SVKM's NMIMS

MUKESH PATEL SCHOOL OF TECHNOLOGY MANAGEMENT &

Programme: B. Tech (Computer)

Year: III

Semester: V

Batch:

2013-2014

Academic Year: 2013-2014

Subject:

Theoretical Computer Science

Marks:

100

Date:

09/06/2014

Time:

10.00 am to 1.00 pm

Durations:

3 (hrs)

Re-Examination

Instructions:-candidates should read carefully the instructions printed on the question paper and on the cover of the answer book, which is provided for their use.

- NB: 1) Question No ONE is compulsory
 - 2) Out of remaining attempt FOUR questions,

3) All Questions carry equal marks.					
4) Figures in brackets on right hand side indicate full marks					
			t Š		
Q1.	A)	Construct Post machine for Accepting Language $L = \{a^nbc^n \mid n \ge 0\}$.	[8]		
	B)	Prove that "If L is recursive, so is \overline{L} ",	[7]		
	C)	En-list and explain the limitations of Finite Automata.	[5]		
Q2.	A)	State and explain the pumping lemma for Context Free Language.	[8]		
	B)	Design a Mealy Machine for converting every sequence of "100" to "101" from the input string over a alphabet $\Sigma = \{0,1\}^*$.	[8]		
	C)	Write Regular Expression for the following languages (Any Two)	[4]		
		 i) Set of all strings containing "aa" and "bb" over Σ = {a,b}. ii) Set of all strings containing atmost 3 a's over Σ = {a,b}. 			
Q3.	A)	Design Turing Machine to compute Log_2n , where n is any unary number.	[8]		
	B)	Construct Push Down Automata for accepting even length palindrome over {0,1}*.	[8]		
	C)	Show that every Regular Language is Context Free Language.	[4]		
Q4.	A)	Design Context Free Grammar for language L, such that L contains all binary strings equivalent to number divisible by 4. Give left-most derivation, right-most derivation and derivation tree for generating binary representation of twelve.	[10]		

Design Push Down Automata to accept aⁿ(bdb)ⁿ.

B)

Q5. A)

[10]

[10]

Design Deterministic Finite Automata for accepting all the decimal numbers

Q6.	A)	Give Non-Deterministic Finite Automata with ∈-moves for "a.a.(ba)*+b*.a.b.a*"	[10]
	B)	Give Context Free Grammar for generating all the strings for the language $L = \{w w \text{ is an odd length string over } (a+b)^* \text{ with 'b' as a middle symbol} \}.$	[4]
	C)	Explain steps to remove ambiguity in grammar.	[6]
Q7.	Write	e Short Note (Attempt Any 4)	[20]
	A)	Turing Machine Codes.	[5]
	B)	Un-decidable problems.	[5]
	C)	Post Correspondence Problem.	[5]
	D)	Pumping Lemma for Regular Language.	[5]
	E)	Properties of Regular Languages.	[5]
	F)	Elements of Post Machine.	[5]
		*	