

LDC1051

ZHCSCB0-MARCH 2014

LDC1051: 只支持 8 位 Rp 分辨率的电感数字转换器,具有串行外设接口 (SPI)

特性

- 远程传感器放置(从恶劣环境中将 LDC 去耦合)
- 高耐久性(借助于非接触式操作)
- 针对系统设计的更高灵活性(将线圈或弹簧用作传
- 对于非导电环境干扰不敏感(诸如灰尘、尘土,油 等等)
- 无磁体运行
- 电源电压: 典型值 5V
- 电源电压, IO: 1.8V 至 5.5V
- 待机电流:典型值 250uA
- Rp 分辨率: 8 位
- LC 频率范围: 5kHz 至 5MHz

2 应用范围

- 邻近感测
- 水平感测
- 横向位置感测

3 说明

电感感测是一种非接触式、短程感测技术, 此技术可实 现对导电目标的高分辨率和低成本位置感测,即使在恶 劣的环境中也是如此。 将一个线圈或弹簧用作传感 器, LDC1051 电感数字转换器为系统设计人员提供了 一个方法, 用低于其他竞争解决方案的系统成本来实现 高性能和可靠性。

LDC1051 与 LDC1000(16 位 Rp/24 位 L)以及 LDC1041 (8 位 Rp/24 位 L) 引脚兼容。 此系列器件 根据系统设计人员的应用和系统需求为他们提供不同的 分辨率选项。

LDC1051 采用 5mm x 4mm 超薄小外形尺寸无引线 (WSON)-16 封装。 经由 SPI 的器件编程可使用微控 制器实现轻松配置。

器件信息

订货编号	封装	封装尺寸
LDC1051NHRT	WSON (16)	5mm x 4mm
LDC1051NHRR	WSON (16)	5mm x 4mm
LDC1051NHRJ	WSON (16)	5mm x 4mm

轴距感测应用

应用电路原理图

使用 14mm 印刷电路板 (PCB) 线圈时 Rp 与距离之间

_	\Rightarrow
_	ملب
_	w

1	特性1	7.3 Feature Description	8
2	应用范围	7.4 Device Functional Modes	
3	说明 1	7.5 Programming	
3 4	修订历史记录	7.6 Register Map and Description	
4 5	下 Terminal Configuration and Functions	8 Applications and Implementation	
5 6	_	8.1 Application Information	
0	Specifications 4 6.1 Absolute Maximum Ratings 4	8.2 Typical Applications	
	6.1 Absolute Maximum Ratings	9 Power Supply Recommendations	25
	6.3 Recommended Operating Conditions	10 Layout	25
	6.4 Thermal Information	10.1 Layout Guidelines	25
	6.5 Electrical Characteristics	10.2 Layout Example	26
	6.6 Timing Requirements	11 器件和文档支持	27
	6.7 Typical Characteristics	11.1 Trademarks	<mark>27</mark>
7	Detailed Description 8	11.2 Electrostatic Discharge Caution	<mark>27</mark>
•	7.1 Overview 8	11.3 Glossary	27
	7.2 Functional Block Diagram	12 机械封装和可订购信息	<mark>27</mark>
	- : · · · · · · · · · · · · · · · · ·		

4 修订历史记录

日期	修订版本	注释
2014年3月	*	最初发布。

5 Terminal Configuration and Functions

Terminal Functions

TERMINAL NAME	TERMINAL NO.	TERMINAL TYPE	DESCRIPTION
SCLK	1	DO	SPI clock input. SCLK is used to clock-out/clock-in the data from/into the chip
CSB	2	DI	SPI CSB(Chip Select Bar). Multiple devices can be connected on the same SPI bus and CSB can be used to select the device to be communicated with
SDI	3	DI	SPI Slave Data In (Master Out Slave In). This should be connected to the Master Out Slave In of the master
VIO	4	Р	Digital IO Supply
SDO	5	DO	SPI Slave Data Out (Master In Slave Out). It is high impedance when CSB is high
DGND	6	Р	Digital ground
CFB	7	Α	LDC filter capacitor
CFA	8	Α	LDC filter capacitor
INA	9	Α	External LC Tank. Connect to external LC tank
INB	10	Α	External LC Tank. Connect to external LC tank
GND	11	Р	Analog ground
VDD	12	Р	Analog supply
CLDO	13	Α	LDO bypass capacitor. A 56nF capacitor should be connected from this Terminal to GND
N/C	14	N/C	No Connection
N/C	15	N/C	No Connection
INTB	16	DO	Configurable interrupt. This Terminal can be configured to behave in 3 different ways by programing the INT Terminal mode register. Either threshold detect, wakeup, or DRDYB
DAP	17	Р	Connect to GND

6 Specifications

6.1 Absolute Maximum Ratings

	MIN	MAX	UNIT
Analog Supply Voltage (V _{DD} – GND)		6	V
IO Supply Voltage (V _{IO} – GND)		6	V
Voltage on any Analog Terminal	-0.3	$V_{DD} + 0.3$	V
Voltage on any Digital Terminal	-0.3	V _{IO} + 0.3	V
Input Current on INA and INB		8	mA
Junction Temperature, T _J		150	°C

