3. Решите уравнение:

a)
$$\sin 2x - 2\cos x + \sqrt{2}\sin x - \sqrt{2} = 0$$
;

6)
$$3\sin 2x - 3\sin x + 4\cos x - 2 = 0$$
.

$$n\pi + 2\pi n$$
; $n\pi + 2\pi n$; $n\pi$

4. Решите уравнение:

a)
$$\sin^2 x - 3\sin x + 2 = 0$$
;

6)
$$\cos^2 x + 4\cos x + 3 = 0$$
;

B)
$$8\sin^2 x + 2\sin x - 1 = 0$$
;

$$\Gamma 10\cos^2 x - 11\cos x + 3 = 0.$$

a)
$$\frac{\pi}{2} + 2\pi n$$
; 6) $\pi + 2\pi n$; B) $(-1)^n$ arcsin $\frac{1}{4} + \pi n$, $(-1)^{n+1} \frac{\pi}{6} + \pi n$; T) $\pm \frac{\pi}{3} + 2\pi n$, $\pm \arccos \frac{3}{5} + 2\pi n$

5. Решите уравнение:

a)
$$2\cos^2 x + 2\sin x = 2.5$$
;

6)
$$4\sin^2 x - 4\cos x = 5$$
;

B)
$$2\cos^2 x + 5\sin x + 1 = 0$$
;

$$\Gamma) \ 2\sin^2 x - 5\cos x + 1 = 0.$$

$$n\pi 2 + \frac{\pi}{8} \pm (\pi; n\pi + \frac{\pi}{8})^{1+n} (1-) (\pi; n\pi 2 + \frac{\pi}{8}) \pm (n\pi 2 + \frac{\pi}{8})^{2} (1-) (n\pi 2 + \frac{\pi}{8})^{2} (1-)$$

6. Решите уравнение:

a)
$$\cos 2x - 3\cos x + 2 = 0$$
;

6)
$$\cos 2x - 3\sin x - 2 = 0$$
;

B)
$$6\cos 2x + 25\sin x - 18 = 0$$
;

$$\Gamma) \ 3\cos 2x + 19\cos x + 13 = 0.$$

8)
$$2\pi n$$
; $\pm \frac{\pi}{3} + 2\pi n$; π (0) $\pm \frac{\pi}{2} + 2\pi n$; π (1) $\pm \frac{\pi}{6} + \pi n$; π (1) π arcsin $\frac{3}{4} + \pi n$; π (2) $\pm \pi$ arcsin $\frac{3}{4} + \pi n$; π (3) $\pm \pi$ (4) $\pm \pi$ (5) $\pm \pi$ (7) $\pm \pi$ (8) $\pm \pi$ (8) $\pm \pi$ (9) $\pm \pi$ (9) $\pm \pi$ (9) $\pm \pi$ (10) $\pm \pi$ (11) $\pm \pi$ (12) $\pm \pi$ (13) $\pm \pi$ (14) $\pm \pi$ (15) $\pm \pi$

7. Решите уравнение:

a)
$$2\cos 2x - 6\cos^2 x - \sin x + 3 = 0$$
;

a)
$$2\cos 2x - 6\cos^2 x - \sin x + 3 = 0$$
;
 6) $\cos 2x + 4\sin^2 x - 3\sqrt{2}\cos x - 5 = 0$.

$$n\pi + 2\pi n$$
, $(-1)^{n+1} \frac{\pi}{6} \pm (6; n\pi + \frac{\pi}{6})^{n+1} + (1-)$, $n\pi + \frac{\pi}{2}$ (s)

8. Решите уравнение:

a)
$$4\cos^2 x - 3 = 0$$
;

6)
$$4\sin^2 x - 3 = 0$$
;

B)
$$9\sin^2 x - 1 = 0$$
;

$$\Gamma) \ 25\cos^2 x - 16 = 0.$$

$$n\pi \pm \pi \pi$$
; r) $\pm \pi \pi$; r)

9. $(M\Gamma Y, \phi - m \ roc. \ ynpaвления, 2009)$ Решить уравнение

$$\cos 2x - 4\sqrt{2}\cos x + 4 = 0.$$

 $\mathbb{Z}
ightarrow n$ $u = \mathbb{Z} + \frac{\pi}{4} \pm 2\pi n$, $u = \mathbb{Z} + \frac{\pi}{4} \pm 2\pi n$

