Разработка программного комплекса моделирования и визуализации движения беспилотных летательных аппаратов

Дербенев Леонид Олегович, МЕН-400101

Научный руководитель: Кумков Сергей Сергеевич

Департамент математики, механики и компьютерных наук ИЕНиМ УрФУ

14 июня 2024 г.

Задача

В настоящее время активно развивается движение гражданских БПЛА.

Конфликтов БПЛА и больших самолётов почти не возникает.

Движение БПЛА не диспетчеризируется централизовано.

Во время полета БПЛА сообщает в эфир в виде широковещательных пакетов информацию о собственном движении: текущие положение и скорость, краткосрочный прогноз движения.

Важной является разработка алгоритмов для автоматической выработки манёвров, разрешающих возникающие конфликтные ситуации с другими летательными аппаратами.

Цель работы — создание моделирующего программного комплекса, включающего реализации основных моделей движения БПЛА, модели радиообменов и процедур обнаружения конфликтов.

Входные данные

Входная информация:

- набор данных о каждом БПЛА: тип динамики, параметры динамики, полетный план;
- параметры интегрирования движения БПЛА: шаг интегрирования, шаг записи информации о положении БПЛА в выходной файл.

Предполагаем, что на каждом отрезке полетного плана движение БПЛА равномерное прямолинейное.

Материальная точка

Материальная точка имеет следующую модель движения:

$$\ddot{r}=m\cdot u,$$

где $r=(x,y,z)^{\sf T}$ — радиус-вектор положения объекта, $u=(u_x,u_y,u_z)^{\sf T}$ — управление, являющееся ускорением, m — масса точки.

Покоординатная запись:

$$\ddot{x} = u_x, \quad \ddot{y} = u_y, \quad \ddot{z} = u_z.$$

Запись, включающая скорости:

$$\dot{x}=V_x, \quad \dot{y}=V_y, \quad \dot{z}=V_z, \ \dot{V}_x=u_x, \quad \dot{V}_y=u_y, \quad \dot{V}_z=u_z.$$

Ограничение на управление: $\|u\| \leqslant u_{\max}$

Коптер

Коптер имеет следующую модель:

$$\begin{split} \dot{x} &= V_x, & \dot{y} &= V_y, & \dot{z} &= V_z, \\ \dot{V_x} &= \frac{u_x - V_x}{l_{xz}}, & \dot{V_y} &= \frac{u_y - V_y}{l_y}, & \dot{V_z} &= \frac{u_z - V_y}{l_{xz}}. \end{split}$$

Здесь $u=(u_x,u_y,u_z)^\mathsf{T}$ — управление, командный сигнал скорости, имеющий смысл желаемой скорости по каждой из координат; $l_{xz},\, l_y$ — коэффициенты, описывающие инерционность выхода на выбранный уровень скорости: выход осуществляется за время порядка 3l.

Ограничение на управление: $\|(u_x,u_z)\|\leqslant u_{\sf rop}^{\rm max}$, $|u_y|\leqslant u_{\sf верт}^{\rm max}$

В силу вида динамики имеется ограничение на максимальную скорость.

Вертолет

```
\dot{x} = V_{\text{rop}} \cos \psi,
 \dot{z} = V_{\text{ron}} \sin \psi.
\dot{y} = V_{\text{Bent}}
\dot{\psi} = rac{eta_{
m 6ok}}{V_{
m rop}} \, u_{
m 6ok}, \quad |u_{
m 6ok}| \leqslant 1,
 \dot{V}_{\text{rop}} = \dot{a}, \quad a_{\min} \leqslant a \leqslant a_{\max}, \quad V_{\text{rop}}^{\min} \leqslant V_{\text{rop}} \leqslant V_{\text{rop}}^{\min},
 \dot{V}_{\text{Bept}} = u_{\text{Bept}}, \quad u_{\text{Bept}}^{\min} \leqslant u_{\text{Bept}} \leqslant u_{\text{Bept}}^{\max}, \quad V_{\text{Bept}}^{\min} \leqslant V_{\text{Bept}} \leqslant V_{\text{Bept}}^{\max}.
```

Здесь ψ — угол курса; u_{60k} — ускорение, управляющее разворотом круса; $u_{\text{верт}}$ — ускорение (создаваемое изменением скорости вращения винтов). управляющее вертикальной скоростью; a — ускорение, управляющее величиной горизонтальной скорости (продольное); $\beta_{\text{бок}}$ — коэффициент горизонтальной маневренности судна.

