1 - 10 Parametric representations

What curves are represented by the following? Sketch them.

1.
$$\{3 + 2 \cos[t], 2 \sin[t], 0\}$$

ParametricPlot3D[$\{3+2\cos[t], 2\sin[t], 0\}$, $\{t, 0, 2\pi\}$, ImageSize $\rightarrow 300$]

Above: this is a circle. Center {3, 0}, radius 2.

3.
$$\{0, t, t^3\}$$

ParametricPlot3D[$\{0, t, t^3\}$, $\{t, 0, 2\pi\}$, AspectRatio $\rightarrow 1$, ImageSize $\rightarrow 300$]

Above: this looks like half of a 'u' shape. The text answer calls it a cubic parabola.

5. $\{2 + 4 \cos[t], 1 + \sin[t], 0\}$

ParametricPlot3D[$\{2 + 4 \cos[t], 1 + \sin[t], 0\}, \{t, 0, 2\pi\},$ AspectRatio → 1, ImageSize → 300, PlotStyle → Thickness[0.004]]

Above: this looks like an ellipse.

7. {4 Cos[t], 4 Sin[t], 3 t}

ParametricPlot3D[$\{4\cos[t], 4\sin[t], 3t\}$, $\{t, 0, 2\pi\}$, AspectRatio → 1, ImageSize → 300, PlotStyle → Thickness[0.004]]

Above: this is a helix.

9. {Cos[t], Sin[2 t], 0}

ParametricPlot3D[$\{ \cos[t], 1 + \sin[2t], 0 \}, \{t, 0, 2\pi \},$ AspectRatio → 1, ImageSize → 300, PlotStyle → Thickness[0.004]]

Above: this is a figure-8, a "Lissajous".

11 - 20 Find a parametric representation

11. Circle in the plane z = 1 with center $\{3, 2\}$ and passing through the origin.

Clear["Global`*"]

I need the radius.

e1 = Norm[{3, 2}]

 $\sqrt{13}$

e2 = ParametricPlot[
$$\left\{3 + \sqrt{13} \, \operatorname{Cos}[t], \, 2 + \sqrt{13} \, \operatorname{Sin}[t]\right\}, \, \{t, \, 0, \, 2 \, \pi\}, \, \operatorname{ImageSize} \rightarrow 300 \right]^{6}$$

The above result in 2D shows that the equation works. Only necessary to add the z-plane requirement.

e3 = ParametricPlot3D[
$$\left\{3 + \sqrt{13} \; \text{Cos[t], 2} + \sqrt{13} \; \text{Sin[t], 1}\right\}$$
, $\left\{\text{t, 0, 2} \; \pi\right\}$, ImageSize \rightarrow 300]

With the pseudo-parallax effect, it is hard to tell whether the origin is part of the circle.

e4 = Solve
$$\left[3 + \sqrt{13} \operatorname{Cos}[t] = 0 \&\& 2 + \sqrt{13} \operatorname{Sin}[t] = 0\right]$$
 $\left\{\left\{t \to \operatorname{ConditionalExpression}\left[-\pi + \operatorname{ArcTan}\left[\frac{2}{3}\right] + 2\pi\operatorname{C}[1], \operatorname{C}[1] \in \operatorname{Integers}\right]\right\}\right\}$ e5 = N $\left[\pi + \operatorname{ArcTan}\left[\frac{2}{3}\right]\right]$ 3.7296

Since this result points to a number in the defining interval of the function, I take it to show that (0,0,1) is in the circle.

