Reinforcement Learning Lecture 3: Dynamic Programming

Lecturer: Prof. Dr. Mathias Niepert

Institute for Artificial Intelligence Machine Learning and Simulation Lab

imprs-is

April 25, 2024

Outline

- 1. Markov Decision Process
- 2. Iterative Policy Improvement
- 3. Generalized Policy Iteration

Markov Decision Process

An MDP is a 5-tuple (S, A, T, r, γ) :

- 1. States $s \in S$ (green circles)
- 2. Actions $\mathbf{a} \in A$ (orange circles)
- 3. Transition model (or dynamics) $T(\mathbf{s}, \mathbf{a}, \mathbf{s}') = p(\mathbf{s}'|\mathbf{s}, \mathbf{a})$
- 4. Reward function $r(\mathbf{s}, \mathbf{a}, \mathbf{s}') \in \mathbb{R}$
- 5. Discount factor $\gamma \in [0, 1]$

MDP with 3 states and 2 actions, rewards as orange arrows

Bellman equation for v_{π}

Recursive relationship for v_{π}

$$\begin{aligned} v_{\pi}(s) &= \mathbb{E}_{\pi} \left[G_{t} \mid S_{t} = s \right] \\ &= \mathbb{E}_{\pi} \left[R_{t+1} + \gamma G_{t+1} \mid S_{t} = s \right] \\ &= \sum_{a} \pi(a \mid s) \sum_{s'} \sum_{r} p(s', r \mid s, a) \Big[r + \gamma \mathbb{E}_{\pi} [G_{t+1} \mid S_{t+1} = s'] \Big] \\ &= \sum_{a} \pi(a \mid s) \sum_{s'} p(s', r \mid s, a) \Big[r + \gamma v_{\pi}(s') \Big] \text{ for all } s \in \mathcal{S} \end{aligned}$$

000000

Tansition Matrix

For an MDP, the state transition probability is defined by $p: \mathcal{S} \times \mathcal{S} \times \mathcal{A} \rightarrow [0,1]$:

$$p(s' \mid s, a) = \Pr \{ S_{t+1} = s', | S_t = s, A_t = a \}$$

State transition matrix \mathcal{P} (for action a) defines **transition probabilities** from all states s to all successor states s' when taking action a

$$\mathcal{P} = \text{from} \begin{bmatrix} p_{11} & \dots & p_{1n} \\ \vdots & \dots & \vdots \\ p_{n1} & \dots & p_{nn} \end{bmatrix}$$

where each row of the matrix sums to 1. This is for **one action** a!

000**0**000

Bellman equation in matrix form

The Bellman equation can be expressed concisely using matrices ¹,

$$\underbrace{\begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}}_{v} = \underbrace{\begin{bmatrix} \mathcal{R}_1 \\ \vdots \\ \mathcal{R}_n \end{bmatrix}}_{\mathcal{R}} + \gamma \underbrace{\begin{bmatrix} p_{11} & \dots & p_{1n} \\ \vdots & \dots & \vdots \\ p_{n1} & \dots & p_{nn} \end{bmatrix}}_{\mathcal{P}} \underbrace{\begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}}_{v}$$

- The Bellman equation is a linear equation
- It can be solved directly:

$$\begin{split} v &= \mathcal{R} + \gamma \mathcal{P} v \\ v(I - \gamma \mathcal{P}) &= \mathcal{R} \\ v &= (I - \gamma \mathcal{P})^{-1} \mathcal{R} \ \leftarrow \textbf{Prediction} \end{split}$$

Computational complexity is $O(n^3)$ for n states

¹Marginalized over actions

Bellman equation for optimal value function v_{st}

Value under optimal policy = expected return for best action from that state.

$$v_*(s) = \max_{a} \mathbb{E}_{\pi_*} \left[G_t \mid S_t = s, A_t = a \right]$$

$$= \max_{a} \mathbb{E}_{\pi_*} \left[R_{t+1} + \gamma G_{t+1} \mid S_t = s, A_t = a \right]$$

$$= \max_{a} \mathbb{E} \left[R_{t+1} + \gamma v_*(S_{t+1}) \mid S_t = s, A_t = a \right]$$

$$= \max_{a} \sum_{s',r} p(s',r \mid s,a) \left[r + \gamma v_*(s') \right]$$

Bellman equation for optimal action-value function q_*

$$q_*(s, a) = \mathbb{E}_{\pi_*} \left[R_{t+1} + \gamma \max_{a'} q_*(S_{t+1}, a') \mid S_t = s, A_t = a \right]$$
$$= \sum_{s', r} p(s', r \mid s, a) \left[r + \gamma \max_{a'} q_*(s', a') \right]$$

