Birla Institute of Technology and Science, Pilani First Semester 2021-2022 Course Handout Part II

Date: 5/08/2021

In addition to the Part-I (General Handout) for all courses appended to the timetable, this portion gives further specific details regarding the course.

Course No. : CS G526

Course Title : Advanced Algorithms & Complexity

Instructor-in-Charge: Prof. Tathagata Ray

Instructor:

TA: Anand Agrawal

Description: Advanced Algorithm Design Strategies such as Randomization, Approximation and Game-Theoretic Techniques. Design of Parallel and Distributed Algorithms. Design of algorithms for application domains such as Internet / Web, and Computational Biology.

1. Scope and Objective:

The objective of this course is to enable each individual student to pursue some of these activities:

- explore advanced topics in algorithmic and complexity theory;
- engage in analysis and design of complex algorithms for real-world problems in current application domains;
- learn and evaluate advanced / novel algorithm design strategies and techniques
- understand sturdy / open problems in algorithmic or complexity theory by analyzing known approaches and their limitations.

The scope of this course includes

- (i) algorithm design strategies such as Randomization and Approximation as well as specific techniques therein.
- (ii) NP-hard problems and approaches to handle them using approximation algorithms
- (iii) Problem/application domains such as online social networks, Internet and the Web, number theory and cryptography, and distributed computing.

2. Text Book:

- T1. "Randomized Algorithms", by "Motwani, Rajiv & P. Raghavan", CUP, 1995.
- T2. "Combinatorial Optimization: Algorithm & Complexity", by "Papadimitnou, C.H. & Kenneth Steiglitz", PHI, 1982

3. Reference Books:

- R1. The Design of Approximation of Algorithms. Williamson and Shmoys, Cambridge Press.
- R2. Design and Analysis of Randomized Algorithms. Hromkovic, Springer.
- R3. Approximation Algorithms. Vijay Vazirani. Springer.
- R4. Complexity and Approximation, G. Auseiello, et.al. Springer.
- R5. Algorithm Design. Kleinberg and Tardos. Pearson Education.
- AR. Additional reading assigned by the Instructor

4. Course Plan

No. of Lecture	Learning Objectives	Торіс	Referenc e
1 Lec	Importance of randomized algorithms and complexity classes	Introduction & Motivation – Advanced Algorithms & Complexity	-
3 Lecs	Review of probability theory	Review of Design Techniques, Complexity Classes and necessary basics in Probability	
4 Lecs	Understanding the classification of randomized algorithms	Randomized Algorithms : Las Vegas & Monte Carlo Techniques,	T1 – Ch 1
4 Lecs	Understanding the success rate of the randomized algorithm	Chebyshev Inequality, Tail Inequalities	T1-Ch3, Ch4
4 Lecs	Understanding how randomization helps in creating some advanced data structures	Data Structures for randomized algorithms - Skip Lists and Hash Tables	T1-Ch8
2 Lecs	Understanding how randomization has helped to obtain algorithms better than deterministic counter parts.	Randomized graph algorithms	T1 – Ch 10
2 Lecs	Understanding the Minimax theorem and its implication in game theory.	Game Theoretic Techniques	T1 – Ch 4
2 Lecs	Understanding role of randomization in parallel algorithms.	Parallel and Distributed Algorithms; PRAM model, Maximal independent sets, Byzantine Agreement	T1-Ch12
4 Lecs	Understanding of complexity classes and their definitions. How to prove a problem is NP-Complete?	Polynomial time reductions, vertex cover, independent set, set cover, 3-satisfiability, Hamiltonian cycle, 3-dimensional cycle, graphs 3-colorability, subset-sum, P vs. NP, NP-completeness, Co-NP, PSPACE, PSPACE-complete, Reducibility, NP-complete problems.	R5
7 Lecs	Design techniques for approximation algorithms	The greedy method, sequential algorithms, local search, linear programming, dynamic programming,	R1 and R4
3 Lecs	Hardness of approximation	Absolute & relative approximation (additive & mutiplicative), approximation classes, APX, PTAS, FPTAS, limits to approximability: the gap technique	R4
4 Lecs	Techniques in	NP, PCP, Non approximability results,	R1 & R4

proving th	ne hardness red	luction from NP-complete problems,
of approx	imation red	luctions that preserve approximation,
	rec	luctions from probabilistically
	che	eckable proofs, reduction from unique
	gaı	mes

5. Evaluation Scheme:

Sr.	Component	Duration	Weightage	Date & Time	Remarks
No.			(%)		
1.	Midterm	90 min	25%	TBA	Open Book
3.	Lab Evaluation	During Lab Hours	20% (best 4 out of 5, each of 5%)	Will be announced in Class	Open Book
3.	Term Project - Literature survey & Problem statement - Problem Scoping and Analysis, Mid- Term Progress & Report - Seminar - Conclusion, Viva and Report	Throughout the semester	20 % (10% will be covered before midsem)	Will be announced in Class	Open Book
4.	Compre Exam	2 hrs.	35 %	TBA	Open Book

Note: 40% of the evaluation to be completed by midsem grading.

5. Consultation hours: Prof. Tathagata Ray Saturday 12:00 Noon.

6. Make-up Policy:

Prior Permission of the Instructor-in-Charge is usually required to take a make-up for a test. The regulations set by AGSRD office for make-ups must be followed. A make-up test shall be granted only in genuine cases on justifiable grounds.

- 7. Notices: Notice regarding the course will be displayed on the CMS or conveyed using BITS official email id only.
- **8. Academic Honesty and Integrity Policy:** Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable. **Any kind of unfair means in exams and assignments will be strictly dealt.**

Instructor-in-charge CS G526.