Abstract

These notes are based on Ron Donagi's lectures for the course "Complex Algebraic Geometry" given at UPenn along with Daniel Huybrechts's *Complex Geometry*. Any mistake in what follows is my own.

Contents

A quick overview of algebraic geometry .1 Lectures 1-4	4
Complex analysis .1 Lecture 5	2
ine bundles	4
.1 Lecture 6	4
.2 Lecture 7	(
.3 Lecture 8	7
.4 Lecture 9	7

1 A quick overview of algebraic geometry

1.1 Lectures 1-4

These lectures consisted of informal surveys of certain fundamental concepts of algebraic geometry. They were meant as previews of various topics that we will cover rigorously.

2 Complex analysis

2.1 Lecture 5

First, let's review some basic concepts about functions of a single complex variable.

Definition 2.1.1. Let $z_0 \in \mathbb{C}$. A function $f = u + iv : U \subset \mathbb{C} \to \mathbb{C}$ is holomorphic or analytic if at least one of the following equivalent conditions holds.

• Both u and v are C^1 , and f satisfies the Cauchy-Riemann equations, i.e.,

$$u_x = v_y$$
$$u_y = -v_x.$$

- $\frac{\partial f}{\partial \bar{z}} = 0$, where $\frac{\partial}{\partial \bar{z}} := \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)$.
- The Cauchy integral formula holds, i.e.,

$$f(w) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{\eta - w} d\eta$$

for any closed circular path γ centered at w in U.

• f has a power series representation on U.

Definition 2.1.2. A bijective function $f:U\subset\mathbb{C}\to V\subset\mathbb{C}$ is biholomorphic if it is holomorphic and its inverse is holomorphic. In this case, we say that U is biholomorphic to V, written as $U\approx V$.

Fact 2.1.3.

- (a) (The maximum modulus principle) If $U \subset \mathbb{C}$ is a domain, $f: U \to \mathbb{C}$ is holomorphic, and |f| has a local maximum, then f is constant.
- (b) (Liouville's theorem) Any bounded entire function is constant.
- (c) (The Riemann extension theorem) If $\epsilon > 0$ and $f : B_{\epsilon}(z) \setminus \{z\} \subset \mathbb{C} \to \mathbb{C}$ is bounded and holomorphic, then f can be extended to a holomorphic function on $B_{\epsilon}(z)$.
- (d) (The Riemann mapping theorem) If $U \subseteq \mathbb{C}$ is simply connected and open, then $U \approx B_1(0)$.
- (e) (The residue theorem) If $f: B_{\epsilon}(0) \setminus \{0\}$ is holomorphic, then f can be expanded in a Laurent series $\sum_{n=-\infty}^{\infty} a_n z^n$ such that $a_{-1} = \frac{1}{2\pi i} \oint f(z) dz$.

Next, let's look at some basic concepts about functions of several complex variables.

Definition 2.1.4. A function $f = u + iv : U \subset \mathbb{C}^n \to \mathbb{C}$ is *holomorphic* if at least one of the following equivalent conditions holds.

• f is holomorphic in each variable individually.

• Both u and v are C^1 , and f satisfies the Cauchy-Riemann equations,

$$u_{x_i} = v_{y_i}$$
$$u_{y_i} = -v_{x_i}$$

for each $i = 1, \ldots, n$.

- $\sum_{i=1}^{n} \frac{\partial f}{\partial \bar{z}_i} = 0.$
- f has a power series representation on U,

$$\sum_{k_1=0}^{\infty} \cdots \sum_{k_n=0}^{\infty} a_{k_1,\dots,k_n} z_1^{k_1} \cdots z_n^{k_n}.$$

Note 2.1.5. Statements (a), (b), and (c) from Fact 2.1.3 generalize to functions of several variables, as does the Cauchy integral formula:

$$f(z) = \frac{1}{(2\pi i)^n} \int_{|\eta_i - z_i| = \epsilon_i} \frac{f(\eta_1, \dots, \eta_n)}{(\eta_1 - z_1) \cdots (\eta_n - z_n)} d\eta_1 \cdots d\eta_n$$

where $\eta_i > 0$ for each $i = 1, \ldots, n$.

