Preparation of m talloc n catalysts for polymerization of olefins.

Patent Number:

₹ EP0426637, A3, B1, B2

Publication date: 1991-05-08

Inventor(s):

EWEN JOHN A (US); ELDER MICHAEL J (US)

Applicant(s)::

FINA TECHNOLOGY (US)

Requested

Patent:

JP3207703

Application

Number:

EP19900870174 19901009

Priority Number

(s):

US19890419046 19891030

IPC

Classification:

C08F4/603 : C08F4/76 : C08F10/00

FC

Classification:

C08F10/00

Equivalents:

CA2027123, CN1028641B, CN1033457B, CN1051311, CN1105673, DE69018376D,

DE69018376T, ES2071086T, GR3015700T, 2 JP11315111, JP2943310B2, JP3224789B2.

KR165843

Abstract

This invention uses a new method of producing ionic metallocene compounds. These compounds are useful as catalysts for polymerization of olefins, primarily propylene. This method uses an ionizing agent which ionizes the neutral metallocene compound. The ionizing ionic compound does not contain an active proton and contains a carbonium, oxonium or sulfonium cation. The anion of the ionizing ionic compound is not coordinated or is only loosely coordinated to the metallocene cation and is chemically unreactive with the metallocene cation. One such compound is triphenylcarbenium tetrakis(pentafluorophenyl)boronate. The process of making catalysts with this invention produces catalysts having high activity and does not produce by-products which can inhibit catalyst activity. This new synthesis is a clean reaction which does not produce a Lewis base. The process generates active catalysts by removing a methyl anion from a group IV metallocene derivative.

Data supplied from the esp@cenet database - I2

⑩ 日本 国 特 許 庁 (J P)

00特許出簡公開

⑫ 公 開 特 許 公 報 (A) 平3-207703

Solnt. Cl. 5

識別記号

庁内整理番号

個公開 平成3年(1991)9月11日

C 08 F 10/00 07 F 17/00

MFG

8619-4H 8016-4 J

審査請求 未請求 請求項の数 2 (全8頁)

60発明の名称 オレフイン重合触媒の製造法

> 顧 平2-288599 创特

顧 平2(1990)10月29日

優先権主張

@1989年10月30日@米因(US)@419046

60発 明 者

明

者

伊雅

包出

ジョン・ユーエン

アメリカ合衆国テキサス州77058ヒューストン・ケントウ ツドアベニユー 16615

マイケル・ジエイ・エ

アメリカ合衆国テキサス州77546フレンズウツド・ストー

ルダー

ンレッジ 706

フイナ・テクノロジ ー・インコーポレーテ アメリカ合衆国テキサス州75221ダラス・ピーオーポツク ス 410

ッド

1997年 人 弁理士 小田島 平吉

1. [発明の名称]

オレフイン重合触媒の製造法

- 2. 【特許請求の範囲】
- 1. a) イオン化イオン性化合物をメタロセン の中性欝導体と混合し、そして
- b)メタロセンがイオン化イオン性化合物によっ てイオン化され且つメタロセンカチオンが触媒と して働くイオン対が生成するように、イオン化イ オン性化合物及びメタロセンの中性誘導体を接触 させる、
- ことを含んでなる、但し

メタロセンの中性誘導体が一般式

Cp.MRp

【式中、Cpはシクロペンタジエニル又は置 換シクロペンタジエニル基であり、各Cpは: 同一でも異なってもよく、Mは第三、Ⅳ、Ⅴ 又はVI族の金属であり、Rはヒドリド、ハロ ゲン、アミド又はヒドロカルビル基であり、 各Rは同一でも異なってもよく、但し1つの

Rだけはヒドリドであり、そしてpは $1\sim4$ である]

のものであり、

イオン化イオン性化合物は活性プロトンを含有 せず且つカルボニウム、オキソニウム又はスルホ ニウムカチオンを含み、そして

イオン化イオン性化合物のアニオンは、メタロ センカチオンに配位せず或いはゆるくしか配位せ ず且つメタロセンカチオンと化学的に反応しない、 触媒の製造法。

- 2. a) イオン化イオン性化合物をメタロセン の中性誘導体と混合し、
- b)メタロセンがイオン化イオン性化合物によっ てイオン化され且つメタロセンカチオンが触媒と して無くイオン対が生成するように、イオン化イ オン性化合物及びメタロセンの中性誘導体を接触 させ、そして
- c)この触媒を重合条件下にオレフィンと接触 させる、

