STELLAR CONSENSUS PROTOCOL

HIDENORI SHINOHARA

ABSTRACT. This is my personal notes on the Stellar consensus protocol. This roughly follows the structure of the white paper on https://www.stellar.org/.

Contents

1.	Basic Properties of Quorums]
2.	Dispensable Sets	2
3.	Voting and Ratifying	

1. Basic Properties of Quorums

Definition 1.1. Let V be a set and $Q: V \to 2^{2^V} \setminus \{\emptyset\}$ be a function such that $\forall v \in V, \forall q \in Q(v), v \in q$. Then we call the pair $\langle V, Q \rangle$ a federated Byzantine agreement system, or FBAS for short.

Definition 1.2. Let $\langle V, Q \rangle$ be an FBAS. $U \subset V$ is called a quorum if and only if $\forall v \in U, \exists q \in Q(v), q \subset U$.

Theorem 1.3. In an FBAS $\langle V, Q \rangle$, the union of two quorums is a quorum.

Proof. Let U_1, U_2 be two quorums. Let $v \in U_1 \cup U_2$. Then $v \in U_i$ for i = 1 or i = 2. Then $q \subset U_i$ for some $q \in Q(v)$. Therefore, $q \subset U_1 \cup U_2$, so $U_1 \cup U_2$ is indeed a quorum.

Theorem 1.4. In an FBAS (V,Q), V is a quorum.

Proof. For any $v \in V$, for any $q \in Q(v)$, $q \subset V$. Therefore, V is indeed a quorum.

Example 1.5. One might wonder if the intersection of quorums is always a quorum. However, this is not true in general.

Let $V = \{v_1, ..., v_4\}$ and

- $Q(v_1) = \{\{v_1, v_2, v_3\}, \{v_1, v_2, v_4\}, \{v_1, v_3, v_4\}\},\$
- •
- $Q(v_4) = \{\{v_1, v_2, v_4\}, \{v_1, v_3, v_4\}, \{v_2, v_3, v_4\}\}.$

In other words, $Q(v_i) = \{U \mid U \in 2^V, v_i \in U\}.$

Then $U_1 = \{v_1, v_2, v_3\}$ is a quorum, and $U_2 = \{v_2, v_3, v_4\}$ is a quorum. However, $U_1 \cap U_2 = \{v_2, v_3\}$ is not a quorum because the size of any quorum slice is 3.

Definition 1.6. Let $\langle V, Q \rangle$ be an FBAS. We say $\langle V, Q \rangle$ enjoys quorum intersection if and only if for any pair of quorums $U_1, U_2, U_1 \cap U_2 \neq \emptyset$.

Definition 1.7. Let $\langle V, Q \rangle$ be an FBAS and $B \subset V$. Then the FBAS $\langle V, Q \rangle^B$ is defined to be $\langle V \setminus B, Q^B \rangle$ where $\forall v \in V, Q^B(v) = \{q \setminus B \mid q \in Q(v)\}.$

Theorem 1.8. Definition 1.7 is well-defined. In other words, if $\langle V, Q \rangle$ is an FBAS and $B \subset V$, then $\langle V, Q \rangle^B$ is an FBAS.

Proof. Let $v \in V \setminus B, q' \in Q^B(v)$ be given. Then $q' = q \setminus B$ for some $q \in Q(v)$. By the definition of an FBAS, $v \in q$. Since $v \notin B$, $v \in q \setminus B = q'$. Therefore, $\langle V, Q \rangle^B$ is an FBAS.

Theorem 1.9. Let U be a quorum in FBAS $\langle V, Q \rangle$, let $B \subset V$ be a set of nodes, and let $U' = U \setminus B$. If $U' \neq \emptyset$, then U' is a quorum in $\langle V, Q \rangle^B$.

Proof. Since $U' \neq \emptyset$, it suffices to show that $\forall v \in U', \exists q \in Q^B(v), q \subset U'$. Let $v \in U'$. Then $v \in U$. Since U is a quorum in $\langle V, Q \rangle$, we can find $q \in Q(v)$ such that $q \subset U$. Then $q'=q\setminus B\in Q^B(v)$, and $q'=q\setminus B\subset U\setminus B=U'$. Therefore, U' is a quorum in $\langle V,Q\rangle^B$. \square

Definition 1.10. Let $\langle V, Q \rangle$ be an FBAS and $B \subset V$ be a set of nodes. We say $\langle V, Q \rangle$ enjoys quorum intersection despite B if and only if $\langle V, Q \rangle^B$ enjoys quorum intersection.

Definition 1.11. Let $\langle V, Q \rangle$ be an FBAS and $B \subset V$ be a set of nodes. We say $\langle V, Q \rangle$ enjoys quorum availability despite B if and only if $V \setminus B$ is a quorum in $\langle V, Q \rangle$ or B = V.

2. Dispensable Sets

Definition 2.1. Let $\langle V, Q \rangle$ be an FBAS and $B \subset V$ be a set of nodes. B is called a dispensable set, or DSet, if and only if $\langle V, Q \rangle$ enjoys quorum intersection and availability despite B.

