

SEQUENCE LISTING

<110> ASSOCIATION FRANCAISE CONTRE LES MYOPATHIES

<120> LGMD GENE

<130> AFMB2628AD/FL/SDU

<140> 08/836,734

<141> 1995-11-21

<150> EP94402668.1

<151> 1994-11-22

<160> 67

<170> PatentIn Ver. 2.1

<210> 1

<211> 3018

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)..(3018)

<223> /label=figure 8a

<220>

<221> misc_feature

<222> (1)..(3018)

<223> /label= Figure 8a

SX
Sub J

<400> 1

tatgggtgc ttgttaactg tgcttaacga aaacataccg tggctgttag ggacttaact 60
cttggttata tcagtttagcc tggttcgct aacagtacat cattttgctt aaagtccacag 120
cttacgagaa cctatcgatg atgttaagtg aggattttct ctgctcagggt gcactttttt 180
ttttttttaa gacggaggctc cttttgtca cctgggctgg agtgcaagtgg cggtatctgg 240
gttcactaca acctctcccct ctgggttca agcaattttt ctgtctcagc ctcccaagta 300
gctgggatttta caggcacccccc cggccacacc cggcttattttt ttgtatttttt agtagagaca 360
gggtttcact attgttgtcc atgctggctc cgaactcgatg acctcatgtg atccacccgc 420
ctcggcctcc caaagtgcag agatttagaga cgtgatccac atggcccagc aggaccactt 480
tttagcagat tcagtcctcag tgttatttt gtggatgggg agagacaaga ggtgcaaggt 540
caagtgtgca ggttagagaca gggatttct caaatgagga ctctgcttag tagcattttc 600
catgcagaca ttccaatgaa ggcgtgaccc aagaacatttca taaaagata ccaaatactaa 660
cattgaataa tggtotgata tcctaaaattt ttaggactaa aaatcatgtt ctctaaaattt 720
cacagaatat ttttgttagaa ttccagtagct cccgttccacc ctaacttagct tttttgtcaat 780
attgtttcc attcatttga tggccagtag ttgggtggtc tgtataactg cctactcaat 840
aacatgtcag cgttctcag cttctttcca gtgttccacct tactcagata ctcccttttc 900
attttctggc aacaccagca cttcatggca acagaaatgt ccctagccag gttctctc 960
taccatgcag tctctcttgc tctcatactc acagtgtttc ttccacatcta ttttttagttt 1020
tcctggctca agcatcttca ggccactgaa acacaacccct cactctttt ctctctccct 1080
ctggcatgca tgctgctggt aggagacccc caagtcaaca ttgttccaga aatccttttag 1140
cactcatttc tcaggagaac ttatggcttc agaatacagat ctcggttttt aagatggaca 1200
taaccttcc gacccttctga tgggcttca actttgaact ggatgtggac acttttctct 1260
cagatgacag aattactcca acttccccctt tgccatgtc tcccttccctt gaaggttagct 1320
gtatottatt ttctttaaaa agcttttctt tccaaagcca ctttgccatgc cgaccgtcat 1380
tagggcatct gtggctccaa ggacagccgc tgagccccgg tcccccagggc cagttcctca 1440
ccggcccccag agcaaggcca ctgaggctgg gggtgaaac ccaagtggca tctattcagc 1500
catcatcagc cgcaattttc ctattatcgag agtggaaagag aagacattcg agcaacttca 1560
caagaaatgt ctagaaaaga aagtcttta tggccatgc gagttccac cggatgagac 1620

Sub
SJ

ctctctttt tatagccaga agttccccat ccagttcgac tggaagagac tccgggtgagt 1680
agcttcctgc ttgctggctg gggtttccccc ccacggagg gtcctctcac tcagcaccc 1740
cggcagctca gctgtgcaca tgggacttgg gggaaaggatc ctggcagcag ctctgctgg 1800
ctctgtcttt aagtgtgaag cagggaggag aggaacacagg ttcagatatt tcaccaaattc 1860
tcagaaaaat ccagaggagg agcgcaggag gtgggggtat tcttatgctc tggctcttc 1920
tctctgaaaa aaaaaaaaaa atcttgcttt ttataaaaatgggtaact cagtttaatt 1980
catccitgtaa aaataaatat tccttctca gaacaaatcc cagacagccc agatgtacct 2040
gttcgtttta atattattca tcttggttaag attatttcag tttctctggc taaaatcatg 2100
atgttattct tcttaattt accaatggcc attcttctg aaacacagaa acccttagaaa 2160
gagaagatc ataggcaagg aattttttc atgcataaaaa tggtgggtt aaagagagag 2220
agaccttagca atcgctttgg tccaccatacc tcacccata agtgaggatc caaggcacac 2280
tagagtggaaa tatatcttagt gggcacatga cagagcccg attaaaactt tggtttagga 2340
aactctccca gcctctgggt ttcatttaca gtgatcgcca ggaggzaat cacattcccc 2400
tggctcacct ctctgatcat ccctccagtg tgactcttgc tcttaattcg agaaatattt 2460
attgagcatc tactagtgcc agcaactggc aagcaactgg gggcacagca gtgagtaaga 2520
aagacaaaaa ttccagctgt ctggAACCTT agggtcctga agggaaagatg ggcattgaac 2580
aagagtgaca ttgcaggag acgatgttct gggtgccaca ggatcatgtg gcaaggagag 2640
ctaaccctgtt ccagggagac aaaccctctc tgaggaaatg atgacaagct gagacccaaat 2700
actattgatt agccatggtt ttcttaacc taagggtggc caggcatggt ggctcatgcc 2760
tataaaccca gcattttgga aggcccaggc tggaggattt cttagccccca agagtttagag 2820
accagccctgg gcaacagggtt gaaaacctat ctcttttata ctaaaaatttcc aaaaaatttat 2880
ccaggcatgg tggcacatgc ctgtggcct agctactcag aggctgaggt gggaaagatca 2940
cttgaactcg gggagtttga ggcagcagtg agccgagatc atgccactgc actccaggct 3000
gggtgacagg agtgagac 3018

<210> 2
<211> 11451
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(11451)
<223> /label= Figure 8b

<400> 2
gatccacccg cttggcctc ccaaagtgtt gagattacag gtgtgagcca ccacgcccag 60
ccgacactgc cctaactctc/aagttgcata ctactcgaa tagatgtaca gtgtgggaaag 120
cagcatggga caatgtaaaa aggaggcatg ttctggctt ctgctactta ctatgttgt 180
gtcttcgcac gagtttctt acctctctgg gcctcagttt cttatctga aaaataacaa 240
tgatagtatt cccttcacag gggcaaatgg aatactatca ggaacactac ataatggac 300
tcaataaaata atagctactg cggccggcgc cggcgtca catctgtaat cccagcactt 360
tgggaggccg aggccgggtgg atcacaaggt caagagatgg agaccatctt ggccaacatg 420
gtgaaaccgt atctctacta aagataaaaa aattagctgg gcatggcgc gcatgcctat 480
agtcccagct actcgagagg ctgaggcagg agaatcactt gaaccccgaa ggcagaggtt 540
tcagtggc aapattgcac cagtgactg cagcctggcg acagagttag actccgtctc 600
aaaaaaaatac ctatctatct atctgtctat ctactgttat tcttacctgg tcatttcctt 660
tttggttcac agggaaatttg cgagaatccc cgatttatca ttgatggagc caacagaact 720
gacatctgtc aaggagagct aggttaggaaa gtgcctcagg tcagatcctg ccagatgatc 780
aagggggtgt tacaagggtgt gatcccccttc caggaggtaa agggacaatc tggcttgc 840
tccagtaat ttttggaaaga tttttataa cagttgcattt atggcgtttt atctacatgc 900
tggcgttgc ttcatcttcc cctacatgcc tctttagcac tctgcctatgc atcacagggg 960
gtatctcat cctgtggct cctctccagt atctcaagga cacttacata ccccaacttag 1020
catgacaaaa gccctgtttt tcactgtatc gtcttcttgc gaagacagct ctgtgactgt 1080
gcaccaagca tgcccttgg gcatggagat tctagataca cacacaaaaag gcatgcctaa 1140
gaaaaggact tgtaactgg acccttgggt taaattggcc cagcatagct ccattttaa 1200
aagagtctt ccacaaagat ggcacccccc atgtggatga gcatccaatt ttctctttga 1260
tttgttagct tgactgtcc atctgatctt cctctctc gacctcttgc tcagaaagta 1320
tttgtttttgg tggactat aagcaagctc tggtaagttaa aattggagag aacaccaaca 1380
aaaacaattt aaatttgagg aaaagggggc acctaagacc aaaggaattt ggcttatttgc 1440
attccagaag gggaggctga gaataaaatca gatgaatato tgggttctgc caccctgagg 1500

Sub
Y

aaggcttcct gcagagccct gggcataata atctgggacc ttcaaaccaa taacctttt 1560
tccaaggaaa gactggctgc ttccaaggag ggttagggag agtccccctg caggcagtc 1620
tcaagtctcc ccttgcacac tctcagggttgcatttcac tttaacccat cctccctaa 1680
gaaggcagtt ctttgtgacc agggtacacc ccctattata tatatatata cacacacaga 1740
gagagagaga gagagagaga gagagaaaga gagcaaagtgttacccaa ctacatcacag 1800
tactctgtca gaaaagaggt tcagagaata agaaaacgtc ccgagctcat tccgttgcca 1860
gcaatgtctt actgccccct atagacgggt tccagggcag ctgcctacct ggctttcctt 1920
ccaataaaaaa tcatcttggt ggatgggtctt ctgaggctca gtctcgctg aagtcaag 1980
aggaatttggc ctcacattgc aaaggcacag ggcaggggcag atttctaca ggtgttagga 2040
agaacaaccc agttatgatc acctactgtc tggtctccat tgaggcctaa aaaggaagt 2100
agtttatact gcagttggag gaactgcctg cagccttgag gaaaatgtt agtcacaagg 2160
gagtaagttt cctgttgatc atattgtcaa ggaatttctg tccaatttctc cttccctggg 2220
ttgacacccctc tctaagggtca gatctggaa taggagatg ggcaccaagg gagtccccgt 2280
tcagggaaagt ggagtggctg gctgggattt gggcttttc ttccaggag gaggcagggt 2340
gctcacgatc tggccctgt gtctgcctgc aggggactgtc tgggttctcg cagccattgc 2400
ctgcctgacc ctgaaccaggc accttctttt ccgagtcata ccccatgatc aaagtttcat 2460
cgaaaactac gcagggatct tccacttcca ggtgaggtaa tgagagtgtt gttaaagg 2520
ccagcggcag gccacccacc gctggctcc tggccttgac ttcccagaag ctggagggaa 2580
cttcccaccc atctaccggc agcggcaaca gtcggcatgg acccccttaa ggcttcaagc 2640
ctgggaggaa gcagttgctt atctctggctt ccctaattcc tccccacca ctttccacta 2700
tgtccccagaa agacaggaag acatctgtt tactgtgggtt ctattttgtt ctttgcagct 2760
gtctggctgc ttttatttgc tgccggctt ctcaagtttgggat tcccttaagat attagcactg 2820
tgacaccaca ggacccttca ggttgcacag gaaceccctgtt ccaggcgtcc tggatcttc 2880
ttcctctcta aggcatggcg gtaccaaggc tatactctt ctcttccaag ccctggaaaga 2940
agagtctgtt taacctgggg atcaggcttc ttgtttgccc tagaactgaa tctgtatgtt 3000
ctagaatcca tccagctact ggaaattttc tgggtcccaag tcaccccttgc atagagctgg 3060
tgcttagagca gaaccaaactt gaatttctacc tggatgggtt tcgttagctt cgggatgtcg 3120
gggagtcagc ctgtctccag cttcaaaaggc tccctcatgtt cccagggatga cccacattat 3180
cagttcttgc tccccgggtc ttgcacccatc gacacggaaagg cctcagaaaa ggtctgtctc 3240
caggctcaga ctccccctcc tgccggctt ggaacatggc atattttaaag ggtctcagat 3300
ctaaaggggcc ttacatacaa atatcagata gatttctgtt ctcatttcaaa tgagggagaa 3360
agtgccatttggaa aaaaaggagac taaacccat ttggccctttt tcaggtaaaa ctgatttcat 3420
caaaaaaagag cgacatccaa acttggaaatg attgaacaat gttccctgta cagctagaat 3480
agattctggg tcaactttgtt ctcgggttca aatccctgtt cttcaagtttgc gcatcaagaa 3540
atacctaaat cagcacatgtt ctttactgc atagttccca atccctggca cattgaatca 3600
gctgggggca cttggaggttgc tgcacacccca ggccctggccc cagacctgtt gggaggaga 3660
ataaaaatct tacatcttaa gacactcatg gacacccatc tctaccattt actgggctgg 3720
actctgtggaa agacatgttca aatgttgcacttccat cttccaaaaa gcacccatgtc 3780
cagtttagaga cagatttaa caccacccaaac aaaaaatagg atgaacaggc accccatgtc 3840
agagtccagg aatgtatgttgc gctttggat tcaagaaccc cctgagggat gttggagggaa 3900
gacacatttc ctaacatgttca ttggatgttgc tgactctgtt cgtgacgtt ctgtgcagtt 3960
ctggcgctat ggaggtggg tggacgtggg tataatgttgc tgcctggccaa cgtacaacaa 4020
tcaactgggtt ttcaccaagt ccaaccacccg caatgttgc tggatgtgtc tgctggagaa 4080
ggcttatgtt aagtttgc aacttttagaa tggatgggttgc ggcttagaggt gggaaatgtt 4140
gttgccaaaat ccagccgaga ctttactcac aggaagggc atgttgcctt atacgttgc 4200
atgtgtgggc atgttgcacttccat aactgttgcacttccat cttccaaaaa gacccatgtc 4260
agctctact aaaaacatca aattttatgttgc atgttgcata gatgttgcata gaagaccc 4320
agcttttagt caccatgttgc agtttgcacttca ttggatgttgc atgttgcata tgcaagtctt 4380
gggatcagatc ctttgcacttccat gggatgttgcacttca ttttgcacttca ttttgcacttca 4440
tataaaatgttgc ttttgcacttca ttttgcacttca ttttgcacttca ttttgcacttca 4500
caaattttgg aacaagggttca ctctgttgcacttca ttttgcacttca ttttgcacttca 4560
tcactgttgc ttttgcacttca ttttgcacttca ttttgcacttca ttttgcacttca 4620
tgggacttaca ttttgcacttca ttttgcacttca ttttgcacttca ttttgcacttca 4680
gttttccat gtttgcacttca ttttgcacttca ttttgcacttca ttttgcacttca 4740
tgcctccat gtttgcacttca ttttgcacttca ttttgcacttca ttttgcacttca 4800
ttttatgttgc ttttgcacttca ttttgcacttca ttttgcacttca ttttgcacttca 4860
atgttgcacttca ttttgcacttca ttttgcacttca ttttgcacttca ttttgcacttca 4920
cttttgcacttca ttttgcacttca ttttgcacttca ttttgcacttca ttttgcacttca 4980
catagggttca atgttgcacttca ttttgcacttca ttttgcacttca ttttgcacttca 5040
tggcagggttgc accttgggtttt ttttgcacttca ttttgcacttca ttttgcacttca 5100
tctctacttca gtttgcacttca ttttgcacttca ttttgcacttca ttttgcacttca 5160

