MATH211: Linear Methods I

Matthew Burke

Thursday 29th November, 2018

Lecture on Thursday 29th November, 2018

Diagonalisation

Similar matrices

Powers

Dynamical systems

Markov chains

Last time

Last time

Spectral theory

Finding eigenvalues

Finding eigenspaces of eigenvectors

Diagonalisation

Motivation

If $x \in \mathbb{R}^n$ is a linear combination of eigenvectors of A then:

$$A(x) = A\left(\sum_{i=1}^{n} a_i v_{\lambda_i}\right) = \sum_{i=1}^{n} a_i A(v_{\lambda_i}) = \sum_{i=1}^{n} a_i \lambda_i v_{\lambda_i}$$

So if every vector in \mathbb{R}^n can be written as a linear combination of eigenvectors of A the the entire matrix action simplifies.

Definition

An $n \times n$ matrix A is diagonalisable iff every vector in \mathbb{R}^n can be written as a linear combination of eigenvectors.

Example

Example

$$\begin{bmatrix} 3 & 0 \\ 0 & 5 \end{bmatrix} \text{ has eigenvectors } \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ and } \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

and so is diagonalisable.

Example

$$A = \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix}$$
 has eigenvectors $v_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $v_4 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

and so is diagonalisable because all vectors in \mathbb{R}^2 can be written as a linear combination of v_2 and v_4 .

Motivation

Suppose we want to find Av.

- where P writes a linear combination of eigenvectors as a linear combination of standard basis vectors
- we say that the bottom horizontal action is diagonal

Diagonalisation

Definition

The matrix P diagonalises A iff there is a diagonal matrix D such that

$$A = PDP^{-1}$$

Question: How do we find the matrix P for a matrix A?

Answer: If $v_{\lambda_1}, v_{\lambda_2} \dots v_{\lambda_n}$ are eigenvectors such that every $x \in \mathbb{R}^n$ is a linear combination of the v_{λ_i} then the matrix

$$P = [v_{\lambda_1} v_{\lambda_2} \dots v_{\lambda_n}]$$

with eigenvectors as the columns is a diagonalising matrix for A.

When is a matrix diagonalisable?

Theorem

The following are equivalent for a matrix A:

- 1. there is a P such that $P^{-1}AP$ is diagonal
- 2. there are n eigenvectors such that any $x \in \mathbb{R}^n$ is a linear combination of these eigenvectors
- 3. there are eigenvectors $v_1 \dots v_n$ such that $[v_1 v_2 \dots v_n]$ is invertible
- 4. for every eigenvalue λ the geometric multiplicity is equal to the algebraic multiplicity

Lemma

If the characteristic polynomial of A has n distinct eigenvalues then A is diagonalisable by (4).

Examples

Example

If possible diagonalise

$$\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$

Example

If possible diagonalise

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

Examples

Example

If possible diagonalise

$$\begin{bmatrix} 3 & -4 & 2 \\ 1 & -2 & 2 \\ 1 & -5 & 5 \end{bmatrix}$$

Example

If possible diagonalise

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & -3 \end{bmatrix}$$

- 1. Find the eigenvalues by solving $|A \lambda \cdot I|$.
 - ▶ The no. of $(\lambda \lambda_i)$ factors is the algebraic multiplicity $alg(\lambda_i)$.
- 2. Find the eigenspaces E_{λ_i} by solving $(A \lambda_i \cdot I) = 0$.
 - Only need to do this for the eigenvalues λ_i found in (1).
 - ▶ The no. of parameters is the geometric multiplicity geom(λ_i).
- 3. ▶ If for all λ_i found in (1) we have $geom(\lambda_i) = alg(\lambda_i)$ then the diagonalising matrix is $P = [v_{\lambda_1} v_{\lambda_2} \dots v_{\lambda_n}]$ where the v_{λ_i} are the basic eigenvectors.
 - If for any of the λ_i found in (1) has $geom(\lambda_i) < alg(\lambda_i)$ then the matrix is not diagonalisable.

Similar matrices

Similar matrices

Definition

Two matrices A and B are *similar* iff there exists an invertible P such that

$$A = PBP^{-1}$$

and we write $A \sim B$.

