Electromagnetismo Optica MEBiom + LMAC AULA 14 – Magnetostática IV

Resumo da aula anterior

Intensidade de campo magnético \overrightarrow{H}

$$\vec{B} = \mu_0(\vec{H} + \vec{M})$$
$$\vec{M} = \chi_m \vec{H}$$

Lei de Ampère generalizada

$$\oint_C \vec{H} \cdot \vec{dl} = I_{livre}$$

0

Campo magnético na matéria

- Condições de fronteira do campo magnético
- Campo magnético nos materiais ferromagnéticos

Popovic & Popovic Cap. 13.5 – 13.6 Serway Cap. 30.8

Classificação das substâncias

Ferromagnéticas

Possui átomos / moléculas com momento magnético permanente, alinhados em domínios magnéticos.

Paramagnéticas

Possui átomos / moléculas com momento magnético permanente.

Diamagnéticas

Composto por átomos / moléculas sem momento magnético permanente.

Condições fronteira do campo magnético na matéria

Como varia o campo magnético quando se muda de meio? Vamos derivar as **condições fronteira** para \vec{B} e \vec{H} usando as equações fundamentais da magnetostática:

Lei de Gauss para o campo
$$\vec{B}$$
: $\oint_{S} \vec{B} \cdot \vec{dS} = 0$

Lei de Ampère generalizada:
$$\oint_C \vec{H} \cdot \vec{dl} = I_{livre} = \int_S \vec{J}_{livre} \cdot \vec{n} \, dS$$

Condições fronteira do campo magnético na matéria: componente normal

Considere-se um cilindro de altura $h \to 0$ e base S que intersecta a fronteira. Aplicando a Lei de Gauss:

$$\oint_{S} \vec{B} \cdot \vec{dS} = \int_{S_{1}} \vec{B} \cdot \vec{dS} + \int_{S_{2}} \vec{B} \cdot \vec{dS} + \int_{\text{lado}} \vec{B} \cdot \vec{dS}$$

$$= \vec{B}_1 \cdot \vec{n}_1 S + \vec{B}_2 \cdot \vec{n}_2 S = (B_{1n} - B_{2n}) S = 0$$

A componente **normal** de \vec{B} é **contínua**:

$$B_{1n} = B_{2n} \qquad \Longleftrightarrow \qquad$$

Condições fronteira do campo magnético na matéria: componente tangencial

Um circuito rectangular de altura $h \to 0$ e lado l abarca a fronteira, onde passam correntes de superfície \vec{J}_s . Aplicando a Lei de Ampère generalizada:

$$\oint_{C} \vec{H} \cdot \vec{dl} = \int_{l_{1}} \vec{H} \cdot \vec{dl} + \int_{l_{2}} \vec{H} \cdot \vec{dl} + \int_{\text{lado}} \vec{H} \cdot \vec{dl} = I_{livre}$$

$$= \int_{C} (\vec{H}_{1} - \vec{H}_{2}) \cdot \vec{dl} = \int_{C} \vec{J}_{s} \cdot (\vec{n} \times \vec{dl}) = \int_{C} (\vec{J}_{s} \times \vec{n}) \cdot \vec{dl} \qquad J_{s} = \text{densidade linear de corrente [A/m]}$$

A componente tangencial de \vec{H}

é descontínua:
$$H_{1t} - H_{2t} = J_s$$

Condições fronteira: comparação

Campo eléctrico

Na fronteira entre dois meios de permitividades dieléctricas ϵ_1 e ϵ_2 :

$$D_{1n} - D_{2n} = \sigma \Longleftrightarrow \epsilon_1 E_{1n} - \epsilon_2 E_{2n} = \sigma$$

$$E_{1t} = E_{2t}$$

em que σ é a densidade de cargas [C/m²] na superfície da fronteira. D e σ têm as mesmas unidades.

Campo magnético

Na fronteira entre dois meios de permeabliidades magnéticas μ_1 e μ_2 :

$$B_{1n} = B_{2n} \iff \mu_1 H_{1n} = \mu_2 H_{2n}$$

$$H_{1t} - H_{2t} = J_s$$

em que J_s é a densidade de corrente [A/m²] na superfície da fronteira. H e J_s têm as mesmas unidades.

