Cap 9. Voz sobre ip (VoIP)

AULA 1: INTRODUÇÃO, PSTN VS VOIP E BENEFÍCIOS

INE5431 SISTEMAS MULTIMÍDIA PROF. ROBERTO WILLRICH (INE/UFSC) ROBERTO.WILLRICH@UFSC.BR

HTTPS://MOODLE.UFSC.BR

Introdução

Definições

VolP

- Termo geral que referencia transmissão de voz na forma digital em pacotes IP
- Conjunto de tecnologias que usa a Internet ou as redes IP privadas para a comunicação de voz
 - substituindo ou complementando os sistemas de telefonia convencionais onde a voz é transportada através de conexões dedicadas de circuito comutado (Public Switched Telephone Network –PSTN)

Telefonia IP

 Modalidade de VoIP onde o serviço fornecido apresenta qualidade e funcionalidades equivalentes aos serviços telefônicos convencionais

Introdução

Por que voz sobre IP?

- No início: eram softwares que permitiam aos usuários de PC iniciar e receber chamadas pela Internet de graça
- Na sequência: representou uma revolução na maneira em que chamadas telefônicas de longa distância poderiam ser conduzidas
- Hoje: engloba muito mais do que ligações mais baratas de longa distância para amigos e familiares
 - motivação final da VoIP é a integração de várias formas de comunicação (voz, vídeo, fax, dados) permitindo implantar a colaboração melhorada (comunicação unificada)

Introdução

Por que voz sobre IP?

- VoIP possibilita o desenvolvimento de novas aplicações impossíveis de serem implementadas na telefonia tradicional
 - Permite integrar sistemas de telefonia e de informações
 - Exemplo: consultar um sistema de relacionamento (CRM) com o cliente para verificar onde redirecionar a chamada do cliente

PSTN x VoIP: Telefonia Tradicional

Rede telefônica tradicional usa canais TDM para transporte da voz

- PSTN usa conexões por comutação de circuito
- Uma conexão de voz G.711 = 64 Kbps
- Um canal E1
 - Sistema de comunicação PCM a 2,048 Mbps
 - Permite 30 conexões de voz (+ 2 canais de sinalização e sincron.)

CAPÍTULO 9: VOZ SOBER IP (VOIP)

PSTN x VoIP: Telefonia Tradicional

Vantagem da PSTN

- Quando uma chamada é feita
 - É estabelecido um circuito dedicado de um telefone até o outro
 - Recursos de rede reservados (garantidos) por chamada
 - Garante taxa de bits, atraso limitado e constante (sem variação)
- Décadas de conhecimento e experiência
 - Permitiram ao serviço fornecido pela PSTN alcançar a alta qualidade e a disponibilidade que possui hoje
 - Nível de qualidade esperada da rede PSTN é denominado de "cinco-noves"
 - a rede como um todo deve estar disponível e funcional para 99,999% do tempo

Graham Bell (1876)

PSTN x VoIP: Telefonia Tradicional

Desvantagens da PSTN

- Custo elevado: alocação de recursos entre os dois extremos da comunicação, durante toda a duração da chamada
- Uso ineficiente de recursos de rede
 - Na telefonia a circuito é alocado um canal de 64 kbps para a chamada
 - Durante uma chamada telefônica não falamos todo o tempo, em média, falamos apenas 35% da duração da chamada.
 - mesmo que os usuários fiquem em silêncio, ainda assim é alocado recursos na rede para garantir o 64 kbps

PSTN x VoIP

Características da PSTN

- Desperdício de banda
- Sem congestionamento, banda garantida

PSTN x VoIP

Características das redes IP

- Alta eficiência de banda
- Banda compartilhada, atrasos variáveis, necessidade de controle

PSTN x VoIP: VoIP

VoIP produz economia de banda

- Redes de telefonia usam uma codificação de voz fixa (G.711)
 - 8 bits a 8 kHz = 64Kbps
- VoIP pode usar outras codificações
 - Alta e baixa qualidade são possíveis
 - G.729a pode compactar uma chamada típica a ~8Kbps na "qualidade PSTN" (embora overheads de pacotes sejam grandes)
- Supressão de silêncio

