2 Asymptotic Cones and Functions 2.1 Definition of Asymptotic Cones

Ryota Iwamoto

May 8, 2023

We use the book; Asymptotic Cones and Functions in Optimization and Variational Inequalities (author: A.AUSLENDER and M.TEBOULLE), pp.25-31.

The set of natural numbers is denoted by \mathbb{N} , so that $k \in \mathbb{N}$ means $k = 1, 2, \ldots$ A sequence $\{x_k\}_{k \in \mathbb{N}}$ or simply $\{x_k\}$ in \mathbb{R}^n is said to converge to x if $||x_k - x|| \to 0$ as $k \to \infty$, and this will be indicated by the notation $x_k \to x$ or $x = \lim_{k \to \infty} x_k$. We say that x is a cluster point of $\{x_k\}$ if some subsequence converge to x. Recall that every bounded sequence in \mathbb{R}^n converges to x if and only if it is bounded and has x as its unique cluster point.

Let $\{x_k\}$ be a sequence in \mathbb{R}^n . We are interested in knowing how to handle convergence properties, we are led to consider direction $d_k := x_k \|x_k\|^{-1}$ with $x_k \neq 0$, $k \in \mathbb{N}$. From classical analysis, the Bolzano-Weierstrass theorem implies that we can extract a convergent subsequence $d = \lim_{k \in K} d_k$, $K \subset \mathbb{N}$, with $d \neq 0$. Now suppose that the sequence $\{x_k\} \subset \mathbb{R}^n$ is such that $\|x_k\| \to +\infty$. Then

$$\exists t_{k} \coloneqq \left\| x_{k} \right\|, k \in K \subset \mathbb{N}, \text{ such that } \lim_{k \in K} t_{k} = +\infty \text{ and } \lim_{k \in K} \frac{x_{k}}{t_{k}} = d.$$

This leads us to introduce the following concepts.

Definition 2.1.1

A sequence $\{x_k\} \subset \mathbb{R}$ is said to converge to a direction $d \in \mathbb{R}^n$ if

$$\exists \{t_k\}, \text{ with } t_k \to +\infty \text{ such that } \lim_{k \to \infty} \frac{x_k}{t_k} = d.$$

Let C be a nonempty set in \mathbb{R}^n . Then the asymptotic cone of the set C, denoted by C_{∞} , is the set of vectors $d \in \mathbb{R}^n$ that are limits in direction of the sequences $\{x_k\} \subset C$, namely

$$C_{\infty} = \{ d \in \mathbb{R}^n \mid \exists t_k \to +\infty, \exists x_k \in C \text{ with } \lim_{k \to \infty} \frac{x_k}{t_k} = d \}.$$

From the definition we immediately deduce the following elementary facts.

Proposition 2.1.1 -

Let $C \subset \mathbb{R}^n$ be nonempty. Then:

- (i) C_{∞} is a closed cone. (ii) $(\operatorname{cl} C)_{\infty} = C_{\infty}$.
- (iii) If C is a cone, then $C_{\infty} = \operatorname{cl} C$.

Proof. We will prove each part separately.

(i) C_{∞} is a closed cone.

We need to show two propositions: (i-a) C_{∞} is a cone and (i-b) C_{∞} is a closed set.

(i-a) We show that C_{∞} is a cone, that is, $\forall \alpha \geq 0, d \in C_{\infty}, \alpha d \in C_{\infty}$.

Since 0 is a element of C_{∞} , it is clear in the case of $\alpha = 0$.

(: Since C is nonempty, we can take a element x_0 from C. In addition we take a sequence $\{t_k\}_{k=1}^{\infty}$ with $t_k \to +\infty$ as $k \to \infty$. Of course this sequence exists, for example $t_k := k$. By using $t_k := k$ and $x_k := x_0$, we can obtain 0 as the limit. Hence 0 is a element of C_{∞} .)

Also we consider the other case $\alpha > 0$. To prove that C_{∞} is a cone, we take a any direction d from C_{∞} . Since d is a element of C_{∞} ,

$$\exists t_k \to +\infty, \exists x_k \in C \text{ with } \lim_{k \to \infty} \frac{x_k}{t_k} = d.$$

Then we define a sequence $\{t_k'\}_{k=1}^{\infty} := \frac{t_k}{\alpha}$, exactly whose limit becomes $+\infty$ as $k \to \infty$. Accordingly there exist $t'_k \to +\infty$ and $x_k \in C$ with

$$\lim_{k\to\infty}\frac{x_k}{t_k'}=\lim_{k\to\infty}\alpha\cdot\frac{x_k}{t_k}=\alpha d.$$

This means $d \in C_{\infty}$.

