

44 BITS OF ENTROPY	THAT'S A
000000000	BATTERY 200
000000000	1 3 1 0
0000000000	CORRECT!
000000000	
2 ⁴⁴ = <i>55</i> 0 YEARS AT 1000 GUESSES/SEC	
OFFICULTY TO GUESS: HARD	DIFFICULTY TO REMEMBER: YOU'VE ALREADY MEMORIZED IT

THROUGH 20 YEARS OF EFFORT, WE'VE SUCCESSFULLY TRAINED EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS TO REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

- Passwords are susceptible to keylogging, brute-force and dictionary attacks and can too often be obtained or guessed using social engineering techniques.
- The success of a brute-force attack depends on the size of the password/pin.
 - A 4-digit pin can be guessed after 5000 tries ((9999 0000)/2).
 - ➤ A 6-digit pin takes 500,000 guesses.
 - A 6 character password using lower-case letters takes 150 million guesses.

- These passwords can be 'cracked' easily using existing software that automates the login process.
- Dictionary attack <u>SSH-brute.c</u>
 - A 6-character password using upper and lower case letters, numbers and symbols (62 possible characters) will take about 28 billion guesses.
 - Increasing the number of characters to 8 improves things by a factor of 256,000 to 110,000 billion attempts needed.
 - Passwords of this size can still be guessed, but it takes an inconvenient time.

- If the password can be guessed, the speed of cracking increases dramatically.
- A dictionary attack may take as few as 85,000 guesses (171,000 words in the Oxford English Dictionary).
 - ➤ Try HashCat (in Kali VM)
 - ➤ Bad guys know how people "disguise" their passwords or append them to satisfy password policies. Most common modifications are scriptable.
- Most passwords are now 8 characters
 - > Default passwords are by design easy to remember (short)!

Don't write the password down.

http://www.theregister.co.uk/2005/08/10/kutztown_13/

If you really have to write it down, keep it in your wallet with your money. Don't write down what it's for.

Password storage?

SIMS synchronizes passwords for all accounts

• password re-use

Browsers store passwords

• in plain text

Password Managers

• only as safe as the master password.

Allow for escrow

Password Salt

- One way to make the dictionary attack more difficult to launch is to use salt.
- Associate a random number with each userid.
- Rather than comparing the hash of an entered password with a stored hash of a password, the system compares the hash of an entered password and the salt for the associated userid with a stored hash of the password and salt.

How Password Salt Works

Without salt:

- > 1. User types userid, X, and password, P.
- ➤ 2. System looks up H, the stored hash of X's password.
- \geq 3. System tests whether h(P) = H.

• With salt:

- 1. User types userid, X, and password, P.
- 2. **System looks up S and H**, where S is the random salt for userid X and H is stored hash of S and X's password.
- 3. System tests whether h(S||P) = H.

Password file:

Password file:

Stealing Passwords

- Passwords are obtainable by social engineering methods or by sniffing unencrypted network traffic (Telnet, HTTP, FTP).
 - ➤ People choose a password they can remember, and then re-use it for several accounts.
 - ➤ May be the name of a child, pet or relative.
 - ➤ May be used for plain text traffic (to http:// web site form), sniffed, and then tried on secure (https://) accounts.
- Even a password used with a secure web site may be obtained if it is stored in plain text in a vulnerable database or as an unsalted hash (look up rainbow tables).

Password policy

To minimise the risk of a password being guessed, each password should be

```
➤ long,➤ random,➤ different.
```

 A password policy can be used to develop an algorithm for recreating different passwords for each account:

```
e.g. unique password = f(master password, site name)
f("password", "gmail.com")
{
  first 3 letters of password + every second letter of site + "x"
} //pasgalcmx
```

 Mixtures of case and character substitution can be used as well.

```
≻e.g. mYPa55w0rd
```

• An entirely random password can be stored in a text file and copied into web forms as needed.