Kernel methods I Basis expansion

Topics we'll cover

- 1 Two deviations from linear separability
- 2 Learning quadratic boundaries using basis expansion

Deviations from linear separability

Noise

Find a separator that minimizes a convex loss function related to the number of mistakes.

e.g. SVM, logistic regression.

Systematic deviation

What to do with this?

Adding new features

Actual boundary is something like $x_1 = x_2^2 + 5$.

- This is quadratic in $x = (x_1, x_2)$
- But it is linear in $\Phi(x) = (x_1, x_2, x_1^2, x_2^2, x_1x_2)$

Basis expansion: embed data in a higher-dimensional feature space. Then we can use a linear classifier!

Basis expansion for quadratic boundaries

How to deal with a **quadratic** boundary?

Idea: augment the regular features $x = (x_1, x_2, \dots, x_d)$ with

$$x_1^2, x_2^2, \dots, x_d^2$$

 $x_1x_2, x_1x_3, \dots, x_{d-1}x_d$

Enhanced data vectors of the form:

$$\Phi(x) = (x_1, \dots, x_d, x_1^2, \dots, x_d^2, x_1 x_2, \dots, x_{d-1} x_d)$$

Quick question

Suppose $x = (x_1, x_2, x_3)$. What is the dimension of $\Phi(x)$?

Suppose $x = (x_1, \dots, x_d)$. What is the dimension of $\Phi(x)$?

Perceptron revisited

Learning in the higher-dimensional feature space:

- w = 0 and b = 0
- while some $y(w \cdot \Phi(x) + b) \leq 0$:
 - $w = w + y \Phi(x)$
 - b = b + y

Perceptron with basis expansion: examples

Perceptron with basis expansion: examples

Kernel methods II The kernel trick

Topics we'll cover

- 1 The kernel trick for quadratic boundaries
- 2 The kernel Perceptron

Adding new features

Actual boundary is something like $x_1 = x_2^2 + 5$.

- This is quadratic in $x = (x_1, x_2)$
- But it is linear in $\Phi(x) = (x_1, x_2, x_1^2, x_2^2, x_1x_2)$

Basis expansion: embed data in a higher-dimensional feature space. Then we can use a linear classifier!

Perceptron with basis expansion

Learning in the higher-dimensional feature space:

- w = 0 and b = 0
- while some $y(w \cdot \Phi(x) + b) \le 0$:
 - $w = w + y \Phi(x)$
 - b = b + y

Problem: number of features has now increased dramatically. For MNIST, with quadratic boundary: from 784 to 308504.

The kernel trick: implement this without ever writing down a vector in the higher-dimensional space!

The kernel trick

1 w is always a linear combination of the $\Phi(x^{(i)})$.

$$w = \sum_{j=1}^{n} \alpha_j y^{(j)} \Phi(x^{(j)})$$

Represent w in **dual** form: $\alpha = (\alpha_1, \dots, \alpha_n)$.

2 Compute $w \cdot \Phi(x)$ using the dual representation.

$$w \cdot \Phi(x) = \sum_{i=1}^{n} \alpha_{i} y^{(i)} (\Phi(x^{(i)}) \cdot \Phi(x))$$

3 Compute $\Phi(x) \cdot \Phi(z)$ without ever writing out $\Phi(x)$ or $\Phi(z)$.

- w = 0 and b = 0
- while some $y^{(i)}(w \cdot \Phi(x^{(i)}) + b) \le 0:$
 - $w = w + y^{(i)} \Phi(x^{(i)})$
 - $b = b + v^{(i)}$

Computing dot products

```
First, in 2-d. Suppose x = (x_1, x_2) and \Phi(x) = (x_1, x_2, x_1^2, x_2^2, x_1x_2). Actually, tweak a little: \Phi(x) = (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2) What is \Phi(x) \cdot \Phi(z)?
```

