

1.1 데이터소개

1.2 변수소개

1.3 최종목표

1.1 데이터소개

1.2 변수소개

모델링

빠르고

정확하게

참/거짓

TransactionID TransactionDT

TransactionAmt ProductCD

card1 card2 card3 card4 card5 card6

Addr1 addr2 dist1 dist2

P_emaildomain R_emaildomain

C1-C14 D1-D15 M1-M19 Vxxx

TransactionDT

주어진 datetime으로 부터의 timedelta

categorical variable

범주형 변수

continuous variable

연속형 변수

train_transaction.csv

TransactionID TransactionDT

TransactionAmt ProductCD

card1 card2 card3 card4 card5 card6

Addr1 addr2 dist1 dist2

P_emaildomain R_emaildomain

C1-C14 D1-D15 M1-M19 Vxxx

Text(0.5, 1.0, 'Distribution of TransactionDT dates')

Distribution of TransactionDT dates

categorical variable * 범주형 변수 continuous variable * 연속형 변수

Train data와 Test data 사이의 overlapping area가 없다.

TransactionID TransactionDT

TransactionAmt ProductCD

card1 card2 card3 card4 card5 card6

Addr1 addr2 dist1 dist2

P_emaildomain R_emaildomain

C1-C14 D1-D15 M1-M19 Vxxx

TransactionAmt

거래 결제 금액(USD)

categorical variable

범주형 변수

continuous variable

연속형 변수

train_transaction.csv

TransactionID TransactionDT

TransactionAmt ProductCD

card1 card2 card3 card4 card5 card6

Addr1 addr2 dist1 dist2

P_emaildomain R_emaildomain

C1-C14 D1-D15 M1-M19 Vxxx

categorical variable * 범주형 변수 continuous variable * 연속형 변수

Fraud

Not Fraud

train_transaction.csv

TransactionID TransactionDT

TransactionAmt ProductCD

card1 card2 card3 card4 card5 card6

Addr1 addr2 dist1 dist2

P_emaildomain R_emaildomain

C1-C14 D1-D15 M1-M19 Vxxx

 \rangle

ProductCD

제품 코드, 각 거래의 제품

categorical variable

범주형 변수

continuous variable

연속형 변수

train_transaction.csv

TransactionID TransactionDT

TransactionAmt ProductCD

card1 card2 card3 card4 card5 card6

Addr1 addr2 dist1 dist2

P_emaildomain R_emaildomain

C1-C14 D1-D15 M1-M19 Vxxx

categorical variable

범주형 변수

continuous variable

연속형 변수

sns.countplot(x = 'ProductCD', data= tr_Fraud, order = ['W','C', 'R', 'S','H'])
plt.title("Fraud Data의 ProductCD")
plt.show()

Fraud

[44] sns.countplot(x = 'ProductCD', data= tr_notFraud, order = ['W','C', 'R', 'S','H'])

→ matplotlib.axes._subplots.AxesSubplot at 0x7fc29a2e1b00>

Not Fraud

TransactionID TransactionDT

TransactionAmt ProductCD

card1 card2 card3 card4 card5 card6

Addr1 addr2 dist1 dist2

P_emaildomain R_emaildomain

C1-C14 D1-D15 M1-M19 Vxxx

categorical variable

범주형 변수

continuous variable * 연속형 변수

card1

카드 관련 변수

card2

카드 관련 변수

card3

카드 관련 변수

card4

카드 종류

card5

카드 관련 변수

card6

카드 유형

C1-C14 D1-D15

TransactionID TransactionDT

TransactionAmt ProductCD

card1 card2 card3 card4 card5 card6

Addr1 addr2 dist1 dist2

P_emaildomain R_emaildomain

M1-M19 Vxxx

categorical variablexcontinuous variable범주형 변수연속형 변수

TransactionID TransactionDT

TransactionAmt ProductCD

card1 card2 card3 card4 card5 card6

Addr1 addr2 dist1 dist2

P_emaildomain R_emaildomain

C1-C14 D1-D15 M1-M19 Vxxx

categorical variable * 범주형 변수 continuous variable *
연속형 변수

TransactionID TransactionDT

TransactionAmt ProductCD

card1 card2 card3 card4 card5 card6

Addr1 addr2 dist1 dist2

P_emaildomain R_emaildomain

C1-C14 D1-D15 M1-M19 Vxxx

categorical variable * 범주형 변수 continuous variable ** 연속형 변수 addr1 🗶 도시 주소?

