

William Hergès¹

21 février 2025

Table des matières

1	Définition	2
2	Sous espace vectoriel	3
3	Déterminer une base du noyau	4
	Diagonalisation 4.1 Changement de base	5 6

1. Définition

Définition 1

Une application f est dite linéaire de E dans F (deux sev) si et seulement si :

$$\forall (a,b) \in E^2, \forall (x,y) \in E^2, \quad f(ax+by) = af(x) + bf(y)$$

Théorème 1.1

Toute application linéaire est représentable par une matrice.

Exemple 1

Représentation d'une application linéaire de $\mathbb{R}^3 o \mathbb{R}^2$:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \longmapsto \begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a_{1,1}x + a_{1,2}y + a_{1,3}z \\ a_{2,1}x + a_{2,2}y + a_{2,3}z \end{pmatrix}$$

Définition 2

L'image de A une matrice représentant l'application linéaire f de E dans F est notée ${\rm Im}A$ et :

$$Im A = \{AX | X \in E\}$$

L'image est l'ensemble des éléments atteints par l'application linéaire représentée par ${\cal A}.$

Définition 3

Le noyau de A une matrice représentant l'application linéaire f de E dans F est noté $\operatorname{Ker} A$ et :

$$Ker A = \{X | AX = 0, X \in E\}$$

Le noyau est l'ensemble des éléments donnant 0 par f.

Définition 4

La dimension d'un espace vectoriel est le nombre de vecteur d'une base (sauf si la base vaut $\{0\}$, dans ce cas là sa dimension vaut 0). On note la dimension de E dim E

D'une manière formelle, soit f une base de E, on a :

$$\dim(E) = \operatorname{card}(f)$$

(où card est le cardinal de f)

sauf si $f = \{0\}$, où dans ce cas $\dim(E) = 0$.

Théorème 4.1

La dimension de l'image de l'application linéaire f représentée par les matrices AX est égal au rang de A, i.e.

$$\dim \operatorname{Im} A = \operatorname{rg} A$$

Théorème 4.2

Théorème du rang

Soit f une application linéaire de E dans F.

 $\dim E = \dim \operatorname{Im} A + \dim \operatorname{Ker} A$

Théorème 4.3

Les vecteurs colonnes au dessus de la matrice A se trouvant au dessus des pivots constituent une base de l'image.

Exemple 2

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix}$$

 $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ Après le pivot de Gauss, on obtient :

$$\begin{pmatrix} \boxed{1} & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Après le pivot de Gauss, on obtion $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ Donc, une base de l'image est $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ Comme $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ est déjà échelonné, on a que $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ est une base de l'image

Sous espace vectoriel

Définition 5

Un sous espace vectoriel V est un espace vectoriel si et seulement si :

- $\begin{array}{ll} & V \neq \varnothing \\ & \text{pour tout } v_1, v_2 \in V \text{, on a } v_1 + v_2 \text{ est bien dans } V \end{array}$
- pour tout v dans V et pour tout λ dans \mathbb{K} , on a $\lambda v \in V$

Proposition 5.1

L'image et le noyau d'une application linéaire sont des sous-espaces vectoriels.

Théorème 5.2

Soit F un sev de E un ev.

- ${\cal F}$ admet une base
- toutes les bases de E ont le même nombre de vecteurs

Théorème 5.3

Soit ${\cal L}$ une famille libre.

Si L n'est pas une base, alors on peut rajouter des vecteurs dans L pour que Ldevienne une base. Ces vecteurs doivent être linéairement indépendant de tous les vecteurs de L.

Définition 6

La notation $\mathrm{Vect}(F)$ (où F est une famille) est l'espace vectoriel généré par Fcomme famille génératrice.

3. Déterminer une base du noyau

On a une base de l'image et on a A, la matrice représentant l'application linéaire à l'origine.

On sait que la base du noyau possède $\dim(E) - \dim \operatorname{Im}(A)$ (théorème du rang).

Pour chaque colonne sans pivot, on détermine un vecteur de la base du noyau (voir ce gif)

4. Diagonalisation

Une diagonalisation permet de simplifier une matrice et donc une application linéaire! Il s'agit en réalité d'un double changement de base.

4.1. Changement de base

La matrice de passage de la base B_1 à la base B_2 permet de transformer les coordonnées d'un vecteur v exprimées dans B_1 en les coordonnées de v exprimées dans B_2 .

Pour passer de B_1 à B_2 (dans l'ensemble de définition de f) et pour passer de C_1 à C_2 (dans l'ensemble d'arrivé de F), on fait :

$$A' = Q^{-1}AP$$

où A est l'application linéaire, P la matrice de passage de B_1 à B_2 et Q la matrice de passage de C_1 à C_2 .

Si f est un endomorphisme (ensemble de définition est le même que celui d'arrivé), alors on a:

$$A' = P^{-1}AP$$

Diagonalisation 4.2.

Diagonaliser A revient à trouver une nouvelle base P telle que $A' = P^{-1}AP$ est une matrice diagonale.

Les coefficients de A' sont les racines du polynôme $\det(A-\lambda I_n)$ (on le note toujours $P_A(\lambda)$). Ces racines sont les valeurs propres (i.e. il existe v tel que $f(v) = \lambda v$).

Maintenant, on cherche les vecteurs v tels que :

$$Av = \lambda_i v$$

Pour se faire, on résout :

$$(A - \lambda_i I)v = 0 \iff \operatorname{Ker}(A - \lambda_i I)$$

(ce qui est équivalent à l'équation du dessus)

Ces solutions nous donnent maintenant la base P.

Exemple 3
$${\rm Si} \ A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \text{, alors ses valeurs propres sont } 1 \ {\rm et} \ -1.$$

On a pour
$$\lambda=1$$
 :

On a pour
$$\lambda=1$$
 :
$$\operatorname{Ker}(A-I)=\operatorname{Ker}\begin{pmatrix} -1 & 1\\ 1 & -1 \end{pmatrix}=\operatorname{Vect}\begin{pmatrix} 1\\ 1 \end{pmatrix}$$
 et pour $\lambda=-1$:
$$\operatorname{Ker}(A+I)=\operatorname{Vect}\begin{pmatrix} 1\\ -1 \end{pmatrix}$$
 Ainsi,
$$P=\begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$

$$\operatorname{Ker}(A+I) = \operatorname{Vect}\begin{pmatrix} 1\\-1 \end{pmatrix}$$

$$P = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

P n'est pas unique!