第三节 极限的概念

习题 1-3

1. 观察下列数列的变化趋势, 指出它们是否有极限, 若有极限, 请写出其极限:

(1)
$$x_n = (-1)^{n-1} \frac{1}{n}$$
;

(2)
$$x_n = (-1)^n - \frac{1}{n}$$
;

(3)
$$x_n = \frac{n-1}{n+1}$$
;

$$(4) x_n = \sin\frac{n\pi}{2};$$

$$(5) \quad x_n = \cos\frac{1}{n\pi};$$

$$(6) x_n = \ln \frac{1}{n};$$

(7) 0.1, 0.11, 0.111, ...,
$$0.11 \cdot \cdots 1 \cdot$$

(2) 不存在极限.

(3) 有极限, 极限为1.

(4) 不存在极限.

(6) 不存在极限($\lim_{n\to\infty} x_n = -\infty$).

(7) 有极限, 极限为
$$\frac{1}{9}$$
.

2. 用数列极限的定义证明

(1)
$$\lim_{n\to\infty} \frac{\sqrt{n^2+4}}{n} = 1$$
;

(2)
$$\lim_{n\to\infty}\frac{1}{n^{\alpha}}=0(\alpha>0).$$

$$|\mathbf{R}| = (1) \quad \left| \frac{\sqrt{n^2 + 4}}{n} - 1 \right| = \frac{\sqrt{n^2 + 4} - n}{n} = \frac{4}{n(\sqrt{n^2 + 4} + n)} < \frac{4}{n}.$$

要使
$$\left|\frac{\sqrt{n^2+4}}{n}-1\right|<\varepsilon$$
,只要 $\frac{4}{n}<\varepsilon$,即 $n>\frac{4}{\varepsilon}$.

于是,
$$\forall \varepsilon > 0$$
, 取 $N = \left[\frac{4}{\varepsilon}\right]$, 只要 $n > N$, 就有 $\left|\frac{\sqrt{n^2 + 4}}{n} - 1\right| < \varepsilon$, 所以

$$\lim_{n\to\infty}\frac{\sqrt{n^2+4}}{n}=1.$$

(2)
$$\left| \frac{1}{n^{\alpha}} - 0 \right| = \frac{1}{n^{\alpha}} < \varepsilon$$
, $\Xi = n > \frac{1}{2\sqrt{\varepsilon}} (\alpha > 0)$.

于是, $\forall \varepsilon > 0$,取 $N = \left[\frac{1}{\sqrt[\alpha]{\varepsilon}}\right]$,只要n > N,就有 $\left|\frac{1}{n^{\alpha}} - 0\right| < \varepsilon$,所以 $\lim_{n \to \infty} \frac{1}{n^{\alpha}} = 0$ $(\alpha > 0)$.

3. 设 $\lim_{n\to\infty} x_n = a$,证明 $\lim_{n\to\infty} |x_n| = |a|$,并举例说明反之未必成立.

证
$$: ||x_n| - |a|| \le |x_n - a|$$
,故 $\forall \varepsilon > 0$,欲使 $||x_n| - |a|| < \varepsilon$,只要 $|x_n - a| < \varepsilon$,

由 $\lim_{n\to\infty} x_n = a$ 知,对 $\forall \varepsilon > 0$, 当 n > N 时, $\left| x_n - a \right| < \varepsilon$,从而 $\left| |x_n| - \left| a \right| \right|$

 $< \varepsilon$, $\text{id} \lim_{n \to \infty} |x_n| = |a|$.

反之未必成立,例如: $x_n = (-1)^n$,显然有 $\lim_{n \to \infty} |x_n| = 1$,但 $\lim_{n \to \infty} x_n$ 不存在.

4. 设数列 $\{x_n\}$ 有界,又 $\lim_{n\to\infty} y_n = 0$,证明 $\lim_{n\to\infty} x_n y_n = 0$.

证 由数列 $\{x_n\}$ 有界,故存在M>0,使 $|x_n| \leq M$,对一切n都成立.