Можно заменить управление скоростями через ускорения управлением через командный сигнал.

Самолет

$$\begin{split} \dot{x} &= V \cos \theta \cos \psi, \\ \dot{z} &= V \cos \theta \sin \psi, \\ \dot{y} &= V \sin \theta, \\ \dot{\theta} &= \frac{\beta_{\text{Bept}}}{V} \ u_{\text{Bept}}, \\ \dot{\psi} &= \frac{\beta_{\text{GoK}}}{V} \ u_{\text{GoK}}, \\ |u_{\text{Bept}}| &\leq 1, \quad |u_{\text{GoK}}| \leq 1, \\ \dot{V} &= a, \quad a_{\min} \leqslant a \leqslant a_{\max}, \quad V_{\min} \leqslant V \leqslant V_{\max}. \end{split}$$

Здесь θ — угол тангажа, ψ — угол курса; $u_{\mathsf{верт}},\,u_{\mathsf{бок}}$ — ускорения, управляющие углами тангажа и курса; а — ускорение, управляющее скоростью; $\beta_{\text{верт}}$, $\beta_{\text{бок}}$ — коэффициенты маневренности судна.

Можно заменить управление скоростью через ускорение управлением через командный сигнал.

ПИД регулятор

$$u(t) = P + I + D = K_p \cdot e(t) + K_i \cdot \int_0^{\mathsf{T}} e(t)d\tau + K_d \frac{de}{dt},$$

где K_p , K_i , K_d — коэффициенты усиления пропорциональной, интегрирующей и дифференцирующей составляющих.

В данной работе был использован линейный пропорциональный регулятор, то есть u=Kx, где $K\in R^{m\times n}$. Теперь задача имеет вид:

$$\dot{x} = Ax + BKx = (A + BK)x$$

Данная система является устойчивой $\iff \forall \lambda$ — собственное значение, выполняется: $\operatorname{Re} \lambda < 0$.

В данной работе будем использовать только пропорциональный регулятор:

$$u = -k_x \cdot (x - x_w) - k_V \cdot (V_x - V_{x,w}),$$

где x_w — желаемое значение координаты в текущий момент, $V_{x,w}$ — желаемое значение скорости.

Наивная прокладка

Вычисление движения по пути происходит методом эйлера на левый край.

Точка прицеливания идет по номинальному полетному плану.

Наивная прокладка

Вычисление движения по пути происходит методом эйлера на левый край.

Точка прицеливания идет по номинальному полетному плану.

Прокладка по дуге окружности

Прокладка по дуге окружности

Прокладка по дуге окружности

Радиовещание

 t_i — такт вещания текущей позиции.

Краткосрочный прогноз движения вещается по достижению очередной контрольной точки.

Этапы обнаружения конфликта

- Проверка расстояния
- Проверка скорости сближения
- Вычисление промежутка конфликта

Проверка расстояния

R — радиус фильтрации.

Проверка сближения

$$(p_2 - p_1, v_2 - v_1) > 0,$$

где p_1,p_2 — точки позиций в пространстве первого и второго судна соответственно, v_1,v_2 — векторы скорости первого и второго судна соответственно.

Слияние сеток

Вычисление промежутка конфликта

Защитный объем — область пространства вокруг ЛА, в которой не должно быть других ЛА. Чаще всего выбирается в виде кругового цилиндра с центром, совпадающим с положением ЛА, радиусом R_{30} и полувысотой H_{30} .

$$\begin{aligned} \left\| (x_1(t), z_1(t))^{\mathsf{T}} - (x_2(t), z_2(t))^{\mathsf{T}} \right\| &\leq R_{30}, \\ \left| y_1(t) - y_2(t) \right| &\leq H_{30}, \\ t &\in [t_i, t_{i+1}] \end{aligned}$$

Заключение

Разработаны процедуры моделирования движения летательного аппарата вдоль заданного маршрута.

Разработанные процедуры реализованы в виде программного комплекса на языке С++.

В дальнейшем в этот комплекс можно встраивать и тестировать те или иные алгоритмы выработки манёвров уклонения с целью оценки их качества.

Спасибо за внимание!