Due Thursday 02/14/2022 (at the beginning of the class)

1. Consider the negative feedback interconnection:

- (a) If possible, give an example of P and C transfer functions such that $\frac{1}{1+PC}$ and $\frac{P}{1+PC}$ are stable, but $\frac{C}{1+PC}$ is not.
- (b) If possible, give an example of P and C transfer functions such that $\frac{C}{1+PC}$ and $\frac{P}{1+PC}$ are stable, but $\frac{1}{1+PC}$ is not.
- (c) If possible, give an example of P and C transfer functions such that $\frac{1}{1+PC}$ and $\frac{C}{1+PC}$ are stable, but $\frac{P}{1+PC}$ is not.
- 2. For the following transfer functions, obtain the asymptotes of the Bode plots and compare them with the Bode plots generated in MATLAB. Include the results from MATLAB.

(a)
$$\frac{100s + 100}{s^2 + 110s + 1000}$$

(b)
$$\frac{10s}{s^2 + 3s}$$

(c)
$$\frac{-100s}{(s+1)^2(s+10)}$$

(d)
$$30\left(\frac{s+10}{s^2+3s+50}\right)$$

(e)
$$4\left(\frac{s^2+s+25}{s^3+100s^2}\right)$$

(f)
$$\frac{10}{s^2(1+0.2s)(1+0.5s)}$$

- 3. For the following two Bode plots,
 - (a) Determine the breakpoints and the transfer function.
 - (b) Determine the gain cross-over frequency ω_c and the phase cross-over frequency ω_{180} .

Bode plot 1:

Bode plot 2:

- 4. Consider the feedback interconnection of Problem 1 with the PI controller $C(s) = \frac{10(s+3)}{s}$ and plant $P(s) = \frac{-0.5(s^2 2000)}{(s-3)(s^2 + 50s + 1000)}$.
 - (a) Is the feedback system stable? Why?
 - (b) Use the Bode plot of the open loop transfer function L(s) = P(s)C(s) to find the phase cross-over frequencies ω_0 such that $\angle L(j\omega_0) = \pm 180^\circ$. Use this information to compute the gain margin(s) of the feedback system. Check your answers using the **allmargin** command in MATLAB.
 - (c) For each gain margin g_0 obtained in the previous part, construct the closed-loop using the perturbed loop transfer function $g_0L(s)$ and verify that the closed-loop has poles at $\pm j\omega_0$.
 - (d) Compute $||S T||_{\infty}$ and the corresponding frequency ω_p where the peak gain of S T is achieved.
 - (e) What is the symmetric disk margin m for this plant and controller? Verify your answer using $\mathbf{dm} = \mathbf{diskmargin}(P*C)$. Note that the $\mathbf{diskmargin}$ command uses the convention $\mathbf{m} = \mathbf{dm.DiskMargin}/2$.
 - (f) Construct an α on the boundary of Disk $\left(\frac{1-m}{1+m},\frac{1+m}{1-m}\right)$ such that the perturbed closed-loop $S_{\alpha}:=\frac{1}{1+\alpha L(s)}$ has a pole at $j\omega_{p}$. Verify your construction by forming S_{α} and demonstrating that it has a pole at $j\omega_{p}$.

Hint: Assume $||S - T||_{\infty} = 1/m$ at frequency ω_p . Then there exists a complex number $S(j\omega_p) - T(j\omega_p) = 1/z$ where |z| = m. Algebraically show that $\alpha = \frac{1+z}{1-z}$ satisfies $1 + \alpha L(j\omega_p) = 0$ and this α is in the symmetric disk defined by m.