

=====

Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Durreshwar Anjum

Timestamp: Wed Oct 17 09:17:48 EDT 2007

=====

Application No: 10573161 Version No: 1.0

Input Set:

Output Set:

Started: 2007-10-01 16:50:48.579
Finished: 2007-10-01 16:50:50.070
Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 491 ms
Total Warnings: 20
Total Errors: 0
No. of SeqIDs Defined: 39
Actual SeqID Count: 39

Error code	Error Description
W 213	Artificial or Unknown found in <213> in SEQ ID (1)
W 213	Artificial or Unknown found in <213> in SEQ ID (2)
W 213	Artificial or Unknown found in <213> in SEQ ID (3)
W 213	Artificial or Unknown found in <213> in SEQ ID (4)
W 213	Artificial or Unknown found in <213> in SEQ ID (5)
W 213	Artificial or Unknown found in <213> in SEQ ID (6)
W 213	Artificial or Unknown found in <213> in SEQ ID (7)
W 213	Artificial or Unknown found in <213> in SEQ ID (8)
W 213	Artificial or Unknown found in <213> in SEQ ID (9)
W 213	Artificial or Unknown found in <213> in SEQ ID (10)
W 213	Artificial or Unknown found in <213> in SEQ ID (13)
W 213	Artificial or Unknown found in <213> in SEQ ID (14)
W 213	Artificial or Unknown found in <213> in SEQ ID (15)
W 213	Artificial or Unknown found in <213> in SEQ ID (16)
W 402	Undefined organism found in <213> in SEQ ID (22)
W 213	Artificial or Unknown found in <213> in SEQ ID (30)
W 213	Artificial or Unknown found in <213> in SEQ ID (31)
W 213	Artificial or Unknown found in <213> in SEQ ID (32)
W 213	Artificial or Unknown found in <213> in SEQ ID (33)
W 213	Artificial or Unknown found in <213> in SEQ ID (34)

SEQUENCE LISTING

<110> Agou, Fabrice
Courtois, Gilles
Israel, Alain
Veron, Michel
Traincard, Francois
Yamaoka, Shoji
Baleux, Francoise
Coic, Yves-Marie

