Chapitre 3

Nombres complexes (I)

Premières propriétés

$$i^2 = -1$$

Les nombres complexes furent introduits au XVI^e siècle par les mathématiciens italiens Jérôme Cardan, Raphaël Bombelli, Nicolo Fontana et Ludovico Ferrari afin d'exprimer les solutions des équations du troisième degré

$$ax^3 + bx^2 + cx + d = 0.$$

Ces nombres ont d'abord été pour les mathématiciens des « astuces de calcul » leur permettant de trouver des solutions réelles d'équations algébriques. Ce n'est que petit à petit qu'ils sont devenus des nombres « à part entière ».

De manière a priori surprenante, de nombreux théorèmes mathématiques s'expriment d'une manière plus satisfaisante dans \mathbb{C} que dans \mathbb{R} , ce qui fait souvent de \mathbb{C} le contexte naturel pour étudier un problème.

Sommaire

I. Nombres complexes	3
1) Définition des nombres complexes	
2) Partie réelle et partie imaginaire	4
3) Un exemple de propriété	5
4) Inverse d'un nombre complexe	6
5) Méthode de la quantité conjuguée	7
II. Conjugaison complexe	7
1) Définition	7
2) Propriétés fondamentales	7
3) Conjugaison et parties réelle et imaginaire	8
III. Module	9
1) Définition	9
2) Propriétés du module	9
3) Retour sur l'inverse	10
IV. Forme trigonométrique d'un nombre complexe	10
1) Définition	10
2) Lien avec le module	11
V. Affixes	11
1) Affixe d'un point	11
2) Affixe d'un vecteur	
3) Affixe et forme trigonométrique	12

Nombres complexes (I) 2/12

I. Nombres complexes

1) Définition des nombres complexes

Nous ne construirons pas dans ce cours les nombres complexes. Donnons quand même rapidement l'idée. On munit \mathbb{R}^2 de deux opérations + et \times définies par :

$$(a,b) + (a',b') := (a+a',b+b')$$

 $(a,b) \times (a',b') := (aa'-bb',ab'+a'b)$

pour $a, a', b, b' \in \mathbb{R}$.

On note [i := (0,1);] si $x \in \mathbb{R}$, on note encore x le couple (x,0). On peut alors calculer

$$i^2 = i \times i = (-1, 0) = -1.$$

Théorème CPL.1

Il existe un ensemble $\mathbb C$ tel que :

- (i) $\mathbb C$ est muni d'opérations + et \times vérifiant « les propriétés habituelles » ;
- (ii) \mathbb{C} contient \mathbb{R} ;
- (iii) \mathbb{C} possède un élément remarquable, qu'on note i et qui vérifie $i^2 = -1$;
- (iv) on a

$$\forall z \in \mathbb{C}, \ \exists ! (a, b) \in \mathbb{R}^2 : z = a + ib.$$

Remarques

• Par « propriétés habituelles », on entend par exemple

$$\triangleright \forall z, z' \in \mathbb{C}, \ z + z' = z' + z$$

$$\triangleright \forall z, z' \in \mathbb{C}, \ z \times z' = z' \times z$$

$$\triangleright \forall u, v, w \in \mathbb{C}, (u+v) \times w = u \times w + v \times w$$

> etc.

- En fait, en plus de demander que $\mathbb{R} \subset \mathbb{C}$, on doit aussi imposer que si $x, y \in \mathbb{R}$, les résultats de x + y et $x \times y$ soient les mêmes quand ces opérations sont effectuées dans \mathbb{R} ou dans \mathbb{C} .
- La démonstration de ce théorème est admise mais elle ne pose pas de difficulté : comme dit plus haut, on peut par exemple construire $\mathbb C$ en tant que $\mathbb R^2$. Cependant, il y a plusieurs autres manières de construire $\mathbb C$.
- On note $\mathbb{C}^* := \mathbb{C} \setminus \{0\}$.

Définition CPL.2

Soit $z \in \mathbb{C}$. La forme algébrique de z est son unique écriture $z = a + \mathrm{i}b$, avec $a, b \in \mathbb{R}$.

Partie réelle et partie imaginaire 2)

a) Définition

L'assertion (iv) du théorème CPL.1 permet de définir les parties réelle et imaginaire d'un nombre complexe :

Définition CPL.3

Soit $z \in \mathbb{C}$. D'après, le point (iv) du théorème CPL.1, il existe un unique $a \in \mathbb{R}$ et un unique $b \in \mathbb{R}$ tels que z = a + ib.

