MENU SEARCH INDEX DETA

1/1

PATENT ABSTRACTS OF JAPAN

(11)Publication number: 09023187

(43)Date of publication of application: 21.01.1997

(51)Int.CI.

H04B 10/02 H04B 10/18

(21)Application number: 07173114

(22)Date of filing: 10.07.1995

(71)Applicant:

(72)Inventor:

FUJITSU LTD ONAKA HIROSHI MIYATA HIDEYUKI OTSUKA KAZUE

(54) OPTICAL TRANSMISSION SYSTEM

(57)Abstract:

PROBLEM TO BE SOLVED: To compensate wavelength dispersion in a wide range and to attain high speed and large capacity communication by compensating primary and secondary dispersion generated in an optical fiber transmission line by plural dispersion compensators.

SOLUTION: When a dispersion shift fiber(DSF) is an optical fiber transmission line 1, a negative dispersion value for suppressing the deterioration of transmission characteristics by four optical wave mixing between signal light and naturally radiated optical noise generated from an optical amplifier 5 is transmitted. Thereby a dispersion compensator 2 having a positive code and a large absolute value is required for the compensation of dispersion of the transmission line 1. When the compensator 2 is constituted of an optical fiber, an 1.3μm band zero dispersion single mode fiber(SMF) can be used and low loss and low cost can be attained. Since the SMF has a dispersion value corresponding to about 10 times the primary dispersion value of the line 1, the primary dispersion value of the line 1 can be compensated by adding a distance corresponding to about 1/10 of a transmission distance as a 1st compensator 3 or laying it as a part of the line 1. A 2nd compensator 4 having a reverse code against the DSF secondary dispersion of the line 1 and a large absolute value compensates a secondary dispersion value similarly to the primary dispersion value.

LEGAL STATUS

[Date of request for examination] .

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998 Japanese Patent Office

。特別平9-23187子: 英之アプス1-53

(19)日本国特許庁(JP)

(12)公開特許公報 (A)

特開平9-23187

M

(43)公開日 平成9年(1997)1月21日

(51) Int. C1. "

H 0 4 B

識別記号

庁内整理番号

H 0 4 B 9/00 技術表示箇所

10/18

10/02

審査請求 未請求 : 請求項の数 6

O L

(全13頁)

(21)出願番号

特願平7-173114

(22)出願日

平成7年(1995)7月10日

(71)出願人 000005223

富士通株式会社

神奈川県川崎市中原区上小田中4丁目1番1

(72) 発明者 尾中 寛

神奈川県川崎市中原区上小田中1015番地

富士通株式会社内

(72)発明者 宮田 英之

神奈川県川崎市中原区上小田中1015番地

富士通标式会社内

(72) 発明者 大塚 和恵

神奈川県川崎市中原区上小田中1015番地

富士通株式会社内

(74)代理人 弁理士 柏谷 昭司 (外1名)

(54) 【発明の名称】光伝送システム

(57) 【要約】

【目的】 光ファイバ伝送路の波長分散を補償した光伝 送システムに関し、光ファイバ伝送路の1次分散と2次 . 分散とを補償して長距離伝送を可能とする。

【構成】 送信部6と受信部7との間の光ファイバ伝送 路1の1次分散と逆符号の1次分散を有し、且つ光ファ イバ伝送路1の2次分散と逆符号の2次分散を有し、光 ファイバ伝送路1の累積分散値を補償する分散補償2を 設ける。又分散補償器2を、光ファイバ伝送路1の主と して1次分散を補償する第1分散補償器3と、光ファイ バ伝送路1の主として2次分散を補償する第2分散補償 器4とにより構成することができる。

本発明の実施例の説明図

的的特性法 プルーや研修型(OCF)

【特許請求の範囲】。

【請求項"】 光ファイバ伝送路と、該光ファイバ伝送 路の1次分散と逆符号の1次分散を有し、且つ該光ファ イバ伝送路の2次分散と逆符号の2次分散を有する分散 補償器とを縦続接続した構成を備えたことを特徴とする 光伝送システム。

【請求項2】 光ファイバ伝送路と、該光ファイバ伝送 路の1次分散と逆符号の1次分散を有し、且つ該光ファ イバ伝送路の2次分散と同一符号又は逆符号の2次分散 を有する第1の分散補償器と、該光ファイバ伝送路の前 記2次分散と逆符号の2次分散を有し、且つ該光ファイ バ伝送路の前記1次分散と同一符号又は逆符号の1次分 散を有する第2の分散補償器をを、縦続接続した構成を 備えたことを特徴とする光伝送システム。

前記光ファイバ伝送路の信号波長帯域内・ 【請求項3】 若しくはその近傍の異なる波長 11, 2 に対して予め 設定した残留分散値D1, D2、と、前記第1, 第2の分 散補償器の累積分散値及び2次分散値とについて、

(設計波長での伝送路累積分散値) + (設計波長での第 1分散補償器の累積分散値)+(設計波長での第2分散 補償器の累積分散値) = D1

(伝送路の2次分散値×伝送路長) + (第1分散補償器 の2次分散値) + (第2分散補償器の2次分散値) = D $2/(\lambda 1 - \lambda 2)$

の条件を満足するように、前記第1, 第2の分散補償器 の累積分散値及び2次分散値を設定することを特徴とす る請求項2記載の光伝送システム。

【贖求項4】 前記第1, 第2の分散補償器を光ファイ バにより構成し、該第1, 第2の分散補償ファイバの長 さをLincoop, Lindboox 前記光ファイバ伝送路の長さ をLirenus 、該光ファイバ伝送路の2次分散値をS Trans 、前記第1分散補償ファイバの2次分散値をS TRUCE、前記第2分散補償ファイバの2次分散値をS amper、前記光フィァバ伝送路の1次分散値を Drenns 、前記第1, 第2の分散補償ファイバの1次分 散値をDiscour、Danaboir、波長 λ 1 での残留分散値を D1、波長 A2 での残留分散値をD2、波長 A1と波長 λ 2 との差分の波長帯域をBwpm 、全長をLtorAL とし て.

