Supplemental Information 6: Genome Size

Simpson, Bettauer et al.

April 2020

This supplemental methods describes our investigations of the relative sizes of genomes. We examine the 50 most abundant genres at each site spread across the all the kingdoms and domains in our data by considering the size of the genomes. If the genomes of species different greatly, we will need to correct for genome size in the calculation of frequency.

We begin by loading the refined data after cleaning. At the end of this file, a new version of the tree is saved and the linear models for correcting for genome size.

We begin by reading in the NCBI's summary file of all genes obtained from ftp://ftp.ncbi.nlm.nih.gov/genomes/GENOME_REPO

```
> cell <- induce_tree(131567)
> virus <- induce_tree(10239)</pre>
> unclassified <- induce_tree(12908)</pre>
> root.hist <- data.frame( taxa = "cell", genome_size = cell$genome_size[!is.na(cell$genome_size)])
> root.hist <- rbind( root.hist, data.frame( taxa = "virus", genome_size = virus$genome_size[!is.na(virus$,
> # root.hist <- rbind( root.hist, data.frame( taxa = "unclass", genome_size = unclassified$genome_size[!.
> # removed becasue it is empty
> p<-ggplot(root.hist, aes(x=genome_size, fill=taxa, color=taxa)) +</pre>
        geom_histogram(position="identity", alpha=0.5, binwidth = 0.1) +
        labs(title="Genome Size of Viruses versus Cellular Organisms", x="Genome Size (Mbp)", y = "Count") + (Count of the count of title of tit
         theme_classic()
> p
Notice that there remain some very large genomes at approximately 1.5 billion bp. We investigate these large
(non-viral) genomes next.
> euk <- induce_tree(2759);</pre>
> bac <- induce_tree(2)</pre>
> arch <- induce_tree(2157)</pre>
> cell.hist <- data.frame( taxa = "euk", genome_size = euk$genome_size[!is.na(euk$genome_size)])
> cell.hist <- rbind( cell.hist, data.frame( taxa = "bac", genome_size = bac$genome_size[!is.na(bac$genome_
> cell.hist <- rbind( cell.hist, data.frame( taxa = "arch", genome_size = arch$genome_size[!is.na(arch$genome_size
> p<-ggplot(cell.hist, aes(x=genome_size, fill=taxa, color=taxa)) +</pre>
        geom_histogram(position="identity", alpha=0.5, binwidth = 0.1) +
        labs(title="Genome Size of Cellular Organisms", x="Genome Size (Mbp)", y = "Count")+
         theme_classic()
> p
The largest bacterial genome in our data is Minicystis rosea at 16 Mbp and the largest Archaea genome is 6 Mbp.
> largest <- arrange(bac,desc(genome_size))</pre>
> largest_species <- largest[ which(largest$rank == "species"), ]</pre>
> largest <- arrange(arch,desc(genome_size))</pre>
> largest_species <- largest[ which(largest$rank == "species"), ]</pre>
>
```

Therefore, we focus our attention on Eukaryota only of which there are many large genomes.

Many, but certainly not all, of the large genomes correspond to multicellular organisms. We remove the largest (>30 Mbp) from further analysis. We adjusted the number of counts for each of the remaining genomes that are below this cut off below.

The following taxa were removed.

Asterionella formosa

Diaporthe helianthi

Sterkiella histriomuscorum

Rostrostelium ellipticum

```
> for (i in 1:200) {
    cat("\n", largest_species[i, "name"], "\t\t", largest_species[i, "tax_id"], largest_species[i, "genore
+ }
                                                         root.cellular organisms.Eukaryota.NA.Euglenozoa.Eug
Euglena gracilis
                                   3039 1435.5
                                                                  root.cellular organisms.Eukaryota.Sar.Alve
Symbiodinium kawagutii
                                         104179 935.067
Hemileia vastatrix
                                     203904 543.605
                                                              root.cellular organisms.Eukaryota.Opisthokonta
Dunaliella salina
                                    3046 343.704
                                                           root.cellular organisms.Eukaryota.Viridiplantae.
Mesostigma viride
                                    41882 289.67
                                                           root.cellular organisms.Eukaryota.Viridiplantae.S
Cymbomonas tetramitiformis
                                             36881 281.27
                                                                    root.cellular organisms.Eukaryota.Virid
Haematococcus lacustris
                                          44745 268.7845
                                                                   root.cellular organisms.Eukaryota.Viridi
                                      3165 227.954
                                                             root.cellular organisms.Eukaryota.Viridiplanta
Tetraselmis striata
Oxytricha trifallax
                                      1172189 219.9967
                                                                 root.cellular organisms.Eukaryota.Sar.Alve
                                        5791 205.176
Physarum polycephalum
                                                               root.cellular organisms.Eukaryota.NA.NA.Eumy
Chromera velia
                                 505693 187.455
                                                          root.cellular organisms.Eukaryota.Sar.Alveolata.Co
Botryococcus braunii
                                       38881 184.382
                                                               root.cellular organisms.Eukaryota.Viridiplan
Phytophthora infestans
                                         4787 177.7035
                                                                 root.cellular organisms.Eukaryota.Sar.Stra
                                        5722 164.072
Trichomonas vaginalis
                                                               root.cellular organisms.Eukaryota.NA.Parabasa
Tetradesmus obliquus
                                       3088 157.946
                                                              root.cellular organisms.Eukaryota.Viridiplanta
Gonium pectorale
                                   33097 148.806
                                                           root.cellular organisms.Eukaryota.Viridiplantae.
                     588596 145.3173
                                              root.cellular organisms.Eukaryota.Opisthokonta.Fungi.Fungi i
                                                                 root.cellular organisms.Eukaryota.Viridipla
Yamagishiella unicocca
                                         51707 137.536
                                                            root.cellular organisms.Eukaryota.Viridiplanta
Tetrabaena socialis
                                      47790 135.78
Plasmopara halstedii
                                       4781 127.0636
                                                               root.cellular organisms.Eukaryota.Sar.Strame
Chlamydomonas reinhardtii
                                            3055 120.405
                                                                   root.cellular organisms.Eukaryota.Viridi
                                       72019 115.142
                                                               root.cellular organisms.Eukaryota.Opisthokon
Sphaeroforma arctica
Diplonema papillatum
                                       91374 107.915
                                                               root.cellular organisms.Eukaryota.NA.Eugleno:
Cyanophora paradoxa
                                      2762 99.9404
                                                             root.cellular organisms.Eukaryota.Glaucocystopl
                                 498180 98.4847
                                                          root.cellular organisms.Eukaryota.Viridiplantae.Cl
Ulva mutabilis
Chlorella sp. ArM0029B
                                         1415603 92.9613
                                                                   root.cellular organisms.Eukaryota.Viridi
Plasmopara viticola
                                      143451 92.59207
                                                                root.cellular organisms.Eukaryota.Sar.Strame
Thalassiosira oceanica
                                         159749 92.1856
                                                                  root.cellular organisms.Eukaryota.Sar.Str
                                      517775 91.4306
                                                               root.cellular organisms.Eukaryota.Sar.Strame
Psammoneis japonica
Ulva prolifera
                                 3117 87.8893
                                                        root.cellular organisms.Eukaryota.Viridiplantae.Chl
Phytophthora sojae
                                     67593 84.23815
                                                              root.cellular organisms.Eukaryota.Sar.Stramen
Acanthamoeba castellanii
                                           5755 80.8823
                                                                  root.cellular organisms.Eukaryota.NA.NA.Le
Chlamydomonas applanata
                                          35704 78.5042
                                                                  root.cellular organisms.Eukaryota.Viridip
Hyphochytrium catenoides
                                                                    root.cellular organisms.Eukaryota.Sar.S
                                           42384 73.08465
Paramecium tetraurelia
                                         5888 72.0945
                                                                root.cellular organisms.Eukaryota.Sar.Alveo
                                                                   root.cellular organisms.Eukaryota.Viridi
Monoraphidium neglectum
                                          145388 69.7118
```

