Logique et Fondements de l'informatique I

M. Ledmi m_ledmi@esi.dz

Département d'Informatique Khenchela

Octobre 2012

Plan

- Introduction
- 2 Syntaxe
 - Signature
 - Terme
 - Formules, Formules Atomiques

Vous êtes ici

- Introduction
- 2 Syntaxe

Calcul propositionnel

Le calcul propositionnel est bien trop limité pour décrire des situations réelles.

• Il ne permet que de décrire des phrases dont la vérité ne dépend pas des individus

Calcul propositionnel

- Il ne permet que de décrire des phrases dont la vérité ne dépend pas des individus
 - "Il pleut";

Calcul propositionnel

- Il ne permet que de décrire des phrases dont la vérité ne dépend pas des individus
 - "Il pleut";
- Il ne peut pas représenter des phrases qui mettent en jeu des individus ou des objets

Calcul propositionnel

- Il ne permet que de décrire des phrases dont la vérité ne dépend pas des individus
 - "Il pleut";
- Il ne peut pas représenter des phrases qui mettent en jeu des individus ou des objets
 - "Si x est le père de y et si z est le père de x alors z est un grand-père de y"

Calcul propositionnel

- Il ne permet que de décrire des phrases dont la vérité ne dépend pas des individus
 - "Il pleut";
- Il ne peut pas représenter des phrases qui mettent en jeu des individus ou des objets
 - "Si x est le père de y et si z est le père de x alors z est un grand-père de y"
 - "Tout individu a un père".

Calcul des prédicats

Le calcul des prédicats (ou Logique du Premier Ordre) permet d'exprimer de telles relations entre individus,

• Il est donc bien plus riche que le calcul propositionnel.

Calcul des prédicats

- Il est donc bien plus riche que le calcul propositionnel.
- Il contient des:

Calcul des prédicats

- Il est donc bien plus riche que le calcul propositionnel.
- Il contient des :
 - Individus (entités) donnés par des symboles de variables (x,y,z,\ldots) .

Calcul des prédicats

- Il est donc bien plus riche que le calcul propositionnel.
- Il contient des :
 - Individus (entités) donnés par des symboles de variables (x,y,z,\ldots) .
 - Fonctions (f, g, ...) permettant de transformer des entités en autres entités (par exemple la fonction qui associe une personne à son père),

Calcul des prédicats

- Il est donc bien plus riche que le calcul propositionnel.
- Il contient des:
 - Individus (entités) donnés par des symboles de variables (x,y,z,\ldots) .
 - Fonctions (f, g, ...) permettant de transformer des entités en autres entités (par exemple la fonction qui associe une personne à son père),
 - et, Relations (P,Q,R,\ldots) permettant de lier les individus entre eux.

(*) Calcul des prédicats

L'objectif de ce chapitre est alors de définir calcul des prédicats. Comme pour le calcul propositionnel,

• On va le faire en parlant d'abord de la *syntaxe*, c'est-à-dire comment on écrit les formules,

Calcul des prédicats

L'objectif de ce chapitre est alors de définir calcul des prédicats. Comme pour le calcul propositionnel,

- On va le faire en parlant d'abord de la syntaxe, c'est-à-dire comment on écrit les formules,
- Puis de leur sémantique.

Calcul des prédicats

L'objectif de ce chapitre est alors de définir calcul des prédicats. Comme pour le calcul propositionnel,

- On va le faire en parlant d'abord de la syntaxe, c'est-à-dire comment on écrit les formules,
- Puis de leur sémantique.
- On aura également des *systèmes de preuve* pour démontrer ou réfuter des formules.

Vous êtes ici

- Introduction
- 2 Syntaxe
 - Signature
 - Terme
 - Formules, Formules Atomiques

Pour écrire une formule d'un langage du premier ordre, on utilise certains symboles qui sont communs à tous les langages, et certains symboles qui varient d'un langage à l'autre.

