UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA DISCIPLINA: CIRCUITOS ELÉTRICOS I

Data:	
Matrícula:	

Avaliação 2º Estágio

1 – Responda o que se pede:

Aluno(a):

- a) Relacione as três características de um indutor quando utilizado em um circuito com fontes constantes. (1.0)
- b) Relacione as três características de um capacitor quando utilizado em um circuito com fontes constantes. (1.0)
- c) Sabendo que o fator de qualidade (Q) de um circuito RLC paralelo é dado por $Q = \frac{\omega_0}{2\alpha}$.

Determine as faixas de valores, ou valor, de Q que identificam as respostas: superamortecida, criticamente amortecida, subamortecida e subamortecida com oscilação permanente. (1.0)

2 – Para o circuito da figura 1, considerando que a tensão inicial do capacitor é 1V e que a corrente inicial do indutor é 2A, determine a expressão para a tensão v_o . (2.0)

- 3 Para o circuito da figura 2, determine o que se pede:
- 3.1 Escreva as equações das malhas identificadas pelo método de análise de malhas, considerando os sentidos das correntes indicados; (1.0)
- 3.2 Considerando que em t=0, quando a chave abre, não há energia armazenada nos indutores, determine o valor da tensão inicial nos resistores, fonte de corrente e indutores (os valores serão função de i_s); (1.0)
- 3.3 Determine os valores de regime das correntes, i₁, i₂ e i₃, em função de i_s; (1.0)

4 – Dado o circuito da figura 3 determine quantos milisegundos após a chave ser aberta, em t=0, a energia armazenada no capacitor atinge 90% do valor final. (2.0)

