CHAPTER THREE

MACLAURIN'S EXPANSION

3.1 Maclaurin's theorem

Suppose that f(x) can be expanded as an infinite series in ascending powers of x and

that
$$f(x) = A_0 + A_1 x + A_2 x^2 + A_3 x^3 + \cdots$$

Putting
$$x = 0$$
, gives $f(0) = A_0$

Differentiating gives,
$$f'(x) = A_1 + 2A_2x + 3A_3x^2 + \cdots$$

Putting
$$x = 0$$
 gives, $f'(0) = A_1$

Differentiating again gives,
$$f''(x) = 2A_2 + 3(2)A_3x + \cdots$$

Putting
$$x = 0$$
 gives, $f''(0) = 2A_2$: $A_2 = \frac{f''(0)}{2!}$

Differentiating again and putting x = 0 gives

$$f'''(0) = 3(2)A_3$$
. $\therefore A_3 = \frac{f'''(0)}{3!}$

$$\therefore f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \cdots$$

This result is known as Maclaurin's theorem.

The expansion is valid provided that the infinite series is convergent.

Example 1

Use the Maclaurin's theorem to find the first four non-zero terms in the expansion of e^x . Hence find $e^{0.3}$ correct to four decimal places.

Solution

Let
$$f(x) = e^x$$
; $f(0) = e^{(0)} = 1$
 $\Rightarrow f'(x) = e^x$; $f'(0) = e^{(0)} = 1$

$$\Rightarrow f''(x) = e^x$$
; $f''(0) = e^{(0)} = 1$

$$\Rightarrow f'''(x) = e^x$$
; $f'''(0) = e^{(0)} = 1$

Using
$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \cdots$$

$$\Rightarrow e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

$$\Rightarrow e^{(0.3)} \approx 1 + (0.3) + \frac{(0.3)^2}{2!} + \frac{(0.3)^3}{3!}$$
$$\approx 1.3495$$

Example 2

Using Maclaurin's theorem expand $\log_e(1+x)$ up to the term in x^4 Solution

Let
$$f(x) = \log_e(1+x)$$
; $f(0) = \log_e(1+0) = 0$

$$\Rightarrow f'(x) = \frac{1}{1+x}; \ f'(0) = \frac{1}{1+0} = 1$$

$$\Rightarrow f''(x) = -\frac{1}{(1+x)^2}; \ f''(0) = -\frac{1}{(1+0)^2} = -1$$

$$\Rightarrow f'''(x) = \frac{2}{(1+x)^3}; \quad f'''(0) = \frac{2}{(1+0)^3} = 2$$

$$\Rightarrow f''''(x) = -\frac{6}{(1+x)^4}; \quad f''''(0) = -\frac{6}{(1+0)^4} = -6$$

$$\therefore \log_e(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4}$$

The expansion is valid provided $-1 < x \le 1$.

Example 3

Use Maclaurin's theorem to find the first three non-zero terms in the expansion of sinx. Hence find $sin (0.1)^{rad}$ correct to seven decimal places.

Solution

let
$$f(x) = sinx$$
; $f(0) = sin0 = 0$
 $f'(x) = cosx$; $f'(0) = cos 0 = 1$
 $f''(x) = -sinx$; $f''(0) = -sin 0 = 0$
 $f'''(x) = -cosx$; $f'''(0) = -cos 0 = -1$
 $f''''(x) = sinx$; $f''''(0) = sin 0 = 0$
 $f'''''(x) = cosx$; $f'''''(0) = cos 0 = 1$

By Maclaurin's theorem;

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \frac{x^4}{4!}f''''(0) + \frac{x^5}{5!}f'''''(0) + \cdots$$

$$= 0 + x(1) + \frac{x^2}{2!}(0) + \frac{x^3}{3!}(-1) + \frac{x^4}{4!}(0) + \frac{x^5}{5!}(1) + \cdots$$

 $\sin x = \frac{x}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!}$ is the required expansion

Thus
$$\sin(0.1 \ rad) \approx \frac{(0.1)}{1!} - \frac{(0.1)^3}{3!} + \frac{(0.1)^5}{5!}$$

 ≈ 0.0998334 correct to seven decimal places

Example 4

Use Maclaurin's theorem to expand $tan^{-1} x$ by giving the first two non-zero terms of the expansion.

