Quantum Error Correction - Notes

Ben Karsberg

2021-22

1 Week 3: Harlow Thm. 1, More Toy Model

1.1 Schmidt Decomposition and Purification

- Before going through the theorem, let's remind ourselves of the *Schmidt decomposition* and *state purification*
- These concepts are important in Harlow's proof

Theorem 1 Suppose $|\psi\rangle$ is a pure state of a composite system AB. Then, there exist orthonormal states $|i_A\rangle$ of A and $|i_B\rangle$ of B such that

$$|\psi\rangle = \sum_{i} \lambda_{i} |i_{A}\rangle |i_{B}\rangle \tag{1.1}$$

where the λ_i are non-negative real numbers satisfying $\sum_i \lambda_i^2 = 1$, called Schmidt coefficients.

- The proof of this is just linear algebra, invoking the singular value decomposition
- Why is this useful?
- Consider pure state $|\psi\rangle$ of AB as in (1.1)
- By the Schmidt decomposition, $\rho_A = \sum_i \lambda_i^2 |i_A\rangle \langle i_A|$ and $\rho_B = \sum_i \lambda_i^2 |i_B\rangle \langle i_B|$, so the eigenvalues of ρ_A and of ρ_B are identical, and both λ_i^2
- This is immediate from the decomposition, and eigenvalues are important
- The bases $|i_A\rangle$ and $|i_B\rangle$ are called Schmidt bases for A and B
- The number of $\lambda_i \neq 0$ is called the *Schmidt number* for $|\psi\rangle$, which in some sense quantifies the entanglement between A and B
- Note that the Schmidt number is preserved under unitaries on A or B alone
- A state $|\psi\rangle$ of AB is a product state iff it has Schmidt number 1; this allows us to easily prove that $|\psi\rangle$ is a product state iff ρ_A and ρ_B are pure
- We now come to purification

Theorem 2 Suppose ρ_A is a state of system A. Introduce a new system R, and **define** a pure state $|AR\rangle$ for the joint system such that $\rho_A = Tr_R(|AR\rangle \langle AR|)$. This is called a purification, and we say $|AR\rangle$ purifies ρ_A .

This allows us to associate pure states with mixed states

- System R is called a reference system, and it has no direct physical significance
- Purification can be done to any state, and we prove this

Proof 1 Suppose ρ_A has an orthonormal decomposition

$$\rho_A = \sum_i p_i |i_A\rangle \langle i_A| \tag{1.2}$$

Introduce a system R with the same state space as A, and orthonormal basis $|i_R\rangle$. Define a pure state for the combined system as

$$|AR\rangle \equiv \sum_{i} \sqrt{p_i} |i_A\rangle |i_R\rangle$$
 (1.3)

We now calculate the reduced density operator for A corresponding to $|AR\rangle$:

$$Tr_{R}(|AR\rangle\langle AR|) = \sum_{ij} \sqrt{p_{i}p_{j}} |i_{A}\rangle\langle j_{A}| Tr(|i_{R}\rangle\langle j_{R}|)$$

$$= \sum_{ij} \sqrt{p_{i}p_{j}} |i_{A}\rangle\langle j_{A}| \delta_{ij}$$

$$= \sum_{i} p_{i} |i_{A}\rangle\langle i_{A}|$$

$$= \rho_{A}$$

$$(1.4)$$

and so $|AR\rangle$ is a purification of ρ_A .

• Note the link between Schmidt decompositions and purification: the process purifying a mixed state of A is to define a pure state who's Schmidt basis for A is just the basis in which the mixed state is diagonal, with the Schmidt coefficients being the square roots of the eigenvalues of the density operator to be purified

1.2 Theorem 1

• Let's start by stating Harlow's first theorem in the notation we've been using so far

Theorem 3 Suppose \mathcal{H} is a finite-dimensional Hilbert space, factorising as a tensor product $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_{\overline{A}}$. Suppose $\mathcal{H}_{code} \subseteq \mathcal{H}$ is a subspace. Then, the following 4 statements are equivalent:

1. For any operator O_L with support on \mathcal{H}_{code} , there exists an operator O_A with support on \mathcal{H}_A such that for all $|\psi_L\rangle \in \mathcal{H}_{code}$, we have

$$O_A |\psi_L\rangle = O_L |\psi_L\rangle$$

$$O_A^{\dagger} |\psi_L\rangle = O_L^{\dagger} |\psi_L\rangle$$
(1.5)

2. For any operator $X_{\overline{A}}$ with support on $\mathcal{H}_{\overline{A}}$, we have

$$P_{code}X_{\overline{A}}P_{code} \propto P_{code} \tag{1.6}$$

where P_{code} is the projector onto \mathcal{H}_{code} , and the constant of proportionality is a complex number.