000

Trace of a matrix

Definition

The trace of a matrix is the sum of its diagonal elements:

$$tr(A) = \sum_{i=1}^{n} a_{ii}$$

Theorem

If $A \sim B$ then tr(A) = tr(B).

Powers

Taking powers of a diagonalisable matrix

Suppose that there exists a diagonal matrix D such that

$$A = PDP^{-1}$$

for some invertible matrix P. Then

$$A^2 = PDP^{-1}PDP^{-1} = PD^2P^{-1}$$

and indeed

$$A^n = PD^nP^{-1}$$

Examples

Example

Find A^9 if

$$A = \begin{bmatrix} 5 & 0 \\ 0 & 2 \end{bmatrix}$$

Example

Find A^{50} if

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & 0 \\ -1 & -1 & 1 \end{bmatrix}$$

Dynamical systems

Markov chains

Definition

A dynamical system consists of a function $\alpha(t)$ that prescribes how the state of the system changes over time.

Definition

A discrete linear dynamical system consists of a sequence of vectors

$$x_0, x_1, x_2, \ldots, x_k, \ldots$$

such that $x_{k+1} = Ax_k$ for some matrix A.

Long term behaviour using eigenvectors

If x_0 is a linear combination of the eigenvectors v_{λ_i} of A then

$$x_k = A^k x_0 = A^k \left(\sum_{i=1}^n b_i v_{\lambda_i} \right) = \sum_{i=1}^n b_i A^k \left(v_{\lambda_i} \right) = \sum_{i=1}^n b_i (\lambda_i)^k v_{\lambda_i}$$

and so the long-term behaviour is determined by the limits:

$$\lim_{k\to\infty}(\lambda_i)^k$$

Dominant eigenvalue

Definition

If a is a square matrix then a dominant eigenvalue λ_{max} is one for which $|\lambda_{max}| > |\lambda_i|$ for all other eigenvalues λ_i .

$$x_k = \sum_{i=1}^n b_i (\lambda_i)^k v_{\lambda_i} pprox b_i (\lambda_{max})^k v_{\lambda_{max}}$$

and we can read off the long term behaviour. E.g.

- ▶ if $|\lambda_{max}|$ < 1 then the system converges to 0
- if $|\lambda_{max}|=1$ then the system converges to $b_i v_{\lambda_{max}}$
- if $|\lambda_{\it max}| = -1$ then the system oscillates between $\pm b_i v_{\lambda_{\it max}}$
- if $|\lambda_{max} > 1|$ then the system diverges

Example

Find a formula for x_k if $x_{k+1} = Ax_k$,

$$x_0 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 and $A = \begin{bmatrix} 2 & 0 \\ 3 & -1 \end{bmatrix}$

Example

Estimate the long term behaviour of the dynamical system with

$$x_0 = \begin{bmatrix} 100 \\ 40 \end{bmatrix}$$
 and $A = \begin{bmatrix} \frac{1}{2} & \frac{1}{4} \\ 2 & 0 \end{bmatrix}$

Markov chains

Markov chains

A Markov chain consists of:-

- \triangleright a finite set of states x_1, x_2, \ldots, x_n
- a repeated transition interval at the end of which the system transitions between states
- ➤ a non-deterministic rule for predicting the probability that the system will transition into a certain state
 - ► This probability only depends on the current state.
 - (Not the entire history of the chain.)

Markov transition matrices

This means that a Markov chain is described by a matrix A such that

$$A_{ij} = \mathbb{P}(X_1 = j | X_0 = i)$$

= the probability that the next state will be j if the current state is i

Therefore:-

- ▶ all of the entries are between 0 and 1
 - ► (I.e. they are probabilities.)
- in any column the sum of the entries is 1
 - ► (The system must transition into one of the states.)

Example

Example

Find the probability that x_3 is in state 1 if

$$x_0 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
 and $A = \begin{bmatrix} 0.4 & 0.25 & 0.2 \\ 0.4 & 0.35 & 0.5 \\ 0.2 & 0.4 & 0.3 \end{bmatrix}$