Intercepts of the Quadratic

 $p_{1,2}=rac{-b\pm\sqrt{b^2-4~ac}}{2a}$ computes the p-intercepts of multiplicity 1. $z\left(\theta\right)=c$ computes the single z-intercept.

Given a quadratic $z(p) = a p^2 + b p + c$ compute its discriminant \triangle :

Example 1.

 $z(p) = 64 - p^2$ compute its discriminant \triangle :

 $\triangle = \sqrt{b^2 - 4ac}$ Casel: $\triangle > 0$

Case3: △<0

no p-intercepts.

z(0) = -810 z-intercept.

However there is a z-intercept.

$$\triangle=256>0$$
 $p_{1,2}=8,-8$
 $z(0)=64$ $z-intercept.$

80

Example 3.
$$z(p) = -9 p^2 + 162 p - 810 \text{ compute its discriminant } \triangle:$$

$$\triangle = -2916 < 0$$

 $\sqrt{\,{\sf b}^2\,-\,{\sf 4}\,{\sf ac}}$ has no value in Real Numbers. Therefore there are

-2000 -3000 -4000