Лабораторная работа №1 Линейные программы на языке Си

Цель работы: изучение основных принципов и получение навыков написания линейной программы на языке Си.

При разработке линейной программы на языке Си, выполняющей расчет математической функции, необходимо воспользоваться функциями стандартной математической библиотеки. Функции описаны в заголовочном файле math.h, который подключается с помощью директивы #include . В библиотеке реализованы такие функции, как pow (возведение в степень), sqrt (корень квадратный), fabs (модуль числа), sin (синус), cos (косинус), tan (тангенс), log (логарифм) и другие функции.

Задание на лабораторную работу

Разработать программу на языке Си с использованием операций языка Си и функций стандартной математической библиотеки. Значение переменной х вводить с клавиатуры с использованием библиотечной функции scanf(). Значение функции у выводить на экран с использованием библиотечной функции printf().

Способы ввода данных в языке возможно двумя способами: форматированные ввод-вывод или потоковый.

При форматированном способе используются операторы ввода *scanf*, вывода *printf*. Синтаксис операторов имеет вид:

```
scanf(<строка описания форматов> [, <список ввода>]); printf(<строка описания форматов> [, <список вывода>]);
```

Строка описания форматов состоит из обычных символов, специальных управляющих последовательностей символов и спецификаций формата. Обычные символы и управляющие последовательности просто копируются в стандартный выходной поток в порядке их появления. Спецификации формата начинаются с символа % и заканчиваются символом, определяющим тип выводимого значения.

Кроме того, спецификации формата могут содержать символы и цифры для управления видом выводимого значения (подробно см. ниже). Список вывода состоит из переменных и/или констант, значения которых должны быть выведены.

Количество спецификаций формата должно быть равно количеству выводимых значений, которые указываются в списке вывода.

Bibodimbin sha temin, ko topbie j kasbibato ten b emiteke biboda.		
Код	Формат	
%с	Символ типа char	
%d	Десятичное число целого типа со знаком	

Код	Формат
%i	Десятичное число целого типа со знаком
%e	Научная нотация (е нижнего регистра)
%E	Научная нотация (Е верхнего регистра)
%f	Десятичное число с плавающей точкой
%g	Использует код %е или %f — тот из них, который короче (при использовании %g используется е нижнего регистра)
%G	Использует код %Е или %f — тот из них, который короче (при использовании %G используется Е верхнего регистра)
%o	Восьмеричное целое число без знака
%s	Строка символов
%u	Десятичное число целого типа без знака
%x	Шестнадцатиричное целое число без знака (буквы нижнего регистра)
%X	Шестнадцатиричное целое число без знака (буквы верхнего регистра)
%р	Выводит на экран значение указателя
%n	Ассоциированный аргумент — это указатель на переменную целого типа, в которую помещено количество символов, записанных на данный момент
%%	Выводит символ %

```
Пример: printf ("Hi %c %d %s", 'c', 10, "there!");
```

Математическая библиотека языков С и С++

В стандартную математическую библиотеку языка Си (а, значит, и С++) входит множество специальных математических функций, которые нужно знать и уметь использовать. Для того, чтобы использовать эти функции в своей программе, необходимо подключить заголовочный файл, содержащий описания этих функций, что делается строчкой в начале программы:

```
#include <math.h>
```

Функция от одного аргумента вызывается, например, так: sin(x). Вместо числа x может быть любое число, переменная или выражение. Функция возвращает значение, которое можно вывести на экран, присвоить другой переменной или использовать в выражении:

```
y = sin(x);
printf("%lf", sqrt(2));
```

