ENGN6528

Lecture 9B: Logistic Regression

Thalaiyasingam Ajanthan

Lecture schedule

Week	Tuesday (2-hr)	Lecturer	Wednesday (1-hr)	Lecturer
Week-9	3D vision	Richard	Logistic regression	Ajanthan
Week-10	Deep learning-A	Ajanthan	Deep learning-B	TBD
Week-11	Guest lecture: generative models	Fatemeh	Tutorial: deep learning	Lin
Week-12	Deep learning-C	Ajanthan	Review	Ajanthan

Example: Apple and Orange Classification

Visual Recognition Basics

Image formation (+database+labels)

Capture and annotation.

Features (saliency+description

Feature Engineering

Classifier (decision making

Decision function

Binary classification

- Collect a set of images (apples and oranges) and label them (0: apple, 1: orange)
- Divide the dataset into training set, validation set and test set.
- Feature engineering (eg, bag of words)
- Classifier: logistic regression

```
if h_{\theta}(x) \geq 0.5, predict y = 1
if h_{\theta}(x) < 0.5, predict y = 0
```

Logistic regression

Want
$$0 \le h_{\theta}(x) \le 1$$

 $h_{\theta}(x) = g(\theta^T x)$ where $g(z) = \frac{1}{1 + e^{-z}}$

g: sigmoid/logistic function

heta : parameters of the classifier

Logistic regression

Want
$$0 \le h_{\theta}(x) \le 1$$

 $h_{\theta}(x) = g(\theta^T x)$ where $g(z) = \frac{1}{1 + e^{-z}}$

g: sigmoid/logistic function

heta : parameters of the classifier

Objective: Learn the parameters θ using the training set.

Interpretation: $h_{\theta}(x) = P(y = 1|x;\theta)$

Decision Boundary

 What kind of a decision boundary can be learned by this classifier?

$$h_{\theta}(x) = g(\theta^T x) \ge 0.5$$
 predict $y = 1$ otherwise $y = 0$

Decision Boundary

 What kind of a decision boundary can be learned by this classifier?

$$h_{\theta}(x) = g(\theta^T x) \ge 0.5$$
 predict $y = 1$ otherwise $y = 0$

$$h_{\theta}(x) \geq 0.5$$
 if $\theta^T x \geq 0$ otherwise $\theta^T x < 0$

Learns a linear classifier

Decision Boundary

Non-linearly separable case

 $h_{\theta}(x) = g(f(\theta, x))$ where f is a nonlinear function x

Logistic regression

Training $\{(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),\cdots,(x^{(m)},y^{(m)})\}$ set: $x \in \begin{bmatrix} x_0 \\ x_1 \\ \cdots \\ x_n \end{bmatrix} \quad x_0 = 1, y \in \{0,1\}$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\underline{\theta}^T x}}$$

How to choose parameters θ ?

Cost function

For a given datapoint,

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$
if $y = 1$ and $h_{\theta}(x) = 1 \Rightarrow Cost = 0$
if $y = 1$ and $h_{\theta}(x) \to 0 \Rightarrow Cost \to \infty$

Cost function

$$Cost(h_{\theta}(x), y) = -y \log(h_{\theta}(x)) - (1 - y) \log(1 - h_{\theta}(x))$$
$$L(\theta; \mathcal{D}) = \frac{1}{m} \sum_{i=1}^{m} Cost(h_{\theta}(x^{(i)}), y^{(i)})$$

Referred to as binary (sigmoid) cross entropy

Training:
$$\min_{\theta} L(\theta; \mathcal{D})$$

Prediction:
$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}} = P(y = 1|x;\theta)$$

Training

$$L(\theta; \mathcal{D}) = -\frac{1}{m} \sum_{i=1}^{m} \left(y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right)$$

Optimize the loss using gradient descent

$$\theta^{t+1} = \theta^t - \alpha \nabla_{\theta} L(\theta^t; \mathcal{D})$$

Stochastic (mini-batch) gradient descent

$$\theta^{t+1} = \theta^t - \alpha \nabla_{\theta} L(\theta^t; \mathcal{B}^t)$$
 where $\mathcal{B}^t \subset \mathcal{D}$

Overfitting

- Split the dataset
 - Training set
 - Validation set
 - Test set
- Use training set to optimize model parameters
- Use validation test to choose the best model
- Use test set only to measure the expected loss

Example: Logistic regression

 \mathbf{X}_{2}

$$(g = sigmoid function)$$

Regularized logistic regression.

Cost function:

$$J(\theta) = -\left[\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))\right]$$

$$+ \frac{\lambda}{2m} \sum_{j=1}^{n} \mathfrak{S}_{j} \mathfrak{S}_{j}$$

Androw

Binary classification:

Multi-class classification:

One-vs-all (one-vs-rest):

Andrew Ng

One-vs-all

Train a logistic regression classifier $h_{\theta}^{(i)}(x)$ for each class \underline{i} to predict the probability that $\underline{y}=\underline{i}$.

On a new input \underline{x} , to make a prediction, pick the class i that maximizes

$$\max_{i} h_{\theta}^{(i)}(x)$$

Training set:
$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$$

$$y^{(i)} \text{ one of } \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}$$
pedestrian car motorcycle truck

Loss: softmax cross entropy
$$Cost(h_{\Theta}(x), y) = -\sum_{k=1}^{K} y_k \log h_{\Theta}^k(x)$$

$$h_{\Theta}^{k}(x) = \operatorname{softmax}(\Theta_{k}^{T}x)$$
 $\operatorname{softmax}(z_{j}) = \frac{e^{z_{j}}}{\sum_{k=1}^{K} e^{z_{k}}}$

Recap: Logistic regression

- A binary classifier (linear/nonlinear) based on the sigmoid function
- Uses hand-designed features
- Optimized via (stochastic) gradient descent
- Can be extended to multi-class in a one-vs-all approach using the softmax function
- Use regularization to reduce overfitting

Deep learning for classification (next week)

- Classifier: logistic regression
- Uses hand designed features Learn features from data
- Optimized via (stochastic) gradient descent
- Can be extended to multi-class in a one-vs-all approach using the softmax function
- Use regularization, data augmentation, etc. to reduce overfitting