Nadgradnja osnovnih LLM-jev: RAG in ReAct

Akademija umetne inteligence za poslovne aplikacije

Danes:

RAG in ReAct

Komuniciranje aplikacij in jezikovnih modelov: OpenAl Assistent API Sodobna obdelava naravnega jezika: nadgradnja ChatGPT-ja s knjižnico LangChain

Agenda

- oo Teoretični uvod (nadgradnja LLM-jev):
 - pristop RAG;
 - ReAct cikel.
- 01 OpenAl Assistants API
- **02** Knjižnica LangChain:
 - RAG;
 - text2sql;
 - ReAct agenti.

Statičnost velikih jezikovnih modelov

LLM-ji so naučeni na zbrani množici podatkov.

Ne morejo odgovoriti na vprašanja, katerih odgovorov niso videli.

- 1. Nedavni dogodki
- 2. Specifične domene
- 3. Privatni podatki
- 4. Halucinacije

- Nedavni dogodki
- 2. Specifične domene
- 3. Privatni podatki
- 4. Halucinacije

LLM-ji so naučeni na podatkih zbranih do neke točke v času.

Primer:

ChatGPT: I am sorry I can't answer you question, my training data cutoff point was September 2021.

- 1. Nedavni dogodki
- 2. Specifične domene
- 3. Privatni podatki
- 4. Halucinacije

Bolj kot je neka domena nišna, manj je informacij v učnih podatkih.

Primer:

- Pravo
 - Intelektualna lastnina
 - Patenti
 - Biotehnološki patenti
 - Pravni spor glede patenta za CRISPR

- 1. Nedavni dogodki
- 2. Specifične domene
- 3. Privatni podatki
- 4. Halucinacije

LLM-ji so naučeni na javno dostopnih podatkih.

Primer:

Če želimo, da LLM-ji odgovarjajo na vprašanja o našem podjetju.

- Nedavni dogodki
- Specifične domene
- Privatni podatki
- Halucinacije

Halucinacije v LLM-jih so samozavestno generiranje napačnih informacij, ki se na prvi pogled zdijo verjetne.

Poleg nevidenih informacij (1., 2., 3. na levi), se v učnih podatkih pojavlja tudi ogromno napak.

You

Did Manchester City win yesterday?

ChatGPT

Yes, Manchester City won yesterday. They defeated Manchester United with a score of 3-1.

Forbes

Posledice statičnosti

- 1. Nedavni dogodki
- 2. Specifične domene
- Privatni podatki
- 4. Halucinacije

Lawyer Used ChatGPT In Court
—And Cited Fake Cases. A Judge
Is Considering Sanctions

FORBES > BUSINESS

PORT VOICES CULTURE LIFESTYLE TRAVEL PREMIUM MORE

Toch

ChatGPT cooks up fake sexual harassment scandal and names real law professor as accused

Rešitve statičnosti

Dodatno učenje na privatnih/domenskih podatkih:

- zelo drago;
- potrebujemo veliko učno množico za kakovostne rezultate;
- v praksi deluje slabše kot ...

Rešitve statičnosti

Dodatno učenje na privatnih/domenskih podatkih:

- zelo drago;
- potrebujemo veliko učno množico za kakovostne rezultate;
- v praksi deluje slabše kot ...

- ... dodajanje informacij v *prompt*:

Andrej: Kako mi je ime?

ChatGPT: Kako naj bi to vedel?

Andrej: Ime mi je Andrej. Kako mi je ime?

ChatGPT: Andrej.

Formaliziranje dodajanja informacij v prompt

Retrieval-augmented generation (RAG)

("z iskanjem podprto tvorjenje besedil")

Formaliziranje dodajanja informacij v prompt

Retrieval-augmented generation (RAG)

("z iskanjem podprto tvorjenje besedil")

- 1. Baza znanja
- 2. Iskanje
- 3. Tvorjenje (besedila)

- 1. Baza znanja
- 2. Iskanje
- 3. Tvorjenje (besedila)

BAZA ZNANJA:

Zbirka relevantnih dokumentov, e.g.:

- interna dokumentacija, pravilniki, itd.;
- domenski dokumenti, članki, itd.;
- ..

