- 1. We want to find the decomposition of $I = \bigcap_{i=1}^{n} \mathfrak{q}_i$.
- 2. It is $\sqrt{\mathfrak{q}_i} = \sqrt{(I:x)}$ for some $x \in R$.
- 3. What we know though is if $x \notin \sqrt{I}$ then (I:x) = I which doesn't help.

4.

Example 0.1. $I = (X^2Y, XY^2).$

- 1. $\sqrt{(X^2Y, XY^2)} = (XY, X^2, Y^2)$
- 2. $X^2Y^2 XY^2 = (X^2 X)Y^2$

Theorem 1. In a Noetherian ring, each ideal has a minimal primary decomposition.

Every irreducible ideal is primary.

1.

Theorem 2. Let

$$I = \bigcap_{i=1}^{n} \mathfrak{q}_i$$

Then $\sqrt{\mathfrak{q}_i} = (I:x)$ for some x

$$I = (X^2Y, XY^2)$$

- 1. $(X^2Y, XY^2) = (X^2, XY^2) \cap (Y, XY^2) = (X^2, XY^2) \cap (Y)$
- 2. $(X^2, XY^2) \cap (Y) = (X^2, X) \cap (X^2, Y^2) \cap (Y) = (X) \cap (X^2, Y^2) \cap (Y)$

Theorem 3.

Proof. 1. Let $\{u_1, \ldots, u_r\}$ generate I.

- 2. If u_1 is not a pure power, we can write $u_1 = vw$ where v and w are coprime monomials.
- 3. We claim: $I = (v, u_2, \dots, u_r) \cap (w, u_2, \dots, u_r)$.

The associated primes are $\{(X),(Y)\}$. The embedded primes are $\{(X,Y)\}$

1.
$$(X^2, XY, XZ) = (X^2, XY, XZ) \cap (X^2, XY, Z) = (X) \cap (X^2, X, Z) \cap (X^2, Y, Z)$$

 $(X^3Y, XY^4) = (X^3, XY^4) \cap (Y, XY^4) = (X) \cap (X^3, Y^4) \cap (Y, X) \cap (Y) = (X) \cap (X^3, Y^4) \cap (Y)$
 $(X^2Z, YZ, Z - XY)$

Exercise 3.1. If an ideal \mathfrak{a} has a primary decomposition, then $\operatorname{Spec}(A/\mathfrak{a})$ has only finitely many irreducible components.

Solution. Let \mathfrak{a} be a decomposable ideal in a ring A. Denote the set of prime ideals that contain \mathfrak{a} by

$$V(\mathfrak{a}) := \{ \mathfrak{p} \in \operatorname{Spec}(A) \mid \mathfrak{a} \subset \mathfrak{p} \} \subset \operatorname{Spec}(A)$$

and denote the canonical projection to the quotient ring by $\pi:A\longrightarrow A/\mathfrak{a}$.

- 1. Since \mathfrak{a} is decomposable, by proposition 4.6., the isolated primes of \mathfrak{a} are precisely the minimal elemenets of $S_{\mathfrak{a}}$.
- 2. The prime ideals of the quotient ring A/a are precisely the images of prime ideals that contain the ideal a of A under the canonical projection, i.e. if \$\overline{p}\$ ⊂ A/a is prime, then \$\pi\$ = π⁻¹(\$\overline{p}\$) is prime in A and contains a, and if \$\pi\$ ⊂ A is a prime ideal that contains a, then \$\overline{p}\$ = π(\$\pi\$) is prime in A/a. Or state it differently, there is a one-to-one correspondence between the sets

 $V(\mathfrak{a})=\{\mathfrak{p}\subset\operatorname{Spec}(A)\mid \mathfrak{a}\subset\mathfrak{p}\}\longleftrightarrow\operatorname{Spec}(A/\mathfrak{a}).$

- (a) By proposition 1.1., the ideals in A/a corresponds to an ideal in A that contains a, i.e. if b̄ ∈ A/a is an ideal, then b = π⁻¹(b̄) is an ideal in A that contains a, and if b ∈ A is an ideal that contains a, then b̄ = π(b) is an ideal in A/a.
 (b) If p̄ ∈ A/a is a prime ideal, then p = π⁻¹(p̄) is a prime ideal in A because preimages preserves prime
- ideals. (c) If $\mathfrak{p} \subset A$ is a prime ideal, then $\overline{\mathfrak{p}} = \pi(\mathfrak{p})$ is a prime ideal in A/\mathfrak{a} .
- i. Let $\overline{x} \cdot \overline{y} \in \overline{\mathfrak{p}}$.
 - ii. Since π is surjective, there are x and y in A such that $\pi(x) = \overline{x}$ and $\pi(y) = \overline{y}$.
 - iii. Moreover, since π is a ring homomorphism, we have $\overline{x} \cdot \overline{y} = \pi(x) \cdot \pi(y) = \pi(xy)$.
 - iv. Since $\overline{x} \cdot \overline{y} \in \overline{\mathfrak{p}}$ and since
- 3. Thus, by 1. and 2., the isolated primes of $\mathfrak a$ corresponds to minimal elements of $\operatorname{Spec}(A/\mathfrak a)$. Since the
- number of associated primes is finite, the number of isolated primes and hence the number of minimal elements of Spec(A/a) must be finite as well.

