Project Stage Data structures and algorithms

Name: Imre Toth

Group: 812

Contents

1) Task	
2) ADT Specification	
3) ADT Interface	
4) ADT Representation	
5) Problem statement	
6) Problem solution	

1)Task

ADT Set – implementation on a hash table, collision resolution by open addressing

2) ADT Specification:

- Set = $\{s | s \text{ is a set with elements of the type TElem}\}$
- TElement -> the general element in containers

 The interface of TElem contains the following operations:
 - assignment (e1 \leftarrow e2)
 - pre: e1, e2 ∈ TElem
 - post: e' 1 = e2
 - equality test (e1 = e2)
 - pre: e1, e2 \in TElem
 - post:

$$\rightarrow$$
True, if e1 =e2

equal =

->False, otherwise

Iterator = { it | it - iterator over Set}

3)ADT Interface:

a. Set:

• *init* (s):

☐ descr: creates a new empty set

□ pre: true

 \square post: $s \in S$, s is an empty set

• *destroy* (s) :

☐ descr: destroys a set

 \square pre: $s \in S$

□ post:the set s was destroyed

• *add(s, e)*:

□ descr: adds a new element into the set

 \square pre: $s \in S$, $e \in TElem$

 \square post:s $0 \in S$, s $0 = s \cup \{e\}$ (e is added only if it is not in s yet. If s contains the element e already, no change is made)

• remove(s, e):
descr: removes an element from the set
\square pre: $s \in S$, $e \in TElem$
\square post: $s \in S$, $s \mid 0 = s \mid \{e\}$ (if e is not in s, s is not changed)
• <i>size(s)</i> :
\Box descr: returns the number of elements from a set
\square pre: $s \in S$
\square post: size \leftarrow the number of elements from s
• find(s, e):
descr: verifies if an element is in the set
\square pre: $s \in S$, $e \in TElem$
\square post: find \leftarrow True, if $e \in s$
False, otherwise
• iterator(s, it):
descr: returns an iterator for a set
\square pre: $s \in S$
\square post: it \in I, it is an iterator over the set s
b. Iterator:
• init(it, s):
\square pre: $s \in Set$
\square post: it \in Iterator , it – iterator over b pointing to "first element"
• next(it):
\square pre: it \in Iterator, it is a valid iterator
□ post: it' - pointing to the next element
• valid(it):
□ pre: it ∈ Iterator
\square post: valid(it) = True, if it valid. False, otherwise
• getCurrent(it, e):
□ pre: it ∈ Iterator
\square post: $e \in TE$ lement, e – the current element pointed by it

4) ADT Representation:

- a. SET (implementation on a hash table, collision resolution by open addressing):
 - m: Integer
 - h: TFunction
 - T: TElem[]

b. ITERATOR:

- s: ↑Set
- currentPos : Integer

5) Problem statement:

We have a parking lot at a apartment block where every tenant gets a parking space based on the apartment number. The tenants may own more than one car.

6)Problem solution:

If the tenants own more than one car(while they have only one parking space), the tenants will park the cars at the first free parking space they find regardless it's someone else's spot.