Ceci n'est pas d'intelligence

Logica en formele systemen

Propositielogica

Semantiek

Prof. dr. Marjon Blondeel Academiejaar 2024-2025

Inhoud propositielogica

- Inleiding
- Syntaxis
- Semantiek
- Geldig gevolg
- Afleidingen
- Metatheorie

Wat is de betekenis van een formule?

De betekenis van een formule is zijn waarheidswaarde, waar of onwaar

Voorbeeld (natuurlijke taal):

- "Het regent" kan waar of onwaar zijn.
- "Het regent en de zon schijnt" kan waar of onwaar zijn en hangt af van de waarheidswaarden van de onderdelen.

niet waar

niet waar

niet waar

waar

Waarheidswaarden

- waar en niet waar/onwaar/vals zijn waarheidswaarden
- ipv waar wordt ook 1 gebruikt
- ipv niet waar wordt ook 0 gebruikt

Voor atomen kunnen we de waarheidswaarde niet verder analyseren en moeten we waarheidswaarde veronderstellen.

Voor samengestelde formules gebruiken we de waarheidstabellen van de connectieven.

Waarheidstabel: voorbeeld

"de zon schijnt" en "het regent"

Waarheidstabel: voorbeeld

p	q	$(p \wedge q)$
1	1	1
1	0	0
0	1	0
0	0	0

Waardering

p	q	$(p \land q)$
1	1	1
1	0	0
0	1	0
0	0	0

Elke rij is een bepaalde situatie. We noemen dit een waardering.

Een waardering is een functie van propositieletters naar waarheidswaarden.

$$V(p) = V(q) = 1 \operatorname{dan} V((p \wedge q)) = 1$$

Waarheidstabellen

φ	$\neg \varphi$
1	0
0	1

φ	ψ	$(\varphi \rightarrow \psi)$
1	1	1
1	0	0
0	1	1
O	O	1

φ	ψ	$(\varphi \wedge \psi)$
1	1	1
1	0	0
0	1	0
0	0	0

φ	ψ	$(\varphi \lor \psi)$
1	1	1
1	0	1
0	1	1
0	0	0

φ	ψ	$(\varphi \leftrightarrow \psi)$
1	1	1
1	0	0
0	1	0
0	0	1

Intuïtie implicatie

Als op de ene kant van een kaart een "A" staat, dan staat op de andere kant een "2".

φ	ψ	$(\varphi \rightarrow \psi)$
1	1	1
1	0	0
0	1	1
0	0	1

Waarheidstabellen: voorbeeld

Waarheidstabel voor $((h \land s) \rightarrow \neg u)$

h	S	u	$(h \wedge s)$	$\neg u$	$((h \land s) \rightarrow \neg u)$
1	1	1	1	0	0
1	1	0	1	1	1
1	0	1	0	0	1
0	1	1	0	0	1
1	0	0	0	1	1
0	1	0	0	1	1
0	0	1	0	0	1
0	0	0	0	1	1

Waarheidstabellen: voorbeeld

compactere notatie

h	S	u	$((h \land s) \rightarrow \neg u)$	
1	1	1	1 0 0	
1	1	0	1 1 1	
1	0	1	0 1 0	
0	1	1	0 1 0	
1	0	0	0 1 1	
0	1	0	0 1 1	
0	0	1	0 1 0	
0	0	0	0 1 1	

Complexiteit waarheidstabellen

Als er n verschillende propositieletters in een formule voorkomen, dan heeft de waarheidstabel van de formule 2^n rijen.

Gevolg: waarheidstabellen kunnen zeer groot worden

Waardering: definitie

Een waardering is een functie van alle propositieletters naar waarheidswaarden.

Opmerkingen:

- In de praktijk gebruiken we een beperkt domein: enkel de propositieletters die voorkomen in de formules die we beschouwen.
- We gebruiken vaak de functie naam V.

