Бинарный алгоритм Евклида

Этот вариант алгоритма Евклида оказывается более быстрым при реализации на компьютере, поскольку использует двоичное представление чисел a и b. Бинарный алгоритм Евклида основан на следующих свойствах наибольшего общего делителя (считаем, что $0 < b \le a$):

- 1) если оба числа a и b четные, то НОД $(a, b) = 2 \cdot \text{НОД}\left(\frac{a}{2}, \frac{b}{2}\right)$;
- 2) если число a нечетное, число b четное, то $HOД(a,b) = HOД<math>\left(a,\frac{b}{2}\right)$;
- 3) если оба числа a и b нечетные, a > b, то HOД(a, b) = HOД(a b, b);
- 4) если a = b, то HOД(a, b) = a.

Пример 1.16. Вычислим наибольший общий делитель чисел $a=30=(11110)_2$, $b=20=(10100)_2$, используя двоичную систему счисления. Оба числа четные, поэтому, согласно свойству 1, НОД(a,b)= = HOД $((10100)_2,(11110)_2)=2\cdot$ HOД $((1010)_2,(1111)_2)$. Теперь первое число четное, второе — нечетное, поэтому, согласно свойству 2, HOД $(a,b)=2\cdot$ HOД $((101)_2,(1111)_2)=$ по свойству 3 = $2\cdot$ HОД $((101)_2,(1111)_2)=$ по свойству 4 = $2\cdot$ HOД $((101)_2,(101)_2)=$ по свойству 4

получаем:
$$HOД((101)_2, (101)_2) = (101)_2 = 5$$
. Таким образом, $HOД(a, b) = 2 \cdot 5 = 10$.

Алгоритм 1.2. Бинарный алгоритм Евклида [6].

 $Bxo\partial$. Целые числа $a, b; 0 < b \le a$.

Выход. d = HOД(a, b).

- 1. Положить $g \leftarrow 1$.
- 2. Пока оба числа a и b четные, выполнять $a \leftarrow \frac{a}{2}, b \leftarrow \frac{b}{2}, g \leftarrow 2g$ до получения хотя бы одного нечетного значения a или b.
- 3. Положить $u \leftarrow a, v \leftarrow b$.
- 4. Пока $u \neq 0$, выполнять следующие действия.
 - 4.1. Пока u четное, полагать $u \leftarrow \frac{u}{2}$.
 - 4.2. Пока ν четное, полагать $\nu \leftarrow \frac{\nu}{2}$.
 - 4.3. При $u \ge v$ положить $u \leftarrow u v$. В противном случае положить $v \leftarrow v u$.
- 5. Положить $d \leftarrow gv$.

Сложность этого алгоритма равна $O(\log^2 a)$.

Аналогичный алгоритм можно построить для полиномов a(x), b(x) с целыми коэффициентами от одной переменной x, только вместо деления на 2 следует использовать деление на x, а условие $a \ge b$ заменить условием $\deg(a) \ge \deg(b)$ для степеней полиномов.

Пример 1.17. Пусть $a(x) = x^5 + 3x^4 + 3x^3 + 2x^2$, $b(x) = x^4 + 2x^3 + 2x^2 + x$. Найдем d(x) = НОД(a(x), b(x)).

Применяем алгоритм 1.2 (записываем только коэффициенты):

Номер	u(x)				v(x)								
шага	x^5	x^4	x^3	x^2	x^{I}	x^0	x^5	x^4	x^3	x^2	x^{I}	x^0	
1	1	3	3	2	0	0		1	2	2	1	0	g(x) = 1
2		1	3	3	2	0			1	2	2	1	g(x) = x
4.1			1	3	3	2							
4.3		$u(x) = -(u(x) - 2 \cdot v(x))$											
			1	1	1	0							
4.1				1	1	1							
4.3	v(x) = v(x) - u(x)												
									1	1	1	0	
4.2										1	1	1	
4.3	u(x) = u(x) - v(x)												
						0							

Таким образом, $d(x) = HOД(a(x), b(x)) = x(x^2 + x + 1)$.

Расширенный алгоритм Евклида

Расширенный алгоритм Евклида находит наибольший общий делитель d чисел a и b и его линейное представление, то есть целые числа x и y, для которых ax + by = d, и не требует «возврата», как в рассмотренном примере.

Алгоритм 1.3. Расширенный алгоритм Евклида. $Bxo\partial$. Целые числа $a, b; 0 < b \le a$. $Bыxo\partial$. d = HOД(a, b); такие целые числа x, y, что ax + by = d.

- 1. Положить $r_0 \leftarrow a, r_1 \leftarrow b, x_0 \leftarrow 1, x_1 \leftarrow 0, y_0 \leftarrow 0, y_1 \leftarrow 1, i \leftarrow 1.$
- 2. Разделить с остатком r_{i-1} на r_i : $r_{i-1} = q_i r_i + r_{i+1}$.
- 3. Если $r_{i+1} = 0$, то положить $d \leftarrow r_i$, $x \leftarrow x_i$, $y \leftarrow y_i$. В противном случае положить $x_{i+1} \leftarrow x_{i-1} q_i x_i$, $y_{i+1} \leftarrow y_{i-1} q_i y_i$, $i \leftarrow i+1$ и вернуться на шаг 2.

Сложность этого алгоритма равна $O(\log^2 a)$.

