

HARDWARE GRÁFICO

Adair Santa Catarina Curso de Ciência da Computação Unioeste – Campus de Cascavel – PR

Jan/2021

Introdução

Características do hardware

Funcionalidades do hardware gráfico

Influência da área de aplicação

Objetos gráficos

Atributos geométricos (dimensões) Atributos topológicos (formas) Atributos de cor (texturas)

Objetos gráficos – Níveis de abstração

Domínio contínuo: atributos descritos em espaços topológicos utilizando funções contínuas.

Domínio discreto: atributos discretizados numa representação finita e que pode ser utilizada no computador.

Formatos vetorial e matricial

Vetorial:

- ■Atributos → domínio contínuo;
- ■Funções contínuas no espaço topológico;
- ■Coordenadas → posições e ações (vetores associados a forças);
- ■Objetos = (informações topológicas + informações geométricas).

Matricial:

- ■Discretização uniforme do espaço;
- ■m x n (linhas x colunas);
- ■Resolução vertical, horizontal e espacial;
- ■Maior resolução → melhor qualidade;
- ■Extensível ao universo 3D: m x n x p.

Classificação dos dispositivos

- Os dispositivos gráficos são projetados para privilegiar um dos formatos:
 - □ Vetorial → especificação e manipulação dos modelos geométricos;
 - □ Matricial →exibição, processamento e análise de imagens;
 - □ Transformação (Vetorial → Matricial) = rasterização (hardware).
- Desenvolvimento do hardware ← influência de fatores técnicos, industriais, econômicos e o desenvolvimento das técnicas de CG;
- Custo da memória:
 - □ 1960 1970 → Vetoriais;
 - □ Atualmente → Matriciais.

Critérios de classificação

Abstração das características operacionais visando a independência entre software e hardware

Operação dos dispositivos gráficos

- Interativos:
 - □ Usuário participa ativamente do processo fechando o ciclo: entrada → processamento → saída;
 - □ Realizado em tempo real;
- Não-interativos:
 - Usuário participa passivamente;
 - □ Processos offline.

Modelo de interação

- Classes lógicas de operação:
 - Implementam o conceito de dispositivo lógico;
 - □ Independência dos dispositivos físicos.
- Keyboard:
 - □ Entrada de valores textuais em cadeias de caracteres.
- Locator:
 - Entrada de valores vetoriais.
- Valuator:
 - □ Entrada de dados escalares; valores reais.
- Buttons:
 - Seleção de um ou mais objetos num conjunto discreto de opções.
- Pick:
 - □ Identificar um objeto numa coleção de objetos.

Realidade virtual

É um ambiente que permite a total interação do usuário com a simulação de um sistema sintético num espaço 3D.

Estação gráfica

Conceito utilizado para representar uma família de equipamentos que consistem em computadores tradicionais acrescidos de elementos específicos para o processamento gráfico.

Sistema de coordenadas do dispositivo

- Cada dispositivo gráfico possui um sistema de coordenadas associado, em relação ao qual os dados são referenciados.
- Podem ser:
 - Absolutos:
 - A posição é dada em relação a uma origem fixa;
 - Dispositivo de coordenadas absolutas.
 - Relativos:
 - As coordenadas de posição são referenciadas a partir do ponto corrente;
 - Dispositivo de coordenadas relativas.

Equipamentos de entrada gráfica

Vetoriais:

- □ São, em sua maioria, utilizados em estações gráficas interativas;
- ☐ Por exemplo, o mouse.

Matriciais:

- São tradicionalmente utilizados de modo não interativo, devido ao grande número de dados manipulados;
- □ Pela evolução dos equipamentos, há uma tendência de que esses dispositivos poderão ser utilizados em aplicações em tempo real.

Light Pen

Touch Panel

Tablet

3D Digitizer

Data Glove

Mouse

Trackball

Joystick

Spaceball

Dials

- Consistem de um sensor que capta os sinais no espaço ambiente e um circuito analógico-digital que converte esses sinais analógicos para o formato matricial;
- Este processo chama-se digitalização.

