METRICS, ALGEBRAS, AND MEASURES

COLTON GRAINGER (MATH 6130 ANALYSIS)

1. Assignment due 2018-09-12

1.1. **Open balls in metric spaces.** Let (X, ρ) be a metric space. We will show that balls in the metric space are open.

Take an arbitrary point in the space $x \in X$ and a radius $\varepsilon > 0$. I claim

$$B_{\rho}(\varepsilon, x) := \{ a \in X : \rho(a, x) < \varepsilon \}$$

is open in X.

Indeed, take a point $a \in B_{\rho}(\varepsilon, x)$ (note that $\rho(a, x) < \varepsilon$). Now consider the radius $\delta = \varepsilon - \rho(x, a) > 0$. We need to show the open ball $B_{\rho}(\delta, a)$ containing the point a, is nested in within a radius ε of x, i.e., we need to show 1 $B_{\rho}(\delta, a) \subset B_{\rho}(\varepsilon, x)$. Well, if $b \in B_{\rho}(\delta, a)$, then $\rho(a, b) < \delta = \varepsilon - \rho(x, a)$, with the triangle inequality we have $\rho(b, x) \le \rho(a, b) + \rho(x, a) < \varepsilon$, hence $b \in B_{\rho}(\varepsilon, x)$.

So for every point a in the open ball $B_{\rho}(\varepsilon, x)$ there's a nested open ball $B_{\rho}(\delta, a)$ such that $a \in B_{\rho}(\delta, a) \subset B_{\rho}(\varepsilon, x)$. By definition, $B_{\rho}(\varepsilon, x)$ is open.

1.2. New metric spaces from old. Let (X, d) be a metric space. Define $\rho: X \times X \to [0, \infty)$ by

$$\rho(x,y) = \frac{d(x,y)}{1 + d(x,y)}.$$

We'll show that ρ is a metric on X.

Key idea. We have some transformation $f:[0,\infty)\to[0,\infty)$ of the metric d given by $f(d)=\frac{d}{1+d}$. Now f is strictly monotone, so order preserving, and concave, so subadditive. We'll make repeated use of the property that

if
$$c, k \in [0, \infty)$$
 and $c \le k$, we have $c(1+k) = c + ck \le k + ck = k(1+c)$ whence $\frac{c}{1+c} \le \frac{k}{1+k}$.

We have equality iff c = k.

Now to show that ρ is a metric, take three arbitrary points $x, y, z \in X$.

- We have y = x iff d(x, y) = 0 iff $\rho(x, y) = 0$, since for the metric transformation defined above f(d(x, y)) = 0 $\rho(x, y)$ and f(0) = 0 and $f^{-1}(0) = 0$.
- Symmetry of ρ is clear from the symmetry of d; consider $\frac{d(x,y)}{1+d(x,y)} = \frac{d(y,x)}{1+d(y,x)}$. To verify the triangle inequality holds in the metric space (X,ρ) , let a=d(y,x), b=d(z,y) and c=d(z,x). We need to show

$$\frac{c}{1+c} \le \frac{a}{1+a} + \frac{b}{1+b}.$$

Note $a,b,c\in[0,\infty)$. Since the triangle inequality holds in the space (X,d), we have $c\leq a+b$. Consider k=a+b. It follows that $c\leq k$ and thus $\frac{c}{1+c}\leq \frac{k}{1+k}$. That is, $\frac{c}{1+c}\leq \frac{a+b}{1+a+b}$ hence, with $a,b\geq 0$,

$$\frac{c}{1+c} \le \frac{a+b}{1+a+b} = \frac{a}{1+a+b} + \frac{b}{1+a+b} \le \frac{a}{1+a} + \frac{b}{1+b},$$

as desired.

Date: 2018-09-01. Compiled: 2018-09-12.

¹We denote "X is a subset of Y" by $X \subset Y$ and "Y is a proper subset of Y" by $X \subseteq Y$.

We conclude that ρ is a metric on X because we've demonstrated

- ρ is nonnegative in general and zero only between identical points,
- ρ is symmetric between points, and
- \bullet ρ has the triangle inequality for distances between any three points.
- (a) Now, for any point $x \in X$ and radius r > 0,

$$B_d(r, x) = B_\rho \left(\frac{r}{1+r}, x\right).$$

We have set equality for points within a radius r of x in (X, d) and points within radius $f(r) = \frac{r}{1+r}$ of x in (X, ρ) where f is the above defended metric transformation.

