

Steve Furnival HoBoil Limited, Banchory, UK June 2019

Introduction

- NS-OIL-1 is a PVT Report (work performed by Core Laboratories, Aberdeen) of a UK North Sea Oil Fluid, analysed in the mid-2000s
- ► The well was sampled by Bottom Hole Sampler (four BHS samples) and Surface Separator Test; the latter was not taken forward for analysis
- All of the BHS samples were flashed in the laboratory and the compositions of the resulting vapour and liquid streams were measured. These streams were then mathematically recombined to determine the composition of the wellstream.
 - ► The Recombination Process is discussed at length in Section 6.2 of the SPE Monograph on Phase Behavior by Whitson and Brule
- One of the BHS samples was then subject to CCE, DLE, Two Separator Tests and a Hybrid CCE/DLE to measure oil viscosity
- It has been assumed that all the relevant QA/QC tests have been performed on the reported data. This is an essential step before beginning EoS analysis to prevent the classic, "Garbage-In, Garbage-Out"!
 - ▶ Again, see Whitson & Brule (and elsewhere) for a discussion of relevant PVT QA/QC

Selected BHS Composition

- ▶ Note Sample reports zero mol% (< 0.01!) H2 & H2S
- Non-zero neo-Pentane
- ▶ PNA split for C7, C8, C9 & C10
- ▶ Plus Fraction of C36+

Compositional Analysis of Bottomhole Sample NS-OIL-1 to C36+

Calculated Residue Properties	
C ₇₊	
Mole%	33.00
Molecular Weight (g mol-1)	243
Density at 60°F (g cm-3)	0.8899
C,,,	
Mole%	22.51
Molecular Weight (g mol-1)	305
Density at 60°F (g cm-3)	0.8926
C ₂₀₊	
Mole%	10.30
Molecular Weight (g mol-1)	431
Density at 60°F (g cm-3)	0.9327
C _{se+}	
Mole %	2.43
Molecular Weight (g mol-1)	870
Density at 60°F (g cm-3)	1.0193
Calculated Whole Sample Properties	
Average mole weight (g mol-1)	96.4

Compositional Analysis of Bottomhole Sample NS-OIL-1 to C36+

	Component	Mole %	Weight 9
H ₂		0.00	0.0
	Hydrogen Sulphide	0.00	0.0
	Carbon Dioxide	1.84	0.8
N ₂	Nitrogen	0.39	0.1
	Methane	49.09	8.1
	Ethane	6.70	2.0
C3	Propane	3.76	1.7
7.00	i-Butane	0.58	0.3
	n-Butane	1.71	1.0
	Neo-Pentane	0.00	0.0
	i-Pentane	0.62	0.4
	n-Pentane	0.97	0.7
Ce	Hexanes	1.34	1.2
	M-C-Pentane	0.44	0.3
	Benzene	0.60	0.4
	Cyclohexane	0.65	0.5
C ₇	Heptanes	1.21	1.2
	M-C-Hexane	0.86	0.8
058	Toluene	0.85	0.8
Cs	Octanes	1.50	1.7
	E-Benzene	0.17	0.1
	M/P-Xylene	0.64	0.7
	O-Xylene	0.23	0.2
Cg	Nonanes	1.38	1.8
_	1,2,4-TMB	0.23	0.2
	Decanes	1.73	2.5
CH	Undecanes	1.63	2.4
	Dodecanes	1.51	2.5
	Tridecanes	1.60	2.9
	Tetradecanes	1.41	2.7
	Pentadecanes	1.55	3.3
	Hexadecanes	1.26	2.9
	Heptdecanes	1.12	2.7
	Octadecanes	1.11	2.8
	Nonadecanes	1.02	2.7
	Eicosanes	0.88	2.5
	Heneicosanes	0.80	2.4
	Docosanes	0.72	2.2
	Tricosanes	0.66	2.1
	Tetracosanes	0.60	2.0
	Pentacosanes	0.56 0.51	1.9
	Hexacosanes	0.51	1.8
	Heptacosanes	0.46	1.7
	Octacosanes Nonacosanes	0.42	1.7
	Triacontanes	0.37 0.36	1.6 1.5
	Hentriacontanes Dotriacontanes	0.36	1.5
-			
	Tritriacontanes	0.29	1.3
	Tetratriacontanes	0.27	1.3
	Pentatriacontanes	0.24	1.2
OM+	Hexatriacontanes Plus	2.43	16.9
	Totals:	100.00	100.0
	Note: 0.00 means less than 0.005.		

