MAS205 Complex Variables 2004-2005

Exercises 7

Exercise 28: Let the curve \mathcal{C} be given by the graph of the function y = f(x) with

$$f(x) = \frac{x^2}{8} - \log x$$
 $(1 \le x \le 2)$

embedded in \mathbb{C} via z = x + iy.

- (a) Give a path $\gamma:[a,b]\to\mathbb{C}$ which has the curve \mathcal{C} as its image. Draw a sketch of the curve and indicate the parametrisation.
- (b) Compute the length $L(\mathcal{C})$. Evaluate the result numerically and discuss it in view of your sketch (i.e. does your result make sense and why).

Exercise 29: Let \mathcal{C} be the unit circle described counterclockwise. Show that

$$\left| \int_{\mathcal{C}} \frac{\cos z}{z} dz \right| < 2\pi e \ .$$

Exercise 30: Using the definition of the integral of a complex function f along a contour $\gamma:[a,b]\to\mathbb{C}$ as

$$\int_a^b f(\gamma(t))\gamma'(t)dt ,$$

compute the integral of $f(z) = (z-4)^2$ along the straight line segments

- (a) from 0 to 2,
- (b) from 0 to -3i.

Check your answers by finding an antiderivative F for f and evaluating F at the points z = 0, 3, -2i.

Exercise 31: Let $f(z) = \bar{z}$. Find the values of $\int_{\mathcal{C}_k} f(z) dz$ where

- (a) C_1 denotes the straight line from $z_0 = 2$ to $z_1 = 2i$,
- (b) C_2 denotes the arc from $z_0 = 2$ to $z_1 = 2i$ along a circle of radius 2 about the origin.

Find a simple closed contour C for which $\int_{C} f(z)dz \neq 0$.

Exercise 32: By applying Cauchy's theorem (or otherwise) show that $\int_{\mathcal{C}} f(z)dz = 0$ where \mathcal{C} is the unit circle $\{z \in \mathbb{C} : |z| = 1\}$ and

(a)
$$f(z) = \frac{1}{z^2 + 3}$$
 (b) $f(z) = \frac{1}{z^2 + 2iz - 5}$ (c) $f(z) = \frac{1}{\cosh z}$

Please hand in your solutions (to the yellow Complex Variables box on the ground floor) by 11am Tuesday 30th November

Thomas Prellberg, November 2004