

Join the NVIDIA Developer Program

Access everything you need to develop with NVIDIA products.

Register Now

developer.nvidia.com

DEEP LEARNING Deep Learning SDK High-performance tools and libraries for deep learning

ACCELERATED COMPUTING

NVIDIA ComputeWorks

Everything scientists and engineers need to build GPU-accelerated applications

AUTONOMOUS VEHICLES

NVIDIA DRIVE Platform

Deep learning, HD mapping and supercomputing solutions, from ADAS to fully autonomous

SMART CITIES

NVIDIA Metropolis

Edge-to-cloud development platform

for smart cities

Join the NVIDIA Developer Program

Access everything you need to develop with NVIDIA products.

Register Now

developer.nvidia.com

DEEP LEARNING Deep Learning SDK High-performance tools and libraries for deep learning

ACCELERATED COMPUTING

NVIDIA ComputeWorks

Everything scientists and engineers need to build GPU-accelerated applications

AUTONOMOUS VEHICLES

NVIDIA DRIVE Platform

Deep learning, HD mapping and supercomputing solutions, from ADAS to fully autonomous

SMART CITIES

NVIDIA Metropolis

Edge-to-cloud development platform

for smart cities

ELEVEN YEARS OF GPU COMPUTING

NVIDIA IS DEEPLY INVESTED IN GPU COMPUTING

V100 Miracles

NVIDIA DGX-1

NVIDIA DGX SATURNV

65x in 3 Years

3 WAYS TO ACCELERATE APPLICATIONS

Applications

Libraries

OpenACC Directives Programming Languages

"Drop-in"
Acceleration

Easily Accelerate Applications

Maximum Flexibility

HOW GPU ACCELERATION WORKS

THE BASICS

Heterogenous Computing

- Host: The CPU and its memory (host memory)
- Device: The GPU and its memory (device memory)

Host

ACCELERATING APPLICATIONS WITH CUDA C/C++

Hands-On Lab

Register at

https://developer.nvidia.com/

"NVIDIA QwikLabs"

https://nvlabs.qwiklab.com

THREAD HIERARCHY

Grid, Block & Threads

TESLA V100

21B transistors 815 mm²

80 SM 5120 CUDA Cores 640 Tensor Cores

16 GB HBM2 900 GB/s HBM2 300 GB/s NVLink

*full GV100 chip contains 84 SMs

VOLTA GV100 SM

	GV100
FP32 units	64
FP64 units	32
INT32 units	64
Tensor Cores	8
Register File	256 KB
Unified L1/Shared memory	128 KB
Active Threads	2048

TESLA V100

The Fastest and Most Productive GPU for AI and HPC

HOW TO CONTINUING LEARNING?

DLI and Hands-on Labs

https://www.nvidia.com/en-us/deep-learning-ai/education/

- Self-paced labs for all NVIDIA technologies
 - https://nvidia.qwiklab.com

NVIDIA HW GRANT PROGRAM

Titan X Pascal

- Scientific Computing
- HPC
- Deep Learning

Quadro P6000

- Scientific Visualization
- Virtual Reality

Jetson TX2 (Dev Kit)

- Robotics
- Autonomous Machines

https://developer.nvidia.com/academic_gpu_seeding

http://www.nvidia.com/object/inception-program.html

