

Learning Deterministic One-Counter Automata

Learning DOCA

Prince Mathew

DOCA
Active learning
State of the art

OL

- 1. Behaviour DF
- 2. Partition ${\cal A}$
- 4 DDEC on
- E Construct C
- 5. Construct 2
- Summary of OL

Conclusio

Prince Mathew, prince@iitgoa.ac.in
Indian Institute of Technology Goa, India

Vincent Penelle, vincent.penelle@u-bordeaux.fr
Univ. Bordeaux. CNRS, Bordeaux INP, LaBRI, France

A.V. Sreejith, sreejithav@iitgoa.ac.in Indian Institute of Technology Goa, India

2 October, 2025

RP 2025

One-counter automata

Learning DOCA

Prince Mathew

Introduction

DOCA

Active learning

OL

- 1. Behaviour DF/
- 2. Partition A
- 2. 1 311111011 2-4
- A DDEC on /
- - -
- 6. Construct L
- Summary of OL

Conclusion

Counter: Can be incremented, decremented or tested for zero.

OCA accepting $\{a^nb^na\mid n\geq 0\}.$

Active learning framework

Learning DOCA

Prince Mathew

Active learning

- 2. Partition A

- \circ Teacher knows the language of a DOCA \mathcal{T} .
- \circ Learner's aim: Learn a DOCA \mathcal{L} equivalent to \mathcal{T} .
- Learner can guery Teacher.
- Learner uses Teacher's response to learn.

Queries

Learning DOCA

Prince Mathew

Active learning

2. Partition A

4. PBFS on A

 \circ The Teacher knows the language of a DOCA \mathcal{T} .

 \circ Learner's aim: Learn a DOCA \mathcal{L} equivalent to \mathcal{T} .

Membership query

Learner: Is w in the language of \mathcal{T} ?

Teacher: Yes or No.

Minimal-equivalence query

Learner: Is DOCA \mathcal{L} equivalent to \mathcal{T} ?

Teacher: Yes or "No and a minimal word

w that distinguishes \mathcal{L} and \mathcal{T} ".

Literature review: Active learning of DOCA

 2 VOCA: Visibly OCA

¹Realtime DOCA: strict subclass of DOCA

Literature review: Active learning of DOCA

¹Realtime DOCA: strict subclass of DOCA

OL^* - Active learning of DOCA

Learning DOCA

Prince Mathew

DOCA
Active learning
State of the art

OL^*

- Behaviour DFA
- o p A
-
- A DDEC on A
- _____
- 5. Construct L
- 6. Construct \mathcal{L} Summary of OL

Conclusion

Theorem $(OL^* \text{ is in } P)$

- \circ Let Teacher knows a language recognised by a DOCA ${\cal T}.$
- \circ The OL^* algorithm learns a DOCA $\mathcal L$ that is equivalent to $\mathcal T$ in time polynomial in $|\mathcal T|$, using membership and minimal-equivalence queries.

Assumptions on DOCA

Learning DOCA

Prince Mathew

DOCA
Active learning
State of the art

OL^*

- 1. Behaviour DFA
- 2. Partition A
- o. rriii sequei
- 4. PBFS on ✓
- 5. Construct L
- 6. Construct \mathcal{L} Summary of OL
- Conclusio

 \circ The Teacher knows a language accepted by a DOCA \mathcal{T} .

- We denote by $n = |\mathcal{T}|$, the number of states.
- \circ To make the presentation simpler, we assume the following about \mathcal{T} :
 - There are no ε -transitions.
 - In a transition, the counter is incremented or decremented at most by one.
- \circ Learner wants to learn a DOCA ${\cal L}$ equivalent to ${\cal T}.$

OL^* : Step 1. Learning k-behaviour DFA

Learning DOCA

Prince Mathew

DOCA
Active learning
State of the art

OL

- 1. Behaviour DFA
- - A
- 2. Partition A
- A DDEC on A
- E Construct C
- 5. Construct L
- 6. Construct \mathcal{L} Summary of OL

Conclusion

 \circ A DFA $\mathcal A$ is a k-behaviour **DFA** of $\mathcal T$ if $\mathcal A$ is k-equivalent to $\mathcal T$. That is,

w is accepted by \mathcal{A} iff w is accepted by \mathcal{T} , for all $|w| \leq k$.