Exemplo: lei da refracção das linhas de campo magnético

Dois meios de permitividade μ_1 e μ_2 atravessados por um campo magnético $(J_s=0)$. Qual a relação entre os ângulos θ_1 e θ_2 ?

Meio 1:
$$\vec{B} = B_{1t}\vec{e}_x + B_{1n}\vec{e}_x$$
 $\tan \theta_1 = B_{1t}/B_{1n}$

Meio 2:
$$\vec{B} = B_{2t}\vec{e}_x + B_{2n}\vec{e}_x$$
 $\tan \theta_2 = B_{2t}/B_{2n}$

Cond. fronteira:
$$B_{1n}=B_{2n}$$
 , $B_{1t}/\mu_1=B_{2t}/\mu_2$

$$\frac{\tan \theta_1}{\tan \theta_2} = \frac{B_{1t}}{B_{2t}} = \frac{\mu_1}{\mu_2}$$

Ex.°: materiais diamagnéticos ($\mu < \mu_0$) e paramagnéticos ($\mu > \mu_0$)

Quando o ar é o meio 1 ($\mu \approx \mu_0$) e na ausência de densidades de corrente ($J_s = 0$):

Material diamagnético

$$\frac{\tan \theta_{ar}}{\tan \theta_{dia}} \approx \frac{\mu_0}{\mu_{dia}} > 1$$

$$\rightarrow \theta_{ar} > \theta_{dia}$$

de campo convergem ao sair

Material paramagnético

$$\frac{\tan\theta_{ar}}{\tan\theta_{para}} \approx \frac{\mu_0}{\mu_{para}} < 1$$

$$\rightarrow \theta_{ar} < \theta_{para}$$

Substância paramagnética: as linhas de campo divergem ao sair

Exemplo: refracção entre o ar (μ_0) e um material ferromagnético $(\mu_F \gg \mu_0)$

Supondo que o ar é o meio 1:

$$\frac{\tan \theta_{\rm ar}}{\tan \theta_{\rm ferro}} = \frac{\mu_0}{\mu_F} \ll 1$$

Qualquer que seja $\theta_{\rm ferro}$ (< $\pi/2$), temos

$$\theta_{\rm ar} \ll \theta_{\rm ferro}$$

As linhas de campo no ar são praticamente **perpendiculares** à fronteira.

Substâncias ferromagnéticas

- Mostram efeitos magnéticos fortes
- Fortemente atraídas por campos magnéticos
- Momentos magnéticos dos átomos alinham-se no mesmo sentido e permanecem alinhados quando o campo é retirado
- Exemplos: ferro, cobalto, níquel, gadolínio

 $\vec{B} = 0$: distribuição aleatória de de momentos magnéticos

 $\vec{B} \neq 0$: domínios alinhados com o campo externo crescem

À medida que \vec{B} cresce, as regiões desalinhadas diminuem.

FERRO MAGNETISM

Domínios magnéticos

Liga metálica de Nd₂Fe₁₄B (usada em ímanes de Nd)

Domínios magnéticos: ~10⁻⁵ m, 10¹⁷-10²¹ átomos

À medida que \vec{B} cresce, as regiões desalinhadas diminuem.

Numa substância ferromagnética a relação entre \vec{H} e \vec{B} não é linear

Curva de magnetização de um material ferromagnético

Sumário: propriedades magnéticas das substâncias

	Diamagnetismo	Paramagnetismo	Ferromagnetismo
$ec{\mu}$ permanente?	Não	Sim (fraco)	Sim (forte)
Mecanismo de magnetização	$ec{\mu}$ orbital dos electrões	$ec{\mu}$ de spin dos electrões	Domínios magnéticos
Direcção do campo magnético induzido	Oposta	Igual	Histerese
χ_m	$\approx -10^5$	$\approx 10^5$	» 1
μ/μ_0	≈ 1	≈ 1	>> 1