A reação assimétrica dos Estados Brasileiros a choques de Política Monetária muda ao longo do tempo?

Lucas Daniel Duarte* Prof. Rodrigo de Losso[†]

18 de Dezembro de 2023

RESUMO

Este trabalho busca analisar se as reações dos estados brasileiros a choques de política monetária são assimétricos e se tais efeitos mudam ao longo do tempo. Para tanto, iremos calcular funções impulso-resposta extraídas de um modelo de Vetores Autorregressivos Estruturais (SVAR) para 13 estados brasileiros que dispõem de dados sobre produção industrial considerando a amostra completa e duas subamostras. Encontra-se que i) os efeitos dos produtos estaduais a choques monetários são assimétricos e ii) esses efeitos podem alterar-se significativamente ao longo do tempo.

1 INTRODUÇÃO

A preocupação com os efeitos assimétricos da política monetária entre as diferentes regiões e estados de um país não é nova. Nesta área, destaca-se o trabalho de (CARLINO; DEFINA, 1999), que analisou o efeito da política monetária sobre diferentes regiões dos Estados Unidos utilizando funções impulso-resposta derivadas de um SVAR, mostrando que algumas regiões são mais sensívels que a média do país. Além disso, também encontram evidências que estados com maior participação da indústria manufatureira tendem a reagir mais fortemente a política monetária.

Para o caso brasileiro, o trabalho de (ARAúJO, 2004) argumenta que os estados da região Sul tendem a reagir mais fortemente ao choque de política monetária que os estados do Nordeste. Para tanto, ele utiliza um VAR para avaliar quantitativamente o grau de assimetria dos índices de produção industrial entre essas regiões e seus estados.

Não obstante, (BERTANHA; HADDAD, 2008) realiza a análise para todos os estados brasileiros, com a inovação estando no uso de uma matriz de vizinhança espacial ponderada pelo fluxo comercial entre os estados, mostrando a relevância do transbordamento espacial no modelo. Em particular, os impactos da política monetária se mostraram mais fortes e dispersos quando se retira a espacialiadade do modelo.

Por fim, o trabalho de (ROCHA; SILVA; GOMES, 2011) a partir de funções impulsoresposta estimadas para séries estaduais de produção industrial faz duas análises. A

^{*}Mestrando no IPE-USP.

[†]Prof. Rodrigo de Losso. Docente do Curso EAE6032 - Econometria IV (2023).

primeira, encontra a reação assimétrica dos estados ao choque de política monetária. A segunda, e o foco do artigo, busca explicar quais fatores explicam a reação dos estados, encontrando que os estados que reagem menos intensamente a política monetária que possuem maior presença da indústria extrativista e maior grau de abertura comercial uma vez que sua depêndencia da taxa de juros interna seria reduzida. Estados com maior densidade demográfica também apresentam reduzida sensibilidade a choques monetários. Porém, um ponto em comum a todos esses artigos é a consideração de um período de tempo fixo, sem avaliar como a assimetria ao choque de política monetária mudaria ao longo do tempo. Dessa forma, o presente trabalho constrói em cima de (ROCHA; SILVA; GOMES, 2011) em dois sentidos. Primeiro, utiliza-se um período de tempo maior (entre janeiro de 2002 até outubro de 2023) para avaliar a assimetria a política monetária entre os estados brasileiros a partir de séries de produção industrial. Segundo, uma vez encontrado tais efeitos, este artigo faz uma análise comparando duas subamostras: entre janeiro de 2002 até novembro de 2010 - um período similar a (ROCHA; SILVA; GOMES, 2011) - e de dezembro de 2010 até outubro de 2023. Essa comparação é motivada, principalmente, por um fator: crises econômicas.

O Brasil passou por duas grandes crises entre final de 2010 até final de 2023: a crise de 2014 e a crise causada pela pandemia de Covid-19, que provavelmente afetou os estados brasileiros de maneira diferente. Assim, se fatores como abertura comercial, participação da indústria extrativa e densidade demográfica ajudam a explicar os efeitos da política monetária sobre os estados e esses fatores são afetados pelas crises mencionadas, então é possível que os efeitos da política monetária sobre os estados se alteraram de maneira significativa nos últimos 13 anos.

Este trabalho encontra dois resultados: i) os estados continuam reagindo de maneira assimétrica ao choque de política monetária, mas com funções impulso-respostas que são diferentes daquelas estimadas por (ROCHA; SILVA; GOMES, 2011); ii) Comparando as duas subamostras, nota-se diferenças importantes em relação a como os estados reagem ao choque de política monetária, com estados apresentando reações menos sensíveis (como Pernambuco) e outros apresentando reações positivas do produto ao choque: é o caso do Rio de Janeiro e do Espírito Santo, bem como do Amazonas.

