Fall 2020
Slide Set 8
Instructor: Galan Moody
TA: Kamyar Parto

MOVIES AND SHOWS THAT ARE VAGUELY SET IN "THE PRESENT" WILL BE AWKWARD FOR A WHILE.

Tuesday

- Exam Review
- Op Amps

Today

- Transfer Function
- Logs and dB scale

<u>Important Items:</u>

- HW #4 due Thurs, 11/19
- Lab #4 due 11/20
- Check your kits to make sure you have all components!

Quiz Time!

Q1: Let's think about orders of magnitude: The number of electrons/second passing through any point of a wire carrying a 1 A current is approximately equal to (within an order of magnitude or so) [multiple choices]:

- a) The estimated age of the universe, in seconds
- b) The ratio of 1 second to an attosecond (the shortest laser pulse to date)
- c) The ratio of UCSB Turkey Trot 5K distance to the size of an atomic nucleus
- d) All of the above
- e) None of the above

Q2: The decibel (dB) scale is a relative unit of measurement and a convenient way to express the ratio of one value of power to another value. A power ratio of ½ (output/input) approximately corresponds to:

- a) ½ dB
- b) 2 dB
- c) 50 dB
- d) 3 dB
- e) -3 dB

Problem 2

Using the impedance method, find v(t) and i(t). Give a very brief explanation of each step to reach the solution

2.
$$Z = R + j\omega L \left(\omega = 5 \operatorname{rad/s}\right) \rightarrow Z = 10 + j\Omega$$
.

3.
$$I = \frac{\sqrt{s}}{Z} = \frac{20e^{j\pi/2}}{10+j} = \frac{-20j}{(0+j)} \cdot \frac{(0-j)}{|0-j|} = \frac{-20-200j}{|0|} = -0.198-1.98j A.$$

$$i(t) = 2 \cos(5t-1.47) A.$$

4.
$$V = | \cdot Z_L = (-0.198 - 1.98j) \cdot j = 1.98 - 0.198j$$
.
 $\cong 2 \times -0.1 \text{ Rd}$.
 $V(t) = 2 \cos(5t - 0.1) V$.

Problem 3

Given that $i(t) = I_0 \cos(\omega t)$, where $I_0 = 3$ mA and $\omega = 10^6$ rad/sec, determine v(t). Assume R = 1 k Ω and L = 1 mH.

1.
$$i(t) \rightarrow lo \angle \phi$$
. $Z_R = lkR$ $Z_L = jkR$.
$$Z_T = \frac{Z_R \cdot Z_L}{Z_R + Z_L} = \frac{le3 \cdot le3j}{le3 + le3j}$$

$$V = 1 \cdot Z_{T} = \frac{10 \cdot Z_{R} Z_{L}}{Z_{R} + Z_{L}} = \frac{3 \cdot j}{1 + j} = \frac{3 \cdot j}{1 + j} \cdot \frac{1 - j}{1 - j} = \frac{3 + 3j}{2} = \frac{3}{\sqrt{2}} e^{j \frac{\pi}{4}}$$

Problem 4

Determine the input impedance of the circuit at frequency $\omega = 2 \text{ rad/s}$.

$$Z_{in} = \begin{cases} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{cases}$$

$$= Z_{1} + \left\{ \left[\frac{(Z_{5}+Z_{6}) \cdot Z_{4}}{Z_{5}+Z_{6}+Z_{4}} + Z_{3} \right] \cdot Z_{2} \right\} \left\{ \left[\frac{(Z_{5}+Z_{c}) \cdot Z_{4}}{Z_{5}+Z_{c}+Z_{4}} + Z_{3} \right] + Z_{2} \right\}$$

Problem 4

Determine the input impedance of the circuit at frequency $\omega = 2 \text{ rad/s}$.

$$Z_{1} = 50\Omega$$
 $Z_{2} = 240\Omega$
 $Z_{3} = 2j\Omega$
 $Z_{4} = 100\Omega$
 $Z_{5} = -j\Omega$
 $Z_{6} = j\Omega$

$$Z_{5}+Z_{6}=\oint \Omega$$
. Thus:
 $Z_{m}=Z_{1}+\left[Z_{3}\cdot Z_{2}/(Z_{3}+Z_{2})\right]$.
 $Z_{3}+Z_{2}=-0.5j\Omega$.
 $Z_{3}\cdot Z_{2}=5\Omega$.
 V
 $Z_{m}=50+\frac{5}{-0.5j}=50+10j$.

