绪论及第一章:非形式命题演算

沈榆平 yuping.shen.ilc@gmail.com

中山大学逻辑与认知研究所 2015年9月

什么是数理逻辑?

数理逻辑

简单地讲,数理逻辑是一门用数学方法来研究推理的有效性(或者正确性)的学科。

数理逻辑的发展史

- 2000多年前: 亚里士多德传统逻辑—三段论
- 17世纪: "莱布尼兹之梦"—精确、可演算的通用语言
- 19世纪中:布尔—命题逻辑演算
- 19世纪末: 弗雷格, 皮尔斯—谓词逻辑演算
- 20世纪初: 皮亚诺, 罗素, 哥德尔—逻辑演算与数学基础
- 20世纪中:图灵,冯诺依曼,麦卡锡—逻辑与计算机

命题(Propositions)与联结词(Connectives)

人们现实世界中使用的自然语言句子,有一部分是非真必假的, 我们把这些句子称为**命题**。

命题例子

- 我们班学习委员是湖南人。
- 地球是圆的。
- 月亮是用奶酪做成的。

上述命题是最简单的并且不可再分,我们称它们为简单命题或者原子命题(Atomic Propositions)。

符号

我们用大写正体字母A,B,C,...来表示简单命题。

命题(Propositions)与联结词(Connectives)

简单命题通过**联结词**组合得到**复合命题(Compound** Propositions)。

常用联结词

非
$$A \mid \sim A(或 \neg A)$$

 $A \cap B \mid A \wedge B$
 $A \not \cup B \mid A \lor B$
如果 A , 那 $A \cap B \mid A \rightarrow B \mid A \leftrightarrow B$

注意!为了方便,我们未给出严格的定义就引入了这些联结词, 目前它们意义取决于我们对左列自然语言的直观理解。 数理逻辑

非形式命题演算

命题(Propositions)与联结词(Connectives)

复合命题

- 我们班学习委员是湖南人并且喜欢吃辣椒。
- 地球并非是圆的。
- 月亮是用奶酪或者冰淇淋做成的。

上述命题的可以符号化如下:

符号化复合命题

- A∧B, A表示"我们班学习委员是湖南人", B表示"他喜欢吃辣椒"
- ~ C, C表示"地球是圆的"
- F ∨ G, F表示"月亮是用奶酪做的", G表示"月亮用冰淇淋做的"。

形式与含义

命题符号化得到的是一种"逻辑框架"或者说是"逻辑形式"。我们在研究逻辑推演的时候,关心的是这些形式而非它们的含义。

形式与含义例一

如果苏格拉底是人,那么苏格拉底是会死的。 苏格拉底是人,

:. 苏格拉底是会死的。

这个论证是逻辑上有效的, 因为它具有这样的形式:

$$\begin{array}{c} A \rightarrow B \\ A \\ \therefore B \end{array}$$

易见,把A,B替换成任意的命题,这种形式的论证仍然是有效的。

形式与含义

形式与含义例二

苏格拉底是人,

:. 苏格拉底是会死的。

此处结论从前提得出只是因为句子的含义而非逻辑推演。

4

∴. *E*

把A与B换成其它的命题,这个论证便不一定有效:

月亮是黄的

:. 月亮是奶酪做的。

因此,考察逻辑推演,重要的是其形式而非命题的实际含义。

真值表(Truth Tables)与真值函数(Truth Functions)

我们用**真值表**或者**真值函数**的方法对联结词 $\{\sim, \land, \lor, \rightarrow, \leftrightarrow\}$ 给出精确的定义。

符号

小写字母p, r, q, ...表示**命题变元**(Propositional Variables)。每一个命题可以取两种**真值**(Truth Values)之一: $T(\underline{\mathfrak{p}})$ 或 $F(\mathfrak{g})$ 。真值也常记为1与0,或者T与 \bot 。

否定(Negation)~的真值表与真值函数

$$\begin{array}{c|cccc} \rho & \sim \rho \\ \hline T & F \\ F & T \end{array} \qquad \begin{array}{ccccc} f^{\sim}(T) & = & F \\ f^{\sim}(F) & = & T \end{array}$$

其中 f^{\sim} 是一个从 $\{T, F\}$ 到 $\{T, F\}$ 的函数。

真值表(Truth Tables)与真值函数(Truth Functions)

合取(Conjunction)△的真值表与真值函数

其中 f^{\wedge} 是一个从 $\{T,F\} \times \{T,F\}$ 到 $\{T,F\}$ 的函数。

析取(Disjunction)\/的真值表与真值函数

		$p \lor q$	$f^{\vee}(T,T)$	_	т
Τ	T	T			
Т	F	T	$f^{\vee}(T,F)$		
F	Т	T	$f^{\vee}(F,T)$		
		F	$f^{\vee}(F,F)$	=	F
•	•	•			

条件(Conditional)(又称蕴含, Implication)→的真值表与真值函数

条件词的直观理解困难

观察可知,在A取F的时候, $A \rightarrow B$ 的真值为T。具有这种形式的命题在自然语言的解释中往往没什么意义,但在数学的演绎和证明中是合理的。

条件词的直观理解困难(续)

