POLÄRA KOORDINATER

Samband mellan rektangulära och polära koordinater:

$$x = r\cos\theta$$
, $y = r\sin\theta$

därmed

$$x^2 + y^2 = r^2$$

Exempel 1.

Beskriv i polära koordinater området D i Fig1.

Lösning:

Från figuren har vi gränserna för θ och r:

$$0 \le \theta \le \frac{\pi}{2}$$
 och $1 \le r \le 2$.

Exempel 2.

Beskriv i polära koordinater området
$$D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1 \text{ och } 0 \le y \le x\}$$

Lösning:

Från Fig2. har vi gränserna för θ och r:

$$0 \le \theta \le \frac{\pi}{4}$$
 och $0 \le r \le 1$.

Uppgift 1. Ange gränserna för θ och r för nedanstående integrationsområden

Svar: a) $0 \le \theta \le \pi$ och $1 \le r \le 2$ b) $\frac{\pi}{4} \le \theta \le \pi$ och $1 \le r \le 3$

- c) $0 \le \theta \le \frac{\pi}{2}$ och $0 \le r \le 3$ d) $0 \le \theta \le \pi$ och $0 \le r \le 2$
- e) $\pi \le \theta \le \frac{3\pi}{2}$, $1 \le r \le 2$.

Uppgift 2. Rita nedanstående områden och ange gränserna för θ och (polära koordinater).

- a) $D = \{(x, y): 0 \le x \le 2 \text{ och } 0 \le y \le x \}$
- b) $D = \{(x, y): 1 \le x \le 3 \ ch \ 0 \le y \le x \}$
- c) $D = \{(x, y): 1 \le x^2 + y^2 \le 4 \text{ och } x \le y \le 2x \}$
- d) $D = \{(x, y): x^2 + y^2 \ge 1, x \le 3 \text{ och } 0 \le y \le x \}$

Lösning.

a) För θ gäller uppenbart $0 \le \theta \le \frac{\pi}{4}$

Vi beskriver randlinjen x = 2 i polära koordinater:

Genom att substituera $x = r \cos \theta$ i x=2 får vi

$$rcos\theta = 2 \Rightarrow r = \frac{2}{cos\theta}$$

Därmed har vi gränser för : $0 \le r \le \frac{2}{\cos \theta}$

Svar a: $0 \le \theta \le \frac{\pi}{4}$, $0 \le r \le \frac{2}{\cos \theta}$

Svar b)

$$0 \le \theta \le \frac{\pi}{4}$$
 , $\frac{1}{\cos \theta} \le r \le \frac{3}{\cos \theta}$

Svar c)

 $\frac{\pi}{4} \leq \theta \leq \theta_1$, där $\theta_1 = \, arctan2 \, \approx \, 1.1 \, rad \, (\, 63.4 \, ^{\circ})$,

$$1 \le r \le 2$$

Svar d)

$$0 \le \theta \le \frac{\pi}{4}$$
 , $1 \le r \le \frac{3}{\cos \theta}$