

STB60NF06LT4

Automotive-grade N-channel 60 V, 0.012 Ω typ., 60 A STripFET™ II Power MOSFET in a D²PAK package

Datasheet - production data

Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	Ι _D	P _{TOT}
STB60NF06LT4	60 V	0.014 Ω	60 A	110 W

- Designed for automotive applications and AEC-Q101 qualified
- Exceptional dv/dt capability
- 100% avalanche tested
- Application-oriented characterization
- 175°C operating range
- Low threshold drive

Applications

Switching applications

Description

This Power MOSFET series realized with STMicroelectronics unique STripFET™ process is specifically designed to minimize input capacitance and gate charge. It is therefore ideal as a primary switch in advanced high-efficiency isolated DC-DC converters for Telecom and Computer applications. It is also suitable for any application with low gate charge drive requirements.

Table 1: Device summary

Order code	Marking	Package	Packing
STB60NF06LT4	B60NF06L	D²PAK	Tape and reel

Contents STB60NF06LT4

Contents

1	Electric	al ratings	3
2		al characteristics	
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	D ² PAK (TO-263) type A package information	9
	4.2	D²PAK packing information	12
5		n history	

STB60NF06LT4 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DSS}	Drain-source voltage (V _{GS} = 0 V)	60	V
V_{DGR}	Drain-gate voltage ($R_{GS} = 20 \text{ k}\Omega$)	60	V
V _{GS}	Gate-source voltage	±15	V
	Drain current (continuous) at T _{case} = 25 °C	60	_
I _D	Drain current (continuous) at T _{case} = 100 °C	42	A
I _{DM} ⁽¹⁾	Drain current (pulsed)	240	Α
P _{TOT}	Total dissipation at T _{case} = 25 °C	110	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope	20	V/ns
T _{stg}	Storage temperature	05 to 475	90
T _j	Operating junction temperature	-65 to 175	°C

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	1.36	°C/W
R _{thj-PCB} ⁽¹⁾	Thermal resistance junction-PCB	35	C/VV

Notes:

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
E _{AS} ⁽¹⁾	Single pulse avalanche energy	320	mJ

Notes:

⁽¹⁾ Pulse width is limited by safe operating area.

 $^{^{(2)}}$ $I_{SD} \leq 60$ A, di/dt ≤ 600 A/µs; $T_{j} \leq T_{jmax},~V_{DD}$ = 80% $V_{(BR)DSS}.$

⁽¹⁾ When mounted on a 1-inch² FR-4, 2 Oz copper board.

 $^{^{(1)}}$ starting T_{j} = 25 °C, I_{D} = 30 A, V_{DD} = 30 V.

Electrical characteristics STB60NF06LT4

2 Electrical characteristics

(T_{case} = 25 °C unless otherwise specified)

Table 5: Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	60			>
	Zoro goto voltago droin	$V_{GS} = 0 \text{ V}, V_{DS} = 60 \text{ V}$			1	
I _{DSS}	I _{DSS} Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 60 \text{ V},$ $T_{case} = 125 ^{\circ}\text{C}$			10	μΑ
I _{GSS}	Gate-body leakage current	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 15 \text{ V}$			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \ \mu A$	1		2.5	V
В	Static drain-source on- resistance	$V_{GS} = 5 \text{ V}, I_{D} = 30 \text{ A}$		0.014	0.016	Ω
R _{DS(on)}		$V_{GS} = 10 \text{ V}, I_D = 30 \text{ A}$		0.012	0.014	77

Table 6: Dynamic

Symbo I	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	2000	-	
C _{oss}	Output capacitance	$V_{DS} = 25 \text{ V}, f = 1 \text{ MHz},$	1	360	-	pF
C _{rss}	Reverse transfer capacitance	$V_{GS} = 0 V$	1	125	-	Pi
Q_g	Total gate charge	$V_{DD} = 48 \text{ V}, I_D = 60 \text{ A},$	1	35	66	
Q_{gs}	Gate-source charge	$V_{GS} = 4.5 \text{ V}, R_G = 4.7 \Omega \text{ (see}$ Figure 14: "Gate charge test	•	10	-	nC
Q_{gd}	Gate-drain charge	circuit")	-	20	-	

