PCB layout 层的绘制有一下几步:

网表导入→规则设置→元器件的布局→布线→检查

1> 网表导入

注意掌握导入的方法及错误修正

2>规则设置

推荐使用 PCB 的快捷键设置:

拉线	过孔	敷铜	器件排列离散	线选	框选
F2	F3	F4	F6	2	3
左对齐	右对齐	上对齐	下对齐	水平等间距	垂直等间距
Num4	Num3	Num8	Num2	Num7	Num9
器件位号排列	差分线	删除网络	物理选择	执行 DRC	规则,
Num5	Alt+F2	A1t+Q	Ctrl+h	TD	DR
Class	网络显示关闭	移动	选择	单位切换	单层显示
DC	N	М	S	Q	shift+s
切换抓取	多根走线	忽略障碍物	AY		
shift+e	TTM	shift+r		V	

规则的设置关系到生产出 PCB 质量的好坏,主要体现在间距,过孔,走线等几个方面,同时注意必须开启全部的电气规则,这将影响你的电路基本性能。

间距规则:线距,华秋还是比较友善的,免费打板要求最小线距>5mil。由于以前用嘉立创打板子,其最小线宽要求是6mil,因此一直沿用。(同时,给同胞门提个醒,嘉立创改规则了,想要在嘉立创免费打板子,需要使用嘉立创的EDA设计,或者上个月消费超过20

线宽规则: 华秋要求最小线宽在 5mil, 一般信号线的线宽比较小, 这样可以更好的传输信号; 电源线的线宽较大一些, 以保证通过足够大的电流.

过孔规则: 华秋要求孔径在 0.2mm (约等于 8mil) 以上

3> 元器件的布局

此次要求画四层的驱动板,顶层和底层设置为信号层,中间两层为电源层。

注意事项: 布局的首要原则是保证布线的布通率, 移动器件时注意线的连接;

模块化布局, 即一个模块的元器件尽量放到一块;

数字器件和模拟器件要分开,尽量远离;

滤波电容尽量靠近 IC 器件;

放置器件时要考虑以后的焊接,不要太密集;

4> 布线

切记自动布线,自动布线出的错误千奇百怪,当你的工程量比较大的时候,找错的时间比手工绘制的时间都要长。

电源线与地线尽量加粗,具体的线宽与电流对应关系如下表

PCB板的线宽、覆铜厚度与通过的电流对应的关系								
宽度 (mm)	电流 (A)	宽度 (mm)	电流 (A)	宽度 (mm)	电流 (A)			
0. 15	0.2	0. 15	0. 5	0. 15	0.7			
0.2	0. 55	0. 2	0. 7	0.2	0.9			
0.3	0.8	0.3	1. 1	0. 3	1. 3			
0. 4	1. 1	0. 4	1. 35	0. 4	1. 7			
0.5	1. 35	0. 5	1. 7	0. 5	2			
0.6	1. 6	0.6	1. 9	0.6	2.3			
0.8	2	0.8	2. 4	0.8	2.8			
1	2. 3	1	2. 6	1	3. 2			
1.2	2. 7	1. 2	3	1. 2	3. 6			
1. 5	3. 2	1. 5	3. 5	1. 5	4. 2			
2	4	2	4. 3	2	5. 1			
2. 5	4. 5	2. 5	5. 1	2. 5	6			
铜厚1OZ(0.035mm)		铜厚1.5OZ(0.05mm)//blo		osdf铜厚2OZ(0.07mm) lhao				

零件排列时各部份电路尽可能排列在一起, 走线尽可能短;

如果两条线路之间的电压差较大时需注意安全间距;

线路拐角时尽量不要有锐角、直角,对高频电路而言;

两条线路最好不要平行走太长,以减少分布电容的影响最好用钝角和圆弧;

高频电路须考虑地线的高频阻抗,一般采用大面积接地的方式,各点就近接地。

5> 检查

根据 DRC 的检测修正电路。

当以上步骤都完成后,你就可以打板子了,可以选择华秋免费打板,以下是打板方法:

https://www.hqpcb.com/pcbnews/1700.html