האינטגרל הכפול

שטח של קבוצה

שטח של מצולע קמור מוגדר ע"י חלוקתו למשו-לשים (טריאנגולריזציה). בפרק זה מצולע היא הקבוצה הדו-ממדית, לא השפה.

תחום = קבוצה פתוחה וקשירה.

תחום סגור = תחום + השפה שלו.

מעתה ואילך, עד שנאמר אחרת, D הוא תחום סגור וחסום. (אבל הגדרת השטח תופסת גם במ-קרים אחרים.)

D ב מצולע המוכל ב A

D מצולע המכיל את = B

(הכוונה לקבוצה הדו-ממדית, לא לקווים הישר-ים.)

$$A$$
 השטח של = $S(A)$

$$B$$
 השטח של = $S(B)$

$$S(A) \leq S(B)$$
 ברור של $A \subset B$ מכיוון ש

:D השטח הפנימי של

$$,\underline{S}(D) = \sup S(A)$$

:D השטח החיצוני של

$$.\overline{S}(D) = \inf S(B)$$

 $\underline{S}(D) \leq \overline{S}(D)$ ברור ש:

הגדרה. D נקראת קבוצה בעל שטח אם

$$\underline{S}(D) = \overline{S}(D)$$

במקרה זה הערך המשותף מוגדר להיות השטח של S(D), והוא מסומן

<u>הערה 1</u>: אותה הגדרה אפשרית גם לקבוצות שאינן בהכרח תחום סגור.

 $\underline{S}(P,f)$, $\overline{S}(P,f)$ הערה בילוגי להגדרת להגדרת $\underline{S}(P,f)$. הערה ביליות $\underline{S}(P,f)$

כזכור, f(x) אינטגרבילית אם לכל f(x) קיימת $\overline{S}(P,f)-\underline{S}(P,f)<\epsilon$ חלוקה P כך ש

B הינו בעל שטח הינו בעל שטח הינו בעל שטח אם ורק אם לכל $\epsilon>0$ קיימים פוליגון חיצוני פוליגון פנימי $\epsilon>0$ כך א $\epsilon>0$ קופוליגון פנימי A כך ש

<u>הוכחה:</u> התנאי הכרחי. נניח ש D בעל שטח, דהיינו

$$S(D) = \overline{S}(D) = \underline{S}(D) =$$

$$= \inf_{B \supset D} S(B) = \sup_{A \subset D} S(A)$$

אז קיימת קבוצה A המוכלת ב: D כך ש

$$0 \le S(D) - S(A) < \frac{1}{2}\epsilon$$

וקיימת B המכילה את D כך ש

$$.0 \le S(B) - S(D) < \frac{1}{2}\epsilon$$

נחבר ונקבל:

$$.0 \le S(B) - S(A) < \epsilon$$

 $\epsilon < 0$ קיימים $\epsilon < 0$ קיימים התנאי מספיק. נתון שלכל $A \subset B$ כך ש $A \subset B \subset B$ כך ש $A \subset B \subset B$ ניקח $A \subset B$ ונקבל ש:

$$.0 \leq \overline{S}(D) - \underline{S}(D) \leq \epsilon$$

 $\overline{S}(D)\;, \underline{S}(D)\;$ זה נכון לכל $\epsilon>0$, כאשר $\overline{S}(D)-\underline{S}(D)=0$ מספרים קבועים, לכן $\overline{S}(D)-\underline{S}(D)=0$

D בעל שטח אם קיימות סדרות מצול בעל D בעל שטח אם $A_n\subset D\subset B_n$ עים

$$\lim_{n \to \infty} S(A_n) = \lim_{n \to \infty} S(B_n)$$

<u>גישה אחרת</u>: אפשר לבחור מצולעים מיוחדים בהם הצלעות מקבילות לצירים. זה ע"י בניה כדלקמן. במקום פוליגונים מכילים ומוכלים כלש-P, הם נשרטט מערכת קווים אופקיים ואנכיים, P שפורסים את הקבוצה שלנו למלבנים. יש (א) מלבנים פנימיים ל-D.