13. Straight line through $\{2, 1, 3\}$ in the direction of $\mathbf{i} + 2\mathbf{j}$.

```
Clear["Global`*"]
```

```
Show[ParametricPlot3D[\{u + 2, 2u + 1, 3\}, \{u, -3, 3\},
  PlotStyle \rightarrow {Red, Thickness[0.03], Opacity[.2]}, ImageSize \rightarrow 200],
 ParametricPlot3D[\{t+2, 2t+1, 3\}, \{t, -3, 3\},
  PlotStyle → {Black, Thickness[0.003]}], ParametricPlot3D[
  \{t+1, 2t+2, 0\}, \{t, -3, 3\}, PlotStyle \rightarrow \{Teal, Thickness[0.003]\}\},\
 ListPointPlot3D[\{2, 1, 3\}, \{1, 2, 0\}\}, PlotStyle \rightarrow Blue], Graphics3D[
  {Text["2,1,3", {2.2, 1.2, 3.2}], Text["1,2,0", {1.2, 2.2, .2}]}]]
```


The red line goes through the specified point and has the same direction as [1,2,0]. The text answer line (black) runs inside the red line.

15. Straight line y = 4x - 1, z = 5x.

```
Clear["Global`*"]
Solve [y = 4 \times -1 \&\& z = 5 \times \&\& x = 1]
\{ \{x \rightarrow 1, y \rightarrow 3, z \rightarrow 5\} \}
Solve [y = 4 x - 1 \&\& z = 5 x \&\& x = 4]
\{ \{ x \rightarrow 4, y \rightarrow 15, z \rightarrow 20 \} \}
```

 $e1 = Show[ParametricPlot3D[{3 u + 1, 12 u + 3, 15 u + 5}, {u, -3, 3},$ PlotStyle → {Red, Thickness[0.005], Opacity[.4]}], ParametricPlot3D[$\{t, 4t-1, 5t\}, \{t, -3, 3\}, PlotStyle \rightarrow Thickness[0.003]],$ ListPointPlot3D[$\{\{1, 3, 5\}, \{4, 15, 20\}\}$, PlotStyle \rightarrow Red]]

Above: the line shown meets the requirements. The text answer line is shown within.

17. Circle
$$\frac{1}{2}x^2 + y^2 = 1$$
, $z = y$.

Clear["Global`*"]

This didn't look like a circle when I first did the problem. This problem is treated in the s.m., so I take that general direction. It looks like an ellipse, and the form of the equation can be changed.

 $e1 = \frac{x^2}{\left(\sqrt{2}\right)^2} + y^2 = 1$. From the general form, it can be seen that it is an ellipse with semi-

major axis of $\sqrt{2}$. Putting that into parametric form would be $(\sqrt{2}\cos u + a) + (\sin u + b)$, where the a and b are center locations. Here both are zero.

 $\texttt{ParametricPlot3D} \big[\big\{ \sqrt{2} \; \texttt{Cos[u], Sin[u], Sin[u]} \big\}, \; \{\texttt{u, 0, 2Pi}\}, \\$

The z part of the equation just mirrors y, it's not necessary to ponder what effect it might have. But after it is plotted, it can be seen to be a true circle, due to that z component, which represents its tilt away from the xy-plane.

19. Hyperbola
$$4x^2 - 3y^2$$
, $z = -2$

Clear["Global`*"]

Hyperbola. I looked this one up before. The parametric version is $\frac{a}{\cos t}$, $b \tan t$. In this case $a = 1, b = -\frac{\sqrt{3}}{2}.$

$$\begin{split} &\operatorname{Show} \big[\operatorname{ParametricPlot3D} \Big[\Big\{ \frac{1}{\operatorname{Cos}[u]} \,,\, -\frac{\sqrt{3}}{2} \operatorname{Tan}[u] \,,\, -2 \Big\} \,, \\ &\{u,\, 0,\, 2\,\pi\} \,,\, \operatorname{Exclusions} \to \{\operatorname{Cos}[u] = 0\} \,,\, \operatorname{ImageSize} \to 300 \,, \\ &\operatorname{PlotStyle} \to \{\operatorname{Thickness}[0.015] \,,\, \operatorname{Opacity}[.4] \} \Big] \,,\, \operatorname{ParametricPlot3D} \Big[\\ &\Big\{ \Big\{ \operatorname{Cosh}[t] \,,\, \frac{\sqrt{3}}{2} \operatorname{Sinh}[t] \,,\, -2 \Big\} \,,\, \Big\{ -\operatorname{Cosh}[t] \,,\, \frac{\sqrt{3}}{2} \operatorname{Sinh}[t] \,,\, -2 \Big\} \Big\} \,, \\ &\{t,\, -2\,\pi,\, 2\,\pi\} \,,\, \operatorname{ImageSize} \to 300 \,,\, \operatorname{PlotStyle} \to \{\operatorname{Red} \,,\, \operatorname{Thickness}[0.003] \} \Big] \Big] \end{split}$$