LTerms + L ISCOCH+ L 2000CH= LTOTAL

 $(D_{Tenne} \times L_{Tenne}) + (D_{telDOF} \times L_{telDOF}) +$

 $(D_{200DCP} \times L_{200DCP}) = D.1$

Bwpm ((Steams × Lteams) + (Statocz×L $_{18\text{CDCP}}$) + (S_{200DCP}×L_{200DCP})] = D 2 の条件を満足するように、前記第1, 第2の分散補償フ ァイバの長さしiscice, Lemmerと、1次分散値D rscoco、Damborと、2次分散値Drscoop、Damborと を設定したことを特徴とする請求項2記載の光伝送シス

【請求項5】 前記光ファイバ伝送路に分散して接続し

た光増幅器間に、前記第1, 第2の分散補償器を接続し たことを特徴とする請求項2乃至4の何れか1項記載の 光伝送システム。

【請求項6】 分散値の符号が負の前記光ファイバ伝送 路と、複数の波長を多重化した光信号の前記光ファイバ 伝送路及び前記第1, 第2の分散補償器による累積分散 値が、正の符号とならないように、長さ及び分散値を設 定したことを特徴とする請求項2乃至5項の何れか1項 記載の光伝送システム。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、光ファイバ伝送路の分 散補償を行って長距離伝送を可能とする光伝送システム に関する。光増幅器として、エルビウム(Er)添加光 ファイバ増幅器が開発され、光伝送システムへの適用が 検討されている。このような光増幅器は、中継伝送方式 の線形中継器、送信部の送信出力を増大させるブースタ 増幅器或いは受信部の受信感度を向上させる前置増幅器 等に適用することができる。特に、線形中継器として光 増幅器を用いると、再生中継器に於いて必要とする超高 速電子回路が不要となるから、構成が簡単且つ小型とな

【0002】しかし、光増幅器を用いた線形中継器を光 伝送路に接続した中継伝送方式に於いては、各線形中継 器で発生する雑音と、光伝送路を構成する光ファイバの 非線形効果とが累積し、伝送容量や伝送距離に制限が生 じる問題がある。即ち、最大伝送距離と光パワーレベル ダイヤグラム及び中継器間隔等の関数として許容される 最大伝送速度が決定される。注意深く設計された光伝送 システムに於いては、例えば、5Gb/sの伝送速度 で、10000km程度の最大伝送距離が得られること が知られている。このように、光増幅器の適用は、光パ ワーの増大と線形中継距離の拡大とをもたらすが、光増 幅器で発生する雑音と光ファイバの波長分散及び非線形 効果の累積が新たな技術的課題となっている。

[0003]

50

【従来の技術】波長分散は、光パルスの伝播速度が光の 波長(周波数)に依存する現象である。高速に変調され た光パルスは、周波数領域では広いスペクトラムを持つ 40 ことになり、このような光パルスが光ファイバ中を伝播 すると、光ファイバの波長分散の影響によりスペクトラ ム中の短波長成分と長波長成分との伝播速度が相違し、 光パルスの波形が変化する。このような波長分散の影響 を軽減する為に、光ファイバの分散値がほぼ零となる波 長に光信号波長を設定すれば良いことが知られている。 【0004】現在、一般的には、1.3μm帯容分散シ ングルモードファイバ(以下SMFと略称する)が多く 敷設されており、1.3 μm帯の光源を使用した光通信 システムが実用化されている。又前述のエルビウム添加 光ファイバ増幅器(以下EDFAと略称する)の増幅帯

域は、1.5μm帯であり、信号波長をこの波長帯域としてSMFとEDFAとを組合せた光伝送システムにより光信号を伝送する場合、SMFは、1.55μm帯で+18ps/nm/km程度の大きな分散を有するものである。従って、SMF中を数Gb/s程度以上の伝送速度で光信号を伝送する場合に、波長分散を補償する技術が必要となる。

【0005】又大陸横断等の超長距離光伝送システムに 於いては、EDFAの増幅光帯域の1.5μm帯に奪分 散波長をシフトした分散シフトファイバ(以下DSFと 略称する)を用いられている。しかし、このような超長 距離光伝送システムに於いて、奪分散波長近傍に信号波 長を設定すると、EDFA等の光増幅器から発生する自 然放出光雑音と信号光との間の非線形効果(四光波混 合)により、伝送品質を劣化させる問題がある。

【0006】このような問題は、光ファイバの長手方向の分散値を管理することにより回避できる。即ち、信号光近傍の自然放出光雑音の光ファイバの非線形効果による劣化は、光ファイバの分散値を大きくすることにより回避でき、又分散による光パルスの波形の変化は、光パルスのパワーが小さい場合には、線形に累積して影響を受ける。

【0007】そこで、図10に示すように、光信号送信部OSと光信号受信部ORとの間の光伝送路を、分散シフトファイバDCFとエルピウム添加光ファイバ増幅器EDFAとにより構成すると共に、DCFの累積分散値と逆符号の分散値を有するSMFを分散補償器として接続し、分散値〔ps/nm〕の曲線で示すように、平均分散を零とする構成が知られている(例えば、文献(1)A.Naks andS.Saito,OAA'93SuC3-1,1993、参照)。このような波長分散管理の手段を設けることにより、分散による波形劣化及び四光波混合に起因する波形劣化を改善することができる。

【0008】又超長距離光伝送システムに於ける分散補償器間隔は、最適間隔が存在するものである。図11は伝送距離と分散補償器間隔との関係説明図であり、アイパターンペナルティを1dB、群選延補償を100%、光増幅器のノイズフィギュア(NF)を6dB、光ファイバ伝送路の分散値をパラメータとして、伝送距離[km]と分散補償器の間隔[km]との関係を示すものであり、光伝送路の分散値が、-10.0ps/nm/km、-1.0ps/nm/km、-0.1ps/nm/kmの場合について示している。例えば、光ファイバ伝送路の分散値を-1.0ps/nm/kmとすると、最適分散補償器間隔は、500km程度であり、この場合、9000km程度の伝送可能距離となる(例えば、文献(2)斉藤,信学技報 OCS94-26,1994,参照)。