6.2 Handling Ratings

		MIN	MAX	UNIT
T _{stg}	Storage Temperature range	-65	150	°C
V _{ESD}	Human Body Model (HBM) ESD stress voltage	1k	1k	V
	Charge Device Model (CDM) ESD stress voltage	250	250	V

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

1			
	MIN	MAX	UNIT
Analog Supply Voltage (V _{DD} – GND)	4.75	5.25	V
IO Supply Voltage (V _{IO} – GND)	1.8	5.25	V
V_{DD} - V_{IO}	0		V
Operating Temperature, T _A	-40	125	°C

6.4 Thermal Information

	THERMAL METRIC ⁽¹⁾	NHR (16-TERMINALS)	UNIT
θ_{JA}	Junction-to-ambient thermal resistance	28	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics(1)

Unless otherwise specified, all limits ensured for $T_A = T_J = 25$ °C, $V_{DD} = 5$ V, $V_{IO} = 3.3$ V

	PARAMETER	TEST CONDITIONS	MIN ⁽²⁾	TYP ⁽³⁾	MAX ⁽²⁾	UNIT
POWER						
V_{DD}	Analog supply voltage		4.75	5	5.25	V
V _{IO}	IO supply voltage	V _{IO} ≤V _{DD}	1.8	3.3	5.25	V
I _{DD}	Supply current, V _{DD}	Does not include sensor current. (4)		1.7	2.3	mA
I _{VIO}	IO supply current	Static current			14	μΑ
I _{DD_LP}	Stand-by mode supply current			250		μΑ
t _{START}	Start-Up Time	From POR to ready-to-convert.		2		ms
LDC						
f _{sensor_MIN}	Minimum sensor frequency			5		kHz
$f_{ m sensor_MAX}$	Maximum sensor frequency			5		MHz
A _{sensor_MIN}	Minimum sensor amplitude			1		V _{PP}
A _{sensor_MAX}	Maximum sensor amplitude			4		V_{PP}
t _{REC}	Recovery time	Oscillation start-up time after Rp under- range condition		10		1/f _{sensor}
Rp Min	Minimum sensor Rp range			798		Ω
Rp Max	Maximum Sensor Rp range			3.93		МΩ
Rp Res	Rp measurement resolution			8		Bits
t _{S_MIN}	Minimum response time	Minimum programmable settling time of digital filter	1	92 x 1 / f _{sensor}		S
t _{S_MAX}	Maximum response time	Maximum programmable settling time of digital filter		6144 × 1 / f sensor		s
DIGITAL I/O	CHARACTERISTICS					
V _{IH}	Logic 1 input voltage		0.8 × V _{IO}			V
V _{IL}	Logic 0 input voltage				0.2 × V _{IO}	V
V _{OH}	Logic 1 output voltage	I _{SOURCE} = 400 μA		V _{IO} - 0.3		V
V _{OL}	Logic 0 output voltage	I _{SINK} = 400 μA			0.3	V
I _{IOHL}	Digital IO leakage current		-500		500	nA

⁽¹⁾ Electrical Characteristics Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that TJ = TA. No specification of parametric performance is indicated in the electrical tables under conditions of internal self-heating where T_J > T_A. Absolute Maximum Ratings indicate junction temperature limits beyond which the device may be permanently degraded, either mechanically or electrically.

⁽²⁾ Limits are specified by testing, design, or statistical analysis at 25°C. Limits over the operating temperature range are specified through correlations using statistical quality control (SQC) method.

⁽³⁾ Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not specified on shipped production material.

⁽⁴⁾ LC tank current depends on the Q-factor of the tank, distance and material of the target.

TEXAS INSTRUMENTS

6.6 Timing Requirements

Unless otherwise noted, all limits specified at T_A = 25°C, V_{DD} = 5, V_{IO} = 3.3, 10 pF capacitive load in parallel with a 10 k Ω load on the SDO terminal. Specified by design; not production tested.

	PARAMETER		MIN	TYP	MAX	UNIT
$f_{\sf SCLK}$	Serial Clock Frequency				4	MHz
t _{PH}	SCLK Pulse Width High	f _{SCLK} = 4 MHz	0.4 / f _{SCLK}			S
t _{PL}	SCLK Pulse Width Low	f _{SCLK} = 4 MHz	0.4 / f _{SCLK}			S
t _{SU}	SDI Setup Time		10			ns
t _H	SDI Hold Time		10			ns
t _{ODZ}	SDO Driven-to-Tristate Time	Measured at 10% / 90% point			20	ns
t _{OZD}	SDO Tristate-to-Driven Time	Measured at 10% / 90% point			20	ns
t _{OD}	SDO Output Delay Time				20	ns
t _{CSS}	CSB Setup Time		20			ns
t _{CSH}	CSB Hold Time		20			ns
t _{IAG}	Inter-Access Gap		100			ns
t _{DRDYB}	Data ready pulse width	Data ready pulse at every 1 / ODR if no data is read	1	/f _{sensor}		S

Unless otherwise noted, all limits specified at TA = 25°C, VDD=5.0, VIO=3.3, 10pF capacitive load in parallel with a $10k\Omega$ load on SDO. Specified by design; not production tested.

