Math 285: Differential Equations

Midterm Exam 1, Spring 2020

Date: February 19, 2020

READ THE FOLLOWING INFORMATION.

• This is a 90-minute exam.

91. A92. A93. A94. A

95. D96. C

- This exam contains 10 pages (including this cover page), 10 multiple choice questions, and 2 free response questions. Total of points is 100.
- No books, notes, calculators, or electronic devices allowed.
- You must not communicate with other students during this test.
- There are several different versions of this exam.
- Do not turn this page until instructed to.

1. F	1. Fill in your information:										
]	Full Name:										
1	UIN (Student Number):										
]	NetID:										
(Circle your section:	E1 (1 pm)	F1 (2 pm)								
2. F	Fill in the following	answers on the Sc	antron form:								

Multiple form.	Choice	Questions:	Mark	answers	to ques	stions 1	to 10 oı	n your	scantron

1. (5 points) For which values of r and K, is the constant function y(t) = -2 an asymptotic stable equilibrium solution to the following equation?

$$y' = r(y+2)(y-K).$$

- (A) r = -2 and K = 1
- (B) $\bigstar r = 1$ and K = 0
- (C) r = -1 and K = -2
- (D) r=2 and K=-3
- (E) None of these

Solution. In order for y(t) = -2 to be asymptotic stable, f(y) = r(y+2)(y-K) is negative if y is close to -2 from right and positive if y is close to -2 from left. Thus, this holds if t>0 and t>0 and t>0 and t<0.

2. (5 points) Identify which differential equation below corresponds to the following direction field.

- (A) None of these
- (B) y' = y(y-4)
- (C) $\star y' = (y-2)(y-4)$
- (D) y' = (2 y)(y 4)
- (E) y' = y 2

Solution. The slopes are zero if y = 2, 4. If y > 4 or y < 2, then the slope is positive. If 2 < y < 4, then the slope is negative. Thus, y' = (y - 2)(y - 4).

3. (5 points) The following nonlinear equation for y(x) can be transformed with a substitution into which separable equation for v(x)?

$$y' = \frac{-x^2 + 2xy + y^2}{x^2} + \sec\left(\frac{y}{x}\right)$$

- (A) None of these
- (B) $\star xv' = -1 + v + v^2 + \sec v$
- (C) $v' = 1 2v + v^2$
- (D) $v' = -1 + 2v + v^2 + \sec v$
- (E) $xv' = -x^2 + v + v^2 + \sec v$

Solution. Let v = y/x, then v + xv' = y' and the RHS is $-1 + 2v + v^2 + \sec v$.

4. (5 points) Solve the following initial value problem.

$$y' - 4y = e^{2t}, \qquad y(1) = 0.$$

(A)
$$y(t) = e^{6t} - e^{10t-4}$$

(B)
$$\bigstar y(t) = \frac{1}{2}(e^{4t-2} - e^{2t})$$

(C)
$$y(t) = e^2 - e^{2t}$$

(D) None of these

(E)
$$y(t) = \frac{1}{2}(e^{-2} - e^{-2t})$$

Solution. Since the integrating factor is $\mu(t) = e^{-4t}$, we have

$$y(t) = e^{4t} \int e^{-2t} dt = e^{4t} (-\frac{1}{2}e^{-2t} + C).$$

Since y(1) = 0, the solution is

$$y(t) = \frac{1}{2}(e^{4t-2} - e^{2t}).$$

5. (5 points) What is the correct integrating factor to solve the following ODE for y(t)?

$$t^4y' + 3t^3y + 1 = 0.$$

- (A) $\mu(t) = 3t$
- (B) $\star \mu(t) = t^3$
- (C) $\mu(t) = \frac{1}{t^3}$
- (D) None of these
- (E) $\mu(t) = \frac{3}{t}$

Solution. Dividing the equation by t^4 , we get p(t) = 3/t and

$$\mu(t) = \exp(3\int \frac{1}{t} dt) = t^3.$$

6. (5 points) How would you classify the following equation for y(t)?

$$(1+t^2)(y''')^2 + e^t \ln y = \frac{y}{t}.$$

- (A) A third order linear differential equation.
- (B) None of these
- (C) \bigstar A third order nonlinear differential equation.
- (D) A sixth order linear differential equation.
- (E) A sixth order nonlinear differential equation.

Solution. The highest derivative is y''' and there are nonlinear terms $(y''')^2$ and $\ln y$.

