Project Planning Phase

Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

	<u> </u>		
Date	22 October 2022		
Team ID	PNT2022TMID05981		
Project Name	Crude Oil Price Prediction		

Product Backlog, Sprint Schedule, and Estimation

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Data Collection	USN-1	Download Crude Oil Price Dataset	2	Medium	Naveen Karthi p Mahendra Prakash R Muthu Rathis k Rithick m
Sprint-1	Data Preprocessing	USN-2	Importing The Dataset into Workspace	1	Low	Naveen Karthi P Mahendra Prakash R
Sprint-1		USN-3	Handling Missing Data	3	Medium	Muthu rathis K Rithick M
Sprint-1		USN-4	Feature Scaling	3	Low	Naveen karthi P Mahendra Prakash R
Sprint-1		USN-5	Data Visualization	3	Medium	Muthu rathis K Rithick M

Sprint-1		USN-6	Splitting Data into Train and Test	4	High	Naveen Karthi P Mahendra Prakash R	
Sprint-1		USN-7	Creating A Dataset with Sliding Windows	4	High	Muthu rathis K Rithick M	
Sprint-2	Model Building	USN-8	Importing The Model Building Libraries	1	Medium	Naveen karthi P Mahendra Prakash R	
Sprint-2		USN-9	Initializing The Model	1	Medium	Muthu rathis K Rithick M	
Sprint-2		USN-10	Adding LSTM Layers	2	High	Muthu rathis K Rithick M	
Sprint-2		USN-11	Adding Output Layers	3	Medium	Naveen karthi P Mahendra Prakash r	
Sprint-2		USN-12	Configure The Learning Process	4	High	Muthu rathis K Rithick M	
Sprint-2		USN-13	Train The Model	2	Medium	Muthu rathis K Rithick M	
Sprint-2		USN-14	Model Evaluation	1	Medium	Naveen karthi P Mahendra Prakash R	
Sprint-2		USN-15	Save The Model	2	Medium	Naveen Karthi P Mahendra Prakash R	
Sprint-2		USN-16	Test The Model	3	High	Muthu rathis K Rithick M	

Sprint-3	Application Building	USN-17	Create An HTML File	4	Medium	Naveen Karthi p Mahendra Prakash R
Sprint-3		USN-18	Build Python Code	4	High	Muthu rathis K Rithick M
Sprint-3		USN-19	Run The App in Local Browser	4	Medium	Naveen karthi P Mahendra Prakash R
Sprint-3		USN-20	Showcasing Prediction On UI	4	High	Muthu rathis K Rithick M
Sprint-4	Train The ModelOnIBM	USN-21	Register For IBM Cloud	4	Medium	Naveen karthi P Mahendra Prakash M
Sprint-4		USN-22	Train The ML Model On IBM	8	High	Muthu rathis K Rithick M
Sprint-4		USN-23	Integrate Flask with Scoring End Point	8	High	Naveen karthi P Mahendra Prakash R

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date(Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	03 Nov 2022

Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	10 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	17 Nov 2022

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per

iteration unit (story points per day)
$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

Burndown Chart:

A burndown chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies suchas Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