Figure 1. Write Timing Diagram

Figure 2. Read Timing Diagram

6.7 Typical Characteristics

TEXAS INSTRUMENTS

7 Detailed Description

7.1 Overview

The LDC1051 is an Inductance-to-Digital Converter that measures the parallel impedance of an LC resonator. It accomplishes this task by regulating the oscillation amplitude in a closed loop configuration to a constant level, while monitoring the energy dissipated by the resonator. By monitoring the amount of power injected into the resonator, the LDC1051 can determine the value of Rp; it returns this as a digital value which is inversely proportional to Rp.

The threshold detector block provides a comparator with hysteresis, with the threshold registers programed and comparator enabled, proximity data register is compared with threshold registers and INTB terminal indicates the output.

The device has a simple 4-wire SPI interface. The INTB terminal provides multiple functions which are programmable with SPI.

The device has separate supplies for Analog and I/O, with analog operating at 5V and I/O at 1.8-5V. The integrated LDO needs a 56nF capacitor connected from CLDO terminal to GND.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Inductive Sensing

An AC current flowing through a coil will generate an AC magnetic field. If a conductive material, such as a metal target, is brought into the vicinity of the coil, this magnetic field will induce circulating currents (eddy currents) on the surface of the target. These eddy currents are a function of the distance, size, and composition of the target. The eddy currents then generate their own magnetic field, which opposes the original field generated by the coil. This mechanism is best compared to a transformer, where the coil is the primary core and the eddy current is the secondary core. The inductive coupling between both cores depends on distance and shape. Hence the resistance and inductance of the secondary core (eddy current), shows up as a distant dependent resistive and inductive component on the primary side (coil). The figures(Figure 5 to Figure 8) below show a simplified circuit model.

Feature Description (continued)

Figure 5. Inductor With A Metal Target

Eddy currents generated on the surface of the target can be modeled as a transformer as shown in Figure 6. The coupling between the primary and secondary coils is a function of the distance and the conductor's characteristics. In Figure 6, the inductance Ls is the coil's inductance, and Rs is the coil's parasitic series resistance. The inductance L(d), which is a function of distance d, is the coupled inductance of the metal target. Likewise, R(d) is the parasitic resistance of the eddy currents and is also a function of distance.

Figure 6. Metal Target Modeled As L And R With Circulating Eddy Currents

Generating an alternating magnetic field with just an inductor will consume a large amount of power. This power consumption can be reduced by adding a parallel capacitor, turning it into a resonator as shown in Figure 7. In this manner the power consumption is reduced to the eddy and inductor losses Rs+R(d) only.

Figure 7. LC Tank Connected To Oscillator

The LDC1051 doesn't measure the series resistance directly; instead it measures the equivalent parallel resonance impedance Rp (see Figure 8). This representation is equivalent to the one shown in Figure 8, where the parallel resonance impedance Rp(d) is given by:

TEXAS INSTRUMENTS

Feature Description (continued)

 $Rp(d) = \frac{Ls + L(d)}{[Rs + R(d)] \times C}$ (1)

Figure 8. Equivalent Resistance Of Rs in Parallel With LC Tank

Figure 9 below shows the variation in Rp as a function of distance for a 14mm diameter PCB coil (Sensor Details: Table 16). The target in this example is a section of a 2mm thick stainless steel disk.

Figure 9. Typical Rp vs Distance With 14mm PCB Coil

7.3.2 Measuring Rp with LDC1051

The LDC1051 supports a wide range of LC combinations, with oscillation frequencies ranging from 5kHz to 5MHz and Rp ranging from 798Ω to $3.93M\Omega$. This range of Rp can be viewed as the maximum input range of an ADC. As illustrated in Figure 9, the range of Rp is typically much smaller than the maximum input range supported by the LDC1051. To get better resolution in the desired sensing range, the LDC1051 offers a programmable input range through the Rp_MIN and Rp_MAX registers. Refer to Calculation of Rp_MIN and Rp_MAX below for how to set these registers.

When the sensor's resonance impedance Rp drops below the programed Rp_MIN, the LDC's Rp output will clip at its full scale output. This situation could, for example, happen when a target comes too close to the coil.

Feature Description (continued)

Figure 10. Transfer Characteristics Of LDC1051 With Rp_MIN= 1.347 k Ω And Rp_MAX= 38.785 k Ω

The resonance impedance can be calculated from the digital output code as follows:

$$Rp = \frac{Rp_MAX \times Rp_MIN}{Rp_MIN \times (1 - Y) + Rp_MAX \times Y}$$

Where:

- Y=Proximity Data/2⁷
- Rp MAX and Rp MIN are the maximum and minimum Rp values selected in the respective registers
- Proximity data is the LDC output, register address 0x22.