- 1) Le nombre a est appelé partie réelle de z et est noté Re(z).
- 2) Le nombre b est appelé partie imaginaire de z et est noté Im(z).

Exemples

- Re(1+i)=1
- Im(1-i) = -1

On dispose donc de deux fonctions

$$\operatorname{Re}: \mathbb{C} \longrightarrow \mathbb{R} \ \text{et } \operatorname{Im}: \mathbb{C} \longrightarrow \mathbb{R}.$$

On a, par définition,

$$\forall z \in \mathbb{C}, \quad z = \operatorname{Re}(z) + i \operatorname{Im}(z).$$

On a aussi:

$$\forall z, z' \in \mathbb{C}, \quad \begin{cases} \operatorname{Re}(z) = \operatorname{Re}(z') \\ \operatorname{Im}(z) = \operatorname{Im}(z') \end{cases} \implies z = z'.$$

Fait CPL.4

Soit $z \in \mathbb{C}$. On a

1)
$$z = 0 \iff (\operatorname{Re}(z) = 0 \text{ et } \operatorname{Im}(z) = 0)$$

2)
$$z \neq 0 \iff (\operatorname{Re}(z) \neq 0 \text{ ou } \operatorname{Im}(z) \neq 0)$$

b) Additivité des parties réelle et imaginaire

Fait CPL.5

Les fonctions partie réelle et partie imaginaire sont « compatibles » avec l'addition.

1) Soient $u, v \in \mathbb{C}$. Alors, on a

$$Re(u + v) = Re(u) + Re(v);$$

$$Im(u + v) = Im(u) + Im(v).$$

2) Soient $n \in \mathbb{N}^*$ et $z_1, \ldots, z_n \in \mathbb{C}$. Alors, on a

$$\operatorname{Re}\left(\sum_{k=1}^{n} z_{k}\right) = \sum_{k=1}^{n} \operatorname{Re}(z_{k});$$
$$\operatorname{Im}\left(\sum_{k=1}^{n} z_{k}\right) = \sum_{k=1}^{n} \operatorname{Im}(z_{k}).$$

$$\operatorname{Im}\left(\sum_{k=1}^{n} z_k\right) = \sum_{k=1}^{n} \operatorname{Im}(z_k).$$

c) Les parties réelle et imaginaire ne sont pas multiplicatives!

A Attention

En général, on n'a pas $\text{Re}(u \times v) = \text{Re}(u) \times \text{Re}(v)$! C'est complètement faux. Par exemple, on a $\text{Re}(i^2) = -1 \neq 0^2.$

De même pour la partie imaginaire.

On a cependant un résultat partiel :

Fait CPL.6

Soient $z \in \mathbb{C}$ et $t \in \mathbb{R}$. Alors on a

$$Re(tz) = t Re(z)$$
 et $Im(tz) = t Im(z)$.

Remarque

On dit que les parties réelle et imaginaire sont \mathbb{R} -linéaires.

Exercice CPL.7

Démontrer les trois faits précédents.

d) Bilan

On retiendra:

Les parties réelles et imaginaires sont compatibles à la somme mais pas au produit.

3) Un exemple de propriété

Les réflexes calculatoires que vous avez acquis par le passé concernant les nombres réels restent encore valables dans \mathbb{C} . En voilà un exemple :

Propriété CPL.8

On $a: \forall z \in \mathbb{C}, \ 0 \times z = 0.$

Démonstration. — Soit $z \in \mathbb{C}$. L'une des « propriétés usuelles » que les opérations de \mathbb{C} doivent vérifier est

$$\forall u, v, w \in \mathbb{C}, \quad u \times (v \times w) = (u \times v) \times w.$$

Ainsi, on a

$$2 \times (0 \times z) = (2 \times 0) \times z$$

Or, 2×0 peut être calculé dans \mathbb{R} : on sait que $2 \times 0 = 0$. Ainsi, on a

$$2 \times (0 \times z) = 0 \times z \qquad ie \qquad (0 \times z) + (0 \times z) = 0 \times z. \tag{*}$$

En soustrayant des deux côtés le nombre $0 \times z$ à (*), on obtient : $0 \times z = 0$.

Nombres complexes (I) 5/12

4) Inverse d'un nombre complexe

Soit $z \in \mathbb{C}$ qu'on écrit z = a + ib, avec $a, b \in \mathbb{R}$.

