A Troubling Analysis of Reproducibility and Progress in Recommender Systems Algorithms Research - Online Appendix

MAURIZIO FERRARI DACREMA, SIMONE BOGLIO, and PAOLO CREMONESI, Politecnico di Milano, Italy

DIETMAR JANNACH, University of Klagenfurt, Austria

The design of algorithms that generate personalized ranked item lists is a central topic of research in the field of recommender systems. In the past few years, in particular, approaches based on deep learning (neural) techniques have become dominant in the literature. For all of them, substantial progress over the state-of-the-art is claimed. However, indications exist of certain problems in today's research practice, e.g., with respect to the choice and optimization of the baselines used for comparison, raising questions about the published claims. In order to obtain a better understanding of the actual progress, we have tried to reproduce recent results in the area of neural recommendation approaches based on collaborative filtering. The worrying outcome of the analysis of these recent works—all were published at prestigious scientific conferences between 2015 and 2018—is that 11 out of the 12 reproducible neural approaches can be outperformed by conceptually simple methods, e.g., based on the nearest-neighbors heuristics. None of the computationally complex neural methods was actually consistently better than already existing learning-based techniques, e.g., using matrix factorization or linear models. In our analysis, we discuss common problematic issues in today's research practice, which, despite the many papers that are published on the topic, has apparently led the field to a certain level of stagnation.¹

CCS Concepts: • Information systems \rightarrow Recommender systems; Collaborative filtering; • General and reference \rightarrow Evaluation.

Additional Key Words and Phrases: Recommender Systems, Deep Learning, Evaluation; Reproducibility

ACM Reference Format:

Maurizio Ferrari Dacrema, Simone Boglio, Paolo Cremonesi, and Dietmar Jannach. 2019. A Troubling Analysis of Reproducibility and Progress in Recommender Systems Algorithms Research - Online Appendix. *ACM Transactions on Information Systems* 1, 1, Article 1 (January 2019), 105 pages. https://doi.org/10.1145/1122445. 1122456

Authors' addresses: Maurizio Ferrari Dacrema, maurizio.ferrari@polimi.it; Simone Boglio, simone.boglio@mail.polimi.it; Paolo Cremonesi, paolo.cremonesi@polimi.it, Politecnico di Milano, Italy, Milano; Dietmar Jannach, University of Klagenfurt, Klagenfurt, Austria, dietmar.jannach@aau.at.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

1046-8188/2019/1-ART1 \$15.00

https://doi.org/10.1145/1122445.1122456

¹This paper significantly extends or own previous work presented in [12].

1:2 Ferrari Dacrema et al.

Contents

Abstr	ract	1
Conto	ents	2
A	Overview	3
В	Baselines	5
C	KDD: Collaborative Deep Learning	9
D	SIGIR: Collaborative Memory Networks	10
E	KDD: Collaborative Variational Autoencoders	19
F	RecSys: Spectral Collaborative Filtering	33
G	KDD: Leveraging Meta-path based Context for Top-N Recommendation with a Neural	
	Co-Attention Model	42
Η	WWW: Neural Collaborative Filtering	49
I	WWW: Variational Autoencoders for Collaborative Filtering	55
J	IJCAI: Outer Product-based Neural Collaborative Filtering	59
K	IJCAI: NeuRec: On Nonlinear Transformation for Personalized Ranking	65
L	IJCAI: Deep Matrix Factorization Models for Recommender Systems	74
M	IJCAI: CoupledCF: Learning Explicit and Implicit User-item Couplings in	
	Recommendation for Deep Collaborative Filtering	86
N	$IJCAI: DELF: A\ Dual-Embedding\ based\ Deep\ Latent\ Factor\ Model\ for\ Recommendation$	96
O	Hyperparameter Range	102
Refer	rences	104

A OVERVIEW

This is the additional material associated with our article [11]. This material contains the full results of our experiments of which, due to space reasons and for the sake of improving readability, only the most representative ones are reported in the paper. In Appendix B the complete list of all baselines is presented as long as a brief description and references for each of them. The following Appendices from C to N report the results of the evaluation of each deep learning algorithm, ordered by year of publication from 2015 to 2018. Lastly in Appendix O all hyperparameters for all baselines are listed with the relative search space.

The results for each deep learning algorithm we analysed are reported in a separate section. Each section is composed of three parts, a comparison of the recommendation accuracy of the algorithms, the list of all optimal hyperparameters, and a comparison of the computation time they required.

Recommendation accuracy. Compares the recommendation accuracy of all baselines and of the deep learning model in the evaluation scenario chosen by the original authors. Different tables will therefore report different metrics and cutoffs depending on the original paper. Values in bold refer to either the deep learning algorithm outperforming all baselines or any baseline outperforming the deep learning algorithm. In some cases the results for EASE^R and SLIM BPR may be missing, this is due to the memory requirement exceeding instance capacity as the implementations we used did not optimize memory requirements.

Optimal hyperparameters. Reports the optimal hyperparameters for all baselines and datasets. Due to the stochastic nature of the Bayesian optimization and on how many local optima the model exhibits for that dataset, multiple optimization runs may yield equivalent results but different hyperparameters.

Computation time. Compares the computation time of all algorithms on a specific Amazon AWS instance.² The tables and are composed by three columns. The first column (*Train time*), reports the mean and standard deviation of the time required to fit the models during the Bayesian hyperparameter optimization. In case of machine learning models requiring the selection of the number of epochs via early-stopping, the time required by the validation steps is included as it constitutes an integral part of the training procedure. The last two columns report the time required by each evaluation of the model during the Bayesian hyperparameter optimization³ (*Recommendation Time*) and the number of recommendation lists the algorithm is able to generate per second (*Recommendation [usr/s]*). For deep learning algorithms the train and evaluation time refer to the only hyperparameter configuration we report, therefore they are not associated to any standard deviation.

It should be noted that all algorithms implemented in our repository compute a score for each item but do not directly generate the recommended items list. The sorting of such items and generation of the recommended items list is done independently from the specific recommendation model. Due to the fixed cost of ranking the items based on their score, for each user, non personalized

 $^{^2}$ The computation time refers to the total instance time for one AWS instance p3.2xlarge, with 8 vCPU, 30GB RAM, and one Tesla V100-SXM2-16GB GPU.

³Note that the evaluation time refers to an evaluation performed on the test data. During the Bayesian optimization every time a new optimal set of hyperparameters is found, using the validation data, an additional evaluation is performed on the test data. No information from the test data is ever used. For this reason, it may happen that a baseline is not associated to a standard deviation in Recommendation Time, this means that the Bayesian optimization found an optimal solution which was not improved upon and therefore only one evaluation was performed.

1:4 Ferrari Dacrema et al.

algorithms, i.e., TopPop, will appear to generate the same number of recommendation per second as much more complex models.

Furthermore, the implementations of the baseline algorithms vary in terms of efficiency. Some use standard solvers (PureSVD, NMF, SLIM ElasticNet), others are written in Cython⁴ and compiled (KNNs, MF BPR, FunkSVD, SLIM BPR), others are written in plain Python with vectorized operations ($P^3\alpha$, $RP^3\beta$, iALS), some are single-core others take advantage of multithreading. Similarly the deep learning models are implemented in Tensorflow or Keras and with varying degrees of efficiency. Due to this heterogeneity the computational time measurements should not be taken as exact measurements but rather as a qualitative comparison.

⁴https://cython.org/

B BASELINES

Over the last 25 years, a multitude of algorithms of different types were proposed. In order to obtain a picture that is as broad as possible, we selected algorithms of different families for inclusion in our measurements. An overview of all used baselines is given in Table 1 and the relative hyperparameter ranges are reported in Appendix O.

Family	Method	Description
Non-personalized	TopPopular	Recommends the most popular items to everyone [9]
Nearest-Neighbor	UserKNN	User-based k-nearest neighbors [23]
ivearest iveignbor	ItemKNN	Item-based k-nearest neighbors [24]
Graph-based	$P^3\alpha$	A graph-based method based on random walks [8]
Graph based	$RP^3\beta$	An extension of $P^3\alpha$ [20]
	ItemKNN-CBF	ItemKNN with content-based similarity [17]
Content-Based and	ItemKNN-CFCBF	A simple item-based hybrid CBF/CF approach [18]
Hybrid	UserKNN-CBF	UserKNN with content-based similarity
	UserKNN-CFCBF	A simple user-based hybrid CBF/CF approach
	iALS	Matrix factorization for implicit feedback data [13]
	PureSVD	A basic matrix factorization method [9]
	NFM	A basic non-negative matrix factorization method [7]
Non-Neural Machine	FunkSVD	Matrix factorization for rating prediction [14]
Learning	MF BPR	Matrix factorization optimized for ranking [22]
	SLIM ElasticNet	A scalable linear model [15, 19]
	SLIM BPR	A variation of SLIM optimizing ranking [3]
	EASE ^R	A recent linear model, similar to auto-encoders [25]

Table 1. Overview of Baseline Methods

B.0.1 Popularity-Based Ranking. Recommending the most popular items to everyone is a common strategy in practice. The method **TopPopular** implements this non-personalized recommendation approach. The popularity of an item is determined by its number of implicit or explicit ratings in the given dataset.

B.0.2 Nearest-Neighbor Methods. Nearest-neighbor techniques were used in the early GroupLens system [23] and first successful reports of collaborative filtering systems also used nearest-neighbor techniques [16]. We consider both *user-based* and *item-based* variants, **UserKNN** and **ItemKNN**.

Many variants of the basic nearest-neighbor prediction scheme were proposed over the years, see [6] for an early performance comparison. In this work, we therefore consider different variations of the nearest-neighbor techniques as well. For both UserKNN and ItemKNN, the following hyperparameters can be set and were optimized in our experiments, their ranges are reported in Appendix O.

1:6 Ferrari Dacrema et al.

• *Neighborhood Size*: This main parameter determines how many neighbors are considered for prediction.

- Similarity Measure: We made experiments with the Jaccard coefficient [21] as well as Cosine [24], Asymmetric Cosine [1], Dice-Sørensen [10] and Tversky [27] similarities. Some of these similarity measures also have their own parameters, as reported in Appendix O, which we optimized as well.
- *Shrinkage*: As proposed in [4], we used a parameter (the *shrink term*) to lower the similarity between items that have only few interactions in common. The shrinkage is applied to all similarities.
- *Feature Weighting*: Using feature weighting for ratings was proposed in [28]. In our experiments, we both tested configurations with no weighting and weighting with either the TF-IDF or the BM25 scheme.
- *Normalization*: This setting determines if we should consider the denominator in the similarity measure as normalization. Only some of the similarity measures have this parameter.
- B.0.3 Graph-based Methods. Traditional nearest-neighbor models consider "direct" neighborhoods by computing similarities between pairs of objects. Graph-based models can help to overcome this possible limitation relying on a broader interpretation of neighborhoods. In our study, we consider two such graph-based methods called $P^3\alpha$ [8] and $RP^3\beta$ [20]. Both methods often lead to good recommendation quality at low computational cost. Interestingly, these two methods appear to be almost unknown in the community and seldom used as baselines, despite the fact that they are very simple, effective and have been published in top-tier venues.
 - $P^3\alpha$: This method implements a two-steps random walk from users to items and vice-versa, where the probabilities to jump between users and items are computed from the normalized ratings raised to the power of α . The method is equivalent to a KNN item-based CF algorithm, with the similarity matrix being computed as the dot-product of the probability vectors [8]. In addition to what described in the original algorithm, we normalize each row of the similarity matrix with its l1 norm. The hyperparameters of the algorithm include the size of the neighborhood and the value for α .
 - $RP^3\beta$: This is an improved version of $P^3\alpha$ proposed in [20]. In $RP^3\beta$, each similarity between two items is computed with $P^3\alpha$ and divided by the popularity of the items raised to the power of β . Again, we normalize each row of the similarity matrix with its l1 norm. If β is 0, $RP^3\beta$ is equivalent to $P^3\alpha$. The hyperparameters of the algorithm are the size of the neighborhood and the values for α and β .
- *B.0.4 Content-based and hybrid Methods.* Some of the neural methods investigated in this paper include side information about items or users. We have therefore included two simple baselines that make usage of content information.
 - ItemKNN-CBF, UserKNN-CBF: A neighborhood-based content-based-filtering (CBF) approach, where we compute the item (or user) similarities based on the items' (or user's) content features (attributes) [17]. We tested the same set of similarity measures described for the collaborative KNN methods (Jaccard coefficient, Cosine, Asymmetric Cosine, Dice-Sørensen and Tversky similarity). The hyperparameters are the same as for the ItemKNN and UserKNN methods.
 - ItemKNN-CFCBF, UserKNN-CFCBF: A hybrid algorithm based on item-item (or user-user) similarities and described in [18]. The similarity between items is computed by first concatenating, for each item, the vector of implicit ratings (collaborative features) and the vector of item attributes (content features) and by later computing the similarity between

the concatenated vectors. In case of user-user similarities the algorithm operates in a similar way, concatenating the vector of implicit ratings of each user with the user's content feature vector. The hyperparameters and similarity measures are the same as for ItemKNN, plus a parameter w that controls the relative importance of the content features with respect to the collaborative features. When w is 0, this algorithm is equivalent to the pure collaborative versions, either ItemKNN or UserKNN.

B.0.5 Non-Neural Machine Learning Approaches. Countless machine learning models were proposed for *top-n* recommendation tasks in the literature. In our experiments, we included a number of comparably basic models from the literature as representatives of which methods were often considered the state-of-the-art in pre-neural times.

- Matrix Factorization (MF) Techniques: The application of matrix decomposition methods for
 collaborative filtering problems was investigated already in the early years of recommender
 systems [5], and became a de-facto standard after the Netflix prize competition (2006-2009). We
 made experiments with many variants, but will limit our discussion to two main techniques
 which proved to consistently lead to competitive results among the different MF techniques.
 - iALS: In their seminal work [13], Hu et al. proposed an Alternating Least Squares approach for implicit feedback datasets, which turns implicit feedback signals into confidence values. The authors also proposed a particular optimization method that has the advantage of scaling well on larger datasets. A number of hyperparameters can be tuned for the method, including the number of latent factors, the confidence scaling and the regularization factor.
 - PureSVD: This method corresponds to a basic matrix factorization approach as proposed in [9]. To implement PureSVD, we used a standard SVD decomposition method provided in the scikit-learn package for Python.⁵ The only hyperparameter of this method is the number of latent factors.
 - NMF: This method performs a Non Negative Matrix Factorization, which is described in [7]. As opposed to PureSVD, NFM guarantees all latent factors to be positive. We used a standard NMF decomposition method provided in the scikit-learn package for Python.⁶ The only hyperparameter of this method is the number of latent factors.
- FunkSVD: This matrix factorization algorithm was proposed by Simon Funk in his well known online article⁷ during the Netflix Prize. This method optimises rating prediction via MSE. The embeddings of users and items are regularises with a Frobenius norm. In order to ensure the suitability of FunkSVD for a *top-n* recommendation task we added a hyperparameter which ensures a certain quota of the samples used during training are randomly sampled among the unseen items and are associated with a rating of 0. Another hyperparameter controls whether the model should include the global bias, user bias and item bias. Other hyperparameters include the learning rate, the regularisation coefficients, and the number of latent factors.
- MF BPR: This algorithm was presented in the well known article from Rendle et al. [22] as a matrix factorization model optimizing ranking accuracy via a BPR loss. MF BPR is a widely used baseline in the article we surveyed. This method, as opposed to FunkSVD, PureSVD and NFM, has been explicitly designed for implicit interactions. Furthermore, as opposed to iALS it is trained using gradient ascent. Hyperparameters of this method include the number of latent factor, the learning rate and the regularization coefficients.

 $^{^5} https://scikit-learn.org/stable/modules/generated/sklearn.utils.extmath.randomized_svd.html$

 $^{^6} https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.NMF.html\\$

⁷http://sifter.org/~simon/journal/20061211.html

1:8 Ferrari Dacrema et al.

• Sparse Linear Models (SLIM): SLIM was proposed as a well-performing regression-based method for top-n recommendation tasks in [19]. In our work, we use the more scalable variant proposed in [15] (SLIM ElasticNet) which learns the item similarity matrix one item at a time (e.g. one column w at a time) by solving a regression problem in such a way that the interactions for the target item y are learned by using all other interactions as training data. To implement SLIM ElasticNet we used a standard ElasticNet solver provided in the scikit-learn package for Python. The hyperparameters of this method include the ratio of 11 and 12 regularizations as well as a regularization magnitude coefficient.

- Sparse Linear Models BPR: This algorithm is a variant of the previously mentioned SLIM ElacticNet which optimizes ranking accuracy rather than prediction error (SLIM BPR) [2, 3, 26]. The algorithm learns an item-item similarity matrix by optimizing the BPR loss function, described in [22], via gradient ascent. The hyperparameters of this method include the number of neighbours as described in the Nearest-Neighbor Methods, the regularization coefficients and whether the learned similarity matrix should be symmetric or not.
- *EASE*^R: In a recent article [25] the author showed that an "embarrassingly shallow" linear model, which shares similarities with an auto-encoder, can produce highly-accurate recommendations that often outperform existing and much more complex techniques. A peculiarity of this model is the existence of a closed-form solution for the training objective which results in very fast training. The only hyperparameter is the choice of the regularization factor. This algorithm has been published in 2019 and, as such, the papers covered by our study could not include EASE^R as a baseline. However, we include EASE^R to investigate whether shallow auto-encoders are able to provide, on average, more accurate recommendations with respect to complex deep-learning architectures.

 $^{^8} https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html\\$

C KDD: COLLABORATIVE DEEP LEARNING

This algorithm is evaluated in the same experimental conditions and on the same data as *CVAE*. For the full results please refer to Section E.

1:10 Ferrari Dacrema et al.

D SIGIR: COLLABORATIVE MEMORY NETWORKS

Relevant statistics on the dataset, which we mentioned in the paper, are reported in Table 2 and 3. The results of our evaluation can be seen in Table 4 (CiteULike), Table 5 (Epinions) and Table 6 (Pinterest). The corresponding optimal hyperparameters are reported in Table 7 (collaborative KNNs), Table 8 (non-neural machine learning and graph based) and Table 9 (CMN). In Table 4 and 5 we report only the best performing CMN, which corresponds to CMN-3, hence with three hops. Lastly, the time required to train and evaluate the models is reported in Table 10 (CiteULike), Table 11 (Epinions) and Table 12 (Pinterest).

Table 2. Dataset characteristics.

Dataset	Interactions	Items	Users	Sparsity
Epinions	664.8 k	139.7 k	40.1 k	99.98%
CiteULike-a	204.9 k	16.9 k	5.5 k	99.78%
Pinterest	1.5 M	9.9 k	55.1 k	99.73%

Table 3. Dataset popularity bias characteristics.

	Max pop	Min pop	Avg pop	Gini Index	Shannon	Herfindahl
Citeulike	321.00	1.00	12.07	0.37	13.65	1.00
Pinterest	1636.00	1.00	147.60	0.45	12.77	1.00
Epinions	2026.00	1.00	4.76	0.69	15.11	1.00

Table 4. Experimental results on the metrics and cutoffs reported in the original paper.

	1			
			eulike	
	HR@5	NDCG@5	HR@10	NDCG@10
Random	0.0486	0.0288	0.0919	0.0426
TopPop	0.1810	0.1226	0.2774	0.1537
UserKNN CF cosine	0.8231	0.7027	0.8962	0.7265
UserKNN CF dice	0.8099	0.6839	0.8836	0.7079
UserKNN CF jaccard	0.8116	0.6880	0.8838	0.7115
UserKNN CF asymmetric	0.8226	0.7039	0.8959	0.7279
UserKNN CF tversky	0.8121	0.6892	0.8867	0.7135
ItemKNN CF cosine	0.8247	0.7045	0.8925	0.7267
ItemKNN CF dice	0.8089	0.6823	0.8863	0.7075
ItemKNN CF jaccard	0.8065	0.6793	0.8861	0.7053
ItemKNN CF asymmetric	0.8233	0.7041	0.8944	0.7274
ItemKNN CF tversky	0.8081	0.6796	0.8874	0.7055
P3alpha	0.8272	0.7144	0.8971	0.7370
RP3beta	0.8326	0.7227	0.9002	0.7447
EASE R	0.8107	0.6966	0.8771	0.7182
SLIM BPR	0.8099	0.6916	0.8861	0.7164
SLIMElasticNet	0.8265	0.7168	0.8908	0.7376
MF BPR	0.7316	0.6053	0.8245	0.6356
MF FunkSVD	0.7860	0.6488	0.8672	0.6752
PureSVD	0.7233	0.6020	0.7954	0.6254
NMF	0.7161	0.5534	0.8245	0.5887
IALS	0.8308	0.7085	0.9006	0.7313
CMN	0.7874	0.6505	0.8746	0.6790

1:12 Ferrari Dacrema et al.

Table 5. Experimental results on the metrics and cutoffs reported in the original paper.

	Epinions			
	HR@5	NDCG@5	HR@10	NDCG@10
Random	0.0489	0.0290	0.0988	0.0449
TopPop	0.5492	0.4204	0.6672	0.4587
UserKNN CF cosine	0.4282	0.3631	0.4764	0.3787
UserKNN CF dice	0.4108	0.3475	0.4589	0.3630
UserKNN CF jaccard	0.4108	0.3473	0.4589	0.3628
UserKNN CF asymmetric	0.4294	0.3642	0.4767	0.3795
UserKNN CF tversky	0.4207	0.3571	0.4700	0.3731
ItemKNN CF cosine	0.4309	0.3584	0.4854	0.3760
ItemKNN CF dice	0.4088	0.3426	0.4631	0.3601
ItemKNN CF jaccard	0.4088	0.3427	0.4631	0.3602
ItemKNN CF asymmetric	0.4149	0.3437	0.4761	0.3635
ItemKNN CF tversky	0.4179	0.3476	0.4757	0.3662
P3alpha	0.4008	0.3411	0.4389	0.3533
RP3beta	0.3928	0.3329	0.4341	0.3462
EASE R	_	-	-	-
SLIM BPR	0.3988	0.3393	0.4422	0.3533
SLIMElasticNet	0.4133	0.3471	0.4667	0.3643
MF BPR	0.4668	0.3662	0.5594	0.3962
MF FunkSVD	0.5427	0.4196	0.6567	0.4566
PureSVD	0.4073	0.3069	0.5045	0.3384
NMF	0.4055	0.3218	0.4951	0.3508
IALS	0.0519	0.0316	0.1003	0.0470
CMN	0.4699	0.3781	0.5399	0.4008

Table 6. Experimental results on the metrics and cutoffs reported in the original paper.

		Pin	terest	
	HR@5	NDCG@5	HR@10	NDCG@10
Random	0.0509	0.0296	0.1003	0.0454
TopPop	0.1665	0.1064	0.2740	0.1409
UserKNN CF cosine	0.7017	0.5050	0.8614	0.5570
UserKNN CF dice	0.7026	0.5053	0.8634	0.5578
UserKNN CF jaccard	0.7034	0.5062	0.8639	0.5585
UserKNN CF asymmetric	0.7005	0.5037	0.8630	0.5567
UserKNN CF tversky	0.7024	0.5047	0.8636	0.5572
ItemKNN CF cosine	0.7132	0.5116	0.8781	0.5653
ItemKNN CF dice	0.7095	0.5091	0.8766	0.5635
ItemKNN CF jaccard	0.7094	0.5086	0.8764	0.5630
ItemKNN CF asymmetric	0.7126	0.5110	0.8776	0.5648
ItemKNN CF tversky	0.7095	0.5086	0.8761	0.5629
P3alpha	0.6990	0.5034	0.8596	0.5559
RP3beta	0.7147	0.5150	0.8772	0.5680
EASE R	0.7050	0.5106	0.8559	0.5599
SLIM BPR	0.7120	0.5151	0.8733	0.5678
SLIMElasticNet	0.7084	0.5107	0.8683	0.5628
MF BPR	0.6924	0.4886	0.8694	0.5463
MF FunkSVD	0.7088	0.5037	0.8686	0.5559
PureSVD	0.6619	0.4721	0.8146	0.5219
NMF	0.6550	0.4618	0.8287	0.5183
IALS	0.7219	0.5175	0.8677	0.5652
CMN	0.7013	0.5005	0.8674	0.5547

1:14 Ferrari Dacrema et al.

Table 7. Hyperparameter values for our collaborative KNN baselines on all datasets.

Algorithm	Hyperparameter	Citeulike	Pinterest	Epinions
	topK	578	668	1000
	shrink	0	0	0
UserKNN CF cosine	similarity	cosine	cosine	cosine
	normalize	True	True	True
	feature weighting	BM25	none	TF-IDF
	topK	627	818	1000
UserKNN CF dice	shrink	0	0	0
OSCINIVIV CI UICC	similarity	dice	dice	dice
	normalize	False	True	False
	topK	637	807	1000
UserKNN CF jaccard	shrink	0	0	0
Oscilciviv er jaccard	similarity	jaccard	jaccard	jaccard
	normalize	False	True	False
	topK	690	1000	1000
	shrink	1000	0	163
UserKNN CF asymmetric	similarity	asymmetric	asymmetric	asymmetric
osciicivi ei asymmetrie	normalize	True	True	True
	asymmetric alpha	1.0291	0.4622	0.4379
	feature weighting	BM25	BM25	TF-IDF
	topK	533	940	935
	shrink	35	0	9
UserKNN CF tversky	similarity	tversky	tversky	tversky
OSEIKININ CI- tveisky	normalize	True	True	True
	tversky alpha	1.4634	2.0000	0.1591
	tversky beta	0.0885	0.0000	1.9682
	topK	594	942	1000
	shrink	999	1000	448
ItemKNN CF cosine	similarity	cosine	cosine	cosine
	normalize	True	True	False
	feature weighting	TF-IDF	BM25	TF-IDF
	topK	996	981	1000
ItemKNN CF dice	shrink	11	0	1000
nematives are	similarity	dice	dice	dice
	normalize	False	False	True
	topK	480	983	1000
ItemKNN CF jaccard	shrink	3	0	1000
	similarity	jaccard	jaccard	jaccard
	normalize	True	True	False
	topK	1000	1000	1000
	shrink	649	845	850
ItemKNN CF asymmetric	similarity	asymmetric	asymmetric	asymmetric
	normalize	True	True	True
	asymmetric alpha	0.2742	0.2281	1.5411
	feature weighting	TF-IDF	BM25	none
	topK	421	1000	1000
	shrink	28	0	555
	similarity	tversky	tversky	tversky
ItemKNN CF tversky				
ItemKNN CF tversky	normalize	True	True	True
ItemKNN CF tversky	normalize tversky alpha tversky beta	True 0.0103	True 1.9767	True 0.0000

Table 8. Hyperparameter values for our non-neural machine learning and graph based baselines on all datasets.

Algorithm	Hyperparameter	Citeulike	Pinterest	Epinions
	topK	653	453	1000
$P^3\alpha$	alpha	0.6310	1.1895	0.1164
	normalize similarity	False	True	False
	topK	764	816	1000
RP^3eta	alpha	0.7110	1.1916	0.0000
RP p	beta	0.2297	0.4365	0.0000
	normalize similarity	True	True	False
EASE ^R	l2 norm	4.60E+02	1.72E+03	-
	topK	803	726	1000
	epochs	165	235	370
	symmetric	False	True	False
SLIM BPR	sgd mode	adam	adagrad	adagrad
	lambda i	1.00E-02	1.00E-05	1.00E-02
	lambda j	1.00E-02	3.06E-05	1.00E-02
	learning rate	1.00E-04	1.00E-01	1.00E-04
	topK	1000	705	1000
SLIMElasticNet	l1 ratio	4.21E-05	1.55E-04	1.00E-05
	alpha	0.0265	0.0316	0.2911
	sgd mode	adam	adagrad	adagrad
	epochs	1045	935	995
	num factors	175	146	200
MF BPR	batch size	512	128	16
	positive reg	9.89E-03	7.72E-03	1.00E-02
	negative reg	7.25E-03	1.00E-02	1.00E-02
	learning rate	2.80E-03	4.63E-02	1.00E-01
	sgd mode	adam	adam	adam
	epochs	300	500	75
	use bias	True	False	True
	batch size	16	8	4
MF FunkSVD	num factors	55	37	1
	item reg	4.02E-05	1.00E-05	1.00E-05
	user reg	1.00E-02	1.00E-02	9.01E-03
	learning rate	2.44E-03	5.99E-04	1.58E-04
	negative quota	0.2792	0.0941	0.4998
PureSVD	num factors	320	77	1
	num factors	122	77	45
NMF	solver	mult. update	coord. descent	coord. descent
	init type	nndsvda	nndsvda	random
	beta loss	kullback-leibler	frobenius	frobenius
	num factors	115	52	49
	confidence scaling	linear	linear	log
iALS	alpha	15.4014	50.0000	9.8676
	epsilon	0.4163	0.0052	0.0013
	reg	1.00E-05	1.00E-05	6.20E-03
	epochs	60	90	100

1:16 Ferrari Dacrema et al.

Table 9. Hyperparameter values for the deep learning algorithm on all datasets.

Algorithm	Hyperparameter	Citeulike	Pinterest	Epinions
	epochs	50	5	45
	epochs gmf	100	100	100
	hops	3	3	3
	neg samples	4	4	4
	reg l2 cmn	1.00E-01	1.00E-01	1.00E-01
CMN	reg l2 gmf	1.00E-04	1.00E-04	1.00E-04
CIVIIN	pretrain	True	True	True
	learning rate	1.00E-03	1.00E-03	1.00E-03
	verbose	False	False	False
	batch size	128	256	128
	embed size	50	50	40

Table 10. Comparison of the computation time for the different algorithms.

	Citeulik	e	
	Train time	Recommendat	tion
	rain time	Time	[usr/s]
Random	0.00 [sec]	4.83 [sec]	1150
TopPop	0.01 [sec]	5.46 [sec]	1017
UserKNN CF cosine	$0.52 \pm 0.04 [sec]$	9.76 ± 0.23 [sec]	566
UserKNN CF dice	$0.52 \pm 0.04 [sec]$	$9.41 \pm 0.39 [sec]$	575
UserKNN CF jaccard	$0.52 \pm 0.04 [sec]$	$9.69 \pm 0.38 [sec]$	572
UserKNN CF asymmetric	$0.51 \pm 0.04 [sec]$	$9.80 \pm 0.07 [sec]$	574
UserKNN CF tversky	$0.50 \pm 0.04 [sec]$	$9.58 \pm 0.02 [sec]$	580
ItemKNN CF cosine	3.10 ± 0.31 [sec]	$9.75 \pm 0.41 [sec]$	564
ItemKNN CF dice	3.06 ± 0.21 [sec]	$9.70 \pm 0.38 [sec]$	554
ItemKNN CF jaccard	3.06 ± 0.21 [sec]	9.87 ± 0.16 [sec]	575
ItemKNN CF asymmetric	3.24 ± 0.21 [sec]	$9.73 \pm 0.44 [sec]$	553
ItemKNN CF tversky	$3.02 \pm 0.24 [sec]$	$9.70 \pm 0.17 [sec]$	581
$P^3\alpha$	13.78 ± 2.87 [sec]	9.56 ± 0.13 [sec]	583
$RP^3\beta$	15.82 ± 3.05 [sec]	9.51 ± 0.26 [sec]	576
$EASE^R$	102.76 [sec] / 1.71 ± 0.01 [min]	8.99 ± 0.05 [sec]	612
SLIM BPR	645.01 [sec] / 10.75 ± 4.22 [min]	$10.16 \pm 0.22 [sec]$	538
SLIMElasticNet	236.77 [sec] / 3.95 ± 1.56 [min]	9.79 ± 0.66 [sec]	559
MF BPR	776.37 [sec] / 12.94 ± 8.09 [min]	$6.51 \pm 1.04 [sec]$	879
MF FunkSVD	1057.07 [sec] / 17.62 ± 12.82 [min]	$6.12 \pm 0.37 [sec]$	881
PureSVD	$1.23 \pm 0.47 [sec]$	$7.32 \pm 0.21 [sec]$	744
NMF	153.39 [sec] / 2.56 ± 2.07 [min]	$6.71 \pm 0.50 [sec]$	870
iALS	593.57 [sec] / 9.89 ± 4.71 [min]	5.92 ± 0.21 [sec]	911
CMN	6818.32 [sec] / 1.89 [hour]	20.18 [sec]	275

Table 11. Comparison of the computation time for the different algorithms.

	E	pinions	
	Train time	Recommendation	
	Train time	Time	[usr/s]
Random	0.01 [sec]	56.42 [sec]	712
TopPop	0.02 [sec]	91.41 [sec] / 1.52 [min]	439
UserKNN CF cosine	12.81 ± 0.45 [sec]	120.93 [sec] / 2.02 ± 0.02 [min]	330
UserKNN CF dice	12.51 ± 0.39 [sec]	119.91 [sec] / 2.00 ± 0.03 [min]	329
UserKNN CF jaccard	12.51 ± 0.41 [sec]	120.24 [sec] / 2.00 ± 0.02 [min]	331
UserKNN CF asymmetric	13.04 ± 0.37 [sec]	121.49 [sec] / 2.02 ± 0.03 [min]	325
UserKNN CF tversky	12.66 ± 0.36 [sec]	121.45 [sec] / 2.02 ± 0.01 [min]	331
ItemKNN CF cosine	125.68 [sec] / 2.09 ± 0.14 [min]	128.99 [sec] / 2.15 ± 0.05 [min]	305
ItemKNN CF dice	122.99 [sec] / 2.05 ± 0.01 [min]	127.09 [sec] / 2.12 ± 0.04 [min]	311
ItemKNN CF jaccard	123.08 [sec] / 2.05 ± 0.01 [min]	128.41 [sec] / 2.14 ± 0.03 [min]	306
ItemKNN CF asymmetric	126.35 [sec] / 2.11 ± 0.02 [min]	129.97 [sec] / 2.17 ± 0.07 [min]	303
ItemKNN CF tversky	125.31 [sec] / 2.09 ± 0.01 [min]	$127.61 [sec] / 2.13 \pm 0.06 [min]$	306
$P^3\alpha$	367.87 [sec] / 6.13 ± 0.19 [min]	116.08 [sec] / 1.93 ± 0.03 [min]	341
$RP^3\beta$	395.01 [sec] / 6.58 ± 0.20 [min]	116.68 [sec] / 1.94 ± 0.03 [min]	339
$EASE^R$	-	=	-
SLIM BPR	42149.10 [sec] / 11.71 ± 5.47 [hour]	124.94 [sec] / 2.08 ± 0.07 [min]	323
SLIMElasticNet	14201.25 [sec] / 3.94 ± 1.31 [hour]	$127.63 [sec] / 2.13 \pm 0.14 [min]$	310
MF BPR	10857.32 [sec] / 3.02 ± 1.65 [hour]	98.43 [sec] / 1.64 ± 0.28 [min]	440
MF FunkSVD	3409.08 [sec] / 56.82 ± 68.92 [min]	105.37 [sec] / 1.76 ± 0.19 [min]	327
PureSVD	2.36 ± 3.67 [sec]	88.22 [sec] / 1.47 ± 0.04 [min]	464
NMF	1754.00 [sec] / 29.23 ± 18.12 [min]	100.15 [sec] / 1.67 ± 0.18 [min]	448
iALS	4470.54 [sec] / 1.24 ± 0.79 [hour]	87.28 [sec] / 1.45 ± 0.00 [min]	459
CMN	33203.75 [sec] / 9.22 [hour]	292.74 [sec] / 4.88 [min]	137

1:18 Ferrari Dacrema et al.

Table 12. Comparison of the computation time for the different algorithms.

	Pi	interest	
	Train time	Recommendation Time	[usr/s]
Random	0.02 [sec]	47.56 [sec]	1160
TopPop	0.04 [sec]	52.75 [sec]	1046
UserKNN CF cosine	28.98 ± 1.55 [sec]	94.03 [sec] / 1.57 ± 0.03 [min]	586
UserKNN CF dice	29.42 ± 0.98 [sec]	94.33 [sec] / 1.57 ± 0.02 [min]	578
UserKNN CF jaccard	29.45 ± 1.21 [sec]	94.86 [sec] / 1.58 ± 0.01 [min]	582
UserKNN CF asymmetric	30.05 ± 1.40 [sec]	94.93 [sec] / 1.58 ± 0.06 [min]	567
UserKNN CF tversky	28.91 ± 1.58 [sec]	95.05 [sec] / 1.58 ± 0.02 [min]	571
ItemKNN CF cosine	1.82 ± 0.19 [sec]	92.88 [sec] / 1.55 ± 0.02 [min]	592
ItemKNN CF dice	1.76 ± 0.21 [sec]	91.06 [sec] / 1.52 ± 0.04 [min]	594
ItemKNN CF jaccard	1.77 ± 0.17 [sec]	91.28 [sec] / 1.52 ± 0.04 [min]	597
ItemKNN CF asymmetric	1.78 ± 0.17 [sec]	90.51 [sec] / 1.51 ± 0.05 [min]	593
ItemKNN CF tversky	1.74 ± 0.16 [sec]	90.53 [sec] / 1.51 ± 0.04 [min]	595
$P^3\alpha$	$8.71 \pm 2.25 [sec]$	88.71 [sec] / 1.48 ± 0.02 [min]	627
$RP^3\beta$	9.23 ± 2.85 [sec]	90.04 [sec] / 1.50 ± 0.03 [min]	608
EASE ^R	22.30 ± 0.27 [sec]	76.12 [sec] / 1.27 ± 0.02 [min]	721
SLIM BPR	3594.20 [sec] / 59.90 ± 28.93 [min]	91.58 [sec] / 1.53 ± 0.03 [min]	597
SLIMElasticNet	433.57 [sec] / 7.23 ± 2.50 [min]	91.23 [sec] / 1.52 ± 0.04 [min]	595
MF BPR	6439.39 [sec] / 1.79 ± 1.12 [hour]	64.56 [sec] / 1.08 ± 0.18 [min]	755
MF FunkSVD	8220.55 [sec] / 2.28 ± 1.76 [hour]	$58.83 \pm 10.08 [sec]$	1006
PureSVD	$2.33 \pm 1.89 [sec]$	$56.22 \pm 0.27 [sec]$	984
NMF	686.16 [sec] / 11.44 ± 9.74 [min]	72.56 [sec] / 1.21 ± 0.26 [min]	937
iALS	2694.24 [sec] / 44.90 ± 36.27 [min]	57.41 ± 1.73 [sec]	955
CMN	28100.23 [sec] / 7.81 [hour]	354.04 [sec] / 5.90 [min]	156

E KDD: COLLABORATIVE VARIATIONAL AUTOENCODERS

Relevant statistics on the dataset, which we mentioned in the paper, are reported in Table 13 and 14. The results of our evaluation can be seen in Table 15 (citeULike-a, P=1), Table 16 (citeULike-a, P=10), Table 17 (citeULike-t, P=1), Table 18 (citeULike-t, P=10). The corresponding optimal hyperparameters are reported in Table 19 (collaborative KNNs), Table 20 (non-neural machine learning and graph based), Table 21 (content-based KNNs), Table 22 (hybrid KNNs) and Table 23 (CVAE and CDL).

Lastly, the time required to train and evaluate the models is reported in Table 24 (citeULike-a, P=1), Table 25 (citeULike-a, P=10), Table 26 (citeULike-t, P=1), Table 27 (citeULike-t, P=10).

Dataset Interactions Items Users Sparsity Item features CiteULike-a 204.9 k 8.0 k 16.9 k 5.5 k 99.78% CiteULike-t 20.0 k 134.8 k 25.9 k 7.9 k 99.93% NetflixPrize 15.3 M 9.2 k 407.2 k 99.59% 20.0 k

Table 13. Dataset characteristics.

Table 14. Train data density for the different experimental settings of CDL.

Dataset	Experiment	Interactions	Density
CiteULike-a	P = 1	5.5 k	5.8e - 5
CiteULike-a	P = 10	55.5 k	5.8e - 4
CiteULike-t	P = 1	7.9 k	3.8e - 5
CiteULike-t	P = 10	53.3 k	2.5e - 4

1:20 Ferrari Dacrema et al.