【0009】この分散補償器の間隔は、最適の間隔より 短くても長くても伝送可能の距離は短くなる。これは、 分散補償器間隔を短くすると、分散補償器による奪分散 に戻る頻度が高くなる為に、光増幅器による自然放出光 雑音と光信号との間の四光波混合に起因する伝送劣化が 顕著になり、反対に、分散補償器間隔を長くすると、光 信号の自己位相変調効果に起因する光パルスの立上り, 立下りに於ける光周波数変化(周波数チャープ)と分散 との相互作用による波形劣化が発生し、伝送品質を劣化 させることによるものである。

【0010】なお、分散補償器としては、①グレーティングを用いた構成、②光干渉計を用いた構成、③光ファイバを用いた構成等が提案されている。この中でも光ファイバを用いた分散補償器は、制御回路等が必要でなく、受動的な動作が可能であること、使用波長帯域が他の構成の分散補償器に比較して極めて広いこと等によって、最も実用性が高いと考えられている。

【0011】図12は分散特性説明図であり、横軸を波長 [nm]とし、縦軸を分散値 [ps/nm·km]として示し、aは波長1300nmに於いて等分散となるSMF、bは波長1540nmに零分散シフトを行ったDSFを示す(例えば、文献(3) S. E. Miller, I. P. Kaminow "OPTICAL FIBER TELECOMMUNICATIONS II" Academic Press, 1988, p35参照)。この場合、SMFもDSFも、零分散波長近傍で、ほぼ0.08ps/nm/km程度の分散値を有するものであるが、波長毎に分散値が異なるから、波長多重伝送に於いて問題となる。

【0012】例えば、9000km程度の伝送距離の場合、DSFと分散補償器としてのSMFとにより構成し、それぞれの分散スロープ(分散値の微分値=2次分散値)が共に0.08ps/nm²/km、最長波長と最短波長との波長間隔を5nmとすると、最長波長の光信号との間には、

5 $(nm) \times 0$. 08 $(ps/nm^2/km) \times 900$ 0 (km) = 3600 (ps/nm)

程度の波長分散の差が生じることになる。即ち、最長波長と最短波長との光信号間では、累積分散値が3600 ps/nm異なることになる。

【0013】又前述の図11に於いて、光ファイバ伝送路の分散が-1ps/nm/kmの場合、9000km程度の伝送を行う為には、最適分散補償器間隔は500km程度であることが示されている。即ち、累積分散値が-500ps/nmとなった位置で分散補償を行うことを示している。

【0014】しかし、波長多重伝送に於いては、光ファイバの分散スロープの影響により総ての光信号波長に対して分散補償を行うことが不可能である。例えば、前述の場合のように、最長波長に対して分散補償を最適化すると、その最長波長の光信号に対しては完全に分散補償が可能であっても、最短波長の光信号に対しては360

○ p s / n m 程度の累積分散が発生することになり、伝送距離を長くすることができない。

【0015】図13は従来例の分散補償説明図であり、横軸を距離 [km]、縦軸を分散値 [ps/nm]とし、伝送距離5000kmの光伝送システムに於いて1000km毎に分散補償を行った場合を示し、DSFによる光ファイバ伝送路の分散値(1次分散値)を-2ps/nm/km、DSFの分散スローブ(2次分散値)を0.07ps/nm²/km、SMFによる分散補償器の分散値(1次分散値)を+18ps/nm/km、分散スローブ(2次分散値)を0.07ps/nm²/kmとした場合の例を示している。

【0016】設計波長($\Delta \lambda$ = 0 n m)に対しては、点線で示すように、900 k mのDSFの累積分散値(900 k m×-2 p s / n m/k m=-1800 p s / n m)を100 k mのSMFの累積分散値(100 k m×18 p s / n m/ k m=1800 p s / n m)によって補償し、合計で1区間1000 k m毎に分散値を零とすることができるが、5 n m離れた波長($\Delta \lambda$ = -5 n m)に対しては、実線で示すように、分散スロープの影響によって5000 k m先の受信器端では-1750 p s / n mの分散補償誤差(-5 n m×0.07 p s / n m 2 / k m×5000 k m-1750 p s / n m) が生じることが判る。

【0017】そこで、光信号波長間の累積分散値の差を小さくする為に、波長間隔を狭くすることが考えられるが、波長間隔を狭くすると、光信号間での四光波混合等が顕著となって、伝送特性が劣化する問題が生じる。

【0019】又図15に示すように、アレイ導液路型分液器61により液長対応に分液し、液長対応のアレイ導液路型光遅延線63により累積分散値が零となるように補償し、アレイ導液路型合液器62により合液して送出する構成が知られている(例えば、文献(6)特開平5-346515号公報参照)。

【0020】図16は従来例の過剰補償による分散補償 説明図であり、図14に於ける光信号の送信側のよう に、予め分散補償を施す場合を示す。この場合、図13 と同様に、設計波長(Δλ=0nm)に於いて1000 km毎に累積分散値を奪とするように分散補償するもの 50 であるが、設計波長から5 n m離れた波長(Δ λ = 5 n m)に対しては、送信部で予め1750 p s \angle n m分の分散補償を与えている。その結果、設計波長(Δ λ = 0 n m)でも又5 n m離れた波長(Δ λ = 5 n m)でも、累積分散値を等とすることが可能となる。

