General Topology and Fundamental Groups - Homework 6

Philip Warton

March 15, 2021

Problem 1

a)

Let $\pi: X \to Y$ be continuous, and $\sigma: Y \to X$ such that $\pi \circ \sigma = Id_Y$. Show that π is a quotient map.

Proof. This proof will consist of showing the following conditions: π is surjective, $U \subset Y$ is open if and only if $\pi^{-1}(U) \subset X$ is open.

 π is a surjection.

Suppose by contradiction that π is not a surjection. Then $\exists y \in Y$ such that $\pi^{-1}(y) = \emptyset$. However we know that

$$\pi \circ \sigma(y) = Id_Y(y) = y$$

However $\sigma(y)$ is an element of X such that π maps it to y thus $\sigma(y) \in \pi^{-1}(y)$, and the set is not empty (contradiction). Thus π is surjective.

 $U \subset Y$ is open if and only if $\pi^{-1}(U) \subset X$ is open.

Since π is assumed continuous, we have $U \subset Y$ open implies $\pi^{-1}(U) \subset X$ open already granted. Now assume that $U \subset Y$ is some set such that $\pi^{-1}(U)$ is open. Then since σ is continuous it follows that $\sigma^{-1}(\pi^{-1}(U))$ is open in Y. Then we can write

$$\sigma^{-1}(\pi^{-1}(U)) = Id_Y(\sigma^{-1}(\pi^{-1}(U))$$

$$= \pi(\sigma(\sigma^{-1}(\pi^{-1}(U)))$$

$$\subset \pi(\pi^{-1}(U)) = U \qquad \text{(since π is injective)}$$

Then by set theory we get the following result,

$$\begin{split} U &= U \\ Id_Y(U) &= U \\ \pi(\sigma(U)) &= U \\ \pi^{-1}(\pi(\sigma(U))) &= \pi^{-1}(U) \\ \sigma^{-1}(\pi^{-1}(\pi(\sigma(U)))) &= \sigma^{-1}(\pi^{-1}(U)) \\ U &\subset \sigma^{-1}(\sigma(U)) \subset \sigma^{-1}(\pi^{-1}(\pi(\sigma(U)))) &= \sigma^{-1}(\pi^{-1}(U)) \end{split}$$

Since the two are subsets of each other, we get

$$U=\sigma^{-1}(\pi^{-1}(U))$$

So it follows that, of course, U is an open set in Y. Finally having shown both of these conditions, we say that π is a quotient map. \square

b)

Let $A \subset X$ be equipped with the subspace topology. A retraction of X onto A is a continuous map $r: X \to A$ such that r(a) = a for all $a \in A$. Show that any retraction r is a quotient map.

Proof. We know that $a \in r^{-1}(a)$ for any $a \in A$, which gives us r is an injection trivially. Then we wish to show that $r^{-1}(U)$ being open in X implies U is open in A. Note that since r is surjective and for any subset $U \subset A$, r(U) = U, it must be the case that

$$U \cap A = U$$
$$r(r^{-1}(U)) \cap r(A) = r(U)$$
$$r^{-1}(U) \cap A = U$$

Then since $r^{-1}(U)$ is open by assumption, U is open in the subspace topology of A by definition. Thus it follows that r is a quotient map by the critereon met for 1a.

Problem 2

Let $\pi: X \to Y$ be a quotient map. Suppose that the saturation of any open set in X is open. Show that π is an open map. Does the analogous statement hold with closed sets and closed maps?

Open

Proof. Suppose by contradiction that π is not an open map. Then $\exists U \subset X$ open such that $\pi(U)$ is not open. Denote $V = \pi(U)$. Then since π is a quotient map we know that $V \subset Y$ is open if and only if $\pi^{-1}(V)$ is open. That is, if V is not open then we have $\pi^{-1}(\pi(U))$ is not open in X (contradiction).

Now for closed sets.

Closed

We repeat the same argument for π being a closed maps, since the condition of quotient maps stating $U \subset Y$ is open if and only if $\pi^{-1}(U)$ is open yields a similar property of closed sets. Let us first prove this fact.

Proof. Let $q: X \to Y$ be a quotient map. We want to show that $C \subset Y$ is closed if and only if $q^{-1}(C) \subset X$ is closed.

 \implies Let $C \subset Y$ be an arbitrary closed set. We know that q is continuous, thus $q^{-1}(C)$ is closed.

