

Arm® SBSA Architecture Compliance Test Scenario

Version 2.0

Arm® SBSA Architecture Compliance

Test Scenario

Copyright © 2016-2018, Arm Limited (or its affiliates). All rights reserved.

Release Information

Document History

Version	Date	Confidentiality	Change
2.0	05 May 2018	Non-Confidential	Changes from REL 1.0.
			Note: The document now follows a new format.

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in this document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED "AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has undertaken no analysis to identify or understand the scope and content of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word "partner" in reference to Arm's customers is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if there is any conflict between the English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners. Please follow Arm's trademark usage guidelines at http://www.arm.com/company/policies/trademarks.

Copyright © 2016-2018, Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

http://www.arm.com

Contents

1 About this document	8
1.1. References	8
1.2. Terms and abbreviations	8
1.3. Scope	8
2 Introduction	9
3 Cross reference to architecture and tests	10
3.1. PE	
3.2. GIC	
3.3. Timer	
3.4. Watchdog	
3.5. PCIe	
3.6. Wakeup semantics	19
3.7. Peripherals	20
3.8. IO Virtualization (SMMU)	22
3.9. EL3 – Trusted Firmware	23
4 Test scenarios	26
4.1. VAL APIs	26
4.2. PE	
4.2.1 Number of PEs	26
4.2.2 PEs must implement SIMD extensions	27
4.2.3 PEs must implement 16-bit ASID support	27
4.2.4 PEs must support 4KB and 64KB at stage 1 and 2	27
4.2.5 Cache are implemented as VIPT or PIPT	27
4.2.6 All PEs are coherent and in the same inner-shareable domain	27
4.2.7 PEs must implement Cryptography extensions	27
4.2.8 PEs must have LE support	28
4.2.9 PEs must implement EL2	28
4.2.10 PEs must implement AARCH64	28
4.2.11 PMU overflow signal	28
4.2.12 PMU counters	28
4.2.13 PEs must implement a minimum of four synchronous watchpoints	29
4.2.14 Breakpoints	29
4.2.15 All PEs are architecturally symmetric	29

4.2.16 EL3 must be implemented	30
4.2.17 CRC32 instruction must be implemented	30
4.2.18 PMBIRQ will be wired as PPI 21	30
4.2.19 All PEs must implement the RAS extension introduced in Armv8.2	30
4.2.20 All PEs must implement support for 16-bit VMD	30
4.2.21 All PEs must implement virtual host extensions	30
4.2.22 All PEs must provide support for stage-2 control of memory types and cacheability, as introduced by Armv8.4 extensions	31
4.2.23 All PEs must implement enhanced nested virtualization	31
4.2.24 All PEs must support changing of page table mapping size using level1 and level2 solution proposed in the Armv8.4 extension	31
4.2.25 If PEs implement Armv8.3 pointer signing, the PEs must provide the standard algorithm defined by the Arm architecture	31
4.2.26 All PEs must implement the Activity Monitors Extension	31
4.2.27 Where export control allows, all PEs must implement cryptography support for SHA3 and SHA512	32
4.2.28 Where PEs implement the scalar vector extension, the vector length maximum must be at least 256 bits	32
4.3. GIC	32
4.3.1 GIC version	32
4.3.2 If the system includes PCI Express, then the GICv3 interrupt controller will implement ITS and LPI	32
4.3.3 The GICv3 interrupt controller will support two Security states	32
4.3.4 GIC maintenance interrupt shall be wired as PPI 25	33
4.4. System and Generic Timer	33
4.4.1 System counter of the Generic Timer will run at a minimum frequency of 10 and at a maximum frequency of 400MHz	33
4.4.2 The local PE timer when expiring must generate a PPI when the EL1 physical timer expires	33
4.4.3 The local PE timer when expiring must generate a PPI when the virtual timer expires	34
4.4.4 The local PE timer when expiring must generate a PPI when the EL2 physical timer expires	34
4.4.5 The Local PE timer when expiring must generate a PPI when the EL2 virtual timer expires	35
4.4.6 In systems that implement EL3, the memory mapped timer must be mapped into the Non- secure address space (the CNTBaseN fram associated CNTCTLBase frame)	
4.4.7 Unless all of the local PE timers are always on, the base server system will implement a system-specific system wakeup timer	35
4.4.8 System specific system timer shall generate an SPI	36
4.5. Watchdog	36
4.5.1 System implements a Generic Watchdog as specified in SBSA specification	36
4.5.2 Watchdog Signal 0 is routed as SPI (or LPI) and usable as a EL2 interrupt	36
4.6. Peripherals and memory	37
4.6.1 If the system has a USB2.0 (USB3.0) host controller peripheral, it must conform to EHCI v1.1 (XHCI v1.0) or later	37
4.6.2 If the system has a SATA host controller peripheral, it must conform to AHCI v1.3 or later	37
4.6.3 Base server system will include a Generic UART as specified in Appendix B. Check that that Generic UART is mapped to Non-Secure ad space	
4.6.4 The UARTINTR interrupt output is connected to the GIC.	37
4.6.5 Memory access to an unpopulated part of the addressable memory space	37
4.6.6 Non-secure access to secure address must cause exception.	38
4.7. Power states and wakeup	38

4.7.1 In state B, a PE must be able to wake on receipt of an SGI, PPI or SPI that directly targets the PE	38
4.8. IO virtualization	39
4.8.1 SMMU if present is compatible with Arm SMMU v1	39
4.8.2 SMMU if present, must support a 64KB translation granule	39
4.8.3 All the System MMUs in the system must be compliant with the same architecture version	40
4.8.4 If PCIe, check the stall model	40
4.8.5 If SMMUv3 is in use, check the compliance with Appendix E: SMMUv3 integration	40
4.8.6 If SMMUv2 is in use, Each context bank must present a unique physical interrupt to the GIC	40
4.8.7 Each function, or virtual function, that requires hardware I/O virtualization is associated with a SMMU context	40
4.9. PCIE	40
4.9.1 Systems must map memory space to PCI Express configuration space, using the PCI Express Enhanced Configuration Access Mechanism (ECAM)	
4.9.2 ECAM value present in MCFG	41
4.9.3 PEs are able to access ECAM	41
4.9.4 PCle space is device or non-cacheable	41
4.9.5 When PCI Express memory space is mapped as normal memory, the system must support unaligned accesses to that region	41
4.9.6 In systems that are compatible with level 3 or above of the SBSA, the addresses sent by PCI express devices must be presented to the m system or SMMU unmodified	
4.9.7 In a system with a SMMU for PCI express there are no transformations to addresses being sent by PCI express devices before they are presented as an input address to the SMMU	42
4.9.8 Support for Message Signaled Interrupts (MSI/MSI-X) is required for PCI Express devices	42
4.9.9 Each unique MSI(-X) shall trigger an interrupt with a unique ID and the MSI(-X) shall target GIC registers requiring no hardware specific software to service the interrupt	42
4.9.10 All MSIs and MSI-x are mapped to LPI.	43
4.9.11 If the system supports PCIe PASID, then at least 16 bits of PASID must be supported	43
4.9.12 The PCI Express root complex is in the same Inner Shareable domain as the PEs	43
4.9.13 Each of the 4 legacy interrupt lines must be allocated a unique SPI ID and is programmed as level sensitive	43
4.9.14 All Non-secure on-chip masters in a base server system that are expected to be under the control of the OS or hypervisor must be capa addressing all of the NS address space	
4.9.15 Memory Attributes of DMA traffic.	44
4.9.16 PCI Express transactions not marked as No_snoop accessing memory that the PE translation tables attribute as cacheable and shared a Coherent with the PEs.	
4.9.17 For Non-prefetchable (NP) memory, type-1 headers only support 32bit address, systems complaint with SBSA level 4 or above must su 32bit programming of NP BARs on such endpoints	
4.10. EL3 – Trusted firmware	44
4.10.1 Watchdog Signal 1 is available. This may be confirmed in the data base. This may not be possible to exersice as its handling is platform specific	
4.10.2 Must implement at least 56 bits	45
4.10.3 The local PE timer when expiring must generate a PPI when EL3 physical timer expires	46
4.10.4 Any local timers that are marked by PE as always ON must be able to wake up the system. This applies to expiry of all secure views of t local timer (CNTPS)	
4.10.5 Secure Generic UART is present. It is not aliased in Non-secure address space. The UARTINTR output of the secure generic UART is conto	

1 About this document

This document describes the test scenarios for SBSA architecture compliance.