<120> SELECTIVE INHIBITION OF NK-KAPPAB ACTIVATION BY PEPTIDES DESIGNED
TO DISRUPT NEMO OLIGOMERIZATION

<130> 288459US0XPCT

<140> 10573161

<141> 2007-10-01

<150> PCT/IB04/03352

<151> 2004-09-24

<150> US 60/505,161

<151> 2003-09-24

<150> US 60/530,418

<151> 2003-12-18

<160> 39

<170> PatentIn version 3.3

<210> 1

<211> 17

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Peptide

<400> 1

Cys Arg Gln Ile Lys Ile Trp Phe Gln Asn Arg Arg Met Lys Trp Lys
1 5 10 15

Lys

<210> 2

<211> 57

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Peptide

<400> 2

Cys Arg Gln Ile Lys Ile Trp Phe Gln Asn Arg Arg Met Lys Trp Lys
1 5 10 15

Lys Ser Lys Gly Met Gln Leu Gln Asp Leu Arg Gln Gln Leu Gln Gln
20 25 30

Ala Glu Glu Ala Leu Val Ala Lys Gln Glu Leu Ile Asp Lys Leu Lys
35 40 45

Glu Glu Ala Glu Gln His Lys Ile Val
50 55

<210> 3

<211> 40

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Peptide

<400> 3

Ser Lys Gly Met Gln Leu Glu Asp Leu Arg Gln Gln Leu Gln Gln Ala
1 5 10 15

Glu Glu Ala Leu Val Ala Lys Gln Glu Leu Ile Asp Lys Leu Lys Glu
20 25 30

Glu Ala Glu Gln His Lys Ile Val

35 40

<210> 4

<211> 57

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Peptide

<400> 4

Cys Arg Gln Ile Lys Ile Trp Phe Gln Asn Arg Arg Met Lys Trp Lys
1 5 10 15

Lys Ser Lys Gly Met Gln Leu Glu Asp Leu Arg Gln Gln Gly Gln Gln

20

25

30

Ala Glu Glu Ala Gly Val Ala Lys Gln Glu Leu Gly Asp Lys Leu Lys
35 40 45

Glu Glu Ala Glu Gln His Lys Ile Val
50 55

<210> 5
<211> 40
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Peptide

<400> 5

Ser Lys Gly Met Gln Leu Glu Asp Leu Arg Gln Gln Gly Gln Gln Ala
1 5 10 15

Glu Glu Ala Gly Val Ala Lys Gln Glu Leu Gly Asp Lys Leu Lys Glu
20 25 30

Glu Ala Glu Gln His Lys Ile Val
35 40

<210> 6
<211> 60
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Peptide

<400> 6

Cys Arg Gln Ile Lys Ile Trp Phe Gln Asn Arg Arg Met Lys Trp Lys
1 5 10 15

Lys Leu Lys Ala Gln Ala Asp Ile Tyr Lys Ala Asp Phe Gln Ala Glu
20 25 30

Arg His Ala Arg Glu Lys Leu Val Glu Lys Lys Glu Tyr Leu Gln Glu
35 40 45

Gln Leu Glu Gln Leu Gln Arg Glu Phe Asn Lys Leu
50 55 60

<210> 7
<211> 43
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Peptide

<400> 7

Leu Lys Ala Gln Ala Asp Ile Tyr Lys Ala Asp Phe Gln Ala Glu Arg
1 5 10 15

His Ala Arg Glu Lys Leu Val Glu Lys Lys Glu Tyr Leu Gln Glu Gln
20 25 30

Leu Glu Gln Leu Gln Arg Glu Phe Asn Lys Leu
35 40

<210> 8
<211> 60
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Peptide

<400> 8

Cys Arg Gln Ile Lys Ile Trp Phe Gln Asn Arg Arg Met Lys Trp Lys
1 5 10 15

Lys Leu Lys Ala Gln Ala Asp Ile Tyr Lys Ala Asp Phe Gln Ala Glu
20 25 30

Arg His Ala Arg Glu Lys Leu Val Glu Lys Lys Glu Tyr Ser Gln Glu
35 40 45

Gln Leu Glu Gln Ser Gln Arg Glu Phe Asn Lys Leu
50 55 60

<210> 9
<211> 43
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Peptide

<400> 9

Leu Lys Ala Gln Ala Asp Ile Tyr Lys Ala Asp Phe Gln Ala Glu Arg
1 5 10 15

His Ala Arg Glu Lys Leu Val Glu Lys Lys Glu Tyr Ser Gln Glu Glu
20 25 30

Leu Glu Gln Ser Gln Arg Glu Phe Asn Lys Leu
35 40

<210> 10

<211> 55

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Peptide

<400> 10

Cys Arg Gln Ile Lys Ile Trp Phe Gln Asn Arg Arg Met Lys Trp Lys
1 5 10 15

Lys Ser Lys Gly Met Gln Arg Met Lys Gln Leu Glu Asp Lys Val Glu
20 25 30

Glu Leu Leu Ser Lys Asn Tyr His Leu Glu Asn Glu Val Ala Arg Leu
35 40 45

Lys Lys Leu Val Gly Glu Arg
50 55

<210> 11

<211> 1239

<212> DNA

<213> Mus musculus

<400> 11

atgaacaaggc acccctggaa gaaccagctg agtgagacgg tgcagccca tgggtggccca 60

gcagaggacc aggacatgct gggtaagaaa tcttctctgg ggagcctgca atgctacatc 120

tgccttcaga gcagggtact cctgagaccc tccagcgctg cctggaagag aatcaagagc 180

tccgagacgc tatccggcag agcaatcaga tgctgaggga acgctgtgag gagctgctgc 240

atttccaggt cagccagcgg gaggagaagg agttccttat gtgcaaattc caggaagccc 300

ggaagctgg	ggagagactg	agcttgaga	agcttgatct	tcggagtca	agggAACAGG	360
ccttaaagg	gttggagcaa	ctgaagaaat	gccaacagca	gatggctgag	gacaaggcct	420
ctgtgaaagc	tcaggtgaca	tcattgctcg	gagaactcca	ggagagccag	agccgttgg	480
aggctgccac	caaggatcg	caagcttag	agggaggat	tcgagcagtt	agtgagcagg	540
tcagacagct	ggagagttag	cgggaggtgc	tacagcagca	gcacagcgtc	caggtggacc	600
agctgcgtat	gcagaaccag	agcgtggagg	ctgccttgc	aatggagcgg	caggctgctt	660
cagaggagaa	gcggaagctg	gctcagttgc	aggcagccta	tcaccaactc	ttccaagact	720
acgacagcca	cattaagagc	agcaagggca	tgcagctgga	agatctgagg	ccaacagctc	780
cagcaagctg	aggaggccct	ggtagccaaa	caggaattga	ttgataagct	gaaagaggag	840
gctgagcagc	acaagattgt	gatggagact	gtgccagtct	tgaaggccca	ggcggatatc	900
tacaaggctg	acttccaaag	ctgagaggca	tgcccggag	aagctggtag	agaagaagga	960
gtatttgcag	gagcagctgg	agcagctgca	gchgagttc	aacaagctga	aagttggctg	1020
ccatgagtca	gccaggattg	aggatatgag	gaagcggcat	gtagagactc	cccagccccc	1080
tttactccct	gctccagctc	accactcctt	tcatttggcc	ttgtccaacc	agcggaggag	1140
ccctcctgaa	gaacccctg	acttctgttg	tccgaagtgc	cagtatccgc	tcctgatatg	1200
gacactctac	agatacatgt	catggagtgc	atagagtag			1239

