

ECANGLE HOCHSCHULF

Introduction to Security (UE, 192.082)

Lecture 4: Crypto Challenges

Dr. Marco Squarcina & Dr. Mauro Tempesta

The RSA Cryptosystem

RSA in a Nutshell

- Let p, q be two large primes and $N = p \cdot q$
- Let ϕ be the Euler's totient function:

$$\phi(N) = \left| \{k \mid 1 \le k \le N \land \gcd(k, N) = 1\} \right|$$
$$= (p-1) \cdot (q-1)$$

Public key: (e, N)

Private key: (d, N)

with $d \cdot e \equiv 1 \pmod{\phi(N)}$

Encryption

 $C \equiv P^e \pmod{N}$

Decryption

$$P \equiv C^d \pmod{N}$$

Modulus Factorization

- ▶ The security of RSA can be trivially broken if you **factor** N
 - that's why we require large primes p, q!
- From the factorization you can compute $\phi(N)$ and recover the **private exponent** d

$$d = e^{-1} \pmod{\phi(N)}$$
 inverse of $e \mod \phi(N)$

Issues with Small Messages

- We know that $C \equiv P^e \pmod{N} \Rightarrow C + k \cdot N = P^e \pmod{k \ge 0}$
- ▶ It's common to pick small values for *e* to speed-up encryption (e.g., 3 or 17)
- ▶ If the plaintext *P* is also small, the ciphertext *C* is not "much bigger" than *N*

$$P = \sqrt[e]{C + k \cdot N}$$
 bruteforce

Issues with Small Messages

We know that $C = P^e \pmod{N} \Rightarrow C + k \cdot N = P^e \quad (k \ge 0)$

It's cor encryp

Solutions? Any ideas?

If the property of the prop

unan Iy

t "much

$$P = \sqrt[e]{C + k \cdot N}$$
 bruteforce

Message Padding

- ▶ Make the plaintext almost as big as N by adding padding
 - Use a padding scheme that makes it possible to easily distinguish plaintext and padding
- DON'T use deterministic padding schemes, always add some randomness to the plaintext
 - 1) The same message encrypted multiple times using different padding yields different ciphertexts
 - 2) ... and there exist some trivial attacks that can be performed if you have multiple ciphertexts of the same message

Common Modulus Attack

▶ Suppose that the message *P* is encrypted twice under different public keys sharing the same modulus *N*

Pubkey 1:
$$(e_1, N)$$
 \Rightarrow $C_1 \equiv P^{e_1} \pmod{N}$
Pubkey 2: (e_2, N) \Rightarrow $C_2 \equiv P^{e_2} \pmod{N}$

If $gcd(e_1, e_2) = 1$, by Bezout's identity there exist integers x, y such that

$$x \cdot e_1 + y \cdot e_2 = 1$$

Then we have

use the Extended Euclidean algorithm to compute them

$$C_1^x \cdot C_2^y = P^{x \cdot e_1 + y \cdot e_2} \equiv P \pmod{N}$$

More on Padding

- Another attack uses multiple ciphertexts of the same message encrypted under the same public exponent but different moduli
 - find out the plaintext using the Chinese Remainder Theorem
- So... rely on (standard) padding schemes that add some randomness to the plaintext!
 - OAEP (PKCS#1 v2)
- Got it! Are we done now?

Coppersmith's Short Pad Attack

Boneh & Durfee's Attack

Wiener's Attack YES

Timing Attacks

well, only for this lecture...

Partial Key Exposure Attacks

Padding Oracle Attacks (Bleichenbacher)

Vulnerable Block Cipher Modes

Symmetric Encryption

- Symmetric ciphers operate on blocks of a fixed length
 - •DES: 64 bits
 - •AES: 128 bits
- When a message is longer than the cipher block size, it is split in several blocks
- Block cipher modes determine how the different blocks are handled during encryption / decryption
 - •ECB, CBC, OFB, CTR, GCM, ...
- What if the last block is smaller than the block size?
 - I guess you know the answer...

PKCS#7 Padding

- ▶ In PKCS#7 padding:
 - If we need to add n bytes to the plaintext so that its size is a multiple of the block size, append n bytes of value n to the plaintext
 - If n = 0, add an entire block of padding bytes
- Example (block size = 8 bytes, hex-encoded):

Plaintext: 6369616f

Padded: 6369616f04040404

ECB is bad... stop using it... please!

