Individual Analysis Report

Student: Adilzhan Zhumash

1)Algorithm Overview

Kadane's Algorithm

- Kadane's algorithm finds the **maximum subarray sum** in a onedimensional array of integers.
- It iterates through the array while maintaining the **current sum** of a subarray ending at the current index and the **maximum** sum found so far.
- Theoretical background:
 - Uses dynamic programming principle: maximum subarray ending at i = max(arr[i], current_sum + arr[i]).
 - Based on optimal substructure: solution to the whole array depends on solutions to its subarrays.
- Applications: financial analysis (max profit interval), signal processing (max contiguous signal strength), and competitive programming problems.
- Example: arr = [-2, 1, -3, 4, -1, 2, 1, -5, 4] \rightarrow maximum sum = 6 ([4, -1, 2, 1]).
- Algorithm passes through the array once, storing only two variables → O(n) time, O(1) space.

2)Complexity Analysis

Time Complexity:

- Best case: All positive numbers $\rightarrow O(n)$
- Worst case: All negative numbers \rightarrow O(n)
- Average case: Mixed values \rightarrow O(n)
- Linear in all cases because every element is visited once, and no nested iterations exist.

Space Complexity:

- Constant memory usage: current_sum, max_sum, and loop index \rightarrow O(1).
- · No additional arrays or data structures required.

Mathematical Justification:

- Let n = number of elements.
- Each element contributes to one addition and one comparison $\rightarrow \Theta(n)$ operations.
- No recursion, no nested loops $\rightarrow \Omega(n)$ = best-case linear.

Comparison with Partner's Algorithm:

- Partner's naive approach calculates sums for all possible subarrays $\rightarrow O(n^2)$ time.
- Kadane reduces the number of operations drastically, particularly for large inputs.
- Practical runtime: for n = 10⁵, naive takes seconds, Kadane takes milliseconds.

3)Code Review

Inefficient Sections in Partner's Algorithm:

- Nested loops iterate over all subarray start and end indices.
- Each subarray sum recalculated from scratch, producing redundant operations.

Optimization Suggestions:

- Maintain a rolling sum instead of recalculating every subarray sum.
- Track both current_sum and max_sum in a single pass.
- Eliminate unnecessary memory allocations.

Proposed Improvements:

- Transform O(n²) approach to O(n) time.
- Reduce memory usage from O(n) extra storage to O(1).

Rationale:

- Single-pass approach eliminates repeated work.
- Minimizes memory footprint.
- Improves runtime consistency across input sizes.

4) Empirical Results

Performance Plots:

- time_plot.png execution time vs input size.
- comparisons_plot.png number of comparisons vs input size.

Validation of Theoretical Complexity:

- Observed runtime scales linearly with input size \rightarrow confirms O(n) behavior.
- Comparison plot shows constant factor overheads, which are negligible in practice.

Analysis of Constant Factors:

- Even for large arrays, Kadane executes only a small number of operations per element.
- Partner's naive algorithm shows quadratic growth in time and memory usage.

Discussion:

- · Algorithm efficiency is not only theoretical but also practical.
- Empirical results demonstrate predictable, stable performance.

5)The graphics:

6) Conclusion

- Kadane's algorithm is **efficient**, **simple**, **and optimal** for the maximum subarray problem.
- Complexity analysis confirms linear time and constant space.
- Partner's naive approach benefits significantly from Kadane's method.
- Recommendation: always prefer Kadane for maximum subarray problems, especially for large input sizes.
- Future work: extend to 2D arrays or variable constraints while maintaining linear performance.