# Содержание

| 1. Статистическое определение вероятности            | 2     |
|------------------------------------------------------|-------|
| Пространство элементарных исходов. Случайные события | <br>2 |
| Вероятность                                          | <br>3 |
| Построение модели случайных явлений                  | <br>4 |
| Свойства вероятности                                 | <br>5 |
| Аксиома непрерывности                                | <br>6 |
| Условная вероятность                                 | <br>8 |
| Полная группа событий                                | <br>9 |

В теории вероятности обычно изучают случайные события

Обычно наука занимается закономерностями, но так как в случайных экспериментах нет закономерностей, теория вероятности занимается поисков закономерности в сериях случайных экспериментах

Итак, в XVI веке начали с экспериментов бросков монеты:

| число бросков | число гербов | частота |
|---------------|--------------|---------|
| 4040          | 2048         | 0.5069  |
| 12000         | 6019         | 0.5016  |
| 24000         | 12012        | 0.5005  |

Как можно видеть, частота стремится к 0.5 - появляется статистическая закономерность

# 1. Статистическое определение вероятности

Пусть проводится n реальных экспериментов, при которых событие A появилось  $n_A$  раз Отношение  $\frac{n_A}{n}$  называется частотой события A

Эксперименты показывают, что при увеличении числа n частота стабилизируется у некоторого числа, при котором мы понимаем статистическую вероятность:  $P(A) \approx \frac{n_A}{n}$  при  $n \to \infty$ 

## Пространство элементарных исходов. Случайные события

**Def.** Пространством элементарных исходов  $\Omega$  называется множество, содержащее все возможные исходы экспериментов, из которых при испытании происходит ровно один. Элементы этого множества называются элементарными исходами и обозначаются  $\omega$ 

**Def.** Случайными событиями называется подмножество  $A \subset \Omega$ . События A наступают, если произошел один из элементарных исходов из множества A

*Ex. 1.* Бросок монеты: 
$$\Omega = \{\Gamma, P\}, A = \{\Gamma\}$$
 - выпал герб

$$Ex.\ 2.$$
 Игральная кость:  $\Omega = \{1, 2, 3, 4, 5, 6\},\ A = \{$ выпало четное число $\} = \{2, 4, 6\}$ 

Ех. 3. Монета бросается дважды.

- а) Учитываем порядок:  $\Omega = \{\Gamma\Gamma, PP, P\Gamma, \Gamma P\}$
- а) Не учитываем порядок:  $\Omega = \{\Gamma\Gamma, \operatorname{PP}, \Gamma\operatorname{P}\}$

$$Ex.\ 4.\$$
Кубик дважды:  $\Omega = \{\langle i,j \rangle \mid 1 \leq i,j \leq 6\}$   $A = \{$ разность $\vdots$   $3 \} = \{\langle 1,4 \rangle; \langle 4,1 \rangle; \langle 2,5 \rangle; \langle 5,2 \rangle; \dots \}$ 

Ex.~5.~ Монета бросается до первого герба:  $\Omega = \{\Gamma, P\Gamma, PP\Gamma, \dots\}$  - счетно-бесконечное множество

Ex.~6. Монета бросается на плоскость:  $\Omega = \{\langle x,y \rangle \mid x,y \in \mathbb{R}, \langle x,y \rangle$  - центр монеты $\}$  - несчетное число исходов

Операции над событиями

 $\Omega$  - достоверные события (наступают всегда)

Ø - невозможное события (никогда не наступает, так как не содержит ни одного элем. исхода) Введем операции:

**Def. 1.** Суммой A + B называется событие, состоящее в том, что произошло события A или событие B (хотя бы одно из них)

**Def. 2.** Произведением  $A \cdot B$  называется событие, состоящее в том, что произошло событие A и событие B (оба из них)

 $Nota.\ A_1+A_2+\cdots+A_n+\ldots$  - произошло хотя бы одно из этих событий

 $A_1 \cdot A_2 \cdot \cdots \cdot A_n \cdot \ldots$  - произошли все эти события

**Def. 3.** Противоположным A событием называется событие  $\overline{A}$ , состоящее в том, что событие A не произошло

Nota.  $\overline{A} = A$ 

**Def. 4.** Дополнение (разность)  $A \setminus B$  называется событие  $A \cdot \overline{B}$ 

**Def. 5.** События A и B называются несовместными, если их произведение - пустое множество (не могут произойти одновременно при одной эксперименте)