ggaggactt cacaggaggg gtggcagagt ttttgagat cagggatgt cctagtgaca 520
tgtacaagat catgaagaaa gccatcgaga gaggctccc catgggctgc tccattgtat 5280
taagtctggg gtgtgggca caggggggg agctccaagt gtcaggaagc ctttaccca 5340
atgaaggcga gcataagact tttgtgtggg acagagcga tgaaaaatgggatggcag 5400
gaactggctc tcaacttga ggactggaa ttctcaagg gagaacagtt ctccggatt 5460
ttcaataaaag acactggtca aggacattc aagccctgaa atgtcagtg aaatcagtcc 5520
agaggctgt gtcaatggag gcctccctg ctgggtctcc tcagtcctcg cacgtccca 5580
ttaagctggc cacgtacttg gctgtggacc tgagccacc atttccttaa gaaagcctcc 5640
cagtcactgg gcttcacca cacccccc cttgagacgt gggcttgggatggcag 5700
ggagaagcta agcctgcagc accttcagt gcaaagaaaat gctgtgaact gagacaggag 5760
ccaagggttag ggagatggcc gccatggcc aggccctcatt cagggggcat gccttccctg 5820
agggctgctc agtatattga tatgataatc ttatgggtt ccattgggaa gatggggct 5880
gaagctgaat tcctgccccct tcttctccca acacgccccaa tggacagott ggaagggtcag 5940
ttagcacaca acaccatggg tgaactttt ttctgtatca cttttctccg tcttctctt 6000
attcgtgctc tggatctc tcctctctcc ttgtctgt cccatctt tctctctctt 6060
ccttccctt ccacccttctt gtgttggcc ttccctccctt ctgtgttggt ccctacattt 6120
tccatggggc ctcaaggatgg cacgaacatg acctatggaa cctctccctt tggctctgaac 6180
atgggggaggt tgattgcacg gatggtaagg aatatggata actcaactgtt ccaggactca 6240
gacctcgacc ccagaggctc agatggaaaga cogacccggg tgggtacacc tccgattatc 6300
agaactgacc atccctccaa cccacatgac cccgccttat tagtgcaga ctcccctcag 6360
cagccaggggc cttaaccacca caccggccacc tggcacctcc caaggggtctg ggttggaaata 6420
acttgctcag ccaaggctcc tgaagagggt gcaagaacza ggattttgggatggaaatctt 6480
gctggagttt ctgcatttccatgggatggaaatctt ccataacgaa ctatcagaca 6540
gaaatacttg taaaatgtt tcatttattt tggaaatattt ttcccttctt aatgtatttca 6600
tttatttattt caacacttat ttgtggatctc ctactatgtt ccaggactc ctctagcaaa 6660
caaagcaaattt tctctcttctt tttcaatattt ttgtggaaaaaa agcaaggctt ccctcttgtt 6720
gagtttataattt tcttagtattt tcataagtt taectgtctca ctggagaata ctgagccata 6780
cagaaaaaaca cagaggaaaaa ttcaacttat attttcccc atgtaaagat aaccactttt 6840
aacatctagt atatgttctt ccaggatttt tctatgcaca cactaatct gtatttttat 6900
ttttaaaatg ttatcatattt gtatgtaccc tttgcagcc tgcttttttcc agtttagttt 6960
tttggttttt tgggtttttt ttttttttggg aaaccaagtc ttgctctatt ccctaggctg 7020
gagcacagtt gttgccatct cggtcaactg caacctctgc ctccaaagtt aaactaatc 7080
tcctgcctca gcctcccgac atagctgggaa ttacaggcac acaccaccac acatggctaa 7140
ttttgtatt ttttagttaga gacggggttt caccatgtt gctggaaatgg tcttgaactc 7200
ctgacctcaa gtgatccacco tgctcagcc tcccaaagtg ctgggattac aagtgtaaac 7260
caccacaccc ggcttagttt gatattcttta atgtgccccaa agtattctcc tgtaacattt 7320
ttaatagct acacaatattt caaacacaca gatatgttta aatttattta ccaataaccc 7380
tattatttggaa aagttgagtt cttttttttcc ttgtttttgtt ttgttttgc tactatttca 7440
aaatgctata acgaacatcc caatagatac atctttgtat acatccatgg tgacttccat 7500
aggacagatt cccagcagta gaattgtctgg gttgaatgtt atgttaggg taatgacaga 7560
agagtctt caagcagctt cctagggtct tagaacttaa ggattaatga gtcttcccg 7620
cccctcccgat tctattcagc atgatctggaa tcatgaggac tgagatctgg aagagactga 7680
gatctgggag aggctgagat accaaaagcc ctggctccac ccataccctt cggccctgaaa 7740
acagctctag gaattcccgcc gcttagcaag gctccggaa gctcccttta aagctgtgac 7800
gttagtaggc acatggacca tagagaccta tccagggtct atgggacttt agtgcattctg 7860
cccttctccc aaggatcccc catggctgca acttggaaat ttctgcattt ggaagagacta 7920
ctccttaggc acggctcatgt ctgagcaggg atctctctgg gctttcttag aattctctcc 7980
ctgggactg ggactcttga ttcttggat attatgttcc aggtgggtgt ggaggaggtg 8040
aggggatgtt aagaaggcta gacttggcca ggcgcagttt gtcattccctg taatcccac 8100
actttgggag gctgaggcgg gtggatcacc tgaggtcagg agttcgagac cagcctggct 8160
aacatggtaa aaccctgtttt ctactaaaaaa tacaaaaaaat tagtgcaga tgggtggcact 8220
tgcctgtat cccagctact cgggaggctg aggcaaggat atgcgtggaa cacgggagggc 8280
agagattgca gtgaccccgag atcgcggccac tgcactccag cctggggcagc acagcaagac 8340
tctgtctcaa aaaacaaaaaa agaaagaaaaaa aaaaaaaaaat ctaagactta catgtgtcac 8400
ttaaccctt ttctcaaaacc tctttcttcc ttccatggaaat tcaaccctt gatggcttca 8460
ggggaaagggg gatcctgtaa cccaggccag cttccaaactc taccccttcc ttcttggaa 8520
gatactaagg ggtccagaaaa ggagggccag gacactgtta cccacccac atcccagcat 8580
ccacattgtctt ctctgtatggt caggacagag cttctctcagg gagaccagcc tggctggagc 8640
tgggtctttt ggactctta aaggccact gaaggtccgt tcgtgttgc gaggcacact 8700
ttcaggggagc agagtggctt gttgttccatggcagccatc aatgaacta gtatgaactt 8760
tgcctccaaag cagcagaact tctgtttccctt ccggcccttaat gggttctctg gttactgtct 8820

<210> 3
<211> 1834
<212> DNA
<213> Homo sapien

```
<220>
<221> misc feature
<222> (1) .(1834)
<223> /label= Figure 8c
```

```
<400> 3
atttttttttt ttttttttga gacggagtct cactctgccca cccaggctgg agtgcaatgg 60
cgcgatcctg gctcactgca acctccgcct cccgggttca agtgattctt ctgccttagc 120
ctcccgagta gctgagacta taggtgccccg ccaccacgccc cagctaattt ttgtatTTT 180
attaggacgg ggTTTcacca tattggccag gctggctcg aaatcctgac cttgtgatcc 240
gcccacctcg gcctcccaa gtgctggat tacagggtgt agccattgcg agcagcccgag 300
```

Suh M

aactcaattc ttaaccttta aagtatgatg agaagaaggaa tcaagccctc accagcccat 360
ttaaggagtt taggctcagt ctggaggatg tgagaagtc ttgcattgg gtttcacact 470
gaggttaaca ggtgaagtca gcatttttgtt agttcacagc agctgcaact ctttgatattt 480
ctctgatacc tcctgtcccc acctacatca ggccttccct tcttctgtc tccttaatto 540
ctccatttc ccaccagatg gaaggactgg agctttgtgg acaaagatga gaaggccgt 600
ctgcagcacc agtctactga ggatggagag ttctggtag tccagaaccc aggaagacc 660
agaaggtaa ggttggggaa gagagggaa atctcagacc tcagtccttca gctaaggta 720
tcagattcca gccttggga gatctggct gtgttctctt ccagcccaag gcccagcaag 780
gatgaggttc tgagaggagc cttccaggcc acaggacaa tgagccagg accaggccaa 840
catgacatgg ctctgcctc ctgtgtgccc ctccgcaca cacttattc cagccacagg 900
caccctggcc ttagcacaat tctttctga gccttaggaag ctccacttac ctgtatctc 960
caacgtcaac ctccccctc ctcagttgt ttctattcag gcttcaagtc tcagcttaag 1020
gagaattttc aagtctcagc ttaaggagag cccccatagt tccccagga ctgggatata 1080
tttatgatgc tcatcacccct taaaattgtt tgcttaagcc gggcgccgtg gctcacgcct 1140
gtaatcccg cacttggga ggccgaggtg aacggatcac gaggtcagga gatcgagaac 1200
atcttgctca acacgggtgaa accctgtctg tactaaaaat acacaaaaaaa agtagccgg 1260
cgtggcagcg tgcgcctgtc gtcctagctg ctggggagc tgaggcagga gaatcactg 1320
aacctggag gcagaggtt cagtgagccc agattgcgcc acgcactcc agcctggcg 1380
acaagagaga ctctgtctt gaaaaaaaaaaaatgtt gcttagttt aatgtcaagg 1440
gaaaggtttt ggttggttt attacttat ttttattta aaaactataa tagagacggg 1500
cctcgctata ttctcgggc tggctcaaa ctccctggct caagcggtcc tcccacctt 1560
gcctccaaa atgctggcat gtggccctgg tcaacatacg ggacccaaac tctacaaaaa 1620
atttaaaat tagccagatg tggtgccgtg tgcctgttgtt cccagctact tgggaggctg 1680
aagcaggggg tcacttgagc ccaggaggtt gaggctgcag tgaactatga ttgtcgatca 1740
ctttcttctt gaaacgtgaga ttaagtgttag tcaagtttggcttaggtt tatttattca 1800
gaattttaa ccgtcacgtt gcccggaaacc aggt 1834

<210> 4
<211> 14664
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(14664)
<223> /label= Figure 8d

