

ARNOLD ENGINEERING DEVELOPMENT CENTER, (AEDC)
Tennessee

Prepared For

United States Air Force
AFESC/DEV
Tyndall AFB, Florida
and
HQ AFSC/DEMV
Andrews AFB, Maryland

October 1984

DTIC ELECTE DEC 3 1984

Prepared By

ENGINEERING-SCIENCE
57 Executive Park South, N.E.
Suite 590
Atlanta, Georgia 30329

Approved for public release;
Description Unlimited

ILLUODOCED MI GOVERNMENT EXPENSE

PII Redacted

NOTICE

This report has been prepared for the United States Air Force by Engineering-Science for the purpose of aiding in the Air Force Installation Restoration Program. It is not an endorsement of any product. The views expressed herein are those of the contractor and do not necessarily reflect the official views of the publishing agency, the United States Air Force, nor the Department of Defense.

Copies of the report may be purchased from:

National Technical Information Service 5285 Port Royal Road Springfield, Virginia 22161

Federal Government agencies and their contractors registered with Defense Technical Information Center should direct requests for copies of this report to:

Defense Technical Information Center Cameron Station Alexandria, Virginia 22314

		_	REPORT DOCUME	NTATION PAGE	•		
18. REPORT SECURITY CLASSIFICATION Unclassified			1b. RESTRICTIVE MARKINGS				
Za. SECURI	TY CLASSIFI	CATION AUTHORITY		3. DISTRIBUTION/A			
20 DECLAS	SIFICATION	DOWNGRADING SCHE	DULE	Approved for unlimit		lease; distr	ibution
4. PERFOR	MING ORGAN	IZATION REPORT NUN	IBER(S)	5. MONITORING OR	GANIZATION RE	PORT NUMBERIS)
			•	IRP-Ph	ase I - A	RNOLD AF	S
		NG ORGANIZATION	5h. OFFICE SYMBOL (If applicable)	7a. NAME OF MONIT		ZATION	
		g - Science					
	- • - •	and ZIP Code)	500	76. ADDRESS (City,	State and ZIP Cod	le)	
	ecutive Panta, GA	ark South, Suite 30329	: 590	Tynd a ll AF	B,FL 32403		
	F FUNDING	SPONSORING	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT I	NSTRUMENT ID	ENTIFICATION N	JMBER
	SC / DEMV		1-, -pp.//2002)	F08637 83 G0	005 5000		
Sc. ADDRES	55 (City, State	and ZIP Code)		10. SOURCE OF FUR	IDING NOS.		
Andre	ws AFB, M	D 20334		PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT NO.
		ty Classification) Pha	se I-Records Sear Arnold Engine	ch ering Develop	nent Center	(AEDC), Ten	nessee
12. PERSON	AL AUTHOR	(S)		*			
	OF REPORT	arman, H.D., Har		14. DATE OF REPO	RT (Yr., Mo., Day)	15. PAGE C	OUNT
			<u>4/3/5</u> то <u>84/10/1</u>	1		332	
16. SUPPLE	MENTARY N	- <u>-</u>		•			
17.	COSATI	CODES	18. SUBJECT TERMS (C	onlinue on reverse if ne	cemary and identi	fy by block number	
FIELD	GROUP	SUB. GR.	Installation Re				
	 		Past Solid Wast	te Disposal Si	tes; Ground	Water Conta	mination
19. ABSTRA	ACT (Continue	on reverse if necessary an	d identify by block number	.)			
Engineer practice ees were for the water ar create e protect: leaching	ring Develors at the conductor area for and surface environment on training pit, che and three	lopment Center (facilities were ed to develop a effectively rece water. Twelvental contaminatiing/burning/landemical treatment	evaluated potent AEDC), Tennessee reviewed. Intentistory of waste eiving the wastes sites at the inson. These include fill activities, pond, leach/burn e areas. Follow-	records of prices with particles with particles was evaluated stallation were leaded a landfill/retention reservance, testing	past waste ist and pressives. The including e found to iteaching arearea, and	handling and ent installa environment soils, geolehave potenties, a site was age area, labandoned wa	disposal tion employ- al setting ogy, ground al to ith fire andfill, ter treat-
20. DISTRI	BUTION/AVA	ILABILITY OF ABSTRA	ст	21. ABSTRACT SEC	URITY CLASSIFI	CATION	
UNCLASSI	FIED/UNLIMI	TED T SAME AS RPT.	D DTIC USERS	Unclassifi	ed	•	
22s. NAME	OF RESPONS	IBLE INDIVIDUAL		22b. TELEPHONE N (Include Area Co		22c. OFFICE SYM	BOL
OD FORM	A 1473, 83	APR	EDITION OF 1 JAN 73 I	S ORSOLETE		ASSTETED	-

SECURITY CLASSIFICATION OF THIS PAG

EXECUTIVE SUMMARY

The Department of Defense (DOD) has developed a program to identify and evaluate past hazardous material disposal sites on DOD property, to control the migration of hazardous contaminants, and to control hazards to health or welfare that may result from these past disposal operations. This program is called the Installation Restoration Program (IRP). The IRP has four phases consisting of Phase I, Installation Assessment/Records Search; Phase II, Confirmation/Quantification; Phase III, Technology Base Development; and Phase IV, Operations/Remedial Actions. Engineering-Science (ES) was retained by the United States Air Force to conduct the Phase I, Initial Assessment/Records Search for Arnold Engineering Development Center (AEDC) under Contract No. F08637 83 G0005 5000.

INSTALLATION DESCRIPTION

Arnold Engineering Development Center is located in Coffee and Franklin Counties, Tennessee, midway between Chattanooga and Nashville. The entire AEDC reservation encompasses some 39,000 acres, of which approximately 3,000 acres are devoted to testing and support facilities.

AEDC was constructed in the early 1950's and the initial testing activities got underway in 1953. The Center has since its beginning conducted a wide range of tests and simulations in aerodynamics, propulsion and aerospace systems.

ENVIRONMENTAL SETTING

The environmental setting data reviewed for this investigation identified the following points relevant to AEDC:

1. The mean annual precipitation is 54.17 inches; the net precipitation is +17.17 inches and the one-year, 24-hour rainfall event is estimated to be 3.1 inches. These data indicate that

there is a moderate potential for precipitation to infiltrate the surface soils. Also, there is a moderate potential for runoff and erosion.

- 2. The natural soils on the installation are typically well drained loam and combinations of cherty, silty and clayey loam with moderate permeabilities.
- 3. Surface water, an abundant resource of AEDC, is controlled by underground storm sewers, open ditches, streams and man-made reservoirs.
- 4. The primary water source for AEDC drinking water and process water is Woods Reservoir which is on the installation. Some small wells serve isolated facilities on the installation with potable water.
- 5. A shallow aquifer of limited extent and permeability exists locally within 30 feet of land surface. The shallow aquifer is isolated in most places and is not used as a main source of ground water.
- 6. A shallow confining clay bed underlies the uppermost aquifer and separates it from the deeper Manchester aquifer. The clay bed may be discontinuous in some parts of AEDC and allow ground-water recharge into the Manchester aquifer.
- 7. The Manchester aquifer, a major confined aquifer of the area is a primary source of ground water for water users of AEDC as well as local farms and municipalities.
- 8. The shallow aquifer and the Manchester aquifer are dewatered immediately adjacent to the JP-4 vertical rocket test cell and Mark I aerospace chamber due to continuous pumping from sumps around the test facilities.
- 9. The Chattanooga Shale, a major confining bed of the area, is the lower confining unit for the Manchester aguifer.
- 10. The Gray Bat is a Federally and State listed endangered species which inhabits the Elk River Dam.
- 11. AEDC comprises a U.S. Air Force Wildlife Management Area with two Federally listed Natural Areas (Sinking Pond and Goose Pond).

A review of these major findings indicates that pathways for the migration of hazardous waste-related contamination exist. Contaminants present at ground surface would likely be mobilized to local drainage alignments via the shortest flow path. The shallow aquifers present have moderate permeabilities and are isolated in most places from the deeper more important Manchester aquifer by a confining bed of clay. The ground-water movement and contaminants if present in the shallow aquifers would probably favor a horizontal direction toward discharge points in streams and lakes. If the confining bed between the shallow aquifers and the Manchester aquifer is discontinuous, contaminant migration may occur vertically into the Manchester aquifer and follow a horizontal flow path toward pumping centers such as the AEDC test area dewatering wells and local water wells.

METHODOLOGY

During the course of this project, interviews were conducted with installation personnel (past and present) familiar with past waste disposal practices; file searches were performed for past hazardous waste activities; interviews were held with local, state and federal agencies; and field surveys were conducted at suspected past hazardous waste activity sites. Seventeen sites (Figures 1 and 2) were initially identified as potentially containing hazardous contaminants and having the potential for contaminant migration resulting from past activities. These sites have been assessed using a Hazard Assessment Rating Methodology (HARM) which takes into account factors such as site characteristics, waste characteristics, potential for contaminant migration and waste management practices. The details of the rating procedure are presented in Appendix G and the results of the assessment are given in Table 1. The rating system is designed to indicate the relative need for follow-up investigation.

FINDINGS AND CONCLUSIONS

The following conclusions have been developed based on the results of the project teams field inspection, reviews of base records and files, interviews with base personnel, and evaluations using the HARM system.

TABLE 1
SITES EVALUATED USING THE
HAZARD ASSESSMENT RATING METHODOLOGY
AEDC

Site No./ Rank	Site Description	Operation Period	HARM Score (1)
1	Landfill No. 2/ Leaching Pit No. 2	1956-Present 1950's-1970's	80
2	Retention Reservoir/ J-4 Area Surface Drainage	1959-Present	79
3	Landfill No. 4	1971-Present	78
4	Surface Drainage - Bradley	1953-Present	73
5	Surface Drainage - Rollins	1953-Present	71
6	Camp Forrest Water Treatment Plant	1953-1980	70
7	Testing Areas	1953-Present	70
8	Leaching Pit No. 1	1953-1972	70
9	Surface Drainage - Brumalow	1953-Present	63
10	Fire Protection Training Area No. 2/Burn Area No. 1/ Landfill No. 1	1973-Present 1953-1970	62
11	Chemical Treatment Pond	1961-1982	62
12	Retention Leach/Burn Area	1950's-1960's	62
13	Fire Protection Training Area No. 1	1953-1983	58
14	Surface Drainage - Crumpton	1953-Present	53
15	HEF Burn/Burial Area	1959-1961	51
16	Beryllium Leaching Area	1963-1967	45
17	Burn Area No. 2	1983	43

⁽¹⁾ This ranking was performed according to the Hazard Assessment Rating Methodology (HARM) described in Appendix G. Individual rating forms are in Appendix H.

The areas found to have sufficient potential to create environmental contamination are as follows:

- o Site No. 1 Landfill No. 2/Leaching Pit No. 2
- o Site No. 2 Retention Reservoir/J-4 Area Surface Drainage
- o Site No. 3 Landfill No. 4
- o Site No. 4 Surface Drainage Bradley
- o Site No. 5 Surface Drainage Rollins
- o Site No. 6 Camp Forrest Water Treatment Plant
- o Site No. 7 Testing Areas
- o Site No. 8 Leaching Pit No. 1
- o Site No. 9 Surface Drainage Brumalow
- o Site No. 10 Fire Protection Training Area No. 2/Burn Area No.1/Landfill No. 1
- o Site No. 11 Chemical Treatment Pond
- o Site No. 12 Retention Leach/Burn Area

The areas judged to have minimal potential to create environmental contamination are as follows:

- o Site No. 13 Fire Protection Training Area No. 1
- o Site No. 14 Surface Drainage Crumpton
- o Site No. 15 HEF Burn/Burial Area
- o Site No. 16 Beryllium Leaching Area
- o Site No. 17 Burn Area No. 2

RECOMMENDATIONS

Recommended guidelines for future land use restrictions at the disposal sites are presented in Section 6. A program for proceeding with Phase II and other IRP activities at AEDC is also presented in Section 6. The recommended actions include a soil boring, monitoring well, sampling and analysis program to determine if contamination exists for some sites (Nos. 3 to 12) and to confirm and determine the extent of contaminant migration for others (Nos. 1 and 2). This program may be expanded to define the extent and type of contamination if the

initial step reveals contamination for Site Nos. 3 to 12. The Phase II recommendations are summarized in Table 2.

TABLE 2 RECOMMENDED MONITORING PROGRAM FOR PHASE II IRP AT AEDC

Site No.	Site (Rating)	Recommended Monitoring Program*				
1	Landfill No. 2/Leaching Pit No. 2 (80)	Perform a geophysical survey to define potential contamination plumes and to evaluate the effectiveness of the existing ground-water monitoring system. If survey indicates potential contamination in the Manchester aquifer, install monitoring wells into the deeper aquifer to confirm the geophysical data.				
		For the existing monitoring wells, run total organic halogens along with other parameters currently evaluated.				
2	Retention Reservoir/ J-4 Surface Drainage (79)	Obtain five samples at the surface of the bottom sediment in the reservoir, one sediment sample in the J-4 drainage channel and one background sample. Analyze the samples for the parameters in List A, Table 6.2.				
3	Landfill No. 4 (78)	Perform a geophysical survey to locate major areas of drum disposal and to also define potential contamination plumes. Using the geophysical data locate and install four additional monitoring wells suitably located with one hydrogeologically upgradient of the site and the others downgradient. Construct wells with Schedule 40 PVC and screen 10 to 20 feet into the uppermost aquifer. Sample and analyze water for the parameters in List B, Table 6.2.				
4	Surface Drainage - Bradley (73)	Obtain five sediment samples in Ditch H and its tributary from the Model Shop. Obtain one background sample. Space the drainage channel samples uniformly from First Street to the Access Highway. Analyze the samples for the parameters in List A, Table 6.2.				

TABLE 2 (Continued) RECOMMENDED MONITORING PROGRAM FOR PHASE II IRP AT AEDC

Site No.	Site (Rating)	Recommended Monitoring Program*			
5	Surface Drainage - Rollins (71)	Obtain six sediment samples in the Rollins channel and one background sample. Space five drainage channel samples uniformly from downstream of the Chemical Treatment Pond to about one mile south of the Access Highway. Obtain one sample in the channel upstream of the Retention Pond diversion structure. Analyze the samples for the parameters in List A, Table 6.2.			
6	Camp Forrest Water Treatment Plant (70)	Install one upgradient and three downgradient monitoring wells. Perform a geophysical survey to enable effective location of the monitoring wells. Construct wells with Schedule 40 PVC and screen 10 to 20 feet into the uppermost aquifer. Sample and analyze water for the parameters in List C, Table 6.2.			
7	Testing Areas (70)	Measure ground-water levels and obtain samples in existing piezometers at AEDC and then use that data to locate additional monitoring wells if needed around the testing area. Install one well hydrogeologically upgradient from the testing area. Construct wells with Schedule 40 PVC and screen 10 to 20 feet into the uppermost aquifer. Sample and analyze water for the parameters in List D, Table 6.2. Sample barometric sump and dewatering well discharge water from the test cells and analyze for the parameters in List D, Table 6.2.			
8	Leaching Pit No. 1 (70)	Obtain one soil boring through the old leaching pit area. Determine the ground-water level and analyze the unsaturated soils for the parameters in List E, Table 6.2. Install one upgradient and two downgradient monitoring wells. Use piezometric data from Testing Area to locate the monitoring			

TABLE 2 (Continued) RECOMMENDED MONITORING PROGRAM FOR PHASE II IRP AT AEDC

Site No.	Site (Rating)	Recommended Monitoring Program*
		wells. Construct wells with Schedule 40 PVC and screen 10 to 20 feet into the uppermost aquifer. Sample and analyze water for the parameters in List F, Table 6.2.
9	Surface Drainage - Brumalow (63)	Obtain three sediment samples in the drainage channel and one background sample. Obtain one sample north of the Access Highway and two samples south. Analyze the samples for the parameters in List A, Table 6.2.
10	Fire Protection Training Area No. 2/Burn Area No. 1/Landfill No. 1 (62)	Perform a geophysical survey to obtain preliminary data of the subsurface disposal site conditions. Using the geophysical survey data, locate five monitoring wells at the site with one upgradient and four downgradient. Construct wells with Schedule 40 PVC and screen 10 to 20 feet into the uppermost aquifer. Sample and analyze water for the parameters in List G, Table 6.2.
11	Chemical Treatment Pond (62)	Obtain two bottom sediment samples and one background sample. Analyze the samples for the parameters in List H, Table 6.2.
12	Retention Leach/Burn Area (62)	Obtain samples at the surface and at four feet depth at the leach/burn site. Obtain one background sample. Analyze the samples for the parameters in List H, Table 6.2.

^{*} If contamination is found in the uppermost aquifer from the recommended monitoring wells, deeper wells penetrating the Manchester aquifer should be installed to assess the extent of movement to the deeper zone.

PURPOSE AND SCOPE

The Installation Restoration Program is a four-phased program (Figure 1.1) designed to assure that identification, confirmation/quantification, and remedial actions are performed in a timely and cost-effective manner. Each phase is briefly described below:

- phase I Installation Assessment/Records Search Phase I is to identify and prioritize those past disposal sites that may pose a hazard to public health or the environment as a result of contaminant migration to surface or ground waters, or have an adverse effect by its persistence in the environment. In this phase, it is determined whether a site requires further action to confirm an environmental hazard or whether it may be considered to present no hazard at this time. If a site requires immediate remedial action, such as removal of abandoned drums, the action can proceed directly to Phase IV. Phase I is a basic background document for the Phase II study.
- o Phase II Confirmation/Quantification Phase II is to define and quantify, by preliminary and comprehensive environmental and/or ecological survey, the presence or absence of contamination, the extent of contamination, waste characterization (when required by the regulatory agency), and to identify sites or locations where remedial action is required in Phase IV. Research requirements identified during this phase will be included in the Phase III effort of the program.
- o Phase III Technology Base Development Phase III is to develop a sound data base upon which to prepare a comprehensive remedial action plan. This phase includes implementation of research requirements and technology for objective assessment of adverse effects. A Phase III requirement can be identified at any time during the program.
- o <u>Phase IV Operations/Remedial Actions</u> Phase IV includes the preparation and implementation of the remedial action plan.

Engineering-Science (ES) was retained by the United States Air Force to conduct the Phase I Records Search at Arnold Engineering

SECTION 1 INTRODUCTION

BACKGROUND AND AUTHORITY

The United States Air Force, due to its primary mission of defense of the United States, has long been engaged in a wide variety of operations dealing with toxic and hazardous materials. Federal, state, and local governments have developed strict regulations to require that disposers identify the locations and contents of past disposal sites and take action to eliminate hazards in an environmentally responsible manner. The primary Federal legislation governing disposal of hazardous waste is the Resource Conservation and Recovery Act (RCRA) of 1976, as amended. Under Section 6003 of the Act, Federal agencies are directed to assist the Environmental Protection Agency (EPA) and under Section 3012, state agencies are required to inventory past disposal sites, and Federal agencies are required to make the information available to the requesting agencies. To assure compliance with these hazardous waste regulations, the Department of Defense (DOD) developed the Installation Restoration Program (IRP). The current DOD IRP policy is contained in Defense Environmental Quality Program Policy Memorandum (DEQPPM) 81-5, dated 11 December 1981 and implemented by Air Force message dated 21 January 1982. DEOPPM 81-5 reissued and amplified all previous directives and memoranda on the Installation Restoration Program. DOD policy is to identify and fully evaluate suspected problems associated with past hazardous contamination, and to control hazards to health and welfare that resulted from these past operations. The IRP is the basis for response actions on Air Force installations under the provisions of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980, clarified by Executive Order 12316. CERCLA is the primary legislation governing remedial action at past hazardous waste disposal sites.

Development Center (AEDC) under Contract No. F08637 83 G0005 5000. This report contains a summary and an evaluation of the information collected during Phase I of the IRP and recommended follow-on actions. The approximate land area included as part of the AEDC study are as follows:

Main AEDC Industrial/Testing Area	3,000 acres
Woods Reservoir	4,000 acres
Hardwood Forest	30,000 acres
Tennessee National Guard Training Area	2,600 acres
University of Tennessee Space Institute	365 acres

The activities performed as a part of the Phase I study scope included the following:

- Review of site records
- Interviews with personnel familiar with past generation and disposal activities
- Survey of types and quantities of wastes generated
- Determination of current and past hazardous waste treatment, storage, and disposal activities
- Description of the environmental setting at the Center
- Review of past disposal practices and methods
- Field observation of AEDC facilities
- Collection of pertinent information from federal, state and local agencies
- Assessment of the potential for contaminant migration
- Development of recommendations for follow-on actions

ES performed the on-site portion of the records search during June 1984. The following team of professionals were involved:

- R. L. Thoem, Environmental Engineer and Project Manager, MS Sanitary Engineering, 20 years of professional experience
- H. D. Harman, PG, Hydrogeologist, BS Geology, 9 years professional experience

- T. R. Harper, Environmental Scientist, BS Chemistry and Microbiology, 1 year professional experience

More detailed information on these three individuals is presented in Appendix A.

METHODOLOGY

The methodology utilized in the Arnold Engineering Development Center Records Search began with a review of past and present industrial operations conducted at the station. Information was obtained from available records such as shop files and real property files, as well as interviews with 32 past and present AEDC employees from various operating areas. Those interviewed included current and past personnel associated with civil engineering, safety and environmental, fuels management, roads and grounds maintenance, laboratory, fire protection, real property, history and various other contractor representatives. A listing of interviewee positions with approximate years of service is presented in Appendix B.

Concurrent with the employee interviews, the applicable federal, state and local agencies were reviewed for pertinent study area related environmental data. The agencies contacted are listed below and in Appendix B.

- o Tennessee Department of Conservation, Division of Geology
- o Tennessee Department of Public Health, Division of Solid Waste Management
- o Tennessee Department of Public Health, Division of Water Quality Control
- o Tennessee Valley Authority
- o Tennessee Wildlife Resources Agency
- o U.S. Environmental Protection Agency, Region IV
- o U.S. Department of Agriculture, Soil Conservation Service
- O U.S. Department of Commerce, National Oceanic and Atmospheric Administration
- O U.S. Department of Defense, Corps of Engineers

- U.S. Department of Housing and Urban Development, Federal Emergency Management Agency
- o U.S. Fish and Wildlife Service
- o U.S. Geological Survey, Water Resources Division
- o University of Tennessee Space Institute (UTSI) (AEDC Site)
- o Coffee Co. Manchester Tullahoma Landfill (AEDC Site)

The next step in the activity review was to identify all sources of hazardous waste generation and to determine the past management practices regarding the use, storage, treatment, and disposal of hazardous materials from the various sources at the Center. Included in this part of the activities review was the identification of all known past disposal sites and other possible sources of contamination such as spill areas.

An overflight of AEDC was not feasible; therefore, a general ground tour of the identified sites was made by the ES Project Team to gather site-specific information including: (1) general observations of existing site conditions; (2) visual evidence of environmental stress; (3) presence of nearby drainage ditches or surface waters; and (4) visual inspection of these water bodies for any obvious signs of contamination or leachate migration.

A decision was then made, based on all of the above information, whether a potential hazard to health, welfare or the environment exists at any of the identified sites using the Flow Chart shown in Figure 1.2. If no potential existed, the site was deleted from further consideration. For those sites where a potential hazard was identified, a determination of the need for IRP evaluation/action was made by considering site-specific conditions. If no further IRP evaluation was determined necessary, then the site was referred to the installation environmental program for appropriate action. If a site warranted further investigation, it was evaluated and rated using the Hazard Assessment Rating Methodology (HARM). The HARM score indicates the relative potential for adverse effects on health or the environment at each site evaluated.

SECTION 2 INSTALLATION DESCRIPTION

LOCATION, SIZE, AND BOUNDARIES

Arnold Engineering Development Center (AEDC) is located in southern-middle Tennessee (Coffee and Franklin Counties), midway between Chattanooga and Nashville (Figures 2.1 and 2.2). The Center spans east from Tullahoma to Interstate 24, with the Elk River forming the southern boundary, and north to near the southern edge of Manchester.

The AEDC site (Figure 2.3) is primarily composed of land formerly occupied by the Camp Forrest U.S. Army Training Center (approximately 32,000 acres) which was conveyed to the Federal Government by the State of Tennessee in the Public Acts of 1951. In 1950 and 1951, approximately 7,000 acres of additional land was acquired through purchase and condemnation. This land purchase, which included the Elk River, enabled AEDC to create the 4,000 acre Woods Reservoir which provides cooling water for AEDC's test facilities. The site also includes the 3,000 acre fenced area for test and support facilities (Figure 2.4), and a 6,000 foot airstrip. In addition, Air Force easements comprise slightly less than one acre. The majority of the site land (30,000 acres) is heavily forested and covered under a management plan. The Tennessee Wildlife Resources Agency has a license with the Air Force to implement, operate and manage a wildlife program which is in accordance with an approved Game Management Plan. The program allows them to enter, develop, and use certain vacant areas at the site.

HISTORY

Construction of the Air Engineering Development Center (renamed Arnold Engineering Development Center in June 1951) began in June 1950. The site in middle Tennessee was chosen because of the availability of land, water, and power needed for the work AEDC performs. Land was

į

required to reduce noise levels created during tests, water for cooling purposes, and electricity to power the huge motor drive systems.

AEDC contains 41 major test units which are grouped into three facilities: the Engine Test Facility (ETF), the von Karman Gas Dynamics Facility (VKF), and the Propulsion Wind Tunnel (PWT). ETF, which contains 14 major test cells, was the first test facility to begin operations in 1953. ETF is used to develop and evaluate propulsion systems for advanced aircraft, missles, satellites, and space vehicles. facility began operations in January 1955, and is designed for testing large scale models or full scale vehicles together with their propulsion systems. In 1968, the PWT facility placed into operation a transonic tunnel for aircraft weapons compatability. The VKF facility which was opened in 1954 is composed of eight different wind tunnels and is devoted to supersonic and hypersonic aerodynamic and heating studies, satellite component testing and ballistic and impact tests. AEDC plans on opening the Aeropropulsion Systems Test Facility (ASTF) in late 1985, which is designed primarily for testing larger and higher performance air breathing engine propulsion systems.

ORGANIZATION AND MISSION

Arnold Engineering Development Center is a test organization of the Air Force Systems Command. The Center currently employs approximately 3,500 operating contractor employees, 180 Air Force officers and airmen, and 230 civil service personnel.

The primary mission of the Center is to simulate actual flight conditions in aerodynamic, propulsion and space environmental ground test facilities and to detect and solve problems associated with aerospace systems. In addition, the Center conducts research and applies new technology to improve environmental facilities, and associated testing techniques and instrumentation.

The Center is under the direction of AEDC Headquarters which consists of the Office of the Commander, Deputy for Comptroller, Deputy for Facilities, Deputy for Operations, Deputy for Contracting and Logistics and the 4960th Air Base Squadron. The 4960th Air Base Squadron serves as host unit of Arnold Air Force Station and is responsible for managing the installation and providing services to the primary mission elements

1

7

of the station. Their responsibility also includes station morale, welfare and recreation activities that include housing and commissary support. The Squadron administers personnel actions, medical, security, and administrative services, and manages the operation and activities associated with the Arnold Airfield.

Three contractors are presently operating at the Center under the supervision of the Air Force. The contractors and their areas of responsibility are as follows:

- 1. Pan Am World Services Pan Am provides technical support and base support activities in areas such as supply, fire protection, transportation and security police.
- 2. Sverdrup Technology, Inc. Sverdrup operates aeropropulsion testing units that comprise the Engine Test Facility and will operate the new Aeropropulsion Systems Test Facility.
- 3. Arvin Calspan Field Services, Inc. Calspan operates the Propulsion Wind Tunnel and the von Karman Facility wind tunnels used in aerodynamic testing.

The additional tenants occupying AEDC include the following organizations. The mission of some of these tenants is presented in Appendix C.

Communications Detachment, 1973-1 (AFCS)

University of Tennessee Space Institute

AAFES

AEDC Area Engineer, Mobile District C/E

AFCOMS OL-HB/FCS

Defense Contract Administration Office (DCASR-Atlanta)

Defense Contract Audit Agency

Air Force Office of Special Investigations DET 816 (AFOSI)

Volunteer Girl Scouts

Boy Scouts, Elk River District

U.S. Department of Agriculture

Tennessee State Game & Fish Commission

Coffee County and the cities of Manchester and Tullahoma

Tullahoma Kiwanis Club

SECTION 3 ENVIRONMENTAL SETTING

The environmental setting of the AEDC is described in this section with an emphasis on the identification of natural features that may promote the movement of hazardous waste contaminants. Environmental conditions pertinent to this study are summarized at the conclusion of this section.

METEOROLOGY

The climate of the AEDC area is temperate and rainy with mild winters and hot summers. The average temperatures of winter and summer vary only 34 degrees. The greatest rainfall occurs in winter and spring (SCS, 1959). Selected meteorological data for AEDC are summarized in Table 3.1.

Two climatic features of interest in determining the potential for movement of contaminants are net precipitation and rainfall intensity. Net precipitation is an indicator of the potential for leachate generation and is equal to the difference between precipitation and evaporation. Rainfall intensity is an indicator of the potential for excessive runoff and erosion. The one-year, 24-hour rainfall event is used to gauge the potential for runoff and erosion.

The six and one-half years of precipitation data presented in Table 3.1 indicates that the yearly average precipitation at AEDC is 54.17 inches. Although these data have a limited period of record, they indicate identical results as compared with data from the Tullahoma weather observation station which recorded data from 1887 to 1955 (68 years). The yearly average precipitation at the Tullahoma station (9 miles west of the AEDC plant area) is also 54.17 inches (SCS, 1959). The mean annual lake evaporation for the AEDC area is 37 inches (NOAA, 1979). The net precipitation for the AEDC area is therefore plus (+) 17.17 inches. The positive value of net precipitation indicates that

TABLE 3.1
CLIMATIC CONDITIONS FOR AEDC

	JAN	FEB	MAR	APR	MAY	JUN
TEMPERATURE (°F)						
Average Monthly	41.1	43.4	49.9	59.1	66.6	74.8
PRECIPITATION (IN)						
Average Monthly	5.46	5.56	6.05	4.65	4.03	3.96

	JUL	AUG	SEP	OCT	NOV	DEC
TEMPERATURE (°F)						
Average Monthly	77.5	76.4	71.8	60.3	49.0	42.2
PRECIPITATION (IN)						
Average Monthly	4.88	3.80	2.99	2.96	4.38	5.45

Period of Record: January 1963 through July 1970

Source: AEDC Installation Documents

there is a moderate potential for precipitation to infiltrate the surface soils on the installation. The one-year, 24-hour rainfall event in the AEDC area is estimated to be 3.1 inches (NOAA, 1963). This value indicates that there is a moderate potential for runoff and erosion.

GEOGRAPHY

AEDC is located within the Highland Rim Plateau Physiographic Province of south-central Tennessee (Figure 3.1). This province is characterized by gently rolling to nearly level topography typical of a plateau (Theis, 1936). The plateau is approximately 1,000 feet above the National Geodetic Vertical Datum of 1929 (NGVD) and circles the Nashville Basin Physiographic Province.

Topography

The topography of AEDC is typical of the general province topography. The installation covers land with gently rolling to nearly level topography with land surface elevations ranging from approximately 1,100 feet above NGVD in the northern portion to 960 feet above NGVD in the southern portion along the Woods Reservoir shoreline. The land surface elevation in the AEDC plant area varies from approximately 1,100 feet above NGVD near the Administration and Engineering Building (No. 100) to 1,080 feet above NGVD along the Retention Reservoir shoreline.

A significant topographic feature of the AEDC area, referred to as "The Barrens," occupies a large area both north and south of the plant area. "The Barrens" are relatively flat and are poorly drained. Natural swamp forest and marshes exist within "The Barrens." Further discussion of "The Barrens" is found in the Surface-Water Resources portion of this section.

The areas immediately surrounding AEDC include the municipalities of Tullahoma to the west and Manchester to the north. Woods Reservoir, a man-made lake along the Elk River, occupies most of the southern installation boundary. Areas northwest, northeast, east and southeast of AEDC are rural areas of farms and ranches.

Soils

The soils of AEDC are typically loam and combinations of cherty, silty and clayey loam. Loam is a soil with varying proportions of sand, clay and organic matter. The soils have developed on land underlain by

limestone and cherty limestone bedrock of the area. Some soils have developed along stream drainage patterns; these soils contain a greater proportion of alluvial matter including sand and gravel. Figures 3.2 and 3.3 illustrate the distribution of the AEDC soils. Figure 3.2 shows the general soil types over the entire AEDC area whereas Figure 3.3 shows the detailed distribution of soil types in the AEDC plant area. Table 3.2 summarizes the soil descriptions, slopes and natural drainage characteristics.

The two most widely distributed soil types, Dickson-Baxter-Greendale and Dickson-Mountview-Lobelville, have gently sloping land surfaces and are moderately well drained to somewhat poorly drained (SCS, 1958 and 1959). Soil types near the Woods Reservoir are moderately to well drained.

The soil types within the AEDC plant area are for the most part well drained soils. Dickson silt loam and Dickson silt loam (eroded) underly a majority of the plant area. Some soil types which occupy old and present drainage patterns are somewhat poorly to poorly drained. These soil types are Lawrence silt loam, Lee silt and Lobelville silt loam (local alluvial phase).

The soil property of concern in assessing the potential for surface-water infiltration is vertical permeability. Although no data is available concerning permeability values, the surficial soils within the plant area are generally described as well drained and possess moderate permeability. The content of clay in some areas reduces the permeability. The Soil Conservation Service classification as well drained and the presence of clay in the soil indicates that surface water will infiltrate with a moderate rate.

SURFACE-WATER RESOURCES

AEDC is located within both the Duck River Drainage Basin and the Elk River Drainage Basin. The drainage divide is located southwest to northeast through the center of AEDC (Figure 3.4).

Drainage

Drainage within AEDC is controlled by natural streams and man-made ditches. Figure 3.4 illustrates the numerous streams within the area. Within the Duck River Basin to the north and northwest, six streams

TABLE 3.2 AEDC SOILS

Symbol on Figure 3.2 &/or 3.3	Unit Description	Slope	Natural Drainage Characteristics
DBG	Dickson - Baxter - Greendale (cherty to non-cherty and soils)	Gently sloping	Moderately well drained and somewhat poorly drained
DDC	Decatur - Dewey - Cumberland (silty clay soils)	Undulating to hilly	Well drained
DML	Dickson - Mountview - Lobelville (silty loam to alluvial soils)	Gently sloping	Moderately well drained and somewhat poorly drained
WCH	Waynesboro - Cumberland - Hamblen (alluvial soils)	Gently sloping	Moderately well drained
WHW	Waynesboro - Holston - Whitewell (loam to clay- loam soils)	Nearly level to hilly	Moderately well drained
Dh	Dickson silt loam	Gently sloping	Moderately well drained
Dk	Dickson silt loam (eroded)	Gently sloping	Moderately well drained
Gc	Greendale silt loam	Gently sloping drained	Moderately well to well
Ge	Guthrie silt loam	Nearly level	Poorly drained
Ha	Hamblen fine sandy loam	Nearly level	Somewhat poor to moderately well drained
Hb	Hamblen fine sandy loam, local alluvium phase	Nearly level	Somewhat poor to moderately well drained
Hm	Holston loam	Gently sloping	Well drained
Нn	Holston loam (eroded)	Gently sloping	Well drained

TABLE 3.2 (Continued)
AEDC SOILS

Symbol on Figure 3.2 %/or 3.3	Unit Description	Slope	Natural Drainage Characteristics
La	Lawrence silt loam	Nearly level	Somewhat poorly drained
Lb	Lee silt loam	Nearly level	Poorly drained
LK	Lobelville silt loam, local alluvium phase	Nearly level	Somewhat poorly to moderat- well drained
Mf	Mimosa silty clay severely eroded sloping phase	Severely sloping	Well drained
Mt	Mountview silt loam, gently sloping phase	Gently sloping	Well drained
Mu	Mountview silt loam, eroded gently sloping phase	Gently sloping	Well drained
Mz	Mountview silt loam, sloping shallow phase	Moderately sloping	Well drained
Mza	Mountview silt loam, eroded sloping shallow phase	Severely sloping	Well drained
Mze	Mountview silty clay loam, severely eroded sloping shallow phase	Severely sloping	Well drained
Pg	Purdy loam	Nearly level	Poorly drained
Sa	Sango silt loam	Nearly level	Moderately well drained
Tđ	Tyler loam	Nearly level	Somewhat poorly drained

Source: USDA, SCS, 1958 and 1959.

drain AEDC. Hunt and Huckleberry Creeks drain northward toward the Little Duck River which empties into the Duck River approximately seven miles downstream of the AEDC boundary. In the western portion of AEDC Wiley Creek, Crumpton Creek, Hickerson Spring Branch and Bobo Creek drain toward the Duck River. North of the AEDC plant area Crumpton Creek drains a large area of "The Barrens." Included in "The Barrens" is Sinking Pond, a Federally listed natural area. Sinking Pond covers about 150 to 200 acres and is six to seven feet deep. During summer months water drains into the ground, hence, the name Sinking Pond (Whitehead, 1984). Crumpton Creek is also a drainage stream for the AEDC Retention Reservoir. Crumpton Creek empties into the Duck River approximately nine miles downstream of the reservoir dam.

Within the Elk River Drainage Basin to the east, southeast and south eight streams drain AEDC. Bradley, Brumalow and Rollins Creeks are the major drainage streams from AEDC to the Elk River. Dry Creek, Hardaway Branch, Saltwell Hollow, Spring Creek and Poorhouse Creek are minor streams which drain the AEDC area. Woods Reservoir, a man-made lake, receives water from Bradley, Dry, Brumalow and Rollins Creeks as well as from Hardaway Branch. Saltwell Hollow, Spring Creek and Poorhouse Creek empty into the Elk River downstream of the Woods Reservoir Dam.

One natural and one man-made drainage feature within the AEDC area and the Elk River Drainage Basin are significant. Goose Pond, a Federally listed natural area, drains into Dry Creek east of the AEDC plant area. The cooling water return ditch, a man-made drainage feature, receives cooling water from the Test Areas and empties into Rollins Creek.

Within the AEDC plant area surface-water drainage is controlled by storm sewers and ditches (Figure 3.5). There are two major cooling water return ditches. One ditch from the J-4 area in the northwest section of the plant area empties into the Retention Reservoir. Cooling water from other parts of the Test Area empties into another ditch which flows southwest to Rollins Creek. The cooling water in the latter ditch can be diverted, if needed, to the Retention Reservoir at a diversion structure.

Storm sewers drain surface water from the center section of the plant area. Water from the storm sewers drain southeast to Brumalow Creek and north to outfall ditches. The outfall ditch "H" drains east where it joins other outfall ditches "C2," "D1," "D2," "E" and "F." These all drain to Bradley Creek. Outfall ditches "A1" and "C1" drain east to Dry Creek which empties into Bradley Creek. Skimming ponds for floating pollutant control are stationed on the AEDC installation within the Bradley Creek and Brumalow Creek watersheds.

The Retention Reservoir, another man-made lake, is located west of the plant area. The reservoir was built to retain cooling water until it cooled sufficiently to be released downstream and to also retain any pollutants that may be released during testing. The discharges from the reservoir (both normal and flood flows) are into Rollins Creek via the cooling water return ditch.

The only surface-water features at AEDC which may be affected by flooding are Woods Reservoir and Hunt and Huckleberry Creeks (FEMA, 1977). Figure 3.6 illustrates the expected extent of a 100-year flood in the area. The largest area of a 100-year flood is limited to Woods Reservoir.

Surface-Water Use

Surface-water use in the vicinity of AEDC includes domestic raw water supply, industrial water supply, propagation of fish and aquatic life, recreation, irrigation and livestock watering and wildlife (TNDPH, 1978). Of these, industrial water supply, recreation and wildlife are the major uses. Industrial water supply includes the cooling water intake for AEDC from Woods Reservoir. The daily average demand for non-potable water, including cooling, during 1974 was 97.8 million By comparison, the daily average demand for potable water (also obtained from Woods Reservoir) in 1974 was 0.793 million gallons. Recreation is another major surface-water use in the area. Woods Reservoir, a 3,980 acre lake, has 75 miles of shoreline and provides water recreation for the people of Coffee and Franklin Counties as well as many visitors to the area. Water used by wildlife is enhanced by the presence of Woods Reservoir and "The Barrens" wetland area. Within AEDC there is a U.S. Air Force Wildlife Management Area managed by The Tennessee Wildlife Resources Agency.

Surface-Water Quality

The general surface-water quality of both the Elk River and Duck River in the vicinity of AEDC is described as good (Tennessee Department of Public Health [TNDPH], 1978). Water quality data for industrial type pollutants are limited in this area.

Surface-water quality of discharges from AEDC are monitored at nine stations according to the National Pollutant Discharge Elimination System (NPDES). Figure 3.7 shows the location of these nine stations as well as an Elk River upstream and downstream sampling location. Table 3.3 summarizes selected water quality data from the monitoring locations.

At the Elk River upstream location near Dabbs Ford Bridge some minor elevated water quality levels above primary drinking water standards exist. At the upstream location as well as at the downstream location (Woods Reservoir Dam) water quality data gathered on a regular basis is limited. The downstream location analyses showed no adverse water quality.

At one sampling station on Woods Reservoir (AEDC Water Intake Pumping Plant) the water analyses for December 11, 1979 showed chromium (0.08 mg/l) to be greater than primary drinking water standards (0.05 mg/l). This result could also be sampling or analytical error. Analyses of finished tap water have not shown any adverse water quality.

Among the NPDES sampling stations at AEDC only the cooling water in Rollins Creek (TN 3751-001) is sampled for industrial pollutants on a regular basis. All other NPDES stations are sampled for flow and pollutants related to municipal wastewater discharges. The results in Table 3.3 indicate no adverse water quality data.

GROUND-WATER RESOURCES

The ground-water resources in the immediate vicinity of AEDC are relatively abundant. The Manchester aquifer is the primary source of ground water in the area (Burchett, 1977). Reports by Theis (1936), Corps of Engineers (1962), Smith (1962), Burchett and Hollyday (1974), Dames and Moore (1975) and Burchett (1977) describe the ground-water resources of the area.

TABLE 3.3 SELECTED SURFACE-WATER QUALITY DATA FOR AEDC

						Selected I	Selected Parameters			
				Total	Total	Total	Total	Total	Total	011 6
		Water Quality Standards	pH (s.u.)	A1 (mg/l)	Fe (mg/l)	Cr (mg/l)	Pb (mg/1)	Cn (mg/l)	Cu (mg/1)	Grease (mg/l)
	Sample	NPDES Daily Average	0.6 - 0.9	2.0	1.0	0.1	0.0025	0.0035	0.2	10.0
Station Identification (number and/or location)	Date (mn/dy/yr)	Primary Drinking Water	NS	SN	NS	0.05	0.05	SX	SN	SN
Dabbs Ford Bridge	12/11/79(G)		NA	0.1	0.2	0.07	QN	NA AN	QN	4×
Dabbs Ford Bridge	1/4/80 ^(G)		NA	7.0	9*0	QN	QN	Y.	Q	¥.
Dabbs Ford Bridge	2/23/84 ^(G)		7.9	NA	0.11	A N	ON	ď	90.0	¥ Z
AEDC Water Intake Pumping Plant	12/11/79 ^(G)		ÆN.	0.3	0.3	0.08	QN	e Z	0.008	KN
AEDC Water Intake Pumping Plant	1/4/80 ^(G)		NA	0.	0.5	Ö	Q	K K	2	¥ X
AEDC Water Intake Pumping Plant	2/23/84 ^(G)		€. 60	AN A	0.03	K K	QN	ď Z	0.004	W.
TN 3751-001 Cooling Water - Rollins Creek	12/-/81 (C)		7.6	NA A	0.19	<0.01	<0.0>	<0.02	0.02	1.0
TN 3751-001 Cooling Water - Rollins Creek	12/-/82 ^(C)		7.7	0.13	0.18	<0.01	<0.05	<0.02	0.03	0.2
TN 3751-001 Cooling Water - Rollins Creek	12/-/83 ^(C)		7.4	1.4	0.91	0.01	<0.0>	<0.02	0.04	0.1
TN 3751-001 Cooling Water - Rollins Creek	4/-/84 _(C)		7.2	0.2	0.24	<0.01	<0.05	<0.02	0.02	9.0
Woods Reservoir Dam	2/23/84 ^(G)		8.5	NA A	Q	A A	Q	¥ ¥	0.004	NA NA
mn/dy/yr = month/day/year s.u. = standard units mg/l = milligrams per liter	liter	G = grab sample C = composite sample NA = not analyzed	ple e sample yzed		Q SN	= not detected depending up = no standard	cted; detend and and and and and	not detected; detection limits are variable depending upon analytical techniques used.	ts are var	iable sed.

3-17

AEDC Installation Documents

Hydrogeologic Units

Geologically, AEDC is located in the outcrop area of Quaternary age sediments and Mississippian and Devonian age rocks (Figure 3.8). small southeastern portion of the installation is underlain at the surface by Alluvial Deposits. A much larger northern portion is underlain by the St. Louis and Warsaw Limestones. One area along Spring Creek and Rollins Creek is underlain by the Fort Payne and Chattanooga Table 3.4 summarizes the hydrogeologic units and their water-bearing characteristics. The Alluvial Deposits are composed of unconsolidated sand, silt and clay whereas the St. Louis, Warsaw, Ft. Payne and Chattanooga units are composed of consolidated rocks. The St. Louis is a dolomitic limestone; the Warsaw a bioclastic limestone and The Chattanooga unic is a shale. the Ft. Payne is a cherty limestone. The lithologic types of rocks underlying AEDC are a determining factor on the ground-water occurrences and movement. These factors will be discussed in the following sections.

As an example of the lithologies underlying AEDC Figure 3.9 shows a typical test boring for the plant area. Clay is a dominant component from land surface to approximately 20 feet deep. Below 20 feet, clay is a less dominant component with varying amounts of sand, gravel, crushed gravel and rock fragments. Solid rock was encountered at 70 feet deep in the test boring. Although ground water was not recorded as encountered in the example boring, ground-water levels may vary from one foot to ten feet below land surface in the shallow aquifer and from one foot above land surface to 70 feet below land surface in the deeper Manchester aquifer. Figure 3.10 shows the location of two hydrogeologic cross sections in the plant area and Figures 3.11 and 3.12 illustrate the cross sections showing the Manchester aquifer. The shallow aquifer is not as distinct a unit as is the Manchester aquifer.

There are three general hydrogeologic units underlying AEDC. These are the shallow aquifers, the Manchester aquifer and the Chattanooga Shale, a confining bed. The shallow aquifers are composed of the Alluvial Deposits along stream channels and the shallow clay, sand and silt zones lying above the more dominant clay zones approximately 30 feet deep. The clay zones overly the clayey chert rubble zone of the Manchester aquifer. The shallow aquifers may consist of isolated,

TABLE 3.4
HYDROGEOLOGIC UNITS AND THEIR WATER-BEARING CHARACTERISTICS
IN THE VICINITY OF AEDC

System	Series	Mydrogeologic Unit	Hydrogeologic Classification	Approximate Thickness	Dominant Lithology	Water-Bearing Characteristics
Quaternary	Pleistocene and Recent	Alluvial Deposits	Shallow aquifers (unconfined)	Less than 10	Unconsolidated sand, silt and clay	Readily transmits water, but deposits are limited to stream valleys.
	Upper	St. Louis Limestone		+09	Dolomitic limestone	Readily transmits water in cherty rubble zone. Solution cavities are
Mississippian	Mississippian	Warsaw Limestone	Manchester aquifer (confined)	100	Bioclastic limestone	common with fair to good well yields. Well yields may vary from 20 to 300 gpm. Average transmis-
	Lower	Ft. Payne Formation		100-150	Cherty limestone	sivity is 2,000 square feet per day. Springs may yield several thou- sand gpm.
Devonian	Upper	Chattanooga Shale	Confining bed	30	Shale	Does not readily transmit water. Lower confining bed for Manchester aquifer.

gpm = gallons per minute

Source: Smith, 1962; Wilson, 1976; Burchett, 1977.

2

seasonal perched water tables or may be continuous over large areas. The assumed ground-water flow directions in the shallow aquifers are similar to localized slopes in the topography. Discharge points would be lakes and streams. Where the clay layer is discontinuous, the shallow aquifer may allow ground-water recharge to the Manchester aquifer. The shallow aquifers may be completely dewatered in the plant area due to the pumpage of ground water which infiltrates from the J-4 and Mark I excavations. The excavations are approximately 250 feet deep and 80 feet wide and penetrate both the shallow aquifer and the Manchester aquifer. Ground-water monitoring wells in the vicinity of the Sanitary Landfill near the Retention Reservoir are approximately 30 feet deep and are screened in the shallow aquifer. All of these wells can be pumped dry indicating limited ground-water recharge and relatively low to moderate permeabilities. One permeability value was measured within the shallow aquifer in 1962 during the Mark II Chamber investigation. This value was 2.3 x 10⁻⁴ centimeters per second (cm/sec) (COE, 1962).

The second general hydrogeologic unit is the Manchester aquifer, so named by Burchett and Hollyday in 1974. The Manchester aquifer is composed of clayey chert rubble plus solution openings in the St. Louis, Warsaw and Ft. Payne units. The bioclastic limestone of the Warsaw unit is the most productive unit of the aquifer. The Manchester aquifer is a confined aquifer overlain by clay and underlain by the Chattanooga The confining nature of the Manchester aquifer near the ASTF Area was investigated by Dames and Moore in 1975. One conclusion was that a large variation in water-bearing capacity existed within the overall plant area. The hydraulic tests for the J-4 excavation yielded 122 gallons per minute (gpm), the tests for the Mark I excavation yielded 150 gpm, but the tests for the ASTF site only yielded 1.5 gpm. The same wide variation in water yields are reflected in yield variations from vicinity water wells tapping the Manchester aquifer. Manchester aquifer is dewatered near the J-4 and Mark I test facilities within the plant area. Continuous pumping removes ground water from these areas. The radius of influence of the dewatering at the J-4 site is estimated to be 1,200 feet (COE, 1962). A radius of influence around the Mark I cell was estimated to be 400 feet (COE, 1962). Ground-water flow directions within the Manchester aquifer are not exactly known but

localized induced flows are expected within the radius of influence of the J-4 and Mark I dewatering.

The third general hydrogeologic unit is the Chattanooga Shale, a major confining bed of the area. The shale confines the Manchester aquifer and as a result large volume natural springs exist where the shale is present just below the land surface. For example, Short Spring, supplying the Tullahoma, Tennessee water supply flows at 2,850 gpm (Burchett, 1977).

Ground-Water Use

Ground water is used as one source of public water supply at AEDC. All of the AEDC wells except the Golf Course Well (14) and the Airstrip Well (17) are located near Woods Reservoir. The location of these wells and other wells in the vicinity of AEDC are shown on Figure 3.13. The AEDC plant area has no drinking water wells but only wells for dewatering or monitoring purposes. Figure 3.14 shows these wells. Table 3.5 summarizes available data for these wells. The primary AEDC water supply wells tap the Manchester aquifer. Other wells with only hand pumps are probably tapping the shallow aquifer. The vicinity wells off AEDC property also tap the Manchester aquifer. These well yields vary from 3 to 100 gpm.

Ground-Water Quality

Ground-water quality in the vicinity of AEDC is generally good. Water from the Manchester aquifer is a calcium bicarbonate water or calcium sulfate water. The calcium and bicarbonate components are derived from the limestone while the sulfate component is a result of hydrogen sulfide gas (Burchett, 1977). Figure 3.15 shows the location of selected sampling wells in the AEDC area. Table 3.6 summarizes the ground-water quality data of the wells. The Manchester well (M-6) and the AEDC water supply wells have shown no adverse water quality problems. The monitoring wells at the Sanitary Landfill on the other hand have shown adverse water quality problems. Ground-water sampling has been conducted at the landfill for five and one-half years. The available analytical data are presented in Appendix D. Organic contaminants have been analyzed from well samples. Some selected contaminants are listed in Table 3.6.