 4. Bla bla bla, finite minimal elements, finite irreducible components.

Solution. Let \mathfrak{a} be an ideal in a ring A.

Exercise 3.2 (Atiyah & MacDonald 4.2., Bosch 2.1.). If $\mathfrak{a} = \sqrt{\mathfrak{a}}$, then \mathfrak{a} has no embedded prime ideals.

1. If \mathfrak{a} is not decomposable, then the statement is trivially true. Thus, consider an ideal \mathfrak{a} that is decomposable and denote one of its minimal primary decomposition by

 $\mathfrak{a} = igcap_{i-1}^n \mathfrak{q}_i.$

2. Taking the radical on both sides yields

$$\sqrt{\mathfrak{a}} = \sqrt{\bigcap_{i=1}^{n} \mathfrak{q}_i}$$

$$= \bigcap_{i=1}^{n} \sqrt{\mathfrak{q}_i} \qquad \text{bla bla}$$

 $\mathfrak{a} = \bigcap_{i=1}^n \sqrt{\mathfrak{q}_i}$

Since $\mathfrak{a} = \sqrt{\mathfrak{a}}$, the last expression gives

which is a primary decomposition of \mathfrak{a} . 3. Assume $\sqrt{\mathfrak{q}_i} \subset \sqrt{\mathfrak{q}_j}$ for some $j \neq i$. In that case, we have a primary decomposition

ase, we have
$$n$$

 $\mathfrak{a} = igcap_{\substack{i=1 \ i
eq j}}^n \sqrt{\mathfrak{q}_i}$

which has less primary components than the thing above which is a contradiction. I think I can write this much better.

Additional Bosch: Is the converse true?

Exercise 3.3 (Atiyah & MacDonald 4.3). If A is absolutely flat, every prime ideal is maximal.

Hints. • Exercise 2.28 is crucial.

Solution. Let A be an absolutely flat ring and fix a prime ideal \mathfrak{p} in A. Our goal is to show that A/\mathfrak{p} is a field. For that endeavour, fix an element $\overline{x} \in A/\mathfrak{p}$ with $\overline{x} \neq \overline{0}$. We will show \overline{x} is invertible.

1. By exercise 2.28., if A is absolutely flat, then so is A/\mathfrak{p} . Furthermore, exercise 2.28. says in any absolutely flat ring, all non-units are zero-divisors.

While it is always aluring to use the word "vacuously", I don't think this is a case of a vacuous truth. If $\mathfrak a$ is not decomposable, then the set of associated ideals of $\mathfrak a$ is empty and thus embedded primes which a subset of associated ideals is also empty. It fulfills the statement by definition and not because there is nothing to check.

П

- 2. Suppose there exists a non-zero non-unit \overline{x} in A/\mathfrak{p} . By 1., $\overline{x} \in A/\mathfrak{p}$ must be a non-zero zero-divisor. Thus, there is some non-zero $\overline{y} \in A/\mathfrak{p}$ such that $\overline{x} \cdot \overline{y} = \overline{0}$.
- 3. Now, $\overline{x} \cdot \overline{y} = \overline{0} \in A/\mathfrak{p}$ implies $x \cdot y \in \mathfrak{p}$. By the definition of prime ideals, we hence have $x \in \mathfrak{p}$ or $y \in \mathfrak{p}$, but this is equivalent to saying $\overline{x} = \overline{0}$ or $\overline{y} = \overline{0}$ which were both excluded. We arrived at a contradiction. There are no non-zero non-units in A/\mathfrak{p} .

Exercise 3.4 (Atiyah & MacDonald 4.4). In the polynomial ring $\mathbb{Z}[X]$, the ideal $\mathfrak{m}=(2,X)$ is maximal and the ideal $\mathfrak{q}=(4,X)$ is \mathfrak{m} -primary, but is not the power of \mathfrak{m} .

Proof. "The ideal $\mathfrak{m}=(2,X)$ is maximal in the polynomial ring $\mathbb{Z}[X]$."

