

Características (features)

- Son las propiedades medibles de un objeto observado.
- Pueden ser independientes (predictoras) o dependientes (predichas)
- Pueden ser numéricas (reales o enteras) o no (texto, grafos,..)

Conceptos generales

dataset

 Las observaciones sobre los objetos se suelen representar en forma matricial en datasets. Cada fila representa una observación y cada columna una característica medible del objeto

Iris dataset

M. Lopez-Martin

Problemas

Predecir (clasificación)

A partir de estas características... es un elefante o un ratón?

Problemas

Predecir (regresión)

A partir de estas características... cual será su precio de venta?

Problemas

Descubrir (clustering)

A partir de estas características de muchas casas, podemos asignar automáticamente las casas a categorías sin conocer estas categorías previamente?

Aprendizaje supervisado

Los parámetros θ los **aprendemos** de manera **automática** a partir de datos de entrenamiento X_{train} , Y_{train}

Aprendizaje supervisado

Usamos la función genérica F con el parámetro θ ajustado a los datos de entrenamiento para predecir Y para unos datos X de entrada desconocidos

Machine learning

Machine learning

Aprendizaje supervisado -> Ejemplo , regresión

$$F_{\theta}(X) \implies \widehat{Y} = a X_1 + b X_2 + c X_3 + d$$
 Regresión lineal

$$\boldsymbol{\theta} \implies [a, b, c, d]$$

Algoritmo de aprendizaje

Minimización de la función de coste:

$$X_{train}: X_{1i}, X_{2i}, X_{3i}$$

Y_{train}: Y_i

$$argmin_{a,b,c,d} \quad \frac{1}{N} \sum_{i=1}^{N} [Y_i - (a X_{1i} + b X_{2i} + c X_{3i} + d)]^2$$

- Ecuaciones normales (Normal equations)
- Descenso del gradiente (Gradient Descent)
- Métodos bayesianos

Aprendizaje supervisado > Ejemplo, regresión

Aprendizaje supervisado > Ejemplo, clasificación

$$F_{m{ heta}}(X) \implies \widehat{Y}(X, m{ heta}) = \frac{1}{1 + e^{-(a X_1 + b X_2 + c X_3 + d)}}$$

Regresión logística

Se asocial a la probabilidad de tener un valor positivo

Algoritmo de aprendizaje

Minimización de la función de coste:

$$X_{train}: X_{1i}, X_{2i}, X_{3i}$$
 $Y_{train}: Y_i$

$$argmin_{a,b,c,d} - \frac{1}{N} \sum_{i=1}^{N} [Y_i \log(\hat{Y}(X_i, \theta)) + (1 - Y_i) \log(1 - \hat{Y}(X_i, \theta))]$$

Descenso del gradiente (Gradient Descent)

Aprendizaje supervisado > Ejemplo, clasificación

Modelo

$$\widehat{Y}(X,\theta) = \frac{1}{1 + e^{-(aX_1 + bX_2 + c)}}$$

$$argmin_{a,b,c} - \frac{1}{N} \sum_{i=1}^{N} [Y_i \log(\hat{Y}(X_i, \theta)) + (1 - Y_i) \log(1 - \hat{Y}(X_i, \theta))]$$

Aprendizaje supervisado > Ejemplo, clasificación

Regresión logistica

Logistic Regression: 2 Features - Projected

$$f(x) = \frac{1}{1 + e^{-(ax_1 + bx_2 + c)}}$$

Distancia del punto al plano

Modelos de clasificación lineales y no lineales

Superficies reales de discriminación

Takeaways

- Regresión logística es un método lineal (separación por planos)
- Es sencillo, pero en general funciona sorprendentemente bien
- Importancia de separar los datos en entrenamiento y test
- Importancia de la métrica de predicción (accuracy, recall, precisión,..)

Colaboratory

Centro de computación I:

- Drive
- Tus ficheros en red

Código para conectar los dos

Centro de computación II:

- Colaboratory
- El lugar donde se ejecutan los algoritmos
 ML