<210> 12
 <211> 412
 <212> PRT
 <213> Mus musculus

<400> 12

Met	Asn	Lys	His	Pro	Trp	Lys	Asn	Gln	Leu	Ser	Glu	Thr	Val	Gln	Pro
1															

Ser	Gly	Gly	Pro	Ala	Glu	Asp	Gln	Asp	Met	Leu	Gly	Glu	Glu	Ser	Ser

Leu	Gly	Lys	Pro	Ala	Met	Leu	His	Leu	Pro	Ser	Glu	Gln	Gly	Thr	Pro

Glu	Thr	Leu	Gln	Arg	Cys	Leu	Glu	Glu	Asn	Gln	Glu	Leu	Arg	Asp	Ala

Ile Arg Gln Ser Asn Gln Met Leu Arg Glu Arg Cys Glu Glu Leu Leu

65

70

75

80

His Phe Gln Val Ser Gln Arg Glu Glu Lys Glu Phe Leu Met Cys Lys
85 90 95

Phe Gln Glu Ala Arg Lys Leu Val Glu Arg Leu Ser Leu Glu Lys Leu
100 105 110

Asp Leu Arg Ser Gln Arg Glu Gln Ala Leu Lys Glu Leu Glu Glu Leu
115 120 125

Lys Lys Cys Gln Gln Met Ala Glu Asp Lys Ala Ser Val Lys Ala
130 135 140

Gln Val Thr Ser Leu Leu Gly Glu Leu Gln Glu Ser Gln Ser Arg Leu
145 150 155 160

Glu Ala Ala Thr Lys Asp Arg Gln Ala Leu Glu Gly Arg Ile Arg Ala
165 170 175

Val Ser Glu Gln Val Arg Gln Leu Glu Ser Glu Arg Glu Val Leu Gln
180 185 190

Gln Gln His Ser Val Gln Val Asp Gln Leu Arg Met Gln Asn Gln Ser
195 200 205

Val Glu Ala Ala Leu Arg Met Glu Arg Gln Ala Ala Ser Glu Glu Lys
210 215 220

Arg Lys Leu Ala Gln Leu Gln Ala Ala Tyr His Gln Leu Phe Gln Asp
225 230 235 240

Tyr Asp Ser His Ile Lys Ser Ser Lys Gly Met Gln Leu Glu Asp Leu
245 250 255

Arg Gln Gln Leu Gln Gln Ala Glu Glu Ala Leu Val Ala Lys Gln Glu
260 265 270

Leu Ile Asp Lys Leu Lys Glu Glu Ala Glu Gln His Lys Ile Val Met
275 280 285

Glu Thr Val Pro Val Leu Lys Ala Gln Ala Asp Ile Tyr Lys Ala Asp
290 295 300

Phe Gln Ala Glu Arg His Ala Arg Glu Lys Leu Val Glu Lys Lys Glu
305 310 315 320

Tyr Leu Gln Glu Gln Leu Glu Gln Leu Gln Arg Glu Phe Asn Lys Leu
325 330 335

Lys Val Gly Cys His Glu Ser Ala Arg Ile Glu Asp Met Arg Lys Arg
340 345 350

His Val Glu Thr Pro Gln Pro Pro Leu Leu Pro Ala Pro Ala His His
355 360 365

Ser Phe His Leu Ala Leu Ser Asn Gln Arg Arg Ser Pro Pro Glu Glu
370 375 380

Pro Pro Asp Phe Cys Cys Pro Lys Cys Gln Tyr Gln Ala Pro Asp Met
385 390 395 400

Asp Thr Leu Gln Ile His Val Met Glu Cys Ile Glu
405 410

<210> 13

<211> 57

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Peptide

<400> 13

Cys Arg Gln Ile Lys Ile Trp Phe Gln Asn Arg Arg Met Lys Trp Lys
1 5 10 15

Lys Ser Lys Gly Met Gln Leu Glu Asp Leu Lys Gln Gln Leu Gln Gln
20 25 30

Ala Glu Glu Ala Leu Val Ala Lys Gln Glu Val Ile Asp Lys Leu Lys
35 40 45

Glu Glu Ala Glu Gln His Lys Ile Val
50 55

<210> 14

