هدف

کرال کردن سایت Microsoft Academics برای واکشی ۵۰۰۰ مقاله. محاسبه معیار pagerank برای مقالات واکشی شده.

شرح

پیاده سازی بارگذار صفحات

برای بارگذاری صفحه مربوط به یک مقاله و استخراج اطلاعات مورد نیاز از chromedriver استفاده کردیم. برای بارگذاری یک صفحه وب نیاز به webdriver است. در این پروژه از chromedriver استفاده کردیم. پس از ستاپ کردن درایور یک تابع پیادهسازی کردیم تا با ورودی گرفتن id یک مقاله (که در url قرار دارد) اطلاعات خواسته شده (title, abstract, date, authors, references) را استخراج کرده و به صورت یک آبجکت خروجی دهد. به دلیل اینکه صفحات سایت از ریکوئستهای ajax برای لود بخشهای مختلف صفحه استفاده میکنند، پس از لود اولیه صفحه باید مقداری صبر کنیم تا المانهای مورد نظر در صفحه قرار بگیرند. این سایت ابتدا اطلاعات اولیه مقاله را لود کرده و سپس لیست ارجاعات را بارگذاری کرده و به صفحه اضافه میکند. طبق این مشاهده معیار لود شدن یک صفحه را دیده شدن یک المان مربوط به ارجاعات قرار میدهیم. این المان را با CSS Selector زیر مشخص کرده و بعد از درخواست دادن برای لود صفحه تا زمانی که این المان به صفحه اضافه شود صبر میکنیم.

PAGE_SELECTOR = "#mainArea router-view router-view div.results div.results ma-card .primary paper"

در صورتی که selenium نتواند در یک زمان مشخص شده المان ذکر شده را پیدا کند اکسپشن TimeoutException را رایز میکند. این اتفاق ممکن است به دلیل درخواستهای زیاد و ریدایرک شدن به صفحهی اصلی یا خالی بودن لیست ارجاعات رخ دهد. در این صورت پس گذشتن بازه زمانی مشخص شده (۲۰ ثانیه) درخواست را دوباره تکرار میکنیم و این کار را تا دو بار تکرار میکنیم و در صورت تکرار خطا سراغ مقالهی بعدی میرویم. به این ترتیب بدون وقفه صفحات را لود کرده و فقط در صورت اعمال محدودیت از طرف سایت به مقدار لازم صبر میکنیم.

بعد از لود صفحه اطلاعات خواسته شده را از المانهای مربوطه با استفاده از CSS Selectorهای زیر استخراج میکنیم.

```
TITLE_SELECTOR = "#mainArea h1.name"

ABSTRACT_SELECTOR = "#mainArea > router-view > div > div > div > div > div > p"

DATE_SELECTOR = "#mainArea > router-view > div > div > div > div > div > a > span.year"

AUTHORS_SELECTOR = "#mainArea > router-view > div > div
```

REFERENCES_SELECTOR = "#mainArea > router-view > router-view
div.results > div > compose > div > div.results > ma-card
div.primary paper > a.title.au-target"

پیاده سازی خزشگر

خزشگر دارای یک صف است. این صف ابتدا با id سه مقاله داده شده مقدار دهی شده است.

پس از لود هر صفحه ارجاعات آن مقاله در صورتی که قبلا به صف اضافه نشده باشند به صف اضافه میشود. برای بررسی این موضوع بعد از اضافه کردن یک مقاله به صف id آن به یک set اضافه میشود تا بررسی اینکه آیا یک مقاله تکراری است یا نه در (O(1 انجام شود. این فریاد تا رسیدن تعداد مقالات به تعداد مطلوب ادامه پیدا میکند.

محاسبه معيار pagerank

برای محاسبه این معیار ابتدا یک گراف جهت دار از روی لیست مقالات بدست آمده در بخش قبل ساختیم. در صورتی که مقاله A به مقاله B ارجاع داشته باشد. یک یال جهت دار از A به B در گراف وجود دارد. سپس با استفاده از تابع pagerank در کتابخانه networkx معیار pagerank را محاسبه کردیم.

لیست مقالات برتر به ازای alpha=0.9 به این صورت بدست آمد:

rank	id	pagerank	title
1	2156909104	0.001856995897756	The Nature of Statistical Learning Theory
2	2310919327	0.001814431669275	Gradient-based learning applied to document recognition
3	2618530766	0.001671126807919	ImageNet classification with deep convolutional neural networks
4	2049633694	0.001418844085337	Maximum likelihood from incomplete data via the EM algorithm
5	2154642048	0.001129275540375	Learning internal representations by error propagation
6	2136922672	0.001055075915757	A fast learning algorithm for deep belief nets
7	1652505363	0.00101831609563	Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations
8	2097117768	0.001004479564356	Going deeper with convolutions

9	2108598243	0.000988806223631	ImageNet: A large-scale hierarchical image database
10	2194775991	0.000951128283669	Deep Residual Learning for Image Recognition
11	2132260239	0.000908178820637	Identification of a novel coronavirus in patients with severe acute respiratory syndrome.
12	2962835968	0.000903697208669	Very Deep Convolutional Networks for Large-Scale Image Recognition
13	2116064496	0.00089589579598	Training products of experts by minimizing contrastive divergence
14	2166867592	0.000892711241025	Isolation of a Novel Coronavirus from a Man with Pneumonia in Saudi Arabia
15	2102605133	0.000882760969339	Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation
16	2100495367	0.000877917762526	Reducing the Dimensionality of Data with Neural Networks
17	2025170735	0.000860568495564	Coronavirus as a possible cause of severe acute respiratory syndrome
18	2104548316	0.000851288288115	A novel coronavirus associated with severe acute respiratory syndrome.
19	2148603752	0.000844818286134	Statistical learning theory
20	2119821739	0.000834642444415	Support-Vector Networks