Exercise 5.33 (Study of multidimensional Brownian motion) $B_t = (B_t^1, B_t^2, \dots, B_t^N)$ を $x = (x_1, \dots, x_N) (\in \mathbb{R}^N)$ スタートの N 次元 (\mathcal{F}_t) -BM とする.ここで N は 2 以上の整数とする.

1. $|B_t|^2$ は連続 semimartingale であり, $|B_t|^2$ の martingale part が true martingale であることを示せ.

証明. (途中) B_t^1, \cdots, B_t^N は BM より連続 semimartingale なので、伊藤の公式が適用できて、a.s. で任意の $t \geq 0$ に対し

$$|B_{t}|^{2} = |B_{0}|^{2} + \sum_{i=1}^{N} \int_{0}^{t} \frac{\partial}{\partial x_{i}} |B_{s}|^{2} dB_{s}^{i} + \frac{1}{2} \sum_{i,j=1}^{N} \int_{0}^{t} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} |B_{s}|^{2} d\left\langle B^{i}, B^{j} \right\rangle_{s}$$

$$= |x|^{2} + \sum_{i=1}^{N} \int_{0}^{t} \frac{\partial}{\partial x_{i}} |B_{s}|^{2} dB_{s}^{i} + \frac{1}{2} \sum_{i=1}^{N} \int_{0}^{t} \frac{\partial^{2}}{\partial x_{i}^{2}} |B_{s}|^{2} ds \quad (\because i \neq j \implies \left\langle B^{i}, B^{j} \right\rangle = 0)$$

$$= |x|^{2} + 2 \sum_{i=1}^{N} \int_{0}^{t} B_{s}^{i} dB_{s}^{i} + Nt.$$

$$\because) \ |B|^2 = \textstyle \sum_{i=1}^N (B^i)^2 \ \text{\sharp } \mathcal{Y} \ \frac{\partial}{\partial x_i} |B|^2 = 2B^i, \frac{\partial^2}{\partial x_i^2} |B|^2 = 2.$$

2.

$$\beta_t = \sum_{i=1}^N \int_0^t \frac{B_s^i}{|B_s|} dB_s^i$$

と定める(ただし $|B_s|=0$ のとき $\frac{B_s^i}{|B_s|}=0$ とする)。 β_t の定義に現れる確率積分の定義を正当化し、さらに $(\beta_t)_{t\geq 0}$ が 0 スタートの (\mathcal{F}_t) -BM であることを示せ.

証明. (途中)任意の $1 \leq i \leq N$ に対し $\frac{B^i}{|B|} \leq 1$ より、a.s. で任意の $t \geq 0$ に対し

$$\int_0^t \left(\frac{B_s^i}{|B_s|}\right)^2 d\left\langle B^i, B^i \right\rangle_s \le \int_0^t ds = t < \infty$$

が成り立つので、任意の $1 \leq i \leq N$ に対し $\frac{B^i}{|B|} \in L^2_{\text{loc}}(B^i)$. よって Thm 5.6 より $\int_0^t \frac{B^i_s}{|B_s|} dB^i_s$ は確率積分の意味で well-defined な CLM である.

したがって β は (\mathcal{F}_t) -CLM である $(\leftarrow?)$. ここで

$$\begin{split} \langle \beta, \beta \rangle_t &= \left\langle \sum_{i=1}^N \int_0^{\cdot \cdot} \frac{B_s^i}{|B_s|} dB_s^i, \sum_{i=1}^N \int_0^{\cdot \cdot} \frac{B_s^i}{|B_s|} dB_s^i \right\rangle_t \\ &= \sum_{i=1}^N \left\langle \int_0^{\cdot \cdot} \frac{B_s^i}{|B_s|} dB_s^i, \int_0^{\cdot \cdot} \frac{B_s^i}{|B_s|} dB_s^i \right\rangle_t \\ &= \int_0^t \frac{\sum_{i=1}^N (B_s^i)^2}{|B_s|^2} ds = \int_0^t \frac{|B_s|^2}{|B_s|^2} ds = t \end{split}$$

が成り立つことより、 β は0スタートの (\mathcal{F}_t)-BM である.

3.

$$|B_t|^2 = |x|^2 + 2 \int_0^t |B_s| d\beta_s + Nt$$

が成り立つことを示せ.

