Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа №4 «Аппроксимация функции методом наименьших квадратов»

по дисциплине «Вычислительная математика»

Вариант: 14

Преподаватель: Наумова Надежда Александровна

Выполнил:

Федоров Евгений Константинович

Группа: Р3210

<u>Цель работы</u>: найти функцию, являющуюся наилучшим приближением заданной табличной функции по методу наименьших квадратов.

1. Вычислительная реализация задачи

Линейная аппроксимация:

$$y = \frac{25x}{x^4 + 14}$$

$$n = 11$$

 $x \in [0; 4]$
 $h = 0.4$

i	1	2	3	4	5	6	7	8	9	10	11
Xi	0.0	0.4	0.8	1.2	1.6	2.0	2.4	2.8	3.2	3.6	4.0
Уi	0.0	0.71	1.38	1.86	1.94	1.66	1.27	0.92	0.67	0.49	0.37

$$\varphi(x) = a + bx$$

Вычисляем суммы: sx = 22, sxx = 61.6, sy = 11.27 sxy = 21.056

$$\begin{cases} n*a + sx*b = sy \\ sx*a + sxx*b = sxy \end{cases} \begin{cases} 11*a + 22*b = 11.27 \\ 22*a + 61.6*b = 21.056 \end{cases} \begin{cases} 11*a + 22*b = 11.27 \\ 17.6*b = 21.056 \end{cases}$$

$$\begin{cases} b = -1.484/17.6 = -0.084 \\ 11a = 11.27 - 22 * (-0.084) = 1.19 \end{cases} \begin{cases} b = -0.084 \\ a = 1.19 \end{cases}$$

$$\varphi(x) = 1.19 - 0.084 * x$$

i	1	2	3	4	5	6	7	8	9	10	11
Xi	0	0.4	0.8	1.2	1.6	2.0	2.4	2.8	3.2	3.6	4.0
yi	0.0	0.71	1.38	1.86	1.94	1.66	1.27	0.92	0.67	0.49	0.37
φ(xi)	1.193	1.155	1.125	1.091	1.058	1.024	0.998	0.957	0.923	0.889	0.855
(φ (xi)- yi)^2	1.423	0.202	0.064	0.589	0.777	0.403	0.077	0.001	0.064	0.159	0.236

$$\sigma = \sqrt{\frac{\sum (\phi(xi) - yi)^2}{n}} = 0.603$$

Квадратичная аппроксимация:

$$y = \frac{25x}{x^4 + 14}$$

$$n = 11$$

$$x \in [0; 4]$$

$$h = 0.4$$

i	1	2	3	4	5	6	7	8	9	10	11
Xi	0	0.4	0.8	1.2	1.6	2.0	2.4	2.8	3.2	3.6	4.0
yi	0.0	0.71	1.38	1.86	1.94	1.66	1.27	0.92	0.67	0.49	0.37

$$\varphi(x) = a + bx + cx^2$$

Вычисляем суммы:

$$sx = 22$$
, $sxx = 61.6$, $sxxx = 193.6$, $sxxxx = 648.52$, $sy = 11.27$, $sxy = 21.056$, $sxxy = 24.370$

$$\begin{cases} n*a + sx*b + sxx*c = sy \\ sx*a + sxx*b + sxxx*c = sxy \\ sxx*a + sxxx*b + sxxxx*c = sxxy \end{cases}$$

$$\begin{cases} 11*a + 22*b + 61.6*c = 11.27 \\ 22*a + 61.6*b + 193.6*c = 21.056 \\ 61.6*a + 193.6*b + 648.52*c = 24.370 \end{cases}$$

По методу Крамера:

$$\Delta = 4251.456$$

$$\Delta_1 = 1247.37, \Delta_2 = 6017.51, \Delta_3 = -1593.870$$

$$\begin{cases} a = \frac{\Delta_1}{\Delta} = \frac{1247.37}{4251.456} \approx 0.293 \\ b = \frac{\Delta_2}{\Delta} = \frac{6017.51}{4251.456} \approx 1.415 \\ c = \frac{\Delta_3}{\Delta} = \frac{= -1593.87}{4251.456} \approx -0.374 \end{cases}$$

$$\varphi(\mathbf{x}) = 0.337 + 1.379x - 0.133x^2$$

i	1	2	3	4	5	6	7	8	9	10	11
Xi	0	0.4	0.8	1.2	1.6	2.0	2.4	2.8	3.2	3.6	4.0
yi	0.0	0.71	1.38	1.86	1.94	1.66	1.27	0.92	0.67	0.49	0.37
φ(xi)	0.293	0.799	1.185	1.451	1.598	1.624	1.530	1.317	0.983	0.529	-0.43
(φ (xi)-	0.086	0.008	0.037	0.166	0.116	0.001	0.067	0.157	0.098	0.002	0.171
yi)^2											

$$\sigma = \sqrt{\frac{\sum (\phi (xi) - yi)^2}{n}} = 0.288$$

0.288 < **0.603**, у квадратичной аппроксимации среднеквадратичное отклонение меньше, поэтому это приближение лучше.

2. Программная реализация задачи

Исходный код на git hub: https://github.com/2BuRy1/Computational-Maths-Lab4

3. Блок схемы

Линейная:

Полином второй степени:

Полином третьей степени:

Экспоненциальная:

Степенная:

Вывод

В ходе выполнения данной лабораторной работы разобрался в способах аппроксимации функций, вспомнил, что такое Tkinter и как больно с ним работать. Убедился, что я не люблю язык программирования python.