7. (5 points) Determine the values of r for which the given differential equation has solutions of the form $y(t) = e^{rt}$.

$$y'' + y' - 6y = 0.$$

- (A) r = 1, -3
- (B) $\star r = 2, -3$
- (C) r = 2, 3
- (D) None of these
- (E) r = -2, 3

Solution. Plugging $y(t) = e^{rt}$ into the equation, we get $(r^2 + r - 6)e^{rt} = 0$. Since $e^{rt} \neq 0$, we have r = 2, -3.

8. (5 points) Consider the following nonlinear ODE for y(x). Which initial condition would guarantee a unique solution to the initial value problem?

$$yy' + 2xy' = \frac{\ln x}{x - 3}$$

- (A) y(3) = -6
- (B) y(3) = 2
- (C) $\star y(-1) = 1$
- (D) None of these
- (E) y(-1) = 2

Solution. Since yy' + 2xy' = y'(y+2x), we have

$$y' = \frac{\ln x}{(y+2x)(x-3)} = f(x,y).$$

Then, f and $\frac{\partial f}{\partial y}$ are continuous if $y \neq -2x$ and $x \neq 3$.

9. (5 points) Find the solution of

$$\frac{dy}{dt} = 8 - 3y.$$

- (A) $\bigstar \ y(t) = Ce^{-3t} + \frac{8}{3}$ where C is an arbitrary constant.
- (B) None of these
- (C) $y(t) = Ce^{-t} + \frac{8}{3}$ where C is an arbitrary constant.
- (D) $y(t) = e^{-3t} + C$ where C is an arbitrary constant.
- (E) $y(t) = e^{-t} + C$ where C is an arbitrary constant.

Solution. Since it is separable,

$$\frac{1}{3y - 8}dy = -dt$$

and so $\frac{1}{3} \ln |3y - 8| = -t + C$. Thus, $y(t) = Ce^{-3t} + \frac{8}{3}$.

10. (5 points) The existence and uniqueness theorem for linear differential equations ensures that the solution of

$$(t-4)(t+1)y' + \sqrt{1-t}y = 1 - 2t^2, \quad y(0) = 3$$

exists for all t in the region defined by:

- (A) \bigstar (-1,1)
- (B) None of these
- (C) $(-\infty, -1)$
- (D) (-1,4)
- (E) $(4,\infty)$

Solution. Dividing the equation by (t-4)(t+1), we have

$$y' + \frac{\sqrt{1-t}}{(t-4)(t+1)}y = \frac{1-2t^2}{(t-4)(t+1)}.$$

The first coefficient is continuous on $(-\infty, -1) \cup (-1, 1)$ and the second on $(-\infty, -1) \cup (-1, 4) \cup (4, \infty)$. Since the initial condition $0 \in (-1, 1)$, the interval is (-1, 1).

Free Response Questions: Make sure you show your work. You may get partial credit.

11. (10 points) Consider the following differential equation.

$$y' = \frac{x^4 + 3y}{x}, \qquad x > 0.$$

(i) Determine whether the equation is linear. Give a reason why.

(ii) Solve the equation with the initial condition y(2) = 4.

Solution.

- (i) It is linear because it can be written as $y' \frac{3}{x}y = x^3$.
- (ii) The integrating factor is $\mu(x) = x^{-3}$. Thus,

$$y(x) = \frac{1}{\mu(t)} \int \mu(x)x^3 dx = x^3(x+C) = x^4 + Cx^3.$$

Since y(2) = 4, $C = -\frac{3}{2}$ and so

$$y(x) = x^4 - \frac{3}{2}x^3.$$

12. (10 points) Find the solution to the following initial value problem.

$$(x^4+1)y' = 2x^3y^2, y(0) = \frac{3}{2}$$

and specify the interval where the solution is defined.

Solution. The equation is separable and

$$\frac{1}{y^2}dy = \frac{2x^3}{x^4 + 1}dx.$$

Taking integration of the both sides, we have

$$-\frac{1}{y} = \frac{1}{2}\ln(x^4 + 1) + C.$$

Using the initial condition, C = -2/3. Thus,

$$y(x) = \frac{6}{4 - 3\ln(x^4 + 1)}.$$

Since the denominator is zero if

$$x = \pm (e^{4/3} - 1)^{\frac{1}{4}},$$

the solution is defined on the interval

$$(-(e^{4/3}-1)^{\frac{1}{4}},(e^{4/3}-1)^{\frac{1}{4}}).$$