<400> 4

aggaggtgga ggttgcagtg agccaaagatc atgccactgc actctagcct gggcaacaga 60
gcgagactct gtcctaaaaa atacacacac acacacacac acacacacac acacacacac 120
acacacatat atatacacac atataatatac acacacatat acacacacac acgtctgtat 180
atatatgtgt gtgtgtatatac atacacacac acactattt atataattttt gtagagctat 240
gtgtgtctcc tggcttattt agcatgagcc ctttttttt tttttttttt ttgagacaga 300
gtctcacctt gtcggccagg ctggcataca atggcgcaat atcgctcac tgcaacccctcc 360
gcctccctggg ttcaagtgtat ttcctgcct cagccctccca agtaactagg attacaagt 420
cccgccataa tgcctcagcta atttttgtat ttcctgatgaa gatggggttt caccatgtt 480
gccaagctgg tctcaaactc ctgcctcag gtgatccacc tgccctcagcc tcccaaagt 540
ctgggattac aggcatgagc cacagcaccc tggtgagcac tagagctt atttttatc 600
taactgtatt ttgttatcca ttagccaccc tcttttcatc ctccctctc ctcccttcc 660
cagcctctgg taaccactgt ctgcctcata cttccatgac atatgctttt ttttagctct 720
cacatgtatg tgagagcatg cgacattttt ctttctggcc ctggcacatt tttgaatcat 780
tgtagaaaa gatgatgggtt tggagtagat acatcagaag tgacagcgat tgcctaaaaa 840
aggaaagaca ggctccctctg ggaccctgac caagttccctg tgaactatTT tattttgtg 900
ctgtgttagt cctggggcttccca gcccctccca cctgcctccca tatggctctc 960
tcttttcttc caacctctca ggatgtccta tgaggattt atctaccatt tcacaaagt 1020
ggagatctgc aacctcacgg ccgatgtctt gcagtcgtac aagttcaga cctggacagt 1080
gtctgtgaac gaggggccgtt gggtaaaaaa ttgcctctgtt ccggctgccc gcaacttccc 1140
agggtggaga tgctcttgc ggggggggg tctaaagccaa aaaagttccca ggcagaagaa 1200
gcctaaactag tgcttattaa gtctctctgt tccagacgtc cactatcttta ttaaaccttc 1260
cctgttttac tgagaagggaa accaccatgc tgagaagttt gcaataggaa gctgggttagc 1320
aactttggaa gcaggaacctt gtggaaacaa tgcagatgtt gcttggactt acgatgaggt 1380

Sub
J

tatgtccaga taagcccac tcacccatc catctttga aaatacccta agtaaaaagt gcacccaata 1440
tgcctaaacc cccaaaccc atagcttacc ctggcctacc ctcaccaatt gctcgaaacc 1500
cttgaccta agcctaaagt tggccaaat catctaactc caaaggctat ttacaaaaga 1560
aagtttgtt aatatctcca tgtaacttac ttaatacttg tacctaaaaa gtgaaaaaca 1620
agaatgggtg tacgggtact cgaaatccag tttctactga atgtcatct ctttcaatt 1680
gtaaagttaa aaaattgtag ccgaaccatc ctaagtcagg gactgtgagt actgtgtcag 1740
taacagtaag ggcactattt gagaaccaag ttagcagctg ctgcaatagt tcaagtcaga 1800
gatgatgaaa acctagacca agtcagtagc agcagagatg gaggggagac agcagattt 1860
gggagagcat attgggtgat gtagggaagg aagaagaatg atgtcaagat ccccagttgg 1920
ggacctgaca acattgcaac ataagacaca caagaagatc gggggggggg ctcatgccta 1980
taatcccagc actttgggg gcagagccag gaggatcaact tgagcccaagg agttcaagac 2040
cagcacaggc aacatagtga cacccatcg ttacccaaaa taaaaaaaaa aatgaggtgg 2100
gaggattgct tgagctcggg aggttggggc tacaataaac tgtatcatg ccactgcact 2160
cctgcctggg tgacagagtg agaccctgcc taaaaaaaaa aagacacaca agagaaaaat 2220
atcagcgtgt tgtttgggtt tgggtggagtt aatttggggg ttetaggaa aggaatttag 2280
cttgggacat ggaaagttt aggttccctgt agagtgtccc agtgaagatt tgtaatagag 2340
catcgatgc gcatattaga tggcaacttgg tgatatgata agaactcaaa aatatttga 2400
ggaataaagg aaagaagagg ccagacgtgg tggcttatgg ctgtaatccc agcacttgg 2460
gaggctgagg caggcgatc acttgggtc aggagttoga gaccagctg gctaacatgg 2520
tggaaaccca tctctactaa agatacaaaa attaaccggg gatgatgggg ggtgcctgta 2580
atccccagcta cttgggagggc tcagtcagaa gaatcgctt aaccaggag gcggaggctg 2640
cagtgagccg agatcgccgactcactt accctgggca acagagccag actccgtctc 2700
aaaaaaaaaa aagtgagaga gattggggctt gggatataat gctcaggcat catgcgcgtg 2760
tagggggcag taaaaagca gaagtaagaa adattgccta gggaggcagg aagggtgagg 2820
tgagaggaga agaggcccag gaccagattc tagtcaccaa cagcgtttaa gggcaggtta 2880
aggaaaaacaa aaccatcagc aaagactgag aatgaaagcc cagagaggaa ggaaaagcca 2940
cacatataat cagtcagat ccattgtaaat aaaggttagcg cccccccccccc cccaaatcat 3000
tagagaaatg cctgattcggttttctgtgg attttcctta agaacctaga tggggggat 3060
agaaataaat ggttccctct gtctcaccc ctccctgcctc tctgagagga agctgtgatt 3120
gcgtgtccccc tttctggggg tgcaacttact ttctggacca accctcagta cctgtccgaag 3180
ctcctggagg aggacgtga ccctgtatgac tcggaggtga tttcagctt cctgggtgcc 3240
ctgatgcaga agaaccggcg gaaggaccgg aagcttagggg ccagtcctt caccattgcc 3300
ttcgccatct acggaggtgt tagtcctgtat tggctccagc ccagaaaca tactttccca 3360
gagaggacgc ttccaggggc ttctagaggg gccctctgtt tcctcaatac cagtgaccca 3420
cagagctctt ggtatcgga ccacttgggtt ttgtaaacaag caaaaaatac cagggggggc 3480
attagagagg cagtggagcc ggcctggcag aacaggtgcc tgggggtcag gcttccgcatt 3540
gcgggctgca gttgctggca ttgccttcccg caggctccctc atcctcattt acatctgaag 3600
catcttcctt tctgtttttt ctcaagggttcc ccaaagaggt atagcagcag cagcggccag 3660
cagttgtgtc cagcactacc cagggggggcc cgagtctgtc tggctgtcg tggatgttcc 3720
cctgggtggg tttgtggca ggacttggta taggagaggg ccttcctgt tggatgttcc 3780
caacttcaga gcaagggtgcc tcaggcatt gcatgaccca tgactaccac cccaggatg 3840
tgcactttctt ccctcgacc agacactgca cgtcacacac atgccttgc acactcaccc 3900
tcctccacgc ttacagccac acacacagtc acacagacgc gttctgaggg tggctgccc 3960
cttgggatgg aggaatcaact tccctcagaa cccagccaaat ccctcttaggc tcccttgggg 4020
gtccttccag cctgaggggc ttggaggtgtt agggacagctg ttctggtaag tggccctgag 4080
tgtgggatg acacatttcc attcaacttgc aatcacaaca gaaaaggaa gggaaatgaa 4140
ggtagggagc ctatthaacc ttggggagtc gggaaatgggggagttt gggaaatggggg 4200
ggtagccagg gagttggaa gggacccttggggctg tggcaggaca ggacgttcc 4260
cccgaggggc tcatgtgccctt tggctctcc ccatctctca gatgcacccggg aacaagcagc 4320
acctgagaa ggacttcttc ctgtacaacg cctccaaaggc caggagcaaa acctacatca 4380
acatccggga ggtgtcccaag cgcttccgc tggctccctt cggatgtc atcgtgcct 4440
ccacatcgaa gccccaccag gagggggaaat tcatctcccg ggtttctctt gaaaagagga 4500
acdtctctga gtgagtgtctg gcccagctt cccacgtgtt tctaaaagct cacatggccc 4560
adtcacagg ttgaaggcat gaggcagcta gacacgtctc ctccagggtc cttctgtcg 4620
tcctgagcca ctggccacat tacccttccattt catttcattca tccattctgtt gatattttttt 4680
gagcacctac tatgttccag gcactgtccctt aggcaactaag gatagagtag tgaagtaaac 4740
agaaagaaat ccctgccttc atggagctt atattctaaccatgagacaat aatggatagg 4800
aaaaacatataat gtagcatgtt agatttggag aggtgatataat gagaaaaat aaagtaggaa 4860
agaggatag gaggtgttgg ggatgttga aatttttaggt tagcatggcc agggaaagcca 4920
catcctgtcc ctggccacca cagatgagct catagccctt gccactctga tctctgtcct 4980
tggaaagatgc accaggtccca tggtaggtg gctgggtcat gccttggggg ggctctgagc 5040

Sub
M

aatactaaca agaacctgcg tgcctggct tggctgtcg ggatggtgct gacatggggc 5100
tggttcctgg ggttgggtg ttccagggtt tctctagagg ctgggtctgg cttggctgcc 5160
aggaagccgt gcaccagagc aaaccgtcca cgggcctct gcttgcctt ggtgacactg 5220
agaccccaca tgtctgtatt cctcacaggg aagttgaaaa taccatctcc gtggatccgc 5280
cagtggtag tggtttagat cttctgtcgaaa aaaaatccag agggtccccct tccctgacca 5340
tgcaggggac agatggtgca ggggagaatg ggcactggca gaggaatgg gagtcgggc 5400
tgtgctgagc agtccctcct tggcactgca aatcctactt tggcatggcc agaagtaatc 5460
ggcctaagc accgggggccc attgaggcag ttcaggggtt gggaaatatg gaagagggtc 5520
ctggaaagga gaagcaattt gaacaatcgaggaa aacaatcgaggaa gcccacaggaa 5580
gagccgcgcg gaacactggaa ttctgagact ggataacattt ggatttcaca catagagaaa 5640
agaaaagtaag ctggtgccgg acctgggtt gacacttggaa tcctccactt accagcgggg 5700
tgacctggac aatttctgtat atccctctca ctcagtttt tactcagtaa aacggggatg 5760
ataatgtgcc ttgcaaggct tttgtgaggc ttcatcaatg aggtgatgtt tggtaagtgt 5820
ctggcacagc atgggcactc aaacagaggt gcttttccac actttacacc ttacaaggta 5880
ctttcacat gtgtcatcgc gatacttgca aggttgcgtt gaggtagatg gggttataat 5940
ccctgggtt caagaaagga agcagaggctt caatgggggtt gaazgacttc tctgagttca 6000
cagagctcag taagtggcag ggtttggAAC tcacattcag actctctgac tccagactta 6060
ggtttcccg cacctccacg ctgaggccag ccccaaggcag tgagaagcccc aaagtccgaa 6120
gcacagagtg ctgtgtgtt ggctctgtgtt gttgaggagt ctgtgactg ccttggggct 6180
ttgggctgtt gtcagctgac agtcccttgcgtt gctctgtggg gatgacgttag gccaatggg 6240
ggacaatgc ccctctgaac tgtctctgg gcaagtgcacg tcatggtcat aatcctgacc 6300
ctgagccgt gccaggctc caagtgcctt ctgaatgacc acagggcattt gtttttagt 6360
gttaggtgcgtt gggatctgt tctggcattc tggatgttgg tcatcgggtg cagtattgt 6420
caggacctgc aaacccaaaa gcttatgggaa gctggcactgtt cacgtgatgtt gaggcaggcag 6480
gtgcagggtt ttgtatgtcc ctgactgac acatgtgttgc gcaaggctcc aatttgcacat 6540
ttgggctcca gtgtcgaggg tcaaacaagg aattttgggg cgtggccaa atctggaaag 6600
acacaggag cagggccctt tggctcaagc tgatagttgc cgcaaggattt accaggccca 6660
ggcgccctg ccacaagctgtt gggcttttac caaagaaaaat ctccctatgt taaatgcttg 6720
ctcaaaaatt tttaaaaaat attctgttaa tcaaaaatcca ttgttaggtc agtttgagag 6780
agccatgtt ttgtgtttt agtaaccaat ttcattttt tattattttt ttattttttt 6840
attttgaga cgaggttca ctctgttac ccaggctgaa gtcaatggc atgatctcag 6900
ctcaactgca ccctccgcctc ccgggttcaa gcaattctcc tgcctcagcc tcctgagtag 6960
ctgagattac agtgcacccac catcaacgcctt gataattttt tttttttt agtgcagatg 7020
gggttccacc atgttggcca ggatagtccctt gaaactactgaa cctcagataa tccggccacc 7080
tcagccccc aaagtgcgtt gatcacaggc atgagccagc acgcccggcc accaatttca 7140
tttttaaaa aaggaagaaa gaaaacctt gccagaagat cttttccctt gccatatgca 7200
gtaagagtag attataaaaaa caaagtccaga gcaatgtactg gtgtctggc atggaggaga 7260
aagaagaatt ctcttctccc ttcaccccttcc atgcccctt ttggctccat gtgattcaga 7320
tttctggacc ctggagccccc accccaagctt aaagaccagg atacaggaa gcccacaacca 7380
ctggcggttc tgagaactt ctttctactt attctgcatt tacttttcc ttttcttatg 7440
cagaaaaaga aaaaacccaa ggttagtgcgtt tgggttagaga gcatgaaatgt tttttttt 7500
tgcatatgtt tggatgtgtt gcatgtgtt gtcataatgc atccatgcac 7560
cagactgccc ttttctccc cttcccttccctt gatcttgcgtt tggggccggc cgtgcagtaa 7620
tgacaactac gatgtgcgtt gggaaaggctt cgtgcacccac actcttttagt tttttttt 7680
tgattaattt ctttctcaca acagccctt gatgtttttt tttttttt tttttttt 7740
agagggagaa aagggtacaga cttgactaac ttgcccacgg ccacacagcc agagaggggc 7800
agagccagta ctttagagccca ggcagttctgg gtccagatgtt ctttccatggc accacaagag 7860
gccatcatac gccatcagat ttgggtcttag cattttctgtt ggtgccttggt ggtgatggat 7920
ccatcacccggc ggtcctccag gtactggcgtt tggcccacggc cagagctgac actcctcagg 7980
caactaccacca ttccaggccac tttttttt tttttttt tttttttt tttttttt 8040
ttataacagt atctacaaatg taggtgtctgtt tttttttttt ttttccatggc tgagatagac 8100
tcaaagaaatgtt gaaacttgcctt aaggaacaga actaatgtt gggaaaatgtt gaaactggaaa 8160
ccatgtctgtt ttactccaaa acctgtgtt cttcccttccctt ttttctgtt ccagccccctt 8220
acacttcaag gctctgttttccatggccca cactcggggcc tggccatgtt tggctggcag 8280
ggatgtccca tggccacacc atatccatcc tacacatccc ccctcagactt gtgaccttcca 8340
tttgctctgg gatccccaca agttcagttt gcttgcgtt gacactgtttt agaaggcaga 8400
gcaagccaaatgtt gctctgttttccatggccca gccaatggctt gggagccgtt tccacgggtc 8460
tatctgttttccatggccca gatgtgttccatggccca gatgtgttccatggccca gatgtgttccatggccca 8520
gggctgttttccatggccca gatgtgttccatggccca gatgtgttccatggccca gatgtgttccatggccca 8580
aatccccaca gcttgcctt ccccccgtt tccctacagg tgcacccatgc ccacagtgtt 8640
ggcaccatgc agcagccgcctt ctccgtccctt ttcataatctt tttttttt tttttttt 8700

