Harte Diffraktion an ep und pp Beschleunigern (HERA, TEVATRON, LHC)

Frank-Peter Schilling (CERN/PH)
DPG-Frühjahrstagung, März 2005

Aktuelle Resultate von HERA und TEVATRON ...

... sowie ein Ausblick auf die Planungen am LHC

QCD als Theorie der starken Kraft

Quantenchromodynamik QCD etabliert als Theorie der starken Wechselwirkung

Nobelpreis 2004:

Asymptotische Freiheit: Kopplung klein bei kurzen Abständen

D. Gross

D. Politzer

F. Wilczek

- Quark- und Gluonaustausch
- •Gluonen tragen Farbladung!

Harte Skala $\rightarrow \alpha_s$ klein \rightarrow QCD-Störungsrechnung möglich!

Protonstreuung bei hohen Energien

B) Weiche Prozesse, speziell elastische Streuung:

A) Harte QCD Prozesse: Jet, W, Z, t, Produktion Störungsrechnung erfolgreich Aber: nur kleiner Anteil an σ_{tot}

Protonstreuung bei hohen Energien

t-Kanal Austausch: Mesonen und deren Rotationsanregungen:

Protonstreuung bei hohen Energien

t-Kanal Austausch: Mesonen und deren Rotationsanregungen:

- Kunstname Pomeron
- Kein Austauschteilchen bekannt
- $\alpha_{IP}(t)=1.08+0.25t$
- Elastische Streuung: Vakuum-QZ!

Was ist die QCD Beschreibung? (quarks / gluonen)

E_{CM}>20 GeV: Pomeron

Diffraktion in tiefinelastischer Streuung (DIS) bei HERA

Diffraktive DIS: Kinematik

Tiefinelastische Streuung mit elastisch gestreutem Proton ...

Vorteil HERA: Punktförmiges Photon als Sonde in DIS

Q²,x: Standard DIS Variablen $y = Q^2/sx$

x_{IP}: Impulsanteil des diffraktiven Austausches am Protonimpuls (typisch <0.05)

β: rel. Impulsanteil des am Photon streuenden Quarks, d.h. $\mathbf{x} = \mathbf{x}_{IP} \mathbf{\beta}$

t=(p-p')²: 4-Impulsübertrag am p Vertex

W: γp Scherpunktsenergie

Diffraktive Strukturfunktion:

$$\frac{d^4 \sigma^D}{dx_{IP} dt d\beta dQ^2} = \frac{4\pi\alpha^2}{\beta Q^4} \left(1 - y + \frac{y^2}{2} \right) F_2^{D(4)}(x_{IP}, t, \beta, Q^2)$$

Diffraktive DIS bei HERA: Messe Struktur des diffraktiven Austausches

Diffraktive DIS bei HERA

Die η_{max} Verteilung

Überschuss über nichtdiffraktivem Anteil

Vorwärts Proton Spektrometer: Direkte Messung!

- 'Roman Pot' Detektoren
- z=~100m; sehr dicht am Strahl
- Maschinen-Dipole als Spektrometer

Messe volle p-Kinematik!

QCD Faktorisierung in DIS

Standard DIS

Faktorisierungstheorem:

$$\sigma(x,Q^2)^{\gamma^*p\to X} \sim f(x,Q^2) \otimes \hat{\sigma}$$

z.B.: Erfolgreiche Vorhersage des TEVATRON Jet Wirkungsquerschnittes basierend auf HERA Partondichten! →Partondichten sind universell!

QCD Faktorisierung in Diffraktiver DIS

Standard DIS

Diffraktive DIS

Faktorisierungstheorem:

$$\sigma(x,Q^2)^{\gamma^*p\to X} \sim f(x,Q^2) \otimes \widehat{\sigma}$$

Standard DIS→ Protonstruktur!

Diffraktive DIS→ Diffraktive Struktur!

