MATH 127 Calculus for the Sciences

Lecture 11

Today's lecture

Last time

Exponential and logarithmic functions

- Real life application of exp.
- Simplify things using exp and log rules.
- Derivative of exp and log function.

This time

Course note coverage

- Integrate $\frac{1}{2}$. (Section 2.4.4)
- Riemann sum approximation of ln. (part of Section 2.4.3: this could be on Quiz 4)
- Logarithmic scale (real life application of log). (section 2.4.6)

Quiz 4 is next Wednesday!

Coverage:

- 1. Topics that were on the coverage of Quiz 2-3 might show up in Quiz 4.
- 2. Integral functions.
- 3. Inverse function.
- 4. Exp and log functions.
- 5. More on log functions (will cover today).

Derivatives of exp/log functions

Example What is the derivative of $\log_{2x} 3^x$? What is its domain?

Easier examples

Example What is the derivative of ln(x)? What is its domain?

Example What is the derivative of $\ln |x|$?

Approximating $\ln x$

Now that we know $\ln |x|$ is the anti-derivative of $\frac{1}{x}$. In particular, for x > 0,

$$\int_1^x \frac{1}{t} dt = \ln|t| \bigg|_1^x = \ln x - \ln 1 = \ln x.$$

That is

$$\ln x = \int_1^x \frac{1}{t} dt.$$

In real life, this formula allows us to estimated $\ln x$. Because knowing that $\ln x$ is an integral, we can use

to approximate it!

$\mathbf{Approximating}\,\ln x$

Example Approximate $\ln 4$ using right Riemann approximation by dividing a interval into 6 pieces.

Logarithmic scale would be a good motivation for why we need logarithmic functions.

- Earthquake scale is measured on a logarithmic scale: an earthquake of level 6 is 10 times stronger than level 5.
- pH value is measured on a logarithmic scale:
 a pH value of 3 is 100 times less acidic than a pH value of 5.
- Volume is a bit different: a sound that is 130 dB is 1000 times louder than 100 dB.

Definition We say a function is a **logarithmic scale of base** *a* if adding b to the output means the input has to be multiplied by a^b .

By how is this description in any sense logarithmic? Here's why:

If f(x) is a logarithmic scale of base a, then we know

$$f(x) = \log_a \left(\frac{x}{A}\right)$$

for some number A.

For the above, we see a needs to satisfy the condition

Definition We say a function is a logarithmic scale of base a if adding b to the output means the input has to be multiplied by a^b .

Example The earthquake scale is on a base-10 logarithmic scale. The input is intensity and the output is the magnitude.
1. If you add 3 to the magnitude, then the intensity needs to be multiplied by a factor of
2. If one earthquake has magnitude 4 and another has magnitude 6.5, then the intensity of the second one is
times stronger

than the first one.

Definition We say a function is a logarithmic scale of base a if adding b to the output means the input has to be multiplied by a^b .

Example Some aliens measure earthquake on a base-9 logarithmic scale. The input is badness and the output is the level.

1. If one earthquake is level 3 and another has level 6.5, then the badness of the second one is

times more bad

than the first one.

2. We can compute this value using exp rules

Definition We say a function is a **logarithmic scale of base** a if adding b to the output means the input has to be multiplied by a^b .

Example The volume of sound is a bit weird. The output is volume/decible and input is intensity. It satisfies

$$D(I) = 10 \log_{10} \left(\frac{I}{10^{-12}} \right)$$

And this is not a logarithmic scale. But if we divide the output by 10, then we do get a logarithmic scale of base-10.

1. If sound is 25 dB higher in volume than another sound, then its intensity is

2. Let us try to estimate this value

3 questions on your opinions

I went to many teaching seminars where old people talk about how I should teach. Now I want to know what you think.