Benefícios da VolP

Redução de Custos

- · Visão inicial: "Chamadas telefônicas grátis"
- Chamadas de longa distância podem ser um dos maiores itens no orçamento de uma organização
- Empresa já paga uma ISP então VoIP utilizaria a infraestrutura que já é paga
- Não utilizando a rede PSTN e sim a rede IP existe uma redução de custos
 - Em VoIP não existem chamadas de longa distância

Benefícios da VoIP

Manutenção e adições de novos usuários

- VoIP torna a adição, movimentação ou trocas de usuários e serviços fáceis de serem realizados
- DHCP permite que telefones IP sejam automaticamente reconfigurados quando movidos de um local para outro

VoIP pode prover um custo incremental reduzido da rede

- Adicionando um usuário adicional ao sistema PBX tradicional pode requerer um upgrade para um novo PBX com maiores capacidades
 - incrementando o custo por usuário para o sistema
- Muitas LANs campus tem uma boa escalabilidade permitindo a adição de um novo usuário VoIP a custos reduzidos

Benefícios da VolP

Redes Convergentes

- Manter duas infraestruturas de redes separadas de telefonia e de comunicação de dados não é simples nem barato
 - VoIP oferece uma infraestrutura de rede única, a rede IP.
- Uma única rede pode reduzir os custos de mantê-la
 - Em vez de comprar um PBX e uma infraestrutura de rede para chamadas PSTN, pode-se investir na infraestrutura de rede IP
 - Tanto a chamada de voz e tráfego de dados pode tomar vantagem desta melhora
- Economia no suporte e gerenciamento
 - Em um sistema de PBX tradicional é necessário ter uma equipe para gerenciar o sistema de telefonia e outra para gerenciar a rede de dados.
 - Em VoIP estes funcionários normalmente são unidos
 - Pode-se reduzir a equipe interna necessária para suporte e gerenciamento.
 - Mas pode requerer um mais alto custo inicial de treinamento.

Obstáculos

As vantagens da mudança...

- Solução econômica
- Gerenciamento eficiente de largura de banda
- Convergência entre voz e dados

As dificuldades da mudança...

Serviço oferecido pela rede geralmente é do tipo melhor esforço

- não fornece garantias de qualidade (não garante taxa de bits, taxa de perda de pacotes, atraso e variação de atraso)
- o gerando um problema na implementação da VoIP

CAP 9. VOZ SOBRE IP (VOIP)

AULA 2: PROTOCOLO DE SINALIZAÇÃO SIP

INE5431 SISTEMAS MULTIMÍDIA PROF. ROBERTO WILLRICH (INE/UFSC) ROBERTO.WILLRICH@UFSC.BR HTTPS://MOODLE.UFSC.BR

Protocolos de Sinalização

Objetivo

- Protocolo de controle no nível aplicativo para criação, modificação e finalização de sessões multimídia com um ou mais participantes.
 - Os participantes podem ser convidados para sessões do tipo unicast e multicast
- Sessão Multimídia
 - VoIP, Conferência, Jogos, ...

Estabelecimento da sessão

Protocolos de Sinalização

Exemplo no contexto de VoIP

- Configuração de chamada
 - Equivalente VoIP da obtenção do tom de chamada da telefonia, digitação do número do telefone, sonar o telefone ou um sinal de ocupado, e tirar o fone do gancho no outro lado
 - Existem algumas opções: H.323, SIP.
- Troca de dados de voz codificados
 - Usado o protocolo RTP (Real-time Transport Protocol)
 - que é encapsulado em datagramas UDP e IP para transferência

17

Protocolos de Sinalização

Existem duas famílias de protocolos de configuração de chamadas

- H.323 oriundo da comunidade da telefonia
 - É uma família de padrões baseados em telefonia para multimídia, incluindo voz e videoconferência
- SIP (Session Initiation Protocol) protocolo leve desenvolvidos pela IETF (comunidade de redes)
 - SIP é bem mais leve (que o H.323) e praticamente faz a mesma coisa

H.323 está caindo em desuso

Substituído pelo SIP

Protocolos de Sinalização: SIP

SIP (Session Initiation Protocol) [RFC 2543]

- Proposta IETF para suporte à telefonia nas redes IP
 - E para toda aplicação exigindo o conceito de sessão de comunicação
- Mecanismo simples para sinalização multimídia e mensagens instantâneas
 - Desenvolvido para estabelecer, modificar e terminar sessões multimídia, pedir e transmitir informações de presença (status do usuário) e mensagens instantâneas
 - Sessões podem ser conferências multimídia, VoIP, stream multimídia, entre outras
- SIP incorpora elementos de dois protocolos Internet muito usados
 - HTTP (HyperText Transport Protocol)
 - SIP copiou o paradigma cliente-servidor e o uso de URLs e URIs
 - SMTP (Simple Mail Transport Protocol)
 - SIP copiou o esquema de codificação de texto e o estilo do cabeçalho
 - SIP reusa alguns cabeçalhos SMTP, como To, From, Date, e Subject.

