## Trabalho Prático II - ACO

# Daniel Carneiro Universidade Federal de Minas Gerais Belo Horizonte, MG, 31.270-901

dennys@ufmg.br

### **Abstract**

O objetivo desse trabalho foi a implementação de um algoritmo de **Ant Colony Optimization** (ACO) para o **longest path problem**. O algoritmo foi implementado em python 3.10 e utiliza a biblioteca externa numpy.

#### 1. Introduction

Ant Colony Optimization (ACO) é uma metaheurística utilizada para resolver problemas que podem ser reduzidos a encontrar bons caminhos em grafos. Nessa metaheurística utilizamos formigas artificiais para caminhar no gráfico e, imitando o comportamento de formigas reais, deixar feromônios no melhor caminho para guiar (probabilisticamente) as outras formigas para caminhos bons.

Nesse trabalho foi estudado e implementado um algoritmo de ACO com o objetivo de aproximar uma solução para o **longest path problem**, no qual o objetivo é encontrar o maior caminho em um grafo entre quaisquer dois vértices. Nas próximas sessões iremos descrever as decisões de implementação, otimização de parâmetros, experimentos e resultados.

## 2. Decisões de Implementação

A versão de ACO implementada foi a  $\mathcal{MMAS}$  (Max Min Ant System) 1, utilizando o descrito no livro  $Ant\ colony$  optimization (Dorigo and Stutzle)[1]. As decisões tomadas foram descritas a seguir.

### 2.1. Paralelismo

O algoritmo 1 mostra como que o paralelismo foi implementado, nós construímos os caminhos em paralelo, e atualizamos os feromônios de maneira sequencial.

## 2.2. Representação da Solução

A solução é representada pela sequência de vértices que visitamos (e.g.  $v_2v_1v_3$ ).

### **Algorithm 1** ACO

```
best \leftarrow (0, [])
Initialize graph with t_{max} pheromones on every edge
while t < \maxIt do

Build popSize solutions in parallel \rightarrow S
itbest \leftarrow (max S.length, max S.path)
if itbest[0] > best[0] then
best \leftarrow itbest
end if

r \leftarrow Choose from {best, itbest} with probabilities
(t/\maxIt, 1 - t/\maxIt)
Update pheromones with r.path
t \leftarrow t + 1
end while
return best
```

### 2.3. Probabilidade de Transição

A probabilidade de transição por uma aresta é dada pela equação

$$\frac{w^{\alpha}n^{\beta}}{\sum_{v_i \in N} w_i^{\alpha} n_i^{\beta}}$$

Onde w é o feromônio da aresta, n é o peso, N é a vizinhança, e  $n_i$  e  $w_i$  são o peso e o feromônio da aresta que conecta o vértice atual a i.

### 2.4. Atualização dos Feromônios

O  $\mathcal{MMAS}$  têm como característica a utilização de um limite mínimo e máximo para os feromônios, nesse trabalho foi utilizado um limite variável onde  $t_{max}$  é o tamanho do caminho sendo utilizado para atualizar os feromônios dividido pela taxa de evaporação e  $t_{min}$  é  $t_{max} \cdot ((1 - \sqrt[n]{0.05})/((avg-1)\sqrt[n]{0.05}))$  onde n é o número de vértices do grafo e avg é a média de arestas que saem de um vértice.

Como explicitado no algoritmo 1, no inicio das iterações nós atualizamos o feromônio utilizando com maior probabilidade o melhor caminho encontrado naquela iteração para promover exploração, e depois se torna mais provável que utilizemos o melhor caminho encontrado até então para promover o exploitation.

### 2.5. Parâmetros

Os parâmetros ajustáveis pelo usuário são o número de iterações, o número de formigas,  $\alpha$ ,  $\beta$  e a taxa de evaporação  $\rho$ . Esses parâmetros foram ajustados para o problema de caminho mais longo na sessão a seguir.

# 3. Otimização de Parâmetros

Os parâmetros iniciais utilizados foram os da tabela 1 como sugerido por Dorigo and Stutzle[1]. Todos os parâmetros foram ajustados utilizando o arquivo de testes *entrada3.txt*, por possuir o maior número de caminhos possíveis e, portanto, maior variedade de soluções.

Em todos os testes foram realizadas 30 execuções, e todos os dados representados nos gráficos são a média dos resultados obtidos nas 30 execuções.

Table 1. Parâmetros iniciais,  $\rho$  é a taxa de evaporação,  $C^{fn}$  é o custo da solução obtida pela heurística gulosa de vizinho mais distante.

| Parâmetro           | Valor           |
|---------------------|-----------------|
| Feromônio Inicial   | $1/\rho C^{fn}$ |
| Número de Formigas  | 10              |
| β                   | 5               |
| ρ                   | 0.02            |
| $\alpha$            | 1               |
| Número de iterações | 400             |

## 3.1. Número de Formigas

Os gráficos 1 e 2 mostram o impacto do número de formigas na melhor solução e no tempo de execução. Foi determinado que os ganhos pelo aumento de população não justificam o aumento de tempo de execução. Por isso o número de formigas foi mantido em 10.



