Protein sequence analysis

>sp|P01966|HBA_BOVIN

MVLSAADKGNVKAAWGKVGGHAAEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG AKVAAALTKAVEHLDDLPGALSELSDLHAHKLRVDPVNFKLLSHSLLVTLASHLPSDFTP AVHASLDKFLANVSTVLTSKYR

What can we do with sequence?

Amino acid occurrence

It is the number of amino acids of each type present in a protein.

E.g. THISISAPEPTIDE

A: 1; C: 0; D: 1; E: 2 etc.

A B C D E F G H I K L M N P Q R S T V W Y 15 2 7 8 8 13 9 11 18 2 6 7 3 3 5 7 18 2 3

¹ MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLD

⁸¹ NLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH

Amino acid composition

It is the number of amino acids of each type normalized with the total number of residues.

It is defined as:

Comp(i) =
$$\sum n_i *100.0/N$$

where i stands for the 20 amino acid residues;

n_i is the number of residues of each type

N is the total number of residues.

The summation is through all the residues in the considered protein.

E.g.
$$Comp(Ala) = 15*100/147 = 10.2$$

Algorithm

- 1. Read 20 amino acid residues: E.g. aa(i), i=1,20
- 2. Read the sequence: seq(i),i=1,n
- 3. Normalize number of residues: no(i)=0
- 4. Compare each residue in the sequence with standard 20 residues

```
do i=1,n
do j = 1,20
if (seq(i).eq.aa(j)) no(j) = no(j)+1
```

- 5. Count the number with respective residues for each match
- 6. Result will give the occurrence of each residue
- 7. Normalize with total number of residues

amino.dat

ADCEFGHIKLMNPQRSTVWY

seq.dat

79

MALLP<mark>AA</mark>PGAPARATPTRWPVGCFNRPWTKWSYDEALDGIK<mark>AA</mark>GYAWTGLLTASKPSLHH ATATPEYLAALKQKSRHAA

A	17	21.52
D	2	2.53
C	1	1.27
E	2	2.53
F	1	1.27
G	5	6.33
H	3	3.80
I	1	1.27
K	5	6.33
L	8	10.13
M	1	1.27
N	1	1.27
P	8	10.13
Q	1	1.27
R	4	5.06
S	4	5.06
T	7	8.86
V	1	1.27
W	4	5.06
Y	3	3.80

Composition

Composition

Molecular Weight & Composition

SEQUENCE:

- >sp|p68871|hbb_human hemoglobin subunit beta os=homo sapiens gn=hbb pe=1 sv=2
- 1 MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLD
- 81 NLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH

COMPOSITION:

Number of residues = 147

Molecular weight = 15998.34

Molecular weight

Molecular weight = $\sum n(i)*w(i) - 18*(N-1)$

Number of residues = 147 Molecular weight = 15998.34

CALCULATION NOTES:

1. Molecular weight = sum of individual residues weights - water molecular weight × (number of residues - 1)

where, water molecular weight = 18.015;

2. For each residue, the table gives the molecular weight:

A	Ala	89.09	G	Gly	75.07	N	Asn	132.12	V	Val	117.15
В	Asx	132.61	H	His	155.16	P	Pro	115.13	W	Trp	204.23
С	Суз	121.15	I	Ile	131.17	Q	Gln	146.15	Y	Tyr	181.19
D	Asp	133.10	K	Lys	146.19	R	Arg	174.20	Z	Glx	146.64
E	Glu	147.13	L	Leu	131.17	S	Ser	105.09			
F	Phe	165.19	M	Met	149.21	T	Thr	119.12	X	else	128.16

seq.dat

79

MALLP<mark>AA</mark>PGAPARATPTRWPVGCFNRPWTKWSYDEALDGIKAAGYAWTGLLTASKPSLHH ATATPEYLAALKQKSRHAA

_			_				_				
A	Ala	89.09	G	Gly	75.07	N	Asn	132.12	V	Val	117.15
В	Asx	132.61	H	His	155.16	P	Pro	115.13	W	Trp	204.23
С	Суз	121.15	I	Ile	131.17	Q	Gln	146.15	Y	Tyr	181.19
D	Asp	133.10	K	Lys	146.19	R	Arg	174.20	Z	Glx	146.64
E	Glu	147.13	L	Leu	131.17	ន	Ser	105.09			
F	Phe	165.19	M	Met	149.21	T	Thr	119.12	X	else	128.16