- \circ Angluin's L^* algorithm can learn a k-behaviour DFA in time polynomial in k and n.
 - This is done using membership and minimal-equivalence queries.

 \circ Step 1. of learner is to **learn a** poly(n)-behaviour **DFA**.

OL^* : Step 2. Partitioning the behaviour DFA

Learning DOCA

Prince Mathew

Introduction
DOCA
Active learning
State of the ar

OL

- 1. Behaviour DFA
- 2. Partition ${\cal A}$
- J. Will sequen
- 4. PBFS on A
- 6. Construct \mathcal{L}_{p_0}
- Summary of OI

Conclusio

The DFA A is partitioned into:

- Initial region: States reachable by words of length $< n^4$.
- Border region: States reachable by words of length n^4 but not less.
- Region of interest: Remaining states.

- o What next?
 - Learner constructs a partial OCA for all border states.
 - Combine all these partial OCA to get the final DOCA A.

poly(n)

OL^* : Step 2. Partitioning the behaviour DFA

Learning DOCA

Prince Mathew

DOCA
Active learning
State of the a

OL

1. Behaviour DF

2. Partition A

3. Win sequen

4. PBFS on A

6. Construct \mathcal{L}

Conclusio

The DFA \mathcal{A} is partitioned into:

- Initial region: States reachable by words of length $< n^4$.
- Border region: States reachable by words of length n^4 but not less.
- Region of interest: Remaining states.

region of interest

- What next?
 - Learner constructs a partial OCA for all border states.
 - Combine all these partial OCA to get the final DOCA A.

poly(n)

OL^* : Step 3. Finding a winning sequence

Learning DOCA

Prince Mathew

DOCA
Active learning

OL

1. Behaviour DFA

2. Partition A

3 Win sequence

4. PBFS on A

5. Construct C

6. Construct L

Conclusio

Definition

We say $w_0, w_1, w_2, \dots, w_K$ is a **winning sequence** for a state p if the run of these words on $\mathcal T$ reach configurations

$$(p,i), (p,i+d), (p,i+2d), \dots, (p,i+Kd)$$

respectively, for some $d \leq n^2$ and $i > n^3$.

Lemma (Winning sequence lemma)

For any state p_0 in behaviour DFA A, one can enumerate polynomially many sequences of the form $w_0, w_1, w_2, \ldots, w_K$ in polynomial time such that one of them is a winning sequence for p_0 .

OL^* : Step 3. Finding a winning sequence

Learning DOCA

Prince Mathew

DOCA
Active learning
State of the ar

OL

1. Behaviour DF/

2. Partition ${\cal A}$

3. Win sequence

4. PBFS on ${\cal A}$

5. Construct $\mathcal{L}_{\mathcal{I}}$

6. Construct L

Conclusio

Definition

We say $w_0, w_1, w_2, \dots, w_K$ is a **winning sequence** for a state p if the run of these words on $\mathcal T$ reach configurations

$$(p,i), (p,i+d), (p,i+2d), \dots, (p,i+Kd)$$

respectively, for some $d \le n^2$ and $i > n^3$.

Lemma (Winning sequence lemma)

For any state p_0 in behaviour DFA \mathcal{A} , one can enumerate polynomially many sequences of the form $w_0, w_1, w_2, \ldots, w_K$ in polynomial time such that one of them is a winning sequence for p_0 .

