- For deterministic classes, C = co-C.
- P is considered the only *tractable* complexity class.
- Satisfiability and validity are complementary problems, hence determining that satisfiability is in C immediately implies that validity is in co-C, and vice versa.

.

sdfasdfqweasdfs

PSPACE and EXPTIME are deterministic complexity classes, co-PSPACE is identical to PSPACE and co-EXPTIME is identical to EXPTIME

 $\mathbf{K4}$ is complete w.r.t. the class of all *transitive* Kripke frames, and also complete w.r.t. the class of all *irreflexive*, *transitive* Kripke frames. That is, $\mathbf{K4} = \mathsf{Log}\ \mathsf{F}^{tran} = \mathsf{Log}\ \mathsf{F}^{irref,tran}$.

Р		
I		
NP	$PL_{Sat} = \mathbf{S5}_{Sat}$: NP-complete	PL_{Valid} : co-NP-complete
\cap		
PSPACE	$\mathbf{K}_{Sat} = \mathbf{T}_{Sat} = \mathbf{S}4_{Sat} = QBF_{Sat} = QBF_{Valid}$: PSPACE-complete	
\cap		
EXPTIME	$PDL_{Sat} = PDL_{Valdi}$: ExpTIME-complete	

PL: propositional logic. QBF: the logic of quantified Boolean formulas. PDL: propositional dynamic logic.

Table 1: The complexity of the satisfiability problem for modal logics.

NP-complete	PSPACE-complete	EXPTIME-complete	NEXPTIME-complete	undicidable
$\mathbf{PL},\mathbf{S5},\mathbf{KD45}$	$\mathbf{K}_n, \mathbf{T}_n, \mathbf{S4}_n, \ n \ge 1$	$\mathbf{K}_n^C, \mathbf{T}_n^C, n \ge 1$		
	$\mathbf{S5}_n, \mathbf{KD45}_n, \ n \geq 2$	$\mathbf{S4}_{n}^{C}, \mathbf{S5}_{n}^{C}, \mathbf{KD45}_{n}^{C}, n \geq 2$		
$NEXT(\mathbf{S4.3})$	QBF	PDL		
		$\mathbf{K}^{E,A}$		
			${f S5} imes {f S5}, {f S5} imes {f K}$	
				$\mathbf{S5}^n$ for $n \geq 3$,
$n \times n$ tiling (n in unary)			$n \times n$ tiling (n in binary)	$\mathbb{N} \times \mathbb{N}$ tiling

- Cf. [Halpern and Moses, 1992, Table 1, p. 350]
- In the unary numeral system, 0 is represented by the empty string ϵ , numbers $1, 2, 3, \ldots$ are represented in unary as $1, 11, 111, \ldots$
- C: the logic with common knowledge operator
- D: adding distributed knowledge (intersection operator) to the language does not affect the complexity
- in these cases of single-agent for $\mathbf{S4}^C$, $\mathbf{S5}^C$ and $\mathbf{KD45}^C$, common knowledge reduces to knowledge.
- NEXT(S4.3): any (consistent) normal extension of S4.3. Hemaspaandra's Theorem: every normal logic extending S4.3 is NP-complete.
- $\mathbf{K}^{\mathsf{E},\mathsf{A}}$: the expansion of modal logic \mathbf{K} with the universal modality.

1 Tiling problems

A tile T is a 1×1 square fixed in orientation with colored edges right(T), left(T), up(T) and down(T) taken from some denumerable set. A tiling problem takes the following form:

given a finite set \mathfrak{T} of tile types, can we cover a certain part of $\mathbb{Z} \times \mathbb{Z}$, using only tiles of this type, in such a way that adjacent tiles have the same color on the common edge.

There are some titling problems:

1. $\mathbb{N} \times \mathbb{N}$ tiling.

Given a finite set \mathfrak{T} of tiles, can \mathfrak{T} tile $\mathbb{N} \times \mathbb{N}$?

The $\mathbb{N} \times \mathbb{N}$ tiling problem is undecidable, it is *re-complete*.