Semaine 5 du 13 octobre 2025 (S42)

IV Intégrales généralisées

- 1. Fonctions continues par morceaux sur un segment
- 2. Rappels de première année
- 2.1. Le théorème fondamental
- 2.1a. Primitives
- 2.1b. Existence de primitives.
- 2.1c. Fonctions dont la variable intervient dans les bornes d'une intégrale (cas particulier d'intégrales dépendant d'un paramètre).
- 2.2. Intégration par parties
- 2.3. Changements de variable
- 3. Extension aux fonctions continues par morceaux sur un intervalle

- 4. Intégrales généralisées sur un intervalle de la forme $[a, +\infty[$
- 4.1. Définition
- 4.2. Cas des fonctions positives
- 4.3. Cas général
- 5. Intégrales généralisées sur un intervalle quelconque
- 6. Propriétés
- 7. Méthodes de calcul
- 7.1. Calcul par primitivation
- 7.2. Intégration par parties
- 7.3. Changement de variable
- 8. Intégrales absolument convergentes et fonctions intégrables
- 8.1. Définition
- 8.2. Un exemple de référence : les intégrales de Riemann
- 8.3. Théorèmes de comparaison
- 8.4. Étude de l'existence d'une intégrale

9. Exercices à connaître

9.1. Intégrales de Wallis

On pose, pour tout entier naturel n, $I_n = \int_0^{\pi/2} (\sin x)^n dx$.

- 1) Calculer I_0 et I_1 . Pour tout $n \ge 2$, donner une relation de récurrence entre I_n et I_{n-2} . En déduire, pour tout $n \in \mathbb{N}$, la valeur de I_n selon la parité de n.
- 2) Montrer que la suite (I_n) est décroissante. En déduire $\lim_{n\to+\infty}\frac{I_{n-1}}{I_n}$. 9.4. Intégrabilité de $x\mapsto\frac{\sin x}{r}$
- 3) Montrer : $\forall n \geqslant 1$, $nI_nI_{n-1} = \frac{\pi}{2}$. En déduire $\lim_{n \to +\infty} I_n$ et 1) Montrer que $\int_0^{+\infty} \frac{\sin x}{x} dx$ est une intégrale convergente.
- **4)** Montrer que : $\lim_{n \to +\infty} 2n(I_{2n})^2 = \frac{\pi}{2}$. En déduire que : $\lim_{n\to+\infty} \left[n \left(\frac{1.3.5...(2n-1)}{2.4.6...2n} \right)^2 \right] = \frac{1}{\pi}$ (formule de Wallis).

9.2. Détermination de la nature d'une intégrale

Préciser la nature des intégrales suivantes :

$$1) \int_0^1 \frac{\mathrm{d}t}{(1-t)\sqrt{t}}$$

$$2) \int_0^1 \frac{\ln t}{\sqrt{(1-t)^3}} dt$$

3)
$$\int_1^{+\infty} \frac{\mathrm{d}t}{t^2 \sqrt{1+t^2}}$$
 (et la calculer).

9.3. Intégration par parties et équivalent

Pour $n \in \mathbb{N}$, on note

$$I_n = \int_1^{+\infty} \frac{1}{x^n \left(1 + x^2\right)} \, \mathrm{d}x$$

- 1) Montrer l'existence de I_n , pour tout n.
- 2) Déterminer la limite de $(I_n)_n$.
- 3) À l'aide d'une intégration par parties, trouver un équivalent simple

- 2) Montrer que $\int_0^{+\infty} \frac{\sin x}{x} dx = \int_0^{+\infty} \left(\frac{\sin x}{x}\right)^2 dx$.
- 3) Montrer que $\int_0^{+\infty} \frac{\sin^2 x}{x} dx$ est une intégrale divergente.
- 4) En déduire la nature de $\int_0^{+\infty} \frac{|\sin x|}{x} dx$. La fonction $x \mapsto \frac{\sin x}{x}$ est-elle intégrable sur $]0, +\infty[$?

S'y ajoute:

V Espaces vectoriels normés

1. Espaces vectoriels normés

- 1.1. Définition de norme
- 1.2. Normes sur \mathbb{K}^n et certains ensembles de fonctions
- 1.3. Comparaison de normes
- 1.4. Distance associée à une norme

2. Topologie élémentaire

- 2.1. Boules ouvertes et fermées, sphères
- 2.2. Parties bornées
- 2.3. Parties convexes
- 3. Suites d'un espace vectoriel normé
- 3.1. Convergence
- 3.2. Suites extraites
- 3.3. Convergence d'une suite en dimension finie
- 4. Exercices à connaître
- 4.1. Produit d'espaces vectoriels normés

Soit E_1, \ldots, E_p des K-ev, munis respectivement des normes N_1, \ldots, N_p . On considère l'espace vectoriel produit $E = E_1 \times \ldots \times E_p$. Sur E, on pose l'application

$$N: E \to \mathbb{R}$$

$$(x_1, \dots, x_p) \mapsto \max_{1 \leqslant k \leqslant p} N_k(x_k)$$

Montrer que N est une norme sur E. (E, N) est appelé espace vectoriel normé produit des $(E_k, N_k)_{1 \leq k \leq p}$.

4.2. Comparaison de deux normes

Sur $\mathbb{R}[X]$, on définit N_1 et N_2 par :

$$N_1(P) = \sum_{k=0}^{+\infty} |P^{(k)}(0)| \text{ et } N_2(P) = \sup_{t \in [-1,1]} |P(t)|$$

- 1) Montrer que N_1 et N_2 sont des normes sur $\mathbb{R}[X]$.
- 2) On considère la suite de terme général $P_n = \frac{1}{n}X^n$. Est-elle bornée pour la norme N_1 ? pour la norme N_2 ?
- 3) Les deux normes sont-elles équivalentes?

4.3. Opérations sur les convexes

Une réunion finie de convexes est-elle convexe? Et une intersection? Et pour des réunions et intersections quelconques?

4.4. Limite d'une suite de matrices

- 1) Soit (A_n) et (B_n) deux suites de matrices de $\mathscr{M}_p(\mathbb{K})$ convergeant respectivement vers A et B. Montrer que $A_nB_n \xrightarrow[n \to +\infty]{} AB$.
- 2) Soit $A \in \mathcal{M}_p(\mathbb{K})$ telle que (A^k) converge vers une matrice P. Montrer que P est une matrice de projection.

4.5. Norme d'algèbre sur les matrices et convergence d'une suite

Soit $E = \mathscr{M}_n(\mathbb{R})$

- 1) Montrer que $(A, B) \mapsto \operatorname{tr}(A^{\top}B)$ est un produit scalaire sur E.
- 2) Montrer que la norme associée à ce produit scalaire est en fait la norme $\|.\|_2$ de E muni de la base canonique. On l'appelle aussi norme de Frobenius.
- 3) Montrer que pour tout $A, B \in E, ||AB||_2 \le ||A||_2 ||B||_2$.
- **4)** Soit A une matrice de $\mathcal{M}_n(\mathbb{R})$ telle que $||A||_2 < 1$. Montrer que $A^n \xrightarrow[n \to +\infty]{} 0$.