

Probability and Statistics

Assignment-1

NAME: Mohammed Kaif K

REG.NO: 23MIS0258

SUBJECT CODE: IMAT202P

SUBJECT TITLE: Probability And Statistics Lab

LAB SLOT : L35+L36

Instructions:

- Use A4 size papers to answer the questions and upload (scanned copy without any shadows on it) the same.
- Every scanned page must contain your registered number and Name.
 Answer all questions theoretically and write R-programming for the same.

S. No.	Question												
	Find mean, median ,mode (theoretically) and also verify the same with R programming for the following frequency distribution												
1.	1	Age group		20-	25-	30-	35-	40-	45-	50-	55-	60-	
	(in years)			25	30	35	40	45	50	55	60	65	
	1	No	of	30	160	210	180	145	105	70	60	40	
	l	Members											
2.	dev	Calculate Quartile deviation and Mean deviation from mean and standard deviation (theoretically) and also verify the same with R programming for the following data:											
	M	arks	0-10	10-	20	20-30	30-40	40-50	50-60	60	-70		
		o.of	6	5		8	15	7	6	3			
	Stı	ıdents											

Theoretical Method:

Assignment -1.

None: Mohammed Kolf K

Plegno: 23M150258

D. Mean, Median and Mode for age groups distribution

Age graps: 20-25 25-30 30-35 35-40 40-45 45-50 50-55 53-60 60-45

Ape graps: 20-25 25-30 32.5 37.5 42.5 47.5 52.5 53.5 62.5

Anid points: 22.5 27.5 32.5 37.5 42.5 47.5 52.5 53.5 62.5

Anid points: 1000

Total members: 1000

mean:

mean:

$$freq$$
: 22.5 7430 + 27.5 x160 + 32.5 x240 + 37.5 x180

+42.5 x145 + 147.5 x105 + 52.5 x70 + 57.5 x60

+42.5 x145 + 147.5 x105 + 52.5 x70 + 57.5 x60

+62.5 x40

1000

 $freq$: 39.425

median:

 $freq$: 30, 190, 400, 580, 725, 830, 900, 960, 1000

median:

 $freq$: 30 + $freq$: 30 - 35

median: $freq$: 30 - 35 (highest frequency is 200)

mode: 41.5 freq

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

Mean Deviation from Mean. mean Deviation = Elmid-mean / x teq E freq = |5-33.4| ×6+ |15-33.4| ×5+125-33.4| ×8 + | 35-33.4 | x15 + 145-33.4 | x7+ | 53-33.4 | x6 + 165-33.4 (x3 = 1704+92+67.2+24+81.2+129.6+94.3 = 659.2 = 13.184 Standard Quiation . Varione: \(\int \text{(mid-meon)}^2 \times \frac{1}{2} \left(5-32.4)^2 \times \frac{1}{2} \left(15-32.4)^2 \times \frac{ £ f + (25-33.4)2×8+(35-33.4)215 + (45-33,4)2×7+ (55-33.4)2×6 +(65-33,4)2×3 13871.2 = 277.42 Standard Deviation = 5277.42 = 16.65653

R program code and output:

1.

Code:

```
age_intervals <- c(22.5, 27.5, 32.5, 37.5, 42.5, 47.5, 52.5, 57.5, 62.5)
age_counts <- c(30, 160, 210, 180, 145, 105, 70, 60, 40)

total_count <- sum(age_counts)
average_age <- sum(age_intervals * age_counts) / total_count

all_ages <- rep(age_intervals, age_counts)
middle_value <- median(all_ages)

most_common_age <- age_intervals[which.max(age_counts)]

average_age
middle_value
most_common_age
```

Output:

```
[Previously saved workspace restored]
> age_intervals <- c(22.5, 27.5, 32.5, 37.5, 42.5, 47.5, 52.5, 57.5, 62.5)
> age_counts <- c(30, 160, 210, 180, 145, 105, 70, 60, 40)
> total_count <- sum(age_counts)
> average_age <- sum(age_intervals * age_counts) / total_count
> all_ages <- rep(age_intervals, age_counts)
> middle_value <- median(all_ages)
> most_common_age <- age_intervals[which.max(age_counts)]
> average_age
[1] 39.425
> middle_value
[1] 37.5
> most_common_age
[1] 32.5
> |
```

```
Code:
```

```
marks <- c(5, 15, 25, 35, 45, 55, 65)
students < c(6, 5, 8, 15, 7, 6, 3)
expanded_data <- rep(marks, students)</pre>
Q1 <- quantile(expanded_data, 0.25)
Q3 <- quantile(expanded_data, 0.75)
quartile_deviation <- (Q3 - Q1) / 2
mean_value <- mean(expanded_data)</pre>
mean_deviation <- mean(abs(expanded_data - mean_value))</pre>
population_standard_deviation <- sqrt(sum((expanded_data - mean_value)^2) /
length(expanded_data))
cat("Q1:", Q1, "\n")
cat("Q3:", Q3, "\n")
cat("Quartile Deviation:", quartile_deviation, "\n")
cat("Mean Value:", mean_value, "\n")
cat("Mean Deviation:", mean_deviation, "\n")
cat("Standard Deviation:", population_standard_deviation, "\n")
```

Output:

```
> marks <- c(5, 15, 25, 35, 45, 55, 65)
> students <- c(6, 5, 8, 15, 7, 6, 3)
> expanded_data <- rep(marks, students)
>
Q1 <- quantile(expanded_data, 0.25)
> Q3 <- quantile(expanded_data, 0.75)
> quartile_deviation <- (Q3 - Q1) / 2
>
> mean_value <- mean(expanded_data)
> mean_deviation <- mean(abs(expanded_data - mean_value))
> population_standard_deviation <- sqrt(sum((expanded_data - mean_value)^2) / 1$
> cat("Q1:", Q1, "\n")
Q1: 25
> cat("Q3:", Q3, "\n")
Q3: 45
> cat("Quartile Deviation: 10
> cat("Mean Value:", mean_value, "\n")
Mean Value: 33.4
> cat("Mean Deviation:", mean_deviation, "\n")
Mean Deviation: 13.184
> cat("Standard Deviation:", population_standard_deviation, "\n")
Standard Deviation: 16.65653
> |
```