Let $f: R \to R$ be a continuous function such trat $+x \in R$ and $+t \to 0$, $f(x) = f(e^t x)$. Show that fix a constant function. (UAB-2018) $f(x) = f(e^t x) - 0$ ralues of t. $f(n) = f(e^{fn})$, $f = t \in (0,1)$ when $t \in (1, \infty)$ $f(n) = f(e^{t}n) = f(x)$ (when $t \to \infty$) and since f(n) and f(etn) is continuous for all nGR and $\forall t \in (0, \infty)$, it means at each and every point, limit exists and limit value is finite. egns 0 = egn(1) = egn(11) = f(n)50,

 $f(e^{t}x) = f(x) = f(x)$ $= f(x) = f(e^{t}x) = f(e^{t}x), +7,0, \forall x \in \mathbb{R}$ $= f(x) = f(e^{t}x) = f(e^{t}x), +7,0, \forall x \in \mathbb{R}$ = f(x) = f

$$Sin\left(\frac{21+4}{2}\right) = 0$$
 and O
 $|x| + |y| = 1$

so, pais of (x,y) must be satisfying both egn (20).

$$:: \sin\left(\frac{n+y}{2}\right) = 0$$

$$\frac{x+y}{2} = n\pi$$

$$y = -x + 2n\pi$$
 ______ (ii) where $n \in I$

so, sketching the graph of eqn (1) and eqn (1) eqn (1)
$$= 1-|x|$$
 $= 1^{st}$ quad, $y = 1-x$ $= 1^{st}$ quad, $y = 1+x$ $= 1^{st}$ quad, $y = -1-x$ $= 1^{st}$ quad, $y = -1-x$ $= 1^{st}$ quad, $y = -1-x$ $= 1^{st}$ quad, $y = x-1$

eqn(11) -- , fon,
$$n = 0$$
, $y = -x$
for $n = 1$, $y = -x + 2\pi$
for $n = -1$, $y = -x - 2\pi$

so, there are only two intersecting points, i.e., in 2nd finad — $\left(-\frac{1}{2}, \frac{1}{2}\right)$ }— mirror image 4th finad — $\left(\frac{1}{2}, -\frac{1}{2}\right)$ } about y = x

and if for only |n|=1, ggaph of ean (11)

and graph of ean (1) do not intersect

so, if / NAI to for |n| > 1, its true that

there will be no other solutions.

:. We have only two pairs of (x, y)i.e., $\left(\frac{1}{2}, \frac{1}{2}\right) & \left(\frac{1}{2}, -\frac{1}{2}\right)$