 $\forall \varepsilon > 0$,因为 $\lim_{n \to \infty} y_n = 0$,所以对于 $\varepsilon_1 = \frac{\varepsilon}{M} > 0$, $\exists N$, 当 n > N 时,就有

$$\left|y_{n}\right| < \varepsilon_{1} = \frac{\varepsilon}{M}, \quad \text{$\not$$} \exists \left|x_{n}y_{n} - 0\right| = \left|x_{n}\right| \cdot \left|y_{n}\right| < M \cdot \frac{\varepsilon}{M} = \varepsilon, \quad \text{t} \lim_{n \to \infty} x_{n}y_{n} = 0.$$

5. 用函数极限的定义证明

(1)
$$\lim_{x \to -\frac{1}{2}} \frac{1 - 4x^2}{2x + 1} = 2;$$

(2)
$$\lim_{x \to +\infty} \frac{\sin 2x}{\sqrt{x}} = 0.$$

$$i \mathbb{E} \quad (1) \quad \left| \frac{1 - 4x^2}{2x + 1} - 2 \right| = \left| 2x + 1 \right| = 2 \left| x - \left(-\frac{1}{2} \right) \right|.$$

要使
$$\left|\frac{1-4x^2}{2x+1}-2\right|<\varepsilon$$
,只要 $2\left|x-(-\frac{1}{2})\right|<\varepsilon$,即 $\left|x-(-\frac{1}{2})\right|<\frac{\varepsilon}{2}$.

$$\lim_{x \to -\frac{1}{2}} \frac{1 - 4x^2}{2x + 1} = 2.$$

$$(2) \quad \left| \frac{\sin 2x}{\sqrt{x}} - 0 \right| \le \frac{1}{\sqrt{x}} \ .$$

要使
$$\frac{1}{\sqrt{x}}$$
< ε , 只要 $x > \frac{1}{\varepsilon^2}$,

于是,
$$\forall \varepsilon > 0$$
, 取 $X = \frac{1}{\varepsilon^2}$, 当 $x > X$ 时, 就有 $\left| \frac{\sin 2x}{\sqrt{x}} - 0 \right| < \varepsilon$, 故

$$\lim_{x \to +\infty} \frac{\sin 2x}{\sqrt{x}} = 0.$$

证 由 $\lim_{x \to +\infty} f(x) = A$,得 $\forall \varepsilon > 0$, $\exists X_1 > 0$, 当 $x > X_1$ 时,就有 $|f(x) - A| < \varepsilon$;

取 $X = \max\{X_1, X_2\}$, 则当|x| > X时, 有 x > X或 x < -X, 故 $|f(x) - A| < \varepsilon$,

 $\lim_{x\to\infty} f(x) = A.$

7. 证明: $\lim_{x \to x_0} f(x)$ 存在的充分必要条件是 f(x) 在 x_0 处的左、右极限均存在且相等.

证 必要性:

如果 $\lim_{x \to x_0} f(x)$ 存在,不妨设 $\lim_{x \to x_0} f(x) = A$,则 $\forall \varepsilon > 0$, $\exists \delta > 0$,只要 0 <

 $|x-x_0| < \delta$, 就有 $|f(x)-A| < \varepsilon$, 特别的:

当
$$0 < x - x_0 < \delta$$
 时,有 $|f(x) - A| < \varepsilon$,所以 $\lim_{x \to x_0^+} f(x) = A$;

当
$$-\delta < x - x_0 < 0$$
 时,有 $|f(x) - A| < \varepsilon$,所以 $\lim_{x \to x_-} f(x) = A$.

充分性:

若
$$\lim_{x \to x_0^+} f(x) = A = \lim_{x \to x_0^-} f(x)$$
,则 $\forall \varepsilon > 0$, ∃ $\delta_1 > 0$,只要 $0 < x - x_0 < \delta_1$,就有

$$|f(x)-A| < \varepsilon$$
, $\exists \delta_2 > 0$,

只要 $0 < |x - x_0| < \delta$,就有 $|f(x) - A| < \varepsilon$,故 $\lim_{x \to x_0} f(x) = A$.