Функция	Описание		
Округлени	Округление		
round	Округляет число по правилам арифметики, то есть round(1.5) == 2, round(-1.5) == -2		
floor	Округляет число вниз ("пол"), при этом floor(1.5) == 1, floor(-1.5) == -2		
ceil	Округляет число вверх ("потолок"), при этом $ceil(1.5) == 2$, $ceil(-1.5) == -1$		
trunc	Округление в сторону нуля (отбрасывание дробной части), при этом trunc $(1.5) == 1$, trunc $(-1.5) == -1$		
fabs	Модуль (абсолютная величина)		
Корни, сте	пени, логарифмы		
sqrt	Квадратный корень. Использование: sqrt(x)		
cbrt	Кубический корень. Использование: cbrt(x)		
pow	Возведение в степень, возвращает а ^b . Использование: pow(a,b)		
exp	Экспонента, возвращает е ^х . Использование: exp(x)		
log	Натуральный логарифм		
log10	Десятичный логарифм		
Тригономе	стрия		
sin	Синус угла, задаваемого в радианах		
cos	Косинус угла, задаваемого в радианах		
tan	Тангенс угла, задаваемого в радианах		
asin	Арксинус, возвращает значение в радианах		
acos	Арккосинус, возвращает значение в радианах		
atan	Арктангенс, возвращает значение в радианах		

Задания на лабораторную работу

Задание 1. Разработать консольное приложение, реализующее решение линейной задачи с заданными исходными данными.

№ вар.	Расчетная формула	Значения исходных
		данных
1	$2\cos\left(x-\frac{\pi}{\zeta}\right)$	x = 1.426
	$a = \frac{67}{1}$	y = -1.22
	$a = \frac{2\cos\left(x - \frac{\pi}{6}\right)}{\frac{1}{2} + \sin^2 y}$	
2	z^2	z = 3.5
	$a = 1 + \frac{z^2}{3 + \frac{z^2}{5}}$	
3	<u>y</u> 3 <u>y</u>	x = 1.825
	$\gamma = \left x^{\frac{y}{x}} - \sqrt[3]{\frac{y}{x}} \right $	y = 18.225
4	$(y-x)(\frac{y-z}{z})$	x = 1.825
	$\psi = \frac{(y-x)\left(\frac{y-z}{y-x}\right)}{1+(y-x)^2}$	y = 18.225
	$1+(y-x)^2$	z = -3.298
5	$s = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!}$	x = 0.335
6		0.225
6	$\psi = x(\sin x^3 + \cos^2 y)$	x = 0.335
7	-ht 1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	y = 0.025 $a = -0.5$
/	$y = e^{-bt}\sin(at+b) - \sqrt{ bt+a }$	a = -0.5 b = 1.7
		t = 0.44
8	$s = b \cdot \sin(at^2 \cdot \cos 2t) - 1$	a = -0.5
0	$S = b^{-1} \operatorname{Sin}(at^{-1} \cos 2t) = 1$	a = 0.3 $b = 1.7$
		t = 0.44
9	$\sqrt{x+a}$	a = 1.5
	$\omega = \sqrt{x^2 + b} - b^2 \cdot \sin^3 \frac{x + a}{x}$	b = 15.5
		x = -2.9
10	x	a = 1.5
- 0	$y = \cos^2 x^3 - \frac{x}{\sqrt{a^2 + b^2}}$	b = 15.5
		x = -2.9
11	$a = x^3 \cdot t \cdot a^2 (x + b)^2 + a$	a = 16.5
	$s = x^3 \cdot tg^2(x+b)^2 + \frac{a}{\sqrt{x+b}}$	b = 3.4
		x = 0.61
12	bx^2-a	a = 16.5
	$Q = \frac{bx^2 - a}{e^{ax} - 1}$	b = 3.4
		x = 0.61

