Particle spectrograph

Wave operator and propagator

	$\mathcal{A}_{1}^{\sharp 1}{}_{lphaeta}$	$\mathcal{A}_{1}^{\#2}{}_{lphaeta}$	$\mathcal{A}_{1}^{\#3}{}_{lphaeta}$	${\mathcal H}_{1}^{\sharp 1}{}_{lpha}$	${\mathcal H}_1^{\sharp 2}{}_{lpha}$	${\mathscr R}_1^{{\sharp}_3}{}_{lpha}$	${\mathscr R}_1^{\#4}{}_{lpha}$	${\mathcal R}_1^{{\#}^5}{}_{lpha}$	${\mathcal R}_1^{\#6}{}_{lpha}$	$h_{1}^{\#1}{}_{\alpha}$
${\cal R}_1^{\sharp 1}\! +^{lphaeta}$	$-\frac{a_0}{4}$	$-\frac{a_0}{2\sqrt{2}}$	0	0	0	0	0	0	0	0
$\mathcal{A}_{1}^{\#2}\dagger^{lphaeta}$	$-\frac{a_0}{2\sqrt{2}}$	0	0	0	0	0	0	0	0	0
$\mathcal{A}_{1}^{\#3}\dagger^{lphaeta}$	0	0	$\frac{a_0}{4}$	0	0	0	0	0	0	0
${\mathscr R}_1^{\sharp 1}\! \dagger^lpha$	0	0	0	7 a ₀ 36	$\frac{a_0}{18\sqrt{2}}$	$-\frac{a_0}{3\sqrt{3}}$	$-\frac{1}{3}\sqrt{\frac{5}{3}}a_0$	$-\frac{1}{3}\sqrt{\frac{2}{3}}a_0$	$-\frac{2 a_0}{3 \sqrt{3}}$	$-\frac{i a_0 k}{36 \sqrt{2}}$
$\mathcal{R}_{\scriptscriptstyle 1}^{\scriptscriptstyle \#2}$ † lpha	0	0	0	$\frac{a_0}{18\sqrt{2}}$	2 a ₀ 9	$\frac{a_0}{3\sqrt{6}}$	$\frac{1}{3} \sqrt{\frac{5}{6}} a_0$	$\frac{a_0}{3\sqrt{3}}$	$\frac{1}{3}\sqrt{\frac{2}{3}}a_0$	$-\frac{1}{9}\bar{l}a_0k$
$\mathcal{R}_{1}^{#3}\dagger^{lpha}$	0	0	0	$-\frac{a_0}{3\sqrt{3}}$	$\frac{a_0}{3\sqrt{6}}$	$\frac{1}{3}$ (- a_0 - a_1 k^2)	$\frac{1}{6} \sqrt{5} (a_0 - 2 a_1 k^2)$	$\frac{a_0 - 4a_1 k^2}{6 \sqrt{2}}$	$\frac{1}{6} (a_0 - 4 a_1 k^2)$	$\frac{i a_0 k}{4 \sqrt{6}}$
$\mathcal{R}_{1}^{\#4}$ † lpha	0	0	0	$-\frac{1}{3}\sqrt{\frac{5}{3}}a_0$	$\frac{1}{3}\sqrt{\frac{5}{6}}a_0$	$\frac{1}{6} \sqrt{5} (a_0 - 2 a_1 k^2)$		$\frac{1}{6} \sqrt{\frac{5}{2}} (a_0 - 4 a_1 k^2)$	$\frac{1}{6} \sqrt{5} (a_0 - 4 a_1 k^2)$	$-\frac{1}{4}\bar{l}\sqrt{\frac{5}{6}}a_0k$
${\mathscr R}_1^{{\sharp}_5}\! \dagger^{lpha}$	0	0	0	$-\frac{1}{3}\sqrt{\frac{2}{3}}a_0$	$\frac{a_0}{3\sqrt{3}}$	$\frac{a_0 - 4a_1 k^2}{6 \sqrt{2}}$	$\frac{1}{6} \sqrt{\frac{5}{2}} (a_0 - 4 a_1 k^2)$	$\frac{1}{3}(a_0-2a_1k^2)$	$\frac{a_0 - 8 a_1 k^2}{6 \sqrt{2}}$	$-\frac{i a_0 k}{12 \sqrt{3}}$
${\mathscr R}_{\scriptscriptstyle 1^{ extstyle -}}^{ extstyle \#6}\dagger^lpha$	0	0	0	$-\frac{2a_0}{3\sqrt{3}}$	$\frac{1}{3}\sqrt{\frac{2}{3}}a_0$	$\frac{1}{6} (a_0 - 4 a_1 k^2)$	$\frac{1}{6} \sqrt{5} (a_0 - 4 a_1 k^2)$	$\frac{a_0 - 8a_1 k^2}{6 \sqrt{2}}$	$\frac{5a_0}{12} - \frac{4a_1k^2}{3}$	$-\frac{5ia_0k}{12\sqrt{6}}$
$h_{1}^{#1} + ^{\alpha}$	0	0	0	$\frac{i a_0 k}{36 \sqrt{2}}$	<u>i a ₀ k</u> 9	$-\frac{ia_0k}{4\sqrt{6}}$	$\frac{1}{4}\bar{l}\sqrt{\frac{5}{6}}a_0k$	$\frac{i a_0 k}{12 \sqrt{3}}$	5 <i>ia</i> 0 <i>k</i> 12 √6	0

