HEAPS BINÁRIOS

Saulo Queiroz

Contextualização

- Em muitas aplicações um conjunto de entidades desejam consumir um recurso relativamente escasso
- Cada entidade (item) tem uma prioridade para acessar o recurso
- Uma ED com essas características chamamos de Fila de Prioridades

Filas de Prioridades (FP)

- Estruturas de dados comumente empregadas para armazenar dados de forma temporária
 - Diferentemente de de estruturas de dados usuais (e.g. ABPs) não é comum um item ficar armazenado por tempo indeterminado numa FP

Filas de Prioridades (FP)

- Estruturas de dados comumente empregadas para armazenar dados de forma temporária
 - Diferentemente de de estruturas de dados usuais (e.g. ABPs) não é comum um item ficar armazenado por tempo indeterminado numa FP
- Muito comum quando precisamos realizar uma computação sobre vários itens, um por vez
 - A vez de cada item depende de sua prioridade

FPs: Características Básicas

```
int valorChave; /* mesmo significado das EDs comuns e.g.
Listas, árvores de busca, hash*/

int prioridade; /*prioridade do item ser processado
frente aos demais itens da FP*/
}
```

Enquanto que nas EDs comuns os procedimentos baseiam-se no campo valorChave, nas FPs eles orientam-se pelo campo prioridade, cujo valor pode repetir-se pra itens distintos

FPs: Classificação

- □ FPs de Máximo
 - Quanto maior o valor do campo prioridade de um item maior sua prioridade de sair da fila para ser processado
- □ FPs de Mínimo
 - Quanto menor o valor do campo prioridade de um item maior sua prioridade de sair da fila para ser processado

Questão instigadora:

- Qual as implicações de empregarmos uma ABP (mesmo auto-balanceada) para implementar uma FP?
 - É possível manter tempos de inserção e remoção logarítmicos?

O Heap Binário Prof. Saulo Queiroz

ADVERTÊNCIA

 Não confundir com a área de memória RAM usada para alocação dinâmica, também chamada de <u>heap</u>

Heaps Binários

- Objetivo:
 - Implementar procedimentos básicos de FPs em tempo logarítmico mesmo sob valores de prioridade repetido
- Procedimentos básicos se guiam pelo campo prioridade não pelo campo chave do item
 - Relaxa suposição de que campo principal tem valor único!

Heaps Binários

- Objetivo:
 - Implementar procedimentos básicos de FPs em tempo logarítmico mesmo sob valores de prioridade repetido
- Procedimentos básicos se guiam pelo campo prioridade não pelo campo chave do item
 - Relaxa suposição de que campo principal tem valor único!
- Baseado em árvores binárias (não de pesquisa!)
- Propriedades fundamentais:
 - Forma
 - Ordem

Heaps Binários: Propriedade de Forma 12

Prof. Saulo Queiroz

- Os N primeiros itens são inseridos de cima para baixo,
 da esquerda para a direita na árvore!
 - Ideia: Manter árvore (quase-)completa visando O(log₂N)
 - O valor dos itens será tratado na propriedade de ordem, sem quebrar a forma "completa" do heap
- □ Como fica a forma ao longo da inserção de 4 itens?

Prof. Saulo Queiroz

Prof. Saulo Queiroz

Prof. Saulo Queiroz

Exemplos de <u>NÃO</u> Heaps Binários

Violou propriedade de forma, nem interessa a propriedade de ordem!

- Uma árvore binária pode ser representada por um vetor seguindo a seguinte regra:
- □ O raíz é colocado na primeira posição
 - □ Índice ⊘ no caso da linguagem C
- □ Se um nó está no índice i, então
 - O filho esquerdo está 2i (2*i+1 em C)
 - O filho direito está em 2i+1 (2*i+2 em C)

89	74	32	22	41	15	4	21	9	34	26	8
0	1	2	3	4	5	6	7	8	9	10	11

Prof. Saulo Queiroz

Heap: Propriedade de Ordem

- O nó raiz deve sempre ter prioridade maior que de seus filhos!
 - Heap máximo: valor do pai sempre maior que dos filhos
 - Heap de mínimo: valor do pai sempre menor que dos filhos

Heap: Propriedade de Ordem

Prof. Saulo Queiroz

```
TipoItem ExtraiMinimo(h, n);
Devolve item de melhor prioridade do heap h com n itens
■ Nome alternativo: ExtraiMaximo(...) (heap de máximo)
```

```
TipoItem ExtraiMinimo(h, n);
  Devolve item de melhor prioridade do heap h com n itens
  Nome alternativo: ExtraiMaximo(...) (heap de máximo)
□ void Insere(h, n, it, pri);
  Insere item it com prioridade pri no heap h de n itens
```

- □ TipoItem ExtraiMinimo(h, n);
 - Devolve item de melhor prioridade do heap h com n itens
 - Nome alternativo: ExtraiMaximo(...) (heap de máximo)
- void Insere(h, n, it, pri);
 - Insere item it com prioridade pri no heap h de n itens
- □ void ConstroiHeap(v, n);
 - Em geral consiste em transformar um vetor em um heap
 - No caso de árvores, a construção usualmente resulta de sucessivas inserções

