Forward Kinematics

The following is an analytical approach to solving forward kinematics with the robot's arm

The following is an image describing some assumptions about robot coordinate spaces:

Note

These vectors are all 2d, which makes the math a little simpler to compute. The 2d pose vector can be trasformed into a 3d pose at the end, simply by emplacing values in a 3d vector from the 2d vector. Computation is able to be done in 2d, as the arm system only has 2 DOF

Let \boldsymbol{L} be the current length of the arm

NOTE: \vec{O} assumes the arm is at 0 degrees

Let \vec{O} be the vector representing the transformation for the center of the end effector from the end of the arm.

NOTE: \vec{T} assumes the arm is at 0 degrees

NOTE: -1.35 is the offset in the y axis, in inches, of the arm from the center of rotation when

the arm is at 0°

Let \vec{T} be the vector of the end effector's offset from (0,0) (the center of rotation):

$$ec{T} = egin{bmatrix} L \ -1.35 \end{bmatrix} + egin{bmatrix} O_1 \ O_2 \end{bmatrix}$$

The construction of \vec{T} can be visualized as such:

Let θ be the angle of the arm, in radians

Let p be a vector representing the pose of the end effector (IN 2D!), relative to (0,0) which is the rotation point.

$$p = egin{bmatrix} T_1 \cos heta - T_2 \sin heta \ T_1 \sin heta + T_2 \cos heta \end{bmatrix}$$

To transform to arm coordinate system: Let $\vec{p'}$ be a 3d vector in the arm coordinate space, it can be constructed as such:

$$p\prime = egin{bmatrix} -p_1 \ 0 \ p_2 \end{bmatrix}$$

Yes, this could be done "properly" but this works just fine for our purposes

Finally, to transform into robot space:

Let \vec{pn} be the vector representing the end effectors pose in robot coordinate space Let \vec{R}_t be the vector representing the transformation from robot origin the origin of arm frame

$$p\prime\prime=ec{R}_t+ec{p\prime}$$

This is visualized below:

Inverse Kinematics

As per forward kinematics, \vec{T} is still defined as the vector which represents the transformation from the arm origin to the wrist, then to the end effector.

 $ec{O}$ describes the translation from the wrist to the middle of the effector, just like forward kinematics

 \vec{T} uses two other vectors because the robot may change, so the effector would need to change.

$$ec{T} = egin{bmatrix} L \ -1.35 \end{bmatrix} + egin{bmatrix} O_x \ O_y \end{bmatrix}$$

Yes, T_x is variable, but luckly it is unneeded for the IK model, as T_y is the only part of \vec{T} used in the IK model

Define ϕ, α, θ by the following image:

$$\phi = atan2(y,x)$$
 $a = abs(T_y)$ $b = \sqrt{||P||^2 - T_y^2}$ $lpha = atan2(b,a)$ (Assuming atan2 takes y,x) $heta = \phi - lpha$

Therefore, the arm angle is equal to:

$$heta+rac{\pi}{2}$$

An array containing this data (j) can be represented as:

$$j = egin{bmatrix} heta + rac{\pi}{2} \ b \end{bmatrix}$$

To get an inverse kinematic model for the arm (no effector), just set the \vec{O} vector to zero