TABLE 3.5
WATER WELL DATA FOR AEDC AND VICINITY

Well		Date Drilled	홈	Depth (feet)		Diameter	Hydrogeologic Unit(s)	Water Level (feet) Above(+) or Below(-)	Yield	
9	Owner	(mn/day/yr)	Casing	Screen	Total	(inches)	Tapped By Well	Land Surface	(dbu)	Use
-	AEDC Arnold Village	10/25/58	6.96	NR.	Æ	9	МА	-34.9	50	PS
2	AEDC NCO Rec. Area	NR.	NR R	X.	Z.	NR	æ Z	N.	NR	<
3	AEDC NCO Mess	10/23/61	75	Ä	N.	9	MA	-34	5	NPS
4	AEDC Rec. Area	7/30/65	Ä	N.	67.3	NR	MA	-23.5	13	NPS
2	AEDC Girl Scouts	M	NR	NR	XX	N.	NR	N.	ĸ	NPS
9	AEDC Coffee Co. Rec. Area	NR	NR	NA NA	¥	MR	X.	NR	НР	«
7.8	AEDC Morris Ferry Dock	NR	N N	NA NA	N.	MR	Ä	NR	11.4	PS
78	AEDC Morris Ferry Dock	NR	A.	N N	Æ	NR	Z.	NR	11.4	PS
\mathcal{U}	AEDC Morris Ferry Dock	NR	NR	¥	NR R	MR	ZZ.	NR	11.4	Sd
9	AEDC Franklin Co. Rec. Area	NR	NR	NR	æ	NR	M.	N.	11.4	PS
10	AEDC Boy Scouts	MR	N.	Ä	æ	NR	NN	N.	НР	NPS
=	AEDC Golf Course	4/-/54	986	NR	X	80	MA	-54	100	PS/Ir
12	AEDC Arnold Village	6/9/64	MR.	Ä	Ä	80	MA	-54	09	PS
13	AEDC Campers Club	12/28/66	NR.	MR	æ	NR	MA	-20	ĸ	NPS
14	AEDC	N.	N.	Æ	æ	NR	Z.	N.	Z	⋖
15	AEDC	NR	NR.	N.	æ	NR	æ	NR	X X	æ
16	AEDC	MR	ä	NR	X.	NR	A.	NR	N N	æ
17	AEDC Arnold Airstrip	69/-/5	9	10	75	9	Æ	-16	=	SdN
13	AEDC Arnold Village	N.	NR	NR	NR.	NR	X.	N.	НР	NPS
19	AEDC ARO Lodge	NR	N.	NR	X X	N.	α Z	NR	25	NPS
SE1	AEDC Sanitary Landfill	1983	27	10	37	9	X.	-14.6 (6/6/84)	N R	M7jŎ

TABLE 3.5 (Continued)
WATER WELL DATA FOR AEDC AND VICINITY

Date Depth (feet)	Depth (feet	oth (feet	_		;	Hydrogeologic	Water Level (feet)	;	
J	Drilled (mn/day/yr)	Casing	Screen	Total	Diameter (inches)	Unit(s) Tapped By Well	Above(+) or Below(-) Land Surface	Yield (gpm)	Use
Sanitary Landfill	1983	25	10	26	9	NR NR	-11.8 (6/6/84)	N.	3
Sanitary Landfill	1983	15	01	25	v	NR	-1.4 (6/6/84)	N N	MIĞ
AEDC Sanitary Landfill	1983	18	01	28	9	A.	-4.3 (6/6/84)	N N	M _O
Sanitary Landfill	1983	19	10	29	y	NR	-5.8 (6/6/84)	X X	M,1Q
AEDC Sanitary Landfill	1983	24	10	34	9	NR	-11.7 (6/6/84)	X X	MJÖ
AEDC Sanitary Landfill	1983	16	01	56	v	NR	-2.5 (6/6/84)	X X	M7Ŏ
AEDC Sanitary Landfill	1983	14.5	10	24.5	9	NR	-1.3 (6/6/84)	N.	MJÖ.
AEDC Coffee Co. Landfill	18/2/01	X.	M	7.7	NA NA	MA	-50.5	7	ÖLM
AEDC Coffee Co. Landfill	Ä	Ä	Ä	70	NR	W.	NR	X X	NJ.
	2/-/60	Ä	M.	M	20	H.	NR	24	C X
	1962	40.6	4.4	45	8	N.	N.	Ä	3
	1962	9.89	4.4	73	7	MA	-10	X X	LM
	1962	40.6	4.4	45	7	NR	NR	X X	3
	1962	59.6	4.4	64	7	МА	-16	X X	E.
	1962	40.6	4.4	45	7	NR	NR	X X	3
	1962	71.6	4.4	9/	7	W.	-16	X.	E.
	1962	40.6	4.4	45	7	NR	NR	X X	3
	1962	70.6	4.4	75	8	M	-28	X X	Ľ.
	1962	40.6	4.4	45	7	X.	N.	X X	3
	1962	¥	4.4	N.	7	Æ.	NR	X X	E,
	1962	40.6	4.4	45	7	NR	NR	X X	3

TABLE 3.5 (Continued)
WATER WELL DATA FOR AEDC AND VICINITY

Well	Owner	Date Drilled (mn/day/yr)	Dep	Depth (feet) Screen	Total	Diameter (inches)	<pre>Hydrogeologic Unit(s) Tapped By Well</pre>	Water Level (feet) Above(+) or Below(-) Land Surface	Yield (gpm)	Use
P6A	AEDC Plant Area	1962	MR	4.4	NR	7	¥.	NR	X X	3
P7A	AEDC Plant Area	1962	30.6	4.4	35	7	НА	89	X X	LM/DES
P8A	AEDC Plant Area	1962	N.	4.4	ž.	7	H	NR.	X X	3
P9A	AEDC Plant Area	1962	MR	4.4	N.	7	M	-17.4 (11/15/62)	N.	E.
P1 0A	AEDC Plant Area	1962	12.6	4.4	17	7	Ā	-6.9 (11/15/62)	X X	3
P11A	AEDC Plant Area	1962	14.6	4.4	19	7	М	-4.6 (11/15/62)	χ α	¥.
P1 2A	AEDC Plant Area	1962	45.6	4.4	20	7	МА	+0.7 (11/15/62)	N.	¥
P13A	AEDC Plant Area	1962	18.6	4.4	23	7	МА	-4.5 (11/15/62)	N.	Ľ
P14A	AEDC Plant Area	1962	44.6	4.4	49	2	МА	-1,7 (11/15/62)	N.	ž
P15A	AEDC Plant Area	1962	63.6	4.4	89	7	M	-16.5 (11/15/62)	N N	¥.
P16A	AEDC Plant Area	1962	25.6	4.4	30	2	H	-31 (11/15/62)	N.	3
3	AEDC ASTF Area	1975	35	15	20	9	МА	-17.5	1.5	E.
0#1	AEDC ASTP Area	1975	14	0	. 15	4	МА	-19.4	NR	L'M
OM2	AEDC ASTF Area	1975	14	01	51	4	МА	-20.2	1.0	¥
OM3	AEDC ASTF Area	1975	14	01	15	4	МА	-20.1	N.	¥.
OW4	AEDC ASTF Area	1975	4	01	15	4	МА	-28.9	X.	¥.
SMO	AEDC ASTF Area	1975	67	m	0,	4	МА	-26.3	1.0	E,
4	D. Pinney	8/14/63	N.	Ä.	70	9	MA	NR	20	c
48	M. Johnson	X.	Z.	NR	68	7	МА	69-	9	Q
53	B. Moreland	4/24/64	09	N.	78	9	Ä	-44	30	Q
22	H. Tucker	4/30/64	99	N.	73	4	AH.	-40	16	c

TABLE 3.5 (Continued)
WATER WELL DATA FOR AEDC AND VICINITY

A. Sherrill HR RR 750-Lil (Inches) 712ped By Well Land Surface(VII) A. Sherrill HR RR 156 6 HA -40 C. Seale 1722/ed NR RR 96 6 HA NR H. Deniel 7/22/ed 19 6 HA NR 19 6 HA NR H. Lester HR RR 66 6 HA NR 13 H. Lester HR RR RR 66 6 HA -13 Ughtfoot Species 17/26/6 55 RR 64 6 HA -13 Ughtfoot 10/7/65 RR RR 64 6 HA -13 1. Bankett 4/12/66 65 RR 64 6 HA -13 2. Ayers 17 8 10 6 HA -14 -10 3. Ayers 11/7/66 65 RR <th>Well</th> <th></th> <th>Date Drilled</th> <th>De</th> <th>Depth (feet)</th> <th></th> <th>Diameter</th> <th><pre>Hydrogeologic Unit(s)</pre></th> <th>Water Level (feet) Above(+) or Below(-)</th> <th>Yield</th> <th></th>	Well		Date Drilled	De	Depth (feet)		Diameter	<pre>Hydrogeologic Unit(s)</pre>	Water Level (feet) Above(+) or Below(-)	Yield	
A. Shertill NR NR 156 6 MA -40 C. Saala 7/22/64 NR NR 65 6 MA NR H. Dantal 7/22/64 NR NR 65 5 MA NR H. Laster NR NR NR 66 MA -23 H. Laster NR NR NR 6 MA -23 H. Libboro Baptist Church NR NR NR 6 MA -23 Lightfoot 5/29/65 NR NR 72 5 MA -23 Lightfoot 5/29/65 NR NR 72 5 MA -23 Lightfoot 107/65 NR NR 84 6 MA -23 S. Ayarra 3/20/67 52 NR 6 MA -23 J. Blackburn 6/10/67 110 NR 113 6 MA -24 R. Bryan	2		(mn/day/yr)	Casing	Screen	Total	(inches)	Tapped By Well	Land Surface (1)	(dbm)	Use
C. Seale T.22264 NR NR 69 64 NR NR N. Daniel NR NR NR 65 5 NA -33 N. Leaster NR NR NR 65 6 NA -30 N. Leaster NR NR NR 78 6 NA -50 N. Hill 179/64 55 NR 78 6 NA -50 Lightfoot 51/265 NR NR 64 6 NA -50 Lightfoot 107/265 NR NR 64 6 NA -50 L. Bennett 4/12/66 6 NR 6 NR -6 -8 J. Nyers 1/20/67 10 NR 10 6 NA -6 -6 J. Nyers 11/7/67 10 NR 11 6 NA -6 -7 -6 J. Shyers 11/7 10 NR	5	A. Sherrill	¥	E E	₩ ₩	156	9	Æ	-40	3	Q
4. Leater NR 65 64 65 63 64 63 64 63 64 63 64 63 64 63 64	=	C. Seals	7/22/64	N.	Ä	06	9	¥.	NR	N.	۵
4. Lestert NR NR NR 66 64 NA -30 44. Hillsborro Baptist Church 1RR NR NR 72 6 NA -47 44. Hill 7/39/64 55 NR 72 5 NA -50 14. Hill 7/39/65 NR NR 94 4 NA -50 14. Benhart 10/17/65 NR NR 96 A A -50 1. Benhart 4/12/66 15 NR 10 6 A -50 -50 1. Benhart 4/12/68 NR NR 10 6 A -50 <td< td=""><td>٠ ،</td><td>M. Daniel</td><td>5/29/64</td><td>20</td><td>Ä</td><td>65</td><td>Z.</td><td>M</td><td>-33</td><td>15</td><td>O</td></td<>	٠ ،	M. Daniel	5/29/64	20	Ä	65	Z.	M	-33	15	O
4. Hills botton Paptist Church NR NR NR 79 64 47 47 4. Hill 7/9 64 55 NR NR 73 6 NA -50 14. LaptCoot 5/29 65 NR NR 64 6 NA -50 14. Campion 10/7/65 NR NR 6 NA -53 1. Bennett 4/12/66 65 NR 6 NA -59 2. Ayers 3/30/67 10 NR 10 6 NA -50 3. Ayers 17. Ayers 17. Ayers 17. Ayers 17. Ayers 17. Ayers -50 NA -50 1. Brackburn 6/10/67 17. Ayers 17. Ayers 17. Ayers -6 NA -70 -70 1. Brackburn 17. Ayers	vo.	M. Lester	NR	N N	NA N	98	9	HA	-30	50	Q
4, Hill 7964 55 NR 72 54 4A 56 Lightfoot 5/29/65 NR NR 64 4 MA -45 H. Caapton 10/7/65 NR NR 64 6 MA -53 1. Bennett 4/12/66 65 NR 66 A 6 A -53 3. Ayers 3/20/67 15 NR NR 100 5 A -53 1. Blackburn 6/10/67 170 NR 113 6 A -50 1. Blackburn 6/10/67 18 NR 10 6 A -50 1. Blackburn 6/10/67 18 NR 10 6 A -50 1. Blackburn 8/17/4 10 NR 10 6 A -50 1. Blackburn 8/17/4 10 NR 10 6 A -50 1. Blackburn 8/17/4 10	36	Hillsboro Baptist Church	NR	ξ.	Ä	78	9	н	-47	10	చ్
Lightfoot 5/29/65 NR RR 84 4 MA -45 M. Campion 10/7/65 NR RR 64 6 MA -23 L. Bennett 4/12/66 65 NR 69 6 MA -29 S. Ayers 3/20/67 52 NR 100 6 MA -20 J. Blackburn 6/10/67 110 NR 113 6 MA -70 R. Bryan 11/-/67 95 NR 101 6 MA -70 L. B. Wyers NR 10 NR 10 6 MA -70 L. B. Wyers NR 10 NR 11 6 MA -70 R. Hill NR 10 NR 10 6 MA -70 R. Hill NR NR 10 6 MA -70 -70 M. Rhotell NR NR 10 6 MA <t< td=""><td>181</td><td>W. Hill</td><td>7/9/64</td><td>. 55</td><td>Ä</td><td>72</td><td>\$</td><td>НА</td><td>-50</td><td>91</td><td>a</td></t<>	181	W. Hill	7/9/64	. 55	Ä	72	\$	НА	-50	91	a
H, Campion 10,7/65 NR NR 84 6 HA -39 L, Bennett 4/12/66 65 NR 6 HA -58 3, Ayers 3/20/67 52 NR 56 HA -50 3, Ayers 5, Ayers 110 NR 113 6 HA -70 3, Ayers 6,10/67 110 NR 113 6 HA -70 1, Ayers 6,11/74 70 NR 101 6 HA -70 1, B. Hyters 8/1/74 107 NR 102 6 HA -70 1, B. Lastor NR NR 102 6 HA -18 -18 1, Ayers NR NR 102 6 HA -18 -18 1, Ayers 1, Ayers 103 102 6 HA -18 -18 1, Ayers 1, Ayers 1, Ayers 1, Ayers 1, Ayers 1, Ayers	2	Lightfoot	5/29/65	Ä	Ä	8	4	HA	-45	01	a
L. Bennett L. Bennett 4/12/66 65 NR 80 6 NA -58 3. Ayers 3/20/67 52 NR 64 6 NA -20 3. Ayers 3/3/68 NR 110 NR 113 6 NA -70 R. Brackburn 6/10/67 110 NR 113 6 NA -70 R. Bryan 11/-/67 95 NR 101 6 NA -70 L. B. Wyers NR 107 NR 107 NR -6 NA -5 R. Riddle 107 NR 112 6 NA -6 NA -6 R. Hill NR 107 NR 102 6 NA -18 -18 R. Hill 11/12/76 96 NR 102 6 NA -18 -18 M. Rhotell 11/12/76 96 NR 107 6 NA -18 -19<	"	M. Campion	10/7/65	NR	N.	8	ø	HA	-39	35	O
5. Ayers 1,20/67 52 NR 54 6 MA -20 J. Hyers 3/9/68 NR 100 5 MA -70 J. Blackburn 6/10/67 110 NR 113 6 MA -70 R. Bryan 11/-/67 95 NR 101 6 MA -70 L. B. Wyers NR 10 NR 76 MA -4 E. Biddle 10 NR 112 6 MA -4 R. Hill NR 10 78 6 MA -12 B. Lastor NR NR 102 6 MA -18 H. Bhotell 11/12/76 96 NR 102 6 MA -18 J. Wyers 13 10 10 10 10 10 10 10 J. Wyers 10 10 10 10 10 10 10 10 10 10 <td>8</td> <td>L. Bennett</td> <td>4/12/66</td> <td>65</td> <td>MR</td> <td>08</td> <td>9</td> <td>W.</td> <td>-58</td> <td>15</td> <td>0</td>	8	L. Bennett	4/12/66	65	MR	08	9	W.	-58	15	0
J. Myers J. Mers NR 100 5 MA -70 B. Blackburn 6/10/67 110 NR 113 6 MA -70 R. Bryan 11/-/67 95 NR 101 6 MA -70 L. B. Myers NR 10 NR 17 6 MA -5 E. Riddle 8/29/74 107 NR 112 6 MA -73 B. Lastor NR 107 NR 102 6 MA -18 B. Lastor NR NR 102 6 MA -18 W. Rhotell 11/12/76 96 NR 102 6 MA -18 J. Myers 4/20/79 125 NR 137 6 MA -18 J. Sanders 7/26/79 52 NR 6 MA -10 -10	6/	S. Ayers	3/20/67	52	MR	54	9	HA	-20	70	Q
B. Brackburn 610/67 110 NR 113 6 MA -70 R. Bryan 11/-/67 95 NR 101 6 MA -70 L. B. Myers NR 70 NR 77 6 MA -50 E. B. Holle 8/29/74 107 NR 112 6 MA -72 R. Hill NR NR NR 78 6 MA -18 B. Lastor NR NR NR 102 6 MA -18 W. Bhotell 11/12/76 96 NR 102 6 MA -18 W. Bhotell 11/12/76 96 NR 102 6 MA -18 J. Myers 4/20/79 125 NR 137 6 MA -40 J. Sanders 7/26/79 52 NR 6 MA -40	.5	J. Myers	3/6/8	Ä	X.	100	S	¥	-70	10	Q
R. Bryan 11/-/67 95 NR 101 6 MA -70 T. Towery MR 70 NR 77 6 MA -50 L. B. Myers NR 102 6 MA -72 R. Hill NR 107 NR 78 6 MA -18 B. Lastor NR NR 102 6 MA NR -18 W. Rhotell 11/12/76 96 NR 102 6 MA -18 J. Myers 4/20/79 125 NR 137 6 NA -30 J. Sanders 7/26/79 52 NR 61 NA -40	2	J. Blackburn	6/10/67	110	N.	113	9	М	-70	20	Q
T. Towery WR NR NR NR 6 MA -50 L. B. Myers NR NR NR 112 6 MA -72 R. Hill NR 107 NR 112 6 MA -118 B. Lastor NR NR 102 6 MA NR W. Rhotell 11/12/76 96 NR 102 6 MA -30 J. Myers 4/20/79 125 NR 137 6 MA -40 J. Sanders 7/26/79 52 NR 61 6 MA -40	4	R. Bryan	11/-/67	95	X.	101	ø	Ą	-70	15	c
L. B. Myers NR NR NR 6 MA -4 E. Riddle 8/29/74 107 NR 112 6 MA -72 R. Hill NR NR 78 6 MA -18 B. Lastor NR NR 102 6 MA NR W. Rhotell 11/12/76 96 NR 102 6 MA -30 J. Myers 4/20/79 125 NR 137 6 MA -40 J. Sanders 7/26/79 52 NR 61 MA -37	<u> </u>	T. Towery	8/1/74	70	NR	11	9	Ą	-50	15	Q
E. Riddle NR 107 NR 112 6 MA -72 R. Hill NR NR 78 6 MA -18 B. Lastor NR NR 102 6 MA NR W. Rhotell 11/12/76 96 NR 102 6 MA -30 J. Myers 4/20/79 125 NR 137 6 MA -40 J. Sanders 7/26/79 52 NR 61 6 MA -37	92	L. B. Myers	M.	N.	Ä	80	9	М	4	12	Q
R. Lastor NR NR 78 6 MA -18 B. Lastor NR NR 102 6 MA NR W. Rhotell 11/12/76 96 NR 102 6 MA -30 J. Myers J. Sanders 7/26/79 125 NR 137 6 MA -40 J. Sanders 7/26/79 52 NR 61 6 MA -37	653	E. Riddle	8/29/74	101	NR	112	ø	Ą	-72	01	a
B. Lastor NR NR 102 6 MA NR W. Rhotell 11/12/76 96 NR 102 6 MA -30 J. Myers J. Sanders 7/26/79 52 NR 61 6 MA -40	17:	R. Hill	M.	X.	꾶	18	9	H	-18	50	Q
W. Rhotell 11/12/76 96 NR 102 6 MA -30 J. Myers J. Sanders 4/20/79 125 NR 137 6 MA -40 J. Sanders 7/26/79 52 NR 61 6 MA -37	882	B. Lastor	NR	NR	N.	102	9	H	NR	s	4
J. Myers 4/20/79 125 NR 137 6 MA -40 J. Sanders 7/26/79 52 NR 61 6 MA -37	332	W. Rhotell	11/12/76	96	Ä	102	ø	H	-30	01	a
J. Sanders 7/26/79 52 NR 61 6 MA -37	980	J. Myers	4/20/79	125	X X	137	9	W W	-40	æ	F
	669	J. Sanders	1/26/19	52	X.	61	9	MA	-37	20	a

TABLE 3.5 (Continued)
WATER WELL DATA FOR AEDC AND VICINITY

		0 + 0 0						Water Louel (fact)		• • • • • • • • • • • • • • • • • • •
Well ID	Owner	Drilled (mn/day/yr)	Casing	Depth (feet) Screen	Total	Diameter (inches)	Tapped By Well	Above(+) or Below(-) Land Surface	Yield (gpm)	Use
1710	D. Dugan	3/6/80	Æ	NR	49	9	HA	-41	18	a
1171	Tractor Services	2/14/80	58	N.	63	9	МА	Z,	50	—
1716	V. Casteel	7/14/80	æ	N.	59	9	Ħ	- 18	01	F
1719	C. C. Farris	5/14/80	72	N.	73	ø	н	-15	10	۵
1720	A. Greggs	61/61/1	35	Ä	45	ø	H	-20	N.	۵
1736	R. Waldron	X.	X.	Ä	78	9	н	-51	50	a
1737	J. Gilmore	X.	NR	N.	120	9	¥	NR	X X	٥
1742	J. Parsons	8/21/80	45	Ä	123	9	НА	-23	e	æ
1778	T. Hickerson	X.	æ	NR	95	ø	HA.	-75	100	a
1785	G. Finney	18/6/1	85	Ä	98	9	æ	-67	15	۵
1789	H. Smith Nursery	5/12/81	09	Ř	62	9	Н	-30	52	
1794	L. Roberts	M.	N.	N.	63	9	НА	-32	11	Q
1807	C. Gipson	æ	N.	NR R	7.1	9	Н	-30	N N	Q
1817	B. Randolph	1/25/80	09	N.	65	9	НА	-40	30	Q
1818	N. Finney	N.	NR	A.	65	9	Ą	-30	30	Q
1921	J. McCullough	MR	N.	N.	06	Ä	НА	-45	N.	Q
1922	J. McCullough	NR	N.	NR R	80	NR	М	N.	0	X X
1923	J. McCullough	NR	N.	NR	145	9	Н	-45	&	0
1924	J. McCullough	æ	N.	M.	09	9	НА	-26	NR	٥
1925	D. Weaver	12/29/81	54	N.	84	9	М	-18	15	۵
1953	G. L. Morris	6/27/82	NR	NR	87	9	MA	-48	20	٥

(Continued)
WATER WELL DATA FOR AEDC AND VICINITY TABLE 3.5

		Date	Õ	Depth (feet)		;	Hydrogeologic	Water Level (feet)	:	
Well ID	Owner	Drilled (mn/day/yr)	Casing	Screen	Total	Diameter (inches)	Unit(s) Tapped By Well	Above(+) or Beloy(-) Land Surface	Yield (gpm)	Use
1963	R. Allison	뚶	Æ	뜻	08	g	HA	-50	7	F.
1973	O. Bean	Ä	N	N.	65	9	M	-40	30	Fm
1984	J. Marlow	æ	NA N	N.	82	9	M	. 04-	5	Q
1991	R. Pennegar	N.	Œ.	N.	115	9	MA	09-	ιo	Q
1995	P. Starks	æ	N.	N.	. 59	9	Ą	-40	52	٥
2008	R. Boyett	M.	¥	N N	105	9	МА	-50	100	я я
2009	R. Harris	¥	¥	X.	02	9	МА	-40	50	F.
2012	C. Redmon	5/12/82	92	M.	62	v	МА	04-1	20	Q
1006	L. Oldfield	1954	53	ž.	89	ø	МА	-53	15	Q

- water level monitoring - Manchester aquifer = irrigation gallons per minute hand pump = Coffee County = domestic = church Cch Cch Dess

(1) Water level measurement date is date well was drilled unless otherwise stated.

- Pranklin County

= abandoned

NOTES:

mn/dy/yr = month/day/year

NR = not recorded
PS = public supply
QLM = water quality and level monitoring

NPS = non-public supply

= industrial

Source: AEDC Installation Documents, Tennessee Department of Public Health, 1984.

identification

= destroyed

-

TABLE 3.6

SELECTED GROUND-WATER QUALITY DATA FOR AEDC AND VICINITY

						Selected	Selected Parameters		
<pre>lell Identification (number/location)</pre>	Sample Date (mn/dy/yr)	pH (s.u.)	Specific Conductance (umhos/cm)	Cr (1)	Pb (1) (mg/1)	TOC (ug/1)	1,1,1 Tri- chloroethane (ug/l)	Tetrachloro- ethylene	Trichloro- ethylene (ug/l)
1-6/Minchester, TN	NA NA	7.1	160	<0.005	0.019	NA	V.	MA	NA NA
2/AEDC Arnold Village	9/16/83	NA	AN	<0.05	<0.02	KA K	NA	KN	V
1/AEDC NCO Club	9/16/83	N.	NA	<0.05	<0.02	NA	NA	NA	Y.
4/AEDC Golf Course	1/17/84	NA	NA	<0.05	<0.02	NA NA	NA	M	N
7/AEDC Air Strip	9/20/83	NA	AN	<0.0>	<0.02	NA	NA	МА	¥N
CLN/Coffee Co. Landfill	71/6/2	6.1	¥	NA	Ϋ́	٥	NA	NA	K X
/AEDC Sanitary Landfill	2/1/84 ⁽²⁾	7.2	149.5	<0.01	<0.05	6	\$		\$
!/AEDC Sanitary Landfill	2/1/84(2)	6.2	1025.3	<0.01	<0.05	64.5	8,887	63,648	71,097
3/AEDC Sanitary Landfill	2/1/84(2)	6.9	432.3	<0.01	<0.05	\$	99	170	16
1/AEDC Sanitary Landfill	2/1/84(2)	6.8	581.3	(0.01	<0.05	3.8	6,613	262	6
/AEDC Sanitary Landfill	2/1/84 ⁽²⁾	10.8	464.5	0.02	<0.05	ć 5	36	2,293	37
5/AEDC Sanitary Landfill	2/1/84(2)	6.8	321.8	<0.01	<0.05	ç >	27	10	\$
//AEDC Sanitary Landfill	2/1/84(2)	7.0	424.8	<0.01	<0.05	42	162	3,104	2,810
3/AEDC Sanitary Landfill	2/1/84 ⁽²⁾	7.1	427.0	<0.01	<0.0>	\$	1,199	1,840	7,139
n/dy/yr = month/day/year .u. = standard units nmhos/cm = micromhos per centimeter kg/l = milligrams per liter	entimeter liter		ug/l = micrograms per liter TOC = Total Organic Carbon NA = Not analyzed NR = No Record	rograms per 1 Organic (nalyzed	liter				

(1) Primary Drinking Water Standard is 0.05 mg/l. (2) Sampling analyses have been taken for the past several years - see Appendix D for available data.

Source: AEDC Installation Documents; TVA, 1983.

BIOTIC ENVIRONMENT

The biotic environment of AEDC is enhanced by the presence of the U.S. Air Force Wildlife Management Area managed by the Tennessee Wildlife Resources Agency. The area covers 36,000 acres and affords the protection of certain plant and animal species as well as the controlled hunting of deer, turkey and duck. Rare plants such as Death Camas, Rose Pogonia and Ragged Fringed orchids, Grass Pink and Sundew are found on the AEDC property. The Gray Bat, found at the Woods Reservoir Dam, is an endangered species (Whitehead, 1984). Also the Osprey, another endangered species, has been populated at the Retention Reservoir on a limited basis. It is not a permanent resident of AEDC.

Due to the presence of the Wildlife Management Area at AEDC, studies have been conducted and are presently in progress which identify species of particular interest and which attempt to identify specific problems related to plant and animal growth. One such study deals with the presence of PCB in fish. This study is now in progress. Also another study underway deals with the growth of aquatic plants in the creeks of AEDC (Whitehead, 1984).

SUMMARY OF ENVIRONMENTAL SETTING

The environmental setting data for AEDC indicate the following data are important when evaluating past hazardous waste disposal practices.

- 1. The mean annual precipitation is 54.17 inches; the net precipitation is +17.17 inches and the one-year, 24-hour rainfall event is estimated to be 3.1 inches. These data indicate that there is a moderate potential for precipitation to infiltrate the surface soils. Also, there is a moderate potential for runoff and erosion.
- The natural soils on the installation are typically well drained loam and combinations of cherty, silty and clayey loam with moderate permeabilities.
- 3. Surface water, an abundant resource of AEDC, is controlled by underground storm sewers, open ditches, streams and man-made reservoirs.

- 4. The primary water source for AEDC drinking water and process water is Woods Reservoir which is on the installation. Some small wells serve isolated facilities on the installation with potable water.
- 5. A shallow aquifer of limited extent and permeability exists locally within 30 feet of land surface. The shallow aquifer is isolated in most places and is not used as a main source of ground water.
- 6. A shallow confining clay bed underlies the uppermost aquifer and separates it from the deeper Manchester aquifer. The clay bed may be discontinuous in some parts of AEDC and allow ground-water recharge into the Manchester aquifer.
- 7. The Manchester aquifer, a major confined aquifer of the area is a primary source of ground water for water users of AEDC as well as local farms and municipalities.
- 8. The shallow aquifer and the Manchester aquifer are dewatered immediately adjacent to the JP-4 vertical rocket test cell and Mark I aerospace chamber due to continuous pumping from sumps around the test facilities.
- 9. The Chattanooga Shale, a major confining bed of the area, is the lower confining unit for the Manchester aquifer.
- 10. The Gray Bat is a Federally and State listed endangered species which inhabits the Elk River Dam.
- 11. AEDC comprises a U.S. Air Force Wildlife Management Area with two Federally listed Natural Areas (Sinking Pond and Goose Pond).

A review of these major findings indicates that pathways for the migration of hazardous waste-related contamination exist. Contaminants present at ground surface would likely be mobilized to local drainage alignments via the shortest flow path. The shallow aquifers present have moderate permeabilities and are isolated in most places from the deeper more important Manchester aquifer by a confining bed of clay. The ground-water movement and contaminants if present in the shallow aquifers would probably favor a horizontal direction toward discharge points in streams and lakes. If the confining bed between the shallow

aquifers and the Manchester aquifer is discontinuous, contaminant migration may occur vertically into the Manchester aquifer and follow a horizontal flow path toward pumping centers such as the vertical test cell dewatering areas and local water wells.

SECTION 4

FINDINGS

This section summarizes the hazardous wastes generated by installation activities, identifies hazardous waste accumulation and disposal sites located on the installation, and evaluates the potential environmental contamination from hazardous waste sites. Past waste generation and disposal methods were reviewed to assess hazardous waste management practices at Arnold Engineering Development Center.

INSTALLATION HAZARDOUS WASTE ACTIVITY REVIEW

A review was made of past and present installation activities that resulted in generation, accumulation and disposal of hazardous wastes. Information was obtained from files and records, interviews with past and present installation employees and site inspections.

The sources of hazardous waste at AEDC are grouped into the following categories:

- o Industrial Operations (Shops)
- o Waste Accumulation and Storage Areas
- o Fuels Management
- o Spills and Leaks
- o Pesticide Utilization
- o Fire Protection Training

The subsequent discussion addresses only those wastes generated at AEDC which are either hazardous or potentially hazardous. Potentially hazardous wastes are grouped with and referenced as "hazardous wastes" throughout this report. A hazardous waste, for this report, is defined by, but not limited to, the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA). For study purposes, waste

petroleum products such as contaminated fuels, waste oils and waste solvents are also included in the "hazardous waste" category.

No distinction is made in this report between "hazardous substances/materials" and "hazardous wastes". A potentially hazardous waste is one which is suspected of being hazardous although insufficient data are available to fully characterize the material.

Industrial Operations (Shops)

Summaries of industrial operations at AEDC were developed from installation files and interviews. Information obtained was used to determine which operations handle hazardous materials and which ones generate hazardous wastes. Summary information on all installation shops is provided as Appendix E, Master List of Industrial Shops.

For the shops identified as generating hazardous wastes, file data was reviewed and personnel were interviewed to determine the types and quantities of materials and present and past disposal methods. Information developed from AEDC files and interviews with installation employees is summarized in Table 4.1.

Table 4.1 presents information on shop location, identification of hazardous or potentially hazardous waste, present waste quantities, and waste management timelines for AEDC. It is noted that the waste quantities reflect present conditions. Through interviews it is apparent that these waste characteristics and quantities at AEDC probably varied considerably from year to year depending on the number and the types of tests performed. Unused test propellants were in previous years disposed at various locations as discussed later. These wastes were highly variable and are not included in Table 4.1. Some shops generated larger quantities of waste in the 1950's and 1960's than currently, due to the intense efforts in support of the nation's space program. The research and development nature of the AEDC mission has made it a very dynamic installation as regards waste generation.

Hazardous wastes generated from AEDC industrial operations have been disposed of by several different methods and at several sites. The following is an overview of the methods used for handling shop wastes. These are discussed in more detail in later parts of this section.

In the 1950's waste materials were primarily disposed at the land-fill/burning area ("fire pit") near Gate 5, the Model Shop leaching pit,

INDUSTRIAL OPERATIONS (Shops) Waste Management

				1 of 16
SHOP NAME	LOCATION (BLDG, NO.)	WASTE MATERIAL	WASTE QUANTITY	METHOD(S) OF TREATMENT, STORAGE & DISPOSAL 1950 , 1960 , 1970 , 1980 ,
FACILITY SUPPORT				
PRINT SHOP	100	RESIDUAL INK, DEVELOPER	1200 LBS./YR.	SANITARY SEWER
		PCB WASTE TRANSFORMER OIL	660 CALS. /ONE TIME	
CARPENTER SHOP	1478	OLD CAULKING AND GLAZING	500 LBS./YR.	LANDFILL NO. 1/NO.2 LANDFILL NO 4
		USED CLEANER	12 LBS. /YR.	SANITARY SEWER
PAINT SHOP	1478	SPENT CLEANING FLUID (NAPTHA, VARSOL, METHYL CHLOROFORM)	2400 LBS./YR.	1952 1956 LANDFILL NO. 2 1980
		CONTAINERS AND RESIDUE	600 LBS./YR.	LANDFILL NO. 1/NO. 2 LANDFILL NO. 4
A/C SHOP (REFRIGERATION SHOP)	1478	SPENT SOLVENT & CLEANER	300 LBS./YR.	1953 SANITARY SEWER
		SPENT FILTERS	125/YR.	LANDFILL NO. 1/NO. 2
		FREON ME/TF & OIL MIXTURE	120 LBS./YR.	FPTA NO. 1 1970 1972 PLANTA
		REFRIGERATION OIL CANS AND RESIDUE	240 LBS./YR.	BURN PIT NO. 1 BURN AREA NO. 1/ LANDFILL NO. 4
		SCALE CLEANER	300 LBS./YR.	SANITARY SEWER

KEY

CONFIRMED TIME FRAME DATA BY SHOP PERSONNEL

NOTE: WASTE QUANTITIES SHOWN ARE CURRENT VALUES

--ESTIMATED TIME FRAME DATA BY SHOP PERSONNEL

INDUSTRIAL OPERATIONS (Shops)

Waste Management

		Waste Mariagement	agement	2 of 16
SHOP NAME	LOCATION (BLDG, NO.)	WASTE MATERIAL	WASTE QUANTITY	METHOD(S) OF TREATMENT, STORAGE & DISPOSAL 1950 1960 1970 1980
CUSTODIAL SERVICES (TEST CELL	1478	SPENT CLEANER & RESIDUAL	5000 LBS./YR.	
CLEANING		CONTAINERS	2000 LBS./YR.	SALVACED OR LANDFILL NO. 2
BUILDINGS & GROUNDS	1478	CONTAINERS & RESIDUAL (FLY SPRAY, RAT BAIT, TERMITE POISON, INSECTICIDE)	300 LBS./YR.	LANDFILL NO. 2 NO. 2 NO. 1
		WASTE PESTICIDE CONTAINERS	30/YR.	LANDFILL NO. 1
		BAGS, BOXES AND DISPOSABLE CLOTHING	600-700/YR.	LANDFILL NO. 1
PIPE SHOP	1478	ASBESTOS INSULATION	6000 LBS./YR.	LANDFILL NO. 2
		WASTE SOLVENTS (KEROSENE, ACETONE, VARSOL)	1200 LBS./YR.	BURN AREA NO. 1 FPFA NO. 1 FPFA NO. 2/STEAM PLANT A
		WASTE CUTTING OILS	120 LBS. /YR.	BURN AREA NO. 1-FPTA NO. 1 NO. 1,NO.
		WASTE CANS (SFALING COMPOUNDS) AND RESIDUALS	60 LBS./YR.	LANDFILL NO. 2 LANDFILL NO. 4
MECHANICAL MAINTENANCE SHOP	1478	ACID CLEANER (10 LBS. ACID 10 SG GALS. WATER)	200 LBS./YR.	SANITARY SEWER
	<u>-</u>	ALKALINE CLEANER (1:5 MIX)	10 GALS. /YR.	SANITARY SEWER
		MISCELLANEOUS CLEANERS	150 GALS./YR.	SANITARY SEIVER
\ \ \				

KEY

-CONFIRMED TIME-FRAME DATA BY SHOP PERSONNEL

NOTE: WASTE QUANTITIES SHOWN ARE CURRENT VALUES

----ESTIMATED TIME FRAME DATA BY SHOP PERSONNEL

INDUSTRIAL OPERATIONS (Shops)

Waste Management

					3 of 16
	SHOP NAME	LOCATION (BLDG. NO.)	WASTE MATERIAL	WASTE QUANTITY	METHOD(S) OF TREATMENT, STORAGE & DISPOSAL 1950 , 1960 , 1970 , 1980 ,
₹ Ø	AUTO AND LOCOMOTIVE REPAIR SHOPS	1401,1403	WASTE OILS, ETHYLENE GLYCOL, TRANSMISSION FLUID	1000 GALS. /YR.	1953 BURN AREA NO. 17 STEAM PLANT A
			WASTE CANS & RESIDUE	1000 LBS./YR.	LANDFILL NO. 1/NO. 2 LANDFILL NO. 4
			WASTE FILTERS	2400 LBS. /YR.	FPTA NO. 1 LANDFILL NO. 7
			WASTE GREASE	120 LBS. /YR.	FPTA NO 1 NO 1/NO 2
			KEROSENE WASTE	1200 LBS. /YR.	BURN AREA NO. 1, NO. 1 INO. 2
	CHEMICAL/METALLURGICAL LAB	Sht	WASTE ACIDS	200 LBS./YR.	SANITARY SEWER
-5			WASTE SOLVENTS	250 GALS. /YR.	
			ASBEST0S	200 LBS./YR.	LEACHING PIT NO 22 1980
			CHROMIUM & COMPOUNDS (CHROMIC ACID)	S0 GALS./YR.	LEACHING PIT NO. 1
			FOLUENE (75% TOLUENE & PAINT SLUDGE)	50 GALS. /YR.	CAMP FORREST LEACHING PIT O 2 DPDO SEPTIC TANK /
×	X RAY PHOTO LAB	2108	MISCELLANEOUS CHEMICAL WASTE	100 GALS./YR.	SANITARY SURER SECOVERY 196 1 196
			CAPACITORS (PCB CONTAMI	65/ONE TIME	COAC
1				1	

KEY

CONFIRMED TIME FRAME DATA BY SHOP PERSONNEL

NOTE: WASTE QUANTITIES SHOWN ARE CURRENT VALUES

----ESTIMATED TIME FRAME DATA BY SHOP PERSONNFL

			Waste Management	agement	4 of 16
	SHOP NAME	LOCATION	WASTE MATERIAL	WASTE QUANTITY	METHOD(S) OF ATMENT, STORAGE
		(BLDG. NO.)			1950 1960 1970 1980
	SABOUTATION & MOITANIE	154	NITRIC (85%) and HYDROFI UORIC	3909 GALS. /YR.	LEACHING PIT NO 1 1175 PRETREATMENT BASIN
	BRANCH C MAINTENANCE	-	(28) ACID IN SOLUTION		LEACHING PIT NO. 1 PRETREAINENT
			TURCO 4368 (PHOSPHORIC ACID)	3000 GALS. /YR.	INC PIT NO 1
			PERCHLOROETHYLENE	2000 GALS. /YR.	MODEL SHOP SOLVENT LEACHING PIT NO. 2
			PERCHLOROETHYLENE	500 GALS. /YR.	oddo
_			ALCOHOL-ISOPROPYL	500 GALS./YR.	TA NO
			HYDROCHLORIC ACID	600 LBS./YR.	~_ \
4-			ACETIC ACID	60 LBS. /YR.	LEACHING PIT NO. 1 PRE REATMENT LEACHING PIT NO. 1 PRE REATMENT
<i>c</i>	PLATING AND HEAT TREATMENT	# S #	WASTE CHROME PLATING SOLUTION	50 GALS./YR.	FIT NO. 2 DIPO 1956 1980
			BLACK OXIDE COATING	1600 LBS./YR.	DRAINAGE DITCH/LANDFILL NO 2 DPDO
			HARDENING AND TEMPERING SALTS (Ba,Ca,Na CHLORIDES)	1200 LBS./3 5 YRS.	LANDFILL NO. 2
			z –	350 LBS./3 5 YRS.	LANDFILL NO. 1 LANDFILL NO. 2
			PERCHLOROETHYLENE	150 G.NLS. /YR.	SOLVENT RECOVERY CAMP FORREST OPDO
			ELECTROLESS NICKEL SOLUTION	1000 GALS. /YR.	LEACHING
			AMMONIUM HYDROXIDE	200 GALS. /YR.	LEACHING PIT NO. 1 SANITARY SERER
			CN SOLUTION	50 GALS. /EVERY 6 7 YRS.	LANDFILL NO. 2 1970
) i				

KEY

-CONFIRMED TIME FRAME DATA BY SHOP PERSONNEL ----ESTIMATED TIME FRAME DATA BY SHOP PERSONNEL

NOTE: WASTE QUANTITIES SHOWN ARE CURRENT VALUES

Waste Management

		Table management	Tagement and the same and the s	5 of 16
SHOP NAME	LOCATION (BLDG, NO.)	WASTE MATERIAL	WASTE QUANTITY	METHODIS) OF TREATMENT, STORAGE & DISPOSAL 1950 1950 1950
PHOTO LAB	15%	PHOTOGRAPHIC CHEMICALS (FIXER, DEVELOPER, BLEACH)	3000 GALS./YR.	SANITARY SEBER SILVER RECOVERY
STRUCTURAL MAINTENANCE SECTION	451	NAPTHA AND VARSOL	150 GALS. /YR.	BURN AREA NO 1/ DPDO/STEAM PLANT A LANDFILL NO. 2 FPTA NO. 1
EQUIPMENT MAINTENANCE/REPAIR	154	METHYL CHLOROFORM	120 LBS./YR.	LANDFILL NO. 2 DPDO
		WASTE OILS	30 LBS. /YR.	BURN AREA NO. 1, STEAM PLANT A 1900 1932
		WASTE PCB OILS	422 GALS. /ONE TIME	Oddo
CENTRAL MACHINE SHOP AND AREA MACHINE SHOPS	451,640,690,	BLACK DYE	150 GALS. /YR.	,
		NICKEL ACETATE	150 GALS. /YR.	LEACHING PIT NO. 1
		SULFURIC ACID (15%SOLUTION)	150 GALS. /YR.	LEACHING PIT NO. 2 DPDO
		NICKEL PENTRATE	125 GALS. /YR.	LEACHING PIT NO. 1
		HYDRAULIC AND LUBRICATING OILS	780 GALS. /YR.	BURN AREA NO. 1 STEAN PLANT A 1970 1972
		COOLANT AND CUTTING OILS	4800 GALS./YR.	BURN AREA NO. 1. STEAM PLANT A STEAM PLANT A SOUTH SPITA NO. 1.
		ELECTRICAL DISCHARGE OIL	165 GALS. /YR.	BURN AREA NO 1
		VACUUM PUMP 011	55 GALS. /YR.	FPIA NO I STEAM PLANT A
		METHYL CHLOROFORM	440 GALS. /YR.	IS33 LE ACHING PIT NO. 2 PPDO

KEY

-CONFIRMED TIME-FRAME DATA BY SHOP PERSONNEL

NOTE: WASTE QUANTITIES SHOWN ARE CURRENT VALUES

----ESTIMATED TIME FRAME DATA BY SHOP PERSONNEL

					6 of 16
	SHOP NAME	LOCATION (BLDG. NO.)	WASTE MATERIAL	WASTE QUANTITY	METHOD(S) OF TREATMENT, STORAGE & DISPOSAL 1950 , 1960 , 1970 , 1980 ,
٥	DISPENSARY	225	PHOTO CHEMICALS AND MISCELLANEOUS CHEMICAL	200 GALS. /YR.	SANITARY SEWER
Ē	FIRE, POLICE AND COMMUNICATIONS	152	WASTE PCB TRANSFORMER OIL	160 CALS. /ONE TIME	NATI MALI
χ	POWER CONTROL	1525	HARDWARE (PCB CONTAMINA- TED) TRANSFORMER INSULA- TION TESTERS	2/ONE TIME	a T
			PCB WASTE OILS	39 CALS. /ONE TIME	COAO
_			CAPACITORS	3/ONE TIME	Odbo
1. O	STEAM PLANT A	1411	WASTE FUEL/WATER MIXTURE	2000 GALS./YR.	ASH PITS
			COAL BURNING ASH	NOT DETERMINED	1953
¥.	SHIPPING AND RECEIVING WAREHOUSE	1476	WASTE PCB TRANSFORMER OIL	180 CALS./ONE TIME	34 T
ō	OFFICERS OPEN MESS #1		WASTE PCB TRANSFORMER OIL	490 GALS./ONE TIME	o de de la companya
ō	OFFICERS OPEN MESS #2		WASTE PCB TRANSFORMER OIL	230 GALS./ONE TIME	ممارة المارة
A G	PRIMARY PUMPING STATION	3038	PCB CONTAMINATED CAPACITORS	6/ONE TIME	oale .
SE	SECONDARY PUMPING STATION	1507	PCB CONTAMINATED CAPACITORS	15/ONE TIME	OGAO T
			WASTE PCB TRANSFORMER OIL	3000 CALS. /ONE TIME	ndato
>	VISITORS OFFICERS QUARTERS	3027	WASTE PCB TRANSFORMER OIL	200 GALS./ONE TIME	COLINIO
֭֭֭֝֟֝֞֝֝֟֝֓֓֓֟֝֓֓֓֓֓֓֓֓֓֓֓֟֟֓֓֓֓֓֓֓֓֓֓֓					

KEY

-CONFIRMED TIME FRAME DATA BY SHOP PERSONNEL

NOTE: WASTF QUANTITIES SHOWN ARE CURRENT VALUES

-----ESTIMATED TIME FRAME DATA BY SHOP PERSONNEL

Waste Management

				7 of 16
SHOP NAME	LOCATION (BLDG. NO.)	WASTE MATERIAL	WASTE QUANTITY	METHOD(S) OF TREATMENT, STORAGE & DISPOSAL 1950 1960 1970 1980
INSTRUMENT CALIBRATION LAB AND	353, 390	METHYL CHLOROFORM	21 GALS./YR.	1
BUILDING		ETHYL ALCOHOL	48 LBS./YR.	BURN ARTA NO. 17 FPTA NO. 17 DPDO
		ACETONE	s GALS./YR.	FPIA NO. 1 1980
		MEK	I GAL, /YR.	TANDFILL NO. 2 DPDO
		ISOPROPYL ALCOHOL	5 GALS. /YR.	FPTA MO. 1
		HNO ₃ SOLUTION	1 GAL./YR.	SANITARY SEWER
		METHANOL	25 GALS. /YR.	FPTA
		WASTE HYDROCARBON FUELS (JP 4)	200 GALS. /YR.	CAMP FORREST STEAM PLANT A.
		HYDROCHLORIC ACID	2 LBS. /YR.	SANITARY SEWER

×

CONFIRMED THAL FRAME DATA BY SHOP PLIKSONNEL

NOTE: WASTE QUANTITIES SHOWN ARE CURRENT VALUES

-----FSTIMATED TIME FRAME DATA BY SHOLDELSONDER

INDUSTRIAL OPERATIONS (Shops)

Waste Management

			Maste management	agement.	8 of 16
	SHOP NAME	LOCATION (BLDG. NO.)	WASTE MATERIAL	WASTE QUANTITY	METHOD(S) OF TREATMENT, STORAGE & DISPOSAL 1950 1960 1970 1980
	ENGINE TEST FACILITY				1960 1960 1960 1980
	J 1, J 2 TEST CELLS	880	FREON MF	1500 GALS. /YR.	¥ .~
			WASTE LUBE OIL	350 LBS./YR.	GURN AREA NO 11 STEAM PLANIA FPTA NO. 1
			CUTTING OIL	60 LBS./YR.	BURN AREA NO. 1 STEAN PLANT A FPTA NO. 1 FPTA NO. 2 1957 1972
			PCB WASTE: SMALL CAPACITORS	124/ONE TIME	
4-	J.3, J.4, J.5 TEST CELLS		ISOPROPANOL (5% SOLUTION CONTAMINATED WITH MMH)	900 GALS. /VR.	BURN AREA NO FOTO 2 DPDO
10			FREON MF (5% SOLUTION, FLUSH N 204 SYSTEM)	900 GALS./YR.	TREATMENT POND DITOR
			VARSOL	60 GALS./YR.	BURN AREA NO 1 TANDELL DEBO
			WASTE OILS	6 GALS./YR.	FPIA NO. 1
			AEROZINE	VARIABLE *	CHEMICAL TREATMENT POND 1978
			FIBERGLASS RESIN	NOT AVAILABLE	LANDFILL NO ?
			PCB WASTE OIL	1600 GALS. /ONE TIME	odud one
		_			

-----CONFIRMED TIME FRAME DATA BY SHOP PERSONNEL

KEY

NOTE: WASTE QUANTITIES SHOWN ARE CURRENT VALUES * 1300 LBS. IN 1978

4-10

		waste management	agemen	90 06
SHOP NAME	LOCATION (BLDG. NO.)	WASTE MATERIAL	WASTE QUANTITY	METHOD(S) OF TREATMENT, STORAGE & DISPOSAL 1950 1950 1950
J 5 TEST CELL	525	WASTE CONTAINERS (O ₂ , ACETYLENE, FREON, N ₂)	NOT AVAILABLE	1986 (AMP FORREST ANDFILL NO .)
		STRONTIUM PERCHLORATE	15 GALS. /YR.	CHEMIT AL TREATMENT DIPEN
		TCE	24 LBS. /YR.	LANDFILL NO (PPIX)
		FREON (CHANNEL MASTER SPRAY)	300 LBS./YR.	THACHING PIT NO. 2 DEGI-
AIR COMPRESSOR AND TEST BUILDING (T 1 THROUGH T 5)	878	WASTE OIL	24 GALS./YR.	1951 FP1A NO 1 W 1117 1
		TRICHLOROETHYLENE	400 GALS./YR.	LEACHING PILL NO 2
		WASTE OIL & HYDROCARBON FUELS	1000 GALS. /YR.	BURN AREA NO I FPIA NO I STEAM PLANTA
		SULFURIC ACID (4% SOLUTION)	350 LBS. /YR.	SANIJARY SIBER
		ETHYLENE GLYCOL	600 GALS./YR.	CEALHING PIT NO DITON
		VARSOL	2400 GALS. /YR.	**************************************
		FREON MF/TF, ALCOHOL, OIL, FUEL MIXTURES	155 GALS. /YR.	FPIA NO. 1
		JP FUELS	120 GALS. /YR.	FPIA NO. 1
		ETHYL ALCOHOL	300 GALS./YR.	BURN ARLA NO I FPTA NO I

ΚEΥ

-CONFIRMED TIME FRAME DATA BY SHOP PERSONNEL

NOTE: WASTE QUANTIFIES SHOWN ARE CURRENT VALUES

--ESTIMATED TIME FRAME DATA BY SHOP PERSONNEL

<u> </u>	WASTE MATERIAL PCB CONTAMINATED WASTE LARGE CAPACITORS SMALL CAPACITORS WASTE OIL TRANSFORMER BERYLLIUM WASTE WASTE OIL PCB CONTAMINATED WASTE WASTE OIL CAPACITORS PCB WASTE TRANSFORMER OIL	SHOP NAME (BLDG. NO.) AIR COMPRESSOR AND TEST BUILDING (T. 1 THROUGH T. 5) (CONT'D) SMALL CAPACITORS WASTE OIL TRANSFORMER BERYLLIUM WASTE WASTE FREON WASTE OIL CAPACITORS O 3.1 ST CELL CAPACITORS PCB CONTAMINATED WASTE PCB WASTE TRANSFORM PCB WASTE TRANSFORM
HEMI	PHOTOGRAPHY CHEMICALS METHYL CHLOROFORM	678 PHOTOGRAPHY C
	WASTE OIL	WASTE OIL
	PRIMERS WASTE CUINPOWDER	PRIMERS WASTE CHINDOWDER

KEY

-CONFIRMED TIME FRAME DATA BY SHOP PERSONNEL

----ESTIMATED TIME FRAME DATA BY SHOP PERSUNNEL

NOTE: WASTE QUANTIFIES SHOWN ARE CURRENT VALUES

Waste Management

		waste management	lagement	11 of 16
SHOP NAME	LOCATION (BLDG, NO.)	WASTE MATERIAL	WASTE QUANTITY	METHOD(S) OF TREATMENT, STORAGE & DISPOSAL 1950 1960 1970 1980
G RANGE (CONT'D)	879	BERYLLIUM WASTE	3 DRUMS/YR.	CANDFILL NO. 1 OPPO
		DEPLETED URANIUM	13 DRUMS/YR.	LANDEILL MO CONTRACT DISPOSAL
		LEAD CHIPS	150 LBS./YR.	LANDFILL NO COMMERCIAL SALE
		ACE TONE	100 LBS./YR.	FPIA NO I FPIA NO. 2
		ICH DEVELOPER	180 LBS./YR.	SANITARY SENER -
		FTCHING FLUID (FERRIC CHLORIDE)	180 LBS./YR.	LEACHING PIT NO. 2 (1913X) SANITARY SENER 1910 1910
		PCB CONTAMINATED WASTE LARGE CAPACITORS	750/ONE TIME	COURT COURT
		SMALL CAPACITORS	4.ONE TIME	(10010
		SCRAP HARUWARE	3 DRUMS/ONE TIME	Odd
		TRANSFORMER OIL	13000 GALS. /ONE TIME	(Code)
S RANGE	320	METHYL CHLOROFORM	s GALS./YR.	LANDFILL NO. 2 OPDO
K RANGE	675	DI PLETED URANIIM	0.5 DRUMS/YR.	CONTRACT DISPOSAL
		AIF THYL CHLORUFORM	5 GALS. /YR.	LANDFILL NO. 2 DPBD
,				

