# Funções trigonométricas



# Gráficos das funções trigonométricas





# Funções trigonométricas

### **Tangente**

$$\operatorname{tg}: \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi : \ k \in \mathbb{Z} \right\} \longrightarrow \mathbb{R} \quad \text{ tal que } \operatorname{tg} x = \frac{\sin x}{\cos x}$$

### Cotangente

$$\cot g: \mathbb{R} \setminus \{k\pi: \ k \in \mathbb{Z}\} \longrightarrow \mathbb{R} \quad \text{ tal que } \cot g \, x = \frac{\cos x}{\sin x}$$

#### Secante

$$\sec: \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi : \ k \in \mathbb{Z} \right\} \longrightarrow \mathbb{R} \quad \text{ tal que } \sec x = \frac{1}{\cos x}$$

#### Cossecante

$$\operatorname{cosec} : \mathbb{R} \setminus \{k\pi : k \in \mathbb{Z}\} \longrightarrow \mathbb{R} \quad \text{tal que } \operatorname{cosec} x = \frac{1}{\operatorname{sen} x}$$

# Gráficos das funções trigonométricas







# Algumas propriedades das funções trigonométricas

- 1.  $\forall a \in \mathbb{R}$   $\operatorname{sen}^2 a + \cos^2 a = 1$ ;
- **2.**  $\forall a \in \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi : k \in \mathbb{Z}\}$   $1 + \operatorname{tg}^2 a = \sec^2 a$ ;
- **3.**  $\forall a \in \mathbb{R} \setminus \{k\pi : k \in \mathbb{Z}\}$   $1 + \cot^2 a = \csc^2 a$ ;
- **4.**  $\forall a \in \mathbb{R}$   $\operatorname{sen}(-a) = -\operatorname{sen} a$  (a função seno é ímpar);
- **5.**  $\forall a \in \mathbb{R} \quad \cos(-a) = \cos a$  (a função cosseno é par);
- **6.**  $\forall a \in \mathbb{R}$   $\cos(\frac{\pi}{2} a) = \sin a$  e  $\sin(\frac{\pi}{2} a) = \cos a$ ;
- **7.**  $\forall a \in \mathbb{R}$   $\operatorname{sen}(a+2\pi) = \operatorname{sen} a$  (a função seno tem período  $2\pi$ );
- **8.**  $\forall a \in \mathbb{R} \quad \cos(a+2\pi) = \cos a$  (a função cosseno tem período  $2\pi$ );
- **9.**  $\forall a, b \in \mathbb{R}$   $\operatorname{sen}(a+b) = \operatorname{sen} a \cos b + \operatorname{sen} b \cos a;$
- **10.**  $\forall a, b \in \mathbb{R}$   $\cos(a+b) = \cos a \cos b \sin b \sin a$ ;
- **11.**  $\forall a, b \in \mathbb{R}$   $\cos a \cos b = -2 \operatorname{sen} \frac{a-b}{2} \operatorname{sen} \frac{a+b}{2}$ ;
- **12.**  $\forall a, b \in \mathbb{R}$   $\operatorname{sen} a \operatorname{sen} b = 2 \operatorname{sen} \frac{a-b}{2} \cos \frac{a+b}{2}$ .

Cálculo

## Funções exponenciais



## Funções exponenciais



# Funções logaritmos



# Funções logaritmos



### Seno hiperbólico

$$\begin{array}{cccc} \mathrm{sh}: & \mathbb{R} & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \frac{e^x - e^{-x}}{2} \end{array}$$

### Tangente hiperbólica

### Secante hiperbólica

$$\operatorname{sech}: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{1}{\operatorname{ch} x}$$

### Cosseno hiperbólico

ch: 
$$\mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{e^x + e^{-x}}{2}$$