The Impedance Method

Impedance: A generalization of resistance for sinusoidal steady state inputs. Associated with each element is a characteristic impedance that affects the flow of current/voltage drop across the element, analogous to a resistor.

$$v_0(t) = |V_0|\cos(\omega t + \angle V_0) = Re\{|V_0|e^{j\angle V_0}e^{j\omega t}\}$$

Generalization of Ohm's Law for Sinusoidal Steady State

Resistor: $V = IR \rightarrow Z_R = R$

Capacitor: $V = I \frac{1}{sC} \rightarrow Z_C = \frac{1}{sC} = \frac{1}{j\omega C}$

Inductor: $V = sLI \rightarrow Z_L = sL = j\omega L$

Impedance Method

$$v_0(t) = |V_0|\cos(\omega t + \angle V_0) = Re\{V_0(j\omega)e^{j\omega t}\}$$

- 1. First, replace the (sinusoidal) sources by the complex amplitudes
- 2. Then, replace the circuit elements by their impedances. The resulting diagram is called **the impedance model of the network**.
- 3. Now, **determine the complex amplitudes** of the voltages and currents in the circuits (e.g. $V_c(j\omega)$). You can use any standard linear circuit analysis technique you like—Node method, KVL, KCL, Thevenin, intuitive method based on series/parallel simplifications, etc.
- 4. Finally, we can obtain the time variables from the complex amplitudes and **plug into the general expression for the dynamics**. This isn't usually necessary though. As an example, the time domain response corresponding to the node variable V_c is given by:

Outline for 2nd half of this course

- Definition of transfer function [today]
 - Impedance method simplifies circuit analysis
- Frequency domain analysis [today/next week]
 - Log-log plots, Bode plots
 - Intuitive method for plotting frequency response
- Filter designs [next week, week 9]
 - Arrange R, L, C circuits to achieve high, low, or bandpass filters
- Review + Thanksgiving
- Resonant filter designs [week 9]
- Review / final topics TBD [week 10]

Frequency Domain Analysis

We've seen that a **circuit's behavior** in steady state **depends on the source frequency**. Frequency domain analysis formally studies this dependence

$$v_o(t) = |V_o|\cos(\omega_1 t + \angle V_o)$$

$$V_o = \frac{Z_R}{Z_R + Z_L} V_i$$

$$V_o = \frac{R}{R + j\omega_1 L} V_i$$

$$v_o(t) = \Re\{V_o e^{j\omega_1 t}\}$$

$$= |V_o|\cos(\omega_1 t + \angle V_o)$$

$$v_o(t) = |V_o|\cos(\omega_1 t + \angle V_o) = \frac{R}{\sqrt{R^2 + \omega_1^2 L^2}} V_i \cos(\omega_1 t + \tan^{-1} \frac{-\omega_1 L}{R})$$

RL Circuit - Frequency Dependence of Output

Let's use some numbers

$$L = 1 \text{ mH}$$

 $R = 1 \text{ k}\Omega$

Using impedances and the voltage divider relation:

$$V_o = \frac{Z_R}{Z_R + Z_L} V_i = \frac{1000}{1000 + j0.001\omega} V_i = H(j\omega) V_i$$

$$H(j\omega) = \frac{V_0}{V_i}$$
 is called the **transfer function**

Transfer Function

Definition

The **transfer function** is the ratio of the complex amplitude of the circuit **output** to the complex amplitude of the **input**

$$H(j\omega) = \frac{V_o}{V_i} = \frac{1000}{1000 + j0.001\omega}$$

(only info about the circuit using its complex impedances)

