

Keep Learning

GRADE 84.61%

Graded quiz on Sets, Number Line, Inequalities, Simplification, and Sigma Notation

LATEST SUBMISSION GRADE 84.61% 1. Let $B=\{3,5,10,11,14\}.$ Is the following statement true or false: $3\not\in B$ 1 / 1 point O True False ✓ Correct The symbol ∉ stands for "is not an element of." Since 3 is in an element of the set B, the given statement is not true. **2.** Let $A=\{1,3,5\}$ and $B=\{3,5,10,11,14\}$. Which of the following sets is equal to 1 / 1 point the union $A \cup B$? \bigcirc {1,10,18} \bigcirc {3,5,10,11,14} **(1, 3, 5, 10, 11, 14)** \bigcirc {1,3,5,3,5,10,11,14} The union of two sets consists precisely of the elements that are in at least one of the two sets. That is precisely what is listed here. **3.** How many real numbers are there between the integers 1 and 4? 1/1 point O None Infinitely many O 4 \bigcirc 2 ✓ Correct There are in fact infinitely many real numbers between any pair of distinct integers, or indeed any pair of distinct real numbers!

4.	Suppose I tell you that x and y are two real numbers which make the statement $x \ge y$ true. Which pair of numbers \underline{cannot} be values for x and y ?	1 / 1 point
	$\bigcirc \ x=2$ and $y=1$	
	$\bigcirc \ x=10$ and $y=10$	
	$ \bullet \ x = -1 \text{ and } y = 0 $	
	$\bigcirc \ x=5$ and $y=3.3$	
	\checkmark Correct Recall that the statement $x \geq y$ means that x is either equal to y or x is to the right of y on the real number line. Since -1 is actually to the left of 0 , these cannot be values for x and y .	
5.	Suppose that z and w are two positive numbers with $z < w.$ Which of the following inequalities is false?	1/1 point
	$\bigcirc \ z+3 < w+3$	
	$\bigcirc w-7>z-7$	
	\bigcirc $-z > -w$	
	✓ Correct If we start with $z < w$ and multiply both sides by -5 , we need to flip the less-than sign, which would give $-5z > -5w$. For an example, try $z = 1$ and $y = 2$ and see what happens!	
6.	Find the set of all x which solve the inequality $-2x+5 \le 7$	0 / 1 point
	$\bigcirc x \ge -1$	
	$\bigcirc x = -1$	
	$\bigcirc x \ge -6$	
	! Incorrect If you got here, you probably correctly subtracted 5 from both sides of the inequality to obtain $-2x \le 2$.	
	But then you probably divided both sides by -2 and forgot to flip the inequality sign.	
	To see that this answer cannot be right, note that $x = -2$ satisfies this	
	answer, but if we plug in -2 to the given inequality, we get $-2 \times (-2) + 5 = 4 + 5 = 9 \le 7$, which is not true!	

7.	Which of the following real numbers is not in the closed interval $\left[2,3\right]$	1 / 1 point
	0 1	
	○ 2.1	
	O 2	
	O 3	
	✓ Correct Recall that the closed interval $[2,3]$ consists of all real numbers x which satisfy $2 \le x \le 3$. Since $2 \le 1$ is false, $1 \notin [2,3]$	
8.	Which of the following intervals represents the set of all solutions to:	1/1 point
	$-5 \le x + 2 < 10$?	
	○ [-7,8]	
	● [−7,8)	
	○ (7,8)	
	○ [-5,10]	
	0,20)	
	✓ Correct Subtracting 2 from all sides of the inequalities gives $-7 \le x < 8$, and the set of all real numbers x which make that true is exactly the half-open interval $[-7,8)$.	
9.	Which of the numbers below is equal to the following summation: $\Sigma_{k=2}^5 2k$?	1/1 point
	O 4	
	O 14	
	28	
	O 10	
	✓ Correct We compute $\sum_{k=2}^{5} 2k = 4 + 6 + 8 + 10 = 28$.	

Suppose we already know that $\Sigma_{k=1}^{20}k=210$. Which of the numbers below is equal to $\Sigma_{k=1}^{20}2k$?	1 / 1 point
O 210	
420	
O 2	
✓ Correct By applying one of our Sigma notation simplification rules, we can rewrite the summation in question as $2\left(\Sigma_{k=1}^{20}k\right)=2\times210=420$.	
11. Which of the numbers below is equal to the summation $\sum_{i=2}^{10} 7$? 48 7 63 70	1 / 1 point
✓ Correct According to one of our Sigma notation simplification rules, this summation is just equal to 9 copies of the number 7 all added together, and so we get $9 \cdot 7 = 63$.	
12. Which of the following numbers is the variance of the set $Z=\{-2,4,7\}$?	0 / 1 point
! Incorrect You were almost there if you got this one. If you got here, you probably calculated the standard deviation of ${\cal Z}$, which is just the square root of the variance.	
 13. Which of the following sets does <i>not</i> have zero variance? (hint: don't do any calculation here, just think!) \(\begin{align*} \{1,1,1,1\} \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1/1 point
○ {5,5,5,5,5,5,5,5,5,5,5,5,5} ○ {0,0,0,0,0,0,0}	
(0,0,0,0,0,0,0)(0) {2,5,9,13}	
✓ Correct	

Intuitively, the numbers in this set are spread out.