Билет 8: Теорема о преобразовании периодических последовательностей ограниченно-детерминированными функциями

Пусть $A=\{\alpha(1),\ \dots\ ,\alpha(k)\}, B=\{b(1),\ \dots\ ,b(k)\}$ – конечные алфавиты.

Определение. Функция $f: A^* \to B^*$ называется *детерминированной* (д.функцией), если выполняются следующие условия:

а) если $\alpha \in A^*$ и длина слова α равна l , то длина слова $f(\alpha)$ также равна l ;

б) если
$$\alpha_1 = \alpha(1)...\alpha(k), \ \alpha_2 = \alpha'(1)...\alpha'(k)$$
: $\alpha(i) = \alpha'(i), i = \overline{1, s}, s \in [1, k]$, a $f(\alpha_1) = b(1)...b(k), \ f(\alpha_2) = b'(1)...b'(k) \Rightarrow b(i) = b'(i), i = \overline{1, s}.$

Определение. Функции f' называются остаточными функциями д.функции f, если для различных слов $\alpha \in A^*$ удовлетворяют тождеству:

$$f(\alpha \gamma) = f(\alpha)f'(\gamma),$$

где α – фиксированное слово из A^* , γ – произвольное слово из A^* .

Определение. Функция $f:A^*\to B^*$ называется ограниченно-детерминированной (о.-д.функция), если имеет ограниченное количество остаточных функций.

 A^{∞} – множество сверхслов.

Определение. $\alpha = (\alpha(1), \alpha(2), \dots) \in A^{\infty}$ – периодическое с длиной периода τ и с длиной предпериода τ' (τ , $\tau' \in \mathbb{N}$), если $\forall i : i > \tau' \Rightarrow \alpha(i) = \alpha(\tau + i)$.

Теорема. О.-д.функции f веса n (n – количество не эквивалентных остаточных функций) преобразуют периодические сверхслова $\alpha_1, \ldots, \alpha_k$ с длинами периодов τ_1, \ldots, τ_k в периодическое сверхслово с длиной периода $\theta \cdot \text{HOK}(\tau_1, \ldots, \tau_k)$, где $\theta \in [1, n], \theta \in \mathbb{N}$.

Доказательство. Через $HOK(\tau_1, ..., \tau_k)$ повторится входной набор. Так как состояний всего n, то через $\theta \cdot HOK(\tau_1, ..., \tau_k)$, где $\theta \in [1, n]$ -повторится и состояние (θ – индекс состояния с которого начались повторы).