210441 68.4198

158607 63.672

94289 66.3686

361140 62.1602

root.cellular organisms.Eukaryota.Sar.Strame

root.cellular organisms.Eukaryota.Opisthokonta

root.cellular organisms.Eukaryota.Sar.

root.cellular organisms.Eukaryota.NA.NA

Aphanomyces invadans	157072 61.7834	root.cellular organisms.Eukaryota.Sar.Strame
Toxoplasma gondii		coot.cellular organisms.Eukaryota.Sar.Alveolata.
NA 554055 61.0189		organisms.Eukaryota.Viridiplantae.Chlorophyta.co
		c.cellular organisms.Eukaryota.Sar.Alveolata.Api
Colletotrichum graminicola	31870 59.9141	root.cellular organisms.Eukaryota.Opis
Aphanomyces astaci	112090 59.69445	root.cellular organisms.Eukaryota.Sar.Stramen
Phytophthora cinnamomi	4785 59.63075	root.cellular organisms.Eukaryota.Sar.Stra
Parachlorella kessleri	3074 59.1878	root.cellular organisms.Eukaryota.Viridipla
Chrysochromulina tobinii	1460289 59.0731	root.cellular organisms.Eukaryota.NA.Ha
Besnoitia besnoiti	94643 58.8459	root.cellular organisms.Eukaryota.Sar.Alveolata
Moneuplotes crassus	5936 58.5666	root.cellular organisms.Eukaryota.Sar.Alveolata
Chlorella sorokiniana	3076 58.33862	root.cellular organisms.Eukaryota.Viridiplan
NA 690256 57.5541	108607 57.2666	organisms.Eukaryota.Opisthokonta.Fungi.Dikarya
Mastigamoeba balamuthi	474922 57.	root.cellular organisms.Eukaryota.NA.NA.NA
Colletotrichum gloeosporioides	3078 56.993	9
Auxenochlorella pyrenoidosa		root.cellular organisms.Eukaryota.Virid
Apphanomyces euteiches	100861 56.9046 44056 56.6606	root.cellular organisms.Eukaryota.Sar.Strar
Aureococcus anophagefferens Rhizoctonia solani	456999 56.0285	root.cellular organisms.Eukaryota.Sar root.cellular organisms.Eukaryota.Opisthokonta
Salpingoeca rosetta	946362 55.4403	root.cellular organisms.Eukaryota.Upisthokont
Clonostachys rosea	29856 55.30035	root.cellular organisms.Eukaryota.Opisthokont
		root.cellular organisms.Eukaryota.Sar.Alveolata.
Amorphotheca resinae	5101 54.4745	root.cellular organisms.Eukaryota.Opisthokonta
Phytophthora capsici	4784 53.41358	root.cellular organisms.Eukaryota.Sar.Stramen
Fusarium oxysporum	5507 52.02895	root.cellular organisms.Eukaryota.Opisthokonta
Stichococcus bacillaris	37433 51.9927	root.cellular organisms.Eukaryota.Viridip
Raphidocelis subcapitata	307507 51.1627	root.cellular organisms.Eukaryota.Virid
Stylonychia lemnae		root.cellular organisms.Eukaryota.Sar.Alveolata
Fistulifera solaris	1519565 49.7366	root.cellular organisms.Eukaryota.Sar.Strame
Colletotrichum higginsianum	80884 49.4357	
Phialocephala scopiformis	149040 48.8763	root.cellular organisms.Eukaryota.Opist
Ichthyophthirius multifiliis	5932 48.8	root.cellular organisms.Eukaryota.Sar.Alv
Coremiostelium polycephalum	142831 48.621	
Colletotrichum orchidophilum	1209926 48.5	
NA 1578925 48.337		organisms.Eukaryota.Opisthokonta.Fungi.Dikarya
Phytophthora parasitica	4792 47.7626	root.cellular organisms.Eukaryota.Sar.Strar
NA 554065 46.1595	root.cellular	organisms.Eukaryota.Viridiplantae.Chlorophyta.co
Leptosphaeria maculans	5022 45.9865	root.cellular organisms.Eukaryota.Opisthoko
	04 45.9751 root	ccellular organisms.Eukaryota.Sar.Alveolata.Api
Eimeria acervulina	5801 45.8306	root.cellular organisms.Eukaryota.Sar.Alveolata
Trichoderma virens	29875 45.8201	root.cellular organisms.Eukaryota.Opisthokonta
Fusarium solani 1	69388 45.8133 r	oot.cellular organisms.Eukaryota.Opisthokonta.Fu
Fusarium proliferatum	948311 45.78918	root.cellular organisms.Eukaryota.Opisthol
Aspergillus mulundensis	1810919 45.3419	root.cellular organisms.Eukaryota.Opist
Rhizopus oryzae 6	4495 45.04514 r	oot.cellular organisms.Eukaryota.Opisthokonta.Fu
Fusarium fujikuroi	5127 44.92106	root.cellular organisms.Eukaryota.Opisthokonta
Chrysoporthe austroafricana	354353 44.668	root.cellular organisms.Eukaryota.Op
Pyricularia grisea	148305 44.31875	root.cellular organisms.Eukaryota.Opisthokon
Pseudocercospora fijiensis	1873960 44.124	root.cellular organisms.Eukaryota.Op
Pythium insidiosum	114742 44.08819	root.cellular organisms.Eukaryota.Sar.Stramen
Cyclospora cayetanensis	88456 43.98724	root.cellular organisms.Eukaryota.Sar.Alv
NA 563466 43.8291	5 root.cellular	organisms.Eukaryota.Opisthokonta.Fungi.Dikarya
Eimeria falciformis	84963 43.6713	root.cellular organisms.Eukaryota.Sar.Alveola
<i>y y</i> 1 <i>Gy</i>		root.cellular organisms.Eukaryota.Sar.Stramenop
Venturia effusa 5		oot.cellular organisms.Eukaryota.Opisthokonta.Fur
Lobosporangium transversale	64571 42.7689	root.cellular organisms.Eukaryota.Opis