Корректность определения чисел x и y, вычисляемых алгоритмом 1.2, показывает следующая лемма.

Лемма 1.10. На каждой итерации алгоритма 1.3 выполняется равенство $ax_i + by_i = r_i$ при $i \ge 0$.

Пример 1.19. Найдем наибольший общий делитель чисел a = 1092, b = 988 и его линейное представление алгоритмом 1.3. Промежуточные результаты сведем в таблицу:

i	r_i	x_i	Уi	q_i
1	1092	1	0	
2	988	0	1	1
3	104	1	-1	9
4	52	-9	10	2

Таким образом, $HOД(1092, 988) = 52 = 1092 \cdot (-9) + 988 \cdot 10.$

Расширенный алгоритм Евклида можно реализовать и в двоичном виде.

Алгоритм 1.4. Расширенный бинарный алгоритм Евклида [6]. Bxod. Целые числа $a, b; 0 < b \le a$.

Bыход. d = HOД(a, b); такие целые числа x, y, что ax + by = d.

- 1. Положить $g \leftarrow 1$.
- 2. Пока оба числа a и b четные, выполнять $a \leftarrow \frac{a}{2}, \ b \leftarrow \frac{b}{2}, \ g \leftarrow 2g$ до получения хотя бы одного нечетного значения a или b.
- 3. Положить $u \leftarrow a, v \leftarrow b, A \leftarrow 1, B \leftarrow 0, C \leftarrow 0, D \leftarrow 1$.

- 4. Пока $u \neq 0$, выполнять следующие действия.
 - 4.1. Пока u четное:
 - 4.1.1. Положить $u \leftarrow \frac{u}{2}$.
 - 4.1.2. Если оба числа A и B четные, то положить $A \leftarrow \frac{A}{2}, \ B \leftarrow \frac{B}{2}$. В противном случае положить $A \leftarrow \frac{A+b}{2}, \ B \leftarrow \frac{B-a}{2}$.
 - 4.2. Пока *v* четное:
 - 4.2.1. Положить $v \leftarrow \frac{v}{2}$.
 - 4.2.2. Если оба числа C и D четные, то положить $C \leftarrow \frac{C}{2}, \ D \leftarrow \frac{D}{2}.$ В противном случае положить $C \leftarrow \frac{C+b}{2}, D \leftarrow \frac{D-a}{2}.$
 - 4.3. При $u \ge v$ положить $u \leftarrow u v$, $A \leftarrow A C$, $B \leftarrow B D$. В противном случае положить $v \leftarrow v u$, $C \leftarrow C A$, $D \leftarrow D B$.
- 5. Положить $d \leftarrow gv, x \leftarrow C, y \leftarrow D$.
- 6. Результат: d, x, y.

Сложность этого алгоритма равна $O(\log^2 a)$. Здесь по аналогии с леммой 1.10 на каждом шаге выполняются соотношения u = aA + bB и v = aC + bD. Если все три числа u, A и B четные, то обе части равенства u = aA + bB можно разделить на 2 (первое условие шага 4.1.2). Если же при четном u хотя бы одно из чисел A, B нечетное, то соотношение u = aA + bB преобразуется в u = aA + bB + ab - ab = a(A + b) + b(B - a) (второе условие шага 4.1.2). То же справедливо и для чисел v, C, D.

Пример 1.20. Найдем наибольший общий делитель чисел a = 1092, b = 988 и его линейное представление алгоритмом 1.4.

На шаге 1 полагаем g=1. Шаг 2 выполняем два раза, получаем $a=273,\ b=247,\ g=4$. Последовательность дальнейших шагов алгоритма 1.4 сведем в таблицу:

Шаг	и	ν	A	В	С	D
3	273	247	1	0	0	1
4.3	26		1	-1		
4.1	13		124	-137		
4.3		234			-124	138
4.2		117			-62	69
4.3		104			-186	206
4.2		52			-93	103
4.2		26			77	-85
4.2		13			162	-179
4.3	0		-38	42		

На шаге 5 полагаем $d = 4 \cdot 13 = 52$, x = 162, y = -179.

Проверка:
$$1092 \cdot 162 + 988 \cdot (-179) = 176904 - 176852 = 52$$
.

Как видно из примеров, линейное представление ax + by = HOД(a, b) не единственно. Выведем общий вид коэффициентов x и y. Пусть есть другое представление ax' + by' = HOД(a, b). Тогда a(x'-x) + b(y'-y) = 0. Найдем такие целые числа s, t, для которых as = bt. Запишем $a = a_1 \cdot HOД(a, b)$, $b = b_1 \cdot HOД(a, b)$, где $HOД(a_1, b_1) = 1$. Отсюда $a_1s = b_1t$, и это равенство выполняется для $s = b_1k$, $t = a_1k$, где k — произвольное целое число. Получаем

$$x' = x + \frac{bk}{\text{НОД}(a,b)}, \quad y' = y - \frac{ak}{\text{НОД}(a,b)},$$

для произвольного целого числа k.

В примере 1.19 a=1092, b=988, HOД(a, b)=52, x=-9, y=10. То-гда значения x', y' определяются равенствами

$$x' = -9 + 19k$$
, $y' = 10 - 21k$.

Значения x' = 162, y' = -179 из примера 1.20 получаем при k = 9.