LOAN DOCUMENT

N NO	DISTRIBUTION S Approved for P Distribution	INVENTORY INVENTORY H STATEMENT A ublic Release Unlimited
	DISTRIBUTIO	ON STATEMENT L
ACCESSION FOR MTIS GRAM DTIC TRAC UNANNOUNCED JUSTIFICATION BY DISTRIBUTION/ AVAILABILITY CODES DISTRIBUTION AVAILABILITY AND/OR SPECIAL DISTRIBUTION STAMP		DATE ACCESSIONED CA R R E
		DATE RETURNED
1999060		REGISTERED OR CERTIFIED NUMBER
PHO	TOGRAPH THIS SHEET AND RETURN TO DTIC-FD	AC
DTIC FORM 70A	DOCUMENT BOOCPSSING SUFET	PREVIOUS EDITIONS MAY BE USED UNTIL

DTIC AN 90 70A

STOCK IS EXHAUSTED.

LOAN DOCUMENT

A Life-Cycle Inventory-Based Comparison of an RDX-Based and a TNAZ-Based GBU-24 Munition

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including

and to the Office of Management and Budget, Paperwork Reduction 1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AND	DATES COVE	RED
4. TITLE AND SUBTITLE A Life-Cycle Inventory-Based Comparison of Munition 6. AUTHOR(S) D. Tolle, B. Vigon, D. Evers, S. Ricci	January 1998 of an RDX-Based and a TN	AZ-Based GBU-24	5. FUNDING CR822956	NUMBERS
7. PERFORMING ORGANIZATION NAME(S) AN Battelle Columbus Laboratories Columbus, OH	D ADDRESS(ES)		8. PERFORM REPORT N N/A	IING ORGANIZATION NUMBER
9. SPONSORING / MONITORING AGENCY NAM SERDP 901 North Stuart St. Suite 303 Arlington, VA 22203	ME(S) AND ADDRESS(ES)			RING / MONITORING REPORT NUMBER
11. SUPPLEMENTARY NOTES The EPA through its Office of Research and Research Grant No. CR822956 to Battelle. 'copyrightable material contained herein. All	The United States Governm l other rights are reserved b	ent has a royalty-free li	scribed here uscense through	nder Cooperative out the world in all
Approved for public release: distribution is u	unlimited.			CODE A
13. ABSTRACT (Maximum 200 Words) US DoD policy has evaluated environment with sponsorship from SERDP, the DoD, Do propellants, energetics, and pyrotechnic (PE) assessment (LCA), a baseline life cycle inversed conducted prior to this study in order to dem The primary goals of this project were to materials. A secondary goal was to produce improving the environmental footprint might In summary, based on a "less is best" corregulated) waste or total energy consumption	OE, and EPA have cooperate P) materials. Since the PEF intory (LCI) of the guided beconstrate the LCA approach of develop and demonstrate the an LCI for both the RDX-but take place.	ed in a program to dever program framework is comb unit-24 (GBU-24). The use of LCA as a ,earn pased and TNAZ-based ange of comparators, su	elop technological strongly orien made with RD sof comparing munitions so the chast amount of the chast am	tes for clean production of ted around life-cycle X explosives was alternative PEP that further work on of listed (Federally

qualitative adjustments are made in the LCI to account for data quality, the RDX-based GBU-24 is still less environmentally harmful, but the gap between the systems is closed.

14. SUBJECT TERMS GBU-24	life-cycle assessment	LC	'A	15. NUMBER OF PAGES
life cycle inventory LCI	SERDP Collection			16. PRICE CODE N/A
17. SECURITY CLASSIFICATION OF REPORT unclass.		18. SECURITY CLASSIFICATION OF THIS PAGE unclass.	19. SECURITY CLASSIFICATION OF ABSTRACT unclass.	20. LIMITATION OF ABSTRACT UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

A Life-Cycle Inventory-based Comparison of an RDX-Based and a TNAZ-Based GBU-24 Munition

by

D. Tolle

B. Vigon

D. Evers

S. Ricci

Battelle Columbus Laboratories Columbus, OH 43201

Project Officer
Kenneth R. Stone
U.S. Environmental Protection Agency
National Risk Management Research Laboratory
Cincinnati, OH 45268

CR822956

National Risk Management Research Laboratory
Office of Research and Development
U.S. Environmental Protection Agency
Cincinnati, Ohio 45268

Printed on Recycled Paper

NOTICE

The U.S. Environmental Protection Agency through its Office of Research and Development funded and managed the research described here under Cooperative Research Grant No. CR822956 to Battelle. A peer review was conducted at the end of the study on the final report. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

ABSTRACT

U.S. Department of Defense (DoD) policy has elevated environmental considerations to an equivalent level of importance with cost and performance. Thus, with sponsorship from the Strategic Environmental Research and Development Program (SERDP), the DoD, U.S. Department of Energy (DOE), and U.S. Environmental Protection Agency (EPA) have cooperated in a program to develop technologies for clean production of propellants, energetics, and pyrotechnic (PEP) materials. Since the PEP program framework is strongly oriented around life-cycle assessment (LCA), a baseline life cycle inventory (LCI) of the guided bomb unit-24 (GBU-24) made with RDX explosives was conducted prior to this study in order to demonstrate the LCA approach.

The primary goals of this project were to develop and demonstrate the use of LCA as a means of comparing alternative PEP materials. A secondary goal was to produce an LCI for both the RDX-based and TNAZ-based munitions so that further work on improving the environmental footprint might take place.

In summary, based on a "less is best" comparison across a broad range of comparators, such as amount of listed (Federally regulated) waste or total energy consumption, the RDX-system appears to currently offer the least environmental dis-benefits. If some qualitative adjustments are made in the LCI to account for data quality, the RDX-based GBU-24 is still less environmentally harmful, but the gap between the systems is closed.

ACKNOWLEDGMENTS

The authors acknowledge the use of life-cycle inventory data collected under the SERDP Program in the form of reports by J.K. Ostic and others from Los Alamos National Laboratory and L. Brown from Holston Army Ammunition Plant.

Also gratefully acknowledged is the continued project support for LCA methods development and report review by staff in the Sustainable Technology Division, National Risk Management Research Laboratory, U.S. Environmental Protection Agency, especially Mr. Kenneth Stone, Mr. James Bridges, and Ms. Jane Bare.

This page left intentionally blank.

Contents

Notice	ii
Abstract	ii
Acknowledgments	iii
Acronyms and Abbreviations	. vii
1.0 Introduction	1
2.0 Goals, Scope and Boundary Definition	3
Goal Definition	3
3.0 System and Inventory Module Descriptions	5
RDX-Based System	5 . 10
4.0 Results	. 12
5.0 Discussion	. 20
6.0 References	. 22
Appendix A	. 26
Appendix B	. 29
Amandiy C	33

Tables

l able 3-1.	Summary of Data Included in LANL RDX-based GBU-24 Life Cycle Inventory	9
Table 3-2.	Summary of TNAZ-Based LCI Modules Prepared by Battelle	10
Table 4-1.	Total Emissions from Systems	12
Table 4-2.	Emissions from Systems by Environmental Compartment	12
Table 4-3.	Listed Emissions for Each System by Point of Origin	12
Table 4-4.	Non-Listed Emissions for Each System by Point of Origin	12
Table 4-5.	Resource Consumption by Systems	13
Table 4-6.	Geologic and Biotic Resource Consumption by Stage	13
Table 4-7.	Intermediate Materials Consumption by Stage	13
Table 4-8.	Energy Consumption by Stage	13
Table 4-9.	Life Cycle Inventory Summary Comparison	14
Table 5-1.	Life Cycle Inventory Summary Comparison (after Qualitative Adjustments for Data Quality)	20
	Figures	
Figure 3-1.	GBU-24: A conventional explosive earth penetrator.	7
Figure 3-2.	GBU-24 life cycle model	8
Figure 4-1.	Total emissions	15
Figure 4-2.	Emissions by compartment	15
Figure 4-3.	Listed emissions by stage	16
Figure 4-4.	Non-Listed emissions by stage.	16
Figure 4-5.	Resource consumption	17
Figure 4-6.	Resource consumption by stage.	17
Figure 4-7.	Intermediate materials consumption by stage	18
Figure 4-8.	Energy consumption	18
Figure 4.0	Energy consumption by stage	40

Acronyms and Abbreviations

AHP Analytical Hierarchy Process

AIRS Aerometric Information Retrieval System

AIRS EXEC AIRS Executive

AP Acidification potential ("acid rain")

BCF bio-concentration factor
BOD biochemical oxygen demand

CAA Clean Air Act

CIS Chemical Information Systems
COCO contractor-owned/contractor-operated

COD chemical oxygen demand

CWA Clean Water Act
DoD Department of Defense
DOE Department of Energy
EC Expert Choice™

EIA DOE's Energy Information Administration

EIS Environmental Impact Statement
EPA U.S. Environmental Protection Agency

EPCRA Emergency Planning and Community Right-to-Know Act

GBU-24 Guided Bomb Unit (Earth penetrator bomb; Navy version is B/B)

GOCO government-owned/contractor-operated

GWP global warming potential HAP hazardous air pollutant

HSAAP Holston Army Ammunition Plant

HV hazard value

IARC International Agency for Research on Cancer IPPD integrate product and process development ISO International Organization of Standards

LCA life-cycle assessment LCI life-cycle inventory

LCIA life-cycle impact assessment

LCIMA life-cycle improvements assessment MCAAP McAlester Army Ammunition Plant NAAQS National Ambient Air Quality Standards NEPA National Environmental Policy Act NSWC Naval Surface Warfare Center ODP Ozone Depletion potential PCB polychlorinated biphenals

PCS permit compliance system
PEP propellants, energetics, and pyrotechnics
PM10 particulate <10 microns aerodynamic diameter
POCP photochemical oxidant creation potential ("smog")

QSAR quantitative structure activity relationship
RCRA Resource Conservation and Recovery Act

R&D research and development RDX trimethylenetrinitramine explosive SAR structure activity relationship Society of Environmental Toxicology and Chemistry **SETAC** Strategic Environmental Research and Development Program **SERDP** TDS

total dissolved solids

TPY tons per year

TRI toxic release inventory **TSCA Toxic Substance Control Act** TSS total suspended solids VOC volatile organic compound

WOE weight-of-evidence

1.0 Introduction

While the greening of weaponry may seem contradictory, it is not. Much of the weaponry prepared for the U.S. Department of Defense (DoD), especially larger items, is never consumed in the act of warfare, but is only a deterrent. As long as it remains a deterrent, preparing, maintaining, and disposing of (old or out-of-date) weaponry are acts through which humans and the environment interact with the weaponry and the resulting input or output streams. These activities, or the resulting emissions and consumption, are an argument for the greening of weaponry. In fact, current DoD policy has elevated environmental considerations to an equivalent level of importance with cost and performance (Perry, 1994).

The Strategic Environmental Research and Development Program (SERDP) is a cooperative effort between the DOD and the Department of Energy (DOE) to investigate Clean Agile Manufacturing of Propellants, Explosives, and Pyrotechnics. Coupled with DoD policy initiatives (outlined in 1994 by then Secretary Perry), the SERDP activity seeks to investigate and develop new and improved materials and processes that are intended to provide pollution prevention benefits of 50 percent to 90 percent reduction in Federally-regulated wastes. Within the diagnostic and analytical component of this effort, several evaluative tools and techniques are being evaluated, adapted for use in the DoD setting, and eventually exported to the weapons system design and development teams for application as routine procedures in system acquisition.

With these goals in mind and in cooperation with the US EPA through the Life Cycle Engineering and Design Project, SERDP set out to investigate the usefulness of life cycle assessment (LCA) methods to assess the greenness of a weapon system through a demonstration project. The goals of this study are two-fold. One, the application of LCA to provide a key part of the information basis for improvements is to be demonstrated. Two, the general approach to life-cycle improvement assessment, as adapted to DoD applications, is to be developed and ultimately disseminated to the users. The munition chosen for the study was the GBU-24 Earth-Penetrating Bomb.

Reasons for choosing this munition include: 1) substitutes for the RDX-based explosive core are currently being investigated; trinitroazetidine (TNAZ) is one compound being considered, 2) other complementary manufacturing improvements are under development, and 3) Los Alamos National Laboratory has previously prepared an extensive systems model of the manufacturing operations and environmental profile for the RDX-based GBU-24.

Life Cycle Assessment (LCA) is a holistic method for examining the impact of a product or process on the environment. In an LCA the act of producing or processing is linked mathematically with activities occurring upstream (prior to the process of interest) and downstream (after the product of interest). These mathematical links allow the analyst to relate the contribution of the product or process, as well as each upstream or downstream contributing or supporting process, to the net system emissions or consumption resulting from the act of producing and using a product or process. The International Standards Organization (ISO) has developed two standards governing LCA. Standard 14040 describes the general principles and framework of LCA and Standard 14041 provides more detailed information on goal and scope definition and inventory analysis.

An LCA typically consists of several distinct phases. The first phase is Goals, Scope, and Boundary Definition. Here the purpose(s), objective(s), or question(s) to be answered through conduct of the LCA are defined, as is the extent of the system to be modeled — what processes are or are not intended to be included, i.e., the system boundary. According to the ISO standard, in defining the scope, the following items shall be considered and clearly described:

- Function
- · Systems to be studied
- Allocation procedures
- Assumptions
- · Initial data quality requirements
- Type and format of study report
- Functional unit
- System boundaries

- · Data requirements
- Limitations
- Type of critical review (if any).

The second phase is the Life Cycle Inventory (LCI), which is the tabulation of the emissions and consumption associated with a product or process. Life Cycle Impact Assessment (LCIA) is the third phase. Here emissions or consumption terms are linked to environmental problems such as Global Warming Potential, Resource Depletion, or Human Health. The final phase is Interpretation. During this phase, the systems data are analyzed to determine which materials and processes contribute most to the results and to identify aspects in which the baseline and alternative systems are or are not discernibly different. These phases are interrelated and iterative. Life Cycle Improvements Assessment (LCImA) is but one of a number of uses to which the interpretation might be directed. Here the results of the LCI and LCIA are interpreted and qualitative evaluations of potential environmental improvements are identified.

For this improvement assessment, only the the LCI stage was conducted. These activities were conducted in accord with the U.S. EPA technical guidance manual (1993) for LCI studies. A parallel study (U.S. EPA, 1997b) on the life cycle impacts associated with the RDX-based GBU-24 system was used as a reference in estimating the impacts associated with the TNAZ-based GBU-24. The inventory data for the RDX-based GBU-24 are identical for each study.

2.0 Goals, Scope and Boundary Definition

Goal Definition

During the period 1993-95 the baseline resource use and pollution burdens for the life cycle of the GBU 24 B/B earth penetrator bomb unit were examined using a combination of primary data collected from the production sites and secondary-modeled data and literature information for commercial operations such as steel and ammonia production. This study was conducted by the Los Alamos National Laboratory. This information showed certain pollutional characteristics associated with both the batch production of the RDX and aluminum fill used in the GBU24 and the environmental burdens associated with on-site- and offsite-produced electricity and steam. Several alternative materials and processes are in various stages of development and could function as either replacement components, alternative processing technologies, or substitute materials.

The goal of this life cycle inventory study is to compare one such alternative energetic material, trinitroazetidine (TNAZ), with the baseline RDX (royal demolition explosive) energetic material. Although the primary implementation of this goal involved the development of data modules pertaining to TNAZ production, certain other changes, necessitated by the different physical and chemical properties of TNAZ, were required to be introduced into the baseline. These other differences are summarized below and discussed in greater detail further in the body of the inventory report.

TNAZ, like RDX, is compounded into the explosive mix and fill material (CXM7 and PBXN109 in the case of RDX) by blending it with other ingredients. It is likely that in actual production the blend would be tailored to the specific characteristics of TNAZ. However, for purposes of this inventory, which was configured to allow examination of TNAZ as a "drop-in" replacement for RDX, the fill material selected was an 80:20 mixture of TNAZ and aluminum, identical to that used in the current GBU24.

Production of TNAZ uses very different starting

materials than RDX. Hence, the upstream operations were characterized on the basis of commercial production activities and secondary data sources. Depending on the amounts produced, actual production may determine that certain of the precursors could be produced by government-owned, contractor-operated (GOCO) facilities. Such GOCO facilities could be located at the existing sites for production of RXD-based munitions or at a greenfield site.

- In the original baseline inventory, the time distribution of resource consumption and emissions was based on assumptions about the peacetime production rates and the expected operational obsolescence of the stockpile of GBU24. Since no logistics setting has been uniquely defined for the TNAZ-based item, it was assumed that the operational deployment activities would be performed similarly except for the actual steps in demilitarization efforts that are specific to the physical properties of TNAZ.
- TNAZ has never been produced on a commercial scale. Therefore, it is impossible to obtain resource use and emissions information from actual full-scale operations. Instead the data developed from smaller scale (1 kg to 1,000 kg) syntheses was scaled to approximately commercial engineering operations through use of process simulation and thermodynamic computation models to assess ancillary operational requirements.
- Due to data problems with a subcontractor, not all of the data detail specified in the preliminary goal definition and scoping were obtained. This necessitated the assumption that certain process energy requirements for a TNAZ-filled GBU would be identical to those for the current GBU. This is unlikely to be entirely the case; however, given the data deficiency no other pathway was available.

Scope Definition

The intended scope of this study is the inventory

analysis of TNAZ as a drop-in replacement energetic fill material for RDX in a GBU-type end item. The inventory covers the cradle-to-grave activities of the alternative system in a manner similar to that of the baseline inventory. Specifically omitted are wartime deployment and stockpile replenishment and shipboard readiness activities. Also, in keeping with the boundaries of the original inventory, the resource use and emissions from RD&D activities during system development were excluded. In fact, these activities, particularly laboratory scale syntheses using alternative chemistries, engineering scale up trials, and qualification testing all have the potential to be contributory to the life-cycle profile. However, in the interest of showing the current profile for an "as-deployed" end item, these early stage contributions were omitted. All other operations from initial raw materials manufacturing to ultimate demilitarization were included in the system boundaries.

This study was conceived as including only an inventory analysis. Although an equivalency-based life-cycle impact assessment has been produced for the RDX-based item, resources did not permit a parallel effort for the TNAZ case study. Therefore, data collection and associated quality goals were specified for an inventory analysis. No external, third party critical review was identified as needed for the study. However, peer review was provided by the sponsoring organizations directly (U.S. EPA) and indirectly (U.S. Army).

The report format was designed to communicate clearly with the intended users. As noted in the introduction, there are two groups of users within the acquisition team - the process and system designers and the weapons system program managers and supervisory staff. In the former group, it is most important to illustrate the details of which activity steps are contributory to the overall environmental burdens. In the latter group, it is important to have the ability to compare the two different fill alternatives with respect to DOD-controlled versus commercial sector activity and to distinguish wastes that "count" towards the pollution prevention reduction goal (i.e., are listed wastes in RCRA, the Clean Water Act. or other legislation from the total environmental burdens). e.g., carbon dioxide contributions to global warming. These latter wastes may be used to further express general improvements in the overall environmental profile, but do not address achievement of the stated P2 goal.

Boundary Definition

For each system, all activities from acquisition of raw materials (geologic and biotic resources) through ultimate (peace-time) disposal were included. Excepted from the system were weapon system maintenance and/or preparatory activities, for example, periodic maintenance and calibration while deployed and any military use-readiness activities. Also excepted, as noted above, were research and development activities, and testing and deployment activities.

Primary materials common to both systems include iron ore, limestone, and coal for the bomb body and crude oil and natural gas as feedstocks for chemical synthesis or as fuels. Demilitarization was different for each system. Both systems also require salt and a source of nitrogen for use in upstream synthesis operations. The systems differ in the modes of acceptable demilitarization. Physical removal of the RDX followed by burning, to reduce volume, is the disposal method for RDX. Meltout of TNAZ for recycle into other munitions is the method modeled. In each case, the bomb body is recycled via the scrap steel recycling infrastructure. Although it may be possible to reuse the bomb body with only minor refurbishment in the case of TNAZ, this operation was not modeled.

3.0 System and Inventory Module Descriptions

The GBU-24 is an earth penetrator bomb equipped with a laser guidance package designed to penetrate up to 6 feet of reinforced concrete. As shown in Figure 3-1, the assembled item consists of several component and subcomponent parts. The BLU-109 bomb body is the largest physical component and contributes the majority of the material mass to the system. The other components listed were not included because they are minor in comparison and are readily reused in any event. Within the BLU-109, the bomb case itself is the largest source of material (approximately 70 percent of the total weight) and efforts are underway to evaluate ways to reduce pollution from its manufacture through recycling of the steel. Approximately 27 percent of the total comes from the explosive fill. The PBXN-109 is a blend of four components: CXM-7 explosive mix. aluminum powder, thermoset plastic binder, and miscellaneous other blending and forming agents. About 3 percent of the mass is contributed by thermal insulation applied to the bomb exterior and asphalt interior liner.

The work flow representation of the RDX-based GBU-24 life cycle is illustrated in Figure 3-2. Raw materials are sourced for the energetic materials production from commercial commodity chemical producers. The synthesis of RDX, together with the coating and blending to manufacture CXM-7, is provided by Holston Army Ammunition Plant (HSAAP) in Kingston, TN. The CXM-7 is then shipped to McAlester Army Ammunition Plant (MCAAP) in McAlester, OK. Load/assemble/pack (L/A/P) operations are performed at MCAAP, which includes blending the CXM-7 with aluminum and other additives to produce the plastic-bonded explosive used for the GBU-24. The steel bomb bodies are also shipped to MCAAP from a commercial producer (National Forge).

For the TNAZ-based munition it was assumed that a similar arrangement would be maintained. Precursor materials to the explosives are purchased from various suppliers. Munition disassembly and explosive destruction or reclamation occurs at Indian Head Naval Surface Warfare Center (IHNSWC), Currently RDX is burned

and the resulting ash disposed of in a landfill. One advantage of TNAZ is that it can be reclaimed and reused a number of times. The reclamation operation was also assumed to occur at Indian Head. Each system requires transport of materials or munitions, and consumes an amount of electricity generated off-site.

For the two systems, the L/A/P operations at McAlester were assumed to be almost identical in that TNAZ was assumed to be a true "drop-in" replacement for RDX. This is not exactly the case since TNAZ has a greater energy density and, thus, needs some additional filler to increase the mass and volume of TNAZ-based explosive material in the GBU-24 in order to maintain its flight characteristics.

One other point to consider is the state of development of each of the two systems. The RDX-based munition has been produced for a number of years, hence optimization of the system with regard to yield and energy efficiency is near maximum. The TNAZ-based system is still in the lab scale/pilot scale developmental stage. While much optimization has taken place (more than an order of magnitude reduction in total waste per pound of TNAZ produced was achieved between 1993 and 1996 alone), it is thought that more will occur, especially as the system is scaled up to production quantities. The TNAZ system modeled in this LCI is a hybrid of lab and/or pilot scale developments with some potential, and highly probable, modifications to increase yield or energy efficiency, or change the input resource to those thought to be cause less environmental harm.

RDX-Based System

A baseline inventory (LCI) of the current GBU-24 earth penetrator bomb was conducted during 1993 and 1994 (the data basis was 1992 operations). That effort attempted to adhere very closely to the LCI methodology described in Society of Environmental Toxicology and Chemistry (SETAC) and U.S. EPA technical guideline publications (U.S. EPA, 1993). Preliminary results of that analysis have been reported in several forums and publications (Ostic, 1994; Brown, 1995; Newman and Hardy, 1995) and are briefly

summarized below. Numerous organizations supplied information for the baseline effort including the following.

- Commercial Raw Materials Production, Fuels Acquisition, and Electric Power Generation: Battelle Columbus
- Intermediate/Fill Materials Production and L/A/P Operations: Holston and McAlester Army Ammunition Plants
- Use/Maintenance and Demil Operations: Naval Surface Warfare Center, and Coordination of Inventory Data Assembly: Engineering Systems Analysis Department, Los Alamos National Laboratory.

Assembly and validation of the data, together with the modeling of the system resource consumption and environmental burdens, was performed by the Technology Modeling and Analysis Group at LANL. The environmental emissions and energy and resource consumption output from this model was provided to Battelle.

Modeling of the GBU-specific manufacturing operations was performed in considerably greater detail than for the commercial sector activities. This was done for several reasons, not the least of which was the fact that the span of control of DoD for influencing such major industrial activities as steel and ammonia manufacture is limited. Table 1 illustrates the specific activities and process streams included in the LANL LCI model.

Battelle tabulated the inventory data provided by LANL in two dimensions. The first dimension was life cycle stage as Precursor production, HSAAP operations, MCAAP operations, IHNSWC operations, Transportation, Waste Management, and Electricity production, in order to relate emissions to the scope of control of the involved entities. The second dimension was regulatory status: Listed or Non-listed. Listed wastes are those explicitly mentioned in any of the following Federal environmental regulations, and are those to which the pollution prevention goals mentioned above are directed.

- Comprehensive Environmental Restoration, Compensation and Liability Act (CERCLA/Superfund)
- Toxic Substances Control Act (TOSCA)
- Clean Water Act (CWA)
- Clean Air Act and Amendments (CAAA)
- Superfund Amendments and Reauthorization Act (SARA)

- Toxics Release Inventory (TRI)
- Resource Conservation and Recovery Act (RCRA).

WGU - 39/B Guidance Control System ADG - 770/B Adapter Group BSU - 84/B Air Foil Group GBU-24 is a Conventional Explosive Earth Penetrator Weapon Other Components FMU - 143 E/B Fuze Thermal Insulation Exterior Coating - 25# Asphaltic Liner Interior Coating - 23# PBXN-109 Explosive - 525# Aluminum Powder - 105# Steel Bomb Case - 1390# PBXN-109 Explosive CXM-7 - 336# Binder - 45# Other - 39# **BLU-109** Approximate Dimensions **Body Diameter - 16 inches** Body Length - 8.2 feet Tail Span - 6 feet Length - 15 feet

Figure 3-1. GBU-24: A conventional explosive earth penetrator (the functional unit for the LCA is the bomb body called BLU-109).

154LD

Natural Gas

Diesel Products

Coal

Electrical

Energy Requirements

GBU-24 Lifecycle Model

Figure 3-2. GBU-24 life cycle model.

Materials

Service &

Waste

Table 3-1. Summary of Data Included in LANL RDX-based GBU-24 Life Cycle Inventory

		nsumption		Emissions	
Process or Activity	Resources	Energy	Air	Water	Solid Waste
		Geologic and Biotic Reso			
Bauxite	Included	Included	Included	included	Included
Coal	Included	Included	Included	included	Included
ron Ore	Included	Included	Included	Included	Included
Limestone		Included			
Natural Gas	Included	Included	Included	Included	Included
Petroleum	Included	Included	Included	Included	Included
retioleum	Included	Intermediate Materials		moladed	moladed
# #! - # - ! - !	la alcoda d	Included	Included	Included	
Acetic Acid	Included			***************************************	المماريط ما
Acetone	Included	Included	Included	Included	Included
Aluminum	Included	Included	Included	Included	Included
Ammonia	Included	Included	Included	Included	
Coke		Included			
Cyclohexanone					
Dioctyl adipate (DOA)					
Formaldehyde	Included	Included	Included		
•	Included	Included	moladod		Included
Hexamine			Included	Included	moluucu
Nitric acid	Included	Included	moladea	moluded	
Nitrogen		Included			
Oxygen		Included			
Propyl acetate					
Steel	Included	Included	Included		Included
Steel Forging	Included	Included			
Frichloroethane					
Friethyl phosphate					
methyl phosphate		Holsten AA	D		
Anatia anid Dandustian	Indical	Included	Included	Included	Included
Acetic acid Production	Included				
Acetic anhydride Concentration	Included	Included	Included	Included	Included
Area A Steam Plant	Included	Included	Included	Included	Included
Explosives Plant	Included	Included	Included	Included	Included
Nitric acid Production	Included	Included	Included	Included	
Spent acid Recovery	Included	Included	Included	included	
Vitric acid Concentration	Included	Included	Included	Included	
Nitric acid - Ammonium nitrate	Included	Included	Included	Included	
Production	IIIolaaca	Moladea	iiioiaaca	11101000	
	Included	Included		Included	Included
ndustrial Wastewater	included	included		included	niciaaea
Freatment Plant					
Filtered Water Production					
Burning Ground					
ncinerator				•	
		McAlester A	AP		
nert Preparation	Included	Included	Included		Included
Receiving	Included	Included			
Mixing	Included	Included	Included		Included
			Included	Included	included
Casting	Included	Included	meidaea		
Somb Seal	Included	Included		Included	Included
Final Assembly	Included	Included			
Radiography	Included	Included			
Chemical Laboratory	Included	Included	Included		Included
Boiler	Included	Included	Included		
		Demilitarizat			
Disassembly		included			
Vater Jet Washout	Included	Included		Included	Included

Solvent Soak	included	Included	المرابعات	Included	Included
Burning Ground		Included	Included		Included
Vater Treatment	Included				
		Off-site Electricity G	eneration		
Coal-fired Plant	Included	Included	Included		Included
Diesel-fired Plant	Included	Included	Included		
Natural gas-fired Plant	Included	Included	Included		
				Included	Included
National Grid	Included	Included	Included	moladea	moluded
		Transportati			
Fransportation Practice 1	Included	Included	Included	Included	Included

TNAZ-based System

The approach to modeling the life cycle of the TNAZbased munition was a straight-forward replacement of the appropriate processes and segments of the RDXbased system. No work had been done on modeling the TNAZ-based system, but the LANL computational framework and engine are modular so that appropriate TNAZ specific pieces could be substituted. Battelle undertook the generation of modules for precursors to TNAZ production, along with modules for demilitarization including recycling of TNAZ. This modeling effort entailed preparing process characterizations and mass balances for each needed module. Battelle subcontracted with LANL to integrate the new modules into the existing computational framework to make adjustments to the model for changes in operations and emissions at Holston and McAlester that would result upon the substitution of TNAZ into the GBU, and to provide results for a number of defined scenarios. The task of calculating process energy requirements and

government-owned facility energy infrastructure changes necessary to support TNAZ manufacture and use was also subcontracted to LANL.

The modules prepared by Battelle included formaldehyde, NIB-glycerol, di-isopropylazodicarboxylate. triphenyl phosphine, acetic anhydride, tert-butylamine, sodium hydroxide, hydrochloric acid, hydrogen peroxide. isopropanol, 2-butanone (methyl ethyl ketone), sodium nitrite, potassium ferrocyanide, sodium persulfate, methyl tert-butyl ether, ferrous chloride, nitric acid. ammonium nitrate, ethanol, acetonitrile, nitrogen, deionized water. Dow 2210 antifoaming agent, and melt out of TNAZ from decommissioned munitions. Data for these modules was taken from the LANL work on RDX and from other LCIs. Some modules were developed from first principles of chemical engineering. A complete listing of calculations and data sources is given in Appendix D, while data sources and brief descriptions are given in Table 3-2.

Table 3-2. Summary of TNAZ-Based LCI Modules Prepared by Battelle

Formaldehyde Br Methanol Lo	rown, Hamel and Hedman, 1985 owenheim and Moran, 1975; McGraw Hill, 1984;	Notes Production of formaldehyde from methanol.
Methanol Lo	owenheim and Moran, 1975; McGraw Hill, 1984;	
		Engineering calculations for methanol production as
19	J.S. EPA, 1985; Kirk-Othmer, 1991; CRC Press, 986	part of acetic acid production.
Acetic acid Lo	owenheim and Moran, 1975	Production of acetic acid from methanol.
	ürk-Othmer, 1964	Production of synthesis gas from coal.
	ürk-Othmer, 1978; W.R. Grace Co., 1992	Co-production of nitro compounds: nitroethane, nitromethane, nitropropane, from nitrogen and light hydrocarbons.
Nitric acid and Ammonium nitrate Ho	loiston Defense Corporation	Co-production of nitric acid and ammonium nitrate at Holston AAP.
Diisopropyldiazodicarboxylate Me	fcGraw Hill, 1984; U.S. EPA, 1985; CRC Press,	Engineering calculations of emissions and energy and
	986.	resource consumption from DIAD production.
	owenstein and Moran, 1975; McGraw Hill, 1984;	Engineering calculation of emissions and energy and
	RC Press, 1985; U. S. EPA, 1985; SRI, 1993	resource consumption for phosgene production.
	l.S. EPA, 1985; U.S. DOE, 1994; U.S. EPA, 1995; J.S. DOE, 1993	Production of fertilizer quality ammonia.
Sodium hydroxide Si	imaPro 3.0, 1994	Co-production of sodium hydroxide, chlorine and hydrogen via electrolysis of brine.
	S. EPA, 1995; Fertilizer Institute, 1982	Production of sulfuric acid via the phosphate wet method.
Monochlorobenzene Lo	owenheim and Moran, 1974; McGraw Hill, 1984;	Engineering calculation of emissions and resource and
U.	.S. EPA, 1985; Kirk-Othmer, 1964; U.S. ITC, 1994	energy consumption for monochlorobenzene production,
	imaPro 3.0, 1994	European production of technical grade benzene.
Isopropanol Lo	owenheim and Moran, 1975; McGraw Hill, 1984;	Engineering calculation of emissions and resource and
	.S. EPA, 1985; SRI, 1993; U.S. ITC, 1994; CRC ress, 1985	energy consumption from isopropanol production.
	imaPro 3.0	European production of monomer quality propylene.
Phosphorus trichloride		Engineering calculations of emissions and energy and
		resource consumption for phosphorus trichloride
		production.
Acetic anhydride Ho	olston Defense Corporation	Production of acetic anhydride at Holston AAP.
Acetic acid Lo	owenheim and Moran, 1975; McGraw Hill, 1984;	Engineering calculation of emissions and resource and
19	.S. EPA, 1985; Kirk-Othmer, 1964; CRC Press, 986	energy consumption for acetic acid production.
	owenheim and Moran, 1975; McGraw Hill, 1984; U.S	Engineering calculation of emissions and resource and
EP	PA, 1985; SRI, 1993; U.S. ITC, 1994; CRC Press,	energy consumption for MEK production.
	maPro 3.0, 1994	European production of monomer quality butylene.

Module	Data Sources	Notes
Methyl tert-Butyl Ether	Lowenheim and Moran, 1975; Mc Graw Hill, 1985; U.S. EPA, 1985; SRI, 1993; U.S. ITC, 1994; CRC Press, 1986	Engineering calculation of emissions and resource and energy consumption during MTBE production.
Ethanol (via Fermentation from Corn Sugars)	Numerous	Production and harvesting of corn. Transportation of corn to processing center. Milling of corn to separate sugars and starches from fiber.
Acetonitrile	Lowenheim and Moran, 1975; Mc Graw Hill, 1985; U.S. EPA, 1985; SRI, 1993; U.S. ITC, 1994; CRC Press, 1986	Engineering calculation of emissions and resource and energy consumption during co-production of aceto- nitrile and acrylonitrile.
Demilitarization		Engineering calculations of emissions and resource and energy consumption during demilitarization.

A number of assumptions were made for the TNAZ based system LCI. First, energy consumption would be similar for both the RDX-based and TNAZ-based systems so that the RDX-based energy consumption information could be used in the TNAZ-based system LCI. Second, the transportation infrastructures for the two systems were identical. Given that manufacturing operations have not been sited for the processes this appears to be a reasonable approach. If direct reuse of the bomb body proves feasible then transportation emissions and energy consumption should decrease for the TNAZ-based GBU. The third assumption was that the electricity generation emissions were also identical in the two systems. In part, these assumptions were necessary to complete the LCI because LANL was not able to provide the results of the TNAZ-based modeling in sufficient detail to allow TNAZ-specific substitutions to be developed and incorporated into the LCI and verified.

4.0 Results

The detailed life cycle inventories are presented in Appendices A and B for the RDX-based and TNAZ-based systems, respectively. The following tables and figures summarize and compare the results presented in Appendices A and B. For most of the results presented in the tables the wastewater emitted during production of the TNAZ-based GBU-24 has been intentionally omitted. Since *no* wastewater emission is listed for the RDX-based system the description of the wastes for the two systems is more comparable when this omission from the RDX-based system emissions is compensated for by ignoring wastewater emissions from the TNAZ-based system. The result is a comparison of the mass of contamination of the wastewater.

Table 4-1 lists Total Emissions from each of the two systems. The amounts of listed and non-listed wastes are also given. For both Total Emissions and Listed Emissions the RDX-based munition has significantly lower emissions. There is no discernable difference among the systems for Non-Listed Emissions. The results are presented in Figure 4-1.

Table 4-1. Total Emissions from Systems (in pounds per GBU-24)

Emission	RDX-based GBU-24	TNAZ-based GBU-24
Listed	1,158	20,733
Non-Listed	30,837	29,547 ⁽¹⁾
Total	31,995	50,280

(1) Less wastewater discharge of 11,654,826 lb.

Emissions by environmental compartment also tend to favor the RDX-based system (see Table 4-2 and Figure 4-2). The exception being Air Emissions where no discernable difference exists between the systems.

Table 4-2. Emissions from Systems by Environmental Compartment (in pounds per GBU-24)

Compartment	RDX-based GBU-24	TNAZ-based GBU-24
Air Emissions	26,945	27.072
Water	354	9,176 (1)
Emissions		.,
Solid Wastes	4,697	14.033

(1) Less wastewater discharge of 11,654,826 lb.

Tables 4-3 and 4-4 and Figures 4-3 and 4-4 present the results for Listed and Non-Listed Emissions by point of origin. Emissions for Transportation, Waste Management, and Off-site Electricity Production were identical for the two systems since the RDX-based system data was used for the TNAZ-based system. The RDX-based system has lower emissions of Listed Wastes during Precursor Production and at Military Facilities. Non-Listed Wastes emitted from Military Facilities are lower for the TNAZ-based system.

Table 4-3. Listed Emissions for Each System by Point of Origin (in pounds per GBU-24)

Point of Origin	RDX-based GBU-24	TNAZ-based GBU-24 ⁽¹⁾
Precursors	620	7,640
Production		ŕ
Military	364	12,919
Facilities		,
Transportation	4	4
Waste	0	0
Management		
Off-site	169	169
Electricity		
Production		

(1) Less wastewater discharge of 11,654,826 lb.

Table 4-4. Non-Listed Emissions for Each System by Point of Origin (in pounds per GBU-24)

Point of Origin	RDX-based GBU-24	TNAZ-based GBU-24 ⁽¹⁾
Precursors	6,332	6,291
Production		•
Military	7.934	6,685
Facilities		5,555
Transportation	189	189
Waste	773	773
Management		
Off-site	15,609	15,609
Electricity		. 5,000
Production		

(1) Less wastewater discharge of 11,654,826 lb.

Resource consumption is also much less for the RDX-based GBU-24 (see Table 4-5 and Figure 4-5). Again, however, there was an obvious omission from the results for the RDX-based system in that there was *no* water consumption. For the TNAZ-based GBU-24 water consumption amounts to almost 2.5 million pounds. The

values in the table and figure include this water consumption. (Geologic and Biotic Resources are raw materials extracted from or grown on the earth or oceans. Intermediate Materials are refined products that have not been traced back to geologic or biotic materials. For example, crude oil is a geologic resource, while gasoline is an intermediate material.)

Table 4-5. Resource Consumption by Systems (in pounds per GBU-24)

Resource	RDX-based GBU-24	TNAZ-based GBU-24
Geologic and Biotic Resources	20,133	6,372,692(1)
Intermediate Materials	1,009	21,846

(1) Includes 2.5 million pounds of water consumed

Table 4-6 and Figure 4-6 illustrate the geologic and biotic resource consumption by stage. Figure 4-7 and Table 4-7 present the results for intermediate materials consumption. Again, data for Transportation, Waste Management, and Off-site Electricity Production are identical for the two systems. Differences in resource consumption are not discernable between the systems for any stage except for Precursor Production, where the RDX-based system is considerably lower. The RDX-based system is also lower for Intermediate Materials consumption for both Precursor Production and consumption at Military Facilities.

Table 4-6. Geologic and Biotic Resource Consumption by Stage (in lb per GBU-24)

Stage	RDX-based GBU-24	TNAZ-based GBU-24
Precursor	9,630	6,361,792
Production		
Military	4,178	4,575
Facilities		
Transportation	0	Ō
Waste	100	100
Management		
Off-site	6,225	6,225
Electricity		
Generation		

Table 4-7. Intermediate Materials Consumption by Stage(in Ib per GBU-24)

GBU-24)		
Stage	RDX-based GBU-24	TNAZ-based GBU-24
Precursor	296	14,268
Production		
Military	713	7,578
Facilities		
Transportation	0	0
Waste	O	0
Management		
Off-site	Ö	0
Electricity		
Generation		

Energy consumption again is lower for the RDX-based GBU-24, by a wide margin (see Figure 10). Energy consumption (all energy sources considered) was 151 million Btus per GBU-24 for the RDX-based system and 1,954 million Btus per GBU-24 for the TNAZ-based system. For the RDX-based system it is 73.4 percent derived from coal and 19.8 percent derived from natural gas, with the balance being electricity or petroleum. Steam (fuel(s) unspecified) was the primary energy source for the TNAZ-based system at 88.4 percent. Nuclear energy (5.2 percent) and coal (3.8 percent) are the next biggest energy sources.

Table 4-8 and Figure 4-9 illustrate Energy consumption by stage. Again the same data were used for both systems for the Transportation, Waste Management, and Off-site Electricity Production stages. For the remaining stages, Precursor Production, and at Military Facilities, the RDX-based system consumes much less energy.

Table 4-8. Energy Consumption by Stage (in Mbtu per GBU-24)

Stage	RDX-based GBU-24	TNAZ-based GBU-24
Precursor	12	148
Production		
Military Facilities	61	1,728
Transportation	1	1
Waste	3	3
Management		
Off-site Electricity	73	73
Production		

Table 4-9 presents a summary of all of the comparisons made above. For each comparison, the system that was the most environmentally beneficial, judged as less is better, was indicated on the table with a '.'. A difference between the systems of 15 percent was used to judge which was better, i.e., the value for the TNAZ-based system had to be more than 15 percent higher or lower than the value for the RDX-based system in order for one of the systems to be judged better. If the values for the systems did not differ by more than 15 percent neither was judged to be better. The value of 15 percent was chosen based on the experience of the analyst. As a check on this choice a 10 percent margin was also used. The information in Table 4-9 does not change with a 10 percent margin. If the margin is changed to 20 percent, the outcome of one comparison changes. Instead of the TNAZ-based system being better for Non-Listed Military Facility Emissions, neither system is better.

The value chosen for the margin is a reflection of the perceived data quality. The higher the perceived quality of the data the lower the margin at which one believes comparable systems can be differentiated. Which is the

most correct value? Battelle recently completed a LCI on residential nylon carpet for the U.S. EPA (1997a) in which the propagation of error in an LCI was studied. What was found was that, for the carpet system, individual input parameters could be varied by as much as 20 percent with 95 percent of the output values varying by less than 13 percent. The TNAZ-based system LCI contains a large number of engineering

estimates for emissions and consumption simply because the system has not been scaled up and operated at full scale to allow measurements. While these are engineering estimates, they are not likely to vary by more than 20 percent from the true values. Therefore, the output is expected to vary on the order of 15 percent, as it did for the carpet LCI, thus the choice of a 15 percent margin.

Table 4-9. Life Cycle Inventory Summary Comparison

Comparator	RDX-based GBU-24	TNAZ-based GBU-24
Total Emissions	•	
Listed Emissions	•	
Non-Listed Emissions		
Air Emissions		
Wastewater Emissions	•	
Solid Wastes	•	
Listed Emissions - Precursor Production	•	
Listed Emissions - Military Facilities		
Listed Emissions - Transportation		
Listed Emissions - Waste Management		
Listed Emissions - Off-site Electricity Production		
Non-Listed Emissions - Precursor Production		
Non-Listed Emissions - Military Facilities		_
Non-Listed Emissions - Transportation		•
Non-Listed Emissions - Waste Management		
Non-Listed Emissions - Off-site Electricity Production		
Total Resource Consumption	•	
Geologic and Biotic Resources	(·	
Intermediate Materials	•	
Geologic and Biotic Resources - Precursor Production	•	
Geologic and Biotic Resources - Military Facilities		
Geologic and Biotic Resources - Transportation		
Geologic and Biotic Resources - Waste Management		
Geologic and Biotic Resources - Off-site Electricity Generation		
Intermediate Materials - Precursor Production	•	
ntermediate Materials - Military Facilities	•	
ntermediate Materials - Transportation		
ntermediate Materials - Waste Management		
Intermediate Materials - Off-site Electricity Generation		
Total Energy Consumption		
Energy Consumption - Precursor Production		
Energy Consumption - Military Facilities	•	
Energy Consumption - Transportation	- -	
Energy Consumption - Waste Management		
Energy Consumption - Off-site Electricity Generation		

Total Emissions

Figure 4-1. Total emissions.

Emissions by Compartment

Figure 4-2. Emissions by compartment.

Munition

TNAZbased

GBU-24

RDX-

based GBU-24

Figure 4-3. Listed emissions by stage.

Off-Site Energy Production

Non-Listed Emissions by Stage 4,000 3,500 3,000 Emissions (Ib/GBU-24) 2,500 2,000 1,500 1,000 500 Off-Site Energy Production TNAZ-based GBU-24 Waste Management Transportation RDX-based GBU-24 Military Precursors Munition

Stage

Figure 4-4. Non-Listed emissions by stage.

Resource Consumption

Figure 4-5. Resource consumption.

Resource Consumption by Stage

Figure 4-6. Resource consumption by stage.

Intermediate Materials Consumption by Stage

Figure 4-7. Intermediate materials consumption by stage.

Energy Consumption

Figure 4-8. Energy consumption.

Energy Consumption by Stage

Figure 4-9. Energy consumption by stage.

5.0 Discussion

The RDX-based GBU-24 is better in 15 of the categories in Table 4-9, the TNAZ-based munition in one. For 19 of the categories there is no clear winner given the data available. By examining Tables 4-1 through 4-8 it can be seen that where the RDX-based munition is better it is generally much better, whereas the TNAZ-based GBU-24 is better by just more than the 15 percent differentiability margin.

Given the relative state of optimization for the systems, it is reasonable to expect the gap between the TNAZ-based and RDX-based systems to narrow for those comparators where the RDX-based system is better. The RDX-based system being a mature technology would not be expected to see significant changes in emissions or consumption. The same may not be said for the TNAZ-based system since much work on optimization of the synthesis reactions is occurring, which will be followed by further optimization achieved through large scale production. This action would be expected to tip the balance away from the RDX-based system being better in so many comparators.

Other unknowns include the true values for Transportation-, Waste Management-, and Off-site Electricity Production-related emissions for the TNAZ-based system. As was discussed above, no data were available on these activities from the LANL modeling efforts so a judgement was made to substitute the equivalent information from the RDX-based system.

These substitutions directly produce ties in 15 of the comparators. Some of these values are probably close to the true value, such as the Transportation-related emissions and consumption where the masses and distances traveled may not change much between the systems. Emissions from Waste Management may actually be lower than modeled for the TNAZ-based system since the TNAZ is recycled; however, Resource and Energy Consumption may increase since the TNAZ is melted out of the bomb casing. Off-site Electricity Production Emissions and Consumption are also expected to decrease since the amount of electricity used for the TNAZ-based system is approximately onehalf that used for the RDX-based system. This would have the effect of changing seven of the comparators from a tie to being better under the TNAZ-based system (Total Non-Listed Emissions, Air Emissions, Listed Emissions - Off-site Electricity Production, Non-Listed Emissions - Off-site Electricity Production, Geologic and Biotic Resource Consumption - Off-site Electricity Production, Intermediate Materials Consumption - Offsite Electricity Production, and Energy Consumption -Off-site Electricity Production).

Based upon this qualitative analysis the true picture might look like Table 5-1. The RDX-based munition is better for 18 comparators, the TNAZ-based munition for 10, and which of the two systems is better cannot be determined for seven comparators.

Table 5-1. Life Cycle Inventory Summary Com	parison (after Qualitative Adjustments for Data Quality)
Comparator	PDV based CDU 04

Comparator	RDX-based GBU-24	TNAZ-based GBU-24
Total Emissions	•	TIVE Dated ODO 17
Listed Emissions	•	
Non-Listed Emissions		_
Air Emissions		
Wastewater Emissions	•	•
Solid Wastes		
Listed Emissions - Precursor Production	•	
Listed Emissions - Military Facilities	•	
Listed Emissions - Transportation	•	
Listed Emissions - Waste Management		_
Listed Emissions - Off-site Electricity Production		•
Non-Listed Emissions - Precursor Production		•
Non-Listed Emissions - Military Facilities		•
Non-Listed Emissions - Williary Pacintles		•

Comparator	RDX-based GBU-24	TNAZ-based GBU-24
Non-Listed Emissions - Transportation		
Non-Listed Emissions - Waste Management		•
Non-Listed Emissions - Off-site Electricity Production		•
Total Resource Consumption	•	
Geologic and Biotic Resources	•	
Intermediate Materials	•	
Geologic and Biotic Resources - Precursor Production	•	
Geologic and Biotic Resources - Military Facilities		
Geologic and Biotic Resources - Transportation		
Geologic and Biotic Resources - Waste Management	•	
Geologic and Biotic Resources - Off-site Electricity		•
Generation		
Intermediate Materials - Precursor Production	•	
Intermediate Materials - Military Facilities	•	
Intermediate Materials - Transportation	•	
Intermediate Materials - Waste Management	•	
Intermediate Materials - Off-site Electricity Generation		•
Total Energy Consumption	•	
Energy Consumption - Precursor Production	•	
Energy Consumption - Military Facilities	•	
Energy Consumption - Transportation		
Energy Consumption - Waste Management	•	
Energy Consumption - Off-site Electricity Generation		•

Two points can be made. First, the RDX-based system appears to be the more environmentally beneficial at this time. Second, the TNAZ-based system does not appear to offer the potential to reduce the amount of Listed wastes emitted during GBU-24 production by the 50 percent goal. In fact, the TNAZ-based system will likely *increase* the amount of listed waste emitted. Currently the TNAZ-based system produces an estimated 18 pounds of Listed waste for every pound of Listed waste produced by the RDX-based system. To meet the goal, the TNAZ-based system would need to see a reduction in Listed wastes emitted of over 97 percent from current estimates.

6.0 References

- Ali, Mir. 1994. Com: State-Level Production Costs, Characteristics and Input Use. 1991. USDA/ERS SB-891.
- Anderson, I.C. and J.S. Levine. 1987. Simultaneous Field Measurements of Biogenic Emissions of Nitric Oxide. J. Geophys. Res., 92(D1):965-976.
- Austin, George. 1984. Shreve's Chemical Process Industries, 5th ed., McGraw-Hill.
- Brown, Harry L., Bernard B. Hamel, and BruceA. Hedman. 1985. Energy Analysis of 108 Industrial Processes. Fairmont Press, 314 pp.
- Babcock and Wilcox. 1992. Steam: Its Generation and Use, 40th Edition, S.C. Stulz and J.B. Kitto (eds.).
- Battaglin, W.A., D.A. Goolsby, and D.K. Mueller. 1994.
 Relations Between Use, Concentration, and
 Transport of Agricultural Chemicals in the
 Mississippi River Basin, in Proceedings of the
 Annual Summer Symposium of the American Water
 Resource Association, Effects of Human Induced
 Changes on Hydrologic Systems, June 26-29, 1994,
 Jackson Hole, Wyoming.
- Baumel, C. Philip, Charles R. Hurburgh, and Tenpao Lee. 1985. Estimates of Total Fuel Consumption in Transporting Grain from Iowa to Major Grain Importing Countries by Alternative Modes and Routes: Special Report 90, Iowa Agricultural and Home Economics Experiment Station, Iowa University of Science and Technology, Ames, Iowa.
- Baumel, C. Philip, Stephen Baumhover, Michael A. Lipsman, and Marty J. McVey. 1991. Alternative Investments in the Rural Branch Railroad and County Road Systems, Midwest Transportation Center, Iowa State University, Ames, Iowa.

- Bhat, Mahadev G., Burton C. English, Anthony Turhollow, and Herzron Nyangito. 1993. Energy Use in Synthetic Agricultural Inputs: Revisited, Report prepared by the Department of Agricultural Economics and Rural Sociology, The University of Tennessee, Knoxville, for Biofuels Feedstock Development Program Environmental Sciences Division, Oak Ridge National Laboratory, ORNL/Sub/90-99732/2.
- Blanchard, Paul H. 1992. Technology of Corn Wet Milling and Associated Processes, Industrial Chemical Library, vol. 4, Elsevier Press, New York.
- Blankenhorn, Paul R., et al. 1986. Net Financial and Energy Analyses for Producing Populus Hybrid Under Four Management Strategies: First Rotation, Oak Ridge Nat'l Laboratory, ORNL/Sub/79-07928/1.
- Boynton, Robert S. 1980. Chemistry and Technology of Lime and Limestone, Second Edition, John Wiley and Sons, Inc., New York.
- Bowman, B.T., et al. 1994. Transport of Herbicides and Nutrients in Surface Runoff from Corn Cropland in Southern Ontario Canadian Journal of Soil Science, 7491):59-66, 1994.
- Brown, L. 1995. Agile Engineering, Strategic Environmental Research and Development Program (SERDP), Task M3. Tech. Rept. No. HDC-125-95. Holston Army Ammunition Plant, Kingston, TN.
- Buhler, D.D., et al. 1993. Water Quality: Atrazine and Alachlor Losses from Subsurface Tile Drainage of a Clay Loam Soil, Journal of Environmental Quality, 22:583-588, 1993
- CE Power Systems. 1967. Steam Tables: Properties of Saturated and Superheated Steam, reprinted from ASME Steam Tables (1967).

- Cengel, Y. A., and M. Boles. 1989. Thermodynamics: An Engineering Approach, McGraw-Hill, Inc., New York.
- Chambers, R.S., et al. 1979. Gasohol: Does It or Doesn't It Produce Positive Net Energy, Science, vol. 206, November 1979, pp. 789-795.
- Code of Federal Regulations, 40 CFR 406.15, 1994 edition.
- Corn Refiners Association, Inc. 1994?. 1994 Corn Annual, Corn Refiners Association, Washington, D.C.
- CRC Press. 1986. Handbook of Physics and Chemistry, 66th ed.
- DeLuchi, M. 1993. Emissions of Greenhouse Gases from the Use of Transportation Fuels and Electricity, Argonne National Laboratory, ANL/ESD/TM-22, Vol. 2.
- Divine, T.E., D.P. Alzheimer, and W.F. Smith. 1977.
 Estimates of Process Energy Use in Four Key
 Food Products Industries, presented at the 1977
 Annual Meeting of the Pacific Northwest Region
 American Society of Agricultural Engineers,
 Pendelton, OR, September 7-9, 1977.
- Eichner, Melissa. 1990. Nitrous Oxide Emissions from Fertilized Soils: Summary of Available Data, J. of Environmental Quality, 19:272-280(1990)
- The Fertilizer Institute. 1982. The Fertilizer Handbook.
- Giampietro, M., and David Pimentel. 1990. Alcohol and Biogass Production from Biomass, Critical Reviews in Plant Sciences, Vol. 9, No. 3, pp. 213-233.
- Glotfelty, D.E., et al. 1984. Atrazine and Simazine Movement to the Wye River Estuary, Journal of Environmental Quality, 13:115-121
- Goolsby, D.A., E.M. Thurman, M.L. Pomes, and W.A. Battaglin. 199. Temporal and Geographic Distribution of Herbicides in Precipitation in the Midwest and Northeast United States, 1990-1991, in Proceedings of the Fourth National Conference on Pesticides, New Directions in Pesticide Research, Development and Policy, November 1-3, 1993, Blacksburg, Virginia.

- Green, M. 1987. Energy in Pesticide Manufacture, Distribution, and Use, Energy in Plant Nutrition and Pest Control, ed. Z.R. Helsel, New York, Elsevier, pp. 165-196.
- Hill, L.D., J.P. Brophy, S. Zhang, and W. Florkowski. 1991. Farmer Attitudes Towards Technological Changes Affecting Grain Handling and Quality, Bulletin 805, University of Illinois at Urbana-Champaign, College of Agriculture, Agricultural Experiment Station.
- Hudson, Charles L. 1982. Energy Requirements for Materials Used in Vehicles Characterized for the Tapcut Project, Argonne National Laboratory, ANL/EES-TM-211.
- Iowa Agricultural Statistics. 1991. Iowa Crop Report, press release of March 5, 1991, Iowa Agricultural Statistics, Des Moines, Iowa.
- lowa Department of Agriculture and Land Stewardship. 1991. Grain Marketing: Iowa, Iowa Department of Agriculture.
- Jones, K.W. 1989. Operation Case Histories of the South Point Ethanol and Kentucky Agricultural Energy Corporation Fuel Ethanol Plants in, Energy from Biomass and Wastes XII, D.L. Klass (ed.), Institute of Gas Technology, pp. 1343-1375.
- Kellog, R.L., and S. Wallace. 1995. Erosion Estimates and the Effects of Land Use Changes on Soil Savings Estimates Insights from the 1992 National Resources Inventory, Poster Board Presented at the 50th Annual Meeting of the Soil and Water Conservation Society, August 6-9, 1995, Des Moines, Iowa.
- Kirk, Othmer. 1949. Encyclopedia of Chemical Technology, Wiley Interscience.
- Kirk, Othmer. 1964. Encyclopedia of Chemical Technology, 2nd ed. Wiley Interscience.
- Kirk, Othmer. 1978. Encyclopedia of Chemical Technology, 3rd ed. Wiley Interscience.
- Kirk, Othmer. 1991. Encyclopedia of Chemical Technology, 4th ed. Wiley Interscience.
- Lindeburg, M.R. 1988. Engineering Unit Conversions, Professional Publications Inc., Belmont, CA

- Lowenheim, F.A. and M.K. Moran. 1975. Faith Keyes and Clarke's Industrial Chemicals. Wiley Interscience.
- Marland, G., and A. Turhollow. 1990. Carbon Dioxide Emissions from Production and Combustion of Fuel Ethanol from Corn, Oak Ridge National Laboratory, ORNL/TM-11180.
- McGraw Hill. 1984. Perry's Chemical Engineers Handbook, 6th ed.
- Mudahar, M.S. and T.P. Hignett. 1981. Energy and Fertilizer: Policy Implications and Options for Developing Countries, Executive Brief, Technical Bulletin IFDC-T-19, International Fertilizer Development Center, Muscle Shoals, Alabama.
- Mudahar, M.S. and T.P. Hignett. 1982. Energy and Fertilizer: Policy Implications and Options for Developing Countries, Executive Brief, Technical Bulletin IFDC-T-19, International Fertilizer Development Center, Muscle Shoals, Alabama.
- Murray, B.C., D.H. Gross, and T.J. Fox. 1994. Starch Manufacturing: A Profile, Final report to the U.S. EPA by the Center for Economics and Research, Research Triangle Park, NC.
- National Corn Growers Association, and National Corn Development Foundation. 1995. The World of Corn: 1995.
- Newman, K.E. and R.A. Hardy. 1995. Data Collection for Life Cycle Assessment Models: Part 1. GBU-24B/B Penetrator Bomb. IHTR 1784, Indian Head Division, Naval Surface Warfare Center, Indian Head, MD. 17 pp.
- Ostic, J.K. 1994. Life-Cycle Assessment of RDX Products. Report No. LA-UR-94-4415. Los Alamos National Laboratory, Los Alamos, NM. December, 1994. 7 pp.
- Parisi, Frederico. 1983. Energy Balances or Ethanol as a Fuel, Advances in Biochemical Engineering/Biotechnology, 28:42--68 (1983).
- Perry, W.J. 1994. "Comprehensive Pollution Prevention Strategy - Memorandum for Secretaries of the Military Departments, et al.," Department of Defense, August 11, 1994.
- Pimentel, David (ed.). 1980. Handbook of Energy Utilization in Agriculture, CRC Press, Boca Raton, FL.

- Pimentel, David et al. 1988. Food Versus Biomass Fuel: Socioeconomic and Environmental Impacts in the United States, Brazil, India, and Kenya, Advances in Food Research, Vol. 32, pp. 185-238, 1988.
- Pimentel, David. 1991. "Ethanol Fuels: Energy Security, Economics, and the Environment", Journal of Agriculture and Environmental Ethics, V.4, pp1-13, 0893-4282, 1991
- Shapouri, H, J.A. Duffield, and M.S. Graboski. 1995. Estimating the Net Energy Balance of Corn Ethanol, USDA/ERS, AER-721, Washington, D.C.
- SRI. 1993. Directory of Chemical Producers. SRI International, Menlo Park CA.
- United States Department of Agriculture, Office of Pesticide Research. 1987. Biologic and Economic Assessment of Stored Corn, Wheat, and Peanut Furnigants in The Biologic and Economic Assessment of Registered Furnigants, USDA Office of Pesticide Research, Washington, D.C.
- United States Department of Agriculture. 1993a.

 Agricultural Resources: Inputs: Situation and
 Outlook Report, USDA Economic Research
 Service, AR-32.
- United States Department of Agriculture, Economic Research Service. 1993. Feed Situation and Outlook Report.
- United States Department of Agriculture, Economic Research Service. 1994a. Agricultural Resource and Environmental Indicators, USDA/ERS, Ag. handbook 705, Washington, D.C.
- United States Department of Agriculture, Economic Research Service. 1994b. Sugar and Sweetener: Situation and Outlook Report, SSSV 19N2, June 1994.
- United States Department of Agriculture. 1994c (revised 1995). Summary Report: 1992 National Resources Inventory, USDA Natural Resources Conservation Service and the Iowa State University Statistical Laboratory.
- United States Department of Agriculture, National Agricultural Statistics Service, Crop Production: 1994 Summary, Cr Pr 2-1(95), January 1995.

- United States Department of Agriculture. various.
 Agricultural Chemical Usage: (yr) Field Crop
 Summary, USDA National Agricultural Statistics
 Service, Ag Ch 1(yr).
- United States Department of Commerce, Bureau of the Census. 1994. 1992 Census of Manufactures: Grain Mill Products, MC92-I-20D(P).
- United States Department of Energy. 1994a.

 Manufacturing Consumption of Energy 1991.

 DOE/EIA 0512(91).
- United States Department of Energy. 1994b. Emission of Greenhouse gases in the United States 1987-1992. DOE/EIA-0573.
- United States Department of Energy. 1994c. Transportation Energy Databook, 11th ed. ORNL-6798
- United States Department of Energy. 1995. Annual Energy Review 1993. DOE/EIA-0384(93).
- U.S. Department of the Interior, Bureau of Mines. 1994.
 Mineral Commodity Summaries: 1994
- United States Environmental Protection Agency. 1980. Source Category Survey: Starch Manufacturing Industry, EPA-450/3-80-040.
- United States Environmental Protection Agency. 1981. Source Category Survey: Animal Feed Dryers, EPA-450/3-81-017
- United States Environmental Protection Agency. 1985.

 Compilation of Air Pollutant Emission Factors 4th ed. AP-42.
- United States Environmental Protection Agency. 1991a.

 Toxics Release Inventory.
- United States Environmental Protection Agency. 1991b.

 Nonroad Engine and Vehicle Emission Study-Report, EPA 460/3-91-02.
- United States Environmental Protection Agency. 1991b. Nonroad Engine and Vehicle Emission Study-Appendixes (sp): Draft, 21A-2001 (NTIS #PB92-104462).
- United States Environmental Protection Agency. 1993. Life-Cycle Assessment: Inventory Guidelines and Principles. EPA/600/R-92/245.

- United States Environmental Protection Agency. 1995.
 Compilation of Air Pollutant Emission Factors 5th ed. AP-42.
- United States Environmental Protection Agency. 1997a. U.S. Residential Nylon Carpet Life-cycle Inventory Demonstration.
- United States Environmental Protection Agency. 1997b. A Life-Cycle Impact Assessment Demonstration for the GBU-24.
- United States Geological Survey. 1993. Selected Papers on Agricultural Chemicals in Water Resources of the Midcontinental United States, U.S.G.S. Open-File Report 93-418, U.S. G.S., Denver, CO.
- United States International Trade Commission. 1994.
 Synthetic Organic Chemicals US Production and Sales 1993. US ITC 2810.
- Unnasch, Stefan. 1990. Greenhouse Gas Emission from Ethanol Production and Vehicle Use, Acurex Corp. for the Nat'l Corn Growers Association.
- Utility Data Institute. 1995. EEI Power Statistics Database.
- Watson, R.T. et al. 1990. Greenhouse Gases and Aerosols, in Intergovernmental Panel on Climate Change, Climate Change: The IPCC Scientific Assessment Report Prepared by Working Group I, J.T. Houghton, et al (ed.), UK, 1990.
- Weast, R.C., and M.J. Astle (ed). 1981. Handbook of Chemistry and Physics, 62nd Edition, CRC Press, Boca Raton, Florida.
- Weinblatt, Herbert, T.S. Reddy, and Anthonly Turhollow. 1982. Energy and Precious Fuels Requirements of Fuel Alcohol Production, Vol. II, Appendices A and B: Ethanol from Grain, DOE/NASA/0292-1.
- Whistler, R. L., J.N. BeMiller, and E.F. Paschall (ed.). 1984. Starch: Chemistry and Technology, Academic Press, NY.

Appendix A

RDX-based GBU-24 LCI Inventory

		Site or Life C	ycie Stage (in	10/GBO-24 UII	ess noted oth	elwise)	I	Service/		
	RMA & Offsite		AAP		AAP	NOW W	T	Waste	Energy	
	Material	Material	Energy Production	Material Processing	Energy Production	NSWC-IH Demil.	Transport. (All)	Manage. Offsite	Production Offsite	Total
tem	Processing	Processing	Production				(All)		Olisite	9 N. 288
Air Emissions	ĺ	l	and the second s	Listed	***************************************				Sining Comments	Tall of the same o
Acetic acid	0	21								21
Acetone		4		0						4
		-		Ö						
Aluminum powder	ļ			0					 	
Cyanox dust				U						
Cyclohexanone		4					4			
Hydrocarbons	236						1			237
Nitric acid		0								
NOx -	96	2	16		34	11	3		61	223
SOx	26		44		0				108	177
Stoddard solvent				3						3
Wastewater Emissions										
Acetic acid	0									
				0						C
Acetone	0									C
Ammonia										
lydroxide	0								-	
Methanol		ļ							 	
Phenol	0									
Sulfuric acid	4									4
Frichloroethane Trichloroethane				7		217				224
	1									
Solid Wastes		1								
Aluminum				0						C
Aluminum oxide	255									255
Pot Liner	3									3
	3			0						
RDX										3
Styrene resin				3						
National Control of the control of t		l	L.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	L.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Maria de la caración de la como d	l	I	N. C. S.
				Non-List	ed Wastes					
Air Emissions										
Asphaltic particulates				1						1
CO	32		6		5	1	1		7	52
CO2	2,490	0	6,041	0	1,407	209	188	. 773	15,020	26,128
n-Heptane				0						C
n-Propyl acetate		1								1
Total Particulates	13	· · · · · ·	1		0				62	75
Jnspecified	1		0		16				0	18
orispecified	-									
Martin Fining										
Wastewater Emissions	-								-	1
ron	1									
n-Heptane				0					-	
Oil	0									0
Other Acid	0									
Other Metals	0		·							C
Sulfide	0									0
Fotal Dissolved Solids	96					12				108
Total Suspended Solids	4					12				16
Solid Wastes	f						-			
Aluminum sludge		41								41
	41	41								41
Ash	41			0						7.
Binder				<u>-</u>						55
Biosolids		55							400	
Bottom ash			148			L			108	256
Catalyst				0						0
CXM-7		2		0						2
GD Solids									149	149
ly ash	I	I	188						386	574
PBXN-109		T		0						0
Recycle	 		(213)						(166)	(379
Red Mud	155	 	(2.13)	·					()	155
	135	 							41	41
Slag									41	
hermosetting compound				2						2 400
Inspecified Solid Waste	3,499									3,499
000 - 100000000000000000000000000000000]	7.0 emm.en.men.en.me	Marie de la compansión de servicio de serv		appropriate security of the second second second second			A factor of management	Įl	glos d'a describilità dell'anno an
				Resource C	onsumption					
Seologic and Biotic Reso	ources									
Bauxite	390									390
Coal	827		2,208						6,225	9,260
		-	2,208						0,220	2,243
ron ore	2,243						<u> </u>			2,243
ime	5		ļ				L			
latural gas	2,548				1,882			58		4,489
litrogen	32									32
Oxygen	114									114
Petroleum	3,454		1		88			42		3,584

	1 1	1	1	1) 1	1 1		1 1	
Intermediate Materials										
Acetic acid	0	108								108
Acetone		4	0	0	0					- 100
Ammonia	253									253
Binders		48								48
Cyclohexanone		4								4
DOA	43									43
Formaldehyde		181								181
Hexamine		137								137
Propyl acetate		4								4
Trichloroethane				224						224
Triphenyl phosphate		3								3
Energy Consumption (in	MBTU/GBU-24)									
Coal	12.1		25.9						73.0	111
Electricity			1.7		2.3	0.5	********	1.5	10.0	· · · ·
Natural Gas					28.9	0.0		0.9		30
Petroleum					1,9		1.2	0.9		4

Appendix B

TNAZ-Based GBU-24 LCI Life Cycle Inventory

GBU-24 Baseline Life Cyc	cle Inventory				00		0			1
		Site or Life C	ycle Stage (in	n lb/GBU-24 unless noted otherwise)			(TNAZ & Solv			
	RMA & Offsite	нѕ	AAP	мс	AAP			Service/ Waste	Energy	
M	Material	Material	Energy	Material	Energy	NSWC-IH	Transport.	Manage.	Production	
ltem	Processing	Processing			Production Wastes	Demil.	(All)	Offsite	Offsite	Total
Air Emissions		Tanan katalon kan 1997		Lister	11443163	I	1		7	
Acetaldehyde	0								 	
Acetic acid					·					
Acetimide	0		-	 						
Acetone	<u> </u>			0						
Acetonitrile	0	 		-	<u> </u>					ļ
Acid	0				1					
Acrolein	0								-	
Acrylamide	0	 		-						
Acrylic acid	0								 	
Acrylonitrile	0			-					ļ	
Alachlor/Metolachlor	0		-							<u> </u>
Aldehydes	ő								 	
Aluminum powder	-			0						
Ammonia	4									
					ļ				-	
Atrazine Benzene	0				-					
	0	-	-				ļ		-	
Chlorine	5								1	
Chlorobenzene	0									
Chlorpyrifos	0									
Cyanazine	0									
Cyanox dust				0					1	
Cyclohexanone										
Dichlorobenzene	0									
Fonofos	0									
Hydrazine	0								 	
Hydrocarbons	1,256		 	 	 	 			1	12
Hydrogen chloride	9									14
Hydrogen cyanide	0									
Hydrogen sulfide	0									
Isopropanol	0	-							-	
Metals	0									
Methane	0									
									ļ	
Nitric acid	0			ļ			1			
NO	0					3				
N2O	1									
NOx	22				34		3		61	1
Organic acids	0									
Phosgene	0									
Producer gas	280									2
Propene	0									
Propylene	0									
Pyridine	0									
SOx	94				0	· · · · · · · · · · · · · · · · · · ·			108	2
Sulfuric acid	0									
Stoddard solvent				3					l	
Toluene		1,982								19
Terbufos	0	.,								13
Wastewater Emissions										
Acetic acid										
Acetone				0						
Alachlor/Metalachlor	0									
Ammonia	0									
Atrazine	0			· · · · · ·						
Chlorine	240									
Chlorpyrifos	0									2
Cyanazine	0			· · · · · · · · · · · · · · · · · · ·					ļI	
Fonofos	0									
Hydrazine	2									
Hydroxide										
Methanol										
Organics	0									
Phenol	0									
Phosgene	10									
Pyridine	2,297									22
Pyridine hydrochloride	3,356									33
Sulfuric acid										
Terbufos	0									
Trichloroethane				7						
Solid Wastes										
Acetic acid		2,743								27
Acetaldehyde	4	2,0								
Acetamide	0									
Acetonitrile	0	2,864								
		2,004							: 1	28

Acrolein	1			L					
Acrylamide	0								
Acrylic acid	2								
Acrylonitrile	56								
Aluminum			0						
Aluminum oxide				1		}			
Ammonia	0								
BDNA, polymeric		122							1:
BHMNA.HCL		991							99
DIAD.H2		991							99
Hydrogen chloride	0								
Miscellaneous		22							
Organics		99		1					
Polyamine	1	84							
		- 04		· · · · · · · · · · · · · · · · · · ·	-				
Pot Liner	-	198		ļ					19
Potassium ferricyanide				 					3
2-Propanol		353							3
Pyridine	0								
RDX			0	ļ					
Solvent		1,029							10:
Styrene resin			3	<u> </u>					
TNAZ		42					-		
Triphenylphosphine		1,348		L					134
		Character I I I I	Non-List	ed Wastes			***************************************		
Air Emissions	[T	e mangandono Santa S	representation of the Control of the	The second contraction of the second contractions	y permiteraturi di se del Controlon tref di con e	and the same of the same of the same of	sameanis aarmasiis viidis j	and the state of t	and and red south the
Asphaltic particulates	 		1						
CO Particulates	219	-	····	5	0	1		7	23
CO2	5,038		0		114	188	773	15,020	22.54
				1,407	114	100	113	15,020	
Fluoride	0								
n-Heptane			0						
Oxygen		44		ļ					4
PM10	15								1
n-Propyl acetate									
Total Particulates	290			0				62	35
Unspecified				16				0	1
Wastewater Emissions				1					
Ammonium nitrate		63							6
BOD	1								
COD	1								
Iron	 ' 								
	 		0						
n-Heptane			U						
Nitrates	6								
Oil	0								
Other Acid	2								
Other Metals	2								
Phosphorus	0								(
Potassium	1								1
Sodium	16								16
Sodium chloride		219							219
Sodium formate		252							252
Sodium hydroxide		0							(
Sodium nitrite		672							672
Sodium sulfate	11	2,003							2,014
Sulfide		-,5							2,01
Total Dissolved Solids	2								
Total Suspended Solids	13								
Water	11,631,971	21,321			1,534				
· · · · · · · · · · · · · · · · · · ·	11,001,9/1	21,321			1,004		-	4	
Polid Master							-		
Solid Wastes					- 45				
Aluminum sludge					48				48
Ash	16				61				77
Binder			0						(
Biosolids									(
Bottom ash								108	108
Catalyst			0						(
CXM-7) THAZ END.	rateial		0						(
thanol		1,260							1,260
GD Solids		.,2						149	149
ormic acid		203						.,,,	203
ly ash		203						386	386
Molybdenum trioxide				 				300	
	0								00
Paraformaldehyde		96							96
PBXN -109 			0		127				128
Propylene	0								
Recycle								(166)	(16
Red Mud									(
Salts		84							84
Slag								41	4
Thermosetting compound		**	2						2
					5				661
Inspecified Solid Waste	656								

Baudite	Geologic and Biotic Res	ources I	I	1	ł	1	1	1	ı	1	1
Clay					 	 		ļ	ļ	ļ	
Coal					ļ				-		
Incorp				ļ	 				 		
Line								ļ	ļ	6,225	
Natural gas Notice 1,892 58 2,158,966 Ninceen 0 0 0 Noyeen 342,162 88 6 42 342,298 Phosphate rock 49 14 14 Rock sate 6,335 15 16 16 Sand 3,10 16 17 Notice 17 18 18 18 Notice 18 18 18 18 Notice 18 18 18 18 Notice 18 18 18 Notice 18 18 18 Notice 18 18 18 Notice 18 Notice 18 18 Notice 18 Notice							ļ				4
Nicogen					 				ļ <u>.</u>		
Oxygen		2,154,926				1,882			58		2,156,866
Petroleum 342 62											0
Phosphate rock 49 Phossbum chorde 14 Rock salt 6.335 Sand 0 0							<u> </u>				0
Potassium chloride Rock salt 6,335 Sand 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						88	6		42		342,298
Rock salt 6,335	Phosphate rock										49
Rock salt 6,335											14
Sand 0		6,335									
Solf 3,769	Sand	0						1			
Sulfur 19	Soil	3,769						1			
Water	Sulfur	19				-					
Intermediate Materials	Water	2,491,013	8				2.591		 		
Acetica acid 3,164									 		2,400,012
Acetica acid 3,164	Intermediate Materials							 	1		
Activated carbon 1		3.164							 		2 404
Activated carbon 1		5,,57			A				 		
Ammonia 1		1			- 4	1					
Antiform Agent				-			3				
Benzene 1,399				l					 		
Binders Chlorine 2,464 CO 272 Cyclohexanone Chlorine Cyclohexanone Cyclohexa		4.000									
Chlorine 2,464		1,399									1,399
Cyclohexanone											0
Cyclorexanone											2,464
Cyclorexanone		272		<u></u>							272
DOA											
Ethylene glycol 0		1									
Ethylene glycol 0 0 0 0 0 0 0 0 0	Eth3PO4	9					1				
Formaldehyde	Ethylene glycol	0									- 0
Free Base 643 643 643 643 643 643 643 643 643 643											
Freen			643						<u> </u>		
Hexamine	to an annual control of the control	0	0.10								
Hydrazine		-									
Hydrochloric acid		155									
Hydrogen peroxide		133	160		ļ	ļ					
Sopropanol S82		-									
Nitromethane 282 282 Paraformaldehyde 630 630 Phosgene 957 957 Potassium ferricyanide 198 198 2-Propanol 353 353 Propoene 639 639 Propyl acetate 97 639 Pyridine 4,594 4,594 Sodium hydroxide 24 24 Sodium nitrite 928 24 Sodium persulfate 2,003 2,003 Sulfuric acid 8 2,003 Sulfuric acid 8 38 Toluene 1,982 1,982 Triphoryl phosphate 224 224 Energy Consumption (in MBTU/GBU-24) 5 Steam 33 1,695 Coal 2.3 73.0 75 Electricity 1.2 1.5 3 Hydropotential 1.2.5 1.5 3 Natural Gas 2.8.9 0.9 30 Nuclear Energy		500	165								
Paraformaldehyde 630		582									
Phosgene 957 957 Potassium ferricyanide 198 198 2-Propanol 353 353 Propoene 639 639 Propyl acetate 0 639 Pyridine 4,594 4,594 Sodium hydroxide 24 24 Sodium persulfate 928 928 Sodium persulfate 2,003 2,003 Sulfuric acid 8 8 8 Toluene 1,982 1,982 Trichloroethane 224 224 Triphenyl phosphate 224 224 Energy Consumption (in MBTU/GBU-24) 33 1,695 1,728 Coal 2.3 73.0 75 Electricity 1.2 1.5 3 Hydropotential 12.5 1.5 3 Natural Gas 28.9 0.9 30 Nuclear Energy 102.1 102 102											
Potassium ferricyanide			630								630
2-Propanol 353 353 353 353 353 353 353 353 353 35		957									957
Propoene 639 Propyl acetate 0 Pyridine 4,594 Sodium hydroxide 24 Sodium nitrite 928 Sodium persulfate 2,003 Suffuric acid 8 Toluene 1,982 Trichloroethane 224 Triphenyl phosphate 0 Energy Consumption (in MBTU/GBU-24) Steam 33 Coal 2.3 Electricity 1.2 Hydropotential 12.5 Natural Gas 28.9 Nuclear Energy 102.1											198
Propole 639 Propyl acetate 0 Propyl acetate 0 Spridine 4,594 Sodium hydroxide 24 Sodium nitrite 928 Sodium persulfate 2,003 Suffuric acid 8 Toluene 1,982 Trichloroethane 1,982 Triphenyl phosphate 224 Energy Consumption (in MBTU/GBU-24) 0 Steam 33 1,695 Coal 2,3 73.0 75 Electricity 1,2 1,5 3 Hydropotential 12,5 0,9 30 Nuclear Energy 102,1 102 102			353								353
Propyl acetate		639									
Pyridine											
Sodium hydroxide 24		4,594									
Sodium persulfate 928 92	Sodium hydroxide	24									
Sodium persulfate 2,003 2,003 8 8 8 8 8 8 8 8 8	Sodium nitrite		928								
Suffuric acid 8	Sodium persulfate		2,003								
Tolchore	Sulfuric acid	8									
Trichloroethane 224 224 Triphenyl phosphate 0 Energy Consumption (in MBTU/GBU-24) 5 Steam 33 1,695 1,728 Coal 2.3 73.0 75 Electricity 1.2 1.5 3 Hydropotential 12.5 12 12 Natural Gas 28.9 0.9 30 Nuclear Energy 102.1 102 102	Toluene		1.982								
Triphenyl phosphate 0 Energy Consumption (in MBTU/GBU-24) 33 1,695 1,728 Coal 2.3 73.0 75 Electricity 1.2 1.5 3 Hydropotential 12.5 12 Natural Gas 28.9 0.9 30 Nuclear Energy 102.1 102	Trichloroethane				224						
Energy Consumption (in MBTU/GBU-24) Steam 33 1,695 1,728 Coal 2,3 1,695 73,0 75 Electricity 1,2 1,2 1,5 1,5 3 Hydropotential 12,5 1,5 1,5 1,2 1,2 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5	Triphenyl phosphate										
Steam 33 1,695 1,728 Coal 2.3 73.0 75 Electricity 1.2 1.5 3 Hydropotential 12.5 12 12 Natural Gas 28.9 0.9 30 Nuclear Energy 102.1 102 102											U
Steam 33 1,695 1,728 Coal 2.3 73.0 75 Electricity 1.2 1.5 3 Hydropotential 12.5 12 12 Natural Gas 28.9 0.9 30 Nuclear Energy 102.1 102 102	Energy Consumption (in	MBTU/GBU-24									
Coal 2.3 73.0 75 Electricity 1.2 1.5 3 Hydropotential 12.5 12 12 Natural Gas 28.9 0.9 30 Nuclear Energy 102.1 102 102							4.005				
Electricity 1.2 1.5 73.0 75 Hydropotential 12.5 12 <		33					1,695				
Hydropotential 12.5 13 3 Natural Gas 28.9 0.9 30 Nuclear Energy 102.1 102		1.				2.3				73.0	
Natural Gas 28.9 0.9 30 Nuclear Energy 102.1 102									1.5		
Natural Gas 28.9 0.9 30 Nuclear Energy 102.1 102		12.5									
Nuclear Energy 102.1 102						28.9			0.9		30
1.9 1.2 0.9 4		102.1									102
	retroleum					1.9		1.2	0.9		

.

Appendix C

TNAZ-Based GBU-24 Life Cycle Inventory Model

TNAZ Precursors

```
Precursor materials and inputs for TNAZ (Oct 95)
Ib/Ib TNAZ
                                                                                               Factored Use Module in LCI
                                                                                               lb/lb precursor
        1.33 Formaldehyde (37%)
                         1 Methanol
                                                                                                           1
                                      1 Synthesis gas
                                          1.04631263 Coal
                                                                                                 1.04631263
                                         0.596333404 Oxygen
                                                                                                0.596333404
                                         1.397873673 water
                                                                                                1.397873673
                       0.5 Air (Oxygen)
                                                                                                         0.5
        3.29 NiB-Glycerol (50%)
              0.331156299 Nitromethane
                                                                                               0.331156299
                                      1 Petroleum gas
                                                                                               0.331156299
                                      1 Nitric acid
                                                                                               0.331156299
                       0.3 Paraformaldehyde
                                                                                                        0.3
                            0.662171432 Formaldehyde (37%)
                                                                                                0.19865143
        2.33 di isopropylazodicarboxylate
              0.667651524 Azodicarboxyl Chloride
                                                                                                0.667651524
                             1.80902464 Phosgene
                                                                                                1.207798059
                                         0.724068226 Chlorine
                                                                                                0.874528197
                                         0.286032785 Carbon monoxide
                                                                                                0.345469842
                                               0.0005 Activated Carbon
                                                                                                0.000603899
                                         0.293090214 Hydrazine
                                                                                                0.353993792
                                                        1.37755102 Ammonia
                                                                                                0.487644509
                                                       3.403061224 Sodium Hypochlorite
                                                                                                1.204662547
                                                                    0.238803573 NaOH
                                                                                                0.287677721
                                                                     1.058327572 Chlorine
                                                                                                1.274927588
                           0.648379344 Chlorine
                                                                                                0.432891458
              0.660415095 isopropanol
                                                                                                0.660415095
                           0.725707656 Propylene
                                                                                                0.479268291
                           0.008567382 Sulfuric acid
                                                                                                0.005658028
        3.02 Triphenyl phosphine
                                                                                                         1
              1.739385713 Gringard reagent of benzene
                                                                                               1.739385713
                           0.913761009 Chlorobenzene
                                                                                               1.589382845
                                         0.685027408 Benzene
                                                                                                1.08877081
                                         0.629945184 Chlorine
                                                                                               1.001224069
                           0.197350102 Magnesium
                                                                                               0.343267948
              0.581718484 trichlorophosphine
                                                                                               0.581718484
                           0.237401689 Phosphorous
                                                                                               0.138100951
                           0.815298879 Chlorine
                                                                                               0.474274428
        5.57 Acetic anhydride
              1.457117595 Acetic acid
                                                                                               1.457117595
                           0.485686352 Methanol
                                                                                               0.707702129
                                          1.04631263 Coal
                                                                                                0.740477675
                                        Carbon monoxide
                                                                                                         0
                                         0.428266893 Coal
                                                                                                          n
        0.81 tert-butylamine
                                                                                                          1
              1.332284697 tert-butylchloride
                                                                                                1.332284697
                           0.673474147 2 methyl propylene
                                                                                                  0.8972593
                           0.815171249 Chlorine
                                                                                                1.086040181
              0.245109723 Ammonia
                                                                                                0.245109723
              0.664519692 Sodium hydroxide
                                                                                                0.664519692
         8.8 Sodium hydroxide (50%)
                                                                                                          1
                     0.59 rock salt
                                                                                                       0.59
        1.11 Hydrochloric acid (37%)
                                                                                                          3
         1.6 Hydrogen peroxide (50%)
             0.056165471 Hydrogen
                                                                                               0.056165471
              0.891481976 Oxygen
                                                                                               0.891481976
                        3 water
                                                                                                          3
                    0.001 Ethyl anthroquinone Catalyst
                                                                                                      0.001
         3.6 iso propanol
                                                                                                          1
                      0.9 Propylene
                                                                                                        0.9
                                        Crude oil
                                                                                                          0
                   0.0125 Sulfuric acid
                                                                                                     0.0125
        2.62 2 butanone (MEK)
                                                                                                         1
                        1 2 butanol
                                                                                                         1
                                      1 n butene (mix)
                                                                                                         1
                                         1.879988255 Naphtha
                                                                                               1.879988255
                                         1.73292E-05 ammonia
                                                                                                1.73292E-05
        2.27 Sodium nitrite (s)
                                                                                                          1
```

TNAZ Precursors

0.47 Potassium ferrocyanide	1
0.474903847 KCN	0.474903847
0.379525372 HCN	0.180238059
1.046829519 KCl (or KBr)	0.497143365
0.196704311 FeCN2	0.196704311
0.278354486 HCN	0.132191616
0.575163641 Fe (powder)	0.273147426
Iron ore	0
4.76 Sodium persulfate	1
1.213756073 Na2SO4	1.213756073
5 Methyl t-butyl ether (MTBE)	1
0.454373948 Methanol	0.454373948
0.8 methane	0.363499158
0.795628321 Isobutene	0.795628321
0.01 Iron chloride 42o Be	1
Iron metallic	0
Hydrochloric acid	0
0.92 Nitric acid (70%)	it
0.549672131 Ammonia	0.549672131
10.70491803 Air	10.70491803
0.56 ammonium nitrate (s)	i i
0.21243083 Ammonia	0.21243083
0.909292035 Nitric acid	0.909292035
2.24 Ethanol SDA3A	1
Corn, sorghum	0
6.8 Acetonitrile	1
0.386722942 Ammonia	0.386722942
0.956630435 Propylene	0.956630435
10 Nitrogen gas	1
Air	0
100 Deionized water	1
Sulfuric acid	0
Sodium Hydroxide	0
Water (natural sweet)	0
0.01 Antifoam, DOW 2210	i

Formaldehyde Production Life Cycle Invnetory

Coal

Emissions are in lb/lb unless otherwise specified.

