L'industrialisation des cartes électroniques

Transformons vos essais

- ➤ La ligne d'assemblage
- > Profil thermique
- ➤ Bilan de la vidéo
- ➤ Les bords techniques
- ➤ Le détourage
 - ✓ Les bretelles
 - ✓ Le V-scoring
 - ✓ Le Milling
 - ✓ Le positionnement
 - ✓ Les risques
- > Les mires d'alignements
- ➤ Les contraintes de conception
- ➤ Le circuit imprimé
- > La finition
- Gestion des documents
- Choix des composants
 - ✓ Optimisation des nomenclatures
 - ✓ Compatibilité thermique
- Les décharges électrostatiques (ESD)
- ▶ L'étuvage
- ➤ Pin in paste
- > Press fit

La ligne d'assemblage

	SnPb	Pb-Free
Température de liquidus (TL)	183°C	217°C
Température de pic (Tp)	220°C	250°C
Préchauffe min(Tsmin)	100°C	150°C
Préchauffe max(Tsmax)	150°C	200°C
Temps (ts)entre Tsmin et Tsmax	60-120s	60-120s
Pente de monté en température (entre TL et TP)	3°C/s max	3°C/s max
Temps au dessus du liquidus (tL)	60-150s	60-150s
Pente de refroidissement (entre Tp et TL)	6°C/s max	6°C/s max
Temps entre 25°C et Tp	6 min max	8 min max

<u>Récapitulatif des contraintes observées sur</u> <u>la vidéo</u>

- Tous les convoyages sont à base de courroies :
 - → Aspect extérieur du PCB de forme rectangulaire
 - → Les 2 bords de cartes servant de convoyage doivent être exempts de composants sur une largeur de 5 mm sur les 2 faces.
- Mires de centrage

Dans l'idéal, l'opérateur ne doit pas manipuler les pcb entre les différentes étapes du process. Afin d'y parvenir, toutes les contraintes d'assemblage doivent être réfléchies.

Les bords techniques

Conception mécanique du circuit imprimé pas forcément adaptée à un processus de fabrication industriel.

Il convient donc de rajouter des bandes techniques ou d'effectuer une mise en flan qui doivent tenir compte de :

- > Dimensions minimum des cartes (50 * 50 mm)
- Dimensions maximum (420 * 350 mm)
- L'outillage d'assemblage (sérigraphie, refusion,...)
- L'outillage de dégrappage (V-scoring, bretelles, Milling)
- > Impact sur la surface disponible pour le routage
- Ratio PCB « utile »/ PCB « perdu »
- Optimisation de la quantité de PCB sur un flan

Exemple de mise en flan par 6 :

Le détourage

Pour effectuer une mise en flan ou le rajout de bandes techniques, il existe 3 sortes de liaisons :

Les bretelles (ou timbre poste):

TEAMBI

La définition des bretelles doit permettre de ne pas avoir de matière résiduelle pouvant dépasser du PCB suite à séparation.

Largeur du détourage : 1,5mm; 2mm ou 2,5mm

Ne permet pas de dégrapper les PCB de forme arrondie.

Le détourage

Le Milling:

Le Milling (détourage numérique) est une méthode de séparation réalisée par fraisage.

- ✓ Les bretelles ne comportent pas de « timbres poste ».
- ✓ Il faut prévoir de bloquer le PCB avec des plots pour empêcher la carte de tourner.

Le détourage

Le V-scoring:

Le V-scoring (ou rainurage) consiste à pratiquer 2 rainures situées en vis-à-vis de façon à rendre sécable le PCB.

Il est important de spécifier l'épaisseur de matière résiduelle pour ne pas avoir une liaison soit trop flexible, soit trop rigide.

<u>Le détourage</u>

- Positionnement des points d'accroches par rapport à leur environnement.
- Quantité des points d'attache.
- Dégagement nécessaire à un composant qui déborde de la carte.

Le détourage : les risques

Des outillages spécifiques sont utilisés pour séparer les cartes ou détacher les bandes techniques, la séparation manuelle abîme bien souvent les composants.

En règle générale, on cherchera à éviter de placer des CMS à proximité des zones de séparation.

- Risque de fracture du joint à causes des contraintes mécaniques
- Dégradation des composants
- Arrachement de la fibre de verre provoquant des risques de délaminage

Les mires d'alignements

Les mires devront êtres positionnées en diagonale et de manière asymétrique de façon à pouvoir détromper le sens de passage lors du convoyage si elles sont convoyées en unitaire.

