MICROWIRE™ Serial Interface

INTRODUCTION

MICROWIRE is a simple three-wire serial communications interface. Built into COPSTM, this standardized protocol handles serial communications between controller and peripheral devices. In this application note are some clarifications of MICROWIRE logical operation and of hardware and software considerations.

LOGICAL OPERATION

The MICROWIRE interface is essentially the serial I/O port on COPS microcontrollers, the SIO register in the shift register mode. SI is the shift register input, the serial input line to the microcontroller. SO is the shift register output, the serial output line to the peripherals. SK is the serial clock; data is clocked into or out of peripheral devices with this clock.

It is important to examine the logical diagram of the SIO and SK circuitry to fully understand the operation of this I/O port (Figure 1).

CLOCK STARTS

INTERNAL

CLOCK

GET

OPCODE

National Semiconductor Application Note 452 Abdul Aleaf January 1992

The output at SK is a function of SYNC, EN0, CARRY, and the XAS instruction. If CARRY had been set and propagated to the SKL latch by the execution of an XAS instruction, SYNC is enabled to SK and can only be overridden by EN0 (Figure 2). Trouble could arise if the user changes the state of EN0 without paying close attention to the state of the latch in the SK circuit.

If the latch is set to a logical high and the SIO register enabled as a binary counter, SK is driven high. From this state, if the SIO register is enabled as a serial shift register, SK will output the SYNC pulse immediately, without any intervening XAS instruction.

The SK clock (SYNC pulse) can be terminated by issuing an XAS instruction with CARRY = 0 (Figure 3).

EXECUTE

MICROWIRE™, COPS™ and MOLE™ are trademarks of National Semiconductor Corp. TRI-STATE® is a registered trademark of National Semiconductor Corp.

The SIO register can be compared to four master-slave flip-flops shown in *Figure 4*. The masters are clocked by the rising edges of the internal clock. The slaves are clocked by the falling edges of the internal clock. Upon execution of an XAS, the outputs of the masters are exchanged with the contents of the accumulator (read and overdrive) in such a way that the new data are present at the inputs of the four slaves when the falling edge of the internal clock occurs. The content of the accumulator is, therefore, latched respectively in the four slave flip-flops and bit 3 appears directly on SO.

This means that:

 a) SO will be shifted out upon the falling edges of SK and will be stable during rising edges of SK. b) SI will be shifted in upon the rising edge of SK, and will be stable when executing, i.e., an XAS instruction.

The shifting function is automatically performed on each of the four instruction cycles that follow an XAS instruction (Figure 5).

When the SIO register is in the shift register mode (EN0 = 0), it left shifts its contents once each instruction cycle. The data present on the SI input is shifted into the least significant bit (bit 0) of the serial shift register. SO will output the most significant bit of the SIO register (bit 3) if EN3 = 1. Otherwise, SO is held low. The SK is a logic controlled clock which issues a pulse each instruction cycle. To ensure that the serial data stream is continuous, an XAS instruction must be executed every fourth time. Serial I/O timing is related to instruction cycle timing in the following way:

The first clock rising edge of the instruction cycle triggers the low-to-high transition of SYNC output via SK. At this time, the processor reads the state of SI into SIO bit 0, shifting the current bits 0-2 left. Halfway through the cycle (shown in Figure 6 as the eight clock rising edge), SK is reset low and the new SIO bit 3 is outputted via SO.

INTERFACING CONSIDERATIONS

To ensure data exchange, two aspects of interfacing have to be considered: 1) serial data exchange timing; 2) fan-out/ fan-in requirements. Theoretically, infinite devices can access the same interface and be uniquely enabled sequentially in time. In practice, however, the actual number of devices that can access the same serial interface depends on the following: system data transfer rate, system supply requirement capacitive loading on SK and SO outputs, the fan-in requirements of the logic families or discrete devices to be interfaced.

