

MODULE-VI

Pipeline Problems

Dr Saladi Saritha

Associate Professor
School of Electronics Engineering (SENSE)
VIT-AP University

CONTENT

✓ Problems on Pipeline

PIPELINE

Non-pipeline

Instruction-1

Instruction-2

Instruction-3

Pipeline

Time

Problem 1: Find the **number of clock cycles** required to execute 10 instructions with pipeline method and without pipeline method for the following instruction structure?

I	F (2)	D (1)	E (1)
_	• •	\ `	• •

Fetch - 2 Clock cycle

Decoding - 1 Clock cycle

Execution - 1 Clock cycle

	I1
	I2
	13
	I4
•	I 5
•	I6
	I7
	I8
•	I9
	I10

No of Clock Cycle required to execute 10 instructions is

= (No of instructions) x (Total no of required for single instruction)

= 10 x 4 = **40** Clock cycles

Pipeline method

No of Clock Cycle required to execute 10 instructions is

= (No of clocks required for 1st instruction)+ ((no of instruction -1) x (difference between two instruction))

$$= 4 + ((10-1) \times 2) = 4 + (9 \times 2) = 4 + 18 = 22$$
 Clock cycles

Problem 2: Find the **number of clock cycles** required to execute 100 instructions with pipeline method and without pipeline method for the following instruction structure?

I	F (2)	D (1)	E (3)
_	, , ,	•	•

Fetch - 2 Clock cycle

Decoding - 1 Clock cycle

Execution - 3 Clock cycle

I2 I3 I4 I5 I6
I4 I5
15
I6
I7
I8
I9
I10

No of Clock Cycle required to execute 100 instructions is

= (No of instructions) x (Total no of cycles required for single instruction)

= 100 x 6 = **600 Clock cycles**

Pipeline method

No of Clock Cycle

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1

No of Clock Cycle required to execute 100 instructions is

= (No of clocks required for 1st instruction)+ ((no of instruction -1) x (difference between two instruction))

 $= 6 + ((100-1) \times 3) = 6 + (99 \times 3) = 6 + 297 = 303$ Clock cycles

Assignment - 1: Find the **number of clock cycles** required to execute 1000 instructions with pipeline method and without pipeline method for the following instruction structure ?

I	F (1)	D (2)	E (3)
---	-------	-------	-------

Fetch - 1 Clock cycle

Decoding - 2 Clock cycle

Execution - 3 Clock cycle

-
I1
I2
I3
I 4
I 5
I6
I7
18
I9
I10

Assignment - 1: Find the **number of clock cycles** required to execute 1000 instructions with pipeline method and without pipeline method for the following instruction structure ?

I	F (1)	D (2)	E (3)
---	-------	-------	-------

Fetch - 1 Clock cycle

Decoding - 2 Clock cycle

Execution - 3 Clock cycle

I1	
I2	
13	
I4	
15	
I6	
I7	
I8	
I9	
I10	

No of Clock Cycle required to execute 1000 instructions is

- = (No of instructions) x (Total no of required for single instruction)
- = 1000 x 6 = **6000 Clock cycles**

Pipeline method

No of Clock Cycle

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

No of Clock Cycle required to execute 100 instructions is

= (No of clocks required for 1st instruction)+ ((no of instruction -1) x (difference between two instruction))

 $= 6 + ((1000-1) \times 3) = 6 + (999 \times 3) = 6 + 2997 = 3003$ Clock cycles

Problem 1: Find the **number of clock cycles** required to execute 1000 instructions with pipeline method and without pipeline method for the following instruction structure? **If microcontroller frequency is 1GHz then also find the max operating frequency**?

I	F (1)	D (1)	E (4)
---	-------	-------	-------

Fetch - 1 Clock cycle

Decoding - 1 Clock cycle

Execution - 4 Clock cycle

I1
I2
13
I4
15
I6
I7
I8
I9
I10

No of Clock Cycle required to execute 1000 instructions is

= (No of instructions) x (Total no of required for single instruction)

ARM Microcontroller Architecture

= 1000 x 6 = **6000 Clock cycles**

Pipeline method

		F	D							E	E	E	E
	F	D				E	E	E	E			So	on
F	D	E	E	E	E					•			

No of Clock Cycle

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

No of Clock Cycle required to execute 1000 instructions is

= (No of clocks required for 1st instruction)+ ((no of instruction -1) x (difference between two instruction))

 $= 6 + ((1000-1) \times 4) = 6 + (999 \times 4) = 6 + 3996 = 4002$ Clock cycles

Pipeline method

		F	D							E	E	E	E
	F	D				E	E	E	E			So	on
F	D	E	E	E	E								

No of Clock Cycle

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Maximum operating frequency is given by

$$f_{max. op} = \frac{f_{mc}}{max. difference between two instructions} = \frac{1 GHz}{4} = 0.25 GHz$$

Problem 4: If microcontroller frequency is 1GHz then also find the max operating frequency?

