Encontro 04 - Grafos e simulação de robôs móveis

INTELI

Engenharia de Computação Módulo 6

Maio - 2023

Roteiro

- Atividade ponderada 2
- Árvores
- Grafos
- Representação de grafos
- Mão na massa simulação de robôs

Encontros M6

Semana 1

Introdução à robótica móvel

Semana 2

Tipos de dados abstratos

Semana 3

Estruturas de dados

Semana 4

Simulação de robôs móveis

Semana 5

Conceitos de visão computacional clássica

Integração de robôs móveis

Semana 6

Detecção de objetos com visão computacional clássica

Semana 7

Detecção de objetos com visão computacional clássica

Integração de sistemas 1

Semana 8

Integração de sistemas 2

Semana 9

Estudo de caso de implementação de simulação robótica

Semana 10

Correção de problemas e refinamento

Finalização do protótipo da solução

Árvores e Grafos

Árvores

- ☐ As listas ligadas usualmente fornecem maior flexibilidade que os arrays, mas são estruturas lineares, sendo difíceis de serem utilizadas para uma representação hierárquica.
- Pilhas e Filas refletem uma certa hierarquia, mas são limitadas a somente uma dimensão.
- Para superar esta limitação, utilizaremos um novo tipo de dados chamado Árvore. Uma árvore é formada por um conjunto de elementos denominados nós conectados através de ramos ou arcos.

Árvores

Grafos

- ☐ Em uma árvore, cada nó tem que ser atingível a partir da raiz através de uma sequência única de arcos, chamada de caminho. Desta forma, representam somente relações de um tipo hierárquico, como entre o ascendente e o filho.
- A generalização da árvore é o *Grafo*, onde esta limitação desaparece. Com isso, temos que um grafo é um conjunto de vértices (ou nós) conectados por arestas (ou ramos).

Grafos

Grafos - terminologia

☐ Um grafo simples **G** consiste em um conjunto **V** não vazio de vértices e um conjunto **E** de arestas que pode ou não ser vazio. Cada aresta um conjunto de dois vértices.

Grafos - exemplo

$$\Box$$
 G = (V, E, Ψ)

$$\Box$$
 V = {a, b, c, d, e}

$$\Box$$
 E = {A, B, C, D, E, F, G, H}

$\Psi(A) = \{a, b\}$	$\Psi(E) = \{b, d\}$	
$\Psi(B) = \{b, c\}$	$\Psi(F) = \{d, e\}$	
$\Psi(C) = \{c, c\}$	$\Psi(G) = \{b, e\}$	
$\Psi(D) = \{c, d\}$	$\Psi(H) = \{b, e\}$	

Grafos - exemplo

$$\Psi(A) = \{a, b\}$$

$$\Psi(B) = \{b, c\}$$

$$\Psi(C) = \{c, c\}$$

$$\Psi(D) = \{c, d\}$$

$$\Psi(E) = \{b, d\}$$

$$\Psi(F) = \{d, e\}$$

$$\Psi(G) = \{b, e\}$$

$$\Psi(H) = \{b, e\}$$

Dígrafo

$$\Psi(A) = (a, b)$$

$$\Psi(B) = (b, c)$$

$$\Psi(C) = (c, c)$$

$$\Psi(D) = (c, d)$$

$$\Psi(E) = (b, d)$$

$$\Psi(F) = (d, e)$$

$$\Psi(G) = (b, e)$$

$$\Psi(H) = (b, e)$$

Grafo ponderado

$\Psi(A) = (a, b)$	$\omega(A) = 6$
$\Psi(B) = (b, c)$	$\omega(B) = 5$
$\Psi(C) = (c, c)$	$\omega(C) = 8$
$\Psi(D) = (c, d)$	$\omega(D) = 7$
$\Psi(E) = (b, d)$	$\omega(E) = 6$
$\Psi(F) = (d, e)$	$\omega(F) = 7$
$\Psi(G) = (b, e)$	$\omega(G) = 4$
$\Psi(H) = (b, e)$	ω(H) = 3

Exemplo de aplicação

Representação de grafos

Matriz de adjacências

Lista de arestas

Buscas em grafos

Busca em largura

Tree with an Empty Queue

Busca em profundidade

Tree with an Empty Stack

Retirado de: https://www.codecademy.com/article/tree-traversal

Outros algoritmos...

Dijkstra

Primm

□ A*

Mão na massa

Um ajuste ao subscriber!

```
import rclpy
from rclpy.node import Node
from turtlesim.msg import Pose
class TurtleController(Node):
    def __init__ (self, mission_control, control_period=0.01):
        super().__init__("turtlecontroller")
        self.pose_subscription = self.create_subscription(
            msg_type=Pose,
            topic='/odom',
            callback=self.pose_callback,
            qos_profile=10
   def pose_callback(self, msg):
       self.get_logger().info(f"x={msg.x}, y={msg.y}, theta={msg.theta}")
```

Um ajuste ao subscriber!

```
import rclpy
from rclpy.node import Node
from nav_msgs.msg import Odometry
from tf_transformations import euler_from_quaternion
class TurtleController(Node):
    def __init__ (self, mission_control, control period=0.01):
        super(). init _("turtlecontroller")
        self.pose subscription = self.create subscription(
            msg_type=Odometry,
            topic='/odom',
            callback=self.pose_callback,
            qos profile=10
    def pose callback(self, msg):
        x = msg.pose.pose.position.x
        y = msg.pose.pose.position.y
        z = msg.pose.pose.position.z
        ang = msg.pose.pose.orientation
        _, _, theta = euler_from_quaternion([ang.x, ang.y, ang.z, ang.w])
        self.get_logger().info(f"x={x}, y={y}, theta={theta}")
```

sudo apt install ros-humble-tf-transformations

pip install transforms3d

Sugestão

- ☐ Subscriber de pose
- ☐ Publisher de velocidades
- Controlador simples
- Lembrem-se dos vídeos! Disponíveis em https://github.com/rmnicola/m6-ec-encontros

Perguntas?

Retirado de (https://cdn-icons-png.flaticon.com/512/1268/1268705.png), em 31/01/2023

Desenvolvimento

Retirado de (https://media.tenor.com/npyHSol-FgAAAAC/vegeta-training.gif), em 31/01/2023

