學號:R06942082 系級:電信碩一姓名:黃釋平

請實做以下兩種不同 feature 的模型,回答第(1)~(3)題:

- (1) 抽全部 9 小時內的污染源 feature 的一次項(加 bias)
- (2) 抽全部 9 小時內 pm2.5 的一次項當作 feature(加 bias)

備註:

- a. NR 請皆設為 0,其他的數值不要做任何更動
- b. 所有 advanced 的 gradient descent 技術(如: adam, adagrad 等) 都是可以用的
- 1. (2%)記錄誤差值 (RMSE)(根據 kaggle public+private 分數), 討論兩種 feature 的影響 Sol:

	public	private
取全汙染物	8.562	5.727
取 PM2.5	7.652	5.497

只取 PM2.5 的效果明顯比取全部汙染物來的好,可能其中有不少汙染物是與 PM2.5 無關,造成 overfitting,而下一小時的 PM2.5 和先前的 PM2.5 值則有很大關係。

2. (1%)將 feature 從抽前 9 小時改成抽前 5 小時,討論其變化

		public	private
取全汙染物	九小時	8.562	5.727
	五小時	8.104	5.484
取 PM2.5	九小時	7.652	5.497
	五小時	7.825	5.675

取全汙染物時,五小時比九小時好,也許因為垃圾資訊較少;而只取 PM2.5 則相 反,同上推論,PM2.5 本身資料量越多越好。

3. (1%)Regularization on all the weight with λ =0.1、0.01、0.001、0.0001,並作圖

4. (1%)在線性回歸問題中,假設有 N 筆訓練資料,每筆訓練資料的特徵 (feature) 為一向量 \mathbf{x}^n ,其標註(label)為一存量 \mathbf{y}^n ,模型參數為一向量 \mathbf{w} (此處忽略偏權值 \mathbf{b}),則線性回歸的損失函數(loss function)為 $\mathbf{\Sigma}_{=1}^{\square}$ ($\mathbb{D}^{\square} - \mathbb{D}^{\square} \cdot \mathbb{D}$)²。若將所有訓練資料的特徵值以矩陣 $\mathbf{X} = [\mathbf{x}^1 \ \mathbf{x}^2 \ ... \ \mathbf{x}^N]^T$ 表示,所有訓練資料的標註以向量 $\mathbf{y} = [\mathbf{y}^1 \ \mathbf{y}^2 \ ... \ \mathbf{y}^N]^T$ 表示,請問如何以 \mathbf{X} 和 \mathbf{y} 表示可以最小化損失函數的向量 \mathbf{w} ?請寫下算式並選出正確答案。 (其中 $\mathbf{X}^T\mathbf{X}$ 為 invertible)

- (a) $(X^TX)X^Ty$
- (b) $(X^{T}X)^{-0}X^{T}y$
- (c) $(X^{T}X)^{-1}X^{T}y$
- (d) $(X^{T}X)^{-2}X^{T}y$

Sol:

設loss function
$$E(w) = (y - Xw)^2$$

$$= (y - Xw)^T(y - Xw)$$

$$= (y^T - w^T X^T)(y - Xw)$$

$$= y^T y - 2y^T Xw + w^T X^T Xw$$

$$\min\{E(w)\} = > \frac{\partial E(w)}{\partial w} = 0$$

$$\frac{\partial E(w)}{\partial w} = 2X^T Xw - 2X^T y = 0$$

$$X^T Xw = X^T y$$
因 $X^T X$ 可逆,兩邊共乘 $(X^T X)^{-1}$