IL MODELLO RELAZIONALE

Il modello relazionale: concetti generali

- Il modello fu proposto da E.F. Codd (IBM Research) nel 1970 in un famosissimo articolo:
 - "A Relational Model for Large Shared Data Banks," Communications of the ACM, June 1970
- Il modello si basa sul concetto matematico di relazione, basato sulla teoria degli insiemi
- Questo lavoro fu alla base di una profonda rivoluzione nel campo delle basi di dati, che portò Codd a vincere il prestigioso ACM Turing Award

Cos'è una relazione?

- Informalmente, una relazione può essere vista come una tabella con un insieme di valori su ogni riga
- Ci sono due livelli che definiscono una relazione:
 - Lo schema della relazione (livello intensionale)
 - Istanze della relazione (livello estensionale)

Field names	F	FIELDS (ATTRIBUTES, COLUMNS)							
	sid	name	login	age	gpa				
	50000	Dave	dave@cs	19	3.3				
//	53666	Jones	jones@cs	18	3.4				
TUPLES (53688	Smith	smith@ee	18	3.2				
(RECORDS,	53650	Smith	smith@math	19	3.8				
ROWS)	53831	Madayan	madayan@music	11	1.8				
	53832	Guldu	guldu@music	12	2.0				

Relazioni: definizione intensionale

- Lo schema di una relazione definisce:
 - Il nome della relazione (per esempio, STUDENTI)
 - Il nome di ogni attributo (per esempio, SID, NOME, LOGIN, ...)
 - Il dominio di ogni attributo (per esempio, INTEGER, STRING, ...), ovvero l'insieme dei valori che quell'attributo può assumere
- L'ordine degli attributi nello schema non ha alcun significato specifico

Relazioni: definizione intensionale

sid	name	login	age	gpa
53666	Jones	jones@cs	18	3.4
53688	Smith	smith@eecs	18	3.2
53650	Smith	smith@math	19	3.8

Un modo standard di rappresentare lo schema di una relazione è il seguente:

Students(sid:string, name:string, login:string, age:integer, gpa:real)

 Il numero di attributi definisce il grado (o arietà) della relazione (5 nell'esempio sopra)

Relazioni: definizione estensionale

- Un'istanza di uno schema di relazione è un <u>insieme</u> di tuple (o record), ognuna delle quali ha lo stesso numero di campi dello schema della relazione
 - Essendo un insieme, non possono esserci duplicati!
 - L'ordine delle tuple non ha alcun valore specifico
- Informalmente, un'istanza di una relazione può essere pensata come una riga di una tabella, dove ovviamente tutte le righe hanno lo stesso numero di campi
- Il numero di istanze della definisce la cardinalità della relazione (6 nell'esempio sulla slide #3)

Stato di una relazione

Lo **stato di una relazione** è un sottoinsieme del prodotto cartesiano dei domini dei suoi attributi:

■ Data una relazione R(A₁, A₂,, A_n), uno specifico stato di R è definito come segue:

$$r(R) \subset dom(A_1) \times dom(A_2) \times \times dom(A_n)$$

- ovvero:
 - $r(R) = \{t_1, t_2, ..., t_n\}$ dove ogni t_i è una tupla
 - $t_i = \langle v_1, v_2, ..., v_n \rangle$ dove ogni v_j è un elemento di dom (A_j)
- Nello stato di una relazione, l'ordine delle tuple non conta (è un insieme!)

Esempio

- Sia $R(A_1, A_2)$ lo schema di una relazione con:
 - $dom(A_1) = \{0,1\}$
 - $dom(A_2) = \{a,b,c\}$
- dom(A₁) X dom(A₂) è l'insieme di tutte le possibili coppie ordinate dei valori di A₁ e A₂:

```
{<0,a>, <0,b>, <0,c>, <1,a>, <1,b>, <1,c>}
```

- Un possibile stato r(R) è dato dall'insieme di tuple {<0,a>, <0,b>, <1,c>}
 - Si dice che questo è un possibile stato (o «popolazione» o «estensione») r della relazione R, definita su A₁ and A₂
 - Questo stato ha cardinalità 3 (ci sono 3 tuple)

Chiave di una relazione

- Ogni riga di una relazione ha un campo (o un insieme di campi) il cui valore (o i cui valori) identificano unicamente quella riga in quella tabella
 - Si parla di chiave (key) della relazione
 - Nella relazione STUDENTS, l'attributo <u>SSN</u> ha valori che non possono ripetersi mai uguali in due righe diverse e quindi identifica univocamente uno studente
- Talvolta si usano valori convenzionali per identificare una riga in una tabella
 - Si parla di chiavi artificiali (artificial key) o chiavi surrogate (surrogate key)