6

【0021】又前述の伝送距離が9000kmの光伝送システムに於いも、前述のように、設計波長から5nm離れた波長に対して、送信側で5[nm]×0.08[ps/nm / km]×9000[km]=3600[ps/nm]分の分散を予め与えておけば、受信側に於いて累積分散値を等とすることができる。又受信側に於ける後置補償を併用し、送信側と受信側とに於いて半分宛補償を行う場合には、1800ps/nmの分散を送信側に於いて与え、受信側で1800ps/nmの分散を与えれば良いことになる。

[0022]

【発明が解決しようとする課題】超長距離の光伝送シス テムに於いては、光ファイバの波長分散及び非線形効果 の累積が問題となり、前述のように、従来例に於いても 分散補償等が提案されている。例えば、図14又は図1 6について説明したように、送信側で予め分散補償を行 う場合、過剰な分散を与えることなるから、大きく歪ん だ波形の光信号を伝送する問題が生じる。又前述のよう に、距離が9000km程度の光伝送システムに於い て、累積分散値が-500ps/nm程度以内に分散補 償を行う必要があるが、これを満足させることができな ・い。更に、過剰な分散補償により、伝送路の前半部分で、 は異常分散領域(分散値が正)を伝送することになる。 これらのことは、光ファイバ中の種々の非線形効果の影 響によって伝送特性を劣化させる要因となる。従って、 超長距離の波長多重伝送に於いては、送信部と受信部と の何れか一方又は両方に於ける分散補償では、全波長に 対する累積分散値を所定の値にすることができない問題 がある。

【0023】又波長多重伝送に於いて、光中継器の中で 波長分離した後、各波長毎に分散補償を行う例えば図15に示すような手段に於いては、数10~数100km 程度の間隔に配置された光増幅中継器の中で、2次分散を補償することが可能であるから、総ての波長に対して 累積分散値を-500ps/nm以内となるように補償することが可能となる。しかし、狭い間隔で多重化した 波長多重光信号の分波及び合波には、光導波路等を用いた精密な光回路が必要となり、非常に高価な構成となって実用的でない問題がある。本発明は、光ファイバ伝送路の1次分散及び2次分散を簡単な構成で補償し、光信号の長距離伝送を可能とすることを目的とする。

[0024]

【課題を解決するための手段】本発明の光伝送システムは、(1)光ファイバ伝送路1と、この光ファイバ伝送路の1次分散と逆符号の1次分散を有し、且つこの光フ

10

ァイバ伝送路の2次分散と逆符号の2次分散を有する分 散補償器2とを縦続接続した構成を有する。

【0025】(2) 又光ファイバ伝送路1と、この光ファイバ伝送路の1次分散と逆符号の1次分散を有し、且つこの光ファイバ伝送路1の2次分散と同一符号又は逆符号の2次分散を有する第1の分散補償器3と、光ファイバ伝送路1の2次分散と逆符号の2次分散を有し、且つ光ファイバ伝送路1の1次分散と同一符号又は逆符号の1次分散を有する第2の分散補償器4とを、縦続接続した構成を有する。

【0026】(3) 又光ファイバ伝送路1の信号波長帯域内若しくはその近傍の異なる波長 λ 1, λ 2に対して予め設定した残留分散値 D1, D2と、第1, 第2の分散補償器3, 4の累積分散値及び2次分散値とについて、

(設計波長での伝送路累積分散値) + (設計波長での第1分散補償器の累積分散値) + (設計波長での第2分散補償器の累積分散値) = D1(波長λ1の残留分散値) (伝送路の2次分散値×伝送路長) + (第1分散補償器の2次分散値) + (第2分散補償器の2次分散値) + (第2分散補償器の2次分散値) = D2(波長λ2の残留分散値) / (λ1-λ2) の条件を満足するように、前記第1, 第2の分散補償器3, 4の累積分散値及び2次分散値を設定するものであ

【0027】(4)又第1,第2の分散補償器3,4を 光ファイバにより構成し、これらの第1,第2の分散補 償ファイバの長さをListor, Lindow、光ファイバ伝 送路1の長さをListor, Lindow、光ファイバ伝 送路1の長さをListor, Lindow、光ファイバ伝 送路1の長さをListor, Lindow、光ファイバ伝 送路1の長さをListor, Lindow、 第1分散補償ファイバの2次分散 値をStator、第2分散補償ファイバの2次分散 値をStator、第2分散補償ファイバの1次分散値を Distor、Dindow、波長21での残留分散値をD1、 波長22での残留分散値をD2、波長21と波長22と の差分の波長帯域をBwom、全長をLitoral として、 Litems + Listor+Lindow= Litoral

 $(D_{\text{Terms}} \times L_{\text{Terms}}) + (D_{\text{Ischor}} \times L_{\text{Ischor}}) + (D_{\text{2nebor}} \times L_{\text{2nebor}}) = D.1$

Bwom [(Sterns × Lterns) + (Statocr× Lterns) + (Statocr× Lterns) + (Statocr× Lterns) = D 2
の条件を満足するように、第1, 第2の分散補償ファイバの長さしまいのは、 Lterns と、1次分散値 Dtatocr 、 Dtatocr と、2次分散値 Dtatocr 、 Dtatocr とを設定するものである。

【0028】(5) 又光ファイバ伝送路1に分散して接続した光増幅器5間に、第1, 第2の分散補償器3, 4を接続する。

【0029】(6)又分散値の符号が負の光ファイバ伝送路1と、複数の波長を多重化した光信号の前記光ファイバ伝送路1及び前記第1,第2の分散補償器3,4に

よる累積分散値が、正の符号とならないように、長さ及び分散値を設定する。

[0030]

【作用】

(1)分散補償器2は、例えば、W型或いは四重クラット型の光ファイバ構造の各種のパラメータを設定することにより、光ファイバ伝送路1の1次分散と逆符号の1次分散を有すると共に、2次分散と逆符号の2次分散を有する構成とすることが可能であり、光ファイバ伝送路1の累積分散値を各波長毎にほぼ零となるように補償することができる。

