Chapter 17: 随机变量收敛性

Latest Update: 2025 年 1 月 1 日

 $X_n \xrightarrow{P} X$ 并不意味着 $X_n \xrightarrow{a.s.} X$. 假设取 $\Omega = [0,1]$, \mathcal{A} 是 [0,1] 上的 Borel 集合族, P 是 [0,1] 上的 Lebesgue 测度.

设 A_n 是 [0,1] 上长度为 a_n 的任一区间,并取 $X_n=\mathbb{I}_{A_n}$. 则有 $P(|X_n|>\varepsilon)=a_n$,只要 $\lim_{n\to\infty}a_n=0$,则 $X_n\stackrel{P}{\longrightarrow}0$ (即 X_n 依概率收敛于常数 0).

进一步, 可以设 $X_{n,j}$ 表示区间 $\left[\frac{j-1}{n},\frac{j}{n}\right]$ 上的示性函数. 适当地将它们排成一列, 记之为 $\{Y_i\}_{i\geq 1}$.

$$X_{1,1}, X_{2,1}, X_{2,2}, X_{3,1}, X_{3,2}, X_{3,3}, X_{4,1}, \dots$$

 $\rightsquigarrow Y_1, Y_2, Y_3, Y_4, Y_5, Y_6, Y_7, \dots$

则按定义,有

$$\lim \sup_{m \to \infty} Y_m = 1 \quad a.s., \quad \lim \inf_{m \to \infty} Y_m = 0 \quad a.s.$$

从而 Y_n 不几乎处处收敛, 但是 Y_n 依概率收敛于 0.

Exercise #17. 1. 设 $X_{n,j}$ 的定义如例 2 中定义. 令 $Z_{n,j} = n^{\frac{1}{p}} X_{n,j}$. 令 Y_m 是一列排序后的 $Z_{n,j}$, 排序方法与例 2 相同. 证明: Y_m 依概率收敛于 0, 但是 Y_m 不 L^p 收敛于 0. 尽管 $Y_n \in L^p$.

证明. 对任给的 $\varepsilon > 0$, 当 $n > \varepsilon^p$ 使得 $\varepsilon n^{-\frac{1}{p}} < 1$, 有

$$P(|Z_{n,j}| > \varepsilon) = P(|X_{n,j}| > \varepsilon n^{-\frac{1}{p}}) = \frac{1}{n} \to 0 (n \to \infty).$$

因此 $Z_{n,j}$ 依概率收敛于 0, 即 Y_m 依概率收敛于 0.

由于

$$\mathbb{E}\{|Z_{n,j}|^p\} = n \cdot \frac{1}{n} = 1 < \infty.$$

从而 $Y_n \in L^p$. 但是 Y_n 不 L^p 收敛于 0, 因为

$$\lim_{n \to \infty} \mathbb{E}\left\{ \left| Y_n \right|^p \right\} = 1 \neq 0.$$

Exercise #17. 2. 证明: 依概率收敛的连续映射定理, 在去掉连续性条件之后是错的.

证明. 取 $\Omega = [0,1]$, \mathcal{A} 是 [0,1] 上的 Borel 集合族, P 是 [0,1] 上的 Lebesgue 测度.

取 $f(x) = \mathbb{I}_{\{0\}}(x), X_n = 1/n, 则 X_n$ 依概率收敛于 X = 0, 因为

$$\lim_{n \to \infty} \mathbb{E}\left\{ \frac{|X_n - X|}{1 + |X_n - X|} \right\} = \lim_{n \to \infty} \frac{1}{1 + n} = 0.$$

但是 $f(X_n) = 0$ 对任意 n 成立, 因此 $f(X_n)$ 不依概率收敛于 f(0) = 1.

Exercise #17. 3. 设 X_n 是独立同分布随机变量,满足 $P(X_n=1)=\frac{1}{2}, P(X_n=-1)=\frac{1}{2}$. 证明:

$$\frac{1}{n} \sum_{i=1}^{n} X_j$$

依概率收敛于 0. 可以令 $S_n = \sum_{j=1}^n X_j$, 再用 chebyshev 不等式证明.

