HOGAN & HARTSON – 81864.0070 KATO, et al., "R-T-B System Rare Earth Permanent Magnet and Method for Producing the Same" EV 667 738 085 US Page 1 of 31

		Nd (wt%)	Pr (wt%)	Dy (wt%)	Nd Pr Dy TOTAL R B Al Co Cu Fe (wt%) (wt%) (wt%) (wt%) (wt%) (wt%) (wt%) (wt%)	B (wt%)	Al (wt%)	Co (wt%)	Cu (wt%)	Fe (wt%)	MIXTURE	REMARKS
EVANDIE 1	LOW R ALLOY	26.4	5.5	ı	31.9	1.06	0.2	ı	ı	bal.	92	HEAVY RARE EARTH
EAAMITE	HIGH R ALLOY	ı	ı	60.2	60.2	. I	0.2	10.2	1.4	bal.	5	ELEMEN I (DY) CONTAINED IN HIGH R ALLOY
EVAMBLE	LOW R ALLOY	25.3	5.7	ı	31.0	1.12	0.2	ı	ı	bal.	06	HEAVY RARE EARTH
	HIGH R ALLOY	29.2	0.1	30.3	59.6	ı	0.2	5.0	0.7	bal.	10	ELEMEN I (DY) CONTAINED IN HIGH R ALLOY
COMPARATIVE	LOW R ALLOY	22.0	5.8	3.4	31.2	1.12	0.2	I	ı	bal.	06	HEAVY RARE EARTH
EXAMPLE 1	HIGH R ALLOY	29.0	0.2	ı	29.2	. 1	0.2	5.0	0.7	bal.	10	ELEMEN I (Dy) CONTAINED IN LOW R ALLOY
COMPARATIVE	LOW R ALLOY	24.1	5.5	3.2	32.8	1.06	0.2	ı	1	bal.	95	HEAVY RARE EARTH
EXAMPLE 2	HIGH R ALLOY	59.6	0.2	1	59.8	. 1	0.2	10.2	1.4	bal.	. 2	ELEMENT (DY) CONTAINED IN LOW R ALLOY

HOGAN & HARTSON – 81864.0070 KATO, et al., "R-T-B System Rare Earth Permanent Magnet and Method for Producing the Same" EV 667 738 085 US Page 2 of 31

	PΝ	Pr	Dy	Dy TOTAL R	В	A	ပိ	η	Fe	Br	He
	(wt%)	(wt%) (wt%) (wt%)	(wt%)	(wt%)	(wt%)	(wt%)	(wt%)	(wt%) (wt%) (wt%) (wt%) (wt%) (kg)	(wt%)	(kG)	(k0e)
EXAMPLE 1	25.1	5.2	3.0	33.3	1.0	0.2	0.5	0.1	bal.	12.90 23.09	23.09
EXAMPLE 2	25.7	5.1	3.0	33.8	1.0	0.2	0.5	0.1	bal.	12.78 23.12	23.12
COMPARATIVE EXAMPLE 1	25.6	5.2	3.1	33.9	1.0	0.2	0.5	0.1	bal.	12.51 23.18	23.18
COMPARATIVE EXAMPLE 2	25.9	5.2	3.0	34.1	1.0	0.2	0.5	0.1	bal.	12.50 23.17	23.17

FIG. 2

FIG. 3A

FIG. 3B

FIG. 3C

FIG. 3D

FIG. 4A

FIG. 4B

FIG. 4C

FIG. 4D

HOGAN & HARTSON – 81864.0070 KATO, et al., "R-T-B System Rare Earth Permanent Magnet and Method for Producing the Same" EV 667 738 085 US Page 5 of 31

	AVE(X)	λ	AVE(X)/Y	(X/Y) min	(X/Y) max	AVE(X) / Y (X/Y) min (X/Y) max (X/Y) min
EXAMPLE 1	7.58	9.01	0.84	0.12	1.43	11.92
EXAMPLE 2	80'8	888	0.91	0.15	1.33	8.87
COMPARATIVE EXAMPLE 1	10.14	9.14	1.11	1.01	1.25	1.24
COMPARATIVE EXAMPLE 2	10.21	8.80	1.16	1.05	1.27	1.21

