MB668 Project Mary English Spring 2020 Loading libraries library(readr) library(ggplot2) Part I. Metagenomic sequence filtering trim_galore Manual: https://github.com/FelixKrueger/TrimGalore/blob/master/Docs/Trim_Galore_User_Guide.md • Wiki: http://www.metagenomics.wiki/tools/short-read/quality-control/trim-galore Done on my personal computer. conda install -c bioconda trim-galore mv lane1-s007-indexN705-S508-GGACTCCT-CTAAGCCT-1B-Meta_S7_L001_R1_001.fastq 1b_meta_r1.fastq mv lane1-s007-indexN705-S508-GGACTCCT-CTAAGCCT-1B-Meta_S7_L001_R2_001.fastq 1b_meta_r2.fastq trim_galore --paired 1b_meta_r1.fastq 1b_meta_r2.fastq AUTO-DETECTING ADAPTER TYPE Attempting to auto-detect adapter type from the first 1 million sequences of the first file (>> 1b meta r1.fastq <<) Found perfect matches for the following adapter sequences: • Adapter type, Count, Sequence, Sequences analysed, Percentage Nextera 375246, CTGTCTCTTATA, 1000000, 37.52 • Illumina, 2, AGATCGGAAGAGC, 1000000, 0.00 • smallRNA, 2, TGGAATTCTCGG, 1000000, 0.00 Using Nextera adapter for trimming (count: 375246). Second best hit was Illumina (count: 2) Writing report to '1b meta r1.fastq trimming report.txt' SUMMARISING RUN PARAMETERS Input filename: 1b_meta_r1.fastq · Trimming mode: paired-end Trim Galore version: 0.6.4_dev • Cutadapt version: 1.18 · Number of cores used for trimming: 1 • Quality Phred score cutoff: 20 • Quality encoding type selected: ASCII+33 • Adapter sequence: 'CTGTCTCTTATA' (Nextera Transposase sequence; auto-detected) Maximum trimming error rate: 0.1 (default) • Minimum required adapter overlap (stringency): 1 bp • Minimum required sequence length for both reads before a sequence pair gets removed: 20 bp Cutadapt seems to be reasonably up-to-date. Setting -j 1 Writing final adapter and quality trimmed output to 1b_meta_r1_trimmed.fq Now performing quality (cutoff '-q 20') and adapter trimming in a single pass for the adapter sequence: 'CTGTCTCATA' from file 1b_meta_r1.fastq • 10000000 sequences processed • This is cutadapt 1.18 with Python 3.7.4 • Command line parameters: -j 1 -e 0.1 -q 20 -O 1 -a CTGTCTCTTATA 1b_meta_r1.fastq Processing reads on 1 core in single-end mode ... Finished in 137.66 s (13 us/read; 4.61 M reads/minute). Summary • Total reads processed: 10,579,668 • Reads with adapters: 5,885,278 (55.6%) Reads written (passing filters): 10,579,668 (100.0%) • Total basepairs processed: 2,655,496,668 bp • Quality-trimmed: 134,695,996 bp (5.1%) Total written (filtered): 2,174,547,432 bp (81.9%) Adapter 1 Sequence: CTGTCTCTTATA; Type: regular 3'; Length: 12; Trimmed: 5885278 times. No. of allowed errors: • 0-9 bp: 0; 10-12 bp: 1 Bases preceding removed adapters: • A: 19.3% • C: 31.4% • G: 20.2% • T: 29.1% • none/other: 0.0% RUN STATISTICS FOR INPUT FILE: 1b_meta_r1.fastq 10579668 sequences processed in total SUMMARISING RUN PARAMETERS Input filename: 1b meta r2.fastq · Trimming mode: paired-end • Trim Galore version: 0.6.4 dev • Cutadapt version: 1.18 Number of cores used for trimming: 1 • Quality Phred score cutoff: 20 Quality encoding type selected: ASCII+33 • Adapter sequence: 'CTGTCTCTTATA' (Nextera Transposase sequence; auto-detected) Maximum trimming error rate: 0.1 (default) • Minimum required adapter overlap (stringency): 1 bp • Minimum required sequence length for both reads before a sequence pair gets removed: 20 bp Cutadapt seems to be reasonably up-to-date. Setting -j -j 1 Writing final adapter and quality trimmed output to 1b meta r2 trimmed.fq Now performing quality (cutoff '-q 20') and adapter trimming in a single pass for the adapter sequence: 'CTGTCTCTTATA' from file 1b_meta_r2.fastq • 10000000 sequences processed • This is cutadapt 1.18 with Python 3.7.4 • Command line parameters: -j 1 -e 0.1 -q 20 -O 1 -a CTGTCTCTTATA 1b_meta_r2.fastq Processing reads on 1 core in single-end mode ... Finished in 139.84 s (13 us/read; 4.54 M reads/minute). Summary • Total reads processed: 10,579,668 • Reads with adapters: 5,890,390 (55.7%) Reads written (passing filters): 10,579,668 (100.0%) Total basepairs processed: 2,655,496,668 bp • Quality-trimmed: 200,507,982 bp (7.6%) • Total written (filtered): 2,159,836,467 bp (81.3%) Adapter 1 Sequence: CTGTCTCTTATA; Type: regular 3'; Length: 12; Trimmed: 5890390 times. No. of allowed errors: • 0-9 bp: 0; 10-12 bp: 1 Bases preceding removed adapters: • A: 19.1% • C: 31.7% • G: 20.4% • T: 28.8% • none/other: 0.0% RUN STATISTICS FOR INPUT FILE: 1b meta r2.fastg 10579668 sequences processed in total Total number of sequences analysed: 10579668 Number of sequence pairs removed because at least one read was shorter than the length cutoff (20 bp): 5239 (0.05%) Part II. Assembly and annotation Megahit megahit -1 1b_meta_r1_val_1.fq -2 1b_meta_r2_val_2.fq -0 megahit_assembly --min-count 2 --k-list 21,41,61,81 --me rge-level 20,0.95 --prune-depth 2 --min-contig-len 500 get_assembly_stats.py final.contigs.fa Assembly stats: Scaffolds > 500nt Number 293963 • Total Length 261746631 N50 880 • Avg 890.4067212540353 Median 708.0150 Max 108542 • Min 500 Kaiju /dfs/MICRO/Mueller_Lab/mk/kaiju/bin/kaiju-makedb -s refseq # Kaiju on READS - microbe kaiju -t /dfs/MICRO/Mueller_Lab/mk/kaiju/nodes.dmp -f /dfs/MICRO/Mueller_Lab/mk/kaiju/refseq/kaiju_db_refseq.fmi -i /dfs/MICRO/Mueller_Lab/mk/1b_meta_r1_val_1.fq -j /dfs/MICRO/Mueller_Lab/mk/1b_meta_r2_val_2.fq -o /dfs/MICRO/ Mueller_Lab/mk/kaiju/kaiju_reads.out bin/kaiju2table -t nodes.dmp -n names.dmp -r genus -o kaiju_reads_summary.tsv kaiju_reads.out bin/kaiju-addTaxonNames -t /dfs/MICRO/Mueller_Lab/mk/kaiju/nodes.dmp -n /dfs/MICRO/Mueller_Lab/mk/kaiju/names.dmp -i /dfs/MICRO/Mueller_Lab/mk/kaiju/kaiju_reads/microbe/kaiju_reads.out -o /dfs/MICRO/Mueller_Lab/mk/kaiju/kaiju_r eads.names.out # Kaiju on READS - oyster bin/kaiju-mkbwt -a DNA -o kaiju_oyster c_gigas_genome.fasta bin/kaiju-mkfmi kaiju_oyster bin/kaiju -t /dfs/MICRO/Mueller_Lab/mk/kaiju/nodes.dmp -f /dfs/MICRO/Mueller_Lab/mk/kaiju/kaiju_oyster.fmi -i /df s/MICRO/Mueller_Lab/mk/1b_meta_r1_val_1.fq -j /dfs/MICRO/Mueller_Lab/mk/1b_meta_r2_val_2.fq -o /dfs/MICRO/Mueller _Lab/mk/kaiju/kaiju_reads/oyster/kaiju_oyster_reads.out bin/kaiju2table -t nodes.dmp -n names.dmp -r genus -o kaiju_oyster_reads_summary.tsv kaiju_reads/oyster/kaiju_oys ter_reads.out bin/kaiju-addTaxonNames -t /dfs/MICRO/Mueller_Lab/mk/kaiju/nodes.dmp -n /dfs/MICRO/Mueller_Lab/mk/kaiju/names.dmp -i /dfs/MICRO/Mueller_Lab/mk/kaiju/kaiju_reads/oyster/kaiju_oyster_reads.out -o /dfs/MICRO/Mueller_Lab/mk/kaiju/k