Discrete Mathematics Quiz 1

2025-4-21

	Na	nme Student Number	序号		
			by 5dbwat4		
1.	(35%) Determine whether the following statements are true or false.				
	(5 poi	nts for a correct answer, 0 points for a blan	nk answer, -2 points for an incorrect answe	r)	
	a) If	x is not occurring in A , then $\exists x (P(x) \to A)$	$) \equiv \forall x P(x) \to A. $)	
	b) If	$A, B,$ and C are sets, then $A - (B \cap C) = (A, B)$	$(A-B)\cup (A-C). $)	
	c) If	n is integer, then $n = \left\lceil \frac{n}{2} \right\rceil + \left\lceil \frac{n}{2} \right\rceil$.	()	
	d) Suppose $P(x, y)$ is a predicate and the universe for the variables x and y is $\{1, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,$			pose	
	Р(P(1,3), P(2,1), P(2,4), P(3,2), P(3,4), P(4,1), P(4,4) are true, and $P(x,y)$ is false			
	otl	herwise. Then the statement $\forall y \exists x ((x \le y))$	$) \wedge P(x, y)$ is true. ()	
	e) n^0	0.01 is $O(\log_{1.01} n)^{99999}$.	()	
	f) The set of positive real numbers less than 1 with decimal representations of		with decimal representations consisting only	of 0s	
	an	d 1s is countable.	()	
	g) 20	$025^{2026} \equiv 1 \pmod{2027}$.	()	

- 2. (12%) Write a proposition equivalent to $p \oplus q$,
 - a) using only p, q, \neg , and the connective \wedge .
 - b) using only p, q, and the connective | .("|" represents NAND 与非.)
- 3. (9%) Find the full conjunctive normal form of $(p \oplus q) \vee r$.
- 4. (8%) Build all the functions from $A = \{1,2\}$ to $B = \{a,b\}$ and point out which is bijection, and which is surjection.
- 5. (9%) If all the positive integers that are relatively prime with 77 are arranged into a strictly increasing sequence, find the 600th term of this sequence.
- 6. (9%) Use the construction in the proof of the Chinese remainder theorem to find all solutions to the system of congruences $x \equiv 1 \pmod{3}$, $x \equiv 2 \pmod{5}$, and $x \equiv 3 \pmod{8}$.
- 7. (9%) Prove that the distributive law $A_1 \cup (A_2 \cap \cdots \cap A_n) = (A_1 \cup A_2) \cap \cdots \cap (A_1 \cup A_n)$ is true for all n > 2.
- 8. (9%) Prove that every positive integer (n > 2) can be expressed as the sum of different Fibonacci numbers.