Theorem 2.1.6 (Hartog). If n > 1, then any holomorphic function $f : B_{\epsilon}(0) \setminus \{0\} \subset \mathbb{C}^n \to \mathbb{C}$ extends to a holomorphic function on $B_{\epsilon}(0)$.

Definition 2.1.7. Let X be a (topological) space. A sheaf F on X is a presheaf on X such that for any open $U \subset X$ and any open cover $\{U_i\}_{i \in J}$ of U, there is an exact sequence

$$0 \longrightarrow F(U) \longrightarrow F(U_i) \longrightarrow F(U_{ij})$$

where $U_{ij} := U_i \cap U_j$.

Definition 2.1.8. A ringed space is a pair (X, \mathcal{J}) where X is a space and \mathcal{J} is a sheaf of rings on X.

Remark 2.1.9. Given any standard object (X, \mathcal{J}) , we can define a geometric object as a ringed space locally isomorphic to (X, \mathcal{J}) .

Definition 2.1.10 (Vector bundle). Let X and V be complex manifolds. Let $\pi: V \to X$ be holomorphic. We say that π is a *(holomorphic) vector bundle of rank* n if for any $x \in X$, there exist an open set $U \ni x$ in X and an isomorphism $\pi^{-1}(U) \xrightarrow{\cong} U \times \mathbb{C}^n$ such that the *transition maps* $U_{ij} \times \mathbb{C}^n \to U_{ij} \times \mathbb{C}^n$ are holomorphic and fiber linear.

Any vector bundle $\pi: V \to X$ induces a sheaf on X given by

$$F(U) = \Gamma\left(U, \pi^{-1}(U)\right).$$

Example 2.1.11.

- 1. The sheaf induced by the trivial bundle $\mathbf{1} := X \times \mathbb{C}$ is denoted by \mathcal{O}_X .
- 2. The tangent bundle TX of a smooth manifold X induces the sheaf of vector fields on X.
- 3. The cotangent bundle T^*X induces the sheaf $\Omega^1(X)$ of one-forms on X.
- 4. The alternating bundle $\bigwedge^p X$ of rank p induces the sheaf $\Omega^p(X)$ of p-forms on X.

3 Line bundles

3.1 Lecture 6

Definition 3.1.1. A line bundle is a vector bundle of rank 1.

Definition 3.1.2. Let X be a complex manifold. A sheaf F of \mathcal{O}_X -modules is a sheaf on X such that for any open set U in X,

- F(U) is a module over $\mathcal{O}_X(U)$ and
- if $U \subset V \subset X$, then $(f \cdot a) \upharpoonright_U = f \upharpoonright_U \cdot a \upharpoonright_U$.

Example 3.1.3 (Sheaf of sections). Let X be a complex manifold and J be a vector bundle over X. For any open $U \subset X$, let

$$\mathcal{L}_{J}(U) = \Gamma(U, L).$$

This inherits a vector space structure from the family of fibers of V. Also, any relation of the form $U_1 \subset U_2 \subset U$ induces a linear map $\Gamma(U_2, L) \to \Gamma(U_1, L)$ given by $\sigma \mapsto \sigma \upharpoonright_{U_1}$. Thus, $\mathcal{L}_J(-)$ is a sheaf of vector spaces. Moreover, it is easily seen to be a sheaf of \mathcal{O}_X -modules.