OL^* : Step 4. Parallel BFS on ${\mathcal A}$

Learning DOCA

Prince Mathew

DOCA
Active learning
State of the art

OL

- 1. Behaviour D
- 3. Win sequence
- 4. PBFS on A
- 4. PBF5 on 🎤
- 6. Construct \mathcal{L}

Conclusio

o Consider a winning sequence

$$w_0, w_1, w_2, \ldots, w_K.$$

o Run these words on the behaviour DFA. We reach the state sequence

$$p_0, p_1, p_2, \ldots, p_K.$$

- \circ Run parallel BFS (depth at most n^3) from this sequence.
 - All distinct sequences identified.
 - At most n^3 distinct sequences.
 - These sequences are the states of DOCA \mathcal{L}_{p_0} .

Learning DOCA

Prince Mathew

DOCA
Active learning

1. Behaviour DI

2. Partition ${\cal A}$

2 Win sequence

4. PBFS on ${\cal A}$

5. Construct $\mathcal{L}_{\mathcal{P}_0}$

6. Construct \mathcal{L} Summary of OL

Learning DOCA

Prince Mathew

DOCA Active learning

State of the

OL

- Behaviour DFA
- 2. Partition ${\cal A}$
- 4. PBFS on A
- 4. FBF3 011 A
- 5. Construct $\mathcal{L}_{\mathcal{P}_0}$ 6. Construct \mathcal{L}
- Summary of OL

Learning DOCA

Prince Mathew

DOCA
Active learning

State of the

- 1. Behaviour DF
- 2. Partition A
- J. Will sequent
- 4. PBFS on ${\cal A}$
- 5. Construct \mathcal{L}_{p_0}
- 6. Construct \mathcal{L} Summary of OL

Learning DOCA

Prince Mathew

DOCA
Active learning

OL^{1}

- 1. Behaviour DFA
- 2 Partition A
- Win sequen
- 4. PBFS on ${\cal A}$
- 5. Construct L
- 6. Construct \mathcal{L}

Learning DOCA

Prince Mathew

DOCA
Active learning

OL

- 1. Behaviour DFA
- 2 Partition A
- 3 Win sequence
- 4. PBFS on \mathcal{A}
- - -
- 6. Construct \mathcal{L}
- Summary of OL

Learning DOCA

Prince Mathew

DOCA
Active learning

OL.

- 1. Behaviour DFA
- 2 Partition A
- 3. Win sequen
- 4. PBFS on ${\cal A}$
- -
- 6. Construct \mathcal{L}
- Summary of C

Learning DOCA

Prince Mathew

DOCA
Active learning

OI.

- 1. Behaviour DF
- 2 Partition A
- 2 14//-----
- 4. PBFS on A
- 4. FBF3 0II 🔑
- 5. Construct $\mathcal{L}_{\mathcal{P}}$
- 6. Construct \mathcal{L} Summary of OL

Learning DOCA

Prince Mathew

Introduction
DOCA
Active learning

O.T.

- 1. Behaviour DFA
- 2. Partition A
- 2 Win sequence
- 4. PBFS on A
- 4. FBF3 0II 🔑
- 6. Construct \mathcal{L}_{p_i}
- Summary of OL

Canalusia

Learning DOCA

Prince Mathew

DOCA
Active learning

OI.

- 1. Behaviour DFA
- 2. Partition ${\cal A}$
- 4. PBFS on A
- 4. PBF5 on 🎤
- 6. Construct \mathcal{L}

Construion

Learning DOCA

Prince Mathew

Introduction DOCA Active learning

O.T.

- 1. Behaviour DFA
- 2. Partition ${\cal A}$
- 3. Win sequen
- 4. PBFS on ${\cal A}$
- 5. Construct L
- 6. Construct L

Learning DOCA

Prince Mathew

DOCA
Active learning

OI.

- 1. Behaviour DFA
- 2. Partition A
- 3. Win sequence
- 4. PBFS on ${\cal A}$
- 5. Construct $\mathcal{L}_{\mathcal{P}}$
- 6. Construct \mathcal{L} Summary of OL

Learning DOCA

Prince Mathew

DOCA
Active learning

OI.