Solving MDPs

- ▶ Policy evaluation / prediction: given an MDP and a policy $\pi(a \mid s) = \Pr\{A_t = a \mid S_t = s\}$ find the value and action-value functions
- **Policy improvement:** given an MDP and value function, find a better (optimal) policy π_*
- **Dynamic programming**Given access to the perfect model $p(r, s' \mid s, a)$ compute v_* , q_* the optimal value and action-value functions

- lacktriangle We have some policy π which tells the agent which action a to choose in state s
- lacktriangle Find the value function $v_\pi(s)$ of this policy, i.e. **evaluate** the policy π
- **Bellman equation** for v_{π} :

$$\begin{array}{ll} v_{\pi}(s) &= \mathbb{E}_{\pi} \left[G_{t} \mid S_{t} = s \right] \\ &= \mathbb{E}_{\pi} \left[R_{t+1} + \gamma G_{t+1} \mid S_{t} = s \right] \\ &= \mathbb{E}_{\pi} [R_{t+1} + \gamma \ v_{\pi}(S_{t+1}) \mid S_{t} = s \right] \\ &= \sum_{a} \pi(a \mid s) \sum_{s',r} p(s',r \mid s,a) \left[r + \gamma \ v_{\pi}(s') \right] \text{ for all } s \in \mathcal{S} \end{array}$$

- System of linear equations
- ► Solvable, but . . .
 - \triangleright |S| equations
 - ► |S| unknowns

- ► Each iteration is one *sweep* through the state space
- Value estimates for each state are updated using the previous estimate (backup)

$$v_0 \to v_1 \to \ldots \to v_k \to v_{k+1} \to \ldots \to v_{\pi}$$

Bellman equation is used as an iterative backup update

$$\begin{array}{ll} v_{k+1}(s) &= \mathbb{E}_{\pi} \left[R_{t+1} + \gamma v_k(S_{t+1}) \mid S_t = s \right] \\ &= \sum_{a} \pi(a \mid s) \sum_{s',r} p(s',r \mid s,a) \Big[r + \gamma v_k(s') \Big] \text{ for all } s \in \mathcal{S} \end{array}$$

lacktriangle After many *sweeps*, iterative policy evaluation converges to v_π

Markov Decision Process

Iterative Policy Evaluation, for estimating $V \approx v_{\pi}$

Input π , the policy to be evaluated

Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation Initialize V(s), for all $s \in \mathbb{S}^+$, arbitrarily except that V(terminal) = 0

Loop:

$$\Delta \leftarrow 0$$

Loop for each $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until $\Delta < \theta$

Policy evaluation example

$$R_t = -1 \\ \text{on all transitions}$$

Policy takes actions uniformly at random.

Policy evaluation example

$$k = 0$$

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

$$v_{k+1}(s) = \sum_{a} \pi(a \mid s) \sum_{s',r} p(s',r \mid s,a) \left[r + \gamma v_k(s') \right]$$

$$k = 1$$

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

$$k = 2$$

0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0

Typo in example, -1.7 should be -1.75

Policy evaluation example

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

$$k = 1$$

0.0	-1.0	-1.0	-1.0	
-1.0	-1.0	-1.0	-1.0	
-1.0	-1.0	-1.0	-1.0	
-1.0	-1.0	-1.0	0.0	

$$k = 2$$

0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0

k = 3

0.0	-2.4	-2.9	-3.0
-2.4	-2.9	-3.0	-2.9
-2.9	-3.0	-2.9	-2.4
-3.0	-2.9	-2.4	0.0

$$k = 10$$

0.0	-6.1	-8.4	-9.0
-6.1	-7.7	-8.4	-8.4
-8.4	-8.4	-7.7	-6.1
-9.0	-8.4	-6.1	0.0

$$k = \infty$$

0.0	-14.	-20.	-22.
-14.	-18.	-20.	-20.
-20.	-20.	-18.	-14.
-22.	-20.	-14.	0.0

- Given some policy π , we can **evaluate** π by determining v_{π}
 - 1. starting from arbitrary values v_0
 - 2. iterating, using the Bellman equation as an update rule
- $ightharpoonup v_{\pi}$ is a fixed point it solves the Bellman equation
- lacktriangle Is used as subroutine to **improve** a policy π

Markov Decision Process

Policy evaluation

Iterative Policy Evaluation, for estimating $V \approx v_{\pi}$

Input π , the policy to be evaluated

Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation Initialize V(s), for all $s \in S^+$, arbitrarily except that V(terminal) = 0

Loop:

$$\Delta \leftarrow 0$$

Loop for each $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until
$$\Delta < \theta$$

