Clasificación de estrellas, detección de carros y predicción del Bitcoin

Jose Godoy, Universidad Galileo, Maestría de Ciencia de Datos

Introducción

Las redes neuronales pueden ser utilizadas para identificar si los datos obtenidos por un observatorio espacial son estrellas, galaxias o cuásares. También pueden ser utilizadas para detectar carros en una imagen en movimiento o predecir el precio del Bitcoin.

Objetivos

- Utilizar FNN para clasificación utilizando datos estructurados.
- •Utilizar CNN para detectar objetos, coordenadas e información en datos espaciales (imágenes).
- ·Utilizar RNN para predicción de datos.

FNN

Analizar el dominio y codomio de los datos puede ayudar a seleccionar mejor la función de activación y obtener mejores resultados.

CNN

Una CNN puede obtener información de datos espaciales, pero es requerido un análisis profundo y separado para poder obtener más información de los datos.

RNN

Keras permite hacer uso de capas Long Short-Term Memory Network STMN para analizar datos secuenciales y poder realizar predicciones.

Resultados

Keras permite hacer uso de capas Long Short-Term Memory network para analizar datos secuenciales y poder realizar predicciones.

El modelo YOLO permite identificar objetos en una imagen de forma rápida indicando la probabilidad y clase.

Y finalmente, utilizando una RNN logramos predecir el precio del bitcon para los siguientes tres días del precio de bitcoin fue 18,547.4 USD, 23,205.16 USD y 18,547.4 USD.

Conclusión

- •El modelo FNN permite ingresar los datos obtenido del observatorio y predecir si es una galaxia, estrella o quásar.
- Es necesario profundizar en el diseño de CNN para poder crear una arquitectura desde cero que permita identificar si un objeto está en la imagen, que tipo de objeto es (probabilidad) y sus coordenadas.
- Los resultados del Bitcoin sugieren un intento de romper la resistencia, pero regresará al soporte establecido.