

Análisis y propuesta de una ortesis inteligente tobillo-pie

GRUPO3

Luis Leonardo Matheus Isla Froylan
Diego Lopez Fernandez
Victor Ronaldo Huaccha Escobar
Iara Yrene Salas Gutierrez
Stefany Nicole Palomino Torres

Amálisis del CASO

NECESIDAD 4 FUNCIONAL

ESTADO DEL ARTE

Patentes

ANKLE - FOOT ORTHOSIS - US9827131B2

Título: Órtesis de Tobillo-Pie con Articulación Flexible - TWM584667

Active ankle support US6767332B1 (2004)

ESTADO DEL ARTE

"Ortesis de tobillo y pie" - ES2368550T3

Locomotion Assisting Device and Method - US10226395B2

Titulo: "Ankle Foot Orthosis" - US20240082038A1

ESTADO DEL ARTE

- Prototipos

Título: "Sistema para asistir a caminar" - ES2663899B2

Título "Neuromorphic controlled powered orthotic and prosthetic system" - US 12016788 B2

Título: Ankle-Foot Orthotic Device

- US20140066829A1

Impestigación:

Metodología VDI

→ Metodología VDI

Esquema de Funciones

→ Metodología VDI

Matriz Morfológica

Bocetos desarrollados

Órtesis articulada con sensor FSR

Bateria

Órtesis articulada con engranajes ajustables para la dorsiflexión y sensor FSR

COMPONENTES						
Sensor de Fuerza						
Engranajes						
Cableado						
Arduino						
Bateria 12v						

Bocetos desarrollados

Órtesis con resorte ajustable mediante accionador HB12V

COMPONENTES

Resorte

Velcro adhesivo

Arduino

Batería de 12V

Actuador Hb 12V

Sensor Pizoelectrico

Órtesis ergonómica articulada con sensor de presión

COMPONENTES

Sensor de fuerza

Velcro adhesivo

Arduino

Batería de 12V

Bocetos desarrollados

Órtesis ajustable con sistema de perilla y cables de tensión con sensor FLEX y FSR

COMPONENTES
Sensor de fuerza
Sensor FLEX
Arduino nano
Perilla + cables
Bateria

Metodología VDI Cuadro de Valoración

Criterio	S1	S2	S3	S4	S 5
Facilidad de Ensamblado	3	4	5	4	5
Ligereza	3	2	4	3	5
Económico	4	3	1	3	5
Portabilidad	4	3	2	2	4
Nivel de Innovación	3	3	4	4	4
Facilidad de uso	4	4	3	3	4
Total	21	19	17	19	27

Conclusiones

- La propuesta 5 responde eficazmente a las necesidades funcionales del paciente, incorporando elementos innovadores que optimizan la rehabilitación.
- Se recomienda considerar cuidadosamente el peso total del dispositivo, debido a la elección de materiales y la inclusión de componentes electrónicos que podrían afectar la comodidad y usabilidad del paciente.

Referencias:

Estado del arte:

- 1.A. E. Ferguson, "Ankle-foot orthosis," U.S. Patent 9,827,131 B2, Nov. 28, 2017.https://patents-google-com.translate.goog/patent/US9827131B2/en? oq=US9827131B2&_x_tr_sl=en&_x_tr_tl=es&_x_tr_pto=tc&_x_tr_hist=true
- 2.P. A. Yates, Ortesis de tobillo y pie, Patente ES2663899B2, Oficina Española de Patentes y Marcas, 2018. [En línea]. Disponible en:https://patents.google.com/patent/ES2663899B2/es
- 3. Lind, R. (2004). Active ankle support (U.S. Patent No. US6767332B1). United States Patent and Trademark Office. https://patents.google.com/patent/US6767332B1/en
- 4. L. Moreno, M. Castejón, J. Cuadrado, y M. A. Urquízar, Sistema para asistir a caminar, Patente ES2663899B2, Oficina Española de Patentes y Marcas, 2018. [En línea]. Disponible en: https://patents.google.com/patent/ES2663899B2/es
- 5. "U.S. Patent Application for LOCOMOTION ASSISTING DEVICE AND METHOD Patent Application (Application #20130261513 issued October 3, 2013) Justia Patents Search," May 23, 2013. https://patents.justia.com/patent/20130261513
- 6. Ankle foot orthosis. (14 de marzo de 2024). Patente EE.UU. US20240082038A1. [En línea]. Disponible en: https://www.lens.org/lens/patent/154-974-959-648-887/fulltext?l=en

7. L. Moreno, M. Castejón, J. Cuadrado, y M. A. Urquízar, Sistema para asistir a caminar, Patente ES2663899B2, Oficina Española de Patentes y Marcas, 2018.

[En línea]. Disponible en: https://patents.google.com/patent/ES2663899B2/es

- 8. Neuromorphic controlled powered orthotic and prosthetic system, por R. J. Coral Gables. (25 de junio de 2024). Patente EE.UU. US 12016788 B2. [En línea]. Disponible en : https://www.lens.org/lens/patent/040-120-934-382-258/frontpage?l=en
- 9. D. R. C, "Patsnap Eureka Maximize Efficiency and Fuel Productivity with Al Agents," Patsnap Eureka. https://eureka.patsnap.com/patent-US20140066829A1?utm source=chatgpt.com

Muchas GRACIAS