

N32WB452 **Datasheet**

N32WB452 series is a BLE5.0 MCU chip based on 32-bit ARM Cortex-M4F + Cortex-M0 dual-core, TX/RX power consumption is 3.5mA, transmit power is +3dBm, receiving sensitivity is -94dBm, main frequency is 144MHz, it supports floating-point operations and DSP instructions, built-in 512KB Flash, 144KB SRAM, integrated up to 512KB Flash, 144KB SRAM, 2x12bit 5Msps ADC, 2x1Msps 12bit DAC, integrated multi-channel U(S)ART, I2C, SPI, USB communication interface, 2xCAN 2.0B, 1xSDIO interface, digital camera (DVP) interface, built-in cryptographic algorithm hardware acceleration engine

Key features

BLE5.0

- 2.4 GHz RF transceiver, support BLE5.0
- High receiver sensitivity (–94dBm@BLE)
- Programmable transmitter power, up to +3dBm
- Built-in Balun/Matching Network
- Receive power consumption: 3.5mA@3.0V (DCDC)
- Transmit power consumption: 3.6mA@3.0V/0 dBm (DCDC)

CPU core

- 32-bit ARM Cortex-M4 +FPU, one-cycle hardware multiply and divide instructions, DSP instruction and MPU support
- Built-in 8KB instruction Cache, which support Flash acceleration unit to execute program 0 wait
- Run up to 144MHz, 180DMIPS

Encrypted memory

- 512K Byte on-chip Flash + 128KB ROM, Flash supports encrypted storage, partition management and data protection functions, supports hardware ECC verification, 100,000 erasing times, 10-year data retention
- 144K Bytes of SRAM (including 16K Byte Retention RAM), Retention RAM supporting hardware parity check

Low power mode

- STANDBY mode: 4uA, 84 backup registers retained, all IO retained, optional RTC Run, 16KByte Retention SRAM retention, support VBAT pin independent power supply, 100uS fast wake-up
- STOP2 mode: 6uA, RTC Run, 16KByte Retention SRAM retention, CPU register retention, all IO retention, 40uS fast wake-up
- Stop0 mode: 150uA, RTC Run, all SRAM retained, all IO retained, 20uS fast wake-up.

Clock

- HSE: 4MHz~32MHz External high-speed crystal
- LSE: 32.768KHz External low-speed crystal
- HSI: Internal high-speed RC OSC 8MHz
- LSI: internal low-speed RC OSC 40KHz

- Built-in high speed PLL
- MCO: Support 1-way clock output, configurable SYSCLK, HSE, HSI or PLL clock output that can be divided

Bluetooth coprocessor clock

- 32MHz external high-speed crystal
- 32.768KHz external low-speed crystal
- Internal high-speed RC OSC 32MHz
- Internal low speed RC OSC 32KHz

Reset

- Support power-on/power-off/brown-out/external pin reset
- Support watchdog reset, software reset

Communication interface

- Up to 7x U(S)ART interfaces up to 4.5 Mbps, including 3x USART interfaces (supporting ISO7816, IrDA, LIN), and 4x UART interfaces
- 3x SPI interfaces up to 36 MHz, two of which support I2S
- 4x I2C interfaces up to 1 MHz, which can be configured in master/slave mode and support dual address response in slave mode
- 1x USB2.0 Full Speed Device interface
- 2x CAN 2.0A/B bus interfaces
- 1x SDIO interface(QFN88) supporting SD/SDIO /MMC format
- 1x DVP (Digital Video Port) interface

High-performance analog interface

- 2x 12-bit 5Msps high-speed ADC, 12/10/8/6bit configurable, 6bit mode up to 9Msps sampling rate, up to
 16 external single-ended input channels, supporting differential mode.
- 2x 12-bit DAC with sampling rate of 1Msps
- External input independent reference voltage source
- All analog interfaces support 1.8~3.6V full voltage operation.
- Up to 65 GPIOs supporting multiplexing function are supported, and most GPIOs support 5V tolerant
- 2x high-speed DMA controllers, each controller supports eight channels, and channel source address and destination address can be configured arbitrarily
- 1x RTC real-time clock, supporting leap year perpetual calendar, alarm events, periodic wake-up, and internal and external clock calibration.

• Timer counter

2x 16-bit advanced timer counters, support input capture, complementary output, orthogonal encoding input, maximum control accuracy 6.9ns. Each timer has four independent channels, three of which supports 3 channels and 6 complementary PWM output.

- 4x 16-bit general-purpose timer counters, each timer has 4 independent channels, support input capture/output comparison /PWM output.
- 2x 16-bit basic timing counters
- 1x 24bit SysTick
- 1x 7bit Window Watchdog (WWDG)
- 1x 12bit Independent Watchdog (IWDG)

Programming mode

- Support SWD/JTAG online debugging interface
- Support UART(Some versions of QFN48 package do not support), USB Bootloader

Safety features

- Built-in cryptographic algorithm hardware acceleration engine
- AES, DES, SHA, SM1, SM3, SM4, SM7 and MD5 algorithms are supported.
- Flash storage encryption
- Multi-user partition management (MMU)
- TRNG true random number generator
- CRC16/32
- Support write protection (WRP) and multiple read protection (RDP) levels (L0/L1/L2)
- Support secure startup, encrypted download of programs, and secure update.
- Support external clock failure detection, tamper detection.

96-bit UID and 128-bit UCID

Working conditions

- Voltage range: 1.8V~3.6V
- Working temperature range: -40 ℃ ~85 ℃
- ESD: ±4KV (HBM model), ±1KV(CDM model)

Encapsulation

- QFN48(6mm x 6mm)
- QFN64(8mm x 8mm)
- QFN88(10mm x 10mm)

Ordered information

Series	Part Number
N32WB452xE	N32WB452CEQ6 N32WB452REQ6 N32WB452LEQ6

Table of contents

1	Prod	luct introduction	8
	1.1	Part number Information	С
	1.2	List of devices	
2	Func	ction introduction	11
	2.1	Processor core	11
	2.2	Storage	11
	2.2.1	Embedded flash memory	12
	2.2.2	Embedded SRAM	12
	2.2.3	1 '	
	2.3	External interrupt/event controller (EXTI)	
	2.4	Clock system	
	2.5	Low-Power Bluetooth	
	2.6	Boot mode	
	2.7	Power supply scheme	
	2.8	Reset	
	2.9	Programmable voltage detector	
	2.10	Voltage regulator	
	2.11	Low power mode	
	2.12	Direct memory access (DMA)	
	2.13	Real time clock (RTC)	
	2.14	Timer and watchdog	
	2.14. 2.14.		
	2.14.	· · · · · · · · · · · · · · · · · · ·	
	2.14.		
	2.14.		
	2.14.	I ² C bus interface	
	2.16	Universal synchronous/asynchronous transceiver (USART)	
	2.17	Serial peripheral interface (SPI)	
	2.18	Serial audio interface (I ² S)	
	2.19	Secure digital input output interface (SDIO)	
	2.20	Controller Area Network (CAN)	
	2.21	Universal serial bus (USB)	
	2.22	General purpose input and output interface (GPIO)	
	2.23	Analog/digital converter (ADC)	
	2.24	Digital-to-analog converter (DAC)	
	2.25	Temperature sensor (TS)	
	2.26	Digital Video Interface (DVP)	28
	2.27	Cyclic redundancy check calculation unit (CRC)	28
	2.28	Security Acceleration Engine (SAC)	
	2.29	Unique device serial number (UID)	29
	2.30	Serial single-wire JTAG debug port (SWJ-DP)	29
3	Pina	outs and description	30
,	1 1110	•	
	3.1	Pinouts	
	3.1.1	C	
	3.1.2		
	3.1.3	· ·	
	3.2	Pin definition	
	3.3	Bluetooth application reference circuit	38
1	Elec	trical specification	40

7	Notice		91
6	Versio	n History	88
	5.4 N	Marking Information	87
		PFN88	
)FN64	
		QFN48	
5	Packa	ge Information	84
	4.4.23 4.4.24	Temperature sensor (TS) characteristics	
	4.4.22	Electrical parameters of 12-bit digital-to-analog converter (DAC)	
	4.4.21	Electrical parameters of 12-bit analog-to-digital converter (ADC)	
	4.4.20	Characteristics of Controller Area Network (CAN) Interface	
	4.4.19	Characteristics of Digital Video Port (DVP) Interface	
	4.4.18	USB characteristics	
	4.4.17	SD/SDIO host interface characteristics	
	4.4.16	SPI/I ² S interface characteristics	
	4.4.15	I2C interface characteristics	
	4.4.14	Timer characteristics	62
	4.4.13	NRST pin characteristics	
	4.4.12	I/O port characteristics.	
	4.4.11	Absolute maximum (electrical sensitivity)	
	4.4.10	FLASH memory characteristics	
	4.4.9	PLL characteristic	
	4.4.7	Wake up time from low power mode	
	4.4.0 4.4.7	Internal clock source characteristics	
	4.4.5 4.4.6	External clock source characteristics	
	4.4.4 4.4.5	Embedded reference voltage	
	4.4.3	Embedded reset and power control module features	
	4.4.2	Operating conditions at power-on and power-off	
	4.4.1	General operating conditions	
		Operating conditions	
	4.3.3	Bluetooth DC parameters	
	4.3.2	Bluetooth DC parameters	
	4.3.1	Bluetooth working environment	
		Sluetooth Electrical Characteristics	44
		Absolute maximum rating	43
	4.1.7	Current consumption measurement	
	4.1.6	Power supply scheme.	
	4.1.5	Pin input voltage	
	4.1.4	Loading capacitor	
	4.1.2 4.1.3	Typical numerical value	
	4.1.1	Minimum and maximum values	
	4.1 F	arameter condition	40

