AN INTRODUCTION TO SCHUR FUNCTIONS

AMRITANSHU PRASAD

1. **Symmetric Functions.** We consider polynomials in n variables x_1, \ldots, x_n . Given a multiindex $\alpha = (\alpha_1, \ldots, \alpha_n), x^{\alpha}$ denotes the monomial $x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ A symmetric polynomial in n variables x_1, \ldots, x_n is a polynomial of the form

$$f(x_1,\ldots,x_n)=\sum_{\alpha}c_{\alpha}x^{\alpha},$$

where, for any permutation $w \in S_n$,

$$c_{(\alpha_1,\dots,\alpha_n)} = c_{(\alpha_{w(1)},\dots,\alpha_{w(n)})}.$$

We call the integer partition λ obtained by sorting the coordinates of α the shape of α and write $\lambda = \lambda(\alpha)$. The most obvious example of a symmetric polynomial in n variables is the *monomial symmetric function*, defined for each integer partition λ :

$$m_{\lambda} = \sum_{\lambda(\alpha) = \lambda} c_{\alpha} x^{\alpha}.$$

Note that m_{λ} is homogeneous of degree $|\lambda|$ (the sum of the parts of λ).

Exercise 1.1. Take n = 4. Compute the monomial symmetric functions $m_{(3)}$, $m_{(2,1)}$, and $m_{(1^3)}$.

Theorem 1.2. The polynomials $m_{\lambda}(x_1, \ldots, x_n)$, as λ runs over all the integer partition of d, form a basis for the space of homogeneous symmetric polynomials of degree d in n variables.

2. Complete and Elementary Symmetric Polynomials. Recall that the coefficients of a polynomial are symmetric polynomials in its roots:

(1)
$$(t-x_1)(t-x_2)\cdots(t-x_n)$$

= $t^n - e_1(x_1,\ldots,x_n)t^{n-1} + \cdots + (-1)^n e_n(x_1,\ldots,x_n),$

where coefficient $e_i(x_1, \ldots, x_n)$ of t^{n-i} is given by:

(2)
$$e_i(x_1, \dots, x_n) = \sum_{\substack{1 \le j_1 < \dots < j_i \le n}} x_{j_1} x_{j_2} \cdots x_{j_i}.$$

The polynomial e_i is called the *i*th elementary symmetric polynomial. By convention, write $e_i(x_1, \ldots, x_n) = 0$, for i > n.

The identity (1) can be written more elegantly as:

$$(1+tx_1)\cdots(1+tx_n) = \sum_{i=0}^n e_i(x_1,\cdots,x_n)t^i.$$

Dually¹, the *complete symmetric polynomials* are defined by the formal identity:

$$\frac{1}{(1-x_1t)\cdots(1-x_nt)} = \sum_{i=0}^{\infty} h_i(x_1,\cdots,x_n)t^i.$$

Example 2.1. In three variables, we have:

$$e_2(x_1, x_2, x_3) = x_1x_2 + x_1x_3 + x_2x_3,$$

 $h_2(x_1, x_2, x_3) = x_1^2 + x_1x_2 + x_1x_3 + x_2^2 + x_2x_3 + x_2^3.$

Exercise 2.2. Show that

$$h_i(x_1, \dots x_n) = \sum_{1 \le j_1 \le \dots \le j_i \le n} x_{j_1} \dots x_{j_i}.$$

More generally, for any integer partition $\lambda = (\lambda_1, \dots, \lambda_l)$, define:

$$h_{\lambda} = h_{\lambda_1} h_{\lambda_2} \cdots h_{\lambda_l},$$

$$e_{\lambda} = e_{\lambda_1} e_{\lambda_2} \cdots e_{\lambda_l}.$$

Theorem 2.3. Given integer partitions $\lambda = (\lambda_1, \dots, \lambda_l)$ and $\mu = (\mu_1, \dots, \mu_m)$ of and integer d, let $M_{\lambda\mu}$ denote the number of integer matrices (a_{ij}) with non-negative entries whose ith row sums to λ_i for each i, and whose jth column sums to μ_j for each j. Then

$$h_{\lambda} = \sum_{\mu} M_{\lambda\mu} m_{\mu}.$$

Dually, let = $N_{\lambda\mu}$ denote the number of integer matrices (a_{ij}) with entries 0 or 1, whose ith row sums to λ_i for each i, and whose jth column sums to μ_i for each j.

$$e_{\lambda} = \sum_{\mu} N_{\lambda\mu} m_{\mu}.$$

The will refer to the replacing of (1+u) by $(1-u)^{-1}$ in a formal identity as dualization.

