

Lista 7. Sistemas de Coordenadas, Retas e Planos no Espaço – Gabarito

MTM5512 - Geometria Analítica

Para os Exercícios de 1 a 13, $\Sigma = (O, \mathcal{E})$ é um sistema de coordenadas ortogonal no espaço, fixado.

Exercício 1.....

Em cada um dos casos abaixo, verifique se os pontos A,B e C são colineares.

(a) $A = (1, -1, 2)_{\Sigma}, B = (0, 1, 1)_{\Sigma}, C = (2, -3, 3)_{\Sigma}.$

Solução: Note que os vetores $\overrightarrow{AB} = (-1, 2, -1)_{\mathcal{E}}$ e $\overrightarrow{AC} = (1, -2, 1)_{\mathcal{E}}$ são paralelos, logo A, B, C são colineares.

(b) $A = (1, 1, -2)_{\Sigma}, B = (-1, 0, -4)_{\Sigma}, C = (5, 3, 2)_{\Sigma}.$

Solução: Note que os vetores $\overrightarrow{AB} = (-2, -1, -2)_{\mathcal{E}}$ e $\overrightarrow{AC} = (4, 2, 4)_{\mathcal{E}}$ são paralelos, logo A, B, C são colineares.

(c) $A = (3,0,1)_{\Sigma}, B = (2,1,0)_{\Sigma}, C = (4,5,2)_{\Sigma}.$

Solução: Note que os vetores $\overrightarrow{AB} = (-1, 1, -1)_{\mathcal{E}}$ e $\overrightarrow{AC} = (1, 5, 1)_{\mathcal{E}}$ não são paralelos, logo A, B, C não são colineares.

Exercício 2.....

Determine, se possível, valores reais para $m, n \in \mathbb{R}$ de modo que os pontos $A = (3, m, 5)_{\Sigma}$, $B = (n, 4, 4)_{\Sigma}$ e $C = (n, 0, n)_{\Sigma}$ sejam colineares.

Solução: O problema é equivalente a encontrar $m, n \in \mathbb{R}$ tais que os vetores $\overrightarrow{AB} = (n - 3, 4 - m, -1)_{\mathcal{E}}$ e $\overrightarrow{AC} = (n - 3, -m, n - 5)_{\mathcal{E}}$ sejam paralelos.

Para que eles sejam paralelos deve existir $\alpha \in \mathbb{R}$ tal que $(n-3,-m,n-5)_{\mathcal{E}} = \alpha(n-3,4-m,-1)_{\mathcal{E}}$.

- Se $n \neq 3$, então devemos ter $\alpha = 1$ e consequentemente n 5 = -1, ou seja, n = 4. Mas deveríamos ter 4 m = -m, o que é impossível.
- Para n=3, devemos ter $\alpha=2$ e assim também 8-2m=-m, e obtemos m=8.

A solução então é m=8 e n=3, e os pontos são $A=(3,8,5)_{\Sigma},\ B=(3,4,4)_{\Sigma}$ e $C=(3,0,3)_{\Sigma}.$

Exercício 3.....

Verifique se os pontos $A=(2,6,-5)_{\Sigma}$, $B=(5,5,0)_{\Sigma}$, $C=(6,9,7)_{\Sigma}$ e $D=(3,10,2)_{\Sigma}$ são vértices de um paralelogramo.

Solução: Basta notar que \overrightarrow{AB} e \overrightarrow{AD} são LI e $\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$.

Exercício 4.....

Dados os pontos $A = (1, 2, 5)_{\Sigma}$ e $B = (0, 1, 0)_{\Sigma}$, determine as coordenadas do ponto P no sistema Σ , onde P pertence à reta que passa por A e B, de modo que $\|\vec{PB}\| = 3\|\vec{PA}\|$.

Solução: A reta que passa por A e B tem equação r: $X = A + \lambda \vec{v}$, $\lambda \in \mathbb{R}$, onde $\vec{v} = \overrightarrow{BA} = (1,1,5)_{\mathcal{E}}$. Seja $\lambda_0 \in \mathbb{R}$ tal que $P = A + \lambda_0 \vec{v}$. Assim $\overrightarrow{PA} = -\lambda_0 \vec{v}$, e portanto $\|\overrightarrow{PA}\| = \sqrt{27}|\lambda_0|$. Ainda $\overrightarrow{PB} = \overrightarrow{PA} + \overrightarrow{AB} = -\lambda_0 \vec{v} - \vec{v}$ e assim $\overrightarrow{PB} = -(\lambda_0 + 1)\vec{v}$ e portanto $\|\overrightarrow{PB}\| = \sqrt{27}|\lambda_0 + 1|$. Do problema, como devemos ter $\|\overrightarrow{PB}\| = 3\|\overrightarrow{PA}\|$, devemos ter $|\lambda_0 + 1| = 3|\lambda_0|$. Esta equação modular tem soluções $\lambda_0 = \frac{1}{2}$ e $\lambda_0 = -\frac{1}{4}$. E assim temos dois possíveis pontos P:

$$P = \left(\frac{3}{2}, \frac{5}{2}, \frac{15}{2}\right)_{\Sigma}$$
 e $P = \left(\frac{3}{4}, \frac{7}{4}, \frac{15}{4}\right)_{\Sigma}$.

