Attendance

Are you here on time? (Timely attendance counts positively towards your participation grade.)

A) Yes

B) No

Plan for today

- 1. Converting to CNF
- 2. Structural induction: propositions expressible in NNF
- 3. Structural induction: propositions expressible in CNF
- 4. Lab 3 Implementation tips

COSC 290 Discrete Structures

Lecture 18: Wrap up induction

Prof. Michael Hay Monday, Mar. 19, 2018

Colgate University

Converting to CNF

,

Conversion process

Given φ not in CNF, we can convert to an equivalent proposition in CNF by following these steps:

- 2. Push negations down to obtain negation normal form. Result: the *only* places where \neg appears in φ is on a literal.
- Distribute OR over AND.¹ Result: φ is in CNF.

Let's apply steps to:
$$(p \land (p \implies q)) \implies q$$
.

Lab 3

Three key tasks:

- Simplify: substitute connectives to get proposition containing only { ∧, ¬ }.²
- toNNF: take simplified proposition and "push negations down" to get proposition in NNF.
- fromNNFtoCNF: take proposition in NNF and convert to CNF. A key step is distributing OR over AND connectives.

Each task is can be solved recursively.

Example of converting to CNF

$$\begin{array}{ll} (\rho \wedge (p \implies q)) \implies q \\ \equiv \neg (p \wedge (\neg p \vee q)) \vee q \\ \equiv (\neg p \vee \neg (\neg p \vee q)) \vee q \\ \equiv (\neg p \vee (p \wedge \neg q)) \vee q \\ \equiv ((\neg p \vee p) \wedge (\neg p \vee \neg q)) \vee q \\ \equiv ((\neg p \vee p) \wedge (\neg p \vee \neg q)) \vee q \\ \equiv ((\neg p \vee p \vee q) \wedge (\neg p \vee \neg q \vee q)) \\ \equiv ((\neg p \vee p \vee q) \wedge (\neg p \vee \neg q \vee q)) \\ \end{array} \begin{array}{ll} \text{3. distribute oR} \end{array}$$

Structural induction: propositions expressible in NNF

 $^{^{1}}$ Recall $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$

²Note: step 1 simplifies more than what is necessary for later steps. But it's a good "warm up" problem for this lab.

Recall: propositions can be recursively defined

A proposition φ is a well-formed formula (wff) over the variables in the set $P := \{p_1, \dots, p_n\}$, is one of the following:

- (base case) $\varphi := p$ for some $p \in P$
- · (inductive cases)
 - $\varphi := \alpha \vee \beta$
 - $\varphi := \alpha \land \beta$ • $\varphi := \alpha \implies \beta$
 - $\varphi := \neg \alpha$

where α and β are well-formed formulas.

Notation detail: Greek letters (α , β , etc.) represent propositions.

Recall claim from last class

Claim: For any well-formed formula φ , there exists a proposition φ' that is in negation normal form and is logically equivalent to φ .

- isNNF(φ) denotes the predicate: φ is in NNF.
- $hasNNF(\varphi)$ denotes the predicate: there exists a proposition φ' that is in NNF and $\varphi' \equiv \varphi$.
- · ${\cal W}$ denotes the set of all well-formed formulas.

Thus, our claim can be restated as $\forall \varphi \in W : hasNNF(\varphi)$.

Recall: Negation Normal Form

Definition (Negation Normal Form (NNF))

A proposition φ is in <u>negation normal form</u> if the negation connective is applied only to variables and not to more complex expressions, and furthermore, the only connectives allowed are in the set $\{\land, \lor, \lnot\}$.

Proof

Claim A: $\forall \varphi \in W : hasNNF(\varphi)$.

We will instead prove the stronger claim:

Claim B: $\forall \varphi \in W : hasNNF(\varphi) \land hasNNF(\neg \varphi)$.

(See last class slides and book discussion on p. 540.)

Proof structure

Base cases:

1. Variable: $\varphi := p$

Inductive cases:

- 1. AND: $\varphi := \alpha \wedge \beta$
- 2. OR: $\varphi := \alpha \vee \beta$
- 3. NOT: $\varphi := \neg \alpha$
- 4. IMPLIES: $\varphi := \alpha \implies \beta$

For each case, show that $hasNNF(\varphi)$ and $hasNNF(\neg \varphi)$

Poll: Inductive case 1. what can we assume?

Claim B: $\forall \varphi \in W : hasNNF(\varphi) \land hasNNF(\neg \varphi)$.