Source constraints					
Fundamental fields	Multiplicities				
$2 \partial_{\beta} \partial_{\alpha} \mathcal{T}^{\alpha\beta} = \partial_{\chi} \partial_{\beta} \partial_{\alpha} \Delta^{\alpha\beta\chi}$	1				
$\partial_{\alpha} \Delta^{\alpha\beta}_{\beta} = 2 \left(\partial_{\beta} \Delta^{\alpha}_{\alpha}^{\beta} + \partial_{\beta} \Delta^{\alpha\beta}_{\alpha} \right)$	1				
$2 \partial_{\chi} \partial_{\beta} \partial^{\alpha} \mathcal{T}^{\beta \chi} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial_{\beta} \Delta^{\beta \alpha \chi} = =$	3				
$2\partial_{\chi}\partial^{\chi}\partial_{\beta}\mathcal{T}^{\alpha\beta} + \partial_{\delta}\partial_{\chi}\partial_{\beta}\partial^{\alpha}\Delta^{\beta\chi\delta}$					
$\partial_{\beta}\partial^{\alpha}\Delta^{\beta\chi}_{\chi}$ +	3				
$2\left(\partial_{\chi}\partial^{\chi}\Delta^{\beta\alpha}_{\beta} + \partial_{\chi}\partial^{\chi}\Delta^{\beta}_{\beta}^{\alpha}\right) = =$					
$2 \partial_{\chi} \partial^{\alpha} \Delta^{\beta}_{\beta}^{\chi} + 2 \partial_{\chi} \partial^{\alpha} \Delta^{\beta \chi}_{\beta} +$					
$\partial_{\chi}\partial^{\chi}\Delta^{lphaeta}_{eta}$					
Total constraints/gauge generators:					
	$2 \partial_{\beta} \partial_{\alpha} \mathcal{T}^{\alpha\beta} == \partial_{\chi} \partial_{\beta} \partial_{\alpha} \Delta^{\alpha\beta\chi}$ $\partial_{\alpha} \Delta^{\alpha\beta}_{\beta} == 2 (\partial_{\beta} \Delta^{\alpha}_{\alpha}^{\beta} + \partial_{\beta} \Delta^{\alpha\beta}_{\alpha})$ $2 \partial_{\chi} \partial_{\beta} \partial^{\alpha} \mathcal{T}^{\beta\chi} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial_{\beta} \Delta^{\beta\alpha\chi} ==$ $2 \partial_{\chi} \partial^{\chi} \partial_{\beta} \mathcal{T}^{\alpha\beta} + \partial_{\delta} \partial_{\chi} \partial_{\beta} \partial^{\alpha} \Delta^{\beta\chi\delta}$ $\partial_{\beta} \partial^{\alpha} \Delta^{\beta\chi}_{\chi} +$ $2 (\partial_{\chi} \partial^{\chi} \Delta^{\beta\alpha}_{\beta} + \partial_{\chi} \partial^{\chi} \Delta^{\beta}_{\beta}^{\alpha}) ==$ $2 \partial_{\chi} \partial^{\alpha} \Delta^{\beta}_{\beta}^{\chi} + 2 \partial_{\chi} \partial^{\alpha} \Delta^{\beta\chi}_{\beta} +$ $\partial_{\chi} \partial^{\chi} \Delta^{\alpha\beta}_{\beta}$				

