

Tabla de contenido

Intr	oducción	5
Ma	pa conceptual	6
1.	Pasos para desarrollar y diseñar una base de datos relacional	7
2.	Ejercicio planteado	8
3.	Solución al ejercicio planteado	9
3.1	Definir el requerimiento de la base de datos	6
	Identificación de entidades con los atributos y tipo de datos correspondientes	
	Definir para cada entidad una llave primaria (PK) con la cual se establecerá las aciones entre entidad	11
3.4	Aplicación de la normalización de la base de datos	12
	nera regla de normalización (1FN)	
Seg	gunda regla de normalización (2FN)	13
Ter	cera regla de normalización (3FN)	14
3.5	Definir para cada entidad una llave foránea (FK)	15
	Definir la cardinalidad que existe entre entidades para generar el diagrama Entida ación (E-R)	
Ref	erentes bibliográficos	17
Cré	editos	18

Figura 1. Mapa	oa conceptual	6
Figura 2. Diagr	grama Entidad-Relación (E-R)	16

Lista de tablas

Tabla 1. Artículos	10
Tabla 2. Cliente	10
Tabla 3. Proveedor	10
Tabla 4. Ciudad	11
Tabla 5. Sucursales	11
Tabla 6. Vendedores	11
Tabla 7. Artículos (PK)	12
Tabla 8. Cliente (PK)	12
Tabla 9. Proveedor (PK)	12
Tabla 10. Ciudad (PK)	12
Tabla 11. Sucursales (PK)	12
Tabla 12. Vendedores (PK)	12
Tabla 13. Primera forma de normalización (1FN)	13
Tabla 14. Segunda forma de normalización	14
Tabla 15. Tercera forma de normalización	14
Tabla 16 Llaves foráneas	15

En la actualidad la información de una empresa es el motor de todo negocio, siendo esta la clave de transformación de ellos. En cada actividad diaria los registros sufren modificaciones las cuales deben ser bien administradas garantizando el buen funcionamiento de las empresas. Para lograr este objetivo, se han diseñado las bases de datos que son un conjunto de tablas organizadas y relacionadas entre sí, que garantizan la integridad de la información.

La base de datos y su sistema de gestión van de la mano, por lo tanto, debe estar muy bien diseñada con el fin de que la información, que es única para cada empresa, se mantenga protegida al momento que esta vaya incrementando su volumen. En el mapa conceptual que se comparte a continuación, se evidencia la interrelación temática del contenido que se plantea en este material de formación:

Figura 1. Mapa conceptual Fuente: SENA (2019)

. Pasos para desarrollar y diseñar una base de datos relacional

- 1. Definir el requerimiento para el cual se va a crear la base de datos.
- 2. Identificación de entidades con los atributos y tipo de datos correspondientes.
- 3. Definir, para cada entidad, una llave primaria (PK).
- 4. Aplicación de la normalización de la base de datos.
- 5. Definir, para cada entidad, una llave foránea (FK).
- 6. Definir la cardinalidad que existe entre entidades para generar el diagrama Entidad-Relación (E-R).

2. Ejercicio planteado

Se desea crear una base de datos para llevar el control de inventario de un almacén de artículos de aseo, los datos que hay que tener en cuenta son:

- Los artículos de venta, para lo cual hay que identificarlos con: nombre, código, precio, cantidad y código del proveedor.
- Los clientes se deben identificar con: nombre, apellidos, identificación, dirección y número celular.
- Los proveedores se identifican con: nombre, ciudad, código y código de artículo que distribuye.
- Vendedores: nombre, apellido y código.

Los clientes pueden comprar varios artículos, a su vez, los artículos pueden ser comprados por varios clientes, los proveedores pueden suministrar un solo artículo, los vendedores pueden vender muchos artículos a muchos clientes, el almacén LQ S.A. tiene algunas sucursales en algunas ciudades del país.

3. Solución al ejercicio planteado

3.1 Definir el requerimiento de la base de datos

El almacén de artículos de aseo LQ S.A. requiere diseñar una base de datos para controlar el *stock* de inventario de bodega con el objetivo de conocer los productos que tienen mayor y menor movimiento en el almacén.

