

AY 2004 Spring Integrated Project Maritime Dominance in the Littorals

Project Description

- Execute Tasking from Deputy Chief of Naval Operations (CNO) for Warfare Requirements (OPNAV 7)
- Develop a Conceptual System of Systems (SoS) for Maritime Dominance that Enables SEA BASING and SEA STRIKE in the Littorals
 - Generate Alternatives Using Existing Systems, Current Programs of Record, and Future Systems
 - Recommend Cost Effective Conceptual SoS That Minimizes Risk To Allied Personnel While Accomplishing Objectives
- Deliver Results in a Final Briefing and Technical Report

SoS Focus and Constraints

- **SoS Architectural Focus**

- Combination of both Manned and Unmanned Systems
- Surface, Subsurface, Air and Space Systems
- Employment of Forces From All Services

- **Constraints**

- Scenario Constraints
 - Land Forces Deployed up to 200 nm Inland
 - Striking/Supporting Maritime Forces Deployed up to 200 nm Offshore
- Timeframe Constraint
 - Concepts of Operations Applicable within 2020 Timeframe
- Cost Being a Necessary Selection Variable

for Maritime Dominance in

- Unmanned Vehicles Complement But Cannot Replace Manned Platforms
- Recommended System of Systems Enabling SEA BASING and SEA STRIKE in 200 nm by 200 nm Littoral Operation Area in 2020 Timeframe
 - Consists of Unmanned/Manned Vehicle Ratio of Approximately 1.5 to 1
 - Utilizes Distributed Communications with 100nm Physical Platform Distribution
 - Employs Decentralized Command & Control Structure
 - Is Cost Effective Relative to Other Alternatives

- **Distributed Communications**
 - Faster Dissemination of Information
 - Minimum Impact on Throughput with Node Failures
- **Decentralized Command and Control**
 - Shorter Reaction Times
 - Less Network Demand
 - Single C2 Node Failure Avoidance
- **100 nm Platform Distribution**
 - Superior Overall Performance

Objective

200 nm Inland

Littoral Area of Interest

SEA STRIKE

SEA BASE

200 nm at Sea

Pictorial
Depiction of
Maritime
Dominance in the
Littorals

2004 Integrated Project Interface

Effective Need

Develop a SoS Solution to Enable SEA BASING and SEA STRIKE by Providing Maritime Dominance in the Littoral Environment Through Cooperative Surveillance, Threat Analysis and Evaluation, Battle Management, and Engagement

SoS Development Process

Value Systems Design

SoS Architectures Definition Process

SWAT

Common to Architecture 1 and 2

2 DDG

2 CG

2 SSN

4 E-

2C

36 F-18

E-8
JSTARS

Communications to All Surface Platforms

Manned Only

Common to All Architectures

10 SH-60

E-3
AWACS

CVN

2 DDG

2 FFG

LHA

MHC

MCM

5 E/A
6B

14 F-
14

2 P-3

8 S-3

2 F-117

1 B-2

- Current Systems
- Carrier Air Wing
- Based Off Carrier Battle Group

Communication
s to All
Platforms

Common to Architecture 1 and 2

1 DDG

2 DDG

2 CG

2 SSN

4 E-2C

24 F-18
 E-8 JSTARS

Surveillance to
All Manned
Platforms

4 Surveillance
USV

2 Multi-Mission
Aircraft

6 F/A-
22

Common to All Architectures

6 SH-60

E-3
AWACS

CVN

6 F-16

Common to Architecture 2 and 3

20 Small Surveillance
UAVs

2 Large Surveillance UAVs

2 MIW LCS

2 ASW LCS

2 ASuW LCS

70 Medium-Sized Surveillance
UAVs

4 MIW UUV 4 ASW UUV

18 JSF

Balanced Hybrid

- Programs of Record
- Existing Systems
- Surveillance UAVs and USVs
- Surveillance

