

DT0077 Design tip

LIS3DSH State Machine quick guide

By Andrea Vitali

Main components		
LIS3DSH	MEMS digital output motion sensor: ultra low-power high performance 3-axes nano accelerometer	

Purpose and benefits

This design tip is a quick guide to help you exploit the state machines embedded in the linear accelerometer LIS3DSH and provides the following:

- Quick configuration of the acquisition chain from analog-to-digital converter output to state machines' input
- Fundamentals of state machines programming; one example is discussed in detail: double-tap pattern detection
- State machine block diagram and features: basic blocks, shared blocks, peak detection, mask sets and configuration details.
- Quick reference: operation codes, registers overview.

Acquisition chain: from ADC (Analog-to-Digital) to SM (State Machine)

The LIS3DSH does embed two state machines. Figure 1 shows the acquisition chain from ADC to each State Machine. The chain is the following

- ADC conversion: output is a signed 16bits integer (Int16, +/-32767); acceleration in mg is computed by multiplying the digital value by the sensitivity which depends on selected Full Scale (2, 4, 6, 8 or 16g).
- Offset subtraction: registers OFF_X (11h), OFF_Y (12h) and OFF_Z (13h) are multiplied by 32 and subtracted from data; offset-corrected data is then fed to output registers and the FIFO.
- Scaling: offset-corrected data is divided by 256; output is a signed 8-bit integer (Int8, +/-127); scaled data is fed to State Machine 1.
- Vector norm approximation: scaled data is used to compute an approximation of vector norm (0...+105); optionally the vector norm is filtered by an anti-symmetric

DT0077 Rev 1 1/8

FIR filter with signed 8-bit coefficients VFC_1 (1Bh), VFC_2 (1Ch), VFC_3 (1Dh), VFC_4 (1Eh); the vector norm or the filter output is fed to both state machines.

- Scaled data and (filtered) vector norm is fed to State Machine 1; State Machine 2 is fed with the same data but decimated according to register DES2 (78h): ODR2 = ODR/(DES2+1)
- State Machine 2 has also the option to work on differential data: difference with respect to previous sample or difference with respect to constant shift registers CS_X (13h), CS_Y (14h), CS_Z (15h).

Figure 1. Acquisition chain: from ADC to State Machines

Fundamentals of State Machine programming

Each state machine can execute a 16-byte program. Program for State Machine 1 is stored in registers 40h-4Fh. Program for State Machine 2 is stored in registers 60h-6Fh. Program bytes are used as follows:

- State: 4-bit "RESET" condition code and 4bits "NEXT" condition code; conditions are checked when a new sample is available
- Command: 8-bit command followed by parameters (if any, 8 or 16-bit); commands are immediately executed, the state machine does not wait for a new sample; two exceptions: conditional jump JMP and synchronization SSYNC.

The state machine reads the byte. If it is a command, the state machine executes it immediately (unless there is a condition to check, as for conditional jumps). If it is a state,

 February 2017
 DT0077 Rev 1
 2/8

 www.st.com

the state machine waits for the data sample to be available. The sample is made of X, Y, Z triplet and the (filtered) vector norm approximation V. The state machine checks the "RESET" condition first and then the "NEXT" condition. Figure 2 shows the execution flow.

Figure 2. Execution flow: RESET and NEXT condition.

Figure 3 shows an example program for double-tap recognition. A tap is defined as a short duration peak of acceleration (10ms), which can be followed by some bouncing (20ms), and is concluded by a still period (70ms). Double-tap is two taps in 500ms.

Figure 3. Example program: double-tap recognition.

State machines block diagram and features

Basic blocks

Input data is made by XYZ triplets and the (filtered) approximation of vector norm V. Each state machine has two thresholds (THRS1 and THRS2). An 8-bit mask (MASK or TMASK) enables/disables comparisons: positive X (first comparison), negative X, positive Y, negative Y, positive Z, negative Z, positive V and negative V (last comparison). The first comparison which is found to be true, is stored in the temporary mask (TMASK).

TMASK is copied to the output register OUTS when appropriate: OUTC/OUTW commands, STOP/CONT commands (if SITR bit asserted n SETT1/SETT2), LC long counter reaches 0. INT_SM1/INT_SM2 bit is also asserted in STAT register. OUTS is cleared when read, INT_SM is also cleared.

