Матанализ 1 семестр Экзамен

Студенты ИС'а

время последней сборки: 6 января 2023 г. 15:13

"Спасибо всем за вклад в написание билетов".

Содержание

1	Вещественная ось. Бесконечность. Окрестность точки.						
2	Точка сгущения. Определения предела функции. Односторонние пределы.	6					
3	Определение предела функции. Предел и бесконечность.	7					
4	4 Предел последовательности. Свойства сходящихся последовательностей.						
5	Предельный переход в неравенствах. Теорема о двух милиционерах.	9					
6	Бесконечно малые, бесконечно большие функции. Свойства.	11					
7	Теоремы о пределах.	12					
8	Сравнение бесконечно малых. Теоремы об эквивалентных функциях.	13					
9	Первый замечательный предел.	14					
10	Второй замечательный предел. Число е.	15					
11	Определения непрерывной функции и ее локальные свойства.	16					
12	Определения непрерывной функции. Свойства функции, непрерывной на отрезке (теоремы Вейерштрасса и Больцано-Коши).	17					
13	Определение и классификация разрывов.	18					
14	Определение производной функции. Дифференцируемая функция. Дифференциал 1-го порядка.	19					

15 Правила дифференцирования: производная и дифференциал суммы и произведения функций.	1 20
16 Правила дифференцирования: производная и дифференциал суммы и отношения функций.	1 21
17 Правила дифференцирования: производная сложной функций инвариантность дифференциала.	, 22
18 Производные элементарных функций: константа, степенная функция.	23
19 Производные элементарных функций: показательная, логарифмическая функции.	1 24
20 Производные элементарных функций: синус и косинус.	25
21 Производные элементарных функций: тангенс и арктангенс.	26
22 Производные высших порядков. Дифференциал 2-го порядка.	27
23 Теоремы о дифференцируемых функциях. Теорема Ферма.	28
24 Теоремы о дифференцируемых функциях. Теорема Ролля.	29
25 Теоремы о дифференцируемых функциях. Теорема Лагранжа.	30
26 Теоремы о дифференцируемых функциях. Теорема Коши.	31
27 Теоремы о дифференцируемых функциях. Правило Лопиталя.	32
28 Формула Тейлора.	33
29 Исследование функции: Монотонность. Экстремумы. Необходимое и достаточное условия экстремума.	1 34
30 Исследование функции: Выпуклость функции. Точки перегиба Необходимое и достаточное условия перегиба.	35
31 Определение функции двух переменных. Предел и непрерывности функции.	36
32 Частные производные функции двух переменных.	37
33 Производная сложной функции. Полная производная.	38
34 Полный дифференциал функции двух переменных. Инвариантности формы.	39
35 Вторые производные функции двух переменных. Равенство смешанных производных.	40
36 Формула Тейлора.	41

37	Экстремумы условия.	функции	двух	переменных.	Необходимые	И	достаточные	42
38	Приложения:	касательн	ая пло	оскость и норм	аль к поверхно	СТІ	и.	43
39	Приложения:	градиент,	произ	водная по нап	равлению.			44
40	Условный экс	тремум фу	/нкциі	и двух перемеі	ных.			45

1 Вещественная ось. Бесконечность. Окрестность точки.

Расширенная числовая прямая — $\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty; -\infty\}$

1.1 Аксиома полноты

Аксиома полноты или непрерывности множества вещественных чисел состоит в следующем. Если X и Y — непустые подмножества R, обладающие тем свойством, что для любых элементов $x \in X$ и $y \in Y$ выполнено $x \leqslant y$, то существует такое $c \in R$, что $x \leqslant c \leqslant y$ для любых элементов $x \in X$ и $y \in Y$.

Аксиомы:

- 1. $\forall x \in \mathbb{R} : -\infty < x < +\infty$
- 2. $\forall x \in \mathbb{R} \cup \{+\infty\} : x + (+\infty) = +\infty$ Но, например, $-\infty + (+\infty)$ — не определено.
- 3. $\forall x \in \mathbb{R} \cup \{-\infty\} : x + (-\infty) = -\infty$

4.
$$\forall x \in (\mathbb{R} \cup \{+\infty, -\infty\}) \setminus \{0\} : x \cdot (\pm \infty) = \begin{cases} \pm \infty, x > 0 \lor x = +\infty \\ \mp \infty, x < 0 \lor x = -\infty \end{cases}$$

$$5. \ x \in R : \frac{x}{\infty} = 0$$

6.
$$\forall x \in (\mathbb{R} \cup \{\infty\}) \ \{0\} : \frac{x}{0} = \infty$$

7.
$$\forall x, y \in \overline{\mathbb{R}} : x + y = y + x, xy = yx$$

1.2 Грани

Верхняя грань, числового множестваX — число a такое, что $\forall x \in X \Rightarrow x \leqslant a$. Аналогично определяется нижняя грань.

