Previsão de probabilidade de diabetes em estágio inicial usando técnicas de mineração de dados

Jonas v. Moreira

TP555 - Inteligência Artificial e Aprendizado de Máquina Inatel - Instituto Nacional de Telecomunicações

Introdução

Problema Global da Diabetes

- Aumento da Incidência da Doença
 - Mais de 422 milhões de pessoas no mundo têm diabetes.
 - Principalmente diabetes tipo 2, ligada ao estilo de vida (dieta e sedentarismo).
- Consequências da Diabetes Não Controlada
 - Doenças cardiovasculares: aumento do risco de infarto e AVC.
 - o **Insuficiência renal**: danos nos rins, podendo levar à diálise.
 - Retinopatia diabética: perda de visão, podendo causar cegueira.
 - Neuropatia: danos nervosos, resultando em amputações.
- Importância do Diagnóstico Precoce
 - Permite intervenções mais eficazes e controle da doença.
 - Melhora a qualidade de vida dos pacientes e reduz complicações graves.
- Desafios no Diagnóstico
 - Métodos tradicionais: exames de glicemia em jejum, com limitações.
 - Dificuldade de levar os exames a areas remotas e/ou rurais.

Objetivos

Objetivos da pesquisa

- Estudar o artigo Likelihood Prediction of Diabetes at Early Stage Using Data Mining
 Techniques
- Reproduzir os resultados do artigo e validar a eficácia do Random Forest como o algoritmo mais preciso.
- Explorar outras técnicas de aprendizado de máquina utilizando o AutoGluon [7], a fim de identificar algoritmos que possam superar o desempenho do Random Forest.
- Desenvolver uma aplicação prática que permita predições em tempo real, utilizando uma interface de programação no estilo arquitetural de transferência de estado representacional (API REST) e uma interface gráfica simples.

Estudo do Artigo

Likelihood Prediction of Diabetes at Early Stage Using Data Mining Techniques

O artigo aborda a previsão do risco de diabetes utilizando algoritmos de mineração de dados.

Algoritmos utilizados:

- Random Forest
- Naive Bayes
- Regressão Logística

Conjunto de dados: Coletado em Bangladesh.

Resultados:

- Random Forest teve o melhor desempenho:
 - o 97,4% de precisão com validação cruzada.
 - o 99% de precisão com divisão percentual 80:20.

Objetivo

Explorar algoritmos diferentes do **Random Forest** para encontrar uma alternativa mais eficiente.

Explorando outros algoritmos

Processo

- 1. Carregamento e Pré-processamento dos Dados:
 - Conjunto de dados de diabetes carregado e convertido em DataFrame.
 - Divisão dos dados: 80% para treino e 20% para teste.
- Uso do AutoGluon:
 - TabularPredictor configurado com a variável alvo class e métrica de acurácia.
- 3. Treinamento Automatizado:
 - AutoGluon realiza seleção automática de modelos e otimização de hiperparâmetros.
- 4. Avaliação e Ranking:
 - Comparação de modelos com base em acurácia, utilizando dados de teste e ranking detalhado.

Explorando outros algoritmos

Resultado

NeuralNetFastAl obteve acurácia de 99,04%, ligeiramente superior ao Random Forest (98,85%).

Treinando o Modelo

Objetivo

Treinar um modelo de **Random Forest** e exportá-lo para uso em outras aplicações.

Treinando o Modelo

Processo

Pré-processamento dos Dados:

 Conversão de valores categóricos binários ('Yes'/'No') e 'Gender' ('Male'/'Female') para valores numéricos (1 e 0).

Separação dos Dados:

- Divisão dos dados em variáveis independentes (X) e dependentes (y).
- Dados divididos em 75% para **treinamento** e 25% para **teste**.

3. Treinamento do Modelo:

- Modelo de Random Forest com 100 árvores de decisão.
- O algoritmo é treinado para prever a variável dependente com base nas variáveis independentes.

4. Exportação do Modelo:

- Modelo treinado salvo em um arquivo .pk1 utilizando joblib.
- Arquivo salvo como 'diabetes_rf_model.pkl' para uso posterior.

Objetivo

Validar o modelo de machine learning com uma aplicação web interativa de diagnóstico de diabetes.