Pour écrire une formule d'un langage du premier ordre, on utilise certains symboles qui sont communs à tous les langages, et certains symboles qui varient d'un langage à l'autre.

§ Symboles communs

• les connecteurs $\neg, \land, \lor, \Rightarrow, \Leftrightarrow$;

Introduction

Pour écrire une formule d'un langage du premier ordre, on utilise certains symboles qui sont communs à tous les langages, et certains symboles qui varient d'un langage à l'autre.

- les connecteurs $\neg, \land, \lor, \Rightarrow, \Leftrightarrow$;
- les parenthèses (et) et la virgule ,;

Introduction

Pour écrire une formule d'un langage du premier ordre, on utilise certains symboles qui sont communs à tous les langages, et certains symboles qui varient d'un langage à l'autre.

- les connecteurs $\neg, \land, \lor, \Rightarrow, \Leftrightarrow$;
- les parenthèses (et) et la virgule ,;
- le quantificateur universel \forall et le quantificateur existentiel \exists ;

Introduction

Pour écrire une formule d'un langage du premier ordre, on utilise certains symboles qui sont communs à tous les langages, et certains symboles qui varient d'un langage à l'autre.

- les connecteurs $\neg, \land, \lor, \Rightarrow, \Leftrightarrow$;
- les parenthèses (et) et la virgule,;
- le quantificateur universel \forall et le quantificateur existentiel \exists ;
- ullet un ensemble infini dénombrable de symboles ${\mathcal V}$ de variables.

Introduction

Pour écrire une formule d'un langage du premier ordre, on utilise certains symboles qui sont communs à tous les langages, et certains symboles qui varient d'un langage à l'autre.

- les connecteurs $\neg, \land, \lor, \Rightarrow, \Leftrightarrow$;
- les parenthèses (et) et la virgule,;
- le quantificateur universel \forall et le quantificateur existentiel \exists ;
- ullet un ensemble infini dénombrable de symboles ${\mathcal V}$ de variables.

Introduction

Pour écrire une formule d'un langage du premier ordre, on utilise certains symboles qui sont communs à tous les langages, et certains symboles qui varient d'un langage à l'autre.

§ Symboles communs

- les connecteurs $\neg, \land, \lor, \Rightarrow, \Leftrightarrow$;
- les parenthèses (et) et la virgule,;
- le quantificateur universel \forall et le quantificateur existentiel \exists ;
- ullet un ensemble infini dénombrable de symboles ${\mathcal V}$ de variables.

Les symboles qui peuvent varier d'un langage à l'autre sont capturés par la notion de **signature**. Une signature fixe les symboles de *constantes*, les symboles de *fonctions* et les symboles de *relations* qui sont autorisés.

Signature

Signature

La signature

$$\Sigma = (\mathcal{C}, \mathcal{F}, \mathcal{R})$$

d'un un langage du premier ordre est la donnée :

 $oldsymbol{0}$ d'un ensemble $\mathcal C$ de symboles, appelés symboles de constantes;

Signature

Signature

La signature

$$\Sigma = (\mathcal{C}, \mathcal{F}, \mathcal{R})$$

d'un un langage du premier ordre est la donnée :

- lacktriangle d'un ensemble $\mathcal C$ de symboles, appelés symboles de constantes;
- ② d'un ensemble \mathcal{F} de symboles, appelés symboles de fonctions. A chaque symbole de cet ensemble est associé un entier strictement positif, que l'on appelle son $arit\acute{e}$.

Signature

Signature

La signature

$$\Sigma = (\mathcal{C}, \mathcal{F}, \mathcal{R})$$

d'un un langage du premier ordre est la donnée :

- lacktriangle d'un ensemble $\mathcal C$ de symboles, appelés symboles de constantes;
- ${\mathfrak S}$ d'un ensemble ${\mathcal F}$ de symboles, appelés symboles de fonctions. A chaque symbole de cet ensemble est associé un entier strictement positif, que l'on appelle son $arit\acute{e}$.
- \odot d'un ensemble \mathcal{R} de symboles, appelés symboles de relations. A chaque symbole de cet ensemble est associé un entier strictement positif, que l'on appelle son $arit\acute{e}$.

