

Operating System

BITS Pilani K K Birla Goa Campus

Dr. Lucy J. Gudino
Dept. of CS and IS

External Memory

- Magnetic Disk
- RAID

Magnetic Disk

- Off line storage, non volatile
- Provide bulk storage
- is a circular platter constructed of non-magnetic material → substrate
 - Substrate is coated with magnetizable material (Iron oxide)
 - Platter diameter range from 1.8 to 5.25inches
 - Disks rotate at 5400RPM to 15,000 RPM
 - Read/Write head "flies" just above the platter
 - Traditional system used aluminium for substrate
 - Now glass as substrate

Contd

- Glass as substrate (Advantages)
 - Improved surface uniformity
 - Increases reliability
 - Reduction in surface defects
 - Reduced read/write errors
 - Ability to support lower fly heights (2 to 3 nm)
 - Better stiffness to reduce disk dynamics
 - Greater ability to withstand shock and damage

Read and Write Mechanisms

- Recording & retrieval via conductive coil called a head
- May be single read/write head or separate ones
- During read/write, head is stationary, platter rotates

Read and Write Mechanisms ...

- Write Operation
 - Basic principle: Current through coil produces magnetic field
 - Electric pulses sent to head
 - Magnetic pattern recorded on surface below

Contd...

- Read (traditional)
 - Magnetic field moving relative to coil produces current in the coil
 - Coil is the same for read and write
 - used in floppy disk and older rigid disk systems

Contd...

- Read (contemporary)
 - Separate read head, close to write head
 - Partially shielded magneto resistive (MR) sensor
 - Electrical resistance depends on direction of magnetic field

Data Organization and Formatting

Concentric rings or tracks

- Gaps between tracks: prevents/minimizes errors due to misalignment of the head or simply interference of magnetic field
- Reduce gap to increase capacity
- Same number of bits per track
- Constant angular velocity
- 10,000 to 50,000 tracks per surface

Tracks divided into sectors

- fixed or variable length
- contemporary systems use fixed length system with 512 byte sector size
- 100 to 500 sector

contd...

- Rotate disk at constant angular velocity (CAV)
 - Gives pie shaped sectors and concentric tracks
 - Individual tracks and sectors addressable
 - Move head to given track and wait for given sector
 - Waste of space on outer tracks
 - Lower data density
- Can use zones to increase capacity
 - Each zone has fixed bits per track
 - More complex circuitry

(a) Constant angular velocity

Multiple Zone Recording

- Also known as zoned bit recording
- Grouping the tracks in to sets called zones (16 is typical)
- Within a zone, the number of bits per track is constant.
- Tracks in the inner zones contain the fewest sectors, and tracks in the outer zones contain the most sectors.

Finding Sectors

- Must be able to identify start of track and sector
- Format disk
 - Additional information not available to user
 - Marks tracks and sectors

Winchester Disk Format Seagate ST506

Physical Characteristics of Disk Systems

- Head motion: Fixed (rare) or movable head
- Disk portability: Removable or fixed
- Sided: Single or double (usually) sided
- Platter: Single or multiple platter
- Head mechanism
 - Contact (Floppy)
 - Fixed gap
 - Flying (Winchester)

Fixed/Movable Head Disk

Fixed head

- One read write head per track
- Heads mounted on fixed ridged arm

Movable head

- One read write head per side
- Mounted on a movable arm

Removable or Not

Removable disk

- Can be removed from drive and replaced with another disk
- Provides unlimited storage capacity
- Easy data transfer between systems

Nonremovable disk

Permanently mounted in the drive

Multiple Platter

- One head per side
- Heads are joined and aligne
- Aligned tracks on each platte form cylinders
- Cylinder: the set of all the tracks in the same relative position on the platter is referred to as a cylinder

Tracks and Cylinders

Floppy Disk

- 8", 5.25", 3.5"
- Small capacity
 - Up to 1.44Mbyte (2.88M never popular)
- Slow
- Cheap
- Obsolete?

Winchester Hard Disk (1)

- Relationship between data density, the size of the air gap and size of the head
 - Narrower head → narrower track → greater data density
 - can not keep head very close to platter
- Winchester Hard Disk:
 - Developed by IBM in Winchester (USA)
 - Sealed unit
 - One or more platters (disks)
 - head is an aerodynamic foil rests lightly on the platter
 - Heads fly on boundary layer of air as disk spins
 - Very small head to disk gap
 - Getting more robust

Capacity

- · Capacity: maximum number of bits that can be stored.
- Vendors express capacity in units of gigabytes (GB), where 1 GB =10^9 Byte
- Capacity is determined by these technology factors:
 - Recording density (bits/in): number of bits that can be squeezed into a 1 inch segment of a track.
 - Track density (tracks/in): number of tracks that can be squeezed into a 1 inch radial segment.
 - Areal density (bits/in2): product of recording and track density

Contd...

