Devel R0X

Criptografía RSA en CTFs

Daniel Espinoza

División de Ciberseguridad

Consultant/Advocate/Cryptographer

D[0x] Agenda/._

La matemática detrás RSA

D[0x] Agenda/._

La matemática detrás RSA

Ejemplo de vulnerabilidad en RSA

La matemática detrás RSA

Ejemplo de vulnerabilidad en RSA

Consejos y conclusiones

D[0x] Rivest-Shamir-Adleman (RSA): Confidencialidad

D[0x] Rivest-Shamir-Adleman (RSA): Cifrado

$$m = 5, e = 3, n = 33$$

$$m = 5, e = 3, n = 33$$

 $m^e = 5^3 = 125$

$$m = 5, e = 3, n = 33$$
 $m^e = 5^3 = 125$
 $c = 125 \% 33$

$$m = 5, e = 3, n = 33$$

 $m^e = 5^3 = 125$
 $c = 125 \% 33$
 $c = 26$

D[0x] Rivest-Shamir-Adleman (RSA): Descifrado

$$c = 26, d = 7, n = 33$$

$$c = 26, d = 7, n = 33$$

 $c^d = 26^7 = 8031810176$

$$c = 26, d = 7, n = 33$$

 $c^d = 26^7 = 8031810176$
 $m = 8031810176 \% 33$

$$c = 26, d = 7, n = 33$$
 $c^{d} = 26^{7} = 8031810176$
 $m = 8031810176 \% 33$
 $m = 5$

$$m \equiv (m^e)^d \pmod{m}$$

D[0x] Rivest-Shamir-Adleman (RSA): Seguridad

 $\eta = \eta \cdot q$

D[0x] Rivest-Shamir-Adleman (RSA): Seguridad

$$n = p \cdot q$$

$$\phi(n) = (p-1) \cdot (q-1)$$

$$n = p \cdot q$$

$$\phi(n) = (p-1) \cdot (q-1)$$

$$d \equiv e^{-1} \pmod{\phi(n)}$$

 $m = p \cdot q$ n = 33

$$n = p \cdot q$$

$$n = 33$$

$$p = 3, q = 11$$

D[0x] Rivest-Shamir-Adleman (RSA): Seguridad

n = 16189755987346577147637270807409027159945 $\overline{647900347095210097618435446771695937725167992183}$ $917884002118754959121077634096\overline{463876343935811646}$

D[0x] Rivest-Shamir-Adleman (RSA): Seguridad

2048 bits para n, es decir, 1024 bits para p y q

2048 bits para n, es decir, 1024 bits para p y q

$$e = 0x10001 = 65537$$

D[0x] Rivest-Shamir-Adleman (RSA): Autenticación

 $s \equiv m^d \pmod{n}$

D[0x] Rivest-Shamir-Adleman (RSA): Verificar

$$m' \equiv s^e \pmod{n}$$

$$m' \equiv s^e \pmod{n}$$

ullet Si m'=m , la firma es válida

$m' \equiv s^e \pmod{n}$

- ullet Si m'=m , la firma es válida
- Si m'
 eq m , la firma no es válida

D[0x] Rivest-Shamir-Adleman (RSA): Firmar más rápido (RSA-CRT)

$$s_p \equiv m^{d_p} \pmod{p}$$

$$s_p \equiv m^{d_p} \pmod{p}$$

 $s_q \equiv m^{d_q} \pmod{q}$

$$s_p \equiv m^{d_p} \pmod{p}$$

 $s_q \equiv m^{d_q} \pmod{q}$
 $s = s_q + h \cdot q$

D[0x] Rivest-Shamir-Adleman (RSA): Firmar más rápido (RSA-CRT)

$$d_p = d \% (p-1)$$

$$d_p = d \% (p-1)$$
 $d_q = d \% (q-1)$

$$d_p = d \% (p - 1)$$

$$d_q = d \% (q - 1)$$

$$h \equiv q^{-1} \cdot (s_p - s_q) \pmod{p}$$

D[0x] Crypto/Small StEps (HTB CyberApocalypse CTF 2023)

```
from Crypto.Util.number import getPrime, bytes_to_long
FLAG = b"HTB{???????????}"
assert len(FLAG) == 20
class RSA:
    def __init__(self):
        self.q = getPrime(256)
        self.p = getPrime(256)
        self.n = self.q * self.p
        self.e = 3
    def encrypt(self, plaintext):
        plaintext = bytes_to_long(plaintext)
        return pow(plaintext, self.e, self.n)
def menu():
    print('[E]ncrypt the flag.')
    print('[A]bort training.\n')
    return input('> ').upper()[0]
```

```
def main():
    print('This is the second level of training.\n')
   while True:
        rsa = RSA()
        choice = menu()
        if choice == 'E':
            encrypted_flag = rsa.encrypt(FLAG)
            print(f'\nThe public key is:\n\nN: {rsa.n}\ne: {rsa.e}\n')
            print(f'The encrypted flag is: {encrypted_flag}\n')
        elif choice == 'A':
            print('\nGoodbye\n')
            exit(-1)
        else:
            print('\nInvalid choice!\n')
            exit(-1)
if __name__ == '__main__':
   main()
```