HOGAN & HARTSON – 81864.0070 KATO, et al., "R-T-B System Rare Earth Permanent Magnet and Method for Producing the Same" EV 667 738 085 US Page 6 of 31

	PΝ	Pr	Dy	TOTAL R	В	IA	Co	Co	Fe	Br	Ho
	(wt%) (wt%)	(wt%)	(wt%)	(wt%) (wt%)	(wt%)	(wt%) (wt%) (wt%) (wt%) (wt%) (kG)	(wt%)	(wt%)	(wt%)	(kG)	(k0e)
EXAMPLE 1 25.1	25.1	5.2	3.0	33.3	1.0	0.2	6.0	0.1	bal.	12.90	23.09
EXAMPLE 3 25.0	25.0	5.2	3.0	33.2	1.0	0.2	0.5	0.1	bal.	12.91	22.83
EXAMPLE 4 25.4	25.4	5.1	3.1	33.6	1.0	0.2	6.0	0.1	bal.	12.89	22.22
EXAMPLE 5	25.1	5.2	3.1	33.4	1.0	0.2	0.5	0.1	bal.	13.04 21.14	21.14

FIG. (

	AVE(X)	>	AVE(X)/Y	(X/Y) min	(X/Y) max	AVE(X) / Y (X/Y) min (X/Y) max / (X/Y) min	
EXAMPLE 1	7.58	9.01	0.84	0.12	1.43	11.92	
EXAMPLE 3	7.50	9.04	0.83	0.22	1.32	0.00	
EXAMPLE 4	7.87	9.22	98.0	0.18	1.37	7.61	•
EXAMPLE 5	8.35	9.27	0.89	0.16	1.53	9.56	

FIG. 8

FIG. 9

GRAIN SIZE: EQUIVALENT DIAMETER (μ m)

FIG. 10

FIG. 11

HOGAN & HARTSON – 81864.0070 KATO, et al., "R-T-B System Rare Earth Permanent Magnet and Method for Producing the Same" EV 667 738 085 US Page 12 of 31

	NED.		<u> </u>		į		Ď	
REMARKS	HEAVY RARE EARTH ELEMENT (D _V) CONTAINED	IN HIGH R ALLOY AND IN LOW R ALLOY	HEAVY RARE EARTH ELEMENT (Dy) CONTAINED	IN HIGH R ALLOY AND IN LOW R ALLOY	HEAVY RARE EARTH	IN LOW R ALLOY	HEAVY RARE EARTH ELEMENT (Dy) CONTAINED	IN HIGH R ALLOY AND IN LOW R ALLOY
MIXTURE	95	2	95	2	06	10	80	20
Fe (wt%)	bal.	bal.	bal.	bal.	bal.	bal.	bal.	bal.
Cu (wt%)	ı	2.0	ı	2.0	1	1.0	1	0.5
Co (wt%)	l	10.0	ı	10.0	-	5.0	1	2.5
Al (wt%)	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
B (wt%)	1.06		1.06	1	1.12	1	1.28	-
Dy TOTAL R (wt%) B Al Co (wt%) Cu Fe (wt%) (wt%) (wt%) (wt%) (wt%) (wt%)	31.6	46.0	31.6	46.0	29.5	29.0	29.0	46.0
Dy (wt%)	4.1	46.0	2.2	46.0	7.1	1	4.0	6.5
Nd Pr (wt%) (wt%)	ı	1	ı	l	1	ı	-	0.9
Nd (wt%)	27.5	t	29.4	l	22.4	59.0	25.0	33.5
	LOW R ALLOY	HIGH R ALLOY	LOW R ALLOY	HIGH R ALLOY	LOW R ALLOY	HIGH R ALLOY	LOW R ALLOY	HIGH R ALLOY
	EXAMDI E &		EXAMDI E 7		COMPARATIVE	EXAMPLE 3	COMPARATIVE	EXAMPLE 4

HOGAN & HARTSON - 81864.0070 KATO, et al., "R-T-B System Rare Earth Permanent Magnet and Method for Producing the Same" EV 667 738 085 US Page 13 of 31

