

Funções inorgânicas: sais

Resumo

Definição

Sal é toda substância, que em solução aquosa, libera pelo menos um cátion diferente de H⁺ e um ânion diferente de OH⁻.

Classificação

Sal neutro:

Não apresenta hidrogênio(H) ionizável e nem hidroxila(OH⁻) em sua composição.

Ex.: NaCl, BaSO₄ e CaCO₃

Sal ácido ou hidrogenossal:

Apresenta H ionizável em sua composição.

Ex.: NaHCO₃, KHSO₄

Sal básico ou hidroxissal:

Apresenta o ânion OH- em sua composição.

Ex.: Ba(OH)Cl, Ca(OH)Br

Sal hidratado:

Possui moléculas de H₂O associadas ao seu retículo cristalino.

Ex.: $CuSO_4$. $5H_2O$ $CaSO_4$. $2H_2O$

Sal duplo:

Sal que apresenta dois cátions diferentes (exceto o H ionizável), ou dois ânions diferentes (exceto OH⁻).

Ex.: NaLiSO₄, AlSO₄I

Reação de neutralização

Um sal pode ser obtido através de uma reação chamada reação de neutralização, que consiste em:

ácido + base
$$\rightarrow$$
 sal + água

Ex.: $HCI + NaOH \rightarrow NaCI + H_2O$

Essa reação pode ocorrer de forma total ou parcialmente.

Neutralização total

Ocorre quando um ácido e uma base reagem e a quantidade de H⁺ do ácido é estequiometricamente igual a quantidade de OH⁻ da base.

Ex.:
$$\acute{a}$$
cido + base \rightarrow sal + \acute{a} gua
 $H_2SO_4 + Mg(OH)_2 \rightarrow MgSO_4 + 2 H_2O$
 \acute{o} xido básico + \acute{a} cido \rightarrow sal + \acute{a} gua
 $CaO + 2HBr \rightarrow CaBr_2 + H_2O$
 \acute{o} xido \acute{a} cido + base \rightarrow sal + \acute{a} gua
 $CO_2 + 2NaOH \rightarrow Na_2CO_3 + H_2O$
 \acute{o} xido \acute{a} cido + \acute{o} xido básico \rightarrow sal
 $CO_2 + CaO \rightarrow CaCO_3$
 \acute{o} xido anfótero + \acute{a} cido \rightarrow sal + \acute{a} gua
 $ZnO + H_2SO_4 \rightarrow ZnSO_4 + H_2O$
 \acute{o} xido anfótero + base \rightarrow sal + \acute{a} gua
 $Al_2O_3 + 2KOH \rightarrow 2KAIO_2 + H_2O$

Neutralização parcial

Ocorre quando um ácido e uma base reagem e as suas quantidade de H⁺ e OH⁻ são estequiometricamente diferentes. Produzindo um sal ácido ou um sal básico

Ex.:
$$H_2SO_4 + NaOH \rightarrow NaHSO_4 + H_2O$$

 $HNO_3 + Mg(OH)_2 \rightarrow MgOHNO_3 + H_2O$

Nomenclatura

A nomenclatura de um sal será dada a partir do nome do ânion derivado do seu ácido formador.

Para derivados de hidrácidos:

nome do ânion + ETO de nome do cátion

SUFIXO ACIDO	SUFIXO SAL	
ÍDRICO	FTO	

Ex.: NaCl → Cloreto de sódio KBr → Brometo de potássio

Para derivado de oxiácidos:

prefixo + nome do ânion + sufixo de nome do cátion

NOX*	PREFIXO	SUFIXO ÁCIDO	SUFIXO SAL
+1 ou +2	HIPO	080	ITO
+3 ou +4	-	080	ITO
+5 ou +6	-	ICO	ATO
+7	PER	ICO	ATO

* NOX do elemento central

Cuidado!

 C^{+4} , Si^{+4} e B^{+3} = ATO

Ex.: BaSO₄ → Sulfato de bário

NaClO → Hipoclorito de sódio

CaCO₃ → Carbonato de cálcio

Formulação

Ex.: Nitrato de cálcio

$$Ca^{+2}$$
 e NO_3^- = $Ca_3(NO_3)_2$

Carbonato de magnésio

$$Mg^{+2}$$
 e CO_3^{-2} = $MgCO_3$

Sulfato de sódio

$$Na^{+}$$
 e SO_4^{+2} = Na_2SO_4

Cloreto de potássio

$$K^+$$
 e Cl^- = KCl

Quer ver este material pelo Dex? Clique aqui

Exercícios

1. Alguns produtos comercializados no mercado têm como principais componentes substâncias inorgânicas, nas quais o elemento químico sódio encontra-se presente.

