Progetto DSIM

Premate Andrea 829777

Task 1: Audio classification

Dataset

(https://www.kaggle.com/datasets/andrewmvd/covid19-cough-audio-classification)

- Il dataset contenente 27 550 file audio di tosse e diversi attributi come:
 - probabilità tosse
 - età
 - provenienza geografica
 - malattia
 - ...
- Classificazione: detector tosse
- Classe <u>no tosse</u>: < 20% prob
 Classe <u>tosse</u>: > 80% prob
- Bilanciamento del dataset

Estrazione features (tosse)

Mel-Frequency Cepstral Coefficients

Mel Spectrogram

Estrazione features (no tosse)

Mel-Frequency Cepstral Coefficients

Mel Spectrogram

Modello 1: CNN su MFCC

```
x = inputs
x = keras.layers.Conv2D(32, 5, padding='same')(x)
x = keras.layers.Activation('relu')(x)
x = keras.layers.MaxPooling2D(5, strides=5, padding='same')(x)
x = keras.layers.Conv2D(64, 2, padding='same')(x)
   keras.layers.Activation('relu')(x)
x = keras.layers.MaxPooling2D(2, strides=2, padding='same')(x)
x = keras.layers.Conv2D(128, 2, padding='same')(x)
   keras.layers.Activation('relu')(x)
x = keras.layers.MaxPooling2D(2, strides=2, padding='same')(x
x = keras.layers.Flatten()(x)
x = keras.layers.Dense(units = 16, activation = 'relu')(x)
outputs = keras.layers.Dense(1, activation='sigmoid')(x)
```


Modello 1: CNN su MFCC (test)

	precision	recall	f1-score	support
0	0.96	0.96	0.96	689
1	0.96	0.96	0.96	671
accuracy			0.96	1360
macro avg	0.96	0.96	0.96	1360
weighted avg	0.96	0.96	0.96	1360
[[663 26]				
[27 644]]				

Modello 2: CNN su Mel Spectrogram

Rete uguale al punto precedente

Modello 2: CNN su Mel Spectrogram (test)

	precision	recall	f1-score	support
0	0.93	0.95	0.94	689
1	0.95	0.92	0.94	671
accuracy			0.94	1360
macro avg	0.94	0.94	0.94	1360
weighted avg	0.94	0.94	0.94	1360
[[656 33] [52 619]]				

Modello 3: CNN su MFCC + Mel Spectrogram

Rete uguale al punto precedente ma:

- input con due canali
- fc 32 anziché 16 nel penultimo layer

Modello 3: CNN su MFCC + Mel Spectrogram (test)

	precision	recall	f1-score	support
0	0.96	0.96	0.96	689
1	0.96	0.96	0.96	671
accuracy			0.96	1360
macro avg	0.96	0.96	0.96	1360
weighted avg	0.96	0.96	0.96	1360
[[660 29] [27 644]]				

Task 2: Image classification

Dataset

(https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database)

- Il dataset contiene radiografie polmonari di:
 - 3616 COVID-19 positive
 - 10192 Normal
 - 6012 Lung Opacity (Non-COVID lung infection)
 - 1345 Viral Pneumonia
- Relative mask di segmentazione dei polmoni
- Classificazione: ipotesi diagnostica

Dataset

- Immagini a scala di grigi
- Le radiografie provengono da differenti dataset

Modello 1: CNN built from scratch

```
inputs
    keras.layers.Conv2D(32, 5, padding='same')(x)
    keras.layers.Activation('relu')(x)
    keras.layers.MaxPooling2D(5, strides=5, padding='same')(x)
x = keras.layers.Dropout(0.1)(x)
x = keras.layers.Conv2D(64, 5, padding='same')(x)
    keras.layers.Activation('relu')(x)
x = keras.layers.MaxPooling2D(5, strides=5, padding='same')(x)
x = keras.layers.Dropout(0.1)(x)
x = keras.layers.Conv2D(128, 3, padding='same')(x)
    keras.layers.Activation('relu')(x)
    keras.layers.MaxPooling2D(3, strides=3, padding='same')(x)
x = keras.layers.Dropout(0.1)(x)
    keras.layers.Conv2D(256, 2, padding='same')(x)
    keras.layers.Activation('relu')(x)
x = keras.layers.Flatten()(x)
x = keras.layers.Dropout(0.1)(x)
x = keras.layers.Dense(units = 16, activation = 'relu')(x)
outputs = keras.layers.Dense(4, activation='softmax')(x)
```

 Data augmentation: flip orizzontale, rotazione, zoom, luminosità

Modello 1: CNN built from scratch (test)

1	precision	recall	f1-score	support
COVID	0.94	0.91	0.93	362
Lung_Opacity	0.89	0.81	0.85	602
Normal	0.88	0.95	0.91	1019
Viral Pneumonia	0.96	0.93	0.95	134
accuracy			0.90	2117
macro avg	0.92	0.90	0.91	2117
weighted avg	0.90	0.90	0.90	2117
[[330 17 13 2]			
[10 485 106 1]			
[10 41 966 2]			
[0 0 9 125]]			

Utilizzo delle mask

- Utilizzo della stessa rete ma solo su parti di immagini segmentate.
- Aspettative: training facilitato almeno in fase iniziale.

Modello 2: CNN built from scratch + mask

 Stessa rete utilizzata al punto precedente e stessa augmentation

Modello 2: CNN built from scratch + mask (test)

	precision	recall	f1-score	support
COVID	0.82	0.66	0.73	362
Lung Opacity	0.85	0.80	0.82	602
Normal	0.86	0.95	0.90	1019
Viral Pneumonia	0.93	0.93	0.93	134
accuracy			0.86	2117
macro avg	0.86	0.83	0.85	2117
weighted avg	0.85	0.86	0.85	2117
[[238 59 65	0]			
[31 481 85	5]			
[19 28 967	5]			
[1 1 7 12	5]]			

No mask vs Mask

Performance migliori senza mask, cause?

- Overfitting su diversi formati di dataset di origine (notazioni sulla rx) e relativa distribuzione sulle label.
- Overfitting su altri elementi del busto statisticamente più probabili per ipotesi diagnostica. Esempio ipotetico:

UNWANTED FEATURES

donne hanno distribuzione diversa sulle label

riconoscimento del seno dalla rx e learning conseguente in base a tale feature.

Segmentazione approssimativa

Modello 3: ResNet50 + fine tuning

- ResNet50 + fc1028 + fc515
 + fc32 + fc4
- Freeze fino a circa metà rete (conv4_block4_out)

Modello 3: ResNet50 + fine tuning (test)

	precision	recall	f1-score	support
COVID	0.98	0.95	0.97	362
Lung Opacity	0.95	0.88	0.91	602
Normal	0.92	0.98	0.95	1019
Viral Pneumonia	0.99	0.93	0.96	134
accuracy			0.94	2117
macro avg	0.96	0.94	0.95	2117
weighted avg	0.94	0.94	0.94	2117
[[345 10 7	0]			
[5 529 68	0]			
[3 18 997	1]			
[0 0 9 12	25]]			