- 1. Behaviour DFA
- 2. Partition ${\cal A}$
- J. Will sequen
- 4. PBFS on ${\cal A}$
- 5. Construct L
- 6. Construct \mathcal{L} Summary of OL

Learning DOCA

Prince Mathew

DOCA
Active learning

OI.

- 1. Behaviour DFA
- 2. Partition ${\cal A}$
- J. TVIII sequein
- 4. PBFS on ${\cal A}$
- 6. Construct \mathcal{L}
- Summary of OL

Learning DOCA

Prince Mathew

DOCA
Active learning

OI.

- 1. Behaviour DFA
- 2. Partition ${\cal A}$
- 4. PBFS on A
- 4. FBF3 0II 🔑
- 6. Construct \mathcal{L}_{p_i}
- 6. Construct \mathcal{L} Summary of OL

Learning DOCA

Prince Mathew

Introduction
DOCA
Active learning

OI.

- 1. Behaviour DFA
- 2. Partition A
- 5. vvin sequen
- 4. PBFS on ${\cal A}$
- 5. Construct \mathcal{L}_{T}
- 6. Construct \mathcal{L} Summary of OL

Learning DOCA

Prince Mathew

DOCA
Active learning

OI.

- 1. Behaviour DFA
- 2. Partition ${\cal A}$
- Win sequence
- 4. PBFS on ${\cal A}$
- E Construct (
- 6. Construct \mathcal{L}
- Summary of OL

Learning DOCA

Prince Mathew

DOCA
Active learning

OL

- 1. Behaviour DFA
- 2. Partition ${\cal A}$
- 3. Win sequence
- 4. PBFS on ${\cal A}$
- E Construct /
- 6. Construct \mathcal{L} Summary of OL
- Camalinatan

OL^* : Step 5. Constructing \mathcal{L}_{p_0}

Learning DOCA

Prince Mathew

- 4. PBFS on A
- 5. Construct Lno.

- \circ The parallel BFS colors "most" of the reachable states from border state p.
- \circ However, upto n^3 number of states are not colored.
 - eg. the state r_{-1} in the example, and some states reachable from r_{-1} .
- These are added to the partial OCA with zero counter value.
- The initial region is also added to the partial OCA with zero counter value.

OL*: Step 5. Constructing \mathcal{L}_{p_0}

Learning DOCA

Prince Mathew

5. Construct $\mathcal{L}_{\mathcal{D}_0}$

OL*: Step 5. Constructing \mathcal{L}_{p_0}

Learning DOCA

Prince Mathew

- 5. Construct $\mathcal{L}_{\mathcal{D}_0}$

OL*: Step 5. Constructing \mathcal{L}_{p_0}

Learning DOCA

Prince Mathew

Introduction DOCA Active learning

OL

- 1. Behaviour DFA
- a Dandelan A
- 3. Win sequence
- 4. PBFS on ${\cal A}$
- 5. Construct $\mathcal{L}_{\mathcal{D}_0}$
- 6. Construct \mathcal{L} Summary of OL
- C----!--

OL^* : Step 6. Constructing $\mathcal L$

Learning DOCA

Prince Mathew

DOCA
Active learning

OL

- 1. Behaviour DFA
- 2. Partition A
- 3. vvin sequ
- 4. FDF3 OII A
- 5. Construct L
- 6. Construct \mathcal{L}

Conclusio

 \circ The final OCA $\mathcal L$ is the union of partial OCA corresponding to all border states and the DFA corresponding to the initial region.