Core Laboratories (U.K.) Limited

Advanced Technology Centre

٠.,

CCE

- Note Tres = 285 degF
- Note Pinit and Pbub (Sat Pres)
- Pay attention to the small-print at bottom of page

Constant Composition Expansion at 285°F

Pressure (psig)		Relative Volume (1)	Density (g cm-3)	Instantaneous Compressibility (psi-1 x 10-6) (2)	Y-function (3)
		32.50		***************************************	77.7
7500		0.9570	0.6951	11.24	
7000		0.9626	0.6911	11.96	
6500		0.9685	0.6868	12.77	
6000		0.9749	0.6823	13.69	
5723	Reservoir pressure	0.9787	0.6797	14.25	
5500		0.9819	0.6775	14.74	
5000		0.9895	0.6723	15.96	
4800		0.9927	0.6701	16.51	
4700		0.9943	0.6690	16.79	
4600		0.9960	0.6679	17.09	
4500		0.9977	0.6667	17.40	
4400		0.9995	0.6655	17.71	
4371	Saturation pressure	1.0000	0.6652		
4362		1.0006			
4343		1.0018			
4326		1.0029			
4318		1.0034			
4312		1.0038			
4260		1.0073			
4161		1.0142			
3995		1.0270			
3711		1.0525			3.374
3271		1.1043			3.211
2684		1.2089			2 992
2023		1.4202			2.742
1573		1.6858			2.570
1195		2.0836			2 423
865		2.7381			2.293

⁽¹⁾ Relative Volume - V / Vsat. le. volume at indicated pressure per volume at saturation pressure.

⁽²⁾ Instantaneous compressibility = (V2-V1) / V1 x 1/(P1-P2)

⁽³⁾ Y-function = (Psat - P) / ((Pabs)(V/Vsat - 1)).

DLE

- Note Tres = 285 degF
- Note Pbub (Sat Pres) [same as CCE]
- Pay attention to the small-print at bottom of page

Differential Vaporisation at 285°F

Pressure (psig)	Solution Gas-Oil Ratio Rs(1)	Relative Oil Volume Bod(2)	Relative Total Volume Btd(3)	Density (g cm-3)	Deviation Factor (Z)	Gas Formation Volume Factor (4)	Incrementa Gas Gravity (Air = 1.000
4371	1012	1.621	1.621	0.6652		Saturation Pro	essure
3700	839	1.541	1.706	0.6817	0.940	0.00534	0.746
2700	598	1.432	1.962	0.7066	0.924	0.00718	0.732
1700	394	1.337	2.597	0.7319	0.930	0.01144	0.745
1000	262	1.276	3.922	0.7496	0.952	0.01980	0.773
500	168	1.229	7.223	0.7644	0.972	0.03987	0.845
200	102	1.192	16.919	0.7754	0.987	0.09706	1.021
0	0	1,114		0.7864			2.168

Residual Oil Properties

 Density of residual oil
 0.8760
 g cm-3 at 60°F

 API
 29.9

⁽¹⁾ GOR in cubic feet of gas at 14.73 psia and 60°F per barrel of residual oil at 60°F.

⁽²⁾ Volume of oil at indicated pressure and temperature per volume of residual oil at 60°F.

⁽³⁾ Volume of oil plus liberated gas at indicated pressure and temperature per volume of residual oil at 60°F.

⁽⁴⁾ Volume of gas at Indicated pressure and temperature per volume at 14.73 psla and 60°F.

Viscosity: CCE/DLE Hybrid

- ► Note Tres = 285 degF
- Note Pbub (Sat Pres) [same as CCE]
- Pay attention to the small-print at bottom of page
 - ▶ Namely, Gas Viscosity is <u>Calculated</u>, not Measured!

Reservoir Fluid Viscosity Data at 285°F

Pressure (psig)		Oil Viscosity (cP)	Calculated Gas Viscosity (cP) (1)	Oil/Gas Viscosity Ratio
7500		0.498		
7000		0.481		
6500		0.464		
6000		0.448		
5723	Reservoir pressure	0.439		
5500		0.432		
5000		0.418		
4800		0.412		
4700		0.409		
4600		0.407		
4500		0.404		
4400		0.402		
4371	Saturation pressure	0.401		
3700		0.461	0.0231	20.0
2700		0.566	0.0197	28.7
1700		0.700	0.0171	40.9
1000		0.824	0.0156	52.8
500		0.947	0.0145	65.3
200		1.058	0.0134	79.0
0		1.257		

Reservoir Fluid Viscosity v Pressure at 285°F

(1) Calculated using the method of Lee, Gonzales and Eakin, JPT, Aug 1966.