train_transaction.csv

TransactionID TransactionDT

TransactionAmt ProductCD

card1 card2 card3 card4 card5 card6

Addr1 addr2 dist1 dist2

P_emaildomain R_emaildomain

C1-C14 D1-D15 M1-M19 Vxxx

categorical variable * 범주형 변수 continuous variable * 연속형 변수

특정값에만 데이터가 집중된다. 특정값에서 Fraud / Not Fraud 차이가 크다.

TransactionID TransactionDT

TransactionAmt ProductCD

card1 card2 card3 card4 card5 card6

Addr1 addr2 dist1 dist2

P_emaildomain R_emaildomain

C1-C14 D1-D15 M1-M19 Vxxx

categorical variable * 범주형 변수 continuous variable ** 연속형 변수

train_transaction.csv **TransactionID TransactionDT** TransactionAmt ProductCD card1 card2 card3 card4 card5 card6 Addr1 addr2 dist1 dist2 P_emaildomain R_emaildomain C1-C14 D1-D15 M1-M19 Vxxx

categorical variable * 범주형 변수

continuous variable * 연속형 변수

연속형 변수지만 결측치가 너무 많아 Regression이 불가하기 때문에 DROP 하였다.

TransactionID TransactionDT

TransactionAmt ProductCD

card1 card2 card3 card4 card5 card6

Addr1 addr2 dist1 dist2

P_emaildomain R_emaildomain

C1-C14 D1-D15 M1-M19 Vxxx

P_emaildomain

2

구매자 이메일 도메인

categorical variable

범주형 변수

continuous variable

연속형 변수

train_transaction.csv

TransactionID TransactionDT

TransactionAmt ProductCD

card1 card2 card3 card4 card5 card6

Addr1 addr2 dist1 dist2

P_emaildomain R_emaildomain

C1-C14 D1-D15 M1-M19 Vxxx

categorical variable * 범주형 변수 continuous variable * 연속형 변수

이메일에 따라 Fraud / Not Fraud 비율 차이가 크다.

TransactionID TransactionDT

TransactionAmt ProductCD

card1 card2 card3 card4 card5 card6

Addr1 addr2 dist1 dist2

P_emaildomain R_emaildomain

C1-C14 D1-D15 M1-M19 Vxxx

R_emaildomain

3

수신자 이메일 도메인

categorical variable

범주형 변수

continuous variable

연속형 변수

categorical variable * 범주형 변수

continuous variable * 연속형 변수

NA값이 76.75%로 높기 때문에 DROP 하였다.

