

Power up your Fabric Development with DAX Studio and Tabular Editor

Jason Romans

Senior BI Engineer Builder of Models

Lives in Nashville, Tennessee, United States

Started as SQL Server DBA

Transitioned to the Microsoft BI Stack

Work on everything from SQL Server Integration Services, SQL Server Database, Analysis Services, and Power BI

Simple Talk Author at Redgate

Favorite Data Model

A Padawan Learning from the DAX Jedis

I wouldn't be where I am without the DAX Jedis

DAX or DAX Not, There is No Try

Warning:

MDX Leads to the Dark Side

Thank you to ALL of our sponsors! - Be sure to stop by all tables!

In-Kind O'REILLY

Monthly Meetings

3rd Wednesday of each month
jssug.org

#SQLSatJax

(Across from Registration)

501 Legion Charitable Donation & LEGO Drive

Thank the 501 Legion for Supporting Our Event!

JSSUG Will Match Donations up to \$1000

Donation Bucket on Registration Table

LEGO donation on V for Victory Table

Costume Contest Rules

1. Take a picture with the SQL Saturday Backdrop during the event

2. Post the picture to Twitter/X and include the hashtag #SQLSatJax24CC

3. The tweet using the hashtag that has the most "likes" wins a prize!

Session Evaluations

Your feedback is important to us!

Please fill out and hand to speaker after the session!

Event Evaluation

Fill out event evaluation card in your bag and visit all sponsors to be entered to win an Xbox Series X – (Must be present to win)

Our Journey

- 1. Intro
- 2. Performance Analyzer
- 3. DAX Studio
- 4. Tabular Editor
- 5. Conclusion

Our Journey

1. Intro

- 2. Performance Analyzer
- 3. DAX Studio
- 4. Tabular Editor
- 5. Conclusion

What this session is not

- Learning DAX
- Optimizing DAX
- Different Storage Options Direct Query
- Complete guide to External Tools

Exam DP-600: Implementing Analytics Solutions Using Microsoft Fabric

Design and build semantic models

Identify use cases for DAX Studio and Tabular Editor 2

Optimize enterprise-scale semantic models

- Improve DAX performance by using DAX Studio
- Optimize a semantic model by using Tabular Editor 2

Why is my report slow?

- This should be our motivation
- This can have a lasting impact
 - Power BI Developer Skills
 - Career Development

Power BI is Part of Fabric

- If you have a Fabric capacity it enhances what you can do with Power BI
 - OneLake
 - Default Semantic Model
- What we cover today applies to Power BI Pro,
 Premium, Fabric
 - Exceptions will be noted

Office 365

Power BI Tools **DAX Studio** Slow Measure **Best Practice** Tabular Editor Analyzer Test DAX **DAX Studio** Power BI Measure Change Automate Tabular Editor Adding Measures in C# **Report Timings** Perf Analyzer

Our Journey

1. Intro

2. Performance Analyzer

- 3. DAX Studio
- 4. Tabular Editor
- 5. Conclusion

Performance Analyzer

Not an External Tool

Built into Power BI Desktop

Performance Analyzer

Performance Analyzer Start Recording

Performance Analyzer Recording

Performance Analyzer Refresh Visuals

Individual Refresh Button

Date	Total Quantity	D V E	
Wednesday, January 01, 2020	7,759		
Thursday, January 02, 2020	8,256		ı
Friday, January 03, 2020	5,482		ı
Saturday, January 04, 2020	8,608		ı
Sunday, January 05, 2020	1,144		ı
Monday, January 06, 2020	3,823		ı
Tuesday, January 07, 2020	4,414		ı

List of Visuals

Expanded View

Detail on Card

Refreshed visual	
□ Card	65
DAX query	3
Visual display	3
Other	59
Copy query	
Run in DAX Query View	

DAX Query

- DAX Query
 - Time it takes to execute the DAX query

DAX Query - Solutions

- Make DAX go faster
 - We will see how to start on this journey

Visual Display

- Visual Display
 - Time spent on producing the visual

Slow Visual

Visual Display - Solutions

- Reduce the complexity of visual
 - Granularity of visual
- Use a Background Image

Other

- Other
 - Time waiting until DAX Query could be executed

Other - Solutions

Reduce Visualizations on the Page

Check to see if bottleneck elsewhere

Run in DAX Query View (Preview)

Enable DAX Query View - Options

Options and settings

Data source settings

DAX Query View - Preview Features

Options

Query View

- Queries are saved with the model
- Share or preserve slow query
- First exposure to DAX Queries
- Query View has many uses i.e. validations

What about that slow DAX Query?

External Tools

Power BI

Installation

Full Install

Power BI Desktop

External Tools Tab

External Tools Tab

What if the DAX Query is Slow?

