Module - 1 Sinn D Gamma function i) $\sqrt{n+1} = n / n = n / (n-1) / n = (n-1$ In = (e-x xn-1 dx ii) Not defined for x=0,-1,-2 iii) if n is negative use n = [n+1/n Type: 01 \Rightarrow $\int_{0}^{\infty} e^{-ax^{n}} dx = \frac{1}{n(a)^{n}} \frac{1}{n}$, put $ax^{n} = t$ Type 03: $\Rightarrow \int x^m (\log x)^n dx = (-1)^n \sqrt{n+1}$, put $\log x = -t$ Type 04: $\Rightarrow \int_{0}^{\infty} x^{\alpha} dx = 1$ [a+1], put $a^{\alpha} = e^{t}$ Beta function Properties

(i) $\beta(m,n) = \int_{0}^{\infty} x^{m-1} (1-x)^{n+1} dx$ (i) $\beta(m,n) = \int_{0}^{\infty} m \int_{0}^{\infty} (m+n) dx$ (ii) $\beta(m,n) = 2 \int \sin^{2m-1} x \cos^{2m-1} x dx$ ii) $m \int m + 1 = \sqrt{1} \sqrt{2m}$ (iii) $\beta(m,n) = \int_{-\infty}^{\infty} \frac{x^{m-1}}{(1-x)^{m+n}} dx$ Type 01: $\Rightarrow \int_{a}^{b} (x-a)^{m} (b-x)^{n} dx = (b-a)^{m+n+1} \times \beta(m+1, m+1)$ Type 02: $\Rightarrow \int x^{m-1} (1-x)^{n-1} dx = \beta(m,n)$ put x = t Type $03:\Rightarrow \int_{(1+x)^{m+n}}^{\infty} x^{m-1} = \beta(m,n)$, put $x = tom^{2}$

	Page
	Type 04: $\Rightarrow \int_{0}^{x} \sin^{n+}x dx = 2^{n-1} g(\eta_2, \eta_2)$
	put $tanx = t$, $Sinx = 2t$, $come = 1-t^2$ $1+t^2$ $1+t^2$
	Type $05:\Rightarrow \int_{0}^{\pi/2} \cos^{2m-1}\theta \sin^{2n-1}\theta d\theta = \beta(m,n)$ $(a^{2}\cos^{2}\theta + b^{2}\sin^{2}\theta)^{m+n} = 2a^{2m}b^{2m}$
	Pinide by costo to convert into tom & Sec. form
	Type 06: $\Rightarrow \int \frac{x^{m-1} + x^{n-1}}{(1+x)^{m+n}} dx = \beta(m,n)$
Ð	DUIS (Diffrentiation under integral sign). 1. Constant limits
	$I = \int_{\alpha}^{\beta} f(x, a) dx$, then $dI \int_{\alpha}^{\beta} (\nabla f) dx$
	where &, & are constants & does not depend on a
	2. When limits are a function of (a). $I = \frac{\psi(a)}{\psi(a)} f(x, a) dx$ $\psi(a)$
1 %	then $\frac{df}{da} = \int \frac{\partial f}{\partial a} dx + \frac{\partial f}{\partial a} \left[f(f(a), a) \right] - \frac{\partial f}{\partial a} \left[f(g(a), a) \right]$
	+(8) (18-2) (3)
	" Topp gas of the only of the second
	Control of the second s
	\$ 170 Suit 8
	Demonstrate days to be a few and the second
	FIRST CONTRACTOR OF THE PARTY O

	dimenute
	Module -3.
	D.E of 1st order & 1st Deegne.
1.	Variable Seprable $\Rightarrow \frac{dy}{dz} = \frac{f(x)}{g(y)} \Rightarrow \int g(y)dy = \int f(x)dx + C$
	Homogeneous Equations
	Deegre of every term is some. > put y = Vx, then apply vomable seprable
3.	Non-Homogeneous Equations.
	put x=x'+h & y=y'+k (when a + b)
	dy' = a(x'+h) + b(y'+k) + C
	$\frac{dy'}{dx'} = \frac{a(x'+h) + b(y'+k) + c}{a'(x'+h) + b'(y'+k) + c'}$
3=(+	Such that $ah + bK + C = 0$ \Rightarrow obtain (h, K) . $a'h + b'K + C' = 0$ \Rightarrow obtain (h, K) .
	then equation is converted into homogeneous
	the subtitute valves of x &y in place of x'8 y'.
4.	Exact Diffrential Equations,
418	Mdx + Ndy = 0
	Condition => OM = DN Dy DX
	Solution => (Max (treating y constant) + (Terms free from) dy = C
	Ndy (treating x constant) + ((Terms free from) dx = C
5.	Non-Exact diffrential Equations
_	> Mdx + Ndy = 0 where my + m
	sh, sx
	Case i:- M & N over homogeneous eqn in x and y then I.f = 1 Mx+Ny
	then $I_{of} = 1$
1	Case is if equation is form f(xy)ydx + g(xy)xdy = 0
	Ethen $T \cdot F = \frac{1}{Mx - Ny}$ here $Mx - Ny \neq 0$
	MIX-NY

Case
$$318$$
 if $\frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) = f(y)$
then $I.F = e^{\int f(y) dy}$

Case iv : if
$$\int_{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right) = f(x)$$

then $I.F = e^{\int_{N} f(x) dx}$

Then Next Step \Rightarrow M* = Mx(IF); N* = Nx(IF). Sufficiently \Rightarrow Heneral Solution is $\int M^* dx \text{ (treating } y) + \int (Torms \text{ free from }) dy = 0 C$ Constant \Rightarrow X in N*

Case $V = Eq^n x^{m_1} y^{m_2} (a_1 y dx + b_1 y dy) + x^{n_1} y^{n_2} (a_2 y dx + b_2 x dy) = 0$ then $I = x^h y^k$ where $m_1 + h + 1 = m_2 + k + 1 = m_2 + k + 1$ $a_1 = b_1 = a_2 = b_2$

6. hineer Diffrential Equations

$$dy + Pby = Q(x) / dx + P(y)x = Q(y)$$

$$dx + T \cdot f = e^{\int P(x)dx} / T \cdot f = e^{\int P(y)dy}.$$

7. Non-linear Diffrential Equation $\frac{dy}{dx} + P(x)y = \mathcal{G}(x)y^n$

$$\frac{1}{y^n} \left(\frac{dy}{dx} \right) + P(x)_n \left(\frac{1}{y^{n-1}} \right) = \varphi(x)$$

put $y^{1-n} = t$, then solve as linear D. F. 8 then substitute $t = y^{1-n}$

