What sets Bayes apart?

ESS 575 Models for Ecological Data

N. Thompson Hobbs

January 24, 2019

Today

- ▶ A high elevation view of approaches for statistical inference
- ► Some motivation for learning
- ► The basic ideas of Bayesian inference

Exercise

What sets statements of scientists apart from statements made by journalists, lawyers, and logicians?

Exercise

Write the definition of a frequentist, 95% confidence interval on a parameter of interest, θ .

Frequentist confidence interval

In frequentist statistics, a 95% confidence interval represents an interval of a specified width such that if the experiment or sample were repeated many times, 95% of the intervals would contain the true parameter value.

A line of inference

Some notation

- ightharpoonup y data
- lacktriangledown heta a parameter or other unknown quantity of interest
- $lackbox{}{}$ [y| heta] The probability distribution of y conditional on heta
- $lackbox{}{lackbox{}{\mid}} [heta|y]$ The probability distribution of heta conditional on y
- $[y|\theta] = P(y|\theta) = p(y|\theta) = f(y|\theta) = f(y,\theta)$, different notation that means the same thing.

Board work on confidence envelopes

Exercise

Describe how Bayesian analysis differs from other types of statistical analysis.

What sets Bayes apart?

- ightharpoonup Bayesians divide the world into things that are observed (y)and unobserved (θ) .
- ▶ All unobserved quantities are treated as random variables.
- A random variable is a quantity whose behavior is governed by
- ▶ Probability distributions are mathematical abstractions of "governed by chance."
- ▶ We seek to understand the characteristics of these probability distributions, particularly $[\theta|y].$ ←ロト ←原 ト ← 恵 ト ◆ 恵 ・ り へ ② 12/20

What sets Bayes apart?

Treating unobserved quantities as random variables is profound.

What sets Bayes apart?

All unobserved quantities are treated in exactly the same way.

- Parameters
- ► Latent states
- ► Missing data
- ► Censored data
- ▶ Predictions
- Forecasts

What sets Bayes apart?

An unobserved quanity (θ)

What sets Bayes apart?

Prior results from the "Define a confidence interval" exercise from faculty, researchers, and graduate students at:

- ► Swedish Agricultural University
- ▶ University of Alaska Anchorage
- ▶ Woods Hole Research Institute
- ► Conservation Science Partners
- ► National Socio-environmental Synthesis Center (3 courses)
- ► ESS 575 (2 courses)

Cut to R to illustrate updating with today's data.

You can understand it.

	Design or Purpose	Measurement Variables	Ranked Variables	Attributes
1 variable 1 sample	Examination of a single sample	Procedure for processing a frequency distribution, Box 2.1; seem and Best diselys, Section 2.5; Seeding for outliers, Section 1.14 Computing medium of frequency distribution, Box 4.4 Computing arthurstic mean: unrelated sample, Box 4.2; frequency distribution, Box 4.3 unrodiffered sample, Box 4.2; frequency distribution, Box 4.3 Setting confidence limits: mean, Box 7.2; variance, Box 7.3 Computing, Lond 6.2; Box 6.2		Confidence limits for a percentage, Section 17.1 Runs ness for randomness in dichecomized data. Box 18.3
	Comparison of a single sample with an expected frequency distribution	Normal expected frequencies, Box 6.1 Goodness of fit tests; parameters from an extrinsic hypothesis, Box 17.1; from an intrinsic hypothesis, Box 17.2 Ketnegonin-Smirani test of geodness of fit, Box 17.3 Graphic Tests for normality; large smiph sizes, Box 6.7; until xample sizes irrashit testol. Box 6.4 Test of Surgive sustitic against expected value, Box 7.4		Binomial expected frequencies, Box 5.1 Poisson expected frequencies, Box 5.2 Goodness of fit tents: parameters from an extincic hypothesis, Box 17.2; from an intrinsic hypothesis, Box 17.2
1 variable >2 samples	Single classification	Single tradections now, acceptance to the state of the st	Knakab-Wallis test, Box 13.5 Unplanned comparison of means by a neoperaments STP, Box 17.5	Groun for homogeneity of precentages. Boos 17.3 and 17.8 Companion of several samples with an expected frequency distribution \$11\$ unplarmed analysis of replaced some of goodness of fit. Box 17.5
	Nested classification	Two-level nessed arrows: equal sample sites, Box 10.1; unequal sample sizes, Box 10.4 Three level nested arrows: equal sample sizes, Box 10.3; unequal sample sizes, Box 10.5		
	Two way or multi way classification	Two-way arous with repleasine, Box 111, subsor repleasion, Box 11.2, using the propositional solution size. Box 11.4, using the propositional solution size. Box 11.4, using a single resource observation, Box 11.5. These way arous, Box 12.1. More than three way classification, Section 12.3 and Box 12.2. Text for resolutionists in a row way arous, Box 13.4.	Friedman's method for randomized blocks. Box 13.9	Three way log linear recidel, Box 17.9 Randomized blocks for frequency data irepeated testing of the same individua Box 17.11

You can understand it.

One approach applies to many problems

- $\,\blacktriangleright\,$ An unobservable state of interest, z
- \blacktriangleright A deterministic model of a process, $g\left(\theta,x\right)$, controlling the state.
- ► A model of the data
- ► Models of parameters

You can understand it.

- ▶ Rules of probability
 - ► Conditioning and independence
 - ► Law of total probability
 - Factoring joint probabilities
- Distribution theory
- ► Markov chain Monte Carlo

