Praca domowa z DUW I, część pierwsza – kinematyka

Zadania do wykonania

- 1. Zbudować w *ADAMS*-ie model, umożliwiający przeprowadzenie analizy kinematycznej mechanizmu przedstawionego na rysunku.
- 2. Napisać w *MATLAB*-ie program, pozwalający na wykonanie analizy kinematycznej tego samego mechanizmu. Do opisu mechanizmu należy wykorzystać współrzędne absolutne.
- 3. Sporządzić raport z przeprowadzonych prac.

Wymagania szczegółowe

- Wymiary mechanizmu należy przyjąć zgodnie z danymi podanymi na rysunku.
- Lokalne układy odniesienia należy umieścić w środkach mas członów (punkty c_i).
- Założyć, że zależność długości x_k siłownika nr k od czasu t ma postać funkcji:

$$x_k = l_k + a_k \sin(\omega_k t + \varphi_k)$$
,

gdzie stałe l_k , a_k , ω_k i φ_k należy dobrać samodzielnie.

- Należy napisać program, który na żądanie obliczy przebiegi położeń, prędkości i przyspieszeń liniowych dowolnego punktu mechanizmu, a także prędkości i przyspieszenia kątowe dowolnego członu.
- Przedział czasu, krok tablicowania obliczeń oraz wymaganą dokładność obliczeń należy przyjąć samodzielnie.
- Program powinien wykrywać osobliwość macierzy Jacobiego i sygnalizować ją użytkownikowi.
- W programie należy umieścić komentarze informujące o sposobie jego obsługi i wyjaśniające wykonywane operacje.
- Program w *MATLAB*-ie można napisać w wersji umożliwiającej analizę tylko jednego mechanizmu lub w wersji pozwalającej na dokonanie analizy kinematycznej dowolnego mechanizmu płaskiego (ta opcja będzie wyżej oceniana).

Tryb zaliczenia

- Pracę domową należy wykonać w zespołach liczących 3 lub 2 osoby. Cały zespół powinien rekrutować się z tej samej grupy laboratoryjnej.
- Termin zaliczenia pierwszej pracy domowej jest ogłaszany na wykładzie. Przedstawienie pracy po narzuconym terminie będzie skutkowało obniżeniem oceny.
- Wykonane modele i programy oceniają osoby prowadzące zajęcia laboratoryjne.
- Przy zaliczeniu konieczna jest obecność wszystkich członków grupy.
- Każdy z członków grupy musi wykazać się znajomością modelu w *ADAMS*-ie i programu w *MATLAB*-ie.

Wskazówki

- Należy zacząć od zbudowania modelu w *ADAMS*-ie, a następnie wykorzystać go do weryfikacji poprawności programu w *MATLAB*-ie. Wyniki uzyskiwane z *ADAMS*-a i *MATLAB*-a muszą być ze sobą zgodne.
- Istotą zadania domowego jest napisanie procedur wykonujących obliczenia i tylko te procedury będą podlegać ocenie. W przypadku pisania programu do analizy dowolnych mechanizmów wystarczy, jeśli dane dotyczące mechanizmu i zadania będą wczytywane z przygotowanego przez użytkownika pliku. Dodatkowe "atrakcje" w postaci okien dialogowych, interfejsu graficznego itp. są mile widziane, lecz nie wpłyną na podwyższenie oceny.

Rysunek 1. Schemat kinematyczny mechanizmu

Tabela 1. Współrzędne charakterystycznych punktów mechanizmu (w układzie globalnym)

		7	7		, ,	,			(11 11111111111111111111111111111111111				
	A	В	D	E	F	G	H	I	J	K	L	M	N
<i>x</i> [m]	0	0.3	0.2	-0.1	-0.2	0	0.5	0.5	0.7	0.8	1	1.3	1.3
y [m]	0	0	0.6	0.7	0.8	1.2	0.8	-0.1	0.3	0.6	-0.5	-0.3	0

Tabela 2. Współrzędne środków mas członów (w układzie globalnym)

	<i>C</i> 1	<i>C</i> 2	<i>C</i> 3	<i>C</i> 4	<i>C</i> 5	<i>C</i> 6	<i>C</i> 7	C8	C 9	C10
<i>x</i> [m]	0	0.4	0.15	0.05	0.45	0.35	0.4	0.65	1.05	1.2
y [m]	0.85	0.75	0.45	0.15	0.6	0.2	0.1	0.25	0.3	-0.25

Na rysunku pokazano konfigurację początkową mechanizmu. Dane umieszczone w tabelach odpowiadają tej właśnie konfiguracji.