

Competitive Programming From Problem 2 Solution in O(1)

Number Theory Diophantine Equation and Congruence

Mostafa Saad Ibrahim
PhD Student @ Simon Fraser University

Diophantine equation

- A **Diophantine equation** is an equation in which only **integer solutions** are allowed.
- It has as either **no** solutions $(x^2 + 4y = 3)$, or **infinitely** many solutions (x + y = 1)
- ax + by = c is a **linear** Diophantine equation in two variables (x, y)
- $x^2 + y^2 = z^2$ is a **nonlinear second-degree** Diophantine equation of 3 variables (Pythagorean triple)

Linear Diophantine equation

- We will focus on: ax + by = c
 - Degenerate case $(a, b, c \text{ are } 0) \Rightarrow \text{ infinite solutions}$
- This equation has solution IFF c % gcd(a, b) =
 0. Please read proof on wiki.
- If we assumed c = g = gcd(a, b)
 - = ax + by = gcd(a, b) => we solved that by **extended** algo
- Or generally, if c % g = 0, Let t = c /g
 - multiply all equation with t
 - axt + byt = g * t = c (xt, yt) is one solution
 - In other words, solve extended and multiply by c/g

Linear Diophantine equation

- 258x+147y = 369
 - $\gcd(258, 147) = 3$ and 3 divides 369? Yes!
 - Solve by extended: 258x+147y = 3
 - 258(4)+147(-7) = 3 (multiply by 123 = 369/3)
 - 258(492)+147(-861)=369 => ONE solution
- All solutions: Bézout's identity
 - x = 492 147r / 3 = 492 49r

x = 492 - 147r / 3 = 492-49r
y = -861 + 258r / 3 = 86r-861
$$\begin{cases} x = x_0 + k \cdot b/g, \\ y = y_0 - k \cdot a/g, \end{cases} k \in \mathbb{Z}$$

- You can reduce constants by r = t+10
 - x = 492 49(t+10) = 2-49t
 - y = 86(t+10) 861 = 86t-1

Linear Diophantine equation: code

```
ll extended euclid(ll a, ll b, ll &x, ll &y) {
    if (a < \theta) {
         ll r = extended euclid(-a, b, x, y);
         x *= -1;
         return r:
    if (b < \theta) {
        ll r = extended euclid(a, -b, x, y);
         y *= -1;
         return r:
    if (b == 0) {
         x = 1:
         y = 0;
         return a:
    ll q = extended euclid(b, a % b, y, x);
    y -= (a / b) * x;
    return q;
// Find any solution
! Il ldioph(ll a, ll b, ll c, ll &x, ll &y, ll &found) {
    ll q = extended euclid(a, b, x, y);
    if((found = c % a == 0))
        x *= c / a, v *= c / a;
     return q;
```

Linear Diophantine equation

- Sometimes problems comes with variations to list all solutions with a restriction criteria.
 - Finding all solutions such that X in range [min_x; max_x] and Y in range[min_y; max_y]
 - Or some conditions restricting smallest sum of x + y
- For further notes about above 2 problems, see following <u>russian page</u> (translate lower parts)

Congruence

- Two integers a and b are called **congruent** modulo n, written $a \equiv b \pmod{n}$
 - It means a%n = b %n = x
 - Recall, this means (a-b) % n = 0
 - $37 \equiv 57 \pmod{10}$ 37 57 = -20
 - \blacksquare 37 %10 = 57 % 10 = 7. Also -20 % 10 = 0
 - More importantly: $\underline{\mathbf{a}} \underline{\mathbf{b}} = \underline{\mathbf{q}} \underline{\mathbf{n}}$ for some q integer (a = b+qn)
- if $ax \equiv ay \pmod{n}$ and gcd(a,n) = d, then the congruence is equivalent $x \equiv y \pmod{n/d}$
 - IF $ax \equiv ay \pmod{n}$ SAME as $x \equiv y \pmod{n}$ THEN d = 1
 - Reverse doesn't need this condition

Congruence Facts

(mod n)

if $a = b \pmod{m}$ $a^n = b^n \pmod{m}$ for all $n \ge 1$. If p is prime, $(x+y)^p = x^p + y^p \pmod{p}.$ If $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$, then $a \equiv c \pmod{m}$. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a \pm c \equiv b \pm d \pmod{m}$. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$. If $a \equiv b \pmod{m}$, then $a + c \equiv b + c \pmod{m}$. If $a \equiv b \pmod{m}$, then $ca \equiv cb \pmod{m}$. From last one, $ax \equiv b \pmod{n}$ same as $x \equiv ba^{-1}$

Congruence and large powers

- Find answer of 3⁵⁵⁵⁵ % 80
 - Hint: Think how to reduce the large power?!
 - Hint: $3^4 \equiv 1 \ (\% \ 80)$ and 5555 = 4 * 1388 + 3
 - $\blacksquare \quad \text{Then, } 3^{5555} \% 80 = 3^3 \% 80 = 27$
- Find answer of $(3^{1000} + 3) \% 28$
 - Hint: $3^3 = 27 = -1$ (% 28) and 1000 = 3*333+1
 - Then equation = [(-1 * 3) + 3] (% 28) = 0
- Your turn
 - prove that $2^{(5n+1)} + 5^{(n+2)} \equiv 0 \pmod{27}$

Linear Modular Equation

- Solve $ax \equiv b \ (\% \ m)$
- $258x \equiv 369 \mod 147$
 - 258x 63 = 147y

For some y integer

■ 258x + 147y = 63 An **LD equation**

- LDE has infinite solutions: x = 492 147r / 3
- % should impose some restrictions (duplicate)
 - We take %m to any ax, then we have m solutions max!
 - However, we can prove ONLY **gcd** unique solutions exist

Linear Modular Equation: Code

```
// solves the equation ax = b (mod n)
vector<ll> modularEquation(ll a, ll b, ll n)
   vector<ll> sols;
    ll x, y, q;
    g = extended euclid(a, n, x, y);
   if(b % q != θ)
        return sols; // no solutions
   x = ((x * b / q)%n + n)%n; // from LDE, +ve mod
    for( int i = \theta; i < g; ++i) // Bézout's identity
        sols.push back( (x + i * n / q) % n);
    sort(sols.begin(), sols.end());
    return sols:
}
```

Your turn

- There are **Important** readings
- Linear Diophantine <u>Equations</u>
- Congruences and Modular Arithmetic
- Solving Linear Congruences
- Congruence .. read ... solve
- Optional: Quadratic Equations

تم بحمد الله

علمكم الله ما ينفعكم

ونفعكم بما تعلمتم

وزادكم علمأ

Problems

SGU 106 (The equation),
 CodeforcesGym100506C(Cutting Banknotes),
 UVA (718, 11768)