I	F (2)	D (1)	E (1)
---	-------	-------	-------

Fetch - 2 Clock cycle

Decoding - 1 Clock cycle

Execution - 1 Clock cycle

I1
I2
13
I4
15
I6
17
18
I9
I10

Pipeline method

Maximum operating frequency is given by

$$f_{max. \ op} = \frac{f_{mc}}{max. \ difference \ between \ two \ instructions} = \frac{1 GHz}{2} = 0.5 \ GHz$$

Problem 5: If microcontroller frequency is 1GHz then also find the max operating frequency?

I F (2)	D (1)	E (3)
---------	-------	-------

Fetch - 2 Clock cycle

Decoding - 1 Clock cycle

Execution - 3 Clock cycle

I1
I2
I3
I4
I 5
I6
I7
I8
I9
I10

Pipeline method

No of Clock Cycle

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Maximum operating frequency is given by

$$f_{\text{max. op}} = \frac{f_{\text{mc}}}{\text{max. difference between two instructions}} = \frac{1 \text{GHz}}{3} = 0.33 \text{ GHz}$$

Problem 1: Find the **number of clock cycles** required to execute 4 instructions with pipeline method and without pipeline method for the following instruction structure? If microcontroller frequency is 1GHz then also find the max operating frequency?

I	F	D	E
---	---	---	---

Fetch −2 Clock cycle

Decoding – 1 Clock cycle

Execution – 2 (I1), 4 (I2), 3 (I3) and 2 (I4) Clock cycles

I1 I2 I3 I4

No of Clock Cycle required to execute 4 instructions is

$$= 5 + 7 + 6 + 5 = 23$$
 Clock cycles

Pipeline method

No of Clock Cycle

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

No of Clock Cycle required to execute 4 instructions is

= 14 Clock Cycles (From diagram)

Pipeline method

No of Clock Cycle

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Maximum operating frequency is given by

$$f_{max. op} = \frac{f_{mc}}{max. difference between two instructions} = \frac{1 GHz}{4} = 0.25 GHz$$

Problem 2: Find the **number of clock cycles** required to execute 4 instructions with pipeline method and without pipeline method for the following instruction structure? If microcontroller frequency is 1GHz then also find the max operating frequency?

I F D E

Fetch −1 Clock cycle

Decoding – 1 Clock cycle

Execution – 2 (I1), 1 (I2), 1 (I3) and 2 (I4) Clock cycles

No of Clock Cycle required to execute 4 instructions is

$$= 4 + 3 + 3 + 4 =$$
14 Clock cycles

Pipeline method

No of Clock Cycle

0 1 2 3 4 5 6 7 8

No of Clock Cycle required to execute 4 instructions is

= 8 Clock Cycles (From diagram)

Pipeline method

No of Clock Cycle

2 3 4 5 6

Maximum operating frequency is given by

$$f_{\text{max. op}} = \frac{f_{\text{mc}}}{\text{max. difference between two instructions}} = \frac{1 \text{GHz}}{2} = 0.5 \text{ GHz}$$

Assignment - 1: Find the **number of clock cycles** required to execute 5 instructions with pipeline method and without pipeline method for the following instruction structure? If microcontroller frequency is 2 GHz then also find the max operating frequency?

I F	D	E
-----	---	---

Fetch −1 Clock cycle

Decoding – 1 Clock cycle

Execution – 3 (I1), 4 (I2), 2 (I3), 1 (I4) and 2 (I5) Clock cycles

I1 I2 I3 I4 I5

Problem - 1: If the pipeline is flushed for every 3 instructions then find the number of clock cycles required

to execute 9 instructions with pipeline method?

I	F (1)	D (1)	E (4)

Fetch - 1 Clock cycle

Decoding - 1 Clock cycle

Execution - 4 Clock cycle

I1
I2
I3
I4
I 5
I6
I7
I8
I9

Pipeline method

No of Clock Cycle

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Pipeline method

		F	D							E	E	E	E
	F	D				E	E	E	E				
F	D	E	E	E	E					•			

No of Clock Cycle

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

No of Clock Cycle required to execute 3 instructions is

= (No of clocks required for 1st instruction)+ ((no of instruction -1) x (difference between two instruction))

$$= 6 + ((3-1) \times 4) = 6 + (2 \times 4) = 6 + 8 =$$
14 Clock cycles

Total = 14 + 14 + 14 = 42 Clock cycles

Problem - 2: If the pipeline is flushed for every 10 instructions then find the number of clock cycles

required to execute 40 instructions with pipeline method?

