Bacterial Typing

Collins Kigen 18-July-2025

Discriminatory Power of genotyping

Clonal Complex

- Clonal Complex (CC): Group of closely related isolates with high genetic similarity
- ❖ Defined by MLST: Central Sequence Type (ST) + related STs (differ by 1–2 alleles)
- Applications:
 - Track outbreaks
 - Study bacterial evolution
 - Understand strain spread

Clonal Complex	Sequence Type	spa Type
CC1 (n = 2)	ST8511 *	t127
CC5 (n = 8)	ST6 ^	t304/t648
	ST5	t13150
	ST4166 ^	t442/t6100
	ST7895	t002
CC8 (n = 82)	ST789	t091
	ST2416	t1476
	ST4803 ^	t008, t024, t064, t104, t121, t211, t1476
	ST4705	t2029
	ST6610	t293
	ST7635 ^	t030/t037
	ST7894	t037/t11766
	ST8 ^	t1476/t104
	ST239 **	t037
	ST241 **	t037/t2029
	ST7460	t1476

Nyasinga et.al., 2024

MLST

- MLST (Multilocus Sequence Typing)
- Characterizes isolates using sequences of 7 housekeeping genes
- Assigns a Sequence Type (ST) based on allelic profile
- Related STs form Clonal Complexes (CCs)
- Applications:
 - Global surveillance and epidemiology
 - Track evolution and outbreaks

Tool: mlst

cgMLST

- cgMLST (Core Genome MLST)
- Targets ~1,500–3,000 core genes instead of 7 housekeeping genes
- Provides greater discriminatory power for closely related strains
- Advantages:
 - High-resolution typing for outbreak investigations
 - Reproducible and standardized across labs
- Applications:
 - Detailed epidemiology and cluster analysis
 - Tracing transmission chains

Tool: chewbbaca

SCCmec typing

Staphylococcal cassette chromosome

Tool: sccmec

SCCmec types

ccr complex types

mec complex types

SCCmec types

SCC <i>mec</i> Type	Ccr Complex Type	mec Complex Class
I (1B)	1 (A1B1)	В
II (2A)	2 (A2B2)	Α
III (3A)	3 (A3B3)	Α
IV (2B)	2 (A2B2)	В
V (5C2)	5 (C1)	C2
VI (4B) VII (5C1) VIII (4A)	4 (A4B4) 5 (C1) 4 (A4B4)	B C1 A
IX (1C2)	1(A1B1)	C2
X (7C1)	7(A1B6)	C1
XI (8E)	8(A1B3)	E
XII (9C2) XIII (9A) XIV (5A)	9(C2) 9(C2) 5 (C1)	C2 A A

Spa typing

- spa Typing (Staphylococcal Protein A typing):
- Based on sequence variation in the X region of the spa gene (tandem repeats)
- Assigns isolates a spa type (e.g., t008, t037)

Nyasinga et.al., 2024

E. coli pathotyping

Pathotype Key Marker Genes

EPEC eae (intimin), bfpA

ETEC lt (LT), st (ST)

EHEC/STEC stx1, stx2, eae

EIEC ipaH

EAEC aggR, aafA

DAEC daaE

UPEC pap, hlyA, cnf1

Tool: abricate/VFDB

E. coli phylogroups

Phylogroup	Description/Pathotype	
A	Commensal strains	
B1	Commensal strains	
B2	Extraintestinal pathogenic strain	
C	Closely related but distinct from B1	
D	Diffusely adherent	
F	Enteroinvasive strains	
G	Intermediate of B2 and F	
Е	Enteropathogenic strains	
	Monophyletic cryptic clade	
U/cryptic		

Typing Method

Capsular typing (K-locus)

O-locus typing

Pilus/Adhesin typing

Plasmid typing

Phage typing (in silico)

CRISPR typing

Sequence-based ribotyping

PorA/B typing (Neisseria)

fimH typing (E. coli)

emm typing (Streptococcus pyogenes)

PorA/PorB typing (Neisseria)

Toxin gene typing

VNTR/MIRU typing (*M. tuberculosis*)

Tools

Kaptive, Kleborate (Klebsiella)

Kaptive (*Klebsiella*, *Acinetobacter*)

Kleborate, custom BLAST

PlasmidFinder, mob-suite, mlplasmids

PHASTER, PHAST, phage_finder

CRISPRCasFinder, **CRISPRDetect**

RiboTree, custom rRNA BLAST

PubMLST Neisseria

FimTyper

emmTyper, SRST2

PubMLST schema

ToxFinder, VFDB (via ABRicate)

MIRU-VNTRplus, TB-Profiler