On veut savoir « si z est inversible ». Mathématiquement, on se pose la question :

l'assertion «
$$\exists \omega \in \mathbb{C} : z \times \omega = 1$$
 » est-elle vraie?

Pour commencer, faisons deux remarques :

- Si un tel ω existe, on pourra le noter $\frac{1}{z}$.
- Premier élément de réponse : 0 n'est pas inversible.
 - ⊳ Déjà, cela doit être un réflexe pour vous : on ne peut pas diviser par 0, ie 0 n'est pas inversible.
 - \triangleright Démontrons-le par l'absurde en choisissant $\omega \in \mathbb{C}$ tel que $0 \times \omega = 1$. Or on a $\forall z \in \mathbb{C}, 0 \times z = 0$. Donc, on a 0 = 1, ce qui est absurde.

On suppose donc $z \neq 0$ ie $a \neq 0$ ou $b \neq 0$. On va raisonner par analyse-synthèse.

Analyse. On suppose qu'il existe $\omega \in \mathbb{C}$ tel que $z \times \omega = 1$. On fixe un tel ω et on écrit $\omega = \alpha + \mathrm{i}\beta$ avec $\alpha, \beta \in \mathbb{R}$. On a donc

$$(a+ib)(\alpha+i\beta) = 1$$

$$ie \qquad a\alpha - b\beta + i(a\beta + \alpha b) = 1.$$

Donc, par identification des parties réelles et imaginaires, on a

$$(S): \begin{cases} a\alpha - b\beta = 1 \\ a\beta + \alpha b = 0 \end{cases}.$$

Utilisons l'astuce suivante : comme $a \neq 0$ ou $b \neq 0$, on est assuré que $a^2 + b^2 \neq 0$. Pour être plus précis, on sait même que :

Fait CPL.9

Soient $a, b \in \mathbb{R}$. Alors, on a

$$(a = 0 \text{ et } b = 0) \iff a^2 + b^2 = 0.$$

Ainsi, porté par cette idée $\dot{\Psi}$, on va faire apparaître dans le système (S) la quantité $a^2 + b^2$. En multipliant la première ligne de (S) par a et la seconde par b, on obtient :

$$\begin{cases} a^2\alpha - ab\beta = a \\ ab\beta + \alpha b^2 = 0 \end{cases}.$$

En ajoutant ces deux égalités, on obtient $\alpha(a^2 + b^2) = a$ et donc

$$\alpha = \frac{a}{a^2 + b^2}.$$

Exercice CPL.10

En suivant la même méthode, trouver β .

Analyse. Une fois la valeur de β trouvée, on peut vérifier que ça marche.

5) Méthode de la quantité conjuguée

Maintenant qu'on sait que tout nombre complexe non nul est inversible, on peut écrire $\frac{1}{z}$ si $z \neq 0$. En utilisant la méthode suivante, qui permet de « chasser les parties imaginaires du dénominateur », on retrouve facilement l'expression de l'inverse d'un nombre complexe.

Proposition CPL.11

Soient $a, b \in \mathbb{R}$ tels que $a \neq 0$ ou $b \neq 0$. On a

$$\frac{1}{a+\mathrm{i}b} \quad = \quad \frac{1}{a+\mathrm{i}b} \times \frac{a-\mathrm{i}b}{a-\mathrm{i}b} \quad = \quad \frac{a-\mathrm{i}b}{a^2+b^2}.$$

Démonstration. — Elle est laissée au lecteur à titre d'exercice.

Exemple

On a

$$\frac{1}{2-3i} = \frac{2+3i}{(2-3i)(2+3i)} = \frac{2+3i}{2^2-(3i)^2} = \frac{2+3i}{4+9} = \frac{2+3i}{13}$$

II. Conjugaison complexe

1) Définition

Définition CPL.12

Soit $z \in \mathbb{C}$. On appelle conjugué de z et on note \overline{z} le nombre complexe défini par

$$\overline{z} := \operatorname{Re}(z) - i \operatorname{Im}(z).$$

La conjugaison complexe est l'application $z \longmapsto \overline{z}$.