 \sqsubseteq Let $q^{-1}(C)$ be a closed saturated set in X. Then we know

$$X \setminus q^{-1}(C) = q^{-1}(Y) \setminus q^{-1}(C)$$
$$= q^{-1}(Y \setminus C)$$

Since $q^{-1}(Y \setminus C)$ is an open set in X it must be the case that $Y \setminus C$ is open in Y, hence C is closed.

Now the same argument for open sets should follow quite easily.

Proof. Suppose that π is not a closed map. Then $\exists C \subset X$ that is closed such that $\pi(C)$ is not. Denote $D = \pi(C)$. Then we know that D is closed if and only if $\pi^{-1}(D)$ is closed. Thus if D is not closed $\pi^{-1}(D) = \pi^{-1}(\pi(C))$ is not closed. However, this contradicts the assumption that for every closed set C its saturation $\pi^{-1}(\pi(C))$ is closed.

Problem 3

a)

Let $\pi_i: X_i \to Y_i, i=1,2,\cdots,n$ be continuous, surjective, and open. Show that the map $\pi=\pi_1\times\pi_2\times\cdots\times\pi_n: X_1\times X_2\times\cdots\times X_n\to Y_1\times Y_2\times\cdots\times Y_n$ is a quotient map.

Proof. We will prove this for the case of a product of two spaces, and naturally since π maps topological spaces, this will clearly extend to any finite product. We start by writing

$$\pi = \pi_1 \times \pi_2 : X_1 \times X_2 \rightarrow Y_1 \times Y_2$$

Continuity

Let $U \subset Y_1 \times Y_2$ be open, it can be written as $U = U_1 \times U_2$ where $U_1 \subset Y_1$ and $U_2 \subset Y_2$ are open. Then

$$\pi^{-1}(U) = \{(a,b) : \pi(a,b) \in U_1 \times U_2\}$$

$$= \{(a,b) : a \in \pi_1^{-1}(U_1), b \in \pi_1^{-2}(U_2)\}$$

$$= \pi_1^{-1}(U_1) \times \pi_2^{-1}(U_2)$$

Since this is a product of open sets in X_1, X_2 respectively, it is an open set. Therefore π is continuous.

Surjectivity

Let $(y_1, y_2) \in Y_1 \times Y_2$. Since π_1, π_2 are surejctive, $\exists x_1 \in X_1, x_2 \in X_2$ such that $\pi_1(x_1) = y_1, \pi_2(x_2) = y_2$ therefore $\pi(x_1, x_2) = (y_1, y_2)$. So we have shown that π is surjective.

Open Map Property

Let $U \subset X_1, V \subset X_2$ be open and equivalently $U \times V \subset X_1 \times X_2$ be open. Then we say $\pi(U \times V) = \pi_1(U) \times \pi_2(V)$. Since π_i are open maps, we have a product of open sets, thus an open set. Therefore π is an open map.

b)

Let X be T2 and suppose that $K \subset X$ is compact. Show that X/K is T2.

Proof. Let $x \neq y \in X/K$. If both are equal to K, then the points are not distinct. If neither are equal to K, then they must be singleton points in $X \setminus K$. Then since they are points in X which is T_2 , choose two neighborhoods U, V of x, y respectively such that they are disjoint. Then since K is compact in a T_2 space, we say that K must be closed. So we can take the following sets,

$$U \cap (X \setminus K), \quad V \cap (X \setminus K)$$

These will be open neighborhoods of x and y that are disjoint from each other, and also disjoint from K, so they will remain disjoint under this quotient topology. Thus we have two disjoint neighborhoods of x and y in X/K. Suppose that $x = K, y \neq K$. Then we must show that distinct neighborhoods around K, and some point $y \in X \setminus K$ both exist. Let U(a) be a set around a point $a \in K$ such that it is disjoint from a set V(y) which is a neighborhood of Y. Since K is compact, we know

$$K = \bigcup_{a \in K} U(a) \cap K = \bigcup_{i=1}^{n} U(a_i) \cap K$$

Then for each set $U(a_i)$, we know that there is some $V_i(y)$ that is disjoint from it. So then it follows that the following sets will be the distinct open neighborhoods we require,

$$K \subset \bigcup_{i=1}^{n} U(a_i), \quad y \in \bigcap_{i=1}^{n} V_i(y)$$

Thus under the quotient map, these sets will remain disjoint because only one intersects K and both are disjoint in X. Thus for any two distinct points in X/K we have disjoint open neighborhoods of each, and we say that the space X/K is itself T_2 .