Three things going on here. The first is my own plot of the hyperbola, skinny black. The second and third are the fatter versions of the hyperbola, but only the red one is contained in the text answer. It deficient to me because it is necessary to show two functions in order to get both sides of the hyperbola.

21. Orientation. Explain why setting $t = -t^*$ reverses the orientation of {a Cos[t], a Sin[t], 0.

23. CAS project. Famous curves in polar form. Use your CAS to graph the following curves given in polar form $\rho = \rho(\theta)$, $\rho^2 = x^2 + y^2$, $Tan[\theta] = \frac{y}{x}$, and investigate their form depending on parameters *a* and *b*.

$$\rho = a \, \theta \qquad \qquad \text{Spiral of Archimedes}$$

$$\rho = a \, e^{b \, \theta} \qquad \qquad \text{Logarithmic spiral}$$

$$\rho = \frac{2 \, a \, \sin[\theta]^2}{\cos[\theta]} \qquad \qquad \text{Cissoid of Diocles}$$

$$\rho = \frac{a}{\cos[\theta]} + b \qquad \qquad \text{Conchoid of Nicomedes}$$

$$\rho = \frac{a}{\theta} \qquad \qquad \text{Hyperbolic spiral}$$

$$\rho = \frac{3 \, a \, \sin[2 \, \theta]}{\cos[\theta]^3 + \sin[\theta]^3} \qquad \qquad \text{Folium of Descartes}$$

$$\rho = 2 \, a \, \frac{\sin[3 \, \theta]}{\sin[2 \, \theta]} \qquad \qquad \text{Maclaurin's trisectrix}$$

$$\rho = 2 \, a \, \cos[\theta] + b \qquad \qquad \text{Pascal's snail}$$

24 - 28 Tangent

Given a curve C: $\mathbf{r}[t]$, find a tangent vector $\mathbf{r}'[t]$, a unit tangent vector u'[t], and the tangent of C at P. Sketch curve and tangent.

```
25. r[t] = \{10 \text{ Cos}[t], 1, 10 \text{ Sin}[t]\}, P : \{6, 1, 8\}
Clear["Global`*"]
e1 = Solve[10 Cos[t] == 6 && 10 Sin[t] == 8]
\left\{\left\{t \to ConditionalExpression\left[ArcTan\left[\frac{4}{3}\right] + 2\pi C[1], C[1] \in Integers\right]\right\}\right\}
e2 = e1[[1, 1, 2, 1]]
ArcTan\left[\frac{4}{3}\right] + 2\pi C[1]
e3 = e2 /. C[1] \rightarrow 0
ArcTan\left[\frac{4}{3}\right]
Above: this is the value that satisfies the problem vector function for the given point.
e4 = r[t] = {10 Cos[t], 1, 10 Sin[t]}
{10 Cos[t], 1, 10 Sin[t]}
e5 = r\left[ArcTan\left[\frac{4}{3}\right]\right]
{6, 1, 8}
The above shows that P corresponds to t = \operatorname{ArcTan}\left[\frac{4}{3}\right] with regard to the given function r.
e6 = r' [ArcTan \left[\frac{4}{3}\right]]
 \{-8, 0, 6\}
e7 = e5 + we6
  \{6 - 8w, 1, 8 + 6w\}
Above: this is the tangent of C:r[t] at P, called Q(w).
Below: using the (8) on p. 384 of the text, I find the unit tangent at P,
e8 = r'[t]
{-10 Sin[t], 0, 10 Cos[t]}
e9 = Norm[e8]
\sqrt{(100 \text{ Abs} [\cos[t])^2 + 100 \text{ Abs} [\sin[t])^2)}
```

