The Power of Informative Hypotheses CSI, Otterlo

Fayette Klaassen, Herbert Hoijtink, & Xin Gu

28 September 2015

Informative Hypotheses

Informative Hypotheses

$$H_i: \mu_1 > \mu_2 > \mu_3$$
 $H_c: not H_i$

Informative Hypotheses

$$H_i: \mu_1 > \mu_2 > \mu_3$$

$$H_c$$
: not H_i

$$BF_{ic}$$

Power

Decision tree

Sample size

Simulation procedure

Order of means under H_c

$H_i: \mu_1 > \mu_2 > \mu_3$						
Ordering						
$\mu_1 > \mu_3 > \mu_2$						
$\mu_2 > \mu_1 > \mu_3$						
$\mu_2 > \mu_3 > \mu_1$						
$\mu_3 > \mu_1 > \mu_2$						
$\mu_3 > \mu_2 > \mu_1$						

Simulation procedure

Order of means under H_c

Violation of H_i
small
small
medium
medium
large

	Error probability								
	.1			.05			.025		
d_{H_i}	.2	.5	-	.2	.5	-	.2	.5	-
5	644	624	977	994	977	*	*	*	*
m	136	56	103	222	110	180	313	180	255
1	109	35	54	181	65	100	278	108	148
-	159	28		258	42		361	58	

indicates controlled Type *i* error probability indicates controlled Type *c* error probability

indicates controlled Decision error probability

		Error probability							
	.1			.05			.025		
d_{H_i}	.2	.5	-	.2	.5	-	.2	.5	-
S	644	624	977	994	977	*	*	*	*
m	136	56	103	222	110	180	313	180	255
1	109	35	54	181	65	100	278	108	148
-	159	28		258	42		361	58	

indicates controlled Type *i* error probability indicates controlled Type *c* error probability indicates controlled Decision error probability

Cohen:
$$\beta = .2, \alpha = .05$$

 f^* .1 .25
ss 322 52

*An effect size d of .2 = .007 in f

Summary

Researchers need to

- ▶ Formulate hypotheses $(H_i, H_c, \text{ or } H_{i'})$
- Choose effect sizes in both hypotheses (d)
- Select approach
 - Select decision criterion
 - Choose critical value

Researchers get

- Answers to specific questions
- Smaller required sample sizes

Discussion (1)

...

Discussion (2)

	Error probability						
		.1					
d_{H_i}	.2	.5	-				
S	644	624	977				
m	136	56	103				
1	109	35	54				
-	159	28					

Cohen:
$$K = 3$$
, $\beta = .2$, $\alpha = .05$
 $\begin{array}{ccc}
.2 & .5 \\
\underline{322} & 52
\end{array}$

 $ightharpoonup H_i$ and H_c versus H_0 and H_1

Discussion (2)

	Error probability						
		.1					
d_{H_i}	.2	.5	-				
S	644	624	977				
m	136	56	103				
1	109	35	54				
1	159	28					

Cohen:
$$K = 3$$
, $\beta = .2$, $\alpha = .05$
 0.2
 0.5
 0.5
 0.5
 0.5

- ▶ H_i and H_c versus H_0 and H_1
- ► H_c
 - ▶ What does it mean?
 - What population to sample from?
 - What effect size to choose?
 - ▶ How to aggregate sample sizes over different parts of H_c ?

Discussion (2)

	Error probability							
		.1						
d_{H_i}	.2	.5	-					
S	644	624	977					
m	136	56	103					
1	109	35	54					
-	159	28						

Cohen:
$$K = 3$$
, $\beta = .2$, $\alpha = .05$
 0.2
 0.5
 0.5
 0.5
 0.5

- $ightharpoonup H_i$ and H_c versus H_0 and H_1
- ► H_c
 - ▶ What does it mean?
 - What population to sample from?
 - What effect size to choose?
 - ▶ How to aggregate sample sizes over different parts of H_c ?
- $ightharpoonup H_i$ versus a composite informative hypothesis?
 - $H_j: \mu_1 > \mu_2 > \mu_3 \text{ OR } \mu_2 > \mu_1 > \mu_3$