Signature

$\mathbf{Remarques}$

• Une formule du premier ordre sera alors un mot sur l'alphabet :

$$\mathcal{A}(\Sigma) = \mathcal{V} \cup \mathcal{C} \cup \mathcal{F} \cup \mathcal{R} \cup \{\neg, \land, \lor, \Rightarrow, \Leftrightarrow, (,), ,, =, \forall, \exists\}$$

Signature

Remarques

• Une formule du premier ordre sera alors un mot sur l'alphabet :

$$\mathcal{A}(\Sigma) = \mathcal{V} \cup \mathcal{C} \cup \mathcal{F} \cup \mathcal{R} \cup \{\neg, \land, \lor, \Rightarrow, \Leftrightarrow, (,), ,, =, \forall, \exists\}$$

• On suppose que V, C, F, R sont des ensembles disjoints deux à deux.

Signature

Remarques

• Une formule du premier ordre sera alors un mot sur l'alphabet :

$$\mathcal{A}(\Sigma) = \mathcal{V} \cup \mathcal{C} \cup \mathcal{F} \cup \mathcal{R} \cup \{\neg, \land, \lor, \Rightarrow, \Leftrightarrow, (,), ,, =, \forall, \exists\}$$

- On suppose que V, C, F, R sont des ensembles disjoints deux à deux.
- On convient que x,y,z,u et v désignent des variables, c'est-à-dire des éléments de \mathcal{V} . a,b,c et d désigneront des constantes, c'est-à-dire des éléments de \mathcal{C} .

Signature

Exemple 1

On peut considérer la signature :

$$\Sigma = (\{0,1\}, \{(s,1), (+,2), (\times,2)\}, \{(\leq,2)\})$$

qui possède:

Signature

Exemple 1

On peut considérer la signature :

$$\Sigma = (\{0,1\}, \{(s,1), (+,2), (\times,2)\}, \{(\leq,2)\})$$

qui possède:

• le symbole des constantes 0, 1,

Signature

Exemple 1

On peut considérer la signature :

$$\Sigma = (\{0,1\}, \{(s,1), (+,2), (\times,2)\}, \{(\leq,2)\})$$

qui possède:

- le symbole des constantes 0, 1,
- le symboles de fonctions + et \times d'arité 2,

Signature

& Exemple 1

On peut considérer la signature :

$$\Sigma = (\{0,1\}, \{(s,1), (+,2), (\times,2)\}, \{(\leq,2)\})$$

qui possède:

- le symbole des constantes 0, 1,
- le symboles de fonctions + et \times d'arité 2,
- le symbole de fonction s d'arité 1,

Signature

On peut considérer la signature :

$$\Sigma = (\{0,1\}, \{(s,1), (+,2), (\times,2)\}, \{(\leq,2)\})$$

qui possède :

- le symbole des constantes 0, 1,
- le symboles de fonctions + et \times d'arité 2,
- \bullet le symbole de fonction s d'arité 1,
- les symboles de relations \leq d'arité 2.

Signature

Exemple 2

On peut considérer la signature :

$$\Sigma = (\{\emptyset\}, \{(\cup, 2), (\cap, 2), (C, 1)\}, \{(\subset, 2), (=, 2)\})$$

qui possède:

Signature

Exemple 2

On peut considérer la signature :

$$\Sigma = (\{\emptyset\}, \{(\cup, 2), (\cap, 2), (C, 1)\}, \{(\subset, 2), (=, 2)\})$$

qui possède:

• le symbole de constante \emptyset ,

Signature

Exemple 2

On peut considérer la signature :

$$\Sigma = (\{\emptyset\}, \{(\cup, 2), (\cap, 2), (C, 1)\}, \{(\subset, 2), (=, 2)\})$$

qui possède:

- le symbole de constante \emptyset ,
- le symboles de fonctions \cup et \cap d'arité 2,

Signature

Exemple 2

On peut considérer la signature :

$$\Sigma = (\{\emptyset\}, \{(\cup, 2), (\cap, 2), (C, 1)\}, \{(\subset, 2), (=, 2)\})$$

qui possède:

- le symbole de constante \emptyset ,
- le symboles de fonctions \cup et \cap d'arité 2,
- le symbole de fonction C d'arité 1,

Signature

Exemple 2

On peut considérer la signature :

$$\Sigma = (\{\emptyset\}, \{(\cup, 2), (\cap, 2), (C, 1)\}, \{(\subset, 2), (=, 2)\})$$

qui possède:

- le symbole de constante \emptyset ,
- le symboles de fonctions \cup et \cap d'arité 2,
- le symbole de fonction C d'arité 1,
- les symboles de relations ⊂,= d'arité 2.

Terme

Soit La signature $\Sigma = (\mathcal{C}, \mathcal{F}, \mathcal{R})$.

Terme sur une signature

L'ensemble T des termes sur la signature Σ est le plus petit ensemble tel que :

• Toute variable est un terme : $\mathcal{V} \subset T$;

Terme

Soit La signature $\Sigma = (\mathcal{C}, \mathcal{F}, \mathcal{R})$.

Terme sur une signature

L'ensemble T des termes sur la signature Σ est le plus petit ensemble tel que :

- Toute variable est un terme : $\mathcal{V} \subset T$;
- Toute constante est un terme : $\mathcal{C} \subset T$;

Terme

Soit La signature $\Sigma = (\mathcal{C}, \mathcal{F}, \mathcal{R})$.

R Terme sur une signature

L'ensemble T des termes sur la signature Σ est le plus petit ensemble tel que :

- Toute variable est un terme : $\mathcal{V} \subset T$;
- Toute constante est un terme : $\mathcal{C} \subset T$;
- Si f est un symbole de fonction d'arité n et si t_1, t_2, \ldots, t_n sont des termes, alors $f(t_1, t_2, \ldots, t_n)$ est un terme.

Terme

Soit La signature $\Sigma = (\mathcal{C}, \mathcal{F}, \mathcal{R})$.

R Terme sur une signature

L'ensemble T des termes sur la signature Σ est le plus petit ensemble tel que :

- Toute variable est un terme : $\mathcal{V} \subset T$;
- Toute constante est un terme : $\mathcal{C} \subset T$;
- Si f est un symbole de fonction d'arité n et si t_1, t_2, \ldots, t_n sont des termes, alors $f(t_1, t_2, \ldots, t_n)$ est un terme.

Terme

Soit La signature $\Sigma = (\mathcal{C}, \mathcal{F}, \mathcal{R})$.

Terme sur une signature

L'ensemble T des termes sur la signature Σ est le plus petit ensemble tel que :

- Toute variable est un terme : $\mathcal{V} \subset T$;
- Toute constante est un terme : $\mathcal{C} \subset T$;
- Si f est un symbole de fonction d'arité n et si t_1, t_2, \ldots, t_n sont des termes, alors $f(t_1, t_2, \ldots, t_n)$ est un terme.

• Un terme est dit **clos** si il ne contient aucune variable.

Terme

Exemple

$$\Sigma = (\{0,1\}, \{(s,1), (+,2), (\times,2)\}, \{(<,2)\})$$

$$\bullet ((s(s(0)) \times x) + s(y))$$

Terme

Exemple

$$\Sigma = (\{0,1\}, \{(s,1), (+,2), (\times,2)\}, \{(<,2)\})$$

• $((s(s(0)) \times x) + s(y))$ est un **terme**.

Terme

$$\Sigma = (\{0,1\}, \{(s,1), (+,2), (\times,2)\}, \{(<,2)\})$$

• $((s(s(0)) \times x) + s(y))$ est un **terme**.

