

Компьютерная дискретная математика

Основные понятия теории графов

Лекции 11-12 Н.В. Белоус

Факультет компьютерных наук Кафедра ПО ЭВМ, ХНУРЭ

Граф G=(V,E) состоит из двух множеств: конечного множества элементов, называемых вершинами, и конечного множества элементов, называемых ребрами.

Γραφ
$$G=(V, E)$$

$$V=\{v_1, v_2, v_3, v_4, v_5\};$$

$$E=\{e_1, e_2, e_3, e_4, e_5, e_6, e_7\}$$

Вершины $oldsymbol{v}_i$ и $oldsymbol{v}_j$, определяющие ребро $oldsymbol{e}_k$, называются концевыми вершинами ребра $oldsymbol{e}_k$.

Ребра с одинаковыми концевыми вершинами называются napaллельными ($e_{_{1}}$, $e_{_{4}}$).

Петля – замкнутое ребро (e_5) .

Ребро, принадлежащее вершине, называется **инцидентным** (ребро **e**, инцидентно вершинам

 v_{1} и v_{2}).

 $m{N}$ **Изолированная вершина** не инцидентна ни одному ребру $(m{v}_3)$.

Две вершины *смежны*, если они являются концевыми вершинами некоторого ребра (v_1, v_4) .

Если два ребра имеют общую концевую вершину, они называются *смежными* (e_1, e_2) .

Демонстрация

Подграф – любая часть графа, сама являющаяся графом.

Подграф H графа G

Виды графов

Граф G=(V,E) называется **простым**, если он не содержит петель и параллельных ребер.

Граф G=(V,E) называется *полным*, если он простой и каждая пара вершин смежна.

Виды графов

Ноль-граф - граф, множество ребер которого

пусто.

Граф G с кратными ребрами называется мультиграф.

Виды графов

Граф G с петлями и кратными ребрами называется $nceedorpa\phi$.

Демонстрация

Неориентированный граф

Граф *G*, рёбра которого не имеют определённого направления, называется неориентированным.

Ориентированный граф

Граф **G**, имеющий определённое направление, называется **ориентированным графом или орграфом**. Ребра, имеющие направление, называются **дугами**.

Демонстрация

Способы задания графов

1) Явное задание графа как алгебраической системы.

Чтобы задать граф, достаточно для каждого ребра указать двухэлементное множество вершин – его мы и будем отождествлять с ребром.

 $\{\{a,b\},\{b,c\},\{a,c\},\{c,d\}\}$

THE SAME OF THE SA

Способы задания графов

2) Геометрический.

Способы задания графов

3) Матрица смежности.

Элементы A_{ij} матрицы смежности A равны количеству ребер между рассматриваемыми вершинами.

Матрица смежности неорграфа

Для неорграфа G, представленного на рисунке, матрица смежности имеет вид:

		v_1	v_2	v_3	v_4	V_5
A =	v_1	0	1	0	1	0
	v_2	1	0	1	1	0
	$=$ v_3	0	0	0	1	0
	v_4	1	1	1	0	1
	v_5	0	0	0	1	1

Матрица смежности орграфа

Для орграфа G, представленного на рисунке, матрица смежности имеет вид:

		v_1	v_2	V_3	V_4	v_5
A_0 =	v_1	0	2	0	0	0
	v_2	1	0	1	0	0
	v_3	1	0	1	0	1
	v_4	0	0	0	0	0
	v_5	0	0	0	0	0

Способы задания графов

4) Матрица инцидентности.

Матрица инцидентности В –это таблица, строки которой соответствуют вершинам графа, а столбцы - ребрам.

Элементы матрицы определяются следующим образом:

Демонстрация

Способы задания графов

1) для неорграфа

 ${m i}$, если вершина ${m v}_i$ инцидентна ребру ${m e}_j$;

$$b_{ij}$$
= $|o|$, в противном случае

		e.	e_{\circ}	e_{α}	e_4	$e_{\bar{z}}$	e	e_{σ}	e_{\circ}
B =	v_1				0				
	v_3	0	1	1	0	1	1	0	0
					1				
	v_5	0	0	0	0	0	1	1	1

Матрица инцидентности орграфа

для орграфа

- -1, если ребро e_j входит в вершину v_i ;
- ${f 1},\;$ если ребро ${f e}_{{f j}}$ выходит из вершины ${f v}_{{f i}}$;

$$b_{ij}$$
= \langle 2, если ребро e_j –петля из вершины v_i ;

o, если e_i и v_i не инцидентны.

		e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8
B =	v_1	1	1	0	0	0	0	0	0
	v_2	-1	0	-1	1	0	0	0	0
	v_3	0	-1	1	0	1	1	0	0
			0						
	v_5	0	0	0	0	0	-1	1	2

Маршрут

Маршрут в графе G=(V,E) — конечная чередующееся последовательность вершин и ребер v_o , e_i , v_i , e_2 ,..., v_{k-i} , e_k , v_k , которая начинается и заканчивается на вершинах, причем v_{i-1} и v_i являются концевыми вершинами ребра e_i , $1 \le i \le k$.

Маршрут

Маршрут называется **открытым**, если его концевые вершины различны (v_1 , e_1 , v_2 , e_2 , v_3 , e_3 , v_6 , e_9 , v_5 , e_7 , v_3 , e_{11} , v_6).

