

HISTÓRIA DAS LINGUAGENS:

ANTES MESMO DO ADVENTO DOS COMPUTADORES MODERNOS, AS SEMENTES DA PROGRAMAÇÃO FORAM PLANTADAS. EM 1801, JOSEPH MARIE JACQUARD (1752-1834) FOI UM INVENTOR FRANCÊS QUE É MAIS CONHECIDO POR TER DESENVOLVIDO O PRIMEIRO SISTEMA PRÁTICO DE TECELAGEM AUTOMÁTICA, CONHECIDO COMO O TEAR JACQUARD. ESTE INVENTO REVOLUCIONOU A INDÚSTRIA TÊXTIL, PERMITINDO A PRODUÇÃO DE TECIDOS COMPLEXOS E ELABORADOS DE MANEIRA MAIS EFICIENTE DO QUE NUNCA ANTES. INTRODUZIU O TEAR COM CARTÕES PERFURADOS PARA CONTROLAR A OPERAÇÃO DO TEAR, O QUE É CONSIDERADO UMA DAS PRIMEIRAS FORMAS DE PROGRAMAÇÃO DE COMPUTADORES.

HISTÓRIA DAS LINGUAGENS:

O TEAR JACQUARD É FREQUENTEMENTE CITADO COMO UM PRECURSOR DAS MODERNAS MÁQUINAS DE COMPUTAÇÃO, COMO OS PRIMEIROS COMPUTADORES, QUE TAMBÉM USAVAM CARTÕES PERFURADOS PARA ENTRADA DE DADOS. A TÉCNICA TAMBÉM INFLUENCIOU O DESENVOLVIMENTO DE OUTRAS TECNOLOGIAS RELACIONADAS À COMPUTAÇÃO, COMO A INVENÇÃO DO CARTÃO PERFURADO E O DESENVOLVIMENTO DE SISTEMAS DE CODIFICAÇÃO.

HISTÓRIA DAS LINGUAGENS:

DÉCADAS DEPOIS, EM 1842, ADA LOVELACE (1815-1852) CONCEBEU O PRIMEIRO ALGORITMO PROJETADO PARA SER PROCESSADO POR UMA MÁQUINA ANALÍTICA, ESTABELECENDO ASSIM O CONCEITO DE PROGRAMAÇÃO DE MÁQUINAS. ASSIM, SUAS NOTAS SÃO DE LONGE A DECLARAÇÃO MAIS IMPORTANTE QUE POSSUÍMOS SOBRE AS OPINIÕES DE BABBAGE SOBRE OS PODERES GERAIS DAS MÁQUINAS ANALÍTICAS.

ADA LOVELACE ERA

MATEMÁTICA, PROGRAMADORA,

POETISA, CIENTISTA DE COMPUTAÇÃO,

INVENTORA, TRADUTORA,

ESCRITORA, ENGENHEIRA.

HISTÓRIA DAS LINGUAGENS:

ADA LOVELACE TRADUZIU AS MEMÓRIAS DO MATEMÁTICO ITALIANO LUIGI MENABREA SOBRE A MAIS NOVA MÁQUINA PROPOSTA POR CHARLES BABBAGE (1791-1871) UM MATEMÁTICO E ENGENHEIRO, A SUA MÁQUINA ANALÍTICA. COM O ARTIGO, ELA ANEXOU UMA SÉRIE DE ANOTAÇÕES QUE ESPECIFICAVAM EM COMPLETO DETALHE UM MÉTODO PARA CALCULAR NÚMEROS DE BERNOULLI COM A MÁQUINA, RECONHECIDO POR ALGUNS HISTORIADORES COMO O PRIMEIRO PROGRAMA DE COMPUTADOR DO MUNDO.

OS NÚMEROS DE BERNOULLI TÊM APLICAÇÕES EM VÁRIAS ÁREAS DA MATEMÁTICA E DA FÍSICA, INCLUINDO A TEORIA DOS NÚMEROS, A TEORIA DOS GRUPOS E A TEORIA DOS GRAFOS. ELES TAMBÉM SÃO USADOS EM VÁRIAS FÓRMULAS E ALGORITMOS EM COMPUTAÇÃO, COMO A FÓRMULA DE GREGORY-LEIBNIZ QUE É UMA MANEIRA SIMPLES DE CALCULAR UMA APROXIMAÇÃO DO VALOR DE Π (PI).