Table 7: Switching times

Symbo I	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 30 \text{ V}, I_D = 30 \text{ A},$	-	35	-	
t _r	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 4.5 V$ (see Figure 13: "Switching times	-	220	-	
t _{d(off)}	Turn-off delay time	test circuit for resistive load"	-	55	-	ns
t _f	Fall time	and Figure 18: "Switching time waveform")	-	30	-	

Table 8: Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		1		60	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		240	Α
V _{SD} ⁽²⁾	Forward on voltage	V _{GS} = 0 V, I _{SD} = 60 A	-		1.3	V
t _{rr}	Reverse recovery time	I _{SD} = 60 A, di/dt = 100 A/μs,	1	110		ns
Q _{rr}	Reverse recovery charge	$V_{DD} = 30 \text{ V}, T_j = 150 \text{ °C (see}$ Figure 15: "Test circuit for	-	250		nC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	-	4.5		Α

Notes:

 $^{^{\}left(1\right) }$ Pulse width is limited by safe operating area.

 $^{^{(2)}}$ Pulse test: pulse duration = 300 μ s, duty cycle 1.5%.

2.1 Electrical characteristics (curves)

Figure 3: Thermal impedance K GIPG230615AL6F01BZTH δ =0.5 δ =0.05 δ =0.01 δ =0.01 δ =0.01 δ =0.01 δ =0.01 δ Single pulse δ = t_p/T $t_p(s)$

Figure 9: Normalized gate threshold voltage vs temperature

V_{GS(th)}

(norm.)

1.4

I_D = 250 µA

1.2

1.0

0.8

0.6

0

-50

0

50

100

150

T_J(°C)

Figure 10: Normalized on-resistance vs temperature

R_{DS(on)} GIPG230615AL6F01BRON

(norm.)

1.8

V_{GS} = 10 V

1.4

1.0

0.6

0.2

-50

0

50

100

150

T_J(°C)

Test circuits STB60NF06LT4

AM01468v1

3 Test circuits

5

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 D²PAK (TO-263) type A package information

Figure 19: D²PAK (TO-263) type A package outline

Table 9: D²PAK (TO-263) type A package mechanical data

	DIE 9. D-FAR (10-203) tyl	mm	
Dim.	Min.	Тур.	Max.
А	4.40		4.60
A1	0.03		0.23
b	0.70		0.93
b2	1.14		1.70
С	0.45		0.60
c2	1.23		1.36
D	8.95		9.35
D1	7.50	7.75	8.00
D2	1.10	1.30	1.50
E	10		10.40
E1	8.50	8.70	8.90
E2	6.85	7.05	7.25
е		2.54	
e1	4.88		5.28
Н	15		15.85
J1	2.49		2.69
L	2.29		2.79
L1	1.27		1.40
L2	1.30		1.75
R		0.4	
V2	0°		8°

9.75

16.9

1.6

2.54

5.08

Figure 20: D²PAK (TO-263) recommended footprint (dimensions are in mm)

Footprint

4.2 D²PAK packing information

Figure 21: Tape

Figure 22: Reel

Table 10: D²PAK tape and reel mechanical data

Таре				Reel	
Dim.	n	nm	Dim.	r.	
DIM.	Min.	Max.	Dilli.	Min.	Max.
A0	10.5	10.7	А		330
B0	15.7	15.9	В	1.5	
D	1.5	1.6	С	12.8	13.2
D1	1.59	1.61	D	20.2	
E	1.65	1.85	G	24.4	26.4
F	11.4	11.6	N	100	
K0	4.8	5.0	Т		30.4
P0	3.9	4.1			
P1	11.9	12.1	Bas	e qty	1000
P2	1.9	2.1	Bulk qty		1000
R	50				
Т	0.25	0.35			
W	23.7	24.3			

Revision history STB60NF06LT4

5 Revision history

Table 11: Document revision history

Date	Revision	Changes
24-Jun-2015	1	First release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