ことを含んでなる、但し

特開平3-207703(2)

メタロセンの中性誘導体が一般式

Cp.MRp

【式中、Cpはシクロペンタジエニル又は置換シクロペンタジエニル基であり、各 Cpは 同一でも異なってもよく、Mは第四、IV、V 又はVI族の金属であり、Rはヒドリド、ハロゲン、アミド又はヒドロカルビル基であり、各 Rは同一でも異なってもよく、但し1つの R だけはヒドリドであり、そしてpは1~4 である】

のものであり、

イオン化イオン性化合物は話性プロトンを含有 せず且つカルボニウム、オキソニウム又はスルホ ニウムカチオンを含み、そして

イオン化イオン性化合物のアニオンは、メタロセンカチオンに配位せず或いはゆるくしか配位せずはいはゆるくしか配位せず且つメタロセンカチオンと化学的に反応しない、オレフインの重合法。

3、 [発明の詳細な説明]

本発明は、一般に触媒の製造法及び特にオレフ

オレフイン、特にプロピレンは重合して種々の 形態、即ちアイソタクチック、シンジオタクチッ ク及びアタクチックのポリオレフインを生成する。 アイソタクチックポリプロピレンは、主に同一の 立体配置の及び少しだけの無機関な短い反転の反 復単位を主領中に含む。アイソタクチックポリプロピレンは構造的に

として表現される。

アイソタクチックボリプロピレンは、非晶(非 結晶)状態の重合体とかなり異なる結晶離点及び 他の望しい物理性を有する非常に結晶性の重合体 である。

シンジオタクチック重合体は主に正確に交互の 立体異性体の単位を含み、構造式

によって扱わされる。

反復単位の立体配置が規則的でない重合体値は

インを重合させるための触媒の製造法に関する。

要するに本発明はイオン性メタロセン化合物の新規な製造法に関する。この化合物はオレフイン、主にプロピレンの重合に対する触媒として有用である。この方法は中性メタロセン化合物をイオイン化制を使用する。この方法は中性メタロを含ってオンルがよっない。イオン化イオンとでである。イオン化イオンを含って、オーンに配位です。いるでは、オーンに配位です。ない。1つのそのような化合物はトリフェールのルベニウムテトラキス(ベンタフルオルフェール)ポロネートである。

本発明による触媒の製造法は、高活性の触媒を製造し、そして触媒活性を禁止しうる副生物を生成しない。この新提な合成法はルイス塩基を生成しないきれいな反応である。本方法は第77款のメタロセン誘導体からメチルアニオンを除去することによって活性触媒を生成する。

アタクチック重合体である。 商業的な用途において、 典型的にはアタクチック重合体のある割合はアイソタクチック形を含んで製造される。

オレフインの重合は基本的にはチーグラーーナッタ触媒を用いる。チーグラーーナッタ触媒のある 種はメチルアルミノキサンを共触媒とする第17次 のメタロセン化合物である。オレフインの重合に 対するチーグラーーナッタ触媒が第17次のメタロ セン化合物をイオン性化合物と一緒にすることに よって製造しうることが示されている。

$$Cp*_2H^-R+[C][A] \rightarrow Cp*_2^*H-R[A]^-+L[C]$$

[式中、Cp-ペンタメチルシクロペンタジ エニル、

M一第四族金属

R-アルキル

L一配位子

[C]ーカチオン

[A]-アニオン]。

得られる化合物は触媒として作用するメタロセン

特開平3-207703(3)

カチオンである。イオン性化合物のカチオン[C] はメタロセンと反応してイオン対を生成する。ア ニオン[A]は配位しておらず、或いはカチオンメ タロセンと強くにだけ配位している。

次の反応は上記反応を行なうために使用された。
1電子酸化ーこの方法は「カチオン性ジシクロペンタジエニルジルコニウム(IV)アルキル婚体」、M. ボフマン(Bochmanm)L. M. ウイルソン(Vilson)、J. ケム・ソク・コミュン(Chem. Soc. Commun.)、1610~1611(1985):「カチオン性アルキルビス(シクロペンタジエニル)チタニウム錯体」、M. ボフマン、L. ウイルソン(Vilson)、オルガノメタリックス(Organometallics)、6、2556~2563(1987):カチオン性アルキルビス(シクロペンタジエニル)チタン錯体における挿入反応、M. ボフマン(Bochmanm)、L. ウイルソン(Vilson)、オルガノメタリックス、7、1147~1154(1987)によって例示されている。

