mtcars_Analysis

Ash Thompson

16 December 2021

Regression Models Course Project

Executive Summary

This report is an analysis of the mtcars dataset, to explore the relationship between set of variables and miles per gallon (MPG). Particularly interested in answering the following two questions: - Is an automatic or manual transmission better for MPG - Quantify the MPG difference between automatic and manual transmissions

Initial steps

The first steps are to load the dataset and supporting libraries, then perform some minor transformations and exploratory analysis.

```
data(mtcars)
library(ggplot2)
library(dplyr)
head(mtcars)
##
                      mpg cyl disp hp drat
                                                wt qsec vs am gear carb
## Mazda RX4
                     21.0
                            6 160 110 3.90 2.620 16.46
## Mazda RX4 Wag
                     21.0
                            6
                               160 110 3.90 2.875 17.02
## Datsun 710
                     22.8
                            4
                               108 93 3.85 2.320 18.61
                                                                        1
## Hornet 4 Drive
                     21.4
                            6
                               258 110 3.08 3.215 19.44
                                                                   3
                                                                        1
                                                          1
## Hornet Sportabout 18.7
                            8
                               360 175 3.15 3.440 17.02
                                                                   3
                                                                        2
                               225 105 2.76 3.460 20.22
                                                                   3
## Valiant
                     18.1
                            6
                                                                        1
mtcars$am <- factor(mtcars$am, labels =c("Automatic", "Manual"))</pre>
```

Please see appendix 1 for a box plot of the 2 transmission types and a comparison of mpg, that shows just looking at transmission type, it appears manual transmission gives around 7 more mpg.

Using linear regression to investigate further

These steps are to investigate the hypothesis that manual transmission gives 7 more mpg. First a simple linear model.

```
model1 <- lm(mpg ~ am, data=mtcars)
summary(model1)

##
## Call:
## lm(formula = mpg ~ am, data = mtcars)
##
## Residuals:</pre>
```

```
10 Median
##
                                 3Q
                                        Max
## -9.3923 -3.0923 -0.2974 3.2439
                                    9.5077
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
                              1.125 15.247 1.13e-15 ***
## (Intercept)
                 17.147
                                      4.106 0.000285 ***
## amManual
                  7.245
                              1.764
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.902 on 30 degrees of freedom
## Multiple R-squared: 0.3598, Adjusted R-squared: 0.3385
## F-statistic: 16.86 on 1 and 30 DF, p-value: 0.000285
R squared value is fairly low at 0.3385, so only around 34% of the variance can be explained by this model.
the best variables to include in a final model.
model2 <- lm(mpg ~ ., data=mtcars)</pre>
```

the next steps are to include the other variables into the model and do an analysis of variance to determine

```
summary(model2)
##
## Call:
## lm(formula = mpg ~ ., data = mtcars)
## Residuals:
##
                1Q Median
                                3Q
                                       Max
## -3.4506 -1.6044 -0.1196 1.2193 4.6271
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 12.30337
                                      0.657
                          18.71788
                                              0.5181
               -0.11144
## cyl
                           1.04502
                                    -0.107
                                              0.9161
## disp
                0.01334
                           0.01786
                                      0.747
                                              0.4635
               -0.02148
                           0.02177
                                    -0.987
## hp
                                              0.3350
## drat
                0.78711
                           1.63537
                                      0.481
                                              0.6353
## wt
               -3.71530
                           1.89441
                                    -1.961
                                              0.0633
                0.82104
                           0.73084
                                     1.123
                                              0.2739
## qsec
                0.31776
                           2.10451
                                     0.151
## vs
                                              0.8814
## amManual
                2.52023
                           2.05665
                                      1.225
                                              0.2340
## gear
                0.65541
                           1.49326
                                      0.439
                                              0.6652
## carb
               -0.19942
                           0.82875 -0.241
                                              0.8122
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.65 on 21 degrees of freedom
## Multiple R-squared: 0.869, Adjusted R-squared: 0.8066
## F-statistic: 13.93 on 10 and 21 DF, p-value: 3.793e-07
summary(aov(mpg ~ ., data=mtcars))
               Df Sum Sq Mean Sq F value
                                            Pr(>F)
                           817.7 116.425 5.03e-10 ***
## cyl
                   817.7
                1
## disp
                1
                    37.6
                            37.6
                                   5.353 0.03091 *
## hp
                     9.4
                             9.4
                                   1.334
                                          0.26103
                1
```

2.345 0.14064

drat

16.5

16.5

```
## wt
                    77.5
                            77.5 11.031 0.00324 **
                1
                                    0.562
## qsec
                             3.9
                     3.9
                                           0.46166
                1
                                    0.018
                1
                     0.1
                             0.1
                                           0.89317
                    14.5
                             14.5
                                    2.061
## am
                1
                                           0.16586
## gear
                1
                     1.0
                              1.0
                                    0.138
                                           0.71365
                1
                     0.4
                             0.4
                                    0.058 0.81218
## carb
## Residuals
               21
                   147.5
                             7.0
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

The variables cyl, disp and wt are significant enough to include in the model, in addition to transmission type.

```
model3 <- lm(mpg ~ am + cyl + disp + wt, data=mtcars)
summary(model3)</pre>
```

```
##
## Call:
## lm(formula = mpg ~ am + cyl + disp + wt, data = mtcars)
##
## Residuals:
##
     Min
              1Q Median
                            3Q
                                  Max
## -4.318 -1.362 -0.479 1.354
                                6.059
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 40.898313
                           3.601540 11.356 8.68e-12 ***
## amManual
               0.129066
                           1.321512
                                     0.098 0.92292
                                    -2.886 0.00758 **
## cyl
               -1.784173
                           0.618192
                0.007404
                           0.012081
                                      0.613
## disp
                                            0.54509
               -3.583425
                           1.186504
                                    -3.020 0.00547 **
## wt
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.642 on 27 degrees of freedom
## Multiple R-squared: 0.8327, Adjusted R-squared: 0.8079
## F-statistic: 33.59 on 4 and 27 DF, p-value: 4.038e-10
```

Please see appendix 2 for the plot of residuals showing they have roughly the same variance. The Normal Q-Q plot shows that the distribution of residuals is normal.

Conclusion

Manual transmission, taking other variables into account, gives a slightly higher MPG value of approximately 0.1. But number of cylinders and weight have more of an effect, cylinders lowering it by around 1.7 and wt lowering by 3.5.

Appendix 1

```
## [1] "Manual"

## mpg

## Min. :15.00

## 1st Qu.:21.00

## Median :22.80

## Mean :24.39
```

```
3rd Qu.:30.40
   Max. :33.90
## [1] "Automatic"
##
        mpg
##
          :10.40
   Min.
   1st Qu.:14.95
##
   Median :17.30
          :17.15
##
    Mean
##
    3rd Qu.:19.20
   Max.
           :24.40
##
```


Appendix 2

