1. In HOMEWORK #1, we approximated f'(x) for $f(x) = e^{\sin x}$ and $x = \pi$ using the one-sided stencil

$$f'(x) \simeq \frac{f(x+h) - f(x)}{h},$$

with $h=10^{-1},10^{-2},\ldots,10^{-9}$. As observed, the error in the approximation got smaller as h decreased. However, eventually a value of h was reached, after which the error actually got worse as h was decreased even further. Assuming double precision arithmetic, estimate the *optimal value* of h for which the stencil above best approximates f'(x). How does your estimate compare with the results from HOMEWORK #1? *Hint:* Assume that the computer does not perform a function evaluation $f(\xi)$ exactly, rather it computes $\hat{f}(\xi) = f(\xi) + \delta$, where δ is a number which depends on ξ and is about $\varepsilon_{\text{mach}}$ in size.

- 2. Use the bisection method and the MATLAB function fzero to compute all three real numbers x satisfying $e^{x-2} + x^3 x$. For each of the three roots and each method, use a tolerance of 10^{-8} and list both your initial approximation (or interval in the case of bisection) and the number of iterations needed. Also print at least nine digits for each approximate root.
- **3.** Find each fixed point and decide whether Fixed Point Iteration is locally convergent to it: (a) $g(x) = x^2 \frac{3}{2}x + \frac{3}{2}$, (b) $g(x) = x^2 + \frac{1}{2}x \frac{1}{2}$.
- **4.** Assume that $\varphi(x)$ is a continuously differentiable function and that $x = \varphi(x)$ has exactly three fixed points, -3, 1, and 2. Assume that (i) $\varphi'(-3) = 2.4$ and (ii) fixed point iteration started sufficiently near the fixed point 2 converges to 2. What is $\varphi'(1)$? Justify your answer graphically.