Table 15. Experimental results on the metrics and cutoffs reported in the original paper.

			CiteULi	ke-a P=1		
	REC@50	REC@100	REC@150	REC@200	REC@250	REC@300
Random	0.0033	0.0065	0.0096	0.0126	0.0155	0.0185
TopPop	0.0253	0.0389	0.0486	0.0589	0.0651	0.0704
UserKNN CF cosine	0.0026	0.0053	0.0069	0.0102	0.0127	0.0154
UserKNN CF dice	0.0026	0.0053	0.0069	0.0102	0.0127	0.0154
UserKNN CF jaccard	0.0026	0.0053	0.0069	0.0102	0.0127	0.0154
UserKNN CF asymmetric	0.0026	0.0053	0.0069	0.0102	0.0127	0.0154
UserKNN CF tversky	0.0026	0.0053	0.0069	0.0102	0.0127	0.0154
ItemKNN CF cosine	0.0026	0.0053	0.0069	0.0102	0.0127	0.0154
ItemKNN CF dice	0.0026	0.0053	0.0069	0.0102	0.0127	0.0154
ItemKNN CF jaccard	0.0026	0.0053	0.0069	0.0102	0.0127	0.0154
ItemKNN CF asymmetric	0.0026	0.0053	0.0069	0.0102	0.0127	0.0154
ItemKNN CF tversky	0.0026	0.0053	0.0069	0.0102	0.0127	0.0154
P3alpha	0.0026	0.0053	0.0069	0.0102	0.0127	0.0154
RP3beta	0.0026	0.0053	0.0069	0.0102	0.0127	0.0154
EASE R	0.0043	0.0073	0.0120	0.0160	0.0203	0.0235
SLIM BPR	0.0027	0.0052	0.0071	0.0102	0.0130	0.0155
SLIMElasticNet	0.0026	0.0053	0.0069	0.0102	0.0127	0.0154
MF BPR	0.0046	0.0082	0.0119	0.0154	0.0188	0.0223
MF FunkSVD	0.0047	0.0087	0.0125	0.0161	0.0194	0.0227
PureSVD	0.0055	0.0111	0.0168	0.0226	0.0289	0.0356
NMF	0.0036	0.0067	0.0090	0.0121	0.0142	0.0167
IALS	0.0050	0.0102	0.0149	0.0190	0.0235	0.0279
ItemKNN CBF cosine	0.0242	0.0267	0.0284	0.0317	0.0341	0.0367
ItemKNN CBF dice	0.0210	0.0235	0.0253	0.0287	0.0310	0.0336
ItemKNN CBF jaccard	0.0253	0.0282	0.0301	0.0335	0.0360	0.0386
ItemKNN CBF asymmetric	0.0256	0.0295	0.0316	0.0350	0.0379	0.0405
ItemKNN CBF tversky	0.0173	0.0200	0.0217	0.0251	0.0275	0.0300
ItemKNN CFCBF cosine	0.0034	0.0061	0.0076	0.0110	0.0135	0.0161
ItemKNN CFCBF dice	0.0236	0.0262	0.0279	0.0313	0.0336	0.0362
ItemKNN CFCBF jaccard	0.0553	0.0614	0.0639	0.0670	0.0691	0.0717
ItemKNN CFCBF asymmetric	0.0029	0.0055	0.0071	0.0104	0.0130	0.0156
ItemKNN CFCBF tversky	0.0448	0.0512	0.0547	0.0583	0.0612	0.0639
CVAE	0.0768	0.1171	0.1485	0.1744	0.1973	0.2168
CDL	0.0855	0.1208	0.1445	0.1623	0.1767	0.1901

Table 16. Experimental results on the metrics and cutoffs reported in the original paper.

			CiteULil	ke-a P=10		
	REC@50	REC@100	REC@150	REC@200	REC@250	REC@300
Random	0.0034	0.0062	0.0090	0.0120	0.0146	0.0174
TopPop	0.0040	0.0078	0.0103	0.0204	0.0230	0.0258
UserKNN CF cosine	0.0769	0.1174	0.1443	0.1670	0.1859	0.2010
UserKNN CF dice	0.0788	0.1186	0.1463	0.1689	0.1875	0.2030
UserKNN CF jaccard	0.0806	0.1207	0.1480	0.1705	0.1887	0.2034
UserKNN CF asymmetric	0.0769	0.1173	0.1441	0.1671	0.1859	0.2013
UserKNN CF tversky	0.0799	0.1192	0.1466	0.1696	0.1880	0.2025
ItemKNN CF cosine	0.0989	0.1441	0.1752	0.1982	0.2156	0.2300
ItemKNN CF dice	0.0945	0.1373	0.1675	0.1912	0.2092	0.2233
ItemKNN CF jaccard	0.0917	0.1340	0.1642	0.1876	0.2062	0.2207
ItemKNN CF asymmetric	0.0890	0.1334	0.1631	0.1865	0.2065	0.2215
ItemKNN CF tversky	0.0990	0.1428	0.1736	0.1972	0.2143	0.2281
P3alpha	0.0907	0.1341	0.1636	0.1865	0.2055	0.2206
RP3beta	0.0963	0.1408	0.1692	0.1908	0.2090	0.2239
EASE R	0.0835	0.1242	0.1528	0.1771	0.1956	0.2100
SLIM BPR	0.0876	0.1308	0.1583	0.1821	0.2005	0.2165
SLIMElasticNet	0.0869	0.1281	0.1561	0.1789	0.1970	0.2115
MF BPR	0.0680	0.1011	0.1225	0.1402	0.1542	0.1663
MF FunkSVD	0.0483	0.0866	0.1157	0.1412	0.1636	0.1816
PureSVD	0.0715	0.1079	0.1313	0.1491	0.1636	0.1759
NMF	0.0628	0.1013	0.1285	0.1505	0.1679	0.1843
IALS	0.0779	0.1388	0.1834	0.2186	0.2472	0.2706
ItemKNN CBF cosine	0.2235	0.3180	0.3829	0.4283	0.4651	0.4950
ItemKNN CBF dice	0.1734	0.2495	0.3035	0.3455	0.3798	0.4076
ItemKNN CBF jaccard	0.1752	0.2522	0.3045	0.3457	0.3794	0.4062
ItemKNN CBF asymmetric	0.2234	0.3186	0.3835	0.4288	0.4641	0.4945
ItemKNN CBF tversky	0.1748	0.2507	0.3040	0.3466	0.3814	0.4097
ItemKNN CFCBF cosine	0.1858	0.2816	0.3445	0.3930	0.4335	0.4642
ItemKNN CFCBF dice	0.1803	0.2600	0.3126	0.3558	0.3876	0.4126
ItemKNN CFCBF jaccard	0.1855	0.2650	0.3175	0.3598	0.3924	0.4181
ItemKNN CFCBF asymmetric	0.1712	0.2690	0.3355	0.3845	0.4237	0.4565
ItemKNN CFCBF tversky	0.1832	0.2618	0.3159	0.3577	0.3899	0.4162
CVAE	0.0805	0.1569	0.2232	0.2760	0.3250	0.3687
CDL	0.0580	0.1108	0.1546	0.1946	0.2314	0.2640

1:22 Ferrari Dacrema et al.

Table 17. Experimental results on the metrics and cutoffs reported in the original paper.

			CiteULi	ike-t P=1		
	REC@50	REC@100	REC@150	REC@200	REC@250	REC@300
Random	0.0018	0.0037	0.0057	0.0074	0.0093	0.0109
TopPop	0.0134	0.0179	0.0247	0.0395	0.0456	0.0511
UserKNN CF cosine	0.0012	0.0038	0.0065	0.0084	0.0104	0.0123
UserKNN CF dice	0.0012	0.0038	0.0065	0.0084	0.0104	0.0123
UserKNN CF jaccard	0.0012	0.0038	0.0065	0.0084	0.0104	0.0123
UserKNN CF asymmetric	0.0012	0.0038	0.0065	0.0084	0.0104	0.0123
UserKNN CF tversky	0.0012	0.0038	0.0065	0.0084	0.0104	0.0123
ItemKNN CF cosine	0.0012	0.0038	0.0065	0.0084	0.0104	0.0123
ItemKNN CF dice	0.0012	0.0038	0.0065	0.0084	0.0104	0.0123
ItemKNN CF jaccard	0.0012	0.0038	0.0065	0.0084	0.0104	0.0123
ItemKNN CF asymmetric	0.0012	0.0038	0.0065	0.0084	0.0104	0.0123
ItemKNN CF tversky	0.0012	0.0038	0.0065	0.0084	0.0104	0.0123
P3alpha	0.0012	0.0038	0.0065	0.0084	0.0104	0.0123
RP3beta	0.0012	0.0038	0.0065	0.0084	0.0104	0.0123
EASE R	0.0034	0.0064	0.0096	0.0139	0.0160	0.0192
SLIM BPR	0.0013	0.0038	0.0066	0.0084	0.0102	0.0122
SLIMElasticNet	0.0012	0.0038	0.0065	0.0084	0.0104	0.0123
MF BPR	0.0054	0.0094	0.0125	0.0153	0.0176	0.0203
MF FunkSVD	0.0029	0.0057	0.0083	0.0107	0.0130	0.0151
PureSVD	0.0053	0.0094	0.0140	0.0193	0.0246	0.0283
NMF	0.0037	0.0054	0.0074	0.0089	0.0107	0.0129
IALS	0.0061	0.0100	0.0137	0.0173	0.0206	0.0245
ItemKNN CBF cosine	0.0858	0.1248	0.1549	0.1790	0.2000	0.2180
ItemKNN CBF dice	0.1133	0.1566	0.1887	0.2122	0.2312	0.2478
ItemKNN CBF jaccard	0.1136	0.1567	0.1874	0.2116	0.2283	0.2433
ItemKNN CBF asymmetric	0.0916	0.1274	0.1493	0.1633	0.1743	0.1813
ItemKNN CBF tversky	0.1135	0.1566	0.1881	0.2125	0.2315	0.2490
ItemKNN CFCBF cosine	0.0944	0.1349	0.1647	0.1864	0.2059	0.2243
ItemKNN CFCBF dice	0.1129	0.1552	0.1867	0.2105	0.2300	0.2463
ItemKNN CFCBF jaccard	0.1133	0.1559	0.1848	0.2066	0.2218	0.2338
ItemKNN CFCBF asymmetric	0.0448	0.0525	0.0554	0.0575	0.0590	0.0609
ItemKNN CFCBF tversky	0.1133	0.1555	0.1855	0.2085	0.2249	0.2389
CVAE	0.0430	0.0639	0.0803	0.0950	0.1076	0.1200
CDL	0.0351	0.0573	0.0715	0.0822	0.0915	0.0989

Table 18. Experimental results on the metrics and cutoffs reported in the original paper.

	CiteULike-t P=10					
	REC@50	REC@100	REC@150	REC@200	REC@250	REC@300
Random	0.0019	0.0039	0.0055	0.0079	0.0106	0.0124
TopPop	0.0578	0.0862	0.1100	0.1257	0.1416	0.1568
UserKNN CF cosine	0.2141	0.2661	0.2964	0.3169	0.3320	0.3437
UserKNN CF dice	0.2138	0.2661	0.2958	0.3171	0.3325	0.3444
UserKNN CF jaccard	0.2139	0.2648	0.2954	0.3154	0.3308	0.3426
UserKNN CF asymmetric	0.2134	0.2656	0.2963	0.3170	0.3341	0.3458
UserKNN CF tversky	0.2120	0.2651	0.2955	0.3172	0.3336	0.3462
ItemKNN CF cosine	0.2133	0.2658	0.2964	0.3173	0.3342	0.3457
ItemKNN CF dice	0.2157	0.2681	0.2995	0.3206	0.3366	0.3492
ItemKNN CF jaccard	0.2167	0.2685	0.2994	0.3205	0.3366	0.3491
ItemKNN CF asymmetric	0.2027	0.2616	0.2958	0.3197	0.3381	0.3525
ItemKNN CF tversky	0.2015	0.2606	0.2949	0.3190	0.3372	0.3521
P3alpha	0.2276	0.2769	0.3069	0.3280	0.3450	0.3571
RP3beta	0.2073	0.2636	0.2975	0.3210	0.3398	0.3538
EASE R	0.2056	0.2532	0.2821	0.3025	0.3171	0.3307
SLIM BPR	0.2187	0.2681	0.2988	0.3196	0.3383	0.3516
SLIMElasticNet	0.2102	0.2612	0.2930	0.3129	0.3315	0.3446
MF BPR	0.1551	0.1990	0.2279	0.2482	0.2649	0.2824
MF FunkSVD	0.1231	0.1613	0.1857	0.2019	0.2155	0.2276
PureSVD	0.1329	0.1730	0.1994	0.2215	0.2393	0.2547
NMF	0.1082	0.1429	0.1771	0.2002	0.2199	0.2420
IALS	0.2338	0.3107	0.3566	0.3925	0.4175	0.4374
ItemKNN CBF cosine	0.1625	0.2237	0.2682	0.3001	0.3269	0.3493
ItemKNN CBF dice	0.1665	0.2323	0.2832	0.3206	0.3512	0.3756
ItemKNN CBF jaccard	0.1681	0.2342	0.2851	0.3210	0.3505	0.3761
ItemKNN CBF asymmetric	0.1630	0.2259	0.2689	0.3031	0.3314	0.3562
ItemKNN CBF tversky	0.1599	0.2291	0.2791	0.3170	0.3469	0.3727
ItemKNN CFCBF cosine	0.2675	0.3490	0.3939	0.4246	0.4519	0.4740
ItemKNN CFCBF dice	0.2166	0.2868	0.3361	0.3738	0.4024	0.4284
ItemKNN CFCBF jaccard	0.2172	0.2880	0.3363	0.3741	0.4026	0.4271
ItemKNN CFCBF asymmetric	0.2412	0.3160	0.3663	0.4051	0.4321	0.4548
ItemKNN CFCBF tversky	0.2178	0.2872	0.3383	0.3758	0.4053	0.4279
CVAE	0.2387	0.3274	0.3849	0.4263	0.4606	0.4854
CDL	0.2231	0.3019	0.3565	0.4031	0.4351	0.4618

1:24 Ferrari Dacrema et al.

Table 19. Hyperparameter values for our collaborative KNN baselines on all datasets.

Algorithm	Hyperparameter	CiteULike-a P=1	CiteULike-a P=10	CiteULike-t P=1	CiteULike-t P=10
	topK	844	455	945	347
	shrink	998	490	229	1000
UserKNN CF cosine	similarity	cosine	cosine	cosine	cosine
	normalize	False	False	False	True
	feature weighting	BM25	TF-IDF	TF-IDF	none
	topK	396	317	203	359
UserKNN CF dice	shrink	551	1000	832	1000
UserKININ CF dice	similarity	dice	dice	dice	dice
	normalize	False	True	False	False
	topK	436	348	660	327
UserKNN CF jaccard	shrink	918	1000	205	1000
Oserkinin Cr jaccard	similarity	jaccard	jaccard	jaccard	jaccard
	normalize	False	False	True	True
	topK	748	483	584	777
	shrink	733	1000	709	314
UserKNN CF asymmetric	similarity	asymmetric	asymmetric	asymmetric	asymmetric
Userkinin Cr asymmetric	normalize	True	True	True	True
	asymmetric alpha	1.9382	2.0000	1.5064	1.9573
	feature weighting	none	none	BM25	none
	topK	808	870	264	892
	shrink	917	967	705	981
H. VANI CE touril	similarity	tversky	tversky	tversky	tversky
UserKNN CF tversky	normalize	True	True	True	True
·	tversky alpha	1.3044	0.0119	0.2812	0.1122
	tversky beta	1.5023	1.9836	1.1578	0.0128
	topK	484	423	139	419
	shrink	555	936	127	235
ItemKNN CF cosine	similarity	cosine	cosine	cosine	cosine
	normalize	False	True	True	False
	feature weighting	none	TF-IDF	none	TF-IDF
	topK	472	540	610	760
ItemKNN CF dice	shrink	292	61	402	991
Hellikinin Cr dice	similarity	dice	dice	dice	dice
	normalize	False	False	False	True
	topK	114	612	548	754
ItemKNN CF jaccard	shrink	784	93	679	378
itellikiviv Ci jaccard	similarity	jaccard	jaccard	jaccard	jaccard
	normalize	True	True	False	True
	topK	700	900	848	1000
	shrink	430	1000	797	0
ItemKNN CF asymmetric	similarity	asymmetric	asymmetric	asymmetric	asymmetric
remain or asymmetric	normalize	True	True	True	True
	asymmetric alpha	1.5472	0.0000	0.1235	0.0000
	feature weighting	TF-IDF	TF-IDF	BM25	none
	topK	831	728	317	749
	shrink	810	44	32	0
ItemKNN CF tversky	similarity	tversky	tversky	tversky	tversky
TICHINININ CI- IVEISKY	normalize	True	True	True	True
	tversky alpha	0.6361	1.4249	0.9626	0.0000
	tversky beta	1.4516	1.0858	1.8163	2.0000

 $ACM\ Transactions\ on\ Information\ Systems,\ Vol.\ 1,\ No.\ 1,\ Article\ 1.\ Publication\ date:\ January\ 2019.$

Table 20. Hyperparameter values for our non-neural machine learning and graph based baselines on all datasets.

Algorithm	Hyperparameter	CiteULike-a P=1	CiteULike-a P=10	CiteULike-t P=1	CiteULike-t P=10
	topK	688	662	314	961
$P^3\alpha$	alpha	1.1735	0.5112	0.7234	0.3851
	normalize similarity	True	False	False	False
	topK	54	710	537	1000
$RP^3\beta$	alpha	1.1242	0.0000	0.4656	0.8688
KF p	beta	1.3282	0.0000	0.2366	0.0000
	normalize similarity	True	True	True	True
$EASE^R$	l2 norm	1.25E+06	6.98E+06	8.80E+02	5.41E+03
	topK	402	458	537	818
	epochs	45	160	50	135
	symmetric	False	False	False	False
SLIM BPR	sgd mode	sgd	adagrad	adagrad	adagrad
	lambda i	2.35E-03	1.00E-05	1.44E-03	1.00E-02
	lambda j	7.93E-03	1.00E-05	1.09E-04	1.00E-02
	learning rate	2.65E-04	1.00E-04	1.58E-04	1.00E-04
	topK	795	450	644	949
SLIMElasticNet	l1 ratio	1.72E-01	2.51E-04	1.23E-02	3.61E-05
	alpha	0.4724	0.0179	0.8273	1.0000
	sgd mode	adam	adam	adagrad	adagrad
	epochs	25	660	20	1005
	num factors	90	200	73	200
MF BPR	batch size	64	256	16	64
	positive reg	7.61E-04	1.00E-02	1.27E-04	1.00E-02
	negative reg	6.05E-04	9.89E-03	3.37E-04	1.00E-02
	learning rate	6.15E-04	4.56E-03	1.93E-02	1.00E-01
	sgd mode	adagrad	adam	adam	adagrad
	epochs	45	500	35	485
	use bias	False	False	False	True
	batch size	128	128	256	8
MF FunkSVD	num factors	48	28	77	200
	item reg	2.36E-05	3.45E-03	2.22E-04	1.00E-02
	user reg	6.40E-04	9.10E-04	2.28E-04	1.00E-02
	learning rate	8.37E-02	3.98E-03	9.13E-04	1.00E-01
	negative quota	0.1630	0.1334	0.4428	0.5000
PureSVD	num factors	284	350	350	350
	num factors	245	188	127	301
NMF	solver	mult. update	mult. update	mult. update	coord. descent
1 41411	init type	nndsvda	nndsvda	random	random
	beta loss	kullback-leibler	frobenius	kullback-leibler	frobenius
	num factors	195	50	195	49
	confidence scaling	log	log	linear	log
iALS	alpha	34.4360	50.0000	16.8297	50.0000
11 1110	epsilon	0.0055	0.0010	3.4947	0.0032
	reg	3.02E-04	1.00E-05	2.90E-04	1.00E-02
	epochs	5	60	5	105

1:26 Ferrari Dacrema et al.

Table 21. Hyperparameter values for our content based KNN baselines on all datasets.

Algorithm	Hyperparameter	CiteULike-a P=1	CiteULike-a P=10	CiteULike-t P=1	CiteULike-t P=10
	topK	5	849	692	563
	shrink	0	825	955	50
ItemKNN CBF cosine	similarity	cosine	cosine	cosine	cosine
	normalize	True	True	True	True
	feature weighting	none	BM25	BM25	TF-IDF
	topK	5	571	626	636
ItemKNN CBF dice	shrink	0	0	474	7
Hemkinin CDr dice	similarity	dice	dice	dice	dice
	normalize	True	True	True	True
	topK	13	527	429	543
Itama VNINI CDE is sound	shrink	637	0	736	9
ItemKNN CBF jaccard	similarity	jaccard	jaccard	jaccard	jaccard
	normalize	True	False	True	False
	topK	10	801	219	976
	shrink	14	1000	895	92
ItemKNN CBF asymmetric	similarity	asymmetric	asymmetric	asymmetric	asymmetric
itellikini CBF asyllilletric	normalize	True	True	True	True
	asymmetric alpha	1.7300	0.4022	1.3276	0.5989
	feature weighting	TF-IDF	BM25	TF-IDF	TF-IDF
	topK	5	572	849	1000
	shrink	1000	0	491	0
ItemKNN CBF tversky	similarity	tversky	tversky	tversky	tversky
neimann CDF iveisky	normalize	True	True	True	True
	tversky alpha	0.0000	2.0000	1.4789	2.0000
	tversky beta	2.0000	2.0000	1.7951	2.0000

Table 22. Hyperparameter values for our hybrid KNN baselines on all datasets.

Algorithm	Hyperparameter	CiteULike-a P=1	CiteULike-a P=10	CiteULike-t P=1	CiteULike-t P=10
	topK	19	807	962	1000
	shrink	140	1000	151	1000
ItemKNN CFCBF cosine	similarity	cosine	cosine	cosine	cosine
ItemKNN CrCbr cosine	normalize	True	False	True	False
	feature weighting	BM25	BM25	TF-IDF	TF-IDF
	ICM weight	0.0101	1.1447	3.7971	1.5675
	topK	7	492	918	332
	shrink	194	50	944	1000
ItemKNN CFCBF dice	similarity	dice	dice	dice	dice
	normalize	False	False	False	False
	ICM weight	0.8195	72.9657	0.5285	0.0100
	topK	34	554	418	347
	shrink	51	0	708	1000
ItemKNN CFCBF jaccard	similarity	jaccard	jaccard	jaccard	jaccard
	normalize	True	True	False	True
	ICM weight	2.1492	0.0100	0.0121	100.0000
	topK	26	976	342	1000
	shrink	22	1000	252	1000
	similarity	asymmetric	asymmetric	asymmetric	asymmetric
ItemKNN CFCBF asymmetric	normalize	True	True	True	True
	asymmetric alpha	0.1370	0.0000	1.5682	0.0000
	feature weighting	BM25	TF-IDF	BM25	BM25
	ICM weight	0.0145	1.1144	0.0119	6.7370
	topK	59	585	530	283
	shrink	991	0	733	672
	similarity	tversky	tversky	tversky	tversky
ItemKNN CFCBF tversky	normalize	True	True	True	True
	tversky alpha	1.7260	1.3555	1.3336	0.0000
	tversky beta	0.6061	2.0000	0.8886	2.0000
	ICM weight	27.7050	100.0000	1.1171	0.0100

1:28 Ferrari Dacrema et al.

Table 23. Hyperparameter values for the deep learning algorithm on all datasets.

Algorithm	Hyperparameter	CiteULike-a P=1	CiteULike-a P=10	CiteULike-t P=1	CiteULike-t P=10
	epochs	5	35	5	60
	learning rate vae	1.00E-02	1.00E-02	1.00E-02	1.00E-02
	learning rate cvae	1.00E-03	1.00E-03	1.00E-03	1.00E-03
	num factors	50	50	50	50
	dimensions vae	[200, 100]	[200, 100]	[200, 100]	[200, 100]
	epochs vae	[50, 50]	[50, 50]	[50, 50]	[50, 50]
CVAE	batch size	128	128	128	128
CVAE	lambda u	1.00E-01	1.00E-01	1.00E-01	1.00E-01
1	lambda v	1.00E+01	1.00E+01	1.00E+01	1.00E+01
	lambda r	1.00E+00	1.00E+00	1.00E+00	1.00E+00
	a	1	1	1	1
	b	0.0100	0.0100	0.0100	0.0100
	M	300	300	300	300
	para lv	10	10	10	10
	para lu	1	1	1	1
CDL	para ln	1000.0000	1000.0000	1000.0000	1000.0000
CDL	batch size	128	128	128	128
	epoch sdae	200	200	200	200
	epoch dae	200	200	200	200

Table 24. Comparison of the computation time for the different algorithms.

	CiteULike	-a P=1	
	Train time	Recommenda	tion
	Train time	Time	[usr/s]
Random	0.00 [sec]	15.06 [sec]	369
ТорРор	0.02 [sec]	15.06 [sec]	369
UserKNN CF cosine	$0.17 \pm 0.02 [sec]$	14.92 [sec]	372
UserKNN CF dice	$0.17 \pm 0.01 [sec]$	15.25 [sec]	364
UserKNN CF jaccard	$0.18 \pm 0.01 [sec]$	14.90 [sec]	372
UserKNN CF asymmetric	$0.19 \pm 0.00 [sec]$	15.04 [sec]	369
UserKNN CF tversky	$0.20 \pm 0.01 [sec]$	14.92 [sec]	372
ItemKNN CF cosine	1.10 ± 0.13 [sec]	14.92 [sec]	372
ItemKNN CF dice	$1.16 \pm 0.01 [sec]$	14.97 [sec]	371
ItemKNN CF jaccard	1.20 ± 0.01 [sec]	14.82 [sec]	374
ItemKNN CF asymmetric	$1.31 \pm 0.02 [sec]$	14.90 [sec]	372
ItemKNN CF tversky	1.42 ± 0.01 [sec]	14.93 [sec]	372
$P^3\alpha$	4.04 ± 0.09 [sec]	14.90 [sec]	372
$RP^3\beta$	4.11 ± 0.03 [sec]	14.86 [sec]	374
$EASE^R$	105.21 [sec] / 1.75 ± 0.04 [min]	14.56 [sec]	381
SLIM BPR	$28.74 \pm 8.04 [sec]$	$14.85 \pm 0.14 [sec]$	371
SLIMElasticNet	574.75 [sec] / 9.58 ± 0.11 [min]	17.19 [sec]	323
MF BPR	47.23 ± 71.90 [sec]	16.61 [sec]	334
MF FunkSVD	37.78 ± 39.27 [sec]	$17.44 \pm 0.36 [sec]$	314
PureSVD	$0.74 \pm 0.44 [sec]$	15.48 [sec]	359
NMF	19.72 ± 25.84 [sec]	16.45 ± 0.15 [sec]	340
iALS	100.51 [sec] / 1.68 ± 0.89 [min]	16.76 ± 0.13 [sec]	333
ItemKNN CBF cosine	7.75 ± 0.62 [sec]	14.41 ± 0.67 [sec]	405
ItemKNN CBF dice	8.01 ± 0.62 [sec]	$14.27 \pm 0.72 [sec]$	403
ItemKNN CBF jaccard	$7.98 \pm 0.59 [sec]$	14.42 ± 0.63 [sec]	402
ItemKNN CBF asymmetric	$7.94 \pm 0.47 [sec]$	14.28 ± 0.53 [sec]	401
ItemKNN CBF tversky	8.24 ± 0.59 [sec]	14.31 ± 0.52 [sec]	408
ItemKNN CFCBF cosine	7.86 ± 0.55 [sec]	14.40 ± 0.80 [sec]	411
ItemKNN CFCBF dice	$7.99 \pm 0.58 [sec]$	$14.54 \pm 0.70 [sec]$	404
ItemKNN CFCBF jaccard	8.03 ± 0.57 [sec]	14.55 ± 0.47 [sec]	394
ItemKNN CFCBF asymmetric	8.14 ± 0.59 [sec]	14.39 ± 0.65 [sec]	412
ItemKNN CFCBF tversky	$8.22 \pm 0.54 [sec]$	14.70 ± 0.59 [sec]	396
CVAE	2151.48 [sec] / 35.86 [min]	23.07 [sec]	241
CDL	5461.42 [sec] / 1.52 [hour]	17.32 [sec]	321

1:30 Ferrari Dacrema et al.

Table 25. Comparison of the computation time for the different algorithms.

	CiteULike-a P=10					
	Train time	tion				
	Train time	Time	[usr/s]			
Random	0.02 [sec]	14.45 [sec]	356			
TopPop	0.00 [sec]	13.93 [sec]	369			
UserKNN CF cosine	0.25 ± 0.03 [sec]	14.19 ± 0.09 [sec]	363			
UserKNN CF dice	$0.26 \pm 0.01 [sec]$	$14.12 \pm 0.09 [sec]$	364			
UserKNN CF jaccard	$0.26 \pm 0.01 [sec]$	14.29 ± 0.11 [sec]	358			
UserKNN CF asymmetric	$0.27 \pm 0.01 [sec]$	$14.15 \pm 0.07 [sec]$	361			
UserKNN CF tversky	$0.29 \pm 0.01 [sec]$	$14.08 \pm 0.05 [sec]$	365			
ItemKNN CF cosine	1.38 ± 0.07 [sec]	$14.16 \pm 0.04 [sec]$	362			
ItemKNN CF dice	1.37 ± 0.02 [sec]	$14.13 \pm 0.04 [sec]$	364			
ItemKNN CF jaccard	1.40 ± 0.02 [sec]	$14.10 \pm 0.02 [sec]$	364			
ItemKNN CF asymmetric	1.49 ± 0.02 [sec]	$14.13 \pm 0.05 [sec]$	362			
ItemKNN CF tversky	$1.63 \pm 0.02 [\text{sec}]$	14.18 ± 0.09 [sec]	359			
$P^3\alpha$	$4.36 \pm 0.05 [\text{sec}]$	14.26 ± 0.14 [sec]	364			
$RP^3\beta$	4.54 ± 0.09 [sec]	$14.24 \pm 0.05 [sec]$	362			
EASE ^R	107.59 [sec] / 1.79 ± 0.09 [min]	14.36 ± 0.04 [sec]	359			
SLIM BPR	$241.65 [sec] / 4.03 \pm 1.30 [min]$	14.46 ± 0.14 [sec]	356			
SLIMElasticNet	651.80 [sec] / 10.86 ± 0.57 [min]	13.86 ± 0.19 [sec]	367			
MF BPR	717.46 [sec] / 11.96 ± 8.87 [min]	15.18 ± 0.48 [sec]	338			
MF FunkSVD	546.76 [sec] / 9.11 ± 6.29 [min]	14.83 ± 0.33 [sec]	350			
PureSVD	1.29 ± 0.54 [sec]	15.01 ± 0.57 [sec]	347			
NMF	184.83 [sec] / 3.08 ± 3.41 [min]	15.62 ± 0.19 [sec]	328			
iALS	325.86 [sec] / 5.43 ± 3.66 [min]	15.55 ± 0.18 [sec]	326			
ItemKNN CBF cosine	8.25 ± 0.60 [sec]	14.59 ± 0.24 [sec]	346			
ItemKNN CBF dice	$8.36 \pm 0.40 [\text{sec}]$	14.33 ± 0.13 [sec]	358			
ItemKNN CBF jaccard	8.33 ± 0.42 [sec]	14.55 ± 0.16 [sec]	353			
ItemKNN CBF asymmetric	$8.61 \pm 0.52 [sec]$	14.66 ± 0.26 [sec]	347			
ItemKNN CBF tversky	8.66 ± 0.41 [sec]	$14.41 \pm 0.12 [sec]$	355			
ItemKNN CFCBF cosine	8.47 ± 0.54 [sec]	14.32 ± 0.32 [sec]	355			
ItemKNN CFCBF dice	$8.49 \pm 0.41 [sec]$	14.23 ± 0.20 [sec]	360			
ItemKNN CFCBF jaccard	8.50 ± 0.41 [sec]	14.23 ± 0.10 [sec]	357			
ItemKNN CFCBF asymmetric	8.59 ± 0.54 [sec]	14.22 ± 0.32 [sec]	356			
ItemKNN CFCBF tversky	8.77 ± 0.45 [sec]	$14.31 \pm 0.20 [sec]$	361			
CVAE	4555.65 [sec] / 1.27 [hour]	21.33 [sec]	241			
CDL	5443.56 [sec] / 1.51 [hour]	15.26 [sec]	337			

Table 26. Comparison of the computation time for the different algorithms.

	CiteULike-t P=1					
	Train time Recommendat					
	Train time	Time	[usr/s]			
Random	0.00 [sec]	22.92 [sec]	347			
ТорРор	0.00 [sec]	22.42 [sec]	355			
UserKNN CF cosine	0.33 ± 0.03 [sec]	21.79 [sec]	365			
UserKNN CF dice	$0.34 \pm 0.01 [sec]$	21.92 [sec]	363			
UserKNN CF jaccard	$0.35 \pm 0.01 [sec]$	21.82 [sec]	364			
UserKNN CF asymmetric	$0.37 \pm 0.01 [sec]$	21.68 [sec]	367			
UserKNN CF tversky	$0.40 \pm 0.01 [sec]$	21.71 [sec]	366			
ItemKNN CF cosine	2.42 ± 0.35 [sec]	21.79 [sec]	365			
ItemKNN CF dice	2.59 ± 0.02 [sec]	21.84 [sec]	364			
ItemKNN CF jaccard	2.68 ± 0.02 [sec]	21.71 [sec]	366			
ItemKNN CF asymmetric	2.93 ± 0.03 [sec]	21.75 [sec]	365			
ItemKNN CF tversky	3.21 ± 0.02 [sec]	21.87 [sec]	363			
$P^3\alpha$	10.31 ± 0.07 [sec]	21.70 [sec]	366			
$RP^3\beta$	10.26 ± 0.07 [sec]	21.73 [sec]	366			
EASE ^R	328.17 [sec] / 5.47 ± 2.29 [min]	15.31 ± 9.68 [sec]	939			
SLIM BPR	108.13 [sec] / 1.80 ± 0.55 [min]	$22.03 \pm 0.02 [sec]$	361			
SLIMElasticNet	1223.53 [sec] / 20.39 ± 0.20 [min]	21.75 [sec]	365			
MF BPR	158.20 [sec] / 2.64 ± 3.88 [min]	25.31 ± 0.10 [sec]	315			
MF FunkSVD	101.31 [sec] / 1.69 ± 1.52 [min]	$25.15 \pm 0.07 [sec]$	315			
PureSVD	1.53 ± 0.65 [sec]	22.63 ± 0.22 [sec]	347			
NMF	18.22 ± 45.02 [sec]	24.81 [sec]	320			
iALS	118.47 [sec] / 1.97 ± 1.22 [min]	25.19 ± 0.12 [sec]	314			
ItemKNN CBF cosine	5.86 ± 1.07 [sec]	20.60 [sec]	386			
ItemKNN CBF dice	6.12 ± 0.97 [sec]	20.89 [sec]	381			
ItemKNN CBF jaccard	6.18 ± 0.97 [sec]	20.93 [sec]	380			
ItemKNN CBF asymmetric	$6.36 \pm 1.04 [sec]$	20.34 [sec]	391			
ItemKNN CBF tversky	6.70 ± 0.94 [sec]	21.09 [sec]	377			
ItemKNN CFCBF cosine	5.84 ± 1.01 [sec]	20.89 [sec]	380			
ItemKNN CFCBF dice	$6.12 \pm 0.94 [sec]$	20.95 [sec]	379			
ItemKNN CFCBF jaccard	6.17 ± 0.92 [sec]	20.62 [sec]	385			
ItemKNN CFCBF asymmetric	$6.38 \pm 1.02 [\text{sec}]$	19.40 [sec]	410			
ItemKNN CFCBF tversky	$6.71 \pm 0.94 [sec]$	20.67 [sec]	385			
CVAE	3560.74 [sec] / 59.35 [min]	31.19 [sec]	255			
CDL	22823.11 [sec] / 6.34 [hour]	24.51 [sec]	324			

1:32 Ferrari Dacrema et al.

Table 27. Comparison of the computation time for the different algorithms.

	CiteULike-t P=10					
	Train time Recommenda					
	Train time	Time	[usr/s]			
Random	0.00 [sec]	7.69 [sec]	338			
TopPop	0.00 [sec]	7.51 [sec]	346			
UserKNN CF cosine	$0.40 \pm 0.04 [sec]$	$7.48 \pm 0.02 [sec]$	348			
UserKNN CF dice	0.41 ± 0.01 [sec]	$7.52 \pm 0.05 [sec]$	346			
UserKNN CF jaccard	$0.42 \pm 0.01 [sec]$	$7.51 \pm 0.01 [sec]$	346			
UserKNN CF asymmetric	0.45 ± 0.01 [sec]	$7.50 \pm 0.11 [sec]$	343			
UserKNN CF tversky	0.48 ± 0.01 [sec]	$7.49 \pm 0.01 [sec]$	346			
ItemKNN CF cosine	2.17 ± 0.46 [sec]	$7.51 \pm 0.03 [sec]$	346			
ItemKNN CF dice	3.01 ± 0.06 [sec]	$7.47 \pm 0.02 [sec]$	349			
ItemKNN CF jaccard	3.10 ± 0.07 [sec]	7.40 ± 0.11 [sec]	347			
ItemKNN CF asymmetric	3.35 ± 0.07 [sec]	$7.53 \pm 0.07 [sec]$	341			
ItemKNN CF tversky	3.65 ± 0.09 [sec]	$7.47 \pm 0.01 [sec]$	348			
$P^3\alpha$	$10.63 \pm 0.07 [sec]$	7.58 [sec]	343			
$RP^3\beta$	$10.71 \pm 0.10 [sec]$	$7.47 \pm 0.08 [sec]$	345			
EASE ^R	383.01 [sec] / 6.38 ± 2.54 [min]	8.09 [sec]	321			
SLIM BPR	529.68 [sec] / 8.83 ± 4.30 [min]	$7.65 \pm 0.10 [sec]$	337			
SLIMElasticNet	1454.18 [sec] / 24.24 ± 1.19 [min]	$7.46 \pm 0.19 [sec]$	339			
MF BPR	1143.88 [sec] / 19.06 ± 13.39 [min]	$8.27 \pm 0.14 [sec]$	308			
MF FunkSVD	1004.38 [sec] / 16.74 ± 8.98 [min]	8.59 ± 0.09 [sec]	299			
PureSVD	$2.03 \pm 0.80 [sec]$	$7.74 \pm 0.01 [sec]$	336			
NMF	478.36 [sec] / 7.97 ± 10.31 [min]	8.57 ± 0.15 [sec]	300			
iALS	570.10 [sec] / 9.50 ± 6.63 [min]	$8.57 \pm 0.02 [sec]$	303			
ItemKNN CBF cosine	6.24 ± 0.87 [sec]	7.58 ± 0.07 [sec]	345			
ItemKNN CBF dice	6.34 ± 0.62 [sec]	$7.62 \pm 0.02 [sec]$	340			
ItemKNN CBF jaccard	6.43 ± 0.64 [sec]	$7.62 \pm 0.17 [sec]$	339			
ItemKNN CBF asymmetric	$7.03 \pm 0.77 [sec]$	$7.61 \pm 0.20 [sec]$	335			
ItemKNN CBF tversky	$7.04 \pm 0.67 [sec]$	7.69 ± 0.16 [sec]	333			
ItemKNN CFCBF cosine	6.38 ± 0.76 [sec]	7.71 ± 0.22 [sec]	329			
ItemKNN CFCBF dice	6.33 ± 0.65 [sec]	7.57 ± 0.11 [sec]	346			
ItemKNN CFCBF jaccard	6.38 ± 0.65 [sec]	$7.54 \pm 0.04 [sec]$	346			
ItemKNN CFCBF asymmetric	7.31 ± 0.76 [sec]	$7.65 \pm 0.32 [sec]$	317			
ItemKNN CFCBF tversky	$6.87 \pm 0.60 [sec]$	$7.49 \pm 0.05 [sec]$	346			
CVAE	9969.70 [sec] / 2.77 [hour]	11.68 [sec]	222			
CDL	22343.75 [sec] / 6.21 [hour]	8.65 [sec]	300			

F RECSYS: SPECTRAL COLLABORATIVE FILTERING

Relevant statistics on the dataset, which we mentioned in the paper, are reported in Table 28 and 29. The results of our evaluation can be seen in Table 30 (Amazon Instant Video, Hetrec) and Table 31 (Movielens 1M original split and our split). The corresponding optimal hyperparameters are reported in Table 32 (collaborative KNNs), Table 33 (non-neural machine learning and graph based) and 34 (SpectralCF original hyperparameters and ours).

