

Basics of Simulation and Modelling Methodology

*UCL

The Art of Simulation

- The most fundamental methodological issue is how to map a real problem into one solvable (to an extent that is possible) by simulation
- Even if possible, would be too costly in terms of complexity or run time
- To reduce the problem to a manageable one within acceptable approximation, the following approaches are useful:
 - Modelling, where we are interested in accurately representing the system or specific processes within the system, in the simplest manner possible
 - Performance Evaluation, where we are interested in estimating the appropriate performance measure for that system

The Art of Simulation

- Simulation is no different from traditional methods of analysis in which one approximation or another is almost always made
- However, <u>analysis</u> typically computes a number that represents the q<u>uantity of interes</u>t but in <u>simulation</u> waveforms unfold in time in what is hoped to be a go<u>od imitation of the system of interes</u>t <u>simulation can know</u> the process of whole system
- Simulation possesses a dynamic quality absent from analysis, allowing monitoring of the system at different points, providing insight not otherwise available and its flexibility enables to track the evolution
- Simulation is equivalent to a random experiment. That is, the output must be observed for a period of time and statistics collected

Methodology of Prob. Solving for Simulation

- A real communication system generally is far too complex to simulate and the objective is to reduce the complexity of a problem
- Reducing the larger problem into simpler form can be viewed as conducting a conditional experiment
- Consider the output waveform V_t of a system at discrete time t $V_t = g(\Omega)$
 - where g is the system transfer characteristic and $\Omega = (\mathbf{z}_1, ..., \mathbf{z}_K)$ is a collection of discrete-time input processes
- The function of a simulation would be to produce a sequence of values $\{V_t\}$ for $t=kT_s$, $k=\pm 1, \pm 2, \ldots$ with T_s the simulation sampling interval

Methodology of Prob. Solving for Simulation

A conditional experiment would produce

$$V_t = g(\Omega')$$

where $\Omega' = (\mathbf{z}_1, ..., \mathbf{z}_k, \mathbf{z}_{k+1} = \xi_{k+1}, ..., \mathbf{z}_K = \xi_K)$. That is, the first k processes are simulated while the remainder are held at fixed (vector) values

- Conditioning in this sense produces a simpler experiment, or one which is faster, or one whose results are easier to understand
- In general the experiment would have to be repeated for a set of the conditions and unconditioning can be done by a subsequent simulation or by analytical means

Basic Concepts of Modelling

- In <u>analysis</u>, simplified or idealised models are often used for tractability
- In <u>simulation</u>, it is typically <u>no more difficult</u>, <u>although computationally</u> <u>more expensive</u>, to use a more complicated model
- There is a trade-off between accuracy and computer run time
- A system can be viewed as an interconnected set of "subsystems" and referred to as a block diagram

Basic Concepts of Modelling

- A complete description of any system can be visualised as a tree diagram with succeeding branches representing ↑ levels of detail
 - A low-level model, i.e., a circuit model, would implement Kirchhoff's equations, representing each component by its differential equation
 - The filter's effect is entirely predictable from the transfer function H(f)

System Modelling

- A system is a communication link which at the highest level of description is represented by a block diagram of subsystems
- At any level of the tree it is also possible to reduce modelling complexity by using only a subset of the blocks at that level
- Some of the subsystems may be completely omitted (we always do!)
 - For instance, synchronisation may be assumed to be perfect
- Another type of subsystem which is typically not simulated is one which converts an analogue signal to a digital signal (A/D converter)

L

Device Modelling

- A device is simply a block at the subsystem level which contains whatever the system designer wishes
- It could be a piece of manufactured equipment, e.g., simply cabling, waveguide runs or other manufactured media, ... etc
- The ideal device model is a transfer function model, i.e., a rule for producing at each instance an output value based on the input values
- How does one arrive at a good rule?
 - This description should accommodate departures from ideal behaviour in ways that are meaningful and physically realisable
 - A good subsystem model should have variable input parameters that be set to reflect the actual behaviour of devices

Random Process Modelling

- The inputs and outputs of systems and subsystems are desired (information) and undesired (noise and interference) random processes and any simulation is to compute
- The imitation is produced by what is called a random number generator (RNG) which emits a sequence of numbers that forms a sampled version of a segment of a sample path of the random process
- Information sources and noise sources are both random processes but the test signals may be deterministic, e.g., a sinusoid
- Another type of random process that we may need to model is a "random" channel such as a multipath channel, the CIR h(τ;t) which typically assumed to be randomly time-varying (our LAB!)

