Lead Scoring Case Study

Presentation

- CHANDANA DEEKSHA PULAVARTHI
- SHWETA KUMARI
- SOUMIK CHAKRABORTY

Business Understanding

1. Challenge:

- Current lead conversion rate is very low 30%.
- High volume of leads demands a targeted strategy.

2. Goal:

- Identify "Hot Leads" with conversion likelihood $\geq 80\%$.
- Optimize sales team focus for higher conversion efficiency.

Solution:

Use a logistic regression model trained on historical data to identify "Hot Leads"

4. Rationale:

- Data driven decision making will optimize resource allocation and improve conversion efficiency.
- Machine learning model will give actionable insights to sharpen strategies.

5. Expected Impact:

- Higher conversion rates by engaging high-potential leads
- Improved ROI through targeted marketing efforts.

Data Preparation

1. Data Overview:

- 9240 leads with 37 attributes.
- Columns with $\geq 45\%$ missing values dropped to ensure model quality.

2. Data Imbalance:

Not addressed since final model performed well in predicting minority class.

3. Categorical columns:

• Dropped if one category dominated (> 90%) to avoid overfitting.

4. Sparse Dataframe:

One-hot encoding led to sparse dataframe due to numerous categories with few records.

5. Feature Selection:

Initial coarse selection with RFE followed by manual refined selection.

6. Feature Scaling:

Min-max scaler used to prepare the dataframe for modelling.

Visualizations

We observe that the leads with Tags marked as "Will revert after reading the email" and "Closed by Horizon" have higher percentage of lead conversions.

Visualizations (Contd.)

Leads with last activity and last notable activity of "SMS Sent" have higher percentage of lead conversions.

Visualizations (Contd.)

- There isn't much difference in the distributions of converted and not converted leads in terms of "Total Visits" and "Page Views Per Visit".
- Leads who spent longer time on the website seem to show higher conversion rates as per their distribution.

Final Model Summary

Generalized Linear Model Regression Results							
Dep. Variable:	Converted	No. Observatio	ons:	63	51		
Model:	GLM	Df Residuals:		63	39		
Model Family:	Binomial	Df Model:			11		
Link Function:	Logit	Scale:		1.00	00		
Method:	IRLS	Log-Likelihood	l:	-1333	.6		
Date:	Mon, 20 Nov 2023	Deviance:		2667	.2		
Time:	13:36:45	Pearson chi2:		9.98e+	·03		
No. Iterations:	8	Pseudo R-squ.	(CS):	0.59	42		
Covariance Type:	nonrobust						
=======================================	===========	·					=======
		coef	std err	Z	P> z	[0.025	0.975]
const		-2.0329	0.101	-20.200	0.000	-2.230	-1.836
Total Time		3.3237	0.205	16.213	0.000	2.922	3.726
Source Welingak Website		5.6581	1.028	5.503	0.000	3.643	7.673
Last Activity Email Bounced		-1.5249	0.488	-3.125	0.002	-2.481	-0.568
Last Activity SMS Sent		2.1701	0.111	19.471	0.000	1.952	2.389
Current Occupation Unknown		-0.8580	0.113	-7.560	0.000	-1.080	-0.636
Tags Closed by Horizzon		7.0978	0.726	9.775	0.000	5.675	8.521
Tags Lost to EINS		6.8067	0.755	9.010	0.000	5.326	8.287
Tags_Ringing		-3.5959	0.239	-15.043	0.000	-4.064	-3.127
Tags_Will revert after reading the email		1 4.6110	0.188	24.522	0.000	4.242	4.980
Tags_switched off		-4.2072	0.602	-6.991	0.000	-5.387	-3.028
Last Notable Activity_Modified		-1.7207	0.122	-14.048	0.000	-1.961	-1.481
=======================================	==========				=======		=======

- Logistic Regression model.
- 11 finally chosen features.
- All variables significant (pvalue close to 0)

ROC Curve

- Observed AUC = 0.97
- Extremely good model performance on train data

Determining Threshold

Chosen threshold 0.3 based on Sensitivity-Specificity and Precision-Recall trade-offs.

Model Performance

Metric	Train Data	Test Data		
Accuracy	0.9167	0.9108		
Sensitivity	0.9086	0.9161		
Specificity	0.9215	0.9073		
Precision	0.8736	0.8632		
Recall	0.9086	0.9161		
F1 – Score	0.8908	0.8889		

- Model is performing well on both train and test data.
- Model is performing even better on test data based on some of the metrics.
- No underfitting or overfitting issues observed.

Model Summary

1. High Sensitivity/Recall:

- Consistent achievement of over 90% sensitivity/recall on train and test data
- Showcases robust ability to identify "Hot Leads"

2. Key Feature Selection:

- "Total time spent on website", "Last Activity" and "Tags" categories are important.
- These offer actionable insights.
- Interpretability and simplicity of the logistic regression model further helps.

3. Lead Score Utility:

- Leads are scored on a range of 0 to 100 based on likelihood of conversion.
- Helpful for practically identifying and prioritizing important leads.
- Helps optimize resource allocation

Recommendations

1. Utilize High-Performing Features:

- Use insights from key features to devise informed sales strategies.
- Target on gathering more leads from sources with positive impact.
- Consider communicating via channels which lead to higher conversions.

2. Implement Lead Scoring:

- Prioritize leads based on their lead scores.
- Define Lead Score cut-offs based on business strategy followed at the moment.

3. Regular Model Monitoring and Updates:

- Periodic model updates to adapt to evolving lead behaviour.
- Consider further research in understanding competitor behaviour.