【0031】(2) 又分散補償器2を、第1の分散補償器3と第2の分散補償器4とにより構成し、第1の分散補償器3により、光ファイバ伝送路1の主として1次分散を補償し、第2の分散補償器4により、光ファイバ伝送路1の主として2次分散を補償し、広帯域にわたり光ファイバ伝送路1の分散を補償する。

【0032】(3)又波長 λ 1 に於ける残留分散値 D1と波長 λ 2 に於ける残留分散値 D2とについて、伝送路 累積分散値と第1分散補償器の累積分散値と第2分散補 償器の累積分散値と第1分散補 世紀 2 次分散値と伝送路長との積と、第1分散補償器の2次分散と、第2分散補償器の2次分散との和が、D2/(λ 1- λ 2)となるように、第1,第2の分散補償器の累積分散値と2次分散値とを設定する。この場合、D1=D2=0の条件とすることにより、波長 λ 1, λ 2及びその中間の波長に於ける光ファイバ伝送路の累積分散値をほぼ100%補償することができる。

【0033】(4)又第1,第2分散補償器3,4を光ファイバによって構成した場合、1次分散値と2次分散値及びそれらの符号と、長さとを選定することにより、光ファイバ伝送路1の累積分散値を波長 λ 1, λ 2 間の帯域に於いて零となるように補償することができる。

【0034】(5) 又光増幅器5により、第1, 第2の分散補償器3, 4による損失並びに光ファイバ伝送路1による損失を補償するように、光信号を増幅する。

【0035】(6) 又分散値の符号を負とした光ファイバ伝送路1により、正常分散領域で光信号を伝送し、第1, 第2の分散補償器3, 4によって累積分散値を補償すると共に、その累積分散値が正の符号とならないように、即ち、正常分散領域で光信号を伝送する。

[0036]

【実施例】図1は本発明の実施例の説明図であり、1は光ファイバ伝送路、2は分散補償器、3,4は第1,第2の分散補償器、5は光増幅器、6は送信部、7は受信部である。この光増幅器5は、前述のように、エルビウム添加光ファイバ増幅器とすることができる。又光ファイバ伝送路1は、例えば、DSFとし、第1,第2の分散補償器3,4はSMFとすることができる。

【0037】伝送距離が例えば9000km程度の光伝

*合、約1000kmをSMFに置き換えて、残りの約8 000kmを光ファイバ伝送路1とすれば良いことにな

【0039】なお、分散値の符号が正で絶対値が大きい 光ファイバを使用すれば、原理上は分散補償ファイバの 長さを短縮できるが、光ファイバの材料である石英の有 する分散特性と導波路構造に起因する分散特性とを考慮 すると、分散値の絶対値を大きくするには限度がある。 又分散値を大きくすると、シングルモードで伝播しなく なる問題が生じる。

【0040】又光ファイバ伝送路1としてのDSFと、 分散補償器としてのSMFとは、通常は2次分散値(以 下分散スロープと2次分散値とを同一の意味に使用し、 単に分散値とした場合は1次分散値を示す)は、0.0 6~0. 08 p s / n m² / k m 程度の値を有するもの である。従って、2次分散補償の為の分散補償器は、光 ファイバ伝送路1としてのDSFの2次分散と符号が逆 であると共に、絶対値の大きい特性を有する必要があ る。又その場合の1次分散値の符号は、1次分散補償を 20 補助することからみて、正の符号であることが望まし

【0041】前述のように、DSFを光ファイバ伝送路 1とし、9000kmの伝送距離の場合に於ける1次分 散と2次分散とを100%補償する為には、第1、第2 の分散補償器3, 4を構成する第1分散補償ファイバと 第2分散補償ファイバと、それらの分散値及び分散スロ ープにより、

送システムに於いて、DSFを光ファイバ伝送路1とす る場合、信号光と光増幅器5で発生する自然放出光雑音 との四光波混合による伝送特性の劣化を抑圧する為に、 正常分散領域(分散値が負)で伝送することが望ましい ものであり、このことは、前述の文献(2) に示されてい る。特に波長多重伝送を行う場合は、信号間同志の四光 波混合の影響を回避する為に、分散値を-1~-2 p s /nm/km程度の大きい値に設定することが必要であ る。このことについて、DSFを光伝送路とする場合、 信号光と光増幅器で発生する自然放出光雑音との四光波 混合の影響を回避する為に、分散値を-1~-2ps/ nm/km程度の値に設定することが必要であることが 提案されている (例えば、文献(4) R. W. Tkach et al. ECOC' 94PD, p45-49,1994, 参 昭)。

【0038】従って、DSFを用いた光ファイバ伝送路・ 1の分散を補償する為には、分散の符号が正で絶対値の 大きい分散補償器2が必要となる。この分散補償器2を 光ファイバにより構成した場合、SMFを用いることが できる。このSMFは低損失で比較的安価であり、1. 55μm帯では+18ps/nm/km程度の大きさの 1次分散値を有するものである。従って、光ファイバ伝 送路1の1次分散値を-2ps/nm/kmとすると、 SMFはこの10倍程度の分散値を有するから、伝送距 離の1/10程度の長さを分散補償器として付加する か、又伝送路の一部として敷設することにより、光ファ イバ伝送路1の1次分散値を補償することができる。こ の場合、前述のように9000km程度の伝送距離の場 *

(DSF伝送路長+SMF長+第2分散補償ファイバ長) = 9.000km

... (1)

(DSF分散值×DSF伝送路長) + (SMF分散值×SMF長) + (2次分 散補償ファイバの分散値×第2分散補償ファイバ長)=0 (DSF分散スロープ×DSF伝送路長) + (SMF分散スロープ×SMF長

) + (第2分散補償ファイバの分散スロープ×第2分散補償ファイバ長)

... (3)

の条件を満足させるものである。

【0042】前記(1)式は伝送路長に対する条件、

(2) 式は1次分散補償に対する条件、(3)式は2次 分散補償に対する条件を示す。このうち、DSFの分散 値と分散スロープと、SMFの分散スロープとは既知で 40 場合の一般式は、次のように表される。 あるから、第2分散補償ファイバの分散値と分散スロー※