Core Laboratories (U.K.) Limited Advanced Technology Centre

F

'Separator' Tests

- OK, first 'Separator' Test is Single Flash straight to standard conditions [0 psig, 60 degF]
- Separator Test has two stages [second at standard conditions]
- Both tests report change from reservoir saturated conditions [Pbub, Tres] to give 'total' GOR and FVF
- Again, read the small print, especially about stage GORs

Atmospheric Flash Data

ressure (psig)	Temperature (°F)	Gas-Oil Ratio Rs (1)	Oil Density (g cm-3)	Shrinkage Factor Bo (2)	Flashed Gas Gravity (Air = 1.000)
4371	285	815		1.496	
0	60		0.8631 (API = 32.3°)	1.000	0.777

- (1) GOR in cubic feet of gas at 14.73 psia and 60°F per barrel of residual oil at 60°F
- (2) Volume of undersaturated oil at 4371 psig and 285°F per volume of residual oil at 60F

Core Laboratories (U.K.) Limited Advanced Technology Centre

G.1

Separator Test Data

Pressure (psig)	Temperature (°F)	Gas-Oil Ratio (1)	Gas-Oil Ratio Rsfb (2)	Oil Density (g cm-3)	Formation Volume Factor Bofb (3)	Separation Volume Factor (4)	Gas Gravity of flashed gas (Air = 1.000)
4371	285	28		0.6652	1.477	Saturat	ion Pressure
600 0	104 60	580 171	634 171	0.8207 0.8602 (API = 32.8°)		1.094 1.000	0.660 1.008
			806				

- (1) GOR in cubic feet of gas at 14.73 psia and 60°F per barrel of oil at indicated pressure and temperature.
- (2) GOR in cubic feet of gas at 14.73 psia and 60°F per barrel of stocktank oil at 60°F.
- (3) Volume of saturated oil at 4371 psig and 285°F per volume of stocktank oil at 60°F.

(4) Volume of oil at indicated pressure and temperature per volume of stocktank oil at 60°F.

Core Laboratories (U.K.) Limited Advanced Technology Centre

H.1

Preparing Data for PVTfree

- PVTfree doesn't have a Graphical User Interface (GUI). Rather, users must prepare an ASCII (plain text) file of keywords and data, akin to that required by the commercial reservoir simulators
 - Although there is an extensive manual for *PVTfree* which details how to write an input file, along with example datasets, we note most users just want to 'dive-in'
- ▶ We have written an Excel spreadsheet with VBA macros called SetupPVTfree.xlsm to help novice users. NS-OIL-1 will be analysed using this spreadsheet.
- Open the spreadsheet and from the Master worksheet (w/s), click the 'Locate PVTfree.py' button and use the Open-File popup to locate the PVTfree.py file (the 'main')
- If there is already data in the spreadsheet (multiple w/s other than Master), click the 'Clear All' button to remove all these other w/s
- ► The data shown on the previous slides (3-7) has been copied & pasted from the PDF report into a new w/s (called srfwork I'm srf, and its my work sheet!) and reformatted to make it easier to copy & paste into the subsequent w/s created by SetupPVTfree.xlsm

Example srfwork w/s

- Ensure Composition sums to 100.0
 - ► Many don't!
- Check spelling
 - C17 (yellow) should be Heptadecanes
 - Edit this before copying to New Sample w/s
- Note the units
 - ▶ Bg on DLE ???
 - ► Think its rcf/scf
 - If there's no obvious unit, its probably 'dim' (dimensionless)