WHAT

Communications to All Platforms

Surveillance to All Manned Platforms

2 CGX 2 DDX

Common to All Architectures

6 SH-60

E-3 AWACS

CVN

TDSI Insertion UUV

2 MIW LCS

2 ASuW LCS

2 ASW LCS

20 Small Surveillance UAVs

30 Medium-Sized Surveillance UAVs

10 ASW UUV 4 MIW UUV

30 Medium Sized Strike UAVs

50 Medium Multi-Mission UAVs

4 Multi-Mission USVs

8 Large Surveillance UAVs

14 JSF

Primarily Unmann

- Programs Of Record
- Future Systems
- Unmanned Vehicles Perform Strike, Surveillance Or Multi-

Architecture Summary

- Three Architectures With Progressing Reliance on UVs
 - Manned Only
 - Balanced Hybrid
 - Primarily Unmanned
- Architecture Effectiveness Modeled in Simulative Study Against Test Scenarios

South China Sea Scenario

- PRC Warship Strafed by Philippines Fighter
- PRC Naval Blockade of Puerta Princesa
 - Historical Rights and Economic Requirements
 - Need to Establish Safety Perimeter Around South China Sea
- PRC Reinforcement of Presence in the Spratly Islands
 - Paved Runways
 - Pier and Maintenance Facilities
 - ADA Batteries and Ballistic Missile Sites.
- PRC Invasion of Kepulauan Natuna (Indonesia)
- PRC Invasion of Palawan After a 30-day Blockade
 - Land, Air, Sea, and Missile Forces Moved to Island

Scenario Criteria

PRC Invasion Force

Aircraft	735
Surface	79
3 SOVREMMENY DDG	
1 CV + 30 SU-30	
55 DDG, FFG, & PGM	
Subsurface	21
5 Type 091/093 SSN	
15 Diesel SS (4 Kilo)	
MARDIV	1
ARTDIV	1
INFDIV	7*
*3 Additional Reserve (Guangzhou)	
No Heavy Armor Division Light Armor Units With MANPADS	

- **Tactical Littoral Environments**
- **Scenario Definition Guided By Complexity**
 - Mission
 - Enemy Force Structure
 - Level of Hostility

Scenario	Enemy	Conflict	Escalation
Benign	Neutral	Unlikely	Unlikely
Nominal	Aggressive	Medium	Low
Stressing	Hostile	High	Medium

Campus Wide Integrated Project

COMMUNICATIONS
Conceptual Communications Network

Extend™
Link Capacity 24 Mbps
Max. Comm. Range 60 km

INFORMATION ASSURANCE
Technology Exploitation Study and Limitation Parameters

Littoral Deployment CONOPS

LAND SYSTEMS
Submersible UV Craft Carrier

Littoral Deployment CONOPS

SENSORS
In Depth Sensor Study for Operation in Littorals

Excel UGV
• Center Frequency 440 MHz

ALWSE-MC
• 5 Golden Eye UAVs
• 20 iSTAR UAVs
• 4 REMUS UUVs
• 6 TALON Robot UGV

OR
Analytical Support Conceptual Modeling

Littoral Deployment CONOPS

Wayne E. Meyer Institute of Systems Engineering
Naval Postgraduate School, Monterey, CA
• BW 19.38 MHz
• Peak Power 1000 W
• Average Power 19 W
• Azimuth 3dB Beam Width 19°
• Elevation 3dB Beam Width 38°
• Nominal Gain 14 dB

Cost Estimation Results

Cost in FY04\$B

Architecture	Purchase Cost	O&S*	TOC**
Manned Only	0	1.53	23
Balanced Hybrid	4.7	1.34	24.3
Primarily Unmanned	10.4	1.13	25.8

*** Per 1-year Basis**

**** Per 10-year Basis Including Inflation**

Cost Estimation Methodology

- All O&S Costs in FY2003 From VAMOSC, AFTOC and OSMIS Databases
- Costs for Future Systems (i.e., UVs and (X) Ships) Estimated Using Analogy Technique
- Derivation of Proposed Future System Unit Cost Using Cost Factors
 - Complexity
 - Miniaturization
 - Productivity Improvement