 $e14 = e12[{6, 1, 8}]$

```
e10 = FullSimplify[e9]
10 \sqrt{\text{Abs}[\text{Cos}[t]]^2 + \text{Abs}[\text{Sin}[t]]^2}
e11 = 10 /. \sqrt{\text{Abs}[\text{Cos}[t]]^2 + \text{Abs}[\text{Sin}[t]]^2} \rightarrow 1
10
e12 = e8 \frac{1}{e11}
  {-Sin[t], 0, Cos[t]}
```

Above: this is the unit tangent. The above answers agree with the text.

```
{-Sin[t], 0, Cos[t]}[{6, 1, 8}]
e13 = Show[ParametricPlot3D[{10 Cos[t], 1, 10 Sin[t]}, {t, -3.275, 3},
    PlotStyle \rightarrow {Red, Thickness[0.005], Opacity[.4]}, ImageSize \rightarrow 300],
  ListPointPlot3D[\{\{6, 1, 8\}, \{0, 1, 0\}\}, PlotStyle \rightarrow Blue],
  ParametricPlot3D[\{6-8w, 1, 8+6w\}, \{w, -1, 1\},
   PlotStyle → {Green, Thickness[0.005]}],
  Graphics3D[{Text["{6,1,8}", {6.7, 1, 8.7}]}]]
```


27.
$$r[t] = \{t, \frac{1}{t}, 0\}, P: \{2, \frac{1}{2}, 0\}$$

Clear["Global`*"]

By inspection it can be seen that P represents t=2, as demonstrated in e2.

e1 =
$$r[t_{-}] = \{t, \frac{1}{t}, 0\}$$

 $\{t, \frac{1}{t}, 0\}$

$$\{2, \frac{1}{2}, 0\}$$

$$\left\{1, -\frac{1}{t^2}, 0\right\}$$

$$\{1, -\frac{1}{4}, 0\}$$

$$e5 = e2 + we4$$

$$\left\{2 + w, \frac{1}{2} - \frac{w}{4}, 0\right\}$$

Above: the tangent of C:r[t], matching the answer in the text.

$$\sqrt{1+\frac{1}{\text{Abs[t]}^4}}$$

$$e10 = \frac{e3}{e9}$$

$$\left\{\frac{1}{\sqrt{1+\frac{1}{Abs[t]^4}}}, -\frac{1}{t^2\sqrt{1+\frac{1}{Abs[t]^4}}}, 0\right\}$$

Above: this is the unit tangent.

e13 = Show[ParametricPlot3D[
$$\{t, \frac{1}{t}, 0\}, \{t, -3.5, 3.5\},\]$$
 PlotStyle \rightarrow {Red, Thickness[0.005], Opacity[.4]}, ImageSize \rightarrow 300], ListPointPlot3D[$\{\{2, \frac{1}{2}, 0\}, \{0, 0, 0\}\}, PlotStyle \rightarrow Blue], ParametricPlot3D[$\{2 + w, \frac{1}{2} - \frac{w}{4}, 0\}, \{w, -1, 1\},\]$ PlotStyle \rightarrow {Green, Thickness[0.005]}], Graphics3D[$\{\text{Text}["\{2, \frac{1}{2}, 0\}", \{2.1, 1, 0\}]\}]$]$