By these results, we can get $\forall \alpha \geq 0, d \in C_{\infty}, \alpha d \in C_{\infty}$.

Therefore C_{∞} is a cone.

(i-b) We show that C_{∞} is a closed set. In order to prove closeness, we consider convergency of a sequence in C_{∞} . First we take a sequence $\{d_k\}_{k=1}^{\infty} \subset C_{\infty}$ with $d_k \to d$ as $k \to \infty$ for some d. To obtain $d \in C_{\infty}$, we need two sequences like $\{t_n\}_{n=1}^{\infty}$ with $t_n \to \infty$ as $n \to \infty$ and $\{x_n\}_{n=1}^{\infty}$ where $\frac{x_n}{t_n} \to d$ as $n \to \infty$. Since $d_k \to d$ and $t_k^{m-1} \cdot x_k^m \to d_k$ as $m \to \infty$ for each $k \in \mathbb{N}$,

$$\forall n \in \mathbb{N}, \exists k(n) \in \mathbb{N} \text{ s.t. } \forall j \geq k(n), ||d_j - d|| < \frac{1}{n}, \text{ and}$$

$$\forall k \in \mathbb{N} (1 \leq k \leq k(n)), \exists m(n, k) \in \mathbb{N} \text{ s.t. } \forall m \geq m(n, k), ||\frac{x_k^m}{t_n^k} - d_k|| < \frac{1}{n}.$$

Now we can rearrange

$$k(n) \coloneqq \max\{k(n-1), k(n)\} + n \text{ and }$$

$$m(n) \coloneqq \max_{1 \le k \le k(n)} \{m(n, k)\} + n$$

as sequences of $n \in \mathbb{N}$. Then it holds that $k(1) \leq k(2) \leq \ldots$ and $m(1) \leq m(2) \leq \ldots$. Let's define

$$t_n \coloneqq t_{k(n)}^{m(n)}$$
, and $x_n \coloneqq x_{k(n)}^{m(n)}$.

Also we can find that

$$t_n \to \infty \text{ as } n \to \infty,$$
 $x_n \in C, \text{ and}$

$$\frac{x_n}{t_n} = \frac{x_{k(n)}^{m(n)}}{t_{k(n)}^{m(n)}}.$$

Hence we get for each $n \in \mathbb{N}$

$$0 \le \left\| \frac{x_n}{t_n} - d \right\| \le \left\| \frac{x_{k(n)}^{m(n)}}{t_{k(n)}^{m(n)}} - d_{k(n)} \right\| + \left\| d_{k(n)} - d \right\| < \frac{1}{2n} \to 0$$

as $n \to \infty$.

Thus $d \in C_{\infty}$, that is, C_{∞} is a closed set.

Then (i)'s proof is completed.

(ii)
$$(\operatorname{cl} C)_{\infty} = C_{\infty}$$
.

We need to show two relations: (ii-a) (cl C) $_{\infty} \supset C_{\infty}$ (ii-b) (cl C) $_{\infty} \subset C_{\infty}$.

- (ii-a) We show that C_{∞} is included in $(\operatorname{cl} C)_{\infty}$. However it is clear from the definition of asymptotic cone.
- (ii-b) We show that $(\operatorname{cl} C)_{\infty} \subset C_{\infty}$. Like (i-b), we'll show that.

Then (ii)'s proof is also completed.

(iii) If C is a cone, then $C_{\infty} = \operatorname{cl} C$.

We need to show two relations: (iii-a) $C_{\infty} \subset \operatorname{cl} C$ and (iii-b) $C_{\infty} \supset \operatorname{cl} C$.