Item	Quantity	
Air		J
NOx	0.000025	
CO	0.041807	
SOx	0.016888	
Formaldehyde	0.000005	
Methanol	1.21E-05	
Ammonia	1.46E-07	
Sulfuric acid	2.22E-09	
TSP	0.007691	
CO2	0.102758	
Hydrocarbons	0.031006	
Water		
Solid Wastes		
Production waste (not innert)	0.032566	
esource Consumption		
Energy	2.812753	kW
Oxygen (from air)	0.53	
Natural Gas	0.202	
CO2	0.183	
Water	0.127	
Methanol	0.47	
Air	5.76	

0.428267

NIB-Glycerol Production Life Cycle Inventory

Item	Quantity
Air Emissions	
1,2-butylene oxide	1.9869E-07
2-nitropropane	0.00017369
acetaldehyde	2.0085E-05
acetone	1.3478E-05
acetonitrile	6.9212E-06
ammonia	0.00025343
BrCIF2C	6.292E-07
BrF3C	2.3678E-06
Chlorine	1.2915E-06
Cl2F2C	0.0003146
Formaldehyde	0.00010352
Hydrogen cyanide	1.8396E-05
methanol	7.8202E-06
naphthalene	0.00018358
nitric acid	1.573E-06
NOx	8.3961E-06
CO	0.00830507
SOx	0.00335492
Sulfuric acid	4.4145E-10
TSP	0.00152788
CO2	0.02041303
Hydrocarbons	0.00615947
Wastewater Emissions	
ammonia	4.9673E-07
Hydrogen cyanide	3.3116E-08
2-nitropropane	
acetaldehyde	0.00297512
acetone	0.00159669
acetonitrile	0.00130257
ammonia	4.0683E-05
Formaldehyde	2.2717E-05
Hydrogen cyanide	1.8876E-06
methanol	0.00262238
naphthalene	1.8876E-06
nitric acid	0.00018373
Wastewater	23.0110595
Solid Wastes	
Production waste (not innert)	0.00646925

Resource Consumption

Steam	0.00976429	
River Water	23.0012953	
Electricity	0.01192499	kWh
Energy	0.55875742	kWh
Oxygen (from air)	0.10528526	
Natural Gas	0.04012759	
CO2	0.03635321	
Water	0.02522873	
Air	1.14423223	
Coal	0.08507583	

Diisopropylazodicarboxylate Production Life Cycle Inventory

item	Quantity
Air	
Phosgene	5.78E-05
Hydrazine	3.56E-07
Isopropanol	6.2E-07
Pyridine	5.59E-06
HCI	1.59E-05
CI2	1.71E-05
CO	0.004051
TSP (PM-10)	0.000383
SOx	0.002005
NOx	0.002876
CO2	0.849661
Ammonia	0.001024
Methane	3.64E-10
Hydrocarbons	0.006136
Isopropanol	0.000431
Propene	1.69E-05
H2S	4.79E-06
Heavy metals	4.79E-07
H2SO4	3.62E-07
Wastewater	
Phosgene	0.009784
Hydrazine	0.001585
Pyridine	2.34707
Pyridine HCI	3.428944
Na2SO4	0.011167
COD	0.000113
BOD	2.3E-05
Acid as H+	0.000995
Metal ions	0.000354
CI2	0.120565
Dissolved Organics	9.59E-06
Total Suspended Solids	0.005836
Crude oil	4.79E-05
Total Dissolved Solids	0.000335
Phenol	3.35E-05
Sodium	0.008036
Solid Wastes	
Production waste (not innert)	0.288446

Resource Consumption

Phosgene 0.978355 Hydrazine 0.158474 Isopropanol 0.594389 CI2 1.220271 Pyridine 4.694139 CO 0.277794 **Activated Carbon** 0.000604 Natural Gas 1.03912

Electric Power 0.067589 kWh

Steam 0.185305

Heat Energy (fossil fuel) 0.433116 kWh

Propene 0.653158 Sulfuric acid 0.007711 NaOH 0.006289 Coal 0.698641 Hydropower 2.128203 Fission 17.67491 Iron ore 0.001774 Limestone 0.0511 Bauxite 0.000144 Rock salt 3.297246 Clay 9.59E-06 Water 4.615634 Crude Oil 0.242245 Sand 5.74E-05

Triphenyl phosphine Production Life Cycle Inventory

Quantity	
4.92E-06	
0.006726	
3.98E-06	
6.48E-05	
0.000233	
2.62E-05	
0.000545	
0.000525	
0.062069	
0.003082	
0.000109	
0.000662	
0.000103	
1.09E-06	
0.004131	
0.156592	
0.880406	kWh
4.73E-06	kWh
1.102986	
1.00113	
0.013772	
1.159743	
0.83093	
0.383234	
1.138573	
9.277315	
0.001122	
0.027564	
0.00024	
1.791668	
2.95E-05	
	0.003882 4.92E-06 0.006726 3.98E-06 6.48E-05 0.000233 2.62E-05 0.000525 0.062069 0.003082 0.000109 0.000662 0.000103 1.09E-06 0.004131 0.156592 0.880406 4.73E-06 1.102986 1.00113 0.013772 1.159743 0.83093 0.383234 1.138573 9.277315 0.001122 0.027564 0.00024

Acetic anhydride Production Life Cycle Inventory

Item	Quantity
Air	
Producer gas	0.129049
Cinder	0.110446
Flue gas	0.494985
TSP	0.01665
SOx	0.03655
CO	0.090473
CO2	0.222453
Hydrocarbons	0.067123
Wastewater	
Water	5347.48
Solid Waste	
Production waste (not innert)	0.023047
Resource Consumption	
AcOH	1.457118
NH3	0.000284
Eth3PO4	0.004325
Air	0.251604
Natural Gas	0.015179
EthGlycol	2.68E-05
Freon	2.72E-06
Filtered Water	6.638878
Steam	7.593786
River Water	803.3346
Coal	0.927121

tert-Butylamine Production Life Cycle Inventory

Item	Quantity	
Air		•
TSP (PM-10)	1.45E-10	
SOx	7.06E-06	
NOx	1.5E-09	
CO	0.001936	
CO2	0.299867	
Ammonia	0.000515	
Methane	1.83E-10	
Hydrocarbons	0.001157	
Water		
COD	1.75E-05	
BOD	5.25E-06	
Acid as H+	0.000595	
Metal ions	0.000158	
Cl2	0.073524	
Total Suspended Solids	0.003501	
Total Dissolved Solids	8.75E-05	
Sodium	0.004902	
Solid Wastes		
Production waste (not innert)	0.173305	
Resource Consumption		
Natural Gas	0.471558	
Crude Oil	0.172421	
Coal	0.407813	
Hydropower	0.160052	kWh
Fission	1.337611	kWh
Iron ore	0.001012	
Limestone	0.027178	
Rock salt	1.706175	
Water	4.499391	
Sand	3.5E-05	
Electric Power	0.033972	kWh
Steam	0.011736	kWh

Sodium hydroxide Production Life Cycle Inventory

ltem	Quantity	
Air		-
Water		
COD	0.00001	
BOD	0.000003	
Acid as H+	0.00034	
Metal ions	0.00009	
CI2	0.042	
Total Suspended Solids	0.002	
Total Dissolved solids	0.00005	
Sodium	0.0028	
Solid Wastes		
Production waste (not innert)	0.099	
Resource Consumption		
Natural Gas	0.176505	
Crude Oil	0.129783	
Coal	0.217294	
Hydropower	0.09259	kWh
Fission	0.748543	kWh
Iron ore	0.00046	
Limestone	0.0105	
Rock salt	0.59	
Water	5.3	
Sand	0.00002	

Isopropanol Production Life Cycle Inventory

Item	Quantity	_
Air		
Isopropanol	0.000652	
Propene	2.56E-05	
TSP	0.00072	
SOx	0.003763	
NOx	0.0054	
CO	0.00036	
CO2	0.475251	
H2S	0.000009	
HCI	0.000009	
Hydrocarbons	0.007201	
Heavy metals	9E-07	
H2SO4	8E-07	
Water		
Na2SO4	0.01691	
COD	0.00018	
BOD	0.000027	
Acid as H+	0.000036	
Metal ions	0.00018	
CI2	0.000045	
Dissolved Organics	0.000018	
Total Suspended Solids	0.00018	
Crude oil	0.00009	
Total Dissolved Solids	0.00036	
Phenol	0.000063	
Solid Wastes		
Production waste (not innert)	0.0081	
Resource Consumption		
Heat Energy (fossil fuel)	0.655825	
Electric Power	4.68E-06	
Propene	0.989011	
Natural Gas	0.462717	kWh
Coal	0.018379	kWh
Hydropower	0.013608	
Fission	0.026082	
Iron ore	0.00018	
Limestone	0.00009	kWh
Bauxite	0.00027	kWh

Isopropanol LCI

Rock salt	0.0054
Clay	0.000018
Water	1.44

MEK Production Life Cycle Inventory

ltem	Quantity	
Air	4.405.00	
CI2	4.18E-06	
Zinc oxides/Phosphates	1.136721	
TSP	0.0008	
SOx	0.004	
NOx	0.006	
CO	0.0004	
CO2	0.500021	
H2S	0.000001	
HCI	0.00001	
Hydrocarbons	0.007001	
Heavy metals	0.000001	
Ammonia	3.64E-08	
Methane	1.29E-14	
Water		
Dissolved Organics	3.73E-05	
COD	0.0002	
BOD	0.00004	
Acid as H+	0.00004	
Metal ions	0.0003	
CI2	0.00005	
Total Suspended Solids	0.0002	
Crude oil	0.0001	
Total dissolved Solids	0.0004	
Hydrocarbons	0.00009	
Phenol	0.000001	
Solid Wastes		
P4 production waste (not innert)	5.85E-07	
Zinc Compounds	3.8E-05	
Production waste (not innert)	0.0083	
Resource Consumption		
Chlorine	1.73E-05	
Natural Gas	0.67741	
Crude Oil	0.825106	
Coal	0.017555	
Hydropower	0.00756	kWh
Fission	0.02772	
Iron ore	0.0002	

MEK LCI

Limestone	0.0001	
Bauxite	0.0003	
Rock salt	0.006	
Clay	0.00002	
Water	1.6	
Electric Power	2.4E-06	kWh
Steam	8.3E-07	kWh

MTBE Production Life Cycle Inventory

Item	Quantity	_
Air		
MTBE	7.32E-06	
Methanol	2.14E-05	
Ammonia	4.09E-09	
TSP	0.004131	
SOx	0.010854	
CO	0.019308	
CO2	0.444505	
Hydrocarbons	0.019659	
NOx	0.004774	
H2S	7.96E-07	
HCI	7.96E-06	
Heavy metals	7.96E-07	
Water		
MTBE	3.26E-08	
Methanol	5.43E-06	
Ammonia	1.66E-07	
COD	0.000159	
BOD	3.18E-05	
Acid as H+	3.18E-05	
Metal ions	0.000239	
CI2	3.98E-05	
Dissolved Organics	1.59E-05	
Total Suspended Solids	0.000159	
Crude oil	7.96E-05	
Total Dissolved Solids	0.000318	
Hydrocarbosn	7.16E-05	
Phenol	7.96E-07	
Solid Wastes		
Production waste (not innert)	0.021401	
Resource Consumption		
Electric Power	1.25E-08	kWh
Isobutylene	0.844446	
Methanol	0.273011	
Coal	0.208561	
Natural Gas	0.538952	
Crude Oil	0.656478	
Hydropower	0.006015	kWh
,	2.300010	

MTBE LCI

Fission	0.022054 kWh
Iron ore	0.000159
Limestone	7.96E-05
Bauxite	0.000239
Rock salt	0.004774
Clay	1.59E-05
Water	1.273005

Nitric acid Production Life Cycle Inventory

ltem	Quantity	
Air		
NOx	1.04E-05	
TSP (PM-10)	3.25E-10	
SOx	1.58E-05	
CO	0.004342	
CO2	0.672469	
Ammonia	0.001154	
Methane	4.11E-10	
other organic	0.002594	
Wastewater		
Water	69.48701	
Solid Waste		
Resource Consumption		
Steam	0.029485	
River Water	69.45752	
Electricity	0.112193	kWh
Natural Gas	0.580032	
Steam	0.026318	kWh

Ammonium nitrate Production Life Cycle Inventory

Item	Quantity
Air	
NOx	1.37E-05
Wastewater	
Water	91.78143
Solid Waste	
Resource Consumption	
Steam	0.038946 kWh
River Water	91.74249
Electricity	0.047564 kWh

Ethanol Production Life Cycle Inventory

Item	Quantity
Air	
NOx	0.002435
SOx	0.001701
PM-10	0.011892
Total Particulate	0.009237
CO	0.00573
CO2	0.547669
Non-Methane Org. Comp.	0.000729
Methane	3.09E-06
N2O	0.000272
HCL	7.26E-06
Ammonia	0.000443
Chlorine	7.95E-07
Sulfuric Acid	4.9E-07
Hydrocarbons	0.000343
Aldehydes	1.67E-05
Organic Acids	1.32E-06
Fertilizer N20	0.000411
Fertilizer NO	0.000252
Particulate	0.000139
Nitric Acid	6.13E-06
Fluoride	5.58E-07
Acid Mist	3.14E-05
Herbicides	0.000157
Alachlor	3.13E-05
Atrazine	5.78E-05
Metalachlor	3.83E-05
Cyanazine	2.99E-05
Insecticides	2.49E-05
Fonofos	4.64E-06
Turbufos	1.23E-05
Chlorpyrifos	7.98E-06
Water	
Total Water Emission	0.610304
Ammonia	5.7E-06
Chlorine	3.26E-08
BOD5	0.000407
TSS	0.000509
Herbicides	6.11E-06
Alachlor	2.74E-07

Ethanol LCI

Atrazine	2.97E-06
Metalachlor	1.2E-06
Cyanazine	1.67E-06
Insecticides	5.2E-07
Fonofos	8E-08
Turbufos	2.12E-07
Chlorpyrifos	2.28E-07
Nitrates (as nitrogen)	0.004885
Phosphorous	0.000122
Potassium	0.000504

Solid Wastes

HCL	1.12E-07
Ammonia	1.83E-07
Coal Ash	0.012993

Resource Consumption

Natural gas	1705.936	
Coal	1079.272	
Electricity	0.084213	kWh
Water	276.1801	
Sulfur	0.001175	
Diesel	444.8868	Btu
LPG	99.77364	
Oil	58.12006	
Gasoline	112.5477	
Limestone	0.039864	
Sulfur	0.013546	
Water	275.4681	
Phosphate Rock	0.038957	
Potassium Chloride	0.011404	
Soil	2.991136	

Acetonitrile Production Life Cycle Inventory

Item	Quantity
Air	
CI2	1.33E-06
Acetonitrile	6.25E-06
Acrolein	1.22E-07
Acrylic acid	4.16E-09
Acrylonitrile	4.5 E- 05
Ammonia	0.000824
Hydrogen Cyanide	6.69E-05
Propylene	2.3E-05
Acetamide	1.39E-08
Acetaldehyde	5.41E-08
Acrylamide	3.09E-07
Pyridine	2.11E-07
Hydrocarbons	0.009633
TSP (PM-10)	0.000765
SOx	0.003838
NOx	0.00574
CO	0.003438
CO2	0.978218
Methane	2.89E-10
H2S	9.57E-06
HCI	9.57E-06
Heavy metals	9.57E-07
Water	
Ammonia	4.02E-07
COD	0.000191
BOD	2.87E-05
Acid as H+	3.83E-05
Metal ions	0.000191
CI2	4.78E-05
Dissolved Organics	1.91E-05
Total Suspended Solids	0.000191
Crude oil	9.57E-05
Total Dissolved Solids	0.000383
Phenol	6.7E-05
Solid Wastes	
Acetonitrile	6.8E-08
Acrylonitrile	6.94E-09
Acetonitrile	4.72E-07

Acetonitrile LCI

0.000222
0.000861
0.019429
2.91E-05
2.64E-05
8.32E-06
0.001291
0.000112
1.53E-08
0.005274
7.63E-05
0.000124
0.00861

Resource Consumption

Heat Energy (fossil fuel)	0.112889	kWh
Electric Power	0.053599	kWh
Natural Gas	0.899915	
Steam	0.018516	kWh
Coal	0.019536	
Hydropower	0.014464	kWh
Fission	0.027723	kWh
Iron ore	0.000191	
Limestone	9.57E-05	
Bauxite	0.000287	
Rock salt	0.00574	
Clay	1.91E-05	
Water	1.530609	

Mass Balance on Unit Processes Brown, Hamel and Hedman

6 Total -0.47 -4 -5.76 55 0 0 -4 4.21 1.07	-3.4 0.55 -0.5 3.4	1.07	1.07	3 -0.81 0.81	infillow, + = -0.5	Process No. (- = 1.54	
0 2.64E-16 7.08E-16	2.64E-16	0	0	0	0	4.44089E-16	Total
	-0.05						dne
_		_				de	maldehy
1.07			1.07				gas
0			0			er	ling wat
	3.4			0.81			ok gas
0							
0	-0.5				0.5	0	densate
0							"
0		-1.07	-1.07	0	0	2.14	nre
0	0.55				-0.5	-0.05	E
	-3.4			-0.81		-1.55	٠.
-0.47		0.07				-0.54	nanol
Total	9	5	4	က	2	_	ərial
				outflow)	infllow, +=	Process No. (- =	_
				HE (2007)	7	inflow + -	Droces No $I = I$

Notes: Inputs and outputs are lb. per lb. of formaldehyde produced.

Energy Balance on Unit Processes Brown, Hamel and Hedman

Asterial	1	C	ď	_	ц	Toto T	
Methanol	- 4	4	0	t	0 4	0 00	0
Air							0
Steam	09-	-620				680	0
Mixture	58	342	200	-840	09-		0

	477.2	0	-1767	487.8	069	9	52	0	.68E-14
	30.7	-51.5	-967	307.8					0 5.68E-14 5.68E-14
	4						52		0
Prod.	06				069	09			0
Form. Prod.	120		-800	180					0
	226.5	51.5							0
	9								0
	Loss	Condensate	Fuel	Stack gas	Cooling water	Off gas	Formaldehyde	Makeup	Total

Inputs and outputs are in BTU per Ib. of formaldehyde produced. Notes:

Sheet Title: Methanol (for Acetic acid production by Eastman/Malinkrodt at Kingston) Sheet Description: Engineering calculation (rough) This page calculates the vendor emissions from a plant producing Acetic acid. Not included are raw material production or extraction or water and energy use. (Energy balance is assumed to be close to 0 due to exothermic producer gas synthesis process) References/Citations: Faith Keyes and Clarke's Industrial Chemicals By F. A. Lowenheim, M. K. Moran Wiley Interscience, 1975 Perry's Chemical Engineers' Handbook, 6th ed. McGraw Hill, 1984 AP 42 Ed 4 (1985) US EPA Kirk Othmer Encyclopaedia of Chemical Technology 2nd ED, 1964 and 4th Ed, 1991-4 Wiley Interscience, CRC Handbook of Chemistry and Physics, 66th Edition Summary Output Co-product Allocation Calculations Co-product Quantity Units 1.00E+00 kg Acetic acid Coal Tar 1.05E-01 Kg Total 1.10515212 Kg Bbl eq. are calculated on a energy content basis and used to calcualte the allocated LCI emissions factors. Bbl. of CrO Notes: production are scaled by multiplying by the ratio of bbl eq. CrO produced to bbl CrO produced. Unallocated Allocated DQI Quantity Units Quantity Std. Dev. Units Std Dev LCI components Air **TSP** Kg/Kg Acetic a 0.0085 Kg/Kg Acetic a 0.007691249 3 Kg/Kg Acetic a 0.018658783 Kg/Kg Acetic a 0.016883452 3 SOx CO Kg/Kg Acetic a 0.046186813 Kg/Kg Acetic a 0.041792268 3 Kg/Kg Acetic a 0.113563242 Kg/Kg Acetic a 0.102758018 3 CO2 total HC's Kg/Kg Acetic a 0.034266829 Kg/Kg Acetic a 0.031006436 3 Water Solid Wastes Production wasteKg/Kg Acetic a 0.035990206 0.032565839 Resource Consumption Kg/Kg Acetic a 0.473300065 Kg/Kg Acetic a 0.428266893 Coal Methanol Kg/Kg Acetic a 0.536757301 Kg/Kg Acetic a 0.485686352 Notes: rules or calculations

This section is where the project specific calculations take place. Information on LCI components from below is taken and the proper co-product allocation scheme applied. It may be necessary to preface this section with a section detailing the co-product allocation

Data Quality Indicators (DQI) range from 5 as highest to 1 as lowest. A value of 0 is used when no indicator was reported.

Unit from	Unit to	Multiplier	Reference	
BTU	J	1055.056	CRC, 66th Edition	
Wh	J	3600	CRC, 66th Edition	
bbl CrO	BTU CrO	5800000	Chemical Engineers' Ha	indbook, 6th ed.
bbl	gal	42	Chemical Engineers' Ha	indbook, 6th ed.
gal diesel	BTU diesel	118500	Chemical Engineers' Ha	indbook, 6th ed., Figure 9-4 @ S.G. = .76 and sulfur = 0.5%
gal	L	3.785412	CRC, 66th Edition	
kg	lb	2.2046226	CRC, 66th Edition	
уг	day	365		
m^3	bbl (petroleum)	6.289811	CRC, 66th Edition	
gal CrO	lb CrO	7.2		
ton	Б	2000		
gal fuel oil	BTU fuel oil	138000		
cu. ft NG	BTU NG	1032	Chemical Engineers' Ha	indbook, 6th ed.
Ib Coal (dr	BTU Coal	12000	calculation page B	SD=11%
kg NG	MJ NG	46	Calculated page C	SD=13%

Conver

Calcula

Energy input

All energy is assumed to come from the heat of combustion in the formation of CO, which is recoverable.

	Raw/	Raw/	Raw/			Transformed	Transformed	Transformed
LCI component	Input Units	Input Quan.	Input Std. Dev.	DQI		Units	Quan.	Std. Dev.
Coal	MJ/kg ethylene	0			3	kg/kg ethylene	0	
Oil	MJ/kg ethylene	0	15		3	kg/kg ethylene	0	0.33622909
Natural Gas	MJ/kg ethylene	0			3	kg/kg ethylene	0	
Hydropower	MJ/kg ethylene	0			3			
Fission	MJ/kg ethylene	0			3			
							Probably differ	ent mix in US

Material input

Source:

Faith Keyes and Clarke's Industrial Chemicals

By F. A. Lowenheim, M. K. Moran

Wiley Interscience, 1975

Methanol Carbonylation method

Stoichiometric ratios:

Methanol net Kg/Kg Acetic a CO net Kg/Kg Acetic a

Methanol input Kg/Kg Acetic a 0.536757301 CO input Kg/Kg Acetic a 0.513186813 Producer-Gas input

Kg/Kg Acetic a 1.694973756 Coal input Kg/Kg Acetic a 0.473300065 0.993 0.993 conversion of methanol 0.91 0.91 conversion of CO

from Faith Keyes and Clark's Industrial chemicals, 1975

Emission calculation

(Data from pg D and from AP42 Ed 4 Tbl 1.1-1)

CO released from process Kg/Kg Acetic a 0.046186813 0.09 unconverted CO Methane Kg/Kg Acetic a 0.030509528

CO2 Kg/Kg Acetic a 0.113563242

Particulates Kg/Kg Acetic a 0.0085 8.5 g/kg in Cyclone trap outlet (AP42 Ed 4 tbl 1.1-1) Methanol Kg/Kg Acetic a 0.003757301 0.007 unconverted assumed to escape in vent stream SOx

Kg/Kg Acetic a 0.018658783 19.5*%S in Co from AP 42 Ed 4 (1985) tbl 1.1-1

0.533

0.467

Coal assumed to have 1% Sulfur and the coal tar product to have 0.4% sulfur

Land Ash

Kg/Kg Acetic a 0.035990206

0.094 Ash in coal (assumed recovered) but for air emission

CO production from Coal through synthesis gas (producer or manufactured)

Source:

Producer gas from Coal (Baddelsey)

25.30% mol CO

Page D calculations

30.28% wt CO

Mw CO

28.016

Mw Produc

23.410686

Gas product yield from coal: 3.581182178 lb gas/lb coal

Co-Products:

source:

calculated from data on this sheet and on sheet D

Coal tar heating value is median for data of Perry Ed 6 (1984) tbl. 9-12

Coal Tar

Kg/Kg Acetic a 0.10515212

Energy equivalent

MJ/Kg Acetic a 4.153508743

39.5 MJ/Kg coal tar

I Cl sameanari	Raw/	Raw/	Raw/			Transformed	Transformed	Transformed
LCI component Oil	Input Units	Input Quan.	Input Std. Dev.	DQI		Units	Quan.	Std. Dev.
						Kg/Kg Acetic acid		
Natural Gas						Kg/Kg Acetic acid		
Coal	Kg/Kg Acetic a	0.473300065			3	Kg/Kg Acetic acid	0.473300065	
Iron ore	Kg/Kg Acetic a	0				Kg/Kg Acetic acid	0	
Methanol	Kg/Kg Acetic a	0.536757301			3	Kg/Kg Acetic acid	0.536757301	
Bauxite	Kg/Kg Acetic a	0				Kg/Kg Acetic acid	0	
Rock salt	Kg/Kg Acetic a	0				Kg/Kg Acetic acid	0	
Clay	Kg/Kg Acetic a	0				Kg/Kg Acetic acid	0	

Output							
Air							
	Raw/	Raw/	Raw/		Transformed	Transformed	Transformed
LCI component	Input Units	•	Input Std. Dev.	DQI	Units	Quan.	Std. Dev.
TSP	Kg/Kg Acetic a	0.0085			Kg/Kg Acetic acid	0.0085	
SOx	Kg/Kg Acetic a	0.018658783			Kg/Kg Acetic acid		
NOx	Kg/Kg Acetic a	0			Kg/Kg Acetic acid	0	
CO	Kg/Kg Acetic a				Kg/Kg Acetic acid	0.046186813	
CO2	Kg/Kg Acetic a	0.113563242			Kg/Kg Acetic acid		
H2S	Kg/Kg Acetic a	0			Kg/Kg Acetic acid	0	
HCI	Kg/Kg Acetic a	0			Kg/Kg Acetic acid	0	
total HC's	Kg/Kg Acetic a	0.034266829			Kg/Kg Acetic acid	0.034266829	
other organic	Kg/Kg Acetic a	0			Kg/Kg Acetic acid	0	
Heavy metals	Kg/Kg Acetic a	0			Kg/Kg Acetic acid	0	
Water		***************************************					***************************************
	Raw/	Raw/	Raw/		Transformed	Transformed	Transformed
LCI component	Input Units	Input Quan.	Input Std. Dev.	DQI	Units	Quan.	Std. Dev.
COD	Kg/Kg Acetic a	0			Kg/Kg Acetic acid	0	
BOD	Kg/Kg Acetic a	0			Kg/Kg Acetic acid	0	
Acid as H+	Kg/Kg Acetic a	0			Kg/Kg Acetic acid	0	
Metal ions	Kg/Kg Acetic a	0			Kg/Kg Acetic acid	0	
CI2	Kg/Kg Acetic a	0			Kg/Kg Acetic acid	0	
Dissolved Organics	Kg/Kg Acetic a	0			Kg/Kg Acetic acid	0	
suspended solids	Kg/Kg Acetic a	0			Kg/Kg Acetic acid	0	
crude oil	Kg/Kg Acetic a	0			Kg/Kg Acetic acid	0	
miscelanious dissolved ma	ite Kg/Kg Acetic a	0			Kg/Kg Acetic acid	0	
Phenol	Kg/Kg Acetic a	0			Kg/Kg Acetic acid	0	
Solid waste							
	Raw/	Raw/	Raw/	DOI	Transformed	Transformed	Transformed
LCI component	Input Units	•	Input Std. Dev.	DQI	Units	Quan.	Std. Dev.
Production waste (not inne					Kg/Kg Acetic acid	0.00128	
Toxic chemicals	Kg/Kg Acetic a	0			Kg/Kg Acetic acid	0.000001	

Coal type	Moisture	Sulfur		Heat value	•		
	%	%	%dry	Btu/lb	Btu/lbdry		
Sub bit C	26	0.3	0.41	8230	11121.62		
HV bit A	2.9	0.6	0.62	14170	14593.2	low sulfur coal heating value	
Sub bit B	22.2	0.5	0.64	9610	12352.19	•	
Brown Coa German - F	R 55	0.3	0.67	4830	10733.33		
Sub bit A	13.9	0.6	0.70	10330	11997.68	SD= 1295.775 0.108169	
Meta Anthracite	9	0.7	0.77	10080	11076.92	Avg= 11979.16	
LV bit	2.9	0.8	0.82	14400	14830.07	median	
Anthracite	4.3	0.8	0.84	12880	13458.73	27.86352 MJ/kg	
Lignite	36.8	0.9	1.42	7000	11075.95	•	
MV bit	2.4	1.5	1.54	14490	14846.31	·	
Semi anthracite	2.1	1.7	1.74	13700	13993.87		
HV bit B	6.7	2.6	2.79	12390	13279.74		
HV bit C	15.4	2.9	3.43	10740	12695.04		

bit=Bituminous V=Volatility

L=low

M=Medium

H=high

Source: Kirk Othmer vol 4 1949

							SD (rel)			01 13.03%	
							avg	19.61024	39.76667	45.76001	
Arriba, Terrell, TexStanton, KaSan Juan, Molds Field, Cliffside, Texas	65.8	1.7	0.8	0.5			25.6	20.44567	30.7	33.63451	too low heating value(?)
Mlds Field,	52.34	0.14	0.16	0.41	8.22	35.79	2.53	25.49289	30	26.36029	too high Sulfur content
sSan Juan, l	77.28	5.83	2.34	1.18	0.8		1.39	21.28362	46.8	49.25478	
Stanton, Ka	67.56	3.18	1.42	0.04	0.07		21.14	20.92126	34.9	37.36678	
Terrell, Tex	45.64	V.			53.93	0.01	0.21	31.182	17.3	12.42768	too high CO2 content for use
	96.91	0.19	0.05	0.05	0.82		0.68	16.62585	37.6	50.65847	
heat value Rio MJ/M^3	37.57	93.6	120.98	148.84	0	23.7	0				lom,
Mwt	16.043	30.07 44.097	58.123	72.15	44.01	34.076	28.013		IUMJ/M^3	MJ/KG	0.0224M^3/mol
mol%	Methane	emane propane	butane	pentane+	C02	H2S	N2	Mol wt:	heating valuMJ/M^3		

Source: Kirk Othmer Ed 4 vol 12 1993

MJ/m^{^3}

Heating values for processed city natural gas: source Perry 6 (1984) averaged from table 9-14

Btu/scf 1049.571

Synopsis of table 9-14

									SD (rel)	15.84%
									avg	18.31941
Phoenix	Az	87.37	8.11	2.26	0.13	0	0.61		1.37	7
Nashington) DC	95.15	2.84	0.63	0.24	0.05	0.62		0.42	16.9628
BurmingharMashington Phoenix	7	93.14	2.5	0.67	0.32	0.12	1.06		2.14	17.32821
louston E	×	92.5	4.8	2	0.3	0	0.27		21.14	23.38022
Columbus 1	C Ohio	93.14	3.58	99.0	0.22	0.09	0.85	0.01		16.93912
3altimore (O PM	94.4	3.4	9.0	0.5	0	9.0		0.5	17.12629
heat value Baltimore Columbus Houston	MJ/M^3	37.57	65.83	93.6	120.98	148.84	0	23.7	0	
Mwt		16.043	30.07	44.097	58.123	72.15	44.01	34.076	28.013	
	%lom	Methane	ethane	propane	butane	pentane+	C02	H2S	N2	Mol wt:

heating valuMJ/M^3

0.0224M^3/mol

39.2023 38.3444 51.27388 50.70597

 38.4563
 38.1952
 38.8666
 39.9483

 36.84401
 49.37455
 51.32477
 49.22167

38.83552 48.12414

1.10% 13.30%

-													
Manufacture	•												
Data from K	(O 2 (1964)) for "moderr	n mechanica	al method"	Gas				gas heat v			Tar data	
	Moisture	Heating val	lueBtu/lb		Gas yield s		gas lb/lb c				a Btu/lb coal		
		wet	dry			•		wet base	•		wet base		dry base
Anthracite	0.051	10800	11380.4		123900			138		17098200	8549.1	9.5	10.01054
Belgian Co	0.026	11980	12299.79		120900	124127.3		150		18135000	9067.5	1	1.026694
Baddesley	0.05	12080	12715.79		116100	122210.5	3.581182	165.6	174.3158	19226160	9613.08	21	22.10526
	On the bas	sis of 10% ta	r production	n in the proc	ess the Bac	idesley type	coal is use	ed					
		hen provides											
		•		•									
Baddesley o	coal ga												
composition	MWt	vol%	O2 per mol	l mol O2 pe	r moi gas								
002	44.01	6.7	0	0									
alkyls													
02	31.9988	0	0	0									
co	28.016	25.3	0.5	0.1265									
12	2.0158	21	0.5	0.105									
CH4	16.043	1.8	2	0.036									
N2	28.013	45.2	0	0			0.578864	mol air pro	ducing mol	gas			
Gas Mwt	23.41069			0.2675	mol O2 per	r mol gas	1.277093	mol air to l	ourn mol gas	S			
				0.365631	kg O2 per	Kg gas	1.855957	mol air use	ed/mol gas				
•	ensity of pro	oducer gas		1.580041	kgair/kg ga	is	2.296221	kg air used	d / kg gas				
0.9882	•												
0.061691				d=Mw/0.02	224								
ohysical dat													
Density of T	75	lb/cuf			Perry 6 (19	984)							
		kg/m^3											
	10.01449	lb/gal											

KO 2 (1964)

Perry 6 (1984)

Perry 6 (1984)

Perry 6 (1984)

Perry 6 (1984)

Perry 6 (1984) for steam table values

molar

N2

02

Ar

total

CO2

dry air composition Mwt

0.00033

0.00934

0.99997 28.96409

kg air per kg

mass compcomponent

0.78084 28.0134 0.75521 1.324134

0.20946 31.9988 0.231406 4.321406

44.01 0.000501 1994.319

39.948 0.012882 77.62792

Units

density

mass

Pressure

Energy

ib/cuf

"Hg

ton (short - Ib

2.041754

30.00533

Heat value MJ/m^3 btu/scf

0.0373

0.001055

scf is volume in cubic feet at 60 Farenheit and 30" Hg

lb/gal

0.062428 0.008345 1 7.480519 1 119.8264 1 0.133681 16.01846

288.7056 42.2115 0.02369

kg/m^3

kg

psia

1 14.69586

3376.9 0.033327 0.489775 6894.8 0.068046 1

2000 2.204623

N/m^2 atm

101325

Sheet Title:

Nitroethane/nitromethane

Sheet Description:

Nitroethane/nitromethane

Nitroethane is produced as a co-product in the production of nitorethane,

nitromethane, 1-nitropropane, and 2-nitropropane

References/Citations:

TRI inventory for 1991 for W. R. Grace Deer Park, Tx Facility

Personal communication from the plant manager of the Deer Park Facility to John Becker, Sept 6, 1995, indicating plant capacity for nitroparaffins at

20,000,000 lb/yr while operating. Plant closed in 1992.

Kirk-Othmer Enclyclopedia of Chemical Technology. 3rd ed. 1978. v15. "Nitroparaffins

Summary Output:

Allocated LCI component	Units	Quantity	DQI	
air emissions				
1,2-butylene lb	/lb	0.0000006		2
2-nitroproparlb	/lb	0.0005245		2
acetaldehyd d b	/lb	6.065E-05		2
acetone lb	/lb	0.0000407		2
acetonitrile Ib	/lb	0.0000209		2
ammonia Ib	/lb	0.0007652		2
BrCIF2C lb	/lb	0.0000019		2
BrF3C lb	/lb	7.15E-06		2
Chlorine Ib.	/lb	0.0000039		2
Cl2F2C lb	/lb	0.00095		2
Formaldehydb	/lb	0.0003096		2
Hydrogen cylb	/lb	5.555E-05		2
methanol lb.	/lb	1.635E-05		2
naphthalene lb	/lb	0.0005544		2
nitric acid Ib.	/lb	4.75E-06		2
water				
ammonia Ib	/lb	0.0000015		2
Hydrogen cylb	/lb	0.0000001		2
underground				
2-nitroproparlb	/lb	0.0069671		2
acetaldehydeb/	/lb	0.0089841		2
acetone lb/	/lb	0.0048216		2
acetonitrile lb/	/lb	0.0039334		2
ammonia Ib/	/lb	0.0001229		2
Formaldehydb/	/lb	0.0000686		2
Hydrogen cylb/	/lb	0.0000057		2
methanoi lb/		0.0079189		2
naphthalene lb/	lb	0.0000057		2
nitric acid Ib/		0.0005548		2
		0.0000010		-

Notes:

The 4 co-products are produced as part of the same reaction.

Product percentage varies with operating conditions (Kirk-Othmer), but emissions

must be considered on a lb/lb basis as 4 equal co-products.

Conversion Factors

Unit from

Unit to

Multiplier

Calculations

Table Title

Table Reference/Citation

	Raw/	Raw/	Raw/		Transforme	dTransformed	Transformed
LCI component	Input Units	Input Quan.	put Std. Dev	DQI	Units	Quan.	Std. Dev.
air emissions							
1,2-butyle	1,2-butylene lb/yr 2-nitroproparlb/yr acetaldehyd d b/yr				4 lb/lb	0.0000006	
2-nitroprop	oarlb/yr	10490			4 lb/lb	0.0005245	
acetaldehy	/deb/yr	1213			4 lb/lb	6.065E-05	
acetone	lb/yr	814			4 lb/lb	0.0000407	
acetonitrile	e lb/yr	418			4 lb/lb	0.0000209	
ammonia	lb/yr	15304			4 lb/lb	0.0007652	
BrCIF2C	lb/yr	38			4 lb/lb	0.0000019	
BrF3C	lb/yr	143			4 lb/lb	7.15E-06	
Chlorine	lb/yr	78			4 lb/lb	0.0000039	
Cl2F2C	lb/yr	19000			4 lb/lb	0.00095	•
Formaldel	ıydb/yr	6192			4 lb/lb	0.0003096	
Hydrogen	cylb/yr	1111			4 lb/lb	5.555E-05	
methanol	lb/yr	327			4 lb/lb	1.635E-05	
naphthale	ne lb/yr	11087			4 lb/lb	0.0005544	
nitric acid	lb/yr	95			4 lb/lb	4.75E-06	
water							
ammonia	lb/yr	30			4 lb/lb	0.0000015	
Hydrogen	cylb/yr	2			4 lb/lb	0.0000001	
underground	andh/ur	139342			4 lb/lb	0.0069671	
2-nitroprop acetaldehy	-	179681			4 lb/lb	0.0009871	
acetaiden	•	96431			4 lb/lb	0.0009041	
acetonitrile	lb/yr	78668			4 lb/lb	0.0040210	
ammonia	,	2457			4 lb/lb	0.00033334	
	lb/yr	1372			4 lb/lb	0.0001229	
Formaldel		1372			4 lb/lb	0.0000057	
Hydrogen methanol		158377			4 lb/lb	0.0000037	
	lb/yr	114			4 lb/lb	0.0079189	
naphthale	-				4 lb/lb	0.00005548	
nitric acid	lb/yr	11096			4 10/10	0.0005546	

Notes:

Based ont eh information supplied by the plant manager of a production capacity

of 20,000,000 lb/yr.

Nitric Acid+ Ammonium Nitrate

Source: all data

Technical report HDC-125-95

Pg 14

By Laurie J. Brown

Holston Defense Corporation

Subsidiary of Eastman Chemical Co.

Kingsport, TN 37660

Product	t		Conc.	Raw data in lb	kg per kg solution	kg per kg HNO3	kg per kg NH4NO3
		Solution		1.356	1	1.7730496	2.3419204
		HNO3	0.564		0.564	1	1.3208431
		NH4NO3	0.427		0.427	0.7570922	1
		W	0.009		0.009	0.0159574	0.0210773
lanuta							
Inputs							
	Materials						
		HNO3	0.99	1.233	0.909292	1.6122199	2.1294895
		NH3		0.123	0.090708	0.1608297	0.2124308
		Steam		0.02255	0.0166298	0.0294854	0.0389457
		River Water		53.12	39.174041	69.45752	91.742485
	Energy						
		Electricity	kWhr	0.02754	0.0203097	0.0360102	0.0475638
Waste							
	Water retur	n to river		53.12	39.174041	69.45752	91.742485
	(Non-conta	+.		00.12	33.174041	09.43732	91.742403
	(11011 001112	· · ·					
	Steam Con	densate to rive	er	0.02255	0.0166298	0.0294854	0.0389457
	(Non-conta	ct)					
Air Emi	ossion						
		NOx		7.921E-06	5.841E-06	1.036E-05	1.368E-05
		(value is for	NO2)	7.32 IL-00	5.04 IL-00	1.030L-03	1.500L-05
		,					

Nitric Acid concentration

Source: all data

Technical report HDC-125-95

Pg 12

By Laurie J. Brown

Holston Defense Corporation

Subsidiary of Eastman Chemical Co.

Kingsport, TN 37660

Product		Solution HNO3	Conc. wt frac.	Raw data in lb 1.233	kg per kg solution 1 0.99	kg per kg HNO3 1.2454545
Output		W	0.01		0.01	0.010101
	to IWTF	water NaNO3/w NaNO3 water Mg(NO3)2/w	0.904 as pure as pure	0.8595 0.01295 0.0117068 0.8607432 0.009053	0.6970803 0.0105028 0.0094946 0.6980886 0.0073423	0.8681818 0.0130808 0.0118251 0.8694376 0.0091444
Inputs		WIG(NO3)2/W	0.0	0.009033	0.0073423	0.0031444
mpate	Materials					
		HNO3 Na2CO3	0.61	2.031 0.007304	1.6472019 0.0059238	2.0515152 0.0073778
		City Water MgO		0.08226 0.001478	0.0667153 0.0011987	0.0830909 0.0014929
		Steam River Water		2.9 28.81	2.351987 23.365775	2.9292929 29.10101
	Energy	Electricity	kWhr	0.05507	0.0446634	0.0556263
Waste						
	Water retur (Non-conta			28.81	23.365775	29.10101
	Steam Con (Non-conta	densate to river ct)		2.9	2.351987	2.9292929
Air Emiossi	on					
		NOx (value is for NO2	()	0.003348	0.0027153	0.0033818

Nitric Acid production Source: all data

Technical report HDC-125-95

Pg 10

By Laurie J. Brown

Holston Defense Corporation Subsidiary of Eastman Chemical Co.

Kingsport, TN 37660

Product	desired	Solution HNO3 W			Raw data in lb 2.031	kg per kg solution 1 0.61 0.39	1			
Output	to Cat recover	y Plat Cat Pt Pd Rh	0.).9 05 05	2.715E-06	1.203E-06 6.685E-08 6.685E-08	4.006E-06 2.226E-07 2.226E-07	Oz troy 0.0000396	lb/Oz troy 0.0685714	(CRC '66)
	to IWTF	NH3			3.691E-05	1.817E-05	6.051E-05			
Inputs										
Waste	Materials	NH3 Air City Water Filtered Water Plat Cat Pt Pd Rh Steam River Water			0.3353 6.53 0.4369 108.9 2.715E-06 0.2293 54.42 0.1926	0.2151157 53.618907 1.203E-06 6.685E-08 6.685E-08 0.1129 26.794682	0.5496721 10.704918 0.7162295 178.52459 4.006E-06 2.226E-07 2.226E-07 0.3759016 89.213115 0.3157377	Oz troy 0.0000396	lb/Oz troy 0.0685714	
	Water return to	-t			400.0					
	(Non-contact)	nver			163.3	80.403742	267.70492			
	Steam Conden (Non-contact)	sate to river			0.2293	0.1129	0.3759016			
Air Emiossi	on									
		NOx	100)		0.003348	0.0016484	0.0054885			

(value is for NO2)

Nitric acid and Ammoniumnitrate synthesis

Area B Steam Plant Source: for all data

Technical report HDC-125-95

Pg 26

By Laurie J. Brown

Holston Defense Corporation Subsidiary of Eastman Chemical Co.

Kingsport, TN 37660

			Conc.	Raw in lb	data	kg per kg Steam	kg per kg Steam		
Product	Stea	am			50.75	1	1		
							0.9230959	weighting	according to coal utilization
Output									
To Block Plant	Cinc				0.3436	0.0067704			
	Fly /	Ash		(0.2655	0.0052315	0.0048292		
to IWTF	Boile	er blowdo	own		1.269	0.0250049	0.0230819		
	th: Pho	sphates							
		ates							
	Sulfi	ites							
	Coo	ling Wate	er		11.45	0.2256158	0.208265		
w	th: flya	-							
	cind								
1									
Inputs									
М	aterials								
	Coa	i			5.037	0.0992512	0.0916184		
	Air				70.52	1.3895567	1.282694		
	Filte	red Wate	er		63.43	1.2498522	1.1537334		
	Boile	er Guard		0.00	02684	5.289E-06	4.882E-06	Anionic pol	ymer surfactant "BoilerGUARD APG", Calgon
	Con	quor347	5	9.30	5E-05	1.833E-06	1.692E-06	Diethylhydr	oxylamine, hydroquinone, Calgon
	C-1	Antifoam		8.45	9E-06	1.667E-07	1.539E-07	Akoxylated	alcohol solution, Calgon
	Roc	k Salt		0.	01196	0.0002357	0.0002175		
	Sulf	uric acid		0.	01408	0.0002774	0.0002561		
E	nergy								
	Elec	ctricity	kWhr	().1756	0.0034601	0.003194		
Waste									
	Fly	Ash to La	indfill	(0.3036	0.0059823	0.0055222		
Air Emiossion									
	VOC	Cs		0.00	01261	2.485E-06	2.294E-06		
	NOx	<		0.	03451	0.00068	0.0006277		
	CO			0.	01259	0.0002481	0.000229		
	SOx	C		0.	09571	0.0018859	0.0017409		
	Part	iculates		0.0	01209	2.382E-05	2.199E-05		
	Flue	gas			74.5	1.4679803	1.3550865		

Coal utilization breakdown for by product distribution

Coal Coal 5.037

Cinders 0.3436
Ash 0.5691

Energy coal	4.1243	92.31%
Cinder Coal	0.3436	7.69%
Utilized coal	4.4679	100.00%

Nitric acid and Ammoniumnitrate synthesis

Area B Water filtration Source: for all data

Technical report HDC-125-95

Pg 30

By Laurie J. Brown

Holston Defense Corporation

Subsidiary of Eastman Chemical Co.

Kingsport, TN 37660

	Conc.	Raw data in lb	kg per kg Filtered water
Product			

Filtered water 560.2 1

Output

to IWTF Water 27.17 0.0485005

with: Alum 0.1154 0.000206

Filter backwash 67.56 0.1205998

with:

Inputs

Materials

 River water
 655
 1.1692253

 Hydrated lime
 0.0008082
 1.443E-06

 Al Sulfate
 0.03795
 6.774E-05

 Cl2
 0.002547
 4.547E-06

Energy

Electricity kWhr 0.7422 0.0013249

Waste

Air Emiossion

Industrial Wastewater Treatment Facility

Both areas

Source: for all data

Technical report HDC-125-95

Pg 32

By Laurie J. Brown

Holston Defense Corporation

Subsidiary of Eastman Chemical Co.

Kingsport, TN 37660

kg Conc. Raw data per kg in lb wastewater

Product

Output

Inputs

Materials

IWTF streams Wastewater 329.5 1 NaOH 20% 0.0314 9.53E-05 NaOH 0.2 0.00628 1.906E-05 water 0.8 0.02512 7.624E-05 Quicklime 0.002363 7.171E-06 FeCl2 25-35% 0.01109 3.366E-05 FeCl2 0.3 0.003327 1.01E-05 water 0.7 0.007763 2.356E-05 HCI 33% 0.0002453 7.445E-07 HCI 0.33 8.095E-05 2.457E-07 water 0.67 0.0001644 4.988E-07 Magnifloc 496 3.691E-05 1.12E-07 flocculant Filtered water 14.96 0.0454021

Energy

Electricity kWhr 0.2042 0.0006197

Waste

Treated Industrial waste water

| 344.3 | 1.0449165 | landfill | Biological sludge | 0.1533 | 0.0004653 | landfill | Alum Sludge | 0.1154 | 0.0003502

Air Emiossion

Diisopropyldiazodicarboxilate (from dichlorodiazodialdehyde CIOCNNCOCI and isopropanol. It is a precursor in production of TNAZ)

Sheet Title:

Emissions are from Engineering estimates, basic solvent is assumed to be pyridine at 2X excess and NOT recycled Sheet Description:

Engineering calculation of the Energy requirements and precursor requirements.

Dichlorodiazodialdehyde manufacture from hydrazine and phosgene are included in the calculations. This page calculates the vendor emissions from a plant producing Diisopropyldiazodicarboxilate. Not included are raw material production or extraction or water use.

References/Citations:

Perry's Chemical Engineers' Handbook, 6th ed.

AP 42 Ed 4 (1985) McGraw Hill, 1984

US EPA

CRC Handbook of Chemistry and Physics, 66th Edition

Summary Output Co-product Allocation Calculations

US ITC 2810 Synthetic Organic Chemicals US production and Sales, 1993 US International Trade Commission, 11.1994 Source:

88.3192489 17,859.00 17,859.00 Quantity 1.00E+00 kg 1.00E+00 Kg 1.00 Kg 1.00E+00 kg Mwt Co-product 202.2096 Diisopropyldiazodicarb Total dichlorodiazodialdehyde

1993 Production

Units

Units

Quantity

17859

8

As acetone cyanohydrin

Notes:

g 2.347069575 Without recycle 3.428944026 Without recycle Std. Dev. 3.56014E-07 6.19977E-07 0.001584742 5.71092E-05 5.58703E-06 1.0474E-05 0.009783551 Quantity Kg/kg Diazo Allocated Units Std. Dev. 0.001584742 5.71092E-05 5.58703E-06 1.0474E-05 0.009783551 3.428944026 3.56014E-07 6.19977E-07 Quantity Unallocated Kg/Kg Diazo Units Pyridine HCI Air Wastewater Isopropanol Phosgene Hydrazine Phosgene Hydrazine Pyridine Pyridine ᄗ LCI components

This section is where the project specfic calculations take place. Information on LCI components from below is taken and the proper co-product allocation scheme applied. It may be necessary to preface this section with a section detailing the co-product allocation rules or calculations. Notes:

0.978355132 0.158474177 0.594389188

0.350655953 4.694139151

Kg/kg Acetoni Kg/kg Acetoni Kg/kg Acetoni Kg/kg Acetoni Kg/kg Acetoni

0.978355132 0.158474177 0.594389188

Kg/kg Diazo Kg/kg Diazo Kg/kg Diazo Kg/kg Diazo

sopropanol

Resource Consumption

Phosgene

Hydrazine

0.350655953

4.694139151

Kg/kg Diazo

Pyridine

Data Quality Indicators (DQI) range from 5 as highest to 1 as lowest. A value of 0 is used when no indicator was reported.

Unit from	Unit to	Multiplier	Reference				
BTU	-7	1055.056	1055.056 CRC, 66th Edition				
W	7	3600	3600 CRC, 66th Edition				
bbl CrO	BTUCO	5800000	5800000 Chemical Engineers' Handbook, 6th ed.	" Handbook,	6th ed.		
lgq	gal	42	42 Chemical Engineers' Handbook, 6th ed.	Handbook,	6th ed.		
gal diesel	BTU diesel	118500	118500 Chemical Engineers' Handbook, 6th ed., Figure 9-4 @ S.G. = .76 and sulfur = 0.5%	Handbook,	6th ed., Figure	9-4 @ S.G. = .76 a	nd sulfur = 0.5%
gai	ب	3.785412	3.785412 CRC, 66th Edition)	
kg	Q	2.2046226	2.2046226 CRC, 66th Edition				
×	day	365					
m^3	bbl (petroleum)	6.289811	6.289811 CRC, 66th Edition				
gal CrO	P CrO	7.2					
ton	₽	2000					
gal fuel oil	il BTU fuel oil	138000					
Cu. # NG	BTU NG	1032	1032 Chemical Engineers' Handbook, 6th ed.	.' Handbook,	6th ed.		
tb Coal (d	Ib Coal (dry BTU Coal	12000	12000 calculation page B	· w	SD=11%		
kg NG	MJNG	46	46 Calculated page C	S	SD=13%		
Mw Benzen	en 78.1134	7	molar			ķ	kg air per kg
Mw Chlorin	in 70.9	6	dry air composition	Σ	Mwt ma	mass compositioncomponent	ponent
Mw CIBz	112.56	92	N2	0.78084	28.0134	0.75521	1.324134
Mw CI2Bz	z 147.01	5	05	0.20946	31.9988	0.231406	4.321406
Mw HCI	36.4609	90	200	0.00033	44.01	0.000501	1994.319
Mw NaOF	Mw NaOH 39,9971		Ar	0.00934	39.948	0.012882	77.62792
			total	0.99997	28.96409	-	
Ideal gas	ideal gas density at 15 C (60 F)		air (dry)	dry)			
0.042296	0.042296 mol/liter	42.29634021 mol/m ³		1 225075 kg/m/3	1/m/3		

Process description
HCI
molecules
produced

Hydrazine and phosgene are mixed in 1.2 stoichiometric relationship in a cooled reactor containing a large excess of pyridine as a basic solvent.
 Once conversion is complete Cl2 is bubbled through to react with the hydrogen bonds on the NN single bond.
 Isopropanol is added in 2:1 stoichiometric ratio to the original hydrazine and reaction proceeds to final stage.
 Product solution is washed with water to remove pyridine and hydrochloric acid.

99%. Conversion is assumed due to strong driving force provided by HCI production during reaction. 1% unreacted

Co-Products: Given above.

Transformed Transformed Inits Outline Std Day	0
Tran	
Raw/	0
Raw/ Input Quan.	
Raw/ Input Units	MJ/kg Diazo
s: Energy input LCI component	Fossil fuel (general)
Resources:	

	#REF! MJ/Kg Diazo	9 981.9 kg/m/3 assumed volume in condenser is pyridine 0.004781 m/3 0.201801 mol gas
	Coolers	Transformed Std. Dev. Transformed Partial P mmHg @ 25 C Std. Dev. d Pyridine 2.1743 0.0418 0.0389 0.2860 1.0819 Transformed Std. Dev.
0 0 0 7.060834755 MJ/kg Diazo	on only. These are guesses	Transformed Transformed Quan. Std. Dev. O 978355132 O 159474177 O 594389188 O 35065953 A 694139151 O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Kg/kg Diazo Kg/kg Diazo Kg/kg Diazo MJ/kg Diazo Cal/mol MJ/kg	energy to disperse is calculated from HCl formation only per pumping stage pecific gravity of material	Transformed Tran Units 4 Kg/kg Diazo 4 Kg/kg Diazo 4 Kg/kg Diazo 5 Kg/kg Diazo 6 Kg/kg Diazo 7 Kg/kg Diazo 7 Kg/kg Diazo 8 Kg/kg Diazo 9 Kg/kg Diazo 10 Litis 10 Litis 10 Kg/kg Diazo 11 Kg/kg Diazo 12 Kg/kg Diazo 13 Kg/kg Diazo 14 Kg/kg Diazo 15 Kg/kg Diazo 16 Kg/kg Diazo 17 Kg/kg Diazo 18 Kg/kg Diazo 19 Kg/kg Diazo 10 Kg/kg Diazo 10 Kg/kg Diazo 11 Kg/kg Diazo 12 Kg/kg Diazo 13 Kg/kg Diazo 14 Kg/kg Diazo 15 Kg/kg Diazo 16 Kg/kg Diazo 17 Kg/kg Diazo 18 Kg/kg Diazo 18 Kg/kg Diazo 19 Kg/kg Diazo 19 Kg/kg Diazo 10 Kg/kg Diazo 11 Kg/kg Diazo 12 Kg/kg Diazo
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	i heat energy to disperse is c head per pumping stage y by specific gravity of mat	Raw/ nput Std. Dev. DQI
7.06083475 Electric Dema	4.942584328 7.060834755 heat 0.7 0.7 0.7 o.	Raw/ input Quan. 0.97835613 0.15847477 0.59438918 0.35065555 4.69413915 8.71092E-0 6.19977E-0 6.19977E-0 6.58703E-0 1.0474E-0 1.0474E-0 1.0474E-0
Coel MJ/kg Diazo Oil MJ/kg Diazo Natural Gas MJ/kg Diazo Hydropower MJ/kg Diazo Fission MJ/kg Diazo Fission Electricity (generic) MJ/kg Diazo Electricity (generic) MJ/kg Diazo Energy requirement Reaction temperature is assumed to be kept constant by removal of all heat formed during the reaction	ectricity refrigeration of reaction tank MJKg 4,942584328 7.060834755 heat energy to disperse is cak efficiency of refrigeration electricity 0.7 7.8726E-08 MJ Elec/Kg Based on viscosity and density of water for a 250 ft static head per pumping stage in 40hr week & 52 week year daytime operation. multiply by specific gravity of material and relative viscosity to that of water.	alcutations ertal input ertal input 2
Coal Oil Natural Gas Hydropower Fission Electricity (generic) Energy requirement Reaction temperature is assumed to be kept or	Electricity refrigerative efficiency (19726E-08 MJ Electricity)	Mater LCI component Oil Natural Gas Coal 32.045 Hydrazine 60.0966 ispropanol 70.906 Ci2 79.1 Pyridine Water Alr Vapor P mmHg @ 25 C LCI component TSP SOX NOX 1428 Phosgene 169.6428571 Hydrazine 42 Ispropanol gas Ci2 24.27419355 Pyridine Heavy meta(Ct) Water COD BOD BOD BOD Acid, H+ (Phoss Metal ions Ci2

		.
	Transformed Std. Dev.	Tansformed Transformed Quan. Std. Dev. 0.009783351 0.001584742 2.347069875 Without recycle 3.428944026 Without recycle
00000	Transformed Quan. 0 0 0 0 0	Transformed Quan. 0 0.009783551 0.001584742 2.347069575 3.428944026
3 Kg/kg Diazo 3 Kg/kg Diazo 3 Kg/kg Diazo 3 Kg/kg Diazo 3 Kg/kg Diazo 3 Kg/kg Diazo	Transformed Units 5 Kg/kg Diazo 5 Kg/kg Diazo Kg/kg Diazo 6 Kg/kg Diazo	Transformed Units Kg/kg Diazo Kg/kg Diazo Kg/kg Diazo Kg/kg Diazo
	ā	g
	Raw/ Raw/ Input Quan. nput Std. Dev. 0 0	Raw/ nput Std. Dev.
00000	Raw/ Input Quan. 0	Raw/ Input Quan. 0 0.009783551 0.001584742 2.347069575 3.428944026
Kg/Kg Diazo Kg/Kg Diazo Kg/Kg Diazo Kg/Kg Diazo Kg/Kg Diazo Kg/Kg Diazo	Raw/ Input Units Kg/Kg Diazo Kg/Kg Diazo Kg/Kg Diazo , CKg/Kg Diazo	Raw/ Input Units Kg/Kg Diazo Kg/Kg Diazo Kg/Kg Diazo Kg/Kg Diazo
Phosgene Hydrazine Isopropanol Ci2 Pyridine Pyridine HCI	Solid waste Raw/ LCI component Input Unit Production waste (not innert) Kg/Kg Diazo Diazo Kg/Kg Diazo Pyridine Kg/Kg Diazo Heavy metals (Cadmium, Nickel, CKg/Kg Diazo	Deep well Injection LCI component Diazo Phosgene Hydrazine Pyridine Pyridine HCI

Sheef End

Phosgene (from chlorine and carbon monoxide. Phosgene is used in production of TNAZ precursor diisopropyldiazodicarboxylate) Sheet Title:

Emissions are from TRI database. Sheet Description:

Engineering calculation of the Energy requirements and precursor requirements.

This page calculates the vendor emissions from a plant producing Phosgene.

Not included are raw material production or extraction or water use.

Faith Keyes and Clarke's Industrial Chemicals References/Citations:

By F. A. Lowenheim, M. K. Moran

Wiley Interscience, 1975

Perry's Chemical Engineers' Handbook, 6th edSource for physical data and unit conversions

McGraw Hill, 1984

CRC Handbook of Chemistry and Physics, 66ttSource for physical data and unit conversions

AP 42 Ed 4 (1985)

US EPA

SRI Directory of Chemical Producers, US

1993, 1991 editions

SRI International, Menlo Park, CA

Summary Output

Co-product Allocation Calculations

Source:

US ITC 2810 Synthetic Organic Chemicals US production and Sales, 1993 US International Trade Commission, 11.1994

Vapor density relative to air Sp G 8.2 BP deg C Units 1.00E+00 kg Quantity Units 1.00E+00 kg Quantity Co-product 98.92 Phosgene ž Ž

1.00E+00 Kg Total

1.00E+00 Kg

Notes:

ğ Std. Dev. Quantity Allocated Units Std. Dev. Quantity Unallocated Units Ą LCI components

Kg/kg Phosgen Kg/kg Phosgen Kg/kg Phosgen Kg/kg Phosgen 5.59634E-06 Kg/kg Phosgen 5.55556E-07 Kg/kg Phosgen 1.41667E-05 Phosgene 8 8

2 2 2

5.59634E-06 5.5555E-07 1.41667E-05

Kg/kg Phosgen 5.55556E-07 Kg/kg Phosgen 5.55556E-07			n g/kg Phosgen 0.23 Kg/kg Phosgen 0.72 g/kg Phosgen 0.72 Kg/kg Phosgen 0.0005	This section is where the project specfic calculations take place. Information on LCI components from below is taken and the proper co-product allocation scheme applied. It may be necessary to preface this section with a section detailing the co-product allocation rules or calculations.	Data Quality Indicators (DQI) range from 5 as highest to 1 as lowest. A value of 0 is used when no indicator was reported.	ultiplier Reference	1055.056 CRC, 66th Edition	3600 CRC, 66th Edition	5800000 Chemical Engineers' Handbook, 6th ed.	42 Chemical Engineers' Handbook, 6th ed.	3.785412 CRC, 66th Edition	2.2046226 CRC, 66th Edition	365	6.289811 CRC, 66th Edition	7.2	2000	138000	1032 Chemical Engineers' Handbook, 6th ed.	calculation page B	ated page C SD=13%	molar kg air per kg	air composition Mwt mass composition compo	0.78084	O2 0.20946 31.9988 0.231406 4.321406	CO2 0.00033 44.01 0.000501 1994.319	0 00034 39 948 0 012882	202100
Kg/kg Phosgen 5.55556E			kg Phosgen kg Phosgen kg Phosgen	rere the project specfic ca tion scheme applied. It m ins.	ators (DQI) range from 5	Multiplier Reference	1055.056 CRC, 66th I	3600 CRC, 66th I	5800000 Chemical E	42 Chemical E	3.785412 CRC, 66th E	2.2046226 CRC, 66th P	365	6.289811 CRC, 66th E	7.2	2000	138000	1032 Chemical Er	12000 calculation p	40 Calculated	molar	dry air comp	N N	02	C05	Ar	
HCI	Water	Solid Wastes	Resource Consumption CO Kg/kg Phosgen CI2 Kg/kg Phosgen Activated Carborkg/kg Phosgen	This section is where co-product allocation rules or calculations.	Data Quality Indic	Unit to		001	3TU CrO	gal STH diesel		Ð	day	ob! (petroleum)	b CrO	Q	3TU fuel oil	BTU NG	BTU Coal		/8.1134	70.9	112.56	147.01	36.4609	9.9971	
-			Resi	Notes: T	Conversion Factors	from	BTU	•	5	bbl gardidesel B				_	Б _		_	cu. ft NG B	Ib Coal (dryBTU Coal		MW Benzen	Mw Chlorin	MW CIBZ	Mw CI2Bz	Mw HCI	Mw NaOH 39.9971	

Calculations	0.042296	mol/liter	42.29634021 mol/m ^A 3		1.225075005 kg/m^3	/m^3			5
Source:	Phosgene None	Phosgene Production None			1993				
Source:	Phosgene proc SRI 1991 Direct Utilization ratio:	Phosgene production capacity SRI 1991 Directory of Chemical I MIb Utilization ratio: cher	Phosgene production capacity SRI 1991 Directory of Chemical Producers, US Mib Utilization ratio: chemical industry average 199	erage 199 Ca	2290 9 0.9 Capacity Ca	Calculated production:	fuction:		
	Van de Mark Chen Olin Corporation BASF Corporation Miles Inc.	ark Chemical Con oration poration	Van de Mark Chemical ComLockport, NY 14094 Olin Corporation Lake Charles, LA 70602 BASF Corporation Geismar, LA 70734 Miles Inc. Baytown TX 77520	MIb 1602	1b Mlb 20 254 320 450	228.6 288 288 405			
Source:	Emissions: TRI databa The Van de	Emissions: TRI database, 1993 data The Van de Mark plant is th	Emissions: TRI database, 1993 data The Van de Mark plant is the only manufacturer of phosgene for open sale on the market so only its TRI data are used	of phosgene	e for open sale o	on the marke	t so only its TRI da	a are used	
	The follow	ing reported emis	The following reported emissions were ascribed to Phosgene production Phosgene	to Phosgene	e production 8h		Chlorine	Carbon monoxideHCI	HCI
	Van de Mark Chen Olin Corporation BASF Corporation Miles Inc.	ark Chemical Con oration poration	Chemical ComLockport, NY 14094 tion Lake Charles, LA 70602 ration Geismar, LA 70734 Baytown TX 77520	1602	÷	5.56E-07 1.71E-07 2.43E-08 6.30E-07 1.133333333	1.42E-05 1.30E-04 7.29E-08 1.98E-05 1.394335512		5.56E-07 2.42E-05 2.57E-04 1.06E-05 9.84265E-06
	LCI component Fossil fuel (general) Coal Oil Natural Gas Hydropower Fission Electricity (generic)	LCI component Fossil fuel (general) Coal Oil Natural Gas Hydropower Fission	Raw/ Raw/ Input Units Input Quan. MJ/kg Phosgen 0	Raw/ out Quan. Inp 0 0 0 0 0 75737838	Raw/ Raw/ Input Quan. Input Std. Dev. 0 0 0 0 0 0 0 0 0 0 0.375737838	ō	Transformed Units MJ/kg Phosgene Kg/kg Phosgene Kg/kg Phosgene	Transformed Quan. 0 0 0 0 0 0 0	Transformed Std. Dev.
	Cooling water 25 0.104482	ooling vater 25 deg C temp rise 0.104482 heat removal MJ/kg water		4179285 he	0.004179285 heat capacity MJ/Kg/deg C (see pCl3 sheet)	'Kg/deg C (se	ee pCl3 sheet)		

0.7 efficiency				Industrial practice is to leave excess	
ctricity usage fo			Transformed Std. Dev.	Std. Dev.	Transformed
0.263016316 MJ/Kg phosgene 0.375737595 Refrigeration electricity usage fo	tage f material s s	â,	Transformed Quan. 0 0 0 0.23 0.72 0.0005 0	Transformed Quan. 0 0 0 1.41667E-05 0 5.59634E-06 5.55556E-07 5.55556E-07 0 0	Transformed
0.263016316 0.375737595	Based on viscosity and density of water for a 250 ft static head per pumping stage in 40hr week & 52 week year daytime operation. multiply by specific gravity of material and relative viscosity to that of water. Sp grav Sp visc kgflow/kg prod 1.392 t.5 MJ/kg Phosgen 1.6438E-07 viscosity is a guess 1.402 t.610 provine 7.8726E-08 viscosity is a guess	0 2.43106E-07 total pumping energy per kg prod	Transformed Units 4 Kg/kg Phosgene	Transformed Units Kg/kg Phosgene	Transformed
2Ocal/mol	r a 250 ff stati		ğ	, DQi	
6224.3 D Hvap CCI2Ocal/mol	ensity of water for a 2 rear daytime operation of water. kgflow/kg prod 1.5 MJ/kg Phosgen 1 Chlorine	2.517332912	Raw/ Raw/ Input Quan. Input Std. Dev. 0 0 0 0.23 0.72 0.0005	Raw/ Raw/ nput Quan. Input Std. Dev. 0 0 1.42E-05 0 5.56E-07 0 0	Raw/
6224.3	osity and densi & 52 week yea scosity to that (Sp visc 1.5	-	Raw/ Input Quan. 0 0 0.23 0.72 0.0005 0	Raw/ Input Quan. 0 0 1.42E-05 5.59634E-06 5.56E-07 6.56E-07 0	Raw/
	Based on viscosity and density of wa in 40hr week & 52 week year daytim and relative viscosity to that of water. MSp grav Sp visc kgflow/l 1.392 1.5 MJ/kg Fito	-	ndustrial chemicals Raw/ Input Units Kg/kg Phosgen Kg/kg Phosgen Kg/kg Phosgen m^3/kg Phosgen Kg/kg Phosgen Kg/kg Phosgen Kg/kg Phosgen Kg/kg Phosgen	Raw/ Input Units Ir Kg/kg Phosgen	Raw/
0.263016 MJ/kg product 2.517333 Kg/Kg product	7.87E-05 kJ Elec/Kg Based o in 40hr and rela representative mSp grav to storage Phosgene to treatmenPhosgene solutio	See from above	Ces: Faith, Keyes and Clark'e Industrial chemicals Raw/ LCI component Input Units II Oil Kg/kg Phosgen Coal Kg/kg Phosgen RG/kg Phosgen 70.906 Cl2 Kg/kg Phosgen Air Kg/kg Phosgen Air Kg/kg Phosgen Air Kg/kg Phosgen Air	LCI component TSP SOx NOx CI2 CO2 CO Phosgene HCI HC total Heavy meta(Cd+Ni+Cr)	
c water	condenser	cooling water Co-Products:	Resources: Fail LCI Oil Nat Cos 28.0104 CO 70.906 CIZ 12.011 Activate Nat Air Air Air Air Air Air Air		

LCI component	Input Units	Input Quan.	Input Quan. Input Std. Dev.	ğ	Units	Quan.	Std. Dev.	
COD	kg/kg Phosgen	0			5 Kg/kg Phosgene	0		
BOD	kg/kg Phosgen	0			5 Kg/kg Phosgene	0		
Acid, H+ (Phosphoric)	kg/kg Phosgen	0			5 Kg/kg Phosgene	0	_	
Metal ions	kg/kg Phosgen	0			5 Kg/kg Phosgene	0	_	
CI2	kg/kg Phosgen	0			5 Kg/kg Phosgene	0		
CO2	kg/kg Phosgen	0			5 Kg/kg Phosgene	0	_	
00	kg/kg Phosgen	0			5 Kg/kg Phosgene	0	_	
Phosgene	kg/kg Phosgen	0			5 Kg/kg Phosgene	0		
HCI	kg/kg Phosgen	0			5 Kg/kg Phosgene	0		
Heavy metals (Cadmium,	, Nikg/kg Phosgen	0			5 Kg/kg Phosgene	0	•	
Solid waste								

g
Ē
ě
တ

Transformed Transformed Quan. Std. Dev.

Transformed Units

g

Raw/

Raw/

Raw/

LCI component Input Units Input Quan. Input Std. Dev. Production waste (not innertkg/kg Phosgen 0 Heavy metals (Cadmium, Nikg/kg Phosgen 0

00

5 Kg/kg Phosgene 5 Kg/kg Phosgene

Sheet Title:

Ammonia (data for fertilizer production, applied to nitric acid production)

Sheet Description:

This page calculates the vendor-independent emissions from US plants producing fertilizer quality Ammonia. Oil and Natural gas extraction and transportation are not included.

References/Citations:

U.S. EPA. 1995. AP-42, Fifth Edition, Table 8.1-1.

Energy Information Administration. 1994. Manufacturing Consumption of Energy: 1991, DOE/EIA 0512(91).

United States Environmental Protection Agency. 1995. Compilation of Air Pollutant Emission Factors, AP-42.

United States Department of Energy, Energy Information Administration. 1994. Emissions of Greenhouse Gases in the U.S.: 1987-1992, DOE/EIA-0573.

United States Department of Energy, Energy Information Administration. 1993. Annual Energy Review: 1993, DOE/EIA-0384(93).

Summary Output

Co-product Allocation Calculations

1.00E+00 kg Quantity Co-product Ammonia

Units

, Ķ Total

Bbl eq. are calculated on a energy content basis and used to calcuatte the allocated LCI emissions factors. Bbl. of CrO production are scaled by multiplying by the ratio of bbl eq. CrO produced to bbl CrO produced. Notes:

		Unallocated			Allocated				
LCI components		Units	Quantity	Std. Dev.	Units	Quantity	Std. Dev.	Ιδα	
	Air								
	TSP (PM-10)	Kg/Kg Ammon	5.90939E-10		kg/kg TNAZ			4	
	SOx	Kg/Kg Ammon	2.88E-05		kg/kg TNAZ			4	
	Ň	Kg/Kg Ammon	6.13238E-09		kg/kg TNAZ			4	
	8	Kg/Kg Ammon	0.007900001		kg/kg TNAZ			4	
	C02	Kg/Kg Ammon	1.2234		kg/kg TNAZ			4	
	Ammonia	Kg/Kg Ammon	0.0021		kg/kg TNAZ			4	
	Methane	Kg/Kg Ammon	7.47036E-10		kg/kg TNAZ			4	
	other organic	Kg/Kg Ammon	0.004720003		kg/kg TNAZ			4	
	Water								

Solid Wastes

	0.549481458	0.5057511	1.1	0.38
tion	Kg/Kg Ammon	Kg/Kg Ammon	MJ/kg Ammon	MJ/kg Ammon
Resource Consump	Natural Gas Kg/Kg Ammon 0.549481458	Natural Gas	Electric Power	steam
		fuel		

This section is where the project specific calculations take place. Information on LCI components from below is taken and the proper co-product allocation scheme applied. It may be necessary to preface this section with a section detailing the co-product allocation rules or calculations.

Notes:

Data Quality Indicators (DQI) range from 5 as highest to 1 as lowest. A value of 0 is used when no indicator was reported.

Process Related Emissions from Ammonia Manufacture for Nitrogenous Fertilizers

U.S. EPA. 1995. AP-42, Fifth Edition, Table 8.1-1.

Table 35

Emission Source	lb/ton of ammonia produced CO SO2	a produced SO2	NH3	C02		Total Organic Compounds
Desulferization Unit	13.8	0.0576				7.2
Carbon Dioxide Regenerator	2			8	2,440	1.04
Condensate Steam Stripper				2.2	6.8	1.2
	15.8	0.0576		4.2	2446.8	9.44
In units of	Kg/Kg ammonia					
	0.0079	0.0000288	90	0.0021	1.2234	0.00472

Notes: Since we know the amount of methane (and hence carbon) used as a feedstock for Ammonia production one can calculate a bound on process related CO2 emissions.

0.024008094 million btu/kg ammonia 1.055232558 kg/ kg Ammonia		
21.78 million btuton ammonia 28.48222965 million btuton N 13241.11482 Btufb N	14.47 Million metric tons C/quad 31.900562 Ib C/million btu 116.8876325 Ib CO2/million btu	Ib CO2/Ib N Ib CO2/Ion N
21.78 million bt 26.48222965 million bt 13241.11482 Btu/b N	14.47 31.900562 116.8876325	1.547722563 lb CO2/lb N 3095,445126 lb CO2/lon N
Feedstock Methane Use	Carbon per unit Methane	

This shows that the CO2 emission factors for process related emissions are based on the carbon value of the feedstock, and the assumption that virtually all carbon is emitted, not used for other purposes.

Emissions from Energy Consumption in Ammonia Manufacture

Energy Information Administration. 1994. Manufacturing Consumption of Energy: 1991, DOE/EIA 0512(91).

United States Environmental Protection Agency. 1995. Compilation of Air Pollutant Emission Factors, AP-42.

United States Department of Energy, Energy Information Administration, 1994. Emissions of Greenhouse Gases in the U.S.: 1987-1992, DOE/EIA-0573.

United States Department of Energy, Energy Information Administration. 1993. Annual Energy Review: 1993,

DOE/EIA-0384(93).

Energy for Nonfuel Purposes (MECS Table A3)
Raw Input
Nitronanale Fertilizers
Quantity

Notes: 52.07% Feedstock Share Units Transformed Input Quantity 289 Tbtu 290 Tbtu Units Natural Gas

Energy for Heat, Power, etc. (MECS Table A4)

Total

0.479279279 Fuel Share 266 Tbtu 10 Tbtu 4 Tbtu Natural Gas Electricity Other

Total Primary Energy Consumption (MECS Table A1)

555 Tbtu 10 Tbtu 568 Tbtu Natural Gas Electricity Other

Large Industrial Boiler Emission Factors (AP-42, Tables 1.4-1 to 1.4-3) Natural gas powered heat source

This factor is given as the sum of filterable and condensible particulate. All PM emissions from N.G. consumption are thought to be < 10 microns in diameter 0.00058 Ib/million btu
0.53295 Ib/million btu
0.07849 Ib/million btu
0.05492 Ib/million btu
0.0492 Ib/million btu
0.03876 Ib/million btu
0.03878 Ib/million btu
0.0317 Ib/million btu
0.00137 Ib/million btu
116.9 Ib/million btu 13.7 Ib/million cubic ft 0.289 Ib/million cubic ft 1.41 Ib/million cubic ft 0.6 Ib/million cubic ft 550 Ib/million cubic ft lb/million cubic ft 53 lb/million cubic ft 67 lb/million cubic ft lb/million cubic ft 308.5 lb/million cubic ft 40 lb/million cubic ft million metric ton 8 14.47 Controlled-Lo NOx Average Controlle Controlled-FGR Uncontrolled Average Methane Non-methane VOC's PM-10 SO2 NOx 200 8

Btu/cubic foot 1,032 Heat Content of Natural Gas (AER, Table A

Emissions from the Use of N.G. in the Manufacture of Ammonia

6.69E-12 kg/kg ammonia 6.13E-09 kg/kg ammonia 9.03E-10 kg/kg ammonia 5.91E-10 kg/kg ammonia 7.47E-10 kg/kg ammonia 3.44E-09 kg/kg ammonia 4.46E-10 kg/kg ammonia Non-methane VOC's CO2 Methane PM-10

Notes: The share of N.G. used as feedstock for Ammonia vs. fuel is used to reduce emissions estimates to account for N.G. not consumed in boilers.

Emission factors are converted into units of lb/million btu, which are multiplied by energy consumption and share of energy used as fuel. Emissions from the consumption of electricity by the industry will be calculated by the electricity module. N.G. is used as a feedstock through a reforming process to produce hydrogen gas. This is the predominant process for ammonia production in the U.S. The hydrogen is reacted with nitrogen to form ammonia. This process results in the production of carbon dioxide and carbon monoxide. Carbon monoxide can be converted back to carbon dioxide through the water-gas shift reaction. Carbon dioxide has

industrial use in several areas including the manufacture of urea from ammonia,

but some carbon dioxide is emitted from the process. These and other process related emissions are treated in Table 25.

Source

Bhat, Mahadev G., Burton C. English, Anthony Turhollow, and Herzron Nyangito. 1993. Energy Use in Synthetic Agricultural Inputs. Revisited,
Report prepared by the Department of Agricultural Economics and Rural Sociology, The University of Tennessee, Knoxville, for Biotuels Feedstock Development Program
Environmental Sciences Division, Oak Ridge National Laboratory, ORNL/Sub/30-99732/2.

Energy Requirements for Fertilizer Production

	3 41.51 (GJ/metric ton)	Btu/kg	,	
Total	41.51	360.468 39376.386 Btu/kg		
Exported Steam Total	0.38	360.468		
	0	0		
Steam	0	0		
ō			nia	
Electricity	7	38693.394 1043.46	MJ/kg Ammo	17
Natural Gas Efectricity Oil	40.79	38693.394	kg/kg Ammonia MJ/kg Ammonia	17.00698487
	Anhydrous Ammonia			

Notes: Taken from Table 16 (p. 26).

Unit from	Unit to	Multiplier	Name	Source:	
nq	₽	56	nq qı		
Hectares	acre	2.471	acre_hect		
kg	Q	2.2046			
hectares	sq. meters	10,000	sqmeters_hect		
meter	feet	3.281			
short tons	Q	2000			
metric tons	kg	1000	kg_mton		
kcal	btu	3.968	btu_kcal		
Joules	btu	9.49E-04			
Galtons Ethanol	Q	6.6			
Gallons Ethanol	pn	0.4			
Hectares	Sq. cm	1.00E+08	•••		
cubic cm	liters	0.001	liters ccm		
liters	gallons	0.264			
sq mile	acres	640	acres_sqmile		
metric tons	short tons	1.102	shortton_metricton	ton	
barrels	gallons	42	gallons_barrel		0
kg	grams	1,000	grams_kg		
cubic foot natural optu	фtп	1,032	btu_cubicft		0
barrel distillate fuemillion btu	emillion btu	5.825	btu_barreloil		o
barrel motor gasol million btu	Imillion btu	5.253	btu_barrelgas		0
Short ton coal	million btu	22.25	Btu_toncoal		0
Barrel LPG	million btu	3.614	3.614 Btu barrellog		

138,690 125,071 86,048

Molecular Wts.

±ÖC	ာတပ	ŌΥ	۵.	z	K20	Ķ	C02	CaSO4	H2SO4	P205	HNO3

NH4NO3

1,008 40,08 16,00 32,06 12,01 35,45 39,10 14,01 14,01 14,01 136,14 98,07 141,94 63,01 80,04

soda caustic Sheet Title: Sheet Description:

This page calculates the vendor-independent emissions from european manufacture of caustic soda.

References/Citations:

SimaPro3 (entry of Nov 18 94)
Average european data for NaOH/Cl2 producers.

taken from:
PWMI/APME, Ecoprofiles of the European plastics industry, 1992-1994
rennet 6: tbl 15 pg 13 and report 5 (allocation)

Summary Output

Co-product Allocation Calculations

Units Quantity Co-product

1.00E+00 Kg

NaOH Chlorine

data after allocation

Total

1 Kg

	σ	
IÖ		
Std. Dev.		
Quantity		
Allocated Units		
Std. Dev.		
Quantity	0.074 0.00002 0.007 0.0008 1.21 0.00018 0.00002 0.00005 0.00005	0.00001 0.000003 0.00034 0.00009
Unallocated Units	COD Kg/Kg soda caus BOD Kg/Kg soda caus Acid as H+ Kg/Kg soda caus Nitrate Kg/Kg soda caus Nitrate Kg/Kg soda caus ammonia Kg/Kg soda caus Grude Kg/Kg soda caus HC's Kg/Kg soda caus unknown (N) Kg/Kg soda caus unknown (N) Kg/Kg soda caus water	Kg/Kg soda caus Kg/Kg soda caus Kg/Kg soda caus Kg/Kg soda caus
LCI components	COD BOD Acid as H+ Nitrate Metal ions CI2 ammonia dissolved orga Crude dissolved subs HC's unknown (N)	COD BOD Acid as H+ Metal ions

က	8	8	က	3		က		က		က	က		က							
										6766029.629	23.09245495		38.66336743							
0.042	0	0.002	0	0.00005	0	0.0028		0.099		1.176505121	1.129783177	0	.217294119	.734851726	5.940913952	0.00046	0.0105	0.59	5.3	0.00002
Kg/Kg soda caus	Dissolved OrganKg/Kg soda caus	suspended solid Kg/Kg soda caus	Kg/Kg soda caus	disKg/Kg soda caus	Kg/Kg soda caus	sodium Kg/Kg soda caus		Production wastekg/Kg soda caus	nption	Kg/Kg soda caus 0.176505121	Kg/Kg soda caus 0	Kg/Kg soda caus	MJ/Kg soda caus 0	MJ/Kg soda caus 0.734851726	LO	Kg/Kg soda caus	Kg/Kg soda caus	Kg/Kg soda caus	Kg/Kg soda caus	
CI2	Dissolved Org	suspended so	crude oil	miscelanious o	total HC's	sodium	Solid Wastes	Production wa	Resource Consumption	Natural Gas	Crude Oil	Coal	Coal	Hydropower	Fission	Iron ore	limestone	Rock salt	Water	sand
										fuel	fuel		fuel							

This section is where the project specific calculations take place. Information on LCI components from below is taken and the proper co-product allocation scheme applied. It may be necessary to preface this section with a section detailing the co-product allocation rules or calculations. Notes:

Data Quality Indicators (DQI) range from 5 as highest to 1 as lowest. A value of 0 is used when no indicator was reported.

	eference	3600 CRC, 66th Edition	5800000 CRC, 66th Edition	42 Chemical Engineers' Handbook, 6th ed.	118500 Chemical Engineers' Handbook, 6th ed.	3.785412 Chemical Engineers' Handbook, 6th ed., Figure 9-4 @ S.G. = .76 and sulfur = 0.5%	2.2046226 CRC, 66th Edition	365 CRC, 66th Edition		7.2 CRC, 66th Edition			
Multiplier	1055.056 Reference	3600	5800000	42	118500	3.785412	2.2046226	365	6.289811	7.2	2000	138000	1032
Multiplier	Unit to	7	7	BTU CrO	gal	BTU dieset	_	q	day	bbl (petroleum)	lb CrO	p	BTU fuel oil
Conversion Factors	Unit from	BTU	Wh	bbl CrO	ppl	gal dieset	gal	kg	yr	m^3	gal CrO	ton	gal fuel oil

Transformed Transformed Transformed Transformed Transformed Std. Dev. Std. Dev. Std. Dev. Probably different mix in US Transformed 0.0105 0.590.00046 0.00002 0 0.217294119 0.734851726 5.940913952 Transformed Transformed 0.129783177 0.176505121 Quan. Quan. Quan. 3 MJ/Kg soda caustic MJ/Kg soda caustic Kg/Kg soda caustic Kg/Kg soda caustic 3 Kg/Kg soda caustic Kg/Kg soda caustic 3 Kg/Kg soda caustic Kg/Kg soda caustic Kg/Kg soda caustic Kg/Kg soda caustic 3 Kg/Kg soda caustic Transformed Transformed Transformed Transformed Average data for 19 european cracking fascilities producing monomer quality soda caustic. g g g SD=11% SD=13% 12000 Chemical Engineers' Handbook, 6th ed. Input Std. Dev. Input Std. Dev. Input Std. Dev. Raw/ Raw/ Raw/ Raw/ PWMI/APME, Ecoprofiles of the European plastics industry, 1992-1994 46 calculation page B -- Calculated page C 0.0105 0.59 3.5 0.71 0.00046 Input Quan. 0.0002 MJ/Kg soda caus Input Quan. MJ/Kg soda caus Input Quan. Raw/ Raw/ Raw/ Raw/ MJ/Kg soda caus Kg/Kg soda caus Kg/Kg soda caus MJ/Kg soda caus MJ/Kg soda caus Kg/Kg soda caus Input Units Input Units Input Units Input Units Raw/ Raw/ Raw/ soda caustic (polymer) Ib Coal (dry) BTU Coal BTU NG report 2, tbl 36 pg 21 soda caustic (other) MJ NG Ethylene Production LCI component LCI component LCI component Material input **Energy input** Natural Gas taken from: Natural Gas Hydropower unspecified cu. ft NG limestone SimaPro3 Rock salt Iron ore Bauxite Output kg NG Fission Water sand Coal Coal Clay ö Calculations

Quan. Std. Dev. 0.074 0.00002 0.007 0.0008 1.21 0 0.00018 0.006 0.0006	Transformed Transformed Quan. Std. Dev. 0.000003 0.00034 0.042 0.042 0.002 0 0.0005 0 0.0005 0 0.0005	0.099
Units Kg/Kg soda caustic	Transformed Transformed Units Units Kg/Kg soda caustic Kg/Kg soda caustic	Kg/Kg soda caustic
ō	DQ	
Input Std. Dev.	Raw/ Input Std. Dev.	
0.074 0.074 0.0002 0.007 0.0008 1.21 0.000018 0.006	Raw/ Input Quan. 0.00001 0.000034 0.00034 0.042 0.0000 0 0.0002 0.00005	0.099
Kg/Kg soda caus Input Quan. Kg/Kg soda caus 0.00002 Kg/Kg soda caus 0.0008 Kg/Kg soda caus 0.0008 Kg/Kg soda caus 1.21 Kg/Kg soda caus 0.00018 Kg/Kg soda caus 0.00018 Kg/Kg soda caustic 0.00002	Raw/ Input Units Kg/Kg soda caus	ert) Kg/Kg soda caus
LCI component TSP SOx NOX CO CO2 HCS HCI total HC's	Water LCI component COD BOD Acid as H+ Nitrate Metal ions CI2 ammonia dissolved organics suspended particles Crude dissolved substances HC's sodium	Production waste (not innert) Kg/Kg soda caus

			•		.							ס			
					Transformed	Std. Dev.						Transformed	Std. Dev.		
99228024 99228024	0	ton-mi/yr 2.42077E+11			Transformed	Quan.						Transformed	Quan.		0.964936049
ton/yr ton/yr	ton-mi/yr	ton-mi/yr			Transformed	Units						Transformed	Units		gal fuel/bbl CrO
						DQ D							g		
					Raw/	Input Std. Dev.						Raw/	Input Std. Dev.		
1798	0	2439.6			Raw/	Input Quan.	0	2439.6	1000	269		Raw/	Input Quan.	0	361
1000 bbl/day	ĒĒ		- 1000	Data for 1990 Raw/	Input Units	Ē	Ē	Ē	Ē		Raw/	Input Units	BTU/ton-mi	BTU/ton-mi	BTU/ton-mi
CrO from Alaska Total	Water Shipping - Lower 48	Water Shipping - Alaska	Crude Oil Transport	Association of Oil Pipe Lines Data for 1990 Raw/		LCI component	Pipelines	Water	Highway/Motor Carrier	Rail			LCI component	Pipelines	Water

	Transformed Std. Dev.	Transformed Std. Dev.	Transformed Std. Dev.
0.553762025 0.385972132	Transformed Quan. 0.011817566 0.043768763 0.021884382 0.122552537 0.018479353	Transformed Quan. 0.001370752 0.003851151 0.004687613	Transformed Quan. 0.00437685 0.009979219 0.022759622 0.016456957 0.064777386 0.000962907 0.001225518
gal fuel/bbl CrO gal fuel/bbl CrO	Transformed Units kg/bbl CrO kg/bbl CrO kg/bbl CrO kg/bbl CrO	Transformed Units kg/bbl CrO kg/bbl CrO kg/bbl CrO kg/bbl CrO	Transformed Units Kg/bbl CrO
	ē	Θ	Θ
	Raw/ Input Std. Dev.	Raw/ Input Std. Dev.	Raw/ Input Std. Dev. D
434	Raw/ Input Quan. 27 100 50 280 280	Raw/ Input Quan. 5.4572 15.3321 18.6622 3.25	Raw/ Input Quan. 25 57 130 94 370 5.5 7
BTU/ton-mi	Raw/ Input Units Ib/1000 gal fuel Ib/1000 gal fuel Ib/1000 gal fuel Ib/1000 gal fuel Ib/1000 gal hauled	Raw/ Input Units Ib/1000 gal fuel Ib/1000 gal fuel Ib/1000 gal hauled	
Highway/Motor Carrier Rail	Water Transport Emissions LCI component SOx CO HC NOx I	Highway Transport Emissions LCI component HC CO NOx HC - transfer	Kalifoad Iransport Emissions LCI component TSP SOx CO HC NOx Aldehydes Organic Acids HC - transfer Sheet End ===================================

This page calculates the vendor-independent emissions from domestic production of sulfuric acid. Oil extraction and transportation are not included The Fertilizer Institute, 1982. The Fertilizer Handbook Sulfuric Acid (for phosphate wet method production) U.S. EPA. 1995. AP-42, Fifth Edition, Table 8.8-1. References/Citations: Sheet Description: Sheet Title:

	ns Quantity Units 1.00E+00 Kg
	Co-product Allocation Calculations Co-product Quantity H2S04 1.00E+00
Summary Output	Co-product Alloca

Notes: Bbl eq. are calculated on a energy content basis and used to calcualte the allocated LCI emissions factors. Bbl. of CrO production are scaled by multiplying by the ratio of bbl eq. CrO produced to bbl CrO produced.

1 kg

Total

	4 4 4
ğ	
Std. Dev.	
Quantity	
Allocated Units	
Std. Dev.	
Quantity	0.013 0.00405 0.000064
Unallocated Units	Kg/Kg Sulfuric Kg/Kg Sulfuric Kg/Kg Sulfuric
LCI components	SOX CO2 H2SO4

Water

Solid Wastes

Resource Consumption

Notes: This section is where the project specific calculations take place. Information on LCI components from below is taken and the proper co-product allocation scheme applied. It may be necessary to preface this section with a section detailing the co-product allocation rules or calculations.

Data Quality Indicators (DQI) range from 5 as highest to 1 as lowest. A value of 0 is used when no indicator was reported.

Process Emissions from Sulfuric Acid Manufacture (data for phosphoric acid manufacture, applied to general use; HNO3, ion exchange etc.)

U.S. EPA. 1995. AP-42, Fifth Edition, Table 8.8-1.

ε

(2) The Fertilizer Institute. 1982. The Fertilizer Handbook

Suffuric acid is used in the manufacture of many precursors to TNAZ. Emission consist primarily of sulfur dioxide and acid mist. Sulfur dioxide emissions are primarily a function of the conversion efficiency from SO2 to SO3 in the plant.

Emission Factors

Conversion Factors	-actors					
	Unit from	Unit to	Multiplier	Name Sou	Source:	
	pa	q	28	nq q		
	Hectares	acre	2.471	acre_hect		
	kg	Ω	2.2046	lb_kg		
	hectares	sq. meters	10,000	sqmeters_hect		
	meter	feet	3.281	feet_meter		
	short tons	٩	2000	lb_shortton		
	metric tons	kg	1000	kg_mton		
	kcal	ptn	3.968	btu_kcal		
	Joules	btu	9.49E-04	btu_joule		
	Gallons Ethalb	qe qe	6.6	lb_gallon		
	Gallons Ethabu	apn	0.4	bu_gallon		
	Hectares	Sq. cm	1.00E+08	sqcm_ha		
	cubic cm	liters	0.001	liters_ccm		
	liters	gallons	0.264	gallons_liter		
	sq mile	acres	640	acres_sqmile		
	metric tons	short tons	1.102	shortton_metricton	5	
	barrels	gallons	42	gallons_barre	0	
	kg	grams	1,000	grams_kg		
	cubic foot nabtu	abtu	1,032	btu_cubicft	0	
	barrel distilla million btu	million btu	5.825	btu_barreloil	0	138,690
	barrel motor million btu	million btu	5.253	btu_barrelga	0	125,071
	Short ton coamillion btu	anillion btu	22.25	Btu_toncoal	0	
	Barrel LPG million btu	million btu	3.614	Btu_barrellpg		86,048
Molecular Wits.	ž					
	I		1.008			
	0		16.00			
	ರ		35.45			
	×		39.10			
	C02		#REF!			
	CaSO4		#REF!			

	ic acid						<≂taken as representative				
	g/Kg Sulfur	0.048	0.041	0.035	0.0275	0.02	0.013	0.007	0.0035	0.002	٥
SO ₂ Emissions	lb/ton sulfuric Kg/Kg Sulfuric acid	96	82	70	55	40	26	14	7	4	0
0,	_	93	94	92	96	46	86	66	99.5	99.7	100
Conversion Eff.	- SO2 -> SO3										

Suffur dioxide emissions are highly correlated with conversion efficiency. Typical conversion efficiencies are given in AP-42 as 95 to 98%. Sufur emissions can be controlled using standard suffur capture technologies. New Source Performance Standards are also set quite low, at 4 lb/ton of product. Assuming that new plants comply with NSPS limits, but that old plants exist with higher emissions, the emission rate used here is at the upper end of conversion efficiency estimates.

Acid Mist Emission Factors (Where values are given as a range, the midrange is used)

			0.000064 <=taken as representative			
cacid	Controlled		0.000064		0.00103	0.00017
kg/Kg Suffuric acid	UncontrolledControlled	0.000287		0.00085	0.00165	0.00115
	Controlled		0.128		2.06	0.34
lb/ton H2SO4	Uncontrolled Controlled	0.574		1.7	3.3	2.3
	Raw Material	Recovered Sulfur	Elemental Sulfur	Bright Virgin Sulfur	Dark Virgin Sulfur	Spent Acid

Notes: According to AP-42 about 81% of sulfuric acid production is from elemental sulfur burning. Average emission factors are calculated above using the elemental, bright virgin, and dark virgin sulfur factors. The uncontrolled and controlled factors are then averaged.

Carbon Dioxide 8.1 lb/ton sulfuric acid 0.00405 Kg/Kg Sulfuric acid Notes: Carbon dioxide emissions are negligible relative to other sources and are thus neglected.

Chlorobenzene

Sheet Title: Chlorobenzenes (mono- for triphenyl posphine production)

Sheet Description: Emissions are from TRI database.

Engineering calculation (rough) of the Energy requirements based on the cooling and distillation needs.

This page calculates the vendor emissions from a plant producing Chlorobenzenes.

Not included are raw material production or extraction or water and energy use.

References/Citations: Faith Keyes and Clarke's Industrial Chemicals

By F. A. Lowenheim, M. K. Moran

Wiley Interscience, 1975

Perry's Chemical Engineers' Handbook, 6th ed.