29 - 32 Length

Find the length and sketch the curve.

```
29. Catenary \mathbf{r}[t] = \{t, Cosh[t]\} from t = 0 to t = 1.
```

```
Clear["Global`*"]
e1 = r[t_] = {t, Cosh[t]}
{t, Cosh[t]}
e2 = r'[t]
{1, Sinh[t]}
e3 = len = Integrate \left[\sqrt{r'[t].r'[t]}, \{t, 0, 1\}\right]
 Sinh[1]
```

e4 = N[Sinh[1]]

1.1752

Above in green: two values which agree with the answer in the text.

```
Show[ParametricPlot[{t, Cosh[t]}, {t, 0, 1},
  PlotStyle → {Red, Thickness[0.005], Opacity[.4]}, ImageSize → 300],
 \label{listPlot} ListPlot[\{\{0\,,\,Cosh[0]\}\,,\,\,\{1\,,\,Cosh[1]\}\}\,,\,\,PlotStyle \rightarrow Blue]\,,
 AxesOrigin → Automatic]
```


31. Circle $r[t] = \{a Cos[t], a Sin[t]\}$ from $\{a, 0\}$ to $\{0, a\}$.

```
Clear["Global`*"]
e1 = r[t_] = {a Cos[t], a Sin[t]}
{a Cos[t], a Sin[t]}
e2 = r'[t]
{-aSin[t], aCos[t]}
e3 = len = Integrate \left[\sqrt{r'[t].r'[t]}, \left\{t, 0, \frac{\pi}{2}\right\}\right]
```

```
\sqrt{a^2} \pi
```

Above: The answer shown agrees with the text. Integration limits based on initial values.

$$Show \Big[ParametricPlot \Big[\{ 2 \, Cos[t] \,, \, 2 \, Sin[t] \} \,, \, \Big\{ t, \, 0 \,, \, \frac{\pi}{2} \Big\} \,,$$

$$PlotStyle \rightarrow \{ Red, \, Thickness[0.005] \,, \, Opacity[.4] \} \,, \, ImageSize \rightarrow 200 \Big] \,,$$

$$ListPlot \Big[\Big\{ \{ 2 \, Cos[0] \,, \, 2 \, Sin[0] \} \,, \, \Big\{ 2 \, Cos \Big[\frac{\pi}{2} \Big] \,, \, 2 \, Sin \Big[\frac{\pi}{2} \Big] \Big\} \Big\} \,, \, PlotStyle \rightarrow Blue \Big] \,,$$

$$AxesOrigin \rightarrow Automatic \Big]$$

33. Plane curve. Show that numbered line (10) on p. 385 implies $\ell = \int_a^b 1 + (y')^2 dx$ for the length of a plane curve C: y = f[x], z = 0, and a = x = b.

35 - 46 Curves in mechanics

Forces acting on moving objects (cars, airplanes, ships, etc.) require the engineer to know corresponding tangential and normal accelerations. In problems 35 - 38 find them, along with the *velocity* and *speed*. Sketch the path.

35. Parabola $\mathbf{r}[t] = \{t, t^2, 0\}$. Find \mathbf{v} and \mathbf{a} .

Clear["Global`*"]

e1 = rr[t_] =
$$\{t, t^2, 0\}$$

 $\{t, t^2, 0\}$

Above: general acceleration.

$$\sqrt{1+4 \text{ Abs}[t]^2}$$

Above: magnitude of the velocity.

e5 = aT =
$$\frac{e2.e3}{e4}$$

 $\frac{4 t}{\sqrt{1 + 4 \text{ Abs}[t]^2}}$

Above: the tangential acceleration.

$$e6 = aN = \frac{Norm[Cross[e2, e3]]}{Norm[e2]}$$

$$\frac{2}{\sqrt{1 + 4 Abs[t]^2}}$$

Above: the normal acceleration.

Green cells above match the answer in the text. The formulas used here were used in my workthru of Ed9, and originally came from Larson p. 816.

37. Cycloid $\mathbf{r}[t] = (R \sin[\omega t] + R t)\mathbf{i} + (R \cos[\omega t] + R)\mathbf{j}$. This is the path of a point on the rim of a wheel of radius R that rolls without slipping along the x-axis. Find v and a at the maximum y-values of the curve.

