ANÁLISIS NUMÉRICO III – 2025 Práctico N° 1

- 1. Considere una función suave f(x) definida en \mathbb{R} , y un punto $x_0 \in \mathbb{R}$.
 - a) Utilizando polinomios de Taylor adecuados de la función f y un parámetro h, encuentre una aproximación en diferencias finitas de la primera derivada $f'(x_0)$ de la forma:

$$f'(x_0) \approx \frac{f(x_0 - 2h) - 8f(x_0 - h) + 8f(x_0 + h) - f(x_0 + 2h)}{12h}$$

- b) Determine el orden de precisión de esta aproximación en diferencias finitas.
- 2. Considere una función suave f(x) definida en \mathbb{R} , y un punto $x_0 \in \mathbb{R}$.
 - a) Utilizando polinomios de Taylor adecuados de la función f y un parámetro h, encuentre una aproximación en diferencias finitas de la primera derivada $f'(x_0)$ de la forma:

$$f'(x_0) \approx \frac{3f(x_0) - 4f(x_0 - h) + f(x_0 - 2h)}{2h}$$

- b) Determine el orden de precisión de esta aproximación en diferencias finitas.
- c) Derive la misma formulación utilizando el método de extrapolación de Richardson y la aproximación de primer orden en diferencias finitas hacia atrás.
- 3. Considere una función suave f(x) definida en \mathbb{R} , y un punto $x_0 \in \mathbb{R}$.
 - a) Utilizando polinomios de Taylor adecuados de la función f y un parámetro h, encuentre una aproximación en diferencias finitas de la primera derivada $f'(x_0)$ de la forma:

$$f'(x_0) \approx \frac{-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h)}{2h}$$

- b) Determine el orden de precisión de esta aproximación en diferencias finitas.
- c) Derive la misma formulación utilizando el método de extrapolación de Richardson y la aproximación de primer orden en diferencias finitas hacia adelante.
- 4. Considere la función $f(x) = \sin \pi x$ y los valores h = 0.2, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001.
 - a) Escriba un script en python para aproximar la derivada $f'(x_0)$ para $x_0 = 0.4$ con diferencias finitas centrales, hacia atrás y hacia adelante para todos los valores del parámetro h.
 - b) Además de las aproximaciones previas, considere también la siguiente aproximación en diferencias finitas:

$$D_l f(x_0) = \frac{f(x_0 - 2h) - 8f(x_0 - h) + 8f(x_0 + h) - f(x_0 + 2h)}{12h}$$

c) Sea p una tasa de convergencia tal que $|D_l f(x_0) - f'(x_0)| \le Ch^p$. Estime numéricamente la tasa de convergencia p para cada una de las aproximaciones en diferencias finitas anteriores. Para ello, considere una función dada f(x), y valores $h = h_1, h_2, \ldots, h_n$ con $h_{i+1} < h_i$. Calcule la aproximación $D_l f(x)$ de la derivada f'(x) y luego calcule el error $E_i = |f'(x)|$

 $D_l f(x)$ para cada h_i . Este error debe ser $E_i = Ch^p$. Dividiendo los valores E_i y E_{i+1} es posible calcular el cociente

$$E_i/E_{i+1} = (h_i/h_{i+1})^p$$

y luego, utilizando logaritmo, es posible obtener una expresión para p

$$p = \frac{\log E_i / E_{i+1}}{\log h_i / h_{i+1}}$$

Estime la tasa de convergencia p para $x_0 = 0.4$ y $x_0 = 1.0$.

