第13回目 協力行動

文系科目 数理社会学I

2014年7月11日

担当:中丸麻由子

前期授業スケジュール・予定

回	日にち	講義内容	
1	4/11	ガイダンス	
2	4/18	進化生態学基礎	
3	4/25	進化ゲーム	
4	5/2	進化ゲーム	
5	5/9	進化ゲーム・採餌行動	
6	5/23	採餌行動	
7	5/30	性比	進化生態学の基本
8	6/6	性転換•性選択	+人への適用例
9	6/13	性選択・血縁淘汰	
10	6/20	血縁淘汰	
11	6/27	人の性選択	
12	7/4	人の血縁淘汰	
13	7/11	協力の進化	
14	7/18	予備日・テスト範囲説明	
15	7/25	テスト日	

参考文献

 McElreath, R. & Boyd, R. 2007. Mathematical models of social evolution, Univ of Chicago Press

囚人のジレンマゲーム

囚人のジレンマゲーム

		プレイヤーB			
		協力	非協力		
プレイヤーA	協 力	(R = 3, R = 3) Reward	(S = 0, T = 5) Sucker		
	非協力	(T = 5, S = 0) Temptation to defect	(P = 1, P = 1) Punishment		

条件 T > R > P > S R > (T + S)/2

協力しあった方が利得が高い(R = 3)が、 ジレンマ! 結局は協力し合わない(P = 1)

共有地の悲劇

共有地の悲劇

「自分さえ良ければ良い」が資源の枯渇をうむ状況

定義

D(m) > C(m+1) 自分以外のm人が協力している時、 自分は協力するより、協力しない方が得

D(0) < C(N) 全員が協力しない時より、全員協力した方 が得

D(m): 自分は協力せず、自分以外のm人が協力する時の、自分の利益 C(m+1): 自分も協力し、自分以外のm人協力する時の、自分の利益

共有地の悲劇

利得関数:

$$C(m) = B \times m/N - C$$

$$D(m) = B \times m/N$$

公共財ゲーム in Fehr & Gachter (2002)

1人:20MU配布 投資額:0-20MU 戻り額: 0.4MU/1MUプール 全員協力的な場合 残高 32MU 32MU 0MU **OMU** 32ML **20MU** 20MU pool 32MU pool 80MU 20MU 32Mi 80MU **20MU** 32MU

32MU

32MU

OMU

OMU

公共財ゲーム in Fehr & Gachter (2002)

公共財ゲーム in Fehr & Gachter (2002)

Fehr and Gachter 2002 Nature

協力が実現できる条件とは?

研究例

	VIP 0 IV 1
血縁淘汰	ハミルトンルール
群淘汰	
直接互恵性	繰り返し囚人のジレンマゲーム
間接互恵性	評判、ゴシップ
社会ネットワーク構造	空間構造の影響など
罰 あるいは 嫌がらせ	協力者+罰行動

etc.....

直接互恵性:繰り返しゲーム

直接互恵性

Trivers, Axelrod & Hamilton

互恵的利他行動 「繰り返して同じ相手と相互作用を行う時、お返しが戻ってくると、お互い協力のコストを補うことが可能となる」という考え

total b-cとなる!

囚人のジレンマゲーム

プレイヤーB プレイヤーA	協力C	非協力 D
協力C	R=3 reward	S=0 sucker
非協力 D	T=5 temptation to defection	P=1 punishment

囚人のジレンマの条件

$$T > R > P > S$$

$$R > (T + S)/2$$

進化的な安定な戦略 ESS

お互い協力にならない

フォーク定理

反復囚人のジレンマゲーム

反復囚人のジレンマゲーム

しっぺ返し戦略(TFT: tit-for-tat)

反復囚人のジレンマゲーム

もし、反復ゲームの最終回が分かっているならば。。

最後に非協力したほうが得になる						最終回	
_	player1	С	С	С		С	D
	player2	С	С	С		С	С
2人ともそう考	ぎえると→その	の前	の回	も非	協力	する	るだろう 最終回
_	player1	С	С	С		D	D
	player2	С	С	С		С	D
すると結局は→最初から協力しなくなるだろう 最終回							
_	player1	D	D	D		D	D
	player2	D	D	D		D	D

反復囚人のジレンマゲーム

最終回を設定せず、ゲームをする確率(w) を導入

w: 利得のdiscount rate(将来の値引率)とも考える事が出来る

回目	1	2	3	n
利得	R	Rw	Tw²	Rw ⁿ⁻¹
ゲーム確率	1	W	W ²	W ⁿ⁻¹
	Ţ	W W	·	W
player1	C	C	D	C
player2	D	С	С	C

TFT & All-D

TFT vs TFT
$$R$$
 Rw Rw^2 Rw^3

TFT C C C C ...

