A baker's dozen problems on groups

Peter J. Cameron

Associated with Introduction to Algebra, OUP 2008

1. The purpose of this exercise is to construct a family of groups known as *free groups*.

Let X be a set, and let $\overline{X} = \{\overline{x} : x \in X\}$ be a set disjoint from X but in one-to-one correspondence with it. A *word* is defined to be an ordered string of symbols from the "alphabet" $X \cup \overline{X}$. A word is *reduced* if it does not contain any consecutive pair of symbols of the form $x\overline{x}$ or $\overline{x}x$, for $x \in X$.

Consider the following process of *cancellation*, which can be applied to any word w. Select any consecutive pair of symbols $\bar{x}x$ or $x\bar{x}$ in w (if such exists) and remove it. Repeat until the word is reduced.

(a)** Given a word, there may be several different ways to apply the cancellation process to it. Show that the same result is obtained no matter how the cancellation is performed.

Hint: One rather indirect way to prove this is as follows. Construct an (infinite) tree T(X) whose edges are directed and labelled with elements of X such that, for any vertex v and any $x \in X$, there is a unique edge with label x leaving v and a unique edge with label x entering v. Choose a fixed starting vertex x in the tree. Then any word describes a path starting from x: symbol x means "leave the current vertex on the outgoing edge labelled x", while \overline{x} means "leave the current vertex along the incoming edge labelled x". Show that the finishing vertex of the path is not changed by cancellation.

- (b) Let F(X) denote the set of all reduced words in the alphabet $X \cup \overline{X}$, including the "empty word". Define an operation on F(X) as follows: $w_1 \circ w_2$ is obtained by concatenating the words w_1 and w_2 and then applying cancellation to the result. Prove that F(X) is a group, in which the empty string is the identity and the inverse of x is \overline{x} .
- (c) Let G be any group and $\theta: X \to G$ an arbitrary function. Show that there is a unique homomorphism $\theta^*: F(X) \to G$ whose restriction to X is θ .

The group F(X) is called the *free group generated by X*.

2. Let *G* be a group. For subgroups H, K of G, let [H, K] denote the subgroup generated by all commutators $[h, k] = h^{-1}k^{-1}hk$, for $h \in H$ and $k \in K$.

Define the *lower central series*

$$G = G^{(0)} \ge G^{(1)} \ge G^{(2)} \ge \cdots$$

by the rule that $G^{(0)} = G$ and $G^{(i+1)} = [G^{(i)}, G]$.

Define the lower central series

$$\{1\} = Z_0(G) \le Z_1(G) \le Z_2(G) \le \cdots$$

by the rule that $Z_0(G) = \{1\}$ and $Z_{i+1}(G)/Z_i(G) = Z(G/Z_i(G))$, where Z(H) is the centre of the group H.

- (a) Let H and K be normal subgroups of G, with $H \le K$. Prove that $[K, G] \le H$ if and only if $K/H \le Z(G/H)$.
 - (b) Prove that $G^{(m)} = \{1\}$ if and only if $Z_m(G) = G$.

Remark A group (finite or infinite) satisfying this condition is said to be *nilpotent*: its *nilpotency class* is the smallest value of *m* for which these equivalent conditions hold.

- (c) Prove that a finite group G is nilpotent according to this definition if and only if it satisfies the equivalent conditions of Exercise 7.8 in the book: viz.,
 - every proper subgroup of G is properly contained in its normaliser;
 - G is the direct product of its Sylow subgroups.
- 3. Define the *subgroup length* $\ell(G)$ of a finite group G to be the maximum number r for which there is a chain of subgroups

$$G = G_0 > G_1 > \cdots > G_r = \{1\}$$

of G.

- (a) Show that, if N is a normal subgroup of G, then $\ell(G) = \ell(N) + \ell(G/N)$.
- (b) Deduce that $\ell(G)$ is the sum of the subgroup lengths of the composition factors of G, counted with multiplicities.
- (c) Deduce that, if G is soluble, then $\ell(G)$ is equal to the number of prime divisors of |G|, counted with multiplicities.
 - (d) Find a group G which satisfies the conclusion of (c) but is not soluble.

4. Let A be a finite abelian group. The *dual* of A is the set A^* of all homomorphisms from A to the multiplicative group of non-zero complex numbers, with operation defined pointwise (that is, the product of homomorphisms α and β is given by

$$z(\alpha\beta) = (z\alpha)(z\beta).$$

- (a) Show that, if A is cyclic of order n generated by a, then A^* is cyclic of order n generated by α , where $a\alpha = e^{2\pi i n}$.
 - (b) Show that $(A \times B)^* \cong A^* \times B^*$.
 - (c) Deduce that $A^* \cong A$ for any finite abellian group A.
- (d) Let B be a subgroup of A, and define its *annihilator* to be the subgroup B^{\dagger} of A^* defined by

$$B^{\dagger} = \{ \phi \in A^* : b\phi = 1 \text{ for all } b \in B \}.$$

Show that B^{\dagger} is a subgroup of A^* and $A^*/B^{\dagger} \cong B$.