(2)

Example: If Proximity data (address 0x22) is 50, Rp_MIN is 2.394 k Ω , and Rp_MAX is 38.785 k Ω , the resonance impedance is given by:

 $Y=50/2^7=0.3906$

 $Rp = (38785*2394)/(2394 \times (1-0.3906) + 38785 \times 0.3906) = (92851290)/(15149.421 + 1458.9036)$

 $Rp = 5.59 k\Omega$

7.4 Device Functional Modes

7.4.1 Power Modes

The LDC1051 has two power modes:

- Active Mode: In this mode the Proximity data conversion is enabled.
- Stand-by Mode: This is the default mode on device power-up. In this mode conversion is disabled.

7.4.2 INTB terminal Modes

The INTB terminal is a configurable output terminal which can be used to drive an interrupt on an MCU. The LDC1051 provides three different modes on INTB terminal:

- 1. Comparator Mode
- 2. Wake-Up Mode
- 3. DRDY Mode

LDC1051 has built-in High and Low trigger threshold registers which can be used as a comparator with programmable hysteresis or in a special mode which can be used to wake-up an MCU. These modes are explained in detail below.

TEXAS INSTRUMENTS

Device Functional Modes (continued)

7.4.2.1 Comparator Mode

In the Comparator mode, the INTB terminal is asserted or deasserted when the proximity register value increases above Threshold High or decreases below Threshold Low registers respectively. In this mode, the LDC1051 essentially behaves as a proximity switch with programmable hysteresis.

Figure 11. Behavior Of INTB Terminal In Comparator Mode

7.4.2.2 Wake-Up Mode

In Wake-Up mode, the INTB terminal is asserted when proximity register value increases above Threshold High and de-asserted when wake-up mode is disabled in INTB terminal mode register.

This mode can be used to wake-up an MCU from sleep, to conserve power.

Figure 12. Behavior Of INTB Terminal In Wake-Up Mode

7.4.2.3 DRDYB Mode

In DRDY(Data Ready) mode, the INTB terminal is asserted every time the conversion data is available and deasserted once the read command on register 0x22 is registered internally; if the read is in progress, the terminal is pulsed instead. The valid condition for new data availability is CSB high and DRDYB falling edge.

Device Functional Modes (continued)

Figure 13. Behavior of INTB Terminal in DRDYB Mode with SPI Extending Beyond Subsequent Conversions

Figure 14. Behavior Of INTB Terminal In DRDYB Mode with SPI Reading The Data Within Subsequent Conversion

7.5 Programming

The LDC1051 utilizes a 4-wire SPI to access control and data registers. The LDC1051 is an SPI slave device and does not initiate any transactions.

7.5.1 SPI Description

A typical serial interface transaction begins with an 8-bit instruction, which is comprised of a read/write bit (MSB, R=1) and a 7 bit address of the register, followed by a data field which is typically 8 bits. However, the data field can be extended to a multiple of 8 bits by providing sufficient SPI clocks. Refer to the Extended SPI Transactions section below.

Figure 15. Serial Interface Protocol

Each assertion of CSB starts a new register access. The R/Wb bit in the command field configures the direction of the access; a value of 0 indicates a write operation and a value of 1 indicates a read operation. All output data is driven on the falling edge of the serial clock (SCLK), and all input data is sampled on the rising edge of the serial clock (SCLK). Data is written into the register on the rising edge of the 16th clock. It is required to deassert CSB after the 16th clock; if CSB is deasserted before the 16th clock, no data write will occur.

7.5.1.1 Extended SPI Transactions

A transaction may be extended to multiple registers by keeping the CSB asserted beyond the initial 16 clocks. In this mode, the register addresses increment automatically. CSB must be asserted during 8*(1+N) clock cycles of SCLK, where N is the amount of bytes to write or read during the transaction.

During an extended read access, SDO outputs the register contents every 8 clock cycles after the initial 8 clocks of the command field. During an extended write access, the data is written to the registers every 8 clock cycles after the initial 8 clocks of the command field.