ヨーロッパ特許第277,003号は、ターナ

がこの発明を例示する:

トリ (n-ブチル) アンモニウムテトラ (ペンタ フルオロフエニル) ホウ素+ビス (シクロペンタ ジエニル) ジルコニウムジメチル →

[Cp₂ZrMe] [BPh₄] + CH₄+トリ (nープチル) N。

プロトン化反応の副生物はルイス塩基(アミン)であり、そのいくつかはカチオンに配位することができ、従って触媒活性を妨害する。出発物質は触媒毒となる特別なアミンが生成するのを避けるために注意深く選択しなければならない。更に触媒及びこの触媒で製造される重合体は望しくない且つ有毒な表存アミンを含有する。

配位子の引き抜き一配位子の引き抜き注は、「多 重金属一炭素結合」、R.R.シュロック(Schrock)、 P.R.シャープ(Sharp)、J. アム・ケム・ソク (Am. Chem. Soc.)、100(8)、2389~2 399(1978年4月2日)に例示されている。

殆んどの公知の方法においては、メチルアルミ ノキサン(MAO)を共触媒として作用せしめる ー(Turner)の、プロトン化法によって製造される 触媒についての研究に関する。ピス(シクロペン タジエニル)金属化合物は、プロトンを供与しう るカチオン及び複数のホウ素原子を有するアニオ ンをもつ化合物と組合せられる。例えば次の反応 はこの発明を例示する:

ビス (シクロペンタジエニル) ハフニウムジメチル+N.Nージメチルアニリニウムビス (7.8ージカルバウンデカボレート) コパルテート (Ξ) → [Cp_*HfMe] [B] + CH_4 +N.Nージメチルアニリン。

但し [B] は7.8-ジカルパウンデカボランである。

ヨーロッパ特許第277.004号は、ターナーの、プロトン化法によって製造される触媒についての研究に関する。ピス(シクロペンタジェニル)金質化合物は、金質化合物の配位子と不可逆的に反応するカチオン及び金属又は金属性イオンの周囲に複数の銀油性基をもつアニオンを有するイオン性化合物と一緒にされる。例えば次の反応

べくメタロセン化合物と共に添加する。MAOの 機能はアルキル化を開始し、メタロセン化合物の イオン化を促進する。共触媒は触媒活性を減ずる 毒物を減少させる値提解である。現在公知の方法 は大過剰のMAOの添加を必要とする。MAOは 比較的高価という欠点がある。これは触媒系を高 価格にする。

従って本発明の目的はオレフインの重合に対す る改良された触媒の製造法を提供する。

また本発明の目的は比較的高活性な触媒の製造法を提供する。

また本売明の目的はルイス塩基を副生物として 有さないメタロセンカチオンを合成することであ る。

更に本発明の目的は触媒者として生成するかも 知れない副生物を制御するために出発原料を選択 することの必要性を排除することである。

更に本発明の目的はプロピレンの重合における 共触媒としてのメチルアルミノキサン(MAO) を排験することである。

特開平3-207703 (4)

更に本発明の目的は酸化アルミニウムを含まな い重合体を製造することである。

また本発明の目的は望ましくない且つ有毒なア ミンを含まない重合体を製造することである。

これらの及び他の目的はイオン化剤例えばトリフェニルカルペニウムテトラキス(ペンタフルオルフェニル)ポロネートをメタロセンの誘導体と 混合し、そしてこの混合物をオレフインに添加することによって違成される。

本発明はメタロセンを、活性プロトンを含有しない且つメタロセンのカチオンに配位しない又は ゆるくしか配位しないアニオンを有するイオン化 剤でイオン化することによるオレフインの重合用 の触覚を製造することに関する。またそのアニオ ンはこのアニオンと反応もしない。

本新規な合成法において、イオン化イオン性化 合物はメタロセンの中性誘導体と混合され、次の 反応式に従って反応する:

Cp:WRp+[C*][A*] → [Cp:WRp-:]*[A*] ¬+R[C*]
[式中、Cpはシクロベンタジエニル又は置

セン1モル:イオン化化合物2モルである。最も 舒適なモル比はメタロセン1モル:イオン化化合 物1モルである。混合後に、混合物を重合を行な う条件下にオレフインに添加する。好適なオレフ インはエチレン及びプロピレンであり、プロピレ ンが最も好適である。

カルボニウム、オキソニウム又はスルホニウム アニオンを含有するイオン性化合物例えばトリフ エニルカルベニウムテトラキス(ペンタフルオル フエニル)ボロネートをメタロセンの中性誘導体 と混合する。トリフエニルカルベニウムテトラキ ス(ペンタフルオルフエニル)ボロネートはメタ ロセンをイオン化するイオン化剤として働く。こ の結果カチオン性メタロセン化合物が生成する。

トリフェニルカルベニウムテトラキス(ペンタ フルオルフェニル)ポロネート[PhaC][BPh*a] は次の反応式で製造される:

Ph₂CC1+LiBPh*₄ → [Ph₂C][BPh*₄] + LiC1

[式中、Pbはフエニルであり、そしてPh*は

操シクロペンタジエニル基であり、各 C pは
同一でも異なってもよく、Mは第章、IV、 V
又は VI 族の金属であり、R はヒドリド、ハロ
ゲン、アミド又はヒドロカルビル基であり、
各 R は同一でも異なってもよく、但し1つの
R だけはヒドリドであり、そしてpは1~4
であり、C*はカルボニウム、オキソニウム
又はスルホニウムカチオンであり、そして A
*はメタロセンのカチオンに配位しない又は
ゆるくしか配位しない且つ【C p*M R p-1】
と化学的に反応しないアニオンである】。

各反応物はメタロセンカチオンに配位しない又はゆるくしか配位しない溶媒中に入れられる。 そのような溶媒の例はトルエン及び塩化メチレンである。 好選な溶媒はトルエンである。 2 つの反応物を同一の溶媒に別々に溶解し、そしてメタロセン10モル: イオン化化合物1モルの範囲にあるモル比で煮温下に一緒に混合する。好速なモル比はメタロセン2モル: イオン化化合物1モル~メタロ

ペンタフルオルフエニルである]。 トリフエニルカルベニウムはカチオンである。テ トラキス (ペンタフルオルフエニル) ポロネート はアニオンである。

トリフエニルカルベニウムテトラキス(ベンタフルオルフエニル)ボロネートは次の実験宣法で製造した。PhaCC127.1ミリモルの、塩化メチレン150cc中明黄色溶液を、塩化メチレン350cc中にスラリーとしたLiB(CaPa)a25gに25℃で満下した。極色のスラリーを30分間批拌し、濾過した。[PhaC][BPh*a]及びLiC1を含有する固体を塩化メチレンで洗浄した。一緒にした洗浄液及び滤液を75ccまで濃縮し、次いで迅速に撹拌しながらベンタン400cc中へ管を通して導入した。固体をベンタンで数回及び少量のトルエンで数回洗浄し、[PhaC][BPh*a]の明黄色の粉末を得た。収量は20g(75%)であった。

メタロセンの中性誘導体は一般式 CpaMRp 【式中、Cpはシクロペンタジェニル又は置換シクロペンタジェニル基であり、各Cpは同一でも異なってもよく、Mは第国、IV、V又はY族の金属であり、好ましくは第国、IV、の金属例えばチタン、ハフニウム又はジルコニウム及び高分子量に対してカンニウム及び高分子量に対してカントロカルビル基例えば炭素数1~20のアルキル、アリール、アルケニル、アルキルアルール又はアリールアルキルであり、各にはローでも異なってもよく、但しRがヒドリドならば1つのRだけがヒドリドであり、そしてpは1~4である]

のものである。舒適なメタロセンの中性誘導体は、 エチレンピス (テトラヒドロインデニル) ジルコ ニウムジメチル、エチレンピス (インデニル) ジ ルコニウムジメチル及びイソプロピリデン (シク ロペンタジエニルー1 -- フルオレニル) ジルコニ ウムジメチルである。最も舒適なメタロセンの中

混合物を注射器により21のジッパークレーブ (Zipperclave)反応器に添加した。この反応器に プロピレン1.01を添加した。反応器の温度を 70℃に設定した。反応器の内容物を選拌した。 60分間の重合期間中温度は70℃のままであっ た。次いでプロピレンを反応器から放出させた。 反応器の内容物をアセトンで洗浄し、真空炉中で 乾燥した。