Dans le cas d'une double refusion, les mires doivent être sur les deux faces.

- > 2 ronds de 1mm non vernis suivant une diagonale, à au moins 5 mm du bord dans le cas ou la carte n'a pas de bord technique.
- ➤ Pour les panneaux, il doit y avoir 3 ronds de 1mm de diamètre à au moins 5 mm du bord de carte.
- Déclarées comme composants pour apparaître dans les données d'import.

Devront être pris en compte l'ensemble des contraintes liées au process de fabrication, machines et outillages utilisés pour équiper, souder, tester et vernir le produit.

Les différentes erreurs à éviter :

✓ Les via :

- Ne pas implanter de via non bouchés dans les plages des composants CMS ou trop proche des plages d'accueils (risque de migration de crème > joint pauvre)
- Ne pas positionner de via en vis-à-vis de composant ou zone à ne pas vernir (fluage du vernis d'une face à l'autre)

- ✓ Les via dans les pastilles des composants
- ✓ Les pistes entre les plages

- ✓ Les via dans les pastilles des composants
- ✓ Les pistes entre les plages
- ✓ Ne pas oublier le repérage des angles de BGA
 - Soit sur la couche des plages d'accueils (TOP/BOTTOM) avec du cuivre.
 - Soit sur la couche vernis épargne par absence de vernis.

- Les via dans les pastilles des composants
- Les pistes entre les plages
- Ne pas oublier le repérage des angles de BGA
- Penser à homogénéiser les plages des composants tel que BGA, LGA ou QFN
 - SMD (Solder Mask Defined)
 - Freins thermiques

- ✓ Les via dans les pastilles des composants
- ✓ Les pistes entre les plages
- ✓ Ne pas oublier le repérage des angles de BGA
- ✓ Penser à homogénéiser les plages des composants tel que LGA ou QFN
- ✓ Faire attention aux ouvertures du pochoir (1:1)

Le circuit imprimé

<u>Identification, repères et traçabilité :</u>

Une fois les PCB fabriqués, il sera judicieux de pouvoir facilement retrouver les informations suivantes :

Les paramètres importants :

- ✓ Date code apparent
- ✓ La finition
- ✓ L'utilisation de vernis sélectif
- ✓ Proscrire la sérigraphie

Les finitions

		HAL sans plomb	Cuivre passivé	Nickel Or	Etain chimique
durée de stockage avant câblage		12 mois 6 mois		12 mois	6 mois
Impact sur le process	Planeité	mauvais	très bien	très bien	très bien
	Sensibilité à l'étuvage	peu sensible	peu sensible très sensible		très sensible
	Nombre de phase de soudure maxi	3 à 4	2	4 à 5	2
	Durée maxi entre les phases de soudures	sup. 2 mois	1 semaine	sup. 3 mois	2 semaines
	Sensibilité au touché	peu sensible	très sensible	peu sensible	très sensible

Gestion des documents

Les points importants :

- ✓ Ne pas indiquer de référence fabricant si elles ne sont pas imposées (ne mettre que les caractéristiques importantes)
- ✓ Penser à limiter le nombre de référence de composants
- ✓ Indiquer les équivalences dans la nomenclature
- ✓ Vérifier la compatibilité thermique des composants avec le process envisagé
- ✓ Une évolution de nomenclature = nouveau programme → évolution d'indice
- ✓ Une évolution de PCB = nouveau pochoir de sérigraphie + nouveau programme → évolution d'indice

Choix des composants

Optimisation des nomenclatures

Repères topo	Quantité	Référence	Désignation	Part number	Fabricant	Founisseur 1	Réf fournisseur 1
C1-C20	20	100nF	CONDO 100nF 16V X7R 0603	C0603C104K4RACTU	KEMET	FARNELL	1414610
C40-C45	5	100nF	CONDO 100nF 50V X7R 0603	06035C104KAT2A	AVX	FARNELL	1301804
C50-C62	12	100nF	CONDO 100nF 25V X7R 0603	06033C104JAT2A	AVX	FARNELL	1740614
R1	1	10K	RES 10K 5% 0805	PWC0805-10KF	WELWYN	FARNELL	1738426
R10-R13	4	10K	RES 10K 1% 0805	MCMR08X1002FTL	MULTICOMP	FARNELL	2073607
R18	1	10K	RES 10K 5% 1206	MC 0.125W 1206 5% 10K	MULTICOMP	FARNELL	9337016RL
R23	1	10K	RES 10K 1% 0603	MCMR06X1002FTL	MULTICOMP	FARNELL	2073349
R25-R26	2	10K	RES 10K 1% 0402	MCMR04X1002FTL	MULTICOMP	FARNELL	2072517
R30	1	10K	RES 10K 5% 0402	CRG0402J10K	TE CONNECTIVITY	FARNELL	1174160