7.6 Register Map and Description

Table 1. Register Map⁽¹⁾⁽²⁾⁽³⁾

Register Name	Address	Direction	Default	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Device ID	0x00	RO	0x84				Devi	ce ID			
Rp_MAX	0x01	R/W	0x0E				Rp Ma	ıximum			
Rp_MIN	0x02	R/W	0x14				Rp Mi	nimum			
Watchdog Timer Frequency	0x03	R/W	0x45				Min Sensor	Frequency			
LDC Configuration	0x04	R/W	0x1B	F	Reserved(00	00)	Amp	litude	R	esponse Ti	me
Reserved	0x05	RO	0x01				Reserved(0000001)			
Reserved	0x06	R/W	0xFF ??				Rese	erved			
Comparator Threshold High MSB	0x07	R/W	0xFF	Threshold High MSB							
Reserved	0x08	R/W	0x00 ??	Reserved							
Comparator Threshold Low MSB	0x09	R/W	0x00				Threshold	Low MSB			
INTB Terminal Configuration	0x0A	R/W	0x00		Re	eserved(000	000)		I	NTB_MOD	E
Power Configuration	0x0B	R/W	0x00	Reserved(0000000)						PWR_M ODE	
Status	0x20	RO		OSC Dead	DRDYB	Wake-up	Compara tor		Do No	ot Care	•
Reserved	0x21	RO					Reserved(00000000)			
Proximity Data	0x22	RO		Proximity Data							
Reserved	0x23	RO		Reserved							
Reserved	0x24	RO					Rese	erved			
Reserved	0x25	RO					Rese	erved			

⁽¹⁾ Values of register fields which are unused should be set to default values only.
(2) Registers 0x01 through 0x05 are Read Only when the part is awake (PWR_MODE bit is SET)
(3) R/W: Read/Write. RO: Read Only. WO: Write Only.

Table 2. Revision ID

Address = 0x00, Default=0x84, Direction=RO		
Bit Field Field Name Description		
7:0	Revision ID	Revision ID of Silicon.

Table 3. Rp_MAX

Address = 0x01, Default=0x0E, Direction=R/W		
Bit Field	Field Name	Description
7:0	Rp Maximum	Maximum Rp that LDC1051 needs to measure. Configures the input dynamic range of LDC1051. See Table 4 for register settings.

Table 4. Register Settings for Rp_MAX

Register setting	Rp (kΩ)
0x00	3926.991
0x01	3141.593
0x02	2243.995
0x03	1745.329
0x04	1308.997
0x05	981.748
0x06	747.998
0x07	581.776
0x08	436.332
0x09	349.066
0x0A	249.333
0x0B	193.926
0x0C	145.444
0x0D	109.083
0x0E	83.111
0x0F	64.642
0x10	48.481
0x11	38.785
0x12	27.704
0x13	21.547
0x14	16.160
0x15	12.120
0x16	9.235
0x17	7.182
0x18	5.387
0x19	4.309
0x1A	3.078
0x1B	2.394
0x1C	1.796
0x1D	1.347
0x1E	1.026
0x1F	0.798

Table 5. Rp_MIN

Address = 0x02, Default=0x14, Direction=R/W		
Bit Field	Field Name	Description
7:0		Minimum Rp that LDC1051 needs to measure. Configures the input dynamic range of LDC1051. See Table 6 for register settings. (1)

⁽¹⁾ This Register needs a mandatory write as it defaults to 0x14.

Table 6. Register Settings for Rp_MIN

Register setting	Rp (kΩ)
0x20	3926.991
0x21	3141.593
0x22	2243.995
0x23	1745.329
0x24	1308.997
0x25	981.748
0x26	747.998
0x27	581.776
0x28	436.332
0x29	349.066
0x2A	249.333
0x2B	193.926
0x2C	145.444
0x2D	109.083
0x2E	83.111
0x2F	64.642
0x30	48.481
0x31	38.785
0x32	27.704
0x33	21.547
0x34	16.160
0x35	12.120
0x36	9.235
0x37	7.182
0x38	5.387
0x39	4.309
0x3A	3.078
0x3B	2.394
0x3C	1.796
0x3D	1.347
0x3E	1.026
0x3F	0.798

Table 7. Watchdog Timer Frequency

Address = 0x03, Default=0x45, Direction=R/W		
Bit Field	Field Name	Description
7:0	Min Sensor Frequency	Sets the watchdog timer. The Watchdog timer is set based on the lowest sensor frequency. $N = 68.94 \times log_{10} \left(\frac{F}{2500}\right)$ where $ \bullet \text{F is the sensor frequency} $

Table 8. LDC Configuration

Address = 0x04, Default=0x1B, Direction=R/W		
Bit Field	Field Name	Description
7:5	Reserved	Reserved to 0
4:3	Amplitude	Sets the oscillation amplitude
		00:1V
		01:2V
		10:4V
		11:Reserved
2:0	Response Time	000: Reserved
		001: Reserved
		010: 192
		011: 384
		100: 768
		101: 1536
		110: 3072
		111: 6144

Table 9. Comparator Threshold High MSB

Address = 0x07, Default=0xFF, Direction=R/W		
Bit Field	Field Name	Description
7:0	Threshold High	Threshold High Register.

Table 10. Comparator Threshold Low MSB

Address = 0x09, Default=0x00, Direction=R/W		
Bit Field	Field Name	Description
7:0	Threshold Low	Threshold Low Register.

