AMENDMENTS TO THE CLAIMS

1. (Original) A pyrimidine of the formula I

$$R^3$$
 N R^2

in which the index and the substituents are as defined below:

- n is an integer from 1 to 5;
- is halogen, cyano, nitro, cyanato (OCN), C_1 - C_8 -alkyl, C_2 - C_{10} -alkenyl, C_2 - C_{10} -alkynyl, C_1 - C_6 -alkoxy, C_2 - C_{10} -alkenyloxy, C_2 - C_{10} -alkynyloxy, C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkenyl, C_3 - C_6 -cycloalkoxy, C_3 - C_6 -cycloalkenyloxy, -C(=S)-N(A')A, -C(=O)-A, -C(=O)--A, -C(O)-

m is 0, 1 or 2;

A,A', A" independently of one another are hydrogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₃-C₈-cycloalkyl, C₃-C₈-cycloalkenyl, where the organic radicals may be partially or fully halogenated or may be substituted by cyano or C₁-C₄-alkoxy, or A and A' together with the atoms to which they are attached are a five- or six-membered saturated, partially unsaturated

2 SLL/nl

or aromatic heterocycle which contains one to four heteroatoms from the group consisting of O, N and S;

- $R^1 \quad \text{ is } C_1-C_{10}\text{-alkyl, } C_2-C_{10}\text{-alkenyl, } C_2-C_{10}\text{-alkynyl, } C_3-C_{12}\text{-cycloalkyl, } C_3-C_{10}\text{-cycloalkenyl; } C_3-C_{10}\text{-alkyl, } C_3-C_{10}\text{$
- R^2 is halogen, cyano, C_1 - C_4 -alkyl, C_2 - C_4 -alkenyl, C_2 - C_4 -alkynyl, C_1 - C_4 -alkoxy, C_3 - C_4 -alkynyloxy;
- R³ is a five- or six-membered saturated, partially unsaturated or aromatic mono- or bicyclic heterocycle which contains one to four heteroatoms from the group consisting of O, N and S,

where the aliphatic, alicyclic or aromatic groups of the radical definitions of L, R^1 , R^2 and/or R^3 for their part may be partially or fully halogenated or may carry one to four groups R^a :

Is halogen, cyano, C_1 - C_8 -alkyl, C_2 - C_{10} -alkenyl, C_2 - C_{10} -alkynyl, C_1 - C_6 -alkoxy, C_2 - C_{10} -alkenyloxy, C_2 - C_{10} -alkynyloxy, OH, SH, two vicinal groups R^a may be (=O) or (=S), C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkenyl, C_3 - C_6 -cycloalkenyloxy, C_3 - C_6 -cycloalkenyl, C_3 -

2. (Original) A pyrimidine as claimed in claim 1, in which the index and the substituents are as defined below:

- is halogen, cyano, C_1 - C_8 -alkyl, C_2 - C_{10} -alkenyl, C_2 - C_{10} -alkynyl, C_1 - C_6 -alkoxy, C_2 - C_{10} -alkynyloxy, C_2 - C_1
 - m is 0, 1 or 2;
 - A,A', A" independently of one another are hydrogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₃-C₈-cycloalkyl, where the organic radicals may be partially or fully halogenated or A and A' together with the atoms to which they are attached are a partially unsaturated or aromatic heterocycle which contains one to four heteroatoms from the group consisting of O, N and S;
- $R^1 \quad \text{is C_1-C_{10}-alkyl, C_2-C_{10}-alkenyl, C_2-C_{10}-alkynyl, C_3-C_{12}-cycloalkyl, C_3-C_{10}-cycloalkenyl;}$
- R^2 is C_1 - C_4 -alkyl, cyano or chlorine,

where the aliphatic, alicyclic or aromatic groups of the radical definitions of L, R¹ and/or R³ for their part may be partially or fully halogenated or may carry one to four groups R^a:

4

SLL/nl

is halogen, cyano, C_1 - C_8 -alkyl, C_2 - C_{10} -alkenyl, C_2 - C_{10} -alkynyl, C_1 - C_6 -alkoxy, C_2 - C_{10} -alkynyloxy, C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkenyl, C_3 - C_6 -cycloalkenyl, C_3 - C_6 -cycloalkenyloxy, C_3 - $C_$