Computing dot products

Suppose
$$x = (x_1, x_2, ..., x_d)$$
 and
$$\Phi(x) = (1, \sqrt{2}x_1, ..., \sqrt{2}x_d, x_1^2, ..., x_d^2, \sqrt{2}x_1x_2, ..., \sqrt{2}x_{d-1}x_d)$$

$$\Phi(x) \cdot \Phi(z) = (1, \sqrt{2}x_1, ..., \sqrt{2}x_d, x_1^2, ..., x_d^2, \sqrt{2}x_1x_2, ..., \sqrt{2}x_{d-1}x_d) \cdot (1, \sqrt{2}z_1, ..., \sqrt{2}z_d, z_1^2, ..., z_d^2, \sqrt{2}z_1z_2, ..., \sqrt{2}z_{d-1}z_d)$$

$$= 1 + 2\sum_i x_i z_i + \sum_i x_i^2 z_i^2 + 2\sum_{i \neq j} x_i x_j z_i z_j$$

$$= (1 + x_1 z_1 + \dots + x_d z_d)^2 = (1 + x \cdot z)^2$$

For MNIST:

We are computing dot products in 308504-dimensional space. But it takes time proportional to 784, the original dimension!

Kernel Perceptron

Learning from data $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}) \in \mathcal{X} \times \{-1, 1\}$

Primal form:

- w = 0 and b = 0
- while there is some i with $y^{(i)}(w \cdot \Phi(x^{(i)}) + b) \leq 0$:
 - $w = w + y^{(i)} \Phi(x^{(i)})$
 - $b = b + y^{(i)}$

Dual form: $w = \sum_{i} \alpha_{i} y^{(j)} \Phi(x^{(j)})$, where $\alpha \in \mathbb{R}^{n}$

- $\alpha = 0$ and b = 0
- while some i has $y^{(i)}\left(\sum_j \alpha_j y^{(j)} \Phi(x^{(j)}) \cdot \Phi(x^{(i)}) + b\right) \leq 0$:
 - $\alpha_i = \alpha_i + 1$
 - $b = b + y^{(i)}$

To classify a new point x: sign $\left(\sum_{j} \alpha_{j} y^{(j)} \Phi(x^{(j)}) \cdot \Phi(x) + b\right)$.

Kernel Perceptron: examples

Kernel Perceptron: examples

Kernel methods III Kernel SVM

Topics we'll cover

- Mernel SVM
- 2 Polynomial decision boundaries

Step 1: basis expansion

Actual boundary is something like $x_1 = x_2^2 + 5$.

- This is quadratic in $x = (x_1, x_2)$
- But it is linear in $\Phi(x) = (x_1, x_2, x_1^2, x_2^2, x_1x_2)$

Basis expansion: embed data in a higher-dimensional feature space. Then we can use a linear classifier!

Perceptron with basis expansion

Learning from data $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}) \in \mathcal{X} \times \{-1, 1\}$

Primal form of the Perceptron:

- w = 0 and b = 0
- while there is some i with $y^{(i)}(w \cdot \Phi(x^{(i)}) + b) \leq 0$:
 - $w = w + y^{(i)} \Phi(x^{(i)})$
 - $b = b + y^{(i)}$

Problem: w and $\Phi(x)$ can be very high-dimensional.

Solution: work in the dual space, writing

$$w = \sum_{j} \alpha_{j} y^{(j)} \Phi(x^{(j)})$$

Step 2: the kernel trick

Dual form of the Perceptron:

- $\alpha = 0$ and b = 0
- while some i has $y^{(i)}\left(\sum_j \alpha_j y^{(j)} \Phi(x^{(j)}) \cdot \Phi(x^{(i)}) + b\right) \leq 0$:
 - $\alpha_i = \alpha_i + 1$
 - $b = b + v^{(i)}$

Classify a new point x: sign $\left(\sum_{j} \alpha_{j} y^{(j)} \Phi(x^{(j)}) \cdot \Phi(x) + b\right)$.

