Oxidation reaction

$$CH_4 \xrightarrow{[O]} H_3C-OH \xrightarrow{[O]} \stackrel{H}{\longrightarrow} O \xrightarrow{[O]} \stackrel{H}{\longrightarrow} O \xrightarrow{[O]} O = C=O$$

Oxidation states of Carbon

KMnO₄ oxidation

Mn(VII) is reduced under acidic conditions to Mn(IV) or Mn(II) according to the half-reactions shown below, with the indicated cell potentials.

$$MnO_4^- + 4H^+ + 3e^- \to MnO_2 + 2H_2O \quad E^o = 1.68\,V$$
 $MnO_4^- + 8H^+ + 5e^- \to Mn^{2+} + 4H_2O \quad E^o = 1.5\,V$ $MnO_4^- + 2H_2O + 3e^- \to Mn^{2+} + 4OH^- \quad E^o = 0.6\,V$

General Reactivity with Organic Molecules

KMnO₄ is able to oxidize carbon atoms if they contain sufficiently weak bonds, including

- 1. Carbon atoms with $\pi\pi$ bonds, as in alkenes and alkynes
- 2. Carbon atoms with weak C-H bonds, such as
- •C-H bonds in the alpha-positions of substituted <u>aromatic rings</u>
- •C-H bonds in carbon atoms containing C-O bonds, including <u>alcohols</u> and <u>aldehydes</u>
- 3. Carbons with exceptionally weak C-C bonds such as
- •C-C bonds in a glycol
- C-C bonds next to an aromatic ring and an oxygen

KMnO₄ also oxidizes phenol to para-benzoquinone.

KMnO₄ oxidation

Aldehydes

Aldehydes RCHO are readily oxidized to carboxylic acids.

$$\mathsf{CH_3}(\mathsf{CH_2})_7\mathsf{OH} \ \, \frac{\mathsf{KMnO_4}}{\mathsf{CuSO_4^{\star_5}H_2O/KOH}} \ \, \left[\ \, \mathsf{CH_3}(\mathsf{CH_2})_6\mathsf{CHO} \ \, \right] \ \, \longrightarrow \ \, \mathsf{CH_3}(\mathsf{CH_2})_6\mathsf{CO_2}\mathsf{H}$$

Oxidation in Aromatic molcules

K₂Cr₂O₇ oxidation

The oxidizing agent commonly shown is a solution of sodium or potassium dichromate(VI) acidified with dilute sulfuric acid. If oxidation occurs, the orange solution containing the dichromate(VI) ions is reduced to a green solution containing chromium(III) ions. The electron-half-equation for this reaction is

$$Cr_2O_7^{2-} + 14H^+ + 6e^- o 2Cr^{3+} + 7H_2O$$

Different form of chromate

Secondary alcohols

-Reduction reaction

Reduction reaction

Reduction: decrease in oxidation state/addition of hydrogen related to the carbon atom

Source of reduction

Sodium Borohydride

Lithium Aluminum Hydride

Hydride Nucleophile

Reactivity difference

Lithium aluminium hydride (LiAlH₄) is more electropositive (more metallic) than boron in NaBH₄. The hydride from LiAlH₄ is therefore more electron rich and thus is a stronger base (in reaction with water) and stronger nucleophile (with carbonyl group).

Mechannism oh LiAlH₄ reduction

Step 1: Nucleophilic attack of hydride ion

Step 2: Protonation of the alkoxide

NaBH₄ reduction mechanism

Primary, secondary and tertiary and quarternary carbon

Primary, secondary, and tertiary

The prefixes sec and tert are really short for secondary and tertiary, terms that refer to the carbon atom that attaches these groups to the rest of the molecular structure.

Amide to amine

Mechanism depends slightly on whether amide has an N-H or not.

But the result is the same.

Carbonyl to ketone

NaBH₄ isn't as basic as LiAlH₄, so reaction can be conducted in protic solvent, and separate workup step isn't essential.

secondary alcohol

- -Cyclization
- -Ring opening reactions

Cyclization

formation of a ring in a chemical compound

intramolecular reaction

Dieckmann Condensation

Mechanism

Ring opening reactions

Cyclopropane ring

Cyclopropane has large ring strain due to a mixture of angle strain and torsional strain

Formation of cyclopropane ring

Chlorination

Bromination

Addition of HI (hydrogen iodide)

Addition of sulfuric acid

Reduction of Cycloalkane/ hydrogenation

Drug synthesis

Paracetamol

Antipyretic

Analgesic

SLO-2 Synthesis of a commonly used drug molecule-Introduction

Synthesis of Aspirin and its uses

Aspirin, also known as acetylsalicylic acid, is a medication used to reduce pain, fever, or inflammation

THANK YOU