## Graph Algorithms Adjacency list



Undirected graph



Adjacency matrix

|   | 1 | 2 | 3 | 4 | 5                |
|---|---|---|---|---|------------------|
| 1 | 0 | 1 | 0 | 0 | 1<br>1<br>0<br>1 |
| 2 | 1 | 0 | 1 | 1 | 1                |
| 3 | 0 | 1 | 0 | 1 | 0                |
| 4 | 0 | 1 | 1 | 0 | 1                |
| 5 | 1 | 1 | 0 | 1 | 0                |

| 1 2 | 3 |
|-----|---|
| 4-5 | 6 |

| V         | 1 2 4 /     |
|-----------|-------------|
|           | 2 5 /       |
| 1 3       | 3 - 6 - 5 / |
| T /T /T   | 4 2 /       |
| <b>1</b>  | 5 4 /       |
| 4 ← 5 6 5 | 6 /         |
|           | <del></del> |

|   | 1 | 2 | 3 | 4 | 5 | 6                     |
|---|---|---|---|---|---|-----------------------|
| 1 | 0 | 1 | 0 | 1 | 0 | 0                     |
| 2 | 0 | 0 | 0 | 0 | 1 | 0                     |
| 3 | 0 | 0 | 0 | 0 | 1 | 1                     |
| 4 | 0 | 1 | 0 | 0 | 0 | 0                     |
| 5 | 0 | 0 | 0 | 1 | 0 | 0                     |
| 6 | 0 | 0 | 0 | 0 | 0 | 0<br>0<br>1<br>0<br>0 |

Directed graph

(Breadth First Search)



Q s

|     | r     | S | t | u |
|-----|-------|---|---|---|
| (b) | (1)=  | 1 | 9 | 9 |
|     | $\nu$ | w | x | y |

 $w \mid r$ 







 $\begin{array}{c|cccc}
Q & x & v & u \\
\hline
& 2 & 2 & 3
\end{array}$ 





 $\begin{array}{c|cc}
Q & u & y \\
\hline
& 3 & 3
\end{array}$ 







```
BFS(G,s)
                for each vertex u \in G.V - \{s\}
O(N)
\begin{cases}
2 & u.color = W \\
3 & u.d = \infty \\
4 & u.\pi = NIL \\
5 & s.color = GRAY \\
6 & s.d = 0 \\
7 & s.\pi = NIL
\end{cases}
                      u.color = WHITE
            9 ENQUEUE(Q, s)
            10
                while Q \neq \emptyset
            11
                        u = \text{DEQUEUE}(Q)
            12
                        for each v \in G.Adj[u]
            13
                              if v.color == WHITE
            14
                                    v.color = GRAY
                                    v.d = u.d + 1
            15
            16
                                    v.\pi = u
            17
                                    ENQUEUE(Q, \nu)
            18
                        u.color = BLACK
```

ENQUEUE & DEQUEUE > O()

E > No. of edges present in G.

Total time spent in

scanning adjacency list

= O(E)

... O(V+E)