Choix des composants

Compatibilité thermique

■Explanation of Part Numbers

■Specifications

Soldering conditions

Reflow soldering: 240 °C max. and 60 s max.at more than 220 °C (Temp. at cap. surface) (Please consult us for Reflow 250 °C max product.)

■Explanation of Part Numbers

Choix des composants

Compatibilité thermique

Panasonic

SMT Aluminum Electrolytic Capacitors Reflow Profile

Pre-fix	e-fix Suffix Case Diameter		RoHS Compliant	Terminal Finish	Reflow Condition			Doflow Chart
Fie-lix Sullix	Case Diameter	Pea			ak Temperature	Time above 200	Reflow Chart	
	R	3mm to 5mm	No	Sn-Pb	240	for 5 seconds	20 seconds	(1) Fig.1
ECE-V	Р	6mm	No	Sn-Pb	240	for 5 seconds	20 seconds	(1) Fig.1
	Р	8mm to 10mm	No	Sn-Pb	230	for 5 seconds	20 seconds	(2) Fig.2
	R	4mm to 5mm	No	Sn-Pb	240	for 5 seconds	20 seconds	(1) Fig.1
	Р	6mm	No	Sn-Pb	240	for 5 seconds	20 seconds	(1) Fig.1
	Р	8mm to 10mm	No	Sn-Pb	230	for 5 seconds	20 seconds	(2) Fig.2
EEV- Q		12.5mm	Yes	Sn	230	for 5 seconds	20 seconds	(2) Fig.2 (Except for EB series)
	Q							(3) Fig.3 (EB series only)
		16mm to 18mm	Yes	Sn	230	for 5 seconds	20 seconds	(2) Fig.2 (Except for EB series)
M	IVI							(3) Fig.3 (EB series only)
	R	3mm to 5mm	Yes	Sn-Bi	250	for 5 seconds	60 seconds	(4) Fig.4
EEE-	Р	6mm	Yes	Sn-Bi	250	for 5 seconds	60 seconds	(4) Fig.4
	Р	8mm to 10mm	Yes	Sn-Bi	235	for 5 seconds	60 seconds	(5) Fig.5

Les décharges électrostatiques (ESD)

Claquage ESD en bord de grille d'un PMOS

Conséquences des ESD?

- **Panne irrémédiable** : Un composant détruit empêche complètement le fonctionnement de la carte. La panne est évidente, le module ne fonctionne plus.
- **Panne latente** : Un composant fragilisé donne des résultats non fiables. Il peut parfaitement passer des tests de contrôle et produire des pannes aléatoires.

<u>L'étuvage</u>

Au même titre que les ESD, les problèmes liés à la reprise d'humidité doivent être traités avec beaucoup de rigueur.

Vaporisation de l'eau:

- ✓ Destruction par explosion (effet pop-corn)
- ✓ Délaminage

Classes de sensibilité standards (norme IPC/JEDEC J-STD-033) :

NIVEAU	Temps maximum hors sac sur site d'assemblage					
1	Illimité à moins de 85% de HR					
2	8760 heures (1 AN) à 30°c / 60% HR					
2a	672 heures (4 semaines) à 30°c / 60% HR					
3	168 heures (1 SEMAINE) à moins de 30°c / 60 % HR					
4	72 heures à moins de 30°c / 60% HR					
5	48 heures à moins de 30°c / 60% HR					
5a	24 heures à moins de 30°c / 60% HR					
6	Etuvage avant usage					

<u>Pin in paste</u>

- ✓ Qualité
- ✓ Gain de temps
- Robustesse du procédé
- ✓ Réduction du nombre de phase d'assemblage

Press-fit

Cette technique permet la suppression de la soudure pour relier mécaniquement et électriquement une pièce mécanique à un circuit imprimé.

<u>Avantage majeur</u>: Pas de vieillissement des joints brasés

Contrainte: Il faut que les perçages soient d'un diamètre identique

Industrialiser un produit électronique demande une étroite collaboration entre chacun des sous traitants.

Merci de votre attention