Since any vector bundle is locally trivial, we see that \mathcal{L}_J is locally free, i.e., for any $x \in X$, there exist an (open) neighborhood U of x in X and an isomorphism $\varphi : \mathcal{L}_J(U) \to \bigoplus_{i=1}^{\operatorname{rank}(J)} \mathcal{O}_X(U)$ such that for any open set $V \subset U$, the square

$$\mathcal{L}_{J}(U) \xrightarrow{\cong} \bigoplus_{i=1}^{\operatorname{rank}(J)} \mathcal{O}_{X}(U)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{L}_{J}(V) \xrightarrow{\cong} \bigoplus_{i=1}^{\operatorname{rank}(J)} \mathcal{O}_{X}(V)$$

commutes. In other words, \mathcal{L}_J is locally isomorphic to $(\mathcal{O}_X)^{\oplus \operatorname{rank}(J)}$.

Definition 3.1.4. A sheaf F on a complex manifold X is *invertible* if there exist an open cover $\{U_i\}$ of X and a family of holomorphic isomorphisms $\varphi_i: \mathcal{O}_{U_i} \to \mathcal{L}_J \upharpoonright_{U_i}$.

Example 3.1.5. If J is a line bundle, then \mathcal{L}_J is invertible.

Consider the composition

$$\mathcal{O}_{U_i \cap U_j} \xrightarrow{\varphi_i} \mathcal{L}_J \upharpoonright_{U_i \cap U_j} \xrightarrow{\varphi_j^{-1}} \mathcal{O}_{U_i \cap U_j}, \qquad 1 \longmapsto g_{ij}.$$

From this, we can construct a line bundle L over X by defining the total space as

$$\coprod_{i} (U_{i} \times \mathbb{C})_{/\sim}$$

where $(x, \lambda)_i \sim (y, \mu)$ if x = y and $\mu = g_{ij}\lambda$.

Definition 3.1.6 (Divisor). A divisor on a complex manifold X is a locally finite \mathbb{Z} -combination of irreducible holomorphic hypersurfaces of X. Equivalently, it is a subset of X locally defined by the vanishing of a holomorphic function.

Example 3.1.7. If $X = \mathbb{A}^1$, then any divisor D on X is of the form

$$D = \sum m_i p_i, \quad p_i \in \mathbb{A}^1, \ m_i \in \mathbb{Z}.$$

Terminology. Each m_i is known as the multiplicity of p_i .

Any divisor D defines a line bundle $\mathcal{O}_X(D)$ on X and a holomorphic map $X \dashrightarrow \mathbb{P}(V^{\vee})$ where $V \equiv \Gamma(X, \mathcal{O}_X(D))$. It is also true that any line bundle defines a divisor. It follows that

(line bundles)
$$\stackrel{\sim}{\longleftrightarrow}$$
 (invertible sheaves) $\stackrel{\sim}{\longleftrightarrow}$ (divisors module linear equiv.) . (†)

Consider the case where $D = \mathsf{pt}$. Let $f \in \Gamma(U, \mathcal{O}_U)$ and let $U_i = X \setminus D$, which is a tubular neighborhood of D. Note that $U_i = f^{-1}(\mathbb{C} \setminus \mathsf{hyperplane})$. Define $\mathcal{O}_X(D)$ as the line bundle with transition functions of the form $f \mid_{U_i \cap U_i}$.

Alternatively, let

$$\left(\mathcal{O}_{X}\left(D\right)\right)\left(U\right)=\{g:U
ightarrow\mathbb{C}\mid g\text{ is meromorphic,}\overbrace{fg}^{\text{product}}\text{ is holomorphic}\}.$$

For example, let $X = \mathbb{P}^1$ and D be a point p. Let (x_0, x_1) denote local coordinates on X near p. Let g be meromorphic in these coordinates and let $f(x_0, x_1) = \frac{x_1}{x_0}$. Then fg is holomorphic, i.e., g has a pole of order at most one at p.

Question.

- 1. What is $\Gamma(\mathbb{P}^1, \mathcal{O}_X)$?
- 2. What is $\Gamma (\mathbb{P}^1, \mathcal{O}_X (D))$?