この重合体を融点に関して分析した。融点は示 差揚査熱量計 (DSC) によった。結果を第1表 に示す。

実施例Ⅱ

トリフエニルカルベニウムテトラキス (ベンタフルオルフエニル) ボロネート 4 0 mg及び E t(l mdH.) 2 rMes 2 0 mgを用いる以外実施例 I の方法に従った。結果を第Ⅰ表に示す。

突施员宣

トリフエニルカルベニウムテトラキス (ペンタ フルオルフエニル) ポロネート30mg及びEt(IndH₄)ZrMe:15mgを用いて実施例Iの方法を 性誘導体はエチレンビス (インデニル) ジルコニ ウムジメチルである。

オレフインの重合は、メタロセンを用いるオレフインの重合に対して公知の手段により、例えばパルク、スラリー又は気相での重合により行なわれる。ポリプロピレンの場合、重合温度は-80~150℃、好ましくは25~90℃、最も好ましくは50~80℃の範囲である。

本発明を一般的に記述してきたが、次の実施例は本発明の特別な何として且つその実施と利点を示すために与えられる。従って実施例は例示のために与えられ、いずれの場合にも本明細書又は特許求の範囲を限定する意気をもたないことが理解される。

実施例 I

トリフエニルカルベニウムテトラキス (ペンタフルオルフエニル) ボロネート 5 5 mgをトルエン 5 ccに溶解した。 Et(IndH4): 2 rMezをトルエン 5 ccに溶解した。 2 つの溶液を変温で 5 分間一緒に混合して明費色の溶液を得た。

繰り返した。反応器の温度を80℃に設定したが、 温度は80℃のままであった。結果を第Ⅰ表に示す。

実施供収

トリフエニルカルベニウムテトラキス(ベンタフルオルフエニル)ボロネート60mg及びEt(IndHa)2rMex60mgを用いて実施例Iの方法を繰り返した。反応器の温度を50℃に設定したが、温度は100℃に上昇した。反応時間は10分であった。結果を第Ⅰ数に示す。

実施例V

トリフエニルカルベニウムテトラキス(ベンタフルオルフエニル)ポロネート55mg及びEt(IndH₄)ZrMe₂55mgを用いて実施例Iの方法を繰り返した。反応器の温度を50℃に設定したが、温度は160℃に上昇した。反応時間は10分であった。結果を第I安に示す。

亥施例 7

トリフエニルカルベニウムテトラキス (ペンタ フルオルフエニル) ポロネート100mg及びEt

特開平3-207703 (6)

(Ind), ZrMe, 6 0 mgを用いて実施例Iの方法を 繰り返した。反応器の温度を50℃に設定したが、 温度は50℃のままであった。結果を第I表に示 す。

実施例证

トリフエニルカルベニウムテトラキス(ベンタフルオルフエニル)ボロネート100mg及びEt (Ind):ZrMe:60mgを用いて実施例Iの方法を繰り返した。反応器の温度を50℃に設定したが、温度は50℃のままであった。結果を第I接に示す。

実施例证

トリフエニルカルベニウムテトラキス(ペンタフルオルフエニル)ボロネート120mg及びiPr(Cp-1-Flm)ZrMes80.mgを用いて実施例1の方法を繰り返した。反応器の温度を70℃に設定したが、温度は100℃以上に上昇した。結果を第1表に示す。

実施例以

トリフエニルカルベニウムテトラキス(ペンタ

4	50	60	10	
5	50	55	10	
Et(Ind);Zr	le z	[Ph ₃ C][BPh* ₄]		
6	60	100	60	
7	60	100	30	
iPr(Cp-1-F1u)	Zrle:	[Ph ₃ C][BPh* ₄]		
8	80	120	5	
9	60	100	60	
10	40	60	60	

- * Et(R.Ind):ZrNe:=エチレンビス (テトラヒドロインデニル) ジルコニウムジメチル
 Et(Ind):ZrNe: エエチレンビス (インデニル)
 ジルコニウムジメチル
- iPr(Cp-1-Flu)ZrHe2=イソプロピリデン(シ クロペンタジエニルー1-フルオレニル)ジ ルコニウムジメチル
- ** [Ph₃C][BPh_{*4}]=トリフエニルカルベニウム テトラキス (ペンタフルオルフエニル) ボロ ネート

