МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования Московский физико-технический институт (государственный университет)

Кафедра радиотехники

ОБРАТНЫЕ СВЯЗИ В СХЕМАХ УСИЛИТЕЛЕЙ

Лабораторная работа по курсам:

Линейные методы в радиотехнике
Аналоговая электроника
Электронные методы физических исследований
Основы радиотехники
Радиотехника и схемотехника

Составитель: Е.В. Воронов

Обратные связи в схемах усилителей. Лабораторная работа по курсам: Линейные методы в радиотехнике, Аналоговая электроника, Электронные методы физических исследований, Основы радиотехники, Радиотехника и схемотехника. — МФТИ., М., 2011, 31 с.

Содержание

Введение
Рекомендации по выполнению задания7
Задание
1. Однокаскадные усилители
1.1. Эмиттерный повторитель: основные свойства .11 1.2. Эмиттерный повторитель: входная цепь с большим сопротивлением по переменному
току
1.3. Эмиттерный повторитель: входная емкость15 1.4. Схема с не равным нулю сопротивлением
в цепи эмиттера17
1.5. Схема со связью между цепями коллектора и базы19
2. Двухкаскадные усилители
2.1. Схема с отрицательной обратной связью по напряжению на транзисторах одного типа
2.1. Схема с отрицательной обратной связью
2.1. Схема с отрицательной обратной связью по напряжению на транзисторах одного типа проводимости
2.1. Схема с отрицательной обратной связью по напряжению на транзисторах одного типа проводимости
2.1. Схема с отрицательной обратной связью по напряжению на транзисторах одного типа проводимости
2.1. Схема с отрицательной обратной связью по напряжению на транзисторах одного типа проводимости 21 2.2. Схема с отрицательной обратной связью по напряжению на транзисторах разного типа проводимости 23 2.3. Схема с параллельной отрицательной обратной связью по току 25 2.4. Эмиттерный повторитель с пониженной входной емкостью 27
2.1. Схема с отрицательной обратной связью по напряжению на транзисторах одного типа проводимости

Введение

Цель этой работы состоит в том, чтобы предоставить студенту возможность познакомиться с наиболее распространенными вариантами простых транзисторных схем, в которых обратные связи играют существенную роль.

В реальных схемах часто одновременно действует несколько обратных связей, и свойства схемы в целом определяются всей совокупностью этих связей. Принцип, по которому построена данная лабораторная работа, заключается в том, чтобы при выполнении конкретного пункта задания внимание было сосредоточено на обратной связи *определенного вида* и ее влиянии на характеристики усилителя (см. рисунки на с. 6, 7).

(Приведенные на с. 7 векторные диаграммы для напряжений $\tilde{U}_{\rm BX}$, $\tilde{U}_{\rm OC}$ и $\tilde{U}'_{\rm BX}$, относятся к схемам с последовательной обратной связью, а векторные диаграммы для токов $\tilde{I}_{\rm BX}$, $\tilde{I}_{\rm OC}$, и $\tilde{I}'_{\rm BX}$, – к схемам с параллельной обратной связью.)

Предполагается, что в соответствии с указаниями преподавателя студент исследует экспериментально лишь часть схем, приведенных в *Задании*, однако принцип функционирования и характеристики других схем могут стать предметом обсуждения при сдаче работе.

В каждом из пунктов Задания исследуемая схема представлена, как правило, в нескольких вариантах. Тот из них, на котором указаны конкретные значения сопротивлений и емкостей, служит рекомендацией, как лучше всего собрать такой усилитель на макетной плате студента: при таких величинах нагляднее проявляются свойства обратной связи рассматриваемого вида. Возможно отступление от приведенных значений.

Символами C° и $C^{\circ\circ}$ на принципиальных схемах обозначены развязывающие и блокировочные конденсаторы, то есть конденсаторы большой емкости (обычно электролитические), назначение которых состоит в замыкании накоротко по переменному току точек, между которыми они включены.

В тексте Задания и на рисунках приняты также следующие обозначения.

Коэффициент усиления, входное и выходное сопротивления и верхняя граничная частота схемы с обратной связью *рассматриваемого вида* помечены штрихом ('). Величины, относящиеся к схеме, в которой обратная связь *рассматриваемого вида* исключена, обозначены теми же символами без штриха.

Там, где речь идет о коэффициентах усиления по отношению к эдс источника сигнала K_e' и K_e , под $f_{\mathsf{Верхн}}'$ и $f_{\mathsf{Верхн}}$ понимаются граничные частоты зависимостей $K_e'(f)$ и $K_e(f)$; в остальных случаях имеются в виду граничные частоты зависимостей K'(f) и K(f) соответственно.

ВНИМАНИЕ! НЕ ЗАБЫВАЙТЕ ВЫКЛЮЧАТЬ ИСТОЧНИК ПИТАНИЯ ПЕРЕД ИЗМЕНЕНИЕМ СОЕДИНЕНИЙ В СХЕМЕ.