№ вар.	Расчетная формула	Значения исходных
		данных
13	$R = \frac{x^2(x+1)}{h} - \sin^2(x+a)$	a = 0.7
	$R = \frac{1}{b} - \sin^{2}(x + a)$	b = 0.05
		x = 0.5
14	rh	a = 0.7
	$s = \sqrt{\frac{xb}{a} + \cos^2(x+b)^2}$	b = 0.05
	v u	x = 0.5
15	$y = \sin^3(x^2 + a)^2 - \sqrt{\frac{x}{b}}$	a = 1.1
	$y = \sin(x + a) - \sqrt{b}$	b = 0.004
		x = 0.2
16	$z = \frac{x^2}{a} + \cos(x+b)^3$	a = 1.1
	$z = \frac{1}{a} + \cos(x + b)$	b = 0.004
		x = 0.2
17	$f = \sqrt[3]{mcbt + c \cdot \sin t }$	m = 2
		c = -1
		t = 1.2
		b = 0.7
18	$z = m \cdot \cos(bt \cdot \sin t) + c$	m = 2
		c = -1
		t = 1.2
		b = 0.7
19	$y = abx^2 - \frac{a}{\sin^2\left(\frac{x}{a}\right)}$	a = 3.2
	$\sin^2\left(\frac{\lambda}{a}\right)$	b = 17.5
		x = -4.8
20	$d = ae^{-\sqrt{a}} \cdot \cos\left(\frac{bx}{a}\right)$	a = 3.2
	a = ac = cos(a)	b = 17.5
		x = -4.8
21	$f = \ln(a + x^2) + \sin^2\left(\frac{x}{h}\right)$	a = 10.2
	(b)	b = 9.2
		x = 2.2
22	$x = a^{-cx}$, $x + \sqrt{x + a}$	a = 10.2
	$z = e^{-cx} \cdot \frac{x + \sqrt{x + a}}{x - \sqrt{ x - b }}$	b = 9.2
	•	c = 0.5
		x = 2.2
23	$y = \frac{a^{2x} + b^{-x} \cdot \cos(a+b)x}{x+1}$	a = 0.3
	x + 1	b = 0.9
		x = 0.61

Задание 2. Написать консольное приложения для решения задачи согласно варианту.

- 1. Дана длина ребра куба. Найти объем куба и площадь его боковой поверхности.
 - 2. Дан радиус окружности. Найти длину окружности и площадь круга.
- 3. Известны объем и масса тела. Определить плотность материала этого тела.
- 4. Известны количество жителей в государстве и площадь его территории. Определить плотность населения в этом государстве.
 - 5. Даны катеты прямоугольного треугольника. Найти его гипотенузу.
 - 6. Дан радиус окружности. Найти ее диаметр.
- 7. Найти площадь кольца по заданным внешнему и внутреннему радиусам.
 - 8. Даны катеты прямоугольного треугольника. Найти его периметр.
- 9. Даны основания и высота равнобедренной трапеции. Найти ее периметр.
- 10. Даны стороны прямоугольника. Найти его периметр и длину диагонали.
- 11. Даны два числа. Найти их сумму, разность, произведение, а также частное от деления первого числа на второе.
- 12. Считая, что Земля идеальная сфера с радиусом R≈6350 км, определить расстояние до линии горизонта от точки с заданной высотой над Землей.
 - 13. Дана сторона квадрата. Найти его периметр.
- 14. Даны длины сторон прямоугольного параллелепипеда. Найти его объем и площадь боковой поверхности.
- 15. Известны координаты на плоскости двух точек. Составить программу вычисления расстояния между ними.
- 16. Даны основания и высота равнобедренной трапеции. Найти периметр трапеции.
- 17. Даны основания равнобедренной трапеции и угол при большем основании. Найти площадь трапеции.
- 18. Треугольник задан координатами своих вершин. Найти периметр и площадь треугольника.
- 19. Выпуклый четырехугольник задан координатами своих вершин. Найти площадь этого четырехугольника как сумму площадей треугольников.
- 20. Известна стоимость 1 кг конфет, печенья и яблок. Найти стоимость всей покупки, если купили x кг конфет, y кг печенья и z кг яблок.

Задание 3: написать программу на языке Си для решения уравнения. Значение перенных указать любой вещественной константой.

