Examenul național de bacalaureat 2021 Proba E. c)

Matematică M_tehnologic

BAREM DE EVALUARE ȘI DE NOTARE

Testul 3

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\sqrt{12}\left(\sqrt{3} - 3\sqrt{2}\right) + \sqrt{8}\left(3\sqrt{3} - \sqrt{2}\right) = \sqrt{36} - 3\sqrt{24} + 3\sqrt{24} - \sqrt{16} =$	3 p
	=6-4=2	2p
2.	$f(a) = a^2 - 2a + a$, deci $a^2 - a - 2 = 0$	3 p
	a = -1 sau $a = 2$	2p
3.	$9 - x = x^2 - 6x + 9$	3 p
	x = 0, care nu convine; $x = 5$, care convine	2p
4.	Mulțimea numerelor naturale pare de două cifre are 45 de elemente, deci sunt 45 de cazuri posibile	2p
	Numerele naturale pare de două cifre, care sunt multipli de 5, sunt 10, 20, 30, 40, 50, 60, 70, 80, 90, deci sunt 9 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{9}{45} = \frac{1}{5}$	1p
5.	M(-4,2)	3p
	$OM = \sqrt{20} = 2\sqrt{5}$	2p
6.	Triunghiul <i>ABC</i> este dreptunghic, deci $AC = \sqrt{BC^2 - AB^2} = 16$	2p
	$A_{\Delta ABC} = \frac{AB \cdot AC}{2} = \frac{12 \cdot 16}{2} = 96$	3p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 1 & -3 \\ 1 & -4 \end{vmatrix} = 1 \cdot (-4) - 1 \cdot (-3) =$	3p
	=-4+3=-1	2p
b)	$A \cdot B(x) = \begin{pmatrix} -2x & -9 \\ -3x & -13 \end{pmatrix}, \ B(x) \cdot A = \begin{pmatrix} x+3 & -3x-12 \\ x+4 & -3x-16 \end{pmatrix}, \text{ pentru orice număr real } x$	3 p
	$ \begin{pmatrix} -2x & -9 \\ -3x & -13 \end{pmatrix} = \begin{pmatrix} x+3 & -3x-12 \\ x+4 & -3x-16 \end{pmatrix} \Leftrightarrow x = -1 $	2p
c)	$aA + B(a) = \begin{pmatrix} 2a & -3a + 3 \\ 2a & -4a + 4 \end{pmatrix} \Rightarrow \det(aA + B(a)) = -2a^2 + 2a, \text{ unde } a \text{ este număr real}$	3 p
	$-2a^2 + 2a = 0$, de unde obținem $a = 0$ sau $a = 1$	2p
2.a)	$2*(-1)=2^2+2\cdot(-1)+(-1)^2=$	3 p
	=4-2+1=3	2p
b)	$x * y = x^2 + xy + y^2 = y^2 + yx + x^2 =$	3 p
	$= y * x$, pentru orice numere reale $x \not i y$, deci legea de compoziție ",*" este comutativă	2p

Probă scrisă la matematică *M_tehnologic*

Barem de evaluare și de notare

Testul 3

c)	$n^2 + n^2 + n^2 = 48 \Leftrightarrow n^2 = 16$	3 p
	n = -4, care nu convine; $n = 4$, care convine	2p

SUBIECTUL al III-lea (30 de puncte)

(30 de punc		
1.a)	$f'(x) = 6x - 1 - \frac{5}{x} =$	3 p
	$= \frac{6x^2 - x - 5}{x} = \frac{(x - 1)(6x + 5)}{x}, \ x \in (0, +\infty)$	2 p
b)	$\lim_{x \to +\infty} \frac{f(x) + 5\ln x}{xf'(x)} = \lim_{x \to +\infty} \frac{3x^2 - x + 1}{(x - 1)(6x + 5)} = \lim_{x \to +\infty} \frac{x^2 \left(3 - \frac{1}{x} + \frac{1}{x^2}\right)}{x^2 \left(1 - \frac{1}{x}\right)\left(6 + \frac{5}{x}\right)} =$	3р
	$=\frac{3}{1.6}=\frac{1}{2}$	2p
c)	$= \frac{3}{1 \cdot 6} = \frac{1}{2}$ $f'(x) = 0 \Leftrightarrow x = 1 \text{ si } f'(x) \leq 0, \text{ pentru orice } x \in (0,1] \Rightarrow f \text{ este descrescătoare pe } (0,1],$ $f'(x) \geq 0 \text{ pentru orice } x \in [1,+\infty) \Rightarrow f \text{ este crescătoare pe } x \in [1,+\infty)$	3p
	$f(x) \ge f(1) \Leftrightarrow f(x) \ge 3$, pentru orice $x \in (0, +\infty)$, de unde obţinem $3x^2 - x - 2 \ge 5 \ln x$, deci $3x^2 - x - 2 \ge \ln(x^5)$, pentru orice $x \in (0, +\infty)$	2p
2.a)	$\int_{-1}^{2} (x+2) f(x) dx = \int_{-1}^{2} (x^2+1) dx = \left(\frac{x^3}{3} + x\right) \Big _{-1}^{2} =$	3p
	$=\frac{14}{3} + \frac{4}{3} = 6$	2p
b)	$\int_{0}^{4} \left(f(x) - \frac{x^{2}}{x+2} \right) dx = \int_{0}^{4} \frac{1}{x+2} dx = \ln(x+2) \Big _{0}^{4} =$	3p
	$= \ln 6 - \ln 2 = \ln 3$	2p
c)	$\int_{0}^{6} (x-3)(x+3) \frac{x^{2}+2x+2}{x+3} dx = \int_{0}^{6} (x^{3}-x^{2}-4x-6) dx = \left(\frac{x^{4}}{4} - \frac{x^{3}}{3} - 2x^{2} - 6x\right) \Big _{0}^{6} = 144$	3р
	$n^2 = 144$ și, cum <i>n</i> este număr natural, obținem $n = 12$	2p