PROPIEDADES DE LAS RELACIONES BINARIAS

Propiedad reflexiva

$$R \subseteq A^2$$

Sea R una relación binaria R en A, $(A \neq \emptyset)$.

Definición:

Diremos que R es <u>reflexiva</u> si $\forall a \in A$, a R a

Ejemplo:

En N la relación R definida por: "x R y \Leftrightarrow x divide a y" es reflexiva ya que \forall x \in N, x R x porque x divide a x

Propiedad reflexiva

Representación Matricial

Si la relación R es reflexiva entonces la diagonal pertenece a la relación. En la matriz asociada, la diagonal es toda de 1.

$$M_R = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

Digrafo:

Si la relación R es reflexiva entonces todo elemento tiene una flecha que comienza y termina en sí mismo (un bucle).

Propiedad arreflexiva

Definición:

Diremos que R es <u>arreflexiva</u> si $\forall a \in A$: aRa

Representación Matricial

$$M_R = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

Digrafo:

Ejemplo:

En N la relación R definida por: "a R b \Leftrightarrow a < b".

Es arreflexiva ya que ningún número natural es menor que sí mismo.

Propiedad no reflexiva

Definición:

Diremos que R es <u>no reflexiva</u> si $\exists a \in A / a Ra$

Representación Matricial

$$M_R = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

Digrafo:

Ejemplo:

En N la relación R definida por: "a R b \Leftrightarrow a es el doble de b". es no reflexiva ya que $(1, 1) \notin R$ puesto que 1 no es el doble de 1

Propiedad simétrica

Definición:

Diremos que R es <u>simétrica</u> si \forall a, b \in A: a R b \Rightarrow b R a

Ejemplo:

1) En Z la relación R definida por:

"a R b \Leftrightarrow a – b es múltiplo de 2". es simétrica ya que si a R b \Rightarrow hay p \in Z tal que a – b = 2p \Rightarrow b – a = 2(-p) con -p \in Z \Rightarrow b R a

Propiedad simétrica

Representación Matricial

Si la relación R es simétrica sobre A entonces los pares relacionados se reflejan respecto a la diagonal principal, en la matriz asociada.

$$M_R = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

Digrafo:

Si la relación R es simétrica entonces todo par de elementos que tiene una flecha la tiene en las dos direcciones

Propiedad asimétrica

Definición:

Diremos que R es <u>asimétrica</u> si \forall a, b \in A: a R b \Rightarrow b \Re a

Representación Matricial

No hay la diagonal

No hay pares que se reflejen
$$M_R = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Digrafo:

No hay flecha de ida y vuelta en ningún par de elementos.

Ejemplo:

En Z la relación R definida por: "a R b \Leftrightarrow a < b". es asimétrica ya que si a < b, b por lo tanto no será menor que a.

Propiedad no simétrica

Definición:

Diremos que R es <u>no simétrica</u> si $\exists a \exists b / aRb \land bRa$

Representación Matricial

Hay pares que se reflejen otros que no.

Hay pares
que se reflejen
a través de la
diagonal y
otros que no
$$M_R = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

Digrafo:

No hay flecha de ida y vuelta en todos los pares relacionados.

Ejemplo:

En N la relación R definida por: "x R y \Leftrightarrow x divide a y" es no simétrica ya que 2R4 porque 2 divide a 4 pero 4 no divide a 2 por lo tanto (4,2) ∉R

Propiedad antisimétrica

Definición:

Diremos que R es <u>antisimétrica</u> si \forall a, b \in A: [a R b \land b R a] \Rightarrow a = b Otra manera de expresarlo: Si a \neq b \Rightarrow [(a,b) \notin R \lor (b,a) \notin R]

Ejemplo:

En N la relación R definida por: " $x R y \Leftrightarrow x$ divide a y" es antisimétrica Ya que si a R b y b R a entonces existen $n, m \in N$ tales que:

b = an y a = bm.