- d) Repita el inciso anterior para estimar la tasa de convergencia de las diferencias finitas centrales, hacia atrás y hacia adelante.
- e) ¿Que puede concluir a partir de estas estimaciones?
- 5. Repita el ejercicio anterior con la aproximación en diferencias finitas de la derivada segunda de $f(x) = \sin \pi x$ en $x_0 = 0.4$, utilizando la aproximación

$$f''(x_0) \approx \frac{f(x_0 + h) - 2f(x_0) + f(x_0 - h)}{h^2}$$

6. Considere una aproximación en diferencias finitas de la derivada primera $f'(x_0)$ de la forma

$$f'(x_0) \approx a \ f(x_0) + b \ f(x_0 + h) + c \ f(x_0 + 2h) \tag{1}$$

para un valor pequeño de h. Diremos que una fórmula de diferencias finitas es exacta para polinomios p(x) de grado r si la aproximación anterior es exacta en esos casos

$$p'(x_0) = a p(x_0) + b p(x_0 + h) + c p(x_0 + 2h)$$

- a) Muestre que la aproximación (1) en diferencias finitas es exacta para polinomios cuadráticos si y solo si es exacta para los monomios 1, x y x^2 .
- b) Encuentre los valores de a, b, y c tales que la aproximación (1) sea exacta para polinomios cuadráticos.
- 7. Considere una región $D \subseteq \mathbb{C}$ y una función compleja, $f: D \to \mathbb{C}$, analítica en D y tal que $f(\mathbb{R} \cap D) \subseteq \mathbb{R}$. Suponga que nos interesa la parte real de esta función, y que se desea aproximar su derivada, $f'(x_0)$, $x_0 \in [a, b] \subseteq \mathbb{R}$, con gran precisión. Por este motivo vamos a considerar valores pequeños del parámetro $h_j = 10^{-j}$ para j = 1, 2, ..., 300, y que la region D es lo suficientemente grande, es decir, $x + ih \in D$, $\forall x \in [a, b]$, $\forall h \leq h_1$.
 - a) Dado un parámetro 0 < h < 1, se define una aproximación de la derivada primera de la siguiente forma:

$$D_i f(x_0) = \frac{Im(f(x_0 + ih))}{h}$$

donde i denota la unidad imaginaria, e Im() es la parte imaginaria de un número complejo. Demuestre que existe una constante C, tal que si $x_0 \in [a, b]$ entonces:

$$|f'(x_0) - D_i f(x_0)| \le Ch^2$$

- b) Escriba una función en python para implementar la fórmula $D_i f$ de aproximación de la derivada primera.
- c) Considere la función

$$f(x) = \frac{e^x}{\sin^3 x \cos^3 x}$$

y su derivada f'(x). Calcule la aproximación de f'(1.5) para cada valor de h_j , j = 1, 2, ..., 300 y grafique el error como función de h. Determine cual es el valor óptimo de h_j que puede ser utilizado con este método.

- d) Para los mismos valores de h_j , calcule la aproximación central de la derivada primera $D_c f$ y compare los errores. Determine nuevamente cuál es el óptimo valor h_j que puede ser utilizado con la fórmula de diferencia central.
- e) Explique las diferencias entre los dos métodos.

Este ejercicio explora un método conocido como la aproximación de la derivada con paso complejo [2].

8. Considere la regla de integración trapezoidal de una función f(x) en un intervalo [a,b]:

$$I[f] = I_N[f] + E_N[f]$$

donde I[f] es el valor exacto de la integral, $I_N[f]$ es la regla de cuadratura y $E_N[f]$ es el error dado por la fórmula

$$E_n[f] = -\frac{(b-a)h^2}{12}f''(\xi)$$

donde h = (b - a)/N.

a) Utilizando la extrapolación de Richardson considere dos valores N_1 y N_2 tales que $N_1 = 2N_2$ y elimine el error para obtener la fórmula de cuadratura de Romber:

$$I[f] = \frac{4}{3}I_{N_1}[f] - \frac{1}{3}I_{N_2}[f]$$

b) Implemente esta fórmula mejorada de cuadratura como una función de python y evalúe el código calculando la siguiente integral:

$$\int_{0}^{1} e^{-x^{2}} dx = erf(1)\sqrt{\pi}/2$$

Donde erf() es la función error de Gauss, disponible en la librería scipy de python como scipy.special.erf.

