SEQUENCE LISTING

SEQUENCE LISTING								
<110>	Board of Trustees for University of Arkansas							
<120>	Mitogen-Activated Protein Kinase and Method of Use to Enhance Biotic and Abiotic Stress Tolerance in Plants							
<130>	UAF-03-14							
	60/444,249 2004-01-31							
<160>	8							
<170>	PatentIn version 3.2							
<210> <211> <212> <213>	1396							
<400> agagag	1 gtcag ataaggtcgt taattaggtt ggtcaattcg gctgcttgcg gcgagagaag							

60 120 aggaggaggg attagggatg gacggggcgc cggtggcgga gttcaggccg acgatgacgc 180 acggcggccg gtacctgctc tacgacatct tcgggaacaa gttcgaggtg acgaacaagt 240 accagoogoo catcatgooo attggoogog gogootacgg gatcgtotgo toogtgatga actttgagac gagggagatg gtggcgataa agaagatcgc caacgcgttc aacaacgaca 300 tggacgccaa gcgcacgctc cgggagatca agctcctcag gcacctcgac cacgagaaca 360 tcataggcat cagggatgtg atcccgccgc cgatccctca ggcgttcaac gacgtctaca 420 480 tegecacgga geteatggae accgaectee ateacateat eegeteeaac caagaactgt 540 cagaagagca ctgccagtat ttcctgtacc agatcctgcg ggggctcaag tacatccact 600 cggcgaacgt gatccaccgc gacctgaagc cgagcaacct gctgctgaac gccaactgcg 660 acctcaagat ctgcgacttc gggctggcgc ggccgtcgtc ggagagcgac atgatgacgg agtacgtggt cacccggtgg taccgcgcgc cggagctgct gctcaactcc accgactact 720 780 ccgccgccat cgacgtctgg tccgtcggct gcatcttcat ggagctcatc aaccgccagc 840 cgctcttccc cggcagggac cacatgcacc agatgcgcct catcaccgag gtgatcggga 900 cgccgacgga cgacgagctg gggttcatac ggaacgagga cgcgaggaag tacatgaggc acctgccgca gtacccgcgc cggacgttcg cgagcatgtt cccgcgggtg cagcccgccg 960 1020 cgctcgacct catcgagagg atgctcacct tcaacccgct gcagagaatc acagttgagg

aggcgctcga	tcatccttac	ctagagagat	tgcacgacat	cgccgatgag	cccatctgcc	1080
tggagccctt	ctccttcgac	ttcgagcaga	aggctctaaa	cgaggaccaa	atgaagcagc	1140
tgatcttcaa	cgaagcgatc	gagatgaacc	caaacatccg	gtactagatt	gaatcaccat	1200
ggaaatgaga	tcccgtctat	acctgctttg	tacatatgat	caagattgag	agccgggtag	1260
actgaacatt	gcatttgttt	gtttgttgat	gttcgaaacc	cacattctct	gcaagttgtg	1320
gctgctttgt	atgatatatg	gtactatgtt	cgaataaaag	ggtttggaac	tttggattaa	1380
aaaaaaaaa	aaaaaa					1396

<210> 2

<211> 368

<212> PRT

<213> Oryza sativa

<400> 2

Met Asp Gly Ala Pro Val Ala Glu Phe Arg Pro Thr Met Thr His Gly $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Gly Arg Tyr Leu Leu Tyr Asp Ile Phe Gly Asn Lys Phe Glu Val Thr 20 25 30

Asn Lys Tyr Gln Pro Pro Ile Met Pro Ile Gly Arg Gly Ala Tyr Gly 35 40 45

Ile Val Cys Ser Val Met Asn Phe Glu Thr Arg Glu Met Val Ala Ile 50 60

Lys Lys Ile Ala Asn Ala Phe Asn Asn Asp Met Asp Ala Lys Arg Thr 65 70 75 80

Leu Arg Glu Ile Lys Leu Leu Arg His Leu Asp His Glu Asn Ile Ile $85 \hspace{1cm} 90 \hspace{1cm} 95$