№ вар.	Задание	№ вар.	Задание
1	$R = 3t^2 + 3l^5 + 4.9$	16	$S = \sqrt{\cos 4y^2 + 7,151}$
2	$K = \ln(p^2 + y^3) + e^p$	17	$N = 3y^2 + \sqrt{y+1}$
3	$G = n(y+3.5) + \sqrt{y}$	18	$Z = 3y^2 + \sqrt{y^3 + 1}$
4	$D = 9.8a^2 + 5.52\cos t^5$	19	$P = n\sqrt{y^3 + 1,09g}$
5	$L = 1,51\cos x^2 + 2x^3$	20	$U = e^{k+y} + \operatorname{tgx}\sqrt{y}$
6	$M = \cos 2y + 3.6e^x$	21	$P = e^{y+5,5} + 9,1h^3$
7	$N = m^2 + 2.8 m + 0.55$	22	$T = \sin(2u)\ln(2y^2 + \sqrt{x})$
8	$T = \sqrt{ 6y^2 - 0.1y + 4 }$	23	$G = e^{2y} + \sin(f)$
9	$V = \ln(y + 0.95) + \sin x^4$	24	$F = 2\sin\left(0.214y^5 + 1\right)$
10	$U = e^y + 7,355k^2 + \sin^2 x$	25	$G = e^{2y} + \sin(f^2)$
11	$S = 9,756y^7 + 2tgx$	26	$Z = \sin(p^2 + 0.4)^3$
12	$K = 7t^2 + 3\sin x^3 + 9,2$	27	$W = 1{,}03v + e^{2y} + tg x $
13	$E = \sqrt{ 3y^2 + 0.5y + 4 }$	28	$T = e^{y+h} + \sqrt{ 6,4y }$
14	$R = \left \sqrt{\sin^2 y + 6,835} + e^x \right $	29	$N = 3y^2 + \sqrt{ y+1 }$
15	$H = \sin y^2 - 2.8y + \sqrt{ y }$	30	$W = e^{y+r} + 7,2\sin r$

Задание 4: написать программу на языке Си для решения уравнения. Значение перенных указать любой вещественной константой.

№ вар.	Выражение	№ вар.	Выражение
1	$G = \frac{e^{2y} + \sin f}{\ln(3.8y + f)}$	16	$W = \frac{4t^3 + \ln r}{e^{y+r} + 7,2\sin r}$
2	$F = \ln d + \frac{3.5d^2 + 1}{\cos 2y}$	17	$H = \frac{y^2 - 0.8y + \sqrt{y}}{23.1n^2 + \cos n}$
3	$U = \frac{\ln(k - y) + y^4}{e^y + 2,355k^2}$	18	$R = \frac{\sqrt{\sin^2 y + 6,835}}{\ln(y+k) + 3y^2}$
4	$G = \frac{9,33w^3 + \sqrt{w}}{\ln(y+3,5) + \sqrt{y}}$	19	$E = \frac{\ln(0.7y + 2q)}{\sqrt{3y^2 + 0.5y + 4}}$
5	$D = \frac{7.8a^2 + 3.52t}{\ln(a+2y) + e^y}$	20	$K = \frac{2t^2 + 3l + 7,2}{\ln y + e^{2l}}$
6	$L = \frac{0.81\cos i}{\ln y + 2i^3}$	21	$Q = \frac{\sqrt{k + 2.6p\sin k}}{x - d^3}$
7	$N = \frac{m^2 + 2,8m + 0,355}{\cos 2y + 3,6}$	22	$S = \frac{4,351y^3 + 2t \ln t}{\sqrt{\cos 2y + 4,351}}$
8	$T = \frac{2,37\sin(t+1)}{\sqrt{4y^2 - 0,1y + 5}}$	23	$R = \frac{\sin^2 y + 0.3d}{e^y + \ln d}$
9	$V = \frac{(y+2w)^3}{\ln(y+0.75)}$	24	$U = \frac{\ln(2k + 4,3)}{e^{k+y} + \sqrt{y}}$
10	$Z = \frac{2t + y\cos t}{\sqrt{y + 4,831}}$	25	$L = \cos^2 c + \frac{3t^2 + 4}{\sqrt{c + t}}$
11	$D = y^2 + \frac{0.5n + 4.8}{\sin y}$	26	$T = \frac{\sin 2u}{\ln(2y + u)}$
12	$R = \frac{\sin(2t+1)^2 + 0.3}{\ln(t+y)}$	27	$Z = \frac{\sin(p+0.4)^2}{y^2 + 7.325p}$
13	$A = \frac{\sin(2y+h) + h^2}{e^h + y}$	28	$W = \frac{0,004v + e^{2y}}{e^{\frac{y}{2}}}$
14	$P = \frac{e^{y+2.5} + 7.1h^3}{\ln\sqrt{y+0.04h}}$	29	$T = \frac{0,355h^2 - 4,355}{e^{y+h} + \sqrt{2,7y}}$
15	$F = \frac{2\sin(0,354y+1)}{\ln(y+2j)}$	30	$N = \frac{3y^2 + \sqrt{y+1}}{\ln(p+y) + e^p}$

Задание 5: написать программу на языке Си для решения уравнения. Значение перенных указать любой вещественной константой.

