Problem Statement:

The transactions made by a UK-based, registered, non-store online retailer between December 1, 2010, and December 9,2011, are all included in the transnat ional data set known as online retail. The company primarily offer one-of-a-kin d gifts for every occasion. The company has a large number of wholesalers as clients.Company Objective Using the global online retail dataset, we will design a clustering model and select the ideal group of clients for the business to target.

In [1]:

#import libraries
import pandas as pd
from matplotlib import pyplot as plt
%matplotlib inline

In [2]:

df=pd.read_csv(r"C:\Users\raja\Downloads\OnlineRetail2.csv")
df

Out[2]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	(
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	ŀ
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0	ŀ
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	ŀ
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	ł
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	ŀ
		•••						
541904	581587	22613	PACK OF 20 SPACEBOY NAPKINS	12	09-12-2011 12:50	0.85	12680.0	
541905	581587	22899	CHILDREN'S APRON DOLLY GIRL	6	09-12-2011 12:50	2.10	12680.0	
541906	581587	23254	CHILDRENS CUTLERY DOLLY GIRL	4	09-12-2011 12:50	4.15	12680.0	
541907	581587	23255	CHILDRENS CUTLERY CIRCUS PARADE	4	09-12-2011 12:50	4.15	12680.0	
541908	581587	22138	BAKING SET 9 PIECE RETROSPOT	3	09-12-2011 12:50	4.95	12680.0	
541909 ו	rows × 8 co	lumns						

localhost:8888/notebooks/Project-5 KMeansClustering(OnlineRetail).ipynb

In [3]:

df.head()

Out[3]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	Unitec Kingdom
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	Unitec Kingdorr
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	Unitec Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
4								•

In [4]:

df.tail()

Out[4]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	(
541904	581587	22613	PACK OF 20 SPACEBOY NAPKINS	12	09-12-2011 12:50	0.85	12680.0	
541905	581587	22899	CHILDREN'S APRON DOLLY GIRL	6	09-12-2011 12:50	2.10	12680.0	
541906	581587	23254	CHILDRENS CUTLERY DOLLY GIRL	4	09-12-2011 12:50	4.15	12680.0	
541907	581587	23255	CHILDRENS CUTLERY CIRCUS PARADE	4	09-12-2011 12:50	4.15	12680.0	
541908	581587	22138	BAKING SET 9 PIECE RETROSPOT	3	09-12-2011 12:50	4.95	12680.0	
4)	•

```
In [5]:
df['CustomerID'].value_counts()
Out[5]:
CustomerID
17841.0
           7983
14911.0
           5903
14096.0
           5128
12748.0
           4642
14606.0
           2782
15070.0
              1
15753.0
              1
17065.0
              1
16881.0
              1
16995.0
Name: count, Length: 4372, dtype: int64
In [6]:
df['Quantity'].value_counts()
Out[6]:
Quantity
 1
          148227
 2
           81829
 12
           61063
 6
           40868
           38484
-472
               1
               1
-161
-1206
               1
               1
-272
-80995
               1
Name: count, Length: 722, dtype: int64
In [7]:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 541909 entries, 0 to 541908
Data columns (total 8 columns):
#
     Column
                  Non-Null Count
                                    Dtype
 0
     InvoiceNo
                  541909 non-null
                                    object
 1
     StockCode
                  541909 non-null
                                    object
 2
     Description
                  540455 non-null
                                    object
                  541909 non-null
 3
     Quantity
                                    int64
 4
     InvoiceDate
                  541909 non-null
                                    object
 5
                  541909 non-null
                                    float64
     UnitPrice
 6
     CustomerID
                  406829 non-null
                                    float64
                  541909 non-null
     Country
                                    object
dtypes: float64(2), int64(1), object(5)
```

memory usage: 33.1+ MB

In [8]:

```
df.isnull().sum()
```

Out[8]:

InvoiceNo 0
StockCode 0
Description 1454
Quantity 0
InvoiceDate 0
UnitPrice 0
CustomerID 135080
Country 0

dtype: int64

In [9]:

```
df.fillna(method='ffill',inplace=True)
```

In [10]:

```
df.isnull().sum()
```

Out[10]:

InvoiceNo 0 StockCode 0 Description 0 Quantity 0 InvoiceDate 0 UnitPrice 0 CustomerID 0 Country 0 dtype: int64

In [16]:

```
plt.scatter(df["Quantity"],df["CustomerID"])
plt.xlabel("Quantity")
plt.ylabel("CustomerID")
```

Out[16]:

Text(0, 0.5, 'CustomerID')

KMeans Clustering

In [12]:

from sklearn.cluster import KMeans

In [13]:

```
km=KMeans()
km
```

Out[13]:

```
▼ KMeans
KMeans()
```

In [14]:

```
y_predicted=km.fit_predict(df[["Quantity","CustomerID"]])
y_predicted
```

C:\Users\raja\AppData\Local\Programs\Python\Python310\lib\site-packages\sk
learn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init`
will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly
to suppress the warning
 warnings.warn(

Out[14]:

array([4, 4, 4, ..., 7, 7, 7])

In [15]:

df["Cluster"]=y_predicted
df.head()

Out[15]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	Unitec Kingdom
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	Unitec Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
4								>

