2. Замена переменных в кратных интегралах

2.2. Тройной интеграл в цилиндрических и сферических координатах

В случае цилиндрических координат положение точки P в пространстве определяется тремя числами: φ , r, z, где φ , r – полярные координаты точки F_{xy} – проекции точки P в плоскость Oxy, z – аппликата точки P. Переход от цилиндрических координат к прямоугольным декартовым координатам осуществляется по формулам

$$x = r\cos\varphi, \quad y = r\sin\varphi, \quad z = z.$$

Для вычисления тройного интеграла разобьем пространственную область V на элементарные области координатными поверхностями: $\varphi=\varphi_i$ – полуплоскости, проходящие через ось Oz перпендикулярно плоскости $Oxy;\ r=r_i$ – круговые цилиндры; $z=z_i$ – плоскости перпендикулярные к оси Oz. Элементарный объем в этом случае вычисляется по формуле $\Delta V_i=r_i\Delta r_i\Delta \varphi_i\Delta z_i$

Тройной интеграл по области V от функции F(arphi,r,z) в цилиндрических координатах имеет вид:

$$\iiint\limits_V F(arphi,r,z)dV = \iiint\limits_V F(arphi,r,z)r\,dr darphi dz \;.$$

В сферических координатах положение точки P в пространстве определяется числами φ , r, θ : φ – полярный угол точки P_{xy} , r – расстояние от точки P до начала координат, θ – угол между радиус-вектором \overrightarrow{OP} точки P и осью Oz. Связь между сферическими и прямоугольными координатами имеет вид

$$x = r \sin \theta \cos \varphi$$
, $y = r \sin \theta \sin \varphi$, $z = r \cos \theta$.

Пространственную область V разобьем на элементарные части координатными поверхностями: $\varphi = \varphi_i$ – полуплоскости, проходящие через ось Oz; $r = r_i$ – сферы с центром в начале координат; $\theta = \theta_i$ – конусы с вершиной в начале координат и осью, совпадающей с осью Oz.

Элементарный объем можно найти как объем параллелепипеда с ребрами $\Delta r_i, \; r_i \Delta \theta_i, \; r_i \sin \theta_i \Delta \varphi_i, \;$ тогда

$$\Delta V_i = \Delta r_i \cdot r_i \Delta \theta_i \cdot r_i \sin \theta_i \cdot \Delta \varphi_i = r_i^2 \sin \theta_i \Delta r_i \Delta \theta_i \Delta \varphi_i$$
.

Тройной интеграл от функции $F(\varphi, r, \theta)$ по области V в сферических координатах имеет вид:

$$\iiint\limits_V F(\varphi,r,\theta)dV = \iiint\limits_V F(\varphi,r,\theta)r^2\sin\theta dr d\varphi d\theta \; .$$