№ вар.	Выражение	№ вар.	Выражение
1	$L = \frac{\sqrt{e^{x} - \cos^{4}(x^{2}a^{5})} + \operatorname{arctg}^{4}(a - x^{5})}{e\sqrt{ a + xc^{4} }}$	16	$P = \frac{\sin^3 x + \ln(2y + 3x)}{t^e + \sqrt{x}}$
2	$L = \operatorname{ctg}^2 c + \frac{2x^2 + 5}{\sqrt{c + t}}$	17	$T = \frac{\sqrt{x+b-a} + \ln y}{\operatorname{arctg}(b+a)}$
3	$A = \frac{\lg(y^3 - h^4) + h^2}{\sin^3 h + y}$	18	$S = \frac{4,351y^3 + 2t\ln t}{\sqrt{\cos 2y + 4,351}}$
4	$F = \frac{\sqrt{(2+y)^2 + \sqrt[7]{\sin(y+5)}}}{\ln(x+1) - y^3}$	19	$D = \frac{K^{-arx} - a\sqrt{6} - \cos(3ab)}{\sin^2(a \cdot \arcsin x + \ln y)}$
5	$G = \frac{\operatorname{tg}(x^4 - 6) - \cos^3(z + xy)}{\cos^4 x^3 c^2}$	20	$U = \frac{\operatorname{tg}^{3} y + \sin^{5} x \sqrt{b - c}}{\sqrt{a - b + c}}$
6	$K = \frac{\sqrt{x+b-a} + \ln(y)}{\operatorname{arctg}(b+a)}$	21	$N = \frac{\sqrt[5]{z + \sqrt{zx}}}{e^x + a^5 \text{ arctg.} x}$
7	$D = \frac{\cos(x^3 + 6) - \sin(y - a)}{\ln x^4 - 2\sin^5 x}$	22	$F = \cos(x^2 + 2) + \frac{3.5x^2 + 1}{\cos^2 y}$
8	$P = \frac{a^5 + \sin^4(y - c)}{\sin^3(x + y) + x - y }$	23	$F = \frac{\sqrt{ x + \cos^3 x + z^4}}{\ln x - \arcsin(bx - a)}$
9	$R = \frac{\cos^3 y + 2^x d}{e^y + \ln(\sin^2 x + 7.4)}$	24	$f = \frac{\cos^7 bx^5 - (\sin a^2 + \cos(x^3 + z^5 - a^2))}{\arcsin a^2 + \arccos(x^7 - a^2)}$
10	$U = \frac{e^{x^3} + \cos^2(x - 4)}{\arctan x + 5.2y}$	25	$J = \frac{\operatorname{ctg}^3 a^3 + \operatorname{arctg}^2 a}{\sqrt{y^{\operatorname{tg} x}}}$
11	$I = \frac{2.33 \ln \sqrt{1 + \cos^2 y}}{e^y + \sin^2 x}$ $\cos^3 y + x - (x + y)$	26	$U = \frac{\ln(x^3 + y) - y^4}{e^y + 5 k^3}$
12	$G = \frac{-\arctan^4(x+a)x^5}{}$	27	$P = \frac{a^5 + \arccos(a+x^3) - \sin^4(y-c)}{\sin^3(x+y) + x-y }$
13	$R = \frac{a}{x - a} + \frac{b^x + \cos^3 x}{\log^3 a + 4.5}$	28	$G = \frac{\operatorname{tg}(x^4 - 6) - \cos^{3x}(z + x^3 y)}{\cos^2 x^3 c^2}$
14	$R = \frac{\sin(x^2 + 4)^3 + 4.3}{\sin^3 x^4}$	29	$R = \frac{\cos^2 y + 2.4d}{e^y + \ln(\sin^2 x + 6)}$
15	$N = \frac{m^2 + 2.8m + 0.355}{\cos 2y + 3.6}$	30	$K = \frac{\sqrt{(3+x)^6 - \ln x}}{e^0 + \arcsin 6x^2}$