KEY

-----CONFIRMED TIME FRAME DATA BY SHOP PERSONNEL

PERSONNEL NOTE: WASTI QUANTITIES SHOWN ARE CURRENT VALUES

				12 of 16
SHOP NAME	LOCATION (BLDG, NO.)	WASTE MATERIAL	WASTE QUANTITY	METHOD(S) OF TREATMENT, STORAGE & DISPOSAL 1950 1950 1970 1980 1
MAIN TEST & LAB BUILDING	9/9	PHOTOGRAPHIC CHEMICALS	600 700 LBS./YR.	SANITARY SEWER SILVER RECOVERY 1534
		TCE DEVELOPER	6 GALS. /YR.	LEACHING PIT NO. 2 PPD0
		FERRIC CHLORIDE ETCHER	36 GALS. /YR.	LEACHING PIT NO. 2/ DPDO RECENTION RESERVOIR
		CONTAMINATED ISOPROPYL ALCOHOL	80 GALS. /YR.	PPTA NO. 1 UPDO
		MISCELLANEOUS ACIDS	NOT DETERMINED	SANITARY SEWER
		VARSOL	60 GALS. /YR.	BURN AREA NO. 1 LAMBELL NO. 2 CAMP FOREST
APTU	579	ISOPROPYL ALCOHOL	150 GALS./YR.	2,61
	-	FREON MF	200 GALS. /YR.	CAMP FORREST DITO
		TOLUENE	100 GALS. /YR.	CAMP FURRIS DP00
		PRIME WATER MIXTURE	350 GALS. /YR.	SANITARY SEWER
		PCB WASTE OIL	200 GALS./ONE TIME	POANS FEBTA NO A
VKF YARD AREA	929	WASTE OILS	1000 GALS. /YR.	FPTA NO. 1 STEAM PLANT A
		IREON TE	55 GALS. /YR.	LEACHING PIT NO. 2
		FREON MF	55 GALS, /YR.	1954
		PCB CONTAMINATED LARGE CAPACHTORS	18/ONE TIME	Pilot, Office College

KEY

CONFIRMED FIME FRAME DATA BY SHOP PERSONNEL -- ISTIMATED FIME FRAME DATA BY SHOLDEL OUTE

NOTE: WASTE QUANTITIES SHOWN ARE CURRENT VALUES

Waste Management

				13 of 16
SHOP NAME	LOCATION (BLDG, NO.)	WASTE MATERIAL	WASTE QUANTITY	METHOD(S) OF TREATMENT, STORAGE & DISPOSAL 1950 , 1960 , 1970 , 1980 ,
MARK I	1075	ISOPROPYL ALCOHOL	300 GALS. /YR.	BIRN PIT NO STRAM PLANT A FPTA NO 3
		FREON MF	SS GALS. /YR.	LEACHING PIT NO 2 DPDO
		FREON TF	55 GALS. /YR.	LEACHING PIT NO 2 DIPO
		METHYL CHLOROFORM	55 GALS. /YR.	LEACHING PIT NO 2 DI'00
		KEROSENE	55 GALS. /YR.	BURN AREA NO. 1 FETA NO. 2
		PERCHLOROETHYLENE	110 GALS. /YR.	ROADS FITA NO 1
		WASTE OIL	450 GALS. /YR.	BURN AREA NO. 1 SEFAN PLANISA
ENGINEERING LAB (ELECTRONIC	1077	TCE DEVELOPER	24 LBS. /YR.	LANDFILL NO. 2 DPDO
		ETCHING SOLUTION (FERRIC CHLORIDE)	5 LBS./YR.	LEACHING PIT NO 7 DITUD
TUNNEL F	069	BERYLLIUM WASTE	SMALL AMOUNTS	1960
		ACETONE	24 GALS./YR.	FPTA NO. 1 FPTA NO. 2
		KETONE	24 GALS./YR.	LEACHING PIT NO, 2
		METHYL CHLOROFORM	240 GALS. /YR.	LEACHING PIT NO. 2
		NaK	12 GALS. /YR.	CAMP FORREST BITTO
		PCB WASTE OIL AND SOLVENTS	6000 GALS./ONE TIME	NACO OBAT
				TEXT TO THE PROPERTY OF THE PR

KEY

-----CONTIBALD TIME FRAME DATA BY SHOP PERSONNEL

NOTE: WASTE QUANTITIES SHOWN ARE CURRENT VALUES

, M

					9t Jo #1
<u> </u>	SHOP NAME	LOCATION (BLDG, NO.)	WASTE MATERIAL	WASTE QUANTITY	METHOD(S) OF TREATMENT, STORAGE & DISPOSAL 1950 1 1960 1 1970 1 1980 1
	VKF DRILK BUILDING	784	WASTE PCB OIL	160 GALS. /ONE TIME	onling
	MAIN COMPRESSOR BUILDING		WASTE OIL	800 GALS. /YR.	1954 FPIA NO. 1 STEAM PLANT A
			FREON TF	55 GALS./YR.	LEACHING PIT NO 2
			FREON MF	55 GALS./YR.	LEACHING PIT NO 2
	PROPULSION WIND TUNNEL				
	MODEL INSTALLATIONS BUILDING	992	ACFTONE	II GALS. /YR.	A 1954 CIM I UN A 193 PER A 1951
			1,1,1, TRICHLOROETHANE	300 GALS./YR.	LEACHING PIT NO. 2
16			METHYL CHLOROFORM	450 GALS./YR.	LIACHING PIL NO. 2
			ISOPROPYL ALCOHOL	75 GALS. /YR.	
			WASTE OIL	600 GALS. /YR.	BIRN ARA NO 1 STAM PLANTA
			PCB CONTAMINATED WASTE SOLID	15 DRUMS/ONE TIME	OLIO
			ridnib	700 GALS. JONE TIME	TOTAL TOTAL STATE OF THE STATE
_	16 S and 16 F TUNNEL SYSTEMS		METHYL CHLOROTORM	100 GALS. /YR.	DADS FPTA NO 1
			WASTE OILS	1500 GALS, /YR.	INTERNATIONAL TO THE POLICY OF
_					

KEY

-CONTIRMED TIME FRAME DATA BY SHOP PERSONNEL

WASTE QUANTITIES SHOWN ARE CURRENT VALUES NOLI

Waste Management

15 of 16	METHOD(S) OF VETHOD(S) OF VETHOD(S)	1950 1960 1970 1980	TANDETTE NO. 1 DEDU	CANDITIE NO. 1	(40,10)	1958 FPTA NO. 1 1970 STEAM PJANTSPTA NO. 7	LANDFILL NO. 2:SANITARY SEWER	1955 SANIIARY SEWER	LEACHING, 2 DP00	1961 SANITARY SIWIR	SANITARY SIWIR	LEACHING PIT NO. 2 DINO.	1953 LEACHING PIL NO. 2 DPUD	`	FPIA NO. 1 SIFAM PLANIA	(A) di	OPPO MATERIAL MATERIAL MATERI	
lagement	WASTE QUANTITY		100 GALS. /YR.	3 DRUMS/YR.	7000 LBS/ONE TIME	50 GALS./YR.	3 GALS. /YR.	40 GALS./YR.	1 GAL./YR.	15000 GALS. /YR.	25000 GALS. /YR.	100 GALS. /YR.	1300 GALS. /YR.	3500 GALS./YR.	150 GALS. /YR.	2500 GALS./ONE TIME	12/ONE TIME	
Waste Maliagement	WASTE MATERIAL		VARSOL	WASTÉ ASBESTOS	PCB WASTE OIL	WASTE OIL	NAPTHA	PHOTOGRAPHIC CHEMICALS	FRICHLOROETHYLENE	SULFURIC ACID	CAUSTIC	FRICHLOROETHYLENE	METHYL CHLOROFORM	WASTE OILS	KEROSENE	PCB WASTE TRANSFORMER OIL	CAPACITORS	
	LOCATION	(BLDG. NO.)				745		785		620			780					
	SHOP NAME					16 S CONTROL BUILDING		16 T CONTROL BUILDING (PHOTO LAB)		P PLANT			MOTOR DRIVE BUILDING					

ΚEΥ

-----CONFIRMED TIME FRAME DATA BY SHOP PERSONNEL

NOTE: WASTE QUANTITIES SHOWN ARE CURRENT VALUES

Waste Management

				16 of 16
SHOP NAME	LOCATION (BLDG. NO.)	WASTE MATERIAL	WASTE QUANTITY	METHOD(S) OF TREATMENT, STORAGE & DISPOSAL 1950 , 1960 , 1970 , 1980 ,
PLENUM EVACUATION SYSTEM (PES)	01.6	TUBE OILS	360 LBS. /YR.	BURN AREA NO. 1 STEAM PLANT A
		WASTE OILS	1500 LBS. /YR.	BURN AREA NO. 1 STEAM PLANT A
		RAGS WITH WASTE OILS	120 LBS. /YR.	_3I
		DIESEL FUELS	120 LBS. /YR.	1
		FILTERS WITH LUBE OIL	200 LBS./MO.	LANDFILL NO. 1 LANDFILL NO. 9
		CONTAMINATED TCE DEVELOPER	3 GALS. /YR.	LEACHING PIT NO. 27 7000 LANDFILL NO. 2
		CONTAMINATED ETCHER	3 GALS. /YR.	LEACHING PIT NO. 2 DPDO
		PCB WASTE CAPACITORS	36/ONE TIME	1980 OPDO
		TRANSFORMER OIL	2000 GALS. /ONE TIME	ogdd
HIGH TEMPERATURE LAB	222	METHANOL	60 LBS./YR.	FPTA NO. 1
		METHYL CHLOROFORM	60 LBS./YR.	LEACHING PIT NO. 2 DPDO
		KOH/METHANOL MIX	24 LBS./YR.	SANITARY SEWER DPDO
		PCB WASTE CAPACITORS	3/ONE TIME	Neg 1
		TRANSFORMER OIL	15000 CALS. /ONE TIME	codd

ΚEΥ

------CONFIRMED TIME-FRAME DATA BY SHOP PERSONNEL

NOTE: WASTE QUANTITIES SHOWN ARE CURRENT VALUES

the Fire Protection Training Area (FPTA), and the old Camp Forrest Water Treatment Plant site. Wastes disposed at the Camp Forrest Water Treatment Plant in the 1950's and later years have generally been highly reactive propellants. The Model Shop leaching pit primarily received acid solutions. Waste oils, fuels and solvents were the primary materials burned at the "fire pit" at the FPTA. During this period the area just east of the existing Retention Reservoir started to be used as an area for disposal of a wide variety of industrial wastes. Some were buried in this area and others leached to the ground. The testing areas were subject to routine spills and leaks in the 1950's and later years. Spills to the Rollins Creek drainage system in the 1950's were uncontrolled since the Retention Reservoir had not been constructed.

From 1959-1961, the Retention Reservoir and Chemical Treatment Pond were constructed to assist in control of hazardous wastes reaching the Rollins Creek cooling water return ditch. The Retention Reservoir since the 1960's has enabled capture and treatment of wastes due to the holding time in the impoundment. The Chemical Treatment Pond has served as a facility to batch-treat small quantities of wastes, primarily propellants. During the 1960's the landfill/burning area (near Gate 5), Model Shop leaching pit, Camp Forrest Water Treatment Plant, FPTA, and landfill/leaching area east of the Retention Reservoir continued to receive shop wastes. Also, three other small areas west and south of the Retention Reservoir were used as leaching and/or burning sites for small volume special wastes.

In the early 1970's open burning and disposal operations at the landfill near Gate 5 ceased, and the landfill east of the Retention Reservoir was expanded to handle normal nonhazardous wastes as well as the contaminated type which had previously been exclusive to this site. Another FPTA was constructed at the old Gate 5 landfill site, and some combustible shop wastes were burned at this location. The Steam Plant also began burning waste oils in the early 1970's. Shop wastes continued to be taken to the Camp Forrest Water Treatment Plant and treated at the Chemical Treatment Pond and Retention Reservoir. The small leaching/burning areas west and south of the Retention Reservoir no longer functioned in the 1970's. The leaching pit at the Model Shop was closed down and replaced with neutralization tanks, and the pit near the

Retention Reservoir was closed in the late 1970's. Spills and leaks in the testing and other industrial areas are believed to have become less frequent in the 1970's.

During the mid 1970's and early 1980's, shop wastes were more frequently taken to off-base disposal locations. Disposal of hazardous wastes at Camp Forrest, the FPTA's, the landfill/leaching pit east of the Retention Reservoir, and the Chemical Treatment Pond ceased in the early 1980's.

AEDC has used polychlorinated biphenyls (PCB) and chlorinated hydrocarbon oils in many capacitor and transformer fluids and in some hydraulic fluids. In 1980, AEDC implemented a plan of sampling/analysis which involved monitoring potable, recreational and waste water, fish, soil, sediment, and landfill monitoring wells. Also in that year, the Air Force presented a compliance plan to the EPA which contained a list of projects for the elimination of PCB's and associated equipment from AEDC. Table 4.1 includes a list of PCB waste sources, locations, and quantities.

Waste Accumulation and Storage Areas

Hazardous waste containers are stored in Buildings 2207, 2212, 2218, 2219, 2220 and 2221. The locations of these buildings can be found in Figure 4.1.

Building 2212 is the largest holding area with a total floor space of 3504 square feet. This facility at one time was used to store flammable fuels but was modified to meet the requirements for PCB storage in 1980. The modifications included sealing the floor and floor drains, discontinuing use of the sump, and installing a 9-inch curb. In addition, the building rests on an 8-inch concrete slab. It has a maximum storage capacity of 1296 drums or 71,280 gallons. In the period 1980 to present a large number of PCB drums have been stored at this location. No spills or leaks have occurred at this site.

Buildings 2218, 2219, 2220 and 2221 have been used to store hazardous liquids since about 1980. All buildings are of identical design with the exception of 2218 which is larger. Reinforced concrete walls 8 inches thick surround three sides of the structure in addition to an earth embankment. The fourth side is open and has sloping wing walls extending out each side. Each has a concrete sump (4,290 gallons)

J

containing limestone that is the secondary containment system for any spills or leaks. The maximum storage capacity of Building 2218 is 52 drums or 2,860 gallons, and Buildings 2219, 2220 and 2221 have a maximum storage capacity of 72 drums or 3,960 gallons.

Building 2207 is used to store solid explosive waste. The materials stored consist of waste propellants, smoke grenades and primers. Three steel shipping containers which are placed side by side are provided. The building is covered on the top and three sides by sand bags and an earth enbankment.

Various precautions besides the above mentioned are used to prevent hazards from the waste being handled. For example, the drums are stored on pallets to elevate them from contact with standing liquids. Drums are segregated from building to building to ensure compatability of waste.

Before being transferred to these storage areas, wastes are kept in staging areas which are called "accumulation points." There are currently 15 accumulation point areas at AEDC, and the locations are shown in Figure 4.1. A listing of the accumulation points is included in Table 4.2. The wastes are held at these areas for less than 90 days before being taken to the waste holding areas. The wastes are then periodically picked up, transported and disposed off site by the Defense Property Disposal Office (DPDO).

There have not been any spills or leaks in the waste holding areas since they have been used for this purpose. The containment structures built into these facilities allow efficient cleanup of any small leaks or spills which may occur.

In the past, before specific accumulation points were designated, waste was held in areas near shops or test cells and picked up on a regular basis and taken to its disposal site. Currently, Fuels Management handles most waste pickup. In the past, the Fire Department and Roads and Grounds have had responsibility for waste collection and disposal. The Fire Department handled the explosive and reactive wastes.

Fuels Management

The type of operations and testing which is performed at AEDC calls for large quantities and a great variety of fuels and propellants.

TABLE 4.2 WASTE ACCUMULATION POINTS

J-4 Area Building No. 521	
ETF Hardstand Building No. 878	
ETF J1 and J2 Building No. 880	
VKF Drier Control Building No. 670	
VFK Hot Shot Building No. 675	
PWT 16S Control Building No. 745	
PWT Model Installation Building No. 760	
PWT Motor Drive Building No. 780	
Mark I Test Building No. 1075	
Chem Lab Building No. 445	
Fabrication & Maintenance Shop Building No. 451	
Machine Shop Building No. 640	
Auto Repair Shop Building No. 1400	
Paint Shop and Buildings & Grounds Building No. 1478	
Power Control Building No. 1525	

Table 4.3 contains a list of the fuel storage tanks presently in use including capacity, type and location. There are two main fuel farms, the Bulk Fuel Farm and the Test Fuel Farm, which can be seen in Figure 4.2. In the Test Fuel Farm and in the ETF area, there are tanks which are designated for commingled fuel, which is a mixture of fuels remaining after testing procedures have been completed and also contaminated fuels not used in testing. This waste is utilized by the Steam Generating Plant A as a fuel in the production of steam. As shown in Table 4.3 there are a number of tanks which are used to store fuels which are used by emergency generators.

Table 4.4 contains a listing of semitrailer fuel tanks used at AEDC. These are used to carry a variety of fuels and propellants to various test locations. In addition, they are used to transport solvents and oils which may be used in large quantities in various areas of the Center. Table 4.5 contains a list of the abandoned tanks which were once actively used at AEDC. Missile propellants are used in many testing procedures performed at AEDC. A listing of the current inventory of missile propellant tanks is shown in Table 4.6.

The majority of fuel transfer takes place through pipelines which prevent contact and minimizes the risk involved in handling these fuels. When needed, semitrailers are used to transport fuels, propellants, and oils. Semitrailers are used because they are a convenient method of transporting these materials to various areas of the Center.

The tanks are monitored daily using inspection sheets which record information on types and quantities of fuels in the tanks. The tanks are inspected for cleaning needs every three years. There have been some spills and leaks related to fuel system equipment failures. These spills and leaks are discussed later in this section. The fuel lines are inspected yearly through pressure checks. When cleaning is required, Fuels Management handles the disposal of the sludge. Sludge has usually been burned at Fire Protection Training Areas.

Spills and Leaks

Spills and leaks from industrial operations at AEDC, particularly the VKF, ETF and PWT areas, have been fairly routine but usually not large. Records for spills have been kept only over the past three years; however, water quality monitoring of Rollins, Bradley and

TABLE 4.3 FUEL STORAGE TANKS

Type of Material	Capacity Each Tank (gallons)	Type of Storage Facility	Location of Storage Facility
Fuel Storage Farms			
JP-4 Fuel	1-40,000	Diked Tank	Test Fuel Farm Tank No. 5
JP-4 Fuel	1-40,000	Diked Tank	Test Fuel Farm Tank No. 6
JP-4 Fuel	1-40,000	Diked Tank	Test Fuel Farm Tank No. 8
JP-4 Fuel	1-40,000	Diked Tank	Test Fuel Farm Tank No. 9
JP-4 Fuel	1-40,000	Diked Tank	Test Fuel Farm Tank No. 11
JP-8 Fuel	1-40,000	Diked Tank	Test Fuel Farm Tank No. 7
JP-5 Fuel	1-25,000	Diked Tank	Test Fuel Farm Tank No. 4
Commingled Fuel	1-10,000	Diked Tank	Test Fuel Farm Tank No. 13
Commingled Fuel	1-4,200	Underground Tank	Test Fuel Farm Tank No. 14
Commingled Fuel	1-4,200	Underground Tank	Test Fuel Farm Tank No. 15
Commingled Fuel	1-4,200	Underground Tank	Test Fuel Farm Tank No. 16
JP-4 Fuel	3-210,000	Diked Tank	Bulk Fuel Farm
FS-2 Fuel	1-420,000	Diked Tank	Bulk Fuel Farm
JP-4 Fuel	1-630,000	Diked Tank	Bulk Fuel Farm
Vehicle/Equipment Fu	e <u>1</u>		
Gasoline, Leaded	1-15,000	Underground Fiberglass Tank	Auto Maintenance Shop Area
Gasoline, Unleaded	1-15,000	Underground Fiberglass Tank	Auto Maintenance Shop Area
Diesel Fuel	1-15,000	Underground Fiberglass Tank	Auto Maintenance Shop Area
Diesel Fuel	1-5,000	Underground Tank	Automative Shop

TABLE 4.3 (Continued)
FUEL STORAGE TANKS

Type of Material	Capacity Each Tank (gallons)	Type of Storage Facility	Location of Storage Facility
Fuel			
Fuel Oil	1-210,000	Diked Tank	Steam Plant A
Fuel Oil	1-30,000	Diked Tank	Steam Plant B
Diesel Fuel	2-300	Underground Tank	Steam Plant A
Fuel Oil	2-5000	Diked Tank	Steam Plant B
Fuel Oil	1-25,000	Underground Tank	ETF Heaters
Fuel Oil	1-18,000	Underground Tank	ETF Heaters
Fuel Oil	1-18,000	Underground Tank	ETF Heaters
Diesel Fuel	1-500	In Dam Structure Emergency Gen. Power	Elk River Dam
Diesel Fuel	1-1100	Underground Tank Emergency Pump Power	Primary Pumping Station
Diesel Fuel	1-250	Above Ground Tank Emergency Gen. Power	VKF
Diesel Fuel	1-250	Above Ground Tank Emergency Gen. Power	ETF
Diesel Fuel	1-200	Above Ground Tank Emergency Gen. Power	PWT PES Control Building
Diesel Fuel	1-250	Above Ground Tank Emergency Gen. Power	PWT Motor Drive Building
Diesel Fuel	1-275	Underground Tank Emergency Gen. Power	Arnold Airfield
Gasoline	1-550	Underground Fiberglass Tank, Emergency Pump Power	Water Treatment Plant
Diesel Fuel	1-500	Underground Tank, Emergency Gen. Power	Sewage Treatment Plant
Gasoline	1-1,000	Underground Tank	Officers Club Boat Dock
Commingled Fuel	1-2,000	Underground Tank	ETF "B" Plant
Commingled Fuel	1-2,000	Underground Tank	ETF "A" Plant
Commingled Fuel	1-5,000	Underground Tank	ASTF - Fuel Storage Bldg
Glycol	1-10,000	Underground Tank	ASTF - RC-1 Cooler
Waste Oil	1-150	Underground Tank	Mark I Hardstand

TABLE 4.4 SEMITRAILER FUEL TANKS

Type of Material	Capacity Each Tank (gallons)	Type of Storage Facility	Location of Storage Facility
Transformer Oil	2-10,000	Semitrailer	Flammable Yard
Transformer Oil	1-4,000	Semitrailer	ETF-Underground Main Elec. Substation
Varsol	1-4,000	Semitrailer	Flammable Yard
Kerosene	1-3,800	Semitrailer	Flammable Yard
Propane	1-2,500	Semitrailer	ETF "A" Air Side
Fuel	2-3,800	Semitrailer	-
Fuel	3-4,000	Semitrailer	-
Fuel	2-5,000	Semitrailer	-
UDMH	1-4,000	Semitrailer	-
N O 2 4	1-2,250	Semitrailer	-
Compressed Gas	26-55,000 ft ³	Semitrailer	N _O Transfer Pad
Cylinder	@ 2,000 psi		
LO ₂ & LN ₂	4-1,800	Semitrailer	-
	8-4,000		
Tank Refueler	2-5,000	Semitrailer	-

TABLE 4.5
ABANDONED TANKS

Type of Material	Capacity East Tank (gallons)	Type of Storage Facility	Location of Storage Facility
Gasoline	1-5,000 1-5,000	Underground Steel Underground Steel	Auto Repair Shop Auto Repair Shop
Diesel Fuel	1-5,000	Underground Steel	Auto Repair Shop
Diesel Fuel	2-5,000	Underground	Steam Plant "A"
Gasoline	1-250	Underground	Water Treatment Plant
Diesel Fuel	1-250	Underground	Primary Pumping Station

TABLE 4.6
MISSILE PROPELLANT STORAGE TANKS

Type of Material	No. of Tanks	Rated Capacity	Location
Helium (He)	3	370,000 cu. ft.	Cen. Plant
	40	98,000 cu. ft.	Mark I
	3	107,000 cu. ft.	J-4
	1	14,000 cu. ft.	J-3
	10	654,000 cu. ft.	J-4
	2	9,000 cu. ft.	etf/o
	24	152,000 cu. ft.	J - 3
Liquid Nitrogen (LN ₂)	1	95 ton	Cen. Nitrogen
_	1	95 ton	J-1
	1	44 ton	ELA
	7	508 ton	J-4
	5	468 ton	PWT
	1	54 ton	Mark I
	1	45 ton	VKF-L J-3
	•	95 ton	
Liquid Oxygen (LO ₂)	1	134 ton	J-1
_	1	95 ton	J-4
	2	5 ton	R2C
Nitrogen Tetroxide (N ₂ O ₄)	2	65,000 lb	J-3
	1	3,000 lb	R2B
	2	10,000 lb	T-4
	2	4,000 lb	J - 5
	1	44,000 lb	J-4
	1	18,000 lb	J-2
	1	12,000 lb	J-2A
Hydrazine (N ₂ H ₄)	1	600 lb	R2B
	2	99,000 lb	J-4
	2	18,500 lb	J2A
	2	43,000 lb	J-3
	3	16,000 lb	T-4
Liquid Hydrogen (LH)	1	5,000 lb	PWT
	4	66,500 lb	J-4

Brumalow Creeks indicates spills have occurred during most of the installation's history. Most of the spills and leaks have been small in volume. From 1982 to 1984 approximately 50 spills and leaks have been noted; nearly all are under 500 gallons and most are less than 100 gallons. Materials lost primarily include hydraulic and lubricating oils. Figure 4.3 shows the primary spill and leak areas.

In April of 1984 a pipe leak occurred in the ETF area with loss of approximately 1400 gallons of JP-4 fuel. Some fuel drained to a barometric well and then to Rollins Creek/Retention Reservoir, but most went into the ground. Investigation of this leak was in progress during the on-site visit for this study.

Since AEDC has been operating, approximately two to three major acid spills/leaks have occurred at the Model Shop leaching pit area. These involved losses of about 2000 gallons of nitric and/or hydrochloric acids each time to Ditch H, a tributary to Bradley Creek. These spills/leaks predominatly occurred in the 1960's.

Leaks of 55 gallon drums have been indicated in the Paint, Gas and Chemical Storage Area (1530). Prior to 1958 a drum of white nitric acid leaked, and in the mid-1960's a DDT leak occurred. A freon drum leaked in the mid 1970's. The DDT and nitric acid losses were washed to the ground and the surface drainage system by the Fire Department. Most of the freon had evaporated upon discovery of the leak.

In the late 1970's, a large spill of FS-2 fuel occurred in the test fuel farm. Approximately 10,000 gallons of fuel spilled but was contained in the dike structure. Cleanup resulted in the recovery of all but about 600 gallons of fuel. About 50 gallons of fuel later surfaced from the ground outside the dike structure and was removed.

Less than three years ago, on the west end of the test fuel farm, a leak occurred on the commingled fuel line. The composition of the fuel was believed to about 90 percent JP-4 and the amount of fuel lost was not determined. The area surrounding the leak was excavated and removed and the fuel line repaired. Uncontaminated soil was used to replace that which was removed.

An accident occurred on November 17, 1982, in which a significant amount of Class 1.3 solid rocket propellant was dropped to the bottom of Cell J-4 at AEDC from an MX Stage II test motor. The propellant was

removed from the Test Cell. The propellant was burned in 1983 near the airfield at Burn Area No. 2 by the Explosive Ordinance Disposal Team (EOD) from Patrick AFB. A further discussion of the burn area is included later.

In 1982 a 250-gallon gasoline fuel tank at the water treatment plant was determined to be leaking and was replaced with a 550-gallon tank. No physical evidence of the leak was apparent at the site and the leak was apparently discovered through inventory records or tank testing.

Pesticide Utilization

A variety of pesticides have been used at AEDC since 1952 for controlling weeds, insects and rodents. Appendix D contains a listing of the pesticides which are currently approved for use at AEDC. In 1974 an environmental assessment of the pesticide program at AEDC was conducted, and the procedures were deemed satisfactory. Appendix D contains a list of pesticides in use in 1974.

Since 1982 some pesticides have been stored and mixed in Building 1414. Containers are rinsed with rinsewater going to the sanitary sewer and the empty containers are taken to a special dumpster which is then transported to Landfill No. 2 for disposal. Prior to 1982 pesticides were mixed in the Nursery Area (just north of the Wastewater Treatment Plant adjacent to the road entering Landfill No. 2). Unrinsed containers were buried at the nearby Landfill No. 2.

The sprayers used for applying pesticides at AEDC have not normally been rinsed but are operated until all solutions have been sprayed out.

In addition to the pesticide mixing and application described above, there have been several outside contractors utilized for applying pesticides. These contractors do all the mixing and handling of empty containers off the installation grounds.

The Tennessee Valley Authority (TVA) power transmission corridors entering the AEDC have received herbicide applications by TVA. Appendix D lists the probable chemicals used for this purpose. No herbicides have been applied to the electrical corridors for about ten years. Prior to that, applications were made at intervals of six to eight years.

Fire Protection Training

There are two areas that have been used for fire training activities at AEDC. Figure 4.4 and photographs in Appendix F illustrate the fire training areas. The initial fire protection training area (FPTA) was located north (behind) the Fire, Police and Communications Building (No. 257). This site was used from 1953 until 1983. Waste oils, paint thinners, petroleum levels, propellants, and magnesium chips were burned. Propellants, such as nitrogen tetraoxide (N_2O_4), triethylaluminum (TEA), and triethylboron (TEB), and magnesium chips were the main fuels used for training in the late 1950's and 1960's. Sodium potassium alloys (NAK) were reacted in the 1970's at the site.

All fires at FPTA No. 1 have been conducted in a steel "pan" above ground level. Due to these physical arrangements, the size of the fires conducted were small. For example, the typical pan fire at FPTA No. 1 would use only about 50 gallons of JP-4. About 24 fires were conducted per year. Halon, dry chemicals and aqueous film forming foam (AFFF) have been used as extinguishing agents.

FPTA No. 2 is located northwest of the Model Shop (Building 451) near Gate 5. The facility consists of a gravel burning area with drains connected to a small retention pond. Water is first applied to the burning area followed by the combustion material. Halon, dry chemicals and AFFF are used for extinguishing fires. Unburned residuals and extinguishing agents drain to the pond or into the ground. The pond piping is arranged so that the liquid below the surface is preferentially removed and then discharged to the adjacent drainage course.

FPTA No. 2 was started in 1973 and continues in use at the present time. In the 1970's contaminated petroleum fuels and fuel filters, waste oils, thinners, solvents, and some propellants were burned. Since the late 1970's JP-4 has primarily been burned but some NAK has also been utilized. Fires typically use 500-600 gallons of JP-4 applied to the prewetted burning area. About 21 fires per year have been typical in recent years. NAK was reacted about once per year at the FPTA.

INSTALLATION WASTE DISPOSAL METHODS

A review was made of the methods used to dispose of wastes at AEDC. Information was obtained from file data and employees interviews.

Following is a listing of the primary methods for disposing of AEDC wastes:

- o Landfills
- o Hardfills
- o Leaching Pits
- o Burn Areas
- o Treatment Facilities
- o Surface Drainage System

Appendix F contains photographs of many of the disposal areas discussed herein.

Landfills

Figures 4.5 and 4.6 show the four areas that have been used for landfills at AEDC. Table 4.7 summarizes the landfill operations.

Landfill No. 1

From the time AEDC began in 1952 the area of Landfill No. 1, west of Building 450 near Gate 5, served as disposal site for many installation wastes. The site was used for disposal of construction debris in the 1960's. Facility refuse and garbage was taken to this area. In addition, some shop wastes were taken to this site, particularly for combustion (as discussed later for Burn Area No. 1). Considerable burning of wastes in a pit or trench took place for a number of years, probably until the late 1960's. The burning area and main disposal area for refuse and some shop wastes is reportedly near the small building located on the site.

Along the western edge of the landfill is a bermed area that reportedly contains ash from the AEDC power plant and ash from the Burn Area No. 1 operations. This ash would have been placed at this location until the early 1970's when coal combustion was phased out.

In the eastern and northern portion of this site many metal shop wastes, such as metal scraps and turnings, were reportedly buried. Evidence along the edges of the site also indicates concrete and other rubble may have been buried. This area now lies under and adjacent to the present FPTA No. 2.

TABLE 4.7 LANDFILL AND HARDFILL AREAS

Site	Period of Operation	Approximate Area	Method of Operation	Type of Wastes
Landfiil No. 1	1953 - early 1970's	7	Predowinantly trench method; depth about 8-10 ft; considerable burning (see Burn Area No. 1)	Refuse, garbage, metal scrap, concrete, power plant ash, combustible shop wastes, construction/demolition debris.
Landfill No. 2	1956 - present	51	Trench method; depth about 6-10 ft; contaminated wastes often in individual holes rather than trenches	Refuse, garbage, contaminated clothing, paints and thinners, metal salts, solvents, pesticides, acids, caustics, propellant equipment (see Appendix D for more details).
Landfill No. 3	1960's - early 1970's	æ	Trench method; depth about 6-8 ft	Refuse and garbage
Landfill No. 4	1971 - present	40	Trench method; depth about 10-15 ft	Refuse, garbage, construction debris, metal salts, acids and solvents
Hardfill Area	1960's - present	ĸ	Area/trench method; depth about 10-15 ft	Construction and demolition debris, metal scrap, wood

Source: AEDC file data and interviews.

Landfill No. 2

Landfill No. 2, designated the Sanitary Landfill in many installation files, has operated since 1956. The facility is located adjacent to the Retention Reservoir. In the period 1956 to 1970, the site was used primarily for disposal of hazardous materials. This took place along the southern edge of the present site. Hazardous wastes were typically placed in various individual holes (e.g., 6 feet by 8 feet by 6 feet deep) rather than trenches.

In approximately 1970, this site was expanded to receive refuse, garbage and other nonhazardous materials, primarily due to the closing of the Landfill No. 1 and Burn Area No. 1 operations.

Hazardous materials continued to be buried along the southern portion of the site until 1976 when this area of the landfill was closed. At that time the hazardous disposal operation was moved to area about 200 feet north. Three trenches of reportedly nonhazard wastes are located between the two hazardous disposal areas on the site. Appendix D includes a drawing of the trenches at the landfill and also provides additional data on wastes received.

As noted in Table 4.7, this landfill received an extremely wide variety of hazardous materials. Section 3 discussed the monitoring wells at the Landfill No. 2 site. Analyses for several of the wells confirm contamination from the disposal operations (data from the wells is presented in Section 3 and Appendix D).

Active disposal operations ceased at this site in 1982 when all AEDC solid wastes, such as refuse and garbage, were transported to Landfill No. 4. Landfill No. 2 continues to dispose of asbestos, wastes, rinsed pesticide containers and small quantities of shop wastes.

Landfill No. 3

From the early 1960's until about 1970 when Landfill No. 2 was expanded, a landfill (No. 3) was operated by AEDC about a mile north of the UTSI facilities. This site received solid wastes from UTSI and AEDC facilities, such as the housing area. The wastes were primarily normal refuse and garbage and reportedly did not receive any shop wastes or hazardous materials. The closed landfill site shows some evidence of where the operations took place due to lack of trees. The site has

vegetation growth where the trenches were located and there is no evidence that contamination exists at this site.

After closure of Landfill No. 3, UTSI wastes were taken to Landfill No. 2 for a few years in the early 1970's. In the mid 1970's all UTSI wastes were taken to a disposal site off the AEDC installation, and that practice continues at the present time. The shop-type wastes and ash from the UT magneto hydrodynamic (MHD) research facility have always been taken off the AEDC reservation.

Landfill No. 4

In 1971 the northwestern corner of the AEDC reservation, near Manchester, was provided to local governments for disposal of solid wastes. The governments involved include Coffee County and the Manchester and Tullahoma municipalities. A landfill (No. 4) has operated at this location since 1971 using the trench disposal method.

Wastes received at the landfill have included household refuse and garbage, construction debris and other municipal-type materials. Several local industries have disposed wastes at this site also. In the early 1970's drums containing metal salts (mainly chromium), acids and solvents were disposed at the facility on a fairly routine basis. Since these early years, closer restrictions on wastes to be disposed have been initiated.

In 1982, all AEDC wastes such as refuse garbage have been taken to Landfill No. 4.

Hardfill

Figure 4.5 shows the location of a hardfill area operated at AEDC since the early 1960's. The hardfill has had more intense use since about 1970. It has received construction and demolition debris, metal scrap, wood and other nonhazardous and nonputrescible wastes. An area fill procedure has been used at the site. This hardfill is not considered to be a potential for contamination or migration of hazardous materials based upon present or past operations.

Leaching Pits

Four areas have been classified as leaching pit disposal operations. Figure 4.7 shows the location of these sites and Appendix F contains photographs of each area.

SCALE

Leaching Pit No. 1

Acid cleaning of metals in the Model Shop area has been conducted since AEDC began operations. Waste acids including metals were disposed of in Leaching Pit No. 1, previously located near the northwestern corner of Building 450. The leaching pit was filled with a bed of limestone rock. Waste acids disposed from the Model Shop are currently approximately 5000 gallons per year, but during the operation of this leaching pit they were probably double due to the more intense activities from the late 1950's to early 1970's. Nitric, hydrochloric, phosphoric and sulfamic acids were the primary ones disposed at this leaching pit.

In about 1972 Leaching Pit No. 1 was closed down and acid wastes were taken to Leaching Pit No. 2 near Landfill No. 2. This practice continued until the mid 1970's when neutralization facilities were constructed at the Model Shop.

Leaching Pit No. 1 has been filled in and covered with a gravel surface. However, the concrete pavement adjacent to the site is severely pitted, showing evidence of acid handling in the area.

Leaching Pit No. 2

This leaching pit (No. 2) was located adjacent to the contaminated disposal portion of Landfill No. 2. It reportedly operated from the 1950's until the 1970's. In the 1970's it received acids from the Model Shop. Prior to the 1970's it received a variety of liquid wastes which was periodically drained from drums to the pit. Wastes included chrome and other solutions from the plating operations at the Model Shop as well as other acidic wastes from various shops.

Beryllium Leaching Area

In the mid 1960's (approximately 1963 to 1967) considerable testing using beryllium took place at AEDC. Clothes contaminated with beryllium dust were washed in machines located in Building 1697. Wash water and rinsewater passed through filters on the machines and then to a pit at the back of the building. This pit overflowed to the adjacent ground area. It was estimated that clothes from about 10-15 persons were washed at this location on a regular basis. In later years, disposable clothing became more prevalent and the washing operation was closed down. All beryllium contaminated clothing went to Landfill No. 2.

Retention Leach/Burn Area

In the 1950's and 1960's a combination leaching and burning operation took place adjacent to the western edge of the Retention Reservoir. Materials leached/burned consisted primarily of toluene and propellants such as high energy fuel (HEF - alkyl borane fuel), nitrogen tetroxide, TEA and TEB. A special concrete pad was provided for unloading the waste materials (often from tank trucks) and draining them through a short, small diameter pipe to the leaching/burning area (about 20 feet diameter).

It appears from the interviews that this site may have been used to dispose of small quantities of propellants while the Camp Forrest Water Treatment Plant site handled larger volumes that needed to be disposed. Burn Areas

Several areas at AEDC have been used to burn hazardous materials as a part of the disposal operations. Figures 4.8 and 4.9 show the burn areas and Appendix F presents photographs of some sites.

Burn Area No. 1

From about 1953 until the early 1970's Burn Area No. 1 operated near Gate 5, west of the Model Shop (Building 451). This burning area functioned in conjunction with the landfill disposal operations (Landfill No. 1). A pit or trench existed at the site (in the vicinity of the small building on the site). Solid wastes were placed in the trench and burned. Waste oils, contaminated fuels, solvents, thinners and other combustible wastes were burned on a regular basis. In the early 1970's this open burning was phased out as solid waste disposal became more of a sanitary landfill type operation at Landfill No. 2. The combustible shop wastes being burned were then predominantly taken to one of the fire protection training areas, the contaminated disposal area at Landfill No. 2, and/or the steam plant.

Burn Area No. 2

In 1983 a significant quantity of solid rocket fuel required disposal. Permission was obtained from appropriate regulatory agencies to burn this material at AEDC. Two areas at the AEDC Airfield were used; the northern area was a small site used to test the combustion procedure, and the southern site was where most of the fuel was burned. The

material was spread on the ground and ignited. No other waste disposal has taken place at the Airfield site.

HEF Burn/Burial Area

Another one-time-only burning area was adjacent to the western edge of the Retention Reservoir, located generally in the vicinity of the Retention Leach/Burn Area. At this site, containers of high energy fuel (HEF) were placed in a trench. The containers were then detonated and the fuel burned. Following combustion, the exploded containers were covered with soil in the trench. This burning and burial operation reportedly took place between 1959 and 1961.

Camp Forrest Water Treatment Plant

The old water treatment plant that served the Camp Forrest activities during World War II was used as a major disposal site for AEDC wastes from 1953 until 1980. The treatment plant foundation was a concrete structure which consisted of various tanks. Wastes were burned, ignited or reacted in the tanks. Materials disposed included a wide variety of propellants, such as HEF, nitrogen tetroxide, red fuming nitric acid (RFNA), unsymmetrical dimethylhydrazine (UDMH), aerozine (AZ-50, a mixture of UDMH and hydrazine), and other wastes including NAK, oils, solvents, jet fuels and solid rocket fuel.

The clear well at the old treatment plant was used as a deposit area for contaminated pipe, tubes, valves and other mechanical equipment. A pit adjacent to the concrete tanks was used to bury contaminated containers and drums after the contents was burned or otherwise disposed in the tanks.

In the past few years the water treatment plant structures at Camp Forrest were demolished and the entire site filled in and graded. An opening to the old clear well still appears to be accessible.

Treatment Pacilities

Four facilities at AEDC have been used to treat hazardous materials (Figure 4.10).

Wastewater Treatment Plant

The main wastewater treatment plant (Facility 1552), located near the east side of the Retention Reservoir, has received some small quantities of hazardous materials since AEDC began operations. Other

•

wastewater treatment plants operated by AEDC are for remote facilities which predominantly receive domestic sewage.

Rinsewaters from Model Shop plating and anodizing operations have routinely been drained to the wastewater treatment plant. Dilute acids and bases are utilized for various processes throughout the AEDC testing areas. These spent solutions, usually small volumes, are discharged to the sanitary sewer system. Ethylene glycol and water solutions are sent to the sanitary system as are photographic process solutions. Since about 1966 silver has been recovered from the photographic wastes prior to discharge. There have been periodic spills of other materials, such as fuel, which have on occasion reached the wastewater treatment plant. These spills were more typical in the 1960's and early 1970's.

Although there have been some operational upsets in the wastewater treatment, possibly due to some of the industrial-type wastes, the plant has generally performed as required. Sludge from the plant is dried and has been disposed of with top soil at many locations throughout the AEDC site.

The sanitary sewerage system is not considered a potential for contamination or migration of hazardous materials based upon present or past operations.

Neutralization Pretreatment Facilities

In about 1975 pretreatment tanks were constructed adjacent to Building 450 to hold all acidic wastes generated at the Model Shop. Wastes are discharged to the sanitary sewer system relatively infrequently, but the facilities enable neutralization prior to discharge. These facilities replace the leaching pit operation described previously.

These facilities are not considered a potential for contamination or migration of hazardous materials based upon the present or past operations.

Chemical Treatment Pond

The Chemical Treatment Pond, located at the south end of the Retention Reservoir, was constructed in 1961 and utilized until 1982. It is an unlined pond. No inlet conveyance facilities such as sewers are provided; all materials to be treated were brought to the site in drums or other containers. Containers were typically rinsed at the site by

fire department personnel. The pond contents can be discharged through a gate to the Rollins Creek Surface Drainage System or pumped into the Retention Reservoir.

Typical waste materials disposed of at the Chemical Pond have included caustic soda, RFNA, aerozine, hydrazine, nitrogen tetroxide, strontium perchlorate, and toluene. Most of these wastes were reacted with the water or merely held in the pond to enable some treatment prior to discharge. HTH (chlorine compound) was added to the pond to assist in oxidizing some wastes such as hydrazine.

Retention Reservoir

The Retention Reservoir is a large impoundment located at the western edge of the AEDC testing areas. The reservoir was constructed in 1953 and has been operated since that time. The primary objective of the unlined reservoir is to enable waste materials, primarily oils, which reach the Rollins Creek Surface Drainage System to be diverted for a holding or treatment period before release to the surface streams. The reservoir also receives direct runoff from the J-4 testing area. The useful storage capacity of the reservoir is approximately 976 acrefeet (318 million gallons). The reservoir has also been used to receive waste materials hauled to the site for disposal.

The types of wastes known to have been diverted to the Retention Reservoir include oils, PCB-contaminated oils, jet fuels, monomethyl-hydrazine (MMH), UDMH, aerozine, nitrogen tetroxide, strontium perchlorate, toluene and propellant combustion residuals.

Diversion from the surface drainage system is accomplished by motor-driven channel and reservoir gates (see photograph in Appendix F). When the wastes in the drainage channel have subsided, the above procedure is reversed. Testing is done periodically on the Retention Reservoir water to determine when it can be released back to the drainage channel. Testing has also been done on fish caught in the reservoir and elevated PCB levels have been indicated.

Surface Drainage Systems

As previously discussed in Section 3, there are four distinct drainage areas leading away from the AEDC operations area (Figure 4.11). Each of these areas has operated since 1953 and has received or is suspected to have received hazardous wastes, primarily from spills and

leaks which directly reach the storm drains or from runoff of areas which routinely have been subject to spills and leaks.

Rollins Creek

The drainage system to Rollins Creek is the most significant drainage course at AEDC. This channel transports large cooling water return flows from the Test Areas to Woods Reservoir via Rollins Creek. As described previously, contaminated flows may be directed to the Retention Reservoir for holding/treatment before release to the surface stream. However, prior to construction of the reservoir (1959) any contaminated waters were transported to Rollins Creek. This drainage system also receives effluent from the main AEDC wastewater treatment plant and the Chemical Treatment Pond. Runoff from a large portion of AEDC, including much of the ETF testing area, enters the Rollins Surface Drainage System. Hazardous wastes are known to have been transported by this drainage system.

Bradley Creek

Much of the northeastern portion of AEDC is tributary to Bradley Creek via a series of drainage ditches. The most significant is Ditch H which serves all of the VKF and part of the ETF testing areas as well as the Model Shop operations. This drainage system has received hazardous waste spills from both the testing areas and the Model Shop. A pond with an oil skimmer exists for this drainage system near the installation boundary (Figure 4.11). The skimming pond was installed in 1972-1973. It has been cleaned twice with the dredged material placed immediately adjacent to it.

Brumalow Creek

The Brumalow Surface Drainage System serves the southeastern portion of AEDC. Runoff and/or spills from the PWT testing area, steam plant and motor pool enter this system. Some hazardous material spills and leaks have occurred in the Brumalow Creek System. A pond with an oil skimmer has been operated for this drainage system south of the AEDC access road (Figure 4.11) since 1972-1973. It has been cleaned twice and the dredged material placed immediately adjacent to the pond.

Crumpton Creek and J-4 Area

The drainage area for Crumpton Creek originally included much of the Western portion of AEDC. When the Retention Reservoir was

constructed in 1959 most of the drainage entered the reservoir instead of Crumpton Creek. For example, all surface drainage from the J-4 area enters directly into the Retention Reservoir. It is reported that some seepage from the Retention Reservoir Dam regularly discharged to Crumpton Creek and is suspected to have received some hazardous materials from the reservoir.

Miscellaneous

Camp Forrest Army Operations

Prior to development of the AEDC facilities, part of the reservation area served as training grounds for the Army during World War II. The training area, Camp Forrest, was located on both sides of the access road which leads from the AEDC main gate to Tullahoma.

Incinerators were provided at the camp and these were probably used to dispose of wastes generated by the troop encampment. A sewage treatment plant also existed. Based upon the facilities provided and the training activities which were undertaken, there is reason to believe the old camp area has no potential to create environmental contamination.

Camp Forrest activities also involved artillery range training. Two major locations on the AEDC reservation have been identified as artillery impact areas. One area straddles Rollins Creek just south of the AEDC access area (east of the UTSI access road). The other abandoned artillery impact zone is just north of the AEDC Airfield. A few other small areas on the reservation are also posted with warning signs. While these areas may pose safety problems, they are judged to have minimal potential to create environmental contamination.

Road Oiling

Another disposal activity which existed at AEDC for a number of years (to about 1970's) was use of waste oils to control dust on unpaved roads. The roads south of the AEDC access highway and those leading to the landfill operations were oiled periodically. Data concerning the frequency of application, volume of oil used and specific roads receiving the oils was not available. Crankcase oils are known to have been used for this purpose and the use of hydraulic, capacitor and transformer oils is believed to have been minimal, if any. It is judged that

the road oiling operations are likely to cause minimal environmental contamination.

EVALUATION OF PAST DISPOSAL ACTIVITIES AND FACILITIES

Review of past waste generation and management practices at AEDC has resulted in identification of 34 sites and/or activities which were considered as areas of concern for potential contamination and migration of contaminants.

Sites Eliminated from Further Evaluation

The sites of initial concern were evaluated using the Flow Chart presented in Figure 1.2. Sites not considered to have a potential for contamination were deleted from further evaluation. The sites which have potential for contamination and migration of contaminants were evaluated using the Hazard Assessment Rating Methodology (HARM). Table 4.8 summarizes the results of the flow chart logic for each of the areas of initial concern.

Twelve of the 34 sites assessed did not warrant further evaluation. The rationale for omitting these sites from HARM evaluation is discussed below.

The test and bulk fuel farms have experienced a few small spills. The test fuel storage area had one larger spill but nearly all was recovered. Therefore, these operations do not suggest potential contamination.

The waste accumulation points and waste storage areas have not experienced any major spills or leak problems so the potential contamination at these sites should be minimal. The leaks from a few drums at the Chemical Storage Area were small and thus this area is not considered for additional evaluation. The leak from the water treatment plant fuel tank is believed to have been small and thus minimal potential for environmental contamination. Similarly, pesticide handling at two different sites does not suggest potential environmental contamination.

Landfill No. 3 operated for less than ten years serving the UTSI and AEDC facilities near Woods Reservoir such as the housing area. Wastes disposed were normal refuse and garbage, and no evidence of hazardous waste exists. Visual observations at the site do not indicate

TABLE 4.8

SUMMARY OF FLOW CHART LOGIC FOR AREAS OF
INITIAL HEALTH, WELFARE AND ENVIRONMENTAL CONCERN AT AEDC

Site	Potential Hazard to Health, Welfare or Environment	Need for Further IRP Evaluation/ Action	HARM Rating
Test Fuel Farm	No	No	No
Bulk Fuel Farm	No	No	No
Waste Storage Areas	No	No	No
Waste Accumulation Points	No	No	No
Testing Area Spills/Leaks	Yes	Yes	Yes
Model Shop Spills/Leaks	Yes	Yes	Yes
Chemical Storage Area Leaks	No	No	No
Water Treatment Plant Fuel Leak	No	No	No
Pesticide Handling	No	No	No
Fire Protection Training Area No. 1	Yes	Yes	Yes
Fire Protection Training Area No. 2	Yes	Yes	Yes
Landfill No. 1	Yes	Yes	Yes
Landfill No. 2	Yes	Yes	Yes
Landfill No. 3	No	No	No
Landfill No. 4	Yes	Yes	Yes
Hardfill Area	No	No	No
Leaching Pit No. 1	Yes	Yes	Yes
Leaching Pit No. 2	Yes	Yes	Yes
Beryllium Leaching Area	Yes	Yes	Yes
Retention Leach/Burn Area	Yes	Yes	Yes
Burn Area No. 1	Yes	Yes	Yes
Burn Area No. 2	Yes	Yes	Yes
HEF Burn/Burial Area	Yes	Yes	Yes
Camp Forrest Water Treatment Plant	Yes	Yes	Yes
Wastewater Treatment Plant	No	No	No
Neutralization Pretreatment Facilities	No	No	No
Chemical Treatment Pond	Yes	Yes	Yes
Retention Reservoir	Yes	Yes	Yes
Surface Drainage - Rollins	Yes	Yes	Yes
Surface Drainage - Bradley	Yes	Yes	Yes
Surface Drainage - Brumalow	Yes	Yes	Yes
Surface Drainage - Crumpton	Yes	Yes	Yes
Surface Drainage - J-4 Area	Yes	Yes	Yes
Camp Forrest Army Operations	No	No	No
Road Oiling	No	No	No

Source: Engineering-Science

vegetative stress. Therefore, this site was eliminated from further evaluation. This same conclusion is drawn for the hardfill area as no evidence of hazardous waste disposal exists.

Both the wastewater treatment plant and neutralization pretreatment facilities have handled hazardous materials. Minor upsets have occurred at the wastewater treatment plant, primarily in the 1960's and early 1970's. There is no indication of leakage from the neutralization pretreatment tanks. Therefore, these two facilities have been eliminated from further assessment.

The Army activities at Camp Forrest during World War II involved solid waste disposal using incinerators and a wastewater treatment plant for liquid wastes. Artillery impact areas exist but are considered a potential safety hazard rather than an environmental contamination problem. The Army operations were not evaluated further.

Road oiling took place for many years at numerous locations on the AEDC reservation. The oils used were primarily crankcase oils and the potential for environmental contamination was considered minimal.

Sites Evaluated Using HARM

The remaining 22 sites identified in Table 4.8 were evaluated using the Hazard Assessment Rating Methodology. The HARM process takes into account characteristics of potential receptors, waste characteristics, pathways for migration, and specific characteristics of the site related to waste management practices. Results of the HARM analysis for the sites are summarized in Table 4.9. It is noted that due to the close proximity of several sites the rating has been combined. The response of the Model Shop spills/leaks was evaluated as a part of the Bradley Surface Drainage System.

The procedures used in the HARM system are outlined in Appendix G and the specific rating forms for the seventeen sites at AEDC are presented in Appendix H. The HARM system is designed to indicate the relative need for follow-on action.

