QUALIFYING EXAM IN ANALYSIS

(JANUARY 11, 2008)

Name : S.S. # :

Throughout this examination the term measurable refers to the Lebesgue measure m on the real line. Integrals with respect to Lebesgue measure will be denoted by $\int f$. Problems are 10 points each.

1. For n = 1, 2, ..., let

$$s_n := \sum_{k=1}^n k^{-k}.$$

Prove that the sequence $\{s_n\}$ is a Cauchy sequence.

2. Prove the Banach's fixed point principle.

Theorem. If Ω is a contraction mapping on a complete metric space (X, ρ) , then the equation $\Omega(x) = x$ has one and only one solution (i.e. the mapping $\Omega: X \to X$ leaves one and only one point unchanged).

3. For each positive integer n define

$$f_n(x) = \frac{x^n e^{-x}}{(2n)!}.$$

Determine whether or not the sequence $\{f_n\}$ converges uniformly on $[0,\infty)$.

4. Evaluate the integral

$$\int_{\gamma} \frac{dz}{1 + z^3}$$

where γ is the circuit : $z = -1 + e^{i\theta}, \ 0 \le \theta \le 2\pi$.

5. Use the Hölder inequality to prove that for a continuous on [a, b] function f

$$||f||_2 \le ||f||_1^{1/3} ||f||_4^{2/3},$$

where

$$||f||_p := (\int_a^b |f(x)|^p dx)^{1/p}.$$

6. Prove the Lebesgue Convergence Theorem: Let g be integrable over E and let $\{f_n\}$ be a sequence of measurable functions such that $f_n(x) \to f(x)$ almost everywhere on a set E and $|f_n| \leq g$, then

$$\int_{E} f = \lim_{n \to \infty} \int_{E} f_n.$$

7. Let A be a measurable subset of [0,1] and mA=a>0. Prove that for any $0 \le b < a$ there exists a closed set $B \subset A$ such that mB=b.

8. Let $\{f_n\}$ be a sequence of nonnegative measurable functions on $(-\infty, \infty)$ such that $f_n \to f$ a.e., and suppose that $\int f_n \to \int f < \infty$. Prove that for each measurable set E we have $\int_E f_n \to \int_E f$.

9. Let f > 0 be continuous and of bounded variation on a finite interval [a, b]. Prove that 1/f is of bounded variation on [a, b].

10. Let f be absolutely continuous on [0,1] with $f' \in L_p([0,1]), 1 . Show that there is a constant C such that$

$$|f(b) - f(a)| \le C|b - a|^{1 - 1/p}$$

for all $a, b \in [0, 1]$.