In fact, it can be shown that

$$\Gamma\left(\mathbb{P}^{1},\mathcal{O}_{X}\left(m,p\right)\right)=\begin{cases}\mathbb{C}\langle1,x,\ldots,x^{m}\rangle & m\geq0\\0&\text{otherwise}\end{cases}$$

In general, D is defined locally, and thus so is $\mathcal{O}_U(D)$. Specifically, $\Gamma(U, \mathcal{O}_U(D))$ consists of all holomorphic functions $f: U \setminus \text{supp}(D) \to \mathbb{C}$ such that if $D = \sum m_i Y_i$ and $Y_i \cap U = \{f_i = 0\}$, then $g \prod_i f_i^{m_i}$ is holomorphic in U.

Example 3.1.8 (Veronese embedding). Let $X = \mathbb{P}^1$ and p be as before.

1. Let $D = \mathcal{O}(2p)$. Consider the space $V := \Gamma\left(\mathbb{P}^1, \mathcal{O}\left(2p\right)\right) = \mathbb{C}\langle 1, x, x^2 \rangle$. Define the map $\varphi_{\mathcal{O}(2p)} : \mathbb{P}^1 \to \mathbb{P}^2$ by

$$\varphi_{\mathcal{O}(2p)}(x) = \underbrace{(1, x, x^2)}_{(x, y, z)}.$$

This is an embedding. Its image is precisely the smooth curve given by $y^2 = xz$.

2. Let $D = \mathcal{O}(3p)$. Then the image of the map $\varphi_{\mathcal{O}(3p)} : \mathbb{P}^1 \hookrightarrow \mathbb{P}^3$ given by $x \mapsto (1, x, x^2, x^3)$ is a so-called twisted cubic.

The line bundle L on X determines the map $X \longrightarrow \mathbb{P}\left(\Gamma(X,L)^{\vee}\right)$ directly, as follows.

$$x \mapsto \ker \left(\Gamma\left(X, L\right) \stackrel{\operatorname{eval}_x}{\longrightarrow} L_p\right)$$

Definition 3.1.9. The base locus of L is $\mathcal{BL}(L) \equiv \{x \in X \mid s(x) = 0 \text{ for each } s \in \Gamma(X, L)\}.$

Note that we get a map $X \setminus \mathcal{BL}(L) \to \mathbb{P}(\Gamma(X,L)^{\vee})$.

Now, let's consider a slight generalization of our preceding discussion. Let $V \subset \Gamma(X, L)$. This induces a map

$$X \xrightarrow{X} \mathbb{P}(V^{\vee})$$

$$\downarrow \qquad \qquad \downarrow$$

$$X \setminus \mathcal{BL}(V)$$

Let $X = \mathbb{P}^1$ and $p = \{x = 0\}$. Then $V \subset \Gamma(\mathbb{P}^1, \mathcal{O}(2)) = \mathbb{C}\langle 1, x, x^2 \rangle$, and

$$\begin{array}{ccc} \mathbb{P}^1 \xrightarrow{\varphi_{\mathcal{O}(2)}} \mathbb{P}^2 \\ & \downarrow^{\rho} \\ & \downarrow^{\rho} \\ & \mathbb{P}^1 \end{array}$$

commutes where ρ denotes the linear projection. Note that φ_V is a morphism so long as the center of ρ is not in the image of $\varphi_{\mathcal{O}(2)}$. In this case, we have that

$$\varphi_{\mathcal{O}(2)}(x) = \frac{a + by + cx^2}{d + ex + fx^2}$$
$$\rho(x) = \frac{a + bx}{c + dx}.$$