17	21.52
2	2.53
1	1.27
2	2.53
1	1.27
5	6.33
3	3.80
1	1.27
5	6.33
8	10.13
	2 1 2 1 5 3 1 5

M	1	1.27
N	1	1.27
P	8	10.13
Q	1	1.27
R	4	5.06
S	4	5.06
T	7	8.86
V	1	1.27
W	4	5.06
Y	3	3.80

79

Why composition is important?

>tr|D9PL53|D9PL53 MALLPAAPGAPARATPTRWPVGCFNRPWTKWSYDEALDGIK AAGYAWTGLLTASKPSLHHATATPEYLAALKQKSRHAA

>1a91_
AMENLNMDLLY MAAAVMMGLA AIGAAIGIGI LGGKFLEGAA RQPDLIPLLR
TQFFIVMGLV DAIPMIAVGL GLYVMFAVA

>2erv_
A ADVSAAVGAT GQSGMTYRLG LSWDWDKSWW QTSTGRLTGY WDAGYTYWEG
GDEGAGKHSL SFAPVFVYEF AGDSIKPFIE AGIGVAAFSG TRVGDQNLGS
SLNFEDRIGA GLKFANGQSV GVRAIHYSNA GLKQPNDGIE SYSLFYKIPI

Example

Residue	Comp	osition (%)	Residue	Compo	osition (%)
	Globular	OMP	Gl	obular	OMP
Ala	8.47	8.95	Met	2.21	1.56
Asp	5.97	5.91	Asn	4.54	5.74
Cys	1.39	0.47	Pro	4.63	3.74
Glu	6.32	4.78	Gln	3.82	4.75
Phe	3.91	3.68	Arg	4.93	5.24
Gly	7.82	8.54	Ser	5.94	8.05
His	2.26	1.25	Thr	5.79	6.54
Ile	5.71	4.77	Val	7.02	6.76
Lys	5.76	4.93	Trp	1.44	1.24
Leu	8.48	8.78	Tyr	3.58	4.13

Example

Applications: Discrimination of beta barrel membrane proteins

M. Michael Gromiha, IIT Madras, Class 23

Example

Table 2. Steps to discriminate globular and outer membrane proteins in two typical proteins

Residue		ovirus DNA n (1ADT)	A-Bindin	g	OutD	protein		
	N	Comp	σ_{glob}	σ_{OMP}	N	Comp	α_{glob}	OOMP
Ala	10	11.11	2.64	2.16	54	8.31	0.16	0.64
Asp	4	4.44	1.53	1.47	40	6.15	0.18	0.24
Cys	1	1.11	0.28	0.64	1	0.15	1.24	0.32
Glu	7	7.78	1.46	3.00	31	4.77	1.55	0.01
Phe	5	5.56	1.65	1.88	21	3.23	0.68	0.45
Gly	3	3.33	4.49	5.21	46	7.08	0.74	1.46
His	4	4.44	2.18	3.19	3	0.46	1.80	0.79
Ile	1	1.11	4.60	3.66	35	5.38	0.33	0.61
Lys	7	7.78	2.02	2.85	28	4.31	1.45	0.62
Leu	10	11.11	2.63	2.33	53	8.15	0.33	0.63
Met	4	4.44	2.23	2.88	19	2.92	0.71	1.36
Asn	4	4.44	0.10	1.30	43	6.62	2.08	0.88
Pro	3	3.33	1.30	0.41	21	3.23	1.40	0.51
Gln	4	4.44	0.62	0.31	33	5.08	1.26	0.33
Arg	3	3.33	1.60	1.91	37	5.69	0.76	0.45
Ser	3	3.33	2.61	4.72	55	8.46	2.52	0.41
Thr	6	6.67	0.88	0.13	47	7.23	1.44	0.69
Val	6	6.67	0.35	0.09	64	9.85	2.83	3.09
Ттр	2	2.22	0.78	0.98	6	0.92	0.52	0.32
Тут	3	3.33	0.25	0.80	12	1.85	1.73	2.28
Total			34.18	39.89			23.70	16.09
Discrimination Globular protein Outer membrane protein						n		

N: number of residues; $\sigma_{glob} = |\text{comp} - \text{comp}(glob)|$; $\sigma_{OMP} = |\text{comp} - \text{comp}(OMP)|$.