HARDWARE INTERFACE

Provided an output can switch between a HIGH level and a LOW level, it must do so in a predetermined amount of time for the data transfer to occur. Since the transfer is strictly synchronous, the timing is related to the system clock (SK) (Figure 7). For example, if a COPS controller outputs a value at the falling edge of the clock and is latched in by the peripheral device at the rising edge, then the following relationship has to be satisfied:

$$t_{DELAY} + t_{SETUP} \le t_{CK}$$

where tox is the time from data output starts to switch to data being latched into the peripheral chip, tSETUP is the setup time for the peripheral device where the data has to be at a valid level, and t_{DFI AY} is the time for the output to read the valid level. t_{CK} is related to the system clock provided by the SK pin of the COPS controller and can be increased by increasing the COPS instruction cycle time.

The maximum $t_{\mbox{\footnotesize SETUP}}$ is specified in the peripheral chip data sheets. The maximum t_{DELAY} allowed may then be derived from the above relationship.

Most of the delay time before the output becomes valid comes from charging the capacitive load connected to the output. Each integrated circuit pin has a maximum load of 7 pF. Other sources come from connecting wires and connection from PC boards. The total capacitive load may then be estimated. The propagation delay values given in data sheets assume particular capacitive loads (e.g. $V_{CC} = 5V$, $V_{\mbox{OH}}\,=\,0.4V$, loading $=\,50$ pF, etc.).

If the calculated load is less than the given load, those values should be used. Otherwise, a conservative estimate is to assume that the delay time is proportional to the capaci-

If the capacitive load is too large to satisfy the delay time criterion, then three choices are available. An external buffer may be used to drive the large load. The COPS instruction cycle may be slowed down. An external pullup resistor may be added to speed up the LOW level to HIGH level transition. The resistor will also increase the output LOW level and increase the HIGH level to LOW level transition time, but the increased time is negligible as long as the output LOW level changes by less than 0.3V. For a 100 pF load, the standard COPS controller may use a 4.7k external resistor, with the output LOW level increased by less than 0.2V. For the same load, the low power COPS controller may use a 22k resistor, with the SO and SK LOW levels increased by less than 0.1V.

Besides the timing requirements, system supply and fanout/fan-in requirements also have to be considered when interfacing with MICROWIRE. For the following discussion, we assume single supply push-pull outputs for system clock (SK) and serial output (SO), high-impedance input for serial input (SI).

To drive multi-devices on the same MICROWIRE, the output drivers of the controller need to source and sink the total maximum leakage current of all the inputs connected to it and keep the signal level within the valid logic "1" or logic "0". However, in general, different logic families have different valid "1" and "0" input voltage levels. Thus, if devices of different types are connected to the same serial interface, the output driver of the controller must satisfy all the input requirements of each device. Similarly, devices with TRI-STATE® outputs, when connected to the SI input, must satisfy the minimum valid input level of the controller and the maximum TRI-STATE leakage current of all outputs.

So, for devices that have incompatible input levels or source/sink requirements, external pull-up resistors or buffers are necessary to provide level-shifting or driving.

SOFTWARE INTERFACE

The existing MICROWIRE protocol is very flexible, basically divided into two groups:

1) 1AAA.....ADDD.....D

where leading 1 is the start bit and leading zeroes are ianored.

AAA.....A is device variable instruction/address word. DDD.....D is variable data stream between controller and device

2) No start bit, just bit stream, i.e., bbb.....b

where b is a variable bit stream. Thus, device has to decode various fields within the bit stream by counting exact bit po-

SERIAL I/O ROUTINES

Routines for handling serial I/O are provided below. The routines are written for 16-bit transmissions, but are trivially expandable up to 64-bit transmissions by merely changing the initial LBI instruction. The routines arbitrarily select register 0 as the I/O register. It is assumed that the external device requires a logic low chip select. It is further assumed that chip select is high and SK and SO are low on entry to the routines. The routines exit with chip select high, SK and SO low. GO is arbitrarily chosen as the chip select for the external device.

