Topology: Midterm corrections

Peter Kagey

October 26, 2018

Problem 1.

Let X be a subspace of the punctured plane $\mathbb{R}^2 - \{0\}$ such that the homomorphism $\pi_1(X; x_0) \to \pi_1(\mathbb{R}^2 - \{0\}; x_0)$ induced by the inclusion map is nontrivial. Show that X has a nonempty intersection with every half-line $L_{(a,b)} = \{(\lambda a, \lambda b) \in \mathbb{R}^2; \lambda > 0\}$ issued from the origin (with $(a,b) \neq (0,0)$).

Proof.

Firstly, $\mathbb{R}^2 - L_{(a,b)}$ is star shaped with center (-a, -b), so its fundamental group is trivial:

$$\pi_1(\mathbb{R}^2 - L_{(a,b)}; x_0) = \mathbf{1}.$$

Assume that X does not include L. Then consider the inclusion maps and the corresponding induced homomorphisms

$$X \xrightarrow{i_1} \mathbb{R}^2 - L_{(a,b)} \xrightarrow{i_2} \mathbb{R}^2 - \{0\}$$

$$\pi_1(X; x_0) \xrightarrow{i_{1*}} \pi_1(\mathbb{R}^2 - L_{(a,b)}; x_0) \xrightarrow{i_{2*}} \pi_1(\mathbb{R}^2 - \{0\}; x_0)$$

$$\pi_1(X; x_0) \xrightarrow{i_{1*}} 1 \xrightarrow{i_{2*}} \mathbb{Z}$$

Since $i_{2*} \colon \mathbf{1} \to \mathbb{Z}$ is trivial, the homomorphism induced from the inclusion map

$$i_{2*} \circ i_{1*} = (i_2 \circ i_1)_* \colon \pi_1(\mathbb{R}^2 - L_{(a,b)}; x_0) \to \pi_1(\mathbb{R}^2 - \{0\}; x_0)$$

must also be trivial.

This is a contradiction of the hypothesis, so X must intersect L.

Problem 2.

Let X be a path connected space whose fundamental group $\pi_1(X; x_0)$ is isomorphic to $\mathbb{Z} \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_5$. Show that the change of basepoint isomorphism $T_{\gamma} \colon \pi_1(X; y_0) \to \pi_1(X; x_0)$ defined by $T_{\gamma}([\alpha]) = [\gamma * \alpha * \overline{\gamma}]$ for some path from x_0 to y_0 depends only on the endpoints x_0 and y_0 and does not depend on the path γ .

Proof.

We will exploit the fact that $\pi_1(X; x_0)$ is abelian. Consider two different paths, γ_1 and γ_2 , and an element of $[\alpha] \in \pi_1(X; y_0)$. It is sufficient to show that $T_{\gamma_1}([\alpha]) = T_{\gamma_2}([\alpha]) \in \pi_1(X; x_0)$, which is to say, we want to show that

$$[\gamma_1 * \alpha * \overline{\gamma}_1] \cdot [\gamma_2 * \alpha * \overline{\gamma}_2]^{-1} = \mathrm{id}_{\pi_1(X; x_0)} \,.$$

Notice that $\overline{\gamma}_1 * \gamma_2$ is a path from y_0 to x_0 concatenated with a path from x_0 to y_0 , and thus $[\overline{\gamma}_1 * \gamma_2] \in \pi_1(X; y_0)$. Since $\pi_1(X; y_0) \cong \mathbb{Z} \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_5$ is abelian, the product can be rearranged as follows:

$$\begin{split} [\alpha*\overline{\gamma}_1*\gamma_2*\overline{\alpha}] &= [\alpha]\cdot[\overline{\gamma}_1*\gamma_2]\cdot[\overline{\alpha}] \\ &= [\alpha]\cdot[\overline{\alpha}]\cdot[\overline{\gamma}_1*\gamma_2] \\ &= [\alpha*\overline{\alpha}]\cdot[\overline{\gamma}_1*\gamma_2] \\ &= [\overline{\gamma}_1*\gamma_2] \end{split}$$

so in particular, $\alpha * \overline{\gamma}_1 * \gamma_2 * \overline{\alpha} \cong \overline{\gamma}_1 * \gamma_2$. Since $[\gamma * \alpha * \overline{\gamma}]^{-1} = [\gamma * \overline{\alpha} * \overline{\gamma}]$ by tracing the path backward, this is equivalent to

$$\begin{split} [\gamma_1 * \alpha * \overline{\gamma}_1] \cdot [\gamma_2 * \alpha * \overline{\gamma}_2]^{-1} &= [\gamma_1 * \alpha * \overline{\gamma}_1] \cdot [\gamma_2 * \overline{\alpha} * \overline{\gamma}_2] \\ &= [\gamma_1 * \underbrace{\alpha * \overline{\gamma}_1 * \gamma_2 * \overline{\alpha}}_{\simeq \overline{\gamma}_1 * \gamma_2} * \overline{\gamma}_2] \\ &= [\gamma_1 * \overline{\gamma}_1 * \gamma_2 * \overline{\gamma}_2] \\ &= [c_{x_0}] \end{split}$$

Therefore $[\gamma_1 * \alpha * \overline{\gamma}_1] \cdot [\gamma_2 * \alpha * \overline{\gamma}_2]^{-1} = [c_{x_0}]$. Thus for every $[\alpha] \in \pi_1(X; y_0), T_{\gamma_1}([\alpha]) = T_{\gamma_2}([\alpha])$, the change of basepoint isomorphism does not depend on the path when the fundamental group is abelian.

Problem 3.