Lastly, the time required to train and evaluate the models is reported in Table 35 (Amazon Instant Video), Table 36 (Hetrec), Table 36 (Movielens 1M original split) and Table 36 (Movielens 1M our split).

Dataset	Interactions	Items	Users	Density
Movielens 1M	226 K	3706	6040	1.01%
Hetrec	71 K	10109	2113	0.33%
Amazon Instant Video	22 K	5860	3113	0.12%

Table 28. Dataset characteristics.

Table 29. The statistics compare the popularity bias of the two splits of Movielens 1M we report the results of, the original one provided by the authors and the split generated by us following the description provided in the paper. The three rows refer to the statistics of the dataset as a whole and those of the train and test data split. In a truly random data split the statistics of train and test data should mirror closely those of the full dataset. It is possible to see that the original test data (values in bold) has very different statistical properties than the original full dataset, hinting at a possible error in the splitting procedure. *Kendall Tau* counts the number of pairwise disagreements between two ranking lists, its result is the percentage of item pairs whose ordering is discordant between the two splits. This metric highlight how inconsistent is the original test data with respect to the original train data.

	Max pop	Avg pop	Gini Index	Kendall Tau	Shannon
		1	Movielens ori	ginal	
Full data	1963.00	61.08	0.78	1.00	9.99
Train data	1936.00	48.37	0.79	0.87	9.89
Test data	1361.00	12.71	0.92	0.44	8.4 9
			Movielens or	urs	
Full data	1963.00	58.08	0.79	1.00	9.99
Train data	1575.00	46.44	0.79	0.97	9.99
Test data	388.00	11.64	0.80	0.85	9.93

1:34 Ferrari Dacrema et al.

Table 30. Experimental results for SpectralCF on the metrics and cutoffs reported in the original paper.

	Amazon Instant Video									
	REC@20	MAP@20	REC@40	MAP@40	REC@60	MAP@60	REC@80	MAP@80	REC@100	MAP@100
Random	0.0047	0.0006	0.0099	0.0008	0.0150	0.0009	0.0195	0.0010	0.0240	0.0010
TopPop	0.1134	0.0288	0.1687	0.0308	0.2067	0.0316	0.2448	0.0322	0.2716	0.0326
UserKNN CF cosine	0.2853	0.1200	0.3559	0.1228	0.3986	0.1238	0.4297	0.1243	0.4527	0.1246
UserKNN CF dice	0.2845	0.1198	0.3550	0.1225	0.3989	0.1236	0.4294	0.1240	0.4520	0.1243
UserKNN CF jaccard	0.2850	0.1198	0.3544	0.1225	0.3991	0.1235	0.4282	0.1240	0.4515	0.1243
UserKNN CF asymmetric	0.2850	0.1201	0.3552	0.1228	0.3991	0.1239	0.4297	0.1244	0.4526	0.1247
UserKNN CF tversky	0.2856	0.1196	0.3544	0.1223	0.3991	0.1233	0.4286	0.1238	0.4515	0.1241
ItemKNN CF cosine	0.2858	0.1209	0.3535	0.1236	0.3985	0.1246	0.4303	0.1252	0.4528	0.1255
ItemKNN CF dice	0.2968	0.1290	0.3628	0.1316	0.4010	0.1325	0.4262	0.1329	0.4487	0.1332
ItemKNN CF jaccard	0.2957	0.1296	0.3628	0.1322	0.3996	0.1331	0.4250	0.1335	0.4482	0.1338
ItemKNN CF asymmetric	0.3044	0.1309	0.3712	0.1336	0.4127	0.1346	0.4426	0.1351	0.4653	0.1354
ItemKNN CF tversky	0.2913	0.1195	0.3594	0.1221	0.4021	0.1231	0.4319	0.1236	0.4538	0.1239
P3alpha	0.3019	0.1276	0.3721	0.1304	0.4151	0.1314	0.4433	0.1319	0.4648	0.1322
RP3beta	0.3029	0.1354	0.3715	0.1382	0.4119	0.1391	0.4378	0.1396	0.4584	0.1398
EASE R	0.2897	0.1211	0.3579	0.1237	0.3959	0.1246	0.4233	0.1250	0.4418	0.1253
SLIM BPR	0.2973	0.1326	0.3671	0.1353	0.3993	0.1361	0.4279	0.1366	0.4501	0.1369
SLIMElasticNet	0.2882	0.1224	0.3576	0.1250	0.3966	0.1260	0.4256	0.1264	0.4482	0.1267
MF BPR	0.2320	0.0951	0.2925	0.0974	0.3340	0.0983	0.3678	0.0989	0.3921	0.0992
MF FunkSVD PureSVD	0.1800	0.0484	0.2615 0.2079	0.0516	0.3129	0.0527	0.3488	0.0533	0.3752	0.0536
NMF	0.1555 0.1406	0.0533 0.0569	0.2079	0.0553 0.0586	0.2466 0.2147	0.0561 0.0592	0.2758 0.2454	0.0566 0.0597	0.3031 0.2654	0.0569 0.0600
IALS	0.1406	0.0369	0.3526	0.0386	0.4003	0.0392	0.4330	0.0397	0.2654	0.1002
SpectralCF SpectralCF article default	0.1125 0.1063	0.0245 0.0255	0.1649 0.1542	0.0264 0.0273	0.2080 0.1969	0.0274 0.0282	0.2394 0.2332	0.0278 0.0288	0.2700 0.2670	0.0282 0.0292
Spectraicr article default	0.1003	0.0233	0.1342	0.0273	0.1707	0.0202	0.2332	0.0200	0.2070	0.0272
						etrec				
	REC@20	MAP@20	REC@40	MAP@40	REC@60	MAP@60	REC@80	MAP@80	REC@100	MAP@100
Random	0.0014	0.0003	0.0032	0.0004	0.0050	0.0004	0.0071	0.0004	0.0100	0.0005
TopPop	0.2044	0.0639	0.2918	0.0684	0.3484	0.0710	0.3927	0.0726	0.4291	0.0737
UserKNN CF cosine	0.2649	0.1081	0.3604	0.1132	0.4139	0.1159	0.4576	0.1177	0.4927	0.1189
UserKNN CF dice	0.2627	0.1081	0.3528	0.1132	0.4061	0.1158	0.4522	0.1176	0.4909	0.1189
UserKNN CF jaccard	0.2617	0.1077	0.3514	0.1127	0.4050	0.1153	0.4491	0.1170	0.4900	0.1184
UserKNN CF asymmetric	0.2667	0.1088	0.3606	0.1139	0.4142	0.1166	0.4571	0.1184	0.4934	0.1197
UserKNN CF tversky	0.2617	0.1079	0.3507	0.1129	0.4050	0.1156	0.4494	0.1173	0.4901	0.1187
ItemKNN CF cosine	0.2682	0.1092	0.3533	0.1136	0.4142	0.1165	0.4575	0.1182	0.4952	0.1196
ItemKNN CF dice	0.2549	0.1041	0.3464	0.1088	0.4061	0.1115	0.4504	0.1132	0.4860	0.1145
ItemKNN CF jaccard	0.2537	0.1051	0.3434	0.1098	0.4017	0.1125	0.4473	0.1143	0.4852	0.1156
ItemKNN CF asymmetric	0.2703	0.1003	0.3610	0.1058	0.4184	0.1087	0.4637	0.1107	0.4943	0.1121
ItemKNN CF tversky	0.2632	0.1038	0.3554	0.1091	0.4174	0.1121	0.4588	0.1139	0.4944	0.1153
P3alpha	0.2572	0.0981	0.3532	0.1037	0.4139	0.1067	0.4608	0.1085	0.5002	0.1099
RP3beta	0.2688	0.1058	0.3628	0.1114	0.4279	0.1146	0.4714	0.1165	0.5073	0.1178
EASE R	0.2707	0.1158	0.3580	0.1207	0.4188	0.1235	0.4634	0.1254	0.4945	0.1267
SLIM BPR	0.2566	0.1035	0.3451	0.1086	0.4016	0.1114	0.4452	0.1130	0.4840	0.1144
SLIMElasticNet	0.2791	0.1214	0.3634	0.1261	0.4226	0.1291	0.4637	0.1311	0.4976	0.1324
MF BPR	0.1820	0.0586 0.0540	0.2776 0.2976	0.0638	0.3312	0.0662	0.3752	0.0678	0.4073	0.0689
ME EmpleSVD			0.2976	0.0597	0.3575	0.0623	0.3988	0.0639	0.4300	0.0649
MF FunkSVD	0.2010				0.2005	0.1150	0.4445	0.1177	0.4002	0.1100
PureSVD	0.2560	0.1087	0.3438	0.1130	0.3995	0.1158	0.4417	0.1175	0.4823	0.1190
PureSVD NMF	0.2560 0.2065	0.1087 0.0865	0.3438 0.2834	0.1130 0.0903	0.3388	0.0931	0.3790	0.0947	0.4179	0.0960
PureSVD NMF IALS	0.2560 0.2065 0.2726	0.1087 0.0865 0.1104	0.3438 0.2834 0.3660	0.1130 0.0903 0.1163	0.3388 0.4289	0.0931 0.1195	0.3790 0.4842	0.0947 0.1217	0.4179 0.5188	0.0960 0.1232
PureSVD NMF	0.2560 0.2065	0.1087 0.0865	0.3438 0.2834	0.1130 0.0903	0.3388	0.0931	0.3790	0.0947	0.4179	0.0960

Table 31. Experimental results for SpectralCF on the metrics and cutoffs reported in the original paper.

	Movielens 1M original										
	REC@20	MAP@20	REC@40	MAP@40	REC@60	MAP@60	REC@80	MAP@80	REC@100	MAP@100	
Random	0.0052	0.0010	0.0107	0.0011	0.0156	0.0012	0.0209	0.0013	0.0267	0.0014	
TopPop	0.0382	0.0065	0.0969	0.0092	0.1207	0.0101	0.1651	0.0113	0.2286	0.0127	
UserKNN CF cosine	0.0917	0.0193	0.1558	0.0226	0.2100	0.0246	0.2514	0.0258	0.2868	0.0267	
UserKNN CF dice	0.0993	0.0214	0.1683	0.0250	0.2223	0.0271	0.2623	0.0283	0.2978	0.0292	
UserKNN CF jaccard	0.0998	0.0211	0.1691	0.0247	0.2241	0.0268	0.2659	0.0280	0.3012	0.0289	
UserKNN CF asymmetric	0.0982	0.0214	0.1644	0.0248	0.2165	0.0268	0.2578	0.0280	0.2943	0.0290	
UserKNN CF tversky	0.0999	0.0208	0.1687	0.0244	0.2239	0.0265	0.2672	0.0278	0.3021	0.0287	
ItemKNN CF cosine	0.0676	0.0143	0.1217	0.0170	0.1632	0.0185	0.2004	0.0195	0.2326	0.0203	
ItemKNN CF dice	0.0673	0.0154	0.1226	0.0181	0.1679	0.0197	0.2071	0.0208	0.2443	0.0218	
ItemKNN CF jaccard	0.0670	0.0146	0.1218	0.0173	0.1664	0.0189	0.2051	0.0200	0.2438	0.0209	
ItemKNN CF asymmetric	0.0988	0.0215	0.1745	0.0256	0.2311	0.0279	0.2783	0.0296	0.3189	0.0308	
ItemKNN CF tversky	0.0730	0.0147	0.1375	0.0179	0.1908	0.0199	0.2384	0.0213	0.2798	0.0224	
P3alpha	0.1218	0.0256	0.2072	0.0306	0.2696	0.0335	0.3174	0.0353	0.3583	0.0367	
RP3beta	0.0916	0.0192	0.1628	0.0230	0.2216	0.0254	0.2738	0.0271	0.3171	0.0284	
EASE R	0.0914	0.0184	0.1531	0.0216	0.2010	0.0234	0.2398	0.0246	0.2736	0.0254	
SLIM BPR	0.1292	0.0283	0.2090	0.0329	0.2687	0.0355	0.3140	0.0371	0.3525	0.0384	
SLIMElasticNet	0.0915	0.0205	0.1521	0.0237	0.2014	0.0255	0.2392	0.0267	0.2692	0.0275	
MF BPR	0.0863	0.0205	0.1532	0.0239	0.2062	0.0260	0.2518	0.0274	0.2874	0.0284	
MF FunkSVD	0.1061	0.0262	0.1746	0.0301	0.2286	0.0323	0.2753	0.0339	0.3127	0.0351	
PureSVD	0.0828	0.0172	0.1424	0.0204	0.1833	0.0219	0.2170	0.0229	0.2472	0.0236	
NMF	0.0795	0.0199	0.1252	0.0223	0.1602	0.0236	0.1884	0.0245	0.2127	0.0251	
IALS	0.0868	0.0188	0.1441	0.0218	0.1933	0.0235	0.2299	0.0245	0.2621	0.0252	
SpectralCF	0.1567	0.0621	0.2099	0.0642	0.2475	0.0658	0.2911	0.0675	0.3354	0.0689	
SpectralCF article default	0.1849	0.0838	0.2376	0.0857	0.2808	0.0879	0.3248	0.0894	0.3493	0.0902	
	,,,,,,,	1/17	PPG	1/17		ns 1M ours	DD0000	1/17			
	REC@20	MAP@20	REC@40	MAP@40	REC@60	MAP@60	REC@80	MAP@80	REC@100	MAP@100	
Random	0.0060	0.0013	0.0115	0.0014	0.0166	0.0015	0.0224	0.0016	0.0274	0.0017	
TopPop	0.1892	0.0584	0.2788	0.0636	0.3356	0.0666	0.3834	0.0687	0.4226	0.0702	
UserKNN CF cosine	0.2978	0.1195	0.4108	0.1280	0.4866	0.1329	0.5444	0.1361	0.5868	0.1382	
UserKNN CF dice	0.2960										
UserKNN CF jaccard	l	0.1185	0.4111	0.1270	0.4872	0.1319	0.5443	0.1351	0.5873	0.1372	
UserKNN CF asymmetric	0.3001	0.1201	0.4134	0.1285	0.4901	0.1319 0.1335	0.5457	0.1367	0.5884	0.1388	
	0.2880	0.1201 0.1156	0.4134 0.4016	0.1285 0.1236	0.4901 0.4785	0.1319 0.1335 0.1285	0.5457 0.5361	0.1367 0.1316	0.5884 0.5820	0.1388 0.1338	
UserKNN CF tversky	0.2880 0.2903	0.1201 0.1156 0.1161	0.4134 0.4016 0.4061	0.1285 0.1236 0.1244	0.4901 0.4785 0.4818	0.1319 0.1335 0.1285 0.1293	0.5457 0.5361 0.5394	0.1367 0.1316 0.1325	0.5884 0.5820 0.5842	0.1388 0.1338 0.1346	
ItemKNN CF cosine	0.2880 0.2903 0.2929	0.1201 0.1156 0.1161 0.1154	0.4134 0.4016 0.4061 0.4067	0.1285 0.1236 0.1244 0.1236	0.4901 0.4785 0.4818 0.4843	0.1319 0.1335 0.1285 0.1293 0.1287	0.5457 0.5361 0.5394 0.5401	0.1367 0.1316 0.1325 0.1318	0.5884 0.5820 0.5842 0.5829	0.1388 0.1338 0.1346 0.1340	
ItemKNN CF cosine ItemKNN CF dice	0.2880 0.2903 0.2929 0.2747	0.1201 0.1156 0.1161 0.1154 0.1053	0.4134 0.4016 0.4061 0.4067 0.3770	0.1285 0.1236 0.1244 0.1236 0.1125	0.4901 0.4785 0.4818 0.4843 0.4519	0.1319 0.1335 0.1285 0.1293 0.1287 0.1170	0.5457 0.5361 0.5394 0.5401 0.5070	0.1367 0.1316 0.1325 0.1318 0.1200	0.5884 0.5820 0.5842 0.5829 0.5556	0.1388 0.1338 0.1346 0.1340 0.1222	
ItemKNN CF cosine ItemKNN CF dice ItemKNN CF jaccard	0.2880 0.2903 0.2929 0.2747 0.2731	0.1201 0.1156 0.1161 0.1154 0.1053 0.1051	0.4134 0.4016 0.4061 0.4067 0.3770 0.3783	0.1285 0.1236 0.1244 0.1236 0.1125 0.1126	0.4901 0.4785 0.4818 0.4843 0.4519 0.4539	0.1319 0.1335 0.1285 0.1293 0.1287 0.1170	0.5457 0.5361 0.5394 0.5401 0.5070 0.5099	0.1367 0.1316 0.1325 0.1318 0.1200 0.1202	0.5884 0.5820 0.5842 0.5829 0.5556 0.5582	0.1388 0.1338 0.1346 0.1340 0.1222 0.1224	
ItemKNN CF cosine ItemKNN CF dice ItemKNN CF jaccard ItemKNN CF asymmetric	0.2880 0.2903 0.2929 0.2747 0.2731 0.2876	0.1201 0.1156 0.1161 0.1154 0.1053 0.1051 0.1134	0.4134 0.4016 0.4061 0.4067 0.3770 0.3783 0.4000	0.1285 0.1236 0.1244 0.1236 0.1125 0.1126 0.1213	0.4901 0.4785 0.4818 0.4843 0.4519 0.4539 0.4768	0.1319 0.1335 0.1285 0.1293 0.1287 0.1170 0.1172 0.1263	0.5457 0.5361 0.5394 0.5401 0.5070 0.5099 0.5367	0.1367 0.1316 0.1325 0.1318 0.1200 0.1202 0.1295	0.5884 0.5820 0.5842 0.5829 0.5556 0.5582 0.5820	0.1388 0.1338 0.1346 0.1340 0.1222 0.1224 0.1317	
ItemKNN CF cosine ItemKNN CF dice ItemKNN CF jaccard ItemKNN CF asymmetric ItemKNN CF tversky	0.2880 0.2903 0.2929 0.2747 0.2731 0.2876 0.2760	0.1201 0.1156 0.1161 0.1154 0.1053 0.1051 0.1134 0.1043	0.4134 0.4016 0.4061 0.4067 0.3770 0.3783 0.4000 0.3877	0.1285 0.1236 0.1244 0.1236 0.1125 0.1126 0.1213 0.1122	0.4901 0.4785 0.4818 0.4843 0.4519 0.4539 0.4768 0.4659	0.1319 0.1335 0.1285 0.1293 0.1287 0.1170 0.1172 0.1263 0.1175	0.5457 0.5361 0.5394 0.5401 0.5070 0.5099 0.5367 0.5250	0.1367 0.1316 0.1325 0.1318 0.1200 0.1202 0.1295 0.1209	0.5884 0.5820 0.5842 0.5829 0.5556 0.5582 0.5820 0.5713	0.1388 0.1338 0.1346 0.1340 0.1222 0.1224 0.1317 0.1232	
ItemKNN CF cosine ItemKNN CF dice ItemKNN CF jaccard ItemKNN CF asymmetric ItemKNN CF tversky P3alpha	0.2880 0.2903 0.2929 0.2747 0.2731 0.2876 0.2760 0.2939	0.1201 0.1156 0.1161 0.1154 0.1053 0.1051 0.1134 0.1043 0.1141	0.4134 0.4016 0.4061 0.4067 0.3770 0.3783 0.4000 0.3877 0.4150	0.1285 0.1236 0.1244 0.1236 0.1125 0.1126 0.1213 0.1122 0.1233	0.4901 0.4785 0.4818 0.4843 0.4519 0.4539 0.4768 0.4659 0.4900	0.1319 0.1335 0.1285 0.1293 0.1287 0.1170 0.1172 0.1263 0.1175 0.1285	0.5457 0.5361 0.5394 0.5401 0.5070 0.5099 0.5367 0.5250 0.5463	0.1367 0.1316 0.1325 0.1318 0.1200 0.1202 0.1295 0.1209 0.1318	0.5884 0.5820 0.5842 0.5829 0.5556 0.5582 0.5820 0.5713 0.5903	0.1388 0.1338 0.1346 0.1340 0.1222 0.1224 0.1317 0.1232 0.1342	
ItemKNN CF cosine ItemKNN CF dice ItemKNN CF jaccard ItemKNN CF asymmetric ItemKNN CF tversky P3alpha RP3beta	0.2880 0.2903 0.2929 0.2747 0.2731 0.2876 0.2760 0.2939 0.2737	0.1201 0.1156 0.1161 0.1154 0.1053 0.1051 0.1134 0.1043 0.1141	0.4134 0.4016 0.4061 0.4067 0.3770 0.3783 0.4000 0.3877 0.4150 0.3879	0.1285 0.1236 0.1244 0.1236 0.1125 0.1126 0.1213 0.1122 0.1233 0.1124	0.4901 0.4785 0.4818 0.4843 0.4519 0.4539 0.4768 0.4659 0.4900 0.4664	0.1319 0.1335 0.1285 0.1293 0.1287 0.1170 0.1172 0.1263 0.1175 0.1285 0.1173	0.5457 0.5361 0.5394 0.5401 0.5070 0.5099 0.5367 0.5250 0.5463 0.5234	0.1367 0.1316 0.1325 0.1318 0.1200 0.1202 0.1295 0.1209 0.1318 0.1206	0.5884 0.5820 0.5842 0.5829 0.5556 0.5582 0.5713 0.5903 0.5726	0.1388 0.1338 0.1346 0.1340 0.1222 0.1224 0.1317 0.1232 0.1342 0.1230	
ItemKNN CF cosine ItemKNN CF dice ItemKNN CF jaccard ItemKNN CF asymmetric ItemKNN CF tversky P3alpha RP3beta EASE R	0.2880 0.2903 0.2929 0.2747 0.2731 0.2876 0.2760 0.2939 0.2737	0.1201 0.1156 0.1161 0.1154 0.1053 0.1051 0.1134 0.1043 0.1141 0.1044	0.4134 0.4016 0.4061 0.4067 0.3770 0.3783 0.4000 0.3877 0.4150 0.3879	0.1285 0.1236 0.1244 0.1236 0.1125 0.1126 0.1213 0.1122 0.1233 0.1124	0.4901 0.4785 0.4818 0.4843 0.4519 0.4539 0.4768 0.4659 0.4900 0.4664	0.1319 0.1335 0.1285 0.1293 0.1287 0.1170 0.1172 0.1263 0.1175 0.1285 0.1173	0.5457 0.5361 0.5394 0.5401 0.5070 0.5099 0.5367 0.5250 0.5463 0.5234	0.1367 0.1316 0.1325 0.1318 0.1200 0.1202 0.1295 0.1209 0.1318 0.1206	0.5884 0.5820 0.5842 0.5829 0.5556 0.5582 0.5713 0.5903 0.5726	0.1388 0.1338 0.1346 0.1340 0.1222 0.1224 0.1317 0.1232 0.1342 0.1230	
ItemKNN CF cosine ItemKNN CF dice ItemKNN CF jaccard ItemKNN CF asymmetric ItemKNN CF tversky P3alpha RP3beta EASE R SLIM BPR	0.2880 0.2903 0.2929 0.2747 0.2731 0.2876 0.2760 0.2939 0.2737	0.1201 0.1156 0.1161 0.1154 0.1053 0.1051 0.1134 0.1043 0.1141 0.1044	0.4134 0.4016 0.4061 0.4067 0.3770 0.3783 0.4000 0.3877 0.4150 0.3879	0.1285 0.1236 0.1244 0.1236 0.1125 0.1125 0.1126 0.1213 0.1122 0.1233 0.1124	0.4901 0.4785 0.4818 0.4843 0.4519 0.4539 0.4768 0.4659 0.4900 0.4664	0.1319 0.1335 0.1285 0.1293 0.1287 0.1170 0.1172 0.1263 0.1175 0.1285 0.1173	0.5457 0.5361 0.5394 0.5401 0.5070 0.5079 0.5367 0.5250 0.5463 0.5234	0.1367 0.1316 0.1325 0.1318 0.1200 0.1202 0.1295 0.1209 0.1318 0.1206	0.5884 0.5820 0.5842 0.5829 0.5556 0.5582 0.5713 0.5903 0.5726	0.1388 0.1338 0.1346 0.1340 0.1222 0.1224 0.1317 0.1232 0.1342 0.1230 0.1367 0.1269	
ItemKNN CF cosine ItemKNN CF dice ItemKNN CF jaccard ItemKNN CF asymmetric ItemKNN CF tversky P3alpha RP3beta EASE R SLIM BPR SLIMElasticNet	0.2880 0.2903 0.2929 0.2747 0.2731 0.2876 0.2760 0.2939 0.2737 0.2967 0.2886 0.3069	0.1201 0.1156 0.1161 0.1154 0.1053 0.1051 0.1134 0.1043 0.1141 0.1044 0.1176 0.1086 0.1265	0.4134 0.4016 0.4061 0.4067 0.3770 0.3783 0.4000 0.3877 0.4150 0.3879 0.4118 0.4048 0.4246	0.1285 0.1236 0.1244 0.1236 0.1125 0.1126 0.1213 0.1122 0.1233 0.1124 0.1261 0.1170 0.1356	0.4901 0.4785 0.4818 0.4843 0.4519 0.4768 0.4659 0.4900 0.4664 0.4855 0.4813 0.5010	0.1319 0.1335 0.1285 0.1293 0.1287 0.1170 0.1172 0.1263 0.1175 0.1285 0.1173 0.1312 0.1219 0.1410	0.5457 0.5361 0.5394 0.5401 0.5070 0.5099 0.5367 0.5250 0.5463 0.5234 0.5402 0.5362 0.5564	0.1367 0.1316 0.1325 0.1318 0.1200 0.1202 0.1295 0.1209 0.1318 0.1206 0.1345 0.1249 0.1443	0.5884 0.5820 0.5842 0.5829 0.5556 0.5582 0.5713 0.5903 0.5726 0.5854 0.5782	0.1388 0.1338 0.1346 0.1340 0.1222 0.1224 0.1317 0.1232 0.1342 0.1230 0.1367 0.1269 0.1466	
ItemKNN CF cosine ItemKNN CF dice ItemKNN CF dice ItemKNN CF jaccard ItemKNN CF asymmetric ItemKNN CF tversky P3alpha RP3beta EASE R SLIM BPR SLIMBPR SLIMELSTICNET	0.2880 0.2903 0.2929 0.2747 0.2731 0.2876 0.2760 0.2939 0.2737 0.2967 0.2886 0.3069 0.2616	0.1201 0.1156 0.1161 0.1154 0.1053 0.1051 0.1134 0.1043 0.1141 0.1044 0.1176 0.1086 0.1265 0.0956	0.4134 0.4016 0.4061 0.4067 0.3770 0.3783 0.4000 0.3877 0.4150 0.3879 0.4118 0.4048 0.4246 0.3662	0.1285 0.1236 0.1244 0.1236 0.1125 0.1126 0.1213 0.1122 0.1233 0.1124 0.1261 0.1170 0.1356 0.1028	0.4901 0.4785 0.4818 0.4843 0.4519 0.4539 0.4768 0.4659 0.4900 0.4664 0.4855 0.4813 0.5010 0.4377	0.1319 0.1335 0.1285 0.1293 0.1287 0.1170 0.1172 0.1263 0.1175 0.1285 0.1173	0.5457 0.5361 0.5394 0.5401 0.5070 0.5099 0.5367 0.5250 0.5463 0.5234 0.5402 0.5362 0.5564 0.4890	0.1367 0.1316 0.1325 0.1318 0.1200 0.1202 0.1295 0.1209 0.1318 0.1206 0.1345 0.1249 0.1443 0.1097	0.5884 0.5820 0.5842 0.5829 0.5556 0.5582 0.5713 0.5903 0.5726 0.5854 0.5782 0.6001 0.5307	0.1388 0.1338 0.1346 0.1340 0.1222 0.1224 0.1317 0.1232 0.1342 0.1230 0.1269 0.1466 0.1116	
ItemKNN CF cosine ItemKNN CF dice ItemKNN CF jaccard ItemKNN CF asymmetric ItemKNN CF tversky P3alpha RP3beta EASE R SLIM BPR SLIMElasticNet MF BPR MF FunkSVD	0.2880 0.2903 0.2929 0.2747 0.2731 0.2876 0.2760 0.2939 0.2737 0.2886 0.3069 0.2616 0.2684	0.1201 0.1156 0.1161 0.1153 0.1053 0.1051 0.1134 0.1043 0.1141 0.1044 0.1176 0.1086 0.1265 0.0956 0.0875	0.4134 0.4016 0.4061 0.4067 0.3770 0.3783 0.4000 0.3877 0.4150 0.3879 0.4118 0.4048 0.4246 0.3662 0.3890	0.1285 0.1236 0.1244 0.1236 0.1125 0.1126 0.1213 0.1122 0.1233 0.1124 0.1261 0.1170 0.1356 0.1028 0.0963	0.4901 0.4785 0.4818 0.4843 0.4519 0.4539 0.4768 0.4659 0.4900 0.4664 0.4855 0.4910 0.4377 0.4377	0.1319 0.1335 0.1285 0.1293 0.1287 0.1170 0.1172 0.1263 0.1175 0.1285 0.1173 0.1312 0.1219 0.1410 0.1071 0.1015	0.5457 0.5361 0.5394 0.5401 0.5070 0.5070 0.5099 0.5367 0.5250 0.5463 0.5234 0.5402 0.5362 0.5564 0.4890 0.5252	0.1367 0.1316 0.1325 0.1318 0.1200 0.1202 0.1295 0.1209 0.1318 0.1206 0.1345 0.1249 0.1443 0.1097 0.1049	0.5884 0.5820 0.5842 0.5829 0.5556 0.5582 0.5820 0.5713 0.5903 0.5726 0.5854 0.5782 0.6001 0.5307 0.5720	0.1388 0.1338 0.1346 0.1340 0.1222 0.1224 0.1317 0.1232 0.1342 0.1230 0.1367 0.1269 0.1466 0.1116 0.1072	
ItemKNN CF cosine ItemKNN CF dice ItemKNN CF dice ItemKNN CF jaccard ItemKNN CF asymmetric ItemKNN CF tversky P3alpha RP3beta EASE R SLIM BPR SLIMElasticNet MF BPR MF FunkSVD PureSVD	0.2880 0.2903 0.2929 0.2747 0.2737 0.2876 0.2760 0.2939 0.2737 0.2866 0.3069 0.2616 0.2684 0.2595	0.1201 0.1156 0.1161 0.1154 0.1053 0.1051 0.1134 0.1043 0.1141 0.1044 0.1176 0.1086 0.1265 0.0956 0.0875 0.1008	0.4134 0.4016 0.4061 0.4067 0.3770 0.3783 0.4000 0.3877 0.4150 0.3879 0.4118 0.4048 0.4246 0.3662 0.3890 0.3638	0.1285 0.1236 0.1244 0.1236 0.1125 0.1126 0.1213 0.1122 0.1233 0.1124 0.1261 0.1170 0.1356 0.1028 0.0963 0.1083	0.4901 0.4785 0.4818 0.4843 0.4519 0.4539 0.4768 0.4900 0.4664 0.4855 0.4813 0.5010 0.4377 0.4663 0.4378	0.1319 0.1335 0.1285 0.1293 0.1287 0.1170 0.1172 0.1263 0.1175 0.1285 0.1173 0.1312 0.1219 0.1410 0.1071 0.1015 0.1131	0.5457 0.5361 0.5361 0.5401 0.5070 0.5099 0.5367 0.5250 0.5463 0.5234 0.5402 0.5362 0.5564 0.4890 0.5252	0.1367 0.1316 0.1325 0.1318 0.1200 0.1202 0.1295 0.1209 0.1318 0.1206 0.1345 0.1249 0.1443 0.1097 0.1049 0.1161	0.5884 0.5820 0.5842 0.5829 0.5556 0.5582 0.5713 0.5726 0.5824 0.5726 0.5829 0.5726	0.1388 0.1338 0.1346 0.1340 0.1222 0.1224 0.1317 0.1232 0.1342 0.1230 0.1367 0.1269 0.1466 0.1116 0.1072 0.1182	
ItemKNN CF cosine ItemKNN CF dice ItemKNN CF dice ItemKNN CF jaccard ItemKNN CF asymmetric ItemKNN CF tversky P3alpha RP3beta EASE R SLIM BPR SLIMElasticNet MF BPR MF FunkSVD PureSVD NMF	0.2880 0.2903 0.2929 0.2747 0.2731 0.2876 0.2760 0.2737 0.2866 0.3069 0.2616 0.2686 0.26384	0.1201 0.1156 0.1161 0.1154 0.1053 0.1051 0.1134 0.1043 0.1141 0.1044 0.1176 0.1086 0.1265 0.0956 0.0875 0.1008 0.0908	0.4134 0.4016 0.4061 0.3770 0.3783 0.4000 0.3879 0.4118 0.4048 0.4246 0.3662 0.3890 0.3638 0.3638	0.1285 0.1236 0.1244 0.1236 0.1125 0.1126 0.1213 0.1122 0.1233 0.1124 0.1261 0.1356 0.1028 0.0963 0.1083 0.0972	0.4901 0.4785 0.4818 0.4843 0.4519 0.4539 0.4768 0.4659 0.4900 0.4664 0.4855 0.4813 0.5010 0.4378 0.4378	0.1319 0.1335 0.1285 0.1293 0.1287 0.1170 0.1172 0.1263 0.1175 0.1173 0.1312 0.1219 0.1410 0.1071 0.1071 0.1015	0.5457 0.5361 0.5394 0.5070 0.5099 0.5367 0.5253 0.5463 0.5234 0.5402 0.5564 0.4890 0.5252 0.4913 0.4568	0.1367 0.1316 0.1325 0.1318 0.1200 0.1202 0.1295 0.1209 0.1318 0.1206 0.1345 0.1249 0.1443 0.1097 0.1049 0.1161 0.1041	0.5884 0.5820 0.5842 0.5829 0.5556 0.5582 0.5713 0.5726 0.5854 0.5782 0.6001 0.5307 0.5720 0.5720 0.5720	0.1388 0.1338 0.1346 0.1340 0.1222 0.1224 0.1317 0.1232 0.1342 0.1230 0.1367 0.1269 0.1466 0.1116 0.1072 0.1182 0.1060	
ItemKNN CF cosine ItemKNN CF dice ItemKNN CF dice ItemKNN CF jaccard ItemKNN CF asymmetric ItemKNN CF tversky P3alpha RP3beta EASE R SLIM BPR SLIMElasticNet MF BPR MF FunkSVD PureSVD	0.2880 0.2903 0.2929 0.2747 0.2737 0.2876 0.2760 0.2939 0.2737 0.2866 0.3069 0.2616 0.2684 0.2595	0.1201 0.1156 0.1161 0.1154 0.1053 0.1051 0.1043 0.1043 0.1141 0.1044 0.1176 0.1086 0.1265 0.0956 0.0875 0.1008	0.4134 0.4016 0.4061 0.4067 0.3770 0.3783 0.4000 0.3877 0.4150 0.3879 0.4118 0.4048 0.4246 0.3662 0.3890 0.3638	0.1285 0.1236 0.1244 0.1236 0.1125 0.1126 0.1213 0.1122 0.1233 0.1124 0.1261 0.1170 0.1356 0.1028 0.0963 0.1083	0.4901 0.4785 0.4818 0.4843 0.4519 0.4539 0.4768 0.4900 0.4664 0.4855 0.4813 0.5010 0.4377 0.4663 0.4378	0.1319 0.1335 0.1285 0.1293 0.1287 0.1170 0.1172 0.1263 0.1175 0.1285 0.1173 0.1312 0.1219 0.1410 0.1071 0.1015 0.1131	0.5457 0.5361 0.5361 0.5401 0.5070 0.5099 0.5367 0.5250 0.5463 0.5234 0.5402 0.5362 0.5564 0.4890 0.5252	0.1367 0.1316 0.1325 0.1318 0.1200 0.1202 0.1295 0.1209 0.1318 0.1206 0.1345 0.1249 0.1443 0.1097 0.1049 0.1161	0.5884 0.5820 0.5842 0.5829 0.5556 0.5582 0.5713 0.5726 0.5824 0.5726 0.5829 0.5726	0.1388 0.1338 0.1346 0.1340 0.1222 0.1224 0.1317 0.1232 0.1342 0.1230 0.1367 0.1269 0.1466 0.1116 0.1072 0.1182	
ItemKNN CF cosine ItemKNN CF dice ItemKNN CF dice ItemKNN CF jaccard ItemKNN CF asymmetric ItemKNN CF tversky P3alpha RP3beta EASE R SLIM BPR SLIMElasticNet MF BPR MF FunkSVD PureSVD NMF	0.2880 0.2903 0.2929 0.2747 0.2731 0.2876 0.2760 0.2737 0.2866 0.3069 0.2616 0.2686 0.26384	0.1201 0.1156 0.1161 0.1154 0.1053 0.1051 0.1134 0.1043 0.1141 0.1044 0.1176 0.1086 0.1265 0.0956 0.0875 0.1008 0.0908	0.4134 0.4016 0.4061 0.3770 0.3783 0.4000 0.3879 0.4118 0.4048 0.4246 0.3662 0.3890 0.3638 0.3638	0.1285 0.1236 0.1244 0.1236 0.1125 0.1126 0.1213 0.1122 0.1233 0.1124 0.1261 0.1356 0.1028 0.0963 0.1083 0.0972	0.4901 0.4785 0.4818 0.4843 0.4519 0.4539 0.4768 0.4659 0.4900 0.4664 0.4855 0.4813 0.5010 0.4378 0.4378	0.1319 0.1335 0.1285 0.1293 0.1287 0.1170 0.1172 0.1263 0.1175 0.1173 0.1312 0.1219 0.1410 0.1071 0.1071 0.1015	0.5457 0.5361 0.5394 0.5070 0.5099 0.5367 0.5253 0.5463 0.5234 0.5402 0.5564 0.4890 0.5252 0.4913 0.4568	0.1367 0.1316 0.1325 0.1318 0.1200 0.1202 0.1295 0.1209 0.1318 0.1206 0.1345 0.1249 0.1443 0.1097 0.1049 0.1161 0.1041	0.5884 0.5820 0.5842 0.5829 0.5556 0.5582 0.5713 0.5726 0.5854 0.5782 0.6001 0.5307 0.5720 0.5720 0.5720	0.1388 0.1338 0.1346 0.1340 0.1222 0.1224 0.1317 0.1232 0.1342 0.1230 0.1367 0.1269 0.1466 0.1116 0.1072 0.1182 0.1060	

1:36 Ferrari Dacrema et al.

Table 32. Hyperparameter values for our collaborative KNN baselines on all datasets.

