Séance 3: Bref Survol de l'analyse descriptive

Partie 1: description univariée

Visseho Adjiwanou, PhD.

Département de Sociologie - UQAM

Base de données et analyse descriptive

Statistiques

- Statistiques en tant que nombre
 - Le revenu moyen des habitants de Wakanda est de 1200w
 - la température à Montréal aujourd'hui est de -3 dégrés Celcuis
- Statistiques en tant que méthodes de calcul
 - Les statistiques sont des méthodes résumant quantitativement et généralisant des informations

Données

- Information non résumée, brute que les statistiques rendent plus aisément manipulables.
 - Différentes types:
 - Images
 - Vidéo
 - Textes
 - Chiffres ...
- Banque de données : organisation systématiques des données
- Fichiers de données : Quand les banques de données peuvent être lues par les ordinateurs
- Unités d'analyse : est la personne, l'objet ou l'événement que le chercheur étudie.

Sources de données en sciences sociales

- Données que vous collectez vous-mêmes
- 2 Données qui existent déjà

Collecter vos propres données

Avantages

- Vous collectez ce qui vous intéresse si vous devez faire une collecte formelle
- Peut aussi recourir à collecter les données des médias et réseaux sociaux
- Inconvénients
 - Peut demander beaucoup de temps de préparation
 - Peut demander de la programmation
 - Coûteux
 - Disponibilités de multiples données qui existent déjà, pourquoi ne pas utiliser une de ses données?

Collecter vos propres données

 Exemple : Collecter les données twitter sur le premier ministre Trudeau

Exemples de données qui existent déjà

- Sur les pays en développement
 - Enquêtes démographique et de santé
 - https://dhsprogram.com/data/
- Sur le Canada
 - Recensements
 - Enquêtes sociales générales
 - Pleins d'autres
 - Sondage d'opinions
 - https://www.queensu.ca/cora/our-data/data-holdings
- Sur les USA
 - http://www.pewresearch.org/

Survol des statistiques

Deux branches des statistiques:

- Statistiques descriptives : méthodes résumant l'information afin de la rendre plus intelligible, plus utile ou plus aisément communicable.
 - Exemple: Age moyen des étudiants de ma classe.
 - Cependant, il y a perte d'information.
 - Choix judicieux du type de statistiques à utiliser

Survol des statistiques

- Statistiques inférentielles renvoient aux procédures par lesquelles nous généralisons l'information concernant un échantillon à la population de laquelle fut tiré l'échantillon en question.
 - marge d'erreur; p value ou p <0,05; test de chi-carré, chi 2 . . .
- Le cours concerne à la fois les statistiques descriptives et les statistiques inférentielles

Les échantillons et les populations

- Données de population : proviennent de tous les cas auxquels un chercheur veut appliquer ses conclusions: on dit dans ce cas qu'on fait un recensement de la population.
 - Données parfois introuvables
 - Onéreuses
 - Longues à collecter
- Onnées d'échantillon : provient d'une partie de la population.
- Paramètre : résumé basé sur une population
- Statistique (3e définition du mot) : caractéristique d'un échantillon
 - Exemple : âge moyen (paramètre si calculé sur toute la population) et statistique (si calculé à partir d'un échantillon)

Les variables

- Une variable est une caractéristique ou une propriété quelconque dont la valeur diffère d'un cas à l'autre.
- Elles se retrouvent souvent en colonnes dans les fichiers de données
- Echelle : série des valeurs possibles d'une variable.
- Scores : valeur possible d'une variable

Quatre catégories de variables selon la façon dont elles sont mesurées:

- Variables nominales : se mesure de telle façon que ses valeurs ou ses attributs diffèrent les uns des autres. Les valeurs ne peuvent pas être disposées selon un ordre logique ou naturel.
 - variable nominale dichotomique: prend deux valeurs. ex, sexe
 - variable nominale non dichotomique: ex. religion

Les niveaux de mesures

- Variable ordinale : variables dont les valeurs peuvent êtres ordonnées.
 - classe sociale
 - quintile de revenu

Remarques:

- Variable nominale + variable ordinale = variable qualitative.
- Variables ordinales plus informatives que les variables nominales

Quatre catégories de variables selon la façon dont elles sont mesurées:

- Variable d'intervalle a non seulement des valeurs qui peuvent être ordonnées, mais elle se mesure également à l'aune d'une unité de mesure fixe ou standard.
 - Température
 - Date de naissance

- Variable de ratio : est semblable à une variable d'intervalle. Mais, en plus, elle a un zéro non arbitraire.
 - Nombre d'habitants
 - Âge

Remarques:

- Variable de ratio car permettent de calculer des ratios
- variable d'intervalle + variable de ratio == variable quantitative
- Peuvent être continues quand elles peuvent prendre une infinité de valeurs ou discrètes quand elles prennent un nombre fini de valeurs.