[Nectria] haematococca	140110 42.65957	root.cellular organisms.Eukaryota.Opistho
Fusarium verticillioides	117187 42.40943	S , I
Trichosporon coremiiforme	82509 42.3533	root.cellular organisms.Eukaryota.Opistl
NA 569365 42.3065		r organisms.Eukaryota.Opisthokonta.Fungi.Dikarya
Crithidia fasciculata	5656 41.2974	root.cellular organisms.Eukaryota.NA.Eugleno:
Trypanosoma congolense	5692 41.2334	root.cellular organisms.Eukaryota.NA.Eugleno
Chlorella vulgaris	3077 41.10782	root.cellular organisms.Eukaryota.Viridiplanta
Neurospora crassa	5141 40.98185	root.cellular organisms.Eukaryota.Opisthokonta.H
Naegleria gruberi		root.cellular organisms.Eukaryota.NA.Heterolobose
Trichosporon ovoides	82524 40.9337	root.cellular organisms.Eukaryota.Opisthokont
Phialemoniopsis curvata	1093900 40.3666	root.cellular organisms.Eukaryota.Opistl
NA 568076 40.3173		organisms.Eukaryota.Opisthokonta.Fungi.Dikarya.
Trichoderma harzianum	5544 40.25984	root.cellular organisms.Eukaryota.Opisthokor
Aspergillus alliaceus	209559 40.15425	root.cellular organisms.Eukaryota.Opisthol
Aspergillus sojae		root.cellular organisms.Eukaryota.Opisthokonta.Fu
Fusarium culmorum		root.cellular organisms.Eukaryota.Opisthokonta.Fu
Aspergillus caelatus	61420 40.0164	root.cellular organisms.Eukaryota.Opisthokon
Arthrobotrys oligospora	13349 40.00234	root.cellular organisms.Eukaryota.Opistho
		.cellular organisms.Eukaryota.NA.Euglenozoa.Kinet
Hypoxylon pulicicidum	1243767 39.6241	root.cellular organisms.Eukaryota.Opisthol
Pyricularia oryzae	318829 39.4074	root.cellular organisms.Eukaryota.Opisthokonta
Cryphonectria parasitica	5116 39.2611	root.cellular organisms.Eukaryota.Opisthol
Sordaria macrospora	5147 38.8634	root.cellular organisms.Eukaryota.Opisthokonta
Fusarium venenatum	56646 38.6602	root.cellular organisms.Eukaryota.Opisthokonta
NA 1725355 38.516		r organisms.Eukaryota.Opisthokonta.Fungi.Dikarya
Paraphaeosphaeria sporulosa	1460663 38.4	
Aspergillus pseudotamarii	132259 38.2439	root.cellular organisms.Eukaryota.Opist
Exophiala oligosperma	215243 38.2245	root.cellular organisms.Eukaryota.Opisthoko
Trichoderma gamsii	398673 38.1993	root.cellular organisms.Eukaryota.Opisthokonta
Zymoseptoria tritici	1047171 38.1077	root.cellular organisms.Eukaryota.Opisthoko
Trichoderma asperellum	101201 38.0794	root.cellular organisms.Eukaryota.Opisthol
Parastagonospora nodorum	13684 38.03676	root.cellular organisms.Eukaryota.Opistl
Aspergillus welwitschiae	1341132 37.8464	S , I
Neurospora discreta	29879 37.76317	root.cellular organisms.Eukaryota.Opisthokont
Aspergillus oryzae	5062 37.63278	root.cellular organisms.Eukaryota.Opisthokonta
Aspergillus bombycis	109264 37.4746	root.cellular organisms.Eukaryota.Opisthokor
Purpureocillium lilacinum	33203 37.4171	U I
Fusarium coffeatum	231269 37.40235 1506151 37.2468	root.cellular organisms.Eukaryota.Opisthokon
Aspergillus pseudonomius	364733 37.1732	9 1
Endocarpon pusillum		root.cellular organisms.Eukaryota.Opisthokon
Cladophialophora bantiana	89940 37.0879	root.cellular organisms.Eukaryota.Opisth
Aspergillus flavus	5059 37.00717	root.cellular organisms.Eukaryota.Opisthokonta
Fusarium graminearum	5518 36.80952	root.cellular organisms.Eukaryota.Opisthokon ¹ 35 root.cellular organisms.Eukaryota.Op:
Fusarium pseudograminearum NA 2587410 36.579	101028 36.706	r organisms.Eukaryota.Opisthokonta.Fungi.Dikarya
Trichoderma atroviride	63577 36.53947	root.cellular organisms.Eukaryota.Opisthol
	45130 36.5329	root.cellular organisms.Eukaryota.Opisthoko
Bipolaris sorokiniana Talaromyces pinophilus	128442 35.8832	root.cellular organisms.Eukaryota.Opisthol
NA 655981 35.8182		organisms.Eukaryota.Opisthokonta.Fungi.Dikarya.
Beauveria bassiana	176275 35.63905	root.cellular organisms.Eukaryota.Opisthokon
Pyrenophora tritici-repentis	45151 35.51	
Drechslerella brochopaga	47238 35.4316	root.cellular organisms.Eukaryota.Opistho
Aspergillus niger	5061 35.42943	root.cellular organisms.Eukaryota.Opisthokonta.H
Aspergillus nomius	41061 35.2805	root.cellular organisms.Eukaryota.Opisthokonta.
Fonsecaea monophora	254056 35.2298	root.cellular organisms.Eukaryota.Opisthokon
Diplodia corticola	236234 34.9861	root.cellular organisms.Eukaryota.Opisthokonta
Dipiodia continuta	200204 04.0001	1000.0011u1u1 organismo.bunaiyota.upistnokonta

```
root.cellular organisms.Eukaryota.Opisthokonta.l
Fonsecaea erecta
                                   1367422 34.748
                     1659845 34.5224
                                              root.cellular organisms.Eukaryota.Opisthokonta.Fungi.Dikarya
NΑ
NA
                     2587412 34.5062
                                              root.cellular organisms.Eukaryota.Opisthokonta.Fungi.Dikarya
Exophiala lecanii-corni
                                          91925 34.4207
                                                                  root.cellular organisms.Eukaryota.Opisthol
Paramoeba pemaquidensis
                                          180228 34.387
                                                                  root.cellular organisms.Eukaryota.NA.NA.F
                                   48703 34.3855
                                                           root.cellular organisms.Eukaryota.Opisthokonta.Fi
Podospora comata
Verticillium dahliae
                                       27337 34.03032
                                                                root.cellular organisms.Eukaryota.Opisthoko
Alternaria alternata
                                       5599 33.95789
                                                               root.cellular organisms.Eukaryota.Opisthokon
                                                                   root.cellular organisms.Eukaryota.Opisthe
Alternaria arborescens
                                          156630 33.83602
Lachnellula hyalina
                                       1316788 33.8283
                                                                root.cellular organisms.Eukaryota.Opisthoko
Fonsecaea nubica
                                   856822 33.7874
                                                            root.cellular organisms.Eukaryota.Opisthokonta.l
Crithidia acanthocephali
                                            59798 33.7832
                                                                   root.cellular organisms.Eukaryota.NA.Eug
Penicillium arizonense
                                                                   root.cellular organisms.Eukaryota.Opisthe
                                         1835702 33.7291
                     2656787 33.6398
                                              root.cellular organisms.Eukaryota.Opisthokonta.Fungi.Dikarya
Curvularia lunata
                                    5503 33.5359
                                                           root.cellular organisms.Eukaryota.Opisthokonta.Fi
Nannochloropsis limnetica
                                             120807 33.5089
                                                                     root.cellular organisms.Eukaryota.Sar.S
                                   36330 33.50455
                                                            root.cellular organisms.Eukaryota.Sar.Alveolata
Plasmodium ovale
Leishmania peruviana
                                                             root.cellular organisms.Eukaryota.NA.Euglenozoa
                                       5681 33.399
Fonsecaea multimorphosa