List of Table

Table 2-1 Timer function comparison	Table 1-1 N32WB452 Series Resource Configuration	10
Table 4-1 Voltage characteristic	Table 2-1 Timer function comparison	17
Table 4-2 Current characteristic	Table 3-1 Pin definition	33
Table 4-3 Temperature characteristic	Table 4-1 Voltage characteristic	43
Table 4-5 Bluetooth DC parameter characteristics		
Table 4-5 Bluetooth DC parameter characteristics	Table 4-3 Temperature characteristic	44
Table 4-5 Bluetooth DC parameter characteristics	Table 4-4 Bluetooth working environment	44
Table 4-6 Bluetooth AC parameters		
Table 4-7 1-Mbps GFSK (Bluetooth Low Energy) – TX Table 4-8 General working conditions 45 Table 4-9 Operating conditions at power-on and power-off 46 Table 4-10 Features of embedded reset and power control modules 47 Table 4-11 Embedded reference voltage 48 Table 4-11 Embedded reference voltage 48 Table 4-12 Maximum current consumption in run mode with data processing code running from internal flash memory 48 Table 4-13 Maximum current consumption in running mode, data processing code running from internal flash memory 48 Table 4-15 Typical current consumption in sleep mode. 50 Table 4-16 Typical current consumption in sleep mode. 50 Table 4-16 Typical and maximum current consumption in shutdown mode and standby mode. 50 Table 4-16 Typical and maximum current consumption in shutdown mode and standby mode. 51 Table 4-18 Low-speed external user clock characteristics (Bypass mode). 51 Table 4-19 HSE 4-32MHz oscillator characteristics (ISP) 52 Table 4-19 HSE 4-32MHz oscillator characteristics (ISP) 53 Table 4-20 LSE oscillator characteristics (ISP) 54 Table 4-21 HSI oscillator characteristics (ISP) 55 Table 4-22 LSI oscillator characteristics (ISP) 56 Table 4-23 Wake-up time in low power mode 56 Table 4-25 Flash memory characteristics 57 Table 4-26 Flash endurance and data retention 57 Table 4-27 Absolute maximum ESD value 57 Table 4-29 I/O static characteristics 58 Table 4-29 I/O static characteristics 59 Table 4-30 IO driving capability Table. 59 Table 4-30 Unput voltage characteristics 50 Table 4-30 Unput voltage characteristics 50 Table 4-30 Unput voltage characteristics 50 Table 4-30 IO driving capability Table. 51 Table 4-31 INI/8 characteristics 50 Table 4-32 INI/8 characteristics 50 Table 4-34 INI/8 characteristics 50 Table 4-35 INI/8 characteristics 51 Table 4-36 INI/8 characteristics 52 Table 4-37 WWDG counting maximum and minimum reset time (LSI = 40 KHz) 53 Table 4-38 IVDG counting maximum and minimum reset time (LSI = 40 KHz) 54 Table 4-49 SPI2 feture ⁽¹⁾ 55 Table 4		
Table 4-9 Operating conditions at power-on and power-off	Table 4-7 1-Mbps GFSK (Bluetooth Low Energy) – TX	45
Table 4-9 Operating conditions at power-on and power-off Table 4-10 Features of embedded reset and power control modules 47 Table 4-11 Embedded reference voltage 48 Table 4-12 Maximum current consumption in run mode with data processing code running from internal flash memory 48 Table 4-13 Maximum current consumption in sleep mode. 49 Table 4-14 Typical current consumption in running mode, data processing code runs from internal Flash memory 48 Table 4-15 Typical current consumption in sleep mode. 49 Table 4-15 Typical current consumption in sleep mode. 50 Table 4-16 Typical and maximum current consumption in shutdown mode and standby mode 51 Table 4-17 High speed external user clock characteristics (Bypass mode) 52 Table 4-18 Low-speed external user clock characteristics (Bypass mode) 53 Table 4-19 HSE 4-32MHz oscillator characteristics (Bypass mode) 54 Table 4-20 LSE oscillator characteristics (I _{SE} =32.768kHz) ⁽¹⁾ 54 Table 4-21 LSI oscillator characteristics (I _{SE} =32.768kHz) ⁽¹⁾ 55 Table 4-22 LSI oscillator characteristics (I _{SE} =32.768kHz) ⁽¹⁾ 56 Table 4-23 Wake-up time in low power mode 56 Table 4-25 Flash memory characteristics 57 Table 4-25 Flash nemory characteristics 57 Table 4-26 Flash endurance and data retention 57 Table 4-27 Absolute maximum ESD value 57 Table 4-28 Electrical sensitivity 58 Table 4-29 I/O static characteristics 58 Table 4-29 I/O static characteristics 59 Table 4-30 IO driving capability Table 59 Table 4-31 Output voltage characteristics 60 Table 4-33 NRST pin characteristics (I) 61 Table 4-35 TIM2/3/4/5 characteristics (I) 62 Table 4-36 WDG counting maximum and minimum reset time (LSI = 40 KHz) 63 Table 4-37 WWDG counting maximum and minimum reset time (LSI = 40 KHz) 64 Table 4-37 WDG counting maximum and minimum reset time (LSI = 40 KHz) 65 Table 4-37 WDG counting maximum and minimum reset time (LSI = 40 KHz) 66 Table 4-39 FI feature (I) 67 Table 4-40 SPI2 feature (I) 68 Table 4-40 SPI2 feature (I) 69 Table 4-40 SPI2 feature (I) 60 Table 4-40 SP	Table 4-8 General working conditions	45
Table 4-10 Features of embedded reset and power control modules	Table 4-9 Operating conditions at power-on and power-off	46
Table 4-11 Embedded reference voltage		
Table 4-12 Maximum current consumption in run mode with data processing code running from internal flash memory 48 7able 4-13 Maximum current consumption in sleep mode		
Table 4-13 Maximum current consumption in sleep mode. 49 Table 4-14 Typical current consumption in running mode, data processing code runs from internal Flash 49 Table 4-15 Typical current consumption in sleep mode. 50 Table 4-16 Typical and maximum current consumption in slutdown mode and standby mode. 50 Table 4-17 High speed external user clock characteristics (Bypass mode). 51 Table 4-18 Low-speed external user clock characteristics (Bypass mode). 52 Table 4-19 HSE 4-32MHz oscillator characteristics (Fig.sc. 32.768kHz). 53 Table 4-20 LSE oscillator characteristics (Fig.sc. 32.768kHz). 54 Table 4-21 HSI oscillator characteristics (Fig.sc. 32.768kHz). 55 Table 4-21 HSI oscillator characteristics. 56 Table 4-22 LSI oscillator characteristics. 56 Table 4-23 Wake-up time in low power mode. 56 Table 4-24 PLL characteristic. 56 Table 4-25 Flash memory characteristics. 57 Table 4-26 Flash endurance and data retention. 57 Table 4-27 Absolute maximum ESD value. 57 Table 4-28 Electrical sensitivity. 58 Table 4-29 I/O static characteristics. 58 Table 4-31 Output voltage characteristics. 59		
Table 4-14 Typical current consumption in running mode, data processing code runs from internal Flash .49 Table 4-15 Typical current consumption in sleep mode .50 Table 4-16 Typical and maximum current consumption in shutdown mode and standby mode .50 Table 4-17 High speed external user clock characteristics (Bypass mode) .51 Table 4-18 Low-speed external user clock characteristics (Bypass mode) .52 Table 4-19 HSE 432MHz oscillator characteristics (Gi _{SE} =32.768kHz) ⁽¹⁾ .53 Table 4-20 LSE oscillator characteristics (Gi _{SE} =32.768kHz) ⁽¹⁾ .54 Table 4-21 HSI oscillator characteristics (Gi _{SE} =32.768kHz) ⁽¹⁾ .55 Table 4-21 HSI oscillator characteristics (Gi _{SE} =32.768kHz) ⁽¹⁾ .56 Table 4-23 Wake-up time in low power mode .56 Table 4-23 Wake-up time in low power mode .56 Table 4-25 Flash memory characteristics .57 Table 4-25 Flash memory characteristics .57 Table 4-26 Flash endurance and data retention .57 Table 4-27 Absolute maximum ESD value .57 Table 4-28 Electrical sensitivity .58 Table 4-29 I/O static characteristics .58 Table 4-30 Output voltage characteristics .58 Table 4-31 Output voltage characteristics </td <td></td> <td></td>		
Table 4-15 Typical current consumption in sleep mode 50 Table 4-16 Typical and maximum current consumption in shutdown mode and standby mode 50 Table 4-17 High speed external user clock characteristics (Bypass mode) 51 Table 4-18 Low-speed external user clock characteristics (Bypass mode) 52 Table 4-19 HSE 4-32MHz oscillator characteristics (fi.se=32.768kHz)(1) 53 Table 4-20 LSE oscillator characteristics (fi.se=32.768kHz)(1) 54 Table 4-21 KISI oscillator characteristics (fi.se=32.768kHz)(1) 55 Table 4-22 LSI oscillator characteristics (fi.se=32.768kHz)(1) 55 Table 4-21 HSI oscillator characteristics (fi.se=32.768kHz)(1) 56 Table 4-22 LSI oscillator characteristics (fi.se=32.768kHz)(1) 56 Table 4-23 Wake-up time in low power mode 56 Table 4-25 Wake-up time in low power mode 56 Table 4-25 Flash memory characteristics 57 Table 4-25 Flash endurance and data retention 57 Table 4-26 Flash endurance and data retention 57 Table 4-27 Absolute maximum ESD value 57 Table 4-28 Electrical sensitivity 58 Table 4-29 I/O static characteristics 58 Table 4-31 Output voltage characteristics (fi.seminary fills) 59	Table 4-14 Typical current consumption in running mode, data processing code runs from internal Flash	49
Table 4-16 Typical and maximum current consumption in shutdown mode and standby mode 50 Table 4-17 High speed external user clock characteristics (Bypass mode) 51 Table 4-18 Low-speed external user clock characteristics (Bypass mode) 52 Table 4-19 HSE 4-32MHz oscillator characteristics (I)(2) 53 Table 4-20 LSE oscillator characteristics (I)(2) 54 Table 4-21 HSI oscillator characteristics (I)(2) 55 Table 4-22 LSI oscillator characteristics (I) 56 Table 4-22 LSI oscillator characteristics (I) 56 Table 4-24 PLL characteristic 56 Table 4-25 Flash memory characteristics 57 Table 4-26 Flash endurance and data retention 57 Table 4-27 Absolute maximum ESD value 57 Table 4-28 Electrical sensitivity 58 Table 4-29 I/O static characteristics 58 Table 4-30 IO driving capability Table 59 Table 4-31 Output voltage characteristics 59 Table 4-33 TIMI/8 characteristics 62 Table 4-34 TIMI/8 characteristics 62 Table 4-35 TIM2/3/4/5 characteristics (I) 63 Table 4-37 WWDG counting maximum and minimum reset time (LSI = 40 KHz) 63 Table 4-38 I		
Table 4-17 High speed external user clock characteristics (Bypass mode) 51 Table 4-18 Low-speed external user clock characteristics (Bypass mode) 52 Table 4-19 HSE 4~32MHz oscillator characteristics (I) 53 Table 4-20 LSE oscillator characteristics (I) 54 Table 4-21 HSI oscillator characteristics (I) 55 Table 4-21 Wake-up time in low power mode 56 Table 4-23 Wake-up time in low power mode 56 Table 4-25 Flash memory characteristics 57 Table 4-25 Flash nemory characteristics 57 Table 4-26 Flash endurance and data retention 57 Table 4-27 Absolute maximum ESD value 57 Table 4-28 Electrical sensitivity 58 Table 4-29 I/O static characteristics 58 Table 4-31 Output voltage characteristics 58 Table 4-33 Output AC Characteristics 59 Table 4-35 TIM2/3/4/5 characteristics 62 Table 4-35 TIM2/3/4/5 characteristics 62 Table 4-36 IWDG counting maximum and minimum reset time (LSI = 40 KHz) 63 Table 4-37 WWDG counting maximum and minimum reset time (APB1 PCLK1 = 36MHz) 63 Table 4-39 SPI1 feature (1) 65 Table 4-40 SPI2 feture (1)		
Table 4-18 Low-speed external user clock characteristics (Bypass mode) 52 Table 4-19 HSE 4-32MHz oscillator characteristics(¹¹²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²		
Table 4-19 HSE $4\sim32$ MHz oscillator characteristics $^{(1)(2)}$ 53Table 4-20 LSE oscillator characteristics $^{(1)(2)}$ 54Table 4-21 HSI oscillator characteristics $^{(1)(2)}$ 55Table 4-22 LSI oscillator characteristics $^{(1)(2)}$ 56Table 4-23 Wake-up time in low power mode56Table 4-24 PLL characteristic56Table 4-25 Flash memory characteristics57Table 4-26 Flash endurance and data retention57Table 4-27 Absolute maximum ESD value57Table 4-28 Electrical sensitivity58Table 4-29 I/O static characteristics58Table 4-30 IO driving capability Table59Table 4-31 Output voltage characteristics59Table 4-32 Output AC Characteristics59Table 4-33 NRST pin characteristics60Table 4-34 TIM1/8 characteristics62Table 4-35 TIM2/3/4/5 characteristics62Table 4-36 IWDG counting maximum and minimum reset time (LSI = 40 KHz)63Table 4-38 VPG interface characteristics63Table 4-39 SPII feature (1)65Table 4-39 SPII feature (1)65Table 4-40 SPI2 feture (1)65Table 4-41 I²S characteristics (1)66Table 4-41 I²S characteristics (1)69		
Table 4-20 LSE oscillator characteristics (f _{LSE} =32.768kHz) ⁽¹⁾ 54 Table 4-21 HSI oscillator characteristics ⁽¹⁾⁽²⁾ 55 Table 4-22 LSI oscillator characteristics ⁽¹⁾ 56 Table 4-23 Wake-up time in low power mode 56 Table 4-24 PLL characteristic 56 Table 4-25 Flash memory characteristics 57 Table 4-26 Flash endurance and data retention 57 Table 4-27 Absolute maximum ESD value 57 Table 4-28 Electrical sensitivity 58 Table 4-29 I/O static characteristics 58 Table 4-30 IO driving capability Table 59 Table 4-31 Output voltage characteristics 59 Table 4-32 Output AC Characteristics ⁽¹⁾ 60 Table 4-33 NRST pin characteristics 62 Table 4-34 TIM1/8 characteristics ⁽¹⁾ 62 Table 4-35 TIM2/3/4/5 characteristics ⁽¹⁾ 63 Table 4-36 IWDG counting maximum and minimum reset time (LSI = 40 KHz) 63 Table 4-38 I'C interface characteristics 64 Table 4-39 SPI1 feature ⁽¹⁾ 65 Table 4-39 SPI1 feature ⁽¹⁾ 65 Table 4-40 SPI2 feture ⁽¹⁾ 66 Table 4-41 I'S characteristics ⁽¹⁾ 69		
Table 4-21 HSI oscillator characteristics(I)(2) 55 Table 4-22 LSI oscillator characteristics(I) 56 Table 4-23 Wake-up time in low power mode 56 Table 4-24 PLL characteristic 56 Table 4-25 Flash memory characteristics 57 Table 4-26 Flash endurance and data retention 57 Table 4-27 Absolute maximum ESD value 57 Table 4-28 Electrical sensitivity 58 Table 4-29 I/O static characteristics 58 Table 4-30 IO driving capability Table 59 Table 4-31 Output voltage characteristics 59 Table 4-32 Output AC Characteristics(I) 60 Table 4-33 NRST pin characteristics(I) 62 Table 4-34 TIM1/8 characteristics(I) 62 Table 4-35 TIM2/3/4/5 characteristics(I) 63 Table 4-36 IWDG counting maximum and minimum reset time (LSI = 40 KHz) 63 Table 4-38 I²C interface characteristics 64 Table 4-39 SP11 feature(I) 63 Table 4-40 SP12 feature(I) 65 Table 4-40 SP12 feature(I) 66 Table 4-41 I²S characteristics(I) 69		
Table 4-22 LSI oscillator characteristics ⁽¹⁾ 56 Table 4-23 Wake-up time in low power mode 56 Table 4-24 PLL characteristic 56 Table 4-25 Flash memory characteristics 57 Table 4-26 Flash endurance and data retention 57 Table 4-27 Absolute maximum ESD value 57 Table 4-28 Electrical sensitivity 58 Table 4-29 I/O static characteristics 58 Table 4-30 IO driving capability Table 59 Table 4-31 Output voltage characteristic 59 Table 4-32 Output AC Characteristics ⁽¹⁾ 60 Table 4-33 NRST pin characteristics ⁽¹⁾ 62 Table 4-34 TIM1/8 characteristics ⁽¹⁾ 62 Table 4-35 TIM2/3/4/5 characteristics ⁽¹⁾ 63 Table 4-36 IWDG counting maximum and minimum reset time (LSI = 40 KHz) 63 Table 4-38 I ² C interface characteristics 64 Table 4-38 SPI1 feature ⁽¹⁾ 65 Table 4-40 SPI2 feture ⁽¹⁾ 65 Table 4-40 SPI2 feture ⁽¹⁾ 66 Table 4-41 I ² S characteristics ⁽¹⁾ 69		
Table 4-23 Wake-up time in low power mode 56 Table 4-24 PLL characteristic 56 Table 4-25 Flash memory characteristics 57 Table 4-26 Flash endurance and data retention 57 Table 4-27 Absolute maximum ESD value 57 Table 4-28 Electrical sensitivity 58 Table 4-29 I/O static characteristics 58 Table 4-30 IO driving capability Table 59 Table 4-31 Output voltage characteristics 59 Table 4-32 Output AC Characteristics ⁽¹⁾ 60 Table 4-33 NRST pin characteristics ⁽¹⁾ 60 Table 4-35 TIM2/3/4/5 characteristics ⁽¹⁾ 62 Table 4-35 TIM2/3/4/5 characteristics ⁽¹⁾ 62 Table 4-36 IWDG counting maximum and minimum reset time (LSI = 40 KHz) 63 Table 4-37 WWDG counting maximum and minimum reset time (APB1 PCLK1 = 36MHz) 63 Table 4-39 SPII feature ⁽¹⁾ 65 Table 4-40 SPI2 feture ⁽¹⁾ 65 Table 4-40 SPI2 feture ⁽¹⁾ 66 Table 4-41 I ² S characteristics ⁽¹⁾ 69		
Table 4-24 PLL characteristic 56 Table 4-25 Flash memory characteristics 57 Table 4-26 Flash endurance and data retention 57 Table 4-27 Absolute maximum ESD value 57 Table 4-28 Electrical sensitivity 58 Table 4-29 I/O static characteristics 58 Table 4-30 IO driving capability Table 59 Table 4-31 Output voltage characteristics 59 Table 4-32 Output AC Characteristics ⁽¹⁾ 60 Table 4-33 NRST pin characteristics 62 Table 4-34 TIM1/8 characteristics ⁽¹⁾ 62 Table 4-35 TIM2/3/4/5 characteristics ⁽¹⁾ 62 Table 4-36 IWDG counting maximum and minimum reset time (LSI = 40 KHz) 63 Table 4-37 WWDG counting maximum and minimum reset time (APB1 PCLK1 = 36MHz) 63 Table 4-39 SPI1 feature ⁽¹⁾ 65 Table 4-40 SPI2 feture ⁽¹⁾ 65 Table 4-41 I ² S characteristics ⁽¹⁾ 66 Table 4-41 I ² S characteristics ⁽¹⁾ 66		
Table 4-25 Flash memory characteristics 57 Table 4-26 Flash endurance and data retention 57 Table 4-27 Absolute maximum ESD value 57 Table 4-28 Electrical sensitivity 58 Table 4-29 I/O static characteristics 58 Table 4-30 IO driving capability Table 59 Table 4-31 Output voltage characteristic 59 Table 4-32 Output AC Characteristics ⁽¹⁾ 60 Table 4-33 NRST pin characteristics 62 Table 4-34 TIM1/8 characteristics ⁽¹⁾ 62 Table 4-35 TIM2/3/4/5 characteristics ⁽¹⁾ 63 Table 4-36 IWDG counting maximum and minimum reset time (LSI = 40 KHz) 63 Table 4-37 WWDG counting maximum and minimum reset time (APB1 PCLK1 = 36MHz) 63 Table 4-38 I ² C interface characteristics 64 Table 4-39 SPI1 feature ⁽¹⁾ 65 Table 4-40 SPI2 feture ⁽¹⁾ 65 Table 4-41 I ² S characteristics ⁽¹⁾ 69		
Table 4-26 Flash endurance and data retention 57 Table 4-27 Absolute maximum ESD value 57 Table 4-28 Electrical sensitivity 58 Table 4-29 I/O static characteristics 58 Table 4-30 IO driving capability Table 59 Table 4-31 Output voltage characteristic 59 Table 4-32 Output AC Characteristics ⁽¹⁾ 60 Table 4-33 NRST pin characteristics ⁽¹⁾ 62 Table 4-34 TIM1/8 characteristics ⁽¹⁾ 62 Table 4-35 TIM2/3/4/5 characteristics ⁽¹⁾ 63 Table 4-36 IWDG counting maximum and minimum reset time (LSI = 40 KHz) 63 Table 4-37 WWDG counting maximum and minimum reset time (APB1 PCLK1 = 36MHz) 63 Table 4-38 I ² C interface characteristics 64 Table 4-39 SPI1 feature ⁽¹⁾ 65 Table 4-40 SPI2 feture ⁽¹⁾ 65 Table 4-41 I ² S characteristics ⁽¹⁾ 69		
Table 4-27 Absolute maximum ESD value 57 Table 4-28 Electrical sensitivity 58 Table 4-29 I/O static characteristics 58 Table 4-30 IO driving capability Table 59 Table 4-31 Output voltage characteristic 59 Table 4-32 Output AC Characteristics ⁽¹⁾ 60 Table 4-33 NRST pin characteristics 62 Table 4-34 TIM1/8 characteristics ⁽¹⁾ 62 Table 4-35 TIM2/3/4/5 characteristics ⁽¹⁾ 63 Table 4-36 IWDG counting maximum and minimum reset time (LSI = 40 KHz) 63 Table 4-37 WWDG counting maximum and minimum reset time (APB1 PCLK1 = 36MHz) 63 Table 4-38 I²C interface characteristics 64 Table 4-39 SPI1 feature ⁽¹⁾ 65 Table 4-40 SPI2 feture ⁽¹⁾ 65 Table 4-41 I²S characteristics ⁽¹⁾ 69		
Table 4-28 Electrical sensitivity 58 Table 4-29 I/O static characteristics 58 Table 4-30 IO driving capability Table 59 Table 4-31 Output voltage characteristic 59 Table 4-32 Output AC Characteristics ⁽¹⁾ 60 Table 4-33 NRST pin characteristics 62 Table 4-34 TIM1/8 characteristics ⁽¹⁾ 62 Table 4-35 TIM2/3/4/5 characteristics ⁽¹⁾ 63 Table 4-36 IWDG counting maximum and minimum reset time (LSI = 40 KHz) 63 Table 4-37 WWDG counting maximum and minimum reset time (APB1 PCLK1 = 36MHz) 63 Table 4-38 I²C interface characteristics 64 Table 4-39 SPI1 feature ⁽¹⁾ 65 Table 4-40 SPI2 feture ⁽¹⁾ 65 Table 4-41 I²S characteristics ⁽¹⁾ 66		
Table 4-29 I/O static characteristics 58 Table 4-30 IO driving capability Table. 59 Table 4-31 Output voltage characteristic 59 Table 4-32 Output AC Characteristics ⁽¹⁾ 60 Table 4-33 NRST pin characteristics 62 Table 4-34 TIM1/8 characteristics ⁽¹⁾ 62 Table 4-35 TIM2/3/4/5 characteristics ⁽¹⁾ 63 Table 4-36 IWDG counting maximum and minimum reset time (LSI = 40 KHz) 63 Table 4-37 WWDG counting maximum and minimum reset time (APB1 PCLK1 = 36MHz) 63 Table 4-38 I ² C interface characteristics 64 Table 4-39 SPI1 feature ⁽¹⁾ 65 Table 4-40 SPI2 feture ⁽¹⁾ 65 Table 4-41 I ² S characteristics ⁽¹⁾ 66		
Table 4-30 IO driving capability Table 59 Table 4-31 Output voltage characteristic 59 Table 4-32 Output AC Characteristics ⁽¹⁾ 60 Table 4-33 NRST pin characteristics 62 Table 4-34 TIM1/8 characteristics ⁽¹⁾ 62 Table 4-35 TIM2/3/4/5 characteristics ⁽¹⁾ 63 Table 4-36 IWDG counting maximum and minimum reset time (LSI = 40 KHz) 63 Table 4-37 WWDG counting maximum and minimum reset time (APB1 PCLK1 = 36MHz) 63 Table 4-38 I ² C interface characteristics 64 Table 4-39 SPI1 feature ⁽¹⁾ 65 Table 4-40 SPI2 feture ⁽¹⁾ 66 Table 4-41 I ² S characteristics ⁽¹⁾ 69		
Table 4-31 Output voltage characteristic 59 Table 4-32 Output AC Characteristics ⁽¹⁾ 60 Table 4-33 NRST pin characteristics 62 Table 4-34 TIM1/8 characteristics ⁽¹⁾ 62 Table 4-35 TIM2/3/4/5 characteristics ⁽¹⁾ 63 Table 4-36 IWDG counting maximum and minimum reset time (LSI = 40 KHz) 63 Table 4-37 WWDG counting maximum and minimum reset time (APB1 PCLK1 = 36MHz) 63 Table 4-38 I ² C interface characteristics 64 Table 4-39 SPI1 feature ⁽¹⁾ 65 Table 4-40 SPI2 feture ⁽¹⁾ 66 Table 4-41 I ² S characteristics ⁽¹⁾ 69		
Table 4-32 Output AC Characteristics (1) 60 Table 4-33 NRST pin characteristics 62 Table 4-34 TIM1/8 characteristics (1) 62 Table 4-35 TIM2/3/4/5 characteristics (1) 63 Table 4-36 IWDG counting maximum and minimum reset time (LSI = 40 KHz) 63 Table 4-37 WWDG counting maximum and minimum reset time (APB1 PCLK1 = 36MHz) 63 Table 4-38 I ² C interface characteristics 64 Table 4-39 SPI1 feature (1) 65 Table 4-40 SPI2 feture (1) 66 Table 4-41 I ² S characteristics (1) 69		
Table 4-33 NRST pin characteristics 62 Table 4-34 TIM1/8 characteristics ⁽¹⁾ 62 Table 4-35 TIM2/3/4/5 characteristics ⁽¹⁾ 63 Table 4-36 IWDG counting maximum and minimum reset time (LSI = 40 KHz) 63 Table 4-37 WWDG counting maximum and minimum reset time (APB1 PCLK1 = 36MHz) 63 Table 4-38 I ² C interface characteristics 64 Table 4-39 SPI1 feature ⁽¹⁾ 65 Table 4-40 SPI2 feture ⁽¹⁾ 66 Table 4-41 I ² S characteristics ⁽¹⁾ 69		
Table 4-34 TIM1/8 characteristics ⁽¹⁾ 62 Table 4-35 TIM2/3/4/5 characteristics ⁽¹⁾ 63 Table 4-36 IWDG counting maximum and minimum reset time (LSI = 40 KHz) 63 Table 4-37 WWDG counting maximum and minimum reset time (APB1 PCLK1 = 36MHz) 63 Table 4-38 I ² C interface characteristics 64 Table 4-39 SPI1 feature ⁽¹⁾ 65 Table 4-40 SPI2 feture ⁽¹⁾ 66 Table 4-41 I ² S characteristics ⁽¹⁾ 69	Table 4-32 Output AC Characteristics (1)	60
Table 4-35 TIM2/3/4/5 characteristics ⁽¹⁾	Table 4-33 NRST pin characteristics	62
Table 4-36 IWDG counting maximum and minimum reset time (LSI = 40 KHz) 63 Table 4-37 WWDG counting maximum and minimum reset time (APB1 PCLK1 = 36MHz) 63 Table 4-38 I ² C interface characteristics 64 Table 4-39 SPI1 feature ⁽¹⁾ 65 Table 4-40 SPI2 feture ⁽¹⁾ 66 Table 4-41 I ² S characteristics ⁽¹⁾ 69		
Table 4-37 WWDG counting maximum and minimum reset time (APB1 PCLK1 = 36MHz) 63 Table 4-38 I ² C interface characteristics 64 Table 4-39 SPI1 feature ⁽¹⁾ 65 Table 4-40 SPI2 feture ⁽¹⁾ 66 Table 4-41 I ² S characteristics ⁽¹⁾ 69		
Table 4-38 I²C interface characteristics 64 Table 4-39 SPI1 feature ⁽¹⁾ 65 Table 4-40 SPI2 feture ⁽¹⁾ 66 Table 4-41 I²S characteristics ⁽¹⁾ 69		
Table 4-39 SPI1 feature ⁽¹⁾ 65 Table 4-40 SPI2 feture ⁽¹⁾ 66 Table 4-41 I ² S characteristics ⁽¹⁾ 69		
Table 4-40 SPI2 feture ⁽¹⁾ 66 Table 4-41 I ² S characteristics ⁽¹⁾ 69		
Table 4-41 I ² S characteristics ⁽¹⁾		
Table 4-41 I'S characteristics ⁽¹⁾ 69 Table 4-42 SD/MMC interface features		
Table 4-42 SD/MMC interface features 71	Table 4-41 I ² S characteristics ⁽¹⁾	69
Table 4-43 USB startup time		
Table 4-44 USB DC characteristic		
Table 4-45 Full-speed of USB electrical characteristics		
Table 4-46 Dynamic characteristics of DVP signal		
Table 4-47 ADC characteristics		
Table 4-48 ADC sampling time ⁽¹⁾⁽²⁾	Table 4-48 ADC sampling time ⁽¹⁾⁽²⁾	75
Table 4-49 ADC accuracy-limited test conditions ⁽¹⁾⁽²⁾	Table 4-49 ADC accuracy-limited test conditions ⁽¹⁾⁽²⁾	76
Table 4-50 DAC characteristics 80		
Table 4-51 Temperature sensor characteristics		

List of Figures

Figure 1-1 Block diagram of N32WB452 series	
Figure 1-2 N32WB452 Series Part Number Information	9
Figure 2-1 Memory map	12
Figure 2-2 Clock tree	
Figure 3-1 N32WB452 Series QFN48 pinout	30
Figure 3-2 N32WB452 Series QFN64 pinout	
Figure 3-3 N32WB452 Series QFN88 pinout	32
Figure 3-4 DCDC working mode reference circuit diagram	39
Figure 3-5 LDO working mode reference circuit	39
Figure 4-1 Pin load conditions	
Figure 4-2 Pin voltage	
Figure 4-3 Power supply scheme(Non-Bluetooth part)	42
Figure 4-4 Current consumption measurement scheme	
Figure 4-5 AC timing diagram of external high-speed clock source	52
Figure 4-6 Ac timing diagram of external low-speed clock source	53
Figure 4-7 Typical application using 8MHz crystal	54
Figure 4-8 Typical application using 32.768kH crystal ⁽¹⁾⁽²⁾	
Figure 4-9 Input output AC characteristic definition	61
Figure 4-10 Transmission delay	61
Figure 4-11 Recommended NRST pin protection for	
Figure 4-12 I ² C bus AC waveform and measurement circuit ⁽¹⁾	
Figure 4-13 SPI timing diagram-slave mode and CLKPHA=0	
Figure 4-14 SPI timing diagram-slave mode and CLKPHA=1(1)	
Figure 4-15 SPI timing diagram-master mode ⁽¹⁾	68
Figure 4-16 I ² S slave mode timing diagram (Philips protocol) ⁽¹⁾	70
Figure 4-17 I ² S Master mode timing diagram (Philips Protocol) ⁽¹⁾	70
Figure 4-18 SDIO high-speed mode	
Figure 4-19 SD default mode	
Figure 4-20 USB timing: data signal rising and falling time definition	
Figure 4-21 DVP interface timing diagram	
Figure 4-22 ADC precision characteristics	
Figure 4-23 Typical connection diagram using ADC	
Figure 4-24 Decoupling circuit of power supply and reference power supply (V _{REF+} is not connected to V _{DDA})	
Figure 4-25 Decoupling circuit of power supply and reference power supply (V _{REF+} is connected with V _{DDA})	
Figure 4-26 SMT soldering temperature characteristic curve	
Figure 5-1 QFN48 package outline	
Figure 5-2 QFN64 package outline	
Figure 5-3 QFN88 package outline	
Figure 5-4 Marking information	87

1 Product introduction

N32WB452 series BLE5.0 microcontroller products use 32-bit ARM Cortex-M4 plus 32-bit ARM Cortex-M0 dual-core architecture, of which the 32-bit ARM Cortex-M0 core is dedicated to processing BLE5.0 radio frequency circuits and Bluetooth protocols, through the internal high-speed bus, configured by the ARM Cortex-M4 core. ARM Cortex-M4 core as an application processor, supports floating-point arithmetic unit (FPU) and digital signal processing (DSP) instructions, supports parallel computing instructions, the highest operating frequency is 144MHz, integrates up to 512KB encrypted storage Flash and supports multi-user partition management, maximum 144KB SRAM. Built-in one internal high-speed AHB bus, two low-speed peripheral clock bus APB and bus matrix, supports up to 65 general-purpose I/Os, provides rich high-performance analog interfaces, including two 12bit 5Msps ADCs, supports up to 16 external input channels, 2 1Msps12bit DACs, up to 18-channel capacitive touch keys, and provide a variety of digital communication interfaces, including 7 U(S)ART, 4 I2C, 3 SPI, 1 USB 2.0 device, 2 CAN 2.0 B communication interface, 1 digital video interface (DVP), 1 SDIO interface, built-in cryptographic algorithm hardware acceleration engine, supports a variety of international and national cryptographic algorithm hardware acceleration.

N32WB452 series products provide wireless connection capability compliant with BLE 5.0, work stably in the temperature range of $-40 \, \text{C}$ to $+85 \, \text{C}$, supply voltage from 1.8V to 3.6V, and provide a variety of power consumption modes for users to choose from. consumption application requirements. The family is available in QFN48, QFN64 and QFN88 packages. Depending on the package type, the peripheral configuration in the device varies. These rich peripheral configurations make the N32WB452 series BLE5.0 microcontroller chips suitable for various applications such as smart door locks, smart wear, smart labels, smart home, Internet of Things and mobile Internet.

Figure 1-1 the block diagram of this series of products is given.

Figure 1-1 Block diagram of N32WB452 series

1.1 Part number Information

Figure 1-2 N32WB452 Series Part Number Information

Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North.

1.2 List of devices

Table 1-1 N32WB452 Series Resource Configuration

Part number		N32WB452CE	N32WB452RE	N32WB452LE				
Flash (KB)		512	512	512				
SRA	AM (KB)	144	144	144				
CPU	frequency		ARM Cortex-M4 @14	4MHz,180DMIPS				
	E Core		BLE 5.0 / 32bit ARM Co	ortex-M0 @ 32MHz				
	ing Voltage mperature		1.8~3.6V/-4	0~85°C				
	General		4					
Time r	Advance d		2					
	Basic		2					
	SPI		3 ⁽¹⁾					
	I2S		2					
ų.	I2C	2	3	4				
catic	USART		3					
nmunicat interface	UART	2	3	4				
Communication interface	USB		1					
	CAN		2					
	SDIO		0	1				
	DVP		0	1				
(GPIO	29	43	65				
	Number of nannels	2/16 Channel						
Nu ch	oit ADC/ amber of nannels	2/6 Channel 2/11 Channel 2/16 Channel						
12bit DAC/ Number of channels		2/2 Channel						
	thm support	DES/3DES、AES、 SHA1/SHA224/SHA256、SM1、SM3、SM4、SM7、MD5、CRC16/CRC32、 TRNG						
	ecurity otection	Read-write protection (RDP/WRP), Storage encryption, Partition protection, Secure startup						
Pa	ackage	QFN48	QFN64	QFN88				

SPI2 and SPI3 interfaces can flexibly switch between SPI mode and I2S audio mode.

2 Function introduction

2.1 Processor core

N32WB452 series BLE5.0 MCU adopts 32-bit ARM Cortex-M4 plus 32-bit ARM Cortex-M0 dual-core architecture, of which the 32-bit ARM Cortex-M0 core is dedicated to processing BLE5.0 radio frequency circuit and Bluetooth protocol. Cortex-M4 core to configure. Among them, the ARM CortexTM-M4F core is used as an application processor. On the basis of the CortexTM-M3 core, the computing power is strengthened, and the floating point processing unit (FPU), DSP and parallel computing instructions are newly added, providing 1.25DMIPS/MHz. Excellent performance. At the same time, its efficient signal processing capability is combined with the low power consumption, low cost and ease of use of the Cortex-M series processors to meet application scenarios that require a mix of control and signal processing capabilities and ease of use.

ARM CortexTM-M4F 32-bit compact instruction set processor provides excellent code efficiency, usually using the memory space of 8-bit and 16-bit devices to take advantage of the high performance of the ARM core.

Note: $Cortex^{TM}$ *M4F is backward compatible with Cortex-M3 code.*

2.2 Storage

N32WB452 series devices include embedded encrypted Flash memory and embedded SRAM. Figure 2-1 is a memory map.

Figure 2-1 Memory map

2.2.1 Embedded flash memory

Integrated 512K bytes embedded encryption FLASH (FLASH), used to store programs and data, page size of 2Kbyte, supporting page erasing, word writing, word reading, half word reading, byte reading operations.

Support storage encryption protection, write automatic encryption, read automatic decryption (including program execution operation).

Support user partition management, can be divided into a maximum of two user partitions, different users cannot access each other's data (only executable code).

2.2.2 Embedded SRAM

Up to 144K bytes of built-in SRAM and R-SRAM are integrated on-chip, of which R-SRAM is Retention SRAM with a size of 16K bytes. R-SRAM supports Retention, which can retain data in VBAT and Standby modes (can be

configured to retain or not retain); other working modes (RUN/SLEEP/STOP0/STOP2) data can be retained by default; PWR is required to control and manage its Retention.

2.2.3 Nested vector interrupt controller (NVIC)

Built-in nested vector interrupt controller, capable of handling up to 86 maskable interrupt channels (not including the 16 CortexTM-M4F interrupts) and 16 priorities.

- Tightly coupled NVIC enables low latency interrupt response processing
- Interrupt vector entry address directly into the kernel
- Tightly coupled NVIC interface
- Allows early handling of interrupts
- Handles late arriving higher-priority interrupts
- Support interrupt tail link function
- Automatically saves processor state
- Automatically resumes when the interrupt returns with no additional instruction overhead

This module provides flexible interrupt management with minimal interrupt latency.