Given the transfer function of a system, we know:

$$H(j\omega) = |H(j\omega)|e^{\angle H(j\omega)}$$
$$V_o = H(j\omega)V_i$$

The output response of the system to a sinusoidal input $v_i = V_i \cos(\omega t)$ is:

$$v_o(t) = |H(j\omega)|V_i\cos(\omega t + \angle H(j\omega))$$

Transfer Function

determined by analyzing the circuit, independent of the source, using the impedance method

Some naming conventions:

Transfer Type	Output/Input	Units
Transfer Function	V_{o}/V_{i}	none
Transconductance (DC) Transadmittance (AC)	I/V	$1/\Omega$
Transresistance/ Transimpedance	V/I	Ω

Frequency Response of a Circuit

$$v_o(t) = |H(j\omega)|V_i\cos(\omega t + \angle H(j\omega))$$

Frequency Response

A plot of the magnitude and phase of the circuit's transfer function as a function of frequency: $|H(j\omega)|$ and $\angle H(j\omega)$

 The magnitude is the ratio of the amplitudes of the output and input, and shows the gain of the circuit as a function of frequency

$$H(j\omega) = \frac{V_0}{V_i} \qquad |H(j\omega)| = \frac{|V_0|}{|V_i|}$$

 The phase is the angular difference between the output and the input sinusoids (phase shift)

RL Circuit – Frequency Response

$$H(f) = \frac{V_o}{V_i} = \frac{1000}{1000 + j0.001\omega}$$

RL Circuit – Frequency Response

$$H(f) = \frac{V_o}{V_i} = \frac{1000}{1000 + j0.001\omega}$$

$$\omega \to 0, H \to 1 = r[\cos(\varphi) + j\sin(\varphi)]$$

 $\omega \to \infty, H \to -j/\omega = r[\cos(\varphi) + j\sin(\varphi)]$

RL Circuit – Frequency Response

$$H(f) = \frac{V_o}{V_i} = \frac{1000}{1000 + j0.001\omega}$$

$$\omega \to 0, H \to 1 = r[\cos(\varphi) + j\sin(\varphi)]$$

 $\omega \to \infty, H \to -j/\omega = r[\cos(\varphi) + j\sin(\varphi)]$

RL Circuit - Frequency Response

$$H(f) = \frac{V_o}{V_i} = \frac{1000}{1000 + j0.001\omega}$$

$$\omega \to 0, H \to 1 = r[\cos(\varphi) + j\sin(\varphi)]$$

 $\omega \to \infty, H \to -j/\omega = r[\cos(\varphi) + j\sin(\varphi)]$

Low-pass filter

Finding Magnitude and Phase of Transfer Function

$$H(j\omega) = \frac{V_o}{V_i} = \frac{j\omega}{\left(j\omega + \frac{3}{2}\right)\left(j\omega + \frac{5}{2}\right)} = 0$$

Finding Magnitude and Phase of Transfer Function

$$H(j\omega) = \frac{V_o}{V_i} = \frac{j\omega}{(j\omega + \frac{3}{2})(j\omega + \frac{5}{2})} = \frac{A_1}{A_2 A_3} = \frac{|A_1|e^{j\angle A_1}}{|A_2|e^{j\angle A_2}|A_3|e^{j\angle A_3}}$$

Finding Magnitude and Phase of Transfer Function

$$H(j\omega) = \frac{V_o}{V_i} = \frac{j\omega}{\left(j\omega + \frac{3}{2}\right)\left(j\omega + \frac{5}{2}\right)} = \frac{A_1}{A_2A_3} = \frac{|A_1|e^{j\angle A_1}}{|A_2|e^{j\angle A_2}|A_3|e^{j\angle A_3}}$$
$$|H(j\omega)| = \frac{|A_1|}{|A_2||A_3|} = \frac{\omega}{\sqrt{\omega^2 + \frac{9}{4}\sqrt{\omega^2 + \frac{25}{4}}}}$$

$$\angle H(j\omega) = \angle A_1 - \angle A_2 - \angle A_3 = \frac{\pi}{2} - \tan^{-1}\left(\frac{\omega}{\frac{3}{2}}\right) - \tan^{-1}\left(\frac{\omega}{\frac{5}{2}}\right)$$

