CODIFICACION - PARTE II

```
#include<stdio.h>
main() {
/* declaración de variables */
     long int i, j;
     char letra;
     float x, y;
     double u, v;
/* inicialización de
                          "C:\Documents and Settings\Adm... - □ ×
variables*/
                         Enteros largos: 3458796 y 57498746
      i = 3458796:
                          Caracter: z
                         float: 1.3e+038 y 1.300000e+038
double: 4e-308 y 4.000000e-308
     i = 57498746;
     letra = 'z';
                         Process returned 0 (0x0)
                                                   execution time : 0.015 s
                         Press any key to continue.
     x = 1.3e38:
     y = 1.3e38;
                          •
     u = 4e-308:
     v = 4e-308:
     printf("Enteros largos: %ld y %ld \n", i, j);
     printf("Caracter: %c \n", letra);
     printf("float: %g y %e \n", x, y);
     printf("double: %g y %le \n", u, v); }
```

```
"C:\Documents and Settings\Adm... - □ ×
                            con 2 decimales: 45.38
#include<stdio.h>
                            con 7 decimales: 45.3750000
main()
                             = 3.141593
                             con 3 decimales: 3.142
                             con 12 decimales: 3.141592653590
                             con 24 decimales: 3.141592653589793100000000
/* declaración e
                                                 execution time : 0.015 s
                          Process returned 0 (0x0)
                          Press any key to continue.
inicialización de
variables*/
float a = 45.375;
double pi = 3.141592653589793115997963;
/* salida de a*/
printf("a: %f \n", a);
printf("a con 2 decimales: %.2f \n", a);
printf("a con 7 decimales: %.7f \n", a);
/*salida de pi*/
printf("\npi = % If \n", pi);
printf("pi con 3 decimales: %.3lf \n", pi);
printf("pi con 12 decimales: %.12lf \n", pi);
printf("pi con 24 decimales: %.24lf \n", pi);
```

```
Error!!!!
#include<stdio.h>
main(){
/* Inicializa una variable entera*/
int millon = 1000000;
/* La siguiente linea genera un error,
la variable billon = 10^12 supera a 2^31 */
int billon = millon*millon;
/* imprime dato errado*/
printf(" %d al cuadrado es: %d \n", millon, billon);
    "C:\Documents and Settings\Ad... - \Box
    1000000 al cuadrado es: -727379968
    Process returned 0 (0x0)
                          execution time : 0.000 s
    Press any key to continue.
```

```
"C:\Documents and Settings\Adm... - □ ×
Lectura de datos
                           Ingrese su antiguedad en meses: 120
#include<stdio.h>
                           Ingrese su sueldo: 3400
main()
                           nuevo sueldo: 4624.000000
                                                 execution time : 16.515 s
                           Process returned 0 (0x0)
                           Press any key to continue.
/* Declaración de
variables*/
int antiguedad;
float sueldo:
/* lee antiguedad*/
printf("Ingrese su antiguedad en meses: ");
scanf("%d", &antiguedad);
/* lee sueldo*/
printf("Ingrese su sueldo: ");
scanf("%f", &sueldo);
/* Imprime nuevo sueldo*/
printf("\mnuevo sueldo: \%f \n\", sueldo*(1+0.3*antiguedad/100));
```

```
#include<stdio.h>
                             "C:\Documents and Settings\Ad...
main()
/* Declaraci_on de
                              resta es -1
producto es 12
                              division es 0.000000
variables*/
                              division con molde es 0.750000
int a = 3:
                            Process returned 0 (0x0)
                                                  execution time : 0.000 s
int b = 4:
                            Press any key to continue.
int suma = a+b;
int resta = a-b;
int producto = a*b;
double division = a/b;
int residuo = a %b;
/* imprime contenido de variables*/
printf("a = \%d y b = \%d \n", a, b);
printf("La suma es %d \n", suma);
printf("La resta es %d \n", resta);
printf("El producto es %d \n", producto);
printf("La division es %lf \n", division);
printf("La division con molde es %lf \n", (double)a/b);
printf("El residuo de dividir %d entre %d es %d \n", b, a, residuo);}
```

```
Operadores Relacionales
 #include<stdio.h>
 main()
                             "C:\Documents and Settings\Ad...
                              = 2, b = 5 y c = -3
 /* Declaracion de
                             a!=b da como resultado 1
                             <=b da como resultado 1
 variables*/
                            a==b da como resultado 0
                            a=b da como resultado 5
                            a==b da como resultado 1
 int a. b. c:
                            Process returned 0 (0x0)
                                                  execution time : 0.015 s
 /* Inicializacion de
                            Press any key to continue.
 variables*/
 a = 2:
 b = 5:
c = -3:
 printf("a = %d, b = %d y c = %d \n\n", a, b, c);
 printf("a!=b da como resultado %d \n", a!=b);
 printf("c<=b da como resultado %d \n", c<=b);
 printf("a==b da como resultado %d \n", a==b);
 printf("a=b da como resultado %d \n", a=b);
 printf("a==b da como resultado %d \n", a==b);}
```

```
Operadores Lógicos
                               "C:\Documents and Settings\Ad... - 
                                = 2, b = 5 y c = -3
 main()
                                && b produce como resultado 1
&& c produce como resultado 1
                                || b produce como resultado 1
                                II c produce como resultado 1
                                 produce como resultado O
 /* Declaracion de
                               Process returned 0 (0x0)
                                                      execution time : 0.000 s
 variables*/
                               Press any key to continue.
 int a, b, c;
 /* Inicializacion de
 variables*/
 a = 2:
 b = 5:
 c = -3:
 printf("a = %d, b = %d y c = %d \ln n", a, b, c);
 printf("a && b produce como resultado %d \n", a && b);
 printf("a && c produce como resultado %d \n", a && c);
 printf("a || b produce como resultado %d \n", a || b);
 printf("b || c produce como resultado %d \n", b || c);
 printf("!c produce como resultado %d \n", !c);
```

```
Post y Preincremento
                             "C:\Documents and Settings\Ad... - □ ×
#include<stdio.h>
main()
                             Process returned 0 (0x0)
                                                 execution time : 0.015 s
                            Press any key to continue.
/* Declaracion de
variables*/
int a, b, c, d;
/* Inicializacion de variables*/
a = 10;
c = 10;
/*Operador de preincremento */
b = ++a:
printf("a = \%d y b = \%d \n", a, b);
/*Operador de postincremento */
d = c++;
printf("c = %d y d = %d \n", c, d);
```

```
Precedencia de Operadores
#include<stdio.h>
main()
/* Declaracion de variables*/
float a, b, c, d, e;
/* Inicializacion de variables*/
a = 1.0 + 2.0 * 3.0:
b = 6.0 / 3.0 * 2.0;
c = 6.0 / (3.0 * 2.0);
d = ! 1 < 4 + 8:
e = ! (1 < 4 + 8);
printf("a = %f, b = %f, c = %f, d = %f y e = %f\n", a, b, c, d, e);
   "C:\Documents and Settings\Administrador\Mis doc... - □ ×
    = 7.000000, b = 4.000000, c = 1.000000, d = 1.000000 y e = 0.000000
  Process returned 0 (0x0) execution time : 0.000 s
  Press any key to continue.
```

