Math 1700: Elementary Statistics

7^{th} and 8^{th} Weeks Summary (10/16/25)

- Inference about the value of the population mean, μ .
- Estimating the value of a population parameter (μ) .

Point estimate for a parameter (\bar{x})

Interval estimate $(\bar{x} - E, \bar{x} + E)$

- Level of confidence (1α) : The portion of all interval estimates that include the parameter being estimated.
- Confidence interval for μ : An interval estimate with a specified level $(1-\alpha)$ of confidence:

$$(\bar{x}-z(\alpha/2)\frac{\sigma}{\sqrt{n}},\bar{x}+z(\alpha/2)\frac{\sigma}{\sqrt{n}})$$

Maximum error of Estimate: $E = z(\alpha/2) \left(\frac{\sigma}{\sqrt{n}}\right)$

Confidence Interval Applet

• Required Sample size for a specific level of confidence, $(1 - \alpha)$:

$$n = \left(\frac{z(\alpha/2)\sigma}{E}\right)^2$$

• Testing a hypothesis.....

Null Hypothesis:

 $H_0: \mu = \mu_0$

Alternative (Research) Hypotheses:

 $H_a: \mu < \mu_0, \text{ or }$

 $H_a: \mu > \mu_0$, or

 $H_a: \mu \neq \mu_0$

• Type of Errors:

Type I Error or Level of Significance (α):

Falsely Rejecting H_0

Type II Error (β) :

Falsely Fail to Reject H_0

• Test Statistic:

$$z^* = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$$

• Hypothesis Test Approaches

Classical Approach

P-value Approach

• P-value Approach HT: A 5-step Procedure

Step 1 The Set-Up

Step 2 The Hypothesis Test Criteria

Step 3 The Sample Evidence

Step 4 The Probability Distribution

Step 5 The Results

p-Value in Right Tail table value p-value

Case 2 H_a contains "<" "Left tail"

p-Value in Left Tail

Case 3 H_a contains " \neq " "Two-tailed"

• Classical approach of Hypothesis Testing.....

Case 1: One Variable (Population)

Assumptions	σ is known	σ is unknown
Parameter of interest:	Mean, μ	Mean, μ
Confidence Interval Formula:	$\bar{x} \pm z(\alpha/2) \frac{\sigma}{\sqrt{n}}$	$\bar{x} \pm t(df, \alpha/2) \frac{s}{\sqrt{n}}$ with $df = n - 1$
Name of Hypothesis Test, H_0	One sample z -test, H_0 : $\mu=\mu_0$	One sample t -test, H_0 : $\mu=\mu_0$
Test Statistic Formula:	$z^* = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$	$t^* = rac{ar{x} - \mu_0}{{}^S/\sqrt{n}}$ with $df = n-1$
p-value:	H_a : $\mu > \mu_0$, p-value= $P(z \ge z^*)$ H_a : $\mu < \mu_0$, p-value= $P(z \le z^*)$ H_a : $\mu \ne \mu_0$, p-value= $P(z \ge z^*)$	$\begin{aligned} &H_a \colon \mu > \mu_0 \text{, p-value} = &P(t(df) \geq t^*) \\ &H_a \colon \mu < \mu_0 \text{, p-value} = &P(t(df) \leq t^*) \\ &H_a \colon \mu \neq \mu_0 \text{, p-value} = &2 \times P(t(df) \geq t^*) \end{aligned}$