- Modern disks partition tracks into disjoint subsets called recording zones
 - Each track in a zone has the same number of sectors, determined by the circumference of innermost track.
 - Each zone has a different number of sectors/track

innovate achieve lead

Computing disk capacity

- Capacity =(# bytes/sector) x (Avg # sectors/track) x
 (# tracks/surface) x (# surfaces/platter) x (# platters/disk)
- Example:
 - 512 bytes/sector
 - 300 sectors/track (on average)
 - 20,000 tracks/surface
 - 2 surfaces/platter
 - 5 platters/disk
 - Capacity = $512 \times 300 \times 20000 \times 2 \times 5 = 30.72$ GB

Disk Performance Parameters

- Seek time
 - Moving head to correct track
- Rotational latency/ delay
 - the time necessary for the desired sector to rotate to the disk head
- Access time = Seek + Latency
- Transfer rate: is the rate at which data flow between the drive and the computer

Contd...

- Transfer time (T=b/rN)
- Total average access time

$$T_a = T_s + T_r + T_t$$

Here

- T_s is Average seek time
- $-T_r$ is the Average rotational time = 1/2r
- $-T_t$ is the transfer time = b/rN
- r is rotation speed in revolution per second
- b number of bytes to be transferred
- N number of bytes on a track

Example

- Average seek time=4ms
- Rotation speed= 15,000 rpm
- 512 bytes per sector
- No. of sectors per track=500
- Want to read a file consisting of 2500 sectors.
- Calculate the time to read the entire file
 - A) File is stored sequentially.
 - B) File is stored randomly

Solution:

r = 15000 / 601/2r = 2ms

500x512

250 x500x512

A) File is stored sequentially: on adjacent tracks

Total average access time = $T_a = T_s + 1/2r + b/rN$

Time required to read first track:

Average Seek time

Average rotational delay

Read 500 sectors

Total

=4ms

=2ms

 $=4ms^{\circ}$

10_{ms}

To read remaining tracks, seek time is very very small.

Average rotational delay

Read 500 sectors

Total

=2ms

=4ms

6ms

To read entire file: $10 \times 1 + 6 \times 4 = 34 \text{ ms}$

250 x500x512

Solution...

 b) File is stored Randomly: Sectors are randomly distributed over the disk

Time required to read each sector:

Average Seek time

Average rotational delay

Read 1 sector

Total

= 4ms

=2ms

= 0.008ms

6.008ms

To read entire file: 2500x6.008= 15.02 seconds

- Main draw back of Magnetic disks :provide a single, serial bit stream during data transfer
- Main focus: decreasing access time, increasing bandwidth during data flow and reliability
 - achieved using multiple disks operating independently and parallel
- RAID: storage technology that combines multiple disk drive components into a logical unit.
 - Redundant Array of Independent Disks or Redundant Array of Inexpensive Disks
 - Set of physical disks viewed as single logical drive by O/S
- Data distributed across physical drives

Contd...

- Main advantage:
 - Performance improvement due to parallelism by multiple disks
 - fault tolerance due to replication of data
- 7 levels in common use: Zero through six
 - defines different disk organization techniques

Three main characteristics

- 1. RAID is a set of physical disk drives viewed by the operating system as a single logical drive.
- 2. Data are distributed across the physical drives of an array in a scheme known as striping
- 3. Redundant disk capacity is used to store parity information, which guarantees data recoverability in case of a disk failure.