In [17]:

```
df1=df[df.Cluster==0]
df2=df[df.Cluster==2]
df3=df[df.Cluster==3]
plt.scatter(df1["Quantity"],df1["CustomerID"],color="red")
plt.scatter(df2["Quantity"],df2["CustomerID"],color="green")
plt.scatter(df3["Quantity"],df3["CustomerID"],color="blue")
plt.xlabel("Quantity")
plt.ylabel("CustomerID")
```

Out[17]:

Text(0, 0.5, 'CustomerID')

In [18]:

from sklearn.preprocessing import MinMaxScaler

In [19]:

```
scaler=MinMaxScaler()
```

In [20]:

```
scaler.fit(df[["CustomerID"]])
df["CustomerID"]=scaler.transform(df[["CustomerID"]])
df.head()
```

Out[20]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	0.926443	Unitec Kingdom
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	0.926443	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	0.926443	Unitec Kingdorr
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	0.926443	Unitec Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	0.926443	Unitec Kingdom
4								•

In [21]:

```
scaler.fit(df[["Quantity"]])
df["Quantity"]=scaler.transform(df[["Quantity"]])
df.head()
```

Out[21]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	0.500037	01-12-2010 08:26	2.55	0.926443	United Kingdon
1	536365	71053	WHITE METAL LANTERN	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	0.500049	01-12-2010 08:26	2.75	0.926443	United Kingdon
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdom
4)

In [22]:

km=KMeans()

In [23]:

```
y_predicted=km.fit_predict(df[["Quantity","CustomerID"]])
y_predicted
```

C:\Users\raja\AppData\Local\Programs\Python\Python310\lib\site-packages\sk
learn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init`
will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly
to suppress the warning
 warnings.warn(

Out[23]:

```
array([7, 7, 7, ..., 3, 3, 3])
```

In [24]:

df["New cluster"]=y_predicted
df.head()

Out[24]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	0.500037	01-12-2010 08:26	2.55	0.926443	United Kingdon
1	536365	71053	WHITE METAL LANTERN	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdon
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	0.500049	01-12-2010 08:26	2.75	0.926443	United Kingdon
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdon
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdon
4								•

In [25]:

```
df1=df[df["New cluster"]==0]
df2=df[df["New cluster"]==1]
df3=df[df["New cluster"]==2]
plt.scatter(df1["Quantity"],df1["CustomerID"],color="red")
plt.scatter(df2["Quantity"],df2["CustomerID"],color="green")
plt.scatter(df3["Quantity"],df3["CustomerID"],color="blue")
plt.xlabel("Quantity")
plt.ylabel("CustomerID")
```

Out[25]:

Text(0, 0.5, 'CustomerID')

In [26]:

```
km.cluster_centers_
```

Out[26]:

In [27]:

```
df1=df[df["New cluster"]==0]
df2=df[df["New cluster"]==1]
df3=df[df["New cluster"]==2]
plt.scatter(df1["Quantity"],df1["CustomerID"],color="red")
plt.scatter(df2["Quantity"],df2["CustomerID"],color="green")
plt.scatter(df3["Quantity"],df3["CustomerID"],color="blue")
plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color="orange",marker="+")
plt.xlabel("Quantity")
plt.ylabel("CustomerID")
```

Out[27]:

Text(0, 0.5, 'CustomerID')

In [28]:

```
k_rng=range(1,10)
sse=[]
```

```
In [29]:
```

```
for k in k_rng:
   km=KMeans(n_clusters=k)
   km.fit(df[["Quantity", "CustomerID"]])
    sse.append(km.inertia )
#km.inertia_ will give you the value of sum of square errorprint(sse)
plt.plot(k_rng,sse)
plt.xlabel("K")
plt.ylabel("Sum of Squared Error")
C:\Users\raja\AppData\Local\Programs\Python\Python310\lib\site-packages\sk
learn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init`
will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly
to suppress the warning
 warnings.warn(
C:\Users\raja\AppData\Local\Programs\Python\Python310\lib\site-packages\sk
learn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init`
will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly
to suppress the warning
  warnings.warn(
C:\Users\raja\AppData\Local\Programs\Python\Python310\lib\site-packages\sk
learn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init`
will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly
to suppress the warning
 warnings.warn(
C:\Users\raja\AppData\Local\Programs\Python\Python310\lib\site-packages\sk
learn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init`
will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly
to suppress the warning
 warnings.warn(
C:\Users\raja\AppData\Local\Programs\Python\Python310\lib\site-packages\sk
learn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init`
will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly
to suppress the warning
  warnings.warn(
C:\Users\raja\AppData\Local\Programs\Python\Python310\lib\site-packages\sk
learn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init`
will change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly
to suppress the warning
 warnings.warn(
C:\Users\raja\AppData\Local\Programs\Python\Python310\lib\site-packages\sk
learn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init`
will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly
to suppress the warning
  warnings.warn(
C:\Users\raja\AppData\Local\Programs\Python\Python310\lib\site-packages\sk
learn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init`
will change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly
to suppress the warning
  warnings.warn(
C:\Users\raja\AppData\Local\Programs\Python\Python310\lib\site-packages\sk
learn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init`
will change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly
to suppress the warning
 warnings.warn(
Out[29]:
Text(0, 0.5, 'Sum of Squared Error')
```

