Devoir Vacances

Lundi 24/10/2021

Correction 1.

- 1. $D_f = \mathbb{R}^*, f'(x) = (2x+1)e^{-\frac{1}{x}}$
- 2. $z = \frac{-1}{2^6}$, $Re(z) = \frac{-1}{2^6}$, Im(z) = 0
- 3. $\frac{(n+3)(n+4)}{2} 1$
- 4. $u_n = -\frac{1}{2^n} + 2$

Mardi 25/10/2021

Correction 2.

- 1. $D_f = \mathbb{R}, f'(x) = \frac{e^x + 2x}{e^x + x^2}$
- 2. $\frac{1}{2} \left(\left(\frac{3}{2} \right)^n 1 \frac{1}{2^n} \right)$
- 3. 8
- 4. $u_n = 2^n \cos\left(\frac{n\pi}{3}\right)$
- 5. $z = e^{-i\pi/6}$ donc $Re(z) = cos(\frac{pi}{6} \text{ et } Im(z) = sin(\frac{-\pi}{6})$

$\mathbf{Mercredi}\ \mathbf{26}/\mathbf{10}/\mathbf{2021}$

Correction 3.

- 1. $D_f = \mathbb{R}, f'(x) = (\cos(x) x\sin(x))e^{x\cos(x)}$
- 2. Soit $S_n = \sum_{i=0}^n (2x)^{2i}$, (Remarque : $(S_n)_{n \in \mathbb{N}}$ est quasiment sous la forme d'une somme d'une suite géométrique. On utilise $a^{nm} = (a^n)^m$)

$$S_n = \sum_{i=0}^n ((2x)^2)^i = \sum_{i=0}^n (4x^2)^i$$

On applique ensuite la formule du cours : Si $x^2 \neq \frac{1}{4}$:

$$S_n = \frac{1 - (4x^2)^{n+1}}{1 - 4x^2}$$

Et donc :
$$S_n = \frac{1 - (4x^2)^{n+1}}{1 - 4x^2} = \frac{1 - 4^{n+1}x^{2n+2}}{1 - 4x^2}$$
 si $x^2 \neq \frac{1}{4}$ $S_n = n+1$ si $x^2 = \frac{1}{4}$

3. Soit $v_n = u_n - \ell$ avec $\ell \in \mathbb{R}$. On cherche ℓ afin que $(v_n)_{n \in \mathbb{N}}$ soit géométrique.

$$v_{n+1} = u_{n+1} - \ell$$

$$= 2u_n + 1 - \ell$$

$$= 2(v_n + \ell) + 1 - \ell$$

$$= 2v_n + \ell + 1$$

Ainsi, en prenant $\ell = -1$, on obtient $v_n = u_n + 1$ qui est une suite géométrique de raison 2. Donc $v_n = v_0 2^n$ et $v_0 = u_0 + 1 = 2$. On obtient donc $v_n = 2^{n+1}$. En revenant à u_n cela donne :

$$u_n = v_n - 1 = 2^{n+1} - 1$$

- 4. 0
- 5. $S = {\sqrt{2}, -\sqrt{2}}$

Jeudi 27/10/2021

Correction 4.

- 1. $D_f = \mathbb{R}, f'(x) = \frac{6\sin^2(2x)\cos(2x)(2+\cos(5x)-5\sin^3(2x)\sin(5x))}{(2+\cos(5x))^2}$
- 2. On étudie $D(x) = e^x (x+1)$, définie sur \mathbb{R} et $D'(x) = e^x 1$. $D'(x) \ge 0 \iff x \ge 0$. Le minimum de D est obtenu en 0 et vaut $e^0 (0+1) = 0$ donc $D(x) \ge 0$ pour tout $x \in \mathbb{R}$. Donc $e^x \ge x + 1$
- 3. Soit $S_n = \sum_{k=2}^{n} (k^2 + 1)$

$$S_n = \sum_{k=2}^n k^2 + \sum_{k=2}^n 1 \quad \text{lin\'earit\'e}$$

$$= \sum_{k=1}^n k^2 - 1^2 + (n-1) \quad \text{n-1 nombre entre 2 et n}$$

$$= \frac{n(n+1)(2n+1)}{6} - 1 + n - 1 \quad formule ducours$$

$$S_n = \frac{n(n+1)(2n+1)}{6} + n - 2$$

- 4. $z = \sqrt{2}e^{i\pi/2}$
- 51 def somme harmonique(n):
- $_{2}$ S=0
- for k in range (1, n+1):
- S=S+1/k
- 5 return(S)