2.3 External interrupt/event controller (EXTI)

The external interrupt/event controller contains 21 edge detectors for generating interrupt/event requests. Each interrupt line can be independently configured for its trigger event (rising or falling or both edges) and can be individually masked. There is a pending register that maintains the status of all interrupt requests. EXTI can detect that the pulse width is less than the clock period of the internal APB2. Up to 65 general purpose I/O ports are connected to 16 external interrupt lines.

2.4 Clock system

The device provides a variety of clocks for users to choose from, including internal high-speed RC oscillator HSI(8MHz), internal low-speed clock LSI(40KHz), external high-speed clock HSE(4MHz~32MHz), external low-speed clock LSE (32.768 KHz) and PLL.

During reset, the internal HSI clock is set as the default CPU clock, and then the user can choose the external HSE clock with failure monitoring function. When an external clock failure is detected, it will be isolated, the system will automatically switch to HSI, and if interrupts are enabled, the software can receive the corresponding interrupt. Also, security interrupt management of the PLL clock can be adopted when needed (such as when an indirectly used external oscillator fails).

Multiple prescaler are used to configure the AHB frequency, high-speed APB(APB2) and low-speed APB(APB1) areas. AHB has a maximum frequency of 144 MHz, APB2 has a maximum frequency of 72 MHz and APB1 has a maximum frequency of 36MHz. Refer to Figure 2-2 Clock tree diagram.

Figure 2-2 Clock tree

- 1. When HSI is used as the input of the PLL clock, the highest system clock frequency can only reach 128MHz.
- 2. When using the USB function, HSE and PLL must be used at the same time, and the frequency of the CPU must be 48MHz, 72MHz, 96MHz or 144MHz.

2.5 Low-Power Bluetooth

The BLE5.0 SOC chip integrates 2.4GHZ BLE5.0 transceiver and modem, such as noise amplifier, filter, frequency synthesizer, power amplifier, etc.

Support the following characteristics:

- Receive sensitivity -94dBm, transmit power up to +3dBm, built-in Balun/matching network;
- Receive power consumption: 3.5Ma@3.0V (DCDC)
- Transmit power consumption: 3.5Ma@3.0V \0 dBm(DCDC)
- Built-in security and verification features, including AES128\CRC16;
- Supports AGC/RSSI.

Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North.

The BLE core protocol stack of the BLE5.0 SOC chip runs on the internal independent Cortex-M0 core, and the application control is handled by the built-in Cortex-M4 core. For the detailed application of the N32WB452 series Bluetooth function, please refer to the "N32WB452 Series Bluetooth Components Reference Manual".

2.6 Boot mode

At BOOT time, the BOOT mode after reset can be selected with the BOOT0/1 pin.

- BOOT from program FLASH Memory.
- BOOT from System Memory
- BOOT from internal SRAM

The Bootloader is stored in the system memory, and can program the flash memory through USART1 and USB interface.

2.7 Power supply scheme

- BLE_DVDD =1.8~3.6V, power supply for Bluetooth control mode and internal voltage regulator.
- BLE_VCC = 1.8~3.6V, power supply for Bluetooth RF circuit.
- V_{DD} = 1.8~3.6V, V_{DD} pin supplies power to the I/O pin and internal voltage regulator.
- V_{SSA} , V_{DDA} = 1.8~3.6V, provides power supply for ADC, DAC reset block, RC oscillator, and PLL. V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS} respectively.
- V_{BAT} = 1.8~3.6V: When V_{DD} is turned off, it supplies power to RTC, external 32KHz oscillator and backup register.

For more information on how to connect the power supply pins, see Figure 4-3 Power supply scheme o

2.8 Reset

The power-on reset (POR) and power-down reset (PDR) circuits are integrated inside. This part of the circuit is always in working state to ensure that the system works when the power supply exceeds 1.8V; when V_{DD} is lower than the set threshold ($V_{POR/PDR}$), place the device in reset without using an external reset circuit.

2.9 Programmable voltage detector

The device has a built-in programmable voltage detector (PVD), which monitors the power supply of V_{DD}/V_{DDA} and compares it with the threshold V_{PVD} . When V_{DD} is lower or higher than the threshold V_{PVD} , an interrupt will be generated. The interrupt handler can send a warning message, and the PVD function needs to be started through the program. See Table 4-10 for values of $V_{POR/PDR}$ and V_{PVD} .

2.10 Voltage regulator

Voltage regulator operating modes as follow:

- MCU run in RUN, SLEEP modes: Main voltage regulator(MR) operates in normal mode
- MCU run in STOP0 modes: Main voltage regulator(MR) operates in normal mode or low-power mode;
- MCU run in STOP2, STANDBY mode: Main voltage regulator(MR) shut down and backup domain voltage regulator(BKR) turn on.

After the chip is reset, the main voltage regulator(MR) operates in normal mode by default.

2.11 Low power mode

N32WB452 series products support five low power consumption modes.

SLEEP mode

In SLEEP mode, only the CPU stops and all peripherals are active and can wake up the CPU when an interrupt/event occurs.

■ STOP0 mode

STOP0 mode is based on the Cortex-M4F deep sleep mode, which can achieve lower power consumption without losing the contents of the SRAM and registers. In STOP0 mode, most of the clocks of the main power domain are turned off, such as PLL, HSI, HSE, and the main voltage regulator is put into normal mode or low power mode.

Wake-up: The chip can be woken up from STOP0 mode by any signal configured as EXTI. The EXTI signal can be 16 external EXTI signals (I/O related), PVD output, RTC wake-up, RTC alarm clock, touch wake-up, wake-up signal from USB.

■ STOP2 mode

STOP2 mode is based on Cortex-M4F deep sleep mode, all core digital logic areas are powered off. The main voltage regulator is turned off and the HSE/HSI/PLL is turned off. CPU registers are maintained, LSE/LSI can be configured to work, all GPIOs are maintained, and peripheral I/O multiplexing functions are not maintained. 16K bytes R-SRAM is kept, other SRAM and register data will be lost. 84 bytes of backup register retention.

Wake-up: The chip can be woken up from STOP2 mode by any signal configured as EXTI. The EXTI signal can be 16 external EXTI signals (I/O related), PVD output, RTC periodic wake-up, RTC alarm clock, RTC invasion, NRST reset, IWDG reset.

■ STANDBY mode

In STANDBY mode, the current consumption is low. Internal voltage regulator is turned off, PLL, HSI RC oscillator and HSE crystal oscillator are also turned off; after entering STANDBY mode, the content of the register will be lost, but the content of the backup register is still retained, R-SRAM can be maintained, Standby circuit still works.

An external reset signal on NRST, IWDG reset, a rising edge on the WKUP pin, RTC wake-up, or RTC's alarm can wake the microcontroller from STANDBY mode.

■ VBAT mode

At any time, whenever VDD is powered down, it will automatically enter VBAT mode. In VBAT mode, except NRST, PA0-WKUP, PC13_TAMPER, PC14, PC15, most I/O pins are in high impedance state.

Note: RTC, IWDG and corresponding clock will not be stopped when entering STANDBY mode.

2.12 Direct memory access (DMA)

The device integrates 2 flexible general-purpose DMA controllers, each DMA controller supports 8 channels, and can manage memory-to-memory, peripheral-to-memory, and memory-to-peripheral data transfers; 2 DMA controllers support ring buffer management, which avoids the interruption of the controller transfer when it reaches the end of the buffer.

Each channel has dedicated hardware DMA request logic, and each channel can be triggered by software at the same time. The length of the transfer, the source address and the destination address of the transfer can be individually set by software for each channel.

DMA can be used for major peripherals: SPI, I²C, USART, advanced/generic/basic timers TIMx, DAC, I²S, SDIO, ADC, DVP.

2.13 Real time clock (RTC)

RTC is a set of continuously running counters with built-in calendar clock module, which can provide perpetual calendar function, as well as alarm clock interrupt and periodic interrupt (minimum 2 clock cycles) functions. RTC can be powered by V_{DD} or V_{BAT} pin. When V_{DD} is valid, select V_{DD} to supply power. Otherwise, it is powered by VBAT pin, which is automatically selected and switched by hardware. The RTC will not be reset by system or power reset sources, nor will it be reset when waking up from STANDBY mode.

The driving clock of RTC can be selected as 32.768KHz external crystal oscillator, internal low-power 40KHz RC oscillator, or any clock source divided by 128 for high-speed external clock. For application scenarios that require very high timing accuracy, it is recommended to use an external 32.768KHz clock as the clock source. At the same time, to compensate for the clock deviation of natural crystals, the RTC clock can be calibrated by outputting a 512Hz signal. The RTC has a 22-bit prescaler for the time base clock, by default when the clock is 32.768kHz it will produce a 1 second long time base. In addition, RTC can be used to trigger wake-up from low-power states.

2.14 Timer and watchdog

Up to 2 advanced control timers, 4 general-purpose timers and 2 basic timers, as well as 2 watchdog timers and 1 system tick timer.

The following Table compares the functions of advanced control timer, general-purpose timer and basic timer:

Timer	Counter resolution	Counter type	Prescaler factor	Generate DMA request	Capture/compare channels	Complementary output
TIM1 TIM8	16 bits	Up, Down, Up/Down	Any integer between 1 and 65536	Y	4	Y
TIM2 TIM3 TIM4 TIM5	16 bits	Up, Down, Up/Down	Any integer between 1 and 65536	Y	4	N
TIM6 TIM7	16 bits	Up	Any integer between 1 and 65536	Y	0	N

Table 2-1 Timer function comparison

2.14.1Basic timer (TIM6 and TIM7)

Basic timers TIM6 and TIM7 each contain a 16-bit auto-reload counter. These two timers are independent of each other and do not share any resources. The basic timer can provide a time reference for general purpose timers, and in particular can provide a clock for a digital-to-analog converter (DAC). The basic timer is directly connected to the DAC inside the chip and drives the DAC directly through the trigger output.

The main functions of the basic timer are as follows:

- 16-bit auto-reload accumulating counter
- 16-bit programmable prescaler (the frequency division factor can be configured as any value between 1 and 65536)
- Trigger DAC synchronization circuit
- Generate interrupt/DMA request on update event

2.14.2 General-purpose timer (TIMx)

4 general timers (TIM2, TIM3, TIM4 and TIM5) are mainly used in the following occasions: counting input signals, measuring the pulse width of input signals and generating output waveforms.

The main functions of the universal timer include:

- 16-bit auto-reload counters. (It can realize up-counting, down-counting, up/down counting)
- 16-bit programmable prescaler. (The frequency division factor can be configured with any value between 1 and 65536)
- TIM2, TIM3, TIM4 and TIM5 up to 4 channels.
- Channel's working modes: PWM output, ouput compare, one-pulse mode output, input capture.
- The events that generate the interrupt/DMA are as follows:
 - ◆ Update event
 - ◆ Trigger event
 - ◆ Input capture
 - Output compare
- Timer can be controlled by external signal
- Timers can be linked together internally for timer synchronization or chaining
- Incremental (quadrature) encoder interface: used for tracking motion and resolving rotation direction and position;
- Hall sensor interface: used to do three-phase motor control.

2.14.3 Advanced control timer (TIM1 and TIM8)

The advanced control timers (TIM1 and TIM8) is mainly used in the following occasions: counting the input signal, measuring the pulse width of the input signal and generating the output waveform, etc.

Advanced timers have complementary output function with dead-time insertion and break function. Suitable for motor control.

The main functions of the advanced timer include:

- 16-bit auto-reload counters. (It can realize up-counting, down-counting, up/down counting).
- 16-bit programmable prescaler. (The frequency division factor can be configured with any value between 1 and 65536)
- Programmable Repetition Counter
- TIM1 up to 6 channels, TIM8 up to 6 channels
- 4 capture/compare channels, the working modes are PWM output, ouput compare, one-pulse mode output, input capture.
- The events that generate the interrupt/DMA are as follows:
 - Update event
 - ◆ Trigger event
 - ♦ Input capture
 - ♦ Output compare
 - ♦ Break input
- Complementary outputs with adjustable dead-time.
 - ◆ For TIM1/8, channel 1,2,3 support this feature.
- Timer can be controlled by external signal

- Multiple timers are connected together internally to achieve timer synchronization or chaining
- Incremental (quadrature) encoder interface: used for tracking motion and resolving rotation direction and position;
- Hall sensor interface: used to do three-phase motor control.

2.14.4SysTick timer (Systick)

This timer is dedicated to the real-time operating system and can also be used as a standard down counter.

It has the following characteristics:

- 24-bit down counter
- Automatic reload function
- A maskable system interrupt is generated when the counter is 0
- Programmable clock source

2.14.5 Watchdog (WDG)

Support for two watchdog independent watchdog (IWDG) and window watchdog (WWDG). Two watchdogs provide increased security, time accuracy, and flexibility in use.

Independent Watchdog (IWDG)

The independent watchdog is based on a 12-bit decrepit counter and an 3-bit pre-scaler. It is driven by a separate low-speed RC oscillator that remains active even if the master clock fails and operates in STOP, STOP2and STANDBY modes. Once activated, if the dog is not fed (clears the watchdog counter) within the set time, the IWDG generates a reset when the counter counts to 0x000. It can be used to reset the entire system in the event of an application problem, or as a free timer to provide time-out management for applications. The option byte can be configured to start the watchdog software or hardware. Reset and low power wake up are available.

Window Watchdog (WWDG)

A window watchdog is usually used to detect software failures caused by an application deviating from the normal running sequence due to external interference or unforeseen logical conditions. Unless the decline counter value is flushed before the T6 bit becomes zero, the watchdog circuit generates an MCU reset when the preset time period is reached. If the 7-bit decrement counter value (in the control register) is flushed before the decrement counter reaches the window register value, then an MCU reset will also occur. This indicates that the decrement counter needs to be refreshed in a finite time window.

Main features:

- WWDG is driven by the clock obtained by dividing APB1 clock
- Programmable free-running decrement counter
- Conditional reset:
 - ◆ When the decrement counter is less than 0x40, a reset is generated (if the watchdog is started)
 - ◆ A reset occurs when the decrement counter is reloaded outside the window (if the watchdog is started)
 - ♦ If the watchdog is enabled and interrupts are allowed, an early wake up interrupt (EWINT) occurs when the decrement counter equals 0x40, which can be used to reload the counter to avoid WWDG reset

2.15 I²C bus interface

The device integrates up to 4 independent I2C bus interfaces, which provide multi-host function and control all I2C bus-specific timing, protocol, arbitration and timeout. Supports multiple communication rate modes (up to 1MHz), supports DMA operations and is compatible with SMBus 2.0. The I2C module provides multiple functions, including

CRC generation and verification, System Management Bus(SMBus), and Power Management Bus(PMBus).

The main functions of the I2C interface are described as follows:

- Multi-master function: this module can be used as master device or slave device;
- I2C master device function:
 - ◆ Generate a clock;
 - ◆ Generate start and stop signals;
- I2C slave device function:
 - ◆ Programmable address detection;
 - ◆ I2C interface supports 7-bit or 10-bit addressing and dual-slave address response capability in 7-bit slave mode
 - ♦ Stop bit detection;
- Generate and detect 7-bit / 10-bit addresses and broadcast calls;
- Support different communication speeds;
 - ◆ Standard speed (up to 100 kHz);
 - ◆ Fast (up to 400 kHz);
 - lack Fast + (up to 1MHz);
- Status flags:
 - Transmitter/receiver mode flag;
 - Byte transfer complete flag;
 - ◆ I2C bus busy flag;
- Error flags:
 - ◆ Arbitration is missing in Master mode
 - ◆ Acknowledge (ACK) error after address/data transfer;
 - Error start or stop condition detected
 - Overrun or underrun when clock extending is disable;
- Two interrupt vectors:
 - ◆ 1 interrupt for address/data communication success;
 - ◆ 1 interrupt for an error;
- Optional extend clock function
- DMA of single-byte buffers;
- Generation or verification of configurable PEC(Packet error detection)
- In transmit mode, the PEC value can be transmitted as the last byte
- PEC error check for the last received byte
- SMBus 2.0 compatible
 - ◆ Timeout delay for 25ms clock low
 - ♦ 10 ms accumulates low clock extension time of master device
 - ◆ 25 ms accumulates low clock extension time of slave device

- PEC generation/verification of hardware with ACK control
- Support address resolution protocol (ARP)
- PMBus compatible

2.16 Universal synchronous/asynchronous transceiver (USART)

N32WB452 series products integrate up to 7 serial transceiver interfaces, including 3 universal synchronous/ asynchronous transceivers (USART1/USART2/USART3) and 4 universal asynchronous transceivers (UART4/ UART5/UART6/UART7). These 7 interfaces provide asynchronous communication, support for IrDA SIR ENDEC transmission codec, multi-processor communication mode, single-line half-duplex communication mode, and LIN master/slave function.

The communication rate of USART1/UART6/UART7 interface can reach 4.5Mbit/sec, and the communication rate of other interfaces can reach 2.25Mbit/sec.

The USART1 USART2 and USART3 interfaces have hardware CTS and RTS signal management, ISO7816compatible smart card mode, and SPI-like communication mode, all of which can use DMA operations.

The main features of USART are as follows:

- Full duplex, asynchronous communication
- NRZ standard format
- Fractional baud rate generator system, baud rate programmable, used for sending and receiving, up to 4.5 Mbits/s
- Programmable data word length (8 or 9 bits)
- Configurable stop bit, supporting 1 or 2 stop bits
- LIN master's ability to send synchronous interrupters and LIN slave's ability to detect interrupters. When USART hardware is configured as LIN, it generates 13 bit interrupters and detects 10/11 bit interrupters
- Output sending clock for synchronous transmission
- IRDA SIR encoder decoder, supports 3/16 bit duration in normal mode
- Smart card simulation function
 - The smart card interface supports the asynchronous smart card protocol defined in ISO7816-3
 - 0.5 and 1.5 stop bits for smart cards
- Single-wire half duplex communication
- Configurable multi-buffer communication using DMA, receiving/sending bytes in SRAM using centralized DMA buffer
- Independent transmitter and receiver enable bits
- Detection flag
 - Receive buffer is full
 - Send buffer empty
 - End of transmission flag
- Parity control
 - Send parity bit
 - Verify the received data
- Four error detection flags

- Overflow error
- Noise error
- Frame error
- Parity error
- 10 USART interrupt sources with flags
 - ◆ CTS change
 - ◆ LIN disconnect detection
 - ◆ Send data register is empty
 - Send complete
 - Received data register is full
 - Bus was detected to be idle
 - Overflow error
 - ◆ Frame error
 - ◆ Noise error
 - ◆ Parity the error
- Multi-processor communication, if the address does not match, then enter the silent mode;
- Wake up from silent mode (via idle bus detection or address flag detection)
- Mode configuration:

USART modes	USART1	USART2	USART3	UART4	UART5	UART6	UART7
Asynchronous mode	Y	Y	Y	Y	Y	Y	Y
Hardware flow control	Y	Y	Y	N	N	N	N
Multi-cache communication (DMA)	Y	Y	Y	Y	Y	Y	Y
Multiprocessor communication	Y	Y	Y	Y	Y	Y	Y
Synchronize	Y	Y	Y	N	N	N	N
Smart card	Y	Y	Y	N	N	N	N
Half duplex (single line mode)	Y	Y	Y	Y	Y	Y	Y
IrDA	Y	Y	Y	Y	Y	Y	Y
LIN	Y	Y	Y	Y	Y	Y	Y

2.17 Serial peripheral interface (SPI)

The device integrates 3 SPI interfaces, reusable as an I²S interface, SPI shares resources with I²S.

SPI allow the chip to communicate with peripheral devices in a half/full duplex, synchronous, serial manner. This interface can be configured in master mode and provides a communication clock (SCK) for external slave devices. Interfaces can also work in a multi-master configuration. It can be used for a variety of purposes, including two-line simplex synchronous transmission using a two-way data line, and reliable communication using CRC checks.

The main functions of SPI interfaces are as follows:

- 3-wire full-duplex synchronous transmission
- Two-wire simplex synchronous transmission with or without a third bidirectional data line

- 8 or 16 bit transmission frame format selection
- Master or slave operations
- Support multi-master mode
- 8 master mode baud rate predivision frequency coefficient (maximum f_{PCLK}/2)
- Slave mode frequency (maximum $f_{PCLK}/2$)
- Fast communication between master mode and slave mode
- NSS can be managed by software or hardware in both master and slave modes: dynamic change of master/slave modes
- Programmable clock polarity and phase
- Programmable data order, MSB before or LSB before
- Dedicated send and receive flags that trigger interrupts
- SPI bus busy flag;
- Hardware CRC for reliable communication;
 - ♦ In send mode, the CRC value can be sent as the last byte;
 - ◆ In full-duplex mode, CRC is automatically performed on the last byte received.
- Master mode failures, overloads, and CRC error flags that trigger interrupts
- Single-byte send and receive buffer with DMA capability: generates send and receive requests
- Maximum speed: SPI1 interface 36Mbps, SPI2/SPI3 interface 18Mbps

2.18 Serial audio interface (I²S)

I²S is a 3-pin synchronous serial interface communication protocol. The device integrates 2 standard I2S interfaces (multiplexed with SPI) and can operate in master or slave mode. I²S can be configured for 16-bit, 24-bit or 32-bit transmission, or as input or output channels, supporting audio sampling frequencies from 8KHz to 96KHz. It supports four audio standards, including Philips I²S, MSB and LSB alignment, and PCM.

It can work in master and slave mode in half duplex communication. When it acts as a master device, it provides clock signals to external slave devices through an interface.

The main functions of I²S interface are as follows;

- Simplex communication (send or receive only)
- Master or slave operations
- 8-bit linear programmable prescaler for accurate audio sampling frequencies (8 KHZ to 96KHz)
- The data format can be 16, 24, or 32 bits
- Audio channel fixed packet frame is 16 bit (16 bit data frame) or 32 bit (16, 24 or 32 bit data frame)
- Programmable clock polarity (steady state)
- The overflows flag bit in slave sending mode and the overflows flag bit in master/slave receiving mode
- 16-bit data registers are used for sending and receiving, with one register at each end of the channel
- Supported I²S protocols:
 - ◆ I²S Philips standard
 - ◆ MSB alignment standard (left aligned)

- LSB alignment standard (right aligned)
- ◆ PCM standard (16-bit channel frame with long or short frame synchronization or 16-bit data frame extension to 32-bit channel frame)
- The data direction is always MSB first
- Both send and receive have DMA capability
- The master clock can be output to external audio devices at a fixed rate of 256xFs(Fs is the audio sampling frequency)

2.19 Secure digital input output interface (SDIO)

Secure Digital Input and Output (Secure Digital Input and Output), referred to as SDIO interface, SDIO host interface provides an operation interface between AHB peripheral bus and Multimedia Card (MMC), SD memory card, SDIO card devices.

SDIO host functions are as follows:

- Support "MultiMediaCard System Specification Version 4.2", support 1-bit (default), 4-bit and 8-bit data bus, forward compatible with earlier MMC protocol
- Support "SD Memory Card Specifications Version 2.0"
- Support "SD I/O Card Specification Version 2.0", support 1-bit (default) and 4-bit data format
- SDIO clock rate up to 48MHz
- SDIO does not support SPI communication

2.20 Controller Area Network (CAN)

The device integrates 2 channel CAN bus interface compatible with 2.0A and 2.0B (active) specifications, with bit rates up to 1Mbps. It can receive and send standard frames with 11-bit identifiers, as well as extended frames with 29-bit identifiers.

Main features:

- Support CAN protocol 2.0A and 2.0B active mode
- Baud rate up to 1Mbps
- Supports time-triggered communication
- Send
 - 3 sending mailboxes
 - ◆ The priority of sent packets can be configured by software
 - Records the timestamp of the time when the SOF was sent
- Receive
 - ◆ Level 3 depth of 2 receiving FIFO
 - Variable filter group:
 - ◆ There are 14 filter groups
 - ◆ Identifier list
 - ◆ The FIFO overflow processing mode is configurable
 - Record the time stamp of the receipt of the SOF

24 / 91

- Time-triggered communication mode
 - ◆ Disable automatic retransmission mode
 - ◆ 16-bit free run timer
 - ◆ Timestamp can be sent in the last 2 bytes of data
- Management
 - Interrupt masking
 - ◆ The mailbox occupies a separate address space to improve software efficiency

2.21 Universal serial bus (USB)

N32WB452 series products embed a full-speed USB-compatible device controller and follow the full-speed USB device (12Mbit/s) standard. The endpoints can be configured by software and have standby/wake-up functions. The USB-specific 48MHz clock is directly generated by the internal main PLL (to ensure communication stability, the clock source must be an HSE external high-speed crystal).