aiju_reads/oyster/kaiju_oyster_reads.names.out # Kaiju on MEGAHIT ASSEMBLY - oyster bin/kaiju -t /dfs/MICRO/Mueller_Lab/mk/kaiju/nodes.dmp -f /dfs/MICRO/Mueller_Lab/mk/kaiju/oyster.fmi -i /df s/MICRO/Mueller_Lab/mk/megahit_assembly/final.contigs.fa -o /dfs/MICRO/Mueller_Lab/mk/kaiju/kaiju_oyster_assembl y.out bin/kaiju2table -t nodes.dmp -n names.dmp -r genus -o kaiju_assembly_summary.tsv kaiju_oyster_assembly.out bin/kaiju-addTaxonNames -t /dfs/MICRO/Mueller_Lab/mk/kaiju/nodes.dmp -n /dfs/MICRO/Mueller_Lab/mk/kaiju/names.dmp -i /dfs/MICRO/Mueller_Lab/mk/kaiju/kaiju_assembly/oyster/kaiju_oyster_assembly.out -o /dfs/MICRO/Mueller_Lab/mk/k aiju/kaiju_assembly/oyster/kaiju_oyster_assembly.names.out # Kaiju on MEGAHIT ASSEMBLY - microbes kaiju -t /dfs/MICRO/Mueller_Lab/mk/kaiju/nodes.dmp -f /dfs/MICRO/Mueller_Lab/mk/kaiju/refseq/kaiju_db_refseq.fmi -i /dfs/MICRO/Mueller_Lab/mk/megahit_assembly/final.contigs.fa -o /dfs/MICRO/Mueller_Lab/mk/kaiju/kaiju_assembl y/microbe/kaiju_assembly.out bin/kaiju2table -t nodes.dmp -n names.dmp -r genus -o kaiju_assembly_summary.tsv kaiju_assembly.out bin/kaiju-addTaxonNames -t /dfs/MICRO/Mueller_Lab/mk/kaiju/nodes.dmp -n /dfs/MICRO/Mueller_Lab/mk/kaiju/names.dmp -i /dfs/MICRO/Mueller_Lab/mk/kaiju/kaiju_assembly/microbe/kaiju_assembly.out -o /dfs/MICRO/Mueller_Lab/mk/kaiju/k aiju_assembly/microbe/kaiju_assembly.names.out Krona # microbe, reads bin/kaiju2krona -t nodes.dmp -n names.dmp -i /dfs/MICRO/Mueller_Lab/mk/kaiju/kaiju_reads/microbe/kaiju_reads.out -o /dfs/MICRO/Mueller_Lab/mk/kaiju/kaiju_reads/microbe/kaiju_reads.out.krona bin/ktImportText -o /dfs/MICRO/Mueller_Lab/mk/kaiju/kaiju_reads/microbe/kaiju_reads.html /dfs/MICRO/Mueller_Lab/m k/kaiju/kaiju_reads/microbe/kaiju_reads.out.krona # oyster, reads bin/kaiju2krona -t nodes.dmp -n names.dmp -i /dfs/MICRO/Mueller_Lab/mk/kaiju/kaiju_reads/oyster/kaiju_oyster_read s.out -o /dfs/MICRO/Mueller_Lab/mk/kaiju/kaiju_reads/oyster/kaiju_oyster_reads.out.krona bin/ktImportText -o /dfs/MICRO/Mueller_Lab/mk/kaiju/kaiju_reads/oyster/kaiju_oyster_reads.html /dfs/MICRO/Mueller _Lab/mk/kaiju/kaiju_reads/oyster/kaiju_oyster_reads.out.krona # microbe, assembly bin/kaiju2krona -t nodes.dmp -n names.dmp -i /dfs/MICRO/Mueller_Lab/mk/kaiju/kaiju_assembly/microbe/kaiju_assembl y.out -o /dfs/MICRO/Mueller_Lab/mk/kaiju/kaiju_assembly/microbe/kaiju_assembly.out.krona bin/ktImportText -o /dfs/MICRO/Mueller_Lab/mk/kaiju_assembly/microbe/kaiju_assembly.html /dfs/MICRO/Mueller _Lab/mk/kaiju/kaiju_assembly/microbe/kaiju_assembly.out.krona # oyster, assembly bin/kaiju2krona -t nodes.dmp -n names.dmp -i /dfs/MICRO/Mueller_Lab/mk/kaiju/kaiju_assembly/oyster/kaiju_oyster_a ssembly.out -o /dfs/MICRO/Mueller_Lab/mk/kaiju/kaiju_assembly/oyster/kaiju_oyster_assembly.out.krona bin/ktImportText -o /dfs/MICRO/Mueller_Lab/mk/kaiju/kaiju_assembly/oyster/kaiju_oyster_assembly.html /dfs/MICRO/M ueller_Lab/mk/kaiju/kaiju_assembly/oyster/kaiju_oyster_assembly.out.krona Testing hanna's vibrio genome to see if things are working well bin/kaiju -t /dfs/MICRO/Mueller_Lab/mk/kaiju/nodes.dmp -f /dfs/MICRO/Mueller_Lab/mk/kaiju/refseq/kaiju_db_refseq. fmi -i /dfs/MICRO/Mueller_Lab/mk/kaiju/C154.scaffold.long.fna -o /dfs/MICRO/Mueller_Lab/mk/kaiju/C154_reads.out