

Inverted Pendulum

Jiahao Fu

7th, Dec, 2015

An App on iOS

Copyright (c) 2015年 Legend. All rights reserved.

- System Structure
- Mathematical Model
- iOS Implement
- Simulation
- Summary

- System Structure
- Mathematical Model
- iOS Implement
- Simulation
- Summary

System Structure

System Structure

- System Structure
- Mathematical Model
- iOS Implement
- Simulation
- Summary

Model Simplification

- 小车、上下摆都是刚体;
- 上下摆的摆锤(轴)不相对于摆 杆运动,作为质点处理;
- 上下摆的摆杆为均质细杆,只考 虑长度和质量;
- 摆在绕轴运动过程中受到摩擦力 矩的作用,大小正比于其转动角 速度;
- 小车沿直线轨道运动过程中受到 摩擦力的作用,大小正比于小车 速度;
- 小车电机输出与控制电压成正比, 无死区,无滞后,仅有饱和特性;

Force Analysis

Lagrange's Method

$$oldsymbol{\Theta} = \left[egin{array}{c} x \ heta_1 \ heta_2 \end{array}
ight]$$

$$M\ddot{\Theta} + C\dot{\Theta} + G = F$$

$$\begin{cases} \boldsymbol{M} = \begin{bmatrix} m_0 + m_1 + m_2 & (m_1 l_1 + m_2 L_1) \cos \theta_1 & m_2 l_2 \cos \theta_2 \\ (m_1 l_1 + m_2 L_1) \cos \theta_1 & J_1 + m_1 l_1^2 + m_2 L_1^2 & m_2 L_1 l_2 \cos(\theta_1 - \theta_2) \\ m_2 l_2 \cos \theta_2 & m_2 L_1 l_2 \cos(\theta_1 - \theta_2) & J_2 + m_2 l_2^2 \end{bmatrix} \\ \boldsymbol{C} = \begin{bmatrix} c_0 & -(m_1 l_1 + m_2 L_1) \sin \theta_1 \dot{\theta}_1 & -m_2 l_2 \sin \theta_2 \dot{\theta}_2 \\ 0 & c_1 + c_2 & m_2 L_1 l_2 \sin(\theta_1 - \theta_2) \dot{\theta}_2 - c_2 \\ 0 & -m_2 L_1 l_2 \sin(\theta_1 - \theta_2) \dot{\theta}_1 - c_2 & c_2 \end{bmatrix} \\ \boldsymbol{G} = \begin{bmatrix} 0 \\ -(m_1 l_1 + m_2 L_1) g \sin \theta_1 \\ -m_2 g l_2 \sin \theta_2 \end{bmatrix} \\ \boldsymbol{F} = \begin{bmatrix} \tau \\ 0 \\ 0 \end{bmatrix}$$

State Space Model

$$\ddot{\boldsymbol{\Theta}} = -\boldsymbol{M}^{-1}\boldsymbol{C}\dot{\boldsymbol{\Theta}} + \boldsymbol{M}^{-1}(\boldsymbol{F} - \boldsymbol{G})$$

$$\left[egin{array}{c} \dot{oldsymbol{\Theta}} \ \ddot{oldsymbol{\Theta}} \end{array}
ight] = \left[egin{array}{cc} \mathbf{0} & I \ \mathbf{0} & -M^{-1}oldsymbol{C} \end{array}
ight] \left[egin{array}{c} oldsymbol{\Theta} \ \dot{oldsymbol{\Theta}} \end{array}
ight] + \left[egin{array}{c} \mathbf{0} \ M^{-1}(oldsymbol{F} - oldsymbol{G}) \end{array}
ight]$$

Model Parameters

Table 5	າ 1.	系统 由	新田石	刮锅灯	早说明
Lable	2.1:	系统	<i>P</i> /1 / 1 1 3	时时付	万班则

物理量	单位	模型中取值
小车位移	m	/
下摆较竖直方向偏角	rad	/
上摆较竖直方向偏角	rad	/
直轨长度	\mathbf{m}	1.400
小车质量	kg	1.000
下摆质量	kg	0.293
下摆转动惯量	$\rm kg\cdot m^2$	0.002569
下摆杆长度	m	0.3293
下摆杆质心到转轴距离	m	0.2769
上摆质量	kg	0.220
上摆转动惯量	$\rm kg\cdot m^2$	0.001227
上摆杆长度	\mathbf{m}	0.2587
上摆杆质心到转轴距离	m	0.2156
小车与直轨摩擦系数	$N \cdot s/m$	10.00
下摆杆与转轴摩擦系数	$N \cdot m \cdot s$	0.00071
上摆杆与转轴摩擦系数	$N \cdot m \cdot s$	0.00071
重力加速度	$\mathrm{m/s^2}$	9.80
	下上摆 下下	小车位移 m 下摆较竖直方向偏角 rad 上摆较竖直方向偏角 rad 直轨长度 m 水车质量 kg 下摆桥 m 下摆杆长度 m 下摆杆质心到转量 kg·m² 上摆杆长度 m 上摆杆长度 m 上摆杆大度 m 上摆杆局车车 N·s/m 下摆杆与转轴摩擦系数 N·m·s 上摆杆与转轴摩擦系数 N·m·s

- System Structure
- Mathematical Model
- iOS Implement
- Simulation
- Summary

Launch Screen

Interface

Function

- Run & Pause
- Labels
- Oscilloscope with Auto Scale
- Adjust Model Parameters
- Adjust Controller Parameters
- Exerting Disturbance

Code Implement

- class linkage
- class twoOrderInvertedPendulum
- class OscilloscopeCurve
- class ViewController
- mathSupport.swift

- System Structure
- Mathematical Model
- iOS Implement
- Simulation
- Summary

Error Analysis

- 仿真过程存在舍入误差、截断 误差等由于数字化、离散化造 成的误差;
- 没有考虑角度、位置测量准确 性与精确度;
- 电机过于理想,不存在电感等滞后环节;
- CoreMotion 框架采集到的加速 度信号也存在一定误差;
- 未考虑各个环节的静摩擦力;

- System Structure
- Mathematical Model
- iOS Implement
- Simulation
- Summary

Summary

- From Freescale to Course
 Design(by Prof. ZQF), inverted
 pendulum is a classic controlled
 object;
- Less innovation on model and controller, but more on Platform;
- Coding is disappointing and interesting;
- Gain much & have a farctate life;

Acknowledgements

- Prof. Xiuhua Du
- My roommate: Xiangze Liu
- Other classmates

References

- 黄向华. 控制系统仿真[M]. 北京航空航 天大学出版社, 2008.
- 么健石,侯祥林,徐心和.二级倒立摆摆 起控制的研究[J].控制与决策,2004, 19(10):1183-1186.
- Quartz 2D Programming Guide. Apple Inc. https://developer.apple.com/library/ ios/documentation/GraphicsImaging/ Conceptual/drawingwithquartz2d/ dq_affine/dq_affine.html
- 施颂椒, 陈学中, 杜秀华. 现代控制理论 基础[M]. 高等教育出版社, 2009.
- 上海交通大学物理教研室. 大学物理教程(上册)[M]. 上海交通大学出版社, 2011.

Thanks

Q & A

Jiahao Fu

7th, Dec, 2015