

Winter Semester 2022 – 2023 CSE3021- Social and Information Network

Deep learning-based personality recognition from text

posts of online social networks

SUNNY KUMAR

20BCE0262

SLOT:C1 Slot

FACULTY:-Dr. RAJKUMAR R

Objective

Social networks such as Facebook, Twitter, and Weibo have become essential components of everyday life and hold rich sources that reflect an individual's personality.

Many approaches have been proposed to automatically infer users' personality from the content they generate in social networks. However, the performance of these approaches depends heavily on the data representation which often is based on hard-coded prior knowledge. Recently, deep learning approaches have obtained very high performance.

Scope

Our daily lives are filled with concerns that relate to the assessment and prediction of personality. All social interaction requires that we evaluate and try to predict the behaviour of other persons with whom we must deal.

If an individual's personality could be predicted with a little more reliability, there is scope for integrating automated personality detection in almost all agents dealing withhuman-machine interaction such as voice assistants, robots, cars, etc. Research in this field is moving from detecting personality solely from textual data to visual and multimodal data

Abstract

Many approaches have been proposed to automatically infer users' personality from their social networks activities. However, the performance of these approaches depends heavily on the data representation. In this work, we apply deep learning methods to automatically learn suitable data representation for the personality recognition task.

Literature Survey

S.N o	Title	Source	Year of publication	Findings of the research work	Limitations	Future Work
	Affective Computin g and Sentiment Analysis	https://ie eexplore. ieee.org/ documen t/743518 2			The major weakness of knowledge based approaches is poor recognition of affect when linguistic rules are involved.stati stical methods are generally semantically weak—that is, lexical or co- occurrence elements in a statistical model have little predictive	Researching more on Next-generation sentiment-mining systems need broader and deeper common and common sense knowledge bases, together with more brain inspired and psychologically motivated reasoning methods, to better understand natural language opinions and, hence, more efficiently bridge the gap between (unstructured) multimodal information and (structured) machine- processable data.
				economy. Statistical methods, such as support vector machines and deep learning,	value individually	

	have been popular for affect classification of texts, Hybrid approaches aim to better grasp the conceptual rules that govern sentiment and the clues that can convey these concepts from realization to verbalization in		
	classification of texts, Hybrid approaches aim to better grasp the conceptual rules that govern sentiment and the clues that can convey these concepts from realization to		
	texts, Hybrid approaches aim to better grasp the conceptual rules that govern sentiment and the clues that can convey these concepts from realization to		
	Hybrid approaches aim to better grasp the conceptual rules that govern sentiment and the clues that can convey these concepts from realization to		
	approaches aim to better grasp the conceptual rules that govern sentiment and the clues that can convey these concepts from realization to		
	better grasp the conceptual rules that govern sentiment and the clues that can convey these concepts from realization to		
	conceptual rules that govern sentiment and the clues that can convey these concepts from realization to		
	that govern sentiment and the clues that can convey these concepts from realization to		
	sentiment and the clues that can convey these concepts from realization to		
	clues that can convey these concepts from realization to		
	convey these concepts from realization to		
	concepts from realization to		
	realization to		
	verbalization in		
	the human mind		
2. Deep https://se 2017	a method to	Using n-	incorporate more features
Learning- ntic.net/	extract personality	grams showed	and preprocessing. We
Based deep-	traits from stream	no	plan to apply the Long
Document learning-	of-consciousness	improvement	Short Term Memory
Modeling based-	essays using a	over the	(LSTM) recurrent
for personali	convolutional	majority	network to build both the
Personalit ty-	neural network	baseline: the	sentence vector from a
y detection	(CNN). method	classifier	sequence of word vectors
Detection .pdf	outperformed the	rejected all n-	and the document vector
from Text	state of the art for	grams.	from a sequence of
	all five traits,	SVM to the	sentence vectors. In
	although with	document	addition, we plan to apply
	different	vector d built	our document modeling
	configurations for	with the CNN	technique to other

				different traits.	did not	emotion related tasks,
				Using n-grams	improve the	such as sentiment analysis
				showed no	results	or mood classification
				improvement over		
				the majority		
				baseline: the		
				classifier rejected		
				all n-grams.		
				Applying filtering		
				and adding the		
				document level		
				(Mairesse)		
				features proved to		
				be beneficial. In		
				fact, the CNN		
				alone without the		
				document-level		
				features		
				underperformed		
				the Mairesse		
				baseline.		
3.	Semantic	https://gi	2017	Semantic Analysis	The approach	plan to extend it to other
٥.	Analysis	ulioc.git	2017	to Compute	has only been	languages exploiting the
	to	hub.io/fil		Personality Traits	tested on	similarity of word
	Compute	es/Sema		from Social and	English	meanings in the vector
	Personalit	ntic_anal		study scientific	language and	space. Finally, they aim to
	y Traits	ysis_to_		aspects of the	might not	extend the Twitter sample
	from	Compute		analysis, namely,	show the	by acquiring more
	Social	_Persona		whether it is	same results	panelists running our
	Media	lity_Trai		possible to	for other	questionnaire.
	Posts	ts_from_		accurately predict	languages	questionnane.
	1 0515				ianguages	
		Social_		someone's		

