Cutting dimensions in the LLL attack for the ETRU post-quantum cryptosystem

Augusto M. C. Silva¹ **Thiago do R. Sousa**²
Tertuliano S. Neto²

¹UFJF ²CEPESC

17 de setembro de 2024

Sumário

- Introduction
- 2 NTRU
- 3 ETRU
- Reducing attack complexity
- Conclusion

Summary

- Introduction
- 2 NTRU
- 3 ETRU
- 4 Reducing attack complexity
- 5 Conclusion

Quantum computer

- Quantum computers are now a reality
- Large-scale could break most public key cryptosystems
- Mathematical problems intractable by both quantum and conventional computers
- NIST PQ competition
- Lattice based systems

Figure: Credit: Getty Images/iStockphoto

Security of Lattice-based systems

SVP (Shortest Vector Problem): find → given basis vectors

Figure: Credit: wikipedia Lattice problem

SVP problem

 Can we find an integer linear combination of lines that gives a small vector?

Γ1	0	0	0	103	205	153	51 7
0	1	0	0	51	103	205	153
0	0	1	0	153	51	103	205
0	0	0	1	205	153	51	103
0	0	0	0	256	0	0	0
0	0	0	0	0	256	0	0
0	0	0	0	0	0	256	0
[0	0	0	0	0	0	0	256

Summary

- Introduction
- 2 NTRU
- 3 ETRU
- 4 Reducing attack complexity
- 5 Conclusion

NTRU - Ingredients - Hoffstein [2016]

Polynomials with INTEGER coefficients

$$f(x) = a_0 + a_1 x + \dots + a_{N-1} x^{N-1}, \quad a_i \in \mathbb{Z}$$

Modular reduction

$$a \mod b \equiv c$$

Ring algebra for polynomial multiplication, polynomial reduction and inversion

$$R = \frac{\mathbb{Z}[x]}{(x^N - 1)}, \qquad R_p = \frac{(\mathbb{Z}/p\mathbb{Z})[x]}{(x^N - 1)}, \qquad R_q = \frac{(\mathbb{Z}/q\mathbb{Z})[x]}{(x^N - 1)}$$

NTRU - Basic Example N = 4, p = 3, q = 256

Private key

$$f(x) = -x^2 + x + 1, \quad g(x) = -x^3 - x^2 + x + 1$$

• Compute $f_q(x)$, the inverse f $\mod q$

$$f_q(x) = 103x^3 + 51x^2 - 102x - 51$$

Public key

$$h(x) = pf_q(x) * g(x) = -103x^3 - 53x^2 + 103x + 53$$

• Encrypt message $m(x) = -x^3 + x^2 - x - 1$ using random r(x):

NTRU - Security and Attack

• Use public key $h(x) = h_0x + h_1x + \cdots + h_{N-1}x_{N-1}$ to create

$$H = \begin{bmatrix} h_0 & h_1 & h_2 & \cdots & h_{N-1} \\ h_{N-1} & h_0 & h_1 & \cdots & h_{N-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ h_1 & h_2 & h_3 & \cdots & h_0 \end{bmatrix}$$

ullet Use the public parameters p,q to construct a block matrix

$$L = \begin{bmatrix} I_N & p^{-1}H \\ 0 & qI_N \end{bmatrix}$$

- L generates a Lattice
- Private key pair (f,g) is a short vector

17 de setembro de 2024

NTRU - Security and Attack

Seeing private key as short vector in Lattice

SOLUTION: Sum lines in BLUE and subtract lines in RED

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 103 & 205 & 153 & 51 \\ 0 & 1 & 0 & 0 & 51 & 103 & 205 & 153 \\ 0 & 0 & 1 & 0 & 153 & 51 & 103 & 205 \\ 0 & 0 & 0 & 1 & 205 & 153 & 51 & 103 \\ 0 & 0 & 0 & 0 & 256 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 256 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 256 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 256 \\ 1 & 1 & -1 & 0 & 1 & 1 & -1 & -1 \end{bmatrix}$$

- Private key (f,g) is short in L.
- Approaches: Use LLL and BKZ (Basis reduction algorithms)
- Complexity: Proportional to lattice dimension 2n

NTRU - Security and Attack

Seeing private key as short vector in Lattice

SOLUTION: Sum lines in BLUE and subtract lines in RED

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 103 & 205 & 153 & 51 \\ 0 & 1 & 0 & 0 & 51 & 103 & 205 & 153 \\ 0 & 0 & 1 & 0 & 153 & 51 & 103 & 205 \\ 0 & 0 & 0 & 1 & 205 & 153 & 51 & 103 \\ 0 & 0 & 0 & 0 & 256 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 256 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 256 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 256 \\ 1 & 1 & -1 & 0 & 1 & 1 & -1 & -1 \end{bmatrix}$$

- Private key (f,g) is short in L.
- Approaches: Use LLL and BKZ (Basis reduction algorithms)
- ullet Complexity: Proportional to lattice dimension 2n

Find private key

PROBLEM: Solve SVP in L:

$$L = \begin{bmatrix} I_N & p^{-1}H \\ 0 & qI_N \end{bmatrix}$$

- ullet Find Private key (f,g) given Public key h
- Combined approach of dimension reduction May [2001] reduces complexity to

$$2n-k, \quad k \in \{1, n-1\}$$

- APPLY THIS TO ETRU (NTRU over the Eisenstein Integers)?
- ② IMPROVE ETRU PRACTICAL LATTICE ATTACK from Jarvis and Nevins [2013] (n=57)?

