

Universidad Nacional de Entre Ríos

FACULTAD DE INGENIERÍA

Aplicación de un modelo epidemiológico para la predicción del crecimiento y difusión del vector que transmite el dengue utilizando sensores remotos en la localidad de Oro Verde

Trabajo Integrador Final $TIC\ Y\ Geom\'atica$

Autor:
Justo Garcia
Docente a cargo:
Walter Elías

Junio 2024

Tabla de contenidos

1	Introducción		
		sarrollo	3
	2.1	Área de estudio	
	2.2	Obtención de imágenes	4
		2.2.1 Dispositivo de sensado	4
		2.2.2 Análisis visual	Į.
	2.3	Descripción del modelo	Ę
3	Cor	nelusiones	7

TIF 2024 TIC y Geomática Garcia Justo

1 Introducción

TIF 2024 TIC y Geomática Garcia Justo

2 Desarrollo

2.1 Área de estudio

Para este estudio, se utilizaron datos recolectados a partir de la utilización de ovitrampas por parte de un proyecto de la Facultad de Ingenieria de la Universidad Nacional de Entre Ríos en Oro Verde, Entre Ríos, Argentina. El área de interés se definió mediante un procesamiento en Python, utilizando las bibliotecas Folium y Pandas. Este enfoque nos permitió generar gráficos detallados que representan los puntos geográficos con información sobre la densidad de mosquitos registrada experimentalmente. En la siguiente imagen (Fig.1), se muestra la salida de este procesamiento, con un marcador representando cada ovitrampa.

Fig. 1: Posiciones de ovitrampas en Oro Verde.

A partir de estos marcadores, se extendió el procesamiento de los datos definiendo un cuadrado que encierra a todos los puntos con un margen adicional de 1km (Fig.2). Esta delimitación nos permitió enfocarnos en el área específica para la cuál tenemos datos, es decir, nuestra región de interés (ROI, Region of Interest).

Garcia Justo

Fig. 2: Posiciones de ovitrampas en Oro Verde con ROI delimitada...

2.2 Obtención de imágenes

Para el análisis, se utilizaron imágenes satelitales provenientes de Landsat 8, las cuales se obtendrán a través del Earth Explorer del USGS (United States Geological Survey) CITA. Estas imágenes, con un nivel de análisis L2, propocionan la información necesaria para estudiar la densidad de mosquitos en el área de interes a través de distintas técnicas.

2.2.1 Dispositivo de sensado

El Landsat 8 es un satélite de observación terreste que forma parte del Programa Landsat, administrado por el USGS y la NASA CITA. Este satelite consta de dos sensores principales:

- OLI (Operational Land Imager)
- TIRS (Thermal Infrared Sensor)

A su vez, cada uno de estos sensores posee diversas bandas. Estas son listadas en la tabla 1.

Banda	Longitud de onda (μ)	Resolución espacial (m)
1 - Coastal/Aerosol	0.435-0.451	30
2 - Azul	0.452-0.512	30
3 - Verde	0.533-0.590	30
4 - Roja	0.636-0.673	30
5 - NIR	0.851-0.879	30
6 - SWIR-1	1.566-1.651	30
7 - SWIR-2	2.107-2.294	30
8 - Pancromático	0.503-0.676	15
9 - Cirro	1.363-1.384	30
10 - TIR-1	10.60-11.19	100
11 - TIR-2	11.50-12.51	100

Tabla 1: Tabla con información sobre las diferentes bandas que capta el Landsat 8

Para este estudio es muy relevante la diversidad de bandas espectrales, permitiendo analizar diversas características del terreno. Esta información, combinada con los datos de las ovitrampas, proporciona una visión integral y detallada del entorno.

2.2.2 Análisis visual

Una vez obtenidos los datos de sensado de interés, se procedió a realizar un análisis visual detallado de la región utilizando el software QGIS. Este proceso incluyó la superposición de bandas espectrales como capas raster y de los datos de coordenadas de las ovitrampas como vectores.

2.3 Descripción del modelo

$$\frac{\partial \rho(P,t)}{\partial t} = \nabla \cdot (D_R \nabla \rho) - \nabla \cdot (\rho D_W V) - \nabla \cdot (\rho K_H \nabla H) + \alpha - \beta$$

Donde:

Símbolo	Variable	Valor
Р	Densidad de mosquitos	No homogéneo
α	Tasa de nacimientos	$6(m^2/dia)$
β	Tasa de muertes	0.2
V	Velocidad Viento Superficie	No homogéneo
K_H	Tensor de atracción	100
H	Campo de atracción	No homogéneo
D_R	Tensor de difusión	No homogéneo / ver Tabla 2
D_W	Tensor de rugosidad	No homogéneo / ver Tabla 2

TIF 2024 TIC y Geomática Garcia Justo

3 Conclusiones

