Modeling Heart Attack Risk

Alice Ding DATA621 Fall 2023

Agenda

Introduction

Problem Statement

Literature Review

Methodology

Results

Conclusions

Introduction

- Heart attacks occur when blood flow to part of the heart muscle is blocked,
 often due to the formation of a blood clot or other health issues within the body
- Myocardial infarctions, or heart attacks, have grown increasingly problematic within the eyes of global and public health
- By shedding light on the web of factors contributing heart attacks, we can empower individuals, healthcare professionals, and policy makers with the knowledge to implement proactive and preventative measures against this issue

Problem Statement

- The purpose of this project is to see if there is a way to predict whether a patient is at risk of having a heart attack given certain attributes ranging from:
 - Age
 - Cholesterol levels
 - Blood pressure
 - Smoking habits
 - Exercise patterns
 - Income
 - And more

Literature Review

Adhikary, Barman, Ranjan, & Stone (2022)

- Different countries had a higher prevalence of CVD (cardiovascular diseases) due to the coexistence of multiple risk factors that were present in certain areas compared to others
- "... potential risk factors for coronary artery diseases are hypertension, obesity, and physical inactivity."
- This analysis focuses only on English-language papers and the available ones they chose from are mainly from Asia, Europe, Africa, and the United States

Berry, Dyer, Cai, Garside, Ning, Thomas, Greenland, Van Horn, Tracy, & Lloyd-Jones (2012)

- Those with a total cholesterol level of < 180 mg per deciliter, < 120 mm Hg systolic and 80 mm Hg diastolic blood pressure, and those with nonsmoking and nondiabetic statuses have substantially lower risks of death from cardiovascular disease through the age of 80 years than those with two or more major risk factors
- This analysis however was only done for black and white individuals at the ages of 45, 55, 65, and 75, thus missing a large portion of the global population

Fuchs and Whelton (2019)

- As a society, we have been artificially inflating what is deemed as a normal blood pressure (BP) and thus underrepresenting the impact of what high BP on the likelihood of cardiovascular disease (CVD)
- This hypothesis does its best to meet Occam's razor promise (has the least amount of assumptions)
- The paper focuses just on one variable that can lead to heart attacks rather than a myriad of them, although it does address that CVD is impacted by other factors

Methodology

- Taking a Kaggle dataset of patient information for almost 9000 individuals, this source was explored, cleaned, prepared, and modeled on to predict heart attack risk
- Exploration was conducted by graphing and showing distributions and correlations for all of the fields individually and in relation to the target variable
 - It should be noted that a majority of our sample size came from Asia and Europe, leading to a majority of our participants being located in the Northern Hemisphere
 - Other disproportionate categorical variable observations were a large proportion of our population being non-smoking, diabetic, and male. Whether this is proportional to the current state of the entire world's population, this is unknown.
- Data preparation occurred to address nulls or outliers if they existed and normalization for numerical fields was applied as well
- Two sets of models were created after splitting the training data
 - One using binomial logistic regression
 - The other using a decision tree

Results: Binomial Regression

- Two iterations, one with all variables and the second with only those that were statistically significant
- AIC slightly improved on the second iteration, however residual deviance increased slightly

```
        Deviance Residuals:

        Min
        1Q
        Median
        3Q
        Max

        -1.4633
        -1.1702
        0.0011
        1.1695
        1.4582
```

