Ex Fin	d the homogeneous solution for the
	ence relation,
an=	6 an-1 -11 an-2 + 6 an-3 with a0= 2, 0, =5, 92=15
-> Given	recurrence relation,
an-6	$q_{n-1} + 11 q_{n-2} = 6q_{n-3} = 0$
the	chazacteriotic Egn is,
	$d^3 - 6d^2 + 11d \Rightarrow 6 = 0$
(d.	1) (32-54+6) 20
(4	(-1)(d-2)(d-3)=0 $1-560$
42	1,2,3.
Hon	rogeneous solution is
	$a_n = A_1(1)^n + A_2(2)^n + A_3(3)^n - 2$
giver	$a_{0}=2, a_{1}=5, a_{2}=15$
<u> </u>	$=A_1 + A_2 + A_3 = A_1 + A_2 + A_3 = 2 - 3$
<u>a,</u>	
012-	A, +4A2+9A3 => A, +4A2+9A3=15 - 5.
D - C	
	3 A2 + 8 A3 = 13 3 A2 + 8 A3 = 13
	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
<u></u>	$A_2 = -1$ $A_1 = -1$ $A_3 = -4$ $A_3 = 2$
	$\therefore a_{0} = 1(1)^{0} - 1(2)^{0} + 2(3)^{0}$
	$\frac{1}{20-1-20+2(3)}$

Solve Lecurence relation

$$a_2 + a_{2-1} = 3i2^{\frac{1}{2}}$$

Clirch recurrence relation is,

 $a_2 + a_{2-1} = 3i2^{\frac{1}{2}}$

(1) Homogeneous solution.

Characteristic eq? of 0 is

 $9 + 1 = 0 \implies 9 = -1$

The homogeneous solution.

 $a_2(h) = A_1(-1)^{\frac{1}{2}} - (2)$

(2) Particular solution.

 $f(t) = 3i2^{\frac{1}{2}}$

Here $f(t) = f(t) = f(t)$
 $a_2(t) = f$