MASK usually has many bits set to 1. TMASK has only one bit set to 1 (unless REL command is used to copy MASK into TMASK). The user can select MASK or TMASK to control comparisons (R_TAM bit in SETT1/SETT2 register).

Sign may/may not be used for comparisons: ABS=1/0 in CTRL_REG1/CTRL_REG2; in the latter case the absolute threshold is compared to absolute data.

The threshold is modified by the hysteresis value, HYST in CTRL_REG1/CTRL_REG2. THRS+HYST is used for "greater than" comparison. THRS-HYST is used for "less than or equal" comparison. HYST goes from 0 to 7.

Each state machine has also a timer counter TC. The TIx command initialize the timer with the value stored in the corresponding TIMx register. The timer is then decremented when a new sample is available. If the timer reaches 0, the condition for the timer is true.

Shared blocks

Both state machines share the LC long counter register and the THRS3 register.

The DEC command decrements LC immediately. If the timer reaches 0, the temporary mask is copied to the output register OUTS. LONG and INT_SM1/INT_SM2 bits are asserted in STAT register.

Tebluary

If any of enabled absolute data exceeds absolute THRS3, then the state machine is restarted. THRS3_MA or THRS3_SA must be set in SETT1/SETT2 registers. The first selects MASKx A, the second selects MASKx B (see below for mask sets).

Peak detection

Peak detection is enabled by P_DET in SETT1/SETT2 registers. When enabled, the temporary mask holds the bit corresponding to the axis where the peak has been found. If the temporary mask is used to control comparisons (R_TAM=0 in SETT1/SETT2) then the comparison is done on the axis where peak has been found. The largest value is stored in the PEAK1/PEAK2 register.

Peak detection is reset when output is generated (OUTC/OUTW commands) or when masks are changed (REL, SELMA and SELSA command, see next paragraph).

Mask sets and configuration details

Each state machine has two mask sets: (T)MASKx_A, and (T)MASKx_B. Execution starts with MASKx_A by default. SELMA command selects set A. SELSA command selects set B. REL command copies MASK to TMASK. Note that peak detection is reset whenever one of these commands is executed. Figure 4 summarize the configuration details of the state machine.

LC long counter, <u>same for both machines</u>, **DEC** command to decrement and check if 0. THRS3_MA=1, use MASKx_A If THRS3_SA=1, use MASKx_E restart THRS3 P_DET=1 in SETTx THRS3, same for both state machines **PEAKx** TC timer counter; use TI1/2/3/4 command to set Axis corresponding to initial value; decremented on new sample until 0. Peak is reset by SELMA, SELSA, REL, OUTC and OUTW commar detected PEAKX If RESET, then go to reset point THRS1 x If NEXT, then go to next state or command First axis for which THRS2_x Hysteresis value: HYST in CTRL REG R TAM P DET HYST_2 in CTRL_REG2 for state machine 2 THRS+HYST is used for "greater than" comparison
 THRS-HYST is used for "less than or equal" compar OUTSx is cleared when read, INT_SM in STAT is also clear Absolute value: ABS in SETTx If ABS==0: Abs(axis) compared to Abs(THRS+/-HYST)
If ABS==1 :axis compared to THRS+/-HYST OUTSx $MASKx_A$ TMASKx_A select MASKx_A **REL** command PEAK is reset {} ٤, SFI SA command MASKx_B TMASKx B PEAK is reset

Figure 4. State Machine configuration details.

Quick reference

Figure 5 summarizes 4-bit operation codes for NEXT and RESET conditions. Figure 6 and 7 summarize 8-bit operation codes for commands with their respective parameters (if any).

Bit 7 6 5 4 3 2 1 0

- RESET and NEXT conditions must be different. If they were the same, execution
 would be unpredictable: the state machine would go back and forth from RESET to
 NEXT while the condition is false; and when the condition becomes true, it could
 cause both a RESET or a transition to NEXT.
- RESET and NEXT condition cannot be TIx at the same time: if both RESET and NEXT condition were TIx, then the shortest delay would win and it would cause a reset or a transition to the next state/command.

Figure 8 summarizes the device registers. Figure 9 summarizes registers for both state machines.

Figure 5. Operation codes for RESET and NEXT condition in a state.