証明.

$$\frac{d\beta_{t}}{dB_{t}^{i}} = \sum_{i=1}^{N} \frac{d}{dB_{t}^{i}} \int_{0}^{t} \frac{B_{s}^{i}}{|B_{s}|} dB_{s}^{i} = \sum_{i=1}^{N} \frac{B_{t}^{i}}{|B_{t}|}$$

より $deta_t = \sum_{i=1}^N rac{B_t^i}{|B_t|} dB_t^i$ となるので

$$|B_t|^2 = |x|^2 + 2\sum_{i=1}^N \int_0^t B_s^i dB_s^i + Nt$$

$$= |x|^2 + 2\sum_{i=1}^N \int_0^t |B_s| \frac{B_s^i}{|B_s|} dB_s^i + Nt$$

$$= |x|^2 + 2\int_0^t |B_s| \sum_{i=1}^N \frac{B_s^i}{|B_s|} dB_s^i + Nt$$

$$= |x|^2 + 2\int_0^t |B_s| d\beta_s + Nt.$$

4. 以降, $x \neq 0$ を仮定する. $\varepsilon \in (0,|x|), T_{\varepsilon} = \inf\{t \geq 0 : |B_t| \leq \varepsilon\}$ とする. ここで任意の a > 0 に対し

$$f(a) = \begin{cases} \log a & (N = 2), \\ a^{2-N} & (N \ge 3) \end{cases}$$

と定める. $f(|B_{t \wedge T_{\varepsilon}}|)$ が CLM となることを示せ.

証明. F(x) = f(|x|) と定めると $F \in C^{\infty}(\mathbb{R}^N \setminus \{0\})$ であり,

$$\frac{\partial F}{\partial x_i}(x) = \begin{cases} \frac{x_i}{|x|^2} & N = 2, \\ \frac{(2-N)x_i}{|x|^N} & N \ge 3, \end{cases} \qquad \frac{\partial^2 F}{\partial x_i^2}(x) = \begin{cases} \frac{1}{|x|^2} \left(1 - \frac{2x_i^2}{|x|^2}\right) & N = 2, \\ \frac{2-N}{|x|^N} \left(1 - \frac{Nx_i^2}{|x|^2}\right) & N \ge 3. \end{cases}$$

ここで、任意の $t \geq 0, \omega \in \Omega$ に対し $|B_{t \wedge T_{\varepsilon}}(\omega)| \geq \varepsilon$ が成り立つので、 $B_{t \wedge T_{\varepsilon}} \in \mathbb{R}^{N} \setminus \{0\}$. 伊藤の公式より

$$\begin{split} &f(|B_{t \wedge T_{\varepsilon}}|) = F(B_{t \wedge T_{\varepsilon}}) \\ &= \begin{cases} f(|x|) + \sum_{i=1}^{2} \int_{0}^{t} \frac{B_{s \wedge T_{\varepsilon}}^{i}}{|B_{s \wedge T_{\varepsilon}}|^{2}} dB_{s}^{i} + \frac{1}{2} \sum_{i=1}^{2} \int_{0}^{t} \frac{1}{|B_{s \wedge T_{\varepsilon}}|^{2}} \left(1 - \frac{2(B_{s \wedge T_{\varepsilon}}^{i})^{2}}{|B_{s \wedge T_{\varepsilon}}|^{2}}\right) ds \qquad N = 2, \\ f(|x|) + \sum_{i=1}^{N} \int_{0}^{t} \frac{(2 - N)B_{s \wedge T_{\varepsilon}}^{i}}{|B_{s \wedge T_{\varepsilon}}|^{N}} dB_{s}^{i} + \frac{1}{2} \sum_{i=1}^{N} \int_{0}^{t} \frac{2 - N}{|B_{s \wedge T_{\varepsilon}}|^{N}} \left(1 - \frac{N(B_{s \wedge T_{\varepsilon}}^{i})^{2}}{|B_{s \wedge T_{\varepsilon}}|^{2}}\right) ds \qquad N \geq 3 \end{cases} \\ &= \begin{cases} f(|x|) + \sum_{i=1}^{2} \int_{0}^{t} \frac{B_{s \wedge T_{\varepsilon}}^{i}}{|B_{s \wedge T_{\varepsilon}}|^{2}} dB_{s}^{i} + \frac{1}{2} \int_{0}^{t} \frac{1}{|B_{s \wedge T_{\varepsilon}}|^{2}} \left(2 - 2 \sum_{i=1}^{2} \frac{(B_{s \wedge T_{\varepsilon}}^{i})^{2}}{|B_{s \wedge T_{\varepsilon}}|^{2}}\right) ds \qquad N = 2, \\ f(|x|) + \sum_{i=1}^{N} \int_{0}^{t} \frac{B_{s \wedge T_{\varepsilon}}^{i}}{|B_{s \wedge T_{\varepsilon}}|^{N}} dB_{s}^{i} + \frac{1}{2} \sum_{i=1}^{N} \int_{0}^{t} \frac{2 - N}{|B_{s \wedge T_{\varepsilon}}|^{N}} \left(N - N \sum_{i=1}^{N} \frac{(B_{s \wedge T_{\varepsilon}}^{i})^{2}}{|B_{s \wedge T_{\varepsilon}}|^{2}}\right) ds \qquad N \geq 3 \end{cases} \end{split}$$