Our Journey

- 1. Intro
- 2. Performance Analyzer
- 3. DAX Studio
- 4. Tabular Editor
- 5. Conclusion

DAX Studio

Query Plans

Logical

Physical

DAX Studio

- Performance Tuning
 - Where is the query spending the most time
 - Formula Engine
 - Storage Engine

Slow DAX Query

Copy query

Copied

Power BI - Open DAX Studio

Paste in DAX Studio

Let's Run It

Results - Like Query View

Traces

Query Plan

DAX Studio - Query Plan

Record	[][] Pause	□ Stop	
ine	Records	Physical Query Plan	
13		PartitionIntoGroups: IterPhyOp LogOp=Order IterCols(0, 1, 2, 3)("Date"[Year Month], "[IsGrandTotalRowTotal], "[Total_BIG_Orders_Good], "[]) #Groups=1 #Rows=120	
2	1	AggregationSpool < Order >: SpoolPhyOp #Records = 1	
3		Proxy: IterPhyOp LogOp=TableVarProxy IterCols(0, 1, 2, 3)('Date'[Year Month], "[IsGrandTotalRowTotal], "[Total_BIG_Orders_Good], "[])	
4		Proxy: IterPhyOp LogOp=TableVarProxy IterCols(0, 1, 2, 3)('Date'[Year Month], "[IsGrandTotalRowTotal], "[Total_BIG_Orders_Good], "[])	
5		Union: (terPhyOp LogOp=Union IterCols(0, 1, 2, 3)('Date'[Year Month], "[IsGrandTotalRowTotal], "[Total_BIG_Orders_Good], "[])	
6		GroupSemijoin: IterPhyOp EogOp=GroupSemiJoin IterCols(0, 1, 2)("Date"[Year Month], "[IsGrandTotalRowTotal], "[Total_BIG_Orders_Good])	
7	119	Spool_Iterator <spooliterator>: IterPhyOp_LogOp=DistinctCount_Vertipaq IterCols(0)('Date'[Year Month]) #Records=119 #KeyCols=70 #ValueCols=1</spooliterator>	
.8	119	ProjectionSpool <projectfusion<capy>>: SpoolPhyOp #Recards=119</projectfusion<capy>	
9		Cache: IterPhyOp #FieldCols=1 #ValueCols=1	
10		GroupSemijoin: IterPhyOp LogOp=GroupSemiJoin IterCols(0, 1, 2)('Date'[Year Month], "[IsGrandTotalRowTotal], "[Total_BIG_Orders_Good])	
11	1	Spool Iterator <spooliterator>: IterPhvOn LooOn=DistinctCount Vertinan #Records=1 #KevCols=70 #ValueCols=1</spooliterator>	
ine	Logical Quer	y Plan	
1.	_DS0Core: Union: RelLogOp VarName=_DS0Core DependOnCols()() 0-3 RequiredCols(0, 1, 2, 3)('Date'[Year Month], "[IsGrandTotalRowTotal], "[Total_BIG_Orders_Good], "[])		
2	GroupSemiJoin: RelLogOp DependOnCols()() 0-2 RequiredCols(0, 1, 2)("Date"[Year Month], "[IsGrandTotalRowTotal], "[Total_BIG_Orders_Good])		
3	Scan_Vertipaq: RelLogOp DependOnCols()() ()-0 RequiredCols(0)('Date'[Year Month])		
4	Constant: ScaLogOp DependOnCols()() Boolean DominantValue=false		
5	Calculate: ScaLogOp MeasureRef=[Total BIG Orders Good] DependOnCols(0)('Date'[Year Month]) Integer DominantValue=BLANK		
6	DistinctCount_Vertipaq: ScaLogOp DependOnCols(0)('Date'[Year Month]) Integer DominantValue=BLANK		
7	Scan_Vertipaq: RelLogOp DependOnCols(0)('Date'[Year Month]) 2-2 RequiredCols(0)('Date'[Year Month])		
8	Filter_Vertipaq: RelLogOp DependOnCols()() 1-1 RequiredCols(1)('Sales'[Net Price])		
9	Scan_Vertipaq: RelLogOp DependOnCols()() 1-1 RequiredCols(1)('Sales'[Net Price])		
10	GreaterThan: ScaLogOp DependOnCols(1)("Sales'[Net Price]) Boolean DominantValue=NONE		
11		Sales [Net Price]: ScaLogOp DependOnCols(1)("Sales [Net Price]) Currency DominantValue=NONE	