Les termes peuvent être vu comme des arbres dont les **feuilles** sont des symboles de *variables* ou *constantes*, et le **nœuds** sont des symboles de *fonctions*.

Terme

Exemple

$$\Sigma = (\{0,1\}, \{(s,1), (+,2), (\times,2)\}, \{(<,2)\})$$

- $((s(s(0)) \times x) + s(y))$ est un **terme**.
- $((s(s(0)) \times s(0)) + s(s(0)))$ est un **terme** clos.

Les termes peuvent être vu comme des arbres dont les feuilles sont des symboles de variables ou constantes, et le nœuds sont des symboles de fonctions.

Terme

Exemple

$$\Sigma = (\{0,1\}, \{(s,1), (+,2), (\times,2)\}, \{(<,2)\})$$

- $((s(s(0)) \times x) + s(y))$ est un **terme**.
- $((s(s(0)) \times s(0)) + s(s(0)))$ est un **terme** clos.

Les termes peuvent être vu comme des arbres dont les feuilles sont des symboles de variables ou constantes, et le nœuds sont des symboles de fonctions.

Formule atomique

Soit La signature $\Sigma = (\mathcal{C}, \mathcal{F}, \mathcal{R})$.

? Formule atomique sur une signature

Une formule atomique sur la signature Σ est est une expression de la forme $R(t_1, t_2, \ldots, t_n)$, où :

• $R \in \mathcal{R}$ est un symbole de relation d'arité n;

Formule atomique

Soit La signature $\Sigma = (\mathcal{C}, \mathcal{F}, \mathcal{R})$.

? Formule atomique sur une signature

Une formule atomique sur la signature Σ est est une expression de la forme $R(t_1, t_2, \ldots, t_n)$, où :

- $R \in \mathcal{R}$ est un symbole de relation d'arité n;
- t_1, t_2, \ldots, t_n sont des termes sur Σ .

Formule atomique

Soit La signature $\Sigma = (\mathcal{C}, \mathcal{F}, \mathcal{R})$.

? Formule atomique sur une signature

Une formule atomique sur la signature Σ est est une expression de la forme $R(t_1, t_2, \ldots, t_n)$, où :

- $R \in \mathcal{R}$ est un symbole de relation d'arité n;
- t_1, t_2, \ldots, t_n sont des termes sur Σ .

Formule atomique

Soit La signature $\Sigma = (\mathcal{C}, \mathcal{F}, \mathcal{R})$.

? Formule atomique sur une signature

Une formule atomique sur la signature Σ est est une expression de la forme $R(t_1, t_2, \ldots, t_n)$, où :

- $R \in \mathcal{R}$ est un symbole de relation d'arité n;
- t_1, t_2, \ldots, t_n sont des termes sur Σ .

Exemple

$$\Sigma = (\{0,1\}, \{(s,1), (+,2), (\times,2)\}, \{(<,2)\})$$

•
$$x < y + s(x)$$
.

Formule atomique

Soit La signature $\Sigma = (\mathcal{C}, \mathcal{F}, \mathcal{R})$.

§Formule atomique sur une signature

Une formule atomique sur la signature Σ est est une expression de la forme $R(t_1, t_2, \ldots, t_n)$, où :

- $R \in \mathcal{R}$ est un symbole de relation d'arité n;
- t_1, t_2, \ldots, t_n sont des termes sur Σ .

Exemple

$$\Sigma = (\{0,1\}, \{(s,1), (+,2), (\times,2)\}, \{(<,2)\})$$

- x < y + s(x).
- $y = (s(x) \times (s(0) + s(x))).$

Formule

Soit La signature $\Sigma = (\mathcal{C}, \mathcal{F}, \mathcal{R})$.

? Formule sur une signature

L'ensemble $\mathcal{F}_{po}(\Sigma)$ des formules du premier ordre sur Σ est le plus petit ensemble tel que :

• Toute formule atomique sur Σ est une formule;

Formule

Soit La signature $\Sigma = (\mathcal{C}, \mathcal{F}, \mathcal{R})$.

