Лабораторная работа #1

Вариант можно принять самостоятельно, #17 не занимать (выделен цветом)

Задание:

- 1. Рассмотреть функцию на заданном отрезке, построить график. По графику определить участок унимодальности [a_0 ; b_0] (длина произвольна)
- 2. Найти приближение к точке минимума х* при помощи метода дихотомии. Условия остановки процесса поиска:

a.
$$\varepsilon_1 = |x_k - x_{k-1}| < \varepsilon = 0,001[a_0;b_0]$$

b.
$$\varepsilon_2 = [a_k; b_k] < \varepsilon$$

Записать число итераций

3. Найти приближение к точке минимума х* при помощи метода Ньютона. Условия остановки процесса поиска:

a.
$$\varepsilon_3 = |x_k - x_{k-1}| < \varepsilon$$

b.
$$\varepsilon_4 = |f'(x_k)| < \varepsilon$$

Записать число итераций

Важно: точные выражения производных не нужны, пользуйтесь разностными аппроксимациями!

- 4. Сравнить измеренное число итераций, составить таблицу (метод + условие остановки, результаты)
- 5. *Построить графики ϵ_1 , ϵ_2 , ϵ_3 , ϵ_4 от числа итераций и сделать соответствующие выводы

Важно: полулогарифмический масштаб здесь нагляднее, чем натуральный!

Содержание отчета в свободной форме:

- 1. График функции с отметкой участка унимодальности
- 2. Таблица с результатами для двух методов при двух условиях остановки процесса
- 3. Графики ϵ_1 , ϵ_2 , ϵ_3 , ϵ_4 с комментариями о скорости сходимости
- 4. Листинг программ для расчета as is (приложение)

Напоминания:

Выполнять расчеты можно в любой удобной среде (Maple, Python ...)

При составлении отчета очень удобно пользоваться «ножницами» Windows+Shift+S

Вопрос считать итерации с «0» или с «1» остается предметом личного нравственного выбора

Вариант	Функция	Интервал
1.	$3\sin(2.5x)\lg(x^2+4.3)$	$x \in [-2; 2]$
2.	$3\cos(2.5x)\exp\left(\frac{x^2}{4}-5\right)$	$x \in [-1; 2]$
3.	$ 3 + x ^x \operatorname{tg}(2x) + 3\sin(5x) + 3$	$x \in \left[-\frac{1}{2}; \frac{1}{2} \right]$
4.	$3\cos(2.5x)\lg(x^2+2.2)$	$x \in \left[-2; \frac{1}{2}\right]$
5.	$\sin(x +2,3^x)$	$x \in [-1; 2]$
6.	$\cos(x+2.3^x)$	$x \in [-1; 2]$
7.	$\operatorname{arctg}\left(\frac{3x}{3+0.4x^6}\right)$	$x \in [-2;1]$
8.	$(3+x)^{ x }\sin(2x) + 1$	$x \in [-2; 1]$
9.	$-\frac{3}{2} + \sqrt{\cos(3x)\left(\operatorname{tg}(2x) + 2\right)}$	$x \in [-0.5; 0.5]$
10.	$ch(x) \sin(3x)$	$x \in [-1; 2]$
11.	$\frac{1}{3} + \cos(10 + 2.3^{ x })$	$x \in [-1; 2,5]$
12.	$2.5\exp\left(\frac{x}{3}+0.02\right)\cos(2x)$	$x \in [-2; 2]$
13.	$\cos\left(77\arcsin\left(0.3\sqrt{\frac{x+4}{7.7}}\right)\right)$	$x \in [-2; 2]$
14.	$\sin(10 + 2.3^x)$	$x \in [-1; 2,5]$
15.	$\sin\left(2x + \sinh\left(\frac{x^2 + \ln(x+4)}{x+5}\right)\right)$	$x \in [-2; 2]$
16.	$ 3+x ^x\sin(2x)$	$x \in [-2; 1]$
17.	$tg\left(\frac{x}{7}\right)\sqrt{\frac{x^3+4x^2+8}{\ln(x^2+2,5)}}$	$x \in [-3; 2]$
18.	$sh(x+1)\cos(2x)$	$x \in [-2; 1]$
19.	$\arctan\left(\frac{2x}{3+0.4x^8}\right) + \frac{1}{2}$	$x \in [-2; 2]$
20.	$1.5\exp\left(\frac{x}{5}+0.02\right)\sin(3x)$	$x \in [-2; 1]$
21.	$\frac{ \lg(x) ^{x}\sin(x) + \frac{1}{2}}{\sqrt{\cos(3x)\sin(2x) + 2} - \frac{3}{2}}$	$x \in [-2; 1]$
22.		$x \in [-2; 1]$
23.	sh(x)cos(3x)	$x \in [-1; 2]$
24.	$\cos\left(34\sqrt[3]{7\ln\left(\frac{x^2}{14}+2\right)}\right)$	$x \in [-2; 2]$
25.	$1.5\exp\left(\frac{x}{3}+0.02\right)\sin(2x)$	$x \in [-1;3]$