The main features of the USB device controller are as follows:

- Comply with the technical specifications of USB2.0 full-speed devices
- Configurable from 1 to 8 USB endpoints
- CRC (Cyclic Redundancy Check) generation/checking, non-return-to-zero (NRZI) reverse encoding/decoding and bit stuffing
- Double buffer mechanism supporting bulk/sync endpoints
- Support USB suspend/resume operation
- Frame lock clock pulse generation
- USB DP signal line supports internal 1.5K pull-up resistor (firmware control), with an accuracy of ±5%

2.22 General purpose input and output interface (GPIO)

Supports up to 65 GPIOs, which are divided into 5 groups (GPIOA/GPIOB/GPIOC/GPIOD/GPIOE), of which PA/PB/PC has 16 ports per group, PD group has 8 ports in total, and PE group has 9 ports in total. Each GPIO pin can be configured by software as output (push-pull or open-drain), input (with or without pull-up or pull-down), or multiplexed peripheral function port, most GPIO pins are connected with digital or analog Multiplexed peripherals are shared, and some I/O pins are also multiplexed with clock pins; except for ports with analog input functions, all GPIO pins have high current passing capability.

The main features of GPIO are described as follows:

- Each bit of the GPIO port can be configured separately by the software into multiple modes:
 - Input floating
 - ◆ Input pull up (weak pull up)
 - ◆ Input pull down (weak pull down)
 - Analog input
 - Open drain output
 - Push-pull output
 - Push-pull multiplexing function

- ◆ Open drain multiplexing function
- General I/O (GPIO)
 - During and just after reset, the alternate functions are not enabled, except for BOOT0 and BOOT1(BOOT0 and BOOT1 are input pull-down) and NRST pin, the I/O port is configured to analog input mode.
 - ◆ During and just after reset, the alternate function is not turned on, the I/O port is configured as analog input mode, and after reset, the JTAG pin is placed in input pull-up or pull-down mode:
 - ✓ JTDI in pull-up mode;
 - ✓ JTCK in drop down mode;
 - ✓ JTMS in pull-up mode;
 - ✓ NJTRST is placed in pull-up mode
 - ◆ When configured as output, values written to the output data registers are output to the appropriate I/O pins. Can be output in push pull mode or open drain mode
- Separate bit setting or bit clearing functions
- External interrupt/wake up: All ports have external interrupt capability. In order to use external interrupts, ports must be configured in input mode
- Alternate function :(port bit configuration register must be programmed before using default alternate function)
- GPIO lock mechanism, which freezes I/O configurations. When a LOCK is performed on a port bit, the configuration of the port bit cannot be changed until the next reset

2.23 Analog/digital converter (ADC)

Up to 2 successive comparison ADC with 12-bit 5Msps sampling rate, support single-ended input and differential input, an measure 16 external and 3 internal signal sources, of which ADC1 supports 9 external channels, ADC2 supports 12 external channels, and some pins share two different ADC channels.

The main features of ADC are described as follows:

- Support 12/10/8/6-bit resolution configurable
 - ◆ The highest sampling rate at 12bit resolution is 5.14MSPS
 - ◆ The maximum sampling rate at 10bit resolution is 6MSPS
 - ◆ The maximum sampling rate at 8bit resolution is 7.2MSPS
 - ◆ The maximum sampling rate at 6bit resolution is 9MSPS
- ADC clock source is divided into working clock source, sampling clock source and timing clock source
 - ◆ AHB_CLK can be configured as the working clock source, up to 144MHz
 - ◆ PLL can be configured as a sampling clock source, up to 72MHZ, support 1,2,4,6,8,10,12,16,32, 64,128,256 frequency division
 - ◆ AHB_CLK can be configured as the sampling clock source, up to 72MHz, and supports frequency 1,2,4,6,8,10,12,16,32

- ◆ The timing clock is used for internal timing functions and the frequency must be configured to 1MHz
- Supports timer trigger ADC sampling
- Interrupts when conversion ends, injection conversion ends, and analog watchdog events occur
- Single and continuous conversion modes
- Automatic scan mode from channel 0 to channel N
- Support for self-calibration
- Data alignment with embedded data consistency
- Sampling intervals can be programmed separately by channel
- Both regular conversions and injection conversions have external triggering options
- Continuous mode
- Dual ADC mode, ADC1 and ADC2 combination
- ADC power supply requirements: 1.8V to 3.6V
- ADC input range: $VREF \leq VIN \leq VREF +$
- ADC can use DMA operations, and DMA requests are generated during regular channel conversion.
- Analog watchdog function can monitor one, multiple, or all selected channels with great precision. When the monitored signal exceeds the preset threshold, an interruption will occur.

2.24 Digital-to-analog converter (DAC)

Support 2 digital-to-analog converters (DAC). DAC is a digital-to-analog converter with 12-bit digital input and voltage output. The DAC module has 2 output channels, each channel has a separate converter, and the 2 DAC can be used at the same time without affecting each other. The DAC can input the reference voltage VREF+ through the pin to obtain more accurate conversion results.

This dual digital interface supports the following functions:

- 2 DAC converters: each with an output channel
- Configurable 8-bit or 12-bit output
- Configurable left and right data alignment in 12-bit mode
- Update function
- Generate noise wave
- Generate triangular wave
- Dual DAC channel independent or synchronous conversion
- Every channel can use DMA function.
- External trigger for conversion
- Input voltage VREF+

2.25 Temperature sensor (TS)

The temperature sensor produces a voltage that varies linearly with temperature in range of $1.8V < V_{DDA} < 3.6V$. The temperature sensor is internally connected to the input channel of ADC1_IN16 for converting the output of the sensor

to a digital value.

2.26 Digital Video Interface (DVP)

DVP is a flexible and powerful CMOS optical sensor interface, which can easily realize the customer's image acquisition requirements, and the entire acquisition process does not require CPU intervention.

The functional characteristics of the DVP interface module are as follows:

- Pure hardware acquisition method
- Support clock output (typical value 24MHz) to provide clock to external CMOS chip
- 8 x 32bit FIFO, FIFO can transfer 4 bytes at a time
- Support DMA, no need for CPU intervention in the whole process of image acquisition
- The size of the acquired image must be an integer multiple of 4
- Supports the inversion of the captured image

2.27 Cyclic redundancy check calculation unit (CRC)

Integrated CRC32 and CRC16 functions, the cyclic redundancy check (CRC) calculation unit is based on a fixed generation polynomial to obtain any CRC calculation results. In many applications, CRC-based techniques are used to verify data transfer or storage consistency. Within the scope of the EN/IEC 60335-1 standard, which provides a means of detecting flash memory errors, CRC cells can be used to calculate signatures of software in real time and compare them with signatures generated when linking and generating the software.

The CRC has the following features:

- CRC16: supports polynomials $X^{16} + X^{15} + X^2 + X^0$
- $\blacksquare \quad \text{CRC32: supports polynomials } X^{32} + X^{26} + X^{23} + X^{22} + X^{16} + X^{12} + X^{11} + X^{10} + X^8 + X^7 + X^5 + X^4 + X^2 + X + 1 + X^{10} +$
- CRC16 calculation time: 1 AHB clock cycles (HCLK)
- CRC32 calculation time: 1 AHB clock cycles (HCLK)
- The initial value for cyclic redundancy computing is configurable
- Support DMA mode

2.28 Security Acceleration Engine (SAC)

Embedded algorithm hardware acceleration engine supports a variety of international algorithms and national cryptographic symmetric cryptographic algorithms and hash cryptographic algorithm acceleration, which can greatly improve the encryption and decryption speed compared with pure software algorithms.

The supported algorithms of hardware are as follows:

- Support DES symmetric algorithm
 - ◆ DES and 3DES encryption and decryption operations are supported
 - ◆ TDES supports 2KEY and 3KEY modes.
 - ◆ Support CBC and ECB modes
- AES symmetric algorithm is supported
 - ◆ 128bit/192bit/ 256bit key length is supported
 - ◆ Support CBC, ECB and CTR modes

- Support SHA hash algorithm
 - ◆ Support SHA1/SHA244/SHA256
- Support MD5 summarization algorithm
- Support symmetric national secret SM1, SM4, SM7 algorithm and SM3 hash algorithm.

2.29 Unique device serial number (UID)

N32WB452 series products have two built-in unique device serial numbers of different lengths, which are 96-bit Unique Device ID (UID) and 128-bit Unique Customer ID (UCID). These two device serial numbers are stored in the system configuration block of flash memory. The information they contain is written at the time of delivery and is guaranteed to be unique to any of the N32WB452 series microcontrollers under any circumstances and can be read by user applications or external devices through the CPU or JTAG/SWD interface and cannot be modified.

The 96-bit UID is usually used as a serial number or password. When writing flash memory, this unique identifier is combined with software encryption and decryption algorithm to further improve the security of code in flash memory.

UCID is 128-bit, which complies with the definition of national technology chip serial number. It contains the information related to chip production and version.

2.30 Serial single-wire JTAG debug port (SWJ-DP)

Embedded ARM SWJ-DP interface, which is a combination of JTAG and serial single-line debugging interface, can achieve serial single-line debugging interface or JTAG interface connection. The JTMS and JTCK signals of JTAG share pins with SWDIO and SWCLK respectively, and a special signal sequence on the JTMS pin is used to switch between JTAG-DP and SW-DP.

3 Pinouts and description

3.1 Pinouts

3.1.1 QFN48

Figure 3-1 N32WB452 Series QFN48 pinout

3.1.2 QFN64

Figure 3-2 N32WB452 Series QFN64 pinout

3.1.3 QFN88

Figure 3-3 N32WB452 Series QFN88 pinout

Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North.

3.2 Pin definition

Table 3-1 Pin definition

Package				(1				Optional multiplexing function of (6)		
LQFP48	LQFP64	LQFP88	Pin name	$\mathbf{Type}^{(1)}$	1/0(2)	Fail-safe support	Main functions ⁽³⁾ (after reset)	default	redefine	
-	-	1	PE2	I/O	FT	Yes	PE2	UART6_TX	DVP_HSYNC	
-	ı	2	PE3	I/O	FT	Yes	PE3	UART6_RX	DVP_VSYNC	
1	1	3	VBAT	S	-	-	VBAT	-	-	
2	2	4	PC13-TAMPER- RTC ⁽⁴⁾	I/O	TC	Yes	PC13 ⁽⁵⁾	TAMPER-RTC	-	
3	3	5	PC14- OSC32_IN ⁽⁴⁾	I/O	TC	Yes	PC14 ⁽⁵⁾	OSC32_IN	-	
4	4	6	PC15- OSC32_OUT ⁽⁴⁾	I/O	TC	Yes	PC15 ⁽⁵⁾	OSC32_OUT	-	
5	5	7	OSC_IN ⁽⁷⁾	I	TC	Yes	OSC_IN	-	-	
6	6	8	OSC_OUT ⁽⁷⁾	О	TC	No	OSC_OUT	-	-	
7	7	9	NRST	I/O	-	-	NRST	-	-	
-	8	10	PC0	I/O	ТТа	No	PC0	ADC12_IN6 ⁽¹⁰⁾ I2C3_SCL	DVP_D2 UART6_TX	
-	-	11	PC1	I/O	ТТа	No	PC1	ADC12_IN7 ⁽¹⁰⁾ I2C3_SDA	UART6_RX	
-	-	12	PC2	I/O	ТТа	No	PC2	ADC12_IN8 ⁽¹⁰⁾	UART7_TX SPI3_NSS I2S3_WS	
-	ı	13	PC3	I/O	ТТа	No	PC3	ADC12_IN9 ⁽¹⁰⁾	UART7_RX SPI3_SCK I2S3_CK	
8	9	14	VSSA	S	-	-	VSSA	-	-	
9	10	15	VDDA	S	-	-	VDDA	-	-	
10	11	16	PA0-WKUP	I/O	ТТа	No	PA0	WKUP USART2_CTS ADC1_IN1 ⁽⁹⁾ TIM2_CH1_ETR TIM5_CH1 TIM8_ETR	SPI3_MISO	
-	12	17	PA1	I/O	ТТа	No	PA1	USART2_RTS ADC1_IN2 ⁽⁹⁾ TIM5_CH2 TIM2_CH2 DVP_HSYNC	SPI3_MOSI I2S3_SD	
-	13	18	PA2	I/O	ТТа	No	PA2	USART2_TX TIM5_CH3 ADC12_IN11 ⁽¹⁰⁾ TIM2_CH3 DVP_VSYNC	-	
-	14	19	PA3	I/O	ТТа	No	PA3	USART2_RX TIM5_CH4 ADC1_IN4 ⁽⁹⁾	-	

Email: info@nationstech.com Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North. Nanshan District, Shenzhen, 518057, P.R.China

Package		ge						Optional multiplexing function of (6)		
LQFP48	LQFP64	LQFP88	Pin name	Type ⁽¹⁾	$I/O^{(2)}$	Fail-safe support	Main functions ⁽³⁾ (after reset)	default	redefine	
								TIM2_CH4 DVP_PCLK		
-	15	20	VSS_4	S	-	-	VSS_4	-	-	
-	16	21	VDD_4	S	-	-	VDD_4	-	-	
11	17	22	PA4	I/O	ТТа	No	PA4	SPI1_NSS USART2_CK DAC_OUT1 ADC2_IN1 ⁽⁹⁾ DVP_D0	I2C2_SCL	
12	18	23	PA5	I/O	ТТа	No	PA5	SPI1_SCK DAC_OUT2 ADC2_IN2 ⁽⁹⁾ DVP_D1	I2C2_SDA	
13	19	24	PA6	I/O	ТТа	No	PA6	SPI1_MISO TIM8_BKIN ADC1_IN3 ⁽⁹⁾ TIM3_CH1 DVP_D2	TIM1_BKIN	
14	20	25	PA7	I/O	ТТа	No	PA7	SPI1_MOSI TIM8_CH1N ADC2_IN4 ⁽⁹⁾ TIM3_CH2 DVP_D3	TIM1_CH1N	
-	-	26	PC4	I/O	ТТа	No	PC4	ADC2_IN5 ⁽⁹⁾ DVP_D4 UART7_TX	I2C3_SCL	
-	-	27	PC5	I/O	TTa	No	PC5	ADC2_IN12 ⁽¹⁰⁾ DVP_D5 UART7_RX	I2C3_SDA	
-	21	28	PB0	I/O	ТС	No	PB0	TIM3_CH3 TIM8_CH2N DVP_D6	TIM1_CH2N UART6_TX	
-	22	29	PB1	I/O	ТТа	No	PB1	ADC2_IN3 ⁽⁹⁾ TIM3_CH4 TIM8_CH3N DVP_D7	TIM1_CH3N UART6_RX	
15	23	30	PB2	I/O	ТТа	No	PB2/BOOT1	ADC2_IN13 ⁽¹⁰⁾	DVP_D3 UART4_TX SPI1_NSS	
-	-	31	PE7	I/O	TC	No	PE7	-	TIM1_ETR UART4_RX SPI1_SCK	
-	-	32	PE8	I/O	TC	No	PE8	-	TIM1_CH1N UART5_TX SDIO_DAT0 SPI1_MISO	
-	-	33	PE9	I/O	TC	No	PE9	-	TIM1_CH1 UART5_RX SDIO_DAT1 SPI1_MOSI	
-	-	34	PE10	I/O	ТС	No	PE10	-	TIM1_CH2N SDIO_DAT2 SPI2_NSS I2S2_WS	

	acka	_		a				Optional multiplexing function of (6)		
LQFP48	LQFP64	LQFP88	Pin name	Type ⁽¹⁾	$I/O^{(2)}$	Fail-safe support	Main functions ⁽³⁾ (after reset)	default	redefine	
-	- -	35	PE11	I/O	ТС	No	PE11	-	TIM1_CH2 SDIO_DAT3 SPI2_SCK I2S2_CK	
-	-	36	PE12	I/O	TC	No	PE12	-	TIM1_CH3N SDIO_CLK SPI2_MISO	
-	-	37	PE13	I/O	TC	No	PE13	-	TIM1_CH3 SPI2_MOSI I2S2_SD SDIO_CMD	
16	24	38	PB10	I/O	TC	Yes	PB10	I2C2_SCL USART3_TX	TIM2_CH3 DVP_D4	
17	25	39	PB11	I/O	TC	No	PB11	I2C2_SDA USART3_RX	TIM2_CH4 DVP_D5	
18	26	40	VSS_1	S	-	-	VSS_1	-	-	
19	27	41	VDD_1	S	-	-	VDD_1	-	-	
20	28	42	PB12	I/O	ТС	No	PB12	SPI2_NSS I2S2_WS I2C2_SMBA USART3_CK TIM1_BKIN CAN2_RX	-	
21	29	-	BLE_SWITCH	-	-	-	BLE_SWITCH	BLE_SWITCH	-	
22	30	43	PB13	I/O	ТС	No	PB13	SPI2_SCK I2S2_CK USART3_CTS TIM1_CH1N CAN2_TX	UART5_TX	
23	31	44	PB14	I/O	TC	No	PB14	SPI2_MISO TIM1_CH2N USART3_RTS	UART5_RX	
24	32	45	PB15	I/O	TC	No	PB15	SPI2_MOSI I2S2_SD TIM1_CH3N	-	
-	-	46	PD8	I/O	TC	No	PD8	-	USART3_TX SPI3_NSS I2S3_WS CAN1_RX	
-	-	47	PD9	I/O	ТС	No	PD9	-	USART3_RX SPI3_SCK I2S3_CK CAN1_TX	
-	-	48	BLE_SWITCH	-	-	-	BLE_SWITCH	BLE_SWITCH	-	
-	-	49	PD10	I/O	TC	No	PD10		USART3_CK CAN2_RX	
25	33	50	BLE_VDCDC	-	-	-	BLE_DCDC	BLE_DCDC	-	
26	34	51	BLE_VCC	-	-	-	BLE_VCC	BLE_VCC	-	
-	-	52	PD14	I/O	ТС	No	PD14	-	TIM4_CH3 I2C4_SCL TIM8_CH1	

Nations Technologies Inc.
Tel: +86-755-86309900
Email: info@nationstech.com
Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North.
Nanshan District, Shenzhen, 518057, P.R.China

Package		ge						Optional multiplexing function of (6)		
LQFP48	LQFP64	LQFP88	Pin name	Type ⁽¹⁾	$I/O^{(2)}$	Fail-safe support	Main functions ⁽³⁾ (after reset)	default	redefine	
-	-	53	PD15	I/O	FT	Yes	PD15	-	TIM4_CH4 I2C4_SDA TIM8_CH2	
-	35	54	PC6	I/O	ТС	Yes	PC6	I2S2_MCK TIM8_CH1 SDIO_DAT6 I2C4_SCL	TIM3_CH1 SPI2_NSS I2S2_WS USART2_CTS	
-	36	55	PC7	I/O	ТС	Yes	PC7	I2S3_MCK TIM8_CH2 SDIO_DAT7 I2C4_SDA	TIM3_CH2 SPI2_SCK I2S2_CK USART2_RTS	
-	37	56	PC8	I/O	TC	Yes	PC8	TIM8_CH3 SDIO_DAT0	TIM3_CH3 SPI2_MISO USART2_TX	
-	38	57	PC9	I/O	TC	Yes	PC9	TIM8_CH4 SDIO_DAT1	TIM3_CH4 SPI2_MOSI I2S2_SD USART2_RX	
27	39	58	PA8	I/O	FT	Yes	PA8	USART1_CK TIM1_CH1 MCO	-	
28	40	59	PA9	I/O	FT	Yes	PA9	USART1_TX TIM1_CH2	I2C4_SCL	
-	41	60	BLE_RFIOP	-	-	-	BLE_RFIOP	BLE_RFIOP	-	
-	42	61	BLE_VDCDCCRF	-	-	-	BLE_VDCDCCRF	BLE_VDCDCCRF	-	
-	43	62	PA10	I/O	FT	Yes	PA10	USART1_RX TIM1_CH3	I2C4_SDA	
29	44	63	PA11	I/O	FT	Yes	PA11	USART1_CTS USBDM CAN1_RX TIM1_CH4	-	
30	45	64	PA12	I/O	FT	Yes	PA12	USART1_RTS USBDP CAN1_TX TIM1_ETR	-	
31	-	-	BLE_RFIOP	-	-	-	BLE_RFIOP	BLE_RFIOP	-	
32	-	-	BLE_VDCDCCRF	-	-	-	BLE_VDCDCCRF	BLE_VDCDCCRF	-	
33	46	65	PA13	I/O	FT	Yes	JTMS- SWDIO	-	PA13 UART4_TX	
34	47	66	VSS_2	S	-	-	VSS_2	-	-	
35	48	67	VDD_2	S	-	-	VDD_2	-	-	
36	49	68	PA14	I/O	FT	Yes	JTCK- SWCLK	-	PA14 UART4_RX	
37	50	69	PA15	I/O	FT	Yes	JTDI	SPI3_NSS I2S3_WS	TIM2_CH1_ETR PA15 SPI1_NSS USART2_CTS TIM8_CH1N	

P	acka	ge						Optional multiple	xing function of ⁽⁶⁾
LQFP48	LQFP64	LQFP88	Pin name	$\mathrm{Type}^{(1)}$	$I/O^{(2)}$	Fail-safe support	Main functions ⁽³⁾ (after reset)	default	redefine
-	51	70	PC10	I/O	TC	Yes	PC10	UART4_TX SDIO_DAT2	USART3_TX SPI3_SCK I2S3_CK
-	-	71	PC11	I/O	TC	Yes	PC11	UART4_RX SDIO_DAT3	USART3_RX SPI3_MISO
-	52	72	PC12	I/O	TC	Yes	PC12	UART5_TX SDIO_CLK	USART3_CK SPI3_MOSI I2S3_SD TIM8_CH2N
-	-	73	PD0	I/O	FT	Yes	PD0	-	CAN1_RX UART4_TX
-	-	74	PD1	I/O	FT	Yes	PD1 ⁽⁷⁾	-	CAN1_TX UART4_RX
-	53	75	PD2	I/O	TC	Yes	PD2 ⁽⁷⁾	TIM3_ETR UART5_RX SDIO_CMD	SPI3_NSS I2S3_WS TIM8_CH3N
-	54	76	BLE_DVDD	-	-	-	BLE_DVDD	BLE_DVDD	-
-	55	77	BLE_XO32MM	-	-	-	BLE_XO32MM	BLE_XO32MM	-
-	56	78	BLE_XO32MP	-	-	-	BLE_XO32MP	BLE_XO32MP	-
38	57	79	PB3	I/O	FT	Yes	JTDO	SPI3_SCK I2S3_CK	PB3 TRACESWO TIM2_CH2 SPI1_SCK USART2_RTS TIM8_BKIN
39	58	80	PB4	I/O	FT	Yes	NJTRST	SPI3_MISO	PB4 TIM3_CH1 SPI1_MISO USART2_TX TIM8_ETR
40	59	81	PB5	I/O	FT	Yes	PB5	I2C1_SMBA SPI3_MOSI I2S3_SD	TIM3_CH2 SPI1_MOSI CAN2_RX USART2_RX TIM1_BKIN
41	-	-	BLE_DVDD	-	-	-	BLE_DVDD	BLE_DVDD	-
42	-	-	BLE_XO32MM	-	-	-	BLE_XO32MM	BLE_XO32MM	-
43	-	-	BLE_XO32MP	-	-	-	BLE_XO32MP	BLE_XO32MP	-
44	60	82	PB6	I/O	TC	Yes	PB6	I2C1_SCL TIM4_CH1	USART1_TX CAN2_TX
45	61	83	PB7	I/O	TC	Yes	PB7	I2C1_SDA TIM4_CH2	USART1_RX
46	62	84	BOOT0	I	-	-	воот0	-	-
-	-	85	PB8	I/O	ТС	Yes	PB8	TIM4_CH3 SDIO_DAT4	I2C1_SCL CAN1_RX UART5_TX

P	acka			a				Optional multiple	xing function of ⁽⁶⁾
LQFP48	LQFP64	LQFP88	Pin name	$\mathrm{Type}^{(1)}$	$I/O^{(2)}$	Fail-safe support	Main functions ⁽³⁾ (after reset)	default	redefine
-	-	86	PB9	I/O	TC	Yes	PB9	TIM4_CH4 SDIO_DAT5	I2C1_SDA CAN1_TX UART5_RX
47	63	87	VSS_3	S	-	-	VSS_3	-	-
48	64	88	VDD_3	S	-	-	VDD_3	-	-

- 1. I = input, O = output, S = power supply, HiZ = high impedance.
- 2. FT: tolerate 5V; TTa: tolerates 3.3V and supports analog peripherals; TC: ordinary 3.3V I/O
- 3. Some functions are only supported in some models of chips.
- 4. Pin PC13, PC14 and PC15 are powered by the power switch, which can only absorb limited current (3mA). Therefore, when these three pins are used as output pins, they have the following limitations: only one pin can be used as output at the same time; when they are used as output pins, they can only work in 2MHz mode, and the maximum driving load is 30pF, and they cannot be used as current sources (such as driving LEDs).
- 5. When the backup area is powered on for the first time, these pins are in the main function state. After that, even if they are reset, the state of these pins is controlled by the backup area registers (these registers will not be reset by the main reset system). For specific information on how to control these IO ports, please refer to the battery backup area of N32WB452 user's reference manual and relevant chapters of BKP register.
- 6. Some multiplexing functions can be configured to other pins by software (if the corresponding package model has this pin). For details, please refer to the multiplexing function I/O chapter and debugging setting chapter of N32WB452 user reference manual.
- 7. Pin 5 and pin 6 of LQFP64 package are configured as OSC_IN and OSC_OUT function pins by default after the chip is reset. Software can reset these two pins to PD0 and PD1 functions. When used as PD0 and PD1, these two pins can only be used as ordinary IO functions. However, for LQFP80/100/128 package, because PD0 and PD1 are inherent functional pins, there is no need to re-image by software. For more details, please refer to the reuse function I/O chapter and debugging settings chapter of N32WB452 user reference manual.
- 8. Fail-safe means that when the chip has no power input, the input high level is added to IO, and there is no phenomenon that the input high level is poured into the chip, which leads to a certain voltage on the power supply and consumes current.