McGraw Hill, 1984

AP 42 Ed 4 (1985)

US EPA

Kirk Othmer Encyclopaedia of Chemical Technology

2nd ED, 1964 and 4th Ed, 1991-4

Wiley Interscience,

US ITC 2810 Synthetic Organic Chemicals US production and Sales, 1993

US International Trade Commission, 11.1994

CRC Handbook of Chemistry and Physics, 66th Edition

Summary Output

Co-product Allocation Calculations

US ITC 2810 Synthetic Organic Chemicals US production and Sales, 1993

Source:

US International Trade Commission, 11.1994

Mwt Co-product Quantity Units Quantity Units 112.559 Chlorobenzene 8.85E+07 kg 1.72E+00 kg Not as precursor: 5.15E+07 kg 1.00E+00 kg

15767000 kg

147.091 o-dichlorobenzen

derivative of mono-chlorobenzene

3.06E-01 kg

147.091 p-di trich 36.4609 HCI	147.091 p-dichlorobenzen trichlorobenzenes 36.4609 HCI	32614000 40660216.8	א א א אם אם	6.34E-01 7.90E-01	à à à g	derivative of mono-chlorobenzene Product of chlorination	hlorobenzene		
	Total	1.41E+08 Kg	Kg	2.73E+00 Kg	Kg				
Notes:									
		Unallocated			Allocated				
LCI components	onents Air	Units	Quantity	Std. Dev.	Units	Quantity	Std. Dev.	ō o	
	CI2	Kg/Kg Chlorob 0.004199242	0.004199242		Kg/Kg Chlorob	_			ი ი
	Benzene HCI	Kg/Kg Chlorob 5.32398E-06 Kg/Kg Chlorob 0.0072757	5.32399E-06 0.0072757		Kg/Kg Chlorob Kg/Kg Chlorob	3.096/7E-06 0.004232035			n m
	dichlorobenzene	dichlorobenzenesKg/Kg Chlorob 4.31031E-06	4.31031E-06		Kg/Kg Chlorob	2.50715E-06			ი ო
	ciliolopenzene	Giloropenzene ng/ng Cinolob 7.01001E-03	50-319010.7		מסוסווס מעולע				,
	Water								
	Solid Wastes								
ŭ	Resource Consumption Heat Energy (fos MJ/Kg Chlorob 4.396342073	rtion s MJ/Kg Chlorob	4.396342073		MJ/Kg Chlorob	4.396342073			

This section is where the project specfic calculations take place. Information on LCI components from below is taken and the proper co-product allocation scheme applied. It may be necessary to preface this section with a section detailing the co-product allocation rules or calculations. Notes:

0.693971215 0.629886283 0.008664743

> Kg/Kg Chlorob Kg/Kg Chlorob

2.361E-05

MJ/Kg Chlorob Kg/Kg Chlorob

Kg/Kg Chlorob 0.693971215

2.361E-05

MJ/Kg Chlorob

Electric Power Benzene

Chlorine Kg/Kg Chlorob 0.629886283 Sodium hydroxid Kg/Kg Chlorob 0.008664743 Data Quality Indicators (DQI) range from 5 as highest to 1 as lowest. A value of 0 is used when no indicator was reported.

	nce	1055.056 CRC, 66th Edition	3600 CRC, 66th Edition
	Reference	56 CRC, 6	00 CRC, 6
	Multiplier	1055.0	36
	Unit to	r	7
Conversion Factors	Unit from Unit to	BTU	W

800000 Chemical Engineers' Handbook, 6th ed. 42 Chemical Engineers' Handbook, 6th ed. 118500 Chemical Engineers' Handbook, 6th ed., Figure 9-4 @ S.G. = .76 and sulfur = 0.5% 785412 CRC, 66th Edition 046226 CRC, 66th Edition 365 289811 CRC, 66th Edition 7.2 2000 138000 1032 Chemical Engineers' Handbook, 6th ed. 12000 calculation page B SD=11% 46 Calculated page C SD=13%	kg air per kg mass composition component 0.75521 1.324134 0.231406 4.321406 0.000501 1994.319 0.012882 77.62792
k, 6th ed. k, 6th ed., Figure k, 6th ed. SD=13%	8.0134 1.9988 44.01 39.948 .96409
Handbook Handbook Handbook S	78084 20946 00033 00934 99997 75005
5800000 Chemical Engineers' Handbook, 6th ed. 42 Chemical Engineers' Handbook, 6th ed. 118500 Chemical Engineers' Handbook, 6th ed. 3.785412 CRC, 66th Edition 3.65 6.289811 CRC, 66th Edition 7.2 2000 138000 138000 1032 Chemical Engineers' Handbook, 6th ed. 12000 calculation page B SD=11% 46 Calculated page C	molar dry air compositi N2 O2 CO2 Ar total a
BTU CrO gal BTU diesel L lb day bbl (petroleum) lb CrO lb BTU fuel oil BTU NG iBTU Coal	78.1134 70.9 112.56 147.01 36.4609 39.9971 nsity at 15 C (60 R
bbi CrO BTU CrO bbi gal diesel BTU diesel gal diesel BTU diesel gal L kg lb yr day m^3 bbi (petroleu gal CrO lb CrO ton lb gal fuel oil BTU fuel oil cu. ft NG BTU NG lb Coal (dryBTU Coal kg NG MJ NG	Mw Benzen Mw Chlorin Mw Cl2Bz Mw Cl2Bz Mw HCI Mw HCI Mw NaOH 39.9971 Ideal gas density at 0.042296 mol/liter

Chlorobenzene Production

Energy input All energy is assumed to come from the heat of combustion in the formation of CO, which is recoverable.

	Raw/	Raw/	Raw/		Transformed	Transformed Transformed	Transformed
LCI component	Input Units	Input Quan.	Input Quan. Input Std. Dev.	ğ	Units	Quan.	Std. Dev.
Fossil fuel (general)	MJ/kg Chlorobe 4.396342073	4.396342073				0.157507219	
Coal	MJ/kg Chlorobe	U			kg/kg Chlorobenze	0	
Oil	MJ/kg Chlorobe	J	15		kg/kg Chlorobenze	0	0.33622909
Natural Gas	MJ/kg Chlorobe	0			kg/kg Chlorobenze	0	
Hydropower	MJ/kg Chlorobe	Ü					
Fission	MJ/kg Chlorobe	O					

Probably different mix in US

2.361E-05
MJ/kg Chlorobe
(generic)
Electricity

Material input

Faith Keyes and Clarke's Industrial Chemicals

Source:

By F. A. Lowenheim, M. K. Moran

Wiley Interscience, 1975

from Faith Keyes and Clark's Industrial chemicals, 1975 Benzene batch Chlorination method (CI2 bubbled through)

Stoichiometric ratios:

100% conversion of Benzene Kg/Kg Chlorob 0.693971215

Kg/Kg Chlorob 0.629886283 Benzene net CI2 net

Cl2 input - no recycle

Chlorine input

Benzene input

100% conversion of Benzene Kg/Kg Chlorob 0.693971215

Kg/Kg Chlorob 0.634085525 Kg/Kg Chlorob 1.049810471

60% conversion of Cl2 99% Cl2 recovery - assumed, because of bubbling apparatus

Emission calculation

released in scrubber vent see calculation 1% Uncoverted CI2 Kg/Kg Chlorob 0.004199242 0.0072757 **Kg/Kg Chlorob** Ci2 released from process HCI released

Kg/Kg Chlorob

Particulates Benzene

C02

Kg/Kg Chlorob 5.32399E-06 Kg/Kg Chlorob

open neutralizer vent

7.01061E-05 Kg/Kg Chlorob 4.31031E-06 Kg/Kg Chlorob mono Chlorobenzene

o dichlorobenzene p dichlorobenzene

Sox

Kg/Kg Chlorob Kg/Kg Chlorob

0

000

Kg/Kg Chlorob Kg/Kg Chlorob Heavy metals

HCI emission calculation

Vapor pressure of 1mmHg over water solution 20%

Open scrubber assumed to equilibrate so that vapor containing 1/760 parts volume HCI is displaced from

the scrubbing chamber by the incoming water/HCl stream

7.90E-01 Kg HCl produced/Kg Chlorobenzene

g emission on 5.32E-06 7.01E-05 4.31E-06 0	
, ed	Transformed Transformed
Raoult's law vapor comp 100 mmHg 0.001314 13.05454545 mmHg 0.0120081 2.150895141 mmHg 0.0005652 0 mmHg 0.0051867653 mol gas displaced/kg CIBz 0.051867653 mol gas displaced/kg CIBz Quan. Std. Dev G Chlorobenzene G Chlorobenz 0.629886283 G Chlorobenz 0.629886283 G Chlorobenz 0.008664743 G Chlorobe	
2	Transformed
3.949340383 Kg HCl stream 0.0072757 Kg HCl (1/760) 44% 0.006315964 Bz 0.637083303 ClBz 0.237733822 Cl2Bz-0 2.0.718866911 Cl2Bz-p solid a CRC 66 interpolated 0.00122629 m^3 1,280.00 kg/m^3 1,280.00 kg/m^3 Rg/Kg Kg/Kg	Raw/
	Raw/ Ra
ation r vent assumed to be at 2 0.01 0.781134 0.7 78.792 0.2 29.402 0.1 14.701 123.6761 obenzine product/kg mon density of CIBz at end of Kg/Kg Chlorob 0.69397 Kg/Kg Chlorob 0.69388	Raw/
HCI sol. density kg/m³3(roug 1100 1CRC 66 Coverall pressure mmHg 761 CRC 66 Coverall pressure (atm) mmH 761 CRC 66 Composition (mol%) 78.11 0.01 0.781134 CIBz 29% con 178.11 0.01 0.781134 CIBz 112.56 0.7 78.792 CI2Bz-0 147.01 0.1 14.701 0.1 14.701 Source: FKC 75 4ed 147.01 0.1 14.701 123.676134 vapor displacement by chlorobenzine product/kg mono CIB density of CIBz at end of react component by CIBz at end of react conditions above Raw/ Raw/ Raw/ Raw/ Input Units Input Quan. In Oil Input Units Input Quan. In Oil Ray/ Ray/ Ray/ Ray/ Ray/ Chlorob 0.693971215 Chlorine Ray/ Ray/ Ray/ Chlorob 0.693971215 Chlorine Ray/ Ray/ Ray/ Chlorob 0.693986283 Sodium hydroxide (dry bassi Kg/Kg Chlorob 0.008664743 Clay Kg/Kg Chlorob 0.008664743 Clay Ray/ Ray/ Chlorob 0.008664743 Clay	
HCI sol. density HCI partial press HCI partial pressure Composition (m Bz 99% con CIBz CI2Bz-0	

×	v.
Std. Dev.	Transformed Std. Dev.
Quan. 0	Transformed Quan. 0.00128 0.000001
Units Kg/Kg Chlorobenz	Transformed Units Kg/Kg Chlorobenz Kg/Kg Chlorobenz
ō	ō
Input Quan. Input Std. Dev. 0 0 0 0 0 0 0 0 0 0 0 0	Raw/ Raw/ Input Quan. Input Std. Dev. 0 0
	Raw/ Input Units In not innert)Kg/Kg Chlorob Kg/Kg Chlorob Kg/Kg Chlorob
LCI component Input Units COD BOD Acid as H+ Kg/Kg Chlorob Metal ions CI2 Dissolved Organics Suspended solids Crude oil Miscelanious dissolved mateKg/Kg Chlorob Miscelanious dissolved mateKg/Kg Chlorob Miscelanious dissolved mateKg/Kg Chlorob Phenol Solid waste	LCI component Production waste (not in Toxic chemicals Ash

	material pumDistillation pump for co Ele kJ Elec/Kg pkJ/kg prod m^3/kg prodkJ Elec/Kg pkJ 0.005511 0.005511	7 pumping st KJ Elec/Kg	cooling value of water 19,99683 Btu/lb 46,509688 kJ/kg				
	bump for colky Elec/Kg pl	0.078726 7.873E-05	t Tue				
	Sis) Refrigeration water flow Joules/kg prod KJ/kg prod 393.5171 from mono 605.41099 0.1649158 1011.5387 -393.5171 from mono 605.41099 0.1649158 2092.572	/413./123	250 ft representative head value 65% heat removal efficiency 150/371 production factor for plant 40 hr week 52 week year 77.50% pump efficiency	NJN9 2263.94704 both 9791.84113 light 12.3968043	377.625493 both 9440.63733 light 1.99812103	1283.8316 both 2322.65717 light 18.0344903	1162.7003 2704.27004 3605.6934 4
	n mono	from benzen 61 water requir		1403.3333 3 4210 8	4059	998.62595	1162.7003
	kJoules/kg prod -393.5171 from mono	E 0176:516-		ap nulg b	nol 9634.7 437.7505 9301.3 497.75232	437.7505	10098 458.80043 10943 497.19283 10611
	DHrx (synthesis) kcal/mol kJou -13.839 -39 -13.839 -39	n 0 0 1	0% heavy, 10	cal/mol cal/mol 9368.5 10254	cal/mol 9634.7 9301.3 ?	cal/mol 9634.7 9301.3 ?	10098 10943 10611
12ene 3.S	DHfo kcal/mol es 39.995 es 39.995		75% to 100% with 1	126.3 Btu req 118.9 Btu req 0.06 toluene 0.03 benzene 0.01 waste	405.9 Btu req 260.1 Btu req 2.4 styrene 0.1 Bz&tol 0.01 waste	1308.2 Btu req 1318.9 Btu req 1.06 styrene 1.31 ethylBz 0.01 waste	1023.1763 Btu req 1318.9 Btu req 0.12 CI2Bz-o 0.88 CIBz CI2Bz-p CI2Bz-m
mono chlorobenzene dichlorobenzenes	dichlorobenzenes	Horio Giloroperizene HCI Benzene	separations Distill mono from minimum energy	Heat Cool 110.6 80.1 Medium/Eas	Heat Cool 145.2 43333	Heat Cool 145.2 136.2	Heat 10 Cool 180.5 132 17611 174
kg kg	15767000 o 32614000 p			92.15 1	104.16 145.2 87.613333 100.43333	104.16	147.01 11.2.56 147.01
1993 8.85E+07 48381000	Capacities production MIb 50 15767000 75 32614000	<u> </u>					

Sheet Title:

benzene (for chemical and styrene monomer production)

Sheet Description:

This page calculates the vendor-independent emissions from european refineries producing technical quality benzene

Included are oil extraction and transportation from the well head to the refinery.

References/Citations:

(entry of Nov 18 94) SimaPro3

Average data for 19 european cracking fascilities producing monomer quality ethylene.

taken from:

PWMI/APME, Ecoprofiles of the European plastics industry, 1992-1994

report 4, tbl 12 pg 10

Summary Output

Co-product Allocation Calculations

Units Quantity Co-product benzene

1.00E+00 Kg

-Kg Total

	ი ი	ကက	က	ო ო	က	က				•	9	က	က	က
DQI														
Std. Dev.								-						
Quantity														
Allocated Units														
Std. Dev.														
Quantity		0.0068		0.000005		Ŭ		0.00008	0.000001	0000	0.0002	0.00002	0.00004	0.00036
Unallocated Units	COD Kg/Kg benzene BOD Kg/Kg benzene	Kg/Kg benzene Kg/Kg benzene	Kg/Kg benzene	Kg/Kg benzene Kg/Kg benzene	ani Kg/Kg benzene	Kg/Kg benzene	staKg/Kg benzene	Kg/Kg benzene	unknown (N) Kg/Kg benzene	Sucreed Sylvy	Parisa perizerie	Kg/Kg benzene	Kg/Kg benzene	Kg/Kg benzene
LCI components	COD	Acid as H+ Nitrate	Metal ions	CI2 ammonia	dissolved org	Crude	dissolved sub	HC.s	unknown (N)	000		BOD	Acid as H+	Metal ions

ммммм м	м	3 #VALUE!	#VALUE! #VALUE!	က			
		30150000 6108333.333	111.0362948 5.623605447	4.079816828			
0.00009 0.00015 0.0001 0.00054 0.00008	0.00966	0.786521739 0.159347826	0.624041192 0.031605534	0.000358269 0.022929203	0.07 0.2 0.000.015	0.00011	0.0058 0.00002 2.209
Ci2 Kg/Kg benzene Dissolved Organkg/Kg benzene suspended solid Kg/Kg benzene crude oil Kg/Kg benzene miscelanious dis Kg/Kg benzene total HC's Kg/Kg benzene total HC's Kg/Kg benzene	Solid Wastes Production wastekg/Kg benzene ource Consumption			Kg/Kg benzene Kg/Kg benzene		Kg/Kg benzene Kg/Kg benzene	Kg/Kg benzene Kg/Kg benzene Kg/Kg benzene
CI2 Dissolved O suspended i crude oil miscelaniou total HC's	Solid Wastes Production wast4Kg/ Resource Consumption	Natural Gas fuel Natural Gas	Crude Oil fuel Crude Oil	Coal fuel Coal	Hydropower Fission fron ore	limestone Bauxite	Rock salt Clay Water

This section is where the project specific calculations take place. Information on LCI components from below is taken and the proper co-product allocation scheme applied. It may be necessary to preface this section with a section detailing the co-product allocation rules or calculations. Notes:

Data Quality Indicators (DQI) range from 5 as highest to 1 as lowest. A value of 0 is used when no indicator was reported.

Conversion Factors Unit from BTU	_	Multiplier 1055.056	Unit to Multiplier Reference J 1055.056 CRC, 66th Edition
bbl CrO	BTU CrO	5800000 5800000 42	5800000 Chc., boilt Edition 5800000 Chemical Engineers' Handbook, 6th ed. 42 Chemical Engineers' Handbook. 6th ed.
gat diesel		118500	118500 Chemical Engineers' Handbook, 6th ed., Figure 9-4 @ S.G. = .76 and sulfur = 0.5% 3.785412 CRC, 66th Edition
, Å	q	2.2046226	2.2046226 CRC, 66th Edition
yr	day	365	
m ^A 3	bbl (petroleum)		6.289811 CRC, 66th Edition

	Transformed Std. Dev.		Transformed Std. Dev. mix in US Transformed Std. Dev.	
	Transformed Quan.	0	Transformed Transform Quan. Std. Dev 0.022929203 0.031605534 0.159347826 0.07 0.2 Probably different mix in US Transformed Transform Quan. Std. Dev 0.624041192 0.000358269 0.00015 0.00015 0.00015 0.00015 0.00058 0.00058 0.00058 0.00058 0.00058 0.00058 0.00058 0.00058 0.00058 0.00058 0.00058 0.00002	
	Transformed Units		Transformed Units Kg/Kg benzene Kg/Kg benzene Kg/Kg benzene MJ/Kg benzene MJ/Kg benzene MJ/Kg benzene Kg/Kg benzene	
Sth ed. SD=11% SD=13%	90	zene.	D D D D D D D D D D D D D D D D D D D	
s' Handbook, (Raw/ Input Std. Dev.	onomer quality ben: 192-1994	Raw/ Input Std. Dev. Raw/ Input Std. Dev.	••••
Chemical Engineer calculation page B Calculated page C	Raw/ Input Quan.	es producing mo tics industry, 19	Raw/ Input Quan. 0.64 1.41 7.33 0.07 0.2 Raw/ Input Quan. 27.84 36.18 0.01 0.00015 0.00022 0.00058	
7.2 2000 138000 1032 (12000 c	Raw/ Input Units 1 Kg	9 european cracking fascilities producing monomer quality benzene. profiles of the European plastics industry, 1992-1994 21	Raw/ Input Units MJ/Kg benzene Kg/Kg benzene Kg/Kg benzene Kg/Kg benzene	!
gal CrO Ib CrO ton Ib gal fuel oil BTU fuel oil cu. ft NG BTU NG Ib Coal (dry) BTU Coal kg NG MJ NG	Ethylene Production LCI component benzene (polymer)	SimaPro3 Average data for 19 european cracking fascilities producing monomer q taken from: PWMI/APME, Ecoprofiles of the European plastics industry, 1992-1994 report 2, tbi 36 pg 21	Energy input LCI component Coal Oii Natural Gas Hydropower Fission Material input LCI component Oil Natural Gas Coal Iron ore Ilimestone Bauxite Rock salt Clay	
Calculations				

Output Air

ю	0	
Std. Dev.	Transformed Std. Dev.	
Transformed Quan. 0.0009 0.003 0.0068 0.0006 0.54 0.000005 0.00015 0.0003	Transformed Quan. 0.0002 0.00002 0.00004 0.00009 0.00009 0.00009 0.000015 0.00015 0.000015 0.000015	0.00966
Transformed Units Kg/Kg benzene	Transformed Units Kg/Kg benzene	Kg/Kg benzene Kg/Kg ethylene
ō	Dg	
Raw/ Input Std. Dev.	Raw/ Input Std. Dev.	
Raw/ Input Quan. 0.0009 0.0068 0.0068 0.0006 0.54 0.000005 0.00015	Raw/ Input Quan. 0.0002 0.00004 0.00001 0.00009 0.00009 0.00009 0.000015 0.00015	0.00966
Raw/ Input Units Kg/Kg benzene	Raw/ Input Units Kg/Kg benzene	nert) Kg/Kg benzene Kg/Kg ethylene
LCI component TSP SOx NOX CO CO2 H2S HCI total HC's	Water LCI component COD BOD Acid as H+ Nitrate Metal ions CI2 ammonia dissolved organics suspended particles Crude dissolved substances HC's unknown (N)	Solid waste Production waste (not innert) Kg/Kg benzene Toxic chemicals Kg/Kg ethylene

Benzene Coal

Coal type	Moistur	eSulfur		Heat va	llue			
	%	%	%dry	Btu/lb	Btu/lbdi	y		
Sub bit C	26	0.3	0.41	8230	11122			
HV bit A	2.9	0.6	0.62	14170	14593	low sulfu	ur coal he	eating value
Sub bit B	22.2	0.5	0.64	9610	12352			
Brown CGerman	55	0.3	0.67	4830	10733			
Sub bit A	13.9	0.6	0.70	10330	11998	SD=	1296	0.108
Meta Anthracite	9	0.7	0.77	10080	11077	Avg=	11979	
LV bit	2.9	0.8	0.82	14400	14830	median		
Anthracite	4.3	8.0	0.84	12880	13459			
Lignite	36.8	0.9	1.42	7000	11076			
MV bit	2.4	1.5	1.54	14490	14846			
Semi anthracite	2.1	1.7	1.74	13700	13994			
HV bit B	6.7	2.6	2.79	12390	13280			
HV bit C	15.4	2.9	3.43	10740	12695			

bit=Bituminous V=Volatility L=low M=Medium

H=high

Source: Kirk Othmer vol 4 1949

Benzene NG

Natural gas

Mw	t heat v	aluRio Arri	bTerrell,	TStanton,	San Jua	Olds Fie	Cliffside,	Texas		
mol%	MJ/M [/]	3								
Methane 16	.04 37.5	7 96.91	45.64	67.56	77.28	52.34	65.8			
ethane 30	.07 65.83	3 1.33	0.21	6.23	11.18	0.41	3.8			
propane 4	4.1 93.6	0.19		3.18	5.83	0.14	1.7			
butane 58	.12 12°	0.05		1.42	2.34	0.16	0.8			
pentane 72	.15 148.8	0.02		0.04	1.18	0.41	0.5			
CO2 44	.01	0.82	53.93	0.07	0.8	8.22				
H2S 34	.08 23.7	7	0.01			35.79				
N2 28	.01 (0.68	0.21	21.14	1.39	2.53	25.6	a۱	vg	SD (rel)
Mol wt:		16.63	31.18	20.92	21.28	25.49	20.45	•	19.61	10.79%
heating MJ/	M^3	37.6	17.3	34.9	46.8	30	30.7	3	39.77	12.81%
MJ/	KG	50.66	12.43	37.37	49.25	26.36	33.63	4	45.76	13.03%
0.02	224 M ^3/mo	ı	too high			too high	too low			
			CO2			Sulfur	heating			
			content	for		content	value(?)			
			use							

Source: Kirk Othmer Ed 4 vol 12 1993

MJ/m³

Heating values for processed city natural gas: source Perry 6 (1964)

averaged from table 9-14

Btu/scf 1050

Synopsis of table 9-14

Mwt	heat val	Baltimo	rColumb	Housto	nBurming	gWashin	gPhoenix		
mol%	MJ/M^3	Md	Ohio	Tx	Al	DC	Az		
Mathana 16 04	27.57	04.4	02.14	02.5	02.14	05.15	87.37		
Methane 16.04	37.57	94.4	93.14	92.5	93.14	95.15	01.31		
ethane 30.07	65.83	3.4	3.58	4.8	2.5	2.84	8.11		
propane 44.1	93.6	0.6	0.66	2	0.67	0.63	2.26		
butane 58.12	121	0.5	0.22	0.3	0.32	0.24	0.13		
pentane 72.15	148.8	0	0.09	0	0.12	0.05	0		
CO2 44.01	0	0.6	0.85	0.27	1.06	0.62	0.61		
H2S 34.08	23.7		0.01						
N2 28.01	0	0.5	0.21	21.14	2.14	0.42	1.37	avg	SD (rel)
Mol wt:		17.13	16.94	23.38	17.33	16.96	18.18	18.32	15.84%
heating MJ/M^3	3	39.2	38.34	38.46	38.2	38.87	39.95	38.84	1.10%
MJ/KG		51.27	50.71	36.84	49.37	51.32	49.22	48.12	13.30%

0.0224M^3/mol

Sheet Title:

Chlorine

This page calculates the vendor-independent emissions from european manufacture of chlorine gas. Sheet Description:

References/Citations:

SimaPro3 (entry of Nov 18 94)
Average european data for NaOH/Cl2 producers.

taken from:
PVVMI/APME, Ecoprofiles of the European plastics industry, 1992-1994
report 6, tbl 15 pg 13 and report 5 (allocation)

Summary Output

Co-product Allocation Calculations

Units Co-product

Quantity 1.00E+00 Kg chlorine NaOH

data after allocation

ے چ Total

	ကက	ი ი	m m d	က က	က	ကက
ō						
Std. Dev.						
Quantity						3375000 14.11883921
Allocated Units						
Std. Dev.						
Quantity		00	0.042		0.099	0.088043478 0.079350065
Unallocated Units	Kg/Kg chlorine Kg/Kg chlorine	Kg/Kg chlorine Kg/Kg chlorine	Cl2 Kg/Kg chlorine suspended solid Kg/Kg chlorine	uls rg/Kg chlorine Kg/Kg chlorine	Solid Wastes Production wasteKg/Kg chlorine	mption Kg/Kg chlorine Kg/Kg chlorine
LCI components Air	Water COD BOD	Acid as H+ Metal ions	CI2 suspended so	sodium	Solid Wastes Production was	Resource Consumption Natural Gas Kg/l Crude Oil Kg/l
ΓCI						fuel

က

43.15681238							
0.242547977	0.72	6.14	0.00065	0.0186	1.21	6.0	0.00002
			Kg/Kg chlorine				
Coal	Hydropower	Fission	Iron are	limestone	Rock salt	Water	sand
fuel							

This section is where the project specfic calculations take place. Information on LCI components from below is taken and the proper co-product allocation scheme applied. It may be necessary to preface this section with a section detailing the co-product allocation rules or calculations. Notes:

Data Quality Indicators (DQI) range from 5 as highest to 1 as lowest. A value of 0 is used when no indicator was reported.

						4 @ S.G. = .76 and sulfur = 0.5%											
		lition	lition	5800000 Chemical Engineers' Handbook, 6th ed.	Chemical Engineers' Handbook, 6th ed.	118500 Chemical Engineers' Handbook, 6th ed., Figure 9-4 @ S.G. = .76 and sulfur = 0.5%	lition	lition		lition				1032 Chemical Engineers' Handbook, 6th ed.	ige B SD=11%	ige C SD=13%	
	Reference	CRC, 66th Edition	CRC, 66th Edition	Chemical Eng	Chemical Eng	Chemical Eng	CRC, 66th Edition	2.2046226 CRC, 66th Edition		6.289811 CRC, 66th Edition				Chemical Eng	12000 calculation page B	46 Calculated page C	
	Multiplier	1055.056	3600	2800000	42	118500	5412	2.2046226	365	6.289811	7.2	2000	138000	1032	12000	46	
	Unit to	7	7	BTU CrO	gal	BTU diesel	_	kg lb 2.2046	day	bbl (petroleum)	ib CrO	<u>Q</u>	BTU fuel oil	BTU NG	lb Coal (dry) BTU Coal	MJ NG	
Conversion Factors	Unit from	BTU	Wh	bbl CrO	lqq	gal diesel	gal	kg	y	m ^A 3	gal CrO	ton	gal fuel oil	cu. ft NG	lb Coal (dr)	kg NG	Calculations

Ethylene Production

	Raw/	Raw/	Raw/		Transformed	Transformed	Transformed
LCI component	Input Units	Input Quan.	Input Std. Dev.	ğ	Units	Quan.	Std. Dev.
chlorine (polymer)	1 Kg			ဇ			
chlorine (other)							

Average data for 19 european cracking fascilities producing monomer quality chlorine. taken from: SimaPro3

0

PWMI/APME, Ecoprofiles of the European plastics industry, 1992-1994 report 2, tbl 36 pg 21

Energy input								
	Raw/	Raw/	Raw/		Transformed	Transformed	Transformed	
LCI component	Input Units	Input Quan.	Input Std. Dev.	ğ	Units	Quan.	Std. Dev.	
Coal	MJ/Kg chlorine	6.77			3 Ka/Ka chlorine	0.242547977		
lio	M.I/Ka chlorine	3.54				0.079350085		
Notice Co.	M INC other					0000000000		
Natural Gas	automograme	0.4				0.088043478		
Hydropower	MJ/Kg chlorine	0.72			3 MJ/Kg chlorine	0.72		
Fission	MJ/Kg chlorine	6.14			3 MJ/Kg chlorine	6.14		
						Probably different mix in US	nt mix in US	
Material input								
	Raw/	Raw/	Raw/		Transformed	Transformed	Transformed	
LCI component	Input Units	Input Quan.	Input Std. Dev.	g	Units	Quan.	Std. Dev.	
ĪŌ	MJ/Kg chlorine	0			3 Kg/Kg chlorine	0		
Natural Gas	MJ/Kg chlorine	0			3 Kg/Kg chlorine	0		
Coal	MJ/Kg chlorine	0			3 Ka/Ka chlorine	0		
Iron ore	Kg/Kg chlorine	0.00065			3 Kg/Kg chlorine	0.00065		
limestone	Kg/Kg chlorine	0.0186				0.0186		
Bauxite	Ka/Ka chlorine	0						
Rock salt	Ka/Ka chlorina	1 2 4			_	, ,		
Con sail	יישראל ביוויסווים	17.1				17:1		
Clay	Kg/Kg chlorine	0			Kg/Kg chlorine	0		
Water	Kg/Kg chlorine	6.0			3 Kg/Kg chlorine	6.0		
sand	Kg/Kg chlorine	0.00002			3 Kg/Kg chlorine	0.00002		
tirdii.C								
Carput								
Air								
	Raw/	Raw/	Raw/		Transformed	Transformed	Transformed	
LCI component	Input Units	Input Quan.	Input Std. Dev.	ğ	Units	Quan.	Std. Dev.	
TSP	Kg/Kg chlorine	0.0035			Ka/Ka chlorine	0.0035		
SOx	Ka/Ka chlorine	0.012			Ka/Ka chlorine	0.012		
XON	Ka/Ka chlorine	0.007			Ka/Ka chlorine	2000		
C	Ka/Ka chlorina	80000			Ka/Ka oblorino	00000		
	אליואל כוווסווום	0.0008			Aging cillorine	0.000		
COS	Kg/Kg chlorine	1.21			Kg/Kg chlorine	1.21		
HZS	Kg/Kg chlorine	0			Kg/Kg chlorine	0		
무	Kg/Kg chlorine	0.00018			Kg/Kg chlorine	0.00018		
total HC's	Kg/Kg chlorine	900'0			Kg/Kg chlorine	0.006		
					•			
Heavy metals	Kg/Kg chlorine	0.000002			Kg/Kg chlorine	0.000002		
	·							
Water								
	Raw/	Raw/	Raw/		Transformed	Transformed	Transformed	

Std. Dev.	
Quan. 0.00001 0.000034 0.00009 0.00009 0.042 0 0 0.002	0.099
Units Kg/Kg chlorine	Kg/Kg chlorine Kg/Kg chlorine
ō	
Input Std. Dev.	
0.00001 0.00003 0.00034 0.00039 0.0042 0.0042 0 0 0 0.002 0.002 0	0.0099
Input Units Kg/Kg chlorine	iert) Kg/Kg chlorine Kg/Kg chlorine
LCI component COD BOD Acid as H+ Nitrate Metal ions CI2 ammonia dissolved organics suspended particles Crude dissolved substances HC's sodium	Production waste (not innert) Kg/Kg chlorine Toxic chemicals Kg/Kg chlorine

CrO from Alaska Total	1000 bbl/day	1798			ton/yr ton/yr	99228024 99228024	
Water Shipping - Lower 48 Water Shipping - Alaska	3 <u>a</u> . <u>a</u> .	0 2439.6			ton-mi/yr ton-mi/yr	0 2.42077E+11	
Crude Oil Transport Association of Oil Pipe Lines Data for 1990	les Data for 1990						
LCI component Pipelines Water Highway/Motor Carrier Rail	Raw/ Input Units mi mi	Raw/ Input Quan. 0 2439.6 1000	Raw/ Input Std. Dev.	ΙΘ	Transformed Units	Transformed Quan.	Transformed Std. Dev.
LCI component Pipelines Water Highway/Motor Carrier Rail	Raw/ Input Units BTU/ton-mi BTU/ton-mi BTU/ton-mi	Raw/ Input Quan. 0 361 434 434	Raw/ Input Std. Dev.	ē	Transformed Units gal fuel/bbl CrO gal fuel/bbl CrO gal fuel/bbl CrO	Transformed Quan. 0.964936049 0.553762025 0.385972132	Transformed Std. Dev.
Water Transport Emissions LCI component SOx CO HC NOx HC - transfer	Raw/ Input Units Ib/1000 gal fuel Ib/1000 gal fuel Ib/1000 gal fuel Ib/1000 gal hauled	Raw/ Input Quan. 27 100 50 280 280	Raw/ Input Std. Dev.	ā	Transformed Units kg/bbl CrO kg/bbl CrO kg/bbl CrO kg/bbl CrO	Transformed Quan. 0.011817566 0.043768763 0.021884382 0.122552537	Transformed Std. Dev.
Highway Transport Emissions	- suo						

																		11 11 11 11 11
Transformed	Std. Dev.							Transformed	Std. Dev.									
Transformed	Quan.	0.001370752	0.003851151	0.004687613	0.061915359			Transformed	Quan.	0.00437685	0.009979219	0.022759622	0.016456957	0.064777386	0.000962907	0.001225518	0.061915359	
Transformed	Units	kg/bbl CrO	kg/bbl CrO	kg/bbl CrO	kg/bbl CrO			Transformed	Units	kg/bbl CrO								
	Ϊ́								οσ									
Raw/	Input Std. Dev.							Raw/	Input Std. Dev.									
Raw/	Input Quan.	5.4572	15.3321	18.6622	3.25			Raw/	Input Quan.	25	22	130	94	370	5.5	7	3.25	
Raw/	Input Units	lb/1000 gal fuel	lb/1000 gal fuel	lb/1000 gaf fuel	lb/1000 gal hauled		uissions	Raw/	Input Units	lb/1000 gal fuel	lb/1000 gai fuel	lb/1000 gal hauled						
	LCI component	오	8	XON	HC - transfer	:	Kailroad I ransport Emiss		LCI component	TSP	SOx	8	오	XON	Aldehydes	Organic Acids	HC - transfer	Sheet End ======== ==========================
																		Sheet I

Sheet Title:

Vapor density relative to air 9 9 2 က ā 1.392 Std. Dev. Sp G 8.2 0.000651899 2.56305E-05 0.016909798 MJ/Kg Isopropa 5.205045039 Quantity BP deg C Isopropanol (from Propene and Isobutelene. Isopropanol is used in production of TNAZ) Engineering calculation of the Energy requirements and precursor requirements. This page calculates the vendor emissions from a plant producing Isopropanol. Not included are raw material production or extraction or water use. Kg/kg Isopropa Kg/kg Isopropa Kg/kg Isopropa US ITC 2810 Synthetic Organic Chemicals US production and Sales, 1993 US International Trade Commission, 11.1994 Allocated US ITC 2810 Synthetic Organic Chemicals US production and Sales, 1993 US International Trade Commission, 11.1994 Units Units Quantity 1.00E+00 kg 1.00E+00 Kg Std. Dev. CRC Handbook of Chemistry and Physics, 66th Edition Perry's Chemical Engineers' Handbook, 6th ed. McGraw Hill, 1984 Faith Keyes and Clarke's Industrial Chemicals By F. A. Lowenheim, M. K. Moran Kg/kg Isopropa 0.000651899 Kg/kg Isopropa 2.56305E-05 Kg/kg Isopropa 0.016909798 Heat Energy (fos MJ/Kg Isopropa 5.205045039 Quantity Units SRI Directory of Chemical Producers, US Quantity 1.00E+00 kg 1.00E+00 Kg Emissions are from TRI database. SRI International, Menlo Park, CA Unallocated Units Wiley Interscience, 1975 Co-product Allocation Calculations 1993, 1991 editions Resource Consumption AP 42 Ed 4 (1985) Total Co-product Solid Wastes Mwt Co-product 60.0956 Isopropanol Isopropanol Water Air US EPA Na2S04 Propene LCI components Notes: References/Citations: Sheet Description: Summary Output

Source:

က	5	4	က
3.71126E-05	0.989010989	0.011675824	0.009523461
MJ/Kg Isopropa	Kg/kg Isopropa	Kg/kg Isopropa	Kg/kg Isopropa
MJ/Kg Isopropa 3.71126E-05	Kg/kg Isopropa 0.989010989	Kg/kg Isopropa 0.011675824	Kg/kg Isopropa 0.009523461
Je/		sulfuric acid	

This section is where the project specific calculations take place. Information on LCI components from below is taken and the proper co-product allocation scheme applied. It may be necessary to preface this section with a section detailing the co-product allocation rules or calculations. Notes:

Data Quality Indicators (DQI) range from 5 as highest to 1 as lowest. A value of 0 is used when no indicator was reported.

	Unit from	משונים	in the last	Reference				
	BTU	7	1055.056	1055.056 CRC, 66th Edition				
	₩.	-	3600	3600 CRC, 66th Edition				
	bbi CrO	BTU CrO	5800000	5800000 Chemical Engineers' Handbook. 6th ed.	rs' Handbook	6th ed.		
	ppi	dal	42	42 Chemical Engineers' Handbook, 6th ed.	rs' Handbook	6th ed		
	lasain len		118500	118500 Chemical Engineers' Handbook 6th ed. Figure 9-4 @ S.G. = 75 and sulfur = 0.5%	re' Handhool	6th ad Figure	9.4 @ S.G. = 76.9	and suffer = 0.5%
	000000000000000000000000000000000000000		2705.420	Olombal Lighter	o canada s	, our ed., 1 gard		0.00
	gai	_	3.785412	3.785412 CRC, 66th Edition				
	ę g	Q	2.2046226	2.2046226 CRC, 66th Edition				
	γ	day	365					
	p.s.i.	feet water	2.03666	2.03666 CRC, 66th Edition				
	m^3	bbl (petroleum)	6.289811	6.289811 CRC, 66th Edition				
	Gal CrO	P CrO	7.2					
	ton	; ;	2000					
	lio ford for	not find oil DTH find oil	438000					
	gai luei oil	III III III III III III III III III II	20000	4000 Chaminel Caminescal Hamakest St. od	the state of the state of	70		
	E CO. ICING		2000	orientical Englised	s named	R, our ed.		
	Kg NG.	MJ NG	46	46 Calculated page C		SD=13%		
	d Isopropan		0.74 rel to Water	molar			k	kg air per kg
	Mw Chlorin	n 70.9		dry air composition		Mwt	mass composition component	umponent
	Mw CIBz	112.56		N2	0.78084	28.0134	0.75521	1.324134
	Mw CI2Bz	147.01		02	0.20946	31.9988	0.231406	4.321406
	Mw HCI	36.4609		C02	0.00033	44.01	0.000501	1994.319
	Mw NaOH 39.997	39.9971		Ar	0.00934	39.948	0.012882	77.62792
				total	0.99997	28.96409	-	
			i					
	Ideal gas	ideal gas density at 15 C (60 F)	0 F)	æ	air (dry)	:		
	0.042296 mol/liter	mol/liter	42.29634021 mol/m ³		1.225075005 kg/m^3	g/m^3		
Calculations				•				
	Isopropar	Isopropanol Production			1993			
Source:	US ITC 2	US ITC 2810 11.94 Synthetic Organic Che Kg	itic Organic Che		576845000			
	US Produc	US Production and Sales, 1993	993					
	Isopropar	Isopropanol production capacity	apacity					
Source:	Chem & E	Chem & Eng. News						
	Chemical Profile	Profile	MID		1800			
	Aug 9 93		Utilization ratio:	ÖΣ	7.0651418 acity	Calculated production: Mlb	ction:	
	Fyvor		Ration Bound 1 A 70821	A 70821	650	650 459 2342169		
	EAAOII		Datori Nouye,	1 700/ 8	3	439.2342103		

									ထ
							overwhelming energy requirements of evaporation and the probable recovery of that energy for other heating purposes. Condensation	Absorber materials at 4*weight of product stream	2 5.5 6 2.5
		Isopropyl ether			Transformed Std. Dev.	heat load	at energy for o	25C 83 C 25 C 25 C	srgy
		sulfuric acid	2.00E+00 0.00E+00	3.26E+04	Transformed		le recovery of th.	eria <u>l</u>	3.91752E-06 3.71126E-05 total pumping energy per kg prod
		Propene	3.40E+05 0.00E+00 3.34E+05	0.00E+00 1.55E+05 0.00E+00	Transformed Units MJ/kg Isopropanol Kg/kg Isopropanol Kg/kg Isopropanol Kg/kg Isopropanol	D H v MJ/Kg Kg/kg Isopropanol MJ/Kg Propanol 0.700645039 1 0.700645039 2.2522 2 4.5044 5.205045039	n and the probabl	Based on viscosity and density of water for a 250 ft static head per pumping stage in 40hr week & 52 week year daytine operation. multiply by specific gravity of material and relative viscosity to that of water. Sp visc Isopropanol 0.7855 2.496666667 MJ/kg Isopropa 3.27284E-08 sulfuric acid +w 2.02196 1.966466667 MJ/kg Isopropa 3.75628E-06 sulfuric acid +w 1.899 21.7403 MJ/kg Isopropa 1.300008E-05 sulfuric acid +w 1.899 21.7403 MJ/kg Isopropa 1.300008E-05	3.91752E-06 3.71126E-05 to
300.3027 303					IDO LM QN QN QN LM	DH v MJ/Kg Kg 60.0956 0.700645039 2.2522 Perry's 6	nts of evaporatio	ater for a 250 ft static head p in operation, multiply by species in 5666667 MJ/Kg Isopropa 2.18 MJ/Kg Isopropa 21.7403 MJ/Kg Isopropa 21.7403 MJ/Kg Isopropa 21.7403 MJ/Kg Isopropa	
2		nol production Is	Air Water Air	water Air Water	Raw/ Input Std. Dev.	60.0956	nergy requireme	y of water for a 250 ft static head daytime operation. multiply by s water. Sp visc 2.49666667 MJ/kg Isopropa 1.96646969 MJ/kg Isopropa 1.96646969 MJ/kg Isopropa 2.1.7403 MJ/kg Isopropa 21.7403 MJ/kg Isopropa	1 CRC 66
		oed to Isopropa			Raw/ Input Quan. 5.20504504 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D H evap cal/mMwt 10063.5 tion CRC 66	overwhelming er	ity and density S2 week year of costs to that of v. Sp gar. Sp G.7628 0.7628 2.02196 1.899	CRC 66 C
and the same		The following reported emissions were ascribed to Isopropanol production Isopropanol	Exxon Shell Oil Co.	Union Carbide	Raw/ Raw/ Input Quan. MJkg Isopropa 6.20504504 MJkg Isopropa 0.004MJkg Isopropa 0.004MJkg Isopropa 0.004MJkg Isopropa 0.004MJkg Isopropa 0.004MJkg Isopropa 3.71126E-05	D H from acid Acid reconstitution CR(, .,	
9	Emissions: TRI database, 1993 data	ng reported emis			general)	Isopropanol evaporation water evaporation	Heating load is disregarded because of the Cooling water 25 deg C temp rise 0.1046 heat removal MJ/kg water 5.205045 MJ/kg product 49.76142 Kg/kg product	kJ ElecIKg kg flow/kg propa 0.25 12 5	49.76142485
Onion Carpide	Emissions: TRI databas	The followin			LCI component Fossil fuel (general) Coal Oal Natural Gas Hydropower Fission Electricity (generic)	Isopropanol evap water evaporation	Heating load Cooling water 25 d 0.1046 h 5.205045 N	0 %	
	Source:						c water	7.87E-05 distillation bottoto storage storage to reactor dilution 2 toacid boil acid-propene ato dilution clean aacid to absorbe	water Co-Products:

24.5 15.5

9

Faith, Keyes and Clark'e Industrial chemicals Rawl Rawl Clicomponent Transformed Transfo	Eng Estimate based on H2SO4 make up for treatment			
Faith, Keyes and Clark's Industrial chemicals Raw/		Transformed Std. Dev.	Transformed Std. Dev.	Transformed Std. Dev.
Faith, Keyes and Clark'e Industrial chemicals Rawf Rawf Rawf Rawf Rawf Cl component Input Units Input Quan Input Qu	000040=0			Transformed Quan. 0 0
Faith, Keyes and Clark'e Industrial chemicals Raw/ Raw/ Raw/ Raw/ Raw/ Cl component Input Ubra Input Ubr	Transformed Units Kg/kg Isopropanol	Transformed Units Kg/kg isopropanol		Transformed Units Kg/kg Isopropanol Kg/kg Isopropanol
Faith, Keyes and Clark'e Industrial chemicals LCI component Input Units Oil Natural Gas Kg/kg Isopropa Coal Kg/kg Isopropa Goal Kg/kg Isopropa Wineral oil" Kg/kg Isopropa Wineral oil" Kg/kg Isopropa Water Kg/kg Isopropa Air Raw/ LCI component Kg/kg Isopropa Air Raw/ LCI component Input Units TSP Infexon +Shel NOX Infexon +Shel Isopropyl either Infexon +Shel Water Sob Infexon +Shel Isopropyl either Infexon +Glob Infexon +Shel Isopropyl either Infexon +Glob Infexon +Shel Isopropyl either Infexon +Glob Infexon				ō
Faith, Keyes and Clark'e Industrial chemicals LCI component Input Units Oil Natural Gas Kg/kg Isopropa Coal Kg/kg Isopropa Goal Kg/kg Isopropa Wineral oil" Kg/kg Isopropa Wineral oil" Kg/kg Isopropa Water Kg/kg Isopropa Air Raw/ LCI component Kg/kg Isopropa Air Raw/ LCI component Input Units TSP Infexon +Shel NOX Infexon +Shel Isopropyl either Infexon +Shel Water Sob Infexon +Shel Isopropyl either Infexon +Glob Infexon +Shel Isopropyl either Infexon +Glob Infexon +Shel Isopropyl either Infexon +Glob Infexon	Raw/ Input Std. Dev.	Raw/ Input Std. Dev.	Raw/ Input Std. Dev.	Raw/ Input Std. Dev.
Faith, Keyes and Clark'e Industrial chemicals LCI component Input Units Oil Natural Gas Kg/kg Isopropa Coal Kg/kg Isopropa Goal Kg/kg Isopropa Wineral oil" Kg/kg Isopropa Wineral oil" Kg/kg Isopropa Water Kg/kg Isopropa Air Raw/ LCI component Kg/kg Isopropa Air Raw/ LCI component Input Units TSP Infexon +Shel NOX Infexon +Shel Isopropyl either Infexon +Shel Water Sob Infexon +Shel Isopropyl either Infexon +Glob Infexon +Shel Isopropyl either Infexon +Glob Infexon +Shel Isopropyl either Infexon +Glob Infexon	Raw/ nput Quan. 0 0 0.0 0.0 0.0000000000000000000000	Raw/ Input Quan. 0 0 0.000E+00 8.29E+05 3.26E+04 0.00E+00 0.00E+00	Raw/ Input Quan. 0 0 0 0 0 0 0 0 0 0 0 0 0	Raw/ Input Quan. 0 0
924 77		1		
	Resources: Faith, Keyes and Clark'e It LCI component Oil Natural Gas Coal 42.0804 Propene 98.0734 sulfuric acid "Mineral oil" 39.9971 NaOH Water	Air LCI component TSP SOx NOx CI2 Isopropanol Propene sulfuric acid Isopropyl either HC total Heavy metg(Cd+Ni+Cr)	LCI component COD BOD Acid, H+ (Phosphoric) Metal ions Na2SO4 in water Isopropanol Propene sulfuric acid Isopropyl ether Heavy metals (Cadmium,	Solid waste LCI component Production waste (not inni Heavy metals (Cadmium, Offsite Transfer

Sheet Title:

Propylene (for polypropylene production)

Sheet Description:

This page calculates the vendor-independent emissions from european refineries producing monomer quality propylene Included are oil extraction and transportation from the well head to the refinery.

References/Citations:

(entry of Nov 18 94) SimaPro3

Average data for 19 european cracking fascilities producing monomer quality ethylene.

taken from: PWMI/APME, Ecoprofiles of the European plastics industry, 1992-1994

report 2, tbl 36 pg 21

Summary Output

Co-product Allocation Calculations

Quantity

Units

1.00E+00 Kg Co-product Propylene 1 Kg

Total

	ကက		ကက	· ෆ	က	ო	က	က		ო	e	က	က	က
ā														
Std. Dev.														
Quantity														
Allocated Units														
Std. Dev.														
Quantity	0.0008	9000	0.528	0.00001	0.00001	0.008	0.000001	0.000001		0.0002	0.00003	0.00004	0.0002	0.00005
Unallocated Units	Kg/Kg propylene Kg/Kg propylene	Kg/Kg propylene		Kg/Kg propylene										
LCI components Air	TSP SOx	× ON O	200	HZS	P	total HC's	other organic	Heavy metals	Water	000	BOD	Acid as H+	Metal ions	CIS

m m n	າຕ	က		က		က		က								
						19708333.33		3.569839724								
0.00002	0.0004	0.00007		0.009		0.514130435	0.000358269	0.020063053	0.12	0.23	0.0002	0.0001	0.0003	0.006	0.00002	1.6
Dissolved OrganKg/Kg propylene suspended solid Kg/Kg propylene	miscelanious disKg/Kg propylene	Kg/Kg propylene		Production wastekg/Kg propylene	nption	Kg/Kg propylene (Kg/Kg propylene (Kg/Kg propylene (MJ/Kg propylene	MJ/Kg propylene	Kg/Kg propylene 1.6					
Dissolved Org suspended so	miscelanious o	Phenol	Solid Wastes	Production wa	Resource Consumption	Natural Gas	Coal	Coal	Hydropower	Fission	fron ore	limestone	Bauxite	Rock salt	Clay	Water
								fuel								

This section is where the project specific calculations take place. Information on LCI components from below is taken and the proper co-product allocation scheme applied. It may be necessary to preface this section with a section detailing the co-product allocation rules or calculations. Notes:

Data Quality Indicators (DQI) range from 5 as highest to 1 as lowest. A value of 0 is used when no indicator was reported.

						118500 Chemical Engineers' Handbook, 6th ed., Figure 9-4 @ S.G. = .76 and sulfur = 0.5%									
				Handbook, 6th ed.	Handbook, 6th ed.	Handbook, 6th ed., F								Handbook, 6th ed.	SD=11%
	Reference	1055.056 CRC, 66th Edition	3600 CRC, 66th Edition	5800000 Chemical Engineers' Handbook, 6th ed.	42 Chemical Engineers' Handbook, 6th ed.	Chemical Engineers'	3.785412 CRC, 66th Edition	2.2046226 CRC, 66th Edition		6.289811 CRC, 66th Edition				1032 Chemical Engineers' Handbook, 6th ed.	12000 calculation page B
	Multiplier	1055.056	3600	5800000	42	118500	3.785412	2.2046226	365		7.2	2000	138000	1032	12000
	Unit to	7	7	BTU CrO	gal	BTU diesel	_	g	day	bbl (petroleum)	lb CrO	9	gal fuel oil BTU fuel oil	BTU NG	lb Coal (dry) BTU Coal
Conversion Factors	Unit from	BTU	۸N	bbl CrO	ppl	gal diesel	gal	kg	yr	m^3	gal CrO	ton	gal fuel oil	cu. ft NG	lb Coal (dr
S															

Calculations	kg NG s	MJ NG	46 C	Calculated page C	O	SD=13%			
	Ethylene Production	Production							
	LCI component Propylene (polymer) Propylene (other)	onent (polymer) (other)	Raw/ Input Units 1 Kg	Raw/ Input Quan.	Raw/ Input Std. Dev.	ō	Transformed Units 3	Transformed Quan.	Transformed Std. Dev.
	SimaPro3 Average data for 19 taken from: PWMI/APME, Ecopr report 2, tbl 36 pg 2		SimaPro3 Average data for 19 european cracking fascilities producing monomer quality propylene. taken from: PVVMI/APME, Ecoprofiles of the European plastics industry, 1992-1994 report 2, tbl 36 pg 21	is producing medics industry, 19	onomer quality pr 992-1994	ropylene.		0	
	Energy input	ict							
			Raw/	Raw/	Raw/		Transformed	Transformed	Transformed
	LCI component	nent	Input Units	Input Quan.	Input Std. Dev.	ğ	Units	Quan.	Std. Dev.
	Coal		MJ/Kg propylene	0.56			3 Kg/Kg propylene	0.020063053	
	Natural Gas	S	MJ/Kg propylene	6.68			-	0.145217391	
	Hydropower	<u>.</u>	MJ/Kg propylene	0.12			3 MJ/Kg propylene	0.12	
	Fission		MJ/Kg propylene	0.23				0.23	
	Material input	but						Probably different mix in US	t mix in US
			Raw/	Raw/	Raw/		Transformed	Transformed	Transformed
	LCI component	nent	Input Units	Input Quan.	Input Std. Dev.	ē	Units	Quan.	Std. Dev.
	ō		MJ/Kg propylene	36.38			3 Kg/Kg propylene	0.81546762	
	Natural Gas	<u>s</u>	MJ/Kg propylene	23.65			3 Kg/Kg propylene	0.514130435	
	Coal		MJ/Kg propylene	0.01			3 Kg/Kg propylene	0.000358269	
	Iron ore		Kg/Kg propylene	0.0002			3 Kg/Kg propylene	0.0002	
	limestone		Kg/Kg propylene	0.0001			3 Kg/Kg propylene	0.0001	
	Bauxite		Kg/Kg propylene	0.0003			3 Kg/Kg propylene	0.0003	
	Rock salt		Kg/Kg propylene	0.006			3 Kg/Kg propylene	900.0	
	Clay		Kg/Kg propylene	0.00002			3 Kg/Kg propylene	0.00002	
	Water		Kg/Kg propylene	1.6			3 Kg/Kg propylene	1.6	
	Output		i						
			Raw/	Raw/	Raw/		Transformed	Transformed	Transformed
	LCI component	nent	Input Units	Input Quan.	Input Std. Dev.	ğ	Units	Quan.	Std. Dev.
	SOx SOx		Kg/Kg propylene	0.004			kg/kg propylene Kg/Kg propylene	0.004	
	×ON		Kg/Kg propylene	0.006			Kg/Kg propylene	0.006	

Water Raw/ Raw/ Raw/ Transformed Std. Dev. COD Kg/Kg propylene 0.00002 Kg/Kg propylene 0.00003 Kg/Kg propylene 0.00002 Kg/Kg propylene 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 <	CO CO2 H2S HCI total HC's other organic Heavy metals	Kg/Kg propylene Kg/Kg propylene Kg/Kg propylene Kg/Kg propylene Kg/Kg propylene Kg/Kg propylene Kg/Kg propylene	0.0004 0.528 0.00001 0.00001 0.000001			Kg/Kg propylene Kg/Kg propylene Kg/Kg propylene Kg/Kg propylene Kg/Kg propylene Kg/Kg propylene	0.0004 0.528 0.00001 0.00001 0.008 0.000001	
Raw/ Raw/ Raw/ Transformed Transformed Input Units Input Quan. Input Std. Dev. DQI Units Quan. Kg/Kg propylene 0.0002 Kg/Kg propylene 0.00003 Kg/Kg propylene 0.00003 Kg/Kg propylene 0.00002 Kg/Kg propylene 0.00002 Kg/Kg propylene 0.00002 Kg/Kg propylene 0.00002 Kg/Kg propylene 0.00002 Kg/Kg propylene 0.00002 solids Kg/Kg propylene 0.00002 Kg/Kg propylene 0.00002 Kg/Kg propylene 0.00004 Kg/Kg propylene 0.00004 Kg/Kg propylene 0.00004 Kg/Kg propylene 0.00004 Kg/Kg propylene 0.00004 Kg/Kg propylene 0.00004		ı						
Kg/Kg propylene 0.0002 Kg/Kg propylene 0.0002 Kg/Kg propylene 0.00003 Kg/Kg propylene 0.00004 Kg/Kg propylene 0.00004 Kg/Kg propylene 0.00004 Kg/Kg propylene 0.00005 Kg/Kg propylene 0.00005 kg/Kg propylene 0.00002 Kg/Kg propylene 0.00005 solids Kg/Kg propylene 0.00002 kg/Kg propylene 0.00004 0.00002 kg/Kg propylene 0.00004 0.00004 kg/Kg propylene 0.00004 0.00004 kg/Kg propylene 0.00004 0.00004 kg/Kg propylene 0.00004 0.00004 kg/Kg propylene 0.00007 0.00004	onent	Raw/ Input Units	Raw/ Input Quan.	Raw/ Input Std. Dev.	ō	Transformed Units	Transformed Quan.	Transformed Std. Dev.
Kg/Kg propylene 0.00003 Kg/Kg propylene Kg/Kg propylene 0.00004 Kg/Kg propylene Kg/Kg propylene 0.00005 Kg/Kg propylene Kg/Kg propylene 0.00002 Kg/Kg propylene solids Kg/Kg propylene 0.0002 Kg/Kg propylene Kg/Kg propylene 0.0001 Kg/Kg propylene Kg/Kg propylene 0.0001 Kg/Kg propylene Kg/Kg propylene 0.0004 Kg/Kg propylene Kg/Kg propylene 0.0004 Kg/Kg propylene Kg/Kg propylene 0.00007 Kg/Kg propylene		Kg/Kg propylene	0.0002		i	Kg/Kg propylene	0.0002	
Kg/Kg propylene 0.00004 Kg/Kg propylene Kg/Kg propylene 0.0002 Kg/Kg propylene Kg/Kg propylene 0.00002 Kg/Kg propylene solids Kg/Kg propylene 0.0002 Kg/Kg propylene Kg/Kg propylene 0.0001 Kg/Kg propylene kg/Kg propylene 0.0004 Kg/Kg propylene Kg/Kg propylene 0.0004 Kg/Kg propylene Kg/Kg propylene 0.00007 Kg/Kg propylene		Kg/Kg propylene				Kg/Kg propylene	0.00003	
Kg/Kg propylene Kg/Kg propylene Kg/Kg propylene O.00005 Solids Kg/Kg propylene O.00002 Solids Kg/Kg propylene O.00002 Kg/Kg propylene Kg/Kg propylene O.0001 Kg/Kg propylene Kg/Kg propylene O.0004 Kg/Kg propylene Kg/Kg propylene O.0004 Kg/Kg propylene	Acid as H+	Kg/Kg propylene				Kg/Kg propylene	0.00004	
Kg/Kg propylene 0.00005 Kg/Kg propylene solids Kg/Kg propylene 0.00002 Kg/Kg propylene 0.0002 Kg/Kg propylene 0.0002 Kg/Kg propylene Kg/Kg propylene 0.0001 Kg/Kg propylene 0.0004 Kg/Kg propylene kg/Kg propylene 0.0004 Kg/Kg propylene Kg/Kg propylene 0.00007 Kg/Kg propylene		Kg/Kg propylene				Kg/Kg propylene	0.0002	
0.00002 Kg/Kg propylene 0.0001 Kg/Kg propylene 0.0004 Kg/Kg propylene 0.0007 Kg/Kg propylene 0.00007 Kg/Kg propylene		Kg/Kg propylene				Kg/Kg propylene	0.00005	
0.0002 Kg/Kg propylene 0.0001 Kg/Kg propylene 0.0004 Kg/Kg propylene 0.00007 Kg/Kg propylene	Dissolved Organics	Kg/Kg propylene	Ī			Kg/Kg propylene	0.00002	
0.0001 Kg/Kg propylene 0.0004 Kg/Kg propylene 0.00007 Kg/Kg propylene (d solids	Kg/Kg propylene				Kg/Kg propylene	0.0002	
0.0004 Kg/Kg propylene 0.00007 Kg/Kg propylene (Kg/Kg propylene				Kg/Kg propylene	0.0001	
0.00007 Kg/Kg propylene (ous dissolved ma	aterKg/Kg propylene				Kg/Kg propylene	0.0004	
		Kg/Kg propylene	0.00007			Kg/Kg propylene	0.00007	
	vaste (not innert) Kg/Kg propylene	0.009			Kg/Kg propylene	0.00	

Sheet End accordance and contraction of the contraction and contraction of the contractio

Coal type	Moisture %	Sulfur %	VIP%	2	Heat value Btu/lb	Btu/lbdrv		
Sub bit C	26		0.3		8230	11121.622		
HV bit A			9.0	0.62	14170	14593.203	low sulfur coal heating value	value
Sub bit B	22.2		0.5	0.64	9610	12352.185		
Brown Coal German - Rh	55 ر		0.3	0.67	4830	10733.333		
Sub bit A	13.9		9.0	0.70	10330	11997.677	SD= 1295.77	295.7751 0.1081691
Meta Anthracite	6		0.7	0.77	10080	11076.923	Avg= 11979.157	57
LV bit	2.9		8.0	0.82	14400	14830.072	median	
Anthracite	4.3		8.0	0.84	12880	13458.725		
Lignite	36.8		6.0	1.42	7000	11075.949		
MV bit	2.4		1.5	1.54	14490	14846.311		
Semi anthracite	2.1		1.7	1.74	13700	13993.871		
HV bit B	6.7		2.6	2.79	12390	13279.743		
HV bit C	15.4		2.9	3.43	10740	12695.035		

bit=Bituminous V=Volatility L=Iow M=Medium H=high Source: Kirk Othmer vol 4 1949

Natural gas

							avg SD (rel)	19.610242 10.79%	39.766667 12.81%	45.760008 13.03%					
Rio Arriba, NTerrell, Tex Stanton, KanSan Juan, NMOlds Field, ACliffside, Texas	65.8	3.8 1.7	0.8	0.5			25.6	20.445665	30.7	33.634514	too low	heating	value(?)		
Ølds Field, A	52.34	0.41 0.14	0.16	0.41	8.22	35.79	2.53	25.492892	30	26.360289	too high	Sulfur	content		
San Juan, NR	77.28	11.18 5.83	2.34	1.18	0.8		1.39	21.28362	46.8	49.254778					
Stanton, Kan	67.56	6.23	1.42	0.04	0.07		21.14	20.921258	34.9	37.366777					
Terrell, Tex	45.64	0.21			53.93	0.01	0.21	31.182	17.3	12.427683	too high	C02	content for	nse	
Rio Arriba, N	96.91	1.33 0.19	0.05	0.02	0.82		0.68	16.625849	37.6	50.658467					
heat value I MJ/M^3	37.57	65.83 93.6	120.98	148.84	0	23.7	0				- 0				vol 12 1993
Mwt	16.043	30.07	58.123	72.15	44.01	34.076	28.013		eMJ/M^3	MJ/KG	0.0224M^3/mol				Source: Kirk Othmer Ed 4 vol 12, 1993
%lom	Methane	ethane propane	butane	pentane+	CO2	H2S	N2	Mol wt:	heating valueMJ/M^3						Source: Kirk

Source: Kirk Othmen Ed 4 vol 12 1993

MJ/m^{^3}

Heating values for processed city natural gas: source Perry 6 (1964) averaged from table 9-14

1049.5714

Btu/scf

Synopsis of table 9-14	4					
Mwt	heat val	heat value Baltimore Columbus Houston	Columbus	Houston	Burmingham Washington Phoenix	Phoenix
%lom	MJ/M ³	MJ/M^3 Md	Ohio	×	Al DC	Az
!						

87.37 95.15 93.14 92.5 93.14 94.4 37.57 16.043 Methane

						SD (rel)	15.84%	1.10%	13.30%
						avg	319413	38.835517	48.124142
8.11	2.26	0.13	0	0.61		1.37	18.179837	39.9483	49.221668
2.84	0.63	0.24	0.05	0.62		0.42	16.9628	38.8666	51.324771
2.5	0.67	0.32	0.12	1.06		2.14	17.328208	38.1952	49.374551
4.8	2	0.3	0	0.27		21.14	23.380219	38.4563	36.844014
3.58	99.0	0.22	0.09	0.85	0.01	0.21	16.939122	38.3444	50.705967
3.4	9.0	0.5	0	9.0		0.5	17.126294	39.2023	51.273879
65.83	93.6	120.98	148.84	0	23.7	0			
30.07	44.097	58.123	72.15	44.01	34.076	28.013		reMJ/M^3	MJ/KG
ethane	propane	butane	pentane+	C02	H2S	N2	Mol wt:	heating valueMJ/M^3	

0.0224M^{^3}/mol

Phosphorous trichloride production from Phosphorous and chlorine.

	Mwt	DHfo		Cpo							
	kg/mol	kcal/mol MJ/Kg		Cal/deg mdMJ/Kg deg	AJ/Kg deg						
P4	123.8952	14.08	14.08 0.475488	16.05	0.54202 as gas	s gas					
PCI3	137.3328	-76.4	-76.4 -2.327613	17.17	0.5231 as gas	s gas					
CI2	70.906		0	8.104	0.4782						
water	18.0153			17.995	4.17929						
	137 3328	reaction 79 92	2 434854								
	2400	20.0	7.7								
yield reflux ratio	0.95	0.95 relative to reactant 0.5	eactants								
Module		Material (K Phosphor	g/Kg phospł	oroustrichk	oride) and E	Energy in M	J/Kg phospho	Material (Kg/Kg phosphoroustrichloride) and Energy in MJ/Kg phosphoroustrichloride Phosphor	Enera		
		sno	Chlorine	Cooling water	water	PCI3		Fuel? Electricity	y loss	Reaction	
Reactor		0.308631	0.308631 0.855984		-	1.1119838	-2.223968				0.0526316
		0	0		က	37.809375	-87.2524			2.4348537	-47.00817
		25	25			06	100				
Reflux cooler	L				2	2.2239675	-2.223968				0
					ω	87.252403	-75.61875				11.633654
						100	06				
Condenser					_	1.1119838	-1.111984				0
					4	49.443028	-37.80937				11.633654
						100	06				
Still		-0.071223	-0.071223 -0.040761		_	1.1119838	7				-1.11E-16
		-1.93019	-1.93019 -0.974596		က	37.809375	-26.15518				8.7494095
		75	75			06	75				
		0.237409	0.237409 0.815223	0	0	7	-6.559919	0	0	0	0.0526316

0 2.4348537 0 0 0 -14.52153 0 -1.93019 -0.974596

Cooling

water

25 deg C temp rise

104.482135 heat removal MJ/kg water

2.43485373 MJ/kg product

0.02330402 Kg/Kg product

c water

7.8726E-05 kJ Elec/Kg Based on viscosity and density of water for a 250 ft static head per pumping stage

in 40hr week & 52 week year daytime operation. multiply by specific gravity of material

and relative viscosity to that of water.

2 0.237409 1.9E-08 viscosity is a guess 8.8E-08 viscosity is a guess 8.8E-08 1.8E-09 8.8E-08 5.6E-09 kgflow/kg prod 2 0.071223 t 2 1.111984 1.111984 1.111984 7 representati Sp grav Sp visc 1.745 1.575 1.575 1.575 1.745 PC₁₃ PC₁₃ to condenser PCI3 to reactor to reactor to reactor to still cooling water condenser recycle storage reflux reflux

per kg prod

2.9E-07 total pumping energy

Acetic Anhydride synthesis Source: all process data

By Laurie J. Brown Holston Defense Corporation Subsidiary of Eastman Chemical Co. Kingsport, TN 37660 Technical report HDC-125-95

Pg 8

New heat source from NG changes coal far, cinder and Flue gas data. Final calculation based on producer gas required to consume the air supplied to the process. The heat value for the producer gas is matched with standard NG, from which air requirements are taken.

Physical data are taken from: Perry's Chemical Engineer's Handbook, Ed 6 McGraw-Hill, 1984

Kirk-Othmer Encyclopaedia of chemical technology, Ed 2, Ed 4 Wiley Interscience, 1966, 1994
Entries: Gas, Manufactured; Gas, Natural; Coal; Coal tar

						0.2186 0.1076847 0.1104459 Replaced system 0 0 NG system	NG system		
kg per kg AcAnhd dry base 1 0.025641 1.025641		0.0427182 0.0425046 0.0002136	0.1084249 0.1073407 0.0010842	0.0305116 0 0.0305116	3.0248832	0.1104459		0.020341 0.0183069 0.0020341	0.0610332
kg per kg AcAnhd solution		0.0416502 0.041442 0.0002083	0.1057143 0.1046571 0.0010571	0.06039 0.0297488 0 0 0.06039 0.0297488	2.9492611	0.1076847	0.06779 0.0333941 0.0342503 0 0 0	0.0198325 0.0178493 0.0019833	0.0595074 0.0610332
Raw data in lb 2.03		0.0841273 0.004228	0.2146 0.212454 0.002146	0.06039 0 0.06039	5.987	0.2186	0.06779	0.04026 0.036234 0.004026	0.1208
Сопс. 0.975 0.025		0.005 as pure as pure	0.99	trace				0.0	
AcAnhd (Water) Total		AcOH AcOH	W AcOH	AcOH/W Water			Producer gas manufacture Coal tar to steam plant A Coal tar	Evaporator sludge from ketene gas manufadure to Bldg 2 AcOH W	
		to IMTF	mill washout to IWTF	Condensate to IWTF	condensate to steam plant A	cinders to block plant	gas manufacture Co	r sludge from keten to Bldg 2	Scrubber underflow to Bidg 2
Product	Output	scrub	mill washo	Condensa	condensal	cinders to	Producer	Evaporato	Scrubber

0.12 0.014496 0.88 0.106304 0.3759
0.004828
0.997 2.884
0.00856
0.6795
0.4979873
5.306E-05
5.383E-06
13.14
1590
0.1122
1603
8981 4424.1379
0.0618 0.9797 0.5280311
5.383E-06
lb per kg per kg per Ib RDX basekgAcAnmix kgAcAn pure
0.6795
0.4275059 4109.6485 0.675477 3.9155492 0.1904544 3.1568477
0.5865 0.2554196 648.28993 0.6226572

40.000	0.251604	0.4294258	0.1104459	0.4949855	0.6054314	-15.38% is missing output, perhaps to scrubing
0.0000450 0.0147888 0.0131784	0.4979873 0.2453139 0.251604	1.0140059 0.4817102 (0.1076847	0.4826108	1.1983 0.5902956 0.6054314	is missing ou
0.0000450	0.4979873	1.0140059	0.2186	0.9797	1.1983	-15.38%
	Air required		Cinder	Flue gas		Mass balance error

Heating values for processed city natural gas: averaged from table 9-14 source Perry 6 (1964)

39.14901429 50.18997432 1049.571429 Manufactured gas MJ/M^3 Btu/scf MJ/Kg

Gas Gas yield scf/ton Data from KO 2 (1964) for "modern mechanical method" Heating valueBtu/lb Moisture

 gas heat value
 Tar data

 gas lb/lb coal
 Gross heat value Blu/ls C Blu/lb coal
 Tar yield gal/kon

 wet base
 dry base
 wet base
 wet base
 dy base

 103
 145.41623
 17098200
 8649.1
 9.5
 10.010537

 100
 154.00411
 18135000
 9667.5
 1
 10.206593

 165.6
 174.31579
 19226160
 9613.08
 21
 22.1052633
 wet base dry base 123900 130558.48 120900 124127.31 116100 122210.53 10800 11380.4 11980 12299.795 12080 12715.789 ģ 0.051 0.026 0.05 Anthracite Belgian Coal Baddesley

On the basis of 10% tar production in the process the Baddesley type coal is used 9613.08 gas heating value in Btu/lb coal This coal then provides

Baddesley coal ga composition MVM

0.578863788 mol air producing mol gas 1.277093478 mol air to bum mol gas 1.855957266 mol air used/mol gas 2.296221153 kg air used / kg gas 0.3656313 kg O2 per mol gas 1.5800413 kgair/kg gas O2 per mole mol O2 per mol gas 0.1265 0.105 0.036 0.5 6.7 25.3 21 1.8 45.2 %lov 44.01 31.9988 28.016 2.0158 16.043 ideal gas density of producer gas 23.410686 1.045119911 kg/m^3 0.065244718 lb/cuf Gas Mwt alkyls 75 CH2 CH3 ž

75 lb/cuf 1200 kg/m^3 10.01448763 lb/gal Density of Tar

KO 2 (1964) scf is volume in cubic feet at 60 Farenheit and 30" Hg

Репу 6 (1984) 0.133680558 16.01846 119.8264 kg/m^3 0.008345406 lb/gal 0.062427974 7.480519351 density

2000 2.204622962 ton (short - US) Ib

mass

Perry 6 (1984)

81.0 17027.962 83.86 16747.737 1679.12 15968.485 16.5 Btu/lb tar energy value btu in tar/lb coal 0.0050072 0.0475688 lb/lbcoal wet

Characteristic value

					Hydrogen average oxygen demand												
					avera	_		_	_								
	D.				Hydrogen	4	9	80	₽ :	12							
	kg air per kg component 1.3241342	4.3214062 1994.3188 77.627923			Carbons	-	2	9	4	n							
	kg air per k mass compocomponent 0.7552105 1.3241342	0.0005014 0.0005014 0.012882				Methane	ethane	propane	butane	pentane+							
	Mwt 28.0134	39.948 39.948 28.96409								_							
	084	0.00033 0.00934 0.99997		kg 02	O2 demand demand per moleculeper kg gas	2 3.4185467	3.5 0.2716167	0.1048879		0.0063979 Total	3.8356377		2.26% kg air demand	1.43% per kg gas	1.72% 16.575349		
	molar dry air composition N2 0.78	CO2 Ar total		molecular kg 02	O2 demand demand per moleculeper kg ga	2	3.5	9	6.5	x 0		0.795 SD (rel)	2.26%	1.43%	1.72%		
					average	92.616667	4.205	1.1		0.0433333		0.795	17.338492	38.835517	50.189974	1041,1667	
				i	Phoenix Az	87.37	8.11	2.26	0.13	0.61		1.37	18.179837	39.9483	49.221668	1071	
		ole values			ashington	95.15	2.84	0.63	0.24	0.05		0.42	16.9628004	38.8666	51.32477064	1042	
		Perry 6 (1984) for steam table values			BurminghamWashington Al DC	93.14	2.5	0.67	0.32	1.06		2.14	17.328208	38.1952	49.374551 5	1024	
Репу 6 (1984)	Рету 6 (1984)	² erry 6 (1984			Houston E	92.5	8.4	2	0.3	0.27		0.13	17.494688 1	38.4563	49.23901 4	1031	
	•	•			Ohio	93.14	3.58	99:0	0.22	0.85	0.01	0.21		38,3444	50.705967	1028	
atm psia 3376.9 0.033274 0.4897749 6894.8 0.0680464 14.695858 101325 14.6958858					Md	94.4	3.4	9.0	0.5	99		0.5	17.126294 16.939122	39.2023	51.273879	1051	
3376.9 6894.8 101325	-	-			<u>a</u>	37.57	65.83	93.6	120.98	140.04	23.7	0			٠,		
N/m^2 1 7.2 33	btu/scf 73	Btu 04			neat value MJ/M^3	43	20	26	23	5 5	92	13					lor
"Hg 2.041754272 30.00533033	MJ/m^3 0.0373	MJ 0.00105504		9-14	JA M	16.043	30.	44.097	58.1	44.01	34.076	28.013		MJ/M^3	MJ/KG	Btu/scf	0.0224M^3/mol
Pressure	Heat value	Energy	Perry 6 (1984)	Synopsis of table 9-14	mol%	Methane	ethane	propane	butane	CO2	H2S	N2	Mol wt:	heating value	_	-	_

288.70556 60 F

Acetic acid for Acetic Anhydride synthesis

Concentration of the acid

Source: for all data

Technical report HDC-125-95

Pg 6

By Laurie J. Brown

Holston Defense Corporation

Subsidiary of Eastman Chemical Co.

Kingsport, TN 37660

Product					kg	kg
			Conc.	Raw data	per kg	per kg
				in lb	Acetic acid	Acetic acid
					solution	dry base
				3.935	1	1.003009
		AcOH	0.997	3.923195	0.997	1
		(Water)	0.003	0.011805	0.003	0.003009
Output						
Slonwater f	from flashing			6.652	1.6904701	1.6955568
Olopwater i	to IWTF	AcOH	0.05	0.3326	0.0845235	0.0847778
	10 11111	W	0.95	6.3194	1.6059466	1.610779
Low Boilers	s from flashing	g n-PropylOAc puri	fication			
	to IWTF			0.2146	0.0545362	0.0547003
		Propylformate				
		MeOAc				
		Acetone				
		MeNO3				
		EthOAc				
Chidae from	a aliidaa baat			0.02825	0.0071792	0.0072008
Sludge from	n sludge heat to IWTF	er AcOH	0.1	0.02825	0.0071792	0.0072008
	LOTVIF	Water	0.1	0.002625	0.0064612	0.0064807
		High b.p. materia		0.025425	0.0004012	0.0004607
		riigii b.p. materia	iio			
condensate	to steam pla	nt A		6.264		

Inputs

Materials

		AcOH	total		3.978647	1.011092	1.0141344
Recover aci	id	AcOH		0.593	5.884	1.4952986	1.499798
AcAnhd rec	ycle	AcOH		0.795	0.537	0.1364676	0.1368782
Fresh from	Malinkrodt	AcOH		0.2	0.3126	0.0794409	0.07968
		Water in solution	total		2.754953	0.7001151	0.7022218
		n-PropyIOAc			0.01036	0.0026328	0.0026407
		N2			0.01553	0.0039466	0.0039585
		Filtered Water			6.532	1.6599746	1.6649695
		Steam			15.66	3.9796696	3.9916446
		River Water			77.39	19.66709	19.726269
	Energy						
		Electricity	kWhr		0.02044	0.0051944	0.00521
Waste							
	Water return	n to river			77.39	19.66709	19.726269
	(Non-contac	ct)					
	Steam Cond	densate to river			9.395	2.3875476	2.3947318
	(Non-contac	ct)					
	•	,					
Air Emiossio	on						
		AcOH			0.004242	0.001078	0.0010813
		n-PropylOAc			0.003653	0.0009283	0.0009311
		N2			0.01553	0.0039466	0.0039585

Acetic acid for Acetic Anhydride synthesis

Purification of spent acid

Source: for all data

Technical report HDC-125-95

Pg 18

By Laurie J. Brown

Holston Defense Corporation

Subsidiary of Eastman Chemical Co.

Kingsport, TN 37660

Product		Con AcOH (Water)	c. 0.6 0.4	Raw data in lb 5.884 3.5304 2.3536	kg per kg Acetic acid solution 1 0.6 0.4	kg per kg Acetic acid dry base 1.6666667 1 0.6666667
Output		(vvater)	0.4	2.0000	0.4	0.0000007
Output						
Condensate				0.09333	0.0158617	0.0264361
	to IWTF	AcOH	0.02	0.0018666	0.0003172	0.0005287
		W	0.98	0.0914634	0.0155444	0.0259074
Explosive S	lurry			0.4527	0.0769375	0.1282291
	to ???	AcOH	0.372	0.1684044	0.0286207	0.0477012
		Water	0.353	0.1598031	0.0271589	0.0452649
		Salts	0.176	0.0796752	0.013541	0.0225683
		Explosive	0.099	0.0448173	0.0076168	0.0126947
ANG-77 mix	(0.3733	0.0634432	0.1057387
	to ???	Nitrates of Am	0.74	0.276242	0.046948	0.0782467
		Water	0.242	0.0903386	0.0153533	0.0255888
		AcOH	0.005	0.0018665	0.0003172	0.0005287
		Explosive	0.01	0.003733	0.0006344	0.0010574
		Gum	0.003	0.0011199	0.0001903	0.0003172
Inputs						
	Materials					
	Spent Acid	total		6.073	1.032121	1.7202017
	Sport / told	AcOH	0.603	3.662019	0.622369	1.0372816
		HNO3 salts	0.056	0.340088	0.0577988	0.0963313
		explosives	0.008	0.048584	0.008257	0.0137616
		Water in solu	0.333	2.022309	0.3436963	0.5728272

Acet. anh. acid. Pur.

		NH3 Explosive (FGum Filtered Wat Steam	ter	0.01639 5.075E-05 0.00112 0.02818 4.68	0.0027855 8.625E-06 0.0001903 0.0047893 0.7953773	0.0046425 1.438E-05 0.0003172 0.0079821 1.3256288
	Energy	River Water		62.7	10.656016	17.760027
		Electricity	kWhr	0.05474	0.0093032	0.0155053
Waste						
	Water return to (Non-contact)	river		62.7	10.656016	17.760027
	Steam Conden (Non-contact)	sate to river		3.991	0.6782801	1.1304668
Air Emiossio	n					
		AcOH		0.004242	0.0007209	0.0012016
		n-PropylOA	С	0.003653	0.0006208	0.0010347
		N2		0.01553	0.0026394	0.0043989

Acetic acid treatment and Acetic Anhydride synthesis

Area A Steam Plant

Technical report HDC-125-95 Source: for all data

By Laurie J. Brown Holston Defense Corporation Subsidiary of Eastman Chemical Co. Kingsport, TN 37660

kg per kg Steam kg per kg Steam Raw data in Ib Conc.

Product

0.8858407 weighted according to coal utilization 31.07 Steam Output

0.2619 0.0084294 0.0074671 0.04937 0.001589 0.0014076 Cinders Fly Ash To Block Plant

0.025008 0.0221531 0.777 Boiler blowdown **Phosphates** Sulfates Sulfites with:

to IWTF

5.413 0.1742195 0.1543307

fly ash cinders with:

Cooling Water

Inputs

3.182 0.1024139 0.0907224
0.06779 0.0021818 0.0019328 Eliminated due to replacement of Coal producer gas by NG
3.2313018 0.1040007 0.0921281 Sufficient coal to replace Coal tar heating value
44.55 1.43389 1.2701707 Assumed to remain the same due to similar H and C balance in Coal and tar
12.43 0.4000644 0.3543933
1.624 0.0522891 0.0463021
3.789 0.1219504 0.1080287 Coal Tar Coal 1992 Old numbersCoal Materials 1995 Updated

Filtered Water Air Boiler water Condensate

1.403E-06 7.236E-07 1.584E-06 8.169E-07 4.922E-05 2.538E-05 Disodium Phosphate Sodium Suffite River Water

Energy

0.04629 0.0014899 0.0013198 Electricity kWhr 0.2045 0.0065819 0.0058305 Fly Ash to Landfill Air Emiossion

Waste

7.921E-05 2.549E-06 2.258E-06 0.02179 0.0007013 0.0006213 0.007954 0.000256 0.0002268 VOCS Š S

0.06045 0.0019456 0.0017235 0.0007636 2.458E-05 2.177E-05 47.19 1.5188285 1.3454401

SOx Particulates Flue gas

a from KO	Q	mechanical method"	Gas			gas heat value	ne		Tar data				
Σ	Moisture Heating valueBtu/lb wet dry	alueBtu/lb dry	Gas yield scf/ton wet base dry l	scf/ton drv base	gas lb/lb coa Gros	value Btu/scf	Btu/ton coal	Btu/lb coal	Tar yield gal/ton	al/ton dox base	lb/lbcoal	energy value	9
Anthracite		0 11380.4	123900	0 130558.48		138 145.41623 17098200	17098200	8549.1	9.5	9.5 10.010537	0.0475688	3	17027.962
Belgian Coa		11980 12299.795	120900	0 124127.31		154.00411	18135000	9067.5	-	1.026694	0.0050072		16747.737
Baddesley	0.05 12080	12080 12715.789	116100	0 122210.53	165.6	174.31579	19226160	9613.08	21	22.105263	0.1051521	-	679.12 15968.485
Wet Cost beating value	61/62												Btu/lb tar
ממו וופפוו	and value												16500
taken as	12000 Btu/lb												Characteristic value
ucky - Ten	Kentucky - Tenn - Ohio Coals												
typically	14000 Btu/lb	ASTM "Moist"											
utilization	Coal utilization breakdown for by product distribution	oduct distribution											
		Ib/Ib RDX	RDX										
Coal	Coal		3.182										
	Cinders	5	0.2619										
	Ash	o o	0.25387										
	Energy coal Cinder Coal		2.66623 88.58% 0.3436 11.42%	% %									
	leco berilili		200002	2									
	כמוודפת כס		00363 100.00%	0									

Acetic acid treatment and Acetic Anhydride synthesis

Area A Water filtration

Source: for all data

Technical report HDC-125-95 Pg 28

By Laurie J. Brown

Holston Defense Corporation

Subsidiary of Eastman Chemical Co.

Kingsport, TN 37660

ğ	per kg	Filtered wate Boiler water
Š.	per kg	Filtered \
χĝ	per kg	iltered wate Boiler water
Š.	per kg	Filtered
	Raw data	d ni
	Conc.	

Product

0.8707229 0.8707229 0.1292771 0.1292771 6.7353244 0.1484709 19.42 130.8 150.22 Filtered water **Boiler Water**

Output

0.0045873 0.0006811 0.0052683 2.753E-05 0.0001854 0.035484 0.0014341 0.0002129 0.0052683 0.6891 0.02785 Water Alum with: to IWTF

1.426 0.0109021 0.0734295 0.0094927 0.0014094 lon exchange regeneration H2S04 with:

CaSO4

MgSO4

NaCl CaCl2

MgC12

Inputs

Materials

2.324159 15.653965 2.0236986 0.3004604 304 River water

7.145E-08	2.335E-06	3.952E-08	3.54E-06	2.857E-06
3.722E-06 4.812E-07 7.145E-08	1.573E-05 2.335E-06	2.662E-07	2.385E-05	0.0001489 1.925E-05 2.857E-06
3.722E-06		2.059E-06		0.0001489
5.527E-07	1.807E-05	3.057E-07	2.739E-05	2.21E-05
7.229E-05	0.002363	3.999E-05	0.003582	0.002891
Hydrated lime	Al Sulfate	Ci2	H2S04	Rock Salt

Energy

Electricity kWhr

0.1569 0.0011995 0.0080793 0.0010445 0.0001551

Waste

Air Emiossion

Industrial Wastewater Treatment Facility

Both areas

Source: for all data

Technical report HDC-125-95

Pg 32

By Laurie J. Brown

Holston Defense Corporation

Subsidiary of Eastman Chemical Co.

Kingsport, TN 37660

		kg
Conc.	Raw data	per kg
	in lb	wastewater

Product

Output

Inputs							
	Materials						
IWTF strea		Wastewater			329.5	1	
11111 0000		vidoto i dio.			020.0		
		NaOH 20%			0.0314	9.53E-05	
		NaOH		0.2	0.00628	1.906E-05	
		water		0.8	0.02512	7.624E-05	
		Quicklime			0.002363	7.171E-06	
		FeCl2 25-35%			0.01109	3.366E-05	
		FeCI2		0.3	0.003327	1.01E-05	
		water		0.7	0.007763	2.356E-05	
		HCI 33%			0.0002453	7.445E-07	
		HCI		0.33	8.095E-05	2.457E-07	
		water		0.67	0.0001644	4.988E-07	
		Magnifloc 496			3.691E-05	1.12E-07	flocculant
		Filtered water			14.96	0.0454021	
	Energy						
		Electricity k	Whr		0.2042	0.0006197	
Waste							
		Treated Indust	rıal v	vaste v		4.044040=	
	1 101	B			344.3	1.0449165	
	landfill	Biological slud	ge		0.1533	0.0004653	
	landfill	Alum Sludge			0.1154	0.0003502	

Sheet Title:

Acetic Acid (for input at 20% concentration into Holston facility)

Sheet Description: Engineering calculation (rough)

This page calculates the vendor emissions from a plant producing Acetic acid.

Not included are raw material production or extraction or water and energy use.

(Energy balance is assumed to be close to 0 due to exothermic producer gas synthesis process)

References/Citations: Faith Keyes and Clarke's Industrial Chemicals

By F. A. Lowenheim, M. K. Moran

Wiley Interscience, 1975

Perry's Chemical Engineers' Handbook, 6th ed.

McGraw Hill, 1984

AP 42 Ed 4 (1985)

US EPA

Kirk Othmer Encyclopaedia of Chemical Technology

2nd ED, 1964 and 4th Ed, 1991-4

Wiley Interscience,

CRC Handbook of Chemistry and Physics, 66th Edition

Summary Output

Co-product Allocation Calculations

Co-product Quantity Units

Acetic acid 1.00E+00 kg
Coal Tar 1.05E-01 Kg

Total 1.10515212 Kg

Bbl eq. are calculated on a energy content basis and used to calcualte the allocated LCI emissions factors. Bbl. of CrO production are scaled by multiplying by the ratio of bbl eq. CrO produced to bbl CrO produced. Notes:

	က	ო	က	က	6
ΒĞ					
Std. Dev.					
Quantity	0.007691249	0.016883452	0.041792268	0.102758018	0.031006436
Allocated Units	Kg/Kg Acetic a	Kg/Kg Acetic a	Kg/Kg Acetic a	Kg/Kg Acetic a	Ka/Ka Acetic a
Std. Dev.					
Quantity	0.0085	0.01865878	0.04618681	0.11356324	0.03426683
Unallocated Units	Kg/Kg Acetic a	Kg/Kg Acetic a 0.01865878	Kg/Kg Acetic a 0.04618681	Kg/Kg Acetic a 0.11356324	Kg/Kg Acetic a 0.03426683
LCI components Air	TSP	SOx	8	C02	total HC's

Water

Production wastekg/Kg Acetic a 0.03599021

Resource Consumption

0.428266893	0.485686352
Kg/Kg Acetic a	Kg/Kg Acetic a
0.47330006	0.5367573
Kg/Kg Acetic a	Kg/Kg Acetic a
Coal	Methanol

This section is where the project specfic calculations take place. Information on LCI components from below is taken and the proper co-product allocation scheme applied. It may be necessary to preface this section with a section detailing the co-product allocation rules or calculations. Notes:

Data Quality Indicators (DQI) range from 5 as highest to 1 as lowest. A value of 0 is used when no indicator was reported.

						Chemical Engineers' Handbook, 6th ed., Figure 9-4 @ S.G. = .76 and sulfur = 0.5%											
	,			Chemical Engineers' Handbook, 6th ed.	Chemical Engineers' Handbook, 6th ed.	ers' Handbook, 6th ed., I								Chemical Engineers' Handbook, 6th ed.	3 SD=11%	SD=13%	
	Reference	CRC, 66th Edition	CRC, 66th Edition				CRC, 66th Edition	CRC, 66th Edition		6.289811 CRC, 66th Edition				Chemical Enginee	calculation page B	Calculated page C	
	Multiplier	1055.056	3600	5800000	42	118500	3.785412	2.2046226	365		7.2	2000	138000	1032	12000	46	
	Unit to	7	7	BTU CrO	gal	gal diesel BTU diesel	_	임	day	bbl (petroleum)	lb CrO	의	gal fuel oil BTU fuel oil	BTU NG	Ib Coal (dryBTU Coal	MJ NG	
Conversion Factors	Unit from Unit to	BTU	Wh	bbl CrO	lqq	gal diesel	gal	kg	yr	m ^A 3	gal CrO	ton	gal fuel oil	cu. ft NG BTU NG	lb Coal (dr	kg NG	Calculations

Acetic acid Production

Energy input

All energy is assumed to come from the heat of combustion in the formation of CO, which is recoverable.

