Analise o conjunto de dados mostrados na tabela abaixo.

Record	A	B	C	Class
1	0	0	0	+
2	0	0	1	_
3	0	1	1	_
4	0	1	1	_
5	0	0	1	+
6	1	0	1	+
7	1	0	1	_
8	1	0	1	_
9	1	1	1	+
10	1	0	1	+

- a) Avalie as probabilidades condicionais para P(A|+), P(B|+), P(C|+), P(A|-), P(B|-) e P(C|-).
- b) Use a avaliação de probabilidades condicionais calculadas no item anterior para prever o rótulo de classe de uma amostra de teste (A=0, B=1, C=0) usando a abordagem *Naïve Bayes*.
- 2. O modelo Naïve Bayes tem sido usado com sucesso para classificação automática de spam. Observe a modelagem com "bag-of-words" a seguir.
 - Cada email possui um rótulo binário Y com valores em {spam, ham}
 - Cada palavra w de um email, não importa onde ela apareça, possui P(W = w | Y), onde W representa um dicionário pré-detrminado. Pontuação é ignorada.
 - Considere um email com K palavras $w_1, ..., w_k$. Por exemplo, o email "hi hi you" possui $w_1 = hi, w_2 = hi, w_3 = you$. Seus rótulos são dados pelo $arg\ max_v\ P(Y = y|w_1, ..., w_k) = arg\ max_v\ P(Y = y)\ \prod_{i=1}^{K} P(W = w_i|Y = y)$.
 - a) Você possui um classificador de spam treinado em um grande corpus de e-mails. Abaixo segue uma tabela com algumas probabilidades estimadas.

W	note	to	self	become	perfect	
$P(W \mid Y = \text{spam})$	1/6	1/8	1/4	1/4	1/8	
$P(W \mid Y = \text{ham})$	1/8	1/3	1/4	1/12	1/12	

Você recebe um novo email para classificar, contendo apenas duas palavras: perfect none.

Circule todos os valores de P(Y = spam) para os quais o modelo iria classificar esse novo email como sendo "spam".

- b) Você possui apenas três e-mails como conjunto de treinamento:
 - (Spam) dear sir, I write to you in hope of recovering my gold watch.
 - (Ham) hey, lunch at 12?
 - (Ham) fine, watch it tomorrow night.

Pinte os círculos correspondentes a valores que você estimaria para as probabilidades dadas abaixo.

P(W = sir Y = spam)	0	1/10	1/5	1/3	2/3	Nenhum dos anteriores
P(W = watch Y = ham)	0	1/10	1/5	1/3	2/3	Nenhum dos anteriores
P(W = gauntlet Y = ham)	0	1/10	1/5	1/3	2/3	Nenhum dos anteriores
P(Y = ham)	0	1/10	1/5	1/3	2/3	Nenhum dos anteriores

3. Qual é a taxa de acerto da árvore abaixo para o conjunto de teste que vem a seguir?

- 4. Desenhe árvores de decisão que representem os seguintes conceitos (sendo A, B, C e D variáveis booleanas):
 - a. $A \land B$
 - b. $A \lor (B \land C)$
 - $c.\;A\;\otimes\;\;B$
 - $d.(A \land B) \lor (C \land D)$

- Para a tabela ao lado, considere que C é o atributo de classificação, P, Q, e C assumem valores "Y"es ou "N"o e R possui três valores possíveis: 1, 2, e 3. Utilize o algoritmo de aprendizagem ID3 e mostre qual atributo deve ocupar a raiz da árvore de decisão resultante (obs: utilize a ENTROPIA como grandeza de medida de impureza).
 - P Q R C Número de instâncias (exemplos) coletadas.
 Y Y 1 N 20
 Y Y 2 Y 1
 Y Y 3 Y 2
 Y N 1 Y 8
 Y N 2 Y 2
 Y N 3 Y 0
 N Y 1 N 12
 N Y 2 Y 2
 N Y 3 Y 1
 N N 1 Y 25
 N N 2 Y 1
 N N 3 Y 4