**Def. 6.** События A влечет события B, если  $A \subset B$  (если наступает A, то наступит B)

# Вероятность

Мы хотим присвоить какую-то числовую характеристику к каждому событию, отражающее его частоту наступления:  $0 \le P(A) \le 1$  - вероятность наступления события A

### Классическое определение вероятности

Пусть пространство случайных событий  $\Omega$  содержит конечное число равновозможных исходов, тогда применимо классическое определение вероятности

**Def.**  $P(A) = \frac{|A|}{|\Omega|} = \frac{m}{n}$ , где n - число всех возможных исходов, m - число благоприятных исходов

В частности, если  $\Omega = n$  и  $A_i$  - элем. исх., то  $P(A_i) = \frac{1}{n}$ 

Свойства:

1)  $0 \le P(A) \le 1$ 

- 2) P(A) = 1 (m = n)
- 3)  $P(\emptyset) = 0$  (m = 0)
- 4) Если события A и B несовместны, то P(A+B) = P(A) + P(B)

### Геометрическое определение вероятности (граф де Бюффон)

Пусть  $\Omega \subset \mathbb{R}^n$  - замкнутая ограниченная область

 $\mu(\Omega)$  - мера  $\Omega$  в  $\mathbb{R}^n$  (например, длина отрезка, площадь области на плоскости, объем тела в пространстве)

В эту область наугад бросаем точку. «Наугад» означает, что вероятность попадания в Aзависит только от меры A и не зависит от ее расположения

В этом случае применимо геометрическое определение вероятности

$$P(A) = \frac{\mu(A)}{\mu(\Omega)}$$

Ех. 1. Монета диаметром в 6 см бросается на пол, вымощенной квадратной плиткой со стороной 20 см, какова вероятность, что монета окажется целиком внутри одной плитки

$$\mu(\Omega) = 20^2 = 400$$

$$\mu(A) = (20 - 3 - 3)^2 = 196$$

$$\mu(A) = (20 - 3 - 3)^2 = 196$$

$$P(A) = \frac{\mu(A)}{\mu(\Omega)} = \frac{196}{400} = 0.49$$

Ех. 2. Задача Бюффона об игле: пусть пол вымощен ламинатом, 2l - ширина доски, на пол бросается игла длины, равной ширине доски, найти вероятность того, что игла пересечет стык доски

Определим положение иглы координатами центра и углом, между иглой и стыком доски, причем можно считать, что эти величины независимы

 $\exists x \in [0;1]$  - расстояние от центра до ближайшего края,  $\varphi \in [0; \pi]$  - угол

$$\Omega = [0;1] \times [0;\pi]$$

Событие A (пересечет стык) наступает, если  $x \le l \sin \varphi$ 

$$P(A) = \frac{S(A)}{S(\Omega)}$$

$$S(\Omega) = \pi \hat{l}$$

$$S(A) = \int_{0}^{\pi} l \sin \varphi d\varphi = -l \cos \varphi \Big|_{0}^{\pi} = -l(-1 - 1) = 2l$$

$$P(A) = \frac{2l}{\pi l} = \frac{2}{\pi}$$



# Построение модели случайных явлений

1. Задаем пространство элементарных исходов  $\Omega$ 

- 2. **Def.** Система  $\mathcal{F}$  подмножеств  $\Omega$  называется  $\sigma$ -алгеброй событий, если:
  - 1)  $\Omega \in \mathcal{F}$ ;
  - 2)  $A \in \mathcal{F} \Longrightarrow \overline{A} \in \mathcal{F}$ ;
  - 3)  $A_1, A_2, \dots, A_n, \dots \in \mathcal{F} \Longrightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$

#### Свойства:

- (a)  $\emptyset \in \mathcal{F}$ , так как  $\Omega \in \mathcal{F} \Longrightarrow \overline{\Omega} = \emptyset \in \mathcal{F}$
- (b)  $A_1, A_2, \dots \in \mathcal{F} \Longrightarrow \bigcap_{i=1}^{\infty} A_i \in \mathcal{F}$

$$\square \quad A_1, A_2, \dots \in \mathcal{F} \Longrightarrow \overline{A}_1, \overline{A}_2, \dots \in \mathcal{F} \Longrightarrow \bigcup_{i=1}^{\infty} \overline{A}_i \in \mathcal{F} \Longrightarrow \overline{\bigcup_{i=1}^{\infty} \overline{A}_i} = \bigcap_{i=1}^{\infty} A_i \in \mathcal{F} \quad \square$$