M.M. Gromiha and M. Suwa (2005) *Bioinformatics* 21, 961-968.

http://psfs.cbrc.jp/tmbetadisc-comp/

TMBETA-DISC: Online servers

Discrimination of Beta-Barrel Membrane

Proteins from Amino Acid Seque

TMBETADISC-CC Discrimination of Outer Membr Amino Acid Compo

Discriminating outer membrane proteins from other folding types of globular and mem outer membrane proteins (OMPs) from genomic sequences and for the successful pred

We have systematically analyzed the amino acid composition of globular proteins from proteins. We found that the residues, Glu, His, Ile, Cys, Gln, Asn and Ser show a signif proteins. Based on this information, we have devised a statistical method for discriminate membrane proteins. Our approach correctly picked up the outer membrane proteins will proteins. On the other hand, our method has correctly excluded the globular proteins at 674 proteins.

TMBETADISC-COMP discriminates the beta-barrel membrane proteins using membrane protein enter your sequence in a single letter code in the following be

MAPKDNTWYTGAKLGUSQYHDTGLINNNGPTHENKLGAGAFGGYQVNPYVGFEMGYDULG RMPYKGSVENGAYKAQGVQLTAKLGYPITDDLDIYTRLGGMVURADTYSNVYGKNHDTGV SPVFAGGVEYAITPEIATRLEYQWTNNIGDAHTIGTRPDNGMLSLGVSYRFG

Predict Reset

Residue	Оссштепсе	Composition(%)	Globular Protein Diff.	OMP Diff.
A	12	6.98	1.49	1.97
D	10	5.81	0.16	0.10
C	0	0.00	1.39	0.47
E	6	3.49	2.83	1.29
F	4	2.33	1.58	1.35
G	26	15.12	7.30	6.58
H	4	2.33	0.07	1.08
I	7	4.07	1.64	0.70
K	7	4.07	1.69	0.86
L	11	6.40	2.08	2.38
М	5	2.91	0.70	1.35
И	12	6.98	2.44	1.24
P Q	8	4.65	0.02	0.91
Q	5	2.91	0.91	1.84
R	6	3.49	1.44	1.75
S	6	3.49	2.45	4.56
Т	14	8.14	2.35	1.60
V	10	5.81	1.21	0.95
W	5	2.91	1.47	1.67
Y	14	8.14	4.56	4.01
Total	172	-	37.78	36.66

Amino acid sequence seems to be an Outer Membrane Protein

Residue pair preference (Dipeptide composition)

It is a measure to quantify the preference of amino acid residue pairs in a sequence.

$$Dipep(i,j) = \sum N_{ij}*100/(\sum N_i + \sum N_j)$$

where i,j stands for the distribution of 20 amino acid residues at positions i and i+1.

 $N_{i,j}$ is the number of residues of type i followed by the residue j. ΣN_i and ΣN_j are the total number of residues of type i and j, respectively.

E.g. DIPEPTIDESAREPEPTIDEPAIRS Dipep(PE) = 2*100/(5+5) = 20

>tr|D9PL53|D9PL53 MALLPAAPGAPARATPTRWPVGCFNRPWTKWSYDEALDGIK AAGYAWTGLLTASKPSLHHATATPEYLAALKQKSRHAA

AA	4	11.76	
AD	0	.00	
AC	0	.00	
AE	0	.00	
AF	0	.00	
AG	1	4.55	
AH	0	.00	
AI	0	.00	
AK	0	.00	
AL	3	12.00	