? Formule sur une signature

L'ensemble $\mathcal{F}_{po}(\Sigma)$ des formules du premier ordre sur Σ est le plus petit ensemble tel que :

- Toute formule atomique sur Σ est une formule;
- Si φ est une formule, alors $\neg \varphi$ est une formule;

Formule

Soit La signature $\Sigma = (\mathcal{C}, \mathcal{F}, \mathcal{R})$.

? Formule sur une signature

L'ensemble $\mathcal{F}_{po}(\Sigma)$ des formules du premier ordre sur Σ est le plus petit ensemble tel que :

- Toute formule atomique sur Σ est une formule;
- Si φ est une formule, alors $\neg \varphi$ est une formule;
- si φ et ψ sont deux forumules, alors $\varphi \wedge \psi$, $\varphi \vee \psi$, $\varphi \Rightarrow \psi$ et $\varphi \Leftrightarrow \psi$ sont des formules;

Formule

Soit La signature $\Sigma = (\mathcal{C}, \mathcal{F}, \mathcal{R})$.

? Formule sur une signature

L'ensemble $\mathcal{F}_{po}(\Sigma)$ des formules du premier ordre sur Σ est le plus petit ensemble tel que :

- Toute formule atomique sur Σ est une formule;
- Si φ est une formule, alors $\neg \varphi$ est une formule;
- si φ et ψ sont deux forumules, alors $\varphi \wedge \psi$, $\varphi \vee \psi, \varphi \Rightarrow \psi$ et $\varphi \Leftrightarrow \psi$ sont des formules;
- Si φ est une formule, et si $x \in \mathcal{V}$ est une variable, alors $\forall x \varphi$ et $\exists x \varphi$ sont des formules.

Formule

$$\Sigma = (\{\emptyset\}, \{(\cup, 2), (\cap, 2), (C, 1)\}, \{(\subset, 2), (=, 2)\})$$

Exemple

$$\forall x \forall y ((x \cup y = \emptyset) \Rightarrow (x = \emptyset \land y = \emptyset))$$

Formule

$$\Sigma = (\{\emptyset\}, \{(\cup, 2), (\cap, 2), (C, 1)\}, \{(\subset, 2), (=, 2)\})$$

$$\forall x \forall y ((x \cup y = \emptyset) \Rightarrow (x = \emptyset \land y = \emptyset))$$

les formules peuvent être vues comme des arbres dont les feuilles sont des *formules* atomiques et les noeuds sont les *connecteurs* et quantificateurs.

Formule

Soit φ une formule.

?Décomposition/ Lecture unique

 φ est d'une, et exactement d'une, des formes suivantes :

• Une formule atomique;

Signature Terme

Formule

Soit φ une formule.

? Décomposition/ Lecture unique

- Une formule atomique;
- $\neg \psi$, où ψ une formule;

Formule

Soit φ une formule.

? Décomposition/ Lecture unique

- Une formule atomique;
- $\neg \psi$, où ψ une formule;
- $\varphi_1 \circ \varphi_2$, où $\circ \in \{\land, \lor, \Rightarrow, \Leftrightarrow\}$, et φ_1 , φ_2 sont des formules;

Formule

Soit φ une formule.

n Décomposition / Lecture unique

- Une formule atomique;
- $\neg \psi$, où ψ une formule;
- $\varphi_1 \circ \varphi_2$, où $\circ \in \{\land, \lor, \Rightarrow, \Leftrightarrow\}$, et φ_1 , φ_2 sont des formules;
- $\forall x\psi$, où ψ est une formule et $x \in \mathcal{V}$ est une variable;

Formule

Soit φ une formule.

n Décomposition / Lecture unique

- Une formule atomique;
- $\neg \psi$, où ψ une formule;
- $\varphi_1 \circ \varphi_2$, où $\circ \in \{\land, \lor, \Rightarrow, \Leftrightarrow\}$, et φ_1 , φ_2 sont des formules;
- $\forall x\psi$, où ψ est une formule et $x \in \mathcal{V}$ est une variable;
- $\exists x \psi$, où ψ est une formule et $x \in \mathcal{V}$ est une variable.