For positive integers $m, n \geq 1$, let $i_n : \mathbb{Z}_2 \to Z_{2n} = \langle a; a^{2n} = 1 \rangle$ denote the homomorphism that sends the nontrivial element of \mathbb{Z}_2 to a^n , and let $\mathbb{Z}_{2m} *_{\mathbb{Z}_2} \mathbb{Z}_{2n}$ be the amalgamated free product defined by the homomorphisms i_m and i_n .

- a. Show that $\mathbb{Z}_2 *_{\mathbb{Z}_2} \mathbb{Z}_{2n}$ is abelian.
- b. Construct a surjective group homomorphism

$$\varphi \colon \mathbb{Z}_{2m} *_{\mathbb{Z}_2} \mathbb{Z}_{2n} \to \mathbb{Z}_m *_{\mathbb{Z}_n}.$$

c. Show that $\mathbb{Z}_{2m} *_{\mathbb{Z}_2} \mathbb{Z}_{2n}$ is not abelian when $m, n \geq 2$.

Proof.

a. Name the amalgamated product G and write it as $G = \langle a; a^2 = 1 \rangle *_{\mathbb{Z}_2} \langle b; b^{2n} = 1 \rangle$. By the maps $1 \stackrel{i_1}{\longmapsto} a$ and $1 \stackrel{i_n}{\longmapsto} b^n$, we can write G via the group presentation

$$G = \langle a, b; a = b^n, a^2 = b^{2n} = 1 \rangle \cong \mathbb{Z}_{2n},$$

which is abelian.

b. Name the amalgamated product G and write it as $G = \langle a; a^{2m} = 1 \rangle *_{\mathbb{Z}_2} \langle b; b^{2n} = 1 \rangle$. Similarly, by the maps $1 \xrightarrow{i_m} a^m$ and $1 \xrightarrow{i_n} b^n$, we can write G via the group presentation

$$G = \langle a, b; a^m b^{-n} = a^{2m} = b^{2n} = 1 \rangle.$$

By the universal property of free products, given the homomorphisms

$$j_A: \langle a \rangle \to \langle c; c^m = 1 \rangle * \langle d; d^n = 1 \rangle$$
 which sends $a \mapsto d$
 $j_B: \langle b \rangle \to \langle c; c^m = 1 \rangle * \langle d; d^n = 1 \rangle$ which sends $b \mapsto c$

there exists a map

$$\varphi \colon \langle a \rangle * \langle b \rangle \to \langle c; c^m = 1 \rangle * \langle d; d^n = 1 \rangle$$

which sends $a \mapsto c$ and $b \mapsto d$ is a homomorphism. In particular, the relations of G are in the kernel of this map:

$$\varphi(a^m b^{-n}) = \varphi(a)^m \varphi(b^{-1})^n = \underbrace{c^m}_{1 \in \mathbb{Z}_m} \underbrace{(d^{-1})^n}_{1 \in \mathbb{Z}_n} = 1$$
$$\varphi(a^{2m}) = \varphi(a^2)^m = (c^2)^m = 1 \in \mathbb{Z}_m$$
$$\varphi(b^{2n}) = \varphi(b^2)^n = (d^2)^n = 1 \in \mathbb{Z}_n.$$

Therefore we can write our desired homomorphism as $\varphi' : G \to \langle c; c^m = 1 \rangle * \langle d; d^n = 1 \rangle$ which sends $a \xrightarrow{\varphi'} c$ and $b \xrightarrow{\varphi'} d$.

This map is surjective because we can write any element

$$c^{i_1}d^{i_2}c^{i_3}d^{i_4}\dots c^{i_{n-1}}d^{i_n} \in \langle c; c^m = 1 \rangle * \langle d; d^n = 1 \rangle$$

as
$$\varphi(a^{i_1} \cdot b^{i_2} \cdot a^{i_3} \cdot b^{i_4} \dots \cdot a^{i_{n-1}} \cdot b^{i_n}).$$

c. The surjective homomorphism φ , which is described above, maps $\mathbb{Z}_{2m} *_{\mathbb{Z}_2} \mathbb{Z}_{2n}$ onto the free group on two letters, which is not commutative. Since homomorphisms preserve commutativity, $\mathbb{Z}_{2m} *_{\mathbb{Z}_2} \mathbb{Z}_{2n}$ is not abelian.

Problem 4.

Let X be the quotient space of the annulus $S^1 \times [0,1]$ by the equivalence relation \sim which identifies each point (z,0) to (-z,0) and each point (z,1) to (-z,1). Compute the fundamental group of X.

Proof. We will use van Kampen with the a cut along $S^1 \times \{1/2\} \simeq S^1$:

Let X_o be the outer part of the annulus with the outer boundary identified, and let X_i be the inner part of the annulus with the inner boundary identified. Since both X_o and X_i have a deformation retract to their respective boundaries, $\pi_1(X_o; x_0) \cong \pi_1(X_i; x_0) \cong \mathbb{Z}$, where x_0 is a point on $S^1 \times [0, 1]$. Then the fundamental group is given by the amalgamated product

$$\pi_1(X; x_0) = \pi_1(X_o; x_0) *_{\pi_1(S_1; x_0)} \pi_1(X_i; x_0)$$

$$\cong \mathbb{Z} *_{\mathbb{Z}} \mathbb{Z}$$

$$\cong \langle a \rangle *_{\langle b \rangle} \langle c \rangle$$

with maps

$$i_o: \langle b \rangle \to \langle a \rangle$$
 sending $b \mapsto a^2$
 $i_i: \langle b \rangle \to \langle c \rangle$ sending $b \mapsto c^2$.

Since a loop around the interior of the annulus maps to a loop twice around the boundary under the deformation retract.

Therefore, the resulting amalgamated product is

$$\pi_1(X; x_0) = \langle a, c; a^2 = c^2 \rangle.$$