train_transaction.csv

TransactionID TransactionDT

TransactionAmt ProductCD

card1 card2 card3 card4 card5 card6

Addr1 addr2 dist1 dist2

P_emaildomain R_emaildomain

C1-C14 D1-D15 M1-M19 Vxxx

categorical variable * 범주형 변수 continuous variable * 연속형 변수

의미를 모르는데 변수와 결측치가 너무 많다.

```
0.000000
                  0.000000
                  0.000000
                  0.000000
                  0.000000
                   0.000000
                  0.000000
                  0.000000
                  0.214888
                  0.002032
                 86.054967
                  86.054967
                 86.054967
                 86.054967
                 86.054967
                 86.054967
                 86.054967
                 86.054967
                 86.054967
                 86.054967
                 86.054967
                 86.054967
                 86.054967
                 86.054967
                 86.054967
                 86.054967
Length: 394, dtype: float64
```

```
val = tr_trans[! Y{i}'].isna().sum()/ien(tr_trans)*iUU
if val not in unique_val_Y:
  unique_col_Y.append(f'V{i}')
  unique_val_Y.append(val)
 not_needed = []
print(new_tr.shape)
  for i in range(1,340):
   if f'V{i}' not in unique_col_V:
     not_needed.append(f'V{i}')
 new_tr = new_tr.drop(not_needed, axis = 1)
print(new_tr.shape)
unique_col_C = ['C1']
unique_val_C = []
 unique_val_C.append(tr_trans['Cl'].isna().sum()/len(tr_trans)+100)
 for i in range(2.15):
   val = tr_trans[f'D(i)'].isna().sum()/len(tr_trans)*100
   il val not in unique_val_C:
      unique_col_C.append(f'D(i)')
      unique_val_C.append(val)
 not_needed = []
 print(new_tr.shape)
  for i in range(1,15):
    if f'C{i}' not in unique_col_C:
        not_needed.append(f'C{i}')
 new_tr = new_tr.drop(not_needed, axis = 1)
 print(new_tr.shape)
unique_col_D = ['D1']
unique_val_D = []
 unique_val_D.append(tr_trans['D1'].isna().sum()/len(tr_trans)+100)
 for i in range(2,16):
   val = tr_trans['D(i)'].isna().sum()/len(tr_trans)+100
il val not in unique_val_D:
   unique_col_D.append(f(T));
   unique_val_D.append(val)
not_needed = []
print(new_tr.shape)
  for i in range(1,16):
   if f'D{i}' not in unique_col_D:
    not_needed.append(f'D{i}')
new_tr = new_tr.drop(not_needed, axis = 1)
print(new_tr.shape)
 unique_val_M = []
 unique_val_M.append(tr_trans['M1'].isna().sum()/len(tr_trans)+100)
      if val not in unique_val_M:
    unique_col_M.append(f'M{i}')
    unique_val_M.append(val)
```


동일 비율 결측치

변수 통합

변수 별 결측치 파악

변수 축약

categorical variable *
범주형 변수

continuous variable *
연속형 변수

네트워크 연결 정보(mobile, desktop)

DeviceInfo

네트워크 연결 정보(IOS, Windows)

id1-id38

그 외 네트워크 연결 정보(Browser, IP etc)

categorical variable *
범주형 변수

continuous variable *
연속형 변수

Id의 NA값 분포 그래프

categorical variable * 범주형 변수

continuous variable *
연속형 변수

id3과 id9의 상관관계가 높다.

2. 변수분석

1. 목적

3.1 방법소개

3.2 결측치비율

3.3 결측치처리

3.1 방법소개

결측값처리

고려사항

- 변수간 관계를 파악
- 왜곡을 적게 만들어 모델의 정확성 높임
- 결측값이 무작위인가? 관계가 있는가?

A. 삭제

결측치가 생긴부분을 삭제

장점: 빠르고 간편

단점: 모델의 유효성이 낮아짐 무작위발생이 아닐 시 왜곡된 모델 생성

B. 대체 (평균, 최빈값, 중간값)

일괄 대체 / 범주형 변수로 유사유형 평균값으로 대체

장점: 빠르고 간편

단점: 모델의 유효성이 낮아짐, 유사유형 선택 시 왜곡된 모델 생성

c. 예측값 삽입

결측값이 없는 관측치로 예측 모델 생성 (Regression, Logistic regression 등)

장점: 자의적인 판단이 적음

단점 : 다양한 변수에서 결측치가 발생하거나 결측치가 많은 경우 사용불가

3.2 결측치비율

	전체	결측치 수	결측치 비율(%)				
TransactionID	590541	0	0				
isFraud	590541	0	0				
TransactionDT	590541	0	0				
TransactionAmt	590541	0	0				
ProductCD	590541	0	0				
card1	590541	0	0				
card2	590541	8933	1.51				
card3	590541	1565	0.26				
card4	590541	1577	0.27				
card5	590541	4259	0.72				
card6	590541	1571	0.27				
addr1	590541	65706	11.1				
addr2	590541	65706	11.1				
dist1	590541	352271	59.65				
dist2	590541	552913	93.62				
P_emaildomain	590541	94456	15.99				
R_emaildomain	590541	453249	76.75				

