Index

Note: Page numbers followed by f indicate figures and t indicate tables.

A	Bijective operator, 223
Ablation problems, 59, 61, 414–415, 575, 582	Bilinear form, 670
Abstract space, 665	Biot number, 405–406, 483
Activation energy, 47	Biot's technique, 611–612
Adjoint operator, 671	Blow-up, 77–78, 130–131
Admissibility conditions, 194–195	essential, 100
Adomian decomposition method (ADM),	finite-time, 100, 102
460–466, 470	nonessential, 100
for inverse Stefan problems, 497–511	in SSP, 101–102
Adomian polynomials, 460–461, 464	Boley's embedding technique, 424, 443–444,
AFS. See Approximate fundamental solution	446–447
(AFS)	Boltzman transformation, 318, 340
Analytical-numerical solutions	Boundary conditions
ADM, 498–511	of fifth type, 29–30
approximate solutions in series form,	with multivalued functions, 30–31
490–494	nonlocal, 29
Green's functions, 470–486	of radiative-convective type, 28–29
of inverse Stefan problems, 497–511	type I, 27–28
Picard's iterative method, 486–490	Boundary element method (BEM), 478
VIM, 466–470	Boundary norm, 200–201
Anisotropic Holder space, 265	Bounded linear operator, 667
a-posteriori parameter-choice rule, 217	norm, 667–668
Approximate fundamental solution (AFS), 494	norm, 007–008
a-priori parameter-choice rule, 217	
Arbitrary functions, 1–4, 465, 652	C
Ascoli–Arzela theorem, 270, 677–678	Caffarelli's criterion, 169
Associative law, 665	Canonical mapping, 669
Asymptotic analysis	Caputo derivatives, 353, 355
large-time solution, 360–361	Cartesian coordinates, 448–449, 516, 556
non-linear undercooling, 361–369	problems in, 470–479
small-time solution, 360	Cauchy integral equation, 538–539
α -th strong derivative, 679	Cauchy integral method, 530–531
α -th weak derivative, 679	Cauchy principle value, 479–481
	Cauchy problem, 448–449
В	in heat conduction, 231–232
Bäcklund transformation, 342, 344–345, 347	Cauchy–Riemann conditions, 532–533
Baiocchi transformation, 113–114, 168, 325	Cauchy–Stefan problem, 266–267
Banach contraction mapping theorem, 677	Cauchy-type free boundary problems,
Banach fixed point theorem, 677	272–275
Banach space, 242, 666	C^{∞} -compatible, 136
Bergman-type series expansions, 447–448	CEF. See Classical enthalpy formulation (CEF
Bessel functions, 317–318, 456–457, 513, 657	Characteristic function, 113–114, 169–170
	CICE scheme, 496
Best-approximate solution, 217	CICE SCHEIRE, 470