Protocolos de Sinalização: SIP

Serviços do SIP para o estabelecimento e o encerramento de sessões multimídia incluem:

- Localização de usuário
 - Usuário pode se movimentar por toda a rede
 - Ele precisa ser localizado antes de efetivamente iniciar uma comunicação
- Disponibilidade do usuário
 - Após um usuário ser localizado é preciso saber se ele está disponível para uma nova comunicação
 - Determina se o usuário possui recursos disponíveis para iniciar uma nova comunicação

Protocolos de Sinalização: SIP

Serviços do SIP para o estabelecimento e o encerramento de sessões multimídia incluem:

Configuração da chamada

- Para definir os parâmetros que serão usados para o estabelecimento da chamada
- Para determinar as capacidades de mídia dos softwares/equipamentos envolvidos na comunicação
- Para determinar os parâmetros de mídia a serem usados

Controle de chamada

 Gerenciamento da chamada, incluindo processos de transferência de chamadas e encerramento da mesma.

Protocolo de Sinalização SIP

- •Estudado a partir de dois exemplos simples:
 - Exemplo 1: troca de mensagens entre dois dispositivos
 SIP para estabelecer e encerrar uma sessão
 - Exemplo 2: registro SIP e troca de mensagens quando um SIP proxy é usado

22

Exemplo 1

- Mensagens SIP trocadas para o estabelecimento de uma sessão entre dois dispositivos SIP (fone SIP, softphone, etc.)
- Assumindo que os dois dispositivos estejam conectados em uma rede IP e ambos conhecem o endereço IP do outro

INVITE

- Alice inicia a chamada
 - envio da mensagem SIP INVITE para Bob
- INVITE contém detalhes do tipo de sessão pedida
 - Pode ser de voz simples, uma sessão multimídia (videoconf.) ou de jogo
- Corpo da mensagem pode conter uma descrição da sessão
 - Utilizando o protocolo de descrição de sessão SDP (Session Description Protocol)

180 Ringing

- Enviada em resposta a mensagem INVITE
- Indica que o participante que foi chamado,
 Bob, recebeu o INVITE e que o agente
 usuário esta alertando a chamada ao usuário
- Alerta poderia ser tocar um fone, apresentar uma mensagem na tela, ou qualquer outro método que chame a atenção do usuário chamado

200 OK

- Enviada quando o participante chamado Bob aceita a chamada
- Indica que o tipo de mídia da sessão proposta pelo chamador é aceitável

Ack

- Confirmação que Alice recebeu com sucesso a resposta de Bob
- Pode conter o SDP de descrição da sessão negociada entre ambos os clientes
 - Se não contiver o SDP o usuário chamado pode assumir a descrição dada pelo primeiro INVITE

Sessão de mídia

- Ocorre a comunicação de voz entre Alice e Bob
- Usando normalmente o protocolo RTP para transportar pacotes de voz

Bye

 Enviado pelo Bob para terminar a sessão e liberar os recursos alocados

200 OK

A resposta de confirmação para o BYE

Exemplo 2

 Chamador Alice chama Bob através de um servidor SIP proxy

Proxy SIP

- Opera de maneira similar a um proxy no HTTP e outros protocolos da Internet
- Não configura ou termina sessões
 - mas está no meio de uma troca de mensagens SIP
 - recebendo mensagem e repassando mensagens
- Podem existir múltiplos proxies no caminho da sinalização

SIP: Exemplo de registro

Bob envia um pedido SIP REGISTER para um servidor de registro

- Servidor SIP de registro recebe a mensagem e usa as informações no pedido para atualizar a base de dados usada pelos proxies para rotear os pedidos SIP
 - Campo To contém URI SIP "bem conhecido" de Bob
 - Campo Contact contém URI SIP do dispositivo atual (e seu endereço IP) onde Bob está logado

SIP: Exemplo de registro

Servidor SIP de registro

- Associa a SIP URI de Bob e o endereço IP do dispositivo na base de dados
- Base de dados que pode ser usada pelo servidor proxy para localizar Bob
- Quando um servidor proxy com acesso a base de dados recebe um pedido INVITE endereçado ao URI de Alice
 - Pedido será reencaminhado para o dispositivo que Bob está usando no momento.