Opcode	Mnemonic	Action executed when new sample is available for the state RESET and NEXT condition must be different (commands opcode are XXh).	
0h	NOP	No operation; condition is false: in RESET go to NEXT, in NEXT go back to RESET.	
1h/2h/3h/4h	TI1/TI2/TI3/TI4	Wait for TIM1/2/3/4 samples: set counter TC, decrement at each sample, check if 0. RESET and NEXT condition cannot be both Tix (commands opcode are $1xh/2xh/3xh/4xh$).	
5h/6h	GNTH1/GNTH2	Check if any of enabled axis > threshold1/2 + hysteresis value.	
7h/8h	LNTH1/LNTH2	Check if any of enabled axis <= threshold1/2 – hysteresis value.	
9h	GTTH1	Check if any of enabled axis > thresold1 + hysteresis; use mask of state machine 1.	
Ah	LLTH2	Check if ALL axis enabled <= threshold2 – hysteresis value.	
Bh/Dh	GRTH1/GRTH2	Check if any of enabled axis > negated threshold1/2 + hysteresis value.	
Ch/Eh	LRTH1/LRTH2	Check if any of enabled axis <= negated threshold1/2 + hysteresis value.	
Fh	NZERO	Check if any of enabled axis changes sign (zero crossing detection).	

Figure 6. Operation codes for commands.

Opcode	Mnemonic	Action executed immediately (does not wait for new sample) except where noted		
00h	STOP	Stop execution (SM_EN=0 and SYNC=0 in SETT); if SITR=1 in SETT, copy temporary mask to output (OUTS) and assert interrupt (INT_SM in STAT)		
11h	CONT	Continue from beginning (program pointer set to 0h in PR); if SITR=1 in SETT, copy temporary mask to output (OUTS) and assert interrupt (INT_SM in STAT)		
22h XYh ZWh	JMP	Conditional jump: wait for new sample and evaluate condition; if condition Xh is true, then program pointer = Zh; else if condition Yh is true, then program pointer = Wh; else wait for another sample and repeat.		
33h/44h	SRP/CRP	Set/clear the reset pointer: set to current program pointer + 1 (next state or command) / clear by setting it to 0		
55h XYh ZWh	SETP	Set parameter: register XYh is set to ZWh; register must be writeable.		
66h XYh	SETS1	Set register SETTx to XYh		
77h/AAh/EEh XYh	STHR1/STHR2/STHR3	Set threshold1/2/3 to XYh		
88h/99h	OUTC/OUTW	Output/output-and-wait: copy temporary mask to output (OUTS) and assert state interrupt (INT_SM in STAT); OUTW also assert SYNCW and wait for host to read output; OUTS, SYNCW and INT_SM are cleared upon read; PEAK is reset		
BBh	DEC	Decrement and check if long counter LC is 0; if 0, copy temporary mask to output (OUTS) and assert interrupts (INT_SN and LONG in STAT); LC is reset to -1 (inactive).		
CCh	SISW	Negate temporary mask: for each axis, if positive enabled, then enable negative and vice versa; no change if none or both enabled.		
DDh	REL	Release temporary mask by setting it to default mask (A or B), PEAK is reset		
FFh	SSYNC	Sync with other state machine: wait for new sample, SYNCx bit is asserted in STAT, the other state machine is executed until another SSYNC command is encountered. Both state machines must be enabled.		

Opcode	Mnemonic	Action executed immediately but setting effective for next state or command	
12h/13h	SABSO/SABS1	Set ABS=0 in SETTx (no sign, abs(data) compared to abs(th+/-hyst)) / ABS=1 (sign kept, data compared to th+/hyst)	
14h/24h	SELMA/SELSA	Select mask A / mask B; PEAK is reset	
21h/23h	SRADIO/SRADI1	Set RADI=0 in SETT2 (use raw data) / RADI=1 (use diff data); only state machine 2, halts state machine 1	
31h/32h	SCS0/SCS1	$Set \ D_CS=0 \ in \ SETT2 \ (diff \ with \ prev \ sample) \ / \ D_CS=1 \ (diff \ with \ CS_X/Y/Z), \ only \ state \ machine \ 2, \ halts \ state \ machine \ 1$	
34h/43h	SRTAMO/SRTAM1	Set R_TAM=0 in SETTx (preserve and use temporary mask) / R_TAM=1 (always use default mask)	
41h/42h XYh	STIM3/STIM4	Set TIM3/TIM4 reload value to XYh	

Figure 7. Common registers.