- 1. We have the isomorphism $\mathbb{Z}[X]/(2,X) \cong \mathbb{Z}/2\mathbb{Z}$.
 - (a) Consider the map

$$\varphi: \mathbb{Z}[X] \longrightarrow \mathbb{Z}/2\mathbb{Z}$$
$$P(X) \mapsto P(0) \mod 2\mathbb{Z}.$$

- (b) The map φ is a homomorphism because it is the composition of substitution homomorphism $\mathbb{Z}[X] \longrightarrow \mathbb{Z}$ and the canonical projection $\mathbb{Z} \longrightarrow \mathbb{Z}/2\mathbb{Z}$.
- (c) Moreover, the map φ is surjective because it is the composition of two surjective maps. Thus, $\operatorname{im}(\varphi) = \mathbb{Z}/2\mathbb{Z}$.
- (d) We also have $ker(\varphi) = (2, X)$.
 - i. Let $P \in \ker(\varphi)$. Then, $\varphi(P) = P(0) \mod 2\mathbb{Z}$.
- (e) Thus, by the isomorphism theorem, we have $\mathbb{Z}[X]/(2,X) \cong \mathbb{Z}/2\mathbb{Z}$.
- 2. Since $\mathbb{Z}/2\mathbb{Z}$ is a field, (2, X) is a maximal ideal.

"The ideal $\mathfrak{q}=(4,X)$ is \mathfrak{m} -primary."

- 1. We simply have $\sqrt{(4,X)} = \sqrt{\sqrt{4} + \sqrt{X}} = \sqrt{(2) + (X)} = \sqrt{(2,X)}$.
- 2. Thus, (4, X) is \mathfrak{m} -primary.

"The ideal $\mathfrak{m} = (4, X)$ is not a power of \mathfrak{m} ."

1. We have the chain of strict inclusion

$$\mathfrak{m}\supsetneq\mathfrak{m}^2\supsetneq\cdots\supsetneq\mathfrak{m}^k\supsetneq\cdots$$

- $2. \ \mathfrak{m}^2 = (4, 2X, X^2).$
- 3. So $(4, X) \subset (2, X)$ but $(4, X) \not\subset (4, 2X, X^2)$
- 4. Thus it cannot be a power of \mathfrak{m} .

Exercise 3.5 (Atiyah & MacDonald 4.5). In the polynomial ring K[X,Y,Z] where K is a field, let $\mathfrak{p}_1=(X,Y)$, $\mathfrak{p}_2=(X,Z)$, and $\mathfrak{m}=(X,Y,Z)$. Then, \mathfrak{p}_1 and \mathfrak{p}_2 are prime and \mathfrak{m} is maximal. Let $\mathfrak{a}=\mathfrak{p}_1\mathfrak{p}_2$. Show that $\mathfrak{a}=\mathfrak{p}_1\cap\mathfrak{p}_2\cap\mathfrak{m}^2$ is a reduced primary decomposition of \mathfrak{a} . Which components are isolated and which are embedded?

"reduced primary decomposition"

- 1. $\mathfrak{a} = (X, Y)(X, Z) = (X^2, XY, XZ, YZ).$
 - (a) $X^2 \in (X, Y) \cap (X, Z) \cap (X, Y, Z)^2$
 - (b) $XY \in \text{bla bla}$
- 2. The representation is $\mathfrak{a}=\mathfrak{p}_1\cap\mathfrak{p}_2\cap\mathfrak{m}^2$ a primary decomposition because \mathfrak{p}_1 and \mathfrak{p}_2 are prime, hence primary and \mathfrak{m}^2 is \mathfrak{m} -primary.
- 3. Clearly, the radicals of the ideals are distinct.
- 4. as
 - (a) $(X,Y) \not\supset (X,Z) \cap (X,Y,Z)^2 = (X,Z) \cap (X^2,XY,XZ,Y^2,YZ,Z^2) = (X^2,XY,XZ,YZ,Z^2)$ (b) $(X,Y,Z)^2 \not\supset (X,Z) \cap (X,Y) = (X,YZ)$
- **Exercise 3.6** (Atiyah & MacDonald 4.7). Let A be a ring and A[X] be a polynomial ring. $\mathfrak{a}[X]$ is the extension

of $\mathfrak a$ of $\mathfrak a$ to A[X]. Proof.

Exercise 3.7 (Bosch 2.2.). Let $\mathfrak{p} \subset A$ be a prime ideal and assume that A is Noetherian. Show that the n-th power \mathfrak{p}^n is the smallest \mathfrak{p} -primary ideal containing \mathfrak{p}^n . Can we expect that there is a smallest primary ideal containing \mathfrak{p}^n ?