

$\Box 0 \Box 0$				
$\square 1 \square 1$				
3 3	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré.			
44				
$\Box 6 \Box 6$	NOM - Prénom - Classe :			
□8 □8 □9 □9	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.			
	Codage d'entiers naturels			
Question 1	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:			
	00011001			
Question 2	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?			
	\square 24 \square 26 \square 51 \square 22			
Question 3	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:			
comported se termin	e au moins 9 chiffres e moins de 9 chiffres ne par 1 e 4 chiffres			
Question 4	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?			
	Impossible			
Question 5	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?			
	00101000			
	Codage d'entiers relatifs			
Question 6 sur 8 bits?	Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux,			
Question 7	Quel est le codage de l'entier relatif positif 64 sur 8 bits?			
	01100000			

Question 8 (sur 8 bits)?	Quelle est la vale	eur de l'entier rela	atif dont la représ	sentation en binaire est 01111110
	-124	<u> </u>	-126	-128
Question 9	La méthode du	complément à d	eux permet:	
d'ajouter d'obtenir	tous les bits d'ur 1 à un nombre er l'opposé d'un nor r la valeur absolu-	ntier écrit en bin nbre entier écrit	aire en binaire	
Question 10 deux?	Quelle est la r	eprésentation de	-3 sur 8 bits, p	ar la méthode du complément à
	11111101	11111100	0000010	0 00000101
Question 11	Le nombre bin	aire 01111111 co	odé sur 8 bits est	
est un cas le codage	tit entier relatif n particulier: il a l de un and entier relatif	la même représer	ntation que son o	opposé
	00001: nombre positif nombre négatif	avec des entier	s relatifs codés	sur 8 bits. L'addition binaire
Question 13 à deux, le bit de	7	sentation d'entier	rs relatifs sur 8 bit	ts par la méthode du complément
	inversant les bits	8		
	poids faible ($bit \theta$			
obtenu en	ajoutant 1 au no	ombre		
	Co	dage de no	ombres rée	ls
Question 14 raison?	L'opération 0	.1*12 en pythor	n fournit 1.2000	000000000002. Quelle en est la
Les nomb	res réels sont rep	résentés de mani	ère approximativ	ve en machine
L'opérate	ur aurait dû saisi	r float(0.1*12))	
Par défau	t tous les calculs	sur les décimaux	sont fourni avec	e 16 décimales
La calcula	atrice de python e	est plus précise q	u'une calculatric	e ordinaire

Question 15 Cochez une propriété correcte des nombres flottants sur une machine numérique. La représentation avec tous les bits à zéro est interdite Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse Question 16 Le nombre 10010,0011 peut s'écrire: $1,00100011 \times 2^4$ $1,00100011 \times 2^{-4}$ $1,00100011 \times 10^{-4}$ 1.00100011×10^4 Question 17 La représentation en virgule flottante est une écriture de la forme signe | ex-précision (32 bits)? $0,578125 \times 2^{131}$ 25, 25131,578125 L'instruction 0.1 + 0.2 == 0.3 en python, fournira: Question 18 0.3 SyntaxError False Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel Question 19 3, 25? 11,013,11001 11,11001 1,101 Que vaut le nombre binaire 10001,01 codé selon la méthode de la virgule fixe? Question 20 1,000101 17, 2517, 117,01Quelle est la représentation en virgule flottante, simple précision de -132, 5? Question 21 $0\ 10000110\ 0000100100000000000000000$ 1 10000110 0000100100000000000000000 1 10000111 000010010000000000000000

$\square 1 \square 1$				
$\square 2 \square 2$				
$\square 3 \square 3$	Codez votre numéro d'identification ci contre chiffre par chiffre,			
$\square 4 \ \square 4$	puis complétez l'encadré.			
$\Box 5 \Box 5$	NOM - Prénom - Classe :			
$\Box 6 \Box 6$	NOW - Frenom - Classe.			
\square 7 \square 7				
8 8	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou			
$\square 9 \square 9$	incohérentes retirent des points.			
	Codage d'entiers naturels			
Question 1	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?			
	00110000			
Question 2	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:			
	00011001			
Question 3	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:			
se termin	e moins de 9 chiffres ne par 1 e au moins 9 chiffres e 4 chiffres			
Question 4	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?			
Question 5	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?			
	00101000			
	Codage d'entiers relatifs			
Question 6 deux?	Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à			
	00000101			
Question 7 sur 8 bits?	Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux,			

Question 8 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 011111111 + 000000001:
zéro est impossible donne un nombre négatif donne un nombre positif
Question 9 Quelle est la valeur de l'entier relatif dont la représentation en binaire est 011111110 $(sur \ 8 \ bits)$?
Question 10 La méthode du complément à deux permet:
de trouver la valeur absolue d'un entier relatif d'ajouter 1 à un nombre entier écrit en binaire d'obtenir l'opposé d'un nombre entier écrit en binaire d'inverser tous les bits d'un nombre entier écrit en binaire
Question 11 Quel est le codage de l'entier relatif positif 64 sur 8 bits?
11000000 01000000 11100000 11000000 11100000
Question 12 Le nombre binaire 01111111 codé sur 8 bits est: le codage de un le plus petit entier relatif négatif qu'on peut coder sur 8 bits le plus grand entier relatif positif qu'on peut coder sur 8 bits est un cas particulier: il a la même représentation que son opposé Question 13 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est: le bit de poids fort (bit γ) obtenu en ajoutant 1 au nombre obtenu en inversant les bits le bit de poids faible (bit θ)
Codage de nombres réels
Question 14 L'instruction 0.1 + 0.2 == 0.3 en python, fournira:
0.3 False SyntaxError True

Question 16 La représentation en virgule flottante est une écriture de la forme $signe \mid exposant \mid mantisse$. Que vaut le nombre 0 10000011 10010100000000000000000000
précision (32 bits)?
Question 17 Cochez une propriété correcte des nombres flottants sur une machine numérique.
La représentation avec tous les bits à zéro est interdite
Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants
Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants
La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse
Question 18 L'opération 0.1*12 en python fournit 1.20000000000000. Quelle en est la raison?
L'opérateur aurait dû saisir float(0.1*12)
Les nombres réels sont représentés de manière approximative en machine
Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales
La calculatrice de python est plus précise qu'une calculatrice ordinaire
Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe?
Question 20 Quelle est la représentation en virgule flottante, simple précision de $-132, 5$?
1 10000111 0000100100000000000000000000
0 10000110 0000100100000000000000000000
1 10000100 1000000000000000000000000000
1 10000110 0000100100000000000000000000
Question 21 Le nombre 10010,0011 peut s'écrire:

 $\begin{array}{|c|c|c|c|c|}\hline & 1,00100011 \times 2^4\\ \hline & 1,00100011 \times 2^{-4}\\ \hline & 1,00100011 \times 10^4\\ \hline \end{array}$

$\Box 0 \Box 0$	
$\Box 1 \ \Box 1$	
$\square_2 \square_2$	
	Codez votre numéro d'identification ci contre chiffre par chiffre,
	puis complétez l'encadré.
\Box 5 \Box 5	
$\Box 6 \Box 6$	NOM - Prénom - Classe :
\square \square 7	
$\square 8 \square 8$	Durée : 55 minutes.
	Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.
	inconcrences rement des points.
	Codage d'entiers naturels
Question 1	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:
comporte	e 4 chiffres
se termin	ne par 1
comporte	e au moins 9 chiffres
comporte	e moins de 9 chiffres
Question 2	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:
	00011000
Question 3	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?
	00100110
Question 4	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?
	00000000
Question 5	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?
	\square 26 \square 24 \square 51 \square 22
	Codage d'entiers relatifs
Question 6 sur 8 bits?	Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux,
Question 7	Quel est le codage de l'entier relatif positif 64 sur 8 bits?
	11000000

Question 8 Le nombre binaire 011111111 codé sur 8 bits est:
le plus grand entier relatif positif qu'on peut coder sur 8 bits
le codage de un
le plus petit entier relatif négatif qu'on peut coder sur 8 bits
est un cas particulier: il a la même représentation que son opposé
Question 9 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est:
obtenu en ajoutant 1 au nombre
\Box le bit de poids faible (bit θ)
\square le bit de poids fort ($bit \ 7$)
obtenu en inversant les bits
Question 10 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à deux?
111111101 00000101 111111100 00000100
Question 11 La méthode du complément à deux permet:
☐ d'obtenir l'opposé d'un nombre entier écrit en binaire ☐ de trouver la valeur absolue d'un entier relatif ☐ d'ajouter 1 à un nombre entier écrit en binaire ☐ d'inverser tous les bits d'un nombre entier écrit en binaire ☐ Question 12 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire
01111111 + 00000001: zéro est impossible donne un nombre positif donne un nombre négatif
Question 13 Quelle est la valeur de l'entier relatif dont la représentation en binaire est $01111110 \ (sur \ 8 \ bits)$?
Codage de nombres réels
Question 14 La représentation en virgule flottante est une écriture de la forme $signe \mid exposant \mid mantisse$. Que vaut le nombre 0 10000011 10010100000000000000000000
Question 15 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3,25?

Question 16 Quelle est la représentation en virgule flottante, simple précision de $-132, 5$?
1 10000110 0000100100000000000000000000
1 10000100 1000000000000000000000000000
0 10000110 0000100100000000000000000000
1 10000111 0000100100000000000000000000
Question 17 Que vaut le nombre binaire 10001,01 codé selon la méthode de la virgule fixe?
Question 18 Cochez une propriété correcte des nombres flottants sur une machine numérique
La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse
Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants
La représentation avec tous les bits à zéro est interdite
Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants
Question 19 Le nombre 10010, 0011 peut s'écrire:
$1,00100011 \times 2^4$
$1,00100011 \times 10^{-4}$
$\boxed{}$ 1,00100011 × 2 ⁻⁴
Question 20 L'instruction 0.1 + 0.2 == 0.3 en python, fournira:
0.3 True False SyntaxError
Question 21 L'opération $0.1*12$ en python fournit $1.2000000000000000000000000000000000000$

☐ La calculatrice de python est plus précise qu'une calculatrice ordinaire ☐ Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales

Les nombres réels sont représentés de manière approximative en machine

L'opérateur aurait dû saisir float (0.1*12)

$\Box 0 \Box 0$				
$\square 1 \ \square 1$				
2 2				
			fication ci contre chiffr	e par chiffre,
	puis complé	tez l'encadré.		
55	NOM - Pr	énom - Classe :		
7 7		Dur	rée : 55 minutes.	
	Document			Les réponses fausses ou
<u>9</u> 9		incohéren	tes retirent des points.	
		Codage d'en	tiers naturels	
Question 1	On effectu	e l'addition binaire 00	0101101 + 00001011. C	Quel est le résultat?
	00101000	00111100	00100110	00111000
Question 2	On considè	re le nombre $N = 100$	00_{10} (écrit en base 10).	L'écriture de N en binaire:
comporte	e moins de 9	chiffres		
comport	e 4 chiffres			
comporte	e au moins 9	chiffres)	
se termin	ne par 1			
Question 3	Quelle est	la valeur de l'entier r	naturel codé par le mot	tif binaire 00011010 ?
Question 6	Quene est			
		24 51	<u> </u>	26
Question 4	L'entier na	iturel 25 s'écrit en bir	naire naturel sur 8 bits	3:
	00010101	00011001	00011000	00011010
Question 5	Quelle est	la représentation sur	8 bits de l'addition bir	naire $10111011 + 01110101$?
	00110000	00000000	100110000	Impossible
		Codage d'en	ntiers relatifs	
Question 6	Quel est l	e codage de l'entier re	elatif positif 64 sur 8 b	oits?
	11100000	11000000	01000000	01100000
Question 7	Le nombr	e binaire 01111111 co	odé sur 8 bits est:	
est un ca	as particulier	: il a la même représe	entation que son oppos	sé
le plus g	rand entier r	elatif positif qu'on pe	eut coder sur 8 bits	
le codage	e de un			
le plus p	etit entier re	elatif négatif qu'on pe	ut coder sur 8 bits	

Question 8 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est: le bit de poids fort (bit 7) le bit de poids faible (bit 0) obtenu en inversant les bits obtenu en ajoutant 1 au nombre Question 9 Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits? -96-32La méthode du complément à deux permet: Question 10 d'ajouter 1 à un nombre entier écrit en binaire d'inverser tous les bits d'un nombre entier écrit en binaire d'obtenir l'opposé d'un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif Quelle est la valeur de l'entier relatif dont la représentation en binaire est Question 11 011111110 (sur 8 bits)? 126 -128-126Question 12 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à deux? 00000101 11111100 00000100 11111101 Question 13 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 011111111 + 000000001: donne un nombre positif est impossible donne un nombre négatif zéro Codage de nombres réels Question 14 Le nombre 10010,0011 peut s'écrire: $1,00100011 \times 10^4$ $1,00100011 \times 2^4$ $1,00100011 \times 2^{-4}$ $1,00100011 \times 10^{-4}$ Question 15 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3,25?3,11001 11,11001 1,101 11,01

Question 16 Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe? 17, 2517,01 $\boxed{}$ 17, 1 1,000101 L'opération 0.1*12 en python fournit 1.200000000000000. Quelle en est la Question 17 raison? L'opérateur aurait dû saisir float (0.1*12) Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales La calculatrice de python est plus précise qu'une calculatrice ordinaire Les nombres réels sont représentés de manière approximative en machine L'instruction 0.1 + 0.2 == 0.3 en python, fournira: Question 18 0.3 False SyntaxError True Question 19 Quelle est la représentation en virgule flottante, simple précision de -132, 5? $1\ 10000110\ 0000100100000000000000000$ $1\ 10000100\ 1000000000000000000000000$ 1 10000111 000010010000000000000000 $0\ 10000110\ 0000100100000000000000000$ La représentation en virgule flottante est une écriture de la forme signe | ex-Question 20 précision (32 bits)? 0.578125×2^{131} 131,578125 25, 25 Question 21 Cochez une propriété correcte des nombres flottants sur une machine numérique. La représentation avec tous les bits à zéro est interdite Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la

Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et

d'utilisation des flottants

$\square 1 \ \square 1$				
$2 \boxed{2}$				
	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré.			
□				
	NOM - Prénom - Classe :			
	Durée : 55 minutes.			
	Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou			
	incohérentes retirent des points.			
	Codage d'entiers naturels			
Question 1	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:			
comport	e 4 chiffres			
comport	e moins de 9 chiffres			
se termin	ne par 1			
comport	e au moins 9 chiffres			
Question 2	On effectue l'addition binaire 00101101 + 00001011. Quel est le résultat?			
	00100110			
Question 3	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?			
	Impossible 00110000 00000000 100110000			
Question 4	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:			
	00011001			
Question 5	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?			
	51 24 26 22			
	Codage d'entiers relatifs			
Question 6 (sur 8 bits)?	Quelle est la valeur de l'entier relatif dont la représentation en binaire est 01111110			
Question 7	Le nombre binaire 01111111 codé sur 8 bits est:			
est un ca	as particulier: il a la même représentation que son opposé			
le codage				
\equiv	rand entier relatif positif qu'on peut coder sur 8 bits			
	etit entier relatif négatif qu'on peut coder sur 8 bits			
10 pian p	Pour votre evamen imprimez de préférence les documents compilés			

Question 8 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire $011111111 + 000000001$:
donne un nombre positif est impossible zéro donne un nombre négatif
Question 9 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est:
 □ le bit de poids fort (bit 7) □ le bit de poids faible (bit 0) □ obtenu en inversant les bits □ obtenu en ajoutant 1 au nombre
Question 10 La méthode du complément à deux permet: d'obtenir l'opposé d'un nombre entier écrit en binaire d'ajouter 1 à un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif d'inverser tous les bits d'un nombre entier écrit en binaire
Question 11 Quel est le codage de l'entier relatif positif 64 sur 8 bits?
01100000 11000000 11100000 01000000
Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits?
Question 13 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à deux?
Codage de nombres réels
Question 14 Quelle est la représentation en virgule flottante, simple précision de -132, 5? 0 10000110 00001001000000000000000000
Question 15 Le nombre 10010,0011 peut s'écrire:

