## Why is my code slow?

Salaar Liaqat

Data Sciences Institute, UofT

### Outline

- Caching, Memoization, and Vectorization
- Parallel Computing
- Greedy and Exhaustive Algorithms
- Faster Implementations versus Faster Algorithms

### Section 1

Caching, Memoization, and Vectorization

## Caching

- Caching refers to storing things for later use
  - Your browser probably does by temporarily downloading page details on your local disk
  - Faster, reduces server load
  - Other examples include 3D rendering and saving common database queries
- However, caching usually takes space in exchange for faster run times
- The space-time trade off is a case where an algorithm trades increased space usage for faster runtimes

### Memoization

- Memoization refers to storing results of function calls to use for later
  - Specific method of caching
- This is useful for methods with a lot of repeated computations
- For instance, in our recursive Fibonacci number function.
- fib(12) is called by fib(13), fib(14) etc.
  - And fib(3) is called many many times
- F(5) = F(4) + F(3) = F(3) + F(2) + F(2) + F(1) Which calculates repeated subproblems

### How Memoization Works

- Since we store the results, each function call is only made once, making the time complexity O(n), much better than  $O(2^n)^{-1}$
- Memoization can also avoid the maximum recursion depth error because the call stack is smaller



## Memoization Python

```
cache = {0: 0, 1: 1}

def fib(n):
   if n in cache:
     return cache[n]
   else:
     cache[n] = fib(n - 1) + fib(n - 2)
     return cache[n]
```

For the base cases, we replace calling fib(0) and fib(1) by getting the values from the dictionary

## Memoization Python

- We can use the functools library, which is included in the standard library (no pip install needed!)
  - ▶ functools does memoization for you!
- We can use the @cache decorator, but the cached dictionary can grow to massive sizes
- Instead, @lru\_cache(maxsize = n) uses the LRU (least recently used) n computations
- Alternatively, we can use joblib to store the memoized results in a file

## Memoization Python

```
from functools import lru_cache

@lru_cache(maxsize=10)
def fib_rec(n):
   if n == 0 or n == 1:
     return n
   else:
     return fib_rec(n-1) + fib_rec(n-2)
```

## **Vectorized Operations**

- Vectorization is a technique of implementing array operations without for loops
- We use functions defined by various modules that are highly optimized for the specific problem
- NumPy provides a lot of functions that vectorized and are faster than for loops
  - Array add/subtract/multiply/divide by scalar
  - Sum of array
  - Max/min of array
- Keep this in mind for some ML processes that are iterative, such as gradient descent

# Why Vectorized Operations Work

- Python (and R) are interpreted languages. There is no compiler and the languages are dynamic
- C language, for instance, makes optimization at the compiler level (before execution) to speed up your code
- Thus, NumPy implements arrays in C, which speeds things up
- The other reason vectorization works in because of parallelization

### Section 2

# Parallel Computing

### Parallelization

Compare the following codes. What are their run times?

```
def fib(n):
    if n <= 1:
        return n
    else:
        return fib(n - 1) + fib(n - 2)</pre>
```

### **Parallelization**

```
import numpy

def add_one(n, x):
    y = np.zeros(n)
    for i in range(n):
        y[i] = x[i] + 1

return y
```

### Parallelization

- Both are O(n), but the second code chunk can be done in *parallel* because the n computations are independent.
- Fibonacci depends on the previous two values
- The requirements for code to the parallelized and vectorized are similar, but not the same
- The Numba library can help will parallelizing your code
- Note parallel means the process takes place on one machine, but distributed means the computation is shared across many machines

### Section 3

# Greedy and Exhaustive Algorithms

# Greedy Approach (literally)

Let's revisit the knapsack problem, taking a different approach.