		Media_P		personality by		
		osts.pdf		only using the		
				language features		
				presented in a		
				social network		
				context.SVM		
				performs better		
				than other		
				algorithms. For		
				each personality		
				trait exists a SVM		
				configuration with		
				a minimum MSE		
				lower than that of		
				other learning		
				models		
4.	Personalit	https://ie	23 June	present a novel	disregard the	plan to explore optimal
4.	Personalit y	https://ie eexplore.	23 June 2017	present a novel methodology of	disregard the performance	plan to explore optimal feature
4.		_			_	
4.	у	eexplore.		methodology of	performance	feature
4.	y Recogniti	eexplore.		methodology of personality	performance differences	feature space by applying deep
4.	y Recogniti on on	eexplore. ieee.org/ abstract/		methodology of personality recognition based	performance differences among	feature space by applying deep learning techniques on
4.	y Recogniti on on Social	eexplore. ieee.org/ abstract/ documen		methodology of personality recognition based on a new machine	performance differences among different LDL	feature space by applying deep learning techniques on larger data sets
4.	y Recogniti on on Social Media	eexplore. ieee.org/ abstract/ documen t/795617		methodology of personality recognition based on a new machine learning paradigm	performance differences among different LDL approaches,	feature space by applying deep learning techniques on larger data sets so as to further improve
4.	y Recogniti on on Social Media With	eexplore. ieee.org/ abstract/ documen t/795617		methodology of personality recognition based on a new machine learning paradigm named label	performance differences among different LDL approaches, and only	feature space by applying deep learning techniques on larger data sets so as to further improve the prediction accuracy of
4.	y Recogniti on on Social Media With Label	eexplore. ieee.org/ abstract/ documen t/795617		methodology of personality recognition based on a new machine learning paradigm named label distribution	performance differences among different LDL approaches, and only focus on the	feature space by applying deep learning techniques on larger data sets so as to further improve the prediction accuracy of the LDL
4.	y Recogniti on on Social Media With Label Distributi	eexplore. ieee.org/ abstract/ documen t/795617		methodology of personality recognition based on a new machine learning paradigm named label distribution learning (LDL),	performance differences among different LDL approaches, and only focus on the MAEs of the	feature space by applying deep learning techniques on larger data sets so as to further improve the prediction accuracy of the LDL approaches in personality
4.	y Recogniti on on Social Media With Label Distributi on	eexplore. ieee.org/ abstract/ documen t/795617		methodology of personality recognition based on a new machine learning paradigm named label distribution learning (LDL), which assigns a	performance differences among different LDL approaches, and only focus on the MAEs of the approaches	feature space by applying deep learning techniques on larger data sets so as to further improve the prediction accuracy of the LDL approaches in personality
4.	y Recogniti on on Social Media With Label Distributi on	eexplore. ieee.org/ abstract/ documen t/795617		methodology of personality recognition based on a new machine learning paradigm named label distribution learning (LDL), which assigns a label distribution	performance differences among different LDL approaches, and only focus on the MAEs of the approaches with same	feature space by applying deep learning techniques on larger data sets so as to further improve the prediction accuracy of the LDL approaches in personality
4.	y Recogniti on on Social Media With Label Distributi on	eexplore. ieee.org/ abstract/ documen t/795617		methodology of personality recognition based on a new machine learning paradigm named label distribution learning (LDL), which assigns a label distribution rather than a	performance differences among different LDL approaches, and only focus on the MAEs of the approaches with same LDL	feature space by applying deep learning techniques on larger data sets so as to further improve the prediction accuracy of the LDL approaches in personality
4.	y Recogniti on on Social Media With Label Distributi on	eexplore. ieee.org/ abstract/ documen t/795617		methodology of personality recognition based on a new machine learning paradigm named label distribution learning (LDL), which assigns a label distribution rather than a single label or a	performance differences among different LDL approaches, and only focus on the MAEs of the approaches with same LDL algorithm,	feature space by applying deep learning techniques on larger data sets so as to further improve the prediction accuracy of the LDL approaches in personality
4.	y Recogniti on on Social Media With Label Distributi on	eexplore. ieee.org/ abstract/ documen t/795617		methodology of personality recognition based on a new machine learning paradigm named label distribution learning (LDL), which assigns a label distribution rather than a single label or a relevant label set	performance differences among different LDL approaches, and only focus on the MAEs of the approaches with same LDL algorithm, Dataset was	feature space by applying deep learning techniques on larger data sets so as to further improve the prediction accuracy of the LDL approaches in personality

				running efficiency	better	
				of PR approach is	accuracy.	
				also significant		
				since high-		
				efficiency ones		
				could be more		
				adaptive for		
				various		
				application		
				scenarios.t LDL		
				algorithms are		
				able to predict all		
				the Big Five traits		
				of a given user at		
				once, while the		
				baselines need to		
				build five		
				independent		
				prediction models,		
				one for each trait		
5.				The aim of this	This work is	Implementation and
				paper is to	not optimized	analysis of models on
	Cross-	https://w	2018 Jul 11	quantify image	for different	domains like A lot of
	platform	ww.ncbi.		sharing	situations	systems can benefit from
	and cross-	nlm.nih.		preferences and to	dependent on	personality detection. For
	interactio	gov/pmc		build models that	platform and	example, dating websites
	n study of	/articles/		automatically	purpose of	can trying to match
	user	PMC604		predict users'	use of the	personalities of
	personalit	0697/		personality in a	social	individuals before they
	y based			cross-/modal and	network by	meet each other . Human
	on images			cross-platform	the client for	Resources department
	on Twitter			setting.Overall,	example	could predict job