Waardering: voorbeeld

8 verschillende waarderingen

	h	S	u	(h∧s)	¬ U	((h∧s)→¬u)
V_1	1	1	1	1	0	0
V_2	1	1	0	1	1	1
V_3	1	0	1	0	0	1
V_4	0	1	1	0	0	1
V_5	1	0	0	0	1	1
V_6	0	1	0	0	1	1
V_7	0	0	1	0	0	1
V_8	0	0	0	0	1	1

Model: definitie

Een waardering V heet een model van een formule φ als geldt $V(\varphi) = 1$.

De verzameling van alle modellen van arphi noteren we als

$$MOD(\varphi) = \{V \mid V(\varphi) = 1\}$$

Model van een verzameling: definitie

Een waardering V heet een model van een formuleverzameling Σ als V een model is van elke formule $\varphi \in \Sigma$.

De verzameling van modellen van Σ noteren we als $MOD(\Sigma)$.

Model: oefening

Wat zijn de modellen van $\{(r \rightarrow s), \neg (r \land s)\}$?

Merk op: $MOD(\Sigma \cup \varphi) \subseteq MOD(\Sigma)$

Modeleleminatie: motivatie

- 1. Jan komt als Marie of Anne komt.
- 2. Anne komt als Marie niet komt.
- 3. Jan komt niet als Anne komt.

Is dit voldoende informatie om te weten wie wel en niet komt?

We maken gebruik van $MOD(\Sigma \cup \varphi) \subseteq MOD(\Sigma)$.

Modeleliminatie: voorbeeld

- 1. Jan komt als Marie of Anne komt. φ : $((m \lor a) \to j)$
- 2. Anne komt als Marie niet komt. ψ : $(\neg m \rightarrow a)$
- 3. Jan komt niet als Anne komt. χ : $(a \rightarrow \neg j)$

Heeft $\{\varphi, \psi, \chi\}$ een uniek model?

- Bepaal $MOD(\varphi)$.
- Welke waarderingen in $MOD(\varphi)$ zijn ook modellen van ψ ?
- Welke overgebleven waarderingen zijn ook modellen van χ ?

Modeleliminatie: voorbeeld

	m	а	j	$((m \lor a) \to j)$	$(\neg m \rightarrow a)$	$(a \rightarrow \neg j))$
V_1	1	1	1	1	1	0
V_2	1	1	0	0		
V_3	1	0	1	1	1	1
V_4	0	1	1	1	1	0
V_5	1	0	0	0		
V_6	0	1	0	0		
V_7	0	0	1	1	0	
V_8	0	0	0	1	0	

Tautologie en contradictie: definitie

Een formule φ heet een tautologie als elke waardering een model is van φ , m.a.w voor elke waardering V geldt: $V(\varphi) = 1$.

Een formule φ heet een contradictie als geen enkele waardering een model is van φ , m.a.w voor elke waardering V geldt: $V(\varphi) = 0$.

Tautologie en contradictie: voorbeelden

Alle instanties van

- $(\varphi \lor \neg \varphi)$
- $\neg(\varphi \land \neg\varphi)$

zijn tautologieën.

Alle instanties van

• $(\varphi \land \neg \varphi)$

zijn contradicties.

Logisch equivalent: definitie

Twee formules φ en ψ zijn logisch equivalent als de formule $(\varphi \leftrightarrow \psi)$ een tautologie is.

Vaakgebruikte notatie: $\varphi \equiv \psi$

Logisch equivalent: gevolg

Formules φ en ψ zijn logisch equivalent als

- $(\varphi \leftrightarrow \psi)$ een tautologie is
- voor elke waardering V geldt $V((\varphi \leftrightarrow \psi)) = 1$
- voor elke waardering V geldt $V(\varphi) = V(\psi)$

