Numerical Analysis HW 7

Michael Vu

August 31, 2023

Problem 1. We are asked to solve problem 7 of section 5.6. Below is the ODE driver for solving the problem:

```
implicit none
double precision :: t,tout,relerr,abserr,a,b,dt
double precision, allocatable, dimension(:) :: y(:), work(:)
integer, allocatable, dimension(:) :: iwork(:)
integer :: nsteps,i,iflag,neqn
external f
neqn = 1
allocate( y(neqn), work(100+21*neqn), iwork(5) )
y = (/ 0.0d0 /)
a = 0.0d0
b = 2.0d0
nsteps = 100
t = a
dt = (b-a)/dble(nsteps)
relerr = 1.0d-10
abserr = 1.0d-10
iflag = 1
do i = 1, nsteps
tout = t + dt
call ode(f,neqn,y,t,tout,relerr,abserr,iflag,work,iwork)
```

```
if(iflag \neq 2) then
print*, 'Warning: i, iflag = ', i, iflag
end if
print*, tout, y(1)
end do
deallocate(y,work,iwork)
stop
end
subroutine f(t,y,yp)
implicit none
double precision :: t,y(1),yp(1)
yp(1) = (110.d0 * cos(t) - y(1)) / (1.1d0 * (2.1d0 + 1.8d0 * y(1)))
return
end
   These are the first and last few interations leading up to t = 2:
t=
                           i(t) =
2.00000000000000E-002
                          0.72417563949512709
4.000000000000001E-002 1.2367583733012615
5.9999999999998E-002
                          1.6558366962986306
1.9600000000000013
                          8.3226127553865492
1.980000000000013
                          8.2681151148920353
```

So we find that i(2) is approximately 8.211871600797919. Below is the graph as we travel forward in time from 0 to 2:

8.2111871600797919

2.0000000000000013

Problem 2. We are asked to solve problem 5 of section 5.5. Below is the ODE driver to solve the problem:

```
implicit none
double precision :: t,tout,relerr,abserr,a,b,dt
double precision, allocatable, dimension(:) :: y(:), work(:)
integer, allocatable, dimension(:) :: iwork(:)
integer :: nsteps,i,iflag,neqn
external f
neqn = 1
allocate( y(neqn), work(100+21*neqn), iwork(5) )
y = (/50976.0d0 /)
a = 0.0d0
b = 5.0d0
nsteps = 100
t = a
dt = (b-a)/dble(nsteps)
relerr = 1.0d-10
abserr = 1.0d-10
iflag = 1
do i = 1, nsteps
tout = t + dt
call ode(f,neqn,y,t,tout,relerr,abserr,iflag,work,iwork)
print*, tout, y(1)
if(iflag \neq 2) then
print*, 'Warning: i, iflag = ', i, iflag
stop
end if
end do
deallocate(y,work,iwork)
stop
```

```
end
```

```
subroutine f(t,y,yp)
implicit none
double precision :: t,y(1),yp(1)

yp(1) = 2.9d-2 * y(1) - 1.4d-7 * (y(1)**2)
return
end
```

These are the first and last few interations leading up to t = 5:

So we find that P(5) is approximately 56751.036768758218.

Problem 3. In this problem we are asked to solve an initial value problem given by Dr. Glunt, this is the ODE driver use to solve this problem:

```
implicit none
double precision :: t,tout,relerr,abserr,a,b,dt
double precision, allocatable, dimension(:) :: y(:), work(:)
integer, allocatable, dimension(:) :: iwork(:)
integer :: nsteps,i,iflag,neqn
external f

neqn = 2
allocate( y(neqn), work(100+21*neqn), iwork(5) )
```

```
y = (/ 1.0d0, 0.0d0 /)
a = 0.0d0
b = 10.0d0
nsteps = 100
t = a
dt = (b-a)/dble(nsteps)
relerr = 1.0d-10
abserr = 1.0d-10
iflag = 1
do i = 1,nsteps
tout = t + dt
call ode(f,neqn,y,t,tout,relerr,abserr,iflag,work,iwork)
print*, t, y(1)
if(iflag \neq 2) then
print*, 'Warning: i, iflag = ', i, iflag
stop
end if
end do
deallocate(y,work,iwork)
stop
end
subroutine f(t,y,yp)
implicit none
double precision :: t,y(2),yp(2)
yp(1) = y(2)
yp(2) = -1.0d0 / (y(1)**2)
return
end
```

This is the output from the code:

```
z(t) =
t=
0.10000000000000001
                          0.99499163596971130
0.20000000000000001
                          0.97986467324765869
0.30000000000000004
                          0.95430172599537555
0.40000000000000002
                          0.91773111353375358
0.50000000000000000
                          0.86924869765427382
0.599999999999998
                          0.80747099501982766
                          0.73024958947622853
0.699999999999996
0.79999999999999
                          0.63405965896115235
0.899999999999999
                          0.51244965313027724
0.999999999999999
                          0.35068159575822078
1.099999999999999
                          7.8972465069453615E-002
1.1107207348315986
                          2.7160802790846351E-008
Warning: i, iflag = 12, 4
```

It appears to have had an error when running the program. Since this problem sets up a scenario where two stars are on a collision path, the point in time which we receive this error indicates a collision as occured.

Problem 4. This problem is similar to problem 3. The only change that was made was to halt the program when $z \leq 0.01$. Problem 3 sets up a collision between the stars as point particles rather than an object that actually takes some space. Setting up the problem in this new manner should simulate a better scenario of two stars colliding. This is the ODE driver used to solve this problem:

```
implicit none
double precision :: t,tout,relerr,abserr,a,b,dt
double precision, allocatable, dimension(:) :: y(:), work(:)
integer, allocatable, dimension(:) :: iwork(:)
integer :: nsteps,i,iflag,neqn
external f

neqn = 2
allocate( y(neqn), work(100+21*neqn), iwork(5) )

y = (/ 1.0d0,0.0d0 /)
```

```
a = 0.0d0
b = 10.0d0
nsteps = 100
t = a
dt = (b-a)/dble(nsteps)
relerr = 1.0d-10
abserr = 1.0d-10
iflag = 1
do i = 1, nsteps
tout = t + dt
call ode(f,neqn,y,t,tout,relerr,abserr,iflag,work,iwork)
print*, t, y(1)
if(y(1) \le 0.01d0) then
print*, 'Collision has occured'
stop
end if
if(iflag \neq 2) then
print*, 'Warning: i, iflag = ', i, iflag
stop
end if
end do
deallocate(y,work,iwork)
stop
end
subroutine f(t,y,yp)
implicit none
double precision :: t,y(2),yp(2)
yp(1) = y(2)
yp(2) = -1.0d0 / (y(1)**2)
return
```

end

This is the output from the code:

t=	z(t)=
0.10000000000000001	0.99499163596971130
0.20000000000000001	0.97986467324765869
0.3000000000000004	0.95430172599537555
0.40000000000000002	0.91773111353375358
0.5000000000000000	0.86924869765427382
0.599999999999998	0.80747099501982766
0.69999999999996	0.73024958947622853
0.79999999999999	0.63405965896115235
0.89999999999991	0.51244965313027724
0.999999999999999	0.35068159575822078
1.09999999999999	7.8972465069453615E-002
1.1107207348315986	2.7160802790846351E-008
Collision has occured	

This should have resulted in different stopping times, however, it did not. This is either an error on my part, or something else. In either case, the output stopped when $z(t=1.1107207348315986)=2.7160802790846351\times 10^{-8}$