งานประชุมวิชาการ และนวัตกรรม กฟภ. ปี 2564

Data Driven Business in Digital Utility Era ขับเคลื่อนธุรกิจด้วยฐานข้อมูลในยุค Digital Utility

การจัดลำดับความสำคัญของโหนดจากอายุการใช้งานของอุปกรณ์ในเครือข่ายสื่อสารของการไฟฟ้าส่วนภูมิภาค

ณัฐนนท์ งามเจริญ^{1,2}, พิสุทธิ์ รพีศักดิ์¹

¹ภาควิชาวิศวกรรมไฟฟ้า คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเกษตรศาสตร์

²กองระบบสื่อสาร ฝ่ายปฏิบัติการและบำรุงรักษา การไฟฟ้าส่วนภูมิภาค เขต 2 (ภาคกลาง) จังหวัดชลบุรี

nattanon.ng@ku.th, pisut.r@ku.th

บทคัดย่อ

เครือข่ายสื่อสารด้านพลังงานไฟฟ้าเป็นเครือข่ายที่มี ลักษณะเฉพาะ ที่ให้บริการเกี่ยวกับการควบคุมการส่งจ่าย พลังงานไฟฟ้าให้สามารถทำงานได้อย่างมีประสิทธิภาพ และ ความปลอดภัยอย่างสูงสุด ซึ่งมีความสำคัญอย่างยิ่งต่อการ สร้างความน่าเชื่อถือได้ของระบบไฟฟ้า เครือข่ายการสื่อสารจึง ต้องมีประสิทธิภาพเพื่อส่งผ่านข้อมูลที่ถูกต้อง รวดเร็ว และ แม่นยำ โดยเครือข่ายสื่อสารประกอบด้วยสองส่วนที่สำคัญ คือ โหนดซึ่งทำหน้าที่รับส่งข้อมูล และลิ้งค์มีหน้าที่นำพาข้อมูลไป ถึงจุดหมาย บทความนี้จะกล่าวถึงการจัดลำดับความสำคัญ ของโหนด โดยอาศัยหลักการความน่าจะเป็นของความ ล้มเหลวของโหนด และระดับความสำคัญของเซอร์วิสใน เครือข่ายสื่อสาร ซึ่งอัลกอริทึมที่นำมาใช้จะช่วยการวิเคราะห์ ความเสี่ยงของโหนด วิธีการที่นำไปสู่การลดความเสี่ยง ช่วยให้ เครือข่ายพลังงานไฟฟ้ามีเสถียรภาพและความน่าเชื่อถือได้

คำสำคัญ: ความน่าจะเป็นของความล้มเหลว, ค่าความสำคัญ ของเซอร์วิส, ค่าความสำคัญของโหนด

1. บทนำ

เครือข่ายการสื่อสารในระบบไฟฟ้า ที่นำส่งชุดคำสั่งในการ ควบคุมการสั่งการการจัดการพลังงานทั้งหมด ซึ่งมีส่วนสำคัญ ต่อเสถียรภาพของเครือข่ายไฟฟ้า และการทำงานที่ปลอดภัย การพัฒนาอย่างรวดเร็วของระบบสื่อสารในเครือข่ายไฟฟ้า ทำ ให้มีความซับซ้อนของเครือข่ายเพิ่มขึ้น โครงสร้างที่แข็งแกร่ง ของเครือข่ายสื่อสารมีความสำคัญอย่างมากต่อการทำงานปกติ ของเครือข่าย และโหนดมีหน้าที่รักษาการทำงานตามปกติของ

เครือข่ายทั้งหมด ดังนั้นจึงจำเป็นต้องศึกษาความสำคัญของ โหนดในเครือข่ายการสื่อสารนั้นๆ เพื่อบ่งบอกระดับ ความสำคัญ [1], [2]

มีหลายวิธีในการประเมินความสำคัญของโหนดใน เครือข่ายที่ซับซ้อน ซึ่งทั้งหมดจะอ้างอิงจากทฤษฎีกราฟเป็น หลัก [3] บทความอื่นเสนอให้จำนวนลิ้งค์ที่เชื่อมต่อกันเป็น เกณฑ์ในการประเมินความสำคัญของโหนด ยิ่งโหนดไหนมีการ เชื่อมต่อมากก็จะยิ่งมีความสำคัญมาก แต่ไม่ใช่แบบนั้นเสมอไป เช่น โหนดที่ทำหน้าที่เป็นสะพานเชื่อมระหว่างเครือข่าย ซึ่ง อาจจะมีลิ้งค์มาเชื่อมต่อเพียงสองลิ้งค์ สอดคล้องกับวิธีการ ความเป็นจุดศูนย์กลางโดยวัดจากการคั่นกลาง หรือ Betweenness Centrality ที่กล่างถึงเส้นทางที่สั้นที่สุดที่ผ่าน โหนดเพื่อใช้กำหนดค่าน้ำหนักของโหนด ยิ่งโหนดที่มีค่า น้ำหนักมาก ยิ่งมีความสำคัญมากเช่นกัน [4], [5], [6]

