CONSTANTES GENERALES: $e = -1.6 * 10^{-19} (C)$ $me = 9.11 * 10^{-31} (kg)$ $mp = 1.67 * 10^{-27} (kg)$ $NA = 6.023 * 10^{23} (mol^{-1})$

$$e = -1.6 * 10^{-19} (C$$

$$me = 9.11 * 10^{-31} (kg$$

$$mp = 1,67 * 10^{-27}$$

$$NA = 6,023 * 10^{23} (mol^{-1})$$

$$\varepsilon_o = 8,85 * 10^{-12} (C^2 F/Nm^3)$$
 $k_o = \frac{1}{4\pi\varepsilon_o} = 9 * 10^9 (Nm^2 C^2)$ $mili(m) = 10^{-3}$ $micro(\mu) = 10^{-6}$ $nano(n) = 10^{-9}$ $pico(p) = 10^{-12}$

$$k_o = \frac{1}{4\pi s} = 9 * 10^9 (Nm^2C^2)$$

$$mili(m) = 10^{-3}$$

$$micro(\mu) = 10^{-6}$$

$$10^{-9}$$
 $pico(p) = 10$

$$\mu_o = 4\pi * 10^{-7} (N/A^2)$$

$$k_o = \frac{1}{4\pi\epsilon_o} = 9 * 10^\circ (Nm^2C^2)$$

$$mili(m) = 10^{-3}$$

$$micro(\mu) = 10^{-6}$$

$$pico(p) = 1$$

$$\mu_o = 4\pi * 10^{-7} (N/A^2)$$
 $1 T = 10^4 G$ $1 Wb = 1 Tm^2$ $1A = 10^{-10} m$

$$1 T = 10^4 G$$
 1

$$1.4 - 10^{-10}$$

TEMA 1

Superficie círculo/esfera: $S_c = \pi r^2 // S_e = 4\pi r^2$

Fuerza eléctrica: $F = k_o \frac{q \, q'}{c^2} (N)$

<u>Intensidad c.eléctrico</u>: $E = \frac{F}{a} = k_o \frac{q}{r^2} (N/C)$

Hilo cargado: $E = k \frac{\lambda}{\sigma} [(\cos \alpha_1 - \cos \alpha_2)i + (sen\alpha_1 + sen\alpha_2)j] = k \frac{\lambda L}{\sigma(L+d)}i$

Hilo indefinido: $E = 2k o_d^{\lambda}$

Anillo cargado: $E = k_0 \frac{Qx}{(a^2+x^2)^{3/2}} i$

Plano cargado: $E = \frac{\sigma}{2\epsilon} u$

Esfera cargada:
$$r \le R$$
 ; $E = k_o \frac{Q_{int}}{r^2} = \frac{\rho}{3\varepsilon_o} r = \frac{Qr}{4\pi\varepsilon_o R^3}$ $r \ge R$; $E = k_o \frac{Q}{r^2} = \frac{\rho R^3}{3\varepsilon_o r^2} = \frac{Q}{4\pi\varepsilon_o r^2}$

$$r \ge R$$
 ; $E = k_o \frac{Q}{r^2} = \frac{\rho R^3}{3\epsilon_o r^2} = \frac{Q}{4\pi\epsilon_o r^2}$

c.eléctrico:
$$\rho_E = \frac{1}{2} \epsilon_o E^2 (J/m^3)$$

$$E = \frac{V_A - V_B}{d}$$

Densidad de energía del c.eléctrico:
$$\rho_E = \frac{1}{2} \epsilon_o E^2 (J/m^3)$$
 $E = \frac{V_A - V_B}{d}$ C. eléctrico uniforme: $F = F_e$ $ma = qE$

Ecs. del movimiento:
$$x = x_o + v_o + \frac{1}{2}at^2$$
 $v = v_o + at$ $v^2 = v_o^2 + 2ad$ $a_y = \frac{qE}{m}$ $\Delta x = vt$ $\Delta y = \frac{1}{2}at^2$

$$= v_o + at$$
 $v^2 =$

$$= v_o^2 + 2ad$$

$$=\frac{qE}{m}$$
 $\Delta x =$

$$\Delta y = \frac{1}{2}at^2$$

Flujo eléctrico y Ley de Gauss:
$$\Phi = \iint_S E \cdot dS = E \cdot S \cdot cos\theta = \frac{Q_{neta}}{\varepsilon_o} (Nm^2/C)$$
 Potencial eléctrico: $\Delta V = -\iint_A E \cdot dl = k_o \frac{q}{r} (J/C \circ V)$