Formule

Soit φ une formule.

n Décomposition / Lecture unique

- Une formule atomique;
- $\neg \psi$, où ψ une formule;
- $\varphi_1 \circ \varphi_2$, où $\circ \in \{\land, \lor, \Rightarrow, \Leftrightarrow\}$, et φ_1 , φ_2 sont des formules;
- $\forall x\psi$, où ψ est une formule et $x \in \mathcal{V}$ est une variable;
- $\exists x \psi$, où ψ est une formule et $x \in \mathcal{V}$ est une variable.

Formule

Soit φ une formule.

n Décomposition/ Lecture unique

 φ est d'une, et exactement d'une, des formes suivantes :

- Une formule atomique;
- $\neg \psi$, où ψ une formule;
- $\varphi_1 \circ \varphi_2$, où $\circ \in \{\land, \lor, \Rightarrow, \Leftrightarrow\}$, et φ_1 , φ_2 sont des formules;
- $\forall x\psi$, où ψ est une formule et $x \in \mathcal{V}$ est une variable;
- $\exists x \psi$, où ψ est une formule et $x \in \mathcal{V}$ est une variable.

Une formule ψ est une **sous-formule** d'une formule φ si elle apparaît dans la décomposition de φ

Occurrences libres et liées d'une variable

Une variable peut apparaître en plusieurs endroits dans une formule. Il est nécessaire de distinguer ces différrentes situations.

Occurrence

Une **occurrence** d'une variable dans une formule est un couple de cette variable et d'une place effective, c'ést à dire qui ne suit pas un quantificateur.

Occurrences libres et liées d'une variable

Une variable peut apparaître en plusieurs endroits dans une formule. Il est nécessaire de distinguer ces différrentes situations.

Occurrence

Une **occurrence** d'une variable dans une formule est un couple de cette variable et d'une place effective, c'ést à dire qui ne suit pas un quantificateur.

Exemple:

$$\varphi = R(x, z) \Rightarrow \forall z (R(y, z) \lor y = z)$$

Occurrences libres et liées d'une variable

Une variable peut apparaître en plusieurs endroits dans une formule. Il est nécessaire de distinguer ces différrentes situations.

Occurrence

Une **occurrence** d'une variable dans une formule est un couple de cette variable et d'une place effective, c'ést à dire qui ne suit pas un quantificateur.

*****Exemple:

$$\varphi = R(x, z) \Rightarrow \forall z (R(y, z) \lor y = z)$$

- \bullet x possède **une** occurrence.
- y possède deux occurrence.
- y possède **trois** occurrence.

Occurrences libres et liées d'une variable

Oéfinition

- Une occurrence d'une variable x dans une formule φ est une occurrence **liée** si cette occurrence apparaît dans une sous-formule de φ qui commence par un quantificateur $\forall x$ ou $\exists x$. Sinon, on dit que l'occurrence est **libre**.
- Une variable est **libre** dans une formule si elle possède au moins une occurrence libre dans la formule.
- Une formule φ est **close** si elle ne possède pas de variables libres.

Occurrences libres et liées d'une variable

Openition

- Une occurrence d'une variable x dans une formule φ est une occurrence **liée** si cette occurrence apparaît dans une sous-formule de φ qui commence par un quantificateur $\forall x$ ou $\exists x$. Sinon, on dit que l'occurrence est **libre**.
- Une variable est **libre** dans une formule si elle possède au moins une occurrence libre dans la formule.
- Une formule φ est **close** si elle ne possède pas de variables libres.