Gly Ile Arg Asp Val Ile Pro Pro Pro Ile Pro Gln Ala Phe Asn Asp $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110$

Val Tyr Ile Ala Thr Glu Leu Met Asp Thr Asp Leu His His Ile Ile 115 120 125

Arg	Ser 130	Asn	Gln	Glu	Leu	Ser 135	Glu	Glu	His	Cys	Gln 140	Tyr	Phe	Leu	Tyr
Gln 145	Ile	Leu	Arg	Gly	Leu 150	Lys	Tyr	Ile	His	Ser 155	Ala	Asn	Val	Ile	His 160
Arg	Asp	Leu	Lys	Pro 165	Ser	Asn	Leu	Leu	Leu 170	Asn	Ala	Asn	Cys	Asp 175	Leu
Lys	Ile	Cys	Asp 180	Phe	Gly	Leu	Ala	Arg 185	Pro	Ser	Ser	Glu	Ser 190	Asp	Met
Met	Thr	Glu 195	Tyr	Val	Val	Thr	Arg 200	Trp	Tyr	Arg	Ala	Pro 205	Glu	Leu	Leu
Leu	Asn 210	Ser	Thr	Asp	Tyr	Ser 215	Ala	Ala	Asp	Val	Trp 220	Ser	Val	Gly	Cys
Ile 225	Phe	Met	Glu	Leu	Ile 230	Asn	Arg	Gln	Pro	Leu 235	Phe	Pro	Gly	Arg	Asp 240
His	Met	His	Gln	Met 245	Arg	Leu	Ile	Thr	Glu 250	Val	Ile	Gly	Thr	Pro 255	Thr
Asp	Asp	Glu	Leu 260	Gly	Phe	Ile	Arg	Asn 265	Glu	Asp	Ala	Arg	Lys 270	Tyr	Met
Arg	His	Leu 275	Pro	Gln	Tyr	Pro	Arg 280	Arg	Thr	Phe	Ala	Ser 285	Met	Phe	Pro
Arg	Val 290		Pro	Ala		Leu 295		Leu			Arg 300		Leu	Thr	Phe
Asn 305	Pro	Leu	Gln	Arg	Ile 310	Thr	Val	Glu	Glu	Ala 315		Asp	His	Pro	Tyr 320
Leu	Glu	Arg	Leu	His 325		Ile	Ala	Asp	Glu 330	Pro	Ile	Cys	Leu	Glu 335	Pro
Phe	Ser	Phe	Asp 340		Glu	Gln	Lys	Ala 345		Asn	Glu	Asp	Gln 350		Lys

Gln Leu Ile Phe Asn Glu Ala Ile Glu Met Asn Pro Asn Ile Arg Tyr 355 360 365

<210> 3 <211> 1084 <212> DNA <213> Oryza sativa

<400> 3

agagagtcag ataaggtcgt taattaggtt ggtcaattcg gctgcttgcg gcgagagaag 60 aggaggaggg attagggatg gacggggcgc cggtggcgga gttcaggccg acgatgacgc 120 acggcggccg gtacctgctc tacgacatct tcgggaacaa gttcgaggtg acgaacaagt 180 accageegee cateatgeee attggeegeg gegeetaegg gategtetge teegtgatga 240 actttgagac gagggagatg gtggcgataa agaagatcgc caactgcgac ctcaagatct 300 gcgacttcgg gctggcgcgg ccgtcgtcgg agagcgacat gatgacggag tacgtggtca 360 cccqqtqqta ccqcqcqcq qaqctqctqc tcaactccac cqactactcc qccqccatcq 420 acgtotggto ogtoggotgo atottoatgg agotoatoaa oogocagoog otottocoog 480 gcagggacca catgcaccag atgcgcctca tcaccgaggt gatcgggacg ccgacggacg 540 600 acgagctggg gttcatacgg aacgaggacg cgaggaagta catgaggcac ctgccgcagt accogogoog gaogttogog agcatgttoo ogcgggtgoa gooogoogog otogacotoa 660 togagaggat gotoacotto aaccogotgo agagaatoac agttgaggag gogotogato 720 atcettacet agagagattg cacgacateg cegatgagee catetgeetg gageeettet 780 ccttcgactt cgagcagaag gctctaaacg aggaccaaat gaagcagctg atcttcaacg 840 900 aagcgatcga gatgaaccca aacatccggt actagattga atcaccatgg aaatgagatc 960 ccgtctatac ctgctttgta catatgatca agattgagag ccgggtagac tgaacattgc 1020 atttgtttgt ttgttgatgt tcgaaaccca cattctctgc aagttgtggc tgctttgtat 1080 1084 aaaa