Terminologia

<u>Informale</u>	<u>Formale</u>
Tabella	Relazione
Intestazione colonna	Attributo
Tutti i possibili valori di una colonna	Dominio
Riga della tabella	Tupla
Definizione della tabella	Schema della relazione
Tabella popolata	Stato della Relazione

VINCOLI

I vincoli determinano quali stati di una relazione in una base di dati relazionale sono ammissibili e quali non lo sono I principali vincoli sono di tre tipi:

- Vincoli impliciti: dipendono dal data model stesso (per es. il modello relazionale non ammette liste come valore di alcun attributo)
- Vincoli basati sullo schema (o espliciti): sono definiti nello schema usando gli strumenti forniti dal modello (per es. un vincolo di partecipazione totale nel modello ER)
- Vincoli applicativi o semantici: si tratta di vincoli che vanno al di là del potere espressivo del modello e devono essere imposti a livello di programma applicativo (per es. che un libro deve essere restituito alla biblioteca entro 30 giorni dal prestito)

Vincoli di integrità relazionale

- Un vincolo è definito come una condizione che DEVE valere affinché lo stato di una relazione sia valido
- I principali tipi di vincoli espliciti che possono essere espressi nel modello relazionale sono:
 - Vincolo di dominio (già discusso)
 - Vincolo di chiave
 - Vincolo di integrità delle entità
 - Vincolo di integrità referenziale

Vincolo di chiave - Definizioni

- Superchiave di una relazione R:
 - È un insieme di attributi S_K di R tali che:
 - Non esistono due tuple di r(R) in cui gli attributi in S_K hanno lo stesso valore (ovvero, se t₁ e t₂ sono tuple distinte di r(R), t₁[S_K] ≠ t₂[S_K]
 - Questa condizione deve essere rispettata in ogni stato valido di R
- Chiave di una relazione R:
 - Una chiave è una superchiave minimale, ovvero una superchiave tale che la rimozione di qualsiasi attributo da S_K produrrebbe un insieme di attributi che non è più una superchiave di R
 - Ogni chiave minimale è detta anche una chiave candidata
- Una chiave è sempre una superchiave, ma non viceversa

Esempio

- Consideriamo la relazione STUDENT qui sotto:
 - STUDENT ha due chiavi (candidate):
 - Chiave 1 = {sid}
 - Chiave 2 = {login}
 - Entrambe sono chiavi (e quindi superchiavi) di STUDENT
 - {sid, name} è una superchiave ma non una chiave (perché?)
 - Ogni insieme di attributi che contiene una chiave è ovviamente una superchiave

sid	name	login	age	gpa
53666	Jones	jones@cs	18	3.4
53688	Smith	smith@eecs	18	3.2
53650	Smith	smith@math	19	3.8

Vincolo di chiave

- Se una relazione ha più di una chiave candidata, una viene scelta (tipicamente dal DBA) come chiave primaria.
 - In generale, viene scelta la chiave candidata più piccola (come numero di attributi che la compongono)
 - Quando non è possibile, possono intervenire fattori soggettivi o addirittura arbitrari
- I valori della chiave primaria sono usati per identificare in modo univoco ogni tupla della relazione
 - In un certo senso forniscono l'«identità» della tupla
- Come vedremo, può essere usata per fare riferimento a quella tupla da tuple di un'altra relazione

Vincolo di integrità di un'Entità (entity integrity)

- Nessuno degli attributi che compongono la chiave primaria P_K di una relazione R può avere valore NULL in alcuna tupla di r(R)
 - t[P_K] ≠ null per ogni tupla t in r(R)
 - Se P_K ha più di un attributo, il valore NULL non è ammesso per nessuno degli attributi che la compongono
- Nota bene: è possibile imporre che anche altri attributi non possano assumere il valore NULL, anche se non sono (parte della) chiave primaria.

