CLAIMS

What is claimed is.

a processor in a processor package;		
a shunt, transient voltage regulator (STVR) in the processor package		
and coupled to the processor; and		
at least one input/output device coupled to at least one of the STVR		
and the processor.		
2. The computing system of claim 1, further including:		
the property of them is the morating.		
a decoupling capacitor coupled between the processor and the STVR		
3. The computing system of claim 1, further including:		
at least one decoupling capacitor coupled between the processor and		
the STVR, wherein the at least one decoupling capacitor is selected from a		
land-side capacitor, a die-side capacitor, and a combination thereof.		
4. The computing system of claim 1, further including:		
an interposer coupled to the processor package; and		
a decoupling capacitor in the interposer.		
5. The computing system of claim 1, further including:		
an interposer coupled to the processor package;		
a first decoupling capacitor having a first capacitance functionality in		
the interposer; and		
coupled between the processor and the STVR, a second decoupling		
capacitor having a second capacitance functionality that is different from the		
first capacitance functionality.		

1	0.	The computing system of claim 1, further including:		
2		an interposer that is integral with the processor package;		
3		a first decoupling capacitor having a first capacitance functionality in		
4	the inte	the interposer; and		
5		coupled between the processor and the STVR, a second decoupling		
6	capacit	tor having a second capacitance functionality different from the first		
7	capacit	tance functionality.		
1	7.	The computing system of claim 1, further including:		
2		a mounting substrate, wherein the processor package is coupled to		
3	the mounting substrate; and			
4		a DC power converter voltage regulator coupled to the processor in		
5	series with the STVR.			
1	8.	The computing system of claim 1, further including:		
2		a mounting substrate, wherein the processor package is coupled to		
3	the mo	unting substrate;		
4		a power socket between the processor and the mounting substrate;		
5	and			
6		a DC power converter voltage regulator on the mounting substrate		
7	and co	upled to the processor in series with the STVR.		
1	9.	The computing system of claim 1, further including:		
2		a mounting substrate, wherein the processor package is coupled to		
3	the mo	unting substrate; and		
4		a DC power converter voltage regulator coupled to the processor in		
5	series v	series with the STVR, wherein the DC power converter voltage regulator is		
6	ontimiz	optimized for DC power conversion.		

1	10.	The computing system of claim 1, wherein the STVR is optimized		
2	for responding to a processor load transient.			
1	11.	The computing system of claim 1, wherein the computing system is		
2	disposed in one of a computer, a wireless communicator, a hand-held device, an			
3	automobile,	a locomotive, an aircraft, a watercraft, and a spacecraft.		
1	12.	The computing system of claim 1, wherein an STVR is coupled to at		
2	least one of data storage, a digital signal processor, an application-specific			
3	integrated circuit, and a microcontroller.			
1	13.	An apparatus comprising:		
2		a processor package including:		
3		a processor; and		
4		a shunt, transient voltage regulator (STVR);		
5		a mounting substrate, wherein the processor is coupled to the		
6	mounting substrate;			
7		a DC power converter coupled in series with the STVR, to the		
8	processor; and			
9		at least one input/output device coupled to at least one of the STVR		
10	and th	he processor.		
1	14.	The apparatus of claim 13, further including:		
2		coupled between the processor and the STVR, a decoupling		
3	•			
1	15.	The apparatus of claim 13, further including:		
2		an interposer coupled to the processor package;		
3		in the interposer, a first decoupling capacitor having a first		
4	capac	itance functionality; and		

5		coupled between the processor and the 51 vK, a second decoupling		
6	capacitor having a second capacitance functionality that is different from th			
7	first ca	pacitance functionality.		
1	16.	The apparatus of claim 13, further including:		
1		between the processor and the mounting substrate, a power socket;		
2	and			
3		coupled between the processor and the STVR, a decoupling capacitor		
4	in an ii	nterposer.		
1	17.	The apparatus of claim 13, wherein the apparatus is disposed in one		
2	of a computer, a wireless communicator, a hand-held device, an automobile, a			
3	locomotive, an	n aircraft, a watercraft, and a spacecraft.		
1	18.	The apparatus of claim 13, wherein an STVR is coupled to at least		
2	one of data storage, a digital signal processor, an application-specific integrated			
3	circuit, and a	microcontroller.		
1	19.	A method comprising:		
2		operating a processor in a processor package, wherein the processor		
3	packag	ge is coupled to at least on of an input/output device; and		
4		with a shunt, transient voltage regulator (STVR) in the processor		
5	packa	ge, responding to transient loads of the processor.		
1	20.	The method of claim 19, wherein the STVR is operated with an		
2	independent v	voltage source first shunt, and a ground second shunt.		
1	21.	The method of claim 19, further including:		
2		with a DC voltage converter spaced apart from the processor		
3	packa	ge, converting at least one voltage input to Vcc.		

l	22.	The method of claim 19, further including.			
2	respon	ding to all processor transients with decoupling capacitor functionality			
3	selected from a second decoupling capacitor in the processor package, a first				
4	decoupling capacitor in an interposer that is coupled to the processor package, a first				
5	decoupling capacitor in an interposer that is integral with the processor package, and				
6	a combination	thereof.			
1	23.	The method of claim 19, wherein the STVR includes an independent			
2	voltage source first shunt and a ground second shunt, and further including:				
3	contro	lling the first shunt and the second shunt by gated logic.			
1	24.	A method comprising:			
2		inserting a shunt, transient voltage regulator (STVR) in a processor			
3	package; and				
4		coupling the processor package to at least one of an input/output			
5	device	. .			
1	25.	The method of claim 24, further including:			
2		on a mounting substrate for the processor package, coupling in series			
3	a DC	voltage converter to the STVR.			
1	26.	The method of claim 24, wherein the STVR includes an independent			
2	voltage sourc	e first shunt, and a ground second shunt.			
1	27.	The method of claim 24, further including:			
2	fabric	ating a decoupling capacitor in the processor package.			
1	28.	The method of claim 24, further including:			
2		fabricating a decoupling capacitor in an interposer that is integral			
2	szith t	he processor package			

- 1 29. The method of claim 24, further including:
- between the DC voltage converter and the STVR, inserting a power
- 3 socket.
- 1 30. The method of claim 24, wherein the STVR is disposed in one of a
- 2 computer, a wireless communicator, a hand-held device, an automobile, a
- 3 locomotive, an aircraft, a watercraft, and a spacecraft.
- 1 31. The method of claim 24, wherein an STVR is coupled to at least one
- 2 of data storage, a digital signal processor, an application-specific integrated circuit,
- 3 and a microcontroller.