39 - 42 The use of a CAS may greatly facilitate the investigation of more complicated paths, as they occur in gear transmissions and other constructions. To grasp the idea, using a CAS, graph the path and find velocity, speed, and tangential and normal acceleration.

39.
$$\mathbf{r}[t] = \{ \cos[t] + \cos[2t], \sin[t] - \sin[2t] \}$$

Clear["Global`*"]

```
e13 =
 Show[ParametricPlot[{Cos[t] + Cos[2t], Sin[t] - Sin[2t]}, {t, -2\pi, 2\pi},
    PlotStyle → {Red, Thickness[0.005], Opacity[.4]}, ImageSize → 200],
  ListPlot[\{\{6, 1\}, \{0, 1\}\}, PlotStyle \rightarrow Blue](*, ParametricPlot[
    \{6-8 \text{ w}, 1, 8+6 \text{ w}\}, \{w,-1,1\}, PlotStyle \rightarrow \{Green, Thickness[0.005]\}\},
  Graphics3D[{Text["{6,1,8}",{6.7,1,8.7}]}]*)]
        1.5
        10
 -1.0 -0.5
             0.5
                1.0
       -0.5
       -1/.0
e1 = positionfunction = r[t_] = {Cos[t] + Cos[2t], Sin[t] - Sin[2t]}
\{Cos[t] + Cos[2t], Sin[t] - Sin[2t]\}
e2 = velocityfunction = r'[t]
 {-\sin[t] - 2\sin[2t], \cos[t] - 2\cos[2t]}
e3 = accelerationfunction = r''[t]
 \{-\cos[t] - 4\cos[2t], -\sin[t] + 4\sin[2t]\}
Above: general acceleration.
e4 = magnitudeofvelocity = Norm[r'[t]]
\sqrt{(\text{Abs}[\cos[t] - 2\cos[2t])^2 + \text{Abs}[-\sin[t] - 2\sin[2t])^2}
Above: magnitude of the velocity.
e41 = velocitymagnitudesquared = e42
Abs [\cos[t] - 2\cos[2t]]^2 + Abs[-\sin[t] - 2\sin[2t]]^2
e42 =
 FullSimplify \left[ (\cos[t] - 2\cos[2t])^2 + (-\sin[t] - 2\sin[2t])^2 = 5 - 4\cos[3t] \right]
e43 = 5 - 4 \cos[3 t]
 5 - 4 Cos [3 t]
```

Above: Mathematica verifies that the text answer for $|v|^2$ agrees with the tangled forest above. (I did remove the absolute value restrictions for the test, since they did not show up in the text answer.)

```
e5 = aT = \frac{e2.e3}{e43}
((-\cos[t] - 4\cos[2t]) (-\sin[t] - 2\sin[2t]) +
    (\cos[t] - 2\cos[2t]) (-\sin[t] + 4\sin[2t])) / (5 - 4\cos[3t])
e6 = FullSimplify[e5]
 \frac{6\sin[3t]}{5-4\cos[3t]}
```

Above: this would be the tangential acceleration, except it needs a **v**. prime dot doubleprime divided by magnitude of velocity.

```
e8 = tangentialacceleration = e6 e2
\{(6(-\sin[t]-2\sin[2t])\sin[3t])/(5-4\cos[3t]),
 \frac{6 (\cos[t] - 2 \cos[2t]) \sin[3t]}{5 - 4 \cos[3t]}
```

Above: the actual tangential acceleration, but more complicated than the text answer.

```
e9 = aN = Norm[Cross[e2, e3]]
              Norm[e2]
```

