```
11: (a) According to the grouph given, (0, 1), (2,1). (4,0) are the three vertices
    W_1 = W \times \frac{10^{-2}}{3} = \frac{100}{3} W_2 = 14 \times 2 + 20 = 48 W_3 = 4 \times 14 = 56
       Wz < W3 < W1, So minimum: Wz = 48.
 ib! The dual problem: maximize Z= 49, + 2092, subject to:
           y_1 + 7y_2 \le 14, zy_1 + by_2 \le 20, 0 \le y_1, 0 \le y_2.
                                      The vertices are (7,1),(10,0) (0,2),(0,0)
                                      So the maximum: Z=4x7+20x1=48.
                       (7,1)
'2' first construct the minimization problem: minimize W = 4x_1 + 2x_2, subject to:
       X1+2×223, 3×1+2×225, 0≤×1,×2.
 Then find the corresponding dual problem: maximize Z=3y,+5yz, subject to:
      y_1 + 3y_2 \le 4, 2y_1 + 2y_2 \le 2, 0 \le y_1, y_2.
Using the simplex method:
     y, y<sub>2</sub> s, s<sub>2</sub> b
                                     y, y<sub>2</sub> 5, 5<sub>2</sub> b
                                2: -3 -5 0 0 0
                           2
  So x_1=\zeta_1=0. x_2=\zeta_2=\frac{1}{2}. As a result, he buys no drink 1, \frac{1}{2} liters of drink 2.
31 a1 Z=5x2-362+50
        51 = X2-252 +lo
        X1 = -352 + 20
```

53 = 3×2+252+40

161 X1=20; X2=0; S1=10; S2=0; S3=40.

As we can observe from (a), the coefficients in front of X_2 are all positive numbers in deciding S_1 , S_3 , and Z_2 . So increasing X_2 will make S_1 , S_2 , Z_3 larger, with X_1 Still equals Z_3 . This increment can be unbounded, S_3 due to the linear velationship between X_2 and Z_3 , Z_3 can be made arbitrarily large in this way.

141(a) an infeasible problem: maximize Z=ax+by, $\forall a,b+R$, subject to: $x+y \in 4$, $x-y \geq 2$, $y \geq 2$.

1, an unbounded problem: maximize Z=2x+3y, subject to:

X+y24, X-y20.

C1 Assume on unbounded linear programming problem's feasible set is bounded.

Then the set has finite vertices, feasible sets are closed => it is compact

We know that optimal values are realized at vertices,

\$\times now the problem's objective function attains its maximum k minimum on at least two of these vertices, according to maximum theorem.

\(\) This problem is bounded \(\) \(\) contradiction \(\) \(\) \(\) \(\)

Ina, O Maximize CTX, subject to: AX < b, X 20.

2 Minimize by, subject to: ATy > C, y > 0.

0 and 0 are dual problems. Denote the feasible sets for 0.0 by A.B. respectively. Assume the dual minimization problem is feasible, $B \neq 0$.

By week duality, $\forall \overline{x} \in A$, $\overline{y} \in B$, we have $C^T \overline{x} \leq b^T \overline{y}$.

so cleany CTX is bounded by bTY, for the smallest y in B

=) a contradiction D.

by Use the definition of 0 and 6 in (a).

Assume the dual maximization problem is feasible, then $A \neq \emptyset$. By week duality, $\forall \overline{X} \in A$, $\overline{Y} \in B$, $C^T \overline{X} \leq b^T \overline{Y}$.

So obviously $D^T y$ is bounded by $C^T x$, for the largest x in A $\Rightarrow \alpha$ contradiction Ω .

4, (a) Z= ~ ~ Cij · Xij b, xij Ea; ? Xij Z bj ; Xij 20, for all i, j. (c) This problem can be modeled as follow: 11 x 11 2 2 01 121 + 122 & az ×31 + ×32 < 03 X11 + X24 + X31 3 P1 X12 + X22 + X32 2 b2 minimize: Z=3x11+x21+5x31+2x12+5x22+4x32 Calculated by an online program, the optimal solution is: Z=200. With X11=0, X21=50, X31=0, X12=45, X22=0, X32=15. (d) in standard form: Minimize Z=3×11+x21+5×31+2×12+5×22+4×32, subject to - x11- x12 > - Q1 - ×21 - ×22 2 - Q2 - X31 - X32 2 - Q3 X11 + X21 + X31 2 b1 X12 + X22 + X32 2 b2 Xij 20, for all ij

So the dual problem can be written as: maximize $w = -45y_1 - by_2 - 35y_3 + 50y_4 + b0y_5$, subject to: $-y_1 + y_4 \le 3$ $-y_2 + y_4 \le 1$ $-y_3 + y_4 \le 2$ $-y_1 + y_5 \le 2$

- y2+ y5 <5

The solution is: w=200.

According to the weak duality, $w \le Z$.

and its corollary, $w=Z \Rightarrow Z$ is an optimal solution D.

6