Contraction mapping theorem

An operator $\mathcal{T}: \mathcal{V} \to \mathcal{V}$ on a normed vector space \mathcal{V} is a γ -contraction, for $0 < \gamma < 1$, wrt to the norm $\|\cdot\|$ iff for all $x, y \in \mathcal{V}$:

$$\|\mathcal{T}x - \mathcal{T}y\| \le \gamma \|x - y\|$$

Theorem (Contraction mapping)

for a γ -contraction ${\mathcal T}$ in a complete, normed vector space ${\mathcal V}$

- The sequence $x, \mathcal{T}x, \mathcal{T}(\mathcal{T}x), \mathcal{T}(\mathcal{T}(\mathcal{T}x)) \dots$ converges for every x
- $ightharpoonup \mathcal{T}$ converges to a unique fixed point x_* in \mathcal{V} :

$$\mathcal{T}x_* = x_*$$

Value function space

- ightharpoonup Consider the vector space $\mathcal V$ over value functions
- $ightharpoonup |\mathcal{S}|$ dimensions
- lacktriangle Each vector in the space fully specifies a value function v
- Bellman backups bring value functions closer together in this space
- ▶ ...and therefore the iterative update must converge to a unique solution

- \blacktriangleright We measure distances between value functions v and v' by the ∞ -norm
- i.e. the largest difference between state values

$$||v - v'||_{\infty} = \max_{s} |v(s) - v'(s)|$$

Bellman backup: a contraction

▶ Bellman expectation backup operator \mathcal{T}^{π} :

$$(\mathcal{T}^{\pi}v)(s) = \sum_{a} \pi(a \mid s) \sum_{s',r} p(s',r \mid s,a) \Big[r + \gamma v(s') \Big]$$

- ightharpoonup This operator is a γ -contraction, i.e. it moves value function closer together
- ightharpoonup The Bellman operator \mathcal{T}^{π} has a unique fixed point
- $ightharpoonup v_{\pi}$ is a fixed point (Bellman equation)
- \Rightarrow Policy evaluation converges to v_{π}

Proof

$$\begin{aligned} & \max_{s} \left| (\mathcal{T}^{\pi} v)(s) - (\mathcal{T}^{\pi} v')(s) \right| \\ & = \max_{s} \left| \sum_{a} \pi(a \mid s) \sum_{s',r} p(s',r \mid s,a) \left[r + \gamma v(s') \right] \right. \\ & - \sum_{a} \pi(a \mid s) \sum_{s',r} p(s',r \mid s,a) \left[r + \gamma v'(s') \right] \right| \\ & = \max_{s} \left| \sum_{a} \pi(a \mid s) \sum_{s',r} p(s',r \mid s,a) \left[r + \gamma v(s') - (r + \gamma v'(s')) \right] \right| \\ & = \gamma \max_{s} \left| \sum_{a} \pi(a \mid s) \sum_{s',r} p(s' \mid s,a) \left[v(s') - v'(s') \right] \right| \\ & \leq \gamma \max_{s} \left| \sum_{a} \pi(a \mid s) \sum_{s'} p(s' \mid s,a) \max_{s} \left| v(s) - v'(s) \right| \right| \\ & = \gamma \max_{s} \left| \max_{s} \left| v(s) - v'(s) \right| \right| = \gamma \max_{s} \left| v(s) - v'(s) \right| = \gamma \left\| v - v' \right\|_{\infty} \end{aligned}$$

Policy improvement

- ▶ Given value function for policy π , how do we get an improved π' ?
- In some state s, we can choose an action a that is better than $\pi(s)$
- ightharpoonup Value of taking action a in state s under a policy π :

$$q_{\pi}(s, a) = \mathbb{E}_{\pi} [G_t \mid S_t = s, A_t = a]$$

$$= \mathbb{E} [R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) \mid S_t = s, A_t = a]$$

$$= \sum_{s', r} p(s', r \mid s, a) \Big[r + \gamma \sum_{a'} \pi(a' \mid s') q_{\pi}(s', a') \Big]$$

$$= \sum_{s', r} p(s', r \mid s, a) \Big[r + \gamma v_{\pi}(s') \Big]$$

- ▶ If $q_{\pi}(s, a) > v_{\pi}(s)$ then choose a to **improve** the policy
- ▶ Apply for all states $s \in S$

23 / 33

Policy improvement

• We can define a new policy π' which is greedy wrt v_{π} :

$$\pi'(s) = \underset{a}{\operatorname{arg max}} q_{\pi}(s, a)$$
$$= \underset{a}{\operatorname{arg max}} \sum_{s', r} p(s', r \mid s, a) \left[r + \gamma v_{\pi}(s') \right]$$