フルオルフェニル)ポロネート100mg及びiPr (Cp-1-Flu) 2rMeg60mgを用いて実施例Iの 方法を繰り返した。反応器の温度を70℃に設定 したが、温度は78℃以上に上昇した。結果を第 I表に示す。

実施例案

トリフェニルカルベニウムテトラキス(ベンタフルオルフェニル)ボロネート60mg及びiPr (Cp-1-Flu)2rMe:40mgを用いて実施例Iの 方法を振り返した。反応器の温度を70℃に設定 した。結果を第Ⅰ表に示す。

本発明の方法を用いる上述の実験から次の結果を得た。

第1表

实施例 番号	触算・ イス RE	トン化剤**	時間 分
-	Bt(IndW ₄),ZrWe;	[Ph,C][BPh*	•]
1	40	55 .	60
2	20	40	60
3	15	. 30	80

实施例	温度	权量	直蓋
番号	℃	8	t
1	70	9	138.
2	50	55	138
3	80	45	131
4	50*	74	134
5	50*	135	-
6	50	19	137
7	50	11	134
8	70*	224	115
9	70**	51	-
10	70***	186	119

- * 制御できない反応;ピーク反応温度>100℃
- ** 発熱;ピーク反応温度78℃

*** 発動

本発明によって記述した方法は、オレフインの 重合における触媒として使用される。本発明によ る触媒の製造法は、高話性を有する触媒を生成し、 そして触媒話性を禁止しうる副生物を減ずる。こ の新規な合成法はルイス塩素を生成しないされい

特開平3-207703 (プ)

な反応である。本方法は第17族のメタロセン誘導 体からメチルアニオンを除去することによって活 性な触媒を生成する。

明らかに本発明の多くの改変及び変化は上記の 教示を参考にして可能である。それ故に特許請求 の範囲内において、本発明は本明細書に特に記述 したもの以外にも実施しうることを理解すべきで ある。

本発明の特徴及び態機は以下の通りである。

1. a) イオン化イオン性化合物をメタロセン の中性誘導体と混合し、そして

b) メタロセンがイオン化イオン性化合物によってイオン化され且つメタロセンカチオンが触像として働くイオン対が生成するように、イオン化イオン性化合物及びメタロセンの中性誘導体を接触させる、

ことを含んでなる、但し

メタロセンの中性誘導体が一般式

Cp₂MRp

[式中、Cpはシクロペンタジエニル又は置

- 4. メタロセンの中性誘導体とイオン性化合物のモル比がメタロセン10モル:イオン化化合物1モルからメタロセン1モル:イオン化化合物10モルまでの範囲にある上配3の方法。
- 5. メタロセンの中性誘導体とイオン性化合物 のモル比がメタロセン2 モル: イオン化化合物 1 モルからメタロセン1 モル: イオン化化合物 2 モルまでの範囲にある上記 4 の方法。
- 6. メタロセンの中性誘導体とイオン性化合物 のモル比がメタロセン1モル:イオン化化合物1 モルである上配5の方法。
- 7. 金属がチタン、ジルコニウム及びハフニウムからなる群から選択される第Ⅳ族の金属である上記4の方法。
 - 8. 金貫がハフニウムである上記了の方法。
 - 9. 金属がジルコニウムである上記了の方法。
- 10. Rが炭素数1~20のアルキル基、アリール基、アルケニル基、アルキルアリール基及びアリールアルキル基からなる群から選択されるヒドロカルビル基である上記9の方法。

換シクロペンタジエニル基であり、各Cpは 同一でも異なってもよく、Mは第Ⅲ、Ⅳ、V 又はⅥ抜の金属であり、Rはヒドリド、ハロ ゲン、アミド又はヒドロカルビル基であり、 各Rは同一でも異なってもよく、但し1つの Rだけはヒドリドであり、そしてpは1~4 である]