                                                                   root.cellular organisms.Eukaryota.Opisthe
                                          979981 33.3916
                                                               root.cellular organisms.Eukaryota.Opisthokon
Penicillium rubens
                                     1108849 33.3861
Trichoderma citrinoviride
                                             58853 33.2152
                                                                    root.cellular organisms.Eukaryota.Opist
Cordyceps militaris
                                      73501 33.0958
                                                              root.cellular organisms.Eukaryota.Opisthokonta
                                     77519 33.0063
                                                             root.cellular organisms.Eukaryota.Sar.Alveolata
Plasmodium gonderi
Rhinocladiella mackenziei
                                             86056 33.00585
                                                                     root.cellular organisms.Eukaryota.Opis
Exophiala spinifera
                                      91928 32.89853
                                                               root.cellular organisms.Eukaryota.Opisthokon
                                      5661 32.89695
Leishmania donovani
                                                              root.cellular organisms.Eukaryota.NA.Euglenoz
Cladonia uncialis
                                    174080 32.8515
                                                             root.cellular organisms.Eukaryota.Opisthokonta
Cladosporium phlei
                                     1116209 32.816
                                                              root.cellular organisms.Eukaryota.Opisthokonta
Alternaria solani
                                    48100 32.8036
                                                            root.cellular organisms.Eukaryota.Opisthokonta.
                                                                root.cellular organisms.Eukaryota.Opisthoko
Sporothrix schenckii
                                        29908 32.77065
                     653948 32.7668
                                              root.cellular organisms.Eukaryota.Sar.Stramenopiles.Oomycota.
Dictyostelium purpureum
                                          5786 32.64365
                                                                  root.cellular organisms.Eukaryota.NA.NA.E
Verticillium alfalfae
                                        1051613 32.6412
                                                                  root.cellular organisms.Eukaryota.Opisthol
                                       27334 32.47772
                                                                root.cellular organisms.Eukaryota.Opisthoko
Penicillium expansum
                                    35717 32.47605
                                                             root.cellular organisms.Eukaryota.Opisthokonta
Epichloe festucae
Trichoderma reesei
                                     51453 32.32405
                                                              root.cellular organisms.Eukaryota.Opisthokonta
                                                               root.cellular organisms.Eukaryota.Opisthokon
Rhizopus microsporus
                                       58291 32.2729
                                      5665 32.0572
                                                             root.cellular organisms.Eukaryota.NA.Euglenozoa
Leishmania mexicana
Cercospora sojina
                                    438356 31.8845
                                                             root.cellular organisms.Eukaryota.Opisthokonta
                                        348802 31.84035
                                                                  root.cellular organisms.Eukaryota.Opisthol
Exophiala xenobiotica
Verruconis gallopava
                                       253628 31.7805
                                                                root.cellular organisms.Eukaryota.Opisthoko
Bipolaris oryzae
                                   101162 31.674
                                                           root.cellular organisms.Eukaryota.Opisthokonta.Fi
Verticillium nonalfalfae
                                            1051616 31.5967
                                                                     root.cellular organisms.Eukaryota.Opis
Leishmania amazonensis
                                         5659 31.5636
                                                                root.cellular organisms.Eukaryota.NA.Euglen
Aspergillus fischeri
                                       36630 31.38315
                                                                root.cellular organisms.Eukaryota.Opisthoko
Aspergillus nidulans
                                        162425 31.2995
                                                                root.cellular organisms.Eukaryota.Opisthoko
                                             root.cellular organisms.Eukaryota.Opisthokonta.Rotosphaerida.
                     691883 31.2965
Ramularia collo-cygni
                                        112498 31.27745
                                                                  root.cellular organisms.Eukaryota.Opisthol
>
>
> # to_kill <- c(69332, 2544991, 88149, 38544, 945030, 2880, 309737, 104198, 658196, 39416, 2788, 72228, 2
> #
            33653, 5322)
> # #pre.modified <- tree
> # for (i in 1:length(to_kill)) {
      void <- remove_update_tree( to_kill[i] )</pre>
```

```
> #
> #
      to_remove <- intersect( which(tree$br_bel==0), which(tree$br_may==0) )</pre>
> #
      if (length(to_remove)>0) tree <- tree[ -to_remove, ]</pre>
> # }
>
> #save(tree, file = paste0(paste0("/home/data/refined/reef/R/ultra.pure.tree.", date), ".RData"))
> #write.csv(tree, file = paste0(paste0("/home/data/refined/reef/R/ultra.pure.tree.", date), ".csv"))
Let's revisit briefly after these deletions.
> load(file = paste0(paste0("/home/data/refined/reef/R/ultra.pure.tree.", date), ".RData"))
> euk <- induce_tree(2759);</pre>
> largest <- arrange(euk,desc(genome_size))</pre>
> largest_species <- largest[ which(largest$rank == "species"), ]</pre>
> p<-ggplot(largest_species, aes(x=genome_size)) +</pre>
    geom_histogram(position="identity", alpha=0.5, binwidth=10) +
    labs(title="Genome Size of Eukaryota in the Barbadian Reefs",x="Genome Size (Mbp)", y = "Count")+
    theme_classic()
> p
> euk <- induce_tree(2759); euk$taxa <- "Eukaryota"
> virus <- induce_tree(10239); virus$taxa <- "virus"</pre>
> bac <- induce_tree(2) ; bac$taxa <- "Bacteria"</pre>
> arch <- induce_tree(2157); arch$taxa <- "Archaea"</pre>
> everyone <- do.call("rbind", list(euk, virus, bac, arch))
> largest <- arrange(everyone,desc(genome_size))</pre>
> largest_species <- largest[ which(largest$rank == "species"), ]</pre>
> library("DescTools")
> largest_species$genome_size <- Winsorize(largest_species$genome_size, maxval = 50, na.rm=TRUE)
> p<-ggplot(largest_species, aes(x=genome_size, fill=taxa, color=taxa)) +
    geom_histogram(position="identity", alpha=0.5, binwidth = 0.5) +
    labs(title="Genome Size of Cellular Organisms" ,x="Genome Size (Mbp)", y = "Count")+
   scale_color_brewer(palette="Dark2")+
   scale_fill_brewer(palette="Dark2")+
    theme_classic()
> p
>
```