I	F (1)	D (1)	E (4)

Fetch - 1 Clock cycle

Decoding - 1 Clock cycle

Execution - 4 Clock cycle

I1
I2
13
I4
15
I6
I7
18
I9
I10

Pipeline method

No of Clock Cycle

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Pipeline method

		F	D							E	E	E	E	
	F	D				E	E	E	E		Up	to 10 in	structio	ns
F	D	E	E	E	E					-				

No of Clock Cycle

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

No of Clock Cycle required to execute 10 instructions is

= (No of clocks required for 1st instruction)+ ((no of instruction -1) x (difference between two instruction))

$$= 6 + ((10-1) \times 4) = 6 + (9 \times 4) = 6 + 36 = 42$$
 Clock cycles

Total = 42 + 42 + 42 + 42 = 168 Clock cycles

Problem - 3: If the pipeline is flushed for every 10 instructions then find the number of clock cycles

required to execute 41 instructions with pipeline method?

I	F (1)	D (1)	E (4)

Fetch - 1 Clock cycle

Decoding - 1 Clock cycle

Execution - 4 Clock cycle

I1
I2
13
I4
15
I6
I7
18
I9
I10

Pipeline method

No of Clock Cycle

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Pipeline method

		F	D							E	E	E	E	
	F	D				E	E	E	E		Up	to 10 in	structio	ns
F	D	E	E	E	E					-				

No of Clock Cycle

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

No of Clock Cycle required to execute 10 instructions is

= (No of clocks required for 1st instruction)+ ((no of instruction -1) x (difference between two instruction))

$$= 6 + ((10-1) \times 4) = 6 + (9 \times 4) = 6 + 36 = 42$$
 Clock cycles

Total = $4 \times 42 + 6 = 168 + 6 = 174$ Clock cycles

Problem - 4: If the pipeline is flushed for every 10 instructions then find the number of clock cycles

required to execute 141 instructions with pipeline method?

I	F (2)	D (1)	E (3)

Fetch - 2 Clock cycle

Decoding - 1 Clock cycle

Execution - 3 Clock cycle

I1
I2
13
I4
I 5
I6
I7
I8
I9
I10

Pipeline method

No of Clock Cycle

0 1 2 3 4 5 6 7 8 9 10 11 12

Pipeline method

				F	F	D			E	E	E	
		F	F	D		E	E	E		Un	to 10 ins	tructions
F	F	D	E	E	E					C P		

No of Clock Cycle

0 1 2 3 4 5 6 7 8 9 10 11 12

No of Clock Cycle required to execute 10 instructions is

= (No of clocks required for 1st instruction)+ ((no of instruction -1) x (difference between two instruction))

 $= 6 + ((10-1) \times 3) = 6 + (9 \times 3) = 6 + 27 = 33$ Clock cycles

No of Clock Cycle required to execute 141 instructions = $14 \times 33 + 6 = 462 + 6 = 468$ Clock cycles

MODEL-3: PIPELINE PROBLEM ASSIGNMENT-1

Problem - 1: If the pipeline is flushed for every 15 instructions then find the number of clock cycles

required to execute 1501 instructions with pipeline method?

I	F (2)	D (1)	E (4)

Fetch - 2 Clock cycle

Decoding - 1 Clock cycle

Execution - 4 Clock cycle

I1
I2
13
I4
15
16
I7
18
I9
I10

Problem 1: Find the number of clock cycles required to execute 10 instructions with pipeline method and without pipeline method for the following instruction structure? Improve the pipeline structure.

I	F (1)	D (1)	E (4)

Fetch - 1 Clock cycle

Decoding - 1 Clock cycle

Execution - 4 Clock cycle

I1
I2
I3
I4
15
I6
I7
18
I9
I10

No of Clock Cycle required to execute 10 instructions is

- = (No of instructions) x (Total no of required for single instruction)
- = 10 x 6 = **60 Clock cycles**

Less efficient design of pipeline

Pipeline method

No of Clock Cycle

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

No of Clock Cycle required to execute 10 instructions is

= (No of clocks required for 1st instruction)+ ((no of instruction -1) x (difference between two instruction))

$$= 6 + ((10 - 1) \times 4) = 6 + (9 \times 4) = 6 + 36 = 42$$
 Clock cycles

Pipeline method

More efficient design of pipeline: Break the execution in two parts of two cycle each

		F	D			Ex1	Ex1	Ex2	Ex2
	F	D		Ex1	Ex1	Ex2	Ex2		So on
F	D	Ex1	Ex1	Ex2	Ex2			•	

No of Clock Cycle

) :

.

