Histogram of Oriented Gradients (HOG)

- Dalal and Triggs 2005
- Better image descriptor
 - Compute gradients
 - Bin gradients
 - Aggregate blocks (4x4, 16x16 cells)
 - Normalize gradient magnitudes
- Not reliant on magnitude, just direction
 - Invariant to some lighting changes
- Train SVM to recognize people

Extract DoG features at multiple scales

Find local-maxima in location and scale

Throw out weak responses and edges

- Estimate gradients
 - Similar to before, look at nearby responses
 - Not whole image, only a few points! Faster!
 - Throw out weak responses
- Find cornery things
 - Same deal, structure matrix, use det and trace information

$$\frac{\mathrm{Tr}(\mathbf{H})^2}{\mathrm{Det}(\mathbf{H})} < \frac{(r+1)^2}{r}$$

Find main orientation of patches

- Look at weighted histogram of nearby gradients
 - Any gradient within 80% of peak gets its own descriptor
 - Multiple keypoints per pixel
 - Descriptors are normalized based on main orientation

Keypoints are normalized gradient histograms

- Divide into subwindows (2x2, 4x4)
- Bin gradients within subwindow, get histogram
 - Normalize to unit length
 - Clamp at maximum .2
 - Normalize again
 - Helps with lighting changes!

128-element SIFT feature vector

SIFT Descriptor

Histograms of gradient directions over spatial regions

Normalized Histogram: Invariant to Rotation, Scale, Brightnes

Comparing SIFT Descriptors

Essentially comparing two arrays of data.

Let $H_1(k)$ and $H_2(k)$ be two arrays of data of length N.

L2 Distance:

$$d(H_1, H_2) = \sqrt{\sum_{k} (H_1(k) - H_2(k))^2}$$

Smaller the distance metric, better the match.

Perfect match when $d(H_1, H_2) = 0$

Comparing SIFT Descriptors

Essentially comparing two arrays of data.

Let $H_1(k)$ and $H_2(k)$ be two arrays of data of length N.

Normalized Correlation:

$$d(H_1, H_2) = \frac{\sum_{k} [(H_1(k) - \overline{H}_1)(H_2(k) - \overline{H}_2)]}{\sqrt{\sum_{k} (H_1(k) - \overline{H}_1)^2} \sqrt{\sum_{k} (H_2(k) - \overline{H}_2)^2}}$$

where:
$$\overline{H}_i = \frac{1}{N} \sum_{k=1}^{N} H_i(k)$$

Larger the distance metric, better the match.

Perfect match when $d(H_1, H_2) = 1$

Comparing SIFT Descriptors

Essentially comparing two arrays of data.

Let $H_1(k)$ and $H_2(k)$ be two arrays of data of length N.

Intersection:

$$d(H_1, H_2) = \sum_{k} \min(H_1(k), H_2(k))$$

Larger the distance metric, better the match.