Function Compositions

Objectives

1 Find compositions of functions and state their domain

Idea of Function Composition

The idea behind finding the composition of functions is that the output of one function can be used as input for another.

Idea of Function Composition

The idea behind finding the composition of functions is that the output of one function can be used as input for another.

The **composition of a function f and g**, denoted $(f \circ g)(x)$ is

$$(f\circ g)(x)=f(g(x))$$

where we plug g(x) into the variable for f(x).

For instance the diagram below shows the result of $(f \circ g)(8)$, in which g(x) = 2x + 3 and $f(x) = x^2$.

For instance the diagram below shows the result of $(f \circ g)(8)$, in which g(x) = 2x + 3 and $f(x) = x^2$.

1 Evaluate g(8) to get 2(8) + 3, or 19.

For instance the diagram below shows the result of $(f \circ g)(8)$, in which g(x) = 2x + 3 and $f(x) = x^2$.

- **1** Evaluate g(8) to get 2(8) + 3, or 19.
- ② Evaluate f(19) to get 19^2 , or 361.

For instance the diagram below shows the result of $(f \circ g)(8)$, in which g(x) = 2x + 3 and $f(x) = x^2$.

- **1** Evaluate g(8) to get 2(8) + 3, or 19.
- ② Evaluate f(19) to get 19^2 , or 361.

Domain of Composition of Functions

The domain of the compositions of two functions f and g is the domain of the result before simplifying.

(a)
$$(g \circ f)(x)$$

(a)
$$(g \circ f)(x)$$

 $(g \circ f)(x) = 2 - \sqrt{(x^2 - 4x) + 3}$

(a)
$$(g \circ f)(x)$$

 $(g \circ f)(x) = 2 - \sqrt{(x^2 - 4x) + 3}$
 $= 2 - \sqrt{x^2 - 4x + 3}$

Given $f(x) = x^2 - 4x$, $g(x) = 2 - \sqrt{x+3}$, and $h(x) = \frac{2x}{x+1}$, simplify each and find the domain of the composition.

(a)
$$(g \circ f)(x)$$

 $(g \circ f)(x) = 2 - \sqrt{(x^2 - 4x) + 3}$
 $= 2 - \sqrt{x^2 - 4x + 3}$

Domain:

$$x^2 - 4x + 3 \ge 0$$

(a)
$$(g \circ f)(x)$$

 $(g \circ f)(x) = 2 - \sqrt{(x^2 - 4x) + 3}$
 $= 2 - \sqrt{x^2 - 4x + 3}$
Domain: $x^2 - 4x + 3 \ge 0$
 $x < 1 \text{ or } x > 3$

(a)
$$(g \circ f)(x)$$

 $(g \circ f)(x) = 2 - \sqrt{(x^2 - 4x) + 3}$
 $= 2 - \sqrt{x^2 - 4x + 3}$
Domain: $x^2 - 4x + 3 \ge 0$
 $x \le 1 \text{ or } x \ge 3$
 $(-\infty, 1] \cup [3, \infty)$

Example 1
$$f(x) = x^2 - 4x$$
, $g(x) = 2 - \sqrt{x+3}$, and $h(x) = \frac{2x}{x+1}$

(b)
$$(f \circ g)(x)$$

Example 1
$$f(x) = x^2 - 4x$$
, $g(x) = 2 - \sqrt{x+3}$, and $h(x) = \frac{2x}{x+1}$

(b)
$$(f \circ g)(x)$$

 $(f \circ g)(x) = (2 - \sqrt{x+3})^2 - 4(2 - \sqrt{x+3})$

Example 1
$$f(x) = x^2 - 4x$$
, $g(x) = 2 - \sqrt{x+3}$, and $h(x) = \frac{2x}{x+1}$

(b)
$$(f \circ g)(x)$$

 $(f \circ g)(x) = (2 - \sqrt{x+3})^2 - 4(2 - \sqrt{x+3})$
 $= 4 - 4\sqrt{x+3} + (\sqrt{x+3})^2 - 8 + 4\sqrt{x+3}$

Example 1
$$f(x) = x^2 - 4x$$
, $g(x) = 2 - \sqrt{x+3}$, and $h(x) = \frac{2x}{x+1}$

(b)
$$(f \circ g)(x)$$

 $(f \circ g)(x) = (2 - \sqrt{x+3})^2 - 4(2 - \sqrt{x+3})$
 $= 4 - 4\sqrt{x+3} + (\sqrt{x+3})^2 - 8 + 4\sqrt{x+3}$
 $= 4 + x + 3 - 8$