$$= \begin{cases} f(|x|) + \sum_{i=1}^{2} \int_{0}^{t} \frac{B_{s \wedge T_{\varepsilon}}^{i}}{|B_{s \wedge T_{\varepsilon}}|^{2}} dB_{s}^{i} & N = 2, \\ f(|x|) + \sum_{i=1}^{N} \int_{0}^{t} \frac{(2-N)B_{s \wedge T_{\varepsilon}}^{i}}{|B_{s \wedge T_{\varepsilon}}|^{N}} dB_{s}^{i} & N \ge 3 \end{cases}$$

が成り立ち、任意の $N \geq 2$ と $1 \leq i \leq N$ に対し $\frac{B^i_{t \wedge T_\varepsilon}}{|B_{t \wedge T_\varepsilon}|^N} \in L^2_{\mathrm{loc}}(B^i_t)$ であるので $\int_0^t \frac{B^i_{s \wedge T_\varepsilon}}{|B_{s \wedge T_\varepsilon}|^N} dB^i_s$ は CLM. したがって $f(|B_{t \wedge T_\varepsilon}|)$ は CLM.

5. $R > |x|, S_R = \inf\{t \ge 0 : |B_t| \ge R\}$ とする.

$$P(T_{\varepsilon} < S_R) = \frac{f(R) - f(|x|)}{f(R) - f(\varepsilon)}$$

となることを示せ、また $\varepsilon \to 0$ としたとき $P(T_\varepsilon < S_R) \to 0$ となることを確かめ、a.s. で任意の $t \ge 0$ に対し $B_t \ne 0$ となることを示せ.

証明. $T := T_{\varepsilon} \wedge S_R$ とすると a.s. で任意の $t \geq 0$ に対し $f(|B_t^T|) \leq R$. $f(|B_{t \wedge T_{\varepsilon}}|)$ が CLM であることから $f(|B_t^T|)$ は有界な CLM なので、Prop. 4.7(ii) より UIM. ゆえに optional stopping theorem より

$$f(|x|) = E[f(|B_0^T|)] = E[f(|B_T|)]$$

$$= E[f(\varepsilon \mathbf{1}_{\{T_{\varepsilon} < S_R\}} + R \mathbf{1}_{\{T_{\varepsilon} \ge S_R\}})]$$

$$= E[f(\varepsilon) \mathbf{1}_{\{T_{\varepsilon} < S_R\}} + f(R) \mathbf{1}_{\{T_{\varepsilon} \ge S_R\}}]$$

$$= f(\varepsilon) P(T_{\varepsilon} < S_R) + f(R) P(T_{\varepsilon} \ge S_R).$$

 $P(T_{\varepsilon} < S_R) + P(T_{\varepsilon} \geq S_R) = 1$ より $P(T_{\varepsilon} < S_R) = \frac{f(R) - f(|x|)}{f(R) - f(\varepsilon)}$ を得る. $\varepsilon \to 0$ とすると N = 2 のとき $f(\varepsilon) \to -\infty, N \geq 3$ のとき $f(\varepsilon) \to +\infty$ より, $P(T_{\varepsilon} < S_R) \to 0$ となることがわかる.

次に a.s. で任意の $t\geq 0$ に対し $B_t\neq 0$ を示す. $\varepsilon_n\downarrow 0$ かつ $\sum_{n=1}^\infty P(T_{\varepsilon_n}< S_n)<\infty$ を満たす正の 実数列 $\{\varepsilon_n\}$ を選ぶと、Borel-Cantelli の補題より $A:=\limsup_{n\to\infty}\{T_{\varepsilon_n}< S_n\}$ に対し P(A)=0. このとき任意の $\omega\in A^c, t\geq 0$ に対し $B_t(\omega)\neq 0$.