Последовательная обратная связь по напряжению

Последовательная обратная связь по току

Параллельная обратная связь по напряжению

Параллельная обратная связь по току

Классификация обратных связей

6

$\tilde{U}_{\mathsf{BX}}(\tilde{I}_{\mathsf{BX}})$ $\tilde{U}'_{\mathsf{BX}}(\tilde{I}'_{\mathsf{BX}})$ $\tilde{U}_{\mathsf{OC}}(\tilde{I}_{\mathsf{OC}})$

Общий случай

Положительная обратная связь

Отрицательная обратная связь

Рекомендации по выполнению задания

- 1. Включив источник питания, проверьте режим транзисторов по постоянному току: постоянные токи и напряжения в собранной вами схеме должны соответствовать ожидаемым значениям. Результаты измерения постоянных напряжений в различных точках следует надписать непосредственно на схеме в рабочей тетради.
- 2. При выборе величины сигнала, подаваемого на вход усилителя, руководствуются двумя соображениями:
- а) сигнал должен быть достаточно малым, чтобы усилитель в целом оставался в линейном режиме и отсутствовали искажения сигнала на выходе;
- б) желательно работать с возможно бо́льшим полезным сигналом, чтобы неконтролируемые помехи и наводки не были сколько-нибудь заметной составляющей измеряемых напряжений.

При определении выходного сопротивления (см. ниже п. 5) на вход усилителя нужно подавать сигнал одной и той же величины при двух значениях сопротивления нагрузки, и величина этого сигнала должна быть настолько малой, чтобы искажения сигнала на выходе усилителя заведомо отсутствовали в каждом из проводимых опытов.

- 3. Измерение коэффициентов усиления, входных и выходных сопротивлений производится в области средних частот.
- 4. Когда коэффициент усиления $K = U_{\rm BЫX}/U_{\rm BX}$ велик и нет возможности непосредственно измерить $U_{\rm BX}$, входное сопротивление $R_{\rm BX}$ и значение K можно найти, выполнив наблюдения при двух значениях сопротивления $R_{\rm N}$:

$$ecnu\ U_{\mathrm{BbIX}} = U_1\ npu$$
 $\mathcal{E}_{\mathrm{N}} = \mathcal{E}_1,\ R_{\mathrm{N}} = R_1$ $\mathcal{E}_{\mathrm{N}} = \mathcal{E}_2,\ R_{\mathrm{N}} = R_2,\ mo$ $\mathcal{E}_{\mathrm{N}} = \mathcal{E}_2,\ R_{\mathrm{N}} = R_2,\ mo$ $\mathcal{E}_{\mathrm{N}} = \frac{(\mathcal{E}_1/\mathcal{E}_2) \cdot R_2 - (U_1/U_2) \cdot R_1}{(U_1/U_2) - (\mathcal{E}_1/\mathcal{E}_2)}$ $\mathcal{E}_{\mathrm{N}} = \frac{(\mathcal{E}_1/\mathcal{E}_2) \cdot R_2 - (U_1/U_2) \cdot R_1}{(U_1/U_2) - (\mathcal{E}_1/\mathcal{E}_2)}$ $\mathcal{E}_{\mathrm{N}} = \frac{(\mathcal{E}_1/\mathcal{E}_2) \cdot R_2 - (U_1/\mathcal{E}_2) \cdot R_1}{(U_1/\mathcal{E}_2) - (\mathcal{E}_1/\mathcal{E}_2)}$ $\mathcal{E}_{\mathrm{N}} = \frac{(\mathcal{E}_1/\mathcal{E}_2) \cdot R_2 - (U_1/\mathcal{E}_2) \cdot R_1}{(U_1/\mathcal{E}_2) - (\mathcal{E}_1/\mathcal{E}_2)}$ $\mathcal{E}_{\mathrm{N}} = \frac{(\mathcal{E}_1/\mathcal{E}_2) \cdot R_2 - (U_1/\mathcal{E}_2) \cdot R_2}{(U_1/\mathcal{E}_2) - (\mathcal{E}_1/\mathcal{E}_2)}$ $\mathcal{E}_{\mathrm{N}} = \frac{(\mathcal{E}_1/\mathcal{E}_2) \cdot R_2}{(U_1/\mathcal{E}_2) - (\mathcal{E}_1/\mathcal{E}_2)}$ $\mathcal{E}_{\mathrm{N}} = \frac{(\mathcal{E}_1/\mathcal{E}_2) \cdot R_2}{(U_1/\mathcal{E}_2) \cdot R_2}$ $\mathcal{E}_{\mathrm{N}} = \frac{(\mathcal{E}_1/\mathcal{E}_2) \cdot R_2}{(U_1/\mathcal{E}_2) \cdot R_2}$

5. Выходное сопротивление R_{BbIX} по определению есть отношение выходного напряжения холостого хода $U_{\mathrm{BbIX.XX}}$ к выходному току короткого замыкания $I_{\mathrm{BbIX.K3}}$. Один из возможных способов экспериментального определения R_{BbIX} заключается в измерении выходного напряжения U_{BbIX} при двух различных нагрузках, например, путем подключения к выходу усилителя через разделительный конденсатор внешней нагрузки R° и вычислении R_{BbIX} по результатам этих измерений; одновременно можно найти $U_{\mathrm{BbIX.XX}}$, когда это необходимо.

6. В работе предусмотрены измерения в области верхних частот. С их помощью находят входную емкость усилителя и определяют верхние граничные частоты $f_{\text{Верхн}}$ и $f'_{\text{Верхн}}$, на которых коэффициент усиления уменьшается в $\sqrt{2}$ раз по сравнению с его значением на средних частотах. Измерения в области верхних частот необходимо производить с использованием высокочастотного пробника измерительного прибора.