Sustituyendo en esta última,

$$a = bm = (a.n).m \Rightarrow n.m = 1 \Rightarrow$$

$$n = m = 1 \implies a = b$$
.

Propiedad antisimétrica

Representación Matricial

Si la relación R es antisimétrica pueden existir pares por encima o por debajo de la diagonal pero ningún par tiene reflejo respecto a la diagonal principal excepto la diagonal misma.

$$M_R = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

Digrafo:

La relación R es antisimétrica si para cada par de elementos distintos relacionados la flecha está solo en un sentido

Propiedad Transitiva

Definición:

Diremos que R es <u>transitiva</u> si \forall a, b, c \in A: [a R b \land b R c] \Rightarrow a R c

Ejemplo:

En N la relación R definida por: " $x R y \Leftrightarrow x$ divide a y" es transitiva ya que si a R b y b R c entonces existen n, m \in N tales que: b = an y c = bm. Sustituyendo en esta última: c = bm = (a.n).m= a(n.m) con n.m \in N \Rightarrow b R c.

Dígrafo:

Cada vez que hay un camino de un elemento a otro pasando por un elemento intermedio, también existe un camino entre ambos elementos directamente.

Propiedad Transitiva

Dígrafo:

La relación R es transitiva si cada vez que hay un camino entre tres elementos, también está la flecha que comienza en el principio del camino y va al elemento que es final del camino.

Propiedad no transitiva

Definición:

Diremos que R es <u>no transitiva</u> si $\exists a \exists b \exists c / aRb \land bRc \land aRc$

Ejemplo:

En N la relación R definida por: "a R b \Leftrightarrow a es el doble de b". es no transitiva ya que $(4, 2) \in R$ y $(2, 1) \in R$ puesto que 4 es el doble de 2 y 2 es el doble de 1, sin embargo 4 no es el doble de 1, de donde $(4,1) \notin R$

Propiedad atransitiva

Definición:

Diremos que R es <u>atransitiva</u> si $\forall a \forall b \forall c / aRb \land bRc \Rightarrow aRc$

Ejemplo:

En A={1,2,3} "aRb \Leftrightarrow a+b=3" R ={(1,2), (2,1)} es atransitiva , ya que si (1,2)∈R y (2,3) ∈ R, entonces (1,3) \notin R

 $R \subseteq A^2$ M: matriz asociada

 I_n : matriz identidad M^t : matriz transpuesta

 $R \ es \ reflexiva \Leftrightarrow I_n \leq M$

R es simétrica $\Leftrightarrow M = M^{t}$

R es transitiva $\Leftrightarrow M^2 \leq M$

R es antisimétrica $\Leftrightarrow M \land M^t \leq I_n$

Nota:

S y T matrices booleanas del mismo orden

 $S \prec T$ $si s_{ij} \leq t_{ij}$

Tipos de relaciones

Relación de equivalencia

Diremos que una relación binaria sobre A, es una Relación de equivalencia si satisface las tres propiedades:

- □ R es reflexiva
- □ R es simétrica
- □ R es transitiva

Ejemplos:

Son de equivalencia:

- 1) En Z la relación R definida por: a R b \Leftrightarrow a b es múltiplo de 3.
- 2) Dado un conjunto D⊆ U, la relación:

$$A R B \Leftrightarrow A \cap D = B \cap D$$

Tipos de relaciones

Relación de orden

Diremos que una relación binaria sobre A, es una relación de orden parcial si satisface las tres propiedades:

- □ R es reflexiva
- □ R es antisimétrica
- □ R es transitiva

En este caso diremos que el conjunto A está parcialmente ordenado

Ejemplos:

Son Relaciones de orden:

- En D60, el conjunto de todos los divisores de 60, la relación R definida por: a R b ⇔ a divide a b.
- 2) En R, la relación definida por a R b \Leftrightarrow a \leq b.