Algorithm	Hyperparameter	Movielens 1M ours	Movielens 1M original	Hetrec	Amazon Instant Video
II VADIOD :	topK shrink	418 402	365 0	464 0	800 346
UserKNN CF cosine	similarity	cosine	cosine	cosine	cosine
	normalize	True	True	True	False
	feature weighting	TF-IDF	TF-IDF	none	TF-IDF
	topK shrink	383	276 1	428	484 940
UserKNN CF dice		dice	dice	1 dice	dice
	similarity normalize	False	True	True	False
	topK	300	337	456	444
	shrink	0	0	0	303
UserKNN CF jaccard	similarity	jaccard	jaccard	jaccard	jaccard
	normalize	False	True	False	True
	topK	734	369	441	855
	shrink	0	134	0	19
UserKNN CF asymmetric	similarity	asymmetric	asymmetric	asymmetric	asymmetric
Oserkiviv Cr asymmetric	normalize	True	True	True	True
	asymmetric alpha	0.4193	0.6047	0.5026	0.7882
	feature weighting	TF-IDF	TF-IDF	TF-IDF	none
	topK	516	377	449	476
	shrink	0	0	0	806
UserKNN CF tversky	similarity	tversky	tversky	tversky	tversky
,	normalize	True	True	True	True
	tversky alpha	1.2079	2.0000	2.0000	1.3499
	tversky beta	2.0000	2.0000	2.0000	1.7078
	topK	197	615	322	998
r maron :	shrink	0	0	1000	21
ItemKNN CF cosine	similarity normalize	cosine True	cosine True	cosine True	cosine False
	feature weighting	TF-IDF	TF-IDF	TF-IDF	TF-IDF
		l			
	topK shrink	218	137 0	195 33	443 172
ItemKNN CF dice	similarity	dice	dice	dice	dice
	normalize	True	False	False	False
		158	135	222	290
	topK shrink	136	0	5	140
ItemKNN CF jaccard	similarity	jaccard	jaccard	jaccard	jaccard
	normalize	True	False	True	True
		l I			
	topK shrink	269 0	1000 0	462 222	1000 1000
	similarity	asymmetric	asymmetric	asymmetric	asymmetric
ItemKNN CF asymmetric	normalize	True	True	True	True
	asymmetric alpha	0.3993	0.0466	0.0000	0.0000
	feature weighting	TF-IDF	TF-IDF	TF-IDF	TF-IDF
	topK	48	143	142	1000
	shrink	77	0	23	1000
ItIZNINI OD t	similarity	tversky	tversky	tversky	tversky
ItemKNN CF tversky	normalize	True	True	True	True
	tversky alpha	0.8429	0.4521	0.2786	0.0000
M Transactions on Informa	.tversky beta.	1.7696 No. 1. Article 1. I	Publication date:	1.3237 January 2019.	2.0000

Table 33. Hyperparameter values for our non-neural machine learning and graph based baselines on all datasets.

Algorithm	Hyperparameter	Movielens 1M ours	Movielens 1M original	Hetrec	Amazon Instant Video
	topK	350	332	901	1000
$P^3\alpha$	alpha	0.6537	1.0075	0.7565	0.3705
	normalize similarity	True	True	False	False
	topK	853	537	1000	442
$RP^3\beta$	alpha	0.0000	0.7551	0.8163	0.6540
RΓ p	beta	0.4098	0.5412	0.2099	0.0332
	normalize similarity	True	False	False	False
$EASE^R$	l2 norm	1.25E+03	1.72E+03	1.03E+03	3.06E+06
	topK	329	1000	725	1000
	epochs	130	200	80	150
	symmetric	True	True	True	False
SLIM BPR	sgd mode	sgd	adagrad	adagrad	adagrad
	lambda i	1.00E-02	1.00E-05	1.00E-05	1.00E-02
	lambda j	1.00E-02	1.00E-05	1.00E-05	1.00E-02
	learning rate	1.33E-02	1.00E-01	3.19E-04	1.00E-04
	topK	642	747	602	862
SLIMElasticNet	l1 ratio	1.89E-05	7.37E-05	1.58E-05	6.11E-05
	alpha	0.0490	0.0371	0.1354	0.5507
	sgd mode	adagrad	adagrad	adagrad	adagrad
	epochs	790	445	190	500
	num factors	200	200	200	200
MF BPR	batch size	512	32	64	1
	positive reg	1.00E-02	1.00E-02	1.00E-02	1.00E-02
	negative reg	1.00E-05	1.00E-02	1.00E-02	1.00E-02
	learning rate	2.86E-02	1.00E-01	2.22E-02	1.00E-01
	sgd mode	adam	adam	adam	adam
	epochs	325	280	70	370
	use bias	True	False	True	False
	batch size	32	2	8	2
MF FunkSVD	num factors	19	8	98	13
	item reg	1.47E-04	1.28E-05	2.19E-05	6.87E-05
	user reg	1.88E-04	6.74E-04	6.92E-03	3.09E-04
	learning rate	2.45E-03	1.54E-03	4.73E-03	1.15E-02
	negative quota	0.2131	0.1045	0.4633	0.1323
PureSVD	num factors	16	15	9	33
	num factors	9	20	22	37
NMF	solver	coord. descent	mult. update	mult. update	mult. update
	init type	random	nndsvda	random	nndsvda
	beta loss	frobenius	kullback-leibler	frobenius	frobenius
	num factors	24	22	11	26
	confidence scaling	log	log	linear	linear
iALS	alpha	50.0000	1.7077	6.0056	50.0000
II YLO	epsilon	10.0000	0.0010	0.0010	0.0010
	reg	1.20E-04	1.00E-05	1.31E-03	1.00E-05
	epochs ACM Transactions on	20 Information Syste	75	45.	50 on date: January 20

1:38 Ferrari Dacrema et al.

Table 34. Hyperparameter values for the deep learning algorithm on all datasets.

Algorithm	Hyperparameter	Movielens 1M ours	Movielens 1M original	Hetrec	Amazon Instant Video
	batch size	2048	2048	512	1024
	embedding size	4	16	16	8
Se a stralGE sure	decay	0.0306	0.0032	0.0018	0.0003
SpectralCF ours	learning rate	8.83E-04	7.00E-03	5.35E-03	9.68E-03
	k	2	3	2	3
	epochs	805	350	265	445
	epochs	600	410	185	425
	batch size	1024	1024	1024	1024
SpectralCF original article	embedding size	16	16	16	16
	decay	0.0010	0.0010	0.0010	0.0010
	k	3	3	3	3
	learning rate	1.00E-03	1.00E-03	1.00E-03	1.00E-03

Table 35. Comparison of the computation time for the different algorithms.

	Amazon Instant Video			
	Train time	Recommendat		
	Train time	Time	[usr/s]	
Random	0.00 [sec]	15.23 [sec]	204	
TopPop	0.00 [sec]	15.41 [sec]	202	
UserKNN CF cosine	$0.16 \pm 0.01 [sec]$	15.56 ± 0.04 [sec]	200	
UserKNN CF dice	$0.17 \pm 0.00 [sec]$	$15.52 \pm 0.03 [sec]$	200	
UserKNN CF jaccard	$0.17 \pm 0.00 [sec]$	$15.48 \pm 0.02 [sec]$	201	
UserKNN CF asymmetric	$0.17 \pm 0.01 [sec]$	15.41 ± 0.13 [sec]	201	
UserKNN CF tversky	$0.17 \pm 0.00 [sec]$	$15.53 \pm 0.03 [sec]$	201	
ItemKNN CF cosine	$0.38 \pm 0.04 [sec]$	$15.42 \pm 0.09 [sec]$	202	
ItemKNN CF dice	$0.40 \pm 0.01 [sec]$	$15.53 \pm 0.01 [sec]$	201	
ItemKNN CF jaccard	$0.40 \pm 0.01 [sec]$	$15.47 \pm 0.05 [sec]$	202	
ItemKNN CF asymmetric	$0.41 \pm 0.01 [sec]$	$15.52 \pm 0.02 [sec]$	201	
ItemKNN CF tversky	$0.41 \pm 0.01 [sec]$	$15.53 \pm 0.04 [sec]$	200	
$P^3\alpha$	$0.87 \pm 0.03 [sec]$	$15.54 \pm 0.07 [sec]$	199	
$RP^3\beta$	$0.95 \pm 0.04 [sec]$	$15.28 \pm 0.17 [sec]$	201	
$EASE^R$	15.96 ± 0.03 [sec]	15.57 ± 0.17 [sec]	199	
SLIM BPR	83.48 [sec] / 1.39 ± 0.59 [min]	$15.66 \pm 0.05 [sec]$	199	
SLIMElasticNet	51.52 ± 3.17 [sec]	$15.62 \pm 0.16 [sec]$	198	
MF BPR	225.64 [sec] / 3.76 ± 2.96 [min]	$15.77 \pm 0.20 [sec]$	194	
MF FunkSVD	85.76 [sec] / 1.43 ± 1.50 [min]	15.58 ± 0.16 [sec]	198	
PureSVD	0.15 ± 0.19 [sec]	$15.38 \pm 0.02 [sec]$	202	
NMF	$28.00 \pm 44.31 [sec]$	$15.64 \pm 0.14 [sec]$	199	
iALS	193.65 [sec] / 3.23 ± 2.87 [min]	15.73 ± 0.09 [sec]	198	
SpectralCF	1118.55 [sec] / 18.64 ± 2.65 [min]	10.42 ± 0.21 [sec]	295	
SpectralCF article default	1335.22 [sec] / 22.25 [min]	10.27 [sec]	303	

Table 36. Comparison of the computation time for the different algorithms.

	Hetred	2	
	Train time	Recommendat	tion
	Train time	Time	[usr/s]
Random	0.00 [sec]	10.21 [sec]	194
ТорРор	0.00 [sec]	11.17 [sec]	177
UserKNN CF cosine	0.22 ± 0.03 [sec]	11.47 ± 0.06 [sec]	172
UserKNN CF dice	$0.23 \pm 0.03 [sec]$	$11.38 \pm 0.10 [sec]$	174
UserKNN CF jaccard	$0.23 \pm 0.04 [sec]$	$11.41 \pm 0.03 [sec]$	174
UserKNN CF asymmetric	$0.23 \pm 0.04 [sec]$	$11.44 \pm 0.04 [sec]$	173
UserKNN CF tversky	$0.23 \pm 0.04 [sec]$	$11.45 \pm 0.03 [sec]$	174
ItemKNN CF cosine	$1.13 \pm 0.09 [sec]$	$11.52 \pm 0.05 [sec]$	172
ItemKNN CF dice	$1.13 \pm 0.06 [sec]$	11.34 ± 0.19 [sec]	174
ItemKNN CF jaccard	1.14 ± 0.06 [sec]	$11.42 \pm 0.04 [sec]$	174
ItemKNN CF asymmetric	1.13 ± 0.08 [sec]	$11.29 \pm 0.44 [sec]$	172
ItemKNN CF tversky	$1.15 \pm 0.07 [sec]$	$11.40 \pm 0.06 [sec]$	174
$P^3\alpha$	4.78 ± 0.66 [sec]	$11.40 \pm 0.07 [sec]$	174
$RP^3\beta$	4.55 ± 0.99 [sec]	11.07 ± 0.63 [sec]	172
EASE ^R	77.06 [sec] / 1.28 ± 0.00 [min]	11.53 ± 0.03 [sec]	171
SLIM BPR	130.28 [sec] / 2.17 ± 0.91 [min]	$11.39 \pm 0.07 [sec]$	173
SLIMElasticNet	306.32 [sec] / 5.11 ± 0.21 [min]	$11.30 \pm 0.57 [sec]$	173
MF BPR	124.76 [sec] / 2.08 ± 2.29 [min]	$11.36 \pm 0.34 [sec]$	171
MF FunkSVD	91.33 [sec] / 1.52 ± 1.67 [min]	$11.59 \pm 0.20 [sec]$	170
PureSVD	$0.18 \pm 0.23 [sec]$	$11.08 \pm 0.20 [sec]$	177
NMF	36.78 ± 66.11 [sec]	$11.50 \pm 0.12 [sec]$	172
iALS	187.90 [sec] / 3.13 ± 5.58 [min]	11.45 ± 0.03 [sec]	172
SpectralCF	1704.87 [sec] / 28.41 ± 4.33 [min]	7.80 ± 0.19 [sec]	249
SpectralCF article default	2197.20 [sec] / 36.62 [min]	7.42 [sec]	267

1:40 Ferrari Dacrema et al.

Table 37. Comparison of the computation time for the different algorithms.

	Movielens 1M original			
	Train time	Recommendat	tion	
	1 rain time	Time	[usr/s]	
Random	0.00 [sec]	27.37 [sec]	200	
ТорРор	0.01 [sec]	28.35 [sec]	193	
UserKNN CF cosine	1.54 ± 0.20 [sec]	29.21 ± 0.45 [sec]	187	
UserKNN CF dice	1.53 ± 0.22 [sec]	$29.04 \pm 0.19 [sec]$	189	
UserKNN CF jaccard	1.51 ± 0.21 [sec]	29.09 ± 0.18 [sec]	189	
UserKNN CF asymmetric	1.58 ± 0.24 [sec]	$29.19 \pm 0.08 [sec]$	188	
UserKNN CF tversky	1.54 ± 0.25 [sec]	29.07 ± 0.39 [sec]	188	
ItemKNN CF cosine	$0.47 \pm 0.07 [sec]$	$29.08 \pm 0.33 [sec]$	188	
ItemKNN CF dice	$0.41 \pm 0.06 [sec]$	$28.73 \pm 0.15 [sec]$	191	
ItemKNN CF jaccard	$0.42 \pm 0.06 [sec]$	$28.93 \pm 0.21 [sec]$	191	
ItemKNN CF asymmetric	$0.49 \pm 0.05 [sec]$	29.26 ± 0.50 [sec]	184	
ItemKNN CF tversky	$0.43 \pm 0.07 [sec]$	$28.95 \pm 0.11 [sec]$	190	
$P^3\alpha$	2.31 ± 0.82 [sec]	29.54 ± 0.23 [sec]	186	
$RP^3\beta$	2.66 ± 0.90 [sec]	29.35 ± 0.97 [sec]	186	
EASE ^R	$5.07 \pm 0.01 [sec]$	28.77 ± 0.24 [sec]	189	
SLIM BPR	218.79 [sec] / 3.65 ± 1.84 [min]	29.69 ± 0.13 [sec]	185	
SLIMElasticNet	60.10 [sec] / 1.00 ± 0.16 [min]	$28.88 \pm 0.16 [sec]$	190	
MF BPR	431.40 [sec] / 7.19 ± 5.28 [min]	$29.09 \pm 0.09 [sec]$	188	
MF FunkSVD	370.25 [sec] / 6.17 ± 7.29 [min]	29.05 ± 0.52 [sec]	182	
PureSVD	$0.27 \pm 0.33 [sec]$	$28.38 \pm 0.24 [sec]$	192	
NMF	47.42 ± 66.95 [sec]	$28.86 \pm 0.43 [sec]$	190	
iALS	272.61 [sec] / 4.54 ± 5.91 [min]	28.65 ± 0.12 [sec]	191	
SpectralCF	2429.47 [sec] / 40.49 ± 24.14 [min]	19.72 ± 0.28 [sec]	279	
SpectralCF article default	2111.55 [sec] / 35.19 [min]	20.30 [sec]	270	

Table 38. Comparison of the computation time for the different algorithms.

	Movielens 1N	1 01110	
	Movielens in	A ours Recommenda	ion
	Train time	Time	[usr/s]
Random	0.00 [sec]	29.72 [sec]	201
ТорРор	0.00 [sec] 0.01 [sec]	32.39 [sec]	184
	0.01 [sec]	32.39 [860]	104
UserKNN CF cosine	$1.67 \pm 0.23 [sec]$	$34.04 \pm 0.03 [sec]$	175
UserKNN CF dice	1.49 ± 0.21 [sec]	$34.04 \pm 0.10 [sec]$	175
UserKNN CF jaccard	1.50 ± 0.23 [sec]	$33.99 \pm 0.41 [sec]$	175
UserKNN CF asymmetric	1.59 ± 0.19 [sec]	$34.16 \pm 0.22 [sec]$	174
UserKNN CF tversky	1.56 ± 0.21 [sec]	$33.95 \pm 0.74 [sec]$	174
ItemKNN CF cosine	$0.45 \pm 0.07 [sec]$	$34.20 \pm 0.87 [sec]$	173
ItemKNN CF dice	0.46 ± 0.08 [sec]	$33.75 \pm 0.17 [sec]$	176
ItemKNN CF jaccard	$0.45 \pm 0.07 [sec]$	$33.90 \pm 0.19 [sec]$	176
ItemKNN CF asymmetric	$0.50 \pm 0.07 [sec]$	$34.32 \pm 0.18 [sec]$	174
ItemKNN CF tversky	$0.43 \pm 0.09 [sec]$	33.99 ± 0.31 [sec]	176
$P^3\alpha$	2.44 ± 0.93 [sec]	$33.77 \pm 0.27 [sec]$	176
$RP^3\beta$	$3.11 \pm 1.03 [sec]$	32.47 ± 1.99 [sec]	175
EASE ^R	5.65 ± 0.01 [sec]	33.43 ± 0.31 [sec]	178
SLIM BPR	230.44 [sec] / 3.84 ± 2.74 [min]	$34.23 \pm 0.10 [sec]$	174
SLIMElasticNet	68.77 [sec] / 1.15 ± 0.24 [min]	$34.91 \pm 0.52 [sec]$	169
MF BPR	358.82 [sec] / 5.98 ± 5.73 [min]	$33.91 \pm 0.41 [sec]$	174
MF FunkSVD	328.94 [sec] / 5.48 ± 6.66 [min]	$32.76 \pm 1.40 [sec]$	176
PureSVD	$0.32 \pm 0.40 [sec]$	$33.13 \pm 0.47 [sec]$	178
NMF	28.92 ± 61.24 [sec]	33.66 ± 0.76 [sec]	174
iALS	248.84 [sec] / 4.15 ± 4.96 [min]	33.20 ± 0.64 [sec]	176
SpectralCF	2243.74 [sec] / 37.40 ± 19.07 [min]	21.55 ± 0.33 [sec]	280
SpectralCF article default	2556.16 [sec] / 42.60 [min]	21.74 [sec]	274

1:42 Ferrari Dacrema et al.

G KDD: LEVERAGING META-PATH BASED CONTEXT FOR TOP-N RECOMMENDATION WITH A NEURAL CO-ATTENTION MODEL

Relevant statistics on the dataset, which we mentioned in the paper, are reported in Table 39. The results of our evaluation can be seen in Table 40 (Movielens 100k). The corresponding optimal hyperparameters are reported in Table 41 (collaborative KNNs), Table 42 (non-neural machine learning and graph based), Table 43 (content-based KNNs), Table 44 (hybrid KNNs) and Table 45 (MCRec).

Lastly, the time required to train and evaluate the models is reported in Table 46 (Movielens 100k).

Table 39. Dataset characteristics.

Dataset	Interactions	Items	Users	Density
Movielens 100k	100 K	1682	943	6.30%
LastFM	92 K	17 k	1.8 k	0.27%
YelpBusiness	198 K	14 k	16.2 k	0.08%

Table 40. Experimental results on the metrics and cutoffs reported in the original paper.

	1 .	f : 1 40	01
	Movielens 100k		
	PREC@10	REC@10	NDCG@10
Random	0.0162	0.0069	0.0084
TopPop	0.1907	0.1180	0.1361
UserKNN CF cosine	0.2807	0.1825	0.2260
UserKNN CF dice	0.3442	0.2237	0.2692
UserKNN CF jaccard	0.3430	0.2225	0.2687
UserKNN CF asymmetric	0.2814	0.1828	0.2264
UserKNN CF tversky	0.3426	0.2227	0.2694
ItemKNN CF cosine	0.3293	0.2152	0.2571
ItemKNN CF dice	0.3211	0.2040	0.2425
ItemKNN CF jaccard	0.3177	0.2043	0.2431
ItemKNN CF asymmetric	0.3320	0.2171	0.2601
ItemKNN CF tversky	0.3283	0.2145	0.2562
P3alpha	0.3305	0.2081	0.2554
RP3beta	0.3435	0.2191	0.2588
EASE R	0.3640	0.2318	0.2815
SLIM BPR	0.3127	0.2040	0.2460
SLIMElasticNet	0.3770	0.2441	0.2957
MF BPR	0.2816	0.1860	0.2195
MF FunkSVD	0.3442	0.2203	0.2642
PureSVD	0.3545	0.2247	0.2719
NMF	0.3350	0.2139	0.2585
IALS	0.3596	0.2283	0.2759
ItemKNN CBF cosine	0.0455	0.0185	0.0254
ItemKNN CBF dice	0.0135	0.0038	0.0054
ItemKNN CBF jaccard	0.0135	0.0038	0.0054
ItemKNN CBF asymmetric	0.0547	0.0243	0.0319
ItemKNN CBF tversky	0.0097	0.0031	0.0042
ItemKNN CFCBF cosine	0.3398	0.2239	0.2646
ItemKNN CFCBF dice	0.3215	0.2043	0.2403
ItemKNN CFCBF jaccard	0.3200	0.2057	0.2422
ItemKNN CFCBF asymmetric	0.3390	0.2224	0.2662
ItemKNN CFCBF tversky	0.3127	0.2023	0.2439
MCRec	0.3110	0.2113	0.2466

1:44 Ferrari Dacrema et al.

Table 41. Hyperparameter values for our collaborative KNN baselines on all datasets.

Algorithm	Hyperparameter	Movielens 100k
	topK	903
	shrink	2
UserKNN CF cosine	similarity	cosine
eserra in er eesme	normalize	True
	feature weighting	BM25
	reature weighting	DIVIZO
	topK	129
UserKNN CF dice	shrink	0
oscilative alec	similarity	dice
	normalize	True
	topK	128
	shrink	0
UserKNN CF jaccard	similarity	jaccard
	normalize	True
	Hormanze	True
	topK	1000
	shrink	1000
Heark MM CF asymmetric	similarity	asymmetric
UserKNN CF asymmetric	normalize	True
	asymmetric alpha	2.0000
	feature weighting	BM25
		125
	topK	
	shrink	28
UserKNN CF tversky	similarity	tversky
,	normalize	True
	tversky alpha	1.8829
	tversky beta	1.9666
	topK	886
	shrink	403
ItemKNN CF cosine	similarity	cosine
	normalize	True
	feature weighting	BM25
	topK	179
ItemKNN CF dice	shrink	0
nemia ii v er dice	similarity	dice
	normalize	False
	topK	161
	shrink	0
ItemKNN CF jaccard	similarity	jaccard
	normalize	True
	topK	468
	shrink	706
ItemKNN CF asymmetric	similarity	asymmetric
	normalize	True
	asymmetric alpha	1.5629
	feature weighting	BM25
	topK	122
	shrink	0
	similarity	tversky
ItemKNN CF tversky	normalize	True
		0.8648
	tversky alpha	
	tversky beta	1.5755
rmation Systems Vol 1 No	1 Autiala 1 Dallianti	ion doto. Tomacoma O

Table 42. Hyperparameter values for our non-neural machine learning and graph based baselines on all datasets.

Algorithm	Hyperparameter	Movielens 100k
	topK	197
$P^3\alpha$	alpha	0.0000
	normalize similarity	True
	topK	324
pp3 <i>a</i>	alpha	0.8593
$RP^3\beta$	beta	0.6574
	normalize similarity	True
EASE ^R	l2 norm	1.10E+03
	topK	584
	epochs	120
	symmetric	True
SLIM BPR	sgd mode	adam
	lambda i	1.00E-05
	lambda j	1.00E-05
	learning rate	1.00E-01
	topK	605
SLIMElasticNet	l1 ratio	1.13E-04
	alpha	0.2225
	sgd mode	adagrad
	epochs	355
	num factors	170
MF BPR	batch size	256
	positive reg	2.16E-04
	negative reg	4.80E-05
	learning rate	3.97E-02
	sgd mode	adagrad
	epochs	135
	use bias	False
	batch size	2
MF FunkSVD	num factors	16
	item reg	1.00E-02
	user reg	1.00E-02
	learning rate	1.00E-01
	negative quota	0.0782
PureSVD	num factors	13
	num factors	30
NMF	solver	coord. descent
INIVII	init type	random
	beta loss	frobenius
	num factors	15
	confidence scaling	log
iALS	alpha	0.0010
	epsilon	0.0010
	reg	2.71E-04
	epochs	10

1:46 Ferrari Dacrema et al.

Table 43. Hyperparameter values for our content based KNN baselines on all datasets.

Algorithm	Hyperparameter	Movielens 100k
	topK	113
	shrink	349
ItemKNN CBF cosine	similarity	cosine
	normalize	False
	feature weighting	BM25
	topK	991
ItemKNN CBF dice	shrink	1
Itellikinin CBF dice	similarity	dice
	normalize	True
	topK	991
Itama VNINI CDE in annud	shrink	999
ItemKNN CBF jaccard	similarity	jaccard
	normalize	False
	topK	403
	shrink	428
ItemKNN CBF asymmetric	similarity	asymmetric
itemixion CDF asymmetric	normalize	True
	asymmetric alpha	1.8470
	feature weighting	BM25
	topK	983
	shrink	3
ItamKNN CRE tworsley	similarity	tversky
ItemKNN CBF tversky	normalize	True
	tversky alpha	0.0501
	tversky beta	0.2996

Table 44. Hyperparameter values for our hybrid KNN baselines on all datasets.

Algorithm	Hyperparameter	Movielens 100k
	topK	355
	shrink	228
ItemKNN CFCBF cosine	similarity	cosine
Hellikini CrCbr cosilie	normalize	True
	feature weighting	BM25
	ICM weight	0.0757
	topK	170
	shrink	0
ItemKNN CFCBF dice	similarity	dice
	normalize	True
	ICM weight	0.0100
	topK	164
	shrink	0
ItemKNN CFCBF jaccard	similarity	jaccard
	normalize	True
	ICM weight	100.0000
	topK	311
	shrink	929
	similarity	asymmetric
ItemKNN CFCBF asymmetric	normalize	True
	asymmetric alpha	2.0000
	feature weighting	BM25
	ICM weight	0.0100
<u> </u>	topK	70
	shrink	537
	similarity	tversky
ItemKNN CFCBF tversky	normalize	True
	tversky alpha	0.3134
	tversky beta	1.4108
	ICM weight	0.8798

Table 45. Hyperparameter values for the deep learning algorithm on all datasets.

Algorithm	Hyperparameter	Movielens 100k
MCRec	epochs latent dim reg latent layers reg layes learning rate batch size num negatives	130 128 0.00E+00 [512, 256, 128, 64] [0, 0, 0, 0] 1.00E-03 256 4

1:48 Ferrari Dacrema et al.

Table 46. Comparison of the computation time for the different algorithms.

	Movie	lens 100k	
	Train time	Recommendation	
	Train time	Time	[usr/s]
Random	0.00 [sec]	0.37 [sec]	2513
TopPop	0.00 [sec]	0.41 [sec]	2319
UserKNN CF cosine	0.10 ± 0.02 [sec]	$0.86 \pm 0.03 [sec]$	1077
UserKNN CF dice	$0.09 \pm 0.02 [sec]$	$0.75 \pm 0.02 [sec]$	1283
UserKNN CF jaccard	$0.08 \pm 0.02 [sec]$	$0.78 \pm 0.05 [sec]$	1160
UserKNN CF asymmetric	$0.10 \pm 0.01 [sec]$	$0.85 \pm 0.03 [sec]$	1077
UserKNN CF tversky	$0.09 \pm 0.02 [sec]$	$0.76 \pm 0.03 [sec]$	1256
ItemKNN CF cosine	0.16 ± 0.03 [sec]	$0.87 \pm 0.02 [sec]$	1077
ItemKNN CF dice	0.13 ± 0.03 [sec]	$0.80 \pm 0.05 [sec]$	1256
ItemKNN CF jaccard	0.13 ± 0.03 [sec]	$0.75 \pm 0.02 [sec]$	1256
ItemKNN CF asymmetric	$0.15 \pm 0.02 [sec]$	$0.84 \pm 0.01 [sec]$	1117
ItemKNN CF tversky	$0.14 \pm 0.04 [sec]$	$0.76 \pm 0.04 [sec]$	1256
$P^3\alpha$	$0.88 \pm 0.50 [sec]$	$0.73 \pm 0.02 [sec]$	1256
RP^3eta	$0.97 \pm 0.50 [sec]$	$0.77 \pm 0.02 [sec]$	1231
$EASE^R$	0.57 ± 0.17 [sec]	0.78 ± 0.16 [sec]	1483
SLIM BPR	38.71 ± 16.65 [sec]	$1.11 \pm 0.04 [sec]$	839
SLIMElasticNet	11.45 ± 5.35 [sec]	$1.09 \pm 0.01 [sec]$	862
MF BPR	82.37 [sec] / 1.37 ± 1.20 [min]	$1.56 \pm 0.22 [sec]$	548
MF FunkSVD	148.82 [sec] / 2.48 ± 3.72 [min]	1.69 ± 0.68 [sec]	877
PureSVD	$0.05 \pm 0.04 [sec]$	$0.60 \pm 0.34 [sec]$	1945
NMF	20.65 ± 27.78 [sec]	0.53 [sec]	1774
iALS	26.02 ± 33.39 [sec]	$0.75 \pm 0.44 [sec]$	1774
ItemKNN CBF cosine	0.93 ± 0.61 [sec]	1.06 ± 0.05 [sec]	928
ItemKNN CBF dice	$0.92 \pm 0.61 [sec]$	$1.01 \pm 0.04 [sec]$	900
ItemKNN CBF jaccard	1.02 ± 0.59 [sec]	$1.01 \pm 0.04 [sec]$	914
ItemKNN CBF asymmetric	0.93 ± 0.56 [sec]	$1.06 \pm 0.01 [sec]$	887
ItemKNN CBF tversky	1.18 ± 1.25 [sec]	$1.02 \pm 0.02 [sec]$	914
ItemKNN CFCBF cosine	0.29 ± 0.05 [sec]	1.13 ± 0.02 [sec]	838
ItemKNN CFCBF dice	$0.26 \pm 0.04 [sec]$	$1.09 \pm 0.04 [sec]$	901
ItemKNN CFCBF jaccard	$0.26 \pm 0.04 [sec]$	$1.10 \pm 0.05 [sec]$	900
ItemKNN CFCBF asymmetric	$0.28 \pm 0.06 [sec]$	$1.14 \pm 0.04 [sec]$	838
ItemKNN CFCBF tversky	$0.26 \pm 0.06 [\text{sec}]$	$1.12 \pm 0.08 [sec]$	888
MCRec	8496.61 [sec] / 2.36 [hour]	165.63 [sec] / 2.76 [min]	6

H WWW: NEURAL COLLABORATIVE FILTERING

Relevant statistics on the dataset, which we mentioned in the paper, are reported in Table 47. The results of our evaluation can be seen in Table 48 (Movielens 1M) and Table 49 (Pinterest). The corresponding optimal hyperparameters are reported in Table 50 (collaborative KNNs), Table 51 (non-neural machine learning and graph based) and Table 52 (NCF).

Lastly, the time required to train and evaluate the models is reported in Table 53 (Movielens 1M) and Table 54 (Pinterest).

Table 47. Dataset characteristics.

Dataset	Interactions	Items	Users	Sparsity
Movielens 1M	1.0 M	3.7 k	6.0 k	95.53%
Pinterest	1.5 M	9.9 k	55.1 k	99.73%

Table 48. Experimental results on the metrics and cutoffs reported in the original paper.

	Movielens 1M					
	HR@1	NDCG@1	HR@5	NDCG@5	HR@10	NDCG@10
Random	0.0108	0.0108	0.0498	0.0301	0.1033	0.0472
TopPop	0.1051	0.1051	0.3048	0.2064	0.4533	0.2542
UserKNN CF cosine	0.1825	0.1825	0.4925	0.3407	0.6606	0.3951
UserKNN CF dice	0.1911	0.1911	0.5053	0.3522	0.6700	0.4057
UserKNN CF jaccard	0.1906	0.1906	0.5045	0.3521	0.6725	0.4066
UserKNN CF asymmetric	0.1921	0.1921	0.5070	0.3546	0.6768	0.4100
UserKNN CF tversky	0.1921	0.1921	0.5073	0.3536	0.6684	0.4058
ItemKNN CF cosine	0.1825	0.1825	0.4942	0.3414	0.6694	0.3979
ItemKNN CF dice	0.1707	0.1707	0.4856	0.3323	0.6604	0.3887
ItemKNN CF jaccard	0.1692	0.1692	0.4772	0.3268	0.6533	0.3837
ItemKNN CF asymmetric	0.1843	0.1843	0.4906	0.3400	0.6627	0.3956
ItemKNN CF tversky	0.1735	0.1735	0.4856	0.3338	0.6546	0.3884
P3alpha	0.1791	0.1791	0.4846	0.3352	0.6460	0.3876
RP3beta	0.1836	0.1836	0.4935	0.3419	0.6758	0.4011
EASE R	0.2119	0.2119	0.5502	0.3857	0.7098	0.4374
SLIM BPR	0.2013	0.2013	0.5320	0.3713	0.7002	0.4258
SLIMElasticNet	0.2207	0.2207	0.5576	0.3953	0.7162	0.4468
MF BPR	0.1679	0.1679	0.4619	0.3186	0.6305	0.3730
MF FunkSVD	0.2008	0.2008	0.5202	0.3661	0.6844	0.4192
PureSVD	0.2132	0.2132	0.5339	0.3783	0.6937	0.4303
NMF	0.2056	0.2056	0.5171	0.3651	0.6844	0.4192
IALS	0.2106	0.2106	0.5505	0.3862	0.7109	0.4382
NeuMF	0.2088	0.2088	0.5411	0.3803	0.7093	0.4349

1:50 Ferrari Dacrema et al.

Table 49. Experimental results on the metrics and cutoffs reported in the original paper.

	Pinterest					
	HR@1	NDCG@1	HR@5	NDCG@5	HR@10	NDCG@10
Random	0.0096	0.0096	0.0496	0.0292	0.0997	0.0452
TopPop	0.0467	0.0467	0.1665	0.1064	0.2740	0.1409
UserKNN CF cosine	0.2892	0.2892	0.7006	0.5036	0.8632	0.5566
UserKNN CF dice	0.2880	0.2880	0.7039	0.5047	0.8649	0.5572
UserKNN CF jaccard	0.2898	0.2898	0.7038	0.5056	0.8655	0.5583
UserKNN CF asymmetric	0.2877	0.2877	0.7040	0.5046	0.8655	0.5573
UserKNN CF tversky	0.2889	0.2889	0.7039	0.5052	0.8660	0.5580
ItemKNN CF cosine	0.2900	0.2900	0.7109	0.5090	0.8762	0.5628
ItemKNN CF dice	0.2917	0.2917	0.7098	0.5092	0.8765	0.5635
ItemKNN CF jaccard	0.2910	0.2910	0.7093	0.5086	0.8763	0.5631
ItemKNN CF asymmetric	0.2903	0.2903	0.7117	0.5096	0.8766	0.5633
ItemKNN CF tversky	0.2909	0.2909	0.7093	0.5086	0.8760	0.5629
P3alpha	0.2853	0.2853	0.7022	0.5024	0.8700	0.5571
RP3beta	0.2966	0.2966	0.7151	0.5149	0.8796	0.5685
EASE R	0.2889	0.2889	0.7053	0.5057	0.8682	0.5589
SLIM BPR	0.2983	0.2983	0.7117	0.5138	0.8736	0.5666
SLIMElasticNet	0.2913	0.2913	0.7059	0.5072	0.8679	0.5601
MF BPR	0.2655	0.2655	0.6858	0.4833	0.8651	0.5418
MF FunkSVD	0.2601	0.2601	0.6890	0.4820	0.8658	0.5398
PureSVD	0.2630	0.2630	0.6628	0.4706	0.8268	0.5241
NMF	0.2307	0.2307	0.6445	0.4434	0.8343	0.5052
IALS	0.2811	0.2811	0.7144	0.5061	0.8761	0.5590
NeuMF	0.2801	0.2801	0.7101	0.5029	0.8777	0.5576

Table 50. Hyperparameter values for our collaborative KNN baselines on all datasets.

Algorithm	Hyperparameter	Movielens 1M	Pinterest
UserKNN CF cosine	normalize topK feature weighting similarity shrink	True 516 BM25 cosine 0	True 1000 BM25 cosine 0
UserKNN CF dice	normalize	True	True
	topK	246	991
	similarity	dice	dice
	shrink	0	138
UserKNN CF jaccard	normalize	True	True
	topK	259	972
	similarity	jaccard	jaccard
	shrink	0	0
UserKNN CF asymmetric	topK	306	1000
	feature weighting	TF-IDF	TF-IDF
	asymmetric alpha	0.2173	0.0000
	normalize	True	True
	similarity	asymmetric	asymmetric
	shrink	0	1000
UserKNN CF tversky	normalize topK tversky alpha tversky beta similarity shrink	True 267 0.6394 0.8051 tversky 0	True 1000 2.0000 1.9574 tversky 33
ItemKNN CF cosine	normalize	True	False
	topK	111	1000
	feature weighting	BM25	BM25
	similarity	cosine	cosine
	shrink	298	4
ItemKNN CF dice	normalize	True	True
	topK	61	1000
	similarity	dice	dice
	shrink	0	0
ItemKNN CF jaccard	normalize	False	False
	topK	62	997
	similarity	jaccard	jaccard
	shrink	19	1
ItemKNN CF asymmetric	topK	206	1000
	feature weighting	BM25	BM25
	asymmetric alpha	0.6914	0.0000
	normalize	True	True
	similarity	asymmetric	asymmetric
	shrink	1000	1000
ItemKNN CF tversky	normalize topK tversky alpha tversky beta similarity shrink	True 83 0.0000 2.0000 tversky 561	True 1000 2.0000 2.0000 tversky 0

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:52 Ferrari Dacrema et al.

Table 51. Hyperparameter values for our non-neural machine learning and graph based baselines on all datasets.

Algorithm	Hyperparameter	Movielens 1M	Pinterest
	alpha	1.0807	0.8616
$\mathrm{RP}^3 \beta$	topK	546	1000
$\kappa r \rho$	normalize similarity	True	True
	beta	0.7029	0.4255
$EASE^R$	l2 norm	2.96E+03	-
	learning rate	3.08E-02	1.00E-01
	sgd mode	adagrad	adagrad
	symmetric	True	True
SLIM BPR	epochs	285	180
	lambda i	1.00E-02	1.00E-02
	topK	1000	916
	lambda j	4.51E-03	3.83E-05
	l1 ratio	1.19E-05	1.15E-04
SLIMElasticNet	alpha	0.0788	0.0526
	topK	544	1000
	positive reg	2.08E-05	1.00E-02
	num factors	200	200
	negative reg	1.00E-02	6.59E-03
MF BPR	epochs	625	615
	batch size	8	2
	sgd mode	adagrad	adagrad
	learning rate	5.88E-02	6.74E-02
	sgd mode	adam	adagrad
	num factors	50	28
	negative quota	0.1651	0.4052
	user reg	7.35E-04	6.49E-04
MF FunkSVD	learning rate	4.38E-04	3.17E-02
	epochs	160	305
	batch size	512	1
	item reg	4.83E-03	1.56E-03
	use bias	True	True
PureSVD	num factors	52	50
	init type	random	nndsvda
NMF	beta loss	frobenius	kullback-leibler
TAIATT.	num factors	89	27
	solver	mult. update	mult. update
	num factors	46	30
	epochs	10	45
iALS	epsilon	10.0000	0.0010
ишэ	confidence scaling	log	linear
	reg	1.00E-05	1.00E-02
	alpha	50.0000	50.0000

Algorithm Hyperparameter Movielens 1M Pinterest epochs 10 5 epochs gmf 45 10 epochs mlp 10 10 batch size 256 256 num factors 64 16 layers [256, 128, 64] [64, 32, 16] NeuMF reg mf 0.00E+000.00E+00reg layers [0, 0, 0][0, 0, 0]num negatives learning rate 1.00E-03 1.00E-03 learning rate pretrain 1.00E-03 1.00E-03 learner sgd sgd learner pretrain adam adam

Table 52. Hyperparameter values for the deep learning algorithm on all datasets.

Table 53. Comparison of the computation time for the different algorithms.