(e) Show that, if ϕ is a non-identity element of A^* , then

$$\sum_{a \in A} a\phi = 0.$$

(f) Let M be the matrix whose rows are indexed by elements of A and columns by elements of A^* , with (a, ϕ) entry $a\phi$. Prove that

$$M^{\top}M = nI$$
,

where n = |A|, and deduce that $|\det(M)| = n^{n/2}$.

- 5. Show that the automorphism group of $C_2 \times C_2 \times C_2$ is a simple group of order 168.
- 6. Let a, b, c, d be elements of a *finite* group which satisfy

$$b^{-1}ab = a^2, c^{-1}bc = b^2, d^{-1}cd = c^2, a^{-1}da = d^2.$$

Prove that a = b = c = d = 1. [Hint: Let p be the smallest prime divisor of the order of a, assumed greater than 1, Show that the order of b is divisible by a prime divisor of p - 1.]

- 7. Let G be the group of 2×2 matrices over \mathbb{Z}_p with determinant 1, where p is an odd prime.
 - (a) Show that G contains a unique element z of order 2.
- (b) For p = 3 and p = 5, show that $G/\langle z \rangle$ is isomorphic to the alternating group A_4 or A_5 respectively.
- (c)* Identify the group $G/\langle z \rangle$ for p=7 with the simple group defined in Question 5.
- 8. Let G be a finite group. Let g_1, \ldots, g_r be representatives of the conjugacy classes of G (with $g_1 = 1$, and let $m_i = |C_G(g_i)|$ for $i = 1, \ldots, r$. medskip
 - (a) Show that

$$\sum_{i=1}^r \frac{1}{m_i} = 1,$$

with $m_1 = |G|$.

- (b) Show that the displayed equation in (a) has only finitely many solutions in non-negative integers m_1, \ldots, m_r for fixed r.
- (c) Deduce that there are only finitely many finite groups with a given number of conjugacy classes.
 - (d) Find all finite groups with three or four conjugacy classes.
- 9. Let *G* be a group, and $g \in G$. The *inner automorphism* ι_g induced by *g* is the map $x \mapsto g^{-1}xg$ of *G*.
 - (a) Prove that ι_g is an automorphism of G.
- (b) Prove that the map $\theta: G \to \operatorname{Aut}(G)$ given by $g\theta = \iota_g$ is a homomorphism, whose image is the set $\operatorname{Inn}(G)$ of all inner automorphisms of G and whose kernel is Z(G), the centre of G. Deduce that $\operatorname{Inn}(G) \cong G/Z(G)$.
- (c) Prove that Inn(G) is a normal subgroup of Aut(G). (The factor group Aut(G)/Inn(G) is called the *outer automorphism group* of G.)
- 10. Prove that every group (finite or infinite) except the trivial group and the cyclic group of order 2 has a non-identity automorphism. [You will need to use the Axiom of Choice to answer this question!]

- 11. Let P_n denote the Sylow 2-subgroup of the symmetric group of degree 2^n .
 - (a) Show that P_{n+1} has a subgroup of index 2 isomorphic to $P_n \times P_n$.
- (b) Let p_n be the proportion of fixed-point-free elements in P_n , Prove that $p_0=0$ and

$$p_{n+1} = \frac{1}{2}(1 + p_n^2)$$

for n > 0.

- (c) Deduce that $\lim_{n\to\infty} p_n = 1$.
- (d) Prove that, in any subgroup P of S_{2^n} which is a transitive 2-group, there is an intransitive subgroup of index 2, and deduce that more than half of the elements of P are fixed-point-free.
- (e)** For every n > 0, construct a subgroup of S_{2^n} which is a transitive 2-group in which fewer than two-thirds of the elements are fixed-point-free.
- 12. A finite group G is said to be *supersoluble* if it has a sequence

$$G = G_0 > G_1 > \cdots > G_r = \{1\}$$

of *normal* subgroups with the property that G_i/G_{i+1} is cyclic for i = 0, ..., r-1. [Compare this with the property of being soluble: what is the difference?]

- (a) Show that the symmetric group A_4 is soluble but not supersoluble.
- (b)* Prove that, if G is supersoluble, then the derived group G' is nilpotent.
- 13. This exercise asks you to prove the following strengthening of Jordan's theorem:

Let G be a finite group acting transitively on a set Ω of n elements, where n > 1. Then the proportion of fixed-point-free elements in G is at least 1/n.

(a) Let fix(g) be the number of fixed points of g in Ω . Show that $fix(g)^2$ is the number of fixed points of g in its coordinatewise action on the Cartesian product $\Omega \times \Omega$, and deduce that

$$\frac{1}{|G|} \sum_{g \in G} \operatorname{fix}(g)^2 \ge 2.$$

$$\sum_{g \in G} (\operatorname{fix}(g) - 1)(\operatorname{fix}(g) - n),$$

noting that only fixed-point-free elements give a positive contribution to the sum, prove the theorem stated above.

(c)* What can be concluded about a group which attains the bound? Give an example of such a group.