SERIAL DATA OUTPUT

This routine outputs the data under the conditions specified above. The transmitted data is preserved in the microcon-

OUT2: LBI 0,12 ; point to start of data word

SC

OGI 14 ; select the external

device

		- AD	Parte i Michowine Standard Failing	Part Number		
Features	ıres	00000	2		COP430	
		D58908	MIMI 34 3 X	COP472-3	(ADC83X)	NM93C06A
GENERAL						
Chip Function	ınction	AM/PM PLL	LED Display Driver	LCD Display Driver	A/D	E ² PROM
Process	ess	ECL	NMOS	CMOS	CMOS	NMOS
V _{CC} Range	ange	4.75V-5.25V	4.5V-11V	3.0V-5.5V	4.5V-0.3V	4.5V-5.5V
Pinout	out	20	40	20	8/14/20	4
HARDWARE INTERFACE	ERFACE					
Min V _{IH} /Max V _{IL}	Max V _{IL}	2.1V/0.7V	2.2V/0.8V	0.7V _{CC} /0.8V	2.0V/0.8V	2.0V/0.8V
SK Clock Range	د Range	0-625 kHz	0-500 kHz	4-250 kHz	10-200 kHz	0-250 kHz
Write	Setup Min	srl E'0	8n E.O	1 µs	0.2 µs	0.4 µs
Data DI	Hold Min	8'0	(3)	100 ns	0.2 µs	0.4 µs
Read Data Prop Delay	Prop Delay	(Note 4)	(Note 3)	(Note 3)	(Note 3)	
Chip	Setup	0.3 µs	0.4 µs	1 μs (Note 1)	0.2 µs	0.2 µs
Enable	НОГР	8'0	(Note 3)	1 μs (Note 2)	0.2 µs	0
Max	AM	8 MHz	(Note 3)	(Note 3)	(Note 3)	(Note 3)
Frequency Range	M	120 MHz	(Note 3)	(Note 3)	(Note 3)	(Note 3)
SOFT						
Serial I/O Protocol	Protocol	11D1D20	1D1D35	b1b40	1xxx	1AADD
Instruction/Address Word	ddress Word	None	None	None	(Note 4)	(Note 4)
Note 1: Reference to SK rising edge. Note 2: Reference to SK falling edge. Note 3: Not defined.	ising edge. alling edge.					
Note 4: See data sheet for	Note 4: See data sheet for different modes of operation.					

	LEI	8	; enable shift register mode
	JP	SEND2	
SEND1:	XAS		
SEND2:	LD		; data output loop
	XIS		
	JP	SEND1	
	XAS		; send last data
	RC		
	CLRA		
	NOP		
	XAS		; turn SK clock off
	OGI	15	; deselect the device
	LEI	0	; turn SO low
	RET		

The code for reading serial data is almost the same as the serial output code. This should be expected because of the nature of the SIO register and the XAS instruction.

MICROWIRE STANDARD FAMILY

A whole family of off-the-shelf devices exists that is directly compatible with MICROWIRE serial data exchange standard. This allows direct interface with the COPS family of microcontrollers.

Table I provides a summary of the existing devices and their functions and specifications.

TYPICAL APPLICATION

Figure 8 shows pin connection involved in interfacing an E2PROM with the COP420 microcontroller.

TL/DD/8796-8

FIGURE 8. NM93C06A COP420 Interface

The following points have to be considered:

- 1. For NM93C06A the SK clock frequency should be in the 0 kHz-250 kHz range. This is easily achieved with COP420 running at 4 μs -10 μs instruction cycle time (SK period is the COP420 instruction cycle time). Since the minimum SK clock high time is greater than 1 μs , the duty cycle is not a critical factor as long as the frequency does not exceed the 250 kHz max.
- CS low period following an E/W instruction must not exceed 30 ms maximum. It should be set at typical or minimum spec of 10 ms. This is easily done in software using the SKT timer on COP420.

