Lab 1

Indiana University | M303 Linear Algebra | Fall 2025

Anthony Chao

format rat
format compact

1) System 1

$$x + 3y = -1$$
$$4x - y = 2$$

System 1 is consistent, with one solution. The solution is

$$x = \frac{5}{13}, \quad y = -\frac{6}{13}$$

2) System 2

$$2x-3y+z = 10$$
$$-x-y+4z = 2$$
$$-5x+11z = -4$$

System 2 is **consistent**, with **infinitely many solutions**. We have two independent equations with three unknowns. One variable is free. Let z = t.

$$x = \frac{11}{5}t + \frac{4}{5}, \quad y = \frac{9}{5}t - \frac{14}{5}, \quad z = t$$

3) System 3

$$2x_1 + x_2 - x_3 + 4x_4 = 5$$

$$0x_1 - x_2 + 4x_3 - 3x_4 = 11$$

$$x_1 + 2x_2 + 3x_3 + 4x_4 = -10$$

$$3x_1 + 2x_2 + 6x_3 + 5x_4 = 12$$

1

A3 = [2 1 -1 4 5; 0 -1 4 -3 11; 1 2 3 4 -10; 3 2 6 5 12]; rrefA3 = rref(A3)

System 3 is **inconsistent**, with **no solution** as $0 \neq 1$.

4)

 $A4 = [2 \ 1 \ 5 \ 3; \ 1 \ 0 \ 1 \ 2; \ -3 \ -1 \ 1 \ 4]$

 $R_1 \leftrightarrow R_2$

A4([1, 2],:) = A4([2, 1],:)

 $R_2 - 2R_1 \rightarrow R_2$

A4(2,:) = A4(2,:) - 2*A4(1,:)

 $R_3 + 3R_1 \rightarrow R_3$

A4(3,:) = A4(3,:) + 3*A4(1,:)

 $R_3 + R_2 \rightarrow R_3$

A4(3,:) = A4(3,:) + A4(2,:)

A4 =

1 0 1 2
0 1 3 -1
0 0 7 9

$$\frac{1}{7}R_3 \rightarrow R_3$$

$$A4(3,:) = 1/7 * A4(3,:)$$

 $R_2 - 3R_3 \rightarrow R_2$

A4(2,:) = A4(2,:) - 3 * A4(3,:)

 $R_1 - R_3 \rightarrow R_1$

A4(1,:) = A4(1,:) - A4(3,:)

The solution is

 $x = \frac{5}{7}$, $y = -\frac{34}{7}$, $z = \frac{9}{7}$

5)

$$2x_1 - x_2 + 3x_3 + x_4 - 4x_5 =$$

$$x_1 + x_3 + 2x_4 - x_5 =$$

$$-3x_1 - 2x_2 + x_3 + x_5 =$$

$$-3x_2 + 5x_3 + 3x_4 - 5x_5 =$$

$$8x_1 + 6x_3 + 4x_4 - 10x_5 =$$

The constant vectors are $v_1 = [1, 0, 1, 2, 1]$, $v_2 = [1, -3, 1, 5, 4]$, $v_3 = [2, -1, 1, 2, 6]$, $v_4 = [2, 3, 1, 2, -2]$, and $v_5 = [7, 1, 5, 13, 10]$. The augmented matrix is

```
C5 = [2 -1 3 1 -4; 1 0 1 2 -1; -3 -2 1 0 1; 0 -3 5 3 -5; 8 0 6 4 -10];

V1 = [1; 0; 1; 2; 1];

V2 = [1; -3; 1; 5; 4];

V3 = [2; -1; 1; 2; 6];

V4 = [2; 3; 1; 2; -2];

V5 = [7; 1; 5; 13; 10];

A5 = [C5, V1, V2, V3, V4, V5]
```

A5 =

2	-1	3	1	-4	1	1
1	0	1	2	-1	0	-3
-3	-2	1	0	1	1	1
0	-3	5	3	-5	2	5
8	0	6	4	-10	1	4
rrefA5 = rre	f(A5)					
rrefA5 =						
1	0	0	-4	0	1/2	0
0	1	0	9	0	-3/2	0
0	0	1	6	0	-1/2	0
0	0	0	0	1	0	0
0	0	0	0	0	0	1
V1_solution	= rrefA5(:,[1	L:5,6])				
V1_solution =						
1	0	0	-4	0	1/2	
0	1	0	9	0	-3/2	
0	0	1	6	0	-1/2	
0	0	0	0	1	0	
_						

V1_solution is **consistent**, with **infinitely many solutions**, where x_4 is the free variable. The solutions are

$$x_1 = \frac{1}{2} + 4t$$
, $x_2 = -\frac{3}{2} - 9t$, $x_3 = -\frac{1}{2} - 6t$, $x_4 = t$, $x_5 = 0$

V2_solution = rrefA5(:,[1:5,7])							
V2_solution =							
1	0	0	-4	0	0		
0	1	0	9	0	0		
0	0	1	6	0	0		
0	0	0	0	1	0		
0	0	0	0	0	1		

V2_solution is **inconsistent**, with **no solution** as $0 \neq 1$.

V3_solution = rrefA5(:,[1:5,8])						
V3_solution =						
1	0	0	-4	0	20/3	
0	1	0	9	0	-9	
0	0	1	6	0	-5/3	
0	0	0	0	1	4	
0	0	0	0	0	2/3	

V3_solution is **inconsistent**, with **no solution** as $0 \neq \frac{2}{3}$.

```
V4_solution = rrefA5(:,[1:5,9])
```

V4_solution =

1	0	0	-4	0	-10/3
0	1	0	9	0	1
0	0	1	6	0	-5/3
0	0	0	0	1	-4
0	0	0	0	0	-4/3

V4_solution is **inconsistent**, with **no solution** as $0 \neq -\frac{4}{3}$.

V5_solution = rrefA5(:,[1:5,10])							
V5_solution =							
1	0	0	-4	0	2		
0	1	0	9	0	-6		

V5_solution is **consistent**, with **infinitely many solutions**, where x4 is the free variable. The solutions are

$$x_1 = 2 + 4t$$
, $x_2 = -6 - 9t$, $x_3 = -1 - 6t$, $x_4 = t$, $x_5 = 0$