Visualizing health data in R and RStudio

Instructor: Tomer Altman

Sept 3, 2025

Learning objectives for today

- 1. To put to use the dplyr commands from last lecture
- 2. To make beautiful plots using the ggplot2 package

Readings

• Online resource: Creating a ggplot

Life expectancy in the United States by race and gender, 1969-2013

These data are partial results from a study that Dr. Corinne Riddell did on the difference in life expectancy between Black and White men and women in the United States over time.

A subset of the results have been stored in the datahub folder for today's lecture as a comma separated value (CSV) file.

Do you remember which function to use to import CSV data into R?

readr's read_csv() to import these data

```
library(readr)
le_data <- read_csv("./data/Life-expectancy-by-state-long.csv")

## Rows: 7200 Columns: 8

## -- Column specification -------

## Delimiter: ","

## chr (6): state, stabbrs, sex, Census_Region, Census_Division, race

## dbl (2): year, LE

##

## i Use `spec()` to retrieve the full column specification for this data.

## i Specify the column types or set `show_col_types = FALSE` to quiet this message.</pre>
```

Four functions to get to know your dataset

Function 1

```
head(le_data)
```

```
## # A tibble: 6 x 8
                                Census_Region Census_Division
                                                                  LE race
    state stabbrs year sex
    <chr>
          <chr>
                    <dbl> <chr> <chr>
                                             <chr>
                                                                <dbl> <chr>
## 1 Alabama AL
                    1969 Female South
                                             East South Central 75.8 white
## 2 Alabama AL
                    1969 Male South
                                             East South Central 66.6 white
## 3 Alabama AL
                   1970 Female South
                                            East South Central 75.9 white
## 4 Alabama AL
                                             East South Central 66.7 white
                    1970 Male South
```

```
## 5 Alabama AL 1971 Female South East South Central 76.2 white ## 6 Alabama AL 1971 Male South East South Central 66.9 white
```

Four functions to get to know your dataset

Function 2

```
dim(le_data)
## [1] 7200 8
```

Four functions to get to know your dataset

Function 3

Four functions to get to know your dataset

Function 4

##

##

##

##

##

##

##

. .

. .

. .

..)

str(le_data)

```
## spc_tbl_ [7,200 x 8] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
                    : chr [1:7200] "Alabama" "Alabama" "Alabama" "Alabama" ...
## $ state
                    : chr [1:7200] "AL" "AL" "AL" "AL" ...
##
   $ stabbrs
## $ year
                    : num [1:7200] 1969 1969 1970 1970 1971 ...
                    : chr [1:7200] "Female" "Male" "Female" "Male" ...
## $ sex
## $ Census_Region : chr [1:7200] "South" "South" "South" "South" ...
## $ Census_Division: chr [1:7200] "East South Central" "East South Central" "East South Central" "Eas
                    : num [1:7200] 75.8 66.6 75.9 66.7 76.2 ...
## $ LE
                    : chr [1:7200] "white" "white" "white" ...
## $ race
   - attr(*, "spec")=
##
    .. cols(
##
##
         state = col_character(),
```

A new useful function: View()

```
View(le_data)
```

View() opens the data viewer pane in RStudio. It does not print anything in the data console.

Life expectancy for White men in California

stabbrs = col_character(),

Census_Region = col_character(),

Census_Division = col_character(),

year = col_double(),

LE = col_double(),

race = col_character()

- attr(*, "problems")=<externalptr>

sex = col_character(),

Make a scatter plot of the life expectancy for White men in California over time.

Since the dataset contains 39 states across two genders and two races, first use a function to subset the data to contain only White men in California.

Which function from last lecture do we need?

• mutate(), select(), filter(), rename(), or arrange()?

dplyr's filter() to select a subset of rows

```
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
wm_cali <- le_data %>% filter(state == "California",
                              sex == "Male",
                              race == "white")
#this is equivalent:
wm_cali <- le_data %>% filter(state == "California" & sex == "Male" & race == "white")
```

First step to building a ggplot(): set up the canvas

• The second line of code below specifies the data set and what goes on the x and y axes

```
library(ggplot2)
ggplot(data = wm_cali, aes(x = year, y = LE))
```


Second step to building a ggplot(): tell ggplot how to plot the data

```
ggplot(data = wm_cali, aes(x = year, y = LE)) + geom_point()
```


• geom_point() tells ggplot to use points to plot these data

labs() to add a title, a caption, and modify x and y axes titles

Life expectancy in white men in California, 1969-2013

col controls the color of geom_point()

```
caption = "Data from Riddell et al. (2018)")
```

Life expectancy in white men in California, 1969-2013

size controls the size of geom_point()

Life expectancy in white men in California, 1969-2013

Line plot rather than scatter plot

What if we wanted to make these data into a line plot instead. What part of the code should change?

geom_line() to make a line plot

Life expectancy in white males in California, 1969-2013

Life expectancy for White and Black men in California

What do we need to change to make a separate line for both Black and White men?

