非靶向代谢实验流程

1、样本基本信息

本次实验共收到客户提供的组例样本(具体样本信息见下表)。为了对实验进行质量控制,我们在处理样品的同时制备了QC样本。QC样本为实验样本的等体积混合样本,用于平衡色谱-质谱系统和监测仪器状态,在整个实验过程中对系统稳定性进行评价。同时设置 blank 样本,主要用于去除背景离子。

组别	4	样	本数量	Yes	实测检测数量	t
blank			XX		XX	
XX			XX		XX	
XX			XX		XX	
QC			XX		XX	

注: 生物学样本由客户准备,干冰运输到公司,样本收到后,立即保存在-80℃ 低温冰箱中,直至实验检测。

2、实验仪器及试剂

2.1 仪器

仪器类型	型号	品牌	产地
质谱仪	Q Exactive TM HF/Q Exactive TM	Thermo Fisher	Germany
	HF-X/Orbitrap Exploris 480		
色谱仪	Vanquish UHPLC	Thermo Fisher	Germany
色谱柱	Hypesil Gold column	Thermo Fisher	USA
	(100×2.1 mm, 1.9 μm)		
低温离心机	D3024R	Scilogex	USA

2.2 试剂

试剂	纯度	CAS 号	品牌	产地	货号	规格
甲醇	LC-MS Grade	67-56-1	Thermo Fisher	USA	A456-4	4L
水	LC-MS Grade	7732-18-5	Merck	Germany	1.15333.2500	2.5L
甲酸	LC-MS Grade	64-18-6	Thermo Fisher	USA	A117-50	50ml

3、实验方法

3.1 代谢物提取

组织样本:

- ①取 100 mg 液氮研磨的组织样本,置于 EP 管中,加入 500μL 的 80%甲醇水溶液;
 - ②涡旋震荡,冰浴静置 5min, 15000 g、4℃离心 20 min;
 - ③取一定量的上清加质谱级水稀释至甲醇含量为53%;
 - ④15000g、4℃离心 20 min, 收集上清, 进样 LC-MS 进行分析[1]。

液体样本:

①取 $100 \mu L$ 样本置于 EP 管中,加入 $400 \mu L$ 的 80% 甲醇水溶液,后续步骤 同组织样本②~④ $^{[2-3]}$ 。

细胞、细菌样本:

- ①取细胞(细菌)样本置于 EP 管中,加入 300 μL 的 80% 甲醇水溶液;
- ②放入液氮速冻 5 分钟; 冰上融化后涡旋 30 秒, 超声 6 min;
- ③5000 rpm、4℃离心 1 min,取上清液到新离心管中,冻干成干粉;
- ④按所取样本体积加入相应的 10% 甲醇溶液溶解, 进样 LC-MS 进行分析[4-5]。

培养基上清、细胞细菌培养液样本:

- ①取 1 mL 样本于冻干机中冻干,加入 100 μL 的 80% 甲醇水溶液;
- ②涡旋震荡,冰浴静置 5min, 15000 g、4℃离心 15 min;
- ③取一定量的上清加质谱级水稀释至甲醇含量为53%;
- ④15000g、4℃离心 15 min, 收集上清, 进样 LC-MS 进行分析。

QC 样本: 从每个实验样本中取等体积样本混匀作为 QC 样本。

blank 样本: 53% 甲醇水溶液代替实验样本,前处理过程与实验样本相同。

3.2 仪器参数

1.色谱条件

色谱柱: HypersilGoldcolumn(C18)

柱温: 40℃

流速: 0.2 mL/min

流动相 A: 0.1% 甲酸

流动相 B: 甲醇

色谱梯度洗脱程序:		
时间	A%	В%
0	98	2
1.5	98	2
3	15	85
10	0	100
10.1	98	2
11	98	2
12	98	2

2.质谱条件

扫描范围选择 m/z 100-1500; ESI 源的设置如下: 喷雾电压(Spray Voltage):3.5kV; 鞘气流速(Sheath gas flow rate):35psi; 辅助气流速(Aux Gas flow rate):10L/min; 离子传输管温度(Capillary Temp):320°C; 离子导入射频电平(S-lens RF level):60; 辅助气加热器温度(Aux gas heater temp):350°C; 极性(Polarity): positive, negative; MS/MS 二级扫描为 数据依赖性扫描(data-dependent scans).

