26. Событийный алгоритм моделирования (статическая модель элементов).

Значение сигнала на выходе элемента может измениться только в том случае, если изменилось значение сигнала хотя бы на одном его входе. Это обстоятельство лежит в основе алгоритмов событийною моделирования, где обработке подлежат только элементы с изменившимися входными значениями сигналов.

При событийном алгоритме моделирования используются две таблицы:

таблица текущих событий (хранит номера элементов, которые необходимо просчитать в данный момент времени);

таблица будущих событий (хранит номера тех элементов, на входах которых произошли события).

Алгоритм событийного моделирования состоит в следующем:

Задать в схеме начальное состояние.

Задать установочный входной набор и просчитать схему на нем любым итерационным либо событийным алгоритмом, но в таблицу будущих событий записать все элементы схемы.

Подать первый входной набор. В таблицу текущих событий записать номера входов, на которых произошли события, а в таблицу будущих событий записать те элементы, которые связаны с этими входами.

Таблицу будущих событий переписать в таблицу текущих событий и очистить таблицу будущих событий. Просчитать все элементы из таблицы текущих событий.

Последовательно моделируем элементы из таблицы текущих событий, при этом, если сигнал на выходе элемента изменился, то его последователя записываем в таблицу будущих событий. Данный процесс продолжается до тех пор, пока не станет пустой одна из таблиц. При генерации таблицы будут повторятся.

Событийный алгоритм:

Выполняет только то, где возможны изменения, а не повторяет все, как итерационный алгоритм (то есть просчитываются только те элементы, на входах которых произошли изменения). Для этого нужна таблица будущих событий (ТБС) и таблица текущих событий (ТТС).

На одном наборе меняют значение 30-40% элементов.

Пример:

задержки Тили = 1 Ти = 2 Тили-не = 3

a	В	c	d	e	f	k	1	1	2	3	4	5	6	7	8	9	10	11	Т	TTC	ТБС	
								0	0	0	0	0	0	0	0	0	0	0				
1	0	1	1	0	0	1	0	0	1	0	1	1	0	0	1	0	0	0			1-4-6-10	
1	1	1	0	0	1	0	0	1			0		0				0		0	1-4-6-10	2-5	
									0			0							2	2-5	3-7- 3	
										1				0					5	3-7		