Problem 4

The K-topology \mathbb{R}_K on the real axis is generated by the basis consisting of all open intervals (a,b), a < b, and the sets $(a,b) \setminus K$, where $K = \{1/n | n \in \mathbb{N}\}$. Let \mathbb{R}_K/K be equipped with the quotient topology and let π denote the quotient map.

a)

Show that \mathbb{R}_K/K is T1 but not T2.

Proof. Let $x,y \in \mathbb{R}_K/K$. We want to show that there exists some neighborhood U containing x and not y. If $x,y \neq [K]$, then choose $U = \mathbb{R} \setminus \{y\}$. Since $[K] \in U$, we know that its pre-image $\pi^{-1}(U) = \mathbb{R} \setminus \{y\} = (-\infty,y) \cup (y,\infty)$ which is open in \mathbb{R}_K . Thus $U \subset \mathbb{R}_K/K$ is open in the quotient space and contains x and not y. Now suppose that x = [K]. The same arugment still holds since $U = \mathbb{R} \setminus \{y\}$ still contains K. Suppose that y = [K], then let $x \in X$ such that $x \in X$ and $x \in X$ take the set $x \in X$. Clearly the

set contains x and not y. Since it is disjoint from K its pre-image is equal to the set so $\pi^{-1}(U) = U = (a,b) \setminus K$. This set is clearly open in \mathbb{R}_K thus $U \subset \mathbb{R}_K/K$ is open.

To show that it is not T2, take the points $0, K \in \mathbb{R}_K/K$. Since every 1/n is contained in K, for each of these we must have some interval of the form $(a,b) \ni 1/n$ that lies within any open neighborhood of K, since open intervals of the other form are disjoint from K. Then for any $\epsilon > 0$ there exists a point not of the form 1/n in the interval $(0,\epsilon)$. Thus it follows that any open neighborhood of 0, even of the form $(a,b) \setminus K$ will still intersect any open neighborhood of K. Therefore these two points are not completely seperated, and \mathbb{R}_K/K is not T2.

b)

Show that $\pi \times \pi : \mathbb{R}_K \times \mathbb{R}_K \to \mathbb{R}_K / K \times \mathbb{R}_K / K$ is not a quotient map.

Proof. We know (by a previous HW problem) that the diagonal, denoted by Δ , of a product space is closed if and only if the original space is Hausdorff (that is, T2). So it follows that since \mathbb{R}_K/K is not T2, Δ is not closed. Take $(\pi \times \pi)^{-1}(\Delta)$. This will be the set

$$\{(x,y) \in \mathbb{R}_K \times \mathbb{R}_K : \pi(x) = \pi(y)\}\$$

This will consist of all pairs of identical points obviously, and also of all points in $K \times K$, since each of these are appended to each other. So we can write the set as $K \times K \cup \{(x,x) \in \mathbb{R}^2\}$. We argue that this set is equal to its closure in \mathbb{R}^2_K . Let $(x,y) \in \mathbb{R}^2_K \setminus (\pi \times \pi)^{-1}(\Delta)$. Then if neither x or y is in K, then pick two disjoint neighborhoods of x and y which are also both disjoint from K, that is pick $U \ni x, V \ni y$ such that $U \cap V = \emptyset, U \cap K = \emptyset, V \cap K = \emptyset$. This is guaranteed since K is closed, so take two disjoint neighborhoods and intersect them with the complement of K. Then it follows that $(x,y) \in U \times V$ and that this is a neighborhood of that point disjoint from $(\pi \times \pi)^{-1}(\Delta)$. Suppose that x or y belongs to K. Then take two disjoint intervals $x \in (a,b), y \in (c,d)$ such that $y \notin (a,b), x \notin (c,d)$. Also we add that whichever interval contains the point not in K be restricted to K's complement. Then if x belongs to K, we have the neighborhood

$$(a,b) \times ((c,d) \setminus K)$$

If $y \in K$ we take

$$((a,b)\setminus K)\times (c,d)$$

And it follows that these are disjoint from $(\pi \times \pi)^{-1}(\Delta)$ by construction. Therefore any point in the complement of the pre-image of the diagonal has a neighborhood that is contained within the complement of the pre-image of the diagonal. Therefore the pre-image of the diagonal is closed. So we say that Δ is not closed and $(\pi \times \pi)^{-1}(\Delta)$ is, therefore $\pi \times \pi$ is not a quotient map.