Proof continued...

Inductive cases: We focus on case 1: $\varphi := \alpha \wedge \beta$.

Want to show: $hasNNF(\alpha \wedge \beta) \wedge hasNNF(\neg(\alpha \wedge \beta))$. Which of the following can we assume is true (by the inductive hypothesis)?

- A) $hasNNF(\alpha)$... recall this means that α is logically equivalent to some NNF proposition.
- B) $hasNNF(\neg \alpha)$
- C) $isNNF(\alpha)$... recall this means that α is an NNF.
- D) A and B
- E) A, B, and C

Proof: Inductive case 1, what to show?

Claim B: $\forall \varphi \in W : hasNNF(\varphi) \land hasNNF(\neg \varphi)$.

Inductive cases: We focus on case 1: $\varphi := \alpha \wedge \beta$.

Want to show: $hasNNF(\alpha \wedge \beta) \wedge hasNNF(\neg(\alpha \wedge \beta))$.

We will break this up into parts:

- 1. Showing hasNNF($\alpha \wedge \beta$)
- 2. Showing hasNNF($\neg(\alpha \land \beta)$)

Proof for inductive case 1

Claim B: $\forall \varphi \in W : hasNNF(\varphi) \land hasNNF(\neg \varphi)$.

Inductive cases: We focus on case 1: $\varphi := \alpha \wedge \beta$.

Want to show: $hasNNF(\alpha \wedge \beta) \wedge hasNNF(\neg(\alpha \wedge \beta))$.

Assume by inductive hypothesis:

- hasNNF(α), hasNNF(β), hasNNF($\neg \alpha$), hasNNF($\neg \beta$)
- Part 1: Since $hasNNF(\alpha)$, there exists α' such that $\alpha' \equiv \alpha$ and $isNNF(\alpha')$. Similarly for β . Let $\varphi' := \alpha' \wedge \beta'$. We have $isNNF(\varphi')$ and $\varphi' \equiv \alpha \wedge \beta$. Thus $hasNNF(\alpha \wedge \beta)$.
- Part $z: \neg \varphi = \neg (\alpha \land \beta) \equiv \neg \alpha \lor \neg \beta$ by DeMorgan's law. Since $hasNNF(\neg \alpha)$, there exists $\bar{\alpha}$ such that $\bar{\alpha} \equiv \neg \alpha$ and $isNNF(\bar{\alpha})$. Similarly for β . Thus, let $\bar{\varphi} = \bar{\alpha} \lor \bar{\beta}$. We have $isNNF(\bar{\varphi})$ and $\bar{\varphi} \equiv \neg (\alpha \land \beta)$. Thus $hasNNF(\neg (\alpha \land \beta))$.

10

11

Proof for inductive case 2

Claim B: $\forall \varphi \in W : hasNNF(\varphi) \land hasNNF(\neg \varphi)$.

Inductive cases: Case 2: $\varphi := \alpha \vee \beta$.

Proof is identical to case 1, just replace ANDs with ORs and vice versa.

Poll: Inductive case 3, what to show?

Claim B: $\forall \varphi \in W : hasNNF(\varphi) \land hasNNF(\neg \varphi)$.

Inductive cases: Case 3: $\varphi := \neg \alpha$.

What do we want to show?

- A) $hasNNF(\alpha)$
- B) $hasNNF(\neg \alpha)$
- C) $hasNNF(\neg\neg\alpha)$
- D) B and C
- E) A, B, and C

Proof for inductive case 3

Claim B: $\forall \varphi \in W : hasNNF(\varphi) \land hasNNF(\neg \varphi)$.

Inductive cases: Case 3: $\varphi := \neg \alpha$.

Want to show: $hasNNF(\neg \alpha) \land hasNNF(\neg \neg \alpha)$.

Assume by inductive hypothesis:

• $hasNNF(\alpha)$, $hasNNF(\neg \alpha)$

Still need to show: $hasNNF(\neg \neg \alpha)$.

Since $\neg\neg\alpha\equiv\alpha$ and $hasNNF(\alpha)$, then let α' be such that $\alpha'\equiv\alpha$ and $isNNF(\alpha')$. Let $\bar{\varphi}\coloneqq\alpha'$. Since $\bar{\varphi}\equiv\neg\neg\alpha$ and $isNNF(\bar{\varphi})$, thus $hasNNF(\neg\neg\alpha)$.