- 1. Baza znanja
- 2. Iskanje
- 3. Tvorjenje (besedila)

BAZA ZNANJA (realizacija):

Dokumente pogosto razdelimo na:

- krajše (recimo nekaj sto besed),
- samozadostne (vsebuje vse potrebne informacije)

dele.

- 1. Baza znanja
- 2. Iskanje
- 3. Tvorjenje (besedila)

BAZA ZNANJA (realizacija):

- Dokumenti pogosto shranjeni v vektorski bazah, ki omogočajo efektivno iskanje.
- Shranimo besedilo, <u>predstavitev besedila</u>, metapodatke, ...

= vektor, t.i.: embedding oz. vložitev

/ALIKA AI

RAG

- 1. Baza znanja
- 2. Iskanje
- 3. Tvorjenje (besedila)

ISKANJE:

Pridobivanje dokumentov, ki so relevantni za odgovor na uporabnikovo vprašanje.

Relevantni = imajo podobno vektorsko predstavitev.

Podobno = glede na kosinusno podobnost.

- 1. Baza znanja
- 2. Iskanje
- 3. Tvorjenje (besedila)

KOSINUSNA PODOBNOST:

- besedila so predstavljena z vektorji;
- Evklidska razdalja ne deluje dobro pri veliko dimenzijah (*curse of dimensionality*).

- 1. Baza znanja
- 2. Iskanje
- 3. Tvorjenje (besedila)

Naivno: primerjava z vsakim vektorjem v bazi

- iskanje najbližjih sosedov (nearest neighbors search)

Vektorska baza - omogoča efektivno iskanje

približek (approximate nearest neighbors search)

- 1. Baza znanja
- 2. Iskanje
- 3. Tvorjenje (besedila)

TVORJENJE BESEDILA/ODGOVORA:

- 1. Baza znanja
- 2. Iskanje
- 3. Tvorjenje (besedila)

TVORJENJE BESEDILA/ODGOVORA:

Prompt:

Given the following information answer the question below:

{document_1 = whimsical study by a wildlife biologist}

{document_2 = wikipedia on woodchucks}

{document_3 = woodchucking 101}

User question: How much wood would a woodchuck chuck if a woodchuck could chuck wood?

ChatGPT:

According to a whimsical study by a wildlife biologist, if a woodchuck could chuck wood, it might chuck around 700 pounds.

- 1. Baza znanja
- 2. Iskanje
- 3. Tvorjenje (besedila)

TVORJENJE BESEDILA/ODGOVORA:

RAG prompt:

- V prompt dodamo nekaj najrelevantnejših dokumentov za uporabnikovo vprašanje.
- LLM pozovemo, naj informacije za odgovor črpa iz relevantnih dokumentov.
- LLM pozovemo, da naj, če v dokumentih ni informacij potrebnih za odgovor, uporabniku to pove in naj ne *shalucinira* odgovora.

Povežimo vse skupaj

"offline" del:

- priprava podatkov;
- indeksiranje.

"online" del (inferenca):

- iskanje relevantnih dokumentov;
- tvorjenje odgovora.

Primer RAG cevovoda

Vprašanja?

- 1. Nedavni dogodki
- 2. Specifične domene
- 3. Privatni podatki
- 4. Halucinacije

Kje pomaga **RAG**?

- 1. Nedavni dogodki
- 2. Specifične domene
- 3. Privatni podatki
- 4. Halucinacije

Kje pomaga **RAG**?

Specifične domene:

- baza znanja lahko vsebuje dokumente iz specifične domene, ki LLM-ju pomagajo pri odgovoru.

Privatni podatki:

- baza znanja vsebuje interne podatke.