命题 $A \rightarrow B$ 的意义在于,如果它为真的话,我们可以从A的真推断出B也必真,但我们不关心A为假的情况。考虑如下命题:

如果猪会飞, 那么我就请你吃麦当劳。

不难看出,仅当"猪真的会飞",而"我没有请你吃麦当劳"的情况下,这个命题为假(我说了假话)。而其它情况下,无论"我"怎么做,这命题都是真的。

双条件(Biconditional)↔的真值表与真值函数

真值表(Truth Tables)与真值函数(Truth Functions)

定义1.2

一个**命题公式(Propositional Formula)(**或简称公式)是一个由命 题变元及联结词按下列规则生成的表达式:

- 任何一个命题变元是一个公式;
- ② 如果 \mathscr{A} 和 \mathscr{B} 是公式,那 $\mathscr{A}(\sim\mathscr{A})$, $(\mathscr{A}\wedge\mathscr{B})$, $(\mathscr{A}\vee\mathscr{B})$, $(\mathscr{A}\to\mathscr{B})$ 及 $(\mathscr{A}\leftrightarrow\mathscr{B})$ 也是公式。 \square

公式

 $((p \land q) \to (\sim (q \lor r)))$ 是一个公式。因由(1), p,q,r是公式,由(2)得($p \land q$), $(q \lor r)$ 是公式,再由(2)得($\sim (q \lor r)$)是公式,再次由(2)得($\sim (p \land q) \to (\sim (q \lor r))$)是一个公式。 而 $\rightarrow (p \land q)(\sim r)$ 不是一个公式。

在联结词的真值表(真值函数)基础上, 我们可以给出每一个公式的真值表。事实上, 每一个命题形式本身即可看成是一个真值函数。

公式 $((\sim p) \lor q)$ 的真值表

p	q	(∼ <i>p</i>)	$((\sim p) \lor q)$	p	q	(p ightarrow q)
Т	T	F	T	T	Τ	T
Τ	F	F	F	T	F	F
F	T	T	F T	F	T	T
F	F	T	Τ	F	F	Т

易见,公式 $((\sim p) \lor q)$ 与 $(p \to q)$ 对应着同一个真值函数。

真值表(Truth Tables)与真值函数(Truth Functions)

n元真值函数的个数

一个含有n个不同命题变元的公式的真值表有2ⁿ行,而每一行可能对应的值有两个。因此n元真值函数的个数有2^(2ⁿ)个。注意到,由n个命题变元可构成的公式有无穷多个。明显的,不同的公式可能定义相同的真值函数。

一元真值函数的个数

令》是一个只含命题变元p的公式,那么其真值函数可为:

注意最后一个是经典的否定函数,其余自然推理中并不常见。

二元真值函数的个数

令 \mathcal{A} 是一个含有两个命题变元p, q的公式,那么它可对应的真值函数有:

р	q	\mathscr{A}	р	q	\mathscr{A}			\mathscr{A}	
T	T	T			F			Τ	•
Τ	F	Τ		F			F		… 等16个
F	Τ	Τ		Τ		F	Τ	Т	
F	F T F	T	F	F	T	F	F	T	

真值表(Truth Tables)与真值函数(Truth Functions)

定义1.4

一个**真值指派**(Truth Assignment)是一个从命题变元集合 $\{p,q,r,\ldots\}$ 到 $\{T,F\}$ 的函数v。

真值指派

设命题变元集合为{p,q},令真值指

派v为v(p) = T,v(q) = F。在v下公式 $(p \rightarrow q)$ 取值为F,

而 $(p \lor (\sim q))$ 取值为T。一般情况下我们在给出V的情况下讨论公式的真值。

真值表(Truth Tables)与真值函数(Truth Functions)

定义1.5

一个公式被称为重言式(或者永真式, Tautology), 如果在任意的真值指派下,该公式总取值为T。

定义1.6

一个公式被称为矛盾式(或者永假式, Contradiction),如果在任意的真值指派下,该公式总取值为F。

重言式与矛盾式

- (p∨(~p))是重言式。
- (p∧(~p))是矛盾式。
- (p ↔ (~ (~ p)))是重言式。
- $(((\sim p) \rightarrow q) \rightarrow (((\sim p) \rightarrow (\sim q) \rightarrow p))$ 是重言式。

定义1.7

设 \mathscr{A} 和 \mathscr{B} 为公式,我们说 \mathscr{A} 逻辑蕴含 $\mathscr{B}(\mathscr{A})$ logically implies \mathscr{B}),如果($\mathscr{A} \to \mathscr{B}$)是一个重言式。我们说 \mathscr{A} 逻辑等价于 $\mathscr{B}(\mathscr{A})$ logically equivalent to \mathscr{B}),如果($\mathscr{A} \leftrightarrow \mathscr{B}$)是一个重言式。

逻辑蕴含与逻辑等价

- (p∧q)逻辑蕴含p。
- (~(p∧q))逻辑等价((~p)∨(~q))。
- (~(p∨q))逻辑等价((~p)∧(~q))。

练习一

任选一个公式, 写出其真值表。

- $\bullet \ (p \to (q \to (p \land q)))$
- $\bullet \ ((q \lor r) \to ((\sim r) \to q))$
- $\bullet \ ((p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r)))$