- (b) Further, if G is an (X, d)-open set, then G is also (X, ρ) -open. That is, G is open in (X, d) iff there's some ball of radius (in the d metric) ε around each point nested in G iff there's some ball of radius $\frac{\varepsilon}{1+\varepsilon}$ (in the ρ metric) around the same point, also nested in G iff G is open in (X, ρ) .
- 1.3. **An algebra of sets.** Let *X* be an uncountable set. Consider the union

$$\mathcal{A} = \{U \subset X : U \text{ is finite}\} \cup \{V \subset X : X \setminus V \text{ is finite}\}.$$

- (a) \mathscr{A} is an algebra of sets of X. Closure under complements is apparent. We have closure under finite unions noting that either
- a union of the E_i is infinite with a finite complement when one of the E_i is infinite, or
- a finite union of the E_i is finite when all of the E_i are finite.

We have closure under intersections by noting that either

- a finite intersection of the E_i has with a finite complement when all of the E_i are infinite, or
- a finite intersection of the E_i is finite when one of the E_i are finite.
- (b) Indeed \mathscr{A} is *not* a σ -algebra of subsets of X, for consider that the infinite intersection of sets with a finite complement may no longer have a finite complement. The smallest σ -algebra containing \mathscr{A} is the algebra where countable unions and countable intersections are allowed, and this is given by relaxing the requirements in the set builder notation to "U is countable" or $X \setminus V$ is countable".
- 1.4. **Rings and** σ -rings [1, No. 1.1]. A family of sets $\mathcal{R} \subset \mathcal{P}(X)$ is called a ring if it is closed under finite unions and differences; a ring that is closed under countable unions is called a σ -ring.
 - a. A ring \mathcal{R} is closed under finite intersections, for each pair of sets E, F in \mathcal{R} , write

$$E \cap F = (E \cup F) \setminus ((E \setminus F) \cup (F \setminus E)).$$

Now a point x is in both E and F if and only if x is in either E or F but not in only F or only F. Respectively, a σ -ring \mathcal{R} is closed under countable intersections, for each countable family of sets E_j write for the

$$\bigcap E_j = \bigcup_{\forall j} E_j \setminus \left[\bigcup_{\forall j} \left(E_j \setminus \cup_{k \neq j} E_k \right) \right]$$

where the unions on the left hand side are countable.

- b. A ring (respectively σ -ring) \mathscr{R} on X is an algebra (respectively σ -algebra) iff $X \in \mathscr{R}$. (\Rightarrow) Suppose that \mathscr{R} is an (σ) algebra. Then $X \in \mathscr{R}$ and so too $A \setminus B = A \cap B^c \in \mathscr{R}$, whence \mathscr{R} is closed under differences, and so \mathscr{R} is a (σ) ring. (\Leftarrow) Suppose that \mathscr{R} is an (σ) ring and $X \in \mathscr{R}$. Then $E^c = X \setminus E \in \mathscr{R}$. So \mathscr{R} is closed under complements, and therefore an (σ) algebra.
- c. Let \mathcal{R} be a σ -ring on X, and take

$$\mathscr{A} = \{ E \subset X : E \in \mathscr{R} \text{ or } E^c \in \mathscr{R} \}.$$

• We assume \mathcal{R} is nonempty.

- We have that \mathscr{A} is closed under countable unions as \mathscr{R} is.
- We have that $E \in \mathscr{A}$ implies $E^c \in \mathscr{A}$; as when $E \in \mathscr{A}$ either E or E^c are in the ring \mathscr{R} , whence, by definition of \mathscr{A} , we conclude $E^c \in \mathscr{A}$.
- d. Let \mathscr{R} be a σ -ring. Take $\mathscr{A} = \{E \subset X : E \cap F \in \mathscr{R} \text{ for all } F \in \mathscr{R}\}$. Note \mathscr{A} contains \mathscr{R} (we think of \mathscr{A} as extending \mathscr{R}) and is therefore closed under countable unions. Further note that $X \in \mathscr{A}$, whence by previous argument can write complements as set differences with the ambient space X, so \mathscr{A} is closed under complements. We conclude \mathscr{A} is a σ -algebra.
- 1.5. The Borel σ -algebra on R [1, No. 1.2]. To demonstrate the Borel σ -algebra $\mathcal{B}_{\mathbf{R}}$ is generated by the following collections of intervals in **R**, note that we need only obtain an expression (in terms of countable unions, countable intersections, and complements) for the open balls as a basis for the standard topology on the real line. From there, we rely on the fact that every open set in the standard topology is a countable union of open balls.
 - That the open intervals generate $\mathcal{B}_{\mathbf{R}}$ follows from the argument above.
 - A countable union of closed intervals of the form $[a + \frac{1}{n}, b \frac{1}{n}]$ is an open ball.
 - A countable union of half-open intervals of the form $[a + \frac{1}{n}, b)$ or $(a, b \frac{1}{n}]$ is an open ball.
 - The union of an open ray with the complement of a open ray is either empty or an open ball.
 - The union of an closed ray with the complement of a closed ray either empty or a closed ball, an infinite union of which form an open ball.
- 1.6. Infinite σ -algebras [1, No. 1.3]. Let \mathcal{M} be an infinite σ -algebra. Then \mathcal{M} contains an infinite sequence of disjoint nonempty sets, and card $(\mathcal{M}) \geq c$.