- 3. (Original) A pyrimidine as claimed in claim 1, in which R³ is pyrrolyl, pyrazolyl, imidazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, tetrazolyl, oxazolyl, isoxazolyl, 1,3,4-oxadiazolyl, furanyl, thiophenyl, thiazolyl, isothiazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyridazinyl, 1,2,3-triazinyl, 1,2,4-triazinyl, pyrrolidinyl, piperidinyl, hexahydroazepinyl or dihydropyridinyl, where the heterocycle may be attached to the pyrimidine ring via carbon or nitrogen and may carry up to three substituents R³:
 - is halogen, cyano, C_1 - C_8 -alkyl, C_2 - C_{10} -alkenyl, C_2 - C_{10} -alkynyl, C_1 - C_6 -alkoxy, C_2 - C_{10} -alkynyloxy, C_2 - C_{10} -alkynyloxy, OH, SH, two vicinal groups R^a may be (=O) or (=S), C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkenyl, C_3 - C_6 -cycloalkoxy, C_3 - C_6 -cycloalkenyloxy, C(=O)-A, -C(=O)-O-A, -C(=O)-N(A')A, C(A')(=N-OA), N(A')A, N(A')-C(=O)-A, N(A'')-C(=O)-N(A')A, C(=O)-A, C(=O)-A, C(=O)-O-A or C(=O)-N(A')A.
- 4. (Original) A pyrimidine as claimed in claim 1, in which R³ is pyrazol-1-yl, [1,2,4]-triazol-1-yl, pyridin-2-yl, pyrimidin-2-yl, pyridazin-3-yl, pyrrolidin-2-on-1-yl, piperidin-2-on-1-yl, hexahydro-2H-azepin-2-on-1-yl, pyrrolidin-2-thion-1-yl, piperidin-2-thion-1-yl, hexahydro-2H-azepin-2-thion-1-yl, 1,2-dihydropyridin-2-on-1-yl.

5. (Original) A pyrimidine as claimed in claim 1, in which R² is methyl, chlorine or ethyl.

6. (Currently Amended) A pyrimidine as claimed in any of claims 1 to $6-\underline{5}$, in which the phenyl group substituted by L_n is the group B

$$L^{5}$$
 L^{4}
 L^{2}
 L^{2}

where # is the point of attachment to the pyrimidine skeleton and

 L^1 is fluorine, chlorine, CH_3 or CF_3 ;

L²,L⁴ independently of one another are hydrogen, CH₃ or fluorine;

- is hydrogen, fluorine, chlorine, bromine, cyano, CH₃, SCH₃, OCH₃, SO₂CH₃, CO-NH₂, CO-NHCH₃, CO-NHC₂H₅, CO-N(CH₃)₂, NH-C(=O)CH₃, N(CH₃)-C(=O)CH₃ or COOCH₃ and
- L^5 is hydrogen, fluorine, chlorine or CH_3 .
- (Original) A process for preparing pyrimidines of the formula I as claimed in claim 1, where
 R³ is a nitrogen-containing heterocycle attached via nitrogen, which comprises reacting a
 compound of the formula III,

$$\mathbb{R}^{1}$$
 \mathbb{L}_{n}

6

in which the substituents L_n , R^1 and R^2 are as defined in claim 1 and X is halogen, C_1 - C_6 -alkylsulfoxyl or C_1 - C_6 -alkylsulfoxyl or C_1 - C_6 -alkylsulfoxyl or the formula R^3 -H (IV), if appropriate in the presence of a base.

8. (Original) An intermediate of the formula III

$$R^1$$
 L_n
 R^2

in which the substituent R^1 is as defined in claim 1, L_n is as defined in claim 2, X is as defined in claim 7 and R^2 is cyano, C_1 - C_4 -alkyl, C_2 - C_4 -alkenyl, C_2 - C_4 -alkynyl, C_1 - C_4 -alkoxy, C_3 - C_4 -alkenyloxy or C_3 - C_4 -alkynyloxy, where the alkyl, alkenyl and alkynyl radicals of R^2 may be substituted by halogen, cyano, nitro, C_1 - C_2 -alkoxy or C_1 - C_4 -alkoxycarbonyl.

- (Original) A pesticidal composition, which comprises a solid or liquid carrier and a compound of the formula I as claimed in claim 1.
- 10. (Original) A method for controlling phytopathogenic harmful fungi, which comprises treating the fungi or the materials, plants, the soil or seeds to be protected against fungal attack with an effective amount of a compound of the formula I as claimed in claim 1.

7