※プとを定めると、(1)~(3)式からDSF伝送路長 と、第1分散補償ファイバ長即ちSMF伝送路長と、第 2分散補償ファイバ長とを求めることができる。

【0043】分散補償器2を光ファイバにより構成した

【0044】但し、第1、第2の分散補償ファイバの長 さをLincom, Lindom、光ファイバ伝送路1の長さを Lunna 、この光ファイバ伝送路1の2次分散値をS rema、第1分散補償ファイバの2次分散値を

Siscoci、第2分散補償ファイバの2次分散値をS 2mmcr、光フイァバ伝送路1の1次分散値をDrenns 、 第1, 第2の分散補償ファイバの1次分散値を

50 Distocia、Damocia、波長 λ 1 での残留分散値を D 1、

12

波長、2での残留分散値をD2、波長 λ1と波長 λ2と *プリチャープ(強度変調と同時に発生する位相変調成 の差分の波長帯域をBwbm 、全長をLifotral とした場合 を示す。

【0045】設計波長を入1とすると、波長帯域Bwbm だけ離れた波長A2に於ける残留分散値D2と、設計波 長 l に於ける残留分散値D1とを零として、前述の (4)~(6)式からなる連立方程式を解くことによ り、伝送路長Lream と、第1分散補償ファイバ長し rscoceと、第2分散補償ファイバ長Lamporとを求める ことができる。但し、送信部6に於ける変調器で生じる * 10

分) の大きさや、非線形効果による波形チャープの大き さ及び受信部7の帯域等によって、残留分散値D1, D 2 は零でない方が良い場合もある。その場合は、これら のパラメータに依存して前述のD1, D2が最適な値に 選定される。

【0046】又分散補償器2としては、光ファイバを用 いて構成する以外に、各種の構成を適用できるものであ り、その場合の一般化した式を下記に示す。

(設計波長での伝送路累積分散値) + (設計波長での第1分散補償器の累積分 散値) + (設計波長での第2分散補償器の累積分散値)

=D1 (波長 l 1 の残留分散値)

... (7)

... (8)

(伝送路の2次分散値×伝送路長) + (第1分散補償器の2次分散値)

+ (第2分散補償器の2次分散値)

=D2 (波長 λ 2 の残留分散値) / (λ 1 - λ 2)

【0047】波長 λ1, λ2は、波長多重信号の帯域内 若しくは帯域近傍の波長であり、二つの波長 λ 1, λ 2 に対する所望の残留分散値D1, D2と、伝送路の累積 1, 第2の分散補償器3, 4の分散スロープを仮定する と、第1, 第2の分散補償器3, 4に必要な累積分散値 を求めることができる。そして、累積分散値を適当な中 継間隔毎に配分して、最適な累積分散値となる伝送距離 毎に補償することになる。

【0048】図2は本発明の実施例の分散特性説明図で あり、光ファイバ伝送路1を分散シフトファイバDSF により構成し、第1分散補償器3をシングルモードファ イバSMFにより構成し、第2分散補償器4を分散補償 ファイバDCFにより構成した場合に於いて、DSF長 30 償することにより、広い波長帯域にわたり分散補償を行 とSMF長とDCF長とを縦軸[km]に、又DCFの 2次分散値 [ps/nm²/km] を横軸として示す。 【0049】又DSFの分散値D=-2ps/nm/k m、分散スロープ=0.08ps/nm²/km、SM Fの分散値D=+18ps/nm/km、分散スロープ = 0. 08 p s / n m² / k m、DCFの分散値D=+ lps/nm/kmとした場合に、DCFの分散スロー プ (2次分散値) を-0.5 p s / n m² / k m 程度の 値とすると、DSF長7045km、SMF長715k m、DCF長1240kmとすることによって、1次分 40 ステムの説明図であり、陸上伝送に適用した場合を示 散と2次分散とを補償することができる。又前述のよう に、累積分散値が例えば-500ps/nm程度となる ような数100km毎に分割して前述の分散補償を行え ば良いことになる。

【0050】図3は本発明の実施例の分散補償説明図で あり、伝送距離5000kmの光伝送システムに於い て、1000km間隔で1次分散及び2次分散の補償を 行った場合を示す。又1区間のDSF長は795.6 k m、1次分散値は-2ps/nm/km、2次分散値は

(第1分散補償器) としてのSMFの長さは81.6k m、1次分散値は÷18ps/nm/km、2次分散値 は+0.07ps/nm²/km、2次分散補償ファイ 分散値と分散スロープ (2次分散値)とが与えられ、第 20 バ (第2分散補償器)の長さは122.8km、1次分 散値は+1.0ps/ns/km、2次分散値は-0... 5 p s/nm²/kmとした。

> 【0051】 設計波長 (Δλ=0nm) では、点線で示 すように、正確に分散補償が行われることになり、又設 計波長 $(\Delta \lambda = 0 nm)$ から 5 nm 短い波長側に離れた波長 ($\Delta \lambda = 5$ nm) 及び設計波長 ($\Delta \lambda = 0$ nm) か ら5 n m 長い波長側に離れた波長 (△ λ = - 5 n m) で も、実線で示すように、1000km毎に正確に分散補 償が行われた。即ち、1次分散と2次分散とを同時に補 うことができる。

> 【0052】又信号光と光増幅器による自然放出光雑音 との間の四光波混合によって伝送特性が劣化する場合が あるが、この伝送特性の劣化を軽減させる為に、総ての 信号波長に対して伝送路1及び第1, 第2の分散補償器 3, 4の累積分散値を負に設定することが望ましい。こ の場合、設計波長(AA=Onm)から短い波長側で使 用することが望ましい。