1 .	C 1 1 .	
our analysis	facebook is	satisfaction before hiring
shows that	supposed to	a potential employee.
conscientiousness	be a casual	Recommendation systems
and openness to	platform	and commercial
experience are the	where as	companies can improve
most predictable	linkedIn is	their accuracy by
personality traits	supposed to	recommending photos,
from images	be a	movies or music, that
posted online.	professional	have higher chance to
	one.	make positive impressions
		on their users. Knowledge
		of a user's personality
		also enables software
		developers to customise
		user interfaces
	conscientiousness and openness to experience are the most predictable personality traits from images	shows that conscientiousness and openness to experience are the most predictable personality traits from images posted online. supposed to be a casual platform where as linkedIn is supposed to from images posted online.

Overall Description

Language is the most common and reliable way for people to translate their internal thoughts and emotions into a form that others can understand. Words and language, then, are the very stuff of psychology and communication. Texts tend to reflect various aspects of the author's personality, and if we could model the user's text posts better, the performance of PR approaches would improve a lot. Motivated by this intuition, we propose three deep learning sequential models - single layer LSTM model, single layer 1D Convolution model and a double layer 1D convolution model. We can then analyse and compare the results of the three

proposed models to conclude which model gives the most accurate results for the problem statement in hand. Then we concatenate them with pre-extracted global statistical features to construct the input feature space for the traditional regression algorithm to carry out final prediction of each user's real-valued Big Five personality scores.

We have used various data cleaning techniques to improve the accuracy of the model along with analysis of the data with various graphs to give us a better understanding of the data that we are dealing with which helps us develop a better model for classifying the posts into 16 different personality types. Our study even gives a general idea about whether just increasing the complexity of the model used for training yields better accuracy or not. This project incorporates multiple callback functions to avoid common machine learning issues such as overfitting of data and saving the most recent model instead of the most efficient model.

Implementation

1. Importing the dataset

The dataset used in this project is the (MBTI) Myers-Briggs
Personality Type Dataset from kaggle.com, this dataset contains over
8674 records which are divided into two columns 'type' which is the
personality type of the person and 'posts' which is a text type data
which consists of all the posts of the person.

```
import pandas as pv
     df = pv.read csv('mbti 1.csv')
     df.head()
C→
          type
                                                            posts
                 'http://www.youtube.com/watch?v=qsXHcwe3krw|||...
         INFJ
         ENTP
                        'I'm finding the lack of me in these posts ver...
          INTP
                    'Good one _____ https://www.youtube.com/wat...
          INTJ
                       'Dear INTP, I enjoyed our conversation the o...
         ENTJ
                        'You're fired.|||That's another silly misconce...
[ ] df=df.dropna()
     df.reset index(inplace=True)
```

2. Cleaning the data

As we can see above the data consist of many redundancies like email IDs, HTML tags, URLs, stopwords which play no role in solving the problem in hand, another issue with the dataset is that a few abbreviations with the same meaning as the non abbreviated version are considered as different words which makes the model inefficient. Therefore to solve these problems cleaning the data in necessary beforetrain the model. In this project we have used text-hammer library from python by calling the necessary functions and cleaning the data.

```
+ Code + Text
      import text hammer as th
      import regex as re
      def get clean(x):
          x = str(x).lower()
          x = re.sub(r"\|\|\|", " ", x)
          x = th.cont exp(x)
          x = th.remove emails(x)
          x = th.remove urls(x)
          x = th.remove_html_tags(x)
          x = th.remove stopwords(x)
          x = th.remove rt(x)
          x = th.remove accented chars(x)
          x = th.remove special chars(x)
          # x = th.spelling correction(x)
          x = th.make base(x)
          return x
      df['posts'] = df['posts'].progress_apply(
          lambda x: x.replace(x, get_clean(x)))
      df.to csv('Others\mbti 1.csv', index=False)
```

3. Data Visualisation

 \Box

100%

Data Visualisation is an important part of any Machine Learning based or deep learning based problem, it gives an overview and insights of our data which we cannot infer just by looking at our data, In this project we have tried to visualise the data using various plots and graphs:

8675/8675 [24:49<00:00, 6.16it/s]

1. Frequency bar plot of various personality types

```
[ ] import seaborn as sns
  import matplotlib.pyplot as plt
  # sns.set()
  # df['type'] = pv.Categorical(df['type'])
  # sns.countplot(df.iloc[:,1].values)
  # sns.countplot(df['type'])
  # plt.show()
  # df.iloc[:,1].hist(bins=32)
  plt.hist(df.iloc[:, 1].values, bins=31)
  plt.show()
```


