# Cambridge (CIE) A Level Maths: Probability & Statistics 2



# **Hypothesis Testing (Normal** Distribution)

### **Contents**

\* Hypothesis Testing for the Mean of a Normal Distribution



## Hypothesis Testing for the Mean of a Normal Distribution



## **Normal Hypothesis Testing**

## What steps should I follow when carrying out a hypothesis test for the mean of a normal distribution?

- Following these steps will help when carrying out a hypothesis test for the mean of a normal distribution:
- Step 1. Define the distribution of the population mean usually  $X \sim N(u.\sigma^2)$
- Step 2. Write the null and alternative hypotheses clearly
- Step 3. Assuming the null hypothesis to be true, define the statistic
- Step 4. Calculate either the critical value(s) or the probability of the observed value for the test
- Step 5. Compare the observed value of the test statistic with the critical value(s) or the probability with the significance level
  - Or compare the z-value corresponding to the observed value with the z-value corresponding to the critical value
- Step 6. Decide whether there is enough evidence to reject  $H_0$  or whether it has to be accepted
- Step 7. Write a conclusion in context

## How should I define the distribution of the population mean and the statistic?

• The population parameter being tested will be the population mean,  $\mu$  in a normally distributed random variable N  $(\mu, \sigma^2)$ 

## How should I define the hypotheses?

- A hypothesis test is used when the value of the assumed population mean is questioned
- The **null hypothesis**,  $H_0$  and **alternative hypothesis**,  $H_1$  will always be given in terms of  $\mu$ 
  - Make sure you clearly define  $\mu$  before writing the hypotheses, if it has not been defined in the question
  - The null hypothesis will always be  $H_0: \mu = ...$
  - The alternative hypothesis will depend on if it is a **one-tailed** or **two-tailed** test
  - A one-tailed test would test to see if the value of  $\mu$  has either increased or decreased
    - The alternative hypothesis,  $H_1$  will be  $H_1$ :  $\mu > ...$  or  $H_1$ :  $\mu < ...$
  - A two-tailed test would test to see if the value of μ has changed



■ The alternative hypothesis,  $H_1$  will be  $H_1$ :  $\mu \neq ...$ 

#### How should I define the statistic?



- The population mean is tested by looking at the mean of a sample taken from the population
  - The sample mean is denoted X
  - For a random variable  $X \sim N(\mu, \sigma^2)$  the distribution of the sample mean would be  $\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$
- To carry out a hypothesis test with the normal distribution, the **statistic used to carry out** the test will be the sample mean, X
  - Remember that the **variance** of the sample mean distribution will be the variance of the population distribution divided by n
  - the **mean** of the sample mean distribution will be the same as the mean of the population distribution

## How should I carry out the test?

- The hypothesis test can be carried out by
  - either calculating the probability of a value taking the observed or a more extreme value and comparing this with the significance level
    - The normal distribution will be used to calculate the probability of a value of the random variable X taking the observed value **or a more extreme value**
  - or by finding the critical region and seeing whether the observed value lies within it
    - Finding the critical region can be more useful for considering more than one observed value or for further testing
- A third method is to compare the z-values of your observed value with the z-values at the boundaries of the critical region(s)
  - Find the z-value for your sample mean using  $z = \frac{\overline{x} \mu}{\frac{\sigma}{\sqrt{n}}}$ 
    - This is sometimes known as your test statistic
  - Use the table of critical values to find the z-value for the significance level
  - If the z-value for your test statistic is further away from 0 than the critical z-value then reject H<sub>0</sub>

## How is the critical value found in a hypothesis test for the mean of a normal distribution?

■ The critical value(s) will be the boundary of the critical region

• The probability of the observed value being within the critical region, given a true null hypothesis will be the same as the significance level



- For an  $\alpha$ % significance level:
  - In a one-tailed test the critical region will consist of  $\alpha\%$  in the tail that is being
  - In a two-tailed test the critical region will consist of  $\frac{\alpha}{2}$ % in each tail



- To find the critical value(s) use the standard normal distribution:
  - Step 1. Find the distribution of the sample means, assuming H<sub>0</sub> is true
  - Step 2. Use the coding  $Z = \frac{\overline{x} \mu}{\frac{\sigma}{\sqrt{n}}}$  to standardise to Z
  - Step 3. Use the table to find the z value for which the probability of Z being equal to or more extreme than the value is equal to the significance level
    - You can often find this in the table of the critical values
  - Step 4. Equate this value to your expression found in step 2
  - Step 5. Solve to find the corresponding value of X
- If using this method for a two-tailed test be aware of the following:
  - The symmetry of the normal distribution means that the z values will have the same absolute value
  - You can solve the equation for both the positive and negative z value to find the two critical values
    - Check that the two critical values are the same distance from the mean



## **Worked Example**



The time, minutes, that it takes Amelea to complete a 1000-piece puzzle can be modelled using  $X \sim N(204,81)$ . Amelea gets prescribed a new pair of glasses and claims that the time it takes her to complete a 1000-piece puzzle has decreased. Wearing her new glasses, Amelea completes 12 separate 1000-piece puzzles and calculates her mean time on these puzzles to be 201 minutes. Use these 12 puzzles as a sample to test, at the 5% level of significance, whether there is evidence to support Amelea's claim. You may assume the variance is unchanged.



Step 1: Define the distribution of the population mean:

For  $X \sim N(\mu, 81)$ 

Step 2: Write the hypotheses

$$H_o: \mu = 204$$

 $H_1: \mu < 204$ 

Step 3: Define the statistic

Watch out,  $\sigma^2 = 81 \text{ so } \sigma = 9$  Your notes

Assuming H<sub>o</sub> true,  $\bar{X} \sim N \left(204, \frac{9^2}{42}\right)$ 

Step 4: Calculate the z-value for the test-statistic

Assuming Ho is true, then

$$P(X \le 201) = P\left(Z \le \frac{201 - 204}{9}\right) = P(Z \le -1.1547...)$$
Alternatively, you could find this probability and compare with the significance level 
$$(P(X \le 201) = 0.1241)$$

Step 5: Compare the test-statistic with the critical z-value



Step 6: Decide whether there is enough evidence to reject Ho The test-statistic is outside of the critical region so there is not enough evidence to reject Ho

Step 7: Write a conclusion in context

There is insufficient evidence to reject the null hypothesis at the 5% level of significance

The test does not support Ameleas' claim that the amount of time it takes her to complete a 1000-piece puzzle has decreased

\* Note: If finding the critical region, steps 4 and 5 would be:

Step 4: Calculate the critical value

$$Z = \frac{\bar{x} - \mu}{\frac{\sigma}{n}} \Rightarrow \frac{\bar{z} = \bar{x} - 204}{\frac{9}{\sqrt{12}}}$$

$$-1.645 = \frac{\sqrt{12'}}{9} (\overline{x} - 204)$$

 $\bar{x} = 199.72...$ 

Step 5: Compare the observed value of the test-statistics with the critical region:

201 > 199.72... so 201 is outside of the critical region



#### **Examiner Tips and Tricks**



• Use a diagram to help, especially if looking for the critical value and comparing this with an observed value of a test statistic or if working with z-values.



