Discrete Structures

Functions

Definition of Functions

• Given any sets A, B, a function f from (or "mapping") A to B (f: $A \rightarrow B$) is an assignment of exactly one element $f(x) \in B$ to each element $x \in A$.

Graphical Representations

Functions can be represented graphically in several ways:

Some Function Terminology

- If $f: A \rightarrow B$, and f(a) = b (where $a \in A \& b \in B$), then:
 - A is the domain of f.
 - \blacksquare B is the codomain of f.
 - b is the *image* of a under f.
 - a is a pre-image of b under f.
 - In general, b may have more than one pre-image.
 - The range $R \subseteq B$ of f is $\{b \mid \exists a \ f(a) = b\}$.

Range vs. Codomain - Example

- Suppose that: "f is a function mapping students in this class to the set of grades {A,B,C,D,E}."
- \bullet At this point, you know fs codomain is: $\{A,B,C,D,E,\}$ and its range is $\underbrace{unknown}!$
- Suppose the grades turn out all As and Bs.
- Then the range of f is $\{A,B\}$, but its codomain is $\underline{still} \{A,B,C,D,E\}!$.

Function Addition/Multiplication

We can add and multiply functions

$$f, g: \mathbf{R} \to \mathbf{R}$$
:

- $(f+g): \mathbb{R} \to \mathbb{R}$, where (f+g)(x) = f(x) + g(x)
- $(f \times g): \mathbb{R} \to \mathbb{R}$, where $(f \times g)(x) = f(x) \times g(x)$

Function Composition

- ♦ For functions $g: A \rightarrow B$ and $f: B \rightarrow C$, there is a special operator called *compose* ("○").
 - It composes (i.e., creates) a new function out of f,g by applying f to the result of g.

$$(f \bigcirc g): A \rightarrow C$$
, where $(f \bigcirc g)(a) = f(g(a))$.

- Note $g(a) \in B$, so f(g(a)) is defined and $\in C$.
- The range of g must be a subset of fs domain!!
- Note that \bigcirc (like Cartesian \times , but unlike $+, \land, \cup$) is non-commuting. (In general, $f \bigcirc g \neq g \bigcirc f$.)

Function Composition

Images of Sets under Functions

- \bullet Given $f: A \rightarrow B$, and $S \subseteq A$,
- The *image* of S under f is simply the set of all images (under f) of the elements of S. $f(S) := \{f(s) \mid s \in S\}$

$$f(S) := \{ f(S) \mid S \in S \}$$

:= $\{ b \mid \exists S \in S : f(S) = b \}$.

Note the range of f can be defined as simply the image (under f) of fs domain!

One-to-One Functions

- A function is one-to-one (1-1), or injective, or an injection, iff every element of its range has only one pre-image.
- Only one element of the domain is mapped to any given one element of the range.
 - Domain & range have same cardinality. What about codomain?

One-to-One Functions (cont'd)

```
Formally: given f: A \rightarrow B

"f is injective" := (\neg \exists x, y: x \neq y \land f(x) = f(y)) or

"f is injective" := (\forall x, y: \neg(x \neq y) \lor \neg(f(x) = f(y))) or

"f is injective" := (\forall x, y: \neg(x \neq y) \lor (f(x) \neq f(y))) or

"f is injective" := (\forall x, y: (x \neq y) \rightarrow (f(x) \neq f(y))) or

"f is injective" := (\forall x, y: (x \neq y) \rightarrow (f(x) \neq f(y))) or

"f is injective" := (\forall x, y: (f(x) = f(y)) \rightarrow (x = y))
```

One-to-One Illustration

Graph representations of functions that are (or not) one-to-one:

Sufficient Conditions for 1-1ness

- Definitions (for functions f over numbers):
 - f is strictly (or monotonically) increasing iff $x>y \rightarrow f(x)>f(y)$ for all x,y in domain;
 - f is strictly (or monotonically) decreasing iff $x>y \rightarrow f(x) \cdot f(y)$ for all x,y in domain;
- If f is either strictly increasing or strictly decreasing, then f is one-to-one.
 - e.g. $f(x)=x^3$

Onto (Surjective) Functions

- **♦** A function $f: A \rightarrow B$ is onto or surjective or a surjection iff its range is equal to its codomain $(∀b \in B, ∃a \in A: f(a)=b)$.
- An onto function maps the set A onto (over, covering) the entirety of the set B, not just over a piece of it.
 - e.g., for domain & codomain R, x^3 is onto, whereas x^2 isn't. (Why not?)

Illustration of Onto

Some functions that are or are not onto their codomains:

Bijections

A function f is a one-to-one correspondence, or a bijection, or reversible, or invertible, iff it is both one-to-one and onto.

Inverse of a Function

♦ For bijections $f:A \rightarrow B$, there exists an *inverse* of f, written $f^{-1}:B \rightarrow A$, which is the unique function such that:

$$f^{-1} \circ f = I$$

Inverse of a function (cont'd)

The Identity Function

- * For any domain A, the *identity function* $I: A \rightarrow A$ (variously written, I_A , I, I, I) is the unique function such that $\forall a \in A: I(a)=a$.
- Note that the identity function is both one-to-one and onto (bijective).

Identity Function Illustrations

The identity function:

Domain and range

Graphs of Functions

- **♦** We can represent a function $f: A \rightarrow B$ as a set of ordered pairs $\{(a, f(a)) \mid a \in A\}$.
- \bullet Note that $\forall a$, there is only one pair (a, f(a)).
- For functions over numbers, we can represent an ordered pair (x,y) as a point on a plane. A function is then drawn as a curve (set of points) with only one y for each x.

A Couple of Key Functions

- In discrete math, we frequently use the following functions over real numbers:
 - $\lfloor x \rfloor$ ("floor of x") is the largest integer $\leq x$.
 - $\lceil x \rceil$ ("ceiling of x") is the smallest integer $\geq x$.

Visualizing Floor & Ceiling

- Real numbers "fall to their floor" or "rise to their ceiling."
- Note that if $x \notin \mathbb{Z}$, $|-x| \neq -|x| \&$ $|-x| \neq -|x|$
- Note that if $x \in \mathbb{Z}$, |x| = |x| = x.

Plots with floor/ceiling: Example

• Plot of graph of function $f(x) = \lfloor x/3 \rfloor$:

References

- Section 2.3 of the text book "Discrete Mathematics and its Applications" by Rosen, 6th edition.
- The <u>original slides</u> were prepared by Bebis