Does this work with SVMs?

$$(PRIMAL) \quad \min_{w \in \mathbb{R}^d, b \in \mathbb{R}, \xi \in \mathbb{R}^n} \quad ||w||^2 + C \sum_{i=1}^n \xi_i$$
s.t.: $y^{(i)}(w \cdot x^{(i)} + b) \ge 1 - \xi_i$ for all $i = 1, 2, \dots, n$

$$\xi \ge 0$$

(DUAL)
$$\max_{\alpha \in \mathbb{R}^n} \sum_{i=1}^n \alpha_i - \sum_{i,j=1}^n \alpha_i \alpha_j y^{(i)} y^{(j)} (x^{(i)} \cdot x^{(j)})$$
s.t.:
$$\sum_{i=1}^n \alpha_i y^{(i)} = 0$$

$$0 \le \alpha_i \le C$$

Solution: $w = \sum_{i} \alpha_{i} y^{(i)} x^{(i)}$.

Kernel SVM

- **1 Basis expansion.** Mapping $x \mapsto \Phi(x)$.
- **2 Learning.** Solve the dual problem:

$$\max_{\alpha \in \mathbb{R}^n} \sum_{i=1}^n \alpha_i - \sum_{i,j=1}^n \alpha_i \alpha_j y^{(i)} y^{(j)} (\Phi(x^{(i)}) \cdot \Phi(x^{(j)}))$$
s.t.:
$$\sum_{i=1}^n \alpha_i y^{(i)} = 0$$

$$0 \le \alpha_i \le C$$

This yields $w = \sum_i \alpha_i y^{(i)} \Phi(x^{(i)})$. Offset b also follows.

3 Classification. Given a new point x, classify as

$$sign\left(\sum_{i}\alpha_{i}y^{(i)}(\Phi(x^{(i)})\cdot\Phi(x))+b\right).$$

Kernel Perceptron vs. Kernel SVM: examples

Kernel Perceptron vs. Kernel SVM: examples

Polynomial decision boundaries

When the decision surface is a polynomial of order p:

- Let $\Phi(x)$ consist of all terms of order $\leq p$, such as $x_1x_2^2x_3^{p-3}$. (How many such terms are there, roughly?)
- Same trick works: $\Phi(x) \cdot \Phi(z) = (1 + x \cdot z)^p$.

Kernel methods IV The kernel function

Topics we'll cover

- 1 The kernel function
- 2 The RBF kernel

Basis expansion

Suppose we want a decision boundary that is a polynomial of order p:

Add new features to data vectors x:

- Let $\Phi(x)$ consist of all terms of order $\leq p$, such as $x_1x_2^2x_3^{p-3}$.
- Degree-p polynomial in $x \Leftrightarrow$ linear in $\Phi(x)$.
- $\Phi(x) \cdot \Phi(z) = (1 + x \cdot z)^p$.

Kernel SVM

- **1 Basis expansion.** Mapping $x \mapsto \Phi(x)$.
- **2 Learning.** Solve the dual problem:

$$\max_{\alpha \in \mathbb{R}^n} \sum_{i=1}^n \alpha_i - \sum_{i,j=1}^n \alpha_i \alpha_j y^{(i)} y^{(j)} (\Phi(x^{(i)}) \cdot \Phi(x^{(j)}))$$
s.t.:
$$\sum_{i=1}^n \alpha_i y^{(i)} = 0$$

$$0 \le \alpha_i \le C$$

This yields $\alpha = (\alpha_1, \dots, \alpha_n)$. Offset b also follows.

 \odot Classification. Given a new point x, classify as

$$sign\left(\sum_{i}\alpha_{i}y^{(i)}(\Phi(x^{(i)})\cdot\Phi(x))+b\right).$$

Kernel SVM, revisited

- **1** Kernel function. Define a similarity function k(x, z).
- **2 Learning.** Solve the dual problem:

$$\max_{\alpha \in \mathbb{R}^n} \sum_{i=1}^n \alpha_i - \sum_{i,j=1}^n \alpha_i \alpha_j y^{(i)} y^{(j)} k(x^{(i)}, x^{(j)})$$
s.t.:
$$\sum_{i=1}^n \alpha_i y^{(i)} = 0$$

$$0 \le \alpha_i \le C$$

This yields α . Offset b also follows.