Na tabela abaixo, segue a relação de algumas dessas substâncias.

Produtos comercializados	Substâncias inorgânicas
Água sanitária	Hipoclorito de sódio
Desentupidores de pia	Hidróxido de sódio
Sal de cozinha	Cloreto de sódio
Fermento químico	Hidrogenocarbonato de sódio
Creme dental	Fluoreto de sódio

Assinale a alternativa na qual encontram-se as fórmulas químicas das substâncias inorgânicas presentes nos produtos comercializados, na ordem que aparecem na tabela, de cima para baixo.

- a) NaHClO, NaOH, NaClO, NaHCO3 e NaF.
- b) NaCéO, NaOH, NaCé, NaHCO3 e NaF.
- c) NaHClO, NaCl, NaOH, NaHCO2 e Na2F.
- d) NaCéO, NaHO, NaCé, NaHCO4, e Na2F.
- e) NaHCℓO, NaHO, NaCℓ, NaHCO₃ e NaF₂.
- 2. Os calcários são materiais compostos por carbonato de cálcio, que podem atuar como sorventes do dióxido de enxofre um importante poluente atmosférico. As reações envolvidas no processo são a ativação do calcário, por meio de calcinação, e a fixação do com a formação de um sal de cálcio, como ilustrado pelas equações químicas simplificadas.

$$\begin{split} &\text{CaCO}_3 \xrightarrow{\quad \text{calor} \quad} \text{CaO} + \text{CO}_2 \\ &\text{CaO} + \text{SO}_2 + \frac{1}{2} \quad \text{O}_2 \xrightarrow{\quad \text{odd} \quad} \text{Sal de cálcio} \end{split}$$

Considerando-se as reações envolvidas nesse processo de dessulfurização, a fórmula química do sal de cálcio corresponde a

- a) CaSO₃
- **b)** CaSO₄
- c) CaS_2O_8
- d) $CaSO_2$
- **e)** CaS₂O₇

3. O hipoclorito de sódio é um sal utilizado frequentemente em soluções aquosas como desinfetante e/ou agente alvejante. Esse sal pode ser preparado pela absorção do gás cloro em solução de hidróxido de sódio mantida sob resfriamento, de modo a prevenir a formação de clorato de sódio. As soluções comerciais de hipoclorito de sódio sempre contêm quantidade significativa de cloreto de sódio, obtido como subproduto durante a formação do hipoclorito.

Assim, é correto afirmar que as fórmulas químicas do hipoclorito de sódio, clorato de sódio e cloreto de sódio são, respectivamente,

- a) NaClO, NaClO₃ e NaCl.
- b) NaClO₂, NaClO₄ e NaCl.
- c) NaClO, NaClO2 e NaCl.
- d) NaClO, NaClO₄ e NaClO₂.
- e) NaC(O2, NaC(O3 e NaC(.
- **4.** A nomenclatura de um sal inorgânico pode ser derivada formalmente da reação entre um ácido e uma base. Assinale a alternativa que contém o sal formado pela neutralização total do ácido nítrico com hidróxido de sódio.
 - a) NaNO₃
 - **b)** Fe(NO₃)₃
 - c) Fe(NO₂)₃
 - d) $Fe(NO_3)_2$
 - e) NaNO₂
- **5.** O carbonato de cálcio é um sal oxigenado capaz de sofrer decomposição térmica quando exposto a altas temperaturas. Assinale a alternativa que contém a fórmula do carbonato de cálcio
 - a) CaCO₃
 - **b)** AIBO₃
 - c) CaCl₂
 - d) CaCO₂
 - **e)** Li₂CO₃
- **6.** Os pigmentos de tinta CdS, BaSO₄ são denominados, na ordem dada:
 - a) sulfito de cádmio e sulfito de bário.
 - b) sulfato de cádmio e sulfito de bário.
 - c) sulfeto de cádmio e sulfato de bário.
 - d) tiossulfato de cádmio e sulfato de bário.
 - e) sulfeto de cádmio e sulfito de bário.