ชั้นโทโพโลยีการสื่อสาร มุมมองความสำคัญของโหนดใน สถานีไฟฟ้า 115 เควี มีความสำคัญกว่าโหนดสถานีไฟฟ้า 22 เควี ซึ่งโหนดการสื่อสารจะมองว่าการทำงานมีลักษณะที่ สอดคล้องกันและแตกต่างกัน แต่ในด้านพลังงานไฟฟ้า ทั้ง สถานะและอิทธิพลต่อโหนดอื่นจะแตกต่างกัน [7] การประเมิน โหนดเครือข่ายการสื่อสารบนเครือข่ายไฟฟ้า จากความน่าจะ เป็นของความขัดข้องของโหนด ซึ่งดัชนีการประเมิน ความสำคัญที่สูง หากความน่าจะเป็นที่ล้มเหลวสูงกว่าโหนดที่ มีความล้มเหลวต่ำ ซึ่งไม่รวมถึงเชอร์วิสที่โหนดนั้นๆ ต้องแบก รับ ระดับความสำคัญของเชอร์วิสที่ถูกส่งจ่ายไปแต่ละโหนด ย่อมมีความสำคัญต่อเครือข่ายด้วย

2. การประเมินความสำคัญของโหนดในเครือข่าย สื่อสาร

2.1 การประเมินความสำคัญของโหนดจากความน่าจะเป็น

ความน่าจะเป็นของความล้มเหลว (Failure Probability) ของโหนดจะพิจารณาจากอายุการใช้งานของอุปกรณ์ ซึ่งการ เปลี่ยนแปลงสามารถอธิบายจากกราฟเส้นโค้งรูปอ่างน้ำ (bathtub curve) ความเสื่อมสภาพและข้อบกพร่องของ อุปกรณ์เหล่านั้นจะเพิ่มมากขึ้นเมื่อเวลาผ่านไป ซึ่งได้อธิบาย จากฟังก์ชั่นเอ็กซ์โปเนนเชี่ยล [4]

ความน่าจะเป็นของความล้มเหลวของโหนดมีผลกระทบ อย่างมากต่อการประเมินความสำคัญของโหนด ตัวอย่างเช่น โหนดที่มีโอกาสเกิดความล้มเหลวต่ำ กับโหนดที่มีค่าสูง ย่อมมี อิทธิพลสำคัญต่อการทำงานปกติและการวางแผนด้านการ สื่อสารของเครือข่ายสื่อสารด้านพลังงานไฟฟ้า [4]

$$P_i(t) = 1 - e^{-\frac{t}{T}}$$
 (1)

โดยที่ P_i คือ ความน่าจะเป็นของโหนด i

t คือ อายุการใช้งานจนถึงปัจจุบัน

T คือ อายุขัยของอุปกรณ์

2.2 การประเมินความสำคัญของโหนดจากเซอร์วิส

ค่าความสำคัญของเซอร์วิส เป็นตัวชี้วัดความสำคัญอย่าง หนึ่งในการประเมินเครือข่ายสื่อสารด้านพลังงานไฟฟ้า ซึ่งก็คือ ขนาดของผลกระทบของการปฏิบัติงานและความปลอดภัย หากเครือข่ายสื่อสารนั้นเกิดการหยุดชะงัก ประเภทและความสำคัญของบริการไฟฟ้าที่ดำเนินการใน เครือข่ายการ สื่อสารกริดพลังงานแตกต่างกัน ดังนั้นโหนด ความสำคัญตาม บริการด้านพลังงานควรมีความแตกต่างด้วย [8]

