Семинар 18

Поиск инвариантных подпространств

Пусть у нас дано векторное пространство V над полем F и на нем действует оператор $\phi\colon V\to V$. Наша задача найти все ϕ -инвариантные подпространства $U\subseteq V$, то есть все такие подпространства $U\subseteq V$, что $\phi(U)\subseteq U$. Такая задача в общем виде требует знания о Жордановой нормальной форме оператора и потому сложна в решении. Однако, уже сейчас мы можем понять, как работает общий алгоритм. Описываемый мною подход состоит из двух этапов:

- 1. Описать все инвариантные подпространства специального вида (все главные инвариантные).
- 2. Свести описание произвольных инвариантных к инвариантным специального вида (главным инвариантным).

Главные инвариантные

Для оператор $\phi\colon V\to V$ и вектора $v\in V$ определим следующее подпространство

$$[v]_{\phi} = \langle v, \phi v, \phi^2 v, \dots, \phi^m v, \dots \rangle$$

Обратите внимание, что данное векторное пространство является инвариантным подпространством. Действительно, если произвольный элемент в нем имеет вид $a_0v+a_1\phi v+\ldots+a_n\phi^n v$. После применения ϕ мы получим $a_0\phi v+a_1\phi^2 v+\ldots+a_n\phi^{n+1}v$, то есть образ вектора остался в подпространстве, то есть оно инвариантно.

Подпространство $[v]_{\phi}$ является наименьшим инвариантным подпространством в V содержащим v. Действительно, для этого надо показать, что если U – некоторое другое инвариантное подпространство содержащее U, то оно целиком содержит $[v]_{\phi}$. Действительно, если $v \in U$, то и $\phi v \in U$ в силу инвариантности. Но тогда и $\phi^2 v \in U$, а следовательно и $\phi^3 v \in U$ и так далее. То есть любая степень $\phi^n v \in U$. А значит по определению и линейная оболочка этих векторов попала в U. Но последнее означает, что $[v]_{\phi} \subseteq U$.

Описание всех инвариантных

Пусть $U\subseteq V$ – произвольное инвариантное. Тогда у него есть какой-то базис, то есть $U=\langle u_1,\ldots,u_k\rangle$. Давайте покажем, что в этом случае $U=[u_1]_\phi+\ldots+[u_k]_\phi$. Действительно, так как $u_i\in[u_i]_\phi$ и последнее является подпространством, то $\langle u_i\rangle\subseteq[u_i]_\phi$. А значет после сложения этих вложений мы получим $\langle u_1,\ldots,u_k\rangle\subseteq[u_1]_\phi+\ldots+[u_k]_\phi$. Обратно, мы видим, что $u_i\in U$ и так как U инвариантное, то оно содержит наименьшее инвариантное содержащее u_i . То есть $[u_i]_\phi\subseteq U$. А значит складывая эти вложения мы получим $[u_1]_\phi+\ldots+[u_k]_\phi\subseteq U$, что доказывает второе вложение.

Описание выше показывает, что нам достаточно найти все главные инвариантные, а потом найти все возможные суммы главных инвариантных между собой. И это даст нам описание всех инвариантных.

Поиск главных инвариантных

Тут у меня начинаются для вас плохие новости. В общем виде – это тот еще геморрой. Потому давайте я продемонстрирую поиск главных инвариантных на двух примерах. Я надеюсь, что это даст общее представление, как пытаться описывать подобные подпространства в похожих случаях.

Диагональный оператор Пусть оператор $\phi \colon F^3 \to F^3$ задан матрицей A, где

$$A = \begin{pmatrix} 1 & & \\ & 2 & \\ & & 3 \end{pmatrix}$$

Пусть нам дан произвольный вектор $v = (a, b, c)^t$. Покажем, что

$$\left[\begin{pmatrix} a \\ b \\ c \end{pmatrix} \right]_A = \left\langle \begin{pmatrix} a \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ b \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ c \end{pmatrix} \right\rangle$$

 $^{^{1}}$ Обратите внимание, что тут сумма не обязательно прямая.