代入与替换(Substitution)规则

命题1.9

如果 \mathcal{A} 和 $\mathcal{A} \to \mathcal{B}$ 是重言式,那么 \mathcal{B} 也是重言式。

证明

设 $\mathscr{A} \cap \mathscr{A} \to \mathscr{B}$ 是重言式,但 $\mathscr{B} \cap \mathscr{A} \cap \mathscr{B} \cap \mathscr{B}$ 。那么存在一个对命题变元的真值指派,使得 $\mathscr{A} \cap \mathscr{A} \cap \mathscr{B} \cap \mathscr{B} \cap \mathscr{A} \cap \mathscr{B} \cap$

代入与替换(Substitution)规则

替换例一

公式 $(p \to p)$ 显然是一个重言式。如果我们将p的每一次出现都替换成公式 $((r \land s) \to t)$ (它不是重言式),得到:

$$(((r \land s) \rightarrow t) \rightarrow ((r \land s) \rightarrow t))$$

不难看出,替换后得到的公式仍然是重言式。但如果我们只替换**p**的其中一次出现,那么得到的公式就不是一个重言式了。

代入与替换(Substitution)规则

命题1.10

证明

代入与替换(Substitution)规则

命题1.11

对任意的公式 \mathcal{A} 和 \mathcal{B} , (\sim ($\mathcal{A} \land \mathcal{B}$))逻辑等价于(($\sim \mathcal{A}$) \lor ($\sim \mathcal{B}$)),且(\sim ($\mathcal{A} \lor \mathcal{B}$))逻辑等价于(($\sim \mathcal{A}$) \land ($\sim \mathcal{B}$))。

证明

在之前的例子中我们已经有(通过真值表证明)

$$(\sim (p \land q) \leftrightarrow ((\sim p) \lor (\sim q))$$

是重言式。据命题1.10,对任意的公式《和》,

$$(\sim (\mathscr{A} \wedge \mathscr{B})) \leftrightarrow ((\sim \mathscr{A}) \vee (\sim \mathscr{B}))$$

也是重言式,因此 $\sim (\mathscr{A} \wedge \mathscr{B})$ 逻辑等价于 $((\sim \mathscr{A}) \vee (\sim \mathscr{B}))$ 。另一部分类似。

代入与替换(Substitution)规则

下面是一些常用的逻辑等价的公式, 证明方法同上。

逻辑等价的公式

- $\bullet (\mathscr{A} \wedge (\mathscr{B} \wedge \mathscr{C})) + ((\mathscr{A} \wedge \mathscr{B}) \wedge \mathscr{C})$
- $(\mathscr{A} \lor (\mathscr{B} \lor \mathscr{C}))$ 与 $((\mathscr{A} \lor \mathscr{B}) \lor \mathscr{C})$
- $(A \land B) = (B \land A)$
- \bullet $(\mathscr{A} \vee \mathscr{B}) \mathrel{
 subset} \mathrel{
 subset} (\mathscr{B} \vee \mathscr{A})$

代入与替换(Substitution)规则

替换例二

考察公式 $((p \land p) \rightarrow q)$ 。其中 $(p \land p)$ 逻辑等价于p,因为 $(p \land p) \leftrightarrow p$ 是一个重言式。如果我们将 $(p \land p)$ 替换成p,从而得到 $(p \rightarrow q)$ 。容易验证 $(p \rightarrow q)$ 与 $((p \land p) \rightarrow q)$ 是逻辑等价的。

它的直观含义是,把一个公式的一部分用与这部分等价的公式替换而得到的新公式,与原公式逻辑等价。

代入与替换(Substitution)规则

命题1.14

如果公式 \mathcal{B}_1 是通过将公式 \mathcal{A}_1 中公式 \mathcal{A} 的一次或者多次出现用公式 \mathcal{B}_1 替换得到的,并且 \mathcal{B}_2 逻辑等价于 \mathcal{A}_1 ,那么 \mathcal{B}_1 逻辑等价于 \mathcal{A}_1 。

证明

设罗逻辑等价于 \mathscr{A} ,且 \mathscr{B}_1 和 \mathscr{A}_1 如上所述。我们希望证明 $\mathscr{B}_1 \leftrightarrow \mathscr{A}_1$ 是重言式。观察可知,在任一真值指派下, \mathscr{B}_1 和 \mathscr{A}_1 的不同仅在于 \mathscr{B} 出现在了 \mathscr{A} 曾经出现过的一些位置上。那么 \mathscr{B}_1 和 \mathscr{A}_1 的真值一定是相同的,因为 \mathscr{B} 和 \mathscr{A}_1 有相同的真值。因此 $\mathscr{B}_1 \leftrightarrow \mathscr{A}_1$ 取值为 T。注意到我们没有对真值指派作任何限制,所以 $\mathscr{B}_1 \leftrightarrow \mathscr{A}_1$ 是一个重言式,原题得证。

代入与替换(Substitution)规则

限制公式(Restricted Propositional Form)