Simulative Study Overview

Modeling Framework

Method

- Important Questions and Sensitive Design Variables Identified
- Comprehensive Modeling Framework Developed to Answer the Important Questions

Result

- Quantitative Data Provided to Answer Important Questions

Run#	Config	SoS Agg (1,2,3)	CNA (1,2,3)	C2 (L2)	PPD (1,2,3)	Scenario	Total COIs	COIs Detected	COIs Located	Emergency Personnel Killed	Weapons Fired	Total Personnel	Personnel Exposed to Risk	Total SOs Platforms	SOs Platforms	Time to Max Risk (hrs)	Max RMP Ratio
1	1	1	1	1	1	1	133	133	133	0	0	106	0	106	0	0.569	1
2	1	1	1	1	1	1	133	133	133	0	0	106	0	106	0	0.569	1
3	1	1	1	1	1	1	133	133	133	0	0	106	0	106	0	0.569	1
4	1	1	1	1	1	1	133	133	133	0	0	106	0	106	0	0.569	1
5	1	1	1	1	1	1	133	133	133	0	0	106	0	106	0	0.569	1
6	1	1	1	1	1	1	133	133	133	0	0	106	0	106	0	0.569	1
7	1	1	1	1	1	1	133	133	133	0	0	106	0	106	0	0.569	1
8	1	1	1	1	1	1	133	133	133	0	0	106	0	106	0	0.569	1
9	1	1	1	1	1	1	133	133	133	0	0	106	0	106	0	0.569	1
10	1	1	1	1	1	1	133	133	133	0	0	106	0	106	0	0.569	1
11	1	1	1	1	1	1	133	133	133	0	0	106	0	106	0	0.569	1
12	1	1	1	1	1	1	133	133	133	0	0	106	0	106	0	0.569	1
13	1	1	1	1	1	1	133	133	133	0	0	106	0	106	0	0.569	1
14	1	1	1	1	1	1	133	133	133	0	0	106	0	106	0	0.569	1
15	1	1	1	1	1	1	133	133	133	0	0	106	0	106	0	0.569	1
16	1	1	1	1	1	1	133	133	133	0	0	106	0	106	0	0.569	1
17	1	1	1	1	1	1	133	133	133	0	0	106	0	106	0	0.569	1
18	1	1	1	1	1	1	133	133	133	0	0	106	0	106	0	0.569	1
19	1	1	1	1	1	1	133	133	133	0	0	106	0	106	0	0.569	1
20	1	1	1	1	1	1	133	133	133	0	0	106	0	106	0	0.569	1
21	1	1	1	1	1	1	133	133	133	0	0	106	0	106	0	0.569	1
22	1	1	1	1	1	1	133	133	133	0	0	106	0	106	0	0.569	1
23	1	1	1	1	1	1	133	133	133	0	0	106	0	106	0	0.569	1
24	1	1	1	1	1	1	133	133	133	0	0	106	0	106	0	0.569	1
25	1	1	1	1	1	1	133	133	133	0	0	106	0	106	0	0.569	1
26	1	1	1	1	1	1	133	133	133	0	0	106	0	106	0	0.569	1
27	1	1	1	1	1	1	133	133	133	0	0	106	0	106	0	0.569	1
28	1	1	1	1	1	1	133	133	133	0	0	106	0	106	0	0.569	1
29	1	1	1	1	1	1	133	133	133	0	0	106	0	106	0	0.569	1
30	1	1	1	1	1	1	133	133	133	0	0	106	0	106	0	0.569	1
31	1	1	1	1	1	1	133	133	133	0	0	106	0	106	0	0.569	1
32	1	1	1	1	1	1	133	133	133	0	0	106	0	106	0	0.569	1
33	1	1	1	1	1	1	133	133	133	0	0	106	0	106	0	0.569	1
34	1	1	1	1	1	1	133	133	133	0	0	106	0	106	0	0.569	1
35	1	1	1	1	1	1	133	133	133	0	0	106	0	106	0	0.569	1
36	1	1	1	1	1	1	133	133	133	0	0	106	0	106	0	0.569	1
37	1	1	1	1	1	1	133	133	133	0	0	106	0	106	0	0.569	1
38	1	1	1	1	1	1	133	133	133	0	0	106	0	106	0	0.569	1
39	1	1	1	1	1	1	133	133	133	0	0	106	0	106	0	0.569	1
40	1	1	1	1	1	1	133	133	133	0	0	106	0	106	0	0.569	1
41	1	1	1	1	1	1	133	133	133	0	0	106	0	106	0	0.569	1
42	1	1	1	1	1	1	133	133	133	0	0	106	0	106	0	0.569	1
43	1	1	1	1	1	1	133	133	133	0	0	106	0	106	0	0.569	1
44	1	1	1	1	1	1	133	133	133	0	0	106	0	106	0	0.569	1
45	1	1	1	1	1	1	133	133	133	0	0	106	0	106	0	0.569	1
46	1	1	1	1	1	1	133	133	133	0	0	106	0	106	0	0.569	1
47	1	1	1	1	1	1	133	133	133	0	0	106	0	106	0	0.569	1
48	1	1	1	1	1	1	133	133	133	0	0	106	0	106	0	0.569	1
49	1	1	1	1	1	1	133	133	133	0	0	106	0	106	0	0.569	1

