

微分方程:	一般地,含有未知函数导数(药微的)的函数方程积为微分方程.
717:	出现在微分方程中和必数的最高阶景数或微分的阶段,称为微分为程的阶
学被分:	未知这数为一元 函数
偷做分:	未知过数为多元进数
微分方程的闭	写:
	使方程成为恒等式的过数积为微分方程的的
	微分方程的解中含有任意常数,且独定任意常数的个数和微分方程所数相同
	不含任意常表软件
	定解条件):用来确定通解中的任意常数,从而得到指销的条件
知值问题:	扩微分方程; 商及礼始条件的解的问题
	5程的一般形式:
·	y') = 0 55 $y' = f(x, y)$
	(Xo, Yo, Y'o) = 0 & Y'o = fixo, Y)
	沙曲纬(蔟)
初值问题:	y'=f(x,y) + y + y + y + y + y + y + y + y + y +
	(y/x=x0 = y0
y''- y -	$-y=0$ 幹为 $y=C_{1}e^{2x}+C_{2}e^{-x}$
	255/44 C 1/42
	量的微分減
	= f(x) dx : 可公島 更量的 方程
	$y = \int f(x) dx$
(1'9)	= F(X) + C 为很分为程通解 程中的物件情况为特别
27/2	1/2 \ 17 \ 7\089\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

.

1四: 齐次型微分3程	
1. 足义: 并如 对 = f(学)	
2 解注:作变量代换: U= 学即y= xu	
$\frac{dy}{dx} = y + y \frac{dy}{dx}$	
$(t) \mathbb{R} \mathcal{A} \qquad u + \chi \frac{du}{dx} = f(u)$	
$\frac{du}{dx} = \frac{dx}{L(u)-u} = \frac{dx}{dx}$	
(大)	
HID U	
五:一个介络性微分分线、	
一下介纬性能分方维的抗性形式	
$\frac{dy}{dx} + P(x)y = Q(x)$	
1) Q例 = 0 二 一阶条次结性形分方程	
2) Q以1 丰 0 => -产作非常农线性级分方程	
新花:	
1. 结性剂次; $\frac{dy}{dx} + Pcsy = 0$	
$\frac{dy}{dx} = -p(x) dx$	
$\int \frac{dy}{y} = - \int P(x) dx$	
$lny = - \int p(x) dx + lnc$	
通常 $y = ce^{-\int P(x)dx}$	
SPONDS 表示PON的斯爾尼的原函数	

积分因子. 如果有在连续可能的函数 H(x,y) +0, 硬得 H(x,y) P(x,y) dx + H(x,y) Q(x,y) dyo 为全线的方程,目的在逐数V(x,y)使 h(x,y)P(x,y)dx+h(x,y)Q(x,y)dy= dv(x,y) 则纸中(x,y)为有维(1)的规分比)。这时 V(x,y) 二 及该全额分为程的通前 只要的程有解存在,则必有积分的了存在,并且积分因分是唯一的 只多少有关的积分目的的充度条件为 2P - 30 = 4(9) 相应的积为用力加上的一个人的 此外,可以通过观察法进行'分项组合''而获得积分因子 注:除上述特殊情形之外,还可以通过观察法进行"分项 组合"而求得积分因子。 $xdx + ydy = d(\frac{x^2 + y^2}{2}) \quad ydx + xdy = d(xy)$ $\frac{xdy - ydx}{x^2} = d(\frac{y}{x}) \qquad \frac{xdy - ydx}{y^2} = d(-\frac{x}{y})$ $\frac{xdy - ydx}{xy} = d(\ln \frac{y}{x}) \quad \left| \frac{xdy - ydx}{x^2 + y^2} = d(\arctan \frac{y}{x}) \right|$ $\frac{xdx + ydy}{x^2 + y^2} = d(\ln\sqrt{x^2 + y^2})$

,			b								-									
カ						/抗女公	うす程	£.												
	/, l	y"	= f	L(X) 7	# <u>1</u>															
	白	净话	7: F	包边	13317	尺纸	à													
							建含	y.												
	角台	计结	: /2	y	= P	(×)	12/	= f	(4-K)	ニ>	- T	自微	15	,得	-31	P Ē	44/)		
	3.	y"	= .	+(y	, 41)	スタ	到公司	A											
	多户	214				, ,														
	1 77	10	11 _	<u>d</u>	P	J /	dp	dy	_	P dp										
				dp^{α}	X	119	and)	O()		dy										
		<i>;</i> ,	P	dy	-	J	1													

