6 Inner product space Selected Exercise

List of Exercise

6.1.5 Exercise																3
6.1.9 Exercise																3
6.2.2 Exercise																4
6.2.3 Exercise																4
6.3.2 Exercise																-
6.3.3 Exercise																ŗ

Exercise 6.1.5. In C^2 , show that $\langle x, y \rangle = xAy^*$ is an inner product, where

$$A = \begin{pmatrix} 1 & i \\ -i & 2 \end{pmatrix}.$$

Compute $\langle x, y \rangle$ for x = (1 - i, 2 + 3i) and y = (2 + i, 3 - 2i).

Exercise 6.1.9. Let β be a basis for a finite-dimensional inner product space.

- (a) Prove that if $\langle x, z \rangle$ for all $z \in \beta$, then x = 0.
- (b) Prove that if $\langle x, z \rangle = \langle y, z \rangle$ for all $z \in \beta$, then x = y.

Exercise 6.2.2. In each part, apply the Gram-Schmidt process to the given subset S of the inner product space V to obtain an orthogonal basis for span(S). Then normalize the vectors in this basis to obtain an orthonormal basis β for span(S), and compute the Fourier coefficients of the given vector relative to β . Finally, use **Theorem 6.5**. to verify your result.

(a)
$$V = R^3$$
, $S = \{(1, 0, 1), (0, 1, 1), (1, 3, 3)\}$ and $x = (1, 1, 2)$

(f)
$$V = \mathbb{R}^4$$
, $S = \{(1, -2, -1, 3), (3, 6, 3, -1), (1, 4, 2, 8)\}$, and $x = (-1, 2, 1, 1)$.

Exercise 6.2.3. In R^2 , let

$$\beta = \left\{ \left(\frac{1}{\sqrt{2}}, \ \frac{1}{\sqrt{2}} \right), \ \left(\frac{1}{\sqrt{2}}, \ -\frac{1}{\sqrt{2}} \right) \right\}$$

Find the Fourier coefficients of (3, 4) relative to β .

Exercise 6.3.2. For each of the following inner product spaces V (over F) and linear transformations $g: V \longrightarrow F$, find a vector y such that $g(x) = \langle x, y \rangle$ for all $x \in V$.

(a)
$$V = R^3$$
, $g(a_1, a_2, a_3) = a_1 - 2a_2 + 4a_3$

Exercise 6.3.3. For each of the following inner product spaces V and linear operatos T on V, evaluate T^* at the given vector in V.

(a)
$$V = R^2$$
, $T(a, b) = (2a + b, a - 3b)$, $x = (3, 5)$.