- (ב) מלבני שפה, שמכילים נקודות פנימיות Dוחיצוניות של
 - D (ג) מלבנים חיצוניים הזרים לD

אחוד המלבנים מהסוג (א) נותן פוליגון פנימי, מוכל ב: D, שנסמנו ב: A(P), שנסמנו ב: A(P) אחוד המלבנים מהסוג (א) או (ב) נותן פוליגון חיצוני המכיל את D, ונסמנו ב: B(P). נסמן גם את קוטר החלוקה כגודל הבא:

 $d(P) = \max\{ (ב)+(ב)+(ב) \}$

משפט. התחום הסגור D הוא בעל שטח אם ורק Δ אם

$$\lim_{d(P)\to 0} S(A(P)) = \lim_{d(P)\to 0} S(B(P))$$

הוכתה: (א) התנאי מספיק כי אז קיימות סדר- A_n, B_n ות פוליגונים

$$\lim_{n \to \infty} S(A_n) = \lim_{n \to \infty} S(B_n)$$

(ב) להפך, נניח שיש ל: D שטח. אז קיימים מצול- עים $A \subset D \subset B$ כך ש

$$S(B) - S(D) < \epsilon$$

$$S(D) - S(A) < \epsilon$$

אפשר להניח שהשפות של A ושל B זרות זו לזו, אפשר להניח שהשפות של .D אפת ליות לשפת זרות לשפת ליהיו δ_A המרחק בין שפת

 $_{A}D$ ושפת $_{B}$ ושפת המרחק בין שפת $_{B}$ ושפת ויהי

$$.\delta = \min\{\delta_A, \delta_B\}$$
 $.d(P) < rac{1}{2}\delta$ ע כך שלבנים למלבנים למלבנים אז בודאי מתקיים ש:

$$A \subset A(P) \subset D \subset B(P) \subset B$$

לכן

$$0 \le S(D) - S(A(P)) \le S(D) - S(A) < \epsilon$$

 $0 \le S(B(P)) - S(D) \le S(B) - S(D) < \epsilon$

יוצא מזה שלכל ϵ מצאנו חלוקה P למלבנים כך S(D) : שS(A(P)) : ו

עבור d(P) קטן מספיק, ולכן אכן מתקיים

$$\lim_{d(P)\to 0} S(A(P)) = \lim_{d(P)\to 0} S(B(P))$$

F קבוצה, לאו דוקא תחום סגור. F אומרים ש: F בעלת שטח אפס אם לכל F בעלת שטח אפס אם לכל כיתן לכסות את F ע"י איחוד סופי של מלבנים שסכום שטחיהם קטן מ: F

מסקנה: ל-D יש שטח אם ורק אם לשפה שלו יש שטח D.

ואז , $C(P) = B(P) \setminus A(P)$ נסמן.

אוסף מלבנים המכסה את השפה. אז C(P) מתקיים

$$,S(C(P)) = S(B(P)) - S(A(P))$$

ונובע מכך ש:

$$\lim_{d(P)\to 0} S(C(P)) = 0$$

אמ"ם

$$\lim_{d(P)\to 0} S(B(P)) = \lim_{d(P)\to 0} S(A(P))$$

הגדרת האינטגרל הכפול.

 $\mathbb{R} \subset R^2$ נתונה פונקציה f חסומה על מלבן נחלק את המלבנים ע"י קווים אפקיים ואנכיים למלבנים \mathbb{R}_{ij} , ונסמן את החלוקה בP: כל תת-מלבן

$$, M_{ij} = \sup_{\mathsf{R}_{ij}} f, \qquad m_{ij} = \inf_{\mathsf{R}_{ij}} f$$

ובאנלוגיה לסכומי דרבו עבור האינטגרל במשתנה יחיד מגדירים את

$$\overline{S}(P) = \sum_{ij} M_{ij} A(\mathsf{R}_{ij})$$
 סכום דרבו העליון

$$\underline{S}(P) = \sum_{ij} m_{ij} A(\mathsf{R}_{ij})$$
 וסכום דרבו התחתון

החלוקה P^* היא עידון של החלוקה P^* אם היא מכילה את כל קווי החלוקה של

למה. אם P^* עידון של

$$\underline{S}(P) \le \underline{S}(P^*) \le \overline{S}(P^*) \le \overline{S}(P)$$

מסקנה: אם P^* עידון משותף של P_1, P_2 אז

$$\underline{S}(P_2) \leq \underline{S}(P^*) \leq \overline{S}(P^*) \leq \overline{S}(P_1)$$

 P_1, P_2 לכל $\underline{S}(P_2) \leq \overline{S}(P_1)$ ובפרט

 $\operatorname{sup} \underline{S}(P) \leq \inf \overline{S}(P)$ מסקנה:

אם $\mathbb R$ אינטגרבילית לפי רימן על מלבן f

$$\sup_{P} \underline{S}(P) = \inf_{P} \overline{S}(P)$$

הערך המשותף מסומן

$$\int\int\limits_R f$$

R ונקרא האינטגרל הכפול של

 $\epsilon>0$ אינטגרבילית אם ורק אם לכל f אינטגרבילית אכf אינטגרבילית פורק אg אינטגרבילית קיימת חלוקה f כך ש

