Lecture 8 PCA and bow rank approximation References: James et al. Section 12,2

Assume that the data matrix X is represented via its thin SVD as

$$\chi = Ur \Sigma_r V_r^T$$

where $Ur \in \mathbb{R}^{m \times r}$ with orthonormal columns $\Sigma_r \in \mathbb{R}^{r \times r}$ with diagonal entries that are the first r singular values of A $V_r \in \mathbb{R}^{n \times r}$ with orthonormal columns the data matrix $X = \begin{bmatrix} \vec{\chi}_1 & \vec{\chi}_2 & \vec{\chi}_n \end{bmatrix}$

We can express each data vector
$$\vec{x}_i$$
 ($i=1, \dots, n$) as

We can express each data vector X_i ($i=1, \dots, n$) $\overline{X}_i = \sum_{j=1}^r C_j \overline{u}_j$

where U_j (j=1, -r, r) are the orthonormal columns of U_r (singular vectors), also called the feature vectors

The scalars C; are called the principal components of \hat{x}_i

Note that

$$\vec{x}_i = \vec{X} \vec{e}_i = Ur \sum_r V_r^T \vec{e}_i = Ur C_i$$
 in (mx_1) $(mx_1$

Then the telesion between the principal component metrix and the deta metrix is

$$X = UrC$$
 $(m \times n) (m \times r) (r \times n)$

Since Ur is has orthonormal columns, $Ur^T Ur = I$

Example: See Jupyten notebook with X from previous With m=3, n=6, $\gamma=2$ $X = Ur \Sigma_r Vr^T$ (3x6) (3x2) (2x2) (2x6)

The principal component metrix

 $C = Ur^{T} X$ (2x6) (2x3) (3x6)

Verify: $\chi = UrC$ (3x6) (3x2) (2x6)

Real the full SVD of A & Rmxn $A = U \sum V^{T}$ UER^{m×m} othogonal VER^{n×n} orthogonal. $Rank(A) = Rank(\Sigma) = \Upsilon$, the number of nonzero singular values Now we write Z as a sum of r matrices Z_j where $Z_j = diag(fo, o, ..., o_j, o, ...o_j)$ Then $A = \left[u_1 \quad u_n \quad u_n \right] \left(\begin{bmatrix} 6_1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0_{6_2} \\ 0 \end{bmatrix} + \begin{bmatrix} 0_{6_2} \\ 0 \end{bmatrix} \right) \left[\begin{bmatrix} V_1^T \\ V_n^T \end{bmatrix} \right]$

$$= \sum_{j=1}^{\infty} G_{j} U_{j} V_{j}^{T}$$

$$= \sum_{j=1}^{\infty} G_{j} U_{j} V_{j}^{T}$$
Theorem: Given $A = U \sum V^{T}$,

A is the sum of r rank-one matrices.
$$A = \sum_{j=1}^{\infty} G_{j} U_{j} V_{j}^{T}$$
Here, $U_{j} V_{j}^{T}$ is the outer product of U_{j} , V_{j}

and Uj Vj^T gives a rank-one matrix

& Low rank approximation. $A_{k} = \sum_{j=1}^{k} 6_{j} U_{j} V_{j}^{T} \qquad k \leq r$

then $||A - A_k||_2 = \inf_{B \in \mathbb{R}^{m \times n}} ||A - B||_2 = G_{k+1}$

 $rank(B) \leq K$

Ax gives the best approximation of the matrix A by matrices

of rank lower than or equal to k in the least squares

See Japyter note book for an example in

image compression