Figure 1. Melhor solução encontrada para diversos números de formigas



Figure 2. Tempo de execução por número de formigas

## 3.2. Iterações

O gráfico 3 mostra a melhor solução encontrada por iteração, e o gráfico 4 mostra o tempo de execução do teste para números máximos de iterações diferentes. Como o algoritmo é O(n) em relação ao número de iterações e há ganhos até 700 iterações, foi escolhido 700 para o número de iterações.



Figure 3. Melhor solução encontrada por iteração



Figure 4. Tempo de execução por iteração

## 3.3. Beta

O gráfico 5 mostra o valor da melhor solução encontrada para diferentes valores de  $\beta$ . O  $\beta$  basicamente é o peso que

damos para seguir a aresta de maior comprimento, e como quanto maior o  $\beta$  melhor a solução, surge uma dúvida se na verdade a heurística de vizinhos mais distantes é melhor que o ACO implementado. Para testar essa hipótese foi encontrada a melhor solução para essa heurística setando  $\alpha$  em 0 e iniciando uma formiga em cada vértice do grafo. Ficou claro que os feromônios ainda tinham um papel importante, e a implementação do ACO foi justificada. Foi escolhido  $\beta=75$ .



Figure 5. Melhor solução encontrada para diferentes valores de  $\beta$ 

### 3.4. Rho

O gráfico 6 mostra o valor da melhor solução para diferentes valores de  $\rho$ , como 0.08 obteve os melhores resultados e uma convergência mais suave, optou-se por utilizar  $\rho=0.08$ .



Figure 6. Melhor solução encontrada para diferentes valores de  $\rho$ 

### 3.5. Alpha

Talvez não faça tanto sentido ajustar  $\alpha$ , uma vez que o ajuste de  $\beta$  já seja um ajuste indireto de  $\alpha$ , porém com objetivo explorativo, também realizamos um experimento para  $\alpha$ . Os resultados estão ilustrados pelo gráfico 7. Foi observado que  $\alpha=2$  obteve resultados marginalmente melhores que  $\alpha=1$  consistentemente em múltiplas execuções do teste. Isso provavelmente ocorreu pois o ajuste de  $\rho$  alterou o impacto que os feromônios têm para encontrar um melhor

caminho. Optou-se então por utilizar  $\alpha = 2$ .



Figure 7. Melhor solução encontrada para diferentes valores de  $\alpha$ 

#### 3.6. Parâmetros Finais

A tabela 2 apresenta os parâmetros escolhidos. E o gráfico 8 apresenta o resultado da execução com esses parâmetros.

 Table 2. Parâmetros finais

 Parâmetro
 Valor

 Iterações
 700

 Número de Formigas
 10

 Beta
 75

 Rho
 0.08

 Alpha
 2



Figure 8. Melhor solução até então (best-so-far), melhor solução da iteração atual, pior solução e solução média para os parâmetros finais.

Na sessão seguinte iremos descrever os resultados do algoritmo para os três conjuntos de dados.

### 4. Resultados

Nessa sessão iremos apresentar três tabelas (3, 4, 5) com estatísticas descritivas sobre as soluções encontradas.

Table 3. Resultados para entrada1.txt

| count | mean | std |
|-------|------|-----|
| 30    | 990  | 0   |

Table 4. Resultados para entrada2.txt

| count | mean      | std     | min | 25% | max |
|-------|-----------|---------|-----|-----|-----|
| 30    | 175.56667 | 0.93526 | 173 | 176 | 176 |

Table 5. Resultados para entrada3.txt

| count | mean | std |
|-------|------|-----|
| 30    | 9990 | 0   |

## 5. Conclusão

O fato do desvio padrão para as entradas 1 e 3 serem 0 é um indicio de que possivelmente o algoritmo encontrou o ótimo toda vez. Para a entrada 2 temos que no percentil .25 encontramos o ótimo. Isso também indica que para os parâmetros finais o número de formigas e o número de iterações são maiores do que o necessário, isso é evidenciado ainda mais pelo gráfico 8 que na iteração 300 o algoritmo já havia convergido. Portanto poderíamos executar o algoritmo mais rapidamente sem comprometer qualidade da solução, por exemplo definindo uma condição de parada após x execuções sem melhora, ou simplesmente diminuindo o número máximo de execuções diretamente.

Seria interessante futuramente revisitar a etapa de otimização de parâmetros partindo dos parâmetros atuais, para otimizar o tempo de execução e qualidade das soluções. Seria interessante também alterar a ordem de otimização de parâmetros, por exemplo otimizando  $\rho$  antes de  $\beta$ .

### References

[1] Marco Dorigo and Thomas Stutzle. *Ant colony optimization*. en. A Bradford Book. Cambridge, MA: Bradford Books, June 2004.