3.2 Lecture 7

Let L_1 and L_2 be line bundles over X with transition functions $\{g_1^{kl}: U_{kl} \to \mathbb{C}^*\}$ and $\{g_2^{ij}: U_{ij} \to \mathbb{C}^*\}$, respectively. We can take a refinement $\{U_i \cap U_k\}$ where both L_1 and L_2 are trivial. Define $L^1 \otimes L^2$ as the line bundle with transition functions $\{g_1^{kl}g_2^{ij}: U_{ij} \cap U_{kl} \to \mathbb{C}^*\}$. Further, define $(L^1)^{-1}$ as the line bundle with transition functions $\{(g_1^{kl})^{-1}: U_{kl} \to \mathbb{C}^*\}$. Note that, locally, $L^1 \otimes (L^1)^{-1} \cong \mathcal{O}_X$.

Definition 3.2.1. We say that a divisor $D = \sum_i m_i Y_i$ is effective if $m_i \geq 0$ for each i.

Let $V = \Gamma(X, \mathcal{O}_X(D))$ and let D be effective. Note that $\mathbb{C}\langle D \rangle \subset V$. We have that $\operatorname{supp}(D) = \varphi^{-1}$ (hyperplane) where $(\mathbb{C}\langle 0 \rangle)^{\perp}$ is precisely the hyperplane in $\mathbb{P}(V^{\vee})$.

Example 3.2.2. Let $X = \mathbb{P}^1$.

- 1. Let $x = \frac{x_1}{x_0}$ and $D = p := \{x = 0\}$. Then $V = \mathbb{C}\langle 1, x \rangle$, and the map $\varphi_V : \mathbb{P}^1 \to \mathbb{P}(V^{\vee})$ is given by $c \mapsto y := \frac{x}{1}$.
- 2. Let $D = m(\infty)$ with m > 0. Then $V = \mathbb{C}\langle x_1, \dots, x_m^m \rangle$, and the map $\varphi_{m\infty} : \mathbb{P}^1 \to \mathbb{P}^m$ is given by

$$(x_0, x_1) \mapsto (x_0^m, x_0^{m-1} x_1, \dots, x_0 x_1^{m-1}, x_1^m)$$

 $x \mapsto (1, x, \dots, x^m).$

3. Let $D = p_1 + \dots + p_m$ where $p_i = [1:t_i]$. Let $x = \frac{x_1}{x_0}$, so that ∞ is given by $x_0 = 0$. Then $V = \mathbb{C}\langle 1, \frac{1}{x-t_1}, \dots, \frac{1}{x-t_m} \rangle$. This can be viewed as the space of all regular meromorphic functions

on open subsets of \mathbb{P}^1 having poles of order at most m. The image of $\varphi : \mathbb{P}^1 \to \mathbb{P}^m$ is precisely the hyperplane $\{a_0 = 0\}$.

Example 3.2.3. Let X be an elliptic curve, i.e., a space of the form \mathbb{C}/Λ . Let p be the image of 0 and let D = mp.

1. Let m = 1. Then $V = \Gamma(X, \mathcal{O}_X(D))$, which consists of all maps $f : X \to \mathbb{P}^1$ such that $f^{-1}(\infty) = \{0\}$. These are precisely the constant maps, so that $V \cong \mathbb{C}\langle s \rangle$ where s is a holomorphic section of $\mathcal{O}_X(D)$ vanishing at p and is meromorphic on \mathcal{O}_X .

$$\begin{matrix} X & & & \\ \uparrow & & & \\ X \setminus p & & \end{matrix} \qquad \mathbb{P}^0$$

It follows that $\mathcal{BL}(\mathcal{O}_X(D)) = p$.

2. Let m=2. Then $V=\mathbb{C}\langle 1,p\rangle$, and $\varphi_{2p}:X\to\mathbb{P}^1$ is precisely the D-th Weierstrass function. Moreover, we have an exact sequence

$$0 \longrightarrow \mathcal{O}_X(p) \longrightarrow \mathcal{O}_X(2p) \longrightarrow \mathcal{O}_p \longrightarrow \cdots.$$

3. Let m=3. Then $V=\langle 1,p,p'\rangle$, and the image of $\varphi_{3p}:X\to\mathbb{P}^2$ is given by $y^2=x^3+ax+b$.

Example 3.2.4. Let $X = \mathbb{P}^2$. Let D = m (line at ∞).