1.1. References

Reference	Document	Author	Title
1	-	Arm	Server Base System Architecture (Version 5.0)
2	ARM DDI 0487	Arm	Arm® Architecture Reference Manual ARMv8, for Armv8-A architecture

1.2. Terms and abbreviations

This document uses the following terms and abbreviations.

Term	Meaning
ACPI	Advanced Configuration and Power Interface
LPI	Low Power Interrupt
MSI	Message Signalled Interrupts
PAL	Platform Abstraction Layer
PASID	Process Address Space ID
PE	Processing Element
PMU	Performance Monitoring Unit
PIPT	Physically Indexed Physically Tagged
PPI	Private Peripheral Interrupt
SBSA	Server Base System Architecture
SGI	Software Generated Input
SMC	Secure Monitor Call
SMMU	System Memory Management Unit
SPI	Shared Peripheral Interrupt
VIPT	Virtually Indexed Physically Tagged

1.3. Scope

This document describes the verification scenarios and the strategy that is followed for creating *Architecture Compliance Suite* (ACS) tests for Configuration System features described in SBSA architecture.

2 Introduction

The SBSA specifies a hardware system architecture that is based on Arm 64-bit architecture. The server system software such as operating systems, hypervisors, and firmware can rely on this architecture. It addresses PE features and key aspects of system architecture.

The primary goal is to ensure enough standard system architecture to enable a suitably built single OS image to run on all hardware compliant with this specification. A driver-based model for advanced platform capabilities beyond basic system configuration and boot are required. However, that is outside the scope of this document. Fully discoverable and describable peripherals aid the implementation of such a driver model.

SBSA also specifies features that firmware can rely on, allowing for some commonality in firmware implementation across platforms.

3 Cross reference to architecture and tests

The tests are divided into a hierarchy of subcategories depending on the run-time environment and the component submodules that are required for achieving the verification. The top level of the hierarchy is consistent with the target hardware subsystem which is validated by the test.

- These are compliance level 0 to compliance level 5 as per SBSA specification version 5.0.
- A test may check for different parameters of the hardware subsystem based on the level of compliance requested.
- Also, the tests are further subclassified as required, to run in an EL3 environment. The communication between the ACS and the EL3 firmware is through Arm SMC.

The tests are classified as:

- PE
- GIC
- Timer
- Watchdog
- PCIe
- Wakeup semantics
- Peripherals
- IO Virtualization (SMMU)
- EL3 Trusted Firmware

3.1. PE

PE tests require the following tests in the table to run all the PEs in the system, requiring a *Software Generated Interrupt* (SGI) is broadcast with the test address as an entry point.

Test ID	Test case	System interface dependency	Requirement of Secure firmware	Level
1	Number of PEs does not exceed 8.	ACPI MADT	No	Level 0,1
	Number of PEs does not exceed 2^28.			Level 2+
2	PEs implement Advanced SIMD extensions.	CPU System Register Read	No	Level 0+
3	PE will implement 16-bit ASID support.	CPU System Register Read	No	Level 0+
4	PE will support 4KB and 64KB at stage 1 and 2.	CPU System Register Read	No	Level 0+
5	Cache is implemented as VIPT or PIPT.	CPU System Register Read	No	Level 0+
6	All PEs are coherent and in the same Inner shareable domain.	CPU System Register Read	No	Level 0+

Test ID	Test case	System interface dependency	Requirement of Secure firmware	Level
7	PEs must implement Cryptography Extensions.	CPU System Register Read	No	Level 0+
8	PEs will implement little- endian support.	CPU System Register Read and functional	No	Level 0+
9	PEs will implement EL2.	CPU System Register Read	No	Level 0+
10	PEs will implement AArch64 at all ELs.	CPU System Register Read	No	Level 0+
11	PMU overflow signal from each PE must be wired to a unique PPI or SPI interrupt.	ACPI MADT and functional	No	Level 0+
12	Each PE implements a minimum of four programmable PMU counters.	CPU System Register Read	No	Level 0
	Each PE implements a minimum of six programmable PMU counters.			Level 1+
13	Each PE implements a minimum of four synchronous watchpoints.	CPU System Register Read	No	Level 0+
14	Each PE implements a minimum of four breakpoints.	CPU System Register Read	No	Level 0
	Each PE implements a minimum of six breakpoints.			Level 1+
15	All PEs are architecturally symmetric except for permitted differences.	CPU System Register Read	No	Level 0+
16	Each PE will implement the EL3 Exception level.	CPU System Register Read	No	Level 3+
17	Each PE implements CRC32 instructions.	CPU System Register Read	No	Level 3+
18	PMBIRQ signal must be wired to PPI ID 21.	CPU System Register Read and functional	Yes	Level 2+
19	All PEs must implement the RAS extension introduced in Armv8.2.	CPU System Register Read and functional	No	Level 4+

Test ID	Test case	System interface dependency	Requirement of Secure firmware	Level
20	All PEs must implement support for 16-bit VMD.	CPU System Register Read and functional	No	Level 4+
21	All PEs must implement virtual host extensions.	CPU System Register Read and functional	No	Level 4+
22	All PEs must provide support for stage-2 control of memory types and cacheability, as introduced by Armv8.4 extensions.	CPU System Register Read and functional	No	Level 5+
23	All PEs must implement enhanced nested virtualization.	CPU System Register Read and functional	No	Level 5+
24	All PEs must support changing of page table mapping size using level1 and level2 solution proposed in the Armv8.4 extension. Level2 is recommended.	CPU System Register Read and functional	No	Level 5+
25	If PEs implement Armv8.3 pointer signing, the PEs must provide the standard algorithm defined by the Arm architecture.	CPU System Register Read and functional	No	Level 4+
26	All PEs must implement the Activity Monitors Extension.	CPU System Register Read and functional	No	Level 5+
27	Where export control allows, all PEs must implement cryptography support for SHA3 and SHA512.	CPU System Register Read and functional	No	Level 5+
28	Where PEs implement the scalar vector extension, the vector length maximum must be at least 256 bits.	CPU System Register Read and functional	Yes	Level 3+

3.2. GIC

GIC functionality is verified from running the test on a single PE in the system.