Для правильной интерпретации результатов измерений нужно знать входную емкость C_0 измерительного прибора; его омическое входное сопротивление в повседневной лабораторной практике пренебрежимо велико. Значение C_0 можно определить, измерив верхнюю граничную частоту $f_{\text{гр}_0}$ цепи, состоящей из резистора с известным сопротивлением (R_{N}) и емкости измерительного прибора: $f_{\text{гр}_0} = 1/(2\pi R_{\text{N}}C_0)$; сопротивление резистора $R_{\text{г}}$ рекомендуется выбрать равным 43...62 кОм.

Рисунок к п. 6 Рекомендаций

Рисунки к п. 1.1 Задания

Задание

1. Однокаскадные усилители

1.1. Эмиттерный повторитель: основные свойства

а) Для схемы, приведенной на рис. 1.1-1, измерить $K' = U_{\rm Bblx}/U_{\rm BX}$, $R'_{\rm BX,Tp} = U_{\rm BX}/I_{\rm 6}$ и $R'_{\rm Bblx} = U_{\rm Bblx.xx}/I_{\rm Bblx.K3}$.

Указания

Собрать схему согласно рис. 1.1-2. $R'_{\mathsf{BX.Tp}}$ находят из равенства $R'_{\mathsf{BX.Tp}} \| R_{\mathsf{G}} = U_{\mathsf{BbIX}} / I_{\mathsf{BX}}$. R'_{BbIX} находят по правилу двух нагрузок при одном и том же значении U_{BX} : $R_{\mathsf{I}} = R_{\mathsf{B}}$, $R_{\mathsf{I}} = R_{\mathsf{B}}$, $R_{\mathsf{I}} = R_{\mathsf{B}}$.

б) Убедиться в справедливости соотношений

$$K' = \frac{K}{1 - K \cdot \beta}$$
 и $R'_{\text{BX.Tp}} = R_{\text{BX.Tp}} \cdot (1 - K \cdot \beta)$,

где $K=U_{\rm BbIX}/U_{\rm BX}'$, $\beta=U_{\rm OC}/U_{\rm BbIX}$ и $R_{\rm BX.Tp}=h_{\rm 113}=U_{\rm BX}'/I_{\rm 6}$ (см. рис. 1.1-1), а также в том, что выходное сопротивление приближенно удовлетворяет равенству

$$R'_{\text{BЫX}} = \frac{h_{119}}{h_{219} + 1};$$

 h_{113} и h_{213} — параметры транзистора.

Указания

 $U_{\rm BX}'=U_{\rm BX}-U_{\rm BЫX}$; в данном случае $U_{\rm OC}=-U_{\rm BЫX}$, $\beta=-1$ и фактически необходимо убедиться в том, что K'=K/(1+K), где $K\approx R_{\rm 3}/r_{\rm 3}$, $r_{\rm 3}=U_T/I_{\rm 3}$, $U_T\approx 25$ мB, а $I_{\rm 3}$ — постоянная составляющая эмиттерного тока.

 h_{113} можно найти как входное сопротивление транзистора при заземленном по переменному току эмиттере (рис. 1.1-3); $h_{213} = (K \cdot h_{113}/R_3) - 1$.

Рисунки к п. 1.2 Задания

1.2. Эмиттерный повторитель: входная цепь с большим сопротивлением по переменному току

а) Для схемы, приведенной на рис. 1.2-1, измерить

$$R_{\rm BX}^* = U_{\rm BX}/I_{\rm BX}$$
 .

Указание

Собрать схему согласно рис. 1.2-2 и определить $R_{\rm BX}^*$ по измеренным значениям $\mathcal{E}_{\rm N}$ и $U_{\rm BX}$ с учетом известного $R_{\rm N}$.

6) Убедиться в том, что сопротивление *базовой цепи*, состоящей из R_{61} , R_{62} и R_{63} , по переменному току (то есть отношение напряжения $U_{\rm BX}$ к току, текущему по R_{63}) равно

$$R_{\text{б.ц.}} = \frac{R_{\text{63}}}{1 - K_1},$$

где $K_1 = U_1/U_{\rm BX}$, U_1 — напряжение между нижним концом резистора R_{63} и землей (см. рис. 1.2-1).

Указания

 $R_{\rm BX}^* = R_{\rm 6. II.} \| R_{\rm BX.Tp}' \ , \ R_{\rm BX.Tp}' \ - \$ сопротивление транзистора со стороны базы (то есть отношение напряжения $U_{\rm BX}$ к току $I_{\rm 6}$, текущему в базе транзистора в схеме на рис. 1.2-2). Для выполнения требуемой проверки необходимо принять во внимание, что на средних частотах $K_1 = K$, и независимо определить $R_{\rm BX.Tp}'$. Это можно сделать, измеряя отношение $U_{\rm BX}$ к $I_{\rm 6}$ в схеме на рис. 1.2-3, выбрав значение R° приблизительно равным $R_{\rm 61} \| R_{\rm 62}$, чтобы значение $K = U_{\rm BbIX}/U_{\rm BX}$ оставалось неизменным при переходе от схемы, указанной на рис. 1.2-2, к схеме на рис. 1.2-3.