Además, la empresa LQ S.A. requiere llevar un registro completo de sus clientes, inventario de sus productos en cada sucursal y un listado de los proveedores.

Para el anterior caso planteado se tiene el siguiente análisis:

- La empresa LQ. S.A. cuenta con sucursales en cinco ciudades del país, las cuales se identifican con: código, ciudad, dirección, vendedores y clientes, entre otros.
- Los clientes serán identificados con: código, nombre, apellido, ciudad, número de cédula, entre otros. Los clientes pueden adquirir varios productos en diferentes sucursales.
- Los productos se identifican con código, nombre, proveedor, entre otros. Son de varios proveedores.
- Los proveedores distribuyen varios productos a todas las sucursales.
- Los vendedores se identifican por: nombre, código y ubicación de la sucursal.

3.2 Identificación de entidades con los atributos y tipo de datos correspondientes

Tabla 1. Artículos

Atributos	Tipo de dato	Longitud
Nom_artículo	String	20
Cod_artículo	Numérico	10
Stock_artículo	Numérico	4
Precio unitario compra	Moneda	4
Precio unitario venta	Moneda	4
Cod_cliente	Numérico	10
Cod_proveedor	Numérico	4

Fuente: SENA (2019)

Tabla 2. Cliente

Atributos	Tipo de dato	Longitud
Nom_cliente	String	20
Apellido_cliente	String	20
Ced_cliente	Numérico	10
Dirección_cliente	String	20
Móvil_cliente1	Numérico	10
Cod_sucursal	Numérico	10
Cod_cliente	Numérico	10
Nom_artículo	String	20
Cod_artículo	Numérico	10
Cod_ciudad	Numérico	4

Fuente: SENA (2019)

Tabla 3. Proveedor

Atributos	Tipo de dato	Longitud
Nom_proveedor	Carácter	20
Cod_proveedor	Numérico	10
Ciudad_proveedor	String	10
Cod_artículo	Numérico	4
Precio unitario compra	Moneda	4
Nom_artículo	String	20

Fuente: SENA (2019)

Tabla 4. Ciudad

Atributos	Tipo de dato	Longitud
Nom_ciudad	String	20
Cod_ciudad	Numérico	20
Cod_vendedor	Numérico	20
Cod_proveedor	Numérico	10
Cod_cliente	Numérico	10

Fuente: SENA (2019)

Tabla 5. Sucursales

Atributos	Tipo de dato	Longitud
Nom_sucursal	Carácter	20
Cod_sucursal	Numérico	10
Ciudad_sucursal	String	10
Cod_cliente	Numérico	4
Cod_proveedor	Numérico	4

Fuente: SENA (2019)

Tabla 6. Vendedores

Atributos	Tipo de dato	Longitud
Nom_vendedor	Carácter	20
Cod_vendedor	Numérico	10
Cod_sucursal	Numérico	10
Ciudad_sucursal	String	10
Cod_cliente	Numérico	4
Cod_proveedor	Numérico	4

Fuente: SENA (2019)

3.3 Definir para cada entidad una llave primaria (PK) con la cual se establecerá las relaciones entre entidad

Se debe tener en cuenta que una llave primaria (PK) es el atributo único en cada tabla.

Tabla 7. Artículos (PK)

Atributos
Nom_artículo
Cod_artículo (PK)
Stock_artículo
Precio unitario compra
Precio unitario venta
Cod_cliente
cod_proveedor

Fuente: SENA (2019)

Tabla 8. Cliente (PK)

Atributos
Nom_cliente
Apellido_cliente
Ced_cliente
Dirección_cliente
Móvil_cliente1
Cod_sucursal
Cod_cliente (PK)
Nom_artículo
Cod_artículo
Cod_ciudad

Fuente: SENA (2019)

Tabla 9. Proveedor (PK)

Atributos
Nom_proveedor
Cod_proveedor (PK)
Ciudad_proveedor
Cod_artículo
Precio unitario compra
Nom_artículo