TABLE 4.9
SUMMARY OF HARM SCORES FOR
POTENTIAL CONTAMINATION SOURCES AT AEDC

Rank	Site	Receptor Subscore	Waste Charac- teristics Subscore	Pathways Subscore	Waste Management Factor	HARM Score
1	Landfill No. 2/Leaching Pit No. 2	40	100	100	1.0	80
2	Retention Reservoir/J-4 Area Surface Drainage	38	100	100	1.0	79
3	Landfill No. 4	59	100	74	1.0	78
4	Surface Drainage-Bradley	49	100	69	1.0	73
5	Surface Drainage-Rollins	43	100	69	1.0	71
6	Camp Forrest Water Treatment Plant	36	100	74	1.0	70
7	Testing Areas	42	100	67	1.0	70
8	Leaching Pit No. 1	42	100	67	1.0	70
9	Surface Drainage-Brumalo	ow 50	70	69	1.0	63
10	Fire Protection Training Area No. 2/Burn Area No. 1/Landfill No. 1	38	80	67	1.0	62
11	Chemical Treatment Pond	38	80	67	1.0	62
12	Retention Leach/Burn Are	ea 36	80	69	1.0	62
13	Fire Protection Training Area No. 1	42	64	67	1.0	58
14	Surface Drainage-Crumpto	on 34	56	69	1.0	53
15	HEF Burn/Burial Area	36	48	69	1.0	51
16	Beryllium Leaching Area	38	30	67	1.0	45
17	Burn Area No. 2	46	24	59	1.0	43

Source: Engineering-Science

SECTION 5 CONCLUSIONS

The goal of the IRP Phase I study is to identify sites where there is potential for environmental contamination resulting from past waste disposal practices and to assess the probability of contaminant migration from these sites. The conclusions given below are based on field inspections; review of records and files; review of the environmental secting; interviews with AEDC present and past employees and local, state and federal government employees; and assessments using the HARM system. Table 5.1 contains a list of the potential contamination sources identified at AEDC and a summary of the HARM scores for those sites.

LANDFILL NO. 2/LEACHING PIT NO. 2 (SITE NO. 1)

The area which comprises Landfill No. 2 and Leaching Pit No. 2 has caused environmental contamination as evidenced from existing shallow ground water monitoring well analytical data. This site requires some Phase II IRP investigative activities to determine the extent of contaminant migration; however, some concurrent remedial response activities under Phase IV (such as a remedial action plan) may also be necessary. Landfill No. 2 and Leaching Pit No. 2 received a large quantity of numerous hazardous materials including acids, caustics, propellant equipment, metal salts, solvents, pesticides, oils, paints and thinners. The landfill received mainly hazardous wastes from 1956 until about 1970 when refuse was also buried in trenches at the site. The leaching pit operated from the 1950's to the 1970's. It received all the Model Shop acids and other liquid chemical wastes when Leaching Pit No. 1 was closed down in 1972. The waste characteristics and pathways subscores result in a final HARM score of 80 for these facilities.

TABLE 5.1
SITES EVALUATED USING THE
HAZARD ASSESSMENT RATING METHODOLOGY
AEDC

Site No./ Rank	Site Description	Operation Period	HARM Score (1)
1	Landfill No. 2/	1956-Present	80
	Leaching Pit No. 2	1950's-1970's	
2	Retention Reservoir/ J-4 Area Surface Drainage	1959-Present	79
3	Landfill No. 4	1971-Present	78
4	Surface Drainage - Bradley	1953-Present	73
5	Surface Drainage - Rollins	1953-Present	71
6	Camp Forrest Water Treatment Plant	1953-1980	70
7	Testing Areas	1953-Present	70
8	Leaching Pit No. 1	1953-1972	70
9	Surface Drainage - Brumalow	1953-Present	63
10	Fire Protection Training Area No. 2/Burn Area No. 1/ Landfill No. 1		62
11	Chemical Treatment Pond	1961-1982	62
12	Retention Leach/Burn Area	1950's-1960's	62
13	Fire Protection Training Area No. 1	1953-1983	58
14	Surface Drainage - Crumpton	1953-Present	53
15	HEF Burn/Burial Area	1959-1961	51
16	Beryllium Leaching Area	1963-1967	45
17	Burn Area No. 2	1983	43

⁽¹⁾This ranking was performed according to the Hazard Assessment
Rating Methodology (HARM) described in Appendix G. Individual
rating forms are in Appendix H.

RETENTION RESERVOIR/J-4 AREA SURFACE DRAINAGE (SITE NO. 2)

The surface drainage from the rocket test areas and the Retention Reservoir have sufficient potential to create environmental contamination to warrant follow-on investigations. Fish in the reservoir are known to have been contaminated by wastes entering the impoundment. These unlined drainage/impoundment facilities have received propellants and propellant residuals, petroleum fuels, oils, PCB-contaminated oils, and other waste materials. All contaminated flows in the Rollins Surface Drainage System have been diverted since 1959 to the Retention Reservoir for holding and pretreatment before release back to the drainage system. The waste characteristics and pathways result in a total HARM score of 79 for these operations.

LANDFILL NO. 4 (SITE NO. 3)

The landfill (No. 4) which is operated by Coffee County-Manchester-Tullahoma in the northwestern corner of the AEDC installation has sufficient potential to create environmental contamination (ground water), and follow-on studies are justified. For several years, in the early 1970's, when this landfill started operations, liquid and semi-solid industrial wastes in drums were accepted and buried. These wastes included acids, metal salts, solvents and other hazardous materials which represent a potential for contamination of the ground water. The relatively high ranking of this site, is primarily due to its receptor subscore which reflects the locational aspects concerning nearby populations (residents and high school), installation boundary, wells and residential land use. The total final HARM Score for Landfill No. 4 is

SURFACE DRAINAGE - BRADLEY (SITE NO. 4)

The drainage courses and skimming pond at AEDC which lead to Bradley Creek have sufficient potential to create environmental contamination to justify further follow-on investigations. Spills and leaks and surface runoff from the Model Shop, Leaching Pit No. 1 and Testing Areas (mainly VKF and part of ETF) have drained to the Bradley Creek area since the installation began operations. Wastes can include acids, caustic, metals, solvents, oils, fuels and other chemicals. These

characteristics, plus the pathways subscore contribute to the total HARM score of 73.

SURFACE DRAINAGE - ROLLINS (SITE NO. 5)

The main cooling water return channel at AEDC, which drains to Rollins Creek, has sufficient potential to create environmental contamination and follow-on studies are warranted. This drainage course has handled contaminated wastes by diverting them to the Retention Reservoir since 1959 or to Woods Reservoir from 1953 to 1959. The drainage system receives spills and leaks and surface runoff from a major portion of the Testing Areas, all return cooling flows from the AEDC industrial facilities and wastewater treatment plant effluent. All barometric wells in the Testing Areas, which serve to collect liquid wastes, discharge to the Rollins drainage system. The waste characteristics and pathways subscores result in a 71 total HARM score.

CAMP FORREST WATER TREATMENT PLANT (SITE NO. 6)

The Camp Forrest Water Treatment Plant site has sufficient potential to create environmental contamination, and follow-on investigations are warranted. This site was the recipient of many AEDC wastes over a long period of time (1953-1980). Many wastes were burned or otherwise accumulated either within the old treatment plant structure or adjacent to it. The waste characteristics and locational aspects of the receptor evaluation resulted in a total HARM score of 70.

TESTING AREAS (SITE NO. 7)

The PWT, ETF and VKF Testing Areas have sufficient potential to create environmental contamination and follow-on investigations are justified. The industrial-oriented activities in the Testing Areas have been subject to routine spills and leaks of petroleum products and other chemicals since 1953 when AEDC began operations. The waste characteristics and the pathways subscores resulted in a total HARM score of 70 for the Testing Areas.

LEACHING PIT NO. 1 (SITE NO. 8)

The leaching pit (No. 1) previously located by the Model Shop has sufficient potential to create environmental contamination to warrant follow-on studies. A large variety of acids, alkalies and other chemicals were disposed in this leaching pit over a number of years (1953-1972). Several spills of acids also occurred in this vicinity which is tributary to Bradley Creek via Ditch H. The waste characteristics and receptor subscores primarily contributed to the total HARM score of 70.

SURFACE DRAINAGE - BRUMALOW (SITE NO. 9)

This surface drainage system and skimming pond, leading to Brumalow Creek, has sufficient potential to create environmental contamination to warrant follow-on investigation. The drainage system serves the PWT, steam plant and motor pool areas, including all spills, leaks and surface runoff which results from the industrial activities. This system has functioned for numerous years and the waste characteristics and pathways result in a total HARM score of 63.

FIRE PROTECTION TRAINING AREA NO. 2/BURN AREA NO. 1/LANDFILL NO. 1 (SITE NO. 10)

This site, near Gate 5, has served as a multipurpose disposal area and has sufficient potential to create environmental contamination to justify follow-on studies. The area from 1952 to about 1970 was used as a combination dump and burning area ("fire pit") for waste petroleum products, propellants and other combustible wastes. The area under the present Fire Protection Training Area No. 2 was used primarily as a landfill, receiving metal scraps and other debris. The fire training activities have included burning of waste materials after pre-application of water to the gravel combustion surface. Along the western border of this disposal site, ashes from the power plant were buried. The variety of wastes and potential pathways results in a final HARM score of 62.

CHEMICAL TREATMENT POND SITE (NO. 11)

The Chemical Treatment Pond has sufficient potential to create environmental contamination to justify follow-on study. This facility, which operated from 1961 to 1982, was used to treat and dispose of several different propellants and toluene. Due to the waste characteristics and pathways subscores, this site received a total HARM score of 62.

RETENTION LEACH/BURN AREA (SITE NO. 12)

This leaching and burning area, which handled propellants and toluene in the 1950's, has sufficient potential to create environmental contamination to warrant additional follow-on study. This site received a HARM score of 62 primarily due to the waste characteristics and pathways analyses.

FIRE PROTECTION TRAINING AREA NO. 1 (SITE NO. 13)

FPTA No. 1 burned waste oils, magnesium, retroleum fuels and test fuels from the 1950's until 1983. All of the fires were conducted in a steel "pan" which was constructed above ground level. Some spillage of the combustion materials, before, during and after the fires, took place. However, the quantity of wastes reaching the ground is not estimated to be large. Based upon the burning practices and the receptor analysis, this site is judged to have minimal potential to create environmental contamination, and no additional investigation is warranted. The HARM score for FPTA No. 1 was 58.

SURFACE DRAINAGE - CRUMPTON (SITE NO. 14)

This drainage area has only received leakage from the Retention Reservoir which has contained a variety of wastes. The HARM rating for the Crumpton Creek Drainage System was 53. There is reason to believe that this facility has minimal potential to create environmental contamination. Thus, unless other data are collected to support the need for additional investigation, none is warranted.

HEF BURN/BURIAL AREA (SITE NO. 15)

This site involved a one-time disposal of propellant. Containers were placed in a trench near the Retention Reservoir and then exploded and burned. The residual combustion products and the containers were buried in place. The HARM score for the HEF Burn/Burial Area is 51. This site is judged to create minimal environmental contamination, and no further study is justified.

BERYLLIUM LEACHING AREA (SITE NO. 16)

At this site, washwaters from machines used for cleaning contaminated beryllium clothing in the mid 1960's were discharged to a pit which drained to the land adjacent to Building 1697. The residual beryllium wastes are estimated to be in small quantities for the relative few years of operation. The total HARM score was 45. This site is believed to have minimal potential to create environmental contamination, and no additional investigations are warranted.

BURN AREA NO. 2 (SITE NO. 17)

This site, located at the AEDC Airfield, was used on only one occasion (1983) to burn waste solid rocket fuel. The residual wastes following burning were small. The burn area received a HARM score of 43. Burn Area No. 2 is judged to have minimal potential to create environmental contamination, and no further investigation is necessary.

SECTION 6 RECOMMENDATIONS

Seventeen sites were identified at AEDC as having the potential for environmental contamination. These sites have been evaluated and rated using the HARM system which assesses their relative potential for contamination and provides the basis for determining the need for additional IRP investigations. Twelve of the 17 sites have sufficient potential to create environmental contamination and warrant further action in the IRP. The sites evaluated have been reviewed concerning land use restrictions which may be applicable.

RECOMMENDED PHASE II MONITORING

The subsequent recommendations are made to further assess the potential for environmental contamination from waste disposal areas at AEDC. The recommended actions are sampling and monitoring programs to determine if contamination does exist at the site, or in the case of Landfill No. 2/Leaching Pit No. 2 and the Retention Reservoir the extent of contaminant migration. If contamination is identified in this first-step investigation, the Phase II sampling program will probably need to be expanded to define the extent and type of contamination. For example, if contamination is found in the uppermost aquifer from the monitoring wells, then deeper wells will need to be installed to assess the possible penetration of the Manchester aquifer. Also, more extensive analyses may be needed if the parameters recommended herein show positive results.

The determination of the location and depth of new ground-water monitoring wells at AEDC may be difficult due to four major hydrogeologic concerns. These concerns are: (1) the presence of both the shallow aquifer and the deeper Manchester aquifer, (2) the possible discontinuity of the shallow aquifer where shallow ground water may not be present or where the shallow aquifer and Manchester aquifer may be

interconnected, (3) the undocumented and variable ground-water flow directions in both aquifers and (4) the dewatering of both aquifers in the vicinity of the J-4 and Mark I test cells. A carefully planned drilling program and continual evaluation of the hydrogeologic data obtained is recommended for Phase II. Surface geophysical surveys are also recommended to aid in the location of potential waste sources, contamination plume mapping and aquifer delineations. The recommended monitoring program is summarized in Table 6.1 and subsequently dis-Geophysical surveys, consisting of electrical resistivity, cussed. electromagnetic and/or magnetometer techniques, are recommended prior to the well installations to attempt to delineate the horizontal and vertical extent of the site as well as any subsurface leachate plumes migrating from the site. Preliminary checks should be made to determine the effectiveness of geophysics prior to a complete site survey. Following the geophysical surveys ground-water monitoring wells will be installed and sampled. During the well installation, readings with an organic vapor analyzer or similar equipment should be made.

Landfill No. 2/Leaching Pit No. 2 (Site No. 1)

It is recommended that a geophysical survey be conducted at this site to define the extent of the contamination plumes and to evaluate the effectiveness of the existing shallow ground-water monitoring system. New wells should be added as necessary to define the horizontal extent of the contamination plume. If potential contamination of the Manchester aquifer has occurred, four deep monitoring wells should be installed (one upgradient and three downgradient) to determine the extent of vertical migration of contaminants.

This facility has several monitoring wells already installed. It is recommended the existing and any new wells be sampled and analyzed for total organic halogens in addition to those parameters already being tested (see Appendix D for the parameters being analyzed now). The data obtained during the above activities should be continually evaluated to enable concurrent development of a remedial action plan for the site.

Retention Reservoir/J-4 Area Surface Drainage (Site No. 2)

The initial step in the recommended program for assessing the reservoir area is a series of bottom sediment analyses (Table 6.2). The samples should be taken at the sediment surface. A sample would also be

TABLE 6.1 RECOMMENDED MONITORING PROGRAM FOR PHASE II IRP AT AEDC

Site No.	Site (Rating)	Recommended Monitoring Program*
1	Landfill No. 2/Leaching Pit No. 2 (80)	Perform a geophysical survey to define potential contamination plumes and to evaluate the effectiveness of the existing ground-water monitoring system. If survey indicates potential contamination in the Manchester aquifer, install monitoring wells into the deeper aquifer to confirm the geophysical data.
		For the existing monitoring wells, run total organic halogens along with other parameters currently evaluated.
2	Retention Reservoir/ J-4 Surface Drainage (79)	Obtain five samples at the surface of the bottom sediment in the reservoir, one sediment sample in the J-4 drainage channel and one background sample. Analyze the samples for the parameters in List A, Table 6.2.
3	Landfill No. 4 (78)	Perform a geophysical survey to locate major areas of drum disposal and to also define potential contamination plumes. Using the geophysical data locate and install four additional monitoring wells suitably located with one hydrogeologically upgradient of the site and the others downgradient. Construct wells with Schedule 40 PVC and screen 10 to 20 feet into the uppermost aquifer. Sample and analyze water for the parameters in List B, Table 6.2.
4	Surface Drainage - Bradley (73)	Obtain five sediment samples in Ditch H and its tributary from the Model Shop. Obtain one background sample. Space the drainage channel samples uniformly from First Street to the Access Highway. Analyze the samples for the parameters in List A, Table 6.2.

TABLE 6.1 (Continued) RECOMMENDED MONITORING PROGRAM FOR PHASE II IRP AT AEDC

Site No.	Site (Rating)	Recommended Monitoring Program*
5	Surface Drainage - Rollins (71)	Obtain six sediment samples in the Rollins channel and one background sample. Space five drainage channel samples uniformly from downstream of the Chemical Treatment Pond to about one mile south of the Access Highway. Obtain one sample in the channel upstream of the Retention Pond diversion structure. Analyze the samples for the parameters in List A, Table 6.2.
6	Camp Forrest Water Treatment Plant (70)	Install one upgradient and three downgradient monitoring wells. Perform a geophysical survey to enable effective location of the monitoring wells. Construct wells with Schedule 40 PVC and screen 10 to 20 feet into the uppermost aquifer. Sample and analyze water for the parameters in List C, Table 6.2.
7	Testing Areas (70)	Measure ground-water levels and obtain samples in existing piezometers at AEDC and then use that data to locate additional monitoring wells if needed around the testing area. Install one well hydrogeologically upgradient from the testing area. Construct wells with Schedule 40 PVC and screen 10 to 20 feet into the uppermost aquifer. Sample and analyze water for the parameters in List D, Table 6.2. Sample barometric sump and dewatering well discharge water from the test cells and analyze for the parameters in List D, Table 6.2.
8	Leaching Pit No. 1 (70)	Obtain one soil boring through the old leaching pit area. Determine the ground-water level and analyze the unsaturated soils for the parameters in List E, Table 6.2. Install one upgradient and two downgradient monitoring wells. Use piezometric data from Testing Area to locate the monitoring

TABLE 6.1 (Continued) RECOMMENDED MONITORING PROGRAM FOR PHASE II IRP AT AEDC

Site No.	Site (Rating)	Recommended Monitoring Program*
		wells. Construct wells with Schedule 40 PVC and screen 10 to 20 feet into the uppermost aquifer. Sample and analyze water for the parameters in List F, Table 6.2.
9	Surface Drainage - Brumalow (63)	Obtain three sediment samples in the drainage channel and one background sample. Obtain one sample north of the Access Highway and two samples south. Analyze the samples for the parameters in List A, Table 6.2.
10	Fire Protection Training Area No. 2/Burn Area No. 1/Landfill No. 1 (62)	Perform a geophysical survey to obtain preliminary data of the subsurface disposal site conditions. Using the geophysical survey data, locate five monitoring wells at the site with one upgradient and four downgradient. Construct wells with Schedule 40 PVC and screen 10 to 20 feet into the uppermost aquifer. Sample and analyze water for the parameters in List G, Table 6.2.
11	Chemical Treatment Pond (62)	Obtain two bottom sediment samples and one background sample. Analyze the samples for the parameters in List H, Table 6.2.
12	Retention Leach/Burn Area (62)	Obtain samples at the surface and at four feet depth at the leach/burn site. Obtain one background sample. Analyze the samples for the parameters in List H, Table 6.2.

^{*} If contamination is found in the uppermost aquifer from the recommended monitoring wells, deeper wells penetrating the Manchester aquifer should be installed to assess the extent of movement to the deeper zone.

taken in the J-4 drainage channel along with a background sample. If contamination is confirmed by these initial investigations, more extensive study will be required to assess the movement of pollutants from the reservoir bottom into the uppermost aquifer and possibly the Manchester aquifer. This will necessitate placing several wells near the reservoir and possibly obtaining deeper reservoir sediment samples. Landfill No. 4 (Site No. 3)

A geophysical survey should be performed to locate major drum disposal areas at Landfill No. 4 and to identify the subsurface conditions. Data from this survey will be used to locate and install four monitoring wells (one upgradient and three downgradient) to supplement the existing wells on site (Table 6.1). Water samples should be analyzed as outlined in Table 6.2.

Surface Drainage - Bradley, Rollins and Brumalow (Site Nos. 4, 5, and 9)

It is recommended that a series of soil samples be obtained at key locations along these drainage channels leading away from the AEDC site. For Bradley and Brumalow drainage channels, samples should also be obtained in the existing skimming ponds and immediately adjacent to the ponds where dredged material has been placed. Table 6.1 outlines the number and general location for the sampling. Table 6.2 lists the parameters to be analyzed for the soil samples. A background sample adjacent to but not in each channel should be obtained for evaluation purposes. If contamination is indicated from this sampling program, the investigation will need to be expanded to determine the extent of potential movement of pollutants into the underlying uppermost aquifer. This may entail additional soil sampling or installation of monitoring wells. Camp Forrest Water Treatment Plant (Site No. 6)

Camp Forrest Water Treatment Plant Site to determine the location of buried materials and other subsurface conditions. The data from this survey can be used to effectively locate monitoring wells at the site (Table 6.1). As with the other ground-water monitoring programs for the

It is recommended that a geophysical survey be conducted at the

(Table 6.1). As with the other ground-water monitoring programs for the AEDC disposal sites, if the uppermost aquifer wells reveal contamination, more extensive investigations including deep monitoring wells into the Manchester aquifer will be necessary.

TABLE 6.2 RECOMMENDED LIST OF ANALYTICAL PARAMETERS FOR PHASE II

List A (Site Nos. 2, 4, 5, 9)

Oil and Grease
Volatile Hydrocarbons
Total Organic Halogens
PCB's
Chromium
Iron
Phenols

Zinc Barium

List B (Site No. 3)

pH
Specific Conductance
Total Organic Carbon
Total Organic Halogens
Chromium
Lead
Barium

List C (Site No. 6)

pH Specific Conductance Total Organic Carbon Total Organic Halogens Oil and Grease

List D (Site No. 7)

Oil and Grease
Volatile Hydrocarbons
Total Organic Halogens
PCB's
Mercury
Beryllium
Chromium
Iron
Phenols
Zinc
Barium

<u>List E (Site No. 8 - Soil)</u>

Iron
Chromium
Zinc
Barium
Phenols

List F (Site No. 8 - Water)

Specific Conductance
Chloride
Iron
Chromium
Zinc
Barium
Phenols
Total Organic Carbon

List G (Site No. 10)

pH
Specific Conductance
Total Organic Carbon
Total Organic Halogens
Oil and Grease
Phenols
Iron

List H (Site Nos. 11 and 12)

Volatile Hydrocarbons Total Organic Halogens

Testing Areas (Site No. 7)

For assessing ground-water contamination from the testing areas, it is recommended that the water levels of the existing piezometers around the AEDC plant area (see Section 3) be measured to establish the ground-water flow direction. Also, water samples should be obtained from the dewatering wells (J-4 and Mark I), existing piezometers and barometric sumps in the Test Areas and analyzed for the parameters in Table 6.2. These data can be utilized to locate and install any necessary new upgradient and downgradient monitoring wells for the uppermost aquifer at the site (Table 6.1). New deep monitoring wells into the Manchester aquifer may be required if contamination is indicated in this initial Phase II investigation.

Leaching Pit No. 1 (Site No. 8)

This pit is now filled in near the Model Shop. One soil boring is recommended to be taken through the old leaching pit. The ground-water level should be measured and the soil samples in the unsaturated zone analyzed (Table 6.2) to assess the depth of the leaching area. Three wells are also proposed (one upgradient and two downgradient) for assessing contamination from this site. The piezometric data developed for the Testing Area evaluations may be used for locating the wells.

Fire Protection Training Area No. 2/Burn Area No. 1/Landfill No. 1 (Site No. 10)

A geophysical survey is recommended to delineate the various disposal areas on this site. The geophysical data will also be used to effectively locate one upgradient and four downgradient monitoring wells (Table 6.1). The results of the water analyses (Table 6.2) for this site may need to be expanded based upon the results found in the initial monitoring.

Chemical Treatment Pond (Site No. 11)

At this facility it is recommended that two bottom sediment samples be obtained from the Chemical Treatment Pond plus one background sample adjacent to the pond. More extensive analytical testing may be required if the initial tests (Table 6.2) indicate contamination. In addition, the extent of movement of any contaminants to the uppermost and Manchester aquifers may need to be determined by monitoring wells.

Retention Leach/Burn Area (Site No. 12)

It is recommended that soil samples at the surface and at the four feet depth be obtained at the leach/burn area. A background soil sample from a nearby location is also required. If the results of these initial samples indicate contamination, more extensive evaluations will need to be undertaken as a part of Phase II.

RECOMMENDED GUIDELINES FOR LAND USE RESTRICTIONS

It is desirable to have land use restrictions for the identified sites to (1) provide continued protection of human health, welfare, and environment, (2) insure that migration of potential contaminants is not promoted through improper land uses, (3) facilitate compatible development of future USAF facilities and (4) allow identification of property which may be proposed for excess or outlease.

The recommended guidelines for land use restrictions at each identified disposal site at AEDC are presented in Table 6.3. A description of the land use restriction guidelines is included in Table 6.4. Land use restrictions at sites recommended for on-site monitoring should be re-evaluated upon completion of the Phase II program and appropriate changes made.

TABLE 6.3
Recommended Guidelines at Potential Contamination Sites For Land Use Restrictions
AEDC

										1 1 1 1			
Site No.	Site	Construction on the site	Excavation	Well construction on	ydricnjinral use	Silvicultural use	Water infiltration (Run-on, ponding irrigation)	Recreational use	sonkce Burning or ignition	Pisposal operations	Vehicular traffic	Material storage	Housing on or near the
-	Landfill No. 2/Leaching Pit								ı		1		
	No. 2	œ	œ	~	Œ	œ	æ	ž	α Z	R(2)	×	NR (3)	æ
7	RetentionReservoir/J-4 Area												
	Surface Drainage	쭕	¥	c c.	Y.	¥	NA A	~	ž	ž	≨	ž	æ
~	Landfill No. 4	œ	æ	œ	Ä	œ	œ	X	X.	R(2)	X	NR (3)	æ
4	Surface Drainage - Bradley	ž	ž	œ	¥	ď.	K	ž	ž	¥.	ž	ď.	œ
Ŋ	Surface Drainage -Rollins	ž	X	œ	Ä	2	ş	ž	¥	¥	X	ž	æ
9	Camp Forrest Water Treatment												
	Plant	~	e	œ	X X	œ	œ	¥	N.	R(2)	X.	NR (3)	æ
7	Testing Areas	Ä	ž	œ	Ä	œ	œ	¥	X	R(2)	ž	X.	æ
œ	Leaching Pit No. 1	Z	X	œ	œ	œ	æ	N.	X.	R(2)	X.	NR (3)	œ
6	Surface Drainage - Brumalow	¥	Ä	~	X.	ž	KX.	Ĕ	X	K Z	X X	N A	æ
0	Fire Protection Training Area												
	No. 2/Burn Area No. 1/												
	Landfill No. 1	œ	œ	æ	K	e	œ	N.	X X	R(2)	X	NR (3)	œ
=	Chemical Treatment Pond	Z.	æ	æ	Ž	ž	K X	~	ž	K Z	ž	¥.	œ
12	Retention Leach/Burn Area	ž	Z	٥	2	•	ć		-	,(2)	•	(3)	•

See Table 6.4 for description of guidelines.
 Note the following symbols in this table:
 R =Restrict the use of the site for this purpose.
 NR = No restriction of the site for this purpose.
 NA = Not applicable.

(2)Restrict for all wastes except for construction/demolition debris.

(3) No restriction on solid materials but liquids undesirable.

Source: Engineering-Science

TABLE 6.4
DESCRIPTION OF GUIDELINES FOR LAND USE RESTRICTIONS

Guideline	Description
Construction on the site	Restrict the construction of structures which make permanent (or semi-permanent) and exclusive use of a portion of the site's surface.
Excavation	Restrict the disturbance of the cover or subsurface materials.
Well construction on or near the site	Restrict the placement of any wells (except for monitoring purposes) on or within a reasonably safe distance of the site. This distance will vary from site to site, based on prevailing soil conditions and ground-water flow.
Agricultural use	Restrict the use of the site for agri- cultural purposes to prevent food chain contamination.
Silvicultural use	Restrict the use of the site for silvi- cultural uses (root structures could disturb cover or subsurface materials).
Water infiltration	Restrict water run-on, ponding and/or irrigation of the site. Water infiltration could produce contaminated leachate.
Recreational use	Restrict the use of the site for recreational purposes.
Burning or ignition sources	Restrict any and all unnecessary sources of ignition, due to the possible presence of flammable compounds.
Disposal operations	Restrict the use of the site for waste disposal operations, whether above or below ground.
Vehicular traffic	Restrict the passage of unnecessary vehicular traffic on the site due to the presence of explosive material(s) and/or of an unstable surface.
Material storage	Restrict the storage of any and all liquid or solid materials on the site.
Housing on or near the site	Restrict the use of housing structures or or within a reasonably safe distance of the site.

TABLE OF CONTENTS APPENDICES

			Page No.
APPENDIX	A	BIOGRAPHICAL DATA	
		R. L. Thoem	A-1
		H. D. Harman	A-3
		T. R. Harper	A-5
APPENDIX	В	LIST OF INTERVIEWEES AND OUTSIDE AGENCY CONTACTS	
		List of Interviewees	B-1
		Outside Agency Contacts	B-3
APPENDIX	С	TENANT ORGANIZATIONS AND MISSIONS	C-1
APPENDIX	D	SUPPLEMENTAL BASE FINDINGS INFORMATION	D-1
APPENDIX	E	MASTER LIST OF SHOPS	
		Facility Support	E-1
		Engine Test Facility	E-2
		Von Karman Facility	E-3
		Propulsion Wind Tunnel	E-4
APPENDIX	F	PHOTOGRAPHS	
		AEDC - Present	F-1
		AEDC - 1954	F-2
		Burn Area No. 1 and Landfill No. 1 - 1966	F-3
		Fire Protection Training Area No. 2 and Landfill Area No. 1 - 1978	F-4
		Landfill No. 2 Adjacent to Retention Reservoir - 1978	F-5
		Landfill No. 1 Area, Burning Area No. 1 and Fire Protection Training Area No. 2 - 1978	F-5
		Fire Protection Training Area No. 1 - 1978	F-6
		Leaching Pit at Landfill No. 2 Adjacent to Retention Reservoir - 1978	F-6
		Landfill No. 3 for UTSI - 1978	F-7
		Landfill No. 4 for County-Municipal Wastes - 1978	F-7
		Old Leaching Pit Area and Present Neutralization Facilities Near Model Shop - 1978	F-8
		Waste Disposal at Old Camp Forrest Water Treatment Plant - mid 1950's	F-8
		Leaching/Burning Pit Near Retention Reservoir -	F-9

TABLE OF CONTENTS APPENDICES (Continued)

		Page No.
	Chemical Unloading Apron for Above Leaching/ Burning Pit - 1978	F-9
	Diversion Structure To/From Cooling Water	F-10
	Return Ditch and Retention Reservoir - 1978	
	HEF Container Burial Near Retention Reservoir - 1959-1961	F-10
	Chemical Treatment Pond - 1978	F-11
	Hazardous Waste Accumulation Area (Facility 2220) - 1978	F-11
	Burn Area at Airfield - 1978	F-12
	Leaching Area for Washwater Containing Beryllium - 1978	F-12
APPENDIX G	USAF INSTALLATION RESTORATION PROGRAM	G-1
	HAZARD ASSESSMENT RATING METHODOLOGY	-
APPENDIX H	SITE HAZARD ASSESSMENT RATING FORMS	
	Landfill No. 2/Leaching Pit No. 2	H-1
	Retention Reservoir/J-4 Area Surface Drainage	H-3
	Landfill No. 4	H-5
	Surface Drainage-Bradley	H-7
	Surface Drainage-Rollins	H-9
	Camp Forrest Water Treatment Plant	H-11
	Testing Areas	H-13
	Leaching Pit No. 1	H-15
	Surface Drainage-Brumalow	H-17
	Fire Protection Training Area No. 2/Burn Area No. 1/Landfill No. 1	H-19
	Chemical Treatment Pond	H-21
	Retention Leach/Burn Area	H-23
	Fire Protection Training Area No. 1	H-25
	Surface Drainage-Crumpton	H-27
	HEF Burn/Burial Area	H-29
	Beryllium Leaching Area	H-31
	Burn Area No. 2	H-33
APPENDIX I	GLOSSARY OF TERMINOLOGY AND ABBREVIATIONS	I-1
APPENDIX J	REFERENCES	J-1
APPENDIX K	INDEX OF REFERENCES TO POTENTIAL CONTAMINATION SITES AT AEDC	K-1

APPENDIX A
BIOGRAPHICAL DATA

Biographical Data

[PII Redacted]

ROBERT L. THOEM
Civil/Environmental Engineer

Education

B.S. Civil Engineering, 1962, Iowa State University, Ames, IAM.S. Sanitary Engineering, 1967, Rutgers University, New Brunswick, NJ

Professional Affiliations

Registered Professional Engineer in six states
American Academy of Environmental Engineering (Diplomate)
American Society of Civil Engineers (Fellow)
National Society of Professional Engineers (Member)
Water Pollution Control Federation (Member)

Honorary Affiliations

Who's Who in Engineering
Who's Who in the Midwest
USPHS Traineeship

Experience Record

1962-1965 U.S. Public Health Service, New York, NY. Staff Engineer, Construction Grants Section (1962-1964).

Technical and administrative management of grants for municipal wastewater facilities.

Water Resources Section Chief (1964-1965). Supervised preparation of regional water supply and pollution control reports.

1966-1983 Stanley Consultants, Muscatine, IA and Atlanta, GA.
Project Manager and Project Engineer (1966-1973).
Responsible for managing studies and preparing reports
for a variety of industrial and governmental environmental projects.

Environmental Engineering Department Head (1973-1976). Supervised staff involved in auditing environmental practices, conducting studies and preparing reports concerning water and wastewater systems, solid waste and resource recovery and water resources projects (industrial and governmental).

Robert L. Thoem (Continued)

Resource Management Department Head (1976-1982). Responsible for multidiscipline staff engaged in planning and design of water and wastewater systems, solid waste and resource recovery, water resources, bridge, site development and recreational projects (industrial, domestic and foreign governments).

Associate Chief Environmental Engineer (1980-1983). Corporate-wide quality assurance responsibilities on environmental engineering planning projects.

Operations Group Head and Branch Office Manager (1982-1983). Directed multidiscipline staff responsible for planning and design of steam generation, utilities, bridge, water and wastewater systems, solid waste and resource recovery, water resources, site development and recreational projects (industrial, domestic and foreign governments). Administered branch office support activities.

Project Manager/Engineer for over 25 industrial projects, 25 city and county projects ranging in present study area population from 1,400 to 1,700,000, 10 regional (multi-county) planning or operating agency projects, five state agency projects, 10 projects for federal agencies, and several projects for Middle East governments.

1983-Date Engineering-Science. Senior Project Manager. Responsible for managing a variety of environmental projects. Conducted hazardous waste investigations at seven U.S. Air Force installations to identify the potential migration of contaminants resulting from past disposal practices under the Phase I Installation Restoration Program. Evaluated solid waste collection, disposal and potential for resource recovery at a U.S. Army post. Process selection and preliminary design studies and reports for expanding a municipal advanced wastewater treatment plant from 36 mgd to 54 mgd.

Publications and Presentations

Over thirteen presentations and/or papers in technical publications dealing with solid waste, sludge, water, wastewater and project cost evaluations.

Biographical Data

[PII Redacted]

H. DAN HARMAN, JR. Hydrogeologist

Education

B.S., Geology, 1970, University of Tennessee, Knoxville, TN

Professional Affiliations

Registered Professional Geologist (Georgia NO.569)
National Water Well Association (Certified Water Well Driller No. 2664)
Georgia Ground-Water Association

Experience Record

- 1975-1977 Northwest Florida Water Management District, Havana, Florida. Hydrogeologist. Responsible for borehole geophysical logger operation and log interpretation.

 Also reviewed permit applications for new water wells.
- 1977-1978 Dixie Well Boring Company, Inc., LaGrange, Georgia.

 Hydrogeologist/Well Driller. Responsible for borehole geophysical logger operation and log interpretation.

 Also conducted earth resistivity surveys in Georgia and Alabama Piedmont Provinces for locations of water-bearing fractures. Additional responsibilities included drilling with mud and air rotary drilling rigs as well as bucket auger rigs.
- 1978-1980 Law Engineering Testing Company, Inc., Marietta, Georgia. Hydrogeologist. Responsible for ground-water resource evaluations and hydrogeological field operations for government and industrial clients. A major responsibility was as the Mississippi Field Hydrologist during the installation of both fresh and saline water wells for a regional aquifer evaluation related to the possible storage of high level radio-active waste in the Gulf Coast Salt Domes.
- 1980-1982 Ecology and Environment, Inc., Decatur, Georgia.
 Hydrogeologist. Responsible for project management of hydrogeological and geophysical investigations at uncontrolled hazardous waste sites. Also prepared Emergency Action Plans and Remedial Approach Plans for U.S. Environmental Protection Agency. Additional

1/84

H. Dan Harman, Jr. (Continued)
Page 2

responsibilities included use of the MITRE hazardous ranking system to rank sites on the National Superfund List.

- 1982-1983 NUS Corporation, Tucker, Georgia. Hydrogeologist.

 Responsible for project management of hydrogeological and geophysical investigations at uncontrolled hazardous waste sites.
- 1983-Date Engineering-Science, Inc., Atlanta, Georgia.

 Hydrogeologist. Responsible for hydrogeological as well as geophysical evaluations at hazardous waste sites.

Publications and Presentations

"Geophysical Well Logging: An Aid in Georgia Ground-Water Projects," 1977, coauthor: D. Watson, <u>The Georgia Operator</u>, Georgia Water and Pollution Control Association.

"Use of Surface Geophysical Methods Prior to Monitor Well Drilling," 1981. Presented to Fifth Southeastern Ground-Water Conference, Americus, Georgia.

"Cost-Effective Preliminary Leachate Monitoring at an Uncontrolled Hazardous Waste Site," 1982, coauthor: S. Hitchcock. Presented to Third National Conference on Management of Uncontrolled Hazardous Waste Sites, Washington, D.C.

"Application of Geophysical Techniques as a Site Screening Procedure at Hazardous Waste Sites," 1983, coauthor: S. Hitchcock. Proceedings of the Third National Symposion and Exposition on Aquifer Restoration and Ground-Water Monitoring, Columbus, Ohio.

"Developing Ground-Water Supplies on the Georgia Piedmont: Applied Technology Versus the 'Dry Hole' Syndrome," 1983, coauthors: D. Watson and T. Duffey. Presentation at the Water Resources of Georgia and Adjacent Areas Conference, Atlanta, Georgia.

"Georgia's Piedmont Ground Water: Proper Well Location is Crucial to Effective Management," 1983, coauthors: D. Watson and T. Duffey. Presentation at National Water Well Association Eastern Regional Conference on Ground-Water Management, Orlando, Florida.

Biographical Data

THOMAS R. HARPER
Chemist

[PII Redacted]

Education

B.S. in Chemistry, 1983, Ohio State University, Columbus, OH B.S. in Microbiology, 1983, Ohio State University, Columbus, OH

Professional Affiliations

American Chemical Society

Experience Record

Summers 1980-1981 Reliance Electric Company, Stone Mountain, Georgia - Test Technician. Performed quality assurance testing on instrumentation and wiring on control panels. Performed stress and performance testing and some trouble-shooting on programmable controllers.

1983-Date

Engineering-Science, Inc., Atlanta, Georgia - Analytical Chemist. Laboratory activities included analytical work involving samples from industrial/environmental clients. Analyses for priority pollutants, heavy metals, and organic compounds on samples including soils, sludges, water, and wastewater has been done in the laboratory. Analytical instrumentation includes atomic absorption and TOC. Experience includes work with gas and liquid chromatography, infrared and nuclear magnetic resonance spectroscopy. Field work includes sampling of sludges and waste water, assisting staff geologist in aquifer pump testing and geophysical resistivity work in determining possible sources of contamination. Data search and observations for potential environmental problems has also been performed. Typical industrial clients for whom analyses have been performed include: Searle, Merck, U.S. Air Force, General Battery and FMC.

APPENDIX B
LIST OF INTERVIEWEES AND OUTSIDE AGENCY CONTACTS

APPENDIX B

TABLE B.1 LIST OF INTERVIEWEES

	Most Recent Position	Years of Service at AEDC
1.	Administrative Assistant	6
2.	Craft Supervisor	27
3.	Craft Supervisor	26
4.	Temporary Supervisor	12
5.	Craft Supervisor	23
6.	Craft Supervisor	28
7.	Assistant Section Supervisor	18
8.	Technical Assistant	3
9.	First Line Supervisor	30
10.	Section Supervisor	23
11.	Maintenance Engineer	4
12.	Corrosion Control Engineer	6
13.	Environmental Engineer	4
14.	Industrial Hygenist	3
15.	Fuels Supervisor	25
16.	Superintendent Fuels Management	1
17.	Environmental Engineer	4
18.	Supervisor of Cleaning Section	30
19.	Heat Treat and Plater	30
20.	Superintendent of Roads and Grounds	32
21.	Storage Supervisor	32
22.	Supervisor of Chemical Laboratory	23
23.	Crew Chief	32
24.	Manager of Safety Department	26

APPENDIX B

TABLE B.1 (Continued)

LIST OF INTERVIEWEES

	Most Recent Position Ye	ears of Service at AEDC	
25.	Asst. Chief of Operations, Fire Departmen	nt 21	
26.	Fire Chief	32	
27.	Senior Facility Engineer	19	
28.	Road and Grounds Foreman	18	
29.	Associate Engineer	22	
30.	Historian	2	
31.	Manager of Safety, Calspan	15	
32.	Senior Facility Engineer	31	

TABLE B.2 OUTSIDE AGENCY CONTACTS

Ron Stewart Equipment Operator/ Landfill Supervisor Coffee Co.-Manchester-Tullahoma Landfill

Manchester, TN

Judy Cooper

Environmental Scientist

UTSI, AEDC (615) 455-0631

Dewey Vincent

Manager

Physical Plant, UTSI, AEDC

(615) 455-0631

Publication Clerk

Tennessee Department of Conservation

Division of Geology

701 Broadway

Nashville, TN 37203 (615) 742-6707

Gary Pinkerton Geologic Aide II Tennessee Department of Conservation

Division of Geology

701 Broadway

Nashville, TN 37203 (615) 742-6707

Norman Travis

Chemist

Tennessee Department of Public Health Division of Solid Waste Management

150 9th Avenue North

Nashville, TN (615) 741-3424

Don Rima

Chief Hydrologist

Tennessee Department of Public Health

Division of Water Quality Control

150 9th Avenue North

Nashville, TN (615) 741-3424

Ed Best Librarian Tennessee Valley Authority

East Tower

2nd Floor Knoxville, TN (615) 632-3464

Archie Whitehead

AEDC Wildlife Area

Manager

Tennessee Wildlife Resources Agency

Route 2 Box 259

Hillsborough, TN (615) 967-6101

TABLE B.2 (Continued) OUTSIDE AGENCY CONTACTS

Tom Grelen	Tennessee Wildlife Resources Agency
Biologist	Ellington Agricultural Center
•	Nashville, TN
	(615) 360-0622
Art Linton	U.S. Environmental Protection Agency
Federal Facilities	345 Courtland Street, NE
Coordinator	Atlanta, Georgia 30365
Paul Russell	U.S. Department of Agriculture
Soil Conservationist	Soil Conservation Service
	Manchester, TN
	(615) 728-2483
Publication Clerk	U.S. Department of Commerce
	National Oceanic and Atmospheric Administration
	National Climatic Data Center
	Asheville, NC 28801
	(704) 259-0682
Doug Bradley	U.S. Department of Defense
Flood Plain	Corps of Engineers
Management Coordinator	Federal Courthouse
-	Nashville, TN
	(615) 251-5455
Brad Loar Tennessee Coordinator	U.S. Department of Housing and Urbar Development
	Federal Emergency Management Agency
	Atlanta, Georgia
	(404) 881-2391
Kay Johnson	U.S. Fish and Wildlife Service
Biologist	1720 West End
	Nashville, TN
	(615) 251-5506
Pat Hollyday	U.S. Geological Survey
	Water Resources Division
	Federal Courthouse
	Nashville, TN
	(615) 251-5424

APPENDIX C
TENANT ORGANIZATIONS AND MISSIONS

APPENDIX C

TENANT ORGANIZATIONS AND MISSIONS

The following is a listing of the tenant organizations at Arnold Engineering Development Center along with their respective missions.

Communications Detachment, 1973-1 (AFCS)

This squadron provides common-user base communications, intrabase radio support, and navigational aids for AEDC. They also provide advisory service for specified Air National Guard Units.

Tennessee Space Institute (TSI)

The University of Tennessee Space Institute is part of the Graduate School of the University of Tennessee, Knoxville. Their academic program and educational policies support graduate studies and research leading to the degrees of Master of Science and Doctor of Pl'losophy in selected areas of engineering, mathematics and physical science.

Other Arnold Tenant Organizations

AAFES

AEDC Area Engineer, Mobile District, Corps of Engineers

AFCOMS, OL-HB/FCS

Defense Contract Administration Office (DCASR-Atlanta)

Defense Contract Audit Agency

Air Force Office of Special Investigations DET 816 (AFOSI)

Volunteer Girl Scouts

Boy Scouts, Elk River District

U.S. Department of Agricultrue

Tennessee State Game & Fish Commission

Coffee Co. and the Cities of Manchester and Tullahoma

Tullahoma Kiwanis Club

APPENDIX D
SUPPLEMENTAL BASE FINDINGS INFORMATION

D.1
PESTICIDES CURRENTLY USED AT AEDC

Herbicides/Fungicides	Insecticides	Rodenticides
Acti-dione Thiran Acti-dione TFG Ammate AT 711 Amine 2-4D Daconil 2787 Dacthal W75 Dowpon Koban Kromad Methar 30 (DSMA) Monosodium (MSMA) Paraquat CL Pramitol - 5PS Princep 80W Pre-San Ronstar G Roundup Scotts - 8470 Scotts - 8473 Scotts - 8714 Sencor 50% WP Tersan Trex-San	Chloradane 8EC Diazinon 2D Diazinon 4E Flit MLO Insecticide III 8868 Malathion Methylcarmabate Oftanol Proxol 80 SP Pyrethrin & Piperonyl Butoxide Pyrethrin, Piperonyl, Butoxide and Bagon Sevin 50W	Diphacin 110 Strychnine (1) Warfarin

⁽¹⁾ Mixed and used at the Center.

Source: AEDC files.

⁽²⁾ Mixed off premises and used at Center.

D.2 PESTICIDES USED AT AEDC IN 1974 AND ON TVA ELECTRICAL TRANSMISSION CORRIDORS FROM 1952 - PRESENT

Pesticides Used on TVA Pesticides Used in 1974 at AEDC

Electrical Transmission Corridors (1952-Present)

Lethane

Malathion

2,4-D 2,4,5-T

Piperonyl Butoxide

and Pyrethrins

(Fog Concentrate)

Diazinon 4E

Wafarin

Chlordane

Flit - MLO

Source: AEDC files.

D.3

LANDFILL NO. 2 DRAWING

FROM AEDC FILES

D.4
SUMMARY OF KNOWN WASTES DISPOSED
IN LANDFILL NO. 2 FROM 1956
TO 1975 - FROM AEDC FILES

 $\widehat{R}_{O_{\text{COMZATION}}}^{\text{LO}}$

The second section of the section of the

INC Subsidiary of Sverdrup & Parcel and Associates, Inc. ARNOLD AIR FORCE STATION, TENNESSEE 37369

May 9, 1979

ARO-75-306

Contracting Officer (PD)
Arnold Engineering Development Conter
Arnold Air Force Station, Teamessee

In Reference To: Letter No. 5-402

Dear Sir:

SUBJECT: Contaminated Waste Disposal Areas

As requested in referenced letter, a chronological history showing the approximate quantities of ratorials disposed in the contaminated waste disposal area is attached.

This information was coupiled from existing logs, operational records, engineering estimates, and extensive interviews with responsible operational and support personnel.

Sincerely,

E. M. Dougherty President

Atch

CONTAMINATED WASTE DISPOSAL AREA

AIR FORCE FORML LETTER NO. 5-482

May 5, 1975

MATERIAL DISPOSAL HISTORY (Prepared By R.W.S., TSD-BGE)

YEAR	DESCRIPTION OF DISPOSED WASTE	APPROX. QUANTITY	APPROX. ELEV. FT. ABOVE MSL
1956	Electronic tubes, mercury vapor lamps, etc. Fluorescent tubes, 48" x 40 W Hardening salts of Barium, Calcium, & Sodium Chloride Beryllium with rags, clothing, etc. Varsol and Paint	12 ea. 8,500 ea. 1200 # 1ess than .2 # 50 gals.	1071 1071 1072 1072 1072
1957	Electronic tubes, mercury vapor lamps, etc. Fluorescent tubes Beryllium with rafs, clothing, etc. Varsol and paint	18 ea. 9,000 ea. 1ess than .2 # 50 gals.	1071 1071 1071 1071
1.958	Electronic tubes, etc. Fluorescent tubes 5% Trisodium Phosphate & 10% Caustic Soda 40% Nitric and 5% Hydrofluoric Acid 10% Hydrochloric Acid and 5% Caustic Soda Transformer oil soaked filter paper and fullers earth Beryllium with rass, clothing, etc. Varsol and paint	20 ea. 9,500 ea. 800 gals. 800 gals. 800 gals. 200 # less than .2 # 55 gals.	1071 1071 1073 1073 1072 1072

YEAR	DESCRIPTION OF DISPOSED WASTE	APPROX. QUANTITY	APPROX. ELEV. FT. ABOVE MEE
1959	Electronic tubes, etc. Fluorescent tubes Transformer oil soaked filter paper & fullers earth Beryllium with rags, clothing, etc. Varsol and paint High energy fuel - 2 with piping, equip., containers, etc.	24 ea. 9,500 ea. 220 # less than .2 # 50 gals. less than 1 gal.	1071 1072 1072 1072 1072
1960	Electronic tubes, etc. Fluorescent tubes Transformer oil soaked filter paper & fullers earth Varsol and paint 5% Trisodium Phosphate & 10% Caustic Soda 40% Nitric & 5% Hydrofluoric Acid "Black Magic" coating (Sodium Hydroxide with traces of Iron, Aluminum, Silicon, and Boron) Beryllium with rags, clothing, etc.	28 ea. 10,500 ea. 225 # 100 gals. 800 gals. 800 Gals. 1600 # less than .2 #	1071 1072 1072 1072 1072 1072
1961	Electronic tubes, etc. Fluorescent tubes Transformer oil soaked filter paper & fullers earth Varsol and paint Naptha and paint S\$\psi\$ Trisodium Phosphate & 10\psi\$ Caustic Soda 40\psi\$ Nitric & 5\psi\$ Hydrofluoric Acid 10\psi\$ inhibited Hy *rochloric Acid Hardening salts oi Barium, Calcium, & Sodium Chloride Beryllium with rags, clothing, etc.	32 ea. 11,500 ea. 235 # 100 gals. 50 gals. 1,200 gals. 1,200 gals. 1,200 gals. 1,200 gals.	1071 1072 1072 1072 1072 1072 1072
1962	Electronic tubes, etc. Fluorescent tubes Transformer oil soaked filter paper & fullers earth Varsol and paint Naptha and paint Tempering salts of Sodium Mitrate & Potasium Nitrate Beryllium with rags, clothing, etc. REPRODUCED ON GOVT CO	40 ea. 12,000 ea. 240 ## 110 gals. 55 gals. 350 ## less than .2 ##	1071 1072 1072 1072 1072 1072

AF PN 76185

YEAR	DESCRIPTION OF DISPOSED WASTE	APPROX. QUANTITY	APPROX. ELEV.
1963	Electronic tubes, etc. Fluorescent tubes Transformer oil soaked filter paper & fullers earth Varsol and paint Naptha and paint Acetone and cleaning residue "Black Magic" coating Beryllium with rags, clothing, etc.	45 ca. 12,500 ca. 250 # 110 gals. 55 gals. 30 gals. 1600 # less than .2 #	1071 1072 1072 1072 1072 1072
1964	Electronic tubes, etc. Fluorescent tubes Transformer oil soaked filter paper & fullers earth Varsol and paint Naptha and paint Acetone and cleaning residue Beryllium with rags, clothing, etc.	48 ea. 12,700 ea. 275 # 110 gals. 55 gals. 30 gals.	1071 1071 1072 1073 1073 1073
1965	Electronic tubes, etc. Fluorescent tubes Transformer oil soaked filter paper & fullers earth Varsol and paint Naptha and paint Acetone and cleaning residue Methyl Ethyl Ketone and cleaning residue Toulene and cleaning residue Beryllium with rags, clothing, etc.	50 ea. 13,500 ea. 300 # 160 gals. 110 gals. 40 gals. 40 gals. less than .2 #	1072 1072 1073 1073 1073 1073 1073
1966	Electron tubes, etc. Fluorescent tubes Transformer oil soaked filter paper & fullers earth Varsol and paint Naptha and paint Acetone and cleaning residue Methyl Ethyl Keytone and cleaning residue Toulene and cleaning residue "Black Magic" coating Beryllium with rags, clothing, etc. AP PN 76185	52 ea. 13,800 ea. 300 # 160 gals. 55 gals. 55 gals. 55 gals. 10001# 1000 #	1072 1072 1073 1073 1073 1073 1073

7

.

