Screening for Chronic Kidney Disease

Rashi Desai

663553314

Screening for Chronic Kidney Disease

- CDC and NCHS collects data from nationwide surveys of US adults
- Here, we have a dataset of 8819 adults: 6000 records of training data and predict 2819 records of test data
- Problem
 Identify patients at risk of having Chronic Kidney Disease from a dataset with 34 variables to get tested in case of high probability
- Dependent variable: CKD 34th Variable (a binomial variable [1,0])
- Dataset consists of 10 continuous variables and 23 categorical variables

Data Pre-Processing

- Removed 2819 rows with no prediction if the patient has CKD for training dataset
- Removed rows with missing values in the dataset rather than imputing the data
- Remove highly correlated variables using VIF
- Use the remaining important predictor variables to run a Logistic Regression model on training data
- Use the same model to predict CKD in test data

Removed multi-collinearity among predictors by VIF (variance inflation factor) and correlation to filter variables

```
# Run initial model for VIF
model = glm(dataset$CKD ~ .,family = binomial, data = dataset)
summary(model)
library(car)
vif(model)
```

Removed	High Correlation with
Height, Obese, Waist & BMI	Weight
Total Chol	LDL
Fam Hypertension	Hypertension
Fam Diabetes	Diabetes
Fam CVD	CVD

	GVIF	Df	GVIF^(1/(2*Df))
ID	1.033760	1	1.016740
Age	2.125478	1	1.457902
Female	2.767932	1	1.663710
Racegrp	1.573941	3	1.078528
Educ	1.271529	1	1.127621
Unmarried	1.315138	1	1.146795
Income	1.320497	1	1.149129
CareSource	1.229548	3	1.035041
Insured	1.144250	1	1.069696
Weight	85.691500	1	9.256970
Height	22.419265	1	4.734899
BMI	65.446341	1	8.089891
Obese	3.027038	1	1.739839
Waist	8.515230	1	2.918087
SBP	1.739357	1	1.318847
DBP	1.348828	1	1.161390
HDL	197.352526	1	14.048221
LDL	1477.565392	1	38.439113
`Total Chol`	1474.282045	1	38.396381
Dyslipidemia	1.161468	1	1.077714
PVD	1.070049	1	1.034432
Activity	1.180283	3	1.028011
PoorVision	1.082449	1	1.040408
Smoker	1.111545	1	1.054298
Hypertension	1.413387	1	1.188860
`Fam Hypertension`	2.799690	1	1.673228
Diabetes	1.286297	1	1.134150
`Fam Diabetes`	1.161041	1	1.077516
Stroke	1.804501	1	1.343317
CVD	1.997358	1	1.413279
`Fam CVD`	2.888115	1	1.699445
CHF	1.153049	1	1.073801
Anemia	1.072426	1	1.035580

Two Sample t-test between continuous and target variables to include only strong predictors

Variable 1	Variable 2	P-value
Weight	CKD	0.7206
Height	CKD	0.02718
ВМІ	CKD	0.1495
Waist	CKD	7.242e-07
SBP	CKD	< 2.2e-16
DBP	CKD	0.007493
HDL	CKD	0.002158
LDL	CKD	0.02037
Total Chol	CKD	0.1795

Chi-square test of all categorical variables with the target variable 'CKD' to find the significant variables

Variable 1	Variable 2	P-value
Female	CKD	0.5182
Education	CKD	4.349e-05
Unmarried	CKD	0.00145
Income	CKD	3.491e-08
CareSource	CKD	4.259e-07
Insured	CKD	3.439e-11
Obese	CKD	0.1664
Dyslipidemia	CKD	1.00
PVD	CKD	< 2.2e-16
Activity	CKD	1.29e-09

Variable 1	Variable 2	P-value
Poor Vision	CKD	3.39e-10
Smoker	CKD	< 2.2e-16
Stroke	CKD	< 2.2e-16
CVD	CKD	< 2.2e-16
CHF	CKD	1.032e-12
Anemia	CKD	0.2474

Data Modelling

Removing the columns that were not found significant [21]:

ID, Educ, Unmarried, Income, Insured, Weight, Height, BMI, Obese, Waist, Total Chol, SBP, DBP, Dyslipidemia, Poor Vision, Smoker, Fam Hypertension, Fam Diabetes, Fam CVD, Anemia

Variables that remain for data modelling [12]:

Age, Female, Racegrp, CareSource, HDL, LDL, PVD, Activity, Hypertension, Diabetes, Stroke, CVD, CHF

Model 1

Model 2

Model 3

Model	Sensitivity	Specificity	Accuracy
1	75.0%	87.1%	86.3%
2	80.8%	84.58%	84.3%
3	82.4%	85.0%	84.7%

Data Modelling (Full Logistic Regression)

```
Deviance Residuals:
```

```
Min 1Q Median 3Q Max
-1.5407 -0.2985 -0.1347 -0.0734 3.2725
```