			CCE	285	degF	DLE	285	degF						Visc	285	Single :	Stage Flash				
	Hydrogen Hydrogen Sulphide	0.00	Pres psiq	Rel Vol	gm/cm3	Pres psiq	GOR svf/stb	Bo rb/stb	BT rb/stb	am/sm3		CHAS F VF	Gas Grav dim	Pres psiq	Oil Visc	Pres psiq	Tres degF	GOR sc#stb	Oil Dens qm/cm3		Gas Grav dim
	Carbon Dioxide	1.84	7500			4371			1,621		ullii	rrr	uiiii	7500		psig 43				1,496	
	Nitrogen	0.39	7000			3700	839				0.940	0.00534	0.746	7000			0 60		0.8631		0.777
	Methane	49.09	6500			2700	598				0.924	0.00718		6500			0		0.000		0.111
	Ethane	6.70	6000			1700	394		2.597	0.7319	0.930	0.01144		6000		Separa	tor Test				
	Propane	3.76	5723			1000	262				0.952	0.01980		5723		Ocpaid					
	i-Butane	0.58	5500			500	168					0.03987		5500		Pres	Tres	GOR	Oil Dens	Bo	Gas Grav
	n-Butane	1.71	5000			200	102				0.987			5000		psig	degF	soffstb	gm/cm3		dim
	Neo-Pentane	0.00	4800			0	.02		10.010	0.7864	0.001	0.00100	2.168	4800		43					
	i-Pentane	0.62	4700							0.1001			2.100	4700		60					
	n-Pentane	0.97	4600											4600			0 60				1.008
-	Hexanes	1.34	4500											4500			0 00		0.0002		1.000
	M-C-Pentane	0.44	4400											4400							
	Benzene	0.60	4371											4371							
	Cyclohexane	0.65	4362											3700							
	Heptanes	1.21	4343											2700							
	M-C-Hexane	0.86	4326											1700							
-	Toluene	0.85	4318											1000							
	Octanes	1.50	4312											500							
	E-Benzene	0.17	4260											200							
	M/P-Xylene	0.64	4161											0							
	O-Xylene	0.23	3995											-	1.201						
	Nonanes	1.38	3711																		
	1,2,4-TMB	0.23	3271																		
	Decanes	1.73	2684															•			
	Undecanes	1.63	2023																		
	Dodecanes	1.51	1573																		
	Tridecanes	1.60	1195																		
	Tetradecanes	1.41	865																		
	Pentadecanes	1.55	000	2.1001																	
	Hexadecanes	1.26																			
Spelling!!	Heptdecanes	1.12																			
opening.	Octadecanes	1.11																			
	Nonadecanes	1.02																			
	Eicosanes	0.88																			
	Heneicosanes	0.80																			
	Docosanes	0.72																			
	Tricosanes	0.66																			
	Tetracosanes	0.60																			
	Pentacosanes	0.56																			
	Hexacosanes	0.51			0																
-	Heptacosanes	0.46																			
	Octacosanes	0.42																			
	Nonacosanes	0.42																			
	Triacontanes	0.37																			
	Hentriacontanes	0.36																			
	Dotriacontanes	0.31																			
	Tritriacontanes	0.29																			
	Tetratriacontanes	0.27			0																
	Pentatriacontanes	0.24			-											-					
	Hexatriacontanes Plu	2.43			1																
	, ienatijacontanės Fild	2.70																			
		100.00																			
		100.00				-															+

Add Sample

- From the Master w/s, click the 'Add Sample' button. A popup will ask to provide the name for the sample
 - ▶ I got lazy and called it 'OIL'
 - We create two w/s called OIL & Samp-Sum (Sample-Summary)
- Fill the cells coloured yellow
- When ready, click 'Process' button
- ► If OK, will add a column on the Samp-Sum w/s
 - Can change EoS by typing SRK
 - Can change #Pseudos
- If not OK, fix the problem!
 - You're on your own! Trace problem in VBA

Add Experiments

- From the Master w/s, click the 'Add Experiment' button. A popup will ask to provide the type of experiment required and for which sample (we only have one 'OIL')
 - ► CCE, CVD, DLE, SEP, SAT, FLS, SWL or GRD
- Copy the relevant columns of data
- Select units from the dropdowns
- For CCE, CVD & DLE, mark one row as being the PSAT pressure
- Plots required? Use dropdowns
- Don't forget the Tres & its units
- When all OK, click 'Check' button
- If all OK, review on the Exp-Sum w/s (Experiment Summary)

