Ubiquitous Self-Powered Ambient Light Sensing Surfaces

Georgia Center for Research into

Dingtian Zhang¹, Canek Fuentes-Hernandez², Raaghesh Vijayan³, Yang Zhang⁴, Jung Wook Park¹, Yunzhi Li¹, Yuhui Zhao¹, Yiyang Wang¹, Tanvi

Bhagwat¹, Wen-Fang Chou², Xiaojia Jia², Bernard Kippelen², Thad Starner¹, Trisha Andrew³, Gregory D Abowd¹

School of Interactive Computing [1], School of Electrical and Computer Engineering [2], UMASS Amherst[3], CMU [4]

Motivation

- Conventional sensing technologies (e.g. cameras, battery-powered sensors) cannot keep up with large-scale applications due to limitations above
- We need:
 - Tight integration with physical surfaces to obtain high-fidelity signal
 - Self-sustained operation through energy harvesting
 - Novel semiconductor materials compatible with cost-effective manufacturing processes
 - Privacy-preserving sensing techniques

System

• We develop a self-powered ambient light sensing system on everyday surfaces for human activity sensing.

- A flexible imaging surface of photodetectors and solar panels
- A control circuit for power management, computation, and wireless communication

Application

- The system senses ambient light interference patterns on physical objects for real-time human activity and interaction sensing with 90%+ accuracy from our user study, including
 - 0D object open/close state detection
 - 0D human presence detection
 - 1D liquid type and level sensing
 - 1D walking activity sensing
 - 1D indoor traffic sensing
 - 2D multitouch input
 - 2D hover gesture input
 - 2D hover gesture input with range extension

Organic Semiconductor

- Organic semiconductors (OSCs) including photodiodes and blocking diodes offer superior form factors lightweight, thin, flexible, and compatible with plastic and paper substrates
- With additive manufacturing processes such as solution-based printing and coating, they are cost-effective to scale
- We demonstrate flexible organic imaging arrays with comparable performances to silicon devices (e.g. dark current, indoor responsivity)
- OSC-based ambient light sensing surfaces offer a path towards ubiquitous deployment on everyday surfaces

In-Sensor Computation

- Conventional Von Neumann architecture incurs excessive energy consumption and latency from pixel-wise signal acquisition and processing
- We are investigating in-sensor computing architecture for vision feature extraction prior to analog-digital conversion

- We leverage low-latency and self-powered insensor computing to pre-process the signal in analog domain, which also better protects user privacy
- OSC devices are inherently compatible with functional patterning for various analog circuit designs

Future Work

• We are exploring various OSC-based computational sensor designs for privacy-preserving, self-powered sensing of human activities and interactions

Center for Research into Novel Computing Hierarchies

Blocking Diode