Funciones Matemáticas

Función	Descripción	Argumentos	Resultado
sqrt(x)	raíz cuadrada \sqrt{x}	double	double
pow(x,y)	potencia x^y	double, double	double
exp(x)	exponencial	double	double
log(x)	logaritmo natural	double	double
sin(x)	seno	double	double
cos(x)	coseno	double	double
tan(x)	tangente	double	double
asin(x)	arco seno	double	double
acos(x)	arco coseno	double	double
atan(x)	arco tangente	double	double
abs(x)	valor absoluto de entero	int	int
fabs(x)	valor absoluto de double	double	double
ceil(x)	redondea hacia arriba x	double	int
floor(x)	redondea hacia abajo x	double	int

```
Area del circulo
#include<stdio.h>
#include<math.h>
main()
/* Declaracion de variables*/
double r, area;
printf("Ingrese el radio del circulo: ");
scanf("%If", &r);
area =M_PI*pow(r,2); /*M_PI esta definido en math.h*/
printf("El área del círculo es %lf \n", area);
        "C:\Documents and Settings\Adm... - □ ×
       Ingrese el radio del circulo: 2
El area del cýrculo es 12.566371
       Process returned 0 (0x0) execution time : 2.671 s
       Press any key to continue.
```

```
"C:\Documents and Settings\Adm... - □ ×
Area del triángulo
                           Ingrese los lados del triangulo: 2 3 4
                           El area del triangulo es 2.904738
#include<stdio.h>
                          Process returned 0 (0x0)
Press any key to continue.
                                                  execution time: 7.078 s
#include<math.h>
main()
                           •
/* Declaraci_on de variables*/
double a, b, c, s, area;
printf("Ingrese los lados del triangulo: ");
scanf("%lf %lf %lf", &a, &b, &c);
/* Calcula el area con la formula de Heron*/
s = (a+b+c)/2; /* semiperimetro*/
area = sqrt(s*(s-a)*(s-b)*(s-c));
printf("El area del triangulo es %lf \n", area);
```



```
Estructura selectiva doble
                                                        INICIO
  #include<stdio.h>
  main()
  { /*Declaracion de variables*/
                                                       LEER NOTA
  float NOTA;
  /* Ingresa nota*/
                                                  SI
                                                                 NO
                                                       NOTA >= 3
  printf("Ingrese nota: ");
  scanf("%f", &NOTA);
  /* condicional*/
                                            "aprobado"
                                                                   "reprobado"
  if (NOTA \geq 3.0)
  printf("aprobado \n");
  else
  printf("reprobado \n");
                                                          FIN

■ "C:\Documents and Settings\Adm... - □ ×

         Ingrese nota: 5
         aprobado
         Process returned 0 (0x0)
                                 execution time : 3.296 s
         Press any key to continue.
```

Estructura selectiva anidada

Dado un entero, determinar si es par y en caso de no serlo, ver si es divisble por 3.

```
#include<stdio.h>
main(){
/*Declaracion de variables*/
int a:
/* leer enteto*/
printf("Ingrese entero: ");
scanf("%d", &a);
/* condicional if-else*/
if (a %2==0)
   printf(" %d es par", a);
else
 {if (a %3==0)
  {printf(" %d es divisible por tres", a);}
 else
  {printf(" %d no es divisible por tres",a);}
```


Determinar si el punto de coordenadas (x,y) está en el interior de la circunferencia con centro en el origen y radio 3.

```
#include<stdio.h>
#include <math.h>
                                                                  INICIO
main()
{ /*Declaracion de variables*/
                                                                   x, y
float x,y;
float expr;
/* Ingresar coordenadas*/
                                                             expr < -- x^2 + y^2
printf("Ingrese x e y: ");
scanf("%f", &x);
scanf("%f", &y);
                                                          SI
                                                                          NO
                                                                 expr < 9
expr=pow(x,2)+pow(y,2);
if(expr<9)
                                                     "Sí está"
                                                                              'No está"
printf("Si esta");
else
printf("No esta");
            "C:\Documents and Settings\Ad...
                                                                   FIN
           Ingrese x e y: 1.5 4
            Process returned 0 (0x0)
                                   execution time : 6.765 s
            ress any key to continue.
                                                                                 16
```

Dado un número entero imprimir si es par, impar o nulo

Estructura de control repetitiva - FOR

Realice un programa en C que lea N números enteros desde el teclado y cuente cuántos de ellos son ceros.

```
#include<stdio.h>
main()
int k. N. NUM. NUMCEROS:
NUMCEROS = 0; /* variable contadora*/
printf("Numero de datos a ingresar: ");
scanf("%d", &N);
for (k=1; k<=N; k++) {
printf("Ingrese numero: ");
scanf("%d", &NUM);
if (NUM==0)
NUMCEROS = NUMCEROS + 1:
printf("Numero de ceros: %d \n", NUMCEROS);

■ "C:\Documents and Settings\Adm... - □ ×

Numero de datos a ingresar: 3
                      execution time : 5.890 s
Process returned 0 (0x0)
Press any key to continue
```


