U.S.N.					

BMS College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October / November 2021 Supplementary Examinations

Branc Cours	h: I e C	me: B.E. EE/EC/TCE/EI/ML ode: 15ES3GCFAW Tields and Waves	Semester: III Duration: 3 hrs. Max Marks: 100 Date: 24.10.2021
Instructions: Answer FIVE FULL questions, choosing one from each		ns: Answer FIVE FULL questions, choosing one from each unit	
		UNIT 1	
1		Derive the expression for the capacitance of a co-axial cable.	8
	b	Two concentric cylindrical conductors, r_a =0.01m and r_b = 0.08m, I charge densities ρ_{sa} =4 0pC/m ² and ρ_{sb} , such that D and E fields exist the two cylinders but are zero elsewhere. Find ρ_{sb} and write expressions between the cylinders.	only between
		OR	
2	a	Derive the relationship between V and E.	8
	c	Find the force on a point charge of $50\mu C$ at $(0, 0, 5)$ m due to a charge that is uniformly distributed over the circular disc $r \le 5m$, $z = 0m$.	of 500πμC 12
		UNIT 2	
3	a	Explain the concept of scalar and vector magnetic potentials.	8
	b	A current sheet, $\mathbf{K} = 6.5\mathbf{a}_z$ A/m, at $x = 0$ separates region1, $x < 0$, wh A/m and region2, $x > 0$. Find \mathbf{H}_2 at $x = +0$.	·
	c	A 'z' directed current distribution is given by $J = r^2 \mathbf{a}_r$ for $r \le a$. Find B a $r \ge a$ using Ampere's circuital law.	at any point 6
		UNIT 3	
4	a	Write and explain point and integral form of Maxwell's equation for free	
C	b	Find the amplitude of the displacement current density in air near car at the field strength of FM signal is $\mathbf{E} = 80\cos{(6.277 \times 10^8 t - 2.092 y)} \mathbf{a}_z \mathrm{V}$	
	c	A circular loop conductor lies in plane $z=0$ and has a radius of 0.1m at of 5Ω . Given $\mathbf{B}=0.2\sin 10^3 t\ \mathbf{a}_z$ T. Determine the current in the loop.	nd resistance 6
5	a	Derive the wave equations starting from Maxwell's equation for free spa	ace. 8
	b	Determine the propagation constant γ for a material having μ_r σ =0.25pS/m, if the wave frequency is 1.6MHz.	$=1, \varepsilon_r=8$ and 4
	c	A wave propagating in a lossless dielectric has $\mathbf{E} = 500\cos{(10^7 t - \beta z)}$ $\mathbf{H} = 1.1\cos{(10^7 t - \beta z)}\mathbf{a}_y$ A/m. If the wave is travelling at a velocity velocity in free space, find i) μ_r , ii) ϵ_r , iii) β , iv) λ , v) η .	

UNIT 5

7

8

a Derive expression for phase velocity for wave propagating in dispersive medium.

6

	b	Define transmission coefficient and reflection coefficient. What is the relationship between them?	7
	c	A plane wave travelling in +z direction in free space (z < 0) is normally incident at z = 0 on a conductor (z > 0) for which σ = 61.7 MS/m, μ_r =1. The free space E wave has a frequency f=1.5 MHz and an amplitude of 1V/m; at the interface it is given by E(0,t)=1.0 sin2 π ft a_y (V/m). Find H (z, t) for z > 0.	6
7	a	What is a standing wave? Define standing wave ratio. What is its relationship with reflection coefficient? Also derive an equation for standing wave.	8
	b	A wave is incident at an angle of 30^{0} from air to Teflon, ε_{r} =2.1.Calculate the angle	4

of transmission. c A uniform plane wave in free space is incident normally on a copper surface $(\sigma=5.8\times10^7)$ at z=0.What percentage of the incident power density is transmitted into the copper, if the incident electric field is $E_0\cos(10^{10}t-\beta z)$ V/m.
