Построение гибридной рекомендательной системы новостей с применением методов оптимизации

Смирнов Александр 17.Б07-мм

Научный руководитель: к.ф.-м.н., доц. Михайлова Елена Георгиевна Рецензент: руководитель отдела инженерии ООО "АЙ ТИ Сервис", Осипов Евгений Валерьевич

28 мая 2021 г.

Введение

- ▶ Приложение ЯRUS:
 - Агрегатор новостей;
 - Социальная сеть;
- Огромный объём информации:
 - Необходима персонализация.

Постановка задачи

- Цель:
 - Реализация рекомендательной системы новостей в приложении ЯRUS;
- Задачи:
 - Исследование предметной области;
 - Анализ проблем существующих подходов;
 - Реализация подходов;
 - Совмещение подходов в единую систему;
 - Анализ качества работы рекомендательной системы;
 - Оценка влияния решения на ключевые показатели эффективности.

Подходы

- Коллаборативная фильтрация;
- Фильтрация на основе содержимого;
- Фильтрация на основе популярности.

Коллаборативная фильтрация

- Рекомендации в зависимости от истории похожих пользователей;
- Проблемы:
 - Холодный старт;
 - Вычислительные сложности;
 - Отзывчивость системы на действия пользователей;
 - Разреженность данных.

Фильтрация на основе содержимого

- Рекомендации в зависимости от истории взаимодействия пользователя;
- Проблемы:
 - Холодный старт;
 - Векторизация рекомендуемого предмета;
 - Однообразность содержимого.

Фильтрация на основе популярности

- ▶ Рекомендуемые самые "трендовые" новости;
- Проблемы:
 - Отсутствие персонализации.

Гибридные подходы

- Взвешенный;
- Комбинация признаков;
- Проблемы:
 - Вычислительные сложности;
 - Отзывчивость системы на действия пользователей;
 - Векторизация рекомендуемого предмета;
 - Разреженность данных.

Описание подхода

Рис. 1: Обзор подхода

Описание подхода (продолжение)

- Отбор кандидатов:
 - Штраф за устаревание новости;
 - Грубая фильтрация по категориям;
- Ранжирование:
 - Коллаборативная фильтрация;
 - Фильтрация на основе содержимого;
 - Фильтрация на основе текущей сессии;
 - Фильтрация на основе популярности;
- Вклад каждого алгоритма находится оптимизацией MAP@20;
- Веса меняются с получением информации о действиях пользователя.

Описание подхода (продолжение)

- Решённые проблемы:
 - Холодный старт;
 - Вычислительные сложности;
 - Отзывчивость системы на действия пользователей;
 - Векторизация рекомендуемого предмета;
 - Однообразность содержимого;
 - Отсутствие персонализации.

Составление таблицы предпочтений

- По оси x: пользователи;
- По оси у: новости;
- Содержимое: как пользователь оценил новость:
 - Факт показа новости;
 - Факт просмотра новости;
 - Какой % новости прочитан;
 - Оставленная эмоция;
 - Оставленный комментарий.

Фильтрация на основе содержимого

- Векторизация текста:
 - ► LDA;
 - ► TF-IDF;
- Составления вектора пользовательских предпочтений:
 - Взвешенная сумма оценённых векторизованных новостей;
- Сравнение вектора пользователя и вектора новости.

Коллаборативная фильтрация

- Матричное разложение Funk MF;
- Пытаемся получить матрицы меньшей размерности, которые содержат скрытые признаки.

Оценка качества (offline)

method	recall@20	
Multi-Gradient Descent	0.418	
H+Vamp Gated	0.413	
RaCT	0.403	
Hybrid Recommender	0.398	
Mult-VAE PR	0.395	

Таблица 1: Benchmark on MovieLens 20M

- ▶ Метод не сильно хуже лучших моделей на benchmark датасете:
 - ▶ Подход обобщается на другие доменные области;
- Преимущество в решение продуктовых проблем.

Оценка качества (online)

feature	popularity	content	collaborative	hybrid
session duration	121	110	156	302
emoji number	1.1	8.0	1.4	2.5
comments number	0.2	0.1	0.4	0.8

Таблица 2: Online evaluation

- A/B тестирование:
 - Время нахождения на вкладке "новости" за одну сессию;
 - Вовлечённость:
 - Количество эмоций;
 - Количество комментариев.

Внедрение

- Микросервисная архитектура:
 - Алгоритмы рекомендаций;
 - Алгоритмы подготовки и обработки данных;
- python, flask: разработка;
- docker: упаковка решений;
- k8s: оркестрация;
- gitlab: версионирование;
- gitlab CI: непрерывная интеграция.

Апробация

Рис. 2: Персонализированная рекомендательная лента

Результаты

- Проведён обзор существующих решений;
- Собрано уникальное решение;
- Оценено качество предложенного решения;
- Решение реализовано и внедрено в экосистему приложения ЯRUS;
- Разработана платформа для A/B тестирования;
- Увеличено время нахождения пользователей в приложении и повышена вовлёченность.

Акт о внедрении

Рис. 3: Акт о внедрении

Заключение

- Спасибо за внимание!
- Задавайте вопросы.
- Ссылки:
 - yarus.ru
 - @furiousteabag