- \circ Size of \mathcal{L} is $\mathcal{O}(n^8)$
- \circ There exists a poly(n) such that if \mathcal{L} is poly(n) equivalent to \mathcal{T} , then \mathcal{L} and \mathcal{T} are equivalent (Böhm, Göller & Jančar, 2013).
- Correctness:

```
\mathcal L is poly(n)-equivalent to \mathcal A (Step 0. Construction \mathcal A is poly(n)-equivalent to \mathcal T (Step 1. construction \mathcal L is poly(n)-equivalent to \mathcal T (from above
```

(Böhm, Göller & Jančar, 2013)

OL^* : Step 6. Constructing $\mathcal L$

Learning DOCA

Prince Mathew

Introduction
DOCA
Active learning
State of the art

OL

- 1. Behaviour DFA
- 0 D A
- 3. Win seq
- 4. PBFS on ${\cal A}$
- 5. Construct L
- 6. Construct \mathcal{L}

Summary of O I

Conclusio

- \circ The final OCA \mathcal{L} is the union of partial OCA corresponding to all border states and the DFA corresponding to the initial region.
- \circ Size of \mathcal{L} is $\mathcal{O}(n^8)$.
- \circ There exists a poly(n) such that if \mathcal{L} is poly(n) equivalent to \mathcal{T} , then \mathcal{L} and \mathcal{T} are equivalent (Böhm, Göller & Jančar, 2013).
- o Correctness:

 $\mathcal L$ is poly(n)-equivalent to $\mathcal A$ (Step 6. construction) $\mathcal A$ is poly(n)-equivalent to $\mathcal T$ (Step 1. construction) $\mathcal L$ is poly(n)-equivalent to $\mathcal T$ (from above)

OL^* : Step 6. Constructing \mathcal{L}

Learning DOCA

Prince Mathew

Introduction
DOCA
Active learning
State of the art

OL

- 1. Behaviour DFA
- 0 D A
- Win sequ
- 4. PBF5 on A
- 5. Construct L₁
- 6. Construct \mathcal{L} Summary of OL

Conclusion

 \circ The final OCA \mathcal{L} is the union of partial OCA corresponding to all border states and the DFA corresponding to the initial region.

- \circ Size of \mathcal{L} is $\mathcal{O}(n^8)$.
- \circ There exists a poly(n) such that if \mathcal{L} is poly(n) equivalent to \mathcal{T} , then \mathcal{L} and \mathcal{T} are equivalent (Böhm, Göller & Jančar, 2013).
- Correctness:

 \mathcal{L} is poly(n)-equivalent to \mathcal{A} (Step 6. construction) \mathcal{A} is poly(n)-equivalent to \mathcal{T} (Step 1. construction) \mathcal{L} is poly(n)-equivalent to \mathcal{T} (from above) \mathcal{L} is equivalent to \mathcal{T} (Böhm, Göller & Jančar, 2013)

OL^* : Step 6. Constructing $\mathcal L$

Learning DOCA

Prince Mathew

Introduction
DOCA
Active learning
State of the art

OL

- 1. Behaviour DFA
- 1. Dellaviour D17
- 3. Win seq
- 4. PBFS on A
- 5. Construct L
- 6. Construct \mathcal{L} Summary of OL

Conclusio

 \circ The final OCA \mathcal{L} is the union of partial OCA corresponding to all border states and the DFA corresponding to the initial region.

- \circ Size of \mathcal{L} is $\mathcal{O}(n^8)$.
- \circ There exists a poly(n) such that if \mathcal{L} is poly(n) equivalent to \mathcal{T} , then \mathcal{L} and \mathcal{T} are equivalent (Böhm, Göller & Jančar, 2013).
- Correctness:

 $\mathcal L$ is poly(n)-equivalent to $\mathcal A$ (Step 6. construction) $\mathcal A$ is poly(n)-equivalent to $\mathcal T$ (Step 1. construction) $\mathcal L$ is poly(n)-equivalent to $\mathcal T$ (from above)

OL^* : Step 6. Constructing $\mathcal L$

Learning DOCA

Prince Mathew

DOCA
Active learning
State of the art

OL

- 1. Behaviour DFA
- 2 Partition A
- 3. Win seque
- 4. PBFS on A
- 6. Construct L
- Summary of OL

Conclusion

 \circ The final OCA $\mathcal L$ is the union of partial OCA corresponding to all border states and the DFA corresponding to the initial region.