Alice envia INVITE para o SIP proxy

- Alice não conhece exatamente onde Bob está atualmente logado e que dispositivo ele está usando atualmente
 - Apenas conhece seu endereço SIP de Bob
- Servidor SIP proxy é usado para rotear o INVITE
 - INVITE é então enviado para o endereço IP atual de Bob

Servidor SIP proxy redireciona INVITE

- INVITE é então repassado para o endereço IP de Bob
 - com a adição de um segundo campo Via com o endereço do proxy

Topologia de rede trapezoide SIP

- Trapezoide refere-se ao desenho formado pelas mensagens de sinalização e de mídia
- Um par de agente usuários, cada um em um domínio diferente, estabelecem uma sessão usando um par de servidores proxy, um em cada domínio
 - Cada agente usuário é configurado com um proxy de saída (outbound proxy), para o qual ele deve enviar pedidos

CAP 9. VOZ SOBRE IP (VOIP)

AULA 3: PROTOCOLO DE TRANSPORTE RTP

INE5431 SISTEMAS MULTIMÍDIA PROF. ROBERTO WILLRICH (INE/UFSC) ROBERTO.WILLRICH@UFSC.BR HTTPS://MOODLE.UFSC.BR

Protocolos RTP/RTCP

Objetivo desta parte...

- Apresentar o protocolo RTP (Real-time Transport Protocol)
 - que é o padrão chave para transporte de áudio/vídeo em redes IP

Localização do RTP

- RTP é parte do código da aplicação
- Normalmente usando UDP
 - Fazendo uso dos serviços de multiplexação e checksum do UDP
- RTP e o UDP são usados para transporte de áudio e vídeo em aplicações pessoa-pessoa (voz sobre IP, videoconferência)
- RTP pode ser usado sobre TCP
 - Para streaming de áudio e vídeo
 - Atraso fim-a-fim pode ser maior, permitindo a retransmissão de pacotes

Protocolos RTP/RTCP

RTP garante requisitos tempo-real?

- RTP não oferece nenhum mecanismo para assegurar a transmissão temporeal, nem oferece garantias de QoS
 - isto depende do suporte de rede utilizado
- RTP não garante confiabilidade, não evita a entrega fora de ordem dos pacotes, nem assume que a camada de rede ofereça confiabilidade e entrega de pacotes em sequência
 - Número de sequência incluído no RTP permite ao receptor reconstruir a sequência de pacotes como enviada pelo emissor

Comportamento do emissor RTP

- Buffer de entrada de mídia
 - Onde amostras de áudio ou vídeo não compactadas são bufferizadas
- Codec
 - Quadros descompactados são compactados

Comportamento do emissor RTP

- Empacotamento
 - Quadros compactados são carregados em pacotes RTP
 - Se os quadros são grandes, eles podem ser fragmentados em vários pacotes RTP (como é o caso do vídeo)
 - Se eles são pequenos, vários quadros podem ser juntados em um mesmo pacote RTP

Comportamento do emissor RTP

- Codificador de canal (channel coder)
 - Pode ser usado para gerar pacotes de correção de erros ou rearranjar os pacotes antes da transmissão.