Test ID	Test case	System interface dependency	Requirement of Secure firmware	Level
101	GICv2 is implemented	ACPI, register	No	Level 0,1
	GICv3 is implemented	read		Level 2+
102	If the base server system includes PCI Express then the GICv3 interrupt controller will implement ITS and LPI.	MADT Table	No	Level 2+
103	The GICv3 interrupt controller will support two Security states.	GIC System Register Read	No	Level 3+
104	GIC maintenance interrupt will be wired as PPI 25.	ACPI Table	No	Level 2+

3.3. Timer

Timer functionality is verified from running the test on a single PE in the system.

Test ID	Test case	System interface dependency	Requirement of Secure firmware	Level
201	The system counter of the Generic Timer will run at a minimum frequency of 10MHz and at a maximum frequency of 400MHz.	ACPI GTDT	No	Level 0+
202	The local PE timer when expiring must generate a PPI when EL1 physical timer expires. The local PE timer when expiring must generate a PPI when EL1 physical timer expires and PPI must be 30.	CPU System Register Write, GIC APIs	No	Level 0+ Level 2+
203	The local PE timer when expiring must generate a PPI when the virtual timer expires.	CPU System Register Write, GIC APIs	No	Level 0+

Test ID	Test case	System interface	Requirement of Secure firmware	Level
		dependency	Secure infilware	
	The local PE timer when			Level 2+
	expiring must generate a			
	PPI when the virtual timer			
	expires and PPI must			
	be 27.			
204	The local PE timer when	CPU System	No	Level 0+
	expiring must generate a	Register Write,		
	PPI when the EL2 physical	GIC APIs		
	timer expires.			
	The local PE timer when			Level 2+
	expiring must generate a			
	PPI when the EL2 physical			
	timer expires and			
	must be 26.			
205	For systems where PE are	CPU System	No	Level 0+
	v8.1 or greater, local PE	Register		
	timer when expiring must	Write, GIC		
	generate a PPI when the	APIs		
	EL2 virtual timer expires.			
	For systems where PE are			Level 2+
	v8.1 or greater, local PE			
	timer when expiring must			
	generate a PPI when the			
	EL2 virtual timer expires			
	and must be 28.			
206	In systems that implement	Read/write to	No	Level 2+
	EL3, the memory mapped	Base address		
	timer (the CNTBaseN frame			
	and associated NTCTLBase			
	frame) must be mapped			
	into the Non-secure			
	address space.			
206	If the system includes a	Read/write to Base	No	Level 3+
	system wakeup timer, this	address		
	memory-mapped timer			
	must be mapped on			
	to Non-secure address			
	space			

Test ID	Test case	System interface dependency	Requirement of Secure firmware	Level
207	Unless all the local PE timers are always ON, the base server system will implement a system-specific system wakeup timer.	ACPI GTDT	No	Level 1+
208	A system-specific system timer will generate an SPI.	Platform-specific	No	Level 0+

3.4. Watchdog

Watchdog functionality is verified from running the test on a single PE in the system.

Test ID	Test case	System interface dependency	Requirement of Secure firmware	Level
301	The system implements a	ACPI GTDT	No	Level 1+
	Generic Watchdog as			
	specified in <i>Appendix A:</i>			
	Generic Watchdog.			
	The watchdog must have			Level 3+
	both its register frames			
	mapped on to Non-secure			
	address space, which is			
	referred to as the Non-			
	secure watchdog.			
302	Watchdog signal 0 is	ACPI GTDT, GIC	No	Level 1+
	routed as an SPI to the GIC	APIs		
	and usable as a EL2			
	interrupt.			
	Watchdog signal 0 is			Level 2+
	routed as an SPI or LPI to			
	the GIC and usable as a EL2			
	interrupt.			

3.5. PCIe

PCIe functionality is verified from running the test on a single PE in the system.

T	To do and	Contain	Danis and of	Laural
Test ID	Test case	System interface	Requirement of Secure firmware	Level
		dependency	Secure minimure	
401	Systems must map	Uefi PCD, FDT, ACPI	No	Level 1+
	memory space to PCI			
	Express configuration			
	space, using the PCI			
	Express Enhanced			
	Configuration Access			
	Mechanism (ECAM). Tests			
	must be robust to ARI that			
	is implemented.			
402	The base address of each	ACPI MCFG table	No	Level 1+
	ECAM region is			
	discoverable from system			
	firmware data.			
403	PEs can access the ECAM	PCI RootBridge IO	No	Level 1+
	region.	Protocol		
		read/write		
404	All systems must support	Memory Map &	No	Level 1+
	mapping PCI Express	read/write		
	memory space as either			
	device memory or non-			
	cacheable memory.			
	When PCI Express memory			
	space is mapped as normal			
	memory, the system must			
	support unaligned accesses			
	to that region.			
405	In systems that are	-	-	Level 3+
	compatible with level 3 or			
	above of the SBSA, the			
	addresses that the PCI			
	Express devices send must			
	be presented to the			
	memory system or SMMU			
	unmodified.			

Test ID	Test case	System interface dependency	Requirement of Secure firmware	Level
	In a system where the PCI Express does not use an SMMU, the PCI Express devices have the same view of physical memory as the PEs.			Level 0+
406	In a system with an SMMU for PCI Express, there are no transformations to addresses that the PCI Express devices send before they are presented as an input address to the SMMU.	-	-	Level 0+
407	Support for Message Signalled Interrupts (MSI or MSI-X) is required for PCI Express devices. MSI and MSI-X are edge-triggered interrupts that are delivered as a memory write transaction.	-	-	Level 1+
408	Each unique MSI or MSI-X will trigger an interrupt with a unique ID and the MSI or MSI-X will target GIC registers requiring no hardware-specific software to service the interrupt.	-	-	Level 1+
409	All MSIs and MSI-x are mapped to LPI.	-	-	Level 2+
410	If the system supports PCIe PASID, then at least 16 bits of PASID must be supported.	-	-	Level 3+
411	The PCI Express root complex is in the same inner shareable domain as the PEs.	-	-	Level 0+

Test ID	Test case	System interface	Requirement of Secure firmware	Level
		dependency		
412	Each of the 4 legacy	-	-	Level 1+
	interrupt lines must be			
	allocated a unique SPI ID			
	and is programmed as level			
	sensitive.			
413	All Non-secure on-chip	-	-	Level 3+
	masters in a base server			
	system that are expected			
	to be under the control of			
	the OS or hypervisor must			
	be capable of addressing all			
	of the NS address space. If			
	the master goes through a			
	SMMU then it must be			
	capable of addressing all of			
	the NS address space when			
	the SMMU is off.			
	Non-secure off-chip devices that cannot directly			
	address all of the Non-			
	secure address space must			
	be placed behind a stage 1			
	System MMU compatible			
	with the Arm SMMUv2 or			
	SMMUv3 specification. that			
	has an output address size			
	large enough to address all			
	of the Non-secure address			
	space.			
414	Memory Attributes of DMA	-	-	Level 3+
	traffic are one of (1) Inner			
	WB, Outer WB, Inner			
	Shareable (2) Inner/Outer			
	Non- Cacheable (3) Device			
	TypeIO Coherent DMA is as			
	per (1) Inner/Outer WB,			
	Inner Shareable.			