APPROX, ELEV. FT. ABOVE MSI.	1072 1072 1074 1074 1074 1074 1074 1074	1073 1073 1074 1074 1074 1074 1074	1073 1073 1074 1074 1074 1074 1074 1074
APPROX. QUANTIITY	52 ea. 14,300 ea. 310 # 160 gals. 110 gals. 55 gals. 55 gals. 1200 # less than .2 #	55 ea. 14,700 ea. 300 # 180 gals. 130 gals. 50 gals. 50 gals. 50 gals.	50 ea. 15,500 ea. 320 # 180 gals. 120 gals. 50 gals. 55 gals. 1600 #
DESCRIPTION OF DISPOSED WASTE	Electron tubes, etc. Fluorescent tubes Transformer oil soaked filter paper & fullers earth Varsol and paint Naptha and paint Acetone and cleaning residue Methyl Ethyl Keytone and cleaning residue Toulene and cleaning residue Hardening salts of Barium, Calcium, & Sodium Chloride Beryllium with rags, clothing, etc.	Electron tubes, etc. Fluorescent tubes Transformer oil soaked filter paper & fullers earth Varsol and paint Naptha and paint Acetone and cleaning residue Methyl Ethyl Keytone and cleaning residue Toulene and cleaning residue Beryllium with rags, clothing, etc.	Electron tubes, etc. Fluorescent tubes Transformer oil soaked filter paper & fullers earth Varsol and paint Naptha and paint Acetone and cleaning residue Methyl Ethyl Keytone and cleaning residue Toulene and cleaning residue Beryllium with rass, clothing, etc. Chronic Acid "Black Wagie" coating
YEAR	1967	1968	1969

APPROX. ELEV. FT. ABOVE MSL.	1073 1073 1073 1073 1073 1073 1074	1072 1072 1073 1073 1073 1073 1073 1073	1073 1073 1073 1073 1073 1073 1072 1072 1072 1072
APPROX. QUANTITY	55 ca. 15,700 ca. 325 # 160 gals. 100 gals. 55 gals. 50 gals. 50 gals.	50 ca. 16,100 ca. 330 # 160 gals. 100 gals. 50 gals. 50 gals. 1ess than 1 gal. 1ess than 1 gal. 1ess than 2 # 50 gals.	52 ea. 16,300 ea. 320 # 165 gals. 110 gals. 50 gals. 50 gals. 50 gals. 1ess than 1 gal. 1ess than 2 gal. 1ess than 350 # 50 Gals.
DESCRIPTION OF DISPOSED WASTE	Electron tubes, etc. Fluorescent tubes Transformer oil soaked filter paper & fullers earth Varsol and paint Naptha and paint Acetone and cleaning residue Methyl Ethyl Keytone and cleaning residue Toulene and cleaning residue Beryllium with rags, clothing, etc. Chromic Acid	Electron tubes, etc. Fluorescent tubes Transformer oil soaked filter paper and fullers earth Varsol and paint Naptha and paint Acetore and cleaning residue Methyl Ethyl Keytone and cleaning residue Toulene and cleaning residue 2,4,5F;2,4-D and containers Malathion and containers Beryllium with rags, clothing, etc. Chromic Acid	Electron tubes, etc. Fluorescent tubes Transformer oil soaked filter paper & fullers earth Varsol and paint Naptha and paint Acetone and cleaning residue Methyl Ethyl Keytone and cleaning residue Toulene and cleaning residue Z,4,5-T; Z,4-D and containers Malthion, Lethane, and containers Beryllium with rafs, clothing, etc. Tempering salts of Sodium Nitrate & Potasium Mitrate Chronic Acid **RPRODUGED ON GOVI
YEAR	1970	1971	1972

APPROX. ELEV. FT. ABOVE MEL	1073 1073 1073 1074 1074 1073 1073 1073 1073 1073	1072 1072 1072 1072 1072 1072 1076 1076
APPROX. QUANTITY	50 ea. 325 # 165 gals. 110 gals. 50 gals. 50 gals. 110 gals. 50 gals. 50 gals. 110 gals. 120 gals. 120 gals. 120 gals. 150 gals. 150 gals.	54 ea. 17, 300 ea. 325 # 160 gals. 100 gals. 50 gals. 50 gals. 110 gals. 1ess than 1 gal. 1ess than 1 gal. 1ess than 1,2 # 50 gals. 2,500 gals. 2,500 gals.
DESCRIPTION OF DISPOSED WASTE	Electron tubes, etc. Fluorescent tubes Transformer oil soaked filter paper & fullers earth Varsol and paint Naptha and paint Acetone and cleaning residue Methyl Ethyl Keytone and cleaning residue Toulene and cleaning residue Methyl Chloroform and cleaning residue Z,4,5-T; 2,4-D and containers Malathion, Lethane, and containers Beryllium with rags, clothing, etc. Chromic Acid "Black Magic" coating #0% Nitric & Z% Hydrofluoric Acid (to Leaching Pit) 10% Hydrochloric Acid (to Leaching Pit)	Electron tubes, etc. Fluorescent tubes Transformer oil soaked filter paper & fullers earth Versol and paint Naytha and paint Naytha and cleaning residue Methyl Ethyl Keytone and cleaning residue Toulene and cleaning residue Methyl Chloroform and cleaning residue 2,4,5-T; 2,4-D and containers Melathion, Lethane, and containers Beryllium with rass, clothing, etc. AZ-50 with contaminated piping Chromic Acid 40% Nitric & 2% Hydrofluoric Acid (to Leaching Pit) 10% Hydrochloric Acid (to Leaching Pit) 25% Phosphoric Acid (to Leaching Pit)
YEAR	1973	197 ⁾ †

YEAR	DESCRIPTION OF DISPOSED WASTE	APPROX. QUA:TITY	APPROX. ELEV. FT. ABOVE 'SL
M F W M M M M M M M M M M M M M M M M M	Electron tubes, etc. Fluorescent tubes Transformer oil soaked filter paper & fullers earth Varsol and paint Naptha and paint Methyl Chloroform and cleaning residue Beryllium with rags, clothing, etc. 40% Nitric & 2% Hydrofluoric Acid (to Leaching Pit) Sodium Hydroxide	18 ea. 3,500 ea. 100 # 100 gals. 55 gals. 55 gals. 1ess than .5 # 2,500 gals.	1073 1073 1073 1073 1073 1076

* 1 January through 30 April

D.5

LANDFILL NO. 2 GROUND-WATER
MONITORING WELL DATA FROM 1979
TO 1984 - FROM AEDC FILES

AEDC SANITARY LANDFILL WELLS ANALYSES

	Remarks														 		ĺ			•		ľ	
bazyisnå bn mo		1	1/11/19	24 24	H.I.	1/17/79	2/28/79	1/17/79	1/17/79	1/19/79	1/17/79	L.D.A. 2/12/79	P.S.B.	P. S. B.	61/11/1	1/31/79	1/31/79	H.I. 2/1/79	H.I.	, I.	1/31/79	1/31/79	1/11/19
9,	ulaV	ر د		70	159	238	٥	187 6			0.0	7.3	0.44	1,85	Y			٩.	3.3	5.7	0.07	2 2	N.D.
Analysed nd om		61/11/1	1/11/1	24	H, I,	1/17/19 H T	2/28/79	1/11/19	61/11/1	1/19/79	1/17/79	2/12/79	P.S.B.	P. S. B.	1/17/79	1/31/19	1/31/79	2/1/79	H.I. 2/1/79		1/31/79 H.T.	1/31/79	1731/79
(2)	ulsV	6 6	, , , ,	775	289	296	4.54	308 6	2,45			3.2	0.34	1.4	0 0		7 000	0.008	3,3	1.3	0.05	2	N.E.
Analyzed nd om		2/11/1 1 A G I	1/11/79	24	H.I.	1/17/79 H. I.	2/28/79 P.S.R.	1/17/79 1. C.	1/11/79	1/19/79	1/11/19	2/12/79	P.S.B.	P.S.B.	1/17/79 P.S.B.		1/31/79	2/1/79	H.I. 2/1/79	н. І.	1/31/79 n. i.	1/31/79	1711/10
(\$) a	valu	6.9	753	200	375	375	5.05	4007	99	5.6		11.2	0.19	1,95	<0.01	, 0	0.02		4.5	1.3	0.04	0.02	
Analysed nd om	9	1/17/79 1. D. A.	1/11/19	24	H.I.	1/17/79 H. I.	2/28/79 P.S.B.	20	1/17/79 J.C.	1/19/79 H.I.	1/17/79	2/12/79	1/17/79	P.S.B.	1/17/79 P.S.B.	1/31/79	1/31/79	2/1/79	2/1/79	H.I.	1/31//9 H.I.	1/31/79 H.I.	1/11/10
e (3)	ulsV	7.6	180		116	125	7.70	136	22.9	~			0.18	1.7	< 0.01	0.3	_ c		1.4	1.9	0.07	N.D.	
Anslyzed nd mo	e	1/17/79 L.D.A.	1/11/19	24	H. I.	1/17/79 H.I.	2/28/79 P.S.B.	1/17/79 J.C.	1/17/79 J.C.	1/19/79 H.I.	1717779	2/12/79	1/17/79	P.S.B.	L/1///9 P.S.B.	1/31/79 H.I.	1/31/79 H. I.	2/1/79	2/1/79	11.11.	1/31//9 H.T.	1/31/79 H. I.	11/31/79
e (5)	ulsV	7	769		488	347	47.2	661.2	44.2	1.1	-	1	77.7	115	<0.01	0.2	0.10	1,1		1.2	0.03	0.08	
Analyzed ind iom	Dace 8 W Wi	1/17/79 L. D. A.	1/11/19	24	H.I.	1/17/79	2/28/79 P.S.B.	1/17/79 J.C.	J.C.	1/19/79 H. I.	1/17/79	2/12/79 p c g	1/11/1	P.S.B.	P. S.B.	1/31/79 III. I.	1/31/79 II.I.	2/1/79 H T	2/1/79	1/31/70		1/31//9	101/16/1
(E)	ulsV		122		234	167	9.72	225.4	6.5	1.0	1.2	(0.5		1.9	<.01	1.1	0.01	1.6		6.5	0.07	0.06	~_
Well No.		#c'	Specific Mos		CaCO1	Alkalinity, ppm CaCO1	000	Solids Dissolved, ppm	Solids Suspended, pom	_	_] -	NO3-NItrogen	mdd	NH3-N2m ppm	Iron, ppm	Hanganese, ppm	Sodium, ppm	!	rordssium, ppm	Chromium, ppm	.ickel, ppm	

AEDC SANITARY LANDFILL WELLS ANALYSES

	(Inc																	
•	Remarks														2/2	90	1 '	/
yzed	Date Anal and modW v8		1/31/79	1/31/79		1/16/79	24 H. I.									<u> </u>		
9	Value	50.0	900	****		1,7 ,6	Ž	1/16/79	12:45	LDA/JRM								
yzed	Date Anal and By Whom	글 -	1/31/79	1/31/79		1/16/79 T.DA/TRM	24 H. I.											
(5)	Value	0.03	Q.N			81 5"	. ~	1/16/79	14:50	LDA/JRM	ĺ	}						
yzed	Date Anal By Whom	<u> </u>	1/31/79 H.I.	1/31/79 H.I.	1/31/79 H.I.	1/16/79 LDA/JRM	24 H.I.			·								
(4)	Value	0.02	0.02			51 4"	N11	1/16/79	14:30	LDA/JRM								
/\seq	Date Anal and By Whom	1/31/79 H.I.	1/31/79 H.I.	1/31/79 H.I.		1/16/79 LDA/JRM	24 H.I.											
(3)	Value	0.03	0			31 3"	N11	1/16/79	14:10	LDA/JRM								
lyzed	Date Ana and Monw Ma	1/31/79 H.I.	1/31/79 H.I.	1/31/79 H.I.	÷	1/16/79 LDA'/JRM	24 H.I.											
3	Suisv	0.05	0,02			11' 7"	N11	1/16/79	13:55	LDA/JRM								
Jyzed	Date Ana modW va	1/31/79 H.I.	1/31/79 H.I.	1/31/79 H.I.		1/16/79 LDA/JRF	24 H.I.											
3	Value '	0.05	0.01	0.2		12' 3"	N11	1/16/79	13:30	LDA/JRM								
:e11 No.		inc, ppm	opper, ppm	mdd 'mr dan	Ob, ppm	ell Water Level	Oli reported as -	ite Sampled	ime Sampled	impled By		•	>			1		

Analysis by State Lab AEDC SANITARY LANDFILL WELL ANALYSES

MEDE SANTIARI LANDITEL WELL ANALISES

Sumple Split with State

* - detected but not quantified

Q = analyze quarterly
A = analyze annually

WELL NO. Odor, Bt-Co Units -A 96 304 92 152 96 Agreement 26 Color, - A 19 < 3 14 14 0.05 <0.03 0.05 0.06 0.03 MBA Substances, mg/1-A 0.04 ND ND ND. N.D ND Endrin, mg/1 - AN. D N.D ND NO ND ND Lindane, mg/1 - A K.D NO Methoxychlor, mg/1 - A N.D ND ND ND ND ND Toxaphene, mg/l - A N.D ND ND ND ND 2. 4-D, mg/1 - A ND ND ND ND ND ND 2,4,5-TP Silvex, mg/l - A ND ND ND ND ND ND ND PCB, mg/1 - AND ND ND ND ND <0.010 < 0.010 0.016 <0.010 CO.010 < 0.010 Phenols, mg/1 - ANR NR NR NR NR Acetone, mg/1 - ANR NR # NR NR NR Methylchloroform, mg/l-A NR ND N.O MEK, mg/1 - AND Nク ND ND N, D 0.0229 Toluene, mg/1 - A N.D. 0.0117 0.0051 $N \cdot D$ NR NR NR NR NR NR Varsol, mg/1 - AND ND ND ND ND Xylene, mg/l - A ND N,D 1,1,1-trichloroethane 0.0468 13,750 0.148 6.020 0.015 1. 1-dichleroithy kene ND \Rightarrow ND. ANRND. trichloroethylene N.D 41.500 0.048 $\not =$ 0.0096 1,1,2,2-tetrachlorockylene ND 29,300 ND 0.910 0.0965 NDChloroform NR ND WD \Rightarrow NR ND methylene chloride NR ND 4.310 ND NRIND 1.190 1.1-dichbroethane N D 0.0129 0.0125 ND Chlordane ND ND ND ND N O

NR = net reported

File o yearne Bout Just 29 1

N.D. = none detected

A alysis by State Lis

AEDC SANITARY LANDFILL WELL ANALYSES

analyze quarterlyanalyze annually

WELL NO.	1	2	3	4	5	6
Arsenic (As), ppm-A	0.001	0.001	0.002	0.002	<0.001	0.002
Barium (Ba), ppm-A	0.060	0.310	0.070	0.060	0.070	0.050
Beryllium (Be), ppm-A	<1	Z 1	<1	< 1	< 1	< 1
Cadmium (Cd), ppm-A	20.001	∠0.001	26.661	< 0.001	< 0.601	< 0.001
Chloride, ppm-A	2	5	4	30	10	11
Chromium (Cr), ppm-Q&A	<0.001	<0.001	∠0.001	<0.001	< 0.001	D. 00 1
COD, mg/1 Q&A	13	37	14	25	10	6
Conductance.umho/cm-Q&A	465	874	364	705	545	378
Copper, ppm-A	0.139	0.095	0.067	0.103	0.116	0.031
Cyanide, mg/l -Q&A	< 0.02	<0.02	< 0.02	0.04	< 0.02	<0.02
Flouride, mg/l -A	0.33	0.70	0.55	0.66	0.77	0.16
Iron, (Fe), ppm-A	#3/2	1.9	80	4.1	2.1	1.4
Kjeldahl-N, mg/l -A	0.2	2.0	0.1	<0.1	<01	< 0.1
Lead (Pb), ppm-Q&A	0.05	0.04	0.040	0.060	0.080	<0.010
Manganese (Mn), ppm-A	1.4	0.09	0.013	0.047	0.056	0 056
Mercury (Hg), ppb-Q&A	0.5	0.8	<0.2	<0,2	<0.2	< c. 2
Nitrate-N, mg/l -A	0.07	20	0.22	0.03	0.05	0.02
pH-Q &A	7.1	6.7	7. 1	6.8	7.2	7.1
Selenium (Se), ppb-A	< /	< /	< /	< /	/	<1
Silver (Ag) ppm-Q&A	<0.001	C. CC1	< 0.001	< 0.001	<0.001	<0.0€1
Sulfate (SO ₄), ppm-A	4	< 3	< 3 × 3	4	4	< 3
Zinc (Zn), ppm-A	0.058	0.058	C.028	0.036	0.050	0.641
Well Water Level, ft.						

AEDC ANITARY LANDFILL WELL ANALYSES

DATESampled - 10/14/80

Q = analyze quarterly
A = analyze annually

WELL NO.	1	2	3	4	5	6
nic (As),ppm-A	<0.001	0.003	< 0.001	0.002	<0.001	ر الاه.سا
um (Ba),ppm-A	< 0.1	1 < 0.1	<0.1	< 0.1	<0 ml	Q.1
llium (Be),ppm-A	< 0.02	< 0.02	<0.02	<0.02	<0.02	K0, UZ
ium (Cd),ppm-A	< 0.01	<0.0i	< 0.01	<0.01	<0.01	K0.01
ride,ppm_A	1.62	. 9.18	4.68	31.32	13,32	13.68
mium (Cr),ppm-Q&A	0.03	0.08	0.11	008	0.02	0.02
mg/l Q&A	13	41	< 5	18	< 5	18
iuctance, u mho/cm - Q&A	450,5	819.7	339	689.7	512.3	323.6
er, ppm-A	0.33	0.23	0.09	0.24	0.19	000
nide, mg/l-Q&A	<0.02	40.02	<0.02	<0.02	<0.02	KC,62
Jride, mg/L-A	0.28	0.71	0.52	C.71	0.78	0.22
a, (Fe), ppm-A	1.8	2.1	12.9	6,8	1.3	r. 40
ldahl-N, mg/l-A	0.69	1.43	0.37	0.39	0.15	0.24
d (Pb), ppm-Q&A	< 0.05	0.04	0.03	0.00	003	1005
ganese (Mn), pom-A	0.0.0	0.73	0.03	0.07	0.04	003
cury (Hg), pp ^b -Q&A	0,0004	0.0012	40.0002	0.0003	<0.0002	12001
rate-N, mg/1 -A	0.74	27	0.3	1.35	0.93	1.45
- A30	7. /	6.0	. 7.4	7.6	7.2	123
enium (Se), ppb-A	<0, cc /	<0.001	<0.001	<0.001	<0.001	2001
iver (Ag) ppm -Q&A	0.06	0.07	0.07	0.03	0.03	10.04
lfate (SO ₄), ppm -A	4.2	4.0	3.4	3.0	6.2	1.5
nc (Zn), ppm -A	6.1	0.11	0.06	0.1	0.12	0.05
11 Water Level, ft.	20 2	16'1	9'	12'1'	12' 1'	15
		(C) (C)				
		EL				
		ि रोपद	1//			
	1		•			1

AEDC ANITARY LANDFILL WELL ANTLYSES

DATE SAmpled - 10/14/80

Q = analyze quarterly
A = analyze annually

WELL NO.	1	2	3	4	. 5	ε
T.O. V. , Bt-Co Units -A	2	16		16	<i>j</i> .	,
r, - A Color Units	4	4	8	1 4	1 2	2
Substances, mg/l - A	<0.01	<0.01	40.01	<0.01	10.01	<0.0
in, mg/1 - A	< 1.0	<1.0	<1.0	< 1.0	1<1,0	<1.0
ane, mg/1 - A	< 1.0	<1.0	<1.0	1 < 1:0	< 1.0	< 1.0
oxychlor, mg/l - A	< 1.0	<10	< 1.0	1 < 1.0	1<1.0	T1.C.
ephene, mg/l - A	< 1.0	< 1.0	< 1.0	< 1.0	! < 1,0	11.0
-D, mg/l - A	< 1.0	< 1.0	< 1,0	< 1,0	! < 1,	€1,0
.5-TP Silvex, mg/I - A	< 1.0	21.0	< 1.0	<1.0	1<1.0	K1.0
, mg/1 - A	< 1.0	<1.0	< 1.0	< 1.0	1<1.0	<1.0
nols, mg/l - A	<0,01	LO, D1	20.01	20.01	Laoi	200
tone, mg/l - A	<0.3	0.6	<0.3	0.9	1 <0.3	1.4
hvlchloroform, mg/l - A	<1.0	<1.0	1 < 1.0	1 < 1.0	< 1.0	< 1.0
, mq/1 - A	<0.4	3,4	10.4	1 0.4	ã. C	< 5.4
uene, mg/l - A	40.4	<0.4	(0.4	<00	<0.9	<3.4
sol, mq/l - A	< 2.0	<2.0	< 2.0	1200	< 3,0	< 3 , 0
ene, mg/l - A	< 2.4	<0.10	< 1. U.	< 6 6	T C. C.	م مسمور
(O) TO						
A CONTRACTOR OF THE PARTY OF TH		·	<u> </u>			
			;			
			 ,	<u> </u>		
			<u> </u>			
			: 			
.,,						
'1		 .	}	!	Į	

REPORT OF ANALYSE'

Division of Water Quality Central	Α,		juline ties 🐧 partment (of Public He	ealth
5 5 5 5 1 5 15:	11 711	- \ -	IOMO (V/ELL # 1)		
SOURCE: A & DC Lawlfi			Mi ³ :	·	
A	unilario i		of 6 Monitoring WElls	12m1 Fil	
1521411110711011		<u>'</u>		132011	
36	5 D UT			Sicilia.	4
Field Number Collected By N	Primary	SI	ation Number Data Collecte	1 2 101	
				5wm 117	10
Time Collected	Sample Dept	in (11.) Lchoratory No.	270 (11)	
					
10-Temperature C		2_	34G-C.O.D. mg/L (High Level)	<u></u>	ــــــــــــــــــــــــــــــــــــــ
300-D.O. me/!			335 C.Q.D. mg.l.(Low Level)	13	ַ ג וַיְ
310-5-day B.O.D. 20 °C mg/L			70508 Acidity Total - Hot mg/L	!	114
403-pH, Lab.	7.1	5.	412_Alkalinity_(Net)_mg/L	ļ	45
400-pH, Field		6_	38260-MBAS me/i	•	116
81-App. Color Pt - Counits	96	7	95-Conductivity Micromho 25 °C V	40.5	117_
80-True Color Pt - Co units	<u> </u>		1105-Aluminum as At ug/L	<u> </u>	118
170-Turbidity NTU	··		1007-Barium as Ea ug/L*	60	19
410-Total Alk. as CaCO3 mg/L		10	1032-Chromium-Hex, as Cr. ug/L	 	_20_
415-Phth. Alk. As CaCO3 mg/L		11	1033-Chromium-Tri. as Cr. ug/L	<u> </u>	21_
437-Acidity as CaCD3 mg/L			1034-Chromium-total as Cr. ug/L	<u> < 1 </u>	<u> 22</u>
900-Total Hardness as CaCO3 mb/L	<u></u>		1037-Cobalt as Co ug/L	-	23
910-Calcium as CaCO3 mg/1.			1147-Selenium-total as Se ug/L	151	724
927-Magnesium as Mg mg/L		11.5	1145-Selenium (Diss.) as Se ug/L	<u> </u>	_25 .
929-Sodium as Na mg/L		16	1077-Silver as Ag ug/L	1-1-	<u>ં2૬</u> .
937-Potassium as K mg/l.			32730-Phenols ug/L	< 10	27.
500-Total Residue mg/L	<u> </u>		1022-Boron-Total as B ug/L	 	- X
530-Sus. Residue rng/L			SLS-Nitrite Nitrogen as N mg/L	0.01	75.
515-Diss. Residue mg/L			620-Nitrate Nitrogen as N mg/L	0.07	130
31501-Coliform No./100 ml			105-Free CO2 mg/L	 	.네.
3.1616-Fecal Coliform No./100 ml.			505-Total Vol. Residue mg/L	 	_2
31679-Fecal Strep. No./100ml.			935-Vol. Sus. Residue mg/L	 	_ 2,
635-Total Kil. Nitrogen as N.mg/LY	0.2	24	545-Settleable Residue ml/L	 	<u>u</u> .
630-NO3 & NO2 as N mg/L	0.00		666-Diss. Phosphate as P mg/L	 	15
1097-Antimony as Sb ug/L	1200	26	745-Sulfide, total as Smg/L	{	<u>ا</u> ج
104)-Holl as he obje	1200	20	746-Sulfide, Dissolved as S mg/L	 	
1333-1141/241/230 23	17		369-C12 Demand, 30 min. mg/L	 	- ^{je}
940-Chloride as Cl mg/L	0.33		50064-C12, Free Res. mg/L	 	15
950-Fluoride as Fing/L		100	50060-Cl2, Combined Res. mg/L	 	10
1945-Sulfate as SO4 mg/L	+	2	590-Total Carbon mg/L 550-Oil and Grease mg/L		11-
680-Total Organic Carbon mg/L		3-		 < 0.02	112
1067-Nickel as Ni iig/L		4	32240-Tannin and Lignin mg/L		-115-
71900-Mercury-Total as Hg ug/L	0.5	-	610-Ammonia Nitrogen as N mg/L	 	115
1051-Lead as Pb ug/L	50	<u></u>	605-Organic Nitrogen as N mg/L	<u> </u>	116
1042-Copper as Cu ug/L	139	C'.	58-Flow Rate CFM		11.7
1002-Arsenic as As ug/L		3		 	
1927-Cadmium as Cd ug/L	- - /	્રિ 19	KI-Flow Rate CFS, Instantaneous		118
1092-Zinc as Zn ug/L	58	10	BO-Flow Rate CFS, Mean Daily	 	급:
955-Silica as SiO2 mg/L		11	- Trinan		
2		···			

REPORT OF ANALYSES

Division of Water Ourlity Central	imported Department of Public Regith					
SOURCE: HEDC LANIFILL THIS HOME (WELL # 2)						
ISSINTI TORTION	of 6 Monitoring WElls Browns					
58D. Field Number Collected By NIFT Primary Station Number Data Collected BO1014						
Time CollectedSample De	epih (fil) Loboratory No. Swm 1179					
16-Temperature C	2 34G-C.O.D. mg/L (High Level) 17					
300-D.O. mg/1	3 335 C.O.D. ms. 1 (1 ow 1 evel) 37 13					
316-5-day B.O.D. 20 °C mg/L	4 70508 Acidity Total - Hot mg/L					
403-pH, Lab. 12.7	5 412 Alkalinity (Net) mg/L 15					
400-pH, Field	6 38260-MBAS me/1. VI 0.06 116					
81-App. Color Pt - Counits V 304	7 95-Conductivity Micromho 25 °C V 874 17					
SG-True Color P+ - Co units / //	8 1105-Aluminum as Alug/L 18					
7C- Jurbidity NTU	9 1007-Barium as 23 ug/L 310 19					
1410-Total Alk. as CaCO3 mg/L	10 1032-Chromium-Hex, as Cr. ug/L 20					
415-Phth. Alk. As CaCO3 mg/L	11 1033-Chromium-Tri. as Cr. ug/L					
1437-Acidity as CaCD3 mg/L	12 1034-Chromium-total as Cr. ug/L <1 22					
900-Total Hardness as CaCO3 mg/L	13 1037-Cohalt as Co ug/L 23					
1910-Calcium as CaCO3 mg/L	14 1147-Scieniu.T-total as Se ug/L V 24					
927-Magnesium as Mg mg/L	15 1145-Scienium (Diss.) as Se ug/L 25					
1929-Sodium as Na mg/L	16 1077-Silver as Ag ug/L					
937-Potassium as K rag/l.	17 32730-Filienois ug/L < 10 127					
500-Total Residue mg/L	18 1022-Boron-Total as B ug/L					
530-Sus. Residue mg/L	19 515-Nitrite Nitrogen as N mg/L 1.6 19					
515-Diss. Residue mg/L	20 620-Nitrate Nitrogen as N mg/L V 20. 20					
31501-Coliform No./100 ml	21 In 5-Free CO2 mg/L					
31616-Fecal Coliform No./100 ml.	22 505-Total Vol. Residue mg/L Z					
31679-Fecal Strep. No./100ml.	23 535-Vol. Sus. Residue mg/L %					
635-Total Kill Nitrogen as Ning/LV 2.0	24 545-Settleable Residue ml/1					
630-NO3 & NO2 as N mg/L 22.	25 666-Diss. Phosphate as P mg/L 5					
1097-Antimony as Sb ug/L	26 745-Sulfide, total as 5 mg/L 6					
1045-Iron as Fe ug/L / 1900	27 746-Sulfide, Dissolved as S mg/L /					
1055-Manganese as Mn ug/L 92	28 B69-C12 Demand, 30 min. mg/L 8					
1940-Chloride as C! mg/L \(\sqrt{5}	29 50064-C12, Free Res. mg/L 5					
950-Fluoride as Fing/L 0.7c	30 50060-C12, Combined Res. mg/L 110					
665-Total Phosphate as Pring/L	L 590-Total Carbon mg/L					
945-Sulface as SO4 mg/L 43	2 550-Oil and Grease mg/L 12					
689-Total Organic Carbon mg/L	3 7 20-Cyanide as CN mg/L VI < 0. 02 13					
1067-Nickel as Ni ug/L	4 32240-Tannin and Lignin mg/L					
71900-Mercury-Total as Hg ug/L V 0,8	5 610-Ammonia Nitrogen as N mg/L 15					
1051-Lead as Pb ug/L 40	6 60 S-Organic Nitrogen as N mg/L 16					
TG42-Copper as Cu ug/L / 95	7 58-Flow Rate CFM					
1002-Arsenic as As ug/L	8 61-Flow Rate CFS, Instantaneous 18					
1027-Cadmium as Cd ug/L / < I	9 60-Flow Rate CFS, Mean Daily					
1092-Zinc as Zn ug/L	10 P=(/11/20)					
955-Silica as SiO2 mg/L	111					
Remarks P4 - 0549 W00 - 6.779						

REPORT OF ANALYSES

Division of Wolfer Cuality Control	%		/ I / I = I	\	i Gi i n
SOURCE: AEDC Laniti					
		۱۱_	of 6 Monitoring WElls	12-721	1
	3D If T Primary	y St	ation Number Data Collected	801014	'
Time Collected	Sample Dep	יחו:	ft)Loboratory No.	112 mm	<u>,0</u>
10-Temperature C		12	34G-C.O.D. mg/L (High Level)		52
300-D.O. mg/1		- 2	335 C.Q.D. ms. 1. (Low 1. eyel)		
310-5-day B.O.D. 20 °C mg/L		- -			IJ 3_
	7.1		70508 Acidity Total - Hot mg/1		11/5
403-pH, Lab.		٠ [] ٠	412 Alkalinity (Net) mg/L		115
81-App. Color Pt - Co units		- [6		40.03	
	96	- /	95-Conductivity Micromho 25 °C V		_L7
80-True Color P+ - Co units			1105-Aluminum as Al ug/L	_	<u> </u>
70-Turbidity NTU			1007-Barium as Ea ug/L		10
410-Total Alk. 35 CaCO3 mo/L		10	1032-Chromium-Hex. as Cr. ug/L		120_
415-Phth. Alk. As CaCO3 mg/L			1033-Chromium-Tri. as Cr. ug/L		21_
437-Acidity as CaCD3 mg/L			1034-Chromium-total as Cr. ug/L	<u> </u>	_2 <u>2</u> _
900-Total Hardness as CaCO3 mg/L		1.3	1037-Cobalt as Co ug/L		23
910-Calcium as CaCO3 mg/1.		- 14	1147-Seleniu.T-total as Se ug/L	<u>< /</u> .	24
927-Magnesium as Mg mg/L		15	1145-Selenium (Diss.) as Se ug/L		,75
929-Sodium as Na mg/L		16	1077-Silver as Ag ug/L	<u> </u>	26
937-Potassium as K mg/L		17	32730-Plienois ug/L	0</td <td>127</td>	127
500-Total Residue mg/L		18	1022-Boron-Total as Bug/L		1.8
530-Sus. Residue rng/L			515 Nitrite Nitrogen as N mg/L		7.9
515-Diss. Residue mg/L			520-Nitrate Nitrogen as N mg/L		<u> 3</u> 0_
31501-Caliform No./100 ml			In 5-Free CO2 mg/L		J.
3.1616-Fecal Coliform No./100 ml.			505-Total Vol. Residue mg/L		72
31679-Fecal Strep. No./100ml.			535-Vol. Sus. Residue mg/L		
635-Total Kil. Nitrogen as Nung/LV	0.1		545-Settleable Residue ml/1		4
630-NO3 & NO2 as N rng/L	0.25	25	666-Diss. Phosphate as P mg/L		5
1097-Antimony as Sb ug/L			745-Sulfide, total as Sing/L		\$
1045-iron as Fe ug/L	8000	27	746-Sullide, Dissolved as Smg/L		5
1055-Manganese as Mn ug/L	13	28	B69-C12 Demand, 30 min. mg/L		٤
940-Chloride as Cl mg/L	4	29	50064-CI2, Free Res. mg/L		<u>'</u>
950-Fluoride as Fing/L	0.55	30	50060-C12, Combined Res. mg/L		i C
665-Total Phosphate as Prng/L		Īi -	690-Total Carbon mg/L		ii
945-Sulface as SO4 mg/L	£3	2	500-Oil and Grease mg/L		112
680-Total Organic Carbon mg/L		3			$\frac{112}{113}$
1067-Nickel as Ni ug/L		- 4	32240-Tannin and Lignin mg/L		114-
71900-Mercury-Total as Hg ug/L	<0.2	- 5	610-Ammonia Nitrogen as N mg/L		11.5
1051-Lead as Pb ug/L	40	- 15-	605-Organic Nitrogen as N mg/L		11.6 11.6
T042-Copper as Cu ug/L	67	7	58-Flow Rate CFM		11.7
1002-Arsenic as As ug/L	3	8	· · · · · · · · · · · · · · · · · · ·		
1027-Cadmium as Cd ug/L	\\ \\ \\ \	. ¦9	KI-Flow Rate CFS, Instantaneous		113
1092-Zinc as Zn ug/L	28	17.	60-Flow Rate CFS, Mean Daily	<!--</del-->	.¦∸`
955-Silica as \$102 mg/L	<u> </u>	- 11	- Estimon		 .
		1, 1			
Remarks			· · · · · · · · · · · · · · · · · · ·	P4 - 0	5 4

Signature of water country Courter	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1. Find importment of Public Region
SOURCE A E DC Lanifil		
		1 of 6 Mointoning Wells Around
5 <i>6</i> 1		501017
Field Number Collected By Mit	Primary	Station Number Data Collected 601014
Time Collected So	mole Deci	th (ft.) Lehoratory No. 5WM 1181
Time Corrected	pie Depi	Candidatory No.
10-Temperature C		2 34G-C.O.D. mg/L (High Level) 17
300-D-O, mg/1		3 335 C.Q.D. mg. 1 il ow 1 evel) 25 13
310-5-day B.O.D. 20 °C mg/L		4 70508 Acidity Total - Hot mg/1
403-pH, Lab.	6.8	5 #12 Alkalinity (Net) mg/1 15
400-pH, Field		6 38260-MBAS mg/1 0.04 116
31-App. Color P1 - Co units	26	7 95-Conductivity Micromho 25 °C V 705 117
80-True Color P+ - Co units	<i>43</i>	8 1105-Aluminum as At ug/1 118
70-Turbidity NTU		9 1007-Barium as Ea ug/L 60 110
419-Total Alk. as CaCO3 mg/L		10 1032-Chroinium-Hex, as Cr. ug/L 120
415-Phth. Alk. As CaCO3 mg/L		11 1033-Chroinium-Tri. as Cr. ug/L 21
437-Acidity as CaCD3 mg/L		12 1034-Chromium-total as Cr. ug/L / <1 22
900-Total Hardness as CaCO3 mg/L		[13] 1037-Cobalt as Co ug/L 23
910-Calcium as CaCO3 mg/1.		14 1147-Seleniux - total as Se ug/L VI 24</td
. 927-Magnesium as Mg mg/L		15 1145-Selenium (Diss.) as Se ug/L
929-Sodium as Na mg/L		16 1077-Silver as Ag ug/L / 26
937-Potassium as K mg/l.		17 32730-Phenols ug/L V 16 12/
500-Total Residue mg/L		18 1022-Boron-Total as B ug/L x
530-Sus. Residue rng/L		19 SLS Nitrite Nitrogen as N mg/L 0.02 79
515-Diss. Residue mg/L		20 620-Nitrate Nitrogen as N mg/L VI 0.03 km
31501-Coliform No./100 ml		21 MS-Free CO2 mg/L
31616-Fecal Coliform No./100 ml.		22 505-Total Vol. Residue mg/L
31679-Fecal Strep. No./100inl.		23 \$35-Vol. Sus. Residue mg/L
635-Total Kill Nitrogen as Nung/L	< 0.1	.24 545-Settleable Residue ml/1 4
630-NO3 & NO2 as N mg/L	<u> </u>	25 666-Diss. Phosphate as P mg/L 5
1097-Antimony as Sb ug/L	4 100	26 745-Sulfide, total as S mg/L 6
1045-Iron as Fe ug/L	4100	27 746-Sulfide, Dissolved as S mg/L
1055-Manganese as Mn ug/L	47	28 369-C12 Demand, 30 min. mg/L
940-Chloride as Cl rng/L	30	29 50064-C12, Free Res. mg/L
950-Fluoride as Fing/L	0.66	30 50060-C12, Combined Res. mg/L 10
665-Total Phosphate as Pring/L	4	B90-Total Carbon mg/L 1
945-Sulfate as SO4 mg/L 680-Total Organic Carbon mg/L		2 500-Oil and Grease mg/L 112
1067-Nickel as Ni ug/L		3 720-Cyanide as CN mg/L
71900-Mercury-Total as Hg ug/L	7 -2	
		5 610-Amir onia Nitrogen as N mg/L 15
	102	6 605-Organic Nitrogen as N mg/L 115 7 58-Flow Rate CFM 117
1002-Arsenic as As ug/L	103 2	
1027-Cadmium as Cd ug/L	<1	8 KI-Flow Rate CFS, Instantaneous 13 9 KI-Flow Rate CFS, Uses Daily
1092-Zinc as Zn ug/L	3 (2	9 60-Flow Rate CFS, Mean Daily 1
955-Silica as Si02 mg/L		
		10.5 1
Remarks :		

REPORT OF ANALYSES

Division of Water Cuality Control		:intries Inpartment	of Public Resit	, L
SOURCE: A E DC Lanifill Till	- \-	uma (WELL #	= 5)	
SOURCE : HEBE ESPIRATION				_
IDENTIFICATION ANNUAL SAINPLINE	'\ '	of 6 Montoring WElls	13-25-111	_
Field Number Collected By NHT Primary	y Sto	ation Number Data Collecte	0501014	
Time Collected Sample Dep	מו:	ft) Lchoratory No.	5WM 1182	
10-Temperature C	2	B4G-C.O.D. nig/L (High Level)	7 7	,
300-D.O. mg/1.		335 C.O.D. mg. i il ow level)	10	
310-5-day B.O.D. 20 °C mg/L		70208 Acidity Total - Hot mg/L	1 4	
403-pH, Lab. 7.2	1	(+12_Alkalinity_(Not)_mg/l	1 15	
400-pH, Field		38260-MBAS mg/1	0.03 116	
	-	25-Conductivity Migrainho 25 °C		_
	-	122-Conductivity independent		_
		1105-Aluminum as A. ug/L	70 10	
7C-Turbidity NTU		1007-Barium as Ea ug/L		
410-Total Alk. as CaCO3 ma/L	-110	1032-Chromium-Hex. as_Cr_ug/L		
415-Phth. Alk. As CaCO3 mg/L		1033-Chromium-Tri. as Cr. ug/L	121	_
437-Acidity as CaCD3 mg/L		1034-Chromium-total as Cr. ug/L		_
903-Total Hardness as CaCO3 mg/L		1037-Cobalt as Coug/L	<u> </u>	
910-Calcium as CaCO3 mg/1.	_ 14.	1147-Schmiut-total as Se uz/L	1 1	¥
927-Magnesium as Mg mg/L	_ [1.5	1145-Selenium (Diss.) as Se ug/L	1 75	5
929-Sodium as Na mg/L	16	1077-Silver as Ag ug/L	77 - 26	2
937-Potassium as K mg/L	_ 17_	32730-Phenois ug/L	<10 11	٧.
500-Total Residue mg/L	18	1022-Boron-Total as B ug/L	1	4
530-Sus. Residue mg/L	19	515-Nitrite Nitrogen as N mg/L	0.01 79	
515-Diss, Residue rng/L	_ 20	520-Nitrate Nitrogen as N mg/L V	1005	;_
31501-Coliform No./100 ml		In 5-Free CO2 mg/L	1	
3.1616-Fecal Coliform No./100 ml.		505-Total Vol. Residue mg/L	1 72	
31679-Fecal Strep. No./100ml.	23	535-Vol. Sus. Residue me/1	,	
635-Total Kil. Nitrogen as N. mg/LV < 0.1	_24	545-Settleable Residue ml/L	1. 4	_
630-NO3 & NO2 as N mg/L 2.06	25	566-Diss. Phosphate as P mg/L	5	•
1097-Antimony as Sb ug/L		745-Sulfide, total as Smg/L	1 3	
1045-iron as Fe ug/L / 2100	27	746-Sulfide, Dissolved as Smg/L	7	-
1055-Manganese as Mn ug/L / 56	28	369-C12 Demand, 30 min. mg/L	T	
940-Chloride as Cl mg/L / 10	29	50064-C12, Free Res. mg/L	5	
950-Fluoride as Fing/L C.77	130	50060-C12, Combined Res. mg/L	l ito	5
665-Total Phosphate as Ping/L	11	690-Total Carbon ing/L	1	_
945-Sulfate as SO4 mg/L / H	2		113	
680-Total Organic Carbon mg/L	<u> </u>	720-Cyanide as CN may'L		
1067-Nickel as Ni ug/L	-4	32240- Fannin and Lightn mg/L		<u>-</u>
71900-Mercury-Total as Hg ug/L V < 0,2	75	610-Amir mia Nitrogen as N mg/L		· –
1051-Lead as Pb ug/L 80	-15 -	605-Organic Nitrogen as Ning/L	;	<u>:</u>
1042-Copper as Cu ug/L / 110	- 7	58-Flow Rate CPM		
1002-Arsenic as As ug/L	3			
1027-Cadmium as Cd ug/L // <1	19	KI-Flow Rate CFS, Instantaneous		<u>:</u> .
1092-Zinc as Zn ug/L 50	_ 10	KO-Flow Rate CFS, Mean Daily		
955-Silica as SiO2 mg/L		E Cy Viver		
		1	·	_
Remarks :			PH - 054	
			WQ 7 - 6 / 7	•

REPORT OF ANALYSES

Division of Water Oughty Control	think see inpartment of Public Kesit
	114511 + 6)
SOURCE: A EDC Landfill Till	Mil. (VIELL -H B)
	, of 6 Mointering Wells Around
5717	
•	Station Number Date Collected 601012
Time Collected Sample Dep	th (ft) Lehoratory No Swm 1123
10-Temperature C	2 3/G-C.O.D. mg/L (High Level)
300-D.O. mø/!	
310-5-day B.O.D. 20 °C ing/L	4. 70508 Acidity Total - Hot mg/1
403-pH, Lab. 7.1	5 (12 Alkalinity (Net) mg/L its
400-pH, Field	6_38260-MBAS mg/1
81-App. Color Pt - Co units / /52	7 95-Conductivity Micromho 25 °C 378 1-
80-True Color Pt - Co units V 19	8 1105-Aluminum as Alug/L 15
70-Turbidity NTU	9 1007-Barium as 23 ug/L 50 119
410-Total Alk. as CaCO3 mg/L	10 1032-Chromium-Hex, as Cr. ug/L 20
415-Phth. Alk. As CaCO3 mg/L	11 1033-Chroinium-Tri. as Cr. ug/L 2:
437-Acidity as CaCD3 mg/L	112 1034-Chromium-total as Cr. ug/L / <1 22
900-Total Hardness as CaCO3 mg/L	13 1037-Cobalt as Co ug/L 23
910-Calcium as CaCO3 mg/s.	14 1147-Seleniu.T-total as Se ug/L / / 24
927-Magnesium as Mg mg/L	15 1145-Selenium (Diss.) as Se ug/L 75
929-Sodium as Na Ing/L	16 1077-Silver as Ag ug/L / 26
937-Potassium as K mg/l.	17 32730-Phenois ug/L <10 //
500-Total Residue mg/L	18 1022-Boron-Total as B ug/L
530-Sus. Residue mg/L	19 SIS-Nitrite Nitrogen as N mg/L 0.02
515-Diss. Residue mg/L	20 620-Nitrate Nitrogen as N mg/L 0.06
	· · · · · · · · · · · · · · · · · · ·
31501-Coliform No./100 ml 31616-Fecal Coliform No./100 ml.	21 105-Free CO2 mg/L
	22 505-Total Vol. Residue mg/L
31679-Fecal Strep. No./100ml.	23 535-Vol. Sus. Residue mg/L
635-Total Kil. Nitrogen as N. mg/L \ < 0.1	24 545-Settleable Residue ml/L
630-NO3 & NO2 as N mg/L 0.08	25 B66-Diss. Phosphate as P mg/L 5
1097-Antimony as Sb ug/L	26 745-Sulfide, total as S mg/L 6
1045-Iron as Fe ug/L / 1400	27 746 Sulfide, Dissolved as 5 mg/L
1055-Manganese as Mn ug/L / 56	28 B69-C12 Dernand, 30 min. mg/L &
940-Chloride as Cl mg/L //	29 50064-C12, Free Res. mg/L 5
950-Fluoride as Fing/L 0.16	30 50060-C12, Combined Res. mg/L 110
665-Total Phosphate as Ping/L	1 690-Total Carbon mg/L
945-Sulfate as SO4 mg/L 43	2 550-Oil and Grease mg/L 112
680-Total Organic Carbon mg/L	3 720-Cyanide as CN mg/L < < 0.02 15
1067-Nickel as Ni ug/L	# B2240-Tannin and Lignin mg/L !-
71900-Mercury-Total as Hg ug/L V <0-2	5 K10-Aminonia Nitrogen as N mg/L 15
1051-Lead as Pb ug/L V < 10	6 605-Organic Nitrogen as N mg/L 1-
1042-Copper as Cu ug/L / 31	7 58-Flow Rate CFM
1002-Arsenic as As ug/L / 2	8 61-Flow Rate CFS, Instantaneous 3
1027-Cadmium as Cd ug/L ·/ <1	9 80-Flow Rate CFS, Mean Daily
1092-Zinc as Zn ug/L / 4 1	10 Fractitions
955-Silica as SiO2 mg/L	111
Remarks :	

DATE:	3/18/81
-------	---------

WELL NO.	1	2	3	4	5	6
Arsenic (As), ppm-A						
Barium (Ba), ppm-A	- 			 		
Beryllium (Be), ppm-A						
Cadmium (Cd), ppm-A						
Chloride, ppm-A						
Chromium (Cr), ppm-Q&A	<0.01	< 0.01	< 0.01	< 0.01	. 0.01	0.04
COD, mg/1 Q&A	26	187	8	22	10	10
Conductance,umho/cm-Q&A	455	1,205	343	676	521	388
Copper, ppm-A						
Cyanide, mg/1 -Q&A	< .02	< .02	< .02	< .02	< .02	< .02
Flouride, mg/l -A		-				
Iron, (Fe), ppm-A						·
Kjeldahl-N, mg/l -A						
Lead (Pb), ppm-Q&A	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
Manganese (Mn), ppm-A						
Mercury (Hg), ppb-Q&A	<0.2	0.6	<0.2	0.4	0.2	0.2
Nitrate-N, mg/1 -A						
pH-Q&A	7.1	6.6	7.4	7.0	7.3	7.3
Selenium (Se), ppb-A						
Silver (Ag) ppm-Q&A	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01
Sulfate (SO ₄), ppm-A						
Zinc (Zn), ppm-A						
Well Water Level, ft.	17'3"	14'2"	3'2"	5'8"	7'11"	16'6"

DATE:	4/81
	1044-228

WELL NO.	1	2	3	. 4	5	6 .
Arsenic (As), ppm-A						
Barium (Ba), ppm-A						
Beryllium (Be), ppm-A						
Cadmium (Cd), ppm-A						
Chloride, ppm-A						
Chromium (Cr), ppm-Q&A	<0.01	∠ 0.01	40.01	<0.01	<0.01	40.01
COD, mg/1 Q&A	20	292	<5	10	6	112
Conductance,umho/cm-Q&A	500	1379	385	714	571	513
Copper, ppm-A						
Cyanide, mg/1 -Q&A	₹.02	<.02	<.02	< 02	<.02	∠.02
Flouride, mg/l -A						
Iron, (Fe), ppm-A						
Kjeldahl-N, mg/l -A						
Lead (Pb), ppm-Q&A	<0.05	40.05	<0.05	<0.05	<0.05	<0.05
Manganese (Mn), ppm-A						1
Mercury (Hg), ppb-Q&A	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Nitrate-N, mg/l -A						
pH-Q&A	7.0	6.5	7.4	7.0	7.2	7.0
Selenium (Se), ppb-A						
Silver (Ag) ppm-Q&A	<0.01	<0.01	<0.01	~ 0.01	<0.01	4 0.01
Sulfate (SO ₄), ppm-A						
Zinc (Zn), ppm-A						
Well Water Level, ft.	17'0"	13′8"	4'1"	6'10"	8'1"	13'3"

DATE SAMPLED: 16 July 1981

Q = analyze quarterly
A = analyze annually

Reservoir Level* 1067.0 ft.