 $\sup E$ — точная верхняя грань последовательности $\min\{\text{мн-во вернхних граней}\}$ $\inf E$ — точная нижняя грань последовательности $\max\{\text{мн-во нижних граней}\}$

Супремум не всегда предел. Например, последовательность $x_n = \{-1, 1, -1, \dots\}; \sup x_n = 1; \inf x_n - 1,$ но предела нет.

Например, супремумом множества отрицательных чисел является 0. Взять меньше мы не можем, т.к супремум станет отрицательным, и среди всех отрицательных чисел можно найти такое, что супремум перестанет им быть.

Отсюда следует красивое определение. $\sup E \stackrel{\text{def}}{=} S \in R : (\forall x \in E : x \leqslant S) \land (\forall \alpha < S \exists x \in E : x \geqslant \alpha)$ и аналогично $\inf E \stackrel{\text{def}}{=} I \in R : (\forall x \in E : I \leqslant x) \land (\forall \alpha > I \exists x \in E : x < \alpha)$

1.3 Окрестность

Окрестность точки $a \in \overline{\mathbb{R}}$

$$U_{arepsilon}(a)\stackrel{\mathrm{def}}{=} egin{cases} \left(rac{1}{arepsilon},+\infty
ight], a=+\infty \ \left[-\infty,-rac{1}{arepsilon}
ight], a=-\infty \ \left(a-arepsilon,a+arepsilon
ight),$$
 иначе

Выколотая окрестность $U_{\varepsilon}(a) = U_{\varepsilon}(a) \setminus \{a\}$ Свойства:

1.
$$\{a\} \cup U_{\varepsilon}(a) = a$$
, а так-же $\{a\} \cup U_{\varepsilon}(a) = \emptyset$

2.
$$U_{\varepsilon}(a) \cup U_{\alpha}(a) = \begin{cases} U_{\varepsilon}(a), \varepsilon \leqslant \alpha \\ U_{\alpha}(a), \alpha < \varepsilon \end{cases}$$

3. Для двух разных точек можно выбрать такие две окрестности (ε и α), что их пересечение будет являться пустым множеством.

Достаточно, что-бы
$$\varepsilon + \alpha < |a-b|$$

2 Точка сгущения. Определения предела функции. Односторонние пределы.	
односторошше продены	

Матанализ 1 семестр Экзамен

	ИТМО, Санкт-Петербург							
3	Определение предела функции. Предел и							
	бесконечность.							

Предел последовательности.	Chomerba	сходищихси
последовательностей.		
	последовательностей.	последовательностей.

5 Предельный переход в неравенствах. Теорема о двух милиционерах.

5.1Теорема \mathbf{o} предельном переходе неравенстве \mathbf{B} ДЛЯ последовательностей

Пусть $\lim_{n\to\infty} a_n = A$, $\lim_{n\to\infty} b_n = B$ и $\forall N > N_0: a_n \leqslant b_n$ тогда $A \leqslant B$

Доказательство:

От противного. Предположим, что A>B

Пусть $N_1(\varepsilon), N_2(\varepsilon)$ номера с которых последовательности a_n и b_n соответственно попадают в окрестность их пределов.

Пусть $N=\max\{N_0,N_1(\varepsilon),N_2(\varepsilon)\}$. Что-бы $\forall n>N$ выполнялись сразу три свойства: $a_b \leqslant b_n$ и члены последовательности находятся в ε окрестности своих пределов.

Возьмём $\varepsilon = \frac{A-B}{2}$. Эта величина положительна по предположению.

$$\begin{cases} a_n \leqslant b_n \\ |a_n - A| < \frac{A - B}{2} \Rightarrow A - \frac{A - B}{2} < a_n < A + \frac{A - B}{2} \Rightarrow \frac{A + B}{2} < a_b < \frac{3A - B}{2} \\ |b_n - B| < \frac{A - B}{2} \Rightarrow B - \frac{A - B}{2} < a_n < B + \frac{A - B}{2} \Rightarrow \frac{3B - A}{2} < b_n < \frac{A + B}{2} \end{cases}$$
приходим к противоречию:

$$\frac{A+B}{2} < a_b \leqslant b_n < \frac{A+B}{2}$$

5.2Теорема о промежуточной последовательности

Пуст $\lim_{n\to\infty} a_n = A$, $\lim_{n\to\infty} c_n = A$ Тогда если есть некоторая последовательность ДЛЯ $\forall n > N_0: a_n \leqslant b_n \leqslant c_n$ тогда. У последовательности существует предел и он равен