证明. 根据

$$\mathbb{E}\left\{\frac{1}{n}\sum_{j=1}^{n}X_{j}\right\} = \mathbb{E}\left\{X_{1}\right\} = 0, \quad \operatorname{Var}\left(\frac{1}{n}\sum_{j=1}^{n}X_{j}\right) = \frac{1}{n}\operatorname{Var}(X_{1}) = \frac{1}{n},$$

根据 Chebyshev 不等式, 对 $\forall \varepsilon > 0$,

$$P\left(\left|\frac{1}{n}\sum_{j=1}^{n}X_{j}\right|>\varepsilon\right)\leq\frac{1/n}{\varepsilon^{2}}\to0\quad(n\to\infty).$$

从而 $\frac{1}{n}\sum_{j=1}^{n}X_{j}$ 依概率收敛于 0.

Exercise #17. 4. 设 X_n, S_n 的定义如习题 17.3. 证明: $\frac{1}{n^2}S_{n^2}$ 几乎处处收敛于 0.

证明可以用 $\sum_{n=1}^{\infty} P\left\{\frac{1}{n^2}|S_{n^2}|>\varepsilon\right\}<\infty$, 再用 Borel-Cantelli 引理.

证明.

Exercise #17. 5. 假设 $|X_n| \le Y$ a.s., n = 1, 2, 3, ... 证明: $\sup_{n} |X_n| \le Y$ a.s..

Exercise #17. 6. 设 $X_n \stackrel{p}{\to} X$. 证明: 特征函数 φ_{X_n} 逐点收敛于 φ_{X} .

Exercise #17. 7. 设 $X_1,...,X_n$ 是独立同分布的 Cauchy 随机变量, 参数 $\alpha=0,\beta=1$. 即它们的 密度是

$$f(x) = \frac{1}{\pi(1+x^2)}, -\infty < x < \infty.$$

证明: $\frac{1}{n}\sum_{j=1}^{n}X_{j}$ 服从 Cauchy 分布.

Exercise #17. 8. 设 $X_1,...,X_n$ 是独立同分布的 Cauchy 随机变量,参数 $\alpha=0,\beta=1$. 证明: 不存在常数 γ 使得 $\frac{1}{n}\sum_{j=1}^n X_j$ 依概率收敛于 γ . 进一步说明了,不存在常数 γ 使得 $\frac{1}{n}\sum_{j=1}^n X_j$ 几乎处处收敛于 γ .

Exercise #17. 9. 令 $\{X_n\}_{n\geq 1}$ 零均值, 方差有限. 假设 $\lim_{n\to\infty}\sigma_{X_n}^2=0$. 证明: X_n 依概率收敛于 0, 以及 L^2 收敛于 0.

Exercise #17. 10. 设 X_n 是独立同分布的随机变量,零均值,方差有限. 令 $S_n = \sum_{j=1}^n X_j$. 证明: $\frac{1}{n}S_n$ 依概率收敛于 0, 也 L^2 收敛于 0.

Exercise #17. 11. 假设 $\lim_{n\to\infty}X_n=X$ a.s. 以及 $|X|<\infty$ a.s. 令 $Y=\sup_n|X_n|$. 证明: $Y<\infty$ a.s.

证明.记

Exercise #17. 12. 假设 $\lim_{n\to\infty}X_n=X$ a.s. 令 $Y=\sup_n|X_n-X|$. 证明 $Y<\infty$ a.s.,定义新测度 Q:

$$Q(A) = \frac{1}{c}E\left\{1_A\frac{1}{1+Y}\right\}, \text{ where } c = E\left\{\frac{1}{1+Y}\right\}.$$

证明: X_n 在测度 Q 下 L^1 收敛于 X.

Exercise #17. 13. 设 A 是例 1 中定义的事件. 证明: P(A) = 0. 可以令 $A_n = \{$ 第 n 次投掷为正面 $\}$. 用 BC 引理证明 $\sum_{n=1}^{\infty} P(A_n) = \infty$.