- Primeiros passos
 - o coletar pacotes da rede, validar e inseri-los em uma fila de entrada específica do emissor
- Codificador de canal
 - Rotina de codificação de canal opcional para corrigir perdas
 - Após os pacotes são inseridos em um buffer de apresentação específico da fonte

- No buffer de apresentação
 - Pacotes são ordenados através de seus números de sequência
 - Corrigindo quaisquer perdas de ordenamento introduzido durante o transporte
 - Pacotes permanecem no buffer de apresentação até que os quadros completos tenham sido recebidos
 - Pacotes são adicionalmente bufferizados para remover qualquer variação de atraso causada pela rede

- Buffer de apresentação
 - Cada pacote é marcado com tempo de apresentação desejado para o quadro correspondente
 - Cálculo do atraso a ser adicionado é um dos aspectos mais críticos no projeto de uma implementação RTP
 - Quando o tempo de apresentação é alcançado
 - Pacotes são agrupados para formar quadros completos, e qualquer falha ou perdas de quadros são reparadas

- Reparos
 - Realizam correções nos quadros
- Correção de desvios de relógio
 - Pode ser observável diferenças na taxa do relógio nominal no emissor e no receptor
 - se manifestam como diferenças no valor do relógio de mídia RTP e o clock de apresentação.
 - Receptor deve compensar este desvio para evitar lacunas na apresentação

- Apresentação ao usuário
 - Pode ser possível apresentar cada uma das mídias independentemente
 - Dependendo do formato da mídia e do dispositivo de saída
 - Vários fluxos de vídeo são apresentados em diferentes janelas
 - Pode ser necessário mixar a mídia de todas as fontes em um único fluxo para apresentação
 - Combinando várias fontes de áudio para apresentação em um único conjunto de alto-falantes.

Cabeçalho RTP

Cabeçalho Obrigatório

Cabeçalho Opcional

Cabeçalho de payload opcional (dependendo do formato de payload usado)

Payload (dado codificado)

Cabeçalho RTP

- Tem um tamanho típico de 12 bytes
 - Embora ele possa conter uma lista de fontes contribuintes que pode estender este tamanho de 4 a 60 bytes
 - Mas na VoIP em geral este campo não é usado

Version (V, 2 bits)

- Identifica a versão utilizada do padrão RTP
 - Valor 2 é a versão atual
 - Valor 1 é a primeira versão do draft
 - Valor 0 é a versão inicialmente implementada pela ferramenta de áudio vat

Payload type (PT, 7 bits)

- Identifica o tipo de mídia transportada no pacote RTP
- Aplicação receptora examina o tipo de payload para determinar como tratar o dado
 - passando este para um decodificador adequado

Payload type (PT, 7 bits)

 Valores definidos na RFC 3551 "perfil RTP para conferências de áudio e vídeo com controle mínimo"

РТ	Nome do code	Tipo de Mídia	Taxa de clock	РТ	Nome do code	Tipo de Mídia	Taxa de clock
0	PCMU	Α	8.000	13	Comfort Noise	Α	8.000
1	reserved	Α		14	MPA	Α	90.000
2	reserved	Α		15	<i>G</i> 728	Α	8.000
3	GSM	Α	8.000	16	DVI4	Α	11.025
4	<i>G</i> 723	Α	8.000	17	DVI4	Α	22.050
5	DVI4	Α	8.000	18	<i>G</i> 729	Α	8.000
6	DVI4	Α	16.000	19	reserved	Α	
7	LPC	Α	8.000	Dyn	<i>G</i> 726-40	Α	8.000
8	PCMA	Α	8.000	Dyn	<i>G</i> 726-40	Α	8.000
9	G722	Α	8.000	Dyn	<i>G</i> 726-32	Α	8.000
10	L16	Α	44.100	Dyn	G726-24	Α	8.000
11	L16	Α	44.100	Dyn	<i>G</i> 726-16	Α	8.000
12	QCELP	Α	8.000	Dyn	<i>G</i> 729D	Α	8.000

Sequence Number (16 bits)

- Contém o contador de número de sequência dos pacotes RTP
 - é incrementado por um para cada pacote enviado
- Usado para ao receptor identificar
 - O pacote
 - A perda de pacote

Sequence Number (16 bits)

- Não é usado para escalonar a apresentação dos pacotes
 - que é o objetivo do campo marca temporal (timestamp)
 - embora este permita ao receptor reconstruir a ordem na qual os pacotes foram enviados
- Valor inicial do número de sequência deve ser definido aleatoriamente
 - Em vez de partir do zero
 - É uma prevenção contra o ataque de um fluxo RTP criptografado

Timestamp (32 bits)

- Usado pelo receptor para reconstruir a ordem temporal para apresentar a mídia
- Marca temporal é derivada de um clock de mídia
 - Taxa nominal do clock de mídia usada para gerar as marcas temporais
 - Exemplo: codec G.711 (8.000 amostra/seg) e cada pacote contém 240 amostras (pacotes de 30 ms)
 - Valor do timestamp é aumentado de 240 por pacote.