	Raw/	Raw/	Raw/		Transformed	Transformed	Fransformed Transformed
LCI component	Input Units	Input Quan.	Input Quan. Input Std. Dev.	ğ	Units	Quan.	Std. Dev.
Coal	MJ/kg ethylene	0		က	kg/kg ethylene	0	
liO	MJ/kg ethylene	0	15	8	3 kg/kg ethylene	0	0.33622909
Natural Gas	MJ/kg ethylene	0		က	kg/kg ethylene	0	
Hydropower	MJ/kg ethylene	0		က			

0 MJ/kg ethylene Fission

Material input

Faith Keyes and Clarke's Industrial Chemicals Source:

By F. A. Lowenheim, M. K. Moran

Wiley Interscience, 1975

Methanol Carbonylation method

Stoichiometric ratios:

0.533 kg/Kg Acetic a Methanol net 0.467 0.5367573 Kg/Kg Acetic a **Salkg Acetic a** Methanol input CO net

0.993 0.993 conversion of methanol 0.91 0.91 conversion of CO Kg/Kg Acetic a 0.51318681 CO input

from Faith Keyes and Clark's Industrial chemicals, 1975 Kg/Kg Acetic a 1.69497376

Kg/Kg Acetic a 0.47330006 Producer-Gas input

Coal input

(Data from pg D and from AP42 Ed 4 Tbl 1.1-1) **Emission calculation**

Kg/Kg Acetic a 0.04618681 CO released from process

0.09 unconverted CO Kg/Kg Acetic a 0.03050953 Methane C02

8.5 g/kg in Cyclone trap outlet (AP42 Ed 4 tbl 1.1-1) 0.007 unconverted assumed to escape in vent stream Kg/Kg Acetic a 0.11356324 0.0085 0.0037573 Kg/Kg Acetic a Kg/Kg Acetic a Particulates Methanol

Kg/Kg Acetic a 0.01865878 19.5*%S in Cofrom AP 42 Ed 4 (1985) tbl 1.1-1

Sox

Coal assumed to have 1% Sulfur and the coal tar product to have 0.4% sulfur Land

Kg/Kg Acetic a 0.03599021

Ash

0.094 Ash in coal (assumed recovered) but for air emission

CO production from Coal through synthesis gas (producer or manufactured)

Page D calculations

Source:

Producer gas from Coal (Baddelsey)

25.30% mal CO

30.28% wt CO

28.016 23.410686 Mw Produc Mw CO

Gas product yield from coal: 3.58118218 lb gas/lb coal

Co-Products:

calculated from data on this sheet and on sheet D source:

Coal tar heating value is median for data of Perry Ed 6 (1984) tbl. 9-12

Coal Tar

Kg/Kg Acetic a 0.10515212

				T.
Transformed Std. Dev.		Transformed	Std. Dev.	Transformed Std. Dev.
Transformed Quan.	0.5367573 0 0.5367573 0	Transformed	Quan. 0.0085 0.01865878 0.04618681 0.11356324 0 0 0.03426683	Transformed Quan. 0 0 0 0 0
Transformed Units	Kg/Kg Acetic acid 3 Kg/Kg Acetic acid 3 Kg/Kg Acetic acid 3 Kg/Kg Acetic acid Kg/Kg Acetic acid Kg/Kg Acetic acid Kg/Kg Acetic acid	Transformed	Units Kg/Kg Acetic acid	Transformed Units Kg/Kg Acetic acid
ğ			ō	ō
Raw/ Raw/ Input Quan. Input Std. Dev.		Raw/	Input Std. Dev.	Raw/ Input Std. Dev.
Raw/ Input Quan.	0.47330006 0 0.5367573 0 0	Raw/	Input Quan. 0.0085 0.01865878 0.04618681 0.11356324 0.03426683 0	Raw/ Input Quan. 0 0 0 0 0 0
Raw/ Input Units	Kg/Kg Acetica Kg/Kg Acetica Kg/Kg Acetica Kg/Kg Acetica Kg/Kg Acetica	Raw/	Input Units Kg/Kg Acetica	Raw/ Input Units Kg/Kg Acetic a
LCI component	Oii Natural Gas Coal Iron ore Methanol Bauxite Rock salt	Output Air	LCI component TSP SOx NOx CO CO2 H2S HCI total HC's other organic Heavy metals	Water LCI component COD BOD Acid as H+ Metal ions CI2 Dissolved Organics

acid 0	acid 0	acid 0	acid 0		
0 Kg/Kg Acetic acid	0 Kg/Kg Acetic acid	0 Kg/Kg Acetic acid	0 Kg/Kg Acetic acid		
Kg/Kg Acetic a	Kg/Kg Acetic a	d mateKg/Kg Acetic a	Kg/Kg Acetic a		
suspended solids	crude oil	miscelanious dissolved mateKg/Kg Acetic a	Phenol	Solid waste	

ransformed	Std. Dev.		
Transformed Transformed	Quan.	0.00128	0.000001
Transformed	Units	Kg/Kg Acetic acid	Kg/Kg Acetic acid
	ğ		
Raw/	Input Units Input Quan. Input Std. Dev.		
Raw/	Input Quan.	0.03599021	0
Raw/	Input Units	nnert Kg/Kg Acetic a 0.0359902	Kg/Kg Acetic a
	LCI component	Production waste (not innert	Toxic chemicals

MEK (from sec-butanol which is from n-butene which is a byproduct of butadiene production from ethylene. MEK is used in production of TNAZ) Sheet Title:

Emissions are from TRI database. Sheet Description:

Engineering calculation of the Energy requirements and precursor requirements. This page calculates the vendor emissions from a plant producing PCl3.

Not included are raw material production or extraction or water use.

References/Citations:

Faith Keyes and Clarke's Industrial Chemicals By F. A. Lowenheim, M. K. Moran Wiley Interscience, 1975

Perry's Chemical Engineers' Handbook, 6th ed. McGraw Hill, 1984

AP 42 Ed 4 (1985)

US EPA

SRI Directory of Chemical Producers, US 1993, 1991 editions
SRI International, Menlo Park, CA

US ITC 2810 Synthetic Organic Chemicals US production and Sales, 1993 US International Trade Commission, 11.1994

CRC Handbook of Chemistry and Physics, 66th Edition

Summary Output

Source:

Co-product Allocation Calculations

US ITC 2810 Synthetic Organic Chemicals US production and Sales, 1993 US International Trade Commission, 11.1994

Units Quantity 1.00E+00 kg Units Quantity 1.00E+00 kg Mwt Co-product 137,329 PCI3

1.00E+00 Kg 1.00E+00 Kg Total

Notes:

Ιζα	ო	က	ю	
Std. Dev.				
Quantity	4.18147E-06	1.136721242	1.73292E-05	5.85013E-07
Units	Kg/kg MEK	Kg/kg MEK	Kg/kg MEK	Kg/kg MEK
Std. Dev.				
Quantity	4.18147E-06	1.136721242	1.73292E-05	5.85013E-07
Units	Kg/kg MEK	hosKg/kg MEK	jan Kg/kg MEK	Solid Wastes P4 production w Kg/kg MEK Zinc Comparade Kg/kg MEK
LCI components	CI2	Zinc oxides/P	Water Dissolved Org	Solid Wastes in containerP4 production w Kg/kg MEK Zing Pomounds Korlon MEK
	Units Quantity Std. Dev. Units Quantity Std. Dev.	Units Quantity Std. Dev. Units Quantity Std. Dev. Air Kg/kg MEK 4.18147E-06 Kg/kg MEK 4.18147E-06	Air Quantity Std. Dev. Units Quantity Std. Dev. Air Kg/kg MEK 4.18147E-06 Kg/kg MEK 4.18147E-06 oxides/Phoskg/kg MEK 1.136721242 Kg/kg MEK 1.136721242	Air Units Quantity Std. Dev. Units Quantity Std. Dev. DQI Air Kg/kg MEK 4.18147E-06 Kg/kg MEK 4.18147E-06 : Sxides/PhosKg/kg MEK 1.136721242 Kg/kg MEK 1.136721242 : Water Water 1.73292E-05 Kg/kg MEK 1.73292E-05 :

Resource Consumption Chlorine Kg/kg MEK 1.73292E-05

Kg/kg MEK

1.73292E-05

This section is where the project specfic calculations take place. Information on LCI components from below is taken and the proper co-product allocation scheme applied. It may be necessary to preface this section with a section detailing the co-product allocation rules or calculations.

Notes:

Conversion Factors

Data Quality Indicators (DQI) range from 5 as highest to 1 as lowest. A value of 0 is used when no indicator was reported.

	Unit from	Unit to	Multiplier	Reference				
	BTU	7	1055.056	1055.056 CRC, 66th Edition	_			
	8	-	3600	3600 CRC 66th Edition				
	0	0	0000	מונים ממון במוומו				
	DDJ IQQ	BIUCO	2800000	5800000 Chemical Engineers' Handbook, 6th ed.	ers' Handbook,	eth ed.		
	ppi	gal	45	42 Chemical Engineers' Handbook, 6th ed.	ers' Handbook,	6th ed.		
	gal diesel	BTU diesel	118500	Chemical Engine	ers' Handbook,	6th ed., Figure	118500 Chemical Engineers' Handbook, 6th ed., Figure 9-4 @ S.G. = .76 and sulfur ≈ 0.5%	nd sulfur = 0.5%
	gal	ر	3.785412	3.785412 CRC, 66th Edition	_			
	kg	Φ	2.2046226	2.2046226 CRC, 66th Edition	_			
	٨	day	365					
	m^3	bbl (petroleum)	6.289811	6.289811 CRC, 66th Edition				
	gal CrO	D CrO	7.2					
	to	٩	2000					
	dal fuel oil		138000					
	CH # NG		1032	1032 Chemical Engineers' Handbook 6th ed	ers' Handbook	6th ed		
	Ib Coal (d	- 2	12000	12000 calculation nade R		SD=11%		
	kg NG	MJNG	46	46 Calculated page C		SD=13%		
	Mw Benzen	en 78.1134		mofar			Ř	kg air per kg
	Mw Chlorin	in 70.9		dry air composition		Mwt	mass composition component	mponent
	Mw CIBz	112.56		N2	0.78084	28.0134	0.75521	1.324134
	Mw CI2Bz			02	0.20946	31.9988	0.231406	4.321406
	Mw HCI	36.4609		C02	0.00033	44.01	0.000501	1994.319
	Mw NaO+	Mw NaOH 39.9971		Ar	0.00934	39.948	0.012882	77.62792
				total	0.99997	28.96409	-	
	Ideal gas	Ideal gas density at 15 C (60 F)	F)	10	air (dry)	, my3		
Calculations	0.07710.0		12040007.24	İ	Section 10022			
	MEK Production	duction			1993			
Source:	US Chem	US Chemical Industry Statistical Handbook 1994	ical Handbook	1994				
	Chemical	Chemical Manufacturers Association, Washington DC	ociation, Wash	ington DC				
		m ton	244500 MIb	MID	539.0247			
Course.	MEK pro	MEK production capacity	Productions	9				
		and the second	MID	3	540			
	Utilization ratio:		- T	C	0.998193889			
			i ·	•				
	Shell Corp at Norco,	Shell Corporation production Mlb at Norco, LA 70079	Mib		230			
	Calculater	Calculated production:		6	229.5845944			
Source:	Emissions:	3:						
	I KI datab	I KI database, 1993 data						

The Norco Plant of Shell produces ethylene and propylene and some bulylene from mixed LPG (ethane and propane) feedstocks and then manufactures derivatives of butenes into MEK Production data includes captive production and therefore all relevant emissions may be attributed to that quantity.

	The following reported emissions were deemed unrelated to MEK producti Allyl Cl. The following reported emissions were ascribed to MEK production only. MEK	lissions were deem	ed unrelated to	o MEK productive	Allyl CI	diethanolamine	diethanolamine 1,3 dichloropropylene Methyl iso hutyl kessechutyl alcohol Acetone		4 4' iso propyfedene dipl	4 4' iso propyledene diphæpichlorhydchlorobenz HCI	CI2 1	1,2 dichloropropane
	Emissions allocated between the products (cracker by products)	een the products (c	racker by pro	ducts)	styrene	toluene	propylene		ammonia	sulfuric aciditanium tetrachloride naphthalene	naphthalene	
	Energy and materall input data from the calculations of sheet "Calc"	data from the calcu	ulations of she	et "Calc"								
		Raw/	Raw/	Raw/		Transformed	Transformed	Transformed				
	LCI component	Input Units	Input Quan.	Input Quan. Input Std. Dev.	ğ	Units	Quan.	Std. Dev.				
	Fossil fuel (general)	MJ/kg PCl3	0 (MJ/kg PCI3	0 (
	Coal	MJ/kg PCl3	00	4		Kg/kg MEK	0 0					
		MUKG PCIS	0			Ng/kg MEK	0 0					
	Natural Gas	MJ/kg PCIS				Ng/kg MEN	0					
	Hydropower	MJ/kg PCi3	5 C									
	Electricity (generic)	MJ/kg PCI3	2.88758E-07			MJ/kg P4	2.88758E-07					
		,				•	Probably different mix in US	mix in US				
	Material input											
Co-Products:												
sonice:	See from above											
Resources:												
		Raw/	Raw/	Raw/		Transformed	Transformed	Transformed				
	LCI component	Input Units	Input Quan.	Input Std. Dev.	οo	Units	Quan.	Std. Dev.				
	lio	Kg/kg MEK	0			4 Kg/kg MEK	0					
	Natural Gas	Kg/kg MEK	0			4 Kg/kg MEK	0					
	Coal	Kg/kg MEK	0			4 Kg/kg MEK	0					
	Naphtha	lb/Shell, Norco	431616341			4 Kg/kg MEK	1.879988255					
	ammonia	Kg/kg MEK	1.73292E-05			4 Kg/kg MEK	1.73292E-05		(all out into water emission)	(noi		
	Silicate (sand)	Kg/kg MEK	0			4 Kg/kg MEK	0					
	Air	Kg/kg MEK	0 (4 Kg/kg MEK	0					
	Water	Kg/kg MEK	0			4 Kg/kg MEK	0					
	Air	,					***************************************					
		Raw/	Raw/	Raw/		Transformed	Transformed	Transformed				
styrene	LCI component	Input Units	Input Quan.	Input Std. Dev.	ō	Units	Quan.	Std. Dev.				
	TSP	Kg/kg MEK	0 (Kg/kg MEK	0					
	ž Č	Ib/Shelf, Norco	5 6			Kg/kg MEK	00					
	S 23	b/Shell Norco	96			Kolko MFK	4 18147F-06					
	C02	Kg/kg MEK	0	4		3 Kg/kg MEK	0					
	P4	lb/Shell, Norco	0			Kg/kg MEK	0					
	Styrene	lb/Shell, Norco	1.136721242			Kg/kg MEK	4.95121E-09					
	toluene	lb/Sheil, Norco	878.375505			Kg/kg MEK	3.82593E-06					
	propylene	lb/Shell, Norco	2898.639166			Kg/kg MEK	1.26256E-05					
	xylene	lb/Shell, Norco	129.9479056			Kg/kg MEK	5.66013E-07					
	ammonia	ID/Shell, Norco	7.233580529			Kg/kg MEK	3.150//E-08					
	fitani m tetrachlorida	Ib/Shell Norco	191 2791835			Kolba MEK	9.327.33E-U/					
	nanhthalana	Ib/Shell Norco				Ko/ko MFK	3.60088E-07					
	MFK	lb/Shell Norco				Ko/kn MFK	0.000296187					
	Methyl iso butyl ketone	Ib/Shell, Norco	15	4		Ka/ka MEK	6.53354E-08					
			•									

	Dev.	med .v.	0
	Std. Dev.	Transformed Std. Dev.	91
0.000352811 3.70234E-06 0.000671566 0	Transformed Quan. 0 0 1.73292E-05 0 0 0 0 0 0 0 0 0 0 0 0	Transformed Quan. 5 89013E-07 3 80251E-05 3 82593E-08 2.25055E-07 2.4756E-08 1.1527E-07 6.1249E-05 1.30671E-07 2.44567E-07 2.44567E-07 2.44567E-07	
Kg/kg MEK Kg/kg MEK Kg/kg MEK Kg/kg MEK	Transformed Units 5 Kg/kg MEK	Transformed Units Units 5 Kg/kg MEK 5 Kg/kg MEK 6 Kg/kg MEK 7 Kg/kg MEK 8 Kg/kg MEK 9 Kg/kg MEK 11 Kg/kg MEK 11 Kg/kg MEK 12 Kg/kg MEK 13 Kg/kg MEK 13 Kg/kg MEK	5 Kg/kg MEK
	DOI	Ī	84 21 21 21 21 21
	Raw/ Raw/ Input Quan. Input Std. Dev. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Raw/ Raw/ Input Quan. Input Quan. Input Quan. Input Std. Dev. 37.29. 97.1082 8.78375505 51.66914735 6.683605209 55.83457368 4054.00808 3000 3000 5608	21 61 21 21 21 21 21 21 21
81000 850 154181.1822 0		Raw/ Input Quan. 134.3100149 8729.971082 8.78375505 51.66914735 5.683606209 25.83457368 14054.00808 3000 300 5608	11 11 11 11 11
lb/Shell, Norco 81000 lb/Shell, Norco 850 lb/Shell, Norco 154181.1822 lb/Shell, Norco 0	Raw/ Input Units Ib/Sheli, Norco	Raw/ Input Units Ty)b/Shell, Norco Ib/Shell, Norco	lidb/Shell, Norco
sec-butyl alcohol Acetone HC total Heavy met¢(Cd+Ni+Cr) Water	Raw/ LCI component Input Units COD In/Shell, Norco BOD In/Shell, Norco Acid, H+ (Phosphoric) In/Shell, Norco Metal ions In/Shell, Norco CI2 In/Shell, Norco Ammonia In/Shell, Norco Suspended solids In/Shell, Norco Suspended solids In/Shell, Norco Fulfored In/Shell, Norco Phenol In/Shell, Norco Phenol In/Shell, Norco Phenol In/Shell, Norco Solid waste	Raw/ LCI component Input Units Production waste (not innert)lb/Shell, Norco Idlal no catalyst Ib/Shell, Norco Istyrene Ib/Shell, Norco Istyrene Ib/Shell, Norco sulfuric acid Ib/Shell, Norco sulfuric acid Ib/Shell, Norco itianium tetrachloride Ib/Shell, Norco MERK Ib/Shell, Norco Acelone Ib/Shell, Norco Acelone Ib/Shell, Norco Acelone	Heavy metals (Cadmium, Nidb/Shell, Norco
		Shipped out	Sheet End

Values are in capacity Mlb/yr 1993

SRI Directory of Chemical Producers, US 1993, edition SRI International, Menlo Park, CA Source:

1400 0.297682 Propylene C3H6 42.081

			0.038058 of ethylene emissions	0.875718 of sec butanol emissions
26.31 2.5925926 1.937888 Ethane Propane Naphtha		8353.5 431.61634	230 0.8757179 MEK C4H8O 72.1	
E/P ratio 1.8285714	31.2 2560 16.1 1400 D 4.5 500 4.5 243	56.3 4703 8 dehydroge nation over	0.841099 sec butanoi catalyst C4H10O 74.12	
ene cracked with steam (hydrocracking)	E liene P BD		partial oxida 270	
2560 0.544333 ethylene C2H4 28.054	500 0.106315 Butadiene C4H6 54.092		243 0.051669 n Butene C4H8 56.108	4703

4703

						waste shipped out	8.783755	51.66915	
						land			
						Water land	721	.55	33
						Air	1.136721	878.3755	2898.639
land waste shipped out	3000	30		5608		waste shipped out	170	1000	
land	130		4			land			
Water	0	15	0	0	_	Water	2	0	0
Air	00089		81000	850	0.0516691	Air	22	17000	5610
100% weighted	MEK	Methyl iso butyl ketone	sec-butyl alcohol	Acetone	Cracker weighted		styrene	toluene	propylene

5.683606		0.3100149 25.83457	14054.01	
129.9479	978.5		191.2792	82.67064
110		200	272000 reclamation	
		ဖ		
	77000			
2515	140	2456	3702	1600
ylene	mmonia	ulfuric acid	titanium tetrachloride	naphthalene

Sheet Title:

butylene (for butadiene and rubber production)

Sheet Description:

This page calculates the vendor-independent emissions from european refineries producing monomer quality butylene Included are oil extraction and transportation from the well head to the refinery.

References/Citations:

SimaPro3 (entry of Nov 18 94)
Average data for 19 european cracking fascilities producing monomer quality ethylene.

taken from:

PWMI/APME, Ecoprofiles of the European plastics industry, 1992-1994 report 2, tbl 36 pg 21

Summary Output

Co-product Allocation Calculations

Quantity Co-product

Units

1.00E+00 Kg butylene

۲ کو Total

	ဗဗ	ကက	က	က	က	ဗ	က	က		က	က	က	က	က
DO														
Std. Dev.														
Quantity														
Allocated Units														
Std. Dev.														
Quantity	0.0008	0.006	0.5	0.000001	0.00001	0.007	0.000001	0.000001		0.0002	0.00004	0.00004	0.0003	0.00005
Unallocated Units	Kg/Kg butylene Kg/Kg butylene	Kg/Kg butylene Ka/Ka butylene	Kg/Kg butylene		Kg/Kg butylene									
LCI components Air	TSP SOx	XON OO	C02	H2S	HÖ	total HC's	other organic	Heavy metals	Water	COD	BOD	Acid as H+	Metal ions	CI2

က	8	8	8		ဗ		က		9	#VALUE!	#VALUE!	#VALUE!		ဂ								
									20450000	5516666.667	140.3907175	6.421279978		3.059862621								
0.00002	0.0002	0.0001	0.0004	0.0000	0.000001		0.0083		0.533478261	0.143913043	0.789017599	0.036088589	0.000358269	0.017196902	0.06	0.22	0.0002	0.0001	0.0003	0.006	0.00002	1.6
Dissolved OrganKg/Kg butylene	id Kg/Kg butylene	Kg/Kg butylene	JisKg/Kg butylene	Kg/Kg butylene	Phenol Kg/Kg butylene		Production wastekg/Kg butylene	nption	Kg/Kg butylene	MJ/Kg butylene	MJ/Kg butylene	Kg/Kg butylene										
Dissolved Org	suspended sol	crude oil	miscelanious c	total HC's	Phenol	Solid Wastes	Production wa	Resource Consumption	Natural Gas	Natural Gas	Crude Oil	Crude Oil	Coal	Coal	Hydropower	Fission	Iron ore	limestone	Bauxite	Rock salt	Clay	Water
										fuel		fuel		fuel								

This section is where the project specific calculations take place. Information on LCI components from below is taken and the proper co-product allocation scheme applied. It may be necessary to preface this section with a section detailing the co-product allocation rules or calculations. Notes:

Data Quality Indicators (DQI) range from 5 as highest to 1 as lowest. A value of 0 is used when no indicator was reported.

		tion	tion	5800000 Chemical Engineers' Handbook, 6th ed.	42 Chemical Engineers' Handbook, 6th ed.	118500 Chemical Engineers' Handbook, 6th ed., Figure 9-4 @ S.G. = .76 and sulfur = 0.5%	tion	tion		tion	
	Reference	1055.056 CRC, 66th Edition	3600 CRC, 66th Edition	Chemical Engi	Chemical Engi	Chemical Engi	3.785412 CRC, 66th Edition	2.2046226 CRC, 66th Edition		6.289811 CRC, 66th Edition	
	Multiplier	1055.056	3600	5800000	42	118500	3.785412	2.2046226	365	6.289811	7.2
	Unit to	7	7	BTU CrO	gal	BTU diesel	_	q	day	bb! (petroleum)	lb CrO
Conversion Factors	Unit from	BTU	Wh	bbl CrO	lqq	gal diesel	gal	kg	yr	m^3	gal CrO
Conversio											

	Transformed Std. Dev.		Transformed	Std. Dev.				t mix in US	Transformed	Std. Dev.									Transformed
	Transformed Quan.	0	Transformed	Quan.	0.017196902	0.143913043	0.06	0.22 Probably different mix in US	Transformed	Quan.	0.789017599	0.533478261	0.000358269	0.0001	0.0003	0.006	1.6		Transformed
	Transformed Units		Transformed	Units	Kg/Kg butylene			MJ/Kg butylene	Transformed	Units			Kg/Kg butylene			Kg/Kg butylene			Transformed
9 9	DQ 3			DQI	с	າຕ	33	က		DQ	က	en e	າຕ	, w	က	ന്	, w		
Sth ed. SD=11% SD=13%	Δ	utylene.		٥						۵									
s' Handbook, (Raw/ Input Std. Dev.	onomer quality bu	Raw/	Input Std. Dev.					Raw/	Input Std. Dev.									Raw/
Chemical Engineers' Handbook, 6th ed. calculation page B Calculated page C SD=13	Raw/ Input Quan.	ies producing mo stics industry, 19	Raw/	Input Quan.	0.48	6.62	0.06	0.22	Raw/	Input Quan.	35.2	24.54	0.0002	0.0001	0.0003	0.006	1.6		Raw/
2000 138000 1032 12000 46	Raw/ Input Units 1 Kg	ean cracking fascilit	Raw/	Input Units	MJ/Kg butylene	MJ/Kg butylene	MJ/Kg butylene	MJ/Kg butylene	Raw/	Input Units	MJ/Kg butylene	MJ/Kg butylene	Ka/Ka butviene	Kg/Kg butylene	Kg/Kg butylene	Kg/Kg butylene	Kg/Kg butylene		Raw/
ton Ib gal fuel oil BTU fuel oil cu. ft NG BTU NG Ib Coal (dry) BTU Coal kg NG MJ NG ons	Ethylene Production LCI component butylene (polymer) butylene (other)	SimaPro3 Average data for 19 european cracking fascilities producing monomer quality butylene. taken from: PWMI/APME, Ecoprofiles of the European plastics industry, 1992-1994 report 2, tbl 36 pg 21	Energy input	LCI component	Coal	Natural Gas	Hydropower	Fission	Material Input	LCI component	liō	Natural Gas	Iron ore	limestone	Bauxite	Rock salt	Water	Output Air	
Calculations																			

Std. Dev.	Std. Dev.	
Quan. 0.0008 0.004 0.006 0.0004 0.000001 0.000001 0.000001	Transformed T Quan. 0.0002 0.00004 0.00003 0.00002 0.00002 0.00001 0.00004 0.000000	0.0083
Units Kg/Kg butylene	Transformed Units Kg/Kg butylene	Kg/Kg butylene
ō	īg	
Input Std. Dev.	Raw/ Input Std. Dev.	
0.0008 0.0008 0.0004 0.000001 0.000001 0.000001 0.000001	Raw/ Input Quan. 0.0002 0.00004 0.00005 0.00005 0.00002 0.00001 0.00001 0.00001	0.0083
Input Units Kg/Kg butylene	Raw/ Input Units Kg/Kg butylene	nert) Kg/Kg butylene
LCI component TSP SOx NOx CO CO2 H2S H2S HCI total HC's other organic Heavy metals	Raw/ LCI component Input Units COD Kg/Kg butylene BOD Kg/Kg butylene Acid as H+ Kg/Kg butylene Acid as H+ Kg/Kg butylene Ci2 Kg/Kg butylene Ci2 Kg/Kg butylene Dissolved Organics Kg/Kg butylene suspended solids Kg/Kg butylene crude oil Kg/Kg butylene HC's Kg/Kg butylene HC's Kg/Kg butylene Phenol Kg/Kg butylene	Production waste (not innert) Kg/Kg butylene

Coal type	Moisture	Sulfur			Heat value		
	%	%	%dry		Btu/lb	Btu/lbdrv	
Sub bit C	26		0.3		8230	11121.622	
HV bit A	2.9		9.0	0.62	14170		low sulfur coal heating value
Sub bit B	22.2		0.5	0.64	9610		
Brown Coal German - Rh	h 55		0.3	0.67	4830	10733.333	
Sub bit A	13.9		9.0	0.70	10330		SD= 1295,7751 0.1081691
Meta Anthracite	0		0.7	0.77	10080		11979.157
LV bit	2.9		0.8	0.82	14400		_
Anthracite	4.3		8.0	0.84	12880		
Lignite	36.8		6.0	1.42	7000	11075.949	
MV bit	2.4		1.5	1.54	14490	14846.311	
Semi anthracite	2.1		1.7	1.74	13700	13993.871	
HV bit B	6.7		2.6	2.79	12390	13279.743	
HV bit C	15.4		2.9	3.43	10740	12695.035	
bit=Bituminous							
V=Volatility							

L=low M=Medium H=high

Source: Kirk Othmer vol 4 1949

Natural gas

	Mwt	heat value	Rio Arriba, N	Rio Arriba, NTerrell, Tex		San Juan, Ni	Molds Field, A	Stanton, KanSan Juan, NMIds Field, ACliffside, Texas	
%lom		MJ/M^3							
Methane	16.043	37.57	96.91	45.64	67.56	77.28	52.34	65.8	
ethane	30.07	65.83	1.33	0.21	6.23	11.18	0.41	3.8	
propane	44.097	93.6			3.18	5.83	0.14	1.7	
butane	58.123	120.98			1.42	2.34	0.16	0.8	
pentane+	72.15	148.84			0.04	1.18	0.41	0.5	
C05	44.01	0		53.93	0.07	0.8	8.22		
H2S	34.076	23.7		0.01			35.79		
N2	28.013	0	0.68	0.21	21.14	1.39	2.53	25.6	avg SI
Mol wt:			16.625849	31.182	20.921258	21.28362	25.492892	20.445665	19.610242
heating valueMJ/M^3	IeMJ/M^3		37.6	17.3	34.9	46.8	30	30.7	39.766667
	MJ/KG		50.658467	12.42	37.366777	49.254778	26.360289	33.634514	45.760008
	0.0224M^3/mol	jou		too high CO2 content for			too high Sulfur content	too low heating value(?)	
				nse					
Source: Kii	Source: Kirk Othmer Ed 4 vol 12 1993	4 vol 12 199	23		MJ/m^3				
Heating values for pro source Perry 6 (1964) averaged from table 9	Heating values for processed city natural source Perry 6 (1964) averaged from table 9-14	sed city natu	ıral gas:						
Btu/scf	1049.5714								
Synopsis of mol%	Synopsis of table 9-14 Mwt mol%	heat value MJ/M^3	Baltimore Md	Columbus Ohio	Houston Tx	Burmingham Al	Burmingham Washington Phoenix Al DC Az	Phoenix Az	
Methane	16.043	37.57	94.4	93.14	92.5	93.14	95.15	87.37	

SD (rel) 10.79% 12.81% 13.03%

SD (rel) 15.84% 1.10%
avg 18.319413 38.835517 48.124142
8.11 2.26 0.13 0 0.61 1.37 18.179837 39.9483 49.221668
2.84 0.63 0.24 0.05 0.62 16.9628 38.8666 51.324771
2.5 0.67 0.32 0.12 1.06 17.328208 38.1952 49.374551
4.8 2 0.3 0 0.27 21.14 23.380219 38.4563 36.844014
3.58 0.66 0.22 0.09 0.85 0.01 16.939122 38.3444 50.705967
3.4 0.6 0.5 0.6 17.126294 39.2023 51.273879
65.83 93.6 120.98 148.84 0 23.7
30.07 44.097 58.123 72.15 44.01 34.076 28.013 MJ/M^3
ethane 30 propane 44.0 butane 58.7 co2 444 H2S 34.0 N2 28.0 Mol wt: heating valueMJ/M^3

0.0224M⁴3/mol

MTBE (from Methanol and Isobutelene. MTBE is used in production of TNAZ) US ITC 2810 Synthetic Organic Chemicals US production and Sales, 1993 US International Trade Commission, 11.1994 This page calculates the vendor emissions from a plant producing MTBE. Not included are raw material production or extraction or water use. CRC Handbook of Chemistry and Physics, 66th Edition Engineering calculation of the Energy requirements. Perry's Chemical Engineers' Handbook, 6th ed. McGraw Hill, 1984 Precursor material requirements are from EIA. Faith Keyes and Clarke's Industrial Chemicals By F. A. Lowenheim, M. K. Moran SRI Directory of Chemical Producers, US SRI International, Menlo Park, CA Emissions are from TRI database. Wiley Interscience, 1975 AP 42 Ed 4 (1985) US EPA 1993, 1991 editions References/Citations: Sheet Description: Sheet Title:

Summary Output

Co-product Allocation Calculations

US ITC 2810 Synthetic Organic Chemicals US production and Sales, 1993 US International Trade Commission, 11.1994

Source:

Vapor density retailve to all	
	1.392
Sp G	8.2
BP deg C	
Units	
Quantity	1.00E+00 kg
Units	6)
Quantity	1.00E+00
Co-product	88.1492 MTBE
Mwt	88.149

1.00E+00 Kg 1.00E+00 Kg Total

Notes:

	വവവ	വവ
DO		
Std. Dev.		
Quantity	7.31922E-06 2.13838E-05 4.09116E-09	3,25744E-08 5,42907E-06 1,65873E-07
Allocated Units	Kg/kg MTBE Kg/kg MTBE Kg/kg MTBE	Kg/kg MTBE Kg/kg MTBE Kg/kg MTBE
Std. Dev.		
Quantity	7.31922E-06 2.13838E-05 4.09116E-09	3.25744E-08 5.42907E-06 1.65873E-07
Unallocated Units	Kg/kg MTBE Kg/kg MTBE Kg/kg MTBE	Kg/kg MTBE Kg/kg MTBE Ka/ka MTBE
LCI components	Air MTBE Methanol Ammonia	Water MTBE Methanol Ammonia

9.94219E-08 0.844445946 0.273010811 MJ/Kg MTBE Kg/kg MTBE Kg/kg MTBE Resource Consumption
Electric Power MJ/Kg MTBE 9.94219E-08
Isobutylene Kg/kg MTBE 0.84445946 Kg/kg MTBE 0.273010811 Methanol

6 6 6

This section is where the project specfic calculations take place. Information on LCI components from below is taken and the proper co-product allocation scheme applied. It may be necessary to preface this section with a section detailing the co-product allocation rules or calculations. Notes:

Data Quality Indicators (DQI) range from 5 as highest to 1 as lowest. A value of 0 is used when no indicator was reported.

Conversion Factors

COLIVEI SION Factors	-actors	***************************************							
	Unit from	Unit to	Multiplier	Reference				**** **********************************	
	BTU	7	1055.056	1055.056 CRC, 66th Edition					
	Ϋ́	7	3600	3600 CRC, 66th Edition					
	bbl CrO	BTU CrO	5800000	5800000 Chemical Engineers' Handbook, 6th ed	s' Handbook.	th ed			
	ppi		42	42 Chemical Engineers' Handbook, 6th ed	s' Handbook, 6	th ed			
	gal diesel	BTU diesel	118500	Chemical Engineers	s' Handbook 6	th ed Fin	TB 9.4 @ S.C. = 7	118500 Chemical Engineers' Handbook, 6th ed Figure 9.4 @ S.G. = 76 and milking a 5.0	
	gal	_	3.785412	3.785412 CRC, 66th Edition		D	7	o and sulled = 0.0%	
	ę,	Ф	2.2046226	2.2046226 CRC, 66th Edition					
	۲	day	365						
	p.s.i.	feet water	2.03666	2.03666 CRC, 66th Edition					
	m^3	bbl (petroleum)	6.289811	6.289811 CRC, 66th Edition					
	gal CrO	lb CrO	7.2						
	ton	Ð	2000						
	gal fuel oil	gal fuel oil BTU fuel oil	138000						
	cu. ft NG	BTU NG	1032	1032 Chemical Engineers' Handbook 6th ed	s' Handbook 6	th ed			
	lb Coal (dryBTU Coal	/BTU Coal	12000	12000 calculation page B	SDS	SD=11%			
	kg NG	MJ NG	46	46 Calculated page C	SS	SD=13%			
	d MTBE		0.74 rel to Water	molar				27 20 24	
	Mw Chlorin		Ĭ	dry air composition	Mwt		mass composition component	ng all per kg	
	Mw CIBz	112.56	_	N2	0.78084	28.0134	0.75521	1 224124	
	Mw CI2Bz	147.01		02	0.20946	31,9988	0.231406	4 224 406	
	Mw HC	36.4609	•	C02	0.00033	44.01	0.000504	4004.040	
	Mw NaOH 39.9971	39.9971	`	Ā	0.00934	39.948		1394.319	
			-	total	0.99997	28.96409		76.170.11	
	Ideal gas de	Ideal gas density at 15 C (60 F)	E)	air (drv)	2				
	0.042296 mol/liter	mol/liter	42.29634021 mol/m ⁴ 3	'	1.225075005 kg/m^3	1/3			
Calculations									
Source:	MTBE Production US ITC 2810 11.94	MTBE Production US ITC 2810 11.94 Synthetic Organic Che Kg	c Organic Che k		1993				
	US Producti	US Production and Sales, 1993	93				554/491508		
OS	MTBE prod	MTBE production capacity							
	2000 20	ora 1999 Directory of Chemical Producers, US	ical Producers, U	so					

Calculated production:

Capacity β

Milb 151455 chemical industry average 199 0.80732229

Utilization ratio:

1150 928.4206337

Global Octanes Corporation Deer Park, Tx

Exxon B:	Baton Rouge, LA 70821	0821	333 26	333 268.8383226									
Emissions: TRI database, 1993 data The Van de Mark plant is the o	only manufacturer	of MTBE for c	ppen sale on the	market so on	Emissions: TRI database, 1993 data The Van de Mark plant is the only manufacturer of MTBE for open sale on the market so only its TRI data are used	pe							
ed emissio	The following reported emissions were ascribed to MTBE production only: MTBE	to MTBE prod	duction only: MT		Methanol Iso	sobutylene	۲ ک	Ammonia					
Global Octanes Corporation Exxon		₹ \$ ₹ \$	Air Water Air Water	3.00E+00 0.00E+00 8.76E+03 3.90E+01	2.00E+00 0.00E+00 2.56E+04 6.50E+03			-	154				
LCI component Fossil fuel (general) N Coal Oil N Natural Gas N Hydropower		Raw/ Raw/ Input Quan. Input Std. Dev. 0 0 0 0 0 0	Raw/ put Sid. Dev.	ī	Transformed Units MJ/kg MTBE Kg/kg MTBE Kg/kg MTBE	Transformed Quan. 0 0	Transformed Std. Dev.						
Fission N Electricity (generic) N Cooling water	MJ/kg MTBE 9	9.94219E-08			MJ/kg MTBE	9.94219E-08							
25 deg C temp rise 0 heat removal MJ/kg water 0 MJ/kg product 0 Kg/Kg product	kg water								0.7 efficiency				٠
7.87E-05 kJ Etec/Kg Based or in 40hr v and related representative m Sp grav to wash, toMTBE to reactor Methanol to P=20 to reactor Isobulylene P to CRC 66 MTBE fr	Based on viscosity and density of wal in 40hr week & 52 week year daytim and relative viscosity to that of water. Sp grav Sp visc Kgflow 0.74 0.233 MJ/Kg 0.591 0.597 MJ/Kg 0.5942 0.223 MJ/Kg CRC 66 CRC 66 MTBE from Hawley's	sity and density 1.52 week year d cosity to that of v Sp visc 0.233 N 0.597 N 0.223 N CRC 66	density of water for a 25 k year daytime operation that of water. kgflow/kg prod 0.233 MJ/kg MTBE 1 0.223 MJ/kg MTBE 7 0.223 MJ/kg MTBE 7	50 ft static hea n. multiply by : 1.35739E-08 7.14023E-09 0	Based on viscosity and density of water for a 250 ft static head per pumping stage in 40hr week & 52 week, year daylime operation. multiply by specific gravity of material and relative viscosity to that of water. Sp grav Sp visc kgflow/kg prod 0.734 0.233 MJ/kg MTBE 7.8707TE-08 0.597 MJ/kg MTBE 7.14023E-09 0.597 MJ/kg MTBE 7.14023E-	terial	200 psi =	376.7821 2	821 2 5.5 6 2.55	60	60		24.5 15.5
													40
l Clark'e Indu	Faith, Keyes and Clark'e Industrial chemicals Raw/ LCI component Input Units Oil Kg/kg MTBE Natural Gas Kg/kg MTBE Coal Kg/kg MTBE Add MTBE Coal Kg/kg MTBE Methanol Gal/Gal MTBE	Raw/ Input Quan. If 0 0 0 0 0	Raw/ nput Std. Dev.	DQI 2	Transformed Units Kg/kg MTBE Kg/kg MTBE Kg/kg MTBE Kg/kg MTBE	Transformed Quan. 0 0 0 0.844445946	Transformed Std. Dev.	US Petroleum refining		"Meeting Requirements for Cleaner Fuels and Refineries"	Cleaner Fuel	s and Refine	eries"

93 pg148		ntly for other purposes	
National Petroleum Cound/ol1, Aug 1993	Industrial practice is to leave excess C	Exxon plant uses ammonia predominantly for other purposes	
	Transformed Std. Dev.	Transformed Std. Dev. Transformed Std. Dev.	Transformed Std. Dev.
0.273010811 0 0 0	Transformed Quan. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Transformed Quan. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Transformed Quan. 0.00045235
5 Kg/kg MTBE Kg/kg MTBE Kg/kg MTBE Kg/kg MTBE	Transformed Units Units Kg/kg MTBE	Transformed Units 5 Kg/kg MTBE 6 Kg/kg MTBE 7 Kg/kg MTBE 7 Kg/kg MTBE 8 Kg/kg MTBE 7 Kg/kg MTBE 8 Kg/kg MTBE 9 Kg/kg MTBE	Transformed Units Kg/kg MTBE
	Dai	īg ōg	ō
۲	Raw/ Input Std. Dev.	Raw/ Raw/ Input Quan. Input Std. Dev. 0 0 0 0 0 3.90E+01 6.50E+03 198.5930435 0 Raw/ Raw/ Input Quan. Input Std. Dev. 0	Raw/ Raw/ Input Quan. Input Std. Dev. 541580
, , , ,	Raw/ Input Quan. 0 0 0 0 0 0 8.76E+03 2.56E+04 4.90E+00	Raw/ Input Quan. 0 0 0 0 3.90E+01 6.50E+03 198.5930435 Raw/ Input Quan. 0	Raw/ Input Quan. 541580
Galloal Milbe Kg/kg MTBE Kg/kg MTBE	Raw/ Input Units Kg/kg MTBE		Raw/ Input Units Ib/Exxon +Glob
50.1.43 Isobutylene Ion exchange resin (acidic) Air Water	Air LCI component TSP SOx NOX CI2 CO2 MTBE Methanol Ammonia HC total Heavy metg(Cd+Ni+Cr)	LCI component Input Units COD IbExxon +Glob BOD Acid, H+ (Phosphoric) IbExxon +Glob Metal ions IbExxon +Glob CO2 IbExxon +Glob MTBE IbExxon +Glob MTBE IbExxon +Glob Ammonia IbExxon +Glob Ammonia IbExxon +Glob Heavy metals (Cadmium, Nichb/Exxon +Glob	LCI component Chromium (catalyst?)

Sheet End

Sheet Title:	Com Production	Last Modified	10/06/95 Er	Energy Use ir	Energy Use in Corn Production			
Sheet Description:	This page includes o	alculations of the ave	This page includes calculations of the average resource consumption and emissions from the		Study			
	production of corn in	the United States. T	production of corn in the United States. This includes information on the embodied energy in	Item	Shapouri et al Lorenz et al 19 This Study	nz et af 19 Th	iis Study	
	materials used such	as fertilizers, pesticio		Nitrogen	22,631	28,295	23,866	
	It does not include er	mbodied energy to n	t does not include embodied energy to manufacture farm machinery or buildings.	Potash	539	2,390	926	
	All basic data is conv	rerted into units of in	All basic data is converted into units of input or output per bushel (bu) of corn output.	Phosphate	1,992	2,417	1,635	
				Lime	1,232		748	
	Many of the calculation	ons below are adjust	Many of the calculations below are adjusted to account for the relationship of harvested to planted acres.	Chemicals	5,766	2,704	2,697	
	Typically, only about	98-99% of planted c	lypically, only about 98-99% of planted corn acres are harvested. Some resources have gone into this	All Other	23,024	33,386	24,049	
	planting however, sur	ch as seed, fertilizer,	planting however, such as seed, fertilizer, energy, etc. For this reason, yields and resource	Total	55,184	69,192	53,952	
	consumption are adju	usted to account for	consumption are adjusted to account for unharvested acreage.					
	Air emissions are also	o broken out by sour	Air emissions are also broken out by source in the columns to the right of the allocated emissions.					
	These are expressed	1 both as quantity pe	These are expressed both as quantity per bushel, and as a percentage of total emissions. In this	Notes: Both th	is study and Shapo	uri rely on the	e same source	Notes: Both this study and Shapouri rely on the same source of information for on-farm energy us
	way the most imports	ant sources of air em	way the most important sources of air emissions can be identified, and the veracity of the estimates	use is lumped	into the category "	other" and it c	an be seen th	use is lumped into the category "other" and it can be seen that the two estimates are very close. S
	checked.		for	for pesticides	from Pimentel (199	1) which appe	ears to find its	for pesticides from Pimentel (1991) which appears to find its genesis in another Pimentel work (19
			to	to come from	Pimentel 1991, but	may come fr	om Pimentel	to come from Pimentel 1991, but may come from Pimentel 1988, where it is cited at 100 KJ/kg. C
			the	that it includes	s energy for formula	ition, packagir	ng, and transp	that it includes energy for formulation, packaging, and transport. Shapouri adds energy use for inp
	Also provided in a tat	ble to the right are so	Also provided in a table to the right are some other recent estimates of energy use to produce com, and a discussion of why the results of the counting. The 1980 estimate for packaging, formulation, and transport is also much higher than co	counting. The	1980 estimate for p	ackaging, for	mulation, and	transport is also much higher than co
	studies vary. Fortuna	stely, though estimate	studies vary. Fortunately, though estimates of energy use for particular inputs vary considerably, this variation in most cases is cancelled out, use at least some fairly crude assumptions about distances and modes hauled. Lacking further in	use at least so	ome fairly crude as:	umptions abo	out distances	and modes hauled. Lacking further in
	that the overall energ	yy intensity values ar	that the overall energy intensity values are fairly consistent. It is hoped that the detailed methodology followed below is not only accurate, but as consistent with the estimate in Lorenz, and probably derives from the same original data. Energ	as consistent v	vith the estimate in	Lorenz, and p	probably deriv	es from the same original data. Energ
	resource use data im	portant to the asses	resource use data important to the assessment of secondary impacts (e.g. emissons from fertilizer manufacture).	quantify precis	sely. Each form of f	artilizer requir	es different a	quantify precisely. Each form of fertilizer requires different amounts of energy. Both Shapouri and
				that were agg	regated up from fer	tilizer type spe	ecific data. In	that were aggregated up from fertilizer type specific data. In this report fertilizer type specific data
	Note: Blanchard estin	nates that 1-3% of c	Note: Blanchard estimates that 1-3% of corn is removed in the cleaning process at the mill. Since	the types of fe	rtilizers used with c	orn to develo	p a corn spec	the types of fertilizers used with com to develop a com specific value. In any case, the estimates
	this com is used in fe	eed, the corn balanc	this com is used in feed, the corn balance presented in the corn refining material balance accounts for this loss.	higher than th	ose used by Shapo	uri and this re	sport, howeve	higher than those used by Shapouri and this report, however they include transportation, packagi
				The packagin	g, transportation, ar	nd application	estimates we	The packaging, transportation, and application estimates were derived from a source specifically
References/Citations:	Ali, Mir, and W. McBr	ride. 1994. Corn: Sta	Ali, Mir, and W. McBride. 1994. Corn: State-Level Production Costs, Characteristics, and Input Use, 1991, USDA/ERS, SB-891.	fertilizer is sol	d in bulk, these esti	mates themse	elves may be	fertilizer is sold in bulk, these estimates themselves may be high. Lorenz also uses a very high es

3 Austin, George T. 1984. Shreve's Chemical Process Industries, Fifth Edition, McGraw-Hill, New York

2 Anderson, I.C., and J. S. Levine. 1987. Simultaneous Field Measurements of Biogenic Emissions of Nitric Oxide and Nitrous Oxide,

Journal of Geophyical Research, vol. 92, no. D1, pp. 965-976, January, 1987.

from an estimate that 16% of corn is irrigated. Both this report and the Shapouri report use data fr

use (including irrigation). Since the fraction of corn irrigated in the midwest is very small, this may

intensity estimates.

4 Battaglin, W.A., D.A. Goolsby, and D.K. Mueller. 1994. Relations Between Use, Concentration, and Transport of Agricultural Chemicals in the Mississippi River Basin, in Proceedings of the Annual Summer Symposium of the American Water Resource Association, Effects of Human Induced Changes on Hydrologic Systems, June 26-29, 1994, Jackson Hole, Wyoming.

Report prepared by the Department of Agricultural Economics and Rural Sociology, The University of Tennessee, Knoxville, for Biofuels Feedstock Development Program 5 Bhat, Mahadev G., Burton C. English, Anthony Turhollow, and Herzron Nyangito. 1993. Energy Use in Synthetic Agricultural Inputs: Revisited, Environmental Sciences Division, Oak Ridge National Laboratory, ORNL/Sub/90-99732/2.

Blanchard, Paul H. 1992. Technology of Corn Wet Milling and Associated Processes, Industrial Chemical Library, vol. 4, Elsevier Press, New York.

7 Blankenhorn, Paul R., et al. 1986. Net Financial and Energy Analyses for Producing Populus Hybrid Under Four Management Strategies: First Rotation, Oak Ridge Nat'l Laboratory, ORNL/Sub/79-07928/1.

8 Boynton, Robert S. 1980. Chemistry and Technology of Lime and Limestone, Second Edition, John Wiley and Sons, Inc., New York.

9 Bowman, B.T., et al. 1994. Tranport of Herbicides and Nutrients in Surface Runoff from Corn Cropland in Southern Ontario Canadian Journal of Soil Science, 7491):59-66, 1994

10 Buhler, D.D., et al. 1993. Water Quality: Atrazine and Alachlor Losses from Subsurface Tile Drainage of a Clay Loam Soil, Journal of Environmental Quality, 22:583-588, 1993

11 Chambers, R.S., et al. 1979. Gasohol: Does It or Doesn't It Produce Positive Net Energy, Science, vol. 206, November 1979, pp. 789-795. 12 DeLuchi, M. 1993. Emissions of Greenhouse Gases from the Use of Transportation Fuels and Electricity,

Argonne National Laboratory, ANL/ESD/TM-22, Vol. 2.

- 13 Eichner, Melissa. 1990. Nitrous Oxide Emissions from Fertilized Soils: Summary of Available Data, J. of Environmental Quality, 19:272-280(1990)
- 14 The Fertilizer Institute, 1982. The Fertilizer Handbook
- 15 Giampietro, M., and David Pimentel. 1990. Alcohol and Biogass Production from Biomass, Critical Reviews in Plant Sciences, Vol. 9, No. 3, pp. 213-233.
- 16 Glotfelty, D.E., et al. 1984. Atrazine and Simazine Movement to the Wye River Estuary, Journal of Environmental Quality, 13:115-121
- 17 Goolsby, D.A., E.M. Thurman, M.L. Pomes, and W.A. Battaglin. 199. Temporal and Geographic Distribution of Herbicides in Precipitation in the Midwest and Northeast United States, 1990-1991, in Proceedings of the Fourth National Conference on Pesticides, New Directions in Pesticide Research, Development and Policy, November 1-3, 1993, Blacksburg, Virginia.
- 18 Green, M. 1987. Energy in Pesticide Manufacture, Distribution, and Use, Energy in Plant Nutrition and Pest Control, ed. Z.R., Helsel, New York, Elsevier, pp. 165-196.
- Hudson, Charles L. 1982. Energy Requirements for Materials Used in Vehicles Characterized for the Tapcut Project, Argonne National Laboratory, ANL/EES-TM-211.
- 20 Kellog, R.L., and S. Wallace. 1995. Erosion Estimates and the Effects of Land Use Changes on Soil Savings Estimates Insights from the 1992 National Resources Inventory, Poster Board Presented at the 50th Annual Meeting of the Soil and Water Conservation Society, August 6-9, 1995, Des Moines, Iowa.
- Kirk-Othmer, 1982. The Encyclopedia of Chemical Technologies, Vol. 10, "Fertilizers".
- 22 Lindeburg, M.R. 1988. Engineering Unit Conversions, Professional Publications Inc., Belmont, CA
- 23 Marland, G., and A. Turhollow. 1990. Carbon Dioxide Emissions from Production and Combustion of Fuel Ethanol from Corn, Oak Ridge National Laboratory, ORNL/TM-11180.
- 24 Mudahar, M.S. and T.P. Hignett. 1981. Energy and Fertilizer. Policy Implications and Options for Developing Countries, Executive Brief, Technical Bulletin IFDC-T-19, International Fertilizer Development Center, Muscle Shoals, Alabama.
- 25 Mudahar, M.S. and T.P. Hignett. 1982. Energy and Fertilizer. Policy Implications and Options for Developing Countries, Executive Brief, Technical Bulletin IFDC-T-19, International Fertilizer Development Center, Muscle Shoals, Alabama.
- 26 Parisi, Frederico. 1983. Energy Balances or Ethanol as a Fuel, Advances in Biochemical Engineering/Biotechnology, 28:42-68 (1983).
- 27 Pimentel, David (ed.). 1980. Handbook of Energy Utilization in Agriculture, CRC Press, Boca Raton, FL.
- 28 Pimentel, David et al. 1988. Food Versus Biomass Fuel: Socioeconomic and Environmental Impacts in the United States, Brazil, India, and Kerya, Advances in Food Research, Vol. 32, pp. 185-238, 1988.
- 29 Pimentel, David. 1991. "Ethanol Fuels: Energy Security, Economics, and the Environment", Journal of Agriculture and Environmental Ethics, V.4, pp1-13, 0893-4282, 1991
- 30 Shapouri, H. J.A. Duffield, and M.S. Graboski. 1995. Estimating the Net Energy Balance of Corn Ethanol, USDA/ERS, AER-721, Washington, D.C.
- 31 United States Department of Agriculture. 1994 (revised 1995). Summary Report: 1992 National Resources Inventory, USDA Natural Resources Conservation Service and the lowa State University Statistical Inspector.
- 32 United States Department of Agriculture. 1993. Agricultural Resources: Inputs: Situation and Outlook Report, USDA Economic Research Service, AR-32.
- 33 United States Department of Agriculture, Economic Research Service. 1994. Agricultural Resource and Environmental Indicators, USDA/ERS, Ag. handbook 705, Washington, D.C.

- 34 United States Department of Agriculture, National Agricultural Statistics Service, Crop Production: 1994 Summary, Cr Pr 2-1(95), January 1995.
- 35 United States Department of Agriculture, various. Agricultural Chemical Usage: (yr) Field Crop Summary, USDA National Agricultural Statistics Service, Ag Ch 1(yr).
- 36 United States Department of Energy, Energy Information Administration. 1994. Manufacturing Consumption of Energy: 1991, DOE/EIA 0512(91).
- 37 United States Department of Energy, Energy Information Administration. 1994. Emissions of Greenhouse Gases in the U.S.: 1987-1992, DOE/EIA-0573.
- 38 United States Department of Energy, Energy Information Administration. 1993. Annual Energy Review: 1993, DOE/EIA-0384(93).
- 39 United States Geological Survey. 1993. Selected Papers on Agricultural Chemicals in Water Resources of the Midcontinental United States, U.S.G.S. Open-File Report 93-418, U.S. G.S., Denver, CO.
- 40 U.S. EPA. 1991. Nonroad Engine and Vehicle Emission Study-Report, EPA 460/3-91-02.
- 41 U.S. EPA. 1991. Nonroad Engine and Vehicle Emission Study-Appendixes (sp): Draft, 21A-2001 (NTIS #PB92-104462).
- 42 U.S. Department of the Interior, Bureau of Mines. 1994. Mineral Commodity Summaries: 1994
- 43 United States Environmental Protection Agency. 1995. Compitation of Air Pollutant Emission Factors, AP-42, Fifth Edition.
- 44 Unnasch, Stefan. 1990. Greenhouse Gas Emission from Ethanol Production and Vehicle Use. Acurex Corp. for the Nat'l Corn Growers Association
- 45 Watson, R.T. et al. 1990. Greenhouse Gases and Aerosols, in Intergovernmental Panel on Climate Change, Climate Change: The IPCC Scientific Assessment Report Prepared by Working Group I, J.T. Houghton, et al (ed.), UK, 1990.
- 46 Weast, R.C., and M.J. Astle (ed), 1981. Handbook of Chemistry and Physics, 62nd Edition, CRC Press, Boca Raton, Florida.
- 47 Weinblatt, Herbert, T.S. Reddy, and Anthonly Turhollow. 1982. Energy and Precious Fuels Requirements of Fuel Alcohol Production, Vol. II, Appendices A and B: Ethanol from Grain, DOE/NASA/0292-1

List of Tables:

Table NumbeTable Name

- Chemical Usage in Corn Production 1 Corn Yield per Acre Planted
 - Seed Consumption
- Erosion from Cropland and Corn Cropland
 - Water Use in Irrigation
- 6 Lime and Sulfur Consumption
- Energy Use for Fertilizer Packaging and Transportation Energy Use in the Production of Fertilizer
- Energy Use in the Production of Herbicides and Insecticides
- Energy Use in Pesticide Formulation and Packaging
 - Energy Use in Seed Production
 - Energy Use in Lime and Sulfur Production
- Fertilizer Type Mix in Iowa (a state heavily devoted to corn production) 5
- Corn Production Energy Use for Fertilizer Direct Energy Use in Corn Production 15
- Dryer Type Specific Energy Intensity Estimates
 - Net Corn Drying Energy Intensity
 - Net On-Farm Energy Use
- Energy Use for Fertilizer in Corn Production
- Energy Use for Pesticide Use in Corn Production

- 21 Energy Use for Seed in Corn Production
 22 Energy Use for Lime and Sulfur in Corn Production
 23 Total Energy Use in Corn Production
 24 Nitrogen Oxide Emissions from Corn Production
 25 Pesticide and Nutrient Loss to Surface and Groundwater
 26 PM-10 Fugilive Emissions from Corn Production
 27 Emissions from Energy Consumption in Nitrogenous Fertilizer Manufacture
 28 Emissions from Energy Consumption in Limestone Production and Farm Input Hauling
 29 Emissions from Mariar Gas and LPG Use for Corn and Seed Production
 30 Emissions from Natural Gas and LPG Use for Corn and Seed Production
 31 Unallocated Emissions from Fuels
 32 Material resource Requirements for Fertilizer and Herbicide Manufacture
 33 Emissions of PM-10 from Crushed Stone Processing Operations
 34 Emissions from Phosphate Rock Processing Operations
 35 Process Emissions from Ammonium Manufacture for Nitrogenous Fertilizers
 36 Process Emissions from Ammonium Phosphate Manufacture
 37 Process Emissions from Ammonium Phosphate Manufacture
 38 Process Emissions from Mirrate Manufacture (used in ammonium nitrate manufacture)
 49 Process Emissions from Sulfuric Acid Manufacture (used in phosphoric acid manufacture)
 41 Process Emissions from Pesticide Use

Summary Output: Alloc	Output: Allocated L	rtput: Allocated LCI components	Units	Quantity	Ϊ́Θ	Notes:
	Air	Fertilizer N20 Fertilizer NO	lb/bu b/bu	0.0132	e +	Survey of study results. Based on only one study.
			1		,	
		Š	ng/gi	4.26E-02		2. Some general emisson factors used
		DAM 40	DQ/QI	2.03E-02		2. Soline general emission ractors used. 3. Driven by funitive emissions from tillion for which current data is available
		00 00	ng/gl	1.53E-01	, ,	
		C02	nq/ql	6.93E+00	4	
		Non-Methane Organic 05/bu	ic Ob/bu	2.33E-02	.,	Dominated by VOC's used in pesticides. Relatively well characterized.
		Methane	nq/qi	1.98E-05	2	Some general emisson factors used
		Particulate	nq/qi	4.48E-03	2	
		Hydrocarbons	nq/q	1.00E-02	.,	Fairly current and specific data on farm machinery emissions.
		Aldehydes	ng/gl	4.70E-04	.,	Fairly current and specific data on farm machinery emissions.
		Ammonia	lb/bu	1.42E-02	.,	2 Dominated by emissions from ammonium nitrate manufacture, for which factors given as a very
		Nitric Acid	nq/q	1.97E-04	2	Dominated by emissions from ammonium nitrate manufacture, for which factors given as a very
		Fluoride	nq/q)	1.79E-05	•	4 AP-42 Emission Factor based. Data quality rating excellent.
		Acid Mist	nq/ql	1.01E-03	.,	AP-42 Emission Factor based. Data quality rating poor.
		Herbicides	ng/ql	5.06E-03	•••	2 Emission factor rating poor.
		Alachi	Alachlor Ib/bu	1.01E-03	••	2 Emission factor rating poor.
		Atrazir	Atrazine lb/bu	1.86E-03	••	2 Emission factor rating poor.
		Metalachlor !b/bu	or Ib/bu	1.23E-03	•	2 Emission factor rating poor.
		Cyanazine lb/bu	ng/gl eu	9.62E-04	.,	2 Emission factor rating poor.
		Insecticides	nq/qi	8.01E-04		2 Emission factor rating poor.
		Fonof	Fonofos lb/bu	1.49E-04	.,	2 Emission factor rating poor.
		Turbuf	Turbufos Ib/bu	3.95E-04	•	2 Emission factor rating poor.
		Chlorpyrifos lb/bu	ng/gl so	2.57E-04	.,	2 Emission factor rating poor.
	Water	Herbicides	nq/ql	1.97E-04	• • •	 These four herbicides make up 80% of the total herbicide use (out of a total of 26 herbicides)
		Alachi	Alachlor Ib/bu	8.82E-06		in corn production
		Atrazir	Atrazine İb/bu	9.55E-05		
		Metalachlor lb/bu	lor Ib/bu	3.88E-05		

as a very broad range. Thus point estimate may be poor. as a very broad range. Thus point estimate may be poor.

5.36E-05

Cyanazine lb/bu

 2 There is little data on insecticide loss These three insecticides make up 75% of total insectide use in corn production. 3 Other sources of nitrogen contribute to nitrate loading 	Energy use estimates derived from current data and are consistent with other results. Energy use estimates derived from current data and are consistent with other results. Energy use estimates derived from current data and are consistent with other results. Energy use estimates derived from current data and are consistent with other results. Energy use estimates derived from current data and are consistent with other results. Energy use estimates derived from current data and are consistent with other results. Energy use estimates derived from current data and are consistent with other results. Current data but some conflicting estimates. Current data. Derived from average irrigation practices.	5 Current data. 5 Current data. 3 Total Loss of Soil. See Table 4.	22 22 22 22 22 246 Specific Gravity = .7893 112 Depending on plant and process may range from .385 to .40. 22 22 22 22 22 23 38 38 38 38
There of total Other	Energy use e Energy use e Energy use e Energy use e Energy use e Energy use e Current data Ourrent data	Current data Current data Total Loss of	Specific Deperx
			ec. Pos
1.67E-05 2.57E-06 6.81E-06 7.34E-06 3.92E-03 0.02	28,391 11,393 3,210 522 1,870 3,621 0,494 49,007 1.28 0,436 8,863	1.253 0.367 96	Name Ib_bu acre_hect Ib_kg sqmeters_hect feet_meter Ib_shortton kg_mton hbu_kcal hbu_kcal hbu_ballon bu_gallon bu_gallon bu_gallon sqcm_ha liters_com gallons_liter acres_sqmile shortton_metricto gallons_barrel fu_barreleis bu_barreleis bu_barreleis Bu_barreleis Bu_barreleis
larbu Fonofos larbu Turbufos larbu Iorpyrifos larbu Iorpyrifos larbu Itrogen) larbu Ibrbu Ibrbu Ibrbu	Biu/bu Biu/bu Biu/bu Biu/bu Biu/bu Kwh/bu Biu/bu Ib/bu Ib/bu	la/bu la/bu la/bu	Multiplier 55 2.47 2.20 10,000 3.28 2,000 1,000 3.97 9,47E-04 6.59 0.001 0.001 0.001 0.001 1,000 1,100 1,000 1,100 5,825 5,825 5,825 5,225 8,337
Insecticides Eonofos la/bu Fonofos la/bu Turbufos la/bu Chlorpyrifos la/bu Chlorpyrifos la/bu Nitrates (as nitrogen) la/bu Phosphorous la/bu Potassium la/bu	Diesel LPG Coal Oil Gasoline Electricity Total Fuel Limestone Sulfur	Phosphate Rock Potassium Chloride Soil	Unit from Unit to bu lib Hectares acre kg lib Hectares acre hectares acre gineters acre short tons lib metric tons kg kcal metric tons kg kcal coulces btu Coulces btu Gallons Etha bu Hectares Sq. cm cubic cm liters gallons sta mile barrels gallons kg gamie acres metric tons short tons barrels gallons kg cubic foot na btu barrel col ma btu barrel col million btu barrel motor million btu Barrel LPG million btu Barrel LPG million btu Gallons Wateb
	Resource CoN G. Diese LPG Coal Oil Gaso Elect Total Lime Sulfu		Conversion Factors Unit from Unit bu lb hectares acre kg hectares sq. meter feet short tons lb meter tons kg kcal btu Joules bu Uoules bu Gallons Etha bu Hectares Sq. cubic cm liters galfillers agmile acre metric tons sho barrels galfillers sho barrels galfillers barrels galfillers barrel special chot na barrel fort na btu barrel motor milli Short ton coamilii Short to

Defined Name

¥

Molecular W Element/ComName

																	carbon ratio		Sulfur acid				Ammonia_ratio	
1.008	40.08	16.00	32.06	12.01	35.45	39.10	30.97	14.01	94.20	74.56	44.01	136.14	98.07	141.94	63.01	80.04	3.66	1.26	3.06	0.23	0.35	0.79	0.82	0.69
												-		-										
Hydrogen	ium	gen	1	non	Chtorine	Potassium	Phosphorus	Nitrogen	sh	Muriate of Potash	Carbon Dioxide	Calcium Sulfate	Suffuric Acid	Phosphoric Acid	Nitric Acid	Ammonium Nitrate						103		5
Hyd	Calcium	Oxygen	Sulfur	Carbon	Sh	Pota	Pho	Nitro	Potash	Μď	Cart	Calc	Suff	Pho	Z	Amn	O	ô	4:5	25	4NO	NH4	<u>س</u>	4:P20
I	Ca	0	s	O	ō	¥	۵	z	K20	ĶĊ	C02	CaSO4	H2S04	P205	HNO3	NH4N03	Ratio CO2:C	Ratio K20:KCI	Ratio H2SO4:S	Ratio S:P205	Ratio 2N:NH4N03	Ratio HN03:NH4N03	Ratio N:NH3	Ratio H2SO4:P205

(k acres and bushels/acre) Corn Yield per Acre Planted Table 1 Calculations --

United States Department of Agriculture National Agricultural Statistics Service Crop Production: 1994 Summary Cr Pr 2-1(95)

Area in thousands of acres January 1995

1985	1986	1987	1988	1989	1990
83,398	76,580	66,200	67,717	72,322	74,166
75,209	68,907	59,505	58,250	64,783	66,952
7,155	6,418	5,994	8,301	909'9	6.123
82,364	75,325	65,499	66,551	71,389	73,075
98.76%	98.36%	98.94%	98.28%	98.71%	98.53%
118	119.40	119.80	84.6	116.30	118.5
116.5	117.4	118.5	83.1	114.8	116.8

1994 10 - Year Avera6 - Year Average 79,158 74,804 75,692 76,915 72,917 67,034 68,079 69,184 5,563 6,222 6,151 78,400 73,554 74,301 75,335 99,14% 98,32% 98,14% 97,90% 138,60 115,6 119,0 119,9

75,692 68,079 6,222 74,301 98.14% 119.0

74,804 67,034 6,520 73,554 98.32% 115.6

1993 73,235 62,921 6,831 69,752 95,24% 100.7

78,146 98.53% 131.5

1991 75,957 68,822 6,140 74,962 98.69%

108.6 107.2

1992 79,311 72,077 6,069 119.9

Notes: Data in bolded rows are from the USDA publication. Since energy is invested in all planted acreage,

in any given year. The average yield has been increasing over time. In order to most accurately describe current yields, average yields corn yields are adjusted to the yield per planted acre by multiplying by the fraction of planted acres harvested

over the past 20 years can be fit with a simple linear model. The data are converted to a base year of 1975, so that year 1 represents 1975, and year 20 represent 1994. Based on this model (presente

This value is stored in the variable yield, and is used throughout this spreadsheet.

0.0001 F test 1.68 R squared = .3859 Year (1 - 20) Intercept Model

0.0035

Adjusted Yield (to account for fraction of planted acreage that is harvested) 117.2 118.9 119.2 Bu/acre 120.9 Bu/acre Units Predicted YieQuantity 1992 1993

120.5

3

Table 2 Chemical Usage in Corn Production

Agricultural Chemical Usage: (Year) Field Grop Summary United States Department of Agriculture, National Agricultural Statistics Service Ag Ch 1 (yr)

		•		Ċ		T bemolecut	raneformed	Transformed Transformed Transformed	ransformed	Raw	Transformed
LCI component	Kaw/ Input Quan.	raw/ Input Quan.	fraw, raw, Input Quan.	nput Quan.	DQI	Quan.	Quan.	Quan.	Quan.	Average	Average
7	1991	1992	1993	1994		1991	1992	1993	1994		
Raw/Input Units		(MM lbs)	(MM lbs)	(MM lbs)		(lbs/acre) (li	(lbs/acre) ((lbs/acre) ((lbs/acre)	(MM lbs)	(lbs/acre)
Fertilizers	8 447	S 902	7 956	7.856	10	123	125	121	126	8,290	-
Standard	3 331	3.344	2,995	2,992	5 0	49	47	46	48	3,166	
Potash	3,910	3,950	3,519	3,603	10	25	55	54	28	3,746	55.9
	(thousand lbs	(thousand lbg(thousand lbs) (thousand lbg(thousand lbs)	(thousand lbs	(thousand lbs)		(lbs/acre) (I	(lbs/acre) ((ibs/acre)	(lbs/acre)		
Herbícides							0		0	2,00	8700
2,4-D	2,800	2,832	3,586	3,631	10	0.041	0.040	0.055	0.058	3,212	0.030
Acetochlor				7,447	10	0.000	0.000	0.000	0.341	32,677	0.000
Alachlor	37,174	40,129	32,078	21,325	0. 6	0.042	0.002	0.000	0.000	51	0.001
Amerryn	52 060	54 939	49 553	45.412	5 6	0.759	0.769	0.754	0.727	50,491	0.752
Rentazon	478	550	497	584	2 2	0.007	0.008	0.008	600.0	527	
Bromoxynii	1.344	1.389	1,364	1,446	10	0.020	0.019	0.021	0.023	1,386	
Butylate	8.478	8,117	5,441	2,117	10	0.124	0.114	0.083	0.034	6,038	
Cyanazine	23,161	26,691	26,453	27,689	10	0.338	0.374	0.403	0.443	25,999	
Dicamba	3,556	5,068	4,598	6,322	10	0.052	0.071	0.070	0.101	4,886	
Dimethenamid				2,241	10	0.000	0.000	00:00	0.036	099	
EPTC	14,355	10,594	11,098	6,124	10	0.208	0.148	0.169	0.098	10,543	0.000
Flumetsulam				25	10	0.000	0.000	0.000	0.001	S. 4.	
Glyphosate	1,156	746	1,973	1,776	10	710.0	0.010	0.030	0.028	5.4.	0.02
Imazethapyr	;	;	=	37	9	0.000	0.000	0.000	000	47	
Linuraon	93	96			2 :	100.0	0.00	0.000	0.000	39 590	0.591
Metolachlor	38,792	41,327	39,026	39,213	9	0.000	0.000	0.094	0.027	22,55	
Metribuzin	1	,	46	41	0.	0.000	0.000	000	0.00	157	
Nicosulfuron	75	140	165	249	0. 4	500.0	0.002	0.000	9000	414	
Paraquat	201	423	7 875	1 806	2 5	0.040	0.043	0.043	0.029	2,617	
Driming	200	50'5	2,020	, 500°,	5 5	0000	0.000	0.001	0.001	37	0.001
Propachlor	1456	1.506	1.260	1.184	5 6	0.021	0.021	0.019	0.019	1,352	
Simazine	1,081	1,147	1,118	972	10	0.016	0.016	0.017	0.016	1,080	
Tridiphane	264	123		99	10	0.004	0.002	0.000	0.001	113	
Trifluralin	111		114		10	0.002	0.000	0.002	0.000	96	
Total Herbicide	189,468	199,084	181,876	170,181		2.76	2.79	2.77	2.72	785,152	2.760
	(thousand lbs	(thousand lbs(thousand lbs) (thousand lbs(thousand lbs)	(thousand lbs	(thousand lbs)		(lbs/acre)	(lbs/acre)	(lbs/acre)	(lbs/acre)		
Insecticides Rifeothrin	14	4			0	0.0002	0.0001	0.0000	0.0000	5	
Bacillus thur	2.094			326	0	0.0305	0.0000	0.000	0.0052	909	
Carbofuran	2,278	1,648		326	10	0.0332	0.0231	0.0172	0.0052	1,346	
Chlorpyrifos	6,716	6,247	5,584	5,206	5	0.0979	0.0875	0.0850	0.0833	5,938	
Diazinon	116	74			10	0.0017	0.0010	0.0000	0.0000	48	0.0007
Dimethoate	78	74			10	0.0011	0.0010	0.0000	0.0000	5	

Page 7

0.0000 5	0.0248 2,090	197 (197)	0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005	3 0.0683 5,532	0.0000 63
0.0001	0.0286	0.0028	0.0000	0.0884	0.0018
0.0002	0.0421	0.0030	0.0021	0.0873	0.0018
Ö 0	1,549 10 738 10	222 10 895 10	242		10
	1,876	155	246	5,561	
60	2,044	202	187	6,309	132
12	2,890	207	146	5,986	121
Esfenvalerate Flucythrinate	Fonofos Methyl Parathion	Permethrin Phorate	Propargite Tefluthrin	Terbufos	Trimethacarb Total Inserticida

Notes: The data given below indicates the number of states from which the agricultural chemical usage data was developed, and the percentage of planted area which those states represent for corn.

1994 10 79% 62.5 1993 16 90% 65.7 1992 17 90% 71.4 1991 17 90% 68.6 Area Planted (MM Acres) Percentage of Area States Covered

15 87% 67.05

Table 3 Seed Consumption

United States Department of Agriculture, Economic Research Service Agricultural Resources, Inputs: Situation and Outlook Report, AR-32, 1993

United States Department of Agriculture National Agricultural Statistics Service Crop Production: 1994 Summary Cr Pr 2-1(95)

	0.118	0.118	0.118	0.119	0.118
Seed/bu lb/bu					
Seed/acre kg/ha	15.99	15.94	16.00	16.04	15.99
	14.27	14.22	14.27	14.31	14.27
ea Planted S ousand acrelt	74,166	75,957	79,311	73,235	
Seed (MMBuArea Planted Seed/acre milion bushethousand acreb/acre		19.29			
Seed (Ib)	1,058,000,000	1,080,000,000	1,132,000,000	1,048,000,000	
Seed Seed (lb) Th. short ton lb	529	240	566	524	
LCI Compon Crop Year Units	1989/90	1990/91	1991/92	1992/93	Average

Notes: Seed use in bold from source 1, area planted in bold from source 2, the data for which are in table 1. Four year average value converted to seed use per bushel using the estimated yield in table 1.

LCI Component

(7)

Ξ

Erosion weighted by production

Table 4 Erosion from Cropland and Com Cropland

United States Department of Agriculture, 1994 (revised 1995). Summary Report: 1992 National Resources Inventory, USDA Natural Resources Conservation Service and the Iowa State University Statistical Laboratory.

Kellog, R.L., and S. Wallace. 1995. Erosion Estimates and the Effects of Land Use Changes on Soil Savings Estimates - Insights from the 1992 National Resources Inventory, Poster Board Presented at the 50th Annual Meeting of the Soil and Water Conservation Society, August 6-9, 1995, Des Moines, Iowa.

										Erosion per Erosian per	Bushel Bushel	(tons/bu) (lb/bu)	0.04 74.68		
	Fotal Erosion	13,512,800	7,859,280	6,114,610	7,968,330	3,261,312	1,654,100	1,923,240	1,836,000	1,340,196		45,469,868	4.50	74.68	
	Vind Erosion 1	2,702,560	0	1,961,290	5,770,170	343,296	48,650	131,130	991,440	639,639		12,588,175	1.25	20.67	
Transformed Quan.	Sheet/Rill Ero Wind Erosion Total Erosion	10,810,240	7,859,280	4,153,320	2,198,160	2,918,016	1,605,450	1,792,110	844,560	700,557		32,881,693	3.25	54.00	
(million bushe (million bushels)	1994 Producti Cumulative Cum. Fraction	1,930,400 1,930,400 19.11%	1,786,200 3,716,600 36.79%		915,900 5,786,200 57.27%		486,500 7,130,940 70.58%		367,200 7,935,240 78.54%	304,590 8,239,830 81.56%		10,103,000			
Raw/ Input Quan. tons/acre/yr)	otal Erosion	7	4.4	5.3	8.7	3.8	3.4	4.4	9	4.4		46.4	5.16		
Raw/ Raw/ Input Quan. Input Quan. Ions/acre/yr) (tons/acre/yr)	Wind ErosionTotal Erosion	1.4	0	1.7	6.3	0.4	0.1	0.3	2.7	2.1		15	1.67		
Erosion By State and Type (1) Raw/ Input Quan. Units (tons/acre/yr) t	Sheet/Rill Erosion V	5.6	4.4	3.6	2.4	3.4	3.3	4.1	ta 2.3	2.3		31.4	3.49		
Erosion By Units	State	ewol	Illinois	Nebraska	Minnesota	Indiana	Ohio	Wisconsin	South Dakota	Kansas		Total	Average		

3.6 tons/acre/year 13.1 tons/acre/year 3.7 tons/acre/year 5.7 tons/acre/year 13.4 tons/acre/year 5.8 tons/acre/year Wind ErosionTotal Erosion Units 96.23 lb/bu Input Quan. Raw/ Input Quan. 1.3 2.2 1.1 1.5 1.5 1.5 24.89 Raw/ 4.4 11.2 2.5 4.3 10.8 2.5 71.35 Sheet/Rill Erosion Input Quan. Raw/ Erosion by C All Corn Land All Corn Land Land Planted Highly Erodib Not Highly Er Highly Erodib Not Highly Er

Notes: Bob Kellog provided this disaggregated data. Soil loss cannot be treated simply as a resource cost, since soil is naturally regenerated over time. This is usually quantified as the soil loss tolerance, usually somewhere between 4 and 5 tons/acre/year. The corn land soil loss estimate used here is slightly above this value, indicating that some degradation of corn cropland is occurring. Soil losses have been decreasing steadily in the past decade, however, indicating that average losses will soon be in the soil loss tolerance range.

Water Use in Irrigation Table 5

€

8 ල

United States Department of Agriculture. 1994 (revised 1995). Summary Report: 1992 National Resources Inventory, USDA Natural Resources Conservation Service and the Iowa State University Statistical

Ali, Mir, and W. McBride. 1994. Corn: State-Level Production Costs, Characteristics, and Input Use, 1991, USDA/ERS, SB-891.

United States Department of Agriculture, National Agricultural Statistics Service, Crop Production: 1994 Summary, Cr Pr 2-1(95), January 1995.

Raw/ Pimentel, David (ed.). 1980. Handbook of Energy Utilization in Agriculture, CRC Press, Boca Raton, FL.

€

Raw/

Raw/

Percentage Input Quan. Input Quan. Input Quan. Non-Irrigated Total (acres) (acres) 1994 Production (3) Cumulative Cum. Fraction Irrigated Weighting Data State

% irrigated Production Weighted by Times

Requirements (4) (cm) Weig

Ψ	(million bushels)	(million bushels)								
lowa	1,930,400		19.11%	143.9	23,222	23,366	0.00%	52.07	0.00	0
Illinois	1,786,200	3,716,600	36.79%	196	22,984	23,180	0.00%	52.07	0.00	0
Nebraska	1,153,700		48.21%	6923.2	10,510	17,433	76.00%	50.80	38.61	44,542,050
Minnesota	915,900	5,786,200	57.27%	434	18,312	18,746	2.32%	52.07	1.21	1,104,098
Indiana	858,240	6,644,440	65.77%	174.2	12,582	12,756	8.00%	52.07	4.17	3,575,085
Ohio	486,500	•	70.58%	27.5	10,144	10,172	0.00%	52.07	0.00	0
Wisconsin	437,100	,-	74.91%	334	6,714	7,048	9:00%	52.07	2.60	1,137,990
South Dakota	367,200		78.54%	389.4	13,514	13,904	29.00%	52.07	15.10	5,544,830
Michigan	260,910	8,196,150	81.13%	3209	21,698	24,907	9.00% (kansas)	53.34	4.80	1,252,525
Total	10,103,000			11,831	139,680	151511.1	7.81%		66.48	57,156,576
Note: This call these values w	culation was originally ere substituted into th	made form referenc e fraction of acreag	e 1. More acc e irrigated col	urate data wa umn. In gener	s available in al the estimal	reference 2, l les from refere	Note: This calculation was originally made form reference 1. More accurate data was available in reference 2, however, so where applicable these values were substituted into the fraction of acreage irrigated column. In general the estimates from reference 1 were good for states using	Wk Av	Weighted Average (cm)	6.97

697,359 1,068,300

697,358,837 2,639,811

cubic cm/Ha

liters/ha

gallons/acre gallons/ha gallons/Bu

average of these two values is applied to the other states. From this data a weighted average water use value is calculated, which represents the average

amount of water used in irrigation per bushel of corn grown. Thus the value is far below the actual amount used in irrigated corn, and reflects the

state, Minnesota, for which a value is not given in reference 2. Irrigation rates are taken from reference 4 for Nebraska and and Kansas. The average little or no irrigation, but somewhat low for states using significant amounts of irrigation. Data from reference 2 has been retained as it is used for one

Lime and Sulfur Consumption Table 6

Ξ

fact that most corn is not irrigated.

United States Department of Agriculture. 1993. Agricultural Resources: Inputs: Situation and Outlook Report, USDA Economic Research Service, AR-32.

Energy Btu/bu)	568 727.90 1997 20.39
Energy (Btu/lb)	
(Ib/Bu)	1.2
(ate Planted	154.60
Rate (adj) F (lb/acre) (1	2 152 154.60 1.28 15 1.21 1.23 0.01
Total (MM lbs)	9553.2 76.0485
	3800
Rate (lb/acre)	. ***
Applied (%)	÷
	62.85 62.85
Area (MM acres)	
	Lime Sulfur

This can be converted into an overall average application rate per acre by dividing total applied material by the total planted area. This value must then be converted to account for the fact that not all planted acreage is harvested. This is done by dividing by the harvested fraction (defined variable fraction). Notes: The ERS publishes information on the use of lime and sulfur in corn production. They give an application rate in Ib/acre for acreage that is treated. Finally the value is converted to units of lb/bushel using the average yield (defined variable yield).

Energy Use in the Production of Fertilizer Table 7

Ξ

Blankenhorn, Paul R., et al. 1986. Net Financial and Energy Analyses for Producing Populus Hybrid Under Four Management Strategies: First Rotation, Oak Ridge Nat'l Laboratory, ORNL/Sub/79-07928/1.

The Fertilizer Institute, 1982. The Fertilizer Handbook

€

ල

Report prepared by the Department of Agricultural Economics and Rural Sociology, The University of Tennessee, Knoxville, for Biofuels Feedstock Development Program Bhat, Mahadev G., Burton C. English, Anthony Turhollow, and Herzron Nyangito. 1993. Energy Use in Synthetic Agricultural Inputs: Revisited, Environmental Sciences Division, Oak Ridge National Laboratory, ORNL/Sub/90-99732/2.

Mudahar, M.S. and T.P. Hignett. 1981. Energy and Fertilizer: Policy Implications and Options for Developing Countries, Executive Brief, Technical Bulletin IFDC-T-19, International Fertilizer Development Center, Muscle Shoals, Alabama.

Mudahar, M.S. and T.P. Hignett. 1982. Energy and Fertilizer: Policy Implications and Options for Developing Countries, Executive Brief, Technical Bulletin IFDC-T-19, International Fertilizer Development Center, Muscle Shoals, Alabama.

9

9

The Fertilizer Institute. 1987. Fertilizer Energy Use Survey.

8

Shapouri, H. J.A. Duffield, and M.S. Graboski. 1995. Estimating the Net Energy Balance of Corn Ethanol, USDA/ERS, Economic Report Number 721, Washington, D.C.

8

6

Kirk-Othmer. 1982. The Encyclopedia of Chemical Technologies, Vol. 10, "Fertilizers".

Energy Requirements for Fertilizer Production (GJ/metric ton fertilizer)

31.46 17.39 3.14 4.8

Notes: Taken from Table 16 of reference 4 (p. 26).

Energy Requirements for Fertilizer Production (Btu/lb except electricity, which is kwh/lb)

Natural Gas		Electricity	i o		Steam	Exported Steal	otal (Btu/lb) To	otal (kwh/lb)	
Anhydrous A	17,523	0.047		0	0	163	17,360	0.047	
Urea	11,178			0	1,590		12,420	0.110	
Nitrogen Solu	6,921			0	271		7,033	0.044	
Triple Superp	232			236	812		271	0.108	
Potash (as K	1,156			0	0	0 1,156 0.091	1,156	0.091	

Notes: Reference 7 gives the original survey data, and says that electricity is converted to btu using the convention of 10,000 btu/kwh (i.e. accounting for losses). I have converted back to kwh.

Nutrient Content of Fertilizers

	4	4	4	4	4
Source.					
	82% Nitrogen	Nitrogen	30% Nitrogen	P205	K20
	85%	46%	30%	46%	100% K20
	Anhydrous A	Urea	rogen Solu	Triple Superp	tash (as K
	Ž	Š	Ž	Ë	٣

Notes: Reference 4 uses these nutrient contents. Reference 3 uses 44 to 46% for triple superphosphate, and 28 to 32% for nitrogen solutions. We follow the convention of reference 4.

Energy Requirements for Fertilizer Production (Btu/lb nutrient)

	otal	stu/lb)	21,747	29,381	24,902	2,932	2,062
	ř	9)	576	2,381	1,461	2,344	906
	ty Electricity	wh/lb (Btu/lb)	928	238	146	234	0 0 1,156 0.091
	Electrici	Total (k	ō	0	Ö	ö	ö
	net	otal (Btu/lb)	21,171	26,999	23,442	588	1,156
	ūΞ	ported SteaT	199	756	530	2,195	0
		_	0	3,455	902	1,765	0
		Steam	0	0	0	514	0
		ë					
/		Electricity	0.058	0.238	0.146	0.234	0.091
			21,370	24,300	23,069	204	1,156
		Natural Gas	Anhydrous A	Urea	Nitrogen Solu	Triple Superp	Potash (as K

Notes: Reference 8 cites the Fertilizer Institute for energy consumption estimates of 22,159 Btu/lb nitrogen, 4,175 Btu/lb P2O5, and 1,245 Btu/lb potash. The nitrogen estimate is close to what reference 4 gets here, but differs significantly for the other fertilizers. Examination of reference 7 reveals that the estimate for potash seems to come from a 1985 survey by the Fertilizer Institute. The value given is 2,489 kbtu/ton potash. This converts to 1,245 Btu/lb of potash. Reference 4 uses this data, plus fuel breakouts from a 1979 survey, but then converts to K2O assuming that the energy use value is for muriate of potash, and that muriate of potash is 60% K20. This yields our value of 2,065 Btu/lb K20. Since most references cite potash consumption for agricultural uses in terms of weight of K2O, it is not clear whether reference 8 has used an appropriate energy intensity figure.

Estimating energy use in phosphate production is confused by the fact that sulfuric acid production is highly exothermic. If all of this energy is counted towards phosphoric acid production, in some cases the total energy use is still negative. The estimates given in reference 7, and used by reference 4 seem to exclude energy use in sulfur mining, and cites a total energy consumption of 7,200 btu/lb P2O5 for triple superphosphate. Reference 9 also gives a fairly high figure of 5,500 btu/lb P2O5 for triple superphosphate. Some estimates are given below.

Energy Intensity of Phosphate Fertilizer Production

Input QuInits	Source	Tranformed Inpu Units	ш	lectricity Natural Gas Oil	Units
7,200 Btu/lb P2O5	(3)	7,200 Btu/lb K205			
2,300 kcal/kg P2O5	Ī	4,140 Btu/lb K205			
12.79 GJ/ton P2O5	6)	5,495 Btu/lb K205			
4,175 Btu/lb P205	(8)	4,175 Btu/lb K205	1,962	1,086	1,127 Btu/lb
			0 196		kwh/lh

Notes: Reference 3 is very high, however Fertilizer Institute surveys suggest that the energy use for P205 production dropped in half from the 1979 method I will use the value cited in reference 8, from the Fertilizer Institute, and assume that this is the best representation of average U.S. practices. to the 1983 survey (as cited in reference 4) suggesting that modern production processes would be in line with other estimates. Lacking a better

Electricity (KwDil Total Fuel Total (kwh at Natural Gas Fuel Oil 21,171 0.058 0 21,171 21,747 100% 0% 26,999 0.238 0 26,999 29,981 100% 0% 23,442 0.146 0 23,442 24,902 100% 0% 1,156 0.091 0 1,156 2.052 100% 0% 0%	ents for F	ertilizer Pro	inergy Requirements for Fertilizer Production (Blu/lb nutrient)	trient)			Fraction of Fuels	reis
0.058 0 21,17 0.238 0 26,99 0.146 0 23,44 0.196 1,127 2,21 0.091 0 1,15		Ш	lectricity (KvDil		Total Fuel	Total (kwh at	Natural Gas	Fuel Oil
0.238 0 26,99 0.146 0 23,44 0.196 1,127 2,21 0.091 0 1,15		21,171	0.058	0	21,171	21,747	100%	%0
0.146 0 23,44 0.196 1,127 2,21 0.091 0 1,15		26,999	0.238	0	26,999	29,381	100%	%0
0.091 0 0.091		23,442	0.146	0	23,442	24,902	100%	%0
0.091 0 1.15		1,086	0.196	1,127	2,213	4,175	49%	51%
		1,156	0.091	0	1,156	2,062	100%	%0

Table 8 Energy Use for Fertilizer Packaging and Transportation

Ξ

8

ල

- Report prepared by the Department of Agricultural Economics and Rural Sociology, The University of Tennessee, Knoxville, for Biofuels Feedstock Development Program Bhat, Mahadev G., Burton C. English, Anthony Turhollow, and Herzron Nyangito. 1993. Energy Use in Synthetic Agricultural Inputs: Revisited, Environmental Sciences Division, Oak Ridge National Laboratory, ORNL/Sub/90-99732/2.
- Mudahar, M.S. and T.P. Hignett, 1981. Energy and Fertilizer: Policy Implications and Options for Developing Countries, Executive Brief, Technical Bulletin IFDC-T-19, International Fertilizer Development Center, Muscle Shoals, Alabama.
- Mudahar, M.S. and T.P. Hignett. 1982. Energy and Fertilizer: Policy Implications and Options for Developing Countries, Executive Brief, Technical Bulletin IFDC-T-19, International Fertilizer Development Center, Muscle Shoals, Alabama.

Energy Use for Packaging and Transportation

Nitrogen		PhosphorousPotash	Units	
Packaging	2.58	2.65	1.75 GJ/mt	
Transportatio	4.47	5.68	4.60 GJ/mt	
Total	7.05	8.33	6.35 GJ/mt	
Nitrogen		PhosphorousPotash	Units	
Packaging	1,108	1,138	752 Btu/lb	
Transportatio	1,920	2,440	1,976 Btu/lb	
Total	3,029	3,579	2,728 Btu/lb	

data was generated with particular reference to international applications, and thus may not be representative of U.S. average practices, especially for transportation. By comparison, the energy needed to make packaging material is quite small (see below). Also, most fertilizer is shipped in bulk in the U.S. (also below). Anhydrous ammonia, which is the most important form of nitrogen use for corn in lowa, is also the least energy intensive to transport (pipeline). Thus it will be assumed that the energy use to package fertilizers for corn use is negligible. Transportation energy use estimates are included in the Notes: This data is used by reference 1 to estimate packaging and transportation energy use for fertilizers. Reveiwing the source, however, this estimates of direct energy use on the farm, and are derived from Shapouri et al 1995.