Faktorisierungstheorem (Collins '97):

$$\frac{d^2\sigma(x,Q^2,x_{I\!\!P},t)^{\gamma^*p\to p'X}}{dx_{I\!\!P}dt}\sim f^D(x,Q^2,x_{I\!\!P},t)\otimes \widehat{\sigma}$$

f_i^D(x,Q²,x_{IP},t): diffraktive PDF: Wahrsch. an Parton i zu streuen mit Zusatzbed. dass p intakt bleibt

(Diffraktive) Partondichten universell: Final-State Vorhersagen (z.B. Jets)

NB: Faktorisierung in Diffraktion bewiesen NUR in DIS!

Alternative Sichtweise: DIS im Proton-Ruhesystem

Photon γ* fluktuiert in partonische Zustände qq,qqg,... lange vor der Wechselwirkung mit dem Proton:

- •DIS ist der totale WQ eines qq Farbdipoles mit dem Proton bei hohen Energien
- •Die Grösse des Dipols kann über Q² gesteuert werden ('selbstgemachtes Hadron')
- •Für kleine Dipole (grosse Q2): Störungstheorie anwendbar!

Diffraktion im Proton-Ruhesystem

Proton-Ruhesystem

'Infinite momentum frame'

Diffraktion: Der Anteil des totalen WQ bei dem der Dipol als Farb-Singlet aus der WW hervorgeht!

- a) Perturbativ: Einfachste Partonkonfiguration: 2-Gluon Austausch
- b) Nicht-perturbativ: Farbneutralisierung durch das weiche Gluonfeld des Protons

Die 'Wahrheit' liegt zwischen diesen Extremen ...

F₂^D Messungen

3-Dimensionale Strukturfunktion **F**₂^{D(3)} (Ausschnitt) → Präzise Messungen

Gesamter kinematischer Bereich: $1.5 < Q^2 < 2000 \text{ GeV}^2$ $10^{-2} < \beta < 0.9$ $4*10^{-5} < x_{IP} < 0.05$

Gute Übereinstimmung zwischen 'Roman Pot' und 'Rapidity Gap' Messungen!

Charakteristischer Anstieg mit $s_{\gamma^*p}=W^2$ » 1/ x_{IP} Aus Fit: $\alpha_{IP}(0)\sim 1.2 > 1.08$

Vergleich F₂^D mit F₂: β-Abhängigkeit

DPG 2005 Berlin

Vergleich F₂^D mit F₂: Q²-Abhängigkeit

QCD fit und Diffraktive Partondichten

Diffraktive pdf's extrahiert aus DGLAP NLO QCD Anpassung:

Gluon-dominiert!

Gluonen tragen **75§ 15%** des Impulses (bei Q²~10)!

H1 2002 σ_rD LO QCD Fit

Diffraktive Endzustände: Jets, Charm

Diffraktive Dijets und Charm in DIS

Test der QCD Faktorisierung:

Beschreiben Vorhersagen basierend auf diffraktiven pdf's auch Endzustände in diffraktiver DIS, z.B. Jets, Charm?

W: γ*p Schwerpunktsenergie

M_X: Masse des diffraktiv produzierten Systems

M₁₂: inv. Masse der beiden Jets

Z_{IP}: Impulsbruchteil des diffraktiven Austausches der in den harten Prozess eingeht

Hohe Sensitivität auf diffraktive Gluondichte!

Diffraktive Dijets in DIS

Diffraktive Charmproduktion in DIS

Charm-Strukturfunktion F₂D,c

D* Wirkungsquerschnitt

NLO Rechnungen basierend auf diffraktiven pdf's

Konsistent mit QCD Faktorisierung!