Marker (M, 1 bit)

- Interpretação é definida pelo perfil de mídia
- Para vídeo
 - Usado para definir fronteiras de um quadro de vídeo
- Para voz
 - serve para identificar o primeiro pacote de uma rajada de voz quando usado a detecção de silêncio e não se transmitir pacotes durante o silêncio.

Fonte de sincronização SSRC (32 bits)

- Identificam os participantes dentro de uma sessão RTP
 - Um identificador que é mapeado em um nome canônico, CNAME, através do protocolo RTCP
- Um número inteiro de 32 bits
 - escolhido aleatoriamente pelos participantes quando eles se juntam na sessão

Payload

- Contém um ou mais quadros de áudio e partes de quadros (ou quadro inteiro) de vídeo
 - posicionados logo após o cabeçalho RTP

Protocolos RTP/RTCP

RTP na realidade define dois protocolos

- Protocolo de dados RTP
 - para transportar dados tempo-real
- Protocolo do Controle RTP (RTCP)
 - para monitorar a qualidade de serviço
 - para distribuir informações acerca dos participantes de uma sessão

Protocolos RTP/RTCP

Comportamento do emissor e receptor RTP

- Emissor e receptor de pacotes RTP geram relatórios periodicamente (por exemplo, a cada 5s)
- Permite o transmissor checar a qualidade recebida pelo receptor, e tomar decisões como ativar o coder de canal no caso de perdas de pacotes
- Permite ao receptor realizações sincronizações (p.e. sincronização labial)
- Permite a identificação dos usuários

CAP 9. VOZ SOBRE IP (VOIP)

AULA 4: COMPONENTES E ETAPAS DE IMPLANTAÇÃO

INE5431 SISTEMAS MULTIMÍDIA PROF. ROBERTO WILLRICH (INE/UFSC) ROBERTO.WILLRICH@UFSC.BR HTTPS://MOODLE.UFSC.BR

Componentes essenciais da telefonia IP

Para implantar um sistema VoIP

- Diversos componentes devem ser adquiridos, instalados e configurados
- Tipos de componentes necessários dependem da forma como VoIP é implantado

Esta parte...

- Apresenta os elementos essenciais de algumas soluções para a implantação de VoIP
 - Estas soluções são passos em um caminho para a migração gradual à VoIP

Componentes essenciais da telefonia IP

Possíveis etapas da implantação de VoIP

- Etapa 1: Solução Toll Bypass usando Gateways
 - Gateways VoIP
 - Roteador IP ou VoIP
- Etapa 2: Incorporando Fones IP
 - Equipamentos do Usuário (Fone IP, Softphone, Telefone Conv.)
 - LAN Switch
 - PBX IP
 - Servidores de telefonia IP
- Etapa 3: Remoção do PBX convencional

Etapa 1: Solução Toll Bypass usando Gateways

Primeiro estágio de implantação da Telefonia IP

Rotear parte do tráfego de voz para a

rede IP

- Sem alterar os equipamentos de telefonia existentes (telefones, PBX e roteadores)
- Elemento essencial: gateway VoIP
 - Dispositivo em si ou um módulo para o roteador
 - Necessário para converter o tráfego de voz vindo do PBX em pacotes IP para transmissão sobre a WAN baseada em IP, e vice-versa

Gateways VoIP

Fornecem uma conexão entre a rede VoIP e a PSTN ou a um PBX

• Oferece uma translação entre o domínio da comutação por circuito e comutação por pacotes.

 Deve ter tanto interfaces para telefonia (POTS, T1/E1, ISDN, troncos E&M) e interfaces de rede de dados.

Não é necessário apenas nesta primeira fase de impla

 Sempre é necessário pois é óbvia a necessidade de manter d fones IP chamarem telefones na PSTN e vice-versa.