Energy Use for 50 Kg Polyethylene Plastic Fertilizer Bags (3)

420 MJ/metric ton 180 Btu/lb

Consumption of Fartilizer by Class in the U.S. 1992

Short tons

Dry Bulk Sing 12,313,103 94% of single nutrient is bulk Dry Bagged X 742,949 6%

Total Dry Sin 13,056,052 78% of multinutrient is bulk Dry Bagged M 3,126,493 22%

Total Dry Mu 14,076,310 14,076,310

Total Fuid 18,056,055 40% of total is liquid 45,218,045

Table 9 Energy Use in the Production of Herbicides and Insecticides

Ξ

6

<u>@</u>

₹

Bhat, Mahadev G., Burton C. English, Anthony Turhollow, and Herzron Nyangito. 1994. Energy Use in Synthetic Agricultural Inputs: Revisited, Report prepared by the Department of Agricultural Economics and Rural Sociology, The University of Tennessee, Knoxville, for Biofuels Feedstock Development Program Environmental Sciences Division, Oak Ridge National Laboratory, ORNL/Sub/90-99732/2.

Pimentel, David et al. 1988. Food Versus Biomass Fuel: Socioeconomic and Environmental Impacts in the United States, Brazil, India, and Kenya, Advances in Food Research, Vol. 32, pp. 185-238, 1988.

Weinblatt, Herbert, T.S. Reddy, and Anthonly Turhollow. 1982. Energy and Precious Fuels Requirements of Fuel Alcohol Production, Vol. II, Appendices A and B: Ethanol from Grain, DOE/NASA/0292-1

Green, M.B. 1987. Energy in Pesticide Manufacture, Distribution and Use, in Energy in World Agriculture, Energy in Plant Nutrition and Pest Control, Volume 2, Z.R. Helsel (ed.), Elsevier Press, New York.

Energy Intensity of Pesticide Production (per unit a.i) (4 and 1)

Herbicide Energy Intensity (GJ/torEnergy Inten Use Rate (Ib/bu) Energy Int. x Use Rate

14.63	478.89	509.42	12.21	11.09	44.47	0.00	278.86	77.26	0.00	89.03	0.00	34.69	0.00	0.70	0.00	0.00	581.76	0.00	0.00	0.00	20.74	0.00	0.00	0.45	20.78
4.01E-04	4.01E-03	6.24E-03	6.55E-05	1.72E-04	7.34E-04		3.23E-03	6.10E-04		1.30E-03		1.78E-04		5.60E-06			4.91E-03				3.22E-04			6.95E-06	1.67E-04
36,516	119,428	81,623	186,445	64,440	60,573	156,803	86,349	126,731	115,991	68,736	222,531	195,037	64,440	124,583	55,848	64,440	118,569	85,919	64,440	64,440	64,440	85,919	94,511	64,440	124,583
82	278	190	434	150	141	365	201	295	270	160	518	454	150	290	130	150	276	200	150	150	150	200	220	150	290
2,4-D	Alachlor	Atrazine	Bentazon	Bromoxynil	Butylate	Chlorsuffuron	Cyanazine	Dicamba	Diuron	EPTC	Fluazifop-me	Glyphosate	Isopropalin	Linuron	MCPA	Methazole	Metolachfor	Metribuzin	Molinate	Norflurazon	Pendimethali	Prometryn	Propanil	Trifluralin	Propachlor

Paraquat 460 197,615 5.15E-05 10.18 0.02 2185.16 Wt. average Energy Intensity 97,575

Notes: Reference 1 cites reference 4 data, then uses the data to extrapolate to pesticides not covered by reference 4. Reference 1 incorrectly cites the energy intensity of diuron at 200 GJ/mt, instead of 270 GJ/mt from the original reference. The other values are correct. Use rates are from Table 2 of this sheet.

Energy Intensity of Insecticide Production (1 and 4)

 Insecticide
 Energy Intensity (GJ/RorEnergy Inten Use Rate (Ib/bu)
 Energy Intensity (GJ/RorEnergy Inten Use Rate (Ib/bu)
 Energy Int. x Use Rate (Ib/bu)

 Chlorpyrifos
 250
 107,399
 7.34E-04
 78.78

 Fonolos
 200
 85,919
 2.57E-04
 22.11

 Fensulforthion
 200
 85,919
 0.00

 Terbulos
 200
 85,919
 6.81E-04
 58.55

 Methyl parath
 160
 68,736
 8.35E-05
 5.86

 Phorate
 209
 89,786
 1.44E-04
 12.90

 W. Average
 208
 89,786
 1.44E-04
 12.90

Other estimates of Energy Use in Pesticide Production

Btu/lb Btu/lb	Btu/bu Btu/bu Btu/bu
179,95 179,99	2,265 2,092 2,333
(2)	<u>@</u> @ @
	Btu/acre Btu/acre Btu/acre
100,000	231,000 228,000 245,000
	Wisconsin Nebraska Kansas
Insecticide Herbicide	Pesticides

Table 10 Energy Use in Pesticide Formulation and Packaging

Pimentel, David (ed.). 1980. Handbook of Energy Utilization in Agriculture, CRC Press, Boca Raton, FL.

€

6

Green, M. 1987. Energy in Pesticide Manufacture, Distribution, and Use, Energy in Plant Nutrition and Pest Control, ed. Z.R. Helsel, New York, Elsevier, pp. 165-196.

Pesticide Formulation and Packaging Energy Use

chergy Use	Th.	Raw Input/	Raw/	Source	Transformed Transformed Notes:	Fuel Types (%)	(%) se		
		Quantity	Input Units		Input Quan. Input Units				
						ō	Gas	Coal	
Herbicides	Herbicides Miscible Oil	41,800		£			%09	23%	17%
	Wettable Powder	5,100		Ð			43%	37%	20%
	Granules	23,600		Ξ	_		42%	37%	21%
	Average	23,500	kcal/kg		42,300 Btu/lb		48%	32%	19%
Insecticide	nsecticides Miscible Oil	41,800		ε	75,240 Btu/lb		61%	23%	16%
	Wettable Powder	5,100		Ξ	_		43%	37%	20%
	Granules	23,600		Ξ	_		42%	37%	21%
	Dust	23,600		Ξ	_		42%	37%	21%
	Average	23,525			_		47%	34%	20%

9,451 Btu/lb	13,747 Btu/lb	5,155 Btu/lb	9,451 Btu/lb
(2)	(5)	(2)	(2)
22 GJ/mt	32 GJ/mt	12 GJ/mt	22 GJ/mt
Miscible Oil	Wettable Powder	Granules	Average
Pesticides			

because pesticides are very energy intensive, the overall impact on corn energy use is not insignificant. Lacking a better reason, reference 2 will be Notes: There is extremely wide variation in pesticide energy intensity estimates. Though pesticide use in corn farming is small on a mass basis, used because it is more recent.

Table 11 Energy Use in Seed Production

- Shapouri, H. J.A. Duffield, and M.S. Graboski. 1995. Estimating the Net Energy Balance of Corn Ethanol,
 - USDA/ERS, Economic Report Number 721, Washington, D.C.

£

62

ල

4 ©

- Pimentel, David (ed.). 1980. Handbook of Energy Utilization in Agriculture, CRC Press, Boca Raton, FL.
- Giampietro, M., and David Pimentel. 1990. Alcohol and Biogass Production from Biomass, Critical Reviews in Plant Sciences; Vol. 9, No. 3, pp. 213-233.
- Economic Report to the President. 1995. Transmitted to the Congress February 1995, U.S. GPO, Washington, D.C.
- United States Department of Energy, Energy Information Administration. 1993. Annual Energy Review: 1993, DOE/EIA-0384(93).
- Personal Communication with David Bruch, Gro-Mart Seed Division, Bloomington, IL, Sept. 20, 1995.

9

Seeding Rate 0.12 lb/bu
0.0021 lb seed/lb corn

Notes:	9-State Average
Transformed Transformed Notes:	186 Btu/bu
Input Quan. Input Units	5.285 Btu/bu
Source	£ (5)
Raw/	186 Btu/Bu (1)
Input Units	24,806 Kcal/kg seed (2)
Raw/	186
Input Quan.	24.806

costs and energy consumption in the hybrid com seed industry, the other is just a guess. Lacking other options, it is at least possible to update the estimates based on energy use per unit gross domestic product. This data is Using 1977 data on the retail cost of corn seed (\$0.71/lb) and 1973 energy use per \$GNP (15,800 kcal/\$), the energy cost is computed at 24,806 kcal/kg. Notes: Sources (2) and (3) rely on estimates of the energy intensity to propagate crops based on the relative cost of feed corn versus hybrid seed corn. 150% of the energy that is required for grain. Neither method is particularly appealing. One relies on very gross assumptions about the relationship of This is the approximate figure which is used in both the referenced sources. Reference 1 is based on the assumption that seed requires presented below.

ntensity	(uo:	913	884	851	883
Energy I	(Btu/bu c			15,637 1,851	-
Energy Intensity	(Btu/lb seed)			,236 3,336 72.7 1300 1.18	
eed Cost	(Q) /\$	1.14	1.17	1.18	
S di/sier		1300	1300	1300	
eed Cost Kerr	/80,000 Kernals	70.2	71.8	72.7	
Ratio Se	(Kcal/\$ GDP)(\$	3,571	3,439	3,336	
	9	14,170	13,644	96 6343.3 13,236	13,683
ross Dome R	illion \$) Br	5724.8	6020.2	6343.3	
Domestic Energy ConsuGross Dome Ratio	8)	81.12	82.14	83.96	
T Domestic Er	(Quads)	1991	1992	1993	age.
Year					Aver

Notes: Accordingly, the current estimate of energy use to produce corn seed is much smaller than the estimate made based on 1970's data. This is due both to a more energy efficient economy (i.e. lower blu/\$ GDP) and due to lower seed prices (current prices are equivalent to about \$0.45/lb in 1977 dollars). Interestingly, my estimate of the energy intensity of the U.S. economy in 1973 is also about 12% less than the estimate made in reference 2. Combined, current energy intensity estimates are only about 40% of those made based on the 1970's data. The veracity of the gross argument made is also still in question. As a rough check, however, it is interesting to estimate the energy intensity of corn production based on the same method. Ass 34,208 Btu/bu. This is 63.41% of the estimate made in this report. Thus the seed energy intensity estimate can be considered a valid, but crude, estimate. As a check, a rough direct estimate can be made of the energy use to grow seed. David Bruch cited some 1994 production numbers of 47 units net production per acre, and planting rates of about 27,000 plants per acre.

47 units seed/acre seed 3 acres grain/unit seed 141 acres grain/acre seed nergy use p 6,503,299 Btu/acre corn

Assuming equivalent energy use per acre grain for seed, energy use per acre grain for seed is:
46,123 Btu/acre com or:
383 Btu/bu corn or:

For example, seed corn is planted in two passes, one for each of the parents. An additional tractor pass is made to burn back one or two rows to ensure proper pollination. In some cases pesticide use is very much higher. This year, for example, some fields were sprayed up to 4 times from corn borer. Seed corn is also mechanically detassled. Probably the most significant area of additional energy use, however, is in drying and storage. This is already double the estimate in reference 1, and does not include any additional energy for seed processing. There are many aspects of seed production which are markedly more energy intensive than grain. Seed corn is harvested wet (35% moisture) and dried on the ear down to 12% moisture. Using data from Table 17 an estimate of drying energy use can be made:

nq/ql	ng/gl	35,691 btu/bu seed 637 btu/lb seed 75.43 btu/bu corn
35% 12% 26.54 lb/bu	6.72 49.28 19.82	35,691 637 75.43
Harvested moisture of c Stored moisture of corn Harvested water weight Stored water weight	Stored corn weight Water to be evaporated	Gross Energy to Dry Se Gross Energy to Dry Se Energy per unit com pro

The calculation below is a rough estimate of incremental additions in energy use on the farm for hybrid seed production. Included are estimates of triple the farm machinery use, 20% additional energy for drying due to This does not include the water in the cob itself, so energy use for drying would be even higher. Clearly Different practices in the seed industry lead to dramatically higher energy costs.

Estimated MLEnergy Use per AEnergy Use rEnergy Use per Bu com	118	5	80	4	27	79	202	
Energy Use pEn	55,700	2,231	3,816	1,746	12,590	37,316	95,494	NOR BOX
AEnergy Use per A	2,876,833	115,234	197,113	90,198	650,236	1,927,322	4,932,089	10.789.026
Estimated N						, c	,	
Energy use per Acre	145 224	10,23	20,100	325,130	1606 101			,
Item	Potash	Phosphate	Lime	Chemicals	Drying	Farm Vehicle	Total	

as high as the value estimated from btus GDP. The actual value is probably between 600 and 1800 btu/bu corn. Lacking more detailed data on corn seed production practices, however, the estimate based on btu/s will Notes: Assumes 80,000 kernals/unit and 1,300 kernals/lb. Some additional energy is used for airconditioned storage of seed, packaging, and transportation, but it seems unlikely that this would increase the total

Ξ

8

ල

Hudson, Charles L. 1982. Energy Requirements for Materials Used in Vehicles Characterized for the Tapcul Project, Argonne National Laboratory, ANL/EES-TM-211.

Pimentel, David (ed.), 1980. Handbook of Energy Utilization in Agriculture, CRC Press, Boca Raton, FL. Giampietro, M., and David Pimentel. 1990. Alcohol and Biogass Production from Biomass, Critical Reviews in Plant Sciences, Vol. 9, No. 3, pp. 213-233.

Table 12 Energy Use in Lime and Sulfur Production

Blankenhorn, Paul R., et al. 1986. Net Financial and Energy Analyses for Producing Populus Hybrid Under Four Management Strategies: First Rotation, Oak Ridge Nat'l Laboratory, ORNL/Sub/79-07928/1.

€

- (5) Mudahar, M.S. and T.P. Hignett. 1982. Energy and Fertilizer: Policy Implications and Options for Developing Countries. Executive Brief, Technical Bulletin IFDC-T-19, International Fertilizer Development Center, Muscle Shoals, Alabama.
 - U.S. Department of the Interior, Bureau of Mines. 1994. Mineral Commodity Summaries: 1994

Energy Use in Lime and Sulfur Production

9

	transport	This source explicitly states that 500 regime is the first		
569 Btu/lb	566 Btu/lb	568 Btu/lb	568 Btu/lb	1 Btu/lb
(3)	4	(2)	Average	St. Dev.
316 kcallko	566 Btu/lb	315.45 kcal/kg		
	Lime			

progagated through the literature for some time. There is no apparent source of better data. The mining part of the energy consumption estimate is He cites no data source for the transportation estimate, however, making the total value somewhat questionable. Apparently this single value has Notes: I suspect that all three of these sources are relying on the 1990 estimate by Pimentel of the energy use to produce limestone. Pimentel's estimates suggest that almost all of the energy use is for transport of the limestone, while mining costs are very small. based on 1972 Census of Mineral Industries data.

G.l/mt					
	7.38	9,511	3tu/lb	(5)	
Parcent of Su	21%	1997 Btu/lb	3tu/lb	(9)	

Notes: About 15% of domestic sulfur use in the U.S. is domestically produced, Frasch Process sulfur. Domestically produced recovered sulfur accounts for 55%. Since sulfur recovery is often carried out in the purification of fuel feedstocks, or for pollution control purposes, it is unclear whether energy use in these processes should be counted towards suifur production. Hudson (1) cites an energy intensity of sulfur production of 443 Btu/lb.

Table 13 Fertilizer Type Mix in lowa (a state heavily devoted to corn production)

Tennessee Valley Authority, Commercial Fertilizers: 1994, TVA Environmental Research Center, TVA, Muscle Shoals, Alabama.

The Fertilizer Institute. 1982. The Fertilizer Handbook

3 3

			55.08% 25.61% 9.31% 98.43% Of total single nutrient N
Percent			65.08% 25.61% 9.31% 98.43%
Notes: p. 17 p. 17 p. 17	p. 17 p. 17 p. 17	p. 17 p. 17 p. 17	p. 20 p. 20 p. 20
taw Input Units Units Units 103186 short tons N 922724 short tons N 1035910 short tons N	284130 short tons P2O5 p. 17 9844 short tons P2O5 p. 17 293974 short tons P2O5 p. 17	38507 short tons K2O p. 17 403517 short tons K2O p. 17 442024 short tons K2O p. 17	59745 short tons N 235127 short tons N 85472 short tons N 918044 short tons N
lowa Fertilizer Consumption : 1934 (17) C Nitrogen Multi Nutrient Grade Single Nutrient Grade Total N	Phosphates Multi Nutrient Grade Single Nutrient Grade Total P2O5	Multi Nutrient Grade Single Nutrient Grade Total K2O	Single Nutrie Anhydrous Ammonia Nitrogen Solutions Urea Total Single
Iowa Fertilize Nitrogen	Phosphates	Potassium	Single Nutrie

378850 short tons DAP p. 15

Multiple Nutr DAP

66.09% Of total multi nutrient N 59.28% Of total P2O5 68193 short tons N p. 15 174271 short tons P2O5 p. 15

90.70% Of total K20 400,923 short tons K2O p. 21 Potassium Potassium Chloride

In order to simplify the evaluation of energy and emissions associated with fertilizer manufacture, nitrogen energy intensity will be estimated from the Notes. Fertilizer use in lowa is weighted towards single nutrient types except for phosphates, for which DAP is the most common type used. fertilizers. Emissions estimates will then be derived from the quantity of raw materials and intermediates used to manufacture the fertilizers. weighted average of the single nutrient nitrogen sources, and phosphate energy intensity will be taken from a generic value for phosphate

Physical and Chemical Characteristics of Nitrogen Solution (2)

(28% N in solution)

1.04 (unitless) 50.98% 49.02% Urea N: Amm Ammonium N Urea N

Table 14 Corn Production Energy Use for Fertilizer

Fuel Oil Electricity Total Fuel Total		442 0.077	0 0.042	442
-	22	4	r)	23,831
Fuel Electric In Energy Intens Energy Inten Notes: (Bturbu) (kwh/bu)	22,871 0.100 Fraction of Fertilizer type and fraction of makeup of nitrogen solution from 1		536	
Energy It	0.097	0.196	0.091	0.384
Fuel Fuel Energy InterEl. Energy In Energy (Btu/lb) (kwh/lb) (Btu/lb)			6 1,156	
Fertilizer Energy Intensity in Corn Production Quantity (Ib/bu)	Calculated N 1.03	Р 0.39	X 0.46	Total 1.88
Fedi	Calc			

Notes: Energy use from fertilizer consumption is calculated from the quantity of fertilizer used (Table 2), the energy intensity of fertilizer production (Table 7), and, for nitrogen, some information about the mix of nitrogen fertilizer types used in lowa (Table 13). Fuel mix information is also in Table 7.

Direct Energy Use in Corn Production Table 15

Shapouri, H, J.A. Duffield, and M.S. Graboski. 1995. Estimating the Net Energy Balance of Corn Ethanol,

Ali, Mir, and W. McBride. 1994. Com: State-Level Production Costs, Characteristics, and Input Use, 1991, USDA/ERS, SB-891.

8

Ξ

USDA/ERS, Economic Report Number 721, Washington, D.C.

uel Use by State (1)									
Units	Illinois Indiana	lowa	Michigan	Minnesota Nebraska	Nebraska Ohio	S	South Dakota Wisconsin	onsin V	Weighted Average
esel Btu/bu	4793		•		18881	5131	10650	9184	7713
asoline Btu/bu	3439	3710			4301	2723	4846	2802	3493
I P Gas Btu/bu	1515	1619	3292 2654	54 3287	2510	2780	5705	1578	2575
atural Gas Btu/bu	479	85			12632	85	0	90	2058
lectricity (2) kwh/bu	0.097	0.235	0.041 0.09	0	0.744	0.081	1.094	0.605	0.276
ustom WorkBtu/bu	1480	1213	1289 97	927 1131	1106	981	1271	3619	1371
Justom DryinBtu/bu	902	1153	•		1153	764	39	964	1134
nput HaulingBtu/bu	1062	1062	·		1062	1062	1062	1062	1062
Total									
Diesel Btu/bu Gasoline Btu/bu	10,146 3,493								

3,210 2,557 0.276 19,406 Electricity (2) Kwh/bu Natural Gas Btu/bu Total

Notes: Electricity use per bushel has been converted back to Kwh using the conversion factor given in reference 1 (12,456 btu/kwh). This value can be checked in reference 2, and is correct. Following the convention in reference 1, energy use for custom work and input hauling has been allocated to the diesel category. Energy use in custom drying is allocated to the LPG and natural gas categories according the the relative importance of these two fuels (44% N.G.: 56% LPG).

Dryer Type Specific Energy Intensity Estimates Table 16

Personal Communication with Dr. Charles Hurburgh, Iowa State University, July 24, 1995.

£ 8 ල €

Personal Communication with Dr. Fred Bakker-Arkema, Michigan State University, Department of Ag. Engineering, July 27, 1995.

Personal Communication with Bill Wilcke, University of Minnesota, Department of Ag. Engineering, July 25, 1995

lowa Agricultural Statistics. 1991. Iowa Crop Report, press release of March 5, 1991, Iowa Agricultural Statistics, Des Moines, Iowa.

Corn Drying Energy Consumption Estimates

Dryer Type Energy Low Temp.	1,400	Units Sor 1,400 Btu/lb water (1)	Source (1)	Notes: He gave these as the range of possible values, in
High Temp.	3,000	3,000 Btu/lb water (1)	(E)	which most dryers should fall.
Ambient Air-L	1,450	1,450 Btu/lb water (2)	(2)	Range: 1,200 to 1,600
High Temp. B	1,950	Btu/lb water (2)	(2)	Range: 1,500 to 2,400
Continuous High Temp.				
Cross Flow	2,050	Btu/lb water (2)	(2)	Range: 1,700 to 2,400
Mixed Flow	1,800	Btu/lb water (2)	(2)	Range: 1,600 to 2,000
Concurrent F	1,650	Btu/lb water (2)	(2)	Range: 1,500 to 1,800
Average	1,833	Btu/lb water		
Bin Batch	1,500	1,500 Btu/lb water (3)	(3)	
Column Batc	2,100	Btu/lb water (3)	(3)	
Continuous F	2,650	Btu/lb water (3)	(3)	Range: 2,100 to 3,200
Natural w/ele	870	1 kwh/bu 870 Btu/lb water	(3)	From 22 to 15% moisture

Percent of Corn Dried By Type: lowa 1990 (4)

191 249 321 464 539 38 **Energy Inten Product** 2,100 1,833 1,500 2,650 1,500 1,500 9.1% 13.6% 21.4% 17.5% 35.9% 2.5% Continuous-f Bin Dryer wit Column Type Column Type Batch-in-Bin

Mid-Range Energy Intensity Estimate 1,801 Btu/lb water Table 17 Net Corn Drying Energy Intensity

lowa Agricultural Statistics. 1991. Iowa Crop Report, press release of March 5, 1991, Iowa Agricultural Statistics, Des Moines, Iowa.

Ξ

- Hill, L.D., J.P. Brophy, S. Zhang, and W. Florkowski. 1991. Farmer Attitudes Towards Technological Changes Affecting Grain Handling and Quality, Bulletin 805, University of Illinois at Urbana-Champaign, College of Agriculture, Agricultural Experiment Station. 8
- CE Power Systems. 1967. Steam Tables: Properties of Saturated and Superheated Steam, reprinted from ASME Steam Tables (1967). ල
- Cengel, Y. A., and M. Boles. 1989. Thermodynamics: An Engineering Approach,

€

McGraw-Hill, Inc., New York.

Personal communication with Bill Wilcke, University of Minnesota, Department of Agricultural Engineering, July 25, 1995.

Personal communication with Fred Bakker-Arkema, Michigan State University, July 27, 1995.

9

6

8

(2)

- Shapouri, H. J.A. Duffield, and M.S. Graboski. 1995. Estimating the Net Energy Balance of Corn Ethanol,
- USDA/ERS, Economic Report Number 721, Washington, D.C.

Ali, Mir, and W. McBride. 1994. Corn: State-Level Production Costs, Characteristics, and Input Use, 1991, USDA/ERS, SB-891.

Com Dried by Method: Percent of To(1)

Average		62.45								
1990	19	62.1	18.9	Source:	(8)	1991	38	47	31	33
1989	22.8	58.1	19.1			1986	49	53	28	53
1988	20.7	61.5	17.8			1976	42	45	53	47
1986	15.3	68.1	16.6			1971	34	27	36	32
Year	Natural Dryin	On Farm Arti	Off Farm Arti	Source:	Percent of Cq(2)		Illinois	lowa	Indiana	Average

Notes: Information on corn drying varies significantly from source to source. The above information includes some of the available estimates of the fraction of corn dried, and the fraction dried on and off of the farm. Because of conflicting estimates, estimates of fuel use for corn drying were taken directly from reference 7. This are compared below to theoretical values.

Item	Value	Units	Source	Notes:
Specific Heat of Water	-	1 btu/lb-degree Ra (4)	Ra (4)	
Enthalpy of vaporization	970.30 btu/lb	btu/lb	(3)	At 1 atmosphere
Energy to vaporize water from 70 F	1112.30 btu/lb	btu/lb	(3)	
Harvested moisture of corn	23%		(2)	
Stored moisture of corn	15%		(5)	
Harvested water weight	14.22	14.22 lb/bu		
Stored water weight	8.40	8.40 lb/bu		
Stored corn weight	47.60 lb/bu	nq/q		
Water to be evaporated	5.82	5.82 lb/bu		
Gross Energy to Dry Corn	10,480 lb/bu	ng/qı		
Net Energy to Dry Corn	5,764 lb/bu	nq/qi		

Notes: Assuming an average of 55% of corn is dried, net energy use values correspond to estimates in reference 7 for corn dried from 23% to 15%, or 8% points. This estimate is not inconsistent with rough estimates

given by Bill Wilcke (10%) and Fred Bakker-Arkema (5% to 12%). Because more accurate data are lacking, it will be assumed that the energy intensity value derived in reference 7 is the most appropriate. Thus all energy use for drying is accounted for in Table 15.

Table 18 Net On-Farm Energy Use	n Energy Us	0					
From Table 15 Energy Use for Corn, 9-State Weight	tate Weight	Raw/ Input Quan.	Raw/ Raw/ Input Quan. Input Units	Source	Transformed Input Quan.	Transformed Transformed Input Quan. Input Units Notes	Notes
Diesef Gasoline		10,146	Btu/bushel	Table 15	10,146	Btu/bu	Based on 9 state average.
L.P.G		3,210	Btu/bushei	Table 15	3,210	Btu/bu	based on 9 state average.
Natural Gas		2,557		Table 15	2,557	Btu/bu	Based on 9 state average.
Electricity Total		3,438		Table 15	0.276	Kwh/bu	Based on 9 state average.
Table 19 Energy Use	Energy Use for Fertilizer in Com Production	in Com Pro	duction				
Calculated Values from the last rows of Table 14	e last rows o	of Table 14					
Energy Use for Fertilizer Production	20	Raw/Input Quantity	Units	Source	ĪŌ	Notes:	
Flectricity		0.21B	0.218 Kuhfhushal	Table 14	7		
Fuel Oil		442	Btu/bushel	Table 14			
N.G.		23,831	Btu/bushel	Table 14	7		
Total		26,458	Btu/bushef	Table 14	7		
Table 20 Energy Use for Pesticide Use in Corn Production	for Pesticide	Use in Corr	Production				
From Tables 9 and 10.							
Pesticide ProQuantity Units (lb/bu)	ш :	Energy Inten (Btu/lb)	Energy Inten Energy Use (Btu/lb) (Btu/bu)	Oil (Blu)	Gas (Btu)	Coal (Btu)	
Herbicides	0.023	97,575	2,234	1,080	722	432	
Insecticides	0.0022	101,742	225	106	76	44	
Pesticide ForQuantity and Packagin(lb/bu)							
Herbicides	0.023	9,451	216	105	70	42	
Insecticides	0.0022	9,451	21	4	7	4	
Total Pesticide Energy Use	•						
Oil	1,300	Btu/bu					
N.G.	875 B	Btu/bu					
Total	322 B 2,697 B	Btu/bu					

Notes: Energy intensity for production from Table 9, reference 1. Energy intensity for formulation and packaging from Table 10, reference 2. Fuel mix for total energy use from Table 10, reference 1.

Table 21 Energy Use for Seed in Corn Production

Shapouri, H. J.A. Duffield, and M.S. Graboski. 1995. Estimating the Net Energy Balance of Corn Ethanol, USDA/ERS, Economic Report Number 721, Washington, D.C.

Ξ

Units	Btu/bu	Btu/bu	Btu/bu	Btu/bu	Btu/bu
Energy	128	1,128	499	128	1,883
	6.80%	29.90%	26.50%	6.80%	100.00%
% fuel					Jnc Jnc
Fuel	Gasoline	Ö.	Diesel	ē	Seed Produc

Notes: Energy type splits from reference 1, in percent, applied to total energy for seed production from Table 11.

Table 22 Energy Use for Lime and Sulfur in Corn Production

From Table 6

 Line
 728 btu/bu

 Sulfur
 20.39 btu/bu

 Total
 748 btu/bu

 Energy Split
 748 btu/bu

limestone production is for transportation. Since reference (2) is more explicit about the processes uses, it is assumed that 300 kcalkg of energy use is for truck haulage, and that diesel trucks are used for this haulage. The remaining energy consumption, and the consumption of energy for sulfur, are lumped into Note: Reference (1) gives an energy type distribution for lime that includes mostly natural gas and coal. Reference (2) suggests that 95% of fuel use in the diesel category because they are small contributions, and there is little data about the mix of fuels for these categories.

Table 23 Total Energy Use in Corn Production

Sum of Previ Total		Units	Table 12	Table 13	Table 14	Table 15 Table 16	Table 16
			Pesticide Produc Direct Use	Direct Use	Fertilizer Pro	dSeed Produ	Fertilizer ProdSeed ProducLimestone/Sulfur
N.G.	28,391	Btu/bushel	875	2,557	23,831		
Diesel	11,393	Btu/bushel	0	10,146	0	499	748
LPG	3,210	Btu/bushel	0	3,210	0	0	0
Coal	522	Btu/bushel	522	0	0	0	0
Oil	1,870	Btu/bushel	1,300	0	442	128	0
Gasoline	3,621	Btu/bushel	0	3,493	0	128	0
Electricity	0.494	Kwh/bushel	0.000	0.276	0.218	0.000	0.000
Total Fuel	49,007	Btu/bushel	2,697	19,406	24,273		
Total Electric	0.494	Kwh/bushel	0.000	0.276	0.218	0.000	0
Grand Total	53.952	Btu/bushe	2.697	22,166	26.458		748

Table 24 Nitrogen Oxide Emissions from Corn Production

£ 6

Eichner, Melissa. 1990. Nitrous Oxide Emissions from Fertilized Solis: Summary of Available Data, J. of Environmental Quality, 19.272-280(1990)

Anderson, I.C., and J. S. Levine. 1987. Simultaneous Field Measurements of Biogenic Emissions of Nitric Oxide and Nitrous Oxide,

Journal of Geophyical Research, vol. 92, no. D1, pp. 965-976, January, 1987.

DeLuchi, M. 1993. Emissions of Greenhouse Gases from the Use of Transportation Fuels and Electricity, Argonne National Laboratory, ANL/ESD/TM-22, Vol. 2.

ල

(4) Unnasch, Stefan. 1990. Greenhouse Gas Emission from Ethanol Production and Vehicle Use, Acurex Corp. for the Nat'l Corn Growers Association Watson, R.T. et al. 1990. Greenhouse Gases and Aerosols, in Intergovernmental Panel on Climate Change. Climate Change: The IPCC Scientific Assessment Report Prepared by Working Group I, J.T. Houghton, et al (ed.), UK, 1990.

LCI Component

9

Notes	Refs 4 and 5 probably are citing the same data, though they reference different sources.	Refs 4 and 5 probably are citing the same data, though they reference different sources.	Evaluated results of 104 field experiments			Cites Mosier, A. R. et al. 1986. Soil Losses of Dinitrogen and Nitrous Oxide from Irrigated Crops in Northeastern Colorado, Soil Science Society of America Journal, 50:344-348	This data is specific to corn and anhydrous ammonium, so it will be used here.	
Tranformed Units Input Quantity	1.03E-04 lb/bu 2.05E-02 lb/bu	1.03E-04 lb/bu 2.05E-02 lb/bu	2.77E-02 lb/bu 4.51E-03 lb/bu 2.56E-03 lb/bu	1.13E-03 lb/bu 7.18E-04 lb/bu	1.23E-02 lb/bu	1.54E-02 lb/bu	1.32E-02 lb/bu	8.10E-03 lb/bu
Source	€ €	(5) (5)	EEE	333	(2)	(3)	3	(2)
Raw Input Units Quantity	0.01 percent 2 percent	0.01 percent 2 percent	2.7 percent 0.44 percent 0.25 percent	0.11 percent 0.07 percent	1.2 percent	1.5 percent	1.29 percent	0.79 percent
N2O Emissions Ra			Anhydrous Ammonium Ammonium Nitrate Ammonium Chloride or	Urea Calcium Nitrate		Corn	Corn (Anhydrous Ammo	NO Emission

Notes: NO2 emissions vary by fertilizer type and crop. Reference 1 gives a value for anhydrous ammonia fertilized corn. Since this data most closely represents average practices, and since the value is consistent with other results, it is used in the inventory.

Glotfelly, D.E., et al. 1984. Atrazine and Simazine Movement to the Wye River Estuary, Journal of Environmental Quality, 13:115-121

Ξ

6

- Bowman, B.T., et al. 1994. Tranport of Herbicides and Nutrients in Surface Runoff from Corn Cropland in Southern Ontario Canadian Journal of Soil Science, 7491):59-86, 1994
- (3) Buhler, D.D., et al. 1993. Water Quality: Atrazine and Alachlor Losses from Subsurface Tile Drainage of a Clay Loam Soil, Journal of Environmental Quality, 22:583-588, 1993
- Battaglin, W.A., D.A. Goolsby, and D.K. Mueller. 1994. Relations Between Use, Concentration, and Transport of Agricultural Chemicals in the Mississippi River Basin, in Proceedings of the Annual Summer Symposium of the American Water Resource Association, Effects of Human Induced Changes on Hydrologic Systems, June 26-29, 1994, Jackson Hole, Wyoming. 3
- Goolsby, D.A., E.M. Thurman, M.L. Pomes, and W.A. Battaglin. 199. Temporal and Geographic Distribution of Herbicides in Precipitation in the Midwest and Northeast United States, 1990-1991, in Proceedings of the Fourth National Conference on Pesticides, New Directions in Pesticide Research, Development and Policy, November 1-3, 1993, Blacksburg, Virginia.

3

Table 25 Pesticide and Nutrient Loss to Surface and Groundwater

United States Geological Survey, 1993. Selected Papers on Agricultural Chemicals in Water Resources of the Midcontinental United States, U.S.G.S. Open-File Report 93-418, U.S. G.S., Denver, CO.

The Fertilizer Institute, 1982, The Fertilizer Handbook

8

9

for total air emissions of pesticides. It is suggested in these studies that degradation, dry deposition, and drift outside of the study area may account for the remaining air emissions of pesticides. These air emissions have been is common, and concentrations may reach as high as Federal limits on drinking water concentrations. The total quantity of pesticides found in rainwater is small relative to applications (less than 1%) and does not account can be detected in surface water, and rainwater. References 5 and 6 give information on the prevalance of pesticides in rainwater samples in the midwest. Detection of pesticides and pesticide metabolites Pesticides are transported from the point of application by several methods: surface runoff, leaching, volatilization, and direct airborne dispersal of pesticide which does not reach the target. These pesticides quantified in Table 42. It should be noted that air emissions of pesticides which appear in rainfall also serve as a pesticide load on surface water.

Pesticides also appear in near surface aquifers. The concentrations found in groundwater

are generally much smaller than surface water concentrations. No data has been identified which tracks aquifer loading as a fraction of total pesticide use in a particular region. Because this value is probably small relative to surface water loads, it will be treated as negligible. The data below thus give a gross quantification of pesticide flux to water systems in the midwest.

LCI Component	Raw Input Units Quantity	Units	Source	Notes
Herbicides Atrazine	2.50%	2.50% Percent	<u>(5</u>	Midrange loss of atrazine for years in which significant rainfall occurred within two weeks of application
	%9 %0	0% Percent 6% Percent	(5) (5)	Up to this level when rain immediately follows application
	1.53%	1.53% Percent	(4)	Annual average based on Mississippi Basin loadings and associated use levels.
Melachlor	0%	0% Percent 4% Percent	(2)	Up to this level when rain immediately follows application
	0.79%	0.79% Percent	(4)	Annual average based on Mississippi Basin loadings and associated use levels.
Alachlor	0.22%	0.22% Percent	(4)	Annual average based on Mississippi Basin loadings and associated use levels.
Cyanazine	1.66%	1.66% Percent	(4)	Annual average based on Mississippi Basin loadings and associated use levels.
Nitrates	15.32%	15.32% Percent	(4)	Annual average based on Mississippi Basin loadings and associated use levels.
Phosphorous	1.00%	1.00% Percent	(2)	Rough estimate given as less than 1%
Potassium	3.50%	3.50% Percent	(2)	Rough estimate given as midway between N (6%) and P (1%)
Subsurface loAlachlor Afrazine	0.10%	0.10% Percent 0.10% Percent	(S) (S)	Subsurface loss only

This may to some degree explain the lower frequency of detections of insecticides. Reference 6 includes results from samples taken on 8 river systems with the most frequently detected of the top three corn insecticides, Application rates for insecticides are similar to those for herbicides (generally on the order of 1 lb/acre) but the fraction of acreage treated is much smaller (8% for chlorpyrifos and terbufos compared to 69% for atrazine). fonotos, occurring in a maximum of 34 percent of samples (Illinois River). By comparison virtually all samples from all rivers had detectable quantities of arrazine and metolachlor. Other insecticides, such as diazinon and carbofuran were more prevalent. Because detailed estimates of the fraction of insecticides entering surface water systems have not been made, a rough approximation of 1% will be used.

Ξ

8

Table 26 PM-10 Fugitive Emissions from Corn Production

AP 42 Compilation of Air Pollutant Emission Factors, 5th Edition Chapter 9.3.2, Grain Harvesting.

U.S. Environmental Protection Agency. 1994. National Air Pollutant Emission Trends, Office of Air Quality, EPA-454/R-94-027.

United States Department of Agriculture, National Agricultural Statistics Service, Crop Production: 1994 Summary, Cr Pr 2-1(95), January 1995.

ල

3

United States Department of Agriculture, 1994 (revised 1995). Summary Report: 1992 National Resources Inventory, USDA Natural Resources Conservation Service and the Iowa State University Statistical Laboratory.

Notes Units 1987 Raw Input Raw Input Quantity 1993 Quantity Year 1993 Source

As a check on this number, area planted in 1993 can be taken from reference (3). This totals 259,404 thousand acres, but excludes hay production, for which harvested area is given. Adding hay harvested area gives rough estimate of total planted area of 319,029 thousand acres, similar to the NRI value. 7,338 thousand short tons 350,908 thousand acres 0.0209 short tons/acre 6,842 0.0210 325,462 from Agricultural Cropland PM-10 Emiss(calculated) Fugitive PM- (2) Cultivated No(4)

0.348 lb/bu 41.823 lb/acre 41.93 lb/acre 42.045 PM-10 Emiss(calculated) Average value

Because reference (4) only gives estimates in 5 year intervals, only two years worth of values can be estimated. Other sources can be used to estimate total cropland, also emitted from grain harvesting operations. Reference (1) also gives emission factors for these operations for sorghum. The calculation below shows that these Notes: Reference (2) uses methods described in method (1) to estimate fugitive dust emissions. These can be highly variable dependent on weather conditions. but it is not clear which source of data is most appropriate. The PM-10 emissions are also based on factors only for agricultural tilling. Particulate is emissions are negligible with respect to the values estimated above. The emission rate is a general factor for cropland, but lacking additional data is used as a surrogate for emissions from corn cropland.

Sorghum Harvesting Emissions (reference 1, Table 9.3.2)

Units		lb/acre	lb/acre	1b/acre	b/acre
		0.01016	0.00020	0.00188	0.01223
Value					
Units		b/sq mile	0.13 lb/sq mile	lb/sq mile	b/sq mile
		9	0.13	-	7.8
Value	Rate	Aac	adin	uspo	
Item	Emission	Harvest Mac	Truck Lo	Field Tra	Total

Emissions from Energy Consumption in Nitrogenous Fertilizer Manufacture Table 27

Energy Information Administration. 1994. Manufacturing Consumption of Energy: 1991,

Ξ

8 9

DOE/EIA 0512(91).

United States Department of Energy, Energy Information Administration. 1994. Emissions of Greenhouse

Gases in the U.S.: 1987-1992, DOE/EIA-0573.

United States Environmental Protection Agency. 1995. Compilation of Air Pollutant Emission Factors, AP-42.

United States Department of Energy, Energy Information Administration. 1993, Annual Energy Review: 1993,

€

Transformed Units Energy for Nonfuel Purposes (MECS Raw Input DOE/EIA-0384(93).

Units

Nitrogenous Fertilizers

Notes:

Input Quantity

52.07% Feedstock Share 289 Tbtu Natural Gas

Total 290 Tbtu

Energy for Heat, Power, etc. (MECS Table A4)

 Natural Gas
 266 Tbtu
 47.93% Fuel Share

 Electricity
 10 Tbtu

 Other
 4 Tbtu

Total Primary Energy Consumption (MECS Table A1)

Natural Gas 555 Tbtu
Electricity 10 Tbtu
Other 568 Tbtu

Large Industrial Boiler Emission Factors (AP-42, Tables 1.4-1 to 1.4-3)

Ib/million btu This factor is given as the sum of filterable and condensible particulate. All PM emissions from N.G. consumption are thought to be < 10 microns in diameter lb/million btu Ib/million btu b/million btu lb/million btu tb/million btu lb/million btu Ib/million btu (b/million btu lb/million btu Ib/million btu 0.01328 0.00028 116.9 0.53295 0.07849 0.05136 0.06492 0.29893 0.03876 0.00137 0.6 Ib/million cubic ft 550 Ib/million cubic ft 81 Ib/million cubic ft 53 Ib/million cubic ft 67 Ib/million cubic ft 4.47 million metric ton 308.5 lb/million cubic ft 40 lb/million cubic ft 13.7 Ib/million cubic ft 0.289 lb/million cubic ft 1.41 lb/million cubic ft Average Controlled Controlled-Lo NOx Controlled-FGR Uncontrolled Average Non-methane VOC's Methane PM-10 SO2 NOx

Heat Content of Natural Gas (AER, T 1,032 Btu/cubic foot

Emissions from the Use of N.G. in the Manufacture of Fertilizer per Unit Corn Production

 SO2
 6.37E-06
 lb/bu

 NOx
 3.28E-03
 lb/bu

 CO
 4.25E-04
 lb/bu

 PM-10
 1.46E-04
 lb/bu

 Methane
 3.07E-06
 lb/bu

 Non-methane VOC's
 1.56E-05
 lb/bu

 CO2
 1.28
 lb/bu

Notes: The share of N.G. used as feedstock for nitrogenous fertilizer manufacture vs. fuel is used to reduce emissions estimates to account for N.G. not consumed in boilers. Emission factors are converted into units of lb/million btu, which are multiplied by energy consumption and share of energy used as fuel.

Emissions from the consumption of electricity by the industry will be calculated by the electricity module.

The hydrogen is reacted with nitrogen to form ammonia. This process results in the production of carbon dioxide and carbon monoxide. Carbon monoxide can be converted back to carbon dioxide through the water-gas shift reaction. Carbon dioxide has industrial use in several areas including the manufacture of urea from ammonia, but some carbon dioxide is emitted from the process. These and other process related emissions are treated in Table 35. N.G. is used as a feedstock through a reforming process to produce hydrogen gas. This is the predominate process for ammonia production in the U.S.

Table 28 Emissions from Diesel Consumption in Limestone Production and Farm Input Hauling

Boynton, Robert S. 1980. Chemistry and Technology of Lime and Limestone, Second Edition, John Wiley and Sons, Inc., New York.

Pimentel, David (ed.). 1980. Handbook of Energy Utilization in Agriculture,

CRC Press, Boca Raton, FL.

3

U.S. Department of the Interior, Bureau of Mines. 1994. Mineral Commodity Summaries: 1994

USDA: 1995.

3 € 9

Blankenhorn, Paul R., et al. 1986. Net Financial and Energy Analyses for Producing Populus Hybrid Under Four Management Strategies: First Rotation, Oak Ridge Nat'l Laboratory, ORNL/Sub/79-07928/1.

United States Department of Energy, Energy Information Administration. 1993. Annual Energy Review: 1993,

DOE/EIA-0384(93).

9

consumption. Reference (5) also explicitly states that energy use estimates for lime production include energy for mining, production, transporation, storage, and Reference (4) on the other hand lists fuel type for lime split between natural gas, diesel, and coal, suggesting that transporation is not the major area for energy transfer. Because reference (2) is most explicit about energy use, emissions from the production of lime will be estimated based on truck emission factors Reference (2) suggests that of 315,45 kcal/kg energy input to limestone production, 300 kcal/kg is for trantportation of the limestone to the user, for diesel trucks. It is also assumed that diesel fuel use by the phosphatic and potassium fertilizer industries is also consumed in trucks.

My guess based on zero data Tranformed Qurits Notes: **BMI Transport Model BMI Transport Model** 7.10 Miles/gallon BMI Transport Model 5.30 Miles/gallon BMI Transport Model Source ල ල 5.825 Million Btu/ba(6) 50.00% percent 50.00% percent Units 10,000 lb 42,000 lb Vehicle CapaRaw Input Quantity Vehicle Usage Rates Light Diesel T Light Diesel T Heavy Diese Heavy Diese Short Hauf D Long Haul Di Diesel Energ Mileages

Vehicle Registration Mix: January 1 & emissions factors, g/mile

Product of we

Model Year -1 Model Year -

Model Year -Model Year -Model Year -

Cds IIICAs					right Daty Diesel				Today Diesel Titles	200			:
Model Year Fraction	2	Total Hydro. CO	XON	_	Fraction	Total Hydro. CO	NOX	ш.	Fraction	Total Hydro. CO	Ň		
Model Year -	0	2.8	12.6	4.4	0.008	0.3	1.2	6.0	0.031	2.4	7.9	=======================================	
Model Year -	0.136	5.9	13.2	4.5	900'0	0.3	1.2	6.0	0.007	2.5	8.3	11.1	
Aodel Year -	0.116	3.1	14.6	4.8	0.008	0.4	1.2	6.0	0.008	2.6	9.1	11.5	
Model Year -	0.099	3.2	15.6	4.9	0.011	0.4	1.3	-	0.01	2.7	6.6	12	
Model Year -	0.085	3.4	16.5	5.1	0.017	0.4	1.3	-	0.012	2.8	10.5	12.2	
Model Year -	0.072	3.6	17.7	5.4	0.023	0.5	1.4	-	0.014	2.9	11.1	12.5	
Model Year -	0.062	3.7	18.4	5.5	0.029	0.5	1.4	1.1	0.017	8	11.6	12.7	
Model Year -	0.053	3.8	19.1	5.6	0.035	0.5	1.4	1.1	0.021	3.1	12.1	12.9	
Model Year -	0.045	3.9	19.7	5.7	0.041	0.5	1.5	1.1	0.025	3.2	12.5	13.1	
Aodel Year -	0.038	8.4	41.6	5.2	0.047	9.0	5:	1.1	0.03	3.3	13.2	17.9	
Model Year -	0.033	5.2	50.2	5.2	0.053	9.0	1.5	1.2	0.036	4	13.7	18.2	
Model Year -	0.028	12.8	158.20	5.6	0.059	9.0	1.6	1.6	0.043	5.6	14.8	18.9	
Model Year -	0.024	5	160.40	5.6	0.065	9.0	1.6	1.6	0.051	5.7	15.1	18.9	
Model Year -	0.02	13.1	165.20	5.7	0.071	9.0	1.6	1.7	0.061	5.8	15.4	18.9	
Model Year -	0.018	13.2	167.80	5.7	0.077	0.7	1.7	1.7	0.073	6.7	16.9	20.5	
odel Year -	0.015	13.8	182.5	6.1	0.083	0.7	1.7	1.9	0.088	6.8	17.2	20.5	
Model Year -	0.013	13.9	184.80	6.1	0.089	1.4	2.4	1.9	0.105	7.3	20.2	24.8	
Model Year -	0.011	18.3	211.10	6.4	0.095	1.4	2.5	2	0.126	7.4	20.5	24.8	
Model Year -	600.0	19.8	241.30	7.3	0.101	1.5	2.5	2	0.151	7.5	20.7	24.8	
Model Year -	0.045	19.9	243.30	7.4	0.027	1.5	2.5	2	0	7.5	20.9	24.8	
Weighted Av	%02 26	5.9	53.3	53	94 50%	3	**	*	/800	100	, ,	0 7 7	

Model Year Model Year Model Year Model Year Model Year Model Year Model Year Model Year Model Year Model Year Model Year Model Year Model Year Model Year Model Year Model Year Model Year -

Raw Input QuInits

Emission Factors

0.5 g/mile 1.4 g/mile 1.1 g/mile	3.7 g/mile 12.1 g/mile 14.6 g/mile	15/bu 15/bu 15/bu 15/bu
0.5 1.4 1.1	3.7 12.1 14.6	0.00043 0.00138 0.00161 0.29174
Short Haul D Hydrocarbons Carbon Monoxide NOx	Long Haul Di Hydrocarbons Carbon Monoxide NOx	Emissions Hydrocarbons Carbon Monoxide NOx CO2

Table 29 Emissions from Farm Equipment

U.S. EPA. 1991. Nonroad Engine and Vehicle Emission Study-Report, EPA 460/3-91-02.

U.S. EPA. 1991. Nonroad Engine and Vehicle Emission Study-Appendixes (sp): Draft, 21A-2001 (NTIS #PB92-104462).

United States Department of Energy, Energy Information Administration. 1993. Annual Energy Review: 1993, DOE/EIA-0384(93).

(3)

(5

<u>4</u>

United States Department of Energy, Energy Information Administration. 1994. Emissions of Greenhouse Gases in the U.S.: 1987-1992, DOE/EIA-0573.

CO NOX SOX Particulate Aldehydes 175 438.59 31.2 45.7 12 171 435 5.28 51.3 10.2 (3.456 213.23 5.31 8 6.86 4.1 (3.456 213.23 5.28 5.31 8 6.86 4.1 (3.456 213.23 5.28 6.86 6.86 4.1 (3.456 213.23 5.28 6.86 6.86 6.86 6.86 6.86 6.86 6.86 6	Corm County Inite	tracel seco						9	
HC CO NOx SOx Particulate Aldehyd 63.55 175 438.59 31.2 45.7 72.52 171 435 5.28 51.3 178.85 4,456 213.232 5.31 8 192.15 4,456 213.232 5.28 6.86		Quantity						0000	
63.55 175 438.59 31.2 45.7 72.52 171 435 5.28 51.3 178.85 4,456 213.232 5.31 8 192.15 4,456 213.232 5.28 6.86		오	8	z		ŏ	Particulate	Aldehydes	
72.52 171 435 5.28 51.3 178.85 4,456 213.232 5.31 8 192.15 4,456 213.232 5.28 6.86	llons	63.55		175	438.59	31	.2 45.7	12 (2)	
178.85 4,456 213.232 5.31 8 192.15 4,456 213.232 5.28 6.86	lons	72.52		171	435	5.5			
192.15 4,456 213.232 5.28 6.86	lons	178.85		4,456	213.232	5.3	31	6.8 (2)	
	lons	192.15		4,456	213.232	5.3			

Weighted by factors for large 2WD, small 2WD, and 4WD tractors. Diesel HC values include exhaust and crankcase emissions. Gasoline HC values include exhaust, crankcase, and refueling emissions.

Notes

	Transformed Units Transformed Units	43.98 lb C/million bt 161.16 lb CO2/million btu	42.79 lb C/million bt 156.79 lb CO2/million btu	Transformed Units	138,690 Btu/gallon 125,071 Btu/gallon
	Source Tran	IS(4)	ls(4)	Source	
	Units	Million mtons(4)	19.41 Million mtons(4)	Units	5.825 Million Btu/ba(3) 5.253 Million Btu/ba(3)
Carbon Dioxide Emission Factors	Raw Input Quantity Units	Diesel 19.95	Gasoline 19.41	Energy ValueRaw Input Quantity Units	Diesel Motor Gasoli 5.253

2.31E-03 lb/bu 3.74E-03 lb/bu 4.70E-04 lb/bu Particulate Aldehydes

of energy use for non-tractors on corn farms would be quite small. Also, the difference between tractor and non-tractor emission factors is small. For this reason, non-tractor equipment includes many categories that would not be used on corn farms, such as cotton pickers, orchard sprayers, and mowers, the percentage Notes: Reference (2) lists percentage energy output estimates for diesel equipment. According to that data about 85% of energy use is by tractors. Since emissions estimates are based on the weighted factors for tractors.

Diesel energy use in tractors is taken from Table . Because the total value in this table includes diesel use in input hauling, which is accounted for in a separate table, the individual components for on farm use must be pulled out of the table separately. Diesel use to produce seed is also included in these calculations.

Emissions from Natural Gas and LPG Use for Corn and Seed Production Table 30

U.S. EPA, AP-42, Sections 1.4 and 1.5.

Ξ 8

United States Department of Energy, Energy Information Administration, 1994. Emissions of Greenhouse

Gases in the U.S.: 1987-1992, DOE/EIA-0573.

Natural gas and LPG are used in com farming for drying the corn to acceptable moisture content levels for storage, usually 12 to 13%. The EPA publishes particulate emission factors for the products of combustion. In order to estimate emissions from the consumption of natural gas and LPG, factors for uncontrolled commercial boilers will be applied to the direct use of natural gas and LPG on farms, and to the use of natural gas in seed production.

	100	100 lb/million cubic fe(1)	a(1)	9.69E-02	lb/million btu
	9.0	0.6 lb/million cubic fe(1)	9(1)	5.81E-04	lb/million btu
	12	12 lb/million cubic fe(1)	9(1)	1.16E-02	lb/million btu
	21	21 lb/million cubic fe(1)	9(1)	2.03E-02	lb/million btu
	14.47	million metric ton (2)	(2)	116.89	lb/million btu
Non-Methane VOC's	3.83		9(1)	3.71E-03	lb/million btu
	1.97	lb/million cubic fe(1)	(1)	1.91E-03	lb/million btu
Natural Gas Use In Corn Farming an	3,685	Btu/bu	From Tables 13 and 15	s 13 and 15	
	3.57E-04	lb/bu			
	2.14E-06	nq/qı			
	4.28E-05	nq/qi			
	7.50E-05	. nq/ql			
	4.31E-01	nq/qi			
Non-Methane VOC's	1.37E-05	p/bu			
	7.04E-06	lb/bu			
Emission Factors -LPG	Raw Input	Units	Source	Transformed IUnits	Units
	4	14 lb/million cubic fe(1)	(1)	1.36E-02	fb/million btu
	0.018	0.018 lb/million cubic fe(1)	(1)	1.74E-05	b/million btu
	0.4	0.4 lb/million cubic fe(1)	(1)	3.88E-04	lb/million btu
	6.		£	1.84E-03	lb/million btu
	17.16		(2)	138.62	lb/million btu
Organic Compounds	3.83	(1) (1) (1) (1) (1)	(3)	3.71E-03	lb/million btg

LPG Use In Corn Farming and Seed	3,210	3,210 Btu/bu	From Tables 13 and 15
Emissions			
40x	4.35E-05 lb/bu	lb/bu	
SOx	5.60E-08	nq/qi	
Particulate	1.24E-06		
00	5.91E-06		
CO2	4.45E-01	nq/qi	
Organic Compounds	1.19E-05	ng/ql	

Total Emissions

 NOx
 4.01E-04
 lb/bu

 SOx
 2.20E-06
 lb/bu

 PM-10
 4.28E-05
 lb/bu

 Particulate
 1.24E-06
 lb/bu

 CO
 8.09E-05
 lb/bu

 Non-Methane VOC's
 8.76E-01
 lb/bu

 Methane
 7.04E-06
 lb/bu

Table 31 Unallocated Emissions from Fuels

£

United States Department of Energy, Energy Information Administration, 1993. Annual Energy Review: 1993, DOE/EIA-0384(93).

In this table all fuel use for which a specific emission factor could not be found are totalled, and general emission factors used to estimate emissions. This includes fuel use for pesticides and seed use of coal, and oil.

		,		•		:	Table 14						
Sum of Previ Total		Units	Table 8	Tab	le 12	Table 12 Table 13	Fertilizer Production	oduction			Table 15 Table 16	Table 16	
			Fertilizer F	Fertilizer Packag Pesticide ProDirect Use	licide Pro	Direct Use	Nitrogen	Phosphates Potash	Potash		Seed Product Limestone/Sulfur	ot Limestone	/Sulfur
O.Z.	1,836	1,836 Btu/bushel		0	875	875 (allocated)	(allocated)	425		536	536 (allocated)		0
Diesel	0	Btu/bushel		0	0	0 (allocated)	0	0		0	0 (allocated) (allocated)	(allocated)	
LPG	0	Btu/bushel			0	0 (allocated)	0	0		0			0
Coal	522	Btu/bushel		0	522	0	0	0		0	0		0
=	1,870	1,870 Btu/bushel		0	1,300	0	0	442		0	128		0
Gasoline	0	Btu/bushel		0	0	0 (allocated)	0	0		0	0 (allocated)		0
Total Fuel	4,228	4,228 Btu/bushel		0	2,697	0	0	867		536	128		0
×ON	140	lb/million cub		13.7 lb/lon		7	20 lb/lbousand gallons	gallone					
«Ú»	080	O GO Ih/million cuh		£7 ib/lon		442 60	11/11/11/11						
	9			0	=	20.05	145.00 in/iiiousariu galioris	galloris					
M-10	4	b/million cub	•	12.4 lb/ton	_		1 lb/thousand gallons	gallons					
CO	35	35 tb/million cub	_	5 lb/ton	_	•	5 lb/thousand gallons	gallons					
CO2	14	Million Mtons		25.58 Million Mtons	on Mtons	·	19.95 Million Mtons C/Quad	s C/Quad					
Non-Methane	2.78	2.78 Ib/million cub		0.05 lb/ton	_		0.34 lb/thousand gallons	gallons					
Methane	3.02	lb/million cub	_	0.06 lb/ton	_	0.216	0.216 lb/thousand gallons	gallons					
Particulate	14	lb/million cub		17 lb/ton	_	.,	2 lb/thousand gailons	gaflons					
Energy ValueQuantity		Units	Source	Ta	Transformed								
N.G.	1,032	1,032 Btu/cubic foo(1)	£		1,032	1,032 Btu/cubic foot	*						
Coal	22.25	million btu/to (1)	Ξ		22.25	22.25 million btu/ton	<u>_</u>						

iio	5.83	5.83 million btu/ba(1)	0.14 million btu/gallon	llon
Emission Fach.G.		Coal		
NOx	0.1357	0.6157	0.1442	
SOx	0.0006	2.5618	1.0354	
PM-10	0.0133	0.5573	0.0072	
00	0.0339	0.2247	0.0361	
C02	116.89	206.64	161.16	
Non-Methane	0.0027	0.0022	0.0025	
Methane	0.0029	0.0027	0.0016	
Particulate	0.0133	0.7640	0.0144	

Emissions in lb/bu

8.40E-04 lb/bu	3.27E-03 lb/bu	3.29E-04 lb/bu	2.47E-04 lb/bu	0.6238 fb/bu	1.07E-05 lb/bu	9.68E-06 lb/bu	4 50F-04 lb/bu
NOx	SOx	PM-10	00	C02	Non-Methane	Methane	Particulate

Notes; Emissions factors used for natural gas are for uncontrolled small industrial boilers. Emission factors for oil are for uncontrolled distillate oil fired commercial boilers. Emission factors for coal are for uncontrolled spreader stokers and assumes 1.5% sulfur content. The PM-10 value for coal is from AP-42 table 1.1-8 and differs slightly from the value in AP-42 table 1.1-3.

Table 32 Material resource Requirements for Fertilizer and Herbicide Manufacture

The Fertilizer Institute. 1982. The Fertilizer Handbook

3

 ϵ

Report prepared by the Department of Agricultural Economics and Rural Sociology, The University of Tennessee, Knoxville, for Biofuels Feedstock Development Program Bhat, Mahadev G., Burton C. English, Anthony Turhollow, and Herzron Nyangito. 1993. Energy Use in Synthetic Agricultural Inputs: Revisited, Environmental Sciences Division, Oak Ridge National Laboratory, ORNL/Sub/90-99732/2.

U.S. Department of the Interior, Bureau of Mines. 1994. Mineral Commodity Summaries: 1994

Nitrogen

9

Nitrogenous fertilizers are primarily manufactured from ammonia, and for corn the predominant form is simply anhydrous ammonia. The most common manufacturing method for ammonia uses natural gas as a feedstock. The use of this natural gas has been accounted for in the energy consumption estimates (the nitrogen in the ammonia comes from the air).

Nitrogen solutions are the next most common N fertilizer type used in corn production. Nitrogen solutions are produced from urea and ammonium nitrate. Ammonium nitrate is again manufactured from ammonia, for which the feedstock energy use is captured in the natural gas energy consumption

estimates.

Urea is produced from ammonia and carbon dioxide. Since carbon dioxide is a byproduct of steam reforming of methane (to produce ammonia) and since carbon dioxide is not typically considered a "resource", the material resource requirements for N fertilizers are entirely captured by the use of natural gas as a feedstock.

Phosphatic Fertilizers

Phosphorous is produced from calcium phosphate rock deposits found primarily in Florida and North Carolina. The production of 1 ton of P2O5 requires 3.2 tons of phosphate rock (2). On this basis the resource consumption for com production is calculated from Table 2, or

1.25 lb/bushel

Potassium

deep mines, where potassium is recovered as KCI mixed with other salts. The quantity of KCI used to produce a unit of K20 can be calculated from Potassium is mined from deep potassium ore beds or recovered from natural brines such as Searles Lake, CA. The predominant source are 0.37 lb/bushel the stoichiom

burned then reacted to form sulfur trioxide. The sulfur trioxide is then mixed with dilute sulfuric acid to form a concentrated solution of sulfuric acid. Sulfur is used both as a primary nutrient in corn production, and also in the manufacture of potassium fertilizers. In fertilizer production sulfur is tons of sulfuric acid (H2SO4). The sulfuric acid reacts with phosphate rock according to the simplified reactions: 3.06 tons Finally phosphate rock is treated with sulfuric acid to produce phosp

Ca3(PO4)2 + 3H2SO4 + 6H2O -> 2H3PO4 + 3CaSO4*H2O. The phosphorous is then burned or oxidized to phosphoric acid. According to information provided by Joyce Ober at the Bureau of Mines, one ton of DAP (the most common source of phosphates in lowa), requires 0.918 lb sulfur per pound of P205. about .431 to

0.01 lb/bu direct application

0.43 lb/bu from phosphoric acid manufacture

0.44 lb/bu total

Sulfur is produced in the U.S. primarily from recovered sulfur at petroleum refineries, natural gas processing plants, and coking plants, which account for 55% of domestic consumption in 1993 (3). About 21% of sulfur production is through Frasch process sulfur mining The remaining sulfur came from byproduct sulfuric acid, primary pyrites, hydrogen sulfide, and sulfur dioxide.

Emissions of PM-10 from Crushed Stone Processing Operations Table 33

U.S. EPA, AP-42, Table 11.19.2-2.

Units are lb/ton of stone

PM-10 Emission Category	egory			
Controlled	led	Uncontrolled Controlled/UnconControl Efficiency	trolled/UnconC	ontrol Efficiency
Screening	8.40E-04	0.015	5.60%	94.40%
Primary Crus		,		
Secondary C				
Tertiary Crus	5.90E-04	0.0024	24.58%	75.42%
Fines Crushi	2.00E-03	0.015	13.33%	86.67%
Fines Screen	2.10E-03	0.071	2.96%	97.04%
Conveyor Tra	4.80E-05	0.0014	3.43%	96.57%
Wet Drilling:	,	8.00E-05		
Truck Unload		1.60E-05		
Truck Loadin	,	0.0001		
Total (lb/ton o	5.58E-03	0.104996		
Total (lb/bu c	3.58E-06	6.73E-05		

Notes: Based on this data the PM-10 emissions from stone processing are negligible with comparison to PM-10 emissions from Ag. operations in corn production (Table 26). Thus this emission is not added to total PM-10 emissions.

Emissions from Phosphate Rock Processing Table 34

U.S. EPA, AP-42, Tables 11.21-2 and 11.21-3

Ξ 6

The Fertilizer Institute. 1982. The Fertilizer Handbook

Units of lb/ton of total phosphate rock feed

Filterable PM-10	8.	15	•
諥	0.34		
		٠	•
8	98		230
C02		•	69
			0.0069
Emission SouSO2	Dryer	Calciner	Calciner With

Assuming that output is roughly equivalent to feed quantity, emissions can be converted into lb/bu of corn using the relationship that 3.5 tons of phosphate rock are used to produce one ton of P205 (2).

	Filterable PM-10	3.29E-03	1.03E-02		1.36E-02
		2.33E-04	,		2.33E-04
	ပ္ပ				
		0.06		0.16	0.22
	C02				
Units of Ib/bu of com				4.73E-06	4.73E-06
Units	Emission SouSO2	Dryer	Calciner	Calciner With	Total

Table 35 Process Related Emissions from Ammonia Manufacture for Nitrogenous Fertilizers

U.S. EPA. 1995. AP-42, Fifth Edition, Table 8.1-1.

	Total Organic Compounds	7.2	1.04	1.2
	202		2,440	6.8
	ŏ		7	2.2
nia produced	NH3	0.0576		
b/ton of ammo	802	13.8	7	
All units are in lb/ton of ammonia produced	Emission SouCO	Desulferizatio	Carbon Dioxi	Condensate Steam Stripper

Since nitrogenous fertilizer use is given in terms of the nitrogen quantity, these emission factors can be converted into terms of labton of nitrogen. This is done using the ratio of the molecular wt. of ammonia to the molecular wt. of nitrogen. The converted emission factors are then multiplied by the total nitrogen use, in tons.

Molecular wt	14.01				
Molecular wt	1.01				
Molecular wt	17.03				
Ratio NH3:N	1.22				
All units a	ire in lb/ton of n	All units are in lb/ton of nitrogen produced			
Emission SolCO	03	SO2 NH3	O	C02	Total Organic Compounds
Desulferizatio	16.78	0.07			8.75
Carbon Dioxi	2.43		2.43	2,967	1.26
Condensate Steam Stripper	ipper		2.67	80	1.46

Finally emissions are converted to units of to of pollutant per bushel of corn produced using the nitrogen fertilizer use rate in Table 2.

	Total Organic Compounds	0.0045	0.0006	0.0007	0.0059
	202	•	1.5217	0.0042	1.5259
All units are in lb/bu of corn			0.0012	0.0014	0.0026
	NH3				
	202	3.59E-05			3.59E-05
		0.0086	0.0012		0.0099
areir				•	
All units	Emission SouCO	Desulferizatio	Carbon Dioxi	Condensate	Total

Notes: Since we know the amount of methane (and hence carbon) used as a feedstock for nitrogen fertilizer production we can calculate a bound on process related CO2 emissions.

21.78 million btu/ton ammonia 26.48 million btu/ton N Feedstock M

13,241 Btu/lb N

14.47 Million metric tons C/quad 31.90 Ib C/million btu 116.89 lb CO2/million btu

Carbon per u

1.55 lb CO2/lb N 3,095 lb CO2/ton N

This shows that the CO2 emission factors for process related emissions are based on the carbon value of the feedstock, and the assumption that virtually all carbon is emitted, not used for other purposes.

Process Emissions from Urea Manufacture Table 36

U.S. EPA. 1995. AP-42, Fifth Edition, Table 8.2-1.

Ξ 6

The Fertilizer Institute. 1982. The Fertilizer Handbook

Emission Factors (lb/ton urea)

Ammonia Controlled Uncontrolled 2.91 2.15 0.051 18.46 0.87 0.063 0.78 0.234 6.2 241 7.78 0.19 0.021 3.8 Type of OperUncontrolled Nonfluidized Bed Prilling Particulate Solution Formation and Agricultural G Fluidized Bed Prilling Agricultural G Concentratio Drum Granul Rotary Drum

Ammonia Controlled Uncontrolled Controlled 40.130 0.046 Emission Factors (lb/ton N) Type of OperUncontrolled Solution Formation and Particulate Concentratio

Source 46% (2)

Percentage N

6.326 4.674 0.111 1,891 1.696 0.509 0.435 0.137 13.478 523.913 16.913 0.413 8.261 Nonfluidized Bed Prilling Fluidized Bed Prilling Agricultural G Agricultural G Rotary Drum Drum Granul Bagging

Physical and Chemical Characteristics of Nitrogen Solution

(28% N in solution)

1.04 (unitless) 50.98% 49.02% Ammonium N Urea N: Amm Urea N

Page 34

Direct Urea N 0.10 lb/bu 41.62% percent Urea N Use R 0.13 lb/bu 58.38% percent Total N Use f 0.23 lb/bu 58.38% percent Emissions (lb/bu) Particulate Ammonia Type of OperUncontrolled Controlled Uncontrolled Controlled Solution Formation and Concentratio 5.24E-06 - 4.60E-03 - 4.60E-03 Norfluidized Bed Prilling 9.48E-04 1.57E-05 2.17E-04 - 5.4E-04 Agricultural G 1.55E-03 1.95E-04 - 5.36E-04 - 5.36E-04 Bagging 4.74E-05 - 2.47E-05 - 2.7E-05 - 7.27E-05 Average of P 1.25E-03 1.05E-04 - 7.27E-05 - 7.27E-05 Average of P 1.25E-03 1.05E-04 - 7.27E-05 - 7.27E-05 Average of P 1.25E-03 1.25E-03 - 7.27E-05 - 7.27E-05 Average of P 1.25E-03 1.25E-03 - 7.26E-04 - 7.27E-05							
0.10 lb/bu 0.13 lb/bu 0.23 lb/bu 0.24 lb/bu 0.24 lb/bu 0.24 lb/bu 0.24 lb/bu 0.24 lb/bu 0.24 lb/bu 0.24 lb/bu 0.24 lb/bu 0.24 lb/bu 0.24 lb/bu 0.25 lb/bu 0.23 lb/bu 0.24 lb/bu 0.25 lb/bu 0.23 lb/bu 0.2	percent	Controlled					
A 0.10 lb/ 0.13 lb/ 0.23 lb/ 0.23 lb/ 0.23 lb/ 0.23 lb/ 0.23 lb/ 0.23 lb/ 0.246-06 Bed Prilling 9.48E-04 1.55E-03 1.25E-03 # 1.25E-03 #	41.62% 58.38%	Ammonia Uncontrolled	4.60E-03	2.17E-04 7.26E-04	5.36E-04 1.27E-05	•	4.71E-04 4.80E-03
Mbu) Particulate Uncontrolled nation and 5.246 Bed Prilling 1.556 6.016 1.256 1.256 1.256 1.256	lb/bu bd/dl	Controlled	, !	1.5/E-05 1.95E-04	5.84E-05 4.99E-05	1	1.05E-04 #VALUE!
Direct Urea N Urea N Use R Total N Use f Total N Use f Emissions (lbbu) Particulate Type of OperUncontrolls Solution Formation and Concentratio Norfluidized Bed Prilling Agricultural G Fluidized Bed Prilling Agricultural G Fluidized Bed Prilling Agricultural G Fluidized Bed Prilling Agricultural G Agricultural G Agricultural G Agricultural G Agricultural G Agricultural G Total including solution f and prilling	0.10 0.13 0.23	g.		9.48E-04 1.55E-03	6.01E-02 1.94E-03	4.74E-05	1.25E-03 ormation, 1.25E-03
	Direct Urea N Urea N Use R Total N Use f	Emissions (Ib/bu) Particulate Type of OperUncontrolle	Solution Formation and Concentratio	Agricultural G Fluidized Bed Prilling Agricultural G	Drum Granul Rotary Drum	Bagging	Average of P Total including solution fe and prilling

Reference (1) also states that wet scrubbers are standard equipment for drum granulators. Based on this information it is assumed that particulate Notes: The only significant particulate emission source relative to other sources in corn production is uncontrolled emissions from drum granulation. By contrast controlled emissions are about 0.1% of uncontrolled emissions from this source. Furthermore, only a fraction of urea production is granular. More than 50% of urea is used in nitrogen solutions, in which case granulation is not required. emissions from urea manufacture are negligible.

Ammonia emissions are not negligible. The emission factors for ammonia in urea formation and concentration are much larger than ammonia emission factors in ammonia manufacture. The total emission factor used here is generated on the assumption that all urea passes through the concentration operation, that solid urea is produced through uncontrolled prilling operations, and the average factor for the two types of prilling operations is used. Assumptions about the granulation method have little effect on the emission factor since granulation emissions are outweighed by solution formation and concentration emissions.

<u>3</u>

Ammonium Nitrate is not itself an important fertilizer type in lowa, suggesting that its use in corn production is limited. Ammonium nitrate is a constituent of nitrogen solutions, however, which are the second most common form of nitrogen application in lowa. For this reason it is necessary to evaluate the significance of process related emissions from ammonium nitrate manufacture. These are limited to neutralizing and evaporation/concentration processes since it is not necessary to produced solid forms of ammonium nitrate for nitrogen solution manufacture.

	Notes		Ammonia emission factor given as range from 0.86 to 36.02. Nitric acid from 0.084 to 2	Ammonia emission factor given as range from 0.54 to 33.4.
	Nitric Acid	Controlled	18.44 1.042	
	nia 4	trolled (18.44	16.97
	Ammo	Uncontrolled Uncontrolled	0.217	
		Š	4.345	0.52
Emission Factors (lb/ton)	Particulate	Process Controlled		<i>></i>
Emission Fa		Process	Neutralizer	Evaporation

Source

Table 37 Process Emissions from Ammonium Nitrate Manufacture

U.S. EPA. 1995. AP-42, Fifth Edition, Table 8.3-2.

The Fertilizer Institute. 1982. The Fertilizer Handbook

Ammonium N 34% (2)

Emission Factor (Ib/ton N)
Process Controlled Uncontrolled Uncontrolled Controlled
Neutralizer 12.78 0.64 54.24 3.06
Evaporation 1.53 . 49.91

Urea N: Amm 1.04 (unitless)
Urea N 50.98%
Ammonium N 49.02%

Emission Rate (lb/bu)

 Particulate
 Ammonia
 Nitric Acid

 Process
 Controlled
 Uncontrolled Uncontrolled
 Controlled

 Neutralizer
 8.23E-04
 4.11E-05
 3.49E-03
 1.97E-04

 Evaporation/
 9.85E-05
 3.21E-03
 7.97E-04

 Total
 9.21E-04
 4.11E-05
 6.71E-03
 1.97E-04

Notes: Particulate emissions from ammonium nitrate manufacture are negligible relative to PM-10 emissions from tilling operations. Lacking data on the use of particulate controls, these emissions will not be included in total particulate or PM-10 emissions. Ammonia emissions are significant relative to emissions of ammonia from urea and ammonia manufacturing operations. Lacking additional data the sum of the mid-range values for uncontrolled ammonia emissions

Table 38 Process Emissions from Ammonium Phosphate Manufacture

U.S. EPA. 1995. AP-42, Fifth Edition, Table 8.5.3-1.

3

The Fertilizer Institute. 1982. The Fertilizer Handbook

Emission Factors (lb/ton)

 Process
 Particulate
 Ammonia
 Fluoride (as F)
 SO2

 Reactor/Amm
 1.52
 .
 0.05
 .

 Dryer/cooler
 1.5
 0.02
 0.04
 .

 Product sizin
 0.06
 0.08
 0.002
 .

 Total Plant
 0.68
 0.14
 0.04
 0.08

Fraction P2O 46% (2)

Emission Factors (lb/ton P2O5)

 Process
 Particulate
 Ammonia
 Fluoride
 SO2

 Reactor/Anm
 3.30
 0.11

 Dryer/cooler
 3.26
 0.04
 0.09

 Product sizin
 0.13
 0.17
 0.004

 Total Plant
 1.48
 0.30
 0.09
 0.774

Emission Rate (lb/bu)

Process Particulate Ammonia Fluoride SO2

1		,	3.41E-05
•		8.51E-07	1.70E-05
,	8.51E-06	3.41E-05	5.96E-05
6.47E-04	6.39E-04	2.55E-05	2.90E-04
Reactor/Amm	Dryer/cooler	Product sizin	Total Plant

Note. For particulate and ammonia the total emission factor is not the sum of the process emission factors, but is instead an aggregate value from a different source. The EPA quality rating for these values is also high, as opposed to the process level values, for which it is low. As such, emissions for corn production are taken from the total plant row.

Table 39 Process Emissions from Nitric Acid Manufacture (used in ammonium nitrate manufacture)

U.S. EPA, 1995. AP-42, Fifth Edition, Table 8.8-1.

The Fertilizer Institute, 1982. The Fertilizer Handbook

£ 8

Nitric acid is used in the manufacture of ammonium nitrate. Since these emissions are not included in the emissions from ammonium nitrate manufacture they are included here.

Emission Factors (lb/ton)

25	ო	0.4	8.0	6:0		1.9	2.1	2.2	10
Source NOx Weak Acid P	New Source Catalytic Reduction	Natural Gas	Hydrogen	N.G./Hydroge	Extended Absorption	Single-Stage	Dual-Stage P	Chilled Absor	High-Strengt

Ratio of HNO 0.79 (nitric acid to ammonium nitrate) NH3 + HNO3 -> NH4NO3

Emission Factors (lb/ton ammonium nitrate)

44.87	2.36	0.31	0.63	0.71		1.50	1.65	1.73	7.87
Source NOx Weak Acid P	New Source Catalytic Reduction	Natural Gas	Hydrogen	N.G./Hydroge	Extended Absorption	Single-Stage	Dual-Stage P	Chilled Absor	High-Strengt

Emission Factors (lb/ton N)

0.35

Fraction N in

128.21	6.75	0.90	2.02	4.27	4.72	4.95	22.49	1.04 (unitless)	20.98%	49.02%
Source NOx Weak Acid P	New Source Catalytic Reduction	Natural Gas Hydrogen	N.G./Hydroge Extended Absorption	Single-Stage	Dual-Stage P	Chilled Absor	High-Strengt	Urea N: Amm	Urea N	Ammonium N

Emission (lb/bu)

	8.26E-03	4.35E-04			1.16E-04	1.30E-04		2.75E-04	3.04E-04	3.19E-04	1.45E-03	9.84E-03
Source	Weak Acid P	New Source	Catalytic Reduction	Natural Gas	Hydrogen	N.G./Hydroge	Extended Absorption	Single-Stage	Dual-Stage P	Chilled Absor	High-Strengt	Total Excludi

Notes: Uncontrolled emissions rates from weak acid plant tailgas are the only emissions that are significant relative to fuel related emissions from the corn production cycle. The uncon 19.38% of fuel related NOx emissions. While this would be a significant contribution many techniques are employed to reduce tail gas emissions including extended absorption and catalytic reduction. Also, New Source Performance Standards for nitrogen emissions (expressed as N2O) for new and modified plants are 3 lb/lon of nitric acid. At this emission rate the NOx contributions from nitric acid manufac 1.02% of fuel related NOx emissions. Lacking information to accurately estimate actual controlled emissions, they will be neglected.

U.S. EPA, 1995. AP-42, Fifth Edition, Table 8.9-1.

E 8

The Fertilizer Institute, 1982. The Fertilizer Handbook

Phosphoric acid used in fertilizer manufacture is produced primarily using a wet process method. The factors given below are for wet process manufacture.

Emission Factors (lb/ton P205)

	Fluoride		
Source	Controlled		Uncontrolled
Reactor		3.80E-03	0.38
Evaporator	_	4.40E-05	0.0044
Belt Filter		6.40E-04	0.064
Belt Filter Va	Va	1.50E-04	0.015
Gypsum Sett-	ett-		

Table 40 Process Emissions from the Manufacture of Phosphoric Acid

Controlled Emission Rate (Ib/bu) Fluorine Reactor Source

Uncontrolled 8.62E-07 1.25E-05 7.44E-05 2.94E-06 9.08E-05 8.62E-09 2.94E-08 9.08E-07 7.44E-07 1.25E-07 Gypsum Sett-Belt Filter Va Evaporator Belt Filter

Notes: Uncontrolled fluorine emissions from phosphoric acid manufacture are similar to controlled emissions from ammonium phosphate manufacture. For phosphoric acid, the control efficiency used is 99%, similar to the value given for the use of baghouses in GTSP manufacture. On this basis controlled emissions from phosphoric acid manufacture are only about 1% of controlled emissions from phosphoric acid manufacture are only about 1% of controlled emissions from phosphoric acid manufacture. For the sake of consistency, and lack further data on the relative penetration of controls in this industry, the controlled emission rate is used.

Process Emissions from Sulfuric Acid Manufacture (used in phosphoric acid manufacture) Table 41

U.S. EPA. 1995. AP-42, Fifth Edition, Table 8.8-1.

The Fertilizer Institute, 1982. The Fertilizer Handbook

Sulfuric acid is used in the manufacture of phosphoric acid which is used in the manufacture of phosphate fertilizers. Emission consist primarily of sulfur dioxide and acid mist. Sulfur dioxide emissions are primarily a function of the conversion efficiency from SO2 to SO3 in the plant.

Emission Factors (lb/ton sulfuric acid)

Conversion ESO2 Emissions

2.87 Conversion factor for sulfuric acid to DAP provided by Joyce Ober, sulfur specialist, Bureau of Mines Source Sulfuric Acid

Emission Factor (lb/ton P2O5)

Conversion ESO2 Emissions

235.34 200.9 157.85 114.8 74.62 40.18 20.09 94 95 97 98 99

Page 39

Emission Rate (lb/bu)

ions	0.0540	0.0461	0.0393	0.0309	0.0225	0.0146	0.0079	0.0039	0.0022	00000
Conversion ESO2 Emissions	93	94	92	96	26	98	66	99.5	99.7	9

Notes: Sulfur dioxide emissions are highly correlated with conversion efficiency. Typical conversion efficiencies are given in AP-42 as 95 to 98%. Sufur emissions can be controlled using standard sulfur capture technologies. New Source Performance Standards are also set quite low, at 4 lb/ton of product. Assuming that new plants comply with NSPS limits, but that old plants exist with higher emissions, the emission rate used here is at the upper end of conversion efficiency estimates.

Acid Mist Emission Factors (lb/ton H2SO4) (Where values are given as a range, the midrange is used)

d Controlled	0.574	- 0.128	1.7	3.3 2.06	23 034
Raw Materia Uncontrolled	Recovered S	Elemental Su	Bright Virgin	Dark Virgin S	Spent Acid

Acid Mist Emission Factors (lb/ton P2O5)

Controlled	1.64738 -	0.36736	4.879	9.471 5.9122	6.601 0.9758
Raw Materia Uncontrolled	Recovered S	Elemental Su -	Bright Virgin	Dark Virgin S	Spent Acid

Acid Mist Emissions (lb/bu)

Controlled	•	7.19E-05		1.16E-03	1.91E-04	6.15E-04
ontrolled	3.23E-04		9.56E-04	1.85E-03	1.29E-03	1,41E-03
Raw Materia Uncontrolled	Recovered S	Elemental Su	Bright Virgin	Dark Virgin S	Spent Acid	Average

1.01E-03

Average (Co

Notes: According to AP-42 about 81% of sulfuric acid production is from elemental sulfur burning. Average emission factors are calculated above using the elemental, bright virgin, and dark virgin sulfur factors.

The uncontrolled and controlled factors are then averaged.

Carbon Dioxi

8.1 lb/ton sulfuric acid 23.247 lb/ton P205 0.0046 lb/bu

Notes: Carbon dioxide emissions are negligible relative to other sources and are thus neglected.

Table 42 Air Emissions from Pesticide Use

U.S. EPA. 1995. AP-42, Fifth Edition, Section 9.2.2.

Personal Communication with David Pike, Agriculture Extensionist, University of Illinois, Department of Agronomy, September 26, 1995.

Personal Communication with Van Johnson, Pesticide Specialist, USDA NASS, September 28, 1995.

€ €

(5)

6

Personal Communication with Bob Hartzler, Iowa Ag. Extension, University of Iowa, September 22, 1995.

United States Department of Agriculture, Economic Research Service. 1994. Agricultural Resource and Environmental Indicators, USDAERS, Ag. nandbook 705, Washington, D.C.

Personal Communication with Tom Lapp, Midwest Research Institute, September 29, 1995.

Pesticide Types Used on Illinois Corn (2)

9

Product formulation data was provided by Van Johnson of the USDA, NASS.

	prand	Formulation TypeFormulation Stlachlor	utation Salachlor	Atrazine		Fraction Prin Fraction Inert Ingredient		ction of ToN	ormalized FrP	est. use/bu co	a.i. use/bu co	Atrazine/bu c	Fraction of ToNormalized FrPest. use/bu coa.i. use/bu coAtrazine/bu cTotal VOC's (lb/bu corn)
Herbicides Alachlor	Bullet	fiquid	4	2.5	1.5	29.99%	52.02%	30%	35.29%	4.72E-03	1.42E-03	8.49E-04	4.91E-04
	Lasso (4EC) fiquid) fiquid	4	4	0	47.98%	52.02%	20%	23.53%	1.97E-03	9.43E-04	0.00E+00	2.05E-04
	Lariat (4F) liquid	liquid	4	2.5	1.5	29.99%	52.02%	10%	11.76%	1.57E-03	4.72E-04	2.83E-04	1.64E-04
	Lasso Micro	Lasso Micro-micro-encapsulat	4	4	0	47.98%	52.02%	25%	29.41%	2.46E-03	1.18E-03	0.00E+00	2.56E-04
								85%		1.07E-02	4.01E-03	1.13E-03	1.12E-03
			Metalac	lachlor Atrazine	zine								
Metalachlor	Dual 4E	liquid	4	4	0	47.98%	52.02%	20%	%00.09	5.11E-03	2.45E-03	0.00E+00	5.32E-04
	Bicep 6L	liquid	9	3.33	2.67	39.94%	28.03%	35%	35.00%	4.30E-03	1.72E-03	1.38E-03	2.41E-04
	Dual 25G	granular	0.25	25	0	25.00%	75.00%	15%	15.00%	2.94E-03	7.36E-04	0.00E+00	5.52E-04
								100%		1.24E-02	4.91E-03	1.38E-03	1.33E-03
			Atrazine	Other	L								
Atrazine	Bicep 6L	liquid	9	2.67	3.33	32.03%	28.03%	25%	25.00%	4.30E-03	1.38E-03	1.38E-03	3.09E-04
	Atrazine 4L	liquid	4	4	0	47.98%	52.02%	52%	52.00%	6.76E-03	3.25E-03		7.04E-04
	Bullet	liquid	4	1.5	2.5	17.99%	52.02%	15%	15.00%	4.72E-03	8.49E-04	8.49E-04	6.04E-04
	Marksman	liquid	4	2.1	17	25.19%	52.02%	8%	8.00%	1.98E-03	4.99E-04		2.97E-04
								100%		1.78E-02	5.97E-03		
									¥	Actual Atrazine	6.24E-03		
								ď	Percent Accou	95.67%	95.67% Atrazine from	1 6.80E-04	1.91E-03
											Total Atrazin	2.91E-03	
										•	Total Atrazin	6.24E-03	
			Cyanazine	ne Atrazine	ine								
Cyanazine	Extrazine 4L liquid	- liquid	4	ო	-	35.98%	52.02%	40%	42.11%	3.78E-03	1.36E-03	4.53E-04	3.93E-04
	Extrazine 90	Extrazine 90 Bry flowable		0.675	0.225	67.50%	10.00%	20%	21.05%	1.01E-03	6.80E-04	2.27E-04	2.82E-05
	Bladex 80W	Bladex 80WPwettable powder	80	9.0	0	80.00%	20.00%	8%	8.42%	3.40E-04	2.72E-04	0.00E+00	1.70E-05
	Bladex 4L liquid	liquid	4	4	0	47.98%	52.02%	12%	12.63%	8.50E-04	4.08E-04	0.00E+00	8.85E-05
	Bladex 90DF	Bladex 90DF dry flowable	06	6.0	0	%00.06	10.00%	15%	15.79%	5.67E-04	5.10E-04	0.00E+00	1.59E-05
								%56		6.54E-03	3.23E-03	6.80E-04	5.43E-04
Insecticides Chlorpyrifos	Lorsban 15Ggranular	3 granular	15			0.15	85.00%	%56	100.00%	3.27E-02	4.91E-03	0	6.95E-03
Fonofos	Dyfonate II 2 granular	2 granular	20			0.2	80.00%	85%	100.00%	2.45E-02	4.91E-03	0	4.91E-03
Turbufoe	Country (45 Owner, Jac	Organi dos					2000	,,,,,,	,000 00	00 1000	1000	•	

Total Pesticid 20.00% 80.00% 0.2 2 Counter 20C ?

4.91E-03 9.81E-04

Total VOC's 2.33E-02 lb/bu active ingredient. Thus if you treat a 4L pesticide as having 4 lb/gallon of the primary a.i., you will end up double counting the inert portion since the pesticide is actually delivering two forms of a.i. which together sum to 4L.
To account for this I added columns in which I calculate the quantity of pesticide used to deliver the appropriate amount of the primary a.i., based on the fraction of each brand used to meet the need for that a.i. These fractions summed up the atrazine from combination forms in the atrazine section, instead of calculating it from the fraction of atrazine applied in various forms. I then modified the fractions for atrazine to try and balance the total Notes: The above table is quite confusing, and I appologize for the convoluted estimation methodology. The complexity is caused by the fact that pesticides are often sold in formulations containing more than one were normalized to 100% to simulate complete coverage by the most important brands cited by Dave Pike. I then estimate the amount of atrazine, the secondary chemical, that comes along for the ride. Finally, I 1.36E-01 95.67% of actual use. I then delete the contribution of dual form 17.17% percent of total pesticide use (by gross pesticide wt.) atrazine formulations from the contribution to the VOC emissions, w atrazine use. This was done by raising the estimated fraction of atra

summed. I have included VOC emissions from pesticides in the category non-methane organic compounds, which is a broader class of organics. For a good description of the classification of organics see AP 42 (1995) pages 6 and 7. VOC emissions are estimated using the data below on the fraction of inert ingredient that are VOC's. These are applied to the total inert ingredient quantities calculated in the above table. Total VOC emissions are then

I should also note that I made some assumptions about the brands used to supply granular pesticides. Dave Pike did not give brand specific data for these, only the formulation type and strength. In most cases there is only one brand listed of each strength in the data provided by Van Johnson. Thus I used that particular brand data for the pesticide type and strength of interest.

Air Emissions Active IngredFrom Table 2	19.2	Source: AP-42 Table 9.2.2-1 Source: AP-42 Table 9.2.2-4	Source: AP-42 Table 9	2.2.4	Surface incorporation fraction estimated based on conversations with Bob Hartzler and Dave Pike.	raction estir o Hartzler a	mated based on ind Dave Pike.	
			Emission Fac Emission Factor	ו Factor	Surface Application	_	Fotal Emissions	Percent of a.i. Volatilized
Pesticide Use Rate	Units	Vapor Pressure Units	Surface ApplicSoil Incorpor Units	rpor Units	Fraction	4	Active Ingredi Units	
Afachlor	4.01E-03 lb/bu com		0 700	42 lb/ton		40%	1.01E-03 lb/bu	25.13%
Metholachlor	4.91E-03 lb/bu com	•	0 200	42 lb/ton		70%	1.23E-03 lb/bu	25.13%
Atrazine	6.24E-03 lb/bu com	- •	700	5.4 lb/ton		82%	1.86E-03 lb/bu	29.79%
Cvanazine	3.23E-03 lb/bu corn		700	5.4 lb/ton		82%	9.62E-04 lb/bu	29.79%
Chlorpyrifos	7.34E-04 lb/bu com	•	200	42 lb/ton		100%	2.57E-04 lb/bu	35.00%
Fonofos	2.57E-04 lb/bu corn	•••	1160	104 lb/ton		100%	1.49E-04 lb/bu	58.00%
Terbufos	6.81E-04 lb/bu corn		1160	104 lb/ton		100%	3.95E-04 lb/bu	58.00%

뎞

Notes: Estimation method described in AP 42. There is some question of what the application method is for insecticides. They are applied using a planter attachment, and are in granular form. Rod Williamson of the lowa Corn Growers Association suggests that the granules would thus end up at about the depth of the corn seed, or 1-2 inches. Discussions with Tom Lapp, who developed the section for EPA, suggest that this is not what is referred to as soil incorporated. Instead this is meant to apply to pesticides that are actually injected into the soil. This would more commonly occur with liquid or gaseous forms of pesticides. Accordingly the insecticides are treated as 100% surface application.