Que vaut le nombre binaire 10001,01 codé selon la méthode de la virgule fixe?
Question 17 L'instruction 0.1 + 0.2 == 0.3 en python, fournira:
False 0.3 SyntaxError True
Question 19 La représentation en virgule flot tante est une écriture de la forme $signe \mid exposant \mid mantisse.$ Que vaut le nombre 0 10000011 10010100000000000000000000
Question 20 L'opération $0.1*12$ en python fournit $1.2000000000000000000000000000000000000$
Les nombres réels sont représentés de manière approximative en machine
La calculatrice de python est plus précise qu'une calculatrice ordinaire
Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales
L'opérateur aurait dû saisir float(0.1*12)
Question 21 Cochez une propriété correcte des nombres flottants sur une machine numérique.
La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse
Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants
La représentation avec tous les bits à zéro est interdite
Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants

$\Box 0 \Box 0$	
$\Box 1 \Box 1$	
$\square 2 \square 2$	
$\square 3 \square 3$	Codez votre numéro d'identification ci contre chiffre par chiffre,
$\square 4 \square 4$	puis complétez l'encadré.
$\square 5 \square 5$	NOM - Prénom - Classe :
$\Box 6 \Box 6$	NOM - Frenom - Classe :
77	
8 8	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou
<u>9</u> 9	incohérentes retirent des points.
	Codage d'entiers naturels
Question 1	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:
comporte	e 4 chiffres
se termin	ne par 1
comporte	e moins de 9 chiffres
comporte	e au moins 9 chiffres
Question 2	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?
	\square 22 \square 26 \square 51 \square 24
Question 3	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?
	100110000
Question 4	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?
	00111100
Question 5	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:
	00011010
	Codage d'entiers relatifs
Question 6 deux?	Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à
	111111100
Question 7 sur 8 bits?	Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux,

Question 8 (sur 8 bits)?	Quelle est la valeur de l'entier relatif dont la représentation en binaire est 011111110
Question 9 à deux, le bit de	Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément e signe est:
obtenu en	poids fort $(bit 7)$ ajoutant 1 au nombre poids faible $(bit 0)$ inversant les bits
Question 10	La méthode du complément à deux permet:
de trouver d'inverser	l'opposé d'un nombre entier écrit en binaire r la valeur absolue d'un entier relatif tous les bits d'un nombre entier écrit en binaire 1 à un nombre entier écrit en binaire
Question 11	Le nombre binaire 01111111 codé sur 8 bits est:
le plus pe	particulier: il a la même représentation que son opposé tit entier relatif négatif qu'on peut coder sur 8 bits and entier relatif positif qu'on peut coder sur 8 bits de un
zéro est imposs	nombre positif
Question 13	Quel est le codage de l'entier relatif positif 64 sur 8 bits?
_	11000000
	Codage de nombres réels
Question 14 posant mantis précision (32 bi	•
	$0,578125 \times 2^{131}$ $9,25$ $131,578125$ $25,25$

Question 15	Cochez une propriété correcte des nombres flottants sur une machine numérique.
La représen mantisse	atation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la
	possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et a des flottants
	étés mathématiques comme l'associativité de l'addition ne sont pas forcément ec les flottants
La représen	atation avec tous les bits à zéro est interdite
Question 16	Quelle est la représentation en virgule flottante, simple précision de $-132,5$?
1 10000100	100000000000000000000000000000
1 10000110	0000100100000000000000
1 10000111	0000100100000000000000
0 10000110	00001001000000000000000
Question 17	Que vaut le nombre binaire 10001,01 codé selon la méthode de la virgule fixe?
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Question 18 3, 25?	Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel
] 11,11001
Question 19	L'instruction $0.1 + 0.2 == 0.3$ en python, fournira:
] 0.3
Question 20	Le nombre 10010,0011 peut s'écrire:
1,00100011 1,00100011 1,00100011 1,00100011	$\begin{array}{c} \times10^{-4}\\ \times2^4\end{array}$
Question 21 raison?	L'opération $0.1*12$ en python fournit 1.200000000000000 . Quelle en est la
L'opérateur	aurait dû saisir float(0.1*12)
La calculat	rice de python est plus précise qu'une calculatrice ordinaire
Les nombre	es réels sont représentés de manière approximative en machine
Par défaut	tous les calculs sur les décimaux sont fourni avec 16 décimales

$\square 1 \square 1$				
$\square 2 \square 2$				
<u>3</u> 3	Codez votre numéro d'identification ci contre chiffre par chiffre,			
puis	puis complétez l'encadré.			
5 5 6 6	OM - Prénom - Classe :			
	Durée : 55 minutes. ocument écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.			
	Codage d'entiers naturels			
Question 1 L'	entier naturel 25 s'écrit en binaire naturel sur 8 bits:			
000	011000			
Question 2 Or	n effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?			
001	101000			
Question 3 Q	uelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?			
1001	10000			
Question 4 Q	uelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?			
Question 5 Or	n considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:			
Comporte mo	pins de 9 chiffres			
se termine pa				
	moins 9 chiffres			
comporte 4 c				
_				
	Codage d'entiers relatifs			
Question 6 deux?	Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à			
000	000100			
Question 7 L	a méthode du complément à deux permet:			
d'inverser to	us les bits d'un nombre entier écrit en binaire			
	pposé d'un nombre entier écrit en binaire			
	a valeur absolue d'un entier relatif			
d'ajouter 1 à	à un nombre entier écrit en binaire			

Question 8 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 011111111 + 00000001: donne un nombre négatif est impossible zéro donne un nombre positif Question 9 Quelle est la valeur de l'entier relatif dont la représentation en binaire est 01111110 (sur 8 bits)? -128126 -124-126Question 10 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est: le bit de poids fort (bit 7) obtenu en ajoutant 1 au nombre le bit de poids faible ($bit \theta$) obtenu en inversant les bits Que vaut le nombre binaire 11100000 codé par la méthode du complément à Question 11 deux, sur 8 bits? 224 -96Quel est le codage de l'entier relatif positif 64 sur 8 bits? Question 12 11100000 01000000 01100000 11000000 Le nombre binaire 01111111 codé sur 8 bits est: Question 13 est un cas particulier: il a la même représentation que son opposé le codage de un le plus petit entier relatif négatif qu'on peut coder sur 8 bits le plus grand entier relatif positif qu'on peut coder sur 8 bits Codage de nombres réels Question 14 Cochez une propriété correcte des nombres flottants sur une machine numérique. Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse La représentation avec tous les bits à zéro est interdite Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel Question 15 3,25? 3,11001 11,01 11,11001 1,101

Question 16 L'opération 0.1*12 en python fournit 1.200000000000000. Quelle en est la raison? Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales Les nombres réels sont représentés de manière approximative en machine L'opérateur aurait dû saisir float (0.1*12) La calculatrice de python est plus précise qu'une calculatrice ordinaire L'instruction 0.1 + 0.2 == 0.3 en python, fournira: Question 17 SyntaxError False Le nombre 10010,0011 peut s'écrire: Question 18 $1,00100011 \times 2^4$ $1,00100011 \times 2^{-4}$ $1,00100011 \times 10^{-4}$ $1,00100011 \times 10^4$ La représentation en virgule flottante est une écriture de la forme signe | ex-Question 19 précision (32 bits)? $0,578125 \times 2^{131}$ 25, 25 131,578125

☐ 1 10000110 000010010000000000000
 ☐ 0 10000110 00001001000000000000
 Question 21 Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe?

Question 20

Quelle est la représentation en virgule flottante, simple précision de -132, 5?

$\square 1 \square 1$	
$\square 2 \square 2$	
$\square 3 \square 3$	Codez votre numéro d'identification ci contre chiffre par chiffre,
$\square 4 \square 4$	puis complétez l'encadré.
$\square_5 \square_5$	
$\Box 6 \Box 6$	NOM - Prénom - Classe :
	$Dur\'ee:55\ minutes.$
	Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou
<u>9</u> 9	incohérentes retirent des points.
	Codage d'entiers naturels
Question 1	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:
comport	e moins de 9 chiffres
se termin	ne par 1
comport	e au moins 9 chiffres
comport	e 4 chiffres
Question 2	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?
	\square 51 \square 26 \square 24 \square 22
0 0	
Question 3	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?
	00111000
Question 4	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:
	00011010
Question 5	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?
	00000000
	Codage d'entiers relatifs
Question 6	Le nombre binaire 011111111 codé sur 8 bits est:
le plus p	etit entier relatif négatif qu'on peut coder sur 8 bits
le plus g	rand entier relatif positif qu'on peut coder sur 8 bits
le codage	
	as particulier: il a la même représentation que son opposé
Question 7 deux?	Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à
	11111101
	Pour votre examen, imprimez de préférence les documents compilés

à l'aide de auto-multiple-choice.

Question 8 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 011111111 + 00000001: donne un nombre négatif zéro est impossible donne un nombre positif Question 9 Quelle est la valeur de l'entier relatif dont la représentation en binaire est 01111110 (sur 8 bits)? 126 -124-128Quel est le codage de l'entier relatif positif 64 sur 8 bits? Question 10 11100000 01000000 01100000 11000000 Que vaut le nombre binaire 11100000 codé par la méthode du complément à Question 11 deux, sur 8 bits? 224 -96Question 12 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est: obtenu en ajoutant 1 au nombre obtenu en inversant les bits le bit de poids faible (bit 0) le bit de poids fort (bit 7) Question 13 La méthode du complément à deux permet: d'ajouter 1 à un nombre entier écrit en binaire d'obtenir l'opposé d'un nombre entier écrit en binaire d'inverser tous les bits d'un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif Codage de nombres réels Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel Question 14 3, 25? 11,01 3,11001 11, 11001 1,101 Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe? Question 15 1,000101 17, 117,01 17,25L'instruction 0.1 + 0.2 == 0.3 en python, fournira: Question 16 0.3 True False SyntaxError

Question 17 Quelle est la représentation en virgule flottante, simple précision de -132, 5? 0 10000110 0000100100000000000000000 1 10000111 0000100100000000000000000 1 10000110 000010010000000000000000 Question 18 Le nombre 10010,0011 peut s'écrire: $1,00100011 \times 2^{-4}$ $1,00100011 \times 10^{-4}$ $1,00100011 \times 2^4$ Question 19 L'opération 0.1*12 en python fournit 1.2000000000000. Quelle en est la raison? La calculatrice de python est plus précise qu'une calculatrice ordinaire Les nombres réels sont représentés de manière approximative en machine Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales L'opérateur aurait dû saisir float (0.1*12) Cochez une propriété correcte des nombres flottants sur une machine numérique. Question 20 La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants La représentation avec tous les bits à zéro est interdite La représentation en virgule flottante est une écriture de la forme signe | ex-Question 21 précision (32 bits)? 0.578125×2^{131} 131,578125 25, 25

$ \begin{array}{ccc} $	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré.					
□5 □5□6 □6	NOM - Prénom - Classe :					
778899	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.					
	Codage d'entiers naturels					
Question 1	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:					
	00011000					
comporte	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire: ne par 1 e 4 chiffres e moins de 9 chiffres e au moins 9 chiffres					
Question 3	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?					
Question 4	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?					
	00000000					
Question 5	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?					
	00111100					
	Codage d'entiers relatifs					
Question 6 deux?	Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à					
	00000100					
Question 7 (sur 8 bits)?	Quelle est la valeur de l'entier relatif dont la représentation en binaire est 011111110					

Question 8 sur 8 bits?	Que vaut le nomb	ore binaire 11100	000 codé par la	méthode du	complément à deux,
	224				
Question 9 011111111 + 000		avec des entiers	relatifs codés	sur 8 bits.	L'addition binaire
	sible nombre positif nombre négatif				
Question 10 à deux, le bit de		entation d'entiers	s relatifs sur 8 bi	its par la métl	node du complément
le bit de p	poids fort (bit 7) poids faible (bit 0) inversant les bits ajoutant 1 au no				/
Question 11	Quel est le cod	age de l'entier re	elatif positif 64	sur 8 bits?	
	01100000	01000000	1100000	00	11100000
Question 12	La méthode du	complément à c	leux permet:		
d'ajouter de trouver	l'opposé d'un non 1 à un nombre en : la valeur absolue tous les bits d'un	tier écrit en bina e d'un entier rela	tif		
Question 13	Le nombre bina	aire 01111111 co	dé sur 8 bits es	t:	
le codage est un cas	tit entier relatif no de un particulier: il a la and entier relatif p	a même représen	tation que son	opposé	
	Co	dage de no	ombres rée	els	
Question 14	Le nombre 100	10,0011 peut s'é	crire:		
1,0010001 1,0010001 1,0010001 1,0010001	1×2^4 1×2^{-4}				
Question 15	Que vaut le no	mbre binaire 100	001, 01 codé sele	on la méthode	e de la virgule fixe?
	17, 25	1,000101	☐ 17,1	17	7,01

Question 16 Cocnez une propriete correcte des nombres nottants sur une machine numerique.
Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants
La représentation avec tous les bits à zéro est interdite
La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse
Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants
Question 18 La représentation en virgule flottante est une écriture de la forme $signe \mid exposant \mid mantisse.$ Que vaut le nombre 0 10000011 10010100000000000000000000
Question 19 Quelle est la représentation en virgule flottante, simple précision de $-132, 5$?
0 10000110 0000100100000000000000000000
1 10000100 1000000000000000000000000000
1 10000111 0000100100000000000000000000
1 10000110 0000100100000000000000000000
Question 20 L'instruction 0.1 + 0.2 == 0.3 en python, fournira:
SyntaxError False 0.3 True
Les nombres réels sont représentés de manière approximative en machine
Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales
L'opérateur aurait dû saisir float(0.1*12)
La calculatrice de python est plus précise qu'une calculatrice ordinaire

Codez votre numéro d'identification ci contre chiffre par chiffre,
puis complétez l'encadré.
Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou
19 19 19 19 19 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10
Codage d'entiers naturels
Question 1 On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:
comporte 4 chiffres
comporte moins de 9 chiffres
se termine par 1
comporte au moins 9 chiffres
Question 2 On effectue l'addition binaire 00101101 + 00001011. Quel est le résultat?
00111100 00101000 00100110 00111000
Question 3 Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?
Question 4 L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:
00010101 00011000 00011001 00011010
$\textbf{Question 5} \qquad \text{Quelle est la représentation sur 8 bits de l'addition binaire } 10111011 + 01110101?$
100110000
Codage d'entiers relatifs
Question 6 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 01111111 + 000000001:
est impossible
donne un nombre négatif
donne un nombre positif
zéro

Question 7 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est:				
le bit de poids fort (bit 7)				
le bit de poids faible $(bit \ \theta)$				
obtenu en inversant les bits				
obtenu en ajoutant 1 au nombre				
Question 8 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à deux?				
111111101 00000100 00000101 111111100				
Question 9 La méthode du complément à deux permet:				
d'obtenir l'opposé d'un nombre entier écrit en binaire d'inverser tous les bits d'un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif d'ajouter 1 à un nombre entier écrit en binaire				
Question 10 Quelle est la valeur de l'entier relatif dont la représentation en binaire est 01111110 (sur 8 bits)?				
Question 11 Le nombre binaire 011111111 codé sur 8 bits est:				
est un cas particulier: il a la même représentation que son opposé le plus grand entier relatif positif qu'on peut coder sur 8 bits le plus petit entier relatif négatif qu'on peut coder sur 8 bits le codage de un				
Question 12 Quel est le codage de l'entier relatif positif 64 sur 8 bits?				
01100000 11000000 01000000 11100000				
Que stion 13 Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits?				
Codage de nombres réels				
Question 14 La représentation en virgule flottante est une écriture de la forme $signe \mid exposant \mid mantisse$. Que vaut le nombre 0 10000011 10010100000000000000000000				
Question 15 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3, 25?				
11,11001 1,101 3,11001 11,01				