- 7. Os compostos AgNO₃, NH₄OH e HClO₄, são respectivamente:
 - a) sal, base, base
 - b) ácido, base, sal
 - c) base, sal, base
 - d) sal, base, ácido
 - e) ácido, sal, ácido
- 8. Os sais Na₂B₄O₇.10H₂O, Mg(OH)Cl, NaKSO₄ e NaHCO₃ são classificados, respectivamente, como:
 - a) sal hidratado, sal básico, sal duplo e sal ácido.
 - b) sal básico, sal ácido, sal duplo e sal hidratado.
 - c) sal hidratado, sal duplo, sal ácido e sal básico.
 - d) sal básico, sal duplo, sal ácido e sal hidratado.
 - e) sal hidratado, sal ácido, sal duplo e sal ácido.
- **9.** Considere os íons a seguir:

Cátions: Li⁺ (lítio), NH₄⁺ (amônio), Mg²⁺ (magnésio) e Fe³⁺ (ferro III);

Ânions: NO_3^- (nitrato), SO_4^{2-} (sulfato) e PO_4^{3-} (fosfato).

Assinale a alternativa que indica corretamente os nomes e as fórmulas de sais formados com esses íons:

- a) LiSO₄ (sulfato de lítio), Mg(SO₄)₂ (sulfato de magnésio), Fe(NO₃)₃ (nitrato de ferro III).
- **b)** Li₂SO₄ (sulfato de lítio), Mg(SO₄)₂ (sulfato de magnésio), Fe(NO₃)₃ (nitrato de ferro III).
- c) Li₂SO₄ (sulfato de lítio), NH₄NO₃ (nitrato de amônio), FePO₄ (fosfato de ferro III).
- d) LiSO₄ (sulfato de lítio), NH₄NO₃ (nitrato de amônio), Fe₃PO₄ (fosfato de ferro).
- e) (NH₄)₂SO₄ (sulfato de amônio), MgPO₄ (fosfato de magnésio), LiNO₃ (nitrato de lítio).
- 10. O ácido fórmico, oficialmente conhecido como ácido metanóico, de fórmula bruta CH₂O₂, é o responsável pela irritação causada na pele humana, provocada pela picada das formigas. Qual das substâncias abaixo poderia ser aplicada na pele, a fim de atenuar este efeito irritante por neutralização de suas características ácidas?
 - a) Mg(OH)₂
 - b) C₂H₅ OH
 - c) NH₄Cl
 - d) H₃PO₄
 - e) H₂SO₄

Gabarito

1. B

Produtos comercializados	Substâncias inorgânicas	
Água sanitária	Hipoclorito de sódio - (NaClO)	
Desentupidores de pia	Hidróxido de sódio - (NaOH)	
Sal de cozinha	Cloreto de sódio - NaCl	
Fermento químico	Hidrogenocarbonato de sódio − NaHCO₃	
Creme dental	Fluoreto de sódio - NaF	

2. B

 $CaO + SO_2 + \frac{1}{2}O_2 \rightarrow CaSO_4$

3. A

 $HCIO + NaOH \rightarrow NaCIO$ $HCIO_3 + NaOH \rightarrow NaCIO_3$ $HCI + NaOH \rightarrow NaCI$

4. A

HNO₃ + NaOH → NaNO₃ + H₂O

5. A

 $Ca(OH)_2 + H_2CO_3 \rightarrow CaCO_3 + 2 H_2O$

6. C

Sulfeto de cádmio e sulfato de bário. Faça a reação entre o ácido e base correspondente para ajudar na nomenclatura.

7. D

AgNO₃ \rightarrow Ag⁺ + NO₃⁻ NH₄OH \rightarrow NH₄⁺ + OH⁻ HClO₄ \rightarrow H⁺ + ClO₄⁻

8. A

Sal hidratado, sal básico, sal duplo e sal ácido.

9. C

Erros em negrito

- a) LiSO₄ (sulfato de lítio), Mg(SO₄)₂ (sulfato de magnésio), Fe(NO₃)₃ (nitrato de ferro III).
- **b)** Li₂SO₄ (sulfato de lítio), **Mg(SO₄)₂ (sulfato de magnésio)**, Fe(NO₃)₃ (nitrato de ferro III).
- c) Li₂SO₄ (sulfato de lítio), NH₄NO₃ (nitrato de amônio), FePO₄ (fosfato de ferro III).
- d) LiSO₄ (sulfato de lítio), NH₄NO₃ (nitrato de amônio), Fe₃PO₄ (fosfato de ferro).
- e) (NH₄)₂SO₄ (sulfato de amônio), MgPO₄ (fosfato de magnésio), LiNO₃ (nitrato de lítio).

10. A

 $Mg(OH)_2$. Base + ácido \rightarrow Sal + água (reação de neutralização ou salificação)