Now we repeat the above plot at the genus level rather than at the species level. Although the two plots are very similar, we note that our calculation at each internal nodes t in the tree of life should be fixed. Currently, we simply compute the average across all the children of t but we should rather compute a weighted average. As it is, the average genome size at or near the root is disportionality high because it subject to a few large Eukaryota genomes

Finally, save this all to version 1.0.

1 Correlations between genome size and read count

In this section, we look to see if there is a relationship between the number of reads that are mapped to an organism and the size of the genome. For this analysis, we will treat each superkingdom separately. First, we load a version of the final tree.

```
> root <- rprojroot::find_root(".git/index"); source(file.path(root, "src/init.R"))
> figurefile <- "/home/data/refined/reef/R/figures/genome_size"
> clrs <- c(glasbey(), glasbey());
> # make the colors a bit easier to read
> clrs[3] <- clrs[19]
> # tmp <- clrs[2]; clrs[2] <- clrs[6]; clrs[6] <- tmp
> # tmp <- clrs[1]; clrs[1] <- clrs[12]; clrs[12] <- tmp
> # tmp <- clrs[3]; clrs[3] <- clrs[12]; clrs[12] <- tmp</pre>
```

We begin with Eukaryota. Note that we have to also adjust for the observation that the number of reads mapped to Bellairs and Maycocks is significantly different (approximately 4.5M versus 9.2M reads respectively).

```
> tree[1,]
  name tax_id parent
                        rank embl_code division_id br_bel br_may
        1
                  NA no rank
                                                  8 4486003 9194536
  bell_orig_est_reads bell_orig_fraction br_bel_frac br_may_frac
1
  may_orig_est_reads may_orig_fraction Local.Freq.Bel Local.Freq.May
1
                                     0
                                                   NA
  Glob.Freq.Bel Glob.Freq.May DeltaFreq Multinom Polarity Polarity.Adj path
                                      0
                                                0
1
              1
                            1
                                                         1
  genome_size isLeaf
     21.40583 FALSE
> bel <- tree[1, "br_bel"]; may <- tree[1, "br_may"]
> genome_size_adjustments <- list()
> lqtile <- 0.1; rqtile <- 0.9
> tree <- original
> euk <- induce_tree(2759); euk$taxa <- "Eukaryota"</pre>
> euk_species <- euk[ which(euk$rank == "species"), ]
> euk_species_a <- euk_species; euk_species_a$site <- "bellairs"; euk_species_a$reads <- (euk_species$br_b
> euk_species_b <- euk_species; euk_species_b$site <- "maycocks"; euk_species_b$reads <- (euk_species$br_m
> # added pseudocount above NO
> euk_tmp <- rbind(euk_species_a, euk_species_b)
> tmp <- arrange(euk_tmp, genome_size)</pre>
> tmp <- tmp[ which(!is.na(tmp$genome_size)), ]</pre>
> euk_tmp <- tmp[floor(nrow(tmp)*lqtile):floor(nrow(tmp)*(rqtile)),]</pre>
> # now we remove species with low number of reads
> euk_tmp <- euk_tmp[which(log(euk_tmp$reads) > -12), ]
> f <- lm( formula = log(reads) ~ log(genome_size), data = euk_tmp)</pre>
> p <- ggplot(euk_tmp, aes(x=log(genome_size), y=log(reads), color = site)) +
    scale_color_manual(values=clrs) +
    theme(axis.title.x = element_text(size = 11), axis.text.x = element_text(size = 8),
             axis.title.y = element_text(size = 1))+
    theme_tufte()+
    geom_rug(outside = TRUE, color="slategray2")+
   coord_cartesian(clip = "off") +
    geom_point(shape=20, alpha=0.8)+
    labs(title="Eukaryota",
        x="Log Genome Size (Mbps)", y="Log fraction of reads (versus total reads for site)") +
```