Exercise #17. 14. 令 X_n 和 X 是 L^2 的实值的随机变量,假设 X_nL^2 收敛于 X. 证明: $\mathbb{E}\{X^2\}$ 收敛于 $\mathbb{E}\{X^2\}$.

可以用不等式:

$$|x^2 - y^2| \le (x - y)^2 + 2|y||x - y|$$

和 Cauchy-Schwarz 不等式证明.

证明. 不等式的证明可以根据,

$$|x+y| \le |x-y| + 2|y| \implies |x^2 - y^2| = |x-y||x+y| \le |x-y|(|x-y| + 2|y|).$$

要证: $\mathbb{E}\{X_n^2\}$ 收敛于 $\mathbb{E}\{X^2\}$, 考察

$$\begin{split} \left| \mathbb{E}\{X_n^2\} - \mathbb{E}\{X^2\} \right| &\leq \mathbb{E}\left| X_n^2 - X^2 \right| \quad (积分的性质) \\ &\leq \mathbb{E}\left\{ |X_n - X|^2 + 2|X||X_n - X| \right\} \quad (上面的不等式) \\ &\leq \mathbb{E}\left\{ |X_n - X|^2 \right\} + 2\mathbb{E}\left\{ |X||X_n - X| \right\} \quad (线性) \\ &\leq \mathbb{E}\left\{ |X_n - X|^2 \right\} + 2\sqrt{\mathbb{E}\{X^2\}}\sqrt{\mathbb{E}\{(X_n - X)^2\}} \quad (\text{H\"older 不等式)} \\ &\to 0 \quad (n \to \infty). \end{split}$$

收敛性证毕.

Exercise #17. 15 (另一种控制收敛定理). 设 $\{X_n\}_{n\geq 1}$ 是随机变量,满足 $X_n \stackrel{P}{\to} X$. 假设存在常数 C>0 满足对任意的 w 满足 $|X_n(w)| \leq C$. 证明: $\lim_{n\to\infty} \mathbb{E}\{|X_n-X|\}=0$. 可以先证明: $P(|X|\leq C)=1$.

证明. 先考察 X 是否几乎处处有上界. 由于 $\forall \varepsilon > 0$,

$$\{|X| \le C + \varepsilon\} = \{|X - X_n + X_n| \le C + \varepsilon\}$$
$$\supset \{|X - X_n| + |X_n| \le C + \varepsilon\}$$
$$\supset \{|X_n| \le C\} \cap \{|X_n - X| \le \varepsilon\}.$$

于是,

$$P\{|X| \le C + \varepsilon\} \ge P\{|X_n| \le C\} - P\{|X_n - X| > \varepsilon\}$$
$$= 1 - P\{|X_n - X| > \varepsilon\}$$
$$\to 1 \quad (n \to \infty).$$

根据概率的连续性, $\{|X| \leq C\} = \bigcap_{m=1}^{\infty} \{|X| \leq C + 1/m\}$, 从而 $P\{|X| \leq C\} = 1$. 于是 $|X_n - X| \leq 2C$. 以下 $\forall \varepsilon > 0$, 由于 $X_n \stackrel{P}{\to} X$, 有 $N = N(\varepsilon)$ 使得当 n > N 时, 有

$$P\left(|X_n - X| \ge \frac{\varepsilon}{2}\right) < \frac{\varepsilon}{4C}.$$

于是

$$\begin{split} \mathbb{E}\{|X_n - X|\} &= \int_{\{|X_n - X| \ge \varepsilon/2\}} |X_n - X| dP + \int_{\{|X_n - X| < \varepsilon/2\}} |X_n - X| dP \\ &\leq \int_{\{|X_n - X| \ge \varepsilon/2\}} 2C dP + \int_{\{|X_n - X| < \varepsilon/2\}} \varepsilon/2 dP \\ &\leq 2C \cdot \frac{\varepsilon}{4C} + \frac{\varepsilon}{2} = \varepsilon. \end{split}$$

从而 $\lim_{n\to\infty} \mathbb{E}\{|X_n - X|\} = 0.$