Summary

- Introduction
- 2 NTRU
- 3 ETRU
- 4 Reducing attack complexity
- 5 Conclusion

Basic descryption

Recall NTRU

$$R = \frac{\mathbb{Z}[x]}{(x^N - 1)}, \qquad R_p = \frac{(\mathbb{Z}/p\mathbb{Z})[x]}{(x^N - 1)}, \qquad R_q = \frac{(\mathbb{Z}/q\mathbb{Z})[x]}{(x^N - 1)}$$

 \bullet ETRU: Replace $\mathbb Z$ by $\mathbb Z[\omega]$ where $\omega^3=1$

$$\omega = \frac{1}{2} \left(-1 + i \sqrt{3} \right)$$

 Why: ETRU is faster and has smaller keys than NTRU (same security level)

Basic descryption

- ETRU is more complicated than NTRU
- ullet Polynomials have coefficients of the form $z=a+b\omega\in\mathbb{Z}[\omega]$
- One has to work with modular algebra on the rings

$$R = \frac{\mathbb{Z}[\omega][x]}{(x^N - 1)}; \qquad R_p = \frac{\mathbb{Z}_p[\omega][x]}{(x^N - 1)}; \qquad R_q = \frac{\mathbb{Z}_q[\omega][x]}{(x^N - 1)}$$

- MAIN INGREDIENTS: Polynomial convolution, inversion module another polynomial modulo a prime in $\mathbb{Z}[\omega]$
- Given private key f, g, public key is $h(x) = pf_q(x) * g(x)$
- Encrypt a message m(x) using random r(x) and computing c(x) = r(x) * h(x) + m(x)
- We have implemented all functions in sagemath, available at github.

Basic descryption

- ETRU is more complicated than NTRU
- ullet Polynomials have coefficients of the form $z=a+b\omega\in\mathbb{Z}[\omega]$
- One has to work with modular algebra on the rings

$$R = \frac{\mathbb{Z}[\omega][x]}{(x^N - 1)}; \qquad R_p = \frac{\mathbb{Z}_p[\omega][x]}{(x^N - 1)}; \qquad R_q = \frac{\mathbb{Z}_q[\omega][x]}{(x^N - 1)}$$

- MAIN INGREDIENTS: Polynomial convolution, inversion module another polynomial modulo a prime in $\mathbb{Z}[\omega]$
- Given private key f, g, public key is $h(x) = pf_q(x) * g(x)$
- Encrypt a message m(x) using random r(x) and computing c(x) = r(x) * h(x) + m(x)
- We have implemented all functions in sagemath, available at github.

Attack for finding the private key

ETRU Lattice

$$L_{\mathsf{ETRU}} = \begin{bmatrix} I_{2n} & \langle H \rangle \\ 0 & \langle q I_{2n} \rangle \end{bmatrix},\tag{1}$$

- L_{ETRU} has dimension $4n \times 4n$
- Private key (f,g) is a short vector in L_{ETRU}
- \bullet Finding f already suffices for the attack
- ullet Attack complexity using BKZ proportional to 4n
- • Attack of Jarvis and Nevins [2013] using BKZ breaks ETRU for $n \leq 57$

Summary

- Introduction
- 2 NTRU
- 3 ETRU
- 4 Reducing attack complexity
- Conclusion

Attack idea

• IDEA: Look for (f, g[1:k]), which is still a short vector in

$$L_{\mathsf{ETRU}} = \begin{bmatrix} I_{2n} & \langle H \rangle \\ 0 & \langle q I_{2n} \rangle \end{bmatrix} \tag{2}$$

- ullet Cut some dimensions of of the right side of L_{ETRU} and solve SVP
- New lattice L'_{ETRII} can be expressed as:

$$L'_{\mathsf{ETRU}} = \begin{bmatrix} I_{2n} & \langle H \rangle_k \\ 0 & \langle q I_{2n-k} \rangle \end{bmatrix} \tag{3}$$

• How to find a value for k?

Practical issues of the attack

- ullet Problem with removing columns of L_{ETRU}
 - Loose information about private key
 - How to measure if we going to the right direction ?
 - Use norm of vectors found as a proxy ? Are we getting closer to TARGET (f,g[1:k]) ?
- So it is theoretically possible, but does it give better results ?

Results

Table: Private key attack for varying n and fixed q=383. Success rate of the attack over 100 experiments.

n	41	47	57	61
Orig. Lattice Dim	164	188	228	244
BKZ block	10	10	20	20
	54 (6%)	54 (3%)	59 (1%)	49 (1%)
out h (success)	50 (69%)	50 (53%)	50 (51%)	45 (7%)
cut k (success)	43 (94%)	43 (88%)	45 (94%)	
	21 (100%)	27 (96%)		
JN [2013]	100%	93%	20%	0%

 \bullet Results from JN [2013] have slightly loose conditions.

Conclusion

Security implications of the findings:

- Security of ETRU can also be lowered by using dimension reduction suggested for the original NTRU
- ullet For cuts around the value of n the attack already has some success
- Can be used to lower attack complexity
- It should be considered when evaluating real security of ETRU

Muito obrigado!

augusto.miguel@engenharia.ufjf.br thiagodoregosousa@gmail.com tsouzaneto@gmail.com