What the French Toast

DAX Studio - Query Plan

Record	[][] Pause	□ Stop	
ine	Records	Physical Query Plan	
13		PartitionIntoGroups: IterPhyOp LogOp=Order IterCols(0, 1, 2, 3)("Date"[Year Month], "[IsGrandTotalRowTotal], "[Total_BIG_Orders_Good], "[]) #Groups=1 #Rows=120	
2	1	AggregationSpool < Order >: SpoolPhyOp #Records = 1	
3		Proxy: IterPhyOp LogOp=TableVarProxy IterCols(0, 1, 2, 3)('Date'[Year Month], "[IsGrandTotalRowTotal], "[Total_BIG_Orders_Good], "[])	
4		Proxy: IterPhyOp LogOp=TableVarProxy IterCols(0, 1, 2, 3)('Date'[Year Month], "[IsGrandTotalRowTotal], "[Total_BIG_Orders_Good], "[])	
5		Union: (terPhyOp LogOp=Union IterCols(0, 1, 2, 3)('Date'[Year Month], "[IsGrandTotalRowTotal], "[Total_BIG_Orders_Good], "[])	
6		GroupSemijoin: IterPhyOp EogOp=GroupSemiJoin IterCols(0, 1, 2)("Date"[Year Month], "[IsGrandTotalRowTotal], "[Total_BIG_Orders_Good])	
7	119	Spool_Iterator <spooliterator>: IterPhyOp_LogOp=DistinctCount_Vertipaq IterCols(0)('Date'[Year Month]) #Records=119 #KeyCols=70 #ValueCols=1</spooliterator>	
.8	119	ProjectionSpool <projectfusion<capy>>: SpoolPhyOp #Recards=119</projectfusion<capy>	
9		Cache: IterPhyOp #FieldCols=1 #ValueCols=1	
10		GroupSemijoin: IterPhyOp LogOp=GroupSemiJoin IterCols(0, 1, 2)('Date'[Year Month], "[IsGrandTotalRowTotal], "[Total_BIG_Orders_Good])	
11	1	Spool Iterator <spooliterator>: IterPhvOn LooOn=DistinctCount Vertinan #Records=1 #KevCols=70 #ValueCols=1</spooliterator>	
ine	Logical Quer	y Plan	
1.	_DS0Core: Union: RelLogOp VarName=_DS0Core DependOnCols()() 0-3 RequiredCols(0, 1, 2, 3)('Date'[Year Month], "[IsGrandTotalRowTotal], "[Total_BIG_Orders_Good], "[])		
2	GroupSemiJoin: RelLogOp DependOnCols()() 0-2 RequiredCols(0, 1, 2)("Date"[Year Month], "[IsGrandTotalRowTotal], "[Total_BIG_Orders_Good])		
3	Scan_Vertipaq: RelLogOp DependOnCols()() ()-0 RequiredCols(0)('Date'[Year Month])		
4	Constant: ScaLogOp DependOnCols()() Boolean DominantValue=false		
5	Calculate: ScaLogOp MeasureRef=[Total BIG Orders Good] DependOnCols(0)('Date'[Year Month]) Integer DominantValue=BLANK		
6	DistinctCount_Vertipaq: ScaLogOp DependOnCols(0)('Date'[Year Month]) Integer DominantValue=BLANK		
7	Scan_Vertipaq: RelLogOp DependOnCols(0)('Date'[Year Month]) 2-2 RequiredCols(0)('Date'[Year Month])		
8	Filter_Vertipaq: RelLogOp DependOnCols()() 1-1 RequiredCols(1)('Sales'[Net Price])		
9	Scan_Vertipaq: RelLogOp DependOnCols()() 1-1 RequiredCols(1)('Sales'[Net Price])		
10	GreaterThan: ScaLogOp DependOnCols(1)("Sales'[Net Price]) Boolean DominantValue=NONE		
11		Sales [Net Price]: ScaLogOp DependOnCols(1)("Sales [Net Price]) Currency DominantValue=NONE	

DAX Studio - All Queries

Like SQL Profiler

DAX Studio - All Queries

DAX Studio - Server Timings

Cache

Two Engines

Formula Engine

Storage Engine

Formula Engine

Does not cache

Single threaded

Storage Engine

- Can cache
- Can be multithreaded
- Operations depend on the storage engine
 - Vertipaq very limited

DAX

EVALUATE 'Product'

Vertipaq - xmSQL

SELECT

```
'Product'[RowNumber],
  'Product'[ProductKey],
  'Product'[Product Code],
  'Product'[Product Name],
  'Product'[Manufacturer],
  'Product'[Brand],
  'Product'[Color],
  'Product'[Weight Unit Measure],
  'Product'[Weight],
  'Product'[Unit Cost],
  'Product'[Unit Price],
  'Product'[Subcategory Code],
  'Product'[Subcategory],
  'Product'[Category Code],
  'Product'[Category]
FROM 'Product';
```


