Polynomial and exponential bounds for Ramsey numbers

Pham Hy Hieu, Le Viet Hai

Abstract. In the 19^{th} century, Frank Ramsey introduced the definition of Ramsey's number followed by many forms of theorems in Ramsey theory. These theorems are usually stated in the form: For $t, k, n \in \mathbb{N}$ and sufficiently large $m \in \mathbb{N}$, if the k-tuples of the set M of cardinality m are t-colored then there exists $M' \subset M$ of cardinality n with all k-tuples of M' have the same color. In this article we first introduce some well-known bounds for Ramsey's number of Erdos and Szekeres, then establish our two results about the lower bound of Ramsey numbers by imitating the method of them.

1 Introduction:

The purest definition of Ramsey numbers involves the 2-coloring of complete graphs.

Definition 1.1. (Ramsey's numbers)

For $m, n \in \mathbb{N}^*$, R(m, n) = R defines the minimum positive integer such that if we color every edge of K_R by two colors red and blue then there is either a mono-chromatic K_m or a mono-chromatic K_n .

An equivalent definition of Ramsey numbers involves the *independent sets*, which are subgraphs induced by a graph in which there is no edge and the *cliques*, which are complete subgraphs. In this perspective, R(m,n) is the minimum positive integer R such that a graph with R vertices contains either a $\overline{K_m}$, which is an independent set of size m or a K_n , which is a clique of size n.

In generalization, the Ramsey number is defined as followed:

Definition 1.2. (General Ramsey's numbers)

Consider two graphs G_1 and G_2 . Ramsey number $R(G_1, G_2)$ is the minimum positive integer R such that any graph with R vertices contains either a subgraph isomorphic to G_1 or a subgraph isomorphic to $\overline{G_2}$ or equivalently, if every edge of K_R is colored by two color then there is either a subgraph of the first colored, say RED, isomorphic to G_1 or of the second color, say BLUE, isomorphic to G_2 .

Obviously, the definition of simple Ramsey numbers is obtained by consider $(G_1, G_2) = (K_m, K_n)$. To define a closed formula for $R(G_1, G_2)$ is impossible due to the flexibility of graphs G_1 and G_2 , but even a closed formula for R(m, n), or $R(K_m, K_n)$, where G_1 and G_2 are so well defined, is a dream of human. Very few values of R(m, n) is known and most are calculated in simple manners. However, there are bounds for R(m, n) that are being improved significantly in recent decades. An old lower bound for Ramsey numbers appears in the polynomial form

Theorem 1.1. For $k, l \geq 2$ we have

$$R(k,l) \ge 2kl - 3k - 2l + 6$$

We will slightly improve this bound for $k, l \geq 5$. Also, we will set a lower bound for R(k, l) in exponential function by imitating the amazingly simple probabilistic method of Erdos.

2 Upper and lower bounds for basic Ramsey numbers:

First we establish an upper bound for Ramsey numbers. This bound was first proved by Paul Erdos using the following result.

Theorem 2.1. For $m, n \in \mathbb{N}$ and $m, n \geq 2$, we have:

$$R(m,n) \le R(m-1,n) + R(m,n-1)$$

Proof. Consider a complete graph K_s where s = R(m-1,n) + R(m,n-1), obviously every vertex of K_s has the degree of s-1. Assume that in a 2-color of such graph, there is no mono-chromatic K_m of the first color, say RED, we will establish a mono-chromatic K_n of the second color, say BLUE. Indeed, since every vertex of K_s has degree s-1, there is either R(m-1,n) red edges or R(m,n-1) blue edges incident from a vertex.

If there are R(m-1,n) red edges from a vertex, say A, consider these R(m-1,n) vertices that are directly connected to A. By the definition of R(m-1,n), if we 2-color the edges connect these vertices, there is either a red K_{m-1} or a blue K_n (where "red K_{m-1} " implies the K_{m-1} whose every edge is colored red). If there is a red K_{m-1} , along with the red edges from A to each vertex of this K_{m-1} , it establish a red K_m , which is contradicted to our assumption. Hence, there is a blue K_n and we are done.

If there are R(m, n-1) blue edges from a vertex, apply the same argument and we obtain a blue K_n , which complete the proofs. \square

Corollary 2.1.1. For $m, n \in \mathbb{N}^*$ we have:

$$R(m,n) \le \binom{m+n-2}{m-1}$$

Proof. We use the method of induction on the sum m + n. The base cases R(2,2) is trivial. Now assume that our result is true for m + n = s, consider cases when m' + n' = s + 1, according to **Theorem 2.1.** we have

$$R(m', n') \leq R(m'-1, n') + R(m', n'-1)$$

$$\leq {\binom{(m'-1) + n' - 2}{(m'-1) - 1}} + {\binom{m' + (n'-1) - 2}{m' - 1}} \text{ (since } (m' + n' - 1 = s)$$

$$= {\binom{m' + n' - 3}{m' - 2}} + {\binom{m' + n' - 3}{m' - 1}}$$

$$= {\binom{m' + n' - 2}{m' - 1}} \text{ (by Pascal's identity)}$$

Thus the induction is completed. \Box

This upper bound is very weak, for instance R(4,4) = 18 but $\binom{6}{3} = 20$. Note that even a unit of improvement of the bound is precious since the algorithm of finding the graphs takes significantly huge time. We have a slightly sharper bound from the proof of the theorem above.