3 Classification. Given a new point x, classify as

$$sign\left(\sum_{i}\alpha_{i}y^{(i)}k(x^{(i)},x)+b\right).$$

The kernel function

We never explicitly construct the embedding $\Phi(x)$.

- What we actually use is the **kernel function** $k(x, z) = \Phi(x) \cdot \Phi(z)$.
- Can think of k(x, z) as a **measure of similarity** between x and z.
- Rewrite learning algorithm and final classifier in terms of k.

Kernel Perceptron:

- $\alpha = 0$ and b = 0
- while some i has $y^{(i)}\left(\sum_j \alpha_j y^{(j)} k(x^{(j)}, x^{(i)}) + b\right) \leq 0$:
 - $\alpha_i = \alpha_i + 1$
 - $b = b + y^{(i)}$

To classify a new point x: sign $\left(\sum_{j} \alpha_{j} y^{(j)} k(x^{(j)}, x) + b\right)$.

Choosing the kernel function

The final classifier is a similarity-weighted vote,

$$F(x) = \alpha_1 y^{(1)} k(x^{(1)}, x) + \dots + \alpha_n y^{(n)} k(x^{(n)}, x)$$

(plus an offset term, b).

Can we choose k to be **any** similarity function?

- Not quite: need $k(x,z) = \Phi(x) \cdot \Phi(z)$ for *some* embedding Φ .
- Mercer's condition: same as requiring that for any finite set of points $x^{(1)}, \ldots, x^{(m)}$, the $m \times m$ similarity matrix K given by

$$K_{ij}=k(x^{(i)},x^{(j)})$$

is positive semidefinite.

The RBF kernel

A popular similarity function: the Gaussian kernel or RBF kernel

$$k(x,z) = e^{-\|x-z\|^2/s^2},$$

where s is an adjustable scale parameter.

RBF kernel: examples

RBF kernel: examples

The scale parameter

Recall prediction function: $F(x) = \alpha_1 y^{(1)} k(x^{(1)}, x) + \cdots + \alpha_n y^{(n)} k(x^{(n)}, x)$.

For the RBF kernel, $k(x,z) = e^{-\|x-z\|^2/s^2}$,

- **1** How does this function behave as $s \uparrow \infty$?
- **2** How does this function behave as $s \downarrow 0$?
- 3 As we get more data, should we increase or decrease s?

Combining classifiers

Choosing a classifier

So many choices:

- Nearest neighbor
- Different generative models
- Linear predictors with different loss functions
- Different kernels
- Neural nets
- etc.

Can one **combine** them?

And get a classifier that is better than any of them individually?

Combining simple classifiers

- 1 No one classifier is going to be the final product. So why not keep the individual components simple?
- 2 How to train each constituent classifier?
 On the full training set?
- 3 The full (combined) models may get enormous. Is this bad for generalization?

Decision trees

Topics we'll cover

- 1 The form of a decision tree classifier
- 2 A top-down learning algorithm
- Overfitting

Decision trees

UCSD Medical Center (1970s): identify patients at risk of dying within 30 days after heart attack.

Data set: 215 patients. 37 (=20%) died. 19 features.

Building a decision tree: summary

Greedy algorithm: build tree top-down.

- Start with a single node containing all data points
- Repeat:
 - Look at all current leaves and all possible splits
 - Choose the split that most reduces **uncertainty in prediction**. Several ways to quantify this: Gini index, entropy, etc.

When to stop?

- When each leaf is pure?
- When the tree is already pretty big?
- When each leaf has uncertainty below some threshold?

Overfitting?

Go back a few steps...

Final partition does better on training data, but is more complex. That one point might have been an outlier anyway.

