	19-20-2 高数 B2	模拟题 4	
一、填空题(每空3分,	共15分)		
1、一阶齐次线性微分方程	y'-2xy=0 的通解为		•
2 、将 yoz 平面上的曲线 $\frac{y^2}{4}$	$z + \frac{z^2}{9} = 1$ 绕 z 轴旋转一周	J所生成的旋转曲面的方	程为
3、曲线 $x = t, y = t^2, z = t^3$ 花	· 左点(1,1,1) 的切线的方向]向量为	·
$4 \int_{D} dx dy = \underline{\hspace{1cm}}$,其中 <i>D</i> :1≤x²+	$y^2 \le 4, x \ge 0, y \ge 0.$	
5 、将函数 $f(x) = \frac{1}{1-3x}$ 展	开成 x 的幂级数得		
二、单项选择题(请把下列	列各题答案的序号填入招	5号内,每空3分,共15	5分)
1、一阶线性微分方程 y'+	P(x)y = Q(x) 的通解为().	
$(A) e^{\int -P(x)dx} \left(\int Q(x) e^{\int P(x)dx} \right)$	dx + C	$(B) e^{\int P(x)dx} \left(\int Q(x)e^{\int P(x)dx} \right) dx$	dx + C
$(C) e^{\int -P(x)dx} \left(\int Q(x)e^{\int -\frac{1}{2}} dx \right) = C$	dx + C	$(D) e^{\int P(x)dx} \left(\int Q(x)e^{\int -\frac{1}{2}} dx \right) dx$	dx + C
2、已知直线 $\frac{x-1}{1} = \frac{y}{-4} = \frac{z+3}{1}$ 和平面 $mx + ny + z + 1 = 0$ 垂直,则 ().			
(A) m = -1, n = -4;	(B) m = 1, n = -4;	(C) m = -1, n = 4;	(D) m = 4n - 1.
$3, \lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy}{2 - \sqrt{4 + xy}} = ($).		
(A) -4;	(B) 4;	$(C) \infty;$	(D) 0.
4、以曲面 $z=x^2+y^2$ 为顶,	以 xoy 平面上的区域 L	$D = \{(x, y) x^2 + y^2 \le 1\}$ 为	底,以 D 的边界曲
	z轴的曲顶柱体体积为(
$(A)\frac{\pi}{2};$	$(B) \pi;$	$(C)\frac{3}{2}\pi;$	$(D) 2\pi$.
5、数项级数 $\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt[3]{n}}$	().		
(A) 发散		(B)收敛但是条件收敛	
(C)收敛而且是绝对收敛		(D) 敛散性无法确定	

四 (9分)、设有二元函数 $z=e^{\frac{y}{x}}$,求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ 及全微分 $dz|_{(1,0)}$.

五 (9分)、求 $f(x,y) = y^3 - x^2 + 6x - 12y + 5$ 的极值.

.

六(9分)、计算二重积分 $\iint_D xydxdy$,其中 D 是由直线 y=2,y=x 及 y=2x 所围成的闭区域.

八、(10 分)设有幂级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{3^n n^2} x^n$. (1) 求该幂级数的收敛半径; (2) 指出该幂级数的收敛区间; (3) 讨论该幂级数在收敛区间端点处的敛散性,并写出其收敛域.

十(5 分)、设z = f(u,v),其中 $u = x^2 - y^2, v = y^2 - x^2$, f 具有连续偏导数,证明 $y\frac{\partial z}{\partial x} + x\frac{\partial z}{\partial y} = 0.$