

NPN SILICON PLANAR EPITAXIAL TRANSISTOR

GENERAL DESCRIPTION:

The PN 3569 is an NPN silicon planar epitaxial transistor designed for amplifier and switching applications for collector current up to 500mA.

MECHANICAL OUTLINE

TO-92A

ABSOLUTE MAXIMUM RATINGS:

Continuous Power Dissipation @ TA=25°C, Continuous Power Dissipation @ Tc=25°C, Maximum Collector Junction Temperature, Storage Temperature Range, Tstg Soldering Temperature (10 sec. time limit)

Collector to Base Voltage, Collector to Emitter Voltage, Emitter to Base Voltage,

0.3W 0.8W 125°C -55° C to $+125^{\circ}$ C 260°C 80V 40V 5V

ELECTRICAL CHARACTERISTICS @ TA=25°C (unless otherwise stated)

PARAMETER	SYMBOL	MIN	MAX	UNIT	TEST COND	ITIONS
Collector-Base Breakdown Voltage	BV _{CBO}	80		V	I _C =100uA	I _E =0
Collector-Emitter Sustaining Voltage	VCEO(sust)*	40		V	I _C =30mA I	IB=0
Emitter-Base Breakdown Voltage	BV _{EBO}	. 5		v	I _E =10uA	$I_{\mathbf{C}=0}$
Collector Cutoff Current	ICBO	·.	50	nA	ACB_7OA	I _E O
Collector Cutoff Current	I _{CBO}		5	uA	V _{CB} =40V T _A =75°C	I _E =0
Collector-Emitter Saturation Voltage	V _{CE} (sat)		0.25	v	Ic=150mA	IB-15mA
Base-Emitter Saturation Voltage	V _{BE} (sat)		1.1	V	I _C =150mA	I _B =15mA
D.C. Current Gain	h _{FE} *	100	300		V _{CE} =1V	I _C =150=4