True

True

pretrain

	Moviel	ens 1M	
	Train time	Recommendation	
	Train time	Time	[usr/s]
Random	0.04 [sec]	36.31 [sec]	166
TopPop	0.06 [sec]	37.88 [sec]	159
UserKNN CF cosine	9.01 ± 0.26 [sec]	48.07 ± 1.08 [sec]	126
UserKNN CF dice	9.00 ± 0.31 [sec]	$47.37 \pm 1.63 [sec]$	130
UserKNN CF jaccard	$8.98 \pm 0.29 [sec]$	$46.70 \pm 1.38 [sec]$	130
UserKNN CF asymmetric	9.06 ± 0.30 [sec]	47.01 ± 1.83 [sec]	129
UserKNN CF tversky	9.09 ± 0.39 [sec]	$46.66 \pm 2.00 [sec]$	130
ItemKNN CF cosine	$4.04 \pm 0.17 [sec]$	$49.48 \pm 4.20 [sec]$	130
ItemKNN CF dice	4.07 ± 0.17 [sec]	$47.25 \pm 2.28 [sec]$	133
ItemKNN CF jaccard	4.09 ± 0.19 [sec]	$47.56 \pm 3.43 [sec]$	134
ItemKNN CF asymmetric	4.10 ± 0.15 [sec]	50.21 ± 1.92 [sec]	127
ItemKNN CF tversky	4.09 ± 0.18 [sec]	45.82 ± 1.18 [sec]	133
$P^3\alpha$	$7.61 \pm 2.17 [sec]$	45.84 ± 0.56 [sec]	131
$RP^3\beta$	8.05 ± 2.55 [sec]	$46.76 \pm 0.42 [sec]$	127
EASE ^R	12.34 ± 0.03 [sec]	46.25 ± 0.47 [sec]	130
SLIM BPR	785.57 [sec] / 13.09 ± 7.36 [min]	$49.96 \pm 2.04 [sec]$	118
SLIMElasticNet	252.72 [sec] / 4.21 ± 2.51 [min]	$46.78 \pm 0.22 [sec]$	129
MF BPR	937.36 [sec] / 15.62 ± 12.59 [min]	56.94 ± 9.66 [sec]	98
MF FunkSVD	3594.07 [sec] / 59.90 ± 47.65 [min]	$41.99 \pm 7.61 [sec]$	154
PureSVD	2.84 ± 1.96 [sec]	44.36 ± 10.92 [sec]	153
NMF	721.37 [sec] / 12.02 ± 22.88 [min]	55.73 ± 12.22 [sec]	151
iALS	1022.66 [sec] / 17.04 ± 13.53 [min]	42.97 ± 8.91 [sec]	154
NeuMF	15050.89 [sec] / 4.18 [hour]	293.85 [sec] / 4.90 [min]	21

1:54 Ferrari Dacrema et al.

Table 54. Comparison of the computation time for the different algorithms.

	F	Pinterest	
	Train time	Recommendation	
	Train time	Time	[usr/s]
Random	0.04 [sec]	337.91 [sec] / 5.63 [min]	163
TopPop	0.08 [sec]	350.44 [sec] / 5.84 [min]	157
UserKNN CF cosine	59.52 ± 3.87 [sec]	442.63 [sec] / 7.38 ± 0.11 [min]	122
UserKNN CF dice	60.07 [sec] / 1.00 ± 0.05 [min]	440.65 [sec] / 7.34 ± 0.10 [min]	124
UserKNN CF jaccard	59.33 ± 3.16 [sec]	443.67 [sec] / 7.39 ± 0.05 [min]	124
UserKNN CF asymmetric	60.80 [sec] / 1.01 ± 0.04 [min]	445.33 [sec] / 7.42 ± 0.01 [min]	124
UserKNN CF tversky	60.89 [sec] / 1.01 ± 0.06 [min]	435.42 [sec] / 7.26 ± 0.23 [min]	124
ItemKNN CF cosine	3.73 ± 0.40 [sec]	$435.26 [sec] / 7.25 \pm 0.04 [min]$	126
ItemKNN CF dice	3.56 ± 0.37 [sec]	$433.80 [sec] / 7.23 \pm 0.05 [min]$	126
ItemKNN CF jaccard	3.70 ± 0.36 [sec]	435.32 [sec] / 7.26 ± 0.05 [min]	126
ItemKNN CF asymmetric	3.69 ± 0.35 [sec]	437.39 [sec] / 7.29 ± 0.05 [min]	126
ItemKNN CF tversky	$3.64 \pm 0.40 [sec]$	436.99 [sec] / 7.28 ± 0.04 [min]	126
$P^3\alpha$	17.69 ± 4.33 [sec]	434.43 [sec] / 7.24 ± 0.02 [min]	127
$RP^3\beta$	17.95 ± 4.99 [sec]	433.36 [sec] / 7.22 ± 0.06 [min]	126
$EASE^R$	123.69 [sec] / 2.06 ± 0.00 [min]	409.54 [sec] / 6.83 ± 0.02 [min]	135
SLIM BPR	4566.45 [sec] / 1.27 ± 0.55 [hour]	434.78 [sec] / 7.25 ± 0.05 [min]	127
SLIMElasticNet	728.11 [sec] / 12.14 ± 5.73 [min]	428.35 [sec] / 7.14 ± 0.23 [min]	125
MF BPR	12620.32 [sec] / 3.51 ± 2.83 [hour]	461.88 [sec] / 7.70 ± 1.94 [min]	95
MF FunkSVD	8736.15 [sec] / 2.43 ± 1.89 [hour]	443.13 [sec] / 7.39 ± 1.77 [min]	150
PureSVD	6.58 ± 5.41 [sec]	430.77 [sec] / 7.18 ± 1.83 [min]	149
NMF	963.74 [sec] / 16.06 ± 22.37 [min]	543.13 [sec] / 9.05 ± 1.92 [min]	149
iALS	10812.68 [sec] / 3.00 ± 3.91 [hour]	372.05 [sec] / 6.20 ± 0.03 [min]	148
NeuMF	167670.36 [sec] / 1.94 [day]	6995.33 [sec] / 1.94 [hour]	8

I WWW: VARIATIONAL AUTOENCODERS FOR COLLABORATIVE FILTERING

Relevant statistics on the dataset, which we mentioned in the paper, are reported in Table 55. The results of our evaluation can be seen in Table 56 (Movielens 20M) and Table 57 (Netflix Prize). The corresponding optimal hyperparameters are reported in Table 58 (collaborative KNNs), Table 59 (non-neural machine learning and graph based) and Table 60 (Mult VAE).

Lastly, the time required to train and evaluate the models is reported in Table 61 (Movielens 20M) and Table 62 (Netflix Prize).

Table 55. Dataset characteristics.

Dataset	t Interactions Users Items		Density	Held out users	
Movielens 20M	10.0M	136k	20k	0.36	10k
Netflix Prize	56.9M	463k	17k	0.69	40k

Table 56. Experimental results on the metrics and cutoffs reported in the original paper.

	REC@20	NDCG@20	Movi REC@50	elens 20M NDCG@50	REC@100	NDCG@100
Random	0.0008	0.0006	0.0025	0.0013	0.0053	0.0022
ТорРор	0.1441	0.1201	0.2320	0.1569	0.3296	0.1901
ItemKNN CF cosine	0.2897	0.2434	0.4412	0.3054	0.5652	0.3492
ItemKNN CF dice	0.2689	0.2274	0.4095	0.2851	0.5316	0.3277
ItemKNN CF jaccard	0.2667	0.2284	0.4035	0.2844	0.5254	0.3268
ItemKNN CF asymmetric	0.2937	0.2444	0.4486	0.3087	0.5709	0.3527
ItemKNN CF tversky	0.2867	0.2395	0.4393	0.3030	0.5556	0.3458
$P^3\alpha$	0.2620	0.2168	0.4047	0.2742	0.5287	0.3182
$RP^3\beta$	0.3006	0.2501	0.4540	0.3133	0.5797	0.3583
EASE ^R	0.3100	0.2639	0.4608	0.3267	0.5860	0.3711
SLIM BPR	0.3206	0.2646	0.4783	0.3291	0.6030	0.3731
SLIMElasticNet	0.3356	0.2920	0.4893	0.3576	0.6110	0.4017
PureSVD	0.1620	0.1137	0.2778	0.1593	0.3974	0.1995
iALS	0.2030	0.1340	0.3628	0.1954	0.4976	0.2418
Mult VAE	0.3541	0.2988	0.5222	0.3690	0.6517	0.4158

1:56 Ferrari Dacrema et al.

Table 57. Experimental results on the metrics and cutoffs reported in the original paper.

	Netflix Prize REC@20 NDCG@20 REC@50 NDCG@50 REC@100 NDCG@10					
Random	0.0011	0.0010	0.0027	0.0018	0.0054	0.0030
TopPop	0.0786	0.0762	0.1643	0.1159	0.2717	0.1570
ItemKNN CF cosine ItemKNN CF dice ItemKNN CF jaccard ItemKNN CF asymmetric ItemKNN CF tversky $P^3\alpha$ $RP^3\beta$	0.2091	0.1970	0.3387	0.2592	0.4598	0.3092
	0.1963	0.1862	0.3224	0.2479	0.4379	0.2983
	0.1997	0.1883	0.3248	0.2481	0.4450	0.2978
	0.2119	0.1968	0.3466	0.2623	0.4764	0.3165
	0.2075	0.1933	0.3420	0.2582	0.4708	0.3118
	0.1960	0.1759	0.3325	0.2412	0.4633	0.2962
	0.2210	0.2053	0.3633	0.2739	0.4932	0.3281
EASE ^R SLIM BPR SLIMElasticNet PureSVD iALS Mult VAE	0.2393 0.2394 0.2555 0.1177 0.1397	0.2288 0.2219 0.2479 0.0908 0.1014	0.3801 0.3767 0.4002 0.2193 0.2675	0.2978 0.2886 0.3203 0.1357 0.1570	0.5072 0.5004 0.5299 0.3247 0.3930 0.5456	0.3510 0.3403 0.3752 0.1765 0.2066

Table 58. Hyperparameter values for our collaborative KNN baselines on all datasets.

Algorithm	Hyperparameter	Movielens 20M	Netflix Prize
	topK	278	140
	shrink	409	1000
ItemKNN CF cosine	similarity	cosine	cosine
	normalize	True	True
	feature weighting	BM25	BM25
	topK	107	9
ItemKNN CF dice	shrink	3	983
Hellikiin Cr dice	similarity	dice	dice
	normalize	True	True
	topK	118	54
Itam/NNI CE is soord	shrink	214	544
ItemKNN CF jaccard	similarity	jaccard	jaccard
	normalize	True	True
	topK	52	64
	shrink	0	360
ItemKNN CF asymmetric	similarity	asymmetric	asymmetric
itemixivi er asymmetric	normalize	True	True
	asymmetric alpha	0.9034	0.2002
	feature weighting	BM25	none
	topK	25	54
	shrink	273	1000
It IANN OF terrol	similarity	tversky	tversky
ItemKNN CF tversky	normalize	True	True
	tversky alpha	0.0782	0.1997
	tversky beta	0.5191	0.9652

Table 59. Hyperparameter values for our non-neural machine learning and graph based baselines on all datasets.

Algorithm	Hyperparameter	Movielens 20M	Netflix Prize
$P^3\alpha$	topK alpha normalize similarity	523 0.5575 True	534 1.6695 True
$\mathbb{RP}^3\beta$	topK		185 1.3871 0.4271 True
EASE ^R	l2 norm	3.99E+04	1.12E+05
SLIM BPR SLIMElasticNet	topK epochs symmetric sgd mode lambda i lambda j learning rate topK l1 ratio	847 630 True sgd 5.69E-05 1.00E-05 4.56E-03 718 6.74E-03	491 240 True sgd 5.87E-04 1.00E-02 7.53E-03 1000 9.65E-04
	alpha	0.0010	0.0010
PureSVD num factors estimate model for cold us		25 itemKNN	51 itemKNN
iALS	num factors confidence scaling alpha epsilon reg estimate model for cold users	54 linear 11.0139 10.0000 1.00E-02 itemKNN	78 log 50.0000 10.0000 1.00E-05 itemKNN

Table 60. Hyperparameter values for the deep learning algorithm on all datasets.

Algorithm	Hyperparameter	Movielens 20M	Netflix Prize
Mult VAE	epochs batch size total anneal steps p dims	95 500 200000	80 500 200000

1:58 Ferrari Dacrema et al.

Table 61. Comparison of the computation time for the different algorithms.

	Movielens	20M	
	Train time	Recommendat Time	ion [usr/s]
Random	0.23 [sec]	13.64 [sec]	733
TopPop	0.38 [sec]	12.62 [sec]	792
UserKNN CF cosine	-	-	-
UserKNN CF dice	-	-	-
UserKNN CF jaccard	-	-	_
UserKNN CF asymmetric	-	-	-
UserKNN CF tversky	-	-	_
ItemKNN CF cosine	12.12 ± 0.53 [sec]	17.66 ± 2.93 [sec]	651
ItemKNN CF dice	$11.85 \pm 0.45 [sec]$	13.84 ± 0.69 [sec]	741
ItemKNN CF jaccard	11.74 ± 0.46 [sec]	14.08 ± 0.67 [sec]	723
ItemKNN CF asymmetric	12.29 ± 0.71 [sec]	15.81 ± 1.82 [sec]	736
ItemKNN CF tversky	11.79 ± 0.58 [sec]	15.24 ± 2.53 [sec]	764
$P^3\alpha$	24.76 ± 4.74 [sec]	12.61 ± 0.31 [sec]	822
$RP^3\beta$	25.39 ± 5.11 [sec]	13.09 ± 0.68 [sec]	767
EASE ^R	195.45 [sec] / 3.26 ± 0.09 [min]	17.86 ± 0.96 [sec]	561
SLIM BPR	2315.60 [sec] / 38.59 ± 48.48 [min]	13.97 ± 1.00 [sec]	690
SLIMElasticNet	6508.83 [sec] / 1.81 ± 1.26 [hour]	13.88 ± 0.70 [sec]	708
PureSVD	$10.78 \pm 9.06 [sec]$	33.89 ± 10.20 [sec]	260
iALS	1352.64 [sec] / 22.54 ± 19.35 [min]	34.69 ± 8.11 [sec]	279
Mult VAE	1296.97 [sec] / 21.62 [min]	18.72 [sec]	534

Table 62. Comparison of the computation time for the different algorithms.

	Netflix Prize			
	Train time	Recommendation Time	[usr/s]	
Random	1.67 [sec]	60.99 [sec] / 1.02 [min]	656	
TopPop	2.95 [sec]	59.14 [sec]	676	
UserKNN CF cosine	-	-	-	
UserKNN CF dice	-	-	-	
UserKNN CF jaccard	-	-	-	
UserKNN CF asymmetric	-	-	-	
UserKNN CF tversky	-	-	-	
ItemKNN CF cosine	65.70 [sec] / 1.09 ± 0.03 [min]	84.91 [sec] / 1.42 ± 0.46 [min]	593	
ItemKNN CF dice	64.29 [sec] / 1.07 ± 0.01 [min]	$63.77 [sec] / 1.06 \pm 0.08 [min]$	682	
ItemKNN CF jaccard	64.40 [sec] / 1.07 ± 0.01 [min]	61.38 [sec] / 1.02 [min]	652	
ItemKNN CF asymmetric	65.41 [sec] / 1.09 ± 0.04 [min]	97.70 [sec] / 1.63 ± 0.59 [min]	654	
ItemKNN CF tversky	64.82 [sec] / 1.08 ± 0.01 [min]	$66.06 [sec] / 1.10 \pm 0.12 [min]$	657	
$P^3\alpha$	74.12 [sec] / 1.24 ± 0.08 [min]	59.98 ± 0.57 [sec]	666	
$RP^3\beta$	75.10 [sec] / 1.25 ± 0.09 [min]	$58.00 \pm 5.61 [sec]$	648	
EASE ^R	205.33 [sec] / 3.42 ± 0.04 [min]	85.09 [sec] / 1.42 ± 0.01 [min]	473	
SLIM BPR	5741.37 [sec] / 1.59 ± 1.80 [hour]	$65.49 [sec] / 1.09 \pm 0.09 [min]$	600	
SLIMElasticNet	29589.53 [sec] / 8.22 ± 7.70 [hour]	69.53 [sec] / 1.16 ± 0.13 [min]	580	
PureSVD	85.66 [sec] / 1.43 ± 0.92 [min]	$156.60 [sec] / 2.61 \pm 0.33 [min]$	245	
iALS	6101.72 [sec] / 1.69 ± 1.16 [hour]	153.64 [sec] / 2.56 ± 0.12 [min]	265	
Mult VAE	4521.33 [sec] / 1.26 [hour]	81.53 [sec] / 1.36 [min]	491	

J IJCAI: OUTER PRODUCT-BASED NEURAL COLLABORATIVE FILTERING

Relevant statistics on the dataset, which we mentioned in the paper, are reported in Table 63. The results of our evaluation can be seen in Table 64 (Gowalla) and Table 65 (Yelp). The corresponding optimal hyperparameters are reported in Table 66 (collaborative KNNs), Table 67 (non-neural machine learning and graph based) and Table 68 (ConvNCF).

Lastly, the time required to train and evaluate the models is reported in Table 69 (Gowalla) and Table 70 (Yelp).

Table 63. Dataset characteristics.

Dataset	Interactions	Items	Users	Density
Yelp	69K	25815	25677	0.105
Gowalla	1249K	52400	54156	0.044

Table 64. Experimental results on the metrics and cutoffs reported in the original paper.

			G	lowalla		
	HR@5	NDCG@5	HR@10	NDCG@10	HR@20	NDCG@20
Random	0.0049	0.0029	0.0099	0.0045	0.0205	0.0071
TopPop	0.2188	0.1652	0.2910	0.1884	0.3803	0.2110
UserKNN CF cosine	0.7131	0.5879	0.7939	0.6142	0.8532	0.6293
UserKNN CF dice	0.6848	0.5632	0.7649	0.5893	0.8226	0.6039
UserKNN CF jaccard	0.6786	0.5572	0.7597	0.5836	0.8174	0.5983
UserKNN CF asymmetric	0.6720	0.5486	0.7555	0.5758	0.8156	0.5911
UserKNN CF tversky	0.6769	0.5556	0.7579	0.5820	0.8149	0.5965
ItemKNN CF cosine	0.6806	0.5511	0.7668	0.5792	0.8257	0.5942
ItemKNN CF dice	0.6605	0.5231	0.7592	0.5552	0.8280	0.5728
ItemKNN CF jaccard	0.6890	0.5577	0.7752	0.5857	0.8306	0.5999
ItemKNN CF asymmetric	0.6953	0.5711	0.7762	0.5974	0.8332	0.6119
ItemKNN CF tversky	0.7047	0.5864	0.7790	0.6105	0.8331	0.6244
P3alpha	0.6926	0.5703	0.7674	0.5948	0.8158	0.6071
RP3beta	0.6836	0.5525	0.7723	0.5814	0.8361	0.5976
EASE R	-	-	-	-	-	-
SLIM BPR	-	-	-	-	-	-
SLIMElasticNet	0.6365	0.5284	0.7083	0.5517	0.7608	0.5651
MF BPR	0.6376	0.4996	0.7416	0.5334	0.8234	0.5542
MF FunkSVD	0.6029	0.4592	0.7216	0.4979	0.8082	0.5199
PureSVD	0.5653	0.4482	0.6627	0.4798	0.7393	0.4993
NMF	0.5856	0.4607	0.6842	0.4927	0.7674	0.5138
IALS	0.6460	0.5081	0.7554	0.5436	0.8356	0.5641
ConvNCF	0.6702	0.5233	0.7799	0.5590	0.8623	0.5799

1:60 Ferrari Dacrema et al.

Table 65. Experimental results on the metrics and cutoffs reported in the original paper.

	1			Yelp		
	HR@5	NDCG@5	HR@10	NDCG@10	HR@20	NDCG@20
Random	0.0055	0.0032	0.0103	0.0048	0.0199	0.0072
TopPop	0.0817	0.0538	0.1200	0.0661	0.1751	0.0799
UserKNN CF cosine	0.2068	0.1355	0.3126	0.1695	0.4401	0.2017
UserKNN CF dice	0.1994	0.1306	0.3013	0.1634	0.4271	0.1951
UserKNN CF jaccard	0.2006	0.1311	0.3023	0.1638	0.4286	0.1956
UserKNN CF asymmetric	0.2131	0.1400	0.3209	0.1747	0.4482	0.2068
UserKNN CF tversky	0.2046	0.1347	0.3049	0.1670	0.4320	0.1990
ItemKNN CF cosine	0.2521	0.1686	0.3669	0.2056	0.4974	0.2385
ItemKNN CF dice	0.2329	0.1564	0.3395	0.1908	0.4664	0.2228
ItemKNN CF jaccard	0.2414	0.1634	0.3512	0.1988	0.4786	0.2309
ItemKNN CF asymmetric	0.2421	0.1598	0.3514	0.1950	0.4815	0.2278
ItemKNN CF tversky	0.2303	0.1546	0.3346	0.1884	0.4563	0.2192
P3alpha	0.2146	0.1395	0.3211	0.1737	0.4442	0.2049
RP3beta	0.2202	0.1431	0.3323	0.1793	0.4667	0.2132
EASE R	-	-	-	-	-	-
SLIM BPR	-	-	-	-	-	-
SLIMElasticNet	0.2330	0.1535	0.3475	0.1904	0.4799	0.2238
MF BPR	0.1557	0.1024	0.2421	0.1302	0.3599	0.1598
MF FunkSVD	0.1728	0.1121	0.2621	0.1409	0.3727	0.1688
PureSVD	0.2011	0.1307	0.3002	0.1626	0.4238	0.1938
NMF	0.1817	0.1172	0.2824	0.1496	0.4090	0.1815
IALS	0.2048	0.1348	0.3080	0.1680	0.4319	0.1993
ConvNCF	0.1947	0.1250	0.3059	0.1608	0.4446	0.1957

Table 66. Hyperparameter values for our collaborative KNN baselines on all datasets.

Algorithm	Hyperparameter	Yelp	Gowalla
	topK	470	1000
	shrink	0	1000
UserKNN CF cosine	similarity	cosine	cosine
	normalize	True	True
	feature weighting	none	TF-IDF
	topK	494	513
UserKNN CF dice	shrink	0	10
oscilative and	similarity	dice	dice
	normalize	False	True
	topK	553	455
UserKNN CF jaccard	shrink	2	5
Oscilciviv Ci Jaccard	similarity	jaccard	jaccard
	normalize	False	True
	topK	529	451
	shrink	721	173
Hearkin CE assumentation	similarity	asymmetric	asymmetric
UserKNN CF asymmetric	normalize	True	True
	asymmetric alpha	0.1781	0.6950
	feature weighting	TF-IDF	TF-IDF
	topK	474	368
	shrink	67	0
H IADLOE: 1	similarity	tversky	tversky
UserKNN CF tversky	normalize	True	True
	tversky alpha	1.9756	1.3012
	tversky beta	1.9345	2.0000
	topK	1000	317
	shrink	387	1000
ItemKNN CF cosine	similarity	cosine	cosine
	normalize	True	True
	feature weighting	TF-IDF	TF-IDF
	topK	195	409
ItemKNN CF dice	shrink	10	20
Hemann Cr dice	similarity	dice	dice
	normalize	False	True
	topK	479	302
ItamVNN CE :	shrink	4	68
ItemKNN CF jaccard	similarity	jaccard	jaccard
	normalize	True	True
	topK	918	712
	shrink	154	507
ItIZNINI OD	similarity	asymmetric	asymmetric
ItemKNN CF asymmetric	normalize	True	True
	asymmetric alpha	0.3530	0.2575
	feature weighting	TF-IDF	TF-IDF
	topK	374	944
	shrink	0	16
T. IDDIOE: 1	similarity	tversky	tversky
ItemKNN CF tversky	normalize	True	True
	tversky alpha	0.7020	0.0558
	tversky beta	1.5460	1.9805
	,		la 1 Dublication

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:62 Ferrari Dacrema et al.

Table 67. Hyperparameter values for our non-neural machine learning and graph based baselines on all datasets.

Algorithm	Hyperparameter	Yelp	Gowalla
	topK	584	413
$P^3\alpha$	alpha	0.3672	0.4424
	normalize similarity	True	True
	topK	1000	640
$RP^3\beta$	alpha	0.5548	0.5168
Ki μ	beta	0.3389	0.2009
	normalize similarity	False	True
EASE ^R	l2 norm	-	-
	topK	-	795
	epochs	-	570
	symmetric	-	False
SLIM BPR	sgd mode	-	adagrad
	lambda i	-	4.42E-04
	lambda j	-	2.16E-04
	learning rate	-	2.98E-03
	topK	1000	916
SLIMElasticNet	l1 ratio	2.66E-05	4.30E-04
	alpha	0.0520	0.0010
	sgd mode	adam	adam
	epochs	1420	1485
	num factors	200	200
MF BPR	batch size	32	16
	positive reg	1.00E-02	1.00E-02
	negative reg	1.00E-02	1.00E-02
	learning rate	5.70E-04	1.69E-03
	sgd mode	adam	adam
	epochs	365	410
	use bias	True	True
	batch size	32	4
MF FunkSVD	num factors	103	192
	item reg	1.43E-05	1.02E-04
	user reg	9.96E-03	2.88E-04
	learning rate	2.16E-03	1.41E-03
	negative quota	0.0642	0.1492
PureSVD	num factors	70	350
	num factors	53	286
NMF	solver	mult. update	mult. update
INIVIE	init type	random	nndsvda
	beta loss	kullback-leibler	kullback-leiblei
	num factors	145	200
	confidence scaling	log	log
: AT C	alpha	7.3331	50.0000
iALS	epsilon	0.0270	0.1846
	reg	4.50E-03	1.00E-02
	epochs	60	5

 $Table\ 68.\ Hyperparameter\ values\ for\ the\ deep\ learning\ algorithm\ on\ all\ datasets.$

Algorithm	Hyperparameter	Yelp	Gowalla
	batch size	512	512
	epochs	145	445
	epochs MFBPR	480	490
	embedding size	64	64
	hidden size	128	128
	negative sample per positive negative instances per positive	1	1
		4	4
ConvNCF	regularization users items	1.00E-02	1.00E-02
Convince	regularization weights	1.00E+01	1.00E+01
	regularization filter weights	1.00E+00	1.00E+00
	learning rate embeddings	5.00E-02	5.00E-02
	learning rate CNN	5.00E-02	5.00E-02
	channel size	[32, 32, 32, 32, 32, 32]	[32, 32, 32, 32, 32, 32]
	dropout	0.0000	0.0000

Table 69. Comparison of the computation time for the different algorithms.

	Gowalla			
		Recommendation		
	Train time	Time	[usr/s]	
Random	0.04 [sec]	94.26 [sec] / 1.57 [min]	575	
TopPop	0.08 [sec]	112.67 [sec] / 1.88 [min]	481	
UserKNN CF cosine	24.25 ± 1.03 [sec]	161.09 [sec] / 2.68 ± 0.07 [min]	322	
UserKNN CF dice	25.07 ± 0.93 [sec]	161.77 [sec] / 2.70 ± 0.03 [min]	332	
UserKNN CF jaccard	25.07 ± 0.88 [sec]	161.03 [sec] / 2.68 ± 0.08 [min]	334	
UserKNN CF asymmetric	25.75 ± 1.03 [sec]	161.07 [sec] / 2.68 ± 0.09 [min]	334	
UserKNN CF tversky	25.62 ± 0.92 [sec]	$162.28 [sec] / 2.70 \pm 0.03 [min]$	337	
ItemKNN CF cosine	$25.63 \pm 1.65 $ [sec]	162.49 [sec] / 2.71 ± 0.03 [min]	338	
ItemKNN CF dice	24.78 ± 1.52 [sec]	166.14 [sec] / 2.77 ± 0.09 [min]	339	
ItemKNN CF jaccard	24.87 ± 1.55 [sec]	163.76 [sec] / 2.73 ± 0.07 [min]	341	
ItemKNN CF asymmetric	25.52 ± 1.85 [sec]	166.42 [sec] / 2.77 ± 0.08 [min]	329	
ItemKNN CF tversky	25.92 ± 1.72 [sec]	164.91 [sec] / 2.75 ± 0.07 [min]	324	
$P^3\alpha$	90.96 [sec] / 1.52 ± 0.27 [min]	156.74 [sec] / 2.61 ± 0.04 [min]	348	
$RP^3\beta$	103.55 [sec] / 1.73 ± 0.31 [min]	159.29 [sec] / 2.65 ± 0.01 [min]	342	
$EASE^R$	-	-	-	
SLIM BPR	24663.44 [sec] / 6.85 ± 4.36 [hour]	165.90 [sec] / 2.76 ± 0.11 [min]	316	
SLIMElasticNet	4531.84 [sec] / 1.26 ± 0.70 [hour]	158.98 [sec] / 2.65 ± 0.17 [min]	329	
MF BPR	19828.95 [sec] / 5.51 ± 2.32 [hour]	128.32 [sec] / 2.14 ± 0.09 [min]	413	
MF FunkSVD	14731.56 [sec] / 4.09 ± 2.15 [hour]	136.27 [sec] / 2.27 ± 0.13 [min]	383	
PureSVD	11.12 ± 3.45 [sec]	$321.24 [sec] / 5.35 \pm 0.60 [min]$	159	
NMF	2368.87 [sec] / 39.48 ± 23.03 [min]	251.74 [sec] / 4.20 ± 0.68 [min]	195	
iALS	2695.70 [sec] / 44.93 ± 26.66 [min]	129.40 [sec] / 2.16 ± 0.05 [min]	413	
ConvNCF	44743.03 [sec] / 12.43 [hour]	233.89 [sec] / 3.90 [min]	232	

1:64 Ferrari Dacrema et al.

Table 70. Comparison of the computation time for the different algorithms.

		Yelp	
	T	Recommendation	
	Train time	Time	[usr/s]
Random	0.02 [sec]	44.30 [sec]	580
TopPop	0.03 [sec]	49.17 [sec]	522
UserKNN CF cosine	8.93 ± 0.65 [sec]	74.11 [sec] / 1.24 ± 0.01 [min]	348
UserKNN CF dice	9.26 ± 0.72 [sec]	74.30 [sec] / 1.24 ± 0.01 [min]	347
UserKNN CF jaccard	9.18 ± 0.69 [sec]	73.27 [sec] / 1.22 ± 0.01 [min]	348
UserKNN CF asymmetric	9.21 ± 0.96 [sec]	74.33 [sec] / 1.24 ± 0.02 [min]	346
UserKNN CF tversky	9.43 ± 0.70 [sec]	74.67 [sec] / 1.24 ± 0.02 [min]	350
ItemKNN CF cosine	8.04 ± 0.88 [sec]	75.74 [sec] / 1.26 ± 0.04 [min]	328
ItemKNN CF dice	$7.95 \pm 0.70 [sec]$	73.03 [sec] / 1.22 ± 0.04 [min]	361
ItemKNN CF jaccard	$7.95 \pm 0.74 [sec]$	74.48 [sec] / 1.24 ± 0.04 [min]	347
ItemKNN CF asymmetric	8.46 ± 0.79 [sec]	77.62 [sec] / 1.29 ± 0.02 [min]	336
ItemKNN CF tversky	8.13 ± 0.70 [sec]	$73.72 [sec] / 1.23 \pm 0.03 [min]$	355
$P^3\alpha$	33.85 ± 5.97 [sec]	71.02 [sec] / 1.18 ± 0.01 [min]	363
$RP^3\beta$	37.25 ± 9.81 [sec]	71.48 [sec] / 1.19 ± 0.04 [min]	349
$EASE^R$	-	-	-
SLIM BPR	-	-	-
SLIMElasticNet	846.95 [sec] / 14.12 ± 6.92 [min]	68.16 [sec] / 1.14 ± 0.07 [min]	361
MF BPR	3981.91 [sec] / 1.11 ± 0.88 [hour]	$50.36 \pm 1.71 [sec]$	495
MF FunkSVD	3944.58 [sec] / 1.10 ± 0.85 [hour]	$51.88 \pm 1.46 [sec]$	501
PureSVD	2.35 ± 1.79 [sec]	$56.89 \pm 4.49 [sec]$	466
NMF	952.10 [sec] / 15.87 ± 6.43 [min]	75.16 [sec] / 1.25 ± 0.47 [min]	464
iALS	1778.07 [sec] / 29.63 ± 19.78 [min]	$47.35 \pm 1.33 [sec]$	530
ConvNCF	11465.29 [sec] / 3.18 [hour]	102.80 [sec] / 1.71 [min]	250

K IJCAI: NEUREC: ON NONLINEAR TRANSFORMATION FOR PERSONALIZED RANKING

Relevant statistics on the dataset, which we mentioned in the paper, are reported in Table 71. The results of our evaluation can be seen in Table 72 (Movielens 1M), Table 73 (Movielens HetRec), Table 74 (Frappe) and Table 75 (FilmTrust). The corresponding optimal hyperparameters are reported in Table 76 (collaborative KNNs), Table 77 (non-neural machine learning and graph based) and Table 78 (NeuRec).

Lastly, the time required to train and evaluate the models is reported in Table 79 (Movielens 1M), Table 80 (Movielens HetRec), Table 81 (Frappe) and Table 82 (FilmTrust).

Dataset	Interactions	Items	Users	Density
Movielens 1M	1M	3882	6039	4.25
Movielens HetRec	855K	10109	2113	4.01
Frappe	19K	4082	957	0.48
FilmTrust	35K	2071	1508	1.14

Table 71. Dataset characteristics.

Table 72. Experimental results on the metrics and cutoffs reported in the original paper.

							M	ovielens 1	M						
			@5			1		@10			1		@50		
	PREC	REC	MAP	NDCG	MRR	PREC	REC	MAP	NDCG	MRR	PREC	REC	MAP	NDCG	MRR
Random	0.0090	0.0013	0.0044	0.0023	0.0209	0.0089	0.0026	0.0029	0.0036	0.0257	0.0091	0.0131	0.0016	0.0101	0.0346
TopPop	0.2105	0.0402	0.1531	0.0689	0.3621	0.1832	0.0685	0.1168	0.0939	0.3793	0.1127	0.1985	0.0734	0.1732	0.3912
UserKNN CF cosine	0.4075	0.1034	0.3298	0.1626	0.6335	0.3468	0.1667	0.2616	0.2158	0.6441	0.1972	0.4022	0.1910	0.3583	0.6482
UserKNN CF dice	0.4189	0.1055	0.3415	0.1658	0.6368	0.3583	0.1714	0.2738	0.2210	0.6475	0.2051	0.4116	0.2015	0.3672	0.6517
UserKNN CF jaccard	0.4179	0.1050	0.3406	0.1653	0.6365	0.3578	0.1705	0.2730	0.2204	0.6474	0.2038	0.4102	0.1996	0.3662	0.6515
UserKNN CF asymmetric	0.4212	0.1065	0.3441	0.1674	0.6399	0.3617	0.1726	0.2774	0.2230	0.6509	0.2069	0.4146	0.2047	0.3704	0.6550
UserKNN CF tversky	0.4042	0.1024	0.3265	0.1611	0.6277	0.3410	0.1647	0.2571	0.2132	0.6386	0.1940	0.3968	0.1873	0.3536	0.6428
ItemKNN CF cosine	0.4002	0.0987	0.3237	0.1561	0.6137	0.3432	0.1585	0.2600	0.2074	0.6247	0.1968	0.3831	0.1872	0.3452	0.6297
ItemKNN CF dice	0.3709	0.0854	0.2951	0.1383	0.5714	0.3215	0.1406	0.2367	0.1862	0.5845	0.1894	0.3612	0.1690	0.3211	0.5902
ItemKNN CF jaccard	0.3747	0.0875	0.2982	0.1401	0.5751	0.3219	0.1407	0.2376	0.1869	0.5870	0.1869	0.3559	0.1676	0.3187	0.5928
ItemKNN CF asymmetric	0.3995	0.0984	0.3244	0.1563	0.6179	0.3452	0.1590	0.2618	0.2084	0.6293	0.1978	0.3865	0.1886	0.3474	0.6341
ItemKNN CF tversky	0.3718	0.0867	0.2998	0.1414	0.5878	0.3116	0.1359	0.2343	0.1846	0.5985	0.1750	0.3300	0.1582	0.3037	0.6041
P3alpha	0.4041	0.1007	0.3286	0.1596	0.6250	0.3456	0.1627	0.2627	0.2121	0.6362	0.1988	0.3945	0.1919	0.3538	0.6410
RP3beta	0.4080	0.1007	0.3325	0.1602	0.6260	0.3508	0.1639	0.2676	0.2137	0.6374	0.2012	0.3938	0.1949	0.3551	0.6420
EASE R	0.4360	0.1073	0.3608	0.1697	0.6475	0.3745	0.1731	0.2923	0.2259	0.6585	0.2208	0.4263	0.2190	0.3820	0.6624
SLIM BPR	0.3964	0.1034	0.3161	0.1606	0.6222	0.3358	0.1663	0.2494	0.2128	0.6335	0.1968	0.4048	0.1892	0.3568	0.6379
SLIMElasticNet	0.4437	0.1106	0.3692	0.1749	0.6578	0.3813	0.1770	0.3003	0.2321	0.6679	0.2234	0.4333	0.2259	0.3902	0.6720
MF BPR	0.3576	0.0830	0.2812	0.1340	0.5628	0.3073	0.1384	0.2217	0.1807	0.5768	0.1828	0.3575	0.1593	0.3128	0.5825
MF FunkSVD	0.3936	0.0927	0.3154	0.1479	0.6000	0.3458	0.1555	0.2572	0.2014	0.6125	0.2090	0.4074	0.1926	0.3541	0.6176
PureSVD	0.4123	0.0987	0.3371	0.1586	0.6266	0.3575	0.1624	0.2722	0.2132	0.6380	0.2133	0.4089	0.2033	0.3651	0.6427
NMF	0.3811	0.0891	0.3017	0.1430	0.5817	0.3338	0.1499	0.2442	0.1948	0.5947	0.2070	0.4047	0.1872	0.3489	0.6005
IALS	0.4164	0.1036	0.3373	0.1635	0.6327	0.3628	0.1702	0.2743	0.2200	0.6443	0.2180	0.4265	0.2104	0.3774	0.6483
INeuRec	0.3280	0.0663	0.2554	0.1110	0.5003	0.2839	0.1094	0.2027	0.1500	0.5129	0.1755	0.3048	0.1397	0.2719	0.5206
UNeuRec	0.2098	0.0395	0.1560	0.0684	0.3663	0.1856	0.0688	0.1199	0.0944	0.3852	0.1143	0.2002	0.0750	0.1743	0.3968

1:66 Ferrari Dacrema et al.

Table 73. Experimental results on the metrics and cutoffs reported in the original paper.