Solution

Let
$$f(x) = \tan^{-1} x$$
; $f(0) = 0$
 $f'(x) = \frac{1}{1+x^2}$; $f'(0) = 1$
 $f''(x) = -\frac{2x}{(1+x^2)^2}$; $f''(0) = 0$
 $f'''(x) = -\frac{2}{(1+x^2)^2} + \frac{8x^2}{(1+x^2)^3}$; $f'''(0) = -2$
 $\therefore \tan^{-1} x = x - \frac{x^3}{x^2} + \cdots$

Example 5

Expand secxtanx as far as the term in x^3 Solution

Let
$$f(x) = secxtanx$$
; $f(0) = 0$
 $f'(x) = sec^3x + secxtan^2x$; $f'(0) = 1$
 $f''(x) = 3sec^3xtanx + secxtan^3x + 2tanxsec^3x$
 $= 5sec^3xtanx + secxtan^3x$; $f''(0) = 0$
 $f'''(x) = 15sec^3xtan^2x + 5sec^5x + secxtan^4x + 3tan^2xsec^3x$; $f'''(0) = 5$
 $\therefore secxtanx = x + \frac{5x^3}{3!} + \cdots$

Example 6

Find the derivative of e^x from first principles

Solution

Let
$$y = e^x$$

As x increases by Δx , then y will increase by Δy

$$\Rightarrow y + \Delta y = e^{(x + \Delta x)}$$

$$\Rightarrow \Delta y = e^x e^{\Delta x} - e^x$$

$$\Rightarrow \Delta y = e^x (e^{\Delta x} - 1)$$

$$\Rightarrow \Delta y = e^x (e^{\Delta x} - 1)$$

Using
$$e^{\Delta x} = 1 + \Delta x + \frac{(\Delta x)^2}{2!} + \frac{(\Delta x)^3}{3!} + \cdots$$

$$\Rightarrow \Delta y = e^x \left(1 + \Delta x + \frac{(\Delta x)^2}{2!} + \frac{(\Delta x)^3}{3!} + \dots - 1 \right)$$

$$\Rightarrow \Delta y = e^x \left(\Delta x + \frac{(\Delta x)^2}{2!} + \frac{(\Delta x)^3}{3!} + \cdots \right)$$

Dividing through by Δx

$$\Rightarrow \frac{\Delta y}{\Delta x} = e^x \left(1 + \frac{(\Delta x)}{2!} + \frac{(\Delta x)^2}{3!} + \cdots \right)$$

As
$$\Delta x \to 0$$
, $\frac{\Delta y}{\Delta x} \to \frac{dy}{dx}$

$$\therefore \frac{dy}{dx} = e^x$$

Exercise 3.1

- 1. Find the first three non-zero terms in the Maclaurin's expansion of;
 - (i) $\cos x$
- (ii) $\tan x$
- (iii) cosecx
- 2. Use Maclaurin's theorem to expand $e^{-\frac{x}{2}}$ by giving the first four terms of the expansion. Hence find the derivative of $e^{-\frac{x}{2}}$ from first principles.
- 3. Find the first three terms in the Maclaurin's expansion of $e^{-2x} \sin 2x$ in ascending powers x. Ans $\left\{2x 4x^2 + \frac{8}{3}x^3\right\}$
- 4. Use Maclaurin's theorem to show that the expansion of $5^{1+\sin^2 x}$ as far as a power series up to the term in x^2 is $5 + 5x^2 \ln 5 + \cdots$

- 5. Prove that $x \cot x = 1 \frac{x^2}{3} \frac{x^4}{45} + \cdots$
- 6. Prove that $e^{tanx} = 1 + x + \frac{1}{2}x^2 + \frac{1}{2}x^3 + \cdots$
- 7. Prove that $\log_e(secx + tanx) = x + \frac{x^3}{6} + \cdots$
- 8. Show that $\sqrt{(1-x^2)} \sin^{-1} x = x \frac{x^3}{3} \frac{2x^5}{6} + \cdots$
- 9. Show that $\frac{\sin^{-1}x}{\sqrt{(1-x^2)}} = x + \frac{2}{3}x^3 + \frac{8}{15}x^5 + \cdots$
- 10. Given that $y = \ln(x^2 + 2x + 3)$, show that $\frac{d^3y}{dx^3}(x^2 + 2x + 3) + (4x + 4)\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = 0$, hence, find Maclaurin's expression of y showing the first four non-zero terms and approximate $\ln 3.21$ correct to four decimal places.
- 11. Use Maclaurin's theorem to expand $tan^{-1} 2x$ as far as the term in x^2 .
- 12. Use Maclaurin's theorem to expand $\frac{1}{\sqrt{1+x}}$ up to the term in x^3 .
- 13. Find Maclaurin's expansion of $y = ln \frac{(2-x)^2}{(1+x)^2}$, showing the first three non zero terms.