

# Visual World Paradigm

Elif Dilara Aygün Karl Jorge Cleres Andreo Yanhong Xu



# Introduction

#### **Background**

- First Visual World Paradigm Experiment by Cooper in 1974 [1]
  - People looked more at objects that were related to the story they were hearing
- Easy to perform, no special requirements for participants
  - Paradigm used extensively in studies on spoken language
- Key paper by Altmann & Kamide in 1999 [2]
  - Sentence processing is driven by predictive relationships between words

#### **Research Question**

- Humans like to look a things that are in motion
- What happens, when we introduce moving stimuli to the visual world paradigm?

Do people still make anticipatory eye movements when presented images with motion instead of static ones?

# **Experimental methods**

#### **Experiment**

#### Design and logic

- Latin square design
  - Between subject design
- Two conditions
  - 1. static (**a**) 2. motion (**b**)
- Stimuli Design
  - 32 static and 32 motion stimuli per exp.
  - Presentation of static/motion stimuli is reversed for the participant groups
- Random order of stimuli
- Custom logging



# **Implementation of the experiment**Challenges

- Stimuli design
  - Finding many sub-stimuli with similar speed, ...
  - making up sentences
  - creating audios
- Including video stimuli in OpenSesame
- Handling audio and audio timings
  - Verb cue and target cue



# **Analysis methods**

#### **Quality Control**

## Time between samples



9

#### **Data Preprocessing**

### Linear interpolation

Scipy.interp1d interpolator



#### **Data Preprocessing**

Custom Logs: verb and target onset



#### Stimulus Table

| 1 | index | sentence                              | verb_cue | verb_cue_timing | target_cue_timing | stimulus_name |
|---|-------|---------------------------------------|----------|-----------------|-------------------|---------------|
| 2 | 1     | At breakfast, I usually eat an apple. | eat      | 1657            | 2696              | apple         |

## Scanpath and Heatmap for individual subjects





#### Metrics

 Calculate Target ratio (tr) and Non-target ratio (ntr) for both conditions

$$(I) \quad tr = \frac{Samples \ on \ target \ AOI}{Total \ samples}$$

(II) 
$$ntr = \frac{Samples \ on \ non \ target \ AOIs}{Total \ samples}$$

 Visualized the cumulated tr and ntr for a single and all participants



#### Areas of interest

Verification of area of interest detection algorithem for subject 1 and sentence (ID: 14, Condition: STATIC): AT THE CASINO, THE GIRL PICKED A CARD.



#### Cumulated tr and ntr for static and motion condition

Metrics of interest for subject 6 and 7 and sentence (ID: 4): AT BREAKFAST, THE GIRL ATE A BANANA.



#### Cumulated tr and ntr for static and motion condition

Metrics of interest for subject 6 and 7 and sentence (ID: 26): AT THE GYM, THE GIRL LIFTED WEIGHTS.



# **Discussion**

#### **Discussion & Tentative Conclusions**

- Tentative analysis shows several possible outcomes
- Full analysis needed for the bigger picture



#### **Bibliography**

- [1] Cooper, R. M. (1974). The control of eye fixation by the meaning of spoken language: a new methodology for the real-time investigation of speech perception, memory, and language processing. *Cognitive psychology*.
- [2] Altmann, G. T., & Kamide, Y. (1999). Incremental interpretation at verbs: Restricting the domain of subsequent reference. *Cognition*.

## Thank you!

Elif Dilara Aygün Karl Jorge Cleres Andreo Yanhong Xu