quantiques

Comme la théorie quantique est unitaire, les gates quantiques sont représentées par des matrices unitaires : $U^{\dagger}U = I$

Pour un qubit, on a affaire à des matrices 2×2 , on peut utiliser la notation de Dirac ou la notation matricielle et écrire d'une manière générale :

$$U = \begin{pmatrix} u_{00} & u_{01} \\ u_{10} & u_{11} \end{pmatrix} = u_{00} |0\rangle \langle 0| + u_{01} |0\rangle \langle 1| + u_{10} |1\rangle \langle 0| + u_{11} |1\rangle \langle 1|$$

$$U = \begin{pmatrix} u_{00} & u_{01} \\ u_{10} & u_{11} \end{pmatrix} = u_{00} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + u_{01} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + u_{10} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + u_{11} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

Regardons quelques cas.

7/15

Porte X

La première σ_X , ou X ou encore NOT (et sa matrice et en notation de Dirac) :

$$\sigma_{\scriptscriptstyle X} = egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix} = \ket{0}ra{1} + \ket{1}ra{0}$$

on peut calculer (en matrice par exemple)

$$X|0\rangle = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = |1\rangle$$

et aussi, en notation de Dirac cette fois ci :

$$X |1\rangle = \left(|0\rangle \langle 1| + |1\rangle \langle 0| \right) |1\rangle = |0\rangle \langle 1|1\rangle + |1\rangle \langle 0|1\rangle = |0\rangle$$

On l'appelle bit flip, ou NOT-gate, et elle correspond à une rotation d'un angle π autour de l'axe des x (dans la représentation de la sphère de Bloch).

Porte X

NB1 : appliquer cette gate à $|+\rangle$ ou $|-\rangle$ ne les modifie pas (à une phase globale près)

$$X \left| + \right\rangle = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$X \mid -\rangle = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} = -\begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{pmatrix}$$

Ce dernier résultat vaut $-|-\rangle$ (indiscernable de $|-\rangle$)

Appliquée à un état quelconque $|\Psi\rangle=\alpha\,|0\rangle+\beta\,|1\rangle$:

$$X |\Psi\rangle = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} \beta \\ \alpha \end{pmatrix}$$

9/15

Porte Z

La matrice correpondant à la porte σ_z ou Z vaut :

$$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \ket{0}\bra{0} - \ket{1}\bra{1}$$

on peut appliquer Z à l'état $|+\rangle$ avec le calcul des matrices

$$Z \mid + \rangle = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

et par exemple Z sur $|-\rangle$ en utilisant les notations de Dirac.

$$Z \mid - \rangle = (\mid 0 \rangle \langle 0 \mid - \mid 1 \rangle \langle 1 \mid) \mid - \rangle = (\mid 0 \rangle \langle 0 \mid - \mid 1 \rangle \langle 1 \mid) \frac{1}{\sqrt{2}} (\mid 0 \rangle - \mid 1 \rangle)$$

$$\sigma_z \ket{-} = rac{1}{\sqrt{2}}(\ket{0}ra{0}0 - \ket{0}ra{0}\ket{1} - \ket{1}ra{1}0 + \ket{1}ra{1}\ket{1}) = rac{1}{\sqrt{2}}(\ket{0} + \ket{1}) = \ket{+}$$

On voit qu'on va de $|+\rangle$ à $|-\rangle$ et de $|-\rangle$ à $|+\rangle$, on l'appelle phase flip, c'est une rotation d'un angle π autour de l'axe z (dans la représentation de la sphère de Bloch).

Z sur $|0\rangle$, $|1\rangle$ et $|\Psi\rangle$, vecteurs propres

$$Z |0\rangle = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \times \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = |0\rangle$$

$$Z |1\rangle = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \times \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \end{pmatrix} = -|1\rangle$$

$$Z |\Psi\rangle = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \times \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} \alpha \\ -\beta \end{pmatrix}$$

On appelle Z: phase-flip

Z est une matrice diagonale, il est facile de trouver ses vecteurs propres et les valeurs propres associées :

- ullet |0
 angle est un vecteur propre de valeur propre 1
- ullet |1ullet est un vecteur propre de valeur propre -1

Comme on a défini les états $|0\rangle$ et $|1\rangle$ comme représentant les niveaux d'énergie du phénomène physique associé, alors la matrice Z représente l'opérateur Hermitien correspondant à l'observable énergie. On retrouve là l'expression du troisième postulat de la mécanique quantique.

Porte Y

$$Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

Alors:

$$Y |\Psi\rangle = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} -i\beta \\ i\alpha \end{pmatrix} = -i \begin{pmatrix} \beta \\ -\alpha \end{pmatrix}$$

Cette porte produit à la fois le bit flip et le phase flip, il s'agit aussi d'une rotation d'un angle π autour de l'axe y.

Matrices de Pauli

Ces matrices X,Y,Z sont appelées matrices de Pauli (Wolfgang Pauli), elles vérifient :

$$X^2 = Y^2 = Z^2 = I$$

$$XY = iZ$$
, $ZX = iY$, $YZ = iX$

$$XY = -YX, YZ = -ZY, ZX = -XZ$$

Les matrices de Pauli forment, avec la matrice identité une base des matrices 2×2

Porte H, porte de Hadamard

Et maintenant la matrice de Hadamard (Jacques Hadamard) :

$$\mathsf{H}:=\frac{1}{\sqrt{2}}\begin{pmatrix}1&1\\1&-1\end{pmatrix}\text{, en notation de Dirac}:\left|0\right\rangle\left\langle0\right|+\left|0\right\rangle\left\langle1\right|+\left|1\right\rangle\left\langle0\right|-\left|1\right\rangle\left\langle1\right|$$

$$H|0\rangle = |+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle), H|1\rangle = |-\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$

H crée la superposition d'état.

On peut écrire ces deux expressions en une seule :

$$H|x\rangle = \frac{1}{\sqrt{2}}(|0\rangle + (-1)^x |1\rangle) \text{ pour } x \in \{0, 1\}$$

Et H peut être utilisée pour changer de base de mesure. Appliquer H et faire une mesure sur z correspond à avoir fait une mesure sur x

$$H|\Psi\rangle = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} \alpha + \beta \\ \alpha - \beta \end{pmatrix}$$

Remarques:

•
$$H = \frac{1}{\sqrt{2}}(X + Z)$$

ullet H est une rotation de π autour de l'axe diagonal entre X et Z

$$H\ket{+}=\ket{0}$$
 and $H\ket{-}=\ket{1}$

S, T ...

On a aussi S (S au carré vaut Z)

$$S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$$

S ajoute 90 degrés à la phase.

SH fait passer de la base "z" sur la base "y".

S appliqué à $|+\rangle$ donne $|i\rangle$, puis $|-\rangle$, puis $|-i\rangle$, puis $|+\rangle$

SH : change la base de z à y (pour faire une mesure sur y : SH puis mesure sur z)

$$T = \sqrt{S} = \begin{pmatrix} 1 & 0 \\ 0 & e^{\frac{i\pi}{4}} \end{pmatrix}$$

Pour finir, on utilise aussi des portes $R_n(\theta)$), $n \in \{x,y,z\}$ qui sont des rotations controlées autour d'un axe (x, y, ou z) d'un angle θ , ou des portes $U(\theta, \lambda, \phi)$ qui composent des rotations autour des axes de la sphère de Bloc, avec les angles fournis en paramètres.