AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1-23. Canceled.
- 24. (previously presented) A method for separating a mixture of biomolecules, comprising:
- (1) contacting a composition comprising a buffer and an effective amount of a poly(M_1 -g- M_2) or a salt thereof, wherein:
 - (a) each M_1 has the formula (I):

$$\begin{array}{c|c}
R_1 & R_3 \\
C & C \\
R_2 & R_4
\end{array}$$

wherein each A_1 is independently O, S or NX_1 ;

each of R_1 , R_2 , R_3 and R_4 is independently H, C_1 - C_{20} alkyl, C_4 - C_{12} cycloalkyl, C_5 - C_{12} aryl, C_4 - C_{12} heteroaryl, -(C_1 - C_{20} alkyl)(C_5 - C_{12} aryl) or -(C_5 - C_{12} aryl)(C_1 - C_{20} alkyl); each R_5 is independently C_1 - C_{20} alkyl, C_1 - C_{20} heteroalkyl, C_4 - C_{12} cycloalkyl, C_4 - C_{12} heterocycloalkyl, C_5 - C_{12} aryl, C_4 - C_{12} heteroaryl, -(C_1 - C_{20} alkyl)(C_4 - C_{12} cycloalkyl), -(C_4 - C_{12} cycloalkyl), -(C_1 - C_{20} alkyl), -(C_1 - C_{20} heteroalkyl)(C_4 - C_{12} eycloalkyl), -(C_4 - C_{12} cycloalkyl), -(C_4 - C_{12} heterocycloalkyl), -(C_4 - C_{12} heterocycloalkyl)(C_1 - C_{20} alkyl), -(C_1 - C_{20} alkyl)(C_4 - C_{12} heterocycloalkyl)(C_1 - C_{20} heteroalkyl), -(C_1 - C_{20} alkyl)(C_5 - C_{12} aryl), -(C_5 - C_{12} aryl)(C_1 - C_{20} alkyl), -(C_1 - C_2 0 heteroalkyl)(C_5 - C_1 2 aryl)(C_1 - C_2 0 heteroalkyl), -(C_1 - C_2 0 heteroalky

each X_1 is independently H, C_1 - C_{20} alkyl, C_4 - C_{12} cycloalkyl, C_5 - C_{12} aryl, C_4 - C_{12} heteroaryl, -(C_1 - C_{20} alkyl)(C_5 - C_{12} aryl), -(C_5 - C_{12} aryl)(C_1 - C_{20} alkyl), -(C_1 - C_4 alkyl) $_q$ NHCONH $_2$, -(C_1 - C_4 alkyl) $_q$ NHCOH or -(C_1 - C_4 alkyl) $_q$ NHCOCH $_3$, where each q is 0 or 1;

(b) each M_2 has the formula (II):

alkyl)_aNHCOCH₃, where each q is 0 or 1; and

$$\begin{array}{c|c}
R_6 & R_8 \\
\hline
R_7 & C \\
\hline
R_9 & R_{10}
\end{array}$$

wherein each A_2 is independently O, S or NX_2 ;

 $each\ of\ R_6,\ R_7,\ R_8\ and\ R_9\ is\ independently\ H,\ C_1\text{-}C_{20}\ alkyl,\ C_4\text{-}C_{12}\ cycloalkyl,\ C_5\text{-}C_{12}\ aryl,\ C_4\text{-}C_{12}\ heteroaryl,\ -(C_1\text{-}C_{20}\ alkyl)(C_5\text{-}C_{12}\ aryl)\ or\ -(C_5\text{-}C_{12}\ aryl)(C_1\text{-}C_{20}\ alkyl);\ each\ R_{10}\ is\ independently\ H,\ C_1\text{-}C_{20}\ alkyl,\ C_1\text{-}C_{20}\ heteroalkyl,\ C_4\text{-}C_{12}\ cycloalkyl,\ C_4\text{-}C_{12}\ heteroaryl,\ -(C_1\text{-}C_{20}\ alkyl)(C_4\text{-}C_{12}\ cycloalkyl)(C_4\text{-}C_{12}\ cycloalkyl),\ -(C_4\text{-}C_{12}\ aryl)(C_4\text{-}C_{12}\ heteroaryl,\ -(C_1\text{-}C_{20}\ alkyl)(C_4\text{-}C_{12}\ heteroalkyl)(C_4\text{-}C_{12}\ cycloalkyl),\ -(C_4\text{-}C_{12}\ cycloalkyl),\ -(C_4\text{-}C_{12}\ alkyl)(C_4\text{-}C_{12}\ heterocycloalkyl),\ -(C_4\text{-}C_{12}\ heterocycloalkyl),\ -(C_4\text{-}C_{12}\ heterocycloalkyl),\ -(C_4\text{-}C_{12}\ heterocycloalkyl),\ -(C_4\text{-}C_{12}\ heterocycloalkyl),\ -(C_4\text{-}C_{12}\ aryl),\ -(C_5\text{-}C_{12}\ aryl),\ -(C_5\text{-}C_{12}\ aryl),\ -(C_5\text{-}C_{12}\ aryl),\ -(C_5\text{-}C_{12}\ aryl)(C_1\text{-}C_{20}\ alkyl),\ -(C_1\text{-}C_{20}\ alkyl),\ -(C_$