Claration 44.57	Convey set 672
Clapeyron's equation, 44, 57 Classical enthalpy formulation (CEF),	Convex set, 673 Convolution integral, 224, 234
121–124, 128–129	Correctly-posed problem, 210
Classical solution, 5–7, 32	Cosmol Multiphysics Software, 420
Classical Stefan problems	Crack-model, 545
one-phase, 163–174	Crack-model, 545
quasi-variational inequality formulation,	5
174–178	D
two-phase, 178–182	Darcy's law, 5–7, 541
Classical Stefan solution (CSS), 128	Degenerate free boundary problems, 4
Class I problems, 64–65, 427	Degenerate parabolic-elliptic problems, 5–7
Class II problems, 64–66, 427–428	Degenerate Stefan problems, 134–138
Class III problems, 64–66, 427–428	Dendrites, 333–334
Clausius–Duhem inequality, 94–95	equiaxed, 50, 52 <i>f</i>
Coercivity, 670	formation of, 50, 50f
Coincidence set, 144–145	growth, 50, 50 <i>f</i>
Columnar solidification, 49–50	polycrystalline structure, 50, 51f
Combined integral balance method (CIM), 635	Dense set, 667
Commutative law, 665	Diffuse interface model, 357
Compact operators, 668	Dirac delta function, 189, 306, 476
Compact operators, 668	Green's function, 316
Compact support, 667	regularization of, 494–497
Compatibility conditions, 60, 64	Directional solidification, 50, 119
Complementarity problem, 143–146	Direct metal layer siltering (DMLS), 580 Dirichlet problem, 196
coincidence set, 144–145	Dirichlet–Stefan problem, 209, 266–267
noncoincidence set, 144–145	Dirichlet type boundary conditions, 27–28
quadratic programming, 145	Discrepancy, 222
Complete linear space, 666	Distribution, 680
Completely continuous operator, 668	Distributional derivative, 679
Complex-variable method, 541, 549	Distributional sense, 30–31, 82–83, 119,
Confluent hypergeometric function, 509	124–126, 142, 169–170, 206, 298, 304,
Conformal mapping method, 529f, 530–531	402–403, 476
for steady-state two-dimensional solutions	DMLS. See Direct metal layer siltering
of Stefan problems, 531–541	(DMLS)
Conformal transformation method, 530–549,	Dual least-squares method, 225
532f, 533f, 534f, 535f	Dual space, 140–141, 669
Conjugate gradient method, 463	Duhamel's theorem, 425–426
Conjugate operator, 214	Duvait's transformation, 164–169
Conservation	Dynamical boundary conditions, 30–31
of energy, 32, 34–35, 54–57	Dynamic energy balance condition, 18–19
of forces, 53–54	Dynamic linear stability analysis, 635–636
of linear momentum, 33–34	
of mass, 32–33	E
of momentum, 32	EHBIM, 577–580
Constrained integral method, 582	Eigenvalues, 456–457
Constrained oxygen-diffusion problem	Elliptic variational inequality, 140
(CODP), 77–78	classical Stefan problems
Contact angle, 54–55	one-phase, 163–174
Continuous dependence, 211–213	quasi-variational inequality formulation,
Contraction, 677	174–178
Control volume, 33	two-phase, 178-182
Convective type boundary condition, 28	complementarity problem, 143-146
Convex function, 673	definition, 140–142

existence and uniqueness results	Fourier series, 449
Lions-Stampacchia theorem, 150-152	Fourier's law, 18, 184–185
variational equation, 152–156	Fourier transform method, 520
minimization problem, 142–143	Fractional diffusion equation (FDE), 352
obstacle problem, string, 156–159	Frechet derivative, 116–117, 681
Elliptic variational inequality with obstacle,	Free boundary, 1–4
140	Free boundary conditions, 1–4
Embedding, 682	of codimensional-two, 17
Energy balance, 187, 299, 458, 476	discontinuity in multidimensional problems.
Energy conservation principle, 202–203	7–15
Enthalpy, 40, 82–83	with frictional oscillator problem, 7–15
Enthalpy formulation of Stefan problems,	Free boundary problems (FBPs), 311
577–580	Cauchy-type, 272–275
Entropy, 39	Freezing front, 1–4
Equiaxed solidification, 119	
Equicontinuity, 673	Freezing index, 163–164
Equicontinuous functions, 673	Freezing temperature, 17–18
Equilibrium phase-change temperature, 17–18,	Frictional oscillator, 7–15, 10 <i>f</i>
376f	Functionals, 669
Equilibrium temperature, 43, 43f	Riesz representation theorem for, 670
Essential blow-up, 100	
Essential boundary conditions, 594	G
Essentially bounded function, 676	Galerkin approximation, 166–167
Essential supremum, 676	Galerkin approximation, 160–167 Galerkin method, 592–598
Euler equation, 154–155, 214, 603–605, 608	•
Eulerian coordinate system, 33	Gamma function, 353
Euler–Lagrange equation, 83–84	Gâteaux derivative, 151–152, 681
Euler transformation, 440–441, 646	Generalized derivative, 679
Eutectic temperature, 372	Generalized discrepancy principle, 222
Explicit free boundary condition, 31–32	Generalized Fourier's law, 184–185
Exponential Fourier transform, 211	Generalized solution, 297–298
Extensive property, 40	Generalized Stefan condition, 31, 52, 55f
• •	Genuinely ill-posed problems, 215
F	Gibbs free energy, 41–42
	Gibbs-Thomson kinetic condition, 661
Fickian diffusion systems, 352	Gibbs-Thomson relation, 47
Fickian flux vector, 352	multidimensional SSPs, 113-118
Fick's law, 7–15, 511, 567–568	one-dimensional one-phase SSPs, 106-108
FIDAP, 460	one-dimensional two-phase SSPs, 108–113
Fifth type boundary condition, 29–30	Glassy solid, 49
Finite positive integer, 465	Graph of an operator, 676
Finite-time blow-up, 100	Grashof number, 661
Finite-time extinction, 100	Green's formulas, 304
Finite volume method, 508	application, 144–145, 173, 481 <i>f</i> , 529 <i>f</i>
First law of thermodynamics, 39	Green's functions, 257, 429, 434, 452,
First-order phase transitions, 20–21	470–486, 493–494, 497
First order relaxation process, 512–513	in cylindrical polar coordinates, 317–318
Fixed boundary condition, 1–4, 27–31	Dirac delta function, 315–316
Fixed grid enthalpy method, 389	for linear parabolic heat equation, 315–316
Fixed point of a mapping, 677	*
Fixed point theorem	for parabolic and hyperbolic Stefan
Banach, 677	problems, 520–530
Schauder's, 677	quasi-analytical solutions, 315–325
Flux-prescribed boundary condition, 28	source solution, 316
Fourier heat conduction, 436	Green's identity, 470–471