Vincoli di integrità referenziale

- A differenza degli altri vincoli, un vincolo di integrità referenziale coinvolge due relazioni:
 - una relazione referenziante R₁
 - una relazione referenziata R₂
- In R1 c'è un insieme di attributi FK (chiamati chiave esterna / Foreign Key) che fanno riferimento agli attributi della chiave primaria PK (Primary Key) di R₂
- Una tupla t₁ in R₁ si dice che referenzia una tupla t₂ in R₂ se t₁[FK] = t₂[PK]

Vincoli di integrità referenziale: esempio

- Enrolled è la relazione referenziante
- Students è la relazione referenziata
- Enrolled.sid è la chiave esterna che fa riferimento alla chiave primaria di Students (Students.sid)
 - La prima, la seconda e la quarta tupla di Enrolled referenziano la prima di Students

Enroll	.ed		_	C+ 1				
sid	cid	grade		Students				
53666	Carnatic101	C -		sid	name	login	age	gpa
1	Reggae203	В -	*	53666	Jones	jones@cs	18	3.4
1	Topology112	A ~		53688	Smith	smith@eecs	18	3.2
1	History105	B /		53650	Smith	smith@math	19	3.8

Vincoli di integrità referenziale

- I valori degli attributi della chiave esterna FK della relazione referenziante R1 possono essere:
 - Uno dei valori del corrispondente attributo della chiave primaria PK in R2, oppure
 - Assumere il valore NULL

Se NULL, ovviamente la FK in R₁ non deve far parte degli attributi della propria chiave primaria!

Vincoli di integrità referenziale

- Osservazione 1: la FK può fare riferimento alla stessa relazione di appartenenza della PK!
- Osservazione 2: gli attributi appartenenti alla FK non necessariamente hanno lo stesso nome dei corrispondenti attributi appartenenti alla PK

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	К	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	٧	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	E	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1
								1	-

Referential Integrity Constraints for COMPANY database

Figure 5.7
Referential integrity constraints displayed on the COMPANY relational database schema.

Schema di un database relazionale

- A differenza degli altri vincoli, i vincoli di integrità referenziale coinvolgono più di una relazione, per cui non basta considerare lo schema di una singola relazione
- Uno schema di un database relazionale è un insieme S di schemi di relazione che appartengono alla stessa base di dati
 - $S = \{R_1, R_2, ..., R_n\}, IC > dove:$
 - R₁, R₂, ..., R_n sono i nomi dei singoli schemi di relazione che appartengono alla base di dati S
 - IC è un insieme di vincoli di integrità

Altri tipi di vincolo

- Vincoli di Integrità Semantica:
 - Sono riferiti al significato dell'applicazione e non possono essere espressi nel modello in sé
 - Esempio: "Il numero massimo di ore che un dipendente può lavorare su tutti i progetti è di 46 ore per settimana"
- Diventa necessario un linguaggio per la specifica di vincoli
 - SQL-99 introduce i concetti di «trigger» e «asserzioni» per definire condizioni, ma non tutti i DBMS li implementano e spesso in modi diversi. In MYSQL si può usare il comando CHECK per esprimere vincoli sui valori degli attributi
 - Esempio:

```
CREATE TABLE Person (..., Age int CHECK (Age>=18) );
```

Stato di una base di dati relazionale

- Ogni relazione è tipicamente popolata da un certo numero di tuple (stato della relazione)
- Uno stato di una base di dati relazionale con schema S è un insieme di stati delle relazioni $\{r_1, r_2, ..., r_m\}$ tali che ogni r_i è uno stato di R_i e tale che r_i soddisfa i vincoli di integrità relazionale in IC.
 - Uno stato di una base di dati relazionale viene talvolta chiamato un'istantanea (snapshot) o istanza (instance) della base di dati
- Uno stato di base di dati che non rispetta i vincoli in IC è uno stato non valido

Stato di una base di dati popolata

- Lo stato della base di dati è l'unione di tutti i singoli stati delle relazioni che compongono la base di dati
- Ogni volta che la base di dati è modificata, si passa in un nuovo stato della base di dati
- Le principali operazioni per cambiare lo stato di una base di dati sono:
 - INSERT: inserimento di una nuova tupla in una relazione
 - DELETE: cancellazione di una tupla da una relazione
 - MODIFY: modifica di un attributo di una tupla
- Importante: queste operazioni non devono portare alla violazione di alcun vincolo di integrità!!
- Garantire questa condizione può richiedere di propagare automaticamente gli aggiornamenti

Operazioni di aggiornamento su relazioni

- Se si verifica una violazione di vincoli di integrità, ci sono diverse possibili opzioni:
 - Opzione RESTRICT (NO ACTION, REJECT): impedire l'esecuzione dell'operazione che causa la violazione
 - Opzioni CASCADE, SET NULL, SET DEFAULT: avviare altri aggiornamenti per eliminare la violazione
 - Eseguire routine specifiche definite dall'utente
 - [Eseguire l'operazione informando l'utente della violazione dell'integrità]