Halucinacije:

z dodajanjem informacij v *prompt* LLM prizemljimo ter tako zmanjšamo verjetnost halucinacij.

RAG (retrieval-augmented generation)

- primernejši za statične in nestrukturirane podatke:
 - interna dokumentacija,
 - navodila za uporabo,
 - ...

 z dinamičnimi podatki in podatki v resničnem času bi bilo bolje komunicirati prek programskih vmesnikov (API-jev).

RAG (retrieval-augmented generation)

- primernejši za statične in nestrukturirane podatke:
 - interna dokumentacija,
 - navodila za uporabo,
 - ...

- z dinamičnimi podatki in podatki v resničnem času bi bilo bolje komunicirati prek programskih vmesnikov (API-jev).
 - možen pristop ReAct cikel.

ReAct cikel (Reason + Act)

- ogrodje, ki LLM-jem omogoča komunikacijo z orodji (e.g. API-ji).

ReAct cikel (Reason + Act)

- ogrodje, ki LLM-jem omogoča komunikacijo z orodji (e.g. API-ji).

Eden izmed pristopov v širšem področju uporabe LLM-jev kot agentov:

Orodja (tools)

- različna nomenklatura: orodja, akcije, API-ji, ...;
- funkcija v naši kodi, ki jo lahko kliče LLM (z nekim vhodom).

Orodja (tools)

- različna nomenklatura: orodja, akcije, API-ji, ...;
- funkcija v naši kodi, ki jo lahko kliče LLM (z nekim vhodom).

PRIMER:

- orodje za poizvedovanje po podatkovni bazi:
 - vhod: SQL poizvedba;
 - naša koda: izvede SQL poizvedbo v podatkovni bazi.
 - izhod (observation): rezultat poizvedbe.

Orodja (tools)

- različna nomenklatura: orodja, akcije, API-ji, ...;
- funkcija v naši kodi, ki jo lahko kliče LLM (z nekim vhodom).

PRIMER:

- Google orodje:
 - vhod: Google poizvedba;
 - naša koda: kliče Google Search API s to poizvedbo in vzame prvih nekaj zadetkov.
 - izhod (*observation*): prvih nekaj zadetkov obliki besedila (HTML).

Reason + Act?

- **sklepanje** (*reasoning*) pomaga LLM-ju pri izbiri orodja, tvorjenju vhoda v orodje, popravku napak, itd.
 - primer smo že videli: tok misli (chain-of-though)
- ravnanje (acting) klic orodja in pridobitev rezultata oziroma opažanja.

ReAct, cikel?

- ReAct pogosto opišemo kot thought - action - observation cikel.

- thought sklepanje
- action in observation ravnanje

Verjetno bolj jasno v obliki psevdo kode in primera

ReAct cikel psevdo koda

```
function react answer (question):
    history = [question]
    for i in range(MAX_ITERATIONS):
        thought = llm(history)
        history.add(thought)
        action = llm(history)
        tool, tool input = parse action(action)
        if tool == "answer":
            return tool input
        observation = tool(tool_input)
        history.add(action, observation)
    raise Error("Max iteration exceeded")
```


ReAct cikel primer:

User: What is the current weather in London?

React: interno

- thought: I should use Google to check the current weather in London.
- action: tool: Google, tool input: London Weather
- observation: top results from Google in HTML
- thought: I have the information to answer.
- action: tool: **Answer**, tool input: **In London it's raining as usual.**

Agent: In London it's raining as usual.

Primer prompt-a za ReAct cikel

Answer the following questions as best you can. You have access to the following tools:

Google - use this tool to obtain any information you need. The input is the search query. Answer - when you have information to answer, use this tool. The input is the answer to the user.

Use the following format:

Question: the input question you must answer

Thought: you should always think about what to do

Tool: the action to take, should be one of [Google, Answer]

Tool Input: the input to the tool

Observation: the result of the tool

... (this Thought/Tool/Tool Input/Observation can repeat N times)

Question: {input}

Thought:

Vprašanja?