Plotting the Frequency Response

typically V_0 or I_0

transfer function =
$$H(j\omega) = \frac{complex \ amplitude \ of \ the \ output}{complex \ amplitude \ of \ the \ input}$$

When asked to plot the frequency response of a system, you need to draw the approximate sketches of the magnitude and phase as follows:

Plotting the Frequency Response

- Plot $|H(j\omega)|$: the log magnitude plotted against log frequency
- Plot $\angle H(j\omega)$: the angle in linear scale plotted against log frequency

We find the complex amplitude V_o of the output as a function of V_i :

You would need to apply the voltage divider relation two times:

$$V_{a} = \frac{\left(R_{2} + \frac{1}{C_{2}s}\right) \|R_{1}}{\left(R_{2} + \frac{1}{C_{2}s}\right) \|R_{1} + \frac{1}{C_{1}s}} V_{i}$$

$$V_{o} = \frac{\frac{1}{C_{2}s}}{\frac{1}{C_{2}s} + R_{2}} V_{a} = \left(\frac{\frac{1}{C_{2}s}}{\frac{1}{C_{2}s} + R_{2}}\right) \left(\frac{\left(R_{2} + \frac{1}{C_{2}s}\right) \|R_{1}}{\left(R_{2} + \frac{1}{C_{2}s}\right) \|R_{1} + \frac{1}{C_{1}s}}\right) V_{i}$$

$$V_o = \frac{\frac{1}{C_2 s}}{\frac{1}{C_2 s} + R_2} V_a = \left(\frac{\frac{1}{C_2 s}}{\frac{1}{C_2 s} + R_2}\right) \left(\frac{\left(R_2 + \frac{1}{C_2 s}\right) \|R_1}{\left(R_2 + \frac{1}{C_2 s}\right) \|R_1 + \frac{1}{C_1 s}\right)} V_i$$

• Assume $R_1 = 1 \ , R_2 = 1 \ , C_1 = 1 \ \mathrm{mF}, C_2 = 1 \ \mathrm{mF}$

$$V_{o} = \frac{R_{1} C_{1} s}{R_{1} R_{2} C_{1} C_{2} s^{2} + (R_{1} C_{1} + R_{1} C_{2} + R_{2} C_{2}) s + 1} V_{i}$$

$$= \frac{s}{s^{2} + 3s + 1}$$

$$\stackrel{s=j\omega}{=} \frac{j\omega}{\left(j\omega - \frac{-3 - \sqrt{5}}{2}\right) \left(j\omega - \frac{-3 + \sqrt{5}}{2}\right)} V_{i}$$

$$= \frac{|A_{1}|}{|A_{2}||A_{3}|} e^{j(\phi_{1} - \phi_{2} - \phi_{3})} V_{i}$$

$$H(j\omega) = \frac{V_o}{V_i} = \frac{j\omega}{\left(j\omega - \frac{-3-\sqrt{5}}{2}\right)\left(j\omega - \frac{-3+\sqrt{5}}{2}\right)}$$

Let us plot $|H(j\omega)|$ and $\angle H(j\omega)$:

$$H(j\omega) = \frac{V_o}{V_i} = \frac{j\omega}{\left(j\omega - \frac{-3 - \sqrt{5}}{2}\right)\left(j\omega - \frac{-3 + \sqrt{5}}{2}\right)}$$

Let us plot $|H(j\omega)|$ and $\angle H(j\omega)$:

attenuates both low and high frequencies

Plotting the Frequency Response

- Let's review log-log plots
- Plot transfer functions for R, L, and C on their own
- Intuitive sketching of RL and RC plots
- Examples

dB	power ratio	amplitude ratio
100	10 000 000 000	100 000
90	1 000 000 000	31 620
80	100 000 000	10 000
70	10 000 000	3 162
60	1 000 000	1 000
50	100 000	316.2
40	10 000	100
30	1 000	31.62
20	100	10
10	10	3.162
3	1.995	1.413
1	1.259	1.122
0	1	1
-10	0.1	0.3162
-20	0.01	0.1
-30	0.001	0.031 62
-40	0.000 1	0.01
-50	0.000 01	0.003 162
-60	0.000 001	0.001
-70	0.000 000	1 0.000 316 2
-80	0.000 000	01 0.000 1
-90	0.000 0000	001 0.000 031 62
-100	0.000 000	000 1 0.000 01