	PN	Pr	Dy	TOTAL R	В	₹	ပိ	Cu	TI @	ğ	Но
	(wt%)	(wt%) (wt%)	(wt%)	(wt%) (wt%) (wt%) (wt%) (wt%) (wt%) (wt%) (kg)	(wt%)	(wt%)	(wt%)	(wt%)	(wt%)	(kG)	(k0e)
EXAMPLE 6 26.0	26.0	l	6.2	32.2	1.0	0.2	0.5	0.1	bal.	12.60	25.00
EXAMPLE 7	27.8	l	4.4	32.2	1.0	0.2	0.5	0.1	bal.	13.00	23.62
COMPARATIVE EXAMPLE 3	25.9	l	6.3	32.2	1.0	0.2	0.5	0.1	bal.	12.31	25.00
COMPARATIVE EXAMPLE 4	26.6	1.2	4.5	32.3	1.0	0.2	0.5	0.1	bal.	12.60	23.60

FIG. 14A

FIG. 14B

FIG. 14C

FIG. 14D

FIG. 15A

FIG. 15B

FIG. 15C

FIG. 15D

	AVE(X)	>	AVE(X) /Y	(X/Y) min	(X/Y)max	AVE(X) / Y (X/Y) min (X/Y) max (X/Y) min
EXAMPLE 6	16.54	19.25	0.85	0.40	1.04	2.60
EXAMPLE 7	13.14	13.66	0.96	0.51	1.12	2.20
COMPARATIVE EXAMPLE 3	20.74	19.57	1.06	0.88	1.31	1.49
COMPARATIVE EXAMPLE 4	15.70	14.98	1.05	0.73	1.33	1.82

HOGAN & HARTSON – 81864.0070 KATO, et al., "R-T-B System Rare Earth Permanent Magnet and Method for Producing the Same" EV 667 738 085 US Page 17 of 31

	S50 (µm)	S85 (μμ)	<10 µ m (%)	<15 µ m (%)
EXAMPLE 6	8.29	12.1	64.6	100
EXAMPLE 7	9.90	14.6	50.4	88.1
COMPARATIVE EXAMPLE 3	10.37	17.4	24.6	69.0
COMPARATIVE EXAMPLE 4	12.48	16.3	32.1	75.1

HOGAN & HARTSON – 81864.0070 KATO, et al., "R-T-B System Rare Earth Permanent Magnet and Method for Producing the Same" EV 667 738 085 US Page 18 of 31

		1	•		Γ			<u>(/)</u>	-			
REMARKS		HEAVY RARE	ELEMENT (Dy)	CONTAINED IN HIGH R ALLOY	HEAVY RARE	ELEMENT (Dy)	CONTAINED IN HIGH R ALLOY	AT 30% OR LESS BY WEIGHT	HEAVY RARE	ELEMENT (Dy)	CONTAINED IN LOW R ALLOY	
MIXTURE	RATIO	75	20	5	09	31	7	2	09	31	7	2
F ₀	(wt%)	bal.	bal.	bal.	bal.	bal.	bal.	bal.	bal.	bal.	bal.	bal.
Ω	(wt%) (wt%) (wt%) (wt%)	ı	ı	1.4	1	ı	0.7	1.4	ı	ł	0.7	1.4
ပိ	(wt%)	1	1	10.0	ı	ı	5.0	10.0	t	1	5.0	10.0
₹	(wt%)	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
B	(wt%)	1.06	1.06	-	1.12	1.06	ı	ı	1.12	1.06	. 1	I
TOTAL R	(wt%)	32.5	0.0	0.09	32.0	32.5	0.09	0.09	32.0	32.6	0.09	0.09
٥	(wt%)	ı	1	0.09	-	7.5	1	44.0	_	9.7	-	1
Ą	(wt%) (wt%)	5.6	5.6	ı	5.7	5.4	-	-	5.7	5.4	-	-
PZ	(wt%)	26.9	29.9	1	26.3	19.6	0.09	16.0	26.3	17.5	0.09	0.09
		LOW R ALLOY	LOW R ALLOY	HIGH R ALLOY	LOW R ALLOY	LOW R ALLOY	HIGH R ALLOY	HIGH R ALLOY	LOW R ALLOY	LOW R ALLOY	HIGH R ALLOY	HIGH R ALLOY
			EXAMPLE 8			COMPARATIVE	EXAMPLE 5			COMPARATIVE	EXAMPLE 6	