(c)  $A, B \in \mathcal{F} \Longrightarrow A \setminus B \in \mathcal{F}$ 

$$\Box \quad A, B \in \mathcal{F} \Longrightarrow A, \overline{B} \in \mathcal{F} \Longrightarrow A \setminus B = A \cdot \overline{B} \in \mathcal{F} \quad \Box$$

- Ex. 1.  $\mathcal{F} = \{\emptyset, \Omega\}$
- Ex. 2.  $\mathcal{F} = \{\emptyset, \Omega, A, \overline{A}\}$
- $Ex. \ 3. \ \mathbf{Def.} \$ Борелевская  $\sigma$ -алгебра  $\mathcal{B}(\mathbb{R})$  минимальная  $\sigma$ -алгебра, содержащая все возможные интервалы на прямой
- 3. **Def.**  $\supset \Omega$  пространство элементарных исходов,  $\mathcal{F}$  его  $\sigma$ -алгебра событий. Вероятностью на  $(\Omega, \mathcal{F})$  называется функция  $P : \mathcal{F} \to \mathbb{R}$  со свойствами:
  - (a)  $P(A) \ge 0$   $\forall A \in \mathcal{F}$  (неотрицательность)
  - (b) Если  $A_1,A_2,\ldots,A_n,\cdots\in\mathcal{F}$  несовместное, то  $P(\sum_{i=1}^\infty A_i)=\sum_{i=1}^\infty P(A_i)$  (свойство счетной аддитивности)
  - (c)  $P(\Omega) = 1$  (условие нормированности)

**Def.** Из этого тройка  $(\Omega, \mathcal{F}, P)$  называется вероятностным пространством

# Свойства вероятности

- 1. Так как  $\varnothing$  и  $\Omega$  несовместные, то  $1=P(\Omega)=P(\Omega+\varnothing)=1+P(\varnothing)\Longrightarrow P(\varnothing)=0$
- 2. Формула обратной вероятности:  $P(A) = 1 P(\overline{A})$

$$\square$$
  $A$  и  $\overline{A}$  - несовместные и  $A+\overline{A}=\Omega \Longrightarrow P(A+\overline{A})=P(\Omega)=1$   $\square$ 

3. 
$$P(A) = 1 - P(\overline{A}) \le 1$$

### Аксиома непрерывности

Пусть имеется убывающая цепочка событий  $A_1\supset A_2\supset A_3\supset\cdots\supset A_n\supset\ldots$  и  $\bigcap_{i=1}^\infty A_n=\varnothing$ 

Тогда  $P(A_n) \xrightarrow[n \to \infty]{} 0$ 

При непрерывном изменении области  $A\subset\Omega\subset\mathbb{R}^n$  соответствующая вероятность P(A) также должна изменятся непрерывно

Тh. Аксиома непрерывности следует из аксиомы счетной аддитивности

Ясно, что 
$$A_n = \sum_{i=n}^{\infty} A_i \overline{A}_{i+1} + \prod_{i=n}^{\infty} A_i$$

$$\prod_{i=n}^{\infty} A_i = A_n \cdot \prod_{i=n+1}^{\infty} A_i = \prod_{i=1}^{n} \cdot \prod_{i=n+1}^{\infty} A_i = \prod_{i=1}^{\infty} = \emptyset \Longrightarrow A_n = \sum_{i=n}^{\infty} A_n \overline{A}_{n+1} \text{ и так как эти события}$$
несовместны, то по свойству счетной аддитивности  $P(A_n) = \sum_{i=n}^{\infty} P(A_i \overline{A}_{i+1})$  - это остаток (хвост) сходящегося ряда
$$P(A_1) = \sum_{i=1}^{\infty} P(A_i \overline{A}_{i+1}) = \sum_{i=1}^{n-1} P(A_i \overline{A}_{i+1}) + P(A_n) \text{ и } P(A_n) \xrightarrow[n \to \infty]{} 0 \text{ по необходимому признаку}$$
 сходимости

Nota. Аксиому счетной аддитивности можно вывести из конечной аддитивности и аксиомы счетной непрерывности