2. Frequency bar plot of top words used in posts

```
[ ] import matplotlib.pyplot as plt
     import seaborn as sns
     import nltk
     import pandas as pd
     nltk.download('punkt')
     words list= []
     for post in df['posts']:
          words_list.extend(nltk.word_tokenize(post))
     freq_dist = nltk. FreqDist (words_list)
     freq_dist.most_common(20)
     temp=pd.DataFrame(freq_dist.most_common (30), columns=['word', 'count'])
     fig, ax = plt.subplots(figsize=(10, 6))
     sns.barplot(x='word', y='count',data=temp, ax=ax)
     plt.title("Top words")
     plt.xticks(rotation = 'vertical')
     [nltk_data] Downloading package punkt to /root/nltk_data...
     [Text(0, 0, 'like'),
       Text(0, 0, 'lke'),
Text(1, 0, 'think'),
Text(2, 0, 'people'),
Text(3, 0, 'I'),
Text(4, 0, 'know'),
Text(5, 0, 'you'),
Text(6, 0, 'thing'),
        Text(7, 0, 'feel'),
        Text(8, 0, 'time'),
        Text(9, 0, 'good'),
       Text(10, 0, 'it'),
       Text(11, 0, 'want'),

Text(12, 0, 'type'),

Text(13, 0, 'love'),

Text(14, 0, 'way'),

Text(15, 0, 'not'),
        Text(16, 0, 'well'),
        Text(17, 0, 'friend').
        Text(18, 0, 'go'),
        Text(19, 0, 'find'),
        Text(20, 0, 'say'),
Text(21, 0, 'try'),
        Text(22, 0, 'get'),
        Text(23, 0, 'lot'),
        Text(24, 0, 'work'),
        Text(25, 0, 'look'),
        Text(26, 0, 're'),
       Text(27, 0, 'life'),
Text(28, 0, 'come'),
Text(29, 0, 'that')])
```


3. WordCloud of the words used in the dataset

```
import wordcloud
from wordcloud

# creation of wordcloud

wcloud_fig = WordCloud (stopwords=set (wordcloud.STOPWORDS),colormap='viridis', width=300, height=200).generate_from_frequencies (freq_dist)

# plotting the wordcloud

plt.figure(figsize=(10,7), frameon=True)
plt.imshow(wcloud_fig, interpolation = 'bilinear')
plt.show()
```


4. Swarmplot of number of words per comment of each type

```
[ ] df['words_per_comment']=df['posts'].apply(lambda x:len(x.split())/50)
    df.head()
```

	index	type	posts	words_per_comment
0	0	INFJ	enfp intj moment sportscenter play prank lifec	5.94
1	1	ENTP	I find lack post alarm sex boring position oft	11.06
2	2	INTP	${\sf good}____{\sf course}\;{\sf know}\;{\sf blessing}\;{\sf curse}\;{\sf abso}$	8.58
3	3	INTJ	dear intp enjoy conversation day esoteric gabb	10.34
4	4	ENTJ	you re fire silly misconception approach logic	9.26

```
] plt.figure(figsize=(15,10))
   sns.swarmplot(x="type",y= "words per comment", data=df)
  /usr/local/lib/python3.9/dist-packages/seaborn/categorical.py:3544: UserWarning: 68.4% of the points cannot be p
    warnings.warn(msg, UserWarning)
   /usr/local/lib/python3.9/dist-packages/seaborn/categorical.py:3544: UserWarning: 45.0% of the points cannot be p
    warnings.warn(msg, UserWarning)
   /usr/local/lib/python3.9/dist-packages/seaborn/categorical.py:3544: UserWarning: 64.1% of the points cannot be p
    warnings.warn(msg, UserWarning)
   /usr/local/lib/python3.9/dist-packages/seaborn/categorical.py:3544: UserWarning: 58.4% of the points cannot be p
    warnings.warn(msg, UserWarning)
   /usr/local/lib/python3.9/dist-packages/seaborn/categorical.py:3544: UserWarning: 6.8% of the points cannot be pl
    warnings.warn(msg, UserWarning)
   /usr/local/lib/python3.9/dist-packages/seaborn/categorical.py:3544: UserWarning: 73.1% of the points cannot be p
    warnings.warn(msg, UserWarning)
  /usr/local/lib/python3.9/dist-packages/seaborn/categorical.py:3544: UserWarning: 45.5% of the points cannot be p
    warnings.warn(msg, UserWarning)
   /usr/local/lib/python3.9/dist-packages/seaborn/categorical.py:3544: UserWarning: 10.0% of the points cannot be p
    warnings.warn(msg, UserWarning)
  /usr/local/lib/python3.9/dist-packages/seaborn/categorical.py:3544: UserWarning: 14.8% of the points cannot be p
    warnings.warn(msg, UserWarning)
   <Axes: xlabel='type', ylabel='words_per_comment'>/usr/local/lib/python3.9/dist-packages/seaborn/categorical.py:3
    warnings.warn(msg, UserWarning)
   /usr/local/lib/python3.9/dist-packages/seaborn/categorical.py:3544: UserWarning: 43.9% of the points cannot be p
    warnings.warn(msg, UserWarning)
   /usr/local/lib/python3.9/dist-packages/seaborn/categorical.py:3544: UserWarning: 63.2% of the points cannot be p
    warnings.warn(msg, UserWarning)
   /usr/local/lib/python3.9/dist-packages/seaborn/categorical.py:3544: UserWarning: 57.4% of the points cannot be p
    warnings.warn(msg, UserWarning)
   /usr/local/lib/python3.9/dist-packages/seaborn/categorical.py:3544: UserWarning: 5.8% of the points cannot be pl
    warnings.warn(msg, UserWarning)
   /usr/local/lib/python3.9/dist-packages/seaborn/categorical.py:3544: UserWarning: 71.9% of the points cannot be p
    warnings.warn(msg, UserWarning)
   /usr/local/lib/python3.9/dist-packages/seaborn/categorical.py:3544: UserWarning: 44.4% of the points cannot be p
    warnings.warn(msg, UserWarning)
   /usr/local/lib/python3.9/dist-packages/seaborn/categorical.py:3544: UserWarning: 8.5% of the points cannot be pl
    warnings.warn(msg, UserWarning)
```

