ÔN TÂP CHƯƠNG 8

- 1. Tại sao cần phải có bộ nhớ ảo?
- Bộ nhớ ảo (virtual memory): là một kỹ thuật cho phép xử lý một tiến trình không được nạp

toàn bộ vào bộ nhớ vật lý.

- Cần phải có bộ nhớ ảo vì:
- + Số lượng process trong bộ nhớ nhiều hơn.
- + Một process có thể thực thi ngay cả khi kích thước của nó lớn hơn bộ nhớ thực.
- + Giảm nhẹ công việc của lập trình viên.
- 2. Có bao nhiều kỹ thuật cài đặt bộ nhớ ảo? Mô tả sơ lược các kỹ thuật đó?

Có hai kỹ thuật:

- Phân trang theo yêu cầu (Demand Paging)
- Demand paging: các trang của tiến trình chỉ được nạp vào bộ nhớ chính khi được yêu cầu.
- Khi có một tham chiếu đến một trang mà không có trong bộ nhớ chính (valid bit) thì phần

cứng sẽ gây ra một ngắt (gọi là page-fault trap) kích khởi page-fault service routine (PFSR)

của hệ điều hành.

- Phân đoạn theo yêu cầu (Demand Segmentation)
- 3. Các bước thực hiện kỹ thuật phân trang theo yêu cầu?

☐ PFRS:

- Bước 1: Chuyển process về trạng thái blocked
- Bước 2: Phát ra một yêu cầu đọc đĩa để nạp trang được tham chiếu vào một frame trống; trong khi đợi I/O, một process khác được cấp CPU để thực thi
- Bước 3: Sau khi I/O hoàn tất, đĩa gây ra một ngắt đến hệ điều hành; PFSR cập nhật page table và chuyển process về trạng thái ready.
- 4. Mô tả các giải thuật thay thế trang FIFO, OPT, LRU?

	FIFO	OPT	LRU
Mô tả	-Thay thế trang nhớ	Thay thế trang nhớ	Mỗi trang được ghi
	có thời gian	sẽ được tham chiếu	nhận
	vào sớm nhất trong	trễ nhất trong tương	(trong bảng phân
	các trang	lai -> cần phải biết	trang) thời
	nhớ trong 3 khung	trước các trang sẽ	điểm được tham
	trang	được tham chiếu	chiếu ⇒
	- Bất thường	trong tương lai	trang LRU là trang
	(anomaly) Belady:		nhớ có
	số page fault tăng		thời điểm tham
	mặc dầu quá		chiếu nhỏ nhất
	trình đã được cấp		(OS tổn chi phí tìm
	nhiều frame		kiểm trang
	hơn.		nhớ LRU này mỗi
			khi có page
			fault) • Do vậy,
			LRU cần sự
			hỗ trợ của phần
			cứng và chi
			phí cho việc tìm
			kiếm. Ít CPU
			cung cấp đủ sự hỗ
			trợ phần
			cứng cho giải thuật
			LRU

- 5. Giải pháp tập làm việc hoạt động như thế nào?
 - Được thiết kế dựa trên nguyên lý locality.
 - Xác định xem process thực sự sử dụng bao nhiều frame.
 - Định nghĩa:
 - WS(t) các tham chiếu trang nhớ của process gần đây nhất cần được quan sát.
 - Δ khoảng thời gian tham chiếu
- Định nghĩa: Working set của process Pi , ký hiệu WSi, là tập gồm Δ các trang được

sử dụng gần đây nhất.

• Nhận xét:

- Δ quá nhỏ \Rightarrow không đủ bao phủ toàn bộ locality.
- Δ quá lớn \Rightarrow bao phủ nhiều locality khác nhau.
- $\Delta = \infty \Rightarrow$ bao gồm tất cả các trang được sử dụng.
- Dùng working set của một process để xấp xỉ locality của nó
- Định nghĩa: WSSi là kích thước của working set của Pi:
- WSSi = số lượng các trang trong WSi
- Đặt $D = \Sigma$ WSSi = tổng các working-set size của mọi process trong hệ thống.
- Nhận xét: Nếu D > m (số frame của hệ thống) ⇒ sẽ xảy ra thrashing.
- Giải pháp working set:
- Khi khởi tạo một quá trình: cung cấp cho quá trình số lượng frame thỏa mản working-set size của nó.
- Nếu D > m ⇒ tạm dừng một trong các process.
- Các trang của quá trình được chuyển ra đĩa cứng và các frame của nó được thu

hồi

• WS loại trừ được tình trạng trì trệ mà vẫn đảm bảo mức độ đa chương