								Hetrec							
			@5					@10			I		@50		
	PREC	REC	MAP	NDCG	MRR	PREC	REC	MAP	NDCG	MRR	PREC	REC	MAP	NDCG	MRR
Random	0.0093	0.0005	0.0039	0.0011	0.0189	0.0095	0.0012	0.0026	0.0019	0.0246	0.0088	0.0049	0.0011	0.0053	0.0336
TopPop	0.4556	0.0408	0.3850	0.0889	0.6264	0.4057	0.0712	0.3137	0.1237	0.6368	0.2632	0.2048	0.1768	0.2326	0.6406
UserKNN CF cosine	0.5632	0.0605	0.4977	0.1237	0.7420	0.4988	0.1001	0.4145	0.1677	0.7486	0.3131	0.2685	0.2413	0.3005	0.7517
UserKNN CF dice	0.5714	0.0614	0.5079	0.1250	0.7465	0.5087	0.1015	0.4279	0.1698	0.7525	0.3237	0.2736	0.2538	0.3066	0.7560
UserKNN CF jaccard	0.5692	0.0617	0.5063	0.1250	0.7461	0.5088	0.1016	0.4276	0.1699	0.7520	0.3233	0.2729	0.2533	0.3062	0.7554
UserKNN CF asymmetric	0.5729	0.0619	0.5097	0.1251	0.7449	0.5151	0.1012	0.4346	0.1702	0.7504	0.3283	0.2750	0.2597	0.3086	0.7537
UserKNN CF tversky	0.5670	0.0612	0.5039	0.1245	0.7474	0.5044	0.1014	0.4216	0.1693	0.7538	0.3195	0.2713	0.2487	0.3044	0.7571
ItemKNN CF cosine	0.5405	0.0528	0.4747	0.1119	0.7096	0.4750	0.0873	0.3922	0.1519	0.7157	0.2971	0.2427	0.2219	0.2759	0.7196
ItemKNN CF dice	0.5371	0.0513	0.4672	0.1098	0.6993	0.4741	0.0867	0.3880	0.1504	0.7062	0.2981	0.2425	0.2198	0.2754	0.7101
ItemKNN CF jaccard	0.5200	0.0504	0.4537	0.1078	0.6993	0.4560	0.0838	0.3711	0.1462	0.7063	0.2857	0.2316	0.2068	0.2647	0.7101
ItemKNN CF asymmetric	0.5676	0.0572	0.5041	0.1210	0.7426	0.4996	0.0941	0.4165	0.1635	0.7494	0.3185	0.2437	0.2439	0.2900	0.7520
ItemKNN CF tversky	0.5408	0.0539	0.4747	0.1150	0.7234	0.4791	0.0898	0.3923	0.1563	0.7295	0.3082	0.2522	0.2292	0.2863	0.7332
P3alpha	0.5032	0.0519	0.4351	0.1070	0.6831	0.4501	0.0905	0.3592	0.1484	0.6923	0.2861	0.2481	0.2057	0.2714	0.6963
RP3beta	0.5464	0.0558	0.4692	0.1159	0.7110	0.4970	0.0950	0.4013	0.1607	0.7172	0.2936	0.2246	0.2215	0.2727	0.7201
EASE R	0.6253	0.0662	0.5673	0.1358	0.7790	0.5610	0.1094	0.4865	0.1853	0.7837	0.3621	0.2949	0.3010	0.3355	0.7865
SLIM BPR	0.5196	0.0574	0.4383	0.1136	0.6929	0.4709	0.0989	0.3701	0.1581	0.6999	0.3050	0.2656	0.2258	0.2895	0.7030
SLIMElasticNet	0.6283	0.0670	0.5732	0.1379	0.7879	0.5612	0.1103	0.4882	0.1874	0.7933	0.3549	0.2906	0.2958	0.3333	0.7959
MF BPR	0.4204	0.0360	0.3493	0.0811	0.6028	0.3750	0.0659	0.2805	0.1143	0.6138	0.2533	0.1983	0.1608	0.2215	0.6189
MF FunkSVD	0.4882	0.0447	0.4088	0.0947	0.6446	0.4520	0.0820	0.3525	0.1364	0.6538	0.3145	0.2541	0.2240	0.2730	0.6585
PureSVD	0.5977	0.0601	0.5364	0.1271	0.7524	0.5369	0.1010	0.4548	0.1746	0.7578	0.3521	0.2849	0.2784	0.3237	0.7609
NMF	0.5432	0.0570	0.4686	0.1180	0.7108	0.4892	0.0964	0.3941	0.1632	0.7165	0.3193	0.2675	0.2384	0.3023	0.7197
IALS	0.5900	0.0609	0.5253	0.1281	0.7542	0.5322	0.1039	0.4456	0.1770	0.7593	0.3464	0.2857	0.2715	0.3243	0.7620
INeuRec	0.5435	0.0489	0.4797	0.1076	0.7021	0.4884	0.0844	0.4047	0.1493	0.7094	0.3151	0.2402	0.2371	0.2769	0.7129
UNeuRec	0.4467	0.0397	0.3785	0.0877	0.6278	0.3973	0.0693	0.3077	0.1216	0.6365	0.2599	0.2029	0.1731	0.2299	0.6413

Table 74. Experimental results on the metrics and cutoffs reported in the original paper.

			@5			İ		Frappe @10			ı		@50		
	PREC	REC	MAP	NDCG	MRR	PREC	REC	MAP	NDCG	MRR	PREC	REC	MAP	NDCG	MRR
Random	0.0014	0.0019	0.0011	0.0014	0.0036	0.0015	0.0039	0.0010	0.0022	0.0046	0.0015	0.0121	0.0013	0.0054	0.0069
TopPop	0.1332	0.2010	0.1441	0.1842	0.3183	0.0920	0.2602	0.1411	0.2118	0.3302	0.0383	0.4325	0.1530	0.2721	0.3387
UserKNN CF cosine	0.1888	0.2243	0.1943	0.2213	0.3880	0.1339	0.2929	0.1845	0.2578	0.3980	0.0480	0.4635	0.1940	0.3207	0.4042
UserKNN CF dice	0.1810	0.2175	0.1899	0.2168	0.3821	0.1279	0.2873	0.1813	0.2532	0.3928	0.0467	0.4541	0.1906	0.3149	0.3991
UserKNN CF jaccard	0.1844	0.2248	0.1923	0.2203	0.3843	0.1291	0.2871	0.1823	0.2540	0.3937	0.0472	0.4568	0.1918	0.3167	0.4001
UserKNN CF asymmetric	0.1899	0.2267	0.1965	0.2232	0.3893	0.1349	0.2939	0.1873	0.2592	0.3979	0.0477	0.4564	0.1944	0.3193	0.4045
UserKNN CF tversky	0.1961	0.2225	0.2037	0.2231	0.3893	0.1401	0.2965	0.1912	0.2619	0.3996	0.0490	0.4613	0.1987	0.3233	0.4057
ItemKNN CF cosine	0.1947	0.2192	0.2032	0.2243	0.3980	0.1342	0.2780	0.1877	0.2564	0.4059	0.0484	0.4524	0.1965	0.3198	0.4120
ItemKNN CF dice	0.1779	0.2075	0.1856	0.2094	0.3743	0.1198	0.2643	0.1724	0.2390	0.3833	0.0453	0.4406	0.1800	0.3018	0.3911
ItemKNN CF jaccard	0.1785	0.2094	0.1855	0.2095	0.3726	0.1196	0.2669	0.1719	0.2389	0.3817	0.0452	0.4385	0.1792	0.3006	0.3891
ItemKNN CF asymmetric	0.1852	0.2261	0.1964	0.2236	0.3882	0.1263	0.2817	0.1839	0.2538	0.3970	0.0473	0.4554	0.1940	0.3178	0.4037
ItemKNN CF tversky	0.1777	0.2139	0.1840	0.2117	0.3762	0.1212	0.2698	0.1729	0.2414	0.3840	0.0462	0.4434	0.1814	0.3042	0.3912
P3alpha	0.1933	0.2322	0.1939	0.2254	0.3838	0.1447	0.3050	0.1899	0.2664	0.3932	0.0511	0.4699	0.2029	0.3296	0.3984
RP3beta	0.2059	0.2349	0.2084	0.2341	0.4074	0.1486	0.3067	0.1981	0.2742	0.4163	0.0507	0.4631	0.2084	0.3341	0.4208
EASE R	0.1978	0.2252	0.1997	0.2245	0.3877	0.1444	0.2927	0.1915	0.2630	0.3960	0.0509	0.4482	0.2022	0.3242	0.4010
SLIM BPR	0.1791	0.2231	0.1860	0.2167	0.3773	0.1272	0.2812	0.1771	0.2493	0.3865	0.0456	0.4464	0.1860	0.3091	0.3931
SLIMElasticNet	0.2014	0.2299	0.2023	0.2285	0.3943	0.1464	0.3028	0.1938	0.2686	0.4030	0.0516	0.4665	0.2054	0.3312	0.4076
MF BPR	0.1209	0.1429	0.1045	0.1333	0.2456	0.0933	0.2101	0.1036	0.1664	0.2604	0.0396	0.3914	0.1174	0.2316	0.2701
MF FunkSVD	0.1601	0.2214	0.1600	0.2016	0.3431	0.1205	0.2973	0.1597	0.2410	0.3569	0.0467	0.4726	0.1769	0.3069	0.3624
PureSVD	0.1282	0.1753	0.1362	0.1687	0.3064	0.0983	0.2386	0.1356	0.2017	0.3200	0.0375	0.3993	0.1443	0.2558	0.3263
NMF	0.1439	0.1008	0.1310	0.1197	0.2378	0.1047	0.1389	0.1118	0.1436	0.2434	0.0336	0.2282	0.1088	0.1784	0.2492
IALS	0.1774	0.1804	0.1768	0.1918	0.3503	0.1335	0.2534	0.1690	0.2313	0.3599	0.0454	0.4016	0.1750	0.2867	0.3657
INeuRec	0.2117	0.2196	0.2073	0.2235	0.4045	0.1479	0.2862	0.1891	0.2603	0.4116	0.0478	0.4305	0.1946	0.3133	0.4161
UNeuRec	0.1679	0.2206	0.1788	0.2100	0.3650	0.1194	0.2964	0.1731	0.2470	0.3780	0.0402	0.4448	0.1785	0.2992	0.3852

Table 75. Experimental results on the metrics and cutoffs reported in the original paper.

								Filmtrust							
			@5			1		@10					@50		
	PREC	REC	MAP	NDCG	MRR	PREC	REC	MAP	NDCG	MRR	PREC	REC	MAP	NDCG	MRR
Random	0.0027	0.0015	0.0010	0.0014	0.0043	0.0023	0.0029	0.0008	0.0022	0.0054	0.0030	0.0266	0.0016	0.0102	0.0099
TopPop	0.4200	0.4126	0.4393	0.4203	0.6145	0.3471	0.6351	0.4597	0.5450	0.6273	0.0916	0.8614	0.4954	0.6314	0.6316
UserKNN CF cosine	0.4349	0.4357	0.4735	0.4498	0.6496	0.3545	0.6357	0.4909	0.5677	0.6581	0.0921	0.8247	0.5202	0.6429	0.6615
UserKNN CF dice	0.4341	0.4339	0.4667	0.4457	0.6452	0.3512	0.6286	0.4822	0.5604	0.6526	0.0917	0.8241	0.5135	0.6382	0.6561
UserKNN CF jaccard	0.4354	0.4400	0.4713	0.4510	0.6492	0.3560	0.6455	0.4907	0.5712	0.6579	0.0932	0.8524	0.5229	0.6517	0.6620
UserKNN CF asymmetric	0.4322	0.4292	0.4656	0.4431	0.6431	0.3517	0.6309	0.4825	0.5608	0.6515	0.0919	0.8257	0.5139	0.6386	0.6554
UserKNN CF tversky	0.4338	0.4335	0.4646	0.4436	0.6434	0.3519	0.6328	0.4805	0.5601	0.6515	0.0918	0.8267	0.5116	0.6372	0.6545
ItemKNN CF cosine	0.4268	0.4247	0.4551	0.4354	0.6332	0.3484	0.6303	0.4724	0.5540	0.6432	0.0916	0.8478	0.5072	0.6380	0.6470
ItemKNN CF dice	0.4264	0.4205	0.4559	0.4355	0.6388	0.3507	0.6338	0.4753	0.5577	0.6492	0.0917	0.8473	0.5083	0.6394	0.6527
ItemKNN CF jaccard	0.4259	0.4202	0.4561	0.4358	0.6407	0.3511	0.6344	0.4758	0.5585	0.6512	0.0917	0.8473	0.5086	0.6398	0.6548
ItemKNN CF asymmetric	0.4286	0.4238	0.4564	0.4360	0.6348	0.3490	0.6303	0.4734	0.5548	0.6447	0.0923	0.8516	0.5081	0.6400	0.6487
ItemKNN CF tversky	0.4262	0.4208	0.4566	0.4365	0.6413	0.3509	0.6342	0.4763	0.5587	0.6513	0.0917	0.8473	0.5092	0.6402	0.6549
P3alpha	0.4240	0.4199	0.4526	0.4321	0.6351	0.3500	0.6343	0.4719	0.5550	0.6467	0.0938	0.8605	0.5080	0.6430	0.6511
RP3beta	0.4373	0.4365	0.4709	0.4492	0.6537	0.3575	0.6436	0.4880	0.5701	0.6631	0.0950	0.8647	0.5228	0.6562	0.6674
EASE R	0.4374	0.4395	0.4747	0.4531	0.6571	0.3551	0.6443	0.4916	0.5722	0.6663	0.0923	0.8511	0.5237	0.6520	0.6700
SLIM BPR	0.4327	0.4351	0.4643	0.4455	0.6465	0.3522	0.6399	0.4825	0.5647	0.6549	0.0922	0.8529	0.5166	0.6472	0.6589
SLIMElasticNet	0.4418	0.4417	0.4803	0.4572	0.6600	0.3583	0.6566	0.4983	0.5796	0.6708	0.0944	0.8631	0.5309	0.6604	0.6742
MF BPR	0.4115	0.4047	0.4309	0.4114	0.5979	0.3433	0.6156	0.4519	0.5330	0.6088	0.0902	0.8433	0.4877	0.6193	0.6138
MF FunkSVD	0.4112	0.4004	0.4148	0.3972	0.5781	0.3452	0.6265	0.4378	0.5245	0.5917	0.0906	0.8486	0.4731	0.6095	0.5957
PureSVD	0.4292	0.4255	0.4563	0.4366	0.6366	0.3478	0.6255	0.4724	0.5526	0.6453	0.0912	0.8301	0.5041	0.6322	0.6490
NMF	0.2721	0.2407	0.2769	0.2584	0.4131	0.1983	0.3332	0.2443	0.3123	0.4234	0.0684	0.5484	0.2744	0.3968	0.4315
IALS	0.4038	0.3855	0.4240	0.4028	0.6021	0.3342	0.5920	0.4400	0.5201	0.6137	0.0889	0.8124	0.4720	0.6043	0.6193
INeuRec	0.4221	0.4089	0.4398	0.4196	0.6151	0.3466	0.6187	0.4577	0.5398	0.6261	0.0918	0.8556	0.4935	0.6285	0.6310
UNeuRec	0.4174	0.4062	0.4384	0.4181	0.6157	0.3472	0.6291	0.4596	0.5436	0.6286	0.0912	0.8570	0.4952	0.6304	0.6337

1:68 Ferrari Dacrema et al.

Table 76. Hyperparameter values for our collaborative KNN baselines on all datasets.

Algorithm	Hyperparameter	Movielens 1M	Hetrec	Frappe	Filmtrust
	topK	235	490	565	609
	shrink	3	921	749	0
UserKNN CF cosine	similarity	cosine	cosine	cosine	cosine
	normalize	True	True	True	True
	feature weighting	TF-IDF	TF-IDF	TF-IDF	none
	topK	224	593	182	277
UserKNN CF dice	shrink	0	336	4	1
OSCITATIVET LICE	similarity	dice	dice	dice	dice
	normalize	False	True	False	False
	topK	237	510	244	290
UserKNN CF jaccard	shrink	0	5	7	0
	similarity	jaccard	jaccard	jaccard	jaccard
	normalize	False	False	True	False
	topK	398	594	193	279
	shrink	0	1000	348	306
UserKNN CF asymmetric	similarity	asymmetric	asymmetric	asymmetric	asymmetric
, , , , , , , , , , , , , , , , , , , ,	normalize	True	True	True	True
	asymmetric alpha	0.0000	2.0000	0.0744	0.3358
	feature weighting	TF-IDF	TF-IDF	TF-IDF	TF-IDF
	topK	309	598	580	358
	shrink	0	32	169	18
UserKNN CF tversky	similarity	tversky	tversky	tversky	tversky
•	normalize	True	True	True	True
	tversky alpha	0.0000	0.0113	2.0000	1.9153
	tversky beta	2.0000	0.2846	2.0000	1.5318
	topK shrink	1000 524	320 497	307 1	264 1000
ItemKNN CF cosine	similarity	cosine	cosine	cosine	cosine
Remixiviv Cr cosme	normalize	True	False	True	True
	feature weighting	TF-IDF	TF-IDF	TF-IDF	TF-IDF
	topK	973	676	99	103
	shrink	273	746	82	226
ItemKNN CF dice	similarity	dice	dice	dice	dice
	normalize	True	True	True	True
	topK	763	301	112	87
	shrink	304	734	59	974
ItemKNN CF jaccard	similarity	jaccard	jaccard	jaccard	jaccard
	normalize	True	True	True	True
	topK	779	1000	258	5
	shrink	1000	1000	0	1000
It IZNINI OE	similarity	asymmetric	asymmetric	asymmetric	asymmetric
ItemKNN CF asymmetric	normalize	True	True	True	True
	asymmetric alpha	0.2985	0.0000	0.4750	0.0000
	feature weighting	TF-IDF	TF-IDF	TF-IDF	TF-IDF
	topK	258	1000	331	30
	shrink	196	859	0	394
ItemKNN CF tversky	similarity	tversky	tversky	tversky	tversky
	normalize	True	True	True	True
	tversky alpha	0.3885	0.9712	0.9659	0.7213
	tversky beta	1.6358	0.6517	2.0000	1.9521

 $ACM\ Transactions\ on\ Information\ Systems,\ Vol.\ 1,\ No.\ 1,\ Article\ 1.\ Publication\ date:\ January\ 2019.$

Table 77. Hyperparameter values for our non-neural machine learning and graph based baselines on all datasets.

Algorithm	Hyperparameter	Movielens 1M	Hetrec	Frappe	Filmtrust
	topK	347	270	162	857
$P^3\alpha$	alpha	0.6960	1.5154	1.4534	1.8765
	normalize similarity	False	True	True	True
	topK	640	263	109	5
pp3 <i>a</i>	alpha	0.6964	1.0001	1.1222	0.6525
$RP^3\beta$	beta	0.2177	0.4673	0.1090	0.3863
	normalize similarity	False	True	True	False
$EASE^R$	l2 norm	2.72E+02	2.37E+03	2.31E+03	1.77E+03
	topK	1000	1000	1000	1000
	epochs	25	35	195	160
	symmetric	True	True	True	True
SLIM BPR	sgd mode	adagrad	adagrad	sgd	sgd
	lambda i	1.00E-02	1.00E-02	1.00E-02	1.00E-02
	lambda j	1.00E-02	1.00E-05	1.00E-02	1.00E-02
	learning rate	1.00E-04	3.60E-02	8.77E-03	1.55E-02
	topK	671	458	659	344
SLIMElasticNet	l1 ratio	1.13E-05	1.00E-05	1.19E-03	3.19E-03
	alpha	0.3182	0.1082	0.1394	0.5223
	sgd mode	adagrad	adam	adagrad	adagrad
	epochs	95	135	1005	400
	num factors	200	104	200	1
MF BPR	batch size	256	2	16	8
	positive reg	3.97E-03	4.85E-05	2.45E-03	1.00E-05
	negative reg	1.00E-02	1.00E-05	1.00E-02	1.00E-02
	learning rate	8.84E-02	4.67E-04	3.37E-02	4.08E-02
	sgd mode	adagrad	adam	adam	adam
	epochs	170	70	420	65
	use bias	True	False	False	True
	batch size	1	8	128	1024
MF FunkSVD	num factors	200	1	32	63
m ranko (D	item reg	1.00E-05	1.00E-02	1.05E-05	1.22E-04
	user reg	1.00E-02	1.00E 02 1.00E-05	7.21E-04	9.95E-04
	learning rate	1.00E-02 1.00E-01	1.31E-03	1.95E-04	3.29E-04
	negative quota	0.5000	0.1059	0.1103	0.1179
PureSVD	num factors	1	5	30	43
	num factors	42	208	62	139
	solver	coord. descent	mult. update	mult. update	coord. descent
NMF	init type	nndsvda	nndsvda	random	nndsvda
	beta loss	frobenius	frobenius	kullback-leibler	frobenius
	num factors	22	10	35	61
	confidence scaling	log	linear	log	linear
	alpha	0.0045	0.3831	0.8507	0.0094
iALS	epsilon	0.1795	0.0984	0.3278	9.7751
	reg	1.45E-03	1.38E-03	1.41E-03	1.50E-05
	epochs	5	15	60	60
	ACM Transactions on 1	Į.			

1:70 Ferrari Dacrema et al.

Table 78. Hyperparameter values for the deep learning algorithm on all datasets.

Algorithm	Hyperparameter	Movielens 1M	Hetrec	Frappe	Filmtrust
	num neurons	300	150	300	300
	num factors	50	40	50	50
	dropout percentage	0.0300	0.0000	0.0300	0.0300
INeuRec	learning rate	1.00E-04	5.00E-05	1.00E-04	1.00E-04
	regularization rate	1.00E-02	1.00E-01	1.00E-01	1.00E-01
	epochs	50	25	5	10
	batch size	1024	1024	1024	1024
	num neurons	300	150	300	300
	num factors	50	40	50	50
	dropout percentage	0.0300	0.0000	0.0300	0.0300
UNeuRec	learning rate	1.00E-04	5.00E-05	1.00E-04	1.00E-04
	regularization rate	1.00E-02	1.00E-01	1.00E-01	1.00E-01
	epochs	5	5	50	145
	batch size	1024	1024	1024	1024

Table 79. Comparison of the computation time for the different algorithms.

	Movielens	1M	
	m : .:	Recommendat	ion
	Train time	Time	[usr/s]
Random	0.02 [sec]	52.96 [sec]	114
TopPop	0.03 [sec]	51.76 [sec]	117
UserKNN CF cosine	3.50 ± 0.15 [sec]	54.05 ± 0.34 [sec]	112
UserKNN CF dice	3.32 ± 0.24 [sec]	$53.36 \pm 0.64 [sec]$	115
UserKNN CF jaccard	3.30 ± 0.22 [sec]	$53.55 \pm 0.68 [sec]$	114
UserKNN CF asymmetric	3.35 ± 0.25 [sec]	$53.54 \pm 0.31 [sec]$	113
UserKNN CF tversky	$3.38 \pm 0.27 [sec]$	$53.32 \pm 0.90 [sec]$	112
ItemKNN CF cosine	1.58 ± 0.14 [sec]	54.81 ± 1.12 [sec]	111
ItemKNN CF dice	1.53 ± 0.12 [sec]	54.57 ± 1.19 [sec]	114
ItemKNN CF jaccard	1.51 ± 0.13 [sec]	53.87 ± 1.13 [sec]	114
ItemKNN CF asymmetric	1.52 ± 0.17 [sec]	53.16 ± 1.05 [sec]	112
ItemKNN CF tversky	$1.52 \pm 0.15 [sec]$	53.93 ± 0.54 [sec]	113
$P^3\alpha$	3.88 ± 1.58 [sec]	52.34 ± 0.77 [sec]	116
$RP^3\beta$	4.49 ± 1.98 [sec]	51.69 ± 0.88 [sec]	117
EASE ^R	$7.50 \pm 0.04 [sec]$	53.57 ± 0.02 [sec]	113
SLIM BPR	540.48 [sec] / 9.01 ± 9.45 [min]	$53.73 \pm 1.12 [sec]$	110
SLIMElasticNet	157.83 [sec] / 2.63 ± 1.60 [min]	$51.36 \pm 2.17 [sec]$	112
MF BPR	403.10 [sec] / 6.72 ± 5.21 [min]	$51.98 \pm 0.87 [sec]$	114
MF FunkSVD	1471.34 [sec] / 24.52 ± 36.83 [min]	$51.81 \pm 0.17 [sec]$	116
PureSVD	0.70 ± 0.66 [sec]	$52.60 \pm 0.15 [sec]$	114
NMF	295.91 [sec] / 4.93 ± 3.69 [min]	$52.88 \pm 0.17 [sec]$	114
iALS	350.79 [sec] / 5.85 ± 5.04 [min]	$52.84 \pm 0.05 [sec]$	114
INeuRec	71409.67 [sec] / 19.84 [hour]	42.31 [sec]	143
UNeuRec	57989.25 [sec] / 16.11 [hour]	42.22 [sec]	143

Table 80. Comparison of the computation time for the different algorithms.

	Hetro	ec	
	Train time	Recommendat	ion
	Train time	Time	[usr/s]
Random	0.02 [sec]	41.87 [sec]	50
ТорРор	0.03 [sec]	40.99 [sec]	52
UserKNN CF cosine	1.12 ± 0.05 [sec]	42.23 ± 1.16 [sec]	49
UserKNN CF dice	$1.15 \pm 0.07 [sec]$	$42.47 \pm 0.44 [sec]$	50
UserKNN CF jaccard	$1.15 \pm 0.07 [sec]$	$42.41 \pm 0.49 [sec]$	50
UserKNN CF asymmetric	1.16 ± 0.08 [sec]	$42.10 \pm 1.37 [sec]$	50
UserKNN CF tversky	1.16 ± 0.08 [sec]	$42.46 \pm 0.46 [sec]$	50
ItemKNN CF cosine	4.34 ± 0.52 [sec]	45.85 ± 1.56 [sec]	47
ItemKNN CF dice	4.43 ± 0.59 [sec]	43.91 ± 1.37 [sec]	49
ItemKNN CF jaccard	4.38 ± 0.61 [sec]	$43.30 \pm 0.70 [sec]$	49
ItemKNN CF asymmetric	4.14 ± 0.55 [sec]	$43.05 \pm 3.72 [sec]$	52
ItemKNN CF tversky	4.37 ± 0.54 [sec]	$43.20 \pm 2.21 [sec]$	51
$P^3\alpha$	$16.00 \pm 5.00 [sec]$	$41.18 \pm 0.26 [sec]$	51
$RP^3\beta$	13.93 ± 6.45 [sec]	41.57 ± 0.99 [sec]	52
$EASE^R$	86.06 [sec] / 1.43 ± 0.00 [min]	44.61 ± 0.23 [sec]	47
SLIM BPR	265.23 [sec] / 4.42 ± 3.41 [min]	$43.10 \pm 0.64 [sec]$	48
SLIMElasticNet	310.27 [sec] / 5.17 ± 2.36 [min]	42.49 ± 1.28 [sec]	49
MF BPR	80.12 [sec] / 1.34 ± 1.07 [min]	$42.17 \pm 0.28 [sec]$	50
MF FunkSVD	208.95 [sec] / 3.48 ± 5.74 [min]	$42.47 \pm 0.20 [sec]$	50
PureSVD	$0.59 \pm 0.40 [sec]$	$42.15 \pm 0.04 [sec]$	50
NMF	326.21 [sec] / 5.44 ± 4.32 [min]	42.71 ± 0.84 [sec]	50
iALS	328.16 [sec] / 5.47 ± 5.00 [min]	42.58 ± 0.05 [sec]	50
INeuRec	50152.19 [sec] / 13.93 [hour]	35.26 [sec]	60
UNeuRec	74545.39 [sec] / 20.71 [hour]	39.53 [sec]	53

1:72 Ferrari Dacrema et al.

Table 81. Comparison of the computation time for the different algorithms.

	Frapp	e	
		Recommenda	ition
	Train time	Time	[usr/s]
Random	0.00 [sec]	5.78 [sec]	124
TopPop	0.00 [sec]	4.94 [sec]	145
UserKNN CF cosine	0.06 ± 0.01 [sec]	5.07 ± 0.03 [sec]	141
UserKNN CF dice	$0.06 \pm 0.01 [sec]$	$5.13 \pm 0.03 [sec]$	141
UserKNN CF jaccard	$0.06 \pm 0.01 [sec]$	$5.09 \pm 0.03 [sec]$	141
UserKNN CF asymmetric	$0.06 \pm 0.01 [sec]$	$5.09 \pm 0.01 [sec]$	140
UserKNN CF tversky	$0.06 \pm 0.01 [sec]$	$5.07 \pm 0.03 [sec]$	141
ItemKNN CF cosine	$0.24 \pm 0.01 [sec]$	$5.00 \pm 0.02 [sec]$	143
ItemKNN CF dice	0.24 ± 0.01 [sec]	$4.98 \pm 0.01 [sec]$	143
ItemKNN CF jaccard	0.24 ± 0.01 [sec]	$4.98 \pm 0.01 [sec]$	144
ItemKNN CF asymmetric	0.24 ± 0.01 [sec]	$4.99 \pm 0.02 [sec]$	143
ItemKNN CF tversky	0.25 ± 0.01 [sec]	$4.99 \pm 0.00 [sec]$	144
$P^3\alpha$	0.84 ± 0.13 [sec]	$4.93 \pm 0.03 [sec]$	145
$RP^3\beta$	$0.88 \pm 0.19 [sec]$	$4.96 \pm 0.03 [sec]$	144
$EASE^R$	6.22 ± 0.04 [sec]	5.00 ± 0.01 [sec]	143
SLIM BPR	22.86 ± 9.88 [sec]	$4.96 \pm 0.05 [sec]$	144
SLIMElasticNet	$26.27 \pm 3.82 [sec]$	$5.01 \pm 0.01 [sec]$	143
MF BPR	21.62 ± 41.61 [sec]	$5.01 \pm 0.03 [sec]$	143
MF FunkSVD	39.35 ± 32.47 [sec]	$5.05 \pm 0.03 [sec]$	141
PureSVD	$0.06 \pm 0.09 [sec]$	4.93 ± 0.02 [sec]	145
NMF	24.63 ± 19.89 [sec]	$5.01 \pm 0.04 [sec]$	144
iALS	138.27 [sec] / 2.30 ± 2.19 [min]	5.17 ± 0.18 [sec]	142
INeuRec	825.96 [sec] / 13.77 [min]	4.13 [sec]	174
UNeuRec	356.02 [sec] / 5.93 [min]	4.12 [sec]	174

Table 82. Comparison of the computation time for the different algorithms.

	Filmtrust				
	Train time	Recommenda	tion		
	Train time	Time	[usr/s]		
Random	0.00 [sec]	6.43 [sec]	197		
TopPop	0.00 [sec]	6.21 [sec]	204		
UserKNN CF cosine	0.19 ± 0.03 [sec]	6.41 ± 0.07 [sec]	196		
UserKNN CF dice	0.20 ± 0.04 [sec]	$6.47 \pm 0.05 [sec]$	195		
UserKNN CF jaccard	0.20 ± 0.03 [sec]	$6.46 \pm 0.02 [sec]$	197		
UserKNN CF asymmetric	0.19 ± 0.04 [sec]	$6.47 \pm 0.06 [sec]$	196		
UserKNN CF tversky	0.20 ± 0.04 [sec]	$6.49 \pm 0.01 [sec]$	195		
ItemKNN CF cosine	0.10 ± 0.01 [sec]	$6.33 \pm 0.05 [sec]$	200		
ItemKNN CF dice	0.11 ± 0.01 [sec]	$6.35 \pm 0.00 [sec]$	199		
ItemKNN CF jaccard	0.10 ± 0.01 [sec]	$6.33 \pm 0.02 [sec]$	200		
ItemKNN CF asymmetric	0.11 ± 0.01 [sec]	$6.33 \pm 0.05 [sec]$	199		
ItemKNN CF tversky	$0.11 \pm 0.01 [sec]$	$6.36 \pm 0.00 [sec]$	199		
$P^3\alpha$	0.55 ± 0.11 [sec]	$6.31 \pm 0.04 [sec]$	202		
$RP^3\beta$	0.58 ± 0.13 [sec]	$6.31 \pm 0.03 [sec]$	201		
EASE ^R	0.97 ± 0.03 [sec]	6.26 ± 0.07 [sec]	201		
SLIM BPR	14.96 ± 9.29 [sec]	6.34 ± 0.06 [sec]	199		
SLIMElasticNet	9.53 ± 1.99 [sec]	$6.31 \pm 0.04 [sec]$	201		
MF BPR	38.98 ± 45.37 [sec]	$6.23 \pm 0.14 [sec]$	200		
MF FunkSVD	31.97 ± 39.84 [sec]	6.26 ± 0.02 [sec]	202		
PureSVD	0.05 ± 0.06 [sec]	$6.15 \pm 0.14 [sec]$	202		
NMF	32.20 ± 35.82 [sec]	$6.32 \pm 0.17 [sec]$	197		
iALS	58.77 ± 37.14 [sec]	6.25 ± 0.05 [sec]	201		
INeuRec	424.72 [sec] / 7.08 [min]	5.07 [sec]	250		
UNeuRec	230.86 [sec] / 3.85 [min]	5.11 [sec]	248		

1:74 Ferrari Dacrema et al.

L IJCAI: DEEP MATRIX FACTORIZATION MODELS FOR RECOMMENDER SYSTEMS

Relevant statistics on the dataset, which we mentioned in the paper, are reported in Table 83. The results of our evaluation can be seen in Table 84 (Amazon Music original), Table 85 (Amazon Music ours), Table 86 (Amazon Movie), Table 87 (Movielens 100k) and Table 88 (Movielens 1M). The corresponding optimal hyperparameters are reported in Table 89 (collaborative KNNs), Table 90 (non-neural machine learning and graph based) and Table 91 (NeuRec).

Lastly, the time required to train and evaluate the models is reported in Table 92 (Amazon Music original), Table 93 (Amazon Music ours), Table 94 (Amazon Movie), Table 95 (Movielens 100k) and Table 96 (Movielens 1M).

Dataset	Interactions	Items	Users	Density
Amazon Music original	46.5K	18813	844	0.293
Amazon Music ours	37K	23184	844	0.189
Amazon Movie	878K	83512	15067	0.070
Movielens 100k	100K	1682	943	6.305
Movielens 1M	1M	3706	6040	4.468

Table 83. Dataset characteristics.

Table 84. Experimental results on the metrics and cutoffs reported in the original paper.

	Amazon Music original		
	HR@10	NDCG@10	
Random	0.0924	0.0380	
TopPop	0.4348	0.2490	
UserKNN CF cosine	0.5521	0.4050	
UserKNN CF dice	0.5403	0.3854	
UserKNN CF jaccard	0.5450	0.3860	
UserKNN CF asymmetric	0.5509	0.4052	
UserKNN CF tversky	0.5379	0.3856	
ItemKNN CF cosine	0.5320	0.3943	
ItemKNN CF dice	0.5296	0.3803	
ItemKNN CF jaccard	0.5284	0.3786	
ItemKNN CF asymmetric	0.5415	0.3917	
ItemKNN CF tversky	0.5273	0.3771	
$P^3\alpha$	0.5509	0.3976	
$RP^3\beta$	0.5486	0.3968	
EASE ^R	0.5284	0.3893	
SLIM BPR	0.5379	0.3763	
SLIMElasticNet	0.5367	0.3925	
MF BPR	0.4265	0.3063	
MF FunkSVD	0.4467	0.3215	
PureSVD	0.4502	0.3386	
NMF	0.5130	0.3557	
iALS	0.5498	0.4022	
DMF normalized cross entropy	0.5474	0.3891	
DMF binary cross entropy	0.5427	0.3850	

Table 85. Experimental results on the metrics and cutoffs reported in the original paper.

	Amazon	Music ours
	HR@10	
Random	0.1019	0.0458
TopPop	0.5201	0.3007
UserKNN CF cosine	0.6754	0.4976
UserKNN CF dice	0.6600	0.4751
UserKNN CF jaccard	0.6588	0.4741
UserKNN CF asymmetric	0.6742	0.4948
UserKNN CF tversky	0.6505	0.4765
ItemKNN CF cosine	0.6647	0.4884
ItemKNN CF dice	0.6528	0.4699
ItemKNN CF jaccard	0.6564	0.4722
ItemKNN CF asymmetric	0.6659	0.4859
ItemKNN CF tversky	0.6445	0.4655
$P^3\alpha$	0.6576	0.4816
$RP^3\beta$	0.6742	0.4909
EASE ^R	-	-
SLIM BPR	0.6671	0.4714
SLIMElasticNet	0.6469	0.4746
MF BPR	0.5545	0.3750
MF FunkSVD	0.5569	0.3913
PureSVD	0.5912	0.4189
NMF	0.6552	0.4490
iALS	0.6600	0.4879
DMF normalized cross entropy	0.6718	0.4815
DMF binary cross entropy	0.6659	0.4815

1:76 Ferrari Dacrema et al.

Table 86. Experimental results on the metrics and cutoffs reported in the original paper.

	l 4	
		on Movie
	HR@10	NDCG@10
Random	0.1057	0.0478
TopPop	0.5799	0.3490
UserKNN CF cosine	0.7214	0.5020
UserKNN CF dice	0.7063	0.4962
UserKNN CF jaccard	0.7064	0.4967
UserKNN CF asymmetric	0.7212	0.5020
UserKNN CF tversky	0.7033	0.4952
ItemKNN CF cosine	0.6794	0.4759
ItemKNN CF dice	0.6948	0.4869
ItemKNN CF jaccard	0.6970	0.4901
ItemKNN CF asymmetric	0.6983	0.4913
ItemKNN CF tversky	0.6658	0.4788
$P^3\alpha$	0.6971	0.5029
$RP^3\beta$	0.7103	0.5077
$EASE^R$	-	-
SLIM BPR	-	-
SLIMElasticNet	0.6980	0.5005
MF BPR	0.6425	0.4162
MF FunkSVD	0.5972	0.4091
PureSVD	0.6021	0.4156
NMF	0.6251	0.4216
iALS	0.7352	0.5230
DMF normalized cross entropy	0.7864	0.5447
DMF binary cross entropy	0.7818	0.5417

Table 87. Experimental results on the metrics and cutoffs reported in the original paper.

	Movielens 100k		
	HR@10	NDCG@10	
Random	0.0903	0.0415	
TopPop	0.4145	0.2342	
UserKNN CF cosine	0.5770	0.3306	
UserKNN CF dice	0.5834	0.3325	
UserKNN CF jaccard	0.5760	0.3335	
UserKNN CF asymmetric	0.5898	0.3387	
UserKNN CF tversky	0.5802	0.3382	
ItemKNN CF cosine	0.5739	0.3346	
ItemKNN CF dice	0.5962	0.3484	
ItemKNN CF jaccard	0.5834	0.3422	
ItemKNN CF asymmetric	0.5940	0.3457	
ItemKNN CF tversky	0.6026	0.3506	
$P^3\alpha$	0.5717	0.3421	
$RP^3\beta$	0.5685	0.3270	
EASE ^R	0.6111	0.3591	
SLIM BPR	0.6206	0.3578	
SLIMElasticNet	0.6238	0.3765	
MF BPR	0.5951	0.3365	
MF FunkSVD	0.5707	0.3354	
PureSVD	0.5877	0.3555	
NMF	0.5855	0.3515	
iALS	0.6142	0.3691	
DMF normalized cross entropy	0.6111	0.3637	
DMF binary cross entropy	0.6026	0.3623	

1:78 Ferrari Dacrema et al.

Table 88. Experimental results on the metrics and cutoffs reported in the original paper.

	Movielens 1M		
	HR@10	NDCG@10	
Random	0.0921	0.0424	
TopPop	0.4418	0.2475	
UserKNN CF cosine	0.6606	0.3969	
UserKNN CF dice	0.6324	0.3822	
UserKNN CF jaccard	0.6323	0.3828	
UserKNN CF asymmetric	0.6626	0.3975	
UserKNN CF tversky	0.6362	0.3840	
ItemKNN CF cosine	0.6520	0.3851	
ItemKNN CF dice	0.6293	0.3692	
ItemKNN CF jaccard	0.6255	0.3682	
ItemKNN CF asymmetric	0.6402	0.3796	
ItemKNN CF tversky	0.6326	0.3757	
$P^3\alpha$	0.6097	0.3639	
RP^3eta	0.6304	0.3726	
EASE ^R	0.6691	0.4093	
SLIM BPR	0.6719	0.4068	
SLIMElasticNet	0.6825	0.4209	
MF BPR	0.6323	0.3729	
MF FunkSVD	0.6499	0.3912	
PureSVD	0.6570	0.4015	
NMF	0.6422	0.3862	
iALS	0.6947	0.4257	
DMF normalized cross entropy	0.6782	0.4063	
DMF binary cross entropy	0.6731	0.4033	

Table 89. Hyperparameter values for our collaborative KNN baselines on all datasets.