Note: ADC12_INx appears in the pin name label in the Table, indicating that this pin can be ADC1_INx or ADC2_INx. For example, ADC12_IN9 indicates that this pin can be configured as ADC1_IN9 or ADC2_IN9.

TIM2_CH1_ETR in the multiplexing function corresponding to pin PA0 in the Table indicates that the function can be configured as TIM2_T11 or TIM2_ETR. Similarly, the name of the remapping multiplexing function corresponding to PA15, TIM2_CH1_ETR, has the same meaning.

For the port of FT in the Table, it is necessary to ensure that the difference between IO voltage and power supply voltage is less than 3.6V.

3.3 Bluetooth application reference circuit

The following figure lists the main peripheral devices and related parameters required when the Bluetooth part of the N32WB452 series works in DCDC mode and LDO mode. BLE_RFIOP is connected to an external antenna, BLE_VCC is connected to an external power supply, BLE_VDCDC is connected to an external inductor and capacitor, BLE_DVDD is connected to an external capacitor, and an external 32MHz crystal is required. For applications that do not require high timing accuracy, the internal 32kHz RC Oscillator can be used to save BOM costs; On-chip DCDC, direct external power supply.

100nF - GND BLE_X032MM BLE_XO32MP BLE_DVDD BLE_RFIOP BLE_VCC 4. 7uF N32WB452X BLE_VDCDCCRF BLE_VDCDC -BLE_SWITCH -

Figure 3-4 DCDC working mode reference circuit diagram

Figure 3-5 LDO working mode reference circuit

Tel: +86-755-86309900

Email: info@nationstech.com Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North. Nanshan District, Shenzhen, 518057, P.R.China

GND

4 Electrical specification

4.1 Parameter condition

All voltages are based on VSS unless otherwise specified.

4.1.1 Minimum and maximum values

Unless otherwise specified, all minimums and maximums will be guaranteed under the worst ambient temperature, supply voltage and clock frequency conditions by performing tests on 100% of the product on the production line at ambient temperatures T_A =25 $^{\circ}$ C and TA=TAmax (TAmax matches the selected temperature range).

Note at the bottom of each form that data obtained through characterization results, design simulation and/or process characteristics will not be tested on the production; Base on comprehensive evaluation, the minimum and maximum values are obtained by taking the average of the samples tested and adding or subtracting three times the standard distribution (mean $\pm 3\Sigma$).

4.1.2 Typical numerical value

Unless otherwise specified, typical data are based on T_A = 25 C and V_{DD} =3.3V. These data is untested and used only as a design guide for the user.

4.1.3 Typical curve

Unless otherwise specified, these typical curves are untested and used only as a design guide for the user.

4.1.4 Loading capacitor

The load conditions for measuring pin parameters are shown in Figure 4-1.

Figure 4-1 Pin load conditions

4.1.5 Pin input voltage

The measurement of the input voltage on pin is shown in Figure 4-2.

Figure 4-2 Pin voltage

Nations Technologies Inc. Tel: +86-755-86309900

Email: info@nationstech.com
Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North.
Nanshan District, Shenzhen, 518057, P.R.China

4.1.6 Power supply scheme

 V_{BAT} Backup circuit Power Switch 1.8-3.6 V (32KHz Oscillator,RTC wakeup circuit,Backup register Output Ю Level General I/O port logic circuit Core circuit Input (CPU,digital v_{DD} circuit and memeory) V_{DD 1/2/··/4} Voltage regulator $4 \times 100 \, nF$ 1x 4.7 uF V_{SS 1/2/··/4} v_{DD} v_{DDA} VREF Analog peripherals v_{REF+} (ADCs 10 nF DACs) + 1uF 100nF V_{REF}v_{SSA}

Figure 4-3 Power supply scheme(Non-Bluetooth part)

Note: The 4.7 μ F capacitor in the above figure must be connected to V_{DD3} .

Email: info@nationstech.com Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North. Nanshan District, Shenzhen, 518057, P.R.China

4.1.7 Current consumption measurement

IDD VDD

Figure 4-4 Current consumption measurement scheme

4.2 Absolute maximum rating

The load applied to the device may permanently damage the device if it exceeds the values given in the Absolute maximum rating list (Table 4-1. Table 4-2. Table 4-3). The maximum load that can be sustained is only given here, and it does not mean that the functional operation of the device under such conditions is correct. The reliability of the device will be affected when the device works for a long time under the maximum condition.

Symbol	Describe	Min	Max	Unit
V _{DD} - V _{SS}	Main power supply voltage (including V_{DDA} and V_{DD}) ⁽¹⁾	-0.3	4.0	17
$V_{ m IN}$	Input voltage on 5V tolerant pin ⁽³⁾	V _{SS} -0.3	5.5	V
V IN	Input voltage on other pins ⁽²⁾	V _{SS} -0.3	$V_{DD} + 0.3$	
$ \Delta V_{DDx} $	Voltage difference between different supply pins	-	50	mV
V _{SSx} - V _{SS}	Voltage difference between different grounding pins	-	50	111 V
$V_{ESD(HBM)}$	Electrostatic discharge voltage (Human body mode)	See paragraph 4.	4.11 festival	

Table 4-1 Voltage characteristic

- 1. All power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply system within permissible limits.
- 2. V_{IN} shall not exceed its maximum value. Refer to Table 4-2 for current characteristics.
- 3. When 5.5V is applied to the 5V tolerant pin, V_{DD} cannot be less than 2.25V.

Table 4-2 Current characteristic

Symbol	Describe	Max ⁽¹⁾	Unit
I_{VDD}	Total current (supply current) through V _{DD} /V _{DDA} power line ⁽¹⁾⁽⁴⁾	100	mA

Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North.

I_{VSS}	Total current (outflow current) through Vss ground wire	100
L	Output sink current on any I/O and control pins	12
1	Output current on any I/O and control pins	-12
I _{INJ(PIN)} (2)(3)	Injection current of NRST pin	-5/0
IINJ(PIN)(2)(3)	Injection current of other pins ⁽⁴⁾	+/-5

- All the power supply (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA})pins of must always be connected to the power supply system within the
 external allowable range.
- 2. When V_{IN}>V_{DD}, there is a forward injection current; when V_{IN}<V_{SS}, there is a reverse injection current. I_{INJ(PIN)} should not exceed its maximum value. Voltage characteristics refer to Table 4-1.
- 3. Reverse injection current can interfere with the analog performance of the device. See section 4.4.21.
- 4. When the maximum current occurs, the maximum allowable voltage drop of V_{DD} is 0.1V_{DD}.

Table 4-3 Temperature characteristic

Symbol	Description	Value	Unit
T_{STG}	Storage temperature range	-40 ~ 105	$\mathcal C$
T_J	Maximum junction temperature	105	${\mathbb C}$

4.3 Bluetooth Electrical Characteristics

4.3.1 Bluetooth working environment

Table 4-4 Bluetooth working environment

Symbol	Description	Min	Тур	Max	Unit
VCC(op)	Normal operating power supply voltage	1.8	3	3.6	V
VCC(sto)	Internal memory operating voltage	-0.3	/	3.6	V
Signal amplitude	Amplitude of the RF input signal	/	/	+10	dBm
Inductance	DCDC External Inductor	1.5	2.2	3	uН
COUT	DCDC load capacitance	0.8	1	5	uF

4.3.2 Bluetooth DC parameters

Table 4-5 Bluetooth DC parameter characteristics

Parameter	Description	Min	Тур	Max	Unit
I(Rx)	Broadcast Rx current, VCC=3.0V, use on-chip DCDC	-	4.4	-	mA
I(Tx)	Broadcast Tx current, VCC=3.0V, 0dB output, use on-chip DCDC	-	4.6	-	mA
I(idle)	Idle mode current, XO32M is off, RF module is off, GPADC is off, CPU idle state, all interfaces are in standby state	-	600	-	uA
I (Sleep)	Current in Deep-Sleep mode, 4KB RAM Retention	-	1.2	-	uA
I(Shutdown)	Current in Shut-down Mode	-	0.1	-	uA
I(Reset)	Current in Reset Pin reset mode	-	0.1	-	uA

4.3.3 Bluetooth DC parameters

Table 4-6 Bluetooth AC parameters

Parameter	Description	Min	Тур	Max	Unit
Receiver sensitivity	Bit error rate = 1‰	/	-94	/	dBm
Receiver Saturation	Bit error rate = 1‰				
Energy		/	/	10	dBm
Same frequency	Signal energy -67 dBm, the interfering				
C/I	signal is in the channel, bit error rate = 1‰	/	8	/	dB
	Signal energy -67 dBm, interference signal				
C/I, ±1 MHz	in the channel \pm 1MHz, bit error rate = 1‰	/	-4	/	dB
	Signal energy -67 dBm, interference signal				
C/I, ±2 MHz	in the channel \pm 2MHz, bit error rate = 1‰	/	-33	/	dB
	Signal energy -67 dBm, interference signal				
C/I, ±3 MHz	in the channel ± 3 MHz, bit error rate = 1‰	/	-44	/	dB
	Signal energy -67 dBm, the interference				
C/I, Channel	signal is at the image frequency, bit error				
Selectivity	rate = 1‰	/	-29	/	dB
C/I Image 1-MHz	Signal energy -67 dBm, the interference				
Adj. Channel	signal is at the image frequency at ±1MHz				
Selectivity	of the channel, bit error rate = 1‰	/	-37	/	dB
Out-of-band	30 MHz to 2000 MHz	/	4	/	dBm
blocking	2003 MHz to 2999 MHz	/	-7	/	dBm
	3000MHz to 12.75GHz	/	4	/	dBm
crosstalk	The signal frequency is 2402 MHz, -64				
	dBm. The interference frequencies are				
	2405 and 2408 MHz respectively	/	-32	/	dBm

Table 4-7 1-Mbps GFSK (Bluetooth Low Energy) – TX

Parameter	Description	Min	Тур	Max	Unit
	Single-ended transmit power (connected to				
Pout	50ohm load)	-20	0	+3	dBm
Pout_step	power control step	/	5	/	dB
	The transmitted second harmonic power, the				
Pout_HD2	transmitted signal power is 0dBm	/	-47	/	dBm
	The transmitted third harmonic power, the				
Pout_HD3	transmitted signal power is 0dBm	/	-42	/	dBm
	The transmitted fourth harmonic power and				
Pout_HD4	above, the transmitted signal power is 0dBm	/	-48	/	dBm

4.4 Operating conditions

4.4.1 General operating conditions

Table 4-8 General working conditions

Symbol	Parameter	Condition	Min	Max	Unit
f _{HCLK}	Internal AHB clock frequency	-	0	144	
f_{PCLK1}	Internal APB1 clock frequency	-	0	36	MHz
f_{PCLK2}	Internal APB2 clock frequency	-	0	72	
V_{DD}	Standard working voltage	-	1.8	3.6	V
V_{DDA}	Analog working voltage	Must be the same as $V_{DD}^{(1)}$	1.8	3.6	V
V_{BAT}	Backup partial working voltage	-	1.8	3.6	V
TA	Ambient temperature (temperature number	6 suffix version	-40	85	\mathbb{C}

45 / 91

Nations Technologies Inc.

Tel: +86-755-86309900

Email: info@nationstech.com Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North. Nanshan District, Shenzhen, 518057, P.R.China

	7)				
T_{J}	Junction temperature range	6 suffix version	-40	105	\mathcal{C}

It is recommended that the same power supply be used to power the V_{DD} and V_{DDA}. During power-on and normal operation, a
maximum of 300mV difference is allowed between the V_{DD} and V_{DDA}.

4.4.2 Operating conditions at power-on and power-off

The parameters given in the following table are based on the ambient temperatures listed in Table 4-8.

Table 4-9 Operating conditions at power-on and power-off

Symbol	Parameter	Condition	Min	Max	Unit
t_{VDD}	V _{DD} rising rate		20	∞	/\/\
	V _{DD} falling rate		80	∞	μs/V

4.4.3 Embedded reset and power control module features

The parameters given in the following table are based on the ambient temperature and VDD supply voltage listed in Table 4-8.

Table 4-10 Features of embedded reset and power control modules

Symbol	Symbol Parameter Condition		Min	Тур	Max	Unit
		PRS[2:0]=000 (rising edge)	2.09	2.18	2.27	V
		PRS[2:0]=000 (falling edge)	2	2.08	2.16	V
		PRS[2:0]=001 (rising edge)	2.19	2.28	2.37	V
		PRS[2:0]=001 (falling edge)	2.09	2.18	2.27	V
		PRS[2:0]=010 (rising edge)	2.28	2.38	2.48	V
		PRS[2:0]=010 (falling edge)	2.19	2.28	2.37	V
	Level selection of	PRS[2:0]=011 (rising edge)	2.38	2.48	2.58	V
	programmable voltage	PRS[2:0]=011 (falling edge)	2.28	2.38	2.48	V
	detector (MSB of	PRS[2:0]=100 (rising edge)	2.47	2.58	2.69	V
	PWR_CTRL is 0)	PRS[2:0]=100 (falling edge)	2.37	2.48	2.59	V
		PRS[2:0]=101 (rising edge)	2.57	2.68	2.79	V
		PRS[2:0]=101 (falling edge)	2.47	2.58	2.69	V
		PRS[2:0]=110 (rising edge)	2.66	2.78	2.9	V
		PRS[2:0]=110 (falling edge)	2.56	2.68	2.8	V
		PRS[2:0]=111 (rising edge)	2.76	2.88	3	V
V_{PVD}		PRS[2:0]=111 (falling edge)	2.66	2.78	2.9	V
V PVD		PRS[2:0]=000 (rising edge)	1.7	1.78	1.85	V
		PRS[2:0]=000 (falling edge)	1.61	1.68	1.75	V
		PRS[2:0]=001 (rising edge)	1.8	1.88	1.96	V
		PRS[2:0]=001 (falling edge)	1.7	1.78	1.85	V
		PRS[2:0]=010 (rising edge)	1.9	1.98	2.06	V
		PRS[2:0]=010 (falling edge)	1.8	1.88	1.96	V
	Level selection of	PRS[2:0]=011 (rising edge)	2	2.08	2.16	V
	programmable voltage	PRS[2:0]=011 (falling edge)	1.9	1.98	2.06	V
	detector (MSB of	PRS[2:0]=100 (rising edge)	3.15	3.28	3.41	V
	PWR_CTRL is 1)	PRS[2:0]=100 (falling edge)	3.05	3.18	3.31	V
		PRS[2:0]=101 (rising edge)	3.24	3.38	3.52	V
		PRS[2:0]=101 (falling edge)	3.15	3.28	3.41	V
		PRS[2:0]=110 (rising edge)	3.34	3.48	3.62	V
		PRS[2:0]=110 (falling edge)	3.24	3.38	3.52	V
		PRS[2:0]=111 (rising edge)	3.44	3.58	3.72	V
		PRS[2:0]=111 (falling edge)	3.34	3.48	3.62	V
V _{PVD hyst} (1)	PVD hysteresis	-	-	100	-	mV
V_{POR}	VDD power- on/power-off reset threshold	-	-	1.64/1.62	-	V
$T_{RSTTEMPO}^{(1)}$	Reset duration	-	-	0.8	4	ms

Guaranteed by design, not tested in production.

4.4.4 Embedded reference voltage

The parameters given in the following table are based on the ambient temperature and VDD supply voltage listed in Table 4-8.

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{REFINT}	Built-in reference voltage	-40 ℃< T _A < +85 ℃	1.164	1.20	1.24	V
$T_{S_vrefint}^{(1)}$	Sampling time of ADC when reading out internal reference voltage	-	-	5.1	10 ⁽²⁾	μs

- 1. The shortest sampling time is obtained through multiple cycles in the application.
- 2. Based on comprehensive evaluation, not tested in production.

4.4.5 Power supply current characteristics

Current consumption is a combination of several parameters and factors, including operating voltage, ambient temperature, load of I/O pins, software configuration of the product, operating frequency, I/O pin flip rate, program location in memory, and code executed.

The measurement method of current consumption is described in Figure 4-4.

All of the current consumption measurements given in this section are while executing a reduced set of code.

4.4.5.1 Maximum current consumption

The microcontroller is under the following conditions:

- All I/O pins are in input mode and are connected to a static level -- VDD or VSS (no load).
- All peripherals are disabled except otherwise noted.
- The access time of the flash memory is adjusted to the fastest operating frequency (0 waiting periods from 0 to 32MHz, 1 waiting period from 32 to 64MHz, 2 waiting periods from 64MHz to 96MHz, 3 waiting periods from 96MHz to 128MHz, 4 waiting periods from 128MHz to 144MHz).
- Instruction prefetch is enabled (note: this parameter must be set before setting the clock and bus divider).
- When the peripheral is enable: $f_{PCLK1} = f_{HCLK}/4$, $f_{PCLK2} = f_{HCLK}/2$.
- V_{DD} =3.63V, ambient temperature equal to 85 °C.

The parameters given in Table 4-12 and Table 4-13 are based on the test at ambient temperature and V_{DD} supply voltage listed in Table 4-8.

Table 4-12 Maximum current consumption in run mode with data processing code running from internal flash memory

Cb al	Domomoton	Condition	e	Typ (1) (3)	T124	
Symbol	Parameter	Condition	$\mathbf{f}_{ ext{HCLK}}$	$T_A = 85 ^{\circ}\text{C}$	Unit	
		External algebras	144MHz	31.1		
	Supply current in operation mode	External clock ⁽²⁾ , Enable all peripherals	72MHz	17		
I_{DD}			36MHz	11	m A	
1DD		External clock ⁽²⁾ ,	144MHz	15.8	mA	
			72MHz	9.7		
		Turn off all peripherals.	36MHz	6.7		

- 1. Evaluated by characterization, not tested in production.
- 2. The external clock is 8MHz, PLL is enabled when f_{HCLK}>8MHz.
- 3. Bluetooth is turned off.

Table 4-13 Maximum current cons	sumption in sleep mode	le
---------------------------------	------------------------	----

Symbol	Parameter	Condition	f _{HCLK}	Typ (1) (3) T _A = 85 °C	Unit
		External clock ⁽²⁾ , Enable all peripherals	144MHz	25.7	
			72MHz	14.2	
т	Supply current in		36MHz	9.8	A
I_{DD}	sleep mode	External clock ⁽²⁾ ,	144MHz	9.2	mA
	Turn off all peripherals.	Turn off all	72MHz	6.6	
		36MHz	5.1		

- 1. Guaranteed by comprehensive evaluation results, test in production with V_{DD}max and peripherals enabled with f_{HCLK}max.
- 2. The external clock is 8MHz, PLL is enabled when f_{HCLK}>8MHz.
- 3. Bluetooth is turned off.

4.4.5.2 Typical current consumption

MCU is under the following conditions:

- All I/O pins are in input mode and are connected to a static level -- VDD or VSS (no load).
- All peripherals are disabled unless otherwise noted.
- The access time of the flash memory is adjusted to the fastest operating frequency (0 waiting periods from 0 to 32MHz, 1 waiting period from 32 to 64MHz, 2 waiting periods from 64MHz to 96MHz, 3 waiting periods from 96MHz to 128MHz, 4 waiting periods from 128MHz to 144MHz).
- Ambient temperature and V_{DD} supply voltage conditions are listed in Table 4-8.
- Instruction prefetch is enabled (note: this parameter must be set before setting the clock and bus divider). When the peripheral is turned on: $f_{PCLK1} = f_{HCLK}/4$, $f_{PCLK2} = f_{HCLK}/2$, $f_{ADCCLK} = f_{PCLK2}/4$.

Table 4-14 Typical current consumption in running mode, data processing code runs from internal Flash

				Тур		
Symbol	Parameter	Condition	$\mathbf{f}_{ ext{HCLK}}$	Enable all peripherals ⁽²⁾	Disable all peripherals.	Unit
	Cumply cumpet in		144MHz	28.6	14.2	
		External clock ⁽³⁾	72MHz	17.7	8.1	mA
			36MHz	9.1	5.3	
\mathbf{I}_{DD}	Supply current in operation mode	Run in high-speed internal	128MHz	27.9	12.7	
	operation mode	RC oscillator (HSI), use	72MHz	17.5	7.2	mA
		AHB prescaler to reduce frequency.	36MHz	8.4	3.9	IIIA

- 1. Typical values are measured at $T_A=25$ °C and $V_{DD}=3.3v$.
- 2. An additional 0.8mA current consumption is added to the ADC for each analog section. In the application environment, this part of the current will only increase when the ADC is turned on (setting the ON bit of the ADC_CTRL2 register).
- 3. The external clock is 8MHz, and the PLL is enabled when f_{HCLK} >8MHz.
- 4. Bluetooth is turned off.

Table 4-15 Typical current consumption in sle	eep mode
---	----------

				Typ (
Symbol	Parameter	Condition	f _{HCLK}	Enable all peripherals ⁽²⁾	Disable all peripherals	Unit
		External clock ⁽³⁾	144MHz	23.3	8	
			72MHz	12.9	5.3	mA
T	Supply current in		36MHz	7.7	3.6	
1DD	I _{DD} sleep mode	de Run in high-speed internal RC oscillator (HSI), use AHB prescaler to reduce frequency.	128MHz	22.5	6.1	
			72MHz	11.8	3.5	mA
			36MHz	7.0	2.2	

- 1. Typical values are measured at $T_A=25$ °C and $V_{DD}=3.3v$.
- 2. When ADC is on, 0.8mA(1MSPS) additional current consumption is added. In the application environment, this part of the current is increased only when the ADC is turned ON (set ADC_CTRL2.ON bit).
- 3. The external clock is 8MHz, PLL is enabled when f_{HCLK}>8MHz.
- Bluetooth is turned off.

4.4.5.3 Low power mode current consumption

MCU is under the following conditions:

- All I/O pins are in input mode and are connected to a static level -- VDD or VSS (no load).
- All peripherals are disabled unless otherwise noted.