- 1. Let m = 0. Then $V = \mathbb{C}\langle 1 \rangle$, and $\mathcal{BL} = \emptyset$.
- 2. Let m=1. Then $C=\mathbb{C}\langle \frac{z}{z}, \frac{y}{z}, \frac{z}{z}\rangle \cong \mathbb{C}\langle 1, X, Y\rangle$, and $\mathcal{BL}=\emptyset$. The map $\varphi_D: \mathbb{P}^2 \to \mathbb{P}^2$ is precisely the identity.
- 3. Let m=2. Then $V=\langle \frac{x^2}{z^2},\frac{x^4}{z^2},\frac{y^2}{z^2},\frac{x}{z},\frac{y}{z},\frac{z}{z}\rangle$, and the map $\varphi_D:\mathbb{P}^2\to\mathbb{P}^5$ is an embedding given by $(x,y,z)\mapsto \langle x^2,xy,y^2,xz,yz,z^2\rangle$.

In general, if $H \subset \mathbb{P}^n$ is a hyperplane, then $\varphi_{\mathcal{O}(dH)} : \mathbb{P}^n \to \mathbb{P}^{\binom{d+n}{n}-1}$ is given by

$$(x_0, \ldots, x_n) \mapsto (d\text{-th order homogenous polynomials}),$$

known as the d-th order Veronese embedding on \mathbb{P}^n .

Example 3.2.5. Let $X = \mathbb{P}^2$ with coordinates (x, y, z). Let H denote the hyperplane given by z = 0 and let D = 2H. Then $V = \{s \in \Gamma(\mathcal{O}(2H)) \mid s(0, 0, 1) = 0\}$, and

$$V \longleftarrow \Gamma \left(\mathcal{O} \left(2H \right) \right)$$

$$\cong \uparrow \qquad \qquad \uparrow \cong$$

$$\mathbb{C} \langle x^2, xy, y^2, xz, yz \rangle \longleftarrow \mathbb{C} \langle x^2, xy, y^2, xz, yz, z^2 \rangle$$

commutes. Further, $\mathcal{BL}(V) = \{0\} = [0, 0, 1]$, and φ_V is a map $\mathbb{P}^2 \setminus \{0\} \to \mathbb{P}^4$ but does not extend to \mathbb{P}^2 . Indeed, we have that

$$\lim_{\substack{(0,y,1)\\y\to 0}} \varphi_V = \lim_{y\to 0} \left(0,0,y^2,0,y\right) = (0,0,0,0,1)$$

$$\downarrow \downarrow$$

$$\lim_{\substack{(x,0,1)\\x\to 0}} \varphi_V = \lim_{x\to 0} \left(x^2,0,0,x,0\right) = (0,0,0,1,0).$$

Note that for any $p \in X$, there exist \widetilde{X} and $\pi : \widetilde{X} \to X$ such that π restricted to $\pi^{-1}(X \setminus p)$ is an isomorphism and $\pi^{-1}(p)$ is a divisor on \widetilde{X} that is isomorphic to \mathbb{P}^1 .

Proposition 3.2.6. Let $Y \subset X$ be a submanifold of codimension $k \geq 2$. Let $\varphi : X \setminus Y \to Z$. Then there exist \widetilde{X} and $\pi : \widetilde{X} \to X$ such that π restricted to $\pi^{-1}(X \setminus Y)$ is an isomorphism and restricted to $\underbrace{\pi^{-1}(Y)}_{\text{divisor on } X}$ is a bundle with each fiber isomorphic to \mathbb{P}^{k-1} .

3.3 Lecture 8

3.4 Lecture 9