

Akademia Górniczo-Hutnicza w Krakowie Wydział FiIS Fizyka techniczna

Zespół nr 5 1.Kulig Mateusz 2.Ryś Przemysław

Laboratorium elektroniczne WFiIS				
Rok akademicki: 2022/2023	Semestr V	Grupa: 2		
Temat ćwiczenia:				
A-0	c. Pomiary stalopradowe			

Data wykonania ćwiczenia Data oddania sprawozdania Ocena 18.10.2022 07.11.2022

1. Cel ćwiczenia

Celem ćwiczenia jest zaznajomienie słuchacza z konfiguracją połączeń szeregowych i równoległych odbiorników, pomiar prądu przepływającego przez rezystor wraz z pomiarem spadku napięcia, pomiar mocy czynnej i konfrontacja słuszności prawa Ohma oraz równań Kirchhoffa.

2. Aparatura

W doświadczeniu użyliśmy następujących przyrządów:

- Zasilacz EDU36311A firmy Keysight Technlogies
- Miernik uniwersalny wielkości elektrycznych EDU34450A firmy Keysight Technlogies
- Ręczny miernik uniwersalny wielkości elektrycznych U1272A firmy Agilent
- Płytka stykowa do przygotowywania prostych obwodów elektrycznych
- Opornik (2 szt.)

3. Analiza danych

3.1. Pomiar napięcia i przepływającego prądu przez pojedynczy rezystor.

Dane zebrane w wyniku przeprowadzonego doświadczenia zebrane zostały w tabeli (**Tab. 1**.).

Tab.1. Tabela dla rysunku Rys. 2. napięcia nadanego na źródle, jego pomiaru zewnętrznym miernikiem, prądu płynącego przez obwód zadanego na rysunku oraz wyznaczonej za ich pomocą rezystancji.

U (zasilacz) [V]	U [V]	I [mA]	R [Ohm]
0,5	0,496	1,40	354,54
1	0,993	2,80	355,02
1,5	1,4899	4,20	354,99
2	1,987	5,60	355,01
2,5	2,483	7,00	354,82
3	2,98	8,40	354,72
3,5	3,476	9,81	354,51
4	3,972	11,21	354,23
4,5	4,469	12,63	353,98
5	4,965	14,04	353,63
5,5	5,462	15,46	353,41
6	5,959	16,88	353,13

Rys. 1. Wykres zależności prądowo-napięciowej dla danych z tabeli Tab.1..

Rys. 2. Schemat pomiarowy dla pomiaru napięcia i prądu dla małych rezystancji.

3.2. Pomiar rezystancji miernikiem wielkości elektrycznych.

W wyniku kilkukrotnego pomiaru rezystancji R_1 omomierzem otrzymywaliśmy średnio ten sam wynik, który wyniósł $R=355,9~[\Omega]$.

3.3. Pomiar rozkładu napięć w dzielniku napięciowym.

Dane zebrane w wyniku przeprowadzenia tego podpunktu doświadczenia znajdują się w tabeli (tab.2.).

Tab.2. Tabela pomiarów prądu i wyznaczonych rezystancji dla poszczególnych oporników dla układu pomiarowego z rysunku rys. 3..

U (zasilacz) [V]	I [mA]	U dla R_1	U dla R_2
1	1,04	0,37	0,63
3	3,11	1,10	1,89
6	6,22	2,21	3,79

Układ składający się z dwóch rezystorów zastąpić możemy układem równoważnym w którym pojawia się tylko jeden rezystor, a jego wartość oporu równa się sumie wartości wszystkich szeregowo połączonych oporności.

Napięciowe prawo Kirchoffa dla oczka możemy sprawdzić sumując spadki napięcia na poszczególnych opornikach i porównując je z napięciem zadanym na źródle. Na podstawie Tab.2. można zauważyć iż:

Dla U = 1 V:
$$U(R_1) + U(R2) = 0.37 + 0.63 = 1 \text{ V},$$

Dla U = 3 V: $U(R_1) + U(R2) = 1.1 + 1.89 = 1.99 \text{ V},$
Dla U = 6 V: $U(R_1) + U(R2) = 2.21 + 3.79 = 6 \text{ V}.$

Zatem z jest ono spełnione z dokładnością do błędu.

Rys. 3. Schemat pomiarowy dzielnika napięciowego.

3.4. Pomiar rozpływu prądów w dzielniku prądowym.

Dane zebrane w wyniku przeprowadzenia tego podpunktu doświadczenia znajdują się w tabeli (tab.3.).

Tab. 3. Tabela pomiarów prądu i rezystancji dla poszczególnych oporników dla układu pomiarowego z rysunku rys. 4..

U (zasilacz) [V]	I [mA]	I dla R_1	I dla R_2	I(R_1)+I(R_2)
1	4,41	2,78	1,63	4,41
3	13,25	8,36	4,88	13,23
6	26,58	16,78	9,78	26,56

Z danych w tabeli możemy zauważyć, iż suma prądów płynących przez poszczególne oczka sumuje się do wartości prądu wpływającego do węzła, a zatem prądowe prawo Kirchoffa spełnione jest z dokładnością do błędu.

Rys. 4. Schemat pomiaru prądu dla szeregowego połączenia rezystorów.