cttggaaaata tcccttgttt gtgttagcatc tttaaatgttt ttgcagtatg attttgatt 8760
cagtatctca tttgatcccc acaagagccc tataggaggaa gaaagcagat ttaccatata 8820
aaggatgagt aaactgaggc cagagaggat atttttgggt ttttttgaga cagtcact 8880
ctgtcaccca gcctggagtg cagtggctt atcttggctc actgcaagct ccacccccc 8940
tgttcacacc attttcctgc ctcagcctcc caagtagctg ggactacagg cacccacac 9000
cacaccacgc taatttttt gtatcttag tagagatggg gtttccacca gttagcagg 9060
atggtcttga tctcctgacc ttgtgatctg cctgcttcgg cctccctaaag tgctgggatt 9120
acaggcgtga acccccccgc cccggccagag aggatatttca ttaatgaggg gcaaggctgg 9180
gattccagcc cagtgttctg atggctcacc cactgaccat tccactaatac cgtgtcctt 9240
ttcaatctaa acttcaggg ttgttagaggt tcctttgagg tgcctcagta ctccatgtt 9300
gatgtggggt ctgagggcca agagctctgt tctcattaaat cagagaagct tgggtttta 9360
aaaacaccat gtttactgca gggaaatttaa ttggacagtg tttccatctg gaaaaaaaaa 9420
agtctacaaa atacttgaca atcactgcac tagatcatgc tgcttttagc attcttagca 9480
tttcacgtgc ttagctctca atactctacc atgaggaggaa atggagtggt tatgaaaaga 9540
taaagaactg aagtccacacg gcttgcgtt ggcagagata gagcttcaac cgagggttcaa 9600
gagctcccgcc ctattccctt cctcttctca ctggataaaag ctgcttcaag agagggtgctg 9660
cctcagtggtg cctgttccaga ctgtaatctt cccttccttc ctgccttcctc ctcctctt 9720
ccagcccatc atcttcgttt cggacacagc aaacagcaac aaggagctgg gtgtggacca 9780
ggagtcagag gaggggcaaaag gcaaaaacaag ccctgataag caaaagcagt ccccacaggt 9840
gtctgggcat gtggcatggg tgggggtggcc agcagctac aggggcttcc tatgcgttg 9900
ggatacacacag gggctggagg ctcccagga gtttgtctt aacatctgga gtttgaatt 9960
tgtcccaactg acctttctt tcagcaagtt cccctgaaat ttggctgtt gcttgggtga 10020
atatcccagg atgggggttc cattcttaga gtggactgtc aggctgagcc tcccatggag 10080
ctgatccagc caggatacag agaaggggag gcaaaagggtt agacagaacc agcttgagag 10140
cgaggcgcga actcttgcct cctggatggcc ttgagctttt cacaataggg ggataaaggaa 10200
taggagcaga aaagtggggc tgacttcaga aatggggtcc tctagagctc acggggaggt 10260
gttagattgg agtggggagct tagtggaggt gaggctttaga ggcaaaagtc tccagaccaa 10320
tccaggcccc ctcttctatc cggggggcccc tcttctatcc agggccccc ttctgtctt 10380
gagccctct tctatctggg gcctcatgca gtggggccta ggggaggttc tctgaggact 10440
tggcctttagt gacagggtgg ctggaggaat gagaacggtc agacccctt tgacctgcgg 10500
gcacctttag ttggaatgtc caggcctggg atgggtggagg gggcttgc aggtggggac 10560
tgggggtggcg gggaggaggc tgtatggccg ccatatctcc ttggcttggg ggcgtcagg 10620
ctggagaggt gtgaagagtc cctgaggcct cgatgcacat cactccagct caccaggct 10680
gcatttgcctt gtcggccatc cctgctgcac ccccccggcc tttaggcac ttggctccct 10740
tggcccaagag gagcttgcct cacagggctg tgccacctctg accccctgtt accagtttc 10800
ctttgtgcct ccacagccac agcctggcaa ctctgatca gaaagtggg aacagcaaca 10860
attccggAAC atttcaagc agatagcagg agatgtgatc acctccaagc ccaggacgcc 10920
cacaggtgtc tccttctctc ctggatataac tgctcagatt accaattatt tcattattgt 10980
ttggtagagg tcacttttggc ctccgggtgg gcccaggggat gtgtgcgtt cacacaaatc 11040
cacaaggcccc ttggatggggactt ctgttgcacgt ctgttgcggg gctcagaggc ttggcttgc 11100
tgagctgcctt acgggtggcc tgatagctga ggtgcagtt ctggccccc ttggcttgc 11160
gaaaaggcccc agcttcccat gacataataag caccgacagg gattttacaa acacagccag 11220
gttggaaatttgc ttttgcggaaatc tgcggcgcc aggagctgtc gtactctgtt accatgaccc 11280
tcctctccct tcctcctcag gacatggaga tctgtgcaga tgagctcaag aaggtcctta 11340
acacagtcgt gaacaaaacgt gagttgtca aacccaaatgg ggggtgggggt ggtggggaggt 11400
cccggtgtct caaagcagct cctcactctt ctccatcccc ccagacaagg acctgaagac 11460
acacgggttc acactgggtt cctgcccgtt catgattgcg ctcatggatg ttttgcctt 11520
ggcccccctt cccggccctc tgcgttgcac ccacggggcc caagggcaaca tacagggtgc 11580
ccagtcaggc aaaggccccctt aatttgcgc caggggaaact taaggagacc ctgattcaga 11640
acatcttggc taatcgtctg aaagggttttgc tttagggcg aaggggagga tgggtgggtt 11700
taactgcctt aacccctgtt cttctctcag gcctgggatc ctggcccaagc aaaagtggc 11760
cttaggagag cggctccctgg gttacagagt aggcccaatc tctgactgtt ggtggagttt 11820
aggggaggggt taaatagttac aacaggcag tgggtaggac agccggagtt ctccctagacc 11880
ctccctccaa atccaggggg attttgcgtt gtgtgttgc gcccgttgcctt ccctcctt 11940
gacagatggc tctggaaagc tcaacctgca ggagttccac cacccttggaa acaagattaa 12000
ggcctggcag gtggggaaagag aaaatgaagc gtggggatca agaattgggt tgatttggag 12060
attcagttgt tgaccccttcat cctcaaaattt tcttattgcac gaaaattttc aacactatg 12120
acacagacca gtccggcacc atcaacagct acggatgtcg aaatgcagtc aacgcacgc 12180
gtgctgagaa ggaagggggtt tcagggtatgt ggacccgaga cgggtggagc aggaatggg 12240
ggggacttagc tactaggccc ccactagaga aggagaggaa aagggttctt cactttccct 12300
tcccaaggcgtca cagagtgtcc gagaggcagg gaaaatagaa gacaggccca aggccctccag 12360

Sab

ctccacgtcc acctctaaca tggcccctc cacaggattc caccctaaca accagctca 12420
tgacatcatt accatgcggt acgcagacaa acacatgaac atcgactttg acagttcat 12480
ctgctgcttc gtaggctgg agggcatgtt cagaatgtt gagagggggg ctgccccctg 12540
ctctcttgca gggcagttt tggcaacagg catctcacct gataatctcc agtctgtcc 12600
atccaggctg aacaagggcc aatgacctt ttaggcccag aatggatgg caaaggagg 12660
gttactggtg attctctgcc tgacatctt tgtgtgtt agggacagca ctggcacac 12720
ggtcctctga gggaaagttt cagtagtaa ggcggagtgc gcctgttaact ggctctggc 12780
ctgtgatcc ttccacagga gcttcatg catttgacaa ggatggatgg ggtatcatca 12840
agctcaacgt tctggaggta aagcataggc acagcacatt cccctacac attaaaactc 12900
aagggtggagg ggtcaacggg gccggacttggc cccagggtt gtcctctt tccacacagt 12960
ggtggaggga agggatagga acagaacatg gagggaggtt cagcaggctc ccaggacaca 13020
tgcacttgag gcccaaagg acctctgctc cccctgtcac ttgtgtggg aaaacatgca 13080
ccttctttagg gaagatctag gagaaggaa acagtaagcc actgttttctt gaaaaatctt 13140
ctgggggtct gacccgtctt gactgttccc tttccctctt ccctgttaaga ttccttagggc 13200
gggggggggg ggggggtcact cttttctgtt ctacattctt atcttggac ttctttcagt 13260
ggctgcagct caccatgtat gcctgaacca ggctggccctc atccaaagcc atgcaggatc 13320
actcaggatt tcagtttaccc cctcttattt caaagccatt tacctcaaag gacccagcag 13380
ctacacccct acaggcttcc aggacaccta tcagtcattt tcctcttcca ttttacccccc 13440
tacccatcct tgatcggtca tgccttagctt gaccctttttt taaagcaatg aggttaggaag 13500
aacaaacccct tgcctttttt ccatgtggag gaaagtgcct gcctctggc cgagccgcct 13560
cggttctgaa gcgagtgctc ctgcttaccc ttgtcttggc ttgtctgcaga agcacctgccc 13620
ggtggcactc agcacccctt tggcttagag ccctccatca ctttccatgtt gtccaccat 13680
gggcccaggaa ccaaaccagg actgggttctt actgtgtgtt ggtaaactaa ctcagtgaa 13740
tagggcttgt tactttgggc tgccttactc ataaatgggg ctgcattttt aaaaaagctg 13800
atctaataa aggcatgtgt atggctggc ccccttgggtt ttgtgtgtc acatttagat 13860
atcagccatg catgactgaa tggcttccaa tcatataactc acctatcacc tacaagagaa 13920
caataaaaa cacacacaaaa aacaaaatct tgaattttttt aatcatgcctt attgttattt 13980
cttgagcata agaatggctc agataacttcc caagacataa aaggaaggca gaggaatagt 14040
tggctgtta aaagacatca agaataaaatg gggtcatgtt caacgggggg ggccgggtac 14100
ctgaataatg gagtggagat tgagcttcc tagctccctt gtcactaacc tgacctgtcg 14160
catgaccgtg gacaaaaccc tgaacccggc tggtttgtt ctaaaacttctt ctggaccatg 14220
gcctgcggca tatctatagg catccgtgt tttccaccca gtttcccttctt tcctcgctaa 14280
gccaacgtgg aaagggtctgg ccgtgaatat gcagacaaagg taacgaaatg aaaccgtcaa 14340
ttagtaaaatg tacttcattt tcccttgcata tttgtttcat tcttgcttca caaagttacg 14400
aagtccacag ctttataccca aaatgttggaa aggcttattt cttataaaaca ttttggatca 14460
ggtgcgtatct gatttcattt tccataatccca tattcaatat taaaaatca gaaaccaagg 14520
gtgctggagc agctcttaggg cccatatttcc tcttaaatag gagaaagatt ttcaacagct 14580
tttccctctt gaccccccctcc tttcccaattt tatttgggtc actaccttga atttagatg 14640
aatctggaa atgtgttccat cagg 14664

