Taller: Movimiento en 2 y 3 dimensiones

- 1. Una semilla de sandía tiene las siguientes coordenadas: $x=5.0\ m,\,y=8.0\ m$ y $z=0\ m$. Halla su vector de posición
 - a. en notación de vector unitario
 - b. su magnitud
 - c. un ángulo relativo a la dirección positiva del eje x
 - d. Si la semilla se mueve a las coordenadas xyz (3,00 m, 0 m, 0 m), ¿cuál es su desplazamiento
 - i. en notación de vector unitario
 - ii. su magnitud
 - iii. un ángulo relativo a la dirección x positiva
- 2. La posición de un electrón se expresa mediante $\vec{r}=3$ t $\hat{\iota}-4$ t^2 $\hat{\jmath}+2$ \hat{k} , con t en segundos y \vec{r} en metros.
 - a. En notación de vector unitario, ¿cuál es la velocidad del electrón $\vec{v}(t)$?
 - b. En $t = 2,00 \, s$, ¿cuál es su velocidad en notación de vector unitario?
 - c. su magnitud
 - d. ángulo relativo a la dirección positiva del eje x.
- 3. Una partícula deja el origen con una velocidad inicial $\vec{v}=(3~\hat{\imath})~m/s$ y una aceleración constante $\vec{a}=(-1~\hat{\imath}~-~0.5~\hat{\jmath})~m/_{S^2}$. Cuando alcanza su coordenada x máxima, cuales son
 - a. Su velocidad
 - b. Su vector posición

Datos: Ya que la aceleración $\vec{a}=(a_x\,\hat{\imath}-a_y\,\hat{\jmath})^{\,m}/_{S^2}$ es constante en las direcciones x y y, la partícula empieza en el origen y las coordenadas posición de la partícula en cualquier instante del tiempo es dado por $\vec{r}=\vec{v}_0t+\frac{1}{2}\vec{a}t^2$. Las coordenadas velocidad de la partícula en cualquier instante de tiempo t es dada por $\vec{v}=\vec{v}_0+\vec{a}t$, donde \vec{v}_0 es la velocidad inicial y \vec{a} es la aceleración constante.

- 4. El actual récord mundial de salto en motocicleta es de 77,0 m, establecido por Jason Renie. Supongamos que abandonó la rampa de despegue a 12^0 de la horizontal y que las alturas de despegue y aterrizaje son las mismas. Despreciando la resistencia del aire, determine su velocidad de despegue.
- 5. En la figura, se lanza una piedra hacia un acantilado de altura h con una velocidad inicial de 42,0~m/s dirigida en un ángulo $\theta_0=60^0~$ sobre la horizontal. La piedra golpea en A, 5,50~s después del lanzamiento. Encuentre
 - a. la altura h del acantilado,
 - b. la velocidad de la piedra justo antes del impacto en A,
 - c. la altura máxima H alcanzada sobre el suelo.