### Свойства операций сложения и умножения

- 1. Свойство дистрибутивности:  $A \cdot (B+C) = AB + AC$
- 2. Формула сложения: если A и B несовместны, то P(A+B) = P(A) + P(B)
- 3. Формула сложения вероятностей: P(A+B) = P(A) + P(B) P(AB)

 $\it Ex.$  Из колоды в 36 карт достали одну карту. Какова вероятность того, что будет дама или пика

Пусть Д - дама, П - пика, 
$$P(Д + \Pi) = P(Д) + P(\Pi) - P(Д\Pi) = \frac{4}{36} + \frac{9}{36} - \frac{1}{36} = \frac{1}{3}$$
 Формула сложения при  $N=3$ :  $P(A_1+A_2+A_3) = P(A_1) + P(A_2) + P(A_3) - P(A_2A_3) - P(A_1A_2) + P(A_1A_2A_3)$ 

Общий случай: 
$$P(A_1+A_2+\cdots+A_n)=\sum_{i=1}^n P(A_i)-\sum_{i< j} P(A_iA_j)+\sum_{i< j< k} P(A_iA_jA_k)+(-1)^{n-1}\cdot P(A_1A_2\ldots A_n)$$
 - формула включения и исключения

 $Ex. \ n$  писем случайно раскладывается по n конвертам. Найти вероятность того, что хотя бы одно письмо окажется в своем конверте

 $\exists A_i$  - *i*-ое письмо в своем конверте

$$P(A_i) = \frac{1}{n}; P(A_i A_j) = \frac{1}{A_n^2}; P(A_i A_j A_k) = \frac{1}{A_n^3}; P(A_1 A_2 \dots A_n) = \frac{1}{n!}$$

Слагаемых вида 
$$A_i$$
 -  $n$  штук;  $A_iA_j$  -  $C_n^2$ ;  $A_iA_jA_k$  -  $C_n^3$ ;  $A_1A_2 \dots A_n$  - 1 штука 
$$P(A) = P(A_1 + A_2 + \dots + A_n) = n \cdot \frac{1}{n} - C_n^2 \frac{1}{A_n^2} + C_n^3 \frac{1}{A_n^3} - \dots + (-1)^{n-1} \frac{1}{n!} = 1 - \frac{1}{2} + \frac{1}{3!} - \dots + (-1)^{n-1} \frac{1}{n!}$$

Так как 
$$e^{-1} = 1 - 1 + \frac{1}{2} - \frac{1}{3!} + \dots$$
, то при  $n \to \infty$   $P(A) \underset{n \to \infty}{\longrightarrow} 1 - e^{-1} \approx 0.63$ 

Независимые события

Под независимыми событиями логично подразумевать события, не связанные причинноследственной связью (то есть когда факт наступления одного не влияет на оценку вероятности другого)

$$\exists |\Omega| = n; |A| = m_1; |B| = m_2$$

Проведем пару независимых испытаний. Тогда получаем пространство элементарных исходов  $\Omega \times \Omega$  и  $|\Omega \times \Omega| = n^2$ 

По основному принципу комбинаторики  $|A \cdot B| = m_1 \cdot m_2$ 

$$P(AB) = \frac{|A \cdot B|}{|\Omega \times \Omega|} = \frac{m_1 m_2}{n^2} = P(A) \cdot P(B)$$

**Def.** События A и B называются независимыми, если  $P(A \cdot B) = P(A) \cdot P(B)$ 

Lab.  $\exists P(A), P(B) \neq 0$ , доказать, что если A и B несовместны, то они зависимы

Свойство: Если A и B независимы, то независимы  $\overline{A}$  и  $\overline{B}$ , A и  $\overline{B}$ ,  $\overline{A}$  и B

Доказательство: 
$$A = A \cdot (B + \overline{B}) = AB + A\overline{B}$$
 - несовместные события  $\Longrightarrow P(A) = P(AB) + P(A\overline{B}) \Longrightarrow$   $P(A\overline{B}) = P(A) - P(AB) = P(A) - P(A) \cdot P(B) = P(A)(1 - P(B)) = P(A)P(\overline{B}) \Longrightarrow$  независимы

**Def.** События  $A_1, A_2, \ldots A_n$  - независимы в совокупности, если для любого набора  $i_1, i_2, \ldots, i_k$  ( $2 \le i_1 \le i_2 \le i_3 \le i_4 \le i_4$ ).  $k \leq n$ )  $P(A_{i_1} \cdot A_{i_2} \cdot \cdots \cdot A_{i_k}) = P(A_{i_1}) \cdot P(A_{i_2}) \cdot \cdots \cdot P(A_{i_k})$ 

Nota. Из независимости в совокупности при k=2 получаем попарную независимость. Обратное утверждение неверно

### Ex. (С. Бериштейн)

Пусть имеется правильный тетраэдр, одна грань окрашена в красный, вторая в синий, третья в зеленый, а четвертая во все эти три цвета.