Résumé

https://www.graphpad.com/support/faq/what-is-the-difference-between-ordinal-interval-and-ratio-variables-why-should-i-care/

Résumé

Les niveaux de mesures

- Il est capital de distinguer le type de variable que vous utilisez pour être en mesure d'utiliser la bonne statistique.
- On verra l'application dans R.

Catégories mutuelllement exclusives et collectivement exhaustives

Les valeurs des variables que vous définissez doivent être :

- mutuellement exclusives : pas de chevauchement
- collectivement exhaustives : comprend l'ensemble des catégories

Remarque:

 Quand vous créez de nouvelles variables, vous devez toujours tenir compte de cela. Validité et fiabilité (validity and reliability)

- Validité: Le degré auquel une variable mesure ce que nous pensons qu'elle mesure. Est-ce que la variable reflète le concept?
- Fiabilité: Le degré auquel une variable donne des résultats cohérents. D'autres chercheurs doivent être en mesure d'effectuer exactement la même expérience dans les mêmes conditions en obtenant les mêmes résultats.

- Exemple: Supposons que nous voulons mesurer la position sociale d'un groupe d'étudiants. Quelles questions pouvons nous poser pour la mesurer?
- Lorsque vous essayez de mesurer des concepts difficiles comme le statut social, il est souvent préférable

- Exemple: Supposons que nous voulons mesurer la position sociale d'un groupe d'étudiants. Quelles questions pouvons nous poser pour la mesurer?
- Lorsque vous essayez de mesurer des concepts difficiles comme le statut social, il est souvent préférable
- d'utiliser une variété de mesures qui peuvent être analysées indépendamment ou

- Exemple: Supposons que nous voulons mesurer la position sociale d'un groupe d'étudiants. Quelles questions pouvons nous poser pour la mesurer?
- Lorsque vous essayez de mesurer des concepts difficiles comme le statut social, il est souvent préférable
- d'utiliser une variété de mesures qui peuvent être analysées indépendamment ou
- combinées en une seule mesure globale (ou composite).

- Exemple: Supposons que nous voulons mesurer la position sociale d'un groupe d'étudiants. Quelles questions pouvons nous poser pour la mesurer?
- Lorsque vous essayez de mesurer des concepts difficiles comme le statut social, il est souvent préférable
- d'utiliser une variété de mesures qui peuvent être analysées indépendamment ou
- combinées en une seule mesure globale (ou composite).
- Par exemple, de nombreux sociologues utilisent une combinaison de revenu, d'éducation et de profession pour déterminer le statut socio-économique global du répondant.

- Il est important de se rappeler que les mesures peuvent être valables/valides sans être fiables, de même, les mesures peuvent être fiables sans être valides.
- Le but est de viser des niveaux élevés de validité et de fiabilité pour éviter le problème du "garbage in, garbage out".

- Exemple: Supposons que nous voulons mesurer la position sociale d'un groupe d'étudiants. Quelles questions pouvons nous poser pour la mesurer?
- Quel est ton revenu l'année passée?

- Exemple: Supposons que nous voulons mesurer la position sociale d'un groupe d'étudiants. Quelles questions pouvons nous poser pour la mesurer?
- Quel est ton revenu l'année passée?
- Quel est ton revenu la semaine passée?

- Exemple: Supposons que nous voulons mesurer la position sociale d'un groupe d'étudiants. Quelles questions pouvons nous poser pour la mesurer?
- Quel est ton revenu l'année passée?
- Quel est ton revenu la semaine passée?
- Les questions ne sont pas valides: Qu'en est-il des revenus des parents

- Exemple: Supposons que nous voulons mesurer la position sociale d'un groupe d'étudiants. Quelles questions pouvons nous poser pour la mesurer?
- Diras-tu que tu fais partie de la classe ouvrière, classe moyenne, ou de la classe supérieure?