Coefficients: (6 not defined because of singularities)

coefficiencs. (o not defined because of					
		Std. Error			
(Intercept)	0.053534		0.384	0.7007	
scale_Age	0.009552	0.025472	0.375		
scale_Cholesterol	0.045511				*
scale_Systolic	0.014525	0.022679			10
scale_Diastolic	-0.045992	0.022855	-2.012		•
scale_Heart.Rate	-0.036065	0.022717	-1.588		
scale_Exercise.Hours.Per.Week	0.024426	0.022741	1.074		
scale_Stress.Level	-0.015471	0.022807	-0.678	0.4975	
scale_Sedentary.Hours.Per.Day	-0.019075	0.022676	-0.841	0.4002	
scale_Income	0.025201	0.022768	1.107	0.2683	
scale_BMI	0.021018	0.022661	0.927	0.3537	
scale_Triglycerides	0.033461	0.022761	1.470		
scale_Physical.Activity.Days.Per.Week		0.022876	-0.385		
scale_Sleep.Hours.Per.Day	-0.057157	0.022748	-2.513		*
SexMale	0.066304	0.059397	1.116		
Diabetes	0.086989	0.047924	1.815	0.0695	
Family.History	0.001359	0.045434	0.030		
Smoking	-0.015688	0.097074	-0.162	0.8716	
Obesity	-0.077636	0.045375	-1.711	0.0871	
Alcohol.Consumption	-0.113210		-2.448		*
DietHealthy	0.048182	0.055632	0.866		
DietUnhealthy	0.052812	0.055738			
Previous.Heart.Problems	0.007883	0.045442			
Medication.Use	0.037574	0.045438			
CountryAustralia	-0.001026	0.139269			
CountryBrazil	-0.158623	0.138870	-1.142	0.2534	
CountryCanada	-0.065960	0.137993	-0.478	0.6327	
CountryChina	-0.189355	0.139951	-1.353	0.1761	
CountryColombia	0.108872	0.140201	0.777		
CountryFrance	-0.284705	0.140916	-2.020	0.0433	cm1c
CountryGermany	-0.124688	0.136523			
CountryIndia	-0.351068	0.143135	-2.453		
CountryItaly	-0.243914				
CountryJapan	-0.215431	0.143172	-1.505		
CountryNew Zealand	-0.048437	0.141892	-0.341	0.7328	
CountryNigeria	0.100661	0.138966	0.724	0.4688	
CountrySouth Africa	-0.144091	0.142027			
CountrySouth Korea	0.075428	0.141390	0.533	0.5937	
CountrySpain	-0.216156	0.140416	-1.539	0.1237	
CountryThailand	0.012666	0.141987	0.089	0.9289	
CountryUnited Kingdom	-0.217065	0.139187	-1.560	0.1189	
CountryUnited States	-0.063086	0.140351	-0.449	0.6531	
CountryVietnam	0.109014	0.141692	0.769	0.4417	
ContinentAsia	NA	NA	NA	NA	
ContinentAustralia	NA	NA	NA	NA	
ContinentEurope	NA	NA	NA	NA	
ContinentNorth America	NA	NA	NA	NA	
ContinentSouth America	NA	NA	NA	NA	
HemisphereSouthern Hemisphere	NA	NA	NA	NA	

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
Number of Fisher Scoring iterations: 4
```

Call:

glm(formula = Class ~ scale_Cholesterol + scale_Diastolic + scale_Sleep.Hours.Per.Day +
Diabetes + Obesity + Alcohol.Consumption + Country, family = "binomial",
data = train)

Deviance Residuals:

```
Min 1Q Median 3Q Max
-1.40905 -1.17034 0.02631 1.17056 1.42089
```

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	0.13896	0.10799	1.287	0.19819	
scale_Cholesterol	0.04550	0.02271	2.003	0.04516	*
scale_Diastolic	-0.04480	0.02280	-1.964	0.04949	*
scale_Sleep.Hours.Per.Day	-0.05929	0.02270	-2.612	0.00901	*
Diabetes	0.08773	0.04785	1.833	0.06673	
0besity	-0.07727	0.04532	-1.705	0.08816	
Alcohol.Consumption	-0.11235	0.04613	-2.435	0.01489	*
CountryAustralia	-0.00453	0.13900	-0.033	0.97400	
CountryBrazil	-0.15068	0.13848	-1.088	0.27657	
CountryCanada	-0.06569	0.13769	-0.477	0.63333	
CountryChina	-0.19045	0.13964	-1.364	0.17263	
CountryColombia	0.10699	0.13991	0.765	0.44442	
CountryFrance	-0.28204	0.14047	-2.008	0.04465	*
CountryGermany	-0.12357	0.13622	-0.907	0.36432	
CountryIndia	-0.34929	0.14277	-2.446	0.01443	*
CountryItaly	-0.23456	0.14012	-1.674	0.09412	
CountryJapan	-0.20932	0.14287	-1.465	0.14290	
CountryNew Zealand	-0.04882	0.14152	-0.345	0.73014	
CountryNigeria	0.10587	0.13869	0.763	0.44523	
CountrySouth Africa	-0.14224	0.14171	-1.004	0.31551	
CountrySouth Korea	0.07448	0.14113	0.528	0.59765	
CountrySpain	-0.21125	0.13999	-1.509	0.13128	
CountryThailand	0.01535	0.14171	0.108	0.91373	
CountryUnited Kingdom	-0.21416	0.13889	-1.542	0.12308	
CountryUnited States	-0.05179	0.14006	-0.370	0.71155	
CountryVietnam	0.11132	0.14142	0.787	0.43120	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 10916 on 7873 degrees of freedom Residual deviance: 10856 on 7848 degrees of freedom AIC: 10908

Number of Fisher Scoring iterations: 3

⁽Dispersion parameter for binomial family taken to be 1)

Null deviance: 10916 on 7873 degrees of freedom Residual deviance: 10843 on 7831 degrees of freedom AIC: 10929

Results: Decision Tree

 Two iterations, one with all variables and the with country removed

Results: Confusion Matrix Analysis

Description: $df [4 \times 5]$					
	Accuracy <dbl></dbl>	Precision <dbl></dbl>	Specificity <dbl></dbl>	Recall <dbl></dbl>	F1 <dbl></dbl>
Model 1A	0.4985181	0.4984967	0.5056313	0.4914049	0.4949254
Model 1B	0.5014819	0.5014854	0.5026675	0.5002964	0.5008902
Model 2A	0.4967398	0.4967742	0.4914049	0.5020747	0.4994104
Model 2B	0.5109662	0.5067444	0.1979846	0.8239478	0.6275395

- While the second iteration of the decision tree model (Model 2B) performed the best in accuracy, precision, recall, and F1, its specificity was extremely low; recall on the other hand was very high
 - This model was over capturing positives. Implication wise, this would mean that people would be deemed as at risk for a heart attack when in reality, they're not.
- To avoid inducing stress on patients and going through several false-positives, Model 1B (the second iteration of binomial regression) is the next best-performing and was thus deemed as the best fit

Conclusions

- While the models created for this project were pruned down to the best fitting one, the reality is that accuracy is still only 50% overall for the final decision; this means that flipping a coin has the same results as running through the selected model
- In the future, perhaps it would be best to create models based on data from certain regions of the world given the reality that this is a global issue and not every human is the same
- Another idea could be to get more data from various countries and regions throughout the world, enough to create well-fitted models, and then also track these individuals over the course of their lives rather than just being a snapshot

References

Adhikary, D., Barman, S., Ranjan, R., & Stone, H. (2022, October 10). A systematic review of major cardiovascular risk factors: A growing global health concern. Cureus. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9644238/

Berry, J. D., Dyer, A., Cai, X., Garside, D. B., Ning, H., Thomas, A., Greenland, P., Van Horn, L., Tracy, R. P., & Lloyd-Jones, D. M. (2012, January 26). Lifetime risks of cardiovascular disease. New England Journal of Medicine. https://www.nejm.org/doi/full/10.1056/NEJMoa1012848

Fuchs, F. D., & D., & December 23). High blood pressure and cardiovascular disease | hypertension. AHA Journals. https://www.ahajournals.org/doi/10.1161/HYPERTENSIONAHA.119.14240