Playground

Abdelrahman

June 18, 2024

Figure 1: Forward Finite Difference

Figure 2: Backward Finite Difference

Figure 3: Central Finite Difference

Assumptions		
Steady & Fully developed $\Rightarrow 1$	$\frac{\partial}{\partial t} = 0 \;, \frac{\partial}{\partial x} = 0$	
No-Slip Condition $\Rightarrow 2$	$\mathbf{u}(x,0) = 0$, $\mathbf{u}(x,d) = \begin{bmatrix} U \\ 0 \end{bmatrix}$	
Constant Pressure $\Rightarrow 3$	$\frac{\partial p}{\partial x} = 0 \;, \frac{\partial p}{\partial y} = 0$	
Newtonian Fluid	constant viscosity (ν)	
Incompressible	constant density (ρ)	
Laminar & Purely axial	v = 0	

Assumptions	
Steady & Fully developed $\Rightarrow 1$	
No-Slip Condition $\Rightarrow 2$	$\mathbf{u}(x,0) = 0 , \mathbf{u}(x,d) = 0$
Constant Pressure $\Rightarrow 3$	$\frac{\partial p}{\partial x} = -G$, $\frac{\partial p}{\partial y} = 0$
Newtonian Fluid	constant viscosity (ν)
Incompressible	constant density (ρ)
Laminar & Purely axial	v = 0

Assumptions	
Steady & Fully developed $\Rightarrow 1$	$\frac{\partial}{\partial t} = 0$, $\frac{\partial}{\partial x} = 0$
No-Slip Condition $\Rightarrow 2$	$\mathbf{u}(x,y,z) = 0 \iff \sqrt{y^2 + z^2} = R$
Constant Pressure $\Rightarrow 3$	$\frac{\partial p}{\partial x} = -G$, $\frac{\partial p}{\partial y} = 0$, $\frac{\partial p}{\partial z} = 0$
Newtonian Fluid	constant viscosity (ν)
Incompressible	constant density (ρ)
Laminar & Purely axial	v=0, w=0

Figure 4: Rectangle Method Left Point Rule

References

Figure 5: Rectangle Method Right Point Rule

Figure 6: Rectangle Method Midpoint Rule

Figure 7: Lagrange Polynomial and its Bases

Figure 8: Gradient Decent Steps

Figure 9: Simulated Annealing Temperature

```
Algorithm 1: Simulated Annealing Algorithm
Data: T_i, x_i
Result: x_n \leftarrow \text{last solution candidate}
T_0 \leftarrow \text{initial temperature of cooling schedule};
x_0 \leftarrow \text{starting solution candidate};
for i \in \{0, ..., n\} do
     x_{\text{neighbor}} \leftarrow \text{randomly sample a neighbor from } x_i \text{ neighborhood};
     \Delta \cos t \leftarrow \text{compute cost difference between } x_{\text{neighbor}} \text{ and } x_i;
     if cost(x_{neighbor}) is better than cost(x_i) then
          Accept x_{i+1} \leftarrow x_i;
     else if cost(x_{neighbor}) is worse than cost(x_i) then
         if probability e^{-\Delta cost/T_i} then
              Accept x_{i+1} \leftarrow x_i;
          else
              Reject Do nothing;
          end
end
```


Figure 10: Least Square Problem - Linear combination of column vectors $% \left(1\right) =\left(1\right) +\left(1\right) +\left($

Figure 11: Least Square Problem

Figure 12: Least Square Problem