(iii-a) We take any direction $d \in C_{\infty}$ which satisfies

$$\exists t_k \to +\infty, \exists x_k \in C \text{ with } \lim_{k \to \infty} \frac{x_k}{t_k} = d.$$

Let $d_k := \frac{x_k}{t_k}$ (with $d_k \to d$ as $k \to \infty$). Since C is a cone,

$$d_k = \frac{1}{t_k} \cdot x_k \in C.$$

Due to $d_k \in C$, the limit of d_k is a element of cl C, i.e., $d \in \text{cl } C$.

Therefore $C_{\infty} \subset \operatorname{cl} C$.

(iii-b) We take any $d \in \operatorname{cl} C$ and show $d \in C_{\infty}$, that is,

$$\exists t_k \to +\infty, \exists x_k \in C \text{ with } \lim_{k \to \infty} \frac{x_k}{t_k} = d.$$

By $d \in \operatorname{cl} C$,

$$\exists \{d_k\}_{k=1}^{\infty} \in C \text{ with } d_k \to d \text{ as } k \to \infty,$$

in other words,

$$\lim_{k \to \infty} d_k = d.$$

We define $y_k = k \cdot d_k$ and $s_k = k$ for each k. Since $d_k \in C$ and C is a cone, y_k is also a element of C.

There exist $\{s_k\}_{k=1}^{\infty}$ with $s_k \to \infty$ as $k \to \infty$ and $\{y_k\}_{k=1}^{\infty} \subset C$ such that

$$\lim_{k \to \infty} \frac{y_k}{s_k} = \lim_{k \to \infty} d_k = d.$$

As d is a element of C_{∞} , therefore $C_{\infty} \supset \operatorname{cl} C$.

The importance of the asymptotic cone is revealed by the following key property, which is a immediate consequence of its definition.

Proposition 2.1.2 -

A set $C \subset \mathbb{R}^n$ is bounded if and only if $C_{\infty} = \{0\}$.

Proof. We show that:

- (i) a set $C \subset \mathbb{R}^n$ is bounded $\Rightarrow C_{\infty} = \{0\}$, and
- (ii) a set $C \subset \mathbb{R}^n$ is unbounded $\Rightarrow C_{\infty} \neq \{0\}$.
- (i) By Proposition 2.1.1 (i), $0 \in C_{\infty}$. Also, by the assumption C is bounded,

$$\exists r > 0, \forall x_k \in C \text{ where } k \in \mathbb{N}, ||x_k|| \leq r.$$

For any sequence $\{t_k\}_{k=1}^{\infty}$ such that $t_k \to \infty$ as $k \to \infty$,

$$\lim_{k \to \infty} \frac{x_k}{t_k} = 0.$$

Thus the limit becomes only 0 for any $\{x_k\}_{k=1}^{\infty} \subset C$ and $\{t_k\}_{k=1}^{\infty}$ with $t_k \to \infty$ as $k \to \infty$.

Therefore if C is bounded then $C_{\infty} = \{0\}.$

(ii) If C is unbounded, then there exists a sequence $\{x_k\} \subset C$ with $x_k \neq 0$, $\forall k \in \mathbb{N}$, such that $t_k := ||t_k|| \to \infty$ and thus the vectors $d_k = t_k^{-1} x_k \in \{d : ||d|| = 1\}$.

By the Bolzano-Weierstrass, we can extract a subsequence of $\{d_k\}$ such that $\lim_{k \in K} d_k = d$, $K \subset \mathbb{N}$, and with ||d|| = 1. This nonzero vector d is an element of C_{∞} by Definition 2.1.2, a contradiction.

Figure:

Why do we take a subsequence of $\{d_k\}$?

Associated with the asymptotic cone C_{∞} is the following related concept, which will help us in simplifying the definition of C_{∞} in the particular case where $C \subset \mathbb{R}^n$ is assumed convex.

Definition 2.1.3

Let $C \subset \mathbb{R}^n$ be nonempty and define

$$C_{\infty}^{1} = \{ d \in \mathbb{R}^{n} \mid \forall t_{k} \to +\infty, \exists x_{k} \in C \text{ with } \lim_{k \to \infty} \frac{x_{k}}{t_{k}} = d \}.$$

We say that C is asymptotically regular if $C_{\infty} = C_{\infty}^{1}$.

Proposition 2.1.3

Let C be a nonempty convex set in \mathbb{R}^n . Then C is asymptotically regular.

