Lecture 11: Clustering

(download slides and .py files from Stellar to follow along)

John Guttag

MIT Department of Electrical Engineering and Computer Science

Relevant Reading

Chapter 23

Subject Evaluations Now Open

https://registrar.mit.edu/classes-grades-evaluations/subject-evaluation

Both MIT and cross-registered students should be able to supply evaluations

Machine Learning Paradigm (review)

- Observe set of examples: training data
- Infer something about process that generated that data
- Use inference to make predictions about previously unseen data: test data
- Supervised: given a set of feature/label pairs, find a rule that predicts the label associated with a previously unseen input
- Unsupervised: given a set of feature vectors
 (without labels) group them into "natural clusters"

Clustering Is an Optimization Problem

• Minimize dissimilarity of a set of clusters, e.g.,

$$variability(c) = \sum_{e \in c} distance(mean(c), e)^{2}$$
$$dissimilarity(c) = \sum_{e \in c} variability(c)$$

$$dissimilarity(C) = \sum_{c \in C} variability(c)$$

- Why not divide variability by size of cluster?
 - Big and bad worse than small and bad
- Is optimization problem finding a C that minimizes dissimilarity(C)?
 - No, otherwise could put each example in its own cluster
- Need a constraint, e.g.,
 - Minimum distance between clusters
 - Number of clusters

6.0002 LECTURE 11

Two Popular Methods

- Hierarchical clustering
- K-means clustering

Agglomerative Hierarchical Clustering

- 1. Start by assigning each item to a cluster, so that if you have N items, you now have N clusters, each containing just one item.
- 2. Find the closest (most similar) pair of clusters and merge them into a single cluster, so that now you have one fewer cluster.
- 3. Continue the process until all items are clustered into a single cluster of size N.

Linkage Metrics

- •Single-linkage: consider the distance between one cluster and another cluster to be equal to the <u>shortest</u> distance from any member of one cluster to any member of the other cluster
- Complete-linkage: consider the distance between one cluster and another cluster to be equal to the greatest distance from any member of one cluster to any member of the other cluster
- Average-linkage: consider the distance between one cluster and another cluster to be equal to the <u>average</u> distance from any member of one cluster to any member of the other cluster

Linkage Criteria

Example of Hierarchical Clustering

	BOS	NY	CHI	DEN	SF	SEA
BOS	0	206	963	1949	3095	2979
NY		0	802	1771	2934	2815
CHI			0	966	2142	2013
DEN				0	1235	1307
SF					0	808
SEA						0

{BOS}	{NY}	{CHI}	{DEN}	{SF}	{SEA}
{BOS, NY	' }	{CHI}	{DEN}	{SF}	{SEA}
{BOS, NY	, CHI}		{DEN}	{SF}	{SEA}
{BOS, NY	/, CHI}		{DEN}	{SF, SEA}	
{BOS, NY, CHI, DEN}			{SF, SEA}	Single linkage	
{BOS, NY	/, CHI}	or	{DEN, SF, SEA}	Complete	e linkage

Clustering Algorithms

- Hierarchical clustering
 - Can select number of clusters using dendogram
 - Deterministic
 - Flexible with respect to linkage criteria
 - Slow
 - Naïve algorithm n³
 - n² algorithms exist for some linkage criteria
- K-means a much faster greedy algorithm
 - Most useful when you know how many clusters you want

.0002 LECTURE 11

K-means Algorithm

```
randomly chose k examples as initial centroids while true:
    create k clusters by assigning each
    example to closest centroid
    compute k new centroids by averaging
    examples in each cluster
    if centroids don't change:
        break
```

What is complexity of one iteration?

k*n*d, where n is number of points and d time required to compute the distance between a pair of points

6.0002 LECTURE 11

An Example

6.0002 LECTURE 11

K = 4, Initial Centroids

6.0002 LECTURE 11

Issues with k-means

- Choosing the "wrong" k can lead to strange results
 - Consider k = 3

- Result can depend upon initial centroids
 - Number of iterations
 - Even final result

Greedy algorithm can find different local optima

Different Initial Centroids

Converges On

How to Choose K

- A priori knowledge about application domain
 - There are two kinds of people in the world: k = 2
 - There are five different types of bacteria: k = 5
- Search for a good k
 - Try different values of k and evaluate quality of results
 - Run hierarchical clustering on subset of data

6.0002 LECTURE 11

Mitigating Dependence on Initial Centroids

Try multiple sets of randomly chosen initial centroids

Select "best" result

```
best = kMeans(points)
for t in range(numTrials):
    C = kMeans(points)
    if dissimilarity(C) < dissimilarity(best):
        best = C
return best</pre>
```

Class Example

```
class Example(object):
    def __init__(self, name, features, label = None):
        #Assumes features is an array of floats
        self.name = name
        self.features = features
        self.label = label
   def distance(self, other):
       return minkowskiDist(self.features,
                            other.getFeatures(), 2)
```