Test ID	Test case	System interface dependency	Requirement of Secure firmware	Level
415	PCI Express transactions	-	-	Level 0+
	not marked as No_snoop			
	accessing memory that the			
	PE translation tables			
	attribute as cacheable and			
	shared are I/O coherent			
	with the PEs. I/O coherency			
	fundamentally means that			
	no software coherency			
	management is required on			
	the PEs for the PCI Express			
	root complex, and			
	therefore devices, to get a			
	coherent view of the PE			
	memory.			
	PCI Express transactions			
	marked as No_snoop			
	accessing memory that the			
	PE translation tables			
	attribute as cacheable and			
	shared behave correctly			
	when the appropriate SW			
	coherence is deployed.			
416	For Non-prefetchable (NP)	-	-	Level 4+
	memory, type-1 headers			
	only support 32bit address,			
	systems complaint with			
	SBSA level 4 or above must			
	support 32bit programming			
	of NP BARs on such			
	endpoints.			

3.6. Wakeup semantics

Wakeup semantics functionality is verified from running the test on a single PE in the system.

Test ID	Test case	System interface dependency	Requirement of Secure firmware	Level
501	Wake up from power semantic B due to ELO Physical Timer Interrupt (PTI).	System Register write, GIC APIs	No	Level 2+
502	Wake up from power semantic B due to ELO Virtual Timer Interrupt (VTI).	System Register write, GIC APIs	No	Level 2+
503	Wake up from power semantic B due to EL2 PTI.	System Register write, GIC APIs	No	Level 2+
504	Wake up from power semantic B due to watchdog WSO interrupt.	System Register write, GIC APIs	No	Level 2+
505	Wake up from power semantic B due to system timer interrupt.	Platform code	No	Level 2+

3.7. Peripherals

Peripheral functionality is verified from running the test on a single PE in the system.

Test ID	Test case	System interface dependency	Requirement of Secure firmware	Level
601	If the system has a USB 2.0 host controller peripheral, it must conform to EHCI v1.1 or later. But peripheral subsystems which do not conform to the same are permitted, provided that they are not required to boot and install an OS.	USB EHCIHostControll er Protocol	No	Level 0+

Test ID	Test case	System interface dependency	Requirement of Secure firmware	Level
	If the system has a USB 3.0	USB	-	
	host controller Peripheral it	XHCIHostControll		
	must conform to XHCI v1.0	er		
	or later. But peripheral	Protocol		
	subsystems which do not			
	conform to the above are			
	permitted, provided that			
	they are not required to			
	boot and install an OS.			
602	If the system has a SATA	SATA	No	Level 0+
	host controller peripheral it	AHCIHostControll		
	must conform to AHCI v1.3	er		
	or later. But peripheral			
	subsystems which do not			
	conform to the above are			
	permitted, provided that			
	they are not required to			
	boot and install an OS.			
603	For the purpose of system	Protocol	No	Level 1+
	development and bring up,			
	the base server system will			
	include a Generic UART.			
	The Generic			
	UART is specified in			
	Appendix B. The UARTINTR			
	interrupt output is			
	connected to the GIC as an			
	SPI.			
	Check that the Generic	Register read		Level 3+
	UART is mapped to Non-	Ü		
	secure address space.			
604	UARTINTR of the generic	Yes	No	Level 2+
	UART will be connected as			
	SPI or LPI.			
605	Accesses to the	UEFI Memory	No	Level 0+
	unpopulated part of the	Map		
	memory map must not			
	deadlock and cause a			
	precise data abort, SEI or			
	SPU interrupt delivered to			
	the GIC.			

Test ID	Test case	System interface dependency	Requirement of Secure firmware	Level
	In a memory access to an unpopulated part of the addressable memory space, the accesses must be terminated in a manner that is presented to the PE as either a precise Data Abort or that causes a system error interrupt or SPI, LPI interrupt to be delivered to the GIC.			Level 2+
606	Secure generic UART is present. It is not aliased in Non- secure address space. The UARTINTR output of the Secure generic UART is connected to the GIC as an SPI.	Register read/write	Yes	Level 3+

3.8. IO Virtualization (SMMU)

IO Virtualization functionality is verified from running the test on a single PE in the system.

Test ID	Test case	System interface dependency	Requirement of Secure firmware	Level
701	The SMMU, if present must support a 64KB granule.	Register read	No	Level 0+
702	All the System MMUs in the system must be compliant with the same architecture version.	ACPI IORT table	No	Level 3+
703	If SMMUv3 is in use, the integration of the System MMUs is compliant with the specification in Appendix H: SMMUv3 Integration.	ACPI IORT table	No	Level 3+

Test ID	Test case	System interface dependency	Requirement of Secure firmware	Level
	A System MMU compatible with the Arm SMMUv2 or SMMUv3 specification must provide stage 2 System MMU functionality.	Register read	-	
704	The SMMUv3 specification requires that PCIe root complex must not use the stall model due to potential deadlock.	ACPI table, Register read	-	Level 3+
705	If SMMUv2 is in use, each context bank must present a unique physical interrupt to the GIC.	Yes	-	Level 3+
706	Each function, or virtual function, that requires hardware I/O virtualization is associated with a SMMU context. The programming of this association is IMPLEMENTATION DEFINED and is expected to be described by system firmware data.	-		Level 1+

3.9. EL3 – Trusted Firmware

Test ID	Test case	System interface dependency	Requirement of Secure firmware	Level
901	Watchdog Signal 1 is available. This may be confirmed in the data base. This may not be possible to exercise as its handling is platform specific. The Watchdog Signal 1 is routed as a SPI to GIC and usable as an EL3 interrupt, directly targeting a single PE.	Watchdog APIs and GIC APIs	Yes	Level 1+ Level 3+

Test	Test case	System	Requirement of	Level
ID		interface	Secure firmware	
		dependency		
902	Must implement at least 56	Timer APIs and	Yes	Level 0+
	bits.	PE APIs		
	The counter shall be sized			Level 0+
	and programmed to ensure			
	that rollover never occurs	hat rollover never occurs		
	in pract.			
	In systems that implement	·		Level 1+
	EL3, CNTControlBase			
	should be mapped to			
	Secure address space only.			
	Generic Timer required			Level 1+
	registers are implemented			
	as specified in section			
	4.2.3.1 Summary of			
	required			
	registers of the			
	CNTControlBase frame.			
903	The local PE timer when	Secure firmware APIs	Yes	Level 0+
	expiring must generate a			
	PPI when EL3 physical			
	timer expires.			
	The local PE timer when			Level 2+
	expiring must generate a			
	PPI when EL3 physical			
	timer expires, and PPI must			
	be 29.			
904	Any local timers that are	Secure firmware	Yes	Level 0+
	marked by PE as always ON	APIs		
	must be able to wake up			
	the system. This applies to			
	expiry of all secure views of			
	the local timer (CNTPS).	_		
	Secure Watchdog is implemented. Secure			Level 3+
	· ·			
	watchdog is not-aliased in non-secure address space.			
	Signal 0 if secure watchdog			
	is routed as an SPI and			
	usable as an interrupt to			
	EL3, directly targeting a			
	single PE.			
	SHIGHTE.			

Test ID	Test case	System interface dependency	Requirement of Secure firmware	Level
905	Secure Generic UART is present. It is not aliased in Non-secure address space. The UARTINTR output of the secure generic UART is connected to the GIC as an SPI.	Secure firmware APIs	Yes	Level 3+
906	A Secure system wakeup timer is present and the interrupt is presented to GIC as a SPI.	Secure firmware APIs	Yes	Level 3+

The test scenarios are divided based on the functionality and the hardware domain access. The test suite follows this division of test scenarios to better categorize the test report.

