YYYYXYYYYY

Challenges for new CAR-T therapies

Nigel Yateman BBS Seminar, March 22, 2021

Recent rapid growth in CAR-T development

New trials with CAR-T therapies:

13 in 2013 vs. 103 in 2018

Yu et al., Nature Review Drug Discoveries (2019)

CAR-T therapies by target 2019 → 2020

• CD19: 126 → 191 +52%

• BCMA: $34 \rightarrow 57 + 68\%$

Yu et al., Nature Review Drug Discoveries (2020)

Approved CAR-Ts becoming standard of care

CAR-T	Study	Indication	1 st approval
Kymriah® tisagenlecleucel	Eliana	3L pedALL	2017
Yescarta® axicabtagene ciloleucel	Zuma-1	3L DLBCL	2018
Kymriah® tisagenlecleucel	Juliet	3L DLBCL	2018
Tecartus® brexucabtagene autoleucel	Zuma-2	2L MCL	2020
Breyanzi® lisocabtagene maraleucel	Transcend	3L DLBCL	2021
Yescarta® axicabtagene ciloleucel	Zuma-5	3L FL	2021
	all single arm pivotal trials		

+ more expected in 2021 and beyond:

- 41 MM
- 2L DLBCL transplant eligible
- 3LaALL

- rare populations (orphan designation)

- all single arm pivotal trials high unmet need in last line of therapy with no effective SOC
 - highly promising early data impacting ethics/integrity of RCT

"CAR-T ... represents major paradigm shift in ... r/r DLBCL" Sehn & Salles, NEJM 2021

Very encouraging for patients – but can we do better?

2L,3L,4L=second,third fourth line; pedALL=pediatric acute lymphoblastic leukemia; DLBCL=diffuse large B-cell lymphoma; MCL=mantle cell lymphoma; FL=follicular lymphoma; MM=multiple melanoma; aALL=adult acute lymphoblastic leukemia; SOC=standard of care; RCT=randomized controlled trial; r/r=relapsed/refractory

New CAR-Ts can further improve patient outcomes

- Rapid cycles of technical and scientific innovation are creating new CAR-T therapies to further mprove patient outcomes versus existing CAR-Ts:
 - improved product characteristics (e.g., T cell phenotype composition, fully human potent vector, enhanced persistence, dual CAR-Ts to address antigen escape)
 - > potentially better durability of response + improved safety
 - improved/alternative manufacturing (e.g., turn-around time, reliability, allogenic)
 - > better serve patients, especially those with rapidly progressing disease
- Compared with the "paradigm shift" impact of the first CAR-Ts on outcomes ...
 - ... more modest incremental benefits are expected for new CAR-Ts
- What are implications on clinical development of new CAR-Ts?

Challenge of RCT: new CAR-T vs approved CAR-T

- Gold standard is RCT (e.g., Collins et al., NEJM 2020)
- Operational hurdles of CAR-T control arm
 - RCT could only enroll at limited number of qualified centers where control arm CAR-T is approved
 - some centers restrict number of CAR-Ts.
 - others not able to participate (infrastructure, low patients)
 - manufacturing capacity of approved CAR-Ts still limited
 - could impact control arm slot availability
 - risk of long turn-around times on control arm (bias?)
- Likely large sample size / lengthy development time
 - delays patient access to potentially better therapy
 - possibly beyond capacity of any single manufacturer

Challenge of RCT: new CAR-T vs. non-CAR-T

- Blinding not possible \rightarrow risk of bias e.g., control arm patients withdraw consent
 - compromises trial credibility, renders ITT analysis uninterpretable e.g., Checkmate-37 (2015), not treated: 1.5% vs. 23% (active vs. control)
 - can be mitigated by offering cross-over
 - however, this compromises comparison of OS

- Choice of control arm may be difficult in rapidly evolving indications
 - e.g., for 4L MM, current approved therapies include belantamab and selinexor, but:
 - many BCMA-directed therapies in clinical development: 2 ADCs, 13 CAR-Ts, 6 bispecifics (Yu et al., JHemOnc (2020)), plus additional 2 (non-BCMA) bispecifics at ASH2020
 - regional differences in SOC
- Success probably requires (1) positive trial + (2) favorable results of indirect comparison between new CAR-T arm and published data on approved CAR-T

Opportunity for RWE?

- Avoids operational hurdles of CAR-T control arm in RCT
- Likely shorter development time
 - quicker access to patients
 - more attractive to manufacturers, encourages innovation
- RWD can capture contemporaneous SOC, including newly emerging comparators
 - obtained prospectively in similar time-frame to single arm trial
- May be only possibility in rare indications, e.g., MCL

single arm new CAR-T

RWE on approved CAR-T

external control

How?

- Single arm trial with hypothesis test
 - efficacy threshold based on historical benchmark
- Patient-level RWD to contextualize
 - indirect comparison vs single arm to estimate treatment effect
 - also to support choice of efficacy threshold used in single arm trial

Challenge of RWE external control

single arm

new CAR-T

- Data quality, provenance and completeness
- RWE on approved CAR-T external control

- Selection bias and confounding
 - possibly present even if selecting all patients who meet incl./excl. criteria of trial
 - lack of randomization means cannot guarantee comparable populations, could be differences in known (or unknown) prognostic factors
- RWE analysis set best matched or all meeting incl./excl. of trial?
- Differences in real-world vs. trial-based endpoints (e.g., response criteria)
 - subjective measures may be unreliable (absence of blinding)
- Availability of index time in RWE?
 - e.g., date of leukapheresis? date leukapheresis product accepted at manufacturing facility?

Guiding principles for high quality RWE

- Pre-specification of a study protocol and SAP for a prospective RWE study
 - use of target trial framework (Hernan & Robins, AmJEpi (2016)) similar to estimand framework
 to identify the causal question of primary interest and align RWD selection with this in a transparent and structured way
 - prospectively engage with regulators, show not cherry-picking favorable data
- Obtain high-quality <u>patient-level</u> data from reliable and traceable sources
- Appropriate cohort selection based on matching inclusion/exclusion
- Suitability of real-world endpoints
- Fit-for-purpose analytical methodologies

Challenges for new CAR-Ts

new CAR-T

approved CAR-T

- Operational hurdles (for approved CAR-T control arm)
- Time/resource heavy

R

new CAR-T

non-CAR-T

- Risk of bias due to consent withdrawal in control arm
- Choice of SOC may not be relevant at end of study
- Likely also need favorable result from indirect comparison vs. approved CAR-Ts

single arm

new CAR-T

RWE on approved CAR-T

external control

- Data quality
- Risk of bias
- Regulator/payer skepticism

Closing remarks

- Other challenges for new CAR-Ts
 - Non-proportional hazards as CAR-Ts are yielding long term responders
 - analysis by weighted log-rank, RMST, landmark?
 - Heterogeneity in requirements of regulators/payers
 - single arm trials in rare diseases more frequently acceptable to FDA/PMDA compared with EMA and EU payers
 - many HTA bodies do not accept PFS, although it is often primary endpoint for regulatory approval

- More dialogue in future between all stakeholders
 - aim to bring transformative new CAR-Ts to patients as soon as possible