geom_smooth(method=lm) +

There is no evidence that the number of reads increases with genome size at least when analysis is performed in a manner where attention is restricted to only Eukaryota. Note that the slope of this fit is in fact negative if we do not remove the low count sites (log fraction reads is below -12).

```
> lqtile <- 0.0; rqtile <- 1
> tree <- original
> bel <- tree[1, "br_bel"]; may <- tree[1, "br_may"]
> virus <- induce_tree(10239); virus$taxa <- "virus"</pre>
> virus_species <- virus[ which(virus$rank == "species"), ]</pre>
> virus_species_a <- virus_species; virus_species_a$site <- "bellairs"; virus_species_a$reads <- virus_spe
> virus_species_b <- virus_species; virus_species_b$site <- "maycocks"; virus_species_b$reads <- virus_spe
> virus_tmp <- rbind(virus_species_a, virus_species_b)</pre>
> tmp <- arrange(virus_tmp, genome_size)</pre>
> tmp <- tmp[ which(!is.na(tmp$genome_size)), ]</pre>
> virus_tmp <- tmp[(floor(nrow(tmp)*lqtile))+1:floor(nrow(tmp)*(rqtile)),]</pre>
> virus_tmp <- virus_tmp[ which(log(virus_tmp$reads) > -14), ]
> f <- lm( formula = log(reads) ~ log(genome_size), data = virus_tmp)</pre>
> p <- ggplot(virus_tmp, aes(x=log(genome_size), y=log(reads), color = site)) +
    scale_color_manual(values=clrs) +
    theme(axis.title.x = element_text(size = 11), axis.text.x = element_text(size = 8),
             axis.title.y = element_text(size = 1))+
   theme_tufte()+
   geom_rug(outside = TRUE, color="slategray2")+
   coord_cartesian(clip = "off") +
   geom_point(shape=20, alpha=0.8)+
   labs(title="Viruses",
        x="Log Genome Size (Mbps)", y="Log fraction of reads (versus total reads for site)") +
    geom_smooth(method=lm) +
    geom_abline(intercept = f$coefficients[1], slope = f$coefficients[2], color="purple",
                    size=0.5, alpha = 0.75)
> p
> #ggsave( filename = "virus.species.png", path = figurefile, device = "png", dpi = 300)
> f$coefficients
     (Intercept) log(genome_size)
     -11.2573953
                        0.2050719
> virus_tmp$log_reads_adj <- log(virus_tmp$reads) -</pre>
                (log(virus_tmp$genome_size)*f$coefficients[2])
> f_after <- lm( formula = log_reads_adj ~ log(genome_size), data = virus_tmp)</pre>
> p <- ggplot(virus_tmp, aes(x=log(genome_size), y=log_reads_adj, color = site)) +
    scale_color_manual(values=clrs) +
    theme( axis.title.x = element_text(size = 11), axis.text.x = element_text(size = 8),
             axis.title.y = element_text(size = 1))+
   theme_tufte()+
    geom_rug(outside = TRUE, color="slategray2")+
    coord_cartesian(clip = "off") +
```

```
geom_point(shape=20, alpha=0.8)+
+
   labs(title="Viruses",
        x="Log Genome Size (Mbps)", y="Log fraction of reads (versus total reads for site)") +
    geom_smooth(method=lm) +
    geom_abline(intercept = f_after$coefficients[1], slope = f_after$coefficients[2], color="purple",
                    size=0.5, alpha = 0.75)
> p
> genome_size_adjustments["viruses"] <- f
> lqtile <- 0.0; rqtile <- 1
> tree <- original
> bel <- tree[1, "br_bel"]; may <- tree[1, "br_may"]
> arch <- induce_tree(2157); arch$taxa <- "Archaea"</pre>
> arch_species <- arch[ which(arch$rank == "species"), ]</pre>
> arch_species_a <- arch_species; arch_species_a$site <- "bellairs"; arch_species_a$reads <- arch_species$
> arch_species_b <- arch_species; arch_species_b$site <- "maycocks"; arch_species_b$reads <- arch_species$
> arch_tmp <- rbind(arch_species_a, arch_species_b)</pre>
> tmp <- arrange(arch_tmp, genome_size)</pre>
> tmp <- tmp[ which(!is.na(tmp$genome_size)), ]</pre>
> arch_tmp <- tmp[(floor(nrow(tmp)*lqtile))+1:floor(nrow(tmp)*(rqtile)),]</pre>
> arch_tmp <- arch_tmp[ which(log(arch_tmp$reads) > -14), ]
> f <- lm( formula = log(reads) ~ log(genome_size), data = arch_tmp)</pre>
> p <- ggplot(arch_tmp, aes(x=log(genome_size), y=log(reads), color = site)) +
    scale_color_manual(values=clrs) +
    theme( axis.title.x = element_text(size = 11), axis.text.x = element_text(size = 8),
             axis.title.y = element_text(size = 1))+
   theme_tufte()+
   geom_rug(outside = TRUE, color="slategray2")+
   coord_cartesian(clip = "off") +
   geom_point(shape=20, alpha=0.8)+
   labs(title="Archaea",
        x="Log Genome Size (Mbps)", y="Log number of reads") +
   geom_rug(outside = TRUE, color="slategray2")+
   geom_smooth(method=lm) +
    geom_abline(intercept = f$coefficients[1], slope = f$coefficients[2], color="purple",
                    size=0.5, alpha = 0.75)
> #ggsave( filename = "archaea.species.png", path = figurefile, device = "png", dpi = 300)
> f$coefficients
     (Intercept) log(genome_size)
     -11.1575223
                        0.3201326
> arch_tmp$log_reads_adj <- log(arch_tmp$reads) -</pre>
                (log(arch_tmp$genome_size)*f$coefficients[2])
> f_after <- lm( formula = log_reads_adj ~ log(genome_size), data = arch_tmp)</pre>
> p <- ggplot(arch_tmp, aes(x=log(genome_size), y=log_reads_adj, color = site)) +
