Tutorial Sheet 2

1. For each of the following sequences a_n , evaluate the corresponding series $s_n = \sum_{k=0}^{n} a_k$, up to the term s_5 . In addition, find s_{100} .

i)
$$a_n = \frac{9}{10^n}$$

v)
$$a_n = 3 + 4n$$

ii)
$$a_n = \frac{1}{2^n}$$

vi)
$$a_n = \frac{1}{4} + \frac{5n}{4}$$

iii)
$$a_n = 2^n$$

vii)
$$a_n = 1 + 2n + 2^n$$

iv)
$$a_n = \frac{2^n}{3^n}$$

viii)
$$a_n = 30 + 40n + 8\frac{2^n}{3^n}$$

2. Use the ratio test to determine whether the following infinite series are convergent or divergent, or say whether the test is inconclusive.

$$i) \sum_{n=0}^{\infty} \frac{1}{3^n}$$

iv)
$$\sum_{n=1}^{\infty} \frac{1}{n}$$

vii)
$$\sum_{n=0}^{\infty} x^n$$

ii)
$$\sum_{n=0}^{\infty} \frac{n^3}{5^n}$$

$$v) \sum_{n=0}^{\infty} \frac{n}{n+1}$$

viii)
$$\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n}$$

iii)
$$\sum_{n=0}^{\infty} \frac{5^n}{n^3}$$

vi)
$$\sum_{n=0}^{\infty} \frac{x^{2n}}{n!}$$

ix)
$$\sum_{n=0}^{\infty} \frac{x^{2n}}{(n+1)!}$$

3. The exponential function $e^x = \exp(x)$ can be defined using an infinite series as

$$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

Given that this infinite series is convergent for all $x \in \mathbb{R}$, use the series and the following table to estimate the value of $e^{0.6}$ to 3 decimal places.

n	a_n								s_n													
0	1		0	0	0	0	0	0	0	0	0	1		0	0	0	0	0	0	0	0	0
1			l I	l I	 	l I	i i	 	l I	 	l I			1	l I	 	l I	 	l I	l I	l	
2			 	 	 	 	 	 	 	 	 			 		 	 	 	 	 	 	I
3		<u>.</u>	l I	l I	l I	l I	l I	l I	l I	l I	l I		¦ •	I I	l I	l I	l I	l I	l I	l I	l I	I I
4		١.	l I	l I	l I	l I	l I	l I	l I	l I	l I		·	l I	l I	l I	l I	l I	l I	l I	l I	I I
5		¦ •	l I	l I	l I	l I	l I	l I	l I	l I	l I			l I	l I	l I	l I	l I	l I	l I	l I	l I
6			l I	l I	l I	l I	l I	l I	l I	l I	l I			I I	l I	l I	l I	l I	l I	l I	l	1
7			 	 	 	 	 	 	 	 	 			1	 	 	 	 	 	 	 	1
8				 	 			 	 	 	 			1	 	 	l I	 	 			1

Solutions

1. i)
$$\begin{vmatrix} n & a_n & s_n \\ 0 & 9.00000 & 9.00000 \\ 1 & 0.90000 & 9.90000 \\ 2 & 0.09000 & 9.99000 \\ 3 & 0.00900 & 9.99900 \\ 4 & 0.00090 & 9.99990 \\ 5 & 0.00009 & 9.99990 \\ 5 & 0.00009 & 9.99999 \end{vmatrix}$$
 $\begin{vmatrix} n & a_n & s_n \\ 0 & 3 & 3 \\ 1 & 7 & 10 \\ 2 & 11 & 21 \\ 3 & 15 & 36 \\ 4 & 19 & 55 \\ 5 & 23 & 78 \\ 5 & 23 & 78 \\ s_n = \frac{n+1}{2}(2(3) + 4n) \\ s_{100} = 10(1 - 10^{-101}) \cong 10$ $s_{100} = 20503$

viii)
$$s_n = \frac{n+1}{2} \left(2(30) + 40n \right) + 8 \frac{1 - \left(\frac{2}{3}\right)^{n+1}}{1 - \frac{2}{3}}$$

 $s_{100} = 205030 + 8 \frac{1 - \left(\frac{2}{3}\right)^{101}}{\frac{1}{3}} \cong 205030 + 24 = 205054$

- i) $R = \frac{1}{3} < 1$ cgt.
- v) R = 1 inconclusive. viii) R = |x| cgt if |x| < 1.
- ii) $R = \frac{1}{5} < 1$ cgt.
- vi) R = 0 < 1 cgt for all ix) R = 0 < 1 cgt for all

- iii) R = 5 > 1 dgt.

x.

- iv) R = 1 Inconclusive¹. vii) R = |x| cgt if |x| < 1.

3.

n	a_n	s_n							
0	1 - 0 0 0 0 0 0 0 0 0 0 0	1 - 0 0 0 0 0 0 0 0 0 0 0							
1	0 - 6 0 0 0 0 0 0 0 0 0	1 - 6 0 0 0 0 0 0 0 0 0							
2	0 - 1 8 0 0 0 0 0 0 0	1 · 7 8 0 0 0 0 0 0 0							
3	0 - 0 3 6 0 0 0 0 0 0	1 - 8 1 6 0 0 0 0 0 0							
4	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
5	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
6	0 . 0 0 0 0 6 4 8 0 0								
7	0 . 0 0 0 0 5 5 5 4	1 8 . 2 . 2 . 1 . 1 . 8 . 3 . 5 . 4							
8									

$$\Rightarrow e^{0.6} \cong 1.822$$

¹However, this series is the harmonic series, which is in fact divergent.