T.D. 11 – Corrigé La pile et les sous-programmes

Exercice 1

Soit le programme et les valeurs initiales ci-dessous :

```
001000 48E7C080 MOVEM.L D0/D1/A0,-(A7)

001004 7004 MOVEQ.L #4,D0
001006 7205 MOVEQ.L #5,D1
001008 41F84000 LEA $4000,A0
00100C 6100000A BSR TAB
001010 2002 MOVE.L D0,D2

001012 4CDF0103 MOVEM.L (A7)+,D0/D1/A0
001016 4E75 RTS
```

<u>Valeurs initiales</u>: D0 = \$12345678 A0 = \$11112222

D1 = \$ABCDEF00 A7 = \$FFFFFFFC

\$FFFFF8 02 24 32 AF 00 00 20 00

1. Quelles instructions du programme vont modifier la pile ?

Quatre instructions vont modifier la pile :

001000	48E7C080	MOVEM.L	D0/D1/A0,-(A7)	0
001004	7004	MOVEQ.L	#4,D0	
001006	7205	MOVEQ.L	#5 , D1	
001008	41F84000	LEA	\$4000,A0	
00100C	6100000A	BSR	TAB	2
001010	2002	MOVE.L	D0,D2	
001012	4CDF0103	MOVEM.L	(A7) + D0/D1/A0	3
001016	4E75	RTS		4

2. Pour chacune d'entre elles, indiquez le contenu de la pile.

État de la pile avant l'instruction ①		ıt État	État de la pile après l'instruction ①		État de la pile après l'instruction ②		État de la pile après l'instruction 3		État de la pile après l'instruction ④	
		l'i								
	?		?		0000		0000		0000	
	?		?		1010		1010		1010	
	?	A7 →	1234	A 7 →	1234		1234		1234	
	?		5678		5678		5678		5678	
	?		ABCD		ABCD		ABCD		ABCD	
	?		EF00		EF00		EF00		EF00	
	0224		1111		1111		1111		1111	
	32AF		2222		2222		2222		2222	
A7 →	0000		0000		0000	A 7 →	0000		0000	
	2000		2000		2000		2000		2000	
	?		?		?		?	A7 →	?	

T.D. 11 – Corrigé

3. À quelle adresse se trouve la prochaine instruction à exécuter après le RTS ?

La prochaine instruction à exécuter se trouve à l'adresse \$2000. Il s'agit de l'adresse qui se trouve au sommet de la pile juste avant l'exécution du RTS.

Exercice 2

Soit la fonction ci-dessous rédigée en langage C:

```
long GetSol(short a, short b, short c)
{
  long delta;
  delta = b*b - 4*a*c;

  if (delta < 0)
    return 0;

  if (delta == 0)
    return 1;

  return 2;
}</pre>
```

1. Donnez l'équivalent en assembleur de l'instruction C suivante, sachant que les arguments sont passés à la fonction par la pile (le premier argument sera empilé en dernier) : GetSol (5, 2, 1);

Le mot clé short permet de déclarer des variables codées sur 16 bits signés. Il faudra donc empiler les arguments **a**, **b** et **c** de la fonction **GetSol ()** avec une taille de 16 bits.

```
move.w #1,-(a7) ; argument c \rightarrow pile move.w #2,-(a7) ; argument b \rightarrow pile move.w #5,-(a7) ; argument a \rightarrow pile ; Appel du sous-programme GetSol RETOUR
```

L'instruction jsr GetSol empile l'adresse de retour sur 32 bits (adresse située juste après le jsr) puis saute au sous-programme **GetSol**. Le contenu de la pile après l'instruction jsr (avant l'exécution de la première instruction du sous-programme **GetSol**) est donc le suivant :

T.D. 11 – Corrigé 2/3

2. La valeur de retour se trouvant dans le registre **D0**, donnez l'équivalent en assembleur de la fonction **GetSol ()**. Vous commencerez par placer les arguments **a**, **b** et **c** dans les registres **D1**, **D2** et **D3**.

```
GetSol
                     ; Sauvegarde les registres d1, d2 et d3 dans la pile.
                     ; Cette sauvegarde se fait sur 32 bits afin de pouvoir
                     ; modifier entièrement les registres.
                     movem.1 d1-d3, -(a7)
                     ; Les arguments situés dans la pile sont copiés dans
                     ; les registres d1, d2 et d3 : a \rightarrow d1, b \rightarrow d2 et c \rightarrow d3.
                     ; Attention : les arguments n'ont pas été dépilés.
                     ; (Il n'est pas possible de les dépiler ici, car au sommet
                     ; de la pile se trouve la sauvegarde des registres.)
                     movem.w 16(a7), d1-d3
                     ; Calcul de delta.
                     muls d2,d2
                                              ; b<sup>2</sup>
                                                        \rightarrow d2
                            d3,d1
                                              ; ac
                                                        → d1
                     muls
                     lsl.l #2,d1
                                              ; 4ac
                                                        → d1
                     sub.1 d1,d2
                                              ; b^2-4ac \rightarrow d2
                     ; Saut au label NUL si delta = 0
                            NUL
                     beq.s
                     ; Saut au label POSITIF si delta > 0
                     bqt.s
                            POSITIF
NEGATIF
                     ; Gestion du cas où delta est négatif.
                     ; 0 solution \rightarrow d0, puis sortie du sous-programme.
                     moveq.1 #0,d0
                     bra
                             QUIT
                     ; Gestion du cas où delta est nul.
NUL
                     ; 1 solution \rightarrow d0, puis sortie du sous-programme.
                     moveq.1 #1,d0
                             OUIT
                     bra
POSITIF
                     ; Gestion du cas où delta est positif.
                     ; 2 solutions \rightarrow d0, puis sortie du sous-programme.
                     moveq.1 #2,d0
QUIT
                     ; Gestion de la sortie du sous-programme.
                     ; Restaure les valeurs initiales des registres d1, d2 et d3.
                     movem.1 (a7) + d1 - d3
                     ; Ajustement de la pile (libère la pile des arguments).
                     ; - Place l'adresse de retour en bas de la pile.
                     ; - Place le pointeur de pile sur l'adresse de retour.
                     move.1 (a7), 6(a7)
                     addq.1 #6,a7
                     ; Dépile l'adresse de retour et la place dans le PC.
                     ; (= saut à l'adresse située après un jsr GetSol.)
                     rts
```

T.D. 11 – Corrigé 3/3