FIGURE 9. NM93C06A Timing

- As shown in WRITE timing diagram, the start bit on DI must be set by a "0" to "1" transition following a CS enable ("0" to "1") when executing any instruction. One CS enable transition can only execute one instruction.
- 4. In the read mode, following an instruction and data train, the DI can be a "don't care," while the data is being outputted, i.e., for the next 17 bits or clocks. The same is true for other instructions after the instruction and data has been fed in.
- 5. The data-out train starts with a dummy bit 0 and is terminated by chip deselect. Any extra SK cycle after 16 bits is not essential. If CS is held on after all 16 of the data bits have been outputted, the DO will output the state of DI until another CS LO to HI transition starts a new instruction cycle.
- After a read cycle, the CS must be brought low for one SK clock cycle before another instruction cycle starts.

INSTRUCTION SET

Commands	Opcode	Comments	
READ	10000A3A2A1A0	Read Register 0-15	
WRITE	11000A3A2A1A0	Write Register 0-15	
ERASE	10100A3A2A1A0	Erase Register 0-15	
EWEN	111000 0 0 1	Write/Erase Enable	
ENDS	111000 0 1 0	Write/Erase Disable	
***WRAL	111000 1 0 0	Write All Registers	
ERAL	111000 1 0 1	Erase All Registers	

All commands, data in, and data out are shifted in/out on rising edge of SK clock.

Write/erase is then done by pulsing CS low for 10 ms. All instructions are initiated by a LO-HI transition on CS followed by a LO-HI transition on DI.

READ— After read command is shifted in DI becomes don't care and data can be read out on data out, starting with dummy bit zero.

WRITE— Write command shifted in followed by data in (16 bits) then CS pulsed low for 10 ms minimum.

ERASE

 ${\tt ERASE\ ALL-Command\ shifted\ in\ followed\ by\ CS\ low}.$

WRITE ALL—Pulsing CS low for 10 ms.

WRITE

***(This instruction is not speced on Data sheet.)


```
I/O ROUTINE TO EVALUATE COP494
                                    E494, "I/O ROUTINE TO EVALUATE COP494"
  1
                        .TITLE
        01A4
                        .CHIP
  2
                                    420
        0000
                        .PAGE
  3
                                    0
  4
                 ;THIS IS I/O ROUTINE TO EVALUATE COP494
  5
  6
                 ;
  8
                 ; RAM VARIABLES DECLARATIONS:
  9
                        COMMAND = 0, 14
                                                 ;494 8BITS INST/ADDR WORD
 10
 11
        0010
                        RWDATA = 1, 12
                                                 ;494 16BITS R/W DATA BUFFER
 12
 13 000 00
                PON: CLRA
                                                 ;POWER-ON INIT
 14 001 32
                        RC
                                                 ;RESET SK CLOCK
 15 002 4F
                        XAS
 16 003 3F
                 CLRAM: LBI
                                3, 0
                                                 ;CLEAR RAM FROM 7, 0 TO 0, 15
                CLR: CLRA
 17 004 00
 18 005 04
                        XIS
                        JP
                               CLR
                                                 ;CONTI CLEAR REG
 19 006 C4
 20 007 12
                        XABR
                                                 ;(A) TO BR
                        AISC 15
 21 008 5F
                                                 ;REG O CLEARED?
 22 009 600F
                 DONE: JMP
                                C494DR
                                                 ;Y, DONE CLEAR RAM, CALL 494 D
 23 00B 12
                        XABR
                                                 ;N, DEC BR
 24 00C C4
                        JP
                                CLR
                                                 ;CONTI CLEAR REG TILL DONE
 25 00D 44
                        NOP
 26 00E 44
                        NOP
 27
                ;*** START 494 DRIVER SAMPLE CALLING SEQUENCE ***
 28
 29
 30
                 C494DR:
                                                 ;INIT CALLING SEQUENCE
 31 00F 3350
                        OGI
                                0
                                                 ;GO=L TO DESELECT 494
 32 011 3368
                        LEI
                                8
                                                 ;ENABLE SIO AS S.R.
                 ERASE:
 33
 34 013 OD
                        LBI
                                COMMAND
                                                 ;PRELOAD 494 ERASE REG A3-A0
 35 014 7C
                        STII
                                                 ;PRELOAD 494 ERASE INST
 36 015 70
                        STII
                                0
                                                 ;SELECT REG A3-A0
 37 016 690E
                        JSR
                                WI4P4
                                                ;SEND IT
                 WEEN:
 39 O1B OD
                        LBI
                                COMMAND
                                                 ;LOAD 494 WHEN REG A3-A0
 40 019 73
                        STII
                                3
                                                 ;PRELOAD 494 WREN INST
 41 01A 70
                        STII
                                0
                                                 ;SELECT REG A3-A0
 42 01B 690E
                        JSR
                                WI494
                                                 ;SEND IT
 43
                 WRITE:
 44 OlD OD
                        LBI
                                COMMAND
                                                 ;PRELOAD WR REG A3-A0
 45 OlE 74
                        STII
                                4
                                                 ;PRELOAD 494 WRITE INST
 46 OlF 70
                                                 ;SELECT REG A3-A0
                        STII
                                0
 47 020 1B
                       LBI
                                                 ;PRELOAD 494 SAMPLE WRITE DATA
                                RWDATA
 48 021 75
                        STII
                                5
 49 022 7A
                       STII
                                ON
 50 023 75
                        STII
                                5
```