- c) Estime numéricamente el orden de convergencia de la fórmula de cuadratura de Romberg.
- 9. Sean $x, h \in \mathbb{R}$, y

$$g(x) = \int_{-h}^{h} t f(t+x) dt$$

 $con f \in C^4[x-h, x+h].$

a) Usando la regla de Simpson, muestre que

$$\int_{-h}^{h} t f(t+x) dt = \frac{h}{3} \left(-h f(x-h) + h f(x+h) \right) + O(h^5).$$

b) Usando la fórmula de aproximación de diferencias finitas centrales:

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + O(h^2)$$

demuestre que:

$$f'(x) \approx \frac{3}{2h^3} \int_{-h}^{h} t f(x+t) dt$$

y estime el error de esa aproximación.

c) Escriba una función de python para aproximar la función g(x), con $x \in [-1,1]$ cuando $f(x) = e^{x^2}$ implementando las aproximaciones anteriores.

d) Muestre que

$$\int_{-h}^{h} t f(t+x) dt = h^{2} \int_{-1}^{1} u f(hu+x) du$$

- e) Use la cuadratura de Gauss-Legendre para aproximar la misma función g(x) del inciso c).
- f) Defina una nueva función, f_{ϵ} , que devuelve los mismos valores que la función f del inciso c), más una cantidad de ruido con distribución normal, del orden del 1% del valor de la función. Considere las aproximaciones $D_S f$, que resulta de calcular la integral del inciso b) con la regla de Simpson, y $D_{GL} f$, que resulta de calcular la misma integral utilizando cuadratura de Gauss-Legendre. Por último, considere valores $h = h_1, h_2, \ldots, h_n$ con $h_{i+1} < h_i$, y realice un único gráfico con los siguientes errores en función de h:

1)
$$E_h^{(1)} = ||D_S f - f'||_1$$

2)
$$E_h^{(2)} = ||D_S f_{\epsilon} - f'||_1$$

3)
$$E_h^{(3)} = ||D_{GL}f - f'||_1$$

4)
$$E_h^{(4)} = ||D_{GL}f_{\epsilon} - f'||_1$$

Donde $||f||_1 = \int_{-1}^1 |f(x)| dx$ es la norma 1 para funciones $f: [-1, 1] \to \mathbb{R}$.

g) ¿Que puede concluir a partir del gráfico?

Esta aproximación de la derivada se conoce como derivada generalizada de Lanczos [1], y es útil cuando los valores de la función que se desea derivar provienen de mediciones con ruido, incerteza o error.

10. Cuando se trabaja con contornos irregulares o se utilizan grillas adaptables, se necesitan grillas no uniformes. Calcule los coeficientes de diferencias finitas para cada uno de los siguientes esquemas:

(a)
$$u'(\bar{x}) \approx \alpha_1 u(\bar{x} - h_1) + \alpha_2 u(\bar{x}) + \alpha_3 u(\bar{x} + h_2)$$

(b)
$$u''(\bar{x}) \approx \alpha_1 u(\bar{x} - h_1) + \alpha_2 u(\bar{x}) + \alpha_3 u(\bar{x} + h_2)$$

(c)
$$u'''(\bar{x}) \approx \alpha_1 u(\bar{x} - h_1) + \alpha_2 u(\bar{x}) + \alpha_3 u(\bar{x} + h_2)$$

¿Son consistentes? En otras palabras, si $h = \max\{h_1, h_2\}$ se aproxima a cero, ¿el error también? Si es así, ¿cuáles son los órdenes de precisión? ¿Hay algún problema potencial con alguno de los esquemas calculados?

Referencias

- [1] Charles W Groetsch. Lanczos' generalized derivative. The American mathematical monthly, 105(4):320–326, 1998.
- [2] Joaquim RRA Martins, Peter Sturdza, and Juan J Alonso. The complex-step derivative approximation. ACM Transactions on Mathematical Software (TOMS), 29(3):245–262, 2003.