Н	energy conservation equation for two-phase
HAM. See Homotopy analysis method (HAM)	problem, 202–207
Hanzawa transformation, 116–117, 135	Green's functions for, 520–530
HBIM. See Heat balance integral method	relaxation models, 184-185
(HBIM)	relaxation time, 184–185
Heat balance equation, 555	with temperature continuity at interface,
Heat balance integral	185–193
equation, 559	with temperature discontinuity at interface,
in HBIM and RIM formulations, 575	193–201
Heat balance integral method (HBIM), 361,	weak formulations, 201-207
550–592, 635	Hyperboloid, 331
enthalpy formulation of Stefan problems, 577–580	Hypergeometric function, 354
heat balance integrals in, 575	_
•	I
in multi-dimensional problems, 582–587	Ideal equilibrium temperature, 43
polynomial profile for temperature in,	Ill-posed problem, 79, 210
588–590	Imbedding, 675
polynomial representation of temperature in,	Implicit free boundary condition, 5–7, 31–32,
571–577	72–76
refinement and variations of, 558–570	Incompatibility measure, 222
Stefan-like multiphase problem using,	Incorrectly-posed problem, 210
580–582	Independent variables, 437–438
Heat conduction equation, 18	Indicator function, 96–97
Heat conduction problem, 445–446	Initial approximation, 469
Heat flux relaxation function, 184	Inner product, 666
Heat flux vector, 18, 184	Inner product space, 666
Heat polynomials, 244	Integral equation formulations, 252–264
Heat transfer, 527, 557–558	Integral equation method, 319–320
Heaviside functions, 416	Integral heat balance, 71–72
Heaviside shift theorem, 522–524	solutions using integral heat-balance
Hele-Shaw problem (HSP), 78-79, 134,	method, 503–507
136–137, 168, 328	Interface curvature, 47–48, 56 <i>f</i>
use of conformal transformation in solutions	Interface kinetic effect, 49
of, 541–549	Internal energy, 39
Helmholtz free energy, 41–42, 43f	Inverse problem, 209
Hermite interpolating polynomial expression,	Inverse Stefan problems, 497–498
590–591	ADM, 498–511
Heterogeneous nucleation, 44	defect minimization problems, 239–250
Hilbert-adjoint operator, 671	homotopy analysis method for, 498–511
Hilbert space, 460–461, 666	input data, 209–210
isomorphic, 669	regularization
Holder continuous function, 674	convolution integrals, 234–238
Hölder stability, 212	generalized discrepancy principle,
Homogeneous nucleation, 44	215–217
Homotopy, 614–627	generalized inverse, 217–218
Homotopy analysis method (HAM)	heat conduction problems, 231–234
for inverse Stefan problems, 501–502	methods, 219–226
Homotopy perturbation method (HPM),	regularizing operator principle, 215–217
614–620	solutions obtained without
for inverse Stefan problems, 501–502	regularization, 499
Hyperbolic conductivity model, 517	Tikhonov regularization approach, 507–51
Hyperbolic heat equation, 517–518	unknown parameters
Hyperbolic η -weighted interior norm, 200–201	one-phase, 228–230
Hyperbolic Stefan problem 183 511–530	two-phase 230–231

