Instant Neural Graphics Primitives with a Multiresolution Hash Encoding

THOMAS, NVIDIA, Switzerland ALEX EVANS, United Kingdom CHRISTOPH, NVIDIA, USA ALEXANDER, NVIDIA, Germany

Presented By Heguang Lin at 09/13/2023

Motivation

Need a fast, compact representations with high-frequency detail for Multi-layer perceptrons (MLPs)

Existing Methods

- Most efficient encodings are trainable, task-specific structures.
- Rely on heuristics, may complicate training, and may limit performance on GPUs.

Proposed method:

- Adaptive, efficient, and task-independent.
- Achieves top-tier quality across tasks after brief training.
- Adaptivity: No structural updates needed during training.
- Efficiency: Hash table lookups are O(1), and allows parallel querying for all resolutions.

Existing Methods

Without encoding, the reconstruction is blurry.

Existing Methods: Frequency Encoding

411 k + 0 parameters 11:28 (mm:ss) / PSNR 18.56

(b) Frequency [Mildenhall et al. 2020]

438 k + 0 12:45 / PSNR 22.90

(c) Dense grid Single resolution

10 k + 33.6 M 1:09 / PSNR 22.35

(d) Dense grid Multi resolution

10 k + 16.3 M 1:26 / PSNR 23.62

(e) Hash table (ours) $T = 2^{14}$

10 k + 494 k 1:48 / PSNR 22.61

(f) Hash table (ours) $T = 2^{19}$

10 k + 12.6 M 1:47 / PSNR 24.58

$$\operatorname{enc}(x) = \left(\sin(2^{0}x), \sin(2^{1}x), \dots, \sin(2^{L-1}x), \\ \cos(2^{0}x), \cos(2^{1}x), \dots, \cos(2^{L-1}x)\right).$$

Existing Methods: Parametric Encoding

Parametric Encoding (Dense Grid):

- Computationally efficient: few feature vectors are updated per sample
- Memory waste: too many features in empty space

Multiresolution Hash Encoding

Parametric Encoding (Hash Table)

- Decrease

Method - Overview

Hash Encoding: Multi-Resolution

Neural network $m(\mathbf{y}; \Phi)$ encodes inputs as $\mathbf{y} = \text{enc}(\mathbf{x}; \theta)$ with trainable weights Φ and encoding parameters θ .

heta is split into L levels with up to T feature vectors of dimension F .

Grid resolutions range between $[N_{\min}, N_{\max}]$ and are computed as:

$$egin{aligned} N_l := ig\lfloor N_{\min} \cdot b^l ig
floor, \ b := \expigg(rac{\ln N_{\max} - \ln N_{\min}}{L-1}igg). \end{aligned}$$

Hash Encoding: Hash Function

For each level l, input $\mathbf{x} \in \mathbb{R}^d$ is scaled to get $\lfloor \mathbf{x}_l \rfloor$ and $\lceil \mathbf{x}_l \rceil$, which is associated with a voxel in \mathbb{Z}^d . For coarse levels, mapping is **unique**. At finer levels, a hash function $h: \mathbb{Z}^d \to \mathbb{Z}_T$ is employed. The hash function is defined as:

$$h(\mathbf{x}) = \left(igoplus_{i=1}^d x_i \pi_i
ight) mod T$$

 π_i are some large prime numbers. For each of the L levels, interpolated vectors are merged with auxiliary inputs (view direction or textures) $\xi \in \mathbb{R}^E$ to form $\mathbf{y} \in \mathbb{R}^{LF+E}$.

Hash Encoding: Collision Resistance

Features Hash Tables

Hash Encoding: Collision Resistance

Features Hash Tables

Hash Encoding: Learnable Indices?

Features Hash Tables

Experiments

- (1) **Gigapixel image:** the MLP learns the mapping from 2D coordinates to RGB colors of a high-resolution image.
- (2) **Neural signed distance functions (SDF):** the MLP learns the mapping from 3D coordinates to the distance to a surface.
- (3) **Neural radiance caching (NRC):** the MLP learns the 5D light field of a given scene from a Monte Carlo path tracer.
- (4) Neural radiance and density fields (NeRF): the MLP learns the 3D density and 5D light field of a given scene from image observations and corresponding perspective transforms.

Hyperparameters

Varies Hash Table size T

Hyperparameters

Varies Feature Dimensionality F

Neural SDF

NeRF

	Mic	Ficus	CHAIR	Нотрос	MATERIALS	Drums	SHIP	LEGO	avg.
Ours: Hash (1 s)	26.09	21.30	21.55	21.63	22.07	17.76	20.38	18.83	21.202
Ours: Hash (5 s)	32.60	30.35	30.77	33.42	26.60	23.84	26.38	30.13	29.261
Ours: Hash (15 s)	34.76	32.26	32.95	35.56	28.25	25.23	28.56	33.68	31.407
Ours: Hash (1 min)	35.92	33.05	34.34	36.78	29.33	25.82	30.20	35.63	32.635
Ours: Hash (5 min)	36.22	33.51	35.00	37.40	29.78	26.02	31.10	36.39	33.176
mip-NeRF (~hours)	36.51	33.29	35.14 •	37.48	30.71	25.48	30.41	35.70	33.090
NSVF (~hours)	34.27	31.23	33.19	37.14	32.68	25.18	27.93	32.29	31.739
NeRF (~hours)	32.91	30.13	33.00	36.18	29.62	25.01	28.65	32.54	31.005
Ours: Frequency (5 min)	31.89	28.74	31.02	34.86	28.93	24.18	28.06	32.77	30.056
Ours: Frequency (1 min)	26.62	24.72	28.51	32.61	26.36	21.33	24.32	28.88	26.669

Size of the MLPs

Hash Encoding enables a small MLP

Linear model v.s. MLP

References

Instant-NGP: https://nvlabs.github.io/instant-ngp/assets/mueller2022instant.pdf

Instant-NGP snapshot: https://docs.nerf.studio/en/latest/nerfology/methods/instant_ngp.html

NSVF: https://arxiv.org/abs/2007.11571

Neural Radiance Caching:

https://research.nvidia.com/publication/2021-06_real-time-neural-radiance-caching-path-tracing

Thank You!