

Micropower, Dual, Single Supply Precision Op Amp

DESCRIPTION

The RH1078M is a micropower dual op amp in the standard 8-pin configuration. This device is optimized for single supply operation at 5V. Specifications for $\pm 15 \text{V}$ are also provided.

The wafer lots are processed to LTC's in-house Class S flow to yield circuits usable in stringent military applications.

ABSOLUTE MAXIMUM RATINGS

BURN-IN CIRCUIT

(Each Amplifier) 50k 20V -20V

PACKAGE/ORDER INFORMATION

TOTAL DOSE BIAS CIRCUIT

Note: For ordering information contact LTC.

TABLE 1: ELECTRICAL CHARACTERISTICS (Preirradiation)

 $\mbox{V}_{\mbox{\scriptsize S}} = 5\mbox{\scriptsize V}, \mbox{\large V}_{\mbox{\scriptsize CM}} = 0.1\mbox{\scriptsize V}, \mbox{\large V}_{\mbox{\scriptsize OUT}} = 1.4\mbox{\scriptsize V}$ unless otherwise specified.

				1	T _A = 25°		SUB-		$0 \le T_A \le 1$			
SYMBOL	PARAMETER	CONDITIONS	NOTES	MIN	TYP		GROUP	MIN	TYP		GROUP	UNITS
V _{OS}	Input Offset Voltage					120	4			370	2, 3	μV
$\Delta V_{OS} \over \Delta Temp$	Average Tempco of Offset Voltage								0.5			μV/°C
$\frac{\Delta V_{OS}}{\Delta Time}$	Long Term V _{OS} Stability				0.5							μV/Month
I _{OS}	Input Offset Current					0.8	1			1.5	2, 3	nA
I _B	Input Bias Current					15	1			18	2, 3	nA
e _n	Input Noise Voltage	0.1Hz to 10Hz	1		0.5							μVP-P
	Input Noise Voltage Density	f ₀ = 10Hz f ₀ = 1kHz	1		25 24							nV/√Hz nV/√Hz
in	Input Noise Current	0.1Hz to 10Hz	1		2.6							pAP-P
	Input Noise Current Density	f ₀ = 10Hz f ₀ = 1kHz	1		0.07 0.025							pA/√Hz pA/√Hz
R _{IN}	Input Resistance Differential		2		600							MΩ
	Common Mode		2		5							$G\Omega$
	Input Voltage Range		2 2	3.5 0			1	3.20 0.05			2, 3 2, 3	V V
CMRR	Common-Mode Rejection Ratio	V _{CM} = 0V to 3.5V V _{CM} = 0.05V to 3.2V		94			1	88			2, 3	dB dB
PSRR	Power Supply Rejection Ratio	V _S = 2.3V to 12V V _S = 3.1V to 12V		100			1	94			2, 3	dB dB
A _{VOL}	Large-Signal Voltage Gain	$V_0 = 0.03V$ to 4V, No Load $V_0 = 0.03V$ to 3.5V, $R_L = 50k$ $V_0 = 0.05V$ to 4V, No Load $V_0 = 0.05V$ to 3.5V, $R_L = 50k$		150 120			1 1	80 60			2, 3 2, 3	V/mV V/mV V/mV
V _{OUT}	Output Voltage Swing	Output Low, No Load Output Low, 2k to GND Output Low, I _{SINK} = 100µA Output High, No Load Output High, 2k to GND		4.2 3.5		6 2 130	4 4 4 4 4	3.9 3.0		8 170	5, 6 5, 6 5, 6 5, 6	mV mV mV V
SR	Slew Rate	$A_V = 1, V_S = \pm 2.5V$		0.04			4					V/µs
GBW	Gain-Bandwidth Product	$f_0 \le 20 \text{kHz}$			200							kHz
I _S	Supply Current	per Amplifier				75	1			95	2, 3	μΑ
	Channel Separation	$\Delta V_{IN} = 3V$, $R_L = 10k$			130							dB
	Minimum Supply Voltage		3			2.3						V

TABLE 1: ELECTRICAL CHARACTERISTICS (Preirradiation)

 $V_S = \pm 15V$ unless otherwise specified.

				T _A = 25°C			SUB-	$-55^{\circ}\text{C} \le \text{T}_{\text{A}} \le 125^{\circ}\text{C}$			SUB-	
SYMBOL	PARAMETER	CONDITIONS	NOTES	MIN	TYP		GROUP		TYP		GROUP	UNITS
V _{OS}	Input Offset Voltage					350	4			600	2, 3	μV
$\frac{\Delta V_{OS}}{\Delta Temp}$	Average Tempco of Offset Voltage								0.6			μV/°C
I _{OS}	Input Offset Current					0.8	1			1.5	2, 3	nA
I _B	Input Bias Current					15				18	2, 3	nA
	Input Voltage Range			13.5 -15.0			1 1					V
CMRR	Common-Mode Rejection Ratio	V _{CM} = 13.5V, -15V V _{CM} = 13V, -14.9V		97			1	90			2, 3	dB dB
PSRR	Power Supply Rejection Ratio	$V_S = 5V$, 0V to ±18V		100			1	94			2, 3	dB
A _{VOL}	Large-Signal Voltage Gain	$V_0 = \pm 10V, R_L = 50k$ $V_0 = \pm 10V, R_L = 2k$ $V_0 = \pm 10V, R_L = 5k$		1000 300			1	150			2, 3	V/mV V/mV V/mV
V _{OUT}	Output Voltage Swing	R _L = 50k R _L = 2k R _L = 5k		±13 ±11			4	±11			5, 6	V V V
SR	Slew Rate			0.06			4					V/µs
I _S	Supply Current	Per Amplifier				100	1			125	2, 3	μΑ

Note 1: All noise parameters are for $V_S = \pm 2.5 V$, $V_0 = 0 V$.