Decibels:

$$P_2 = 10^{L/10 \ dB} P_1$$

$$L = 10 \log(P_2/P_1) dB$$

$$P = \frac{V^2}{R} = i^2 * R$$

$$L = 20 \log(V_2/V_1) dB$$

Review of Log Plots

In log-log plots, both axes are on logarithmic (base 10) scale

Easier to see details for small values of y as well as large values of y

Review of Log Plots

Power relations of the form

$$y = kx^p, \qquad p \leq 0$$

may be rendered straight by plotting on log-log paper. Take the logarithm of both sides

$$\log y = \log K + p \log x$$

Now if y is plotted against x on log-log paper we get a line of slope:

$$\frac{\log y_2 - \log y_1}{\log x_2 - \log x_1} = p$$

To draw a line, you need the slope + a point the line passes through On the log-log paper, neither intercept has any useful meaning ($\log x$ never has a zero value)

Pick another point to draw the line

Examples: R, L, and C

- First, we'll see what the frequency response of resistors, capacitors, and inductors looks like to build some intuition
- Then we'll study a general method of approximately sketching the frequency response of complex circuits

Examples: R, L, and C

We know the element laws for resistors, inductors, and capacitors in terms of complex amplitudes of V and I:

Resistor:
$$V_o = RI_o$$

Inductor:
$$V_o = sLI_o = j\omega LI_o$$

Capacitor:
$$V_o = \frac{1}{sC}I_o = \frac{1}{j\omega C}I_o$$

So the elements' frequency response is:

Resistor:
$$H(j\omega) = \frac{V_o}{I_o} = R$$

Inductor:
$$H(j\omega) = \frac{V_o}{I_o} = j\omega L$$

Capacitor:
$$H(j\omega) = \frac{V_o}{I_o} = \frac{1}{j\omega C}$$

Examples: R, L, and C

So here is the frequency response. How do we plot them?

Resistor:
$$H(j\omega)=rac{V_o}{I_o}=R$$
 Inductor: $H(j\omega)=rac{V_o}{I_o}=j\omega L$ Capacitor: $H(j\omega)=rac{V_o}{I_o}=rac{1}{j\omega C}$

Let's calculate the magnitude and phase of the frequency response:

Resistor:
$$\left| \frac{V_o}{I_o} \right| = R$$
, $\angle \frac{V_o}{I_o} = 0$
Inductor: $\left| \frac{V_o}{I_o} \right| = \omega L$, $\angle \frac{V_o}{I_o} = \frac{\pi}{2}$
Capacitor: $\left| \frac{V_o}{I_o} \right| = \frac{1}{\omega C}$, $\angle \frac{V_o}{I_o} = -\frac{\pi}{2}$

Examples: R, L, and C on Linear Scale

Plot the frequency response for R = 1Ω , L = 1μ H, and C = 1μ F

Resistor:
$$\left| \frac{V_o}{I_o} \right| = R, \ \angle \frac{V_o}{I_o} = 0$$
Inductor: $\left| \frac{V_o}{I_o} \right| = \omega L, \ \angle \frac{V_o}{I_o} = \frac{\pi}{2}$
Capacitor: $\left| \frac{V_o}{I_o} \right| = \frac{1}{\omega C}, \ \angle \frac{V_o}{I_o} = -\frac{\pi}{2}$

Examples: R, L, and C on Log Scale

Plot the frequency response for R = 1Ω , L = 1μ H, and C = 1μ F

Resistor:
$$\log \left| \frac{V_o}{I_o} \right| = \log R$$

If we use log scales: Inductor: $\log \left| \frac{V_o}{I_o} \right| = \log L\omega = \log L + \log \omega$

Capacitor:
$$\log \left| \frac{V_o}{I_o} \right| = \log \frac{1}{\omega C} = -\log C - \log \omega$$