Podem ser implementados

- Em PC com interface telefônica
- Dispositivos externos standalone,
- Módulos para roteadores,
- Switches
- Incorporados dentro de PBXs IP baseado em chassis

Roteador VolP

Definem a rota do pacote de voz através da rede

Pode ter integrado as funcionalidades de Gateway VoIP

• a partir da adição de módulos de voz (placas) são capazes de prover a interface de conexão entre o dispositivo de voz (PBX) e a rede de dados

Roteador VolP

Qualidade

- Um aspecto crítico para manter a qualidade da chamada
- Uso de um protocolo de roteamento moderno (p.e., Enhanced Interior Gateway Routing Protocol - EIGRP) permite considerar o atraso quando do cálculo do melhor caminho
- Quando se quer assegurar a priorização dos pacotes de voz em relação aos dados, é vital considerar as características de gerenciamento de QoS do roteador.
 - Arquiteturas de Qualidade de Serviços (QoS), como Serviços Diferenciados, podem ser usados para a reservas de recursos para garantir a qualidade de voz

Etapa 2: Incorporando Fones IP

Segunda etapa da implantação da VoIP

- Com a LAN já preparada para VoIP (hubs trocados por switches 802.1p)
 - fones IP e PBX IP poderiam ser adquiridos e conectados na LAN
 - não alterando o PBX padrão e telefones convencionais

Equipamentos do Usuário

Dispositivo usado pelo usuário para fazer uso dos serviços de voz

- Telefone convencional ligado a um PBX (ou direto no gateway)
- Fone IP
 - terminal telefônico que tem suporte nativo a VoIP e pode ser conectado diretamente em uma rede IP.
- Softphone
 - uma aplicação de VoIP para computadores pessoais que simula o telefone real, requerendo apenas placa de áudio e headset

Equipamentos do Usuário

Fones IP geralmente utilizam o DHCP

- Servidor DHCP fornece um endereço IP quando um fone IP é ativo na rede
- Fones IP podem ser movidos com facilidade
- Disponibilidade do servidor de DNS e DHCP necessita ser monitorado
 - é interessante instalar servidores redundantes aumentar a disponibilidade deste serviço

LAN Switch

Tráfego de/para o PBX pode ser encaminhado por uma rede separada do tráfego

de dados

 Mas os tráfegos de/para os fones IP normalmente é encaminhado por uma rede convergente

Para a implantação de redes convergentes

- Uso de hubs deve ser extremamente evitado
 - pois existe a possibilidade de colisões de quadros e assim o aumento na latência e jitter.
- Apenas LAN switch deveriam ser usadas com fones IP
 - No caso de redes LAN com grande volume de tráfego deve-se pensar em usar switch com suporte a QoS (tal como o padrão 802.1p)

PBX IP

PBX IP

- Também chamados de SCU (Service Control Unit) ou Gerenciador de Chamada (Call Manager)
- Coração do sistema VoIP e desempenha todas as funções de um PBX tradicional e novas funções
- São plataformas abertas graças às vantagens da arquitetura TCP/IP

Funções

- Tradução de números de telefone e endereços IP
- Gerencia chamadas entre telefones
- Implementa os recursos de PABX: transferência, conferência, música de espera, menus de voz interativos, caixa postal etc.
- Executa aplicações de voz
 - o como mail de voz, secretária eletrônica e aplicações de call centers baseado na web.

Etapa 3: Remoção do PBX convencional

Com a migração para os fones IP completada

- PBX tradicional pode ser removido e substituído com um tronco E1/T1 do gateway para a central (Local Exchange)
- · Serviço de comunicação de voz é totalmente oferecido pela VoIP
- Mas sempre é necessário um gateway!

CAP 9. VOZ SOBRE IP (VOIP)

AULA 5: QOS EM VOIP

INE5431 SISTEMAS MULTIMÍDIA PROF. ROBERTO WILLRICH (INE/UFSC) ROBERTO.WILLRICH@UFSC.BR HTTPS://MOODLE.UFSC.BR

Avaliando a qualidade de voz

Mean Opinion Score (MOS)

- Desde que a telefonia foi inventada o teste da qualidade de chamada é subjetiva
 - tirar o fone do gancho e ouvir a qualidade da voz
- MOS: a principal medida subjetiva da qualidade
 - recomendação ITU P.800
 - Técnica: grupo de pessoas ouve o áudio e dá sua opinião sobre a qualidade da chamada
 - nível de qualidade de voz é medido por uma escala de cinco pontos
- Valores obtidos através do MOS são subjetivos
 - experiência e herança cultural das pessoas e mensagens que elas ouvem são fatores importantes na determinação da medida do MOS.