<211> 40
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Peptide

<400> 14

Ser Lys Gly Met Gln Leu Glu Asp Leu Lys Gln Gln Leu Gln Gln Ala
1 5 10 15

Glu Glu Ala Leu Val Ala Lys Gln Glu Val Ile Asp Lys Leu Lys Glu
20 25 30

Glu Ala Glu Gln His Lys Ile Val
35 40

<210> 15
<211> 60
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Peptide

<400> 15

Cys Arg Gln Ile Lys Ile Trp Phe Gln Asn Arg Arg Met Lys Trp Lys
1 5 10 15

Lys Leu Lys Ala Gln Ala Asp Ile Tyr Lys Ala Asp Phe Gln Ala Glu
20 25 30

Arg Gln Ala Arg Glu Lys Leu Ala Glu Lys Glu Leu Leu Gln Glu
35 40 45

Gln Leu Glu Gln Leu Gln Arg Glu Tyr Ser Lys Leu
50 55 60

<210> 16
<211> 43
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Peptide

<400> 16

Leu Lys Ala Gln Ala Asp Ile Tyr Lys Ala Asp Phe Gln Ala Glu Arg
1 5 10 15

Gln Ala Arg Glu Lys Leu Ala Glu Lys Lys Glu Leu Leu Gln Glu Gln
20 25 30

Leu Glu Gln Leu Gln Arg Glu Tyr Ser Lys Leu
35 40

<210> 17
<211> 2035
<212> DNA
<213> Homo sapiens

<400> 17
cgagctggac tgtttctact cctccctcct cctccactgc ggggtctgac cctactcctt 60
gtgtgaggac tcctctagtt cagagacata ttctgtcac caaacttgac tgcgcttat 120
cgaggtcggt aaattcttcg gaaatgcctc acatatagtt tggcagctag cccttgcct 180
gttggatgaa taggcacctc tggaaagagcc aactgtgtga gatggtgca gcccagtgg 240
gccccggcagc agatcaggac gtactggcg aagagtctcc tctgggaaag ccagccatgc 300
tgcacctgcc ttcagaacag ggcgctcctg agaccctcca gcgcgtgcctg gaggagaatc 360
aagagctccg agatgccatc cggcagagca accagattct gcgggagcgc tgcgaggagc 420
ttctgcattt ccaagccagc cagagggagg agaaggagtt cctcatgtgc aagttccagg 480
aggccagggaa actgggtggag agactcggcc tggagaagct cgatctgaag aggcagaagg 540
agcaggctct gcgggagggtg gacacactga agagatgcca gcagcagatg gctgaggaca 600
aggcctctgt gaaagccag gtgacgtcct tgctcgaaa gctgcaggag agccagagtc 660
gcttggaggc tgccactaag gaatgccagg ctctggaggc tggggccgg gcccggcagcg 720
agcaggcgcg gcagctggag agtgagcgcg aggcgctgca gcagcagcac agcgtgcagg 780
tggaccagct gcgcgtgcag ggccagagcg tggaggccgc gctccgcatt gagcggcagg 840
ccgcctcgaa ggagaagagg aagctggccc agttgcaggt ggcttatcac cagctctcc 900
aagaatacga caaccacatc aagagcagcg tgggtggcag tgagcggaaag cgaggaatgc 960
agctggaaaga tctcaaacag cagctccagc aggccgagga ggcctggc gccaaacagg 1020
aggtgatcga taagctgaag gaggaggccg agcagcacaa gattgtatg gagaccgttc 1080
cggtgctgaa ggcccaggcg gatatctaca aggccgactt ccaggctgag aggcaggccc 1140
gggagaagct ggccgagaag aaggagctcc tgcaggagca gctggagcag ctgcagaggg 1200

