

Breakdown of the Solution

- 1.Import and use OpenCV to parse picture
- 2. Train a machine learning model
- 3. Apply model to recognize pictures
- 4. Solve the puzzle and display the results

Learnings from OpenCV portion

Original Picture

Learnings from OpenCV portion

Parse Board

Learnings from OpenCV portion

Original Picture

Filter and Blur

Corner Detection

Parse Board

Individual Pictures

Machine Learning Model

- MNIST CNN model with >99% accuracy
 - Detecting our sudoku images 23%
- Hypothesized due to
 - Printed vs Handwritten
 - Image imperfections:
 - Size
 - Scale
 - Borders

Actual CNN MNIST FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE 23.1%

Created printed digit data set

Characteristics of new data set:

- · Created 540 images of printed digits using Adobe InDesign
- · Includes 60 different fonts of digits 1-9
- Applied 70 transformations: added borders, shifts, skew, and noise
- Contains 4,200 images for each digit 1-9
- Contains 37,800 images & corresponding labels

Machine **Learning Model** MNIST CNN model with >99% accuracy

- - Detecting our sudoku images 23%
- Hypothesized due to
 - Printed vs Handwritten
 - Image imperfections:
 - Size
 - Scale
 - Borders
- New Data CNN model with >99% accuracy
 - Detecting our sudoku images 85%

	6	FALSE	CNN DigitData TRUE
	4	FALSE	FALSE
	7	TRUE	FALSE
	7	FALSE	TRUE
(6	FALSE	TRUE
9	9	FALSE	TRUE
	5	TRUE	TRUE
	8	FALSE	FALSE
	7	FALSE	TRUE
	2	FALSE	TRUE
	9	FALSE	FALSE
	3	TRUE	TRUE
	8	FALSE	TRUE
	5	FALSE	TRUE
	4	FALSE	TRUE
	3	FALSE	TRUE
	1	FALSE	TRUE
	7	FALSE	TRUE
	5	TRUE	TRUE
	2 3	TRUE FALSE	TRUE TRUE
	2	TRUE	TRUE
	8	FALSE	TRUE
	2	FALSE	TRUE
	3	FALSE	TRUE
	1	FALSE	TRUE
		23.1%	84.6%

Machine Learning Model

- MNIST CNN model with >99% accuracy
 - Detecting our sudoku images 23%
- Hypothesized due to
 - Printed vs Handwritten
 - Image imperfections:
 - Size
 - Scale
 - Borders
- New Data CNN model with >99% accuracy
 - Detecting our sudoku images 85%
- Additional cleaning and centering input images
 - Detecting our sudoku images 96%

Actual Cl	NN MNIST	CNN DigitData	CNN DigitData (Cleaned)
6	FALSE	TRUE	TRUE
4	FALSE	FALSE	FALSE
7	TRUE	FALSE	TRUE
7	FALSE	TRUE	TRUE
6	FALSE	TRUE	TRUE
9	FALSE	TRUE	TRUE
5	TRUE	TRUE	TRUE
8	FALSE	FALSE	TRUE
7	FALSE	TRUE	TRUE
2	FALSE	TRUE	TRUE
9	FALSE	FALSE	TRUE
3	TRUE	TRUE	TRUE
8	FALSE	TRUE	TRUE
5	FALSE	TRUE	TRUE
4	FALSE	TRUE	TRUE
3	FALSE	TRUE	TRUE
1	FALSE	TRUE	TRUE
7	FALSE	TRUE	TRUE
5	TRUE	TRUE	TRUE
2	TRUE	TRUE	TRUE
3	FALSE	TRUE	TRUE
2	TRUE	TRUE	TRUE
8	FALSE	TRUE	TRUE
2	FALSE	TRUE	TRUE
3	FALSE	TRUE	TRUE
1	FALSE	TRUE	TRUE
	23.1%	84.69	6 96.2%

Lessons Learned

- Start with the right training data
- Improving detection accuracy can be done by:
 - Cleaning images
 - "Dirty-ing training data"
- Best results come from doing both