HIV-1 sample processing pipeline

Purpose

This pipeline allows the automated analysis of HIV-1 pol samples provided in fasta format. The pipeline initially queries the HIV-DB Sierra GraphQL Webservice using the sierrapy Python package and returns HIV-1 subtype predictions for each sample with additional information related to drug resistance-associated mutations. Reference sequences are added to the aligned files using MAFFT and a phylogeny is generated by RAxML. The resulting phylogeny with bootstrap values is saved as a pdf.

Installation/set-up

- Requirements:
 - Python3.6
 - SierraPy
 - MAFFT
 - RAxML
- Python dependencies:
 - docx
 - SeqIO (BioPython)
 - ete3
 - pandas
 - json

Procedure

preprocessing.sh

This bash script takes a single multi-sample fasta file as input and runs the preprocessing pipeline in two steps: 1. subtype and drug resistance query; 2. Add aligned HIV-1 reference sequences and generate phylogeny.

Example Usage

preprocessing.sh [-h -f] -- program to split fasta sequences by subtype and generate a phylogeny

where:

-h show this help text

-f input sequences in single multi-sample fasta format file

Command:

home2/db/HIV-cluster /preprocessing.sh -f <input samples.fa>

Output:

reports_{date}/ - directory containing all results files

{date}.{input}.fasta
 input fasta samples aligned to reference sequences
 {date}.{input}.txt
 text file containing sample to subtype information
 {date}.{input}.json
 HIVDB query response in json format, this is parsed to

generate the individual .docx reports

 $\{date\}_DRM\text{-}overview.txt\ -\ overview\ of\ drug\ resistance\ associated\ mutations\ across\ all\ -\ overview\ of\ drug\ resistance\ associated\ mutations\ across\ all\ -\ overview\ of\ drug\ resistance\ associated\ mutations\ across\ all\ -\ overview\ of\ drug\ resistance\ associated\ mutations\ across\ all\ -\ overview\ of\ drug\ resistance\ associated\ mutations\ across\ all\ -\ overview\ of\ drug\ resistance\ associated\ mutations\ across\ all\ -\ overview\ of\ drug\ resistance\ associated\ mutations\ across\ all\ -\ overview\ of\ drug\ resistance\ associated\ mutations\ across\ all\ -\ overview\ of\ drug\ resistance\ associated\ mutations\ across\ all\ -\ overview\ of\ drug\ resistance\ associated\ mutation\ across\ all\ -\ overview\ of\ drug\ resistance\ associated\ mutation\ across\ all\ -\ overview\ of\ drug\ resistance\ across\ ac$

queried samples

RAxML_tree-rerooted.pdf - visualisation of phylogenetic tree of samples and reference

sequences

RAxML/ - directory containing additional output files from generating

and re-rooting the phylogeny using RAxML

Individual Scripts

- RenameSequences.xlsm
- preprocessing.sh
- bin/
 - 1) perform query.py
 - 2) parse json write docx.py
 - 3) parse json store metadata.py
 - 4) visualise_phylogeny.py
- 1) **perform_query.py**: a Python module to query the HIVDB Sierra GraphQL Webservice using the SierraPy package (https://github.com/hivdb/sierra-client/tree/master/python).

 Requires HIV Pol samples in fasta format and returns HIV subtype information.
- 2) **parse_json_write_docx.py**: this script will generate a report for each sample in Microsoft word docx format detailing the subtype and information regarding drug-resistance associated mutations.
- 3) **parse_json_store_metadata.py**: generates an overview of the drug resistance associated mutations present in all samples from the current run and writes this to a tab delimited text file.
- 4) **visualise_phylogeny.py**: The phylogeny generated by RAxML is then visualised in pdf format. The tree will be rerooted by rooting it at the branch that best balances the subtree lengths.