The level of target compliance is an input to each of these test scenarios. The scenarios are classified into the following:

- VAL APIs
- PE
- GIC
- System and Generic Timer
- Watchdog
- Peripherals and memory
- Power states and wakeup
- IO virtualization
- PCIE
- EL3 Trusted firmware

4.1. VAL APIS

The following VAL APIs are consumed by all the tests and are not mentioned explicitly for each test.

- val_initialize_test
- val_run_test_payload
- val_pe_get_index_mpid
- val_pe_get_mpid
- val_set_status
- val report status

4.2. PE

The VAL API val_pe_create_info_table must be called before any of the following test scenarios are executed.

4.2.1 Number of PEs

The PEs referred to in the SBSA specification are those that are running the operating system or hypervisor, not PEs that are acting as devices.

Does not exceed 8

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
1	val_pe_get_num	4.1.1	Level 0,1

Does not exceed 2^28

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
1	val_pe_get_num	4.1.1	Level 2+

4.2.2 PEs must implement SIMD extensions

ID_AA64PFR0_EL1 must indicate support bits [23:20].

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
2	val_pe_reg_read	4.1.1	Level 0+

4.2.3 PEs must implement 16-bit ASID support

ID_AA64MMFR0_EL1 must indicate support for 16-bit ASIDs in ASIDBits == 0010 for all cores.

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
3	val_pe_reg_read	4.1.1	Level 0+

4.2.4 PEs must support 4KB and 64KB at stage 1 and 2

ID_AA64MMFR0_EL1 must indicate support for 4KB and 64KB granules for all cores.

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
4	val_pe_reg_read	4.1.1	Level 0+

4.2.5 Cache are implemented as VIPT or PIPT

CTR_ELO bits 15:14 must indicate the instruction cache type.

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
5	val_pe_reg_read	4.1.1	Level 0+

4.2.6 All PEs are coherent and in the same inner-shareable domain

ID_MMFR0_EL1.InnerShr must indicate hardware coherency support for InnerShr across all cores, ShreLvl must be 0001 across all cores (later is mandated for Armv8). Functional verification is optional.

Te	est ID	VAL APIs consumed	Specification section	Compliance level applicable
6		val_pe_reg_read	4.1.1	Level 0+

4.2.7 PEs must implement Cryptography extensions

ID_ISAR5_EL1 must indicate support for SHA1 and SHA2, AES, and PMULL and PMULL2 instructions. This test must be run only when Export restriction allows Cryptography Extensions.

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
7	val_pe_reg_read	4.1.1	Level 0+

4.2.8 PEs must have LE support

ID_AA64MMFRO_EL1 indicates whether mixed-endian support is present. If mixed-endian is not supported then SCTLR_ELx.EE must strictly read as 0 indicating endianness as little-endian. If mixed- endian is supported, then memory reads with toggled SCTLR_ELx.EE must return swizzled data.

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
---------	-------------------	-----------------------	-----------------------------

4.2.9 PEs must implement EL2

ID_AA64PFRO_EL1 bits 11:8 must indicate EL2 is supported.

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
9	val_pe_reg_read	4.1.1	Level 0+

4.2.10 PEs must implement AARCH64

ID_AA64PFR0_EL1 must indicate support for AARCH64 for all levels.

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
10	val_pe_reg_read	4.1.1	Level 0+

4.2.11 PMU overflow signal

The generated PMUIRQ must be wired to unique ID and returned as part of the platform code.

Must be wired to a unique PPI or SPI

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
10	val_pe_reg_read	4.1.1	Level 0, 1
	val_pe_reg_write		
	val_gic_install_isr		
	val_pe_get_pmu_gsiv		

Must be wired to PPI 23

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
11	<pre>val_pe_reg_read val_pe_reg_write val gic install isr</pre>	4.1.1	Level 2+
	val_pe_get_pmu_gsiv		

4.2.12 PMU counters

Implement minimum of 4

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
12	val_pe_reg_read	4.1.1	Level 0

Implement minimum of 6

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
12	val_pe_reg_read	4.2.1	Level 1+

4.2.13 PEs must implement a minimum of four synchronous watchpoints

ID_AA64DFR0_EL1.WRPs must indicate a value of at least 3.

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
13	val_pe_reg_read	4.1.1	Level 0+

4.2.14 Breakpoints

ID AA64DFR0 EL1.BRPs indicates number of breakpoints implemented. ID AA64DFR0 EL1.CTX CMPs should read at least 1.

Implement minimum of 4

ID_AA64DFR0_EL1.WRPs must indicate a value of at least 3. ID_AA64DFR0_EL1.CTX_CMPs must read at least 1.

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
14	val_pe_reg_read	4.1.1	Level 0

Implement minimum of 6

ID_AA64DFRO_EL1.WRPs must indicate a value of at least 5. ID_AA64DFRO_EL1.CTX_CMPs must read at least 1.

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
14	val_pe_reg_read	4.2.1	Level 1+

4.2.15 All PEs are architecturally symmetric

Read all the processor ID registers from all PEs and then compare the values with the main PE (cpu_id 0).

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
15	val_pe_reg_read	4.1.1	Level 0+
	val_set_test_data		
	val_data_cache_ci_va		

4.2.16 EL3 must be implemented

ID_AA64PFR0_EL1 bits 15:12 must indicate EL3 is supported.

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
16	val_pe_reg_read	4.4.1	Level 3+

4.2.17 CRC32 instruction must be implemented

Read processor register ID_AA64ISAR0_EL1 bits 19:16.

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
17	val_pe_reg_read	4.4.1	Level 3+

4.2.18 PMBIRQ will be wired as PPI 21

The generated PMBIRQ must be wired to unique ID will be returned as part of the platform code.

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
18	val_pe_reg_read val_pe_reg_write	4.4.1	Level 2+
	val_gic_install_isr val_secure_call_smc		
	val_pe_spe_program_und er_profiling		
	val_pe_spe_disable		

4.2.19 All PEs must implement the RAS extension introduced in Armv8.2

Read PE register ID_AA64PFR0_EL1 bits 31:28

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
19	val_pe_reg_read	4.3.1	Level 4+

4.2.20 All PEs must implement support for 16-bit VMD

Read PE register ID_AA64MMFR1_EL1 bits 7:4.

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
20	val_pe_reg_read	4.3.1	Level 4+

4.2.21 All PEs must implement virtual host extensions

Read PE register ID_AA64MMFR1_EL1 bits 11:8

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
21	val_pe_reg_read	4.3.1	Level 4+

4.2.22 All PEs must provide support for stage-2 control of memory types and cacheability, as introduced by Armv8.4 extensions

Read PE register ID_AA64MMFR2_EL1.FWB bits 43:40

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
22	val_pe_reg_read	4.4.1	Level 5+

4.2.23 All PEs must implement enhanced nested virtualization

Read PE register ID_AA64MMFR2_EL1.FWB bits 27:24

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
23	val_pe_reg_read	4.4.1	Level 5+

4.2.24 All PEs must support changing of page table mapping size using level1 and level2 solution proposed in the Armv8.4 extension

Read PE register ID_AA64MMFR2_EL1.FWB bits 55:52

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
24	val_pe_reg_read	4.4.1	Level 5+

4.2.25 If PEs implement Armv8.3 pointer signing, the PEs must provide the standard algorithm defined by the Arm architecture

Read PE register ID_AA64ISAR1_EL1 and check bits[7:4], bits[11:8], bits[27:24] and bits[31:28]

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
25	val_pe_reg_read	4.4.1	Level 4+

4.2.26 All PEs must implement the Activity Monitors Extension

Read PE register ID_AA64PFR0_EL1 bits 47:44.