Vendredi 28/10/2021

Correction 5.

1.

$$f(x) = \left(\frac{\sqrt{x^2 + 3x}}{3^x}\right)^4$$

Rappelons que $3^x = exp(x \ln(3))$ est définie sur \mathbb{R} et strictectement positif.

Donc f est définie pour tout x vérifiant $x^2 + 3x \ge 0$ c'est à dire $x(x+3) \ge 0$ soit $D_f =]-\infty, -3] \cup [0, +\infty[$. Et f est dérivable sur $]-\infty, -3[\cup]0, +\infty[$.

On simplifie f en utilisant la puissance 4 : on a

$$f(x) = \frac{(x^2 + 3x)^2}{3^{4x}}.$$

Maintenant on utilise la formule de la dérivée d'un quotient $f(x) = \frac{u(x)}{v(x)}$ avec $u(x) = (x^2 + 3x)^2$ et $v(x) = 3^{4x} = \exp(4x \ln(3))$.

Calculons les dérivées de ces deux fonctions :

$$u'(x) = 2(2x+3)(x^2+3x)$$

et

$$v'(x) = 4\ln(3)\exp(4x\ln(3)) = 4\ln(3)3^{4x}$$

On obtient alors:

$$f'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{(v(x))^2}$$
$$= \frac{2(2x+3)(x^2+3x)3^{4x} - (x^2+3x)^2 4\log(3)3^{4x}}{3^{8x}}$$

- 2. 0
- 3. $u_n = 1$
- 4. 0

51 from random import randint

- 2 def lancer_de_de():
- de=randint(1,6)
- 4 return (de)

Samedi 29/10/2021

Correction 6.

- 1. On étudie $D(X) = \ln(1+X) X$ sur \mathbb{R}_+ . $D(X) \leq 0 \iff \ln(1+X) \leq X \iff 1+X \leq e^X$ qui est vrai pour tout $X \in \mathbb{R}$ d'aprés l'ex 4. Donc $\ln(1+X) \leq X$ pour tout $X \geq 0$. Pour tout $x \in \mathbb{R}$, $x^2 \geq 0$ donc $D(x^2) \leq 0$ c'est-à-dire $\ln(1+x^2) \leq x^2$
- 2. $D_f = [1, +\infty[$ et dérivable sur $]1, +\infty[$.

$$f'(x) = \frac{1 + \sqrt{x^2 - 1}}{x^2 - 1 + x\sqrt{x^2 - 1}}$$

- 3. 1
- 4. $S = [\frac{1}{2}, +\infty[$

def solutio

Dimanche 30/10/2021

REPOS!

Lundi 31/11/2021

REPOS!

Mardi 01/11/2021

Correction 7.

- 1. $D_f =]1, +\infty[, f'(x) = \frac{1}{x \ln(x)}]$ 2. $f(x) = x^x = e^{x \ln(x)} D_f =]0, +\infty[f'(x) = (1 + \ln(x))e^x x \ln(x), f'(x) \ge 0 \iff x \in]e^{-1}, +\infty[$

x	0	e^{-1}	$+\infty$
f'(x)		- 0	+
f(x)	1	$\frac{1}{e^e}$	+∞

- 3. $u_n = \exp(\ln(2)(2^n 1)) = 2^{2^n 1}$
- 5. $z = \frac{(1+i)}{\sqrt{2}}$

Mercredi 02/11/2021

Correction 8.

