Midterm Exam 08/11/2021

• This is a preview of the published version of the quiz

Started: Nov 8 at 8:22pm

Quiz Instructions

Functions to type in if needed:

sqrt(x): square root function; \infty: infinity

sin(x): sine function; -\infty: minus infinity

cos(x): cosine function; (a,b)U(c,d): union of intervals

e^(x): exponential function; \theta: angle theta

In(x): logarihtmic function; \pi: the number pi

<=: less equal than; >=: greater equal than

Question 1

2 pts

Find the constant C of the antiderivative f, if $f'(x)=e^{x/3}+20(1+x^2)^{-1}$ with f(0)=2.

Question 2

3 pts

Use the Newton's approximation method to find the root (correct to 5 decimal places) of the equation $x^3 - 2x + 3 = 0$ with the initial x = -2.

Question 3

3 pts

Find the point on the parabola $y^2=2x$ that is closest to the point $A\left(1,\frac{27}{2}\right)$.

Hint: Type your answer in the form (x, y) of an ordered pair.

Question 4

Suppose the function $g(x)=200+8x^3+x^4$. Give the first and second derivative in a simplified form.

Hint: Type in your answer in the form $g'(x)=ax^b(A-x)(B-x)(C+x)$; $g''(x)=ax^b(A-x)(B-x)(C+x)$

Question 5

2 pts

Suppose the function $g(x)=200+8x^3+x^4$. Find the intervals of increase or decrease.

Hint: Type in your answer in the form decrease in (a,b); increase in (c,d)

Question 6

Suppose the function $g(x)=200+8x^3+x^4$. Find the inflection points (IP) and the intervals of concavity.

Hint: Type in your answer in the form IP: x,y; concave up in (a,b); concave down in (c,d)

Question 7

2 pts

Suppose the function $g(x)=200+8x^3+x^4$. Find the local maximum and minimum values.

Hint: Type in your answer in the form maximum: (x,f(x)); minimum: (x,f(x)) or minimum: does not exist

Question 8

An object with weight W is dragged along a horizontal plane by a force acting along a rope attached to the object. If the rope makes an angle with the plane, then the magnitude of the force is $F=\frac{\mu W}{\mu\sin(\theta)+\cos(\theta)}$, where \mu is a positive constant called the *coefficient of friction* and where $0\leq\theta\leq\pi/2$. Determine the type of the critical point $\tan(\theta)=\mu$.

- $\Box F'' = W \sin(\theta) < 0$, minimum

Question 9

If f is odd, then f' is even. \bigcirc True \bigcirc False

Question 10

Find the limit $\lim_{u o 2} rac{\sqrt{4u+1}-3}{u-2}$.

Qu	estion	11
ЖU	COLICII	

2 pts

Find y' if $x^3 + y^4 = 3xy$.

$$\bigcirc \ y'=rac{3(x^2-y)}{3x-4y^3}$$

$$\bigcirc \ y' = rac{3(x^2 - y^2)}{3x - 4y^2}$$

$$\bigcirc \ y'=rac{2(x^2+y)}{3x-4y^3}$$

$$\bigcirc \ y'=rac{3(x^2-2y)}{3x-2y^3}$$

Question 12 2 pts

Find the tangent to $x^3 + y^4 = 3xy$ at the point (3,3).

$$\bigcirc 12y = -5x + 31$$

$$y = \frac{1}{11}x - \frac{38}{11}$$

$$\bigcirc \ 11y = -2x + 39$$

$$\bigcirc 2y = 11x - 39$$

Question 13 2 pts

Find the limit $\lim_{x o 0^+}\left(rac{1}{x}-rac{1}{e^x-1}
ight)$

08/11/2021 20:23 Quiz: Midterm Exam 08/11/2021

Quiz saved at 8:23pm

Submit Quiz