GESTÃO DA TECNOLOGIA DA INFORMAÇÃO - PROFESSOR RENATO DOS REIS CIRERA

HISTÓRIA DAS LINGUAGENS:

A INVENÇÃO DO CARTÃO PERFURADO É GERALMENTE ATRIBUÍDA A HERMAN HOLLERITH (1860-1929), UM ENGENHEIRO E ESTATÍSTICO AMERICANO QUE DESENVOLVEU O PRIMEIRO SISTEMA DE TABULAÇÃO DE DADOS AUTOMATIZADO. EM 1884, HOLLERITH PATENTEOU UMA MÁQUINA QUE USAVA CARTÕES PERFURADOS PARA COLETAR E PROCESSAR DADOS DO CENSO DOS ESTADOS UNIDOS. SUA INVENÇÃO FOI USADA COM SUCESSO NO CENSO DE 1890, REDUZINDO DRASTICAMENTE O TEMPO NECESSÁRIO PARA TABULAR OS DADOS E FORNECENDO INFORMAÇÕES MAIS PRECISAS E DETALHADAS. O CARTÃO PERFURADO FOI AMPLAMENTE UTILIZADO ATÉ A DÉCADA DE 1970, QUANDO FOI GRADUALMENTE SUBSTITUÍDO POR TECNOLOGIAS DE ARMAZENAMENTO DE DADOS MAIS AVANÇADAS, COMO FITAS MAGNÉTICAS E DISCOS RÍGIDOS.

HISTÓRIA DAS LINGUAGENS:

A MÁQUINA DE TURING, CONCEBIDA POR ALAN TURING (1912-1954) EM 1936, É UM MODELO TEÓRICO DE COMPUTADOR QUE DESEMPENHOU PAPEL FUNDAMENTAL NO DESENVOLVIMENTO DA TEORÍA DA COMPUTAÇÃO E DA CIÊNCIA DA COMPUTAÇÃO. O CONCEITO PERMITE REPRESENTAR O FUNCIONAMENTO DE QUALQUER COMPUTADOR, INDEPENDENTEMENTE DE SUA ARQUITETURA ESPECÍFICA INCLUINDO COMPUTADORES QUÂNTICOS, COMPUTADORES PROBABILÍSTICOS E REDES NEURAIS. USADA COMO FERRAMENTA DE PROVA PARA DEMONSTRAR A IMPOSSIBILIDADE DE RESOLVER PROBLEMAS, COMO O DA PARADA, QUE É O PROBLEMA DE DETERMINAR SE UM PROGRAMA DE COMPUTADOR IRÁ EVENTUALMENTE PARAR OU CONTINUAR EXECUTANDO PARA SEMPRE.

HISTÓRIA DAS LINGUAGENS:

A MÁQUINA DE TURING É COMPOSTA POR TRÊS ELEMENTOS PRINCIPAIS:

- 1. UMA FITA INFINITA DIVIDIDA EM CÉLULAS, ONDE CADA CÉLULA PODE CONTER UM SÍMBOLO.
- 2. UMA CABEÇA DE LEITURA/ESCRITA QUE PODE SE MOVER PARA A ESQUERDA OU PARA A DIREITA AO LONGO DA FITA E LER OU ESCREVER SÍMBOLOS NAS CÉLULAS.
- 3. UM CONJUNTO DE ESTADOS INTERNOS QUE DEFINE O COMPORTAMENTO DA MÁQUINA.

Imagem do Filme O Jogo da Imitação, inspirando na história de Turing

HISTÓRIA DAS LINGUAGENS:

PLANKALKÜL: A PRIMEIRA LINGUAGEM DE PROGRAMAÇÃO DE ALTO NÍVEL FOI A PLANKALKÜL, CRIADA POR KONRAD ZUSE (1910-1995) ENTRE 1942 E 1945. EMBORA NÃO TENHA TIDO GRANDE UTILIDADE NA ÉPOCA, ELA ESTABELECEU AS BASES PARA LINGUAGENS FUTURAS.

```
P1 max3 (V0[:8.0],V1[:8.0],V2[:8.0]) → R0[:8.0]

max(V0[:8.0],V1[:8.0]) → Z1[:8.0]

max(Z1[:8.0],V2[:8.0]) → R0[:8.0]

END

P2 max (V0[:8.0],V1[:8.0]) → R0[:8.0]

V0[:8.0] → Z1[:8.0]

(Z1[:8.0] < V1[:8.0]) → V1[:8.0] → Z1[:8.0]

Z1[:8.0] → R0[:8.0]

END
```


HISTÓRIA DAS LINGUAGENS:

ESSE CONCEITO FUNDAMENTAL SERVIU COMO O DESENVOLVIMENTO DE COMPUTADORES ELETRÔNICOS. E ENTÃO, EM 1943, O ENIAC FOI CRIADO, MARCANDO A ERA DOS COMPUTADORES ELETRÔNICOS E SUA APLICAÇÃO NA GUERRA FRIA. O ENIAC (ELETRONIC NUMERICAL INTEGRATOR AND COMPUTER) TINHA CERCA DE DOIS METROS DE ALTURA, PESAVA 30 TONELADAS E OCUPAVA 180 METROS QUADRADOS. FRANCES V. SPENCE FOI UMA DAS PROGRAMADORAS ORIGINAIS DO ENIAC. OS OUTROS CINCO PROGRAMADORES DO ENIAC FORAM BETTY HOLBERTON , RUTH TEITELBAUM , KATHLEEN ANTONELLI, MARLYN MELTZER E JEAN BARTIK.