O restante do artigo está organizado a seguinte forma: a Seção 2 descreverá o modelo empírico utilizado neste trabalho; a Seção 3 descreve quais dados foram utilizados e o tratamento dos mesmos; a Seção 4 explica o processo de estimação do modelo e a estratégia de identificação; a Seção 5 apresenta os resultados do trabalho e, por fim, a Seção 6 relata as conclusões.

2 MODELO EMPÍRICO

Seguindo a metodologia de (ROCHA; SILVA; GOMES, 2011), a relação entre as variáveis de interesse será modelada por meio de um Modelo Vetorial Auto-Regressivo Estrutural (SVAR) da seguinte forma:

$$y_{t}'A_{0} = \sum_{l=1}^{p} y_{t-l}A_{l} + \epsilon_{t}'$$
(1)

Onde y_t é um vetor coluna $n \times 1$ das variáveis endógenas do modelo, A_0 é uma matriz $n \times n$ dos coeficientes contemporâneos, A_t é uma matriz $n \times n$ dos parâmetros das variàveis defasadas para $1 \le l \le p$, ϵ_t é um vetor coluna dos distúrbios estruturais, p é a ordem de defasagem e T é o tamanho da amostra. Supõe-se que a distribuição de ϵ_t condicional

em informações passadas, é Gaussiana com média e matriz de variância-covariância dada por $E(\epsilon_t|y_{t-1},y_{t-2},...,y_1)=0$ e $E(\epsilon_t\epsilon_t'|y_{t-1},y_{t-2},...,y_1)=I_{n\times n}$, respectivamente. Pós multiplicando (1) por A_0^{-1} , obtêm-se o modelo em sua forma reduzida, dado por:

$$y_{t}' = \sum_{l=1}^{p} y_{t-l} B_{l} + \mu_{t}'$$
 (2)

Onde $B_l = A_l A_0^{-1}$, $\mu_t' = \epsilon_t' A_0^{-1}$ e $E(\mu_t' \mu_t) = \Omega = (A_0' A_0)^{-1}$ é a matriz de variância-covariância dos resíduos na forma reduzida.

O modelo VAR em sua forma reduzida (2) será estimado para cada um dos estados para os quais há dados disponíveis. Assim, o vetor y_t será composto, em ordem, por uma medida da taxa de crescimento do produto agregado nacional ΔPIB_t^{BR} , por uma medida da taxa de crescimento do produto estadual, ΔPIB_t^j , onde j representa o estado considerado; por uma medida da variação do nível de preços ao consumidor ΔP_t^{BR} e por um instrumento da política monetária, a taxa de juros r_t . Essa será a ordenação das variáveis utilizada neste trabalho. Dessa forma, temos:

$$y_t' = \left(\Delta P I B_t^{BR} \ \Delta P I B_t^j \ \Delta P_t^{BR} \ r_t\right)' \tag{3}$$

Entretanto, apesar da estimação ser do modelo em sua forma reduzida, o interesse deste trabalho é obter funções de resposta a impulso ortogonais, que representam as respostas das variáveis endógenas do sistema a um impulso em um dos elementos do vetor ϵ_t . Dessa forma, precisamos impor uma restrição para que cada elemento deste vetor seja identificado.

Neste trabalho, será adotado a decomposição de Cholesky, no qual a primeira variável da ordenação não é afetada contemporaneamente pelas outras (ou seja, a medida de taxa de crescimento agregado nacional não é afetado contemporaneamente pela taxa de crescimento pela medida de taxa de crescimento do produto estadual, nem pela variação do nível dos preços ou pela política monetária). A segunda variável, por sua vez, é afetada contemporaneamente pela primeira, mas não pelas demais. Já a terceira variável é afetada contemporaneamente pela primeira e pela segunda, mas não pela quarta. Por último, a quarta variável é afetada contemporaneamente por todas as outras, mas não afeta nenhuma delas no mesmo período. Justifica-se essa ordenação pelo mesmo argumento que (ROCHA; SILVA; GOMES, 2011): decições de produção são tomadas com certa defasagem, enquanto que preços tendem a reagir mais rapidamente. Por outro lado, decisões de política monetária são tomadas com bases no comportamento recente do produto e da inflação.

3 DADOS

Neste trabalho, iremos utilizar a Pesquisa Industrial Mensal de janeiro de 2002 até outubro de 2023, considerando apenas a indústria geral. A abrangência geográfica será o Brasil (agregado nacional), Amazonas, Bahia, Ceará, Espírito Santo, Goiás, Minas Gerais, Pará, Pernambuco, Paraná, Rio de Janeiro, Rio Grande do Sul, Santa Catarina e São Paulo. Para os preços, iremos utilizar o índice de preços calculado com base no IPCA. Essas séries são encontradas nas tabelas 8888 e 1737, respectivamente¹. Por sua vez, o instrumento de política monetária será a taxa Selic-Over, acumulada no mês, consolidadas

Essas tabelas estão disponíveis no Sistema IBGE de Recuperação Automática (SIDRA)

pelo Ipeadata². Como estamos interessados por medidas de taxa de crescimento, adota-se o seguinte procedimento neste trabalho: i) dessazonaliza-se as séries de produção industrial por meio do método X13-Arima; ii) Aplica-se logaritmo natural nas séries de produção industrial e no índice de preços calculado com base no IPCA; iii) Calcula-se a taxa de crescimento a partir da primeira diferença do logaritmo natural. A série Selic-Over será utilizada em nível³. As figuras (1) e (2) mostram a comparação entre a série de produção industrial original e a mesma série dessazonalizada para o Brasil e São Paulo. O mesmo procedimento foi aplicado para todos os outros estados, apresentando resultados similares.

Figura 1 – PIM-BR

Figura 2 - PIM-SP

Por sua vez, as figuras (3) e (4) ilustram, para o Brasil e São Paulo, o resultado do procedimento da primeira diferença do logaritmo natural, a medida de taxa de crescimento que será utilizada neste trabalho.

Figura 3 – Taxa de Crescimento - Brasil

Figura 4 – Taxa de Crescimento - São Paulo

4 ESTIMAÇÃO DO VAR E IDENTIFICAÇÃO DO SVAR

Este artigo começa a análise verificando a estacionariedade das séries a partir do teste de Dickey Fuller Aumentado (ADF). A figura (5) apresenta os resultados do teste ADF para as séries. Nota-se que, em geral, o teste rejeita a nula de não-estacionariedade para todas as séries, com exceção da série do instrumento de política monetária, a taxa de juros Selic-Over. Curiosamente, o teste indica que a série é estacionária para o período analisado por (ROCHA; SILVA; GOMES, 2011) (isto é, de janeiro de 2002 até novembro de 2010), enquanto que não consegue rejeitar a nula de não estacionariedade para o período dezembro de 2010 até outubro de 2023.

² http://ipeadata.gov.br/Default.aspx - Taxa de juros - Over / Selic - acumulada no mês

 $^{^3}$ Todas as análises e estimações dos modelos foram feitas no software R

Teste de Estacionariedade das Séries	Augmented Di	ckey Fuller Te	st
Séries	Dickey Fuller	p-valor	Ordem de Lags
g_BR	-7,1136	0,01	6
g_AM	-9,2582	0,01	6
g_BA	-9,0257	0,01	6
g_CE	-8,5445	0,01	6
g_ES	-6,9899	0,01	6
g_GO	-9,6125	0,01	6
g_MG	-7,1026	0,01	6
g_PA	-9,0733	0,01	6
g_PE	-9,2832	0,01	6
g_PR	-7,493	0,01	6
g_RJ	-7,7711	0,01	6
g_RS	-7,2981	0,01	6
g_SC	-7,7467	0,01	6
g_SP	-6,6528	0,01	6
IPCA	-5,2698	0,01	6
Selic Over	-3,0612	0,129	6
Selic Over (jan-2002 até nov-2011)	-4,1021	0,01	4
Selic Over (dez-2011 até out-2023)	-2,4957	0,3698	5

Figura 5 – Resultado dos Testes ADF

Optou-se por utilizar a série de Selic-Over em nível nas análises pois transformações na taxa de juros a fim de torná-la estacionária não gerou alterações significativas nas funções impulso-resposta estimadas e tornaria a interpretação das mesmas mais imprecisa. Uma vez feito a análise de estacionariedade das séries, seleciona-se a quantidade de defasagens ótima para o VAR de cada estado a partir do critério de Informação de Akaike, seguindo a recomendação de (IVANOV; KILIAN, 2005) para VAR com dados mensais. Nos casos em que i) foram detectadas a presença de autocorrelação nos resíduos da estimação, procurou-se melhorar o modelo adicionando-se defasagens e ii) Quando o AIC indicava um número alto de defasagens (9, 10), buscou-se uma especificação mais conservadora, com um número de defasagens que não gerava autocorrelação serial dos resíduos (ou perto disso). Para todas as espeficações, foram realizadas também o teste de heterocedasticidade condicional. Ambos esses resultados estão nas Figuras (11)-(18) do Apêndice. A Figura (6) apresenta os modelos VAR estimados e as defasagens sugeridas pelos critérios de informação. O mesmo procedimento foi realizado para a estimação do VAR nas sub amostras de janeiro de 2002 até novembro de 2010 e de dezembro de 2010 até outubro de 2023. O modelo VAR selecionado para essas subamostras estão nas Figuras (9)-(10). Uma vez estimado os modelos VAR para cada estado, é necessário recuperar os parâmetros estruturais para obtenção das funções impulso-resposta ortogonais dos produtos estaduais a um choque de 1% na taxa de juros. Para isso, aplicou-se a decomposição de Cholesky. Assim, a matriz A_0 assume a seguinte forma:

$$A_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ a_{21} & 1 & 0 & 0 \\ a_{31} & a_{32} & 1 & 0 \\ a_{41} & a_{42} & a_{43} & 1 \end{bmatrix}$$

Portanto, com os resíduos do VAR ϵ_t , utiliza-se a equação $u_t = A_0^{-1} \epsilon_t$ para recuperação dos choques estruturais. Uma vez feito isso, pode-se calcular as funções de resposta-impulso do produto de cada estado a um choque de 1% na taxa de juros, que são apresentadas na próxima seção.

	Seleção do Modelo VAR - 01/2002 - 10/2023								
Modelo para o Estado	Defasagens Usadas	Akaike Info Criterion	Hannan-Quinn Criterion	Schwarz Criterion	Final Prediction Error				
Amazonas	5	4	2	2	4				
Bahia	5	4	2	2	4				
Ceará	5	5	2	2	5				
Espírito Santo	5	4	2	2	4				
Goiás	5	5	4	2	5				
Minas Gerais	5	4	2	2	4				
Pará	5	4	2	2	4				
Pernambuco	5	4	2	2	4				
Paraná	5	4	2	2	4				
Rio de Janeiro	4	4	2	2	4				
Rio Grande do Sul	5	5	2	2	5				
Santa Catarina	5	4	2	2	4				
São Paulo	5	4	2	2	4				

Figura 6 – Seleção do Modelo VAR

5 RESULTADOS

Apenas para facilitar exposição dos resultados, agrupou-se as funções impulso-resposta por Região. As funções impulso resposta estimadas para a amostra completa estão nas Figuras (19) - (23) do Apêndice. De maneira geral, nota-se que o estados de fato reagem de maneira assimétrica ao mesmo choque de política monetária no período de janeiro de 2002 até outubro de 2023. Destaca-se dois estados que apresentam reações de curto prazo mais negativas - Ceará e Rio Grande do Sul. Por outro lado, o Amazonas apresenta reação quase nula, enquanto que Espírito Santo apresenta uma reação de curto prazo contraintuitiva: uma reação positiva do produto ao choque. Dessa forma, esses resultados são diferentes de (ARAúJO, 2004), que encontra efeitos mais fortes da política monetária em estados da Região Sul em relação a estados da Região Nordeste, sendo inobservável algum padrão distinguível entre estados da mesma região. Não obstante, esses resultados corroboram o argumento de (ROCHA; SILVA; GOMES, 2011) em relação a assimetria da reação dos estados a um choque de política monetária.

Interessantemente, quando compara-se as subamostras (01/2002-11/2010 com 12/2010 - 10/2023), nota-se que os efeitos da política monetária continuam assimétricos e podem mudar ao longo do tempo: alguns estados passam a reagir menos intensamente ao choque, enquanto que outros passam a reagir de maneira mais significativa. Em particular, alguns estados apresentam reações positivas a choques de política monetária no curto prazo entre 12/2010 até 10/2023: é o caso do Amazonas, do Rio de Janeiro e do Espírito Santo. Por outro lado, Pernambuco passa a reagir menos intensamente, enquanto que a Bahia

Figura 7 - IRF - RJ, ES e AM: Comparação entre dois períodos

Figura 8 – IRF - PA e PE: Comparação entre dois períodos

acentua a queda do produto diante do choque, conforme ilustram as Figuras (7) - (8)⁴. Dessa forma, uma análise que busca explicar o motivo pelo qual os estados reagem diferentemente a choques de política monetária deve considerar fatores que mudam ao longo do tempo e possivelmente interações econômicas interestaduais, pois, intuitivamente, um choque de política monetária pode fazer com que fatores de produção ou serviços financeiros desloquem-se entre estados, de tal sorte que o estado do qual esses fatores se deslocaram seja afetado mais negativamente, enquanto que o estado que recebe esses fatores reage de maneira positiva, sendo esta uma conjectura para explicar uma reação positiva de estados como Rio de Janeiro e Espírito Santo.

Porém, essa análise foge do escopo deste trabalho, sendo uma área de pesquisas

 $^{^4}$ Todas as funções resposta-impulso para ambas subamostras estão disponíveis no Apêndice, das Figuras (24)-(33)

futuras.

6 CONCLUSÕES

Este trabalho buscou investigar possíveis reações assimétricas dos estados a choques de política monetária. Encontra-se evidências que os estados brasileiros tendem reagir diferentemente ao choque de política monetária durante o período de janeiro de 2002 até outubro de 2023. Porém, essas reações são diferentes daquelas encontradas por (ROCHA; SILVA; GOMES, 2011) - sugerindo uma possível alteração dos efeitos ao longo do tempo. Não obstante, quando compara-se duas subamostras (jan/2002 - nov/2010 com dez/2010 - out/2023), encontramos que as reações dos estados continuam assimétricas e também alteram-se ao longo do tempo, com alguns estados apresentando efeitos contraintuitos (Rio de Janeiro, Espírito Santo e Amazonas reagindo de maneira positiva no curto prazo ao choque entre dez/2010 - out/2023) e outros reduzida sensibilidade a política monetária. Os motivos econômicos que podem explicar esses efeitos continua sendo uma área de pesquisas futuras. Tais análises provavelmente devem considerar fatores que podem alterar-se ao longo do tempo e possivelmente relações interestaduais (tanto comerciais quanto de mobilidade de fatores) para captar a dinâmica encontrada neste trabalho.

REFERÊNCIAS

ARAúJO, E. Medindo o impacto regional da politica monetária brasileira: Uma comparação entre as regiões nordeste e sul. **Revista Econômica do Nordeste**, v. 5, n. 3, p. 356–393, 2004. 1, 6

BERTANHA, M.; HADDAD, E. Efeitos regionais da política monetária no brasil: Impactos e transbordamentos espaciais. **Revista Brasileira de Economia**, v. 62, n. 1, p. 3–29, 2008. 1

CARLINO, G. A.; DEFINA, R. The differential regional effects of monetary policy: Evidence from the u.s states. **Journal of Regional Science**, v. 39, n. 2, p. 339–358, 1999. 1

IVANOV, V.; KILIAN, L. A practitioner's guide to lag order selection for var impulse response analysis. **Studies in Nonlinear Dynamics and Econometrics**, v. 9, n. 1, 2005. Disponível em: https://doi.org/10.2202/1558-3708.1219. 5

ROCHA, R. de M.; SILVA, M. E. A. da; GOMES, S. M. F. P. O. Por que os estados brasileiros têm reações assimétricas a choques na política monetária? **Revista Brasileira de Economia**, Fundação Getúlio Vargas, v. 65, n. 4, p. 413–441, Oct 2011. ISSN 0034-7140. Disponível em: https://doi.org/10.1590/S0034-7140201100040006. 1, 2, 3, 4, 6, 8

1 APÊNDICE

s	Seleção do Modelo	VAR - 01/2002	- 11/2010		
Modelo para o Estado	Defasagens Usadas	Akaike Info Criterion	Hannan-Quinn Criterion	Schwarz Criterion	Final Prediction Error
Amazonas	3	2	1	1	2
Bahia	2	9	2	1	2
Ceará	2	1	1	1	1
Espírito Santo	2	2	1	1	2
Goiás	4	6	2	2	5
Minas Gerais	2	10	1	1	2
Pará	5	5	1	1	5
Pernambuco	3	9	1	1	5
Paraná	2	10	1	1	2
Rio de Janeiro	2	2	1	1	2
Rio Grande do Sul	2	2	1	1	2
Santa Catarina	2	2	1	1	2
São Paulo	2	2	1	1	2

Figura 9 – Seleção do Modelo VAR - (01/2002 - 11/2010)

Seleão do Modelo VAR - 12/2010 - 10/2023									
Modelo para o Estado	Defasagens Usadas	Akaike Info Criterion	Hannan-Quinn Criterion	Schwarz Criterion	Final Prediction Error				
Amazonas	4	4	2	2	4				
Bahia	3	3	2	1	3				
Ceará	4	4	2	2	4				
Espírito Santo	4	4	2	1	4				
Goiás	4	4	2	2	4				
Minas Gerais	4	4	2	1	4				
Pará	4	4	2	1	4				
Pernambuco	4	4	2	1	4				
Paraná	4	4	2	2	4				
Rio de Janeiro	4	4	2	1	4				
Rio Grande do Sul	4	4	2	1	3				
Santa Catarina	4	4	2	2	4				
São Paulo	4	4	2	1	4				

Figura 10 – Seleção do Modelo VAR - (12/2010 - 10/2023)

Breusch-Godfrey LM test	Modelo VAR	Chi-squared	df	p-value
	01/01/2002- 01/10/2023	104,87	80	0,03258
Amazonas	01/01/2002 - 01/11/2010	102,78	80	0,04407
	01/12/2010 - 01/10/2023	98,61	80	0,07745
	01/01/2002- 01/10/2023	101,03	80	0,0562
Bahia	01/01/2002 - 01/11/2010	116,40	80	0,00493
	01/12/2010 - 01/10/2023	99,60	80	0,06807
	01/01/2002- 01/10/2023	107,85	80	0,207
Ceará	01/01/2002 - 01/11/2010	101,24	80	0,05464
	01/12/2010 - 01/10/2023	102,29	80	0,04722
	01 (01 (0000			
	01/01/2002- 01/10/2023	99,64	80	0,06772
Espírito Santo	01/01/2002 - 01/11/2010	100,93	80	0,05698
	01/12/2010 - 01/10/2023	87,92	80	0,2549
	01/01/2002			
	01/01/2002- 01/10/2023	75,05	80	0,6358
Goiás	01/01/2002 - 01/11/2010	108,10	80	0,01991
	01/12/2010 - 01/10/2023	85,64	80	0,3126

Breusch-Godfrey LM test	Modelo VAR	Chi-squared	df	p-value
	01/01/2002- 01/10/2023	101,78	80	0,0507
Minas Gerais	01/01/2002 - 01/11/2010	106,22	80	0,0266
	01/12/2010 - 01/10/2023	79,79	80	0,4857
	01/01/2002- 01/10/2023	95,94	80	0,1081
Pará	01/01/2002 - 01/11/2010	102,79	80	0,044
	01/12/2010 - 01/10/2023	91,14	80	0,1854
	02.10.2025			
	01/01/2002- 01/10/2023	101,69	80	0,0514
Pernambuco	01/01/2002 - 01/11/2010	115,06	80	0,0063
	01/12/2010 - 01/10/2023	101,20	80	0,0549
	01/01/2002- 01/10/2023	105,96	80	0,0277
Paraná	01/01/2002 - 01/11/2010	104,63	80	0,0337
	01/12/2010 - 01/10/2023	90,73	80	0,1935
	01/01/2002- 01/10/2023	99,69	80	0,0672
Rio de Janeiro	01/01/2002 - 01/11/2010	92,16	80	0,1664
	01/12/2010 - 01/10/2023	90,82	80	0,1916

Figura 11 – Teste de Autocorrelação Breusch-Godfrey

Breusch-Godfrey LM test	Modelo VAR	Chi-squared	df	p-value
	01/01/2002- 01/10/2023	100,52	80	0,06019
Rio Grande do Sul	01/01/2002 - 01/11/2010	100,59	80	0,05966
	01/12/2010 - 01/10/2023	86,86	80	0,281
	01/01/2002- 01/10/2023	83,86	80	0,3622
Santa Catarina	01/01/2002 - 01/11/2010	97,08	80	0,09399
	01/12/2010 - 01/10/2023	86,24	80	0,297
	01 (01 (0000			
	01/01/2002- 01/10/2023	91,12	80	0,1858
São Paulo	01/01/2002 - 01/11/2010	103,28	80	0,04104
	01/12/2010 - 01/10/2023	91,12	80	0,1858

Figura 12 – Teste de Autocorrelação Breusch-Godfrey (cont.)

ARCH Test nos Resíduos	Equação	Chi-squared	df	p-value	ARCH Test nos Resíduos	Equação	Chi-squared	df	p-value
	g_BR	15,583	16	0,4824		g_BR	2,8076	16	0,9999
Amazonas	g_AM	17,777	16	0,3371	Minas Gerais	g_AM	28,952	16	0,02426
Amazonas	IPCA	12,494	16	0,7094	Minas Gerais	IPCA	22,439	16	0,1296
	Selic-Over	23,751	16	0,09509		Selic-Over	56,001	16	2,43E-06
	g_BR	4,8378	16	0,9965		g_BR	5,1579	16	0,9949
Bahia	g_BA	35,5	16	0,003393	Pará	g_AM	35,234	16	0,00369
Dania	IPCA	17,523	16	0,3526	Fala	IPCA	18,509	16	0,295
	Selic-Over	53,831	16	5,53E-06		Selic-Over	56,449	16	2,05E-06
	g_BR	4,153	16	0,9986		g_BR	4,4084	16	0,998
Ceará	g_AM	17,922	16	0,3285	Pernambuco	g_AM	18,425	16	0,2996
Ceara	IPCA	13,856	16	0,6094	Pernamouco	IPCA	22,714	16	0,1216
	Selic-Over	51,555	16	1,29E-05		Selic-Over	58,422	16	9,63E-07
	g_BR	4,737	16	0,9969		g_BR	4,8741	16	- 2
Espírito Santo	g_AM	12,246	16	0,7269	Paraná	g_AM	6,6008	16	0,9802
Espirito Santo	IPCA	18,939	16	0,2718	raiana	IPCA	19,184	16	0,2592
	Selic-Over	49,844	16	2,43E-05		Selic-Over	60,547	16	4,23E-07
	g_BR	5,3154	16	0,9939		g_BR	5,0267	16	0,9956
Goiás	g_AM	1,6675	16	1	Rio de Janeiro	g_AM	6,6659	16	0,9702
Golas	IPCA	18,539	16	0,2933	Kio de Janeiro	IPCA	23,861	16	0,09259
	Selic-Over	56,349	16	2,13E-06		Selic-Over	58,229	16	1,04E-06

Figura 13 – Teste de Heterocedasticidade Condicional (Amostra Completa) - ARCH-LM

ARCH Test nos Resíduos	Equação	Chi-squared	df	p-value
	g_BR	6,087	16	0,9871
Rio Grande do Sul	g_AM	34,021	16	0,0054
Kio Grande do Sui	IPCA	16,01	16	0,4522
	Selic-Over	48,732	16	3,64E-05
	g_BR	7,6777	16	0,9579
Santa Catarina	g_AM	56,96	16	1,69E-06
Santa Catarina	IPCA	13,207	16	0,6576
	Selic-Over	52,94	16	7,72E-06
	g_BR	3,865	16	0,9991
São Paulo	g_AM	4,43	16	0,9979
São Paulo	IPCA	18,128	16	0,3165
	Selic-Over	53,497	16	6,26E-06

Figura 14 – Teste de Heterocedasticidade Condicional (Amostra Completa) - ARCH-LM (cont)

ARCH Test nos Resíduos	Equação	Chi-squared	df	p-value	ARCH Test nos Resíduos	Equação	Chi-squared	df	p-value
	g_BR	3,7565	16	0.9993		g_BR	15,15	16	0,5137
Δ	g_AM	99.923	16	0.867	Minas Gerais	g_AM	43,392	16	0,0002
Amazonas	IPCA	22.477	16	0.1284	Minas Gerais	IPCA	18,851	16	0,2765
	Selic-Over	56.207	16	2,25E-03		Selic-Over	28,052	16	0,0312
	g_BR	13,806	16	0,6132		g_BR	12,042	16	0,7411
Bahia	g_AM	17,902	16	0,3297	Pará	g_AM	19,89	16	0,2252
Dania	IPCA	19,259	16	0,2555	raia	IPCA	11,829	16	0,7556
	Selic-Over	28,68	16	0,02618		Selic-Over	20,644	16	0,1926
	g_BR	15,288	16	0,5037		g_BR	11,923	16	0,7493
Ceará	g_AM	16,231	16	0,437	Pernambuco	g_AM	18,756	16	0,2815
Ceara	IPCA	17,147	16	0,3762	remamouco	IPCA	14,405	16	0,5686
	Selic-Over	27,859	16	0,03287		Selic-Over	23,464	16	0,1019
	g_BR	12,037	16	0,7414		g_BR	15,051	16	0,5209
Espírito Santo	g_AM	19,348	16	0,251	Paraná	g_AM	17,256	16	0,3692
Espirito banto	IPCA	15,414	16	0,4946	Farana	IPCA	15,908	16	0,4594
	Selic-Over	28,602	16	0,02676		Selic-Over	26,828	16	0,0434
	g_BR	9,3846	16	0,8967		g_BR	16,113	16	0,4451
Goiás	g_AM	15,26	16	0,5057	Rio de Janeiro	g_AM	9,4483	16	0,8938
Guias	IPCA	5,6264	16	0,9917	Kio de Janeiro	IPCA	16,259	16	0,435
	Selic-Over	20,76	16	0,1879		Selic-Over	26,704	16	0,0449

Figura 15 – Teste de Heterocedasticidade Condicional (01/2002 - 11/2010) - ARCH-LM

ARCH Test nos Resíduos	Equação	Chi-squared	df	p-value
	g_BR	13,571	16	0,6307
Rio Grande do Sul	g_AM	16,006	16	0,4526
	IPCA	19,711	16	0,2335
	Selic-Over	28,234	16	0,0296
	g_BR	14,012	16	0,5978
Santa Catarina	g_AM	21,884	16	0,147
Santa Catarina	IPCA	18,704	16	0,2843
	Selic-Over	27,136	16	0,04
	g_BR	34,114	16	0,0052
São Paulo	g_AM	5,3501	16	0,9937
São Paulo	IPCA	12,1	16	0,7371
	Selic-Over	24,219	16	0,0848

Figura 16 – Teste de Heterocedasticidade Condicional (01/2002 - 11/2010) (cont.) - ARCHLM

ARCH Test nos Resíduos	Equação	Chi-squared	df	p-value		ARCH Test nos Resíduos	Equação	Chi-squared	df	p-value
	g_BR	1,1644	16	1	Ī		g_BR	1,4746	16	1
Α	g_AM	3	16	0,9997		Minas Gerais	g_AM	12,789	16	0,6881
Amazonas	IPCA	15	16	0,5591		Minas Gerais	IPCA	15,309	16	0,5022
	Selic-Over	42	16	4,49E-04	Į		Selic-Over	33,255	16	0,0068
					-	·				
	g_BR	1,6152	16	1	Ī	·	g_BR	1,4872	16	1
Bahia	g_AM	29,587	16	0,02027		Pará	g_AM	24,108	16	0,0872
Dania	IPCA	12,945	16	0,6768		rara	IPCA	13,558	16	0,6316
	Selic-Over	20,81	16	0,1859	Į		Selic-Over	34,256	16	0,005
	g_BR	1,0575	16	1	[Pernambuco	g_BR	1,1251	16	1
Ceará	g_AM	10,631	16	0,8317			g_AM	8,1258	16	0,945
Ceara	IPCA	12,198	16	0,7303		Pernamouco	IPCA	13,971	16	0,6009
	Selic-Over	32,7	16	0,0081	Į		Selic-Over	31,864	16	0,0104
					_					
	g_BR	1,6783	16	1	Γ		g_BR	1,5059	16	1
Faninita Canta	g_AM	14,109	16	0,5906		Paraná	g_AM	3,8446	16	0,9991
Espírito Santo	IPCA	12,606	16	0,7013		Falana	IPCA	14,428	16	0,5669
	Selic-Over	25,594	16	0,06001	Į		Selic-Over	31,6	16	0,0113
					_					
	g_BR	1,7815	16	1	Γ		g_BR	1,4871	16	1
Goiás	g_AM	2,507	16	0,9999		Rio de Janeiro	g_AM	4,9124	16	0,9962
Golas	IPCA	14,486	16	0,5626		Kio de Janeiro	IPCA	18,709	16	0,3193
	Selic-Over	33,726	16	0,00591	L		Selic-Over	33,774	16	0,0043

Figura 17 – Teste de Heterocedasticidade Condicional (12/2010 - 10/2023) (cont.) - ARCHLM

ARCH Test nos Resíduos	Equação	Chi-squared	df	p-value
Rio Grande do Sul	g_BR	2,4726	16	1
	g_AM	19,138	16	0,2616
	IPCA	11,824	16	0,756
	Selic-Over	33,834	16	0,00572
Santa Catarina	g_BR	4,4746	16	0,9978
	g_AM	29,563	16	0,02041
	IPCA	7,6948	16	0,9574
	Selic-Over	35,07	16	0,003887
São Paulo	g_BR	3,865	16	0,9991
	g_AM	4,43	16	0,9979
	IPCA	18,128	16	3,17E-01
	Selic-Over	53,947	16	0,000623

Figura 18 – Teste de Heterocedasticidade Condicional (12/2010 - 10/2023) (cont.) - ARCHLM

Figura 19 - IRF - Norte

Figura 20 - IRF - Nordeste

Figura 21 - IRF - Sudeste

Figura 22 - IRF - Sul

Figura 23 - IRF - Centro-Oeste

Figura 24 - IRF - Norte (01/2002 - 11/2010)

Figura 25 - IRF - Nordeste (01/2002 - 11/2010)

Figura 26 - IRF - Sudeste (01/2002 - 11/2010)

Figura 27 - IRF - Sul (01/2002 - 11/2010)

SVAR Impulse Response from Selic.Over

Figura 28 – IRF - Centro-Oeste $\left(01/2002$ - $11/2010\right)$

Figura 29 – IRF - Norte (12/2010 - 10/2023)

Figura 30 – IRF - Nordeste (12/2010 - 10/2023)

Figura 31 – IRF - Sudeste (12/2010 - 10/2023)

Figura 32 - IRF - Sul (12/2010 - 10/2023)

SVAR Impulse Response from Selic.Over

Figura 33 – IRF - Centro-Oeste (12/2010 - 10/2023)