IFMT - Instituto Federal de Educação, Ciência e Tecnologia de **Mato Grosso**

Álgebra Linear - 2º Semestre 2015

Prof^a Aline Brum Seibel

Subespaço gerado, base e dimensão

- 1) Verifique que [(2,3,0),(4,-2,0),(-1,1,0)] = [(1,0,0),(0,1,0)].
- **2)** Verifiuqe se os polinômios $t^3 + 2t + 1$, $t^2 2t + 2$, $t^3 + 2$ e $-t^3 + t^2 5t + 2$ geram P_3 . O polinômio $p(t) = 3t^2 - 3t + 1$ pertence ao subespaço gerado pelos polinômios anteriores?
- 3) Obtenha o subespaço do \Re^3 gerado pelos vetores u=(1,1,1) e v=(1,-1,1).
- 4) Dar exemplo de um conjunto de três vetores do \Re^4 que geram um subespaço de dimensão:
 - (a) 1 **(b)** 2 **(c)** 3
- 5) Para que valores de λ , o conjunto $\{t+3, 2t+\lambda^2+2\}$ de P_1 é linearmente independente?
- 6) Determine uma base e a dimensão dos seguintes subespaços de \Re^4 :
 - (a) formado pelos vetores da forma (x, y, z, t), onde t = x + y.
 - (b) formado pelos vetores da forma (x, y, z, t), onde z = x y e t = x + y.
 - (c) formado pelos vetores da forma (x, y, z, t), onde x 2y = 0 e z 3t = 0.
- 7) Seja $S = \{(1,2,2), (3,2,1), (11,10,7), (7,6,4)\}$. Obtenha uma base e a dimensão para o subespaço W = [S] em \Re^3 .
- 8) Obtenha uma base para \Re^3 que contenha os vetores:
- **(b)** (1,0,2) e (0,1,3)
- 9) Responda se os seguintes subconjuntos abaixo são subespaços de M(2,2). Em caso afirmativo exiba os geradores
 - (a) $V = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \text{ com } a, b, c, d \in \Re \mid b = c \right\}$ (b) $V = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \text{ com } a, b, c, d \in \Re \mid b = c + 1 \right\}$
- 10) Considere dois vetores (a,b) e (c,d) no plano. Se ad-bc=0, mostre que eles são LD. Se $ad - bc \neq 0$, mostre que eles são LI.
- 11) Considere o subespaço de \Re^4 , S = [(1, 1, -2, 4), (1, 1, -1, 2), (1, 4, -4, 8)].
 - (a) O vetor $(\frac{2}{3}, 1, -1, 2)$ pertence a S?
 - (b) O vetor (0,0,1,1) pertence a S?
- **12)** Seja $W = \left\{ \begin{bmatrix} 2a & a+2b \\ 0 & a-b \end{bmatrix} \text{ com } a,b \in \Re \right\}$
 - (a) $\begin{bmatrix} 0 & -2 \\ 0 & 1 \end{bmatrix} \in W$

(b)
$$\begin{bmatrix} 0 & 2 \\ 3 & 1 \end{bmatrix} \in W$$

- **13)** Quais são as coordenadas de x = (1,0,0) em relação à base $\beta = \{(1,1,1), (-1,1,0), (1,0,-1)\}$?
- 14) Mostre que os polinômios $1-t^3$, $(1-t)^2$, 1-t e 1 geram o espaço dos polinômios de grau ≤ 3 .
- **15)** Sejam $W_1 = \{(x, y, z, t) \in \Re^4 | x + y = 0, z t = 0\}$ e $W_2 = \{(x, y, z, t) \in \Re^4 | x y z + t = 0\}$ subespaços de \Re^4 .
 - (a) Determine $W_1 \cap W_2$
 - (b) Exiba uma base para $W_1 \cap W_2$
 - (c) Determine $W_1 + W_2$
 - (d) $W_1 + W_2$ é soma direta? Justifique.
 - (a) $W_1 + W_2 = \Re^4$
- **16)** Sejam $\beta = \{(1,0),(0,1)\}, \beta_1 = \{(-1,1),(1,1)\}, \beta_2 = \{(\sqrt{3},1),(\sqrt{3},-1)\} \in \beta_3 = \{(2,0),(0,2)\}$ bases ordenadas de \Re^2 .
 - (a) Ache as matrizes mudança de base:
 - i) $[I]^{\beta_1}_{\beta}$ ii) $[I]^{\beta}_{\beta_1}$ iii) $[I]^{\beta}_{\beta_2}$ iv) $[I]^{\beta}_{\beta_3}$ (b) Quais são as coordenadas do vetor v=(3,-2) em relação à base:
 - $iii) \beta_2 \qquad iv) \beta_3$
 - (c) As coordenadas de um vetor v em relação à base β_1 são dadas por

$$[v]_{\beta_1} = \left[\begin{array}{c} 4\\0 \end{array} \right]$$

Quais são as coordenadas de v em relação à base:

- $i) \beta$ $ii) \beta_2$ $iii) \beta_3$
- **17**) Se

$$[I]_{\alpha}^{\alpha'} \left[\begin{array}{ccc} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{array} \right]$$

ache

(a)
$$[v]_{\alpha}$$
 onde $[v]_{\alpha'} = \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}$ (b) $[v]_{\alpha'}$ onde $[v]_{\alpha} = \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}$

18) Se α é base de um espaço vetorial, qual é a matriz mudança de base $[I]_{\alpha}^{\alpha}$?