Proof. The inclusion $C_{\infty}^1 \subset C_{\infty}$ clearly holds from the definition of C_{∞}^1 and C_{∞} , respectively. Let $d \in C_{\infty}$. Then $\exists \{x_k\} \in C$, $\exists s_k \to \infty$ such that $d = \lim_{k \to \infty} s_k^{-1} x_k$. Let $x \in C$ and define $d_k = s_k^{-1}(x_k - x)$. Then we have

$$d = \lim_{k \to \infty} d_k, x + s_k d_k \in C.$$

$$\therefore x_k = x + s_k d_k \in C.$$

Now note that an arbitrary sequence such that $\lim_{k\to\infty} t_k = +\infty$. For any fixed $m \in \mathbb{N}$, there exists k(m) with $\lim_{m\to\infty} k(m) = +\infty$ such that $t_m \leq s_{k(m)}$, and since C is convex, we have $x'_m := x + t_m d_{m(k)} \in C$. Hence, $d = \lim_{m\to\infty} t_m^{-1} x'_m$, showing that $d \in C^1_\infty$.

Figure:

Why should we consider k(m) with $\lim_{m\to\infty} k(m) = +\infty$ such that $t_m \leq s_{k(m)}$? If $\{s_k\} = 1, 2, 3, 7, 8, 9, 13, \cdots$ and $\{t_k\} = 1, 3, 4, 6, 8, 10, 11, \cdots$, then we can get

$$\{k(m)\} = 1, 3, 4, 5, 6, 6, \cdots$$

We note that a set can be nonconvex, yet asymptotically regular Indeed, consider, for example, sets definition by C := S + K, with S compact and K a closed convex cone. Then clearly C is not necessarily convex, but it can be easily seen that $C_{\infty} = C_{\infty}^{1}$.

Figure 1 S:compact

Figure 2 K: closed convex cone

Figure S := S + K

Proof. We show that for any $d \in C_{\infty}$, $d \in C_{\infty}^{1}$. By the definition of the asymptotic cone,

$$\exists t_k \to \infty, \exists x_k \in C \text{ with } \lim_{k \to \infty} \frac{x_k}{t_k} = d.$$

As S is compact, S is asymptotically regular, that is,

$$\forall t'_l \to \infty, \exists s_l \in C \text{ with } \lim_{l \to \infty} \frac{x_l}{t'_l} = 0.$$

For each k,

$$\exists s_k \in S, b_k \in K \text{ s.t. } x_k = s_k + b_k.$$

Then we get $d \in k_{\infty}$ because it holds that

$$\exists t_k \to \infty, \exists b_k \in K \text{ with } \frac{b_k}{t_k} \to d.$$

The convexity of K and Proposition 2.1.3 lead to $d \in K^1_{\infty}$.

Thus we obtain $d \in C^1_{\infty}$ because it holds that

$$\forall t_l' \to \infty, \exists x_l \in C \text{ where } x_l \coloneqq b_l + s_l \text{ with } \lim_{l \to \infty} \frac{x_l}{t_l'} = d.$$

Therefore $C_{\infty} = C_{\infty}^1$.

Remark 2.1.1

Note that the definitions of C_{∞} and C_{∞}^1 are related to the theory of set convergence of Painleve-Kuratowski. Indeed, for a family $\{C_t\}_{t>0}$ of subsets of \mathbb{R}^n , the outer limit as $t \to +\infty$ is the set.

$$\limsup_{t \to +\infty} C_t = \{ x \mid \liminf_{t \to +\infty} d(x, C_t) = 0 \},$$

while the inner limit as $t \to +\infty$ is the set

$$\liminf_{t \to +\infty} C_t = \{ x \mid \limsup_{t \to +\infty} d(x, C_t) = 0 \},$$

It can then be verified that the corresponding asymptotic cones can be written as

$$C_{\infty} = \limsup_{t \to +\infty} t^{-1}C, \ C_{\infty}^{1} = \liminf_{t \to +\infty} t^{-1}C.$$

Proposition 2.1.4

Let $C \subset \mathbb{R}^n$ be nonempty and define the normalized sets

$$C_N := \{ d \in \mathbb{R}^n \mid \exists \{x_k\} \in C, ||x_k|| \to +\infty \text{ with } d = \lim_{k \to \infty} \frac{x_k}{||x_k||} \}.$$

Then $C_{\infty} = \text{pos } C_N$, where for any set C, $\text{pos } C = \{\lambda x \mid x \in C, \lambda \geq 0\}$.