3. Introduce an auxiliary/reference system R with dimensionality $|R| = |\mathcal{H}_{code}|$. Choose orthonormal bases $\{|i_L\rangle_{A\overline{A}}\}$ and $\{|i\rangle_R\}$ of \mathcal{H}_{code} and R respectively. Then, the state

$$|\phi\rangle \equiv \frac{1}{\sqrt{|R|}} \sum_{i_L} |i_L\rangle_R |i_L\rangle_{A\overline{A}}$$
 (1.7)

satisfies

$$\rho_{R\overline{A}}(\phi) = \rho_R(\phi) \otimes \rho_{\overline{A}}(\phi) \tag{1.8}$$

4. $|R| \leq |A|$, and decomposing $\mathcal{H}_A = (\mathcal{H}_{A_1} \otimes \mathcal{H}_{A_2}) \oplus \mathcal{H}_{A_3}$ (by long division), where $|A_1| = |R|$ and $|A_3| < |R|$, then there exists a unitary transformation U_A on \mathcal{H}_A and a state $|\chi\rangle_{A_2\overline{A}} \in \mathcal{H}_{A_2\overline{A}}$ such that

$$|i_L\rangle_{A\overline{A}} = U_A \left(|i\rangle_{A_1} \otimes |\chi\rangle_{A_2\overline{A}}\right)$$
 (1.9)

where $\{|i\rangle_{A_1}\}$ is an orthonormal basis of \mathcal{H}_{A_1} .

- Before going through the proof, what do all these mean?
- We think of A as the subsystem preserved by erasure, and \overline{A} as the erased subsystem
- We also think of A_1 as the system in which the initial state we wish to protect lies in
- Point 1 states that any logical operator on $\mathcal{H}_{\text{code}}$ can be equivalently represented by an operator on A only; an operator on the code space can be represented by one acting on the system A acting equivalently
- Point 2 states that performing a projective measurement on any operator on the erased subsystem \overline{A} cannot itself disturb the encoded information; no measurement on \overline{A} can tell us anything about the encoded information
- Point 3 states that operators on the reference system R and operators on the erased subsystem \overline{A} are not correlated
- Point 4 simply states that a unitary operator exists that can transform between the A_1 and the full $A\overline{A}$ systems, as in the toy model; this is essentially the statement that recoverability is possible
- We can visualise point 4 by a circuit diagram:

• The proof is basic linear algebra

Proof 2 $-(1) \Longrightarrow (2)$: This is by contradiction. Suppose there was an $X_{\overline{A}}$ such that $P_{code}X_{\overline{A}}P_{code}$ was not proportional to P_{code} . Schur's lemma in this context states that the only non-trivial operators commuting with all other operators on \mathcal{H}_{code} are scalar multiples of the identity. Therefore, there must be an operator O_L on \mathcal{H}_{code} and a state $|\psi_L\rangle \in \mathcal{H}_{code}$ such that $\langle \psi_L|[P_{code}X_{\overline{A}}P_{code},O_L]|\psi_L\rangle = \langle \psi_L|[X_{\overline{A}},O_L]|\psi_L\rangle \neq 0$. But such an O_L cannot have a representation O_A on \mathcal{H}_A since this would automatically commute with $X_{\overline{A}}$, which contradicts (1).

- (2) \Longrightarrow (3): Consider arbitrary operators O_R on \mathcal{H}_R and $X_{\overline{A}}$ on $\mathcal{H}_{\overline{A}}$. We rewrite (2) as

$$P_{code}X_{\overline{A}}P_{code} = \sum_{ij} |i_L\rangle \langle i_L|_{A\overline{A}} X_{\overline{A}} |j_L\rangle \langle j_L|_{A\overline{A}}$$

$$= \lambda \sum_{i} |i_L\rangle \langle i_L|_{A\overline{A}}$$
(1.10)

which implies $\langle i_L|X_{\overline{A}}|j_L\rangle_{A\overline{A}}=\lambda\delta_{ij}$. However, note that

$$\langle \phi | X_{\overline{A}} | \phi \rangle = \frac{1}{|R|} \sum_{ij} \langle i |_R \langle i_L | X_{\overline{A}} | j_L \rangle_{A\overline{A}} | j \rangle_R$$

$$= \frac{1}{|R|} \lambda \sum_i \langle i | i \rangle_R$$

$$= \lambda$$
(1.11)