We have probably ended up **overfitting** the data.

Overfitting: picture

Overfitting: perspective

- The training data reflects an underlying reality, so it helps us.
- But it also has chance structure of its own we must avoid modeling this.

Decision tree properties

A flexible and expressive family of classifiers:

- Can accommodate any type of data: numeric or categorical
- Can accommodate any number of classes
- Can fit any data set

But this also means that there is serious danger of overfitting.

Common strategies:

- Stop when leaves are pure enough
- Stop when tree reaches a certain size
- Grow tree, then **prune** with a validation set

Boosting

Topics we'll cover

- Weak learners
- 2 The AdaBoost learning algorithm

Weak learners

It is often easy to come up with a **weak classifier**, one that is marginally better than random guessing:

$$\Pr(h(X) \neq Y) \leq \frac{1}{2} - \epsilon$$

A learning algorithm that can consistently generate such classifiers is called a **weak** learner.

Is it possible to systematically boost the quality of a weak learner?

The blueprint for boosting

Given: data set $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}).$

- Initially give all points equal weight.
- Repeat for t = 1, 2, ...:
 - ullet Feed weighted data set to the weak learner, get back a weak classifier h_t
 - Reweight data to put more emphasis on points that h_t gets wrong
- Combine all these h_t 's linearly

AdaBoost

Data set $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})$, labels $y^{(i)} \in \{-1, +1\}$.

- **1** Initialize $D_1(i) = 1/n$ for all i = 1, 2, ..., n
- **2** For t = 1, 2, ..., T:
 - Give D_t to weak learner, get back some $h_t: \mathcal{X} \to [-1,1]$
 - Compute h_t 's margin of correctness:

$$r_t = \sum_{i=1}^n D_t(i) y^{(i)} h_t(x^{(i)}) \in [-1, 1]$$
 $lpha_t = rac{1}{2} \ln rac{1 + r_t}{1 - r_t}$

- Update weights: $D_{t+1}(i) \propto D_t(i) \exp(-\alpha_t y^{(i)} h_t(x^{(i)}))$
- 3 Final classifier: $H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$

Example (Freund-Schapire)

Training set:

Use "decision stumps" (single-feature thresholds) as weak classifiers

The surprising power of weak learning

Suppose that on each round t, the weak learner returns a rule h_t whose error on the time-t weighted data distribution is $\leq 1/2 - \gamma$.

Then, after T rounds, the training error of the combined rule

$$H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

is at most $e^{-\gamma^2 T/2}$.

Boosting decision stumps and trees

Boosting decision stumps and trees

Boosting decision stumps and trees

Random forests

Topics we'll cover

- 1 Ensembles of tree classifiers
- 2 The random forest construction
- 3 An illustrative experiment

From tree to forest

• Decision tree. Starts overfitting beyond a point.

From tree to forest

• Boosted decision trees. Learning is sequential, slow.

Random forests

Given a data set S of n labeled points:

- For t = 1 to T:
 - Choose n' points randomly, with replacement, from S.
 - Fit a decision tree h_t to these points.
 - At each node restrict to one of k features chosen at random.

Example settings:

- n' = n
- $k = \sqrt{d}$ for *d*-dimensional data

Final predictor: majority vote of h_1, \ldots, h_T .

An ecological prediction problem: "covertype" data

Predict forest type:

- Spruce-fir
- Lodgepole pine
- 5 other classes

54 cartographic/geological features:

- Elevation, slope, amount of shade, ...
- Distance to water, road, . . .
- Soil type

Data set details:

- 49,514 training points
- 445,627 test points

Decision tree

Depth 20: training error 1%, test error 12.6%

Boosted decision trees

Trees of depth 20.

Random forest

Recall:

- Decision tree: depth 20, test error 12.6%
- Boosted decision trees, 10 trees, depth 20: test error 8.7%

Random forest setting: 10 trees, 50% features dropped, depth 40.

- Each individual tree has test error 15% to 17%
- Forest test error: 8.8%