【0053】図4は本発明の実施例の波長多重光伝送シ し、11,~11. は電光変換器 (E/O)、12は合 波器、13は光ファイバ伝送路を構成する分散シフトフ ァイバ(DSF)、14は光中継器、15はプリアン プ、16はエルビウム添加光ファイバ増幅器等の光増幅 器、17は第1分散補償器を構成するシングルモードフ ァイバ(SMF)、18は第2分散補償器を構成する分 散補償ファイバ (DCF) 、19は合波器、20,~2 0. は光電変換器 (O/E) を示す。

【0054】光中継器14の間隔は例えば80km程度 + 0. 07 p s / n m² / k m、 1 次分散補償ファイバ 50 を想定しており、光ファイバ伝送路 1 3 を構成する D S

Fの1次分散値を-2ps/nm/kmとし、第1,第2の分散補償器を構成するSMF17及びDCF18を、光中継器14及びプリアンプ15内に光増幅器16と共に内蔵させた場合を示す。従って、この構成の場合は、既設の光ファイバ伝送路の光中継器14内に第1,第2の分散補償器を設けることができる。又光中継器14又はプリアンプ15に於いて、前段の光増幅器16により増幅してSMF17,DCF18に入力して分散補償を行い、後段の光増幅器16により増幅して光ファイバ伝送路13のDSFに光信号を送出して、安定な分散補償を行わせることができる。

【0055】図5は本発明の実施例の波長多重光伝送システムに於ける2次分散値と長さとの関係説明図であり、図4に示すように、DSFを光ファイバ伝送路とし、その1次分散値を前述のように、-2ps/nm/km、2次分散値(分散スロープ)を0.08ps/nm²/km、又第1分散補償器としてのSMFの1次分散値を+18ps/nm/km、2次分散値(分散スロープ)を0.08ps/nm²/km、又第2分散補償器としてのDCFの1次分散値を+1ps/nm/kmとしてのDCFの1次分散値を+1ps/nm/kmとした場合を示し、第2分散補償器としてのDCFの2次分散値(分散スロープ)が-0.5ps/nm²/km程度の値とすると、SMF長は8.1km、DCF長は14km程度の長さとすることにより、1次分散と2次分散とを共に補償することができる。

【0056】図6は分散値の波長依存性の説明図であり、前述のように、光ファイバ伝送路としてのDSFの長さL=80km、第1分散補償器としてのDCFの長さL=8.1km、第2分散補償器としてのDCFの長さL=14.1kmとし、DSFとSMFとの分散スロープ(2次分散値)がそれぞれ同一符号の0.08ps/nm²/kmとし、DSFとSMFとが実線で示す特性を有する場合に、それらを組合せると、DSF+SMFの点線で示すように、波長の一点、例えば、1563nm近傍に於いて分散値を奪とすることができる。

【0057】しかし、他の波長に於いては分散値を奪となるように補償することができないものである。そこで、第2分散補償器のDCFの分散スロープ(2次分散値)を、DSFとSMFとの符号と逆の分散スロープ(2次分散値)の例えば点線で示す特性のー0.5ps/nm²/kmとする。それによって、DSF+SMF+DCFの一点鎖線で示すように、総ての波長帯域にわたって分散値を奪とすることができる。

【0058】前述の各実施例に於いては、光ファイバ伝送路の分散を100%補償することを前提として説明しているが、波長多重に於ける波長数,送信部に於ける波長チャープ,光ファイバ中の非線形効果による波長チャープ,受信部の特性等に応じて、最適な分散補償量が異なることがある。(例えば、文献(7) G. Ishikawaet al. "10-Gb/s Repeater

less Transmission・・・ IEIC E TRANS. ELECTRON, Vol. E78-C, No. 1, Jan. 参照)。即ち、前述の(5)~(8)式に於ける残留分散値D1, D2を最適な値に選定する必要がある。

【0059】又前述のDCFのように、2次分散補償フ ァイバは、例えば、1550nm帯で、SMFやDSF の2次分散と符号が逆で絶対値が大きい2次分散値とす ることが望ましい。一般に、シングルモードで伝播する 光ファイバの総分散は、材料分散と構造分散との和とな るもので、このうちの材料分散は、光ファイバの材料で ある石英によってほぼ決まり、屈折率を制御するドーパ ントの種類や濃度には殆ど影響されないものである。こ れに対して、構造分散は、光ファイバの屈折率分布を変 化させることにより、ある程度制御することができる。 【0060】従って、第2分散補償器として、例えば、 W型又は四重クラッド型と称される光ファイバを適用す ることができる(W型又は四重クラッド型構造の光ファ イバについては、例えば、文献(8) B. J. Ainsl ie et al. "A Review of Sin gle-Mode Fibers with Modi fied Dispersion Character istics" JOLT., Vol. LT-4, No. 8, p967-979,1986, 参照)。

【0061】図7はW型構造の分散特性説明図であり、 基準値に対する屈折率差 Δ n、(0.006)及び Δ n。(-0.008)を一定とし、半径 α 1, α 2の比率をパラメータとして、波長 [μ m]と分散値 [μ n m/km]との関係を示す。例えば、 α 2/ α 1=1とすると、1.35 μ m (1350nm)近傍に於いて分散値が零となり、分散スロープ(2次分散値)は負の小さい値となる。又 α 2/ α 1=1.91とすると、1550nmに於いて1次分散値がほぼ零で、分散スロープ(2次分散値)が大きな正の値の光ファイバが得られる。この時の分散スロープ(2次分散値)は、約 α 0.5 α 0 mm²/kmとなる。

【0062】図8は四重クラッド型構造の分散特性説明図であり、半径al~a4の領域の基準値に対する屈折率差 Δ n、 Δ n、とについて、コアの半径alをパラメーターとして、波長 $\{\mu m\}$ に対する分散値 $\{p s / nm/km\}$ を示す。この場合、コアの半径alを変化させた時に、 $\{p s / nm/km\}$ が前述のDSFやSMFとは逆の行号となる。この場合の $\{p s / nm/km\}$ が前述のDSFやSMFとは逆の行号となる。この場合の $\{p s / nm/km\}$ にかける分散スロープ($\{p s / nm/km\}$ は、約 $\{p s / nm/km\}$ にかった。