Class Cluster

```
class Cluster(object):
   def __init__(self, examples):
        """Assumes examples a non-empty list of Examples"""
        self.examples = examples
        self.centroid = self.computeCentroid()
   def update(self, examples):
        """Assume examples is a non-empty list of Examples
           Replace examples; return amount centroid has changed"""
       oldCentroid = self.centroid
        self.examples = examples
        self.centroid = self.computeCentroid()
        return oldCentroid.distance(self.centroid)
   def computeCentroid(self):
       vals = pylab.array([0.0]*self.examples[0].dimensionality())
        for e in self.examples: #compute mean
            vals += e.getFeatures()
        centroid = Example('centroid', vals/len(self.examples))
        return centroid
```

Class Cluster, cont.

```
def variability(self):
    totDist = 0
    for e in self.examples:
        totDist += (e.distance(self.centroid))**2
    return totDist

def members(self):
    for e in self.examples:
        yield e
Generator
8.3.1 in text
8.3.1 in text
```

Evaluating a Clustering

```
def dissimilarity(clusters):
    """Assumes clusters a list of clusters
    Returns a measure of the total dissimilarity of the clusters in the list"""
    totDist = 0
    for c in clusters:
        totDist += c.variability()
    return totDist
```

kmeans

```
def kmeans(examples, k, verbose = False):
   #Get k randomly chosen initial centroids,
    #create cluster for each
    #Iterate until centroids do not change
    . . .
        #Associate each example with closest centroid
        for c in newClusters: #Avoid having empty clusters
            if len(c) == 0:
                raise ValueError('Empty Cluster')
        #Update each cluster; check if a centroid has changed
def trykmeans(examples, numClusters, numTrials, verbose=False):
    """Calls kmeans numTrials times and returns the result with
          the lowest dissimilarity"""
```

Examining Results

6.0002 LECTURE 11

Example: Football Players

```
edelman = ['edelman', 70, 200]
hogan = ['hogan', 73, 210]
gronkowski = ['gronkowski', 78, 26
gordon = ['gordon', 75, 225]
hollister = ['hollister', 76, 245]
dorsett = ['dorsett', 70, 192]
allen = ['allen', 75, 265]
                                          pats = []
cannon = ['cannon', 77, 335]
                                          for p in receivers:
brown = ['brown', 80, 380]
                                              pats.append((p, 'receiver'))
mason = ['mason', 73, 310]
                                          for p in dLine:
thuney = ['thuney', 77, 305]
                                              pats.append((p, 'Dline'))
quy = ['quy', 76, 315]
                                          for p in oLine:
shelton = ['shelton', 74, 345]
                                              pats.append((p, 'Oline'))
karras = ['karras', 76, 305]
                                          for p in tights:
mason = ['mason', 73, 310]
                                              pats.append((p, 'tight end'))
michel = ['michel', 71, 215]
                                          for p in backs:
white = ['white', 70, 205]
                                              pats.append((p, 'back'))
patterson = ['patterson', 74, 228]
develin = ['develin', 75, 255]
brady = ['brady', 76, 225]
receivers = [edelman, hogan, gordon, dorsett]
dLine = [guy, shelton]
oLine = [brown, cannon, mason, karras, thuney]
tights = [gronkowski, hollister, allen]
backs = [michel, white, patterson, develin, brady]
```

Build Set of Examples

```
class Player(Example):
    pass
def buildPatriotsData(players, toScale = False):
    heightList, weightList = [],[]
    for p in players:
        heightList.append(p[0][1])
        weightList.append(p[0][2])
    if toScale:
        heightList = scaleAttrs(heightList)
        weightList = scaleAttrs(weightList)
    #Build points
    points = []
    for i in range(len(players)):
        features = np.array([heightList[i], weightList[i]])
        features = np.array([heightList[i], weightList[i]])
        points.append(Player(players[i][0][0], features, players[i][1]))
    return points
players = buildPatriotsData(pats, False)
```

