

Course Syllabus Part I DSC 530 Data Exploration and Analysis

3 Credit Hours

Course Description

This course introduces complex techniques needed for profiling and exploring data. Students use programming and statistics-based inference to ask and answer insightful questions of data.

Course Prerequisites:

Recommended DSC 510 and DSC 520

Course Objectives

Students who successful complete this course should be able to:

- Perform exploratory data analysis using programming techniques and statistics-based inference.
- Analyze datasets to ask and answer insightful questions of data.
- 3. Evaluate datasets to ensure appropriate quality.
- 4. Construct a portfolio of data science projects.

Grading Scale

93 – 100% = A	87 - 89% = B+	77 – 79% = C+	67 - 69% = D+
90 - 92% = A-	83 - 86% = B	73 - 76% = C	63 - 66% = D
	80 – 82% = B-	70 – 72% = C-	60 – 62% = D-
			0 - 59% = F

Topic Outline

- I. Data Science Process
 - a. Importing Data
 - b. Exploring Data
 - c. Modeling Data
 - d. Visualizing Data
- II. Python Basics
 - a. Installing Tools
 - b. Variables
 - c. Functions
 - d. Packages/Modules

- III. Data Quality
 - a. How was data collected
 - b. What data transformations occurred
 - c. When does data need to be fixed
 - d. Metadata
- IV. Traditional Data Profiling vs Exploratory Data Analysis (EDA)
 - a. Data Profiling for Data Warehouses and traditional reporting
 - i. Completeness Analysis
 - ii. Uniqueness Analysis
 - iii. Values Distribution Analysis
 - iv. Range Analysis
 - v. Pattern Analysis
 - b. Exploratory Data Analysis for data science
 - i. Statistical Approach
 - ii. EDA Process
 - iii. Data Mining
- V. Exploratory Data Analysis Hands On
 - a. Distributions
 - b. Probability Mass Functions
 - c. Cumulative Distribution Functions
 - d. Modeling Distributions
 - e. Probability Density Functions
 - f. Relationships between Variables
 - g. Estimation
 - h. Hypothesis Testing
 - i. Linear Least Squares
 - j. Regression
 - k. Time Series Analysis
 - I. Survival Analysis
 - m. Analytic Methods
- VI. Data Modeling Basics
 - a. Normalization
 - b. Data Cardinality