M222, Séance de TD 2 – Analyse et méthodes numériques

Exercice 1

Calculer les dérivées des fonctions suivantes

- 1. $f_1(x) = \frac{\cos(x)}{x}$.
- 2. $f_2(x) = x \ln(x)$.
- 3. $f_3(x) = x \sin(1/x)$.
- 4. $f_4(x) = \sqrt{1+x^2}$.

Exercice 2

- 1. Montrer que la fonction $f(x) = x \sin(1/x)$ est prolongeable par continuité en x = 0.
- 2. La fonction ainsi obtenue est-elle dérivable en $x=0\,?$ Justifier votre réponse.

Exercice 3

- 1. Montrer que la fonction $f(x) = x^2 \sin(1/x)$ est prolongeable par continuité en x = 0.
- 2. Montrer que la fonction ainsi obtenue est dérivable. Est-elle C^1 .

Exercice 4

Déterminer le développement limité en x=0 à l'ordre deux des fonctions

- 1. $g_1(x) = (1+2x)^{-1}$.
- 2. $g_2(x) = x \ln(1+x^2)$.
- 3. $g_3(x) = (1+x)\sin(x)$.
- 4. $g_4(x) = \sqrt{1+x^2}$.

Exercice 5

Calculer les limites (finies ou infinies, si elles existent) suivantes

1.
$$\lim_{x\to 0} \frac{\ln(1+x^2)}{\sin(x)^2}$$
.

- 2. $\lim_{x\to 0} \frac{\sin(|x|)}{\cos(x)-1}$. 3. $\lim_{x\to 0} \frac{\cos(x)-1}{\ln(1+x)^2}$.

Exercice 6

Déterminer le minimum de

1.

$$F_1(x) = x^2 + 3x - 4$$

sur \mathbb{R} .

2.

$$F_2(x) = \frac{x^3}{3} - \frac{x^2}{2} - 2x + \frac{1}{2}$$

sur l'intervalle [-2, 3].

Exercice 7

Soit $n \geq 2$ un entier et $f: \mathbb{R}^+ \to \mathbb{R}$ définie par

$$f(x) = \frac{1 + x^n}{(1 + x)^n}.$$

- 1. Montrer que f est dérivable et calculer sa dérivée.
- 2. Montrer que f atteint son minimum sur \mathbb{R}^+ . Quel est-il?
- 3. En déduire que pour tout $x \ge 0$,

$$(1+x)^n \le 2^{n-1}(1+x^n).$$

4. Montrer que pour tout $x, y \ge 0$,

$$(x+y)^n \le 2^{n-1}(x^n+y^n).$$

Exercice 8

Soit $a,b \in \mathbb{R}$. Montrer que le polynôme $P(x) = x^n + ax + b$ admet au plus trois racines réelles.

Exercice 9

Soit x et y réels avec 0 < x < y.

1. Montrer que

$$x < \frac{y - x}{\ln y - \ln x} < y.$$

2. On introduit la fonction f définie sur [-1,1] par

$$f(t) = \ln(tx + (1-t)y) - t\ln(x) - (1-t)\ln(y).$$

De l'étude de f déduire que pour tout $t\in (-1,1),$

$$t \ln x + (1 - t) \ln y < \ln(tx + (1 - t)y).$$

3. (subsidiaire) Donner une interprétation géométrique de la dernière inégalité.