Average VOC Content of Pesticide Inert Ingredient Portion (1)

20%	25%	23%	28%	/630
Liquid	Wettable Pow	Microencaps	Dry Flowable	C. com

e (Ali and McBride 1994), This energy
Shapouri uses an energy use estimate
980). The exact value of 180,000 builb does not appear
omparison of the 1980 estimates reveals
put hauling, suggesting at least some double
omparitive values in Green (1987). Both references
formation the more recent estimate is used. This result
y use for fertilizer manufacture is difficult to
Lorenz appear to rely on estimates
has been used in conjunction with data about
diffier little. The Lorenz values are significantly
ng, and application, which would account for much of the difference.
focussed on international uses of fertilizers. Since most U.S.
timate of eneny use for irrigation (18,000 Burbu), derived
account for much of the difference in over energy

Page 44

Emissions by Sector and Type (Ib/bu)

Fraction of Emissions by S

		ina	AFG.	×ON	SOx	PM-10	00	C02	Non-Methane	Methane	Particulate	Hydrocarbon	Aldehydes	Ammonia	Nitric Acid	Fluoride	Acid Mist	
		Sum Excluding	Nitric Acid MFG			1-10		22	2.33E-02 Non-Methane VOC's	thane	rticulate	drocarbons	lehydes	monia	ric Acid	oride	d Mist	
	Total	Emissions		0.0524 NOx	2.03E-02 SOx	3.62E-01 PM-10	1.53E-01 CO	6.93E+00 CO2	2.33E-02 No	1.98E-05 Methane	4.48E-03 Particulate	1.00E-02 Hydrocarbons	4.70E-04 Aldehydes	1.42E-02 Ammonia	1.97E-04 Nitric Acid	1.79E-05 Fluoride	1.01E-03 Acid Mist	
	Pesticide	Use	(Table 42)				,		2.33E-02	•	•	,	•	,				
	Nitric Acid	Manufacture	(Table 39)	9.84E-03	,	,		ı	•		•	,				,		
	Ammonium NAmmonium PPhosphoric ASulfuric Acid Nitric Acid Pesticide	Manufacture	(Table 41)		1.46E-02	•	•	1	•	•	•	,					1.01E-03	
	Phosphoric A	Manufacture	(Table 40	,	,	,		,	,	,	•					9.08E-07		
	Ammonium P	Manufacture	(Table 38)	,	3.41E-05	•	•	,	,	,	2.90E-04	•	,	5.96E-05	,	1.70E-05		
	Ammonium A	Manufacture	(Table 37)	,	,	,	•	,	•	,	•	,	,	6.71E-03	1.97E-04	,		
		Manufacture Manufacture Manufacture Manufacture Manufacture Manufacture Use	(Table 36) (Table 37) (Table 38) (Table 40 (Table 41) (Table 39) (Table 42)		,	1	•	•	1			,	,	0.00480008		,	1	
	Unallocated Urea	Emissions	(Table 31)		0.0033	0.0003	0.0002	0.6238	0.0000	0.0000	0.0005	,	,					
	Corn	Drying	(Table 30)		2.20E-06	4.28E-05	8.09E-05	8.76E-01	2.56E-05	7.04E-06	1.24E-06				•	•		
			(Table 29)	3.65E-02	2.31E-03	,	1.41E-01	2.11E+00	,		3.74E-03	9.57E-03	4.70E-04	•	,	,		
	Phosphate R Farm Fuel	Processing Use	(Table 34)	,	4.73E-06	1.36E-02	2.33E-04	2.17E-01			•			,	•			
	Limestone	Production			,	,	0.00138	0.29174	٠		•	0.00043			1			
	Process Emi	Ammonia Ma	(Table 35)		3.59E-05		0.0099	1.5259	0	,		ı		0.0026	•	•		
	Nitrogenous Process Emistimestone	Emission Cat Tilling Opera Fuel ConsumAmmonia MaProduction	(Table 26) (Table 27) (Table 35) (Table 24)	3.28E-03	6.37E-06	1.46E-04	4.25E-04	1.28	1.50E-05	3.07E-06	,	•	•	1				
		Tilling Opera	(Table 26)	•	,	0.348	•	,	'		•	1	•		1			
Ì		Emission Cat		Ň	SOx	PM-10	8	C02	Non-Methane	Methane	Particulate	Hydrocarbon	Aldehydes	Ammonia	Nitric Acid	Fluoride	Acid Mist	

h only the

Page 67

ighting times emission factor

otal Hydro. CC	_	×ON	Fraction	Total Hydro. CO	Ö	NOX	Fraction	Total Hydro. CO		Ň
0	_			0	0	0		0	0	0
0.3944	1.7952			0.0408	0.1632	0.1224		0.34	1.1288	1.5096
0.3596	1.6936			0.0464	0.1392	0.1044		0.3016	1.0556	1.334
0.3168	1.5444			0.0396	0.1287	0.099		0.2673	0.9801	1.188
0.289	1.402			0.034	0.1105	0.085		0.238	0.8925	1.037
0.2592	1.2744	4 0.3888		0.036	0.1008	0.072		0.2088	0.7992	0.0
0.2294	1.140E			0.031	0.0868	0.0682		0.186	0.7192	0.7874
0.2014	1.012			0.0265	0.0742	0.0583		0.1643	0.6413	0.6837
0.1755	0.886			0.0225	0.0675	0.0495		0.144	0.5625	0.5895
0.1824	1.5808			0.0228	0.057	0.0418		0.1254	0.5016	0.6802
0.1716	1.656			0.0198	0.0495	0.0396		0.132	0.4521	0.6006
0.3584	4.4296			0.0168	0.0448	0.0448		0.1568	0.4144	0.5292
0.312	3.8496			0.0144	0.0384	0.0384		0.1368	0.3624	0.4536
0.262	3.304			0.012	0.032	0.034		0.116	0.308	0.378
0.2376	3.0204			0.0126	0.0306	0.0306		0.1206	0.3042	0.369
0.207	2.737			0.0105	0.0255	0.0285		0.102	0.258	0.3075
0.1807	2.4024			0.0182	0.0312	0.0247		0.0949	0.2626	0.3224
0.2013	2.3221			0.0154	0.0275	0.022		0.0814	0.2255	0.2728
0.1782	2.1717			0.0135	0.0225	0.018		0.0675	0.1863	0.2232
0.8955	10.9485			0.0675	0.1125	0.09		0.3375	0.9405	1.116
5.412	49.1729			0.5003	1.3424	1.0712		3,3209	10.9948	13.2817

4.91E-04

10.40%

Total Emissions		100% NOx	100% SOx	100% PM-10	100% CO	100% CO2	100% Non-Methane VOC's	100% Methane	100% Particulate	100% Hydrocarbons	100% Aldehydes	100% Ammonia	100% Nitric Acid	100% Fluoride	100% Acid Mist
icide	(Table 42)	,	,			,	99.78%		,			,		,	,
Nitric Acid Manufacture	(Table 39)	19%		,	1	•	•	,			•			•	,
Unallocated Urea Ammonium Nammonium PPhosphoric ASulfuric Acid Nitric Acid Pesticide Emissions Manufacture Manufacture Manufacture Manufacture Use	(Table 31) (Table 36) (Table 37) (Table 38) (Table 40 (Table 41) (Table 39) (Table 42)	•	72%	,	,	•	,		•	,	•				100%
Phosphoric A Manufacture	(Table 40		,	,			•		•					2%	٠
Ammonium F Manufacture	(Table 38)		,	•	٠	,		,	%9	,	,	ı	•	85%	,
Ammonium N Manufacture	(Table 37)	,		ı	,					,	,	47%	100%		
Urea Manufacture	(Table 36)			,				,				34%	,	,	,
Unallocated Urea Emissions Manu	(Table 31)	2%	16%	%0	%0	%6	%0	49%	10%	,	•	•	•	•	,
Corn Drying	6	1%	%0	%0	%0	13%	%0	36%	%0	,			,	•	,
	(Table 29)	86%	11%		95%	30%			83%	%96	100%	•	1	ı	•
Phosphate R Processing		٠	%0	4%	%0	3%		,	,		,	1	1	•	,
Limestone Production	(Table 24)	4%		,	1%	4%	,	,		4%	•		1	•	•
Process Emis	Table 35)	,	%0	•	%9	22%	%0		•	•	•	18%	•	,	
Nitrogenous Process Emist imestone Phosphate R Farm Fuel illing Opera Fuel ConsumAmmonia MaProduction Processing Use	(Table 26) (Table 27) (Table 35) (Table 24) (Table 34)	8%	%0	%0	%0	18%	%0	16%		,	,	•	,	•	,
Tilling Opera	(Table 26)	١		%96		•			•					,	

ector

Sheet Title:

Sheet Description:

Corn Transportation and Storage Last Modified

10/03/95

This sheet includes the life-cycle inventory components for the transport of com from the producer to a refining facility, including intermediate storage and processing common with com. Contrary to some literature assumptions about the primary mode of transport, because of the large volumes of com consumed at typical facilities, the primary mode is rail. Com is also most commonly shipped to a grain elevator for storage before shipping to the mill. At the grain elevator consuming operations are carried out. The infract of these operations is included here.

Blanchard, Paul H. 1992. Technology of Corn Wet Milling and Associated Processes,

References/Citations:

Industrial Chemical Library, vol. 4, Elsevier Press, New York.

- 2 Baumel, C. Philip, Charles R. Hurburgh, and Tenpao Lee. 1985. Estimates of Total Fuel Consumption in Transporting Grain from lowa to Major Grain Importing Countries by Alternative Modes and Routes: Special Report 90, lowa Agricultural and Home Economics Experiment Station, lowa University of Science and Technology, Ames, lowa.
- Baumel, C. Philip, Stephen Baumhover, Michael A. Lipsman, and Marry J. McVey. 1991. Alternative Investments in the Rural Branch Railroad and County Road Systems, Midwest Transportation Center, Iowa State University, Ames, Iowa.
- 4 Chambers, R.S., et al. 1979. Gasohol: Does It or Doesn't It Produce Positive Net Energy, Science, vol. 206, November 1979, pp. 789-795.
- 5 Davis, Stacy C. 1994. Transportation Energy Data Book: Edition 14, Oak Ridge National Laboratory, ORNL-6798.
- 6 DeLuchi, M. 1993, Emissions of Greenhouse Gases from the Use of Transportation Fuels and Electricity, Argonne National Laboratory, ANL/ESD/TM-22, Vol. 2.
- 7 Giampietro, M., and David Pimentel. 1990. Alcohol and Biogass Production from Biomass, Critical Reviews in Plant Sciences, Vol. 9, No. 3, pp. 213-233.
- 8 Hill, L.D., J.P. Brophy, S. Zhang, and W. Florkowski. 1991. Farmer Attitudes Towards Technological Changes Affecting Grain Handling and Quality, Bulletin 805, University of Illinois at Urbana-Champaign, College of Agriculture, Agricultural Experiment Station.
- 9 Iowa Agricultural Statistics. 1991. Iowa Crop Report, press release of March 5, 1991, Iowa Agricultural Statistics, Des Moines, Iowa.
- 10 Iowa Department of Agriculture and Land Stewardship. 1991. Grain Marketing: Iowa, Iowa Department of Agriculture.
- 11 Lindeburg, M.R. 1988. Engineering Unit Conversions, Professional Publications Inc., Belmont, CA
- Mariand, G., and A. Turhollow. 1990. Carbon Dioxide Emissions from Production and Combustion of Fuel Ethanol from Com, Oak Ridge National Laboratory, ORNLTM-11180.
- 13 Parisi, Frederico. 1983. Energy Balances or Ethanol as a Fuel, Advances in Biochemical Engineering/Biotechnology, 28:42--68 (1983).
- 14 Pimentel, David (ed.). 1980. Handbook of Energy Utilization in Agriculture, CRC Press, Boca Raton, FL.
- Pimentel, David et al. 1988. Food Versus Biomass Fuel: Socioeconomic and Environmental impacts in the United States, Brazil, India, and Kenya, Advances in Food Research, Vol. 32, pp. 185-238, 1988.
- 16 United States Department of Agriculture, Office of Pesticide Research. 1987. Biologic and Economic Assessment of Stored Com, Wheat, and Peanut Furnigants in The Biologic and Economic Assessment of Registered Furnigants, USDA Office of Pesticide Research, Washington, D.C.
- United States Department of Agriculture, National Agricultural Statistics Service, Crop Production: 1994 Summary, Cr Pr 2-1(95), January 1995.
- 18 United States Department of Agriculture, 1994 (revised 1995). Summary Report: 1992 National Resources Inventory, USDA Natural Resources Conservation Service and the lowa State University Statistical Information.
- 19 United States Department of Energy, Energy Information Administration, 1994, Annual Energy Review, 1993, DOE/EIA-0384(93).
- 20 United States Department of Energy, Energy Information Administration. 1994. Emissions of Greenhouse Gases in the United States: 1987-1992, DOE/EIA-0573
- 21 United States Environmental Protection Agency. 1985. Compilation of Air Pollutant Emission Factors, AP-42 Fourth Edition.
- 22 United States Environmental Protection Agency. 1995. Compilation of Air Pollutant Emission Factors, AP-42 Fifth Edition.
- 23 United States Environmental Protection Agency. 1991. Nonroad Engine and Vehicle Emission Study-Appendixes (sp): Draft, 21A-2001 (NTIS #PB92-104462).

- 24 Unnasch, Stefan. 1990. Greenhouse Gas Emissions from Ethanol Production and Vehicle Use, Acurex Corp. for the National Corn Growers Association.
- 25 Weast, R.C., and M.J. Astle (ed). 1981. Handbook of Chemistry and Physics, 62nd Edition, CRC Press, Boca Raton, Florida.
- 26 Weinblatt, Herbert, T.S. Reddy, and Anthonly Turhollow. 1982. Energy and Precious Fuels Requirements of Fuel Alcohol Production, Vol. II, Appendices A and B. Ethanol from Grain, DOENASA0292-1

List of Tables	Table Number	Table Name 1 Energy Use in Transporation: Estimates as cited in DeLu 2 Energy Use in Transporation Estimates 3 lowa Com Transporation Statistics 4 Energy Intensity of Com Transportation Modes 5 Derived Total Transportation Requirements for Com 6 Emissions from Transport 7 Emissions from Tractor Transport 8 Emissions from Tractor Transport 9 Furnigant and Grain Protectant Use in Grain Storage 10 Particulate Emissions from Uncontrolled Grain Elevators	nsporation: Estin nsporation: Estin ortation Statistics Com Transport sportation Requi ain Transport at Transportatic actor Transportatic ctor Transportatic nortation Use ns from Uncontin	Table Name Energy Use in Transporation: Estimates as cited in DeLuchi (1993) Energy Use in Transporation Estimates Iowa Com Transporation Statistics Iowa Com Transporation Statistics Derived Total Transporation Requirements for Com Emissions from Train Transporation Emissions from Train Transporation Emissions from Train Transporation Funitions from Tractor Transporation Funitions from Cacin Protectant Use in Grain Storage Particulate Emissions from Uncontroiled Grain Elevators	(56)			
Summary Output:	: Allocated LCI components		Units	its Quantity	ō	Notes:		
	Air							Table 6
		Particulates	lb/bu	2.41F-01	-01	3. Dominated by orain handling emission factor quality against	estelliscipsed	Train Transport
		Š	lb/bu	4.33E-04	2		SOx	3.46F-04
		8	lb/bu	2.37E-03	-03		00	7.89E-04
		C02	ng/ql	4.70E-01			005	1.36E-01
		NOx NOx	ng/gl	1.03E-03 4.49F-03	603	3 Based on old emission factor data.	Hydrocarbons	5.70E-04
		Aldehydes	tb/bu	6.70E-05	.05		Aldehydes	3.34E-05
		Organic Acids	lb/bu	4.25E-05	-05	From train transport. Old data but quality rating good.	Organic Acids	4.25E-05
	Water		None					
	Solid Wastes		None					
	Resource Use	Diesel	Btu/bu	2,5	2,920	3 Detailed estimate		
1								
Conversion Factors		:						
	Callone Ethanol	Unit to	Multiplier	Name	Source:	Notes:		
	Gallon Ethanol	2 2		6 58 th cellon		25 Consider Constitute 1900		
	Gallon Ethanol	a		0.4 bu gallon		6 Depending on plant and process may range from 385 to 40.		
	Btu	Joules		1,055 Joules_btu		11		
	kg	Q		2.20 lb_kg		=		
	ng .	a .		nq qi 99				
	Kcal	ptn		3.968 btu_kcal		=		
	sq. ranes	acres		2 000 th shortes		= :		
	Barrels	gallons		42 nallons barrel		_ 0		
	Gallon Gasoline	ptn		125.071 btu gallongas				
	Gallon Diesel	plu		138,690 btu_gallondies		2 62		
•	Cubic Feet N.G.	ptn		1,031 btu_cubicft		19		
Molecular Wis.	Element/Compound	Name	W.	Defined Name				
	υ	Carbon		12.01				
	0	Oxygen		16.00				
	CO2	Carbon Dioxide		44.01				
	Matto COZ.C			3.66 carbon_ratio				
Calculations	Table 1	Fnerov Use in Trans	Invration: Estima	Enerov Use in Transporation: Estimates as cited in Del uchi (1993)				
	- 250	Citally can in the	Sporanon, comm	Mes as Gred in Decucin 110.	(2)			

DeLuchi, M. 1993. Emissions of Greenhouse Gases from the Use of Transportation Fuels and Electricity, Argonne National Leboratory, ANUESD/TM-22, Vol. 2.

Transformed Std. Dev.	
Transformed Quan.	12,690 19,035 21,150 14,805 6,345
Transformed Units	Btu/bu Btu/bu Btu/bu Btu/bu Btu/bu
īğ	
Raw/ Input Std. Dev.	
Raw/ Input Quan.	0.06 0.09 0.1 0.07
Raw/ Input Units	Giampietro and PrimenBtu/Btu-ethanol Chambers et al. (1979Btu/Btu-ethanol Parisi (1983) Btu/Btu-ethanol Pirmentel (1990) Btu/Btu-ethanol DeLuchi (1993) Btu/Btu-ethanol
Reference	Giampietro and Pi Chambers et al. (1 Parisi (1983) Pimentel (1990) DeLuchi (1993)
LCI component	Transporation Energy Use

Notes: DeLuchi states in Table K-7 that all data are referenced to the higher heating value of ethanol, and gives transporation energy consumption estimates as a function of blubtu ethanol. I transform these estimates to blubtu, then give the values as they appear in the actual reference for those references which I have, below.

Energy Use in Transporation Estimates

Table 2

Calculations

Parisi, Frederico. 1983. Energy Balances or Ethanol as a Fuel, Advances in Biochemical Engineering/Biolechnology, 28:42-68 (1963).

Impacts in the United States, Brazil, India, and Kenya, Advances in Food Research, Vol. 32, pp. 185-238, 1988. Pimentel, David et al. 1988. Food Versus Biomass Fuel: Socioeconomic and Environmental

Chambers, R.S., et al. 1979. Gasohol: Does It or Doesn't It Produce Positive Net Energy, Science, vol. 206, November 1979, pp. 789-795.

DeLuchi, M. 1993. Emissions of Greenhouse Gases from the Use of Transportation Fuels and Electricity, Argonne National Laboratory, ANL/ESD/TM-22, Vol. 2.

Unnasch, Slefan, 1990. Greenhouse Gas Emissions from Ethanol Production and Vehicle Use, Acurex Corp. for the National Corn Growers Association.

Transformed Quan.	12,132 21,000 20,727 3,183 5,600 4,000 9,183
Transformed Units	325,000 Btu/bu 21,000 Btu/bu 2.93 Btu/bu 0.45 Btu/bu 5,600 Btu/bu 4,000 Btu/bu Average of Scheller, DeLuchi, Pirmentel, Unnasch, and Chambers Estimates.
Raw/ Input Quan.	325,000 21,000 2.93 0.45 5,600 4,000 Average of Scheller, De
Raw/ Input Units	kcal/2700 kg Btu/bu MJ/kg ethanol MJ/kg ethanol Btu/lb
LCI component	Energy to Transport Com to Mill

Notes: The variability in literature estimates of energy use in com transportation is high. The value arrived at in the calculation below is also much smaller than these estimates. assumptions, this value is used.

lowa Corn Transportation Statistics Table 3

lowa Department of Agriculture and Land Stewardship. 1991. Grain Marketing: Iowa, Iowa Department of Agriculture.

Ξ 3 ල

€

Baumel, C. Philip, Charles R. Hurburgh, and Tenpao Lee. 1965. Estimates of Total Fuel Consumption in Transporting Grain from lowa to Major Grain Importing Countries by Alternative Modes and Routes: Special Report 90, Iowa Agricultural and Home Economics Experiment Station, Iowa University of Science and Technology, Ames, lowa. Baumel, C. Philip, Stephen Baumhover, Michael A. Lipsman, and Marty J. McVey. 1991. Alternative Investments in the Rural Branch Raliroad and County Road Systems, Midwest Transportation Center, Iowa State University, Ames, Iowa.

Baumel, C. Philip, unpublished data, lowa State University, Ames, Jowa.

Grain Merchandised by Elevators/Grain Dealers (1) Domestic Processing

	Barge	61.7%	281 ND
Method Shipped	Truck Rail	38.1%	58
		Percent of Bushels	Average Distance (miles)

0.2%

Pimentel et al. (1988). Estimated as 10% of the Chambers et al. (1979) cires ACR (1978) (unp Parisi cites Chambers (1979). Parisi cites Scheller (1978). Deurchi (1983) calculated based on truck tran Unnasch (1990). Notes:

Page 3

Grain Shipped by Farmers to Country Elevators (3)

mi tractio-trailor 32% 8 ndem axie funck 29% 13.5 rgie axie fruck 9% 9.3 actor - ne wagon 20% 6.3 actor - two wagons 10% 6.3	k 29% 9% 9% 9% 0n 20% 10%	Vehicle Type	Percent	Average 1-way Distance	y Distance
	o and a second	Semi tractor-trailor Tandem axle truck Single axle truck Tractor - one wagon Tractor - two wagons		32% 29% 9% 20% 10%	9.50 9.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6

Percent of fotal grain processed 20% (4)

Vehicle Type Average Distance Notes:

Sa Assumed to be the same as average distance from elevator to farmer from the company of the same as average distance from elevator to farmer Semi 95% 58 Assumed to be the same as average distance from elevator to farmer Semi

Notes: According to this model, 80% of com processed domestically is shipped first to an elevator, then to the processor. The remaining 20% is shipped straight from farm to processor, which includes some com sold to the elevator but transported directly to the processor.

Table 4 Energy Intensity of Com Transportation Modes

Baumei, C. Philip, Charles R. Hurburgh, and Tenpao Lee. 1985. Estimates of Total Fuet Consumption in Transporting Grain from lowa to Major Grain Importing Countries by Alternative Modes and Routes: Special Report 90, Iowa Agricultural and Home Economics Experiment Station, Iowa University of Science and Technology, Ames, Iowa.

ε

Baumel, C. Philip, Skephen Baumhover, Michael A. Lipsman, and Marty J. McVey. 1991. Alternative Investments in the Rural Branch Railroad and County Road Systems, Midwest Transportation Center, Iowa State University, Ames, Iowa.

Baumel, C. Philip, unpublished data, lowa State University, Ames, lowa.

ල

8

Energy Intensity of Com Transportation Modes	portation Modes				Transformed		Capacity		Capacity	
Mode	Intensity	Units	Source:	Fuel	Intensity	Units		Units		Chrits
Raii Seni tucks Seni tucks Tandem axle tucks Single axle tucks Tractor - 1-300 bushel wagon Tractor - 2-300 bushel wagons		640.1 NetTon-mi/gallon 90.5 NetTon-mi/gallon 37.8 NetTon-mi/gallon 30.2 NetTon-mi/gallon 12.6 NetTon-mi/gallon 25.2 NetTon-mi/gallon	££88866	Diesel Diesel Diesel Gasoline Diesel	22.8 8.6.1 0.1 8.9	22,861 Net Bu-migalion 3,232 Net Bu-migalion 1,350 Net Bu-migalion 1,079 Net Bu-migalion 450 Net Bu-migalion 900 Net Bu-migalion		950 bu 600 bu 300 bu 300 bu	8 6 - + 6	53,200 lb 33,600 lb 16,800 lb 16,800 lb 33,600 lb

Notes: Energy intensity estimates in terms of net ton-miles per gation account for the actual tonnage hauled and the distance traveled unloaded (backhaul).

Thus bushel-miles per gation cannot be used to calculate a real mileage, since they include unloaded miles.

Table 5	Derived Total Transpo	Derived Total Transportation Requirements for Com	Ę			
From Table 3						
Mode	Dietarce (1-way)	Units	Energy		Units	
Railroad	138.70	Miles	3	841.5	_	
Semi tractor trailor	28.70			1,231.4		
Tandem avie trunk	3.71	Miles		381.3		
Circle avie forch	290			77.6		
Transfer one washing	101			310.7		
Tractor two wasper	0.50	Miles		77.7		
SUPREM CAN - IOUR				2.920.2		

Notes: in this table, the transportation modes, distances, intensity, and fractions have been used to generate what could be called the average bushel transportation requirements. This does not imply that any single bushel actually travels the above distances for each mode. Instead it is a way

of representing the average requirements to transport com.

9 9 9

U.S. DOEELA, 1994, Annual Energy Review (193) DOEELA-0384(9). U.S. DOEELA, 1994, Annual Energy Review (193) DOEELA-0384(9). U.S. DOEELA, 1994, Annual Energy Review (193) DOEELA-0384(9). Energy Intensity Review (193) DOEELA-0384(9). From Table Above Country Intensity tensity Country Inten	U.S. EPA, AP-42, Table II-2.1 (1995) U.S. DOE/EIA. 1994. Emissions of Green DOE/EIA. 1994. Emissions of Green Enrission Factors - Railway Farticulates SOx CO2 Hydrocarbons Hydrocarbons Finissions Finissions Finissions Finissions For NOx NOX NOX Aldehydes Organic Acids CO2 Hydrocarbons For NOX Hydrocarbons For NOX Hydrocarbons For NOX Aldehydes Organic Acids CO2 CO2 Hydrocarbons For NOX Aldehydes Organic Acids For NOX Aldehydes Organic Acids Dawis, Stacy C. 1994. Transportatio DeLuchi, M. 1993. Emissions of Gr Argonne National Laboratory, AML/I	Raview: 1993, DC 0.000 C.000 C	DEFEIA-0384(93). The United States: 1967-199 White Blurbu Off Gallons/bu Units Explication gal fuel 130 birtoon gal fuel 131 birtoon gal fuel 130 birtoon gal fuel 131 birtoon gal fuel 131 birtoon gal fuel 132 birtoon gal fuel 133 birtoon gal fuel 141 birtoon gal fuel 152 birtoon gal fuel 154 birtoon gal fuel 155 birtoon gal fuel 156 birtoon gal fuel 157 birtoon gal fuel 158 birtoon gal fuel 159 birtoon gal fuel 150	92, DOE/EIA-0573 From Table Above Source (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	148 148 158 167 167 168 168 168 168 168 168 168 168 168 168
Transformed Quantity Outs Units Units Units Units Units Units Units Outs O	U.S. DOE/EIA. 1994. Annual Energy DOE/EIA. 1994. Emissions of Green Energy Intensity Emission Factors - Railway COC COC Hydrocarbons Hydrocarbons Hydrocarbons Finissions Emissions Farticulates SOC COC COC COC COC COC COC COC COC COC	Review. 1993, DI house Gases in the house Gases in the Coope	DEFEN-0384(93). To Units Units	92, DOE/EIA-0573 From Table Above (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	84.1 48.2 48.4 48.4 48.4 48.4 48.4 48.4 48.4
Transform of Greenhouse Gases in the United States: 1997-1992, DOEEEA-0573	Energy Intensity Emission Factors - Railway Particulates SOx CO COZ COC COZ COZ	Raw Input Countify Countify 1.52E 3.46E 7.89E 7.89E 5.24E 5.24E 6.20E 8.33E	He United States: 1987-198 William Units Units Units Units Units 130 Ib/1000 gal fuel 57 Ib/1000 gal	92, DOE/EIA-0573 From Table Above Source (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	1.18 1.194 1.16 1.05 1.05 1.05
1.1	Energy Intensity Emission Factors - Railway Particulates SOx COX COX COX MOX Aldenydes Organic Acids Emissions Particulates SOx CO COX CO COX CO COX CO COX CO CO	- 8 7 - 8 4 8 4		From Table Above Source (1) (1) (2) (3) (4) (1) (1) (1) (1) (1) (1) (1)	148 194 168 168 100 100 100
Countries	Emission Factors - Railway Social Coco COC Hydrocarbons Hydrocarbons Hydrocarbons Particulates Social COC COC COC COC COC COC COC COC COC CO	+ 4 × + 4 × 4 × 4 × 4 × 4 × 4 × 4 × 4 ×		Source (5) (5) (5) (5) (5) (5) (5) (5) (5) (5)	148 141 168 167 168 167 168 169 169
15 15 15 15 15 15 15 15	SOX CO2 Hydrocarbons NOX Aldehydes Organic Acids Particulates SOX CO CO2 CO2 CO3 CO3 CO4 CO4 CO5 CO5 CO5 CO5 CO5 CO5 CO5 CO5 CO5 CO5	7.8 7.8 7.8 7.9 7.9 7.9 7.9 7.9 7.9		≘≘≘ €≘€≘	
1995 1995	SOX COO Hydrocarbons NOX NOX Addetydes Organic Acids CoO Emissions SOX COO COO COO Hydrocarbons Hydrocarbons Addetydes Organic Acids Dawis, Stacy C. 1994. Transportatio DeLucchi, M. 1993. Emissions of Gr Argonne National Laboratory, AML/I			eesee	
1930 Parillono gal fued (1)	COC COZ Hydrocarbons NOX Aldehydes Organic Acidss Emissions SOX CO COZ COZ COX CO COZ COZ COZ COZ COZ COZ COZ COZ COZ	1. 8. 4. 8. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.		8€888	
### 17:00 gai fuel (1) 5.5 Ib-1000 gai fuel (1) 5.5 Ib-1000 gai fuel (1) 7. Ib-1000 gai fuel (1) 8.5 Ib-1000 gai fuel (1) 1.52E-04 lbbu 9.4 E-04 lbbu 9.2 AE-03 lbbu 1.52E-04 lbbu 9.3 AE-05 lbbu 1.52E-05 lbbu 1.52E-06 lbbu 1.52E-07 lbbu 1.52E-07 lbbu 1.52E-08 lbbu 1.52E-08 lbbu 1.52E-09 lbb	Hydrocarbons NOx Aldehydes Cryanic Acids Emissions Particulates SOx CO CO2 CO3 NOx Aldehydes Organic Acids Davis, Stacy C. 1994. Transportatio DeLuchi, M. 1993. Emissions of Gr Argonne National Laboratory, ANL/I	1. 8. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.		: ::::::::::::::::::::::::::::::::::::	
370 lb/1000 gal fuel (1) 267	Nox Aldehydes Organic Acids Emissions Particulates SOx COX COX COX Nox Nox Aldehydes Organic Acids Table 7 Davis, Stacy C. 1994. Transportatio DeLuchi, M. 1993. Emissions of Grr Argonne National Laboratory, ANL/I	7. 6. 7. 7. 6. 4. 7. 7. 6. 7. 7. 6. 7. 7. 6. 7. 7. 6. 7. 7. 6. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.		:€€€	
5.5 Ib/1000 gal fuel (1) 0.06 1.52E-04 libbu	Aldehydes Organic Acids Organic Acids Particulates SO CO CO2 Hydrocarbons Hydrocarbons NOx Aldehydes Organic Acids Davis, Stacy C. 1994. Transportatio DeLuchi, M. 1993. Emissions of Gr Argonne National Laboratory, ANL/I	7. 8. 4. 7. 9. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.		€€	
Cuantity Units 1,52E-04 libbu 3,46E-04 libbu 1,38E-04 libbu 1,38E-04 libbu 1,38E-04 libbu 1,38E-04 libbu 1,38E-04 libbu 2,34E-03 libbu 3,34E-05 libbu 3,34E-05 libbu 3,34E-05 libbu 4,25E-05 libbu 4,25E-05 libbu 4,25E-05 libbu 4,25E-05 libbu 4,25E-05 libbu 1,1992, Transportation Energy Data Book: Edition 14, Oak Ridge National Laboratory, ORNL-6798. 1H. 1992, Technology of Com Wet Milling and Associated Processes, it all Laboratory, ANLESD/TM-22, Vol. 2. IH. 1992, Technology of Com Wet Milling and Associated Processes, it all Library, vol. 4, Elsevier Press, New York. 1994, Annual Energy Review; 1993, DOE/EIA-0384(93). Invironmental Protection Agency. 1985. Compilation of Air Pollutant Emission Factors, AP-42 Fourth Edition. sport Distance Distance Units 2,870 Miles 3,71 Mile	Emissions Cooks Sociates Sociates Cooks Cooks Cooks Cooks Mydrocarbons Hydrocarbons Nox Aldehydes Organic Acids Coganic Acids Davis, Stacy C. 1994. Transportatio DeLuchi, M. 1993. Emissions of Gr DeLuchi, M. 1993. Emissions of Gr DeLuchi, M. 1993. Emissions of Gr	7.1. 2.4.6. 2.4.6.6.6.4.		3	
Emissions Quantity Units Particulates 152E-04 lbbu SOX 78E-04 lbbu SOX 78E-04 lbbu CO2 78E-04 lbbu CO2 78E-04 lbbu CO2 78E-04 lbbu CO3 78E-04 lbbu CO3 78E-04 lbbu Nox 34E-05 lbbu Adehydes 34E-05 lbbu Adehydes 42E-05 lbbu Coganic Adds 78E-05 lbbu Common Haling and Associated Processes, Industrial Laboratory, ANLESD/TM-22, Vol. 2. Units Argonne National Laboratory Advert Remain Protection Agency. 1993. DOEERA-0384(93). United States Environmental Protection Agency. 1993. DOEERA-0384(93). United States Environmental Protection Agency. 1993. Compliation of Air Pollutant Emission Factors, AP-42 Fourth Edition. Estimated Vehicle Load Estimated Vehicle Load Sand Sand Sand Does Philip Gaumel Tandem Ade Sand Bouley Philip Gaumel Tandem Ade Sand Does Philip Gaumel Tandem Ade Sand Does Philip Gaumel Tandem Ade Sand Does Philip Gaumel Tandem Ade Sand Does Philip Gaumel Tandem Ade Sand Does Philip Gaumel Tandem Ade Sand Does Philip Gaumel Tandem Ade Sand Does Does Philip Gaumel Tandem Ade Sand Does Does Philip Gaumel	Emissions Particulates SOx COC COC NOx Aldehydes Organic Acids Table 7 Davis, Stacy C. 1994. Transportatio DeLuchi, M. 1993. Emissions of Gr Argonne National Laboratory, ANL/I				
152E-04 libbu Sox (20 (20 (20) (20) (20E-04 libbu (200 (20) (20E-04 libbu (200 (20E-04 libbu (200 (20E-04 libbu (20E-04 libbu (200 (20E-04 libbu	SOx CO COS COS NOx Aldehydes Organic Acids Table 7 Table 7	1.52E 3.46E 7.89E 1.36E 5.70E 2.24E 4.25E			
Sox 7 346E-04 lbbu Co2 138E-04 lbbu 158E-04 lbbu Hydrocarbons 2.24E-03 lbbu 2.24E-05 lbbu Aldehydes 3.34E-05 lbbu Aldehydes 4.25E-05 lbbu Davis, Stacy C. 1994. Transportation From Truck Transportation Davis, Stacy C. 1994. Transportation From Truck Transportation Davis, Stacy C. 1994. Transportation From Truck Transportation Davis, Stacy C. 1994. Transportation From Truck Transportation Davis, Stacy C. 1994. Transportation Davis, Stacy C. 1994. Transportation Davis, Stacy C. 1994. Transportation Davis, Stacy C. 1994. Transportation Davis, Stacy C. 1994. Transportation Davis, Stacy C. 1994. Transportation Davis, Stacy C. 1994. Transportation Davis, Stacy C. 1994. Transportation Davis, Stacy C. 1994. Transportation Davis, Stacy C. 1994. Transportation Davis, Stacy C. 1994. Transportation Davis, Stacy C. 1994. Transportation Davis, Stacy C. 1994. Transportation Davis, Stacy C. 1994. Transportation Davis, Stacy C. 1994. Transportation Davis, Stacy C. 1994. Transportation Davis, Stacy C. 1994. Transportation Davis, Stacy C. 1994. Transportation Davis Compilation Davis Davis Provided by Philip Baumel Transport Diption Davis Davis Provided by Philip Baumel Davis Davis Provided by Philip Baumel Davis Davis Provided by Philip Baumel	SOX CO2 CO2 Hydrocarbons NOX Aldehydes Organic Acids Table 7 Davis, Stacy C. 1994. Transportatio DeLuchi, M. 1993. Emissions of Grr Argonne National Laboratory, ANU/I	3.46F 7.89F 1.36F 5.70F 3.24F 4.25F			
COC 776E-04 lbbu COC 776E-04 lbbu COC 776E-04 lbbu COC 776E-04 lbbu Aldehydes 5.70E-04 lbbu Aldehydes 3.24E-03 lbbu Aldehydes 3.24E-03 lbbu Aldehydes 3.24E-03 lbbu Aldehydes 3.24E-03 lbbu Aldehydes 6.75E-05 lbbu Coganic Acids Emissions from Truck Transportation Davis, Slacy C. 1994, Transportation Energy Date Book: Edition 14, Oak Ridge National Laboratory, ORNL-6798. DeLuchi, M. 1992, Tennsportation Finergy Date Book: Edition 14, Oak Ridge National Laboratory, ORNL-6798. Banchard, Paul H. 1992, Technology of Com Wet Milling and Associated Processes, Industrial Chemical Library, vol. 4, Elsevier Press, New York. U.S. DOEEIA, 1994, Annual Energy Review, 1993, DOEEIA-0384(93). United States Environmental Protection Agency, 1985, Compilation of Air Pollutant Emission Factors, AP-42 Fourth Edition. Estimated Transport Distance Distance Distance Tandem Adversary Miles 331,71 Miles 381,35 Blurbu Estimated Vehicle Load Notes: Sami Sami Sami Barowided by Philip Baumel Date provided by Philip Baumel Tandem Adversary Philip Baumel Date provided by Philip Baumel Date provided by Philip Baumel Date provided by Philip Baumel	COC COZ NOX Aldehydes Aldehydes Organic Acids Table 7 Davis, Stacy C. 1994. Transportatio DeLuchi, M. 1993. Emissions of Grr Argonne National Laboratory, ANL/I	7.89F 1.36F 5.70F 2.24F 3.34F 4.25F			
Coz 1,36E-01 libbu NOx 2,24E-03 libbu NOx Adeinydes 3,34E-05 libbu Adeinydes 4,25E-05 libbu Adeinydes Adeinydes 4,25E-05 libbu Adeinydes Adeinydes 4,25E-05 libbu Adeinydes 4,25E-05 libbu Adeinydes 4,25E-05 libbu Agenia Adeinydes 4,25E-05 libbu Agenia Adeinydes 4,25E-05 libbu Agenia Adeinydes 4,25E-05 libbu Agenia Adeinydes Agenia Agenia Adeinydes Agenia Adeinydes Agenia Adeinydes Agenia Adeinydes Agenia Adeinydes Agenia Adeinydes Agenia Adeinydes Agenia Adeinydes Agenia Adeinydes Agenia Adeinydes Agenia Adeinydes Agenia Adeinydes Agenia Adeinydes Agenia Adeinydes Agenia Adeinydes Agenia Adeinydes Agenia Adeinydes Agenia Agenia Adeinydes Agenia Agenia Adeinydes Agenia Agenia Adeinydes Agenia Agenia Adeinydes Agenia Agenia Adeinydes Agenia Agenia Agenia Adeinydes Agenia Ag	CO2 Hydrocarbons NOX Aldehydes Organic Acids Table 7 Dawis, Stacy C. 1994. Transportatio DeLuchi, M. 1993. Emissions of Grr Argonne National Laboratory, ANL/I	1.36F- 5.70F- 2.24F- 3.34F- 4.25F-			
Hydrocarbons 570E-04 libbu Aldehydes 3.4E-05 libbu Aldehydes 3.4E-05 libbu Organic Acids Emissions from Truck Transportation Table 7 Emissions from Truck Transportation Table 7 Emissions of Greenhouse Gases from the Use of Transportation Fuels and Electricity, Argonne National Laboratory, ANL/ESD/TM-22, Vol. 2. Blanchard, Paul H. 1992. Technology of Com Wet Milling and Associated Processes, Industrial Chemical Library, vol. 4. Elsewier Press, New York. U.S. DOE/EIA, 1994. Annual Energy Review: 1999, DOE/EIA-0384(93). United States Environmental Protection Agency, 1985. Compilation of Air Pollutant Emission Factors, AP-42 Fourth Edition. Estimated Transport Distance Di	Hydrocarbons Aldehydes Aldehydes Organic Acids Table 7 Dawis, Stacy C. 1994. Transportatio DeLuchi, M. 1993. Emissions of Gr Argonne National Laboratory, ANU/J	5.70F- 2.24F- 3.34F- 4.25F-			
Addetydas 3.34E-05 libbu Addetydas 4.25E-05 libbu Organic Acids 4.25E-05 libbu Organic Acids 4.25E-05 libbu Organic Acids 4.25E-05 libbu Table 7 Emissions from Truck Transportation Davis, Stacy C. 1994. Transportation Energy Data Book: Edition 14, Oak Ridge National Laboratory, ORNL-6798. DeLuchi, M. 1993. Emissions of Greenhouse Gases from the Use of Transportation Fuels and Electricity. Argonne National Laboratory, ANLESD/TM-22, Vol. 2. Blanchard, Paul H. 1992. Technology of Com Wet Milling and Associated Processes, Industriant, Paul H. 1992. Technology of Com Wet Milling and Associated Processes, Industriant, Paul H. 1992. Technology of Com Wet Milling and Associated Processes, Industriant Chemical Library, vol. 4, Elsevier Press, New York. U.S. DOE/EIA, 1994. Annual Energy Review; 1993, DOE/EIA-0384(93). United States Environmental Protection Agency, 1965. Compilation of Air Pollutant Emission Factors, AP-42 Fourth Edition. Estimated Transport Distance Distance Distance Distance Distance Distance Distance Semi Semi School Both Philip Baumel S5.200 Ib Data provided by Philip Baumel Tandem Axle Semi Semi Semi School Both Philip Baumel S3.500 Ib Data provided by Philip Baumel	Anderydes Organic Acids Table 7 Davis, Stacy C. 1994. Transportatio DeLuchi, M. 1993. Emissions of Grr Argonne National Laboratory, ANL/I	3.345 4.255			
Table 7 Table 7 Emissions from Truck Transportation Davis, Stacy C. 1994, Transportation Energy Data Book: Edition 14, Oak Ridge National Laboratory, ORNU-6798. Deluchi, M. 1993, Emissions of Greenhouse Gases from the Use of Transportation Fuels and Electricity, Argune National Laboratory, ANLESD/TM-22, Vol. 2. Argune National Laboratory, ANLESD/TM-22, Vol. 2. Benchard, Paul H. 1992, Technology of Com Work Milling and Associated Processes, Industrial Chemical Library, vol. 4, Elsevier Press, New York. U.S. DOE/EIA, 1994, Annual Energy Review, 1993, DOE/EIA-0384(83). United States Environmental Protection Agency. 1985, Compilation of Air Pollutant Emission Factors, AP-42 Fourth Edition. Estimated Transport Distance Distance Distance Distance Distance Of 7 Miles Notes: Sami Saction Baumel Ande Axide Notes: Sami Saction Baumel Data provided by Philip Baumel Tandem Axide Data provided by Philip Baumel	Organic Acids Table 7 Davis, Stacy C. 1994. Transportatio DeLuchi, M. 1993. Emissions of Grr Argonne National Laboratory, ANJ/I	4.25E			
Davis, Stacy C. 1994. Transportation Emissions from Truck Transportation Davis, Stacy C. 1994. Transportation Energy Data Book: Edition 14, Oak Ridge National Laboratory, ORNL-6798. DeLuchi, M. 1992. Emissions of Greenhouse Gases from the Use of Transportation Fuels and Electricity, Argonne National Laboratory, ANLESDTM.22, Vol. 2. Blanchard, Paul H. 1992. Technology of Com Vet Milling and Associated Processes, Industrial Chemical Library, vol. 4, Elsevier Press, New York. U.S. DOE/EIA, 1994. Annual Energy Review. 1993, DOE/EIA-0384(93). United States Environmental Protection Agency. 1985. Compilation of Air Pollutent Emission Factors, AP-42 Fourth Edition. Estimated Transport Distance Distance United States Environmental Protection Agency. 1985. Compilation of Air Pollutent Emission Factors, AP-42 Fourth Edition. Estimated Transport Distance Dis	Table 7 Davis, Stacy C. 1994. Transportatio DeLuchi, M. 1993. Emissions of Gre Argonne National Laboratory, ANL/I				
Davis, Stacy C. 1994. Transportation Energy Data Book: Edition 14, Oak Ridge National Laboratory, ORNL-6798. DeLuchi, M. 1993. Emissions of Greenhouse Gases from the Use of Transportation Fuels and Electricity, Argonne National Laboratory, ANL/ESD/TM-22, Vol. 2. Blanchard, Paul H. 1992. Technology of Com Wet Milling and Associated Processes, Industrial Chemical Library, vol. 4, Elsevier Press, New York. U.S. DOE/EIA, 1994. Annual Energy Review; 1993, DOE/EIA-0384(93). United States Environmental Protection Agency, 1985. Compilation of Air Pollutant Emission Factors, AP-42 Fourth Edition. Estimated Transport Distance Units Semi 28.70 Miles 3.71 Miles Single Axie Estimated Vehicle Load Notes: Semi 53.200 Ib Data provided by Philip Baumel Tandem Axie Single Axie Single Data provided by Philip Baumel Tandem Axie Single Data provided by Philip Baumel	Davis, Stacy C. 1994. Transportation DeLuchi, M. 1993. Emissions of Gre Argonne National Laboratory, ANL/I	Emissions from T	ruck Transportation		
DeLuchi, M. 1993. Emissions of Greenhouse Gases from the Use of Transportation Fuels and Electricity, Agome National Laboratory, ANLESD/TM-22, Vol. 2. Blanchard, Paul H. 1992. Technology of Com Wet Milling and Associated Processes, Industrial Chemical Library, vol. 4, Elsevier Press, New York. U.S. DOE/EIA, 1994, Annual Energy Review, 1993, DOE/EIA-0384(93). United States Environmental Protection Agency, 1985. Compilation of Air Pollutant Emission Factors, AP-42 Fourth Edition. Estimated Transport Distance Units Semi 28.70 Miles 1.231.44 Blu/bu 37.71 Miles 37.71 Miles Single Axie Estimated Vehicle Load Notes: Semi 53.200 Ib Data provided by Philip Baumel Tandem Axie Data provided by Philip Baumel Data provided by Philip Baumel	DeLuchi, M. 1993. Emissions of Gre Argonne National Laboratory, ANL/I	n Energy Data Bo	ook: Edition 14. Oak Ridge	National Laboratory, ORNL-6798.	
Blanchard, Paul H. 1992. Technology of Com Wet Milling and Associated Processes, Industrial Chemical Library, vol. 4, Elsevier Press, New York. U.S. DOE/EIA. 1994. Annual Energy Review: 1993, DOE/EIA-0364(93). U.S. DOE/EIA. 1994. Annual Energy Review: 1993, DOE/EIA-0364(93). Units Serii Environmental Protection Agency. 1985. Compilation of Air Pollutant Emission Factors, AP-42 Fourth Edition. Estimated Transport Distance Distance Distance Distance Alles Distance Alles Distance Alles Distance Alles Alles Alles Alles Alles Alles Alles Alles Alles Alles Distance Distance Distance Alles Distance Dis	1	n Energy Data Bo tenhouse Gases fi ESD/TM-22, Vol. 2	ook: Edition 14, Oak Niege from the Use of Transportal 2.	Nation Fuels and Electricity,	
U.S. DOE/EIA, 1994. Annual Energy Review: 1993, DOE/EIA-0394(93). United States Environmental Protection Agency, 1995. Compilation of Air Pollutant Emission Factors, AP-42 Fourth Edition. Estimated Transport Distance Units Semi 3.71 Miles 3.71 Miles 3.71 Miles 3.71 Miles 58.200 Ib Data provided by Philip Baumel Notes: Semi 53.200 Ib Data provided by Philip Baumel Data provided by Philip Baumel	Blanchard, Paul H. 1992. Technolog Industrial Chemical Library, vol. 4, E	y of Corn Wet Mil	Iling and Associated Proce w York.	18668,	
United States Environmental Protection Agency, 1985. Compilation of Air Pollutant Emission Factors, AP-42 Fourth Edition. Estimated Transport Distance Dis	U.S. DOE/EIA. 1994. Annual Energy	y Review: 1993, D	OOE/EIA-0384(93).		
ated Transport Distance Distance 28.70 Miles 3.71 Miles Axie 0.67 Miles 53.200 lb 53.200 lb 33.600 lb	United States Environmental Protec	tion Agency. 1985	5. Compilation of Air Polluts	ant Emission Factors, AP-42 Fourth Edition	٠
Distance Units 28.70 Miles 3.71 Miles 0.67 Miles ated Vehicle Load 53.200 lb m Aule 33.200 lb					
20.70 Miles 2.77 Miles Axie 0.67 Miles ated Vehicle Load 53.200 lb 33.800 lb				1 221 44	
Axie 0.67 Miles ated Vehicle Load 53,200 lb 33,600 lb	General States	87 "			
ated Vehicle Load 53,200 lb 53,200 lb 33,600 lb m Aule 53,000 lb	Single Axle	, 0		77.65 Btu/bu	
53,200 lb 33,600 lb	Estimated Vehicle Load			7	
m Axle 33,600 lb	:	2	41 000	Notes. Date provided by Dhilip Barmel	
33,600 10	Semi	52,50	200 lb	Data provided by Philip Baumer	
16.800 lb	Tandem Axle	16.5	500 in	Date provided by millip beumel	

£ 8

ව

€ €

Vehicle Registration Mix: January 1 & emissions factors, g/mile (5)

•	Gas Trucks	(2)				Linht Duty Diseas							
Model Year	Fraction	Total Hydro.	8	NON	×	Fraction	Total Hydro	S	SON SON	Freavy DI	Finally Diesel Incks	3	
Model Year -1	0		2.8	12.6	44	8000		2	,		oose rydio.	3	ľ
Model Year - 2	0.136		2.9	13.2	70,4	9000	. 9	0.3	1.5	e o	0.031	2.4 2.4	D) C
Model Year - 3	0.116		3.1	14.6	4.8	0 008		0.0		9 0	200.0	L. C	9.0
Model Year - 4	0.099	_	3.2	15.6	4	0.011		0.4	i (ņ •	0.00	0.0	- c
Model Year - 5	0.085	15	3.4	16.5	5.1	0.017	7	0.4			0.01	2.7	, c
Model Year - 6	0.072	۲.	3.6	17.7	5.4	0.023		0.5	1.4		0.014	0.0	
Model Year - 7	0.062	٠.	3.7	18.4	5.5	0.029	_G	0.5	4.	-	0.017	9 6	
Model Year - 8	0.053	-	3.8	19.1	5.6	0.035	£	0.5	4.1	7	0.021	, ,	12.5
Model Year - 9	0.045	,-	3.9	19.7	5.7	0.041	-	0.5	15	1	0.025	3.5	12.1
Model Year - 10	0.038	_	8.4	41.6	5.2	0.047	4	9.0	1.5	-	0.03	4 6	13.5
Model Year - 11	0.033	_	5.2	50.2	5.2	0.053		0.6	5	12	0.036	. 4	13.5
Model Year - 12	0.028	_	12.8	158.2	5.6	0.059	6	9.0	1.6	9	0.043	r 4	4 4 8
Model Year - 13	0.024	_	13	160.4	5.6	0.065	2	0.6	9	9	0.051	2.50	. r.
Model Year - 14	0.02		13.1	165.2	5.7	0.071	_	0.6	9	1.7	0.061	- ec	. v
Model Year - 15	0.018		13.2	167.8	5.7	7.00	7	7.0	1.7	1.7	0.073	2.9	9 4
Model Year - 16	0.015		13.8	182.5	6.1	0.083		0.7	1.7	6	0.088		17.3
Model Year - 17	0.013		13.9	184.8	6.1	0.089	•	1.4	2.4	6	0 105	7.3	20.00
Model Year - 18	0.011		18.3	211.1	6.4	0.095	10	1.4	2.5		0.126		20.5
Model Year - 19	0.009	_	19.8	241.3	7.3	0.101		5.	2.5		0.151	7.5	20.0
Model Year - 20	0.045		19.9	243.3	7.4	0.027		5.1	2.5			5. 6.	20.0
Weighted Average	92.20%	, 0	5.9	53.3	5.3	94.50%	%	0.5	4.1	1	90.90%	3.7	12.1
						Transformed							
Emission Factors		Raw Innut Quantity	fity (Inite	-		Input Outside	- India						
				•		Input Cualitaty	200						
Gas Truck	Hydrocarbons		5.9 g/mile	<u>.e.</u>		0.0129) Ib/mi						
	Carbon Monoxide		53.3 g/mile			0.1176							
	NOX		5.3 g/mile	9		0.0117							
Light Diesel Truck	Hydrocarbons		0.5 g/mile	9		0.0012	ib/mi						
	Carbon Monoxide		1.4 g/mile	le		0.0031	lb/mi						
	NOX		1.1 g/mile	•		0.0025	i Ib/mi						
Heavy Diesel Truck	Hydrocarbons		3.7 o/mile	<u>.</u>		0.0081	(Mai						
	Carbon Monoxide		12.1 a/mile			0.0267							
	NOX		14.6 o/mile			0.0322							
CO2 Emission Factors	Gas		19.4 kg/million btu	illion btu		156.79	b/million btu						
	Diesel		20.0 kg/m	kg/million btu		161.16	b/million btu						
Emissions		Heavy Diesel	Light	Light Diesel Gas		Total	Units						
	Hydrocarbons		0.00024	20.00	3 888305 05	30700000							
	Carbon Monoxide		0.00081	1.9375E-05	0.000262436	0.0002736							
	NOX		260000	1.54607E-05	2 60841E-05	0.00100736							
	200		0.19845	0.061456568	0.012174601	0.2720858							

Notes: The three categories of trucks used in com transportation were arbitrarily assigned to the three categories of trucks for which emissions factors are available in AP-42. There is some danger in this since the AP-42 would have a significant impact on the state of grant Clearly the size assumptions about the funck categories in AP-42 would have a significant impact on the emission factors in terms of grant-fine Closer examination of AP-42 reasis that the light funck category refers to whichse with gross weights between 5,000 bs. This significant impacts and 6,500 bs. This significant into the Mill load estimate of 10,000 bis high. Unfortunately the resolution of the AP-42 data is poor. The category are 8,500 bs. Thus, while the large vehicle capacity of 42,000 bis confirmed as being reasonable to trucks used to had come to fall at the high end of the large truck category in AP-42. Lacking more detailed truck emission factors, hese estimates

r Transcort	10000	
Emissions from Tracto		
1able 8		

U.S. EPA. 1991. Nonroad Engine and Vehicle Emission Study-Appendixes (sp): Draft, 21A-2001 (NTIS #PB92-104462).

United States Department of Energy, Energy Information Administration. 1994. Emissions of Greenhouse Gases in the United States: 1987-1992, DOE/EIA-0573

, in the second	0.00224 Gallons/bu 0.00056 Gallons/bu
T.	
Units	311 blu/bu 78 blu/bu
e Energy	•
Estimated Energy Usag	Tractor - one wagon Tractor - two wagons

Page 6

ε

Total		388 btu/bu		0.0028 Gallons/bu	-				
Farm Equipment Emission Factors Units	s Units	Raw Input Quantity						Source	Notes
Diesel Tractors	lb/1000 gallons	5 5	CO 63.55	NOx 175	SOx 438.59	Particulate 31.2	Aldehydes 45.7	12 (1)	Weighted by factors for large 2WD, small 2WD, and 4WD tractors.
Carbon Dioxide Emission Factor Quantity Diesel		Units 19.95 kg/million btu 161.16 lb/million btu	Source (2)						
Emissions	C State	ajo I							
Hydrocarbons CO		1.78E-04 lb/bu 4.90E-04 lb/bu							
NON	7,0	23E-03 lb/bu							
Particulate	3 7	1.28E-04 lb/bu							
Aldehydes CO2	e.	3.36E-05 lb/bu 0.06 lb/bu							

Notes: In this table, emission factors for diesel tractors have been used for all tractor transport. While on farm energy consumption estimates suggest that some gasoline is used, it is not possible to determine the amount of gasoline used in tractors. Since some transport is carried out by light trucks, and stimes some of these trucks may be gas powered, it is assumed here that assigning diesel emission factors to tractor transport is a reasonable approximation. The impact of this assumption is primarily on the carbon monoxide estimates, for which gas tractors have an extremety high emission factor. Lacking additional data, the diesel tractor assumption will be used.

Furnigant and Grain Protectant Use in Grain Storage	
Table 9	

Personal Communication, C.L. Storey, Consultant on Protection of Stored Grains, July 27, 1995.

United States Department of Agriculture, Office of Pesticide Research. 1987. Biologic and Economic Assessment of Stored Com, Wheat, and Peanut Furnigants in The Biologic and Economic Assessment of Registered Furnigants, USDA Office of Pesticide Research, Washington, D.C.

Aluminum Phosphide Use: 1987
Off Farm Total Use Rate Units Use Rate Units Use Rate Units Use Rate Units 1.10E-04 lb/bu

Percent of Com Bushels Treated

20.7

Aluminum Phosphide use per Total Bushels

2.28E-05 lb/bu

For many reasons, the use of chemicals to protect stored grain is negligible. Com carries a lenient standard relative to grains such as wheat, on the number of insects allowed per unit measure before the grain is classified as weevily. About 65-70% of com also never leaves the region in which it was produced, which limits storage and transportation times, again limiting the need for chemical treatment. Finally, the use of chemical protectants is very small relative to the use of insecticides and herbicides applied in the final.

Though several different types of furnigants were once used with com, many of these have not been re-registered by the EPA. These include Methyl Bromide, which is an ozone depleting substance, and well as chloropicrin and magnesium phosphide. The only furnigant currently in use in significant quantities is aluminum phosphide. This substance produces a phosphine gas which is toxic to both insects and humans, and is suspected of causing genetic abnormalities in cell tissue. Charles Storey estimates that less than 10% of com is furnigated.

Of grain protectants, actelic (parimifos methyl) is the only important one used on corn. Again, the use of this substance is estimated to be very small:

Table 10
Particulate Emissions from Uncontrolled Grain Elevators
U.S. EPA. 1985. AP-42 Compilation of Air Pollutant Emission Factors,4th Edition
Chapter 6.4-1.

Emission Factors Process Quantity Units
Country Elevators Unloading 0.6 lb/ton

Tranformed Quantity Units 0.2408 lbrbu		Tranformed Quantity Units 0.2772 tb/bu
lb/ton lb/ton lb/ton lb/ton lb/ton	lb/ton lb/ton lb/ton lb/ton lb/ton	lb/ton
4 C C C A T D D	. 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6.6
Loading Removal From Bins Dryling Cleaning Headhouse	Unloading Loading Removal From Bins Drying Cleaning Headhouse Tripper (Gallery Belt)	
	Inland Terminal Elevators	Average

Notes: These emission factors account for the quantity of grain processed by each operation per unit of grain shipped. This ranges from as low as 0.1 to as high as 3.1. These data indicate that about 30% of grain received at country elevators is dried at the elevator, compared to 10% of received grain being dried at at inland terminal elevators. Since com bound for domestic processing usually passes only through country elevators, the emission factors for country elevators are used. It is assumed that all energy use for drying is accounted for in the com production sheet.

Page 8

ē _ 3
Table 12 Grain Handling #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!
Table 8 Tractor Transport 0% 20% 21% 13% 13% 17% 27% 50%
Table 7 Truck Transport #VALUE! #VALUE: 27% #VALUE! #VALUE! #VALUE!
Table 6 Train Transport 0% 80% 23% 25% 55% 56% 50% 60%
Particulates SOX CO CO2 Hydrocarbons NOX Aldehydes Organic Acids
Total 0.000433 0.002466 0.07276 0.001028 0.004488 6.7E-05
Table 12 A 2.41E-01
Table 8 Table 1 Tractor Transport Grain H Tractor Transport Grain H 3 74E-05 4 90E-04 6 20E-02 1.78E-04 1.23E-05 3.36E-05
Table 7 Truck Transport 1.09E-03 2.72E-01 2.79E-04 1.01E-03

100% 100% 100% 100% 100% 100%

e energy input to com production, including energy in fertilizers, etc. ublished).

sport 80 miles roundtrip plus occaisional train fransport bringing total energy to 200,000 Btu/ton.

Units
6.1 Btu/Bu-mile
42.9 Btu/Bu-mile
102.7 Btu/Bu-mile
116.0 Btu/Bu-mile
308.2 Btu/Bu-mile
154.1 Btu/Bu-mile

Product of weighting times emission factor

Model Year Total H	Total Hydro. CO	Š	Fraction	Total Hydro. CO	0	NOX	Fraction T	Fotal HydroCO		Š
Model Year -1	0	0		0	0			0	0	
Model Year - 2	0.3944	1.7952	0.612	0.0408	0.1632			0.34	1.1288	1.5096
Model Year - 3	0.3596	1.6936	0.5568	0.0464	0.1392	0.1044		0.3016	1.0556	1.334
Model Year - 4	0.3168	1.5444	0.4851	0.0396	0.1287			0.2673	0.9801	1.188
Model Year - 5	0.289	1.4025	0.4335	0.034	0.1105			0.238	0.8925	1.037
Model Year - 6	0.2592	1.2744	0.3888	0.036	0.1008			0.2088	0.7992	0.9
Model Year - 7	0.2294	1.1408	0.341	0.031	0.0868			0.186	0.7192	0.787
Model Year - 8	0.2014	1.0123	0.2968	0.0265	0.0742			0.1643	0.6413	0.683
Model Year - 9	0.1755	0.8865	0.2565	0.0225	0.0675			0.144	0.5625	0.589
Model Year - 10	0.1824	1.5808	0.1976	0.0228	0.057			0.1254	0.5016	0.6802
Model Year - 11	0.1716	1.6566	0.1716	0.0198	0.0495			0.132	0.4521	0.600
Model Year - 12	0.3584	4.4296	0.1568	0.0168	0.0448			0.1568	0.4144	0.529
Model Year - 13	0.312	3.8496	0.1344	0.0144	0.0384			0.1368	0.3624	0.453
Model Year - 14	0.262	3.304	0.114	0.012	0.032			0.116	0.308	0.37
Model Year - 15	0.2376	3.0204	0.1026	0.0126	0.0306			0.1206	0.3042	0.36
Model Year - 16	0.207	2.7375	0.0915	0.0105	0.0255			0.102	0.258	0.307
Model Year - 17	0.1807	2.4024	0.0793	0.0182	0.0312			0.0949	0.2626	0.322
Model Year - 18	0.2013	2.3221	0.0704	0.0154	0.0275			0.0814	0.2255	0.272
Model Year - 19	0.1782	2.1717	0.0657	0.0135	0.0225			0.0675	0.1863	0.223
Model Year - 20	0.8955	10.9485	0.333	0.0675	0.1125			0.3375	0.9405	1.1
	6 44.0	0027	7 7 8 8 7	0 5000				2 2220	07000	1004

Corn Wet Milling

Sheet Title:

Sheet Description:

Last Modified

Energy intensity estimates for wet com milling are derived from 1991 MECS data for SIC 2046. This industry includes manufacturers of wheat, potato, and do not make this distinction, however. In order to use the MECS data it is necessary to allocate some fraction of energy consumption to the production of apioca starch, as well as com starch and other com wet milling products. Though the industry has relatively high coverage (.95) and specialization (.88) potato, wheat, and tapioca starch, as well as ethanol production. The first two tables in this sheet deal with the allocation of energy consumption to these oublic literature on material consumption by the industry separates out materials used for ethanol production. Energy use estimates contained in MECS ratios (U.S. Department of Commerce 1994), the industry does produce significant quantities of ethanol, a relatively energy intensive product. Most This sheet contains an inventory of the wet com milling process. The process inputs and outputs are normalized to one bushel of corn input. products. Table 3 then uses the adjusted MECS data to develop an energy balance for the wet com milling industry. There are also several co-products of glucose (or com starch, depending on the desired end product). These include com oil, and animal feeds, inputs and outputs of the industry must be allocated between these products. This has been done on this sheet on the basis of product dry weight. Thus the right hand column gives the inputs and outputs per pound of product output, which can be applied to any of the products and coproducts.

sheets of the file. Sheet two contains the raw TRI data. Sheet three contains power plant coal ash content data. Sheet 4 contains power plant sulfur content Some data was derived in these estimates from publicly available databases. Because these datasets are fairly large, they have been included on separate

public data. The estimates based on public data are crude enough to suggest that this discrepancy may be an overestimate. Again, the time frame reconcile differences. Some of these are fairly significant. For example energy use in the NREL model is only about half that estimated based on model was only recently completed, and so while the results are often included here for comparison purposes, insufficient time was available to NREL has developed a process model for a wet com mill to provide glucose for the BDO process. The starch conversion component of this for completion of the module limit our ability to further explore the source of these differences.

References/citations:

- 1 Austin, George T. 1984. Shreve's Chemical Process Industries, fifth edition, McGraw Hill, New York
- 2 Babcock and Wilcox. 1992. Steam: Its Generation and Use, 40th Edition, S.C. Stulz and J.B. Kitto (eds.).
- 3 Blanchard, Paul H. 1992. Technology of Corn Wet Milling and Associated Processes, Industrial Chemical Library, vol. 4, Elsevier Press, New York.
- 4 Boynton, Robert S. 1980. Chemistry and Technology of Lime and Limestone, Second Edition, John Wiley and Sons, Inc., New York.
- CE Power Systems. 1967. Steam Tables: Properties of Saturated and Superheated Steam, reprinted from ASME Steam Tables (1967).
- Cengel, Y. A., and M. Boles. 1989. Thermodynamics: An Engineering Approach,
 - McGraw-Hill, Inc., New York.
- 7 Chambers, R.S., et al. 1979. Gasohol: Does it or Doesn't it Produce Positive Net Energy,
 - Science, vol. 206, November 1979, pp. 789-795.
- 8 Code of Federal Regulations, 40 CFR 406.15, 1994 edition.
- 9 Com Refiners Association, Inc. 19947. 1994 Com Annual, Corn Refiners Association, Washington, D.C.
- 10 Davis, Stacy C. 1994. Transportation Energy Data Book: Edition 14, Oak Ridge National Laboratory, ORNL-6798.
- 11 DeLuchi, M. 1993. Emissions of Greenhouse Gases from the Use of Transportation Fuels and Electricity,

Argonne National Laboratory, ANL/ESD/TM-22, Vol. 2.

- 12 Divine, T.E., D.P. Alzheimer, and W.F. Smith. 1977. Estimates of Process Energy Use in Four Key Food Products Industries, presented at the 1977 Annual Meeting of the Pacific Northwest Region American Society of Agricultural Engineers, Pendetton, OR, September 7-9, 1977.
- 13 Giampietro, M., and David Pimentel. 1990. Alcohol and Biogass Production from Biomass, Critical Reviews in Plant Sciences, Vol. 9, No. 3, pp. 213-233.
- 14 Jones, K.W. 1989. Operation Case Histories of the South Point Ethanol and Kentucky Agricultural Energy Corporation Fuel Ethanol Plants in, Energy from Biomass and Wastes XII, D.L. Klass (ed.), Institute of Gas Technology, pp. 1343-1375.
- 15 Lindeburg, M.R. 1988. Engineering Unit Conversions, Professional Publications Inc., Belmont, CA
- 16 Marland, G., and A. Turhollow. 1990. Carbon Dioxide Emissions from Production and Combustion of Fuel Ethanol from Com, Oak Ridge National Laboratory, ORNL/TM-11180.
- 17 Murray, B.C., D.H. Gross, and T.J. Fox. 1994. Starch Manufacturing: A Profile, Final report to the U.S. EPA by the Center for Economics and Research, Research Triangle Park, NC.
- 18 National Corn Growers Association, and National Corn Development Foundation. 1995. The World of Corn: 1995.
- 19 Parisi, Frederico. 1983. Energy Balances or Ethanol as a Fuel, Advances in Biochemical Engineering/Biotechnology, 28:42-68 (1983).
- Pirmentel, David (ed.). 1980. Handbook of Energy Utilization in Agriculture, CRC Press, Boca Raton, FL.
- 21 Pimentel, David et al. 1988. Food Versus Biomass Fuel: Socioeconomic and Environmental Impacts in the United States, Brazil, India, and Kenya, Advances in Food Research, Vol. 32, pp. 185-238, 1988.
- 22 United States Department of Agriculture, Economic Research Service. 1993. Feed Situation and Outlook Report.
- 23 USDA/ERS. 1994. Sugar and Sweetner: Situation and Outlook Report, SSSV 19N2, June 1994.
- 24 U.S. Department of Commerce, Bureau of the Census. 1994. 1992 Census of Manufactures: Grain Mill Products, MC92-I-20D(P).
- United States Department of Energy, Energy Information Administration. 1994. Manufacturing Consumption of Energy: 1991, DOE/EIA 0512(91).
- 26 United States Department of Energy, Energy Information Administration. 1994. Emissions of Greenhouse Gases in the U.S.: 1987-1992, DOE/EIA-0573.
- 27 United States Department of Energy, Energy Information Administration. 1993. Annual Energy Review: 1993, DOE/EIA-0384(93).
- 28 United States Environmental Protection Agency. 1995. Compilation of Air Pollutant Emission Factors, AP-42 Fifth Edition.
- 29 U.S. EPA. 1980. Source Category Survey: Starch Manufacturing Industry, EPA-450/3-80-040
- 30 U.S. EPA. 1981. Source Category Survey: Animal Feed Dryers, EPA-450/3-81-017
- 31 United States Department of the Interior, Bureau of Mines. 1994. Mineral Commodity Summaries: 1994

- 32 Unnasch, Stefan. 1990. Greenhouse Gas Emission from Ethanol Production and Vehicle Use, Acurex Corp. for the Nat'l Corn Growers Association
- 33 Utility Data Institute, 1995. EEI Power Statistics Database.
- 34 Weast, R.C., and M.J. Astle (ed). 1981. Handbook of Chemistry and Physics, 62nd Edition, CRC Press, Boca Raton, Florida.
- 35 Weinblatt, Herbert, T.S. Reddy, and Anthonly Turhollow. 1982. Energy and Precious Fuels Requirements of Fuel Alcohol Production, Vol. II, Appendices A and B: Ethanol from Grain, DOE/NASA/0292-1
- 36 Whistler, R. L., J.N. BeMiller, and E.F. Paschall (ed.). 1984. Starch: Chemistry and Technology, Academic Press, NY.

List of Tables:

Table Number Table Name

- 1 Ethanol Production: 1991
- 2 Production of Potato and Wheat Starch in SIC 2046
 - 3 Wet Com Mill Energy Balance
- 4 Electricity Balance in Wet Corn Milling Industry
- 5 Emissions from Energy Consumption In Wet Corn Mills
 - 6 Toxic Releases from The Wet Corn Milling Industry
- 7 Particulate Emissions from Corn Milling Operations
- 8 Water Emissions from the Wet Corn Milling Industry 9 Water Consumption in Wet Com Mills

 - 10 Material Balance in Wet Com Mills11 Sulfur Dioxide Use in Wet Com Milling Industry12 Ash Production from Coal Consumption

Allocated LCI components Allocated LCI components Air NOx SOx PM-10 Total Partic	components NOx SOx PM-10 Total Particulate	nq/q nq/q	Units	Unallocated Quantity 0.048 0.052 0.032 0.086	Units b/lb product b/lb product b/lb product b/lb product b/lb product	Allocated Quantity 9,72E-04 1,06E-03 6,41E-04 1,74E-03	Data Quality Indicator Comments 2 Driven by A 2 Driven by A 2 Driven by A 2 Large varia	Comments 2 Driven by AP-42 data on fluidized bed coal combustion, data qu 2 Driven by AP-42 data on fluidized bed coal combustion, data qu 2 Driven by AP-42 data on fluidized bed coal combustion, data qu 2 Large variations in uncontrolled and controlled values.
	CO Ib/bu CO2 Ib/bu Non-Methane Org. ComIb/bu Methane Ib/bu N2O Ib/bu HCL Ib/bu Ammonia Ib/bu Chlorine Ib/bu	ud/al bulyu ud/al ud/al ud/al ud/al ud/al		0.044 II 15.62 II 1.52E-04 II 0.013 II 3.57E-04 II 8.85E-05 II 2.41E-05 II	ib/lb product b/lb product b/lb product ib/lb product	8.91E-04 3.18E-01 3.51E-06 3.09E-06 2.72E-04 7.26E-06 1.80E-06 7.95E-07 4.90E-07	2 DTM 2 DTM 3 Bas 3 Bas 3 Bas 8 Bas	2 Driven by AP-42 data on fluidized bed coal combustion, data que 2 Driven by AP-42 data on fluidized bed coal combustion, data que 2 Driven by AP-42 data on fluidized bed coal combustion, data que 2 Driven by AP-42 data on fluidized bed coal combustion, data que 2 Driven by AP-42 data on fluidized bed coal combustion, data que 3 Based on aggregate TRI data for several years. 3 Based on aggregate TRI data for several years. 3 Based on aggregate TRI data for several years. 3 Based on aggregate TRI data for several years.
Water	Total Water Emission Ammonia Chlorine BOD5 TSS	gallons/bu Ib/bu Ib/bu Ib/bu	3	30 g 2.80E-04 li 1.60E-06 li 0.020 li	30 gallons/lb product 2.80E-04 ib/lb product 1.60E-06 ib/lb product 0.020 ib/lb product 0.025 ib/lb product	0.61 5.70E-06 3.26E-08 4.07E-04 5.09E-04	3 Tyr 3 Baa 3 Baa 6 Baa	3 Typical estimate. No assessment of statistical reliability. 3 Based on aggregate TRI data for several years. 3 Based on aggregate TRI data for several years. 3 Based on CFR regulations for new Facilities. 3 Based on CFR regulations for new Facilities.
Solid Wastes HCL	нсг	nq/q		5.50E-06 I	5.50E-06 lb/lb product	1.12E-07	3 Bas	3 Based on aggregate TRI data for several years.

oal.	n industr n industr n industr		ates.	ita, and c	ita, and c	ta, and c	ta, and c	ita, and c																									
 Based on aggregate TRI data for several years. Estimated from information on typical mid-west utility coal. 	 No current process specific data available. Derived from industr No current process specific data available. Derived from industr No current process specific data available. Derived from industr 	2 Typical estimate. No assessment of statistical reliability.	3 Modeled estimate conforms with other published estimates.	4 Material balance based on large sample and current data, and c	4 Material balance based on large sample and current data, and c	4 Material balance based on large sample and current data, and c	4 Material balance based on large sample and current data, and c	4 Material balance based on large sample and current data, and c																									
3 Based on aggregate TRI data for several years. 3 Estimated from information on typical mid-west	ta available. ta available. ta available.	ent of statisti	th other pub	e sample ar	e sample ar	e sample ar	e sample ar	e sample an																									
e TRI data t	specific dal specific dal specific dal	o assessme	onforms wi	sed on larg	ised on larg	ised on larg	ised on larg	ised on larg																									
on aggregal led from info	ent process ent process ent process	estimate. N	d estimate	l balance ba	l balance ba	l balance ba	l balance ba	i balance ba											.0 .40														
3 Based 3 Estimal	2 No curr 2 No curr 2 No curr	2 Typical	3 Modele	4 Materia											from .385 (
																			11 Depending on plant and process may range from .385 to .40.														
22	ឧឧឧ	2	2	%!	%!	%:	%	%										893	and process														
1.83E-07 1.30E-02	823 1,063 0.069	0.712	0.0012	100.00%	65.45%	1.94%	27.67%	4.94%										34 Specific Gravity = .7893	ing on plant														
												15	15	15	ট দ	. <u>1</u>	5	34 Specific	11 Depend	15	ξī,	<u>. 1</u>	5	1	15	15	25						
luct fuct	oduct oduct roduct	b product	nct																									ame					
9.00E-06 Ib/lb product 0.64 Ib/lb product	Btu/lb product Btu/lb product Kwh/lb product	5 Gallons/lb product	0.06 lb/lb product	49.16 Percent	32.17 Percent	0.95 Percent	13.60 Percent	2.43 Percent		Source																		Defined Name					
9.00E-00 0.6	40,479 52,255 3.38	35	0.0	49.16	32.17	96.0	13.60	2.43						E .	% F	5			_		_ 3	mile	shortton metricton	_	uo	2	<u> </u>		40.080	15.999	32.060	96.058	12.011
												7 acre_ha			3 feet_meter						l liters_ccm						_	¥;					
											ις, (Ω	2.47	2.20	10,000	3.28	3.97	9.47E-04	6.58	0.4	1.00E+08	0.001	640	1.10	84,600	3.7854	8.35	22,276,000					ate	
lb/bu	Btu/bu Btu/bu Kwh/bu	gallons/bu	nq/qı	lb/bu	ng/qı	nq/qı	nq/q	lb/bu		Multiplier																		Name	Calcium	Oxygen	Sulfur	Calcium Sulfate	Carbon
					_	_	_	_		_																			O	U	o,	0 0	,
Ammonia Coal Ash	N.G. Coal Electricity	Water	Sulfur	Total	Glucose	Com Oil	Gluten Feed	Gluten Meal		Unit to	ڡ	acre	۰.	sq. meters	e de	pţn ptn	pţn		_	Sq. cm	liters	acres	short tons	2	liters		Million Btu	Molecular Wts. Element/Compound	60			CaSO4	
~ 0	Resource Cons N. G. Coal Elect	>	0)		U	O	U	U	fors					es	ous			Gallons Ethanolb	thano				Suc	Gallon Ethanol Btu		Gallons water Ib	Tons of Coal M	ular Wts. Ei	Ca	0	S	Ö	ی
	Resc			Outputs					Conversion Factors	Unit from	2	Hectares	\$.	hectares	meter short tons	KCal	Joules	Galfo	Gallo	Hectares	cubic cm	sq mile	metric tons	Gallor	Gallons	Gallo	Tons	Molec					
									ပ်																								

	gypsum_ratio	calcium_ratio	1.373 sulfur_ratio	3.66 carbon_ratio	sulfoxide_ratio
44.010	4.246	1.098	1.373	3.66	0.50 s
Carbon Dioxide					
200	Ratio CaSO4:S	Ratio CO2:Ca	Ratio CO2:S	Ratio CO2:C	Ratio S:S02

Calculatio

Table 1 Ethanol Production: 1991

USDA/ERS.1993. Feed Situation and Outloook Report.

3 3 3

National Corn Growers Association, and National Corn Development Foundation. 1995. The World of Corn: 1995.

Data provided by Kathy Bryan, Consultant to Ethanol Industry

(4) Marland, G., and A. Turhollow. 1990. Carbon Dioxide Emissions from Production and Combustion of Fuel Ethanol from Corn, Oak Ridge National Laboratory, ORNL/TM-11180.

(5) DeLuchi, M. 1993. Emissions of Greenhouse Gases from the Use of Transportation Fuels and Electricity, Argonne National Laboratory, ANL/ESD/TM-22, Vol. 2.

Unnasch, Stefan. 1990. Greenhouse Gas Emission from Ethanol Production and Vehicle Use, Acurex Corp. for the Nat'l Corn Growers Association 9

Weinblatt, Herbert, T.S. Reddy, and Anthonly Turhollow. 1982. Energy and Precious Fuels Requirements of Fuel Alcohol Production, Vol. II, Appendices A and B: Ethanol from Grain, DOE/NASA/0292-1 6

Jones, K.W. 1989. Operation Case Histories of the South Point Ethanol and Kentucky Agricultural Energy Corporation Fuel Ethanol Plants in, Energy from Biomass and Wastes XII, D.L. Klass (ed.), Institute of Gas Technology, pp. 1343-1375. 6

	Raw Input Quantity	_	Units	Source		
Com Grind for A	∢.	429 N	429 Million Bu	(1)		
Ethanol per bu		2.5 (2.5 Gallons/bu	(2)		
Gallons Ethano		1072.5 N	1072.5 Million Gallons	(calculated)		
% Capacity of C		49.70%		(3)		
Estimated Prod	Ð	533	533 Million Gallons	(calculated)		
Energy Intensity		9,504 E	49,504 Btu/gallon 1.36 Kwh/gallon	(see below) 4 (see below)	9504	49504 Btu/gallon 4637 Btu/gallon
Energy Consum		724 1	26.39 Trillion Btu 724 Million Kwh	(calculated) (calculated)	5.39	26.39 Trillion Btu 2.47 Trillion Btu

Notes: Com use data is typically based on the com marketing year, which, like the DOE fiscal year, begins September 1. I have used the 1990/91

marketing year data to estimate corn grind for alcohol production in 1991.

Estimates of Energy Intensity of Ethanol Production

Units	56,846 Btu/gallon	50,760 Btu/gallon	48,000 Btu/gallon		ober 1984	in July 1987	
Range	from 39,885	29,610	34,000		Notes: South Point Ethanol in October 1984	Kentucky Ag. Energy plant in July 1987	Fuel Electricity Electricity
Units	48,366 Btu/gallon 4,133 Btu/gallon	44,415 Btu/gallon 4,230 Btu/gallon	41,000 Btu/gallon 5,118 Btu/gallon	46,530 Btu/gallon 4,299 Btu/gallon	67,351 Btu/gallon 4,572 Btu/gallon	49,361 Btu/gallon 5,470 Btu/gallon	49,504 Btu/gallon 4,637 Btu/gallon 1.36 kwh/gallon
Transformed Input Quantity	20.11	9.0	48,000		·		
	to 14.11	0.35	34,000				Average
Range	from						
Source	(4)	(5) (electricity)	(9)	6	(6)	(6)	
Raw Input Quantity Units	17.11 MM J/kg 0.32 kwh/liter	0.525 Btu/Btu Ethanol 0.05 Btu/Btu Ethanol	41,000 Btu/gal 1.50 kwh/gallon	0.55 Btu/Btu Ethanol 1.26 kwh/gallon	16,329 tons coal 7,236,232 kwh 5,400,744 gallons ethanol	4,670 tons coal 3,378,600 kwh 2,107,511 gallons ethanol	

Notes: Ethanol energy intensity estimates vary more widely than is indicated by this data. I have tried to use the most recent data available for which both fuel and electricity estimates are given separately. Where possible I have used electricity estimates given in kwh/unit ethanol to avoid errors in converting to btus. I then convert to btus using the convention of 3412 btu/kwh.

Ξ

3

Production of Potato and Wheat Starch in SIC 2046 Table 2

CE Power Systems. 1967. Steam Tables: Properties of Saturated and Superheated Steam, reprinted from ASME Steam Tables (1967).

Cengel, Y. A., and M. Boles. 1989. Thermodynamics: An Engineering Approach,

McGraw-Hill, Inc., New York. 8

Murray, B.C., D.H. Gross, and T.J. Fox. 1994. Starch Manufacturing: A Profile, Final report to the U.S. EPA by the Center for Economics and Research, Research Triangle Park, NC. ල

Personal Communication, Damon Horn, A.E. Staley, Stanfield, OR. Personal Communication, Mick Persinger, Penwest, Richland, WA.

Most potato starch plants purchase a sturry from other processing facilitities (e.g. A.E. Staley, Stanfield and Murtaugh plants, and Penwest, Richland and Idaho Falls plants). Energy is consumed in motors and dryers. Assuming that the drying energy dominates, we can calculate an energy intensity per Ib based on data from A.E. Staley, Stanfield.

	Ra	Raw Input Quantity	Units	Source	Notes:
Purchased Slurry Slurry Density Approximate Solids	}		22 Baume 36%	(4)	Damon Hom provided me with detailed estimates of the operating parameters of a mill which dries purchases s
Centrifuge to Cake Moisture			42.00%	(4)	
Dry to Final Moisture			12.50%	(4)	
Dryer Operation					
Input Water Starch Total			63,362 lb/day 87,500 lb/day 150,862 lb/day	(calculated) (calculated) (calculated)	
Output Water Starch Total			12,500 lb/day 87,500 lb/day 100,000 lb/day	(calculated) (calculated) (4)	
Dryer RemovesWater			50,862 lb/day	(calculated)	
Enthalpy of Vaporization at 212 F Specific Heat of Water	n at 212 F		970.30 Btu/lb 1 Btu/F	(1) (2)	
Temp in Temp out			70 F 212 F	(estimate) (estimate)	
Energy to dry starch Total Energy Intensity		56	1,112 Btu/lb water eva 56,573,879 Btu 566 Btu/lb dry starch	water evaporate (calculated) (calculated) dry starch (calculated)	
Dryer Rating Capacity Effective Input Daily Operation Output			7 million Btu/hr 60% 4.2 million Btu/hr 15 hours	(4) (4) (calculated) (4)	This estimate was carried out as a check on the other method. While 90% efficinecy may be a little high for a starch dryer, for the level of accuracy needed here this provides and acceptable concurrence to the above energy intensity estimate.
Total Energy/lb Efficiency			630 Btu/lb 89.8%	(calculated)	
Potato Starch Production 1992 Energy Use	on 1992		0.207 Billion Ib	ල	

	1.30E+11 Btu 0.130 T Btu	(calculated)	
Estimate Wheat Starch Energy Intensity from Potato		None of the wheat	None of the wheat starch mfgs would give me any info on energy. Ken Smick at
Wheat Starch Production 1992		ADM did say that t	ADM did say that they dry wheat starch from 35-40% solids down to 12% moisture
	0.276 Billion Ib	(3)	
Energy Use			
	1.74E+11 Btu 0.174 TBtu	(calculated) (calculated)	
Same for Tapioca			
Tapioca Starch Production 1992			
Energy Use	0.069 Billion Ib	(3)	
	4.35E+10 Btu 0.043 T Btu	(calculated) (calculated)	

12% moisture content.

Notes: Based on these estimates the total energy use for starch drying is quite small. Assuming that there is additional electrical energy consumption, and that some facilities produce potato starch from potatoes instead of a sturry, the total energy consumption may be as much as double this value, which is still negligible relative to total energy use in SIC 2046.

(calculated)

0.348 TBtu

Total Potato, Wheat, and Tapioca Starch Energy

Energy Information Administration. 1994. Manufacturing Consumption of Energy: 1991, DOE/EIA 0512(91).

Ξ

8

Wet Com Mill Energy Balance

Table 3

USDA/ERS. 1994. Sugar and Sweetner: Situation and Outlook Report, SSSV 19N2, June 1994.

Divine, T.E., D.P. Alzheimer, and W.F. Smith. 1977. Estimates of Process Energy Use in Four Key Food Products Industries, presented at the 1977 Annual Meeting of the Pacific Northwest Region American Society of Agricultural Engineers, Pendelton, OR, September 7-9, 1977. ල

Notes: Based on 1991 MECS energy consumption for all purposes. Electricity data is taken from Table 4. Energy use is rounded to eliminate minor fuels, then adjusted to account for energy use in ethanol production.

811 MM Bu 1991 Com Grin Total Primary Consumption of Fuel for All Purposes (MECS Table 1)

(Trillion Btu)

Fuel

8

Energy per Bushel (Btu) Less Ethanol Energy Adj. Total Input Quantity Rounded Raw Input Quantity

0	0	53.612		60 213	212,60	0		45 200	567'61	5	6,519	0	122 827	21812				2 193 Bt://b	4.48 Kwh/lb			1,656 Btu/lb 0.06 Kwh/lb
0	0	43	· c	o g	3	0		5	4 0		co	0	100	8								
0	0	12	c	. t	?	0		6			-	0	26	2		100 Tbtu	811 MM bushels	122,827 Btu/bu	15,293 Btu/bu		24.5% (3)	92,735 Btu/bu 11,547 Btu/bu
0	0	55	0	7.		0		4		• •	0	0	126	50							p concentra	
0.18	0.17	52	0.004	89		ဖ		41	0	ď	o (0	126	20	duction - SIC 2046				>	for about the second	region of criedy used for statical processing and syrup concentra	e Production cose Production
R. Oil		N.G.	LPG	Coal	Coke, Breeze	and Other	Electricity	Purchased	Sold	Conv. Gen		Aenew. Gen.	Net Fuel	Net Electric	Energy Intensity of Production - SIC 2046	Energy Consumed	Grind	Fuel Energy Intensity	Electric Energy Intensity	Fraction of engineers	Toen (files to tours)	Fuel Intensity of Glucose Production Electric Intensity of Glucose Production

Notes: Significant processing of starch and glucose products (such as glucose concentration or starch modification) occurs in wet com mills.

To try and account for the most energy intensive aspects of this processing, the fraction of energy used for these processes from reference 7 has been deducted from the total wet mill energy intensity estimate. While this is a rather crude method, lacking additional data it will have to suffice.

723 Btu/lb 933 Btu/lb 6.04E-02 Kwh/lb 8.36E-03 Kwh/lb			
ဖ	229,600 Btu/bu 173,376 Btu/bu	797	
40,479 Btu/bu 52,255 Btu/bu 3.38 Kwh/bu 0.47 Kwh/bu		Btu/lb 44,658	
	© ©	Btu/bu 49.05	
40,479 Bturbu 52,255 Bturbu 11,547 Bturbu 1,597 Bturbu	4,100 Btu/lb 3,096 Btu/lb	Ib steam/lb com Ib steam/bu 0.88	
Purchased Generated	sTotal Less Syrup Concentration, starch drying, and dextr	kg com bste 579,078,355	266
Fuel Spift Natural Gas Coal Electricty	Other EstimatesTotal Less Syrup Concentratio	kg steam NREL Estimate 507,182,742	Assuming 80% efficiency boilers total fu

43.65% 56.35%

> Com Use to Produce SEnergy Intensity (kwh/kg Energy Intensity (kwh/lb com) 184,690,076 Electricity Use (kwh/yr) Starch Use (kg/yr) t 2,524,789 110,225,570 NREL Electricit

Because the NREL data has only recently been provided, and is still in the process of being updated, it was not possible to resolve the differences in estimates.

Notes: Based on this estimate the energy intensity of wet com milling has dropped significantly since 1977. This seems fairly reasonable in such a long time frame. 2,417 Btu/lb. This suggests that our estimate is at It can also be compared to the energy intensity estimate for ethano least in the ballpark for com processing at wet mills.

Table 4 Electricity Balance in Wet Corn Milling Industry

Electricity Balance. Raw Input Data from MECS Tables 4, 16, 17. All data in million Kwh.

Estimated values (mine) are in bold type. Calculated values are in italics.

Tranfers in are assumed to equal zero. Thus purchases equal the sum of purchases and transfers in. Sales can be calculated for the Midwest and U.S. regions as the difference between columns E and K. Next, conventional generation convention in the West and South must be estimated. If the ratio of generation to purchases is assumed to be the same in these two regions, successive guesses can be made until the relationship is balanced. Using 15 million kwh conv. generation in the West, the remaining values can be calculated, giving a reasonable balance to the table.

P&Tin	Table 16 Gen. (conv.)	Table 17 Gen. (renew.)	E + F Total Onsite Gen.	Table 16 Sales and Tr	Table 16 P&Tin + Gen - S Sales and TransfersNet Demand	rable 10 P&Tin + Gen - Sale P&Tin + Renew Sale Net Demand Net Electricity
c	693	15	0	15	0	108 93
. 0	837	134	0	134	82 86	
9	199	1,617	0	1,617	7 4,809	3,192
0	15	0	0	0	0 55	
0	143	1,766	0	1,766	89 5,8,	
0.00	14.14	6.03	0.00	6.03	0.30 19.86	13.83
	ratio generation to purchases West South		Balance Net Demand 0.161 0.160	nd 1		

Table 5 Emissions from Energy Consumption In Wet Com Mills

U.S. EPA, AP-42, Sections 1.1 and 1.4

9

Personal Communication, Bob Bessette, Council of Industrial Boilers, 6-16-95.

 United States Department of Energy, Energy Information Administration. 1993. Annual Energy Review: 1993, DOE/EIA-0384(93).

 United States Department of Energy, Energy Information Administration. 1994. Emissions of Greenhouse Gases in the U.S.: 1987-1992, DOE/EIA-0573.