Подбросили тетраэдр,  $\exists A$  - грань, которая содержит красный цвет, B - синий, C - зеленый.  $P(A) = P(B) = P(C) = \frac{2}{4} = \frac{1}{2}$ 

Так как 
$$P(AB) = P(AC) = P(BC) = \frac{1}{4}$$

$$P(AB) = \frac{1}{4} = \frac{1}{2} \cdot \frac{1}{2} = P(A)P(B)$$
 - попарная независимость

$$P(ABC) = \frac{1}{4} \neq P(A)P(B)P(C)$$
 - но вот независимость в совокупности не соблюдается

Ex. (Шевалье де Мере, Паскаль, Ферма, ≈ 1650 г.)

Какова вероятность того, что при 4 бросании кости выпадет одна шестерка

 $A_1$  - при первом броске шестерка,  $A_2$  - при втором,  $A_3$  - при третьем,  $A_4$  - при четвертом

В - выпала хотя бы одна шестерка при 4 бросках

 $B = A_1 + A_2 + A_3 + A_4$  - совместные события, но независимые

Найдем обратную вероятность:  $\overline{B}$  - ни разу не выпала шестерка

$$\overline{B} = \overline{A_1} \cdot \overline{A_2} \cdot \overline{A_3} \cdot \overline{A_4}$$

$$P(\overline{A_1}) = P(\overline{A_2}) = P(\overline{A_3}) = P(\overline{A_4}) = \frac{5}{6}$$

$$\overline{B} = P(\overline{A_1})P(\overline{A_2})P(\overline{A_3})P(\overline{A_4}) = \left(\frac{5}{6}\right)^4 \approx 0.482$$

$$P(B) = 1 - P(\overline{B}) \approx 0.52$$

### Условная вероятность

Условная вероятность P(A|B) (или  $P_B(A)$ ) - вероятность события A, вычисленная в предположении, что событие B уже произошло

 $\it Ex.$  Бросается кость один раз, известно, что выпало больше  $\it 3$  очков. Найти вероятность того, что выпало четное число очков

A - выпало четное число очков

В - выпало больше трех очков

$$\Omega = \{1, 2, 3, 4, 5, 6\}; |\Omega| = 6; A = \{2, 4, 6\}; B = \{4, 5, 6\}$$

$$P(A|B) = \frac{2}{3} = \frac{\frac{2}{6}}{\frac{3}{6}} = \frac{P(AB)}{P(B)}$$

Интерпретация с помощью геометрической вероятности:

$$P(A|B) = \frac{S_{AB}}{S_B} = \frac{\frac{S_{AB}}{S_{\Omega}}}{\frac{S_B}{S_{\Omega}}}$$



**Def.** Условной вероятностью события A при условии, что имело место событие B, называется величина  $P(A|B) = \frac{P(AB)}{P(B)}$ 

Ex. Известно, что среди населения 1% воров. В комнате, где находилось 10 гостей, у хозяина пропал кошелек. Какова вероятность того, что произвольный гость является вором.

A - гость является вором P(A) = 0.01

B - пропал кошелек (хотя бы один вор среди гостей есть)

$$P(A|B) = \frac{P(AB)}{P(B)} = \frac{P(AB)}{1 - P(\overline{B})} = \frac{P(A)}{1 - 0.99^{10}} = \frac{0.01}{1 - 0.99^{10}} = 0.105$$

Формула умножения:

В качестве следствия условной вероятности получаем:

$$P(A|B) = \frac{P(AB)}{P(B)} \Longrightarrow P(AB) = P(B) \cdot P(A|B) = P(A) \cdot P(B|A)$$

Общий случай:

$$P(A_1A_2A_3...A_n) = P(A_1)P(A_2|A_1)P(P_3|A_1A_2)...P(A_n|A_1A_2...A_{n-1})$$

База индукции P(AB) = P(B)P(A|B)