Example 1
$$f(x) = x^2 - 4x$$
, $g(x) = 2 - \sqrt{x+3}$, and $h(x) = \frac{2x}{x+1}$

(b)
$$(f \circ g)(x)$$

 $(f \circ g)(x) = (2 - \sqrt{x+3})^2 - 4(2 - \sqrt{x+3})$
 $= 4 - 4\sqrt{x+3} + (\sqrt{x+3})^2 - 8 + 4\sqrt{x+3}$
 $= 4 + x + 3 - 8$
 $= x - 1$

Example 1
$$f(x) = x^2 - 4x$$
, $g(x) = 2 - \sqrt{x+3}$, and $h(x) = \frac{2x}{x+1}$

(b)
$$(f \circ g)(x)$$

 $(f \circ g)(x) = (2 - \sqrt{x+3})^2 - 4(2 - \sqrt{x+3})$
 $= 4 - 4\sqrt{x+3} + (\sqrt{x+3})^2 - 8 + 4\sqrt{x+3}$
 $= 4 + x + 3 - 8$
 $= x - 1$

Domain:

$$x + 3 \ge 0$$

Example 1
$$f(x) = x^2 - 4x$$
, $g(x) = 2 - \sqrt{x+3}$, and $h(x) = \frac{2x}{x+1}$

(b)
$$(f \circ g)(x)$$

 $(f \circ g)(x) = (2 - \sqrt{x+3})^2 - 4(2 - \sqrt{x+3})$
 $= 4 - 4\sqrt{x+3} + (\sqrt{x+3})^2 - 8 + 4\sqrt{x+3}$
 $= 4 + x + 3 - 8$
 $= x - 1$

Domain:

$$x + 3 \ge 0$$

$$[-3,\infty)$$

Example 1
$$f(x) = x^2 - 4x$$
, $g(x) = 2 - \sqrt{x+3}$, and $h(x) = \frac{2x}{x+1}$

(c)
$$(g \circ h)(x)$$

Example 1
$$f(x) = x^2 - 4x$$
, $g(x) = 2 - \sqrt{x+3}$, and $h(x) = \frac{2x}{x+1}$

(c)
$$(g \circ h)(x)$$

$$(g \circ h)(x) = 2 - \sqrt{\frac{2x}{x+1} + 3}$$

Example 1
$$f(x) = x^2 - 4x$$
, $g(x) = 2 - \sqrt{x+3}$, and $h(x) = \frac{2x}{x+1}$

(c)
$$(g \circ h)(x)$$

$$(g \circ h)(x) = 2 - \sqrt{\frac{2x}{x+1} + 3}$$
$$= 2 - \sqrt{\frac{2x}{x+1} + \frac{3(x+1)}{x+1}}$$

Example 1
$$f(x) = x^2 - 4x$$
, $g(x) = 2 - \sqrt{x+3}$, and $h(x) = \frac{2x}{x+1}$

(c)
$$(g \circ h)(x)$$

$$(g \circ h)(x) = 2 - \sqrt{\frac{2x}{x+1} + 3}$$
$$= 2 - \sqrt{\frac{2x}{x+1} + \frac{3(x+1)}{x+1}}$$
$$= 2 - \sqrt{\frac{2x+3x+3}{x+1}}$$

Example 1
$$f(x) = x^2 - 4x$$
, $g(x) = 2 - \sqrt{x+3}$, and $h(x) = \frac{2x}{x+1}$