Доказательство:

Для любого $\varepsilon > 0$ опять возьмём $N = max\{N_0, N_1(\varepsilon, \varepsilon)\}.$

Из неравенства $a_n \leqslant b_n \leqslant c_n$ получаем неравенство $a_n - A \leqslant b_n - A \leqslant c_n - A$. Условие $\lim_{n\to\infty}a_n=A=\lim_{n\to\infty}c_n$ позволяет сказать, что для любого $\varepsilon>0$ существует окрестность U_a , в которой верны неравенства $|a_n-A|<\varepsilon$ и $|c_n-A|<\varepsilon$. Из изложенных выше неравенств следует, что $|b_n - A| < \varepsilon$ при $x \in U_a$, что удовлетворяет определению предела, то есть $\lim_{n \to \infty} b_n = A.$

5.3 Теорема о двух милиционерах

Эта теорема выше, но для функций.

Если функция y = f(x) такая, что $\varphi(x) \leqslant f(x) \leqslant \psi(x)$ для всех x в некоторой окрестности точки a, причём функции $\varphi(x)$ и $\psi(x)$ имеют одинаковый предел при $x \to a$, то существует предел функции y = f(x) при $x \to a$, равный этому же значению, то есть

$$\varphi(x) = \lim_{x \to a} \psi(x) = A \Rightarrow \lim_{x \to a} f(x) = A$$

Доказательство:

Из неравенства $\varphi(x) \leqslant f(x) \leqslant \psi(x)$ получаем неравенство $\varphi(x) - A \leqslant f(x) - A \leqslant \psi(x) - A$. Условие $\lim_{x \to a} \varphi(x) = A = \lim_{x \to a} \psi(x)$ позволяет сказать, что для любого $\varepsilon > 0$ существует окрестность U_a , в которой верны неравенства $|\varphi(x) - A| < \varepsilon$ и $|\psi(x) - A| < \varepsilon$. Из изложенных выше неравенств следует, что $|f(x) - A| < \varepsilon$ при $x \in U_a$, что удовлетворяет определению предела, то есть $\lim_{x \to a} f(x) = A$.

В теоремах мы использовали очевидный факт, что если $a\leqslant b\leqslant c$ и $|a|<\epsilon$ и $|c|<\epsilon$, то это тоже самое, что и $a,c\in(-\epsilon,+\epsilon)$, а следовательно $b\in(-\epsilon,+\epsilon)\Rightarrow |b|<\epsilon$

			ТМО, Санкт-Петер		
6	Бесконечно Свойства.	малые,	бесконечно	большие	функции.

7	Теоремы о пределах.

8 Сравнение бесконечно малых. Теоремы об эквивалентных функциях.

9	Первый замечательный предел.	

12 Определения непрерывной функции. Свойства функции, непрерывной на отрезке (теоремы Вейерштрасса и Больцано-Коши).

13	Определение и классификация разрывов.

Определение производной функции.Дифференцируемая функция. Дифференциал 1-го порядка.

	Матанализ 1 семестр Экзамен ИТМО, Санкт-Петербург					
$\overline{15}$	Правила дифференцирования: производная и					
	дифференциал суммы и произведения функций.					

Матанализ 1 семестр Экзамен

19	Производные элем логарифмическая		показательная,

Матанализ 1 семестр Экзамен

23	Теоремы Ферма.	ренцируем	кциях. Т	еорема

$\overline{24}$	Теоремы о Ролля.	дифференцируем	Теорема

$\overline{25}$	Теоремы о дифференцируемых функциях. Теорема
	Лагранжа.

$\overline{27}$	Теоремы о дифференцируемых функциях. Правило Лопиталя.

2 8	Формула Тейлора.

29	Исследование функции: Монотонность. Экстремумы.					
_0	Необходимое и достаточное условия экстремума.					

30 Исследование функции: Выпуклость функции. Точки перегиба. Необходимое и достаточное условия перегиба.

31	Определение функции двух переменных. Предел и
	непрерывность функции.

$\overline{32}$	Частные і	производные	функции	двух перем	иенных.

Матанализ 1 семестр Экзамен

0.4	ИТМО, Санкт-Петербург					
34	Полный дифференциал функции двух переменных.					
	Инвариантность формы.					

	ИТМО, Санкт-Петербург					
35	Вторые производные функции двух переменных. Равенство смешанных производных.					

36	Формула Тейлора.

37 Экстремумы функции двух переменных. Необходимые и достаточные условия.

39	Приложения:	градиент,	производная	ПО	направлению.

40	Условный	экстремум	функции	двух п	еременн	ых.