Note 2: This parameter is guaranteed by design, characterization or correlation to other tested parameters.

Note 3: Power supply rejection ratio is measured at the minimum supply voltage. The op amps actually work at 1.8V supply but with a typical offset skew of $-300\mu V$.

TABLE 1A: ELECTRICAL CHARACTERISTICS (Postirradiation)

 $V_S=5V,~0V,~V_{CM}=0.1V,~V_0=1.4V,~T_A=25^{\circ}C$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	10KR	AD(Si) Max	25KR MIN	AD(Si) MAX	50KR/	AD(Si) Max	75KR MIN	AD(Si) Max	100KRAD(Si) Min max	UNITS
	Input Offset Voltage	CONDITIONS	IVIIIV	120	IVIIIN	175	IVIIIV	250	IVIIIV	500	IVIIN IVIAA	
V_{0S}	, , , , , , , , , , , , , , , , , , ,											μV
l _{OS}	Input Offset Current			2		8		13		18		nA
I_{B}	Input Bias Current			20		40		80		100		nA
	Input Voltage Range		3.5		3.5		3.5		3.5			V
CMRR	Common-Mode Rejection Ratio	V _{CM} = 0V to 3.5V	91		89		87		85			dB
PSRR	Power Supply Rejection Ratio	V _S = 2.3V to 12V	100		100		98		88			dB
A _{VOL}	Large-Signal Voltage Gain	$V_0 = 0.03V$ to 4V, No Load $V_0 = 0.03V$ to 3.5V, $R_L = 50k$	150 120		150 50		100 20		50 10			V/mV V/mV
V _{OUT}	Output Voltage Swing	Output Low, No Load Output Low, 2k to GND Output Low, I _{SINK} = 100µA Output High, No Load Output High, 2k to GND	4.2 3.5	6 2 130	4.2 3.5	9 2 140	4.2 3.5	13 2 150	4.2 3.5	20 2 160		mV mV mV V
S _R	Slew Rate	$A_V = 1, V_S = \pm 2.5V$	0.04		0.03		0.02		0.01			V/µs
Is	Supply Current	per Amplifier		75		75		75		75		μА

TABLE 1A: ELECTRICAL CHARACTERISTICS (Postirradiation)

 $V_S = \pm 15V$ unless otherwise noted.

CVMDOL	DADAMETED	10KRAD(Si) 25KRAD(Si) 50KRAD(S		` '	75KRAD(Si) Min max		100KRAD(Si) MIN MAX		LIMITO				
SYMBOL	PARAMETER	CONDITIONS	MIN	MAX	MIN	MAX	MIN	MAX	MIN	IVIAX	IVIIIN	MAX	UNITS
V_{0S}	Input Offset Voltage			350		500		650		800		1000	μV
I_{0S}	Input Offset Current			2		8		13		18		23	nA
I _B	Input Bias Current			20		40		80		100		120	nA
	Input Voltage Range		13.5 -15.0		13.5 -15.0		13.5 -15.0		13.5 -15.0		13.5 -15.0		V
CMRR	Common-Mode Rejection Ratio	V _{CM} = 13.5V, -15V	94		92		90		88		86		dB
PSRR	Power Supply Rejection Ratio	$V_S = 5V$, 0V to ±18V	100		100		98		88		78		dB
A _{VOL}	Large-Signal Voltage Gain	V ₀ = 10V, R _L = 50k V ₀ = 10V, R _L = 2k	1000 300		700 200		400 120		150 45		50 15		V/mV V/mV
V _{OUT}	Output Voltage Swing	R _L = 50k R _L = 2k	±13 ±11		±13 ±11		±13 ±11		±13 ±11		±13 ±10		V
SR	Slew Rate		0.05		0.04		0.03		0.02		0.01		V/µs
I _S	Supply Current	per Amplifier		100		100		100		100		100	μА

TABLE 2: ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUP
Final Electrical Test Requirements (Method 5004)	1*,2,3,4,5,6
Group A Test Requirements (Method 5005)	1,2,3,4,5,6
Group C and D End Point Electrical Parameters (Method 5005)	1,2,3

^{*} PDA Applies to subgroup 1. See PDA Test Notes.

PDA Test Notes

The PDA is specified as 5% based on failures from group A, subgroup 1, tests after cooldown as the final electrical test in accordance with method 5004 of MIL-STD-883 Class B. The verified failures of group A, subgroup 1, after burnin divided by the total number of devices submitted for burn-in in that lot shall be used to determine the percent for the lot.

Linear Technology Corporation reserves the right to test to tighter limits than those given.

TYPICAL APPLICATIONS

Input Offset Current 20 15 10 10 10 -15 -20 1 10 100 1000 TOTAL DOSE-KRADs (Si)

TYPICAL APPLICATIONS

TYPICAL APPLICATIONS

Output Voltage Swing Low, 2k to GND

Output Voltage Swing High

Output Voltage Swing Low, No Load

Output Voltage Swing Low, $I_{SINK} = 100mA$

Supply Current

I.D. No. 66-10-0100 Rev. E 0798