 $\epsilon > 0$ כך ש: $\epsilon > 0$ כד ש: הוכתה: (א) נתון: לכל

$$.0 \leq \overline{S}(P_0) - \underline{S}(P_0) < \epsilon$$

$$\underline{S}(P_0) \leq \sup_P \underline{S}(P) \leq \inf_P \overline{S}(P) \leq \overline{S}(P_0)$$

$$0 \leq \inf_P \overline{S}(P) - \sup_P \underline{S}(P) < \epsilon$$
לכל $\epsilon > 0$, ולכן $\epsilon > 0$, ולכן

$$\inf \overline{S}(P) = \sup \underline{S}(P)$$

f אינטגרבילית.

ז"א \mathbb{R} אינטגרבילית על f (ב) להפך, נניח שf

$$.\int\int\limits_R f = \sup\limits_P \underline{S}(P) = \inf \overline{S}(P)$$

 P_1 כך ש: אז קיימת חלוקה

$$, \overline{S}(P_1) - \int \int_{R} f < \frac{1}{2}\epsilon$$

 P_2 כך ש:

$$.\int\int\limits_{R} f - \underline{S}(P_2) < \frac{1}{2}\epsilon$$

אם P_2, P_1 היא העדון המשותף של P^* או

$$\overline{S}(P^*) < \overline{S}(P_1) < \iint_R f + \frac{1}{2}\epsilon$$

$$, \underline{S}(P^*) > \underline{S}(P_2) > \iint_R f - \frac{1}{2}\epsilon$$

נחסר ונקבל:

$$0 \le \overline{S}(P^*) - \underline{S}(P^*) < \epsilon$$

וזוהי הטענה.

אז היא $\mathbb{R}\subset R^2$ אז היא f או אינטגרבילית עליו.

 $\epsilon>0$ רציפה בקבוצה סגורה וחסומה, לכן רציפה במ"ש על הקבוצה הזו, כלומר לכל $\delta>0$ קיים $\delta(\epsilon)$ כך ש $\delta(\epsilon)$ כך ש $\delta(\epsilon)$ כאשר

$$.dist(p,q) < \delta(\epsilon), \qquad p,q \in R$$

ניקח חלוקה P כך שקוטר כל מלבן (האלכסון) מקיים ל δ diag $(R_{ij})<\delta$

$$0 \leq \overline{S}(P) - \underline{S}(P)$$

$$= \sum_{P} M_{ij} A(R_{ij}) - \sum_{P} m_{ij} A(R_{ij})$$

אבל כזכור

$$M_{ij} = \sup_{R_{ij}} f = \max_{R_{ij}} f = f(p_{ij})$$

 $m_{ij} = \inf_{R_{ij}} f = \min_{R_{ij}} f = f(q_{ij})$

עבור נקודות כלשהן p_{ij} וו p_{ij} ולכן עבור נקודות כלשהן

$$= \sum_{\epsilon \in \mathcal{E}} \underbrace{f(p_{ij}) - f(q_{ij})}_{\epsilon \in \epsilon} A(R_{ij})$$

ン

$$\operatorname{dist}(p_{ij},q_{ij}) < \operatorname{diag}(R_{ij}) < \delta$$

ולכן הסכום האחרון קטן מ:

$$.\epsilon \sum_{ij} A(R_{ij}) = \epsilon A(R)$$

R ורציפה חסומה במלבן סגור f ורציפה הים $\int\limits_R \int\limits_R f$ קי- פרט לקבוצה בעלת שטח אפס, אז בעלת E ים.

 \iff לכל שטח אפס בעלת בעלת כזכור בעלת בעלת בעלת בעלור $\epsilon>0$

שטחיהם קטן מ: ϵ . נכסה את E ע"י מלבנים שסריהם קטן מ: ϵ ואח"כ נמשיך את שסכום שטחיהם קטן מ: ϵ ואח"כ לחלוקה של כל R.