Маршрут называется **замкнутым**, если его концевые вершины совпадают (v_1 , e_1 , v_2 , e_2 , v_3 , e_7 , v_5 , e_3 , v_2 , e_4 , v_4 , e_5 , v_1).

Цепь

Маршрут называется *цепью*, если все его ребра различны.

Цепь называется **простой**, если ее концевые вершины различны($\mathbf{v_1}$, $\mathbf{e_1}$, $\mathbf{v_2}$, $\mathbf{e_2}$, $\mathbf{v_3}$, $\mathbf{e_8}$, $\mathbf{v_6}$, $\mathbf{e_{11}}$, $\mathbf{v_3}$).

Цепь называется **замкнутой**, если ее концевые вершины совпадают $(v_1, e_1, v_2, e_2, v_3, e_7, v_5, e_3, v_2, e_4, v_4, e_5, v_1)$.

Путь, цикл

Открытая цепь называется **путем**, если все ее вершины различны ($\mathbf{v_1}$, $\mathbf{e_1}$, $\mathbf{v_2}$, $\mathbf{e_2}$, $\mathbf{v_3}$).

Цикл – это замкнутая цепь (*простой цикл*, если цепь простая) (\mathbf{v}_1 , \mathbf{e}_1 , \mathbf{v}_2 , \mathbf{e}_3 , \mathbf{v}_5 , \mathbf{e}_6 , \mathbf{v}_4 , \mathbf{e}_5 , \mathbf{v}_1).

Число ребер в пути называется *длиной пути*. Аналогично определяется *длина цикла*.

Свойства путей и циклов

- 1. Степень каждой неконцевой вершины пути равна 2, концевые вершины имеют степень, равную 1.
- 2. Каждая вершина цикла имеет степень 2 или другую четную степень. Обращение этого утверждения, а именно то, что ребра подграфа, в котором каждая вершина имеет четную степень, образуют цикл, неверно.
- 3. Число вершин в пути на единицу больше числа ребер, тогда как в цикле число ребер равно числу вершин.

Связность графов, компонента связности Две вершины \mathbf{v}_i и \mathbf{v}_j называются связанными в графе G, если в нем существует путь $v_i - v_i$. Вершина связана сама с собой.

Граф называется связным, если в существует путь между каждой парой вершин.

Компонента связности - максимальный связный подграф в графе.

- 1 компонента связности: $\{v_1, v_2, v_3, e_1, e_2, e_3\}$
- 2 компонента связности: $\{v_{\phi}, v_{5}, v_{6}, e_{\phi}, e_{5}, e_{6}\}$
- 3 компонента связности: $\{v_7, v_8, e_7\}$
- 4 компонента связности: $\{v_{g}\}$

Демонстрация

Степень вершины v_j называется число инцидентных ей ребер, т. е. вершин в ее окружении.

Максимальная и минимальная степени вершин графа G обозначаются символами $\Delta(G)$ и $\delta(G)$ соответственно:

$$\Delta(G) = \max_{v \in VG} \frac{\deg v}{\delta(G)} = \min_{v \in VG} \frac{\deg v}{\delta(G)}$$

Граф G=(V,E) называется регулярным или однородным (степени г), если степени всех его вершин одинаковы. Степенью регулярного графа называется степень его вершин.

Сумма степеней вершин графа

Утверждение («лемма о рукопожатиях»)

Сумма всех вершин графа – четное число, равное удвоенному числу ребер:

$$\sum_{v \in VG} \deg v = 2|EG|$$

Интерпретация леммы: поскольку в каждом рукопожатии участвуют две руки, то при любом числе рукопожатий общее число пожатых рук четно (при этом каждая рука учитывается столько раз, во скольких рукопожатиях она участвовала).

Следствие

В любом графе число вершин нечетной степени четно

Изоморфизм графов

Два графа G_1 и G_2 изоморфны, если существует такое взаимно-однозначное отображение между множествами их вершин и ребер, что соответствующие ребра графов G_1 и G_2 инцидентны соответствующим вершинам этих графов.

Если граф G изоморфен геометрическому графу G' в R^n , то G' называется геометрической реализацией графа G в пространстве R^n .

Граф R^2 является геометрической реализацией графа R^3

Пример изоморфных графов

Соответствие вершин:

$$v_1 \leftrightarrow v_2', v_2 \leftrightarrow v_3', v_3 \leftrightarrow v_1', v_4 \leftrightarrow v_4', v_5 \leftrightarrow v_5';$$

Соответствие ребер:

$$e_1 \leftrightarrow e_1', e_3 \leftrightarrow e_2', e_5 \leftrightarrow e_4', e_2 \leftrightarrow e_5', e_4 \leftrightarrow e_6', e_6 \leftrightarrow e_3'.$$

G1 и G2 — изоморфные графы

Изоморфизм как отношение эквивалентности на множестве графов

Отношение изоморфизма является эквивалентностью, т.е. оно симметрично, транзитивно и рефлексивно.

Помеченный и абстрактный графы

Граф порядка n называется nомеченным, если его вершинам присвоены некоторые метки (например номера 1, 2, ..., n).

Абстрактный (или непомеченный) граф – это класс изоморфных графов.

Помеченные графы:

