минобрнауки россии

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина)

Кафедра систем автоматизированного проектирования (САПР)

отчет

по лабораторной работе № 2

по дисциплине «Схемотехника»

Тема: «РЕШАЮЩИЕ УСИЛИТЕЛИ»

Аршин А. Д

Баймухамедов Р. Р.

Пасечный Л. В.

Студенты гр. 3311 Шарпинский Д.

Преподаватель Бабкин И. А.

Санкт-Петербург 2025

Цель работы

Состоит в ознакомлении с принципами построения неинвертирующих, инвертирующих и интегрирующих решающих усилителей (РУ), представляющих собой комплексную схему из операционного усилителя (ОУ) и внешних элементов, образующих цепь отрицательной обратной связи, и экспериментальном исследовании их основных технических характеристик с использованием NI ELVIS. Решающие усилители реализуются на базе интегральных ОУ типа LM741.

Ход работы

Основные схемы и расчетные соотношения для неинвертирующих и инвертирующих РУ:

Основная схема инвертирующего РУ представлена на рис. 2.1. Этот РУ состоит из ОУ, охваченного цепью глубокой параллельно-параллельной отрицательной обратной связи (ООС) — R2, R1. В диапазоне низких частот схемные функции инвертирующего РУ определяются следующими приближенными соотношениями:

$$K_{U_{\rm H}} = \frac{U_{\rm Bbix}}{U_{\rm Bx}} \approx -\frac{R_2}{R_1}; \ R_{\rm Bx. \ H} = \frac{U_{\rm Bx}}{I_{\rm Bx}} \approx R_1. \tag{2.1}$$
 Func Out
$$\frac{R_2}{V_{\rm Bx}} = \frac{1}{R_2} = \frac{1}{R_2}$$

Из соотношений (2.1) следует, что в инвертирующем РУ не удается получить совместно большой коэффициент усиления $K_{U\mathrm{u}}$ и большое входное сопротивление $R_{\mathrm{BX.\; u}}$. Например, если мы хотим организовать в инвертирующем РУ $R_{\mathrm{BX.\; u}} = R_1 = 10\,$ МОм, $K_{U\mathrm{u}} = -1000$, то получим $R_2 = 10^{10}\,$ Ом. Такие резисторы практически не реализуются. Реально в схеме (см. рис. 2.1) можно получить значения $K_{U\mathrm{u}} = 100...1000$, $R_{\mathrm{BX.\; u}} = 1...10\,$ кОм.

Увеличим входное напряжение РУ (Peak Amplitude) до 2 В и повторим предыдущий эксперимент. Выясним, чем в этом случае обусловлено ограничение напряжения на выходе РУ.

Измерим частотные характеристики коэффициента усиления K_{Uu} инвертирующего РУ с использованием $\Phi\Gamma$ и анализатора Боде (АБ), для чего соберем на макетной плате схему, представленную на рис. 2.2.

Рис. 2.2

Исследуем выходное напряжение покоя $U_{\rm вых0}$ инвертирующего РУ и его зависимость от изменения коэффициента усиления $K_{U\rm H}$, для чего соберем на макетной плате схему, представленную на рис. 2.3 (ЦМ — цифровой мультиметр; $U_{\rm BX}=0$). Напряжение покоя $U_{\rm вых0}$ определяем для двух случаев:

- 1) $K_{U_{\text{H}}} = -10$; $R_1 = 10 \text{ кОм}$; $R_2 = 100 \text{ кОм}$;
- 2) $K_{U_{\rm H}} = -100$; $R_1 = 1$ кОм; $R_2 = 100$ кОм.

Измеряем для двух случаев постоянное выходное напряжение покоя $U_{\text{вых0}}$. Убеждаемся в том, что с увеличением коэффициента усиления $K_{U\text{и}}$ напряжение покоя возрастает, это согласуется с соотношениями (2.1) и (2.2). На основании соотношения (2.2) и экспериментальных данных $U_{\text{вых0}}$, снятых для двух случаев, вычисляем параметры $U_{\text{см}}$ и $I_{\text{вх1}}$. Исследуем для двух случаев соответственно.

Основная схема неинвертирующего РУ представлена на рис. 2.4. Этот РУ состоит из ОУ, охваченного цепью глубокой последовательнопараллельной ООС – R2, R1. Такой тип ООС позволяет не только получить стабильный коэффициент усиления РУ, но и реализовать высокое входное сопротивление усилителя, что является положительным фактором для большинства усилительных устройств, поскольку при этом потребляются малые мощность и ток от источника входного сигнала. Резистор R3 необходим для реализации в усилителе режима по постоянному току при отсутствии входного сигнала.

В диапазоне низких частот схемные функции неинвертирующего РУ определяются следующими приближенными соотношениями:

$$K_{U_{\rm HII}} = \frac{U_{_{\rm BMX}}}{U_{_{\rm RX}}} \approx 1 + \frac{R_2}{R_1}; \ R_{_{\rm BX.\ HII}} = \frac{U_{_{\rm BX}}}{I_{_{\rm RX}}} \approx R_3.$$
 (2.3)

Из соотношений (2.3) очевидно, что выбором определенного значения сопротивления R_3 можно обеспечить высокое входное сопротивление неинвертирующего РУ ($10^5...10^6$ Ом), а выбором большого отношения R_2/R_1 – высокий коэффициент усиления РУ (100...1000).

Таким образом, у неинвертирующего РУ (см. рис. 2.4) отсутствует основной недостаток инвертирующего РУ (см. рис. 2.1) — низкое входное сопротивление. Если на базе этих РУ требуется реализовать инвертирующий усилитель с высоким входным сопротивлением и большим коэффициентом усиления, то целесообразно в качестве входной усилительной подсхемы использовать неинвертирующий РУ, а в качестве выходной подсхемы — инвертирующий РУ.

Результаты измерения основных параметров РУ:

Инвертирующая РУ:

График Инвертирующей РУ:

График падения, когда мы собрали схему на макете и проверили ее работоспособность:

Как мы видим из графика, на частоте 30000 происходит падение, что является хорошим результатом

Частотные характеристики коэффициента усиления K_{Uu}

Схема:

Собрали на макете схему и запускаем ее:

Выходное напряжение покоя инвертирующего РУ для двух случаев соответственно:

1) Схема:

2) Схема

После мы собираем схему на макете и запускаем ее:

Графики неинвертирующей РУ:

1)

У нас вышла разница в -10 раз, а далее, мы поставили значение 2В и выходное значение упёрлось в потолок 15В

2)

Видим разницу между первым и вторым

Вывод:

В ходе работы подтверждены основные принципы работы решающих усилителей. Отрицательная обратная связь обеспечивает стабильный коэффициент усиления. Напряжение на выходе ограничено напряжениями $(\pm 15B)$. Инвертирующий питания усилитель имеет низкое входное сопротивление, определяемое резистором R1. Неинвертирующий усилитель обладает высоким входным сопротивлением. С ростом коэффициента усиления увеличивается напряжение покоя из-за паразитных параметров ОУ. Частотные характеристики соответствуют теоретическим ожиданиям.

Контрольные вопросы:

1. Что такое РУ (Решающий усилитель)?

Это усилитель постоянного тока (УПТ) с высоким коэффициентом усиления, предназначенный для выполнения математических операций (сложение, вычитание, интегрирование, дифференцирование — отсюда и название "решающий") над аналоговыми сигналами в аналоговых вычислительных машинах.

2. Чем РУ лучше ОУ?

Решающий усилитель (РУ) стабильнее (ОУ) операционного усилителя за счёт введения обратной связи.

3. В чем состоит основное преимущество неинвертирующего РУ перед инвертирующим?

Неинвертирующий РУ позволяет получить одновременно большое входное сопротивление и большой коэффициент усиления.

4. Как изменяется с увеличением коэффициента усиления КUи инвертирующего РУ его выходное напряжение покоя Uвых 0?

Напряжение покоя возрастает с увеличением коэффициента усиления.

5. Каким образом можно реализовать инвертирующий усилитель с высоким входным сопротивлением и большим коэффициентом усиления, используя типовые РУ?

Добавить в усилитель корректирующую цепь (например, конденсатор).

6. Чем обусловлено ограничение напряжения на выходе РУ при больших входных напряжениях?

Выходное напряжение ограничено напряжениями питания ОУ.

7. Чем РУ с высоким входным сопротивлением лучше РУ с низким входным сопротивлением?

При маленьком входном сопротивлении требуется больший входной ток.