Base cases

1. Variable: $\varphi := p$

Components of complete proof

Inductive cases:

- 1. AND: $\varphi := \alpha \wedge \beta$
- 2. OR: $\varphi := \alpha \vee \beta$
- 3. NOT: $\varphi := \neg \alpha$
- 3.
- 4. IMPLIES: $\varphi := \alpha \implies \beta$

For each case, show that $\mathit{hasNNF}(\varphi)$ and $\mathit{hasNNF}(\neg \varphi)$

Structural induction: propositions expressible in CNF

From NNF to CNF

Claim: For any φ that is in NNF, there exists a proposition φ' that is in CNF and is logically equivalent to φ .

Notation used in proof:

- isCNF(φ) denotes the predicate: φ is in CNF.
- $\mathit{hasCNF}(\varphi)$ denotes the predicate: there exists a proposition φ' that is in CNF and $\varphi' \equiv \varphi$.

Poll: what cases to consider?

 ${\bf Claim:} \ {\bf For} \ {\bf any} \ \varphi \ {\bf that} \ {\bf is} \ {\bf in} \ {\bf NNF}, \ {\bf there} \ {\bf exists} \ {\bf a} \ {\bf proposition} \ \varphi' \ {\bf that} \ {\bf is} \ {\bf in} \ {\bf CNF} \ {\bf and} \ {\bf is} \ {\bf logically} \ {\bf equivalent} \ {\bf to} \ \varphi.$

We can break the proof of this claim into cases (base, inductive and sub-cases of each). Which of the following cases should *not* be included in the proof?

A) $\varphi \coloneqq \alpha \implies \beta$ (where α and β are propositions)

- B) $\varphi := \alpha \wedge \beta$
- C) $\varphi := \neg \alpha$
- D) $\varphi := \neg p$ (where p is a variable)
- E) A and C
- F) A and D

Proof structure

Rase cases:

- 1. Positive literal: $\varphi := p$
- 2. Negative literal: $\varphi := \neg p$

Inductive cases:

- 1. $\varphi := \alpha \wedge \beta$
- φ := α ∨ β

We don't need to consider anything else because φ is in NNF!

Poll: inductive case 1, what can we assume?

Want to show: $hasCNF(\alpha \wedge \beta)$. Which of the following can we assume is true (by the inductive hypothesis)?

- A) $hasCNF(\alpha)$, $hasCNF(\beta)$
- B) $hasCNF(\neg \alpha)$, $hasCNF(\neg \beta)$
- C) $isCNF(\alpha)$, $isCNF(\beta)$
- D) A and C
- E) A, B, and C

21

23

Inductive case 2

Case 2: $\varphi := \alpha \vee \beta$

Inductive hypothesis tells us that $hasCNF(\alpha)$ and $hasCNF(\beta)$. Let α' be such that $\alpha \equiv \alpha'$ and $isCNF(\alpha')$; similarly for β' .

Let $\alpha' := c_1 \wedge c_2 \wedge \cdots \wedge c_m$ where each c_i is a clause (disjunction of one or more literals).

Let $\alpha' := d_1 \wedge d_2 \wedge \cdots \wedge d_n$ where each d_i is a clause.

22

Inductive case continued...

Inductive cases: case 2 continued...

$$\begin{split} \varphi & \equiv \alpha' \vee \beta' & \text{inductive hypothesis} \\ & \equiv \left(\bigwedge_{i=1}^m c_i \right) \vee \beta' & \text{definition of } \alpha' \\ & \equiv \bigwedge_{i=1}^m \left(c_i \vee \beta' \right) & \text{distribute OR over AND} \\ & \equiv \bigwedge_{i=1}^m \left(c_i \vee \left(\bigwedge_{j=1}^n d_j \right) \right) & \text{definition of } \beta' \\ & \equiv \bigwedge_{i=1}^m \left(c_i \vee d_j \right) & \text{distribute OR over AND} \end{split}$$

The last line shows a proposition in CNF! How so? Recall c_i and d_j are both clauses – i.e. disjunctions of literals. ORing two clauses together effectively makes new. bigger clause. All of these new clauses are being ANDed together.

Lab 3 Implementation tips

Suggestions for lab 3

Have faith: trust that recursive call will work correctly. Focus on what to do with the result.

Start small (base cases).

Add complexity slowly.

Add complexity stown

- Test your code often.
 - Before you modify your code to add support a new case, write a test example for that case.
 - After each change to your code, re-run all of your old cases to make sure changes didn't "break".