Proof. We first prove the second identity involving elementary symmetric functions. A monomial in the expansion:

$$e_{\lambda} = \prod_{i=1}^{l} \sum_{j_1 < \dots < j_{\lambda_j}} x_{j_1} \cdots x_{j_{\lambda_i}}$$

is a product of summands, one chosen from each of the l factors. Construct an $l \times m$ matrix (a_{ij}) corresponding to such a choice as follows: if the summand $x_{j_1} \cdots x_{j_{\lambda_i}}$ is chosen from the ith factor, then set the entries $a_{i,j_1}, \ldots, a_{i,j_{\lambda_j}}$ to be 1 (the remaining entries of the ith row are 0). Clearly the ith row of such a matrix sums to λ_i . The monomial corresponding to this choice is x^{μ} if, for each j, the the number of i for which x_j appears in $a_{i,j_1}, \ldots, a_{i,j_{\lambda_j}}$, which is the sum of the jth column of the matrix (a_{ij}) . It follows that the coefficient of x^{μ} , and hence the coefficient of m_{μ} in the expansion of e_{λ} in the basis of monomial symmetric functions of degree n, is $N_{\lambda\mu}$.

A similar proof can be given for the first identity involving complete symmetric functions. The only difference is that a variables are repeated in the monomials that appear in h_i . Counting the number of repetitions (instead of just recording 0 or 1) gives non-negative integer matrices.

3. Alternating Polynomials. An alternating polynomial in x_1, \ldots, x_n is of the form:

(3)
$$f(x_1, \dots, x_n) = \sum_{\alpha} c_{\alpha} x_{\alpha},$$

where, $c_{w(\alpha)} = \epsilon(w)c_{\alpha}$ for every multiindex α as in Section 1. Here $\epsilon: S_n \to \{\pm 1\}$ denotes the sign function. Equivalently, an alternating polynomial is one whose sign is reversed upon the interchange of any two variables.

Exercise 3.1. If α is a multiindex where $\alpha_i = \alpha_j$ for some $i \neq j$, then $c_{\alpha} = 0$.

In particular, every monomial in an alternating polynomial must be composed of distinct powers. Moreover, the polynomial is completely determined by the coefficients c_{α} of strictly decreasing multiindices, namely, multiindices of the form $\alpha = (\alpha_1, \ldots, \alpha_n)$ with $\alpha_1 > \cdots > \alpha_n$.

Exercise 3.2. Let δ denote the strictly increasing multiindex $(n-1, n-2, \ldots, 1, 0)$ of lowest degree. Given an integer partition with at most n parts, we will pad it with 0's so that it can be regarded as a weakly decreasing multiindex. Then $\lambda \mapsto \lambda + \delta$ is a bijection from the set

of integer partitions with at most n onto the set of strictly decreasing multiindices.

Example 3.3. Let $\lambda = (\lambda_1, \dots, \lambda_n)$ be a weakly decreasing multiindex. The polynomial:

$$a_{\lambda+\delta} = \det(x_i^{\lambda_j+n-j})$$

is alternating, with unique strictly decreasing monomial $x^{\lambda+\delta}$.

Exercise 3.4. The alternating polynomial of the form (3) is equal to

$$\sum_{\lambda} c_{\lambda} a_{\lambda+\delta},$$

the sum being over all weakly decreasing multiindices.

4. Cauchy's bialternant form of a Schur function. The simplest polynomial of the form $a_{\lambda+\delta}$ arises when $\lambda=0$; a_{δ} is the Vandermonde determinant:

$$a_{\delta} = \prod_{1 \le i < j \le n} (x_i - x_j).$$

Exercise 4.1. Show that, for every weakly decreasing multiindex λ , $a_{\lambda+\delta}$ is divisible by a_{δ} in the ring of polynomials in x_1, \ldots, x_n .

Exercise 4.2. Show that $f \mapsto fa_{\delta}$ is an isomorphism of the space of symmetric polynomials in x_1, \ldots, x_n of degree d onto the space of alternating polynomials of degree $d + \binom{n}{2}$.