Proof.

We'll show the existence of a set $\{E_i\}_{i=1}^{\infty}$ of nonempty disjoint events in the σ algebra. We proceed by induction on the number of such disjoint sets, indexed by some function $f: \mathbb{N} \to \mathcal{M}$.

As a base for induction, consider two distinct nonempty events E_1 and E_2 in \mathcal{M} , which exist since \mathcal{M} is infinite.

- Case: $E_2 \setminus E_1$ is empty. Then $E_2 \subsetneq E_1$ (since $E_2 \neq E_1$).
 - So let $f(1) = E_1 \setminus E_2$ (nonempty because E_2 is a proper subset) and
 - $f(2) = E_2$ (nonempty by construction).
- Case: $E_2 \setminus E_1$ is nonempty.
 - Then let $f(1) = E_1$ (nonempty by construction) and
 - $f(2) = E_2 \setminus E_1$ (nonempty in this case).

For the inductive step, suppose that we have a set of n disjoint nonempty events $\{E_i\}_{i=1}^n$. Since \mathcal{M} is infinite, \mathcal{M} contains an E_{n+1} distinct from the finite set of all possible unions of the E_i for $1 \le i \le n$ (there are 2^n of such possible unions, given that $\mathcal{P}(\{\{E_i\}_{i=1}^n\})$ has a natural one-to-one correspondence with the set of such possible unions).

- Case: $E_{n+1} \setminus \left(\bigcup_{i=1}^n E_i \right)$ is empty. Then $E_{n+1} \subsetneq \bigcup_{i=1}^n E_i$ (since E_{n+1} was chosen distinct from unions of the E_i).
 - So let $f(i) = E_i \setminus E_{n+1}$ for all $1 \le i \le n$ (nonempty because E_{n+1} is distinct from the E_i , and contained in their union) and
 - $f(n + 1) = E_{n+1}$ (nonempty by construction).
- Case: $E_{n+1} \setminus \left(\bigcup_{i=1}^n E_i \right)$ is nonempty.
 - Then let $f(i) = E_i$ for all $1 \le i \le n$ (nonempty by construction) and
 - $f(n+1) = E_{n+1} \setminus \left(\bigcup_{i=1}^n E_i \right)$ (nonempty in this case).

In either case, the set $\{f(i)\}_{i=1}^{n+1}$ is a nonempty collection of disjoint events in the σ -algebra, which concludes our induction on n.

Now suppose we've parameterized the sequence of disjoint events in the σ algebra as $\{E_j\}_{j=1}^{\infty}$. There's a natural injection from $2^{\mathbb{N}}$ into \mathscr{M} , namely a bijection between $2^{\mathbb{N}}$ and unions of families in $\mathscr{P}(\{E_j\}_{j=1}^{\infty})$ (consider the possible values of the indicator function which indicates whether some set E_j is or is not included in the union). Whence card $(\mathscr{M}) \geq 2^{\mathbb{N}_0} = \mathfrak{c}$.

1.7. Closure under countable increasing unions [1, No. 1.4]. An algebra \mathscr{A} is an σ -algebra iff \mathscr{A} is closed under countable increasing unions. That is,

if
$$\{E_j\}_1^{\infty} \subset \mathscr{A}$$
 and $E_1 \subset E_2 \subset \cdots$, then $\bigcup_1^{\infty} \in \mathscr{A}$.

- 1.8. Linear combinations of measures [1, No. 1.7]. If μ_1, \ldots, μ_n are measures on (X, \mathcal{M}) and $a_1, \ldots, a_n \in [0, \infty)$, then $\sum_{i=1}^{n} a_i \mu_i$ is a measure on (X, μ) .
- 1.9. Summing sets by union and intersection [1, No. 1.9]. If (X, \mathcal{M}, μ) is a measure space and $E, F \in \mathcal{M}$, then $\mu(E) + \mu(F) = \mu(E \cup F) + \mu(E \cap F)$.
- 1.10. A measure relative to set intersection [1, No. 1.10]. If (X, \mathcal{M}, μ) is a measure space and $E \in \mathcal{M}$, define $\mu_E(A) = \mu(A \cap E)$ for all $A \in \mathcal{M}$.

Then μ_E is a measure.

REFERENCES

[1] G. B. Folland, Real analysis, Second. John Wiley & Sons, Inc., New York, 1999.