<210> 5
<211> 5149
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(5149)
<223> /label= Figure 2

<220>
<221> misc_feature
<222> (1303)..(3764)
<223> /note= cDNA

<220>
<221> misc_feature
<222> (1631)
<223> /note= CGA -> TGA; nCL1 mutation in one LGMD2A family

Sab

```
<220>
<221> misc_feature
<222> (1848)
<223> /note= CTG -> CAG; nCL1 mutation in one LGMD2A
      family

<220>
<221> misc_feature
<222> (1853)
<223> /note= CAA -> CA; nCL1 mutation in one LGMD2A
      family

<220>
<221> misc_feature
<222> (2004)
<223> /note= GGG -> GAG; nCL1 mutation in one LGMD2A
      family

<220>
<221> misc_feature
<222> (2248)
<223> /note= CGG ->CG; nCL1 mutation in one LGMD2A
      family

<220>
<221> misc_feature
<222> (2364)
<223> /note=GTG -> GGG; nCL1 mutation in one LGMD2A
      family

<220>
<221> misc_feature
<222> (2382)
<223> /note= TGG -> TAG; nCL1 mutation in one LGMD2A
      family

<220>
<221> misc_feature
<222> (2771)
<223> /note= CGG -> TGG; nCL1 mutation in one LGMD2A
      family

<220>
<221> misc_feature
<222> (3018)
<223> /note= GGG -> CAG; nCL1 mutation in one LGMD2A
      family

<220>
<221> misc_feature
<222> (3372)..(3373)
<223> /note= deletion AC; nCL1 mutation in one LGMD2A
      family

<220>
<221> misc_feature
<222> (3533)
<223> /note= AGC -> GGC; nCL1 mutation in one LGMD2A
      family

<220>
```

Sub

```
<221> misc_feature
<222> (3609)
<223> /note= CGG -> CAG; nCL1 mutation in one LGMD2A
      family

<220>
<221> misc_feature
<222> (3616)..(3619)
<223> /note= deletion AGAC; nCL1 mutation in one LGMD2A
      family

<220>
<221> misc_feature
<222> (3665)..(3666)
<223> /note= AG -> TCATCT; nCL1 mutation in one LGMD2A
      family

<400> 5
atatacgtta gcctggtttc actatacagt acatcattt gcttaaagtc acagcttacg 60
agaaacccatc gatgatgtta agtgaggatt ttctctgc tc aggtgcactt tttttttttt 120
ttaagacgga gtctctttct gtcacctggg ctggagtgca gtggcgtat ctgggttac 180
tacaacctct ccctcctggg ttcaagcaat tcttctgtct cagccccc a gtagctggg 240
attacaggca cccccccgcca caccggctt atttttgtat ttttagtaga gacagggtt 300
ca ctttattgtt gtccatgtg gtctcgaact cgtgacacta t tgatccac ccgcctcggc 360
ctcccaaagt gcagagatta gagacgtat c acatggcc cagcaggacc acttttttagc 420
agattcagtc ccagtgttca ttttggat ggggagagac aagaggtggc aaggtcaagt 480
gtgcagtag agacaggat tttctaaat gaggactctg ctgagtagca tttccatgc 540
agacattcc aatgagcgct gacccaa gattctaaaa aagataccaa atctaaccatt 600
gaataatgtt ctgatatcct aaaatttttag gactaaaaat catgttctct aaaattcaca 660
gaatattttt gtagaattca gtacccccc ttcaccctaa ctagctttt tgcaatattg 720
ttttccattc atttgcatttgc cagtagttgg gtggctgtat taactgccta ctcataaaca 780
tgtcagcagt tctcagcttc ttccagttgt t caccctact cagataactcc cttttcattt 840
tctggcaaca ccagcacttc atgcaacacg aaatgtcctt agccagggtt tctcttacc 900
atgcagtctc tcttgcctc atactcacag ttttttttca catctatttt tagttttcct 960
ggctcaagca tcttcaggcc actgaaacac aaccctact ctctttctct cccctctgg 1020
catgcattgtct gctggtagga gaccccaag tcaacattgc ttcagaaatc ctttagact 1080
catttctcag gagaacttat ggcttcagaa t c acagctcg gtttttaaga tggacataac 1140
ctgtccgacc ttctgatggg ctttcaactt tgaactggat gtggacactt ttctctcaga 1200
tgacagaatt actccaactt ccccttgca gttgcttctt ttcccttgaag gtatgttat 1260
cttattttct ttaaaaagct ttttcttcca aagccacttg ccatgcccac cgtcatttagc 1320
gcattctgtgg ctccaaaggac agcggctgag ccccggtccc caggccagt tcctcaccc 1380
gcccgagca aggccactga ggctgggggt gaaacccaa gtggcatcta ttcagccatc 1440
atcagccgca attttccat tatcgagtg aaagagaaga cattcgagca acttcacaag 1500
aaatgtctag aaaaagaaagt ttttatgtg gaccctgagt tccaccggaa tgagacctt 1560
ctctttata gcagaagtt cccatccag ttcgtctgga agagacctcc gaaatttgc 1620
gagaatcccc catttatcat t gatggagcc aacagaactg acatctgtca aggagagcta 1680
ggggactgct gtttctcgc agccattgcc tgcctgacc tgaaccagca ctttctttc 1740
cgagtcatca cccatgatca aagtttcatc gaaaactacg caggatctt ccacttccag 1800
ttctggcgat atggagatgt ggtggacgtg gttatagatg actgcctgcc aacgtacaac 1860
aatcaactgg ttttccacca gtcacccac cgcaatgagt tctggagtgc tctgctggag 1920
aaggctttagt ctaagctcca tggcttctac gaagctctg aagggtggaa caccacagag 1980
gccatggagg acttcacagg aggggtggca gagtttttg agatcaggaa tgctccttagt 2040
gacatgtaca agatcatgaa gaaaggccatc gagagaggtt ccctcatggg ctgctccatt 2100
gatgtggca cgaacatgac ctatgaaacc ttccttctg gtctgaacat gggggagttg 2160
attgcacggc tgtaaggaa tatggataac tcaactgtcc aggactcaga cctcgacccc 2220
agaggctcag atgaaagacc gacccggaca atcattccgg ttcagtaga gacaagaatg 2280
gcctgcgggc tggtcagagg tcacgcctac tctgtcacgg ggctggatga ggtcccggtc 2340
aaaggtgaga aagtgaagct ggtgcggctg cggaaatccgt gggccaggt ggagtggAAC 2400
ggttcttggaa gtatagatgt gaaaggactgg agctttgtgg acaaagatga gaaggcccgt 2460
ctgcagcacc agtcaactga ggtatggagag ttctggatgt cctatgagga tttcatctac 2520
catttcacca agttggagat ctgcaacctc acggccgatg ctctgcagtc tgacaagctt 2580
```

Sub
X

cagacctgga cagtgtctgt gaacgagggc cgctgggtac ggggttgc tc tgccggaggc 2640
tgccgcaact tcccagatac tttctggacc aaccctcagt accgtctgaa gctcctggag 2700
gaggacatg accctgatga ctcggaggtg atttgcagct tcctgggtgc cctgatgcag 2760
aagaaccggc ggaaggaccg gaagctaggg gccagtctt tcaccattgg cttcgccatc 2820
tacgaggttc ccaaagagat gcacggaa aagcagcacc tgcaagaagga cttcttcctg 2880
tacaacgcct ccaaggccag gagcaaaacc tacatcaaca tgcgagggt gtcccaagcgc 2940
ttccgcctgc ctccccagcga gtacgtcatc gtgcctcga cctacgagcc ccaccaggag 3000
ggggaaattca tcctccgggt cttctctgaa aagaggaacc tctctgagga agttgaaaat 3060
accatctccg tgatcggcc agtaaaaaag aaaaaaacc a gcccacatcat cttcgtttcg 3120
gacagagcaa acagcaacaa ggagctgggt gtggaccagg agtcagagga gggcaaaaggc 3180
aaaacaagcc ctgataagca aaagcagtcc cacagccac agcctggcag ctctgatcatc 3240
gaaagtggg aacagcaaca attccggaa atttcaagc agatagcagg agatgacatg 3300
gagatctgtg cagatgagct caagaaggc cttAACACAG tcgtgaccaa acacaaggac 3360
ctgaagacac acgggttcac actggagtcc tgccgttagca tgatgcgct catggatata 3420
gatggctctg gaaagctcaa cctgcaggag ttccaccacc tctggaccaa gattaaggcc 3480
tggcagaaaa tttcaaaaca ctatgacaca gaccagtccg gacccatcaa cagctacgag 3540
atgcgaaatg cagtcaacga cgcaggattc cacctcaaca accagctcta tgacatcatt 3600
accatgcgtt acgcagacaa acacatgaa atcgactttt acagttcat ctgctgcttc 3660
gttaggctgg agggcatgtt cagagttt catgcattttt acaaggatgg agatggatc 3720
atcaagctca acgttctgga gtggctgcag ctcaccatgt atgcctgaaac caggctggcc 3780
tcatccaaag ccatgcagga tcactcagga tttcagttt accctctatt tccaaaggca 3840
tttacctcaa aggacccagc agctacaccc ctacaggctt ccaggcacct catcagtcat 3900
gttcctcctc cattttaccc cttaccatc ttgatcggt catgccttagc ctgacccttt 3960
agtaaagcaa ttaggttagga agaacaacc ctgtccctt tgccatgtgg agggaaagtgc 4020
ctgcctctgg tccgagccgc ctcggttctg aagcagatgc ttctgcttac ttgctctag 4080
gctgtctgca gaagcacctg ccgggtggcac ctacgaccc cttgtgttag agccctccat 4140
cacccatcagc ctgtcccacc atggggcagg aaccaaaacca gcaactgggtt ctactgctgt 4200
ggggtaaact aactcagtgg aatagggtcg gttactttgg gctgtccaac tcataagttt 4260
ggctgcattt tggaaaaaagc tgatctaat aaaggcatgt gtatggctgg tccccttgg 4320
tttgggtgtc tcacatttag atatcagcca tgcatgactg aatggcttcc aatcatatac 4380
tcacctatca cttacaagag aacaaggaaa aacacacaca aaaacaaaat cttgaatttt 4440
gtaatcatgc ctattgctat ttcttgagca taagaatggc tcagatactt tccaagacat 4500
aaaaggaagg cagaggaata gttgtgtcg taaaagacat caagaataaa tgggtcatgt 4560
acaacgggag gggccggta ctgaaataat ggagtggaga ttgagcttac ctgactccctc 4620
tgctcaacta ctgacctgtc ctgatgaccgt ggacaaaacc ctgaaacgcag ctgtttgtt 4680
gctaaacttc tctggaccat ggcctgccc atatctatac gcatccctgtg tttccaccc 4740
agtttccttc ttcttcgcta agccaaacgtg gaaagggtcg gccgtgaata tgcagacaag 4800
gtaacgaaag taaaccgtta attagaaaa gtacttcatt ttctcttgc atttgcttca 4860
tatcttgctt cacaaggta cgaagttcac agctttatac caaaatgtaa gaaggctatt 4920
tgcttataaa catttttgca gtcagggtgc atctgatttc attcttctaa tccatattca 4980
atattanaaa aatcagaaac caagggtgt ggagcagctc tagggcatat atttcttta 5040
aataggagaa agatittcaa cagctttcc tccttgaccc cctcccttcc caatttattt 5100
gggtcactac ttgatcta gagtgaatct gggaaatgtt gtcaccagg 5149

<210> 6
<211> 821
<212> PRT
<213> Homo sapiens

<220>
<221> DOMAIN
<222> (1)..(821)
<223> /label= "Figure 2"

<220>
<221> DOMAIN
<222> (1)..(61)
<223> /label= ALU

/note= "FIGURE 3-HUMAN"