Corollary 2.1.2. If both R(m-1,n) and R(m,n-1) are even then

$$R(m,n) \le R(m-1,n) + R(m,n-1) - 1$$

Now establish the lower bound for Ramsey numbers. We use the following lemmas:

Lemma 2.1. For $k, l \geq 3$ we have

$$R(k,l) \ge \max\{R(k-1,l) + 2l - 3; R(k,l-1) + 2k - 3\}$$

The proof of the lemma above based on the construction of a counter-example. If applying the Lemma of hand shakes we can obtain a stronger result in case k is odd.

Lemma 2.2. For $k \geq 2$ and $l \geq 5$ we have

$$R(2k-1,l) \ge \max\{4R(k-1,l)-3;4R(k,l-1)-3\}$$

These two lemmas are included in [1]. Now we come to prove another lemma by the method of construction.

Lemma 2.3. For $k \geq 3$ we have

$$R(3,k) \ge 3(k-1)$$

Proof. We first introduce the notation F_n^k . This one denotes the graph of n vertices placed on a circle where each vertex is connected to the vertices whose distances to it do not exceed k. For instance, F_5^1 is the graph of vertices A, B, C, D, E placed on a circle clock-wise and the edges AB, BC, CD, DE, EA while F_5^2 is the complete graph K_5 .

while F_5^2 is the complete graph K_5 . Now for the proof. We will cite that F_{3k-4}^{k-2} as a counter-example. Let v_i where $i=1,2,\cdots,3k-4$ be the vertices of a F_{3k-4}^{k-2} . We define the length of the edge $\{i,j\}$ the distance between vertices i and j on the cycle. By definition, the vertex v_i is adjacent to k-2 nearest vertices in both directions. Therefore, in F_{3k-4}^{k-2} , the 2(k-2) lines that are adjacent to v_1 have length 1,2,...,k-2. Moreover, there are 3k-4-2(k-2)-1=k-1 consecutive vertices of F_{3k-4}^{k-2} not adjacent to v_1 . Obviously, the length of the lines joining these consecutive vertices do not exceed k-2.

First we prove that there is no K_k in F_{3k-4}^{k-2} . Assume that there is a K_k in F_{3k-4}^{k-2} then because of the symmetry, we can assume that v_1 is a vertex of this K_k . Thus, the other k-1 vertices of this K_k are among the 2(k-2) vertices of F_{3k-4}^{k-2} that are adjacent to v_1 . Since we need k-1 vertices and in each direction of v_1 , there is only k-2 vertices, by the *Principle of Pigeon-Holes*, there must be vertices on both directions of v_1 in this K_k . However, this poses a contradiction to the definition of F_{3k-4}^{k-2} since the line joining the furthest vertices on both sides of v_1 has the length at least k-1. Hence, there is no K_k in F_{3k-4}^{k-2} .

Now we prove that there is no K_3 in $\overline{F_{3k-4}^{k-2}}$. Indeed, since in $\overline{F_{3k-4}^{k-2}}$, each vertex, for instance v_1 only is adjacent to k-1 consecutive points whose lines joining them to v_1 has the length more than k-2. However, the lines joining these points are all in F_{3k-4}^{k-2} , since the length of every line of them does not

exceed k-2, and hence, there is no edge joins the two vertices which are both adjacent to v_1 , and vice versa, for every v_i . Therefore, there is no K_3 in $\overline{F_{3k-4}^{k-2}}$.

Thus, there is neither K_k in F_{3k-4}^{k-2} nor K_3 in $\overline{F_{3k-4}^{k-2}}$. From this we deduce that R(3,k) > 3k-4 or $R(3,k) \ge 3(k-1)$. \square

With **Lemma 2.3.** we can establish a polynomial lower bound for R(k, l), which is presented in the following theorem.

Theorem 2.2. For $5 \le k \le l$ we have

$$R(k,l) \ge 2kl - 3k + 2l - 12$$

Proof. By continuously applying **Lemma 2.1.**, **Lemma 2.2.** and **Lemma 2.3.**, we have

$$R(k,l) \geq R(l,k-1) + 2l - 3$$

$$\geq R(l,k-2) + 2(2l - 3)$$

$$\geq \dots$$

$$\geq R(l,k-i) + i(2l - 3)$$

$$\geq \dots$$

$$\geq R(l,5) + (k-5)(2l - 3)$$

$$\geq 4R(3,l-1) - 3 + (k-5)(2l - 3)$$

$$\geq 4 \cdot 3(l-2) - 3 + (k-5)(2l - 3)$$

$$= 2kl - 3k + 2l - 12$$

This lower bound is sharp for R(3,3), R(3,4) and R(4,4), but for greater k and l this bound is very weak. Sharper results for some cases have been found in [3] for only special cases.