WELL NO.	1	2	3	4	5	. 6
Arsenic (As), ppm-A						
Earium (Ba), ppm-A	-					
Beryllium (Be), ppm-A						
Cadmium (Cd), ppm-A						
Chloride, ppm-A						
Chromium (Cr), ppm-Q&A	<0.01	<0.01	(0.01	⟨0.01	<0.01	0.34
COD, mg/1 Q&A	< 5	237	 	20	< 5	5
Conductance,umho/cm-Q&A	513	1,333	388	826	588	455
Copper, ppm-A						
Cyanide, mg/1 -Q&A	<.02	<.02	5.02	<.02	€.02	6.02
Flouride, mg/l -A						
Iron, (Fe), ppm-A	0.24	0.55	1.4	0.39	0.14	0.52
Kjeldahl-N, mg/l -A		·				
Lead (Pb), ppm-Q&A	<0.05	<0.05	<0.05	⟨0.05	0.05	<0.05
Manganese (Mn), ppm-A	0.01	0.14	0.02	0.02	0.02	0.19
Mercury (Hg), ppb-Q&A	0.7	2.2	0.3	0.8	0.6_	0.3_
Nitrate-N, mg/l -A						
рН-Q&A	7.1	6.5	7.4	7.0	7.1	7.3
Selenium (Se), ppb-A						
Silver (Ag) ppm-Q&A	(0.01	< 0.01	<0.01	<0.01	<0.01	<0.01
Sulfate (SO ₄), ppm-A						
Zinc (Zn), ppm-A						
Well Water Level,* ft.	18'10"	14'2"	4'8"	8'1"	9'2"	15'10"

^{*} Prior to pumping the wells

DATE SAMPLED: 17 November 1981

Reservoir Level* 1067.3

WELL NO.	1	2	3	4	5	6
Arsenic (As), ppm-A	0.002	0.004	0.002	0.003	0.002	0.003
Sarium (Ba), ppm-A	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1
Beryllium (Be), ppm-A	< 0.02	< 0.02	<0.02	< 0.02	<0.02	< 0.02
Cadmium (Cd), ppm-A	< 0.01	< 0.01	<0.01	< 0.01	<0.01	K 0.01
Chloride, ppm-A	2.8	16.5	4.1	42.1	9.8	12.1
Chromium (Cr), ppm-Q&A	< 0.01	0.02	<0.01	< 0.01	0.02	0.01
COD, mg/1 Q&A	21	335	6	25	6	9
Conductance,umho/cm-Q&A **	500	1,149	324	680	454	346
Copper, ppm-A	0.10	0.09	0.08	0.08	0.16	0.06
Cyanide, mg/l -Q&A	<0.02	< 0.02	<0.02	< 0.02	<0.02	< 0.02
Flouride, mg/l -A	0.39	1.0	0.43	0.6	0.78	0.18
Iron, (Fe), ppm-A	0.47	0.32	0.26	0.97	0.42	1.6
Kjeldahl-N, mg/l -A	0.7	0.15	0.77	0.91	0.65	1.6
Lead (Pb), ppm-Q&A	<0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05
Manganese (Mn), ppm-A	0.01	0.22	0.01	0.07	0.02	0.18
Mercury (Hg), ppb-Q&A	<0.2	0.8	0.4	0.5	0.6	0.6
Nitrate-N, mg/l -A	0.53	82.0	0.3	0.66	0.37	0.51
pH-Q&A **	6.76	6.11	6.92	6.70	7.01	7.08
Selenium (Se), ppb-A	<0.001	< 0.001	<0.001	< 0.001	< 0.001	< 0.001
Silver (Ag) ppm-Q&A	<0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01
Sulfate (SO ₄), ppm-A	5.4	4.1	1.4	2.5	4.4	2.9
Zinc (Zn), ppm-A	0.06	0.06	0.05	0.04	0.05	0.06
Well Water Level,* ft.	15'3"	15'3"	4'1"	6'7"	10'9"	16'4"

^{*} Prior to pumping the wells
** Average of 4 replicates

DATE SAMPLED: 17 November 1981

WELL NO.	1	22	3	4	5	6
Odor, T.O.M. Units -A	_ 3	11	1	15	1	11
Color, - A PtCo. Units	<4	< 4	< 4	<4	< 4	<4
MEA Substances, mg/1-A	<0.03	< 0.03	<0.03	0.04	<0.03	<0.03
Endrin, mg/l - A	<0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001
Lindane, mg/l - A	<0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001
Methoxychlor, mg/l - A	<0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001
Toxaphene, mg/1 - A	<0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001
2, 4-D, mg/1 - A	<0.0004	< 0.0004	<0.0004	< 0.0004	<0.0004	< 0.0004
2.4.5-TP Silvex, mg/1 - A	< 0.0003	< 0.0003	<0.0003	< 0.0003	<0.0003	< 0.0003
PCB, mg/1 - A	<0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001	~0.0001
Phenols, mg/l - A	<0.01	< 0.01	<0.01	0.07	<0.01	< 0.01
Acetone, mg/l - A	<1.0	10.3	<1.0	∠1.0	∠1.0	<1.0
Methylchloroform, mg/l-A	SEE 1	,1,1 - TR	ICHLOROETH	ANE BELOW		
'EK, mg/1 - A	<. 03	45.13	< 0.03	< 0.03	< 0.03	0.03
Toluene, mg/1 - A	< 0.01	18.6	<0.01	0.69	0.01	<0.01
Varsol, mg/l - A	∠ 0.5	∠ 0.5	<0.5	<0.5	∠0.5	<0.5
<pre>Xylene, mg/1 - A</pre>	< 0.01	0.17	<0.01	0.40	< 0.01	- 0.01
Total Organic Carbon mg/l Q&A **	4.7	112.5	53	89	29	44.5
1,1,1 - trichloroe- thane mg/l Q&A**	.01	17	.03	12	.14	.04
1,1,2,2 - tetrachlor- oethylene mg/l Q&A**	.01	96	.02	.57	19	.01
trichloroethylene mg/1 Q&A**	.01	121	.02	.10	.08	.01

^{**} Average of 4 replicates

DATE SAMPLED: 9 Feb 82 Reservoir Level* 1066.9

WELL NO.	1	2	3	4	5	6
Arsenic (As), ppm-A						
parium (Ba), ppm-A						1
Seryllium (Be), ppm-A						
Cadmium (Cd), ppm-A						
Chloride, ppm-A						
Chromium (Cr), ppm-Q&A	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05
COD, mg/1 Q&A	7	216	5	13	< 5	6
Conductance,umno/cm-Q&A **	353	1080	330	600	465	385
Copper, ppm-A						
Cyanide, mg/1 -Q&A	<0.1	< 0.1	<0.1	< 0.1	< 0.1	<0.1
Flouride, mg/l -A						
Iron, (Fe), ppm-A						
Kjeldahl-N, mg/l -A		:				
Lead (Pb), ppm-Q&A	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Manganese (Mn), ppm-A						
Mercury (Hg), ppb-Q&A	<0.2	2.3	< 0.2	< 0.2	< 0.2	<0.2
Nitrate-N, mg/l -A	-					
pH-Q&A **	6.8	6.4	7.3	6.6	6.8	6.8
Selenium (Se), ppb-A						
Silver (Ag) ppm-Q&A	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Sulfate (SO ₄), ppm-A						
Zinc (Zn), ppm-A						
Well Water Level,* ft.	9'3"	9'13"	2'7"	4'11"	7'7"	9'2"

^{*} Prior to pumping the wells ** Average of 4 replicates

DATE SAMPLED: 9 Feb 82

WELL NO.	11	2	3	4	5	66
Odor, Bt-Co Units -A						
Color, - A						
MBA Substances, mg/1-A						
Endrin, mg/l - A						
Lindane, mg/l - A						
Meth_xychlor, mg/l - A						
Toxaphene, mg/1 - A						
2, 4-D, mg/1 - A						
1.4,5-TP Silvex, mg/l - A						
PCB, mg/1 - A						
Phenols, mg/l - A						
Acetone, mg/l - A						
Methylchloroform, mg/l-A					!	
MEK, mg/1 - Δ			,			
Toluene, mg/l - A						
Varsol, mg/l - A						
Xylene, mg/l - A						
Total Organic Carbon mg/l Q&A **	<1	22	< 1	< 1	< 1	< 1
1,1,1 - trichloroe- thane mg/l QGA**	< 0.01	13.66	0.02	7.44	0.09	0.11
1,1,2,2 - tetrachlor- oethylene mg/l Q&A**	0.01	50.54	0.02	0.46	9.95	0.01
trichloroethylene	<0.01	118	0.01	0.01	0.03	<0.01

^{**} Average of 4 replicates

DATE SAMPLED: 15 April 1982

Reservoir Level* 1068.1

WELL NO.	1	2	3	4	5	6
Well Water Level,* ft.	10'1"	10'10"	2'8"	5'3"	6'7"	9'0"
pH - Q&A **	7.45	6.58	7.10	6.85	7.00	7.18
Conductance, umho/cm - Q&A**	389	1218	407	726	541	437
Cyanide, mg/l - Q&A	0.01	0.188	0.016	0.011	0.01	0.01
hitrate-N, mg/l - Q&A		45				
Chromium (Cr), ppm - Q&A	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Lead (Pb), ppm - Q&A	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Mercury (Hg), ppb - Q&A	<0.2	0.74	< 0.2	< 0.2	< 0.2	< 0.2
Silver (Ag) ppm - Q&A	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total Organic Carbon mg/1 - Q&A**	10	67	8	13	5	6
1,1,1 - trichloroe- thane mg/l - Q&A**	0.01	13	0.03	12	0.08	0.04
1,1,2,2 - tetrachlor- oethylene mg/l - Q&A**	0.02	40.3	0.10	0.63	3.76	0.03
trichloroethylene mg/l - Q&A**	0.04	84.3	0.03	0.10	0.04	0.01

^{*} Prior to pumping the wells

^{**} Average of 4 replicates

DATE SAMPLED: 21 July 1982

Reservoir Level* 1066.7

Q = analyze quarterly
A = analyze annually

WELL NO.	1	2	3 .	4	5	6
Well Water Level,* ft.	18'7"	15'4"	4'9"	7'9"	8'8"	17'7"
pH - Q&A **	7.0	6.6	7.3	7.0	7.2	7.5
Conductance, umho/cm - Q&A**	456	1,392	365	751	520	408
Cyanide, mg/l - Q&A	none	0.77	none	-none	none	none
Nitrate-N, mg/l - Q&A		60.				
Chromium (Cr), ppm - Q&A	<0.01	0.03	<0.01	0.03	0.08	0.12
Lead (Pb), ppm - Q&A	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Mercury (Hg), ppb ~ Q&A	<0.2	1.8	0.21	0.73	0.62	0.21
Silver (Ag) ppm - Q&A	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Total Organic Carbon mg/l - Q&A**	21	403	. 27	39	35	18
1,1,1 - trichloroe- thane mg/l - Q&A**	<.01	17.72	0.08	9.13	0.17	0.04
1,1,2,2 - tetrachlor- oethylene mg/l - Q&A**	<.01	24.13	0.41	0.65	9.23	0.10
trichloroethylene mg/l - Q&A**	<.01	25.06	0.11	0.21	0.09	<.01

Note: Samples for radionuclide analysis sent to Brooks AFB

^{*} Prior to pumping the wells

^{**} Average of 4 replicates

DATE SAMPLED: 3 November 1982

Q = analyze quarterly
A = analyze annually

WELL NO. 1 2 3 4 5

WELL NO.	•	•	•	•	4	•
Arsenic (As), ppm - A	0.001	0.002	0.003	<0.001	0.006	0.002
Barium (Ba), ppm - A	<0.01	<0.1	<0.01	<0.01	<0.1	<0.1
Beryllium (Be), ppm - A	<0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1
Cadmium (Cd), ppm - A	<0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1
Chlori de, ppm - A	< 1	25	6	37	8	12
Copper, ppm - A	0.06	0.07	0.09	0.15	0.12	0.09
Flouride, mg/l - A	<0.06	0.62	0.06	0.38	< 0.06	< 0.06
Iron, (Fe), ppm - A	0.50	0.25	1.3	6.3	3.4	4.6
Manganese (Mn), ppm - A	<0.01	0.20	0.20	0.06	0.09	0.27
Selenium (Se), ppb - A	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Sulfate (SO ₄), ppm - A	<1	1	<1	<1	1	1
Zinc (Zn), ppm - A	0.05	0.10	0.07	0.11	0.12	0.12
Endrin, mg/l - A	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01
Lindane, mg/l - A	<0.2	<0.2	< 0.2	< 0.2	<0.2	< 0.2
Methoxychlor, mg/l - A	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Toxaphene, mg/l - A	<0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
2, 4-D, mg/1 - A	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	<5.0
2,4,5-TP Silvex, mg/1 - A	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5
Phenols, mg/l - A	< 0.01	0.012	< 0.01	0.032	< 0.01	< 0.01
Toluene, mg/l - A	<0.01	3.43	< 0.01	0.03	0.01	< 0.01
Methylene chloride mg/l ~ A	0.09	47.50	0.92	1.03	0.09	<0.01

DATE SAMPLED: 3 November 1982

Reservoir Level* 1066.7

WELL NO.	1	2	3	4	5	6
Well Water Level,* ft.	18'7"	15'4"	4'9"	7 ' 9"	8'8"	17'7"
pH - Q&A **	7.1	6.6	7.3	7.1	7.3	7.3
Conductance, umho/cm - Q&A**	418	1250	292	659	517	338
Cyanide, mg/l - Q&A	<.02	0.31	<0.02	<0.02	<0.02	<0.02
Nitrate-N, mg/l - Q&A	0.74	78.0	0.63	0.92	0.77	1.12
Chromium (Cr), ppm - Q&A	<0.01	<0.1	<0.1	0.06	0.07	<0.01
Lead (Pb), ppm - Q&A	<0.05	<0.05	<0.05	<005	<0.05	<0.05
Mercury (Hg), ppb - Q&A	<0.2	1.8	0.6	0.8	0.3	<0.2
Silver (Ag) ppm - Q&A	<0.01	<0.01	<0.01	<0.01	<0.01	0.03
Total Organic Carbon mg/l - Q&A**	6	170	4	40	43	4
1,1,1 - trichloroe- thane mg/l - Q&A**	<0.01	14	0.03	6	.08	.03
1,1,2,2 - tetrachlor- oethylene mg/l - Q&A**	0.01	51.0	0.13	0.24	6.93	0.01
trichloroethylene mg/l - Q&A**	0.02	105.2	0.02	0.44	0.05	<.01

^{*} Prior to pumping the wells

^{**} Average of 4 replicates

DATE SAMPLED: 2 February 1983

Reservoir Level* 1068.35

Q = analyze quarterly

A = analyze annually

WELL NO.	1	2	3	4	5	6
Well Water Level,* ft.	11'6"	11'8"	4'5"	6'9"	7'11"	10'8"
рН - Q&A **	7.3	6.6	7.3	6.9	7.0	7.1
Conductance, umho/cm - Q&A**	364	1008	360	690	. 530	430
Cyanide, mg/l - Q&A	<0.02	0.52	<0.02	<0.02	<0.02	<0.02
Nitrate-N, mg/l - Q&A		51				
Chromium (Cr), ppm - Q&A	<0.01	<0.01	<0.01	0.03	0.01	0.01
Lead (Pb), ppm - Q&A	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Mercury (Hg), ppb - Q&A	<0.2	0.5	<0.2	0.7	<0.2	<0.2
Silver (Ag) ppm - Q&A	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Total Organic Carbon mg/l - Q&A**	4	100	2	13	1	3
1,1,1 - trichloroe- thane 4g/1 - Q&A**	16	9855	36	7137	88	48
1,1,2,2 - tetrachlor- oethylene 4g/l - Q&A**	16	50735	130	360	7140	34
trichloroethylene луд/1 - Q&A**	8	83327	16	30	53	12

^{*} Prior to pumping the wells

^{**} Average of 4 replicates

DATE SAMPLED: 2 February 1983

Reservoir Level* 1068.35

Q = analyze quarterly
A = analyze annually .

	.,		•			
WELL NO.	1	· 2	3	4	5	6
Well Water Level,* ft.	10-71.2	11'8"	1066.9	1627.2	/02-2. 1 7'11"	1022 ź 10'8"
pH - Q&A **	7.3	6.6	7.3	6.9	7.0	7.1
Conductance, umho/cm - Q&A**	364	1008	360	690	. 530	430
Cyanide, mg/1 - Q&A	<0.02	0.52	<0.02	<0.02	<0.02	<0.02
Nitrate-N, mg/1 - Q&A		51				CONT
Chromium (Cr), ppm - Q&A	<0.01	<0.01	<0.01	0.03	0.01	0.01 중
Lead (Pb), ppm - Q&A	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Mercury (Hg), ppb - Q&A	<0.2	0.5	<0.2	0.7	<0.2	<0.05
Silver (Ag) ppm - Q&A	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Total Organic Carbon mg/l - Q&A**	4	100	2	13	1	3
1,1,1 - trichloroe- thane 49/1 - Q&A**	16	9855	36	7137	88	48
1,1,2,2 - tetrachlor- oethylene _{Ag} /1 - Q&A**	16	50735	130	360	7140	34
trichloroethylene 49/1 - Q&A**	8	83327	16	30	53	12

in casing hight (is) - that HC ster.

^{*} Prior to pumping the wells

^{**} Average of 4 replicates

AUD No. 104726-01.

1.1 No. 271924

Date Sampled 2-23-83

AEDC SANITARY LANDFILL WELL ANALYSES .

		•	ALDO SA	TIME EMBLICE	ACTE VIVETAGE		
		рН	Specific Conductance umho/cm	Methyl- Chloroform ppb	Perchloro- ethylene ppb	Trichloro- ethylene ppb	TOC
Well No. 1		}				·.	
Sample No.		7.3	357	416	< 16	8	5
·	2	2,3	364	1 < 16	1 <16	8	1 6
	3.		364	216	1 < 16	8	3
	4	7.3	370	< 16	1 <16	8	3
	_						
Well No. 2							
Sample No.	1	6,6	971	8,700	43,010	71680	39
	2	6.5	1020	10,240	55,100	84,600	139
	3	6.6	1020	10,620	55,100	89,600	.153
	4	6.6	1020	9,860	49,730	82,430	68
Well No. 3			. 250				
Sample No.	긕		357	38	210	31	<
	2	7,3	360	38	97		6
	3	7.3	360	38	113		2
	4	7.3	364	32	101		
· · · · · · · · · · · · · · · · · · ·	\dashv						
Well No. 4	1	6.9	690	1 1 1 1	319	34	9
Sample No.	7			<u>le, le 60</u>	363	39	. 7
	2	6.9	695 690	6,820	422	13	9
	3	6.9	695	6,910		34	27
	4	θ, τ		8,160	338		<u> </u>
Well No. 5	\dashv						
Sample No.	1	7.0	526	99	7,390	78	<
•	2	7.0	526	71	7,530	45	<1
	3	7.0	532	94	7,260	45	41
	4	7.0	535	87	4,380	45/	<
	\Box				· ·	OC.	e.
Well No. 6				1	\$	4-7-8	5
Sample No.	긔		431	50	416	8'	<u> </u>
	2	7.1	442	50	2/6	- 8	<u> </u>
	3	7.1	426	50	88	24	4
	4	7.1	420	40	< 16	.8	<

'	750 37117			LIATE 20	men 2 21	1982
	; 9 • A	= amalyze qu = analyze an	arterly nually	3024	1-/41 C	112
WELL NO.	1	2	3	4 .	5	1 6
enic (As),ppm-A						
ium (Ba),ppm-A			ļ		 	
yllium (Be),ppm_A			ļ	 	ļ	ļ
mium (Cd),ppm-A					<u> </u>	
oride,ppm-A					<u> </u>	ļ
omium (Cr),ppm-Q&A	< 0.01	20.01	20.01	0.03	0.01	0.0/
- JGA			1	ļ	1	
nductance, p mho/cm - Q&A			<u> </u>	<u> </u>		
sper, ppm-A 🗪						ļ
anide, mg/l-Q&A	< 0.02	0.52	<0.02	<0.02	<0.02	< 0.c
ouride, mg/t-A						<u>.</u>
on, (Fe), ppm-A						
eldahl-N, mg/L-A						
ead (Pb), ppm-Q&A	40-05	20.05	20.05	< 0.05	<0.05	<0.05
inganese (Mn), ppm-A	<0.2	0.5	<0.1	0.7	<0. L	<0.2
ercury (Hg), pp ^b -Q&A						
itrate-N, mg/L -A		51				
H_Q&A						
elenium (Se), pp ^b -A						
ilver (Ag) ppm -Q&A	20.01	20.01	40.01	<0.01	<0.01	YU.U,
oulfate (SO ₄), ppm -A						
Zinc (Zn), ppm – A				`		
Well Water Level, ft.	11'6"	11'8"	4'5"	6'9"	7'11"	10'S
etention fond level	1068,35/	/-	175	-83		
	· ·			,	·	
			. 1		<u> </u>	•

QUARTERLY

LAS. No. : 2043-106C

DATE SAMPLED: 4/15/8/3

RESERVOIR LEVEL: 1068/

lie.	٦	٦	#
13.73	1	1	- 5

		lie)	L a			
Same of the Comment	11	2	3	4	5_	6
ig, p, n	<.01	<.01	<.01	<.01	<.0/	<.01
or, ppm	<.01	<.01	<.c1	< .0-1	<.01	<.01
ig, ppb	<0.2	0.74	20.L	<0.L	40.L	<0.1
16. j.	<.05	<.05	<.05	<.05	<.05	4.05
(N, ,, n	0.01	0.188	0.016	0.011	0.01	0.01
$N^{\lambda}_{5}/N^{-}(1+n1y)$		45			-	
	7,5 7,4	6.6 6.6			7.0 7.0	7.2 7.1
sp. Cod. Sp. Cod.	388 391 385 392	1220 1220		730 719	554 540	420 429
Perchlor pomput		31.04 36.48 44.16 41.40	109 .13	.0.54 .61	9.11 8.77 8.70 8.35	.10 .01
irichlor projut	0.04 0.03	77.50 80.64	.03 .03	.05 .05	104 104	10.> 25
Les hy I CHCIZ com Lut	0.01 0.03	13.13 12.47	.02 103	10,14 11.98	.09 .08	
Hothyl CHCl3 ppm/ust	(.01) C-01	14,40 11.8 1 1.71 3.46			1. 23. 12	1.<12.4.
1ah, mg/2 Mo11 HgO lev. *		ا مدا	, ,		1. 24. 2	
	10 1	10' 10"	28	5'3"	67	9'0"
		·	· · · · · · · · · · · · · · · · · · ·	-		
A Scior to tesping well	ls.					

DATE SAMPLED: 11 May 83
Reservoir Level* 1062.2

WELL NO.	1	2 .	3	4	5	6
Well Water Level,* ft.	9."8"	10 4"	2'11"	515"	6111"	8'6"
pH - Q&A **	2.1	6.6	2.3	6.9	2.0	2.3
Conductance, umho/cm - Q&A**	357	929	344	691	543	400
Cyanide, mg/l - Q&A	0	0.136	0	0	0	0
Nitrate-N, mg/1 - Q&A		56	_	_	_	-
Chromium (Cr), ppm - Q&A	<0.01	<0.01	<0.0l	0.03	40.01	0.02
Lead (Pb), ppm - Q&A	< 0.05	40.05	<0.05	40.05	20.05	C0.05
Mercury (Hg), ppb - Q&A	20.1	1.5	10.1	<0.j	20.1	20.1
Silver (Ag) ppm - Q&A	20.01	10.01	20.01	10.01	20.01	10.01
Total Organic Carbon mg/l - Q&A**	7	125	7	16	8	9
1,1,1 - trichloroe- thane µg/l - Q&A**	21 48.6012	6,726	42	7296	906	30
1,1,2,2 - tetrachlor- oethylene y g/l - Q&A**	70.050 70.050	44,460	158	460	6385	18
trichloroethylene µ 3/1 - Q&A**		69904	20	40.012	40	< 13 40.213

^{*} Prior to pumping the wells

^{**} Average of 4 replicates

DATE SAMPLED: // May 83
Reservoir Level*/067.2

WELL NO.	1	2	3	4	5	-6
Arsenic (As), ppm-A						
Barium (Ba), ppm-A						
Seryllium (Be), ppm-A						
Cadmium (Cd), ppm-A						
Chloride, ppm-A						
Chromium (Cr), ppm-Q&A	40.01	20.01	20.01	40.03	20.01	0.02
COD, mg/1 Q&A						
Conductance,umho/cm-Q&A	See	attach	S she	et		
Copper, ppm-A						
Cyanide, mg/1 -Q&A	0	0.136	0	0	0	0
Flouride, mg/l -A						
Iron, (Fe), ppm-A						
Kjeldahl-N, mg/l -A						
Lead (Pb), ppm-Q&A	c0.05	20.05	40.05	40.05	<0.0T	<0.05
Manganese (Mn), ppm-A						
Mercury (Hg), ppb-Q&A	∠0.1	1.5	20-1	<0.1	< 0. /	20.1
Nitrate-N, mg/l -A		56				
pH-Q&A	गाः। 5el	attache	ahee	₩		
Selenium (Se), ppb-A						
Silver (Ag) ppm-Q&A	10.01	40.01	40.01	<0.01	<0.01	10.01
Sulfate (SO ₄), ppm-A					/	(15 0 B
Zinc (Zn), ppm-A						NI STEEL
Well Water Level,* ft.	8,8,	10'4"	2'11"	5'5"	6'11"	8.6

^{*} Prior to pumping the wells

No. 104726-01 W/U No. 271924 Date Sampled 11 MAY 83

AEDC SANITARY LANDFILL WELL ANALYSES

		Specific	Methyl-	Perchloro-	Trichloro-	TOC
	pН	Conductance	Chloroform	ethylene,	ethylene,	ppm
		umho/cm	ppm	ppm	ppm	
Well No. 1	- 71	257				5
Sample No.	1 7.1	357	(0,012	< 0.02€	10,014	
	2 7.1	358	20.012	<0.020	50.014	6
	3 7.1	• 353	<0.012	1 40.020	140.014	9
	4 7.1	360	<0.012	10.020	120.014	8
		;	i 			
Well No. 2		0-1	! !			100
Sample No.	1 6,6	901	6.300	41.891	66,308	120
	2 6,6	917	7.320	45.843	70.720	125
	3 6,5	971	10.460	45.543	70,720	125
	4 6.7	926	6,720	44.262	71.808	127
		<u> </u>				
Well No. 3	Ì					
Sample No.	1 7.3	339	0,048	0.178	0.037	6
	2 7.3		0.048	0.068	0.018	6
	3 7.3	346	0.048	0.438	0.018	7
	4 7.3	346	0.0 24	0.148	< ,018	8
Well No. 4	1		_	:	·	
Sample No.	1 6.9		7.66	0.405	<.012	14
	2 6.9	699	7.296	0.409	<.012	21
	3 6,9	699	7.418	0.414	2.012	12
	4 6.9		6.810	0.373	< .0.2	18
	1			1		
Well No. 5						
Sample No.	1 7.0	541	1.034	6.477	0.041	10
	2 7.0	546	0.851	6.330	0,041	6
	3 7.0	54/	0.912	6.330	0.037	16
	4 7.0	546	0.876	6,903	0.041	(19)
						APPROVE
Well No. 6	,					V CHEERY
Sample No.	1:7.3	395	3.015	0.019	<.013	8-
	2 7.3	402	0019	< 0.014	< .013	8
	3 7.3	403	0.019	0.019	< 013	7
	4 7.3	400	0.038	10.019	< 013	7

DATE SAMPLED: 4-09-83

ly Reservoir Level* 1,667.3

Q = analyze quarterly
A = analyze annually

4 WELL NO. 2 3 5 Arsenic (As), ppm-A Barium (Ba), ppm-A Beryllium (Be), ppm-A Cadmium (Cd), ppm-A Chloride, ppm-A /Chromium (Cr), ppm-Q&A 20.01 <0.01 120.01 70.0 0.0 L COD, mg/1 Q&A Conductance, umho/cm-Q&A Copper, ppm-A CO,02 0.46 0,13 0,02 < 0,02 < 0,02 < 0,02 Cyanide, mg/1 -Q&A Flouride, mg/l -A Iron, (Fe), ppm-A Kjeldahl-N, mg/1 -A Lead (Pb), ppm-Q&A 0.18 20.05 20.0T 40.05 10.0J Manganese (Mn), ppm-A 0.65 ✓ Mercury (Hg), ppb-Q&A 20.1 Nitrate-N, mg/1 -A pH-Q&A Selenium (Se), ppb-A 20.11 /Silver (Ag) ppm-Q&A 20.01 20.21 <0.01 <0.27 Sulfate (SO₄), ppm-A Zinc (Zn), ppm-A 13/5 5174 Well Water Level # ft. below 16'8"

*Oprior to pumping the wells ** Duplicate Sumple

DATE SAMPLED: 9-09-83

Reservoir Level* 1.067.3

Q = analyze quarterly
A = analyze annually

والمسامين

		<u> </u>	Well Ho.					
WELL NO.	Ĵ	8	•	0	ø	•		
Arsenic (As), ppm-A								
Barium (Ba), ppm-A						1		
Beryllium (Be), ppm-A								
Cadmium (Cd), ppm-A								
Chloride, ppm-A								
Chromium (Cr), ppm-Q&A	20.01	<0.01						
COD, mg/1 Q&A		_						
Conductance,umho/cm-Q&A								
Copper, ppm-A			·					
Cyanide, mg/1 -Q&A	< 0.02	<0.02						
Flouride, mg/l -A								
Iron, (Fe), ppm-A								
Kjeldahl-N, mg/l -A								
Lead (Pb), ppm-Q&A	20.05	20.05						
Manganese (Mn), ppm-A								
Mercury (Hg), ppb-Q&A	20. L	< 0. L						
Nitrate-N, mg/1 -A	0.86	1.1						
pH-Q&A	न (:::	المارية المارية						
Selenium (Se), ppb-A					1/3			
Silver (Ag) ppm-Q&A	20.11	<0.01			T KA			
Sulfate (SO ₄), ppm-A					1			
Zinc (Zn), ppm-A								
Well Water Level,* ft. felo	3/11"	7'3"						

					Dat	e Sampled 3	19/33
			AEDC SAN	HITARY LANDFILL	WELL ANALYSES		
	i		Specific	Methyl-	TRI Tachloro-	P. P. Chloro-	TOC
		рH	Conductance	Chloroform	ethylene	ethylene	
			umho/cm	ppb	ppb	ppb	
Well No. 1		7,1	19 -	1 -			4
Sample No.	1	8.4	125	< 7	<u> </u>	2 10	3
	2			<u>47</u>	< 6	210	3
•	3	9.	163		24	1 4 10	4
	4	8,5	163	<u> </u>	- Le-	! 410	 7
Well No. 2	_				<u></u>	<u> </u>	
Sample No.	•	4.4	1.146	11,696	84,480	57.792	67
•	2	61.	1167	11,424	74.880	57.324	12
	3	1.5	1227	14968	70: ,272	56,448	655
	4	1,=	1,203	12,784	34,480	59,539	67
						<i>J</i>	
Well No. 3			•				
Sample No.	1	7:	<u> 3c7</u>	37,4	7,2	278,4	! 3
	2	7.3	249	34.0	4.6	201.6	1 2
	3	7.2	30.7	34,0	276	730.6	<u> L</u>
	4	7.4	310	40,8	7.2	216.0	2
	_						<u> </u>
Well No. 4		17	500	9 183	46	0</th <th></th>	
Sample No.		67	501		<u> </u>	410	8
	2	64	485	1,939		< 10	4
	<u>3</u>	(.X	ς ₀ 3	9,030	< 6 < 6	<10	-
	-	1-75	30.3	9,030	<u> </u>	7.70	
Well No. 5							
Sample No.	1	X,9	125	106.0	39,2	539.6	4
	2	8.5	140	3.3	336	539.6	< 2_
-	3	5.5	141	3,2	34.7	54218	2>
	4	5-16	152	<i>3.</i> 3	34.2	501.6 /	1
							3 20 1
Well No. 6	- 1		7.75%		_		145
Sample No.	\neg		34%	18.0	< 5	210	1 2 /
	2	7.5	37.3	18.0	46	410	-5
•	3	7.5	371	13,0	<u> </u>		- 4
	4	7.5	3%	24.0	46	< 10	3
Well No.	,			ļ	ļ	<u> </u>	
Sample No.	_	1.7	5:5	1440	1,837	1,398	<=
nemitte 140.	2	/. X	3	1560	1,837	1.3/.9	-2
	2	1.17	3/5	1540	1,964	1.3/2	2
	<u>.</u>	4.7	3/3	144.0	1,926	1,353	<u> </u>
	-				 		
Well No.							
Sample No.	_	7.0	385	1,920	9122	1,124	4
		1.9	382	1.814	8412	1.500	2
	2	19	316	1.761	\$ 143	1 489	3

	•	: AEDC SA	NITARY LANDFILL	WELL ANALYSES	P: R		
		Specific	Methyl-	Zaschloro-	Eichloro-	TOC	
	рН	Conductance umho/cm	Chloroform ppb	ethylene ppb	ethylene .ppb		
ae11 No. 1		Gillaro / Cla	, pp.	PP-	1		
imple No. 1	17.7	120	< 7.	46	Z 10	4	1
2	8.4	125	< 7	< 6	Z 10	3	$\neg \uparrow$
<u></u>	1 1 1	160	47_	< 4	410	3	
4	8,3	153	47	46	410	4	
	7.1	140				3.5	
· 11 No. 2	l ,, i						
'ample No. 1		1,166	11,696	84,480	57,792	67	
2	6.6	1,167	11,424	74,880	57.389	12	-
<u>3</u>	1.5	1,2.29	11,968	79,872	56,948	67	dd Akin
4	10,5	1203	12,784	84.480 20 007	54.539	45,3	
14-11 No. 3	1013		1 / 1 / 2 / 2		- 4/ /	75/3	}
imple No. 1	7.0	307	37,4	7,2	2.78,4	3	₹
2	7.3	2 9'7	34.0	4,6	2016	2	HETHKISH ED CH GOCT
3	7.2.	306	34.0 "	(276. ?)	(730.b?	l L	Ĕ.
4	7.1	510	40.8	7.2	216.0	12	_ <u>```</u>
	7.2	306:	36.6	7.0	27,2	2,2	_ ₹
W-11 No. 4	6.7	500	0.107			/	1
imple No. 1	67		9 183	46	< 10	3	
2	64	<u>501</u> C	12,939	< 6	<u> </u>	6	
3	(,4	4X5 5:03	9,030	46	< 10 < 10	 	
- 1	6.2	497	9,030		_ < 10	6	
No. 11 No. 5			7 7 7			В	
Sample No. 1	X.9	125	(13601)	39.2	539.6	4	
2	¥.5	ide	3'.3	336	539.6	< ک_	
· <u>3</u>	7.5	111	13.2	74.7	542,8	<u> </u>	
· <u>4</u>	8.1.	152	3.3	34.2	501.6	2	
 	6,7	140	3.3	35, 1	543.21 /		
14-11 No. 6	1., 5	3/1	100			111 242	
ple No. <u>1</u>		363	18.0	< B	210	7	
2 3	7.6	371	13.0	<i>46</i>	<10 <10	1-3-	
<u>3</u>	7.5	3%	24.0	46	Z10	3	
22	7,5	375	17.5	<u>- </u>	<u> </u>	1 4	╌╼╾┙┐
11 No. 7	- <i>!</i> //-	313	7713		ļ. — — — — — — — — — — — — — — — — — — —	 	4
ple No. 1	1.7	<u>ئے ت</u>	144.0	1837 _	1,348	<u> </u>	
2	1.X	301	15 F.C.	1. 1. 837	1,349	2	
3			1560	1,904	1.3.2	2	ļ
<u>4</u>	47	<u> 31.3</u>	. 194.0	1,926	المنطقة	K	
	6.7	361	150.0	1,876	1.270	 	
	17,	385	1010	6 111	1/20		
cople No. 1			1,920	5,122	1,134	.	1
	1.9	_3\2 _3\2	1.750	3,422	1.584	2	
3 <u>.</u>			1,723	5,549	1/37	. 6	
	1 <u></u> . 1	347	1506	8,109	1703	13	ر
		J = 1	7.	-, . ,		*	

DATE SAMPLED: <u>20 Oct 8</u>3

Reservoir Level* 1067.0

WELL NO.	1	2	3	4	5	6
Arsenic (As), ppm-A	<0.001	20.001	20.001	<0.001	-0-00/	<0.001
Barium (Ba), ppm-A	×0.1	<0.1	20.1	20.1	<0.1	20.1
Beryllium (Be), ppm-A	20.01	20.01	<0.01	<0.01	40.01	<0.01
Cadmium (Cd), ppm-A	<0.01	<0.01	20.01	2.01	20.01	<0.01
Chloride, ppm-A	4	24	5	48	12	10
Chromium (Cr), ppm-Q&A	<0.01	<0.01	<0.01	<0.01	10.01	1001
20D, mg/1 Q&A						
Conductance,umho/cm-Q&A	522	attrel	d she	J		
Copper, ppm-A	0.03	0.05	0.03	0.02	0.01	0.06
Cyanide, mg/1 -Q&A	× 0.02	0,21	< 0.02	<0.02	< 0.02	< 0.02
Flouride, mg/l -A	•39	.94	.50	.42	.72	. 25
Iron, (Fe), ppm-A	0.46	0.12	0.13	2.81	6.05	0.36
Kjeldahl N, mg/l A						
Lead (Pb), ppm-Q&A	10.05	20.05	X0.05	20.05	10.05	10.05
Manganese (Mn), ppm-A	0.01	0.13	0.01	0.05	0.01	0.06
Mercury (Hg), ppb-Q&A	<0.1	0.4	0.4	<0.1	20.1	20.1
Nitrate-N, mg/l -A	1.35	68.0	0.86	1.1	1.8	1.5
pH-Q&A	200 (tachce	1 shee	+		
Selenium (Se), ppb-A	<1.00	<1. 0	<1.0	<1.0	.0</td <td>41.0</td>	41.0
Silver (Ag) ppm-Q&A	20.01	40.01	<0.01	< 0.01	< 0.01	<0.01
Sulfate (SO ₄), ppm-A	 	42	42	L 2	12	4 2
Zinc (Zn), ppm-A	0.05	0.06	0.03	0.05	0.07	0.06
Well Water Level,* ft.	19'0"	14' 11"	4'5"	7'2"	8'3"	14'9"

^{*} Prior to pumping the wells

DATE SAMPLED: 20 Oct 83

Reservoir Level*1067.0

WELL NO.	•7	2 8	3	4	5	6
Arsenic (As), ppm-A	KD:001	10.001				
Barium (Ba), ppm-A	20.1	40.1				
Beryllium (Be), ppm-A	20.01	<0.01				
Cadmium (Cd), ppm-A	10.01	10.01				
Chloride, ppm-A	4	19				
Chromium (Cr), ppm-Q&A	20.01	20.01				
600, -8/1 Q&A						
Conductance,umho/cm-Q&A	see à	thand	heet			
Copper, ppm-A	10.07	0.02	·			-1,4
Cyanide, mg/1 -Q&A	0.0	6.0				
Flouride, mg/l -A	-30	.35				
Iron, (Fe), ppm-A	0.10	0.09				
Kjeldalil H, mg/l - A						
Lead (Pb), ppm-Q&A	20.05	20:05		·		
Manganese (Mn), ppm-A	0.02	0.02				
Mercury (Hg), ppb-Q&A	<0.1	40.1				
Nitrate-N, mg/l -A	1.57	1.8				
рН-Q&А	See all	relied sh	eet			
Selenium (Se), ppb-A	<1.0	4/-0				
Silver (Ag) ppm-Q&A	<0.01	40.01				
Sulfate (SO ₄), ppm-A	 < 2	42				
Zinc (Zn), ppm-A	0.03	0.02				
Well Water Level,* ft.	61"	4'5"				

Prior to pumping the wells

DATE SAMPLED: 10-20-83 3103-131c

analyze quarterly analyze annually

WELL NO.	11	2	3	4	5	6
,			<u> </u>			
					•	
Endrin, 1 - A	20.1	<0.1	∠0.1	∠0.1	20.1	20.1
Lindane, 1 - A	40.05	20.05	20.05	40.05	20.05	20.05
Methoxychlor, 2/1 - A	∠ 10.0	C 10.0	<10.0	L 10.0	L10.0	40.0
Toxaphene / 1 - A	∠ 2.0	42.0	< 2.0	ري ر ک	L2.0	42.0
2, 4-D, - A	< 1.0	< 1.0	人1.0	L1.0	L1.0	41.0
2,4,5-TP Silvex, - A	Lo.5	20.5	40.5	40.5	20.5	20.5
				·		
Phenols, mg/l - A	<0.01	∠0.01	<0.01	0.08	20.01	60.01
				•		
Methylchloroform, mg/l-A	sec a	ttacher	Sheet	7		
Trichloroethylene	le ·	"	u)	_		
Toluene, mg/l - A	.	i l	VI			
Perchloroethylene	i ("				
Methylene Chloride	,,	11	. (,			

REPRODUCED ON GOVI COPIER

MA7.91

DATE SAMPLED: 10-20-83

Q = analyze quarterly
A = analyze annually

3103-131c

WELL NO.	7 28	8•	3	4	5	· 6
					T	T
	·					
	·					
Endrin, A/1 - A	20.1	20.1				
Lindane, 20/1 - A	20.05	.20.05				
Methoxychlor, /1 - A	L10.0	210.0	-			
Toxaphene, 1 - A	L2.0	L2.0				
2, 4-D, 1 - A	21.0	41.0				
2,4,5-TP Silvex, 1 - A	40.5	20.5				
						·
Phenols, mg/l - A	20.01	40.01				
			,			
Methylchloroform, mg/l-A	see atte	whal o	heat			
Trichloroethylene	10	LI	Li			•
Toluene, mg/l - A	:	11	f t			
Perchloroethylene	1.	f r	(-	·		
Methylene Chloride	1,	"	11			

REPRODUCED ON GOVT COPIEK P PN 75422 M45.84

103-131C 107408-09 W/C No. _ 1 Date Sampled 20 Oct 83

AEDC SANITARY LANDFILL WELL ANALYSES

1 No. 1 7.9 296 22 2 7.9 283 22 2 2 3 7.8 282 2 2 2 4 7.8 283 2 2 2 2 4 7.8 283 2 2 2 2 2 2 2 2 2			рН	Specific Conductance umho/cm	Methyl- Chloroform ppb	Perchloro- ethylene ppb	Trichloro- ethylene ppb	TOC mg/l	
17.9 296 22 27.9 283 22 22 27.8 283 22 22 27.8 283 22 22 27.8 283 22 22 27.8 283 22 27.8 283 22 27.8 283 22 27.8 283 27.8 283 27.8 283	11 No. 1	1		53.0, 62	ppo) ppo	ppu)	}
2 7.9 283 3 7.8 282 4 7.8 283 4 7.8 283 4 7.8 283 4 7.8 283 4 7.8 283 4 7.2 283 4 7.8 283 4 7.2 283 4 7.2 283 4 7.2 283 4 7.2 283 4 7.2 283 4 7.2 283 4 7.2 283 4 7.2 283 4 7.2 283 4 7.2 283 4 7.2 283 4 7.2 283 4 7.2 283 4 7.2 283 4 7.2 283 4 7.2 283 4 7.2 283 4 7.3 377 4 7.2 285 4 7.3 377 4 7.2 285 4 7.3 377 4 7.2 285 4 7.3 387 4 7.2 287 3 6.8 618 4 6.7 583 4 7 7 583 4 7 7 583 4 7 7 583 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			7.9	296		_		12	
3 7.8 282 4 7.8 283 -11 No. 2 -71e No. 1 6.6 1220 2 6.7 1189 3 6.6 1189 4 6.6 1180 63 e11 No. 3 smple No. 1 7.5 399 2 7.4 37622 3 7.5 384 2 7.3 377 2 2 4 7.3 377 2 2 7.0 684 3 6.8 618 4 6.7 583 4 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7								< 2	-7
1 No. 2					• • • • • • • • • • • • • • • • • • •				
No. 2		4			· ·- ·- ·- ·	· · ·	-	< 2	
1	all No. 2	,	<u> </u>						
2 6.7 1188 65 3 6.6 1189 70 4 6.6 1180 65 2 7.4 376.5 3 7.5 384 22 4 7.3 377 22 2 7.0 684 3 3 6.8 618 4 4 6.7 583 4 4 6.7 583 4 2 8.7 193 22 3 8.8 194 22 4 8.7 194 22 2 7.4 400 3 7.4 418		- 1	lack	. 1220		·		70	1
3 6.6 1189 70 63 and 1 7.5 1180 6 6 1180 6	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	J						705	 -
4 6 6 1180 6 3 4 5 1 7.5 399									
ample No. 1 7.5 399									一龍
ample No. 1 7.5 399			\$ - I						2
2 7.4 376.5 3 7.5 384 4 7.3 377 4 22 3 3 7.5 384 4 7.3 377 4 2 2 3 3 1 7.2 685 3 6.8 618 4 6.7 583 4 6.7 583 4 7 197 5 2 8.7 193 3 8.8 194 4 8.7 194 4 8.7 194 5 2 7.4 400 3 7.4 418			70	399			}	/ 2	#5
iell No. 4 Tample No. 1 7.2 685 2 7.0 684 3 6.8 618 4 6.7 583 4 6.7 583 4 197 Tell No. 5 Tample No. 1 8.6 197 2 8.7 193 3 8.8 194 4 8.7 194 2 19.7 194 2 19.7 194 2 19.7 194 2 19.7 194 2 19.7 194 3 19.8 194 4 19.7 194 4 198 4	zmple No.						<u> </u>		<u> </u>
iell No. 4 Tample No. 1 7.2 685 2 7.0 684 3 6.8 618 4 6.7 583 4 6.7 583 4 197 Tell No. 5 Tample No. 1 8.6 197 2 8.7 193 3 8.8 194 4 8.7 194 2 19.7 194 2 19.7 194 2 19.7 194 2 19.7 194 2 19.7 194 3 19.8 194 4 19.7 194 4 198 4					T		<u> </u>		
iell No. 4 Tample No. 1 7.2 685 2 7.0 684 3 6.8 618 4 6.7 583 4 6.7 583 4 197 Tell No. 5 Tample No. 1 8.6 197 2 8.7 193 3 8.8 194 4 8.7 194 2 19.7 194 2 19.7 194 2 19.7 194 2 19.7 194 2 19.7 194 3 19.8 194 4 19.7 194 4 198 4								42	PTP COURT
Tample No. 1 7.2 685 2 7.0 684 3 6.8 618 4 6.7 583 4 197 1011 No. 5 Tample No. 1 8.6 197 2 8.7 193 3 8.8 194 4 8.7 194 2 1 19.5 Tell No. 6 Tample No. 1 7.4 411 2 1 7.4 400 3 7.4 418			-,	3511			1		
2 7.0 684 3 6.8 618 4 6.7 583 4 6.7 583 4 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		1	7 2	105		ĺ	1	3	
3 6.8 618 4 6.7 583 4 6.7 583 4 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ampie No.								
4 6.7 583 4 6.7 583 4 6.7 583 4 6.7 583 4 6.7 583 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7									
								4	7
Rell No. 5 sample No. 1 8,6 197 2 8,7 193 3 8,8 194 4 8,7 194 2 2 -ell No. 6 Sample No. 1 7,4 411 2 7,4 400 3 7,4 418		-1		U42.5					7
2 8.7 193		.		197				_	7
3 8.8 194 4 8.7 194 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Sample No.								{
rell No. 6 Sample No. 1 7.4 411 2 2 7.4 400 3 7.4 418 4		3 5	8.8					12	
rell No. 6 Sample No. 1 7.4 411 2 2 7.4 400 3 7.4 418 4				194	· · · · · · · · · · · · · · · · · · ·	i ,	1		1
2 7.4 411 2 2 3 7.4 418 418 41		- 1	- 1	10.5		•	į	~	7
2 7.4 400 6			7.(į		1		<u> </u>
3 7.4 418	Eample No.				<u>i</u>		+	_ 2	+
174 114								<u> </u>	-
				414				7	

CONGRATORY TEST SERVICES CHEDICAL LAR REFORT ANNOLD ENGINEERING DEVELOPMENT CENTER ANNOLD ATTRIBUTE STATION, TENNESSEE 37369

WELLS -

FILE NO .:

work order NO.: 1 A.F. NO.:

AWD NO.: 107408-09

TOURSTEE BY: m.B. KIMBROUGH M/S 100

/S 100 BEPORT N/

REPORT NO.: 3103-1310

DECEMBEL SUBMITTED: WATER FROM 8 WELLS

DATE COMP.: 28-007-63

TABLET IN QUADRUPLICATE

APALYTE FOR: COMPOUNDS TABULATED BELOW

WORK AUTH, HOLD RESE

TE 36, 20-00T-80

DATE OUT.

		n i kasi nasa labah nasa naga najar tabah nasi haki saba 1971 alikin kun		NO. OF 566723	No. 10 No.
." .			FRICHLONG-		
	For the control of the first term of the com- control of the control of the contr	CHLOROFORM		E + FI + Late 14 E.	
	المراجعة المنظمة المنظ المنظمة المنظمة	manufacture of the second of t			4 7 % 1. 1 1 Mg
حاجلات والمح	Pag ST.	FFE/WI.	FERNAT.		v
441 9 441					
6 T 4	. 1 0	ę L		10	شه
• •	: · · ·		And the second s	i. =	**
• .	1.77			.	•
. " :	. i. k.	.h. v.		* ₽ %	•-
		í		:	
	ترق ت	12:012	aa,880	59,200	0.000
	1410	13,350	77,824	aa : 840	
1 - 1	$A(\cdot; \zeta)$	13,692	77,216	72+363	3.03/
- ·	440	13,860	84.47.72	70,000	5-16-7
- '	2 2	# : # 5	753.5	~ ~ ~ .	Nach Call Nach Na
T	- 10	en e	13	175	· -
2 7		37 37			**
	1 D		4.4	1. C. A.	**
53	(10)	<u>3</u> 7	14	100	-
54	<10	34	14	iol	**
		30	' <i>U</i>	16%	
41 4.		13,477	46	391	•
	1.0526	13,594	32	340	
a 📆	1*556	14,515	పెద	55 (1 5 3)	
; 	1 - 1774	18,515	29	<u></u>	
	• . •			÷ .",	
្នា រ	•	Section 1	39	7.05	
	1.5	256	4.2	874	'
5.3	11	208	42	7 8 5	• •
5 - 3 5 - 3	<u>т</u> т		1 4 1 5	755	ak A
<i>□</i> ***	,	an and	<u> </u>		ü .
	_	-			-
Said 1		w. 1.4	10	4 Q	
	5 K W	17	J.V.	a. Ç	•
. S	5.30	. <u> </u>		1.0	
·,	5.1 Se	en en or end	<u>.</u> .	i Ü	:
				·′ <u>-</u>	
		en e	I - 5 T U	as a second	-
· - <u></u>		, es ()	1, 00	1/530	1.6
	1.0	i i i		î,55ê	
-	1			الله علي الله الله الله الله الله الله الله ال	
	. •				-
	1.0	1 + 1		1:470	News.
871 8 I	i v		7	resident (Section 1997) Programme (Section 1997)	ل
				a V Da	•
ತ್ತ∙೦	• •	1 L 1 m	1:307	3 - T. V	
.i •.	4 %				5

ABORATORY TEST SERVICES CHEMICAL LAB REPORT ARNOLD ENGINEERING DEVELOPMENT CENTER ARNOLD AIR FORCE STATION, TENNESSEE 37389

A.E.D.C. LANDFILL MONITORING WELLS--QUARTERLY ANALYSIS

WORK ORDER NO.: 1 A.F. NO.: AWD NO.: 107408-08

REQUESTED BY: M. KIMBROUGH M/S 490 REPORT NO.: 4021-015C

MATERIAL SUBMITTED: WELL WATER SAMPLES (32) DATE COMP.: 8 FEB 84

ANALYZE FOR: MC, TCE, PCE. WORK AUTH. MO.: R54D

DATE IN: 1 FEB 84 DATE OUT:

RY: C. BAKER NO. OF SAMPLES: 32

ER	140	· OF SHAFLES. 34
		PERCHLORO-
		ETHYLENE
		PPB/WT.
<5	<5	<7
		<7
		<7
<5	<5	<7
8,528	63,974	59,674
8,944	71,232	64,051
8,819	72,576	69,120
9,256	76,608	61,747
66	9	146
63	8	146
68	38	255
66	8	135
6,245	9	260
6,522	9	266
6,618		261
7,068	9	260
33	40	2,346
35	40 / 1	2,419
40	35 ් <u>්</u> යු	설치 - 2,333
35	34	2,074
28	<4	14
25	<4	12
29		11
27	<4	5
185	2,861	3,238
182	2,995	3,216
		3,128
139	2,573	2,834
1,030	6,950	1,803
1,248	7,089	1,858
1,279	7 , 450	1,858
1,238	7,066	1,840
	METHYL CHLOROFORM PPB/WT. <5 <5 <5 <5 <5 <8,528 8,944 8,819 9,256 66 63 68 66 6,245 6,522 6,618 7,068 33 35 40 35 28 26 29 27 185 182 143 139 1,030 1,248	METHYL TRICHLORO- CHLOROFORM ETHYLENE PPB/WT. PPB/WT. <\$ 5

REPRODUCED ON COVT COPIER P PN 76904

LABORATORY TEST SERVICES CHEMICAL LAB REPORT ARNOLD ENGINEERING DEVELOPMENT CENTER ARNOLD AIR FORCE STATION, TENNESSEE 37389

A.E.D.C. LANDFILL MONITORING WELLS--QUARTERLY ANALYSIS

WORK ORDER NO.: 1 A.F. NO.:

AWI NO.: 107408-08

REQUESTED BY: M. KIMBROUGH

M/S 490

REPORT NO.: 4021-015C

MATERIAL SUBMITTED: WELL WATER SAMPLES (32)

DATE COMP.: 8 FEB 84

ANALYZE FOR: MC, TCE, FCE.

WORK AUTH. MO.: R54D

DATE IN: 1 FEB 84

DATE OUT:

BY:	C.	BAKER	NU	. U	- SAM	IFLES	32	
	:		===	===:	====	====	=====	===

DI. C. PHIL	.ix	1401	or Shirees. Sz
*========			
	METHYL	TRICHLORO-	PERCHLORO-
/ ≤	CHLOROFORM	ETHYLENE	ETHYLENE
WELL NO.	PPB/WT.	PPB/WT.	PPB/WT.
=======================================		**************	=======================================
1-1	<5	<5	<7
1-2	<5	<5	< 7
1-3	₹5	₹5	<7
1-4			
7-4	<5 < 5	<5 ₂ 5	<7 < 7
2-1	8,528	63,974	59,674
2-2	8,944	71,232	64,051
2-3	8,819	72,5 76	69,120
2-4	9,256	76,608	61,747_
	8886.8	71097.5	63648
3-1	66	9	146
3-2	63	8	146
3-3	68	38	255
3-4	11	6	135 _
5 -	65.8	15.8	170.5
4-1	6,245	9	260
4-2	6,522	9	266
4-3	6,618	9	261
4-4	7,068	9	_ 260
• •	6613	99	261.9
5 Î	33	40	2,346
5-2	35 35	40	2,419
			1.171
5-3	40	35	3/// 2,333
5-4	35 35.8	34	2,074
		32.3	1 2293
6-1	28	<4	14
6-2	26	<4	12
6-3	29	<4	11
6-4	27 22.5	<4∠ų	5 10 - 5
7-1	185	2,861	3,238
7-2	182	2,995	3,216
7-3	143	2,811	3,128
7-4	139	2,573	
/	162.3		2,834
0.4		7810	3104
8-1	1,030	4,950	1,803
8-2	1,248	7.089	1,858
8-3	1,279	7,450	1,858
8-4	1,238	7,066	1,840
	1198.8	7138.8	1839.8
		113012	

LABORATORY TEST SERVICES

Laboratory	Section	Report
------------	---------	--------

Work Order No.	AWD No. 107408-08
Requested by M. Kimbrough - 490	Report No. 4021-015 C
Material Submitted 8 - Landfill Will	Date Completed 2/24/84
Sample	
	Date Out 3-2-84
Ву	

Instructions:

Quarterly AEDC Landfill Well Analyses

Well No.	1	2	3	4	5	6	7	8	•
Results: Cr, ppm	< 0.0 <i>l</i>	<0.01	<0.01	<0.01	0.02	4001	< 0,01	<0.01	
1.	20.05	20.05	2005	20.05	< 2.05	<0.05	<0.05	<0.5T	
	20.01	20.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<'0.01	
Hg, ppb	<0.2	0.12	٧٥.٦	20.2	<0.1	<0.1	40.2	LO.L	
*NO3 _N, mg/		73.							
CN-,mg/1	0	0.150	0	0	0	0	0	0	•
Well H ₂ O Level	11'0"	10'6"	2'10"	5'2"	66	10'1"	3'1"	2'9"	
tention for	Level-	1068.3							

Remarks:

^{*} Well No, 2 only
** Measured prior to pumping

AEDC SANITARY LANDFILL WELL ANALYSES WORK COPY

DATE SAMPLED:

Reservior Elevation* 1268.4

Q = Analyze quarterly A = Analyze annually

		V - VI	lary ze ain	oury				
:ll No.	1	2	3	4	5	6	7	88
ell Water Elevation - Ft.*	1076.3	10.71.8	1070,6	10 20.7	1070.1	1072.2	1071.5	1069.1
- Q&A **	6.8	6.6	7.3	7.0	7.9	7.4	7. 2	7.3
nductance, umho/cm-Q&A**	158	1036	432	405	246	372	418	428
anide, mg/1 - Q&A	10.62	0.31	<0.02	10.02	20.02	⟨०.०≥	∠0.0≟	10.C=
trate-N. mg/1 - Q&A		44.0		_			_	-
aromium (Cr), ppm - Q&A	Z2.01	20.01	(0.0)	KO.01	اه،ه	10.01	CO. 01	10.01
ead (Pb), ppm - Q&A	CH0 =	40.0€	40.05	₩.05	40.05	40-05	<0.0€	<0.05
ercury (Hg), ppb - Q&A	<0.02	.02	40.02	20.02	20.02	Ø.0≥	(0.02	40.02
lver (Ag) ppm - Q&A	20.0)	40.01	(0.0)	(0.0)	10.01	10.01	<0.01	10.01
otal Organic Carbon : g/l - Q&A**	4	60	٧2	35)	3	3	ڪ	2
.1,1 - trichloro- thane µg/1 - Q&A**	45	11,688	94	16 842	23	ر د ا	200	914
.1,2,2 - tetrachloro- thylene µg/l - Q&A**	12	112,761	2°4	1,505	1,308	F	e, 230	1,316
richloroethylene g/l - Q&A**	15	88,000	9	14	41	6	3,018	5,729

Prior to pumping the wells

* Average of 4 replicates

ABORATORY TEST SERVICES CHEMICAL LAB REPORT ARNOLD ENGINEERING DEVELOPMENT CENTER ARNOLD AIR FORCE STATION, TENNESSEE 37389

.E.D.C. LANDFILL MONITORING WELLS--QUARTERLY ANALYSIS

LORK ORDER NO.: 1 A.F. NO.: AWD NO.: 107408-08

FEDUESTED BY: M.B. KIMBROUGH/490 REPORT NO.: 4042-0940

MATERIAL SUBMITTED: WELL WATER SAMPLES DATE COMP.: 30 AFR 84

AMALYZE FOR: SEE TABULATION BELOW. WORK AUTH. MO.: R541

TATE IN: 12 APR 84 DATE OUT:

. FI E 114 •	1 4	MIN OT		4.71	112 0011	
ly: c.	BAKER	R. J. CONRY	, D. MORSE.	N	O. OF SAMPLES:	7 Cs
FLL NO.		SPECIFIC COND. MMHO/CM	METHYL CHLOROFORM PPB/WT.	TRICHLORD- ETHYLENE PPB/WT.	PERCHLORO- ETHYLENE PPB/WT.	700 700. L
1572522						
1-1	5.5	155	<5	<5	<10	5
1 - 0	6.8	156	< <u>5</u>	<5	<10	~ }
1-3	ద∗జ్	160	<5	4 5	20	7
1 - 4	ర.5	159	<5	<5	10	5
:=======	====			=======================================		
2-1	5.5	1047	11,440	90,110	117,750	64
2-2	6.6	1036	11,440	92,930	117,775	55
2,3	6.6	1040	11,260	91,520	116,290	చచ్
2-4	6.7	1021	10,210	77 , 440	119.230	56
::::: :: :	=====		**********	=======================================		=======================================
3-1	7.3	432	99	9	386	2
- <u>-</u>	7.3	429	93	9	378	•
3-3	7.3	430	91	ዎ	354	2
3-4	7.3	437	92	ዎ	379	(.42
.eesssees	====			,==========		
-3 - 1	7.0	613	11,123	15	1,325	-5
4-2	7.0	619	10,419	13	1,520	
4-3	7.0	500	10.701	14	1,501	3
4 - 4	န•္စ	597	11:123	14	1,674	3
11225-25	====					= 1
5~1	7.8	250	40	40	1.4302	
5-2	7.9	244	18	40	1,302	: :3
5-3	7.9	246	17	40	1,341	.3
<u> </u>	7.9	246	17	44	1,288	Ť
*******					me of the control of	
51	7.5	370	15	4	1.4	<u>~</u>
ē-2	7.4	373	17	7	7	3 3
5-3	7.4	373	15	8	7	3
6-4	7.4	373	1.4	4	7	7
: # : # : # : # : # : # : # : # : # : #	====					
7-1	7.2	421	190	2,992	2,548	<u>;=</u>
7-5	7.2	416	211	3.042	2,733	
7-3	7.2	415	202	3,048	2,772	- -
7-4	7.3	418	195	3.168	2:867	- 5
, - 			1/0			en e
8-1	7.3	429	915	5,514	1 • 288	5
8-2	7.3	429	924	5,667	1 • 344	5
8-3	7.3	428	889	5.632	1,330	3
2-3 2-4	7.3	426	929	5+702	1,302	3
C - 4	7 • 3	720	/ L /		3 7 WV2.	

