Deep learning

CNNs

Announcements

- Environment
 - I have yet to add "common issues" section for windows.
 - Halfway through updating cluster for more speed.
 - Docker image 1.3
- Assignment 2 set on 9th of April, due 23rd of April.

- Training RNNs is hard
- Vanishing gradient problem.

- GRU and LSTM solve that problem decently.
- Solution was residual connections.

Generating sequences

Shift approach, using shift = 2, sequence length = 7, target shift = 1

- Improving RNNs using L1/L2 regularisation and dropout.
- Stacking RNNs
- Stateful RNNs
- Bi-directional RNNs

Overview

Today we will cover

Topic: CNNs.

- Image data and signal processing.
- Convolutions.
- Convolutional layers.

Notebook: Simple CNN using convolutions on image data.

Topic: CNN architectures

- Max/Avg pool.
- LeNet
- ResNet
- Transfer learning

Notebook: Using a pretrained ResNet50 on image data.

Image data

- Today, a lot about "convolutions" on an image.
- These approaches work well on all data in which the data-points have a "closeness" relationship to each other.
 - Sound data
 - Image data
 - Timeseries
- Data can be 1D, 2D, ...
- We talk about picture data.

Image data

- An image = Matrix
- Gray = 256 colors (1 byte)
- White = 255
- Black = 0

Pixel and Digital Number

A photograph could also be represented and displayed in a **digital format** by subdividing the image into small equal-sized and shaped areas, called **picture elements** or **pixels**, and representing the brightness of each area with a numeric value or **digital number**.

Image data

color image is 3rd-order tensor

- With colors = 3D
- 3 color channels
- Instead of just storing single value between 0-255 we store 3 such values.

Signal processing

- Signal processing deals with pattern detection in such data. Very generically.
 - They need to **represent the data** cleverly when transmitting (streaming online, bluetooth, ...) so no/little information is lost.
 - Deep learning is about learning good representations.
- The main tool borrowed from signal processing is the concept of convolutions, or filters which are applied repeatedly to the signal in attempts to find a specific pattern.

- We can think of convolutions as small filters on the image.
- They process parts of the image and "fire" when they detect the filter pattern.

1x1	1 x 0	1x1	0	0
0x0	1x1	1x0	1	0
0x1	0x0	1x1	1	1
0	0	1	1	0
0	1	1	0	0

4	

Applying a filter to an image.

- We then applying a convolution upon a convolution.
- Allows us to create filters from many other filters.
- Then we can detect complex patterns over a larger area.

Technicalities

							we multiply these two matrice element - and sum them					
	3 1	00	11	2	7	4		ar	nd sun	n ther	m _	
	1 1	5 ₀	8 -1	9	3	1		1	0	-1	1	-,
	2 1	7 ₀	2 ₋₁	5	1	3		1	0	-1	_ [-1
	0	1	3	1	7	8	*	1	0	-1	=	0
	4	2	1	6	2	8						-3
	2	4	5	2	3	9		3	3 x 3	3		
							•					

6 x 6

- We apply a kernel with dimensions (3, 3).
- Using **stride** = 2.
- **Padding** = 1, to increase output size
- Same-padding = Output is same size as input
- Otherwise valid-padding.
- Apply activation function to output.
- We try to learn the filters! The filters are the parameters/weights.


```
layer_conv_2d(filters = 1,
    kernel size = c(3, 3),
    stride = 2,
    padding = "valid",
    activation = "",
    kernel regularizer = "",
    input shape = c(5, 5)
```


 We then create many filters/ kernels in each layer.

```
layer_conv_2d(filters = 32,
    kernel_size = c(3, 3),
    stride = 2,
    padding = "valid",
    activation = "",
    kernel_regularizer = "",
    input_shape = c(5, 5))
```

Convolutional Neural Network

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Hands-on

Go to https://dba.projects.sda.surfsara.nl/

Notebook: 06a-cnns.ipynb

CNNs Pooling layers

- Our filter maps are sometimes very large, so we make them smaller using pooling.
- Max pooling, take the max.
- Average pooling, take the average.
- Applied after convolutions

CNNs

Architectures - AlexNet

 By chaining different combinations of them we can create Convolutional Neural Networks (CNNs).

Source: https://www.jeremyjordan.me/convnet-architectures/

CNNs

Architectures - ResNet (2015)

Source: https://arxiv.org/abs/1512.03385

CNNs Pretrained

- Should we develop these architectures ourselves?
- No, we used them, pre-trained
- This is called transfer learning.

- We use the fact that someone trained the model on a very large dataset, using more data and compute than we can (usually) hope to achieve.
- The last part is always specific to the task at hand, we want the "general" part, so we do not use the whole network.
- We do not train the network, just the part we add.
- Our hope is that the network has learnt some generally good representations we can use.
- Not training the weights of the network is called freezing the weights.

Idea: use outputs of one or more layers of a network trained on a different task as generic feature detectors. Train a new shallow model on these features.

Assumes that $D_S = D_T$

- We need to download the network and weights, which can be large (still 1000 times faster than training ourselves).
- We use a smaller learning rate.
- To increase speed, many people preprocess the input through the static network and save the representations to disk and then train a new network separately.

Hands-on

Go to https://dba.projects.sda.surfsara.nl/

Notebook: 06b-cnns-transfer.ipynb

Wrap-up at 12:20 / 16:20

 You also see transfer learning in RNNs, especially with word embeddings.

Summary

Topic: CNNs.

- Image data and signal processing.
- Convolutions.
- Convolutional layers.

Notebook: Simple CNN using convolutions on image data.

Topic: CNN architectures

- Max/Avg pool.
- LeNet
- ResNet
- Transfer learning

Notebook: Using a pretrained ResNet on image data.