华中科技大学光学与电子信息学院考试试卷(A卷)

2014 ~2015 学年度第 2 学期

课程名称:光纤光学				_ 考试年级:2012			
考试	时间:2	015年5月	25 日	_ =	考试方式:闭卷		
学生姓名				专业班级			
	题号	_	=	三	四	总分	
	题分						
	得分						

一、 选择题(下列各题四个备选答案中有一个正确答案,请将其代号写在题 干前面的括号内。每小题 2 分,共 30 分)

- ()1 制备低损耗的通信光纤,应采用以下哪种方法:
 - A、通过对纤芯材料的掺杂,使折射率增加,而包层材料不掺杂;
 - B、通过对包层材料的掺杂,使折射率减少,而纤芯材料不掺杂;
 - C、通过对纤芯和包层材料同时进行掺杂:
 - D、通过对纤芯材料进行铒离子的掺杂,制作成掺铒光纤。
- ()2 以下关于光纤的说法,哪一种是错误的:
 - A、光纤作为光波导,能充分约束光的横向传播,纵向实现低损耗的 传输:
 - B、光纤在敷设中一定要注意防水,以降低传输损耗和增强耐用性;
 - C、光纤具有很好的温度稳定性,可在摄氏-80 度至+80 度的范围内 广泛使用;
 - D、光纤弯曲必将导致损耗,因此在使用过程中光纤应避免弯曲。
- () 3 光作为一种电磁波,在光纤的纤芯包层的界面上应满足一下条件:
 - A、E、H的法向分量与D、B的切向分量均连续;
 - B、E、D的切向分量与H、B的法向分量均连续;
 - $C \times E \times D$ 的法向分量与 $H \times B$ 的切向分量均连续;
 - D、E、H的切向分量与D、B的法向分量均连续。
- () 4 有关 HE11 模,以下论述错误的是:
 - A、唯一在单模光纤中传输的模式;

- B、 在阶跃折射率分波的光纤中唯一不能截止的模式; C、在阶跃折射率光纤速度最快的模式; D、它是一种椭圆偏振光。) 5 以下哪种波长的光可在掺铒光纤放大器中获得: A, 1480nm; B、1310nm; C, 980nm; D、1545nm。) 6 以下哪种光纤是非零色散位移光纤: A G.651; B, G.652; C, G.653; D、G.655。 ()7 已知 V=12,则 SIOF 光纤中支持传输的模式总数近似为: A, 80; B, 70; C、60; D, 50°
- ()8 现有一个 2×2 定向耦合器,耦合分光比为 70:30,从它的 1、2 端口同时输入同波长功率均为 P_0 的光波,则在 1 端口的直通端的光功率为:
 - $A \cdot P_0$;
 - B. $0.7P_0$;
 - C_{5} 0.3 P_{0} ;
 - D, $2P_{0}$ °
- ()9 TE与TM模具有相同的截止条件,即:
 - A, $J_0=0$;
 - B, $J_1=0$;
 - C, $J_{1-2}=0$;
 - $D_{\downarrow} J_{l}=0$
- () 10 有关光纤弯曲,下面论述错误的是:
 - A、光纤弯曲越强烈, 损耗越大;
 - B、 光纤的模场半径越大, 弯曲损耗越大;
 - C、光纤的截止波长越大,弯曲损耗越大;
 - D、光纤中的光场伸展越远,弯曲损耗越大。
- ()11 下列光源与光纤耦合时,通过透镜变换的方法不会改善耦合效率的有:

- A、 半导体激光器:
- B、 输出准直光束的固体、气体激光器;
- C、 空间辐射角为 360° 的点光源;
- D、 空间辐射角为 180°的点光源。
- ()12 有关光纤光栅,以下说法正确的是:
 - A、Bragg 光纤光栅是反射型光栅;
 - B、啁啾 Bragg 光纤光栅是透射型光栅;
 - C、长周期光纤光栅是导模间的耦合;
 - D、Bragg 光纤光栅是导模与泄漏模间的耦合。
- ()13 在光时域反射仪(OTDR)进行测量的过程中,不能测量的光纤参数是:
 - A、任意光纤长度;
 - B、连接点的位置:
 - C、背向散射功率;
 - D、光纤连接点的损耗。
- ()14 有关光纤中色散补偿论述错误的是:
 - A、 通过对光信号预设啁啾的方法, 可抑制任何光纤的脉冲展宽;
 - B、正色散的光纤使光脉冲展宽,而负色散的光纤使光脉冲压缩,所以,负色散的光纤也称为色散补偿光纤;
 - C、啁啾光纤光栅与光环形器可构成色散补偿模块;
 - D、 通过正、负色散光纤相连, 可抑制无啁啾光脉冲的展宽。
- () 15 有关光子带隙光子晶体光纤,以下哪种说法是错误的?
 - A、光子带隙光子晶体光纤的传导光的原理与普通的光纤不同;
 - B、在光子带隙光子晶体中传导光的波长带宽比普通的光纤窄;
 - C、光子带隙光子晶体可等效成阶跃折射率分波光纤;
 - D、不同波长的光将在光子带隙光子晶体光纤不同的区域传输。

二、简答题(每小题5分,共25分)

1. 简述长周期光纤实现波长调谐的基本原理。

2. 简述利用功率传导法测量光纤截止波长的方法。

3.	简述自聚焦透镜与平方律光纤、普通球面透镜的异同点。
4.	标准单模光纤的损耗分布图中有三个低损耗窗口,造成这样分布的原因是什么?哪个窗口更低,为什么?
5.	简述三端口光环形器的工作原理,试用三端口光环形器构建光全反射镜,并 作图说明。
Ξ	设计题:每小题 5 分,共 15 分 1. 设计一种光纤色散补偿模块,要求画出示意图,并简要阐述其工作原理。

2.	设计一种光分插复用器 原理。	(OADM),	要求画出示意图,	并简要阐述其工作

3. 利用《光纤光学》所学的器件,设计一种多波长(波长数>2)的光纤激光器,要求画出示意图,并简要阐述其工作原理。

四. 计算题: 每题 10 分, 共 30 分

1. 已知阶跃折射率分布光纤的色散曲线如下图所示,且对于 1310nm 的光波恰好 是单模光纤,若将一束氦氖激光注入至此光纤中,将激励起哪些精确模式传输? 若该光纤为线弱导光纤,又将会激励起哪些线偏振模传输?

2. 如下图所示的一个 2×2 定向耦合器,1、2 端口为输入,3、4 端口为输出。从 1 端口输入 200mW, 2 端口输入 400mW, 时,3、4 端口分别输出 130mW 与 170mW。试计算从 1、2 端口分别输入 3dBm 与-7dBm 时,3、4 端口分别输出的光功率为多少?(要求写出计算过程,否则不给分!)

 $G(\lambda) = 22 \cdot \cos \left[\frac{(\lambda - 1550(nm))\pi}{12(nm)} \right]$ (dB)

(1) 当 EDFA 的增益恰好弥补系统的损耗时,求该 DWDM 系统中传输的波长数;(2) 若用 OTDR 对系统进行测量,试画出测得曲线图。