Рисунки к п. 1.3 Задания

1.3. Эмиттерный повторитель: входная емкость

а) Измерить входную емкость C'_{BX} эмиттерного повторителя (рис. 1.3-1) путем определения постоянной времени интегрирующей цепи, образуемой сопротивлением источника сигнала R^*_{N} и входной емкостью.

Указания

Собрать схему согласно рис. 1.3-2 и определить верхнюю граничную частоту $f_{\sf Гр}$ входной цепи, поддерживая $\mathcal{E}_{\sf Г}$ постоянным и измеряя $U_{\sf BX}$:

$$C'_{\rm BX} = 1/(2\pi f_{\rm FD} R_{\rm M}^*) - C_0,$$

где $R_{\rm M}^* = R_{\rm M} \left\| R_{\rm BX.Tp}' \right\|$, а C_0 — емкость высокочастотного пробника измерительного прибора. Сопротивление $R_{\rm BX.Tp}'$ измеряется независимо, как в п. 1.1а 3adaнus; об определении емкости C_0 см. п.6 Pекомендаций.

б) Проверить справедливость соотношения

$$C'_{\text{BX}} \approx C_{\text{GK}} + C_{\text{Ga}} \cdot (1 - K)$$
,

где $C_{\sf бK}$ — емкость база—коллектор, $C_{\sf б3}$ — емкость база—эмиттер, $K=U_{\sf BblX}/U_{\sf BX}$ на средних частотах (рис. 1.3-3).

Указания

Чтобы экспериментально найти $C_{\rm fk}$ и $C_{\rm f3}$, нужно измерить входную емкость $C_{\rm BX1}$ схемы с общим эмиттером (рис. 1.3-4) и входную емкость $C_{\rm BX2}$ схемы с одновременно заземленными по переменному току эмиттером и коллектором (рис. 1.3-5):

$$C_{\mathsf{бK}} = (C_{\mathsf{BX1}} - C_{\mathsf{BX2}})/K_1$$
 и $C_{\mathsf{б3}} = C_{\mathsf{BX2}} - C_{\mathsf{бK}}$,

где $K_1 = U_{\rm BbIX1}/U_{\rm BX}$ на средних частотах. Измерение $C_{\rm BX1}$ и $C_{\rm BX2}$ следует выполнить по правилу, сформулированному в **Указаниях** к п. 1.3а, заменяя $R'_{\rm BX.Tp}$ на h_{113} транзистора.

1.4. Схема с не равным нулю сопротивлением в цепи эмиттера

а) Для схемы, изображенной на рис. 1.4-1, измерить $K' = U_{\rm BblX}/U_{\rm BX}$, $R'_{\rm BLTp} = U_{\rm BX}/I_{\rm 6}$, $R'_{\rm BblX} = U_{\rm BblX,XX}/I_{\rm BblX,K3}$ и $f'_{\rm Bepxh}$.

Указания

Собрать схему согласно рис. 1.4-2. R'_{BbIX} находят по правилу двух нагрузок *при одном и том же значении* U_{BX} : $R_1 = R_{\mathsf{K}}$, $R_2 = R_{\mathsf{K}} \left\| R^{\circ}$. $R'_{\mathsf{BX.Tp}} \right\|$ находят из равенства $R'_{\mathsf{BX.Tp}} \left\| R_{\mathsf{G}} = U_{\mathsf{BX}} / I_{\mathsf{BX}} \right\|$, где $R_{\mathsf{G}} = R_{\mathsf{G1}} || R_{\mathsf{G2}}$.

б) Определить, в какой степени справедливы соотношения

$$K' = \frac{K}{1 - K \cdot \beta}$$
, $R'_{\mathsf{BX.TP}} = R_{\mathsf{BX.TP}} \cdot (1 - K \cdot \beta)$ и
$$R'_{\mathsf{BbIX}} = R_{\mathsf{BbIX}} + R_{\mathsf{3}} \cdot (1 - K_{\mathsf{XX}}),$$

где $K=U_{\rm BbIX}/U_{\rm BX}'$, $\beta=U_{\rm OC}/U_{\rm BbIX}$, $R_{\rm BbIX}$ — выходное сопротивление транзистора со стороны коллектора, $K_{\rm XX}$ — значение K в режиме холостого хода по выходу, $R_{\rm BX.Tp}=h_{\rm 113}=U_{\rm BX}'/I_{\rm 6}$. Сравнить $f_{\rm BeDXH}'$ с $f_{\rm BeDXH}$ для усилителя без обратной связи (рис. 1.4-3).

Указания

 $\beta=R_3/R_{\rm K}$. На средних частотах K<0, поэтому знаменатель в K' фактически равен $1+|K\cdot\beta|$. $R_{\rm BblX}$ и $K_{\rm XX}$ находят по правилу двух нагрузок (см. п. 6 Pекомендаций) применительно к схеме без обратной связи: $K_{\rm XX}=U_{\rm BblX.XX}/U_{\rm BX}'$, R_1 и R_2 указаны выше; $K_{\rm XX}<0$, поэтому множитель в выражении для $R_{\rm BblX}'$ фактически равен $1+|K_{\rm XX}|$.

 h_{113} можно найти как входное сопротивление транзистора при заземленном по переменному току эмиттере.