Address	R/W	Mnemonic	Register documentation	
0Ch	R	OUT_T	Output temperature	
0Dh/0Eh	R	INFO1/2		
11h/11h/12h	R W	OFF_X/Y/Z	Offset correction: axis = axis – offset*32, INT8	
13h/14h/15h	R W	CS_X/Y/Z	Constant shift for state machine 2: axis/256 = axis/256 – constant, INT8	
16h/17h	R W	LC_L/H	Long counter, decremented by DEC command, generate LONG interrupt when 0, -1 when inactive, UINT16	
18h	R	STAT	Status of state machines: LONG, SYNCW, SYNC1, SYNC2, INT_SM1, INT_SM2, DOR, DRDY	
1Bh/1Ch/1Dh/1Eh	R W	VFC_1/2/3/4	Filter coefficients for vector norm approximation V, enabled by VFILT in CTRL_REG3, INT8	
1Fh	R W	THRS3	Threshold 3, reset to mask A/B if THRS3_MA/SA==1 in SETT and abs(axis)>THRS3, INT8	
20h	R W	CTRL_REG4	ODR (4bits, power down, 3.125Hz to 1.6kHz), BDU (lock OUT_L/H until both read), Z enable, Y enable, Z enable	
23h	R W	CTRL_REG3	Data ready to INT1, interrupt polarity (0=low) and latch (0=latched), INT2 and INT1 enable, VFILT enable, Soft reset	
24h	R W	CTRL_REG5	Bandwidth (2bits, 50/200/400/800Hz), Full scale (3bits, 2/4/6/8/16g), Self test (2bits), SPI mode (4/3wire)	
25h	R W	CTRL_REG6	Boot, FIFO/watermark enable, auto SPI/I2C addr increment, FIFO empty/watermark/overrun on INT1, boot on INT2	
27h	R	STATUS	Status of device: ZYX/Z/Y/X overrun, ZYX/Z/Y/X data available	
28h/29h	R	OUT_X_L/H	Output X acceleration, INT16	
2Ah/2Bh	R	OUT_Y_L/H	Output Y acceleration, INT16	
2Ch/2Dh	R	OUT_Z_L/H	Output Z acceleration, INT16	
2Eh	R W	FIFO_CTRL	FIFO setting: mode (3bits), watermark level (5bits)	
2Fh	R	FIFO_SRC	FIFO status: watermark reached, overrun, empty, data level (5bits)	

Status in STAT:

- Bit 7: LONG: long counter is 0
- Bit 6: SYNCW: OUTW executed, waiting for host to read output (OUTS1 or OUTS2)
- Bit 5: SYNC1: SSYNC executed by S.M.1, now in stand-by, waiting for SSYNC of S.M.2 Bit 4: SYNC2: SSYNC executed by S.M.2, now in stand-by, waiting for SSYNC of S.M.1
- Bit 3: INT_SM1: interrupt status for state machine 1 Bit 2: INT_SM2: interrupt status for state machine 2
- Bit 1: DOR: data overrun, unread output (OUTS1 or OUTS2) when new sample available
- Bit 0: DRDY: data ready, new sample available (OUT_X/Y/Z_L/H)

CTRL_REG4:

ODR: 0000b = power down, 0001b = 3.125Hz, 0010b = 6.25Hz, 0011b = 12.5Hz, 0100b = 25Hz, 0101b = 50Hz, 0110b = 100Hz, 0111b = 400Hz, 1000b = 800Hz, 1001b = 1600Hz

- CTRL_REG5:

 Bandwidth: 00b=800Hz 01b=400Hz, 10b=200Hz, 11b=50Hz
- Full Scale: 000b=2, 001b=4g, 010b=6g, 011b=8g, 100b=16g

Figure 8. State Machine registers.

State Machine 1

R		
	PEAK1	Peak value, INT8
R W	CTRL_REG1	Hysteresis (3bits), INT1/2 pin select, enable
W	ST 1 _x	Program (state or command)
W	TIM4_1	Timer reload value 4, 1LSB=1/ODR, UINT8
W	TIM3_ 1	Timer reload value 3, 1LSB=1/ODR, UINT8
W	TIM2_ 1 L/H	Timer reload value 2, 1LSB=1/ODR, UINT16
W	TIM1_1 L/H	Timer reload value 1, 1LSB=1/ODR, UINT16
W	THRS2_1	Threshold 2, 1LSB=FS/127, INT8
W	THRS1_1	Threshold 1, 1LSB=FS/127, INT8
W	MASK1_B	Mask B, see SELSA command
W	MASK1_A	Mask A, see SELMA command
W	SETT1	Setting (see below)
R	PR1	Program pointer (4bits), reset point (4bits)
R	TC1	Timer counter, see TI1/2/3/4 command
R	OUTS1	Output
R	w w w w w w w w w w w w w w w w w w w	W ST1_x W TIM4_1 W TIM3_1 W TIM2_1 L/H W TIM1_1 L/H W THRS2_1 W THRS1_1 W MASK1_B W MASK1_A W SETT1 E PR1 E TC1