Exercício 5.....

Escreva as equações paramétricas da reta que passa pelo ponto $A=(2,0,-3)_{\Sigma}$ e:

(a) é paralela à reta que passa pelos pontos $B = (1,0,4)_{\Sigma}$ e $C = (2,1,3)_{\Sigma}$.

Solução:

$$r: \begin{cases} x = 2 + \lambda \\ y = \lambda \\ z = -3 - \lambda \end{cases}, \quad \lambda \in \mathbb{R}.$$

(b) é paralela à reta $s: \frac{1-x}{5} = \frac{3y}{4} = \frac{z+3}{6}$.

Solução:

$$r: \begin{cases} x = 2 - 5\lambda \\ y = \frac{4}{3}\lambda \\ z = -3 + 6\lambda \end{cases}, \quad \lambda \in \mathbb{R}.$$

(c) é paralela à reta s: $\begin{cases} x = 1 - 2\lambda \\ y = 4 + \lambda \\ z = -1 - \lambda \end{cases}$, para $\lambda \in \mathbb{R}$.

Solução:

$$r: \begin{cases} x = 2 - 2\lambda \\ y = \lambda \\ z = -3 - \lambda \end{cases}, \quad \lambda \in \mathbb{R}.$$

Exercício 6.....

Dados o ponto $A = (0, 2, 1)_{\Sigma}$ e a reta $r: (x, y, z)_{\Sigma} = (0, 2, -1)_{\Sigma} + \lambda(1, -1, 2)_{\mathcal{E}}$, para $\lambda \in \mathbb{R}$, encontre os pontos da reta r que distam $\sqrt{3}$ do ponto A. Responda também: a distância do ponto A à reta r é maior, menor ou igual a $\sqrt{3}$? Por quê?

Solução: Os pontos são dados por $P_1 = (0, 2, -1)_{\Sigma} + \lambda_1 (1, -1, 2)_{\mathcal{E}}$ e $P_2 = (0, 2, -1)_{\Sigma} + \lambda_2 (1, -1, 2)_{\mathcal{E}}$, onde $\lambda_1 = \frac{4 + \sqrt{10}}{6}$ e $\lambda_2 = \frac{4 - \sqrt{10}}{6}$.

Como encontramos 2 pontos diferentes, vemos que distância do ponto A à reta r é menor que $\sqrt{3}$ (pois se fosse maior não encontraríamos nenhum, e se fosse igual encontraríamos somente 1).

Exercício 7.....

Faça um esboço dos planos cujas equações gerais são dadas por

(a) x = 2

Solução: -

(b) y+1=0

Solução: -

(c) z + 4 = 0

Solução: -

(d) x - z = 0

Solução: -

Exercício 8

Mostre que os pontos $P = (-1, 0, 0)_{\Sigma}$, $Q = (2, -1, -1)_{\Sigma}$, $R = (0, 3, 1)_{\Sigma}$ e $S = (4, 5, 1)_{\Sigma}$ são vértices de um quadrilátero (porquê?). Escreva as equações das retas que contêm cada um dos seus lados.

Solução: Faça como o Exercício 3.

Exercício 9.....

Determine a equação geral do plano, determinado pelo ponto $P = (2, 1, -1)_{\Sigma}$ e pela reta r, de modo que qualquer ponto desta reta é da forma $(2t, 1+t, -1-t)_{\Sigma}$ para $t \in \mathbb{R}$.

Solução: Sugestão: Note que P não está na reta r, e com isso obtenha 3 pontos não colineares. Assim, obtenha dois vetores diretores do plano, e por fim obtenha um vetor normal ao plano para encontrar a equação geral

$$\pi: y = 1.$$

Exercício 10.....

Encontre a equação geral do plano que contém as retas dadas por

$$r: \frac{x-2}{3} = \frac{y-1}{2} = z$$
 e $s: \frac{x-2}{5} = y-1 = \frac{z}{3}$.

Solução: π : 5x - 4y - 7z - 6 = 0.

Exercício 11

Prove que a reta $r: X = (-4, 2, 4)_{\Sigma} + \lambda(1, -3, 5)_{\varepsilon}$, para $\lambda \in \mathbb{R}$ está contida no plano $\pi: x + 2y + z = 4$.