/usr/local/lib/python3.9/dist-packages/seaborn/categorical.py:3544: UserWarning: 13.9% of the points cannot be p

warnings.warn(msg, UserWarning)

4. Encoding the personality types

The personality types currently are in string type data in the dataset, but our model can only work with numerical type data so we will convert the array of string type data into a array of arrays with the length 16 as following:

```
[ ] import tensorflow as tf
    from tensorflow.keras.utils import to categorical
    from sklearn.preprocessing import LabelEncoder
    y = df.iloc[:,1].values
    print("before: \n",y)
    le=LabelEncoder()
    y=le.fit_transform(y)
    y=to categorical(y)
    print("After: \n",y)
    before:
     ['INFJ' 'ENTP' 'INTP' ... 'INTP' 'INFP' 'INFP']
    After:
     [[0. 0. 0. ... 0. 0. 0.]
     [0. 0. 0. ... 0. 0. 0.]
     [0. 0. 0. ... 0. 0. 0.]
     [0. 0. 0. ... 0. 0. 0.]
     [0. 0. 0. ... 0. 0. 0.]
     [0. 0. 0. ... 0. 0. 0.]]
```

5. Encoding and padding the posts data

This step is necessary to make the posts data to be passed to the model, this step consists of many sub steps which are - porter stemming -> converting the result into a corpus -> encoding the corpus using oneHotEncoder -> applying padding sequences.

```
[ ] from tensorflow.keras.preprocessing.text import one_hot
    from tensorflow.keras.preprocessing.sequence import pad_sequences
    from nltk.stem.porter import PorterStemmer
    from nltk.corpus import stopwords
    nltk.download('stopwords')
    ps=PorterStemmer()
    corpus=[]
    for i in range (0,len(messages)):
        review = re.sub('[^a-zA-Z]','',messages[i])
        review=review.lower()
        review=review.split()
        review = [ps.stem(word) for word in review if not word in stopwords.words('english') ]
        review=''.join(review)
        corpus.append(review)
    oe=[one_hot(words,voc_size) for words in corpus ]
    sent length=250
    embedded_docs = pad_sequences(oe,padding='pre',maxlen = sent_length)
    embedded_docs
    [nltk_data] Downloading package stopwords to /root/nltk_data...
    [nltk_data] Unzipping corpora/stopwords.zip.
    array([[ 0, 0, 0, ..., 0, 0, 27799], [ 0, 0, 0, ..., 0, 0, 33768], [ 0, 0, 0, ..., 0, 0, 30940],
           [ 0, 0, 0, ..., 0, 0, 47135],
[ 0, 0, 0, ..., 0, 0, 27522],
           [ 0, 0, 0, ..., 0,
                                                 0, 24640]], dtype=int32)
```

6. Splitting the training and testing data

It is necessary to split our data into training and testing set to ensure that the model is just as effective in the set of data it hasn't seen before as it is on the data that it has trained on to avoid overfitting and underfitting.

```
[ ] from imblearn.over_sampling import RandomOverSampler
    from sklearn.model_selection import train_test_split
    import numpy as np

X=np.array(embedded_docs)
    ros = RandomOverSampler(random_state=42) # fit predictor and target variable
    x_rus, y_rus = ros.fit_resample(X, y)
    x_train,x_test,y_train,y_test=train_test_split(x_rus, y_rus, test_size=0.2, random_state=42)
```

7. Adding callbacks

We add a few tensorflow callbacks while training our model to avoid overfitting and saving the best fitting model even if it occurred a few epochs back.

8. Implementation of Model-1: LSTM

LSTM is a recurrent neural network (RNN) architecture that REMEMBERS values over arbitrary intervals. LSTM is well-suited to classify, process and predict time series given time lags of unknown duration. Relative insensitivity to gap length gives an advantage to LSTM over alternative RNNs, hidden Markov models and other sequence learning methods.

```
from tensorflow.keras.layers import Embedding,LSTM,Dense,Dropout
dimension=100
model = Sequential()
model.add(Embedding(voc_size,dimension,input_length = sent_length))
model.add(Dropout(0.25))
model.add(LSTM(100))
model.add(Dropout(0.25))
model.add(Dense(16,activation='softmax'))
model.compile(loss='categorical_crossentropy',optimizer ='adam',metrics=['accuracy'])
model.summary()
```

Model: "sequential"

Layer (type)	Output Shape	Param #
embedding (Embedding)	(None, 250, 100)	5000000
dropout (Dropout)	(None, 250, 100)	0
lstm (LSTM)	(None, 100)	80400
dropout_1 (Dropout)	(None, 100)	0
dense (Dense)	(None, 16)	1616

Total params: 5,082,016 Trainable params: 5,082,016 Non-trainable params: 0

```
history = model.fit(x_train,y_train,validation_data=(x_test,y_test),epochs=5,batch_size=64, callbacks = callbacks )
```

```
F→ Epoch 1/5
 Epoch 1: val accuracy improved from -inf to 0.75797, saving model to ./model0.h5
 Epoch 2/5
 Epoch 2: val accuracy improved from 0.75797 to 0.84752, saving model to ./model0.h5
 Epoch 3/5
 Epoch 3: val accuracy improved from 0.84752 to 0.85519, saving model to ./model0.h5
 Epoch 4/5
 Epoch 4: val accuracy did not improve from 0.85519
 Epoch 5/5
 Epoch 5: val_accuracy did not improve from 0.85519
```

