Exam 1_A1-1: Sphere and cube

Objective: Data types and expressions

Consider a sphere with radius r (input) in meters that just perfectly fits a cube (with edge length a in meters) inside (all vertices of the cube just touch the surface of the sphere). Write a Python code to accept the sphere radius input r, and print out the volume of the sphere outside the cube.

- Volume of a sphere $=\frac{4}{3}\pi r^3$
- Relationship between the cube's edge length and sphere radius:

$$4r^2 = 3a^2$$

Input

One floating-point value of the radius r in meters.

Output

The volume of the sphere outside the cube in cubic meters rounded with round(ans,2), where ans is your answer.

Examples		
Input (from keyboard)	Output (on screen)	The range of inputs for
1.4	7.27	additional test cases: 40%< 3;
3.01	72.25	80%< 7; the rest > 7.
5.15	361.86	