TFT C C C C ...

$$E[TFT, TFT] = R + Rw + Rw^2 + ... = R/(1-w)$$

非協力者(All-Defect, or All-D)vs TFT

$$E[AD, TFT] = T + Pw/(1-w)$$

$$T \quad Pw \quad Pw^2 \quad Pw^3$$

$$AII-D \quad D \quad D \quad D \quad \cdots$$

$$TFT \quad C \quad D \quad D \quad D \quad \cdots$$

$$S \quad Pw \quad Pw^2 \quad Pw^3$$

E[TFT, AD] = S + Pw/(1-w)

進化的な安定な戦略

TFTがESS E[TFT, TFT] > E[AD, TFT]の時

$$R/(1-w) > T + Pw/(1-w)$$
 $w > (T-R)/(T-P)$

例) 先ほどの利得表ではw>0.5 つまり、2回以上反復したとき

ADがESS E[AD, AD] > E[TFT, AD]の時

つまり、いつでもADはTFTに対してESS

ADの沢山いる集団へTFTは侵入できない!

Partner choice • • •

ゲームのパートナーを探す時間がかかるときに、 TFTがAIIDに対して進化的に安定にある条件 (Enquist & Leimar, 1993)

最適採餌理論のモデルに似ている!

T時間 単位時間当たりゲームをする確率がwの時の、平均 ゲーム継続時間(ゲーム時間)

$$T = \sum_{i=1}^{\infty} i w^{i-1} (1 - w) = \frac{1}{1 - w}$$

wⁱ⁻¹(1-w): 時刻 (*i*-1) まではゲームをして、 時刻 *i* でゲームをやめる確率

F時間:パートナーを探すのにかかる時間の平均値(探索時間)

1-f:単位時間当たりの、パートナーに出会う確率

$$F = \sum_{i=1}^{\infty} i f^{i-1} (1 - f) = \frac{1}{1 - f}$$

L時間:単位時間当たりの生存確率がλのときの、平均生存時間

$$L = \sum_{i=1}^{\infty} i\lambda^{i-1} (1 - \lambda) = \frac{1}{1 - \lambda}$$

L >> W, F と仮定する

→出会う前や、ゲーム中に突如死んでしまうことはない

TFT同士で出会うと、wの確率で繰り返しゲームを行う ゲーム時間: T

TFTがAIIDに出会うと、1回のみでゲームを終わらせるとする

TFTもAIIDも、探索時間(F)は同じとする

TFTがTFTと出会うときの、単位時間当たりの利得

TFTvs.TFTの利得
$$=$$
 $\frac{(b-c)/(1-w)}{F+T} = \frac{T(b-c)}{F+T}$

TFTばかりの集団での、TFTの生涯利得

$$W(TFT) = \frac{T(b-c)}{F+T} L + w_0$$

AIIDがTFTと出会うときの、単位時間当たりのAIID利得

TFTが大多数派、AIIDが少数派の時の、AIIDの生涯利得

$$W(AIID) = \frac{b}{F+1} L + w_0$$

TFTが進化的に安定になる条件

TFTばかりの集団で > AIIDが少数派のときの、 AIIDの利得

W(TFT) > W(AIID)

$$\frac{T(b-c)}{F+T} L + w_0 > \frac{b}{F+1} L + w_0$$

$$F > \frac{Tc}{T(b-c)-b} \xrightarrow{T\to\infty} \frac{c}{b-c}$$

間違い(エラー)があるとどうなる?

TFT vs TFT

協力関係が崩壊する

間違い(エラー)がある時、どの戦略が協力を再構築出来る?

パブロフ(Pavlov)

win-stay, lose-shiftという戦略をとる 始めは協力。 利得がT, Rであれば、手番そのまま。 利得がP, Sであれば、手を変える

サグデン(Sudgen, 1986)のアプローチ

エラー後の2回後に「協力」すれば、協力関係がもどるだろう

サグデンはTFTの変形戦略を考えた(T₁と呼ぶ)

サグデン(Sudgen, 1986)の戦略 T₁

- 「評判の良し悪し」の導入
 - 評判の良いプレーヤーは相手から協力してもらう資格がある、と考える
- 戦略T₁の行動(協力/非協力)
 - 相手の評判が良い(g)か、またはあなたの評判が悪い(b)と、あなたは協力する。他の場合には非協力。
- 評判の付け方
 - 両プレーヤーとも評判は良い(g)、と仮定
 - 戦略T₁のルールにおいて、
 - ・協力すべき時に
 - 実際に協力をするなら→自分は良い評判(g)
 - 実際は(エラー等で)非協力すると→自分は悪い評判(b)
 - ・ 評判が悪くなった時→どこかで1回協力すれば、良い評判(g)を 取り戻せる

戦略 T₁ について

t 回目の自分の行動

t 回目の自分の評判

<u> </u>		t-1 回目	の相手の評判	£	rt-1 回目(の相手の評判	
計畫		g	b	行動	g	b	
t-1 回目の自分の	g b	C	D	t-1 回目の自分の O O	g b	g	

^{*} t-1 回目の自分の評判に依存せず

戦略 T₁ について

戦略T₁の行動(協力/非協力) 相手の評判が良い(g)か、また はあなたの評判が悪い(b)と、あ なたは協力する。他の場合には 非協力。

t 回目の自分の行動

計	t-1 回目 g	の相手の b)評判
目の自分の 配 る	С	D	
t-1 回目 p	C	С	

t 回目の自分の評判

戦略 T₁ について

 T_1 vs. T_1

T₁はAll-Dに利益をむさぼられないのか?

