Aluno: André Santos Rocha

Ra: 235887

Problema 1: A - Birthday Cake

O problema fornece várias coordenadas (x,y) de "cerejas" contidas num bolo (círculo) de raio 100 com centro em (0,0). O nosso propósito é traçar uma reta que passe pelo centro (0,0) e divida o círculo em duas partes com o mesmo número de cerejas.

1.1 Ideia de solução

Para este problema é possível testar todas as possibilidades para alcançarmos a solução. Para cada valor de A e B (Ax + By = 0), verificamos o número de cerejas acima e o número de cerejas abaixo da reta. Se ambos os valores forem iguais e não houver nenhuma cereja sobre a linha, então encontramos a solução. Veja que A e B são inteiros pertencentes ao intervalo [-500,500] e o número de cerejas é no máximo 100. Se, para cada combinação de A e B, testarmos todas as coordenadas das cerejas, teremos que a complexidade do código será no pior caso $10^3 \cdot 10^3 \cdot 10^2 = 10^8$. O que funciona em tempo menor que o time limit de 3 segundos.

1.2 Detalhes de implementação

Para verificar se a cereja está acima, abaixo ou exatamente em cima da reta, faremos o seguinte. Para cada valor de A e B, criamos uma equação da forma Ax + By = 0, diferente, iterando por todas as retas possíveis. Daí para cada equação, substituímos os valores de x e de y com as coordenadas (c1, c2)das cerejas. Se Ac1 + Bc2 > 0, então a cereja está acima, se Ac1 + Bc2 < 0, então a cereja está abaixo. Se Ac1 + c2 = 0, então a cereja está exatamente em cima da reta.

Problema 2: J - Simple Equations

O problema fornece 3 equações:

- x + y + z = A(1)
- xyz = B(II)
- $x^2 + y^2 + z^2 = C$ (III)

Sabendo disso, nosso propósito é escrever um programa que encontre 3 valores inteiros para x, y e z para valores dados de A, B e C. Sabe-se também que ($1 \le A, B, C \le 10000$). Para cada caso de teste, a solução escolhida deve ser a com o menor valor de x. Caso haja mais de uma solução com o mesmo valor de x, então devemos escolher a com o menor valor de y. Se não houver solução, printamos "No solution.".

1.1 Ideia de solução

Nesse problema, novamente iremos iterar pelo conjunto de possíveis soluções. Perceba que da equação (III) podemos concluir que os valores de x, y e z estão no intervalo [-100,100], pois $100^2 = 10000 \, e \, (-100^2) = 10000$. Além disso, da equação (II), concluímos que x, y ou z estão no intervalo [-21,21], pois |21| é aproximadamente o valor da raiz cúbica de 10000. Como queremos que x seja o menor valor, então assumimos que que x está nesse intervalo. Então, para todos os valores de x contidos em [-21,21], iteramos por todos os valores de y contidos em [x+1,100] e por todos os valores de z contidos em [y+1,100]. Caso uma dessas combinações satisfaça as equações, temos nossa resposta.

1.2 Detalhes de implementação

Para construirmos o código de solução, basta fazer 3 laços aninhados com os intervalos fornecidos acima para x, y e z. Antes de entrarmos nos laços criamos 3 variáveis resp_x, resp_y e resp_z, todas sentadas com valor 500 (valor que nunca será testado dentro dos laços). A cada vez que encontrarmos uma combinação dos 3 valores que satisfaça as equações, salvamos a combinação se ela for menor do que a combinação que já possuímos. Ao final dos laços, verificamos se resp_x é igual a 500: caso seja, então não há solução; caso contrário, printamos os valores de resp_x, resp_y e resp_z.