bin/kaiju2krona -t nodes.dmp -n names.dmp -i /dfs/MICRO/Mueller_Lab/mk/kaiju/C154_reads.out -o /dfs/MICRO/Mueller _Lab/mk/kaiju/C154_reads.out.krona bin/ktImportText -o /dfs/MICRO/Mueller_Lab/mk/kaiju/C154_reads.html /dfs/MICRO/Mueller_Lab/mk/kaiju/C154_reads.ou t.krona bin/ktImportText -o /dfs/MICRO/Mueller_Lab/mk/exp18_1b_phylo.html /dfs/MICRO/Mueller_Lab/mk/krona_table.txt Summary statistics · Microbial reads: • 2.60% are microbial ~97% eukaryotic ~0.14% viruses Number of microbial contigs: 275,107 Microbial assembly: • 4.84% are microbial ~95% eukaryotic ~0.14% viruses Number of microbial reads: 13,664 Oyster reads: 2.86% are microbial o 97.13% Crassostrea 0 viruses • Number of oyster reads: 10,271,762 Number of microbial reads: 302,667 Oyster assembly: 0.005% microbial • 99.99% are Crassostrea 0 viruses Number of oyster contigs: 293,947 Number of microbial contigs: 16 Chart of these summary statistics # a summary bar chart summarystats <- read_csv("~/Documents/2020Spring/mb668/metagenome/summarystats.csv")</pre> summarystats\$lab <- paste(summarystats\$Percent_microbial, "%")</pre> ggplot(summarystats) + geom_bar(aes(x = Method, y = Percent_microbial, fill = Method), stat = "identity", width = 0.5, position = "dodge", show.legend = FALSE) + $geom_text(aes(x=Method, y = Percent_microbial, label = lab), vjust=-0.5)+$ theme(axis.text.x = element_text(colour = "black", size = 12), axis.title.y = element_text(colour = "black", size = 12))+ labs(title = "Percentage of reads or contigs that map to microbial genomes", y = "Percent microbial", x = NULL) scale_fill_manual(values = c("#FFCC00","#2D708EFF", "#73D055FF")) Percentage of reads or contigs that map to microbial genomes 100 % 100 -75 microbial Percent 25 -4.84 % 2.6 % 16S rRNA Reads Assembly # reads oyster_reads_stats <- read_csv("~/Documents/2020Spring/mb668/metagenome/oyster_reads_stats.csv") lbls <- paste(oyster_reads_stats\$Type, ": ", oyster_reads_stats\$Percentage, "%", sep = "")</pre> pie(oyster_reads_stats\$Percentage, labels = lbls, col = c("#3366CC", "#FF6600"),init.angle=45, main = "Mapping reads to oyster genome") Mapping reads to oyster genome Microbial: 2.87% Oyster: 97.13% # assembly oyster_assem_stats <- read_csv("~/Documents/2020Spring/mb668/metagenome/oyster_assem_stats.csv") lbls2 <- paste(oyster_assem_stats\$Type, ": ", oyster_assem_stats\$Percentage, "%", sep = "")</pre> pie(oyster_assem_stats\$Percentage, labels = lbls2,col = c("#3366CC", "#FF6600"),init.angle=45, main = "Mapping contigs to oyster genome") Microbial: 0.005% Oyster: 99.995% Comparison between the metagenome methods. mic_reads <- read_csv("~/Documents/2020Spring/mb668/metagenome/microbe_reads.csv")</pre> mic_assem <- read_csv("~/Documents/2020Spring/mb668/metagenome/microbe_assembly.csv")</pre> mic_comb <- rbind(mic_reads, mic_assem)</pre> # top 10 mic_reads_10 <- mic_reads[1:10,]</pre> mic_assem_10 <- mic_assem[1:10,]</pre> mic_10 <- rbind(mic_reads_10, mic_assem_10)</pre> # double bar plot of top 10 taxa in each $ggplot(data = mic_10, aes(x = Genus, y = Percent_Microbial, fill = Method))+$ geom_bar(stat = "identity", width = 0.5, position = "dodge")+ theme(axis.text.x = element_text(angle = 30, hjust = 1)+labs(title = "Top 10 taxa with each metagenome