THEORY OF ALGORITHMS SOLUTIONS TO THE PROBLEMS

BAOJIAN HUA

MAY 11,2004

3.1-1 Let f(n) and g(n) be asymptotically nonnegative functions. Using the basic definition of Θ -notation, prove that $\max(f(n), g(n)) = \Theta(f(n) + g(n))$.

Proof. We only need to show that there exist constants c_1, c_2 such that for sufficiently large n, the relation

$$c_1(f(n) + g(n)) \le \max(f(n), g(n)) \le c_2(f(n) + g(n))$$

holds. It's easy to show that it's always hold for $c_1 = 1/2$ and $c_2 = 1$.

3.1-2 Show that for any real constants a and b, where b > 0,

$$(n+a)^b = \Theta(n^b)$$

Proof. We only need to show that there exist constants c_1, c_2 such that for sufficiently large n, the relation

$$c_1 n^b \le (n+a)^b \le c_2 n^b$$

holds, which is

$$\sqrt[b]{c_1}n - a \le n \le \sqrt[b]{c_2}n - a$$

It's easy to show that it holds for sufficiently large n and $c_1=(1/2)^b, c_2=2^b$. \square

3.1-4 Is
$$2^{n+1} = O(2^n)$$
? Is $2^{2n} = O(2^n)$? Solution. Yes. No.

3.1-6 Prove that the running time of an algorithm in $\Theta(g(n))$ if and only if its worst-case running time is O(g(n)) and its best-case running time is $\Omega(g(n))$.

Proof. Straightforward from the definitions.

3.2-2 Prove the equation

$$a^{\log_b c} = c^{\log_b a}$$

Proof. It's sufficient to prove $\log_b c \cdot \log_b a = \log_b a \cdot \log_b c$

 $3.1 \; Asymptotic \; behavior \; of \; polynomials \;$ Let

$$p(n) = \sum_{i=0}^{d} a_i n^i$$

where $a_d > 0$, be a degree-d polynomial in n, and let k be a constant. Use the definition of asymptotic notations to prove the following properties.

a. If
$$k \ge d$$
, then $p(n) = O(n^k)$

b. If
$$k \leq d$$
, then $p(n) = \Omega(n^k)$

c. If
$$k = d$$
, then $p(n) = \Theta(n^k)$

d. If
$$k > d$$
, then $p(n) = o(n^k)$

e. If
$$k < d$$
, then $p(n) = \omega(n^k)$

Proof. First, we prove a more general lemma

Lemma 0.1. Suppose both $P(n) = p_n x^n + \ldots + p_0$ and $Q(n) = q_n x^n + \ldots + q_0$ are polynomials in n (where $p_n > 0$ and $q_n > 0$), let

$$l = \lim_{n \to \infty} \frac{P(n)}{Q(n)}$$

it is easy to show that for sufficiently large n and some constant $c, c_1 > 0$, we have

- (1) If l = 0, then 0 < P(n) < cQ(n).
- (2) If $l = \infty$, then 0 < cQ(n) < P(n).
- (3) If l = b for some $b \in \mathbb{R}^+$, then $c_1Q(n) < P(n) < cQ(n)$.

Proof. Straightforward.

It is easy to prove the proposition using the above lemma.

3.2 Relative asymptotic growths

Indicate, for each pair of expressions (A,B) in the table below, whether A is O,o,Ω,ω , or Θ of B. Assume that $k\geq 1,\epsilon>0$, and c>1 are constants. Your answer should be in the form of the table with "yes" or "no" written in each box. Solution.

	A	B	O	0	Ω	ω	Θ
a	$\lg^k n$	n^{ϵ}	no	no	yes	yes	no
b	n^k	c^n	no	no	yes	yes	no
c	\sqrt{n}	$n^{\sin n}$	no	no	no	no	no
d	2^n	$2^{n/2}$	yes	yes	no	no	no
e	$n^{\lg c}$	$c^{\lg n}$	yes	no	yes	no	yes
f	$\lg(n!)$	$\lg(n^n)$	yes	no	yes	no	yes