Symbiosis Institute of Technology | SIT Nagpur 2024-28-CSE-A

Aim:

Implement the Floyd-Warshall algorithm in C for finding the shortest distances between all pairs of vertices in a weighted directed graph. Prompt the user to input the number of vertices (N) and edges (E), and then accept edge information (source, destination, and weight) to build the adjacency matrix.

Source Code:

Warshall.c

```
#include <stdio.h>
#define INF 99999
#define MAX_N 20 // Maximum value for N
int main(){
   int N,E;
   printf("Enter the number of vertices : ");
   scanf("%d",&N);
   printf("Enter the number of edges : ");
   scanf("%d",&E);
   int dist[N][N];
   for(int i=0;i<N;i++){</pre>
      for(int j=0; j<N; j++){
         if(i==j)
            dist[i][j]=0;
         else
             dist[i][j]=INF;
      }
   }
   for(int i=0;i<E;i++){</pre>
      int u, v, w;
      printf("Enter source : ");
      scanf("%d",&u);
      printf("Enter destination : ");
      scanf("%d",&v);
      printf("Enter weight : ");
      scanf("%d",&w);
      dist[u-1][v-1]=w;
   for(int k=0; k<N; k++){
      for(int i=0;i<N;i++){</pre>
         for(int j=0; j<N; j++){}
             if(dist[i][k]!=INF && dist[k][j]!=INF && dist[i][k]+dist[k][j] < dist[i]</pre>
[j]){
                dist[i][j]=dist[i][k]+dist[k][j];
             }
         }
      }
   printf("The following matrix shows the shortest distances between all pairs of the
vertices.\n");
   for(int i=0;i<N;i++){</pre>
      for(int j=0; j<N; j++){
         if(dist[i][j]==INF)
```

```
printf("%5s","INF");
         else
            printf("%5d",dist[i][j]);
      }
      printf("\n");
   }
   return 0;
}
```

Execution Results - All test cases have succeeded!

```
Test Case - 1
User Output
Enter the number of vertices : 4
Enter the number of edges : 5
Enter source : 1
Enter destination : 2
Enter weight: 4
Enter source : 1
Enter destination : 4
Enter weight : 10
Enter source : 1
Enter destination : 3
Enter weight: 6
Enter source : 2
Enter destination : 4
Enter weight: 5
Enter source : 3
Enter destination : 4
Enter weight: 2
The following matrix shows the shortest distances between all pairs of the vertices.
        4
                  8
   0
             6
 INF
           INF
                  5
        0
 INF
      INF
                  2
             0
 INF
      INF
           INF
                  0
```

Test Case - 2
User Output
Enter the number of vertices : 5
Enter the number of edges : 6
Enter source : 1
Enter destination : 2
Enter weight : 2
Enter source : 1
Enter destination : 5
Enter weight : 3
Enter source : 2
Enter destination : 4
Enter weight : 4
Enter source : 2

Enter	destina	tio	n :	3					
Enter	weight	: 7	7						
Enter	source	: 4	ļ						
Enter	destina	tio	n :	3					
Enter	weight	: 2	2						
Enter	source	: 5	5						
Enter	destina	tio	n :	4					
Enter	weight	: 1	L						
The fo	ollowing	g ma	trix	shows	the	shortest	distances	between	all pairs of the vertices.
0	2	6	4	3					
INF	0	6	4	INF					
INF	INF	0	INF	INF					
INF	INF	2	0	INF					
INF	INF	3	1	0					

Test Case - 3
User Output
Enter the number of vertices : 4
Enter the number of edges : 5
Enter source : 1
Enter destination : 2
Enter weight : 4
Enter source : 3
Enter destination : 2
Enter weight : 5
Enter source : 4
Enter destination : 1
Enter weight : 1
Enter source : 4
Enter destination : 2
Enter weight : 3
Enter source : 4
Enter destination : 3
Enter weight : 8
The following matrix shows the shortest distances between all pairs of the vertices.
0 4 INF INF
INF 0 INF INF
INF 5 0 INF
1 3 8 0

	Test Case - 4
User Output	
Enter the number of vertices : 4	
Enter the number of edges : 6	
Enter source : 1	
Enter destination : 2	
Enter weight : 1	
Enter source : 1	
Enter destination : 4	
Enter weight : 3	
Enter source : 2	

2024-28-CSE-A
y SIT Nagpur
Institute of Technology
Symbiosis

Enter destination : 3
Enter weight: 6
Enter source : 3
Enter destination : 1
Enter weight : -2
Enter source : 4
Enter destination : 2
Enter weight: 5
Enter source : 4
Enter destination : 3
Enter weight: 10
The following matrix shows the shortest distances between all pairs of the vertices.
0 1 7 3
4 0 6 7
-2 -1 0 1
8 5 10 0