Table 11. INTB Terminal Configuration

Address = 0x0A, Default=0x00, Direction=R/W		
Bit Field	Field Name	Description
7:3	Reserved	Reserved to 0
2:0	Mode	000: All modes disabled
		001: Wake-up Enabled on INTB terminal
		010: INTB terminal indicates the status of Comparator output
		100: DRDYB Enabled on INTB terminal
		All other combinations are Reserved

Table 12. Power Configuration

Address = 0x0B, Default=0x00, Direction=R/W		
Bit Field	Field Name	Description
7:1	Reserved	Reserved to 0
0	PWR_MODE	0:Stand-By mode 1:Active Mode. Conversion is Enabled Refer to Power Modes for more details.

Table 13. Status

Address = 0x20, Default=NA, Direction=RO		
Bit Field	Field Name	Description
7	OSC status	1:Indicates oscillator overloaded and stopped
		0:Oscillator working
6	Data Ready	1:No new data available
		0:Data is ready to be read
5	Wake-up	1:Wake-up disabled
		0:Wake-up triggered. Proximity data is more than Threshold High value.
4	Comparator	1:Proximity data is less than Threshold Low value
		0:Proximity data is more than Threshold High value
3:0	Do not Care	

Table 14. Proximity Data

Address = 0x22, Default=NA, Direction=RO						
Bit Field Field Name		Description				
7:0	Proximity data	Proximity data				

Conversion data is updated to the proximity register only when a read is initiated on 0x22 register. If the read is delayed between subsequent conversions, these registers are not updated until another read is initiated on 0x22.

TEXAS INSTRUMENTS

8 Applications and Implementation

8.1 Application Information

8.1.1 Calculation of Rp_MIN and Rp_MAX

Different sensing applications may have a different range of the resonance impedance Rp to measure. The LDC1051 measurement range of Rp is controlled by setting 2 registers – Rp_MIN and Rp_MAX. For a given application, Rp must never be outside the range set by these register values, otherwise the measured value will be clipped. For optimal sensor resolution, the range of Rp_MIN to Rp_MAX should not be unnecessarily large. The following procedure is recommended to determine the Rp_MIN and Rp_MAX register values.

8.1.1.1 Setting Rp_MAX

Rp_MAX sets the upper limit of the LDC1051 resonant impedance input range.

- Configure the sensor such that the eddy current losses are minimized. As an example, for a proximity sensing
 application, set the distance between the sensor and the target to the maximum sensing distance.
- Measure the resonant impedance Rp using an impedance analyzer.
- Multiply Rp by 2 and use the next higher value from Table 4.

Note that setting Rp_MAX to a value not listed in Table 4 can result in indeterminate behavior.

8.1.1.2 Setting Rp MIN

Rp_MIN sets the lower limit of the LDC1051 resonant impedance input range.

- Configure the sensor such that the eddy current losses are maximized. As an example, for a proximity sensing application, set the distance between the sensor and the metal target to the minimum sensing distance.
- Measure the resonant impedance Rp using an impedance analyzer.
- Divide the Rp value by 2 and then select the next lower Rp value from Table 6.

Note that setting Rp_MIN to a value not listed on Table 6 can result in indeterminate behavior. In addition, Rp_MIN powers on with a default value of 0x14 which must be set to a value from Table 6 prior to powering on the LDC.

8.1.2 Output Data Rate

Output data rate of LDC1051 depends on the sensor frequency, f_{sensor} and 'Response Time' field in LDC Configuration register(Address:0x04).

Output Data Rate =
$$\frac{t_{sensor}}{\left(\frac{Response\ time}{3}\right)}$$
(4)

8.1.3 Choosing Filter Capacitor (CFA and CFB Terminals)

The Filter capacitor is critical to the operation of the LDC1051. The capacitor should be low leakage, temperature stable, and it must not generate any piezoelectric noise (the dielectrics of many capacitors exhibit piezoelectric characteristics and any such noise is coupled directly through Rp into the converter). The optimal capacitance values range from 20pF to 100nF. The value of the capacitor is based on the time constant and resonating frequency of the LC tank.

If a ceramic capacitor is used, then a C0G (or NP0) grade dielectric is recommended; the voltage rating should be ≥10V. The traces connecting CFA and CFB to the capacitor should be as short as possible to minimize any parasitics.

For optimal performance, the chosen filter capacitor, connected between terminals CFA and CFB, needs to be as small as possible, but large enough such that the active filter does not saturate. The size of this capacitor depends on the time constant of the sense coil, which is given by L/Rs, (L=inductance, Rs=series resistance of the inductor at oscillation frequency). The larger this time constant, the larger filter capacitor is required. Hence, this time constant reaches its maximum when there is no target present in front of the sensing coil.