<210> 4 <211> 266 <212> PRT

<213> Oryza sativa

<400> 4

- Met Met Asp Gly Ala Pro Val Ala Glu Phe Arg Pro Thr Met Thr His 1 5 10 15
- Gly Gly Arg Tyr Leu Leu Tyr Asp Ile Phe Gly Asn Lys Phe Glu Val 20 25 30
- Thr Asn Lys Tyr Gln Pro Pro Ile Met Pro Ile Gly Arg Gly Ala Tyr 35 40 45
- Gly Ile Val Cys Ser Val Met Asn Phe Glu Thr Arg Glu Met Val Ala 50 55 60
- Ile Lys Lys Ile Ala Asn Cys Asp Leu Lys Ile Cys Asp Phe Gly Leu 65 70 75 80
- Ala Arg Pro Ser Ser Glu Ser Asp Met Met Thr Glu Tyr Val Val Thr 85 90 95
- Arg Trp Tyr Arg Ala Pro Glu Leu Leu Leu Asn Ser Thr Asp Tyr Ser 100 105 110
- Ala Ala Ile Asp Val Trp Ser Val Gly Cys Ile Phe Met Glu Leu Ile 115 120 125
- Asn Arg Gln Pro Leu Phe Pro Gly Arg Asp His Met His Gln Met Arg 130 135 140
- Leu Ile Thr Glu Val Ile Gly Thr Pro Thr Asp Asp Glu Leu Gly Phe 145 150 155 160
- Ile Arg Asn Glu Asp Ala Arg Lys Tyr Met Arg His Leu Pro Gln Tyr 165 170 175
- Pro Arg Arg Thr Phe Ala Ser Met Phe Pro Arg Val Gln Pro Ala Ala 180 185 190
- Leu Asp Leu Ile Glu Arg Met Leu Thr Phe Asn Pro Leu Gln Arg Ile 195 200 205
- Thr Val Glu Glu Ala Leu Asp His Pro Tyr Leu Glu Arg Leu His Asp

21	0	215	220					
Ile Al	a Asp Glu Pro Ile 230	Cys Leu Glu Pro Phe 235	e Ser Phe Asp Phe Glu 240					
Gln Ly	s Ala Leu Asn Glu 245	Asp Gln Met Lys Glr 250	Leu Ile Phe Asn Glu 255					
Ala Il	e Glu Met Asn Pro 260	Asn Ile Arg Tyr 265						
<210> 5 <211> 26 <212> DNA <213> Artificial								
<220> <223>	gene-specific pr	imer containing rest	riction site					
<400> cgggat	5 ccgt cggctgcatc t	tcatg	. 2	6				
<210> 6 <211> 25 <212> DNA <213> Artificial								
<220> <223>	gene-specific pr	imer containing rest	riction site					
<400> 6 gctctagatt caatctagta ccgga 25								
<210> <211> <212> <213>								
<220> <223>	gene-specific pr	imer containing rest	riction site					
<400> gagttc	7 aggc cgacgatgac		2	0				
<210><211><211><212><213>	20							

<220> <223> gene-specific primer containing restriction site <400> 8 atcggcgatg tcgtgcaatc 20