method", x = "Genus",y = "Percentage of reads or contigs")+ scale_fill_manual(values = c("#2D708EFF", "#73D055FF")) Top 10 taxa with each metagenome method 6 -Percentage of reads or contigs Method assembly Paracoccus Phaeobacter Roseobacter Roseovarius Streptomyces Sulfitobacter Genus Now going to throw 16S in there. rrna_table <- read_csv("~/Documents/2020Spring/mb668/metagenome/krona_table.csv")</pre> rrna_noNA <- rrna_table[-c(4,12,21,22,25:28),]</pre> # top 10 mic_reads_10_filt <- mic_reads_10[,-c(2,5)]</pre> mic_assem_10_filt <- mic_assem_10[,-c(2,5)]</pre> rrna_10 <- rrna_noNA[1:10,]</pre> all_table_10 <- rbind(mic_reads_10_filt, mic_assem_10_filt, rrna_10)</pre> $ggplot(data=all_table_10, aes(x = Genus, y = Percent_Microbial, fill = Method))+$ geom_bar(stat = "identity", width = 0.5, position = "dodge")+ theme(axis.text.x = element_text(angle = 30, hjust = 1)+labs(title = "Top 10 taxa detected by each method", x = "Genus",y = "Percentage of microbial DNA")+ scale_fill_manual(values = c("#FFCC00", "#2D708EFF", "#73D055FF")) Top 10 taxa detected by each method 30 -Percentage of microbial DNA Method 16S rRNA assembly reads Arcopacter. Halovulu Genus Testing for presence of probiotics in the detected genera. • B11: Epibacterium mobile (species) make up 0.4% of microbial reads, 0% of 16S, 0.2% of assembly • DM14, D16: Pseudoalteromonas (genus): 0.6% of microbial reads, 0% of 16S, 0.5% of assembly • Vibrio: Vibrio genus make up 5% of 16S but that doesn't tell us much because not all vibs are pathogenic, 0.5% of microbial reads, 1% of assembly. pbx_abund <- read_csv("~/Documents/2020Spring/mb668/metagenome/pbx_abund.csv")</pre> $ggplot(data = pbx_abund, aes(x = Genus, y = Percent_of_total, fill = Method))+$ geom_bar(stat = "identity", width = 0.5, position = "dodge")+ theme(axis.text.x = element_text(color = "black", size = 10))+ labs(title = "Detection of probiotics and pathogen by genus", x = NULLy = "Percentage of microbial DNA")+ scale_fill_manual(values = c("#FFCC00","#2D708EFF", "#73D055FF")) Detection of probiotics and pathogen by genus 5 -4 -Percentage of microbial DNA Method 16S rRNA Assembly Reads 1 -0 -Vibrio Epibacterium Pseudoalteromonas Testing how much assembly changes the score. # for top 20 taxa mic_reads_20 <- mic_reads[1:20,]</pre> mic_assem_20 <- mic_assem[1:20,] mic_reads_20\$percentage <- (mic_reads_20\$Percent_Microbial)/100</pre> mic_assem_20\$percentage <- (mic_assem_20\$Percent_Microbial)/100</pre> top20 <- rbind(mic_reads_20, mic_assem_20)</pre> mic_reads_20\$reads_percentage <- mic_reads_20\$percentage</pre> mic_assem_20\$assem_percentage <- mic_assem_20\$percentage</pre> ggplot(data = top20, aes(x = Genus, y = percentage, fill = Method))+geom_bar(stat = "identity", width = 0.5, position = "dodge")+ theme(axis.text.x = element_text(angle = 30, hjust = 1))+labs(title = "Top 20 taxa with each metagenome method", x = "Genus",y = "Percentage of reads or contigs")+ scale_fill_manual(values = c("#2D708EFF", "#73D055FF")) Top 20 taxa with each metagenome method 0.06 -Percentage of reads or contiç 0.04 -Method assembly reads Proportions test on oysters - yeah these are super f'ing different oyster_reads <- read_csv("~/Documents/2020Spring/mb668/metagenome/oyster_reads.csv") oyster_assem <- read_csv("~/Documents/2020Spring/mb668/metagenome/oyster_assembly.csv") prop_reads <- oyster_reads\$Percent_All[1]</pre> x_reads <- oyster_reads\$Count[1]</pre> reads_total <- sum(oyster_reads\$Count)</pre> prop_assem <- oyster_assem\$Percent_All[1]</pre> x_assem <- oyster_assem\$Count[1]</pre> assem_total <- sum(oyster_assem\$Count)</pre> $prop.test(x = c(x_reads, x_assem), n = c(reads_total, assem_total), alternative = "two.sided", correct = FALSE)$ ## ## 2-sample test for equality of proportions without continuity ## correction ## ## data: c(x_reads, x_assem) out of c(reads_total, assem_total) ## X-squared = 8621.7, df = 1, p-value < 2.2e-16 ## alternative hypothesis: two.sided ## 95 percent confidence interval: ## -0.02867209 -0.02846413 ## sample estimates: prop 1 prop 2 ## 0.9713775 0.9999456 Proportions test on probiotic - Epibacterium microbe_reads <- read_csv("~/Documents/2020Spring/mb668/metagenome/microbe_reads.csv")</pre> microbe_assembly <- read_csv("~/Documents/2020Spring/mb668/metagenome/microbe_assembly.csv")</pre> reads_epi <- subset(microbe_reads, Genus == "Epibacterium")</pre> assembly_epi <- subset(microbe_assembly, Genus == "Epibacterium")</pre> $prop.test(x = c(reads_epi$Count, assembly_epi$Count), n = c(reads_total, assem_total), alternative = "two.sided",$ correct = FALSE) ## ## 2-sample test for equality of proportions without continuity ## correction ## data: c(reads_epi\$Count, assembly_epi\$Count) out of c(reads_total, assem_total) ## X-squared = 0.75153, df = 1, p-value = 0.386 ## alternative hypothesis: two.sided ## 95 percent confidence interval: ## -6.034501e-05 2.499958e-05 ## sample estimates: ## prop 1 prop 2 ## 0.0001183988 0.0001360715 No, epibacterium is not significant. Proportions test on probiotic = Pseudoalteromonas reads_pseudo <- subset(microbe_reads, Genus == "Pseudoalteromonas")</pre> assembly_pseudo <- subset(microbe_assembly, Genus == "Pseudoalteromonas")</pre> $prop.test(x = c(reads_pseudo\$Count, assembly_pseudo\$Count), n = c(reads_total, assem_total), alternative = "two.s"$ ided", correct = FALSE) ## ## 2-sample test for equality of proportions without continuity ## correction ## data: c(reads_pseudo\$Count, assembly_pseudo\$Count) out of c(reads_total, assem_total) ## X-squared = 13.031, df = 1, p-value = 0.0003064 ## alternative hypothesis: two.sided

95 percent confidence interval: ## -1.557274e-04 -3.239544e-05

0.0001916888 0.0002857502

Yes, pseudoalteromonas is significant. Proportions test on pathogen (Vibrio)

ided", correct = FALSE)

##

##

##

correction

sample estimates:

No, vibrio is not significant.

prop 1

0.0007162562 0.0007415899

prop 2

reads_vibrio <- subset(microbe_reads, Genus == "Vibrio")</pre>

X-squared = 0.25622, df = 1, p-value = 0.6127

prop 2

alternative hypothesis: two.sided
95 percent confidence interval:
-1.250524e-04 7.438484e-05

assembly_vibrio <- subset(microbe_assembly, Genus == "Vibrio")</pre>

2-sample test for equality of proportions without continuity

data: c(reads_vibrio\$Count, assembly_vibrio\$Count) out of c(reads_total, assem_total)

 $prop.test(x = c(reads_vibrio\$Count, assembly_vibrio\$Count), n = c(reads_total, assem_total), alternative = "two.s"$

sample estimates:
prop 1