1.5. Схема со связью между цепями коллектора и базы

а) Для схемы, изображенной на рис. 1.5-1, измерить

$$K_e' = U_{
m BЫX}/\mathcal{E}_{
m M}$$
 , $R_{
m BX.Tp}' = U_{
m BX}/I_{
m G}$, $R_{
m BЫX}' = U_{
m BЫX.XX}/I_{
m BЫX.K3}$ и $f_{
m BEPXH}'$.

Указания

Собрать схему согласно рис. 1.5-2. $R'_{\text{ВЫХ}}$ находят по правилу двух нагрузок *при одном и том же значении* \mathcal{E}_{N} : если R_{K} отнести «внутрь» охватываемого обратной связью усилителя, то $R_1 = \infty$, $R_2 = R^{\circ}$.

б) Убедиться в справедливости соотношений

$$K_e' = \frac{\gamma \cdot K}{1 - K \cdot \beta}$$
, $R_{\mathrm{BX}}' = R_{\mathrm{BX}} \left\| \frac{R_{\mathrm{CB}}}{1 - K} \right\| R_{\mathrm{BbIX}}' = \frac{R_{\mathrm{BbIX}}}{1 - K \cdot \beta}$,

где
$$K = U_{\mathrm{BbiX}}/U_{\mathrm{BX}}$$
, $\beta = \frac{U_{\mathrm{BX}}}{U_{\mathrm{BbiX}}}\bigg|_{\mathcal{E}_{\mathrm{M}} = 0}$, $\gamma = \frac{U_{\mathrm{BX}}}{\mathcal{E}_{\mathrm{M}}}\bigg|_{U_{\mathrm{BbiX}} = 0}$; $R_{\mathrm{BX}} = h_{\mathrm{113}}$,

 $R_{\rm CB} = R_{\rm G}$, $R_{\rm Bыx} = R_{\rm K}$. Сравнить $f'_{\rm Верхн}$ с $f_{\rm Верхн}$ для усилителя без обратной связи (рис. 1.5-3).

Указания

Прежде всего следует экспериментально убедиться в том, что $K=U_{\rm BbIX}/U_{\rm BX}$ имеет практически одно и то же значение в схеме с обратной связью (рис. 1.5-2) и в схеме без обратной связи (рис. 1.5-3); на средних частотах K<0. $R_{\rm BX}$ и $R_{\rm BbIX}$ — входное и выходное сопротивление схемы, в которой обратная связь исключена (рис. 1.5-3), при этом $U_{\rm BX}/I_{\rm BX}$ равно $R_{\rm BX} \Big| R_{\rm 61}$, а $R_{\rm BbIX}$ определяется по правилу двух нагрузок npu одном u том же значении $\mathcal{E}_{\rm N}$: $R_{\rm 1}=\infty$, $R_{\rm 2}=R^{\circ}$. Коэффициенты β и γ можно найти путем расчета по формулам

$$\beta = (R_{\mathsf{M}} || R_{\mathsf{BX}}) / [R_{\mathsf{CB}} + (R_{\mathsf{M}} || R_{\mathsf{BX}})],$$

$$\gamma = (R_{\mathsf{BX}} || R_{\mathsf{CB}}) / [R_{\mathsf{M}} + (R_{\mathsf{BX}} || R_{\mathsf{CB}})],$$

либо измерить непосредственно: $\beta = {}^{`}U_{\rm BX}{}^{'}/{}^{`}U_{\rm BbIX}{}^{`}$ в схеме на рис. 1.5-4, где сигнал ${}^{`}U_{\rm BbIX}{}^{`}$ подается извне *на выход усилителя*, и $\gamma = U_{\rm BX}/\mathcal{E}_{\rm N}$ в схеме на рис. 1.5-5.

Рисунки к п.2.1 Задания

2. Двухкаскадные усилители

2.1. Схема с последовательной отрицательной обратной связью по напряжению на транзисторах одного типа проводимости

а) Для схемы, изображенной на рис. 2.1-1, измерить $K' = U_{\rm BbIX}/U_{\rm BX}$, $R'_{\rm BX} = U_{\rm BX}/I_{\rm 61}$, $R'_{\rm BbIX} = U_{\rm BbIX.XX}/I_{\rm BbIX.K3}$ И $f'_{\rm BepXH}$.

Указания

Собрать схему согласно рис. 2.1-2. Изменяя $R_{\rm 612}$, добиться того, чтобы постоянное напряжение на коллекторе транзистора VT2 относительно земли находилось в интервале $(0,4...0,6)\cdot U_\Pi$. Величину $R'_{\rm BX}=U_{\rm BX}/I_{\rm 61}$ определяют из соотношения $R'_{\rm BX}\left\|R_{\rm 611}\right\|R_{\rm 612}=U_{\rm BX}/I_{\rm BX}$. Величину $R'_{\rm BbIX}$ находят по правилу двух нагрузок npu одном u том же значении $U_{\rm BX}$: если $R_{\rm K2}$ отнести «внутрь» охватываемого обратной связью усилителя, то $R_{\rm 1}=\infty$, $R_{\rm 2}=R^\circ$.

