Amendment to Office Action Dated August 19, 2008 U.S. Appln. No. 10/561,219

Atty. Docket No.: 8369.017.US0000

Amendments to the claims:

Please cancel claims 1-15, 30 and 31 and amend the following claims as follows:

1-15. (Canceled).

30-31. (Canceled).

32. (Currently Amended) A system for damping vibratory forces applied to a vehicle,

comprising:

at least one mount including a first rigid member connectable to the body of a vehicle, a

second rigid body connectable to a wheel suspension system of said vehicle and an elastic body a

body of elastomeric material interconnecting said rigid members having a pair of chambers provided

with a damping liquid, a first, restricted orifice interconnecting said chambers and a second,

restricted orifice intercommunicating said chambers provided with a valve;

means for detecting vibratory forces applied to said vehicle; and

processing means responsive to detected vibratory forces operatively connected to said valve

for controlling the passage of said damping liquid through said second orifice and correspondingly

vary the damping effect of said mount.

33. (Previously Presented) A system according to claim 32 wherein said first orifice is

arcuate and said second orifice is linear.

34. (Previously Presented) A system according to claim 32 wherein said detecting means

is functional to detect vibratory forces applied to a front axle of said vehicle.

2

Amendment to Office Action Dated August 19, 2008 U.S. Appln. No. 10/561,219

Atty. Docket No.: 8369.017.US0000

35. (Previously Presented) A system according to claim 32 including at least two of said

mounts and wherein said processing means is operable to selectively actuate the valve of one of said

mounts corresponding to a selected vibratory force detected.

36. (Currently Amended) A system according to claim 36. 32wherein said detecting

means is functional to detect vibration forces applied to a front axle of said vehicle, and said

processing means is operable to selectively actuate the valve of at least one mount interconnecting a

rear suspension system and a body of said vehicle.

37. (Previously Presented) A system according to claim 32 wherein said mount is

functional to be conditioned in combinations of low and high stiffness and low and high damping.

38. (Currently Amended) A system according to claim 1-32 wherein said chambers of

said elastic elastomeric body are disposed on opposite sides of a centerline of said elastomeric body.

39. (Currently Amended) A system according to claim +32 wherein said chambers of

said elastic elastomeric body are spaced along a centerline of said elastomeric body.

40. (Currently Amended) A system according to claim 38 wherein said first mentioned

chambers of said elastic elastomeric body are disposed on opposite sides of a centerline of said

elastomeric body, and including a second pair of chambers of said elastic elastomeric body spaced

along said centerline of said elastomeric body provided with a damping liquid, a first restricted

orifice interconnecting said second pair of chambers and a second restricted orifice

intercommunicating said chambers provided with a valve.

41. (Previously Presented) A system according to claim 40 wherein said first restricted

orifice interconnecting said second pair of chambers is arcuate and said second restricted orifice

interconnecting said second pair of chambers is linear.

3

- 42. (Currently Amended) A system according to claim 40 including a third pair of chambers of said elastie—elastomeric body spaced along said centerline of said elastomeric body provided with a restricted orifice interconnecting said third pair of chambers provided with a valve.
- 43. (Previously Presented) A system according to claim 40 wherein said processing means is operative to selectively actuate said valves in response to selected vibrating forces detected.
- 44. (Presently Presented) A system according to claim 42 wherein said processing means is operative to selectively actuate said valves in response to selected vibrating forces detected.
- 45. (Currently Amended) A system for dampening vibratory forces applied to a vehicle, comprising:

at least one mount including a first rigid member connectable to the body of a vehicle, a second rigid body member connectable to a wheel suspension system of a vehicle and an elastic body a body of elastomeric material interconnecting said first and second rigid members, provided with a first pair—set of chambers spaced along an x-axis, filled with a damping liquid, a first restricted orifice intercommunicating said first set of chambers and a second restricted orifice intercommunicating said first set of chambers, said second restricted orifice having a valve; a second pair-set of chambers spaced along a y-axis, filled with a damping liquid, a first third restricted orifice intercommunicating said second set of chambers and a second—fourth restricted orifice intercommunicating said second set of chambers, said fourth restricted orifice having a valve; and a third set of chambers spaced along a z-axis, filled with a damping liquid, a first fifth restricted orifice intercommunicating said first—third set of chambers and a second—sixth—restricted orifice intercommunicating said third set of chambers, said sixth restricted orifice having a valve;

means for detecting vibratory forces applied to said vehicle; and

Amendment to Office Action Dated August 19, 2008 U.S. Appln. No. 10/561,219

Atty. Docket No.: 8369.017.US0000

processing means responsive to detected vibratory forces operatively connected to said valve for controlling the passage of said damping liquid through said second orifices at least one of said second, fourth and sixth orifices and correspondingly vary the damping effect of said mount.

46. (Currently Amended) A system according to claim 45 wherein each of said first, third and fifth orifices is arcuately disposed and each of said second, fourth and sixth orifices is linearly disposed.

47. (Previously Presented) A system according to claim 45 wherein said detecting means is functional to detect vibratory forces applied to a front axle of said vehicle.

5