Exemple 1:

$$\varphi = R(x, z) \Rightarrow \forall z (R(y, z) \lor y = z)$$

Occurrences libres et liées d'une variable

Openition

- Une occurrence d'une variable x dans une formule φ est une occurrence **liée** si cette occurrence apparaît dans une sous-formule de φ qui commence par un quantificateur $\forall x$ ou $\exists x$. Sinon, on dit que l'occurrence est **libre**.
- Une variable est **libre** dans une formule si elle possède au moins une occurrence libre dans la formule.
- Une formule φ est **close** si elle ne possède pas de variables libres.

Exemple 1:

$$\varphi = R(x, z) \Rightarrow \forall z (R(y, z) \lor y = z)$$

 x, y, z sont libre dans φ .

Occurrences libres et liées d'une variable

$\Re Remarque$

Une variable liée est attachée à une et une seule occurence d'un quantificateur dans la formule : celui qui dans l'arbre est son ancêtre le plus proche.

Occurrences libres et liées d'une variable

Remarque

Une variable liée est attachée à une et une seule occurence d'un quantificateur dans la formule : celui qui dans l'arbre est son ancêtre le plus proche.

Exemple 2:

$$\varphi = \forall x (P(x) \land \exists x Q(x))$$

Occurrences libres et liées d'une variable

Remarque

Une variable liée est attachée à une et une seule occurence d'un quantificateur dans la formule : celui qui dans l'arbre est son ancêtre le plus proche.

$$\varphi = \forall x (P(x) \land \exists x Q(x))$$

Occurrences libres et liées d'une variable

Exemple 3:

$$\psi = ((\exists x F(x)) \Rightarrow (H(f(y,x),g(x)) \lor \exists x K(g(x)))) \land ((\exists y G(x,g(y))) \lor F(h(y)))$$

Occurrences libres et liées d'une variable

Occurrences libres et liées d'une variable

$\mathbf{\mathscr{J}}$ Exemple 4:

$$F = \forall x \forall z (R(x, z) \Rightarrow \exists y (R(y, z) \lor y = z))$$

Occurrences libres et liées d'une variable

Occurrences libres et liées d'une variable

On note $VL(\varphi)$ l'ensemble des variables libres d'une formule φ .

$\Re VL(\varphi)$ est défini par :

- si φ est un forumle atomique alors tout occurrence d'une variable x dans φ est libre : $VL(\varphi) = Var(\varphi)$.
- si $\varphi = \exists x \psi$ ou $\varphi = \forall x \psi$ alors $VL(\varphi) = VL(\psi) \{x\}$ et toute occurrence de x qui est libre dans ψ devient liée dans φ par le quantificateur introduit.
- si $\varphi = \neg \psi$ alors $VL(\varphi) = VL(\psi)$.
- si $\varphi = \varphi_1 \circ \varphi_2$ alors $VL(\varphi) = VL(\varphi_1) \cup VL(\varphi_1)$ pour $\circ \in \{\land, \lor, \Rightarrow, \Leftrightarrow\}.$

$\Re VL(\varphi)$ est défini par :

- si φ est un forumle atomique alors tout occurrence d'une variable x dans φ est libre : $VL(\varphi) = Var(\varphi)$.
- si $\varphi = \exists x \psi$ ou $\varphi = \forall x \psi$ alors $VL(\varphi) = VL(\psi) \{x\}$ et toute occurrence de x qui est libre dans ψ devient liée dans φ par le quantificateur introduit.
- si $\varphi = \neg \psi$ alors $VL(\varphi) = VL(\psi)$.
- si $\varphi = \varphi_1 \circ \varphi_2$ alors $VL(\varphi) = VL(\varphi_1) \cup VL(\varphi_1)$ pour $\circ \in \{\land, \lor, \Rightarrow, \Leftrightarrow\}$.

\mathbb{N} Note:

La notation $F(x_1, x_2, ..., x_k)$ signifie que les variables libres de F sont parmi $x_1, x_2, ..., x_k$

