Linear Algebra

[KOMS120301] - 2023/2024

10 - Sub-ruang vektor

Dewi Sintiari

Program Studi Ilmu Komputer Universitas Pendidikan Ganesha

Week 10 (November 2023)

Tujuan pembelajaran

Setelah pembelajaran ini, Anda diharapkan dapat:

- menjelaskan konsep subruang vektor;
- e menganalisis jika himpunan vektor tertentu dalam ruang vektor merupakan subruang dari ruang vektor.

Sub-ruang vektor (subspace)

Sub-ruang vektor (subspace)

Misalkan V adalah ruang vektor. Himpunan $W\subseteq V$ adalah subruang dari V, jika W adalah ruang vektor dengan operasi penjumlahan dan perkalian skalar yang didefinisikan pada V.

Contoh: Misalkan $V = \mathbb{R}^3$ dan W adalah sebuah bidang yang melalui titik (0,0,0).

Proof.

W harus memiliki fungsi: ax + by + cz = 0.

- Closure: Misalkan $\mathbf{u} = (x_1, y_1, z_1)$ dan $\mathbf{v} = (x_2, y_2, z_2)$ menjadi poin di W, dan $k \in \mathbb{R}$. Kemudian:
 - $\mathbf{u} + \mathbf{v} = (x_1 + x_2, y_1 + y_2, z_1 + z_2) \in W$, karena $(x_1 + x_2) + (y_1 + y_2) + (z_1 + z_2) = 0$.
 - $k\mathbf{u} = (kx_1, ky_1, kz_1) \in W$ karena $kx_1 + kx_2 + kx_3 = 0$.
- *Identitas*: Elemen nol adalah $\mathbf{0} = (0,0,0)$ dan elemen satu adalah 1. Jelasnya, $\mathbf{0} + \mathbf{u} = \mathbf{u}$ dan $\mathbf{1}\mathbf{u} = \mathbf{u}$, untuk setiap $\mathbf{u} \in W$.
- Invers dari $\mathbf{u}=(x_1,y_1,z_1)$ adalah $-\mathbf{u}=(-x_1,-y_1,-z_1)$. Jelasnya, $\mathbf{u}=(-\mathbf{u})=\mathbf{0}$.
- Jelasnya, sifat komutatif, asosiatif, dan distributif terpenuhi.

Teorema sub-ruang vektor

Teorema (Menentukan sub-ruang vektor)

Misalkan V adalah ruang vektor. Jika W adalah himpunan yang mengandung setidaknya satu vektor V, maka W adalah subruang dari V jika kondisi berikut terpenuhi.

- **1** Jika $\mathbf{u}, \mathbf{v} \in W$, maka $(\mathbf{u} + \mathbf{v}) \in W$.
- 2 Jika k adalah skalar, dan $\mathbf{u} \in W$, maka k $\mathbf{u} \in W$.

Dengan teorema ini, maka untuk memeriksa bahwa W adalah subruang dari V, cukup dengan memeriksa properti **Aksioma 1** (tertutup terhadap penjumlahan dan tertutup terhadap perkalian skalar) .

Teorema sub-ruang vektor (cont.)

Proof.

Karena V adalah ruang vektor, maka aksioma: *komutatifitas, asosiatif, identitas, invers,* dan *distribusi* terpenuhi.

Karena properti berlaku untuk setiap vektor di V, maka properti tersebut berlaku untuk subset W.

Cukup dengan memeriksa sifat closure (ketertutupan).

Contoh subruang vektor (1)

Garis yang melalui titik asal \mathbb{R}^3 adalah subruang dari \mathbb{R}^3 , dengan operasi penjumlahan vektor dan perkalian skalar, adalah subruang dari \mathbb{R}^3 .

Bukti geometris

Misalkan L adalah garis yang melalui titik asal \mathbb{R}^3 . Diberikan dua vektor $\mathbf{u}, \mathbf{v} \in L$. Jelasnya, vektornya:

$$(\mathbf{u} + \mathbf{v})$$
 dan $k\mathbf{u}$, dimana $k \in \mathbb{R}$

terletak pada garis (mereka adalah vektor-vektor yang arahnya sama, tetapi besarnya berbeda). Jadi sifat ketertupan terpenuhi.

Contoh sub-ruang vektor (2) (cont.)

Latihan: Bukti algebraik

Secara Aljabar, buktikan bahwa garis yang melalui titik asal \mathbb{R}^3 adalah subruang dari \mathbb{R}^3 , dengan operasi penjumlahan vektor dan perkalian skalar, adalah subruang dari \mathbb{R}^3 .

Contoh sub-ruang vektor (2)

Himpunan titik-titik pada bidang yang melalui titik asal di \mathbb{R}^3 , dengan operasi penjumlahan vektor dan perkalian skalar, merupakan subruang dari \mathbb{R}^3 .

Himpunan titik yang melalui titik asal \mathbb{R}^3 mempunyai fungsi:

$$ax + by + cz = 0$$

Periksa apakah sifat penjumlahan dan perkalian skalar terpenuhi.

• Misalkan $\mathbf{u} = (u_1, u_2, u_3)$ dan $\mathbf{v} = (v_1, v_2, v_3)$ adalah vektor dalam \mathbb{R}^3 . Kemudian:

$$\mathbf{u} + \mathbf{v} = (u_1 + v_1, u_2 + v_2, u_3 + v_3)$$

Jelas,

$$a(u_1 + v_1) + b(u_2 + v_2) + c(u_3 + v_3)$$

= $(au_1 + bu_2 + cu_3) + (av_1 + bv_2 + cv_3) = 0 + 0 = 0$

Contoh non sub-ruang vektor

Himpunan W dari semua titik (x, y) di \mathbb{R}^2 s.t. $x \ge 0$ dan $y \ge 0$, tidak boleh merupakan subruang dari \mathbb{R}^3 .

 ${\it W}$ adalah tidak tertutup pada perkalian skalar. Misalnya:

$$\mathbf{v}=(1,1)\in W$$
 tetapi $(-1)\mathbf{v}=-\mathbf{v}=(-1,-1)\notin W$

Silakan membaca materi dan mengerjakan latihan yang relevan di buku Howard Anton

Latihan sub-ruang vektor

Gunakan Teorema 4.2.1 untuk menentukan apakah himpunan berikut merupakan sub-ruang vektor atau tidak.

- **1** Himpunan matriks diagonal berukuran $n \times$.
- ② Himpunan matriks A berukuran $n \times n$ sedemikian sehingga det(A) = 0.
- **1** Himpunan matriks A berukuran $n \times n$ sedemikian sehingga det(A) = 0.
- 4 Himpunan matriks simetris berukuran $n \times n$.
- **1** Himpunan matriks A berukuran $n \times n$ sedemikian sehingga $A^T = -A$.
- 6 Himpunan matriks A berukuran $n \times n$ sedemikian sehingga AB = BA untuk suatu matriks B tertentu.

Jawaban latihan