1.
$$D_f =]-2, -\frac{2}{3}[\cup]\frac{2}{3}, +\infty[$$

$$f'(x) = \frac{-4 - 18x}{\sqrt{9x^2 - 4}(x+2)}$$

2.
$$\sum_{k=0}^{n-1} q^k = \frac{1-q^n}{1-q}$$
 pour $q \neq 1$.

$$\sum_{k=0}^{n-1} e^{\frac{ik\pi}{n}} = \sum_{k=0}^{n-1} \left(e^{\frac{i\pi}{n}}\right)^k$$

$$= \frac{1 - e^{\frac{i\pi}{n}}}{1 - e^{\frac{i\pi}{n}}}$$

$$= \frac{1 - e^{i\pi}}{1 - e^{\frac{i\pi}{n}}}$$

$$= \frac{2}{1 - e^{\frac{i\pi}{n}}}$$

$$\sum_{k=0}^{n-1} e^{\frac{ik\pi}{n}} = \frac{2}{1 - e^{\frac{i\pi}{n}}}$$

$$\prod_{k=0}^{n} e^{\frac{ik\pi}{n}} = e^{\sum_{k=0}^{n} \frac{ik\pi}{n}}$$
$$= e^{i\pi \frac{n(n+1)}{2n}}$$
$$= e^{i\pi \frac{n+1}{2}}$$

3.
$$\frac{1}{2} \left(\frac{n(n+1)(2n+1)}{6} + n \right)$$

- 41 from random import randint
- 2 def somme_des_lancers(n):
- S=0
- for i in range(n):
- S=S+randin(1,6)
- 6 return(S)
- 5. Notons (E) l'équation $\sqrt{x+1} \le x$.

L'ensemble de définition de l'équation est $D = [-1, +\infty[$. Afin de mettre au carré on distingue les deux cas :

— Cas $1: x \geq 0$.

Alors $(E) \iff x+1 \le x^2 \iff x^2-x-1 \ge 0$ On factorise x^2-x-1 à l'aide des racines $r_1 = \frac{1-\sqrt{5}}{2}$ et $r_1 = \frac{1+\sqrt{5}}{2}$, on obtient

$$(E) \iff (x - r_1)(x - r_2) \ge 0$$

Donc $x \in]-\infty, r_1] \cup [r_2, +\infty[$, or on est dans le cas $x \geq 0$ on a donc

$$\boxed{\text{cas 1 } x \in \left[\frac{1+\sqrt{5}}{2}, +\infty\right[}$$

— Cas 2: x < 0.

Comme pour tout $x \in D, \sqrt{x+1} \ge 0$, l'équation (E) n'est jamais vérifiée.

Au final les solutions de (E) sont

$$\mathcal{S} = \left[\frac{1+\sqrt{5}}{2}, +\infty\right[$$

Jeudi 03/11/2021

Correction 9.

1. Soit P(n): " $\prod_{k=1}^{n} k! = \prod_{k=1}^{n} k^{n+1-k}$ "

(Initialisation) P(1) : " $\prod_{k=1}^1 k! = \prod_{k=1}^1 k^{1+1-k}$ "

$$\prod_{k=1}^{1} k! = 1! = 1$$

et

$$\prod_{k=1}^{1} k^{1+1-k} = 1^{2-1} = 1$$

P(1) est vraie.

Hérédité.

On suppose qu'il existe n tel que P(n) soit vraie et montrons P(n+1)

$$\prod_{k=1}^{n+1} k! = (n+1)! \prod_{k=1}^{n} k!$$

Par hypothèse de récurrence on a

$$\prod_{k=1}^{n+1} k! = (n+1)! \prod_{k=1}^{n} k^{n+1-k}$$

$$= \prod_{k=1}^{n+1} k \prod_{k=1}^{n} k^{n+1-k}$$

$$= (n+1) \prod_{k=1}^{n} k \prod_{k=1}^{n} k^{n+1-k}$$

$$= (n+1) \prod_{k=1}^{n} k \times k^{n+1-k}$$

$$= (n+1) \prod_{k=1}^{n} k^{n+2-k}$$

Or $(n+1) = (n+1)^1 = (n+1)^{n+2-(n+1)}$. Donc $(n+1) \prod_{k=1}^n k^{n+2-k} = \prod_{k=1}^{n+1} k^{n+2-k}$ Et finalement

$$\prod_{k=1}^{n+1} k! = \prod_{k=1}^{n+1} k^{n+2-k}$$

```
ainsi, P(n+1) est vraie.
```