9.Implementation of Model-2: Single Layer 1D convolution

In a 1D Convolution model, a single kernel will move one-by-one down a list of input embeddings, looking at the first word embedding (and a small window of next-word embeddings) then the next word embedding, and the next, and so on. The resultant output will be a feature vector that contains about as many values as there were input embeddings. This helps us find patterns in the texts and classify them.

```
max features =50000
   embedding_dim =64
    sequence_length = 250
   model2 = tf.keras.Sequential()
   model2.add(tf.keras.layers.Embedding(max_features +1, embedding_dim, input_length=sequence_length, ))
   model2.add(tf.keras.layers.Conv1D(128,16, activation='relu'))
    model2.add(tf.keras.layers.GlobalMaxPooling1D())
   model2.add(tf.keras.layers.Dropout(0.5))
   model2.add(tf.keras.layers.Dense(16, activation='sigmoid'))
   model2.compile(loss=tf.keras.losses.CategoricalCrossentropy(from_logits=True), optimizer='Nadam', metrics=["accuracy"])
    model2.summary()

    Model: "sequential_1"

    Layer (type)
                             Output Shape
                                                     Param #
    ______
    embedding 1 (Embedding)
                             (None, 250, 64)
                                                     3200064
    conv1d (Conv1D)
                             (None, 235, 128)
                                                     131200
    global_max_pooling1d (Globa (None, 128)
                                                      0
    lMaxPooling1D)
    dropout_2 (Dropout)
                            (None, 128)
                                                      0
                                                      2064
    dense 1 (Dense)
                            (None, 16)
    _____
    Total params: 3,333,328
   Trainable params: 3,333,328
   Non-trainable params: 0
[ ] history_2 = model2.fit(x_train,y_train,validation_data=(x_test,y_test),epochs=5,batch_size=64, callbacks = callbacks )
    Enoch 1/5
    367/367 [============ ] - ETA: Os - loss: 0.2018 - accuracy: 0.9549
    Epoch 1: val_accuracy improved from -inf to 0.85946, saving model to model2.h5
    Epoch 2/5
    367/367 [============= ] - ETA: Os - loss: 0.1761 - accuracy: 0.9574
    Epoch 2: val_accuracy did not improve from 0.85946
    367/367 [==========] - 141s 385ms/step - loss: 0.1761 - accuracy: 0.9574 - val_loss: 0.5242 - val_accuracy: 0.8591
    Epoch 3/5
    367/367 [=========================== ] - ETA: Os - loss: 0.1622 - accuracy: 0.9587
    Epoch 3: val_accuracy improved from 0.85946 to 0.86116, saving model to model2.h5
    367/367 [==========] - 139s 379ms/step - loss: 0.1622 - accuracy: 0.9587 - val_loss: 0.5496 - val_accuracy: 0.8612
    Epoch 4/5
    367/367 [============ ] - ETA: Os - loss: 0.1540 - accuracy: 0.9571
    Epoch 4: val_accuracy did not improve from 0.86116
    367/367 [===========] - 141s 384ms/step - loss: 0.1540 - accuracy: 0.9571 - val_loss: 0.5220 - val_accuracy: 0.8603
    Epoch 5/5
    367/367 [===========] - ETA: 0s - loss: 0.1439 - accuracy: 0.9595
    Epoch 5: val_accuracy did not improve from 0.86116
    367/367 [===========] - 144s 393ms/step - loss: 0.1439 - accuracy: 0.9595 - val_loss: 0.5314 - val_accuracy: 0.8596
```

10. Implementation of Model-3: Double Layer 1D convolution

This works similar to a one layer 1D Convolution network, but as it has two layers the neural network formed by this model is more complex and dense, the 1D Convlayers are followed by MaxPooling layers which help the model group similarities together to avoid differentiating too much between similar terms.

```
max_features =50000
embedding_dim =64
sequence_length = 250
model3 = tf.keras.Sequential()
model3.add(tf.keras.layers.Embedding(max_features +1, embedding_dim, input_length=sequence_length, ))
model3.add(tf.keras.layers.Conv1D(128,16, activation='relu'))
model3.add(tf.keras.layers.MaxPooling1D())
model3.add(tf.keras.layers.Conv1D(128,16, activation='relu'))
model3.add(tf.keras.layers.GlobalMaxPooling1D())
model3.add(tf.keras.layers.Dropout(0.5))
model3.add(tf.keras.layers.Dense(16, activation='sigmoid'))
model3.compile(loss=tf.keras.losses.CategoricalCrossentropy(from_logits=True), optimizer='Nadam', metrics=["accuracy"])
model3.summary()
```

Model: "sequential_5"

Layer (type)	Output Shape	Param #
embedding_5 (Embedding)	(None, 250, 64)	3200064
conv1d_7 (Conv1D)	(None, 235, 128)	131200
<pre>max_pooling1d_3 (MaxPooling 1D)</pre>	(None, 117, 128)	0
conv1d_8 (Conv1D)	(None, 102, 128)	262272
<pre>global_max_pooling1d_4 (GlobalMaxPooling1D)</pre>	(None, 128)	0
dropout_6 (Dropout)	(None, 128)	0
dense_5 (Dense)	(None, 16)	2064