Definition 2.2. Let $\langle V, Q \rangle$ be an FBAS and $v \in V$. v is said to be intact if and only if there exists a DSet B containing all ill-behaved nodes and $v \notin B$. v is said to be befouled if and only if v is not intact.

Theorem 2.3. If B_1 and B_2 are DSets in an FBAS $\langle V, Q \rangle$ enjoying quorum intersection, then $B = B_1 \cap B_2$ is a DSet, too.

Proof. If $B_1 = V$ or $B_2 = V$, then we are done. Suppose otherwise. For any $v \in V$,

$$v \in V \setminus B \iff v \in V \land v \notin B$$

$$\iff v \in V \land (v \notin B_1 \lor v \notin B_2)$$

$$\iff (v \in V \land v \notin B_1) \lor (v \in V \land v \notin B_2)$$

$$\iff (v \in (V \setminus B_1)) \lor (v \in (V \setminus B_2))$$

$$\iff v \in ((V \setminus B_1) \cup (V \setminus B_2)).$$

Thus, $V \setminus B = (V \setminus B_1) \cup (V \setminus B_2)$. By the definition of a DSet, $V \setminus B_1$ and $V \setminus B_2$ are both quorums in $\langle V, Q \rangle$. By Theorem 1.3, $V \setminus B$ is a quorum in $\langle V, Q \rangle$.

We must now show quorum intersection despite B. Let U_a, U_b be quorums in $\langle V, Q \rangle^B$.

• $U_a \setminus B_1$ is a quorum in $(\langle V, Q \rangle^B)^{B_1} = \langle V, Q \rangle^{B_1}$ by Theorem 1.7.

• Similarly, $U_b \setminus B_1$ is a quorum in $\langle V, Q \rangle^{B_1}$, and $U_a \setminus B_2$ and $U_b \setminus B_2$ are both quorums in $\langle V, Q \rangle^{B_2}$.

$$(U_a \setminus B_1) \cup (U_a \setminus B_2) = U_a \setminus (B_1 \cap B_2)$$
$$= U_a \setminus B$$
$$= U_a$$

because U_a is a quorum in $\langle V, Q \rangle^B$. In other words, $(U_a \setminus B_1) \cup (U_a \setminus B_2) \neq \emptyset$. Similarly, $(U_b \setminus B_1) \cup (U_b \setminus B_2) \neq \emptyset$.

Without loss of generality, assume that $U_a \setminus B_1 \neq \emptyset$.

- $V \setminus B_1$ is a quorum in $\langle V, Q \rangle$ because B_1 is a DSet. Similarly, $V \setminus B_2$ is a quorum in $\langle V, Q \rangle$. Because $\langle V, Q \rangle$ enjoys quorum intersection, $(V \setminus B_1) \cap (V \setminus B_2) \neq \emptyset$. In other words, $(V \setminus B_2) \setminus B_1$ is a quorum. By Theorem 1.7, $(V \setminus B_2) \setminus B_1$ is a quorum in $\langle V, Q \rangle^{B_1}$.
- $U_a \setminus B_1$ is a quorum in $(\langle V, Q \rangle^B)^{B_1} = \langle V, Q \rangle^{B_1}$ for the same reason.

Because B_1 is a DSet in $\langle V, Q \rangle$, $\langle V, Q \rangle^{B_1}$ enjoys quorum intersection. Therefore, $(U_a \setminus B_1) \cap ((V \setminus B_2) \setminus B_1) \neq \emptyset$.

$$(U_a \setminus B_1) \cap ((V \setminus B_2) \setminus B_1) = (U_a \cap (V \setminus B_2)) \setminus B_1$$

$$\subset U_a \cap (V \setminus B_2)$$

$$= (U_a \cap V) \setminus B_2$$

$$= U_a \setminus B_2.$$

Thus, $U_a \setminus B_2 \neq \emptyset$. Using the same argument, we can show that $U_b \setminus B_1 \neq \emptyset$ and $U_b \setminus B_2 \neq \emptyset$. Since $U_a \setminus B_1$ and $U_b \setminus B_1$ are quorums in $\langle V, Q \rangle^{B_1}$ and B_1 is a DSet, $(U_a \setminus B_1) \cap (U_b \setminus B_1) \neq \emptyset$ by the definition of a DSet. This implies $(U_a \cap U_b) \setminus B_1 \neq \emptyset$. Therefore, $U_a \cap U_b \neq \emptyset$.

Theorem 2.4. In an FBAS with quorum intersection, the set of befouled nodes is a DSet.

Proof. Let $\langle V, Q \rangle$ be an FBAS with quorum intersection. Let B be the intersection of all DSets that contain all ill-behaved nodes. By Theorem 2.3, B is a DSet.

- Case 1: $v \in B$. Then there exists no DSet B_v such that B_v contains all ill-behaved nodes and $v \notin B_v$. Therefore, v is not an intact node. In other words, v is a befouled node.
- Case 2: $v \notin B$. Then there exists a DSet B_v that contains all ill-behaved nodes and $v \notin B_v$. In other words, v is intact and thus v is not a befouled node.

