Lecture 33: Residue theorem

Math 660—Jim Fowler

Thursday, August 5, 2010

Theorem (Cauchy)

 $n(\gamma, a) f(a) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z) dz}{z - a}$

If
$$f(z)$$
 is analytic in a region Ω , then

if γ is homologous to zero in Ω .

The **residue** of f(z) at an isolated singularity a is the complex number $R = \mathop{\rm Res}_{z=a} f(z)$ which makes

$$f(z) - \frac{R}{z-3} = F'(z)$$

for some single-valued analytic function F defined in a small annulus around a.

Suppose Ω is simply connected, and Suppose $\Omega' = \Omega - \{a_1, \dots, a_n\}$.

Suppose Ω is simply connected, and

Suppose
$$\Omega' = \Omega - \{a_1, \dots, a_n\}$$
.
Then for any $\gamma \in \Omega'$,

Then for any $\gamma \in \Omega'$,

for curves γ_i around a_i , with $c_i = n(\gamma, a_i)$.

 $[\gamma] = [c_1\gamma_1 + \cdots + c_n\gamma_n] \in H_1(\Omega')$

$$\frac{1}{2\pi i} \int_{\gamma} f \, dz$$

 $\frac{1}{2\pi i} \int_{\gamma} f \, dz = \sum_{j} \frac{c_{j}}{2\pi i} \int_{\gamma_{j}} f \, dz$

 $\frac{1}{2\pi i} \int_{\gamma} f \, dz = \sum_{i} \frac{c_{j}}{2\pi i} \int_{\gamma_{j}} f \, dz$

 $= \sum_{j} \frac{c_{j}}{2\pi i} \int_{\gamma_{j}} \frac{\operatorname{Res}_{z=a_{i}} f(z)}{z-a} dz$

 $\frac{1}{2\pi i} \int_{\gamma} f \, dz = \sum_{i} \frac{c_{j}}{2\pi i} \int_{\gamma_{j}} f \, dz$

 $= \sum_{j} \frac{c_{j}}{2\pi i} \int_{\gamma_{j}} \frac{\mathop{\rm Res}_{z=a_{i}} f(z)}{z-a} \, dz$

 $=\sum_{i}c_{j}\operatorname*{Res}_{z=a_{i}}f(z)$

 $\frac{1}{2\pi i} \int_{\gamma} f \, dz = \sum_{i} \frac{c_{j}}{2\pi i} \int_{\gamma_{i}} f \, dz$

 $= \sum_{j} \frac{c_{j}}{2\pi i} \int_{\gamma_{j}} \frac{\mathop{\rm Res}_{z=a_{i}} f(z)}{z-a} \, dz$

 $= \sum_{i} n(\gamma, a_i) \cdot \mathop{\rm Res}_{z=a_i} f(z)$

 $= \sum_{i} c_{j} \mathop{\rm Res}_{z=a_{i}} f(z)$

$$\frac{1}{2\pi i} \int_{\gamma} f \, dz = \sum_{j} \frac{c_{j}}{2\pi i} \int_{\gamma_{j}} f \, dz$$

$$= \sum_{j} \frac{c_{j}}{2\pi i} \int_{\gamma_{j}} \frac{\operatorname{Res}_{z=a_{i}} f(z)}{z - a} \, dz$$

$$= \sum_{j} c_{j} \operatorname{Res}_{z=a_{j}} f(z)$$

This is Cauchy's **residue theorem** for when there are finitely many singularities.

 $= \sum_{i} n(\gamma, a_i) \cdot \mathop{\rm Res}_{z=a_i} f(z)$

If there are infinitely many singularities, still only finitely many have nonzero winding number with γ ,

If there are infinitely many singularities, still only finitely many have nonzero winding number with γ , and therefore

Theorem (Residue theorem)

Let f(z) be analytic in Ω , except for isolated singularities a_j . Then,

$$\frac{1}{2\pi i} \int_{\gamma} f \ dz = \sum_{i} n(\gamma, a_{i}) \cdot \operatorname{Res}_{z=a_{i}} f(z)$$

for any cycle which is homologous to zero in Ω and does not pass through any of the a_j .

If only we had a procedure for computing

 $\operatorname{Res}_{z=a} f(z)...$

If only we had a procedure for computing $\operatorname{Res}_{z=a} f(z)$...

Wait, we do!

Consider $f(z) = b_k(z-a)^{-k} + \cdots + b_1(z-a)^{-1} + \varphi(z)$,

Consider
$$f(z) = b_k(z-a)^{-k} + \cdots + b_1(z-a)^{-1} + \varphi(z)$$
, for φ analytic.

Consider $f(z) = b_k(z-a)^{-k} + \cdots + b_1(z-a)^{-1} + \varphi(z)$,

for φ analytic.

Then Res $f(z) = b_1$.

Consider $f(z) = b_k(z-a)^{-k} + \cdots + b_1(z-a)^{-1} + \varphi(z)$, for φ analytic.

Then Res $f(z) = b_1$.

For simple poles, it is even easier: then

$$\operatorname{Res}_{z=a} f(z) = \lim_{z \to a} (z - a) \cdot f(z).$$

$$f(z) = \frac{e^z}{(z-a)(z-b)} \text{with } a \neq b.$$

Compute $\int_{\gamma} f \, dz$ for a curve around a and b.

$$f(z)=\frac{1}{z^2+z-1}.$$

Compute
$$\int_{\gamma} f \ dz$$
 for $\gamma = \partial B_3(0)$.

$$f(z) = \frac{1}{\sin z}$$

Compute $\int_{\gamma} f \ dz$ for γ a circle of radius one around the origin.

$$f(z) = \frac{1}{z^4 + 4}$$

Compute $\int_{\gamma} f \ dz$ for γ a circle of radius two and center 1.

Evaluate

$$\int_{-\infty}^{\infty} e^{-z^2}, \ dz$$