Premier degré: sujet A

1 Exercice : Echelles de température

- 1. La fonction f est une fonction affine car elle est de la forme f(x) = mx + p avec m = 1, 8, p = 32. Elle n'est pas linéaire car $p \neq 0$.
- 2. On a $f(0) = 1.8 \times 0 + 32 = 32$ donc l'eau se solidifie à 32 degrés Fahrenheit. On a $f(100) = 1.8 \times 100 + 32 = 180 + 32 = 212$, donc l'eau bout à 212 degrés Fahrenheit.

2 Problème : Les transporteurs

- Le transporteur 1 fait payer 460 euros de location du véhicule puis 3,5 euros par kilomètre parcouru.
- Le transporteur 2 fait payer 1000 euros de location du véhicule puis 2 euros par kilomètre parcouru.
- Le transporteur 3 fait payer 2000 euros de location puis 0,5 euros par kilomètre parcouru.
- 1. On a $f_1(x) = 460 + 3.5x$, $f_2(x) = 1000 + 2x$, $f_3(x) = 2000 + 0.5x$.
- 2. On résout:

$$f_1(x) \leq f_2(x)$$

$$\Leftrightarrow 460 + 3.5x \leq 1000 + 2x$$

$$\Leftrightarrow 3.5x \leq 540 + 2x$$

$$\Leftrightarrow 1.5x \leq 540$$

$$\Leftrightarrow x \leq 360.$$

$$S =]-\infty;360]$$

$$f_1(x) \leq f_3(x)$$

$$\Leftrightarrow 460 + 3,5x \leq 2000 + 0,5x$$

$$\Leftrightarrow 3,5x \leq 1540 + 0,5x$$

$$\Leftrightarrow 3x \leq 1540$$

$$\Leftrightarrow x \leq \frac{1540}{3} (\approx 513,33333).$$

$$\mathcal{S} =]-\infty; \frac{1540}{3}]$$

$$f_3(x) \leq f_2(x)$$

$$\Leftrightarrow 2000 + 0.5x \leq 1000 + 2x$$

$$\Leftrightarrow 1000 \leq 1.5x$$

$$\Leftrightarrow \frac{2000}{3} \leq x$$

$$\mathcal{S} = \left[\frac{2000}{3}; +\infty\right[$$

3. Pour des distances (en kilomètres) dans l'intervalle [0;360] on aura recourt au premier transporteur, pour des distances dans $[360;\frac{2000}{3}]$ on aura recours au deuxième et pour des distances dans $[\frac{2000}{3};+\infty[$ on aura recourt au troisième.