L	š	ą	,		

Transformed Input Quantity	0.53346 0.07856 0.05141 0.29922 0.00058 0.01329 0.03880 116.8885 0.00137	0.68235 0.99356 0.59257 0.80804 206.63558 0.00224 0.00269
Notes Transfor Quantity	Data are for small industrial boilers. Uncontrolled emission factor. No data fo Data are for small industrial boilers	Average of values for bubbling and circu
_		
Source	eee eee§eee	® 5555 % 555
	cubic feet cubic feet cubic feet cubic feet cubic feet cubic feet cubic feet tons carbour/ tons carbour/	u/fon
Units	550 lb/million cubic feet (1) 81 lb/million cubic feet (1) 53 lb/million cubic feet (1) 308.5 lb/million cubic feet (1) 3.7 lb/million cubic feet (1) 13.7 lb/million cubic feet (1) 4.4 million cubic feet (1) 14.47 million cubic feet (1) 0.289 lb/million cubic feet (1) 0.289 lb/million cubic feet (1) 0.299 lb/million cubic feet (1)	22.276 Million btu/ton (3) 15.2 lb/fon (1) 22.1 lb/ton (1) 13.2 lb/ton (1) 18 lb/ton (1) 25.58 million m tons carbon/Q4) 0.05 lb/ton (1) 5.7 lb/ton (1)
Raw Input Quantity		
Category	Uncontrolled Low NOx Flue Gas Recirc. Average	
Pollutant	NOX SO2 PM-10 CO CO COS Non-Methane VOC's Methane	NOx SO2 PM-10 CO CO2 Non-Methane VOC's Methane
Emission Facto Fuel Gas		Coal Heat Content

SO2 emission factor estimate for fluidized bed coal boilers

SO2 emissions can be calculated as SO2 = 39.6*5*(Ca/S)^-1.9 where S is the sulfur percentage of the coal, and Ca/S is the calcium to sulfur ratio in the bed.

(2)	(estimate)	(calculated)	(calculated)
2.2 (ratio)	2.50 percent	22.1 lb/ton	0.99 lb/mm btu
Ca/S	Sulfur percent	802	

Units	17 lb/bu	34 lb/bu	20 lb/bu
Fuel Related Er@uantity	NOx 0.04777	SO2 0.05194	PM-10 0.03150

0.04380 lb/bu	15.52937 lb/bu	0.00017 lb/bu	0.00015 lb/bu	0.01337 lb/bii
8	C02	Non-Methane V	Methane	CCN

limits on sulfur emissions. For utilities in lowa, Illinois and Indiana, the average sulfur content of coal used was around 1.5% in 1993 (5). I assume a sulfur content of 2.50 percent to account for the use of cheap, high sulfur coal in FBC boilers. emission factors for this technology. Because fluidized bed boilers remove sulfur, it is possible to burn much higher sulfur content coal without surpassing Notes: According to Bob Bessett, fluidized bed boilers are the most common type used in this industry. Emissions from coal are thus estimated based on

Toxic Releases from The Wet Corn Milling Industry

Table 6

U.S. EPA, Toxic Release Inventory, Data downloaded from Right To Know (RTK) Network online database. (Raw data on sheet TOXICS) ε

USDA/ERS.1993. Feed Situation and Outloook Report.

(2)

This Table includes data only on emissions of four toxics. For information on why other toxics categories were exluded, see the sheet TOXICS.

Total Toxic Releases of Ammonia, HCL, Chlorine, and Sulfuric Acid

All releases in Ib

Grind						
	Fug Air	Stack Air		Water	Land	
(million bu)	Ē.					
987	1104	416,721	1,000	35	0,250	50,459
988	1160	699'89	3,686	161	1,420	250
989	1221	81,151	5,052	710	0,368	1,450
066	1221	19,706	8,332	776	6,472	6,865
991	1318	18,264	5,384	427	7,024	13,576
1992	1375	16,252	4,437	266	6,877	0
993	1413	71,687	1,725	36	56,649	0
		692,450	29,616	2,449	,449,060	72,600

Total Toxic Releases of Ammonia, HCL, Chlorine, and Sulfuric Acid All releases in lb

攴

	4.750	750	1.011	1.000	27,000	200	15,910	50 621
Land	0	0	1	S	900	250	0	866
Water	20,996	7,870	32,073	34,203	1,261,725	955,691	977,391	3.289.949
Stack Air	16,578	11,331	16,055	14,241	12,987	7,214	12,010	90,416
Fug Air	1104	1160	1221	1221	1318	1375	1413	
Grind (million bu)	1987	1988	1989	1990	1991	1992	1993	
Year								Total

Total Toxic Releases of Ammonia, HCL, Chlorine, and Sulfuric Acid All releases in Ib

1104 1160 1221 1318 1375 1413 1004 1104 1104 1104 1104 11160 1221 1318 1375 1413			Chlorine							
1104 1,500	Ö	ind	Fug Air	•	Stack Air		Water	La	pui	
1104 1,500 0 250 1/160 1/160 1/160 1/170 1/1	E	illion bu)	.							
1160 3,670 10,252 250 12,172 12,000 1,275 12,000 1,277 12,000 1,277 12,000 1,277 1	1987	11	04	1,500		0		250		0
121 7,172 12,000 250 1,277	1988	1	091	3,670		10,252		250		0
1221 2,755 19 1,177 1,178	1989	12	21	7,172		12,000		250		0
1318 2.501 155,085 11,176 1433 1433 1435 155,085 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,1002 1,1013 1,013 1	1990	12	21	2,755		9		1,277		0
1375 1,267 155,055 1,433 1,413 1,413 1,413 1,413 1,413 1,413 1,413 1,413 1,415 1,4	1991	13	318	2,501		159,896		11,176		0
1413 2,487 4,887 1 1 1 1 1 1 1 1 1	1992	13	375	1,267		155,055		1,433		0
14,637 14,637 14,637 14,637 14,637 14,637 14,637 14,637 14,637 14,637 14,637 14,634 1,002 1,751 1,013	1993	4	113	2,487		4,887		-		-
Suffuric Acid Stack Air Water Land Fug Air Stack Air Stack Air Stack Air Lion3 Lion4 Lion5 Lion6 Lion5 Lion6 Lio				21,352		342,100		14,637		-
Sulfuric Acid Stack Air Water Land 1104 1,751 1,013 0 1121 1,751 1,013 0 1221 1,564 791 0 1221 1,564 791 0 1376 268 61 0 1375 272 104,443 0 1376 272 104,443 0 1376 272 104,443 0 1376 272 104,443 0 1376 272 104,443 0 1376 272 120,459 5 1443 237 227,364 773 Ammonia Stack Air Water 1236 1221 6,361 3,18E-06 1,3E-06 1321 1,3E-05 3,2E-06 1,3E-04 1318 1,3E-05 3,2E-06 1,9E-04 1318 1,3E-05 3,37E-06 1,9E-04 1413 5,07E-05	Foxic Releas	ses of Ammonia, H	ICL, Chlorine, and	Suffuric Acid						
Sulfund Acid Stack Air Water Land 1104 11,002 538 13 13 13 1413 1504 11,751 1,013 0 0 1 1,751 1,013 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ases in Ib									
Fug Air Stack Air Water Land 1104 1,002 538 13 1160 1,751 1,013 0 1221 1,032 59 755 1318 286 61 0 1318 286 61 0 1413 532 120,459 5 1413 5121 227,364 773 Com Grind Hole 5,92E-05 3.18E-06 1.39E-04 1.0 1318 1.39E-05 4.08E-06 6.36E-04 1.0 1413 5.07E-05 3.37E-06 1.94E-04 1.0 1414 3.37E-05 3.37E-06 1.94E-04 1.0 1416 5.07E-05 3.37E-06 1.94E-04 1.0 1417 5.07E-05 3.37E-06 1.94E-04 1.0 1418 1.413 5.07E-05 3.37E-06 1.94E-04 1.0 1418 1.413 5.07E-05 3.37E-06 1.94E-04 1.0 1418 1.4143 5.07E-05 3.37E-06 1.94E-04 1.0 1419 1.4143 5.07E-05 3.37E-06 1.94E-04 1.0 1418 1.4143 5.07E-05 3.37E-06 1.94E-04 1.0 1418 1.4141			Sulfuric Acid							
1104 1,002 538 13 13 15 160 1,751 1,013 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ნ	ind illion bu)	Fug Air	•	Stack Air		Water	ā	and	
1160 1,751 1,013 0 1221 1,504 791 0 1221 1,032 59 755 1318 268 61 0 1375 2272 104,443 0 1413 6,361 227,364 773 Com Grind Ammonia Stack Air Water 4,55E-05 1104 3,77E-04 9,06E-07 4,55E-05 2,139E-04 11160 5,92E-05 3,18E-06 1,39E-04 1,1 1221 1,61E-05 4,08E-06 3,24E-04 1,0 1318 1,39E-05 3,23E-06 1,94E-04 1,0 1375 1,18E-05 3,23E-06 1,94E-04 1,0 1413 5,07E-05 1,22E-06 1,94E-04 1,0 1413 5,07E-05 3,37E-06 1,94E-04 9,0 1404 5,07E-05 3,24E-04 1,0 1413 5,07E-05 3,37E-06 1,94E-04 9,0 1404 1,94E-05 3,24E-04 1,0 1413 5,07E-05 3,37E-06 1,94E-04 9,0 1404 1,0 1,94E-04 1,0 1,0 1414		·	90	1.002		538		13		0
1221 1,504 791 0 755 1318 121 1,032 59 755 1318 268 61 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1988	=======================================	9	1,751		1,013		0		0
1221 1,032 59 755 1318 6,361 104,443 0 1413 6,361 120,459 5 120 Grind Ammonia Fug Air 1104 3.77E-04 9,06E-07 4,55E-05 1.39E-04 1.10 1221 6,65E-05 4,14E-06 6,36E-04 1.10 1375 1.18E-05 3.23E-06 1.94E-04 1.10 1375 1.18E-05 3.23E-06 1.94E-04 1.10 1413 5.07E-05 3.37E-06 6,36E-04 1.00 1413 8,51E-05 3.37E-06 6,36E-04 1.00 140 3.37E-06 3.24E-04 1.00 140 6,65E-05 4,08E-06 1.94E-04 1.00 140 6,65E-05 3.37E-06 1.94E-04 1.00 140 6,65E-05 3.37E-06 1.94E-04 1.00 140 7,07E-05 3.37E-06 1.94E-04 1.00 140 8,51E-05 3.37E-06 1.94E-04 1.00 140 6,65E-05 3.37E-06 1.94E-04 1.00 140 7,07E-05 3.37E-06 1.94E-06 1.00 140 7,07E-05 3.37E-06 1.94E-06 1.00 140 7,07E-05 3.37E-06 1.94E-06 1.00 140 7,07E-05 3.37E-06 1.00 140 7,07E-05 3.37E-06 1.00 140 7,07E-05 3.37E-06 1.00	1989	12	21	1,504		791		0		0
1318 268 61 0 0 1375 272 104,443 0 272 120,459 5 120,459 5 120,459 5 120,459 5 120,459 6 120,459 6 120,459 6 120,459 6 120,459 6 120,459 6 120,459 6 130,459 6 130,459 6 130,650	1990	12	21	1,032		29		755		0
1375 272 104,443 0 5 5 120,459 5 5 120,459 5 5 120,459 5 5 120,459 5 5 120,459 5 5 120,459 5 5 120,459 5 5 120,459 5 5 120,459 5 5 120,459 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1991	13	118	268		61		0		0
1413 532 120,459 5 5 5 5 5 5 5 5 5	1992	13	375	272		104,443		0		0
Com Grind Ammonia Stack Air Water Land Fug Air Stack Air Water Land 4.55E-05 4.55E-05 1.39E-06 1.39E-04 1.11 1.01 1.39E-05 4.08E-06 1.39E-04 1.11 1.39E-05 4.08E-06 3.24E-04 1.01 1.39E-05 4.08E-06 3.24E-04 1.01 1.39E-05 4.08E-06 3.24E-04 1.01 1.39E-05 4.08E-06 3.24E-04 1.01 1.02E-06 3.37E-06 3.37E-06 3.37E-06 3.37E-06 2.80E-04 9.00E-04 1.01 1.02E-06 1.02E-06 1.02E-04 1.02E-06 1.02E-06 1.02E-04 1.02E-06 1.02E-04 1.02E-06 1.02E-06 1.02E-04 1.02E-06 1	1993	4	113	532		120,459		co.		1,182
Ammonia Fug Air Stack Air Water Land Fug Air 1104 3.77E-04 9.06E-07 4.55E-05 1.39E-04 1.19E-01 1.221 6.65E-05 4.14E-06 5.32E-04 1.19E-01 1.39E-05 1.39E-06 6.36E-04 1.03E-05 1.39E-05 1.03E-05 1.39E-05 1.39E-04 1.03E-05 1.39E-05 1.39E-05 1.39E-04 1.03E-05 1.39E-05 1.39E-04 1.03E-05 1.39E-05 1				6,361		227,364		773		1,182
Ammonia Fug Air Stack Air Water Land Fug Air 1104 3.77E-04 9.06E-07 4.55E-05 1.39E-04 1.19E-0 1.221 6.65E-05 4.57E-0 1.39E-05 1.39E-04 1.19E-0 1.221 1.39E-05 8.22E-06 6.36E-04 1.19E-0 1.39E-05 1.39E-05 1.39E-06 1.39E-04 1.03E-06 1.39E-06 1.39E-04 1.03E-06 1.413 5.07E-05 1.22E-06 1.32E-04 1.03E-0 1.413 5.07E-05 1.22E-06 2.80E-04 9.00E-0 1.413 8.51E-05 3.37E-06 2.80E-04 9.00E-0 1.40T-05 1.	Releases pe	r Bushel Com Gri y (lb/bu)	nd							
Grind (million bu) Fug Air Stack Air Water Land (million bu) 1987 1104 3.77E-04 9.06E-07 4.55E-05 4.55E-05 1988 1160 5.92E-05 3.18E-06 1.39E-04 1.19E-04 1990 1221 6.65E-05 4.14E-06 5.82E-04 1.19E-0 1991 1318 1.39E-05 4.08E-06 3.24E-04 1.03E-0 1992 1375 1.18E-05 3.23E-06 1.94E-04 1.03E-0 1993 1413 5.07E-05 1.22E-06 4.01E-05 1.03E-0 1993 1413 5.07E-05 3.37E-06 4.01E-05 9.00E-0 1983 1413 8.51E-05 3.37E-06 2.80E-04 9.00E-0 1983 HCL Fug Air Mater Lond 1.03E-0			Ammonia							
(million bu) 1104 3.77E-04 9.06E-07 4.55E-05 4.55E-05 4.55E-05 4.55E-05 4.55E-05 4.55E-05 4.55E-05 4.55E-05 4.55E-05 4.55E-04 4.55E-04 2.16E-04 2.16E-04 1.19E-04 2.16E-04 1.19E-04 1.19E-04 1.19E-04 1.19E-04 1.19E-04 1.19E-04 1.19E-04 1.19E-04 1.03E-04 9.00E-0 1993 1413 5.07E-05 1.22E-06 2.80E-04 9.00E-0 1993 HCL Fug Air Water Mater Land 9.00E-0	ŏ	ind	Fug Air	.,	Stack Air		Water	La	pue	
1987 1104 3.77E-04 9.06E-07 4.55E-05 4.57E-05 4.57E-04 4.57E-04 4.57E-04 4.57E-04 7.19E-04 7.19E-04 7.19E-04 7.19E-04 7.19E-04 7.19E-04 7.03E-04 7.00E-05 Is Intensity (lb/bu) HCL Stack Air Water Land Land Land										
1988 1160 5.92E-05 3.18E-06 1.39E-04 2.16E-0 1989 1221 6.65E-05 4.14E-06 5.82E-04 1.19E-04 1.19E-04 1990 1221 1.61E-05 6.82E-06 6.36E-04 1.19E-04 1.19E-04 1991 1318 1.39E-05 4.08E-06 6.36E-04 5.62E-0 1992 1375 1.18E-05 3.23E-06 1.94E-04 1.03E-0 1993 1413 5.07E-05 1.22E-06 4.01E-05 4.01E-05 1s Intensity (lb/bu) HCL 8.51E-05 3.37E-06 2.80E-04 9.00E-0 Grind Fug Air Yater Land 1.00E-0	1987	=	94	3.77E-04		9.06E-07		4.55E-05	4.5	37E-05
1989 1221 6.65E-05 4.14E-06 5.82E-04 1.19E-0 1990 1221 1.61E-05 6.82E-06 6.36E-04 1.19E-0 1991 1318 1.39E-05 4.08E-06 3.24E-04 1.03E-0 1992 1375 1.18E-05 3.23E-06 1.94E-04 1.03E-0 1993 1413 5.07E-05 1.22E-06 4.01E-05 1.00E-0 1993 1413 8.51E-05 3.37E-06 2.80E-04 9.00E-0 10 MCL HCL Stack Air Water Land Land	1988	=	091	5.92E-05		3.18E-06		1.39E-04	2.1	6E-07
1990 1221 1.61E-05 6.82E-06 6.36E-04 5.62E-0 1991 1318 1.39E-05 4.08E-06 3.24E-04 1.03E-0 1992 1375 1.18E-05 3.23E-06 1.94E-04 1.03E-0 1993 1413 5.07E-05 1.22E-06 4.01E-05 9.00E-0 1993 151E-05 3.37E-06 2.80E-04 9.00E-0 10 MCL HCL Stack Air Water Land	1989	12	221	6.65E-05		4.14E-06		5.82E-04	1.1	9E-06
1991 1318 1.39E-05 4.08E-06 3.24E-04 1.03E-0 1992 1375 1.18E-05 3.23E-06 1.94E-04 1.03E-0 1993 1413 5.07E-05 1.22E-06 4.01E-05 1000 8.51E-05 3.37E-06 2.80E-04 9.00E-0 1000 9.00E-0 9.00E-0 9.00E-0 1000 HCL Stack Air Water Land	1990	2	221	1.61E-05		6.82E-06		6.36E-04	5.6	32E-06
1992 1375 1.18E-05 3.23E-06 1.94E-04 1993 1413 5.07E-05 1.22E-06 4.01E-05 1993 1413 5.07E-05 2.80E-04 9.00E-0 10 Excess per Bushel Com Grind is Intensity (lb/bu) HCL 3.37E-06 2.80E-04 9.00E-0 10 Grind Fug Air Stack Air Water Land	1991	13	318	1.39E-05		4.08E-06		3.24E-04	1.0	3E-05
1993 1413 5.07E-05 1.22E-06 4.01E-05 8.51E-05 3.37E-06 2.80E-04 9.00E-0 is Intensity (lb/bu)	1992	13	375	1.18E-05		3.23E-06		1.94E-04		0
8.51E-05 3.37E-06 2.80E-04 leases per Bushel Corn Grind hCL Stack Air Water Land	1993	14	113	5.07E-05		1.22E-06		4.01E-05		0
I Com Grind HCL Fug Air Stack Air Water	e e			8.51E-05		3.37E-06		2.80E-04	9.0	90-30C
HCL Fug Air Stack Air Water	Releases pe	r Bushel Com Gri	Je							
Fug Air Stack Air Water	ions Intensit	y (lb/bu)								
	ŏ	ind	Fug Air	•	Stack Air		Water	Z.	pue	

A 30E-06	1.00-00	6.47E-07	8.28E-07	8.19E-07	2.05E-05	1.45E-07	1.13E-05	5.50E-06					0	0	0	0	0	0	7.08E-10	1.01E-10					0	0	0	0	0	0	8.37E-07	1.20E-07
c	>	0	9.01E-09	4.10E-09	4.55E-07	1.82E-07	0	9.29E-08			Land		2.26E-07	2.16E-07	2.05E-07	1.05E-06	8.48E-06	1.04E-06	7.08E-10	1.60E-06			Land		1.18E-08	0	0	6.18E-07	0	0	3.54E-09	9.05E-08
1 905-05	00-100:1	6.78E-06	2.63E-05	2.80E-05	9.57E-04	6.95E-04	6.92E-04	3.46E-04			Water		0.00E+00	8.84E-06	9.83E-06	8.19E-09	1.21E-04	1.13E-04	3.46E-06	3.66E-05			Water		4.87E-07	8.73E-07	6.48E-07	4.83E-08	4.63E-08	7.60E-05	8.53E-05	2.33E-05
1 50E_05	50-700:1	9.77E-06	1.31E-05	1.17E-05	9.85E-06	5.25E-06	8.50E-06	1.05E-05			Stack Air		1.36E-06	3.16E-06	5.87E-06	2.26E-06	1.90E-06	9.21E-07	1.76E-06	2.46E-06			Stack Air		9.08E-07	1.51E-06	1.23E-06	8.45E-07	2.03E-07	1.98E-07	3.77E-07	7.53E-07
1104	101	1160	1221	1221	1318	1375	1413		Corn Grind	Chlorine	Fug Air		1104	1160	1221	1221	1318	1375	1413		com Grind	Sulfuric Acid	Fug Air		1104	1160	1221	1221	1318	1375	1413	
1987		1988	1989	1990	1991	1992	1993	Average	Toxic Releases per Bushel Corn Grind Emissions Intensity (Ib/bu)		Year Grind	(million bu)	1987	1988	1989	1990	1991	1992	1993	Average	Toxic Releases per Bushel Com Grind Emissions Intensity (Ib/bu)		Year Grind	(million bu)	1987	1988	1989	1990	1991	1992	1993	Average

Notes: for some emission pathways and pollutants the quantities are very small, and may be the result of a single emission from a single plant in a particular year. The resulting emission intensity thus becomes rather low. I have reset these values to zero since they represent outliers, and since the impact at such low levels of emission would be neglibible. These include land emissions of chlorine, sulfuric acid, and HCL, and water emissions of HCL and suffuric acid. Some of the remaining emissions may still be of negligible quantity.

Table 7 Particulate Emissions from Corn Milling Operations

U.S. EPA, AP-42, Table 6.4-6.

(2) U.S. EPA. 1980. Source Category Survey: Starch Manufacturing Industry, EPA-450/3-80-040

4

⁽⁵⁾ U.S. EPA, AP-42, Table 9.9.7-1.

Notes:	Converted based on the Ib of com per bush Converted based on the Ib of com per bush Converted based on the Ib of com per bush Drying of Com. Thus this factor is converte	Converted based on the lb of com per bush Converted based on the lb of com per bush Converted based on the lb of com per bush Converted based on the lb of com per bush Converted based on the fraction of feed pro Converted based on the fraction of feed pro Converted based on the fraction of feed pro Converted based on the fraction of feed pro	Converted based on the fraction of feed pro Converted based on the fraction of feed pro Converted based on the fraction of feed pro Converted based on the fraction of feed pro	Converted based on the lb of com per bush Converted based on the lb of com per bush	Converted based on the fraction of feed pro Converted based on the fraction of feed pro Converted based on the fraction of feed pro Converted based on the fraction of feed pro Converted based on the fraction of feed pro Converted based on the fraction of feed pro Converted based on the fraction of feed pro Converted based on the fraction of feed pro Converted based on the fraction of feed pro
Transformed Quantity Units	0.02800 lb/bushel com 0.14000 lb/bushel com 0.16800 lb/bushel com 0.01344 lb/bushel com	0.00092 lb/bushel com 0.02436 lb/bushel com 0.04480 lb/bushel com 0.0476 lb/bushel com 0.00184 lb/bushel com 0.00333 lb/bushel com 0.00033 lb/bushel com 0.00039 lb/bushel com	0.00483 lb/bushel com 0.01768 lb/bushel com 0.09658 lb/bushel com 0.35366 lb/bushel com	0.00056 lb/bushel com 0.01148 lb/bushel com	0.00483 Ib/bushel corr 0.01768 Ib/bushel corr 0.00680 Ib/bushel corr 0.00603 Ib/bushel corr 0.00660 Ib/bushel corr 0.01778 Ib/bushel corr 0.00770 Ib/bushel corr
Notes Trans			Gives a range of value Based on assumed co of 95%/	Based on assumed co	These are a series of p level data reported for dryer types. Clearly the above for controlled em came from here.
Source	5555	G G G G G G	33 33	(2)	ପ୍ରତ୍ତ୍ତ୍ତ୍ତ୍
Units	1 lb/ton 5 lb/ton 6 lb/ton 0.48 lb/ton	0.033 lb/ton 0.87 lb/ton 1.6 lb/ton 0.17 lb/ton 0.27 lb/ton 0.27 lb/ton 0.27 lb/ton	0.71 lb/ton 2.6 lb/ton 14.2 lb/ton 52 lb/ton	0.02 lb/ton 0.41 lb/ton	0.71 lb/ton 2.6 lb/ton 1 lb/ton 0.005 lb/ton 0.97 lb/ton 10.4 lb/ton 2.61 lb/ton 0.985 lb/ton
Emission Factor	, סססס	w/cyclone ry w/cyclon r w/cyclone ry w/cyclon		Ð	
eration	Uncontrolled Uncontrolled Uncontrolled Uncontrolled	Grain ReceivingFabric Filter Grain Handling Uncontrolled Grain Cleaning Uncontrolled Grain Cleaning Oyclone Grain Cleaning Cyclone Gluten Feed Dr Direct-Rotary w/cyclone Gluten Feed Dr Indirect-Rotary w/cyclone Gluten Drying Direct-Rotary w/cyclone Gluten Drying Indirect-Rotary w/cyclone	Animal Feed DrControlled Controlled Uncontrolled	Controlled Uncontrolled	Animal Feed Dryers (from plant level test data) Controlled Mean Median
Process Operation	Receiving Handling Cleaning Drying Bulk Loading	Grain Receiving Grain Cleaning Grain Cleaning Grain Cleaning Gluten Feed Dr Gluten Drying Gluten Drying	Animal Fee	Handling	Animal Feed Dryers (from plant level test Cont Mea

Animal Feed Dryers

⁽³⁾ U.S. EPA. 1981. Source Category Survey: Animal Feed Dryers, EPA-450/3-81-017

Grogan, P.J., and D. J. Santini. 1981. Overview of Environmental Problems in the Food Industry, in Proceedings of the 36th Industrial Waste Conference, May 12-14, 1981, Lafayette, IN.

Converted based on the fraction of feed pro Converted based on the fraction of feed pro Converted based on the fraction of feed pro Converted based on the fraction of feed pro	Converted based on the Ib of com per bush Converted based on the Ib of com per bush	Converted based on the lb of corn per bush Converted based on the lb of corn per bush Converted based on the lb of corn per bush Converted based on the fraction of feed pro
0.00204 lb/bushel com 0.00476 lb/bushel com 0.00136 lb/bushel com 0.00680 lb/bushel com	0.03640 ib/bushel com 0.50120 ib/bushel com	0.01446 lb/bushel com 0.00924 lb/bushel com 0.02478 lb/bushel com 0.00575 lb/bushel com 0.05423 lb/bushel com
(3) There is clearly someth this data. Not only are lower than controlled factors, but the average recommended than the range of test a values.	Range of values	Average of controlled and uncontrolled values. Average of controlled values averaged with unco Average of controlled and uncontrolled values. Average of controlled values. This may understa emissions significantly.
0.3 lb/ton (3) 0.7 lb/ton (3) 0.2 lb/ton (3) 1 lb/ton (3)	1.3 lb/ton (4) 17.9 lb/ton (4)	0.5165 lb/ton A 0.33 lb/ton A 0.885 lb/ton A 0.845 lb/ton A
(from test and pControlled Controlled Uncontrolled Uncontrolled	Total Particulate Emissions Emission Values Used	Receiving Handling Cleaning Drying Total

Notes: for most emission categories the difference between controlled and uncontrolled is not too dramatic. Thus the lack of data on the prevalence of controls is not a serious problem. For drying, however, the range of values is quite large, or about two orders of magnitude. Clearly the assumption about how to estimate the prevalance of controls on feed dryers is important. I used the average of 6 controlled values, assuming controls are common.

Water Emissions from the Wet Com Milling Industry Table 8

Grogan, P.J., and D. J. Santini. 1981. Overview of Environmental Problems in the Food Industry, in Proceedings of the 36th Industrial Waste Conference, May 12-14, 1981, Lafayette, IN.

 ϵ

Blanchard, Paul H. 1992. Technology of Corn Wet Milling and Associated Processes, Industrial Chemical Library, vol. 4, Elsevier Press, New York. 8

Code of Federal Regulations, 40 CFR 406.15, 1994 edition. ල

Raw Input Quantity

Transformed Quantity 0.1232 0.4144 0.21	30 0.5007 0.028	0.02
Notes Based on early 1970's data Based on early 1970's data Based on early 1970's data	before treatment	Standards of performance for new sources, after treatment
Source (1) (1) (1)	(3) (3)	(3)
Units 4.4 gallons/fon 14.8 lb/fon 7.5 lb/fon	30 gallons/bu 2000 ppm 500 ppm	20 lb/k bu 25 lb/k bu
Average 10 25 19.6	35 3000	
High 0.75 4.2 1	25 1000	
Low		
Quantity BOD5 TSS	Quantity BOD5 TSS	BOD5 ageTSS
Water	Water	EPA Limits BOD5 (30 day averageTSS

3
v.
9.0
9.0
0
0.0
0.9
0.9
6.0
6.0
6.0
6.0
0.0
0.9
6.0
0.9
0.9
6.0
6.0
6.0
0.9
0.9
0.9
0.9
0.9
0.9
6.0
PH 6.0
PH 6.0
PH 6.0

 Blanchard, Paul H. 1992. Technology of Corn Wet Milling and Associated Processes, Industrial Chemical Library, vol. 4, Elsevier Press, New York. NREL Model 			
(2) NREL Model	sses,		
Water Use Raw Input Quantity Units	Source:	Transformed Quantity Units	Notes:
30-40 Gallons/bu	(3)	35 Gallons/bu	Average of estimated range
Process 1.43 kg water/kg com Cooling Tower 16.58 kg water/kg com	om (2)	10 Gallons/bu	

Table 10 Material Balance in Wet Corn Mills

Com Refiners Association, Inc. 1994?. 1994 Com Annual, Com Refiners Association, Washington, D.C.

Ξ

Murray, B.C., D.H. Gross, and T.J. Fox. 1994. Starch Manufacturing: A Profile, Final report to the U.S. EPA by the Center for Economics and Research, Research Triangle Park, NC. 8

USDA/ERS. 1994. Sugar and Sweetner: Situation and Outlook Report, SSSV 19N2, June 1994.

ල

U.S. Department of Commerce, Bureau of the Census. 1994. 1992 Census of Manufactures: Grain Mill Products, MC92-I-20D(P). **€**

(5) Whistler, R. L., J.N. BeMiller, and E.F. Paschall (ed.), 1984. Starch: Chemistry and Technology, Academic Press, NY.

(6) National Com Growers Association, and National Com Development Foundation. 1995. The World of Com: 1995.

(7) Blanchard, Paul H. 1992. Technology of Com Wet Milling and Associated Processes, Industrial Chemical Library, vol. 4, Elsevier Press, New York. Austin, George T. 1984. Shreve's Chemical Process Industries, fifth edition, McGraw Hill, New York.

8

Shipments	of Corn Refining P	Shipments of Corn Refining Products (MRaw Input Quantity	ntity			Transformed Input Quantity	ut Quantity			
Source	Ξ	(2)	(3)	(3) (3)		9	(2)	ERS 1992 (3)		ERS 1993 (3)
Units	Million Ibs	Million Ibs	Thousand sh to	ns dry Thousand sh tons	s dry wt.	Million Ibs	Million Ibs	Million Ibs		sqi u
Year		1993	1992	1992	1993		1993	1992		
CORN STA	RCH	5,556	6,340				5,556	6,340		
SYRUPS		26,955				2	26,955			
HFCS 42		8,140		2,812	2,951		8,140		7,921	8,313
HFCS 55		10,441		3,871	4,198	+	0,441	÷	10,055	10,904
HFCS TOT	AL	18,580		6,683	7,149	+-	8,580	-	7,976	19,217
TOTAL DOMES	MES	32,511				r	2,511			

Average The Com Refiners only their members. ERS es this percentage is the e	
Notes:	6340 276 207 69 6892
739 799 11,388 2,031 458 47,926	
	6340 276 207 69 6,892
739 799 11,388 2,031 458 47,926	
TOTAL EXPOR CORN OIL G. FEED, C. OI GLUTEN MEAL STEEPWATER TOTAL SHIPME	CORN STARCH WHEAT STARCH POTATO STARCH TAPIOCA STARCH TOTAL STARCH

Notes: Information is presented here from three sources for comparison. Based on the ERS and Com Refiners data it appears that Corn Refiners members produce nearly all of the starch and com syrup products. On this basis the corn refiners commercial shipments numbers are converted to dry weight to complete a mass balance, presented below.

Shipments of Corn Refining Products (Million lbs)

Transformed Input Units Notes Quantity	I added the category "other glucose" 5,556 Million lbs dry wt. Commercial wt. equals dry wt.	_	refinery products, which includes 7,286 Million lbs dry wt. Estimate at 85% solids.	Million Ibs dry wt.	8.039 Million lbs dry wt.				799 Million lbs dry wt. Estimated as commercial	Million lbs dry wt.	Million Ibs dry wt.			41.107 Million lbs dry wf.
	Ξ	Ξ	Ξ	3	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	(£)	Ξ	£
Units	5,556 Million lbs		8,375 Million lbs								2,031 Million lbs	458 Million lbs	47,926 Million lbs	Million the
Raw Input Quantity	CORN STARCH	REFINERY PR	OTHER GLUCO	HFCS 42	HFCS 55	HFCS TOTAL	TOTAL DOMES	TOTAL EXPOR	CORN OIL	G. FEED, C. OI	GLUTEN MEAL	STEEPWATER	TOTAL SHIPME	WATED.

Notes: The wf. fraction of com ending up in each product type is calculated based on the total consumption of com by the wet com milling industry, excluding com grind for ethanol. Since this is based on dry weight, the difference between the total dry wf. and the wf. of com used, gives the fraction of water in the com, as received. Th

Total Wet Corn Mill Consumption of Corn

Million Ibs	Million Ibs	Million Ibs
40,488	42,392	42.896
(3)	(3)	(3)
723 Million Bushels	757 Million Bushels	766 Million Bushels
1987	1988	1989
	723 Million Bushels (3)	1987 723 Million Bushels (3) 40,488 Million lbs 757 Million Bushels (3) 42,392 Million lbs

44,296 Million lbs	45,416 Million lbs	46,984 Million lbs	48,440 Million lbs	50,680 Million lbs
791 Million Bushels (3)	811 Million Bushels (3)	839 Million Bushels (3)	865 Million Bushels (3)	905 Million Bushels (3)
1990	1991	1992	1993	1994

Conversion of Glucose Quantity into Relative Starch Quantity (to account for gain in mass from conversion process).

Notes	p. 572	p. 70	p. 219, Based on Stiochiometry	Average of two estimated values
Chemical Gain Raw Input Quantity Source	4.10% (8)	5.80% (3)	11.11% (7)	4.95%
Chemical Gain F				We Use

Average

Total Sugars Starch Equivalent Units 21,105 20,109 Million lbs dry wt.

Starch Equivalent Units

Comparison of Estimates of Theoretical Yield with Calculated Value from ERS and CRA Data.

Based on CRA	*							
Theoretical Yiel Annual Prod.		ERS (3)	%	(9) VSO	%	S.	NREL	
(q)		(nq/ql)		(lp/pn)				
Som In	46,883		26		26.00		579,078,355	
Starch	25,665	54.74%	31.5	56.25%	32.00	57.14%	345,601,903	29.68%
Oil (crude)	462	1.70%	1.55	2.77%	1.60	2.86%	23,338,321	4.03%
Sluten Feed	11,388	24.29%	13.5	24.11%	11.40	20.36%	73,552,278	12.70%
Gluten Meal	2,031	4.33%	2.65	4.73%	3.00	5.36%	25,092,049	4.33%
Steepwater	229	0.49% -						80.75%
Water	6,771	14.44%	6.8	12.14%	8.00	14.29%		
Total	40,112	85.56%	49.2	87.86%	48.00	85.71%		

Notes: The calculated yields are thus reasonable. Oil yield is lower than both the ERS and CGA theoretical values. This may be because some com germ is sold to non-CRA refiners.

Material Balance Based on ERS and CRA Data

	Units	96 lb	30.66 lb	0.95 lb	13.60 lb	2.43 lb
Annual Prod Referenced to 1 Bushel	Quantity	Corn in	Starch	Oil	Gluten Feed	Gluten Meal

If all starch were converted to Glucose, the yield would be:

56 32.17 0.95 13.60	2.43
Com in Glucose Oil Oil Oil Oil Oil Oil Oil Oil Oil Oil	Sluten Meal

Table 11 Sulfur Dioxide Use in Wet Com Milling Industry

U.S. EPA, AP-42, Section 9.9.7

Ξ

(2) NREL Wet Com Milling Model

Input Sulfur Dioxide low	Quantity	Units 0.06 lb/bu	Source (1)	Transformed Quantity 0.06	
L Sur		0.11	E	0.11	
average	ge	0.00206 kg/kg com	(2)	0.12	
Sulfur Use				0.058	

Notes: Sulfur dioxide use is converted to sulfur use using the ratio of weights of sulfur and sulfur dioxide.

Table 12 Ash Production from Coal Consumption

Utility Data Institute, 1995. EEI Power Statistics Database.

3

Babcock and Wilcox. 1992. Steam: Its Generation and Use, 40th Edition, S.C. Stulz and J.B. Kitto (eds.).

(3) Energy Information Administration. 1994. Manufacturing Consumption of Energy: 1991,

DOE/EIA 0512(91).

(4) United States Department of Energy, Energy Information Administration. 1993. Annual Energy Review: 1993,

DOE/EIA-0384(93).

the calcium in the bed. This reaction involves the conversion of calcium carbonate into calcium oxide (CaCO3 -> CaO) and the subsequent formation of CaSO4 from SO2. Thus two moles of SO2 are removed for every mole of Ca. In addition, CO2 is emitted in the process. There are two sources of ash in FBC systems, the naturally occuring ash in the coal, and ash formed from sulfur combining with

Source
Reactions CaCO3 -> CaO(s) + CO2 (g) (2)
SO2 (g) + 1/2 O2 (g) + CaO (s) -> CaSO4 (s) (2)

Ash Production from Coal Ash and Sulfur Removal

Notes	Reference (1) data indicates that the utility average sulfur content in Iowa, Indiana and Illinois in 1993 was about 1.5%.									
Source	Estimate	(1)	(3)	Table 3	Calculated	Calculated	Calculated	Calculated	Calculated	Calculated
Units	2.50 Percent	7.70 Percent	22.276 Million Btu/ton	52,255 Btu/bu	0.0023 tons coal/bu	4.69 lb coal/bu	0.36 lb/bu	118.33 lb/ton coal	0.28 lb/bu	0.64 lb/bu
Value	Coal Sulfur Con	Coal Ash Conte	Coal Energy Co	Energy Consum	Energy Consum	Energy Consum	Ash From Coal	Ash From Sulfu	Ash From Sulfu	Total Ash

Carbon Dioxide Production from Limestone Consumption

Units Notes:	27.87 Ib sulfur removed per ton c Calculated as the total sulfur in Coal minus that emitted from emissions table above.	38.25 Ib CO2 emitted per ton coaBased on Stoichiometry	0.09 lb/bu
Quantity	Sulfur Removal	Carbon Dioxide	Carbon Dioxide

	Table 5	Table 12	Table 7 Table 6	Table 6			Table 5	Table 5 Table 12 Table 7	Table 7	Table 6	
	Energy Cons.	From CaCO3	WM Particu	MM ParticulaToxic Release Total	e Total		Energy Cor	Energy ConFrom CaCOVM Particu Toxic ReleaTotal	WM Particu	Toxic Relea	Total
NOX	4.78E-02		•		4.78E-02	NOX	100.00%		•	•	100.00
SOx	5.19E-02				5.19E-02	SOx	100.00%	•			100.00%
PM-10	3.15E-02			٠	3.15E-02	PM-10	100.00%				100.00
Total Particula		•	5.42E-02	,	5.42E-02	Total Partic		,	100.00%		100.00%
00	4.38E-02			,	4.38E-02	8	100.00%		1	,	100.00
CO2		8.97E-02	,	,	1.56E+01	005	99.43%	0.57%		,	100.00%
Non-Methane				•	1.73E-04	Non-Methar	۳ 100.00%		,		100.00%
Methane			•		1.52E-04	Methane	100.00%	•	,	•	100.00%
NZO	1.34E-02	,	•		1.34E-02	NZO	100.00%	•			100.00
HCL		•		3.57E-04		HCL		•		100.00%	100.00
Ammonia	•			8.85E-05	8.85E-05	Ammonia		•		100.00%	100.00
Chlorine	•	•		3.91E-05	3.91E-05	Chlorine		,		100.00%	100.00%
Sulfuric Acid				2.41E-05		Sulfuric Aci	•	•	•	100.00%	100 00%

ality poor. ality poor. ality poor. ality poor.
ality poor.
ality poor.
ality poor.

conforms to other published estimates.
conforms to other published estimates.
conforms to other published estimates.
conforms to other published estimates.

Toxic Releases for SIC 2046 Alf releases in Ib

through the RTK (Right To Know) network in June of 1995. Because of difficulty in downloading a suitably formatted electronic data set, the information was instead This table contains raw data on the release of toxic materials by the wet com milling industry. The data was downloaded from the TRI database, as accessed compiled from a hard copy printout. The data were input to this spreadsheet and extensively checked, however there is always the possibility of error.

these emissions are not assigned to glucose manufacture. The toxics that are associated with glucose manufacture are ammonia, HCL, chlorine, and sulfuric acid. The raw data include information on a fairly large number of pollutants. Seven of the facilities listed here provided information on the route from which each toxic release was generated. Responses by each facility were consistent, and indicate that most of the toxic material released is associated with processes such as corn starch modification, ion exchange resin regeneration, and ethanol production. Since these processes are not necessary to the production of glucose, The list below gives a brief description of how each of the toxic chemicals associated with wet com milling are used.

Used as a pH adjuster and for ion exchange regeneration. Used to treat well water or cooling water. Some chlorine emissions may be associated with coal combustion emissions to the stack. Used for ion exchange regeneration, pH adjustment, and in some cases for conversion of starch to glucose. Used as a nutrient (nitrogen source) in either wastewater treatment or for fermentation. Used for ion exchange regeneration and as nutrient in wastewater. Probably also associated with use of ammonia as nutrient. Used to modify starches and in production of HFCS. From the reaction of propylene oxide with water. From the reaction of ethylene oxide with water. Dehydrating agent in the production of ethanol. Byproduct of ethanol production? Emissions from coal combustion. Emissions from coal combustion. Emissions from coal combustion. Emissions from coal combustion. Emissions from coal combustion. Emissions from coal combustion. Used to modify starches Used to modify starches Used for pH control. Refrigerant. Ammonium Sulfate Sodium Hydroxide Lead Compounds Nickel Compounds Hydrochloric Acid Propylene Glycal Propylene Oxide Phosphoric Acid Ethylene Oxide Ethylene Glycol Sodium Sulfate Peracetic Acid Acetaldehyde Cyclohexane Sulfuric Acid Manganese Freon 113 Vitric Acid Vanadium Butadiene Methanol Selenium Chlorine Barium

This set of pollutants is associated with the large assuming that they are thus associated with ADM facilities which produce ethanol. I am processes other than the basic glucose manufacture. Byproduct of ethanol production? Used to modify starches. Refrigerant. Refrigerant. Refrigerant. Refrigerant. Dibromoterafluoroehtane Dichlorodifluoromethane **Frichlorofluoromethane** Bromotrifluoromethane Hydrogen Fluoride Epichlorohydrin N-Butyl Alcohol Vinyl Acetate Methanol

Probably also associated with use of ammonia as nutrient.

Ammonium Nitrate

Total Toxic Releases of Ammonia, HCL, Chlorine, and Sulfuric Acid All releases in Ib

Year

			0
	Land		_
	Water		13
P	Stack Air		538
Sulfuric Acid	Fug Air		1,002
	Ð		0
	Land		520
	Water		55
	Stack Air		0
hlorine	Fug Air		1,500
ō	_		4750
	Land		
	Water		0
	Stack Air		20996
걸	Fug Air		16578
	Land		50459
	Water		50250
	Stack Air		1000
			416721
Ammonia	Fug Air		
•	_	_	1104
	Grind	(million bu)	
	ē	Ē	1987

0	0	0	0	0	1,182	1,182	1,182
0	0	755	0	0	ა	773	773
1,013	791	29	61	104,443	120,459	227,364	227,364
1,751	1,504	1,032	268	272	532	6,361	6,361
0	0	0	0	0	-	-	-
250	250	1,277	11,176	1,433	-	14,637	14,637
10,252	12,000	9	159,896	155,055	4,887	342,100	342,100
				1,267			
750	101	1000	27000	200	15910	50621	50621
0	=	9	900	250	0	998	998
7870	32073	34203	1261725	955691	977391	3289949	3289949
11331	16055	14241	12987	7214	12010	90416	90416
250	1450	6865	13576	0	0	72600	72600
161420	710368	776472	427024	266877	56649	2449060	2449060
3686	5052	8332	5384	4437	1725	29616	29616
69989	81151	19706	18264	16252	71687	692450	692450
1160	1221	1221	1318	1375	1413		
1988	1989	1990	1991	1992	1993		

Toxic Releases per Bushel Com Grind Emissions Intensity (Ibfbu) Based on total com grind for starch products, byproducts,

1	
1	
250 250 250 250 250 250 250 250	250 250 250
250 250 250 250 250 250 250 250 250 250	1987 250 750 1988 250 750 1989 250 750
250 250 250 250 250 250 250 250 250 250	250 52
250 250 250 250 250 250 250 250 250 250	250 250
250 250 250 250 250 250 250 250 250 250	4
250 250 250 250 250 250 250 250 250 250	250
250 250 260 260 260 260 27 280 280 280 280 280 280 280 280 280 280	1990 250 250
250 84 0 0 3 9 0 0 3 9 0 0 2 5 0 0 3 0 0 4 0 0 4 0 0 5 0 0 6 0 0 6 0 0 6 0 0 7 0 0 8 0 0 8 0 0 9 0 9 0 9 0 9 0	250
250 250 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1204
0 26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2152
256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1988
250 0 0	
25 0 16600 0 250 750 0 250 250 0 250 250 250 8000 250 250 8000 250 250 250 8000 250 250 250 8000 260 250 250 8000 27 20000 280 250 250 8000 290 250 250 8000 200 8000	
16500 0 250	
750 0 250 250 0 250 250 0 250 250 0 250 250 250 250 250 250 250 250 8000 250 250 250 8000 250 250 250 250 250 250 250 250 250 250 250 250	
16600 0 250 750 0 0 250 0 0 250 0 0 250 0 0 250 250 8000 250 250 250 8000 250 250 250 8000 250	0009
750 0 250 0 250 0 250 0 250 0 250 0 250 0 250 250	750
250 0 250 0	750
250 0 250 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 09/
250 250 250 250 250 250 250 250 250 250	250
0 250 250 8000 250 250 250 250 250 250 250 250 250	250
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 286
0 250 0 8000 250 250 250 250 250 250 250 250 250	1300
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1400 43000
0 0 0 0 0 0 0 0 0 0 250 250 8000 250 250 750 5 250 750 5 250 750 5 250 750 1 27 77 3 27 77 8 20828 77 9 17 7 1 250 0 0 250 0 0 250 0 0 250 0 0 250 0 0 0 0	1433
250 8000 0 250 250 8000 25000 250 250 8000 18445 250 250 750 750 5 250 5 250 5 5 250 7 1 27 7 7 3 27 7 0 3 20 20 0 4 20 20 0 5 250 0 0 6 250 0 0 7 17 0 0 8 250 0 0 9 250 0 0 0 250 0 0 0 250 0 0	432
250 250 0 8000 250 250 250 8000 20000 250 250 8000 18445 250 250 750 18445 5 250 750 18445 5 250 750 18445 6 250 750 750 7 250 750 70 8 250 750 70 9 250 0 0 17 17 0 0 10 250 0 0 10 250 0 0 10 250 0 0	1430
250 250 8000 20000 260 250 7000 18445 5 250 750 18445 5 250 750 750 1 250 750 750 3 250 750 750 4 20828 700 700 5 250 0 0 6 750 0 0 7 17 17 0 8 250 0 0 9 250 0 0 0 250 0 0 0 250 0 0	250
250 250 7000 18445 5 250 250 7000 18445 5 250 250	1988 250 1550
5 250 5 750 5 5 5 250 5 5 5 250 1 27 1 27 2028 6 20828 8 3 20828 9 3 30 17 0 0 17 0 0 17 0 0 18 0 0 19 0 250 0	250
5 5 5 250 5 5 5 250 3 20 3 20 6 20028 6 3 3 3 17 2 31 6 250 0 250 0 250 0 250 0 250 0 250 0 250 0 250 0 250 0 250	250
5 5 5 250 1 27 3 20 3 20828 3 30 2 20828 3 30 2 31 4 7 6 250 0	250
1 27 0 3 29 5 20028 3 30 2 17 2 31 6 250 0 0 0 250 0 0	1993 250
3 20 5 2028 3 30 2 17 2 250 0 0 0 250 0 0	205
3 20928 3 300 2 17 2 250 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1988 55
2 20828 3 30 2 17 2 31 0 250 0 0 250 0	3,5
2 2002.8 2 17 17 2 250 0 0 250 0 0 0 0 0 0 0 0 0 0 0 0 0	146
3 30 2 17 0 250 0 0 250 0 0 250 0	0 041
2 31 0 250 0 0 250 0 0 250 0	
2 31 0 250 0 0 250 0 0 250 0	
0 250 0 0 250 0 0 250 0	100
0 250 0 250 0 250	1987 250 250
250	250
000	
	3

					2 4									0					•	0					0	0				0	0				250	250				c	,
					0														•	>					0					0										0	,
																																					0	0 0			
					o +	0	00	0	0				0																												
250 250					4 4	-	ഗ യ	ာဏ	314																															250	7
																																								4	
																																								250	į
	0 (00	00	0		-	- 0	0	0				00	00	0	01	n		•	0	0	00	o c	0	250	250	250	0	0 4			00		0	250 G	250	250	വവ	ıc.	iO.	
5 250 250	0 0	00	00	0									00	0											250	220									250	250	250	5 750	750	750	1
																														0	0	0									
250 250 250	0 (0			19 PA	-	- 0	·	-		c	•		0			0		200	2473	0	0 0	> C	0	250	4967	250	19	₹ £	401693	38000	32000	0	0	250	250	250	10000	10000	65000	•
250 250 250	0 0	00	520 0	0	0 53	12	00	. 6	2				c	0	0				1100	1700	3600	3600	3600	1260	250	250	250	9	n u	1710	2200	5069	2943	1100	950	250	250	250 750		750)
1991 1992 1993	1987	1989	1991	1993	1987	1989	1990	1992	1993	1987	1989	1991	1992	1987	1988	1989	1990	1992	1993	1988	1989	1990	1991	1993	1987	1988 1989	1990	1991	1992	1987	1988	1989	1991	1992	1993	1988	1989	1990	1992	1993	2
	=				ČĮ.					S				uma																. <u>s</u> 2						_				pu	2
	Marsha				CoKansas					Colema				Montezuma						Dayton					Loudon					Memphis					Docatic					Hammond	
	Minnesota Com Processors Marshall				National Starch & Chemical CoKansas City					Minnesota Com Processors Columbus				ocessing											Mg. Co.										ociasacoc	fi licepoo				American Maize Products	2000001122
	Minnesota Co				National Star					Minnesota C				ADM Com Processing						Cargill Inc.					A. E. Stafey Mfg. Co.					Cargill Inc.					ADM Com Bracesian					American Ma	

		0000			Hydrochlor Ammonia AmmoniumChlorine Sulfuric Ac Ethylene OEthylene GPropylene Propylene PhosphoricMethanol Sodium SuSodium HyHydrogen RicetaldehyEpichloroh Dibromotet 750 0 0 0 5 5 250 250			
		0000	7,500 0 1,071		Epichlorol		250	
250	250	1,822 1,773 0	514		cetaldehyE		0 550 750	750
	0	250	၁၀၀ဖွ		drogen FA			
		0 250 250 250	0 20 27		odium HyHy 0 0	0	250 250	00
		20,000 18,445 1,000	1,000 1,000 6,064		SuSinm Sus		0	
		77,000 276,916 120,912 110,000	25,000 22,900 96,390		lethanol S	215000 200,000 179,599 200,178 78,000	4,500	
		0-000	0000		osphoricM	000	0 0	
		00000	000		opylene Ph			
250 250 250 250 5 1362 1800		8,531 8,784 7,280 22,333	1,885 3,145 7,464		opylene Pr	250	19	
		250 250 250 5	. ro ro 4		hylene G Pr			
250 250 250 250		1,500 17,376 1,539 1,750	320 428 3,385		hylene OEt			
	250 250 250 5	5 1,002 1,761 1,504 1,032	272 532 909		uffuric Ac Ett	0	250 550 550	n vo
0 0 5 5 5 250 250 250	250	1,500 3,670 7,172 2,755	1,267 2,487 3,050		Morine St		10,000	
		0 250 250	7000		ттопічтС	•	000	
250 250 250 250 250 250 250 250 250	250 250 250 0	416,721 68,669 81,151 19,706	16,252 71,687 98,921		nmonia An	250 250 250 250 0	0000	
0 0 5 1700 250 250 250	250 250 250 800 750 750			Stack Air	drochlor An 750 0 0 5 5 250 250	250	250 250 27 250	250 250 250
1988 1989 1990 1992 1993 1987 1988 1989	1991 1992 1987 1988 1990			Sta		1993 1987 1989 1990 1991	1987 1988 1989 1990	1993 1987 1988 1989
					ie.			
	salem			illing	Year			
Dimmit	Winston-Salem			Toxic Releases in SIC 2046 - Wet Com Milling Emissions in Ibs	City Decatur	Van Buren	Stockton	Monte Vista
roducts				SIC 2046 -	oducts	ø	g	ć
American Maize Products				Toxic Releases in S Emissions in Ibs	Plant American Maize Products	A. E. Staley Mfg. Co.	CPC International Inc.	A. E. Staley Mfg. Co.
America	CPC	Totaí	Average	Toxic Re Emission	Plant America	A. E. Sta	CPC Inte	A. E. Sta

			6300	0																																							
		5	0 0	0 4	0	0 (0 0	0	0	0																																	
																																	35000	35000	3								
			0	72000	3			0					0						0					c	•					0			n	"	•	0					•	5	
	00	ı		72	0	0					0					0 0	•				0	0					0	0					0 2	3				ď	8 4				
																5											0						0	Ý									
															•	_											_																
				S.																																							
																															0	0											
						,	0		0																																		
					0	0	c	0	,	0												250											50000	3500	250	3960	2160	2700	20733	19898	20828	13337	11770
														0		c	0 0	0	0	c	0	0	0 0	o c	0	0							0 9										=
	00	00	250	250	3									0	250	c	. 0	0	0	c	250	250	750	250	250	250							2909	780	513	920	217	7					
	00						c	. 0	0	0	0	0 0	0 0				•				•							0	c	0	80								3	56	2 2	18	59
	00					0.6						0.0									0	0																					
								24883	2191		_		129.940	132,640	250										250							463	- 40	3		25	52			0			
	0	250	0	00	•																						0	0 0	o c	•													
	0	00	780 2		0	0	0 0	0	သ		0	0 0	0	0	0 0	•										250		0 0	>	0	0	0	250	750	1780	630	750	8					
250 250 5 5	250	250	200000	740000	0	0 (00	0	S I	so.	0	0 0	00	0	250	799	818	750	2726	28342	250	250	250	200	250	250	83	8 8	145	8999		9258	11200	200	1182	750	750	1209	1349	1052	1426	466	417
1990 1992 1993	1987	1989				1988	1989	1991	1992	1993 1987	1988	1989	1991	1992	1993	1987	1989	1990	1991	1993	1987	1988	1989	1991	1992	1993	1987	1988	1000	1991	1992	1993	1987	989	1990	1991	1992	1983	1988	1989	1990	1992	1993
										en.	,				<u>.</u>	so.					so.																						
	Clinton				Keokuk					Cedar Rapids					0	Cedar Kapids					Cedar Rapids						Eddyville						Decatur					fiananolis					
	อิ				χ.					ن	•				Ċ	3					రి						Ш											ical Color					
	ocessing									ocessing											ucts Co.												o.(eldorat					th & Cherr	5				
	ADM Com Processing				Hubinger Co.					ADM Com Processing						Cargill Inc.					Penford Products Co.						Cargill Inc.						A. E. Staley Co.(eldorado)					National Starch & Chemical Coundianapolis					
	ΑĎ				Ŧ					AD					d	3					Per						Ca						₹					Ag N					

A. E. Staley Mfg. Co. (Sagamo Lafayette	по Lafayette	1987 1988	٥ =	0		0 0	0	71576 51259		129		
		1989	11 250	250		0 0	00	33961	00			
		1992 1993	250 250 250					31819 24985 29250				0
Minnesota Com Processors	Marshall	1987	c	c			ć					
		1989	0	0								
		1990	0 0	0		0 0	0 0					c
		1992	250			0	. 0					5
		1993	250			0	0					
National Starch & Chemical CoKansas City	CoKansas City	1987	404	0			13	5594	0	0	6	
		1988	200	1936			13	14574	-		7	
		1989	442	2312			15	5376	m (
		1990	966	3240			4 4	9037	יי מי			•
		1992	1027	2927			<u>. 1</u>	9254	n en			5
		1993	7	0			. 0	0	· m			
Minnesota Com Processors	Columbus	1987										
		1988										
		1989										
		1990										
		1991				•			,			0
		1992	250			o c	ຄແ		n			
ADM Com Processing	Montezuma	1987	3	0							0	
		1988	0	,		,	. 0				,	
		1989					0					
		1990					0					
		1991										0
		1992										
Caroill Inc	Dayton	1987	232	c			-			-	-	
		1988	330	>						>		
		1989	200	0			. 0				•	
		1990	70	0			0					
		1991	2000	0			0					0
		1992	76580	0		ÉÓ	3000					
- C		1993	89350	0 (3200				,	
A. E. Statey Mrg. Co.	Loudon	1987	750	o c		٥ د	0 0			0	0 0	
		1980	3	>			•				>	
		1990	250	ĸ			40					
		1991	51	ų,			10					0
		1992	40	S			S					
		1993	43	s,			ß					
Cargill Inc.	Memphis	1987	456	0	0		0			0	0	
		1988	1000	0	0		0				0	
		1989	1300	740	0		0					
		1990	1247	0 0			0 (,
		1991	2848	0 0		,	0					0
		1992	25600	o c		-	200					
ADM Com Processing	Decatur	1987	250	250			250			2	20	
		1988	250	250		0	250			2	250	
		1989	250	250			250		250			
		1990	250		250		2		250			

00	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	72 /Epichloroh Dibro	0 0
0 0 0	0 35,000 0 35,000 0 35,000 0 550 0 750	19,143 10,44	
0 52	250 250 250 1,097 1,063 0 0	307 1 dlum HyHyc	00
250	978 0 0 0	54 Sodium Su So	0 0
250	215,000 200,000 179,849 78,250 30,005	Vethanol Sc	250 250 55 55
	0 - 6 6 8 8	3 3 3 3 4 thosphorick	0 0 0 250
	000000	o ortopylene P	
58667 1133 96400 19377 690 34886 42000	205,172 93,549 125,174 81,885 64,725	119,458	Q W
	2550 2550 2550	7.4 Ethylene G	
44852 750 65500 65991 5857	48,011 4,227 70,110 68,254 8,777	28,693	
_տ տ	250 250 250 250 5 5 5 5 5 791 791 791 791 791 791 791 791 791	32,481	0 0 W 0
250 250 50 50 50 50 50	0 10,252 12,000 10 159,896	48,871	00 00
	0 250 500 0		000 000
250 250 250 250 250 250 250 250 250 250	← W. W. W. W. A.	rAm	000855000
250 250 250 250 250 250 250 250 250 250	32 25 36 48 # 38 36 36 36 36 36 36 36 36 36 36 36 36 36		
1991 1992 1993 1987 1990 1990 1991 1990 1990 1990 1990	1993 1989 1989 1990 1992 1993 1989 1989 1990	7881 1988 1980 1990 1992	1986 1988 1989 1980 1991 1987 1989 1989 1989 1989 1989
		Year	
Hammond	Winston-Salem	Net Com Milling City Decatur	Van Buren Stockton
American Maize Products American Maize Products		leases in SIC 2046 - v is in ibs n Maize Products	A. E. Staley Mfg. Co.
Americ Americ	C PC	Average Toxic Re Emission Plant Americal	A. E. S.

00

	000	0000000	>				
						0	0
	0	00					
	00	00		00	00	00 0	0 00
			0	0		2907968	0
		o			;	N.	
						00	
		0 0					0
		00000	•		0	0	000 0000
			0	0000	0000000	0	250
	00000	0 0	0	0 0000	34800 0 0 0 0 0	2909	00000
	00000	00 000	0000	00	0	0 00000	0 750 0 0
	250 250 250 250 0	00 00000	00000	0	0 0 0 250 0 0 0	0000 00	0000000
	000	0 0				456225 440000 70000	
	50,000 90000 90000 90000 870	0 30000 30000 72000	0 0 0 250	0	·		00000
0	00000		50000 50000	000000	00000000		0000000
1993 1987 1988 1990 1991	1992 1987 1988 1989 1990	1992 1987 1988 1989 1990 1991	1987 1988 1989 1990 1991	1993 1987 1989 1990 1991	1993 1987 1988 1990 1991 1992 1993	1987 1989 1990 1992 1993	1988 1989 1990 1992 1993 1987
sta			spid	s pid	s pid		<u>.s.</u>
Monte Vista	Clinton	Кеокик	Cedar Rapids	Cedar Rapids	Cedar Rapids	Eddywire Decatur	olndianapol
	sing		ging		Š	o.(eldorado	Chemical Co
taley	ADM Com Processing	ger Co.	ADM Com Processing	<u>0</u>	Penford Products Co.	Cargin IIIC. Cargin IIIC. A. E. Staley Mfg. Co.(eldorado Decatur	National Starch & Chemical Coindianapolis
A.E. Statey	ADM C	Hubinger Co.	ADM C	Cargill Inc.	Penforc	A. E. State	Nationa

		00		0	00	00	00 0
0		0			0	0	0
0000		000000	0 0				
000000		000000	0				
000000	00000	. to o o o o	0 0	00000	000000		
000-000	00000	>	0	00		00	
							000
0 00	000	000000		0	0 00000		000000
•		000000		. ()			000000
1990 1991 1993 1987 1988 1990 1990 1991 1991	1988 1989 1990 1992	1987 1987 1989 1990 1992	1993 1987 1988 1990 1991 1992	1983 1988 1988 1980 1991 1992	1987 1988 1980 1990 1991	1988 1988 1990 1990 1990	1982 1988 1980 1992 1993
afayette Marshall		Kansas City	Columbus	Montezuma	Dayton	Loudon	Memphis
Co. (Sagamo I		Chemical Co	rocessors		,		
A. E. Staley Mfg. Co. (Sagamo Lafayette		National Starch & Chemical CoKansas City	Minnesota Com Processors Columbus	ADM Com Processing	Cargill Inc.	A.E. Staley Mfg. Co.	Cargill Inc.
A. A.		Nat	M E	Ψ	Ö	A	Ö

				000000				
				000000				
				000000				
				000000				
0 0	888			#00000				
	1221456 3328388							
	1221456			######################################				
000				25000				
				7200000	eue			
				000000	um Hy Styr	00	00	00
	250	D		250 0 0 0 0 5	dene Sodi		0 (5
				250 0 0 0	ne G Propy			
	250				e OEthyle			
00000				3,159 34,800 0 34,800 0 0 0 0	Ac Ethyle		000	
				13 0 755 0 0 0	Sulfuric ,			
000000	0 0 1027 11176 1183			250 250 250 1,277 11,176 1,433	theorine		00	00
				456,225 440,000 70,000 0 0	nmoniumC		000	000
250	250 63270 75368 108556 116459 87956	0		50,250 161,420 710,368 776,472 427,024 266,877 56,649	monia Ar		000000	0000
00000	000000	o	0 0	0 1 11 7 5 7 600 4 0 250 2	d rochlor An	000000	000	000
1987 1988 1989 1990 1991	1987 1988 1989 1990 1992	1983 1988 1989 1990	1992 1987 1988 1989 1990 1992	1987 1988 1990 1992 1993	Land	1987 1988 1990 1991 1992 1993	1987 1988 1990 1991 1992	1987 1988 1989 1990
			Ę		g Year			
Decatur	Hammond	Dimmitt	Winston-Salem		Com Milli	Decatur	Van Buren	Stockton
Ö		ă	W		346 - Wet City		> -	Sio
ocessing	American Maize Products	92			Toxic Releases in SIC 2046 - Wet Com Milling Emissions in ibs Plant City	American Maize Products	S S	ات آ
ADM Com Processing	sican Mai	American Maize		_	Toxic Refeases i Emissions in ths Plant	rican Maiz	A. E. Staley Mfg. Co.	CPC Internationl Inc.
ADN	Ame	Ame	OPO	Total	Toxic I Emissi Plant	Аты	∀	SPS

		n			w00w			
250	0 0	00	0	00	250	00	00	00
		000000			250		000000	00
			0	0000	250 250 250 250 250		000000	
	000000	•	0	0000	0 0 0 0 0 0 0		000000	
	000000	0000	000	0 0	٥	0 0000	000000	0
	000000	00000	0000		000000	00000 0	000000	00
	00000	•				3300		
	00000	00000	00000	•		0 1200 6615 8576 0	000000	
250 250 250		000000	00000		27. 27. 27. 29. 27. 29. 27. 29. 27. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29		0000	
1992 1987 1988 1989 1990 1991	1987 1988 1989 1990 1991 1992	1987 1989 1990 1991 1992 1993	1987 1988 1990 1991 1992	1987 1988 1989 1990 1992	1987 1988 1989 1990 1992 1993	1987 1989 1990 1991 1992	1987 1988 1990 1991 1992 1993	1988
Monte Vista	5	Keokuk Cedar Rapids	e de la companya de l	Cedar Rapids	Cedar Rapids	©	J	s locals
Mon	Clinton	Keokuk Cedar R		Ceda	Ceda		rado Decat	
	rocessing	Ocessing			ucts Co.		iig. Co.(eldc	
A.E. Staley	ADM Com Processing	Hubinger Co.		Cargill Inc.	Penford Products Co.	5	A. E. Staley Mig. Co.(eldorado Decatur National Starch & Chamical Celodianacolis	

												0	0											0						0 (5				c		•				c	.	•			
0000	00	0	0									0	00	0		o c	0																													
0000	00	0	0	0			0	0	0 0	- 0	1182	0	0	0 (0 0					c	5 C	0	0	0	0			0	0 0	o c	0	0	0 1	.	•	0	0	0	0 0	0 0	0 0		. 0	0
0000	- c	0	0 0	,			0			- 0												•	0 0	0	,										•	0 0	>									
																																									•	0 6	0 0	>		
	c	•	0	0			0	0	0			0	0	0	0 0	> 0	o c	•						c	•					0	•	0 0	0	0	0	0 0	•	0	0	0	0	0 (0 0	o c	0	0
0000	00	0	Ξ,	•			0	0	0 (00	0	0	0	0	0	0 0	o c	•					•	0 0	0					0	0	0 0	0	0	0	0 0	>	0	0	0	0	0	0 0	0 0	0	0
1989 1990 1991	1993	1988	1989	1991	1992	1993	1988	1989	1990	1991	1993	1987	1988	1989	1990	1991	1992	1987	1988	1989	1990	1991	1992	1993	1988	1989	1990	1991	1993	1987	1988	1989	1991	1992	1993	1987	1988	1990	1991	1992	1993	1987	1988	1989	1001	1992
		аутепе				Marchall						ansas Citv						of marks in	epolino.					Mandage	AOTHEZUTIE					Dayton						London						Memphis				
	9	o. (Sagamou				Veecore M						hemical CoK							o nesson											_												_				
		A . E. Staley Mfg. Co. (SagamoLayrette				Minnesote Com Drocessore	2000 0000					National Starch & Chemical CoKansas City							Sora Corn Pre						ADM Com Processing					linc.						E. Staley Mfg. Co.						II Inc.				
	i	¥. E				Minne						Nation						1	MIDE						AUM					Cargill Inc.	•					ĕ.						Cargill Inc.				

00 00	200
000000	ဝဝဖွ
0 250 250 250 250	0 801
0000	0 107
	1,182 169
00000	0 - 0
0 00°5°5°	0 0 174
50.459 50.459 50.459 50.459 50.459 50.459 50.459 6.865 13.576	0 10,371
4.750 4.750 750 1,001 1,000	200 15,910 7,232
1983 1987 1988 1990 1992 1993 1988 1990 1990 1990 1990 1990 1990 1990	1993
Decatur Hammond Dimmitt Winston-Salem	
ADM Com Processing American Maize Products CPC Total	Average

Hydrogen Freon 113 Peracetic ACyclohexarKylene Lead Complickel ComSelenium Vanadium Barium Manganesévitric Acid Styrene Butadiene AmmoniumN-Butyl AlcVinyl AcetaBenzene Trichloroffu Tolluene Dichlorodiffuoromethane

Page 17

0 0

162400 102445 178140

24200 8800

80600 46200

Bromotriful Freon 113 Peracetic ACyclohexark ylene Lead Complickel Combiece Complicity Name Complicity Action Complicity Styrene Lead Complicity Name Complete Name Comple

62,000 299,200 177,245 252,940 30,800 24,200 0

Page 20

```
250
250
250
                                                                                    000
                                                                      250
250
250
250
                                                                       250
250
250
250
                                             250
                                     0000
                                                                                    000 0
                          9137
7756
                          22192
11467
                          5850
5347
                          960
594
                       43084
51,760
36915
                                                                                               0000000
                        35280
38414
24592
0
                      250
0
5
5
               000000
               000000
                                                                                               0
```

CWM Toxics.

Page 21

250

ကကက

0 0 5 35,280 43,084 0 0 0 0 0 250 250 0 0 0 0 0 0 0 0 0 0 0							
0 5 35,280 43,084 0 0 0 0 250 250 0 0 0 0 5 35,280 43,084 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	750	750	0	0	0	0	2
0 5 35,280 43,084 0 0 0 0 250 250 0 0 0 5 35,280 43,084 0 0 0 0 0 250 250 0 0 0 0 5 5 5 38,414 51,760 960 5,850 22,192 9,137 0 250 250 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	0	0	0	0	,
0 5 35,280 43,084 0 0 0 0 250 250 0 0 5 35,280 43,084 0 0 0 0 0 250 250 0 0 0 5 5 5 38,414 51,760 960 5,850 22,192 9,137 0 250 250 0 37 3 44,044 18,923 273 46.00 4,850 24	0	0	0	0	0	0	2
0 5 35,280 43,084 0 0 0 0 250 250 50 5 5 38,414 51,760 960 5,850 22,192 9,137 0 250 250 5 5 5 24,592 36,915 594 5,347 11,467 7,756 0 500 250 37 3 44,744 18,823 77 3 44,744 18	0	0	0	0	250	250	200
0 5 35,280 43,084 0 0 0 0 250 5 5 38,414 51,760 960 5,850 22,192 9,137 0 250 5 5 24,592 9,915 594 5,347 11,467 7,756 0 500 37 3 14,048 13 22 22 22 23 23 24 2,347 11,467 7,756 0 500	0	0	0	0	0	0	2
0 5 35,280 43,084 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	250	250	250	250	0	0	,
0 5 35,280 43,084 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200	250	250	250	0	0	>
0 5 35,280 43,084 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	0	0	0	0	,
0 5 35,280 43,084 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7,756	9,137	0	0	0	0	0
0 5 35,280 43,084 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11,467	22,192	0	0	0	0	>
0 5 35,280 43,084 5 5 38,414 51,760 5 5 24,592 36,915 37 3 14,044 18,975	5,347	5,850	0	0	0	0	1
5 5 38,414 5 5 5 38,414 5 7 3 24,592	594	960	0	0	0	0)
, , , , ,	36,915	51,760	43,084	0	0	0	0
, , , , ,	24,592	38,414	35,280	0	0	0	>
0000	9	ഗ	0	250	0	0	0
	0	0	0	0	0	0	
0000	0	0	0	0	0	0	

 Bromotriflu Freon 113 Peracetic ACyclohexart/ylene Lead Complickel CorrSelenium Vanadium Barium Manganeselitric Acid Styrene Butadiene AmmoniumVinyl AcetaBenzene TrichlorofluToluene

M Toxics

Page 23

Page 25

	00	00		000000
0 0				000000
250				250
				000000
				0 0 40,000 87,657 29,930 0
				000000
				0000000
				000000
				000000
				000000
			•	000000
				000000
000				000000
				000000
000				000000
				000000
				000000
0000				000000

OPERATOR	UNIT NAME	STATE	YEAR	COAL (THOUSAND SH TONS)	ASH (%)	EXF
SOUTHERN INDIANA GAS ELEC	AB BROWN 1	Z	1993	470.4	7.96	3744.384
SOUTHERN INDIANA GAS ELEC	AB BROWN 2	Z	1993	391.3	8.09	3165.617
AMES MUNI ELEC SYSTEM	AMES TWO 7	₹	1993	40.1	4.47	179.247
AMES MUNI ELEC SYSTEM	AMES TWO 8	₹	1993	154.5	4.45	687.525
NO INDIANA PUBLIC SERVICE	BAILLY 7	Z	1993	492.8	10.15	5001.92
NO INDIANA PUBLIC SERVICE	BAILLY 8	Z	1993	890.3	10.15	9036.545
ILLINOIS POWER CO	BALDWIN 1		1993	1394.4	9.34	13023.7
ILLINOIS POWER CO	BALDWIN 2	-	1993	1267.5	9.34	11838.45
ILLINOIS POWER CO	BALDWIN 3	_	1993	1432.6	9.34	13380.48
INDIANA MICHIGAN POWER CO	BREED 1	Z	1993	17.1	11	188.1
IOWA SOUTHERN UTILITIES	BURLINGTON (IA) 1	ΙĄ	1993	468.5	7.8	3654.3
PSI ENERGY INC	CAYUGA 1	Z	1993	1170.3	9.51	11129.55
PSI ENERGY INC	CAYUGA 2	Z	1993	1187.9	9.5	11285.05
INDIANA KENTUCKY ELEC COR	CLIFTY CREEK 1	<u>~</u>	1993	8.66.8	10.69	7128.092
INDIANA KENTUCKY ELEC COR	CLIFTY CREEK 2	Z	1993	693.3	10.69	7411.377
INDIANA KENTUCKY ELEC COR	CLIFTY CREEK 3	<u>Z</u>	1993	682.5	10.69	7295.925
INDIANA KENTUCKY ELEC COR	CLIFTY CREEK 4	Z	1993	648.1	10.69	6928.189
INDIANA KENTUCKY ELEC COR	CLIFTY CREEK 5	Z	1993	575.8	10.69	6155.302
INDIANA KENTUCKY ELEC COR	CLIFTY CREEK 6	Z	1993	701	10.69	7493.69
CENT ILLINOIS PUBLIC SERV	COFFEEN 1	_	1993	523.2	9.39	4912.848
CENT ILLINOIS PUBLIC SERV	COFFEEN 2	=	1993	1152.3	9.44	10877.71
MIDWEST POWER SYSTEMS	COUNCIL BLUFFS 1	₹	1993	205.2	4.64	952.128
MIDWEST POWER SYSTEMS	COUNCIL BLUFFS 2	₹	1993	305	4.65	1418.25
MIDWEST POWER SYSTEMS	COUNCIL BLUFFS 3	₹	1993	1876.8	4.5	8445.6
COMMONWEALTH EDISON CO	CRAWFORD 7		1993	226.7	5.51	1249.117
COMMONWEALTH EDISON CO	CRAWFORD 8	يــ	1993	590.5	5.67	3348.135
CRAWFORDSVILLE ELEC LT PR	CRAWFORDSVILLE 5	Z	1993	11.32	8.19	92.7108
SOUTHERN INDIANA GAS ELEC	CULLEY 1	Z	1993	61	8.33	508.13
SOUTHERN INDIANA GAS ELEC	CULLEY 2	Z	1993	264.6	8.22	2175.012
SOUTHERN INDIANA GAS ELEC	CULLEY 3	Z	1993	784	9.76	7651.84
SPRINGFIELD WTR LT & PWR	DALLMAN 1		1993	. 192.9	10.09	1946.361
SPRINGFIELD WTR LT & PWR	DALLMAN 2	_	1993	235.5	10.08	2373.84
SPRINGFIELD WTR LT & PWR	DALLMAN 3	_	1993	528.6	10.08	5328.288

NO INDIANA PUBLIC SERVICE	DH MITCHELL 11	Z	1993	269.1	5.89	1584.999
NO INDIANA PUBLIC SERVICE	DH MITCHELL 4	Z	1993	107.5	5.82	625.65
NO INDIANA PUBLIC SERVICE	DH MITCHELL 5	Z	1993	259.4	6.13	1590.122
NO INDIANA PUBLIC SERVICE	DH MITCHELL 6	Z	1993	392.1	6.04	2368.284
INTERSTATE POWER CO	DUBUQUE 2	₹	1993	6.0	10.91	9.819
INTERSTATE POWER CO	DUBUQUE 3	₹	1993	25.3	10.91	276.023
INTERSTATE POWER CO	DUBUQUE 4	A	1993	51.5	10.91	561.865
CENTRAL ILLINOIS LIGHT CO	DUCK CREEK 1	1	1993	1044.8	8.21	8577.808
CORN BELT POWER COOP	EARL F WISDOM 1	ΙĄ	1993	19	9.7	184.3
JASPER MUNICIPAL UTIL	EAST FIFTEENTH ST 1	z	1993	35.2	9.41	331.232
CENTRAL ILLINOIS LIGHT CO	ED EDWARDS 1	1	1993	119.8	5.95	712.81
CENTRAL ILLINOIS LIGHT CO	ED EDWARDS 2		1993	462.2	5.96	2754.712
CENTRAL ILLINOIS LIGHT CO	ED EDWARDS 3	-	1993	612.8	6.4	3921.92
INDIANAPOLIS POWER & LT	EW STOUT 5	Z	1993	223.4	8.11	1811.774
INDIANAPOLIS POWER & LT	EW STOUT 6	Z	1993	180.9	8.11	1467.099
INDIANAPOLIS POWER & LT	EW STOUT 7	Z	1993	805.3	8.14	6555.142
CENTRAL IOWA POWER COOP	FE FAIR 1	Ι	1993	42.7	9.48	404.796
CENTRAL IOWA POWER COOP	FE FAIR 2	Α	1993	83.7	9.46	791.802
COMMONWEALTH EDISON CO	FISK 19	_	1993	598.2	5.14	3074.748
PSI ENERGY INC	GALLAGHER 1	Z	1993	301.77	8.66	2613.328
PSI ENERGY INC	GALLAGHER 2	Z	1993	304.82	8.66	2639.741
PSI ENERGY INC	GALLAGHER 3	Z	1993	262.04	8.63	2261.405
PSI ENERGY INC	GALLAGHER 4	Z	1993	244.9	8.78	2150.222
MIDWEST POWER SYSTEMS	GEORGE NEAL 1	≰	1993	443.3	6.29	2788.357
MIDWEST POWER SYSTEMS	GEORGE NEAL 2	₹	1993	832.6	7.84	6527.584
MIDWEST POWER SYSTEMS	GEORGE NEAL 3	≰	1993	1737.7	5.01	8705.877
MIDWEST POWER SYSTEMS	GEORGE NEAL 4	¥	1993	2581.2	5.12	13215.74
PSI ENERGY INC	GIBSON 1	Z	1993	1703.9	10.18	17345.7
PSI ENERGY INC	GIBSON 2	Z	1993	1325.5	10.06	13334.53
PSI ENERGY INC	GIBSON 3	Z	1993	1751.3	10.18	17828.23
PSI ENERGY INC	GIBSON 4	Z	1993	1612.6	10.18	16416.27
PSI ENERGY INC	GIBSON 5	Z	1993	1628.9	8.62	14041.12
CENT ILLINOIS PUBLIC SERV	GRAND TOWER 3		1993	19.3	11.83	228.319
CENT ILLINOIS PUBLIC SERV	GRAND TOWER 4	-	1993	132.3	11.76	1555.848

ILLINOIS POWER CO	HAVANA 6	۳	1993	569.7	8.75	4984.875
ILLINOIS POWER CO	HENNEPIN 1	_	1993	81.8	9.94	813.092
ILLINOIS POWER CO	HENNEPIN 2	_	1993	462.5	9.93	4592.625
INDIANAPOLIS POWER & LT	HT PRITCHARD 3	Z	1993	28.6	7.51	214.786
INDIANAPOLIS POWER & LT	HT PRITCHARD 4	Z	1993	68.4	7.5	513
INDIANAPOLIS POWER & LT	HT PRITCHARD 5	Z	1993	69.7	7.5	522.75
INDIANAPOLIS POWER & LT	HT PRITCHARD 6	Z	1993	210.6	7.5	1579.5
CENT ILLINOIS PUBLIC SERV	HUTSONVILLE 3	4	1993	112.1	9.62	1078.402
CENT ILLINOIS PUBLIC SERV	HUTSONVILLE 4		1993	66	9.57	947.43
COMMONWEALTH EDISON CO	JOLIET 6		1993	597.5	4.28	2557.3
COMMONWEALTH EDISON CO	JOLIET 7	=	1993	1225.3	5.64	6910.692
COMMONWEALTH EDISON CO	JOLIET 8	_	1993	657.3	5.74	3772.902
ELECTRIC ENERGY INC	JOPPA 1	_	1993	518.2	7.11	3684.402
ELECTRIC ENERGY INC	JOPPA 2	_	1993	623.2	7.11	4430.952
ELECTRIC ENERGY INC	JOPPA 3	_	1993	629.3	7.11	4474.323
ELECTRIC ENERGY INC	JOPPA 4	=	1993	557.5	7.11	3963.825
ELECTRIC ENERGY INC	JOPPA 5	_	1993	642	7.11	4564.62
ELECTRIC ENERGY INC	JOPPA 6	⊒	1993	672	7.11	4777.92
COMMONWEALTH EDISON CO	KINCAID 1	-	1993	772.6	9.25	7146.55
COMMONWEALTH EDISON CO	KINCAID 2	1	1993	1174.3	9.33	10956.22
SPRINGFIELD WTR LT & PWR	LAKESIDE (IL) 6	_	1993	38.5	10.17	391.545
SPRINGFIELD WTR LT & PWR	LAKESIDE (IL) 7		1993	39.9	10.09	402.591
INTERSTATE POWER CO	LANSING 1	Ą	1993	3.6	11.52	41.472
INTERSTATE POWER CO	LANSING 2	₹	1993	3.6	11.52	41.472
INTERSTATE POWER CO	LANSING 3	₹	1993	19.3	11.52	222.336
INTERSTATE POWER CO	LANSING 4	₹	1993	529	4.64	2454.56
LOGANSPORT MUNI UTIL	LOGANSPORT 4	Z	1993	33	6.79	224.07
LOGANSPORT MUNI UTIL	LOGANSPORT 5	Z	1993	49	6.79	332.71
IOWA-ILLINOIS GAS & ELEC	LOUISA 1	₹	1993	2157.7	4.99	10766.92
SOUTH ILLINOIS POWER COOP	MARION (IL) 1	_	1993	21	15.52	325.92
SOUTH ILLINOIS POWER COOP	MARION (IL) 2	_	1993	12	14.28	171.36
SOUTH ILLINOIS POWER COOP	MARION (IL) 3	=	1993	13	14.61	189.93
SOUTH ILLINOIS POWER COOP	MARION (IL) 4	_	1993	476	15.49	7373.24
CENT ILLINOIS PUBLIC SERV	MEREDOSIA 1	긛	1993	10.8	6.62	71.496

CENT ILLINOIS PUBLIC SERV	MEREDOSIA 2	<u>=</u>	1993	33.80	6.59	90.942
CENT ILLINOIS PUBLIC SERV	MEREDOSIA 3	_	1993	458.4	6.54	2997.936
HOOSIER ENERGY REC	MEROM 1	Z	1993	1184.8	12.01	14229.45
HOOSIER ENERGY REC	MEROM 2	Z	1993	1393.2	11.98	16690.54
NO INDIANA PUBLIC SERVICE	MICHIGAN CITY 12	z	1993	1373.1	7.76	10655.26
INTERSTATE POWER CO	ML KAPP 2	Ā	1993	510.1	7.59	3871.659
MUSCATINE POWER & WATER	MUSCATINE 7	Ā	1993	33.5	9.82	328.97
MUSCATINE POWER & WATER	MUSCATINE 8	Ā	1993	9.08	10	806
MUSCATINE POWER & WATER	MUSCATINE 9	¥	1993	537.3	6.65	3573.045
CENT ILLINOIS PUBLIC SERV	NEWTON 1	7	1993	1195.2	11.01	13159.15
CENT ILLINOIS PUBLIC SERV	NEWTON 2	1	1993	1360	9.27	12607.2
IOWA SOUTHERN UTILITIES	OTTUMWA 1	₹	1993	2676.1	5.31	14210.09
SOYLAND POWER COOP	PEARL 1	<u> </u>	1993	62.8	8.17	513.076
PERU (IN) UTILITIES	PERU (IN) 2	Z	1993	1.18	9.37	11.0566
INDIANAPOLIS POWER & LT	PETERSBURG 1	Z	1993	710.9	8.64	6142.176
INDIANAPOLIS POWER & LT	PETERSBURG 2	Z	1993	1154.4	8.72	10066.37
INDIANAPOLIS POWER & LT	PETERSBURG 3	Z	1993	1456.7	8.64	12585.89
INDIANAPOLIS POWER & LT	PETERSBURG 4	Z	1993	1292.6	8.64	11168.06
COMMONWEALTH EDISON CO	POWERTON 5		1993	1161.9	4.79	5565.501
COMMONWEALTH EDISON CO	POWERTON 6	7	1993	1733.4	4.88	8458.992
IOWA ELEC LIGHT & POWER	PRAIRIE CREEK 3	⋖	1993	112.6	2.7	641.82
IOWA ELEC LIGHT & POWER	PRAIRIE CREEK 4	⊻	1993	417.9	5.7	2382.03
HOOSIER ENERGY REC	RATTS 1	Z	1993	266.4	9.45	2509.488
HOOSIER ENERGY REC	RATTS 2	Z	1993	320.4	9.43	3021.372
IOWA-ILLINOIS GAS & ELEC	RIVERSIDE (IA) 5	₹	1993	152.4	9.26	1411.224
NO INDIANA PUBLIC SERVICE	RM SCHAHFER 14	Z	1993	959.3	7.24	6945.332
NO INDIANA PUBLIC SERVICE	RM SCHAHFER 15	Z	1993	938.3	8.25	7740.975
NO INDIANA PUBLIC SERVICE	RM SCHAHFER 17	Z	1993	705.6	10.12	7140.672
NO INDIANA PUBLIC SERVICE	RM SCHAHFER 18	Z	1993	694.9	10.21	7094.929
INDIANA MICHIGAN POWER CO	ROCKPORT 1	Z	1993	4718.8	4.81	22697.43
INDIANA MICHIGAN POWER CO	ROCKPORT 2	Z	1993	4842.8	4.86	23536.01
COMMONWEALTH EDISON (IN)	STATE LINE 3	Z	1993	384.3	3.59	1379.637
COMMONWEALTH EDISON (IN)	STATE LINE 4	Z	1993	406.4	4.4	1788.16
CEDAR FALLS UTILITIES	STREETER 6	₹	1993	1.6	8.4	13.44

CEDAR FALLS UTILITIES	STREETER 7	₹	1993	23.2	8.55	198.36
IOWA ELEC LIGHT & POWER	SUTHERLAND 1	₹	1993	6.69	4.07	284.493
IOWA ELEC LIGHT & POWER	SUTHERLAND 2	A	1993	73.2	4.07	297.924
IOWA ELEC LIGHT & POWER	SUTHERLAND 3	¥	1993	215.5	4.07	877.085
INDIANA MICHIGAN POWER CO	TANNERS CREEK 1	<u>N</u>	1993	283.6	10.36	2938.096
INDIANA MICHIGAN POWER CO	TANNERS CREEK 2	Z	1993	92.9	9.98	927.142
INDIANA MICHIGAN POWER CO	TANNERS CREEK 3	Z	1993	164.4	10.48	1722.912
INDIANA MICHIGAN POWER CO	TANNERS CREEK 4	Z	1993	1322.1	9.39	12414.52
ILLINOIS POWER CO	VERMILION 1		1993	111.2	11.8	1312.16
ILLINOIS POWER CO	VERMILION 2	_	1993	211.6	11.73	2482.068
PSI ENERGY INC	WABASH RIVER 1	Z	1993	147.9	9.07	1341.453
PSI ENERGY INC		Z	1993	170.8	90.6	1547.448
PSI ENERGY INC	WABASH RIVER 3	Z	1993	175.38	9.07	1590.697
PSI ENERGY INC		Z	1993	143.18	9.07	1298.643
PSI ENERGY INC	WABASH RIVER 5	Z	1993	178.41	9.07	1618.179
PSI ENERGY INC	WABASH RIVER 6	Z	1993	593.35	9.07	5381.685
SOUTHERN INDIANA GAS ELEC	WARRICK 4	Z	1993	993.3	9.76	9694.608
COMMONWEALTH EDISON CO	WAUKEGAN 6	_	1993	181.4	4.81	872.534
COMMONWEALTH EDISON CO	WAUKEGAN 7		1993	740.7	5.31	3933.117
COMMONWEALTH EDISON CO	WAUKEGAN 8		1993	390.4	5.66	2209.664
RICHMOND POWER & LIGHT	WHITEWATER VALLEY	N L	1993	94.2	9.81	924.102
RICHMOND POWER & LIGHT		SIN	1993	202	9.81	1981.62
COMMONWEALTH EDISON CO	WILL COUNTY 1	_	1993	415	4.88	2025.2
COMMONWEALTH EDISON CO	WILL COUNTY 2	-	1993	458.2	4.57	2093.974
COMMONWEALTH EDISON CO	WILL COUNTY 3	1	1993	542.5	5.09	2761.325
COMMONWEALTH EDISON CO	WILL COUNTY 4	1	1993	1069.8	5.15	5509.47
ILLINOIS POWER CO	WOOD RIVER (IL) 4	-	1993	87.4	8.16	713.184
ILLINOIS POWER CO	WOOD RIVER (IL) 5	-1	1993	683.1	8.22	5615.082