The above exercise allows us to give the historically oldest definition of Schur functions—Cauchy's bialternant formula:

$$(4) s_{\lambda}(x_1, \dots, x_n) = a_{\lambda + \delta}/a_{\delta},$$

for any partition λ with at most n parts. If λ has more than n parts, set $s_{\lambda}(x_1, \ldots, x_n) = 0$. This is clearly a symmetric function of degree $|\lambda|$. When λ has more than n parts, we shall write $s_{\lambda}(x_1, \ldots, x_n) = 0$

Theorem 4.3. As λ runs over all integer partitions of d with at most n parts, the Schur functions $s_{\lambda}(x_1, \ldots, x_n)$ form a basis of the space of all homogeneous symmetric functions in x_1, \ldots, x_n of degree d.

Proof. This follows from Exercises 3.4 and 4.2.

Exercise 4.4 (Stability of Schur functions). Show that substituting $x_n = 0$ in the Schur function $s_{\lambda}(x_1, \ldots, x_n)$ with n variables gives the corresponding Schur function $s_{\lambda}(x_1, \ldots, x_{n-1})$ with n-1 variables.

5. **Pieri's rule.** The set of integer partitions is endowed with the *containment order*. We say that a partition $\lambda = (\lambda_1, \dots, \lambda_l)$ contains a partition $\mu = (\mu_1, \dots, \mu_m)$ if $l \geq m$, and $\lambda_i \geq \mu_i$ for every $i = 1, \dots, m$. We write $\lambda \supset \mu$ or $\mu \subset \lambda$. Recall that the Young diagram of the partition λ is the set of points

$$\{(i,j) \mid 1 \le i \le l, \ 1 \le j \le \lambda_i\}.$$

Visually, each node (i, j) of the Young diagram is replaced by a box, and the box corresponding to (i, j) is placed in the *i*th row and *j*th column (matrix notation). Thus, the Young diagram of $\lambda = (6, 5, 3, 3)$ is depicted by:

Note that containment of partitions is nothing but the containment relation on their Young diagrams. By abuse of notation, we will also use λ to denote the Young diagram of λ .

By a skew-shape, we mean a difference of Young diagrams $\lambda \setminus \mu$, where $\lambda \supset \mu$. We write λ/μ for this skew-shape. A skew-shape is called a *horizontal strip* (respectively, a *vertical strip*) if it has at most one element in each vertical column (respectively, horizontal row).

Theorem 5.1. For every partition λ , and every positive integer k,

$$s_{\lambda}h_k = \sum_{\mu} s_{\mu},$$

where the sum runs over all partitions $\mu \supset \lambda$ such that μ/λ is a horizontal strip of size k. Dually,

$$s_{\lambda}e_{k} = \sum_{\mu} s_{\mu},$$

where the sum runs over all partitions $\mu \supset \lambda$ such that μ/λ is a vertical strip of size k.

Proof. The first identity is equivalent to showing that:

$$a_{\lambda+\delta} \sum_{\alpha_1+\cdots+\alpha_n=k} x_1^{\alpha_1} \cdots x_n^{\alpha_n} = \sum_{\mu} a_{\mu+\delta},$$

the sum on the right being over all partitions $\mu \supset \lambda$ such that μ/λ is a horizontal strip.

Writing $\alpha = (\alpha_1, \dots, \alpha_n)$, the sum on the left hand side can be regarded as a sum of determinants:

(5)
$$a_{\lambda+\delta} \sum_{|\alpha|=k} x_1^{\alpha_1} \cdots x_n^{\alpha_n} = \sum_{|\alpha|=k} a_{\lambda+\alpha+\delta}.$$

Suppose there exists an integer α_i such that $\alpha_i > \lambda_i - \lambda_{i+1}$ (in other words, $(\lambda + \alpha)/\lambda$ is not a horizontal strip), then define $\beta = (\beta_1, \dots, \beta_n)$ by $\beta_i = \alpha_{i+1} - (\lambda_i - \lambda_{i+1} + 1)$, $\beta_{i+1} = \alpha_i + (\lambda_i - \lambda_{i+1} + 1)$, and $\beta_j = \alpha_j$ for all $j \notin \{i, i+1\}$. Then $a_{\lambda+\alpha+\delta} = -a_{\lambda+\beta+\delta}$. So the only terms that survive on the right hand side of (5) are of the form $a_{\mu+\delta}$, where μ/λ is a horizontal strip.