variational iteration method for, 500–502	Lions–Stampacchia theorem, 150–152
well-posedness of solution	Lipschitz continuous function, 673
approximate, 213–215	Liquid–mush boundary, 69, 71, 302–303,
continuous dependence, 211–213	306–307
nonexistence, 210	Lithium concentration, 464–465
nonuniqueness, 210–211	Locally compact space, 676
Isomorphism, 669	Locally Holder continuous function, 674
Isotherm conditions, 18–19, 187, 454–456, 476	Locally integrable function, 676
Iterated error functions, 318	Lower semi-continuous function, 96–97, 673
Ivantsov solution, 333–334	
	M
J	Macroscopic models, 37–38
Joule heating, 121–123	Mass transfer problem, 445, 557–558
	Material surface, 52
K	MATLAB, 458, 465–466
	Maximal monotone graph, 676
Keller box finite difference technique, 366,	Maxwell-Cattaneo model, 511
576–577	Melting front, 1–4
Kinetic condition, 31	Melting problem, 19
Kirchoff's transformation, 26–27, 394	Melting temperature, 17–18, 405, 461–462
Kronecker delta function, 26	Metallurgical aspects
kth order compatibility conditions, 199–200	glassy (amorphous) solids, 49
	interface curvature effect, 47–48
L	interface kinetics, 49
	melting, nucleation of, 48
Lagrange–Bürmann expansions, 452	nucleation, 44–46
Lagrange multipliers, 221, 466–468	supercooling, 44–46
Lagrangian coordinate system, 33	Metastable state, 46
Lanczos regularization technique, 495	Method of fundamental solutions (MFS), 601
Landau–Ginzburg free energy functional,	Method of invariant manifold/ method of
82–87	integral manifold (MIM), 625
Landau transformation, 437–440, 445–446,	Method of over-specified boundary conditions
630, 633–634	226–227
Laplace–Beltrami operator, 294	Methods of weighted residual (MWR)
Laplace transform, 368–369, 450–451, 576	Galerkin method, 592–598
of linear heat equation, 492	orthogonal collocation method, 599-602
method, 512–513, 520	Metric, 666
Latent heat, 42	MFS. See Method of fundamental solutions
Least squares method, 601	(MFS)
Least-squares solution, 217	Microscopic models, 37–38
Legendre polynomials, 599–600	MIM. See Method of invariant manifold/
Lever rule, 373	method of integral manifold (MIM)
Lewis number, 378–379	Minimization problem, 142
Lightfoot's method, 477, 523–525	Modified error function, 228
Lightfoot's source and sink method, 489–490	Modified Gibbs–Thomson relation, 81
Linear heat equation, 442, 450–451	Mole number, 46
Laplace transform of, 492	Moment integral method, 561
Linearization, 4–16	Moore–Penrose (MP) generalized inverse,
Linear operator, 667	217–218
Linear parabolic equation, 447	<i>m</i> -order compatible, 136
Linear phase diagram, 375, 377	Moser–Nash theorem, 135
Linear regularization method, 217	Moving boundary, 1–4
Linear space, 665	Moving least-square (MLS) approximation,
Linear stability analysis, 118, 129	598
Linear statinty analysis, 110, 147	370

