$$|f(x'') - f(x')| < \varepsilon \tag{5.73}$$

Покажем, что отсюда следует существование у функции f конечного предела в точке x_0 . Возьмем какую-либо последовательность $x_n \in X, n = 1, 2, ...,$

$$\lim_{n \to \infty} x_n = x_0 \tag{5.74}$$

и произвольно зададим $\varepsilon>0$. Для этого ε , согласно сделанному предположению, существует окрестность $U(x_0)$ точки x_0 , удовлетворяющая условиям (5.72)—(5.73). В силу же условия (5.74), для этой окрестности $U(x_0)$ существует такое $n_0\in \mathbf{N}$, что при всех $n>n_0,\ n\in \mathbf{N}$, имеет место $x_n\in U(x_0)$, а так как $x_n\in X$, то $x_n\in U(x_0)\cap X,\ n=n_0+1,\ n_0+2,\dots$. Отсюда, принимая во внимание (5.72)—(5.73), получаем, что для всех $n>n_0$ и всех $m>n_0$ выполняется неравенство

$$|f(x_n) - f(x_m)| < \varepsilon,$$

т.е. числовая последовательность $\{f(x_n)\}$ удовлетворяет условиям критерия Коши для числовых последовательностей (см. п. 4.7) и, следовательно, сходится.

Таким образом, для каждой последовательности $x_n \in X, n=1,2,\dots$, $\lim_{n\to\infty}x_n=x_0$, последовательность $\{f(x_n)\}$ сходится. Отсюда, как известно (см. лемму 4 в п. 5.6), следует существование конечного предела $\lim_{x\to x_0}f(x)$. \square

В том случае, когда x_0 является числом, условие Коши можно сформулировать следующим образом:

для любого $\varepsilon > 0$ существует такое $\delta > 0$, что для любых $x' \in X$ и $x'' \in X$, удовлетворяющих условиям $|x' - x_0| < \delta$, $|x'' - x_0| < \delta$, выполняется неравенство

$$|f(x'') - f(x')| < \varepsilon.$$

При $x_0 = \infty$ условию Коши можно придать следующий вид: для любого $\varepsilon > 0$ существует такое $\delta > 0$, что для любых

 $x' \in X$ и $x'' \in X$, удовлетворяющих условиям $|x'| > \delta$, $|x''| > \delta$, выполняется неравенство $|f(x'') - f(x')| < \varepsilon$.

Для случая односторонних пределов условие Коши можно перефразировать без термина «окрестность» следующим образом:

для любого $\varepsilon > 0$ существует такое η ($\eta < x_0$, когда рассматривается предел слева, и $\eta > x_0$, когда рассматривается предел справа), что для любых $x' \in X$ и $x'' \in X$, удовлетворяющих условию $\eta < x' \leqslant x_0$, $\eta < x'' \leqslant x_0$ или соответственно $x_0 \leqslant x' < \eta$, $x_0 \leqslant x'' < \eta$, выполняется неравенство $|f(x'') - f(x')| < \varepsilon$.

Отметим, что все эти критерии существования предела функции, относящиеся к разным случаям и имеющие разную формулировку, благодаря удачно выбранной терминологии (понятию окрестности) получили единое доказательство.

5.16. Предел и непрерывность композиции функций

Рассмотрим вопрос о существовании конечных и бесконечных пределов композиций функций, каждая из которых имеет соответствующий предел.

Если $f: X \to {\it R}, g: Y \to {\it R}$ и выполнено условие $f(X) \subset Y$, то на множестве X определена композиция $g \circ f$ функций f и g или, как говорят, сложная функция f[f(x)]. Рассматриваемые ниже пределы $\lim_{x\to x_0} f(x)$ и $\lim_{y\to y_0} g(y)$ могут быть конечными или бесконечными, а x_0 и y_0 — конечными или бесконечно удаленными точками прикосновения (см. п. 5.4) соответственно множеств X и f(X).

Т Е О Р Е М А 6. Пусть $f: X \to {\it R}, \ g: Y \to {\it R}, \ f(X) \subset Y$ и существуют конечные или бесконечные пределы

$$\lim_{x \to x_0} f(x) = y_0, \tag{5.75}$$

$$\lim_{y \to y_0} g(y); \tag{5.76}$$

тогда при $x \to x_0$ существует и предел (конечный или бесконечный) сложной функции g[f(x)], причем

$$\lim_{x \to x_0} g[f(x)] = \lim_{y \to y_0} g(y).$$

С Л Е Д С Т В И Е. Если $f: X \to \mathbf{R}, g: Y \to \mathbf{R}, f(X) \subset Y$ и функция f непрерывна в точке $x_0 \in X$, а функция g непрерывна в точке $y_0 = f(x_0)$, то сложная функция g[f(x)] непрерывна в точке x_0 .