	004	~4		am	0.4	
	024			STII	OA WD404	CEND THEN TO 404
52 53		6900	DEAD.	JSR	WD494	;SEND THEM TO 494
		OΠ	READ:	LBI	COMMAND	DDELOAD DEAD DEG AZ AG
	027				COMMAND 8	;PRELOAD READ REG A3-A0
	028			STII		;PRELOAD 494 READ INST
	029			STII	0 PD404	;SELECT REG A3-A0 :READ 494 DATA BACK VIA SI
		6908		JSR	RD494	; NEAD 494 DATA DACK VIA SI
	020			NOP		
	02D	44		NOP		
60		0000		DAGE	0	;SUBROUTINE PAGE
61	080	0080	SETUP:	.PAGE RC	2	•
			SEIOF:			;RESET SK BEFORE SELECT 494
	081			XAS	,	.CO I MO CELEGE AOA
		3351		OGI	1	GO=1 TO SELECT 494
	084			CLRA		;ENSURE SO=L BEFORE GEN START B
	085			SC		;
	086			XAS		TURN ON SK CLOCK
	087			CLRA	_	GENERATE 494 START BIT
	880			AISC	1	;
	089			SC		;
	A80			XAS		;SEND IT AS MSB VIA SO
	08B			LBI	COMMAND	;FETCH 1ST INST/ADDR WORD
	080			LD		
	08D			NOP		;
	08E			XAS		;SEND IT (MSB OF INST FIRST)
	08F			LBI	COMMAND+1	;FETCH 2ND INST/ADDR NIBBLE
	090			LD		
	091			NOP		
	092			XAS		;SEND IT
	093			LBI	RWDATA	;POINT TO READ/WRITE DATA BUFFER
	094	48		RET		;RET OF SETUP
82						
	095			CLRA		;VPP WIDTH, TWE>20MS @ 4Us/INST
	096		TWECONT:		11	;5 SKT LOOPS?
	097			JP	. + 2	;N,CONTI
	098		TWEDONE:	RET		;Y,DONE
87	099	41		SKT		;
	09A			JP	1	;
89	09B	96		JP	TWECONT	;CONTI TWE TIME
90						
91	09C	48	RET;	RET		;2 CYCLES DELAY
92						
93		0100		.PAGE	4	;
94						
95			***	START	494 I/O DRIVER	SUBROUTINE ***
96						
97	100	80	WD494:	JSRP	SETUP	;ENTRY TO WRITE 494 REG A3-A0
98	101	05	RWLOOP:	LD		;R/W 494 16 DATA BITS
99	102	4F		XAS		;
.00	103	04		XIS		;

