MODELING

Value function Q-factor Optimality equation

Diego Klabjan
Professor, Industrial Engineering and Management Sciences

Northwestern ENGINEERING

TRANSITION FUNCTION AND POLICIES

Agent and Environment

Agent and Environment

- At each step t the agent
 - Executes action a_t
 - Receives observation O_t
 - Receives scalar reward r_t
- The environment
 - Executes action a_t
 - Receives observation O_{t+1}
- t increments

History and State

The history is the sequence of observations, actions, rewards

$$H_t = O_0, r_0, a_0, \dots, a_{t-1}, O_t, r_t$$

- What happens next depends on the history
 - The agent selects actions
 - The environment selects observations
- State is the information used to determine what happens next
- State a function of the history

$$s_t = f(H_t)$$

Agent State

- Agent state s_t is the agent's internal representation
 - Whatever information the agent uses to pick the next action
 - Or/and to calculate reward
- Information used by reinforcement learning algorithms

Rewards

- Reward r_t is a scalar feedback signal
- Indicates how well agent is doing at step t
- The agent's job is to maximize cumulative reward
- All goals described by the maximization of expected cumulative reward

State

- Information state contains all useful information from the history
 - Markov state
- State s_t is Markov if and only if

$$\mathbb{P}[s_{t+1} \mid s_t] = \mathbb{P}[s_{t+1} \mid s_0, ..., s_t]$$

- "The future is independent of the past given the present"
- The history H_t is Markov
 - The state is a sufficient statistic of the future

State Space

- State space S
 - Set of all possible states
- Discrete or continuous
 - Usually discrete and finite
 - Continuous
 - Discretize
- Challenge
 - In practice extremely high cardinality

- Inventory management: 0, 1, 2, 3, ...
 - 3 SKU's
 - $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$
- Drone: All possible x,y,z coordinates
 - Continuous but discretized in practice
- Tic-tac-toe: $\{-1,0,1\}^9$

Actions

- A action space
- Usually discrete and finite
 - If continuous, discretize
- $a_t \in \mathcal{A}$
- Goal of RL: find a_t for each time t
- Depends on state
 - $\bullet \quad a_t = a_t(s_t)$

- Inventory
 - $\mathcal{A} = \{0, 1, 2, ..., M\}$
- Drone
 - A = {stay, up, down, left, right, ...}
 - 27 options
- Tic-tac-toe
 - $\mathcal{A} = \{1, 2, ..., 9\}$

Markov Chains

- s_{t+1} depends on s_t
- Key to identify $p(s_{t+1}|s_t)$
- Inventory
 - $p(s_{t+1} = 10 | s_t = 5)$??
 - Ordered 5, demand = 0
 - Ordered 8, demand = 3

- Markov chains P
- Transition matrix in RL
 - $\blacksquare P^a$
- Every action function gives a transition function

$$p(s_{t+1}|s_t,a_t)$$

If we know action, we can calculate the transition probability

•
$$p(s_{t+1} = 10 | s_t = 5, a_t = 8) = p(D = 3)$$

Transitions

$$P_{ij}^k = P_{ijk} = p(s_{t+1} = i | s_t = j, a_t = k)$$

tensor

Policy

- Permissible family of action functions
 - Denoted by π
 - Policy again function of state
- Restrict action functions
 - Computational tractability
 - Business and operational requirements
 - Order only 0 or Q
- Policy usually parametric π_{θ}
 - Goal to find best set of parameters

$$\pi_{\theta}(s_t) = \theta^T \cdot s_t$$

Better: neural network

Stochastic Policies

- Flip a coin based on certain probability to select an action
- Find probability distribution over all possible actions
- Drone
 - 27 dimensional probability vector
 - Neural networks
 - Input state vector
 - Output 27 dimensional probability
 - Obtained through softmax
- Continuous actions
 - Normal distribution with mean and standard deviations depending on state

Stochastic Policies

- Deterministic/pure policy special stochastic policy
- Stochastic policies more general
- Algorithmically much better to handle
 - Continuous in parameters
 - Differentiable in parameters
- Can be mathematically shown
 - Given a stochastic policy there is a deterministic policy of the same reward
- On the paper stochastic policies do not yield anything new

Objective Function

- Find policy that maximizes total reward
 - $\max_{\pi} E\left[\sum_{t=0}^{T} \gamma^{t} \cdot r(s_{t}, a_{t})\right]$
- Optimization to find a function
- Future reward is discounted
 - Future money is discounted
- $0 < \gamma \le 1$
 - Well defined also for $T = \infty$

$$s_0, \pi(s_0), r_0, s_1, \pi(s_1), r_1, s_2, \pi(s_2), r_2, s_3, \pi(s_3), r_3, \dots$$

Infinite case

- Drop *t*
 - Everything else the same
- s, a, r(s,a), and p(s'|s,a) define Markov decision process
 - Infinite version of Markov chains with actions

Objective Function

- $\tau = s_0, a_0, s_1, a_1, s_2, a_2, s_3, a_3, \dots$
 - Trajectory, sample path, episode

$$p_{\theta}(\tau) = p_{\theta}(s_0, a_0, \dots, s_T, a_T) = p(s_0) \prod_{t=0}^{T} \pi_{\theta}(a_t | s_t) p(s_{t+1} | s_t, a_t)$$

- Policy/actions parametric with respect to θ
- Inventory
 - P(10,3; 5,7; 1,0; 0,10) = p(state = 10) π_{θ} (3|10) p(D=8) π_{θ} (7|5) p(D=11) π_{θ} (0|1) p(D=1) π_{θ} (10|0)