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
26	val_pe_reg_read	4.4.1	Level 5+

4.2.27 Where export control allows, all PEs must implement cryptography support for SHA3 and SHA512

Read PE register ID AA64ISAR0 EL1.SHA3 bits[35:32] and bits[15:12].

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
27	val_pe_reg_read	4.4.1	Level 5+

4.2.28 Where PEs implement the scalar vector extension, the vector length maximum must be at least 256 bits

Read PE register ID_AA64PFR0_EL1 bits[35:32] and check PE register RDVL value

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
28	val_pe_reg_read	4.4.1	Level 3+

4.3. GIC

The VAL API val_gic_create_info_table needs to be called before any of the following test scenarios are executed.

4.3.1 GIC version

GIC V2 is implemented

ID registers are at offset 0xFE8 (ICPIDR2.ArchRev) == 0x2. On ACPI tables, GICD structure in MADT must indicate revision 2 for the GIC.

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
101	val_gic_get_info	4.1.2	Level 0, 1

GIC V3 is implemented

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
101	val_gic_get_info	4.3.2	Level 2+

4.3.2 If the system includes PCI Express, then the GICv3 interrupt controller will implement ITS and LPI

Check if ECAM is present, if yes, assume the system implements PCIe. Check for the presence of ITS from MADT table and HW register value.

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
102	val_gic_get_info	4.3.2	Level 2+
	val_pcie_get_info		

4.3.3 The GICv3 interrupt controller will support two Security states

Check GICD_CTLR.DS bit (bit6 == 0 : 2 states, bit 6 == 1 : 1 state).

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
103	val_gic_get_gicd_base	4.4.4	Level 3+
	val_gic_get_info		

4.3.4 GIC maintenance interrupt shall be wired as PPI 25

The generated GIC maintenance interrupt must be wired as PPI 25.

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
104	val_gic_get_info val_gic_install_isr val_gic_reg_read val_gic_reg_write val_gic_end_of_interrupt	4.4.4	Level 3+

4.4. System and Generic Timer

Call the VAL API val_timer_create_info_table before any of the following test scenarios are executed.

4.4.1 System counter of the Generic Timer will run at a minimum frequency of 10 and at a maximum frequency of 400MHz

ACPI GTDT table gives the frequency of the timer. The test must check that the frequency matches the value read from CNTFREQ registers. The functional test of the timer clock frequency is beyond the capability of the AVS suite.

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
201	val_gic_get_timer_info	4.1.5	Level 0+

4.4.2 The local PE timer when expiring must generate a PPI when the EL1 physical timer expires

This must test the overflow when programming CNTP_TVAL_ELO or CNTP_CVAL_ELO. The test must ensure for each CPU a PPI is generated, and the PPI is the same for all CPUs.

Must be wired to a unique PPI for associated PE

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
202	val_gic_get_timer_info	4.1.5	Level 0, 1
	val_gic_install_isr		
	val_timer_set_phy_el1		

Must be wired to PPI 30

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
202	val_gic_get_timer_info	4.3.2.1	Level 2+
	val_gic_install_isr		
	val_timer_set_phy_el1		

4.4.3 The local PE timer when expiring must generate a PPI when the virtual timer expires

This must test the overflow when programming CNTV_TVAL_EL0 or CNTV_VAL_EL0. The test must ensure for each CPU a PPI is generated, and the PPI is the same for all CPUs.

Must be wired to a unique PPI for the associated PE

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
203	val_gic_get_timer_info	4.1.5	Level 0, 1
	val_gic_install_isr		
	val_timer_set_vir_el1		

Must be wired to PPI 27

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
203	val_gic_get_timer_info	4.3.2.1	Level 2+
	val_gic_install_isr		
	val_timer_set_vir_el1		

4.4.4 The local PE timer when expiring must generate a PPI when the EL2 physical timer expires

This must test the overflow when programming CNTHP_TVAL_EL2 or CNTHP_CVAL_EL2. The test must ensure for each CPU a PPI is generated, and the PPI is the same for all CPUs.

Must be wired to a unique PPI for the associated PE

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
204	val_gic_get_timer_info	4.1.5	Level 0, 1
	val_gic_install_isr		
	val_timer_set_phy_el2		

Must be wired to PPI 26

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
204	val_gic_get_timer_info	4.3.2.1	Level 2+
	val_gic_install_isr		
	val_timer_set_phy_el2		

4.4.5 The Local PE timer when expiring must generate a PPI when the EL2 virtual timer expires

Must be wired to a unique PPI for the associated PE

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
205	val_gic_get_timer_info	4.1.5	Level 0, 1
	val_gic_install_isr		
	val_timer_set_vir_el2		
	val_pe_reg_read		

Must be wired to PPI 28

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
205	val_gic_get_timer_info	4.3.2.1	Level 2+
	val_gic_install_isr		
	val_timer_set_vir_el2		
	val_pe_reg_read		

4.4.6 In systems that implement EL3, the memory mapped timer must be mapped into the Non- secure address space (the CNTBaseN frame and associated CNTCTLBase frame)

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
206	val_gic_get_timer_info val_mmio_read	4.2.3	Level 1+
	val_mmio_write		

If the system includes a system wakeup timer, this memory-mapped timer must be mapped on to Non-secure address space

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
206	val_gic_get_timer_info val_mmio_read val_mmio_write	4.3.2.1	Level 3+

4.4.7 Unless all of the local PE timers are always on, the base server system will implement a system-specific system wakeup timer

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
207	val_gic_get_timer_info	4.1.5	Level 0+

4.4.8 System specific system timer shall generate an SPI

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
208	val_timer_get_info val_timer_skip_if_cntbase _access_not_allowed val_gic_install_isr	4.1.5	Level 0+
	<pre>val_timer_set_system_tim er val_timer_disable_system _timer val_gic_end_of_interrupt</pre>		

4.5. Watchdog

Call the VAL API val_wd_create_info_table before any of the following test scenarios are executed.

4.5.1 System implements a Generic Watchdog as specified in SBSA specification.

Test ID	APIs consumed	Specification section	Compliance level applicable
301	val_wd_get_info	4.2.4	Level 1+

The Non-secure watchdog must have both its register frames mapped on to Non-secure address space

Test ID	APIs consumed	Specification section	Compliance level applicable
301	val_wd_get_info	4.4.7	Level 2+
	val_mmio_read		

4.5.2 Watchdog Signal 0 is routed as SPI (or LPI) and usable as a EL2 interrupt

WSO routed as SPI

Test ID	APIs consumed	Specification section	Compliance level applicable
302	val_wd_get_info	4.2.4	Level 0, 1
	val_gic_install_isr		
	val_wd_set_ws0		

WS0 routed as SPI or LPI

Test ID	APIs consumed	Specification section	Compliance level applicable
302	val_wd_get_info	4.3.8	Level 2, 3
	val_gic_install_isr		
	val_wd_set_ws0		

4.6. Peripherals and memory

Call the VAL APIs val_peripheral_create_info_table and val_memory_create_info_table for relevant test scenarios before their execution.

