Milestone 3

of

Data Warehousing and Integration BY GROUP NUMBER 14:

ARCHIT SINGH (002813253)

SANCIA SEROPHENE SALDANHA (002851577)

DEPARTMENT OF COLLEGE OF ENGINEERING NORTHEASTERN UNIVERSITY BOSTON, MASSACHUSETTS – 022115

A. Conceptual Model

The primary entities in the conceptual model include:

- Client Profile
- Company
- Portfolio Creation
- Technical Strategy
- Fundamental_Report
- Time

These entities represent clients, companies available for investment, strategies and reports used to form portfolios, and time, which is vital for temporal analysis.

Hierarchies within the conceptual model include the Time dimension, which includes attributes such as Year, Quarter, Month and Day, allowing for aggregation at different levels of granularity

B. Logical Model

The logical model of this data warehouse provides a structured blueprint that translates the high-level conceptual design into a detailed representation suitable for implementation. It defines the key entities, such as Client_Profile, Company, Portfolio_Creation, along with their attributes, primary keys (PK), and foreign keys (FK), specifying how they relate to each other. This model captures fact tables that store essential business events—such as Client_Transactions and Portfolio_Holding—and dimension tables that provide descriptive context, like client details and investment strategies

C. OLAP Operations:

The following examples show how each **OLAP operation** can be utilized in our financial data warehouse to derive valuable insights:

- 1. **Roll-UP:** Summarize Client_Transaction data monthly to see the total transactions per month
- R1 ← ROLLUP* (Client_Transaction, Date → Month, SUM(Amount) AS Total Transaction Amount)
 - 2. **Drill-Down:** Drill down from yearly returns to monthly returns in Return_Analytics to identify specific trends
- R1 ← ROLLUP* (Return Analytics, Date → Year, SUM(Portfolio Return) AS Yearly Return)
- R2 ← ROLLUP* (Return_Analytics, Date → Month, SUM(Portfolio_Return) AS Monthly Return)
 - 3. **Slice:** Slice Client_Wise_Allocation for high-risk clients to analyze their investment patterns
- R1 ← JOIN (Client_Wise_Allocation, Client_Profile USING Client_ID)
- R2 ← DICE (R1, Client Profile.Risk Appetite = 'High')
 - 4. **Dice:** Dice Portfolio_Holding to view holdings only for 2023 portfolios using **a** specific strategy
- R1 ← JOIN (Portfolio Holding, Portfolio Creation USING Portfolio ID)
- R2 ← DICE (R1, Portfolio_Creation.Date BETWEEN '2023-01-01' AND '2023-12-31' AND Portfolio Creation.Strategy ID = [Specific Strategy ID])
 - 5. **Drill-Across:** Compare Client_Transaction with Client_Wise_Allocation to analyze client spending vs investment allocation
- R1 ← JOIN (Client Transaction, Client Wise Allocation USING Client ID)
- R2 ← ROLLUP* (R1, Client_ID → Client_ID, SUM(Client_Transaction.Amount) AS Total_Spending, SUM(Client_Wise_Allocation.Investment_Amount) AS Total_Investment)
 - 6. **Pivot:** Pivot Client Transaction to view transaction totals by client instead of by year
- R1 ← ROLLUP* (Client Transaction, Date → Year, SUM(Amount) AS Total Amount)

- R2 ← PIVOT (R1, Rows: Client ID, Columns: Year, Values: Total Amount)
 - 7. **Drill**: Through: Drill-through from portfolio returns to see the daily transactions contributing to the overall performance
- R1 ← SELECT * FROM Return Analytics
- R2 ← DRILLTHROUGH (R1, Client_Transaction WHERE Client_Transaction.Date = Return_Analytics.Date AND Client_Transaction.Client_ID IN (SELECT Client_ID FROM Generates WHERE Portfolio ID = Return Analytics.Portfolio ID))
 - 8. **Ranking Rank:** Rank Client_Wise_Allocation by Percentage_Gain_Loss to find the top 10 clients by profit percentage
- R1 ← RANK (Client_Wise_Allocation, ORDER BY Percentage_Gain_Loss DESC)
- R2 ← SELECT TOP 10 * FROM R1
 - 9. **Drill Across with Conformed Dimensions:** Use Company to drill across Price and Portfolio Holding to analyze the impact of price changes on portfolio holdings
- R1 ← JOIN (Price, Portfolio_Holding USING ISIN)
- R2 ← ROLLUP* (R1, ISIN → ISIN, Date → Date, SUM(Price.Price) AS Total_Price, SUM(Portfolio_Holding.Quantity) AS Total_Quantity)

D. Primary Events:

These **primary events** will correspond to the **fact tables** in your model, representing significant activities that drive data generation.

Primary Event	Fact Table	Key Measures	Dimensions Involved
Portfolio Creation Event	Portfolio_Creation	Portfolio Details	Client_Profile, Technical_Strategy, Fundamental_Report, Time
Client Transaction Event	Client_Transaction	Transaction Amount	Client_Profile, Time
Portfolio Holding Update Event	Portfolio_Holding	Asset Quantity	Portfolio_Creation, Company, Time
Company Price Update Event	Price	Stock Price	Company, Time
Portfolio Return Analysis Event	Return_Analytics	Benchmark Return, Portfolio Return	Portfolio_Creation, Time
Client Allocation Update Event	Client_Wise_Allocation	Investment Amount, Current Value, Gain/Loss	Client_Profile, Portfolio_Creation, Time

E. Schema Implementation in Postgres:

