Detecció de depressió a les xarxes socials

Martí Caixal i Joaniquet

Agenda

Quin problema tenim?

- Més missatges de depressió que d'altres problemes
- Tot i això, reben menys atenció

Problema NLP

Trobar quin mètode dona els millors resulatats i les diferències de comportament entre ells

Shallow Learning:

- Naïve Bayes
- Decision Tree
- Random Forest
- SVM
- o KNN
- Hyper Parameter Search

Deep Leaning

- o RNN
 - o RNN LSTM
 - **ORNN GRU**
- Transformers (BERT)

Planificació

Iteracions curtes

Bon control del ritme

Amigable a canvis

Subojectius independents

Fàcil detecció d'errors

Metodologia àgil

Mental Health Twitter (Twitter 3)

• Només missatge i classificació

Depression Twitter (Twitter Scale)

Regressió

Depression Reddit (Reddit)

Netejat

- 10000 missatges
- 2 classes
- No balancejat (80/20)

" @cosmicgirlie Thinking of you. Everything crossed Turn baby turn! "

Mental Health Twitter (Twitter 3)

• Només missatge i classificació

Depression Twitter (Twitter Scale)

Regressió

Depression Reddit (Reddit)

Netejat

- 45000 missatges
- 4 classes (Escala 0 al 3)
- No balancejat (40/20/30/10)

"humm dodgers scored a hr stupid dodgers i hate them"

Mental Health Twitter (Twitter 3)

 Només missatge i classificació

Depression Twitter (Twitter Scale)

• Regressió

Depression Reddit (Reddit)

Netejat

- 40000 missatges
- 2 classes
- No balancejat (60/40)
- Already cleaned

" i used to be highly functional before but it now i can barely function at all i take everything just..."

No balanjecat, classe objectiu és minoritària:

- × Undersampling
- × Oversampling

- Recall en comptes de accuracy
- Macro average

Preprocessament inicial

Eliminar noms d'usuari

Eliminar Stop Words

Eliminar números

Lemmanizació

Eliminar puntuació

Enfocaments específics

Shallow Learning

- Bag of Words
- TF-IDF

Deep Learning

Word Embedding (GloVe)

Bag of Words

Document	the	cat	sat	in	hat	with
the cat sat	1	1	1	0	0	0
the cat sat in the hat	2	1	1	1	1	0
the cat with the hat	2	1	0	0	1	1

TF-IDF

Resultats shallow learning

- Scikit Learn library
- Paràmetres inicials

- o Naïve Bayes
- Decision Tree
- Random Forest
- o SVM
- o KNN
- Hyperparameter Search

TF-IDF vs BoW & feature size

TF-IDF - - - -

BoW -----

- ✓ TF-IDF lleugerament millor
- ✓ Augmentar el número de "features" millora lleugerament el resultat

Temps d'execució

- ✓ TF-IDF lleugerament millor
- ✓ Augmentar el número de "features" millora lleugerament el resultat
- ✓ Millors temps

Confiança en les prediccions

Hyperparameter search

Fet amb Optuna:

- Python library
- Cerca optimitzada
- Parallelization

Model	Nº paràmetres	execucions	
SVM	3	10 ³	
KNN	3	10 ³	
DT	4	84	
RF	4	84	
NB	1	100¹	

× Els resultas no milloren

Word Vectoring

Resultats deep learnig

- Keras (Python)
- o RTX 3070 Ti

- o RNN
- o RNN GRU
- o RNN LSTM
- o BERT

RNN

- Seqüència de capes
- Input, funciód'activació, output
- Sense memòria

RNN LSTM

- o 3 portes
- Memòria

RNN GRU

- o 2 portes
- Memòria
- LSTM simplificada

RNN

- Seqüència de capes
- Input, funciód'activació, output
- Sense memòria

RNN LSTM GRU

RNN LSTM

- o 3 portes
- o Memòria

RNN GRU

- o 2 portes
- Memòria
- LSTM simplificada

RNN

Nou preprocessament

Eliminar noms d'usuari

Eliminar stopwords

Eliminar números

Lemmanization

Eliminar puntuació

BERT (transformers)

Diferències en les prediccions

Deep Learning

Shallow Learning

"study finds no casual relationship between cannabis and depression"

"dailytonic exposure to the bacteria in soil can be good for mental hearlth and could treat depression and prevent ptsd"

"don't be sad, armys are here for you we will always suport you btstwt be strong"

Conclusions

Shallow learning

- Millor: SVM i RF (relatiu a la confiança)
- Preprocessament té molta importància a les prediccions
- Extracció de característiques afecta molt al temps, però no als resultats
- Els paràmetres no són decisius

Deep learning

- Resultats sobre un 10% millors
- RNN simples no són bones, necessities GRU o LSTM
- LSTM millor que GRU amb missatges molt llargs
- Enten la semàntica en comptes de les relacions
- BERT necessita moltes dades i potència computacional

Execution time

