An Interesting Question About The Rationals Q

Spencer T. Parkin March 1, 2014

The Question

Let \mathbb{Q} denote the set of rational numbers and \mathbb{Z} the integers. For any set S of rationals numbers, let the span of S be defined as the set

span
$$S = \{z_1q_1 + z_2q_2 + \dots | z_i \in \mathbb{Z}\},\$$

where $S = \{q_1, q_2, \dots\}$ is any enumeration of S, a finite or countably infinite set of rational numbers. If the cardinality of S is greater than 1, say that such a set S is linearly independent if and only if for all integers k > 1, $q_k \notin \text{span } \{q_1, q_2, \dots, q_{k-1}\}.$

Now here's the question: is \mathbb{Q} the span of every or any linearly independent and countably infinite set of rational numbers?

Motivation For The Question

This question came about while trying to show that no proper subgroup of \mathbb{Q} under addition is maximal. Given any proper subgroup H of \mathbb{Q} , it is easy to find a subgroup K of \mathbb{Q} containing H properly, but it is not at all obvious that K is a proper subgroup of \mathbb{Q} .

Letting H be a proper subgroup of \mathbb{Q} , if $q \in \mathbb{Q} - H$, it is easy to show that H + Z(q) properly contains H and is a subgroup of \mathbb{Q} , where $Z(q) = \{zq|z \in \mathbb{Z}\}$ and $H + Z(q) = \{h + q'|h \in H \text{ and } q' \in Z(q)\}$. Now notice that $q/2 \notin H$ and $q/2 \notin Z(q)$. But it is not at all clear whether $q/2 \in H + Z(q)$. Suppose it is. Then there exists $h \in H$ and $z \in \mathbb{Z}$ such that q/2 = h + zq.

Rearranging, we find that 2h = (1 - 2z)q. Since 1 - 2z is never zero, this would imply that the intersection of H and Z(q) is a non-trivial group.

Taking a step back for a moment, realize that if $q \in H$, then Z(q) is a subgroup of H. Now suppose that $q \notin H$, but that there exists $q' \in H \cap Z(q)$ where $q' \neq 0$. Then Z(q') is a subgroup of $H \cap Z(q)$ and it follows that some multiple of q, (namely, q' = zq for some |z| > 1), is in H.

Taking a step back again, can we always find $q \in \mathbb{Q}-H$ such that $Z(q)\cap H$ is empty? I have no idea, but if we could always find such a q, then a proof would go through.