Давайте введем следующие обозначения

$$v = \begin{pmatrix} a \\ b \\ c \end{pmatrix}, v_1 = \begin{pmatrix} a \\ 0 \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} 0 \\ b \\ 0 \end{pmatrix}, v_3 = \begin{pmatrix} 0 \\ 0 \\ c \end{pmatrix}$$

Тогда заметим, что векторы v_i являются собственными, а именно

$$Av_1 = v_1, Av_2 = 2v_2, Av_3 = 3v_3$$

В частности это значит, что пространство $\langle v_1, v_2, v_3 \rangle$ является инвариантным. И очевидно, что оно содержит вектор $v = v_1 + v_2 + v_3$. А значит и содержит минимальное инвариантное $[v]_A$.

Теперь покажем вложение в обратную сторону. Для этого достаточно показать, что вектор v_1, v_2, v_3 лежат в $[v]_A$. Для этого рассмотрим векторы v, Av, A^2v заметим, что

$$v = v_1 + v_2 + v_3$$

$$Av = v_1 + 2v_2 + 3v_3$$
 то есть $(v, Av, A^2v) = (v_1, v_2, v_3) \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 2^2 \\ 1 & 3 & 3^2 \end{pmatrix}$

$$A^2v = v_1 + 2^2v_2 + 3^2v_3$$

Но матрица справа обратима, так как ее определитель – это определитель Вандермонда. А значит, можно разделить на эту матрицу и получим

$$(v_1, v_2, v_3) = (v, Av, A^2v) \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 2^2 \\ 1 & 3 & 3^2 \end{pmatrix}^{-1}$$

А это значит, что векторы v_1, v_2, v_3 выражаются через v, Av, A^2v . А в частности это значит, что v_1, v_2, v_3 лежат в $[v]_A$. Что завершает доказательство второго вложения.

Таким образом мы видим, что главными инвариантными являются

$$0, \langle e_1 \rangle, \langle e_2 \rangle, \langle e_3 \rangle, \langle e_1, e_2 \rangle, \langle e_1, e_3 \rangle, \langle e_2, e_3 \rangle, F^3$$

Кроме того, обратите внимание, что сумма любых двух главных подпространств опять главное подпространство. То есть этот же список является списком всех инвариантных подпространств для данного оператора.

Жорданова клетка Пусть оператор $\phi \colon F^3 \to F^3$ задан матрицей A, где

$$A = \begin{pmatrix} 0 & 1 \\ & 0 & 1 \\ & & 0 \end{pmatrix}$$

Покажем, что все главные инвариантные – это подпространства «порожденные префексом стандартного базиса», то есть

$$0, \langle e_1 \rangle, \langle e_1, e_2 \rangle, \langle e_1, e_2, e_3 \rangle = F^3$$

Давайте возьмем произвольный вектор $v = (a, b, c)^t$. Давайте предположим, что c = 0 и проделаем вычисление главного инвариантного в случае $v = (a, b, 0)^t$. Покажем, что

$$\left[\begin{pmatrix} a \\ b \\ 0 \end{pmatrix} \right]_A = \langle e_1, e_2 \rangle$$

Как легко видеть, подпространство в правой части инвариантно относительно A и содержит вектор v. Значит, содержит минимальное инвариантное $[v]_A$. Что доказывает, что левая часть принадлежит правой. Теперь осталось показать, что вектора e_1 и e_2 лежат в левой части. Действительно, рассмотрим $Av = (b,0,0)^t = be_1$. Теперь поделим на b и видим, что $e_1 \in [v]_A$. Теперь рассмотрим $v - ae_1 = (0,b,0)^t = be_2$. Разделим последнее на b и видим, что $e_2 \in [v]_A$. То есть мы доказали обратное вложение.

 $^{{}^{2}}$ В общем случае результат устроен так. Пусть k – номер последней ненулевой координаты в векторе v, тогда $[v] = \langle e_{1}, \dots, e_{k} \rangle$.