Plot the Data

6.0002 LECTURE 11

Trent Brown and Sony Michel

6.0002 LECTURE 11

Let's Try It Twice

```
k = 3
for seed in (0, 1):
    random.seed(seed)
    print('\n Test k-means (k = ' + str(k) + ')')
    testClustering(players, k, 1)
Cluster of size 7
                                      Cluster of size 3
   gordon: [ 75 225]:receiver
                                         shelton: [ 74 345]:Dline
   gronkowski:[ 78 265]:tight end
                                         brown: [ 80 380]:Oline
   hollister: [ 76 245]:tight end
                                         cannon: [ 77 335]:Oline
   allen: [ 75 265]:tight end
                                      Cluster of size 12
   patterson: [ 74 228]:back
                                         edelman: [ 70 2001: receiver
   develin: [ 75 255]:back
                                         hogan: [ 73 210]: receiver
   brady: [ 76 225]:back
                                         gordon: [ 75 225]:receiver
Cluster of size 7
                                         dorsett:[ 70 192]:receiver
   quy: [ 76 315]:Dline
                                         gronkowski: [ 78 265]:tight end
   shelton: [ 74 345]:Dline
                                         hollister: [ 76 245]:tight end
                                         allen: [ 75 265]: tight end
   brown: [ 80 380]:Oline
                                         michel: [ 71 215]:back
   cannon: [ 77 335]:Oline
                                         white: [ 70 205]:back
   mason: [ 73 310]:Oline
                                         patterson: [ 74 228]:back
   karras: [ 76 305]:Oline
                                         develin: [ 75 255]:back
   thuney: [ 77 305]:Oline
                                         brady: [ 76 225]:back
Cluster of size 5
                                      Cluster of size 4
   edelman: [ 70 200]:receiver
                                         quy: [ 76 315]:Dline
   hogan: [ 73 210]:receiver
                                         mason:[ 73 310]:Oline
   dorsett:[ 70 192]:receiver
                                         karras: [ 76 305]:Oline
   michel: [ 71 215]:back
                                         thuney: [ 77 305]:Oline
   white: [ 70 205]:back
```

Choose Best of 20

```
Cluster of size 4
                                    Cluster of size 8
   gronkowski: [ 78 265]:tight end
                                       edelman: [ 70 200]: receiver
   hollister: [ 76 245]:tight end
                                       hogan: [ 73 210]: receiver
   allen: [ 75 265]:tight end
                                       gordon: [ 75 225]:receiver
                                       dorsett:[ 70 192]:receiver
   develin: [ 75 255]:back
                                       michel: [ 71 215]:back
Cluster of size 8
   edelman: [ 70 200]:receiver
                                       white: [ 70 205]:back
                                       patterson: [ 74 228]:back
   hogan: [ 73 210]:receiver
                                       brady: [ 76 225]:back
   gordon: [ 75 225]: receiver
                                    Cluster of size 4
   dorsett:[ 70 192]:receiver
                                       gronkowski: [ 78 265]:tight end
   michel: [ 71 215]:back
                                       hollister: [ 76 245]:tight end
   white: [ 70 205]:back
                                       allen: [ 75 265]:tight end
   patterson: [ 74 228]:back
                                       develin: [ 75 255]:back
   brady: [ 76 225]:back
                                    Cluster of size 7
Cluster of size 7
                                       quy: [ 76 315]:Dline
   quy: [ 76 315]:Dline
                                       shelton: [ 74 345]:Dline
   shelton: [ 74 345]:Dline
                                       brown: [ 80 380]:Oline
   brown: [ 80 380]:Oline
                                       cannon: [ 77 335]:Oline
   cannon: [ 77 335]:Oline
                                       mason: [ 73 310]:Oline
   mason: [ 73 310]:Oline
                                       karras: [ 76 305]:Oline
   karras: [ 76 305]:Oline
                                       thuney: [ 77 305]:Oline
   thuney: [ 77 305]:Oline
```

Try Different Values of k

```
Test k-means (k = 3)
                                              Test k-means (k = 5)
Cluster of size 4
                                         Cluster of size 1
   gronkowski:[ 78 265]:tight end
                                            brown: [ 80 380]:Oline
   hollister: [ 76 245]:tight end
                                         Cluster of size 2
   allen:[ 75 265]:tight end
                                            shelton: [ 74 345]:Dline
   develin: [ 75 255]:back
                                            cannon: [ 77 335]:Oline
Cluster of size 8
                                         Cluster of size 8
   edelman: [ 70 200]:receiver
                                            edelman: [ 70 200]:receiver
                                            hogan: [ 73 210]: receiver
   hogan: [ 73 210]:receiver
   gordon: [ 75 225]: receiver
                                            gordon: [ 75 225]:receiver
                                            dorsett: [ 70 192]: receiver
   dorsett:[ 70 192]:receiver
                                            michel: [ 71 215]:back
   michel: [ 71 215]:back
                                            white: [ 70 205]:back
   white: [ 70 205]:back
                                            patterson: [ 74 228]:back
   patterson: [ 74 228]:back
                                            bradv: [ 76 225]:back
   brady: [ 76 225]:back
                                         Cluster of size 4
Cluster of size 7
                                            gronkowski: [ 78 265]:tight end
   quy: [ 76 315]:Dline
                                            hollister:[ 76 245]:tight end
   shelton: [ 74 345]:Dline
                                            allen:[ 75 265]:tight end
   brown: [ 80 380]:Oline
                                            develin: [ 75 255]:back
   cannon: [ 77 335]:Oline
                                         Cluster of size 4
   mason: [ 73 310]:Oline
                                            quy: [ 76 315]:Dline
   karras: [ 76 305]:Oline
                                            mason: [ 73 310]:Oline
   thuney: [ 77 305]:Oline
                                            karras: [ 76 305]:Oline
                                            thuney: [ 77 305]:0line
```