TOTAL AVERAGE WT. AVERAGE

1353.45 8.303374233 7.696587462

745361

96843.05

SULFUR (%)	3.67 1726.368 3.69 1443.897	0.21	0.21 32.445	က	2.97	2.36 3397.332 2.58 3270.15	2.58			1.48	1.48	2.1 2.1 2.1 2.1	2.1 2.1 2.11 3.28 2.2	2.1 2.1 2.11 3.28 3.28 2.28 2.28	3.28 3.28 3.28 3.28 3.28 2.28 2.328	2.1 2.1 2.11 3.28 3.28 3.28 3.28 3.28 3.28 3.28	2.1 2.1 3.28 3.28 3.28 3.28 3.28 3.28 3.28 3.28	3.28 3.28 3.28 3.28 3.28 3.28 3.28 3.28	2.1 2.1 3.28 3.28 3.28 3.28 3.28 2.328 2.328 2.328 2.328 2.328 3.28 3.	2.1 2.1 3.28 3.28 3.28 3.28 3.28 2.328 2.328 2.328 2.328 2.328 2.328 3.28 3.	2.1 2.1 3.28 3.28 3.28 3.28 3.28 2.88 2.88 2.86 44 3.28 2.86 3.28 3.28 3.28 3.28 3.28 3.28 3.28 3.28	2.1 2.1 3.28 3.28 3.28 3.28 2.38 2.88 2.88 2.88	2.1 2.1 3.28 3.28 3.28 3.28 2.85 2.85 2.86 0.31 0.31	2.1 2.1 3.28 3.28 3.28 3.28 3.28 2.84 2.86 0.31 0.32 6	2.1 2.1 3.28 3.28 3.28 3.28 2.32 2.88 2.88 2.88	2.1 2.1 3.28 3.28 3.28 3.28 2.85 2.85 2.86 0.31 0.31 1.66	2.1 3.28 3.28 3.28 3.28 3.28 2.32 2.86 0.31 0.31 1.66 1.66	2.1 2.1 3.28 3.28 3.28 3.28 2.86 0.31 0.31 1.66 1.35	2.1 3.28 3.28 3.28 3.28 2.32 2.86 0.31 0.31 1.35 1.35	2.1 2.1 3.28 3.28 3.28 3.28 3.28 2.86 2.86 0.31 0.31 0.32 1.35 1.35 1.35
(010 110 2111 100 111)	4/0.4 391.3	40.1	154.5	492.8	890.3	1264.4	1432.6	17.1		468.5	468.5 1170.3	468.5 1170.3 1187.9	468.5 1170.3 1187.9 666.8	468.5 1170.3 1187.9 666.8 693.3	468.5 1170.3 1187.9 666.8 693.3 682.5	468.5 1170.3 1187.9 666.8 693.3 682.5	468.5 1170.3 1187.9 666.8 693.3 682.5 648.1	468.5 1170.3 1187.9 666.8 693.3 682.5 648.1 575.8	468.5 1170.3 1187.9 666.8 693.3 682.5 648.1 575.8 501	468.5 1170.3 1187.9 666.8 693.3 682.5 648.1 575.8 701 523.2	468.5 1170.3 1187.9 666.8 693.3 682.5 648.1 575.8 701 1152.3	468.5 1170.3 1187.9 666.8 693.3 682.5 648.1 575.8 701 523.2 1152.3 305.2	468.5 1170.3 1187.9 666.8 693.3 682.5 648.1 575.8 701 523.2 1152.3 205.2 305	468.5 1170.3 1187.9 666.8 693.3 682.5 648.1 701 701 523.2 1152.3 205.2 305 1876.8	468.5 1170.3 1187.9 666.8 693.3 682.5 648.1 701 523.2 1152.3 205.2 305 1876.8 590.5	468.5 1170.3 1187.9 666.8 693.3 682.5 648.1 701 525.8 701 523.2 1152.3 205.2 305 1876.8 226.7 590.5	468.5 1170.3 1187.9 666.8 693.3 682.5 648.1 701 701 523.2 1152.3 205.2 305 1876.8 226.7 590.5	468.5 1170.3 1187.9 666.8 693.3 682.5 648.1 701 523.2 1152.3 205.2 305 1876.8 226.7 590.5 11.32	468.5 1170.3 1187.9 666.8 693.3 682.5 648.1 701 523.2 1152.3 205.2 305 1876.8 226.7 590.5 11.32 61	468.5 1170.3 1187.9 666.8 693.3 682.5 648.1 701 575.8 1152.3 205.2 305 1876.8 226.7 590.5 11.32 61 264.6
4003	1993 1993	1993	1993	1993	1993	1993	1993	1993	4004	1883	1993	1993 1993	1993 1993 1993	1993 1993 1993	1993 1993 1993 1993	1993 1993 1993 1993 1993	1993 1993 1993 1993 1993	1993 1993 1993 1993 1993	1993 1993 1993 1993 1993	1993 1993 1993 1993 1993 1993	1993 1993 1993 1993 1993 1993	1993 1993 1993 1993 1993 1993 1993	1993 1993 1993 1993 1993 1993 1993	1993 1993 1993 1993 1993 1993 1993	1993 1993 1993 1993 1993 1993 1993 1993	1993 1993 1993 1993 1993 1993 1993 1993	1993 1993 1993 1993 1993 1993 1993 1993	1993 1993 1993 1993 1993 1993 1993 1993	1993 1993 1993 1993 1993 1993 1993 1993	1993 1993 1993 1993 1993 1993 1993 1993
	<u>Z</u> <u>Z</u>	O7 IA	0.8 IA	Z	==	. ~ i =	3	Z	AL (AL) NO	_	-	ZZ	EEK 1 IN IN IN IN IN IN IN IN IN IN IN IN IN	EEK 1 N C	EEK 1 N N EEK 3 N N EEK 3 N N EEK 3 N N EEK 3 N N EEK 3 N N N N N N N N N N N N N N N N N N	EEK 2 N N EEK 2 N N N N N N N N N N N N N N N N N N	EEK 2 A S S S S S S S S S S S S S S S S S S	####		,					EEK 1 IN EEK 2 IN EEK 2 IN EEK 4 IN EEK 6 IN EEK 6 IN LL 2 IL 2	EEK 1 IN EEK 2 IN EEK 4 IN EEK 5 IN EEK 6 IN EEK 6 IN EEK 6 IN EEK 7 IL 1 IL D 7 IL D 8 IL D 8 IL	EEK 1 IN EEK 2 IN EEK 4 IN EEK 5 IN EEK 5 IN EEK 6 IN EEK 6 IN 1	EEK 1 IN EEK 2 IN EEK 3 IN EEK 5 IN EEK 6 IN EEK 6 IN LUFFSIA LUFFSIA ILUFFSIA IN D 7 IL D 8 IL IN IN IN IN IN	EEK 1 IN EEK 2 IN EEK 4 IN EEK 4 IN EEK 5 IN EEK 5 IN EEK 6 IN EEK 6 IN EEK 5 IN EEK 6 IN EEK	
SOLITHERN INDIANA GAS ELEGAB BROWN 1	SOUTHERN INDIANA GAS ELEGAB BROWN 2	AMES TWO 7		NO INDIANA PUBLIC SERVICE BAILLY 7	SAI DIVIN 1	BALDWIN 2	BALDWIN 3	$\ddot{\circ}$	BURLINGTON			CAYUGA 1 CAYUGA 2	PSI ENERGY INC CAYUGA 1 PSI ENERGY INC CAYUGA 2 INDIANA KENTUCKY ELEC CORCLIFTY CREEK	PSI ENERGY INC CAYUGA 1 PSI ENERGY INC CAYUGA 2 INDIANA KENTUCKY ELEC CORCLIFTY CREEK	PSI ENERGY INC CAYUGA 1 PSI ENERGY INC CAYUGA 2 INDIANA KENTUCKY ELEC CORCLIFTY CREEK INDIANA KENTUCKY ELEC CORCLIFTY CREEK INDIANA KENTUCKY ELEC CORCLIFTY CREEK	PSI ENERGY INC CAYUGA 1 PSI ENERGY INC CAYUGA 2 INDIANA KENTUCKY ELEC CORCLIFTY CREEK INDIANA KENTUCKY ELEC CORCLIFTY CREEK INDIANA KENTUCKY ELEC CORCLIFTY CREEK INDIANA KENTUCKY ELEC CORCLIFTY CREEK	PSI ENERGY INC CAYUGA 1 PSI ENERGY INC CAYUGA 2 INDIANA KENTUCKY ELEC CORCLIFTY CREEK INDIANA KENTUCKY ELEC CORCLIFTY CREEK INDIANA KENTUCKY ELEC CORCLIFTY CREEK INDIANA KENTUCKY ELEC CORCLIFTY CREEK INDIANA KENTUCKY ELEC CORCLIFTY CREEK	PSI ENERGY INC CAYUGA 1 PSI ENERGY INC CAYUGA 2 INDIANA KENTUCKY ELEC CORCLIFTY CREEK PSI ENERGY INC CAYUGA 1 PSI ENERGY INC CAYUGA 2 INDIANA KENTUCKY ELEC CORCLIFTY CRE INDIANA KENTUCKY ELEC CORCLIFTY CRE INDIANA KENTUCKY ELEC CORCLIFTY CRE INDIANA KENTUCKY ELEC CORCLIFTY CRE INDIANA KENTUCKY ELEC CORCLIFTY CRE INDIANA KENTUCKY ELEC CORCLIFTY CRE INDIANA KENTUCKY ELEC CORCLIFTY CRE CENT ILLINOIS PUBLIC SERV COFFEEN 1	CAYUGA 1 CAYUGA 2 CAYUGA 2 CORCIIFTY CRE CORCIIFTY CRE CORCIIFTY CRE CORCIIFTY CRE	CAYUGA 1 IN CAYUGA 2 IN CAYUGA 2 IN CORCLIFTY CREEK 2 IN CORCLIFTY CREEK 3 IN CORCLIFTY CREEK 4 IN CORCLIFTY CREEK 5 IN CORCLIFTY CREEK 5 IN CORFIEEN 1 IL CORFIEEN 2 IL		CAYUGA 1 IN CAYUGA 2 IN CAYUGA 2 IN CAYUGA 2 IN CORCLIFTY CREEK 3 IN CORCLIFTY CREEK 4 IN CORCLIFTY CREEK 5 IN CORCLIFTY CREEK 5 IN CORFIED 1 IL V COFFEEN 1 IL V COFFEEN 1 IL V COFFEEN 2 IL S COUNCIL BLUFFSIA S COUNCIL BLUFFSIA 5 COUNCIL BLU		PSI ENERGY INC CAYUGA 2 INDIANA KENTUCKY ELEC CORCLIFTY CREEN INDIANA KENTUCKY ELEC CORCLIFTY CORCLIFTY CREEN INDIANA KENTUCKY ELEC CORCLIFTY CR	PSI ENERGY INC CAYUGA 1 PSI ENERGY INC CAYUGA 2 INDIANA KENTUCKY ELEC CORCLIFTY CREEK INDIANA KENTUCKY ELEC CORCLIFTY CREEK INDIANA KENTUCKY ELEC CORCLIFTY CREEK INDIANA KENTUCKY ELEC CORCLIFTY CREEK INDIANA KENTUCKY ELEC CORCLIFTY CREEK INDIANA KENTUCKY ELEC CORCLIFTY CREEK INDIANA KENTUCKY ELEC CORCLIFTY CREEK CENT ILLINOIS PUBLIC SERV COFFEEN 1 CENT ILLINOIS PUBLIC SERV COFFEEN 1 CENT ILLINOIS PUBLIC SERV COFFEEN 1 CENT ILLINOIS PUBLIC SERV CONCIL BLUF MIDWEST POWER SYSTEMS COUNCIL BLUF MIDWEST POWER SYSTEMS COUNCIL BLUF COMMONWEALTH EDISON COCRAWFORD 8 COMMONWEALTH EDISON COCRAWFORD 8	CAYUGA 1 CAYUGA 2 ORCLIFTY CRE ORCLIFTY CRE ORCLIFTY CRE ORCLIFTY CRE ORCLIFTY CRE ORCLIFTY CRE COUNCIL BI COU	CAYUGA 1 CAYUGA 2 CAYUGA 2 CORCLIFTY CRE CORCLIFTY CRE CORCLIFTY CRE CORCLIFTY CRE CORCLIFTY CRE CORCLIFTY CRE CORCLIFTY CRE CORCLIFTY CRE CORCLIFTY CRE CORCLIFTY CRE CORCLIFTY CRE COCRAWFORL COCRAW	PSI ENERGY INC CAYUGA 2 INDIANA KENTUCKY ELEC CORCLIFTY CRE INDIANA KENTUCKY ELEC CORCLIFTY CRE INDIANA KENTUCKY ELEC CORCLIFTY CRE INDIANA KENTUCKY ELEC CORCLIFTY CRE INDIANA KENTUCKY ELEC CORCLIFTY CRE INDIANA KENTUCKY ELEC CORCLIFTY CRE INDIANA KENTUCKY ELEC CORCLIFTY CRE INDIANA KENTUCKY ELEC CORCLIFTY CRE CENT ILLINOIS PUBLIC SERV COFFEEN 1 CENT ILLINOIS PUBLIC SERV COFFEEN 2 MIDWEST POWER SYSTEMS COUNCIL BI MIDWEST POWER SYSTEMS COUNCIL BI MIDWEST POWER SYSTEMS COUNCIL BI COMMONWEALTH EDISON COCRAWFORE COMMONWEALTH EDISON COCRAWFORE COMMONWEALTH EDISON COCRAWFORE SOUTHERN INDIANA GAS ELECCULLEY 1 SOUTHERN INDIANA GAS ELECCULLEY 2	PSI ENERGY INC CAYUGA 2 INDIANA KENTUCKY ELEC CORCLIFTY CRE INDIANA KENTUCKY ELEC CORCLIFTY CRE INDIANA KENTUCKY ELEC CORCLIFTY CRE INDIANA KENTUCKY ELEC CORCLIFTY CRE INDIANA KENTUCKY ELEC CORCLIFTY CRE INDIANA KENTUCKY ELEC CORCLIFTY CRE INDIANA KENTUCKY ELEC CORCLIFTY CRE INDIANA KENTUCKY ELEC CORCLIFTY CRE CONTILLINOIS PUBLIC SERV COFFEEN 2 MIDWEST POWER SYSTEMS COUNCIL BI MIDWEST POWER SYSTEMS COUNCIL BI MIDWEST POWER SYSTEMS COUNCIL BI COMMONWEALTH EDISON COCRAWFORE COMMONWEALTH EDISON COCRAWFORE COMMONWEALTH EDISON COCRAWFORE SOUTHERN INDIANA GAS ELECCULLEY 1 SOUTHERN INDIANA GAS ELECCULLEY 3 SPRINGFIELD WITR LT & PWR DALLMAN 1	
ப	-	AMES MUNI ELEC SYSTEM	AMES MUNI ELEC SYSTEM	_				L.L.	IOWA SOUTHERN UTILITIES				Ö	0 0	000	0000	00000	0 0 0 0 0 0	0000000			PSI ENERGY INC PSI ENERGY INC INDIANA KENTUCKY ELEC CO INDIANA KENTUCKY ELEC CO INDIANA KENTUCKY ELEC CO INDIANA KENTUCKY ELEC CO INDIANA KENTUCKY ELEC CO INDIANA KENTUCKY ELEC CO INDIANA KENTUCKY ELEC CO CENT ILLINOIS PUBLIC SERV CENT ILLINOIS PUBLIC SERV MIDWEST POWER SYSTEMS	PSI ENERGY INC INDIANA KENTUCKY ELEC CC CENT ILLINOIS PUBLIC SERV CENT ILLINOIS PUBLIC SERV MIDWEST POWER SYSTEMS MIDWEST POWER SYSTEMS							

SPRINGFIELD WTR LT & PWR	DALLMAN 3		1993	528.6	3.19	1686.234
NO INDIANA PUBLIC SERVICE	DH MITCHELL 11	Z	1993	269.1	0.39	104.949
NO INDIANA PUBLIC SERVICE	DH MITCHELL 4	z	1993	107.5	0.38	40.85
NO INDIANA PUBLIC SERVICE	DH MITCHELL 5	z	1993	259.4	0.4	103.76
NO INDIANA PUBLIC SERVICE	DH MITCHELL 6	z	1993	392.1	0.39	152.919
INTERSTATE POWER CO	DUBUQUE 2	∢	1993	6.0	2.8	2.52
	DUBUQUE 3	⋖	1993	25.3	2.8	70.84
	DUBUQUE 4	4	1993	51.5	2.8	144.2
CENTRAL ILLINOIS LIGHT CO	DUCK CREEK 1	_	1993	1044.8	3.3	3447.84
CORN BELT POWER COOP	EARL F WISDOM 11	4	1993	19	2.75	52.25
	EAST FIFTEENTH I	z	1993	35.2	1.39	48.928
000	ED EDWARDS 1	_	1993	119.8	1.03	123.394
CENTRAL ILLINOIS LIGHT CO	ED EDWARDS 2		1993	462.2	1.03	476.066
	ED EDWARDS 3		1993	612.8	1.03	631.184
	EW STOUT 5	Z	1993	223.4	1.77	395.418
INDIANAPOLIS POWER & LT	EW STOUT 6	Z	1993	180.9	1.77	320.193
INDIANAPOLIS POWER & LT	EW STOUT 7	z	1993	805.3	1.77	1425.381
CENTRAL IOWA POWER COOPFE FAIR 1	PE FAIR 1	A	1993	42.7	3.14	134.078
CENTRAL IOWA POWER COOPFE FAIR 2	PE FAIR 2	A	1993	83.7	3.16	264.492
COMMONWEALTH EDISON COFISK 19	FISK 19		1993	598.2	0.43	257.226
PSI ENERGY INC	GALLAGHER 1	z	1993	301.77	2.18	657.8586
PSI ENERGY INC	GALLAGHER 2	Z	1993	304.82	2.18	664.5076
PSI ENERGY INC	GALLAGHER 3	z	1993	262.04	2.18	571.2472
PSI ENERGY INC	GALLAGHER 4	Z	1993	244.9	2.14	524.086
MIDWEST POWER SYSTEMS	GEORGE NEAL 1	⋖	1993	443.3	0.43	190.619
MIDWEST POWER SYSTEMS	GEORGE NEAL 2	⋖	1993	832.6	0.47	391.322
MIDWEST POWER SYSTEMS	GEORGE NEAL 3	⋖	1993	1737.7	0.41	712.457
MIDWEST POWER SYSTEMS	GEORGE NEAL 4	⋖	1993	2581.2	0.39	1006.668
PSI ENERGY INC	GIBSON 1	Z	1993	1703.9	1.43	2436.577
PSI ENERGY INC	GIBSON 2	Z	1993	1325.5	1.42	1882.21
PSI ENERGY INC	GIBSON 3	Z	1993	1751.3	1.43	2504.359
PSI ENERGY INC	GIBSON 4	Z	1993	1612.6	1.43	2306.018
PSI ENERGY INC	GIBSON 5	Z	1993	1628.9	2.89	4707.521

CENT ILLINOIS PUBLIC SERV	GRAND TOWER 3 II	=	1993	19.3		54.233
CENT ILLINOIS PUBLIC SERV	GRAND TOWER 4	: II_	1993	132.3		371.763
ILLINOIS POWER CO	HAVANA 6		1993	569.7		341.82
ILLINOIS POWER CO	HENNEPIN 1		1993	81.8		215.952
ILLINOIS POWER CO	HENNEPIN 2	_	1993	462.5		1221
	HT PRITCHARD 3	Z	1993	28.6		36.036
	HT PRITCHARD 4	Z	1993	68.4		86.184
	HT PRITCHARD 5	Z	1993	2.69		87.822
	HT PRITCHARD 6	Z	1993	210.6		265.356
	HUTSONVILLE 3 II	1	1993	112.1	2.19	245.499
CENT ILLINOIS PUBLIC SERV	HUTSONVILLE 4		1993	66		216.81
COMMONWEALTH EDISON COJOLIET 6	JOLIET 6	<u></u>	1993	597.5		227.05
COMMONWEALTH EDISON COJOLIET 7	JOLIET 7		1993	1225.3		575.891
COMMONWEALTH EDISON COJOLIET 8	JOLIET 8	_	1993	657.3		262.92
ELECTRIC ENERGY INC	JOPPA 1	1	1993	518.2		658.114
ELECTRIC ENERGY INC	JOPPA 2		1993	623.2		791.464
ELECTRIC ENERGY INC	JOPPA 3	-	1993	629.3		799.211
	JOPPA 4		1993	557.5		708.025
	JOPPA 5		1993	642		815.34
ELECTRIC ENERGY INC	JOPPA 6	-	1993	672		853.44
COMMONWEALTH EDISON COKINCAID 1	KINCAID 1		1993	772.6		2874.072
COMMONWEALTH EDISON COKINCAID 2	KINCAID 2		1993	1174.3		4344.91
SPRINGFIELD WTR LT & PWR LAKESIDE (IL)	LAKESIDE (IL) 6		1993	38.5		123.97
PWR	LAKESIDE (IL) 7	_	1993	39.9		128.079
	LANSING 1	۲	1993	3.6		8.172
	LANSING 2	₹	1993	3.6		8.172
	LANSING 3	⊻	1993	19.3		43.811
	LANSING 4	¥	1993	529		179.86
	LOGANSPORT 4	<u>z</u>	1993	33		25.41
	LOGANSPORT 5	Z	1993	49		37.73
IOWA-ILLINOIS GAS & ELEC	LOUISA 1	⊻	1993	2157.7		733.618
SOUTH ILLINOIS POWER COOPMARION (IL) 1	MARION (IL) 1	_	1993	21		53.55
SOUTH ILLINOIS POWER COOMARION (IL) 2	MARION (IL) 2	=	1993	12		30.24

SOUTH ILLINOIS POWER COOMARION (IL) 3	ARION (IL) 3	_	1993	13	2.57	33.41
SOUTH ILLINOIS POWER COOFMARION (IL) 4	ARION (IL) 4		1993	476	2.63	1251.88
CENT ILLINOIS PUBLIC SERV ME	MEREDOSIA 1	<u>_</u>	1993	10.8	2.97	32.076
CENT ILLINOIS PUBLIC SERV ME	MEREDOSIA 2	۳	1993	13.8	2.96	40.848
CENT ILLINOIS PUBLIC SERV ME	MEREDOSIA 3	<u>-</u> -	1993	458.4	2.99	1370.616
HOOSIER ENERGY REC ME	MEROM 1	Z	1993	1184.8	3.43	4063.864
HOOSIER ENERGY REC ME	MEROM 2	Z	1993	1393.2	3.45	4806.54
NO INDIANA PUBLIC SERVICE MICHIGAN CITY		12N	1993	1373.1	1.59	2183.229
INTERSTATE POWER CO ML	ML KAPP 2	₹	1993	510.1	1.97	1004.897
MUSCATINE POWER & WATERMUSCATINE 7	USCATINE 7	₹	1993	33.5	2.81	94.135
MUSCATINE POWER & WATERMUSCATINE 8	USCATINE 8	⊻	1993	80.6	2.78	224.068
MUSCATINE POWER & WATERMUSCATINE 9	USCATINE 9	⊻	1993	537.3	1.47	789.831
CENT ILLINOIS PUBLIC SERV NE	NEWTON 1	_	1993	1195.2	2.64	3155.328
CENT ILLINOIS PUBLIC SERV NE	NEWTON 2		1993	1360	0.54	734.4
IOWA SOUTHERN UTILITIES OT	OTTUMWA 1	₹	1993	2676.1	0.35	936.635
SOYLAND POWER COOP PE	PEARL 1	<u> </u>	1993	62.8	3.18	199.704
PERU (IN) UTILITIES PE	PERU (IN) 2	Z	1993	1.18	2.28	2.6904
INDIANAPOLIS POWER & LT PE	ETERSBURG 1	Z	1993	710.9	2.5	1777.25
INDIANAPOLIS POWER & LT PE	ETERSBURG 2	Z	1993	1154.4	2.5	2886
INDIANAPOLIS POWER & LT PE	ETERSBURG 3	Z	1993	1456.7	2.5	3641.75
INDIANAPOLIS POWER & LT PE	ETERSBURG 4	Z	1993	1292.6	2.5	3231.5
COMMONWEALTH EDISON COPC	DWERTON 5		1993	1161.9	0.32	371.808
COMMONWEALTH EDISON COPC	OWERTON 6		1993	1733.4	0.31	537.354
IOWA ELEC LIGHT & POWER PF	RAIRIE CREEK 3	⊻	1993	112.6	0.72	81.072
IOWA ELEC LIGHT & POWER PF	RAIRIE CREEK 4	¥	1993	417.9	0.72	300.888
HOOSIER ENERGY REC RA	ATTS 1	<u>z</u>	1993	266.4	3.03	807.192
HOOSIER ENERGY REC R4	ATTS 2	Z	1993	320.4	2.94	941.976
IOWA-ILLINOIS GAS & ELEC RI	VERSIDE (IA) 5	⊻	1993	152.4	2.3	350.52
NO INDIANA PUBLIC SERVICE RA	M SCHAHFER 14	Z.	1993	959.3	0.51	489.243
NO INDIANA PUBLIC SERVICE RA	M SCHAHFER 18	Z	1993	938.3	0.4	375.32
NO INDIANA PUBLIC SERVICE RA	M SCHAHFER 17	Z	1993	705.6	2.91	2053.296
NO INDIANA PUBLIC SERVICE RM SCHAHFER 18IN	M SCHAHFER 18	Z	1993	694.9	2.93	2036.057
INDIANA MICHIGAN POWER CORC	OCKPORT 1	Z	1993	4718.8	0.31	1462.828

INDIANA MICHIGAN POWER COROCKPORT 2	IN 1993	4842.8	0.31	1501.268
COMMONWEALTH EDISON (IN STATE LINE 3	IN 1993	384.3	0.38	146.034
COMMONWEALTH EDISON (IN STATE LINE 4	IN 1993	406.4	0.4	162.56
CEDAR FALLS UTILITIES STREETER 6	IA 1993	1.6	2.77	4.432
CEDAR FALLS UTILITIES STREETER 7		23.2	2.09	48.488
IOWA ELEC LIGHT & POWER SUTHERLAND 1	IA 1993	6.69	1.01	70.599
IOWA ELEC LIGHT & POWER SUTHERLAND 2 IA		73.2	1.01	73.932
IOWA ELEC LIGHT & POWER SUTHERLAND 3	IA 1993	215.5	1.01	217.655
INDIANA MICHIGAN POWER COTANNERS CREEK	IN 1993	283.6	0.69	195.684
INDIANA MICHIGAN POWER COTANNERS CREEK	IN 1993	92.9	0.7	65.03
INDIANA MICHIGAN POWER COTANNERS CREEK	IN 1993	164.4	0.7	115.08
INDIANA MICHIGAN POWER COTANNERS CREEK		1322.1	2.38	3146.598
ILLINOIS POWER CO VERMILION 1		111.2	2.22	246.864
ILLINOIS POWER CO VERMILION 2		211.6	2.21	467.636
PSI ENERGY INC WABASH RIVER 1		147.9	2.02	298.758
PSI ENERGY INC WABASH RIVER 2		170.8	2.03	346.724
PSI ENERGY INC WABASH RIVER 3	IN 1993	175.38	2.02	354.2676
PSI ENERGY INC WABASH RIVER 4 IN	IN 1993	143.18	2.02	289.2236
PSI ENERGY INC WABASH RIVER 5		178.41	2.02	360.3882
PSI ENERGY INC WABASH RIVER 6	IN 1993	593.35	2.02	1198.567
SOUTHERN INDIANA GAS ELEGWARRICK 4	IN 1993	993.3	2.58	2562.714
COMMONWEALTH EDISON COWAUKEGAN 6	•	181.4	0.35	63.49
COMMONWEALTH EDISON COWAUKEGAN 7	IL 1993	740.7	0.37	274.059
COMMONWEALTH EDISON COWAUKEGAN 8	IL 1993	390.4	0.37	144.448
WHITEWATER	1993 NL	94.2	2.03	191.226
RICHMOND POWER & LIGHT WHITEWATER VA	1993 NL	202	2.03	410.06
COMMONWEALTH EDISON COWILL COUNTY 1	IL 1993	415	0.31	128.65
COMMONWEALTH EDISON COWILL COUNTY 2	IL 1993	458.2	0.31	142.042
COMMONWEALTH EDISON COWILL COUNTY 3	IL 1993	542.5	0.33	179.025
DISON COWILL COUNTY	IL 1993	1069.8	0.32	342.336
ILLINOIS POWER CO WOOD RIVER (IL)	IL 1993	87.4	0.68	59.432
ILLINOIS POWER CO WOOD RIVER (IL) IL	IL 1993	683.1	0.69	471.339

TOTAL AVERAGE WT. AVERAGE

96843.05

291.93 148593.7904 1.79 1.53

Page 6

Acetonitrile

Sheet Title:

Acetonitrile and acrylonitrile production

Sheet Description:

Emissions are from TRI database.

Engineering calculation of the Energy requirements and precursor requirements.

This page calculates the vendor emissions from a plant producing PCI3.

Not included are raw material production or extraction or water use.

References/Citations:

Faith Keyes and Clarke's Industrial Chemicals

By F. A. Lowenheim, M. K. Moran

Wiley Interscience, 1975

Perry's Chemical Engineers' Handbook, 6th ed.

McGraw Hill, 1984

AP 42 Ed 4 (1985)

US EPA

SRI Directory of Chemical Producers, US

1993, 1991 editions

SRI International, Menlo Park, CA

US ITC 2810 Synthetic Organic Chemicals US production and Sales, 1993

US International Trade Commission, 11.1994

CRC Handbook of Chemistry and Physics, 66th Edition

Summary Output

Co-product Allocation Calculations

Source:

US ITC 2810 Synthetic Organic Chemicals US production and Sales, 1993

US International Trade Commission, 11.1994

on .00 .00 .98 anoh	-06 -06 -07 -05 -05 -05 -05 -05 -05 -05 -07 -07 -07
1993 Production 17,859.00 1,129,082.00 239,876.00 1,240,744.98 As acetone cyanoh	Quantity 1.3323E-06 6.24514E-06 1.22127E-07 4.16343E-09 4.4965E-05 1.17964E-05 2.30376E-05 1.38781E-07 2.10947E-07 2.10947E-07 2.10947E-07 4.02465E-07 4.02465E-09
1993 1, 1,	
Units	Allocated Units Units Kg/kg Acetonit Kg/kg Acetonit Kg/kg Acetonit Kg/kg Acetonit Kg/kg Acetonit Kg/kg Acetonit Kg/kg Acetonit Kg/kg Acetonit Kg/kg Acetonit Kg/kg Acetonit Kg/kg Acetonit Kg/kg Acetonit Kg/kg Acetonit Kg/kg Acetonit
	A
Quantity 1.00E+00 kg 6.32E+01 kg 1.34E+01 kg	Std. Dev.
ঠ	Quantity 1.63642E-06 7.67072E-06 7.67072E-06 1.50005E-07 5.11381E-09 5.52292E-05 1.44891E-05 8.21619E-05 1.7046E-08 6.64795E-08 6.64795E-07 2.591E-07 2.591E-07 2.591E-07 6.000188725 6.494335E-07 8.52302E-09
Units	Quantity 1.63642E 7.67072E 1.50005E 5.11381E 5.52292E 1.44891E 8.21619E 2.82964E 1.7046E 6.64795E 3.80127E 2.591E 0.000188 5.11381E 8.52302E
ntity 1.58E-02 kg 1.00E+00 kg 2.12E-01 kg 1.23 Kg	sated ts lonitrile lonitrile lonitrile lonitrile lonitrile lonitrile lonitrile lonitrile lonitrile lonitrile lonitrile lonitrile lonitrile
Quan	Unallocated Units Units Kg/kg Acrylonitrile Kg/kg Acrylonitrile Kg/kg Acrylonitrile Kg/kg Acrylonitrile Kg/kg Acrylonitrile Kg/kg Acrylonitrile Kg/kg Acrylonitrile Kg/kg Acrylonitrile Kg/kg Acrylonitrile Kg/kg Acrylonitrile Kg/kg Acrylonitrile Kg/kg Acrylonitrile
of Co-product 53.06 Acetonitrile 41.0524 Acrylonitrile 27.0256 HCN to Acetone cyanoh Total Total	Air CI2 Acetonitrile Acrolein Acrylonitrile ammonia Hydrogen Cyanide Propylene acetamide acetamide Acrylamide
vt Co-pr 53.06 Acetonitrile 41.0524 Acrylonitrile 27.0256 HCN to Ace	Air CI2 Acetonitrile Acrolein Acrylic acid Acrylonitrile ammonia Hydrogen Cy? Propylene acetamide acetamide Acrylamide
Mwt 53.0 41.052 27.025 Notes:	LCI components CI2 Acett Acrol Acryl Hydr Propy acett Acryl Pyrid HC tt

	-	
	≒	
	=	
	0	
1	_	
	Ų	
	a)	
	O.	
	=	
	ᇁ	
	_	
	_	
ě	77	
J	S)	

total	Kg/kg Acrylonitrile	3.74655E-05	Kg/kg Acetonit	3.05027E-05
Acetonitrile	Kg/kg Acrylonitrile	5.79565E-07	Kg/kg Acetonit	4.71855E-07
Acrolein	Kg/kg Acrylonitrile	1.36368E-08	Kg/kg Acetonit	1.11025E-08
Acrylic acid	Kg/kg Acrylonitrile	2.04552E-07	Kg/kg Acetonit	1.66537E-07
Acrylonitrile	Kg/kg Acrylonitrile	6.30703E-08	Kg/kg Acetonit	5.13489E-08
ammonia	Kg/kg Acrylonitrile	3.57967E-05	Kg/kg Acetonit	2.9144E-05
Molybdenum Trioxide	Kg/kg Acrylonitrile	3.23875E-05	Kg/kg Acetonit	2.63684E-05
acetamide	Kg/kg Acrylonitrile	1.67051E-07	Kg/kg Acetonit	1.36005E-07
acetaldehyde	Kg/kg Acrylonitrile	2.55691E-08	Kg/kg Acetonit	2.08171E-08
Acrylamide	Kg/kg Acrylonitrile	5.96611E-07	Kg/kg Acetonit	4.85733E-07
Pyridine	Kg/kg Acrylonitrile	1.87506E-08	Kg/kg Acetonit	1.52659E-08
LCI component	Kg/kg Acrylonitrile	0.006477494	Kg/kg Acetonit	0.005273675
Acetonitrile	Kg/kg Acrylonitrile	7.84118E-08	Kg/kg Acetonit	6.38392E-08
Acrolein	Kg/kg Acrylonitrile	0.000272737	Kg/kg Acetonit	0.000222049
Acrylic acid	Kg/kg Acrylonitrile	0.001056854	Kg/kg Acetonit	0.000860442
Acrylonitrile	Kg/kg Acrylonitrile	0.023864452	Kg/kg Acetonit	0.019429329
Propylene	Kg/kg Acrylonitrile	9.37532E-05	Kg/kg Acetonit	7.63295E-05
Molybdenum Trioxide	Kg/kg Acrylonitrile	0.00015171	Kg/kg Acetonit	0.000123515
acetamide	Kg/kg Acrylonitrile	1.00572E-05	Kg/kg Acetonit	8.18807E-06
acetaldehyde	Kg/kg Acrylonitrile	0.001585281	Kg/kg Acetonit	0.001290663
Acrylamide	Kg/kg Acrylonitrile	0.000136368	Kg/kg Acetonit	0.000111025
Resource Consumption Heat Energy (fossil fuel)MJ/kg Acrylonitrile Electric Power MJ/kg Acrylonitrile ammonia Kg/kg Acrylonitrile propylene Kg/kg Acrylonitrile	in I)MJ/kg Acrylonitrile MJ/kg Acrylonitrile Kg/kg Acrylonitrile Kg/kg Acrylonitrile	1.100482758 5.78119E-07 0.475 1.175	MJ/kg Acetonit MJ/kg Acetonit Kg/kg Acetonit Kg/kg Acetonit	0.895961957 4.70677E-07 0.386722942 0.956630435

Notes:

co-product allocation scheme applied. It may be necessary to preface this section with a section detailing the c rules or calculations. This section is where the project specfic calculations take place. Information on LCI components from below is

Data Quality Indicators (DQI) range from 5 as highest to 1 as lowest. A value of 0 is used when no indicator wa

_	Unit to J J	Multiplier	R 1055.056 C	Reference			
			1055.056 C				
				1055.056 CRC, 66th Edition			
			3600 C	3600 CRC, 66th Edition			
	BTU CrO		5800000 C	5800000 Chemical Engineers' Handbook, 6th ed.	Handbook, 6	Sth ed.	
	gal		42 C	42 Chemical Engineers' Handbook, 6th ed.	Handbook, (Sth ed.	
	BTU diesel		118500 C	118500 Chemical Engineers' Handbook, 6th ed., Figure 9-4 @ S.G. = .76	Handbook, (3th ed., Figure	9-4 @ S.G. = .76
			3.785412 C	3.785412 CRC, 66th Edition			
	•	2	.2046226 C	2.2046226 CRC, 66th Edition			
	day		365				
	bbl (petroleum)	_	5.289811 C	6.289811 CRC, 66th Edition			
gal CrO lb	lb CrO		7.2				
ton	0		2000				
gal fuel oil BTU fuel oil	TU fuel oil		138000				
cu. ft NG B	TU NG		1032 C	1032 Chemical Engineers' Handbook, 6th ed.	Handbook, 6	Sth ed.	
lb Coal (dryBTU Coal	TU Coal		12000 c	12000 calculation page B	(i)	SD=11%	
kg NG N	MJ NG		46 C	46 Calculated page C	O)	SD=13%	
Mw Benzen	78.1134	134	E	molar			
Mw Chlorin	7	70.9	ס	ry air composition	2	Mwt	mass composition
Mw CIBz	112.56	.56	Z	N2	0.78084	28.0134	0.75521
Mw CI2Bz	147.01	.01	O	02	0.20946	31.9988	0.231406
Mw HCI	36.4609	600	0	:02	0.00033	44.01	0.000501
Mw NaOH 39.9971	9.9971		∢	Ar	0.00934	39.948	0.012882
			ţ	total	0.99997	28.96409	-
Ideal gas density at 15 C 0.042296 mol/liter	nsity at 15 C (60 F)	42.2	42.29634021 mol/m^3	a	air (dry) 1.225075005 kg/m^3	a/m^3	
Calculations							

Acrylonitrile (and acetonitrile) Production

1993

Acetonitrile

US Chemical Industry Statistical Handbook 1994 Source:

Chemical Manufacturers Association, Washington DC

Source:

SRI 1991 Directory of Chemical Producers, US MEK production capacity

3055

2489.174177

1,129,082.00 MIb

0.814786965 Utilization ratio:

720 BP Chemicals, Inc. Green Lake @ RMIb at Port Lavaca TX 77979

586.6466146 Calculated production:

Emissions: Source: TRI database, 1993 data

The Green Lake plant of BP produces acrylonitrile from propylene and some by products including hydrogen cyanide.

Acetone The following reported emissions were deemed unrelated to 'nitrile production:

Emissions allocated between the products =

diethanolamine Acrolein Acetonitrile

> Given above. Co-Products:

Transformed g Input Std. Dev. Raw/ Input Quan. Raw/ Input Units LCI component **Energy input** Resources:

1.100482758 MJ/kg Acrylonitrile Fossil fuel (general)

MJ/Kg Acrylonitrile

Kg/kg Acrylonitrile Kg/kg Acrylonitrile Kg/kg Acrylonitrile MJ/Kg Acrylonitrile

5 MJ/kg Acrylonitrile MJ/kg Acrylonitrile Natural Gas Coal

MJ/kg Acrylonitrile MJ/kg Acrylonitrile MJ/kg Acrylonitrile Hydropower

5.78119E-07

MJ/kg Acrylonitrile

Energy requirement

Electricity (generic)

Fission

	7941.4	18.4	794.14		0.1027		itrile	00+	-02	029
_	794	16348.4	794		0.1	General flow	Kg/Kg Acrylonitrile	1.00E+00	1.58E-02	0.456539029
Cal/mol				MJ/Kg		Gener	Kg/Kg			
	e once	e twice			25		ial	onitrile	Acetonitrile	HCN/Acetonitri
	rylonitril	etonitrile	bottoms	cal/gr	_		Material	1 Acrylc	Aceto	HCN
	Evaporate acrylonitrile once	Evaporate acetonitrile twice	10% loss as bottoms		Cooling water	Coolers: flow		2.67887721 Acrylonitrile		
	Evap	Evap	10%		Cooli	Cook	Kg	2.6		
								1 Kg		
								Pump 1 Kg		
	ght end	product						oolers		
	3 prod is light end	1 bottomsproduct						ns + 4 c		
		1 1						g station		
	columns							pumpin		
	Distillation columns							Electricity 9 minimum pumping stations + 4 coolers		
	Dis							ity 9 n		
	Heat							Electric		

in 40hr week & 52 week year daytime operation. multiply by specific gravity of material 7.8726E-08 MJ Elec/KgBased on viscosity and density of water for a 250 ft static head per pumping stage and relative viscosity to that of water.

Faith Keyes and Clarke's Industrial Chemicals 4th Ed 1975

source:

	Transformed	DQI Units	4 Kg/kg Acrylonitrile	4 Kg/kg Acrylonitrile	4 Kg/kg Acrylonitrile	4 Kg/kg Acrylonitrile	4 Kg/kg Acrylonitrile	4 Kg/kg Acrylonitrile	4 Kg/kg Acrylonitrile	4 Kg/kg Acrylonitrile
	Raw/ Raw/	nput Quan. Input Std. Dev.	0	0	0	0	0.475	1.175	0	0
	Raw/	Input Units	Kg/kg Acrylonitrile							
Material input		LCI component	Oil	Natural Gas	Coal	Naphtha	ammonia	propylene	Air	Water steam

Air

	Raw/	Raw/	Raw/		Transformed
LCI component	Input Units	Input Quan. Inp	Input Std. Dev.	<u>g</u>	Units
TSP	lb/BP Green Lake	0			Kg/kg Acrylonitrile
SOx	lb/BP Green Lake	0			Kg/kg Acrylonitrile
NOx	lb/BP Green Lake	0			Kg/kg Acrylonitrile
CI2	lb/BP Green Lake	096			Kg/kg Acrylonitrile
CO2	lb/BP Green Lake	0			3 Kg/kg Acrylonitrile
P4	lb/BP Green Lake	0			Kg/kg Acrylonitrile
Acetonitrile	lb/BP Green Lake	4500			Kg/kg Acrylonitrile
Acrolein	lb/BP Green Lake	88			Kg/kg Acrylonitrile
Acrylic acid	lb/BP Green Lake	က			Kg/kg Acrylonitrile
Acrylonitrile	lb/BP Green Lake	32400			Kg/kg Acrylonitrile
ammonia	lb/BP Green Lake	8500			Kg/kg Acrylonitrile
Hydrogen Cyanide	lb/BP Green Lake	48200			Kg/kg Acrylonitrile
Propylene	lb/BP Green Lake	16600			Kg/kg Acrylonitrile
Molybdenum Trioxide	lb/BP Green Lake	0			Kg/kg Acrylonitrile
acetamide	lb/BP Green Lake	10			Kg/kg Acrylonitrile
acetaldehyde	lb/BP Green Lake	39			Kg/kg Acrylonitrile
Acrylamide	lb/BP Green Lake	223			Kg/kg Acrylonitrile
Pyridiné	lb/BP Green Lake	152			Kg/kg Acrylonitrile
HC total	lb/BP Green Lake	110715			Kg/kg Acrylonitrile
Heavy meta(Cd+Ni+Cr)	lb/BP Green Lake	0			Kg/kg Acrylonitrile
Water					
	Raw/	Raw/	Raw/		Transformed
LCI component	Input Units	Input Quan. Inp	Input Std. Dev.	DQ	Units
COD	lb/BP Green Lake	0			5 Kg/kg Acrylonitrile
BOD	lb/BP Green Lake	0			5 Kg/kg Acrylonitrile
Acid, H+ (Phosphoric)	lb/BP Green Lake	0			5 Kg/kg Acrylonitrile
Metal ions	lb/BP Green Lake	0			5 Kg/kg Acrylonitrile
CI2	lb/BP Green Lake	0			5 Kg/kg Acrylonitrile
Acetonitrile	lb/BP Green Lake	0			5 Kg/kg Acrylonitrile

Acrolein	lb/BP Green Lake	0			5 Kg/kg Acrylonitrile	
Acrylic acid	lb/BP Green Lake	0			5 Kg/kg Acrylonitrile	
Acrylonitrile	lb/BP Green Lake	0			5 Kg/kg Acrylonitrile	
ammonia	lb/BP Green Lake	290			5 Kg/kg Acrylonitrile	
Hydrogen Cyanide	lb/BP Green Lake	0			Kg/kg Acrylonitrile	
Propylene	lb/BP Green Lake	0			Kg/kg Acrylonitrile	
Molybdenum Trioxide	lb/BP Green Lake	0			Kg/kg Acrylonitrile	
acetamide	lb/BP Green Lake	0			Kg/kg Acrylonitrile	
acetaldehyde	lb/BP Green Lake	0			Kg/kg Acrylonitrile	
Acrylamide	lb/BP Green Lake	0			Kg/kg Acrylonitrile	
Pyridine	lb/BP Green Lake	0			Kg/kg Acrylonitrile	
Solid waste						
	Raw/	Raw/	Raw/		Transformed	
LCI component	Input Units	Input Quan.	Input Std. Dev.	ğ	Units	
Production waste (not innert)	lb/BP Green Lake	0			5 Kg/kg Acrylonitrile	
Acetonitrile	lb/BP Green Lake	ന			Kg/kg Acrylonitrile	
Acrylonitrile	lb/BP Green Lake	2			5 Kg/kg Acrylonitrile	
total no catalyst	lb/BP Green Lake	21979			5 Kg/kg Acrylonitrile	
Acetonitrile	lb/BP Green Lake	340			5 Kg/kg Acrylonitrile	
Acrolein	lb/BP Green Lake	∞			5 Kg/kg Acrylonitrile	
Acrylic acid	lb/BP Green Lake	120			5 Kg/kg Acrylonitrile	
Acrylonitrile	lb/BP Green Lake	37			5 Kg/kg Acrylonitrile	
ammonia	lb/BP Green Lake	21000			5 Kg/kg Acrylonitrile	
Hydrogen Cyanide	lb/BP Green Lake	0			5 Kg/kg Acrylonitrile	
Propylene	lb/BP Green Lake	0			5 Kg/kg Acrylonitrile	
Molybdenum Trioxide	lb/BP Green Lake	19000			5 Kg/kg Acrylonitrile	
acetamide	lb/BP Green Lake	86			Kg/kg Acrylonitrile	
acetaldehyde	lb/BP Green Lake	15			Kg/kg Acrylonitrile	
Acrylamide	lb/BP Green Lake	350			Kg/kg Acrylonitrile	
Pyridine	lb/BP Green Lake	_			Kg/kg Acrylonitrile	
	Acrylic acid Acrylic acid Acrylic acid Acrylic acid Hydrogen Cyanide Propylene Molybdenum Trioxide acetamide acetaldehyde Acrylamide Pyridine LCI component Acetonitrile Acrylonitrile	ic acid lonitrile some Cyanide bdenum Trioxide aldehyde lamide lonitrile	lic acid by BP Green Lake by BP Green La	in a cid by BP Green Lake both and by BP Green Lake boden with a by BP Green Lake boden with a by BP Green Lake boden with a by BP Green Lake boden with a by BP Green Lake boden with a by BP Green Lake boden with a by BP Green Lake by BP Green	Die acid Die Green Lake Die ontitrie Die ontitrie Die Green Lake Die Official Die	ic acid by BP Green Lake 0 0 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

neavy metais (Caumum, Mi		>			
Deep well injection					
	Raw/	Raw/	Raw/		Transformed
LCI component	Input Units	Input Quan.	Input Std. Dev.	g	Units
Acetonitrile	lb/BP Green Lake	3,800,000.00			Kg/kg Acrylonitrile
Acrolein	lb/BP Green Lake	46			Kg/kg Acrylonitrile
Acrylic acid	lb/BP Green Lake	160000			Kg/kg Acrylonitrile
Acrylonitrile	lb/BP Green Lake	620000			Kg/kg Acrylonitrile
ammonia	lb/BP Green Lake	14000000			Kg/kg Acrylonitrile
Hydrogen Cyanide	lb/BP Green Lake	0			Kg/kg Acrylonitrile
Propylene	lb/BP Green Lake	0			Kg/kg Acrylonitrile
Molybdenum Trioxide	lb/BP Green Lake	55000			Kg/kg Acrylonitrile
acetamide	lb/BP Green Lake	89000			Kg/kg Acrylonitrile
acetaldehyde	lb/BP Green Lake	2900			Kg/kg Acrylonitrile
Acrylamide	lb/BP Green Lake	930000			Kg/kg Acrylonitrile
Syridine	lb/BP Green Lake	80000			Kg/kg Acrylonitrile

Sheet End

17859 0.014394	1129082 0.910003	98 0.075603
178	11290	93803.98
		69.11
336.5812288	720 27503.43463	60 3470.930401
	720	9

9 hydrin

ကကက

ğ

Std. Dev.

က

τ	3
a)
t	2
C)
Č	
-	٦
2	_
U)
α	3

and sulfur = 0.5%

kg air per kg component 1.324134 4.321406 1994.319 77.62792

Cyanide compourHydroquinone Formaldehyde Acrylonitrile ammonia Acrylic acid

Propylene Molybdenum Benzene methanol Chlorine Hydrogen Cyanide

Transformed Transformed

Std. Dev. Quan.

1.100482758

00000

5.78119E-07

MJ/kg Acrylonitrile

0.794673909

```
2.11E-07 5.78E-07 MJ/Kg Acrylonitrile
                                                                   Electric Demand
                                                                                                         2 1.37E-09
2 1.44E-07
                                                                                              2.22E-07
                                                                                               2
                                                                                                                                                   Coolers
Total
                                                                                  numper of pumping stages
                                                                                             0.7 Absorber, Separator, Colu
                                                                                                           0.7 condenser and storage
                                                                                                                         2 Absorber, Separator
                                                                                                                                       These are
                                       10.71550884 Kg water
                                                                                                                                                     guesses
                                                                                 Sp visc
                                                                                              908.0
                                                                                                           0.7857
0.288925823
             0.016883025
                          1.100482758
                                                                                 Sp Gr
```

Transformed Transformed

Quan. Std. Dev.

0
0
0
0
0
0.475 (all out into water emission)

4.94335E-07 000000 Transformed Std. Dev. 3.74655E-05 5.79565E-07 5.11381E-09 8.52302E-09 Transformed

1.36368E-08 2.04552E-07 6.30703E-08 3.57967E-05

3.23875E-05 1.67051E-07

2.55691E-08

5.96611E-07 1.87506E-08

Transformed	Std. Dev.												
Transformed	Quan.	0.006477494	7.84118E-08	0.000272737	0.001056854	0.023864452	0	0	9.37532E-05	0.00015171	1.00572E-05	0.001585281	0.000136368

TABLE 1. INVENTORY FOR BASELINE PBXN-109 DEMILITARIZATION PROCESS (All units in lb/bomb, except electricity in kwh/bomb)

000	0	0	0	0	0	Propess		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
00.00	00.0	0.00	0.00	0.00	0.00	Pro	9 Total	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
00.00	0.00	0.00	0.00	0.00	0.00		œ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00									
0.00	00.0	0.00	0.00	0.00	0.00	Burning Ground	7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
00.0	0.00	0.00	0.00	0.00	0.00	Bur	9	0.00	0.00	0.00	00.00	00.00	0.00	0.00	0.00	0.00	00.00		0.00	0.00	00.00	00.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00		က	(0.00)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C2H2 C3H8 CHN	5 0	Flue Gas	Total gaseous pollutant	AI2O3	Ash			PBXN-109	TNAZ/AI	Asphalt	Bomb Case	Potting	Felt Pad	Thermal Insulation	TCA (solvent)	Water	Steam	Fuel	Air	Electricity, kwh/bomb	Activated Carbon	8	N2	H2O	H2	C02	I	오	ON	₹

														Į.		0	0	0	0	0	0	0	0	æ	0	0	0	0	0	0	0	0
														Wastewater	Emissions		_	_	_	•	•	_	_	63049.648		_	_			_	-	_
0	0	0	0	0	0	0	0	0	52.38	0	0	192.06	244.44	Solid	Wastes	0	0	0	0	0	0	0	0	0.752164	0	0	0	0	14.291115	0	0	0
0.00	0.00	00.00	00.00	0.00	00.00	00.00	00.00	00.00	52.38	0.00	00.00	192.06	244.44	Process	Total	0	0	0	0	0	0	0	0	63050.4	0	0	0	0	0	0	0	0
	0.00	00.00	00.00	00.00	00.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	63,049.65	0.00	0.00	00.0	00.0	00.00	00.00	00.00	0.00
0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Wastewater Treatment	+	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.75	0.00	0.00	0.00	0.00	14.29	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	00.00	0.00	0.00	\$	10	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(14.29)	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00
0	CH4	NH3	C2H4	СЗН6	C2H6	C2H2	С3Н8	CHN	O	Flue Gas	Total gaseous pollutant	AI2O3	Ash			PBXN-109	TNAZ/AI	Asphalt	Bomb Case	Potting	Felt Pad	Thermal Insulation	TCA (solvent)	Water	Steam	Fuel	Air	Electricity, kwh/bomb	Activated Carbon	00	N2	H20

00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0															
00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0															
00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		SSS		0	0	0	0	0	0	0	0	0	0	0	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	C		15 Total	0.00	0.00	0.00	1,390.00	3.00	0.00	25.00	0.00	0.00	0.00	0.00	
0.00	0.00	0.00	0.00	0.00	0.00	00.00	00.00	00.00	0.00	00.00	00.0	00.00	00.0	0.00	0.00	0.00	0.00	0.00			14	15.75	0.00	18.50	0.00	0.00	0.00	0.00	212.50	0.00	0.00	0.00	
0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	00.0	00.00	00.00	00.00	00.00	00.00	00.00	00.00	00.00	00.00	0.00	0	Solvent Soak	13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(212.50)	0.00	0.00	0.00	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Ċ		2	(15.75)	0.00	(18.50)	(1,390.00)	(3.00)	0.00	(25.00)	0.00	0.00	0.00	0.00	
H2 CO2	I	Э	ON	₹	0	CH4	NH3	C2H4	СЗН6	C2H6	C2H2	C3H8	CHN	v	Flue Gas	Total gaseous pollutant	AI203	Ash				PBXN-109	TNAZ/AI	Asphalt	Bomb Case	Potting	Felt Pad	Thermal Insulation	TCA (solvent)	Water	Steam	Fuel	

																											0	0	0	0	0
																									Solid	Wastes					
																									Air	Emissions	0	0	0	0	0
																									sse	Total	-15.75	0	-18.5	0	0
00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		19	00.00	00.00	00.00	00.00	0.00
0.00 0.00	0.00	00.00	00.00	0.00	00.00	00.00	00.00	00.00	00.00	0.00	00.00	00.00	00.00	0.00	00.00	00.00	00.00	00.00	00.00	00.00	00.00	00.00	00.00	0.00		18	0.00	0.00	0.00	0.00	0.00
0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		17	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ncinerator	16	0.00	0.00	0.00	00.00	0.00
0.00 0.00	0.00	0.00	0.00	0.00	00.00	00.00	00.00	00.00	00.00	0.00	0.00	0.00	00.00	0.00	00.00	00.00	0.00	00.00	00.00	0.00	00.00	00.00	0.00	0.00	ח	14	-15.75	0	-18.5	0	0
Air Electricity, kwh/bomb	Activated Carbon	00	N2	H2O	Н2	CO2	r	НО	ON	Al	0	CH4	NH3	C2H4	С3Н6	C2H6	C2H2	C3H8	CHN	O	Flue Gas	Total gaseous pollutant	AI2O3	Ash			PBXN-109	TNAZ/AI	Asphalt	Bomb Case	Potting

Felt Pad	0	0.00	0.00	0.00	00.00	0	0	0
Thermal Insulation	0	0.00	0.00	00.00	0.00	0	0	0
TCA (solvent)	-212.5	0.00	0.00	0.00	0.00	-212.5	0	0
Water	0	0.00	0.00	0.00	0.00	0	0	0
Steam	0	0.00	0.00	0.00	00.00	0	0	0
Fuel	ċ 0		0.00	0.00	0.00	0	0	0
Air	0	0.00		0.00	0.00	0	0	0
Electricity, kwh/bomb	0	0.00	0.00	0.00	0.00	0	0	0
Activated Carbon	0	0.00	0.00	0.00	0.00	0	0	0
00	0	0.00	0.00		0.00	¿ 0		0
N2	0	0.00	0.00		0.00	¿ 0		0
H2O	0	0.00	0.00		0.00	¿ 0		0
Н2	0	0.00	0.00	0.00	0.00	0	0	0
CO2	0	0.00	0.00		0.00	¿ 0		0
I	0	0.00	0.00	0.00	0.00	0	0	0
오	0	0.00	0.00	0.00	0.00	0	0	0
NO	0	0.00	0.00	0.00	0.00	0	0	0
AI	0	0.00	0.00	0.00	0.00	0	0	0
0	0	0.00	0.00	0.00	0.00	0	0	0
CH4	0	00.00	0.00	0.00	0.00	0	0	0
NH3	0	0.00	0.00	0.00	0.00	0	0	0
C2H4	0	00.00	0.00	0.00	0.00	0	0	0
СЗН6	0	00.00	0.00	0.00	0.00	0	0	0
C2H6	0	0.00	0.00	0.00	0.00	0	0	0
C2H2	0	0.00	0.00	0.00	0.00	0	0	0
C3H8	0	0.00	0.00	0.00	0.00	0	0	0
CHN	0	0.00	0.00	0.00	0.00	0	0	0
O	0	0.00	0.00	0.00	0.00	0	0	0
Flue Gas	0	0.00	0.00		0.00	٥ ئ		0
Total gaseous pollutant	0	0.00	0.00	0.00	0.00	0	0	0
AI2O3	0	0.00	0.00	0.00	0.00	0	0	0
Ash	0	0.00	0.00	0.00		0	٥ ن	

Recycle

Solid

Process

Scrap	0	0	0	1390	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Waste	0	0	0	0	د ،	0	-25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total							•																										
24	0.00	0.00	0.00	1,390.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	00.00	00.00	0.00	00.00	0.00	0.00	00.00	00.00	0.00	00.0	0.00	0.00	0.00	0.00	0.00
23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				0.00		0.00	0.00	0.00	0.00	0.00	00.00	00.00	00.00	00.00	00.00	00.00	00.00	0.00	0.00
21	00.00	00.00	00.0	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00		0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	00.00	0.00
20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
15	0	0	0	-1390	ကု	0	-25	0	0	0	¿ 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	PBXN-109	TNAZ/AI	Asphalt	Bomb Case	Potting	Felt Pad	Thermal Insulation	TCA (solvent)	Water	Steam	Fuel	Air	Electricity, kwh/bomb	Activated Carbon	00	N2	Н2О	H2	CO2	I	Р	ON	¥	0	CH4	NH3	C2H4	С3Н6	С2Н6	C2H2	С3Н8	OHN	O

0 0 0 00.0	0 0 000		0.00
0.00	0.00	0.00	
0.00		0.00	0.00
0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00
0	pollutant 0	0	0
Flue Gas	Total gaseous p	AI203	Ash

TABLE 2. INVENTORY FOR OPTION 1 PBXN-109 DEMILITARIZATION PROCESS (All units in lb/bomb, except electricity in kwh/bomb)

	2	15.75	0.00	18.50	1,390.00	3.00	0.00	25.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4	0.00	00.00	0.00	0.00	0.00	00.00	00.00	0.00	63,050.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	00:00	00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00
HE Removal	က	509.25	00.00	0.00	00.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00
里	2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(63,050.40)	0.00	00.0	0.00	(1,738.00)	00.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	_	(525.00)	0.00	(18.50)	(1,390.00)	(3.00)	<i>د</i> .	(25.00)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		PBXN-109	TNAZ/AI	Asphalt	Bomb Case	Potting	-	Thermal Insulation	TCA (solvent)	Water	Steam	Fuel	Air	Electricity, kwh/bomb	Activated Carbon	00	N2	H2O, vapor	H2	C02	I	Э	NO NO	A	0	CH4	NH3	C2H4	СЗН6	C2H6	C2H2	СЗНВ	CHN	O

Flue Gas Total gaseous pollutant Al2O3 Ash	0.00	0.00	0.00	0.00	0.00				
	er	Burn	Burning Ground	α	o	Solid	Air		4
PBXN-109	-509.25	0.00	0.00	00.00	0.00				LOIN O
TNAZ/AI	0	0.00	0.00	00.00	0.00			. 0	0
Asphalt	0	0.00	0.00	00.00	0.00	J		0	0
Bomb Case	0	0.00	0.00	0.00	0.00	0		0	0
Potting	0	0.00	0.00	0.00	0.00			0	0
Felt Pad	0	0.00	0.00	0.00	00.00	0		0	0
Thermal Insulation	0	0.00	00:00	0.00	00.00	0		0	0
TCA (solvent)	0	0.00	0.00	0.00	00.00	0		0	0
Water	0	0.00	0.00	0.00	00.00	0		0	0
Steam	0	00.00	0.00	0.00	00.00	0		0	0
Fuel	0 2		0.00	0.00	00.00	0		0	0
Air	0	0.00		0.00	0.00	0		_	0
Electricity, kwh/bomb	0	0.00	0.00	0.00	00.00	0		0	0
Activated Carbon	0	0.00	0.00	0.00	0.00	0		_	0
00	0	0.00			0.00	0			0
NZ	0	0.00			00.00	0			0
H2O, vapor	0	0.00	0.00		0.00	0	٠		0
H2	0	0.00			0.00	0			0
CO2	0	0.00			0.00	0			0
I	0	0.00			0.00	0			0
НО	0	0.00	0.00		0.00	0			0
ON	0	0.00			0.00	0			0
· Al	0	0.00	0.00		0.00	0			0
0	0	0.00	0.00		0.00	0			0
CH4	0	0.00	0.00	0.00	0.00	0	0	_	0
NH3	0	0.00	0.00	0.00	0.00	0		_	0
C2H4	0	0.00	0.00	00.00	0.00	0		_	0
СЗН6	0	0.00	0.00	0.00	0.00	0	0		0
CZH6	0	0.00	0.00	0.00	0.00	0			0
C2H2	0	0.00	0.00	0.00	0.00	0			0

0	0	0	0	0	0	0	0	0	0	0	0	0																							
0.00	0.00	00.00	00.0	0.00	00.0	00.0	00.00	00.0	0.00	0.00	0.00	0.00																							
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00																							
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00																							
0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	00.00	00.00	0.00	0.00																							
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	45.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	00.0	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00		21	15.75	0.00	18.32	00.0	0.00	0.00	0.00	0.00	0.70	00.00	0.00	0.00	0.00	00.00	00.00	0.00	00.00	00.00	0.00	0.00	0.00
0.00	0.00	00.00	00.00	00:00	00.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	Solidification	20	0.00	0.00	00.00	00.00	00.0	0.00	0.00	00.00	(46.00)	00.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0	0	0	0	0	0	0	0	0	0	0	0	0	Soli	18	-15.75	0	-18.315	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CH4	NH3	C2H4	СЗН6	C2H6	C2H2	С3Н8	CHN	O	Flue Gas	Total gaseous pollutant	AI2O3	Ash			PBXN-109	TNAZ/AI	Asphalt	Bomb Case	Potting	Felt Pad	Thermal Insulation	TCA (solvent)	Water	Steam	Fuel	Air	Electricity, kwh/bomb	Activated Carbon	8	N2	H2O, vapor	H2	CO2	I	P

	26 Emissions of colors Solid colors Color colors
00.000000000000000000000000000000000000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
00.000000000000000000000000000000000000	Burning Grounds 24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
000000000000	21 -15.75 0 -18.315 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
NO AI O CH4 NH3 C2H4 C2H6 C2H6 C2H6 C2H6 C2H7 C3H8 CHN C Flue Gas Total gaseous poliutant AI2O3 Ash	PBXN-109 TNAZ/AI Asphalt Bomb Case Potting Felt Pad Thermal Insulation TCA (solvent) Water Steam Fuel Air Electricity, kwh/bomb Activated Carbon CO N2 H2O, vapor H2

5 Solid Solid Solid Solid	000000000000000000000000000000000000000
00.00	0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0000
00000000000000000000000000000000000000	-0.185 -1390 0 0 0 0 0 0 0 0 0 0
CO2 H HO NO NO AI O CH4 NH3 C2H4 C3H6 C2H6 C2H6 C2H6 C2H7 C3H8 CHN C Flue Gas Total gaseous pollutant AI2O3 Ash	PBXN-109 TNAZ/Al Asphalt Bomb Case Potting Felt Pad Thermal Insulation TCA (solvent) Water Steam Fuel Air Electricity, kwh/bomb Activated Carbon CO

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
00.0	00.00	00.0	00.0	00.0	00.0	00.0	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
N2	H2O, vapor	H2	CO2	I	НО	ON	AI	0	CH4	NH3	C2H4	СЗН6	C2H6	C2H2	C3H8	CHN	O	Flue Gas	Total gaseous pollutant	AI2O3	Ash

TABLE 3. INVENTORY FOR OPTION 2 TNAZ DEMILITARIZATION PROCESS (All units in lb/bomb, except electricity in kwh/bomb)

	5	0.00	15.75	18.50	1,390.00	3.00		25.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4	0.00	0.00			0.00	0.00	0.00	0.00	63,050.40	0.00	0.00	00.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HE Removal	က	0.00	509.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
里	2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(63,050.40)	0.00	0.00	0.00	(1,738.00)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	_	0.00	(525.00)	(18.50)	(1,390.00)	(3.00)		(25.00)	0.00	0.00	0.00	0.00	0.00	0.00	00:00	0.00	00.00	0.00	00.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	00.00	00.00	00.00	0.00
							<i>ر</i> .																											
		PBXN-109	TNAZ/AI	Asphalt	Bomb Case	Potting	Felt Pad	Thermal Insulation	TCA (solvent)	Water	Steam	Fuel	Air	Electricity, kwh/bomb	Activated Carbon	8	N2	H20	H2	C02	I	오	NO	A	0	CH4	NH3	C2H4	СЗН6	C2H6	C2H2	C3H8	CHN	v

Wastewater	000	00000	61706.969 0 0 0	000000000000000	>
52.38 0 0 -192.2928 -139.9128 Solid Waste	000	00000	0.7361462	13.986778	>
0 0 0 175.1141 0					
0.00 52.38 0.00 (192.29) (139.91)	000	00000	1296	00000000000000	>
0.00 0.00 0.00 (175.11) 0.00 0.00	00:0	00:0	61,706.97 0.00 0.00 0.00	0.0000000000000000000000000000000000000	5
0.00 0.00 0.00 0.00 0.00 0.00 11	00:0	000000	0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	5
0.00 0.00 0.00 0.00 0.00 0.00	00:0	00:0	00.000000000000000000000000000000000000	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	5
000000 4		00000	-63050.4 0 0	0000000000000000	>
CHN C Fiue Gas Total gaseous pollutant AI2O3 Ash	PBXN-109 TNAZ/AI Asphalt	Bomb Case Potting Felt Pad Thermal Insulation	Water Steam Fuel	Electricity, kwh/bomb Activated Carbon CO N2 H2 CO2 H HO NO NO O CH4 NH3 C2H4	CSHO

	Wastewater		0	0	0	0	0 0	o c	-714	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			0	0	0	0 (0 0	O C	0	0	0	0	0	0	0	0	238	0	0	0	0	0	0	0
00000000	φ 4 μ	00.	0.00	0.18	1,390.00	3.00	00 30	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00	0.00
00000000	0	0.00	15.75	18.32	0.00		0.00	000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	17	0	0	0	0	0 (0 0	0	-714	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0000000	ć	0.00	0.00	0.00	0.00	0.00	00.0	0000	(1,296.00)	00.00	00.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00 0.	tout 15	00:0	0.00	0.00	0.00	0.00	000	800	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	238.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
00.000000000000000000000000000000000000	Asphalt Liner Meltout	0.00	0.00	0.00	0.00	0.00	00.0	00.0	(1,296.00)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00	13 A	0.00	0.00	00:00	0.00	0.00	0.00	0.00	0.00	(714.00)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0000000	ĸ	0	-15.75	-18.5	-1390	ņο	0 52-	} 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
C2H6 C2H2 C3H8 CHN C C Flue Gas Total gaseous pollutant Al2O3 Ash		PBXN-109	TNAZ/AI	Asphalt Boomb Coop	Bomb Case	Found Felt Dad	Thermal Insulation	TCA (solvent)	Water	Steam	Fuel	Air	Electricity, kwh/bomb	Activated Carbon	8 :	Z	H20	H2	C02	I	유	ON	A	0

0.00	0.00 0.00	00.00 0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	Solidification	18 20 21 22				0.00 0.00 0.00	0.00					
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00												
		0 0.00																						
		00.00																						
0	0	0	0	0	0	0	0	0	0	0	0	0												

	Air Emissions 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Solid 27 Waste 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
00.00 0 00.00 00.00 0 00.00 0 00.00 0 00.00 0 00.00 0 00.00 0 00.00 0 00.00 0 00.00 0 00.00 0 00.00 0 00.00 0 00.00 0 00.00 0 00.00 0 00.00 0 0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.	Burning Ground 24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
0.00 0 0.00 0.00 0 0.00	23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
0000000000000	21 0 -15.75 -18.315 0 0 0 -0.695204082 0 0 0 0
H HO NO AI O CH4 NH3 C2H4 C3H6 C2H6 C2H2 C3H8 C2H8 C4N C Flue Gas Total gaseous pollutant Al2O3 Ash	PBXN-109 TNAZ/AI Asphalt Bomb Case Potting Felt Pad Thermal Insulation TCA (solvent) Water Steam Fuel Air Electricity, kwh/bomb

0 0	0 0	0 0	0		0 0	0 0	0 0	0 0	0 0	0 0						0 0		0	0 0	0 0		Air Solid	Emissions Waste Recycle	0	0	0	0	0 0		0	0 0	
0.00	0.00	0.00	0.00			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		30 31	0.00 0.00	0.00 0.00		0.00 1,390.00					000
0.00	00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	٠		00.0	0.00		29	00.00	0.00	00.00	0.00		0.00		0.00	000
0.00 0.00		0.00 0.00	0.00 0.00		0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	Flashing	28	0.00 0.00	0.00 0.00							
00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		19 26	0	0	-0.185	-1390	ကု	0	-25	0	c
CO N2	H20	H2	CO2	I	Ю	ON	A	0	CH4	NH3	C2H4	СЗН6	C2H6	C2H2	C3H8	CHN	0	Flue Gas	Total gaseous pollutant	AI203	Ash			PBXN-109	TNAZ/AI	Asphalt	Bomb Case	Potting	Feit Pad	Thermal Insulation	TCA (solvent)	Water

Fuel	0	0.00	0.00	0.00	0.00	0.00	0	0	0
Air	0	0.00		0.00	00.00	0.00		0	0
Electricity, kwh/bomb	0	00.00	0.00	0.00	00.00	0.00	0	0	0
Activated Carbon	0	0.00	0.00	0.00	00.00	0.00	0	0	0
00	0	0.00	0.00	0.00	0.00	0.00	0	0	0
N2	0	0.00	0.00	0.00	00.00	0.00	0	0	0
H2O	0	0.00	0.00	0.00	0.00	0.00	0	0	0
H2	0	0.00	0.00	0.00	0.00	0.00	0	0	0
C02	0	0.00	0.00	0.00	0.00	0.00	0	0	0
I	0	0.00	0.00	0.00	0.00	0.00	0	0	0
연	0	0.00	0.00	0.00	0.00	0.00	0	0	0
ON	0	0.00	0.00	0.00	0.00	0.00	0	0	0
¥	0	0.00	0.00	0.00	0.00	0.00	0	0	0
0	0	0.00	0.00	0.00	0.00	0.00	0	0	0
CH4	0	0.00	0.00	0.00	0.00	0.00	0	0	0
NH3	0	0.00	0.00	0.00	0.00	0.00	0	0	0
C2H4	0	0.00	0.00	0.00	0.00	0.00	0	0	0
C3H6	0	0.00	0.00	0.00	0.00	0.00	0	0	0
C2H6	0	0.00	0.00	0.00	0.00	0.00	0	0	0
C2H2	0	0.00	0.00	0.00	0.00	0.00	0	0	0
C3H8	0	0.00	0.00	0.00	0.00	0.00	0	0	0
CHN	0	0.00	0.00	0.00	0.00	0.00	0	0	0
v	0	0.00	0.00	0.00	0.00	0.00	0	0	0
Flue Gas	0	0.00	0.00		0.00	0.00	٥ ئ		0
Total gaseous pollutant	0	0.00	0.00	0.00	0.00	0.00	0	0	0
AI203	0	0.00	0.00	0.00	0.00	0.00	0	0	0
Ash	0	0.00	0.00	0.00	0.00	0.00	0	0	0

TABLE 4. INVENTORY FOR OPTION 3 TNAZ DEMILITARIZATION PROCESS (All units in lb/bomb, except electricity in kwh/bomb)

Air wastewate Emissions Emissions	0	0 0 0	0 0 0	0 0 0	0 0	0				0 0 0) 327 654	0 327 0	327 0 0	327 0 0 0	327 0 0 0 0	327 0 0 0 0	327 0 0 0 0 0	327 0 0 0 0 0 0	327	327	357 000000000000000000000000000000000000	357 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	357 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	357 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	357 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	0 K 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 K 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	327 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 K 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 K 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 K 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7		00.00		1,39			79.00																									
9				0.00					Ö																							
S	0.00	0.00	0.00	0.00	0.00	0.00	0.0	1,296.00	0.00	0.00		0.0	0.0	0.0 0.0 0.0	8.0 8.0 8.0 8.0 8.0	8	8 8 8 8 8 6 6 6 6 6 6	8	8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		0.000000000000000000000000000000000000
4 4	0.00	00.00	00.00	0.00	0.00	0.00	00.0	0.00	327.00	0.00	0	0.00	0.00	0.00	0.00	0000000	00.0	00.00	00.00	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000										
4	0.00	525.00	18.32	0.00	0.00	0.00	900	0.00	0.00	0.00		50.5	0.0	8 0 0	00.0	00.0	00000000	000000000000000000000000000000000000000														
က	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(1,296.00)	0.00	00.00	00.00)	0.00	00.0	00:0	3 0 0 0 0 3 0 0 0 0	000000000000000000000000000000000000000	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000											
2	0.00	0.00	0.00	0.00	0.00	0.00	8.0	0.00	(981.00)	0.00	00.0	> >	0.00	0.00	0.00	00.0	00.0	00.0	00.0	00.0	00.0	00.000000000000000000000000000000000000										
	0.00	(525.00)	(18.50)	(1,390.00)	(3.00)		(23.00)	0.00	0.00	00.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0000000000000000000000000000000000000	
-							CA (solvent)						h/bomb	h/bomb bon	/h/bomb rbon	h/bomb bon	h/bomb bon	h/bomb bon	h/bomb bon	n/bomb	noon	dmod/n	dmod/n	dmod/n	nocon noc	noon noo	bon bon	dmod/n	dmod/n bon	bon bon	rbon rbon	Electricity, kwh/bomb Activated Carbon CO N2 H2 CO2 H HO NO NO AI O CH4 NH3 C2H4 C3H6 C2H6 C2H6 C2H6 C2H7 C3H6 C2H7 C3H8 C3H8

0000																
0000																
0.00																
0.00																
0.00																
0.00																
0.00	10	000000000000000000000000000000000000000	00.0	0.00 (2,295.09)	0.00	0.00	0.00	00.0	00.00	0.00	00.0	0.00	0.0	0.00	0.00	00.0
0.00	ი ი	0.00 525.00 18.32 0.00	00:0	0.00	0.00	0.00	0.00	00.0	00.00	00.0	0.00	0.00	00:0	0.00	0.00	0.00
0.00	Solidification 8	00.0	00.0	0.00 (2,284.00)	00.0	0.00	0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00		-525 -18.315 0	000	00	00	00	00	00	00	0 0	0	00	0	0	0 0	00
Flue Gas Total gaseous pollutant Al2O3 Ash	900	TNAZ/Al Asphalt Bomb Case	Potting Felt Pad Thermal Insulation	TCA (solvent) Water	Steam Fuel	Air Electricity, kwh/bomb	Activated Carbon CO	N2 H2O	H2 CO2	ΙÇ	ON ON	₹ 0	CH4	NH3	C2H4 C3H6	C2H6

Mastewater	wastewater Emissions	0	0	0	0	0	0	0	0	-999.06068	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ָרָיָם סיי	ø	0	0	0	0	0	0	0	0	-0.027379407	0	0	0	0	-0.520208724	0	0	0	0	0	0	0	0	0	0	0
·	13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(90.666)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00 0.00 0.00 0.00 0.00 0.00	rent 12	00.00	00.00	00.00	00.00	00.00	00.00	00.0	0.00	(0.03)	00.00	00.00	00.00	00.00	(0.52)	00.00	00.00	00.00	0.00	00.0	00.00	00.0	0.00	0.00	0.00	0.00
0.00 0.00 0.00 0.00 0.00 0.00	vastewater Irean 11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(0.52)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
000000000000000000000000000000000000000	10	0	0	0	0	0	0	0	0	2295.08806	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
000000	S	0	0	0	0	0	0	0	0	-1296	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
C2H2 C3H8 CHN C Flue Gas Total gaseous pollutant AI2O3 Ash		PBXN-109	TNAZ/AI	Asphalt	Bomb Case	Potting	Felt Pad	Thermal Insulation	TCA (solvent)	Water	Steam	Fuel	Air	Electricity, kwh/bomb	Activated Carbon	00	N2	HZO	H2	C02	I	НО	ON.	Ā	0	CH4

Recycle	00	1390	0	0 0	0	0	0 0	0	0	0	0	0	0	0	0	0	0
	00	00	0	0 0	0	0	0 0	0	0	0	0	0	0	0	0	0	0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0	0 0	0 0	0 0	0	0	00	0	0	0	0	0	0	0	0	0	0
0 0 0 0 0 0 0 18 Air	00.0	0.00	0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	00.0	00:0	0.00	00.0	0.00	0.00	0.0	0.00	0.00	0.00	0.00	00:0	0.00	0.00	0.00	0.00	0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	00.0	00.0	0.00	00.0	0.00	0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	00.0	00.0	0.00	00.00	0.00	0.00	00.0	8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0000000000	00.0	0.00	0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0000000000	00	-0.185 -1390	က္ဖ	-25	0	0 (000		0	0	0 (0 0	-	0 0	0 0	o (0
NH3 C2H4 C3H6 C2H6 C2H2 C3H8 CHN C Flue Gas Total gaseous pollutant Al2O3 Ash	TNAZ/AI	Asphalt Bomb Case	Potting	reit rad Thermal Insulation	TCA (solvent)	Water	Steam	Air	Electricity, kwh/bomb	Activated Carbon	0 :	N2 L20		HZ CO3		r :	Q.

000000000000000

000		0000000	
000	, , , , , , , ,		
000	00000	0000000	Solid Waste
0.00	00:0 00:0 00:0 00:0	0.00 0.00 0.00 0.00 0.00 0.00	Air S. Emissions W Emissions 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00.0	0000	0.00	22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
00:00	3 0 0 0 0 0 3 0 0 0 0 0	00.0	Burning Ground 21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
0.00	0000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
0.00	00:0 00:0 00:0 00:0	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
000	00000	0000000	9 -525 -18.315 0 0 -11.0880612 0 0
0 V 0	CH4 NH3 C2H4 C3H6 C2H6	C2H2 C3H8 CHN C Flue Gas Total gaseous pollutant AI2O3 Ash	PBXN-109 TNAZ/AI Asphalt Bomb Case Potting Felt Pad Thermal Insulation TCA (solvent) Water Steam Fuel Air Electricity, kwh/bomb Activated Carbon CO

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
9.92 4.1.7 0.52 0.05 0.05 0.05 0.05 0.05 0.05 0.05	Wastewater Emissions 0 0 0 0 1 162 0 0 0 0
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
9.92 7.14 6.51 0.52 0.05 0.00 0.00 0.00 0.00 0.00 0.00	1ting 25 0.00 0.19 18.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00
00.000000000000000000000000000000000000	HE/Asphalt Melting 24 0.00 0.00 0.00 0.00 0.00 162.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	23 0.00 0.00 0.00 0.00 0.00 0.00 (162.00) 0.00
	9 0 -525 -18.315 0 0 0 11.0880612 0
H2O H2 CO2 H HO NO AI O CH4 NH3 C2H4 C2H6 C2H6 C2H6 C2H8 C2H8 C2H8 C2H8 C2H8 C2H8 A12O3 Ash	PBXN-109 TNAZ/Al Asphalt Bomb Case Potting Felt Pad Thermal Insulation TCA (solvent) Water Steam Fuel

00000000000000000000	
0.0000000000000000000000000000000000000	Recycle 0 0.185 18.315 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00.000000000000000000000000000000000000	29 0.00 0.00 0.00 0.00 0.00 1,154.62
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Solidification 28 0.00 0.19 18.32 0.00 0.00 0.00 0.00 0.00 0.00
0.0000000000000000000000000000000000000	27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1,155.00
000000000000000000000000000000000000000	26 0 -524.815 0 0 0 0
Electricity, kwh/bomb Activated Carbon CO N2 H2 CO2 H H0 NO Al O CH4 NH3 C2H4 C3H6 C2H4 C3H6 C2H6 C2H6 C2H6 C2H6 C2H6 C2H7 C3H8 CHN C2H7 C3H8 CHN C3H8 CHN C3H8 CHN C3H8 CHN C3H8 CHN C3H8 CAN C3H8 C3H8 C3H8 C3H8 C4HN C3H8 C4HN C3H8 C4HN C3H8 C4HN C3H8 C4HN C3H8 C3H8 C4HN C3H8 C4HN C3H8 C4HN C3H8 C4HN C3H8 C4HN C3H8 C4HN C3H8 C4HN C3H8 C4HN C3H8 C4HN C3H8 C4HN C3H8 C4HN C4HN C4HN C4HN C4HN C4HN C4HN C4HN	PBXN-109 TNAZ/AI Asphalt Bomb Case Potting Felt Pad Thermal Insulation TCA (solvent)

	Wastewater Emissions 0 0 0 0 0
000000000000000000000000000000000000000	Wai 0 0 0 0
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Solid 32 Waste 0.00 0.00 0.00 0.00
0.00	nent 31 0.00 0.00 0.00 0.00
0.00	Wastewater Treatment 30 31 0.00 0.00 0.00 0.00 0.00 0.00 0.0
0000000000000000000000	% %00000 \$
Steam Fuel Air Electricity, kwh/bomb Activated Carbon CO N2 H2 CO2 H4 H0 NO NO AI O CH4 NH3 C2H4 C3H6 C2H6 C2H6 C2H6 C2H6 C2H7 C3H8 CHN C Flue Gas Total gaseous pollutant Al2O3 Ash	PBXN-109 TNAZ/Al Asphalt Bomb Case Potting

Felt Pad	0	0.00	0.00	0.00	0	0	
Thermal Insulation	0	0.00	00.0	00.00	0	0	
TCA (solvent)	0	0.00	0.00	00.00	0	0	
Water	-1154.62245	0.00	(0.01)	1,154.64	-0.01377415	1154.636223	
Steam	0	0.00	00.0	00.00	0	0	
Fuel	0	0.00	00.0	00.0	0	0	
Air	0	0.00	00.00	00.00	0	0	
Electricity, kwh/bomb	0	0.00	0.00	0.00	0	0	
Activated Carbon	0	(0.26)	0.26	0.00	0.261708769	0	
00	0	0.00	00.0	00.0	0	0	
N2	0	0.00	0.00	0.00	0	0	
H20	0	0.00	0.00	00.00	0	0	
H2	0	0.00	0.00	0.00	0	0	
C02	0	0.00	0.00	0.00	0	0	
I	0	0.00	0.00	0.00	0	0	
오	0	00.00	0.00	0.00	0	0	
ON.	0	00.00	0.00	00.0	0	0	
A	0	00.00	0.00	0.00	0	0	
0	0	0.00	0.00	0.00	0	0	
CH4	0	00.0	0.00	0.00	0	0	
NH3	0	00.00	0.00	0.00	0	0	
C2H4	0	00.00	0.00	0.00	0	0	
C3H6	0	00.00	0.00	0.00	0	0	
C2H6	0	00.00	0.00	0.00	0	0	
C2H2	0	00.00	0.00	0.00	0	0	
C3H8	0	00.00	0.00	0.00	0	0	
CHN	0	00.00	0.00	0.00	0	0	
O	0	00.0	0.00	0.00	0	0	
Flue Gas	0	00.00	0.00	0.00	0	0	
Total gaseous pollutant	0	0.00	0.00	0.00	0	0	
AI203	0	00.00	0.00	0.00	0	0	
Ash	0	0.00	0.00	0.00	0	0	
		Solidification					
	25	33	34	35			
FBAN-109 TNAZ/AI	-0.185	0.00	0.00	0.00			

Solid

	35	36	37	38	Waste	Emissions	
PBXN-109	0	0.00	0.00	0.00	0		0
TNAZ/AI	0	0.00	0.00	00.00	0		0
Asphait	0	0.00	0.00	0.00	0		0
Bomb Case	0	0.00	0.00	00.00	0		0
Potting	0	0.00	0.00	0.00	0		0
Felt Pad	0	0.00	0.00	0.00	0		0
Thermal Insulation	0	0.00	0.00	0.00	0		0
TCA (solvent)	0	0.00	0.00	0.00	0		0
Water	-38.8131313	0.00	38.81	0.00	38.81313131		0
Steam	0	0.00	0.00	0.00	0		0
Fuel	0	0.00	0.00	0.00	0		0
Air	0	0.00	0.00	0.00	0		0
Electricity, kwh/bomb	0	0.00	0.00	0.00	0		0
Activated Carbon	0	(0.01)	0.01	0.00	0.008797453		0
8	0	0.00	00.00	0.00	0		0
N2	0	0.00	00.00	0.00	0		0
H20	0	0.00	0.00	0.00	0		0
H2	0	0.00	0.00	0.00	0		0
C02	0	0.00	0.00	0.00	0		0
I	0	0.00	00.00	0.00	0		0
오	0	0.00	0.00	0.00	0		0
ON.	0	0.00	0.00	0.00	0		0
A	0	0.00	00.00	0.00	0		0
0	0	0.00	00:00	0.00	0		0
CH4	0	0.00	00.00	0.00	0		0
NH3	0	0.00	0.00	0.00	0		0
C2H4	0	0.00	0.00	0.00	0		0
сзн6	0	0.00	0.00	0.00	0		0
C2H6	0	0.00	0.00	0.00	0		0
C2H2	0	0.00	0.00	0.00	0		0
СЗНВ	0	0.00	00.00	0.00	0		0
CHN	0	0.00	00:00	0.00	0		0
O	0	0.00	0.00	0.00	0		0
Flue Gas	0	0.00	00.00	0.00	0		0
Total gaseous pollutant	0	0.00	00.00	0.00	0		0
AI203	0	0.00	0.00	0.00	0		0
Ash	0	0.00	0.00	0.00	0		0

	o	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Air Solid	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.06327	0.043159619	0.003495619	0.002516	0.002294	0.000183238	0.000126857	1.7619E-05	1.7619E-05	1.7619E-05	0	0	0	0	0	0	0	0
Air Air Emis	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			0.00	0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00:00	0.00	0.00	0.00
4	0.00	00.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	90.0	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00
40	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	00.00	0.00	0.00		0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	00.00	0.00	0.00	0.00	0.00	0.00
ō,	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
34	0	-0.185	-18.315	0	0	0	0	0	-0.18686869		0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	PBXN-109	TNAZ/AI	Asphalt	Bomb Case	Potting	Felt Pad	Thermal Insulation	TCA (solvent)	Water	Steam	Fuel	Air	Electricity, kwh/bomb	Activated Carbon	၀	N2	H20	H2	C02	-	오	0 :	A	0	CH4	NH3	C2H4	C3H6	C2H6	C2H2	C3H8	CHN

(,					,	,
S	0	0.00	0.00	0.00	0.00	0	0
Flue Gas	0	0.00	0.00	0.00	0.00	0	0
Total gaseous pollutant	0	0.00	0.00	0.00	0.00	0	0
AI2O3	0	0.00	0.00	0.00	0.07	0.0	69856
Ash	0	0.00	0.00	0.00	0.07	0.0	.069856

Natural gas

	Mwt	heat value	Rio Arriba,	Terrell, Tex	Stanton, K	aSan Juan,	Molds Field	Cliffside, Te	xas	
mol%		MJ/M^3								
Methane	16.043	37.57	96.91	45.64	67.56	77.28	E2 24	65.0		
-							52.34	65.8		
ethane	30.07	65.83	1.33	0.21	6.23	11.18	0.41	3.8		
propane	44.097	93.6	0.19		3.18	5.83	0.14	1.7		
butane	58.123	120.98	0.05		1.42	2.34	0.16	0.8		
pentane+	72.15	148.84	0.02		0.04	1.18	0.41	0.5		
CO2	44.01	0	0.82	53.93	0.07	0.8	8.22			
H2S	34.076	23.7		0.01			35.79			
N2	28.013	0	0.68	0.21	21.14	1.39	2.53	25.6	avg	SD (rel)
Mol wt:			16.62585	31.182	20.92126	21.28362	25.49289	20.44567	19.61024	10.79%
heating va	IdMJ/M^3		37.6	17.3	34.9	46.8	30	30.7	39.76667	12.81%
	MJ/KG		50.65847	12.42768	37.36678	49.25478	26.36029	33.63451	45.76001	13.03%
	0.0004840			A						
	0.0224M ³	/moi		too high			too high	too low		
				CO2			Sulfur	heating		
				content for			content	value(?)		
				use						

Source: Kirk Othmer Ed 4 vol 12 1993

MJ/m³

Heating values for processed city natural gas:

source Perry 6 (1984) averaged from table 9-14

Btu/scf

1049.571

Synopsis of table 9-14

-,										1
	Mwt	heat value	Baltimore	Columbus	Houston	Burmingha	un/Washingto	nPhoenix		
mol%		MJ/M^3	Md	Ohio	Tx	Al	DC	Az		
Methane	16.043	37.57	94.4	93.14	92.5	93.14	95.15	87.37		
ethane	30.07	65.83	3.4	3.58	4.8	2.5	2.84	8.11		
propane	44.097	93.6	0.6	0.66	2	0.67	0.63	2.26		
butane	58.123	120.98	0.5	0.22	0.3	0.32	0.24	0.13		
pentane+	72.15	148.84	0	0.09	0	0.12	0.05	0		
CO2	44.01	0	0.6	0.85	0.27	1.06	0.62	0.61		
H2S	34.076	23.7		0.01						
N2	28.013	0	0.5	0.21	21.14	2.14	0.42	1.37	avg	SD (rel)
Mol wt:			17.12629	16.93912	23.38022	17.32821	16.9628	18.17984	18.31941	15.84%
heating va	luMJ/M^3		39.2023	38.3444	38.4563	38.1952	38.8666	39.9483	38.83552	1.10%
	MJ/KG		51.27388	50.70597	36.84401	49.37455	51.32477	49.22167	48.12414	13.30%

0.0224M^3/mol

lanufactu	-				_				,					
ata from	•	•	n mechanic	al method"					gas heat v			Tar data		
	Moisture	Heating va			Gas yield s		gas lb/lb c	o Gross hea						
		wet	dry		wet base	•			•		wet base		-	
nthracite		10800				130558.5				17098200	8549.1		10.01054	
elgian Co						124127.3				18135000	9067.5		1.026694	
addesley	0.05	12080	12715.79		116100	122210.5	3.581182	165.6	174.3158	19226160	9613.08	21	22.10526	
					cess the Bad		coal is use	ed						
	This coal t	hen provide	s 9613.08	gas heatir	ng value in B	tu/lb coal								
addesley	coal ga													
ompositio	or MW t	vol%	O2 per mo	l mol O2 pe	r mol gas									
O2	44.01	6.7	0	0										
lkyls														
2	31.9988	0	0	0										
0	28.016	25.3	0.5	0.1265										
2	2.0158	21	0.5	0.105										
H4	16.043	1.8	2	0.036										
2	28.013	45.2	0	0			0.578864	mol air pro	ducing mol	gas				
as Mwt	23.41069				mol O2 per	-		mol air to b		5				
	lensity of pr	oducer gas			kgair/kg ga			kg air used	-					
0.9882	kg/m^3													
0.061691				d=Mw/0.02	224									
hysical da	ata													
ensity of		lb/cuf			Perry 6 (19	84)								
	1200	kg/m^3												
	10.01449	lb/gal												
nits														
cf is volur	ne in cubic		arenheit and	_	KO 2 (1964	1)								
		288.7056	42.2115	0.02369										
ensity	lb/cuf	lb/gal	kg/m^3		Perry 6 (19	84)								
	0.062428	0.008345	1											
	7.480519	1	119.8264											
	1	0.133681	16.01846											
nass	ton (short		kg		Perry 6 (19	84)								
	1	2000												
		2.204623	1											
ressure	"Hg	N/m^2	atm	psia	Perry 6 (19	84)								
	1		0.033327											
	2.041754		0.068046	14 60506										
	30.00533	101325	1	14.69586										
		1												len nie nas

Perry 6 (1984)

Perry 6 (1984) for steam table values

eat value MJ/m^3 btu/scf

MJ

nergy

0.0373

0.001055

Btu

molar

N2

02

Ar

total

CO2

dry air composition Mwt

0.00033

0.99997 28.96409

kg air per kg

mass compcomponent

0.78084 28.0134 0.75521 1.324134

0.20946 31.9988 0.231406 4.321406

0.00934 39.948 0.012882 77.62792

44.01 0.000501 1994.319

Coal type	Moisture	Sulfur		Heat value		
	%	%	%dry	Btu/lb	Btu/lbdry	
Sub bit C	26	0.3	0.41	8230	11121.62	
HV bit A	2.9	0.6	0.62	14170	14593.2	low sulfur coal heating value
Sub bit B	22.2	0.5	0.64	9610	12352.19	
Brown Coa German - F	R 55	0.3	0.67	4830	10733.33	
Sub bit A	13.9	0.6	0.70	10330	11997.68	SD= 1295.775 0.108169
Meta Anthracite	9	0.7	0.77	10080	11076.92	Avg= 11979.16
LV bit	2.9	0.8	0.82	14400	14830.07	median
Anthracite	4.3	0.8	0.84	12880	13458.73	27.86352 MJ/kg
Lignite	36.8	0.9	1.42	7000	11075.95	dry base
MV bit	2.4	1.5	1.54	14490	14846.31	
Semi anthracite	2.1	1.7	1.74	13700	13993.87	
HV bit B	6.7	2.6	2.79	12390	13279.74	
HV bit C	15.4	2.9	3.43	10740	12695.04	

bit=Bituminous

V=Volatility

L=low

M=Medium

H=high

Source: Kirk Othmer vol 4 1949