

Confusion Matrix

Given an actual label and a predicted label, the first thing we can do is divide our samples in 4 buckets:

True positive — actual = 1, predicted = 1

False positive — actual = 0, predicted = 1

False negative — actual = 1, predicted = 0

True negative — actual = 0, predicted = 0

Confusion Matrix

Confusion Matrix		Predicted	
		Negative	Positive
Actual	Negative	True Negative	False Positive
	Positive	False Negative	True Positive

 The most common metric for classification is accuracy, which is the fraction of samples predicted correctly as shown below:

• Precision is the fraction of predicted positives events that are actually positive as shown below:

 Recall (also known as sensitivity) is the fraction of positives events that you predicted correctly as shown below:

Precision vs Recall

- For example, a cancer hospital has 200 patients where 100 have cancer
- A Machine Learning model is retrieving 80 patients and saying that those 80 have cancer and rest of 120 don't have cancer
- Imagine that 40 people out of the 80 patients retrieved by the model have cancer
- Precision is 40/80 = 0.5, Recall is 40/100 = 0.4
- Now which one is important?

• The f1 score is the harmonic mean of recall and precision, with a higher score as a better model. The f1 score is calculated using the following formula:

$$F1 = \frac{2}{\frac{1}{precision} + \frac{1}{recall}} = \frac{2 * (precision * recall)}{precision + recall}$$

ROC Curve and ROC AUC Score

- ROC curves are VERY help with understanding the balance between true-positive rate and false positive rates. Calculated using 3 lists
- thresholds = all unique prediction probabilities in descending order
- fpr = the false positive rate (FP / (FP + TN)) for each threshold
- tpr = the true positive rate (TP / (TP + FN)) for each threshold

ROC Curve and ROC AUC Score

Precision Recall Curve

Average Precision

$$AP@k = \frac{1}{GTP} \sum_{i=1}^{k} \frac{TP \text{ seen}}{i}$$

AP@k formula for information retrieval tasks

Overall AP =
$$\frac{1}{3}$$
 (1/1 + 0/2 + 0/3 + 2/4 + $\frac{1}{3}$ + 0 ... + 0) = 0.7

Calculation of AP for a given query, Q, with a GT=3

Overall AP =
$$\frac{1}{3}$$
 (1/1 + 2/2 + 3/3 + 0/4 + 0/5 + 0 ... + 0) = 1.0

Calculation of a perfect AP for a given query, Q, with a GTP=3

Mean Average Precision (mAP)

• For each query, Q, we can calculate a corresponding AP. A user can have as much queries as he/she likes against any labeled database. The mAP is simply the mean of all the queries that the use made.

$$mAP = \frac{1}{N} \sum_{i=1}^{N} AP_i$$

mAP formula for information retrieval

Intersection over Union (IoU)

Useful in object detection and image segmentation problems

