

L1: FROM METER TO CENTIMETER

LECTURE STRUCTURE

- Video watch
- Poll questions
- Lecture slides
- Reflection questions
- Active student participation
- Questions on the chat
- Raise your hand

FROM METER TO SUB CENTIMETER

Content

- Various positioning modes and techniques to improve the precision level of positioning down to centimeter or even below.
- After this lecture, the participant should be able:
 - ✓ to distinguish between different positioning modes.
 - ✓ to choose a suitable positioning technique for your application.

WHY GEODESY?

What? ... watch video How long? ... 5-min Who? ... everyone

Pay attention!
Take notes if preferred.
Questions afterwards

https://www.youtube.com/watch?v=BCK5Zj--w7w

QUIZZ: QUESTION 1

The video mentioned several fields of application. How many are presented in the video? (give one single number)

https://app.sli.do/event/yi9ojfe5

QUIZZ: QUESTION 2

The video has mentioned several fields of application. Name as many as you can remember. (multiple answers allowed, max. 50 characters per answer)

https://app.sli.do/event/yi9ojfe5

QUIZZ: QUESTION 3

What are the most common or key words used in the video?

(type as many as you recall, max. 25 characters per word)

https://app.sli.do/event/yi9ojfe5

WHAT DOES IT MEAN PRECISE?

10 m

1 m

1 cm

1 mm

GIS-E5050: Advanced Geodesy 16.3.2021

octavian.andrei@nls.fi

GNSS POSITIONING MODES / MODELS

Positioning modes

Point, differential, relative positioning

Positioning techniques / methods / models

- Single Point Positioning
- Precise Point Positioning
- Differential GNSS
- Real Time Kinematic
- Network RTK

Feature	Code-based (Standard Positioning)
Observable	Pseudorange (code)
Computation	Relatively simple d = c x t
Mode	Absolute but not precise
Receiver noise	3 m / 30 cm
Multipath	30 cm – 30 m
Sensitivity	High (< 20 dBHz)
Discontinuity	No slip
Ambiguity	-
Receiver cost	Low (€100+)
Accuracy (RMS)	Single : 3 m (H), 5 m (V) DGNSS: 1 m (H), 2 m (V)
Applications	General navigation, Fleet management, Geocatching, Timining, SARm LBS, etc.

Feature	Code-based (Standard Positioning)	Carrier phase-based (Precise Positioning)	
Observable	Pseudorange (code)	Carrier phase + pseudorange	
Computation	Relatively simple d = c x t	Complicated d = N x λ	
Mode	Absolute but not precise	Relative but not absolute	
Receiver noise	3 m / 30 cm	3 cm	
Multipath	30 cm – 30 m	1 – 3 cm	
Sensitivity	High (< 20 dBHz)	Low (> 35 dBHz)	
Discontinuity	No slip	Cycle-slip	
Ambiguity	-	Estimated / Resolved	
Receiver cost	Low (€100+)	Expensive (€10k+)	
Accuracy (RMS)	Single : 3 m (H), 5 m (V) DGNSS: 1 m (H), 2 m (V)	Static: 5 mm (H), 1 cm (V) RTK: 1 cm (H), 2 cm (V)	
Applications	General navigation, Fleet management, Geocatching, Timining, SARm LBS, etc. Surveying (land, sea & air), Machine Precise engineering, Datum monitorion observations, etc.		

GIS-E5050: Advanced Geodesy 16.3.2021

octavian.andrei@nls.fi

GNSS STANDALONE POSITIONING

GNSS STANDALONE POSITIONING

GIS-E5050: Advanced Geodesy 16.3.2021

octavian.andrei@nls.fi

FINNISH GEOSPATIAI RESEARCH INSTITUT

GNSS PRECISE POSITIONING

GIS-E5050: Advanced Geodesy 16.3.2021

octavian.andrei@nls.fi

REDUCING GNSS ERRORS

Observation
Space
Representation
(OSR)

State
Space
Representation
(SSR)