Simulation Output Table

Simulative Study Design

Modeling Framework

Modeling Tools Interface

Excel/SWA

T

Lateral Range
Detection Curves

ALWSE-

MC

Data
base
Tables

Extend™

Time To
Detecti
on Data

Selected Configuration Validation

**CDF of Establishing RMP
Scenario 3**

**CDF of Establishing RMP
Scenario 2**

CDF: Cumulative Distribution Function

- Comparison of CDF for Time-to-RMP for Best Configuration from 162 Configurations to CDFs for Selected Configurations
- Excellent Agreement between Best-Configuration CDF and CDF for Selected Architecture 2-Best Configuration Thus Validating Chosen Configuration
- Comparison of CDFs for Other MOEs Also Validating Chosen

Effects of Configuration Attributes On RMP

Arch 1 - Manned Only
Arch 2 - Balanced Hybrid
Arch 3 - Primarily Unmanned

- Significant Effects of Unmanned/Manned Ratio on Time-to-RMP
- Insignificant Effects of Command and Control Structure &

Effects of Configuration Attributes On Communications Performance

- Significant Effects of Unmanned/Manned Ratio, Command & Control and Communication Network Architecture on Communication Performance (Message Delay)

Cost Effectiveness Curve

for Architecture Recommendation

- Balanced Hybrid Cost Effective & Cost Efficient
- Manned Only Cost Effective Not Cost Efficient
- Primarily Unmanned Dominated (Neither Effective or Efficient)

Balanced Hybrid Recommended Based on Cost & Performance

for Maritime Dominance in

- Unmanned Vehicles Complement But Cannot Replace Manned Platforms
- Recommended System of Systems Enabling SEA BASING and SEA STRIKE in 200 nm by 200 nm Littoral Operation Area in 2020 Timeframe
 - Consists of Unmanned/Manned Vehicle Ratio of Approximately 1.5 to 1
 - Utilizes Distributed Communications with 100nm Physical Platform Distribution
 - Employs Decentralized Command & Control Structure
 - Is Cost Effective Relative to Other Alternatives

- **Distributed Communications**
 - Faster Dissemination of Information
 - Minimum Impact on Throughput with Node Failures
- **Decentralized Command and Control**
 - Shorter Reaction Times
 - Less Network Demand
 - Single C2 Node Failure Avoidance
- **100 nm Platform Distribution**
 - Superior Overall Performance