Estructura de control repetitiva - WHILE

Mostrar en pantalla la suma de dos números enteros leídos por teclado. Repetir el proceso cuantas veces se desee.

```
#include<stdio.h>
main(){
int NUM1, NUM2, suma;
char RESPUESTA:
printf("Desea sumar dos enteros (S/N)?: ");
scanf(" %c", &RESPUESTA);
while (RESPUESTA=='S') {
 printf("Ingrese entero 1: ");
 scanf(" %d", &NUM1);
 printf("Ingrese entero 2: ");
 scanf(" %d", &NUM2);
 suma = NUM1 + NUM2:
 printf("La suma es %d \n", suma);
 printf("Desea sumar dos enteros (S/N)?: ");
 scanf(" %c", &RESPUESTA);

■ "C:\Documents and Setti... - □ ×

               Desea sumar dos enteros (S/N)?: S
                Ingrese entero 1: 2
                Ingrese entero 2: 5
               Desea sumar dos enteros (S/N)?:
```


Calcular el promedio de los primeros N números naturales, usando estructuras repetitivas WHILE y FOR.

```
#include<stdio.h>
main()
int N, NUM = 1, SUM = 0;
float PROM;
printf("Ingrese N: ");
scanf(" %d", &N);
while (NUM<=N)
SUM = SUM + NUM;
NUM = NUM + 1:
PROM = (float)SUM/(float)N;
printf("Promedio = %g \n", PROM);
```

```
#include<stdio.h>
main()
int N, i, SUM = 0;
float PROM;
printf("Ingrese N: ");
scanf(" %d", &N);
for (i=1;i<=N;i++)
SUM = SUM + i;
PROM = (float)SUM/(float)N;
printf("Promedio = %g \n", PROM);
```

```
Programa que reciba por teclado enteros
positivos y sume los Pares, hasta el ingreso del
-1 (centinela).
#include<stdio.h>
main(){
int NUM. SUMAPARES = 0:
float PROM;
printf("Ingrese n_umero: ");
scanf(" %d", &NUM);
while (NUM!=-1)
if (NUM %2==0)
SUMAPARES = SUMAPARES + NUM;
printf("Ingrese n umero: ");
scanf(" %d", &NUM);
printf("Suma de pares = %d \n", SUMAPARES);}
    "C:\Documents and Settings\Ad...
   Ingrese n_umero: 5
   Ingrese n_umero: 2
   Ingrese n_umero: 4
   Ingrese n_umero: -1
   Suma de pares = 6
                         execution time : 15.187 s
   Process returned 0 (0x0)
   Press any key to continue.
```



```
Generar los primeros N términos de la sucesión
  17; 15; 18; 16; 19; 17; 20; 18; 21; ....
 #include<stdio.h>
 main(){
 int NT, TER = 17, CONT = 1, BAN = 1;
 printf("Ingrese numero de terminos: ");
 scanf(" %d", &NT);
 while (CONT<=NT) {
 printf(" %d",TER);
 if (BAN==1){
    TER = TER - 2:
    BAN = 2:
 else {
    TER = TER + 3:
    BAN = 1:
 CONT = CONT + 1;
"C:\Documents and Settings\Ad... - \Rightarrow \times
Ingrese numero de terminos: 4
17 15 18 16
                       execution time : 3.359 s
Process returned 0 (0x0)
Press any key to continue.
•
```


