STOS LECTURE 6

2/25/08

ote Title	2/	25/200
TODAY	: ALGEBRAIC GODES	
	- WOZENCRAFT'S ENSEMBLE	
	- REED - Solomon	
	- REED- MULLER, HADAMARD	
	- CONCATENATED COTTES	
	- JUSTESEN GOBS	
REVIE	1	
	jurameters: (n, k, cl), ; R, S	
· Rond	om/ Greeky / Firstert / Varshamov":	
_	codes with 9=2; R, S>0	
W.a.	[R=1-1+(S)] n	
"Gills	ert Ensemble size": 22 hamon " " 2nz	

NOZENCRAFT ENSEMBLE Codes from {0,13 } \sigma_0,13 \sigma_13 \sigm det IF = IF, Recall II A preserving addition de Ft Ensemble = { Cd } \rightarrow $\langle m, \alpha m \rangle$ F,R 3 d st. (Ca) 3 H (.5) · n In fact $P_{r}\left[\Delta(C_{x}) \geqslant (H^{-1}(\cdot S) - E)\right] \longrightarrow 1$

· Claim: Y <x,y>+0 there is at most One & s.t. <x,y> EC Proof: X+O => d= xy. · Say & is band if 304(x,y) & Cx with wt (<x,y>) < H (·s) - E # bad 2's & # }<x,y> =0 2). wt(<x,y>) < H'(-5)-E? $\left[\begin{array}{c} (5-\epsilon') \cdot n \\ \text{d bad} \end{array}\right] \leq 2^{(5-\epsilon')}$

Noteo: Why is this interesting? (1) Algebraic 2 Ensemble size oven smaller (2^k) (3) Can be "computed" in time poly (k). (4) Can we try to find good & explicitly? Premains open. Can extend to larger rates, smaller rates (6-1)

Coles by Polymonials General Idea Message = Coefficients of polynomial Encoding = Evaluation Evaluation => Encoding Interpolation => Decoding from no errors. (GIENERALIZED) REED SOLOMON CODES: $n \leq q$, $0 \leq k \leq n$, distinct $d_1 - d_n \in \mathbb{F}_q$ $M = (M_0 - M_{R-1}) \vdash$ $\longrightarrow \langle M(d_1) M(d_n) \rangle$ $M(x) = \leq m_i x^i$

"(or" =) \triangle (RS P_{2}, d_{1-}, d_{n}, k = N - (k-1)Matches Singleton !! Classical RS: Set di-dn = all non-zero
elements of Fg Conclusion: if 2>n & g=pt then Can achieve "optima" codes [n, k, n-k+1] MDS - "Maximum Distance Seperable". What about smaller alphabets?

Multivariate Polynomials => Read Muller Codes Fix $\leq = H_g$, degree r, # variable m. Then: merage = coefficient of deg v poly $r < q \Rightarrow k = (m+r)$ Jenerally $\rightarrow k \geq \left(\frac{V}{m}\right)^{m}, \left(\frac{m}{V}\right)^{-1}$ Encoding = Evaluations

Distance ?:

$$r < q$$
: $\Delta(c) = \left(1 - \frac{r}{q}\right) \cdot n$

$$r \geq q : \Delta(c) \geq \frac{-r}{q^{\frac{r}{2-1}}} \cdot n$$

Example Choices:

$$\Upsilon = \frac{Q}{2}$$

$$m + 3.+ \cdot \binom{m+q/2}{m} = k \Rightarrow m = \frac{\log k}{\log \log k}$$

$$h = q^m = k^2$$

$$=) \left(k^2, k, \frac{1}{2} k^2\right)_{\log^2 k} \qquad \text{(ade)}$$

Rate
$$\rightarrow 0$$
; Dist = $\frac{1}{2}$

$$(2) Fix m = O(1)$$

$$= 2) \left(\left(2m \right)^{m} k, k, \frac{1}{2} \left(2m \right)^{m} k \right) \qquad \text{(ade)}$$

$$2m k^{m}$$

coefficients
$$\stackrel{\triangle}{=} k = m+1$$

brives $\left[2^k, k+1, 2^{k-1}\right]_2$ Code

 $\left[2^{k-1}, k, 2^{k-1}\right]_2$ Code

Tight for Plotkin $\stackrel{\triangle}{=}$ Simplex Code

Dual = $\left[2^k-k-1, k, ?\right]$ Code!

Sometimes alked Hadamard Code

Hadamard matrices e Codes n x n matrix H E \{ -1, +1 \} is a Hadamard matrix of H. H = n. I H => loniary codes us follows. 1) w.lo.g. first column of H is all +1's (if not flip entire row). Drop first column, rest of rows form $(n-1, \log n, \frac{n}{3})$ code (limplex code)

	2) hows of H & their complements -H
	$\{n, \log 2n, \frac{n}{2}\}_2$ Code
	Rm with $m = \log n$, $r = 1$, $q = 2$ e. 13 such a code.
٨	
	many jebra leads to nice ordes;
	tches Singleton, Plotkin (ii),
_	it hasn't (yet) given $g = O(1)$,
- D.	of leads to Herns.
ව	is mais to them?

CONCATENATION OF CODES [FORNEY]
A naive idea (to get dinary codes):
- Start with Reed Solomon code
Over \mathcal{H}_{2t} $t = \log n$
- Represent IFLE as & bits
- Say RS was $\left[n, \frac{n}{2}, \frac{n}{2}\right]_n$
Then we get $\left[n \log n, \frac{\eta}{2} \log n, \frac{\eta}{2}\right]$
Code by this process.
- Rate is still good; Distance suffers
because \mathcal{F}_{2} represented as \mathcal{E} bit
string. Poor Redundancy in this rep'n.

Better Idea: Represent Itse nicely, Using "Error-Correcting Code" · Say we know good code Cinner: {0,13t -> {0,13}2t Sony (2t, t, ·OIt) code. · Using Cinner to represent elements of The & "combining" with RS gires (2tn, En, Oitn) ade R. S >0 !

	ONCATENATED GODES [FORNEY 66]
	Combination technique called "Concatenation"
	an concatenate
	$(n, k, d,)$ $(n_2, k_2, d_2)_2$
	<u> </u>
	code to get (n,n, k,k, d,d,)
•	Code over trig alphabet: Onter ude
	Code over big alphabet: Outer ude Small code over small?: Inner code
	Outer alphabet = Inner message space
6	Both Onter, mor linear & using
	Faz (mrespondence yield)
	lineer colos.

	DOES THIS GIVE EXPLICIT CODES?
•	How do you find Outer code? Enzy
	decense of larger alphabet (use RS)
0	How do you find homer code?
	- This was is smaller, can try remaion, but hasn't worked so far.
	- [FORNEY] Use VARSHAMOV seurch!
	Takes time poly (2k2) = poly (n)
•	Conclusion 1: YES- This gives explicit ades
	Encoding can be done in polynomial time.
•	Conchision 2: NO - this is still " search"
	[Only formalized recently e.g. should be able
	to compute (i.i) the entry of generator in time polylogn).
	iboiding 11).