Objective Function

$$\theta^* = \arg \max_{\theta} E_{\mathcal{T} \sim p_{\theta}(\mathcal{T})} \left[\sum_{t} \gamma^t r(s_t, a_t) \right]$$

$$= \arg \max_{\theta} \sum_{t=0}^{T} E_{(s_t, a_t) \sim p_{\theta}(s_t, a_t)} [\gamma^t r(s_t, a_t)]$$

- Each sample path has probability
 - Distribution over sample paths
- Expectation over all sample paths

Putting it Together

- State and action spaces
- State, action (policy)
- Transition function
- Reward
- Discount factor
- Initial state (or distribution)
- Stochastic policies computationally tractable
 - But not needed on the paper

- Given policy
 - Markov chain
- Transition probabilities can be viewed as tensor
- Another view
 - Markov chain with states (state,action)

VALUE FUNCTION AND Q-FACTOR

Total Reward

- Initial state $E_{s_0 \sim p(s_0)}$
- $\sum_{t=0}^{T} \gamma^t \cdot r(s_t, a_t) = r(s_0, a_0) + \gamma \sum_{t=1}^{T} \gamma^{t-1} \cdot r(s_t, a_t)$
 - Same as original
 - Start in a different state
- Let $V_t(s_t) = \text{maximum expected total reward from time } t$ to the end given that at time t we are in state s_t
- Value function

Equivalent Expressions for Expectation

- Given s_t and policy π
- $a_t \sim \pi(a_t | s_t)$ sampled action based on policy
- Next state
- Entire process
 - $a_t \sim \pi_{\theta}(a_t|s_t)$, $s_{t+1} \sim p(s_{t+1}|s_t, a_t)$ sampled next state based on sampled action

23

• Equivalently $(s_{t+1}, a_{t+1}) \sim p_{\theta}(s_{t+1}, a_{t+1} | s_t, a_t)$

Optimality Equation

$$V_0(s_0) = \max_{a_0 \in \mathcal{A}} [r(s_0, a_0) + \gamma E_{s_1 \sim p(s_1|s_0, a_0)} V_1(s_1)]$$

Optimality Equation

$$V_t(s_t) = \max_{a_t \in \mathcal{A}} [r(s_t, a_t) + \gamma E_{s_{t+1} \sim p(s_{t+1}|s_t, a_t)} V_{t+1}(s_{t+1})]$$

Value of Policy

• Let $V_t^{\pi}(s_t) =$ expected total reward of policy π from time t to the end given that at time t we are in state s_t

$$\begin{split} V_t^{\pi}(s_t) &= \sum_{t'=t}^T \gamma^{t'} E_{a_{t'} \sim \pi(a_{t'}|s_{t'}), s_{t'+1} \sim p_{\theta}(s_{t'+1}|s_{t'}, a_{t'})} [r(s_{t'}, a_{t'})|s_t] \\ V_t^{\pi}(s_t) &= E_{a_t \sim \pi(a_t|s_t), s_{t+1} \sim p(s_{t+1}|s_t, a_t)} [r(s_t, a_t) + \gamma V_{t+1}^{\pi}(s_{t+1}|s_t)] \end{split}$$

• s_{t+1} function of a_t , s_t and stochastic environment

$$V_t^{\pi}(s_t) = E \quad a_{t \sim \pi(a_t|s_t)} \quad [r(s_t, a_t) + \gamma V_{t+1}^{\pi}(s_{t+1})]$$

$$s_{t+1} \sim p(s_{t+1}|s_t, a_t)$$

Everywhere $\pi = \pi_{\theta}$

Stationarity

- An optimal policy
 - Depends on $t (\pi_t \text{ or } \pi_{\theta_t})$
- Optimal value function depends on t
 - V_t
- In practice for computational tractability
 - Policy does not depend on t
 - Value function and other subsequent functions do not depend on t
 - Our standard assumption

Optimal Policy

- $V(s_t) = \max_{\pi} V^{\pi}(s_t)$
- RL is about

arg
$$max_{\theta}V^{\pi_{\theta}}(s_o)$$

arg $max_{\theta}E_{s_o\sim p(s_o)}V^{\pi_{\theta}}(s_o)$

- Omitting discounting factor
- Omitting t in V_t

Example

• Reward of -1, 4 actions, reward of 0 at corner points

Random policy

0	-14	-20	-22
-14	-18	-22	-20
-20	-22	-18	-14
-22	-20	-14	0

Optimal policy

0	-1	-2	-3
-1	-2	-3	-2
-2	-3	-2	-1
-3	-2	-1	0

M. Harmon, S. Harmon: Reinforcement Learning: a Tutorial

Q-factor

- $\sum_{t=0}^{T} E_{(s_t,a_t) \sim p_{\theta}(s_t,a_t)}[r(s_t,a_t)]$
- $Q^{\pi}(s_t, a_t) = \sum_{t'=t}^{T} E_{(s_{t'}, a_{t'}) \sim p_{\theta}(s_{t'}, a_{t'})} [r(s_{t'}, a_{t'})]$

$$Q^{\pi}(s_0, a_0) = r(s_0, a_0) + E_{a_1 \sim \pi(a_1|S_1)} [[r(s_1, a_1) + \dots | s_1] | s_0, a_0]$$

$$s_1 \sim p(s_1|s_0, a_0)$$

$$Q^{\pi}(s_t, a_t) = \sum_{t'=t}^{T} E_{(s_{t'}, a_{t'}) \sim p_{\theta}(s_{t'}, a_{t'})} r(s_{t'}, a_{t'})$$