EE202 Homework 3 (Due Thursday, March 27, 2008)

- i) Solve problems 9.66, 9.67, 9.70, given below (from Nilsson and Riedel, 7th edition)
- ii) Problem 9.66: Find the percentage of average power supplied by the source delivered to 30 Ω and 10 Ω resistors.
 - 9.66 P
- a) Find the steady-state expressions for the currents i_g and i_L in the circuit in Fig. P9.66 when v_g = 70 cos 5000t V.
- b) Find the coefficient of coupling.

Figure P9.66

9.87 For the circuit in Fig. P9.67, find the Thévenin equivalent with respect to the terminals c,d.

Figure P9.67

- 9.70 A series combination of a 300 Ω resistor and a 100 mH inductor is connected to a sinusoidal voltage source by a linear transformer. The source is operating at a frequency of 1 krad/s. At this frequency, the internal impedance of the source is $100 + j13.74 \Omega$. The rms voltage at the terminals of the source is 50 V when it is not loaded. The parameters of the linear transformer are $R_1 = 41.68 \Omega$, $L_1 = 180 \text{ mH}$, $R_2 = 500 \Omega$, $L_2 = 500 \text{ mH}$, and M = 270 mH.
 - a) What is the value of the impedance reflected into the primary?
 - b) What is the value of the impedance seen from the terminals of the practical source?