Type of Storage Engine

- Vertipaq
 - Needs Formula Engine for IF Statement
- SQL Server
 - Can push IF equivalent to SQL Server

Vertipaq

Column Based

Compressed

Encoded

Location of Query and Server Timings

DAX Studio - Server Timings - Bad

Server Timings - Bad - DAX Code

```
CALCULATE (
    DISTINCTCOUNT ( Sales[Order Number] ),
    FILTER ( 'Sales', 'Sales'[Net Price] > 10 )
)
```


DAX Studio - Server Timings - Good

DAX Studio - Most Formula Engine

Ways to invoke Formula Engine

IF Statements

• CONCATENATE

CallbackDataID

WHERE

```
(COALESCE (CallbackDataID (IF (
```

```
'Product'[Color] = "Blue", 1,0 ) ) ]
```

(**PFDATAID** ('Product'[Color]))) <> 0);

Simple way to increase Query Time

Filter by the full table

```
CALCULATE (
```

[Sales Amount],

FILTER (Sales, Sales[Quantity] > 1

The more you know...

- If you can think like the engines
 - You can anticipate performance issues

Our Journey

- 1. Intro
- 2. Performance Analyzer
- 3. DAX Studio
- 4. Tabular Editor
- 5. Conclusion

Tabular Editor

- Main Uses
 - Develop the model
 - Make changes
- Audit the model
 - Best Practice Analyzer

Tabular Editor 2.x

Free version

Version listed in DP-600 Study Guide

Tabular Editor 3.x

Paid Version

Extra Features

DAX Debugger

Tabular Editor 2

Optimize a semantic model by using Tabular Editor 2

Best Practice Analyzer

Best Practice Analyzer Location

Add and Manage Rules

Best Practice Analyzer – C# Script Download

BPA - Rule Exceptions for model

BPA - Rule Exceptions for model

BPA - Manage Rules DAX Expressions

Rules in collection:		
Rule name	Scope	Severity
□ DAX Expressions		
☑ [DAX Expressions] Avoid using "1-(x/y)" syntax	Measures, Calculated Columns, Calculation Items	2
☑ [DAX Expressions] Avoid using the IFERROR function	Measures, Calculated Columns	2
[DAX Expressions] Column references should be fully qualified	Measures, KPIs, Table Permissions, Calculation Items	3
☑ [DAX Expressions] Filter column values with proper syntax	Measures, Calculated Columns, Calculation Items	2
[DAX Expressions] Filter measure values by columns, not tables	Measures, Calculated Columns, Calculation Items	2
[DAX Expressions] Inactive relationships that are never activated	Relationships	2
[DAX Expressions] Measure references should be unqualified	Measures, Calculated Columns, Calculated Tables, KPIs, Calculation Items	3
[DAX Expressions] Measures should not be direct references of other measures.	Measures	2
[DAX Expressions] No two measures should have the same definition	Measures	2
[DAX Expressions] The EVALUATEANDLOG function should not be used in production models	Measures	1
☑ [DAX Expressions] Use the DIVIDE function for division	Measures, Calculated Columns, Calculation Items	2
[DAX Expressions] Use the TREATAS function instead of INTERSECT for virtual relationships	Measures, Calculation Items	2

Edit Rule

Description with help link

Instead of using this pattern FILTER('Table',[Measure]>Value) for the filter
parameters of a CALCULATE or CALCULATETABLE function, use one of the options
below (if possible). Filtering on a specific column will produce a smaller table for
the engine to process, thereby enabling faster performance. Using the VALUES
function or the ALL function depends on the desired measure result.

- Option 1: FILTER(VALUES('Table'[Column]),[Measure] > Value)
- Option 2: FILTER(ALL('Table'[Column]),[Measure] > Value)

Reference: https://docs.microsoft.com/power-bi/guidance/dax-avoid-avoid-filter-as-filter-argument

Our Journey

- 1. Intro
- 2. Performance Analyzer
- 3. DAX Studio
- 4. Tabular Editor

5. Conclusion

Conclusion

- Slow Report?
 - Start with the report
 - Performance Analyzer
 - DAX Studio
 - Tabular Editor
- Learn DAX

Resources

<u>Tabular Editor – Wonderful Training Free</u>

<u>Tabular Editor – Blog Posts</u>

DAX Studio

Tabular Editor 2.x

Resources

Data Goblins - Sample Datasets

Data Mozart - Lots of DP-600 Resources Visual Speed

The Definitive Guide to DAX - 2nd Edition

Optimizing DAX Book 2nd Edition

Resources

Elegant BI Blog (Excellent Source)

Microsoft Best Practice Rules

Thank you

Jason Romans thedaxshepherd@gmail.com www.thedaxshepherd.com