Theorem 2.3. For $k \geq 2$ we have

$$R(k,k) \ge 2^{\frac{t}{2}}$$

Even sharper bound is found for particular case (l, k) = (3, k) for $k \ge 2$.

Theorem 2.4. For $k \geq 2$ we have

$$c_1 \cdot \frac{k^2}{\log k} \le R(3, k) \le c_2 \cdot \frac{k^2}{\log k}$$

Through years, the constants c_1, c_2 are improved very slightly. This again shows the difficulty of the problem. However, we hope that the bound can be improved as followed.

Conjecture 2.1. For $k \geq 3$ there is positive real number c such that

$$R(3,k) \ge c \cdot \left(\frac{k^2}{\log k}\right)^2$$

Imitating the Sieve method, we can prove a more general result for $k, l \in \mathbb{N}^*$.

Theorem 2.5. For $k, l \geq 2$ we have

$$R(k,l) \ge \min\{2^{\frac{m-1}{2}}; 2^{\frac{n-1}{2}}\}$$

Proof. The proof for this theorem is not constructive. Put R := R(k, l). We will use the method of probability. Let's consider the probability for a 2-coloring of K_R to consider a mono-chromatic K_k in red. Clearly, the number of ways of choosing k vertices is $\binom{R}{k}$. For each k vertices, we have $\binom{k}{2}$ edges and hence the probability of all of them to be red is $\frac{1}{2^{\binom{k}{2}}}$. Therefore the appropriate probability is

 $\frac{\binom{R}{k}}{2\binom{k}{2}}$

For the probability of K_R to have a mono-chromatic K_l in blue, similarly, we get

 $\frac{\binom{R}{l}}{2\binom{l}{2}}$

There exists a 2-coloring of K_R which does not satisfy the Ramsey condition if and only if the probability of K_R to have either a mono-chromatic red K_k or a mono-chromatic blue K_l is less then 1. Thus we need the following inequality to hold

$$\frac{\binom{R}{k}}{2\binom{k}{2}} + \frac{\binom{R}{l}}{2\binom{l}{2}} < 1$$

Consider $R = \lfloor 2^{\frac{k-1}{2}} \rfloor$ we have

$$\frac{\binom{R}{k}}{2^{\binom{k}{2}}} = 2^{-\frac{k(k-1)}{2}} \cdot \frac{R(R-1)\cdots(R-k+1)}{k!}$$

$$\leq 2^{-\frac{k(k-1)}{2}} \cdot \frac{R^{k}}{k!}$$

$$\leq \frac{1}{2} \cdot 2^{-\frac{k(k-1)}{2}} \cdot 2^{\frac{k(k-1)}{2}}$$

$$= \frac{1}{2}$$

Similarly when $R = \lfloor 2^{\frac{l-1}{2}} \rfloor$ we have

$$\frac{\binom{R}{l}}{2\binom{l}{2}} \le \frac{1}{2}$$

Therefore when $R < \min\{2^{\frac{m-1}{2}}; 2^{\frac{n-1}{2}}\}$ we have

$$\frac{\binom{R}{k}}{2^{\binom{k}{2}}} + \frac{\binom{R}{l}}{2^{\binom{l}{2}}} \le 2 \cdot \max\{\frac{\binom{\lfloor 2^{\frac{k-1}{2}} \rfloor}{k}}{2^{\binom{k}{2}}}; \frac{\binom{\lfloor 2^{\frac{l-1}{2}} \rfloor}{l}}{2^{\binom{l}{2}}}\} \le 1$$

Hence, even we can not point out exactly what is the counter-example, we are sure about its existence. Due to this, we need

$$R(k,l) \geq \min\{2^{\frac{m-1}{2}}; 2^{\frac{n-1}{2}}\}$$

The theorem is proved. \Box

The bound in exponential function is established. However, we rise the following conjecture

Conjecture 2.2. There exists positive real number C such that for $k, l \geq 2$ we have

$$R(k,l) \geq C \cdot \min\{k \cdot 2^{\frac{k-1}{2}}; l \cdot 2^{\frac{l-1}{2}}\}$$

3 References:

- 1. Xu Xiaodong, Xie Zheng, G. Exoo and S.P. Radziszowski, Constructive Lower Bounds on Classical Multicolor Ramsey Numbers, Electronic Journal of Combinatorics, 11 (2004),24 pages.
- 2. Small Ramsey Numbers, Stanislaw P. Radziszowski, Department of Computer Science, Rochester Institute of Technology, Rochester, NY 14623, spr@cs.rit.edu
- 3. Extremal Combinatorics, Stasys Jukna.