Cross:nonn1: The arguments are expected obe vectors of

equallength and the number of arguments sexpected obe 1 less than their length >>

```
Norm[{-Sin[t] - 2Sin[2t], Cos[t] - 2Cos[2t]} \times
    \{-\cos[t] - 4\cos[2t], -\sin[t] + 4\sin[2t]\}\]
 (\sqrt{\text{Abs}[\cos[t] - 2\cos[2t]]^2 + \text{Abs}[-\sin[t] - 2\sin[2t]]^2})
```

Above, oops, this is only 2 dimensional. How to get normal acceleration? Looks like I need $\frac{du}{ds} \left(\frac{ds}{dt}\right)^2$ where u is the unit tangent vector and s is the speed, or norm of velocity. And $u = \frac{r'[t]}{|r'[t]|}.$

```
e10 = u = \frac{e2}{e4}
{ (-Sin[t] - 2 Sin[2 t]) /
   (\sqrt{\text{Abs}[\cos[t] - 2\cos[2t]]^2 + \text{Abs}[-\sin[t] - 2\sin[2t]]^2}),
  (Cos[t] - 2Cos[2t]) /
   (\sqrt{\text{Abs}[\cos[t] - 2\cos[2t]]^2 + \text{Abs}[-\sin[t] - 2\sin[2t]]^2}))
```

Above: hold on, looks like it's getting complicated. The text mentions an easier way: normal acceleration is general acceleration minus tangential acceleration.

```
e11 = e3 - e6
\left\{-\cos[t] - 4\cos[2t] - (6\sin[3t])\right/
      \left(\sqrt{\left(\text{Abs}\left[\cos\left[t\right]-2\cos\left[2\,t\right]\right]^{2}+\text{Abs}\left[\sin\left[t\right]+4\cos\left[t\right]\sin\left[t\right]\right]^{2}\right)}\right),
  -\sin[t] + 4\sin[2t] - (6\sin[3t]) /
      (\sqrt{(Abs[Cos[t] - 2Cos[2t])^2 + Abs[Sin[t] + 4Cos[t]Sin[t]]^2}))
```

Above: this would be the normal acceleration. How to simplify? I notice that the text does not bother to report the normal acceleration, so I could just skip it.

```
e12 = FullSimplify \left[ (\cos[t] - 2\cos[2t])^2 + (\sin[t] + 4\cos[t]\sin[t])^2 \right]
5 - 4 \cos[3 t]
e13 = normalacceleration =
  e11 /. (Abs[Cos[t] - 2 Cos[2 t]] + Abs[Sin[t] + 4 Cos[t] Sin[t]] ->
      5 - 4 \cos[3t]
\left\{-\cos[t] - 4\cos[2t] - \frac{6\sin[3t]}{\sqrt{5 - 4\cos[3t]}},\right.
 -\sin[t] + 4\sin[2t] - \frac{6\sin[3t]}{\sqrt{5-4\cos[3t]}}
```

Above: that looks quite a bit better. However, I don't see a path to anything simpler.

```
41. \mathbf{r}[t] = \{ \cos[t], \sin[2t], \cos[2t] \}
Clear["Global`*"]
e1 = positionfunction = r[t_] = {Cos[t], Sin[2t], Cos[2t]}
{Cos[t], Sin[2t], Cos[2t]}
e2 = velocityfunction = r'[t]
 {-Sin[t], 2Cos[2t], -2Sin[2t]}
e3 = accelerationfunction = r''[t]
 {-Cos[t], -4 Sin[2t], -4 Cos[2t]}
```

Above: general acceleration.

```
e4 = magnitudeofvelocity = Norm[r'[t]]
\sqrt{(4 \text{ Abs} [\cos[2t]]^2 + \text{ Abs} [\sin[t]]^2 + 4 \text{ Abs} [\sin[2t]]^2)}
Above: magnitude of the velocity.
e5 = squareofvelocity = e4^2
4 \text{ Abs} [\cos[2t]]^2 + \text{Abs} [\sin[t]]^2 + 4 \text{ Abs} [\sin[2t]]^2
```

e6 = e5 /.
$$(4 \text{ Abs}[\cos[2t]]^2 + \text{ Abs}[\sin[t]]^2 + 4 \text{ Abs}[\sin[2t]]^2) \rightarrow 4 + \sin[t]^2$$

