Standard Reduction Potentials at 25 °C

Half-reaction

E°(volts)

$PbO_2(s) + SO_4^{2-}(aq) + 4 H^{+}(aq) + 2 e^{-}$
2 HCℓ0(aq) + 2 H⁺(aq) + 2 e⁻
MnO ₄ ⁻ (aq) + 8 H ⁺ (aq) + 5 e ⁻
Au ³⁺ (aq) + 3 e ⁻
HCℓO(aq) + H⁺(aq) + 2 e⁻
$PbO_2(s) + 4 H^{+}(aq) + 2 e^{-}$
$C\ell_2(g) + 2 e^-$
Cr ₂ O ₇ ²⁻ (aq) + 14 H ⁺ (aq) + 6 e ⁻
O ₂ (g) + 4 H ⁺ (aq) + 4 e ⁻
Br ₂ (ℓ) + 2 e ⁻
Ag ⁺ (aq) + e ⁻
NO ₃ ⁻ (aq) + 2 H ⁺ (aq) + e ⁻
Fe ³⁺ (aq) + e ⁻
$O_2(g) + 2 H^+(aq) + 2 e^-$
$I_2(s) + 2 e^-$
$O_2(g) + 2 H_2O(\ell) + 4 e^-$
Cu ²⁺ (aq) + 2 e ⁻
S(s)+ 2 H ⁺ (aq) + 2 e ⁻
2 H ⁺ (aq) + 2 e ⁻
Pb ²⁺ (aq) + 2 e ⁻
Sn ²⁺ (aq) + 2 e ⁻
Ni ²⁺ (aq) + 2 e ⁻
Co ²⁺ (aq) + 2 e ⁻
PbSO ₄ (s) + 2 e ⁻
Cd ²⁺ (aq) + 2 e ⁻
2 H ⁺ (aq) + 2 e ⁻
Fe ²⁺ (aq) + 2 e ⁻
Cr ³⁺ (aq) + 3 e ⁻
Zn ²⁺ (aq) + 2 e ⁻
2 H ₂ O(ℓ) + 2 e [−]
Mn ²⁺ (aq) + 2 e ⁻
$A\ell^{3+}$ (aq) + 3 e ⁻
2 e_
Na ⁺ (aq) + e ⁻
$Ca^{2+}(aq) + 2 e^{-}$
Sr ²⁺ (aq) + 2 e ⁻
Ba ²⁺ (aq) + 2 e ⁻
K⁺(aq) + e⁻

CHEMISTRY DATA SHEET

2011

Copyright
© Curriculum Council, 2011

This document—apart from any third party copyright material contained in it—may be freely copied, or communicated on an intranet, for noncommercial purposes by educational institutions, provided that it is not changed in any way and that the Curriculum Council is acknowledged as the copyright owner.

Copyring or communication for any other purpose can be done only within the terms of the Copyright Act or by permission of the Curriculum Council.

Council.

Copyring or communication of any third party copyright material contained in this document can be done only within the terms of the Copyright Act or by permission of the copyright owners.

2010/2205[v3]

	9 10 11 12 13 14 15 16 17 18	2	He He 4.003	6 7 8 9	L O	12.01 14.01 16.00 19.00	14 15 16 17	Si P C	26.98 28.09 30.97 32.06 35.45 39.95	28 29 30 31 32 33 34 35	Ni Cu Zn Ga Ge As Se Br	58.69 63.55 65.38 69.72 72.59 74.92 78.96 79.90	46 47 48 49 50 51 52	Pd Ag Cd In Sn Sb Te I	106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9	78 79 80 81 82 83 84 85	Pt Au Hg T _ℓ Pb Bi Po At	2 195.1 197.0 200.6 204.4 207.2	000	200
										29	Cn	63.55	47	Ag	107.9	62	Αn	197.0		
										27	රි	58.93	45	듄	102.9	2.2	ŀ	192.2	108 109	
	2 9									25	M	54.94		ည		22	Re	186.2	. 100 107	
	5									23	>	50.94		g	92.91	73	Та	180.9	104 105	
	က				. د	2		_	31	21	Sc	44.96	39	>	88.91	25	т *	138.9	68	
Periodic Table	1	-		-					22.99 24.31									132.9 137.3	87 88	

	$\frac{m}{M} = \frac{\text{mass}}{\text{molar mass}}$	cV	V 22.41	nRT	mass of solute (mg) mass of solution (kg)	- log [H ⁺]	mass of sample volume of sample
	П	II	П	II	II	П	II
	C	⊏	-	Ð	mdd	H	Q
rormulae	Number of moles	Number of moles of solute	Number of moles of a gas at STP	Ideal gas law	Parts per million	pH of a solution	Density

in the units of litres (L), or millilitres (mL) given in the units of degrees Celsius (°C) or Kelvin (K). that 0.0° C = 273.1 K

n in the SI unit kilopascal (kPa) and in atmospheres (atm). e given in the SI unit kilojoule (kJ)

