МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ Н.Э. БАУМАНА (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Метод распознавания челюстно-лицевых костей черепа по томографическим снимкам головы человека на основе обратного распространения ошибки и опорных векторов

Студент: Кононенко Сергей, ИУ7-83Б

Научный руководитель: Филиппов Михаил Владимирович., к.т.н., доцент

Консультант: Гаврилова Юлия Михайловна

<u>Цель:</u> разработать метод распознавания челюстно-лицевых костей черепа по томографическим снимкам головы человека на основе сверточных нейронных сетей и опорных векторов.

Задачи:

- Описать термины предметной области и обозначить проблему.
- Проанализировать методы распознавания объектов.
- Разработать метод распознавания челюстно-лицевых костей черепа по томографическим снимкам головы человека.
- Разработать программный комплекс, реализующий интерфейс для взаимодействия с разработанным методом.
- Исследовать разработанный метод на применимость при работе с различными проекциями одного снимка и на быстродействие при разных режимах работы программного комплекса.

Распознавание челюстно-лицевых костей на томографических снимках

- Обнаружение патологических отклонений и дефектов в строении зубочелюстной системы;
- Выявление травм и переломов;
- Снижение рисков выбора неправильного подхода к реабилитации;
- Оказание помощи в проведении плановых хирургических операций;
- Ускорение планового лечения при проведении косметических операций.

Постановка задачи

Ограничения:

- Томографический снимок размером не менее 3000x1000 пикселей
- Панорамный снимок черепа или снимок в профиль
- Состав сустава четко различим

Метод распознавания челюстно-лицевых костей

Методы распознавания объектов

Критерий		Н				
	R-CNN	Fast R-CNN	Faster R-CNN	Mask R-CNN	UNet	Split And Merge
Время распознавания, сек	~49	2.32	0.2	1.4	1.2	~43
Необходимость постобработки данных	Нет	Нет	Нет	Нет	Нет	Да
Сегментация, наличие	Нет	Нет	Нет	Да	Да	Да

В качестве основы для разрабатываемого метода была выбрана модель UNet.

Модель UNet для сегментации зубочелюстного сустава

• Входные данные:

• Сформированная маска:

Методы классификации объектов

Критерий	Лес деревьев решений	Джунгли деревьев решений	Однослойный персептрон	Метод опорных векторов	
Точность	Высокая	Высокая	Низкая	Высокая	
Время обучения	Среднее	Среднее	Среднее	Среднее	
Линейность	Нет	Нет	Да	Да	

В качестве метода классификации был выбран метод опорных векторов.

Машина опорных векторов для классификации зубного ряда

w – вектор нормали к гиперплоскости

$$w = (w_1, w_2)$$

$$x = (x_1, x_2)$$

Максимизация ширины разделяющей гиперплоскости:

$$\frac{2}{\|w\|} \to max$$

$$||w|| \rightarrow min$$

$$\frac{w^Tw}{2} \to min$$

Выбор данных для обучения модели

Критерии выбора набора данных для обучения:

- Полнота
- Количественность
- Единообразность

Параметры выбранного набора данных для обучения (Panoramic Dental Cone Beam CT scans):

- Панорамный снимок
- Взрослый человек
- Размечен двумя ортодонтами Центра Диагностической Визуализации Тегерана

Обработка данных для обучения модели

• Создание маски для обучения из размеченных данных

• Трансформация размера исходного снимка для обучения (512х512 пикселей)

• Трансформация цветового пространства изображения для унификации

Обогащение набора данных для обучения модели

Для обогащения набора данных для каждого из 116 снимков исходного набора по одному применена каждая из 9 трансформации (по 10 раз с различными параметрами):

- Обрезка и добавление отступов;
- Изменение контраста и яркости (максимум на 25%);
- Масштабирование (максимум 15%) и добавление отступов;
- Масштабирование и поворот (максимум 15 градусов);
- Изменение резкости;
- Изменение качества при сохранении разрешения (даунскейлинг);
- Применение Гауссова шума (от 0.05 до 0.1);
- Горизонтальное отображение.

Формирование набора данных для обучения модели

• Изменение цветового пространства

$$R_g = 0.3R$$
$$G_g = 0.59G$$
$$B_g = 0.11B$$

• Создание маски для обучения

$$p_i = \begin{cases} 0 & l < 40 \\ 255 & l \ge 40 \end{cases}$$

Структура программного комплекса

Схема работы программного комплекса

Исследование быстродействия разработанного метода при разных режимах работы программного комплекса

Режим работы приложения	100%, сек	75%, сек	50%, сек	25%, сек
Без классификации	14.4	12.68	11.48	10.46
С классификацией	17.5	13.18	11.03	10.37

Исследование качества сегментации разработанного метода на основе визуального критерия

Оригинальное изображение

Сегментированное изображение

Исследование качества классификации разработанного метода на основе визуального критерия

Оригинальное изображение

Классифицированное изображение

Заключение

Был разработан метод распознавания челюстно-лицевых костей черепа по томографическим снимкам головы человека на основе обратного распространения ошибки и опорных векторов.

Были решены задачи:

- Описаны термины предметной области и обозначена проблема.
- Проанализированы методы распознавания объектов.
- Разработан метод распознавания челюстно-лицевых костей черепа по томографическим снимкам головы человека.
- Разработан программный комплекс, реализующий интерфейс для взаимодействия с разработанным методом.
- Разработанный метод исследован на применимость при работе с различными проекциями одного снимка и на быстродействие при разных режимах работы программного комплекса.

Дальнейшее развитие

- Создание 3D-модели по сегментированным участкам;
- Улучшение качества классификации зубного состава на снимках различного размера и проекций;
- Распознавание инородных тел в зубочелюстном суставе.