COMMON ERRORS

Satellite-dependent

- Satellite orbital errors
- Satellite clock errors
- Satellite antenna, geometry

Propagation-dependent

- Ionospheric & tropospheric delays
- Multipath
- Cycle slips

Receiver/site-dependent

- Receiver clock error, noise
- Antennae

Source: http://www.novatel.com/

SPECIAL ERRORS

- Several other errors have to be considered to calculate Tides very accurate point positioning solutions (e.g., PPP)
- Satellite antenna phase center offset & variations
- Phase wind-up
- Solid Earth tides
- Ocean loading
- Polar tides
- Code and phase biases

The more comprehensive the list the higher the positioning performance

Solar Tides

Lunar Tides

NLS
FINNISH GEOSPATIAL RESEARCH INSTITUTE
FGI

GIS-E5050: Advanced Geodesy 16.3.2021

octavian.andrei@nls.fi

WHAT ENABLES PRECISE POSITIONING?

- Centimeter level accuracy has been possible for many years!
- Easily accessible correction / augmentation data
- Advanced positioning algorithms

CORRECTION DATA

Before

- Your own base receiver
- Radio link (limited to 3 km, affected by terrain, national legislation)
- Availability of radio channels
- Long delays for precise orbits and clocks

Now

- RT correction services development, broadcast over cellular frequencies
- Base station data available 24/7 via CORS networks
- Rapid precise orbits and clock corrections
- Increased quality of corrections delivered over L-band, MSM, SSR, LPP, CLAS, SPARTN

ADVANCED POSITIONING ALGORITHMS

Real Time Kinematic (RTK)

- User determines the position of an unknown point (rover) with respect to a known point (base)
 - At least a <u>pair</u> of receivers
- Simultaneous observations
 - Time-tagged GNSS measurements are transmitted from the base
 - The differentiation process takes place at the rover
- Baseline and position at rover
- Faster fixes over longer baselines
- Single base or Network RTK

Precise Point Positioning (PPP)

- Precise satellite clocks & orbits
- Carrier phase observations
- Single (dual-frequency) receiver
- Iono-free data combinations
- Significant improvements in the last decade
- Post-processing (popular)
- Real-time (now)
- Cm-level accuracy in kinematic, realtime achievable (now)

DRIVERS FOR POSITIONING PERFORMANCE

- More signals: availability, complex, robust
- Antenna selection
- Antenna placement
- Receiver capabilities
- Multiple constellations
- Multiple frequencies
- Error modelling
- Algorithm design
- Correction services
- Positioning mode

REFLECTION QUESTION

Why precise positioning has expanded from the traditional surveying and geodesy to other markets & applications?

TIME FOR BREAK

POSITIONING MODES

NLS FINNISH GEOSPATIAL RESEARCH INSTITUTE FGI

POSITIONING MODES

GIS-E5050: Advanced Geodesy 16.3.2021

octavian.andrei@nls.fi

STANDARD POINT POSITIONING (SPP)

- Autonomous / standalone / absolute positioning
- Pseudoranges measured at one receiver
- GPS/GLONASS: two levels of performances
 - C/A-code: Standard Positioning Service (SPS) / Standard Precision Service (SP)
 - P-code: Precision Positioning Service (PPS) / High Precision Service (HP)
- Galileo / BeiDou
 - Open Service (OS)
 - Public Regulated Service (PRS) / Authorized Service
- 5 10 m (H), 10-20 m (V), 10-20 ns

The more you average over time the better the precision (~ 1 m)

5th Edition April 2020

Integrity - Service - Excellence

Distribution Statement A: Approved for public release; distribution is unlimited

BeiDou Navigation Satellite System Open Service Performance Standard (Version 2.0)