R_emaildomain ** 결측치 76.751%

addr1 * 도시

?

addr2 국가

?

addr/ & addr2

결측치가 완벽하게 일치하므로 하나로 통합

3.2 결측치비율

1	Transac 🕶	isFraud - Fraud -	Transac 🕶	Transac - Product -	card1	→ card2 →	card3	→ card4	▼ ca	rd5 <u></u> card6	→ addr	1 ▼ addr2	_	dist1	→ dist2	*	P_email - R_e
5	2987063	0 notFraud	87604	80 W	1796	57 285	1	50 visa		226 debit		184	87			3	yahoo.com
6	2987064	0 notFraud	87611	250 W	327	78 453	1	50 visa		226 debit		122	87			(gmail.com
7	2987065	0 notFraud	87650	114.95 W	1718	321	1	50 visa		226 debit		299	87		1		
8	2987066	0 notFraud	87660	300 H	1533	33 562	1	50 visa		226 credit		315	87			ě	anonymous.co
9	2987067	0 notFraud	87664	445 W	124	40 302	1	50 visa		195 credit		485	87		24		
0	2987068	0 notFraud	87667	3.081 C	1407	76 545	1	85 visa		147 credit						1	hotmail.cc hot
1	2987069	0 notFraud	87725	20 S	1286	303	1	50 visa		226 debit		330	87			84	hot
2	2987070	0 notFraud	87735	100 H	368	32 264	1	50 visa		162 credit		325	87			i	anonymous.co
3	2987071	0 notFraud	87736	59 W	166	52 111	1	50 visa		195 debit		472	87			(gmail.com
4	2987072	0 notFraud	87752	6.767 C	1383	375	1	85 maste	rcarc	224 debit						(outlook.cc out
5	2987073	0 notFraud	87759	554 W	195	55 383	1	50 visa		226 debit		315	87		5	1	yahoo.com
6	2987074	0 notFraud	87775	27.793 C	1588	35 545	1	85 visa		138 debit						100	gmail.com gm
7	2987075	0 notFraud	87779	68.5 W	480	06 490	1	50 visa		226 debit		315	87			(gmail.com
8	2987076	0 notFraud	87787	36.95 W	1813	32 567	1	50 maste	rcarc	117 debit		441	87		1	ľ	
9	2987077	0 notFraud	87793	280 W	327	78 453	1	50 visa		226 debit		122	87			(gmail.com
0	2987078	0 notFraud	87825	300 W	1485	558	1	50 visa		226 debit		220	87	22	239	T)	
1	2987079	0 notFraud	87839	28.699 C	450	04 500	1	85 maste	rcarc	219 credit						1	hotmail.cc hot
2	2987080	0 notFraud	87856	60 W	720	7 111	1	50 visa		226 debit		204	87			(comcast.net
3	2987081	0 notFraud	87868	104.95 W	1718	38 321	1	50 visa		226 debit		299	87		1	(gmail.com
14	2987082	0 notFraud	87899	280 W	1506	66 170	1	50 maste	rcarc	102 credit		325	87			(optonline.net
5	2987083	0 notFraud	87924	411.95 W	1469	396	1	50 maste	rcarc	224 credit		315	87		22	(gmail.com
6	2987084	0 notFraud	87928	125.674 C	558	33 103	1	85 visa		226 credit						744	anonymot and
7	2987085	0 notFraud	87935	42.596 C	1588	35 545	1	85 visa		138 debit							anonymouand
8	2987086	0 notFraud	87950	44.5 W	1181	15 206	1	50 maste	rcarc	166 debit		476	87		6	(gmail.com
9	2987087	0 notFraud	88004	88.95 W	154	19 143	1	50 visa		226 debit		205	87		9	,	yahoo.com
0	2987088	0 notFraud	88021	140 W	1809	95 243	1	50 visa		226 debit		387	87			(gmail.com
1	2987089	0 notFraud	88042	318.95 W	1718	38 321	1	50 visa		226 debit		299	87		5	(gmail.com
2	2987090	0 notFraud	88046	77.821 C	1588	35 545	1	85 visa		138 debit						(gmail.com gm
3	2987091	0 notFraud	88053	107 W	1416	55 111	1	50 maste	rcarc	224 debit		181	87		10	1	
4	2987092	0 notFraud	88054	117 W	648	31 111	1	50 visa		226 debit		337	87	- 5	327	(cox.net
5	2987093	0 notFraud	88070	50 H	522	20 360	1	50 visa		226 credit		231	87				charter.neicha
6	2987094	0 notFraud	88107	527 W	540	9 170	1	50 visa		226 credit		315	87		5	1	yahoo.com
7	2987095	0 notFraud	88120	59 W	253	88 476	1	50 visa		166 debit		330	87				anonymous