### Cotangente hiperbólica

### Cossecante hiperbólica

$$\operatorname{cosech}: \ \mathbb{R} \setminus \{0\} \longrightarrow \ \mathbb{R}$$

$$x \longmapsto \frac{1}{\operatorname{sh} x}$$







## Funções hiperbólicas - propriedades

- **1.** $\forall a \in \mathbb{R} \qquad \operatorname{ch}^2 a \operatorname{sh}^2 a = 1;$
- **2.**  $\forall a \in \mathbb{R}$   $\operatorname{th}^2 a + \operatorname{sech}^2 a = 1$ ;
- **3.**  $\forall a \in \mathbb{R} \setminus \{0\}$   $\coth^2 a \operatorname{cosech}^2 a = 1;$
- **4.**  $\forall a \in \mathbb{R}$   $\operatorname{sh}(-a) = -\operatorname{sh} a$  (a função seno hiperbólico é ímpar);
- **5.**  $\forall a \in \mathbb{R}$   $\operatorname{ch}(-a) = \operatorname{ch} a$  (a função cosseno hiperbólico é par);
- **6.**  $\forall a, b \in \mathbb{R}$   $\operatorname{sh}(a+b) = \operatorname{sh} a \operatorname{ch} b + \operatorname{sh} b \operatorname{ch} a;$
- **7.**  $\forall a, b \in \mathbb{R}$   $\operatorname{ch}(a+b) = \operatorname{ch} a \operatorname{ch} b + \operatorname{sh} b \operatorname{sh} a;$
- **8.**  $\forall n \in \mathbb{N} \quad \forall a \in \mathbb{R} \quad (\operatorname{ch} a + \operatorname{sh} a)^n = \operatorname{ch}(na) + \operatorname{sh}(na).$

## Funções trigonométricas inversas

#### Arco-seno

$$\operatorname{arcsen}: [-1,1] \longrightarrow \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$
$$x \longmapsto \left(\operatorname{sen}_{\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]}\right)(x)$$

#### Arco-cosseno

$$\arccos: [-1,1] \longrightarrow [0,\pi]$$

$$x \longmapsto \left(\cos_{[0,\pi]}\right)(x)$$





Cálculo

#### **Arco-tangente**

### **Arco-cotangente**

$$\begin{array}{ccc} \operatorname{arcotg}: & \mathbb{R} & \longrightarrow & ]0,\pi[ \\ & x & \longmapsto & \left(\operatorname{cotg}_{\mid_{]0,\pi[}}\right) \hspace{-0.5em} \stackrel{-1}{(x)} \end{array}$$





#### **Arco-secante**

#### **Arco-cossecante**

$$\operatorname{arcosec}: [1, +\infty[ \longrightarrow ]0, \frac{\pi}{2}] \\ x \longmapsto \left(\operatorname{cosec}_{|_{]0, \frac{\pi}{2}}]} \right)^{-1} (x)$$





### Funções hiperbólicas inversas

### Argumento do seno hiperbólico

$$argsh: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto (sh)^{-1}(x)$$

### Argumento do cosseno hiperbólico

$$\operatorname{argch}: [1, +\infty[ \longrightarrow \mathbb{R}_0^+]$$

$$x \longmapsto \left( \operatorname{ch}_{|_{\mathbb{R}_0^+}} \right)^{-1}(x)$$



Cálculo

#### Argumento da tangente hiperbólica

$$\operatorname{argth}: ]-1,1[ \longrightarrow \mathbb{R}$$

$$x \longmapsto \operatorname{th}^{-1}(x)$$

### Argumento da cotangente hiperbólica

Argumento da tangente hiperbólica

Argumento da cotangente hiperbólica

Cálculo

4. Funções especiais

### Argumento da secante hiperbólica

$$\operatorname{argsech}: \ ]0,1] \longrightarrow \mathbb{R}_0^+$$

$$x \longmapsto \left( \sec_{\mathbb{R}_0^+} \right)^{-1} (x)$$

### Argumento da cossecante hiperbólica

$$\begin{array}{ccc} \operatorname{argcosech}: & \mathbb{R} \setminus \{0\} & \longrightarrow & \mathbb{R} \setminus \{0\} \\ & x & \longmapsto & \operatorname{cosech}^{-1}(x) \end{array}$$

Argumento da secante hiperbólica



Argumento da cossecante hiperbólica

