Spectral Sequences

(K,D) a differential complex with filtration \$Kp3

Dehre A = @ Kp and GK = @ Kp/Kp+1

Dehre i: A -> A by using Kpt, C> Kp Yp. Herce i(Kpti) c Kp. We have a SES

 $0 \longrightarrow A \xrightarrow{i} A \xrightarrow{j} B \longrightarrow 0$ (*) ₁

where B is the cokernel of i.

Then $B = \frac{A}{Im(i)} = \frac{\bigoplus K_{P}}{\bigoplus K_{P+1}} = GK$

In (*), each group is a complex with differential induced from D.

If K is graded (i.e. a cochair complex) ther (*) becomes a SES of cochain complexes and we get

a LES of Cohomology groups: $\rightarrow H^{k}(A) \xrightarrow{i_{1}} H^{k}(A) \xrightarrow{j_{1}} H^{k}(B) \xrightarrow{k_{1}} H^{k+1}(A) \rightarrow$ which we write as

H(A) in H*(A) This is an exact k, \ H*(B)

couple, and so it gives rise to a Sequeree of exact comples

Ar for each r, each Er the previous one.

2

Ex: Suppose K has a filtation

K= K00 K,0 K20 K300.

Then $A_1 = H^*(A) = H^*(K_0 \oplus K_1 \oplus K_2 \oplus K_3)$ $= \bigoplus_{p=0}^3 H^*(K_p)$

and so is the direct som of all the terms in the Sequence:

 $H(K) \stackrel{i}{\leftarrow} H(K_1) \stackrel{i}{\leftarrow} H(K_2) \stackrel{i}{\leftarrow} H(K_3) \stackrel{i}{\leftarrow} O$ which is not exact.

Next, Az is the image of A, under i, and so is the direct sum of the terms:

 $H(K) \supset iH(K_1) \leftarrow iH(K_2) \leftarrow iH(K_3) \leftarrow 0$. Note here that $iH(K_1) \subset H(K)$ is an inclusion. We repeat this for A_3 and A_4 and observe that A4 is the Sum of

 $H(K) \supset iH(K_1) \supset iiH(K_2) \supset iiiH(K_3) \supset O$ (+) which are all inclusions. Since we have inclusions, the derived procedure stabilizes and we get $A_4 = A_5 = A_6 = \dots = A_{\infty}$. Further, Since

A4 is exact, and
is exact, and
injective, then k4

E4 is 0.

Therefore, after the 4th derivation, all the differentials of the exact couple are 0 and therefore $E_4 = E_5 = ... = E_{\infty}$.

Since Ess is a quotient of iss, it is a direct Sum of successive quotients in iss. If (+) is the hlbrahon on H(K), then Ess = GH(K) under (+).

induces a Sequeree in Cohomology:

< +(K) = +(K2) = +(K2) = +(K3) = ...

where i is not inclusion. Let $F_p = Im\{H(K_p) \stackrel{ip}{\to} H(H)\}$. Then we get the induced filtration on H(K):

H(K)>F,>F2>F3>...

If the filtration $\{K_p\}$ has finite length, say l, then A_l and E_l are stationary and the value $E_{\infty} = \bigoplus_{p \neq l} F_{p+1}$, the associated graded

Cohomology of 4(K).

The terms E, are a Spectral Segueree.

Theorem Let $K = \bigoplus K^n$ be a graded filtered Complex with filtration 3 Kp3 and let $H_p^*(K)$ be the cohomology of K with induced filtration. If for each dimension n, the filtration 3 Kp=KnKps has histe length, then the Short exact Sequence O > O Kpti > O Kp > O Kp/Kpti > O induces a Spectral Sequere which converges to Ho (K), 1-e. Em = GHD (K).

proof: Let $A_r = \bigoplus_{p \in \mathbb{Z}} i^{r-1} \mathcal{H}(K_p)$. If $r \ge p+1$, then $i^r \mathcal{H}(K_p) = F_p$ and $i^r : i^r \mathcal{H}(K_{p+1}) \longrightarrow i^r \mathcal{H}(K_p)$ is an inclusion.

Now on each derived couple, i and j preserve diversion but k increases by I (because of LES). Guen n, let l(n) be the length of $\{K_p^n\}$ and let

 $\Gamma \geq \ell(n+1)+1$.

$$iH^{n+1}(K_{p+1}) = F_{p+1}^{n+1}$$
 and

is an inclusion. Heree ir: Anti -> Anti is

an inclusion and $k_r: E_r^n \to A_r^{n+1}$ is O

Heree En is stahonary and En is this

Stahonory value.

Nohe that $A_{\infty}^{\circ} = \bigoplus F_{p}^{\circ}$ and $i_{\infty} : F_{p+1} \to F_{p}^{\circ}$ for every n. Snee ios: Fpt, = 30Fp is inclusion,

ther En = 0 P/Fpt1 = GHp(K).

Let $K = \bigoplus K^{p,q}$ be a double complex with Environtal operator 8 and vertical operator d. We form a Single complex by letting

$$C^k = \bigoplus_{p \neq q = k} \mathbb{Z}^{p,q}$$

Then $K = \bigoplus C^k$. We get a filtration on K

by Sethie Kp = # # K'19:

 $A = \bigoplus Kp$ is also a double complex, which we turn into a Single complex $A = \bigoplus A^k$ by summing bidegrees, so A^k consists of clements of A whose total degree is k.

There is an inclusion $i:A^k \longrightarrow A^k$ given by $i:A^k \cap K_{p+1} \longrightarrow A^k \cap K_p$.

The single complex A whents the operator D from K.

Similarly, $E = \bigoplus KP/K_{p+1}$ can be made into a Single Complex with operator D. Because $S: K_p \to K_{p+1}$, then D on E is just (-1)^pd. Heree $E_1 = H_p(E) = H_d(K)$,

Cohomology of Kwirt d.