(2010 年度後期 担当:佐藤)

- ${f R}^3$ の拡大・縮小

$$\left(\begin{array}{ccc} k & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right), \quad \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{array}\right), \quad \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & k \end{array}\right) \qquad (k \in \mathbf{R})$$

\mathbf{R}^3 の回転変換

(1) z 軸を回転軸とする θ -回転;

$$R_{z(\theta)} = \begin{pmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & 1 \end{pmatrix}$$

(2) x 軸を回転軸とする θ-回転;

$$R_{x(\theta)} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$$

(3) *y* 軸を回転軸とする *θ*-回転;

$$R_{y(\theta)} = \begin{pmatrix} -\sin\theta & 0 & \cos\theta \\ 0 & 1 & 0 \\ \cos\theta & 0 & \sin\theta \end{pmatrix}$$

(4) 原点を通り、方向ベクトルが $\left(egin{array}{c} a \\ b \\ c \end{array} \right)$ の直線を回転軸とする heta-回転;

 $R_{(a,b,c;\theta)}$

$$= \begin{pmatrix} \cos\theta + (1-\cos\theta)a^2 & (1-\cos\theta)ab - c\sin\theta & (1-\cos\theta)ca + b\sin\theta \\ (1-\cos\theta)ab + c\sin\theta & \cos\theta + (1-\cos\theta)b^2 & (1-\cos\theta)bc - a\sin\theta \\ (1-\cos\theta)ca - b\sin\theta & (1-\cos\theta)bc + a\sin\theta & \cos\theta + (1-\cos\theta)c^2 \end{pmatrix}$$

ただし, $a^2 + b^2 + c^2 = 1$.

問題 3.8. 次の間に答えなさい.

- (1) $R_{(a,b,c;\theta)}$ の式に $a=1,\ b=0,\ c=0$ を代入すると $R_{x(\theta)}$ に等しくなることを確かめなさい.
- (2) (1) を参考にして、 $R_{(0,1,0;\theta)}=R_{y(\theta)},\ R_{(0,0,1;\theta)}=R_{z(\theta)}$ を示しなさい。

(2010 年度後期 担当:佐藤)

 $\cdot \, {f R}^3$ のせん断

$$\begin{pmatrix} 1 & k & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ k & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & k \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & k & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & k \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ k & 0 & 1 \end{pmatrix} \quad (k \in \mathbf{R})$$

問題 **3.9.** 平面 \mathbf{R}^2 のせん断 (問題 3.4 および im3-ex3.2.nb の 3.1))を参考にして、空間 \mathbf{R}^3 のせん断がどのような変換なのか考えなさい。

- \mathbf{R}^3 内の平面 ax + by + cz = 0 に関する鏡映変換

$$S_{(a,b,c)} = \begin{pmatrix} 1 - 2a^2 & -2ab & -2ac \\ -2ab & 1 - 2b^2 & -2bc \\ -2ac & -2bc & 1 - 2c^2 \end{pmatrix}$$

ただし, $a^2 + b^2 + c^2 = 1$.

問題 **3.10.** 鏡映変換を表す行列 $S_{(a,b,c)}$ について以下の問に答えなさい.

$$(1)$$
 $S_{(0,0,1)}=\left(egin{array}{ccc} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & -1 \end{array}
ight)$ となることを確かめなさい。

(2) (1) を参考にして、 $S_{(1,0,0)}$ 、 $S_{(0,1,0)}$ を書きなさい。

問題 **3.11.** 鏡映変換 $S_{(a,b,c)}$ (ただし、 $a^2+b^2+c^2=1$) について、以下の間に答えなさい。

$$(1)$$
 $ec{p}=\left(egin{array}{c} x \ y \ z \end{array}
ight)$ とおき、 $S_{(a,b,c)}ec{p}$ を成分表示しなさい。

$$(2)$$
 ベクトル $(\vec{p}-S_{(a,b,c)}\vec{p})$ が $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ 平行であることを確かめなさい.

(3) 点 \vec{p} と点 $S_{(a,b,c)}\vec{p}$ の中点 $\frac{1}{2}(\vec{p}+S_{(a,b,c)}\vec{p})$ が平面ax+by+cz=0上の点であることを確かめなさい。

14 3.3