Therefore, we must have $P_{code}X_{\overline{A}}P_{code} = \langle \phi | X_{\overline{A}} | \phi \rangle P_{code}$. But this implies

$$\langle \phi | X_{\overline{A}} O_R | \phi \rangle = \langle \phi | O_R P_{code} X_{\overline{A}} P_{code} | \phi \rangle$$

$$= \langle \phi | X_{\overline{A}} | \phi \rangle \langle \phi | O_R | \phi \rangle$$
(1.12)

where the first equality comes from noting that $P_{code} |\phi\rangle = |\phi\rangle$, and that P_{code} commutes with O_R . Therefore, so long as $|\phi\rangle$ has no non-vanishing connected (?) correlation functions for any such O_R and $X_{\overline{A}}$, then $\rho_{R\overline{A}}[\phi] = \rho_R[\phi] \otimes \rho_{\overline{A}}[\phi]$, where $\rho_R[\phi]$ is the reduced density matrix $Tr_{A\overline{A}}(|\phi\rangle\langle\phi|)$ etc.

- (3) \Longrightarrow (4): First, note that by definition, $|\phi\rangle$ is a purification of $\rho_{R\overline{A}}[\phi] = \rho_R[\phi] \otimes \rho_{\overline{A}}[\phi]$. Also, note that

$$\rho_R[\phi] = Tr_{A\overline{A}} \left(\frac{1}{|R|} \sum_{ij} |i\rangle \langle j|_R |i_L\rangle \langle j_L|_{A\overline{A}} \right) = \frac{1}{|R|} \sum_i |i\rangle \langle i|_R = \frac{1}{|R|} I \qquad (1.13)$$

so $|\phi\rangle$ maximally entangles R with A (or \overline{A}), and $\rho_R[\phi] = I/|R|$ is the maximally mixed state. This means that (3) becomes

$$\rho_{R\overline{A}}[\phi] = \frac{I_R}{|R|} \otimes \rho_{\overline{A}}[\phi] \tag{1.14}$$

Let's now perform long division on A. Say k is the largest integer such that |A| = k|R| + r. Since the R and \overline{A} registers are unentangled in (1.14), we can factorise $\mathcal{H}_A = (\mathcal{H}_{A_1} \otimes \mathcal{H}_{A_2}) \oplus \mathcal{H}_{A_3}$ such that $|A_1| = |R|$, $|A_2| = k$, and $|A_3| = r$. We now define the following two states:

$$|\Psi\rangle_{RA_1} = \frac{1}{\sqrt{|R|}} \sum_{i} |i\rangle_R |i\rangle_{A_1}, \qquad |\chi\rangle_{A_2\overline{A}} = \sum_{i} \sqrt{p_i} |j\rangle_{A_2} |j\rangle_{\overline{A}}$$
 (1.15)

and note that the state

$$|\phi'\rangle = |\Psi\rangle_{RA_1} \otimes |\chi\rangle_{A_2\overline{A}} \tag{1.16}$$

purifies $\rho_{R\overline{A}}[\phi]$ on A_1A_2 :

$$Tr_{A_{1}A_{2}}\left(|\Psi\rangle\langle\Psi|_{RA_{1}}\otimes|\chi\rangle\langle\chi|_{A_{2}\overline{A}}\right) = Tr_{A_{1}}\left(|\Psi\rangle\langle\Psi|_{RA_{1}}\right) Tr_{A_{2}}\left(|\chi\rangle\langle\chi|_{A_{2}\overline{A}}\right) = \rho_{R}[\Phi]\otimes\rho_{\overline{A}}[\phi]$$

$$(1.17)$$

where $|\Psi\rangle_{RA_1}$ purifies $\rho_R[\phi]$ on A_1 , and $|\chi\rangle_{A_2\overline{A}}$ purifies $\rho_{\overline{A}}[\phi]$ on A_2 . In a purification, the dimension of the purifying system A needs to be at least as big as the rank of

the state being purified, so we therefore have $|A_1| = |R|$ (since $\rho_R[\phi]$ is maximally mixed), and $Rank(\rho_{\overline{A}}[\phi]) \leq |A_2|$.