สำหรับโมเดลในการประมาณค่า อ้างอิงวิธีการวิเคราะห์ ตามลำดับชั้น (AHP) กำหนดหลักเกณฑ์ในการพิจารณาค่าถ่วง น้ำหนักของเกณฑ์ ประกอบด้วย Real-time, Reliability, BER และ Bandwidth โดยที่เกณฑ์ Real-time และ Reliability มีความสำคัญในด้านของการสั่งการทางระบบ ไฟฟ้าที่ต้องการความถูกต้องแม่นยำและความรวดเร็วเมื่อ เทียบกับเซอร์วิสที่เป็นด้านงานข้อมูล อย่างไรก็ตามค่า Bit rate error และ Bandwidth ก็ต้องนำมาพิจารณาเช่นกัน ให้ เหมาะสมตามปริมาณการใช้เซอร์วิสนั้นๆ เช่น ระบบวีดีโอคอน

เฟอเรนซ์ อาจต้องการ Bandwidth ที่มากกว่าระบบการ ควบคุม เป็นต้น ค่าถ่วงน้ำหนักของทั้ง 4 เกณฑ์ เป็นไปตาม ตาราง 1

ตาราง 1. ค่าถ่วงน้ำหนักหลักเกณฑ์ของเซอร์วิส

เกณฑ์	Real-time	Reliability	BER	Bandwidth
ค่า น้ำหนัก	0.4091	0.3498	0.1584	0.0825

จากข้อมูลที่รวบรวมได้ เซอร์วิสทั้งเจ็ด จะถูกประเมินและ ให้คะแนนจากผู้ที่เชี่ยวชาญ ค่าถ่วงน้ำหนักที่ได้มาจาก ตาราง ที่ 1 จะถูกนำมาคำนวณตามน้ำหนักและคะแนนที่ได้จากการ ประเมินในแต่ละเซอร์วิส ผลจากการคำนวณใช้เป็นค่า ความสำคัญทั้งเจ็ดเซอร์วิส ซึ่งวิธีที่จะได้ค่าความสำคัญนั้น เรา เลื อกใช้ วิ ธี การ Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) ในการจัดลำดับ ความสำคัญของแต่ละเซอร์วิสให้สอดคล้องกับคะแนนที่ได้ถูก ประเมิน และมีความน่าเชื่อถือได้ ประเภทและความสำคัญ ของบริการไฟฟ้าในเครือข่ายสื่อสารด้านพลังงานไฟฟ้าใน ตารางที่ 2 [9]

ตาราง 2. ค่าความสำคัญของเซอร์วิส

Service	Importance Degree (Si)
IP SCADA Monitoring; S ₁	0.6623
Video Conference; S ₂	0.3775
IP CCTV; S₃	0.3114
IP SCADA Control; S ₄	0.9287
Tele protection; S₅	0.9287
Unmanned Substation; S ₆	0.7106
INMS System; S ₇	0.0368

ที่แสดงในตาราง 2 จัดเรียงลำดับของแต่ละ service ได้ ดังนี้ IP SCADA Control, Tele protection, Unmanned Substation, IP SCADA Monitoring, Video Conference, IP CCTV and INMS System IP ซึ่งเซอร์วิสของ SCADA Control and Tele protection คือการรักษาการทำงาน ตามปกติของระบบกริดไฟฟ้าซึ่งหนึ่งในนั้นเป็นการป้องกันสาย ส่ง จึงมีความสำคัญรองลงมาจาก IP SCADA Control ในส่วน ข อ ง Unmanned Substation IP SCADA Monitoring อาจจะประกอบไปด้วยรายละเอียดมากมาย แต่เป็นการ ตรวจสอบสถานะของระบบ อาจรวมถึงการทดสอบโหลดด้วย เซอร์วิสนี้ กับผู้ปฏิบัติงานจึงมีความเกี่ยวข้องอย่างใกล้ชิดกัน การสร้างความมั่นใจในความปลอดภัยและเสถียรภาพของ เครือข่ายไฟฟ้าเป็นสิ่งสำคัญ ดังนั้น ความสำคัญของอันดับที่ สาม สำหรับเหตุผลว่าอีกสองเซอร์วิสสุดท้ายถึงมีความสำคัญ น้อยสุด เนื่องจากไม่ได้ต้องการ Real-time ที่สูง และด้าน ความปลอดภัย ดังนั้นจึงอยู่ลำดับท้ายสุด