0

0

0

0

0

0

0

0

0

0

	$\mathcal{A}_{0}^{\#1}$	$\mathcal{A}_{0}^{\#2}$	$\mathcal{A}_{0}^{#3}$	$\mathcal{A}_{0}^{\#4}$	$h_{0}^{#1}$	$h_{0}^{#2}$	$\mathcal{A}_0^{\#1}$
$\mathcal{A}_{0}^{\#1}$ †	<u>a₀</u> 6	$\frac{a_0}{\sqrt{6}}$	$\frac{a_0}{\sqrt{6}}$	$\frac{a_0}{\sqrt{3}}$	$-\frac{i a_0 k}{3 \sqrt{2}}$	$-\frac{ia_0k}{2\sqrt{6}}$	0
$\mathcal{A}_{0}^{\#2}$ †	$\frac{a_0}{\sqrt{6}}$	0	<u>a₀</u> 2	$\frac{a_0}{2\sqrt{2}}$	0	0	0
$\mathcal{A}_{0}^{\#2}$ † $\mathcal{A}_{0}^{\#3}$ †	$\frac{a_0}{\sqrt{6}}$	<u>a₀</u> 2	0	$\frac{a_0}{2\sqrt{2}}$	$\frac{i a_0 k}{4 \sqrt{3}}$	$-\frac{1}{4}ia_0k$	0
$\mathcal{A}_{0}^{\#4}$ †	$\frac{a_0}{\sqrt{3}}$	$\frac{a_0}{2\sqrt{2}}$	$\frac{a_0}{2\sqrt{2}}$	<u>a₀</u> 2	$\frac{i a_0 k}{4 \sqrt{6}}$	$-\frac{i a_0 k}{4 \sqrt{2}}$	0
$h_{0}^{\#1}$ †	$\frac{i a_0 k}{3 \sqrt{2}}$	0	$-\frac{i a_0 k}{4 \sqrt{3}}$	$-\frac{i a_0 k}{4 \sqrt{6}}$	0	0	0
$h_{0+}^{#1} + h_{0+}^{#2} +$	$\frac{i a_0 k}{2 \sqrt{6}}$	0	<u>i a 0 k</u> 4	$\frac{i a_0 k}{4 \sqrt{2}}$	0	0	0
$\mathcal{A}_{0}^{\#1}$ †	0	0	0	0	0	0	$-\frac{a_0}{2}-6a_1k^2$
${\cal R}_{2+}^{\#1}{}_{\alpha\beta}{\cal R}_{2+}^{\#2}{}_{\alpha\beta}{\cal R}_{2+}^{\#3}{}_{\alpha\beta}h_{2+}^{\#1}$							

	$\Delta_0^{\#1}$	$\Delta_0^{\#2}$	$\Delta_0^{\#3}$	$\Delta_0^{\#4}$	${\cal T}_0^{\#1}$	${\cal T}_0^{\#2}$	$\Delta_0^{\#1}$
$\Delta_{0}^{\#1}$ †	0	$\frac{4\sqrt{6}}{16a_0 + 3a_0 k^2}$	$-\frac{4\sqrt{\frac{2}{3}}}{16a_0+3a_0k^2}$	$\frac{8}{\sqrt{3} (16 a_0 + 3 a_0 k^2)}$	$-\frac{2i\sqrt{2}}{a_0k}$	$-\frac{2i\sqrt{6}k}{16a_0+3a_0k^2}$	0
$\Delta_0^{#2}$ †	$\frac{4\sqrt{6}}{16a_0 + 3a_0 k^2}$	$-\frac{272}{a_0 (16+3 k^2)^2}$	$\frac{16(49+6k^2)}{3a_0(16+3k^2)^2}$	$\frac{16\sqrt{2}(-1+3k^2)}{3a_0(16+3k^2)^2}$	$\frac{8i}{\sqrt{3} (16a_0k + 3a_0k^3)}$	$\frac{136 i k}{a_0 (16 + 3 k^2)^2}$	0
$\Delta_0^{#3}$ †	$-\frac{4\sqrt{\frac{2}{3}}}{16a_0+3a_0k^2}$	$\frac{16(49+6k^2)}{3a_0(16+3k^2)^2}$	$-\frac{16(27+4k^2)}{3a_0(16+3k^2)^2}$	$\frac{16\sqrt{2}(11+k^2)}{3a_0(16+3k^2)^2}$	$\frac{8i(5+k^2)}{\sqrt{3} a_0 k(16+3k^2)}$	$-\frac{8ik(49+6k^2)}{3a_0(16+3k^2)^2}$	0
$\Delta_{0}^{\#4}$ †	$\frac{8}{\sqrt{3} (16 a_0 + 3 a_0 k^2)}$	$\frac{16\sqrt{2}(-1+3k^2)}{3a_0(16+3k^2)^2}$	$\frac{16\sqrt{2}(11+k^2)}{3a_0(16+3k^2)^2}$	$\frac{32(5+2k^2)}{3a_0(16+3k^2)^2}$	$\frac{4i\sqrt{\frac{2}{3}}(6+k^2)}{a_0k(16+3k^2)}$	$\frac{8i\sqrt{2}k(1-3k^2)}{3a_0(16+3k^2)^2}$	0
${\cal T}_{0}^{\#1}\dagger$	2 i √2 a ₀ k	$-\frac{8i}{\sqrt{3} (16a_0k+3a_0k^3)}$	$-\frac{8i(5+k^2)}{\sqrt{3} a_0 k (16+3 k^2)}$	$-\frac{4i\sqrt{\frac{2}{3}}(6+k^2)}{a_0k(16+3k^2)}$	$\frac{4}{a_0 k^2}$	$-\frac{4}{\sqrt{3}(16a_0+3a_0k^2)}$	0
$\mathcal{T}_{0}^{\#2}$ †	$\frac{2 i \sqrt{6} k}{16 a_0 + 3 a_0 k^2}$	$-\frac{136 i k}{a_0 (16+3 k^2)^2}$	$\frac{8ik(49+6k^2)}{3a_0(16+3k^2)^2}$	$\frac{8i\sqrt{2}k(-1+3k^2)}{3a_0(16+3k^2)^2}$	$-\frac{4}{\sqrt{3}\;(16a_0+3a_0k^2)}$	$-\frac{68 k^2}{a_0 (16+3 k^2)^2}$	0
$\Delta_0^{\#_1}$ †	0	0	0	0	0	0	$-\frac{2}{a_0+12a_1k^2}$