3.2 결측치비율

	전체	결측치 수	결측치 비율(%)
TransactionID	590541	0	0
isFraud	590541	0	0
TransactionDT	590541	0	0
TransactionAmt	590541	0	0
ProductCD	590541	0	0
card1	590541	0	0
card2	590541	8933	1.51
card3	590541	1565	0.26
card4	590541	1577	0.27
card5	590541	4259	0.72
card6	590541	1571	0.27
addr1	590541	65706	11.1
addr2	590541	65706	11.1
dist1	590541	352271	59.65
dist2	590541	552913	93.62
P_emaildomain	590541	94456	15.99
R_emaildomain	590541	453249	76.75

	전체	결측치 수	결측치 비율(%)
TransactionID	590541	0	0
isFraud	590541	0	0
TransactionDT	590541	0	0
TransactionAmt	590541	0	0
ProductCD	590541	0	0
card1	590541	0	0
card2	590541	8933	1.51
card3	590541	1565	1.51
card4	590541	1577	0.26
card5	590541	4259	0.27
card6	590541	1571	0.72
addr2	590541	65706	11.1
P_emaildomain	590541	94456	15.99

3.3 결측치처리

Card4

Card6

최빈값으로 대체

결측치 비율이 낮으며, 범주가 많지 않아 최빈값 대체가능

3.3 결측치처리

Card3

Card5

최빈값으로 대체

그래프에서 적은 수의 변수만 유의미한 수치로 나옴

3.3 결측치처리

DeviceInfo

Unknown 처리

현실적으로 기기의 기종을 찾기 불가 (MCAR)

특히, 기기의 기종, OS이름, 브라우저 엔진 등 여러 다른 변수가 섞여있는 Column

Outlier 처리?

이상치(Outlier)의 경우

Fraud Detection에서는

주요 요인이 될 수 있음

이상치 처리에 영향을

크게 받지 않는

Decision Tree기반 모델 이용 예정

4.1 FE소개

4.2 FE결과

Feature Engineering

기존 변수 사용 -> 데이터 추가

관측치 / 변수 추가 없이 기존 데이터 강화

- Scaling ->log / root
- Binning -> 연속형을 범주형으로
- Transform -> 새로운 변수 추가 및 결합
- Dummy -> One-Hot Encoding

From Ybigta 세션자료

The machine learning models affected by the magnitude of the feature are:

- ·Linear and Logistic Regression
- •Neural Networks
- ·Support Vector Machines
- •KNN
- •K-means clustering
- •Linear Discriminant Analysis (LDA)
- •Principal Component Analysis (PCA)

Machine learning models insensitive to feature magnitude are the ones based on Trees:

- •Classification and Regression Trees
- •Random Forests
- •Gradient Boosted Trees

Feature Engineering

"Gradient Boost계열 모델

: Magnitude feature 자

- Transform -> 새로운 변수 추가 및 결합
- Dummy -> One-Hot Encoding

From Ybigta 세션자료

The machine learning models affected by the magnitude of the feature are:

•K-means clustering

are the ones based on Trees:

- •Classification and Regression Trees
- •Random Forests
- •Gradient Boosted Trees

