である。はじめの S^1 は $S^1 \times \{1\}$ に同一視,される。 $S^1 \times \{0\}$ では H^\prime は 恒等写像になているのでこに 円板 D^2 を張り付け、 H^\prime を恒等写像で拡張すれば、結局、 允は 円板 $S^1 \times [0,1] \cup D^2$ の微介同相写像に拡張できる。

と定義する.ただし、Rとりは正の定数で、R>トと仮定する.このときfm Morse 関数であることを示し、すべての臨界点とその指数を求める。

[証明] トーラス上の任意の点で、(8,4)を局所座標系として使える。

$$\frac{\partial f}{\partial \theta} = -(R + r\cos\phi)\sin\theta = 0$$
 $\frac{\partial f}{\partial \phi} = (-r\sin\phi)\cos\theta = 0$

を解いて、(0, ϕ)=(0,0),(0, π),(π ,0),(π , π)の4点が臨界点である。Hesse 行列 H_f を各臨界点で求めてみると、これらの臨界点が非退化であることがまなことがよりな。 また (0,0),(π , π),(π ,0)の指数が 2.1,1.0 であることがわかる.

2 一般次元八の拡張

1

1

1

1

1

(

§ 2.1. 加次元为様体

当面,必要とする(C^{ee}般の)多様体の性質は局所座標系の存在だけである。すなわち, Mを加次元9様体とすると、Mのどの点りのまわりにも,加次元のC^{ee}級局所座標系

$$(2.1) \qquad (x_1, x_2, \dots, x_m)$$

が存在する、以下、多様体の局所座標系といえば、 Cの級の局所座標系を指すものとする。

(a)为棒体上の関数と为様体間の写像

別様体 M上の関数 $f: M \to R$ が C^{∞} 級 であることの定義は、 tu かり、 Mの任意の点 P とそのまわりの任意の局所座標系 (x_1, x_2, \dots, x_m) に関いて、f が C^{∞} 級であるとき、 f を M上の C^{∞} 級関数 という。

Nを別の n次元为様体として、連続写像 f: M→Nが C*級であることの定義を与えておく。まず「f: M→Nが点pe Mのまわりで C*級である」ということを定義する。