一个仅包含联结词~, A, V的公式称为限制公式。

命题4.15

令 \mathscr{A} 为一个限制公式,设 \mathscr{A} *是通过将 \mathscr{A} 中所有的 \wedge 与 \vee 相互替换,且将所有的命题变元用其否定替换而得到的公式。那么 \mathscr{A} *逻辑等价于 $\sim \mathscr{A}$ 。

证明

施归纳于《中出现的联结词个数n。如果我们能证明对任一自然数n,每一个恰有n个联结词的限制公式都满足原命题的话,原命题显然成立。

• 基础步。n=0,即 \mathscr{A} 不含任何联结词,它只能是某个命题变元p。 \mathscr{A}^* 是 $\{\sim p\}$,显然 \mathscr{A}^* 逻辑等价于 $\{\sim \mathscr{A}\}$ 。

代入与替换(Substitution)规则

证明(续)

- 归纳步。设n>0, 必含有n个联结词,且每一个含有联结词个数少于n的限制公式都满足原命题要求的性质。根据公式被构造的可能性,我们考虑以下三种情况:
 - ●形如(~ 第)

对于第一种情况, \mathcal{B} 有n-1个联结词,据归纳假设, \mathcal{B} *逻辑等价于($\sim \mathcal{B}$)。又 \mathcal{A} *就是($\sim \mathcal{B}$ *),所以 \mathcal{A} *逻辑等价于($\sim (\sim \mathcal{B})$),即($\sim \mathcal{A}$)。注意此处使用了命题1.14。对于第二种情况, \mathcal{B} 与 \mathcal{E} 都少于 \mathbf{n} 个联结词,因此 \mathcal{B} *与 \mathcal{E} *分别等价于($\sim \mathcal{B}$)与($\sim \mathcal{E}$)。此时 \mathcal{A} *为(\mathcal{B} * $\wedge \mathcal{E}$ *)。由命题1.14,它逻辑等价于(($\sim \mathcal{B}$) $\wedge \mathcal{E}$ *),再应用一次命题1.14,它等价于(($\sim \mathcal{B}$) $\wedge (\sim \mathcal{E}$))。据命题1.11,它等价于($\sim (\mathcal{B} \vee \mathcal{E})$),即($\sim \mathcal{A}$)。因此 \mathcal{A} *逻辑等价于($\sim \mathcal{A}$)。第三种情况与二类似。

代入与替换(Substitution)规则

引理1.16

如果 p_1, p_2, \ldots, p_n 是命题变元,那么

$$((\sim p_1) \lor (\sim p_2) \lor \ldots \lor (\sim p_n))$$

逻辑等价于

$$(\sim (p_1 \wedge p_2 \wedge \ldots \wedge p_n))$$

证明

这是命题1.15的特例,把 $(p_1 \wedge p_2 \wedge \ldots \wedge p_n)$ 看成 $\mathscr A$ 即可。

为方便,上述结论可简写为:

$$(\bigvee_{i=1}^{n} (\sim p_i))$$
逻辑等价于 $(\sim (\bigwedge_{i=1}^{n} p_i))$

代入与替换(Substitution)规则

类似的, 我们可以得到:

$$(\bigwedge_{i=1}^{n} (\sim p_i))$$
逻辑等价于 $(\sim (\bigvee_{i=1}^{n} p_i))$

命题1.17(De Morgan's Laws)

 $令 \mathscr{A}_1, \mathscr{A}_2, \ldots, \mathscr{A}_n$ 为任意公式。那么:

- $(\bigwedge_{i=1}^n (\sim \mathscr{A}_i))$ 逻辑等价于 $(\sim (\bigvee_{i=1}^n \mathscr{A}_i))$
- $(\bigvee_{i=1}^{n} (\sim \mathscr{A}_i))$ 逻辑等价于 $(\sim (\bigwedge_{i=1}^{n} \mathscr{A}_i))$

证明

由上述引理及命题1.10直接可得。

范式(Normal Forms)

我们知道,每一个公式确定了一个真值函数(或真值表)。反之,给出一个真值函数,我们也能构造出对应的一个公式。

命题1.18

每一个真值函数都是一个由约束公式(只含联结词~,∧,∨)确定的 真值函数。

证明

设给定的真值函数f是一个n元函数,我们在命题变元 p_1,\ldots,p_n 上构造一个约束公式 $\mathcal Q$ 。首先如果这个f在任一真值指派下,都取F,那么显然它对应着一个矛盾式。因此公式

$$((p_1 \land \sim p_1) \land p_2 \land \ldots \land p_n)$$

即是所需的必。

范式(Normal Forms)

证明(续1)

设f在某一真值指派下取T。我们先构造一个公式,使之在此真值指派下为T而其它 $2^{n}-1$ 个真值指派下为F。

示例

设f为3元真值函数且f(T, F, F) = T,则 $(p_1 \land (\sim p_2) \land (\sim p_3))$ 符合上述要求。我们称这种结构的公式为**基础合取式**。