Algorithm	Hyperparameter	Amazon Music original	Amazon Music ours	Amazon Movie	Movielens 100k	Movielens 1M
	topK shrink	883 990	614 15	1000 0	159 0	770 0
UserKNN CF cosine	similarity	cosine	cosine	cosine	cosine	cosine
	normalize	True	True	True	True	True
	feature weighting	BM25	BM25	BM25	BM25	BM25
	topK	163	202	955	148	177
UserKNN CF dice	shrink	0	6	11	5	0
	similarity	dice	dice	dice	dice	dice
	normalize	True	False	True	False	True
	topK	195	204	999	100	178
UserKNN CF jaccard	shrink	1	0	23	3	0
j	similarity	jaccard	jaccard	jaccard	jaccard	jaccard
	normalize	False	True	True	True	False
	topK	651	786	1000	169	613
	shrink	846	1000	0	0	0
UserKNN CF asymmetric	similarity	asymmetric	asymmetric	asymmetric	asymmetric	asymmetric
	normalize asymmetric alpha	True 0.4426	True 0.7110	True 0.4960	True 0.1994	True 0.3317
	feature weighting	BM25	BM25	BM25	BM25	BM25
	topK shrink	152 0	147 92	858 31	107 0	337 0
	similarity	tversky	tversky	tversky	tversky	tversky
UserKNN CF tversky	normalize	True	True	True	True	True
	tversky alpha	2.0000	1.9995	1.0846	1.5901	2.0000
	tversky beta	2.0000	1.3750	1.8286	2.0000	2.0000
	topK	929	1000	1000	303	191
	shrink	285	893	1000	0	1
ItemKNN CF cosine	similarity	cosine	cosine	cosine	cosine	cosine
	normalize	False	True	False	True	True
	feature weighting	BM25	TF-IDF	BM25	BM25	BM25
	topK	232	500	845	12	66
ItemKNN CF dice	shrink	99	0	18	37	4
Itellikiviv Ci uice	similarity	dice	dice	dice	dice	dice
	normalize	False	False	True	False	True
	topK	726	422	582	28	63
ItemKNN CF jaccard	shrink	9	11	42	2	5
nema ar er jaceara	similarity	jaccard	jaccard	jaccard	jaccard	jaccard
	normalize	True	False	False	False	True
	topK	778	669	978	24	303
	shrink	641	1000	859	1000	0
ItemKNN CF asymmetric	similarity	asymmetric	asymmetric	asymmetric	asymmetric	asymmetric
	normalize	True	True	True	True	True
	asymmetric alpha	0.2886	0.3042	0.0000	0.2911	0.3402
	feature weighting	TF-IDF	TF-IDF	none	TF-IDF	BM25
	topK	207	626	360	118	58
	shrink	949	95	71	0	143
ItemKNN CF tversky	similarity	tversky	tversky	tversky	tversky	tversky
,	normalize	True	True	True	True	True
	tversky alpha	2.0000	1.2255	0.1388	0.0876	0.0000
	tversky beta	2.0000	2.0000	0.9260	0.6605	0.3728

1:80 Ferrari Dacrema et al.

Table 90. Hyperparameter values for our non-neural machine learning and graph based baselines on all datasets.

Algorithm	Hyperparameter	Amazon Music original	Amazon Music ours	Amazon Movie	Movielens 100k	Movielens 1M
	topK	871	453	1000	93	1000
$P^3\alpha$	alpha	0.8151	0.4565	0.5195	0.0000	1.2781
	normalize similarity	True	True	False	True	False
	topK	864	900	1000	311	405
$RP^3\beta$	alpha	0.8665	0.9432	0.4285	0.3966	0.9764
RΓ p	beta	0.1478	0.2462	0.2689	0.5232	0.5807
	normalize similarity	True	True	False	True	False
$EASE^R$	l2 norm	5.79E+03	-	-	1.66E+04	6.07E+04
	topK	789	676	-	241	765
	epochs	175	255	-	260	345
	symmetric	True	True	-	True	True
SLIM BPR	sgd mode	adam	adagrad	-	adagrad	adagrad
	lambda i	6.07E-04	2.02E-05	-	2.85E-03	1.00E-02
	lambda j	2.71E-03	5.73E-04	-	1.23E-04	1.00E-05
	learning rate	1.00E-01	7.89E-03	-	2.91E-02	4.12E-02
	topK	1000	728	1000	96	694
SLIMElasticNet	l1 ratio	8.28E-05	4.68E-05	4.41E-04	2.76E-03	1.86E-04
	alpha	1.0000	1.0000	1.0000	0.9354	0.6571
	sgd mode	adagrad	adagrad	adagrad	adam	sgd
	epochs	420	495	1490	365	810
	num factors	183	200	200	200	200
MF BPR	batch size	128	1	256	256	2
	positive reg	1.00E-02	1.00E-05	1.00E-02	1.00E-05	3.82E-05
	negative reg	1.00E-05	1.14E-03	1.00E-02	1.00E-05	1.00E-02
	learning rate	5.72E-02	7.38E-02	6.68E-02	2.36E-03	8.09E-02
	sgd mode	adam	sgd	adam	sgd	sgd
	epochs	450	230	245	130	400
	use bias	True	False	True	True	False
	batch size	16	2	32	8	1
MF FunkSVD	num factors	200	190	177	70	41
	item reg	3.33E-05	1.00E-02	2.69E-05	5.26E-04	2.21E-04
	user reg	1.00E-02	1.00E-02	1.00E-02	7.28E-03	1.54E-03
	learning rate	3.64E-04	2.43E-02	1.32E-03	1.48E-02	1.15E-03
	negative quota	0.0432	0.3709	0.0409	0.1257	0.1628
PureSVD	num factors	81	17	77	24	57
	num factors	121	164	99	40	64
NMF	solver	mult. update	mult. update	mult. update	coord. descent	coord. descer
TATAII.	init type	random	random	nndsvda	nndsvda	nndsvda
	beta loss	frobenius	frobenius	kullback-leibler	frobenius	frobenius
	num factors	31	28	52	25	63
	confidence scaling	log	log	log	log	log
iALS	alpha	3.2850	50.0000	2.8548	0.0150	0.3345
IUPO	epsilon	0.0157	9.4295	0.0010	9.3913	0.0010
	reg	1.00E-02	1.00E-02	1.00E-05	1.00E-05	1.00E-05
	epochs	65	110	60	20	20

Table 91. Hyperparameter values for the deep learning algorithm on all datasets.

Algorithm	Hyperparameter	Amazon Music original	Amazon Music ours	Amazon Movie	Movielens 100k	Movielens 1M
	epochs	125	75	165	100	85
	learning rate	1.00E-04	1.00E-04	1.00E-04	1.00E-04	1.00E-04
	batch size	256	256	256	256	256
DMF NCE	num negatives	7	7	7	7	7
	last layer size	128	128	64	64	64
	max rating	5.0000	5.0000	5.0000	5.0000	5.0000
	epochs	75	80	35	165	65
	learning rate	1.00E-04	1.00E-04	1.00E-04	1.00E-04	1.00E-04
	batch size	256	256	256	256	256
DMF BCE	num negatives	7	7	7	7	7
	last layer size	128	128	64	64	64
	max rating	1.0000	1.0000	1.0000	1.0000	1.0000

Table 92. Comparison of the computation time for the different algorithms.

	Amazon Musi	c original	
	Turin time	Recommenda	tion
	Train time	Time	[usr/s]
Random	0.00 [sec]	1.36 [sec]	621
ТорРор	0.00 [sec]	1.53 [sec]	551
UserKNN CF cosine	0.05 ± 0.02 [sec]	2.28 ± 0.01 [sec]	368
UserKNN CF dice	$0.05 \pm 0.00 [sec]$	$2.26 \pm 0.03 [sec]$	378
UserKNN CF jaccard	$0.05 \pm 0.00 [sec]$	$2.27 \pm 0.02 [sec]$	376
UserKNN CF asymmetric	$0.05 \pm 0.00 [sec]$	$2.26 \pm 0.04 [sec]$	370
UserKNN CF tversky	$0.05 \pm 0.00 [sec]$	$2.27 \pm 0.03 [sec]$	380
ItemKNN CF cosine	3.33 ± 0.41 [sec]	$2.36 \pm 0.01 [sec]$	357
ItemKNN CF dice	3.45 ± 0.15 [sec]	$2.28 \pm 0.01 [sec]$	369
ItemKNN CF jaccard	3.46 ± 0.13 [sec]	$2.31 \pm 0.04 [sec]$	360
ItemKNN CF asymmetric	3.55 ± 0.15 [sec]	$2.32 \pm 0.05 [sec]$	358
ItemKNN CF tversky	3.53 ± 0.17 [sec]	$2.29 \pm 0.04 [sec]$	370
$P^3\alpha$	14.26 ± 1.70 [sec]	2.31 ± 0.02 [sec]	363
$RP^3\beta$	14.36 ± 2.21 [sec]	$2.30 \pm 0.06 [sec]$	362
EASE ^R	125.05 [sec] / 2.08 ± 0.01 [min]	2.15 ± 0.01 [sec]	392
SLIM BPR	304.44 [sec] / 5.07 ± 2.50 [min]	$2.18 \pm 0.01 [sec]$	387
SLIMElasticNet	410.27 [sec] / 6.84 ± 5.29 [min]	2.14 ± 0.03 [sec]	388
MF BPR	77.68 [sec] / 1.29 ± 0.90 [min]	$1.58 \pm 0.03 [sec]$	527
MF FunkSVD	212.46 [sec] / 3.54 ± 3.48 [min]	$1.65 \pm 0.05 [sec]$	497
PureSVD	0.39 ± 0.34 [sec]	$1.60 \pm 0.03 [sec]$	532
NMF	50.60 ± 46.44 [sec]	$1.77 \pm 0.10 [sec]$	508
iALS	441.76 [sec] / 7.36 ± 5.91 [min]	$1.57 \pm 0.01 [sec]$	535
DMF normalized cross entropy	4355.24 [sec] / 1.21 [hour]	8.14 [sec]	104
DMF binary cross entropy	2902.64 [sec] / 48.38 [min]	8.04 [sec]	105

1:82 Ferrari Dacrema et al.

Table 93. Comparison of the computation time for the different algorithms.

	Amazon Mus	ic ours	
	T	Recommenda	tion
	Train time	Time	[usr/s]
Random	0.00 [sec]	1.29 [sec]	653
ТорРор	0.00 [sec]	1.69 [sec]	498
UserKNN CF cosine	0.05 ± 0.00 [sec]	$2.37 \pm 0.01 [sec]$	355
UserKNN CF dice	$0.04 \pm 0.00 [sec]$	2.34 ± 0.02 [sec]	361
UserKNN CF jaccard	$0.04 \pm 0.00 [sec]$	$2.35 \pm 0.01 [sec]$	361
UserKNN CF asymmetric	$0.04 \pm 0.00 [sec]$	$2.36 \pm 0.03 [sec]$	354
UserKNN CF tversky	$0.04 \pm 0.00 [sec]$	$2.35 \pm 0.03 [sec]$	363
ItemKNN CF cosine	$3.65 \pm 0.65 [\text{sec}]$	$2.41 \pm 0.03 [sec]$	347
ItemKNN CF dice	$4.01 \pm 0.08 [sec]$	$2.40 \pm 0.02 [sec]$	351
ItemKNN CF jaccard	$4.01 \pm 0.06 [sec]$	$2.40 \pm 0.01 [sec]$	353
ItemKNN CF asymmetric	$4.07 \pm 0.09 [sec]$	$2.41 \pm 0.01 [sec]$	349
ItemKNN CF tversky	$4.13 \pm 0.07 [sec]$	$2.39 \pm 0.05 [sec]$	351
$P^3\alpha$	13.21 ± 0.96 [sec]	$2.38 \pm 0.02 [sec]$	357
$RP^3\beta$	14.29 ± 1.10 [sec]	$2.41 \pm 0.02 [sec]$	349
EASE ^R	-	-	-
SLIM BPR	342.16 [sec] / 5.70 ± 3.42 [min]	$2.41 \pm 0.02 [sec]$	347
SLIMElasticNet	1400.37 [sec] / 23.34 ± 2.14 [min]	$2.43 \pm 0.01 [sec]$	345
MF BPR	90.35 [sec] / 1.51 ± 1.43 [min]	$1.73 \pm 0.02 [sec]$	484
MF FunkSVD	146.22 [sec] / 2.44 ± 1.95 [min]	$1.75 \pm 0.01 [sec]$	481
PureSVD	$0.41 \pm 0.48 [sec]$	$1.76 \pm 0.07 [sec]$	492
NMF	67.64 [sec] / 1.13 ± 0.96 [min]	$1.91 \pm 0.10 [sec]$	453
iALS	184.95 [sec] / 3.08 ± 2.43 [min]	$1.72 \pm 0.00 [sec]$	490
DMF normalized cross entropy	2071.19 [sec] / 34.52 [min]	8.38 [sec]	101
DMF binary cross entropy	2183.37 [sec] / 36.39 [min]	8.43 [sec]	100

Table 94. Comparison of the computation time for the different algorithms.

	Ama	zon Movie	
	T i ti	Recommendation	
	Train time	Time	[usr/s]
Random	0.03 [sec]	28.58 [sec]	527
TopPop	0.06 [sec]	43.04 [sec]	350
UserKNN CF cosine	4.67 ± 0.53 [sec]	63.92 [sec] / 1.07 ± 0.05 [min]	225
UserKNN CF dice	4.57 ± 0.52 [sec]	63.27 [sec] / 1.05 ± 0.06 [min]	228
UserKNN CF jaccard	4.59 ± 0.48 [sec]	64.06 [sec] / 1.07 ± 0.06 [min]	228
UserKNN CF asymmetric	4.72 ± 0.49 [sec]	$66.17 [sec] / 1.10 \pm 0.02 [min]$	225
UserKNN CF tversky	4.63 ± 0.40 [sec]	63.04 [sec] / 1.05 ± 0.05 [min]	232
ItemKNN CF cosine	55.00 ± 5.26 [sec]	70.23 [sec] / 1.17 ± 0.08 [min]	203
ItemKNN CF dice	56.26 ± 1.87 [sec]	68.45 [sec] / 1.14 ± 0.08 [min]	216
ItemKNN CF jaccard	56.34 ± 1.87 [sec]	69.12 [sec] / 1.15 ± 0.05 [min]	226
ItemKNN CF asymmetric	56.82 ± 1.89 [sec]	71.95 [sec] / 1.20 ± 0.04 [min]	206
ItemKNN CF tversky	57.14 ± 2.12 [sec]	62.86 [sec] / 1.05 ± 0.05 [min]	239
$P^3\alpha$	196.62 [sec] / 3.28 ± 0.32 [min]	59.93 ± 1.25 [sec]	249
$RP^3\beta$	214.41 [sec] / 3.57 ± 0.31 [min]	60.62 [sec] / 1.01 ± 0.04 [min]	239
$EASE^R$	-	-	-
SLIM BPR	-	-	-
SLIMElasticNet	17335.50 [sec] / 4.82 ± 1.00 [hour]	64.46 [sec] / 1.07 ± 0.11 [min]	211
MF BPR	5985.66 [sec] / 1.66 ± 0.93 [hour]	43.42 ± 0.22 [sec]	345
MF FunkSVD	6606.42 [sec] / 1.84 ± 1.22 [hour]	47.53 ± 2.25 [sec]	309
PureSVD	4.39 ± 3.54 [sec]	45.12 ± 1.44 [sec]	343
NMF	2030.98 [sec] / 33.85 ± 20.16 [min]	45.26 [sec]	333
iALS	3384.98 [sec] / 56.42 ± 45.83 [min]	43.14 ± 0.15 [sec]	350
DMF normalized cross entropy	229915.93 [sec] / 2.66 [day]	385.76 [sec] / 6.43 [min]	39
DMF binary cross entropy	72580.90 [sec] / 20.16 [hour]	380.28 [sec] / 6.34 [min]	40

1:84 Ferrari Dacrema et al.

Table 95. Comparison of the computation time for the different algorithms.

	Movielens	s 100k	
	T	Recommenda	tion
	Train time	Time	[usr/s]
Random	0.00 [sec]	1.33 [sec]	706
ТорРор	0.00 [sec]	1.39 [sec]	676
UserKNN CF cosine	0.14 ± 0.02 [sec]	$2.09 \pm 0.04 [sec]$	448
UserKNN CF dice	$0.14 \pm 0.02 [sec]$	$2.13 \pm 0.05 [sec]$	449
UserKNN CF jaccard	$0.15 \pm 0.02 [sec]$	$2.13 \pm 0.07 [sec]$	454
UserKNN CF asymmetric	$0.15 \pm 0.02 [sec]$	$2.15 \pm 0.08 [sec]$	445
UserKNN CF tversky	$0.15 \pm 0.02 [sec]$	$2.09 \pm 0.03 [sec]$	452
ItemKNN CF cosine	$0.20 \pm 0.04 [\text{sec}]$	$2.14 \pm 0.05 [sec]$	429
ItemKNN CF dice	$0.18 \pm 0.04 [sec]$	$2.18 \pm 0.11 [sec]$	460
ItemKNN CF jaccard	$0.19 \pm 0.04 [sec]$	$2.16 \pm 0.14 [sec]$	458
ItemKNN CF asymmetric	0.20 ± 0.04 [sec]	$2.20 \pm 0.09 [sec]$	454
ItemKNN CF tversky	$0.18 \pm 0.04 [sec]$	2.14 ± 0.10 [sec]	454
$P^3\alpha$	0.99 ± 0.63 [sec]	$2.08 \pm 0.05 [sec]$	460
$RP^3\beta$	$1.21 \pm 0.70 [sec]$	$2.12 \pm 0.04 [sec]$	446
EASE ^R	0.41 ± 0.01 [sec]	1.88 ± 0.00 [sec]	500
SLIM BPR	64.02 [sec] / 1.07 ± 0.69 [min]	$2.15 \pm 0.07 [sec]$	440
SLIMElasticNet	9.40 ± 4.87 [sec]	$2.08 \pm 0.01 [sec]$	454
MF BPR	44.66 ± 46.61 [sec]	$1.45 \pm 0.04 [sec]$	631
MF FunkSVD	156.60 [sec] / 2.61 ± 2.88 [min]	$1.46 \pm 0.01 [sec]$	644
PureSVD	$0.06 \pm 0.05 [sec]$	$1.43 \pm 0.01 [sec]$	661
NMF	64.98 [sec] / 1.08 ± 1.03 [min]	$1.45 \pm 0.02 [sec]$	646
iALS	39.52 ± 27.96 [sec]	$1.44 \pm 0.00 [sec]$	655
DMF normalized cross entropy	15726.15 [sec] / 4.37 [hour]	22.78 [sec]	41
DMF binary cross entropy	23861.05 [sec] / 6.63 [hour]	22.85 [sec]	41

Table 96. Comparison of the computation time for the different algorithms.

	Movielens 1M				
	Train time	Recommendation Time	[usr/s]		
Random	0.03 [sec]	8.68 [sec]	695		
TopPop	0.05 [sec]	9.07 [sec]	665		
UserKNN CF cosine	4.72 ± 0.25 [sec]	14.59 ± 1.40 [sec]	380		
UserKNN CF dice	4.43 ± 0.21 [sec]	14.60 ± 0.55 [sec]	426		
UserKNN CF jaccard	4.43 ± 0.22 [sec]	14.97 ± 0.70 [sec]	427		
UserKNN CF asymmetric	4.51 ± 0.20 [sec]	15.31 ± 0.62 [sec]	388		
UserKNN CF tversky	4.55 ± 0.22 [sec]	14.97 ± 0.36 [sec]	410		
ItemKNN CF cosine	2.06 ± 0.11 [sec]	$15.87 \pm 1.14 [sec]$	410		
ItemKNN CF dice	2.02 ± 0.11 [sec]	14.59 ± 1.18 [sec]	437		
ItemKNN CF jaccard	2.03 ± 0.11 [sec]	14.40 ± 0.66 [sec]	441		
ItemKNN CF asymmetric	2.10 ± 0.11 [sec]	15.84 ± 1.07 [sec]	402		
ItemKNN CF tversky	2.03 ± 0.13 [sec]	14.24 ± 0.36 [sec]	435		
$P^3\alpha$	$4.79 \pm 1.34 [sec]$	$14.13 \pm 0.30 [sec]$	417		
$RP^3\beta$	$4.80 \pm 1.32 [sec]$	14.26 ± 0.51 [sec]	426		
$EASE^R$	4.69 ± 0.02 [sec]	13.07 ± 0.18 [sec]	458		
SLIM BPR	1067.49 [sec] / 17.79 ± 18.34 [min]	15.51 ± 0.33 [sec]	383		
SLIMElasticNet	204.56 [sec] / 3.41 ± 3.33 [min]	$14.18 \pm 0.01 [sec]$	425		
MF BPR	450.68 [sec] / 7.51 ± 6.28 [min]	$9.52 \pm 0.12 [sec]$	624		
MF FunkSVD	2080.92 [sec] / 34.68 ± 26.08 [min]	$9.49 \pm 0.11 [sec]$	638		
PureSVD	$0.83 \pm 0.64 [sec]$	$9.56 \pm 0.11 [sec]$	635		
NMF	355.21 [sec] / 5.92 ± 13.25 [min]	$9.56 \pm 0.02 [sec]$	630		
iALS	273.69 [sec] / 4.56 ± 2.68 [min]	$9.52 \pm 0.02 [sec]$	631		
DMF normalized cross entropy	428434.48 [sec] / 4.96 [day]	480.79 [sec] / 8.01 [min]	13		
DMF binary cross entropy	351928.51 [sec] / 4.07 [day]	482.96 [sec] / 8.05 [min]	12		

1:86 Ferrari Dacrema et al.

M IJCAI: COUPLEDCF: LEARNING EXPLICIT AND IMPLICIT USER-ITEM COUPLINGS IN RECOMMENDATION FOR DEEP COLLABORATIVE FILTERING

Relevant statistics on the dataset, which we mentioned in the paper, are reported in Table 97. The results of our evaluation can be seen in Table 98 (Movielens 1M) and Table 99 (Tafeng). The corresponding optimal hyperparameters are reported in Table 100 (collaborative KNNs), Table 101 (non-neural machine learning and graph based), Table 102 (content-based KNNs), Table 103 (hybrid KNNs item-based), Table 104 (hybrid KNNs user-based) and Table 105 (CoupledCF).

Lastly, the time required to train and evaluate the models is reported in Table 106 (Movielens 1M) and Table 107 (Tafeng).

Table 97. Dataset characteristics.

Dataset	Interactions	Items	Users	Density
Movielens 1M	1M	3953	6041	4.18
Tafeng	743K	23813	32267	0.097

Table 98. Experimental results on the metrics and cutoffs reported in the original paper.

			Moviel	ens 1M		
	(0	01	(a)5	@	10
	HR	NDCG	HR	NDCG	HR	NDCG
Random	0.0104	0.0104	0.0493	0.0290	0.0972	0.0443
TopPop	0.1084	0.1084	0.3224	0.2174	0.4740	0.2661
UserKNN CF cosine	0.1985	0.1985	0.5189	0.3653	0.6808	0.4178
UserKNN CF dice	0.1962	0.1962	0.5167	0.3631	0.6714	0.4133
UserKNN CF jaccard	0.1947	0.1947	0.5187	0.3633	0.6748	0.4139
UserKNN CF asymmetric	0.2000	0.2000	0.5220	0.3677	0.6896	0.4220
UserKNN CF tversky	0.1972	0.1972	0.5194	0.3649	0.6781	0.4165
ItemKNN CF cosine	0.1810	0.1810	0.5111	0.3514	0.6844	0.4077
ItemKNN CF dice	0.1818	0.1818	0.5038	0.3468	0.6775	0.4031
ItemKNN CF jaccard	0.1765	0.1765	0.5003	0.3434	0.6738	0.3996
ItemKNN CF asymmetric	0.1783	0.1783	0.4781	0.3321	0.6478	0.3872
ItemKNN CF tversky	0.1800	0.1800	0.5000	0.3436	0.6659	0.3975
P3alpha	0.1829	0.1829	0.4965	0.3451	0.6589	0.3978
RP3beta	0.1801	0.1801	0.5083	0.3498	0.6623	0.3996
EASE R	0.2187	0.2187	0.5675	0.3988	0.7260	0.4502
SLIM BPR	0.2070	0.2070	0.5363	0.3769	0.6990	0.4297
SLIMElasticNet	0.2258	0.2258	0.5778	0.4073	0.7281	0.4561
MF BPR	0.1806	0.1806	0.4985	0.3437	0.6662	0.3981
MF FunkSVD	0.2051	0.2051	0.5368	0.3771	0.6944	0.4284
PureSVD	0.2167	0.2167	0.5540	0.3916	0.7055	0.4408
NMF	0.2000	0.2000	0.5334	0.3723	0.6861	0.4217
IALS	0.2220	0.2220	0.5680	0.4015	0.7225	0.4516
ItemKNN CBF cosine	0.0652	0.0652	0.2167	0.1414	0.3364	0.1800
ItemKNN CBF dice	0.0598	0.0598	0.2030	0.1321	0.3185	0.1692
ItemKNN CBF jaccard	0.0606	0.0606	0.2017	0.1321	0.3164	0.1690
ItemKNN CBF asymmetric	0.0636	0.0636	0.2164	0.1412	0.3406	0.1812
ItemKNN CBF tversky	0.0596	0.0596	0.2026	0.1320	0.3192	0.1693
UserKNN CBF cosine	0.1182	0.1182	0.3373	0.2291	0.4990	0.2813
UserKNN CBF dice	0.1175	0.1175	0.3371	0.2288	0.4982	0.2807
UserKNN CBF jaccard	0.1192	0.1192	0.3377	0.2295	0.5010	0.2820
UserKNN CBF asymmetric	0.1177	0.1177	0.3374	0.2289	0.4980	0.2806
UserKNN CBF tversky	0.1200	0.1200	0.3381	0.2300	0.5013	0.2826
ItemKNN CFCBF cosine	0.1818	0.1818	0.5159	0.3526	0.6833	0.4068
ItemKNN CFCBF dice	0.1813	0.1813	0.5022	0.3465	0.6770	0.4032
ItemKNN CFCBF jaccard	0.1791	0.1791	0.4997	0.3433	0.6707	0.3988
ItemKNN CFCBF asymmetric	0.1820	0.1820	0.5048	0.3477	0.6732	0.4023
ItemKNN CFCBF tversky	0.1765	0.1765	0.4768	0.3309	0.6536	0.3882
UserKNN CFCBF cosine	0.1889	0.1889	0.5154	0.3572	0.6790	0.4102
UserKNN CFCBF dice	0.1993	0.1993	0.5175	0.3649	0.6805	0.4177
UserKNN CFCBF jaccard	0.1983	0.1983	0.5171	0.3645	0.6803	0.4175
UserKNN CFCBF asymmetric	0.1892	0.1892	0.5144	0.3555	0.6820	0.4099
UserKNN CFCBF tversky	0.1967	0.1967	0.5182	0.3641	0.6877	0.4193
DeepCF	0.1959	0.1959	0.5522	0.3795	0.7171	0.4330
CoupledCF	0.2071	0.2071	0.5465	0.3817	0.7079	0.4342
r	1		1		1	

1:88 Ferrari Dacrema et al.

Table 99. Experimental results on the metrics and cutoffs reported in the original paper.

			Taf	eng		
	(a	01	(a)5	@	10
	HR	NDCG	HR	NDCG	HR	NDCG
Random	0.0551	0.0551	0.0936	0.0737	0.1389	0.0881
ТорРор	0.2809	0.2809	0.5287	0.4094	0.6614	0.4523
UserKNN CF cosine	0.3498	0.3498	0.5737	0.4674	0.6703	0.4987
UserKNN CF dice	0.3477	0.3477	0.5680	0.4632	0.6661	0.4950
UserKNN CF jaccard	0.3473	0.3473	0.5678	0.4629	0.6659	0.4946
UserKNN CF asymmetric	0.3487	0.3487	0.5717	0.4657	0.6686	0.4971
UserKNN CF tversky	0.3472	0.3472	0.5679	0.4628	0.6658	0.4946
ItemKNN CF cosine	0.3573	0.3573	0.5727	0.4709	0.6648	0.5007
ItemKNN CF dice	0.3458	0.3458	0.5773	0.4673	0.6770	0.4996
ItemKNN CF jaccard	0.3484	0.3484	0.5766	0.4680	0.6717	0.4989
ItemKNN CF asymmetric	0.3615	0.3615	0.5726	0.4733	0.6541	0.4997
ItemKNN CF tversky	0.3516	0.3516	0.5788	0.4713	0.6647	0.4992
P3alpha	0.3523	0.3523	0.5844	0.4749	0.6775	0.5051
RP3beta	0.3400	0.3400	0.5140	0.4322	0.5898	0.4567
EASE R	0.3503	0.3503	0.5719	0.4666	0.6696	0.4982
SLIM BPR	0.3500	0.3500	0.5792	0.4705	0.6723	0.5006
SLIMElasticNet	0.3496	0.3496	0.5721	0.4666	0.6724	0.4991
MF BPR	0.2413	0.2413	0.4641	0.3562	0.5808	0.3939
MF FunkSVD	0.2853	0.2853	0.5300	0.4123	0.6614	0.4548
PureSVD	0.2751	0.2751	0.5222	0.4032	0.6535	0.4457
NMF	0.2476	0.2476	0.4603	0.3584	0.5769	0.3961
IALS	0.3296	0.3296	0.5634	0.4530	0.6621	0.4849
ItemKNN CBF cosine	0.0545	0.0545	0.0905	0.0722	0.1342	0.0861
ItemKNN CBF dice	0.0537	0.0537	0.0916	0.0723	0.1350	0.0861
ItemKNN CBF jaccard	0.0537	0.0537	0.0917	0.0723	0.1354	0.0862
ItemKNN CBF asymmetric	0.0547	0.0547	0.0946	0.0741	0.1425	0.0894
ItemKNN CBF tversky	0.0537	0.0537	0.0918	0.0723	0.1353	0.0862
UserKNN CBF cosine	0.2604	0.2604	0.4728	0.3705	0.5831	0.4061
UserKNN CBF dice	0.2562	0.2562	0.4635	0.3640	0.5701	0.3984
UserKNN CBF jaccard	0.2559	0.2559	0.4631	0.3636	0.5692	0.3978
UserKNN CBF asymmetric	0.2632	0.2632	0.4768	0.3743	0.5885	0.4103
UserKNN CBF tversky	0.2564	0.2564	0.4643	0.3644	0.5708	0.3988
ItemKNN CFCBF cosine	0.3573	0.3573	0.5727	0.4709	0.6650	0.5008
ItemKNN CFCBF dice	0.3329	0.3329	0.5642	0.4541	0.6677	0.4878
ItemKNN CFCBF jaccard	0.3348	0.3348	0.5669	0.4562	0.6646	0.4879
ItemKNN CFCBF asymmetric	0.3611	0.3611	0.5735	0.4736	0.6561	0.5003
ItemKNN CFCBF tversky	0.3357	0.3357	0.5675	0.4573	0.6651	0.4890
UserKNN CFCBF cosine	0.3536	0.3536	0.5858	0.4766	0.6874	0.5095
UserKNN CFCBF dice	0.3289	0.3289	0.5576	0.4490	0.6594	0.4819
UserKNN CFCBF jaccard	0.3272	0.3272	0.5551	0.4469	0.6570	0.4799
UserKNN CFCBF asymmetric	0.3584	0.3584	0.5915	0.4814	0.6907	0.5136
UserKNN CFCBF tversky	0.3259	0.3259	0.5529	0.4451	0.6554	0.4782
DeepCF	0.2869	0.2869	0.5366	0.4169	0.6637	0.4581
CoupledCF	0.2767	0.2767	0.5272	0.4065	0.6597	0.4494

Table 100. Hyperparameter values for our collaborative KNN baselines on all datasets.

Algorithm	Hyperparameter	Movielens 1M	Tafeng
UserKNN CF cosine	topK	363	1000
	shrink	0	327
	similarity	cosine	cosine
	normalize	True	True
	feature weighting	TF-IDF	TF-IDF
	topK	165 0	1000
UserKNN CF dice	shrink similarity normalize	dice True	0 dice True
UserKNN CF jaccard	topK	187	1000
	shrink	0	0
	similarity	jaccard	jaccard
	normalize	False	False
UserKNN CF asymmetric	topK shrink similarity normalize asymmetric alpha feature weighting	268 212 asymmetric True 0.0000 TF-IDF	asymmetric True 0.4272 TF-IDF
UserKNN CF tversky	topK	221	1000
	shrink	0	0
	similarity	tversky	tversky
	normalize	True	True
	tversky alpha	1.5095	2.0000
	tversky beta	2.0000	2.0000
ItemKNN CF cosine	topK	66	1000
	shrink	302	1000
	similarity	cosine	cosine
	normalize	True	True
	feature weighting	TF-IDF	TF-IDF
ItemKNN CF dice	topK	50	995
	shrink	5	65
	similarity	dice	dice
	normalize	False	True
ItemKNN CF jaccard	topK	43	999
	shrink	2	35
	similarity	jaccard	jaccard
	normalize	True	False
ItemKNN CF asymmetric	topK	446	1000
	shrink	906	975
	similarity	asymmetric	asymmetric
	normalize	True	True
	asymmetric alpha	0.9254	0.3635
	feature weighting	BM25	TF-IDF
ItemKNN CF tversky	topK	42	784
	shrink	298	100
	similarity	tversky	tversky
	normalize	True	True
	tversky alpha	0.0000	0.9383
	tversky beta	0.9369	1.9574

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:90 Ferrari Dacrema et al.

Table 101. Hyperparameter values for our non-neural machine learning and graph based baselines on all datasets.

Algorithm	Hyperparameter	Movielens 1M	Tafeng
	topK	342	1000
$P^3\alpha$	alpha	1.5568	0.5325
	normalize similarity	True	False
	topK	200	1000
pp3 <i>a</i>	alpha	1.2485	0.4449
$RP^3\beta$	beta	0.2230	0.3373
	normalize similarity	True	True
EASE ^R	l2 norm	2.94E+03	4.21E+03
	topK	1000	808
	epochs	270	425
	symmetric	True	False
SLIM BPR	sgd mode	sgd	adagrad
	lambda i	1.00E-02	1.00E-05
	lambda j	1.00E-05	1.00E-02
	learning rate	4.31E-03	1.00E-04
	topK	453	841
SLIMElasticNet	l1 ratio	9.77E-04	7.24E-05
	alpha	0.0564	0.1668
	sgd mode	sgd	sgd
	epochs	1005	420
	num factors	131	1
MF BPR	batch size	2	4
	positive reg	1.00E-05	1.00E-05
	negative reg	1.00E-02	1.00E-02
	learning rate	7.63E-02	6.60E-02
	sgd mode	adam	adam
	epochs	260	40
	use bias	True	True
	batch size	256	32
MF FunkSVD	num factors	44	1
	item reg	7.79E-04	4.54E-04
	user reg	2.90E-05	1.49E-03
	learning rate	5.26E-04	1.00E-04
	negative quota	0.0672	0.5000
PureSVD	num factors	65	1
	num factors	112	44
NMF	solver	mult. update	coord. descent
- 11122	init type	random	random
	beta loss	kullback-leibler	frobenius
	num factors	78	26
	confidence scaling	linear	linear
iALS	alpha	1.7666	16.1876
	epsilon	10.0000	0.1320
	reg	1.00E-05	1.22E-05
	epochs	40	40

Table 102. Hyperparameter values for our hybrid KNN baselines on all datasets.

Algorithm	Hyperparameter	Movielens 1M	Tafeng
	topK	1000	561
	shrink	1000	528
ItemKNN CBF cosine	similarity	cosine	cosine
	normalize	True	False
	feature weighting	TF-IDF	none
	topK	318	636
ItemKNN CBF dice	shrink	323	369
itelinatviv CBI tilee	similarity	dice	dice
	normalize	False	True
	topK	283	991
ItemKNN CBF jaccard	shrink	553	998
itemicivit ebi jaccaru	similarity	jaccard	jaccard
	normalize	False	False
	topK	986	500
	shrink	785	545
ItemKNN CBF asymmetric	similarity	asymmetric	asymmetric
itemitativ ezi usymmetrie	normalize	True	True
	asymmetric alpha	2.0000	0.4976
	feature weighting	TF-IDF	none
	topK	322	980
	shrink	354	12
ItemKNN CBF tversky	similarity	tversky	tversky
Itellikiviv CDF tversky	normalize	True	True
	tversky alpha	0.8065	0.0031
	tversky beta	0.1989	1.8880
	topK	801	1000
	shrink	1000	0
UserKNN CBF cosine	similarity	cosine	cosine
	normalize	True	True
	feature weighting	none	BM25
	topK	787	999
UserKNN CBF dice	shrink	10	959
	similarity	dice	dice
	normalize	False	True
	topK	793	999
UserKNN CBF jaccard	shrink	0	41
	similarity normalize	jaccard False	jaccard False
	topK	788	1000
	shrink	992	510
	similarity	asymmetric	asymmetric
UserKNN CBF asymmetric	normalize	True	True
	asymmetric alpha	0.0306	0.0000
	feature weighting	none	TF-IDF
	topK	1000	1000
	shrink	0	1000
II INDIODE I	similarity	tversky	tversky
UserKNN CBF tversky	normalize	True	True
	tversky alpha	2.0000	0.0000
	tversky beta	2.0000	0.0000
		1	

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:92 Ferrari Dacrema et al.

Table 103. Hyperparameter values for our baselines on all reported algorithms and datasets.

Algorithm	Hyperparameter	Movielens 1M	Tafeng
	topK	168	1000
	shrink	875	1000
ItemKNN CFCBF cosine	similarity	cosine	cosine
Hemkini Crcbr cosine	normalize	False	True
	feature weighting	BM25	TF-IDF
	ICM weight	1.6619	9.1735
	topK	49	890
	shrink	0	434
ItemKNN CFCBF dice	similarity	dice	dice
	normalize	True	True
	ICM weight	94.1764	100.0000
	topK	55	830
	shrink	0	363
ItemKNN CFCBF jaccard	similarity	jaccard	jaccard
	normalize	False	False
	ICM weight	100.0000	0.0100
	topK	231	1000
	shrink	1000	1000
	similarity	asymmetric	asymmetric
ItemKNN CFCBF asymmetric	normalize	True	True
	asymmetric alpha	0.5629	0.3744
	feature weighting	BM25	TF-IDF
	ICM weight	0.2198	0.0100
	topK	46	882
	shrink	874	684
	similarity	tversky	tversky
ItemKNN CFCBF tversky	normalize	True	True
	tversky alpha	0.2974	1.2102
	tversky beta	0.6227	1.9959
	ICM weight	0.6018	4.6249

Table 104. Hyperparameter values for our hybrid KNN baselines on all datasets.

Algorithm	Hyperparameter	Movielens 1M	Tafeng
	topK	263	683
	shrink	0	510
UserKNN CFCBF cosine	similarity	cosine	cosine
USERNIN CFCBF COSINE	normalize	True	True
	feature weighting	BM25	BM25
	UCM weight	0.0262	4.9570
	topK	202	997
	shrink	1	18
UserKNN CFCBF dice	similarity	dice	dice
	normalize	False	True
	UCM weight	2.5156	0.0115
	topK	190	993
	shrink	2	5
UserKNN CFCBF jaccard	similarity	jaccard	jaccard
	normalize	True	True
	UCM weight	0.8025	43.6604
	topK	350	670
	shrink	0	451
	similarity	asymmetric	asymmetric
UserKNN CFCBF asymmetric	normalize	True	True
	asymmetric alpha	0.0000	0.7234
	feature weighting	BM25	BM25
	UCM weight	0.0100	2.5995
	topK	224	1000
	shrink	0	0
	similarity	tversky	tversky
UserKNN CFCBF tversky	normalize	True	True
	tversky alpha	0.8562	1.5529
	tversky beta	1.7705	1.8388
	UCM weight	0.0100	100.0000

Table 105. Hyperparameter values for the deep learning algorithm on all datasets.