Fuente: SENA (2019)

Tabla 10. Ciudad (PK)

Atributos		
Nom_ciudad		
Cod_ciudad (PK)		
Cod_vendedor		
Cod_proveedor		
Cod_cliente		

Fuente: SENA (2019)

Atributos
Nom_sucursal
Cod_sucursal (PK)
Ciudad_sucursal
Cod_cliente
Cod_proveedor
Table 11 Sugaragles (DK)

Tabla 11. Sucursales (PK)

Atributos		
Nom_vendedor		
Cod_vendedor (PK)		
Cod_sucursal		
Ciudad_sucursal		
Cod_cliente (NA)		
Cod_proveedor		

Tabla 12. Vendedores (PK)

Fuente: SENA (2019)

Fuente: SENA (2019)

3.4 Aplicación de la normalización de la base de datos

Para la aplicación de la normalización de la base de datos se tendrán en cuenta las tres reglas básicas de normalización de forma ordenada:

• Primera regla de normalización (1FN)

En esta regla se identificarán, en cada tabla, los atributos no atómicos (NA).

Tabla 13. Primera forma de normalización (1FN)

Artículos		
Nom_artículo		
Cod_artículo (PK)		
Stock_artículo (NA)		
Precio unitario compra		
Precio unitario venta		
Cod_cliente (NA)		
cod_proveedor (NA)		

Cliente		
Nom_cliente		
Apellido_cliente		
Ced_cliente		
Dirección_cliente		
Móvil_cliente1		
Cod_sucursal		
Cod_cliente (PK)		
Nom_artículo (NA)		
Cod_artículo (NA)		
Cod_ciudad		

Proveedor
Nom_proveedor
Cod_proveedor (PK)
Ciudad_proveedor
Cod_artículo (NA)
Precio unitario compra
Nom_artículo (NA)

	Ciudad
	Nom_ciudad
(Cod_ciudad (PK)
(Cod_vendedor
(Cod_proveedor
(Cod_cliente

Sucursal
Nom_sucursal
Cod_sucursal (PK)
Ciudad_sucursal
Cod_cliente (NA)
Cod_proveedor (NA)

Vendedores		
Nom_vendedor		
Cod_vendedor (PK)		
Cod_sucursal		
Ciudad_sucursal		
Cod_cliente (NA)		
Cod_proveedor		

Fuente de tablas: SENA (2019)

• Segunda regla de normalización (2FN)

Una vez identificados los atributos repetidos, se procede a generar tablas nuevas, teniendo en cuenta los valores atómicos para evitar la redundancia de datos.

Tabla 14. Segunda forma de normalización

Artículos	Cliente	Proveedor
Nom_artículo	Nom_cliente	Nom_proveedor
Cod_artículo (PK)	Apellido_cliente	Cod_proveedor (PK)
Precio unitario compra	Ced_cliente	Ciudad_proveedor
Precio unitario venta	Dirección_cliente	Precio unitario compra
	Móvil_cliente1	
	Cod_sucursal	
	Cod_cliente (PK)	
	Cod_ciudad	Vendedores
		Nom_vendedor
Ciudad	Sucursal	Cod_vendedor (PK)
Nom_ciudad	Nom_sucursal	Cod_sucursal
Cod_ciudad (PK)	Cod_sucursal (PK)	Ciudad_sucursal
Cod sucursal	Ciudad sucursal	Cod proveedor

Fuente de tablas: SENA (2019)

• Tercera regla de normalización (3FN)

Determinar las dependencias que existen en los atributos con las claves no primarias y crear nuevas tablas de acuerdo a las dependencias encontradas.