Potencial eléctrico:
$$\Delta V$$

$$V = -\int_{A} E \cdot dl = k_{o} \frac{q}{r} (J/C \circ V)$$

Energía potencial eléctrica y Trabajo: $U = k_o \frac{qq'}{r}(J)$ $W(A \rightarrow B) = \int\limits_{A}^{B} F_{e} \cdot dr = -\Delta U$ $W(A \rightarrow B) = -q\Delta V$ $W = \Delta E = \Delta E_c + \Delta U$

$$U = k_o \frac{qq'}{r} (J)$$

$$W(A \to B) = \int_{A}^{B} F_{e} \cdot dr = -\Delta U$$

$$E_{interior} = 0$$

$$E_{exterior} = \frac{2}{\varepsilon}$$

Conductor en equilibrio electrostático: $E_{interior} = 0$ $E_{exterior} = \frac{\sigma}{\epsilon_o}$ Capacidad esfera metálica: $C = \frac{Q}{V} = 4\pi\epsilon_o r$ $V = \frac{Q}{4\pi\epsilon_o r}$

$$C = \frac{Q}{V} = 4\pi\varepsilon_o r$$

Capacidad de un condensador: $C = \frac{Q}{V}(F)$ $V = \frac{Q}{C}$

$$C = \frac{Q}{V} (F)$$

Condensador plano: $C = \varepsilon_o \frac{S}{d}$ $E = \frac{\alpha}{\varepsilon_o}$ Condensador esférico: $C = \frac{R_1 R_2}{k_o (R_2 - R_1)}$ Condensador cilíndrico: $C = \frac{L}{2k_o \ln r 2/r 1}$ $E = 2k_o \frac{S}{r}$

Asociaciones en serie: $\frac{1}{Ceq} = \frac{1}{C_1} + \frac{1}{C_2} + \dots \qquad Q_{eq} = C_{eq}V = Q \qquad V_{eq} = V_1 + V_2 + \dots$

$$\frac{1}{Ceq} = \frac{1}{C_1} + \frac{1}{C_2} + \dots$$

$$Q_{eq} = C_{eq}V = Q$$

$$V_{eq} = V_1 + V_2 + .$$

Asociaciones en paralelo: $C_{eq} = C_1 + C_2 + ...$ $Q_{eq} = Q_1 + Q_2 + ...$ $V_{eq} = V_1 = V_2 = ...$

$$_{eq}=C_{1}+C_{2}+\dots$$

$$Q_{eq} = Q_1 + Q_2 + \dots$$

$$V_{eq} = V_{1} = V_{2} = \dots$$

$$O^2 = O(VA)$$

$$a = U = n = 1$$
 E^2

$$U = \frac{Q^2}{2C} = \frac{Q(VA - VB)}{2} = \frac{1}{2}C\Delta$$

Energía almacenada:
$$U = \frac{Q^2}{2C} = \frac{Q(VA-VB)}{2} = \frac{1}{2}C\Delta V^2 (J)$$
 Densidad de energía: $\rho_E = \frac{U}{Volumen} = \eta_E = \frac{1}{2}\epsilon_o E^2 (J)/m^3)$ $E = \frac{VA-VB}{d}$

Condensadores con dieléctricos: $C = \varepsilon_r C_o = \varepsilon_r \varepsilon_o \frac{S}{d}$ $E_i = (\frac{\varepsilon_r - 1}{\varepsilon_r}) \varepsilon_o$ $E = \frac{E_o}{\varepsilon_r} = \frac{\sigma}{\varepsilon_r \varepsilon_o}$ $\eta_D = \frac{1}{2} \varepsilon_o \varepsilon_r E^2$

$$C = \varepsilon_r C_o = \varepsilon_r \varepsilon_o$$

$$E_i = (\frac{\varepsilon_r - 1}{\varepsilon_r}) \varepsilon_o$$

$$E = \frac{E_o}{\varepsilon_r} = \frac{\sigma}{\varepsilon_r \varepsilon_o}$$

$$\eta_D = \frac{1}{2} \varepsilon_o \varepsilon_r E$$

Condensadores con 2 dieléctricos:

• En serie:
$$d/2 \Rightarrow C = 2\varepsilon_o \frac{S}{d} \left(\frac{\varepsilon_{r1} \varepsilon_{r2}}{\varepsilon_{r1} + \varepsilon_{r2}} \right)$$

En paralelo:
$$S/2 \Rightarrow C = \varepsilon_o \frac{S}{d} (\frac{\varepsilon_{r1} + \varepsilon_{r2}}{2})$$

Corriente eléctrica

$$I = \frac{Q}{t}(A)$$
 $I = nqv_d R$

$$n = \frac{\text{n\'umero de portadore}}{\text{volumen}}$$

Intensidad de corriente eléctrica:
$$I = \frac{Q}{t}(A)$$
 $I = nqv_dS$ $n = \frac{n\'umero\ de\ portadores}{volumen}$ Ley de Ohm: $I = \frac{V}{R}$ $I = \frac{\varepsilon}{R+r}$ $V_a - V_b = \varepsilon - Ir$

$$J = \sigma E$$
 $J = n$

$$-\frac{1}{S}(A/m^2)$$

Densidad de corriente:
$$J = \sigma E$$
 $J = nqv_d$ $J = \frac{L}{S} (A/m^2)$ Conductividad: $\sigma = \frac{1}{\rho} (\Omega m)^{-1}$

$$R = \frac{1}{\sigma} \frac{L}{S} (\Omega)$$

En serie:
$$R_{eq} = R_1 + R_2 + ...$$

Resistencia de un conductor:
$$R = \frac{1}{\sigma} \frac{L}{S} (\Omega)$$
 En serie: $R_{eq} = R_1 + R_2 + ...$ En paralelo: $\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + ...$

Ley de Joule (potencia disipada por el conductor): $P = (V_a - V_b)I = I^2R = \frac{(V_a - V_b)^2}{R}(W)$ $P = \frac{E}{I} = \varepsilon I$

$$= (V_a - V_b)I = I^2R = \frac{(V_a - V_b)^2}{R}$$

$$P = \frac{E}{A} = 8$$

TEMA 2

Fuerza magnética:
$$Fm = q(v \times B) = q v B sen\theta (N)$$

Fuerza de Lorentz:
$$F = Fe + Fm = qE + q(v \times B)$$

$$\mathsf{Fm}\mathsf{=Fc}\;(\mathsf{v}\perp\mathsf{B}) \;\;\Rightarrow\;\;\; qvB = m\frac{v^2}{r} \;\;\Rightarrow\;\;\; r = \frac{mv}{qB} \qquad v = \frac{rqB}{m} \qquad \omega = \frac{v}{r} = \frac{qB}{m}\;(rad/s) \qquad T = \frac{2\pi}{\omega} = \frac{2\pi m}{qB} \qquad \mathsf{H\'elice}\;(\mathsf{v=v}_{\ //} + \mathsf{v}_{\ \bot}); \qquad d = v_{\ //}T = \frac{2\,\pi\,m\,v_{\ //}}{qB}\;(m)$$

Fm sobre una corriente:
$$F = I(l \times B) = IlBsen\theta$$
 $\frac{F_{12}}{l_1} = \frac{F_{21}}{l_2} = \frac{\mu_0}{2\pi} \frac{I_1 I_2}{r}$ Torsión (Espira de corriente): $\tau = IS \times B = M \times B$ $M = IS = NIS (Am^2)$

Campo magnético:

Corriente rectilínea:
$$B = \frac{\mu_o I}{4\pi r} [sen\theta_1 + sen\theta_2]$$
 $l \to \infty$ $B = \frac{\mu_o I}{2\pi r}$ Toroide: $B = \frac{\mu_o IN}{2\pi r}$

Espira de corriente en su eje:
$$B = \frac{\mu_o}{2} \frac{IR^2}{(R^2 + r^2)^{3/2}}$$
 $r >> R \Rightarrow B = \frac{\mu_o}{2} \frac{IR^2}{r^3}$ Solenoide: $B = (\mu_r)\mu_o nI$ $n = \frac{n \dot{u} mero\ espiras}{longitud}$