如果 $p_i(1 \leq i \leq n)$ 在此真值指派下被分配了T,那么把 p_i 放入基础合取式;反之,如果 p_i 被分配了F,则把 $(\sim p_i)$ 放入基础合取式。易见这样的基础合取式恰好满足上述要求。如果使f取T的真值指派不止一个,那么将它们对应的基础合取式逐一写出,记为 $\mathcal{B}_1,\ldots,\mathcal{B}_m$ 。则

$$\mathscr{B}_1 \vee \ldots \vee \mathscr{B}_m$$

即为需要的公式》。

范式(Normal Forms)

证明(续2)

不难看出,对于一个使真值函数f取T的真值指派,《中必有对应的一个基础合取式亦取T,因而《也必为T。而对任一使f取F的真值指派,没有任何一个《中的基础合取式取T,因而《取F。所以,《就是一个确定真值函数f的限制公式。

范式(Normal Forms)

例子: 写出如下真值函数对应的约束公式

<i>p</i> ₁	p_2	p_3	•
Т	Τ	Τ	T
Τ	Τ	F	T
Τ	F	Τ	F
Τ	F	F	F
F	Τ	Τ	F
F	Τ	F	F
F	F	Τ	F
F	F	F	T

范式(Normal Forms)

例子: 写出如下真值函数对应的约束公式

p_1	p_2	p_3	٠.
T	T	T	T
T	T	F	T
T	F	Τ	F
Τ	F	F	F
F	Τ	T	F
F	Τ	F	F
F	F	T	F
F	F	F	T

例子: 写出如下真值函数对应的约束公式

p_1	p_2	p_3	?	
T	T	T	T	$(p_1 \wedge p_2 \wedge p_3)$
		F		
T	F	Τ	F	
Τ	F	F	F	
F	Т	Т	F	
F	Τ	F	F	
F	F	T	F	
F	F	F	T	

例子: 写出如下真值函数对应的约束公式

$$(p_1 \wedge p_2 \wedge p_3) \ (p_1 \wedge p_2 \wedge (\sim p_3))$$

例子: 写出如下真值函数对应的约束公式

例子: 写出如下真值函数对应的约束公式

所求的约束公式即为:

$$((p_1 \wedge p_2 \wedge p_3) \vee (p_1 \wedge p_2 \wedge (\sim p_3)) \vee ((\sim p_1) \wedge (\sim p_2) \wedge (\sim p_3)))$$

范式(Normal Forms)

练习: 写出如下真值函数对应的约束公式

p_1	p_2	p_3	٠.
T	Τ	T	F
T	Τ	F	F
T	F	Τ	Τ
T	F	F	F
F	Τ	Τ	Τ
F	Τ	F	Τ
F	F	T	F
F	F	F	F

练习: 写出如下真值函数对应的约束公式

$$(p_1 \wedge (\sim p_2) \wedge p_3) \vee ((\sim p_1) \wedge p_2 \wedge p_3) \vee ((\sim p_1) \wedge p_2 \wedge (\sim p_3))$$

定义

设p为命题变元,p及($\sim p$)均称为文字(Literal)。其中p称为正文字(Positive Literal),($\sim p$)称为负文字(Negative Literal)。有穷多个文字的析取称为析取子句(Disjunctive Clause),有穷多个文字的合取称为合取子句(Conjunctive Clause)。

例子

 $(p_1 \lor (\sim p_2) \lor p_3), (\sim p), p$ 都是析取子句。 $((\sim p_1) \land (\sim p_2) \land p_3), (\sim p), p$ 都是合取子句。 可以看出,文字本身,既是合取子句,又是析取子句。

范式(Normal Forms)

定义

有穷多个析取子句的合取称为**合取范式(Conjunctive Normal Form, CNF)**,有穷多个合取子句的析取称为**析取范**式(Disjunctive Normal Form, DNF)。

例子

合取范式具有如下结构(省略部分括号):

$$(L_{1,1} \vee \ldots \vee L_{1,i}) \wedge \ldots \wedge (L_{k,1} \vee \ldots \vee L_{k,j})$$

析取范式具有如下结构:

$$(L_{1,1} \wedge \ldots \wedge L_{1,i}) \vee \ldots \vee (L_{k,1} \wedge \ldots \wedge L_{k,i})$$

其中每一个L_{m,n}都是一个文字。特别地,析取子句和合取子句本身既是析取范式,又是合取范式。

范式(Normal Forms)

引理1.20

任何一个公式都逻辑等价于一个析取范式。

证明

两个公式是逻辑等价的,当且仅当它们对应同一个真值函数。任给一个公式,写出它的真值表,并应用命题1.18 提及的构造方法,即可得到一个与之等价的析取范式。

引理1.21

任何一个公式都逻辑等价于一个合取范式。

证明

令 \mathscr{A} 为一个公式。据引理 $1.20(\sim\mathscr{A})$ 逻辑等价于一个析取范式 \mathscr{B} 。那么 \mathscr{A} 逻辑等价于 $(\sim\mathscr{B})$ 。据De Morgan律及 $(\sim(\sim\mathscr{C}))$ 逻辑等价于 \mathscr{C} ,易将 $(\sim\mathscr{B})$ 转化成一个合取范式。

范式(Normal Forms)