4.6.1 If the system has a USB2.0 (USB3.0) host controller peripheral, it must conform to EHCI v1.1 (XHCI v1.0) or later.

Test ID	APIs consumed	Specification section	Compliance level applicable
601	val_peripheral_get_info	4.1.11	Level 0+
	val_pcie_read_cfg		

4.6.2 If the system has a SATA host controller peripheral, it must conform to AHCI v1.3 or later.

Test ID	APIs consumed	Specification section	Compliance level applicable
602	val_peripheral_get_info	4.1.11	Level 0+
	val_pcie_read_cfg		

4.6.3 Base server system will include a Generic UART as specified in Appendix B. Check that that Generic UART is mapped to Non-Secure address space

Test ID	APIs consumed	Specification section	Compliance level applicable
603	val_peripheral_get_info	4.1.11	Level 0+

4.6.4 The UARTINTR interrupt output is connected to the GIC.

UARTINTR routed as SPI or LPI

Test ID	APIs consumed	Specification section	Compliance level applicable
604	val_peripheral_get_info	B.3	Level 1+
	val_gic_install_isr		

4.6.5 Memory access to an unpopulated part of the addressable memory space

In a memory access to an unpopulated part of the addressable memory space, the accesses must be terminated in a manner that is presented to the PE as either a precise Data Abort or that causes a system error interrupt or SPI, LPI interrupt to be delivered to the GIC.

Test ID	APIs consumed	Specification section	Compliance level applicable
605	val_pe_get_elr_stacked_a ddr	4.1.3	Level 0+
	val_pe_install_esr val_memory_get_info		

4.6.6 Non-secure access to secure address must cause exception.

Some memory is mapped in secure address space. The memory shall not be aliased in Non-secure address space.

Test ID	APIs consumed	Specification section	Compliance level applicable
606	val_pe_install_esr	4.1.3	Level 3+
	val_pe_update_elr		
	val_pe_reg_read		

4.7. Power states and wakeup

There are no prerequisite VAL APIs for the following tests.

4.7.1 In state B, a PE must be able to wake on receipt of an SGI, PPI or SPI that directly targets the PE.

Wake up due to ELO PTI

Test ID	APIs consumed	Specification section	Compliance level applicable
501	val_timer_get_info val_timer_set_phy_el1 val_gic_install_isr val_power_enter_semanti c	4.1.8	Level 0+

Wake up due to ELO VTI

Test ID	APIs consumed	Specification section	Compliance level applicable
502	val_timer_get_info	4.1.8	Level 0+
	val_timer_set_vir_el1		
	val_timer_set_phy_el1		
	val_gic_install_isr		
	val_power_enter_semanti		
	С		

Wake up due to EL2 PTI

Test ID	APIs consumed	Specification section	Compliance level applicable
503	val_timer_get_info val_timer_set_phy_el2 val_timer_set_phy_el2 val_gic_install_isr val_power_enter_semanti	4.1.8	Level 0+
	С		

Wake up due to Watchdog WS0 Interrupt

Test ID	APIs consumed	Specification section	Compliance level applicable
504	val_wd_get_info val_wd_set_ws0 val_timer_get_info val_timer_set_phy_el1 val_gic_install_isr val_power_enter_semanti c	4.1.8	Level 0+

Wake up due to system time interrupt

Test ID	APIs consumed	Specification section	Compliance level applicable
505	val_timer_get_info val_timer_set_system_tim er val_gic_install_isr val_power_enter_semanti c	4.1.8	Level 0+

4.8. IO virtualization

4.8.1 SMMU if present is compatible with Arm SMMU v1

This test case can be skipped as it is very unlikely that the 2016/2017 platforms will have an SMMU compatible with version 1.

4.8.2 SMMU if present, must support a 64KB translation granule

ID register gives the supported translation granule size.

Test ID	APIs consumed	Specification section	Compliance level applicable
701	val_smmu_get_info	-	Level 0+
	val_smmu_read_cfg		

4.8.3 All the System MMUs in the system must be compliant with the same architecture version

Test ID	APIs consumed	Specification section	Compliance level applicable
702	val_smmu_get_info	4.1.6	Level 3+

4.8.4 If PCIe, check the stall model

Test ID	APIs consumed	Specification section	Compliance level applicable
704	val_smmu_get_info	Appendix E	Level 3+
	val_pcie_get_info		

4.8.5 If SMMUv3 is in use, check the compliance with Appendix E: SMMUv3 integration

Test ID	APIs consumed	Specification section	Compliance level applicable
703	val_smmu_get_info	4.1.6	Level 3+
	val_smmu_read_cfg	Appendix E	

4.8.6 If SMMUv2 is in use, Each context bank must present a unique physical interrupt to the GIC

Test ID	APIs consumed	Specification section	Compliance level applicable
705	val_smmu_get_info	4.1.6	Level 3+
	val_iovirt_check_unique_c		
	tx_intid		

4.8.7 Each function, or virtual function, that requires hardware I/O virtualization is associated with a SMMU context.

The programming of this association is IMPLEMENTATION DEFINED and is expected to be described by system firmware data.

Test ID	APIs consumed	Specification section	Compliance level applicable
706	val_smmu_get_info	4.1.6	Level 3+
	val_iovirt_unique_rid_stri		
	d_map		

4.9. PCIE

Call the VAL API val_pcie_create_info_table before any of the following test scenarios are executed.

4.9.1 Systems must map memory space to PCI Express configuration space, using the PCI Express Enhanced Configuration Access Mechanism (ECAM)

Test ID	APIs consumed	Specification section	Compliance level applicable
401	val_pcie_get_info	D.1	Level 1

4.9.2 ECAM value present in MCFG

Test ID	APIs consumed	Specification section	Compliance level applicable
402	val_pcie_get_info	D.1	Level 1+

4.9.3 PEs are able to access ECAM

Test ID	APIs consumed	Specification section	Compliance level applicable
403	val_pcie_get_info	D.1	Level 1+
	val_mmio_read		

4.9.4 PCIe space is device or non-cacheable

Test ID	APIs consumed	Specification section	Compliance level applicable
404	val_pcie_get_info	D.2	Level 1+
	val_memory_get_info		

4.9.5 When PCI Express memory space is mapped as normal memory, the system must support unaligned accesses to that region.

Test ID	APIs consumed	Specification section	Compliance level applicable
404	val_pcie_get_info	D.2	Level 1+
	val_memory_get_info		

4.9.6 In systems that are compatible with level 3 or above of the SBSA, the addresses sent by PCI express devices must be presented to the memory system or SMMU unmodified

In a system where the PCI express does not use an SMMU, the PCI express devices have the same view of physical memory as the PEs.PCIe I/O Coherency Scenarios without System MMU are covered. PCIe I/O Coherency Scenarios with System MMU are covered.

Test ID	APIs consumed	Specification section	Compliance level applicable
405	<pre>val_pcie_get_info val_memory_get_info val_dma_get_info val_dma_start_from_devi</pre>	D.3	Level 1+
	ce val_dma_start_to_device val_smmu_ops		

4.9.7 In a system with a SMMU for PCI express there are no transformations to addresses being sent by PCI express devices before they are presented as an input address to the SMMU.

The addresses sent by PCI express devices must be presented to the memory system or SMMU unmodified.

Test ID	APIs consumed	Specification section	Compliance level applicable
406	val_pcie_get_info val_memory_get_info val_dma_get_info val_smmu_ops val_dma_device_get_dma _addr val_dma_mem_alloc	D.3	Level 1+

4.9.8 Support for Message Signaled Interrupts (MSI/MSI-X) is required for PCI Express devices.

MSI and MSI-X are edge-triggered interrupts that are delivered as a memory write transaction.

