Системи на Чебишов

Задача 1. Да се намери $\sum_{k=0}^{n} k^3$ чрез интерполиране с разделени разлики.

Решение: Нека $S(n) = \sum_{k=0}^{n} k^3 \Rightarrow S(0) = 0$, S(1) = 1, S(2) = 9, S(3) = 36, S(4) = 100, ..., $S(n) = S(n-1) + n^3$. Интерполационните възли са $x_i = i$, i = 0, 1, 2, ..., n. Създаваме таблицата за намиране на разделените разлики:

x_i	S[i]	S[<i>i</i> , <i>i</i> +1]	S[i,i+1,i+2]	S[i,i+1,i+2,i+3]	S[<i>i</i> , <i>i</i> +1,, <i>i</i> +4]	S[i,i+1,,i+5]
0	0	1	7/2	2	1/4	0
1	1	8	19/2	3	1/4	•••
2	9	27	37/2	4		0
3	36	64	61/2		1/4	
4	100	125	•••	<i>n</i> -1		
	•••		$3n^2 - 3n + 1$			
			2			
<i>n</i> -1	S(n-1)	n^3				
n	S(n)					

$$S(n) \in \pi_4 => S(n) = L_n(S; n) =$$

$$= \frac{0 + 1 \cdot n + \frac{7}{2}n(n-1) + \frac{2}{2}n(n-1)(n-2) + \frac{1}{4}n(n-1)(n-2)(n-3)}{4}$$

$$= \frac{n^2(n+1)^2}{4}.$$

Системи на Чебишов:

Нека $\{\varphi_k(x)\}_{k=0}^n$ са непрекъснати и линейно независими функции в интервала І. Казваме, че те образуват система на Чебишов в интервала І, ако всеки обобщен ненулев полином по тези функции има не повече от n различни нули в І.

Обобщен полином на функциите наричаме линейна комбинация на системата $\{\varphi_k(x)\}_{k=0}^n$:

$$\varphi(x) = \sum_{k=0}^n a_k \varphi_k(x)$$
, където $a_k \neq 0$ за някое k .

Задача 2. Нека $\alpha_0 < \alpha_1 < \dots < \alpha_n$ са различни реални числа. Да се докаже, че $\{e^{\alpha_i x}\}_{i=0}^n$ образуват Чебишова система върху реалната права.

Доказателство: Индукция по броя на функциите.

$$n=0$$
, $\varphi(x)=a_0e^{\alpha_0x}\neq 0$ за $a_0\neq 0=>$ твърдението е вярно.

Допускаме, че твърдението е вярно за (n-1). Ще докажем, че твърдението е в сила за $n \in \mathbb{N}$.

Да допуснем противното, т.е. съществува обобщен полином $\varphi(x) = \sum_{k=0}^n a_k e^{\alpha_k x}$, който има (n+1) различни реални нули $x_0 < x_1 < \dots < x_n$. Ясно е, че $a_i \neq 0$, $i = 0,1,\dots,n$, защото в противен случай ще попаднем в индукционното предположение. Тогава

 $\varphi(x) = e^{\alpha_0 x} \{a_0 + a_1 e^{(\alpha_1 - \alpha_0)x} + \dots + a_n e^{(\alpha_n - \alpha_0)x} \}$. Но $e^{\alpha_0 x} \neq 0 =>$ нулите на $\varphi(x)$ съвпадат с нулите на $\theta(x) = a_0 + a_1 e^{(\alpha_1 - \alpha_0)x} + \dots + a_n e^{(\alpha_n - \alpha_0)x}$. За $\theta(x)$ прилагаме теоремата на Рол. Следователно $\theta'(x)$ има поне n различни реални нули. Но $\theta'(x)$ е обобщен полином на функциите

 $\{e^{(\alpha_i-\alpha_0)x}\}_{i=1}^n$, където $\alpha_1-\alpha_0<\alpha_2-\alpha_0<\dots<\alpha_n-\alpha_0$. Съгласно индукционното предположение $\theta'(x)$ има не повече от (n-1) различни реални нули, което е противоречие, дължащо се на грешното допускане. Следователно $\{e^{\alpha_i x}\}_{i=0}^n$ образуват Чебишова система върху реалната права.

Задача 3. Нека $f(x) \in C^n[a,b]$ и $f^{(n)}(x) \neq 0$, $\forall x \in (a,b)$. Да се докаже, че $\{1,x,...,x^{n-1},f(x)\}$ образуват Чебишова система в интервала [a,b].