【0063】前述のように、光ファイバ伝送路としての例えばDSFの累積分散値を補償する1次分散値を有

ことができる。

し、且つ分散スローブ (2次分散値) が大きく且つ符号 が逆のW型構造又は四重クラッド型構造の分散補償ファ イバ等を、分散補償器として用いることにより、光ファ イバ伝送路の1次分散及び2次分散を補償して、超長距 離の波長多重伝送を可能とすることができる。その場 合、前述のように、残留分散値D1, D2を最適化する ように、分散補償ファイバの1次分散値と2次分散値と 長さとを選定することになる。

【0064】又前述のW型構造の光ファイバ及び四重クラッド型構造の光ファイバは、例えば、1300nm帯~1550nm帯の広い帯域にわたって分散値をほぼ零とする為に開発されたものであるが、損失が0.3~0.4dB/km程度の大きいことと、構造パラメータの変動により分散値が敏感に変化することとによって、同一条件で製造しても、分散値が大きく変動する可能性がある。

【0065】そこで、前述のように、光ファイバ伝送路の1次分散値及び2次分散値を、第1分散補償器により主として1次分散値を補償し、第2分散補償器により主として2次分散値を補償することにより、再現性の優れ 20 た分散補償を可能とするものである。その場合、1次分散値と2次分散値との大きい分散補償ファイバを用いることにより、相対的に分散補償ファイバの長さを短くすることができるから、損失の増加も僅かで済むことになる。又2次分散補償用の光ファイバは、分散スロープ(2次分散値)が大きいことが重要で、その1次分散値の絶対値は余り重要ではない。従って、1次分散補償用の光ファイバとは別個に設計,製造することにより、それぞれ所望の特性の分散補償ファイバを容易に実現できる

【0066】図9は本発明の実施例の分散値と長さとの関係説明図であり、全長LTOTAL = 9000kmの伝送路に於いて、光ファイバ伝送路として、1次分散値D=-2ps/nm/km、分散スローブ(2次分散値)=0.07ps/nm²/kmのDSFに対して、第1分散補償器として、1次分散値D=+18ps/nm/km、分散スローブ(2次分散値)=0.07ps/nm²/kmのSMGを用い、又第2分散補償器として、分散スローブ(2次分散値)=-0.5ps/nm²/kmのDCFを用いて分散補償する場合、SMFとDCFとの長さを、DCFの1次分散値の関数として求めた結果を示す。

【0067】伝送路全体の分散値は、総分散量の大きい DSFとSMFとにより決定され、2次分散補償用のD CFの分散値の絶対値には殆ど影響しないことが判る。 又2次分散補償用のDCFの分散値が製造上大きくばら ついても、その分散値は、1次分散補償用のSMFの分 散値を調節することにより、容易に所望の値に調整する 【0068】本発明は前述の各実施例にのみ限定されるものではなく、例えば、光ファイバ伝送路の2次分散が伝送容量や伝送距離を制限している時分割多重伝送方式や、位相共役を用いた方式等に対しても適用できるものである。

16

[0069]

【発明の効果】以上説明したように、本発明は、光ファイバ伝送路1に於いて生じる1次分散及び2次分散を分10 散補償器2によって補償することにより、広帯域にわたる波長分散を補償して、高速、大容量の光通信を可能とすることができる利点がある。又分散補償器2を、光ファイバ伝送路01次分散を主として補償する第1分散補償器3と、光ファイバ伝送路1の2次分散を主として補償する第2分散補償器4とを用いることにより、第1,第2の分散補償器3,4の製造が比較的容易な光ファイバによって構成することができる利点がある。

【図面の簡単な説明】

- 【図1】本発明の実施例の説明図である。
- 0 【図2】本発明の実施例の分散特性説明図である。
 - 【図3】本発明の実施例の分散補償説明図である。
 - 【図4】本発明の実施例の波長多重光伝送システムの説明図である。
 - 【図5】本発明の実施例の波長多重光伝送システムに於ける2次分散値と長さとの関係説明図である。
 - 【図6】分散値の波長依存性の説明図である。
 - 【図7】 W型構造の分散特性説明図である。
 - 【図8】四重クラッド型構造の分散特性説明図である。
 - 【図9】本発明の実施例の分散値と長さとの関係説明図である。
 - 【図10】従来例の波長分散管理の説明図である。
 - 【図11】伝送距離と分散補償器間隔との関係説明図で ある。
 - 【図12】分散特性説明図である。
 - 【図13】従来例の分散補償説明図である。
 - 【図14】従来例の分散補償手段の説明図である。
 - 【図15】従来例の分散補償手段の説明図である。
 - 【図16】従来例の過剰補償による分散補償説明図である。

40 【符号の説明】

- 1 光ファイバ伝送路
- 2 分散補償器
- 3 第1分散補償器
- 4 第2分散補償器
- 5 光增幅器
- 5 送信部。
- 7 受信部

[図1]

本発明の実施例の説明図

【図2】

本発明の実施例の分散特性説明図

[図3]

本発明の実施例の分散補償説明図

【図4】

本発明の実施例の波長多重光伝送システムの説明図

【図5】

分散値の波長依存性の説明図

[図7]

W型構造の分散特性説明図

【図8】

四重クラッド型構造の分散特性説明図

【図9】

【図10】

[図14]

本発明の実施例の分敵値と長さとの関係説明図

従来例の波長分散管理の説明図

従来例の分散補償手段の説明図

波長(nm)

【図11】

伝送距離と分散補債器間隔との関係説明図

[図13]

従来例の分散補償説明図

【図16】

。従来例の過剰補償による分散補償説明図

[図15]

従来例の分散補償手段の説明図