Ref: 7Rocky

```
def main():
    print('This is the second level of training.\n')
    while True:
         rsa = RSA()
         choice = menu()
         if choice == 'E':
             encrypted flag = rsa.encrypt(FLAG)
             print(f'\nThe public key is:\n\nN: {rsa.n}\ne: {rsa.e}\n')
             print(f'The encrypted flag is: {encrypted_flag}\n')
         elif choice == 'A':
             print('\nGoodbye\n')
             exit(-1)
         else:
                                                  print('\nInvalid choice!\n')
                                                  $ nc 188.166.152.84 32213
                                                  This is the second level of training.
             exit(-1)
                                                  [E]ncrypt the flag.
                                                  [A]bort training.
if __name__ == '__main__':
                                                  > E
    main()
                                                  The public key is:
```

Ref: 7Rocky

The encrypted flag is:

D[0x] Detección de "cosas extrañas"

```
from Crypto.Util.number import getPrime, bytes_to_long
FLAG = b"HTB{???????????}"
assert len(FLAG) == 20
class RSA:
    def __init__(self):
        self.q = getPrime(256)
        self.p = getPrime(256)
        self.n = self.q * self.p
        self.e = 3
    def encrypt(self, plaintext):
        plaintext = bytes_to_long(plaintext)
        return pow(plaintext, self.e, self.n)
def menu():
    print('[E]ncrypt the flag.')
    print('[A]bort training.\n')
    return input('> ').upper()[0]
```

D[0x] Búsqueda ("small public exponent rsa")

D[0x] Búsqueda ("small public exponent rsa")

Small eIf e is sufficiently small, the exponent is ineffective at encrypting m. Let's say $m^e < N$; in this case, we can simply take the eth root of e. For example, if e = 3, then we can calculate $m = \sqrt[3]{c}$. If $m^e > N$ then this is a bit more secure, but we can progressively add more multiples of N until the cube root gives us a valid answer:

Python

In Python we can use the gmpy3 iroot function:

from gmpy2 import iroot

m = iroot(ct, e)

Low Exponent Attack

Magic RSA Nahamcon CTF 2024

INTRODUCTION

In this blog, we will be discussing about the RSA cryptosystem and a flaw in its implementation that arises when the value of the exponent is set very low. This attack is referred to as the **Low Exponent Attack** or the **Cube-Root Attack**.

D[0x] Búsqueda ("cube root attack rsa")

$$c \equiv m^3 \pmod{n}$$

$$c \equiv m^3 \pmod{n}$$

Si $m^3 < n$, entonces el módulo no se aplica!

$$c = m^3$$

$$c = m^3$$

$$m = \sqrt[3]{c}$$

D[0x] Implementación del ataque

```
$ python3 -q
>>> from gmpy2 import iroot
>>>
>>> C =
70407336670535933819674104208890254240063781538460394662998902860952366
43917646744794773768095227763733052381896210468555325040251298989788605
>>> e = 3
>>>
>>> m = iroot(c, e)[0]
>>> bytes.fromhex(hex(m)[2:])
b'HTB{5ma1l_E-xp0n3nt}'
```

Ref: 7Rocky

D[0x] Búsqueda: artículos científicos

3 Low Private Exponent

To reduce decryption time (or signature-generation time), one may wish to use a small value of d rather than a random d. Since modular exponentiation takes time linear in $\log_2 d$, a small d can improve performance by at least a factor of 10 (for a 1024 bit modulus). Unfortunately, a clever attack due to M. Wiener [22] shows that a small d results in a total break of the cryptosystem.

Theorem 2 (M. Wiener) Let N = pq with $q . Let <math>d < \frac{1}{3}N^{1/4}$. Given $\langle N, e \rangle$ with $ed = 1 \mod \varphi(N)$, Marvin can efficiently recover d.

Proof The proof is based on approximations using continued fractions. Since $ed = 1 \mod \varphi(N)$, there exists a k such that $ed - k\varphi(N) = 1$. Therefore,

$$\left| \frac{e}{\varphi(N)} - \frac{k}{d} \right| = \frac{1}{d\varphi(N)}.$$

Hence, $\frac{k}{d}$ is an approximation of $\frac{e}{\varphi(N)}$. Although Marvin does not know $\varphi(N)$, he may use N to approximate it. Indeed, since $\varphi(N) = N - p - q + 1$ and $p + q - 1 < 3\sqrt{N}$, we have $|N - \varphi(N)| < 3\sqrt{N}$.

D[0x] Consejos y conclusiones

Buscar con Keywords según la lectura del código fuente. Utilizar variaciones para encontrar información relevante.

Leer artículos científicos sin miedo. Buscar sólo el resultado o ejemplo clave.

Pensar lateralmente. Factorizar directamente es el camino más difícil. Quizás exista información relevante que permita factorizar más fácil.

D[0x]

¡Mucho éxito! ¡Aprendan y disfruten de un nuevo <mark>Campo de Marte</mark>!

D[0x]

Colaborative Security: Hacking Together for a Stronger Defense._

www.develrox.com
info@develrox.com

DevelR0X