Шаг индукции: пусть верно при n-1:

$$P(A_1A_2A_3...A_{n-1}) = P(A_1)P(A_2|A_1)P(P_3|A_1A_2)...P(A_n|A_1A_2...A_{n-2})$$

$$P(A_1A_2A_3...A_n) = P(A_1A_2A_3...A_{n-1}) \cdot P(A_n|A_1A_2...A_{n-1}) =$$

$$P(A_1)P(A_2|A_1)P(P_3|A_1A_2)\dots P(A_n|A_1A_2\dots A_{n-1})$$

Ex. Студент выучил 1 билет из n, в группе n студентов. Каким по очереди ему нужно зайти, чтобы вероятность сдать экзамен была наибольшей

Пусть  $A_i$  - билет, вытянутый на i-ом шаге  $(1 \le i \le n)$ 

А - студент сдал экзамен

$$P(A) = P(\overline{A_1} \cdot \overline{A_2} \cdot \dots \cdot \overline{A_{i-1}} \cdot A_i) = \frac{n-1}{n} \cdot \frac{n-2}{n-1} \cdot \dots \cdot \frac{n-(i-1)}{n-(i-2)} \cdot \frac{1}{n-(i-1)} = \frac{1}{n}$$

# Полная группа событий

**Def.** События  $H_1, H_2, \ldots, H_n, \ldots$  образуют полную группу событий, если они попарно несовместны и содержат все возможные элементарные исходы

$$H_i \cap H_j = \emptyset \ \forall i, j$$
 
$$\bigcup_{i=1}^{\infty} H_i = \Omega$$

Следствие: 
$$\sum_{i=1}^{\infty} P(H_i) = 1$$

**Th. Формула полной вероятности.**  $\exists H_1, H_2, \dots, H_n, \dots$  - полная группа событий. Тогда  $P(A) = \sum_{i=1}^{\infty} P(H_i) P(A|H_i)$ 

$$\Box
P(A) = P(\Omega A) = P((H_1 + H_2 + H_3 + \dots)A) = P(H_1 A + H_2 A + H_3 A + \dots) = [H_i \cdot A \cdot H_j \cdot A = \emptyset \cdot A] = P(H_1 A) + P(H_2 A) + \dots = P(H_1)P(A|H_1) + P(H_2)P(A|H_2) + \dots$$

**Th.** Формула Байеса.  $\exists H_1, H_2, \dots, H_n$  - полная группа событий, и известно, что событие Aуже произошло

Тогда 
$$P(H_k|A) = \frac{P(H_k)P(A|H_k)}{\sum_{i=1}^{\infty} P(H_i)P(A|H_i)}$$

$$P(H_k|A) = \frac{P(H_kA)}{P(A)} = \frac{P(H_k)P(A|H_k)}{\sum_{i=1}^{\infty} P(H_i)P(A|H_i)}$$

Ех. 1. В первой коробке 4 белых и 2 черных шара, во второй 1 белый и 2 черных. Из первой коробки во вторую переложили 2 шара, затем из второй коробки достали шар. Какова вероятность того, что он оказался белым

 $\exists H_1$  - переложили 2 белых  $H_2$  - 2 черных

 $H_3$  - разного цвета

$$A$$
 - из второй коробки достали белый шар  $P(H_1)=\frac{4}{6}\cdot\frac{3}{5}=\frac{6}{15}$   $P(H_2)=\frac{2}{6}\cdot\frac{1}{5}=\frac{1}{15}$   $P(H_3)=\frac{4}{6}\cdot\frac{2}{5}+\frac{2}{6}\cdot\frac{4}{5}=\frac{4}{15}+\frac{4}{15}=\frac{8}{15}$ 

$$P(A) = P(H_1) \cdot P(A|H_1) + P(H_2) \cdot P(A|H_2) + P(H_3) \cdot P(A|H_3) = \frac{6}{15} \cdot \frac{3}{5} + \frac{1}{15} \cdot \frac{1}{5} + \frac{8}{15} \cdot \frac{2}{5} = \frac{18}{75} + \frac{1}{75} + \frac{16}{75} = \frac{35}{75} = \frac{7}{15}$$

Ех. 2. Вероятность попадания первого стрелка в цель 0.9, а второго 0.3. Наугад вызванный стрелок попал в цель. Какова вероятность того, что это бы первый стрелок?