สำหรับแต่ละโหนด ค่าของความสำคัญเซอร์วิสสูงสุด ใน บริการด้านพลังงานทั้งหมดที่ดำเนินการบนลิงค์สื่อสาร เชื่อมต่อโดยตรงกับโหนดถือเป็นความสำคัญของโหนด ขึ้นอยู่ กับบริการด้านพลังงาน คำนวณได้ดังนี้

$$S_i = max(I_k)$$
 (2)
$$k = 1, 2..., n$$

โดยที่ S_i คือ ค่าความสำคัญของเซอร์วิสสูงสุดที่ผ่าน โหนด i

 I_k คือ ค่าความสำคัญของเซอร์วิส k

3. ขั้นตอนการหาค่าความสำคัญของโหนด

อัลกอริทึมการประเมินความสำคัญของโหนดตามความ ซับซ้อน เครือข่ายมีดังนี้:

ขั้นตอนที่ 1 กำหนดพารามิเตอร์ที่เกี่ยวข้องกับโหนด รวมถึงจำนวนโหนด แทนด้วย V_i และความน่าจะเป็นของ ความล้มเหลว แทนค่าความน่าจะเป็นในแต่ละโหนดเป็น P_i

ขั้นตอนที่ 2 กำหนดพารามิเตอร์ที่เกี่ยวข้องกับเซอร์วิส ได้แก่ จำนวนเซอร์วิสทั้งหมดในเครือข่ายสื่อสาร แสดงโดย S_i และเซอร์วิสที่ทำงานอยู่บนโหนดนั้นๆ

ขั้นตอนที่ 3 คำนวณหาความน่าจะเป็นของความล้มเหลว แต่ละโหนด จาก (1) และหาค่าความสำคัญของเซอร์วิสที่มี ค่าสูงสุดในแต่ละโหนด จาก (2)

ขั้นตอนที่ 4 คำนวณหาค่าความสำคัญของแต่ละโหนดจาก สมการ:

$$V_i = P_i \cdot S_i \tag{3}$$

รูปที่ 1 Flow chart แสดงการหาค่าความสำคัญของโหนด

4. กรณีศึกษา

เครือข่ายสื่อสารที่นำมาเป็นกรณีศึกษา แสดงในรูปที่ 1 ประกอบด้วยโหนดทั้งหมด 16 โหนด ซึ่งประกอบด้วย เซ็ต โหนดสถานีไฟฟ้า 115 เควี ได้แก่ {V2, V3, V5, V6, V7, V8, V11, V12, V13, N14, N15, N16} เซ็ตโหนดสถานีไฟฟ้า 22 เควี ได้แก่ {V4, V9, V10} และเซ็ตโหนดสำนักงาน ได้แก่ {V1} เซ็ตของโหนด V คือเซ็ตของเทคโนโลยีสื่อสาร SDH และเซ็ต ของโหนด N คือเซ็ตของเทคโนโลยีสื่อสาร IP Access และ เซอร์วิสในเครือข่ายนี้แสดงในตารางที่ 3

ตาราง 3. เส้นทางของเซอร์วิส

ประเภทเซอร์วิส	เส้นทาง	
Video Conference; S₂	1-2, 10-13, 11-12-13	
IP CCTV; S ₃	2-4-13, 7-8, 8-7-6, 8-9-5	
IP SCADA Control; S ₄	1-2-3-4, 3-4-5, 12-1-2,	
IF SCADA CONTION, 34	12-13, 14-15-16, 13-10-16	
T	1-13-5, 2-4-5, 6-7-8, 6-14,	
Tele protection; S₅	14-15-16	
Unmanned Substation; S ₆	5-9-10, 4-13-12, 9-10	

อัลกอริทึมที่นำมาประเมินโครงข่ายสื่อสารในรูปที่ 2 นั้น จะเห็นว่าภาพรวมของโหนดแต่ละโหนดที่รับภาระการสื่อสาร ที่เกี่ยวข้องกับด้านพลังงานไฟฟ้ามากน้อยเพียงใด จากตาราง 3 จะพบว่าเซอร์วิสที่เกี่ยวกับการควบคุมสั่งการจะวิ่งผ่านโหนด มากกว่าเซอร์วิสระบบสื่อสารปกติ หากพิจารณาเฉพาะ เซอร์วิส โหนดที่มีเซอร์วิส S_4 และ S_5 เคลื่อนผ่าน อาจจะเป็น โหนดที่มีความสำคัญมากที่สุด แต่การวิเคราะห์ดังกล่าวเป็น การวิเคราะห์ในมุมของชั้นพลังงานไฟฟ้าเพียงด้านเดียว ยัง ไม่ได้พิจารณาในมุมของชั้นสื่อสารที่เกี่ยวข้องกับอายุการใช้ งานของอุปกรณ์สื่อสาร ซึ่งผลการหาลำดับความสำคัญจาก อัลกอลิธึมนี้ แสดงในตารางที่ 4