HOGAN & HARTSON – 81864.0070 KATO, et al., "R-T-B System Rare Earth Permanent Magnet and Method for Producing the Same" EV 667 738 085 US Page 19 of 31

	PΝ	Pr	Dy	Dy TOTAL R	В	A	ပိ	CO	Fe	Ŗ	HoJ
	(wt%)	(wt%) (wt%)	(wt%)	(wt%) (wt%) (wt%) (wt%) (wt%) (wt%) (kG) (kG)	(wt%)	(wt%)	(wt%)	(wt%)	(wt%)	(kG)	(k0e)
EXAMPLE 8	26.2	5.3	3.0	34.5	1.0	0.2	0.5	0.1	bal.	12.68	23.68
COMPARATIVE EXAMPLE 5	26.2	5.1	3.2	34.5	1.0	0.2	0.5	0.1	bal.	12.65 22.60	22.60
COMPARATIVE EXAMPLE 6	26.3	5.1	3.0	34.4	1.0	0.2	0.5	0.1	bal.	12.66 22.44	22.44

FIG. 20A

FIG. 20B

FIG. 20C

FIG. 20D

FIG. 21A

FIG. 21B

FIG. 21C

FIG. 21D

	AVE(X)	>	AVE(X)/Y	(X/Y) min	(X/Y) max	AVE(X) / Y (X / Y) min (X / Y) max (X / Y) min
EXAMPLE 8	7.40	8.70	0.85	0.20	1.31	6.55
COMPARATIVE EXAMPLE 5	9.70	8.75	1:1	0.21	2.43	11.57
COMPARATIVE EXAMPLE 6	8.25	8.72	0.95	0.16	2.60	16.25

FIG. 23

HOGAN & HARTSON – 81864.0070 KATO, et al., *R-T-B System Rare Earth Permanent Magnet and Method for Producing the Same* EV 667 738 085 US Page 25 of 31

		Nd (wt%)	Tb (wt%)	TOTAL R (wt%)	B (wt%)	Al (wt%)	Co (wt%)	Cu (wt%)	Fe (wt%)	(MIXTURE RATIO)
	LOW R ALLOY	30.3	1	30.30	1.06	0.2	1	ı	bal.	70
EXAMPLE 9	LOW R ALLOY	24.6	2.7	30.30	1.06	0.2	ı	ı	bal.	25
	HIGH R ALLOY	1	46.0	46.00	1	0.2	10.0	2.0	bal.	2
	LOW R ALLOY	30.3	ı	30.30	1.06	0.2	ı	ı	bal.	09
EXAMPLE10	LOW R ALLOY	26.3	4.0	30.30	1.06	0.2	1	ı	bal.	35
	HIGH R ALLOY	ı	46.0	46.00	ı	0.2	10.0	2.0	bal.	2
COMPARATIVE	LOW R ALLOY	26.4	3.9	30.30	1.06	0.2	1	1	bal.	95
EXAMPLE 7	HIGH R ALLOY	46.0	1	46.00	-	0.2	10.0	2.0	bal.	5
i i	LOW R ALLOY	27.1	3.1	30.20	1.06	0.2	ı	ı	bal.	55
COMPARATIVE EXAMPLE 8	LOW R ALLOY	25.3	5.0	30.30	1.06	0.2	1	1	bal.	40
	HIGH R ALLOY	46.0	1	46.00	i	0.2	10.0	2.0	bal.	5

((
		1
	+	
	T	

	Nd (wt%)	Tb (wt%)	Nd Tb TOTAL R B Al Co Cu Fe Br (wt%) (wt%) (wt%) (wt%) (wt%) (wt%) (kt%) (kt%)	B (wt%)	Al (wt%)	Co (wt%)	Cu (wt%)	Fe (wt%)	Br (kG)	HcJ (kOe)
EXAMPLE 9	27.3	3.7	31.0	1.0	0.2	0.5	0.1	bal. 13.45	13.45	24.1
EXAMPLE 10 27.3	27.3	3.7	31.0	1.0	0.2	0.5	0.1	bal.	bal. 13.43	24.2
COMPARATIVE EXAMPLE 7	27.3	3.7	31.0	1.0	0.2	0.5	0.1	bal.	bal. 13.19	24.4
COMPARATIVE EXAMPLE 8	27.3	3.7	31.0	1.0	0.2	0.5	0.1	bal.	13.20	24.7