Estructura de control repetitiva – DO WHILE

Solicite al usuario un entero; cuando coincida con el número 123, imprimir

"adivinaste".

```
#include<stdio.h>
main()
{
int NUM;
do
{
    printf("Ingrese entero de tres cifras: ");
    scanf(" %d", &NUM);
} while (NUM != 123);
printf("Adivinaste");
}
```

```
Ingrese entero de tres cifras: 23
Ingrese entero de tres cifras: 234
Ingrese entero de tres cifras: 234
Ingrese entero de tres cifras: 123
Adivinaste
Process returned 0 (0x0) execution time: 7.421 s
Press any key to continue.
```


Calcular el epsilon de la máquina (IEEE-754)

En aritmética de punto fotante el epsilon de la máquina ε se define como el menor valor almacenado en la máquina que satisface $1 + \varepsilon > 1$; es decir, el menor número que el computador reconoce como mayor a cero.

$$1.0 + \frac{1}{2} = 1.5$$

$$1.0 + \frac{1}{2^2} = 1.25$$

$$1.0 + \frac{1}{2^3} = 1.125$$

$$1.0 + \frac{1}{2^4} = 1.0625$$

$$\vdots$$

$$1.0 + \frac{1}{2^n} = 1.0$$

Dado un valor de x, calcular el valor de la función:

$$f(x) = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!} - \frac{x^5}{5!} + \cdots$$

Considerar los términos de la serie que en valor absoluto son mayores o iguales a 10-3.

Análisis de las Variables:

i: variable de tipo entero, genera el exponente y el factorial

ter: variable de tipo real, almacena cada término de la serie

$$\mathtt{ter} = (-1) \land \mathtt{i} * (\mathtt{x} \land \mathtt{i}/\mathtt{i}!)$$

fac: variable de tipo entera, almacena el factorial

fx: variable de tipo real, acumula la suma de los términos de la serie

$$fx = fx + t$$

Anexo: Formula de Herón:

Herón de Alejandría vivió hacia el siglo III a. La llamada fórmula de Herón, nos permite calcular el área de un triángulo conocidos los tres lados.

Si llamamos s al semiperímetro y a, b, c a los tres lados:

Demostración:

La fórmula clásica para el área del triángulo

nos dice que A=c*h/2;

 $A=c*a*sen(\beta)/2$.

Por el teorema de coseno

$$b^2 = a^2 + c^2 - 2ac * cos(\beta)$$
.

Despejando $cos(\beta)$ de la última ecuación y sustituir $sen(\beta)$ en la anterior.

Tenemos pues que $\cos(\beta) = (a^2 + c^2 - b^2)/(2ac)$, y como $\sin^2(\beta) = 1 - \cos^2(\beta)$ entonces:

$$sen(\beta) = \sqrt{1 - \frac{(a^2 + c^2 - b^2)^2}{4a^2c^2}} \quad \circ \quad sen(\beta) = \sqrt{\frac{4a^2c^2 - (a^2 + c^2 - b^2)^2}{4a^2c^2}}$$

Teniendo en cuenta que el numerador es una diferencia de cuadrados y el denominador un cuadrado obtenemos:

$$sen(\beta) = raiz[(2ac-(a^2+c^2-b^2))*(2ac+(a^2+c^2-b^2))]/(2ac)$$
$$= raiz[(b^2-(a-c)^2)*((a+c)^2-b^2)]/(2ac)$$

Sustituyendo ahora en la fórmula del área, tenemos que $A = raiz[(b^2-(a-c)^2)*((a+c)^2-b^2)]/4$ y utilizando de nuevo la descomposición de la diferencia de cuadrados como suma por diferencia, nos queda:

$$A = \frac{\sqrt{(b+a-c)(b-a+c)(a+c+b)(a+c-b)}}{4}$$

Finalmente, introducimos el 4 dentro de la raíz quedando 16, y si observamos que (b+a-c)/2 = (s-c)/2, y que (b-a+c)/2 = (s-a)/2 y así sucesivamente, llegamos a la fórmula final:

$$\mathbf{A} = \sqrt{\mathbf{s}(\mathbf{s} - \mathbf{a})(\mathbf{s} - \mathbf{b})(\mathbf{s} - \mathbf{c})}$$
 qed