- Exemple: Supposons que nous voulons mesurer la position sociale d'un groupe d'étudiants. Quelles questions pouvons nous poser pour la mesurer?
- Diras-tu que tu fais partie de la classe ouvrière, classe moyenne, ou de la classe supérieure?
- Majorité vont dire classe moyenne

- Exemple: Supposons que nous voulons mesurer la position sociale d'un groupe d'étudiants. Quelles questions pouvons nous poser pour la mesurer?
- Diras-tu que tu fais partie de la classe ouvrière, classe moyenne, ou de la classe supérieure?
- Majorité vont dire classe moyenne
- Es-tu financièrement en sécurité? très subjective donc pas fiable

Les données individuelles et les données agrégées

- Dans la plupart des cas, nous travaillons avec des données individuelles.
- Dans certains cas, nos données sont agrégées (PIB par pays par exemple)
 - Données écologique si l'unité d'agrégation est l'espace
 - Donne lieu à des erreurs écologiques: inférer sur les individus les résultats agrégés.

Statistiques descriptives

Objectifs

Les objectifs de la statistique descriptive sont de :

- définir le ou les groupes étudiées (population ou échantillon)
- définir le codage des observations
- définir la présentation des données : numérique et/ou graphique
- réduire les données à quelques indicateurs statistiques synthétiques

Objectifs

La description des données

- souvent la première approche dans la compréhension d'un phénomène
- réduction des données à quelques indices numériques permettant de manipuler les données
- permettra la formulation d'hypothèses qui pourront être vérifiées à l'aide de tests statistiques lors d'études organisées ultérieurement

Les distributions de fréquences (Chap 2 : Fox)

- Fox fait référence au livre du bac
- Fox, W. 1999. Statistiques sociales. Les Presses de l'Université Laval. Traduit de l'Anglais et adapté par L.M. Imbeau.
- Façon simple et directe de résumer les informations d'une variable
- Il s'agit de compter le nombre de cas pour chaque valeur ou modalité
- Ce résumé s'appelle distribution de fréquence
- Approprié pour les cas avec peu de modalité (donc pour les variables ordinales ou nominales)

Les distributions de fréquences (Chap 2 : Fox)

(en fréquences)		
Niveau d'instruction	f	
Universitaire avancé	4	
Premier cycle universitaire	9	
Collège	3	
Secondaire	24	
Pas de secondaire	10	
Total	50	

Les distributions de fréquences

Avantages

- Facile à calculer
- Donne plusieurs indications sur :
 - les cas fréquents (mode)
 - là où la distribution est coupée en deux (médiane, avec les fréquences ou pourcentages cumulés)
 - les cas rares (donc besoin de regroupement)
 - les cas déviants (cas d'une variable d'intervalle/ratio)
- Permet de détecter les données manquantes (cependant, il faut enlever ces cas avant de calculer les fréquences)

Désavantages

- Difficile à interpréter surtout avec les grands nombres
- Ne permet pas les comparaisons

Les distributions de pourcentages

- Pour remédier à cela, on va calculer les pourcentages ou proportions
- Se calcule par le rapport entre le nombre de cas et le nombre de cas total (proportion)
- Si multiplié par 100, cela devient des pourcentages

Les distributions de pourcentages

Tableau 2.7. Niveau d'instruction atteint (en pourcentages)		
Niveau d'instruction	Pourcentages	
Universitaire avancé	8	
Premier cycle universitaire	18	
Collège	6	
Secondaire	48	
Pas de secondaire	20	
Total	100	
(N)	(50)	

Se représente graphiquement par :

les diagrammes circulaires

Représentation

Se représente graphiquement par :

2 les diagrammes en bâtons (ou diagrammes de barres - barplot)

Description

• Lire page 65-68 dans Fox.

Paramètres de position (Chap 3, Fox)

Les variables continues (intervalle/ratio) sont décrites numériquement par :

- des paramètres de position
 - moyenne
 - percentiles, dont :
 - médiane
 - premier (Q1) et troisième quartile (Q3)
 - percentiles p
 - autres : tiertiles, déciles, etc
 - mode
 - minimum et maximum

Paramètres de dispersion (Chap 4, Fox)

Mais aussi par :

- 2 des paramètres de dispersion
 - variance
 - écart-type
 - écart inter-quartile
 - étendue ou amplitude
 - coefficient de variation Plus skewness et kurtosis, paramètres d'étalement et d'asymétrie.

