An Example Problem

Principal Component Analysis

• Given an $n \times d$ matrix A, compute a **good** rank k subspace Q

$$A \approx A \cdot Q \cdot Q^{T}$$

$$A \approx A$$

• Columns of Q are the Principal Components

Classic Setting

- ullet The matrix A is available to us and can be arbitrarily accessed
- Compute SVD : nd^2 time
 - Very slow on modern datasets
 - Does not use sparsity