I/O ROUTINE TO EVALUATE COP494 (Continued) 101 104 C1 JP RWLOOP 102 105 3350 OGI 0 ;DESELECT 494 AFTER R/W DATA JΡ 103 107 D1 FINI 104 108 80 RD494: JSRP SETUP :ENTRY TO RD 494 REG A3-A0 105 109 00 :FINISH SEND OUT A3-A0 VIA SO CLRA 106 10A 44 NOP ;WAIT 1BIT TIME FOR VALID D15 107 10B 44 NOP 108 100 44 NOP 109 10D C1 JΡ RWLOOP ;ENTRY TO WRITE INST TO 494 110 10E 80 WI494: JSRP SETUP 111 10F 00 CLRA ;ENSURE SO = L 112 110 4F XAS 113 111 00 FINI: CLRA ;ENSURE SO = L BETWEEN INST 114 112 3350 OGI ;DESELECT 494 BETWEEN INST WRIT 115 114 32 RC 116 115 4F XAS ;TURN OFF SK CLOCK 117 116 95 JSRP TWEDLY ;DELAY TWE >20MS TO PULSE VPP=21 118 117 48 RET ;RET OF WD494 OR RD494 OR WI494 119 120 .END

SOFTWARE DEBUG OF SERIAL REGISTER FUNCTIONS

In order to understand the method of software debug when dealing with the SIO register, one must first become familiar with the method in which the COPS MOLETM (Development System) BREAKPOINT and TRACE operations are carried out. Once these operations are explained, the difficulties which could arise when interrogating the status of the SIO register should become apparent.

SERIAL OUT DURING BREAKPOINT

When the MOLE BREAKPOINTs, the COPS user program execution is stopped and execution of a monitor-type program, within the COP device, is started. At no time does the COP part "idle." The monitor program loads the development system with the information contained in the COP registers

Note also that single-step is simply a BREAKPOINT on every instruction.

If the COP chip is BREAKPOINTed while a serial function is in progress, the contents of the SIO register will be destroyed.

By the time the monitor program dumps the SIO register to the MOLE, the contents of the SIO register will have been written over by clocking in SI. To inspect the SIO register using BREAKPOINT, an XAS must be executed prior to BREAKPOINT; therefore, the SIO register will be saved in the accumulator.

An even more severe consequence is that the monitor program executes an XAS instruction to get the contents of the SIO register to the MOLE. Therefore, the SK latch is dependent on the state of the CARRY prior to the BREAKPOINT. In order to guarantee the integrity of the SIO register, one must carefully choose the position of the BREAKPOINT address.

As can be seen, it is impossible to single-step or BREAK-POINT through a serial operation in the SIO register.

SERIAL OUT DURING TRACE

In the TRACE mode, the user's program execution is never stopped. This mode is a real-time description of the program counter and the external event lines; therefore, the four external event lines can be used as logic analyzers to monitor the state of any input or output on the COPS device. The external event lines must be tied to the I/O which is to be monitored

The state of these I/O (external event lines) is displayed along with the TRACE information. The safest way to monitor the real-time state of SO is to use the TRACE function in conjunction with the external event lines.

CONCLUSIONS

National's super-sensible MICROWIRE serial data exchange standard allows interfacing to any number of specialized peripherals using an absolute minimum number of valuable I/O pins; this leaves more I/O lines available for system interfacing and may permit the COPS controller to be packaged in a smaller package.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

AN-452

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Europe Fax: (+49) 0-180-530 85 86 Email: onjwge@tevm2.nsc.com
Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80

National Semiconductor National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 **National Semiconductor** Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408