```
In [1]: pip install seaborn
                 Requirement already satisfied: seaborn in c:\users\sruja\anaconda3\lib\site-packages (0.12.2)
                 Requirement already satisfied: numpy!=1.24.0,>=1.17 in c:\users\sruja\anaconda3\lib\site-packages (from seaborn
                 Requirement already satisfied: pandas>=0.25 in c:\users\sruja\anaconda3\lib\site-packages (from seaborn) (1.5.3
                 Requirement already satisfied: matplotlib!=3.6.1,>=3.1 in c:\users\sruja\anaconda3\lib\site-packages (from seab
                 orn) (3.7.1)
                 Requirement already satisfied: contourpy>=1.0.1 in c:\users\sruja\anaconda3\lib\site-packages (from matplotlib!
                  =3.6.1,>=3.1->seaborn) (1.0.5)
                 Requirement already satisfied: cycler>=0.10 in c:\users\sruja\anaconda3\lib\site-packages (from matplotlib!=3.6
                  .1,>=3.1->seaborn) (0.11.0)
                 Requirement already satisfied: fonttools>=4.22.0 in c:\users\sruja\anaconda3\lib\site-packages (from matplotlib
                 !=3.6.1,>=3.1->seaborn) (4.25.0)
                 Requirement already satisfied: kiwisolver>=1.0.1 in c:\users\sruja\anaconda3\lib\site-packages (from matplotlib
                 !=3.6.1,>=3.1->seaborn) (1.4.4)
                 Requirement already satisfied: packaging>=20.0 in c:\users\sruja\anaconda3\lib\site-packages (from matplotlib!=
                 3.6.1.>=3.1.>seaborn) (23.0)
                 Requirement already satisfied: pillow >= 6.2.0 in c: \users \sruja \anaconda 3 \lib \site-packages (from matplot lib!= 3.0) \slip 
                 6.1, >= 3.1 - seaborn) (9.4.0)
                 Requirement already satisfied: pyparsing>=2.3.1 in c:\users\sruja\anaconda3\lib\site-packages (from matplotlib!
                 =3.6.1,>=3.1->seaborn) (3.0.9)
                 Requirement already satisfied: python-dateutil>=2.7 in c:\users\sruja\anaconda3\lib\site-packages (from matplot
                 lib!=3.6.1,>=3.1->seaborn) (2.8.2)
                 Requirement already satisfied: pytz>=2020.1 in c:\users\sruja\anaconda3\lib\site-packages (from pandas>=0.25->s
                 eaborn) (2022.7)
                 Requirement already satisfied: six>=1.5 in c:\users\sruja\anaconda3\lib\site-packages (from python-dateutil>=2.
                 7->matplotlib!=3.6.1,>=3.1->seaborn) (1.16.0)
                 Note: you may need to restart the kernel to use updated packages.
 In [8]:
                 import seaborn as sns
                 import pandas as pd
 In [9]: print(sns.get dataset names())
                 ['anagrams', 'anscombe', 'attention', 'brain_networks', 'car_crashes', 'diamonds', 'dots', 'dowjones', 'exercis e', 'flights', 'fmri', 'geyser', 'glue', 'healthexp', 'iris', 'mpg', 'penguins', 'planets', 'seaice', 'taxis',
                  'tips', 'titanic']
In [10]:
                 df=pd.read csv("car crashes.csv")
                 df
```