Algorithm	Hyperparameter	Movielens 1M	Tafeng
DeepCF	learning rate	1.00E-03	5.00E-03
	epochs	15	15
	n negative sample	4	4
CoupledCF	learning rate	1.00E-03	5.00E-03
	epochs	40	5
	n negative sample	4	4

1:94 Ferrari Dacrema et al.

Table 106. Comparison of the computation time for the different algorithms.

	Movielens	1M	
	Train time	Recommenda	tion
	Train time	Time	[usr/s]
Random	0.02 [sec]	10.19 [sec]	593
TopPop	0.03 [sec]	11.38 [sec]	531
UserKNN CF cosine	3.14 ± 0.17 [sec]	15.78 ± 0.38 [sec]	386
UserKNN CF dice	3.03 ± 0.15 [sec]	$15.60 \pm 0.64 [sec]$	403
UserKNN CF jaccard	3.04 ± 0.16 [sec]	15.73 ± 0.59 [sec]	396
UserKNN CF asymmetric	3.12 ± 0.18 [sec]	$15.73 \pm 0.71 [sec]$	393
UserKNN CF tversky	3.15 ± 0.17 [sec]	$16.03 \pm 0.70 [sec]$	395
ItemKNN CF cosine	1.48 ± 0.10 [sec]	16.46 ± 1.46 [sec]	400
ItemKNN CF dice	1.45 ± 0.08 [sec]	15.43 ± 1.18 [sec]	410
ItemKNN CF jaccard	1.45 ± 0.08 [sec]	15.15 ± 0.60 [sec]	416
ItemKNN CF asymmetric	1.56 ± 0.10 [sec]	16.67 ± 0.60 [sec]	362
ItemKNN CF tversky	1.41 ± 0.08 [sec]	15.77 ± 1.39 [sec]	412
$P^3\alpha$	3.23 ± 0.85 [sec]	14.91 ± 0.21 [sec]	409
$RP^3\beta$	$3.35 \pm 1.07 [sec]$	$14.94 \pm 0.33 [sec]$	413
$EASE^R$	4.04 ± 0.02 [sec]	14.85 ± 0.20 [sec]	404
SLIM BPR	721.91 [sec] / 12.03 ± 9.52 [min]	$16.28 \pm 0.45 [sec]$	362
SLIMElasticNet	171.44 [sec] / 2.86 ± 1.86 [min]	14.69 ± 0.73 [sec]	402
MF BPR	471.61 [sec] / 7.86 ± 5.82 [min]	$16.58 \pm 2.70 [sec]$	332
MF FunkSVD	1860.97 [sec] / 31.02 ± 34.81 [min]	14.78 ± 2.96 [sec]	479
PureSVD	0.82 ± 0.46 [sec]	13.42 ± 2.36 [sec]	484
NMF	547.17 [sec] / 9.12 ± 6.08 [min]	17.01 ± 2.98 [sec]	330
iALS	464.07 [sec] / 7.73 ± 4.84 [min]	$12.50 \pm 0.11 [sec]$	479
ItemKNN CBF cosine	$0.27 \pm 0.06 [\text{sec}]$	14.85 ± 0.60 [sec]	396
ItemKNN CBF dice	$0.26 \pm 0.05 [\text{sec}]$	$14.41 \pm 0.12 [sec]$	423
ItemKNN CBF jaccard	0.27 ± 0.05 [sec]	$14.19 \pm 0.30 [sec]$	421
ItemKNN CBF asymmetric	0.29 ± 0.06 [sec]	15.42 ± 0.35 [sec]	384
ItemKNN CBF tversky	0.26 ± 0.05 [sec]	14.26 ± 0.40 [sec]	418
UserKNN CBF cosine	0.71 ± 0.06 [sec]	17.62 ± 0.55 [sec]	340
UserKNN CBF dice	0.75 ± 0.09 [sec]	$17.88 \pm 0.24 [sec]$	341
UserKNN CBF jaccard	$0.77 \pm 0.09 [sec]$	17.59 ± 0.35 [sec]	343
UserKNN CBF asymmetric	$0.78 \pm 0.12 [sec]$	17.95 ± 0.25 [sec]	339
UserKNN CBF tversky	$0.76 \pm 0.09 [sec]$	$17.83 \pm 0.36 [sec]$	332
ItemKNN CFCBF cosine	1.48 ± 0.09 [sec]	16.26 ± 0.84 [sec]	395
ItemKNN CFCBF dice	1.48 ± 0.09 [sec]	$14.60 \pm 0.58 [sec]$	423
ItemKNN CFCBF jaccard	1.48 ± 0.08 [sec]	14.50 ± 0.13 [sec]	422
ItemKNN CFCBF asymmetric	1.54 ± 0.08 [sec]	$15.55 \pm 0.31 [sec]$	390
ItemKNN CFCBF tversky	1.47 ± 0.09 [sec]	15.28 ± 1.47 [sec]	414
UserKNN CFCBF cosine	3.10 ± 0.13 [sec]	$17.10 \pm 0.61 [sec]$	365
UserKNN CFCBF dice	3.11 ± 0.17 [sec]	$17.11 \pm 0.42 [sec]$	349
UserKNN CFCBF jaccard	3.07 ± 0.18 [sec]	16.83 ± 0.64 [sec]	371
UserKNN CFCBF asymmetric	3.26 ± 0.29 [sec]	$17.50 \pm 0.74 [sec]$	361
UserKNN CFCBF tversky	$3.23 \pm 0.25 [sec]$	$16.82 \pm 0.66 [sec]$	368
DeepCF	3901.52 [sec] / 1.08 [hour]	25.05 [sec]	241
CoupledCF	14029.82 [sec] / 3.90 [hour]	34.18 [sec]	177

Table 107. Comparison of the computation time for the different algorithms.

		Tafeng	
	Train time	Recommendation	
		Time	[usr/s]
Random	0.01 [sec]	57.31 [sec]	536
TopPop	0.02 [sec]	63.39 [sec] / 1.06 [min]	485
UserKNN CF cosine	10.08 ± 0.90 [sec]	82.01 [sec] / 1.37 ± 0.07 [min]	358
UserKNN CF dice	10.34 ± 0.66 [sec]	82.74 [sec] / 1.38 ± 0.07 [min]	360
UserKNN CF jaccard	10.45 ± 0.65 [sec]	84.58 [sec] / 1.41 ± 0.01 [min]	361
UserKNN CF asymmetric	10.24 ± 0.80 [sec]	82.03 [sec] / 1.37 ± 0.04 [min]	360
UserKNN CF tversky	10.45 ± 0.78 [sec]	81.36 [sec] / 1.36 ± 0.07 [min]	357
ItemKNN CF cosine	4.28 ± 0.35 [sec]	84.92 [sec] / 1.42 ± 0.05 [min]	354
ItemKNN CF dice	4.34 ± 0.27 [sec]	85.91 [sec] / 1.43 ± 0.01 [min]	359
ItemKNN CF jaccard	4.37 ± 0.30 [sec]	83.91 [sec] / 1.40 ± 0.09 [min]	358
ItemKNN CF asymmetric	4.46 ± 0.31 [sec]	82.72 [sec] / 1.38 ± 0.11 [min]	358
ItemKNN CF tversky	4.21 ± 0.31 [sec]	85.76 [sec] / 1.43 ± 0.01 [min]	362
$P^3\alpha$	16.15 ± 3.44 [sec]	77.19 [sec] / 1.29 ± 0.05 [min]	384
$RP^3\beta$	19.20 ± 3.05 [sec]	78.05 [sec] / 1.30 ± 0.03 [min]	387
EASE ^R	310.60 [sec] / 5.18 ± 0.07 [min]	75.08 [sec] / 1.25 ± 0.05 [min]	418
SLIM BPR	2499.23 [sec] / 41.65 ± 18.16 [min]	$78.52 [sec] / 1.31 \pm 0.01 [min]$	392
SLIMElasticNet	527.87 [sec] / 8.80 ± 4.22 [min]	$80.33 [sec] / 1.34 \pm 0.08 [min]$	360
MF BPR	1856.56 [sec] / 30.94 ± 28.65 [min]	$69.71 [sec] / 1.16 \pm 0.19 [min]$	476
MF FunkSVD	1721.76 [sec] / 28.70 ± 36.20 [min]	$73.04 [sec] / 1.22 \pm 0.20 [min]$	460
PureSVD	$1.19 \pm 1.72 [\text{sec}]$	$63.30 [sec] / 1.06 \pm 0.02 [min]$	481
NMF	396.04 [sec] / 6.60 ± 3.69 [min]	$75.72 [sec] / 1.26 \pm 0.29 [min]$	473
iALS	1870.58 [sec] / 31.18 ± 27.80 [min]	65.58 [sec] / 1.09 ± 0.00 [min]	469
ItemKNN CBF cosine	13.56 ± 7.13 [sec]	68.00 [sec] / 1.13 ± 0.01 [min]	451
ItemKNN CBF dice	12.10 ± 6.57 [sec]	$66.94 [sec] / 1.12 \pm 0.01 [min]$	463
ItemKNN CBF jaccard	13.21 ± 6.67 [sec]	$67.27 [sec] / 1.12 \pm 0.01 [min]$	453
ItemKNN CBF asymmetric	13.24 ± 6.89 [sec]	$68.53 [sec] / 1.14 \pm 0.04 [min]$	437
ItemKNN CBF tversky	15.57 ± 6.33 [sec]	$68.15 [sec] / 1.14 \pm 0.01 [min]$	447
UserKNN CBF cosine	12.43 ± 1.13 [sec]	87.55 [sec] / 1.46 ± 0.07 [min]	340
UserKNN CBF dice	12.35 ± 0.65 [sec]	$89.77 [sec] / 1.50 \pm 0.02 [min]$	339
UserKNN CBF jaccard	12.95 ± 0.88 [sec]	$90.25 [sec] / 1.50 \pm 0.04 [min]$	336
UserKNN CBF asymmetric	13.36 ± 0.86 [sec]	$91.22 [sec] / 1.52 \pm 0.02 [min]$	339
UserKNN CBF tversky	13.02 ± 0.82 [sec]	90.31 [sec] / 1.51 ± 0.10 [min]	341
ItemKNN CFCBF cosine	13.59 ± 1.28 [sec]	81.15 [sec] / 1.35 ± 0.03 [min]	372
ItemKNN CFCBF dice	13.71 ± 0.60 [sec]	$77.25 [sec] / 1.29 \pm 0.03 [min]$	393
ItemKNN CFCBF jaccard	13.67 ± 0.64 [sec]	$77.42 [sec] / 1.29 \pm 0.02 [min]$	398
ItemKNN CFCBF asymmetric	14.24 ± 0.90 [sec]	$79.89 [sec] / 1.33 \pm 0.08 [min]$	375
ItemKNN CFCBF tversky	13.20 ± 1.08 [sec]	$76.06 [sec] / 1.27 \pm 0.04 [min]$	398
UserKNN CFCBF cosine	15.01 ± 0.56 [sec]	$89.86 [sec] / 1.50 \pm 0.02 [min]$	345
UserKNN CFCBF dice	16.99 ± 0.92 [sec]	94.92 [sec] / 1.58 ± 0.09 [min]	336
UserKNN CFCBF jaccard	16.73 ± 1.06 [sec]	$92.12 [sec] / 1.54 \pm 0.06 [min]$	309
UserKNN CFCBF asymmetric	$16.42 \pm 1.22 [sec]$	$90.62 [sec] / 1.51 \pm 0.01 [min]$	340
UserKNN CFCBF tversky	16.78 ± 1.19 [sec]	92.53 [sec] / 1.54 ± 0.09 [min]	340
DeepCF	3182.28 [sec] / 53.04 [min]	131.53 [sec] / 2.19 [min]	234
CoupledCF	4632.16 [sec] / 1.29 [hour]	198.59 [sec] / 3.31 [min]	155

1:96 Ferrari Dacrema et al.

N IJCAI: DELF: A DUAL-EMBEDDING BASED DEEP LATENT FACTOR MODEL FOR RECOMMENDATION

Relevant statistics on the dataset, which we mentioned in the paper, are reported in Table 108. The results of our evaluation can be seen in Table 109 (Amazon Music) and Table 110 (Movielens 1M). The corresponding optimal hyperparameters are reported in Table 111 (collaborative KNNs), Table 112 (non-neural machine learning and graph based) and Table 113 (DELF).

Lastly, the time required to train and evaluate the models is reported in Table 114 (Amazon Music) and Table 115 (Movielens 1M).

Dataset		Interactions	Items	Users	Density
Amazon Music	original	836K	266414	478235	$6.56 \cdot 10^{-4}$
Amazon Music	preprocessed	76K	41488	1835	0.100
Movielens 1M	-	1M	3706	6040	4.468

Table 108. Dataset characteristics.

Table 109. Experimental results on the metrics and cutoffs reported in the original paper.

	Amazon Music						
	(a	95	@	@10		@20	
	HR	NDCG	HR	NDCG	HR	NDCG	
Random	0.0567	0.0353	0.1079	0.0516	0.2174	0.0789	
TopPop	0.2474	0.1730	0.3041	0.1913	0.3738	0.2090	
UserKNN CF cosine	0.3150	0.2495	0.3471	0.2600	0.3738	0.2668	
UserKNN CF dice	0.3106	0.2470	0.3471	0.2590	0.3744	0.2659	
UserKNN CF jaccard	0.3106	0.2474	0.3471	0.2594	0.3738	0.2663	
UserKNN CF asymmetric	0.3084	0.2464	0.3460	0.2587	0.3744	0.2660	
UserKNN CF tversky	0.3117	0.2475	0.3471	0.2591	0.3744	0.2661	
ItemKNN CF cosine	0.3084	0.2464	0.3428	0.2576	0.3744	0.2655	
ItemKNN CF dice	0.3025	0.2389	0.3422	0.2517	0.3744	0.2598	
ItemKNN CF jaccard	0.2992	0.2382	0.3324	0.2489	0.3575	0.2552	
ItemKNN CF asymmetric	0.3090	0.2506	0.3401	0.2609	0.3717	0.2689	
ItemKNN CF tversky	0.2965	0.2380	0.3319	0.2495	0.3591	0.2564	
$P^3\alpha$	0.3074	0.2465	0.3373	0.2564	0.3689	0.2644	
$RP^3\beta$	0.3046	0.2434	0.3379	0.2543	0.3651	0.2611	
EASE ^R	-	-	-	-	-	-	
SLIM BPR	0.3008	0.2380	0.3390	0.2504	0.3673	0.2576	
SLIMElasticNet	0.3101	0.2526	0.3411	0.2625	0.3711	0.2701	
MF BPR	0.2360	0.1888	0.2687	0.1995	0.3095	0.2099	
MF FunkSVD	0.2545	0.2035	0.2899	0.2150	0.3292	0.2248	
PureSVD	0.2627	0.2141	0.3084	0.2290	0.3542	0.2406	
NMF	0.2910	0.2294	0.3482	0.2480	0.4038	0.2621	
iALS	0.3319	0.2604	0.3706	0.2729	0.4109	0.2831	
DELF MLP	0.2883	0.2239	0.3335	0.2386	0.3760	0.2494	
DELF EF	0.2856	0.2159	0.3330	0.2315	0.3809	0.2437	

Table 110. Experimental results on the metrics and cutoffs reported in the original paper.

	Movielens 1M						
	(a	95	@	@10		@20	
	HR	NDCG	HR	NDCG	HR	NDCG	
Random	0.0533	0.0320	0.1042	0.0481	0.2024	0.0726	
ТорРор	0.3300	0.2228	0.4698	0.2674	0.6576	0.3148	
UserKNN CF cosine	0.5193	0.3621	0.6837	0.4155	0.8263	0.4516	
UserKNN CF dice	0.5147	0.3608	0.6791	0.4142	0.8218	0.4505	
UserKNN CF jaccard	0.5163	0.3620	0.6783	0.4145	0.8230	0.4512	
UserKNN CF asymmetric UserKNN CF tversky ItemKNN CF cosine ItemKNN CF dice	0.5188	0.3628	0.6865	0.4171	0.8334	0.4544	
	0.5158	0.3617	0.6748	0.4135	0.8253	0.4515	
	0.4978	0.3418	0.6814	0.4011	0.8311	0.4390	
	0.4895	0.3370	0.6667	0.3943	0.8276	0.4352	
ItemKNN CF jaccard	0.4958	0.3408	0.6723	0.3978	0.8202	0.4355	
ItemKNN CF asymmetric	0.5011	0.3452	0.6789	0.4027	0.8286	0.4407	
ItemKNN CF tversky	0.4936	0.3418	0.6615	0.3963	0.8036	0.4323	
$P^3\alpha$	0.4945	0.3438	0.6574	0.3965	0.7950	0.4313	
$RP^3\beta$	0.5138	0.3559	0.6809	0.4102	0.8276	0.4475	
EASE ^R	0.5609	0.3954	0.7248	0.4486	0.8559	0.4818	
SLIM BPR	0.5380	0.3742	0.7077	0.4292	0.8452	0.4640	
SLIMElasticNet	0.5706	0.4038	0.7306	0.4557	0.8586	0.4882	
MF BPR	0.4844	0.3310	0.6595	0.3877	0.8152	0.4275	
MF FunkSVD	0.5312	0.3708	0.6948	0.4239	0.8245	0.4569	
PureSVD	0.5513	0.3891	0.7021	0.4382	0.8303	0.4708	
NMF	0.5339	0.3746	0.6965	0.4272	0.8385	0.4635	
iALS	0.5652	0.3979	0.7268	0.4503	0.8465	0.4807	
DELF MLP	0.5234	0.3592	0.6892	0.4132	0.8356	0.4503	
DELF EF	0.4718	0.3210	0.6423	0.3762	0.7942	0.4146	

1:98 Ferrari Dacrema et al.

Table 111. Hyperparameter values for our collaborative KNN baselines on all datasets.

Algorithm	Hyperparameter	Amazon Music	Movielens 1M
	topK	1000	461
	shrink	0	0
UserKNN CF cosine	similarity	cosine	cosine
	normalize	True	True
	feature weighting	none	TF-IDF
	topK	916	339
UserKNN CF dice	shrink	9	0
	similarity	dice	dice
	normalize	False	True
	topK	1000	329
UserKNN CF jaccard	shrink	0	0
	similarity	jaccard	jaccard
	normalize	False	True
	topK	1000	374
	shrink	1000	0
UserKNN CF asymmetric	similarity	asymmetric	asymmetric
oberra ir v or abymmetric	normalize	True	True
	asymmetric alpha	2.0000	0.1258
	feature weighting	none	TF-IDF
UserKNN CF tversky	topK	997	414
	shrink	9	71
	similarity	tversky	tversky
	normalize	True	True
	tversky alpha	0.2340	1.1580
	tversky beta	0.1063	1.9364
	topK	998	283
	shrink	978	765
ItemKNN CF cosine	similarity	cosine	cosine
	normalize	True	True
	feature weighting	TF-IDF	BM25
	topK	1000	78
ItemKNN CF dice	shrink	29	2
	similarity	dice	dice
	normalize	True	True
	topK	335	42
ItemKNN CF jaccard	shrink	39	0
•	similarity normalize	jaccard True	jaccard False
		<u> </u>	
	topK	1000	277
	shrink similarity	544	644
ItemKNN CF asymmetric	normalize	asymmetric True	asymmetric True
nemative asymmetric		0.0000	0.6317
	acommetric alaba		0.0317
	asymmetric alpha feature weighting	TF-IDF	BM25
	feature weighting	TF-IDF	
	feature weighting topK	TF-IDF 409	66
	feature weighting topK shrink	TF-IDF 409 51	66 0
ItemKNN CF tversky	feature weighting topK shrink similarity	TF-IDF 409 51 tversky	66 0 tversky
ItemKNN CF tversky	feature weighting topK shrink similarity normalize	TF-IDF 409 51 tversky True	66 0 tversky True
ItemKNN CF tversky	feature weighting topK shrink similarity	TF-IDF 409 51 tversky	66 0 tversky

Table 112. Hyperparameter values for our non-neural machine learning and graph based baselines on all datasets.

Algorithm	Hyperparameter	Amazon Music	Movielens 1M
	topK	914	406
$P^3\alpha$	alpha	0.5072	1.3317
	topK alpha 0.5072 normalize similarity True topK 833 alpha 0.6294 beta 0.0343 normalize similarity True SER 12 norm - topK 1000 epochs 140 symmetric 32 mode adam lambda i 1.00E-02 learning rate 1.00E-01 topK 11 ratio 1.30E-04 alpha 0.2789 BPR batch size 128 positive reg 9.10E-04 negative reg 4.69E-03 learning rate 2.16E-03 Sgd mode adam epochs 225 use bias True batch size 2 tiem reg 1.00E-02 user reg 1.00E-02 user reg 1.00E-02 learning rate 1.11E-03 negative quota 0.3648 ESVD num factors 58 FunkSVD num factors 132 Item reg 1.00E-02 Item reg 1.00E-03 Item reg 1.00E-04 Item reg 1.00E-04 Item reg 1.00E-05 Item reg 1.00E-06 Item reg 1	True	True
	topK	833	265
RP^3eta	alpha	0.6294	1.2847
$\kappa \Gamma \rho$	beta	0.0343	0.5993
	normalize similarity	True	True
EASE ^R	l2 norm	-	3.25E+03
	topK	1000	1000
	epochs	140	595
	symmetric	True	True
SLIM BPR	sgd mode	adam	adagrad
	lambda i	9.31E-04	1.00E-02
	lambda j	1.00E-02	9.42E-03
	learning rate	1.00E-01	9.93E-03
	-		502
SLIMElasticNet			1.86E-05
	alpha	0.2789	0.0689
			adam
	•	845	800
	num factors	88	171
MF BPR	batch size	128	1024
WI DIK			1.00E-05
	0 0		1.00E-05
	learning rate	2.16E-03	2.16E-03
	sgd mode	adam	adagrad
	-		320
		True	False
			128
MF FunkSVD			47
			2.14E-05
	_		1.28E-03
	- C		3.39E-02
	negative quota	0.3648	0.0941
PureSVD	num factors	58	49
			77
NMF		coord. descent	coord. descent
	* *		random
	beta loss	frobenius	frobenius
			60
	_	_	log
iALS	alpha	50.0000	0.5425
	epsilon	0.5407	0.0010
	reg	1.00E-05	1.00E-05
	epochs	90	10

1:100 Ferrari Dacrema et al.

Table 113. Hyperparameter values for the deep learning algorithm on all datasets.

Algorithm	Hyperparameter	Amazon Music	Movielens 1M
	epochs	30	25
	learning rate	1.00E-03	1.00E-03
	batch size	256	256
DELF MLP	num negatives	4	4
DELF MLP	layers	[256, 128, 64]	[256, 128, 64]
	regularization layers	[0, 0, 0]	[0, 0, 0]
	learner	adam	adam
	epochs	55	45
	learning rate	1.00E-03	1.00E-03
	batch size	256	256
DELF EF	num negatives	4	4
DELL EL	layers	[256, 128, 64]	[256, 128, 64]
	regularization layers	[0, 0, 0]	[0, 0, 0]
	learner	adam	adam

Table 114. Comparison of the computation time for the different algorithms.

	Amazo	n Music	
	Train time	Recommendation Time	[usr/s]
Random	0.00 [sec]	2.84 [sec]	646
ТорРор	0.00 [sec]	3.44 [sec]	533
UserKNN CF cosine	0.10 ± 0.04 [sec]	4.99 ± 0.04 [sec]	366
UserKNN CF dice	$0.10 \pm 0.00 [sec]$	$4.98 \pm 0.06 [sec]$	366
UserKNN CF jaccard	$0.10 \pm 0.01 [sec]$	$5.00 \pm 0.01 [sec]$	367
UserKNN CF asymmetric	$0.10 \pm 0.01 [sec]$	$4.97 \pm 0.08 [sec]$	365
UserKNN CF tversky	$0.10 \pm 0.00 [sec]$	$5.01 \pm 0.03 [sec]$	365
ItemKNN CF cosine	12.41 ± 1.25 [sec]	$5.14 \pm 0.05 [sec]$	354
ItemKNN CF dice	12.74 ± 0.14 [sec]	$5.11 \pm 0.03 [sec]$	357
ItemKNN CF jaccard	12.72 ± 0.12 [sec]	5.01 [sec]	366
ItemKNN CF asymmetric	12.74 ± 0.18 [sec]	$5.14 \pm 0.02 [sec]$	356
ItemKNN CF tversky	13.10 ± 0.17 [sec]	$5.13 \pm 0.02 [sec]$	360
$P^3\alpha$	$39.70 \pm 1.80 [sec]$	$5.08 \pm 0.01 [sec]$	361
$RP^3\beta$	41.92 ± 1.71 [sec]	$5.07 \pm 0.00 [sec]$	362
$EASE^R$	-	-	-
SLIM BPR	1145.90 [sec] / 19.10 ± 9.02 [min]	$5.13 \pm 0.09 [sec]$	357
SLIMElasticNet	1153.77 [sec] / 19.23 ± 6.67 [min]	$5.19 \pm 0.05 [sec]$	354
MF BPR	112.91 [sec] / 1.88 ± 2.68 [min]	$3.60 \pm 0.02 [sec]$	509
MF FunkSVD	285.07 [sec] / 4.75 ± 4.56 [min]	$3.88 \pm 0.14 [sec]$	462
PureSVD	$0.74 \pm 0.65 [sec]$	$3.74 \pm 0.12 [sec]$	498
NMF	568.27 [sec] / 9.47 ± 7.02 [min]	$4.14 \pm 0.39 [sec]$	489
iALS	888.30 [sec] / 14.80 ± 12.32 [min]	$3.63 \pm 0.02 [sec]$	507
DELF MLP	6778.45 [sec] / 1.88 [hour]	405.44 [sec] / 6.76 [min]	5
DELF EF	9427.74 [sec] / 2.62 [hour]	310.86 [sec] / 5.18 [min]	6

Table 115. Comparison of the computation time for the different algorithms.

	Moviel	ens 1M	
	Train time	Recommendation Time	[usr/s]
Random	0.03 [sec]	8.92 [sec]	677
TopPop	0.05 [sec]	9.73 [sec]	621
UserKNN CF cosine	4.63 ± 0.23 [sec]	16.11 ± 0.45 [sec]	383
UserKNN CF dice	4.44 ± 0.19 [sec]	15.72 ± 0.68 [sec]	389
UserKNN CF jaccard	4.45 ± 0.20 [sec]	$15.18 \pm 0.35 [sec]$	393
UserKNN CF asymmetric	4.50 ± 0.19 [sec]	15.84 ± 0.66 [sec]	387
UserKNN CF tversky	4.56 ± 0.22 [sec]	$15.86 \pm 0.87 [sec]$	386
ItemKNN CF cosine	2.13 ± 0.12 [sec]	16.08 ± 0.26 [sec]	375
ItemKNN CF dice	2.09 ± 0.12 [sec]	15.20 ± 0.88 [sec]	414
ItemKNN CF jaccard	2.10 ± 0.13 [sec]	$15.73 \pm 1.94 [sec]$	417
ItemKNN CF asymmetric	2.19 ± 0.15 [sec]	$16.66 \pm 0.98 [sec]$	375
ItemKNN CF tversky	2.13 ± 0.10 [sec]	15.14 ± 0.65 [sec]	420
$P^3\alpha$	$4.64 \pm 1.45 [\text{sec}]$	14.66 ± 0.36 [sec]	415
$RP^3\beta$	$5.03 \pm 1.47 [sec]$	$14.87 \pm 0.49 [sec]$	407
$EASE^R$	4.99 ± 0.01 [sec]	13.87 ± 0.11 [sec]	431
SLIM BPR	781.38 [sec] / 13.02 ± 10.84 [min]	15.74 ± 1.06 [sec]	354
SLIMElasticNet	207.72 [sec] / 3.46 ± 2.28 [min]	15.33 ± 0.52 [sec]	401
MF BPR	537.89 [sec] / 8.96 ± 6.05 [min]	10.06 ± 0.24 [sec]	598
MF FunkSVD	2005.64 [sec] / 33.43 ± 36.79 [min]	10.10 ± 0.08 [sec]	600
PureSVD	0.91 ± 0.66 [sec]	10.15 ± 0.10 [sec]	597
NMF	277.51 [sec] / 4.63 ± 14.49 [min]	$10.33 \pm 0.09 [sec]$	587
iALS	315.26 [sec] / 5.25 ± 4.21 [min]	$10.13 \pm 0.04 [sec]$	594
DELF MLP	5479.96 [sec] / 1.52 [hour]	337.65 [sec] / 5.63 [min]	18
DELF EF	7183.43 [sec] / 2.00 [hour]	326.14 [sec] / 5.44 [min]	19

1:102 Ferrari Dacrema et al.

O HYPERPARAMETER RANGE

Table 116. Hyperparameter values for our KNN and graph based baselines.

Algorithm	Hyperparameter	Range	Type	Distribution
	topK	5 - 1000	Integer	uniform
UserKNN, ItemKNN	shrink	0 - 1000	Integer	uniform
cosine	similarity	cosine	Categorical	
cosme	$normalize^a$	True, False	Categorical	
	feature weighting	none, TF-IDF, BM25	Categorical	
	topK	5 - 1000	Integer	uniform
UserKNN, ItemKNN	shrink	0 - 1000	Integer	uniform
dice	similarity	dice	Categorical	
	$normalize^a$	True, False	Categorical	
	topK	5 - 1000	Integer	uniform
UserKNN, ItemKNN	shrink	0 - 1000	Integer	uniform
jaccard	similarity	jaccard	Categorical	
	$normalize^a$	True, False	Categorical	
	topK	5 - 1000	Integer	uniform
	shrink	0 - 1000	Integer	uniform
UserKNN, ItemKNN	similarity	asymmetric	Categorical	
asymmetric	$normalize^a$	True	Categorical	
	asymmetric alpha	0 - 2	Real	uniform
	feature weighting	none, TF-IDF, BM25	Categorical	
	topK	5 - 1000	Integer	uniform
	shrink	0 - 1000	Integer	uniform
UserKNN, ItemKNN	similarity	tversky	Categorical	
tversky	$normalize^a$	True	Categorical	
	tversky alpha	0 - 2	Real	uniform
	tversky beta	0 - 2	Real	uniform
	topK	5 - 1000	Integer	uniform
P3alpha	alpha	0 - 2	Real	uniform
_	normalize similarity b	True, False	Categorical	
	topK	5 - 1000	Integer	uniform
RP3beta	alpha	0 - 2	Real	uniform
Krobeta	beta	0 - 2	Real	uniform
	normalize similarity b	True, False	Categorical	

 $[^]a$ The *normalize* hyperparameter in KNNs refers to the use of the denominator when computing the similarity. b The *normalize similarity* hyperparameter in P3alpha and RP3beta refers to applying L1 regularisation on the rows of the similarity matrix

Table 117. Hyperparameter values for our machine learning baselines.

Algorithm	Hyperparameter	Range	Туре	Distribution
	topK	5 - 1000	Integer	uniform
	epochs	1 - 1500	Integer	early-stopping
	symmetric	True, False	Categorical	
SLIM BPR	sgd mode	sgd, adam, adagrad	Categorical	
	lambda i	$10^{-5} - 10^{-2}$	Real	log-uniform
	lambda j	$10^{-5} - 10^{-2}$	Real	log-uniform
	learning rate	$10^{-4} - 10^{-1}$	Real	log-uniform
	topK	5 - 1000	Integer	uniform
SLIMElasticNet	l1 ratio	$10^{-5} - 10^{0}$	Real	log-uniform
	alpha	$10^{-3} - 10^{0}$	Real	uniform
	num factors	1 - 200 ^a	Integer	uniform
	epochs	1 - 1500	Integer	early-stopping
	sgd mode	sgd, adam, adagrad	Categorical	
MF BPR	batch size	$2^0 - 2^{10}$	Integer	log-uniform
	positive reg	$10^{-5} - 10^{-2}$	Real	log-uniform
	negative reg	$10^{-5} - 10^{-2}$	Real	log-uniform
	learning rate	$10^{-4} - 10^{-1}$	Real	log-uniform
	num factors	1 - 200 ^a	Integer	uniform
	epochs	1 - 500 ^b	Integer	early-stopping
	use bias	True, False	Categorical	
	sgd mode	sgd, adam, adagrad	Categorical	
MF FunkSVD	batch size	2^0 - 2^{10}	Integer	log-uniform
	item reg	$10^{-5} - 10^{-2}$	Real	log-uniform
	user reg	$10^{-5} - 10^{-2}$	Real	log-uniform
	learning rate	$10^{-4} - 10^{-1}$	Real	log-uniform
	negative quota ^c	0.00 - 0.50	Real	uniform
PureSVD	num factors	1 - 350	Integer	uniform
	num factors	1 - 350	Integer	uniform
NMF	solver	mult. update, coord. descent	Categorical	
INIVII	init type	nndsvda, random	Categorical	
	beta loss	kullback-leibler, frobenius	Categorical	
	num factors	1 - 200 ^a	Integer	uniform
	epochs	1 - 500 ^b	Integer	early-stopping
IALS	confidence scaling	linear, log	Categorical	
IALS	alpha	$10^{-3} - 5 \cdot 10^{+1} d$	Real	log-uniform
	epsilon	$10^{-3} - 10^{+1} d$	Real	log-uniform
	reg	$10^{-5} - 10^{-2}$	Real	log-uniform

 $[^]a\mathrm{The}$ number of factors is lower than PureSVD or NFM due to the algorithm being slower.

b The number of epochs is lower than SLIM BPR or MF BPR due to the algorithm being slower.

c The negative quota is the percentage of samples chosen among items unobserved by the user, having a target rating of 0.

d The maximum value of this hyperparameter had been suggested in the article proposing the algorithm.

1:104 Ferrari Dacrema et al.

REFERENCES

[1] Fabio Aiolli. 2013. Efficient top-n recommendation for very large scale binary rated datasets. In *Proceedings of the 7th ACM Conference on Recommender Systems (RecSys '13)*. ACM, 273–280.

- [2] Vito W. Anelli, Vito Bellini, Tommaso Di Noia, Wanda La Bruna, Paolo Tomeo, and Eugenio Di Sciascio. 2017. An Analysis on Time- and Session-aware Diversification in Recommender Systems. In *Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization (UMAP '17)*. ACM, New York, NY, USA, 270–274. https://doi.org/10. 1145/3079628.3079703
- [3] Krisztian Balog, Filip Radlinski, and Shushan Arakelyan. 2019. Transparent, Scrutable and Explainable User Models for Personalized Recommendation. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '19). ACM, New York, NY, USA, 265–274. https://doi.org/10.1145/3331184. 3331211
- [4] Robert M Bell and Yehuda Koren. 2007. Improved neighborhood-based collaborative filtering. In KDD Cup and Workshop at the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '07). 7–14.
- [5] Daniel Billsus and Michael J. Pazzani. 1998. Learning Collaborative Information Filters. In *Proceedings of the 15th International Conference on Machine Learning (ICML '98)*. 46–54.
- [6] John S. Breese, David Heckerman, and Carl Kadie. 1998. Empirical Analysis of Predictive Algorithms for Collaborative Filtering. In Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI '98). 43–52.
- [7] Andrzej Cichocki and Anh-Huy Phan. 2009. Fast local algorithms for large scale nonnegative matrix and tensor factorizations. IEICE transactions on fundamentals of electronics, communications and computer sciences 92, 3 (2009), 708-721
- [8] Colin Cooper, Sang Hyuk Lee, Tomasz Radzik, and Yiannis Siantos. 2014. Random walks in recommender systems: exact computation and simulations. In Proceedings of the 23rd International Conference on World Wide Web (WWW '14). 811–816.
- [9] Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. 2010. Performance of Recommender Algorithms on Top-n Recommendation Tasks. In Proceedings of the 4th ACM Conference on Recommender Systems (RecSys '10). 39–46.
- [10] Lee R. Dice. 1945. Measures of the Amount of Ecologic Association Between Species. Ecology 26, 3 (1945), 297–302. https://doi.org/10.2307/1932409 arXiv:https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.2307/1932409
- [11] Maurizio Ferrari Dacrema, Simone Boglio, Paolo Cremonesi, and Dietmar Jannach. [n. d.]. A Troubling Analysis of Reproducibility and Progress in Recommender Systems Algorithms Research. ([n. d.]).
- [12] Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. 2019. Are We Really Making Much Progress? A Worrying Analysis of Recent Neural Recommendation Approaches. Proceedings of the 13th ACM Conference on Recommender Systems (RecSys '19) (2019). https://doi.org/10.1145/3298689.3347058 Source: https://github.com/ MaurizioFD/RecSys2019_DeepLearning_Evaluation.
- [13] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative Filtering for Implicit Feedback Datasets.. In *Proceedings* of the 8th IEEE International Conference on Data Mining (ICDM '08), Vol. 8. Citeseer, 263–272.
- [14] Lukas Lerche and Dietmar Jannach. 2014. Using Graded Implicit Feedback for Bayesian Personalized Ranking. In Proceedings of the 8th ACM Conference on Recommender Systems (RecSys '14). ACM, New York, NY, USA, 353–356. https://doi.org/10.1145/2645710.2645759
- [15] Mark Levy and Kris Jack. 2013. Efficient top-n recommendation by linear regression. In RecSys Large Scale Recommender Systems Workshop.
- [16] G. Linden, B. Smith, and J. York. 2003. Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet Computing 7, 1 (2003), 76–80.
- [17] Pasquale Lops, Marco De Gemmis, and Giovanni Semeraro. 2011. Content-based recommender systems: State of the art and trends. In *Recommender systems handbook*. Springer, 73–105.
- [18] Bamshad Mobasher, Xin Jin, and Yanzan Zhou. 2004. Semantically Enhanced Collaborative Filtering on the Web. In Web Mining: From Web to Semantic Web, Bettina Berendt, Andreas Hotho, Dunja Mladenič, Maarten van Someren, Myra Spiliopoulou, and Gerd Stumme (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 57–76.
- [19] Xia Ning and George Karypis. 2011. SLIM: Sparse linear methods for top-n recommender systems. In Proceedings of the 11th IEEE International Conference on Data Mining (ICDM '11). 497–506.
- [20] Bibek Paudel, Fabian Christoffel, Chris Newell, and Abraham Bernstein. 2017. Updatable, Accurate, Diverse, and Scalable Recommendations for Interactive Applications. ACM Transactions on Interactive Intelligent Systems (TiiS) 7, 1 (2017), 1.
- [21] Ali Mustafa Qamar, Éric Gaussier, Jean-Pierre Chevallet, and Joo-Hwee Lim. 2008. Similarity Learning for Nearest Neighbor Classification. In Proceedings of the 8th IEEE International Conference on Data Mining (ICDM '08). 983–988. https://doi.org/10.1109/ICDM.2008.81
- [22] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. 2009. BPR: Bayesian personalized ranking from implicit feedback. In *Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence (UAI '09*).

- 452-461.
- [23] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John Riedl. 1994. GroupLens: An Open Architecture for Collaborative Filtering of Netnews. In Proceedings of the 1994 ACM Conference on Computer-Supported Cooperative Work (CSCW '94). 175-186.
- [24] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based Collaborative Filtering Recommendation Algorithms. In Proceedings of the 10th International Conference on World Wide Web (WWW '01). 285-295.
- [25] Harald Steck. 2019. Embarrassingly Shallow Autoencoders for Sparse Data. In Proceedings of the 28th International Conference on World Wide Web (WWW '19) (TheWebConf 2019). 3251-3257.
- [26] Alessandro Suglia, Claudio Greco, Cataldo Musto, Marco de Gemmis, Pasquale Lops, and Giovanni Semeraro. 2017. A Deep Architecture for Content-based Recommendations Exploiting Recurrent Neural Networks. In Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization (UMAP '17). ACM, New York, NY, USA, 202-211. https://doi.org/10.1145/3079628.3079684
- [27] Amos Tversky. 1977. Features of Similarity. Psychological Review 84, 4 (1977), 327–352.
- [28] Jun Wang, Stephen Robertson, Arjen P de Vries, and Marcel JT Reinders. 2008. Probabilistic relevance ranking for collaborative filtering. Information Retrieval 11, 6 (2008), 477-497.