- void MelhoraPrioridade(h, n, it, novaprio);
 - Outros nomes: decrementaChave, aumentaChave
 - Atualiza a prioridade do item it para novaprio no heap h de n itens
 - □ Em vetores, it é índice do item
 - Em árvores binárias, it é o ponteiro para o item
 - Em geral, obtido pela estrutura de dados padrão que guarda os itens

- □ Entrada: heaps binários h1 e h2 com n1 e n2 itens, respectivamente.
- □ Saída (**efeito**): heap h3 com n1+n2 itens
- □ Muito útil para auxiliar a função ConstroiHeap()
 - □ Na prática, h1 e h2 serão partes de um mesmo vetor dado de entrada com n=n1+n2 itens

Instâncias triviais

- Se um dos heaps for vazio a saída é o heap não vazio
- Ou seja, se o vetor a ser transformado é unitário!

□ Instâncias triviais

- Se ambos os heaps tem 1 item cada, basta ver o maior!
- Ou seja, se o vetor a ser transformado tem dois itens

Prof. Saulo Queiroz

Instâncias triviais

- Se ambos os heaps tem 1 item cada, basta ver o maior!
- Ou seja, se o vetor a ser transformado tem dois itens

Prof. Saulo Queiroz

Procedimento auxiliar heapify

Instâncias triviais

- Vetor de entrada com n=3 itens
- Embora o todo possa não ser um heap, os dois últimos sempre serão!

Prof. Saulo Queiroz

Procedimento auxiliar heapify

Instâncias triviais

- Vetor de entrada com n=3 itens
- Embora o todo possa não ser um heap, os dois últimos sempre serão! Compara o maior filho com o pai

Prof. Saulo Queiroz

Procedimento auxiliar heapify

Instâncias triviais

- Vetor de entrada com n=3 itens
- Embora o todo possa não ser um heap, os dois últimos sempre serão! Compara o maior filho com o pai

Prof. Saulo Queiroz

Procedimento ConstroiHeap()

A princípio, não podemos usar heapify para transformar um vetor qualquer em um heap binário. Por que?

Procedimento ConstroiHeap()

A princípio, não podemos usar heapify para transformar um vetor qualquer em um heap binário. Por que? Não se pode assumir que os filhos do raíz são heaps sem si mesmos!

Procedimento ConstroiHeap()

- Porém, se notarmos que o último item é sempre um heap em si mesmo, podemos aplicar sucessivas operações heapify a partir do pai do último!
 - □ Se há n itens, o pai do último está em n/2
 - (n-1)/2 (em C)

Verifica qual o *maior filho*; Se o **pai** é *menor* que maior filho, Então, troca de posição.

• Precisa "voltar" e arrumar (<u>heapify</u>) a sub-árvore à esquerda.

Prof. Saulo Queiroz

Inserção em heaps com árvores binárias

Prof. Saulo Queiroz

Insere após a última posição do heap. Aplica sucessivos heapify até a raiz

Insere após a última posição do heap. Aplica sucessivos heapify até a raiz

Depois, basta corrigir a relação do novo elemento com os seus ancestrais.

Algoritmo para Achar último em tempo logarítmico

Prof. Saulo Queiroz

- □ Observações-chaves:
 - □ Todo nó em posição par é filho esquerdo
 - □ Todo nó em posição impar é filho direito

- Observações-chaves:
 - Todo nó em posição par é filho esquerdo
 - Todo nó em posição impar é filho direito

□ Dado que N=12 é par, último está à esquerda do pai

- □ Dado que N=12 é par, último está à esquerda do pai
 - □ Sabemos que o pai é o 12/2=6° item

□ Agora N=6, também é par. Logo está a esquerda

esquerda esquerda

- □ Agora N=6, também é par. Logo está a esquerda
 - \square O pai do 6° é o 6/2=3° item

esquerda esquerda

□ Agora N=3, é ímpar. Logo está à direita

direita

esquerda

- □ Agora N=3, é ímpar. Logo está à direita.
 - \square O pai do 3° é o 3/2=1° item, que é o raíz!

direita

esquerda

 Do último ao raiz, criamos uma pilha de percurso a custo (e de tamanho) O(log₂ n)

PILHA

direita

esquerda

 Agora em cada iteração desde o raíz, realizamos um desempilhamento para orientar o percurso!

PILHA

direita

Agora em cada iteração desde o raíz, realizamos um desempilhamento para orientar o percurso!

Agora em cada iteração desde o raíz, realizamos um desempilhamento para orientar o percurso!

- Agora em cada iteração desde o raíz, realizamos um desempilhamento para orientar o percurso!
 - Custo de tempo total: O(log₂ n)

PILHA

Posição do elemento a inserir

 No caso da inserção, basta primeiramente incrementar a variável N do total de itens e executar o algoritmo anterior

DESAFIO/PESQUISA-EXTRA

- Apresente um procedimento logarítmico (pode ser em pseudo-código) mais eficiente em tempo e espaço do que o anteriormente apresentado.
 - □ i.e., ele deve encontrar a última posição de um heap binário sem precisar de pilha nem de duas travessias logarítmicas raiz-folha.

Outras FPs

- Pesquisa a complexidade dos seguintes heaps
 - Heaps binomiais
 - Relaxed heap
 - d-ary heaps
 - Heaps de Fibonacci