Question 16 raison?	L'opération 0.1*12 en python fournit 1.20000000000000. Quelle en est la
Les nombres Par défaut t	ice de python est plus précise qu'une calculatrice ordinaire s réels sont représentés de manière approximative en machine sous les calculs sur les décimaux sont fourni avec 16 décimales aurait dû saisir float(0.1*12)
Question 17	L'instruction $0.1 + 0.2 == 0.3$ en python, fournira:
	False 0.3 True SyntaxError
Question 18	Quelle est la représentation en virgule flot tante, simple précision de $-132,5?$
1 10000100 1 1 10000111 (00001001000000000000000000000000000000
Question 19	Cochez une propriété correcte des nombres flottants sur une machine numérique.
	tés mathématiques comme l'associativité de l'addition ne sont pas forcément c les flottants
La représent	tation avec tous les bits à zéro est interdite
La représent mantisse	tation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la
	possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et des flottants
Question 20	Le nombre 10010,0011 peut s'écrire:
1,00100011 1,00100011 1,00100011 1,00100011	$\begin{array}{l} \times \ 10^4 \\ \times \ 2^{-4} \end{array}$
Question 21	Que vaut le nombre binaire 10001,01 codé selon la méthode de la virgule fixe?
	17.01 1.000101 17.25 17.1

$\square 0 \square 0$	
$\Box 1 \Box 1$	
2	
$3 \square 3$	Codez votre numéro d'identification ci contre chiffre par chiffre,
$\boxed{}4$ $\boxed{}4$	puis complétez l'encadré.
$\square 5 \square 5$	
$\Box 6 \Box 6$	NOM - Prénom - Classe :
□ 7 □ 7	
8 8	Durée: 55 minutes.
$\square 9 \square 9$	Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.
-	Codage d'entiers naturels
Question 1	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?
Question 2	eq:Quelle est la représentation sur 8 bits de l'addition binaire 10111011 + 01110101?
	Impossible \square 00000000 \square 100110000 \square 00110000
Question 3	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:
	00011010
Question 4	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?
	00101000
Question 5	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:
comport	e 4 chiffres
comport	e moins de 9 chiffres
se termin	ne par 1
comport	e au moins 9 chiffres
	Codage d'entiers relatifs
Question 6 (sur 8 bits)?	Quelle est la valeur de l'entier relatif dont la représentation en binaire est 01111110
Question 7 deux?	Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à
	11111100

Question 8 sur 8 bits?	Que vaut le nomb	ore binaire 11100	0000 codé par la n	néthode du complément à	deux,
	-32			224	
Question 9 à deux, le bit d	_	ntation d'entiers	relatifs sur 8 bits	par la méthode du compl	ément
☐ le bit de p	poids fort (bit 7)				
obtenu en	ajoutant 1 au no	mbre			
	poids faible $(bit \ \theta)$				
obtenu en	inversant les bits				
Question 10	La méthode du	complément à c	deux permet:		
	1 à un nombre en				
	r la valeur absolue				
	tous les bits d'un l'opposé d'un non				
_					
Question 11		aire Ulllilli co	dé sur 8 bits est:		
le codage		n mômo roprácor	etation que con es	anogá	
	s particulier: il a la and entier relatif p				
	tit entier relatif ne				
Question 12	On travaille	avec des entier	s relatifs codés s	sur 8 bits. L'addition b	inaire
011111111 + 000		divect dep chiler	s relating codes .	our o sits. E addition s	, iiiaii c
donne un	nombre positif				
donne un	nombre négatif				
est impos	sible				
zéro					
Question 13	Quel est le cod	age de l'entier re	elatif positif 64 su	ır 8 bits?	
	01000000	11000000	11100000	01100000	
	Co	dage de no	ombres réel	.S	
Question 14	Que vaut le no	mbre binaire 100	001,01 codé selon	la méthode de la virgule	fixe?
	17,01	17 , 1	17,25	1,000101	
Question 15 raison?	L'opération 0.	1*12 en python	fournit 1.20000	000000000002. Quelle en	est la
La calcula	atrice de python es	st plus précise q	u'une calculatrice	ordinaire	
L'opérate	ur aurait dû saisir	float(0.1*12)			
	res réels sont repr				
Par défau	t tous les calculs s	sur les décimaux	sont fourni avec	16 décimales	

La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la

d'utilisation des flottants

La représentation avec tous les bits à zéro est interdite

mantisse

$\Box 0 \Box 0$				
$\square 1 \square 1$				
$\square 2 \square 2$				
	Codez votre r puis complétez l'e		ication ci contre chiff	re par chiffre,
<u>4</u> <u>4</u>	F			
<u>5</u> <u>5</u>	NOM - Prénom	- Classe :		
8	Document écrit n	non autorisé. Ca	ée : 55 minutes. dculatrice autorisée. les retirent des points	Les réponses fausses ou
	Co	dage d'ent	iers naturels	
Question 1	Quelle est la vale	eur de l'entier n	aturel codé par le mo	otif binaire 00011010 ?
	24	<u> </u>	51	22
Question 2	On considère le r	nombre $N = 100$	0_{10} (écrit en base 10)). L'écriture de N en binaire:
comported se termin	e 4 chiffres e au moins 9 chiffr ne par 1 e moins de 9 chiffr			
Question 3	On effectue l'ado	dition binaire 00	0101101 + 00001011.	Quel est le résultat?
	00101000	00111100	00100110	00111000
Question 4	L'entier naturel	25 s'écrit en bin	aire naturel sur 8 bit	58:
	00011010	00010101	00011000	00011001
Question 5	Quelle est la rep	résentation sur	8 bits de l'addition b	inaire 10111011 + 01110101?
	Impossible	00110000	100110000	00000000
	Co	odage d'en	tiers relatifs	
Question 6	Quel est le coda	age de l'entier re	elatif positif 64 sur 8	bits?
	11100000	11000000	01000000	D1100000
Question 7 (sur 8 bits)?	Quelle est la vale	eur de l'entier rel	atif dont la représent	ation en binaire est 01111110
	-126	<u> </u>		

Question 8 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire $011111111 + 000000001$:
zéro donne un nombre négatif donne un nombre positif est impossible
Question 9 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à deux?
111111101 00000101 111111100 00000100
Question 10 Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits?
Question 11 Le nombre binaire 01111111 codé sur 8 bits est:
le codage de un
le plus grand entier relatif positif qu'on peut coder sur 8 bits le plus petit entier relatif négatif qu'on peut coder sur 8 bits
est un cas particulier: il a la même représentation que son opposé
☐ obtenu en inversant les bits ☐ le bit de poids fort (bit 7)
obtenu en ajoutant 1 au nombre
\Box le bit de poids faible (bit θ)
Question 13 La méthode du complément à deux permet:
d'inverser tous les bits d'un nombre entier écrit en binaire
de trouver la valeur absolue d'un entier relatif
d'obtenir l'opposé d'un nombre entier écrit en binaire
d'ajouter 1 à un nombre entier écrit en binaire
Codage de nombres réels
Question 14 L'opération 0.1*12 en python fournit 1.20000000000002. Quelle en est la raison?
Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales
Les nombres réels sont représentés de manière approximative en machine
La calculatrice de python est plus précise qu'une calculatrice ordinaire
L'opérateur aurait dû saisir float(0.1*12)

Question 15 Quelle est la représentation en virgule flottante, simple précision de -132, 5? 0 10000110 000010010000000000000000 1 10000100 1000000000000000000000000 $1\ 10000110\ 0000100100000000000000000$ 1 10000111 000010010000000000000000 Question 16 Cochez une propriété correcte des nombres flottants sur une machine numérique. La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse La représentation avec tous les bits à zéro est interdite Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants L'instruction 0.1 + 0.2 == 0.3 en python, fournira: Question 17 SyntaxError True False Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe? Question 18 17,01 17.11,000101 17, 25Le nombre 10010,0011 peut s'écrire: Question 19 $1,00100011 \times 10^4$ $1,00100011 \times 10^{-4}$ $1,00100011 \times 2^{-4}$ $1,00100011 \times 2^4$ Question 20 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3, 25? 11,01 1,101 3,11001 11,11001 La représentation en virgule flottante est une écriture de la forme signe | ex-précision (32 bits)? $0,578125\times 2^{131}$ 25, 25 131,578125 9,25

$ \begin{array}{ccc} $	Codez votre numéro d'identification ci contre chiffre par chiffre,
	puis complétez l'encadré.
55 66	NOM - Prénom - Classe :
	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.
	Codage d'entiers naturels
Question 1	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?
comport	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire: 4 chiffres au moins 9 chiffres e moins de 9 chiffres e par 1
Question 3	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:
	00010101
Question 4	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?
	mpossible 000000000 100110000 00110000
Question 5	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?
	00101000
	Codage d'entiers relatifs
Question 6 sur 8 bits?	Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux,
Question 7 deux?	Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à
	00000101

Question 17 raison?	L'opération 0.1*12 en python fournit 1.20000000000000. Quelle en est la
Par défaut d Les nombres	aurait dû saisir float(0.1*12) tous les calculs sur les décimaux sont fourni avec 16 décimales s réels sont représentés de manière approximative en machine rice de python est plus précise qu'une calculatrice ordinaire
Question 18	Le nombre 10010,0011 peut s'écrire:
1,00100011	$\times 10^{-4}$
1,00100011	$ imes 2^{-4}$
1,00100011	$\times 10^4$
1,00100011	$\times 2^4$
Question 19 3, 25?	Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel $11,01 \qquad 3,11001 \qquad 1,101 \qquad 11,11001$
Question 20	Cochez une propriété correcte des nombres flottants sur une machine numérique.
	possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et des flottants
La représen	tation avec tous les bits à zéro est interdite
	etés mathématiques comme l'associativité de l'addition ne sont pas forcément de les flottants
La représen mantisse	tation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la
Question 21	Quelle est la représentation en virgule flot tante, simple précision de $-132,5?$
0 10000110	000010010000000000000000000000000000000
1 10000100	100000000000000000000000000000
1 10000111	0000100100000000000000
1 10000110	000010010000000000000000000000000000000

$\square 0 \square 0$				
$\square 1 \square 1$				
\square_2 \square_2				
\square_3 \square_3	Codez votre nu	méro d'identific	ation ci contre chiffre	e par chiffre,
	puis complétez l'enc	cadré.		
	NOM - Prénom -	Classe:		
\square_7 \square_7				
	Document écrit no	n autorisé. Cale	: 55 minutes. culatrice autorisée. L s retirent des points.	les réponses fausses ou
	$\overline{\operatorname{Cod}}$	age d'enti	ers naturels	
Question 1	Quelle est la valeu	r de l'entier nat	turel codé par le mot	tif binaire 00011010 ?
	24	<u> </u>	□ 51 □	22
Question 2	L'entier naturel 25	s'écrit en bina	ire naturel sur 8 bits	i:
	00011000	00011010	00011001	00010101
Question 3	On considère le no	mbre N = 1000	10 (écrit en base 10).	L'écriture de N en binaire:
comport	ne par 1 e moins de 9 chiffres e 4 chiffres e au moins 9 chiffres			
Question 4	On effectue l'addit	tion binaire 001	01101 + 00001011. G	uel est le résultat?
	00111000	00101000	00111100	00100110
Question 5	Quelle est la repré	sentation sur 8	bits de l'addition bir	naire $10111011 + 01110101$?
	Impossible	100110000	00000000	00110000
	Coc	dage d'ent	iers relatifs	
Question 6 deux?	Quelle est la repr	résentation de -	-3 sur 8 bits, par la	méthode du complément à
	00000100	11111100	11111101	00000101
Question 7	Le nombre binair	e 01111111 code	é sur 8 bits est:	
le plus g	rand entier relatif po	ositif qu'on peut	t coder sur 8 bits	
le plus p	etit entier relatif nég	gatif qu'on peut	coder sur 8 bits	
est un ca		même représen	tation que son oppos	ié

Question 8 (sur 8 bits)?	Quelle est la vale	eur de l'entier rel	atif dont la représ	sentation en binaire est 011111110
	<u> </u>	-126		
Question 9 sur 8 bits?	Que vaut le nom	abre binaire 1110	0000 codé par la	méthode du complément à deux,
	224			─ -96
Question 10	La méthode d	u complément à	deux permet:	
d'ajouter de trouve	l'opposé d'un non 1 à un nombre en r la valeur absolu tous les bits d'un	ntier écrit en bin le d'un entier rel	aaire atif	
Question 11 011111111 + 000		avec des entie	rs relatifs codés	sur 8 bits. L'addition binaire
zéro	nombre négatif nombre positif sible			
Question 12	Quel est le coo	dage de l'entier i	relatif positif 64 s	sur 8 bits?
	01100000	11100000	1100000	0 01000000
Question 13 à deux, le bit d		sentation d'entie	rs relatifs sur 8 bit	ts par la méthode du complément
☐ le bit de p	poids fort (bit 7)			
obtenu en	ajoutant 1 au no	ombre		
	poids faible ($bit 0$,		
obtenu en	inversant les bits	S		
	Co	odage de n	ombres rée	els
Question 14 posant manti précision (32 bi	sse. Que vaut le			écriture de la forme $signe \mid ex-000000000000000000000000000000000000$
	25, 25	9, 25	$0,578125 \times 2^{131}$	131,578125
Question 15 raison?	L'opération 0	.1*12 en pytho:	n fournit 1.2000	000000000002. Quelle en est la
La calcula Les nomb	t tous les calculs atrice de python e res réels sont rep ur aurait dû saisi	est plus précise de résentés de man	qu'une calculatric ière approximativ	e ordinaire

Question 16	Le nombre 10010,0011 peut s'écrire:
1,00100011	$\times 10^4$
1,00100011	$\times 2^{-4}$
1,00100011	$\times 10^{-4}$
1,00100011	$\times 2^4$
Question 17	Quelle est la représentation en virgule flot tante, simple précision de $-132,5?$
0 10000110	0000100100000000000000
1 10000110	0000100100000000000000
1 10000111	00001001000000000000000
1 10000100	100000000000000000000000000000000000000
Question 18 3, 25?	Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel
	11,01 $ 11,11001$ $ 1,101$ $ 3,11001$
Question 19	L'instruction $0.1 + 0.2 == 0.3$ en python, fournira:
	0.3 True SyntaxError False
Question 20	Que vaut le nombre binaire $10001,01$ codé selon la méthode de la virgule fixe?
	1,000101 $17,01$ $17,25$ $17,1$
Question 21	Cochez une propriété correcte des nombres flottants sur une machine numérique.
_	possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et des flottants
La représen	tation avec tous les bits à zéro est interdite
La représent mantisse	tation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la
	tés mathématiques comme l'associativité de l'addition ne sont pas forcément c les flottants

$\Box 0 \Box 0$						
$\square 1 \ \square 1$						
$\square 2 \square 2$						
$\square 3 \square 3$	Codez votre numéro d'identification ci contre chiffre par chiffre,					
$\square 4 \square 4$	puis complétez l'encadré.					
	NOM - Prénom - Classe :					
$\square 8 \square 8$	Durée : 55 minutes.					
9 9	Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.					
	Codage d'entiers naturels					
Question 1	Quelle est la représentation sur 8 bits de l'addition binaire 10111011 + 01110101?					
	100110000					
Question 2	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?					
	00101000					
Question 3	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:					
se termin comporte	e au moins 9 chiffres ne par 1 e 4 chiffres e moins de 9 chiffres					
Question 4	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?					
	\square 24 \square 22 \square 26 \square 51					
Question 5	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:					
	00010101					
Codage d'entiers relatifs						
Question 6 (sur 8 bits)?	Quelle est la valeur de l'entier relatif dont la représentation en binaire est 01111110					
Question 7	Le nombre binaire 01111111 codé sur 8 bits est:					
est un ca	as particulier: il a la même représentation que son opposé					
le codage						
	rand entier relatif positif qu'on peut coder sur 8 bits etit entier relatif négatif qu'on peut coder sur 8 bits					
•						