 R_0 בי E בהמכסים את בנים המלבנים בי R_1 בי R_1 היא ונסמן את אחוד שאר המלבנים בי R_1 היא קבוצה סגורה וחסומה, ווf רציפה עליה במ"ש, ולכו

$$|f(p)-f(q)|<\epsilon$$
 . dist $(p,q)<\delta$: עי $p,q\in R_1$ לכל

$$\overline{S} - \underline{S} = \sum_{i,j} (M_{ij} - m_{ij}) A(R_{ij})$$
$$= \sum_{R_0} + \sum_{R_1}$$

$:R_0$ על

$$0 \leq \sum_{R_0} = \sum_{R_0} (M_{ij} - m_{ij}) A(R_{ij})$$
 $\leq \sum_{R_0} (|M_{ij}| + |m_{ij}|) A(R_{ij})$ $\leq 2K \sum_{R} A(R_{ij}) < 2K\epsilon$ $K = \sup_{R} |f|$ כאשר

$:R_1$ על

$$0 \leq \sum_{R_1} = \sum_{R_0} (M_{ij} - m_{ij}) A(R_{ij})$$

$$= \sum_{R} (f(p_{ij}) - f(q_{ij})) A(R_{ij})$$

$$< \sum_{R} \epsilon \cdot A(R_{ij})$$

$$= \epsilon \cdot A(R_1) < \epsilon \cdot A(R)$$

לסיכום, לכל ϵ מצאנו חלוקה עבורה מתקיים

$$0,0\leq \overline{S}-\underline{S}<\epsilon[2K+A(R)]$$
 . $\int\int\limits_R f \,dt$ ולכן קיים האינטגרל הכפול

D: היא תת-קבוצה f מוגדרת ב: D, ווD מוגדרת מוגדרת של מלבן f גגדיר על f את הפונקציה

$$.F(p) = \begin{cases} f(p) & p \in D \\ 0 & \text{אחרת} \end{cases}$$

 $R: D: \mathcal{D}$ מ: f לו לותי הרחבה של

f קבוצה חסומה ובעלת שטח, D קבוצה חסומה בים D לא סגורה, רציפה וחסומה ביD

ולכן f אינה חסומה אוטומטית), אז אפשר להגדיר

$$\int_{D} \int_{D} f = \int_{R} \int_{R} F$$

והגדרה זו בלתי תלויה בבחירת המלבן R הוכחה. נקודות אי-הרציפות של F הן נקודות אי-הרציפות של D השפה של D בעלת שטח, ולכן השפה שלה $\int \int F$ בעלת שטח אפס. לכן, לפי המשפט הקודם $\int R$ קיים.

ערך זה הינו בלתי תלוי בבחירת R, כפי שאפשר R_2 :ו R_1 ווי להשתכנע משירטוט של הרחבות שונות D.

תכונות של האינטגרל הכפול.

D ננית ש f,g הן פונקציות רציפות וחסומות בf,g (הנתה תזקה), אז

1.
$$\iint_D (f+g) = \iint_D f + \iint_D g$$

$$2. \iint_D cf = c \iint_D f$$

3.
$$f \ge 0$$
 \Rightarrow $\int_D \int_D f \ge 0$

4.
$$f \leq g \implies \int \int_{D} f \leq \int \int_{D} g$$

5.
$$\iint_{D} |f| \ge \left| \iint_{D} f \right|$$

.6 נניח ש: D_1 וו D_2 הן קבוצות בעלות שטח. $S(D_1 \cap D_2) = 0$ אם

$$\iint_{D_1 \cup D_2} f = \iint_{D_1} f + \iint_{D_2} f$$

מכסים את $D_1\cap D_2$ ע"י מלבנים בעלי שטח כולל קטן. נסמן את איחודם ב: R_0 , ונרחיב כולל קטן. נסמן את איחודם ב: R_0 , ונרחיב את צלעותיהם לקווי חלוקה של כל $D_1\cup D_2$. מבין המלבנים הנוספים נסמן ב: $D_1\cup D_2$ את איחוד המלבנים שיש להם חיתוך לא ריק עם D_1 , וב: D_1 את איחוד המלבנים שיש להם חיתוך לא ריק עם D_2 . אז סכומי רימן על על $R_1\cup R_2\cup R_1$ ו: $R_0\cup R_1\cup R_2\cup R_1$ איינטגרלים על $R_1\cup R_1\cup R_2\cup R_1$ בהתאמה.

 $(x,y)\in D$ לכל $m\leq f(x,y)\leq M$.ז

$$m \cdot A(D) \le \iint_D f \le M \cdot A(D)$$

כך שמתקיים השיויון $P \in D$ 5. פיימת נקודה

$$\iint_{D} f dx dy = f(P) \cdot A(D)$$

 $\int\limits_a^b f=-\int\limits_a^b f$ יש מגמה ו: $\int\limits_a^b f=-\int\limits_a^b f$ כי $\Delta x_i=x_i-x_{i-1}$ בעל סימן, בהתאם לכיוון $A(R_{ij})\geq 0$ אין מגמה' כי $\int\limits_D^b f=-\int\limits_a^b f$ ולא ייחסנו לו כיוון.