Tabla 15. Tercera forma de normalización

Artículos	Cliente	Proveedor
Nom_artículo	Nom_cliente	Nom_proveedor
Cod_artículo (PK)	Apellido_cliente	Cod_proveedor (PK)
Precio unitario compra	Ced_cliente	Ciudad_proveedor
Precio unitario venta	Dirección_cliente	Precio unitario compra
	Móvil_cliente1	
	Cod_sucursal	
	Cod_cliente (PK)	Vendedores
	Cod_ciudad	Nom_vendedor
Ciudad	Sucursal	Cod_vendedor (PK)
Nom_ciudad	Nom_sucursal	Cod_sucursal
Cod_ciudad (PK)	Cod_sucursal (PK)	Ciudad_sucursal
Cod_sucursal	Ciudad_sucursal	Cod_proveedor

Fuente de tablas: SENA (2019)

Las tablas ya están en la tercera forma de normalización (3FN), no hubo más modificaciones ni creación de nuevas tablas, ya que las entidades están identificadas de manera única a través de la llave primaria (PK), esto garantiza que no habrá registros repetidos y la base de datos tendrá un fácil manejo para actualizar, modificar y consultar.

3.5 Definir para cada entidad una llave foránea (FK)

Tabla 16. Llaves foráneas

Artículos	Cliente	Proveedor
Nom_artículo	Nom_cliente	Nom_proveedor
Cod_artículo (PK)	Apellido_cliente	Cod_proveedor (PK)
Precio unitario	Ced_cliente	Ciudad_proveedor (FK)
compra	Dirección_cliente	Precio unitario compra
Precio unitario venta	Móvil_cliente1	
	Cod_sucursal (FK)	
	Cod_cliente (PK)	Vendedores
	Cod_ciudad (FK)	
		Nom_vendedor
	Sucursal	Cod_vendedor (PK)
Ciudad	Nom_sucursal	Cod_sucursal (FK)
Nom_ciudad	Cod_sucursal (PK)	Ciudad_sucursal (FK)
Cod_ciudad (PK)	Ciudad_sucursal (FK)	Cod_proveedor (FK)
Cod_sucursal		

Fuente de tablas: SENA (2019)

3.6 Definir la cardinalidad que existe entre entidades para generar el diagrama Entidad-Relación (E-R)

Los artículos: son distribuidos por un proveedor en cada sucursal de cada ciudad y son adquiridos por varios clientes en cada sucursal.

Los clientes: adquieren varios artículos en diferentes sucursales.

Las sucursales: hay una en cada ciudad.

Los vendedores: tienen muchos clientes y muchos artículos en una sucursal.

Los proveedores: distribuyen varios artículos.

Figura 2. Diagrama Entidad-Relación (E-R) Fuente: SENA (2019)

Una vez generado el diagrama Entidad-Relación se puede garantizar el buen manejo de la información de la empresa, es hora de seleccionar el mejor sistema de gestión donde se aplicará el diseño que se construyó, en el cual se podrá esbozar el ambiente interactivo que facilitará la interacción del usuario con la información.

Referentes bibliográficos

Chamorro, A. y Escobar, C. (2018). *Introducción al modelamiento de bases de datos y SQL básico para una biblioteca.* Recuperado de http://eprints.rclis.org/12681/1/Serie_N%C2%BA_42, Noviembre_2008-2.pdf

Créditos

Gestor del proceso de recursos digitales Juan Bautista Londoño Pineda

Responsable de producción y creación Jhoana Andrea Vásquez Gómez

Evaluador de calidad instruccional Erika Alejandra Beltrán Cuesta

Desarrollador de contenidos Olga Elena Meneses Camino

E-pedagogo instruccional Juan Carlos Ramírez Molina

Evaluador de contenidos Claudia Marcela Peña Galeano

Desarrollador Full-Stack

Daniel Enciso Arias
Francisco José Lizcano Reyes
Germán Alberto Rodríguez Liévano
Leyson Fabián Castaño Pérez
Luis Felipe Zapata Castaño
Luis Gabriel Urueta Álvarez

Creativo de recursos didácticos

Carlos Andrés Díaz Botero Cristian Andrés Osorio Caiza Jessica Orozco Salazar Maira Camila Olmos Hernández Melissa Ochoa Alvarado

Centro Agroindustrial - Regional Quindío Centro Agropecuario - Regional Risaralda 2019