+15/2/3+ Question 8 Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits? -96224 -224-32Question 9 Quel est le codage de l'entier relatif positif 64 sur 8 bits? 01100000 11000000 01000000 11100000 Question 10 La méthode du complément à deux permet: d'inverser tous les bits d'un nombre entier écrit en binaire d'ajouter 1 à un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif d'obtenir l'opposé d'un nombre entier écrit en binaire Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à Question 11 deux? 11111101 00000101 00000100 11111100 Question 12 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 011111111 + 00000001: donne un nombre négatif donne un nombre positif zéro est impossible Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément Question 13 à deux, le bit de signe est: le bit de poids fort (bit 7) le bit de poids faible ($bit \theta$) obtenu en ajoutant 1 au nombre obtenu en inversant les bits Codage de nombres réels

La représentation en virgule flottante est une écriture de la forme signe | ex-Question 14 posant | mantisse. précision (32 bits)?

precision (52 0	1118):				
	$0,578125 \times 2^{131}$	131,578125			
Question 15	Que vaut le no	mbre binaire 10001,01	codé selon la mét	hode de la virgule	e fixe?
	17 , 01	1,000101	17,1	17, 25	

Question 16 Cochez une propriété correcte des nombres flottants sur une machine numérique. Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse La représentation avec tous les bits à zéro est interdite Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants Question 17 Le nombre 10010,0011 peut s'écrire: $1,00100011 \times 2^4$ $1,00100011 \times 10^{-4}$ $1,00100011 \times 10^4$ $1,00100011 \times 2^{-4}$ L'opération 0.1*12 en python fournit 1.200000000000000. Quelle en est la Question 18 raison? Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales La calculatrice de python est plus précise qu'une calculatrice ordinaire Les nombres réels sont représentés de manière approximative en machine L'opérateur aurait dû saisir float (0.1*12) Quelle est la représentation en virgule flottante, simple précision de -132, 5? Question 19 1 10000110 000010010000000000000000 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel Question 20 3, 25? 11,01 11, 11001 3,11001 1,101 L'instruction 0.1 + 0.2 == 0.3 en python, fournira: Question 21

SyntaxError

0.3

False

True

$ \begin{array}{ccc} $	Codez votre numéro d'identification ci contre chiffre par chiffre,			
	puis complétez l'encadré.			
5	NOM - Prénom - Classe :			
☐ 7☐ 8☐ 8☐ 9☐ 9	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.			
	Codage d'entiers naturels			
Question 1	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?			
Question 2	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?			
	Impossible			
Question 3	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?			
	00111000			
Question 4	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:			
	00011001			
Question 5	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:			
se termin	e moins de 9 chiffres ne par 1 e au moins 9 chiffres e 4 chiffres			
	C. J 12			
0	Codage d'entiers relatifs			
Question 6	Quel est le codage de l'entier relatif positif 64 sur 8 bits?			
	11000000			
Question 7 (sur 8 bits)?	Quelle est la valeur de l'entier relatif dont la représentation en binaire est 01111110			

+16/2/59+ Question 8 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 011111111 + 00000001: zéro est impossible donne un nombre positif donne un nombre négatif Le nombre binaire 01111111 codé sur 8 bits est: Question 9 est un cas particulier: il a la même représentation que son opposé le plus grand entier relatif positif qu'on peut coder sur 8 bits le codage de un le plus petit entier relatif négatif qu'on peut coder sur 8 bits Que vaut le nombre binaire 11100000 codé par la méthode du complément à Question 10 deux, sur 8 bits? -96-224La méthode du complément à deux permet: Question 11 de trouver la valeur absolue d'un entier relatif d'ajouter 1 à un nombre entier écrit en binaire d'inverser tous les bits d'un nombre entier écrit en binaire d'obtenir l'opposé d'un nombre entier écrit en binaire Question 12 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est: obtenu en inversant les bits le bit de poids faible (bit 0) obtenu en ajoutant 1 au nombre le bit de poids fort (bit 7) Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à Question 13 deux? 00000101 11111101 11111100 00000100

Question 15 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre r 3,25?

Question 14

Question 16 L'opération $0.1*12$ en python fournit $1.2000000000000000000000000000000000000$
Les nombres réels sont représentés de manière approximative en machine Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales La calculatrice de python est plus précise qu'une calculatrice ordinaire L'opérateur aurait dû saisir float(0.1*12)
Que stion 17 Que vaut le nombre binaire 10001,01 codé selon la méthode de la virgule fixe
Question 18 Le nombre 10010,0011 peut s'écrire:
$ \begin{array}{c} $
Question 19 Quelle est la représentation en virgule flottante, simple précision de $-132, 5$?
☐ 1 10000110 000010010000000000000 ☐ 1 10000111 000010010000000000000 ☐ 0 10000110 00001001000000000000 ☐ 1 10000100 1000000000000000000
Question 20 La représentation en virgule flottante est une écriture de la forme $signe \mid especial posant \mid mantisse$. Que vaut le nombre 0 10000011 10010100000000000000000000
Question 21 Cochez une propriété correcte des nombres flottants sur une machine numérique
La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et l mantisse
La représentation avec tous les bits à zéro est interdite Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage e
d'utilisation des flottants
Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément

valables avec les flottants

$\Box 0 \Box 0$					
\Box 1 \Box 1					
\square_2 \square_2					
	Codez votre numéro d'identification ci contre chiffre par chiffre,				
\Box 4 \Box 4	puis complétez l'encadré.				
$\Box 6 \Box 6$	NOM - Prénom - Classe :				
\square 7 \square 7					
	Durée : 55 minutes.				
	Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.				
	inconscionate returnation des positions				
	Codage d'entiers naturels				
Question 1	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:				
se termin	ne par 1				
	e moins de 9 chiffres				
	e 4 chiffres				
comporte	e au moins 9 chiffres				
Question 2	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:				
Question 2					
	00011001				
Question 3	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?				
	00000000				
Question 4	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?				
	00111100				
Question 5	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?				
Codage d'entiers relatifs					
Question 6 (sur 8 bits)?	Quelle est la valeur de l'entier relatif dont la représentation en binaire est 011111110				
Question 7 deux?	Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à				
	11111101				

Question 8 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 011111111 + 00000001: est impossible zéro donne un nombre positif donne un nombre négatif Question 9 La méthode du complément à deux permet: d'inverser tous les bits d'un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif d'ajouter 1 à un nombre entier écrit en binaire d'obtenir l'opposé d'un nombre entier écrit en binaire Quel est le codage de l'entier relatif positif 64 sur 8 bits? Question 10 11000000 01000000 01100000 11100000 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément Question 11 à deux, le bit de signe est: obtenu en inversant les bits obtenu en ajoutant 1 au nombre le bit de poids faible ($bit \theta$) le bit de poids fort (bit 7) Le nombre binaire 01111111 codé sur 8 bits est: Question 12 est un cas particulier: il a la même représentation que son opposé le codage de un le plus petit entier relatif négatif qu'on peut coder sur 8 bits le plus grand entier relatif positif qu'on peut coder sur 8 bits Question 13 Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits? -32-96-224Codage de nombres réels Question 14 Cochez une propriété correcte des nombres flottants sur une machine numérique. Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants La représentation avec tous les bits à zéro est interdite La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse

d'utilisation des flottants

Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et

Question 15 Quelle est la représentation en virgule flottante, simple précision de $-132, 5$?
1 10000111 0000100100000000000000000000
1 10000110 0000100100000000000000000000
0 10000110 0000100100000000000000000000
1 10000100 1000000000000000000000000000
Question 16 Le nombre 10010,0011 peut s'écrire:
$\overline{}$ 1,00100011 × 2 ⁻⁴
Question 17 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre rée 3,25?
Question 18 L'instruction 0.1 + 0.2 == 0.3 en python, fournira:
SyntaxError False True 0.3
Question 19 La représentation en virgule flottante est une écriture de la forme $signe \mid ext{posant} \mid mantisse$. Que vaut le nombre 0 10000011 10010100000000000000000000
Question 20 L'opération $0.1*12$ en python fournit $1.2000000000000000000000000000000000000$
L'opérateur aurait dû saisir float(0.1*12)
Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales
La calculatrice de python est plus précise qu'une calculatrice ordinaire
Les nombres réels sont représentés de manière approximative en machine
Question 21 Que vaut le nombre binaire 10001,01 codé selon la méthode de la virgule fixe?

17,01

17,1

17, 25

1,000101

$\Box 0 \Box 0$					
$\Box 1 \Box 1$					
$\square 2 \square 2$					
$\square 3 \square 3$	Codez votre numéro d'identification ci contre chiffre par chiffre,				
$\square 4 \square 4$	puis complétez l'encadré.				
□5 □5 □6 □6	NOM - Prénom - Classe :				
	$Dur\'ee:55\ minutes.$				
	Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou				
<u> </u>	incohérentes retirent des points.				
	Codage d'entiers naturels				
Question 1	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?				
~					
Question 2	On effectue l'addition binaire 00101101 + 00001011. Quel est le résultat?				
	00101000				
Question 3	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?				
	00110000				
Question 4	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:				
comport	e 4 chiffres				
se termin					
	e moins de 9 chiffres				
	e au moins 9 chiffres				
Question 5	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:				
Question 5					
	00011001				
	Codage d'entiers relatifs				
Question 6	Quel est le codage de l'entier relatif positif 64 sur 8 bits?				
	11100000				
Question 7	La méthode du complément à deux permet:				
d'obteni	r l'opposé d'un nombre entier écrit en binaire				
d'ajoute	r 1 à un nombre entier écrit en binaire				
d'inverse	er tous les bits d'un nombre entier écrit en binaire				
de trouv	rer la valeur absolue d'un entier relatif				

Que va sur 8 bits?	ut le nombre	binaire 111000	JUU codé par la r	néthode du (complément à deux,
	- 96	-32	224		
Question 9 Le nor	mbre binaire ()1111111 codé	sur 8 bits est:		
le plus petit entie est un cas particu le codage de un le plus grand enti	ılier: il a la m	ême représent	ation que son o	pposé	
Question 10 Quel deux?	le est la repré	sentation de -	–3 sur 8 bits, pa	ar la méthod	le du complément à
11111110	00 0	00000101	11111101		00000100
Question 11 On 011111111 + 00000001:	travaille ave	c des entiers	relatifs codés	sur 8 bits.	L'addition binaire
est impossible donne un nombre donne un nombre zéro		•	1		
Question 12 Question 12 (sur 8 bits)?	elle est la val	eur de l'entie	er relatif dont la	a représenta	ation en binaire est
	-126	126	☐ −128	-124	1
Question 13 Dans à deux, le bit de signe	V =	ation d'entiers	relatifs sur 8 bits	s par la méth	node du complément
obtenu en inversa le bit de poids for obtenu en ajouta le bit de poids fai	rt $(bit 7)$ nt 1 au nombr	re			
Codage de nombres réels					
Question 14 Le not $1,00100011 \times 10^{4}$ $1,00100011 \times 10^{-1}$ $1,00100011 \times 2^{4}$ $1,00100011 \times 2^{-4}$	-4	0011 peut s'éo	rire:		
Question 15 Quel 3, 25?	est le codage	en binaire selo	on la méthode d	e la virgule i	fixe, du nombre réel
3,1	1001	11,11001	11,01		1, 101
Question 16 L'ins	truction 0.1	+ 0.2 == 0.3	3 en python, fou	ırnira:	
o.s	F	alse] SyntaxError		True
Pour vot	re examen, in	nprimez de pr	éférence les doc	uments com	pilés

à l'aide de auto-multiple-choice.

Question 17	Cochez une p	ropriété correcte	des nombres flott	ants sur une ma	chine numérique.
	s possible de co n des flottants	der zéro avec la	norme IEEE754 o	qui définit les rè	gles de codage et
La représer mantisse	ntation en virg	ule flottante néce	essite 3 octets por	ır coder le signe	, l'exposant et la
	étés mathémar ec les flottants	tiques comme l'a	associativité de l	'addition ne sor	nt pas forcément
La représe	ntation avec to	us les bits à zéro	est interdite		
Question 18 posant mantis. précision (32 bit.	se. Que vaut	~	flottante est une 000011 100101000		
1	31, 578125	9,25		0,578125	$\times2^{131}$
Question 19	Que vaut le 1	nombre binaire 1	0001,01 codé selo	on la méthode de	e la virgule fixe?
	17, 1	17,01	17,25	1,000101	l
Question 20 raison?	L'opération	0.1*12 en pytho	on fournit 1.2000	0000000000000000002.	Quelle en est la
La calculat	crice de python	est plus précise	qu'une calculatri	ce ordinaire	
Par défaut	tous les calcul	s sur les décimau	ıx sont fourni ave	c 16 décimales	
L'opérateu	r aurait dû sais	sir float(0.1*1	2)		
Les nombre	es réels sont re	présentés de mar	nière approximati	ve en machine	
Question 21	Quelle est la	représentation e	n virgule flottante	e, simple précisio	on de $-132, 5$?
1 10000110	000010010000	00000000000			
1 10000111	000010010000	00000000000			
1 10000100	1000000000000	00000000000			
0 10000110	000010010000	00000000000			

$ \begin{array}{ccc} $	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré.
	NOM - Prénom - Classe :
	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.
	Codage d'entiers naturels
Question 1	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?
Question 2	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?
	00101000
Question 3	eq:Quelle est la représentation sur 8 bits de l'addition binaire 10111011 + 01110101?
	00110000
Question 4	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:
	00010101
Question 5	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:
se termi:	e au moins 9 chiffres ne par 1 e 4 chiffres e moins de 9 chiffres
	Codage d'entiers relatifs
Question 6 (sur 8 bits)?	Quelle est la valeur de l'entier relatif dont la représentation en binaire est 01111110

Question 7 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est:
 □ obtenu en inversant les bits □ obtenu en ajoutant 1 au nombre □ le bit de poids fort (bit 7) □ le bit de poids faible (bit 0)
$\bf Question~8$ On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 01111111 + 000000001:
donne un nombre positif zéro est impossible donne un nombre négatif
Question 9 La méthode du complément à deux permet:
de trouver la valeur absolue d'un entier relatif d'inverser tous les bits d'un nombre entier écrit en binaire d'ajouter 1 à un nombre entier écrit en binaire d'obtenir l'opposé d'un nombre entier écrit en binaire
Question 10 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à deux?
Question 11 Quel est le codage de l'entier relatif positif 64 sur 8 bits?
01000000 01100000 11100000 11000000
Question 12 Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits?
Question 13 Le nombre binaire 01111111 codé sur 8 bits est:
le plus grand entier relatif positif qu'on peut coder sur 8 bits le plus petit entier relatif négatif qu'on peut coder sur 8 bits le codage de un est un cas particulier: il a la même représentation que son opposé
Codage de nombres réels
Question 14 L'instruction 0.1 + 0.2 == 0.3 en python, fournira:
True 0.3 False SyntaxError
Question 15 Que vaut le nombre binaire 10001,01 codé selon la méthode de la virgule fixe?