• The items are:

Stereo: \$3000, 4 kg

Laptop: \$2000, 3 kg

▶ Guitar: \$1500, 1 kg

- If we follow the rule "get the most valuable item, then get second most valuable etc." we would make \$3000 by taking the stereo, which isn't the optimal \$3500
- A greedy algorithm picks the optimal move at each step, which hopefully leads to the overall optimal solution
  - ▶ But it finds the solution in O(n) time

## **Greedy Apporach**

 Let's say you could take fractions of an item and we tried the greedy approach

► Peanuts: \$7/kg

▶ Rice: \$5/kg

► Tea: \$12/kg

• We would take tea until it runs out, followed by peanuts and rice. This is the optimal solution in O(n) time!

# Classroom Scheduling Problem

ullet Suppose we want to hold as many classes in a classroom as possible  $^2$ 

|              | Class | Start  | End       |
|--------------|-------|--------|-----------|
| Yoga         |       | 9AM    | 10AM      |
| Music Theory |       | 9:30AN | 11AM      |
| Painting     |       | 10AM   | 11AM      |
| Algorithms   |       | 10:30A | M 11:30AM |
| Calculus     |       | 11AM   | 12PM      |

2 Minutes: write down a greedy algorithm to solve this problem

<sup>&</sup>lt;sup>2</sup>From Bhargava chapter 8

# Classroom Scheduling Problem

### Algorithm

- Pick the class that ends the soonest. This is the first class you'll hold in this classroom
- Now, you have to pick a class that starts after the first class. Again, pick the class that ends the soonest. This is the second class you'll hold
- Repeat the second step

This not only produces the correct solution but also does so in O(n) time, for n classes!

## Classroom Scheduling Problem

- An alternative algorithm is the exhaustive approach
  - We try every combination of classes. At the end, we see which solution fits the most classes
  - We try every combination of items to steal. At the end, we see which solution has the most value
- While brute forcing might sound always unnecessary, there are cases where it is needed to get the optimal solution
  - ▶ When performing subset selection for regression or decision tree, we can't guarantee the variables are uncorrelated. So forward/backward stepwise selection isn't guaranteed to produce the best outcome
  - More on this in a few slides
- 2 minutes: what is the time complexity of best subset selection?

## Greedy Approximation Algorithms

- Problems involving finding the best subset of a variable to max/min an objective value are generalized as the problem of finding the best power set.
  - ► There are  $2^n$  power sets, which becomes impossible to calculate past n = 100 (depending on the constants)
- Approximation algorithms are judged by how fast they are and how close they are to the optimal solution
  - Forward/backwards stepwise selection is an approximation algorithm to best subset selection

## N-P Complete Problems

- In the power set problem, we need to brute force all combinations and test them. Such problems are called *N-P Complete* 
  - A lot of smart people think it's not possible to solve these with efficient algorithms
- It's hard to tell if a problem is N-P complete
  - Finding the shortest path between two points is N-P complete (travelling salesman)
  - But the knapsack problem isn't N-P complete because we can solve it using dynamic programming

### Section 4

Faster Implementations versus Faster Algorithms

## Faster Implementations versus Faster Algorithms

- There are two ways we speed up our code
  - ▶ Use a faster algorithm, such as dynamic programming instead of brute force. Algorithms are concerned with the approach to the problem
  - ▶ Use a faster implementation, such as vectorization instead of loops
- It is useful to think about these separately when developing a programming, then combining them to create a super-fast approach!

### Section 5

Recommended Problems and References

# Recommended Problems and Readings

- Cormen: Chapter 34 on NP-Completeness (highly optional)
- Bhargava: Chapter 8 exercises
  - **▶** 8.1 8.8
- Vectorize the second code chunk in the Parallelization section
- Find the longest palindrome from a string Hint: use a greedy alogrithm
- Computing Pascal's triangle Hint: use dynamic programming

#### References

- Bhargava, A. Y. (2016). Grokking algorithms: An illustrated guide for programmers and other curious people. Manning. Chapter 1.
- Cormen, T. H. (Ed.). (2009). *Introduction to algorithms* (3rd ed). MIT Press. Chapter 1 and 3.

•