Operációkutatás II. ZH

1. Írjuk fel a következő feladat duálját!

$$3x_{1} - 2x_{2} + 2x_{3} \leq 15$$

$$x_{2} + 3x_{3} \geq 3$$

$$-x_{1} - x_{2} + 3x_{3} \leq 8$$

$$x_{1} \leq 0, x_{2} \geq 0, x_{3} \in \mathbb{R}$$

$$x_{1} + 3x_{3} = z \rightarrow max$$

2. Egy LP-feladat megoldása során az alábbi optimális táblához jutottunk. Írjuk fel a feladat illetve duálisának optimális megoldását. +érzékenység vizsg., árnyékárak

	u_3	u_2	x_3	x_4	
z	3	6	2	16	380
u_1	-2	3	-1	7	100
x_2	0	1	1	5	80
x_1	1	-1	0	-1	20

3. Oldjuk meg az alábbi LP-feladatot duál-szimplex algoritmussal:

4. Írjuk fel az alábbi MKHF-probléma LP-modelljét! Majd vizsgáljuk meg, hogy a kiválasztott feszítőfa optimális megoldáshoz tartozik-e és ha nem, hálózati szimplex transzformáció segít-ségével javítsuk a megoldást!

5. Egy szállítási feladat adatai a következők: Elképzelhető, hogy nem lesz kiegyensúlyozott

	R_1	R_2	R_3	R_4	R_5	
T_1	54	46	62	80	56	150
T_2	20	90	80	64	75	80
T_3	60	100	70	90	40	200
T_4	25	46 90 100 60	36	70	0	70
	90	70	100	60	170	

- a) Írjuk fel a feladat LP modelljét!
- b) Készítsünk el egy induló bázismegoldást a legkisebb költség módszerrel!
- 6. Adott egy szállítási feladat az alábbi disztribúciós táblával. A megadott megengedett bázismegoldásból kiindulva adjuk meg az optimális megoldást.

	R_1	R_2	R_3	R_4	
T_1	$\boxed{8}^{25}$	$\boxed{6}^{10}$	10	9	35
T_2	9^{20}	12	$\boxed{13}^{30}$	7	50
T_3	14	9^{10}	16	$\boxed{5}^{30}$	40
	45	20	30	30	

7. Egy hozzárendelési feladat adatait az alábbi mátrix tartalmazza:

	a	b	c	d
\overline{A}	6	5	4	3
A B	6	2	3	4
C	9	3	5	5
D	7	4	2	3

Keressük meg a maximális célfüggvényértékhez tartozó párosítást magyar módszerrel.

- 8. A gyárunk áruira a kereslet negyedévente 60 40 35 és 85. Negyedév alatt, rendes munkaidőben 50 darab elkészítése lehetséges, egyenként 90 000 Ft-os költséggel. Túlórában legfeljebb további 30 árút tudunk gyártani negyedévente, de ezek költsége 120 000 Ft darabonként. A termelés beindítása minden negyedévben 500 000 Ft. (Nyilván csak azon negyedévekben, amelyekben termelés folyt.) Ha az aktuális igények kielégítése után marad árú, annak raktározási költsége 10 000 Ft/db. Írjuk fel a minimális költségű termelési tervhez vezető modellt!
- 9. Oldjuk meg a következő EP feladatot szétválasztás és korlátozás módszerével!

$$5x_1 + 8x_2 \le 40
-2x_1 + 3x_2 \le 9
x_1, x_2 \ge 0, x_1, x_2 \in \mathbb{Z}
x_1 + 4x_2 = z \to max$$