Counterfactual Evaluation and Learning

Part 2

Adith Swaminathan, Thorsten Joachims

Department of Computer Science & Department of Information Science

Cornell University

Website: http://www.cs.cornell.edu/~adith/CfactSIGIR2016/

Funded in part through NSF Awards IIS-1247637, IIS-1217686, IIS-1513692.

User Interactive Systems

Examples

- Search engines
- Entertainment media
- E-commerce
- Smart homes, robots, etc.
- → Logs of User Behavior for
 - Evaluating system performance
 - Learning improved systems and gathering knowledge
 - Personalization

Log Data from Interactive Systems

- Data context propensity $S = \left((x_1, y_1, \delta_1, p_1), \dots, (x_n, y_n, \delta_n, p_n)\right)$
 - → Partial Information (aka "Contextual Bandit") Feedback
- Properties
 - Contexts x_i drawn i.i.d. from unknown P(X)
 - Actions y_i selected by existing system $\pi_0(Y|X)$
 - Feedback δ_i from unknown function $\delta: X \times Y \to \Re$

Goals for this Tutorial

Use interaction log data

$$S = ((x_1, y_1, \delta_1, p_1), ..., (x_n, y_n, \delta_n, p_n))$$

for

- Evaluation:
 - Estimate online measures of some system π offline.
 - System π is typically different from π_0 that generated log.
- Learning:
 - Find new system π that improves performance.
 - Do not rely on interactive experiments like in online learning.

SIGIR 2016 Tutorial Counterfactual Evaluation and Learning

PART 2: LEARNING

Learning: Outline

- Optimizing online metrics offline
- Approach 1: "Model the world"
 - Derive policy from predicted rewards
- Approach 2: "Model the bias"
 - ERM via IPS: Reduction to weighted multi-class classification
- Revisiting the variance issue
 - ERM via Slates: Modeling feedback for combinatorial actions
 - CRM via POEM: Variance regularized ERM for stochastic rules
 - CRM via Norm-POEM: Self-normalized IPS for equivariance
- Case study
- Summary & Code samples

Goal of Learning

Given:

- Log data $S = ((x_1, y_1, \delta_1, p_1), ..., (x_n, y_n, \delta_n, p_n))$
- Hypothesis space H of possible policies π
- Find: Policy $\pi \in H$ that has maximum utility

$$U(\pi) = \int \int \delta(x, y) \pi(y|x) P(x) dx dy$$

Approach "Model the World" Reward Predictor

Given:

- Log $S = ((x_1, y_1, \delta_1, p_1), ..., (x_n, y_n, \delta_n, p_n))$ from π_0
- Assumptions about reward model $\hat{\delta}: x \times y \to \Re$ (e.g., regression, click model)

Algorithm:

- Train reward predictor $\hat{\delta}: x \times y \to \Re$ using S
- Derive policy $\hat{\pi}(x) \equiv \underset{y}{\operatorname{argmax}} \{\hat{\delta}(x, y)\}$

News Recommender: Exp Setup

- Context x: User profile
- Action y: Ranking
 - Pick from 7 candidates to place into 3 slots
- Reward δ : "Revenue"
 - Complicated hidden function

- Logging policy π_0 : Non-uniform randomized logging system
 - Placket-Luce "explore around current production ranker" (see case study)

News Recommender: Results

- Reward Predictor:
 - Features: Stacked features of three articles
 - Regression method: selected best via CV from {Ridge, Lasso, Least Squares, Decision Trees}

Approach	True Revenue
Production ranker	224.00
Randomized π_0	214.00
Reward predictor	175.71

Issues with Reward Predictor

Issue 1:

Model bias + selection bias = biased and not consistent

Issue 2:

Can be remedied via propensity weighting

→ e.g. [Li et al., 2014] [Schnabel et al., 2016a].

- First solves hard problem (reward prediction) in order to solve easier problem (find good policy)
 - Predict correct rewards —→ optimal policy
 - Optimal policy → predict correct rewards

Learning: Outline

- Optimizing online metrics offline
- Approach 1: "Model the world"
 - Derive policy from predicted rewards
- Approach 2: "Model the bias"
 - ERM via IPS: Reduction to weighted multi-class classification
- Revisiting the variance issue
 - ERM via Slates: Modeling feedback for combinatorial actions
 - CRM via POEM: Variance regularized ERM for stochastic rules
 - CRM via Norm-POEM: Self-normalized IPS for equivariance
- Case studies
- Summary & Code samples

Empirical Risk Minimization

Empirical Risk Minimization (ERM) with Regularization:

Given hypothesis space H of rules (or policies) $\pi: X \to Y$

$$\widehat{\pi} = \underset{\pi \in H}{\operatorname{argmax}} \left[\widehat{U}(\pi) - Reg(\pi) \right]$$

→ SVMs, Neural Nets, Boosted Trees, etc.

Questions for learning from log data:

- What estimator to use for $\widehat{U}(\pi)$?
- What regularizer $Reg(\pi)$ to use?
- Deterministic vs. Stochastic policies π ?
- How to solve argmax?

ERM with IPS Estimator

Given:

- $-\log S = \left((x_1, y_1, \delta_1, p_1), \dots, (x_n, y_n, \delta_n, p_n) \right) \text{ from }$ π_0

- Deterministic prediction rules
$$\pi \in H$$
: $y = \pi(x)$
- Training:
$$\left\{ \frac{1}{n} \sum_{i}^{n} \frac{I\{y_i = \pi(x_i)\}}{p_i} \delta_i \right\}$$

Deterministic $\pi \rightarrow Multi-class ERM$

• Treat π as a classifier with weighted loss

$$(x, y, \delta, p) \rightarrow (x, y, w); w = \delta/p$$

Policy utility is same as weighted accuracy!

$$U(\pi) = E_{x,y}[wI\{\pi(x) = y\}]$$

Use weighted multi-class algorithms to pick π. Implemented in Vowpal Wabbit https://github.com/JohnLangford/vowpal_wabbit/wiki

Summary: ERM via IPS

- Empirical Risk Minimization (ERM) with Regularization:
 - What estimator to use for $\widehat{U}(\pi)$?
 - VW: IPS or Doubly Robust
 - What regularizer $Reg(\pi)$ to use?
 - Standard regularizers to prevent overfitting
 - Deterministic vs. stochastic π ?
 - Deterministic
 - How to solve argmax?
 - Reduce to multi-class classification, use off-the-shelf algos

News Recommender: Results

• VW: Reduce to multi-class filter tree, doubly robust estimator with ridge regression, default parameters, 4 epochs via CV

Approach	Revenue
Production ranker	224.00
Randomized π_0	214.00
Reward predictor	175.71
ERM via IPS (VW)	177.93

Adith takes over