TFTと同様、最初は利益をむさぼられるが、 その後はむさぼられない

協力が実現できる条件とは?

研究例

	.71 > 0 1/ 3
血縁淘汰	ハミルトンルール
群淘汰	
直接互恵性	繰り返し囚人のジレンマゲーム
間接互恵性	評判、ゴシップ
社会ネットワーク構造	空間構造の影響など
罰	協力者+罰行動

etc.....

初顔あわせの個体へなぜ協力?間接的互恵性

間接的互恵性 第3者から協力が戻ってくる

マリノフスキー クラ交易(Kula)

一般交換(間接的互酬性)の例

クラの環(マリノフスキー「西太平洋の遠洋航海者」より)

図は「文化人類学事典?」より

複数の特定のパートナーの間で、 ソラヴァ(首飾り)とムワリ(腕輪) をやりとりする。

ソラヴァは時計回りに循環し、ムワリは反時計回りに循環する。

ソラヴァとムワリは同時的に交換されることはない。

ソラヴァとムワリは贈与と返礼と いう形をり、間を開けてやりとりす る。

クラ交換では、パートナーから受けた贈与に対しそれを上回る価値の財宝で返礼するために、人々 (=男性)の「気前の良さ」を競ことになる。

間接的互恵性:評判を下にする場合

協力している人をみて協力者と思うだけでは、評判によって協力行動が 進化するには不十分

サグデン(Sudgen, 1986) に戻って・・

- 繰り返し囚人のジレンマゲームにおいて、「評判」を入れたモデル
 - 間接互恵性+直接互恵性に関する研究

サグデンのルールについて再考

他のルールでも、協力を促進するものはあるのでは?

- 2度と同じプレーヤーとゲームをしない状況 (一度きりの一方向の囚人のジレンマゲーム)において、検討
 - 間接互恵性の進化ゲーム研究
 - Leimar and Hammerstein (2001); Panchanathan and Boyd (2003); Takahashi and Mashima (2003); Ohtsuki and Iwasa (2004); Brandt and Sigmund (2004) etc

Indirect reciprocity (一度きりのゲームを仮定)

E	自分の行動			自分の評判				
	相手 g	手の評判 b	前の)自分の詞 前の相 g	評判 = g 手の評判 b	前の	自分の評 前の相 [®] g	平判 = b 手の評判 b
自分の評判 B	C/D	C/D	自分の行動	g/b	g/b	自分の行動 ロ	g/b	g/b
d E	C/D	C/D	D 会D	g/b	g/b	D 公司	g/b	g/b

一度きりのゲームを仮定して、どのようなルールが協力を進化させるかを検討した

Indirect reciprocity

Ohtsuki & Iwasa (2004)による、協力がESSになるルール

自分の行動 自分の評判 自分の評判 = b 前の自分の評判 = b 前の相手の評判 前の相手の評判 前の相手の評判 前の相手の評判 前の相手の評判 前の相手の評判 前の相手の評判 がの相手の評判 がの相手の評判 がの相手の評判 がの相手の評判 がいれ

良い評判の個体へ協力すると良い評判となる 良い評判の個体へ協力しないと悪い評判になる 本人の評判が高いときに、評判の悪い個体に対して非協力にふるまっても 評判は よいまま

協力が実現できる条件とは?

研究例

血縁淘汰	ハミルトンルール
群淘汰	
直接互恵性	繰り返し囚人のジレンマゲーム
間接互恵性	評判、ゴシップ
社会ネットワーク構造	空間構造の影響など
罰	協力者+罰行動

etc.....

共有地の悲劇と、逸脱者への罰の 導入

罰は協力を促進?

公共財ゲーム in Fehr & Gachter (2002)

1人:20MU配布 投資額:0-20MU 戻り額: 0.4MU/1MUプール 全員協力的な場合 残高 32MU 32MU 0MU **OMU** 32ML **20MU** 20MU pool 32MU pool 80MU 20MU 32Mi 80MU **20MU** 32MU

32MU

32MU

OMU

OMU

Fehr and Gachter 2002 Nature

Fehr and Gachter 2002 Nature

Fehr and Gachter 2002 Nature

罰は協力を促進?

協力的罰

協力的罰と非協力者の利得

		相	手
		協力的罰	非協力
自分	協力的罰 CP	b-c	-c-q
	非協力 D	b-p	0

協力のコスト

協力からの利益

*b, c, p, q >*0