Name: Krishna Santosh Kabra(27)

Practical 10:Download the iris flower dataset or any other dataset into adataframe. Scan the dataset and given the interference as

- 1. List down the feature and types
- 2. Create histogram for each feature in the dataset
- 3. Create a boxplot for each seature in the dataset
- 4. Compare distributions and identify

Import seaborn library

In []: import seaborn as sns

Load the Iris dataset using seaborn

In []: df = sns.load_dataset('iris')

Display the dataframe

In []: d-

Out [3]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
•••					•••
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

150 rows × 5 columns

Display the column names of the dataframe

Display information about the dataframe, including data types and missing values

```
In [ ]:
 df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):
                  Non-Null Count Dtype
    Column
                   _____
 0
    sepal_length 150 non-null
                                  float64
 1
     sepal_width
                  150 non-null
                                  float64
     petal_length 150 non-null
                                  float64
     petal_width
                   150 non-null
                                  float64
                   150 non-null
                                  object
     species
dtypes: float64(4), object(1)
memory usage: 6.0+ KB
```

Display the data types of columns in the dataframe

Create a pair plot to visualize pairwise relationships between different variables with hue based on species

```
In [ ]: sns.pairplot(df,hue = 'species')
```

Out [7]: <seaborn.axisgrid.PairGrid at 0x7a48a6ae37c0>

Create a pair plot to visualize pairwise relationships between different variables

```
In [ ]: sns.pairplot(df)
```

Out [8]: <seaborn.axisgrid.PairGrid at 0x7a48a106c700>

Create a pair plot to visualize pairwise relationships between different variables with hue based on species and histogram on the diagonal

```
In [ ]: sns.pairplot(df,hue='species',diag_kind='hist')
```

Out [9]: <seaborn.axisgrid.PairGrid at 0x7a48a1e3b400>

Create a histogram to visualize the distribution of sepal length with a kernel density estimate

```
In [ ]: sns.histplot(df['sepal_length'],kde = True)
```

Out [10]: <Axes: xlabel='sepal_length', ylabel='Count'>

Create a histogram to visualize the distribution of sepal width with a kernel density estimate

```
In [ ]: sns.histplot(df['sepal_width'],kde = True)
```

Out [11]: <Axes: xlabel='sepal_width', ylabel='Count'>


```
In [ ]: sns.kdeplot(df['sepal_width'])
```

Out [12]: <Axes: xlabel='sepal_width', ylabel='Density'>

Create a histogram to visualize the distribution of petal length with a kernel density estimate

```
In [ ]: sns.histplot(df['petal_length'],kde = True)
```

Out [13]: <Axes: xlabel='petal_length', ylabel='Count'>

Create a histogram to visualize the distribution of petal width with a kernel density estimate

```
In [ ]: sns.histplot(df['petal_width'],kde = True)
```

Out [14]: <Axes: xlabel='petal_width', ylabel='Count'>

Create a kernel density estimate plot to visualize the distribution of petal width

```
In [ ]: sns.kdeplot(df['petal_width'])
```

Out [15]: <Axes: xlabel='petal_width', ylabel='Density'>

Create a box plot to visualize the distribution of sepal length

```
In [ ]: sns.boxplot(x=df['sepal_length']);
```


Create a box plot to visualize the distribution of sepal width

```
In [ ]: sns.boxplot(x=df['sepal_width']);
```



```
In [ ]: sns.boxplot(x=df['petal_length']);
```


In []: sns.boxplot(x=df['petal_width']);