Diffraktion am Tevatron

'Roman Pots' am Tevatron Run 2

CDF: Roman Pots wie Run I Neu: 'Beam Shower Counters' (BSC) und 'MiniPlug' Calorimeter für größere Akzeptanz: 5.1<η<7.5

MiniPlug

BSC

Diffraktive Dijets am TEVATRON

$$\bar{p}p \rightarrow \bar{p} + \text{jet} + \text{jet} + X$$

Effektive Strukturfunktion F_{ii}D

$$F_{jj}^{D}(\beta, p_T^2) = \frac{4}{9} \left[q(\beta, p_T^2) + \bar{q}(\beta, p_T^2) \right] + g(\beta, p_T^2)$$

Messung liegt Faktor ~10 Unter Vorhersage aus HERA Diffraktiven pdf's! → Faktorisierung gebrochen!

•Keine E_T Abhängigkeit

Raten diffraktiver Prozesse

Verhältnisse Diffraktiv / Nicht-Diffraktiv ~1% (HERA: 5-10%)!

Diffraktive W§ und Z Bosonen

Sample W cent	Gap Fraction (%) Diffractive/All (*) 1.08 + 0.19 - 0.17	Probability that Background would fluctuate to the Data in the (0,0) bin for W and Z Data	
		1 x 10 ⁻¹⁴	7.7σ
W fwd	0.64 + 0.18 - 0.16	6 x 10 ⁻⁸	5.3σ
W All	0.89 + 0.20 - 0.19	3 x 10 ⁻¹⁴	7.5σ
Z	1.44 + 0.62 - 0.54	5 x 10 ⁻⁶	4.4σ

Diffraktiver Anteil ~1.0-1.5%

Bisheriges Fazit zur Faktorisierung

- QCD-Faktorisierungstheorem in diffraktiver DIS
 - Diffraktive Partondichten bestimmt aus DGLAP NLO QCD Anpassung an F₂^D Daten
- Erfolgreiche Beschreibung von Endzuständen in diffraktiver DIS
 - Diffraktive Dijets
 - Diffraktive D* Produktion

Faktorisierung erfolgreich in diffraktiver DIS!

- Vorhersage diffraktiver Raten am Tevatron scheitert!
 - HERA Diffraktive PDF's+Faktorisierung: viel zu hohe WQ!

Faktorisierung HERA vs TEVATRON gebrochen!

Ursachen und Modelle der Faktorisierungsbrechung

Hauptunterschied TEVATRON vs DIS: 2 vs 1 Hadronen im Anfangszustand!

$$\sigma \sim f_i^D(x, \mu^2, x_{I\!\!P}, t) \otimes \hat{\sigma}_i^{jj}$$

$$\sigma \sim f_i^D(x, \mu^2, x_{I\!\!P}, t) \otimes \hat{\sigma}_i^{jj} \otimes |S|^2$$

- •Das Faktorisierungstheorem von Collins gilt nicht fuer Hadron-Hadron Streuung!
- •Unterdrückungsfaktor |s|² beinhaltet weiche Physik! Phänomenologische Modelle existieren ...

Zusätzliche Wechselwirkungen zwischen den Remnants können Rapiditätslücke zerstören: `Survival Probability' (Bjorken)

Jets in Photoproduktion bei HERA: Schlüssel zum Verständnis der Faktorisierungsbrechung?

Jets in Diffraktiver Photoproduktion (Q²~0) bei HERA

DIS oder direkter Prozess

'resolved' Prozess

- •Resolved γp ähnelt Proton-Proton
- •Studium der Unterdrückung in einem Epxeriment!

 $x_{\gamma}=1$: direkt

 $x_{y}^{'}<1$: resolved

Jets in Diffraktiver Photoproduktion

Daten/NLO ~ 0.5! Faktorisierung gebrochen!

Jets in Diffraktiver Photoproduktion with the control of the contr

Wie ist die Abhängigkeit von x_{γ} ? Sind auch direkte Prozesse unterdrückt?

Hängt die Unterdrückung bei HERA nur von der 'Grösse' des Photons ab?

Unerwartet: Daten bevorzugen Unterdrückung von resolved <u>und</u> direkt! Bisher nicht verstanden ...

