STAT 153 - Introduction to Time Series Lecture Sixteen

Fall 2022, UC Berkeley

Aditya Guntuboyina

October 22, 2022

1 Different Regimes of the AR(1) Model

The AR(1) model is

$$Y_t = \phi_0 + \phi_1 Y_{t-1} + Z_t \tag{1}$$

Depending on the value of ϕ_1 , the AR(1) model is classified into three regimes:

- 1. Causal Stationary AR(1) Model: This corresponds to $|\phi_1| < 1$.
- 2. Non-causal Stationary AR(1) Model: This corresponds to $|\phi_1| > 1$.
- 3. Non-Stationary AR(1) Model: This corresponds to $|\phi_1| \neq 1$.

We shall see today the intuition behind this classification.

2 Causal Stationary AR(1)

Here $|\phi_1| < 1$. Assuming that the recursion (1) starts at t = 1, we can write every Y_t (for $t \ge 1$) in terms of Y_0, Z_t, \ldots, Z_1 as follows:

$$Y_{t} = \phi_{0} + \phi_{1}Y_{t-1} + Z_{t}$$

$$= \phi_{0} + \phi_{1} (\phi_{0} + \phi_{1}Y_{t-2} + Z_{t-1}) + Z_{t}$$

$$= \phi_{0} (1 + \phi_{1}) + Z_{t} + \phi_{1}Z_{t-1} + \phi_{1}^{2}Y_{t-2}$$

$$= \phi_{0} (1 + \phi_{1}) + Z_{t} + \phi_{1}Z_{t-1} + \phi_{1}^{2} (\phi_{0} + \phi_{1}Y_{t-3} + Z_{t-2})$$

$$= \phi_{0} (1 + \phi_{1} + \phi_{1}^{2}) + Z_{t} + \phi_{1}Z_{t-1} + \phi_{1}^{2}Z_{t-2} + \phi_{1}^{3}Y_{t-3}$$

$$= \dots$$

$$= \phi_{0} (1 + \phi_{1} + \dots + \phi_{1}^{t-1}) + \sum_{j=0}^{t-1} \phi_{1}^{j}Z_{t-j} + \phi_{1}^{t}Y_{0}$$

$$= \phi_{0} \frac{1 - \phi_{1}^{t}}{1 - \phi_{1}} + \sum_{j=0}^{t-1} \phi_{1}^{j}Z_{t-j} + \phi_{1}^{t}Y_{0}.$$

Because $|\phi_1| < 1$, when t gets large, the first term above converges quickly to $\frac{\phi_0}{1-\phi_1}$, and the third term converges quickly to zero (if we assume that Y_0 is a fixed constant). The second

term becomes

$$\sum_{j=0}^{t-1} \phi_1^j Z_{t-j} = Z_t + \phi_1 Z_{t-1} + \phi_1^2 Z_{t-2} + \dots + \phi_1^{t-1} Z_1 \to \sum_{j=0}^{\infty} \phi_1^j Z_{t-j}$$

when t becomes large. Thus when t is large,

$$Y_t \approx \frac{\phi_0}{1 - \phi_1} + \sum_{j=0}^{\infty} \phi_1^j Z_{t-j}.$$

Note that $\sum_{j=0}^{\infty} \phi_1^j Z_{t-j}$ involves negative indices of Z so we assume that we have a doubly infinite sequence ..., $Z_{-2}, Z_{-1}, Z_0, Z_1, Z_2, ...$ of i.i.d $N(0, \sigma^2)$ random variables. Let us denote

$$Y_t^* := \frac{\phi_0}{1 - \phi_1} + \sum_{j=0}^{\infty} \phi_1^j Z_{t-j} \quad \text{for } t = \dots, -2, -1, 0, 1, 2, \dots$$
 (2)

This random variable is well-defined for every t (the infinite series $\sum_{j=0}^{\infty} \phi_1^j Z_{t-j}$ is well-defined because ϕ_1^j decays rapidly to zero so effectively this infinite sum acts like a finite sum). This sequence of random variables $Y_t^*, t = \ldots, -2, -1, 0, 1, 2, \ldots$ satisfies the following properties:

- 1. $\{Y_t^*\}$ satisfies the AR(1) recursion (1) for all $t=\ldots,-2,-1,0,1,2,\ldots$ This can be easily verified.
- 2. $\mathbb{E}Y_t^*$ is the same for all values of t. This is because:

$$\mathbb{E}Y_t^* = \mathbb{E}\left(\frac{\phi_0}{1 - \phi_1} + \sum_{j=0}^{\infty} \phi_1^j Z_{t-j}\right)$$
$$= \frac{\phi_0}{1 - \phi_1} + \sum_{j=0}^{\infty} \phi_1^j \mathbb{E}(Z_{t-j}) = \frac{\phi_0}{1 - \phi_1} + \sum_{j=0}^{\infty} \phi_1^j \times 0 = \frac{\phi_0}{1 - \phi_1}.$$

3. The covariance between Y_t^* and Y_{t+h}^* depends only on h (i.e., it is the same for all t). This is because

$$\operatorname{Cov}(Y_t^*, Y_{t+h}^*) = \operatorname{Cov}\left(\frac{\phi_0}{1 - \phi_1} + \sum_{j=0}^{\infty} \phi_1^j Z_{t-j}, \frac{\phi_0}{1 - \phi_1} + \sum_{k=0}^{\infty} \phi_1^k Z_{t+h-k}\right)$$
$$= \operatorname{Cov}\left(\sum_{j=0}^{\infty} \phi_1^j Z_{t-j}, \sum_{k=0}^{\infty} \phi_1^k Z_{t+h-k}\right) = \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \phi_1^{j+k} \operatorname{Cov}(Z_{t-j}, Z_{t+h-k}).$$

Because Z_t are independent, $\text{Cov}(Z_t, Z_s)$ equals 0 for $t \neq s$ (and equals σ^2 when s = t). We represent this using indicator notation as $\text{Cov}(Z_t, Z_s) = \sigma^2 I\{t = s\}$. Thus

$$\operatorname{Cov}(Y_t^*, Y_{t+h}^*) = \sigma^2 \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \phi_1^{j+k} I\{t - j = t + h - k\}$$
$$= \sigma^2 \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \phi_1^{j+k} I\{k = j + h\}$$

which clearly does not depend on t. We can get a more explicit expression for the covariance in the following way. Suppose $h \ge 0$, then $I\{k = j + h\}$ is only non-zero for k = j + h so

$$\operatorname{Cov}\left(Y_{t}^{*}, Y_{t+h}^{*}\right) = \sigma^{2} \sum_{j=0}^{\infty} \phi_{1}^{j+(j+h)} = \sigma^{2} \phi_{1}^{h} \sum_{j=0}^{\infty} \phi_{1}^{2j} = \frac{\sigma^{2}}{1 - \phi_{1}^{2}} \phi_{1}^{h}.$$

When h < 0, we can replace j by k - h to obtain the same expression as above with h replaced by -h. We have thus proved that

$$\operatorname{Cov}\left(Y_{t}^{*}, Y_{t+h}^{*}\right) = \frac{\sigma^{2}}{1 - \phi_{1}^{2}} \phi_{1}^{|h|}.$$

This implies that

$$\operatorname{var}(Y_t^*) = \operatorname{Cov}(Y_t^*, Y_t^*) = \frac{\sigma^2}{1 - \phi_1^2} \quad \text{for every } t$$

so that the correlation between Y_t^* and Y_{t+h}^* is given by

$$\operatorname{corr}(Y_t^*, Y_{t+h}^*) = \frac{\operatorname{Cov}(Y_t^*, Y_{t+h}^*)}{\sqrt{\operatorname{var}(Y_t^*)} \sqrt{\operatorname{var}(Y_{t+h}^*)}} = \phi_1^{|h|} \quad \text{for every } t \text{ and } h.$$

The above properties of $\{Y_t^*\}$ are the reason why this is referred to as causal and stationary. Specifically, the definition of stationarity is the following:

Definition 2.1 (Stationarity). A doubly infinite sequence of random variables $\{X_t\}$ is said to be stationary if

- 1. The mean of X_t is the same for all times t
- 2. The covariance between X_t and X_{t+h} only depends on h.