Run Experiments

- Once all experiments (five) have been checked ('OK' in Exp Checked? Column), click 'Run Exps' button on Exp-Sum
- Supply the root-name of the data file to be created, and
- Windows Command Prompt (CMD or DOS) should open and the file should run
 - ► Click Return to close CMD
- Study the input file (here NS-OIL-1.dat) and output file (here NS-OIL-1.out)


```
C:\WINDOWS\py.exe
                                                                                                                                     quation of State Specified as PR
 lus Fraction will be split into 3 Pseudo-Components
 rocSamp: Processing the SAMPLES keyword
 ave read Plus Fraction & Sample Compositions
 llProps: Attempting to assign Component Properties
omponent ( 1) = N2 is in Internal Library - Properties Assigned
 omponent ( 2) = CO2 is in Internal Library - Properties Assigned
                         is in Internal Library
 omponent (3) = C1

    Properties Assigned

 omponent ( 4) = C2 is in Internal Library - Properties Assigned
 omponent (5) = C3 is in Internal Library - Properties Assigned
omponent (6) = IC4 is in Internal Library - Properties Assigned
 omponent ( 7) = NC4 is in Internal Library - Properties Assigned
           (8) = IC5 is in Internal Library - Properties Assigned
 omponent ( 9) = NC5 is in Internal Library - Properties Assigned
 omponent (10) = C6 is assumed to be a SCN - Properties Assigned/Calculated omponent (11) = C7+ is Plus Fraction to be Split into 3 Pseudos
 lus Fraction Splitting Completed
Binary Interaction Parameters (BIPs) Assigned/Calculated
 enerating Phase Plot for Sample 1 OIL
Generating Phase Plot in Sub-Directory GraphOut
xperiment: iExp,Type 1 CCE
Experiment: iExp,Type 2 DLE
Experiment: iExp,Type 3 SEP
 xperiment: iExp,Type 4 SEP
 xperiment: iExp,Type 5 DLE
enerating Plots in Sub-Directory GraphOut
alcExps: Experiments Completed
 lick Return to close PVTfree.py when ready
```

Input File

Sample	Definitions
SAMPLES	OIL
MW	243.00
SG	0.8699
ALPHA	0.9645
N2	0.3900
CO2	1.8400
Cl	49.0900
C2	6.7000
C3	3.7600
IC4	0.5800
NC4	1.7100
IC5	0.6200
NC5	0.9700
C6	1.3400
C7+	33.0000
ENDINIT	

Expe	rimen	ts					
EXP							
CCE							
	OIL	Tres	285.0	0 d	egF	Sliq	DEW
PLOT				Ye		Ye	
		PR	ES	RE:	LV	DE	
			ig	di		_	/cm3
		7500.	3.50	0.95		0.69	
		7000.		0.96		0.69	
		6500.		0.96		0.68	
						0.68	
		5723.		0.97		0.67	
		5500.		0.98		0.67	
		5000.		0.98		0.67	
		4800.		0.99		0.67	
		4700.				0.66	90
		4600.		0.99		0.66	
		4500.	00	0.99	77	0.66	67
		4400.		0.99		0.66	
PSAT		4371.	00	1.00	00	0.66	52
		4362.				0.00	00
		4343.	00	1.00	18	0.00	00
		4326.	00	1.00	29	0.00	00
		4318.	00	1.00		0.00	
		4312.		1.00		0.00	
		4260.	00	1.00	73	0.00	00
		4161.		1.01		0.00	00
		3995.		1.02	70	0.00	
		3711.		1.05		0.00	
		3271.	00	1.10	43	0.00	00
		2684.	00	1.20	89	0.00	00
		2023.	00	1.42	02	0.00	00
		1573.	00	1.68	58	0.00	00
		1195.	00	2.08	36	0.00	00
		865.	00	2.73	81	0.00	00

