离散数学(2023 秋)作业二 截止日期: 10月11日11.20

 \mathbb{N}^+ , \mathbb{Z} , \mathbb{C} 分别表示正整数集、整数集以及复数集。

1. (15pt) 考虑同余方程组

$$x \equiv b_1 \mod m_1$$

 $x \equiv b_2 \mod m_2$
 $x \equiv b_3 \mod m_3$

其中, 对任意 $i \in \{1, 2, 3\}, b_i, m_i \in \mathbb{N}^+$ 。给出该同余方程组有解的**充分必要**条件并证明。(注意 m_1, m_2, m_3 两两互素只是有解的充分条件。)

2. (15pt) 考虑如下算法:

EXTENDED-EUCLID(a, b)

- (a) if b = 0
- (b) then return (a, 1, 0)
- (c) $(d', x', y') = \text{EXTENDED-EUCLID}(b, a \mod b)$
- (d) (d, x, y) = (d', y', x' |a/b|y')
- (e) return (d, x, y)

证明:

- (a) 输出结果 (d, x, y) 满足 d = ax + by。
- (b) 上述算法至多调用函数 EXTENDED-EUCLID 2[log a] 次。
- 3. (20pt) 记 $[n] = \{1, 2, \dots, n\}$,考虑 $a \in [n]$ 且 (a, n) = 1。
 - (a) 证明存在唯一的 $b \in [n]$, 使得 $ab \equiv 1 \mod n$.

- (b) 记上述 b 为 a^{-1} ,且对任意正整数 k 记 $a^{-k} = b^k$ 。 假设整数 s,t 使得 $a^s \equiv 1 \mod n$ 且 $a^t \equiv 1 \mod n$,证明对于任意整数 $r \in \{sx + ty \mid x, y \in \mathbb{Z}\}$,有 $a^r \equiv 1 \mod n$ 。 (注意 s,t,r,x,y 均可为负数。)
- (c) 令 d 为最小的正整数使得 $a^d \equiv 1 \mod n$, 证明对于任意整数 m, $a^m \equiv 1 \mod n$ 当且仅当 $d \mid m$. (注意 m 可为负数。)
- 4. (10pt) 设 n = pq 其中 p, q 为素数,令 $d = \gcd(p 1, q 1)$ 。证明对任意 a 满足 (a, n) = 1,有 $a^{\frac{\phi(n)}{d}} \equiv 1 \mod n$ 。 $(\phi(n)$ 为欧拉函数。)
- 5. (10pt) 计算欧拉函数 $\phi(18)$, 以及 5^{2023} 除以 18 所得的余数。
- 6. (10pt) 考虑一套 RSA 密钥体系,其中设 n = pq 为两个素数的乘积, $\phi(n)$ 为欧拉函数,公钥 e 是与 $\phi(n)$ 互素的数,私钥 d 为同余方程 $ed \equiv 1 \mod \phi(n)$ 的解。证明对于任意整数 m, $(m^e)^d \equiv m \mod n$ 。即对消息 m 先用公钥 e 加密后再用私钥 d 解密,在模 m 取余数的意义下,得到的还是原来的消息 m。

(注意这里 m 可能与 n 不互素。)

- 7. (25pt) 考虑集合 $\mathbb{Z}[\sqrt{-1}] = \{a + b\sqrt{-1} \mid a, b \in \mathbb{Z}\}$. 证明:
 - (a) $\mathbb{Z}[\sqrt{-1}]$ 构成一个环(参考讲义定义)。
 - (b) $\mathbb{Z}[\sqrt{-1}]$ 中的单位只有 ±1 以及 ± $\sqrt{-1}$.
 - (c) $1+\sqrt{-1}$ 在 $\mathbb{Z}[\sqrt{-1}]$ 中既是不可约元又是素元。
 - (d) 2 在 $\mathbb{Z}[\sqrt{-1}]$ 中既不是不可约元也不是素元。
 - (e) 已知 $\mathbb{Z}[\sqrt{-1}]$ 的任意不可约元都是素元。对于 $x \in \mathbb{Z}[\sqrt{-1}]$ 且 $x \neq 0, \pm 1, \pm \sqrt{-1}$,若有 $x = p_1 p_2 \cdots p_k = q_1 q_2 \cdots q_\ell$ 其中 $p_i (1 \leq i \leq k), q_j (1 \leq j \leq \ell)$ 均为 $\mathbb{Z}[\sqrt{-1}]$ 的不可约元。证明: $k = \ell$ 且适 当交换乘积 $q_1 q_2 \cdots q_\ell$ 的顺序后,对任意 $1 \leq i \leq k$,有 $p_i = \epsilon_i q_i$ 其中 $\epsilon_i = \pm 1$ or $\pm \sqrt{-1}$.

- 8. (15pt) 考虑集合 $\mathbb{Z}[\sqrt{-5}] = \{a + b\sqrt{-5} \mid a, b \in \mathbb{Z}\}$. 证明:
 - (a) $\mathbb{Z}[\sqrt{-5}]$ 中的单位只有 ±1.
 - (b) 2 是 $\mathbb{Z}[\sqrt{-5}]$ 中的不可约元但不是素元。