Avaliando a qualidade de voz: MOS

Scores MOS

Nota	Significado						
1	Ruim : ininteligível, não é possível entender a mensagem decodificada.						
2	Pobre : sinal possui interrupções devido às degradações, tem-se que fazer um esforço considerável para entender alguns trechos						
3	Moderado : qualidade da voz é ruim, as degradações incomodam, porém não tem interrupções e ainda consegue-se entender a mensagem (requer esforço moderado)						
4	Bom : voz é agradável de se ouvir - percebe-se degradações mas não chegar a incomodar						
5	Excelente : não se percebe a degradação do sinal (nenhum esforço é requerido)						

Avaliando a qualidade de voz: MOS

Deficiência do MOS

- Tem o inconveniente de ser difícil e dispendioso de executar
 - Necessidade de se formar um grupo de pessoas toda vez que for preciso fazer um ajuste na qualidade da chamada
- Procedimento tornou-se desnecessário com a definição de medidas de qualidade de chamada objetivas (dependente de parâmetros de QoS de redes e outros parâmetros de aplicação)
 - PSQM/PSQM+: Perceptual Speech Quality Measure;
 - MNB: Measuring Normalized Blocks;
 - PESQ: Perceptual Evaluation of Speech Quality;
 - PAMS: Perceptual Analysis Measurement System;
 - E-Model: Permite determinar um MOS estimado

Qualidade de Voz oferecida pela rede

Para a instalação dos serviços de VoIP é necessário aferir a qualidade da rede

Categorias de Qualidade	Atraso fim a fim	Média das perdas de pacotes	Variação do atraso	Satisfação do Usuário
Melhor	< 150 ms	00%	0 ms	Muito Satisfeito
Alto	< 250 ms	03%	75 ms	Satisfeito
Médio	< 350 ms	15%	125 ms	Alguns Usuários Insatisfeitos
Baixo	< 450 ms	25%	225 ms	Muitos Usuários Insatisfeitos

Avaliando a qualidade de voz

Codec influencia na qualidade

- Quanto maior a taxa de compressão maior é a perda da sua inteligibilidade
 - codecs com baixa velocidade de conversão de sinal degradam muito mais a qualidade da fala percebida do que codecs de alta velocidade

Codec	Taxa de bits no codec	Tamanho do pacote de voz	Atraso do algoritmo	Atraso de bufferização	Atraso na fonte	MOS
G.711	64 kbps	20 ms	0,125 ms	40 ms	20 ms	4,2 a 4,7
G.726-32	32 kbps	15 ms	0,125 ms	30 ms	20 ms	3,9 a 4,2
G.728	16 kbps	20 ms	0,625 ms	40 ms	20 ms	3,7 a 4,3
G.729	8 kbps	20 ms	5,0 ms	40 ms	25 ms	3,9 a 4,2
G.729A	8 kbps	20 ms	5,0 ms	40 ms	25 ms	3,7 a 4,2
G.723.1m	6,3 kbps	30 ms	7,5 ms	60 ms	37,5ms	3,8 a 4,0
G.723.1a	5,3 kbps	30 ms	7,5 ms	60 ms	37,5ms	3,3 a 3,7

Efeito do Melhor Esforço: Atraso

Influência na qualidade percebida depende do codec

Codec	Taxa de bits no codec	Tamanho do pacote de voz	Atraso do algoritmo	Atraso de bufferização	Atraso na fonte	MOS
G.711	64 kbps	20 ms	0,125 ms	40 ms	20 ms	4,2 a 4,7
G.729	8 kbps	20 ms	5,0 ms	40 ms	25 ms	3,9 a 4,2
G.723.1m	6,3 kbps	30 ms	7,5 ms	60 ms	37,5ms	3,8 a 4,0
G.723.1a	5,3 kbps	30 ms	7,5 ms	60 ms	37,5ms	3,3 a 3,7

Efeito do Melhor Esforço: Perdas de Pacotes

Codecs e Perdas

 Qualidade com perdas de pacotes aleatórias de 5% MOS estimado

4.5
4.3.5
3.5
3.5
2.5
2.1.5
1
Atraso fim a fim (ms)

 Qualidade com perdas em grupo de 5%