Test ID	APIs consumed	Specification section	Compliance level applicable
407	val_peripheral_get_info val_pcie_get_device_type	D.4	Level 1+

4.9.9 Each unique MSI(-X) shall trigger an interrupt with a unique ID and the MSI(-X) shall target GIC registers requiring no hardware specific software to service the interrupt.

Test ID	APIs consumed	Specification section	Compliance level applicable
408	val_peripheral_get_info	D.4	Level 1+
	val_get_msi_vectors		

4.9.10 All MSIs and MSI-x are mapped to LPI.

Test ID	APIs consumed	Specification section	Compliance level applicable
409	val_peripheral_get_info	D.4	Level 1+
	val_get_msi_vectors		

4.9.11 If the system supports PCIe PASID, then at least 16 bits of PASID must be supported

Test ID	APIs consumed	Specification section	Compliance level applicable
410	val_peripheral_get_info	D.14	Level 1+
	val_smmu_get_info		
	val_smmu_max_pasids		

4.9.12 The PCI Express root complex is in the same Inner Shareable domain as the PEs

Test ID	APIs consumed	Specification section	Compliance level applicable
411	val_iovirt_get_pcie_rc_inf	D.8	Level 1+
	0		

4.9.13 Each of the 4 legacy interrupt lines must be allocated a unique SPI ID and is programmed as level sensitive

Test ID	APIs consumed	Specification section	Compliance level applicable
412	val_peripheral_get_info val_pci_get_legacy_irq_m ap	D.6	Level 1+

4.9.14 All Non-secure on-chip masters in a base server system that are expected to be under the control of the OS or hypervisor must be capable of addressing all of the NS address space.

If the master goes through a SMMU then it must be capable of addressing all of the NS address space when the SMMU is off. Non-secure off-chip devices that cannot directly address all of the Non-secure address space must be placed behind a stage 1 System MMU compatible with the Arm SMMUv2 or SMMUv3 specification. that has an output address size large enough to address all of the Non-secure address space.

Test ID	APIs consumed	Specification section	Compliance level applicable
413	val_peripheral_get_info val_pcie_is_devicedma_64 bit val_pcie_is_device_behind _smmu	4.1.3	Level 1+

4.9.15 Memory Attributes of DMA traffic.

Memory Attributes of DMA traffic are one of (1) Inner WB, Outer WB, Inner Shareable (2) Inner/Outer Non- Cacheable (3) Device TypeIO Coherent DMA is as per (1) Inner/Outer WB, Inner Shareable.

Test ID	APIs consumed	Specification section	Compliance level applicable
414	val_dma_get_info val_dma_mem_alloc	4.1.11	Level 1+
	val_dma_mem_get_attrs		

4.9.16 PCI Express transactions not marked as No_snoop accessing memory that the PE translation tables attribute as cacheable and shared are I/O Coherent with the PEs.

Test ID	APIs consumed	Specification section	Compliance level applicable
415	val_peripheral_get_info val_pcie_get_device_type val_pcie_get_dma_suppor t val_pcie_get_snoop_bit	D.8	Level 1+

4.9.17 For Non-prefetchable (NP) memory, type-1 headers only support 32bit address, systems complaint with SBSA level 4 or above must support 32bit programming of NP BARs on such endpoints

Test ID	APIs consumed	Specification section	Compliance level applicable
416	val_peripheral_get_info val_pcie_get_device_type val_pcie_io_read_cfg	D.2	Level 3+
	val_pcie_scan_bridge_dev ices_and_check_memtype		

4.10. EL3 – Trusted firmware

4.10.1 Watchdog Signal 1 is available. This may be confirmed in the data base. This may not be possible to exersice as its handling is platform specific

Test ID	APIs consumed	Specification section	Compliance level applicable
901	val_wd_get_info	4.2.4	Level 1+
	val_wd_set_ws0		
	val_gic_install_isr		
	val_secure_get_result		
	val_gic_end_of_interrupt		

The Watchdog Signal 1 is routed as a SPI to GIC and usable as an EL3 interrupt, directly targetting a single PE

Test ID	APIs consumed	Specification section	Compliance level applicable
901	val_wd_get_info val_wd_set_ws0 val_gic_install_isr	4.5.3	Level 3+
	<pre>val_secure_get_result val_gic_end_of_interrupt</pre>		

4.10.2 Must implement at least 56 bits

Test ID	APIs consumed	Specification section	Compliance level applicable
902	val_is_el3_enabled val_secure_call_smc val_secure_get_result val_pe_install_esr val_pe_update_elr	4.1.5	Level 0+

In systems that implement EL3, CNTControlBase should be mapped to Secure address space only

Test ID	APIs consumed	Specification section	Compliance level applicable
902	<pre>val_is_el3_enabled val_secure_call_smc val_secure_get_result val_pe_install_esr val_pe_update_elr</pre>	4.1.5	Level 0+

The counter shall be sized and programmed to ensure that rollover never occurs in pract

Test ID	APIs consumed	Specification section	Compliance level applicable
902	val_is_el3_enabled	4.2.3	Level 1+
	val_secure_call_smc		
	val_secure_get_result		
	val_pe_install_esr		
	val_pe_update_elr		

Generic Timer required registers are implemented as specified in section 4.2.3.1 "Summary of required registers of the CNTControlBase frame"

Test ID	APIs consumed	Specification section	Compliance level applicable
902	val_is_el3_enabled	4.2.3.1	Level 1+
	val_secure_call_smc		
	val_secure_get_result		
	val_pe_install_esr		
	val_pe_update_elr		

4.10.3 The local PE timer when expiring must generate a PPI when EL3 physical timer expires

Test ID	APIs consumed	Specification section	Compliance level applicable
903	val_secure_call_smc val_secure_get_result val_check_for_error	4.1.5	Level 0+

The local PE timer when expiring must generate a PPI when EL3 physical timer expires, and PPI must be 29

Test ID	APIs consumed	Specification section	Compliance level applicable
903	<pre>val_secure_call_smc val_secure_get_result val_check_for_error</pre>	4.3.2.1	Level 2+

4.10.4 Any local timers that are marked by PE as always ON must be able to wake up the system. This applies to expiry of all secure views of the local timer (CNTPS)

Test ID	APIs consumed	Specification section	Compliance level applicable
904	val_secure_call_smc val_secure_get_result	4.1.7	Level 0+
	val_check_for_error		

Secure Watchdog is implemented. Secure watchdog is not-aliased in non-secure address space. Signal 0 if secure watchdog is routed as an SPI and usable as an interrupt to EL3, directly targetting a single PE

Test ID	APIs consumed	Specification section	Compliance level applicable
904	val_secure_call_smc	4.5.3	Level 3+
	val_secure_get_result val_check_for_error		

4.10.5 Secure Generic UART is present. It is not aliased in Non-secure address space. The UARTINTR output of the secure generic UART is connected to the GIC as an SPI

Test ID	APIs consumed	Specification section	Compliance level applicable
905	val_secure_call_smc val_secure_get_result	4.5.4	Level 3+
	val_check_for_error		

4.10.6 A secure system wakeup timer is present and the interrupt is presented to GIC as a SPI

Test ID	APIs consumed	Specification section	Compliance level applicable
906	<pre>val_secure_call_smc val_secure_get_result val_check_for_error</pre>	4.5.2	Level 3+