Number Theory Midterm I

RDB

August 9, 2021

I feel fine today modulo a slight headache.

— The Hacker's Dictionary

INSTRUCTIONS No outside materials (notes, textbook, internet) or resources (calculators). Leave your webcam on until you submit and I confirm that I have your exam. Good luck!

Problem 1 Use the Euclidean algorithm to compute the greatest common divisor of 153 and 64. (5 points)

Problem 2

- (a) State Euclid's lemma. (3 points)
- (b) Show that, if a prime p divides a^2 for some integer a, then p divides a. (5 points)

Solution 2

- (a) If p|ab for a prime p and integers a and b, then p|ab.
- (b) If $p|a^2 = a \cdot a$, then p|a or p|a. So p|a, clearly.

Problem 3 Find the general solution to

$$42x + 35y = 2$$
,

if any solutions exist. (10 points)

Solution 3

The gcd of 42 and 35 is 7, which does not divide 2, so there are no solutions.

Problem 4 List three solutions to the congruence $2x \equiv 4 \pmod{101}$. Your solutions may be congruent mod 101. (10 points)

Solution 4

An obvious solution is x=2, but there are no others in $\{0,1,2,\ldots,100\}$, because $\gcd(2,101)=1$. We can still get other solutions by adding multiples of 101. In particular, 2+101=103 and 2+202=204 are also solutions.

Problem 5 Find the general solution to

$$38x + 15y = 1$$
,

if any solutions exist. (10 points)

Solution 5

The gcd of 38 and 15 is 1, so solutions do exist. The Euclidean algorithm will give $x_0 = 2$ and $y_0 = -5$, so the general solution is

$$x = 2 + 15t;$$
 $y = -5 - 38t$

for an integer t.

Problem 6 Does the congruence $25x \equiv 1 \pmod{1000}$ have solutions? If so, how many solutions in $\{0, 1, 2, 3, \dots, 999\}$ are there? (10 points)

Solution 6

No, because gcd(25, 1000) = 25, which does not divide 1.

Problem 7 Show that gcd(a, b) = gcd(a - b, b) for any integers a and b. (10 points)

Solution 7

If d is a common divisor of a and b, say a = dk and b = dj, then a - b = d(k - j), so d is a common divisor of a - b and b. Conversely, if d is a common divisor of a - b and b, then it also divides a = (a - b) + b by the same argument. Therefore the common divisors of (a, b) are the same as the common divisors of (a - b, b), and in particular the *greatest* one of them is the same.

Problem 8 Show that $2^n \equiv -1 \pmod{3}$ for n odd. (10 points)

Solution 8

Note that $2 \equiv -1 \pmod 3$, so $2^n \equiv (-1)^n \pmod 3$. If n is odd $(-1)^n = -1$, so $2^n \equiv -1 \pmod 3$ for odd n.

Nearly everyone used induction, which was fine, but gross. Here's the best induction you could do, I think: If $2^n \equiv -1 \pmod 3$, then

$$3^{n+2} \equiv -4 \pmod{3} \equiv -1 \pmod{3}.$$

Problem 9 Fix integers a and b. Suppose that ax + by = p for some integers x and y and a prime p. Prove that gcd(a, b) is either 1 or p. (10 points)

Solution 9

By a theorem in class (or writing $a = \gcd(a, b)k$ and $b = \gcd(a, b)j$), we see that $\gcd(a, b)$ divides p, so it is either 1 or p since p is prime.

Problem 10 Write 76 in base 3. (5 points)

Solution 10

The largest power to begin with is $3^3 = 27$, and we can fit 2 of them in:

$$76 - 2 \cdot 3^3 = 22$$
.

Repeating:

$$22 - 2 \cdot 3^2 = 4$$

Again:

$$4 - 1 \cdot 3 = 1$$

Finally:

$$1 = 1 \cdot 3^0$$
.

So

$$76 = 2 \cdot 3^3 + 2 \cdot 3^2 + 1 \cdot 3^1 + 1 \cdot 3^0$$
$$= (2211)_3.$$

Problem 11 Translate the following numbers from binary into base 10:

- (a) $(1)_2$ (1 point)
- **(b)** $(11)_2$ (1 point)

- (c) $(111)_2$ (1 point)
- (**d**) $(1111)_2$ (1 point)
- (e) Prove, by induction, that

$$(\underbrace{11\cdots 1}_{n})_{2}=2^{n}-1$$

for all positive integers n. (5 points)

Problem 12 Write $(1024)_5$ in base 10. (5 points)

Solution 12

$$(1024)_5 = 1 \cdot 5^3 + 0 \cdot 5^2 + 2 \cdot 5^1 + 4 \cdot 5^0$$

= 125 + 10 + 4
= 139.

BONUS PROBLEM The exam is graded out of 102 points, all accounted for in the previous problems. The following problem is worth an additional 10 points.

Problem 13

(a) Find the general solution to the diophantine equation

$$10x + 11y = 200$$
.

(2 points)

- (b) Show that there exists only a single solution with x and y both positive. (5 points)
- (c) Find that positive solution. (3 points)