б) Исследовать, выполняются ли на средних частотах соотношения

$$K' = \frac{(1-\gamma)K}{1+K\beta^*}, R'_{\rm BX} = R_{\rm BX} \cdot \frac{1+K\beta^*}{1-\gamma} \ \ {\rm M} \ \ R'_{\rm BbIX} = \frac{R_{\rm BbIX}}{1+K\beta^*}, \ {\rm гдe}$$

$$K = U_{\rm BbIX}/U'_{\rm BX}, \ U_{\rm OC} = -(\gamma U_{\rm BX} + \beta^* U_{\rm BbIX}), \ \gamma = \frac{U_{\rm 31}}{U_{\rm BX}}\bigg|_{U_{\rm BbIX} = 0}, \ \beta^* = \frac{U_{\rm 31}}{U_{\rm BbIX}}\bigg|_{U_{\rm BX} = 0}, \\ R_{\rm BX1} = h_{\rm 113}(VTI) \ \ {\rm M} \ \ R_{\rm BbIX} = R_{\rm K2} \big| \big| R_{\rm CB} \ \ ({\rm CM. \ puc. \ 2.1-1}); \ U_{\rm 31} - \ {\rm переменное \ напряжение \ на \ резисторе} \ R_{\rm 31} \ \ (U_{\rm 31} = -U_{\rm OC}). \ {\rm Сравнить} \ \ f'_{\rm Bepxh} \ \ {\rm со \ значение} \ \ f_{\rm Bepxh}$$
 для усилителя без обратной связи.

Указания

При измерении K и $R_{\rm BX}$ в схеме без обратной связи $U'_{\rm BX}=U_{\rm BX}$ (рис. 2.1-3); $R_{\rm BX}$ находится из соотношения $R_{\rm BX}||R_{\rm 611}||R_{\rm 612}=U_{\rm BX}$ / $I_{\rm BX}$; равенство $R_{\rm BbIX}=R_{\rm K2}||R_{\rm CB}$ проверяется по правилу двух нагрузок. Величины γ и β^* находятся по схеме, приведенной на рис. 2.1-2, путем измерения напряжения $U_{\rm 31}$ на эмиттере транзистора VT1 в следующих случаях: 1) чтобы найти γ , сигнал $U_{\rm BX}$ подается, как обычно, на вход усилителя, а коллектор транзистора VT2 замыкается по переменному току на землю с помощью конденсатора C° ; 2) чтобы найти β^* , левая обкладка конденсатора $C_{\rm 61}$ замыкается на землю и на коллектор транзистора VT2 через конденсатор C° извне подается сигнал, называемый в данном случае $U_{\rm BbIX}$.

Рисунки к п. 2.2 Задания

2.2. Схема с последовательной отрицательной обратной связью по напряжению на транзисторах разного типа проводимости

а) Для схемы, изображенной на рис. 2.2-1, измерить $K' = U_{\rm BbiX}/U_{\rm BX} \ , R'_{\rm BX.Tp} = U_{\rm BX}/I_{\rm 61} \ , R'_{\rm BbiX} = U_{\rm BbiX.XX}/I_{\rm BbiX.K3} \ \text{и} \ f'_{\rm Bepxh} \ .$

Указания

Собрать схему согласно рис. 2.2-2. Если постоянное напряжение на коллекторе транзистора VT2 относительно земли не принадлежит интервалу $(0,4\dots0,6)\cdot U_\Pi$, то следует изменить R_{612} так, чтобы это условие выполнялось. $R'_{\mathsf{BX.Tp}}$ определяют из соотношения $R'_{\mathsf{BX.Tp}} \| [R_{613} \ / (1-K_1)] = U_{\mathsf{BX}}/I_{\mathsf{BX}}$, где $K_1 = U_1/U_{\mathsf{BX}}$. R'_{BbIX} находят по правилу двух нагрузок npu одном u том же значении U_{BX} : если $R_{\mathsf{K2}} = R_{\mathsf{K21}} + R_{\mathsf{K22}}$ отнести «внутрь» охватываемого обратной связью усилителя, то $R_1 = \infty$, $R_2 = R^\circ$.

б) Исследовать, с какой точностью выполняются соотношения

$$K' = \frac{K}{1 - K \cdot \beta} \,, \ R'_{\text{BX.Tp}} = R_{\text{BX}} \cdot (1 - K \cdot \beta) \ \text{и} \ R'_{\text{BbIX}} = \frac{R_{\text{BbIX}}}{1 - K \cdot \beta} \,,$$

где $K = U_{\rm BbIX}/U_{\rm BX}'$, $\beta = U_{\rm OC}/U_{\rm BbIX}$, $R_{\rm BX} = h_{\rm 113}(VTI)$, $R_{\rm BbIX} = R_{\rm K21} + R_{\rm K22}$ (см. рис. 2.2-1). Сравнить $f_{\rm Bepxh}'$ со значением $f_{\rm Bepxh}$ для усилителя без обратной связи.

Указания

K и $R_{\rm BX}$ измеряются в схеме без обратной связи (рис. 2.2-3). $R_{\rm 311}$ подбирается так, чтобы постоянное напряжение на коллекторе VT2 относительно земли имело прежнее значение. $\beta = -R_{\rm K22}/R_{\rm K2}$, поэтому на средних частотах $1-K\cdot\beta=1+K\cdot|\beta|$. По результатам измерений $U_{\rm BX}$ и $I_{\rm BX}$ при заземленном по переменному току эмиттере VTI находят $R_{\rm BX}$ из соотношения $R_{\rm BX}||[R_{\rm 613}+(R_{\rm 611}||R_{\rm 612})]=U_{\rm BX}/I_{\rm BX}$.