- P_DET: peak detection enable
 THRS3_SA: enable reset when abs(axis)>THRS3, mask B selected ABS: 0=no sign, compare abs(data) to abs(threshold+/-hyst); 1=sign

- THRS3_MA: enable reset when abs(axis)>THRS3, mask A selected
- R_TAM: 0=use temporary mask, 1=use mask
- $\textbf{SITR}: \ enable \ output \ and \ interrupt \ generation \ for \ \textbf{STOP} \ and \ \textbf{CONT} \ command$

CTRL REG1:

- Bit 7-5: hysteresis value (+/-7, 1LSB=FS/127)
- Bit 3: 0=interrupt to INT1 pin, 1=interrupt to INT2 pin
- Bit 0: enable state machine (start program execution)

State Machine 2

State Machine 2			
Address	R/W	Mnemonic	Register documentation
1Ah	R	PEAK2	Peak value, INT8
22h	R W	CTRL_REG2	Hysteresis (3bits), INT1/2 pin select, enable
60h-6Fh	W	ST 2 _x	Program (state or command)
70h	W	TIM4_2	Timer reload value 4, 1LSB=1/ODR, UINT8
71h	W	TIM3_2	Timer reload value 3, 1LSB=1/ODR, UINT8
72h/73h	W	TIM2_ 2 L/H	Timer reload value 2, 1LSB=1/ODR, UINT16
74h/75h	W	TIM1_2 L/H	Timer reload value 1, 1LSB=1/ODR, UINT16
76h	W	THRS2_2	Threshold 2, 1LSB=FS/127, INT8
77h	W	THRS1_2	Threshold 1, 1LSB=FS/127, INT8
78h	W	DES2	Decimation factor, UINT8
79h	W	MASK 2 _B	Mask B, see SELSA command
7Ah	W	MASK2_A	Mask A, see SELMA command
7Bh	W	SETT2	Setting (see below)
7Ch	R	PR2	Program pointer (4bits), reset point (4bits)
7Dh/7Eh	R	TC2	Timer counter, see TI1/2/3/4 command
7Fh	R	OUTS2	Output

- P_DET: peak detection enable
 THRS3_SA: enable reset when abs(axis)>THRS3, mask B selected
- ABS: 0=no sign, compare abs(data) to abs(threshold+/-hyst); 1=sign RADI: 0=raw data, 1=diff data, see D_CS
- D_CS: 0=diff with previous sample, 1=diff with constant, see CS_X/Y/Z THRS3_MA: enable reset when abs(axis)>THRS3, mask A selected
- R_TAM: 0=use temporary mask, 1=use mask
- $\overline{\text{SITR}}:$ enable output and interrupt generation for STOP and CONT

CTRL REG2:

- Bit 7-5: hysteresis value (+/-7, 1LSB=FS/127)
- Bit 3: 0=interrupt to INT1 pin, 1=interrupt to INT2 pin Bit 0: enable state machine (start program execution)
- DT0077 Rev 1 7/8

February 2017

Support material

Related design support material

Product/ system Evaluation board - list references and links

Development kit - list reference and link

Evaluation tool, STEVAL-MKI109V2, eMotion: ST MEMS adapters motherboard based on STM32F103, compatible with all ST MEMS adapter boards

Evaluation tool, STEVAL-MKI134V1, LIS3DSH adapter board for standard DIL24 socket

Documentation

Datasheet, LIS3DSH, MEMS digital output motion sensor: ultra-low-power high-performance three-axis "nano" accelerometer

User manual, UM0979, STEVAL-MKI109V2 - eMotion motherboard for MEMS adapter boards.

User manual, UM1049, Unico GUI (paragraph 2.12).

Application note, AN3393, LIS3DSH: 3-axis digital output accelerometer

Revision history

Date	Version	Changes
3-Feb-2017	1	Initial release

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

 $\hbox{@ 2017 STM}{\it icroelectronics}-\hbox{All rights reserved}$