Out[10]:		total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses	abbrev
	0	18.8	7.332	5.640	18.048	15.040	784.55	145.08	AL
	1	18.1	7.421	4.525	16.290	17.014	1053.48	133.93	AK
	2	18.6	6.510	5.208	15.624	17.856	899.47	110.35	AZ
	3	22.4	4.032	5.824	21.056	21.280	827.34	142.39	AR
	4	12.0	4.200	3.360	10.920	10.680	878.41	165.63	CA
	5	13.6	5.032	3.808	10.744	12.920	835.50	139.91	CO
	6	10.8	4.968	3.888	9.396	8.856	1068.73	167.02	СТ
	7	16.2	6.156	4.860	14.094	16.038	1137.87	151.48	DE
	8	5.9	2.006	1.593	5.900	5.900	1273.89	136.05	DC
	9	17.9	3.759	5.191	16.468	16.826	1160.13	144.18	FL
	10	15.6	2.964	3.900	14.820	14.508	913.15	142.80	GA
	11	17.5	9.450	7.175	14.350	15.225	861.18	120.92	HI
	12	15.3	5.508	4.437	13.005	14.994	641.96	82.75	ID
	13	12.8	4.608	4.352	12.032	12.288	803.11	139.15	IL
	14	14.5	3.625	4.205	13.775	13.775	710.46	108.92	IN
	15	15.7	2.669	3.925	15.229	13.659	649.06	114.47	IA
	16	17.8	4.806	4.272	13.706	15.130	780.45	133.80	KS
	17	21.4	4.066	4.922	16.692	16.264	872.51	137.13	KY
	18	20.5	7.175	6.765	14.965	20.090	1281.55	194.78	LA
	19	15.1	5.738	4.530	13.137	12.684	661.88	96.57	ME
	20	12.5	4.250	4.000	8.875	12.375	1048.78	192.70	MD
	21	8.2	1.886	2.870	7.134	6.560	1011.14	135.63	MA
	22	14.1	3.384	3.948	13.395	10.857	1110.61	152.26	MI
	23	9.6	2.208	2.784	8.448	8.448	777.18	133.35	MN
	24	17.6	2.640	5.456	1.760	17.600	896.07	155.77	MS
	25	16.1	6.923	5.474	14.812	13.524	790.32	144.45	MO
	26	21.4	8.346	9.416	17.976	18.190	816.21	85.15	MT
	27	14.9	1.937	5.215	13.857	13.410	732.28	114.82	NE
	28	14.7	5.439 4.060	4.704 3.480	13.965	14.553	1029.87 746.54	138.71	NV NH
	30	11.2	1.792	3.136	10.092 9.632	9.628 8.736	1301.52	120.21 159.85	NJ
	31	18.4	3.496	4.968	12.328	18.032	869.85	120.75	NM
	32	12.3	3.936	3.567	10.824	9.840	1234.31	150.01	NY
	33	16.8	6.552	5.208	15.792	13.608	708.24	127.82	NC
	34	23.9	5.497	10.038	23.661	20.554	688.75	109.72	ND
	35	14.1	3.948	4.794	13.959	11.562	697.73	133.52	ОН
	36	19.9	6.368	5.771	18.308	18.706	881.51	178.86	OK
	37	12.8	4.224	3.328	8.576	11.520	804.71	104.61	OR
	38	18.2	9.100	5.642	17.472	16.016	905.99	153.86	PA
	39	11.1	3.774	4.218	10.212	8.769	1148.99	148.58	RI
	40	23.9	9.082	9.799	22.944	19.359	858.97	116.29	SC
	41	19.4	6.014	6.402	19.012	16.684	669.31	96.87	SD
	42	19.5	4.095	5.655	15.990	15.795	767.91	155.57	TN
	43	19.4	7.760	7.372	17.654	16.878	1004.75	156.83	TX
	44	11.3	4.859	1.808	9.944	10.848	809.38	109.48	UT
	45	13.6	4.080	4.080	13.056	12.920	716.20	109.61	VT
	46	12.7	2.413	3.429	11.049	11.176	768.95	153.72	VA
	47	10.6	4.452	3.498	8.692	9.116	890.03	111.62	WA
	48	23.8	8.092	6.664	23.086	20.706	992.61	152.56	WV
	49	13.8	4.968	4.554	5.382	11.592	670.31	106.62	WI
	50	17.4	7.308	5.568	14.094	15.660	791.14	122.04	WY

```
Out[11]: '0.12.2'
In [12]: df.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 51 entries, 0 to 50
          Data columns (total 8 columns):
              Column
                               Non-Null Count Dtype
          0
              total
                               51 non-null
                                                float64
          1
               speeding
                               51 non-null
                                                float64
                               51 non-null
                                                float64
              alcohol
           3
              not_distracted
                               51 non-null
                                                float64
                               51 non-null
                                                float64
              no_previous
              ins_premium
                               51 non-null
                                                float64
          6
              ins_losses
                               51 non-null
                                                float64
```