    scale_color_manual(values=clrs) +
    theme(axis.title.x = element_text(size = 11), axis.text.x = element_text(size = 8),
             axis.title.y = element_text(size = 1))+
   theme_tufte()+
   geom_rug(outside = TRUE, color="slategray2")+
   coord_cartesian(clip = "off") +
   geom_point(shape=20, alpha=0.8)+
    labs(title="Archaea",
        x="Log Genome Size (Mbps)", y="Log fraction of reads") +
   geom_rug(outside = TRUE, color="slategray2")+
    geom_smooth(method=lm) +
```

```
geom_abline(intercept = f_after$coefficients[1], slope = f_after$coefficients[2], color="purple",
                    size=0.5, alpha = 0.75)
> p
> genome_size_adjustments["archaea"] <- f</pre>
> lqtile <- 0.0; rqtile <- 1
> tree <- original
> bel <- tree[1, "br_bel"]; may <- tree[1, "br_may"]</pre>
> bac <- induce_tree(2) ; bac$taxa <- "Bacteria"</pre>
> bac_species <- bac[ which(bac$rank == "species"), ]</pre>
> bac_species_a <- bac_species; bac_species_a$site <- "bellairs"; bac_species_a$reads <- bac_species$br_be.
> bac_species_b <- bac_species; bac_species_b$site <- "maycocks"; bac_species_b$reads <- bac_species$br_ma
> bac_tmp <- rbind(bac_species_a, bac_species_b)</pre>
> tmp <- arrange(bac_tmp, genome_size)</pre>
> tmp <- tmp[ which(!is.na(tmp$genome_size)), ]</pre>
> bac_tmp <- tmp[(floor(nrow(tmp)*lqtile))+1:floor(nrow(tmp)*(rqtile)),]</pre>
> bac_tmp <- bac_tmp[ which(log(bac_tmp$reads) > -14), ]
> f <- lm( formula = log(reads) ~ log(genome_size), data = bac_tmp)</pre>
> p <- ggplot(bac_tmp, aes(x=log(genome_size), y=log(reads), color = site)) +</pre>
    scale_color_manual(values=clrs) +
    theme( axis.title.x = element_text(size = 11), axis.text.x = element_text(size = 8),
             axis.title.y = element_text(size = 1))+
  theme_tufte()+
   geom_rug(outside = TRUE, color="slategray2")+
   coord_cartesian(clip = "off") +
   geom_point(shape=20, alpha=0.8)+
   labs(title="Bacteria",
        x="Log Genome Size (Mbps)", y="Log fraction of reads") +
   geom_rug(outside = TRUE, color="slategray2")+
   geom_smooth(method=lm) +
    geom_abline(intercept = f$coefficients[1], slope = f$coefficients[2], color="purple",
                    size=0.5, alpha = 0.75)
> p
> #ggsave( filename = "bacteria.species.png", path = figurefile, device = "png", dpi = 300)
> f$coefficients
     (Intercept) log(genome_size)
      -10.843223
                         0.420101
> bac_tmp$log_reads_adj <- log(bac_tmp$reads) -</pre>
                (log(bac_tmp$genome_size)*f$coefficients[2])
> f_after <- lm( formula = log_reads_adj ~ log(genome_size), data = bac_tmp)</pre>
> p <- ggplot(bac_tmp, aes(x=log(genome_size), y=log_reads_adj, color = site)) +
    scale_color_manual(values=clrs) +
    theme( axis.title.x = element_text(size = 11), axis.text.x = element_text(size = 8),
             axis.title.y = element_text(size = 1))+
  theme_tufte()+
    geom_rug(outside = TRUE, color="slategray2")+
   coord_cartesian(clip = "off") +
   geom_point(shape=20, alpha=0.8)+
    labs(title="Bacteria",
+
        x="Log Genome Size (Mbps)", y="Log fraction of reads") +
   geom_rug(outside = TRUE, color="slategray2")+
   geom_smooth(method=lm) +
    geom_abline(intercept = f_after$coefficients[1], slope = f_after$coefficients[2], color="purple",
                    size=0.5, alpha = 0.75)
> genome_size_adjustments["bacteria"] <- f</pre>
```

```
> lqtile <- 0.0; rqtile <- 1
> tree <- original
> tot_tmp <- do.call("rbind", list(euk_tmp, virus_tmp, bac_tmp, arch_tmp))</pre>
> tmp <- arrange(tot_tmp, genome_size)</pre>
> tmp <- tmp[ which(!is.na(tmp$genome_size)), ]</pre>
> tot_tmp <- tmp[(floor(nrow(tmp)*lqtile))+1:floor(nrow(tmp)*(rqtile)),]</pre>
> tot_tmp <- tot_tmp[ which(log(tot_tmp$reads) > -14), ]
> f <- lm( formula = log(reads) ~ log(genome_size), data = tot_tmp)</pre>
> p <- ggplot(tot_tmp, aes(x=log(genome_size), y=log(reads), color = taxa)) +
    scale_color_manual(values=clrs) +
    theme(axis.title.x = element_text(size = 11), axis.text.x = element_text(size = 8),
             axis.title.y = element_text(size = 1))+
   theme_tufte()+
+
   geom_rug(outside = TRUE, color="slategray2")+
   coord_cartesian(clip = "off") +
   geom_point(aes(shape=factor(site)), alpha=0.8)+
   labs(title="All",
        x="Log Genome Size (Mbps)", y="Log fraction of reads") +
  geom_rug(outside = TRUE, color="slategray2")+
+ # geom_smooth(method=lm) +
   geom_abline(intercept = f$coefficients[1], slope = f$coefficients[2], color="purple",
                    size=0.5, alpha = 0.75)
> p
> #ggsave( filename = "all.png", path = figurefile, device = "png", dpi = 300)
> f$coefficients
     (Intercept) log(genome_size)
     -10.8238770
                        0.4024304
> tot_tmp$log_reads_adj <- log(tot_tmp$reads) -</pre>
                (log(tot_tmp$genome_size)*f$coefficients[2])
> f_after <- lm( formula = log_reads_adj ~ log(genome_size), data = tot_tmp)</pre>
> p <- ggplot(tot_tmp, aes(x=log(genome_size), y=log_reads_adj, color = taxa)) +