3.数据预处理和代谢物鉴定

将下机数据(.raw)文件导入 CD 3.3 搜库软件中进行处理,对每个代谢物进行保留时间、质荷比等参数的简单筛选,然后以第一个 QC 进行峰面积校正,使鉴定更准确,随后设置质量偏差 5 ppm、信号强度偏差 30%、最小信号强度、加合离子等信息进行峰提取,同时对峰面积进行定量,再整合目标离子,然后通过分子离子峰和碎片离子进行分子式的预测并与 mzCloud(https://www.mzcloud.org/)、mzVault 和 Masslist 数据库进行比对,用 blank 样本去除背景离子,将原始定量结果依据公式:样本原始定量值/(样本代谢物定量值总和/QC1 样本代谢物定量值总和),进行标准化处理,得到相对峰面积;并将 QC 样本中相对峰面积的 CV大于 30%的化合物删除,最后得到代谢物的鉴定和相对定量结果。数据处理部分基于 Linux 操作系统(CentOS 版本 6.6)以及软件 R、Python 进行,具体程序包和软件版本见结果文件 readme。

4.数据统计分析

使用 KEGG 数据库(https://www.genome.jp/kegg/pathway.html)、HMDB 数据库(https://hmdb.ca/metabolites) 和 LIPIDMaps 数据库(http://www.lipidmaps.org/) 对鉴定到的代谢物进行注释。

多元统计分析部分,使用代谢组学数据处理软件 $metaX^{[6]}$ 对数据进行转换后进行主成分分析(PCA)和偏最小二乘法判别分析(PLS-DA),进而得每个代谢物的 VIP 值。单变量分析部分,基于 t 检验来计算各代谢物在两组间统计学显著性(P 值),并计算代谢物在两组间的差异倍数($fold\ change$)即 FC 值。差异代谢物筛选的默认标准为 VIP>1,P 值<0.05 且 $FC\geq2$ 或 $FC\leq0.5$ 。

火山图用 R 包 ggplot2 绘制,可以综合代谢物的 VIP 值、log2 (FoldChange)和-log10 (p 值)三个参数,来筛选感兴趣的代谢物。

聚类热图,用R包Pheatmap进行绘制,使用z-score对代谢物数据进行归一化。

差异代谢物之间的相关性分析(pearson 相关系数)使用 R 语言 cor()进行,统计显著性通过 R 语言中 cor.mtest()实现,P 值<0.05 为在统计学上显著,并用 R 语言中的 corrplot 软件包绘制相关性图。

气泡图用 R 包 ggplot2 进行绘制,使用 KEGG 数据库来研究代谢物的功能和代谢途径,当 x/n>y/N 时,认为该代谢途径富集;当代谢途径的 P 值<0.05 时,认为该代谢途径是显著富集。

参考文献

- [1] Want E J , Masson P , Michopoulos F , et al. Global metabolic profiling of animal andhuman tissues via UPLC-MS[J]. Nature Protocols, 2012, 8(1):17-32.
- [2]Want E J ,O"Maille G , Smith C A , et al. Solvent-Dependent Metabolite Distribution, Clustering, and Protein Extraction for Serum Profiling with Mass Spectrometry[J]. Analytical Chemistry, 2006, 78(3):743-752.
- [3] BarriT ,Dragsted L O . UPLC-ESI-QTOF/MS and multivariate data analysis for blood plasma and serum metabolomics: effect of experimental artefacts and anticoagulant[J]. Analytica Chimica Acta, 2013, 768(1):118-128.
- [4] Sellick C A, Hansen R, Stephens G M, et al. Metabolite extraction from suspension cultured mammalian cells for global metabolite profiling[J]. Nature Protocol, 2011, 6(8):1241-9.
- [5] Yuan M, Breitkopf S B, Yang X, et al. A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue[J]. Nature Protocols, 2012, 7(5):872-81.

[6] Wen B, Mei Z, Zeng C, et al. metaX: a flexible and comprehensive software for processing metabolomics data[J]. BMC Bioinformatics, 2017, 18(1).