 $4 + \sin[t]^2$

Above: hand simplification.

$$e6 = \frac{e2.e3}{e6}$$

$$\frac{\text{Cos[t] Sin[t]}}{4 + \text{Sin[t]}^2}$$

Above: tangential acceleration, but it is incomplete, because it needs to be multiplied by v.

$$e7 = e6 e2$$

$$\left\{ -\frac{\cos[t] \sin[t]^2}{4 + \sin[t]^2}, \frac{2 \cos[t] \cos[2t] \sin[t]}{4 + \sin[t]^2}, -\frac{2 \cos[t] \sin[t] \sin[2t]}{4 + \sin[t]^2} \right\}$$

$$e7 = \operatorname{normalacceleration} = \frac{\operatorname{Norm}[\operatorname{Cross}[e2, e3]]}{\operatorname{Norm}[e2]}$$

$$\left(\sqrt{\left(\text{Abs}\left[-4\cos\left[2\,t\right]\,\text{Sin}\left[t\right]+2\cos\left[t\right]\,\text{Sin}\left[2\,t\right]\right]^{2}+\right.}\right.$$

$$\left.\left.\left(\sqrt{\left(4\,\text{Abs}\left[\cos\left[2\,t\right]+4\,\text{Sin}\left[t\right]\,\text{Sin}\left[2\,t\right]\right]^{2}+\right.}\right.\right.$$

$$\left.\left(\sqrt{\left(4\,\text{Abs}\left[\cos\left[2\,t\right]\right]^{2}+\text{Abs}\left[\sin\left[t\right]\right]^{2}+4\,\text{Abs}\left[\sin\left[2\,t\right]\right]^{2}\right)}\right)\right/$$

Again, normal acceleration is a mess. Try it the other way.

$$\left\{ -\cos[t] - \frac{\cos[t] \sin[t]}{4 + \sin[t]^2}, \right. \\ \left. - \frac{\cos[t] \sin[t]}{4 + \sin[t]^2} - 4 \sin[2t], -4 \cos[2t] - \frac{\cos[t] \sin[t]}{4 + \sin[t]^2} \right\}$$

$$\left\{ \cos[t] \left(-1 + \frac{2 \sin[t]}{-9 + \cos[2t]} \right), \\ \left(-4 + \frac{1}{-9 + \cos[2t]} \right) \sin[2t], -4 \cos[2t] + \frac{\sin[2t]}{-9 + \cos[2t]} \right\}$$

Above: I don't see much to choose between e8 and e9.

e10 = ParametricPlot3D[{Cos[t], Sin[2t], Cos[2t]}, {t, 0, 2π }, PlotStyle → {Red, Thickness[0.005], Opacity[.4]}, ImageSize → 300]

- 43. Sun and Earth. Find the acceleration of the Earth toward the sun from numbered line (19) on p. 387 and the fact that Earth revolves about the sun in a nearly circular orbit with an almost constant speed of 30 km/s.
- 45. Satellite. Find the speed of an artificial Earth satellite traveling at an altitude of 80 miles above Earth's surface, where g = 31 ft/sec². (The radius of the Earth is 3960 miles.)

47 - 55 Curvature and torsion

- 47. Circle. Show that a circle of radius a has a curvature 1/a.
- 49. Plane curve. Using numbered line (22) on p. 389, show that for a curve y = f[x]

$$\kappa[x] = \frac{|y''|}{(1+(y')^2)^{3/2}}$$
 where $(y' = \frac{dy}{dx}, \text{ etc.})$

Note: Problem 49 calls for reference to numbered line (22*), but no such numbered line exists in the present section. Numbered line (22) looks like it deals with related matter and it reads: κ (s) = | u' (s) | = | r'' (s) |