In [13]: sns.scatterplot(x='total',y='speeding',data=df)

object

Out[13]: <Axes: xlabel='total', ylabel='speeding'>

dtypes: float64(7), object(1)
memory usage: 3.3+ KB

51 non-null

abbrev

In []: **from** the above graph we can tell that **as** speed increases car crashes increases

In [15]: sns.scatterplot(y='total',x='alcohol',data=df)

Out[15]: <Axes: xlabel='alcohol', ylabel='total'>

In []: We can tell from the above graph that number of alcohol drivers increases car crashes also increases

```
In [16]: | sns.lineplot(x='alcohol',y='total',data=df)
Out[16]: <Axes: xlabel='alcohol', ylabel='total'>
```


In []: number of alcohol drivers increases the number of car crashes also increases

In [17]: sns.histplot(df["ins_premium"])

Out[17]: <Axes: xlabel='ins_premium', ylabel='Count'>


```
In []: We can tell that insurance premium is high from 700 to 900
In [18]: sns.relplot(x='ins_premium',y='ins_losses',data=df)
cseaborn.axisgrid.FacetGrid at 0x249d461dc10>
```


In []: t the insurance premium increases the no. of insurance amount losses increases

In [19]: sns.histplot(df["ins_losses"])

Out[19]: <Axes: xlabel='ins_losses', ylabel='Count'>


```
In [ ]: As from the graph we see that insurance losses is high at 140
```

In [20]: sns.relplot(x="total",y="speeding",data=df,hue="no_previous")

In []: the speed increases the no. of car crashes percentage increases and we can see that no previous car crashes are increases the more accidents are happen

In [22]: sns.relplot(x="total",y="speeding",data=df,hue="not_distracted")

Out[22]: <seaborn.axisgrid.FacetGrid at 0x249d5782810>

In []: the speed increases the no. of car crashes percentage increases and we can see that not distracted car crashes speed increases the more accidents are happen

In [23]: sns.jointplot(x="not_distracted",y="no_previous",data=df)

<seaborn.axisgrid.JointGrid at 0x249d5843350>

In []: if the distraction is less the previous car accidents are less

In [28]: corr=df.corr()
corr

C:\Users\sruja\AppData\Local\Temp\ipykernel_25224\3182140910.py:1: FutureWarning: The default value of numeric_
only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid columns
or specify the value of numeric_only to silence this warning.
 corr=df.corr()

Out[28]:

1		total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses
	total	1.000000	0.611548	0.852613	0.827560	0.956179	-0.199702	-0.036011
	speeding	0.611548	1.000000	0.669719	0.588010	0.571976	-0.077675	-0.065928
	alcohol	0.852613	0.669719	1.000000	0.732816	0.783520	-0.170612	-0.112547
	not_distracted	0.827560	0.588010	0.732816	1.000000	0.747307	-0.174856	-0.075970
	no_previous	0.956179	0.571976	0.783520	0.747307	1.000000	-0.156895	-0.006359
	ins_premium	-0.199702	-0.077675	-0.170612	-0.174856	-0.156895	1.000000	0.623116
	ins_losses	-0.036011	-0.065928	-0.112547	-0.075970	-0.006359	0.623116	1.000000

In [29]: sns.heatmap(corr,annot=True)

Out[29]: <Axes: >

In []:

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js