Real Analysis

Aamod Varma

 $Summer\ 2025$

Contents

1	The	Real Numbers	2
	1.1	$\sqrt{2}$	2

Chapter 1

The Real Numbers

1.1 $\sqrt{2}$

Theorem 1.1. $\sqrt{2}$ is irrational.

Proof. Assume that $\sqrt{2}$ is rational such that it can be written in the form $\frac{p}{q}$ where both p and q are coprime and $q \neq 0$. So we have,

$$\sqrt{2} = \frac{p}{q}$$

$$2 = \frac{p^2}{q^2}$$

$$2q^2 = p^2$$

If $2|p^2$ then it must mean that 2|p so we can write p like 2a where a is some rational. So,

$$2q^2 = (2a)^2 = 4a^2$$
$$a^2 = 2a^2$$

Similarly if $2|q^2$ then 2|q implying that both p and q have a common factor 2. However, this contradicts our assumption as we assume p and q are co-prime numbers. Hence our assumption that $\sqrt{2}$ is rational must be false. Hence, $\sqrt{2}$ is irrational.

Definition 1.2 (Rational Numbers). $Q = \left\{\text{all fractions } \frac{p}{q} \text{ where } p \text{ and } q \text{ are integers with } q \neq 0\right\}$

Definition 1.3 (Field). A field is any set where addition and multiplication are well-defined operations that are commutative, associative and distributive. There must be an additive identity and every element must have an additive inverse. There must be a multiplicative identity and multiplicative inverse for all nonzero elements in the field.

Example. Some examples structures that are and are not a field are,

- 1. \mathbb{Q} is a field.
- 2. \mathbb{Z} is not a field.
- 3. \mathbb{N} is not a field.
- 4. $\{0, 1, 2, 3, 4\}$ is a field under addition and multiplication modulo 5.

What \mathbb{Q} is lacking

 $\mathbb Q$ is a field is useful to carry out various operations. However, we can't take things like square roots or so, i.e. there are a lot of holes in $\mathbb Q$. When we fill these gaps we get $\mathbb R$ (will be done more rigorously later on). Every hole can be defined as a new irrational number.