[Master Thesis]

Cache Optimization of Virtual Network I/O to Achieve 100 Gbps

Graduate School of Engineering
Nagoya Institute of Technology
Daichi Takeya
2023/02/09

Cloud Native Network Functions

Replacing dedicated equipment with COTS servers!

Multiple (independent) logical networks

Cloud-Native Network Function

Easy-to-update

Gigantic network traffic!

CNF's poor performance

(1/100 of 6G's requirement)

Virtual Network I/O in vhost-user/DPDK

Virtual Network I/O (Rx)

- Packet Copies
- **Buffer Management**
- Virtqueue operations

bottleneck? (No)

lightweight

(can be bottleneck?)

Pursue the performance limit of software-based packet processing from the viewpoint of CPU caches

R. Kawashima, "Software Physical/Virtual Rx Queue Mapping toward High-Performance Containerized Networking", IEEE Transactions on Network and Service Management, 2021

Effects of Cache Misses on Performance

- Application/protocol independent
- Support of various NIC offloading features

100+ cache/memory accesses per packet

Two cache misses per packet

L1 Cache Hit Ratio	98.3%
L2 Cache Hit Ratio	54.0%
L3 Cache Hit Ratio	96.0%

Hit ratio of vhost-user/DPDK

100 Gbps (5.1ns / packet)

+8ns (two L1 cache misses)

39 Gbps (13.1ns / packet)

Significant decrease of the performance!

Example: Effects of cache misses (64B)

Thorough optimization of CPU cache usage!

The Purpose of This Study

- Understanding the pure bottlenecks of virtual network I/O
- Finding out a way of achieving ultimate performance

Related Work

- Explicit LLC Separation between NIC and Applications
 - Stable performance can be expected

[†] A. Farshin, A. Roozbeh, G.Q.M. Jr., and D. Kostić,

[&]quot;Reexamining direct cache access to optimize i/o intensive applications for multi-hundred-gigabit networks", USENIX ATC 20

^{††} S. Thomas, R. McGuinness, G.M. Voelker, and G. Porter,

[&]quot;Dark packets and the end of network scaling", ANCS '18

Design of Evaluation

EIVU Platform

Extracting the essential I/O processing

- Fase of modifications
- Hardware independent

EIVU (Essential Implementation of Vhost-User)

Ex.: Structure of Packet Buffer 512 entries are cached (Last-In First-Out) Mempool 128 bytes 2176 bytes virtio-net header 128 bytes (12 bytes)

DPDK-like implementation

- Software Prefetching
- Lock-free virtqueues
- Packet batching
- Polling-based etc.

Throughput (64B): 28 Mpps

(vhost-user: 16 Mpps)

Evaluations are conducted on EIVU

Rx process **Bottleneck** 1. Investigating the effect of CPU cache NF process usage on the performance of the NF process Tx process L3 Non-temporal? 2. Identifying the essential performance factors **CLFLUSH?** Prefetching? 3. Considering a way to achieve ultimate performance

Evaluation Environment

Measured items

- Throughput
- No. of cache accesses
- No. of caches misses
- Efficiency of prefetching
- Stalled cycles for LFB
- No. of RFO requests etc...

20 items in total

	Servers			
	Server 1	Server 2	Server 3	Server 4
CPU				
Туре	Core i9	Core i7	Core i9	Threadripper
	11900K	9800X	13900K	5965WX
Clock	3.5 GHz	3.8 GHz	3.0 GHz	3.8 GHz
L1d	48 KB	64 KB	48 KB	32 KB
L2	0.5 MB	1.0 MB	2.0 MB	0.5 MB
L3 (shared)	16 MB	16 MB	36 MB	32 MB
Memory				
Clock	3200 MHz	2133 MHz	4800 MHz	3200 MHz
Performance				
EIVU (Base)	28 Mpps	19 Mpps	16 Mpps	ハラ Nガーニュ RFOによって生じるキャッシュ
DPDK	16 Mpps	16 Mpps	16 Mpps	18 Mpps

Effect of L1 Cache Usage on Throughput

The Essential Performance Factors

- Re-design of data structures is imperative!
- Realistic design is the most challenging theme!

Major Cause of Cache Misses

Keeping the cachelines on the cache can cause frequent invalidations!

Minimizing cache invalidations is the key to exceed the tipping point!

13

w/o parallelization

Mathematical Analysis

Why does the tipping point appear?

with parallelization

- Identifying the bottlenecks of virtual network I/O
 - CPU (L1) cache usage is the key to understand the performance
 - 100+ Mpps throughput is theoretically possible by exceeding the tipping point
 - L1 cache misses negate the significant effect of the parallelization

Future Work

Practical design of data structures needs to be re-devised