Therefore, B is precisely the set of befouled nodes and it is a DSet.

3. Voting and Ratifying

Definition 3.1. A node v votes for a statement a if and only if v asserts

- a is valid.
- a is consistent with all statements v has accepted,
- v has never voted against a,
- \bullet v promises never to vote against a in the future.

Note that we haven't defined the definition of acceptance. We will define in the next section, and every theorem in this section does not depend on the definition of acceptance.

Definition 3.2. A quorum U_a ratifies a statement a if and only if every member of U_a votes for a. A node v ratifies a if and only if v is a member of a quorum U_a that ratifies a.

Theorem 3.3. If an FBAS enjoys quorum intersection and contains no ill-behaved node, then two contradictory statements cannot be both ratified.

Proof. Suppose the statement is false and let a, \bar{a} denote two contradictory statements ratified in such an FBAS. Let $U_a, U_{\bar{a}}$ denote quorums ratifying such statements, respectively. By the definition of quorum intersection, $U_a \cap U_{\bar{a}} \neq \emptyset$. Let $v \in U_a \cap U_{\bar{a}}$. This implies that v voted for both a and \bar{a} . However, this goes against the definition of voting. In other words, v must be ill-behaved, which is a contradiction to our assumption.

Theorem 3.4. Let $\langle V, Q \rangle$ be an FBAS. Let $B \subsetneq V$ be a subset containing all the ill-behaved nodes and suppose that $\langle V, Q \rangle^B$ enjoys quorum intersection. Let $v_1 \neq v_2 \in V \setminus B$. If v_1 ratifies a statement a, then v_2 cannot ratify any statement that contradicts a.

Proof. Suppose that the theorem is false and let U_1, U_2 be quorums of v_1, v_2 that ratify a, \bar{a} , respectively where a and \bar{a} are contradictory. Since $v_1 \in U_1 \setminus B$, $U_1 \setminus B \neq \emptyset$. By Theorem 1.9, $U_1' = U_1 \setminus B$ is a quorum in $\langle V, Q \rangle^B$. Similarly, $U_2' = U_2 \setminus B$ is a quorum in $\langle V, Q \rangle^B$. Since $\langle V, Q \rangle^B$ enjoys quorum intersection, $U_1' \cap U_2' \neq \emptyset$. Let $v \in U_1' \cap U_2'$. Then $v \in U_1 \cap U_2$. In order for U_1, U_2 to ratify a, \bar{a} , respectively, v must vote for both a and \bar{a} . However, this is against the definition of voting. v must be an ill-behaved node, so $v \in B$, which is a contradiction because $v \in U_1 \setminus B$.

Theorem 3.5. Let $\langle V, Q \rangle$ be an FBAS with quorum intersection. Then two intact nodes in V cannot ratify contradictory statements.

Proof. Let $v \neq v'$ be two intact nodes in V. Let $B \subset V$ be the set of befouled nodes. Then $v \notin B$ and $v' \notin B$. Since $\langle V, Q \rangle$ is an FBAS with quorum intersection, B is a DSet by Theorem 2.4. By the definition of a DSet (Definition 2.1), $\langle V, Q \rangle^B$ enjoys quorum intersection. By Theorem 3.4, v, v' cannot ratify contradictory statements.

Definition 3.6. Let $\langle V, Q \rangle$ be an FBAS. Let $v \in V$. A subset $B \subset V$ is called v-blocking if and only if $\forall q \in Q(v), q \cap B \neq \emptyset$.

Theorem 3.7. Let $\langle V, Q \rangle$ be an FBAS. Let $B \subset V$. $\langle V, Q \rangle$ enjoys quorum availability despite B if and only if B is not v-blocking for any $v \in V \setminus B$.

Proof.

$$\forall v \in V \setminus B, \neg (B \text{ is } v\text{-blocking}) \iff \forall v \in V \setminus B, \neg (\forall q \in Q(v), q \cap B \neq \emptyset)$$

$$\iff \forall v \in V \setminus B, \exists q \in Q(v), q \cap B = \emptyset$$

$$\iff \forall v \in V \setminus B, \exists q \in Q(v), q \subset V \setminus B$$

$$\iff V = B \text{ or } V \setminus B \text{ is a quorum in } \langle V, Q \rangle$$

$$\iff \langle V, Q \rangle \text{ enjoys quorum availability despite } B$$

Corollary 3.8. Let $\langle V, Q \rangle$ be an FBAS and let $B \subset V$ be the set of befouled nodes. If B is a DSet, B is not v-blocking for any intact v.

Proof. By definition, a node $v \in V$ is intact if and only if $v \notin B$. By Theorem 3.7, $\langle V, Q \rangle$ enjoys quorum availability despite B if and only if B is not v-blocking for any $v \in V \setminus B$. Since B is a DSet, $\langle V, Q \rangle$ enjoys quorum availability despite B. Thus B is not v-blocking for any intact v.