Summary of Log Plots

Imagine if you wanted to plot:

$$|H(j\omega)| = |\frac{j\omega + 1}{2j\omega + 1}|$$

- Summing terms is easy to do graphically; products are harder
- On a log scale, products (and divisions) turn into a sum:

$$\log \left| \frac{j\omega + 1}{2j\omega + 1} \right| = \log |j\omega + 1| - \log |2j\omega + 1|$$

You'll see shortly how we plot terms that appear in RL and RC circuits

Intuitive Sketching for RL and RC Circuits

Let's first consider the series RL circuit:

$$H(j\omega) = \frac{V_o}{V_i} = \frac{R}{R + j\omega L}$$
$$= \frac{\frac{R}{L}}{\frac{R}{L} + j\omega}$$

• So we get:

$$|H(j\omega)| = \left| \frac{\frac{R}{L}}{\frac{R}{L} + j\omega} \right|$$

$$\angle H(j\omega) = \tan^{-1} \frac{-\omega L}{R}$$

First, find the asymptotes of the magnitude plot:

$$|H(j\omega)| = \left| rac{rac{R}{L}}{rac{R}{L} + j\omega}
ight|$$

• At low frequencies $(\omega \to 0)$:

$$|H(j\omega)| \approx 1$$

- Hence the magnitude appears as a horizontal line at low frequencies
- At high frequencies $\omega \to \infty$, ω dominates in the denominator

$$|H(j\omega)| \approx \frac{R/L}{\omega} \to \log|H(j\omega)| \approx \log R/L - \log \omega$$

On a log scale, a line with slope = -1 passing through (R/L, 1)

- At low frequencies $(\omega \to 0)$: $|H(j\omega)|=1$
- At high frequencies $\omega \to \infty$, ω dominates in the denominator

$$|H(j\omega)| \approx \frac{R/L}{\omega} \to \log|H(j\omega)| \approx \log R/L - \log \omega$$

- The two asymptotes intersect at: $\omega = \frac{R}{L}$
- This frequency is called the "corner" or "cutoff" frequency

At the cutoff frequency, the real and imaginary components of $H(j,\omega)$ are equal, and $|H(j,\omega)|=\frac{1}{\sqrt{2}}=0.707$

$$|H(j\omega)| \approx \frac{R/L}{\omega} \to \log|H(j\omega)| \approx \log R/L - \log \omega$$

At the cutoff frequency, the real and imaginary components of $H(j,\omega)$ are equal, and $|H(j,\omega)|=\frac{1}{\sqrt{2}}=0.707$

Decibels:

$$P_2 = 10^{L/10 \, dB} P_1$$

 $L = 10 \log(P_2/P_1) \, dB$
 $10 \log(\frac{1}{2}) \sim 3 \, dB$

Recall that power dissipated through impedance Z is $\frac{V_0^2}{Z}$, and $V_0^2 \propto |H(j,\omega)|^2$. At the cutoff frequency, $|H(j,\omega)|^2 = 1/2$. Thus the cutoff frequency also tells you the "3 dB" point, i.e. the frequency at which the output power is halved.

Intuitive Sketching, Phase $\angle H(j, \omega)$

$$H(j\omega) = rac{rac{R}{L}}{rac{R}{L} + j\omega}$$

- At low frequencies ($\omega \to 0$): $\angle H(j\omega) \approx \angle 1 = 0$
- At high frequencies $\omega \gg R/L$, ω dominates in the denominator

$$\angle H(j\omega) \approx \angle \frac{1}{j\omega} = -\frac{\pi}{2}$$

typically V_0 or I_0

transfer function =
$$H(j\omega) = \frac{complex\ amplitude\ of\ the\ output}{complex\ amplitude\ of\ the\ input}$$

When asked to plot the frequency response of a system, you need to draw the approximate sketches of the magnitude and phase as follows:

Plotting the Frequency Response

- Plot $|H(j\omega)|$: the log magnitude plotted against log frequency
- Plot $\angle H(j\omega)$: the angle in linear scale plotted against log frequency

Next Week

- Finish up Transfer Function, Log and Bode Plots
- Begin Filter Design
- Don't forget HW 4 due next Thursday
- Don't forget Lab 4 due next Friday