Violazioni per operazione INSERT

- L'operazione INSERT può violare tutti i vincoli:
 - Vincoli di dominio:
 - Il valore di uno o più attributi della/e nuova/e tupla/e non appartiene al dominio specificato nel modello
 - Vincolo di chiave:
 - Inserimento di tupla/e in cui il valore della chiave già esiste
 - Integrità referenziale:
 - Valore della chiave esterna (foreign key) che fa riferimento a valori della chiave primaria della relazione referenziata che non esistono
 - Integrità dell'entità:
 - Il valore della chiave primaria della/e nuova/e tupla/e è NULL

Esempi di violazione dei vincoli

- Inserimento tupla in STUDENTS <53666, Red, red@math,19, 3.1>
 - Vincolo di chiave
- Inserimento tupla in STUDENTS <53666, Red, red@math,19, A>
 - Vincolo di dominio
- Inserimento in ENROLLED di nuova tupla <53501, Reggae03, 3.1>
 - Integrità referenziale
- Inserimento tupla in STUDENTS <NULL, Dantoni, dan@math, 18, 3.6>
 - Integrità entità

Violazioni per operazione DELETE

L'operazione DELETE può eventualmente violare solo vincoli di integrità referenziale se vengono rimosse una o più tuple la cui chiave primaria è referenziata da altre tuple della relazione.

	11	1 1
Enr	וחי	led
-111	\ //	1

sid	cid	grade		Students				
53666	Carnatic101	C -		sid	name	login	age	gpa
	Reggae203	В -		53666	Jones	jones@cs	18	3.4
1	Topology112	A ~		53688	Smith	smith@eecs	18	3.2
1	History105	B	*	53650	Smith	smith@math	19	3.8

- Cancellazione di <53666, Jones, jones@cs, 18, 3,4> in STUDENTS
 - Vincolo di integrità referenziale
- Cancellazione di <53666, Reggae03, A> in ENROLLED
 - No violazione

Violazioni per operazione UPDATE

- L'operazione di aggiornamento (UPDATE) può violare tutti i vincoli:
 - UPDATE della chiave primaria (PK):
 - Integrità referenziale
 - UPDATE di una chiave esterna (FK):
 - Integrità referenziale
 - UPDATE di un attributo ordinario (non PK né FK):
 - Vincoli di dominio o vincoli UNIQUE e NOT NULL

Esempi di violazione dei vincoli

Enrolled Students grade sid cid login sid name age gpa Carnatic 101 53666 53666 Jones jones@cs 18 3.4 53666 Reggae203 В 3.2 53688 Smith smith@eecs 18 Topology112 53650 Α **►** 53650 smith@math Smith 19 3.8 History105 53666 В

- Aggiornamento in STUDENTS: da <53666, Red, red@math,19, 3.1> a
 <53777, Red, red@math,19, 3.1>
 - Vincolo di integrità referenziale
- Aggiornamento in ENROLLED: da <53666, Reggae03, A> a <535011, Reggae03, A>
 - Vincolo di integrità referenziale
- Aggiornamento in STUDENTS: da <53666, Red, red@math,19, 3.1> a
 <53777, Red, red@math, A, 3.1>
 - Vincolo di dominio

Come preservare l'integrità referenziale

- RESTRICT (NO ACTION): rifiutare l'operazione
- CASCADE: cancellare tutte le tuple che referenziavano la chiave primaria della tupla cancellata o modificata
- SET NULL: assegnare il valore NULL alla chiave esterna delle tuple che referenziavano la chiave primaria della tupla cancellata o modificata
- SET DEFAULT: assegnare un valore di default alle chiavi esterne che referenziavano la chiave primaria della tupla cancellata o modificata

Come preservare l'integrità referenziale

NB: le opzioni SET NULL e SET DEFAULT **non sono disponibili** se la chiave esterna include attributi che sono anche chiave primaria della tabella referenziante

Enroll	led		_	Ct 1				
sid	cid	grade		Stude	ents			
53666	Carnatic101	C -		sid	name	login	age	gpa
1	Reggae203	В -		53666	Jones	jones@cs	18	3.4
1	Topology112	Α .		53688	Smith	smith@eecs	18	3.2
1	History105	B /		53650	Smith	smith@math	19	3.8

La chiave esterna di ENROLLED contiene gli attributi *sid* e *cid* che sono anche chiave primaria. Quindi se cancello la tupla con *sid* 53666 da STUDENTS e fisso un default (o NULL) per la chiave esterna di ENROLLED, introduco una violazione del vincolo di integrità della relazione

Specifiche delle opzioni in SQL (esempio)

- Propagazione della cancellazione quando si viola un vincolo di integrità referenziale
- Impedire un UPDATE se viola un qualsiasi vincolo