HISTÓRIA DAS LINGUAGENS:

ESSE CONCEITO FUNDAMENTAL SERVIU COMO BASE PARA O DESENVOLVIMENTO DE COMPUTADORES ELETRÔNICOS. E ENTÃO, EM 1943, O ENIAC FOI CRIADO, MARCANDO A ERA DOS COMPUTADORES ELETRÔNICOS E SUA APLICAÇÃO NA GUERRA FRIA. O ENIAC (ELETRONIC NUMERICAL INTEGRATOR AND COMPUTER) TINHA CERCA DE DOIS METROS DE ALTURA, PESAVA 30 TONELADAS E OCUPAVA 180 METROS QUADRADOS. FRANCES V. SPENCE FOI UMA DAS PROGRAMADORAS ORIGINAIS DO ENIAC. OS OUTROS CINCO PROGRAMADORES DO ENIAC FORAM BETTY HOLBERTON, RUTH TEITELBAUM, KATHLEEN ANTONELLI, MARLYN MELTZER E JEAN BARTIK.

HISTÓRIA DAS LINGUAGENS:

O PRIMEIRO MARCO SIGNIFICATIVO NA PREVISÃO NUMÉRICA DO TEMPO FOI UM PROGRAMA DE PREVISÃO IMPLEMENTADO NO ENIAC EM 1950. EMBORA A PREVISÃO DO TEMPO SEJA UM OBJETIVO NOBRE, O ENIAC FOI, NA VERDADE, FINANCIADO PELO EXÉRCITO DOS EUA, QUE PRECISAVA DE UMA MANEIRA MAIS RÁPIDA DE CALCULAR OS ÂNGULOS DE TIRO DA ARTILHARIA DURANTE A SEGUNDA GUERRA MUNDIAL. TAIS CÁLCULOS REQUEREM ALGUNS PARÂMETROS QUE INCLUEM TEMPERATURA, VELOCIDADE DO VENTO, E UMIDADE. ESSES CÁLCULOS DE CÁLCULO DIFERENCIAL, NECESSARIAMENTE FEITOS MANUALMENTE NA ÉPOCA, DEMORAVAM 40 HORAS.

HISTÓRIA DAS LINGUAGENS:

1949: SHORTCODE - (OU CÓDIGO DE ORDEM CURTA), FOI A PRIMEIRA LINGUAGEM DE ALTO NÍVEL (HLL) SUGERIDA POR JOHN MCCAULEY EM 1949. NO ENTANTO, FOI WILLIAM SCHMITT QUEM A IMPLEMENTOU PARA O COMPUTADOR BINAC NO MESMO ANO E PARA O UNIVAC EM 1950.

Universidade Metodista de São Paulo Inovação desde 1938

PROGRAMAÇÃO WEB

HISTÓRIA DAS LINGUAGENS:

Assembly Language	Machine Code
add \$t1, t2, \$t3	04CB: 0000 0100 1100 1011
addi \$t2, \$t3, 60	16BC: 0001 0110 1011 1100
and \$t3, \$t1, \$t2	0299: 0000 0010 1001 1001
andi \$t3, \$t1, 5	22C5: 0010 0010 1100 0101
beq \$t1, \$t2, 4	3444: 0011 0100 0100 0100
bne \$t1, \$t2, 4	4444: 0100 0100 0100 0100
j 0x50	F032: 1111 0000 0011 0010
lw \$t1, 16(\$s1)	5A50: 0101 1010 0101 0000
nop	0005: 0000 0000 0000 0101
nor \$t3, \$t1, \$t2	029E: 0000 0010 1001 1110
or \$t3, \$t1, \$t2	029A: 0000 0010 1001 1010
ori \$t3, \$t1, 10	62CA: 0110 0010 1100 1010
ssl \$t2, \$t1, 2	0455: 0000 0100 0101 0101
srl \$t2, \$t1, 1	0457: 0000 0100 0101 0111
sw \$t1, 16(\$t0)	7050: 0111 0000 0101 0000
sub \$t2, \$t1, \$t0	0214: 0000 0010 0001 0100

1949: ASSEMBLY - A LINGUAGEM ASSEMBLY FOI USADA NA <u>CALCULADORA AUTOMÁTICA DE ARMAZENAMENTO DE</u> ATRASO ELETRÔNICO (EDSAC). A LINGUAGEM ASSEMBLY ERA UM TIPO DE LINGUAGEM DE PROGRAMAÇÃO DE BAIXO NÍVEL QUE SIMPLIFICAVA A LINGUAGEM DO CÓDIGO MÁQUINA. EM OUTRAS PALAVRAS, AS INSTRUÇÕES ESPECÍFICAS NECESSÁRIAS PARA OPERAR UM COMPUTADOR. ASSEMBLY É UMA LINGUAGEM DE PROGRAMAÇÃO MAIS PRÓXIMA DO CÓDIGO DE MÁQUINA, QUE É A LINGUAGEM QUE O PROCESSADOR DE UM COMPUTADOR ENTENDE DIRETAMENTE.