Table 4-16 Typical and maximum current consumption in shutdown mode and standby mode

Cb al	Da	Candition	$\mathbf{Typ}^{(2)}$		Unit
Symbol	Parameter	Condition	T _A =25 ℃	T _A =85 ℃	
$ m I_{DD}$		The voltage regulator is in operation mode, low-speed and high-speed internal RC oscillators and high-speed oscillators are off (Independent watchdog is off)	300	1200	
	Supply current in STOP0 mode	The voltage regulator is in low power consumption mode, and the low-speed and high-speed internal RC oscillators and high-speed oscillators are off (Independent watchdog is off)	150	800	
	Supply current in STOP2 mode	The external low-speed clock is turned on, RTC is running, R-SRAM is maintained, all I/O states are maintained, and the independent watchdog is off.	6	100	μΑ
		Low-speed RC oscillator and independent watchdog are on.	4	40	
	Supply current in STANDBY mode	The internal low-speed RC oscillator is on, and the independent watchdog is off.	3.9	40	
		The internal low-speed RC oscillator and independent watchdog are off, and the low-speed oscillator and RTC is off.	3.7	35	
I_{DD_VBAT}	Supply current of Backup Area (VBAT)	Low speed oscillator and RTC is on.	3	15	

- 1. Typical values are tested at VDD/VBAT = 3.3V.
- 2. Bluetooth is in a low power state.

4.4.6 External clock source characteristics

4.4.6.1 High-speed external clock source (HSE)

The characteristic parameters in the following table are measured using a high-speed external clock source, and the ambient temperature and supply voltage refer to the conditions specified in Table 4-8.

Table 4-17 High speed external user clock characteristics (Bypass mode)

Symbol	Parameter	Condition	Min	Тур	Max	Unit
f _{HSE_ext}	User external clock frequency ⁽¹⁾		4	8	32	MHz
V _{HSEH}	OSC_IN input pin high voltage		$0.8V_{\mathrm{DD}}$	-	V_{DD}	
V _{HSEL}	OSC_IN input pin low voltage		Vss	-	$0.3V_{DD}$	V
$t_{w(HSE)}$ $t_{w(HSE)}$	The time when OSC_IN is high or low ⁽¹⁾	-	16	-	-	ns
$t_{r(HSE)}$ $t_{f(HSE)}$	The rising or falling time of OSC_IN ⁽¹⁾		-	-	20	lis
C _{in(HSE)}	OSC_IN input capacitive reactance ⁽¹⁾	-	-	5	-	pF
DuCy _(HSE)	duty cycle	-	45	-	55	%
I_L	OSC_IN input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	<u>±1</u>	μΑ
	crystal oscillator	crystal frequency	-	32	-	MHz
BLE external 32MHz clock	frequency tolerance	Contains aging and temperature changes	-25	-	25	MHz
	crystal load capacitance	-	6	8	10	pF
	build time	-	-	350	-	us
BLE Internal	frequency	-	-	32	-	MHz
32MHz RC	frequency deviation	-	-1.5%	-	1.5%	-
Oscillator	build time	-	-	10	-	us
BLE Internal	frequency	-	-	32	-	KHz
32KHz RC	frequency deviation	-	-2%	-	2%	-
Oscillator	build time	-	-	300	-	us

According to comprehensive assessment, not tested in production.

4.4.6.2 Low-speed external clock source (LSE)

The characteristic parameters given in the following table are measured using a low speed external clock source, and the ambient temperature and supply voltage refer to the conditions specified in Table 4-8.

Table 4-18 Low-speed external user clock characteristics (Bypass mode)

Symbol	Parameter	Condition	Min	Тур	Max	Unit
f_{LSE_ext}	User external clock frequency ⁽¹⁾		0	32.768	1000	KHz
V _{LSEH}	OSC32_IN input pin high voltage		$0.7V_{DD}$	-	V_{DD}	V
V _{LSEL}	OSC32_IN input pin low voltage		V_{SS}	-	200	mV
$t_{w(LSE)}$ $t_{w(LSE)}$	The time when OSC32_IN is high or low ⁽¹⁾	-	450	-	-	
$\begin{array}{c} t_{r(LSE)} \\ t_{f(LSE)} \end{array}$	The rising or falling time of OSC32_IN ⁽¹⁾		-	-	50	ns
DuCy _(LSE)	duty cycle	-	30	-	70	%
IL	OSC32_IN input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μΑ

According to comprehensive assessment, not tested in production. 1.

Figure 4-5 AC timing diagram of external high-speed clock source

Figure 4-6 Ac timing diagram of external low-speed clock source

High-speed external clock generated using a crystal/ceramic resonator

High speed external clocks (HSE) can be generated using an oscillator consisting of a 4~32MHz crystal/ceramic resonator. The information presented in this section is based on a comprehensive feature evaluation using typical external components listed in the table below. In applications, the resonator and load capacitance must be as close to the oscillator pins as possible to reduce output distortion and stabilization time at startup. For detailed crystal resonator parameters (frequency, package, accuracy, etc.), please consult the appropriate manufacturer. (The crystal resonator mentioned here is usually referred to as passive crystal oscillator).

Symbol	Parameter	Condition	Min	Тур	Max	Unit
f_{OSC_IN}	Oscillator frequency	-	4	8	32	MHz
R_{F}	Feedback resistance	Feedback resistance 160 -		-	kΩ	
i ₂	HSE driving current	V _{DD} =3.3V,V _{IN} =V _{SS} 30pF load	-	1.3	-	mA
$g_{\rm m}$	Oscillator transconductance	Startup	-	10	-	mA/V
t _{SU(HSE)} (3)	Start time(8M crystal)	V _{DD} is stabilized	-	3	-	ms

Table 4-19 HSE 4~32MHz oscillator characteristics⁽¹⁾⁽²⁾

- 1. The characteristic parameters of the resonator are given by the crystal/ceramic resonator manufacturer.
- 2. According to comprehensive assessment, it is not tested in production.
- 3. For CL1 and CL2, it is recommended to use high-quality ceramic capacitors between 5pF and 25pF designed for high frequency applications (typical value), and select a crystal or resonator that meets the requirements. Usually CL1 and CL2 have the same parameters. Crystal manufacturers usually give parameters for the load capacitance as a serial combination of CL1 and CL2. When choosing CL1 and CL2, the capacitive reactance of the PCB and N32WB452 pins should be taken into account (the capacitance between the pins and the PCB board can be roughly estimated as 10pF).

Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North.

Resonator with integrated capacitor C_{L1} OSC_IN Gain control C_{L2} $R_{EXT}^{(1)}$ OSC_OUT

Figure 4-7 Typical application using 8MHz crystal

1. The REXT value depends on the properties of the crystal.

Low-speed external clock generated by a crystal/ceramic resonator

The low speed external clock (LSE) can be generated using an oscillator consisting of a 32.768KHz crystal/ceramic resonator. The information presented in this section is based on a comprehensive feature evaluation using typical external components listed in table below. In applications, the resonator and load capacitance must be as close to the oscillator pins as possible to reduce output distortion and stabilization time at startup. For detailed crystal resonator parameters (frequency, package, accuracy, etc.), please consult the appropriate manufacturer. (The crystal resonator mentioned here is usually referred to as passive crystal oscillator)

Note: For C_{L1} and C_{L2} , it is recommended to use high quality ceramic dielectric containers. Usually C_{L1} and C_{L2} have the same parameters. Crystal manufacturers usually give parameters for load capacitance as serial combinations of C_{L1} and C_{L2} .

Load capacitance C_L is calculated by the following formula: $C_L = C_{L1} \times C_{L2} / (C_{L1} + C_{L2}) + C_{stray}$, where C_{stray} is the capacitance of the pin and the PCB or PCB-related capacitance.

For example, if a resonator with a load capacitance of C_L=6pF is selected and C_{stray}=2pF, then C_{L1}=C_{L2}=8pF.

Symbol	Parameter	Condition	Min	Тур	Max	Unit
R_{F}	Feedback resistance	-	-	5	-	ΜΩ
I2	LSE drive current	$\begin{array}{c} \text{VDD=3.3V} \;, \\ \text{CL1=CL2=14pF} \\ \text{R}_{S} = 30 \text{K}\Omega \end{array}$	-	0.3	-	μΑ
$g_{\rm m}$	Oscillator transconductance	-	5	-	-	μA/V
tsua se)(2)	Startup time	V _{DD} is stabilized	_	2	_	S

Table 4-20 LSE oscillator characteristics (f_{LSE}=32.768kHz)⁽¹⁾

- 1. Based on comprehensive evaluation, not tested in production.
- 2. See the Cautions and Warnings paragraph above this form.

Email: info@nationstech.com Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North.

Figure 4-8 Typical application using 32.768kH crystal⁽¹⁾⁽²⁾

- 1. Please refer to the Crystal Selection Guide.
- 2. To ensure the working stability of the crystal, do not flip the adjacent pins when the crystal is working.

4.4.7 Internal clock source characteristics

The characteristic parameters given in the following table were measured using ambient temperature and supply voltage in accordance with Table 4-8.

4.4.7.1 High speed internal (HSI) RC oscillator

Para **Symbol** Condition Min Max Unit Typ frequency VDD=3.3V, $T_A = 25^{\circ}C$, after calibration $7.92^{(3)}$ 8 $8.08^{(3)}$ MHz f_{HSI} DuCy(HSI) Duty cycle 45 55 % Temperature drift of HSI VDD=3.3V, **ACCHSI** -2.5 2.5 % oscillator(4) T_A=-40~85 ℃ HSI oscillator start-up time 5 $t_{SU(HSI)} \\$ μs HSI oscillator power $I_{DD(HSI)} \\$ 40 μΑ consumption

Table 4-21 HSI oscillator characteristics (1)(2)

- 1. $V_{DD}=3.3V$, $T_A=-40 \sim 85$ °C, unless otherwise specified.
- 2. Based on comprehensive evaluation, not tested in production.
- 3. Production calibration accuracy, excluding welding effects. Welding brings about +1.5% frequency deviation range.
- 4. Frequency deviation includes the effect of welding, data is from sample testing, not tested in production.

4.4.7.2 Low speed internal (LSI) RC oscillator

Table 4-22 LSI oscillator characteristics⁽¹⁾

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		25 ℃ calibration, VDD =3.3V	38	40	42	KHz
$f_{LSI}^{(2)}$	Output frequency	VDD =1.8V \sim 3.6V, T _A = -40 \sim 85 °C	30	40	60	KHz
t _{SU(LSI)} (2)	LSI oscillator start-up time	-	-	40	80	μs
I _{DD(LSI)} (2)	LSI oscillator power consumption	-	-	0.1	-	μΑ

^{1.} $V_{DD}=3.3V$, $T_A=-40 \sim 85$ °C, unless otherwise specified.

4.4.8 Wake up time from low power mode

The wake-up time listed in Table 4-23 is measured during the wake-up phase of an 8MHz HSI RC oscillator. The clock source used when waking up depends on the current operating mode:

- STOP0/STOP2/STANDBY mode: Clock source is RC oscillator.
- SLEEP mode: Clock source is the clock used when entering SLEEP mode.

All times were measured using ambient temperature and supply voltage in accordance with Table 4-8.

Table 4-23 Wake-up time in low power mode

Symbol	Parameter	Тур	Unit
t _{WUSLEEP} (1)	Wake up from sleep mode	480	ns
	Wake up from shutdown mode 0 (voltage regulator is in running mode)	20	
t _{WUSTOP0} ⁽¹⁾	Wake up from shutdown mode 0 (voltage regulator is in low power mode)	22	
twustop2 (1)	Wake up from shutdown mode 2	40	μs
twustdby ⁽¹⁾	Wake up from standby mode	100	

^{1.} The wake-up time is measured from the start of the wake-up event to the first instruction read by the user program.

4.4.9 PLL characteristic

The parameters listed in Table 4-24 are measured when the ambient temperature and power supply voltage refer to the conditions in Table 4-8.

Table 4-24 PLL characteristic

Symbol	Parameter		Unit		
Symbol	rarameter	Min	Тур	Max (1)	Ullit
f	PLL input clock ⁽²⁾	4	8.0	32	MHz
t _{PLL_IN}	PLL input clock duty cycle	40	-	60	%
f_{PLL_OUT}	PLL frequency doubling output clock	32	1	144	MHz
t_{LOCK}	PLL Ready indicates the signal output time.	ı	ı	150	μs
Jitter	Rms cycle-to-cycle jitter @144MHz	-	5	-	ps
Ipll	Operating Current of PLL @144MHz VCO frequency.	-	700	-	uA

^{1.} Based on comprehensive evaluation, not tested in production.

Care needs to be taken to use the correct frequency doubling factor to input the clock frequency according to PLL so that f_{PLL_OUT} is within the allowable range.

^{2.} Based on comprehensive evaluation, not tested in production.

4.4.10FLASH memory characteristics

Unless otherwise specified, all characteristic parameters are obtained at T_A = -40~85 °C.

Table 4-25 Flash memory characteristics

Symbol	Parameter	Condition	Min ⁽¹⁾	Typ (1)	Max ⁽¹⁾	Unit
tprog	32-bit programming time	T _A = -40~85 ℃	-	112	225	μs
$t_{\rm ERASE}$	Page (2K bytes) erase time	T _A = -40~85 ℃	-	2	20 ⁽²⁾ 100 ⁽³⁾	ms
t_{ME}	Whole erase time	T _A = -40~85 ℃;	-	_	100	ms
	Down synals overent	Read mode, f _{HCLK} =144MHz,3 waiting cycles, V _{DD} =3.3V	-	-	3.62	but
I_{DD}		Write mode, f _{HCLK} =144MHz, V _{DD} =3.3V	-	-	6.5	but
1DD	Power supply current	Erase mode, $f_{HCLK}=144MHz$, $V_{DD}=3.3V$	-	-	4.5	but
		Power-down mode/shutdown, V _{DD} = 3.3 ~ 3.6V.	-	-	0.035	μΑ
Vprog	Programming voltage	-	1.8	3.0	3.6	V

- 1. Based on comprehensive evaluation, not tested in production.
- 2. Memory space with 10k erase times
- 3. Memory space with 100k erasing times

Table 4-26 Flash endurance and data retention

Symbol	Parameter	Condition	Min ⁽¹⁾	Unit
N _{END}	Endurance (Note: number	Ta =-40 \sim 85 °C (suffix 6); The Flash capacity is 512KB, of which the first 256KB of storage space	10	thousand
TVEND	of erasures)	Ta =-40 ~ 85 °C (suffix 6); The Flash capacity is 512KB, including the last 256KB of storage space.	100	times
t_{RET}	Data retention period	T _A = 85 ℃	20	year

^{1.} Based on comprehensive evaluation, not tested in production.

4.4.11 Absolute maximum (electrical sensitivity)

Based on three different tests (ESD, LU), a specific measurement method is used to test the strength of the chip to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharge (a positive pulse followed by a negative pulse one second later) is applied to all pins of all samples.

Table 4-27 Absolute maximum ESD value

Symbol	Parameter	Condition	Type	Min ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (Human body model)	T _A = +25 °C, In accordance with MIL-STD-883K Method 3015.9	3A	4000	V
V _{ESD(CDM)}	Electrostatic discharge voltage (Charging device model)	T _A = +25 °C, In accordance with ESDA/JEDEC JS- 002-2018	C3	1000	v

^{1.} Based on comprehensive evaluation, not tested in production.

Static latch-up

In order to evaluate the latch-up performance, two complementary static latching tests need to be performed on 6 samples:

- Supply voltage exceeding limit for each power pin.
- Current is injected into each input, output, and configurable I/O pin.

This test conforms to JEDEC78E integrated circuit latch-up standard.

Table 4-28 Electrical sensitivity

Symbol	Parameter	Condition	Туре	Min ⁽¹⁾
LU	Static latch-up type	$T_{A} = +25~^{\circ}\mathrm{C}$, in accordance with JEDEC78E	Class II A	±100mA, 1.5*Vddmax

^{1.} Test at room temperature.

4.4.12I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters listed in the following table are measured according to the conditions in Table 4-8. All I/O ports are CMOS and TTL compatible.

Symbol Parameter Condition Min Max Unit **Symbol** V_{IL} Input low level voltage 0.8 TTL port V $V_{\underline{IH}}$ Input high level voltage 2 V_{DD} 0.35 V_{DD} V_{IL} Input low level voltage Vss CMOS port $0.65~V_{DD}$ Input high level voltage $V_{IH} \\$ V_{DD} $V_{DD}=3.3V$ 200 Vhys Schmitt trigger voltage hysteresis⁽¹⁾ $V_{DD}=2.5V$ 200 mV $0.1*V_{DD}^{(2)}$ $V_{DD}=1.8V$ V_{DD}=Maximum Input leakage current⁽³⁾ 1 I_{lkg} -1 μΑ $V_{PAD}=0$ or $V_{PAD}=V_{DD}^{(5)}$ $V_{DD}=3.3V, V_{IN}=V_{SS}$ 75 220 Weak pull-up equivalent resistance(4) $V_{DD} = 2.5V$, $V_{IN} = V_{SS}$ 95 310 kΩ RPH $V_{DD} = 1.8V, V_{IN} = V_{SS}$ 135 500

 $V_{DD}=3.3V, V_{IN}=V_{DD}$

 $V_{DD} = 2.5V$, $V_{IN} = V_{DD}$

 $V_{DD}=1.8V,\ V_{IN}=V_{DD}$

Table 4-29 I/O static characteristics

- 1. Hysteresis voltage of Schmitt trigger switch level. Based on comprehensive evaluation, not tested in production.
- 2. At least 100mV.

 R_{PD}

 C_{IO}

- 3. If there is reverse current backflow at the adjacent pins, the leakage current may be higher than the maximum value.
- 4. Pull-up and pull-down resistors are implemented with a switchable PMOS/NMOS.
- 5. V_{PAD} refers to the input voltage of the IO pin.

Weak pull-down equivalent

Capacitance of I/O pin

resistance(4)

All I/O ports are CMOS and TTL compatible (no software configuration required) and their features take into account most of the strict CMOS process or TTL parameters:

- for VIH:
 - If VDD is between [1.8V and 3.08V]; Uses CMOS features but includes TTL.
 - If VDD is between [3.08V and 3.60V]; Uses TTL feature but includes CMOS.

58 / 91

75

85

120

235

315

495

kΩ

pF

- for VIL:
 - If VDD is between [1.8V and 2.28V]; Uses TTL features but includes CMOS.
 - If VDD is between [2.28V and 3.60V]; Uses CMOS feature but includes TTL.

Output drive current

GPIO (general purpose input/output port) can absorb or output up to +/-12mA current. In user applications, the number of I/O pins must ensure that the driving current does not exceed the absolute maximum rating given in Section 4.2:

- The sum of the current drawn from V_{DD} by all I/O ports, plus the maximum operating current drawn by the MCU on V_{DD} , cannot exceed the absolute maximum rating of IVDD (Table 4-2).
- The sum of the current drawn by all I/O ports and drawn from V_{SS} , plus the maximum operating current drawn by the MCU on V_{SS} , cannot exceed the absolute maximum ratings, I_{VSS} (Table 4-2).

Output voltage

Unless otherwise specified, Based on comprehensive evaluation, not tested in production. The parameters listed in Table 4-31were measured using ambient temperature and VDD supply voltage in accordance with Table 4-8. All I/O ports are CMOS and TTL compatible.

 $\overline{\text{IoL}^{(1)}}$, IOH(1), IoL(1), IOH(1), IOH(1), IoL(1), **Driving grade** Unit <u>VDD</u>=3.3V **VDD=3.3V** <u>VDD=</u>2.5V <u>VDD=</u>2.5V VDD=1.8V VDD=1.8V -1.5 1.5 -1.21.2 mA 4 -4 4 -3 3 -2.5 2.5 mA -7 7 5 8 -8 8 -5 mA 12 -12 12 -11 11 -7.5 7.5 mA

Table 4-30 IO driving capability Table

^{1.} Based on comprehensive evaluation, not tested in production.

Table 4-31 Outp	out voltage	characteristic
-----------------	-------------	----------------

Symbol	Parameter	Condition	Min	Max	Unit
		$V_{DD} = 3.3 \text{ V},$	V _{SS}	0.4	
		I_{OL} = 2mA, 4mA, 8mA, and 12mA			
$V_{OL(1)}$	Output low	$V_{DD} = 2.5 \text{ V},$	V_{SS}	0.4	
02(1)	level	I_{OL} = 1.5mA,3mA, 7mA, and 11mA	- 55	~··	V
		$V_{DD} = 1.8 \text{ V},$	Vss	0.2*V _{DD}	
		$I_{OL}=1.2$ mA, 2.5mA, 5mA, and 7.5mA	7 55	0.2 100	
		$V_{DD} = 3.3 \text{ V},$	2.4(3)	V_{DD}	,
		I_{OH} = -2mA, -4mA, -8mA, and -12mA	2.7	4 DD	
V _{OH(2)}	Output high	$V_{DD} = 2.5 \text{ V},$	1.8(3)	V_{DD}	
V OH(2)	level	I_{OH} = -1.5mA, -3mA, -7mA, and -11mA	1.0	V DD	-
		$V_{DD} = 1.8 \text{ V},$	0.0*1/	V_{DD}	
		I_{OH} = -1.2mA, -2.5mA, -5mA, and -7.5mA	$0.8*V_{DD}$		

- 1. The current I_{IO} absorbed by the chip must always follow the absolute maximum rating given in Table 4-2, and the sum of I_{IO} (all I/O pins and control pins) must not exceed I_{VSS}.
- 2. The current I_{IO} output from the chip must always follow the absolute maximum rating given in Table 4-2, and the sum of I_{IO} (all I/O pins and control pins) must not exceed I_{VDD}.
- 3. PC13, PC14 and PC15 are not in this range.

Input-output AC characteristics

The definitions and values of input and output AC characteristics are shown in Figure 4-10 and Table 4-32.

Unless otherwise specified, the parameters listed in Table 4-32 were measured using ambient temperature and supply voltage in accordance with Table 4-8.

Table 4-32 Output AC Characteristics⁽¹⁾

DS_CFGy Configuration	PMODEy[1:0] Configuration	Symbol	Parameter	Condition	Min	Max	Unit				
			Maximum	$C_L=5pF,V_{DD}=3.3V$	-	75					
		f _{max(IO)out}	frequency ⁽²⁾	$C_L=5pF,V_{DD}=2.5V$	-	50	MHz				
	xx (2mA)		rrequency.	C _L =5pF,V _{DD} =1.8V	-	30					
				$C_L=5pF,V_{DD}=3.3V$	-	3.66					
0		t(IO)out	Output delay	$C_L=5pF,V_{DD}=2.5V$	-	4.72	ns				
				$C_L=5pF,V_{DD}=1.8V$	-	7.12					
				$C_L=50 fF, V_{DD}=2.97 V, V_{DDD}=0.81 V$							
		t _{(IO)in}	Input delay	input characteristics at 1.8V and 2.5V are derated	-	2	ns				
			3.5	$C_{L}=10pF, V_{DD}=3.3V$	-	90					
		f _{max(IO)out}	Maximum	C _L =10pF,V _{DD} =2.5V	-	60	MHz				
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C _L =10pF,V _{DD} =1.8V	-	40							
		$C_{L}=10pF, V_{DD}=3.3V$	-	3.5							
1				,	t(IO)out	Output delay	C _L =10pF,V _{DD} =2.5V	-	4.5]	
-		(, , , , , ,	ı J	C _L =10pF,V _{DD} =1.8V	-	6.74					
					t _{(IO)in}	Input delay	C _L =50fF,V _{DD} =2.97V,V _{DDD} =0.81V input characteristics at 1.8V and 2.5V are derated	-	2	ns	
				C _L = 20pF, V _{DD} = 3.3V		100					
]	f an		CL=20pF, Vbb= 5.5V CL=20pF,Vbb=2.5V	-	75	MHz		
				1max(IO)out	frequency ⁽²⁾	CL=20pF,V _{DD} =2.3V CL=20pF,V _{DD} =1.8V	-	50	MILITZ		
				C _L =20pF, V _{DD} =3.3V	-	3.42					
1	10 (8mA) t(IO)out	_	tao i	-	tao.	Output delay	C _L =20pF, V _{DD} =3.5 V C _L =20pF,V _{DD} =2.5 V	-	4.73	-	
1				Output delay	C _L =20pF, V _{DD} =2.8V	-	6.53	•			
		t _{(IO)in}	Input delay	C _L =50fF,V _{DD} =2.97V,V _{DDD} =0.81V input characteristics at 1.8V and 2.5V are derated	-	2	ns				
			Maximum	$C_L=30pF, V_{DD}=3.3V$	-	120					
		f _{max(IO)out}	frequency ⁽²⁾	C _L =30pF,V _{DD} =2.5V	-	90	MHz				
			rrequency.	C _L =30pF,V _{DD} =1.8V	-	60					
	11	_		$C_L=30pF, V_{DD}=3.3V$	-	3.34					
1	(12mA)	t(IO)out	Output delay	C _L =3pF,V _{DD} =2.5V	-	4.26					
	(1211174)			C _L =3pF,V _{DD} =1.8V	-	6.34	4				
		t(IO)in	Input delay	C _L =50fF,V _{DD} =2.97V,V _{DDD} =0.81V input characteristics at 1.8V and 2.5V are derated	-	2	ns				

I/O port speed can be configured by DS_CFGy and PMODEy[1:0]. See N32WB452 reference manual for the description of GPIO port configuration register.