Solução: Note que os pontos da reta são da forma $X=(-4+\lambda,2-3\lambda,5+5\lambda)_{\Sigma}$ e como

$$-4 + \lambda + 2(2 - 3\lambda) + 4 + 5\lambda = 4,$$

vemos que todos os pontos de r satisfazem à equação geral de π , e portanto a reta r está contida em π .

Exercício 12.....

Sendo $\vec{n} = (2, 1, -1)_{\mathcal{E}}$ um vetor normal ao plano π que passa pelo ponto $(1, 2, 2)_{\Sigma}$, encontre as equações paramétricas de π .

Solução: Use a equação geral π : 2x + y - z - 2 = 0 para encontrar 3 pontos não colineares em π (eu usei $A = (0, 0, -2)_{\Sigma}$, $B = (0, 2, 0)_{\Sigma}$ e $C = (1, 0, 0)_{\Sigma}$), e depois encontre dois vetores diretores do plano. Uma possibilidade para as equações paramétrica de π é

$$\pi \colon \begin{cases} x = -\beta \\ y = 2\alpha + 2\beta , & \alpha, \beta \in \mathbb{R}. \\ z = -2 + 2\alpha \end{cases}$$

Exercício 13

Encontre a equação geral do plano que contém a reta $r: X = (0,0,2)_{\Sigma} + \lambda(1,-1,1)_{\varepsilon}$, para $\lambda \in \mathbb{R}$, e é perpendicular ao plano $\alpha: x - 2y + z - 1 = 0$.

Solução: Note que a normal deste plano dever ser ortogonal ao vetor diretor da reta dada e também ortogonal ao vetor normal do plano dado. Encontramos π : x - z + 2 = 0.

Exercício 14.....

Considere um paralelepípedo retângulo ABCDEFGH como na figura abaixo, com lados de comprimento AB=4, BC=3 e AE=2. Determine um sistema de coordenadas $\Sigma_1=(O_1,\mathcal{E}_1)$ conveniente e encontre:

(a) Uma equação vetorial da reta que passa por $A \in F$.

Solução: Nesta e nas seguintes, nosso sistema será $O_1 = A$ e $\mathcal{E}_1 = \{\frac{1}{4}\overrightarrow{AB}, \frac{1}{3}\overrightarrow{BC}, \frac{1}{2}\overrightarrow{AE}\} = \{\vec{e_1}, \vec{e_2}, \vec{e_3}\}$, que é ortonormal positiva.

O vetor diretor desta reta é $\vec{v} = (4,0,2)_{\mathcal{E}_1}$ e a equação da reta é

$$r \colon X = \lambda \vec{v}, \quad \lambda \in \mathbb{R}.$$

4

(b) Uma equação vetorial da reta que passa por $A \in C$.

Solução: $r: X = \lambda(4,3,0)_{\mathcal{E}_1}, \lambda \in \mathbb{R}.$

(c) Uma equação paramétrica da reta que passa por $A \in G$.

Solução: $r: X = \lambda(4,3,2)_{\mathcal{E}_1}, \lambda \in \mathbb{R}$.

(d) A equação geral do plano que contém a face ABCD.

Solução: π : z = 0.

(e) A equação geral do plano que contém a face BCGF.

Solução: π : x = 4.

Exercício 15

Seja $\Gamma=(O,\mathcal{F})$ um sistema de coordenadas ortogonal no plano. Sendo $A=(2,-1)_{\Gamma}$, $B=(5,4)_{\Gamma}$ e $C=(-7,8)_{\Gamma}$, encontre a equação da reta que bissecta o ângulo $B\hat{A}C$.

Solução: Temos $\overrightarrow{AB} = (3, -5)_{\mathcal{F}}$ e $\overrightarrow{AC} = (-9, 9)_{\mathcal{F}}$. Sejam $\overrightarrow{u} = \frac{\overrightarrow{AB}}{\|\overrightarrow{AB}\|} = \frac{1}{\sqrt{2}\sqrt{17}}(3, -5)_{\mathcal{F}}$ e $\overrightarrow{v} = \frac{\overrightarrow{AC}}{\|\overrightarrow{AC}\|} = \frac{1}{\sqrt{2}}(-1, 1)_{\mathcal{F}}$. Assim sabemos (de exercícios de listas anteriores) que um vetor diretor da reta que bissecta o ângulo \overrightarrow{BAC} é

$$\vec{w} = \vec{u} + \vec{v} = \frac{1}{\sqrt{2}\sqrt{17}}(2 - \sqrt{17}, -5 + \sqrt{17})_{\mathcal{F}}.$$

A reta então é dada por

$$r: X = A + \lambda \vec{w}, \quad \lambda \in \mathbb{R}.$$