(Quadratic (free) action
,	$S == \iiint (h^{\alpha\beta} \mathcal{T}_{\alpha\beta} + \mathcal{A}^{\alpha\beta\chi} \Delta_{\alpha\beta\chi} + \frac{1}{36} a_0 (8 \mathcal{A}_{\alpha \chi}^{\chi} \mathcal{A}^{\alpha\beta}_{\beta} - 18 \mathcal{A}^{\alpha\beta\chi} \mathcal{A}_{\beta\chi\alpha} -$
	$8 \mathcal{A}_{\alpha}^{\alpha\beta} \mathcal{A}_{\beta\chi}^{\chi} + 16 \mathcal{A}_{\alpha}^{\alpha\beta} \mathcal{A}_{\beta\chi}^{\chi} + 2 \mathcal{A}_{\alpha}^{\alpha\beta} \mathcal{A}_{\beta\chi}^{\chi} +$
	$4\mathcal{R}^{\alpha\beta}_{\beta}\partial_{\alpha}h^{\chi}_{\chi} - 4\mathcal{R}^{\alpha}_{\alpha}^{\beta}\partial_{\beta}h^{\chi}_{\chi} - 9h^{\chi}_{\chi}\partial_{\beta}\mathcal{R}^{\alpha}_{\alpha}^{\beta} +$
	$9 h_{\chi}^{\chi} \partial_{\beta} \mathcal{R}^{\alpha\beta}_{\alpha} - 18 h_{\alpha\chi} \partial_{\beta} \mathcal{R}^{\alpha\beta\chi} - 16 \mathcal{R}^{\alpha\beta}_{\beta} \partial_{\chi} h_{\alpha}^{\chi} +$
	$16 \mathcal{A}_{\alpha}^{\alpha\beta} \partial_{\chi} h_{\beta}^{\chi} + 18 h_{\beta\chi} \partial^{\chi} \mathcal{A}_{\alpha}^{\alpha\beta}) +$
	$a_{1}(\partial_{\alpha}\mathcal{R}_{\chi\;\;\mu}^{\;\;\mu}\partial^{\chi}\mathcal{R}^{\alpha\beta}_{ \beta}\!-\!\partial_{\chi}\mathcal{R}_{\alpha\;\;\mu}^{\;\;\mu}\partial^{\chi}\mathcal{R}^{\alpha\beta}_{ \beta}+$
	$(2 \partial_{\alpha} \mathcal{A}_{\beta \chi \mu} - 2 \partial_{\alpha} \mathcal{A}_{\beta \mu \chi} - 2 \partial_{\alpha} \mathcal{A}_{\chi \beta \mu} + 2 \partial_{\alpha} \mathcal{A}_{\chi \mu \beta} +$
	$\partial_{\alpha}\mathcal{A}_{\mu\beta\chi}$ - $\partial_{\alpha}\mathcal{A}_{\mu\chi\beta}$ - 2 $\partial_{\beta}\mathcal{A}_{\alpha\chi\mu}$ + $\partial_{\beta}\mathcal{A}_{\alpha\mu\chi}$ -
	$\partial_{\beta}\mathcal{A}_{\chi\mu\alpha} + \partial_{\chi}\mathcal{A}_{\alpha\beta\mu} - \partial_{\chi}\mathcal{A}_{\beta\alpha\mu} + 2\partial_{\chi}\mathcal{A}_{\beta\mu\alpha}$
	$\partial_{\mu}\mathcal{A}_{\alpha\beta\chi} + \partial_{\mu}\mathcal{A}_{\alpha\chi\beta} + \partial_{\mu}\mathcal{A}_{\beta\alpha\chi} - 2 \partial_{\mu}\mathcal{A}_{\beta\chi\alpha} +$
	$\partial_{\mu}\mathcal{A}_{\chietalpha})\partial^{\mu}\mathcal{A}^{lphaeta\chi}))[t,x,y,z]dzdydxdt$