Conclusion:

Par principe de récurrence P(n) est vraie pour tout $n \ge 0$.

```
2. D_f = \mathbb{R}^*, \ f'(x) = \pi (e^{2x} - 1)^{\pi - 1}
3. u_n = 2^n
4. S = \{\frac{1 + i\sqrt{3}}{2}, \frac{1 - i\sqrt{3}}{2}\}
5. from math import sqrt
```

```
\begin{array}{lll} & \text{def double\_somme(n):} \\ & S = 0 \\ & \text{for j in range(1,n+1):} \\ & \text{for k in range(1,n+1):} \\ & & S = S + s \operatorname{qrt(j)/k} \\ & & \text{return(S)} \end{array}
```

Vendredi 04/11/2021

Correction 10.

1.
$$D_f = \mathbb{R}_+^*$$

$$f'(x) = \left(1 - \frac{1}{x}\right) \exp\left(\frac{1}{x}\right)$$

$$2. \ D_f = \mathbb{R}^2$$

$$f'(x) = \frac{-e^{\frac{-x^2}{2}}}{\sqrt{e^{\frac{-x^2}{2}+1}}}$$

- $3. +\infty$
- 41 def minimum(a,b):
 - 2 if a <=b:
 - 3 return(a)
 - else:
- 5 return (b)

Samedi 05/11/2021

Correction 11.

- 1. $D_f =]-\infty, 0[f'(x) = \frac{1}{x}$ (ce n'est pas une erreur de signe)
- 2. $D_f = \mathbb{R} \setminus \{-1, 0, 1\}$

$$f'(x) = \frac{2\exp(x)\ln(x^2) - 2\exp(x)\frac{2}{x}}{(\ln(x^2))^2}$$

 $3_1 \text{ def double_somme2(n):}$

$$S=0$$

for i in range
$$(1, n+1)$$
:

for j in range
$$(1, n+1)$$
:

$$S=S+i$$

$$s \hspace{1cm} S \hspace{-0.1cm}=\hspace{-0.1cm} S \hspace{-0.1cm}+\hspace{-0.1cm} j$$

4.
$$S = \left[\frac{-1-\sqrt{5}}{2}, \frac{-1+\sqrt{5}}{2}\right] \cup [1, +\infty[$$

5.

$$u_n \le \frac{1}{n!} (n! + \sum_{k=0}^{n-1} k!)$$

 $\forall k \in [1, n-1] \ k! \le (n-1)!$

$$u_n \le 1 + \frac{1}{n!} (\sum_{k=0}^{n-1} (n-1)!)$$

$$\le 1 + \frac{1}{n!} (n(n-1)!)$$

$$\le 1 + 1$$

$$\le 2$$

Limite de $(u_n)_{n\in\mathbb{N}}$

$$u_n = \frac{1}{n!} \left(n! + (n-1)! + \sum_{k=0}^{n-2} k! \right)$$
$$= 1 + \frac{1}{n} + \frac{1}{n!} \sum_{k=0}^{n-2} k!$$

$$\quad \text{Or} \quad$$

$$\frac{1}{n!} \sum_{k=0}^{n-2} k! \le \frac{1}{n!} \sum_{k=0}^{n-2} (n-2)! = \frac{1}{n!} (n-1)! \le \frac{1}{n}$$

Donc

$$1 \le u_n \le 1 + \frac{2}{n}$$

Le théorème des gendarmes implique que $(u_n)_{n\in\mathbb{N}}$ converge vers 1.