Multi-dimensional perturbation solutions,	finite-difference schemes, 268–271
636–642	integral equation formulations, 252–264
Multidimensional Stefan problems, 64–66,	analyticity, 264–268
290–295	Cauchy-type free boundary problems,
Multiplicative identity, 665	272–275
Multivalued functions, 30–31	density changes, 276
Mushy region, 121, 304	existence and uniqueness, 275–276
characterization of, 302, 306	infinite differentiability, 264–268
disappearance, 302, 306	One-dimensional three-phase problem, 497
enthalpy of, 298	One-dimensional two-phase Stefan problems,
one-phase multidimensional Stefan	63–64
problem, 307–308	analyticity, 286–287
	differentiability, 286
N	existence, 276–286
Natural boundary conditions, 166, 606	<i>n</i> -phase problem, 287–290
Natural convection, 315, 335	uniqueness and stability results, 276–286
Navier–Stokes equation, 34	One-phase continuous casting model, 169–172
Neumann problem, 196–201, 439–440, 442,	One-phase problems, 20–21, 163–174
452, 454	continuous casting model, 169–172
Neumann solution, 18–21, 110–111, 313–314	Duvait's transformation, 164–169
Newton potential, 484–485	freezing index, 163
Newton's second law of motion, 7–15	multidimensional
Noisy data, 215	Signorini-type boundary condition, 62–63
Non-characteristic Cauchy problem, 227–228	three-dimensional ablation problem,
Non-coincidence set, 144–145	61–63
Non-degenerate problem, 206–207	one-dimensional, 59–61
Non-essential blow-up, 100	oxygen-diffusion problem, 173–174
Non-Fickian law, 511	Operator(s)
	compact, 668
Non-Fourier melting, 513–514 Non-Fourier's law, 184–185	continuity, 668
	graph, 676
Nonlinear degenerate equation, 5–7	restriction, 668
Non-linear heat equation, 491–492	Optimal homotomy analysis method
Non-linear operator, 460–461, 466	(OHAM), 624
Non-local boundary condition, 7–15, 29	Optimal regularization method, 226
Nonmaterial singular surface, 52–57	Order parameter, 82–83
Norm, 666	Orthogonal collocation method, 599–602
Normed space, 666	Orthogonal complement, 668–669
<i>n</i> -phase Stefan problem, 287–288	Orthogonal projection, 669
Nucleation, 44, 102	Orthonormality condition, 494
of melting, 48, 49 <i>f</i>	Oxyen-diffusion problem (ODP), 76–79, 99,
Nyström discretization method, 485–486	105–106, 123–124, 173–174, 324–325
	constrained, 77–78
0	one-phase Stefan problem, 174
Obstacle, 140	quasi-static two-dimensional, 78–79
Obstacle problem, 7–15, 10 <i>f</i> , 140, 156–159,	in radially symmetric domain, 78
157 <i>f</i>	unconstrained, 77–78
OHAM. See Optimal homotomy analysis	variational inequality formulation, 173
method (OHAM)	
One-dimensional melting problem, 523	P
One-dimensional one-phase solidification	Parabolic boundary, 159–160, 678
problem, 489–490	Parabolic distance, 163
One dimensional one-phase Stefan problems	Parabolic duality, 597
analysis, 251–252	Parabolic–elliptic Stefan problems, 134–136

Parabolic operator, 135	<i>n</i> -phase Stefan problems with $n > 3$,
Parabolic regularity theory, 114–115	391–395
Parabolic variational inequality, 159–163	Neumann solution, 313–337
Paraboloids, 332–333	in Cartesian coordinates, 470–479
PCM. See Phase change materials (PCM)	in cylindrical and spherical geometry,
Peclet number, 334–335	479–486
Penalty method, 162–163, 168	explicit solutions of <i>n</i> -phase problems,
Penetration depth method, 552	352–358
Perturbations, 50–52, 51 <i>f</i>	phase-change boundary, 437–439
methods and solutions, 627–630	series solutions, 452–460
parameter, 627–628	short-time analytical solutions, 423–452
series expansions, 643	Stefan-like problems, 337–352, 358–359
singular methods, 629–630, 643	dilute binary alloys, solidification,
solutions, multi-dimensional, 636-642	374–382
Petrov–Galerkin approach, 598	with kinetic condition, 358–359
Phase-change boundary, 1–4, 17–18, 437–438,	heat and mass transfer, 374–382
445	heat transport in formulation, 370–374
solution with temperature continuity across,	in porous media, 382–391
512–520	in which thermo-physical parameters,
Phase change materials (PCM), 458, 507,	337–352
632–633, 659	VIM, 466–470
Phase-change problem, 591–592	Quasimonotonic, 221
Phase-change temperature, 17–18	Quasi-solution, 214
Phase-field model, 81–82, 82f	Quasi-static hyperbolic equation, 516
for solidification, 82–87, 88f, 89f	Quasi-static process, 38
Phase function, 82–83, 83f	Quasi-static two-dimensional ODP, 78–79
Phase relaxation, 94	Quasi-steady conditions, 447, 458–459
for supercooling, 93–98	Quasi steady-state free boundary problems,
Picard iteration method, 257, 486	Quasi steady-state Stefan problems, 134–135
Planar interface, 50–52	Quasi-steady-state Stefan problems, 134–133 Quasi-steady state two-dimensional one-phase
Poincare's inequality, 153	problem, 489
Polubarinova-Galin equation, 545–546	Quasi-variational inequality, 174
Polycrystalline structure, 50, 51 <i>f</i>	Quasi-variational inequality, 174
Prandtl number, 418	_
Precompact set, 668	R
Prior distribution, 223–224	Radiative-convective type boundary condition,
Projection operator, 175, 669. See also	28
Orthogonal projection	Radon measure, 158
Properly-posed problem, 210	Rankine–Hugoniot conditions, 7–15, 9f,
Pseudo-steady-state solution (PSS), 562–563	194–196, 516
	Rayleigh–Taylor instability, 549
0	Refined HBIM (RHBIM), 558–570
Q	Refinement RIM, 571–577
Quadratic bilinear form, 140	Reflexive space, 670
Quadratic polynomials, 569	Regularization, 101, 130–131
Quasi-analytical solutions	Regularization by projection, 224
ADM, 460–466	Regularization methods, 216
asymptotic analysis	convergence rate, 226–227
large-time solution, 360–361	convolution integral type, 224
non-linear undercooling, 361–369	of inverse heat conduction problems,
small-time solution, 360	231–234
Green's function, 315–325	of inverse Stefan problems,
of hyperbolic Stefan problems, 511–530	234–238
hyperboloidal moving boundary, 332	maximum entropy, 223