(c)
$$(g \circ h)(x)$$

$$(g \circ h)(x) = 2 - \sqrt{\frac{2x}{x+1} + 3}$$

$$= 2 - \sqrt{\frac{2x}{x+1} + \frac{3(x+1)}{x+1}}$$

$$= 2 - \sqrt{\frac{2x+3x+3}{x+1}}$$

$$= 2 - \sqrt{\frac{5x+3}{x+1}}$$

Example 1
$$2 - \sqrt{\frac{2x}{x+1}} + 3$$

Example 1
$$2 - \sqrt{\frac{2x}{x+1}} + 3$$

$$x + 1 \neq 0$$

Example 1
$$2 - \sqrt{\frac{2x}{x+1}} + 3$$

$$x + 1 \neq 0$$
$$x \neq -1$$

Example 1 $2 - \sqrt{\frac{2x}{x+1}} + 3$

$$x + 1 \neq 0$$
$$x \neq -1$$

$$\frac{2x}{x+1}+3\geq 0$$

Example 1 $2 - \sqrt{\frac{2x}{x+1}} + 3$

$$x + 1 \neq 0$$
$$x \neq -1$$

$$\frac{2x}{x+1}+3\geq 0$$

$$\frac{5x+3}{x+1} \ge 0$$

Example 1
$$2 - \sqrt{\frac{2x}{x+1}} + 3$$

$$x + 1 \neq 0$$

$$x \neq -1$$

$$\frac{2x}{x+1} + 3 \ge 0$$

$$\frac{5x+3}{x+1} \ge 0$$

Critical values at x = -1 and x = -3/5

Example 1 $\frac{5x+3}{x+1} \ge 0$

$$\frac{5x+3}{x+1} \ge$$

$$\frac{5x+3}{x+1} \ge 1$$

$$(-\infty,-1)\cup\left[-rac{3}{5},\infty
ight)$$

(d)
$$(h \circ h)(x)$$

Example 1
$$h(x) = \frac{2x}{x+1}$$

(d)
$$(h \circ h)(x)$$

$$(h \circ h)(x) = \frac{2\left(\frac{2x}{x+1}\right)}{\frac{2x}{x+1}+1}$$

Example 1
$$h(x) = \frac{2x}{x+1}$$

(d)
$$(h \circ h)(x)$$

$$(h \circ h)(x) = \frac{2\left(\frac{2x}{x+1}\right)}{\frac{2x}{x+1} + 1}$$
$$= \frac{\frac{4x}{x+1}}{\frac{2x}{x+1} + 1}$$

Example 1
$$h(x) = \frac{2x}{x+1}$$

(d)
$$(h \circ h)(x)$$

$$(h \circ h)(x) = \frac{2\left(\frac{2x}{x+1}\right)}{\frac{2x}{x+1}+1}$$
$$= \frac{\frac{4x}{x+1}}{\frac{2x}{x+1}+1}\left(\frac{x+1}{x+1}\right)$$

Example 1
$$h(x) = \frac{2x}{x+1}$$

(d)
$$(h \circ h)(x)$$

$$(h \circ h)(x) = \frac{2\left(\frac{2x}{x+1}\right)}{\frac{2x}{x+1} + 1}$$
$$= \frac{\frac{4x}{x+1}}{\frac{2x}{x+1} + 1} \left(\frac{x+1}{x+1}\right)$$
$$= \frac{4x}{2x+x+1}$$

Example 1
$$h(x) = \frac{2x}{x+1}$$

(d)
$$(h \circ h)(x)$$

$$(h \circ h)(x) = \frac{2\left(\frac{2x}{x+1}\right)}{\frac{2x}{x+1} + 1}$$

$$= \frac{\frac{4x}{x+1}}{\frac{2x}{x+1} + 1} \left(\frac{x+1}{x+1}\right)$$

$$= \frac{4x}{2x+x+1}$$

$$= \frac{4x}{3x+1}$$

$$x + 1 \neq 0$$

$$x + 1 \neq 0$$
$$x \neq -1$$

$$x + 1 \neq 0$$
$$x \neq -1$$

$$(h \circ h)(x) = \frac{2\left(\frac{2x}{x+1}\right)}{\frac{2x}{x+1}+1}$$

$$x + 1 \neq 0$$
$$x \neq -1$$

$$(h \circ h)(x) = \frac{2\left(\frac{2x}{x+1}\right)}{\frac{2x}{x+1}+1}$$

$$\frac{2x}{x+1}+1\neq 0$$

$$x+1 \neq 0$$

$$x \neq -1$$

$$(h \circ h)(x) = \frac{2\left(\frac{2x}{x+1}\right)}{\frac{2x}{x+1}+1}$$

$$\frac{2x}{x+1}+1 \neq 0$$

$$\frac{2x}{x+1} \neq -1$$

$$\frac{2x}{x+1} \neq -1$$

$$\frac{2x}{x+1} \neq -1$$
$$2x \neq -1(x+1)$$

$$\frac{2x}{x+1} \neq -1$$
$$2x \neq -1(x+1)$$
$$2x \neq -x - 1$$

$$\frac{2x}{x+1} \neq -1$$

$$2x \neq -1(x+1)$$

$$2x \neq -x - 1$$

$$x \neq -\frac{1}{3}$$

$$\frac{2x}{x+1} \neq -1$$

$$2x \neq -1(x+1)$$

$$2x \neq -x - 1$$

$$x \neq -\frac{1}{3}$$

$$x \neq -1, -\frac{1}{3}$$

$$\frac{2x}{x+1} \neq -1$$

$$2x \neq -1(x+1)$$

$$2x \neq -x - 1$$

$$x \neq -\frac{1}{3}$$

$$x \neq -1, -\frac{1}{3}$$

$$(-\infty, -1) \cup \left(-1, -\frac{1}{3}\right) \cup \left(-\frac{1}{3}, \infty\right)$$