Simulation with Hardware in the Loop

- It is possible to use the actual piece of hardware in the simulation BUT
 Disadvantages in hardware simulation
 - The simulation/hardware interface is difficult to realise
 - The simulation samples will have to be fed to a D/A converter and upconverted to the C/F of the device
 - Severe incompatibility between the real-time speed of the simulation and the bandwidth of the device
- This is more likely if the actual device does DSP (or baseband)
 Digital signal processing is more likely used by hardware, since
 - If the transmitted signal is well defined by the standards, it will be easy to simulate its transmission (the models are specified in the standards docs)
 - The receiver algorithms will be executed on a workstation in a simulation mode which is then converted into (C) code, then downloaded to an actual processor on an interface board and a hybrid simulation is carried out using simulated received signals running on the actual processor

Performance Evaluation Techniques (PET)

- Modelling deals with the representation of devices, subsystems and processes for obtaining an estimate of some system-level performance
- For many problems of interest, the run time of simulation can become prohibitively long and modifications of the straightforward Monte-Carlo method will involve:

how to modify the straightforward Monte-Carlo method:

- Assumptions/simplifications on the properties of the system
- Assumptions on the statistical properties of waveforms
- Clever statistical techniques

Performance Evaluation Techniques

- The measurand of a Monte Carlo simulation (e.g., SNR or BER) is a random variable – the longer we run the simulation the closer it tends to the true value → trade-off between run time & accuracy
- The most demanding situation usually is the estimation of BER
 - If a system delivers a BER of 10⁻⁵ then we expect to see at least one error about every 10⁵ bits → the rule of thumb is to simulate >10/BER bits

If the BER is 10^-5 , we need to simulate 10^*10^5 bits in general.

- Common PET techniques are:
 - Quasi-analytical which for instance by combining analytical knowledge and simulation techniques it is possible to simplify the system model
 - A simulation can be carried out by emulating such a sequence of segments each can be visualised as being a conditional experiment

Error Sources in Simulation

Processing Errors

- "Processing" errors exist because
 - We have computing limitations
 - Discrete-time representation of continuous signals induces aliasing error
 - Computer memory will not allow storage of infinite impulse responses
 - Numerical representation will not allow unlimited accuracy
 - Run-time limitations will not allow zero statistical uncertainty
- Processing errors are controllable that in principle they can be reduced to arbitrarily small error, subject to some computational cost

Modelling Errors

- We have modelling errors in
 - System modelling
 - Device modelling
 - Random process modelling
- The modelling errors are of different natures and a model which is known to be better will often be more complicated

Validation

 The process of certifying that the simulation results are acceptably close to the correct values is known as validation

• The arrows going both into an out of the outer blocks are meant to indicate that the process of validation may be iterative, i.e., if a simulation is declared not to be validated, some aspect of what produced the result must be changed and the process repeated

Important Issues

- □ Sample-by-Sample or Block Processing Simulation can be carried out on a sample-by-sample basis or on blocks of samples
- □ Stream-Driven and Event-Driven Simulations These techniques are well suited for handling the asynchronous aspects of some of the signal processing operations and protocols in communication systems
- Data-driven simulators do not have any notion of global time built into the simulation but in event-driven simulations, the global simulation time is advanced to the time of the next scheduled event in the event queue before execution of blocks begins
- In packet com systems where the arrival of a new packet triggers processing operations the inter-arrival time can be arbitrary

Important Issues

- ☐ Time-Domain Versus Frequency-Domain Processing Simulation models can be implemented in the time domain or the frequency domain or a mixture of both
- The choice depends on the nature of the system being simulated. In general, nonlinearities and feedback loops are simulated in the time domain using sample-by-sample processing whereas filters can be simulated in the time domain or the frequency domain