Thus Y_t^* is clearly stationary according to the above definition. The causality just refers to the fact that Y_t^* only depends on $Z_t, Z_{t-1}, Z_{t-2}, \ldots$ In other words, only the present and past values of $\{Z_t\}$ determine Y_t^* so one can say that $\{Z_t\}$ causes Y_t^* .

To summarize: when $|\phi_1| < 1$, the AR(1) recursion (1) admits the causal and stationary solution Y_t^* given by (2). If Y_t is instead initialized at Y_0 and defined by (1) for $t \ge 1$, then Y_t would be quite close to Y_t^* when t is large.

Remeber also that if the fitted AR(1) model to a particular dataset corresponds to $|\phi_1| < 1$, then future predictions will converge to the constant value $\phi_0/(1-\phi_1)$.

3 Non-Causal Stationary AR(1)

Here $|\phi_1| > 1$. It is then easy to see that

$$Y'_t := \frac{\phi_0}{1 - \phi_1} - \sum_{j=1}^{\infty} \frac{Z_{t+j}}{\phi_1^j}$$

satisfies the AR(1) difference equation for all t. Further this process is also stationary (as can be checked by calculating the mean of Y'_t and the covariance between Y'_t and Y'_{t+h}). But it depends on the future values Z_{t+1}, Z_{t+2}, \ldots of the $\{Z_t\}$ process which is why this is called Non-Causal. Thus when $|\phi_1| > 1$, there exists a stationary solution to the AR(1) difference equation that is non-causal (i.e., it depends on future values of $\{Z_t\}$).

4 Non-Stationary AR(1)

Here $|\phi_1| = 1$ (i.e., either $\phi_1 = 1$ or $\phi_1 = -1$). Here it turns out that no stationary solution exists for the AR(1) difference equation. To see this, consider the case $\phi_1 = 1$ (the case $\phi_1 = -1$ is similar) where

$$Y_t = \phi_0 + Y_{t-1} + Z_t$$

This implies that

$$Y_t - Y_0 = t\phi_0 + Z_1 + \dots Z_t$$

When $\phi_0 \neq 0$, clearly Y_t and Y_0 have different means so the process cannot be stationary. But even if $\phi_0 = 0$, we have

$$var(Y_t - Y_0) = var(Z_1 + \dots + Z_t) = t\sigma^2$$

which approaches ∞ as $t \uparrow \infty$. But if $\{Y_t\}$ were stationary, we would have

$$var(Y_t - Y_0) \le 2var(Y_t) + 2var(Y_0) \le constant.$$

5 Regimes for AR(p)

Similar to AR(1), every AR(p) model has regimes corresponding to stationarity and causality. These are characterized by the roots of the characteristic equation. Specifically:

- 1. Causal stationary AR(p): this corresponds to the case when all the roots of the characteristic equation have modulus strictly larger than one
- 2. Non-Causal stationary AR(p): this corresponds to the case when all the roots of the characteristic equation have modulus different from one but at least one root has modulus less than one
- 3. Non-stationary AR(p): this corresponds to the case when at least one root of the characteristic equation has modulus equal to one.

We shall see some justification for these in the next class.

6 The MA(q) model

We saw that the causal stationary AR(1) model is given by (2) which is written as a linear combination of Z_t, Z_{t-1}, \ldots Motivated by this, we can consider more general linear combinations of Z_t, Z_{t-1}, \ldots as a time series model. This leads to the MA(q) model:

$$Y_t = \theta_0 + Z_t + \theta_1 Z_{t-1} + \theta_2 Z_{t-2} + \dots + \theta_a Z_{t-a}.$$

The parameters in this model are $\theta_0, \theta_1, \dots, \theta_q$. We shall study the fitting of these models to observed time series data later.

7 Recommended Reading for Today

1. For definitions of stationarity, see Section 1.4 of the book by Shumway and Stoffer titled *Time Series Analysis and its applications* (Fourth Edition).