2.3. Схема с параллельной отрицательной обратной связью по току

а) Для схемы, изображенной на рис. 2.3-1, измерить

$$K_e' = U_{ exttt{BЫX}}/\mathcal{E}_{ exttt{N}}$$
 , $R_{ exttt{BX}}'$ и $f_{ exttt{BEPXH}}'$.

Указания

Собрать схему согласно рис. 2.3-2. Если постоянное напряжение на коллекторе транзистора VT2 относительно земли не принадлежит интервалу $(0,5...0,7)\cdot U_{\Pi}$, то следует изменить R_{61} так, чтобы это условие выполнялось.

$$R_{
m BX}' pprox U_{
m BX}/I_{
m BX}$$
 при условии, что $R_{
m 61} \gg U_{
m BX}/I_{
m BX}$.

б) Исследовать, выполняются ли соотношения

$$K_e' = \frac{\gamma \cdot K}{1 - K \cdot \beta}$$
 и $R_{\mathsf{BX}}' = R_{\mathsf{BX}} \left\| \frac{R_{\mathsf{CB}}}{1 - K_1} \right\|$

где
$$K = U_{\mathrm{BbiX}}/U_{\mathrm{BX}}$$
, $\beta = \frac{U_{\mathrm{BX}}}{U_{\mathrm{BbiX}}}\bigg|_{\mathcal{E}_{\mathrm{N}} = 0}$, $\gamma = \frac{U_{\mathrm{BX}}}{\mathcal{E}_{\mathrm{N}}}\bigg|_{I_{\mathrm{BbiX}} = 0}$, $R_{\mathrm{BX}} = h_{\mathrm{113}(VTI)}$

и $K_1 = U_1/U_{\text{BX}}$ (см. рис. 2.3-1). Сравнить $f'_{\text{Верхн}}$ со значением $f_{\text{Верхн}}$ для усилителя без обратной связи.

Указания

Прежде всего следует экспериментально убедиться в том, что K имеет одно и то же значение в схемах на рис. 2.3-2 и 2.3-3. $R_{\rm BX}$ определяется из соотношения $R_{\rm BX} \Big| \Big| R_{\rm CB1} = U_{\rm BX}/I_{\rm BX} \Big|$ для схемы на рис. 2.3-3. Коэффициенты β и γ можно найти путем расчета по формулам

$$\beta = -\frac{R_{\rm 32}}{R_{\rm K2}} \cdot \frac{R_{\rm M} ||R_{\rm BX}}{R_{\rm CB} + (R_{\rm M} ||R_{\rm BX})} \text{ M } \gamma = \frac{R_{\rm BX} ||R_{\rm CB}}{R_{\rm M} + (R_{\rm BX} ||R_{\rm CB})}$$

или определить экспериментально путем измерений, подобных указанным в п. 1.5б. Значение K_1 приблизительно равно коэффициенту усиления первого каскада; на средних частотах $K_1 < 0$.

Рисунки к п.2.4 Задания

2.4. Эмиттерный повторитель с пониженной входной емкостью

а) Исследовать двухкаскадный повторитель с внутренней обратной связью, собранный по одной из схем, представленных на рис. 2.4-1 и 2.4-2: измерить

 $K'=U_{
m BbIX}/U_{
m BX}$, $R'_{
m BX}=U_{
m BX}/I_{
m BX}$ и $R'_{
m BbIX}=U_{
m BbIX.XX}/I_{
m BbIX.K3}$, определить входную емкость $C'_{
m BX}$.

Указания

Подав на вход схемы сигнал от источника с эдс \mathcal{E}_N и выходным сопротивлением $R_N \approx 56$ кОм, убедитесь в том, что K' практически не зависит от частоты вплоть до 10 МГц, оставаясь близким к 1. При выполнении этого условия

$$C'_{\rm BX} = 1/(2\pi f'_{\rm BEDXH} R_{\rm M}^*),$$

где $f_{\mathsf{Bepxh}}' -$ граничная частота для зависимости $K_e'(f) = U_{\mathsf{Bbix}}/\mathcal{E}_\mathsf{N}$, $R_\mathsf{N}^* = R_\mathsf{N} \, \Big\| R_\mathsf{Bx}'$. I_{Bx} — ток, потребляемый схемой от источника сигнала. R_Bbix' находится по правилу двух нагрузок npu одном u том же значении U_Bx .

б) Исследовать теоретически работу выбранной схемы и проверить экспериментально справедливость полученных формул. В частности, должно выполняться равенство

$$C'_{\mathsf{BX}} \approx C_{\mathsf{S3}} \cdot (1 - K_1) + C_{\mathsf{SK}} \cdot (1 - K'),$$

где C_{63} и C_{6K} — емкости база—эмиттер и база—коллектор транзистора VTI, а K_1 — коэффициент передачи по напряжению от базы этого транзистора к его эмиттеру.

