Τρίτη προγραμματιστική εργασία - Μάθημα Αλγορίθμων

Νικόλαος Σμυρνιούδης (3170148)

2 Ιουνίου 2019

Ασκηση 3.3

Οι δοχιμαστιχές εκτελέσεις του αλγορίθμου έγιναν με την μέθοδο generateRandomGraph(int size) η οποία δημιουργεί έναν γράφο μεγέθους size και προσθέτει κάθε αχμή με πιθανότητα 0.5

Ο αλγόριθμος εξαντλητικής αναζήτησης ελέγχει κάθε πιθανό υποσύνολο των κόμβων και συνεπώς τρέχει σε χρόνο $\mathcal{O}(2^{|V|})$. Αυτό μπορεί να φανεί και απο τις παρακάτω πειραματικές εκτελέσεις αφού κάθε φορά που αυξάνεται το πλήθος των κόμβων κατα ένα, ο απαιτούμενος χρόνος διπλασιάζεται.

Σε αντίθεση ο greedy αλγόριθμος χρειάζεται $\mathcal{O}(|V|^2)$ χρόνο (ο εξωτερικός βρόχος τρέχει το πολύ |V| φορές, removeVertex τρέχει το removeEdge το πολύ |V| φορές, το findMax διατρέχει όλους τους κόμβους σε |V| χρόνο) και αυτό φαίνεται από τα πειράματα αφού για μικρές αλλαγές δεν αλλάζει σημαντικά ο χρόνος εκτέλεσης.

Τέλος, παρόλο που ο greedy αλγόριθμος βρίσχει VC με περισσότερους χόμβους απο το optimal VC του brute-force, αυτή η διαφορά δεν είναι μεγάλη και σίγουρα δεν θα άξιζε να τρέξουμε τον brute-force αλγόριθμο μέχρι να σβήσει ο ήλιος για να βρούμε το optimal vertex cover για έναν γράφο με 100 κόμβους.

2 Ασκηση 3.4

Dominating Set:

Δεδομένου γράφου G(V,E) και ακεραίου k, υπάρχει $V'\subseteq V: \forall x\in V-V': \exists y\in V': \{x,y\}\in E$ με |V'|=k

Subset Cover:

Δεδομένου συνόλου $S=\{x_1,..,x_n\}$, υποσυνόλων του $S_1,...,S_m$ για τα οποία ισχύει $S_1\cup...\cup S_m=S$ και ακεραίου k, υπάρχουν $S_{x_1},...,S_{x_k}$ τέτοια ώστε $S_{x_1}\cup...\cup S_{x_k}=S$

Αχολουθεί ένα λήμμα που θα είναι χρήσιμο στην αναγωγή

Lemma 1. Έστω G(V, E) γράφος και V' dominating-set. Αν προσθέσουμε οποιονδήποτε κόμβο απο το V-V' στο V', το τελικό V' παραμένει dominating-set.

Απόδειξη:

Έστω $v\in V-V'$. Λόγω του V' , $\forall x\in V-V':\exists y\in V':\{x,y\}\in E$. Και επειδή $V-(V'\cup\{v\})\subseteq V-V'$ και $V'\subseteq V'\cup\{v\}$ τότε θα ισχύει και:

$$\forall x \in V - (V' \cup \{v\}) : \exists y \in V' \cup \{v\} : \{x, y\} \in E.$$

Άρα τελικά το $V' \cup \{v\}$ είναι dominating-set.

Theorem 2. Το πρόβλημα Dominating Set είναι NP-complete

Aπόδειξη. • Dominating Set $\in NP$

Έστω V' το Dominating Set με μέγεθος k. Ο αλγόριθμος 1 ελέγχει σε πολυωνυμικό χρόνο αν όντως το V' είναι Dominating Set.

Ο εξωτερικός βρόχος τρέχει το πολύ V φορες, εσωτερικός σε ενώ το αν μεσα στον εσωτερικό βρόχο χρειάζεται να διατρέξει το σύνολο V' σε k βήματα. Συνολικά, ο χρόνος για να ελεγχθεί μια λύση του Dominating Set είναι $\mathcal{O}(V*E*k)$.

• SUBSET-COVER \leq_p DOMINATING-SET:

Η γενική ιδέα της αναγωγής είναι να παράξουμε εναν γράφο όπου κάθε στοιχείο τους συνόλου S είναι ενας κόμβος στο σύνολο X, και επίσης κάθε δεδομένο υποσύνολο του S είναι ένας κόμβος στο σύνολο H. Μετά προστίθενται ακμές στον γράφο ετσι ώστε αν υπάρχει DOMINATING-SET k μεγέθους αυτό να είναι ένα υποσύνολο του Η μεγέθους k δηλαδή μια λύση στο πρόβλημα του SUBSET-COVER.

Οι κόμβοι του παραχτέου γράφου θα έχουν ένα πεδίο .d το οποίο θα είναι ενα σύνολο.