2) Propriétés fondamentales

≌ Proposition CPL.13

La conjugaison complexe est « compatible avec les opérations algébriques » ; on a

- 1) $\forall z, z' \in \mathbb{C}, \quad \overline{z+z'} = \overline{z} + \overline{z'};$
- 2) $\forall z, z' \in \mathbb{C}, \quad \overline{z \times z'} = \overline{z} \times \overline{z'};$
- 3) $\forall z \in \mathbb{C}, \quad \overline{\overline{z}} = z.$

Démonstration. — Elle est laissée au lecteur à titre d'entraînement.

Remarques

- On résume les deux premiers points en disant que « la conjugaison complexe est un automorphisme de corps de $\mathbb C$ ».
- Le troisième point dit que « la conjugaison est une involution ».

On en déduit :

Corollaire CPL.14

On a:

1) pour tous $n \in \mathbb{N}^*$ et pour tout $(z_i)_{1 \leq i \leq n} \in \mathbb{C}^n$,

$$\sum_{i=1}^{n} z_i = \sum_{i=1}^{n} \overline{z_i}.$$

2)
$$\forall z \in \mathbb{C}, \ \forall n \in \mathbb{N}, \quad \overline{z^n} = \overline{z}^n;$$

3)
$$\forall z \in \mathbb{C}^*, \quad \frac{1}{z} = \frac{1}{\overline{z}}$$

3)
$$\forall z \in \mathbb{C}^*, \quad \overline{\frac{1}{z}} = \frac{1}{\overline{z}};$$

4) $\forall z \in \mathbb{C}, \forall z' \in \mathbb{C}^*, \quad \overline{\frac{z}{z'}} = \overline{\frac{\overline{z}}{\overline{z'}}}.$

Exercice CPL.15

Démontrer la proposition précédente et son corollaire.

On retiendra:

La conjugaison est compatible à tout.

Conjugaison et parties réelle et imaginaire 3)

a) Nombres imaginaires purs

Définition CPL.16

Soit $z \in \mathbb{C}$.

- On dit que z est imaginaire pur ssi Re(z) = 0.
- On note alors $z \in i\mathbb{R}$.

b) Caractérisation des nombres réels et des nombres imaginaires purs

On a:

Fait CPL.17

Soit $z \in \mathbb{C}$. Alors,

$$z \in \mathbb{R} \iff \overline{z} = z$$
$$z \in i\mathbb{R} \iff \overline{z} = -z.$$

c) Expression des nombres réels et des nombres imaginaires purs à l'aide de la conjugaison

Fait CPL.18

Soit $z \in \mathbb{C}$. Alors,

$$\operatorname{Re}(z) = \frac{z + \overline{z}}{2}$$
 et $\operatorname{Im}(z) = \frac{z - \overline{z}}{2i}$.

III. Module

1) Définition

Pour commencer, remarquons qu'on a :

Proposition CPL.19

Soit $z \in \mathbb{C}$. Alors, on a

$$z \times \overline{z} = \operatorname{Re}(z)^2 + \operatorname{Im}(z)^2 \in \mathbb{R}_+.$$

Démonstration. — C'est un simple calcul, laissé au lecteur à titre d'exercice.

On peut donc définir :

Définition CPL. 20

Soit $z \in \mathbb{C}$. On appelle module de z et on note |z| le nombre réel positif ou nul défini par

$$|z| \coloneqq \sqrt{\operatorname{Re}(z)^2 + \operatorname{Im}(z)^2}.$$

Exemples

- On a donc $|1+i| = \sqrt{1^2 + 1^2} = \sqrt{2}$.
- Si $a, b \in \mathbb{R}$, on a $|a + ib| = \sqrt{a^2 + b^2}$.

On a:

Fait CPL.21

Soit $z \in \mathbb{C}$. On a $z\overline{z} = |z|^2$.

2) Propriétés du module

Proposition CPL.22

On a.

- 1) $\forall z, z' \in \mathbb{C}, |z \times z'| = |z| \times |z'|;$
- 2) $\forall z \in \mathbb{C}, |z| = 0 \iff z = 0;$
- 3) Si $z \in \mathbb{R}$, le module de z égale la valeur absolue de z.

Démonstration. — Elle est laissée au lecteur à titre d'exercice.

On en déduit :

Corollaire CPL.23

On a:

(i)
$$\forall z \in \mathbb{C}, \ \forall n \in \mathbb{N}, \ |z^n| = |z|^n;$$

(ii)
$$\forall z \in \mathbb{C}^*, \quad \left| \frac{1}{z} \right| = \frac{1}{|z|};$$

(iii)
$$\forall z \in \mathbb{C}, \forall z' \in \mathbb{C}^*, \quad \left| \frac{z}{z'} \right| = \frac{|z|}{|z'|}.$$

Remarque

Les propriétés vérifiées par le module sont multiplicatives.

