

# インタラクション

Interaction Design

第12回 入力のモデル化 Modeling Human Inputs

立命館大学 情報理工学部 松村耕平



#### 今回の講義内容

- コンピュータへの入力インタフェースを考える
- •フィッツの法則 Fitt's Law
  - マウスに勝つには?
- インタフェースのいろいろ Various Interface
  - ドロップダウンメニュー Dropdown List
  - パイメニュー Pie Menu
  - 階層的パイメニュー Hierarchical Pie Menu
  - 階層的スクエアメニュー Hierarchical Square Menu
- タッチインタフェースと指

# インタラクションはどこにあるのか in Human Computer **Interaction**



# インタラクションはどこにあるのか in Human Computer **Interaction**



#### コンピュータへの入力インタフェース

- キーボード Keyboard
- マウス Mouse
- トラックボール Trackball
- ジョイスティック Joystick
- フットマウス Foot Mouse

- ゲームパッド Gamepad
- ライトペン Light-Pen
- 液晶タブレット Tablet
- 視線 Eye tracking





















#### これらのどのインタフェースが良いのか

入力の良し悪しを考える必要がある

→人間の入力をモデル化する Modeling Human Inputs







ポインティングタスク Pointing Task コンピュータのマウスカーソル Cursorを任意の場所に動かすこと

このモデルについてこの講義では取り扱う

# カーソルのポインティング Pointing Task

•**タスク**:カーソルを移動すること

Button

Sutton

カーソルをボタン上に移動するま での達成時間を計測する

Button

ボタンが遠ければ難しい?

ボタンが小さければ難しい?

Button

これをモデル化したのがFitt's Law

#### Paul Fitt

1950's 工業化 The era of factory automation

- 異なるパーツを仕分けるのにどれくらいの時間が必要かを モデル化
- 1次元において、目標にカーソルを当てるのにどの程度の時間がかかるのかをモデル化

# =フィッツの法則 Fitt's Law



# フィッツの法則 Fitt's Law





#### フィッツの法則 Fitt's Law



上の二つのID (Index of Difficulty)は同じ =同じ定数a, bであれば同じタスク完了時間 フィッツの法則:より深く

Fitt's Law: In depth

$$T = a + b \cdot log_2(\frac{D}{W})$$

| Т | タスク達成までの予測時間 (expected time)    |  |  |  |
|---|---------------------------------|--|--|--|
| а | 固定コスト(定数)Fixed Value, Constant  |  |  |  |
| b | デバイスに依存するコスト(定数)Device Constant |  |  |  |
| D | ターゲットまでの距離 Distance             |  |  |  |
| W | ターゲットの幅 Width                   |  |  |  |

| Study                              | Year | TP (bits/s) | Input Device            |
|------------------------------------|------|-------------|-------------------------|
| Douglas, Kirkpatrick & MacKenzie   | 1999 | 2.1         | Isometric Joystick      |
|                                    |      | 2.2-2.3     | Isometric Joystick      |
|                                    |      | 1.8         | Touchpad                |
|                                    |      | 1.7-1.9     | Touchpad                |
| Isokoski & Raisamo                 | 2002 | 4.4-4.6     | Six Mice                |
| Keates, Hwang, Langdon, Clarkson   | 2002 | 1.77        | Mouse (motion impaired) |
| & Robinson                         |      | 4.88        | Mouse (able-bodied)     |
| MacKenzie & Oniszczak              | 1998 | 0.99        | Touchpad                |
|                                    |      | 1.43        | Tactile Touchpad        |
|                                    |      | 1.07        | Lift & Tap Touchpad     |
| MacKenzie and Jusoh                | 2001 | 3.7         | Mouse                   |
|                                    |      | 4.1         | GyroPoint               |
|                                    |      | 1.4         | RemotePoint             |
| MacKenzie, Kauppinen & Silfverberg | 2001 | 4.9         | Mouse                   |
|                                    |      | 3.0         | Trackball               |
|                                    |      | 1.8         | Joystick                |
|                                    |      | 2.9         | Touchpad                |
| Oh & Stuerzlinger                  | 2002 | 3.04        | Laser Pointer           |
|                                    |      | 4.09        | Mouse                   |
| Silfverberg et al.                 | 2001 | 1.6-2.55    | Isometric Joystick      |
| Poupyrev, Okabe & Maruyama         | 2004 | 7.14        | Stylus Tapping          |
|                                    |      | 4.8-5.9     | Stylus Dragging         |
| MacKenzie                          | 2015 | 6.95        | Smartphone              |
|                                    |      |             |                         |

