Special Topics: Machine Learning (ML) for Networking

COL867 Holi, 2025

Course Project Ideas
Tarun Mangla

Project Logistics

- Work in a pair
- Project weight: 35%
- Three milestones
 - #1: Project proposal (3%) Feb 8
 - #2: Progress review (12%) March 18
 - #3: Final Submission (20%) Apr 26
- Proposal: Title, steps, and timeline
- Progress review: Short report discussing progress and bottlenecks
- Final submission: 10-minute presentation, working code, report

#1: Early Termination Strategy for Speed Test

#2: Contextualization of Speed Test Data

#3: ML and UDP-based speed tests

Background

- Speed tests are used to diagnose network quality
- Anatomy of a speed test

#1: Early Termination Strategy for Speed Test

- Speed tests have significant data overhead
- Data used proportional to test duration and link speed
- Trade off:
 - Longer duration → More information about network quality
 - Short duration → Less data usage
- Goal: Can we get maximum information about the network quality with minimal data overhead
- Methodology: Formulate early termination as a classification/regression problem
- Evaluation: Quantify the data saving vs information loss

#2: Contextualization of Speed Data

- Existing speed test data lacks metadata information about the test context:
 - Wired vs WiFi vs Cellular
 - Cellular: 4G vs 5G (access technology)
 - Speed Tier

Understanding the speed test context useful for downstream task

 Goal: Can you infer the test context post hoc using packet-level speed test data?

#3: ML and UDP-based speed testing

- UDP-based methods exist that are used to measure the available bandwidth
- **Challenge**: These methods don't work well under some conditions, including interrupt coalescing, presence of multiple bottlenecks.
 - Mostly because they make strong assumptions about the underlying network
- Solution: Augment these methods with machine learning
 - Related paper: <u>Machine learning for measurement-based bandwidth</u> estimation
 - Uses a simple Neural network model
- Goal: Improve the paper

#4: Foundation Model for Network Data

 Foundational model have been shown promising results for a range of use cases

 Recent attempts in the networking community to develop foundational models for networking (e.g., netFound)

• Goal: Implement and evaluate a foundational model for network data on campus network data

#4: Foundation Model for Network Data

• Multiple papers in recent times: netFound, netLLM, ...

- Train the model using campus network data (will be provided)
- Evaluate the model for a learning task (preferably application classification) and report the accuracy
 - How much data is needed for training the model?
 - What is the accuracy compared to a model with feature engineering

#5: Synthetic Network Data Generation

- Organizations are often comfortable sharing synthetic data derived from their network instead of actual data
- Traditional approaches to generate synthetic data are not low fidelity and fail to capture heavy-tailed behavior
- Solution: Two popular models
 - NetShare: Use Generative Adverserial Networks (GANs)
 - NetDiffusion: Use diffusion models

• Scope:

Reproduce the results from one of these papers using campus network data

#6: Compare nPrintML with a Feature Engineering method

- nPrint is a standard data representation for network traffic
- The code is available online: Link

• Scope:

- For video conferencing performance prediction, compare performance of nPrintML with a <u>feature engineering-based</u> solution
- Compare the system-level cost
- Use Trustee to explain the results of nPrint

nPrint

IPv4	TCP	UDP	ICMP	Payload
480 Features	480 Features	64 Features	64 Features	n Features
Maximum Size of IPv4 Header (60 Bytes)	Maximum Size of TCP Header (60 Bytes)	Size of UDP Header (8 Bytes)	Size of ICMP Header (8 Bytes)	User Defined Number of Bytes

Other Ideas

- Pick an ML-based paper from Sigcomm 2020-2023 and implement it
- Or if you have your own idea, please discuss it with me

Project Logistics

- Work in a pair
- Project weight: 35%
- Three milestones
 - #1: Project proposal (3%) Feb 8
 - #2: Progress review (12%) March 18
 - #3: Final Submission (20%) Apr 26
- Proposal: Title, steps, and timeline
- Progress review: Short report discussing progress and bottlenecks
- Final submission: 10-minute presentation, working code, report