Flujo magnético. Ley de Gauss:
$$\Phi = \iint B \cdot dS = BSNcos\theta \ (Wb)$$
 $\oint BdS = 0$

Ley de Faraday-Lenz (fem):
$$\varepsilon = -\frac{d\Phi_{m}}{dt} = -\frac{d}{dt}\int\int B \cdot dS$$
 Corriente alterna: $\varepsilon_{ind}(t) = -\frac{d}{dt}(BSN\;cos\omega t) = BSN\omega\;sen\omega t = V\;osen\omega t \;(V)$

Inducción mutua:
$$M=N_{2}\frac{d\Phi_{12}}{dI_{1}}=N_{1}\frac{d\Phi_{21}}{dI_{2}}\left(H\right)$$

Ley de Ampère: $\oint B \cdot dl = \mu_o I = Bl = B2\pi r$

Autoinducción:
$$L = N \frac{d\Phi}{dI} = \mu_o \frac{N^2 S}{I}$$
 $\varepsilon = -L \frac{dI}{dt}$

• En serie:
$$L_{eq} = L_1 + L_2$$

• En paralelo: $\frac{1}{L_{eq}} = \frac{1}{L_1} + \frac{1}{L_2}$

• En paralelo:
$$\frac{1}{L_{eq}} = \frac{1}{L_1} + \frac{1}{L_2}$$

Energía almacenada en un inductor:
$$U = \frac{1}{2}LI^2$$

Densidad de energía magnética:
$$\rho_B = \frac{B^2}{2\mu_B} = \frac{U}{Vs}$$

 $P = \frac{W}{t}$ $I = \frac{W}{tS} = \frac{P}{S}$

Varilla conductora móvil en un campo magnético:
$$F_e + F_m = 0$$
; $E = vB$ \Rightarrow $\Delta V = El = vBl$ $|F_e| = |F_m| \rightarrow eE = evB$

Varilla conductora móvil que forma un circuito:
$$\varepsilon = El = vBl$$
 $I = \frac{\varepsilon}{R} = \frac{vBl}{R}$ $F_m = F_a \rightarrow IlB = F_a$

Potencia disipada(Ley de Joule):
$$P = VI = I^2R$$
 Potencia entregada: $P = F_{ext} \cdot v = IlBv = \frac{(vBl)^2}{R}$ (W)

TEMA 3

Ecs. de ondas electromagnéticas:
$$E(x,t) = E_o sen(kx - \omega t)j$$
 $B(x,t) = B_o sen(kx - \omega t)k$ $E_o = B_o c$ $k = \frac{2\pi}{\lambda}$ $\omega = \frac{2\pi}{T} = 2\pi f$

Intensidad instantánea:
$$I_i = \eta c = \frac{EB}{\mu_o} \ (W/m^2) \ o \ (J/m^3)$$
 Intensidad media: $I_m = \eta_m c = S_m$ $\eta_m = \frac{1}{2} \epsilon_o E_o^2 = \frac{B_o^2}{2\mu_o} = \frac{1}{2} \frac{E_o B_o}{c \mu_o}$

Densidad de energía del c.e:
$$\eta_E = \frac{1}{2} \epsilon_o E_o^2 sen^2 (kx - \omega t) (J/m^3)$$
 Densidad de energía del c.m: $\eta_B = \frac{1}{2\mu_o} B_o^2 sen^2 (kx - \omega t)$

Vector de Poynting:
$$S = c \frac{B_o^2}{\mu_o} sen^2(kx - \omega t)$$
 $S_m = \frac{E_o B_o}{2\mu_o} = I$ Cantidad de movimiento de una onda: $p = \frac{W}{c}$

Presión de radiación:
$$Pr = \frac{F}{S} = \frac{I}{C}$$

rficie que absorbe toda la energía:
$$Pr = \frac{1}{2} \frac{E_{o}B_{o}}{cu_{o}}$$

• Superficie que absorbe toda la energía:
$$Pr = \frac{1}{2} \frac{E_o B_o}{c \mu_o}$$

• Superficie que refleja toda la energía: $Pr = \frac{1}{2c} = \frac{E_o B_o}{c \mu_o}$

RELACIÓN CAMPO ELÉCTRICO Y POTENCIAL:
$$E = \frac{VA - VB}{d}$$
 INTENSIDAD: $I = qnv_dS$