    scale_color_manual(values=clrs) +
    theme(axis.title.x = element_text(size = 11), axis.text.x = element_text(size = 8),
             axis.title.y = element_text(size = 1))+
+
   theme_tufte()+
   geom_rug(outside = TRUE, color="slategray2")+
   coord_cartesian(clip = "off") +
   geom_point(aes(shape = factor(site)), alpha=0.8)+
   labs(title="All",
        x="Log Genome Size (Mbps)", y="Log fraction of reads") +
    geom_rug(outside = TRUE, color="slategray2")+
+ # geom_smooth(method=lm) +
   geom_abline(intercept = f_after$coefficients[1], slope = f_after$coefficients[2], color="darkgreen",
                    size=0.5, alpha = 0.75) +
    geom_text(aes(x= -7, label="\nLinear Fit", y=f_after$coefficients[1]), colour="black", angle=0, text=e.
+
      geom_hline(vintercept=-5.8, color = "black")+
    geom_text(aes(x=-6.5, label="\nViruses", y=-5.8), colour="black", angle=0, text=element_text(size=3))
    geom_text_repel(
        max.iter=100000,
        aes(label=subset(tot_tmp, ((taxa == "virus") & (log_reads_adj > -5.8 )))$name),
+
        data = subset(tot_tmp, ((taxa == "virus") & (log_reads_adj > -5.8 ))),
         segment.size = 0.1,
        nudge_x = -5,
```

```
nudge_y = +1
+
                                                                             = "y",
                                                                                                      = 0.5,
       # nudge_x
                        = top_left,
                                      segment.size = 0.1,
                                                              direction
                                                                                       hjust
      ) +
+
+
    geom_hline(yintercept=-8, color = "blue")+
    geom_text(aes(x=-6.5, label="\nArchaea", y=-8), colour="blue", angle=0, text=element_text(size=3)) +
+
    geom_text_repel(
        max.iter=100000,
+
        aes(label=subset(tot_tmp, ((taxa == "Archaea") & (log_reads_adj > -8 )))$name),
+
        data = subset(tot_tmp, ((taxa == "Archaea") & (log_reads_adj > -8 ))),
+
        segment.size = 0.1,
+
        nudge_x = -5,
+
       nudge_y = +5
+
       # nudge_x
                                      segment.size = 0.1,
                                                                             = "y",
                                                                                                      = 0.5,
                       = top_left,
                                                              direction
                                                                                       hjust
      ) +
+
    geom_hline(yintercept=-4.5, color = "red")+
    geom_text(aes(x=2.0, label="\nBacteria", y=-4.5), colour="red", angle=0, text=element_text(size=3)) +
    geom_text_repel(
        max.iter=100000,
+
        aes(label=subset(tot_tmp, ((taxa == "Bacteria") & (log_reads_adj > -4.5 )))$name),
+
+
        data = subset(tot_tmp, ((taxa == "Bacteria") & (log_reads_adj > -4.5 ))),
        segment.size = 0.1,
+
        nudge_x = +1,
+
        nudge_y = +1
+
                                                                             = "v",
                                                                                                      = 0.5, :
       # nudge_x
                                      segment.size = 0.1,
                                                               direction
                                                                                       hjust
                       = top_left,
+
      ) +
+
    geom_hline(yintercept=-8.5, color = "purple") +
    geom_text(aes(x=3.5, label="\nEukaryota", y=-8.5), colour="purple", angle=0, text=element_text(size=3)
    geom_text_repel(
        max.iter=100000,
        aes(label=subset(tot_tmp, ((taxa == "Eukaryota") & (log_reads_adj > -8.5 )))$name),
+
+
        data = subset(tot_tmp, ((taxa == "Eukaryota") & (log_reads_adj > -8.5 ))),
        segment.size = 0.1,
+
        nudge_x = +1,
        nudge_y = +1
                                                                                                      = 0.5, :
+
       # nudge_x
                                      segment.size = 0.1,
                                                               direction
                                                                             = "y",
                                                                                       hjust
                       = top_left,
> p
> #ggsave( filename = "all.adjusted.png", path = figurefile, device = "png", dpi = 300)
> genome_size_adjustments["all"] <- f</pre>
The R object that stores the linear fit f is stored in the reef folder. Finally we add to our tree data structure an
attribute corresponding to the corrected read count corrected by f.
> # Write the linear models to file
> #save( file = file.path(REEF_DIR, "genome_size_adjustment_1.0.RData"), genome_size_adjustments)
```