Proof. Clearly, one always has pos $C_N \subset C_\infty$. Conversely, let $0 \neq d \in C_\infty$. Then there exists $t_k \to \infty$, $x_k \in C$ such that

$$d = \lim_{k \to \infty} \frac{x_k}{t_k} = \lim_{k \to \infty} \frac{1}{t_k} \cdot ||x_k|| \cdot \frac{x_k}{||x_k||}, \text{ with } ||x_k|| \to \infty.$$

Thus the sequence $\{t_k^{-1} \| x_k \|\}$ is a nonnegative bounded sequence, and by the Bolzano-Weierstrass theorem, there exists a subsequence $\{t_k^{-1} \| x_k \|\}_{k \in K}$ with $K \subset \mathbb{N}$ such that $\lim_{k \in K} t_k^{-1} \| x_k \| = \lambda \geq 0$, which means that $d = \lambda d_N$ with $d_N \in C_N$, namely $d \in \text{pos } C_N$. \square

Proposition 2.1.5 —

Let C be a nonempty convex set in \mathbb{R}^n . Then the asymptotic cone C_{∞} is a closed convex cone. Moreover, define the following sets:

$$D(x) := \{ d \in \mathbb{R}^n \mid x + td \in \operatorname{cl} C, \forall t > 0 \} \, \forall x \in C,$$

$$E := \{ d \in \mathbb{R}^n \mid \exists x \in C \text{ s.t. } x + td \in \operatorname{cl} C, \forall t > 0 \},$$

$$F := \{ d \in \mathbb{R}^n \mid d + \operatorname{cl} C \subset \operatorname{cl} C \}.$$

Then D(x) is in fact independent of x, which is thus now denoted by D, and $C_{\infty} = D = E = F$.

Proof. We show that

- (i) C_{∞} is convex,
- (ii) $C_{\infty} \subset D(x)$,
- (iii) $D(x) \subset E$,
- (iv) $E \subset C_{\infty}$,
- (v) $C_{\infty} \subset F$,
- (vi) $C_{\infty} \supset F$.
- (i) We'll show that C_{∞} is convex.

It follows that C is asymptotically regular from Proposition 2.1.3. For any d_1 and d_2 ,

$$\forall t_k \to \infty, \exists \{x_k\}_{k=1}^{\infty} \text{ with } \frac{x_k}{t_k} \to d_1 \text{ as } k \to \infty$$

$$(\forall \epsilon > 0, \exists k_0 \in \mathbb{N} \text{ s.t. } \forall k \ge k_0, \left\| \frac{x_k}{t_k} - d_1 \right\| < \epsilon),$$

$$\forall s_l \to \infty, \exists \{y_l\}_{l=1}^{\infty} \text{ with } \frac{y_l}{s_l} \to d_2 \text{ as } l \to \infty$$

$$(\forall \epsilon > 0, \exists l_0 \in \mathbb{N} \text{ s.t. } \forall l \ge l_0, \left\| \frac{y_l}{s_l} - d_2 \right\| < \epsilon).$$

Then we'll check the convexity, that is,

$$\lambda d_1 + (1 - \lambda) d_2 \in C_{\infty}$$
 where $\lambda \in (0, 1)$.

We take a sequence $\{u_m\}_{m=1}^{\infty}$ where $u_m := \max\{t_m, s_m\}$ and $m_0 := \max\{k_0, l_0\} \in \mathbb{N}$. Then you can find $u_m \to \infty$.

Also we define a sequence as $\{\lambda x_m + (1-\lambda)y_m\}_{m=1}^{\infty}$. $\forall m \geq m_0$,

$$\left\| \frac{\lambda x_m + (1 - \lambda)y_m}{u_m} - (\lambda d_1 + (1 - \lambda)d_2) \right\| \le \lambda \left\| \frac{x_m}{u_m} - d_1 \right\| + (1 - \lambda) \left\| \frac{y_m}{u_m} - d_2 \right\|$$

$$< \lambda \epsilon + (1 - \lambda)\epsilon = \epsilon.$$

Therefore C_{∞} is convex.

(ii) We now prove that $C_{\infty} \subset D(x)$