Video Game Sales Prediction

By: Hari Krishna Rangineni Likith Kumar Miryala Sai Kiran Putta

Scope of the Project

> Models performance on the dataset

Prove that feature generation from "Neural Networks" are superior!

Feature Set

- **≻Name**
- >Platform
- >Year of Release
- **≻**Genre
- >Critic Score
- **≻User Score**
- >Critic Count
- >User Count
- **≻Global Sales**
- **≻**Rating

- >JP sales
- >Other sales

Deleted Features:

- >EU Sales
- > Developer
- **≻**Publisher

Mean Vs Median for Imputation

Density

> Taking a Median is better than Mean since the distributions are skewed.

NA Imputation Strategy

> Imputation by Grouping:

Grouping by Genre and taking a median of feature.

Outliers In Data

➢ If we go by boxplots, most of the data will get deleted.

Density of Critic_Score

N = 13362 Bandwidth = 0.803

Boxplot of Critic_Score

Outliers In Data - 2

Our approach:

➤ Do feature transformation first, then remove outliers.

Feature Engineering.

- Length of Game Name
- Length of Publisher Name
- In Platform: X360 / XB / XOne -> Xbox
 PS / PS2 / PS3 / PS4 / PSP / PSV -> PS etc.
- >Year by different periods
 - **Yearl -> 1980 2015 by step of 5 years**
 - **YearII -> 1980 2015 by step of 10 years**

Exploratory Data Analysis.

Inference: More number of Action, Sports related games.

Inference: More number of games were released in 2000 - 2010

* 999 is category where we don't know the year.

Inference: More number of games were released in PlayStation followed by Nintendo DS.

Inference: Interestingly Global sales in 1980's is very high despite number of games in 2000 - 2010 are more.

Inference: Global Sales are more in Platform, Shooter and Sports Genre in the increasing order.

Inference: Global Sales of "Adult Only" rated games is significantly high.

New Feature: If a game is AO or K-A, 1 else 0.

Inference:

- ➤ Global Sales of 2600 is high since the number of games were more during that era.
- > In current competitors Xbox has high sales!
- New Feature: If 2600/XB/PS 1 else 0.

> P.S, Any PC fans?! :P

Inference:

Interestingly, the length of games have increased with time!

Feature Importance - Random Forest

Inference:

Log_Other_Sales, Log_JP_Sales, Year_of_Release are important

rfmodel

Feature Importance - XGBoost

Inference:

Log_Other_Sales, Log_JP_Sales, If Platform is PS are important features.

Models performance on Original Feature

Features from Neural Nets - Main Idea

> Create new features from Neural Nets and run other models on them.

Features from Neural Nets - How we do it?

> Extracting the activation function's output when we pass an observation.

> Neural Network:

<u>ActivationFunction</u>: ReLUWithDropout

Hidden Layers: 3 (25, 20, 10)

Number of Features: 55

Models performance on NN features

FaceOff!

What does it tell?

➤ Features from Neural Networks are clearly superior!

Any Questions?