DLE	OTT	Tues 205	00 deel						44			
samp	OIL	Tres 285	and the second second		Van	Vee	V					
PLOT		DDEC	Yes	Yes	Yes	Yes	Yes					
		PRES	ВО	GOR	DENO							
		psig	rb/st		/stb	gm/cm3	dim	dim				
PSAT		4371.00		1012.0000	0.6652							
		3700.00		839.0000	0.6817							
		2700.00		598.0000	0.7066							
		1700.00		394.0000	0.7319	0.9300						
		1000.00		262.0000	0.7496							
		500.00		168.0000	0.7644							
		200.00		102.0000	0.7754							
		0.00	1.1140	0.0000	0.7864	0.0000	2.1680					
EP												
samp	OIL											
LOT				Yes	Yes	Yes	Yes					
		PRES	TEMP	ВО	GOR	DENO	GGRV	ti.	1			
		psig	degF	rb/stl	b sc:	f/stb	gm/cm3	dim				
SAT		4371.00	285.00	1.4910	815.0000	0.0000	0.0000					
		0.00	60.00	0.0000	0.0000	0.8631	0.7770		1			
EP												
samp	OIL											
LOT				Yes	Yes	Yes	Yes					
		PRES	TEMP	ВО	GOR	DENO	GGRV	tii				
		psig	degF	rb/stl	b sc:	f/stb	gm/cm3					
SAT		4371.00	285.00	1.4770	806.0000	0.6652	0.000	DLE				
		600.00	104.00	1.0940	634.0000	0.8207	0.660	samp	OIL	Tres	285.0	0 degF
		0.00	60.00		171.0000	0.8602		PLOT		- Employees		Yes
			70000000			000000000000000000000000000000000000000		1101		PRE		VISO
_												
										psi	_	cP
										7500.0	10	0.4980
										7000.0	00	0.4810
										6500.0	00	0.4640
										6000.0		0.4480
							1			5723.0		0.4390
ı										5500.0		0.4320
							1			5000.0	00	0.4180
							1			4800.0	00	0.4120
							- V			4700.0		0.4090
							/			4600.0		0.4070
							//					
										4500.0		0.4040
										4400.0	00	0.4020
								PSAT		4371.0	00	0.4010
ı										3700.0		0.4610
										2700 0	10	0 5560
										2700.0		0.5660

1000.00

500.00

200.00

0.00

0.8240

0.9470

1.0580

1.2570

At Reservoir Temperature of 285.000 deaF Observed Saturation Pressure (Psat) = 4371.000 PSIG Calculated Saturation Pressure (Psat) = 4337.597 PSIG PRES BO-OBS BO-CAL GOR-OBS GOR-CAL DENO-OBS DENO-CAL PSIG RB/STB RB/STB SCF/STB SCF/STB GM/CM3 GM/CM3 4371.00000 1.65745 1012.00000 1053.75226 3700.00000 1.54100 1.56402 839.00000 860.96860 0.68170 0.67973 1.43988 598,00000 608.46651 0.70660 0.70959 1.33443 394.00000 397.98422 0.73190 0.73982 Compare Calculated (CAL) 1.26705 262.00000 267.93743 0.74960 0.76172 1.21810 168.00000 178.54752 0.76440 0.77859 1.18236 102.00000 119.65210 0.77540 0.79072 and Observed (OBS) 1.06818 0.00000 0.78640 0.81584 -0.00000

Separator Test (SEP) Experiment

Experiment Number 3 run on Sample[1] = OIL

Experiment Number 2 run on Sample[1] = OIL

Observed Saturation Pressure (Psat) = 4371.000 PSIG Calculated Saturation Pressure (Psat) = 4337.597 PSIG

PRES	TEMP	LSep	VSep	BO-OBS	BO-CAL	GOR-OBS	GOR-CAL
PSIG	DEGF	Stg#	Stg#	RB/STB	RB/STB	SCF/STB	SCF/STB
4371.00000	285.00000	1	1	1.49100	1.53001	815.00000	896.04781
0.00000	60.00000	0	0	0.00000	1.00000	0.00000	896.04781

And from here ...

- You will have to edit the Input File and run from the Command Prompt (type CMD in Search Box bottom left)
 - ► There's a runit.bat (will need editing) to save typing ...
- ► For example, Regress using Plus Fraction Parameters
- Study effect of regress in Out file and regress file (here NS-OUT-1.reg)
- Consider adding non-unity weighting factors with WEIG keyword in each experiment
- Consider removing observed data (set to zero) which are
 biasing the regression but don't add 'value'

 readReg: Starting Regression with 5 Experiments Defined readReg: Of Which 4 Experiments Are Active
- Consider alternate regression variables, i.e.
 - $ightharpoonup \Omega_{
 m A}$ -Multipliers, $\Omega_{
 m B}$ -Multipliers and BIPs
 - $ightharpoonup T_c$, P_c , etc.
- See PVTfree manual for details
- Also Generating Black Oil Tables, Grouping and Output for Compositional Simulators

0.04222 -5.073e-02

0.01598 -8.337e-04

0.01555 -3.404e-07

1.00000

1.00000

lineSearch: fun0,grd0,lamB,fun1

lineSearch: fun0,grd0,lamB,fun1

lineSearch: fun0,grd0,lamB,fun1

Regression converged!