Question 16	Le nombre 10010,0011 peut s'écrire:
1,00100011 1,00100011 1,00100011 1,00100011	$\begin{array}{l} \times \ 2^{-4} \\ \times \ 10^4 \end{array}$
Question 17 3, 25?	Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel
	1,101 $ 11,01$ $ 11,11001$ $ 3,11001$
Question 18 posant mantisse précision (32 bits)	La représentation en virgule flot tante est une écriture de la forme $signe \mid ex$. Que vaut le nombre 0 10000011 10010100000000000000000000
9,2	
Question 19 raison?	L'opération $0.1*12$ en python fournit 1.200000000000000 . Quelle en est la
Les nombres La calculatr	aurait dû saisir float(0.1*12) s réels sont représentés de manière approximative en machine ice de python est plus précise qu'une calculatrice ordinaire ous les calculs sur les décimaux sont fourni avec 16 décimales
Question 20	Quelle est la représentation en virgule flottante, simple précision de $-132,5$?
1 10000100 : 0 10000110 (00001001000000000000000000000000000000
Question 21	Cochez une propriété correcte des nombres flottants sur une machine numérique.
Il n'est pas p d'utilisation Des proprié	cation avec tous les bits à zéro est interdite possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et des flottants tés mathématiques comme l'associativité de l'addition ne sont pas forcément de les flottants
	ation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la

$\Box 0 \Box 0$	
$\square 1 \square 1$	
$\square 2 \square 2$	
$\square 3 \square 3$	Codez votre numéro d'identification ci contre chiffre par chiffre,
$\square 4$ $\square 4$	puis complétez l'encadré.
$\square 5 \square 5$	
$\Box 6 \Box 6$	NOM - Prénom - Classe :
□ 7 □ 7	
8 8	Durée : 55 minutes.
$\square 9 \square 9$	Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.
	Codage d'entiers naturels
Question 1	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?
	00110000
Question 2	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:
comport	e 4 chiffres
	e au moins 9 chiffres
se termin	
comport	e moins de 9 chiffres
Question 3	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?
	00111100
Question 4	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?
	\square 22 \square 51 \square 26 \square 24
Question 5	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:
	00011001
	Codage d'entiers relatifs
Question 6 01111111 + 00	On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 000001:
	n nombre négatif
\equiv	n nombre positif
zéro	•
est impo	ssible

Question 15 La représentation en virgule flottante est une écriture de la forme signe | ex-

 0.578125×2^{131}

9,25

25,25

131, 578125

Question 16 raison?	L'opération 0.1*12 en python fournit 1.20000000000000. Quelle en est la
La calculat	rice de python est plus précise qu'une calculatrice ordinaire
Par défaut	tous les calculs sur les décimaux sont fourni avec 16 décimales
L'opérateur	r aurait dû saisir float(0.1*12)
Les nombre	es réels sont représentés de manière approximative en machine
Question 17	Quelle est la représentation en virgule flot tante, simple précision de $-132,5$?
1 10000111	000010010000000000000000000000000000000
1 10000100	100000000000000000000000000000000000000
1 10000110	000010010000000000000000000000000000000
0 10000110	0000100100000000000000
Question 18	Cochez une propriété correcte des nombres flottants sur une machine numérique.
mantisse	ntation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la
Des proprie	ntation avec tous les bits à zéro est interdite étés mathématiques comme l'associativité de l'addition ne sont pas forcément ec les flottants
	possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et a des flottants
Question 19 3,25?	Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel
] 11,01
Question 20	Que vaut le nombre binaire 10001,01 codé selon la méthode de la virgule fixe?
	17,1 $17,25$ $17,01$ $1,000101$
Question 21	Le nombre 10010,0011 peut s'écrire:
1,00100011	$\times 2^4$
1,00100011	$ imes 10^4$
1,00100011	$\times 10^{-4}$
1,00100011	$\times 2^{-4}$

	Codez votre numéro d'identification ci contre chiffre par chiffre,
3 3 $4 4$	puis complétez l'encadré.
55 66	NOM - Prénom - Classe :
	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.
	Codage d'entiers naturels
Question 1	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?
	00000000
Question 2	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?
Question 3	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:
	e au moins 9 chiffres
se termin	e moins de 9 chiffres
	e 4 chiffres
Question 4	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:
	00011001
Question 5	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?
	00101000
	Codage d'entiers relatifs
Question 6	Le nombre binaire 01111111 codé sur 8 bits est:
	as particulier: il a la même représentation que son opposé
	rand entier relatif positif qu'on peut coder sur 8 bits
le codage le plus p	etit entier relatif négatif qu'on peut coder sur 8 bits

Question 16 L'instruction 0.1 + 0.2 == 0.3 en python, fournira:
0.3 False SyntaxError True
Question 17 L'opération 0.1*12 en python fournit 1.20000000000000. Quelle en est la raison?
L'opérateur aurait dû saisir float(0.1*12) Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales La calculatrice de python est plus précise qu'une calculatrice ordinaire Les nombres réels sont représentés de manière approximative en machine
Question 18 Quelle est la représentation en virgule flottante, simple précision de $-132, 5$?
☐ 1 10000110 000010010000000000000 ☐ 0 10000110 000010010000000000000 ☐ 1 10000100 10000000000000000000 ☐ 1 10000111 000010010000000000000
Question 19 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3, 25?
Question 20 La représentation en virgule flottante est une écriture de la forme $signe \mid exposant \mid mantisse$. Que vaut le nombre 0 10000011 10010100000000000000000000
Question 21 Cochez une propriété correcte des nombres flottants sur une machine numérique.
Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants
La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse
La représentation avec tous les bits à zéro est interdite
Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants

□2 □2 □3 □3 Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré.
$\ \ \ \ \ \ \ \ \ \ \ \ \ $
 □7 □7 □8 □8 □9 □9 Durée: 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.
Codage d'entiers naturels
Question 1 L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:
00011000
Question 2 On effectue l'addition binaire 00101101 + 00001011. Quel est le résultat?
00100110 00101000 00111000 00111100
Question 3 Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Question 4 On considère le nombre $N = 1000_{10}$ (écrit en base 10). L'écriture de N en binaire:
comporte au moins 9 chiffres comporte moins de 9 chiffres se termine par 1 comporte 4 chiffres
Question 5 Quelle est la représentation sur 8 bits de l'addition binaire 10111011 + 01110101?
100110000
Codage d'entiers relatifs
Question 6 La méthode du complément à deux permet:
d'ajouter 1 à un nombre entier écrit en binaire d'inverser tous les bits d'un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif d'obtenir l'opposé d'un nombre entier écrit en binaire
Question 7 Quel est le codage de l'entier relatif positif 64 sur 8 bits?
11100000 11000000 01100000 01000000
Pour votre examen, imprimez de préférence les documents compilés

à l'aide de auto-multiple-choice.

+22/2/35+
Question 8 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du compléme à deux, le bit de signe est:
 □ obtenu en ajoutant 1 au nombre □ le bit de poids fort (bit 7) □ le bit de poids faible (bit 0)
obtenu en inversant les bits
Question 9 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément deux?
00000100 00000101 11111101 11111100
Question 10 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binai 01111111 + 000000001:
zéro donne un nombre négatif donne un nombre positif est impossible
Question 11 Quelle est la valeur de l'entier relatif dont la représentation en binaire e 01111110 (sur 8 bits)?
Question 12 Le nombre binaire 01111111 codé sur 8 bits est:
□ le plus petit entier relatif négatif qu'on peut coder sur 8 bits □ le plus grand entier relatif positif qu'on peut coder sur 8 bits □ le codage de un □ est un cas particulier: il a la même représentation que son opposé
Question 13 deux, sur 8 bits? Que vaut le nombre binaire 11100000 codé par la méthode du complément
Codage de nombres réels
Question 14 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre ré 3,25?
Question 15 Cochez une propriété correcte des nombres flottants sur une machine numérique

La représentation avec tous les bits à zéro est interdite

Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants

Il p'est pes possible de coder zéro avec le perme IEFE754 qui définit les règles de codere et

La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la

mantisse

Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants

Question 16	Le nombre 10010,0011 peut s'écrire:
1,00100011 1,00100011 1,00100011 1,00100011	$\begin{array}{l} \times 10^{-4} \\ \times 2^{-4} \end{array}$
Question 17	L'instruction $0.1 + 0.2 == 0.3$ en python, fournira:
	True
Question 18 posant mantisse précision (32 bits	· ·
9,5	25
Question 19	Quelle est la représentation en virgule flottante, simple précision de $-132, 5$?
1 10000110 1 10000111	00001001000000000000000000000000000000
Question 20	Que vaut le nombre binaire 10001,01 codé selon la méthode de la virgule fixe?
	$\boxed{}$ 17,1 $\boxed{}$ 17,25 $\boxed{}$ 17,01 $\boxed{}$ 1,000101
Question 21 raison?	L'opération $0.1*12$ en python fournit 1.200000000000000 . Quelle en est la
Par défaut d	tous les calculs sur les décimaux sont fourni avec 16 décimales
L'opérateur	aurait dû saisir float(0.1*12)
=	rice de python est plus précise qu'une calculatrice ordinaire
Les nombre	s réels sont représentés de manière approximative en machine

$\Box 0 \Box 0$	
$\Box 1 \ \Box 1$	
2 2	
$\square 3 \square 3$	Codez votre numéro d'identification ci contre chiffre par chiffre,
$\square 4$ $\square 4$	puis complétez l'encadré.
$\square 5 \square 5$	NOVE D. C. C.
$\Box 6 \Box 6$	NOM - Prénom - Classe :
7 7	
8 8	Durée: 55 minutes.
$\square 9 \square 9$	Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.
	Codage d'entiers naturels
Question 1	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:
comporte	e au moins 9 chiffres
se termin	ne par 1
comport	e 4 chiffres
comport	e moins de 9 chiffres
Question 2	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?
	00100110
Question 3	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:
	00010101
Question 4	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?
	00110000
Question 5	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?
	\square 24 \square 22 \square 26 \square 51
	Codage d'entiers relatifs
Question 6	Quel est le codage de l'entier relatif positif 64 sur 8 bits?
	01100000
Question 7 sur 8 bits?	Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux,

Question 8 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire $011111111 + 000000001$:
donne un nombre positif donne un nombre négatif zéro est impossible
Question 9 Le nombre binaire 01111111 codé sur 8 bits est:
le codage de un
le plus grand entier relatif positif qu'on peut coder sur 8 bits
est un cas particulier: il a la même représentation que son opposé
le plus petit entier relatif négatif qu'on peut coder sur 8 bits
Question 10 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est:
obtenu en ajoutant 1 au nombre
\Box le bit de poids faible (bit θ)
le bit de poids fort (bit 7)
obtenu en inversant les bits
Question 11 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à deux?
00000100 11111100 11111101 00000101
Question 12 Quelle est la valeur de l'entier relatif dont la représentation en binaire est 01111110 (sur 8 bits)?
\square -126 \square 126 \square -128 \square -124
Question 13 La méthode du complément à deux permet:
de trouver la valeur absolue d'un entier relatif
d'ajouter 1 à un nombre entier écrit en binaire
d'inverser tous les bits d'un nombre entier écrit en binaire
d'obtenir l'opposé d'un nombre entier écrit en binaire
Codage de nombres réels
Question 14 Cochez une propriété correcte des nombres flottants sur une machine numérique.
Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants
Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants
La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse
La représentation avec tous les bits à zéro est interdite

Question 15 raison?	L'opération $0.1*12$ en python fournit 1.200000000000000 . Quelle en est la
Par défaut t Les nombres	ice de python est plus précise qu'une calculatrice ordinaire ous les calculs sur les décimaux sont fourni avec 16 décimales s'réels sont représentés de manière approximative en machine aurait dû saisir float(0.1*12)
Question 16	Le nombre 10010,0011 peut s'écrire:
1,00100011 1,00100011 1,00100011 1,00100011	$\begin{array}{l} \times \ 2^4 \\ \times \ 2^{-4} \end{array}$
1 10000100 1 1 10000110 (Quelle est la représentation en virgule flottante, simple précision de $-132,5$? 0000100100000000000000000000000000000
Question 18	L'instruction $0.1 + 0.2 == 0.3$ en python, fournira:
Question 19 3, 25?	False
Question 20 posant mantisse précision (32 bits)	La représentation en virgule flottante est une écriture de la forme $signe \mid exec.$ Que vaut le nombre 0 10000011 10010100000000000000000000
131	1,578125 \bigcirc 9,25 \bigcirc 25,25 \bigcirc 0,578125 \times 2 ¹³¹
Question 21	Que vaut le nombre binaire 10001,01 codé selon la méthode de la virgule fixe?

17,01

17,25

1,000101

☐ 17, 1

$\square 0 \square 0$	
$\square 1 \ \square 1$	
$\square 2 \square 2$	
0 0	Codez votre numéro d'identification ci contre chiffre par chiffre,
4 4	complétez l'encadré.
_5 _5	
□6 □6 NC	OM - Prénom - Classe :
□ 7 □ 7	
<u>8</u> <u>8</u> 8	Durée : 55 minutes.
9 9	ument écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.
	Codage d'entiers naturels
Question 1 Question	elle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?
00000	0000
Question 2 Question	elle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?
	\square 24 \square 51 \square 22 \square 26
Question 3 L'e	ntier naturel 25 s'écrit en binaire naturel sur 8 bits:
0001	.1001
Question 4 On	effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?
0010	01000
Question 5 On	considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:
comporte au 1	moins 9 chiffres
comporte 4 ch	
comporte moi	ns de 9 chiffres
se termine par	r 1
	Codage d'entiers relatifs
Question 6 011111111 + 0000000	On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 01:
zéro	
donne un non	abre négatif
est impossible	
donne un non	abre positif

Question 7 sur 8 bits?	Que vaut le nom	abre binaire 1110	0000 codé par la	méthode du complément à	à deux,
			224		
Question 8 (sur 8 bits)?	Quelle est la vale	eur de l'entier rela	atif dont la repré	sentation en binaire est 01	111110
	126		-126	-124	
Question 9	La méthode du	complément à d	eux permet:		
d'inverser d'ajouter	l'opposé d'un non tous les bits d'un 1 à un nombre en r la valeur absolu	n nombre entier atier écrit en bin	écrit en binaire aire		
Question 10	Le nombre bir	naire 01111111 co	odé sur 8 bits es		
le plus gr	etit entier relatif rand entier relatif de un sparticulier: il a	positif qu'on per	ıt coder sur 8 bi	ts	
Question 11 deux?	Quelle est la r	représentation de	e-3 sur 8 bits, p	oar la méthode du complé	ment à
	00000100	11111101	0000010	111111100	
Question 12	Quel est le co	dage de l'entier r	elatif positif 64	sur 8 bits?	
	11100000	11000000	0110000	01000000	
Question 13 à deux, le bit d	7	sentation d'entier	rs relatifs sur 8 bi	ts par la méthode du comp	lément
	ajoutant 1 au no				
	poids faible ($bit 0$) poids fort ($bit 7$)	')			
	inversant les bit	s			
	Co	odage de no	ombres rée	els	
Question 14	Quelle est la r	eprésentation en	virgule flottante	e, simple précision de -13	2, 5?
1 1000011 1 1000011	10 0000100100000 10 0000100100000 11 0000100100000 00 100000000	0000000000 0000000000			
Question 15	L'instruction	0.1 + 0.2 == 0	.3 en python, fo	ournira:	
[False	True	SyntaxErr	or 0.3	

Question 16 L'opération 0.1*12 en python fournit 1.20000000000000. Quelle en est la raison?
Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales La calculatrice de python est plus précise qu'une calculatrice ordinaire Les nombres réels sont représentés de manière approximative en machine L'opérateur aurait dû saisir float(0.1*12)
Question 17 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre rée $3,25$?
Question 18 La représentation en virgule flottante est une écriture de la forme $signe \mid exposant \mid mantisse$. Que vaut le nombre 0 10000011 10010100000000000000000000
Question 19 Cochez une propriété correcte des nombres flottants sur une machine numérique
Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants
La représentation avec tous les bits à zéro est interdite
La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse
Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants
Question 20 Le nombre 10010,0011 peut s'écrire:
$1,00100011 \times 2^{-4}$
$1,00100011 \times 10^{-4}$

1,000101

Question 21

17, 25

Que vaut le nombre binaire 10001,01 codé selon la méthode de la virgule fixe?