Frame Grabber

Scanner

Depth scanner

Equipamentos de saída gráfica

- Podem ser vetoriais ou matriciais;
- Monitores são os mais importantes e comuns;
- Monitores de vídeo:
 - □ CRT, Plasma, LCD e LED;
 - □ Controlador de vídeo, memória de exibição [e conversor digital-analógico].

Monitores de vídeo

- Dispositivos matriciais:
 - □ Memória de exibição = frame buffer → estrutura matricial;
 - Armazena dados que serão transformados pelo conversor digital-analógico em voltagens, que acionarão o canhão de elétrons.
- Dispositivos vetoriais:

 Display list: instruções de desenho e coordenadas de tela dos objetos gráficos.

Número de Cores	Número de Bits	Número de Bytes
2	1	1/8
16	4	1/2
256	8	1
65536	16	2
16777216	24	3

Dispositivos de saída vetorial

Display Caligráfico

Dispositivos de saída vetorial

Display de Armazenamento

Dispositivos de saída vetorial

Plotadores

Display Raster, Plasma, LCD, LED

Impressoras

Film Recorder

Dispositivos tridimensionais

Display Estereoscópico

Dispositivos tridimensionais

Head Mounted Display

Dispositivos de impressão 3D

Máquinas-ferramentas de controle numérico

Equipamentos de processamento gráfico

- A relação Funcionalidade x Acoplamento afeta o desenvolvimento de GPUs;
- Funcionalidade está relacionada com o grau de especialização das funções da GPU;
 - □ Processadores especializados são mais eficientes e caros;
- Acoplamento está relacionado com o canal de comunicação entre GPU e o sistema de computação:
 - Alto acoplamento proporciona acesso rápido aos dados, mas implica em grande interdependência;
 - Baixo acoplamento favorece a independência entre GPU e sistema, mas a comunicação fica restrita.

Equipamentos de processamento gráfico

Problema no desenvolvimento de GPUs:

Como equilibrar a relação Funcionalidade x Acoplamento?

- Uma GPU especializada necessita de comunicação em alta velocidade;
- Uma GPU mais geral executa mais processamento local, reduzindo comunicação.

Equipamentos de processamento gráfico

Historicamente:

- Primeiros adaptadores gráficos eram simples e específicos. O processamento era realizado na CPU;
- □ Estes adaptadores evoluíram e cada vez mais ganharam funcionalidades → Maior especialização;
- □ Até que passaram a realizar processamento local (GPUs programáveis = processador de uso geral);
- □ Para continuar a evolução das GPUs retornou-se à especialização → "Roda da reencarnação".
- Atualmente temos GPU altamente especializadas, com características de processadores de uso geral.

Dispositivos de processamento vetorial

- Destinam-se ao processamento de modelos geométricos. Podem ser SISD ou MISD;
 - □ SISD (Single instruction, single data stream):
 - Uniprocessadores para processamento de dados geométricos, como multiplicação de matrizes por vetores.

Dispositivos de processamento vetorial

- ☐ MISD (Multiple instruction, single data stream):
 - Pipelines compostas por vários processadores sequenciais;
 - O processamento é dividido em etapas, sendo realizadas por processadores especializados em classes de operações gráficas.

Dispositivos de processamento matricial

- Equipamentos multiprocessadores utilizados no processamento de imagens, para rasterização e outros algoritmos paralelizáveis. Podem ser SIMD ou MIMD;
 - □ SIMD (Single instruction, multiple data stream):
 - Realiza a mesma operação em vários elementos simultaneamente.

Dispositivos de processamento matricial

- ☐ MIMD (Multiple instruction, multiple data stream):
 - São processadores paralelos que se comunicam entre si;
 - A maneira como estão interligados define uma topologia de rede e, consequentemente, o fluxo de dados.

