Home Assignment -3 (Due on 24-01-25)

- .1 The value of $\sqrt{(r^2)_{av}}$ for carbon is known from X-ray diffraction measurements be around 0.7 Å. The density is 2220 kg/m³. Calculate the value of susceptibility (give your answer in SI and cgs units). The measured value is -13.82×10^{-6} per unit volume. The agreement for carbon is better than that for most diamagness Comment on possible sources of error in the derivation.
 - 2. Diamagnetic susceptibility of atomic hydrogen. The wave function of the hydrogen atom in its ground state (1s) is $\psi = (\pi a_0^3)^{-1/2} \exp(-r/a_0)$, where $a_0 = \hbar^2/mc^2 = 0.529 \times 10^{-8}$ cm. The charge density is $\rho(x, y, z) = -e|\psi|^2$, according to the statistical interpretation of the wave function. Show that for this state $\langle r^2 \rangle = 3a_0^2$ and calculate the molar diamagnetic susceptibility of atomic hydrogen $(-2.36 \times 10^{-6} \text{ cm}^3/\text{mole})$.