Veel gebruikte logische equivalenties

- φ en $\neg \neg \varphi$
- de wetten van De Morgan:
 - $\neg(\varphi \land \psi)$ en $(\neg \varphi \lor \neg \psi)$
 - $\neg(\varphi \lor \psi)$ en $(\neg \varphi \land \neg \psi)$
- de principes van de distributiviteit
 - $(\varphi \land (\psi \lor \chi))$ en $((\varphi \land \psi) \lor (\varphi \land \chi))$
 - $(\varphi \lor (\psi \land \chi))$ en $((\varphi \lor \psi) \land (\varphi \lor \chi))$

toon aan als oefening

Veel gebruikte logische equivalenties

- contrapositie: $(\varphi \rightarrow \psi)$ en $(\neg \psi \rightarrow \neg \varphi)$
- $(\varphi \rightarrow \psi)$ en $(\neg \varphi \lor \psi)$
- $(\varphi \leftrightarrow \psi)$ en $((\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi))$

toon aan als oefening

Lossere notatie

Volgende formules zijn ook logisch equivalent (associativiteit)

- $(\varphi \land (\psi \land \chi)) \text{ en } ((\varphi \land \psi) \land \chi)$
- $(\varphi \lor (\psi \lor \chi)) en ((\varphi \lor \psi) \lor \chi)$

Dit laat toe om haakjes weg te laten bv $((p \land q) \land r) \land s)$ kunnen we ook schrijven als $(p \land q \land r \land s)$. Ook buitenste haakjes worden vaak weggelaten: $p \land q \land r \land s$.

Functioneel volledig

Een verzameling van connectieven \mathcal{C} heet functioneel volledig als elke formule φ logisch equivalent is met een formule ψ die enkel connectieven uit \mathcal{C} bevat.

bewijs komt later

Stelling: De verzameling {¬, ∧, ∨} is functioneel volledig.

Gevolg: De verzameling $\{\neg, \lor\}$ is functioneel volledig wegens de tautologie $(\neg(\varphi \land \psi) \leftrightarrow (\neg\varphi \lor \neg\psi))$.

Functioneel volledig: oefening

De verzameling $\{\neg, \land, \lor\}$ is functioneel volledig. Geef logische equivalente formules voor onderstaand formules gebruikmakend van enkel connectieven uit $\{\neg, \land, \lor\}$.

- 1. $(\varphi \rightarrow \psi)$
- 2. $(\varphi \leftrightarrow \psi)$

NOR connectief

- noch ... noch ...
- {NOR} is functioneel volledig

arphi	ψ	$(\varphi NOR \psi)$
1	1	0
1	0	0
0	1	0
0	0	1

Disjunctieve normaalvorm

Een formule is in disjunctieve normaalvorm als deze de syntactische vorm heeft van een disjunctie van conjuncties:

$$(\varphi_1 \wedge ... \wedge \varphi_{n_1}) \vee \cdots \vee (\psi_1 \wedge ... \wedge \psi_{n_k})$$

waarbij $\varphi_1, ..., \varphi_{n_1}, ..., \psi_1, ..., \psi_{n_k}$ atomen of negaties van atomen zijn.

Disjunctieve normaalvorm: voorbeelden

Disjunctieve normaalvorm:

- $(p \land \neg q) \lor (\neg a \land b)$
- $a \wedge \neg b \wedge c$
- $a \lor \neg b \lor c$

Geen disjunctieve normaalvorm:

- $\neg(a \land b)$
- $a \lor (b \land (c \lor d))$

Disjunctieve normaalvorm

Voor elke formule φ bestaat er een formule φ^* in disjunctieve normaalvorm zodat φ en φ^* logisch equivalent zijn.

zonder bewijs

Stelling

Disjunctieve normaalvorm: oefening

- $((a \land b) \rightarrow c) \equiv (\neg a \lor \neg b) \lor c$
- $(p \leftrightarrow q) \equiv (\neg p \land \neg q) \lor (q \land p)$

Merk op:

- $\varphi \lor 0 \equiv \varphi$, $\varphi \lor 1 \equiv 1$
- $\varphi \wedge 0 \equiv 0$, $\varphi \wedge 1 \equiv \varphi$

