שיעור תכנות מתקדם

דרכים שונות לתנועה: סנכרון, ויסות עוצמה, האצה והאטה

By: Droids Robotics

מטרות השיעור:

- 1) למדו על הבלוקים השונים להנעת הרובוט ומתי משתמשים בכל בלוק
 - למדו על ויסות עוצמה, סנכרון מנועים והאצה\האטה (2

דרכים שונות להנעה

- י כיצד שונות דרכים אלו אחת מהשניה במונחים הבאים?
 - ויסות עוצמה •
 - סנכרון מנועים
 - האצה\האטה •

ויסות עוצמה

- ויסות עוצמה מנסה להניע את הרובוט במהירות מטרה קבועה •
- כאשר לרובוט יש קושי לנוע משום שהוא כבד מדי, נוסע בעליה, הסוללה שלו גמורה או שהוא חסום, ויסות עוצמה יספק כוח נוסף למנוע על מנת להגיע למהירות המטרה
 - שיטה זו טובה לוודא שהרובוט נע במהירות צפויה •

סינכרון מנועים

- סינכרון מנועים מוודא ששני המנועים מסתובבים באותה כמות (או ביחס קבוע)
 - אם גלגל אחד נתקע, הוא מונע מהגלגל השני להסתובב •
- אם המנועים שלכם מסתובבים באותה כמות, סינכרון מנועים מוודא שהרובוט ינוע ישר גם כאשר גלגל אחד מואט על-ידי חיכוך או מסיבה אחרת
- כאשר סנכרנתם מנועים ביחס כלשהו, הדבר מוודא שהרובוט יבצע פניות חלקות וידועות מראש

סרטונים בשקופית הבאה

מסונכרים מול לא-מסונכרנים

לחצו על מנת לצפות בסרטונים

מנועים מסונכרנים עצירת מנוע אחד גורמת לשני להעצר

מנועים לא מסונכרנים מנוע שני ממשיך כאשר המנוע הראשון נתקע

האצה\האטה

- האצה גורמת למהירות הרובוט להתגבר באופן הדרגתי בתחילת התנועה
 - האטה גורמת לרובוט להאט לקראת עצירה בסוף התנועה
- ללא האצה\האטה אתם עלולים לראות את הרובוט מקרטע בתחילת
 התנועה או בסופה
 - הרובוט עדיין ינסה לתאם את המנועים לאחר עצירה על מנת
 להגיע לערך חיישן הסיבוב אך עדיין התוצאה עלולה להיות
 פחות מדוייקת

דרכים שונות לנוע

	ויסות עוצמה	מנועים מסונכרנים	האצה\ האטה
1 O N O SO 360	√	√	√
2	√	√	√
3 50 50 50	√	X	X
4 B C C C C C C C C C C C C C C C C C C	X	X	X

תנועה במעלות מול שניות

תנועה במעלות\סיבובים

- הבלוק לא יסתיים עד שלא יגיע ליעדהסיבוב במעלות
 - אז מה יקרה אם הרובוט יתקע איפשהו על שטיח המשימות?
- התוכנית נתקעת ואינה ממשיכה לבלוק הבא
 - תצטרכו להחזיר את הרובוטולקבל עונשין נגיעה

תנועה בשניות

- פחות מדויק עבור תנועת רובוט
- המרחק שיעבור הרובט תלוי
 במהירות, עוצמת הסוללה ומשקל
 הרובוט
 - זכרו זאת כאשר אתם מחליטים אם להשתמש בתנועה בשניות
- עם זאת, אתם יכולים להמנע מתקיעת הרובוט
 - למשל, יכול לעזור במקרים בהם זרוע הרובוט נתקעת

סרטונים בשקופית הבאה

תנועה במעלות מול שניות

לחץ על מנת לצפות בסרטונים

<u>רובוט נתקע</u> הרובוט נתקע. מסיים רק לאחר שמשוחרר

<u>רובוט ממשיך</u> הרובוט נתקע אך עדיין מסיים (ניתן לשמוע את הצליל)

מדריך לדיון:

מלאו את הטבלה שמתחת

תודות

- Droid Robotics -מArvind Seshan ו- Sanjay Seshan המדריך נוצר ע"י
 - www.ev3lessons.com שיעורים נוספים זמינים ב
 - team@droidsrobotics.org : דואל היוצר
 - ישראל ורובוטק טכנולוגיות בע"מ *FIRST* השיעור תורגם בעזרת

This work is licensed under a <u>Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</u>.