::) $\omega \in A^c$ に対し $B_t(\omega) = 0$ を満たす t > 0 が存在すると仮定すると、任意の $n \geq 1$ に対し $T_{\varepsilon_n}(\omega) < t$ であり、 A^c の定め方からある $m \geq 1$ が存在して、任意の $n \geq m$ に対し $S_n(\omega) < t$. stopping time の列 $(S_n(\omega))_{n \geq 1}$ は nondecreasing なので、 $\lim_{n \to \infty} S_n(\omega) (\leq t)$ が存在する.これを s とすると $B_s(\omega) = \infty$ となるが、B の連続性より矛盾.

以上より a.s. で任意の $t \ge 0$ に対し $B_t \ne 0$.

6. a.s. で任意の $t \ge 0$ に対し

$$|B_t| = |x| + \beta_t + \frac{N-1}{2} \int_0^t \frac{ds}{|B_s|}$$

となることを示せ.

証明. F(x) = |x| と定めると $F \in C^{\infty}(\mathbb{R}^N \setminus \{0\})$ であり、 $\frac{\partial F}{\partial x_i}(x) = \frac{x_i}{|x|}, \frac{\partial^2 F}{\partial x_i^2}(x) = \frac{|x|^2 - x_i^2}{|x|^3}$. a.s. で任意の $t \geq 0$ に対し $B_t \in \mathbb{R}^N \setminus \{0\}$ より、伊藤の公式から

$$|B_t| = F(B_t) = |x| + \sum_{i=1}^{N} \int_0^t \frac{B_s^i}{|B_s|} dB_s^i + \frac{1}{2} \sum_{i=1}^{N} \int_0^t \frac{|B_s|^2 - (B_s^i)^2}{|B_s|^3} ds$$

$$= |x| + \beta_t + \frac{1}{2} \int_0^t \frac{N|B_s|^2 - \sum_{i=1}^N (B_s^i)^2}{|B_s|^3} ds$$

$$= |x| + \beta_t + \frac{1}{2} \int_0^t \frac{(N-1)|B_s|^2}{|B_s|^3} ds$$

$$= |x| + \beta_t + \frac{N-1}{2} \int_0^t \frac{ds}{|B_s|}.$$

7. $N \ge 3$ を仮定する. a.s. で $t \to \infty$ としたとき $|B_t| \to \infty$ となることを示せ(ヒント: $|B_t|^{2-N}$ が非負 supermartingale であることを確かめよ).

証明. (途中) $F(x)=|x|^{2-N}$ と定めると $F\in C^{\infty}(\mathbb{R}^N\setminus\{0\})$ であり, $\frac{\partial F}{\partial x_i}(x)=\frac{(2-N)x_i}{|x|^N}, \frac{\partial^2 F}{\partial x_i^2}(x)=\frac{2-N}{|x|^N}\left(1-\frac{Nx_i^2}{|x|^2}\right)$. a.s. で任意の $t\geq 0$ に対し $B_t\in\mathbb{R}^N\setminus\{0\}$ より,伊藤の公式と 4. の証明から

$$|B_t|^{2-N} = F(B_t) = |x|^{2-N} + \sum_{i=1}^N \int_0^t \frac{(2-N)B_s^i}{|B_s|^N} dB_s^i + \frac{1}{2} \sum_{i=1}^N \int_0^t \frac{2-N}{|B_s|^N} \left(1 - \frac{N(B_s^i)^2}{|B_s|^2}\right) ds$$
$$= |x|^{2-N} + \sum_{i=1}^N \int_0^t \frac{(2-N)B_s^i}{|B_s|^N} dB_s^i.$$

4. の結果より $|B|^{2-N}$ は非負 CLM なので、Prop. 4.7(i) より $|B|^{2-N}$ は非負 supermartingale. ゆえ に任意の $t\geq 0$ に対し

$$E[|B_t|^{2-N}] \le E[|B_0|^{2-N}] = |x|^{2-N}$$

が成り立つので, $|B|^{2-N}$ は L^1 -bdd. よって Thm. 3.19 より $|B_\infty|^{2-N}$ が a.s. で存在する.

8. N=3 を仮定する. Gaussian density の形式を用いて, r.v. の族 $(|B_t|^{-1})_{t\geq 0}$ が L^2 -bdd. であることを確かめよ. また $(|B_t|^{-1})_{t\geq 0}$ が CLM であり,かつ true martingale でないことを示せ.

証明. (途中)

4