Planungen am LHC

Diffraktion am LHC: Motivation

- Totaler Wirkungsquerschnitt
- Elastische Streuung
- Harte Diffraktion
 - Diffraktive Strukturfunktion und Faktorisierungsbrechung
 - Diffraktive Jets, W[§], J/Ψ, b, t, γ etc. ⁴⁰
- Diffraktion als 'Gluonfabrik'
- Diffraktive Higgs-Produktion
- Physik bei kleinem x: Parton-Saturation, QCD-Dynamik etc.

Viel Motivation diese Forschung am LHC fortzusetzen (einzige Möglichkeit nach Ende von HERA/TEVATRON)

Diffraktive Higgs-Produktion

- Leichtes SM Higgs m_H<130 GeV experimentell schwierig am LHC:
 - Dominanter Zerfall H→bb:
 - überwältigender QCD Untergrund
 - − H \rightarrow γγ Herausforderung ... (BR,S/B)
- Neue Möglichkeit: pp→p+H+p mit doppeltem Proton-Tag ('exclusive double pomeron exchange')
 - (J_z=0, P gerade) Auswahlregel unterdrückt QCD Untergrund!
 - Higgsmasse aus Proton 4-Vektoren rekonstruierbar (fehlende Masse)

Diffraktive Higgs-Produktion

Diffraktive Higgs-Produktion

- Rechnungen von diversen Theorie-Gruppen
- Hauptproblem: Normierung, 'Survival probability'

Konsenz:

Exklusiver Kanal pp \rightarrow p H p : 3-10 fb Inklusiver Kanal pp \rightarrow p+X+H+Y+p : 50-200 fb

Beispiel: $m_H=120$ GeV, L=30fb⁻¹, $\sigma=3$ fb (Khoze, Martin, Ryskin) \rightarrow 90/10 Ereignisse vor/nach Schnitten, Signal/Untergrund: 3!

📭 Kalibration der Modelle am Tevatron

Wirkungsquerschnitt faktorisiert \rightarrow Ersetze h durch jj oder $\chi_{c/b}$

Exklusive Dijets

X_c Produktion

Mehr Daten nötig ...

Konsistent mit Khoze, Martin, Ryskin Modell

Planungen der LHC Experimente: CMS+TOTEM

- Roman Pots bei z=150 und 215m
- Zusätzliche Detektoren bei grossen η
- A) Totaler WQ und elastische Streuung:
 - Datennahme mit spezieller LHC Optik für hohe Roman Pot Akzeptanz β*=1540m, L=10²⁸cm⁻²s⁻¹ (einige Tage!)
- B) Harte Diffraktion (incl. diffr. Higgs)
 - Standard LHC Betrieb, L>10³³cm⁻²s⁻¹
 - geringere Akzeptanz für Roman Pots
 - Higgs: Pots bei z=300 / 400m nötig (kalter Ring)
 - L1 trigger nur fuer z<200m!
 - Selektion über Rapiditatslucke:
 viele WW pro Bunchcrossing!

CMS+TOTEM Detektoren

Zusammenfassung

Diffraktion bei HERA:

- Pomeron 'Intercept' $\alpha_{IP}(0) \sim 1.2 > 1.08!$ (kein 'weiches' Pomeron)
- Faktorisierungstheorem für diffraktive DIS
- Präzise F₂^D Daten, beschrieben durch diffraktive Partondichten
- Erfolgreiche Vorhersage von Endzuständen in DIS
- Faktorisierung gebrochen in Photoproduktion (Faktor 2)
- Diffraktion am TEVATRON:
 - Faktorisierung gebrochen (Faktor 5-10)
- Diffraktion am LHC
 - Vielfältige physikalische Motivation (z.B. diffraktive Higgsproduktion)
 - CMS/TOTEM und ATLAS Planungen in vollem Gange

Verständnis der weichen und elastischen Hadronstreuung auch wichtig fuer die Interpretation der LHC Ergebnisse!