10. (*МГУ*, биологич. ϕ -т, 2006) Решить уравнение

$$3\cos 2x + 11\sin x = 7.$$

$$\exists n , n\pi + \frac{\pi}{8} n(1-)$$

11. Решите уравнение:

$$\frac{4\sin x - \cos x}{2\sin x + 7\cos x} = 3.$$

- arctg l l + πn

12. Решите уравнение:

- a) $\sin^2 x 3\sin x \cos x + 2\cos^2 x = 0;$ 6) $2\sin^2 x 5\sin x \cos x 7\cos^2 x = 0;$
- B) $6\sin^2 x + 3\sin x \cos x + 2\cos^2 x = 4$; $\qquad \qquad \Gamma$) $4\cos^2 x + 5\sin x \cos x 3\sin^2 x + 2 = 0$.

(a)
$$\frac{\pi}{4} + \pi n$$
, $\arctan 2 + \pi n$; (b) $-\frac{\pi}{4} + \pi n$, $\arctan 2 + \pi n$; (b) $\arctan 2 + \pi n$, $-\arctan 2 + \pi n$; (c) $-\frac{\pi}{4} + \pi n$, $-\arctan 2 + \pi n$; (d) $-\frac{\pi}{4} + \pi n$, $-\arctan 2 + \pi n$; (e) $-\frac{\pi}{4} + \pi n$, $-\frac{\pi}{4} + \pi n$

13. Найдите все решения уравнения $5\sin^2 x + 8\cos x = 8$, удовлетворяющие условию $\sin x > 0$.

$$n\pi\Omega + \frac{3}{5}\cos 3$$

14. Найдите все решения уравнения $6\cos^2 x - \sin x - 4 = 0$, удовлетворяющие условию $\cos x < 0$.

$$\frac{5\pi}{6} + 2\pi n, \pi + \arcsin\frac{2}{3} + 2\pi n$$

15. Найдите все решения уравнения $\cos 2x - 5\cos x + 3 = 0$, удовлетворяющие условию $\sin x < 0$.

$$n\pi\Omega + \frac{\pi}{\varepsilon}$$

16. Найдите все решения уравнения $\cos 2x + \sqrt{3} \sin x = 1$, удовлетворяющие условию $\cos x > 0$.

$$n\pi \Omega + \frac{\pi}{8}, n\pi \Omega$$

17. а) Решите уравнение:

$$2\sin^2\left(\frac{3\pi}{2} - x\right) + 5\sin\left(\frac{\pi}{2} + x\right) + 2 = 0.$$

б) Найдите все корни этого уравнения, принадлежащие промежутку $\left[\frac{\pi}{2}; \frac{3\pi}{2}\right]$. $\frac{\frac{\epsilon}{w_{\bar{t}}}}{\frac{\epsilon}{w_{\bar{t}}}} \frac{\frac{\epsilon}{w_{\bar{t}}}}{\frac{\epsilon}{w_{\bar{t}}}} \frac{\frac{\epsilon}{w_{\bar{t}}}}{\frac{\epsilon}{w_{\bar{t}}}} \frac{(9 \cdot u u_{\bar{t}} + \frac{\epsilon}{w_{\bar{t}}} \mp (8 \cdot u_{\bar{t}}))}{\frac{\epsilon}{w_{\bar{t}}}}$

18. а) Решите уравнение:

$$5 - 5\cos\left(\frac{\pi}{2} + x\right) = 2\cos^2(\pi - x).$$

б) Найдите все корни этого уравнения, принадлежащие промежутку $[\pi; 5\pi]$.

$$\frac{\pi 7}{2}$$
, $\frac{\pi 8}{2}$ (3; $n\pi 4 + \frac{\pi}{2}$ (6)

19. а) Решите уравнение:

$$2\sin^2(\pi - 3x) + \cos 3x + 1 = 0.$$

б) Найдите все корни этого уравнения, принадлежащие промежутку $\left[-\frac{3\pi}{2}; -\frac{\pi}{2}\right]$.

