VÄLTTÄMÄTÖN EPÄYHTÄLÖISTÄ IMO:ON

Klassiset epäyhtälöt

- kvadraattis-aritmeettis-geometris-harmoninen epäyhtälö
- Cauchyn-Schwarzin epäyhtälö
- suuruusjärjestysepäyhtälö ja Tšebyšovin epäyhtälö
- Schurin epäyhtälö
- Nesbittin epäyhtälö

Konveksisuus

- konveksin funktion määritelmä
- \bullet konveksisuuden havaitseminen derivaatan kasvavuudesta tai toisen derivaatan merkistä
- Jensenin epäyhtälö
- jollakin välillä konveksi funktio saavuttaa suurimman arvonsa välin jommassa kummassa päätepisteessä
- konveksit minorantit (joskus haluaisi soveltaa Jensenin epäyhtälöä funktioon joka ei ole konveksi aivan koko määrittelyalueessaan, mutta toisinaan tämän ongelman pystyy kiertämään arvioimalla melkein konveksia funktiota alhaalta päin konveksilla funktiolla)

Nämä ideat haluat tuntea

- reaalilukujen neliöt ovat ei-negatiivisia
- monotonisuus
- homogenisointi ja normalisointi
- kiertosymmetria ja symmetria
- vakion vähentäminen ja lisääminen, laventaminen
- $\bullet\,$ toisinaan alkeellisten symmetristen polynomien käyttö selkeyttää tilannetta
- kaikki muutkin algebrassa käytetyt nerokkaat sijoitukset ovat potentiaalisesti hyödyllisiä; esimerkiksi oletuksen xyz=1 vallitessa voi olla edullista tehdä sijoitukset $x=\frac{1}{\xi},\ y=\frac{1}{\eta},\ z=\frac{1}{\zeta},$ tai vaikkapa sijoitukset $x=\frac{a}{b},$ $y=\frac{b}{c},\ z=\frac{c}{a}.$
- trigonometriset sijoitukset (myös hyperboliset funktiot)

- logaritmilla voi muuttaa tuloja summiksi, eksponenttifunktiolla summia tuloiksi
- Cauchyn induktiolla voi todistaa vaikkapa Jensenin epäyhtälön erikoistapauksia muistuttavia tuloksia erikoisemmille keskiarvoille
- epäyhtälöiden yhtäsuuruusehdot kannattaa tuntea; esimerkiksi aritmeettisgeometrinen epäyhtälö on tarkimmillaan silloin kun muuttujat ovat suurin piirtein yhtä suuria, ja toisinaan aritmeettis-geometrista pystyy käyttämään yllättävissä tilanteissa pilkkomalla termejä osiin jotka todistettavan epäyhtälön ollessa tarkimmillaan voivat olla yhtä suuria
- ylipäätänsä kannattaa soveltaa epäyhtälöitä sen mukaan milloin epäilee yhtäsuuruuden vallitsevan

Raskas koneisto

- Hölderin epäyhtälö
- potenssikeskiarvojen epäyhtälö
- Muirheadin epäyhtälö (hyvin voimakas vaikkapa yhdessä Schurin epäyhtälön kanssa)

Geometriset epäyhtälöt

- kolmioepäyhtälö
- suunnikasepäyhtälö
- kolmion sivut voi kirjoittaa muodossa a = x + y, b = y + z, c = z + x
- kolmion sivuille a, b ja c pätee $(a+b-c)(a-b+c)(-a+b+c) \leq abc$
- Ptolemaiosin epäyhtälö
- Erdősin–Mordellin epäyhtälö

Erikoistuneemmat työkalut

- MacLaurinin epäyhtälö
- Minkowskin epäyhtälö
- lukion ääriarvojen etsimisen työkalut