Regularization methods (Continued)	Euler transformation, 646
by projection, 224	matched asymptotic expansions, 646–658
Tikhonov, 219	strained coordinates method, 643
Regularization operator, 215–216	Singular perturbed systems (SPS), 624–625
Regularization (regularizing) operator, 216	Singular state, 52
Regularization parameter, 216	Singular surface, 52
Regular perturbation expansions, 630	SLS. See Selective laser sintering (SLS)
one- and multidimensional problems,	Smoothing functional, 219
628–630	Sobolev imbedding theorem, 682
Regular perturbation method, 629	Sobolev space, 680
Relaxation models, 184–185	Solid freedom fabrication (SFF), 568
Relaxation time, 183–185	Solidification, 61
Representative elementary volume (REV), 379	entropy functional, 90–93
Reproductive toxic mass diffusion, 5	at liquid–mush boundary, 71
Restricted variational principle, 611	in liquid region, 70
Restriction of an operator, 668	in mushy region, 70
Reversible process, 38, 41	phase-field model for, 82–87
RHBIM. See Refined HBIM (RHBIM)	at solid–mush boundary, 70
Riemann invariants, 190–191, 195–196	•
Riemann–Liouville fractional derivative,	in solid region, 70
357–358	supercooled liquids, 98–106, 358
Riemann's mapping theorem, 547	supercooling, 97–98
Riesz representation theorem for	phase relaxation models for, 93–98
functionals, 670	superheating, 97–98
RKM. See Runge–Kutta method (RKM)	with transition temperature range, 69–72
Rule of solution expression (RSE), 624	Solid–liquid interface, 49–52, 50 <i>f</i> , 51 <i>f</i> , 52 <i>f</i> ,
Runge–Kutta method (RKM), 464, 581,	170 <i>f</i>
601, 626	Solid–mush boundary, 69, 302–303, 306–307
001, 020	Soret effect, 660
_	Source and sink method (SSM), 476, 478
S	Specific enthalpy, 40
Scalar multiplication axioms, 665	Specific heat, 40
Scalar product. See also Inner product	Specific heat capacity, 40
definition, 148	Splicing algorithm, 590–591
Schatz transformations, 72–76	SPS. See Singular perturbed systems (SPS)
Schauder's fixed point theorem, 115, 254, 677	Stability, 211, 213
Scheil's equation, 410–411	Stability of the solution, 213
Schwarz-Christoffel transformation, 533-541	Stabilizers of pth order, 221–222
Second law of thermodynamics, 39, 84	Stabilizing functional, 220–221
Selective laser sintering (SLS), 568–569, 580	Standard phase-field (SPF) model, 87, 93
Semi-norm, 666	Steady-state continuous-casting
Sensitivity analysis, 247–248	two-dimensional problem, 537–538
Sensitivity coefficients, 247–248	Steady-state free boundary problems, 133
Separation constants, 456–457	Steadystate temperature, 1–4
Sequence(s)	Steady-state two-dimensional Stefan problem,
strongly convergent, 671	493, 531–541
weakly convergent, 671	Stefan–Boltzman constant, 396
Series solutions, 423	Stefan condition, 19, 441, 444, 457–458
SFF. See Solid freedom fabrication (SFF)	Stefan problems, 1-4, 349, 436-438, 448, 493
Shank's transformation, 362	in Cartesian Coordinates, 470–479
Sharp-interface model, 355–356, 370	in cylindrical and spherical geometry,
Shock, 7–15	479–486
Shrinking core model, 437–438	degenerate, 134–138
Signorini-type boundary condition, 62–63	enthalpy formulation of, 577–580
Singular perturbation method, 629–630, 643	hyperbolic, 183