Thank you for listening

Effect size

	K	d
H_i	2, 3, 4	.2, .5
H_c	2, 3, 4	.2

Effect size

	K	d
H_i	2, 3, 4	.2, .5
H_c	2, 3, 4	.2

$$d = \frac{\mu_1 - \mu_K}{\sigma}$$

Effect size

	K	d
H_i	2, 3, 4	.2, .5
H_c	2, 3 , 4	.2

$$d = \frac{\mu_1 - \mu_K}{\sigma}$$

K	d	μ_1	μ_2	μ_3
	0.2	0.2	0.1	0
3	0.5	0.5	0.25	0
	8.0	0.8	0.4	0

				Error probability							
				.1			.05			.025	
		d_{H_i}	.2	.5	-	.2	.5	-	.2	.5	-
K		$d_{H_{i'}}$									
		.2	318	147	318	531	327	531	731	531	731
	s	.5	147	51	51	327	88	88	531	117	117
		-	318	51		531	88		731	117	
		.2	103	54	108	180	108	180	252	180	249
3	m	.5	54	18	17	103	29	30	180	40	41
		-	103	18		180	29		252	40	
		.2	81	41	81	135	81	135	192	135	192
	1	.5	41	14	14	81	22	22	135	31	31
		-	81	14		135	22		192	31	

Cohen:
$$K = 3$$
, $\beta = .2$, $\alpha = .05$

$$\begin{array}{ccc} & \text{small} & \text{medium} \\ & & 322 & 52 \end{array}$$

			Error probability									
				.1		.05			.025			
		d_{H_i}	.2	.5	-	.2	.5	-	.2	.5	-	
K		$d_{H_{i'}}$										
		.2	318	147	318	531	327	531	731	531	731	
	s	.5	147	51	51	327	88	88	531	117	117	
		-	318	51		531	88		731	117		
		.2	103	54	108	180	108	180	252	180	249	
3	m	.5	54	18	17	103	29	30	180	40	41	
		-	103	18		180	29		252	40		
		.2	81	41	81	135	81	135	192	135	192	
	1	.5	41	14	14	81	22	22	135	31	31	
		-	81	14		135	22		192	31		

Cohen:
$$K = 3$$
, $\beta = .2$, $\alpha = .05$

$$\begin{array}{ccc} & \text{small} & \text{medium} \\ & & 322 & 52 \end{array}$$

			Error probability									
				.1		.05			.025			
		d_{H_i}	.2	.5	-	.2	.5	-	.2	.5	-	
K		$d_{H_{i'}}$										
		.2	318	147	318	531	327	531	731	531	731	
	s	.5	147	51	51	327	88	88	531	117	117	
		-	318	51		531	88		731	117		
		.2	103	54	108	180	108	180	252	180	249	
3	m	.5	54	18	17	103	29	30	180	40	41	
		-	103	18		180	29		252	40		
		.2	81	41	81	135	81	135	192	135	192	
	1	.5	41	14	14	81	22	22	135	31	31	
		-	81	14		135	22		192	31		

Cohen:
$$K = 3$$
, $\beta = .2$, $\alpha = .05$
small medium
322 52

			Error probability									
				.1		.05			.025			
		d_{H_i}	.2	.5	-	.2	.5	-	.2	.5	-	
K		$d_{H_{i'}}$										
		.2	318	147	318	531	327	531	731	531	731	
	s	.5	147	51	51	327	88	88	531	117	117	
		-	318	51		531	88		731	117		
		.2	103	54	108	180	108	180	252	180	249	
3	m	.5	54	18	17	103	29	30	180	40	41	
		-	103	18		180	29		252	40		
		.2	81	41	81	135	81	135	192	135	192	
	1	.5	41	14	14	81	22	22	135	31	31	
		-	81	14		135	22		192	31		

Cohen:
$$K = 3$$
, $\beta = .2$, $\alpha = .05$

$$\begin{array}{ccc} & \text{small} & \text{medium} \\ & & 322 & 52 \end{array}$$

	Critical valu	е		Effect size					
Approach	Туре	Size		.2	.5	.8			
Cohen	Decision error	.125	;	393	64	26			
Approach 1	Decision error	.100		82	40	36			
A 1.0	Decision error	.100		20	8	6			
Approach 2	Indecision		.4	422	.384	.343			
Approach 2b	Indecision	.100		182	108	108			
Арргоасті 20	Decision error		.(005	.007	.007			
A 1.2	B under H_i	10		87	15	6			
Approach 3	$P(BF_{ic} < 1 H_i)$. (91	.089	.091			
A mmua a ab. 2	$1/B$ under H_c	$\frac{1}{10}$		87					
Approach 3	$P(BF_{ic}>1 H_c)$. (091					

Note. Required sample sizes for the evaluation of H_i and H_c with K=2. Effect size indicates d for Cohen (1992), and d_{H_i} for Approach 1–3. Note that $d_{H_c}=.2$ for all approaches. Note that Cohen's approach compares H_0 and H_1 , while Approaches 1–3 compare H_i and H_c . Entries in italics are additional probabilities rendered by an approach.