写出与 $(((\sim p_1) \lor p_2) \to p_3)$ 逻辑等价的合取范式(CNF)

先写出($\sim (((\sim p_1) \lor p_2) \to p_3))$ 的真值表:

p_1	p_2	p_3	$(\sim (((\sim p_1) \vee p_2) \rightarrow p_3))$
T	T	T	F
T	T	F	T
Τ	F	Τ	F
Τ	F	F	F
F	Τ	Τ	F
F	T	F	T
F	F	Τ	F
F	F	F	Τ

再写出对应的DNF:

$$((p_1 \land p_2 \land (\sim p_3)) \lor ((\sim p_1) \land p_2 \land (\sim p_3)) \lor ((\sim p_1) \land (\sim p_2) \land (\sim p_3))$$

```
而原命题等价于此DNF的否定:(\sim ((p_1 \land p_2 \land (\sim p_3)) \lor ((\sim p_1) \land p_2 \land (\sim p_3))) \lor ((\sim p_1) \land (\sim p_2) \land (\sim p_3))) 由De Morgan律得: (((\sim p_1) \lor (\sim p_2) \lor (\sim (\sim p_3))) \land ((\sim (\sim p_1)) \lor (\sim p_2) \lor (\sim (\sim p_3)))) \land ((\sim (\sim p_1)) \lor (\sim (\sim p_3)))) 因对任何公式\mathscr{A},有(\sim (\sim (\mathscr{A})))逻辑等价于\mathscr{A},则应用替换规则得 到CNF: (((\sim p_1) \lor (\sim p_2) \lor p_3) \land (p_1 \lor (\sim p_2) \lor p_3) \land (p_1 \lor p_2 \lor p_3))
```

练习

写出与 $(p \leftrightarrow q)$ 逻辑等价的CNF。 $(((\sim p) \lor q) \land (p \lor (\sim q)))$

联结词的完全集(Adequate Sets)

定义1.23

一个联结词的**完全集**是一个联结词的集合,使得任何一个真值 函数都可以被仅含这些联结词的公式所表示。

显然, $\{\sim, \lor, \land\}$ 就是一个联结词的完全集。在这个基础上,我们还可以找到其它一些常见的完全集。

命题1.24

集合 $\{\sim, \lor\}$, $\{\sim, \land\}$, $\{\sim, \to\}$ 是联结词的完全集。

证明

- (ℳ ∧ ℬ)逻辑等价于(~((~ ℳ) ∨ (~ ℬ)))。
- (𝒜 ∨ 𝒜)逻辑等价于(~((~ 𝒜) ∧ (~ 𝒜)))。
- $(\mathscr{A} \vee \mathscr{B})$ 逻辑等价于 $((\sim \mathscr{A}) \to \mathscr{B})$), $(\mathscr{A} \wedge \mathscr{B})$ 逻辑等价于 $(\sim (\mathscr{A} \to (\sim \mathscr{B})))$ 。

联结词的完全集(Adequate Sets)

讨论

我们之前引入的联结词有 $\{\sim,\lor,\land,\to,\leftrightarrow\}$, 它们中能构成二元完全集的只有 $\{\sim,\lor\}$, $\{\sim,\land\}$, $\{\sim,\to\}$ 。对于任何不含 \sim 的其它组合, 可以验证都不是完全集。

其它联结词

事实上,还存在有许多的联结词。因为n元联结词的个数就 是n元真值函数的个数2²ⁿ。所以,一元联结词有2²¹ = 4个,二 元联结词有2²² = 16个等等。这些联结词被较少提及,因为它们 的含义往往不直观。但有两个特殊的二元联结词值得介绍。

联结词的完全集(Adequate Sets)

联结词非或↓(Nor)与非与|(Nand)

 $(p\downarrow q)$ 逻辑等价于 $(\sim (p\lor q))$, (p|q)逻辑等价于 $(\sim (p\land q))$ 。

命题1.26

单元集{|}与{↓}是联结词的完全集。即每一个真值函数用它们中的一个就可以表示。

联结词的完全集(Adequate Sets)

证明

我们分别证明 $\{\downarrow\}$ 可表示 $\{\sim, \land\}$,而 $\{\mid\}$ 可表示 $\{\sim, \lor\}$ 。

- 对前者可验证, (~p)逻辑等价于(p↓p), (p∧q)逻辑等价于((p↓p)↓(q↓q))。
- 对后者可验证, (~ p)逻辑等价于(p|p), (p∨q)逻辑等价于((p|p)|(q|q))。

这两个联结词虽然很简洁,但使用起来并不方便,一般只在电路 设计中出现。如(p → q)逻辑等价于

$$\{(p\downarrow p)\downarrow [(q\downarrow q)\downarrow (q\downarrow q)]\}\downarrow \{(p\downarrow p)\downarrow [(q\downarrow q)\downarrow (q\downarrow q)]\}$$

论证与有效性(Arguments and Validity)

定义

一个论证形式(Argument Form)是一个具有如下结构的有穷序列:

$$\mathcal{A}_1, \mathcal{A}_2 \dots, \mathcal{A}_{n-1}; \quad \therefore \mathcal{A}_n$$

其每一个 $\mathcal{A}_i(1 \leq i \leq n)$ 都是公式。我们称 $\mathcal{A}_1, \ldots, \mathcal{A}_{n-1}$ 为前提,称 \mathcal{A}_n 为结论。

论证形式

论证形式 $(p \rightarrow q), p;$: q真觉上被认为是有效的。但在给出论证有效性的严格定义的时候,我们面临着与定义联结词—类似的困境。比方说,一个前提假,结论也假的论证是否是有效的?