China Satellite Navigation Office December 2018

	GPS	GLONASS	Galileo	BeiDou 2/3
Horizontal	8 / 15 m (95%)	5 / 12 m (95%)	7.5 m (95%)	5 -10 m (95%)
Vertical	13 / 33 m (95%)	9 / 25 m (95%)	15 m (95%)	5 -10 m (95%)
Velocity	< 0.2 m/sec (95%)	-	-	-
Timing	< 30 ns (95%)	< 40 ns (95%)	< 31 ns (95%)	< 10-20 ns
Document	5th Edition (2020)	v2.2 (2020)	SDD_v1.1 (2019)	v2.0 (2018)

GIS-E5050: Advanced Geodesy 16.3.2021

octavian.andrei@nls.fi

PRECISE POINT POSITIONING (PPP)

- Precise satellite orbits & clocks
- Pseudorange & carrier phase observations
- Single (Dual-Frequency) GNSS Receiver
- Iono-free data combinations (P3, L3)
- Traditional in post-processing, static, < 10 cm
- Convergence period (20-30 min)

- Open: OPUS, magicGNSS, RTS-IGS, etc.
- Commercial: CenterPoint RTX, Veripos APEX, Nexteq i-PPP, Fugro Starfix

Source: Andrei (2010)

POINT POSITIONING @METSÄHOVI

separate slides

REFLECTION QUESTION

What are the characteristics differences between single point positioning (SPP) and precise point positioning (PPP)?

POSITIONING MODES

16.3.2021

DIFFERENTIAL GNSS (CODE-BASED)

- Pseudo-ranges measured at two receivers
- Base station (reference receiver) at a known location
- Real-time
 - Base transmits range errors to remote (mobile) user
 - Maritime (RTCM), Aviation (RTCA)
- Post-processing
 - Single difference of pseudo-ranges
- Removes most ephemeris, atmospheric and satellite clock erros (including Selective Availability)

RTCM: Radio Technical Commission for Maritime Services

RTCA: Radio Technical Commission of Aeronautics

DIFFERENTIAL GNSS: PRINCIPLE

GNSS satellites

Two standards:

- RTCM (maritime)
- RTCA (aviation)

Base station

Base station at a known location.

Base station transmits range corrections to rovers (e.g., over a radio link).

Rover receiver

Base station receives GNSS signals, calculates pseudoranges to satellites, then determines range errors.

octavian.andrei@nls.fi

A rover receiver receives the GNSS signals, calculates pseudoranges, then apply the range corrections. Corrected ranges are used to determine rover position.

WIDE-AREA DGNSS

- Multiple base stations, master station, model local/regional corrections (orbit, clock, tropo, ionosphere as a grid)
- Several thousands km
- Satellite-based augmentation (SBAS)
 - Non-commercial:
 - WAAS (US), EGNOS (Europe), MSAS (Japan), GAGAN (India), SDCM (Russia),
 - BDSBAS (China), KASS (Korea),
 - Commercial:
 - OmniSTAR (Fugro, NLD), Starfire (NavCom, US), Veripos (Subsea7, UK)
- Ground-based augmentation (GBAS)
 - CDGPS (CAD), GRAS (AUS)

Source: Geoscience Australia

DGPS @METSÄHOVI

Results in separate slides

REFLECTION QUESTION

What are the data corrections transmitted in DGNSS/DGPS?

Do DGPS and SBAS differ?
If yes, how?
If no, why?

POSITIONING MODES

GIS-E5050: Advanced Geodesy 16.3.2021

octavian.andrei@nls.fi

RELATIVE POSITIONING

- Differential GNSS with carrier phases
- User determines the position of an unknown point (rover) with respect to a known point (base)
 - At least a pair of receivers
- Simultaneous observations
 - Time-tagged GNSS measurements are transmitted from the base
 - The differentiation process takes place at the rover
- Both code and carrier possible, but only carrier-based offers cm-level accuracy
- Baseline vector and position are computed at rover