Sub

```
<220>
<221> DOMAIN
<222> (268)..(309)
<223> /label= ALU

/note= "FIGURE 3-HUMAN"

<220>
<221> DOMAIN
<222> (310)..(328)
<223> /label= ALU

/note= "FIGURE 3-HUMAN"

<220>
<221> DOMAIN
<222> (1)..(821)
<223> /label= "Figure 2"

<220>
<221> DOMAIN
<222> (619)..(653)
<223> /label= ALU

/note= "FIGURE 3-HUMAN"

<400> 6
Met Pro Thr Val Ile Ser Ala Ser Val Ala Pro Arg Thr Ala Ala Glu
 1           5           10          15

Pro Arg Ser Pro Gly Pro Val Pro His Pro Ala Gln Ser Lys Ala Thr
 20          25          30

Glu Ala Gly Gly Gly Asn Pro Ser Gly Ile Tyr Ser Ala Ile Ile Ser
 35          40          45

Arg Asn Phe Pro Ile Ile Gly Val Lys Glu Lys Thr Phe Glu Gln Leu
 50          55          60

His Lys Lys Cys Leu Glu Lys Lys Val Leu Tyr Val Asp Pro Glu Phe
 65          70          75          80

Pro Pro Asp Glu Thr Ser Leu Phe Tyr Ser Gln Lys Phe Pro Ile Gln
 85          90          95

Phe Val Trp Lys Arg Pro Pro Glu Ile Cys Glu Asn Pro Arg Phe Ile
100         105         110

Ile Asp Gly Ala Asn Arg Thr Asp Ile Cys Gln Gly Glu Leu Gly Asp
115         120         125

Cys Trp Phe Leu Ala Ala Ile Ala Cys Leu Thr Leu Asn Gln His Leu
130         135         140

Leu Phe Arg Val Ile Pro His Asp Gln Ser Phe Ile Glu Asn Tyr Ala
145         150         155         160
```

Gly Ile Phe His Phe Gln Phe Trp Arg Tyr Gly Glu Trp Val Asp Val
165 170 175

Val Ile Asp Asp Cys Leu Pro Thr Tyr Asn Asn Gln Leu Val Phe Thr
180 185 190

Lys Ser Asn His Arg Asn Glu Phe Trp Ser Ala Leu Leu Glu Lys Ala
195 200 205

Tyr Ala Lys Leu His Gly Ser Tyr Glu Ala Leu Lys Gly Gly Asn Thr
210 215 220

Thr Glu Ala Met Glu Asp Phe Thr Gly Gly Val Ala Glu Phe Phe Glu
225 230 235 240

Ile Arg Asp Ala Pro Ser Asp Met Tyr Lys Ile Met Lys Lys Ala Ile
245 250 255

Glu Arg Gly Ser Leu Met Gly Cys Ser Ile Asp Asp Gly Thr Asn Met
260 265 270

Thr Tyr Gly Thr Ser Pro Ser Gly Leu Asn Met Gly Glu Leu Ile Ala
275 280 285

Arg Met Val Arg Asn Met Asp Asn Ser Leu Leu Gln Asp Ser Asp Leu
290 295 300

Asp Pro Arg Gly Ser Asp Glu Arg Pro Thr Arg Thr Ile Ile Pro Val
305 310 315 320

Gln Tyr Glu Thr Arg Met Ala Cys Gly Leu Val Arg Gly His Ala Tyr
325 330 335

Ser Val Thr Gly Leu Asp Glu Val Pro Phe Lys Gly Glu Lys Val Lys
340 345 350

Leu Val Arg Leu Arg Asn Pro Trp Gly Gln Val Glu Trp Asn Gly Ser
355 360 365

Trp Ser Asp Arg Trp Lys Asp Trp Ser Phe Val Asp Lys Asp Glu Lys
370 375 380

Ala Arg Leu Gln His Gln Val Thr Glu Asp Gly Glu Phe Trp Met Ser
385 390 395 400

Tyr Glu Asp Phe Ile Tyr His Phe Thr Lys Leu Glu Ile Cys Asn Leu
405 410 415

Thr Ala Asp Ala Leu Gln Ser Asp Lys Leu Gln Thr Trp Thr Val Ser
420 425 430

Val Asn Glu Gly Arg Trp Val Arg Gly Cys Ser Ala Gly Gly Cys Arg
435 440 445

Asn Phe Pro Asp Thr Phe Trp Thr Asn Pro Gln Tyr Arg Leu Lys Leu
450 455 460

Leu Glu Glu Asp Asp Asp Pro Asp Asp Ser Glu Val Ile Cys Ser Phe
465 470 475 480

Leu Val Ala Leu Met Gln Lys Asn Arg Arg Lys Asp Arg Lys Leu Gly

485 490 495

Ala Ser Leu Phe Thr Ile Gly Phe Ala Ile Tyr Glu Val Pro Lys Glu
500 505 510

Met His Gly Asn Lys Gln His Leu Gln Lys Asp Phe Phe Leu Tyr Asn
515 520 525

Ala Ser Lys Ala Arg Ser Lys Thr Tyr Ile Asn Met Arg Glu Val Ser
530 535 540

Gln Arg Phe Arg Leu Pro Pro Ser Glu Tyr Val Ile Val Pro Ser Thr
545 550 555 560

Tyr Glu Pro His Gln Glu Gly Glu Phe Ile Leu Arg Val Phe Ser Glu
565 570 575

Lys Arg Asn Leu Ser Glu Glu Val Glu Asn Thr Ile Ser Val Asp Arg
580 585 590

Pro Val Lys Lys Lys Lys Thr Lys Pro Ile Ile Phe Val Ser Asp Arg
595 600 605

Ala Asn Ser Asn Lys Glu Leu Gly Val Asp Gln Glu Ser Glu Glu Gly
610 615 620

Lys Gly Lys Thr Ser Pro Asp Lys Gln Lys Gln Ser Pro Gln Pro Gln
625 630 635 640

Pro Gly Ser Ser Asp Gln Glu Ser Glu Glu Gln Gln Phe Arg Asn
645 650 655

Ile Phe Lys Gln Ile Ala Gly Asp Asp Met Glu Ile Cys Ala Asp Glu
660 665 670

Leu Lys Lys Val Leu Asn Thr Val Val Asn Lys His Lys Asp Leu Lys
675 680 685

Thr His Gly Phe Thr Leu Glu Ser Cys Arg Ser Met Ile Ala Leu Met
690 695 700

Asp Thr Asp Gly Ser Gly Lys Leu Asn Leu Gln Glu Phe His His Leu
705 710 715 720

Trp Asn Lys Ile Lys Ala Trp Gln Lys Ile Phe Lys His Tyr Asp Thr
725 730 735

Asp Gln Ser Gly Thr Ile Asn Ser Tyr Glu Met Arg Asn Ala Val Asn
740 745 750

Asp Ala Gly Phe His Leu Asn Asn Gln Leu Tyr Asp Ile Ile Thr Met
755 760 765

Arg Tyr Ala Asp Lys His Met Asn Ile Asp Phe Asp Ser Phe Ile Cys
770 775 780

Cys Phe Val Arg Leu Glu Gly Met Phe Arg Ala Phe His Ala Phe Asp
785 790 795 800

Lys Asp Gly Asp Gly Ile Ile Lys Leu Asn Val Leu Glu Trp Leu Gln
805 810 815

Leu Thr Met Tyr Ala
820

<210> 7
<211> 821
<212> PRT
<213> Homo sapiens

<220>
<221> DOMAIN
<222> (1)..(61)
<223> /label= ALU

<220>
<221> DOMAIN
<222> (268)..(309)
<223> /label= ALU

/note= "FIGURE 3 - RAT"

<220>
<221> DOMAIN
<222> (310)..(328)
<223> /label= ALU

/note= "FIGURE 3 - RAT"

<220>
<221> DOMAIN
<222> (578)..(618)
<223> /label= ALU

/note= "FIGURE 3 - RAT"

<220>
<221> DOMAIN
<222> (619)..(653)
<223> /label= ALU

/note= "FIGURE 3 - RAT"

<400> 7
Met Pro Thr Val Ile Ser Pro Thr Val Ala Pro Arg Thr Gly Ala Glu
1 5 10 15

Pro Arg Ser Pro Gly Pro Val Pro His Pro Ala Gln Gly Lys Thr Thr
20 25 30

Glu Ala Gly Gly His Pro Gly Gly Ile Tyr Ser Ala Ile Ile Ser
35 40 45

Arg Asn Phe Pro Ile Ile Gly Val Lys Glu Lys Thr Phe Glu Gln Leu
50 55 60

His Lys Lys Cys Leu Glu Lys Lys Val Leu Tyr Leu Asp Pro Glu Phe

65 70 75 80
Pro Pro Asp Glu Thr Ser Leu Phe Tyr Ser Gln Lys Phe Pro Ile Gln
85 90 95
Phe Val Trp Lys Arg Pro Pro Glu Ile Cys Glu Asn Pro Arg Phe Ile
100 105 110
Ile Gly Gly Ala Asn Arg Thr Asp Ile Cys Gln Gly Asp Leu Gly Asp
115 120 125
Cys Trp Leu Leu Ala Ala Ile Ala Cys Leu Thr Leu Asn Glu Arg Leu
130 135 140
Leu Phe Arg Val Ile Pro His Asp Gln Ser Phe Thr Glu Asn Tyr Ala
145 150 155 160
Gly Ile Phe His Phe Gln Phe Trp Arg Tyr Gly Asp Trp Val Asp Val
165 170 175
Val Ile Asp Asp Cys Leu Pro Thr Tyr Asn Asn Gln Leu Val Phe Thr
180 185 190
Lys Ser Asn His Arg Asn Glu Phe Trp Ser Ala Leu Leu Glu Lys Ala
195 200 205
Tyr Ala Lys Leu His Gly Ser Tyr Glu Ala Leu Lys Gly Asn Thr
210 215 220
Thr Glu Ala Met Glu Asp Phe Thr Gly Gly Val Thr Glu Phe Phe Glu
225 230 235 240
Ile Lys Asp Ala Pro Ser Asp Met Tyr Lys Ile Met Arg Lys Ala Ile
245 250 255
Glu Arg Gly Ser Leu Met Gly Cys Ser Ile Asp Asp Gly Thr Asn Met
260 265 270
Thr Tyr Gly Thr Ser Pro Ser Gly Leu Asn Met Gly Glu Leu Ile Ala
275 280 285
Arg Met Val Arg Asn Met Asp Asn Ser Leu Leu Arg Asp Ser Asp Leu
290 295 300
Asp Pro Arg Ala Ser Asp Asp Arg Pro Ser Arg Thr Ile Val Pro Val
305 310 315 320
Gln Tyr Glu Thr Arg Met Ala Cys Gly Leu Val Arg Gly His Ala Tyr
325 330 335
Ser Val Thr Gly Leu Glu Ala Leu Phe Lys Gly Glu Lys Val Lys
340 345 350
Leu Val Arg Leu Arg Asn Pro Trp Gly Gln Val Glu Trp Asn Gly Ser
355 360 365
Trp Ser Asp Gly Trp Lys Asp Trp Ser Phe Val Asp Lys Asp Glu Lys
370 375 380
Ala Arg Leu Gln His Gln Val Thr Glu Asp Gly Glu Phe Trp Met Ser
385 390 395 400