The proof of the second identity in the theorem is similar (in fact, a little simpler) and is left to the reader as an exercise. \Box

As a special case of Pieri's rule, we have:

Corollary 5.2. For every positive integer k,

$$s_{(k)} = h_k$$
, and $s_{(1^k)} = e_k$.

6. Schur to Complete and Elementary via Tableaux. Pieri's rule allows us to compute the complete and elementary symmetric functions h_{λ} and e_{λ} in terms of Schur functions.

Example 6.1. Repeated application of Pieri's rule gives,:

$$e_{(2,2,1)} = e_{2}e_{2}e_{1} \\ \downarrow \\ s_{(1^{2})}e_{2}e_{1} \\ \downarrow \\ s_{(2,1)}e_{1} \\ \downarrow \\ s_{(2,1^{2})}e_{1} \\ \downarrow \\ s_{(2,1^{3})}e_{1} \\ \downarrow \\ s_{(2,1^{$$

The steps going from the first line of the above calculation to each term of the last line can be recorded by putting numbers into Young diagrams:

1	1	3
2	2	

7. The Lindström-Gessel-Viennot Lemma. Let R be a commutative ring. Let S be any set of points, and $v: S \times S \to R$ be any function (we think of w as a weight function. Given $s, t \in S$, a path in S from s to t is is a sequence $\omega = (s = s_0, s_1, \ldots, s_k = t)$ of distinct

points in S. We denote this by $\omega: s \to t$. The weight of the path ω is defined to be:

$$v(\omega) = v(s_0, s_1)v(s_1, s_2)\cdots v(s_{k-1}, s_k).$$

Definition 7.1 (non-crossing paths). Two paths $\omega = (s_0, \ldots, s_k)$ and $\eta = (t_0, \ldots, t_l)$ are said to be non-crossing if $s_i \neq t_j$ for all $0 \leq i \leq k$ and $0 \leq t \leq l$.

Fix points A_1, \ldots, A_n and B_1, \ldots, B_n in S, and define an $n \times n$ matrix (a_{ij}) by:

$$a_{ij} = \sum_{\omega: A_i \to B_i} v(\omega).$$

Theorem 7.2 (Lindström-Gessel-Viennot Lemma). The determinant of the matrix (a_{ij}) defined above is given by:

$$\det(a_{ij}) = \sum_{\omega_i: A_i \to B_i} v(\omega_1) \cdots v(\omega_n),$$

where the sum is over all n-tuples $(\omega_1, \ldots, \omega_n)$ of pairwise non-crossing paths.

8. The Jacobi-Trudi Identities.

$$s_{\lambda} = \det(h_{\lambda_i - i + j}), \quad s_{\lambda'} = \det(e_{\lambda_i - i + j}).$$

For the first Jacobi-Trudi identity take S to be the positive cone in the the integer lattice:

$$S = \{(i, j) \mid i \ge 0, j > 0 \text{ are integers}\}.$$

Set the weight v((i,j),(i+1,j)) of each rightward horizontal edge to be x_j for $j=1,\ldots,n$, the weight of each downward vertical edge v((i,j),(i,j-1)) to be 1 for all $j=2,\ldots,n$. The remaining weights are all zero.

Lemma 8.1. For all integers i > 0 and $j \ge 0$, we have:

$$\sum_{\omega:(i,n)\to(i+j,1)}v(\omega)=h_j(x_1,\ldots,x_n).$$

Proof. Only rightward or downward steps have non-zero weights. So every path with non-zero weight is composed of unit downward and rightward steps. A path with non-zero weight from (i,n) to (i+j,1) must have exactly j rightward steps, say in rows $n \geq i_1 \geq i_2 \cdots \geq i_j \geq 1$. The weight of such a path is $x_{i_1} \cdots x_{i_j}$, and hence, the sum of the weights of all such paths is $h_j(x_1,\ldots,x_n)$. For an example, see Fig. 1.

FIGURE 1. A path from (0,5) to (6,1) representing the monomial $x_1x_3^3x_5^2$ in h_6 .

Let $A_i = (n-i, n)$ and $B_i = (\lambda_i + n - i, 1)$ for i = 1, ..., n. Then by Lemma 8.1,

$$\sum_{\omega: A_i \to B_j} v(\omega) = h_{\lambda_j + i - j}.$$