のものであり、

イオン化イオン性化合物は話性プロトンを含有 せず且つカルボニウム、オキソニウム又はスルホ ニウムカチオンを含み、そして

イオン化イオン性化合物のアニオンは、メタロセンカチオンに配位せず或いはゆるくしか配位せず且つメタロセンカチオンと化学的に反応しない、 触媒の製造法。

- 2. 混合前に、イオン化イオン性化合物を、メ タロセンカチオンに配位しない又はゆるくしか配 位しない溶媒に溶解する上記1の方法。
- 3. 混合前に、メタロセンの中性誘導体を別に 同一の溶媒に溶解する上記2の方法。
- 11. メタロセンの中性誘導体がエチレンビス (テトラヒドロインデニル) ジルコニウムジメチル、エチレンビス (インデニル) ジルコニウムジメチル及びイソプロビリデン (シクロペンタジエニルー1-フルオレニル) ジルコニウムジメチルからなる群から選択される上記10の方法。
- 12. メタロセンの中性誘導体がエチレンビス (インデニル) ジルコニウムジメチルである上記 11の方法。
- 13. イオン性化合物がトリフエニルカルベニ ウムテトラキス (ペンタフルオルフエニル) ボロ ネートである上配12の方法。
 - 14. 溶媒がトルエンである上記13の方法。
- 15. a) イオン化イオン性化合物をメタロセンの中性誘導体と混合し、
- b)メタロセンがイオン化イオン性化合物によってイオン化され且つメタロセンカチオンが触媒として働くイオン対が生成するように、イオン化イオン性化合物及びメタロセンの中性誘導体を接触させ、そして

c) この触媒を重合条件下にオレフインと接触させる、

ことを含んでな 、但し

メタロセンの中性誘導体が一般式

Cp2MRp

[式中、Cpはシクロペンタジエニル又は置換シクロペンタジエニル基であり、各Cpは同一でも異なってもよく、Mは第三、FV、V又はY1族の金属であり、Rはヒドリド、ハロゲン、アミド又はヒドロカルビル基であり、各Rは同一でも異なってもよく、但し1つのRだけはヒドリドであり、そしてpは1~4である]

のものであり、

イオン化イオン性化合物は活性プロトンを含有 せず且つカルボニウム、オキソニウム又はスルホ ニウムカチオンを含み、そして

イオン化イオン性化合物のアニオンは、メタロ センカチオンに配位せず或いはゆるくしか配位せ ず且つメタロセンカチオンと化学的に反応しない、

- 22. 金属がハフニウムである上記21の方法。
- 23. 金属がジルコニウムである上記21の方 法。
- 24. Rが炭素数1~20のアルキル基、アリール基、アルケニル基、アルキルアリール基及びアリールアルキル基からなる群から選択されるヒドロカルビル基である上配23の方法。

25. メタロセンの中性誘導体がエチレンビス (テトラヒドロインデニル) ジルコニウムジメチル、エチレンピス (インデニル) ジルコニウムジメチル及びイソプロピリデン (シクロペンタジエニルー1-フルオレニル) ジルコニウムジメチルからなる繋から選択される上記24の方法。

26. メタロセンの中性誘導体がエチレンビス (インデニル) ジルコニウムジメチルである上記 25の方法。

27. イオン性化合物がトリフエニルカルベニ ウムテトラキス (ペンタフルオルフエニル) ポロ ホートである上記 26 の方法。

28.海郷がトルエンである上記27の方法。

オレフインの重合法。

16. 混合前に、イオン化イオン性化合物を、 メタロセンカチオンに配位しない又はゆるくしか 配位しない溶媒に溶解する上配15の方法。

17. 混合前に、メタロセンの中性誘導体を別に同一の治療に溶解する上配16の方法。

18. メタロセンの中性調準体とイオン性化合物のモル比がメタロセン10モル:イオン化化合物1モルからメタロセン1モル:イオン化化合物10モルまでの範囲にある上配17の方法。

19. メタロセンの中性誘導体とイオン性化合物のモル比がメタロセン2モル:イオン化化合物1モルからメタロセン1モル:イオン化化合物2モルまでの範囲にある上記18の方法。

20. メタロセンの中性病毒体とイオン性化合物のモル比がメタロセン1モル:イオン化化合物1モルである上記19の方法。

21. 金質がチタン、ジルコニウム及びハフニウムからなる群から選択される第取族の金属である上記18の方法。

29. -80~150℃の範囲の反応温度で開 給する上記28の方法。

30.25~90℃の範囲の反応温度で開始する上記29の方法。

31.50~80℃の範囲の反応温度で開始する上記30の方法。

特許出職人 フイナ・テクノロジー・インコーボ レーテツド

代 翟 人 弁理士 小田島 平 1