Указание

Задача экспериментального исследования заключается в том, чтобы в серии опытов определить фактические значения параметров используемых транзисторов. Требуемую проверку осуществляют, подставляя эти значения в полученные формулы и сравнивая результаты расчета с результатами измерений в п. 2.4а.

Рисунки к п. 2.5 Задания

2.5. Резисторные усилители с параллельной положительной обратной связью

а) Для одной из схем, изображенных на рис. 2.5-1 и 2.5-2, измерить $K' = U_{\rm BblX}/U_{\rm BX}$ и $f'_{\rm BedXH}$.

Указание.

В схеме на рис. 2.5-2. подбором R_{33} , если это необходимо, добиваются, чтобы постоянное напряжение на выходе не выходило за пределы -2...+2 В.

б) Убедиться в том, что схема на рис. 2.5-1 эквивалентна – с точки зрения значений K' и $f'_{\text{верхн}}$ – однокаскадному усилителю на транзисторе VTI с нагрузкой

$$\left. \frac{R_{\text{K11}}}{1 - K_2} \right| R_{\text{BX.Tp2}} ,$$

где K_2 и $R_{\text{BX.Tp2}}$ — коэффициент передачи и входное сопротивление повторителя на транзисторе VT2, а для схемы на рис. 2.5-2

$$K' = \frac{\gamma \cdot K}{1 - K \cdot \beta}$$

где K — собственный коэффициент передачи эмиттерного повторителя на транзисторе VT2, $\beta = U_{62}/U_{\text{BыX}}$ при $U_{\text{BX}} = 0$, $\gamma \approx 1$.

Указания

Рекомендуется получить аналитические выражения для K' и $f'_{\mathsf{Верхн}}$, подставить типичные значения параметров транзисторов и сравнить между собой результаты расчета и эксперимента. В схеме на рис. 2.5-1 петля обратной связи размыкается путем переключения правой пластины C° с эмиттера VT2 на землю, а в схеме на рис. 2.5-2 — путем замены R_{93} двумя последовательно включенными резисторами и заземления средней точки между ними по переменному току. Для схемы на рис. 2.5-2

$$\beta = \frac{R_{322} || R_{33}}{R_{321} + (R_{322} || R_{33})} \cdot \frac{1}{R_{33}} \cdot R_{31}.$$

СПИСОК ЛИТЕРАТУРЫ

- 1. *Воронов Е. В., Ларин А. Л.* Радиоэлектроника. Обратные связи в линейных устройствах: Учеб. пособие. М.: МФТИ, 1978.
- 2. *Габидулин Э. М., Куклев Л. П.* Линейные усилители: Учеб. пособие. М.: МФТИ, 1979.
- 3. $\mathit{Ларин}$ А. Л. Аналоговая электроника: Учеб. пособие. М.: МФТИ, 2007.
- 4. Манаев Е.И. Основы радиоэлектроники. М.: Радио и связь, 1990.
- 5. *Озерский Ю. П.* Линейные методы в радиотехнике: Учеб. пособие. М.: МФТИ, 2008.

ОБРАТНЫЕ СВЯЗИ В СХЕМАХ УСИЛИТЕЛЕЙ

Лабораторная работа
по курсам:
Линейные методы в радиотехнике
Аналоговая электроника
Электронные методы физических исследований
Основы радиотехники
Радиотехника и схемотехника

Составитель: Воронов Евгений Валентинович

Редактор И. А. Волкова. Корректор О. П. Котова.

Подписано в печать --,--.2009. Формат $60 \times 84^1/_{16}$. Бумага офсетная. Усл. печ. л. 2,0. Тираж 600 экз. Заказ № ф-

Государственное образовательное учреждение высшего профессионального образования Московский физико-технический институт (государственный университет) Отдел автоматизированных издательских систем "ФИЗТЕХ-ПОЛИГРАФ" 141700, Московская обл., г. Долгопрудный, Институтский пер., 9

4. Когда коэффициент усиления $K = U_{\rm Bbix}/U_{\rm BX}$ велик и нет возможности непосредственно измерить $U_{\rm BX}$, входное сопротивление $R_{\rm BX}$ и значение K можно найти, выполнив наблюдения при двух значениях сопротивления $R_{\rm N}$:

$$\begin{array}{l} \textit{если } U_{\mathsf{BЫX}} = U_1 \; \textit{при} \\ \mathcal{E}_{\mathsf{N}} = \mathcal{E}_1, \; R_{\mathsf{N}} = R_1 \\ \textit{и } U_{\mathsf{BЫX}} = U_2 \; \textit{при} \\ \mathcal{E}_{\mathsf{N}} = \mathcal{E}_2, \; R_{\mathsf{N}} = R_2, \; \textit{mo} \\ \\ R_{\mathsf{BX}} = \frac{(\mathcal{E}_1 / \mathcal{E}_2) \cdot R_2 - (U_1 / U_2) \cdot R_1}{(U_1 / U_2) - (\mathcal{E}_1 / \mathcal{E}_2)} \\ \textit{и } K = (U_1 / \mathcal{E}_1) \cdot (R_1 + R_{\mathsf{BX}}) / R_{\mathsf{BX}} = (U_2 / \mathcal{E}_2) \cdot (R_2 + R_{\mathsf{BX}}) / R_{\mathsf{BX}} \,. \end{array}$$