Sul

Tyr Asp Asp Phe Val Tyr His Phe Thr Lys Leu Glu Ile Cys Asn Leu
405 410 415

Thr Ala Asp Ala Leu Glu Ser Asp Lys Leu Gln Thr Trp Thr Val Ser
420 425 430

Val Asn Glu Gly Arg Trp Val Arg Gly Cys Ser Ala Gly Gly Cys Arg
435 440 445

Asn Phe Pro Asp Thr Phe Trp Thr Asn Pro Gln Tyr Arg Leu Lys Leu
450 455 460

Leu Glu Glu Asp Asp Asp Pro Asp Asp Ser Glu Val Ile Cys Ser Phe
465 470 475 480

Leu Val Ala Leu Met Gln Lys Asn Arg Arg Lys Asp Arg Lys Leu Gly
485 490 495

Ala Asn Leu Phe Thr Ile Gly Phe Ala Ile Tyr Glu Val Pro Lys Glu
500 505 510

Met His Gly Asn Lys Gln His Leu Gln Lys Asp Phe Phe Leu Tyr Asn
515 520 525

Ala Ser Lys Ala Arg Ser Lys Thr Tyr Ile Asn Met Arg Glu Val Ser
530 535 540

Gln Arg Phe Arg Leu Pro Pro Ser Glu Tyr Val Ile Val Pro Ser Thr
545 550 555 560

Tyr Glu Pro His Gln Glu Gly Glu Phe Ile Leu Arg Val Phe Ser Glu
565 570 575

Lys Arg Asn Leu Ser Glu Glu Ala Glu Asn Thr Ile Ser Val Asp Arg
580 585 590

Pro Val Lys Lys Lys Asn Lys Pro Ile Ile Phe Val Ser Asp Arg
595 600 605

Ala Asn Ser Asn Lys Glu Leu Gly Val Asp Gln Glu Ala Glu Glu Gly
610 615 620

Lys Asp Lys Thr Gly Pro Asp Lys Gln Gly Glu Ser Pro Gln Pro Arg
625 630 635 640

Pro Gly His Thr Asp Gln Glu Ser Glu Glu Gln Gln Phe Arg Asn
645 650 655

Ile Phe Arg Gln Ile Ala Gly Asp Asp Met Glu Ile Cys Ala Asp Glu
660 665 670

Leu Lys Asn Val Leu Asn Thr Val Val Asn Lys His Lys Asp Leu Lys
675 680 685

Thr Gln Gly Phe Thr Leu Glu Ser Cys Arg Ser Met Ile Ala Leu Met
690 695 700

Asp Thr Asp Gly Ser Gly Arg Leu Asn Leu Gln Glu Phe His His Leu
705 710 715 720

Trp Lys Lys Ile Lys Ala Trp Gln Lys Ile Phe Lys His Tyr Asp Thr
725 730 735

Asp His Ser Gly Thr Ile Asn Ser Tyr Glu Met Arg Asn Ala Val Asn
740 745 750

Asp Ala Gly Phe His Leu Asn Ser Gln Leu Tyr Asp Ile Ile Thr Met
755 760 765

Arg Tyr Ala Asp Lys His Met Asn Ile Asp Phe Asp Ser Phe Ile Cys
770 775 780

Cys Phe Val Arg Leu Glu Gly Met Phe Arg Ala Phe His Ala Phe Asp
785 790 795 800

Lys Asp Gly Asp Gly Ile Ile Lys Leu Asn Val Leu Glu Trp Leu Gln
805 810 815

Leu Thr Met Tyr Ala
820

<210> 8
<211> 821
<212> PRT
<213> Homo sapiens

<220>
<221> DOMAIN
<222> (1)..(61)
<223> /label= ALU

/note= "FIGURE 3 -PIG"

<220>
<221> DOMAIN
<222> (268)..(309)
<223> /label= ALU

/note= "FIGURE 3 -PIG"

<220>
<221> DOMAIN
<222> (310)..(328)
<223> /label= ALU

/note= "FIGURE 3 -PIG"

<220>
<221> DOMAIN
<222> (578)..(618)
<223> /label= ALU

/note= "FIGURE 3 -PIG"

<220>
<221> DOMAIN

<222> (619)..(653)

<223> /label= ALU

/note= "FIGURE 3 -PIG"

<400> 8

Met Pro Thr Val Ile Ser Ala Ser Val Ala Pro Arg Thr Ala Ala Glu
1 5 10 15

Pro Arg Ser Pro Gly Pro Val Pro His Pro Ala Gln Ser Lys Ala Thr
20 25 30

Glu Ala Gly Gly Gly Asn Pro Ser Gly Ile Tyr Ser Ala Ile Ile Ser
35 40 45

Arg Asn Phe Pro Ile Ile Gly Val Lys Glu Lys Thr Phe Glu Gln Leu
50 55 60

His Lys Lys Cys Leu Glu Lys Lys Val Leu Tyr Val Asp Pro Glu Phe
65 70 75 80

Pro Pro Asp Glu Thr Ser Leu Phe Tyr Ser Gln Lys Phe Pro Ile Gln
85 90 95

Phe Val Trp Lys Arg Pro Pro Glu Ile Cys Glu Asn Pro Arg Phe Ile
100 105 110

Ile Asp Gly Ala Asn Arg Thr Asp Ile Cys Gln Gly Glu Leu Gly Asp
115 120 125

Cys Trp Phe Leu Ala Ala Ile Ala Cys Leu Thr Leu Asn Gln His Leu
130 135 140

Leu Phe Arg Val Ile Pro His Asp Gln Ser Phe Ile Glu Asn Tyr Ala
145 150 155 160

Gly Ile Phe His Phe Gln Phe Trp Arg Tyr Gly Glu Trp Val Asp Val
165 170 175

Val Ile Asp Asp Cys Leu Pro Thr Tyr Asn Asn Gln Leu Val Phe Thr
180 185 190

Lys Ser Asn His Arg Asn Glu Phe Trp Ser Ala Leu Leu Glu Lys Ala
195 200 205

Tyr Ala Lys Leu His Gly Ser Tyr Glu Ala Leu Lys Gly Gly Asn Thr
210 215 220

Thr Glu Ala Met Glu Asp Phe Thr Gly Gly Val Ala Glu Phe Phe Glu
225 230 235 240

Ile Arg Asp Ala Pro Ser Asp Met Tyr Lys Ile Met Lys Lys Ala Ile
245 250 255

Glu Arg Gly Ser Leu Met Gly Cys Ser Ile Asp Asp Gly Thr Asn Met
260 265 270

Thr Tyr Gly Thr Ser Pro Ser Gly Leu Asn Met Gly Asp Leu Ile Ala
275 280 285

Arg Met Val Arg Asn Met Glu Asn Ser Arg Leu Arg Asp Ser Ile Leu
290 295 300

Asp Pro Glu Val Ser Asp Asp Arg Pro Thr Arg Thr Ile Val Pro Val
305 310 315 320

Gln Phe Glu Thr Arg Met Ala Cys Gly Leu Val Arg Gly His Ala Tyr
325 330 335

Ser Val Thr Gly Leu Glu Glu Ala Leu Phe Lys Gly Glu Lys Val Lys
340 345 350

Leu Val Arg Leu Arg Asn Pro Trp Gly Gln Val Glu Trp Asn Gly Ser
355 360 365

Trp Ser Asp Ser Trp Lys Asp Trp Ser Phe Val Asp Lys Asp Glu Lys
370 375 380

Ala Arg Leu Gln His Gln Val Thr Glu Asp Gly Glu Phe Trp Met Ser
385 390 395 400

Tyr Asp Asp Phe Ile Tyr His Phe Thr Lys Leu Glu Ile Cys Asn Leu
405 410 415

Thr Ala Asp Ala Leu Glu Ser Asp Lys Leu Gln Thr Trp Thr Val Ser
420 425 430

Val Asn Glu Gly Arg Trp Val Arg Gly Cys Ser Ala Gly Thr Gly Arg
435 440 445

Asn Phe Pro Asp Thr Phe Trp Thr Asn Pro Gln Tyr Arg Leu Lys Leu
450 455 460

Leu Glu Glu Asp Asp Asp Pro Asp Asp Ser Glu Val Ile Cys Ser Phe
465 470 475 480

Leu Val Ala Leu Met Gln Arg Asn Arg Arg Lys Asp Arg Lys Leu Gly
485 490 495

Ala Asn Leu Phe Thr Ile Gly Phe Ala Ile Tyr Glu Val Pro Lys Glu
500 505 510

Met His Gly Asn Lys Gln His Leu Gln Lys Asp Phe Leu Tyr Asn
515 520 525

Ala Ser Lys Ala Arg Ser Arg Thr Tyr Ile Asn Met Arg Glu Val Ser
530 535 540

Glu Arg Phe Arg Leu Pro Pro Ser Glu Tyr Val Ile Val Pro Ser Thr
545 550 555 560

Tyr Glu Pro His Gln Glu Gly Glu Met Leu Arg Val Phe Ser Glu
565 570 575

Lys Arg Lys Leu Ser Glu Glu Val Glu Asn Thr Ile Ser Val Asp Arg
580 585 590

Pro Val Arg Lys Lys Lys Thr Lys Pro Ile Ile Phe Val Ser Asp Arg
595 600 605

Ala Asn Ser Asn Lys Glu Leu Gly Val Asp Gln Glu Ser Glu Gly

610 615 620

Gln Asp Lys Thr Ser Pro Asp Lys Gln Glu Lys Ser Pro Lys Pro Glu
625 630 635 640

Pro Ser Asn Thr Asp Gln Glu Ser Glu Glu Gln Gln Gln Phe Arg Asn
645 650 655

Ile Phe Lys Gln Ile Ala Gly Asp Asp Met Glu Ile Cys Ala Asp Glu
660 665 670

Leu Lys Lys Val Leu Asn Thr Val Val Asn Lys His Lys Asp Leu Lys
675 680 685

Thr His Gly Phe Thr Leu Glu Ser Cys Arg Ser Met Ile Ala Leu Met
690 695 700

Asp Thr Asp Gly Ser Gly Lys Leu Asn Leu Gln Glu Phe His His Leu
705 710 715 720

Trp Asn Lys Ile Lys Ala Trp Gln Lys Ile Phe Lys His Tyr Asp Thr
725 730 735

Asp Gln Ser Gly Thr Ile Asn Ser Tyr Glu Met Arg Asn Ala Val Asn
740 745 750

Asp Ala Gly Phe His Leu Asn Asn Gln Leu Tyr Asp Ile Ile Thr Met
755 760 765

Arg Tyr Ala Asp Lys His Met Asn Ile Asp Phe Asp Ser Phe Ile Cys
770 775 780

Cys Phe Val Arg Leu Glu Gly Met Phe Arg Ala Phe His Ala Phe Asp
785 790 795 800

Lys Asp Gly Asp Gly Ile Ile Lys Leu Asn Val Leu Glu Trp Leu Gln
805 810 815

Leu Thr Met Tyr Ala
820

<210> 9
<211> 821
<212> PRT
<213> Homo sapiens

<220>
<221> DOMAIN
<222> (1)..(61)
<223> /label= ALU

/note= "FIGURE 3 -COW"

<220>
<221> DOMAIN
<222> (268)..(309)
<223> /label= ALU

/note= "FIGURE 3 -COW"

<220>
<221> DOMAIN
<222> (310)..(328)
<223> /label= ALU

/note= "FIGURE 3 -COW"

<220>
<221> DOMAIN
<222> (578)..(618)
<223> /label= ALU

/note= "FIGURE 3 -COW"

<220>
<221> DOMAIN
<222> (619)..(653)
<223> /label= ALU

/note= "FIGURE 3 -COW"

<400> 9
Met Pro Thr Val Ile Ser Ala Ser Val Ala Pro Arg Thr Ala Ala Glu
1 5 10 15

