Diurnal vraibility of thermodynamics and carbon dioxide at ${\bf CABAUW}$

Jordi Vilà-Guerau de Arellano⁽¹⁾, and C. van Heerwaarden ⁽¹⁾

(1) Meteorology and Air Quality Section Wageningen University (The Netherlands)

 15^{th} June 2009

1 Introduction

We present surface and upper air observations and the numerical experiments using the mixed-layer model at Cabauw. The two cases have been extensively described at Vilà-Guerau de Arellano et al. (2004) and Casso-Torralba et al. (2008).

2 Case 1: 27th July 2002

Table 1 shows the initial and boundary conditions for the Cabauw case.

Table 1. The initial and prescribed values used for the mixed-layer model to calculate the boundary layer height, the thermodynamic and the carbon dioxide evolution on 27^{th} July 2002 at Cabauw.

Boundary layer height at 5 UTC	$250 \mathrm{\ m}$
Large scale subsidence velocity (w_s)	$0.0 \mathrm{m/s}$
Potential temperature	
$<\theta>$ at 5 UTC	$291.5~\mathrm{K}$
$\Delta \theta$ at 5 UTC	$3.5~\mathrm{K}$
$\overline{(w heta)}_o$	$0.1 \sin(\frac{\pi t}{t_d}) \text{ K m/s}$
$eta_{ heta_v}$	0.4
$\gamma_{ heta}$	$0.0055~\mathrm{K/m}$
Specific humidity	
q > at 5 UTC	$10.5 \; (g/Kg)$
q_{FT}	$9.0 \; (g/Kg)$
Δq at 5 UTC	$-1.5 \; (g/Kg)$
$\overline{(wq)}_o$	$0.087 \sin(\frac{\pi t}{t_d}) (g/Kg) m/s$
γ_q	0 (g/kg)/m
<u>Carbon dioxide</u>	
$\langle co_2 \rangle$ at 5 UTC	390.0 ppm
co_{2FT}	360.0 ppm
Δco_2 at 5 UTC	-30.0 ppm
$\overline{(wco_2)}_o$	$-0.38 \sin(\frac{\pi t}{t_d}) \text{ (ppm) m/s}$
γ_{co_2}	0 ppm/m

Figure 1: Diurnal evolution of the (a) surface fluxes, (b) carbon dioxide flux, (c) boundary layer height, (d) virtual potential tempartaure, (e) specific moisture and (f) carbon dioxide mixing ratio.

3 Case 2: 25^{th} September 2003

Table 2 shows the initial and boundary conditions for the Cabauw case for 25^{th} September 2003.

Table 2. The initial and prescribed values used for the mixed-layer model to calculate the boundary layer height, the thermodynamic and the carbon dioxide evolution on 25^{th} September 2003 at Cabauw.

Boundary layer height at 6 UTC	120 m
Large scale subsidence velocity (w_s)	$0.0 \mathrm{m/s}$
Potential temperature	
$<\theta>$ at 6 UTC	$285.0 \; { m K}$
$\Delta \theta$ at 6 UTC	1.2 K
$\overline{(w heta)}_o$	$0.11 \sin(\frac{\pi t}{t_d}) \text{ K m/s}$
$eta_{ heta_v}$	0.4
$\gamma_{ heta}$	$0.006~\mathrm{K/m}$
Specific humidity	
< q > at 6 UTC	4.5~(g/Kg)
q_{FT}	$3.5 \; (g/Kg)$
Δq at 6 UTC	$-1.0 \; (g/Kg)$
$\overline{(wq)}_o$	$0.083 \sin(\frac{\pi t}{t_d}) (g/Kg) m/s$
γ_q	0 (g/kg)/m
<u>Carbon dioxide</u>	
$< co_2 > $ at 6 UTC	410.0 ppm
co_{2FT}	378.0 ppm
Δco_2 at 6 UTC	-32.0 ppm
$\overline{(wco_2)}_o$	$-0.13 \sin(\frac{\pi t}{t_d}) \text{ (ppm) m/s}$
γ_{co_2}	0 ppm/m

Figure 2: Diurnal evolution of the (a) surface fluxes, (b) carbon dioxide flux, (c) boundary layer height, (d) virtual potential tempartaure, (e) specific moisture and (f) carbon dioxide mixing ratio.

References

Casso-Torralba, P., Vilà-Guerau de Arellano, J., Bosveld, F., Soler, M., , Vermeulen, A., Werner, W., and Moors, E.: Diurnal and vertical variability of the sensible heat and carbon dioxide budget in the atmospheric surface layer, JGR, 113, 1–15, doi:12.119/2007JD009583, 2008.

Vilà-Guerau de Arellano, J., Gioli, B., Migletta, F., Jonker, H. J. J., Klein-Baltink, H., Hutjes, R. W. A., and Holtslag, A. A. M.: Entrainment process of carbon dioxide in the atmospheric boundary layer, JGR, 107, 1–16, doi:10.1029/2004JD004725, 2004.