However, purifications are unitarily equivalent on the purifying system - A in our case - so there exists unitary U_A on A taking $|\phi\rangle = U_A |\phi'\rangle$. Overall, we therefore have:

$$\frac{1}{\sqrt{|R|}} \sum_{i} |i\rangle_{R} |i_{L}\rangle_{A\overline{A}} = U_{A} \left(\frac{1}{\sqrt{|R|}} \sum_{i} |i\rangle_{R} |i\rangle_{A_{1}} \otimes |\chi\rangle_{A_{2}\overline{A}} \right)
\Longrightarrow |i_{L}\rangle_{A\overline{A}} = U_{A} \left(|i\rangle_{A_{1}} \otimes |\chi\rangle_{A_{2}\overline{A}} \right)$$
(1.18)

- (4) \implies (1): Just define $O_A \equiv U_A O_{A_1} U_A^{\dagger}$, where O_{A_1} is an operator on \mathcal{H}_{A_1} with the same matrix elements as O_L does on \mathcal{H}_{code} . ■
- One thing this theorem doesn't do is tell us the full set of erasures that can be corrected by a given code subspace
- For example, the toy model could correct for any single qutrit erasure, but this isn't immediately obvious from a specific decomposition into A and \overline{A}
- In the toy model, this robustness was a consequence of $|\chi\rangle_{23}$ having non-zero entanglement; the same is true here if $|\chi\rangle_{A_2\overline{A}}$ is a product state, then \overline{A} provides no additional information and we can do away with it

1.3 A Ryu-Takayanagi Formula

- Point (4) has some immediate implications if the erasure of \overline{A} is correctable
- Consider an arbitrary mixed state ρ^L on $\mathcal{H}_{\text{code}}$, and an operator ρ_{A_1} on \mathcal{H}_{A_1} with the same matrix elements as ρ^L
- (4) then gives us:

$$\rho^{L} = U_{A} \left(\rho_{A_{1}} \otimes |\chi\rangle \langle \chi|_{A_{2}\overline{A}} \right) U_{A}^{\dagger}$$

$$\rho_{A}^{L} \equiv \operatorname{Tr}_{\overline{A}} \rho^{L} = U_{A} \left(\rho_{A_{1}} \otimes \operatorname{Tr}_{\overline{A}} (|\chi\rangle \langle \chi|) \right) U_{A}^{\dagger}$$

$$\rho_{\overline{A}}^{L} \equiv \operatorname{Tr}_{A} \rho^{L} = \operatorname{Tr}_{A_{2}} (|\chi\rangle \langle \chi|)$$

$$(1.19)$$

• If we further denote $\chi_{A_2} \equiv \text{Tr}_{\overline{A}} |\chi\rangle \langle \chi|$ and $\chi_{\overline{A}} = \text{Tr}_{A_2} |\chi\rangle \langle \chi|$, we can rewrite these as

$$\rho_A^L = U_A \left(\rho_{A_1} \otimes \chi_{A_2} \right) U_A^{\dagger}$$

$$\rho_{\overline{A}}^L = \chi_{\overline{A}}$$
(1.20)

• So, calculating the von Neumann entropies, we find

$$S(\rho^{L}) = S(\rho_{A_{1}}) + S(|\chi\rangle\langle\chi|) = S(\rho_{A_{1}})$$

$$S(\rho_{A}^{L}) = S(\rho_{A_{1}}) + S(\chi_{A_{2}}) = S(\rho^{L}) + S(\chi_{A_{2}})$$

$$S(\rho_{A}^{L}) = S(\chi_{\overline{A}}) = -\operatorname{Tr}_{A_{2}}\left[\operatorname{Tr}_{\overline{A}}[|\chi\rangle\langle\chi|]\right] = S(\chi_{A_{2}})$$

$$(1.21)$$

• If we define an 'area operator' $\mathcal{L}_A \equiv S(\chi_{A_2})I_{\text{code}}$, the latter two of these are reminiscent of the Ryu-Takayanagi formula

$$S(\rho_A) = \text{Tr}(\rho \mathcal{L}_A) + S_{bulk}(\rho_{\mathcal{E}_A})$$
(1.22)

• The 'area term' arises from the non-zero entanglement in $|\chi\rangle$