Ра

Solution concentrations are given in the units moles per litre (mol L^{-1}), grams per litre (g L^{-1}) and parts per million. Constants

Universal gas constant, R = $8.315 \, \mathrm{J} \, \mathrm{K}^{-1} \, \mathrm{mol}^{-1}$ Avogadro constant, N = $6.022 \times 10^{23} \, \mathrm{mol}^{-1}$

71 Lu 175.0 103 Lr

70 Yb 173.0 102 No

69 Tm 168.9 101 Md

68 Er 167.3 100 Fm

67 Ho 164.9 99 Es

66 Dy 162.5 98 Cf

97 Bk

96 Cm

93 Np

60 Nd 144.2 92 U

59 Pr 140.9 91 Pa

58 Ce 140.1 90 Th 232.0

← Atomic Number ← Symbol ← Atomic Mass

12.01 ဖ ပ

Lanthanide Series

65 Tb 158.9

64 Gd 157.3

63 Eu 152.0 95 Am

62 Sm 150.4 94 Pu

61 Pm

Volume of 1.000 mol of an ideal gas at 0.0° C and 101.3 kPa is 22.41 L S.T.P. is 0.0° C and 101.3 kPa

Equilibrium constant for water at 25°C, $K_w = 1.00 \times 10^{-14}$

Solubility rules for ionic solids in water

Soluble in water

Schiller	Exceptions	
agnos	Insoluble	Slightly soluble
Most chlorides	AgCℓ	$PbC\ell_2$
Most bromides	AgBr	PbBr ₂
Most iodides	Agı, Pbı ₂	
All nitrates	:	
All ethanoates	No exceptions	
Most sulfates	SrSO₄, BaSO₄, PbSO₄	CaSO ₄ , Ag ₂ SO ₄

Insoluble in water

oldiilooal	Exceptions	
	Soluble	Slightly soluble
Most hydroxides	NaOH, KOH, Ba(OH) ₂ (note: NH ₄ OH and AgOH do not exist)	Ca(OH) ₂ , Sr(OH) ₂
Most carbonates	Na ₂ CO ₃ , K ₂ CO ₃ , (NH ₄) ₂ CO ₃	
Most phosphates	Na ₃ PO ₄ , K ₃ PO ₄ , (NH ₄) ₃ PO ₄	
Most sulfides	S.(.HN) S.X S.EN	

more than 0.1 mole dissolves per litre between 0.01 and 0.1 mole dissolves per litre less than 0.01 mole dissolves per litre Soluble Slightly soluble Insoluble

Colours of selected ionic substances
In general, ionic solids have the same colour as that of any coloured ion they contain. Two colourless ions in general produce a white solid. Selected exceptions to these two basic rules are noted below.

Ionic Solid	Colour
calcium iodide	pale yellow
copper(II) carbonate	green
copper(II) chloride	green
copper(II) oxide	black
copper(II) sulfide	black
iron(III) sulfide	black
lead(II) iodide	yellow
lead(II) sulfide	black
manganese(II) sulfide	black
silver carbonate	yellow
silver iodide	yellow
silver oxide	brown/black
silver sulfide	black

Other coloured substancesMost gases and liquids are colourless, and most metals are silvery or grey. Selected exceptions to these basic rules are noted below.

Substance	State	Colour
copper	solid	salmon pink
plog	solid	yellow
nitrogen dioxide	gas	brown
phosphorus	solid	yellow
sulfur	liquid, solid	yellow

Coloured ions in aqueous solution

Colour of free element

Halogen

Coloured halogens

yellow green

 $F_2(g)$

 $C\ell_2(g)$

Colour	deep green	pink	plue	pale green	brown	very pale pink	green
Cation	Cr ³⁺	Co^{2^+}	Cu ²⁺	Fe ²⁺	Fe ³⁺	Mn ²⁺	Ni ²⁺

Colour	yellow	orange	purple
Anion	$\mathrm{CrO_4}^{2-}$	${\rm Cr}_2{\rm O}_7^{2-}$	MnO ₄ -

brown

 $I_2(aq)$

		1			
red	dark grey		Colour of halogen in aqueous solution	pale yellow	orange
$Br_2(\ell)$	$I_2(s)$		Halogen	$\mathrm{C}\ell_2(aq)$	Br ₂ (aq)

Colour of halogen in organic solvent	red	purple
Halogen	Br ₂	I_2