Tutorial Note 7: Labour Market and Phillips Curve

Teaching Assistant: Harlly Zhou

A Simple Model of the Labour Market

Price Determination Consider a production function

$$Y = AN$$
.

The **marginal product of labour** (MPL) is $\frac{\partial Y}{\partial N} = A$. Suppose that the cost of hiring an extra worker is W. Then the marginal cost of production is $\frac{W}{A}$. Let m be the markup (due to monopolistic power). Then the price level will be

$$P = (1+m)\frac{W}{A}.$$

Wage Determination Assume that the nominal wage is

$$W = AP^e F(u, z),$$

where A is the MPL, P^e is the expected price level, and F is a function decreasing in unemployment rate u, and increasing in z, a variable capturing all other factors.

Natural Rate of Unemployment From the price determination equation, we have

$$\frac{W}{P} = \frac{A}{1+m}.$$

From the wage determination equation, since $P^e = P$ in the medium run, we have

$$\frac{W}{P} = AF(u, z).$$

In a $(u, \frac{W}{P})$ diagram, the pricing curve is a horizontal line, and the wage curve is a downward-sloping curve, as is shown in Figure 1. The equilibrium unemployment rate that is reached by the two curves is called the **natural rate of unemployment**.

Figure 1: Natural Rate of Unemployment

Example 1. Consider a linear production function

$$Y = AN$$
.

Let the wage setting equation be

$$\frac{W}{P^e} = AF(u, z),$$

where z is the union power and

$$F(u,z) = 1 - \alpha u_t + \phi z_t.$$

Suppose that the union can bargain for a real minimum wage at

$$\frac{W}{P} \ge \underline{w}_t = \omega z_t$$

(1) When the minimum wage is not hit, find out the equilibrium real wage and write the natural rate of unemployment (not by log approximation) as a function of z_t and parameters.

- (2) Suppose that the constraint binds. Find the natural rate of unemployment as a function of z_t and parameters.
- (3) Find the threshold for z_t where the minimum wage constraint binds. Denote it as \bar{z} .
- (4) When the constraint binds, how does the natural rate of unemployment change with union power? Explain the economic intuition.

Example 2. Consider the following production function

$$Y = A \log N$$
.

The wage determination equation, in the medium run equilibrium, is

$$\frac{W}{P} = AF(u, z) \equiv A(1 - \alpha u_t + z).$$

- (1) Let m be the markup. Write the price setting equation, i.e., write P as a function of N.
- (2) Let the population L be normalized to 1 and assume that it is constant. Find a quadratic equation characterizing the natural rate of unemployment. Which solution to the equation you should keep? Why?

(3) Suppose that the labour productivity A increases. Using a diagram, explain what happens to the new equilibrium real wage and the new natural rate of unemployment.

Exercise 1. Chapter 7, Question 5 in Blanchard, Olivier (2021), Macroeconomics, 8th ed., Pearson.

Deriving the Phillips Curve

Recall that the labour market equilibrium is the intersection of

Wage setting:
$$\frac{W}{P^e} = AF(u, z)$$

Price setting:
$$P = (1+m)\frac{W}{A}$$
.

Combining the two curves, we obtain

$$P = P^e(1+m)F(u,z).$$

Assume that

$$F(u, z) = 1 - \alpha u + z.$$

Then

$$P_t = P_t^e (1+m)(1-\alpha u_t + z).$$

Dividing both sides by P_{t-1} , we obtain

$$\log \frac{P_t}{P_{t-1}} = \log \frac{P_t^e}{P_{t-1}} + \log(1+m) + \log(1-\alpha u_t + z).$$

By approximation, we have the **Phillips curve**:

$$\pi_t = \pi_t^e + (m+z) - \alpha u_t.$$

Original Phillips Curve Assume that inflation does not persist: $\pi^e = \bar{\pi}$, meaning that past inflation rates are not informative to predict new inflation. Then the Phillips curve becomes

$$\pi_t = (\bar{\pi} + m + z) - \alpha u_t.$$

Denote $\beta := \bar{\pi} + m + z$. Then we have

$$\pi_t = \beta - \alpha u_t.$$

However, there are periods when this original Phillips curve is not supported by the data.

Accelerationist Phillips Curve Assume that inflation persists: $\pi^e = \pi_{t-1}$, meaning that people use the inflation from the past period as the indicator of expected inflation. Then the Phillips curve becomes

$$\pi_t = \pi_{t-1} + (m+z) - \alpha u_t.$$

Denote $\gamma := m + z$. Then we have

$$\Delta \pi_t = \gamma - \alpha u_t.$$

The period now fits.

Inflation Expectations As in the previous two versions of PC, we have different methods to form expectations for inflation. Combining the two methods, we can assume that

$$\pi_t = (1 - \theta)\bar{\pi} + \theta \pi_{t-1}.$$

Example 3. Continue with Example 1.

(1) Derive the Phillips curve.

(2) Write the accelerationist version of the Phillips curve. Compare it with

$$\Delta \pi_t = \gamma - \alpha u_t.$$

What is the difference? Where does it come from? How do they differ economically?

Exercise 2. Chapter 8, Question 5 in Blanchard, Olivier (2021), Macroeconomics, 8th ed., Pearson.

Natural Rate of Unemployment Revisited

Recall the the natural rate of unemployment is the rate at which $P = P^e$, i.e., the labour market is at medium-run equilibrium. Since $P = P^e$, we also have $\pi = \pi^e$ in medium-run equilibrium. Then the PC becomes

$$0 = (m+z) - \alpha u_n,$$

which yields

$$u_n = \frac{m+z}{\alpha}$$
.

Then the PC (not at equilibrium) can be rewritten as

$$\pi_t - \pi_t^e = -\alpha (u_t - u_n).$$

Wage Indexation Wage indexation is a provision that automatically increases wages in line with inflation. Suppose that there is a λ proportion of indexed contracts. Then we have two types of wage settings:

Indexed Wage: $W_1 = AP_tF(u_t, z)$

Normal Wage: $W_2 = AP_t^e F(u_t, z)$.

Then the price setting becomes

$$P_t = (1+m)\frac{\lambda W_1 + (1-\lambda)W_2}{A} = [\lambda P_t + (1-\lambda)P_t^e]F(u,z)(1+m),$$

which yields the following PC curve:

$$\pi_t = [\lambda \pi_t + (1 - \lambda)\pi_t^e] - \alpha(u_t - u_n).$$

Rearranging the terms, we get

$$\pi_t - \pi_t^e = -\frac{\alpha}{1 - \lambda} (u_t - u_n).$$

Example 4. Continue with example 1 and 2.

- (1) Find the natural rate of unemployment using the Phillips curve. Check your answer with Example 1 part (2). Do they match? Rewrite the Phillips curve using the natural rate of unemployment.
- (2) Suppose that now half of the contracts are indexed. Write the Phillips curve equation.
- (3) What is the effect of wage indexation on the relation between inflation and unemployment?

Exercise 3. Chapter 8, Question 6 in Blanchard, Olivier (2021), Macroeconomics, 8th ed., Pearson.