Plaintext

ECB

CBC

CBC Mode (Decryption)

- ▶ Published by Serge Vaudenay in 2002
 - Later used against SSL, IPsec, Ruby on Rails, Steam...
- ▶ We can find the **plaintext** without knowing the key

- ▶ Published by Serge Vaudenay in 2002
 - Later used against SSL, IPsec, Ruby on Rails, Steam...
- ▶ We can find the **plaintext** without knowing the key

- ▶ Published by Serge Vaudenay in 2002
 - •Later used against SSL, IPsec, Ruby on Rails, Steam...
- ▶ We can find the **plaintext** without knowing the key

- ▶ Published by Serge Vaudenay in 2002
 - Later used against SSL, IPsec, Ruby on Rails, Steam...
- ▶ We can find the **plaintext** without knowing the key

- We manipulate the last byte of C₁ to find the last byte of P₂
 - We XOR the last byte of C₁ with 01⊕G where G is our guess
 - If our guess is correct, we have no padding errors!

Our guess is G = 00

- Our guess is G = 00
- ▶ Last byte of C₁ becomes $14 \oplus 00 \oplus 01 = 15$

- Our guess is G = 00
- ▶ Last byte of C₁ becomes $14 \oplus 00 \oplus 01 = 15$

- Our guess is G = 00
- ▶ Last byte of C₁ becomes $14 \oplus 00 \oplus 01 = 15$

Our guess is G = 01

- Our guess is G = 01
- ▶ Last byte of C₁ becomes $14 \oplus 01 \oplus 01 = 14$

- Our guess is G = 01
- ▶ Last byte of C₁ becomes $14 \oplus 01 \oplus 01 = 14$

- Our guess is G = 01
- ▶ Last byte of C₁ becomes $14 \oplus 01 \oplus 01 = 14$

Guessing the Penultimate Byte of P2

- Now we want the last byte of P2 to be 02
 - We use the guess G = 01 from the previous step

- Now we want the last byte of P2 to be 02
 - We use the guess G = 01 from the previous step
- ▶ Last byte of C₁ becomes $14 \oplus G \oplus 02 = 17$

- Now we want the last byte of P2 to be 02
 - We use the guess G = 01 from the previous step
- ▶ Last byte of C₁ becomes $14 \oplus G \oplus 02 = 17$

Our guess is G = 00

- Our guess is G = 00
- ▶ Penultimate byte of C_1 becomes $25 \oplus 00 \oplus 02 = 27$

- Our guess is G = 00
- ▶ Penultimate byte of C_1 becomes $25 \oplus 00 \oplus 02 = 27$

- Our guess is G = 00
- ▶ Penultimate byte of C_1 becomes $25 \oplus 00 \oplus 02 = 27$

Guessing the Penultimate Byte of P2

Our guess is G = 01

- Our guess is G = 01
- ▶ Penultimate byte of C_1 becomes $25 \oplus 01 \oplus 02 = 26$

- Our guess is G = 01
- ▶ Penultimate byte of C_1 becomes $25 \oplus 01 \oplus 02 = 26$

- Our guess is G = 01
- ▶ Penultimate byte of C_1 becomes $25 \oplus 01 \oplus 02 = 26$

Our guess is G = 61

- Our guess is G = 61
- ▶ Penultimate byte of C_1 becomes $25 \oplus 61 \oplus 02 = 46$

- Our guess is G = 61
- ▶ Penultimate byte of C_1 becomes $25 \oplus 61 \oplus 02 = 46$

- Our guess is G = 61
- ▶ Penultimate byte of C_1 becomes $25 \oplus 61 \oplus 02 = 46$

Final Remarks

- Proceed similarly to decrypt the rest of the block!
- To decrypt P₁ you can provide to the oracle the ciphertext C₀||C₁ where C₀ is a (random) block of bytes
- Sometimes you may have some false positives when decrypting the last byte of a block
 - Consider a block ending with two 02 bytes
 - •Besides guess 02, also 01 does not raise a padding error: the last byte of the plaintext will remain 02 thus you have a valid padding
- What to do?
 - If you pick a wrong guess, all attempts for the penultimate byte will result in a padding error
 - In that case, change guess for the last byte