ตาราง 4. ผลการจัดลำดับความสำคัญ

โหนด	ค่าความสำคัญ	ลำดับความสำคัญ
V1	0.3838	4
V2	0.3061	8
V3	0.4826	1
V4	0.3463	6
V5	0.4518	2
V6	0.4190	3
V7	0.3463	7
V8	0.3061	9
V9	0.3692	5
V10	0.2937	11
V11	0.1407	13
V12	0.1683	12
V13	0.3061	10
N14	0.1159	14
N15	0.1159	14
N16	0.1159	14

โทโพโลยีเครือข่ายของรูปที่ 1 และค่าความสำคัญของ เซอร์วิสในตารางที่ 2 โหนด V3 มีความสำคัญโหนดสูงสุด ความสำคัญต่อการให้บริการไฟฟ้าค่อนข้างสูง ดังนั้นความ เสี่ยงโหนดของ V3 จึงสูง เมื่อโหนดสำคัญถูกปลดออกจาก ระบบ ไม่ว่าจะเกิดจากภัยธรรมชาติหรืออุบัติเหตุ เครือข่าย ทั้งหมดจะเกิดการหยุดชะงักได้ง่าย การปรับเปลี่ยนเส้นทาง ของเซอร์วิส หรือการอัพเกรดอุปกรณ์ จึงสามารถช่วยลดความ เสี่ยงที่จะเกิดขึ้นได้

5. สรุป

ในบทความนี้ การจัดลำดับความของโหนดพิจารณาจาก โทโพโลยีเครือข่ายการใช้งานจริงในเครือข่ายการสื่อสารกำลัง จากนั้นจึงนำเสนอวิธีการประเมินความสำคัญของโหนด จาก ความน่าจะเป็นของความส้มเหลวของโหนด และค่า ความสำคัญของเซอร์วิสที่ทำงานบนโหนดนั้นๆ พิจารณาจาก ค่าสูงที่สุด ผลการประเมินพบว่าวิธีการนี้สามารถแยกแยะ ความสำคัญของโหนดของแต่ละโหนดได้ตามลักษณะการใช้ งานจริง ทั้งนี้ลำดับความสำคัญของโหนดสามารถเปลี่ยนแปลง ได้ หากผู้ปฏิบัติงานเปลี่ยนแปลงอุปกรณ์ รวมทั้งกำหนด

เส้นทางของเซอร์วิสใหม่ เพื่อช่วยในการปรับปรุงความ น่าเชื่อถือและการจัดการเครือข่ายการสื่อสารของสายส่งไฟฟ้า

เอกสารอ้างอิง

- [1] Z.Kangming, C.Haoguang, and S.Ying, "Research on Node Importance Ranking Based on the Vector Similarity Method," Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC): 439-442, 2015.
- [2] J.Gan, S.Luo, H.Liu, and Y.Wu, "Node Importance Ranking Algorithm Based on Grey Relational Degree," IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference, 2019.
- [3] M.Zhao, L.Cui, and M.Wang, "Evaluation Method of Communication Network Based on Reliability Index," Advances in Intelligent Systems Research, vol. 159, 2018.
- [4] Z. Puyuan, Y.Peng, and J.Chenchen, "A routing optimization method based on risk prediction for communication services in smart grid," 12th International Conference on Network and Service Management (CNSM): 377-382. 2016.
- [5] K.Jiang and Y. Zeng, "Risk Evaluation Method of Electric Power Communication Network," Ninth International Conference on Natural Computation, 2013.
- [6] X.Chen, P.Zhao, and P.Yu, "Risk Analysis and Optimization for Communication Transmission Link Interruption in Smart Grid Cyber Physical System," International Journal of Distributed Sensor Networks, 2018.
- [7] X.Liu, Q.Liu, and D.Peng, "Service Risk Analysis for Power Communication over Optical Transport Networks based on Link Failure," 16th

- International Conference on Optical Communications and Networks, 2017
- [8] C.Cheng, W.Yang, and Y.Chu-hua, "Risk Balancing Routing Assignment Mechanism Based Software Defined Optical Network Service Importance," 16th International Conference on Optical Communications and Networks, 2017.
- [9] L.Wei, S.Yumin, and N.Chunfeng, "Evaluation of Desulfuration Projects Decision Based on Attribute Importance Degree of Rough Set and TOPSIS," International Seminar on Business and Information Management: 19-22, 2008.