TransactionDT

TransactionDT

TransactionDT

변형한 TransactionDT 변수들 중 유의미한 fraud차이가 있는 변수는 day of week, hour, month

addr2 & P_emaildomain

Name	TRUE	FALSE	Overall	Percent	Rank	Service info	 Region	×	Country_cod
aim.com	275	40	315	12.6984127	4	AOL	global		1
anonymous.com	36139	859	36998	2.32174712	20	익명	anonymous		9
aol.com	27672	617	28289	2.18105978	25	AOL	global		1
att.net	4003	30	4033	0.74386313	37	미국 통신사	usa		2
bellsouth.net	1856	53	1909	2.77632268	17	미국 통신사	usa		2
cableone.net	156	3	159	1.88679245	29	미국 통신사	usa		2
centurylink.net	205	0	205	0	43	미국 통신사	usa		2
cfl.rr.com	172	0	172	0	43	미국 통신사	usa		2
charter.net	791	25	816	3.06372549	15	미국 통신사	usa		2
comcast.net	7642	246	7888	3.11866126	14	미국 통신사	usa		2
cox.net	1364	29	1393	2.08183776	28	미국 통신사	usa		2
earthlink.net	503	11	514	2.14007782	26	미국 통신사	usa		2
embarqmail.com	251	9	260	3,46153846	11	미국 통신사	usa		2
frontier.com	272	8	280	2.85714286	16	미국 통신사	usa		2
frontiernet.net	190	5	195	2.56410256	19	미국 통신사	usa		2
gmail	485	11	496	2.21774194	23	구글	global		1
gmail.com	218412	9943	228355	4.35418537	9	구글	global		1
gmx.de	149	0	149	0	43	독일 메일회사	germany		4
hotmail.co.uk	112	0	112	0	43	마이크로소프트	uk		3
hotmail.com	42854	2396	45250	5.29502762	8	마이크로소프트	global		1
hotmail.de	43	0	43	0	43	마이크로소프트	germany		4
hotmail.es	285	20	305	6.55737705	6	마이크로소프트	spain		6
hotmail.fr	295	0	295	0	43	마이크로소프트	france		5
icloud.com	6070	197	6267	3.14344982	13	애플	global		1
juno.com	316	6	322	1.86335404	30	미국 통신사	usa		2
live.com	2957	84	3041	2.76224926	18	마이크로소프트	global		1
live.com.mx	708	41	749	5.47396529	7	마이크로소프트	mexico		7
live.fr	56	0	56	0	43	마이크로소프트	france		5
mac.com	422	14	436	3.21100917	12	애플	global		1
mail.com	453	106	559	18.9624329	2	독일 메일회사	germany		4
me.com	1495	27	1522	1.7739816	31	애플	global		1
msn.com	4002	90	4092	2.19941349	24	마이크로소프트	global		1
netzero.com	230	0	230	0	43	미국 통신사	usa		2
netzero.net	195	1	196	0.51020408	39	미국 통신사	usa		2
optonline.net	994	17	1011	1.68150346	32	미국 통신사	usa		2
outlook.com	4614	482	5096	9.45839874	5	마이크로소프트	global		1
outlook.es	381	57	438	13.0136986	3	스페인	spain		6
prodigy.net.mx	206	1	207	0.48309179	40	크라우드펀딩 회사	mexico		7

P_Emaildomain에서

얻어낸

확실한 국가데이터값

국가코드라

추측되는

Addr2값

addr2 & P_emaildomain

Region from email	Code
Null	0
Global	1
USA	2
UK	3
Germany	4
France	5
Spain	6
Mexico	7
Japan	8
anonymous	9

addr2 & P_emaildomain

Region from email	Code
Null	0
Global	1
USA	2
UK	3
Germany	4
France	5
Spain	6
Mexico	7
Japan	8
anonymous	9

DeviceInfo

train_identity.csv

DeviceType

DeviceInfo

id1 - id38

Transaction & Identity

데이터의 통합이 필요함

DeviceInfo

Article	Talk	Read	Edit	View history	Search Wikipedia	
---------	------	------	------	--------------	------------------	--