The maximum frequency is Figure 4-9 Define.

EXTERNAL OUTPUT on CL

Maximum frequency is achieved if $(t_r + t_f) <= (2/3)T$ and if the duty cycle is (45-55%) when loaded by CL specified in the table "I/O AC characteristics"

Figure 4-9 Input output AC characteristic definition

Figure 4-10 Transmission delay

4.4.13NRST pin characteristics

The NRST pin input driver uses CMOS technology and integrates a pull-up resistor that cannot be disconnected, RPU (see Table 4-33). Unless otherwise specified, the parameters listed in Table 4-33 are measured using the ambient temperature and supply voltage in accordance with the conditions in Table 4-8.

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V (1)	NDCT input low voltage	$V_{DD}=3.3V$	Vss	-	0.8	
$V_{\rm IL(NRST)}^{(1)}$	NRST input low voltage	$V_{DD} = 1.8 \text{ V}$	Vss		0.3*VDD	V
V(1)	NDCT input high voltage	V _{DD} =3.3V	2	-	V_{DD}	v
V _{IH(NRST)} ⁽¹⁾	NRST input high voltage	$V_{DD} = 1.8 \text{ V}$	0.7*VDD		VDD	
V	NRST Schmitt trigger voltage	$V_{DD} = 3.3 \text{ V}$	200	-	-	mV
$V_{hys(NRST)}$	hysteresis	$V_{DD} = 1.8 \text{ V}$	0.1*VDD			V
R_{PU}	Weak pull-up equivalent resistance ⁽²⁾	$V_{DD} = 3.3 \text{ V}$	30	50	70	ΚΩ
V _{F(NRST)} ⁽¹⁾	NRST input filtered pulse	-	-	-	100	ns
V _{NF(NRST)} ⁽¹⁾	NRST input unfiltered pulse	-	300	-	-	ns

Table 4-33 NRST pin characteristics

- 1. Based on comprehensive evaluation, not tested in production.
- 2. The pull-up resistor is designed as a real resistor in series with a switchable PMOS. The resistance of this PMON/NMOS switch is very small (about 10%).

External reset circuit⁽¹⁾

R_{PU}

Filter

Internal reset

Figure 4-11 Recommended NRST pin protection for

- 1. Filter action.
- The user must ensure that the NRST pin potential is below the maximum V_{IL(NRST)} listed in Table 4-33, otherwise the MCU cannot be reset

4.4.14Timer characteristics

Table 4-34, Table 4-35, Table 4-36 and Table 4-37 the listed parameters are guaranteed by design.

I/O port characteristics for details on the features of the I/O reuse function pins (output comparison, input capture, external clock, PWM output), See section 4.4.12

Symbol	Parameter	Condition	Min	Max	Unit
		-	1	-	$t_{TIMxCLK}$
$t_{res(TIM)}$	Timer resolution time	$f_{TIMxCLK} = 144MHz$	6.95	-	ns
	Ti CYY1 CYY1	-	0	f _{TIMxCLK} /2	MHz
f_{EXT}	Timer CH1 to CH4 external clock frequency	$f_{TIMxCLK} = 144MHz$	0	72	MHz
Res _{TM}	Timer resolution	-	-	16	bit
	16-bit counter clock cycle when internal clock is	-	1	65536	$t_{TIMxCLK}$
$t_{COUNTER}$	selected	$f_{TIMxCLK} = 144MHz$	0.00695	455	μs
		-	-	65536 x 65536	$t_{TIMxCLK}$
t_{MAX_COUNT}	Maximum count	$f_{TIMxCLK} = 144MHz$	-	29.8	s

Table 4-34 TIM1/8 characteristics(1)

1. Based on comprehensive evaluation, not tested in production.

62 / 91

Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North.

Table 4-35 TIM2/3/4/5 characteristics ⁽¹⁾	Table 4-3	5 TIM2/3/4/5	characteristics(1)
--	-----------	--------------	--------------------

Symbol	Parameter	Condition	Min	Max	Unit
		-	1	-	$t_{TIMxCLK}$
$t_{res(TIM)}$	Timer resolution time	$f_{TIMxCLK} = 72MHz$	13.9	1	ns
	Ti GYI GYI GYI G	1	0	$f_{TIMxCLK}/2$	MHz
f_{EXT}	Timer CH1 to CH4 external clock frequency	$f_{TIMxCLK} = 72MHz$	0	36	MHz
Restim	Timer resolution	-	-	16	bit
	16-bit counter clock cycle when internal clock is	-	1	65536	$t_{TIMxCLK}$
$t_{COUNTER}$	selected	$f_{TIMxCLK} = 72MHz$	0.0139	910	μs
		-	-	65536 x 65536	$t_{TIMxCLK}$
t_{MAX_COUNT}	Maximum count	$f_{TIMxCLK} = 72MHz$	-	59.6	S

^{1.} Based on comprehensive evaluation, not tested in production.

Table 4-36 IWDG counting maximum and minimum reset time (LSI = 40 KHz)

Prescaler	IWDG_PREDIV. PD[2:0]	Min ⁽¹⁾ IWDG_RELV.REL[11:0]=0	Max ⁽¹⁾ IWDG_RELV.REL[11:0]=0xFFF	Unit
/4	000	0.1	409.6	
/8	001	0.2	819.2	
/16	010	0.4	1638.4	
/32	011	0.8	3276.8	ms
/64	100	1.6	6553.6	
/128	101	3.2	13107.2	
/256	11x	6.4	26214.4	

^{1.} Based on comprehensive evaluation, not tested in production.

Table 4-37 WWDG counting maximum and minimum reset time (APB1 PCLK1 = 36MHz)

Prescaler	WWDG_CFG.TI MERB[1:0]	Min ⁽¹⁾ WWDG_CGF.W[7:0]=0x3F	Max ⁽¹⁾ WWDG_CFG.W[7:0]=0x7F	Unit
/1	00	0.113	7.28	
/2	01	0.227	14.56	
/3	10	0.455	29.12	ms
/4	11	0.910	58.25	

^{1.} Based on comprehensive evaluation, not tested in production.

4.4.15I2C interface characteristics

Unless otherwise specified, the parameters listed in Table 4-38 were measured using ambient temperature, f_{PCLK1} frequency, and V_{DD} supply voltage in accordance with Table 4-8.

The I2C interface of the N32WB452 product conforms to the standard I2C communication protocol, but has the following limitations: SDA and SCL are not "true" open leak pins, and when configured for open leak output, the PMOS tube between the pin and VDD is closed, but still exists.

I2C interface features are listed in Table 4-38. See Section 4.4.12 for details about the features of the input/output multiplexing function pins (SDA and SCL).

Table 4-38 I ² C interface characteristic	Table 4-3	8 I ² C inter	rface char	acteristics
--	-----------	--------------------------	------------	-------------

Symbol	Parameter	Stand mode ⁽		Fast mode	(1) (2)	Fast+ mod	le ^{(1) (2)}	Unit
-		Min	Max	Min	Max	Min	Max	
fscl	I2C interface frequency	0.0	100	0	400	0	1000	KHz
$t_{h(STA)}$	Start condition holding time	4.0	-	0.6	-	0.26	-	μs
t _{w(SCLL)}	SCL clock low time	4.7	-	1.3	-	0.5	-	μs
t _{w(SCLH)}	SCL clock high time	4.0	-	0.6	-	0.26	-	μs
t _{su(STA)}	Start condition establishment time of repetition	4.7	-	0.6	-	0.26	-	μs
t _{h(SDA)}	SDA data retention time	-	3.4	-	0.9	-	0.4	μs
t _{su(SDA)}	SDA setup time	250.0	-	100	-	50	-	ns
$t_{r(SDA)}$ $t_{r(SCL)}$	SDA and SCL rising time	-	1000	20+0.1Cb	300	-	120	ns
$t_{ m f(SDA)} \ t_{ m f(SCL)}$	SDA and SCL falling time	-	300	20+0.1Cb	300	-	120	ns
t _{su(STO)}	Stop condition establishment time	4.0	-	0.6	-	0.26	-	μs
$t_{w(STO:STA)} \\$	Time from stop condition to start condition (bus idle)	4.7	1	1.3	-	0.5	-	μs
Cb	Capacitive load per bus	-	400	-	400	-	100	pf
$t_{v(SDA)}$	Data validity time	3.45	-	0.9	-	0.45	-	μs
t _v (ACK)	Response effective time	3.45	-	0.9	-	0.45	-	μs

- 1. Based on comprehensive evaluation, not tested in production.
- 2. To achieve the maximum frequency of standard mode I^2C , f_{PCLK1} must be greater than 2MHz. To achieve the maximum frequency of fast mode I²C, f_{PCLK1} must be greater than 4MHz.

Figure 4-12 I²C bus AC waveform and measurement circuit⁽¹⁾

64/91

Nations Technologies Inc.

Tel: +86-755-86309900

Email: info@nationstech.com Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North. Nanshan District, Shenzhen, 518057, P.R.China

- 1. The measuring points are set at CMOS level: $0.3V_{DD}$ and $0.7V_{DD}$.
- 2. The pull-up resistor depends on the I2C interface speed.
- 3. The resistance value depends on the actual electrical characteristics. The signal line can be directly connected without serial resistance.

4.4.16SPI/I²S interface characteristics

Unless otherwise specified, the SPI parameters listed in Table 4-39 / Table 4-40 and the I^2S parameters listed in Table 4-41 are measured using ambient temperature, f_{PCLKx} frequency, and V_{DD} supply voltage in accordance with Table 4-8.

See section 4.4.12 for details on the characteristics of the I/O reuse pins (NSS, SCLK, MOSI, MISO for SPI, WS, CLK, SD for I²S).

Table 4-39 SPI1 feature⁽¹⁾

Symbol	Parameter	Condition	Min	Max	Unit
f_{SCLK}		Master mode	1	36	MII
1/t _{c(SCLK)}	SPI clock frequency	Slave mode	-	36	MHz
$t_{r(SCLK)} t_{f(SCLK)}$	SPI clock rise and fall time	Capacitance: C = 30pF	-	6	ns
DuCy(SCK)	SPI slave input clock duty cycle	SPI slave mode	45	55	%
t _{su(NSS)} (1)	NSS setup time	Slave mode	$4t_{PCLK}$	-	
$t_{h(NSS)}^{(1)}$	NSS hold time	Slave mode	$2t_{PCLK}$	-	
$t_{w(SCLKH)}^{(1)}$ $t_{w(SCLKL)}^{(1)}$	SCLK high and low time	Master mode	t _{PCLK} - 2	t _{PCLK} + 2	
$t_{su(MI)}^{(1)}$	Enter the data setup time.	Master mode	3.5	-	
$t_{su(SI)}^{(1)}$	_	Slave mode	3	-	
t _{h(MI)} (1)	Enter the data retention time	Master mode	3	-	
$t_{h(SI)}$ (1)	Enter the data retention time	Slave mode	3	-	
ta(SO) ⁽¹⁾⁽²⁾	Data output access time	Slave mode, f _{PCLK} = 20MHz	0	3t _{PCLK}	ns
$t_{\rm dis(SO)}^{(1)(3)}$	Data output prohibition time	Slave mode	2	10	
$t_{v(SO)}^{(1)}$	Data output effective time	Slave mode (after enabling edge)	-	12.5	
t _{v(MO)} (1)	Data output effective time	Master mode (after enable edge)	-	6.5	
th(SO) ⁽¹⁾		Slave mode (after enabling edge)	5	-	
t _{h(MO)} (1)	Data output holding time	Master mode (after enable edge)	-0.5	-	

Table 4-40 SPI2/3 feature⁽¹⁾

Symbol	Parameter	Condition		Min	Max	Unit
f_{SCLK}		Master mode		-	18	MIT
1/t _{c(SCLK)}	SPI clock frequency	Slave mode		-	18	MHz
$t_{r(SCLK)}t_{f(SCLK)}$	SPI clock rise and fall time	Capacitance: C = 30pF		-	8	ns
DuCy(SCK)	SPI slave input clock duty cycle	SPI slave mode		45	55	%
t _{su(NSS)} (1)	NSS setup time	Slave mode		4t _{PCLK}	-	
$t_{h(NSS)}^{(1)}$	NSS hold time	Slave mode		$2t_{PCLK}$	-	
$t_{w(SCLKH)}^{(1)}$ $t_{w(SCLKL)}^{(1)}$	SCLK high and low time	Master mode		t _{PCLK} - 2	t _{PCLK} + 2	
		Master mode	SPI2	4	-	
$t_{su(MI)}^{(1)}$	Enter the data actum time	Waster mode	SPI3	5	-	
t _{su(SI)} (1)	Enter the data setup time.	Slave mode SPI2		4	-	
tsu(SI)(1)		Slave mode	SPI3	5	-	
		Martananada	SPI2	2		
$t_{h(MI)}^{(1)}$		Master mode	SPI3	2.5] -	
	Enter the data retention time	C11-	SPI2	2		
$t_{h(SI)}^{(1)}$		Slave mode	SPI3	2	_	ns
$t_{a(SO)}^{(1)(2)}$	Data output access time	Slave mode, f _{PCLK} = 20MHz		0	3t _{PCLK}	
tdis(SO)(1)(3)	Data output prohibition time	Slave mode		2	10	
		Slave mode (after enabling	SPI2	-	13.5	
$t_{v(SO)}^{(1)}$	Data output effective time	edge)	SPI3	-	17.5	
	Data output effective time	Master mode (after enable	SPI2	•	6.5	
$t_{v(MO)}^{(1)}$		edge)	SPI3	-	9	
		Slave mode (after enabling		4	_	
th(SO) ⁽¹⁾	Data output holding time	edge)	SPI3	4		
t. a.ro/(1)	Data output nothing time	Master mode (after enable		1	-	
$t_{h(MO)}^{(1)}$		edge)	SPI3			

- 1. Based on comprehensive evaluation, not tested in production.
- 2. The minimum value represents the minimum time to drive the output, and the maximum value represents the maximum time to get the data correctly.
- The minimum value represents the minimum time for turning off the output and the maximum value represents the maximum time for placing the data line in a high resistance state.

Figure 4-13 SPI timing diagram-slave mode and CLKPHA=0

Figure 4-14 SPI timing diagram-slave mode and CLKPHA=1⁽¹⁾

The measuring points is set at $0.3V_{DD}$ and $0.7V_{DD}$.

Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North. Nanshan District, Shenzhen, 518057, P.R.China

Figure 4-15 SPI timing diagram-master mode⁽¹⁾

The measuring points is set at $0.3V_{\text{DD}} \text{and} \ 0.7V_{\text{DD}}.$

Email: info@nationstech.com Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North. Nanshan District, Shenzhen, 518057, P.R.China

Table 4-41 I²S characteristics⁽¹⁾

Symbol	Parameter	Condition		Min	Max	Unit
f_{MCLK}	I ² S master clock	Master mode		-	256Fs ⁽³⁾	
f_{CLK}		Master mode (32bit)		-	64*Fs	MHz
1/t _{c(CLK)}	I ² S clock frequency	Slave mode (32bit)		-	64*Fs	
DuCy(SCK)	I ² S slave input clock duty cycle	I ² S slave mode		30	70	%
$t_{r(CLK)}$	I ² S clock rise and fall time	Capacitance: CL = 50pF		-	8	
t (1)	WS valid time	Master mode	I2S2	4.5	-	
$t_{v(WS)}^{(1)}$	ws vand time	Waster mode	I2S3	6.5	-	
t _{h(WS)} (1)	WS holding time	Master mode	I2S2	4.5		
th(WS)(17	ws notding time	waster mode	I2S3	0.5	_	
t _{su(WS)} (1)	WS setup time	Slave mode	I2S2	5.5	-	
usu(WS)(1)	ws setup time	Stave mode	I2S3	7	-	
t _{h(WS)} (1)	WS holding time	Slave mode	I2S2	1.5	-	
th(WS)	ws notding time	Stave mode	I2S3	2.5	-	
t _{w(CLKH)} ⁽¹⁾	CLK high and low time	Master mode, f _{PCLK} = 16MHz, a	udio frequency	312.5	-	
t _{w(CLKL)} (1)	CLK high and low time	48kHz		345	-	
			I2S2	4	-	
$t_{su(SD_MR)}^{(1)}$		Master receiver	I2S3	5	-	
	Enter the data setup time.	aı :	I2S2	4	-	ns
$t_{su(SD_SR)}^{(1)}$		Slave receiver	I2S3	4.5	-	
			I2S2	1.5		1
$t_{h(SD_MR\)^{\left(1\right)\left(2\right)}}$		Master receiver	I2S3	1.5	-	
	Enter the data retention time		I2S2	1.5		1
$t_{h(SD_SR)}^{(1)(2)}$		Slave receiver	I2S3	1.5	1 -	
		Slave transmitter (after enable	I ² S2	_	14	
$t_{v(SD_ST)}^{(1)(2)}$	Data output effective time	edge)	I^2S3	_	16.5	
		Slave generator (after enable	I ² S2	3.5	_	1
$t_{h(SD_ST)^{\left(1\right)}}$	Data output holding time	edge)	I ² S3	4.5	-	
	Data output offsative time-	Master generator (after enable	I2S2	-	6.5	1
$t_{v(SD_MT)}^{(1)(2)}$	Data output effective time	edge)	I2S3	-	6]
	Data output holding time	Master generator (after enable	I2S2	-0.5	-	
$t_{h(SD_MT)}{}^{(1)}$	Data output holding time	edge)	I2S3	-0.5	-	

- 1. Based on comprehensive evaluation, not tested in production.
- 2. Depends on f_{PCLK} . For example, if $f_{PCLK}=16MHz$, then $T_{PCLK}=1/f_{PCLK}=125ns$.
- Audio signal sampling frequency. 3.

Figure 4-16 I²S slave mode timing diagram (Philips protocol)⁽¹⁾

- 1. The measuring points is set at $0.3V_{DD}$ and $0.7V_{DD}$.
- 2. Transmit/receive of the last byte. There is no transmit/receive of this least significant bit before the first byte.

 $t_{c(CLK)}$ $t_{r(CLK)}$ CLKPOL=0 CLKPOL=1 $t_{v(WS)}$ $t_{h(WS)}$ $t_{w(CLKH)}$ $t_{w(CLKL)}$ WS input Last bit //_{Bit n transmit} Last bit transmit⁽²⁾ MSB transmit SD transmit transmit $t_{su(SD_MR}$ $t_{h(SD_MR)} \\$ Last bit //_{Bit n receive} Last bit receive(2) SD receive MSB receive

Figure 4-17 I²S Master mode timing diagram (Philips Protocol)⁽¹⁾

- 1. The measuring points is set at $0.3V_{\text{DD}} \text{and } 0.7V_{\text{DD}}.$
- 2. Transmit/receive of the last byte. There is no transmit/receive of this last bit before the first byte.

4.4.17SD/SDIO host interface characteristics

Unless otherwise specified, the parameters listed in Table 4-42 are measured using ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage in accordance with the conditions in Table 4-8.

For details on the characteristics of the I/O alternate function pins (D[7:0], CMD, CK), see Section 4.4.12.

Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North.

 $t_{w(CKH)}$ w(CKL) CK D,CMD (Output) D,CMD (Input)

Figure 4-18 SDIO high-speed mode

Figure 4-19 SD default mode

Table 4-42 SD/MMC interface features

Symbol	Parameter	Condition	Min	Max	Unit
f_{PP}	Clock frequency in data transmission mode	CL ≤ 30pF	0	48	MHz
t _{W(CKL)}	Clock low time, f _{PP} = 16 MHz	CL ≤ 30pF	32	-	
t _{W(CKH)}	Clock high time, Clock low time	CL ≤ 30pF	30	-	na
t _r	Clock rising time	CL ≤ 30pF	-	6	ns
t_{f}	Clock falling time	CL ≤ 30pF	-	6	
CMD, D input	t (refer to CK)				
$t_{\rm ISSUES}$	Enter the setup time.	CL ≤ 30pF	1	-	ns
t_{THEM}	Enter holding time	CL ≤ 30pF	1	-	
CMD, D outp	ut in MMC and SD high-speed mode (refer t	to CK)			
t_{OV}	Output effective time	CL ≤ 30pF	-	6	ns
t _{OH}	Output holding time	CL ≤ 30pF	0	-	
Output in SD	default mode CMD, D (refer to CK)				
t _{OVD}	Output valid default time	CL ≤ 30pF	-	8	ns
t _{OHD}	Keep the output at default time.	CL ≤ 30pF	-1	-	
			•	•	

71 / 91

Nations Technologies Inc.

Tel: +86-755-86309900

Email: info@nationstech.com Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North. Nanshan District, Shenzhen, 518057, P.R.China

4.4.18USB characteristics

USB (full speed) interface has been certified by USB-IF.

Table 4-43 USB startup time

Symbol	Parameter	Max	Unit
t _{STARTUP} ⁽¹⁾	USB transceiver startup time	1	μs

1. Based on comprehensive evaluation, not tested in production.

Table 4-44 USB DC characteristic

Symbol	Parameter	Condition	Min ⁽¹⁾	Max ⁽¹⁾	Unit
Input level					
V_{DD}	USB operating voltage ⁽²⁾	-	$3.0^{(3)}$	3.6	V
$V_{DI}{}^{(4)} \\$	Differential input sensitivity	I(USBDP, USBDM)	0.2	-	
$V_{CM}^{\left(4\right)}$	Differential common mode range	Include V _{DI} scope	0.8	2.5	V
$V_{SE}{}^{(4)} \\$	Single ended receiver threshold	-	1.3	2.0	
Output level					
V_{OL}	Static output low level	$1.5k\Omega$ R _L connected to $3.6V^{(5)}$	-	0.3	V
V_{OH}	Static output high level	15kΩ R _L connected to V _{SS} ⁽⁵⁾	2.8	3.6	v

- 1. All voltage measurements are based on the ground wire of the device.
- 2. In order to be compatible with the USB 2.0 full-speed electrical specification, the USB operating voltage is 3.0~3.6V.
- 3. The correct USB function of N32WB452 series products can be guaranteed at 2.7V instead of degraded electrical characteristics in the voltage range of 2.7~3.0V.
- 4. Based on comprehensive evaluation, not tested in production.
- 5. R_L is the load connected to the USB drive.

Figure 4-20 USB timing: data signal rising and falling time definition

Table 4-45 Full-speed of USB electrical characteristics

Symbol	Parameter	Condition	Min ⁽¹⁾	Max ⁽¹⁾	Unit
$t_{\rm r}$	Rise time ⁽²⁾	CL ≤ 50pF	4	20	ns
t_{f}	Falling time ⁽²⁾	CL ≤ 50pF	4	20	ns
$t_{ m rfm}$	Rise time matching	$t_{\rm r}$ / $t_{\rm f}$	90	110	%
V_{CRS}	Output signal cross voltage	-	1.3	2.0	V
Rs	Output series matching resistor	The matching resistor needs to be external, close to the chip pin.	27	39	Ohm

- 1. Based on comprehensive evaluation, not tested in production.
- 2. Measurement data signal from 10% to 90%. For more details, see Chapter 7 (Version 2.0) of the USB Specification.

