Proof of
$$|C| = |R| = |[0, 1]|$$

Guo Linsong

March 12, 2020

Question 1. Let C be the Cantor set. Show that |C| = |R| = |[0,1]|.

Definition 2. Cantor Set.

Let $C_0 = [0, 1]$. For each positive integer n, let C_n be obtained from C_{n-1} by dividing each interval of C_{n-1} into three intervals of equal length and then removing the middle open interval from each of the intervals from C_{n-1} . The Cantor set is defined to be $\bigcap_{n>0} C_n$.

Fact 3. The Cantor set can be represented as

$$C = [0,1] \setminus \bigcup_{n=0}^{\infty} \bigcup_{k=0}^{3^{n}-1} \left(\frac{3k+1}{3^{n+1}}, \frac{3k+2}{3^{n+1}}\right)$$

Fact 4. The numbers in C have only 0s and 2s in their ternary(base 3) representation.

Considering some intervals in the form of $(\frac{3k+1}{3^{n+1}}, \frac{3k+2}{3^{n+1}})$ are removed from [0, 1], Fact 4 maybe obvious.But there're some special numbers which don't seem to satisfy the fact, such as $\frac{1}{3} = 0.1_3$ and $\frac{7}{9} = 0.21_3$. These numbers are the left endpoint of intervals $(\frac{3k+1}{3^{n+1}}, \frac{3k+2}{3^{n+1}})$. However, $\frac{1}{3}$ can be written as $0.02222222\cdots_3$. Similarly, $\frac{7}{9}$ can be written as $0.0202222222\cdots_3$ and all the special numbers can be represented in this way.

Lemma 5. There's a surjective mapping from C to [0,1].

The mapping can be defined by taking the ternary numbers that consist of 0s and 2s, replacing all the 2s by 1s, and interpreting the sequence as a binary representation of a real number in [0,1]. In a formula,

$$f(\sum_{k \in \mathbb{N}^+} a_k 3^{-k}) = \sum_{k \in \mathbb{N}^+} \frac{a_k}{2} 2^{-k} (a_k \in \{0, 2\})$$

For example, $f(\frac{2}{9}) = f(0.02_3) = 0.01_2 = \frac{1}{4}$.

As the set $\{\sum_{k\in\mathbb{N}^+} \frac{a_k}{2} 2^{-k}\}$ is actually [0,1],f is surjective.

Lemma 6. |C| = |[0,1]|

Identity mapping is an injective mapping from C to [0,1], so we have $|C| \leq |[0,1]|$. And according to Lemma 5, $|C| \geq |[0,1]|$. Therefore, we can conclude that |C| = |[0,1]|.

Lemma 7. $|(0,1)| = |\mathbb{R}|$

We define a mapping g from (0,1) to \mathbb{R} :

$$g(x) = tan(\pi x - \frac{\pi}{2})$$

Obviously, g is a bijection, which implies that $|(0,1)| = |\mathbb{R}|$. The conclusion maybe beautiful, but we expect to get $|[0,1]| = |\mathbb{R}|$. So I looked up some papers and found an amazing proposition |(0,1)| = |[0,1)|.

Proposition 8. |(0,1)| = |[0,1)|

Let $b_n = \frac{1}{n+1}$ for $n \in \mathbb{N}^+$ and $B = \{b_n | n \in \mathbb{N}^+\}$. We define a mapping h from B to $B \cup \{0\}$:

$$h(x) = \begin{cases} 0 & x = b_1 \\ b_{n-1} & x = b_n (n \ge 2) \end{cases}$$
 (1)

Assume $h(b_i) = h(b_j) = y$. If y = 0, then $b_i = b_j = b_1$. Otherwise $y = b_k$, then $b_i = b_j = b_{k+1}$. Hence h is injective. For any b_n , $h(b_{n+1}) = b_n$ and $h(b_1) = 0$, so h is surjective. Therefore, h is bijective. Next we can define identify mapping on (0,1) - B (clearly a bijection). Therefore, we can conclude that |(0,1)| = |[0,1)|.

Similarly, we can prove that |[0,1)| = |[0,1]|. Therefore, we can conclude that

$$R = |(0,1)| = |[0,1)| = |[0,1]|$$

Conclusion 9. |C| = |R| = |[0, 1]|

We have proved that |C| = |R| and |R| = |[0, 1]|, so we can get the conclusion.

Reference

https://www.math.ubc.ca/gor/Math220_2016/cardinality_workshop.pdf