 $H_1$  - вызван первый стрелок

 $H_2$  - вызван второй стрелок

А - стрелок попал

$$P(H_1) = P(H_2) = \frac{1}{2}$$

$$P(A|H_1) = 0.9 P(A|H_2) = 0.3$$

$$P(H_1|A) = \frac{P(H_1)P(A|H_1)}{P(H_1)P(A|H_1) + P(H_2)|P(A|H_2)} = \frac{\frac{1}{2}0.9}{\frac{1}{2}0.9 + \frac{1}{2}0.3} = \frac{9}{9+3} = 0.75$$

Ex. 3. По статистике раком болеет <math>1% населения. Тест дает правильный результат в 99%случаев. Тест оказался положительный. Найти вероятность того, что человек болен.

 $H_1$  - человек болен

 $H_2$  - человек здоров

А - анализ положительный

$$P(H_1) = 0.01$$

$$P(H_2) = 0.99$$

$$P(A|H_1) = 0.99$$

$$P(A|H_2) = 0.01$$

$$P(H_1|A) = \frac{P(H_1)P(A|H_1)}{P(H_1)P(A|H_1) + P(H_2)P(A|H_2)} = \frac{0.01 + 0.99}{0.01 \cdot 0.99 + 0.99 \cdot 0.01} = \frac{1}{2} = 0.5$$
 Допустим, что второй независимый с первым анализ также оказался положительным. Найти

вероятность того, что человек болен.

$$P(H_1) = 0.01 P(H_2) = 0.99$$

$$P(AA|H_1) = 0.99^2 P(AA|H_2) = 0.01^2$$

$$P(H_1|AA) = \frac{0.01 + 0.99^2}{0.01 \cdot 0.99^2 + 0.99 \cdot 0.01^2} = \frac{0.99}{0.99 + 0.01} = 0.99$$

Интуитивно вероятность  $\frac{1}{2}$  может поддаваться непониманию, однако можно рассуждать так: пусть в городе живут  $100\overline{0}$  человек, из них 100 болеют, а у 99 из них положительный анализ; у других 9900 положительный анализ всего лишь у 99, отсюда выходит  $\frac{1}{2}$ 

Ех. 4. В телевизионной студии 3 двери 📕 📕, за одной из них приз 🚓. Игрок выбрал наугад одну из 3 дверей, после чего ведущий открывает одну из двух оставшихся дверей и показывает, что там приза нет 🛵. После чего предлагает игроку поменять свой выбор. Стоит ли игроку соглашаться?

 $H_1$  - игрок угадал

 $H_2$  - игрок не угадал

$$A$$
 - ведущий открыл дверь без приза  $P(H_1)=rac{1}{3}$   $P(H_2)=rac{2}{3}$   $P(A|H_1)=1$   $P(A|H_2)=rac{1}{2}$ 

$$P(A|H_1) = 1$$
  $P(A|H_2) = \frac{1}{2}$ 

$$P(H_1|A) = \frac{\frac{1}{3} \cdot 1}{\frac{1}{3} \cdot 1 + \frac{1}{3} \cdot \frac{1}{2}} = \frac{1}{2}$$

Но это неправильно, так как действия ведущего неслучайны - он всегда откроет дверь без приза

В этом случае, если мы гипотетически выберем 300 дверей, в 100 случаях мы отгадаем, ведущий откроет любую дверь без приза; но в 200 случаях мы не отгадаем, ведущий откроет вторую дверь без приза, и в этом случае мы сможем поменяться на дверь с призом, отсюда шанс  $\frac{2}{3}$ , если мы поменяем свой выбор

Ex. 5. Вероятность того, что в семье с детьми ровно k детей, равна  $\frac{1}{2^k}, k=1,2,\ldots$  Какова вероятность того, что в семье один мальчик, если известно, что нет девочки? Рождения мальчиков и девочек равновероятны.

$$H_i$$
 - в семье  $i$  детей  $(1 \le i < \infty)$   $P(H_i) = \frac{1}{2^i}$   $A$  - в семье нет девочки  $P(A|H_1) = \frac{1}{2}$   $P(A|H_2) = \frac{1}{4}$   $P(A|H_i) = \frac{1}{2^i}$   $P(H_1|A) = \frac{\frac{1}{2}\frac{1}{2}}{\sum_{i=1}^{\infty}\frac{1}{2^i}\cdot\frac{1}{2^i}} = \frac{\frac{1}{4}}{\frac{1}{4}} = \frac{3}{4} = 0.75$