MATH4511 Quantitative Methods for Fixed Income Derivatives

Tutorial 8

Tree of interest rate

- 1. the value of the underlying asset should be determined by the interest rate curve: bonds (not stocks)
- 2. dynamic of the interest rate

$$\Delta r_t = (\mu_t + \lambda_t) \Delta t + \sigma \sqrt{\Delta t} \epsilon$$

3. λ_t : the tree must reproduce the discount curve

$$P_{1,1}(\lambda_0) = \frac{1000}{1 + r_{1,1}\Delta t} \quad P_{0,1}(\lambda_0) = \frac{1000}{1 + r_{0,1}\Delta t} \quad P_{0,0}(\lambda_0) = \frac{\frac{1}{2}(P_{1,1} + P_{0,1})}{1 + r_{0,0}\Delta t}$$

From these three equations, once we get the current price $P_{0,0}$ from the market, λ_0 can be solved.

Option pricing

$$C_{0,0} = \frac{\frac{1}{2}(C_{0,1} + C_{1,1})}{1 + r_{0,0}\Delta t}$$

$$C_{0,1} = PayOff(P_{1,1})$$

$$C_{0,1} = PayOff(P_{0,1})$$

hedge ratio
$$\alpha = \frac{C_{1,1} - C_{0,1}}{P_{1,1} - P_{0,1}}$$

pricing coupon bond option:

- 1. build an interest rate tree to reproduce the whole discount curve
- 2. obtain the price distribution $P_{i,j}$
- 3. calculate the payoff $C_{i,j}$
- 4. calculate the PV (the value at the node (0,0)) of the option

Example 1

1. Price a floating-rate note with the maturity of one year that at date i, i = 1, 2, pays the coupon in the amount of $100 \times (r_i + 2\%)/2$. In addition, at maturity, the principal 100 is paid.

2. Using the risk-neutral process tree built above to price \$100 notional amount of a 1.5-year participating cap with a strike of 5% and a participation rate of 40%. Payments are made every six months according to this rule: If the short rate on date i is r_i , then the cash flow from the participating cap on date i+1 is, as a percent of par,

$$\begin{cases} (r_i - 5\%)/2, & \text{if } r_i \ge 5\% \\ 40\% \times (r_i - 5\%)/2, & \text{if } r_i < 5\%. \end{cases}$$

There is no principal payment at maturity.

3. (1) Price \$100 face amount of the following 1.5-year collared floater. Payments are made every six months according to this rule: If the short rate on date i is r_i , then the interest payment of the collared floater on date i + 1 is

$$\begin{cases} 3.5\%/2, & \text{if } r_i < 3.5\%, \\ r_i/2, & \text{if } 3.5\% \le r_i \le 6.5\%, \\ 6.5\%/2, & \text{if } r_i > 6.5\%. \end{cases}$$

Example 2

Time	0	0.5	1	1.5
Spot		5.0%	5.5%	6.0%

lambda		0.020083127	0.020165565
sigma	1.10%		
dt	0.5		

				8.57%
			6.78%	
Ra	te tree	5.00%		7.01%
			5.23%	
				5.46%

		1
0.5y zero	0.975610	
		1

		0.067202	1
1v zoro	0.947188	0.967202	1
1y zero	0.947100	0.974534	1
		0.574554	1

				1
			0.958920	
		0.930954		1
1.5y zero	0.915142		0.966126	
		0.945086		1
			0.973441	
				1

Call on 1.5-y zero

Strike	965
face value	1000

			0
		0.544312	
1-y call	2.53932		1.125539148
		4.661286	
			8.440646883

Hedge ratio 0.291315224