LABORATORY TEST SERVICES

Laboratory Section Report

Work Order No	AWD No. 10740808
Feguested by 11.8 Kimbrangh M5-490	Report No. 4042 - 0940
Material Submitted Sometars Landfell Well (8)	Date Completed
Wales	Work Auth. <u>£54</u>
Date In 12 April 1984	Date Out 30 Man 1984
By J.I. Brown, P.G. Shelton, A.F. Bridges, J.B. C.	ury
	,

instructions:

Quarterly AEDC Landfill Well Analyses

Well No.	. 1	2	3	4	5	6	7	8	
Results:								- 4 31	COV
Cr, ppm	20.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Pb, ppm	40.05	<0.05	<0.05	<0.45	20.05	1005	<0.05	<0.05	EPRODUCED
Ag, ppm	20.01	20.01	<0.01	<0.01	< 0.01	<0.01	<0.01	₹0.01	REPRO
Hg, ppb	40.7	0.1	<0.1	<0.1	<6.J	<0.2	<0.L	<0.2	
*NO3 ¼, mg/		44.0			_		_	_	
CN-,mg/l	< 0.02	0.31	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.02	•
Well H ₂ O Level	8'0"	9'5"	2'1"	4'9"	61"	8'9"	1'11"	2'9"	1068.4
	10763	1071.8	1070.6	(1020.2)	(020.1)	(1072.2)	(1071.5)	(1069.1)	

Remarks: -

* Well No, 2 only
** Measured prior to pumping

APPENDIX E
MASTER LIST OF SHOPS

APPENDIX E

MASTER LIST OF SHOPS

Name	Present Location (Bldg. No.)	Handles Hazardous Materials	Generates Hazardous Wastes	Typical TSD Methods
Facility Support				
Data Reproduction	100	yes	ou	•
Print Shop	100	yes	yes	DPDO/Sanitary Sewer/Landfill
Carpenter Shop	1478	yes	yes	Landfill/Sanitary Sewer
Paint Shop	1478	yes	yes	DPDO/Landfill
Custodial Services	1478	yes	ou	•
Buildings and Grounds	1478	yes	ou	ı
Pipe Shop	1478	yes	yes	FPTA/Landfill
Refrigeration Shop	1478	yes	yes	DPDO/Landfill
Mech. Maintenance Shop	1478	yes	yes	Sanitary Sewer
Automobile Repair Shop	1400	yes	yes	Steam Plant A/Landfill
Locomotive Repair Shop	1401	yes	yes	Steam Plant A/Landfill
Chemical/Metallurgical Lab	445	yes	yes	DPDO/Sanitary Sewer
X-Ray Lab	2108	yes	yes	Silver Recovery/San. Sewer

APPENDIX E (Continued)

MASTER LIST OF SHOPS

Name	Present Location (Bldg. No.)	Handles Hazardous Materials	Generates Hazardous Wastes	Typical TSD Methods
Power Control	1525	yes	yes	DPDO
Sewage Treatment Plant	1552	yes	no	ı
Water Treatment Plant	1504	yes	ou Ou	ţ
Test Fuel Farm	869	yes	yes	Steam Plant A/FPTA
Bulk Fuel Farm	1575	yes	yes	Steam Plant A/FPTA
Steam Plant A	1411	yes	ou	1
Steam Plant B	535	yes	ou	1
Fabrication & Maintenance Shop	451	yes	yes	DPDO/Sanitary Sewer
Structural Maintenance Section	451	yes	yes	DPDO
Central Machine Shop	451	yes	yes	DPDO/Steam Plant A/San. Sewer
Plating and Heat Treat Shop	451	yes	yes	DPDO/Landfill
Equipment Maintenance Shop	451	yes	yes	DPDO/Steam Plant A
Photo Lab	451	yes	yes	Silver Recovery/San. Sewer

APPENDIX E (Continued)

MASTER LIST OF SHOPS

Name	Present Location (Bldg. No.)	Handles Hazardous Materials	Generates Hazardous Wastes	Typical TSD Methods
Machine Shop A	640	yes	yes	DPDO/Steam Plant A/San. Sewer
Machine Shop B	069	yes	yes	DPDO/Steam Plant A/San. Sewer
Machine Shop C	760	yes	yes	DPDO/Steam Plant A/San. Sewer
Dispensary	225	yes	yes	Sanitary Sewer
Golf Course	2808 & 2810	yes	ou	•
Fire, Police and Communications	251	yes	ou	1
Instrumentation Calibration Lab	350	yes	yes	Steam Plant A/Sanitary Sewer
Force, Flow & Dynamics	390	yes	yes	Steam Plant A/Sanitary Sewer
Engine Test Facility				
J1 Test Cell	880	yes	yes	DPDO
J2 Test Cell	880	yes	yes	DPDO
J3 Test Cell	832	yes	yes	DPDO
J4 Test Cell	521	yes	yes	DPDO/Steam Plant A
J5 Test Cell	522	yes	yes	DPDO/Steam Plant A/Landfill

APPENDIX E (Continued)

MASTER LIST OF SHOPS

Name	Present Location (Bldg. No.)	Handles Hazardous Materials	Generates Hazardous Wastes	Typical TSD Methods
Air Compressor and Test Bldg.	878	yes	yes	DPDO/Steam Plant A
ETF Exhauster	882	yes	yes	DPDO
Rocket Prep. Area	1690 2201 2210 2215	yes	yes	odad
Von Karman Facility				
S Range	320	yes	yes	DPDO
K Range	675	yes	yes	Contract Disposal/DPDO
G Range	678	yes	yes	Contract Disposal/DPDO/ Landfill
Main Compressor Bldg.	651	yes	yes	DPDO/Steam Plant A
Main Test and Lab	929	yes	yes	DPDO/Landfill/Sanitary Sewer
Aerodynamic and Pro- pulsion Test Unit	579	yes	yes	ОРОО
VKF Yard Area	929	yes	yes	DPDO/Steam Plant A
Tunnel F	069	yes	yes	DPDO

APPENDIX E (Continued)

MASTER LIST OF SHOPS

Name	Present Location (Bldg. No.)	Handles Hazardous Materials	Generates Hazardous Wastes	Typical TSD Methods
Mark I	1075	yes	yes	Steam Plant A/DPDO
Engineering Lab	1077	yes	yes	DPDO
Propulsion Wind Tunnel				
Model Installations	760	yes	yes	DPDO/Steam Plant A
16S Tunnel System	745	yes	yes	DPDO/Steam Plant A/Sanitary Sewer
16T Tunnel System	785	yes	yes	DPDO/Steam Plant A/Sanitary Sewer
Motor Drive	780	yes	yes	DPDO/Steam Plant
High Temperature Lab	722	yes	yes	DPDO
(PES) Plenum Evacuation System	710	yes	yes	Steam Plant/Landfill
P-Plant Section	620	yes	yes	DPDO/Sanitary Sewer
V-Plant Section	620	yes	ou	í

APPENDIX F
PHOTOGRAPHS

Ð,

AEDC - Present

AEDC - 1954

BURN AREA NO. 1 and LANDFILL NO. 1 1966

Fire Protection Training Area No. 2 and Landfill Area No. 1
(FACING NORTHWEST)
(1984)

Fire Protection Training Area No. 2 and Landfill Area No. 1 (FACING SOUTHEAST) (1984)

Landfill No. 2 Adjacent to Retention Reservoir (FACING SOUTHWEST) (1984)

Landfill No. 1 Area, Burning Area No. 1 and Fire Protection Training Area No. 2 (FACING SOUTHEAST) (1984)

Fire Protection Training Area No. 1
(FACING NORTHWEST)
(1984)

Leaching Pit at Landfill No. 2
Adjacent to Retention Reservoir
(FACING SOUTH)
(1984)

Landfill No. 3 for UTSI (FACING NORTH) (1984)

Landfill No. 4 for County-Municipal Wastes
(FACING EAST)
(1984)

Old Leaching Pit Area and Present Neutralization Facilities Near Model Shop (FACING NORTH) (1984)

Waste Disposal at Old Camp Forrest Water Treatment Plant (1950'S)

Leaching/Burning Pit Near Retention Reservoir (FACING EAST) (1984)

Chemical Unloading Apron for Above Leaching/Burning Pit (FACING NORTH) (1984)

Diversion Structure To/From Cooling Water Return Ditch and Retention Reservoir (FACING WEST) (1984)

HEF Container Burial Near Retention Reservoir

Chemical Treatment Pond (FACING SOUTH) (1984)

Hazardous Waste Accumulation Area (Facility 2220)
(FACING SOUTH)
(1984)

Burn Area at Airfield (FACING EAST) (1984)

Leaching Area for Washwater Containing Beryllium (FACING NORTHWEST) (1984)

APPENDIX G
USAF INSTALLATION RESTORATION PROGRAM
HAZARD ASSESSMENT RATING METHODOLOGY

APPENDIX G
USAF INSTALLATION RESTORATION PROGRAM
HAZARD ASSESSMENT RATING METHODOLOGY

APPENDIX G

USAF INSTALLATION RESTORATION PROGRAM HAZARD ASSESSMENT RATING METHODOLOGY

BACKGROUND

The Department of Defense (DOD) has established a comprehensive program to identify, evaluate, and control problems associated with past disposal practices at DOD facilities. One of the actions required under this program is to:

"develop and maintain a priority listing of contaminated installations and facilities for remedial action based on potential hazard to public health, welfare, and environmental impacts." (Reference: DEOPPM 81-5, 11 December 1981).

Accordingly, the United States Air Force (USAF) has sought to establish a system to set priorities for taking further actions at sites based upon information gathered during the Records Search phase of its Installation Restoration Program (IRP).

The first site rating model was developed in June 1981 at a meeting with representatives from USAF Occupational and Environmental Health Laboratory (OEHL), Air Force Engineering and Services Center (AFESC), Engineering-Science (ES) and CH2M Hill. The basis for this model was a system developed for EPA by JRB Associates of McLean, Virginia. The JRB model was modified to meet Air Force needs.

After using this model for 6 months at over 20 Air Force installations, certain inadequacies became apparent. Therefore, on January 26 and 27, 1982, representatives of USAF OEHL, AFESC, various major commands, Engineering-Science, and CH2M Hill met to address the inadequacies. The result of the meeting was a new site rating model designed to present a better picture of the hazards posed by sites at Air Force installations. The new rating model described in this presentation is referred to as the Hazard Assessment Rating Methodology.

PURPOSE

The purpose of the site rating model is to provide a relative ranking of sites of suspected contamination from hazardous substances. This model will assist the Air Force in setting priorities for follow-on site investigations and confirmation work under Phase II of the IRP.

This rating system is used only after it has been determined that (1) potential for contamination exists (hazardous wastes present in sufficient quantity), and (2) potential for migration exists. A site can be deleted from consideration for rating on either basis.

DESCRIPTION OF MODEL

Like the other hazardous waste site ranking models, the U.S. Air Force's site rating model uses a scoring system to rank sites for priority attention. However, in developing this model, the designers incorporated some special features to meet specific DOD program needs.

The model uses data readily obtained during the Records Search portion (Phase I) of the IRP. Scoring judgments and computations are easily made. In assessing the hazards at a given site, the model develops a score based on the most likely routes of contamination and the worst hazards at the site. Sites are given low scores only if there are clearly no hazards at the site. This approach meshes well with the policy for evaluating and setting restrictions on excess DOD properties.

As with the previous model, this model considers four aspects of the hazard posed by a specific site: the possible receptors of the contamination, the waste and its characteristics, potential pathways for waste contaminant migration, and any efforts to contain the contaminants. Each of these categories contains a number of rating factors that are used in the overall hazard rating.

The receptors category rating is calculated by scoring each factor, multiplying by a factor weighting constant and adding the weighted scores to obtain a total category score.

The pathways category rating is based on evidence of contaminant migration or an evaluation of the highest potential (worst case) for contaminant migration along one of three pathways. If evidence of contaminant migration exists, the category is given a subscore of 80 to 100 points. For indirect evidence, 80 points are assigned and for direct evidence, 100 points are assigned. If no evidence is found, the highest score among three possible routes is used. These routes are surface water migration, flooding, and ground-water migration. Evaluation of each route involves factors associated with the particular migration route. The three pathways are evaluated and the highest score among all four of the potential scores is used.

The waste characteristics category is scored in three steps. First, a point rating is assigned based on an assessment of the waste quantity and the hazard (worst case) associated with the site. The level of confidence in the information is also factored into the assessment. Next, the score is multiplied by a waste persistence factor, which acts to reduce the score if the waste is not very persistent. Finally, the score is further modified by the physical state of the waste. Liquid wastes receive the maximum score, while scores for sludges and solids are reduced.

The scores for each of the three categories are then added together and normalized to a maximum possible score of 100. Then the waste management practice category is scored. Sites at which there is no containment are not reduced in score. Scores for sites with limited containment can be reduced by 5 percent. If a site is contained and well managed, its score can be reduced by 90 percent. The final site score is calculated by applying the waste management practices category factor to the sum of the scores for the other three categories.

j

د. اد

FIGURE 2

HAZARD ASSESSMENT RATING METHODOLOGY FORM

Page ! of 2

NAME OF SITE				
LOCATION				
DATE OF OPERATION OR OCCURRENCE				
OWNER/OPERATOR	 -			
CONNECTS/DESCRIPTION				
SITE RATED BY				
l receptors				••
	Factor Rating		Factor	Maximum Possible
Rating Factor	(0-3)	Multiplier	Score	Score
A. Population within 1,000 feet of site		4	!	
. Distance to nearest well		10		
L Land use/zoning within 1 mile radius		3	İ	
O. Distance to reservation boundary		6		
E. Critical environments within I mile radius of site		10		
7. Water quality of nearest surface water body		6		
. Ground water use of uppermost aquifer		9		
I. Population served by surface water supply				
within 3 miles downstream of site		6		
I. Population served by ground-water supply			· ·	
within 3 miles of site	<u> </u>	. 6	<u> </u>	
		Subtotals		
Receptors subscore (100 % factor s	core subtotal	L/maximum score	subtotal)	
II. WASTE CHARACTERISTICS				
 Select the factor score based on the estimated quanti the information. 	ty, the degre	ee of hazard, a	nd the confi	dence level
1. Waste quantity (S = small, M = medium, L = large)				
2. Confidence level (C = confirmed, S = suspected)				
3. Hazard rating (H = high, M = medium, L = low)				
Pactor Subscore A (from 20 to 100 base	d on factor :	score matrix)		
3. Apply persistence factor Factor Subscore A X Persistence Factor = Subscore B				•
x				
C. Apply physical state multiplier				
Subscore 3 % Physical State Multiplier = Waste Charac	teristics Sub	oscore		

111	P	A	T	W	A	Y٤	;
-----	---	---	---	---	---	----	---

	Rati:	ng Factor	Pactor Rating (0-3)	Multiplier_	Factor Score	Maximum Possible Score
Α.	dire	there is evidence of migration of hazardous ect evidence or 80 points for indirect evide dence or indirect evidence exists, proceed t	nce. If direct ev			
					Subscore	
в.		e the migration potential for 3 potential paration. Select the highest rating, and proc		ater migration,	flooding, and	ground-water
	1.	Surface water migration				
		Distance to nearest surface water		8		
		Net precipitation		6		
		Surface erosion		8		
		Surface permeability		6	1	
		Rainfall intensity		8		
				Subtotals		
		Subscore (100 % fa	etor score subtota	l/maximum score	subtotal)	
	2.	Flooding	L	,	:	
			Subscore (100 x	factor score/3)		
	3.	Ground-water migration				
		Jepth to ground water	J	8	:	
		Net precipitation		6		
		Soil permeability		3		
		Supsurface flows		8	!	
		Direct access to ground water	·	g		
		orient decide to grown settle		Subtotals		
		Subscore (100 x fa	ctor toore subtors		supratal)	
~	:#4 æ		secor score subcoco	L/ meximum score		
••	•	hest pathway subscore.	L-1 of 8-1 shows			
	2.76	er the highest subscore value from A, B-1, B	- cor s- sapove.	3	- 6	
				Sacuma	s Subscore	
- 11/	100	ASTE MANAGEMENT PRACTICES			 · · · · · · · · · · · · · · · · · ·	
λ.	γα•	rage the three subscores for receptors, wast		and pathways.		
			Receptors Waste Characterist Pathways	:1C s		
			Total	divided by 3		Total Score
з.	γòò	bly factor for waste containment from waste m	anagement practice	es		
	GEO	se Total Score X Waste Management Practices	Factor * Final Sco	ore		
				•	_	

TABLE 1 (Continued)

HAZARD ASSESSMENT RATING METHODOLOGY GUIDELINES

WASTE CHARACTERISTICS =

A-1 Hazardous Waste Quantity

M = Moderate quantity (5 to 20 tons or 2) to 85 drums of liquid) L = Large quantity (>20 tons or 85 drums of liquid) S - Small quantity (<5 tons or 20 drums of liquid)

Confidence Level of .Information **V-2**

o Logic based on a knowledge of the types and o No verbal reports or conflicting verbal reports and no written information from S = Suspected confidence level the records. o Verbal reports from interviewer (at least 2) or written o Knowledge of types and quantities of wastes generated by shops and other areas on base. C = Confirmed confidence level (minimum criteria below) information from the records.

guantities of hazardous wastes generated at the

base, and a history of past waste disposal practices indicate that these wastes were

disposed of at a site.

A-3 Hazard Rating

Based on the above, a determination of the types and quantities of waste disposed of at the site.

		Rating Scale Levels	91.8	
Hazard Category	0	-	2	3
Toxicity	Sax's Level 0	Sax's Level 1	Sax's Level 2	Sax's Level 3
Ignitability	Flash poirt greater than 200°F	Flash point at 140°F to 200°F	Plash point at 80°F to 140°F	Flash point at 80°F Flash point less than to 140°F
Radioactivity	At or below background levels	1 to 3 times back- ground levels	<pre>3 to 5 times back- ground levels</pre>	Over 5 times back- ground levels

Use the highest individual rating based on toxicity, ignitability and radioactivity and determine the hazard rating.

Points	m 72 ==
Hazard Rating	High (H) Medium (M) Low (L)

TABLE 1

HAZARD ASSESSMENT RATING METHODOLOGY GUIDELINES

I. RECEPTORS CATEGORY

			Rating Scale Levels			
1	Rating Factors	0	-	2	3	Multiplier
ė	A. Population within 1,000 feet (includes on-base facilities)	e	1 : 25	. 100 - 26 - 100	Greater than 100	•
e i	Distance to nearest water well	Greater than 3 miles	i to 3 miles	3,001 feet to 1 mile	0 to 3,000 feet	01
ن:	C. Land Use/Zoning (within i mile radius)	Completely remote A	Agricultural e)	Commercial or Industrial	Residential	E
ه ٔ	D. Distance to installation boundary	Greater than 2 miles	I to 2 miles	1,001 feet to 1 mile	0 to 1,000 feet	v
ai	E. Critical environments (within I mile radius)	Not a critical environment	Natural areas	Pristine natural areas, minor wet-lands, preserved areas, presence of economically important natural resources susceptible to contamination.	Major habitat of an endangered or threatened species, presence of recharge area, major wetlands.	10
ı.	F. Water quality/use designation of nearest surface water body	Agricultural or industrial use.	Recreation, propagation and management of fish and wildlife.	Shellfish propaga tion and harvesting.	Potable water supplies	v
ဖ်	G. Ground-Mater use of uppermost aquifer	Not used, other sources readily available.	Commercial, industrial, or irrigation, very limited other water sources.	Drinking water, municipal water available.	Drinking water, no municipal water available; commercial, industrial, or irrigation, no other water source available.	6
=	II. Population served by Burface water supplies within 3 miles down- stream of site	•	1 - 50	51 - 1,000	Greater than 1,000	u
-:	 Population served by aquifer supplies within 3 miles of site 	0	1 - 50	51 - 1,000	Greater than 1, 000	9

TABLE 1 (Continued)

HAZARD ASSESSMENT RATING METHODOLOGY GUIDELINES

II. WASTE CHARACTERISTICS (Continued)

Waste Characteristics Matrix

Hazard Rat Ing	=	x =	=	= =	x 2 x x	E 2 2 3	-1
Confidence Level of Information	ပ	ပ	S	ບ	യാധയാ	യയായ	3
Hazardous Waste Quantity	ı	-1 E	1	o I	1 J I W	o z z j	20
Point Rating	100	90	70	09	20	0	30

Notes:
For a site with more than one hazardous waste, the
waste quantities may be added using the following rules:
Confidence Level

o Confirmed confidence levels (C) can be added o Suspected confidence levels (S) can be added o Confirmed confidence levels cannot be added with suspected confidence levels

Waste Hazard Rating o Wastes with the mame hazard rating

o Wastes with the same hazard rating can be added o Wastes with different hazard ratings can only be added in a downgrade mode, e.g., MCM + SCH = LCM if the total quantity is greater than 20 tons.

Example: Several wastes may be present at a site, each having an MLM designation (60 points). By adding the quantities of each waste, the designation may change to LCM (80 points). In this case, the correct point rating for the waste is 80.

B. Persistence Multiplier for Point Rating

s I s

28

Multiply Point Rating	From Part A by the Following		sarbons	6.0 pt		8.0 0.8	• 0.4
	Persistence Criteria	Metals, polycyclic compounds,	and halogenated hydrocarbons	Substituted and other ring	combonnds	Straight chain hydrocarlwns	Easily biodegradable compounds

.. Physical State Multiplier

Multiply Point Total From	Parts A and B by the Following	0.1	0.75	0.50
	Physical State	Liquid	Studge	Solid

TABLE 1 (Continued)

HAZARD ASSESSMENT RATING METHODOLOGY CUIDELINES

III. PATHIMAYS CATEGRICY

A. Evidence of Contamination

Direct evidence is obtained from laboratory analyses of hazardous contaminants present above natural background levels in surface water, ground water, or air. Evidence should confirm that the source of contamination is the site being evaluated. Indirect evidence might be from visual observation (i.e., leachate), vegetation stress, sludge deposits, presence of taste and odors in drinking water, or reported discharges that cannot be directly confirmed as resulting from the site, but the site is greatly suspected of being a source of contamination.

B-1 POTENTIAL POR SURPACE WATER CONTAMINATION

Rating Pactor	0		2	3	Multiplier
Distance to nearest surface water (includes drainage ditches and storm sewers)	Greater than 1 mile	2,001 feet to 1	501 feet to 2,000 feet	0 to 500 feet	2
Net precipitation	Less than -10 in.	-10 to + 5 in.	+5 to +20 in.	Greater than +20 in.	9
Surface erosion	None	Slight	Moderate	Severe	33
Surface permeability	01 to_2 151 clay (>10 cm/sec)	154 to 301 clay 304 to 5014 clay (10 to 10 cm/sec	30 to 50T1 clay (10 to 10 cm/sec)	Greater than 50% clay (<10 cm/sec)	y
Rainfall intensity based on year 24-hr rainfall	<1.0 inch	1.0-2.0 inches	2.1-3.0 inches	>3.0 inches	9
B-2 POTENTIAL FOR PLOODING					
Floodplain	Beyond 100-year floodplain	In 25-year flood- plain	In 10-year flood- plain	Ploods annually	~
B-3 POTENTIAL FOR GROUND-WATER CONTAMINATION	CONTAMINATION				
Depth to ground water	Greater than 500 ft	50 to 500 feet	11 to 50 feet	0 to 10 feet	33
Net precipitation	Less than -10 in.	-10 to +5 in.	+5 to +20 in.	Greater than +20 in.	•
Soil permeability	Greater than 50% clay (>10 cm/sec)	30 to 50 clay (10 to 10 cm/sec)	clay 154 to 301 clay om/sec) (10 to 10 cm/sec)	0% to 15% clay (<10 cm/sec)	33
Subsurface flows	Bottum of site greater than 5 feet above high ground-water level	Bottom of mite occasionally minureryed	Bottom of site frequently sub- merged	Bottom of site lo- cated below mean ground-water level	3
Direct access to ground Nater (through faults, froctures, taulty well costures, taulty well costures, aubsidence fissures,	No evidence of risk	Low risk	Moderate risk	High risk	=

TO SERVICE TO SERVICE

7:00

TABLE 1 (Continued)

HAZARD ASSESSMENT RATING METHODOLOGY GUIDELINES

IV. MASTE MANAGEMENT PRACTICES CATEGORY

- This category adjusts the total risk as determined from the receptors, pathways, and waste characteristics categories for waste management practices and engineering controls designed to reduce this risk. The total risk is determined by first averaging the receptors, pathways, and waste characteristics subscores.
- B. WASTE MANAGEMENT PRACTICES PACTOR

The following multipliers are then applied to the total risk points (from A):

If data are not available or known to be complete the factor ratings under items I-A through I, III-B-1 or III-B-3, then leave blank for calculation of factor acore and maximum possible score. General Notes

APPENDIX H
SITE HAZARD RATING FORMS

Landfill No. 2 / Leaching Pit No. 2

Location: Adjacent to Retention Reservoir and Wastewater Treatment Plant
Date of Operation or Occurrence: Landfill - 1956 to Present; Leaching Pit - 1950's to 1979
Owner/Operator: AEDC
Comments/Description: Disposed acids, caustics, propellant equipment, metal salts, solver

Disposed acids, caustics, propellant equipment, metal salts, solvents, pesticides, oils, paints, thinners, etc. Sites rated together due to adjacent location.

Site Rated by: R. L. Thoes

I. RECEPTORS Rating Factor	Factor Rating (0-3)	Multi- plier	Factor Score	Maximum Possible Score	
A. Population within 1,000 feet of site B. Distance to nearest well C. Land use/zoning within 1 mile radius D. Distance to reservation boundary E. Critical environments within 1 mile radius of site F. Water quality of nearest surface water body G. Ground water use of uppermost aquifer H. Population served by surface water supply within 3 miles downstream of site I. Population served by ground-water supply within 3 miles of site	212131	19 3 6 19 6 9 6	8 19 6 39 6 8	12 30 9 18 30 18 27 18	
Subtotals			72	180	
Receptors subscore (188 x factor score subtotal/maximum	48				

II. WASTE CHARACTERISTICS

A. Select the factor score based on the estimated quantity, the degree of hazard, and the confidence level of the information.

Waste quantity (1=small, 2=medium, 3=large)
 Confidence level (1=confirmed, 2=suspected)
 Hazard rating (1=lom, 2=medium, 3=high)

Factor Subscore A (from 20 to 100 based on factor score matrix)

B. Apply persistence factor Factor Subscore A x Persistence Factor = Subscore B

C. Apply physical state multiplier
Subscore B x Physical State Multiplier = Waste Characteristics Subscore

III. PATHMAYS

A. If there is evidence of migration of hazardous contaminants, assign maximum factor subscore of 100 points for direct evidence or 80 points for indirect evidence. If direct evidence exists then proceed to C. If no evidence or indirect evidence exists, proceed to B.

Subscore 100

B. Rate the migration potential for 3 potential pathways: surface water migration, flooding, and ground-water migration. Select the highest rating and proceed to C.

Rating Factor	Factor Rating (0-3)	Multi- plier	Factor Score	Maximum Possible Score
1. Surface Water Migration Distance to nearest surface water Net precipitation Surface erosion Surface permeability Rainfall intensity	3 2 1 2 3	8 6 8 6	24 12 8 12 24	24 18 24 18 24
Subtotals			80	198
. Subscore (100 x factor score subtotal	/maximum s	score sub	total)	74
2. Flooding	•	1	8	3
Subscore (100 x factor score/3)				
3. Ground-water migration Depth to ground water Net precipitation Soil permeability Subsurface flows Direct access to ground water	3 2 1 2	& 6 8 8	24 12 8 16	24 18 24 24 24
Subtotals			60	114
Subscore (180 x factor score subtotal	/maximum s	score sub	total)	53
. Highest pathway subscore.				

C. Highest pathway subscore.
Enter the highest subscore value from A, B-1, B-2 or B-3 above.

Pathways Subscore 188

IV. WASTE MANAGEMENT PRACTICES

A. Average the three subscores for receptors, waste characteristics, and pathways.

Receptors

Waste Characteristics

100

Pathways

Total

240 divided by 3 = 80 Gross total score

B. Apply factor for waste containment from waste management practices.

Gross total score x waste management practices factor = final score

80 x 1.80 = \ 80 \

Name of Site: Retention Reservoir/J-4 Area -- Surface Drainage
Location: Adjacent to Chemical Treatment Pond, Landfill No. 2 and Liquid Fuels Storage
Date of Operation or Occurrence: Reservoir - 1959 to Present; Drainage - 1965 to Present
Owner/Operator: AEDC

Retains/pretreats oils, propellant residuals, petroleum fuels, toulene, etc. Surface drainage leading directly to Reservoir rated jointly due to location. Comments/Description:

Site Rated by: R. L. Thoem

I. RECEPTORS Rating Factor	Factor Rating (9-3)	Multi- plier	Factor Score	Maximum Possible Score	
A. Population within 1,000 feet of site B. Distance to nearest well C. Land use/zoning within 1 mile radius D. Distance to reservation boundary E. Critical environments within 1 mile radius of site F. Water quality of nearest surface water body G. Ground water use of uppermost aquifer H. Population served by surface water supply within 3 miles downstream of site I. Population served by ground-water supply within 3 miles of site	1 2 1 3 1 0 0	10 3 6 10 6 9 6	10 6 6 30 6 9 0	12 30 9 18 30 18 27 18	
Subtota	ls		68	180	
Receptors subscore (100 x factor score subtotal/maxi	mum score su	btotal)		38 ======	

II. WASTE CHARACTERISTICS

A. Select the factor score based on the estimated quantity, the degree of hazard, and the confidence level of the information.

 Haste quantity (1=small, 2=medium, 3=large)
 Confidence level (1=confirmed, 2=suspected)
 Hazard rating (1=low, 2=medium, 3=high) c

Factor Subscore A (from 28 to 180 based on factor score matrix) 100

B. Apply persistence factor Factor Subscore A x Persistence Factor = Subscore B

100 100

C. Apply physical state multiplier Subscore B x Physical State Multiplier = Waste Characteristics Subscore

100 100

Page 2 of 2 III. PATHMAYS A. If there is evidence of migration of hazardous contaminants, assign maximum factor subscore of 100 points for direct evidence or 80 points for indirect evidence. If direct evidence exists then proceed to C. If no evidence or indirect evidence exists, proceed to B. Subscore 100 B. Rate the migration potential for 3 potential pathways: surface water migration, flooding, and ground-water migration. Select the highest rating and proceed to C. **Factor** Multi-**Factor** Maximum Possible Rating Factor Rating plier Score Score (8-3)1. Surface Water Migration Distance to nearest surface water Net_precipitation 12 18 8 12 Surface erosion Surface permeability Rainfall intensity 18 6 Subtotals 108 Subscore (100 x factor score subtotal/maximum score subtotal) 2. Flooding Subscore (100 x factor score/3) 3. Ground-water migration Depth to ground water Net precipitation Soil permeability īż 5 18 8 24 24 8 Subsurface flows 24 Direct access to ground water 24 Subtotals 114 Subscore (188 x factor score subtotal/maximum score subtotal) C. Highest pathway subscore.

Enter the highest subscore value from A, B-1, B-2 or B-3 above. Pathways Subscore 100 IV. WASTE MANAGEMENT PRACTICES A. Average the three subscores for receptors, waste characteristics, and pathways. Receptors 38 Waste Characteristics Pathways 100 238 Total divided by 3 = Gross total score B. Apply factor for waste containment from waste management practices. Gross total score x waste management practices factor = final score

79

Name of Site: Landfill No. 4
Location: NM corner AEDC Reservation near Manchester, TN.
Date of Operation or Occurrence: 1971 - Present
Owner/Operator: Owner - AEDC; Operator - Coffee Co., Manchester and Tullahoma, TN.
Disposal of Municipal Mastes, metal salts, solvents, acid Owner/Operator: Owner Comments/Description: Disposal of municipal wastes, metal salts, solvents, acids, and refuse from AEDC (since 1980)

Site Rated by: R. L. Thoes

I. RECEPTORS Rating Factor	Factor Rating (0-3)	Multi- plier	Factor Score	Maximum Possible Score	-
A. Population within 1,000 feet of site B. Distance to nearest well C. Land use/zoning within 1 mile radius D. Distance to reservation boundary E. Critical environments within 1 mile radius of site F. Water quality of nearest surface water body G. Ground water use of uppermost aquifer H. Population served by surface water supply within 3 miles downstream of site I. Population served by ground-water supply within 3 miles of site	32333100	10 3 6 10 9 6	12 28 9 18 30 6 0	12 38 9 18 38 18 27 18	
Subtota	ls		107	180	
Receptors subscore (100 x factor score subtotal/maxi	59				

II. WASTE CHARACTERISTICS

A. Select the factor score based on the estimated quantity, the degree of hazard, and the confidence level of the information.

 Haste quantity (1=small, 2=medium, 3=large)
 Confidence level (1=confirmed, 2=suspected)
 Hazard rating (1=lom, 2=medium, 3=high) 1

C

Factor Subscore A (from 29 to 188 based on factor score matrix) 100

B. Apply persistence factor
Factor Subscore A x Persistence Factor = Subscore B

100 100 1.00

C. Apply physical state multiplier Subscore B \times Physical State Multiplier \simeq Waste Characteristics Subscore

III. PATHWAYS A. If there is evidence of migration of hazardous contaminants, assign maximum factor subscore of 100 points for direct evidence or 80 points for indirect evidence. If direct evidence exists then proceed to C. If no evidence or indirect evidence exists, proceed to B. B. Rate the migration potential for 3 potential pathways: surface water migration, flooding, and ground-water migration. Select the highest rating and proceed to C. **Factor** Multi-**Factor** Maximum Rating (0-3) Rating Factor Possible plier Score Score 1. Surface Water Migration Distance to nearest surface water Net precipitation Surface erosion 12 18 6 12 24 8 Surface permeability Rainfall intensity 18 24 24 Subtotals 198 Subscore (190 x factor score subtotal/maximum score subtotal) 74 2. Flooding Subscore (188 x factor score/3) 3. Ground-water migration Depth to ground water Net precipitation 16 18 Soil permeability Subsurface flows Direct access to ground water Subtotals 114 Subscore (160 x factor score subtotal/maximum score subtotal) 32 C. Highest pathway subscore. Enter the highest subscore value from A, B-1, B-2 or B-3 above. Pathways Subscore 74 IV. WASTE MANAGEMENT PRACTICES A. Average the three subscores for receptors, waste characteristics, and pathways. Receptors Waste Characteristics 100 Pathways 233 Total divided by 3 = Gross total score B. Apply factor for waste containment from waste management practices. Gross total score x waste management practices factor = final score 78 1.00 78

Name of Site: Surface Drainage - Bradley Creek Location: Drainage course leading N. E. and then S. from AED Date of Operation of Occurrence: 1953 - Present Owner/Operator: AEDC Comments/Description: Receives spills/leaks and runoff and AEDC test facilities (mainly Site Rated by: R. L. Thoem	from the Mode:	l Shop Am		ing Pit No. 1
I. RECEPTORS Rating Factor	Factor Rating (0-3)	Multi- plier	Factor Score	Maximum Possible Score
A. Population within 1,000 feet of site B. Distance to nearest well C. Land use/zoning within 1 mile radius D. Distance to reservation boundary E. Critical environments within 1 mile radius of site F. Water quality of nearest surface water body G. Bround water use of uppermost aquifer H. Population served by surface water supply within 3 miles downstream of site	2 3 1 1 3 1	10 3 6 10 6 9	8 38 3 6 38 6 8	12 38 9 18 38 18 27 18
 Population served by ground-water supply within 3 miles of site 	1	6	6	18
Subtot	als		89	180
Receptors subscore (100 x factor score subtotal/max	i mum score sul	ototal)		49

II. WASTE CHARACTERISTICS

- A. Select the factor score based on the estimated quantity, the degree of hazard, and the confidence level of the information.
 - 1. Waste quantity (1=small, 2=medium, 3=large)
 2. Confidence level (1=confirmed, 2=suspected)
 3. Hazard rating (1=low, 2=medium, 3=high)

Factor Subscore A (from 28 to 108 based on factor score matrix)

B. Apply persistence factor Factor Subscore A x Persistence Factor = Subscore B

100 100 1.00

C. Apply physical state multiplier
Subscore B x Physical State Multiplier = Waste Characteristics Subscore

III. PATHMAYS

A. If there is evidence of migration of hazardous contaminants, assign maximum factor subscore of 100 points for direct evidence or 80 points for indirect evidence. If direct evidence exists then proceed to C. If no evidence or indirect evidence exists, proceed to B.

B. Rate the migration potential for 3 potential pathways: surface water migration, flooding, and ground-water migration. Select the highest rating and proceed to C.

Rating Factor	Factor Rating (8-3)	Multi- plier		
1. Surface Water Migration Distance to nearest surface water Net precipitation Surface erosion Surface permeability Rainfall intensity	3 2 1 1 3	8 6 8 6	24 12 8 6 24	24 18 24 18 24
Subtotals	,		74	108
Subscore (100 x factor score subtota	l/maximum	score sub	total)	69
2. Flooding	NA	1	NA	NA
Subscore (100 x factor score/3)				NA
3. Ground-water migration Depth to ground water Net precipitation Soil permeability Subsurface flows Direct access to ground water	3 2 2 1	8 6 8 8	24 12 16 8	24 18 24 24 24
Subtotals	i .		50	114
Subscore (100 x factor score subtota	l/maximum	score sub	total)	53
. Highest pathway subscore.				

Enter the highest subscore value from A, B-1, B-2 or B-3 above.

IV. WASTE MANAGEMENT PRACTICES						
A. Average the three subscores for rec	eptors,	, waste chai	racteristics.	and pathways.		
Receptors		•	49			
Waste Chara Pathways Total B. Apply factor for waste containment Gross total score x waste managemen	218	divided	190 69 by 3 = went practice r = final sco	73 25. Ore	Gross total	l score
		4 00				- .
73	X	1.08	=	\	13	1

69

Pathways Subscore

Name of Site: Surface Drainage - Rollins Creek

Location: Drainage course leading SW. from AEDC; Can direct/receive waters to/from Retention Reservoir Date of Operation or Occurrence: 1953 - Present Owner/Operator: AEDC

Owner/Operator:

Comments/Description:

Receives spills/leaks, runoffs, and cooling water returns from major portion of AEDC test facilities. Recieves discharges Retention Reservoir, Chemical Treatment Pond, and Main Wastewater Treatment Plant.

Site Rated by: R. L. Thoem

I. RECEPTORS Rating Factor	Factor Rating (0-3)	Multi- plier	Factor Score	Maximum Possible Score	
A. Population within 1,000 feet of site B. Distance to nearest well C. Land use/zoning within 1 mile radius D. Distance to reservation boundary E. Critical environments within 1 mile radius of site F. Water quality of nearest surface water body G. Bround water use of uppermost aquifer H. Population served by surface water supply within 3 miles downstream of site I. Population served by ground-water supply within 3 miles of site	2120031800	4 10 3 6 10 6 9 6	8 10 6 0 30 6 0	12 38 9 18 30 18 27 18	
Subtota	ls		78	180	
Receptors subscore (100 x factor score subtotal/maxi	Mum score su	btotal)		43 ======	

II. WASTE CHARACTERISTICS

A. Select the factor score based on the estimated quantity, the degree of hazard, and the confidence level of the information.

- Waste quantity (1=small, 2=medium, 3=large)
 Confidence level (1=confirmed, 2=suspected)
 Hazard rating (1=low, 2=medium, 3=high) C

Factor Subscore A (from 20 to 100 based on factor score matrix)

B. Apply persistence factor
Factor Subscore A x Persistence Factor = Subscore B

1.00 100

C. Apply physical state multiplier Subscore B x Physical State Multiplier = Waste Characteristics Subscore

III. PATHWAYS

A. If there is evidence of migration of hazardous contaminants, assign maximum factor subscore of 100 points for direct evidence or 80 points for indirect evidence. If direct evidence exists then proceed to C. If no evidence or indirect evidence exists, proceed to B.

Subscore

Gross total score

B. Rate the migration potential for 3 potential pathways: surface water migration, flooding, and ground-water migration. Select the highest rating and proceed to C.

	Rating Factor	Factor Rating (0 -3)	Multi- plier		Maximum Possible Score
1.	Surface Water Migration Distance to nearest surface water Net precipitation Surface erosion Surface permeability Rainfall intensity	3 2 1 1 3	8 6 8 6	24 12 8 6 24	24 18 24 18 24
	Subtotals	i		74	108
	Subscore (100 x factor score subtota	1/maximum	score sub	total)	69
2.	Flooding	NA	1	NA	NA
	Subscore (100 x factor score/3)				NA
3.	Ground-water migration Depth to ground water Net precipitation Soil permeability Subsurface flows Direct access to ground water	3 2 2 1	8 6 8	24 12 16 8	24 18 24 24 24 24
	Subtotals	;		60	114
	Subscore (199 x factor score subtota	l/maximum s	score sub	total)	53

C. Highest pathway subscore.

Enter the highest subscore value from A, B-1, B-2 or B-3 above.

Pathways	Subscore	69

IV. HASTE MANAGEMENT PRACTICES

A. Average the three subscores for receptors, waste characteristics, and pathways.

Receptors 43
Waste Characteristics 100
Pathways 69
Total 212 divided by 3 =

B. Apply factor for waste containment from waste management practices. Gross total score x waste management practices factor = final score

71 x 1.80 = \ \ 7i \

H-10

Name of Site: Old Camp Forest Water Treatment Plant Location: About 3/4 mi. S. of AEDC access highway and 6 mi. W. of AEDC Date of Operation or Occurrence: 1953 - 1980

Date of Operation or Occurrence: Owner/Operator: AEDC

Owner/Operator:

Burning and disposal of propellants, solvents, oils, and contaminated containers, drums, piping, etc. Comments/Description:

Site Rated by: R. L. Thoese

I. RECEPTORS Rating Factor	Factor Rating (0-3)	Multi- plier	Factor Score	Maximum Possible Score	
A. Population within 1,000 feet of site	0	4	0	12 39	
B. Distance to nearest well	1	10	10	39	
C. Land use/zoning within 1 mile radius	8	3	ě	. 9	
D. Distance to reservation boundary	1	.6	6 39 6	18	
E. Critical environments within 1 mile radius of site	3	10	30	30	
F. Water quality of nearest surface water body	1	10 6 9 6	9	18 30 18 27	
G. Ground water use of uppermost aquifer	9	7	ě	18	
H. Population served by surface water supply within 3 wiles downstream of site	•	0	•	10	
I. Population served by ground-water supply within 3 miles of site	5	6	12	18	
Subtotals			64	180	
Receptors subscore (190 x factor score subtotal/maximu	score su	btotal)		36	

II. WASTE CHARACTERISTICS

A. Select the factor score based on the estimated quantity, the degree of hazard, and the confidence level of the information.

Waste quantity (1=small, 2=medium , 3=large)
 Confidence level (1=confirmed, 2=suspected)
 Hazard rating (1=low, 2=medium, 3=high)

Factor Subscore A (from 28 to 188 based on factor score matrix) 100

B. Apply persistence factor
Factor Subscore A x Persistence Factor = Subscore B

1.00

C. Apply physical state multiplier Subscore B x Physical State Multiplier = Waste Characteristics Subscore

III. PATHWAYS

A. If there is evidence of migration of hazardous contaminants, assign maximum factor subscore of 100 points for direct evidence or 80 points for indirect evidence. If direct evidence exists then proceed to C. If no evidence or indirect evidence exists, proceed to B.

B. Rate the migration potential for 3 potential pathways: surface water migration, flooding, and ground-water migration. Select the highest rating and proceed to C.

	Rating Factor	Factor Rating (0-3)	Multi- plier	Factor Score	Maximum Possible Score				
1. S	urface Water Migration Distance to nearest surface water Net precipitation Surface erosion Surface permeability Rainfall intensity	2 2 2 3	8 6 8 6	16 12 16 12 24	24 18 24 18 24				
	Subtotals			80	108				
	Subscore (100 x factor score subtotal)	/maximum :	score sub	total)	74				
2. F	looding	9	1		3				
	Subscore (188 x factor score/3)				0				
3. 6	round-water migration Depth to ground water Net precipitation Soil permeability Subsurface flows Direct access to ground water Subtotals	2 1 0 0	8 8 8 8	16 12 8 8	24 18 24 24 24				
	Subscore (100 x factor score subtotal	/maximum :	score sub	total)	32				
C. High	est pathway subscore. Enter the highest subscore value from	A, B-1,	B-2 or B-:	3 above.					
	Ρ	athways S	ubscore		74	==			
IV. WASTE WANAGEMENT PRACTICES A. Average the three subscores for receptors, waste characteristics, and pathways. Receptors Assec Characteristics Pathways 74 Total 210 divided by 3 = 70 Gross total score B. Apply factor for waste containment from waste management practices. Gross total score x waste management practices factor = final score									

1.00

70

Name of Site: Testing Areas (VKF, ETF, and PWT) Spills and Leaks Location: Third and Fourth Streets between Mark I and J-4
Date of Operation or Occurrence: 1953 - Present

Date of Operation or Occurrence: Owner/Operator: AEDC

Comments/Description: Rating for spills/leaks of oils, solvents, etc. to ground areas

(not spills or leaks to sanitary or storm systems)

Site Rated by: R. L. Thoese

I. RECEPTORS Rating Factor	Factor Rating (0-3)	Multi- plier	Factor Score	Maximum Possible Score	
A. Population within 1,800 feet of site B. Distance to nearest well C. Land use/zoning within 1 mile radius D. Distance to reservation boundary E. Critical environments within 1 mile radius of site F. Water quality of nearest surface water body G. Ground water use of uppermost aquifer H. Population served by surface water supply within 3 miles downstream of site I. Population served by ground water supply within 3 miles of site	3 1 2 1 3 1 0	4 10 3 6 10 6 9 6	12 18 6 6 30 6	12 38 9 18 39 18 27 18	
Subtotal	5		76	180	
Receptors subscore (100 x factor score subtotal/maxim	um score su	btotal)		42	

II. WASTE CHARACTERISTICS

A. Select the factor score based on the estimated quantity, the degree of hazard, and the confidence level of the information.

Haste quantity (1=small, 2=medium, 3=large)
 Confidence level (1=confirmed, 2=suspected)
 Hazard rating (1=low, 2=medium, 3=high)

Factor Subscore A (from 28 to 100 based on factor score matrix)

B. Apply persistence factor Factor Subscore A x Persistence Factor = Subscore B

100 1.00 100

C. Apply physical state multiplier
Subscore B x Physical State Multiplier = Waste Characteristics Subscore

78

A. If there is evidence of migration of hazardous contaminants, assign maximum factor subscore of 100 points for direct evidence or 80 points for indirect evidence. If direct evidence exists then proceed to C. If no evidence or indirect evidence exists, proceed to B. B. Rate the migration potential for 3 potential pathways: surface water migration, flooding, and ground-water migration. Select the highest rating and proceed to C. Multi-Factor Factor Maximum Rating (0-3) Possible Rating Factor plier Score Score 1. Surface Water Migration 24 12 24 18 Distance to nearest surface water Net precipitation ā 24 18 Surface erosion 12 Surface permeability 6 Rainfall intensity 24 72 Subtotals 108 Subscore (188 x factor score subtotal/maximum score subtotal) 67 2. Flooding Subscore (100 x factor score/3) 3. Ground-water migration Depth to ground water Net precipitation 16 68 12 18 24 24 24 24 8 Soil permeability Subsurface flows Direct access to ground water Subtotals 114 Subscore (100 x factor score subtotal/maximum score subtotal) 32 C. Highest pathway subscore. Enter the highest subscore value from A, B-1, B-2 or B-3 above. Pathways Subscore 67 IV. WASTE MANAGEMENT PRACTICES A. Average the three subscores for receptors, waste characteristics, and pathways. Receptors **Waste Characteristics** Pathways 209 divided by 3 = Gross total score Total B. Apply factor for waste containment from waste management practices. Gross total score x waste management practices factor = final score

1.00

78

UNTABR	ACCECCMENT	DATTMC	MCTUOTOL (NOV COOM
MH/HKII	HOUSE WAS BUILDING	MILI I MIN	PR-176 ((A B)	BAY PIIME

Name of Site: Leaching Pit No. 1
Location: Behind Model Shop - Building 451
Date of Operation or Occurrence: 1953 - 1972
Dwner/Operator: AEDC

Comments/Description:

Acid, caustic, detergents, metal solutions to pit

Site Rated by: R. L. Thoem

I. RECEPTORS Rating Factor	Factor Rating (0-3)	Multi- plier	Factor Score	Maximum Possible Score
A. Population within 1,000 feet of site B. Distance to nearest well C. Land use/zoning within 1 mile radius D. Distance to reservation boundary E. Critical environments within 1 mile radius of site F. Water quality of nearest surface water body G. Ground water use of uppermost aquifer H. Population served by surface water supply within 3 miles downstream of site I. Population served by ground-water supply within 3 miles of site	3 1 2 1 3 1 8	100 33 60 100 66 96 66	12 10 6 6 30 6 0	12 30 9 18 30 18 27 18 27
Subtotals			76	189
Receptors subscore (180 x factor score subtotal/maximum	score su	btotal)		42

II. WASTE CHARACTERISTICS

A. Select the factor score based on the estimated quantity, the degree of hazard, and the confidence level of the information.

1

- Haste quantity (1=small, 2=medium, 3=large)
 Confidence level (1=confirmed, 2=suspected)
 Hazard rating (1=low, 2=medium, 3=high)

Factor Subscore A (from 20 to 100 based on factor score matrix)

B. Apply persistence factor Factor Subscore A x Persistence Factor = Subscore B

C. Apply physical state multiplier
Subscore B x Physical State Multiplier = Waste Characteristics Subscore

III. PATHWAYS

A. If there is evidence of migration of hazardous contaminants, assign maximum factor subscore of 100 points for direct evidence or 80 points for indirect evidence. If direct evidence exists then proceed to C. If no evidence or indirect evidence exists, proceed to B.

B. Rate the migration potential for 3 potential pathways: surface water migration, flooding, and ground-water migration. Select the highest rating and proceed to C.

Rating Factor	Factor Rating (0-3)	Multi- plier		Maximum Possible Score
1. Surface Water Migration Distance to nearest surface water Net precipitation Surface erosion Surface permeability Rainfall intensity	32023	8 6 8 6	24 12 0 12 24	24 18 24 18 24
Subtotals	5		72	108
Subscore (188 x factor score subtota	al/maximum :	score sub	total)	67
2. Flooding	0	1	0	3
Subscore (100 x factor score/3)				
3. Ground-water migration Depth to ground water Net precipitation Soil permeability Subsurface flows Direct access to ground water	2 2 1 0 0	8 8 8	16 12 8 6	24 18 24 24 24
Subtotals	5		36	114
Subscore (100 x factor score subtota	al/maximum s	score sub	total)	32
. Highest pathway subscore.				