Email: info@nationstech.com

Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North.

4.4.19 Characteristics of Digital Video Port (DVP) Interface

Table 4-46 shows the characteristics of DVP interface signal, Figure 4-21 shows the relevant time sequence.

Figure 4-21 DVP interface timing diagram

Table 4-46 Dynamic characteristics of DVP signal

Symbol	Parameter	Condition	Min	Max	Unit
PCLK	Pixel clock input	-	0	24	MHz
Dpixel	Pixel clock input duty cycle	-	30%	70%	-
ton(DATE)	Enter the data setup time.	-	4	-	
th(DATA)	Data retention time	-	5	-	
tsu(HSYNC),	HSYNC Enter Setup Time	-	6.5	-	ns
t _{su(VSYNC)}	VSYNC Enter the setup time	-	6		
t _{h(HSYNC)} , t _{h(VSYNC)}	HSYNC/VSYNC input hold time	-	3.5	-	

4.4.20 Characteristics of Controller Area Network (CAN) Interface

See Section 4.4.12 for details on the features of the input/output multiplexing function pins (CAN_TX and CAN_RX).

4.4.21 Electrical parameters of 12-bit analog-to-digital converter (ADC)

Unless otherwise specified, the parameters in Table 4-47 are measured using ambient temperature, f_{HCLK} frequency, and V_{DDA} supply voltage in accordance with the conditions in Table 4-8.

Note: It is recommended to perform a calibration at each power up.

Nanshan District, Shenzhen, 518057, P.R.China

Table 4-47 ADC characteristics

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V_{DDA}	supply voltage	-	1.8	-	3.6	V
V_{REF+}	Positive reference voltage	-	1.8	-	V_{DDA}	V
f_{ADC}	ADC clock frequency	-	-	-	72	MHz
		$1.8V \le V_{DD} \le 3.6V$, Resolution of 12 bit	0.01 ⁽²⁾	-	5.14(1)	MHz
fs ⁽²⁾	sampling rate	$1.8V \le V_{DD} \le 3.6V$, Resolution of 10 bit	0.012 ⁽²⁾		6 ⁽¹⁾	
15	samping rate	$1.8V \le V_{DD} \le 3.6V$, Resolution of 8 bit	$0.014^{(2)}$		7.2(1)	
		$1.8V \le V_{DD} \le 3.6V$, Resolution of 6 bit	0.0175(2)		9(1)	
V_{AIN}	Conversion voltage range ⁽³⁾	-	$0(V_{IN} \text{ or } V_{REF}$ Connect to ground)	-	V_{REF+}	V
		Fast channel, Under the condition of 3.6V voltage	-	-	80	Ω
D (2)		Fast channel, Under the condition of 1.8V voltage			110	Ω
$R_{ADC}^{(2)}$	Sampling switch resistance	Slow channel, Under the condition of 3.6V voltage			265	Ω
		Slow channel, Under the condition of 1.8V voltage	-	-	430	Ω
$C_{ADC}^{(2)}$	Internal sample and hold capacitor	-	-	5		pF
SNDR	Signal noise distortion ration	-	-	65		dBFS
T_{cal}	Calibration time	-	82			1/f _{ADC}
ts ⁽²⁾	Sampling time	f _{ADC} = 72 MHz (fast channel)	0.0208	-	8.35	us
ις\'	Samping unic	f _{ADC} = 72 MHz (slow channel)	0.0625	-	8.35	us
Ts ⁽²⁾	Sampling cycles	fast channel Slow channel	1.5 4.5	-	601.5 601.5	1/f _{ADC}
t _{STAB} (2)	Power-up time	-	0	0	20	μs
t _{CONV} (2)	Total conversion time of 8~614 (sample		8~614 (sampling 6.5/8	ts + gradually 3.5/10.5/12.5)	1/f _{ADC}	

- 1. Only fast channels are supported.
- 2. Based on comprehensive evaluation, not tested in production.
- 3. According to different packages, $V_{\text{REF+}}$ can be internally connected to V_{IN} and $V_{\text{REF-}}$ can be internally connected to V_{IN} .

Formula 1: maximum R_{AIN} formula

$$R_{AIN} < \frac{T_{\text{S}}}{f_{\text{ADC}} \times C_{\text{ADC}} \times \ln{(2^{N+2})}} - R_{\text{ADC}}$$

The above formula (Formula 1) is used to determine the maximum external impedance so that the error can be less than 1/4 LSB. Where N=12 (representing 12-bit resolution).

Table 4-48 ADC sampling time⁽¹⁾⁽²⁾

Input	Resolution	Rin(kΩ)	Minimum sampling time (ns)	Input	Resolution	$Rin(k\Omega)$	Minimum sampling time (ns)
		0	11			0	19
		0.05	12			0.05	21
		0.1	14			0.1	23
		0.2	20			0.2	30
		0.5	38			0.5	48
fast channel	12-bit	1	64	slow channel	12-bit	1	77
		5	276			5	310
		10	543			10	607
		20	1082			20	1207
		50	2788			50	3144
		100	6162			100	8244
		0	10			0	17
		0.05	11			0.05	18
		0.1	13			0.1	20
		0.2	17			0.2	25
		0.5	32			0.5	40
fast channel	10-bit	1	54	slow channel	10-bit	1	64
		5	229		10 0.1	5	257
		10	448			10	499
		20	888			20	983
		50	2223			50	2457
		100	4500			100	5001
		0	9			0	14
		0.05	10			0.05	16
		0.1	11			0.1	17
		0.2	14			0.2	21
		0.5	26			0.5	33
fast channel	8-bit	1	43	slow channel	8-bit	1	52
	0-01t	5	183		o-on	5	206
		10	358			10	399
		20	707			20	783
		50	1759			50	1941
		100	3523			100	3887
		0	8			0	12
		0.05	8			0.05	13
		0.1	9			0.1	14
		0.2	12			0.2	17
		0.5	20			0.5	25
fast channel	6-bit	1	33	slow channel	6-bit	1	40
rast chamici	o on	5	138	510 W Chamiel	0.010	5	156
		10	269			10	300
		20	531			20	588
		50	1316			50	1451
	-	100	2627		}	100	2894

^{1.} Guaranteed by design, not tested in production.

Typical value is tested at $T_A \!\!=\!\! 25\,^{\circ}\!\text{C}$, $V_{DD} \!\!=\!\! 3.3V$

	. = ~		(1)(2)
Table 4-49	ADC accurac	v-limited test	$conditions^{(1)(2)}$

Symbol	Parameter	Test condition	Тур	Max	Unit
ET ⁽⁴⁾	composite error	$f_{HCLK} = 72 \text{ MHz},$	±1.3	-	
EO ⁽⁴⁾	offset error	$f_{ADC} = 72 \text{ MHz}$, sample	±1	-	
ED	Differential linear error	rate= 1.75 Msps, $V_{DDA} = 3.3$ V, $T_{A} =$	±0.7	-	I CD
EL	Integral linear error	25 °C The measurement is performed after ADC calibration. $V_{REF+} = V_{DDA}$	±0.8	-	LSB

- 1. The DC accuracy values of the ADC are measured after internal calibration.
- 2. ADC Accuracy vs. Reverse Injection Current: Injecting reverse current on any standard analog input pin needs to be avoided, as this will significantly degrade the accuracy of an ongoing conversion on another analog input pin. It is recommended to add a Schottky diode (between the pin and ground) to standard analog pins where reverse injection current may occur.
- 3. How to inject current in the forward direction, as long as it is within the range of I_{INJ(PIN)} and ΣI_{INJ(PIN)} given in Section 4.4.12, it will not affect the ADC accuracy.
- 4. Guaranteed by comprehensive evaluation, not tested in production.

Figure 4-22 ADC precision characteristics

RAIN (1)

AINX

Sample and hold ADC converter

RADC (1)

12 bit converter

Converter

L

CADC (1)

Figure 4-23 Typical connection diagram using ADC

1. On the numerical values of RAIN, RADC and CADC, see Table 4-47.

Note: Cparasitic represents parasitic capacitance on PCB (related to soldering and PCB layout quality) and pads(approximately 7pF). A larger Cparasitic value would reduce the accuracy of conversion, and the solution was to reduce fADC.

PCB design suggestions

Depending on whether V_{REF+} is connected to V_{DDA} , the decoupling of the power supply must be connected as shown in Figure 4-24 or Figure 4-25. The 10nF capacitors in the picture must be ceramic capacitors (good quality), and they should be as close to the MCU chip as possible.

Figure 4-24 Decoupling circuit of power supply and reference power supply (V_{REF+} is not connected to V_{DDA})

 $V_{\text{REF+}}$ and $V_{\text{REF-}}$ inputs only products with more than 100 feet.

Figure 4-25 Decoupling circuit of power supply and reference power supply (V_{REF^+} is connected with V_{DDA})

 $V_{\text{REF+}}$ and $V_{\text{REF-}}$ inputs only products with more than 100 pins.

4.4.22 Electrical parameters of 12-bit digital-to-analog converter (DAC)

Unless otherwise specified, the parameters in Table 4-50 are measured using ambient temperature, f_{HCLK} frequency, and V_{DDA} supply voltage in accordance with the conditions in Table 4-8.

Table 4-50 DAC characteristics

Symbol	Parameter	Min	Тур	Max	Unit	Annotate	
V_{DDA}	Analog supply voltage	2.4	-	3.6	V	-	
$V_{ m DDD}$	Digital supply voltage	1.0	1.1	1.2	V	7	
V_{REF+}	Reference voltage	2.4	-	3.6	V	$V_{\text{REF+}}\text{must}$ always be lower than V_{DDA}	
V_{SSA}	earth wire	0	-	0	V	-	
$R_{\rm L}$	Load resistance when buffer is open	5	-	-	ΚΩ	The minimum load resistance between DAC_OUT and V _{SSA}	
CL	Load Capacitance	-	-	50	pF	Maximum capacitance on DAC_OUT pin	
DAC_OUT minimum	DAC_OUT voltage when buffer is open	0.2	-	-	V	The maximum DAC output span is given. When V_{REF+} =3.6V corresponds to a 12-	
DAC_OUT	DAC_OUT voltage when buffer is open	-	-	V _{REF+} - 0.2		bit input value 0x0E0~0xF1C,	
maximum	DAC_OUT voltage when buffer is closed	-	-	V _{REF+} — 5LSB	V	When V_{REF+} =2.4V corresponds to a 12-bit input value $0x155\sim0xEAB$.	
	In static mode (standby mode),	-	425	600		No load, enter the median 0x800	
I_{DD}	DAC DC consumption (VDDD+VDDA+VREF+)	-	500	700	μA	No load, enter the maximum value when $V_{\text{REF+}}$ = 3.6V.	
I _{DDQ}	DC consumption of DAC in power-down mode $(VDDD+VDDA+V_{REF+})$	-	5	350	nA	non-loaded	
-ық	DC consumption of DAC in power-down mode $(V_{DDA}+V_{REF+})$	-	5	200			
DNL	Nonlinear distortion (deviation between two consecutive	-	±0.5	-	LSB	DAC is configured with 10 bits (B1=B0=0 at all times)	
DIVE	codes)	-	<u>+2</u>	-	LSB	The DAC configuration is 12 bits	
INL	Non-linearity accumulation (deviation between the measured value at code I and the line between code 0 and code 4095)	-	±6	-	LSB	DAC is configured as 12-bit	
	Error (the deviation between	-	±10	-	mV	DAC is configured as 12-bit	
offset	the measured value of code $0x800$ and the ideal value $V_{\text{REF+}}/2)$	-	±12	-	LSB	With V _{REF+} =3.6V, the DAC is configured with 12 bits.	
Gain error	Gain error	-	±0.5	-	%	DAC is configured as 12-bit	
Amplifier increase	Gain of open-loop amplifier	80	85	-	dB	The load of 5k (maximum load), input medium value is 0x800	
t _{SETTLING}	Setting time (full range: 10-bit input code changes from minimum value to maximum value, and DAC_OUT reaches ±1 LSB of its final value)	-	5	7	μs	$\begin{split} C_{LOAD} &\leq 50 p F \\ R_{LOAD} &\geq 5 k \Omega \end{split}$	
Update rate	When the input code changes slightly (from the value I to i+1LSB), the maximum frequency of the correct DAC_OUT is obtained.	-	-	1	MS/s	$\begin{split} C_{\text{LOAD}} &\leq 50 p F \\ R_{\text{LOAD}} &\geq 5 k \Omega \end{split}$	
t _{WAKEUP}	Time to wake up from off state (setting the CHxEN bit in DAC control register)	-	6.5	10	μs	$C_{LOAD} \le 50 pF, R_{LOAD} \ge 5 k\Omega$ The input code is between the minimum and maximum possible values.	
PSRR+	Power supply rejection ratio (relative to V _{DD} 33A) (static DC measurement)	-	-67	-40	dB	Without R _{LOAD} ,C _{LOAD} ≤ 50pF	

4.4.23 Temperature sensor (TS) characteristics

Unless otherwise specified, the parameters in Table 4-51 are measured using ambient temperature, f_{HCLK} frequency, and V_{DDA} supply voltage in accordance with the conditions in Table 4-8.

Table 4-51 Temperature sensor characteristics

Symbol	Parameter	Min	Тур	Max	Unit
$T_L^{(1)}$	Linearity of V _{SENSE} with respect to temperature	-	±1	<u>+4</u>	\mathcal{C}
Avg_Slope ⁽¹⁾	Average slope	-	-4.1	-	mV/℃
$V_{30}^{(1)}$	Voltage at 30 ℃	-	1.32	-	V
tstart(1)	setting time	-	10	-	μs
$T_{S_{-temp}}^{(2)(3)}$	When reading temperature, ADC sampling time	8.2	-	-	μs

- 1. Guaranteed by comprehensive evaluation, not tested in production.
- 2. Based on comprehensive evaluation, not tested in production.
- 3. The shortest sampling time of can be determined by the application through multiple cycles.

4.4.24SMT Soldering Temperature Characteristics

Please refer to Figure 4-26 for N32WB452 series SMT soldering temperature characteristic curve. For detailed SMT soldering process, please refer to the industry standard: IPC/JEDEC J-STD-020E.

Supplier T_p ≥ T_c $UserT_p \le T_c$ тс Supplier tp User tp Max 30s -T_c -5°C Max. Ramp Up Rate = 3°C/s Max. Ramp Down Rate = 6°C/s T_{smax} Preheat Area T_{smin} ts 60~120s 25 Time 25°C to Peak -Max 8min

Figure 4-26 SMT soldering temperature characteristic curve

Package Information

5.1 QFN48

Figure 5-1 QFN48 package outline

		SYMBOL	MIN	NOM	MAX	
TOTAL THICKNESS		Α	0.7	0.75	0.8	
STAND OFF		A1	0	0.02	0.05	
MOLD THICKNESS		A2		0.55		
L/F THICKNESS		A3		0.203 REF		
LEAD WIDTH		ь	0.15	0.2	0.25	
BODY SIZE	×	D	6 BSC			
DOD'T SIZE	Y	E	6 BSC			
LEAD PITCH		e	0.4 BSC			
EP SIZE	×	D2	4.5	4.6	4.7	
EP SIZE	Y	E2	4.5	4.6	4.7	
LEAD LENGTH		L	0.3	0.4	0.5	
LEAD TIP TO EXPOSE	D PAD EDGE	K		0.3 REF		
PACKAGE EDGE TOLERANCE		aaa	0.1			
MOLD FLATNESS		000	0.1			
COPLANARITY	000	0.08				
LEAD OFFSET	bbb	0.07				
EXPOSED PAD OFFSE	fff		0.1			

SIDE VIEW

5.2 QFN64

Figure 5-2 QFN64 package outline

CVMDOL	MILLIMETER					
SYMBOL	MIN	NOM	MAX			
A	0.85	0. 90	0.95			
A1	0	0.02	0.05			
b	0. 15	0. 20	0. 25			
b1		0. 14REF	7			
с	0. 20REF					
D	7. 90	8.00	8. 10			
D2	6. 40	6. 50	6.60			
е	0. 40BSC					
Nd	6. 00BSC					
Е	7. 90	8.00	8. 10			
E2	6. 40	6. 50	6.60			
Ne	6. 00BSC					
L	0.40	0.40	0.45			
K	0. 35REF					
h	0.30	0.35	0.40			

5.3 QFN88

Figure 5-3 QFN88 package outline

SYMBOL	MILLIMETER					
SIMBUL	MIN	NOM	MAX			
	0.70	0.75	0.80			
A	0.80	0.85	0. 90			
	0.85	0. 90	0. 95			
A1	0	0. 02	0. 05			
b	0.15	0. 20	0. 25			
b1	0. 10REF					
С	0.18	0. 20	0. 25			
D	9. 90	10.00	10.10			
D2	6.64	6.74	6.84			
e	(0. 40BSC				
Nd	8	3. 40REF				
E	9. 90	10.00	10.10			
E2	6.64	6.74	6.84			
Ne	8. 40REF					
L	0.30	0.40	0. 50			
K	0. 20	-	-			
h	0.30	0. 35	0.40			
L/F载体尺寸 (mil)	3	00x300				

QFN88 recommended footprint

5.4 Marking Information

Figure 5-4 Marking information

6 Version History

Date	Version	Modify
2020.2.20	V1.0	Initial version
2020.05.17	V1.01	1. Updated QFN88 package size information
2020.03.17	V 1.U1	2. Added section 4.4.24 SMT Soldering Temperature Characteristics
		Delete Flash page programming function description
2020.04.20	¥74 4	2. Update the number of channels supported by ADC1, ADC2 and the maximum
2020.06.28	V1.1	number of external channels supported
		3. Update the electrical characteristics chapter
		1. Modify the DVP FIFO size in Section 2.29: 32x 32bit to 8 x 32bit
		2. Revised 4.1.6 power supply scheme
		3. Modified the parameters of absolute maximum ratings
		4. Modified 4.4.2 Operating conditions at power-up and power-down VDD rise
		rate minimum value
		5. Modified 4.4.3 Embedded Reset and Power Control Module Features
		6. Modified 4.3.5 Supply Current Characteristics fHCLK frequency and
		fPCLK1/fPCLK2
2020.9.16	V1.2	7. Modified the LSI parameters of 4.3.7 Internal clock source characteristics
		8. Modified 4.4.9 FLASH storage characteristic parameters
		9. Modified 4.4.12 I/O port characteristics
		10. Modified 4.4.13 NRST pin characteristics
		11. Modified 4.4.14 TIM feature tCOUNTER parameter
		12. Revised 4.4.15 SPI/I2S Interface Characteristics Figure 4-14
		13. Modified 4.4.19 12-bit analog-to-digital converter (ADC) electrical parameters
		14. Modified 4.4.20 DAC electrical parameters
		15. Modified 4.4.22 Temperature sensor characteristics
		Modify the schematic diagram of 3.1 package
		2. Modify the memory map in Figure 2-1
2020.11.27	V1.2.1	3. Modify the supplementary description of the pin definitions in Table 3-1
		4. Modify the reference circuit diagram of DCDC working mode in Figure 3-4
		Modify the parameters related to embedded reset and power control module
		characteristics
		2. Modify the parameters related to the high-speed external user clock
2021.08.02	V.1.2.2	characteristics
		3. Modify the parameters related to the low-speed external user clock feature
		4. Modify the parameters related to flash memory characteristics
		The state of the s

		5. Modify the conditions related to the absolute maximum value of ESD
		6. Modify the parameters related to I/O static characteristics
		7. Modify the output voltage characteristic conditions, refer to the new drive
		capability table
		8. Modify the parameters related to the input and output AC characteristics
		9. Modify the parameters related to the input NRST pin characteristics
		10. Modify the parameters related to the input I2C interface characteristics
		11. Modify the parameters related to the input SPI1 characteristics
		12. Modify the parameters related to the input SPI2 characteristics
		13. Modify the parameters related to the input I2S characteristics
		14. Modify the input I2S master mode timing diagram identification error
		15. Modify the parameters related to the input SD/MMC interface characteristics
		16. Modify the parameters related to the dynamic characteristics of the input DVP
		signal
		17. Modify the input ADC characteristic conditions and related parameters
		18. Modify the parameters related to the input DAC characteristics
		19. Modify the parameters related to the input temperature sensor characteristics
		Modify the parameters related to the power supply current characteristics
		2. Added remarks for IO static features
		3. Added remarks for output voltage characteristics
2021.09.17	V.1.2.2	4. Remarks for increased electrical sensitivity
		5. Modify the general working conditions related conditions
		6. Added silkscreen instructions
2021.10.22	V2.0.0	1. Version change
		Modify the description of I/O port characteristic conditions
		2. Pin multiplexing defines the ADC pin to indicate whether it is a slow channel
		or a fast channel
		3. Added note on HSI oscillator characteristics
		4. Modify the power-on time parameters of ADC characteristics
		5. Updated QFN48 package diagram
2021.05.23	V2.1	6. ADC characteristics indicate that the maximum sampling rate is 5MHz, only
		fast channel support
		7. LSE oscillator feature to remove ESR CL limit
		8. Update typical application using 32.768kH crystal
		9. Update the input and output AC characteristics table
		10. Updated recommended NRST pin protection diagram
L	l	ı

- 11. Fixed TA conditions for static latch-up LU
- 12. Add Timer electrical characteristics section parameter table
- 13. Fixed SPI input clock duty cycle parameters
- Modify of resource configuration description (only 88PIN package supports DVP)
- 15. Modify the description of embedded R-SRAM hold
- 16. CRC calculation time changed to 1 HCLK
- 17. Added STOP2 wake source: RTC intrusion, NRST reset, IWDG reset wake
- 18. Modified the RTC real-time clock output frequency from 512Hz to 256Hz
- 19. Modify the figure 4-3/4-4/4-5/4-6/4-17/4-23/4-24/4-25
- 20. Modify Table 4-11 Built-in reference voltage
- 21. Add Table 4-17/4-18 Bypass mode description
- 22. Modify Table 4-21 Typical IDD values
- 23. Modified Table 4-21 Welding deviation notes
- 24. Modify the description in Table 4-22
- 25. Modify Table 4-26 data retention period
- 26. Modify static locking test criteria
- 27. Modified Table 4-29 description and added the description of VIH/VIL
- 28. Modify the description in Table 4-33
- 29. Modify the description in Table 4-47
- 30. Add table 4-48 ADC sampling time
- 31. Modify the description in Table 4-19/4-21/4-22/4-24/4-50/4-51
- 32. Modify the number of EXTI edge detectors to 21
- 33. Modify the IWDG prescaler to 3-bit
- 34. Modified reset description in Key features
- 35. Modified STOP0 mode description of the working mode of the main voltage regulator
- 36. Modify the I/O structure description in Table 3-1

7 Notice

This document is the exclusive property of Nations Technologies Inc. (Hereinafter referred to as NATIONS). This document, and the product of NATIONS described herein (Hereinafter referred to as the Product) are owned by NATIONS under the laws and treaties of the People's Republic of China and other applicable jurisdictions worldwide.

NATIONS does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. Names and brands of third party may be mentioned or referred thereto (if any) for identification purposes only.

NATIONS reserves the right to make changes, corrections, enhancements, modifications, and improvements to this document at any time without notice. Please contact NATIONS and obtain the latest version of this document before placing orders.

Although NATIONS has attempted to provide accurate and reliable information, NATIONS assumes no responsibility for the accuracy and reliability of this document.

It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. In no event shall NATIONS be liable for any direct, incidental, special, exemplary, or consequential damages arising in any way out of the use of this document or the Product. NATIONS Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed, "Insecure Usage".

Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy control instruments, airplane or spaceship instruments, all types of safety devices, and other applications intended to support or sustain life.

All Insecure Usage shall be made at user's risk. User shall indemnify NATIONS and hold NATIONS harmless from and against all claims, costs, damages, and other liabilities, arising from or related to any customer's Insecure Usage.

Any express or implied warranty with regard to this document or the Product, including, but not limited to, the warranties of merchantability, fitness for a particular purpose and non-infringement are disclaimed to the fullest extent permitted by law.

Unless otherwise explicitly permitted by NATIONS, anyone may not use, duplicate, modify, transcribe or otherwise distribute this document for any purposes, in whole or in part.