Pro Arg Ser Pro Gly Pro Val Pro His Pro Ala Gln Ser Lys Ala Thr
20 25 30

Glu Ala Gly Gly Gly Asn Pro Ser Gly Ile Tyr Ser Ala Ile Ile Ser
35 40 45

Arg Asn Phe Pro Ile Ile Gly Val Lys Glu Lys Thr Phe Glu Gln Leu
50 55 60

His Lys Lys Cys Leu Glu Lys Lys Val Leu Tyr Val Asp Pro Glu Phe
65 70 75 80

Pro Pro Asp Glu Thr Ser Leu Phe Tyr Ser Gln Lys Phe Pro Ile Gln
85 90 95

Phe Val Trp Lys Arg Pro Pro Glu Ile Cys Glu Asn Pro Arg Phe Ile
100 105 110

Ile Asp Gly Ala Asn Arg Thr Asp Ile Cys Gln Gly Glu Leu Gly Asp
115 120 125

Cys Trp Phe Leu Ala Ala Ile Ala Cys Leu Thr Leu Asn Gln His Leu
130 135 140

Leu Phe Arg Val Ile Pro His Asp Gln Ser Phe Ile Glu Asn Tyr Ala
145 150 155 160

Gly Ile Phe His Phe Gln Phe Trp Arg Tyr Gly Glu Trp Val Asp Val
165 170 175

Val Ile Asp Asp Cys Leu Pro Thr Tyr Asn Asn Gln Leu Val Phe Thr

180

185

190

Lys Ser Asn His Arg Asn Glu Phe Trp Ser Ala Leu Leu Glu Lys Ala
195 200 205

Tyr Ala Lys Leu His Gly Ser Tyr Glu Ala Leu Lys Gly Gly Asn Thr
210 215 220

Thr Glu Ala Met Glu Asp Phe Thr Gly Gly Val Ala Glu Phe Phe Glu
225 230 235 240

Ile Arg Asp Ala Pro Ser Asp Met Tyr Lys Ile Met Lys Lys Ala Ile
245 250 255

Glu Arg Gly Ser Leu Met Gly Cys Ser Ile Asp Asp Gly Thr Asn Met
260 265 270

Thr Tyr Gly Thr Ser Pro Ser Gly Leu Asn Met Gly Glu Leu Ile Glu
275 280 285

Arg Met Val Arg Asn Met Asp Asn Ser Arg Leu Arg Asp Ser Ile Leu
290 295 300

Asp Pro Glu Val Ser Asp Asp Arg Pro Thr Arg Met Ile Val Pro Val
305 310 315 320

Gln Phe Glu Thr Arg Met Ala Cys Gly Leu Val Arg Gly His Ala Tyr
325 330 335

Ser Val Thr Gly Leu Glu Glu Ala Leu Tyr Lys Gly Glu Lys Val Lys
340 345 350

Leu Val Arg Leu Arg Asn Pro Trp Gly Gln Val Glu Trp Asn Gly Ser
355 360 365

Trp Ser Asp Ser Trp Lys Asp Trp Ser Tyr Val Asp Lys Asp Glu Lys
370 375 380

Ala Arg Leu Gln His Gln Val Thr Glu Asp Gly Glu Phe Trp Met Ser
385 390 395 400

Tyr Glu Asp Phe Ile Tyr His Phe Thr Lys Leu Glu Ile Cys Asn Leu
405 410 415

Thr Ala Asp Ala Leu Gln Ser Asp Lys Leu Gln Thr Trp Thr Val Ser
420 425 430

Val Asn Glu Gly Arg Trp Val Arg Gly Cys Ser Ala Gly Gly Cys Arg
435 440 445

Asn Phe Pro Asp Thr Phe Trp Thr Asn Pro Gln Tyr Arg Leu Lys Leu
450 455 460

Leu Glu Glu Asp Asp Pro Asp Asp Ser Glu Val Ile Cys Ser Phe
465 470 475 480

Leu Val Ala Leu Met Gln Lys Asn Arg Arg Lys Asp Arg Lys Leu Gly
485 490 495

Ala Ser Leu Phe Thr Ile Gly Phe Ala Ile Tyr Glu Val Pro Lys Glu
500 505 510

Met His Gly Asn Lys Gln His Leu Gln Lys Asp Phe Phe Leu Tyr Asn
515 520 525

Ala Ser Lys Ala Arg Ser Lys Thr Tyr Ile Asn Met Arg Glu Val Ser
530 535 540

Gln Arg Phe Arg Leu Pro Pro Ser Glu Tyr Val Ile Val Pro Ser Thr
545 550 555 560

Tyr Glu Pro His Gln Glu Gly Glu Phe Ile Leu Arg Val Phe Ser Glu
565 570 575

Lys Arg Asn Leu Ser Glu Glu Val Glu Asn Thr Ile Ser Val Asp Arg
580 585 590

Pro Val Lys Lys Lys Lys Thr Lys Pro Ile Ile Phe Val Ser Asp Arg
595 600 605

Ala Asn Ser Asn Lys Glu Leu Gly Val Asp Gln Glu Ser Glu Glu Gly
610 615 620

Lys Gly Lys Thr Ser Pro Asp Lys Gln Lys Gln Ser Pro Gln Pro Gln
625 630 635 640

Pro Gly Ser Ser Asp Gln Glu Ser Glu Glu Gln Gln Phe Arg Asn
645 650 655

Ile Phe Lys Gln Ile Ala Gly Asp Asp Met Glu Ile Cys Ala Asp Glu
660 665 670

Leu Lys Lys Val Leu Asn Thr Val Val Asn Lys His Lys Asp Leu Lys
675 680 685

Thr His Gly Phe Thr Leu Glu Ser Cys Arg Ser Met Ile Ala Leu Met
690 695 700

Asp Thr Asp Gly Ser Gly Lys Leu Asn Leu Gln Glu Phe His His Leu
705 710 715 720

Trp Asn Lys Ile Lys Ala Trp Gln Lys Ile Phe Lys His Tyr Asp Thr
725 730 735

Asp Gln Ser Gly Thr Ile Asn Ser Tyr Glu Met Arg Asn Ala Val Asn
740 745 750

Asp Ala Gly Phe His Leu Asn Asn Gln Leu Tyr Asp Ile Ile Thr Met
755 760 765

Arg Tyr Ala Asp Lys His Met Asn Ile Asp Phe Asp Ser Phe Ile Cys
770 775 780

Cys Phe Val Arg Leu Glu Gly Met Phe Arg Ala Phe His Ala Phe Asp
785 790 795 800

Lys Asp Gly Asp Gly Ile Ile Lys Leu Asn Val Leu Glu Trp Leu Gln
805 810 815

Leu Thr Met Tyr Ala
820

Sub

```
<210> 10
<211> 20
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(20)
<223> /label= Table 1

<400> 10
atggagccaa cagaactgac 20

<210> 11
<211> 21
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(21)
<223> /label= Table 1

<400> 11
gtatgactcg gaaaagaagg t 21

<210> 12
<211> 20
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(20)
<223> /label= Table 1

<400> 12
taagcaaaag cagtccccac 20

<210> 13
<211> 21
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(21)
<223> /label= Table 1

<400> 13
ttgcgttcc tcactttcct g 21

<210> 14
<211> 20
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(20)
```

Sub

<223> /label= Table 1
<400> 14
gtttcatctg ctgcttcgtt

<210> 15
<211> 20
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(20)
<223> /label= Table 1

<400> 15
ctggttcagg catacatggt

<210> 16
<211> 22
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(22)
<223> /label= Table 1

<400> 16
ttcttatgt ggaccctgag tt

<210> 17
<211> 19
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(19)
<223> /label= Table 1

<400> 17
acgaactgga tgggaaact

<210> 18
<211> 20
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(20)
<223> /label= Table 3

<400> 18
ttcagtacct cccgttcacc

<210> 19
<211> 20
<212> DNA
<213> Homo sapiens

20

20

22

19

20

Sub
y

```
<220>
<221> misc_feature
<222> (1)..(20)
<223> /label= Table 3

<400> 19
gatgcttgag ccaggaaaac 20

<210> 20
<211> 22
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(22)
<223> /label= Table 3

<400> 20
cttccttga aggttagctgt at 22

<210> 21
<211> 20
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(20)
<223> /label= Table 3

<400> 21
gaggtgctga gtgagaggac 20

<210> 22
<211> 22
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(22)
<223> /label= Table 3

<400> 22
actccgtctc aaaaaaaatac ct 22

<210> 23
<211> 20
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(20)
<223> /label= Table 3

<400> 23
attgtccctt tacctcctgg 20
```

Sub

```
<210> 24
<211> 20
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(20)
<223> /label= Table 3

<400> 24
tggaagtagg agagtgggca 20

<210> 25
<211> 20
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(20)
<223> /label= Table 3

<400> 25
gggttagatgg gtgggaagt 20

<210> 26
<211> 20
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(20)
<223> /label= Table 3

<400> 26
gaggaatgtg gaggaaggac 20

<210> 27
<211> 20
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(20)
<223> /label= Table 3

<400> 27
ttcctgtgag tgaggtctcg 20

<210> 28
<211> 20
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(20)
```

<223> /label= Table 3

<400> 28
ggaactctgt gaccccaaat

20

<210> 29
<211> 20
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(20)
<223> /label= Table 3

<400> 29
tcctcaaaca aaacattcgc

20

<210> 30
<211> 20
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(20)
<223> /label= Table 3

<400> 30
gttccctaca ttctccatcg

20

<210> 31
<211> 21
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(21)
<223> /label= Table 3

<400> 31
gttatttcaa cccagaccct t

21

<210> 32
<211> 21
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(21)
<223> /label= Table 3

<400> 32
aatgggttct ctggttactg c

21

<210> 33
<211> 21
<212> DNA
<213> Homo sapiens

Sub A

```
<220>
<221> misc_feature
<222> (1)..(21)
<223> /label= Table 3

<400> 33
agcacgaaaa gcaaagataa a 21

<210> 34
<211> 20
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(20)
<223> /label= Table 3

<400> 34
gtaaagagatt tgccccccag 20

<210> 35
<211> 20
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(20)
<223> /label= Table 3

<400> 35
tctgcggatc attgggtttt 20

<210> 36
<211> 20
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(20)
<223> /label= Table 3

<400> 36
ccttccttc ttccctgcttc 20

<210> 37
<211> 20
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(20)
<223> /label= Table 3

<400> 37
ctctctccc cacccttacc 20
```

Sub
g
j

```
<210> 38
<211> 20
<212> DNA
<213> Homo sapiens
```

```
<220>
<221> misc_feature
<222> (1)..(20)
<223> /label= Table 3
```

```
<400> 38
cctcctcacc tgctccata
```

20

```
<210> 39
<211> 20
<212> DNA
<213> Homo sapiens
```

```
<220>
<221> misc_feature
<222> (1)..(20)
<223> /label= Table 3
```

```
<400> 39
tttttcggct tagaccctcc
```

20

```
<210> 40
<211> 22
<212> DNA
<213> Homo sapiens
```

```
<220>
<221> misc_feature
<222> (1)..(22)
<223> /label= Table 3
```

```
<400> 40
tgtgggaat agaaaataaat gg
```

22

```
<210> 41
<211> 19
<212> DNA
<213> Homo sapiens
```

```
<220>
<221> misc_feature
<222> (1)..(19)
<223> /label= Table 3
```

```
<400> 41
ccaggagctc tgtgggtca
```

19

```
<210> 42
<211> 21
<212> DNA
<213> Homo sapiens
```

```
<220>
<221> misc_feature
<222> (1)..(21)
```

Sig

<223> /label= Table 3
<400> 42
ggctcctcat cctcattcac a

<210> 43
<211> 20
<212> DNA
<213> Homo sapiens

21

<220>
<221> misc_feature
<222> (1)..(20)
<223> /label= Table 3

<400> 43
gtggaggagg gtgagtgtgc

<210> 44
<211> 20
<212> DNA
<213> Homo sapiens

20

<220>
<221> misc_feature
<222> (1)..(20)
<223> /label= Table 3

<400> 44
tgtggcagga caggacgttc

<210> 45
<211> 20
<212> DNA
<213> Homo sapiens

20

<220>
<221> misc_feature
<222> (1)..(20)
<223> /label= Table 3

<400> 45
ttcaacctct ggagtgggcc

20

<210> 46
<211> 20
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(20)
<223> /label= Table 3

<400> 46
caccagagca aaccgtccac

20

<210> 47
<211> 20
<212> DNA
<213> Homo sapiens

[Handwritten signature]

```
<220>
<221> misc_feature
<222> (1)..(20)
<223> /label= Table 3

<400> 47
acagcccaga ctccccattcc 20

<210> 48
<211> 20
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(20)
<223> /label= Table 3

<400> 48
ttctcttctc ccttcacccct 20

<210> 49
<211> 22
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(22)
<223> /label= Table 3

<400> 49
acacacttca tgctctctaa cc 22

<210> 50
<211> 20
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(20)
<223> /label= Table 3

<400> 50
ccgcctatcc ctttcccttt 20

<210> 51
<211> 20
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(20)
<223> /label= Table 3

<400> 51
gacaaactcc tggaaagcct 20
```

Handwritten notes:
52
20
DNA
Homo sapiens

<210> 52
<211> 20
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(20)
<223> /label= Table 3

20

<400> 52
acctctgacc cctgtgaacc

<210> 53
<211> 20
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(20)
<223> /label= Table 3

<400> 53
tgtggatttg tgtgctacgc

20

<210> 54
<211> 21
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(21)
<223> /label= Table 3

<400> 54
cataaatagc accgacaggg a

21

<210> 55
<211> 20
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(20)
<223> /label= Table 3

<400> 55
gggatggaga agagtgagga

20

<210> 56
<211> 20
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(20)
<223> /label= Table 3

Sub

<400> 56
tcctcaactct tctccatccc 20

<210> 57
<211> 19
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(19)
<223> /label= Table 3

<400> 57
accctgtatg ttgccttgg 19

<210> 58
<211> 20
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(20)
<223> /label= Table 3

<400> 58
ggggattttg ctgtgtgctg 20

<210> 59
<211> 20
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(20)
<223> /label= Table 3

<400> 59
attcctgctc ccacccgtctc 20

<210> 60
<211> 20
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(20)
<223> /label= Table 3

<400> 60
cacagagtgt ccgagaggca 20

<210> 61
<211> 22
<212> DNA
<213> Homo sapiens

Syb

N

```
<220>
<221> misc_feature
<222> (1)..(22)
<223> /label= Table 3

<400> 61
ggagattatc aggtgagatg cc 22

<210> 62
<211> 21
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(21)
<223> /label= Table 3

<400> 62
cagagtgtcc gagaggcagg g 21

<210> 63
<211> 20
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(20)
<223> /label= Table 3

<400> 63
cgttgacccc tccaccttga 20

<210> 64
<211> 20
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(20)
<223> /label= Table 3

<400> 64
gggaaaacat gcaccttctt 20

<210> 65
<211> 20
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(20)
<223> /label= Table 3

<400> 65
tagggggtaa aatggaggag 20
```

Su
Su
Ez
wtt

<210> 66
<211> 20
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(20)
<223> /label= Table 3

<400> 66
actaactcag tggaataggg

20

<210> 67
<211> 19
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(19)
<223> /label= Table 3

<400> 67
ggagcttagga tagctcaat

19