Доказателство: Да допуснем, че функциите не са Т-система в интервала [a,b]. Тогава съществува $\varphi(x)=a_0+a_1x+\dots+a_{n-1}x^{n-1}+a_nf(x)$ с (n+1) различни нули в интервала [a,b]. Ясно е, че $a_n\neq 0$, защото ако $a_n=0$, то $\varphi(x)$ има не повече от n различни нули. От теоремата на Рол следва, че $\varphi'(x)$ има n различни нули в (a,b) и след многократно приложение на теоремата на Рол получаваме, че $\varphi^{(n)}(x)=a_nf^{(n)}(x)$ има поне една нула в (a,b). Но $f^{(n)}(x)\neq 0$ и $a_n\neq 0=>\varphi^{(n)}\neq 0$, което е противоречие, дължащо се на грешното допускане. Следователно $\{1,x,\dots,x^{n-1},f(x)\}$ образуват Чебишова система в интервала [a,b].

Задача 4. Да се докаже, че $\{1, x, x \cos x\}$ образуват Чебишова система в интервала $[0, \frac{\pi}{2}]$.

Доказателство: Да допуснем, че функциите $\{1, x, x \cos x\}$ не са Т-система в интервала. Тогава съществува $\varphi(x) = a_0 + a_1 x + a_2 x \cos x$, която има три различни нули в интервала $[0, \frac{\pi}{2}], a_2 \neq 0$, защото ако $a_2 = 0$, то $\varphi(x)$ има не повече от един корен. От теоремата на Рол следва, че $\varphi''(x)$ има поне един корен в интервала $(0, \frac{\pi}{2})$. Но $\varphi''(x) = -a_2(2\sin x + x\cos x) \neq 0$, $\forall x \in (0, \frac{\pi}{2})$. Получихме противоречие, дължащо се на грешното допускане. Следователно $\{1, x, x\cos x\}$ образуват Чебишова система в интервала $[0, \frac{\pi}{2}]$.

Задача 5. Да се докаже, че функциите $\{1, \sin x\}$ не образуват Чебишова система в интервала $\left[0, \frac{3\pi}{4}\right]$.

Доказателство: Трябва да намерим такава линейна комбинация на тези функции, която да има поне две нули в интервала $\left[0,\frac{3\pi}{4}\right]$. Нека $a_0=\frac{\sqrt{2}}{2}$, $a_1=-1$. Функцията $\varphi(x)=\frac{\sqrt{2}}{2}-\sin x$ има два корена $x_1=\frac{\pi}{4}$ и $x_2=\frac{3\pi}{4}$ в интервала $\left[0,\frac{3\pi}{4}\right]$. Следователно функциите $\{1,\sin x\}$ не образуват Чебишова система в интервала $\left[0,\frac{3\pi}{4}\right]$.

Интерполиране с тригонометрични полиноми

Нека f(x) е периодична функция с период 2π . Нека са зададени стойностите на тази функция $f(x_k) = y_k$ в (2n+1) възела $0 \le x_0 < x_1 < \dots < x_{2n} \le 2\pi$. Тогава може да построим единствен тригонометричен полином $\tau(f;x)$, който интерполира функцията f(x) във възлите $\{x_k\}_{k=0}^{2n}$.

$$\tau(f;x) = \sum_{k=0}^{2n} \lambda_k(x) y_k,$$

$$\lambda_k(x) = \prod_{j=0, j \neq k}^{2n} \frac{\sin \frac{x - x_j}{2}}{\sin \frac{x_k - x_j}{2}}.$$

Изпълнени са следните интерполационни условия: $\tau(f; x_k) = f(x_k) = y_k, \ k = 0,1,...,2n$.

Задача: Да се състави програма за построяването на тригонометричен полином $\tau(f;x)$ за функцията $f(x) = \frac{\sin x}{1 + (\cos x)^2}$ с интерполационни възли $x_k = \frac{2k\pi}{2n+1}$, k = 0,1,...,2n, за n = 4.

Решение:

```
 \begin{array}{l} n=4; \\ Do[x[k]=2k*Pi/(2n+1),\{k,0,2n\}]; \\ f[t_{-}]:=Sin[t]/(1+Cos[t]^2); \\ Do[1[k_{-},t_{-}]:=(s=1;Do[If[j\neq k,s*=Sin[(t-x[j])/2]/Sin[(x[k]-x[j])/2]],\{j,0,2n\}];s),\{k,0,2n\}]; \\ T[t_{-}]:=Sum[1[k,t]*f[x[k]],\{k,0,2n\}]; \\ Plot[T[t],\{t,0,2Pi\}] \\ Plot[f[t]-T[t],\{t,0,2Pi\}] \\ \end{array}
```


Задачи са самостоятелна работа:

- 1) Да се докаже, че функциите $\{1, \cos x\}$ не образуват Чебишова система в интервала $[-\frac{\pi}{2}, \frac{\pi}{2}]$.
- 2) Да се докаже, че $\{1, x, x\sin x\}$ образуват Чебишова система в интервала $[\frac{\pi}{2}, \pi]$