2

3

4

5

6

7

Q

7

10

No of Clock Cycle required to execute 10 instructions is

= (No of clocks required for 1st instruction)+ ((no of instruction -1) x (difference between two instruction))

$$= 6 + ((10 - 1) \times 2) = 6 + (9 \times 2) = 6 + 18 = 24$$
 Clock cycles

Problem 2: Find the number of clock cycles required to execute 100 instructions with pipeline method and without pipeline method for the following instruction structure? Improve the pipeline structure.

I	F (2)	D (1)	E (6)

Fetch - 2 Clock cycle

Decoding - 1 Clock cycle

Execution - 6 Clock cycle

I1
I2
I3
I4
I5
I6
I7
18
I9
I10

No of Clock Cycle required to execute 100 instructions is

= (No of instructions) x (Total no of required for single instruction)

= 100 x 9 = **900 Clock cycles**

Pipeline method

I F (2) D (1) E (6)

		F	F	D					E	E	E	E	E	E
F	F	D	E	E	E	E	E	E					So o	on

No of Clock Cycle

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

No of Clock Cycle required to execute 100 instructions is

= (No of clocks required for 1st instruction)+ ((no of instruction -1) x (difference between two instruction))

 $= 9 + ((100 - 1) \times 6) = 9 + (99 \times 6) = 9 + 594 = 603$ Clock cycles

Pipeline method

			F	F	D		Ex1	Ex1	Ex1	Ex2	Ex2	Ex2
F	-1-1	F	D	Ex1	Ex1	Ex1	Ex2	Ex2	Ex2			So on

No of Clock Cycle

0 1 2 3 4 5 6 7 8 9 10 11 12

No of Clock Cycle required to execute 100 instructions is

= (No of clocks required for 1st instruction)+ ((no of instruction -1) x (difference between two instruction))

 $= 9 + ((100 - 1) \times 3) = 9 + (99 \times 3) = 9 + 297 = 306$ Clock cycles

MODEL-4: PIPELINE PROBLEM ASSIGNMENT-1

Problem - 1: Find the **number of clock cycles** required to execute 5432 instructions with pipeline method and without pipeline method for the following instruction structure ? **Improve the pipeline structure**.

I	F (2)	D (1)	E (8)
		·	

Fetch - 2 Clock cycle

Decoding - 1 Clock cycle

Execution - 8 Clock cycle

I10

Problem-:

Consider a pipeline having 4 phases with duration 60, 50, 90 and 80 ns. Given latch delay is 10 ns. Calculate-

- 1. Pipeline cycle time
- 2. Non-pipeline execution time
- 3. Speed up ratio
- 4. Pipeline time for 1000 instructions
- 5. Sequential time for 1000 instructions
- 6. Throughput

Solution:

Given-

- Four stage pipeline is used
- Delay of stages = 60, 50, 90 and 80 ns
- Latch delay or delay due to each register = 10 ns

Non-Pipelined Architecture

Pipelined Architecture

Note: In any stage of pipeline, the output of each stage will be moved to the next state after the 100 ns (max(60,50,90,80) + 10 ns)

Part-01: Pipeline Cycle Time-

Cycle time = Maximum delay due to any stage + Delay due to its register (Latch)

= Max { 60, 50, 90, 80 } + 10 ns

= 90 ns + 10 ns

= 100 ns

Part-02: Non-Pipeline Execution Time-

Non-pipeline execution time for one instruction = 60 ns + 50 ns + 90 ns + 80 ns = 280 ns

Part-03: Speed Up Ratio-

Speed up = Non-pipeline execution time / Pipeline execution time

= 280 ns / Cycle time

= 280 ns / 100 ns

= 2.8

Part-04: Pipeline Time For 1000 Instructions-

Pipeline time for 1000 instructions

- = Time taken for 1st instruction + Time taken for remaining 999 instructions
- = 1 x 4 clock cycles + 999 x 1 clock cycle
- = 4 x cycle time + 999 x cycle time
- $= 4 \times 100 \text{ ns} + 999 \times 100 \text{ ns}$
- = 400 ns + 99900 ns
- = 100300 ns

Part-05: Sequential Time For 1000 Instructions-

Non-pipeline time for 1000 tasks

= 1000 x Time taken for one instruction

= 1000 x 280 ns

= 280000 ns

Part-06: Throughput-

Throughput for pipelined execution = Number of instructions executed per unit time = 1000 instructions / 100300 ns

Thank you