17, 1

17,01

	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré. NOM - Prénom - Classe : Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou
□a □a	incohérentes retirent des points.
	Codage d'entiers naturels
Question 1	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:
	ne par 1 e au moins 9 chiffres e 4 chiffres e moins de 9 chiffres
Question 2	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?
Question 3	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?
	00111000
Question 4	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?
	\square 51 \square 22 \square 24 \square 26
Question 5	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:
	00010101
	Codage d'entiers relatifs
Question 6	La méthode du complément à deux permet:
de trouve	r tous les bits d'un nombre entier écrit en binaire er la valeur absolue d'un entier relatif : 1 à un nombre entier écrit en binaire : l'opposé d'un nombre entier écrit en binaire

Codage de nombres réels

Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe?

Question 15	Cochez une propriété correcte des nombres flottants sur une machine numérique.
	possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et a des flottants
	étés mathématiques comme l'associativité de l'addition ne sont pas forcément de les flottants
La représen mantisse	tation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la
La représen	tation avec tous les bits à zéro est interdite
Question 16	Le nombre 10010,0011 peut s'écrire:
1,00100011	$\times 2^{-4}$
1,00100011	
1,00100011	
1,00100011	
Question 17	Quelle est la représentation en virgule flottante, simple précision de $-132, 5$?
1 10000100	100000000000000000000000000000
1 10000111	000010010000000000000000000000000000000
1 10000110	000010010000000000000000000000000000000
0 10000110	000010010000000000000000000000000000000
Question 18 posant mantiss précision (32 bits	La représentation en virgule flot tante est une écriture de la forme $signe \mid exe.$ Que vaut le nombre 0 10000011 10010100000000000000000000
9,	25 \bigcirc 0,578125 \times 2 ¹³¹ \bigcirc 25,25 \bigcirc 131,578125
Question 19	L'instruction $0.1 + 0.2 == 0.3$ en python, fournira:
	SyntaxError 0.3 True False
Question 20 raison?	L'opération $0.1*12$ en python fournit 1.20000000000000 . Quelle en est la
L'opérateur	aurait dû saisir float(0.1*12)
	tous les calculs sur les décimaux sont fourni avec 16 décimales
	rice de python est plus précise qu'une calculatrice ordinaire
	s réels sont représentés de manière approximative en machine
Question 21 3,25?	Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel
	3,11001

$\Box 0 \ \Box 0$	
$\Box 1 \ \Box 1$	
\square_2 \square_2	
\square_3 \square_3	Codez votre numéro d'identification ci contre chiffre par chiffre,
	puis complétez l'encadré.
	NOM - Prénom - Classe :
	$Dur\'ee:55\ minutes.$
	Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou
<u>9</u> 9	incohérentes retirent des points.
	Codage d'entiers naturels
	Codage d'entiers natureis
Question 1	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:
se termir	ne par 1
comporte	e moins de 9 chiffres
comporte	e au moins 9 chiffres
comporte	e 4 chiffres
Question 2	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?
Question 2	Quene est la valeur de l'entrer naturer code par le moth binaire 00011010 :
Question 3	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?
	00111100
Question 4	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?
	Impossible 00110000 100110000 00000000
Question 5	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:
	00011001
	Codage d'entiers relatifs
Question 6 deux?	Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à
	11111100

Question 7 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est:
 □ le bit de poids faible (bit 0) □ le bit de poids fort (bit 7) □ obtenu en ajoutant 1 au nombre □ obtenu en inversant les bits
Question 9 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire $011111111 + 000000001$:
est impossible zéro donne un nombre positif donne un nombre négatif
Question 10 Quel est le codage de l'entier relatif positif 64 sur 8 bits?
01000000 01100000 11000000 11100000
Question 11 Le nombre binaire 01111111 codé sur 8 bits est: le plus petit entier relatif négatif qu'on peut coder sur 8 bits est un cas particulier: il a la même représentation que son opposé le codage de un le plus grand entier relatif positif qu'on peut coder sur 8 bits
Question 12 La méthode du complément à deux permet:
d'inverser tous les bits d'un nombre entier écrit en binaire d'ajouter 1 à un nombre entier écrit en binaire d'obtenir l'opposé d'un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif
Question 13 Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits?
Codage de nombres réels
Question 14 Que vaut le nombre binaire 10001,01 codé selon la méthode de la virgule fixe?

Question 15	Quelle est la représentation en virgule flottante, simple précision de $-132, 5$?
1 10000111 1 10000100	00001001000000000000000000000000000000
Question 16	${\bf Cochez} \ {\bf une} \ {\bf propriét\'e} \ {\bf correcte} \ {\bf des} \ {\bf nombres} \ {\bf flottants} \ {\bf sur} \ {\bf une} \ {\bf machine} \ {\bf num\'erique}.$
La représen mantisse	tation avec tous les bits à zéro est interdite tation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la
	etés mathématiques comme l'associativité de l'addition ne sont pas forcément c les flottants
	possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et des flottants
Question 17 3, 25?	Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel
	1,101 $ 11,01$ $ 11,11001$ $ 3,11001$
Question 18 raison?	L'opération $0.1*12$ en python fournit 1.200000000000000 . Quelle en est la
La calculatr	aurait dû saisir float(0.1*12) rice de python est plus précise qu'une calculatrice ordinaire tous les calculs sur les décimaux sont fourni avec 16 décimales s réels sont représentés de manière approximative en machine
Question 19	Le nombre 10010,0011 peut s'écrire:
1,00100011 1,00100011 1,00100011 1,00100011	$ imes 10^{-4} imes 10^4$
Question 20	L'instruction $0.1 + 0.2 == 0.3$ en python, fournira:
	SyntaxError True False 0.3
Question 21 posant mantisse précision (32 bits	La représentation en virgule flottante est une écriture de la forme $signe \mid exe$. Que vaut le nombre 0 10000011 10010100000000000000000000
<u> </u>	$0,25$ $0,578125 \times 2^{131}$

	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré.
5	NOM - Prénom - Classe :
	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.
	Codage d'entiers naturels
Question 1	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:
	00010101
Question 2	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:
comporte se termin	e moins de 9 chiffres e au moins 9 chiffres ne par 1 e 4 chiffres
Question 3	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?
	00000000
Question 4	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?
	00111000
Question 5	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?
	Codage d'entiers relatifs
Question 6	Quel est le codage de l'entier relatif positif 64 sur 8 bits?
	11000000
Question 7 (sur 8 bits)?	Quelle est la valeur de l'entier relatif dont la représentation en binaire est 011111110

Question 8 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à deux? 00000101 11111101 11111100 00000100 Question 9 Le nombre binaire 01111111 codé sur 8 bits est: le codage de un le plus grand entier relatif positif qu'on peut coder sur 8 bits le plus petit entier relatif négatif qu'on peut coder sur 8 bits est un cas particulier: il a la même représentation que son opposé Question 10 La méthode du complément à deux permet: d'ajouter 1 à un nombre entier écrit en binaire d'obtenir l'opposé d'un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif d'inverser tous les bits d'un nombre entier écrit en binaire On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire Question 11 011111111 + 00000001: est impossible donne un nombre positif donne un nombre négatif zéro Question 12 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est: obtenu en inversant les bits le bit de poids fort (bit 7) le bit de poids faible ($bit \theta$) obtenu en ajoutant 1 au nombre Que vaut le nombre binaire 11100000 codé par la méthode du complément à Question 13 deux, sur 8 bits? -32-224-96Codage de nombres réels L'opération 0.1*12 en python fournit 1.2000000000000. Quelle en est la Question 14 raison? La calculatrice de python est plus précise qu'une calculatrice ordinaire L'opérateur aurait dû saisir float (0.1*12)

Les nombres réels sont représentés de manière approximative en machine Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales

Question 15 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3, 25?
Question 16 La représentation en virgule flottante est une écriture de la forme $signe \mid exposant \mid mantisse$. Que vaut le nombre 0 10000011 10010100000000000000000000
Question 17 Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe?
Question 18 Le nombre 10010, 0011 peut s'écrire:
$ \begin{array}{c} $
Question 19 L'instruction 0.1 + 0.2 == 0.3 en python, fournira:
False SyntaxError 0.3
Question 20 Quelle est la représentation en virgule flottante, simple précision de $-132, 5$?
☐ 1 10000100 1000000000000000000000 ☐ 1 10000111 000010010000000000000 ☐ 1 10000110 000010010000000000000 ☐ 0 10000110 000010010000000000000
Question 21 Cochez une propriété correcte des nombres flottants sur une machine numérique.
La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse
Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants
La représentation avec tous les bits à zéro est interdite
Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants

$\Box 0 \Box 0$	
$\Box 1 \Box 1$	
$\square 2 \square 2$	
$\square 3 \square 3$	Codez votre numéro d'identification ci contre chiffre par chiffre,
$\square 4 \square 4$	puis complétez l'encadré.
$\square 5 \square 5$	MOM. D. C.
$\Box 6 \Box 6$	NOM - Prénom - Classe :
7 7	
8 8	Durée: 55 minutes.
$\square 9 \square 9$	Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.
	Codage d'entiers naturels
Question 1	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:
comport	e 4 chiffres
comport	e moins de 9 chiffres
se termin	ne par 1
comport	e au moins 9 chiffres
Question 2	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?
	00101000
Question 3	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?
	000000000
Question 4	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?
Question 5	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:
	00010101
	Codage d'entiers relatifs
Question 6	Quel est le codage de l'entier relatif positif 64 sur 8 bits?
	11100000
Question 7 sur 8 bits?	Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux,

Question 8 Quelle est la valeur de l'entier relatif dont la représentation en binaire est 011111110 (sur 8 bits)?
Question 9 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à deux?
111111100 111111101 00000100 00000101
Question 10 La méthode du complément à deux permet:
d'ajouter 1 à un nombre entier écrit en binaire d'obtenir l'opposé d'un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif d'inverser tous les bits d'un nombre entier écrit en binaire
Question 11 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est:
 □ le bit de poids faible (bit 0) □ obtenu en ajoutant 1 au nombre □ obtenu en inversant les bits □ le bit de poids fort (bit 7)
Question 12 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire $011111111 + 000000001$:
donne un nombre négatif zéro donne un nombre positif
est impossible
Question 13 Le nombre binaire 01111111 codé sur 8 bits est: est un cas particulier: il a la même représentation que son opposé le codage de un le plus grand entier relatif positif qu'on peut coder sur 8 bits le plus petit entier relatif négatif qu'on peut coder sur 8 bits
Codage de nombres réels
Question 14 Le nombre 10010,0011 peut s'écrire:
$1,00100011 \times 10^{-4}$

Question 15 Coc	hez une propriété correct	te des nombres flottants s	ur une machine numérique
La représentation mantisse	on en virgule flottante né	cessite 3 octets pour cod	er le signe, l'exposant et la
Des propriétés valables avec les		l'associativité de l'addit	ion ne sont pas forcément
La représentation	on avec tous les bits à zé	ro est interdite	
Il n'est pas poss d'utilisation des		a norme IEEE754 qui dé	finit les règles de codage et
Question 16 L'ir	nstruction 0.1 + 0.2 ==	0.3 en python, fournira	a:
Tr	rue False	SyntaxError	0.3
Question 17 Que	elle est la représentation	en virgule flottante, simp	ple précision de $-132, 5$?
1 10000100 1000	000000000000000000000000000000000000000		
1 10000110 0000	0100100000000000000000		
0 10000110 0000	0100100000000000000000		
	010010000000000000000		
			ure de la forme $signe \mid ex$ 00000000000 codé en simple
<u> </u>	8125 9,25		
Question 19 L'oraison?	pération 0.1*12 en pyt	hon fournit 1.20000000	00000002. Quelle en est la
L'opérateur aur	ait dû saisir float(0.1*	12)	
Les nombres rée	ls sont représentés de m	anière approximative en	machine
Par défaut tous	les calculs sur les décim	aux sont fourni avec 16 d	lécimales
La calculatrice d	le python est plus précis	e qu'une calculatrice ord	inaire
Question 20 Que	e vaut le nombre binaire	10001,01codé selon la r	néthode de la virgule fixe?
	17,01)1 17,1	17,25

1,101

Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel

11,01

11,11001

Question 21

3,11001

3,25?

$\square 0 \square 0$	
$\Box 1 \Box 1$	
$\square 2 \square 2$	
$\square 3 \square 3$	Codez votre numéro d'identification ci contre chiffre par chiffre,
pu	uis complétez l'encadré.
	NOM - Prénom - Classe :
	Durée: 55 minutes.
	Oocument écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.
	theore, enter the position
	Codage d'entiers naturels
Question 1	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?
001	110000
Question 2	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?
00	0111100
Question 3	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?
Question 4	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:
comporte a	u moins 9 chiffres
se termine	par 1
comporte n	noins de 9 chiffres
comporte 4	chiffres
Question 5	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:
00	0011010
	Codage d'entiers relatifs
Question 6 011111111 + 00000	On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 0001:
donne un n	ombre positif
	ombre négatif
zéro	
est impossi	ble

Question 7 La méthode du complément à deux permet:
d'obtenir l'opposé d'un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif d'inverser tous les bits d'un nombre entier écrit en binaire d'ajouter 1 à un nombre entier écrit en binaire
Question 8 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à deux?
00000100 111111100 00000101 111111101
Question 9 Le nombre binaire 01111111 codé sur 8 bits est:
est un cas particulier: il a la même représentation que son opposé le codage de un le plus grand entier relatif positif qu'on peut coder sur 8 bits le plus petit entier relatif négatif qu'on peut coder sur 8 bits
Question 10 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est: \Box le bit de poids faible $(bit \ 0)$ \Box le bit de poids fort $(bit \ 7)$ \Box obtenu en inversant les bits \Box obtenu en ajoutant 1 au nombre
Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits?
Question 12 Quel est le codage de l'entier relatif positif 64 sur 8 bits?
□ 01100000 □ 11100000 □ 01000000
Question 13 Quelle est la valeur de l'entier relatif dont la représentation en binaire est 01111110 $(sur\ 8\ bits)$?
Codage de nombres réels
Question 14 Quelle est la représentation en virgule flottante, simple précision de $-132,5$?
☐ 1 10000111 00001001000000000000 ☐ 1 10000100 10000000000000000000 ☐ 1 10000110 000010010000000000000 ☐ 0 10000110 000010010000000000000

Question 15 L'opération 0.1*12 en python fournit 1.20000000000000. Quelle en est la raison?
La calculatrice de python est plus précise qu'une calculatrice ordinaire L'opérateur aurait dû saisir float(0.1*12) Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales Les nombres réels sont représentés de manière approximative en machine
Question 16 La représentation en virgule flottante est une écriture de la forme $signe \mid exposant \mid mantisse$. Que vaut le nombre 0 10000011 10010100000000000000000000
Question 17 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre rée 3,25?
Question 18 Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe?
Question 19 L'instruction 0.1 + 0.2 == 0.3 en python, fournira:
True 0.3 False SyntaxError
Question 20 Le nombre 10010, 0011 peut s'écrire:
Question 21 Cochez une propriété correcte des nombres flottants sur une machine numérique
La représentation avec tous les bits à zéro est interdite

Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément

Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et

La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la

valables avec les flottants

d'utilisation des flottants

mantisse

$\Box 0 \Box 0$	
$\square 1 \square 1$	
$\square 2 \square 2$	
$\square 3 \square 3$	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré.
$\square 4 \square 4$	puis completez i cheadre.
$\Box 5 \Box 5$	NOM - Prénom - Classe :
	$Dur\'ee:\ 55\ minutes.$
	Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou
	incohérentes retirent des points.
	Codage d'entiers naturels
Question 1	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?
	\square 24 \square 22 \square 26 \square 51
Question 2	Quelle est la représentation sur 8 bits de l'addition binaire 10111011 + 01110101?
	Impossible
Question 3	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:
	00011010
Question 4	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:
comport	e au moins 9 chiffres
	e moins de 9 chiffres
se termi:	
comport	e 4 chiffres
Question 5	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?
	00111000
	00111000
	Codage d'entiers relatifs
Question 6	Quel est le codage de l'entier relatif positif 64 sur 8 bits?
	01100000
Question 7	La méthode du complément à deux permet:
_	rer la valeur absolue d'un entier relatif
	er tous les bits d'un nombre entier écrit en binaire
	r l'opposé d'un nombre entier écrit en binaire
\equiv	r 1 à un nombre entier écrit en binaire
<u> </u>	

Question 8 deux?	Quelle est la	représentation de -	-3 sur 8 bits, par la n	néthode du complément à
00	0000101	00000100	11111101	111111100
Question 9	Le nombre bi	naire 01111111 code	é sur 8 bits est:	
le plus petir	t entier relati	if positif qu'on peut f négatif qu'on peut a la même représen		
Question 10 011111111 + 00000		lle avec des entiers	relatifs codés sur 8	bits. L'addition binaire
zéro est impossil	ombre positif ble ombre négatif			
Question 11 01111110 (sur 8		la valeur de l'entie	er relatif dont la repr	résentation en binaire est
		-124		126
Question 12 deux, sur 8 bits?	Que vaut le	e nombre binaire 1.	1100000 codé par la n	néthode du complément à -224
à deux, le bit de	signe est:		relatifs sur 8 bits par l	a méthode du complément
	njoutant 1 au nversant les b			
le bit de po	ids faible (bit	0)		
le bit de po	ids fort (bit 7	7)		
	C	Codage de no	mbres réels	
Question 14	Cochez une J	propriété correcte de	es nombres flottants su	r une machine numérique.
La représen mantisse	tation en virg	gule flottante nécess	ite 3 octets pour code	r le signe, l'exposant et la
Il n'est pas				nit les règles de codage et
	étés mathéma ec les flottants		sociativité de l'addition	on ne sont pas forcément
Question 15	L'instruction	n 0.1 + 0.2 == 0.	3 en python, fournira:	
	True	False	SyntaxError	0.3

Question 16 raison?	L'opération 0.1*12 en python fournit 1.20000000000000. Quelle en est la
L'opérateur Par défaut t	ice de python est plus précise qu'une calculatrice ordinaire aurait dû saisir float(0.1*12) ous les calculs sur les décimaux sont fourni avec 16 décimales s réels sont représentés de manière approximative en machine
Question 17	Le nombre 10010,0011 peut s'écrire:
1,00100011 1,00100011 1,00100011 1,00100011	$ imes 2^{-4} imes 2^4$
	Quelle est la représentation en virgule flottante, simple précision de $-132, 5$? $1000000000000000000000000000000000000$
1 10000110	00001001000000000000000000000000000000
Question 19 posant mantisse précision (32 bits)	La représentation en virgule flot tante est une écriture de la forme $signe \mid exe.$ Que vaut le nombre 0 10000011 10010100000000000000000000
133	$1,578125$ $$ $0,578125 \times 2^{131}$ $$ $25,25$ $$ $9,25$
Question 20 3,25?	Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel
	$3,11001$ \square $11,11001$ \square $1,101$ \square $11,01$
Question 21	Que vaut le nombre binaire 10001,01 codé selon la méthode de la virgule fixe?

$\square 0 \square 0$		
$\square 1 \square 1$		
2 2		
$\square 3 \square 3$	Codez votre numéro d'identification ci contre chiffre par chiffre,	
$\square 4 \square 4$	puis complétez l'encadré.	
$\square 5 \square 5$	NOM - Prénom - Classe :	
$\Box 6 \Box 6$	NOW - I tellolli - Classe .	
7	Don's a fif minute.	
	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou	
<u>9</u> 9	incohérentes retirent des points.	
	Codage d'entiers naturels	
Question 1	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:	
comport	e 4 chiffres	
comporte	e au moins 9 chiffres	
se termin	ne par 1	
comport	e moins de 9 chiffres	
Question 2	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?	
	$00000000 \qquad \boxed{ \qquad } 100110000 \qquad \boxed{ \qquad } 00110000 \qquad \boxed{ \qquad } \text{Impossible}$	
Question 3	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:	
	00010101	
Question 4	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?	
Question 5	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?	
	00100110	
	Codage d'entiers relatifs	
Question 6	Quel est le codage de l'entier relatif positif 64 sur 8 bits?	
	01100000	
Question 7 sur 8 bits?	Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux,	

Question 8 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à deux?
111111101 111111100 00000100 00000101
Question 9 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire $011111111 + 000000001$:
est impossible donne un nombre positif donne un nombre négatif zéro
Question 10 La méthode du complément à deux permet:
d'obtenir l'opposé d'un nombre entier écrit en binaire d'inverser tous les bits d'un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif d'ajouter 1 à un nombre entier écrit en binaire
Question 11 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est:
 □ le bit de poids faible (bit 0) □ le bit de poids fort (bit 7) □ obtenu en inversant les bits □ obtenu en ajoutant 1 au nombre
Question 12 Quelle est la valeur de l'entier relatif dont la représentation en binaire est $011111110 \ (sur \ 8 \ bits)$?
Question 13 Le nombre binaire 01111111 codé sur 8 bits est: le codage de un est un cas particulier: il a la même représentation que son opposé le plus grand entier relatif positif qu'on peut coder sur 8 bits le plus petit entier relatif négatif qu'on peut coder sur 8 bits
Codage de nombres réels
Question 14 Le nombre 10010, 0011 peut s'écrire:
$ \begin{array}{c} $

Question 15 La représentation en virgule flottante est une écriture de la forme $signe \mid exposant \mid mantisse$. Que vaut le nombre 0 10000011 10010100000000000000000000
Question 16 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3,25?
Question 17 L'instruction 0.1 + 0.2 == 0.3 en python, fournira:
False 0.3 SyntaxError True
Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe?
Question 19 Cochez une propriété correcte des nombres flottants sur une machine numérique.
☐ La représentation avec tous les bits à zéro est interdite ☐ Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants
La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse
Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants
Question 20 Quelle est la représentation en virgule flottante, simple précision de $-132, 5$?
0 10000110 0000100100000000000000000000
1 10000110 0000100100000000000000000000
1 10000111 0000100100000000000000000000
1 10000100 1000000000000000000000000000
Question 21 L'opération 0.1*12 en python fournit 1.20000000000000. Quelle en est la raison?
Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales
Les nombres réels sont représentés de manière approximative en machine
L'opérateur aurait dû saisir float(0.1*12)
La calculatrice de python est plus précise qu'une calculatrice ordinaire

$\Box 0 \Box 0$	
$\square 1 \square 1$	
$\square 2 \square 2$	
$\square 3 \square 3$	Codez votre numéro d'identification ci contre chiffre par chiffre,
$\Box 4 \Box 4$	puis complétez l'encadré.
$\square 5 \square 5$	MOM. D. C.
$\Box 6 \Box 6$	NOM - Prénom - Classe :
7 7	
8 8	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou
$\square 9 \square 9$	incohérentes retirent des points.
	Calama Partiana at tari
	Codage d'entiers naturels
Question 1	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:
	00011000
Question 2	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:
comport	e moins de 9 chiffres
se termin	ne par 1
comport	e 4 chiffres
comporte	e au moins 9 chiffres
Question 3	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?
	Impossible 100110000 00000000 00110000
Question 4	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?
Question 5	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?
	00101000
	Codage d'entiers relatifs
Question 6 01111111 + 00	On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 000001:
zéro	
	n nombre négatif
est impo	
	n nombre positif

Question 7 (sur 8 bits)?	Quelle est la valeu	r de l'entier rela	tif dont la représe	entation en binaire est 01111110
	-128	<u> </u>		
Question 8	Quel est le codag	e de l'entier rela	atif positif 64 sur	8 bits?
03	1100000	11000000	01000000	11100000
Question 9 sur 8 bits?	Que vaut le nomb	re binaire 11100	000 codé par la m	néthode du complément à deux,
	-32	224		-224
Question 10	La méthode du	complément à d	leux permet:	
de trouver d'inverser t	opposé d'un nombla valeur absolue cous les bits d'un à un nombre ent	d'un entier rela nombre entier é	tif crit en binaire	
Question 11	Le nombre bina	ire 01111111 co	dé sur 8 bits est:	
le plus gran	le un t entier relatif né nd entier relatif pe particulier: il a la	ositif qu'on peu	t coder sur 8 bits	
Question 12 deux?		orésentation de 00000100		r la méthode du complément à
1.	1111101	00000100	00000101	11111100
Question 13 à deux, le bit de		ntation d'entiers	relatifs sur 8 bits	s par la méthode du complément
obtenu en i	inversant les bits			
le bit de po	oids fort (bit 7)			
obtenu en a	ajoutant 1 au non	nbre		
le bit de po	oids faible $(bit \ \theta)$			
	Cod	lage de no	mbres réel	s
Question 14	Que vaut le non	abre binaire 100	01,01 codé selon	la méthode de la virgule fixe?
	17,01	1,000101	17, 25	<u> </u>
Question 15	L'instruction 0.	1 + 0.2 == 0.	3 en python, four	rnira:
	0.3	False	True	SyntaxError

Question 16 Quelle est la représentation en virgule flottante, simple précision de -132, 5? 1 10000110 0000100100000000000000000 0 10000110 000010010000000000000000 Question 17 Le nombre 10010,0011 peut s'écrire: $1,00100011 \times 2^4$ $1,00100011 \times 2^{-4}$ $1,00100011 \times 10^{-4}$ $1,00100011 \times 10^4$ Question 18 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3, 25? 3,11001 11, 11001 1,10111,01 L'opération 0.1*12 en python fournit 1.20000000000000. Quelle en est la Question 19 raison? Les nombres réels sont représentés de manière approximative en machine Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales L'opérateur aurait dû saisir float (0.1*12) La calculatrice de python est plus précise qu'une calculatrice ordinaire Question 20 Cochez une propriété correcte des nombres flottants sur une machine numérique. Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants La représentation avec tous les bits à zéro est interdite La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants Question 21 La représentation en virgule flottante est une écriture de la forme signe | ex-précision (32 bits)? 131, 578125 0.578125×2^{131} 25, 259,25

Question 7 sur 8 bits?	Que vaut le non	nbre binaire 11100	0000 codé par la m	éthode du complément à deux,	
				224	
Question 8	Quel est le cod	age de l'entier rel	atif positif 64 sur	8 bits?	
)1000000 [11100000	01100000	11000000	
Question 9	La méthode du	complément à de	eux permet:		
d'ajouter	1 à un nombre e · la valeur absolu	n nombre entier é ntier écrit en bina ne d'un entier rela mbre entier écrit	aire atif		
Question 10 011111110 (sur 8		a valeur de l'enti	ier relatif dont la	représentation en binaire est	
			<u> </u>		
Question 11 011111111 + 0000		e avec des entiers	s relatifs codés su	ur 8 bits. L'addition binaire	
est imposs	nombre négatif sible nombre positif				
Question 12 deux?	Quelle est la	représentation de	−3 sur 8 bits, par	r la méthode du complément à	
	00000101 [00000100	11111101	11111100	
Question 13	Le nombre bi	naire 01111111 co	dé sur 8 bits est:		
le codage	de un				
le plus petit entier relatif négatif qu'on peut coder sur 8 bits					
est un cas particulier: il a la même représentation que son opposé					
∐ le plus gra	nd entier relatif	positif qu'on peu	t coder sur 8 bits		
	Co	ndage de no	ombres réels		
Question 14				la méthode de la virgule fixe?	
Question 14			1,000101	_	
0	17,01	17,25		17,1	
Question 15	_		.3 en python, four		
	False	True	0.3	SyntaxError	

Question 16	Quelle est la représentation en virgule flot tante, simple précision de $-132,5?$
1 10000111	000010010000000000000000000
1 10000100	100000000000000000000000000000000000000
1 10000110	000010010000000000000000000000000000000
0 10000110	000010010000000000000000000000000000000
Question 17	Cochez une propriété correcte des nombres flottants sur une machine numérique.
La représen	tation avec tous les bits à zéro est interdite
La représen mantisse	tation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la
	possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et a des flottants
	étés mathématiques comme l'associativité de l'addition ne sont pas forcément et les flottants
Question 18 3, 25?	Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel
	1,101
Question 19 posant mantiss précision (32 bits	·
9,	25
Question 20	Le nombre 10010,0011 peut s'écrire:
1,00100011 1,00100011	$\times 2^{-4}$
1,00100011 1,00100011	
Question 21 raison?	L'opération $0.1*12$ en python fournit 1.200000000000000 . Quelle en est la
Par défaut	tous les calculs sur les décimaux sont fourni avec 16 décimales
La calculat	rice de python est plus précise qu'une calculatrice ordinaire
L'opérateur	aurait dû saisir float(0.1*12)

Les nombres réels sont représentés de manière approximative en machine

$\square 1 \square 1$	
$\square 2 \square 2$	
$\square 3 \square 3$	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré.
$\boxed{}4$ $\boxed{}4$	pais completed i cheadre.
$\square 5 \square 5$	NOM - Prénom - Classe :
8 B 9 9	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.
	Codage d'entiers naturels
Question 1	On effectue l'addition binaire 00101101 + 00001011. Quel est le résultat?
	00111000
Question 2	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$
	00110000
Question 3	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire
comport se termin	moins de 9 chiffres au moins 9 chiffres e par 1 4 chiffres
Question 4	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?
Question 5	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:
	00011000
	Codage d'entiers relatifs
Question 6	Quel est le codage de l'entier relatif positif 64 sur 8 bits?
	11100000
Question 7 (sur 8 bits)?	Quelle est la valeur de l'entier relatif dont la représentation en binaire est 0111111

Question 8 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à deux?
11111101 11111100 00000101 00000100
Question 9 La méthode du complément à deux permet:
de trouver la valeur absolue d'un entier relatif d'inverser tous les bits d'un nombre entier écrit en binaire d'obtenir l'opposé d'un nombre entier écrit en binaire d'ajouter 1 à un nombre entier écrit en binaire
$\bf Question~10$ On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 011111111 + 000000001:
est impossible donne un nombre négatif donne un nombre positif zéro
Question 11 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est:
 □ obtenu en inversant les bits □ le bit de poids faible (bit 0) □ le bit de poids fort (bit 7) □ obtenu en ajoutant 1 au nombre
Question 12 Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits?
Question 13 Le nombre binaire 01111111 codé sur 8 bits est: le codage de un est un cas particulier: il a la même représentation que son opposé le plus grand entier relatif positif qu'on peut coder sur 8 bits le plus petit entier relatif négatif qu'on peut coder sur 8 bits
Codage de nombres réels
Question 14 Le nombre 10010,0011 peut s'écrire:
$ \begin{array}{c} $

Question 15 Quelle est la représentation en virgule flottante, simple précision de $-132, 5$?
1 10000100 1000000000000000000000000000
0 10000110 0000100100000000000000000000
1 10000111 0000100100000000000000000000
1 10000110 0000100100000000000000000000
Question 16 Cochez une propriété correcte des nombres flottants sur une machine numérique.
La représentation avec tous les bits à zéro est interdite
Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants
Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants
La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse
Question 17 La représentation en virgule flottante est une écriture de la forme $signe \mid exposant \mid mantisse$. Que vaut le nombre 0 10000011 10010100000000000000000000
Question 18 L'opération $0.1*12$ en python fournit $1.2000000000000000000000000000000000000$
L'opérateur aurait dû saisir float (0.1*12)
La calculatrice de python est plus précise qu'une calculatrice ordinaire
Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales
Les nombres réels sont représentés de manière approximative en machine
Question 19 L'instruction 0.1 + 0.2 == 0.3 en python, fournira:
True 0.3 False SyntaxError
Question 20 Que vaut le nombre binaire 10001,01 codé selon la méthode de la virgule fixe?
Question 21 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel $3, 25$?

