静态单赋值(SSA)

1 构造 SSA

1.1 插入 ∅ 指令

- 在控制流图中,如果从起点到 n_2 节点的每条路径都经过 n_1 节点,那么就称 n_1 支配 (dominates) n_2 。
- 如果 n_1 支配 n_2 并且 $n_1 \neq n_2$,那么就称 n_1 严格支配(strictly dominates) n_2 。
- 如果 u 支配 v, 控制流图中有一条边从 v 到达 w, 而且 u 不能严格支配 w, 那么就称 w 是 u 的一个支配边界(dominance frontier)。

DF(u) 表示 u 的所有支配边界构成的控制流图节点集合。

- 计算插入 φ 指令的位置
 - $-S \leftarrow \text{def} \text{of}(x)$
 - $\mathrm{DF}^{(0)}(S) \triangleq \emptyset$
 - $\operatorname{DF}^{(n+1)}(S) \triangleq \operatorname{DF}(S \cup \operatorname{DF}^{(n)}(S))$
 - $-\operatorname{DF}^{(\infty)}(S) \triangleq \bigcup_{n \in \mathbb{N}} \operatorname{DF}^{(n)}(S)$

1.2 变量重命名

严格支配关系是有传递性的

- u 是 v 的直接支配节点(immediate dominator, idom)当且仅当 u 严格支配 v 并且不存在 w 是 u 严格支配 w 并且 w 严格支配 v。
- 定理:直接支配关系构成了一棵以控制流图起点为根节点的树。这一树结构称为支配树(dominance tree)
- 利用支配树完成变量重命名

Phi指令只考虑def,其他指令先处理use再处理 def

- 对支配树做深度优先遍历;
- 当遍历进入一个节点 n 时,依次处理节点 n 中的每条指令 i;
- 先处理 i 的 use 变量 (ϕ 指令除外), 再处理 i 的 def 变量;
- 处理完 n 中所有指令后,处理 n 的后继节点(控制流图中从 n 出发一步可达的节点)中所有 ϕ 指令的 def 变量。

• UpdateReachingDef(x, i)

没有严格dominate(不是dominate tree上的祖先节点),就pop栈顶

- While (the location of r's def does not dominates i) do r \leftarrow r.PD
- x.RD ← r

 $- r \leftarrow x.RD$

• 处理节点 n 中非 ϕ 指令 i 的 use 变量 x

- 执行 UpdateReachingDef(x, i)
- 将 i 中的 x 改为 x.RD
- 处理节点 n 中指令 i 的 def 变量 x
 - 执行 UpdateReachingDef(x, i)
 - 创建 x 变量的新版本 x0
 - 将 i 中的 x 改为 x0 放到栈当中去
 - x0.PD ← x.RD, x.RD ← x0
- 处理 n 的后继节点中 ϕ 指令 i 的 use 变量 x
 - 执行 UpdateReachingDef(x, i)
 - 将 i 中的对应 n 节点的 x 改为 x.RD
- 利用支配树计算支配边界
 - (1) 将所有节点的支配边界 DF(u) 都初始化为空集
 - -(2) 依次考虑每一条控制流图中的边,假设它是从 u 到 v 的边
 - (2.1) 只要 $u \neq idom(v)$,就执行以下两项操作
 - (2.2) 将 v 加入 DF(u)
 - $-(2.3) u \leftarrow idom(u)$

2 消去 SSA

- 计算 φ 网
 - 对于每一个变量 v,将 phiweb(x) 初始化为单元集 $\{x\}$
 - 对于每一条 ϕ 指令 $x_0 = \phi(x_1, x_2, ..., x_k)$, 将 phiweb (x_i) 都合并起来
- 最终删除 ϕ 指令时,在同一个 phiweb(x) 中的所有变量应当合并为一个变量。

Live的区域不能重叠才能合并丨和

Phi指令不是函数!是虚拟符号

添加move指令可以保证phi web得到的控制流图中的变量不重叠。