Application Information (continued)

The following procedure can be used to find the optimal filter capacitance:

- 1. Start with a large filter capacitor. For a ferrite core coil, 10nF is usually large enough. For an air coil or PCB coil, 100pF is usually large enough.
- 2. Power on the LDC and set the desired register values. Minimize the eddy currents losses. This is done by minimizing the amount of conductive target covering the sensor. For an axial sensing application, the target should be at farthest distance from coil. For a lateral or angular position sensing application, the target coverage of the coil should be minimized.
- 3. Observe the signal on the CFB terminal using a scope. Since this node is very sensitive to capacitive loading, it is recommended to use an active probe. As an alternative, a passive probe with a $1k\Omega$ series resistance between the tip and the CFB terminal can be used.
- 4. Vary the values of the filter capacitor until that the signal observed on the CFB terminal has an amplitude of approximate 1V peak-to-peak. This signal scales linearly with the reciprocal of the filter capacitance. For example, if a 100pF filter capacitor is applied and the signal observed on the CFB terminal has a peak-to-peak value of 200mV, the desired 1V peak-to-peak value is obtained using a 200mV / 1V * 100pF = 20pF filter capacitor.

8.2 Typical Applications

8.2.1 Axial Distance Sensing Using a PCB Sensor with LDC1051

Figure 16. Typical Application Schematic, LDC10xx

8.2.1.1 Design Requirements

For this design example, use the following as the input parameters.

Table 15. Design	gn Parameters
------------------	---------------

DESIGN PARAMETER	EXAMPLE VALUE
Minimum sensing distance	1 mm
Maximum sensing distance	8 mm
Output data rate	78 KSPS (Max data rate with LDC10xx series)
Number of PCB layers for sensor	2 layers

TEXAS INSTRUMENTS

8.2.1.2 Detailed Design Procedure

8.2.1.2.1 Sensor and Target

In this example, consider a sensor with the below characteristics.

Table 16. Sensor Characteristics

PARAMETER	VALUE			
Layers	2			
Thickness of copper	1 Oz			
Coil shape	Circular			
Number of turns	23			
Trace thickness	4 mil			
Trace spacing	4 mil			
PCB core material	FR4			
Rp @ 1 mm	5 kΩ			
Rp @ 8 mm	12.5 kΩ			
Nominal Inductance	18 µH			

Target material used is stainless steel

8.2.1.2.2 Calculating Sensor Capacitor

Sensor frequency depends on various factors in the application. In this example since one of the design parameter is to achieve output data rate of 78 KSPS, sensor frequency can be calculated as below.

Output Data Rate =
$$\frac{f_{sensor}}{\left(\frac{Response time}{3}\right)}$$
 (5)

With the lowest Response time of 192 and output data rate of 78 KSPS, sensor frequency calculated using the above formula is 4.99 MHz.

Now, using the below formula sensor capacitor is calculated to be 55 pF with a sensor inductance of 18 µH

$$L = \frac{1}{C \times (2\pi \times f_{sensor})^2}$$
 (6)

8.2.1.2.3 Choosing Filter Capacitor

Using the steps given in Choosing Filter Capacitor (CFA and CFB Terminals) filter capacitor for the example sensor is 20 pF. Below waveform shows the pattern on CFB terminal with 100 pF and 20 pF filter capacitor.

8.2.1.2.4 Setting Rp_MIN and Rp_MAX

Calculating value for Rp_MAX Register : Rp at 8mm is $12.5k\Omega$, 12500x2 = 25000. In Table 4, then $27.704 k\Omega$ is the nearest value larger than $25k\Omega$; this corresponds to Rp_MAX value of 0x12

Calculating value for Rp_MIN Register : Rp at 1mm is $5k\Omega$, 5000/2 = 2500. In Table 6, $2.394k\Omega$ is the nearest value lower than $2.5k\Omega$; this corresponds to Rp_MIN value of 0x3B

8.2.1.2.5 Calculating Minimum Sensor Frequency

Using,

$$N = 68.94 \times \log_{10} \left(\frac{F}{2500} \right) \tag{7}$$

N is 227.51, round off to 228 decimal. This value has to be written into Watchdog Timer Register, which is used to wake up the internal circuit when the sensor is saturated.

8.2.1.3 Application Curves

Figure 19. Rp vs Distance

TEXAS INSTRUMENTS

8.2.2 Lateral Position Sensing Application Diagram

Figure 20. Linear Position Sensing

8.2.3 Angular Position Sensing Application Diagram

Figure 21. Angular Position Sensing

9 Power Supply Recommendations

The LDC1051 is designed to operate from an analog supply range of 4.75 V to 5.25 V and digital I/O supply range of 1.8V to 5.25V. The analog supply voltage should be greater than or equal to the digital supply voltage for proper operation of the device. The supply voltage should be well regulated. If the supply is located more than a few inches from the LDC1051 additional bulk capacitance may be required in addition to the ceramic bypass capacitors. An electrolytic capacitor with a value of 10uF is a typical choice.

