

Mikrokontrollerek és alkalmazásaik Labor

Arduino Clap Sensitive Light Control

Beadás: 2019.05.17.

Nagy Kapolcs Ompoly (W7R17G) 3. évfolyam Pénteki csoport

I. Projektmunka célja

A projekt célja, hogy mikrokontroller segítségével egy LED szalagot írányítsunk hangérzékelővel, mivel így 1 vagy 2 kézen kívül nincs szükség a több végtagra, hogy tudjuk kontrollálni a környezet fényforrásának az állapotát.

II. Eszközök

- Uno R3 board
- USB cable
- Jump Wires
- Sound Sensor Module
- SS8050 NPN Transistor
- LED strip
- 12v AC/DC LED Driver

III. Projektmunka

III.1. Leírása

III.2. Felhasznált kód

```
int ledPin=9;
int sensorPin=7;

boolean val = 0; // sensor HIGH or LOW
boolean status_lights = false;

// for counting and calibrating clap
int clap = 0;
long detection_range_start = 0;
long detection_range = 0;

void setup(){
   pinMode(ledPin, OUTPUT);
   pinMode(sensorPin, INPUT);
   //Serial.begin(9600);
}
```

```
void loop (){
  int status sensor = digitalRead(sensorPin);
  if (status sensor = 1){
    if (clap = 0)
      detection_range_start = detection_range = millis();
      clap++;
    } else if (clap > 0 \&\& millis()-detection range >= 100){
      detection_range = millis();
      clap++;
      //Serial.print("counting clap: ");
      //Serial.println(clap);
    }
  }
  if (millis()-detection range start >= 600){
    if (clap = 2)
      if (!status_lights){
        digitalWrite(ledPin, HIGH);
        status_lights = true;
        clap = 0;
      } else if (status lights){
        status lights = false;
        digitalWrite(ledPin, LOW);
      }
    }
    clap = 0;
  }
}
```

IV. Mérési adatok és kiértékelés

IV.1. Egy rés

A méréshez tartozó grafikont csatolok a jegyzőkönyvhöz. Ezt a mérés további részeiben készített grafikonokat a mérőhelyen elhelyezett számítógép és kiértékelő program segítségével készítettük. Az egyrésnél mért minimumok helyei.

Rés elhajlási képének kioltási helyei						
k	x_k	k	x_k			
-5	58.012	1	117.9347			
-4	67.8843	2	127.807			
-3	77.9862	3	137.2202			
-2	87.3994	4	147.0925			
-1	97.2717	5	156.9649			

Az adathalmazra egyenest illesztettem.

1MINIMUM.png

Az illesztett egyenes meredeksége:

$$m = (9.91 \pm 0.03) \ mm$$

A meredekség és a mért $L=(2067\pm1)~mm$ ernyőtávolság segítségével a rés szélessége:

$$a = \frac{\lambda L}{m} = (0.1319 \pm 0.0002) \ mm$$
$$\Delta a = a(\frac{\Delta \lambda}{\lambda} + \frac{\Delta L}{L} + \frac{\Delta m}{m})$$

IV.2. Kéttős rés

A csatolt grafikon a kettős rés elhajlási képének másodrendű minimumhelyeit ábrázolja a sorszámuk függvényében.

k	min	k	min
-3	73.5362	1	119.3754
-2	85.0663	2	130.6243
-1	96.4558	3	142.0138

2MINIMUM.png

Az illesztett egyenes meredeksége:

$$m = (11.41 \pm 0.02) \ mm$$

A meredekség és a mért $L=(2067\pm1)~mm$ ernyőtávolság segítségével a két rés távolsága:

$$d = \frac{\lambda L}{m} = (0.1392 \pm 0.0003) \ mm$$

$$\Delta d = d(\frac{\Delta \lambda}{\lambda} + \frac{\Delta L}{L} + \frac{\Delta m}{m})$$

IV.3. Hajszál

A csatolt grafikon a hajszál elhajlási képének minimumhelyeit ábrázolja a sorszámuk függvényében.

k	min	k	min
-3	58.2044	1	125.244
-2	75.1801	2	142.048
-1	91.4611	3	159.032

Az adathalmazra egyenest illesztettem.

Az illesztett egyenes meredeksége:

$$m = (16.78 \pm 0.04) \ mm$$

A meredekség és a mért $L=(2067\pm1)~mm$ ernyőtávolság segítségével a hajszál szélessége:

$$a = \frac{\lambda L}{m} = (0.1080 \pm 0.0003) \ mm$$
$$\Delta a = a(\frac{\Delta \lambda}{\lambda} + \frac{\Delta L}{L} + \frac{\Delta m}{m})$$

IV.4. Penge

Itt analitikusan nem tudunk számolni, de a mérés során adatsorra illesztett elméleti görbét kinyomtatva csatolom a jegyzőkönyvhöz.

A mérés megkezdése előtt egy nyalábtágítót helyeztünk el a lézer és a penge közé, ezzel biztosítottuk a kellően nagy teret.

 $a = 633 \ mm \text{ és } b = 2067.75 \ mm$

A féltér határát a penge éle határozza meg. Az elméleti és az illesztett görbe nem fedi teljesen egymást. Ennek oka az, hogy a penge éle nem tekinthető végtelen vékonynak, valamint a tér sem korlátlan.

V. Diszkusszió

A mérést sikeresnek tekinthetjük, az illesztések pontosak és a mérési eredmények hűen tükrözik a valóságot.