- \circ Size of \mathcal{L} is $\mathcal{O}(n^8)$.
- \circ There exists a poly(n) such that if \mathcal{L} is poly(n) equivalent to \mathcal{T} , then \mathcal{L} and \mathcal{T} are equivalent (Böhm, Göller & Jančar, 2013).
- Correctness:

 \mathcal{L} is poly(n)-equivalent to \mathcal{A} (Step 6. construction) \mathcal{A} is poly(n)-equivalent to \mathcal{T} (Step 1. construction) \mathcal{L} is poly(n)-equivalent to \mathcal{T} (from above)

14 / 18

OL^* : Step 6. Constructing $\mathcal L$

Learning DOCA

Prince Mathew

DOCA
Active learning
State of the art

OL

- 1. Behaviour DFA
- 2 Partition A
- Win sequ
- 4. PBFS on A
- 5. Construct L
- 6. Construct \mathcal{L} Summary of OL

Conclusio

 \circ The final OCA \mathcal{L} is the union of partial OCA corresponding to all border states and the DFA corresponding to the initial region.

- \circ Size of \mathcal{L} is $\mathcal{O}(n^8)$.
- \circ There exists a poly(n) such that if \mathcal{L} is poly(n) equivalent to \mathcal{T} , then \mathcal{L} and \mathcal{T} are equivalent (Böhm, Göller & Jančar, 2013).
- Correctness:

 \mathcal{L} is poly(n)-equivalent to \mathcal{A} (Step 6. construction) \mathcal{A} is poly(n)-equivalent to \mathcal{T} (Step 1. construction) \mathcal{L} is poly(n)-equivalent to \mathcal{T} (from above) \mathcal{L} is equivalent to \mathcal{T} (Böhm, Göller & Jančar, 2013)

Summary of ${\cal O}L^*$

Learning DOCA

Prince Mathew

Introduction DOCA Active learning

OI

- 1. Behaviour DF/
- o D A
- 3. Win segu
- 4. PBFS on ${\cal A}$
- 5. Construct \mathcal{L}_7
- 6. Construct L

Summary of OL^st

- \circ Construct poly(n)-behaviour DFA using L^* algorithm.
- o Partition the behaviour DFA into initial region, border, and region of interest.
- o For each border state:
 - Generate a winning sequence of words: w_0, w_1, \ldots, w_K .
 - Run these words on the DFA to get the sequence of states: p_0, p_1, \ldots, p_K .
 - Run parallel BFS from this sequence.
 - All reachable sequences of parallel BFS form states of partial OCA.
 - Counter values are incremented / decremented based on the shift in the sequence.
 - Add the missed states and initial region to get partial OCA.
- o Construct the final OCA by combining the partial OCA.

Conclusion

Learning DOCA

Prince Mathew

Introduction
DOCA
Active learning
State of the ar

OI

Behaviour D

- Behaviour DFA
- 3. Win sequence
- 4. PBFS on A
- 6. Construct \mathcal{L}

Summary of O

Conclusion

Theorem

 OL^* learns a DOCA equivalent to the Teacher's DOCA using membership and minimal-equivalence queries, and in time polynomial in the size of a smallest DOCA recognising the language.

Corollary

Polynomial approximation for minimisation of DOCA.

Future work

Learning DOCA

Prince Mathew

Introduction DOCA Active learning

O I

- 1. Behaviour DF/
- 1. Dellaviour Dr.
- 2. Partition A
- A DDEC on A
- 5. Construct Lp
- 6. Construct \mathcal{L} Summary of OL^3

Conclusion

Replacing minimal-equivalence with equivalence query.

- \circ Practical OL^* algorithm.
- Improving running time of equivalence.
- o Learning weighted models (like weighted visibly OCA).

Learning DOCA

Prince Mathew

Introduction

Active learning

- 1. Behaviour DF
-
- 2 Win sequence
- 5. vvin seque
- 5. Construct \mathcal{L}_{p_i}

Conclusion

Thank You!