ЛАБОРАТОРНАЯ РАБОТА № 6 "Стековое запоминающее устройство"

1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Стековый доступ к памяти происходит в большинстве процессоров в следующих ситуациях:

- 1) При выполнении команд стекового доступа: "поместить в стек" push или "извлечь из стека" pop.
- 2) При выполнении команды вызова подпрограммы и при возврате из нее.
- 3) При входе в прерывание и возврате из него.

Положение стека в адресуемой памяти определяется содержимым указателя стека (SP – stack pointer).

Указатель стека программно доступен, программист может задать его значение обычной командой пересылки: mov sp,#1000h - задает положение стека, начиная с адреса 1000h.

Содержимое указателя стека используется как адрес операнда-приемника при записи или как адрес операнда-источника при считывании из стека.

При обращении к стеку автоматически модифицируется и содержимое указателя стека, чтобы обеспечить следующее обращение к очередной ячейке стека. Обращение к стеку - косвенно-регистровая адресация через указатель стека с автоиндексацией.

Стек может быть организован по-разному:

- 1. Направление роста стека. Если при записи в стек, содержимое указателя стека автоматически увеличивается (и, соответственно, при считывании автоматически уменьшается), то говорят, что стек растет в сторону увеличения адресов. В противоположном случае говорят, что стек растет в сторону уменьшения адресов.
- 2. Если модификация указателя стека выполняется до записи и соответственно после считывания, то указатель стека всегда указывает на последнюю занятую ячейку стека. Наоборот, если модификация производится после записи и до считывания, указатель стека всегда указывает на первую свободную ячейку стека.

The Property of the Property o

2. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

К архитектуре системы из предыдущей лабораторной работы добавить блок стекового ЗУ и управление для него.

Реализовать стековое ЗУ на регистрах, количество которых зависит от объема стека, заданного по варианту.

Должен присутствовать порт, показывающий переполнение стека.

В таблице вариантов указано направление роста стека, и то, куда указывает указатель стека.

Ввести 2 команды для стека: push и pop для помещения и извлечения данных из стека соответственно. В качестве источника и приемника для этих команд использовать регистры общего назначения. Продемонстрировать работу этих команд.

Реализовать занесение результатов арифметической операции по варианту из предыдущей лабораторной работы в стек.

Семейство ПЛИС для реализации - Flex10K (изменить семейство ПЛИС(Family) можно в настройках проекта в ветке Device или в пункте меню Assignments->Device).

ВАРИАНТЫ ЗАДАНИЙ К ЛАБОРАТОРНОЙ РАБОТЕ № 4

№	Объем стека	Направление роста стека	Указатель стека указывает на
1	4 байта	вверх	первую свободную ячейку
2	5 байт	вни3	последнюю занятую ячейку
3	6 байт	вни3	первую свободную ячейку
4	7 байт	вверх	последнюю занятую ячейку
5	8 байт	вверх	первую свободную ячейку
6	9 байт	вни3	последнюю занятую ячейку
7	10 байт	вни3	первую свободную ячейку
8	11 байт	вверх	последнюю занятую ячейку

СОДЕРЖАНИЕ ОТЧЕТА ПО ЛАБОРАТОРНОЙ РАБОТЕ №4

- 1. Задание.
- 2.1. Схема блока, самого верхнего в иерархии проекта.
- 2.2. Схемы блока стекового ЗУ.
- 2.3. Схема блока управления стеком.
- 3. Результаты моделирования.