- ▶ What if $v_{\pi'}(s) = v_{\pi}(s)$ for all states?
 - $\pi' = \pi = \pi_*$
 - $ightharpoonup v_{\pi} = v_{*}$

$$v_{\pi'}(s) = \max_{a} \sum_{s',r} p(s',r \mid s,a) \Big[r + \gamma v_{\pi}(s') \Big]$$

Iterative Policy Improvement

Policy iteration

- ► Alternating policy evaluation and policy improvement
- Evaluate Improve Evaluate Improve Evaluate . . .

$$\pi_0 \xrightarrow{\mathsf{E}} v_{\pi_0} \xrightarrow{\mathsf{I}} \pi_1 \xrightarrow{\mathsf{E}} v_{\pi_1} \xrightarrow{\mathsf{I}} \pi_2 \xrightarrow{\mathsf{E}} \dots \xrightarrow{\mathsf{I}} \pi_* \xrightarrow{\mathsf{E}} v_*$$

Policy Iteration (using iterative policy evaluation) for estimating $\pi \approx \pi_*$

1. Initialization

$$V(s) \in \mathbb{R}$$
 and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$

2. Policy Evaluation

Loop:

$$\Delta \leftarrow 0$$

Loop for each $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s))[r+\gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until $\Delta < \theta$ (a small positive number determining the accuracy of estimation)

3. Policy Improvement policy-stable $\leftarrow true$

For each $s \in S$:

$$old\text{-}action \leftarrow \pi(s)$$

$$\pi(s) \leftarrow \arg\max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

If $old\text{-}action \neq \pi(s)$, then $policy\text{-}stable \leftarrow false$

If policy-stable, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

- ► Each iteration of policy iteration requires policy evaluation to converge
 - possibly many sweeps through the state space
- policy evaluation often converges within a few sweeps
- we can truncate (reduce the number of sweeps) of policy evaluation
- ► Value iteration is extreme case: only one sweep of policy evaluation

Value iteration

- ▶ Just update values for *one* iteration and *immediately* improve policy
- Update rule:

$$v_{\pi}(s) = \max_{a} \sum_{s',r} p(s',r \mid s,a) \Big[r + \gamma v_{\pi}(s') \Big]$$

► One-iteration update + policy improvement

Value Iteration, for estimating $\pi \approx \pi_*$

Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation Initialize V(s), for all $s \in \mathbb{S}^+$, arbitrarily except that V(terminal) = 0

Loop:

```
 \begin{array}{c|c} \Delta \leftarrow 0 \\ | \text{ Loop for each } s \in \mathbb{S}: \\ | v \leftarrow V(s) \\ | V(s) \leftarrow \max_{a} \sum_{s',r} p(s',r \, | \, s,a) \big[ r + \gamma V(s') \big] \\ | \Delta \leftarrow \max(\Delta, |v - V(s)|) \\ | \text{ until } \Delta < \theta \end{array}
```

Output a deterministic policy, $\pi \approx \pi_*$, such that $\pi(s) = \arg\max_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$

Generalized Policy Iteration

- ► So far: systematic sweeping all states
- ► An alternative is:
 - pick a state at random and apply the backup
 - repeat until converge criteria is reached
- Guaranteed to converge if all states continue to be selected
- Can you select states to backup intelligently?
- Asynchronous DP:
 - In–place dynamic programming
 - Prioritized sweeping
 - Real-time dynamic programming

Prioritized sweeping

▶ Use magnitude of *Bellman error* to guide state selection:

$$\left| \max_{a} \sum_{s',r} p(s',r \mid s,a) \left[r + \gamma v(s') \right] - v(s) \right|$$

- ▶ Backup the state with the largest remaining Bellman error
- ► Can be implemented efficiently by maintaining a priority queue

Real-time dynamic programming

- Update only states that are relevant to agent
- Use agent's experience to guide the selection of states
- After each time-step $S_t = s, A_t = a, R_{t+1} = r$
- ► Backup for state s:

$$v(s) = \max_{a'} \sum_{s',r} p(s',r \mid s,a') \Big[r + \gamma v(s') \Big]$$

Generalised policy iteration

 Any interleaving of policy evaluation and policy improvement, independent of their granularity

Summary

- ▶ Policy iteration = policy evaluation + policy improvement
- Policy evaluation: backups without a max, find the value function for a given policy
- Policy improvement: make policy greedy wrt value function (if only locally)
- Value iteration: backups with a max, i.e. Bellman optimality equation
- Asynchronous dynamic programming: avoids exhaustive sweeps through state space
- Generalised policy iteration: interleaving policy evaluation and improvement at any granularity