Time for a Short Break

Example: Cardiovascular Death

- Many patients with 4 features each
 - Heart rate in beats per minute
 - Number of past heart attacks
 - Age
 - ST elevation (binary)

- Outcome (death) based on features
 - Probabilistic, not deterministic
 - E.g., older people with multiple heart attacks at higher risk
- Cluster, and examine purity of clusters relative to outcomes

5.0002 LECTURE 11

Data Sample

	<u>HR</u>	Att	STE	Age Outcome
P000:[89.	1.	0.	66.]:1
P001:[59.	0.	0.	72.]:0
P002:[73.	0.	0.	73.]:0
P003:[56.	1.	0.	65.]:0
P004:[75.	1.	1.	68.]:1
P005:[68.	1.	0.	56.]:0
P006:[73.	1.	0.	75.]:1
P007:[72.	0.	0.	65.]:0
P008:[73.	1.	0.	64.]:1
P009:[73.	0.	0.	58.]:0
P010:[100.	0.	0.	75.]:0
P011:[79.	0.	0.	31.]:0
P012:[81.	0.	0.	58.]:0
P013:[89.	1.	0.	50.]:1
P014:[81.	0.	0.	70.]:0

40

Patients

```
class Patient(Example):
    pass
def scaleAttrs(vals):
    vals = pylab.array(vals)
    mean = sum(vals)/len(vals)
    sd = numpy.std(vals)
    vals = vals - mean
    return vals/sd
def getData(toScale = False):
    #read in data
    if toScale:
        hrList = scaleAttrs(hrList)
    #Build points
    return points
```

Result of Running It

Test k-means (k = 2) Cluster of size 118 with fraction of positives = 0.3305 Cluster of size 132 with fraction of positives = 0.3333

Like it?

Certainly doesn't seem to have clustered patients based upon survival

Try It With Scaling

patients = getData(True)

Test k-means (k = 2) Cluster of size 224 with fraction of positives = 0.2902 Cluster of size 26 with fraction of positives = 0.6923

Habbh Non;

One Way to Think About Question

$$sensitivity = \frac{true \ positive}{true \ positive + false \ negative}$$
$$specificity = \frac{true \ negative}{true \ negative + false \ positive}$$

Percentage correctly found

Percentage correctly rejected

Cluster of size 224 with fraction of positives = 0.2902 Cluster of size 26 with fraction of positives = 0.6923

If we use cluster membership to classify, sensitivity is about 0.22

6.0002 LECTURE 11

A Hypothesis

- Different subgroups of positive patients have different characteristics
- •How might we test this?
- Try some other values of k

```
patients = getData()
for k in (2,4,6):
    print('\n Test k-means (k = ' + str(k) + ')')
    posFracs = testClustering(patients, k, 2)
```

Testing Multiple Values of k

Test k-means (k = 2)	Sensitivity
Cluster of size 224 with fraction of positives = 0.2902 Cluster of size 26 with fraction of positives = 0.6923 Test k-means (k = 4)	0.22
Cluster of size 26 with fraction of positives = 0.6923 Cluster of size 86 with fraction of positives = 0.0814 Cluster of size 76 with fraction of positives = 0.7105 Cluster of size 62 with fraction of positives = 0.0645 Test k-means (k = 6)	0.87
Cluster of size 49 with fraction of positives = 0.0204 Cluster of size 26 with fraction of positives = 0.6923 Cluster of size 45 with fraction of positives = 0.0889 Cluster of size 54 with fraction of positives = 0.0926 Cluster of size 36 with fraction of positives = 0.7778 Cluster of size 40 with fraction of positives = 0.675	0.88

Which k

	Sensitivity	Specificity
Cluster of size 26 with fraction of positives = 0.6923		
Cluster of size 86 with fraction of positives = 0.0814	0.87	0.82
Cluster of size 76 with fraction of positives = 0.7105		
Cluster of size 62 with fraction of positives = 0.0645		
Test k-means (k = 6)		
Cluster of size 49 with fraction of positives = 0.0204		
Cluster of size 26 with fraction of positives = 0.6923	0.00	0.70
Cluster of size 45 with fraction of positives = 0.0889	0.88	0.79
Cluster of size 54 with fraction of positives = 0.0926		
Cluster of size 36 with fraction of positives = 0.7778		
Cluster of size 40 with fraction of positives = 0.675		

Don't forget specificity

Don't forget Occam's razor

6.0002 LECTURE 11

Coming Up

Classification