Total params: 3,595,600 Trainable params: 3,595,600 Non-trainable params: 0

```
history_3 = model3.fit(x_train,y_train,validation_data=(x_test,y_test),epochs=5,batch_size=64, callbacks = callbacks )
Epoch 1/5
  /usr/local/lib/python3.9/dist-packages/keras/backend.py:5561: UserWarning: "`categorical_crossentropy` received `from_log
   output, from_logits = _get_logits(
  Epoch 1: val_accuracy improved from -inf to 0.05867, saving model to ./model3.h5
  367/367 [===========] - 253s 684ms/step - loss: 2.7730 - accuracy: 0.0605 - val_loss: 2.7728 - val_accuracy
  Epoch 2/5
  367/367 [========] - ETA: 0s - loss: 2.7728 - accuracy: 0.0612
  Epoch 2: val_accuracy improved from 0.05867 to 0.05987, saving model to ./model3.h5
  Epoch 3/5
  367/367 [============ ] - ETA: 0s - loss: 2.7727 - accuracy: 0.0606
  Epoch 3: val accuracy did not improve from 0.05987
  Epoch 4/5
  367/367 [============] - ETA: Os - loss: 2.7727 - accuracy: 0.0609
  Epoch 4: val accuracy did not improve from 0.05987
```

Result Analysis

As we have successfully implemented our three models, let us compare the results:

1. Results of Model-1: LSTM

```
[ ] model = tf.keras.models.load model('model0.h5')
  preds = model.predict(x test)
  eval = model.evaluate(x_test,y_test)
  print("Val. Loss: ",eval[0])
  print("Val. Accuracy: ",eval[1])
  184/184 [========== - - 8s 42ms/step
  Val. Loss: 0.5018453001976013
  Val. Accuracy: 0.8596282005310059
from sklearn.metrics import confusion_matrix
  true_cat = []
  for y in y_test:
    true cat.append(np.where(y==1)[0])
  predicted_cat = tf.argmax(preds, axis=1)
  predicted_cat
  print(confusion_matrix(predicted_cat, true_cat))
[] [[365 0 0 5 0 0 0 0 3 2 3 2 0 0 0
                                            0]
    0 309 0
             2 0 0 0 0 6 7 6 8 0 2 0 0]
   [1 1 396 0 0 0 0 0 5 2 1 2 0 2 0 1]
   [2 4 0 284 0 0 0 0 4 4 7 4 0 5 2 0]
     0 0 0 0 382 0 0 0 0 0 2 1 0 0 0 0]
   [ 0 0 2 1 0 371 0 0 0 0 0 0 0 0 0 2]
   [0 0 0 0 0 0 351 0 0 0 0 0 0 2 0 0]
    0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
   [0302000
                       0 104 7 9 2 0 0 0 2]
   [ 0 36 0 36 0 0 0 0 213 297 128 157 0 2 0 5]
     3 1 0 6 0 0 0 0 8 7 212 5 0 0 0 3
    0 0 0 3 0 0 0 0 8 10 2 150 0 0 0 0
    0 0 1 1 0 0 0 0 2 2 1 1350 0 0
     2 1 0 0 0 0 0 0 2 3 4 5 0 371 0
                                            01
   [1 0 2 3 0 0 0 0 3 4 2 0 0 0 351
                                            01
```

As we can see the LSTM model gives us an validation accuracy of 85.9%, validation loss of 0.5.

2. Results of Model-2: Single Layer 1D convolution

```
model = tf.keras.models.load model('model2.h5')
  preds = model.predict(x test)
  eval = model.evaluate(x test,y test)
  print("Val. Loss: ",eval[0])
  print("Val. Accuracy: ",eval[1])
1/184 [.....] - ETA: 35s - loss: 0.5051 - accuracy: 0.9062/usr/local,
    output, from_logits = _get_logits(
  184/184 [=============] - 7s 35ms/step - loss: 0.5496 - accuracy: 0.8612
  Val. Loss: 0.5495995879173279
  Val. Accuracy: 0.8611631989479065
 from sklearn.metrics import confusion_matrix
  true cat = []
  for y in y test:
    true cat.append(np.where(y==1)[0])
  predicted_cat = tf.argmax(preds, axis=1)
  predicted cat
  print(confusion_matrix(predicted_cat, true_cat))
[] 370
                                               21
     0 308
                             5 6 8 0 2 0 0]
            0 0 0 0 0 5 2 1 2 0 2 0 1
       1 394
           0288 0 0 0 0 4 4 7 5 0 0 0 0]
           0 0 382 0 0 0 0 0 2 1 0 0 0 0]
                      0 0 0 0 0 0 0 0 0 21
     0 0 2 1
                0 371
                         0 0 0 0 0 0 2 0
             0 0 0 351
                                               0]
                          0 0 0 1 0 0 0 0]
     0 0 0
             0 0 0 0 391
     0 3 0 4 0 0 0 0 108 7 11 3 0 0 0 2
     0 38
           0 34 0 0 0 0 213 302 131 159 0 4 0
     0 1 0 2 0 0 0 0 5 8 205 5 0 0 0
                                               0]
     0 0 0 1 0 0 0 0 6 5 3 146 0 0 0
                                               01
     0 0 1 1 0 0 0 0 2 2 1 1350 0 0
                                               0]
     2 1 0 1 0 0 0 0 2 3 4 5 0 374 0
    1 0 4 3 0 0 0 0 3 4 2 0 0 0 353
                                               0]
                0 0 0 0 2 1 3
                                          3 0 356]]
   [2301
```

As we can see the single layer 1D convolution model gives us a slightly better result with 86.1% validation accuracy and 0.54 validation loss.