论证与有效性(Arguments and Validity)

定义1.28

论证形式 $\mathscr{A}_1, \mathscr{A}_2 \dots, \mathscr{A}_{n-1}; \quad \mathscr{A}_n$ 是无效的(invalid),如果存在一个真值指派,使得每一个前提 $\mathscr{A}_1, \mathscr{A}_2 \dots, \mathscr{A}_{n-1}$ 均取T而结论 \mathscr{A}_n 取F。否则这个论证是**有效的(Valid)**。

论证有效性

现在我们可以根据定义验证论证 $(p \rightarrow q), p; : q$ 是否有效。对所有前提与结论中的公式,构造真值表

$$\begin{array}{c|cccc} p & q & (p \rightarrow q) \\ \hline T & T & T \\ T & F & F \\ F & T & T \\ F & F & T \end{array}$$

在前提均为T的情况下,结论不为F,所以此论证是有效的。

论证与有效性(Arguments and Validity)

论证有效性

比如, 下面的论证是无效的:

$$(p \rightarrow q), ((\sim q) \rightarrow r), r; \quad \therefore p.$$

因为存在如下真值指派, 使前提为真而结论为假:

论证与有效性(Arguments and Validity)

命题1.32

论证形式 $\mathscr{A}_1, \mathscr{A}_2 \dots, \mathscr{A}_{n-1}; \ \ \mathscr{A}_n$ 是有效的,当且仅当公式 $((\mathscr{A}_1 \land \mathscr{A}_2 \land \dots \land \mathscr{A}_{n-1}) \to \mathscr{A}_n)$ 是重言式。

证明

• ⇒ 设论证形式 $\mathscr{A}_1, \mathscr{A}_2 \dots, \mathscr{A}_{n-1}; \quad : \mathscr{A}_n$ 是有效的,但公式 $((\mathscr{A}_1 \land \mathscr{A}_2 \land \dots \land \mathscr{A}_{n-1}) \to \mathscr{A}_n)$ 不是重言式。那么存在一个真值指派,使得 $(\mathscr{A}_1 \land \mathscr{A}_2 \land \dots \land \mathscr{A}_{n-1})$ 取T而 \mathscr{A}_n 取F。在这个真值指派下,每一个 \mathscr{A}_i ($1 \le i \le n-1$)必取T。这样,原论证必然是无效的因为 \mathscr{A}_n 取F。与我们之前的假设矛盾,所以 $((\mathscr{A}_1 \land \mathscr{A}_2 \land \dots \land \mathscr{A}_{n-1}) \to \mathscr{A}_n)$ 是重言式。

论证与有效性(Arguments and Validity)

证明(续)

• \leftarrow 设公式(($\mathcal{A}_1 \land \mathcal{A}_2 \land \dots \land \mathcal{A}_{n-1}$) $\rightarrow \mathcal{A}_n$)是重言式,但论证形式 $\mathcal{A}_1, \mathcal{A}_2 \dots, \mathcal{A}_{n-1}$; $\therefore \mathcal{A}_n$ 是无效的。那么存在一个真值指派,使得每一个 \mathcal{A}_i ($1 \leq i \leq n-1$)取T而 \mathcal{A}_n 取F。显然在此真值指派下(($\mathcal{A}_1 \land \mathcal{A}_2 \land \dots \land \mathcal{A}_{n-1}$) $\rightarrow \mathcal{A}_n$)取F。原公式必不是重言式。这与我们之前的假设矛盾,所以论证形式 $\mathcal{A}_1, \mathcal{A}_2 \dots, \mathcal{A}_{n-1}$; $\therefore \mathcal{A}_n$ 是有效的。

习题

- 第10题。先用命题1.10证明((~ 𝒜) ∨ 𝔞)逻辑等价于((~ 𝒜) → 𝔞)。
- ② 第13题(c)。
- ③ 第17题(a)。用归纳法证明只含 $\{\lor,\land\}$ 的公式不能表示联结词 \sim ,即一元真值函数 $f\sim$ 。注意,在归纳步时,要考虑除 $f\sim$ 以外的其它三个一元真值函数:

习题解答

第10题

由如下真值表可知 $(((\sim p) \lor q) \leftrightarrow (p \rightarrow q))$ 是重言式。

据命题1.10,对任何公式 \mathscr{A},\mathscr{B} , $(((\sim \mathscr{A}) \vee \mathscr{B}) \leftrightarrow (\mathscr{A} \to \mathscr{B}))$ 也是重言式。可得 $(((\sim \mathscr{A}) \vee \mathscr{B})$ 逻辑等价于 $(\mathscr{A} \to \mathscr{B}))$ 。把p看成 \mathscr{A} , 把q看成 \mathscr{B} , 据命题1.14可得 $((\sim ((\sim p) \vee q)) \vee r)$ 逻辑等价于 $((\sim (p \to q)) \vee r)$,接着把 $(p \to q)$ 看成 \mathscr{A} , r看成 \mathscr{B} , 再由命题1.14可得原命题等价于 $((p \to q) \to r)$ 。