Aplicação Web

Arquitetura do Sistema

Backend:

- Usando Flask para expor uma API de previsão via requisição HTTP POST.
- Modelo carregado com joblib a partir de um arquivo serializado (diabetes_rf_model.pkl).
- Dados recebidos no formato **JSON**, estruturados em um **DataFrame** com **Pandas**.

Frontend:

- Interface HTML com CSS e JavaScript para interação com o usuário.
- o Formulário coleta dados (idade, gênero, sintomas) e envia via requisição assíncrona.
- Exibição do resultado de previsão: diagnóstico positivo ou negativo para diabetes.

Funcionalidades

- CORS: Permite acesso ao backend por clientes externos.
- **Predição**: O modelo retorna a probabilidade de diabetes com base nos sintomas informados.

Resultados

Comparação dos Algoritmos

- Algoritmos Avaliados: Naive Bayes, Logistic Regression e Random Forest.
- Resultados:
 - Random Forest:
 - 97,4% de acurácia na validação cruzada.
 - 99% de acurácia na divisão percentual.

Explorando outros algorigmos com o AutoGluon

- Redes neurais, como o NeuralNetFastAl
 - 99,04% de acurácia.

Resultados

Escolha do Modelo

- Random Forest foi selecionado para a implementação prática devido à:
 - Simplicidade

Validação Prática

- Integração do modelo em API REST e Interface Gráfica foi eficiente.
- Testes simulados confirmaram a precisão em tempo real das previsões.

Discussões

Resultados e Contribuições

- Robustez do Random Forest:
 - Confirmada sua eficácia na previsão do risco de diabetes.
- Exploração do AutoGluon:
 - Destacou a importância de testar múltiplas abordagens para otimizar a precisão do modelo.
- Aplicabilidade Prática:
 - API REST e interface gráfica ampliaram o uso do modelo em triagens clínicas iniciais.

Limitações Identificadas

- Tamanho e Especificidade do Conjunto de Dados:
 - o Dados pequenos e limitados a uma região, impactando a **generalização** do modelo.
- Dependência de Sintomas Específicos:
 - Modelo altamente dependente de poliúria e polidipsia, o que pode limitar sua eficácia em casos sem esses sintomas.

Conclusões

Contribuições do Trabalho

- Validação dos Resultados:
 - Reproduziu os resultados do artigo original e expandiu a análise com novas abordagens.
- Integração Prática:
 - Demonstra que algoritmos de aprendizado de máquina podem ser usados em triagem de diabetes em estágio inicial por meio de API e interface gráfica.

Pesquisas Futuras

- Expansão do Conjunto de Dados:
 - Ampliar a base de dados para melhorar a generalização e robustez do modelo.
- Modelos Híbridos:
 - Explorar combinações de algoritmos para otimizar resultados.
- Validação em Ambientes Clínicos:
 - Validar a aplicabilidade dos modelos em cenários clínicos reais.

Referências

- M. M. F. Islam, R. Ferdousi, S. Rahman, and H. Y. Bushra, "Likelihood Prediction of Diabetes at Early Stage Using Data Mining Techniques," in *Proceedings of the 2020 International Conference on Data Mining and Big Data*, 2020. Available at:
 https://doi.org/10.1007/978-981-15-1910-9 4.
- 2. Organização Mundial da Saúde (OMS), "Diabetes," Available at: https://www.who.int/news-room/fact-sheets/detail/diabetes.
- 3. AutoGluon Team, "AutoGluon: AutoML for Text, Image, and Tabular Data," Available at: https://auto.gluon.ai, 2023.
- 4. F. Pedregosa, et al., "Scikit-learn: Machine Learning in Python," *Journal of Machine Learning Research*, vol. 12, pp. 2825-2830, 2011. Available at: https://scikit-learn.org.
- 5. Flask Documentation, "Flask: Web Application Framework," Available at: https://flask.palletsprojects.com, 2023.
- 6. Joblib Team, "Joblib: Lightweight Pipelines in Python," Available at: https://joblib, 2023.
- AutoGluon Team, "AutoGluon: AutoML for Text, Image, and Tabular Data," Available at: https://auto.gluon.ai, 2023.