First, update the filter()

Look at the previous code and output first

Life expectancy in white men in California, 1969-2013

And change it to link color to race

Life expectancy in black and white men in California, 1969-2013

Always use the aes() function to link a plot feature to a variable in your data frame

The operative word is *link*. Whenever you want to link something about how the plot looks to a variable in the data frame, you need to *link* these items inside the aes() function:

Life expectancy in Black and White men in California, 1969-2013

The aes() function

• What else was added to the plot when you used the aes() function?

The aes() function

- What else was added to the plot when you used the aes() function?
 - A legend was added showing the link between the line color and the data frame's race variable

What if we also wanted to look at women?

What if we also wanted to look at women?

```
cali_data <- le_data %>% filter(state == "California")
```

What is wrong with this plot?

Use 1ty() to link line type to sex

Use facet_wrap() to make separate plots for a specified variable

Compare two states

How do we update the filter to include data from California and New York?

Compare two states

```
updated_data <- le_data %>% filter(state %in% c("California", "New York"))
```

Let's write the code together

```
#to fill in during class
```

Let's write the code together

Life expectancy in California and New York, 1969-2013

Check your understanding!

So far

- geom_point() to make scatter plots
- geom_line() to make line plots
- col = "blue", size = 2, lty = 2, to change color, size and line type of the geom
- aes(col = race) to link color to race
- aes(lty = sex) to link line type to sex
- facet_wrap(~ var1) to make separate plots for different levels of one variable
- facet_grid(var1 ~ var2) to make separate plots for combinations of levels of two variables

What if we wanted to make a histogram...

... of life expectancy of white males in 2013?

Before you code, try and visualize what the histogram will show

• What is on the x axis? What is on the y axis?

Update the filter

```
wm_data <- le_data %>% filter(year == 2013, sex == "Male", race == "white")
```

geom_histogram() to make histograms

```
ggplot(dat = wm_data, aes(x = LE)) + geom_histogram()
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Use fill to change the fill of the histogram and binwidth to specify the bin's width

```
wm_data <- le_data %>% filter(year == 2013, sex == "Male", race == "white")

ggplot(dat = wm_data, aes(x = LE)) +
  geom_histogram(binwidth = 1, col = "white", fill = "forest green")
```


Apply some of our new skills

```
data_2013 <- le_data %>% filter(year == 2013)

ggplot(dat = data_2013, aes(x = LE)) +
  geom_histogram(binwidth = 1, col = "white", aes(fill = sex)) +
  facet_grid(race ~ sex)
```


Recap: What functions did we learn?

- 1. ggplot()
 - geom_scatter()
 - geom_line()
 - geom_histogram()
 - aes() to link aesthetics to variables in our data frame
 - facet_wrap(~ var1), facet_grid(var1 ~ var2)
 - labs(title = "Main", y = "y axis", x = "x axis", caption = "below plot")

Recap: What arguments were useful?

- 2. ggplot()
 - col
 - size
 - lty

A common dplyr mistake to avoid!

With dplyr, the pipe operator goes at the end of the line, not the beginning:

Right way:

```
data_2013 <- le_data %>%
  filter(year == 2013)

#or

data_2013 <- le_data %>% filter(year == 2013)
```

Wrong way:

```
data_2013 <- le_data
%>% filter(year == 2013)
```

A common ggplot mistake to avoid!

With ggplot2, the "+" " operator goes at the end of the line, not the beginning:

Right way:

```
ggplot(dat = data_2013, aes(x = LE)) +
  geom_histogram(binwidth = 1, col = "white", aes(fill = sex)) +
  facet_grid(race ~ sex)
```

Wrong way:

```
ggplot(dat = data_2013, aes(x = LE))
+ geom_histogram(binwidth = 1, col = "white", aes(fill = sex))
+ facet_grid(race ~ sex)
```

How to get help with code

- Ask questions during lab section, GSI & instructor office hours, or on Ed discussion forum. Use the appropriate thread!
- Develop your online search skills. For example if you have a ggplot2 question, begin your google search with "r ggplot" and then describe your issues, e.g., "r ggplot how do I make separate lines by a second variable".
- The most common links that will appear are:
 - https://stackoverflow.com: Crowd-sourced answers, mostly focused on software engineering, that have been upvoted. The top answer is often the best one.
 - https://stats.stackexchange.com: Cross Validated. Like Stack Overflow, but focused on statistics and data science
 - https://ggplot2.tidyverse.org/: The official ggplot2 webpage is very helpful
 - https://forum.posit.co/: The Posit (formerly RStudio) community forum
 - https://rpubs.com/: Web pages made by R users that often contain helpful tutorials

We only skimmed the surface!

- Here is some extra material for those of you who love data visualization. This material won't be tested.
 - RStudio ggplot2 cheatsheet
 - Kieran Healy's data visualization book