Έστω $X=\{x_i|x_i\in S\}$. Θέτουμε για κάθε στοιχείο του X , $x_i.d=\emptyset$. Θεωρούμε το σύνολο $=\{h_i|i=1,..,m\}$ Θέτουμε $h_i.d=S_i,i=1,..,m$. Οι κόμβοι του γράφου θα έιναι το σύνολο $V=T\cup X$. Όσο για τις ακμές θεωρούμε τα σύνολα $E_1=\{\{u,v\}|u,v\in T\}$, $E_2=\{\{x_i,v\}|x_i\in S,v\in T$ και $x_i\in v\}$ και θέτουμε ώς σύνολο ακμών το $E=E_1\cup E_2$

Έτσι έχουμε δημιουργήσει μια συνάρτηση $f(S,S_1,...,S_m,k)=(G(V,E),k)$ απο στιγμιότυπα του SUBSET-COVER σε στιγμιότυπα του DOMINATING SET.

Lemma 3. Το στιγμιότυπο $(S, S_1, ..., S_m, k)$ του SUBSET-COVER είναι ναι ανν το (G(V, E), k) στιγμιότυπο του DOMINATING-SET που παράγεται είναι NAI

Απόδειξη:

 \Longrightarrow Έστω πώς υπάρχουν k υποσύνολα απο τα δεδομένα τ.ω. $S_{p_1}\cup\ldots\cup S_{p_k}=S$. Τότε για το υποσύνολο χόμβων του γράφου που παράγεται μέσω της f, το $V'=\{h_{p_i}|i=1,..,k\}$, ισχύει πώς για χάθε χόμβο του γράφου που δεν βρίσχεται στο V', αυτός έχει τουλάχιστον έναν γείτονα στο V'. Οι χόμβοι που βρίσχονται στο σύνολο H-V', έχουν γείτονες όλους τους χόμβους στο σύνολο V'. Οι χόμβοι του συνόλου X έχουν όλοι τουλάχιστον έναν γείτονα στο σύνολο V' (επειδή $h_{p_1}.d\cup\ldots\cup h_{p_k}.d=S$). Προφανώς, το μέγεθος του V' είναι k χαι συνεπώς είναι DOMINATING-SET k μεγέθους.

=Έστω το dominating-set μεγέθους $k\ V' = X' \cup H'$ με $H' \subseteq H, X' \subseteq X$. Για κάθε στοιχείο του X' θα υπάρχει τουλάχιστον ενα στοιχείο του H το οποίο να είναι γειτονικό. Θεωρούμε το σύνολο H'' το οποίο περιέχει έναν αυθαίρετο γείτονα κάθε στοιχείου στο X'. Επειδή $H'' \subseteq X'$ θα ισχύει: $|H' \cup H''| \le |H' \cup X'| \le k$.

Μένει να αποδειχτεί πως $H' \cup H''$ είναι dominating-set. Πράγματι για κάθε $v \in H - (H' \cup H'')$ ο v θα έχει έναν γείτονα στο $H' \cup H''$ (ολοι οι κόμβοι στο H συνδέονται με όλους στο H). Επειδή το $X' \cup H'$ είναι dominating-set και επειδή δεν υπαρχουν δυο κόμβοι στο X που να συνδέονται μεταξύ τους, για τούς $v \in X - X'$ ισχύει πως θα έχουν όλοι κάποιον γείτονα στο H' αρα και στο $H' \cup H''$. Τέλος, οι κόμβοι του X που βρίσκοταν στο παλιό DS, δηλαδή οι $v \in X'$ θα έχουν όλοι κάποιον γείτονα στο H' λόγω του πως ορίστικε το H'. Καταλήγουμε τελικά πως για κάθε $v \in V - (H' \cup H'')$ ο v έχει κάποιον γείτονα στο $H' \cup H''$. Αν το μέγεθος του $H' \cup H''$ είναι μικρότερο απο k μπορούμε να προσθέσουμε ,σύμφωνα με το λήμμα 1, οποιονδήποτε αριθμό κόμβων απο το $H - (H' \cup H'')$ στο $(H' \cup H'')$ μέχρι αυτό να γίνει DS k στοιγείων.

Επειδή όλα τα στοιχεία του X έχουν γείτονα στο $(H' \cup H'')$ αυτό σημαίνει πως

$$\bigcup_{h_i \in (H' \cup H'')} h_i.d = S$$

άρα και υπάρχει σύνολο υποσυνόλων k στοιχείων που να κάλύπτει το S. Τέλος, επειδή το SET-COVER είναι NP-complete , τότε και το DOMINATING-SET θα έιναι NP-complete.

Algorithm 1 checkDS(G(V, E), V'))

```
1: for every x \in V - V' do
2:
      found = false
      for every \{u,v\} \in G.E do
3:
        if (u = x \text{ AND } v \in V') \text{ OR } (v == x \text{ AND } u \in V') then
4:
           found = true;
5:
        end if
6:
      end for
7:
      if found == false then
8:
        return false
9:
      end if
10:
11: end for
12: return true
```