习题解答

第13题

写出(\sim (($p \land q \land r$) \lor (($\sim p$) \land ($\sim q$) $\land r$)))的真值表,及对应的基础合取式(为方便,记上公式为 \mathscr{A}):

	q			
T	Τ	T	F	
T	T	F	T	$(p \wedge q \wedge (\sim r))$
T	F	T	T	$(p \wedge (\sim q) \wedge r)$
T	F	F	T	$(p \wedge (\sim q) \wedge (\sim r))$
F	T	T	T	$((\sim p) \land q \land r)$
F	T	F	T	$((\sim p) \land q \land (\sim r))$
F	F	Τ	F	
F	,	F	T	$((\sim p) \land (\sim q) \land (\sim r))$

习题解答

第13题(续)

```
对应
```

的DNF是:
$$((p \land q \land (\sim r)) \lor (p \land (\sim q) \land r) \lor (p \land (\sim q) \land (\sim r)) \lor ((\sim p) \land q \land r) \lor ((\sim p) \land q \land (\sim r)) \lor ((\sim p) \land (\sim r)))$$
, 因原公式逻辑等价于此DNF的否定,则据De Morgan律,及 $(\sim (\sim \mathscr{A}))$ 逻辑等价于 \mathscr{A} , 原公式等价于CNF: $(((\sim p) \lor (\sim q) \lor r) \land ((\sim p) \lor q \lor (\sim r)) \land ((\sim p) \lor q \lor r) \land (p \lor (\sim q) \lor r))$ 。

第17题:试证{∨,∧}不是完全集

只需证明仅含 $\{\lor, \land\}$ 的公式不能表示一元联结词 \sim (真值函数 f^\sim)即可。设 \mathscr{A} 为一个建立在命题变元 p 上只含联结词 $\{\lor, \land\}$ 的公式,我们施归纳于 \mathscr{A} 中联结词的个数 n 。

- 基础步: n=0, 即《中不含联结词。此时》就是p, 它对应了一个一元真值函数(自等函数), 显然它不能表示经典否定真值函数 f^{\sim} 。
- 归纳步:设n > 0,《中含有n个联结词,且所有联结词个数小于n的只含 $\{\lor,\land\}$ 的公式都不表示 f^{\sim} 。有以下两种情况:

 - ② ☑具有结构(ℬ∧ピ);

先考虑第一种情况。因 \mathcal{B} 与 \mathcal{C} 中的联结词个数都小于n,据归纳假设,它们都不表示 f^{\sim} 。但注意到一元真值函数有

习题解答

第17题(续1)

 $2^{2^1} = 4$ 个,因此 \mathcal{B} 与 \mathcal{E} 可能是其它3个一元真值函数之一:

则 $(\mathcal{B} \vee \mathcal{C})$ 可能定义9个真值函数,其中不同的只有3个:

p	$f^{\vee}(f^{=}(p), f^{=}(p))$	$f^{\vee}(f^{\perp}(p),f^{\perp}(p))$	$f^{\vee}(f^{\perp}(p), f^{\perp}(p))$
7	T	F	T
F	F	F	Τ

习题解答

第17题(续2)

易见没有一个表示一元真值函数f~:

$$\begin{array}{c|c} p & f^{\sim}(p) \\ \hline T & F \\ F & T \end{array}$$

因此在这种情况下, \mathscr{A} 不表示 f^{\sim} 。同理可证在第二种情况下, \mathscr{A} 也不表示 f^{\sim} 。原题得证。

事实上,只含{∨,∧}的公式能定义的一元真值函数只能有f≡。

第17题:试证{∨,∧}不是完全集(简单证法)

只需证明仅含 $\{\lor,\land\}$ 的公式不能表示永假式。令 \mathscr{A} 为任意公式且中出现的命题为 p_1,\ldots,p_n 。我们证明在 p_1,\ldots,p_n 均取T时, \mathscr{A} 不能取F。我们施归纳于 \mathscr{A} 中联结词的个数n。

- 基础步: n = 0, 即 Ø 中不含联结词。不妨
 设 Ø 是 p₁, p₁取 T 时, Ø 显然不是 F, Ø 不是永假式。
- 归纳步:设n > 0, \mathcal{A} 中含有n个联结词,且所有联结词个数小于n的只含 $\{\lor,\land\}$ 的公式,在其中命题变元都取T时,该公式不为F。考虑以下两种情况:
 - A具有结构(第V8);

先考虑第一种情况。因 \mathcal{B} 与 \mathcal{C} 中的联结词个数都小于n,据归纳假设,它们在 p_1,\ldots,p_n 取T时均不取F,则 \mathcal{B} \vee \mathcal{C} 也必不取F,易见 \mathcal{A} 不是永假式。第二种情况类似。原题得证。