3,11001

11,11001

1,101

11,01

$\Box 0 \Box 0$					
$\square 1 \ \square 1$					
$\square_2 \square_2$					
	Codez votre numéro d'identification ci contre chiffre par chiffre,				
	puis complétez	z l'encadré.			
	NOM - Préne	om - Classe :			
		$Dur\acute{e}$	e: 55 minutes.		
	Document écr			Les réponses fausses ou	
∐9 ∐9		incohérente	es retirent des points.		
	(Codage d'ent	iers naturels		
Question 1	On considère	le nombre $N = 1000$	0 ₁₀ (écrit en base 10)	. L'écriture de N en binaire:	
comport	e moins de 9 ch	iffres			
se termin					
	e 4 chiffres				
= -	e au moins 9 ch	iffres			
Question 2	On effectue l'	addition binaire 00	101101 + 00001011.	Quel est le résultat?	
	00111000	00101000	00111100	00100110	
Question 3	Quelle est la	valeur de l'entier na	aturel codé par le mo	tif binaire 00011010?	
		26 51	<u>22</u>	24	
Question 4	Quelle est la	représentation sur 8	3 bits de l'addition bi	naire $10111011 + 01110101$?	
	Impossible	00000000	00110000	100110000	
Question 5	L'entier natur	rel 25 s'écrit en bina	aire naturel sur 8 bits	5:	
	00011001	00011000	00010101	00011010	
		Codage d'en	tiers relatifs		
Question 6 deux?	Quelle est la	a représentation de	−3 sur 8 bits, par la	méthode du complément à	
	11111101	11111100	00000101	00000100	
Question 7	Le nombre b	inaire 01111111 cod	lé sur 8 bits est:		
le plus p	etit entier relat	if négatif qu'on peu	t coder sur 8 bits		
le plus g	rand entier rela	tif positif qu'on peu	it coder sur 8 bits		
est un ca		a la même représer	ntation que son oppo	sé	

Question 8 La méthode du complément à deux permet:
d'ajouter 1 à un nombre entier écrit en binaire d'inverser tous les bits d'un nombre entier écrit en binaire d'obtenir l'opposé d'un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif
Question 10 Quelle est la valeur de l'entier relatif dont la représentation en binaire est 01111110 ($sur\ 8\ bits$)?
Question 11 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire $011111111 + 000000001$:
est impossible zéro donne un nombre négatif donne un nombre positif
Question 12 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est:
☐ le bit de poids fort (bit 7) ☐ obtenu en ajoutant 1 au nombre ☐ le bit de poids faible (bit 0) ☐ obtenu en inversant les bits
Question 13 Quel est le codage de l'entier relatif positif 64 sur 8 bits?
11100000 01100000 11000000
Codage de nombres réels
Question 14 La représentation en virgule flottante est une écriture de la forme $signe \mid exposant \mid mantisse$. Que vaut le nombre 0 10000011 10010100000000000000000000
Question 15 Le nombre 10010,0011 peut s'écrire:

Que vaut le nombre binaire 10001, 01 codé selon la méthode de la	ι virgule fixe?
Question 17 Quelle est la représentation en virgule flottante, simple précision of	de -132, 5?
□ 0 10000110 00001001000000000000 □ 1 10000100 100000000000000000000 □ 1 10000110 000010010000000000000 □ 1 10000111 000010010000000000000	
Question 18 Quel est le codage en binaire selon la méthode de la virgule fixe, d $3,25$?	lu nombre réel
Question 19 L'instruction 0.1 + 0.2 == 0.3 en python, fournira:	
0.3 False SyntaxError True	
Question 20 L'opération $0.1*12$ en python fournit $1.2000000000000000000000000000000000000$	uelle en est la
La calculatrice de python est plus précise qu'une calculatrice ordinaire	
Les nombres réels sont représentés de manière approximative en machine	
L'opérateur aurait dû saisir float(0.1*12)	
Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales	
Question 21 Cochez une propriété correcte des nombres flottants sur une machin	ne numérique.
La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'emantisse	exposant et la
Des propriétés mathématiques comme l'associativité de l'addition ne sont provalables avec les flottants	pas forcément
La représentation avec tous les bits à zéro est interdite	
Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles d'utilisation des flottants	s de codage et

$\Box 0 \Box 0$					
$\square 1 \square 1$					
$\square 2 \square 2$					
$\square 3 \square 3$	Codez votre numéro d'identification ci contre chiffre par chiffre,				
$\square 4 \square 4$	puis complétez l'en	cadre.			
□5 □5 □6 □6	NOM - Prénom -	Classe:			
$\square 8 \square 8$: 55 minutes.		
	Document écrit no		culatrice autorisée. L s retirent des points.	les réponses fausses ou	
		brocoroci cinoce	remem aes pomes.		
	Cod	lage d'enti	ers naturels		
Question 1	On considère le no	ombre $N = 1000_1$	10 (écrit en base 10).	L'écriture de N en binaire:	
comport	e 4 chiffres				
	e au moins 9 chiffres	S			
comport	e moins de 9 chiffres	5			
se termin	ne par 1				
Question 2	Quelle est la vale	ır de l'entier nat	curel codé par le mot	if binaire 00011010 ?	
	☐ 51	\square 22		26	
0 4 9					
Question 3	L'entier naturel 2		ire naturel sur 8 bits	: 	
	00011001	00011000	00011010	00010101	
Question 4	On effectue l'addi	tion binaire 0010	01101 + 00001011. Q	Quel est le résultat?	
	00100110	00101000	00111000	00111100	
Question 5	Quelle est la repré	ésentation sur 8	bits de l'addition bir	naire $10111011 + 01110101$?	
	100110000	00000000	Impossible	00110000	
			.		
	Coe	$\frac{1}{\text{dage d'ent}}$	iers relatifs		
Question 6	Quel est le codag	ge de l'entier rela	atif positif 64 sur 8 b	its?	
	01000000	01100000	11000000	11100000	
Question 7	Le nombre binair	re 01111111 codé	é sur 8 bits est:		
_	rand entier relatif p				
le codage	_	ositii qu'on peut	coder sur o bits		
		même représent	tation que son oppos	sé	
	etit entier relatif né				
	_				

Question 8 sur 8 bits?	Que vaut le nomb	ore binaire 1110	0000 codé par la :	méthode du	complément	à deux,
		-32	224			
Question 9 01111111 + 0000		avec des entiers	s relatifs codés	sur 8 bits.	L'addition	binaire
	nombre positif nombre négatif sible					
Question 10 à deux, le bit de		entation d'entier	rs relatifs sur 8 bit	s par la méth	node du comp	olément
le bit de p	poids faible $(bit \ \theta)$ poids fort $(bit \ 7)$ inversant les bits ajoutant 1 au nor				/	
Question 11 deux?	Quelle est la re	présentation de	-3 sur 8 bits, p	ar la méthoc	le du complé	ement à
	00000101] 11111100	0000010	0	11111101	
Question 12 011111110 (sur &		valeur de l'ent	ier relatif dont 1 -126	la représenta		aire est
Question 13		complément à				
d'ajouter d'inverser	la valeur absolue 1 à un nombre en tous les bits d'un l'opposé d'un nom	d'un entier rela tier écrit en bin nombre entier	atif aire écrit en binaire			
	Coe	dage de no	ombres rée	ls		
Question 14 1,0010001 1,0010001 1,0010001 1,0010001	1×10^{-4} 1×2^4 1×10^4	10,0011 peut s'é	écrire:			
Question 15	Que vaut le nor	mbre binaire 10	001, 01 codé selo	n la méthode	e de la virgul	e fixe?
	17,01	1,000101			7, 1	

Question 16 La représentation en virgule flottante est une écriture de la forme $signe \mid exposant \mid mantisse$. Que vaut le nombre 0 10000011 10010100000000000000000000
${\bf Question} \ {\bf 17} \qquad {\bf Cochez} \ {\bf une} \ {\bf propriét\'e} \ {\bf correcte} \ {\bf des} \ {\bf nombres} \ {\bf flottants} \ {\bf sur} \ {\bf une} \ {\bf machine} \ {\bf num\'erique}.$
Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants
La représentation avec tous les bits à zéro est interdite
Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants
La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse
Question 18 Quelle est la représentation en virgule flottante, simple précision de $-132, 5$?
0 10000110 0000100100000000000000000000
1 10000100 1000000000000000000000000000
1 10000110 0000100100000000000000000000
1 10000111 0000100100000000000000000000
Question 19 L'instruction 0.1 + 0.2 == 0.3 en python, fournira:
SyntaxError False 0.3 True
Question 20 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3, 25?
Question 21 L'opération $0.1*12$ en python fournit $1.2000000000000000000000000000000000000$
Les nombres réels sont représentés de manière approximative en machine
La calculatrice de python est plus précise qu'une calculatrice ordinaire
L'opérateur aurait dû saisir float(0.1*12)
Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales

$\Box 0 \Box 0$				
$\Box 1 \Box 1$				
$\square 2 \square 2$				
$\square 3 \square 3$	Codez votre numéro d'identification ci contre chiffre par chiffre,			
$\square 4 \square 4$	puis complétez l'encadré.			
□5 □5 □6 □6	NOM - Prénom - Classe :			
\square 8 \square 8	Durée : 55 minutes.			
	Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses o incohérentes retirent des points.			
	Codaga d'antiena neturals			
	Codage d'entiers naturels			
Question 1	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?			
Question 2	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:			
	00011000			
Question 3	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:			
comported se termin	e au moins 9 chiffres e 4 chiffres ne par 1 e moins de 9 chiffres			
Question 4	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?			
	00101000			
Question 5	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?			
	00110000			
	Codage d'entiers relatifs			
Question 6	Quel est le codage de l'entier relatif positif 64 sur 8 bits?			
	11100000			
Question 7 011111111 + 00	On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 000001 :			
donne ur	n nombre positif			
zéro				
donne ur	n nombre négatif ssible			

Question 8 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à deux?
111111100 00000100 00000101 111111101
Question 9 La méthode du complément à deux permet:
d'inverser tous les bits d'un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif d'obtenir l'opposé d'un nombre entier écrit en binaire d'ajouter 1 à un nombre entier écrit en binaire
Question 10 Le nombre binaire 01111111 codé sur 8 bits est:
□ le plus grand entier relatif positif qu'on peut coder sur 8 bits □ le plus petit entier relatif négatif qu'on peut coder sur 8 bits □ le codage de un □ est un cas particulier: il a la même représentation que son opposé
□ obtenu en ajoutant 1 au nombre □ le bit de poids fort $(bit \ 7)$ □ le bit de poids faible $(bit \ \theta)$ □ obtenu en inversant les bits
Question 12 Quelle est la valeur de l'entier relatif dont la représentation en binaire est 01111110 (sur 8 bits)?
Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits?
Codage de nombres réels
Question 14 L'opération 0.1*12 en python fournit 1.20000000000000. Quelle en est la raison?
L'opérateur aurait dû saisir float(0.1*12) La calculatrice de python est plus précise qu'une calculatrice ordinaire Les nombres réels sont représentés de manière approximative en machine Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales
Question 15 L'instruction 0.1 + 0.2 == 0.3 en python, fournira:
SyntaxError False True 0.3

Question 17 La représentation en virgule flottante est une écriture de la forme $signe \mid exposant \mid mantisse.$ Que vaut le nombre 0 10000011 10010100000000000000000000
Question 18 Cochez une propriété correcte des nombres flottants sur une machine numérique.
Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants
La représentation avec tous les bits à zéro est interdite
La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse
Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants
Question 19 Quelle est la représentation en virgule flottante, simple précision de $-132, 5$?
1 10000111 0000100100000000000000000000
1 10000100 1000000000000000000000000000
1 10000110 0000100100000000000000000000
0 10000110 0000100100000000000000000000
Question 20 Le nombre 10010,0011 peut s'écrire:
Que stion 21 Que vaut le nombre binaire 10001,01 codé selon la méthode de la virgule fixe?

00	
$\square 1 \square 1$	
$\square 2 \square 2$	
3 = 3	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré.
	pub compressor renewater
<u>5</u> <u>5</u>	NOM - Prénom - Classe :
<u></u> 6 <u></u> 6	
	Durée : 55 minutes.
	Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou
99	incohérentes retirent des points.
	Codage d'entiers naturels
Question 1	Quelle est la représentation sur 8 bits de l'addition binaire 10111011 + 01110101?
	Impossible 00000000 00110000 100110000
Question 2	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:
comport	e 4 chiffres
comport	e moins de 9 chiffres
se termi: comport	ne par 1 e au moins 9 chiffres
Question 3	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?
	00111100
Question 4	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?
Question 5	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:
	00010101
	Codage d'entiers relatifs
Question 6	Le nombre binaire 01111111 codé sur 8 bits est:
☐ le plus p	etit entier relatif négatif qu'on peut coder sur 8 bits
☐ le plus g	rand entier relatif positif qu'on peut coder sur 8 bits
le codag	e de un
est un ca	as particulier: il a la même représentation que son opposé

Question 7 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est:
 □ le bit de poids fort (bit 7) □ obtenu en ajoutant 1 au nombre □ obtenu en inversant les bits □ le bit de poids faible (bit 0)
Question 8 Quelle est la valeur de l'entier relatif dont la représentation en binaire est 01111110 (sur 8 bits)?
Question 9 Quel est le codage de l'entier relatif positif 64 sur 8 bits?
11100000 01000000 1100000 11000000
Question 10 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire $011111111 + 000000001$:
donne un nombre négatif zéro est impossible donne un nombre positif
Question 11 Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits?
Question 12 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à deux?
11111101 00000101 00000100 111111100
Question 13 La méthode du complément à deux permet:
d'inverser tous les bits d'un nombre entier écrit en binaire
d'obtenir l'opposé d'un nombre entier écrit en binaire
de trouver la valeur absolue d'un entier relatif
d'ajouter 1 à un nombre entier écrit en binaire
Codage de nombres réels
Question 14 La représentation en virgule flottante est une écriture de la forme $signe \mid exposant \mid mantisse$. Que vaut le nombre 0 10000011 10010100000000000000000000
Que stion 15 Que vaut le nombre binaire 10001,01 codé selon la méthode de la virgule fixe?

Question 16 L'opération 0.1*12 en python fournit 1.20000000000000. Quelle en est la raison?
Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales Les nombres réels sont représentés de manière approximative en machine La calculatrice de python est plus précise qu'une calculatrice ordinaire L'opérateur aurait dû saisir float(0.1*12)
Question 17 Le nombre 10010,0011 peut s'écrire:
$ \begin{array}{c} 1,00100011 \times 10^{4} \\ 1,00100011 \times 2^{-4} \\ 1,00100011 \times 2^{4} \\ 1,00100011 \times 10^{-4} \end{array} $
Question 18 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel $3, 25$?
Question 19 Quelle est la représentation en virgule flottante, simple précision de $-132, 5$?
☐ 1 10000100 100000000000000000000 ☐ 1 10000110 000010010000000000000 ☐ 1 10000111 000010010000000000000 ☐ 0 10000110 000010010000000000000
Question 20 L'instruction 0.1 + 0.2 == 0.3 en python, fournira:
SyntaxError 0.3 True False
Question 21 Cochez une propriété correcte des nombres flottants sur une machine numérique.
La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse
La représentation avec tous les bits à zéro est interdite
Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et

Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément

d'utilisation des flottants

valables avec les flottants

