Continuité des fonctions vectorielles – Démonstrations

Exemple: 🕏

1) Pour une fonction constante.

Soit
$$C \in F$$
. Soit $f : E \to F$
 $x \mapsto C \in F$

Soit $a \in E$.

Soit $\varepsilon > 0$, pour tout $\eta > 0$, alors

$$\forall x \in E, \|x - a\|_E \le \eta \Longrightarrow \|f(x) - C\|_F = \|C - C\|_F = 0 < \varepsilon$$

C'est toujours vrai, donc $\lim_{x \to a} f(x) = C$

2) Soit $i \in [1, n]$, considérons $p_i : \mathbb{R}^n \to \mathbb{R}$

$$(x_1, \dots, x_n) \mapsto x_i$$

Soit $a = (a_1, ..., a_n) \in \mathbb{R}^n$

Soit $\varepsilon>0$

Posons $\eta = \varepsilon > 0$ (on a complété après)

Alors $\forall x = (x_1, ..., x_n) \in \mathbb{R}^n$

$$\max_{1 \le k \le n} |x_k - a_k| = ||x - a||_{\infty} \le \eta$$

$$\Rightarrow |p_i(x) - a_i| = |x_i - a_i| \le ||x - a||_{\infty} \le \eta = \varepsilon$$

Donc $p_i(x) \xrightarrow[x \to a]{} a_i$

<u>Proposition</u>: Les applications lipschitziennes sont continues.

<u>Démonstration</u> **★**

Supposons que $f: X \subset E \to F$ est lipschitzienne, alors $\exists k \in \mathbb{R}_+$ tel que $\forall x, y \in X$,

$$||f(x) - f(y)||_F \le k||x - y||_F$$

Soit $a \in X$. Montrons que f est continue en a.

Si $k \neq 0$:

Soit $\varepsilon > 0$. Posons $\eta = \frac{\varepsilon}{k} > 0$

Alors $\forall x \in X$, $\|x - a\|_E \le \eta \Longrightarrow \|f(x) - f(a)\|_F \le k\|x - a\|_E \le k\eta \le \varepsilon$.

Donc f est continue en a

Sik = 0,

$$\forall x, y \in X, 0 \le ||f(x) - f(y)|| \le 0 \times ||x - y||_E = 0$$

Donc $||f(x) - f(y)||_F = 0$, d'où f(x) = f(y).

Ainsi *f* est constante, donc continue.

Exemple: ★

 $\|\cdot\|_E: E \to \mathbb{R}$ est 1-lipschtzienne, car $\forall x, y \in E$,

$$|||x||_E - ||y||_E| \le 1 \times ||x - y||_E$$

Par l'inégalité triangulaire inversée.

Ainsi $\| \cdot \|_E$ est continue sur $(E, \| \cdot \|_E)$