3. Results of Model-3: Double Layer 1D convolution

```
[ ] model = tf.keras.models.load_model('model3.h5')
   preds = model.predict(x_test)
   eval = model.evaluate(x_test,y_test)
   print("Val. Loss: ",eval[0])
   print("Val. Accuracy: ",eval[1])
   184/184 [============ ] - 15s 81ms/step
   184/184 [==================== ] - 13s 70ms/step - loss: 2.7730 - accuracy: 0.059$
   Val. Loss: 2.7730016708374023
   Val. Accuracy: 0.05986696109175682
[ ] from sklearn.metrics import confusion_matrix
   true_cat = []
   for y in y_test:
     true_cat.append(np.where(y==1)[0])
   predicted_cat = tf.argmax(preds, axis=1)
   predicted_cat
   print(confusion_matrix(predicted_cat, true_cat))
                                                       0]
   П
      0
          0
                0
                   0
                          0
                             0
                                0
                                                 0
                                                       01
             0
                       0
                                       0
                                          0
                                                    0
                                                       0]
      0
          0
                0
                   0
                       0
                        0
                             0
                                0
                                    0
                                          0
                                                 0
                                                       0]
            0
                                       0
                          0
      0
          0
             0
                0
                   0
                       0
                             0
                                0
                                       0
                                          0
                                                 0
                                                       01
                          0
                                    0
          0
                0
                   0
                       0
                             0
                                0
                                       0
                                          0
                                                 0
                                                       01
      0
             0
    [376 360 401 344 382 371 351 391 360 345 379 344 350 387 353 369]
                0
                          0
                                                       0]
      0
          0
                0
                   0
                       0
                          0
                             0
                                    0
                                       0
                                              0
                                                 0
                                                    0
                                                       01
             0
                                0
                                          0
                          0
                                                       0]
            0 0
                       0 0
                                0 0
      0
          0
                   0
                             0
                                       0
                                         0
                                                 0
                                                      0]
      0
          0
           0 0 0 0 0 0 0 0 0 0
                                                 0 0 0]
      0
          0
          0 0 0 0 0 0 0 0 0 0
                                                 0 0 0]
               0
                       0 0 0
                                0 0
                                      0 0 0
                                                       011
          0
             0
                   0
                                                 0 0
```

As we can see the model 3 just gives us an validation accuracy of 5.9% and a validation loss of 2.77 even though this model is more complex than our Model 1 and 2, this is due to imbalance in classes i.e as seen in the data visualisation section that the INFP class has 1832records while the ESTJ class had only 39 records, therefore for a dataset of this sort a simpler model performs better.

The best performing model was the Model-2 which is the single layer 1D convolution model with an accuracy of 86.1%.

All our models were able to avoid overfitting and reduce execution time by terminating the training when there was no improvement in the model recorded after a few epochs.

We were able to save the best fit for each of the models as model0.h5, model2.h5 and model3.h5 files. With this we were able to train a deep learning model which predicts a person's personality type using their social media posts.

References-

Sun, J., Tian, Z., Fu, Y., Geng, J., & Liu, C. (2021). Digital twins in human understanding: a deep learning-based method to recognize personality traits. *International Journal of Computer Integrated Manufacturing*, *34*(7-8), 860-873.

Deilami, F. M., Sadr, H., & Nazari, M. (2022). Using machine learning based models for personality recognition. *arXiv* preprint *arXiv*:2201.06248.

Vinciarelli, A., & Mohammadi, G. (2014). A survey of personality computing. *IEEE Transactions on Affective Computing*, *5*(3), 273-291.

Majumder, N., Poria, S., Gelbukh, A., & Cambria, E. (2017). Deep learning-based document modeling for personality detection from text. *IEEE Intelligent Systems*, *32*(2), 74-79.

Cambria, E., Das, D., Bandyopadhyay, S., & Feraco, A. (2017). Affective computing and sentiment analysis. *A practical guide to sentiment analysis*, 1-10.

Yu, J., & Markov, K. (2017, November). Deep learning based personality recognition from facebook status updates. In 2017 IEEE 8th international conference on awareness science and technology (iCAST) (pp. 383-387). IEEE.

Ren, Z., Shen, Q., Diao, X., & Xu, H. (2021). A sentiment-aware deep learning approach for personality detection from text. *Information Processing & Management*, *58*(3), 102532.

Carducci, G. (2018). Semantic Analysis to Compute Personality Traits from Social Media Posts (Doctoral dissertation, Politecnico di Torino).

Xue, D., Hong, Z., Guo, S., Gao, L., Wu, L., Zheng, J., & Zhao, N. (2017). Personality recognition on social media with label distribution learning. *IEEE access*, *5*, 13478-13488.

Samani, Z. R., Guntuku, S. C., Moghaddam, M. E., Preoţiuc-Pietro, D., & Ungar, L. H. (2018). Cross-platform and cross-interaction study of user personality based on images on Twitter and Flickr. *PloS one*, *13*(7), e0198660.