Using the Transformer

DistilBERT (Sanh et al., 2019)

Learning goals

- Understand model distillation in general
- Training regime of DistilBERT

MODEL DISTILLATION • HINTON ET AL. (2015)

Model compression scheme:

- Motivation comes from having computationally expensive, cumbersome ensemble models. Bucila et al. (2006)
- Compressing the knowlegde of the ensemble into a single model has the benefit of easier deployment and better generalization
- Reasoning:
 - Cumbersome model generalizes well, because it is the average of an ensemble.
 - Small model trained to generalize in the same way typically better than small model trained "the normal way".

MODEL DISTILLATION HINTON ET AL. (2015)

Distillation:

- Knowledge transfer via soft targets from original model
 - Hard targets: [0,0,0,1,0]
 - Soft targets: [0.01, 0.05, 0.03, 0.87, 0.04]
 - → Train the student to *mimick* the teacher's behaviour
- No need to know the true labels of the training instances
- → When true labels are known: Weighted average of two different objective functions possible (on soft and hard targets)
 - Additional controlling parameter:
- \rightarrow Temperature *T* in the softmax:

$$q_i = \frac{\exp(z_i/T)}{\sum_j \exp(z_j/T)}$$

DISTILBERT > SANH ET AL. (2019)

Motivation:

STUDENT ARCHITECTURE

Characteristics of *DistilBERT*:

- Half the number of layers compared to BERT*
- Half of the size of BERT, but retains 95% of the performance
- Initialize from BERT (taking one out of two hidden layers)
- Same pre-training data as BERT (Wiki + BooksCorpus)

*Rationale for "only" reducing the number of layers:

Larger influence on the computation efficiency compared to e.g. hidden size dimension

TRAINING AND PERFORMANCE

Combination of different loss functions:

- Distillation loss $L_{ce} = \sum_{i} t_i \cdot \log(s_i)$
- Masked language modeling loss *L_{mlm}* (cf. BERT)
- Cosine-Embedding-Loss L_{cos}
 (Rationale: Keep DistilBERT's embeddings close to the ones from BERT)

Use improvement from RoBERTa:

- Stop using the NSP loss
- Dynamic masking for MLM
- Train with large batches

BENCHMARK PERFORMANCE

Performance differences to BERT:

Table 1: **DistilBERT retains 97% of BERT performance.** Comparison on the dev sets of the GLUE benchmark, ELMo results as reported by the authors. BERT and DistilBERT results are the medians of 5 runs with different seeds.

Model	Score	CoLA	MNLI	MRPC	QNLI	QQP	RTE	SST-2	STS-B	WNLI
ELMo	68.7	44.1	68.6	76.6	71.1	86.2	53.4	91.5	70.4	56.3
BERT-base	79.5	56.3	86.7	88.6	91.8	89.6	69.3	92.7	89.0	53.5
DistilBERT	77.0	51.3	82.2	87.5	89.2	88.5	59.9	91.3	86.9	56.3

EXAMINING THE IMPORTANCE OF THE LOSSES

Ablation study regarding the loss:

Table 4: **Ablation study.** Variations are relative to the model trained with triple loss and teacher weights initialization.

Ablation	Variation on GLUE macro-score
\emptyset - L_{cos} - L_{mlm}	-2.96
L_{ce} - \emptyset - L_{mlm}	-1.46
L_{ce} - L_{cos} - \emptyset	-0.31
Triple loss + random weights initialization	-3.69

SIZE AND SPEED

Table 3: **DistilBERT is significantly smaller while being constantly faster.** Inference time of a full pass of GLUE task STS-B (sentiment analysis) on CPU with a batch size of 1.

Model	# param. (Millions)	Inf. time (seconds)
ELMo	180	895
BERT-base	110	668
DistilBERT	66	410