ABSOLUTE VS. RELATIVE

Error source	Absolute influence	Relative influence
Satellite orbit	2 50 m	0.1 2 ppm
Satellite clock	2 100 m	0.0 ppm
Ionosphere	0.5 > 100 m	1 50 ppm
Troposphere	0.01 0.5 m	0 3 ppm

ppm: parts per million

GIS-E5050: Advanced Geodesy 16.3.2021

octavian.andrei@nls.fi

GNSS CARRIER PHASE POSITIONING

Static mode

- Measure carrier phases simultaneously at two or more points
- Static surveying (an hour for each line, now a few minutes)
- Relative positioning of few cm and few ppm

Kinematic mode

- Carrier phases at two or more receivers
- One receiver stationary, one mobile from point to point
- Fast / On-the-fly initialization
- Centimeters in seconds => Precision surveying / navigation

STATIC RELATIVE POSITIONING

- Control and survey work
- Post-processing
- Reference, known position
- Rover, unknown position
- Epoch rate 15-30 sec
- Baseline accuracy
 - H: 3-5 mm + 0.5 ppm
 - V: 10 mm + 0.5 ppm

The ppm or parts per million component (1 mm per km) refers to the length of baseline between the RS and rover

RAPID STATIC

- Baselines up to 20 km
- Epoch rate 5 (10) sec
 - 10 min (5 s) vs. 60 min (30 sec)
- Baseline accuracy
 - Horizontal: 5-10 mm + 0.5 ppm
 - Vertical: 10-20 mm + 0.5 ppm

Method of Survey	Single Frequency	Dual Frequency
Static	30 min + 3 min / km	20 min + 2 min / km
Rapid Static	20 min + 2 min / km	10 min + 1 min / km

PSEUDO-KINEMATIC (REOCCUPATION)

- It exploits changes in satellite geometry across conventional observation sessions
- At least two short observation sessions (5 min each) on each point with at least 1 h time lapse between the sessions
- Favorable satellite geometry
- Alignment surveys
- Photo-control surveys
- Lower-order control surveys

KINEMATIC POSITIONING: STOP & GO

- On-the-fly ambiguity resolution
- Collect just a few minutes of carrier phase data
- The mobile receiver must continues to track satellites while it moves from site to site
- Attainable accuracies similar to rapid-static.

PPK @METSÄHOVI

Results in separate slides

REFLECTION QUESTION

What is/are the main difference(s) between absolute and relative positioning?

REAL TIME KINEMATIC (RTK)

- Golden standard
- Base station at a known location.
- Base station transmits code and phase measurement to rover (e.g., over a radio link).
- Rover combines own GNSS data with time-tagged measurements from base station.
- Baseline vector and position are computed by the rover.

L1/L2:

H: 1 cm + 1 ppm

V: 2 cm + 2 ppm

NETWORK RTK: BASIC CONCEPT

- 1. Observing common satellites.
- 2. Resolving Network Ambiguities
- 3. Generating RTK Corrections
- 4. Producing RTK Solutions

NETWORK RTK: IMPLEMENTATIONS

- Area Correction Parameters (FKP)
 - The Flächen-Korrektur Parameter (FKP) is the oldest Network RTK method and was developed by Geo++ in the mid 1990s
- Virtual Reference Station (VRS)
 - Developed by Terrasat in the late 1990's
 - Pseudo Reference Station (PRS)
- Master Auxiliary Concept (MAC)
 - Proposed by Leica and Geo++ in 2001
 - MAX
 - individualized-MAX

All approaches assume that a user will calculate double differenced baseline between one RS and the rover

NETWORK RTK: PROS & CONS

Advantages

- No need to set up a base station
- The accuracies of the computed positions are more homogeneous
- The accuracy is maintained over larger distances
- The same area can be covered with fewer RS
- Higher reliability and availability of RTK corrections

Disadvantages

The cost to subscribe to an RTN and receive NRTK corrections

SUMMARY

Results in separate slides

SUMMARY

Content

- Various positioning modes: point, differential, relative.
- ➤ Various positioning techniques: SPP, PPP, DGNSS, Static baseline, RTK
- Are you able?
 - ✓ to distinguish between different positioning modes.
 - ✓ to choose a suitable positioning technique for your application.