A Attention

- Il est complètement faux d'affirmer que, en général, |z + z'| = |z| + |z'|.
- Par exemple, on a $|1 + (-1)| \neq |1| + |-1|$.

On retiendra:

Le module est compatible au produit mais pas à la somme.

3) Retour sur l'inverse

On a:

Fait CPL.24

Soit $z \in \mathbb{C}^*$. On a

$$\frac{1}{z} = \frac{\overline{z}}{\left|z\right|^2}.$$

Démonstration. — Elle est laissée au lecteur à titre d'exercice.

IV. Forme trigonométrique d'un nombre complexe

1) Définition

Définition CPL.25

Soit $z \in \mathbb{C}^*$.

ullet Une écriture trigonométrique de z est une écriture de la forme

$$z = r(\cos\theta + i\sin\theta)$$

où r > 0 et $\theta \in \mathbb{R}$.

- Dans ce cas, on dit que θ est un argument de z et on note $\arg(z) \equiv \theta \ [2\pi]$.
- Si de plus $\theta \in [0, 2\pi[$, on dit que θ est l'argument principal de z.

Exemples

- On a $1 + i = \sqrt{2} \left(\frac{1}{\sqrt{2}} + i \frac{1}{\sqrt{2}} \right) = \sqrt{2} \left(\cos(\pi/4) + i \sin(\pi/4) \right).$
- De même, on a $1 i = \sqrt{2}(\cos(-\pi/4) + i\sin(-\pi/4))$.

Remarque

- Pour certains nombres complexes, il n'est pas possible de trouver une forme trigonométrique explicite et simple.
- Pire, les nombres complexes pour lesquels il est « possible » de donner une forme trigonométrique sans fournir d'efforts exceptionnels sont peu nombreux; ce sont ceux correspondant à θ multiple de $\pi/6$, de $\pi/3$, de $\pi/2$ ou de π .
- \bullet Par exemple, il n'est pas possible de donner une expression explicite et simple de 1+5i.

2) Lien avec le module

Proposition CPL.26

Soit $z \in \mathbb{C}^*$ qu'on écrit $z = r(\cos \theta + i \sin \theta)$, où r > 0 et $\theta \in \mathbb{R}$.

Alors, on a

$$r = |z|$$
.

Démonstration. — On calcule

$$|z|^2 = \operatorname{Re}(z)^2 + \operatorname{Im}(z)^2 = r^2(\cos\theta)^2 + r^2(\sin\theta)^2 = r^2(\cos^2\theta + \sin^2\theta) = r^2.$$

Comme $|z| \ge 0$ et $r \ge 0$, on a bien r = |z|.

V. Affixes

On se place dans le plan muni d'un repère orthonormal (O, \vec{i}, \vec{j}) .

1) Affixe d'un point

a) Définition

Définition CPL. 27

Soit M un point du plan, de coordonnées (a, b).

On appelle affixe de M le nombre complexe a + ib. On note M(a + ib).

Exercice CPL.28

On considère le nombre complexe $z := \frac{1+\mathrm{i}}{\sqrt{2}}$; pour $n \in \mathbb{N}$, on note M_n le point d'affixe z^n .

- 1) Représenter les points M₀, M₁, M₂, M₃, M₄ et M₅.
- 2) Que remarquez-vous?

b) Dessin

2) Affixe d'un vecteur

Définition CPL.29

Soit \overrightarrow{v} un vecteur du plan, de coordonnées $\begin{pmatrix} x \\ y \end{pmatrix}$.

- On appelle affixe de \overrightarrow{v} le nombre complexe $x+\mathrm{i} y.$
- On note alors $\vec{v}(x+iy)$.

Exercice CPL.30

Quel est le vecteur d'affixe 1? Quel est le vecteur d'affixe i?

3) Affixe et forme trigonométrique

Soit $z\in\mathbb{C}^*$ qu'on écrit $z=r(\cos\theta+\mathrm{i}\sin\theta),$ où $r\geqslant0$ et $\theta\in\mathbb{R}.$ Soit M le point du plan d'affixe z

Alors,

- $\bullet \ r$ est la distance entre l'origine O et M .
- θ est une mesure de l'angle $(\vec{i}, \overrightarrow{OM})$.

Ie, on a