Striping

- Bit level striping: Splitting the bits of each byte across multiple disks
- Block level striping: Blocks of a file striped across multiple disks
- Advantage : Improvement in performance via parallelism

- Not a true member of RAID
 - No redundancy
- Data striped across all disks
- Round Robin striping
- Increase in speed
 - Multiple data requests probably not on same disk
 - Disks seek in parallel
 - Parallel access to N disks

- High data transfer capacity: 2 requirements
 - a high transfer capacity must exist along the entire path between host memory and the individual disk drives.
 - internal controller buses, host system I/O buses,
 I/O adapters, and host memory buses.
- the application must make I/O requests that drive the disk array efficiently
 - usually large contiguous data

- Mirrored Disks
- Data is striped across disks
- 2 copies of each stripe on separate disks
- Read from either

- Write to both
- Recovery is simple
 - replace faulty disk & re-mirror
- Expensive
 - limited to drives that store system software other highly critical files

- Also known as memory style error correcting code organization (ECC)
- Provides parallel access
- Disks are synchronized
 - Spindles of individual disks are synchronized
- Very small stripes
 - Often single byte/word

innovate achieve lead

Contd...

- Error correction calculated across corresponding bits on each disk→ Hamming code
 - correction → single bit, detect → double bit errors
- Multiple parity disks store Hamming code error correction in corresponding positions
- Lots of redundancy
 - Expensive
 - Not used

- Similar to RAID 2
- Also known as bit interleaved parity organization
- Only one redundant disk, no matter how large the array

- Simple parity bit for each set of corresponding bits
- Data on failed drive can be reconstructed from surviving data and parity info
- Very high transfer rates as RAID 0
- Reduced storage overhead

RAID 3...

Consider 5 drives: X0 to X4

X0 – X3 → data

X4 → Parity

$$X4(i) = X3(i) \oplus X2(i) \oplus X1(i) \oplus X0(i)$$

If X1 fails

$$X1(i) = X3(i) \oplus X2(i) \oplus X0(i) \oplus X4(i)$$

- Also known as "Block interleaved parity organization"
- Each disk operates independently
- Good for application with high I/O request rate
- Large stripes
- Bit by bit parity calculated across stripes on each disk
- Parity stored on parity disk

RAID 4...

 Write penalty: update user data as well as corresponding parity bits

$$X4(i) = X3(i) \oplus X2(i) \oplus X1(i) \oplus X0(i)$$

Update in X1

$$X4'(i) = X3(i) \oplus X2(i) \oplus X1'(i) \oplus X0(i)$$

$$X4'(i) = X3(i) \oplus X2(i) \oplus X1'(i) \oplus X0(i) \oplus X1(i) \oplus X1(i)$$

$$X4'(i) = X3(i) \oplus X2(i) \oplus X1(i) \oplus X0(i) \oplus X1'(i) \oplus X1(i)$$

$$X4'(i) = X4(i) \oplus X1'(i) \oplus X1(i)$$

each strip write involves two reads and two writes.

- Like RAID 4
- Parity striped across all disks
- Also known as "Block-interleaved distributed parity"
- Round robin allocation for parity stripe
- Avoids RAID 4 bottleneck at parity disk
- Commonly used in network servers

- Also known as P+Q redundancy scheme
- Two parity calculations
 - provides extra redundant info to guard against multiple disk failures
 - Reed Solomon code instead of parity

- Stored in separate blocks on different disks
- User requirement of N disks needs N+2
- High data availability
 - Three disks need to fail for data loss
 - Significant write penalty

Category	Level	Description	Disks required	Data availability	Large I/O data transfer capacity	Sma I I/O request rate
Striping	0	Nonredundant	N	Lower than single disk	Very high	Very high for both read and write
Mirroring	1	Mirrored	2N	Higher than RAID 2, 3, 4, or 5; lower than RAID 6	Higher than single disk for read; similar to single disk for write	Up to twice that of a single disk for read; similar to single disk for write
Parallel access	2	Redundant via Hamming code	N+m	Much higher than single disk; comparable to RAID 3,4, or 5	Highest of all listed alternatives	Approximately twice that of a single disk
	3	Bit-interle ave d parity	N+1	Much higher than single disk; comparable to RAID 2, 4, or 5	Highest of all listed alternatives	Approximately twice that of asingle disk
Independent access	4	Block-interleaved parity	N+1	Much higher than single disk; comparable to RAID 2, 3, or 5	Similar to RAID 0 for read; significantly lower than single disk for write	Similar to RAID 0 for read; significantly lower than single disk for write
	5	Block-interleaved distributed parity	N + 1	Much higher than single disk; comparable to RAID 2, 3, or 4	Similar to RAID 0 for read; lower than single disk for write	Similar to RAID 0 for read; generally lower than single disk for write
	6	Block-interleaved dual distributed parity	N + 2	Highest of all listed alternatives	Similar to RAID 0 for read; lower than RAID 5 for write	Similar to RAID 0 for read; significantly lower than RAID5 for write