				$\mathcal{H}_{2}^{+}\alpha\beta$	$\mathcal{A}_{2}^{+} \alpha \beta$	$\mathcal{H}_{2}^{+}\alpha\beta$	$n_{2}^{+} \alpha \beta$	$\mathcal{F}_{2}^{-} = \alpha \beta \chi$	F
			$\mathcal{A}_{2}^{\sharp 1}\dagger^{lphaeta}$	<u>a₀</u> 4	0	0	$\frac{i a_0 k}{4 \sqrt{2}}$	0	
$\Delta_{2+}^{#2} \uparrow^{\alpha\beta}$	$\Delta_{2+}^{#1} + ^{\alpha\beta}$		$\mathcal{A}_{2}^{\#2}\dagger^{lphaeta}$	0	$-\frac{a_0}{2}$	0	$\frac{i a_0 k}{4 \sqrt{3}}$	0	
		$\Delta_2^{\#}$	$\mathcal{A}_{2}^{\#3}\dagger^{lphaeta}$	0	0	<u>a o</u> 4	$-\frac{i a_0 k}{4 \sqrt{6}}$	0	
$\frac{2\sqrt{\frac{2}{3}}}{a_0}$	0	$\Delta_{2}^{\#1}{}_{lphaeta}$,	$h_2^{\#1} \dagger^{\alpha\beta}$	$-\frac{i a_0 k}{4 \sqrt{2}}$	$-\frac{i a_0 k}{4 \sqrt{3}}$	$\frac{i a_0 k}{4 \sqrt{6}}$	0	0	
- <u>8</u>	$\frac{2\sqrt{\frac{2}{3}}}{a_0}$	$\Delta_{2}^{\#2}_{+}{}_{lphaeta}$	$\mathcal{A}_{2}^{\#1}\dagger^{lphaeta\chi}$	0	0	0	0	<u>a₀</u> 4	
$-\frac{2\sqrt{2}}{3a_0}$	$\frac{4}{\sqrt{3} a_0}$	$\Delta_{2}^{\#3}{}_{lphaeta}$	$\mathcal{A}_{2}^{\#2}$ † $\alpha\beta\chi$	0	0	0	0	0	
	0 1								
$\frac{4i}{\sqrt{3} a_0 k}$	$\frac{4i\sqrt{2}}{a_0k}$	${\mathcal T}^{\#1}_{2^+lphaeta}$							
		\triangleright							

Massive and massless spectra

Massive particle

Pole residue:

Polarisations:

Square mass:

Odd

Spin:

Parity:

$\frac{1}{6a_1} > 0$?
1	?
$-\frac{a_0}{12a_1} > 0$	
0	

9		
?	Quadratic pole	:
?	Pole residue:	_ <u>1</u>
?	Polarisations:	1
?		

	2
	? /
	k^{μ}
)	?
-	\mathcal{L}
	?
	,

9		
· / /	Quadratic pole	!
$\stackrel{k^{\mu}}{\longrightarrow}$?	Pole residue:	$-\frac{1}{a_0} > 0$
	Polarisations:	1

Unitarity conditions

 $a_0 < 0 \&\& a_1 > 0$