Paramètres de position

La Moyenne (arithmétique) = Somme des valeurs divisée par l'effectif de la série - Exemple : moyenne de 4, 7, 6. M = (4+7+6)/3

La Médiane = valeur telle que la moitié des observations lui sont inférieures et donc la moitié lui sont supérieures. - Exemple 1: médiane de 3, 6, 4, 8, 9 est $\bf 6$ - Exemple 2: médiane de 5, 7, 8, 9 est $\bf (7+8)/2 = 7.5$

Le Mode = Encore appelée valeur dominante: valeur observée de

Paramètres de position

fréquence maximum telle que la moitié des observations lui sont inférieures et donc la moitié lui sont supérieures.

- Exemple: 1, 2, 3, 3, 3, 4, 5, 6, 6, 6, 6, 7, 15: mod
- On parle de distribution bimodale
- On peut penser que l'échantillon est en réalité issu de de Si toutes les valeurs sont différentes, autant de modes de
- Si toutes les valeurs sont différentes, autant de modes o
- -1, 2, 3, 5, 6, 9, 14, 16 --> chaque valeur = mode
 - la seule pour laquelle il n'y a pas de formule

Paramètres de position

Quartiles Les trois quartiles divisent l'ensemble de la distribution en 4 ensembles de même taille (au moins approximativement)

- Q1 -> 25% des valeurs sont inférieures à Q1
- Q2 -> Médiane -> 50% des valeurs sont inférieures à Q2
- Q3 -> 75% des valeurs sont inférieures à Q3

Percentile le percentile p divise la distribution en deux groupes tel que p% des valeurs soient situées sous p et (100 - p%) des valeurs soient situés au-dessus.

Quantiles / Fractiles Le quantile d'ordre k est la valeur qui sépare la distribution en k classes de même efféctif (au moins approximativement). - déciles, - quartiles, - quintiles, - tiertiles, - centiles, etc.

- Bien que la moyenne soit la caractéristique la plus importante résumant une distribution à l'aide d'un seul nombre, il est nécessaire aussi d'étudier comment les observations sont dispersées, ou variées.
- De même qu'il existe différentes mesures de paramètres de position, on trouve de nombreuses mesures de la dispersion.
- Deux d'entre elles sont généralement utilisées:
 - l'intervalle interquartile et
 - l'écart type

- L'étendue (ou range ou amplitude) est simplement la différence entre la plus grande et la plus petite valeur de la variable.
- Au lieu d'utiliser les deux observations extrêmes, prenons les deux quartiles.
 - Les deux quartiles sont beaucoup plus stables (i.e. stables à l'influence indue d'une seule observation).
 - La distance séparant les quartiles mesure la dispersion de la moitié centrale des observations: c'est pourquoi on l'appelle étendue interquartile (EIQ), ou dispersion centrale.
 - EIQ = 3ème quartile 1er quartile

- La variance est la moyenne arithmétique des carrés des écarts à la moyenne
- Elle mesure la dispersion, l'étalement, et la variabilité des valeurs
- Pour une distribution, la variance est:

Variance,
$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

- la variance est elle aussi très sensible aux valeurs extrêmes
- Pour éliminer le fait d'avoir utilisé le carré des écarts, on calcule finalement la racine carrée de la variance
- Ceci donne la façon la plus générale de mesurer l'écart par rapport à la moyenne, appelée pour cette raison son écart-type
 - écart type = sqrt(variance)

Base de données et analyse descriptive Validité et fiabilité (validity and reliability) Statistiques descriptives Pour la semaine pr

Pour la semaine prochaine

Base de données et analyse descriptive Validité et fiabilité (validity and reliability) Statistiques descriptives Pour la semaine pr

Pour la semaine prochaine

- Lectures obligatoires
 - Fox(p123-172)
- Lectures Facultatives (important pour mieux assimiler le cours)
 - Kieran (https://socviz.co/lookatdata.html#what-makes-badfigures-bad
 - Wickham (https://r4ds.had.co.nz/data-visualisation.html)
 - Wickham (https://r4ds.had.co.nz/exploratory-data-analysis.html)
- Oatacamp
- Introduction à Tidyverse