# 身体接触型の装置の効率



# Headmouseは使えなさそう…



たった4.2 bits/s

#### どうやってフィッツの法則を活用するか





例えば・・・

ウィンドウの端を活用する マウスを動かし続けてもカーソルは端に留まる

#### どうやってフィッツの法則を活用するか



無限のWを持つButton と考えることができる



例えば・・・

ウィンドウの端を活用する マウスを動かし続けてもカーソルは端に留まる

# インタフェースのいろいろ

Various Interfaces

# ドロップダウンメニュー Dropdown Menu



Exit

一般的なメニュー ボタンを押すと下側にメニューが開く

# ドロップダウンメニュー Dropdown Menu



一般的なメニュー ボタンを押すと下側にメニューが開く

# 四角形のメニュー Rectangle Menu



これもまた一般的なメニュー ボタンを押すと上下左右に展開する

#### パイメニュー Pie Menu



画像編集ソフトウェアや 3D編集ソフトウェアで見られる

- ・ポインタからの距離Dを最小化
- ・幅Wも無限化できる?

#### パイメニュー Pie Menu





#### タッチインタフェースと指

• Based on a study [1], for users to quickly and accurately select a touch target, its **minimum size should be 1cm** × **1cm** (**0.4in** x **0.4in**).



[1] Parhi, P., Karlson, A. K., and Bederson, B. B. 2006. "Target size study for one-handed thumb use on small touchscreen devices." In Proc of MobileHCI '06.

 $6mm \times 0.2mm$ 選択するのに10回はタップする 必要があった

Succeed to select a bar after 10 tries.





#### 8152 SUNSET BLVD

LOS ANGELES, CA 90046

Set as preferred location

2.6 miles away: Phone:

Get Directions (323) 656-2595

Open Now Show hours >

### マクドナルド McDonald

- 各店舗のアイコンが近すぎる
- そもそもアイコンが小さすぎる

リストビューをデフォルトに すべきでは?

# **Follow Requests** Suggested for You Follow Follow Follow × Follow Follow Follow

# インスタグラム Instagram

- xボタンが小さすぎる
  - 2mm width

- Followボタンとの距離が近すぎる(正反対の意味なのに!)
  - 2mm spacing



### Target のモバイルサイト

- 2cm x 2cm のボタン
- 押しやすい

#### 今回の講義内容

- コンピュータへの入力インタフェースを考える
- •フィッツの法則 Fitt's Law
  - マウスに勝つには?
- インタフェースのいろいろ Various Interface
  - ドロップダウンメニュー Dropdown List
  - パイメニュー Pie Menu
  - 階層的パイメニュー Hierarchical Pie Menu
  - 階層的スクエアメニュー Hierarchical Square Menu
- タッチインタフェースと指

# キーボードの仕組み



# キーボードの中身



# キーボードのスイッチ







#### キーボードのエンコーダ



# マウスの仕組み



# マウスの中身



# マウスの中身(ロータリーエンコーダ)



# ロータリーエンコーダ (時計回り)



# ロータリーエンコーダ (反時計回り)



# ロータリーエンコーダ(改良版)



時計回り: L,L → H,L 反時計回り: L,L → L,H

# 光学マウス