20. а) Решите уравнение:

$$\cos^2 x - \sin x = \cos 2x.$$

б) Найдите все корни этого уравнения, принадлежащие промежутку $[-\pi; 2\pi]$.

a)
$$\pi n$$
, $\frac{\pi}{2}$, π , 0 , π – (6; $n\pi$ + π , $n\pi$ (6)

21. (*МГУ*, *геологич*. *ф-т*, *2007*) Решите уравнение:

$$\frac{\cos 2x + \sin x}{\cos x} = \frac{1}{2}\cos x.$$

$$\mathbb{Z} \ni n$$
, $n\pi + \frac{1}{8}$ misons $^{1+n}(1-)$

22. Решите уравнение:

a)
$$5\cos x + \cos\frac{x}{2} + 3 = 0;$$

6)
$$\cos x + 3\sqrt{3}\sin\frac{x}{2} = 4$$
.

a)
$$\pm \frac{4\pi}{3} + 4\pi n$$
, $\pm 2 \arccos \frac{2}{5} + 4\pi n$; 6) $(-1)^{n} \frac{2\pi}{3} + 2\pi n$

23. ($M\Gamma Y$, MШЭ, 2005) Найдите все решения уравнения

$$6\cos\frac{15\pi}{4}\cos\frac{x}{2} - \cos x = 3,$$

принадлежащие отрезку [-2; 10,99].

 $\frac{\pi}{2}$, $\frac{\pi}{2}$ —

24. Решите уравнение:

a)
$$\cos 4x - 6\cos^2 x + 5 = 0$$
;

6)
$$7\cos 4x - 12\sin^2 x + 5 = 0$$
.

$$n\pi + \frac{\pi}{6} \cos \frac{4}{3} \pm n\pi + \frac{1}{2} \arccos \frac{4}{3} \pm n\pi$$
 (8)

25. Решите уравнение:

a)
$$\sin 4x + 2\sin^2 x = 1$$
;

$$6) \sin 4x + 4\cos^2 x = 2.$$

$$\frac{n\pi}{4} + \frac{\pi}{4} (3 ; n\pi + \frac{\pi}{21} , n\pi + \frac{\pi}{21} , \frac{\pi}{4} + \frac{\pi}{4} (6 ; n\pi + \frac{\pi}{4})$$

26. Решите уравнение:

a)
$$\sin x - 2 \operatorname{ctg} x = 0$$
;

6)
$$2\cos x + 3 \log x = 0$$
.

a)
$$\pm \arccos\left(\sqrt{2} - 1\right) + 2\pi n$$
; 6) $\pm \frac{2\pi}{3} + 2\pi n$

27. Решите уравнение:

a)
$$\cos 2x + 5\sin x \cos x = \sqrt{5}$$
;

6)
$$12\cos 2x + 5\sin 2x = 13$$
.

a) sictg
$$\left(\sqrt{5}-1\right)+\pi n$$
, sictg $\left(\sqrt{5}-1\right)+\pi n$; 6) sictg $\left(\sqrt{5}-1\right)$

28. Решите уравнение:

a)
$$\cos 4x + 4\sin^2 x = 1 + 2\sin^2 2x$$
;

6)
$$4 - 3\cos 4x = 10\sin x \cos x$$
.

(a)
$$\tan \frac{\pi}{3} + \pi n$$
; (b) $(-1)^{\frac{\pi}{12}} + \frac{\pi}{2}$, $\frac{1}{2}(-1)^n \arcsin \frac{1}{3} + \frac{\pi n}{2}$

29. Решите уравнение:

a)
$$\sin x + 2\sin^2 x = \sin 2x + \cos x;$$

6)
$$\sin x + \sin 2x + \cos x + 2\cos^2 x = 0$$
.

$$n\pi + 2\pi + 2\pi + 2\pi = 1$$
 $n\pi + 2\pi + 2\pi = 1$ $n\pi + 2\pi = 1$

30. Решите уравнение:

a)
$$3\sin x - \sin 2x = 1 - \cos 2x$$
;

б)
$$2(\cos x - 1)\sin 2x = 3\sin x$$
.

a)
$$\pi n$$
; 6) πn , $\pm \frac{2\pi}{8} \pm 2\pi n$

31. Решите уравнение:

$$2(\sin^3 x + \cos^3 x) = \sin 2x(\sin x + \cos x).$$

$$\frac{z}{uu} + \frac{v}{u}$$

32. Решите уравнение:

$$\sin^2 x - 5\cos^2 x + 1 = \sin 2x - 2\cos 2x.$$

$$u\pi + \frac{\pi}{4} - n\pi + \frac{\pi}{4}$$