	AVE(X)	>	AVE(X)/Y	(X/Y) min	(X/Y)max	AVE(X)/Y $(X/Y)min$ $(X/Y)max/(X/Y)min$
EXAMPLE 9	10.47	11.90	0.88	0.21	1.23	5.86
EXAMPLE 10 11.18		11.90	0.94	0.56	1.54	2.75
COMPARATIVE EXAMPLE 7	14.52	11.90	1.22	0.95	1.42	1.49
COMPARATIVE EXAMPLE 8	15.59	11.90	1.31	1.04	1.37	1.32

<15 µ m (%) 98.9 100 100 100 <10 µ m (%) 75.3 90.2 100 100 S85 (μm) 10.96 5.85 6.90 8.51 S50 (µm) 7.67 4.49 5.08 COMPARATIVE EXAMPLE 8 COMPARATIVE **EXAMPLE 10 EXAMPLE 9 EXAMPLE 7**

FIG. 28

HOGAN & HARTSON – 81864.0070 KATO, et al., *R-T-B System Rare Earth Permanent Magnet and Method for Producing the Same* EV 667 738 085 US Page 29 of 31

		Nd (wt%)	Dy (wt%)	TOTAL R (wt%)	B (wt%)	Al (wt%)	Co (wt%)	Co Cu Fe (wt%) (wt%)	Fe (wt%)	(MIXTURE RATIO)
EXAMDI E11	LOW R ALLOY	27.4	1	27.40	1.06	0.3	,	1	bal.	95
	HIGH R ALLOY	1	40.0	40.00	ı	0.3	10.0	2.0	bal.	5
EYAMDI E 10	LOW R ALLOY	34.7	1	34.70	1.06	0.2	ı	1	bal.	95
	HIGH R ALLOY	1	60.0	00.09	ı	0.2	30.0	2.8	bal.	5
COMPARATIVE	COMPARATIVE LOW R ALLOY	25.3	2.1	27.40	1.06	0.2	1	1	bal.	95
EXAMPLE 9	HIGH R ALLOY	40.0	_	40.00	ı	0.2	10.0	2.0	bal.	2
COMPARATIVE	COMPARATIVE LOW R ALLOY	31.5	3.2	34.70	1.06	0.2	1	1	bal.	95
EXAMPLE 10	EXAMPLE 10 HIGH R ALLOY	0'09	1	00'09	1	0.2	30.0	2.8	bal.	5

	Nd (wt%)	Nd Dy T((wt%) (wt%)	Dy TOTAL R B AI Co Cu Fe (wt%) (wt%) (wt%) (wt%) (wt%) (wt%) (wt%)	B (wt%)	AI (wt%)	Al Co (wt%) (wt%)	Cu (wt%)	Fe (wt%)	Br HcJ (kGe)	HcJ (kOe)
EXAMPLE11	26.0	2.0	28.0	1.0	0.3	0.5	0.1	bal.	bai. 14.2 12.2	12.2
EXAMPLE12	33.0	3.0	36.0	1.0	0.2	1.5 0.14	0.14	bal.	12.1	25.3
COMPARATIVE EXAMPLE 9	26.0	2.0	28.0	1.0	0.2	0.5	0.1	bal.	13.8	12.6
COMPARATIVE EXAMPLE 10	33.0	3.0	36.0	1.0	0.2	1.5	1.5 0.14	bal.	bal. 11.7 25.5	25.5

	AVE(X) Y	\	AVE(X)/Y	(X/Y) min	(X/Y) max	AVE(X)/Y = (X/Y)min = (X/Y)max/(X/Y)min
EXAMPLE 11	6.40	7.10	06:0	0.41	1.34	3.27
EXAMPLE 12 7.72	7.72	8.30	0.93	0.33	1.36	4.12
COMPARATIVE EXAMPLE 9	7.81	7.10	1.10	0.91	1.15	1.26
COMPARATIVE EXAMPLE 10	10.29	8.30	1.24	0.94	1.21	1.29