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
(Intercept)
             -6.133733 0.513367 -11.948 < 2e-16 ***
             0.080965 0.007159 11.310 < 2e-16 ***
Age
Female1
             0.166578
                       0.182986 0.910 0.36265
Racearphispa -1.297056
                        0.325589 -3.984 6.78e-05 ***
Racearpother -0.030226
                        0.574807
                                 -0.053 0.95806
Racearpwhite -0.145149
                        0.229959 -0.631 0.52791
HDL
             -0.015855
                        0.006251 -2.536 0.01120 *
                        0.002101 1.033 0.30149
LDL
             0.002171
PVD1
              0.408688
                        0.265453 1.540 0.12366
Hypertension1
             0.625587
                        0.209450 2.987 0.00282 **
Diabetes1
              0.521917
                        0.203073
                                2.570 0.01017 *
CVD1
             0.888744
                        0.226518
                                 3.923 8.73e-05 ***
CHF1
              0.034753
                        0.351865
                                  0.099 0.92132
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1445.7 on 3101 degrees of freedom Residual deviance: 1003.3 on 3089 degrees of freedom

AIC: 1029.3

exp(coefficients(log.model))

CAPCCOCITECTO	rest rog.moder	-))	
(Intercept)	Age	Female1	Racegrphispa
0.00216847	1.08433337	1.18125516	0.27333524
LDL	PVD1	Hypertension1	Diabetes1
1.00217307	1.50484140	1.86934334	1.68525448
Racegrpother	Racegrpwhite	HDL	
0.97022667	0.86489364	0.98426954	
CVD1	CHF1		
2.43207403	1.03536401		

Model	Sensitivity	Specificity	Accuracy
Full	82.4%	85.9%	85.57%

Data Modelling (Stepwise Logistic Regression)

```
Deviance Residuals:
   Min
             10 Median
                                     Max
-1.4646 -0.3033 -0.1131 -0.0526
                                 3.5262
Coefficients:
              Estimate Std. Error z value Pr(>|z|)
             -6.603561
                      0.594454 -11.109 < 2e-16 ***
(Intercept)
                       0.016044 6.360 2.01e-10 ***
Age
              0.102048
Female1
             0.448210 0.201750 2.222 0.026309 *
Racegrphispa -1.218147 0.351671 -3.464 0.000532 ***
Racegrpother -1.452289
                       1.061531 -1.368 0.171278
Racegrpwhite 0.025760
                       0.228178 0.113 0.910114
HDL
             -0.027772
                        0.007819 -3.552 0.000383 ***
PVD1
             0.499836
                        0.279832 1.786 0.074066 .
Hypertension1
             0.918772
                        0.242146 3.794 0.000148 ***
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

0.304602

0.244218 3.694 0.000221 ***

1.734487 -1.459 0.144531

3.572 0.000354 ***

(Dispersion parameter for binomial family taken to be 1)

0.902172

1.088088

-2.530832

Null deviance: 1472.7 on 3101 degrees of freedom Residual deviance: 1008.7 on 3090 degrees of freedom

AIC: 1032.7

Diabetes1

CVD1

prob

> coef(step.model)

(Intercept)	Age	Female1	Racegrphispa
-6.07859206	0.08335482	0.32422692	-0.96284656
Hypertension1	Diabetes1	CVD1	
0.76048077	0.70331863	0.77677780	
Racegrpother	Racegrpwhite	HDL	
-1.21733185	-0.02097876	-0.02137300	

Model	Sensitivity	Specificity	Accuracy
Stepwise	76.4%	86.1%	85.4%

Odds Ratio

- Odds =
$$\frac{p (occurring)}{1 - p (not occurring)}$$

- Odds Ratio =
$$\frac{\frac{p_1}{1-p_1}}{\frac{p_0}{1-p_0}}$$

- Odds Ratio indicate how odds change with 1 unit increase in a variable holding other variable constants
- CVD increases the odds of having CKD by 143%
- Hypertension increases the odds of 'Chronic Kidney Disease' by 86.93%
- Diabetes increases the odds of 'Chronic Kidney Disease' by 68.5%

	Odds ratio
(Intercept)	0.00216847
Age	1.08433337
Female1	1.18125516
Racegrphispa	0.27333524
Racegrpother	0.97022667
Racegrpwhite	0.86489364
HDL	0.98426954
LDL	1.00217307
PVD1	1.50484140
Hypertension1	1.86934334
Diabetes1	1.68525448
CVD1	2.43207403
CHF1	1.03536401

Results

From the two regression models and odd ratios, we can conclude that people have a higher risk of getting a CKD if they have:

- Cardiovascular Diseases
- Diabetes
- Hypertension
- High Levels of HDL
- Adults of the race Hispanic have a higher risk of CKD
- Adults of age greater than 60 have a higher risk of CKD