actacagcaa	actgaaggcc	agctgtcagg	agtccggccag	gatcgaggac	atgaggaagc	1260
ggcatgtcga	ggtctccca	gcccccttgc	cccccgcccc	tgcctacctc	tcctctcccc	1320
tggccctgcc	cagccagagg	aggagccccc	ccgaggagcc	acctgacttc	tgctgtccca	1380
agtgccagta	tcagggccct	gatatggaca	ccctgcagat	acatgtcatg	gagtgcattg	1440
agttagggccg	gccagtgcaa	ggccactgcc	tgccgaggac	gtgcccggga	ccgtgcagtc	1500
tgcgcttcc	tctcccgct	gcctagccca	ggatgaaggg	ctgggtggcc	acaactggga	1560
tgccacacctgg	agccccaccc	aggagctggc	cgcggcacct	tacgctttag	ctgttgatcc	1620
gctggtcccc	tctttgggg	tagatgcggc	cccgatcagg	cctgactcgc	tgctctttt	1680
gttccctct	gtctgctcga	accacttgcc	tcgggcta	ccctccctct	tcctccaccc	1740
ggcactgggg	aagtcaagaa	tggggcctgg	ggctctcagg	gagaactgt	tccctggca	1800
gagctgggtg	gcagctttc	ctcccacccg	acaccgaccc	gcccgcgtct	gtgcctggg	1860
agtgcgtcccc	tcttaccatg	cacacgggtg	ctctcccttt	gggctgcata	ctattccatt	1920
ttgcagccag	accgatgtgt	attnaaccag	tcactattga	tggacatttg	ggttgtttcc	1980
catcttttta	ttaccataaa	taatggcata	gtaaaaatcc	tttgtcatta	aaaaaa	2035

<210> 18
<211> 419
<212> PRT
<213> *Homo sapiens*

<400> 18

Met	Asn	Arg	His	Leu	Trp	Lys	Ser	Gln	Leu	Cys	Glu	Met	Val	Gln	Pro
1				5				10						15	

Ser Gly Gly Pro Ala Ala Asp Gln Asp Val Leu Gln Glu Glu Ser Pro
 20 25 30

Leu Gly Lys Pro Ala Met Leu His Leu Pro Ser Glu Gln Gly Ala Pro
35 40 45

Glu Thr Leu Gln Arg Cys Leu Glu Glu Asn Gln Glu Leu Arg Asp Ala
50 55 60

Ile Arg Gln Ser Asn Gln Ile Leu Arg Glu Arg Cys Glu Glu Leu Leu
65 70 75 80

His Phe Gln Ala Ser Gln Arg Glu Glu Lys Glu Phe Leu Met Cys Lys
85 90 95

Phe Gln Glu Ala Arg Lys Leu Val Glu Arg Leu Gly Leu Glu Lys Leu
100 105 110

Asp Leu Lys Arg Gln Lys Glu Gln Ala Leu Arg Glu Val Glu His Leu
115 120 125

Lys Arg Cys Gln Gln Gln Met Ala Glu Asp Lys Ala Ser Val Lys Ala
130 135 140

Gln Val Thr Ser Leu Leu Gly Glu Leu Gln Glu Ser Gln Ser Arg Leu
145 150 155 160

Glu Ala Ala Thr Lys Glu Cys Gln Ala Leu Glu Gly Arg Ala Arg Ala
165 170 175

Ala Ser Glu Gln Ala Arg Gln Leu Glu Ser Glu Arg Glu Ala Leu Gln
180 185 190

Gln Gln His Ser Val Gln Val Asp Gln Leu Arg Met Gln Gly Gln Ser
195 200 205

Val Glu Ala Ala Leu Arg Met Glu Arg Gln Ala Ala Ser Glu Glu Lys
210 215 220

Arg Lys Leu Ala Gln Leu Gln Val Ala Tyr His Gln Leu Phe Gln Glu
225 230 235 240

Trp Asp Asn His Ile Lys Ser Ser Val Val Gly Ser Glu Arg Lys Arg
245