Data-assimilaatio kitkamallissa

Tom Gustafsson

5. syyskuuta 2012

Ongelma

 Lähtökohtana: Onnistuuko huonosti tunnettujen parametrien ennustaminen elastisesta kitkamallista data-assimilaation tarjoamien keinojen avulla?

Malli, 2D

- Alkutila: Painin, laatta
- Reunaehdot

• Abaqus/Standard 6.12-1, simulaatiot CSC:n koneella

Simulaation vaiheet

• Vaihe 1: 5 kN voima

• Vaihe 2: Yläreunan siirto 70 cm oikealle

Simulaation vaiheet: Yläreunan siirtymä

• Siirto reunaehdolla, ns. "hidas siirtymä"

Simulaation vaiheet: Yläreunan siirtymä 2

Inversio-ongelma

- ullet Pyritään estimoimaan kitkakerroin μ
- A priori -tietona x-suuntaiset jännitykset mittapisteissä (~ venymäliuskamittaus)

Mittadata synteettistä

Synteettisen mittadatan generointi

ullet Minimoidaan inversiorikosta o mittadata tiheämmästä verkosta

 Miten verrata tiheämmän ja harvemman verkon antamia jännityksiä?

Synteettisen mittadatan generointi 2

Ongelman yhteenveto

- ullet Estimoitava suure: Kitkakerroin $\mu=0.5$
- A priori -tieto: x-suuntaiset jännitykset mittapisteissä
- Menetelmät: Data-assimilaatio

Data-assimilaatio

- Pohjimmiltaan havaintojen ja mallin tuotaman informaation yhteensulauttamista
- Perinteisiä sovelluskohteita: Säähavaintomallit, valtamerimallit
- Data-assimilaation menetelmiä
 - 3DVar, 4DVar
 - Kalman Filter, Extended-, Ensemble-, ...
 - ...
- Tässä työssä Ensemble Smoother, eli ES
- Perustuu samaan ideaan kuin Ensemble Kalman Filter, eli EnKF

Data-assimilaatio, yleistä

- ullet Systeemin (todellinen) tila $\psi^t \in \mathbb{R}^N$
- Mittaus $d \in \mathbb{R}^M$
 - Ei tarkka
 - ullet Suhde tilaan $oldsymbol{d} = oldsymbol{\mathsf{M}} oldsymbol{\psi}^t + oldsymbol{\epsilon}$
 - Mittamatriisi $\mathbf{M} \in \mathbb{R}^{M \times N}$
 - Virhe $\epsilon \sim \mathcal{N}_M(0, \mathbf{\Sigma})$
 - Kovarianssimatriisi $\mathbf{\Sigma} \in \mathbb{R}^{M \times M}$
- ullet Estimoitu tila $oldsymbol{\psi}^f \in \mathbb{R}^N$
 - Aluksi esim. mittauksien perusteella

Data-assimilaatio, esimerkki

$$N = M = 2$$
, $\mathbf{M} = \mathbf{I}$, $\mathbf{\Sigma} = \sigma \mathbf{I}$

Data-assimilaatio, yleistä 2

- ullet Todellinen tila ψ^t muuttuu ajan kuluessa
- Malli estimaatin aikakehityksestä:

$$oldsymbol{\psi}_{t+\Delta t}^f = oldsymbol{\psi}_t^f + \int_t^{t+\Delta t} oldsymbol{G}(oldsymbol{\psi}_t^f, t) \, \mathrm{d}t$$

 Malli epätäydellinen, eli estimaatin virhe kasvaa aikakehitettäessä

Data-assimilaatio, esimerkki 2

Data-assimilaatio, yleistä 3

- ullet Tulkitaan normaalijakauma todennäköisyystiheysfunktiona $f(oldsymbol{\psi},t)$
- Tällöin f:n aikakehitystä kuvaa Fokker-Planck -yhtälö

$$\frac{\partial f}{\partial t} + \sum_{i=1}^{N} \frac{\partial (G_i f)}{\partial \psi_i} = \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{\partial^2 (Q_{ij} f)}{\partial \psi_i \partial \psi_j}$$

- ullet Hurja, mutta ei niin hurja miltä näyttää (sij. ${f G}={f 0}$ ja ${f Q}={f I}$)
- ullet Yleinen tapaus ei ratkea analyyttisesti ightarrow EnKF

Ensemble Kalman Filter

- Idea: Otetaan n-kappaletta realisaatioita alkutilan normaalijakaumasta
- Aikakehitetään näin saadun kokoelman jokaista tilaa erikseen operaattorin G avulla
- Etu: Estimaatin kovarianssimatriisia ei tarvitse aikakehittää (lineaarisessa $\mathcal{O}(N)$, epälineaarisessa $\mathcal{O}(N^k)$, jossa k käytettävän Taylor-approksimaation aste), koska sitä voidaan approksimoida lausekkeella

$$oldsymbol{\Sigma} pprox rac{1}{n-1} \sum_{i=1}^n \left(\psi^f - \overline{\psi^f}
ight) \left(\psi^f - \overline{\psi^f}
ight)^{\mathrm{T}}$$