10 Layout

10.1 Layout Guidelines

- The VDD and VIO terminal should be bypassed to ground with a low ESR ceramic bypass capacitor. The typical recommended bypass capacitance is 0.1uF ceramic with a X5R or X7R dielectric.
- The optimum placement is closest to the VDD/VIO and GND/DGND terminals of the device. Care should be taken to minimize the loop area formed by the bypass capacitor connection, the VDD/VIO terminal, and the GND/DGND terminal of the IC. See Figure 22 for a PCB layout example.
- The CLDO terminal should be bypassed to digital ground (DGND) with a 56nF ceramic bypass capacitor.
- The filter capacitor selected for the application using the procedure described in section Choosing Filter
 Capacitor (CFA and CFB Terminals) is connected between CFA and CFB terminals. Place the filter capacitor
 close to the CFA and CFB terminals. Do not use any ground/power plane below the capacitor and the trace
 connecting the capacitor and the CFA /CFB terminals.
- Use of two separate ground plane for GND and DGND is recommended with a start connection. See Figure 22 for a PCB layout example.

TEXAS INSTRUMENTS

10.2 Layout Example

Top Layer

Bottom Layer

Figure 22. LDC10xx Board Layout

器件和文档支持 11

11.1 Trademarks

All trademarks are the property of their respective owners.

11.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.3 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms and definitions.

12 机械封装和可订购信息

以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对 本文档进行修订的情况下发生改变。要获得这份数据表的浏览器版本,请查阅左侧导航栏。

重要声明

德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据 JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售都遵循在订单确认时所提供的TI 销售条款与条件。

TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。

TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,客户应提供充分的设计与操作安全措施。

TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。

对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行 复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。

在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。

客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而对 TI 及其代理造成的任何损失。

在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。

TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。

只有那些 TI 特别注明属于军用等级或"增强型塑料"的 TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有法律和法规要求。

TI 己明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要求,TI不承担任何责任。

	产品		应用
数字音频	www.ti.com.cn/audio	通信与电信	www.ti.com.cn/telecom
放大器和线性器件	www.ti.com.cn/amplifiers	计算机及周边	www.ti.com.cn/computer
数据转换器	www.ti.com.cn/dataconverters	消费电子	www.ti.com/consumer-apps
DLP® 产品	www.dlp.com	能源	www.ti.com/energy
DSP - 数字信号处理器	www.ti.com.cn/dsp	工业应用	www.ti.com.cn/industrial
时钟和计时器	www.ti.com.cn/clockandtimers	医疗电子	www.ti.com.cn/medical
接口	www.ti.com.cn/interface	安防应用	www.ti.com.cn/security
逻辑	www.ti.com.cn/logic	汽车电子	www.ti.com.cn/automotive
电源管理	www.ti.com.cn/power	视频和影像	www.ti.com.cn/video
微控制器 (MCU)	www.ti.com.cn/microcontrollers		
RFID 系统	www.ti.com.cn/rfidsys		
OMAP应用处理器	www.ti.com/omap		
无线连通性	www.ti.com.cn/wirelessconnectivity	德州仪器在线技术支持社区	www.deyisupport.com

邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122 Copyright © 2014, 德州仪器半导体技术(上海)有限公司

PACKAGE OPTION ADDENDUM

17-May-2014

PACKAGING INFORMATION

www.ti.com

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
LDC1051NHRJ	ACTIVE	WSON	NHR	16	4500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	LDC1051	Samples
LDC1051NHRR	ACTIVE	WSON	NHR	16	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	LDC1051	Samples
LDC1051NHRT	ACTIVE	WSON	NHR	16	250	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	LDC1051	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): Tl's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, Tl Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

PACKAGE OPTION ADDENDUM

17-May-2014

continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

重要声明

德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据 JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售都遵循在订单确认时所提供的TI 销售条款与条件。

TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。

TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,客户应提供充分的设计与操作安全措施。

TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。

对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。

在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。

客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而对 TI 及其代理造成的任何损失。

在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。

TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。

只有那些 TI 特别注明属于军用等级或"增强型塑料"的 TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有法律和法规要求。

TI 己明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要求,TI不承担任何责任。

	产品		应用
数字音频	www.ti.com.cn/audio	通信与电信	www.ti.com.cn/telecom
放大器和线性器件	www.ti.com.cn/amplifiers	计算机及周边	www.ti.com.cn/computer
数据转换器	www.ti.com.cn/dataconverters	消费电子	www.ti.com/consumer-apps
DLP® 产品	www.dlp.com	能源	www.ti.com/energy
DSP - 数字信号处理器	www.ti.com.cn/dsp	工业应用	www.ti.com.cn/industrial
时钟和计时器	www.ti.com.cn/clockandtimers	医疗电子	www.ti.com.cn/medical
接口	www.ti.com.cn/interface	安防应用	www.ti.com.cn/security
逻辑	www.ti.com.cn/logic	汽车电子	www.ti.com.cn/automotive
电源管理	www.ti.com.cn/power	视频和影像	www.ti.com.cn/video
微控制器 (MCU)	www.ti.com.cn/microcontrollers		
RFID 系统	www.ti.com.cn/rfidsys		
OMAP应用处理器	www.ti.com/omap		
无线连通性	www.ti.com.cn/wirelessconnectivity	德州仪器在线技术支持社区	www.deyisupport.com

邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122 Copyright © 2014, 德州仪器半导体技术(上海)有限公司