C. Highest pathway subscore. Enter the highest subscore value from A, B-1, B-2 or B-3 above.

Pathways Subscore 67

	Oruss (oral Score x Ma	78	X heace	1.00	= - 11M21 SC	\ \	7()	\
	B. Apply	factor for waste	Receptors Waste Charac Pathways Total containment f	209	divided b	199 67 y 3 = ment praction	70 res.	Gross	total	score
īv.	A. Average	it PRACTICES the three subs		ptors,	waste char	acteristics	, and pathways.			

Name of Site: Surface Drainage - Brumalow Creek Location: Drainage course leading S. from AEDC through skimming pond. Date of Operation or Occurrence: 1953 - Present

Date of Operation or Occurrence: Owner/Operator: AEDC

Receives spills/leaks and runoff from the PWT test area, motor pool, steam plant, etc. Comments/Description:

Site Rated by: R. L. Thoese

I. RECEPTORS Rating Factor	Factor Rating (0-3)	Multi- plier	Factor Score	Maximum Possible Score
A. Population within 1,000 feet of site B. Distance to nearest well C. Land use/zoning within 1 mile radius D. Distance to reservation boundary E. Critical environments within 1 mile radius of site F. Water quality of nearest surface water body G. Ground water use of uppermost aquifer H. Population served by surface water supply within 3 miles downstream of site I. Population served by ground-water supply within 3 miles of site	21263163	19 3 6 10 6 9 6	8 10 6 0 38 6 0 18	12 39 9 18 39 18 27 18
Subtotals			90	180
Receptors subscore (100 x factor score subtotal/maximum	score su	btotal)		50

II. WASTE CHARACTERISTICS

A. Select the factor score based on the estimated quantity, the degree of hazard, and the confidence level of the information.

1. Waste quantity (1=small, 2=medium, 3=large)
2. Confidence level (1=confirmed, 2=suspected)
3. Hazard rating (1=low, 2=medium, 3=high)

Factor Subscore A (from 20 to 100 based on factor score matrix)

B. Apply persistence factor Factor Subscore A x Persistence Factor = Subscore B

> 70 1.00

C. Apply physical state multiplier
Subscore B x Physical State Multiplier = Waste Characteristics Subscore

III. PATHWAYS

A. If there is evidence of migration of hazardous contaminants, assign maximum factor subscore of 100 points for direct evidence or 80 points for indirect evidence. If direct evidence exists then proceed to C. If no evidence or indirect evidence exists, proceed to B.

B. Rate the migration potential for 3 potential pathways: surface water migration, flooding, and ground-water migration. Select the highest rating and proceed to C.

	Rating Factor	Factor Rating (0-3)	Multi- plier		Maximum Possible Score
1. Sur	rface Water Migration Distance to nearest surface water Net precipitation Surface erosion Surface permeability Rainfall intensity	3 2 1 1 3 3	8 6 8 6	24 12 8 6 24	24 18 24 18 24
	Subtotals			74	108
	Subscore (100 x factor score subtotal	/maximum :	score sub	total)	69
2. F1	ooding	NA	1	NA	NA
	Subscore (180 x factor score/3)				NA
3. Gra	ound-water migration Depth to ground water Net precipitation Soil permeability Subsurface flows Direct access to ground water	3 2 2 1 0	8 6 8 8	24 12 16 8	24 18 24 24 24
	Subtotals			68	114
	Subscore (198 x factor score subtotal	/waxiwum :	score sub	total)	5 3
. Highe:	Subscore (188 x factor score subtotal) st pathway subscore.				

C. Enter the highest subscore value from A, B-1, B-2 or B-3 above.

> Pathways Subscore 69

٧.	WASTE MANAGEMENT	PRACTICES									
	A. Average	the three subscor	es for rece eceptors	ptors,	waste char	acteristics 50	, and pa	thways.			
	B. Apply fa Gross to	р	aste Charac athways otal ntainment f management	189	divided b	70 69 by 3 = ment praction or = final sc	es. ore	63	Gross	total	score
			63	×	1.00	=		7	63		١

Name of Site: Fire Protection Training Area No. 2/Burn Area No. 1/Landfill No. 1 Location: Near Gate 5: NW of Model Shop Date of Operation or Occurrence: FPTA - 1973 to Present; Burn Area and Landfill - 1953 to 1970

Date of Operation or Occurrence:

Cwner/Operator: AEDC Comments/Description:

Sites rated together since they are adjacent or on top of each other. Burned and disposed of oils, thinners, petroleum fuels, propellants, metal scrap, power plant ash, etc.

R. L. Thoen Site Rated by:

I. RECEPTORS Rating Factor	Factor Rating (0-3)	Multi- plier	Factor Score	Maximum Possible Score
A. Population within 1,000 feet of site B. Distance to nearest well C. Land use/zoning within 1 mile radius D. Distance to reservation boundary E. Critical environments within 1 mile radius of site F. Water quality of nearest surface water body G. Ground water use of uppermost aquifer H. Population served by surface water supply within 3 miles downstream of site I. Population served by ground-water supply within 3 miles of site	1 2 1 3 1 6 6	10 36 10 69 6	18 6 38 8 8	12 38 9 18 38 18 27 18
Subtotals			68	180
Receptors subscore (100 x factor score subtotal/maximum	score su	btotal)		38 *******

II. WASTE CHARACTERISTICS

- A. Select the factor score based on the estimated quantity, the degree of hazard, and the confidence level of the information.
 - 1. Waste quantity (1=small, 2=medium, 3=large)
 2. Confidence level (1=confirmed, 2=suspected)
 3. Hazard rating (1=low, 2=medium, 3=high)
 - C

Factor Subscore A (from 20 to 100 based on factor score matrix)

B. Apply persistence factor Factor Subscore A x Persistence Factor = Subscore B

C. Apply physical state multiplier Subscore B x Physical State Multiplier = Waste Characteristics Subscore

III. PATHWAYS A. If there is evidence of migration of hazardous contaminants, assign maximum factor subscore of 100 points for direct evidence or 80 points for indirect evidence. If direct evidence exists then proceed to C. If no evidence or indirect evidence exists, proceed to B. Subscore B. Rate the migration potential for 3 potential pathways: surface water migration, flooding, and ground-water migration. Select the highest rating and proceed to C. **Factor** Multi-Factor Maximum Rating Factor Rating plier Score Possible (0-3)Score 1. Surface Water Migration
Distance to nearest surface water 24 Net precipitation 6 12 18 Surface erosion ē 24 8 Surface permeability Rainfall intensity 18 6 12 Subtotals 72 108 Subscore (100 x factor score subtotal/maximum score subtotal) 67 2. Flooding Subscore (100 x factor score/3) 3. Ground-water migration Depth to ground water Net precipitation 16 12 18 Soil permeability Subsurface flows Direct access to ground water Subtotals 36 114 Subscore (180 x factor score subtotal/maximum score subtotal) 32 C. Highest pathway subscore. Enter the highest subscore value from A, B-1, B-2 or B-3 above. Pathways Subscore 67 IV. WASTE MANAGEMENT PRACTICES A. Average the three subscores for receptors, waste characteristics, and pathways. Receptors Waste Characteristics Pathways Total 185 divided by 3 =Gross total score B. Apply factor for waste containment from waste management practices. Gross total score x waste management practices factor = final score 62 1.00 62

Name of Site: Chemical Treatment Pond Location: Adjacent to and S. of Retention Reservoir Date of Operation or Occurrence: 1961 - 1982

AEDC

Owner/Operator: AEDO Comments/Description: Propellants and toulene treated/disposed

Site Rated by: R. L. Thoese

I. RECEPTORS Rating Factor	Factor Rating (0-3)	Multi- plier	Factor Score	Maximum Possible Score	
A. Population within 1,000 feet of site B. Distance to nearest well C. Land use/zoning within 1 mile radius D. Distance to reservation boundary E. Critical environments within 1 mile radius of site F. Water quality of nearest surface water body G. Ground water use of uppermost aquifer H. Population served by surface water supply within 3 miles downstream of site I. Population served by ground-water supply within 3 miles of site	1 1 2 2 1 3 1 0 0 0	10 3 6 10 6 9 6	4 10 6 6 30 6 0	12 39 9 18 30 18 27 18	
Subtota	als		68	180	
Receptors subscore (180 x factor score subtotal/maxi	i wuw score sui	btotal)		38 ************************************	

II. WASTE CHARACTERISTICS

- A. Select the factor score based on the estimated quantity, the degree of hazard, and the confidence level of the information.
 - Waste quantity (1=small, 2=medium, 3=large)
 Confidence level (1=confirmed, 2=suspected)
 Hazard rating (1=low, 2=medium, 3=high)

Factor Subscore A (from 20 to 100 based on factor score matrix)

B. Apply persistence factor Factor Subscore A x Persistence Factor = Subscore B

9.80

C. Apply physical state multiplier
Subscore B x Physical State Multiplier = Waste Characteristics Subscore

III. PATHWAYS

A. If there is evidence of migration of hazardous contaminants, assign maximum factor subscore of 100 points for direct evidence or 80 points for indirect evidence. If direct evidence exists then proceed to C. If no evidence or indirect evidence exists, proceed to B.

Subscore 0

Subscore

B. Rate the migration potential for 3 potential pathways: surface water migration, flooding, and ground-water migration. Select the highest rating and proceed to C.

	Rating Factor	Factor Rating (0-3)	Multi- plier	Factor Score	Maximum Possible Score	
1. Su	urface Water Migration Distance to nearest surface water Net precipitation Surface erosion Surface permeability Rainfall intensity	3 2 0 2 3	8 6 8 6	24 12 0 12 24	24 18 24 18 24	
	Subtotals			72	198	
	Subscore (100 x factor score subtotal	l/maximum :	score sub	total)	67	
2. FI	looding	9	1	0	3	
	Subscore (100 x factor score/3)				0	
3. Gr	round-water migration Depth to ground water Net precipitation Soil permeability Subsurface flows Direct access to ground water	3 2 1 3	8 8 8	24 12 8 24	24 18 24 24 24	
	Subtotals			68	114	
	Subscore (100 x factor score subtotal	l/maximum	score sub	total)	60	
Highe	est pathway subscore. Enter the highest subscore value from	A, B-1,	B-2 or B-3	3 above.		
	1	Pathways S	ubscore		67	

62

Name of Site: Retention Leach / Burn Area Location: S. of Retention Reservoir Dams
Date of Operation or Occurrence: 1950's - 1
Owner/Operator: AEDC

1950's - 1960's

Comments/Description:

Area for leaching and burning propellants and toluene

Site Rated by: R. L. Thoes

I. RECEPTORS Rating Factor	Factor Rating (0-3)	Multi- plier	Factor Score	Maximum Possible Score
A. Population within 1,000 feet of site B. Distance to mearest well C. Land use/zoning within 1 mile radius D. Distance to reservation boundary E. Critical environments within 1 mile radius of site F. Water quality of nearest surface water body G. Ground water use of uppermost aquifer H. Population served by surface water supply within 3 miles downstream of site I. Population served by ground-water supply within 3 miles of site	1 2 1 3 1 0	10 3 6 10 6 9 6	0 10 5 5 30 6 0	12 30 9 18 30 18 27 18
Subtota	ls		64	180
Receptors subscore (100 x factor score subtotal/maxi	MUW Score Su	btotal)		36 ======

II. WASTE CHARACTERISTICS

- A. Select the factor score based on the estimated quantity, the degree of hazard, and the confidence level of the information.

 - Waste quantity (1=small, 2=medium, 3=large)
 Confidence level (1=confirmed, 2=suspected)
 Hazard rating (1=low, 2=medium, 3=high)

Factor Subscore A (from 23 to 100 based on factor score matrix)

B. Apply persistence factor Factor Subscore A x Persistence Factor = Subscore B

0.80

C. Apply physical state multiplier
Subscore B x Physical State Multiplier = Waste Characteristics Subscore

B. Rate the migration potential for 3 potential pathways: surface water migration, flooding, and ground-water migration. Select the highest rating and proceed to C.

	Rating Factor	Factor Rating (0-3)	Multi- plier		Maximum Possible Score	
1. Sur	rface Water Migration	3	Δ		24	
	Distance to nearest surface water Net precipitation	3 2	8 6	24 12	24 18	
	Surface erosion	1 1	8	8	24	
	Surface permeability				18	
	Rainfall intensity	3	8	24	24	
	Subtotals			74	108	
	Subscore (100 x factor score subtotal	l/maximum s	score sub	total)	69	
2. Flo	ooding	0	1	9	3	
	Subscore (100 x factor score/3)				8	
3. Gra	ound-water migration					
	Depth to ground water	3	8	24	24	
	Net precipitation	3 2 2	6	12	18	
	Soil permeability Subsurface flows	2	8 8	16 0	24 24	
	Direct access to ground water	ő	å	ĕ	24	
	Subtotals			52	114	
	Subscore (100 x factor score subtota	l/maximum [/]	score sub	total)	46	
Highes	st pathway subscore. Enter the highest subscore value from	m A, B−1, !	B-2 or B-	3 above.		

III. PATHWAYS

A. If there is evidence of migration of hazardous contaminants, assign maximum factor subscore of 100 points for direct evidence or 80 points for indirect evidence. If direct evidence exists then proceed to C. If no evidence or indirect evidence exists, proceed to B. Subscore

Name of Site: Fire Protection Training Area No. 1 Location: Behind Fire Dept. - Building 257 Date of Operation or Occurrence: 1953 - 1983 Owner/Operator: AEDC Comments/Description

Comments/Description:

Most fires off ground on steel "pan"; burned oils, magnesium,

petroleum fuels, propellants, etc.

R. L. Thoes Site Rated by:

I. RECEPTORS Rating Factor	Factor Rating (0 -3)	Multi- plier	Factor Score	Maximum Possible Score
A. Population within 1,000 feet of site B. Distance to nearest well C. Land use/zoning within 1 mile radius D. Distance to reservation boundary E. Critical environments within 1 mile radius of site F. Water quality of nearest surface water body G. Ground water use of uppermost aquifer H. Population served by surface water supply within 3 miles downstream of site I. Population served by ground-water supply within 3 miles of site	312131	10 3 6 10 6 9 6	12 10 6 6 30 6 9	12 30 9 18 30 18 27 18
Subtotals			76	180
Receptors subscore (100 x factor score subtotal/maximu	score sul	ototal)		42 ======

II. WASTE CHARACTERISTICS

A. Select the factor score based on the estimated quantity, the degree of hazard, and the confidence level of the information.

- 1. Waste quantity (1=small, 2=medium, 3=large)
 2. Confidence level (1=confirmed, 2=suspected)
 3. Hazard rating (1=low, 2=medium, 3=high)

Factor Subscore A (from 20 to 100 based on factor score matrix)

B. Apply persistence factor Factor Subscore A x Persistence Factor = Subscore B

80 8.80 64

C. Apply physical state multiplier
Subscore B x Physical State Multiplier = Waste Characteristics Subscore

III. PATHWAYS

A. If there is evidence of migration of hazardous contaminants, assign maximum factor subscore of 100 points for direct evidence or 80 points for indirect evidence. If direct evidence exists then proceed to C. If no evidence or indirect evidence exists, proceed to B.

Subscore

8. Rate the migration potential for 3 potential pathways: surface water migration, flooding, and ground-water migration. Select the highest rating and proceed to C.

Factor Multi- Factor Maximum
Rating Factor Possible
(0-3)

Score Possible
Score

Rating Factor	Factor Rating (0-3)	Multi- plier	Factor Score	
1. Surface Water Migration Distance to nearest surface water Net precipitation Surface erosion Surface permeability Rainfall intensity	2 2 2 3	8 6 8	16 12 8 12 24	24 18 24 18 24
Subtotals			72	108
Subscore (180 x factor score subtotal/	maximum	score sub	total)	67
2. Flooding	8	1	8	3
Subscore (198 x factor score/3)				9
3. Ground-water migration Depth to ground mater Net precipitation Soil permeability Subsurface flows Direct access to ground mater	2 2 1 0 0	8 8 8	16 12 8 9	24 18 24 24 24 24
Subtotals			36	114
Subscore (100 x factor score subtotal/	/maximum	score sub	total)	32

C. Highest pathway subscore.

Enter the highest subscore value from A. B-1, B-2 or B-3 above.

Pathways Subscore 67

IV. WASTE MANAGEMENT PRACTICES

A. Average the three subscores for receptors, waste characteristics, and pathways.

Receptors

Waste Characteristics

Formula 173 divided by 3 = 58 Gross total score

B. Apply factor for waste containment from waste management practices.

Gross total score x waste management practices factor = final score

58 x 1.00 = \ 58 \

am		
		
or Multi- ng plier)	Factor Score	Maximum Possible Score
0 4 1 10 1 3 0 6	9 10 3	12 30 9
3 10 1 6 0 9	30 6 0 0	30 18 27 18
2 6	12	18
	61	180
subtotal)		34
of hazard,	and the c	confidence level of
x) 70		
•	core	core

56

56

III. PATHWAYS A. If there is evidence of migration of hazardous contaminants, assign maximum factor subscore of 100 points for direct evidence or 80 points for indirect evidence. If direct evidence exists then proceed to C. If no evidence or indirect evidence exists, proceed to B. B. Rate the migration potential for 3 potential pathways: surface water migration, flooding, and ground-water migration. Select the highest rating and proceed to C. Factor Multi-**Factor** Maximum Rating (0-3) Rating Factor Possible plier Score Score 1. Surface Water Migration 24 12 8 6 24 18 24 Distance to nearest surface water Ē Net precipitation Surface erosion 8 Surface permeability Rainfall intensity 18 24 8 Subtotals 188 Subscore (188 x factor score subtotal/maximum score subtotal) 69 2. Flooding Subscore (100 x factor score/3) 3. Ground-water migration Depth to ground water 24 18 Net precipitation 12 Soil permeability 16 Subsurface flows 8 Direct access to ground water Subtotals 114 Subscore (100 x factor score subtotal/maximum score subtotal) 53 C. Highest pathway subscore. Enter the highest subscore value from A, B-1, B-2 or B-3 above. Pathways Subscore 69 IV. WASTE MANAGEMENT PRACTICES A. Average the three subscores for receptors, waste characteristics, and pathways. Receptors Waste Characteristics Pathways divided by 3 = Total 159 Gross total score B. Apply factor for waste containment from waste management practices. Gross total score x waste management practices factor = final score 53 1.00 53

Name of Site: HEF Burn / Burial Area Location: West side of Retention Reservoir in vicinity of Retention Leach / Burn Area Date of Operation or Occurrence: 1959 - 1961

Owner/Operator: AEDC Comments/Description: AEDC

One time detonation and burning of HEF containers in trench

Site Rated by: R. L. Thoes

I. RECEPTORS Rating Factor	Factor Rating (0-3)	Multi- plier	Factor Score	Maximum Possible Score	
A. Population within 1,000 feet of site B. Distance to nearest well C. Land use/zoning within 1 mile radius D. Distance to reservation boundary E. Critical environments within 1 mile radius of site F. Water quality of nearest surface water body G. Ground water use of uppermost aquifer H. Population served by surface water supply within 3 miles downstream of site I. Population served by ground-water supply within 3 miles of site	1 2 1 3 1 9 9	10 3 6 10 6 9 6	18 6 6 38 6 9	12 30 9 18 30 18 27 18	
Subtotals			64	180	
Receptors subscore (180 x factor score subtotal/maximum	score su	btotal)		36 ======	:

II. WASTE CHARACTERISTICS

A. Select the factor score based on the estimated quantity, the degree of hazard, and the confidence level of the information.

Waste quantity (1=small, 2=medium, 3=large)
 Confidence level (1=confirmed, 2=suspected)
 Hazard rating (1=low, 2=medium, 3=high)

Factor Subscore A (from 20 to 100 based on factor score matrix)

B. Apply persistence factor Factor Subscore A x Persistence Factor = Subscore B

60 8.88

C. Apply physical state multiplier
Subscore B x Physical State Multiplier = Waste Characteristics Subscore

III. PATHMAYS

A. If there is evidence of migration of hazardous contaminants, assign maximum factor subscore of 100 points for direct evidence or 80 points for indirect evidence. If direct evidence exists then proceed to C. If no evidence or indirect evidence exists, proceed to B.

B. Rate the migration potential for 3 potential pathways: surface water migration, flooding, and ground-water migration. Select the highest rating and proceed to C.

Rating Factor	Factor Rating (0-3)	Multi- plier	Factor Score	
1. Surface Water Migration Distance to nearest surface water Net precipitation Surface erosion Surface permeability Rainfall intensity	3 2 1 1 3	8 6 8 6	24 12 8 6 24	24 18 24 18 24
Subtotals	5		74	108
Subscore (188 x factor score subtota	al/waxiwum	score sub	total)	69
2. Flooding	8	1	0	3
Subscore (100 x factor score/3)				0
3. Ground-water migration Depth to ground water Net precipitation Soil permeability Subsurface flows Direct access to ground water	3 2 2 8	8 6 8 8	24 12 16 0	24 18 24 24 24
Subtotals	5		52	114
Subscore (100 x factor score subtota	al/maximum	score sub	total)	46

C. Highest pathway subscore.

Enter the highest subscore value from A, B-1, B-2 or B-3 above.

Pathways Subscore 69

IV. WASTE MANAGEMENT PRACTICES A. Average the three subscores for receptors, waste characteristics, and pathways.

Receptors 36

Waste Characteristics 48 Pathways divided by 3 = 153 Gross total score B. Apply factor for waste containment from waste management practices. Bross total score x waste management practices factor = final score 51 1.00 51

Name of Site: Beryllium Leaching Area Location: Adjacent to Building 1697; E. of Chemical Treatment Pond Date of Operation or Occurrence: 1963 - 1967 Owner/Operator: AEDC Comments/Description: Water from washing machines used for Ber Water from washing machines used for Beryllium contaminated clothes

Site Rated by: R. L. Thoese

I. RECEPTORS Rating Factor	Factor Rating (0-3)	Multi- plier	Factor Score	Maximum Possible Score	
A. Population within 1,000 feet of site B. Distance to nearest well C. Land use/zoning within 1 mile radius D. Distance to reservation boundary E. Critical environments within 1 mile radius of site F. Water quality of nearest surface water body G. Ground water use of uppermost aquifer H. Population served by surface water supply within 3 miles downstream of site I. Population served by ground-water supply within 3 miles of site	1 2 1 3 1 0 0 0	10 3 6 10 6 9 6	4 18 6 38 6 8	12 38 9 18 38 18 27 18	
Subtotals			68	180	
Receptors subscore (180 x factor score subtotal/maximu	score su	btotal)		38	

II. WASTE CHARACTERISTICS

- A. Select the factor score based on the estimated quantity, the degree of hazard, and the confidence level of the information.
 - Waste quantity (1=small, 2=medium, 3=large)
 Confidence level (1=confirmed, 2=suspected)
 Hazard rating (1=low, 2=medium, 3=high)
 - c

Factor Subscore A (from 20 to 100 based on factor score matrix)

B. Apply persistence factor Factor Subscore A x Persistence Factor = Subscore B

60 1.00 60

C. Apply physical state multiplier
Subscore B x Physical State Multiplier = Waste Characteristics Subscore

68 **e.** 50

Page 2 of 2 Beryllium Leaching Area III. PATHWAYS

A. If there is evidence of migration of hazardous contaminants, assign maximum factor subscore of 100 points for direct evidence or 80 points for indirect evidence. If direct evidence exists then proceed to C. If no evidence or indirect evidence exists, proceed to B. Subscore B. Rate the migration potential for 3 potential pathways: surface water migration, flooding, and ground-water migration. Select the highest rating and proceed to C. Multi-Factor Factor Maximum Possible Rating (0-3) Rating Factor Score plier Score 1. Surface Water Migration 5 24 18 Distance to nearest surface water 12 Net precipitation 12 24 18 Surface erosion Surface permeability Rainfall intensity 6 24 24 Subtotals 72 108 Subscore (198 x factor score subtotal/maximum score subtotal) 67 2. Flooding 1 Subscore (100 x factor score/3) 3. Ground-water migration Depth to ground water Net precipitation Soil permeability 18 24 24 ē 8 Subsurface flows Direct access to ground water Subtotals Subscore (100 x factor score subtotal/maximum score subtotal) 32 C. Highest pathway subscore.

Enter the highest subscore value from A, B-1, B-2 or B-3 above. 67 Pathways Subscore IV. WASTE MANAGEMENT PRACTICES A. Average the three subscores for receptors, waste characteristics, and pathways. Receptors Waste Characteristics Pathways 135 divided by 3 =Total Gross total score B. Apply factor for waste containment from waste management practices. Gross total score x waste management practices factor = final score

1.00

45

45

HAZARD ASSESSMENT RATING METHODOLOGY FORM Name of Site: Burn Area No. 2 Location: E. and S.E. of AEDC Airfield Date of Operation or Occurrence: 19 AEDC Owner/Operator: Comments/Description: One time burning of solid rocket fuel Site Rated by: R. L. Thoem I. RECEPTORS **Factor** Multi-**Factor** Maximum Possible Rating plier Score Rating Factor (8-3)Score Population within 1,000 feet of site 12 38 20 3 12 Distance to nearest well Land use/zoning within 1 mile radius 10 D. Distance to reservation boundary E. Critical environments within 1 mile radius of site F. Water quality of nearest surface water body G. Ground water use of uppermost aquifer 18 39 18 27 30 6 10 9 H. Population served by surface water supply 18 within 3 miles downstream of site I. Population served by ground-water supply within 3 miles of site 6 12 18 Subtotals 83 180 Receptors subscore (100 x factor score subtotal/maximum score subtotal) 46 II. WASTE CHARACTERISTICS A. Select the factor score based on the estimated quantity, the degree of hazard, and the confidence level of the information. Waste quantity (1=small, 2=medium, 3=large) Confidence level (1=confirmed, 2=suspected) 2. Confidence level (1=confirmed, 2=suspec 3. Hazard rating (1=low, 2=medium, 3=high) Factor Subscore A (from 20 to 100 based on factor score matrix) B. Apply persistence factor Factor Subscore A x Persistence Factor = Subscore B 48 0.80

ľ

C. Apply physical state multiplier

48

Subscore B x Physical State Multiplier = Waste Characteristics Subscore

III. PATHWAYS

A. If there is evidence of migration of hazardous contaminants, assign maximum factor subscore of 100 points for direct evidence or 80 points for indirect evidence. If direct evidence exists then proceed to C. If no evidence or indirect evidence exists, proceed to B.

B. Rate the migration potential for 3 potential pathways: surface water migration, flooding, and ground-water migration. Select the highest rating and proceed to C.

Rating Factor	Factor Railing (6-3)	Multi- plier		Maximum Possible Score
1. Surface Water Migration Distance to nearest surface water Net precipitation Surface erosion Surface permeability Rainfall intensity	2 2 2 3	8 6 8 6	16 12 8 12 24	24 18 24 18 24
Subtotals	i		64	108
Subscore (100 x factor score subtota	l/maximum s	score sub	total)	59
2. Flooding	0	1		3
Subscore (100 x factor score/3)				
3. Ground-water migration Depth to ground water Net precipitation Soil permeability Subsurface flows Direct access to ground water	2 2 1 0	8 6 8 8	16 12 8 0	24 18 24 24 24 24
Subtotals	;		36	114
Subscore (198 x factor score subtota	l/maximum	score sub	total)	32
. Highest pathway subscore. Enter the highest subscore value fro	om A, B-1, 1	B-2 or B-	3 above.	
	Path nys S	ubscore		59

IV. WASTE MANAGEMENT PRACTICES

A. Average the three subscores for receptors, waste characteristics, and pathways.

Receptors

Haste Characteristics

Pathways

Total

129 divided by 3 = 43 Gross total score

B. Apply factor for waste containment from waste management practices.

Gross total score x waste management practices factor = final score

43 x 1.00 = 43 \

APPENDIX I
GLOSSARY OF TERMINOLOGY AND ABBREVIATIONS

APPENDIX I GLOSSARY OF TERMINOLOGY AND ABBREVIATIONS

AEDC: Arnold Engineering Development Center

AEROZINE: A propellant with a 50-50 blend of hydrazine and UDMH; referred to as AZ-50.

AF: Air Force.

AFCS: Air Force Communications Service.

AFFF: Aqueous Film Forming Foam, a fire extinguishing agent.

AFS: Air Force Station.

AFSC: Air Force Systems Command.

Ag: Chemical symbol for silver.

Al: Chemical symbol for aluminum.

ALLUVIUM: Materials eroded, transported and deposited by streams.

ALLUVIAL FAN: A fan-shaped deposit formed by a stream either where it issues from a narrow mountain valley into a plain or broad valley, or where a tributary stream joins a main stream.

ARTESIAN: Ground water contained under hydrostatic pressure.

AQUIFER: A geologic formation, group of formations, or part of a formation that is capable of yielding water to a well or spring.

AVGAS: Aviation Gasoline.

AZ-50: Aerozine, a propellant.

Ba: Chemical symbol for barium.

BAROMETRIC WELL: A sump containing water which separates a test cell at vacuum from atmospheric pressure permitting cooling water to be drained from the vacuum test cell to the well.

BIOACCUMULATE: Tendency of elements or compounds to accumulate or build up in the tissues of living organisms when they are exposed to these elements in their environments, e.g., heavy metals.

Cd: Chemical symbol for cadmium.

CE: Civil Engineering.

CERCLA: Comprehensive Environmental Response, Compensation and Liability Act.

CHIPS: Term used to define recyclable metal turnings or shavings.

CIRCA: About; used to indicate an approximate date.

CLOSURE: The completion of a set of rigidly defined functions for a hazardous waste facility no longer in operation.

CN: Chemical symbol for cyanide.

COD: Chemical Oxygen Demand, a measure of the amount of oxygen required to oxidize organic and oxidizable inorganic compounds in water.

COE: Corps of Engineers.

CONFINED AQUIFER: An aquifer bounded above and below by impermeable strata or by geologic units of distinctly lower permeability than that of the aquifer itself.

CONFINING UNIT: An impermeable or poorly permeable layer which restricts the movement of ground water.

CONTAMINATION: The degradation of natural water quality to the extent that its usefulness is impaired; there is no implication of any specific limits since the degree of permissible contamination depends upon the intended end use or uses of the water.

Cr: Chemical symbol for chromium.

Cu: Chemical symbol for copper.

DIP: The angle at which a stratum is inclined from the horizontal.

DISPOSAL FACILITY: A facility or part of a facility at which hazardous waste is intentionally placed into or on land or water, and at which waste will remain after closure.

DISPOSAL OF HAZARDOUS WASTE: The discharge, deposit, injection, dumping, spilling, or placing of any hazardous waste into or on land or water so that such waste or any constituent thereof may enter the environment or be emitted into the air or discharged into any waters, including ground water.

DOD: Department of Defense.

DOWNGRADIENT: In the direction of decreasing hydraulic static head; the direction in which ground water flows.

DPDO: Defense Property Disposal Office.

DUMP: An uncovered land disposal site where solid and/or liquid wastes are deposited with little or no regard for pollution control or aesthetics; dumps are susceptible to open burning and are exposed to the elements, disease vectors and scavengers.

EFFLUENT: A liquid waste discharge from a manufacturing or treatment process, in its natural state, or partially or completely treated, that discharges into the environment.

EOD: Explosive Ordnance Disposal.

EP: Extraction Procedure, the EPA's standard laboratory procedure for leachate generation.

EPA: U.S. Environmental Protection Agency.

EROSION: The wearing away of land surface by wind, water, or chemical processes.

ES: Engineering-Science.

ETF: Engine Test Facility.

FACILITY (AS APPLIED TO HAZARDOUS WASTES): Any land and appurtenances thereon and thereto used for the treatment, storage and/or disposal of hazardous wastes.

FAULT: A fracture in rock along which the adjacent rock surfaces are differentially displaced.

Fe: Chemical symbol for iron.

FLOW PATH: The direction or movement of ground water as governed principally by the hydraulic gradient.

FPTA: Fire Protection Training Area.

FT: Fire Training Area.

GC/MS: Gas chromatograph/mass spectrophotometer, a laboratory procedure for identifying unknown compounds.

GROUND WATER: Water beneath the land surface in the saturated zone that is under atmospheric or artesian pressure.

GROUND WATER RESERVOIR: The earth materials and the intervening open spaces that contain ground water.

HALF-LIFE: The time required for half the atoms present in radioactive substance to disintegrate.

HARDFILL: Disposal sites receiving construction debris, wood, miscellaneous spoil material.

HARM: Hazard Assessment Rating Methodology.

HAZARDOUS SUBSTANCE: Under CERCLA, the definition of hazardous substance includes:

- 1. All substances regulated under Paragraphs 311 and 307 of the Clean Water Act (except oil);
 - All substances regulated under Paragraph 3001 of the Solid Waste Disposal Act;
 - All substances regulated under Paragraph 112 of the Clean Air Act;
 - 4. All substances which the Administrator of EPA has acted against under Paragraph 7 of the Toxic Substance Control Act;
 - Additional substances designated under Paragraph 102 of the Superfund bill.

HAZARDOUS WASTE: As defined in RCRA, a solid waste, or combination of solid wastes, which because of its quantity, concentration, or physical, chemical or infectious characteristics may cause or significantly contribute to an increase in mortality or an increase in serious, irreversible, or incapacitating reversible illness; or pose a substantial present or potential hazard to human health or the environment when improperly treated, stored, transported, or disposed of, or otherwise managed.

 ${\tt HAZARDOUS}$ WASTE GENERATION: The act or process of producing a hazardous waste.

He: Chemical symbol for helium.

HEAVY METALS: Metallic elements, including the transition series, which include many elements required for plant and animal nutrition in trace concentrations but which become toxic at higher concentrations.

HEF: High energy fuel; an alkyl borane fuel.

Hg: Chemical symbol for mercury.

HOTSHOT TYPE WIND TUNNEL: A wind tunnel wherein the discharge of an electric arc heats a capsule of test gas to high pressure and temperature thus causing a diaphragm to rupture and allow test gas to expand through a nozzle into the tunnel test section.

HQ: Headquarters.

HTH: A strong chlorine oxidizing agent.

HWMF: Hazardous Waste Management Facility.

HYDRAZINE: A propellant (N₂H₄); a strong reducing agent which reacts with carbon dioxide and oxygen in air resulting in spontaneous ignition.

HYPERSONIC: Speeds of five or more times the speed of sound.

INCOMPATIBLE WASTE: A waste unsuitable for commingling with another waste or material because the commingling might result in generation of extreme heat or pressure, explosion or violent reaction, fire, formation of substances which are shock sensitive, friction sensitive, or otherwise have the potential for reacting violently, formation of toxic dusts, mists, fumes, and gases, volatilization of ignitable or toxic chemicals due to heat generation in such a manner that the likelihood of contamination of ground water or escape of the substance into the environment is increased, any other reaction which might result in not meeting the air, human health, and environmental standards.

INFILTRATION: The movement of water through the soil surface into the ground.

IRP: Installation Restoration Program.

J-4: Rocket test cell.

JP-4: Jet Propulsion Fuel Number Four, contains both kerosene and gasoline fractions.

JP-5: Jet Propulsion Fuel Number Five; consists of high boiling kerosene fractions.

LEACHATE: A solution resulting from the separation or dissolving of soluble or particulate constituents from solid waste or other man-placed medium by percolation of water.

LEACHING: The process by which soluble materials in the soil, such as nutrients, pesticide chemicals or contaminants, are washed into a lower layer of soil or are dissolved and carried away by water.

LENTICULAR: A bed or rock stratum or body that is lens-shaped.

LH: Liquid Hydrogen.

LINER: A continous layer of natural or man-made materials beneath or on the sides of a surface impoundment, landfill, or landfill cell which restricts the downward or lateral escape of hazardous waste, hazardous waste constituents or leachate.

LN₂: Liquid Nitrogen.

LOX: Liquid Oxygen.

LO₂: Liquid Oxygen

MACH NUMBER: A number representing the ratio of the speed of a body to the speed of sound in the surrounding medium.

MARK I: Aerospace environmental chamber capable of testing full-scale spacecraft.

MEK: Methyl Ethyl Ketone.

MGD: Million Gallons per Day.

MMH: Monomethylhydrazine - propellant.

MOGAS: Motor gasoline.

Mn: Chemical symbol for manganese.

MONITORING WELL: A well used to measure ground-water levels and to obtain samples.

Mr/hr: Millirem/hour; a measure of radioactivity.

MSL: Mean Sea Level.

NAK: Sodium potassium alloy, a liquid metal.

NDI: Non-destructive Inspection.

NET PRECIPITATION: The amount of annual precipitation minus annual evaporation.

NGVD: National Geodetic Vertical Datum of 1929.

N2H4: Hydrazine

Ni: Chemical symbol for nickel.

 $N_2^0_4$: Nitric Oxide or Nitrogen Tetroxide.

NPDES: National Pollutant Discharge Elimination System.

OEHL: Occupational and Environmental Health Laboratory.

OPEN LOOP WIND TUNNEL: Nonrecirculating wind tunnel; exhaust characteristically discharges to atmosphere or other volume, makeup air supplied by machinery or high pressure source.

OPNS: Operations.

ORGANIC: Being, containing or relating to carbon compounds, especially in which hydrogen is attached to carbon.

OSI: Office of Special Investigations.

O&G: Symbols for oil and grease.

OXIDIZER: Material necessary to support combustion of fuel.

Pb: Chemical symbol for lead.

PCB: Polychlorinated Biphenyl; liquids used as a dielectrics in electrical equipment.

PERCOLATION: Movement of moisture by gravity or hydrostatic pressure through interstices of unsaturated rock or soil.

PERMEABILITY: The capacity of a porous rock, soil or sediment for transmitting a fluid without damage to the structure of the medium.

pH: Negative logarithm of hydrogen ion concentration.

PLENUM CHAMBER: A cavity which can be excavated allowing part of the wind tunnel air stream to be removed through perforated wall.

POL: Petroleum, Oils and Lubricants.

POLLUTANT: Any introduced gas, liquid or solid that makes a resource unfit for a specific purpose.

POTENTIOMETRIC SURFACE: The imaginery surface to which water in an aquifer would rise in tightly screened wells penetrating it.

PPB: Parts per billion by weight.

PPM: Parts per million by weight.

PRECIPITATION: Rainfall.

PROPELLANT: Fuels, oxidizers and monopropellants.

PWT: Propulsion Wind Tunnel.

QUATERNARY MATERIALS: The second period of the Cenozoic geologic era, following the Tertiary, and including the last 2-3 million years.

RCRA: Resource Conservation and Recovery Act.

RECHARGE AREA: A surface area in which surface water or precipitation percolates through the unsaturated zone and eventually reaches the zone of saturation. Recharge areas may be natural or manmade.

RECHARGE: The addition of water to the ground-water system by natural or artificial processes.

RFNA: Red Fuming Nitric Acid.

RP-1: Rocket Propulsion Number One, high boiling kerosene fractions.

SANITARY LANDFILL: A land disposal site using an engineered method of disposing solid wastes on land in a way that minimizes environmental hazards.

SATURATED ZONE: That part of the earth's crust in which all voids are filled with water.

SCS: U.S. Department of Agriculture Soil Conservation Service.

SLUDGE: The solid residue resulting from a manufacturing or wastewater treatment process which also produces a liquid stream. The residue which accumulates in liquid fuel storage tanks.

SOLID WASTE: Any garbage, refuse, or sludge from a waste treatment plant, water supply treatment, or air pollution control facility and other discarded material, including solid, liquid, semi-solid, or contained gaseous material resulting from industrial, commercial, mining, or agricultural operations and from community activities, but does not include solid or dissolved materials in domestic sewage; solid or dissolved materials in irrigation return flows; industrial discharges which are point source subject to permits under Section 402 of the Federal Water Pollution Control Act, as amended (86 USC 880); or source, special nuclear, or by-product material as defined by the Atomic Energy Act of 1954 (68 USC 923).

SPILL: Any unplanned release or discharge of a hazardous waste onto or into the air, land, or water.

STORAGE OF HAZARDOUS WASTE: Containment, either on a temporary basis or for a longer period, in such a manner as not to constitute disposal of such hazardous waste.

STP: Sewage Treatment Plant.

ではないでは、このではない。このではない。 ではないない。 SUBSONIC: Speeds less than the speed of sound.

SUPERSONIC: Speeds of from one to five times the speed of sound.

TCA: 1,1,1,-Tetrachloroethane.

TCE: Trichloroethylene.

TDS: Total Dissolved Solids.

TEA: Triethylaluminum - a propellant.

TEB: Triethylboron - a propellant.

TOC: Total Organic Carbon.

TOXICITY: The ability of a material to produce injury or disease upon exposure, ingestion, inhalation, or assimilation by a living organism.

TRANSMISSIVITY: The rate at which water is transmitted through a unit width of aquifer under a unit hydraulic gradient.

TRANSONIC: Speeds approximating the speed of sound.

TREATMENT OF HAZARDOUS WASTE: Any method, technique, or process including neutralization designed to change the physical, chemical, or biological character or composition of any hazardous waste so as to neutralize the waste or so as to render the waste nonhazardous.

TSD: Treatment, storage or disposal.

UDMH: Unsymmetrical dimethylhydrazine, a propellant.

UPGRADIENT: In the direction of increasing hydraulic static head; the direction opposite to the prevailing flow of ground-water.

USAF: United States Air Force.

USFWS: United States Fish and Wildlife Service.

USGS: United States Geological Survey.

VARSOL: Also called mineral or petroleum spirits; a volatile clear non-fluorescent liquid. Properties include boiling point 40 to 80°C; flash point less than 0°F, lower explosion limit 1.1%; upper explosion limit 5.9%; density .65 to .66; auto ignition limit 550°F; and vapor density of 2.5.

VKF: Von Karman Facility.

WATER TABLE: Surface of a body of unconfined ground water at which the pressure is equal to that of the atmosphere.

WWTP: Wastewater Treatment Plant.

Zn: Chemical symbol for zinc.

APPENDIX K

INDEX OF REFERENCES

TO POTENTIAL CONTAMINATION SITES AT AEDC

APPENDIX K INDEX OF SITES WITH POTENTIAL FOR ENVIRONMENTAL CONTAMINATION

Site	References (Page Numbers)
Landfill No. 2/ Leaching Pit No. 2	6, 7, 9, 4-40, 4-43, 4-55, 4-57, 5-1, 5-2, 6-2, 6-3, 6-10
Retention Reservoir/ J-4 Area Surface Drainage	6, 7, 9, 4-50, 4-55, 4-57, 5-2, 5-3 6-2, 6-3, 6-10
Landfill No. 4	6, 7, 9, 4-41, 4-55, 4-57, 5-2, 5-3, 6-3, 6-6, 6-10
Surface Drainage - Bradley	6, 7, 9, 4-52, 4-55, 4-57, 5-2, 5-3, 6-3, 6-6, 6-10
Surface Drainage - Rollins	6, 7, 10, 4-52, 4-55, 4-57, 5-2, 5-4, 6-4, 6-6, 6-10
Camp Forrest Water Treatment Plant	6, 7, 10, 4-47, 4-55, 4-57, 5-2, 5-4, 6-4, 6-6, 6-10
Testing Areas	6, 7, 10, 4-24, 4-55, 4-57, 5-2, 5-4, 6-4, 6-8, 6-10
Leaching Pit No. 1	6, 7, 10, 4-43, 4-55, 4-57, 5-2, 5-5, 6-4, 6-8, 6-10
Surface Drainage - Brumalow	6, 7, 11, 4-52, 4-55, 4-57, 5-2, 5-5, 6-5, 6-6, 6-10
Fire Protection Training Area No. 2/Burn Area No. 1/ Landfill No. 1	6, 7, 11, 4-34, 4-36, 4-44, 4-55, 4-57 5-2, 5-5, 6-5, 6-8, 6-10
Chemical Treatment Pond	6, 7, 11, 4-49, 4-55, 4-57, 5-2, 5-6, 6-5, 6-8, 6-10
Retention Leach/Burn Area	6, 7, 11, 4-43, 4-55, 4-57, 5-2, 5-6, 6-5, 6-9, 6-10
Fire Protection Training Area No. 1	6, 7, 4-34, 4-55, 4-57, 5-2, 5-6
Surface Drainage - Crumpton	6, 7, 4-52, 4-55, 4-57, 5-2, 5-6
HEF Burn/Burial Area	6, 7, 4-47, 4-55, 4-57, 5-2, 5-7
Beryllium Leaching Area	6, 7, 4-43, 4-55, 4-57, 5-2, 5-7
Burn Area No. 2	6, 7, 4-44, 4-55, 4-57, 5-2, 5-7

TABLE OF CONTENTS (Continued)

		Page No.
	Landfill No. 3	4-40
	Landfill No. 4	4-41
	Hardfill	4-41
	Leaching Pits	4-41
	Leaching Pit No. 1	4-43
	Leaching Pit No. 2	4-43
	Beryllium Leaching Area	4-43
	Retention Leach/Burn Area	4-44
	Burn Areas	4-44
	Burn Area No. 1	4-44
	Burn Area No. 2	4-44
	HEF Burn/Burial Area	4-47
	Camp Forrest Water Treatment Plant	4-47
	Treatment Facilities	4-47
	Wastewater Treatment Plant	4-47
	Neutralization Pretreatment Facilities	4-49
	Chemical Treatment Pond	4-49
	Retention Reservoir	4-50
	Surface Drainage Systems	4-50
	Rollins Creek	4-52
	Bradley Creek	4-52
	Brumalow Creek	4-52
	Crumpton Creek and J-4 Area	4-52
	Miscellaneous	4-53
	Camp Forrest Army Operations	4-53
	Road Oiling	4-53
	Evaluation of Past Disposal Activities and Facilities	4-54
	Sites Eliminated from Further Evaluation	4-54
	Sites Evaluated Using HARM	4-56
SECTION 5	CONCLUSIONS	5-1
	Landfill No. 2/Leaching Pit No. 2 (Site No. 1)	5-1
	Retention Reservoir/J-4 Area Surface Drainage (Site No. 2)	5-3
	Landfill No. 4 (Site No. 3)	5-3
	Surface Drainage - Bradley (Site No. 4)	5-3
	Surface Drainage - Rollins (Site No. 5)	5-4
	Camp Forrest Water Treatment Plant (Site No. 6)	5-4
	Testing Areas (Site No. 7)	5-4
	Leaching Pit No. 1 (Site No. 8)	5-5
	Surface Drainage - Brumalow (Site No. 9)	5-5
	Fire Protection Training Area No. 2/	5-5
	Burn Area No. 1/Landfill No. 1 (Site No. 10)	

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

EXECUTIVE SUMMARY

SECTION	1	INTRODUCTION	1 – 1
		Background and Authority	1 – 1
		Purpose and Scope	1-2
		Methodology	1-5
SECTION	2	INSTALLATION DESCRIPTION	2-1
		Location, Size and Boundaries	2-1
		History	2-1
		Organization and Mission	2-6
SECTION	3	ENVIRONMENTAL SETTING	3-1
		Meteorology	3-1
		Geography	3-3
		Topography	3-3
		Soils	3-3
		Surface-Water Resources	3-5
		Drainage	3 - 5
		Surface-Water Use	3-13
		Surface-Water Quality	3-15
		Ground-Water Resources	3-15
		Hydrogeologic Units	3-18
		Ground-Water Use	3-26
		Ground-Water Quality	3-26
		Biotic Environment	3-37
		Summary of Environmental Setting	3-37
SECTION	4	FINDINGS	4-1
		Installation Hazardous Waste Activity Review	4-1
		Industrial Operations (Shops)	4-2
		Waste Accumulation and Storage Areas	4-20
		Fuels Management	4-22
		Spills and Leaks	4-24
		Pesticide Utilization	4-33
		Fire Protection Training	4-34
		Installation Waste Disposal Methods	4-34
		Landfills	4-36
		Landfill No. 1	4-36
		Landfill No. 2	4-40

84 11 2 079

Page No.

i

TABLE OF CONTENTS (Continued)

		Page No.
	Chemical Treatment Pond (Site No. 11)	5-6
	Retention Leach/Burn Area (Site No. 12)	5-6
	Fire Protection Training Area No. 1 (Site No. 13)	5-6
	Surface Drainage - Crumpton (Site No. 14)	5-6
	HEF Burn/Burial Area (Site No. 15)	5-7
	Beryllium Leaching Area (Site No. 16)	5-7
	Burn Area No. 2 (Site No. 17)	5-7
SECTION 6	RECOMMENDATIONS	6-1
	Recommended Phase II Monitoring	6-1
	Landfill No. 2/Leaching Pit No. 2 (Site No. 1)	6-2
	Retention Reservoir/J-4 Area Surface Drainage (Site No. 2)	6-2
	Landfill No. 4 (Site No. 3)	6-6
	Surface Drainage - Bradley, Rollins and	6-6
	Brumalow (Site Nos. 4, 5, and 9)	
	Camp Forrest Water Treatment Plant (Site No. 6)	6-6
	Testing Areas (Site No. 7)	6-8
	Leaching Pit No. 1 (Site No. 8)	6-8
	Fire Protection Training Area No. 2/	6-8
	Burn Area No. 1/Landfill No. 1 (Site No. 10)	
	Chemical Treatment Pond (Site No. 11)	6-8
	Retention Leach/Burn Area (Site No. 12)	6-9
	Recommended Guidelines for Land Use	6-9
	Restrictions	
APPENDIX A	BIOGRAPHICAL DATA	A-1
Annews n	A TOTAL OF THE PROPERTY AND AUTOTOP A CONTACTOR	ъ 1
APPENDIX B	LIST OF INTERVIEWEES AND OUTSIDE AGENCY CONTACTS	B-1
APPENDIX C	TENANT ORGANIZATIONS AND MISSIONS	C-1
APPENDIX D	SUPPLEMENTAL BASE FINDINGS INFORMATION	D-1
APPENDIX E	MASTER LIST ~ INDUSTRIAL SHOPS	E-1
APPENDIX F	PHOTOGRAPHS	F-1
APPENDIX G	USAF INSTALLATION RESTORATION PROGRAM HAZARD ASSESSMENT RATING METHODOLOGY	G-1
APPENDIY H	SITE HAZARD ASSESSMENT RATING FORMS	H_1

TABLE OF CONTENTS (Continuea)

		Page No.
APPENDIX I	GLOSSARY OF TERMINOLOGY AND ABBREVIATIONS	I-1
APPENDIX J	REFERENCES	J-1
APPENDIX K	INDEX OF REFERENCES TO POTENTIAL CONTAMINATION	K-1

LIST OF TABLES

Number	<u>Title</u>	Page
1	Sites Evaluated Using the Hazard Assessment Rating Methodology, AEDC	6
2	Recommended Monitoring Program for Phase II IRP at AEDC	9
3.1	Climatic Conditions for AEDC	3-2
3.2	AEDC Soils	3-8
3.3	Selected Surface-Water Quality Data for AEDC	3-17
3.4	Hydrogeologic Units and Their Water-Bearing	3-20
	Characteristics in the Vicinity of AEDC	
3.5	Water Well Data for AEDC and Vicinity	3-29
3.6	Selected Ground-Water Quality Data for AEDC and Vicinity	3-36
4.1	Industrial Operations (Shops), Waste Management	4-3
4.2	Waste Accumulation Points	4-23
4.3	Fuel Storage Tanks	4-25
4.4	Semitrailer Fuel Tanks	4-28
4.5	Abandoned Tanks	4-29
4.6	Missile Propellant Storage Tanks	4-30
4.7	Landfill and Hardfill Areas	4-39
4.8	Summary of Flow Chart Logic for Areas of	4-55
4.9	Initial Health, Welfare and Environmental Concern at AEDC Summary of HARM Scores for Potential Contamination Sources at AEDC	4-57
5.1	Sites Evaluated Using the Hazard Assessment Rating Methodology, AEDC	5-2
6.1	Recommended Monitoring Program for Phase II IRP at AEDC	6-3
6.2	Recommended List of Analytical Parameters for Phase II	6-7
6.3	Recommended Guidelines at Potential Contamination Sites for Land Use Restrictions, AEDC	6-10
6.4	Description of Guidelines for Land Use Pestrictions	6-11

LIST OF FIGURES

Number	Description	Page
1	Sites of Potential Environmental Contamination	4
2	Sites of Potential Environmental Contamination	5
1.1	Installation Restoration Program	1-3
1.2	Phase I Installation Restoration Program - Records Search Flow Chart	1-7
2.1	Regional Location	2-2
2.2	Area Location	2-3
2.3	Installation Site Plan	2-4
2.4	Installation Site Plan	2-5
3.1	Major Physiograpic Provinces	3-4
3.2	General Soils Map	3-6
3.3	Plant Area Soils Map	3-7
3.4	General Surface Drainage Map	3-10
3.5	Plant Area Surface Drainage Map	3-12
3.6	Flood Prone Areas	3-14
3.7	Selected Surface-Water Quality Sampling Locations	3-16
3.8	Geologic Map	3-19
3.9	Test Boring Log XF-3-81	3-21
3.10	Location of Hydrogeologic Cross Sections	3-22
3.11	Hydrogeologic Cross Section A-A'	3-23
3.12	Hydrogeologic Cross Section B-B'	3-24
3.13	Regional Well Location Map	3-27
3.14	Plant Area Well Location Map	3-28
3.15	Selected Ground-Water Quality Sampling Wells	3-35
4.1	Waste Accumulation Areas	4-21
4.2	Major Liquid Fuels Storage Areas	4-27
4.3	Spill And Leak Areas	4-32
4.4	Fire Protection Training Areas	4-35
4.5	Landfills	4-37
4.6	Landfills	4-38
4.7	Leaching Pits/Areas	4-42
4.8	Burn Areas	4-45
4.9	Burn Areas	4-46
4.10	Treatment Facilities	4-48
4.11	Surface Drainage Systems	4-51