Cramér's V

From Wikipedia, the free encyclopedia

In statistics, Cramér's V (sometimes referred to as Cramér's phi and denoted as φ_{∂}) is a measure of association between two nominal variables, giving a value between 0 and +1 (inclusive). It is based on Pearson's chi-squared statistic and was published by Harald Cramér in 1946. [1]

Contents [hide]

- 1 Usage and interpretation
- 2 Calculation
- 3 Bias correction
- 4 See also
- 5 References
- 6 External links

Usage and interpretation [edit]

 φ_c is the intercorrelation of two discrete variables [2] and may be used with variables having two or more levels. φ_c is a symmetrical measure, it does not matter which variable we place in the columns and which in the rows. Also, the order of rows/columns doesn't matter, so φ_c may be used with nominal data types or higher (notably ordered or numerical).

Cramér's V may also be applied to goodness of fit chi-squared models when there is a $1 \times k$ table (in this case r = 1). In this case k is taken as the number of optional outcomes and it functions as a measure of tendency towards a single outcome. [citation needed]

Cramér's V varies from 0 (corresponding to no association between the variables) to 1 (complete association) and can reach 1 only when the two variables are

isFraud(이분형)데이터와 train_ldentity.csv 변수등(법주형) 연관성 작악

Cramer's V?

Calculation [edit]

Let a sample of size n of the simultaneously distributed variables A and B for $i=1,\ldots,r; j=1,\ldots,k$ $n_{ij}=$ number of times the values (A_i,B_j) were observed.

The chi-squared statistic then is:

$$\chi^2 = \sum_{i,j} rac{(n_{ij} - rac{n_i, n_{,j}}{n})^2}{rac{n_i, n_{,j}}{n}}$$

Cramér's V is computed by taking the square root of the chi-squared statistic divided by the sample size

$$V=\sqrt{rac{arphi^2}{\min(k-1,r-1)}}=\sqrt{rac{\chi^2/n}{\min(k-1,r-1)}}$$

where:

- $\bullet \varphi$ is the phi coefficient.
- $\bullet \chi^2$ is derived from Pearson's chi-squared test
- ullet n is the grand total of observations and
- k being the number of columns.
- r being the number of rows.

The p-value for the significance of V is the same one that is calculated using the Pearson's chi-squared te The formula for the variance of $V=\varphi_c$ is known.^[3]

In R, the function cramerV() from the package rcompanion [4] calculates V using the chisq test function cramersV() from the Isr [5] package, cramerV() also offers an option to correct for bias. It applies the

```
def cramers_v(x, y):
     confusion_matrix = pd.crosstab(x,y)
chi2 = ss.chi2_contingency(confusion_matrix)[0]
n = confusion_matrix.sum().sum()
      phi2 = chi2/n
      r,k = confusion_matrix.shape

phi2corr = max(0, phi2-((k-1)*(r-1))/(n-1))
      rcorr = r-((r-1)**2)/(n-1)
      kcorr = k-((k-1)**2)/(n-1)
      return np.sqrt(phi2corr/min((kcorr-1),(rcorr-1)))
 x = id_new['isFraud']
 for i in id_new.columns:
  if i == 'isFraud' or i == 'TransactionID':
     print(i + ' pass')
   y = id_new[i]
   score = cramer
    If score > 0.
      print(i +
      print(score)
TransactionID pas
 id_21 score:
0.42701968880673
 id_25 score:
D 4985777900494445
DeviceInfo score:
```


5. 전처리결과

train_transaction.csv

×

TransactionID TransactionDT

TransactionAmt ProductCD

card1 card2 card3 card4 card5 card6

Addr1 addr2 dist1 dist2

P_emaildomain R_emaildomain

C1-C14 D1-D15 M1-M19 Vxxx

TransactionID isFraud
TransactionAmt card1
Card 2 card3 card5

변수변형

TransactionDT DeviceInfo

새로운변수

Addr2 Region

One-hot Encoding

ProductCD card4 card6

