Zadanie 2 – Problem Plecakowy

Koncepcja Rozwiązania

1. Zadanie

Do walizki o ograniczonej pojemności \mathcal{C} chcemy załadować przedmioty o jak największej wartości, mając jednak na uwadze, że każdy z nich zajmuje pewną objętość. Mając n przedmiotów wraz z n-elementową tablicą odpowiadających im wartości $\{p_i\}$ oraz objętości $\{c_i\}$, znajdź zestaw rzeczy mieszczących się w walizce o największej sumarycznej wartości. Uwaga: Możemy dobierać maksymalnie m przedmiotów tego samego typu (tzn. o tej samej wartości i tej samej objętości).

2. Propozycja rozwiązania

Wybrany język programowania: C++

Zakładam, że wartości C, n, m oraz wszystkie c_i należą do liczb naturalnych dodatnich a wartości p_i do liczb rzeczywistych.

Zadanie sprowadza się do ograniczonego problemu plecakowego, gdzie maksymalna ilość wziętych sztuk każdego przedmiotu jest ograniczona przez tę samą stałą — m.

Zgodnie z zaleceniami dr inż. Łukasza Skoniecznego przedstawiam propozycje dwóch rozwiązań dla porównania. Jednego bardzo brutalnego a drugiego dynamicznego. Obydwa algorytmy gwarantują znalezienie rozwiązania optymalnego jednak różnią się złożonością.

2.1. Rozwiązanie brutalne

Przegląd zupełny przestrzeni wszystkich rozwiązań spełniających warunki zadania wymaga w pesymistycznym przypadku sprawdzenia $(m+1)^n$ kombinacji (n elementów, które mogą być wybrane 0..m razy) i wyboru najlepszej.

Algorytm polega na wygenerowaniu tych wszystkich kombinacji i zapamiętaniu najlepszego, dotychczas znalezionego i spełniającego warunki zadania, rozwiązania.

Dla operacji podstawowej porównania rozwiązań osiąga więc pesymistyczną złożoność $O((m+1)^n)$.

2.2. Rozwiązanie dynamiczne

Algorytm dynamiczny polega na budowaniu i zapamiętywaniu najlepszych rozwiązań A(j) dla walizek o kolejnych pojemnościach j=0...C.

Dla walizki o zerowej pojemności największa sumaryczna wartość przedmiotów mieszczących się w niej - a(0)=0. Zapamiętujemy strukturę A(0) rozwiązania, zawierającą wartość a(0) oraz wyzerowaną n-elementową tablicę liczników pokazującą wykorzystanie poszczególnych przedmiotów.

Dla kolejnych wartości j=1..C budujemy najlepsze możliwe rozwiązanie. Na początku za najlepsze rozwiązanie $A_{max}(j)$ przyjmujemy A(j-1). Następnie przeglądamy n-elementową tablicę przedmiotów. Jeżeli $c_i \leq j$ oraz rozwiązanie $A(j-c_i)$ nie wykorzystało jeszcze m elementów o indeksie i to porównujemy $a(j-c_i)+p_i$ z $a_{max}(j)$.

Jeżeli $a(j-c_i)+p_i$ jest większe to zastępujemy $A_{max}(j)$ rozwiązaniem powstałym z $A(j-c_i)$ poprzez inkrementację licznika wykorzystanych elementów o indeksie i oraz przypisanie $a_{max}(j) \coloneqq a(j-c_i)+p_i$.

Po sprawdzeniu wszystkich indeksów i=1..n przedmiotów z tablicy przypisujemy $A(j) \coloneqq A_{max}(j)$.

Jeżeli $j=\mathcal{C}$ – zwracamy rozwiązanie $A(\mathcal{C})$ jako wynik działania algorytmu. W przeciwnym wypadku powtarzamy proces budowania rozwiązania dla walizki o pojemności j+1.

Jako że wymagane jest zbudowanie C rozwiązań a budowa każdego wymaga przejścia po n-elementowej tablicy przedmiotów, pesymistyczna złożoność algorytmu, dla operacji podstawowej porównania rozwiązań, wynosi O(n*C).

3. Konwencja wejścia/wyjścia

Na wejściu pojawią się kolejno wartości C, m i n oraz n par wartości p_i c_i .

Na wyjściu pojawi się n trójek wartości p_i c_i m_i , gdzie m_i oznacza ilość przedmiotów o wartości p_i i objętości c_i wykorzystanych w znalezionym rozwiązaniu. Na samym końcu znajdzie się też liczba rzeczywista oznaczająca sumę wartości przedmiotów wykorzystanych w znalezionym rozwiązaniu.

4. Dane testowe

W testach wzorował się będę na schemacie przedstawionym przez Davida Pisingera w artykule "Where are the hard knapsack problems?"¹.

Wykorzystam zbiory losowo generowanych punktów z silnie skorelowanymi wartościami c_i i p_i . Objętości c_i losowane będą z rozkładem jednostajnym z zakresu 1..R. Wartości obliczane będą wedle wzoru $p_i = c_i + R/10$.

Przetestowane zostaną przypadki dla: $n \in \{50, 100, 200, 500, 1000, 2000\}, m \in \{2, 3, 5\}$ oraz $R \in \{1000, 10000\}$

Dla każdego przypadku wygenerowane zostanie H=100 instancji a pojemność walizki w każdej instancji h=1..H będzie ustalana jako $C_h=\frac{h}{H+1}\sum_{i=1}^n c_i*m$.

Wynikiem testu dla danego przypadku będzie średni czas pracy algorytmu rozwiązującego problem.

¹ "Computers & Operations Research" Volume 32, Issue 9, September 2005