each X_2 is independently H, C_1 - C_{20} alkyl, C_4 - C_{12} cycloalkyl, C_5 - C_{12} aryl, C_4 - C_{12} heteroaryl, -(C_1 - C_{20} alkyl)(C_5 - C_{12} aryl), -(C_5 - C_{12} aryl)(C_1 - C_{20} alkyl), -(C_1 - C_4 alkyl) $_q$ NHCONH $_2$, -(C_1 - C_4 alkyl) $_q$ NHCOH or -(C_1 - C_4 alkyl) $_q$ NHCOCH $_3$, where each q is 0 or 1;

- (c) provided that at least one M_1 is different from at least one M_2 ; with a mixture comprising a biomolecule; and
- (2) applying an electric field to the composition in an amount sufficient to facilitate the separation of a biomolecule from the mixture.
- 25. (original) The method of claim 24, wherein the separation is performed within a capillary tube and two or more biomolecules are polynucleotides.

- 26. (original) The method of claim 25, wherein the separation has a crossover of at least 400 base pairs.
 - 27. Canceled.
- 28. (previously presented) The method of claim 24, wherein the composition further comprises a sieve polymer.
- 29. (previously presented) The method of claim 28, wherein the sieve polymer is poly(acrylamide).
 - 30. Canceled.
- 31. (previously presented) The method of claim 24, wherein the $poly(M_1-g-M_2)$ or a salt thereof has a weight-average molecular weight of from about 150,000 Daltons to about 20 MDaltons.
- 32. (previously presented) The method of claim 31, wherein the composition further comprises a sieve polymer or a salt thereof having a weight-average molecular weight of from about 100,000 Daltons to about 5 MDaltons.
- 33. (previously presented) The method of claim 32, wherein the sieve polymer is substantially linear poly(acrylamide).
- 34. (previously presented) The method of claim 24, wherein the buffer is an aqueous buffer.
- 35. (previously presented) The method of claim 34, wherein the composition has a pH of from about 5 to about 11.
- 36. (previously presented) The method of claim 34, wherein the composition has a pH of from about 7 to about 10.
- 37. (previously presented) The method of claim 35, wherein the composition further comprises formamide, urea, pyrrolidone, *N*-methyl pyrrolidone or a mixture thereof.
- 38. (previously presented) The method of claim 35, wherein the composition further comprises urea.
- 39. (previously presented) The method of claim 35, wherein the composition further comprises formamide.
- 40. (previously presented) The method of claim 24, wherein M_1 is N,N-dimethylacrylamide and M_2 is acrylamide.
- 41. (previously presented) The method of claim 25, wherein M_1 is N,N-dimethylacrylamide and M_2 is acrylamide.

- 42. (previously presented) The method of claim 26, wherein M_1 is N,N-dimethylacrylamide and M_2 is acrylamide.
- 43. (previously presented) The method of claim 28, wherein M_1 is N,N-dimethylacrylamide and M_2 is acrylamide.
- 44. (previously presented) The method of claim 29, wherein M_1 is N,N-dimethylacrylamide and M_2 is acrylamide.
- 45. (previously presented) The method of claim 31, wherein M_1 is N,N-dimethylacrylamide and M_2 is acrylamide.
- 46. (previously presented) The method of claim 32, wherein M_1 is N,N-dimethylacrylamide and M_2 is acrylamide.
- 47. (previously presented) The method of claim 33, wherein M_1 is N,N-dimethylacrylamide and M_2 is acrylamide.
- 48. (previously presented) The method of claim 34, wherein M_1 is N,N-dimethylacrylamide and M_2 is acrylamide.
- 49. (previously presented) The method of claim 35, wherein M_1 is N,N-dimethylacrylamide and M_2 is acrylamide.
- 50. (previously presented) The method of claim 36, wherein M_1 is N,N-dimethylacrylamide and M_2 is acrylamide.
- 51. (previously presented) The method of claim 37, wherein M_1 is N,N-dimethylacrylamide and M_2 is acrylamide.
- 52. (new) The method of claim 24, wherein the sum of the weight of all M_2 units present in the poly(M_1 -g- M_2) or a salt thereof divided by the sum of the weight of all M_1 units present in the poly(M_1 -g- M_2) or a salt thereof is at least about 0.1.
- 53. (new) The method of claim 31, wherein the sum of the weight of all M_2 units present in the poly(M_1 -g- M_2) or a salt thereof divided by the sum of the weight of all M_1 units present in the poly(M_1 -g- M_2) or a salt thereof is at least about 0.1.