<u>proposition</u> for any real symmetric matrix $A \in \mathbf{R}^{n \times n}$	there exists an orthonormal basis of \mathbb{R}^n diagonalizing A .

<u>proof</u> by induction. first, we find an eigenvector for A, as follows. let v be a minimizer of the function $f(x) = x^t A x$ on the unit sphere $\{x \in \mathbf{R}^n \mid g(x) = x^t x = 1\}$. by the method of Lagrange multipliers, there exists some real λ for which $\nabla f|_v = \lambda \nabla g|_v$, which reads $Av = \lambda v$. to finish, we note the following.

exercise let A be a real symmetric matrix, v a unit norm eigenvector. then v^{\perp} is A-stable. furthermore, $A' = A|_{v^{\perp}}$: $v^{\perp} \to v^{\perp}$ is self adjoint.