with implicit free boundary conditions,	first law, 39
72–79	macroscopic models, 37–38
inverse, 497–498	microscopic models, 37–38
with linear kinetic undercooling, 360	second law, 39
multidimensional, 64–66	variables and thermal parameters, 40-42
one dimensional one-phase, 251–252	Thermodynamical property, 40
one-dimensional two-phase, 63–64	Thermodynamic equilibrium, 38
one-phase, 163–174	Three-dimensional ablation problem, 61–63
quasi steady-state, 134	Three-dimensional heat equation, 493
quasi-variational inequality formulation,	Tikhonov-regularization method, 213, 219,
174–178	246–247, 507–511
steady-state two-dimensional, 531–541	Tikhonov stabilizer, 221–222
Stefan and Stefan-like problems, 358–359,	Trace operator, 682
614–658	Transient heat equation, 494
two-phase, 178–182	Transient nonlinear heat conduction
using conformal transformation method,	problem, 661
530–549	Transient two-dimensional problem, 493
Stefan-type problem, 75–76	Two-phase Stefan problems, 20–21, 178–182
Stoke's theorem, 127	classical Stefan problems with <i>n</i> -phases,
Storm transformation, 394–395	n > 2, 66-69
Storm-type metals, 348–349	multidimensional, 64–66
Strained coordinates method, 643	in multiple dimensions, 21–25, 22 <i>f</i> , 23 <i>f</i> , 25 <i>f</i>
Strictly convex function, 673	one-dimensional, 63–64
Strong derivative, 679	solidification with transition temperature
Strongly convergent sequence, 671	range, 69–72
Strong maximum principle, 678	Type I boundary condition, 27–28
Sturm–Liouville problem, 457–458, 496	**
Subdifferential, 96–97	Type II boundary condition, 28
Suction problems, 136–137	Type III boundary condition, 28
Supercooled liquids, 43, 99–101, 358	Type IV boundary condition, 28
Supercooled state, 45–46	
Supercooled Stefan problem (SSP), 61	U
blow-up in, 101–102	Unconstrained oxygen-diffusion problem
initial and boundary conditions in, 102–106	(UODP), 77–78
with modified Gibbs–Thomson relation,	Uniformly bounded function, 673
106–120	Uniformly Holder continuous function, 674
one-dimensional one-phase solidification,	Uniformly parabolic, 5–7, 162
99–101	Unilateral boundary condition, 268–270
Supercooling effects, 97–98	Upper semi-continuous function, 673
Superheated solid, 45–46, 45 <i>f</i>	oppor some communation, over
Superheating effects, 97–98	• /
Surface divergence, 54	V
Surface tension, 1–4, 53–54, 106, 117	Variational equation, 152–156
Surface tension, 1-4, 33-34, 100, 117	Variational formulation, 16
	Variational inequality, 139
T	Variational iteration method (VIM), 466–470
Taylor's series, 46	for inverse Stefan problems, 500–502
Telegrapher's equation, 185–186, 511,	Variational methods and principles, 602–613
522–523	Vector space, 665
Test function, 680	completeness, 666
Theodorsen's integral equation, 540	Vertical gradient freeze (VGF) technique,
Thermal conductivity, 23, 26–27, 42	458–460
Thermal diffusivity, 422, 476–477, 485	Visco-plastic bar, 7–15
Thermodynamic(s)	Viscosity solutions, 310
equilibrium temperature, 43–44	Volterra integral equation, 235, 237, 346–347

726 Index

W

Waiting time, 5–7 Weak derivative, 679 Weak formulation, 119–120 Weak free boundary, 307 Weakly compact set, 667 Weakly convergent sequence, 671 Weak maximum principle, 678 Weak solution (WS), 124–130, 297–298 Well-posed problem, 210