Série N°C2 : Suivi temporel d'une transformation chimique

Exercice 1: La courbe ci-dessous représente les variations de l'avancement x d'une transformation chimique se produisant en solution aqueuse, en fonction du temps. Le volume V=1,0L du mélange réactionnel est constant.

- 1. Quel est l'avancement final de cette réaction ?
- **2.** Définir le temps de demi-réaction $t_{1/2}$ et le déterminer.
- **3.** Calculer v_0 la vitesse de réaction à l'instant de date $t_0 = 0$ min et v_1 celle à l'instant de date
 - $t_1 = 5 min$. Comparer v_0 et v_1 .
- **4.** Dessiner en vert l'allure de la courbe si l'évolution s'effectuait à une température plus importante. Expliquer.
 - 5. Dessiner en bleu l'allure de la courbe si l'évolution s'effectuait dans un grand volume d'eau. Expliquer.

Exercice 2: Lors de l'étude de la réaction totale des ions iodures I^- avec les ions peroxosulfates $S_2O_8^{2-}$. on a obtenu le graphe de la quantité de matière de I en fonction du temps :

L'équation de la réaction chimique est :

$$S_2O_8^{2-}_{(aq)} + 2\Gamma_{(aq)} \rightarrow 2 SO_4^{2-}_{(aq)} + I_{2(aq)}$$

- **1-**Dresser le tableau d'avancement de la réaction correspond à la transformation étudiée
- **2-**Définir la vitesse d'une réaction chimique. Donner son expression en fonction de $n(I^-)$.
- **3-** Déterminer graphiquement sa valeur à la date t=0. Que peut-on dire de la valeur de la vitesse à cette date ?
- **4-** Définir le temps de demi-réaction $t_{1/2}$. Trouver sa valeur graphiquement

Donnée : Volume de mélange réactionnel Vs = 20mL

Exercice 3 : On fait réagir une solution d'acide chlorhydrique sur le Zinc. L'équation bilan de la réaction est :

$$2H_{3}O^{+}{}_{(aq)} + Zn_{(s)} {\xrightarrow{\hspace{1cm}}} H_{2}\left(g\right) + Zn^{2+}{}_{(aq)} + 2H_{2}O_{(l)}$$

Au temps t = 0, on introduit une masse $\mathbf{m} = \mathbf{0.981g}$ de poudre de zinc dans un flacon contenant $\mathbf{V_A} = \mathbf{80mL}$ d'une solution d'acide chlorhydrique de concentration molaire $\mathbf{C_A} = \mathbf{0.5mol.L^{-1}}$. On recueille le gaz dihydrogène formé au cours du temps et on mesure son volume V.

- 1-On donne la masse molaire de Zinc $M = 65,4g.mol^{-1}$
 - **a-** Calculer la quantité de matière initiale de chaque réactif. .
 - **b-** Dresser le tableau descriptif de l'évolution du système.
- **c-** Calculer la valeur de l'avancement maximal x_{max} de la réaction, déduire le réactif limitant.
- **2-** Donner la quantité de matière de Zn^{2+} si le volume de dihydrogène dégagé est V=0,103~L.

On donne le volume molaire $V_m = 24L/mol$

- 3- L'ensemble des résultats de cette expérience permet de tracer la courbe ci-contre, représentant la concentration de Zn^{2+} en fonction du temps.
 - a- Vérifier que la réaction est totale.
- **b-** Déterminer, à l'instant t=100s, la concentration en ion Zn²⁺ dans le mélange réactionnel et la masse de zinc restant.
 - **4-** Déterminer la vitesse volumique de la réaction à l'instant t=300s.
- 5- Définir le temps de demi-réaction et déterminer sa valeur.

6- On refait la même expérience dans les mêmes conditions mais à $C_A = 0.25$ mol..L⁻¹ d'acide chlorhydrique, tracer, en justifiant, sur la même courbe précédente, l'allure de la courbe obtenue dans ce cas.

Exercice 4: On verse dans un bêcher un volume $V = 2.10^{-4} \text{ m}^3$ d'une solution S_B d'hydroxyde de sodium $(Na_{aq}^{+} + HO_{aq}^{-})$ de concentration $C_{B} = 10$ mol.m⁻³, et on lui ajoute à l'instant to pris comme origine des dates, la quantité de matière n_E de méthanoate d'éthyle égale à la quantité de matière n_B d'hydroxyde de sodium dans la solution SB à l'origine des dates .(On suppose que le volume du mélange reste constant $V = 2.10^{-4}$ m⁻³).

L'étude expérimentale a permis de tracer la courbe représentant les variations de la conductance G en fonction du temps (figure 1)

Données : -Toutes les mesure ont été prises à 25°C.

- On exprime la conductance G à l'instant t par la relation : G = K. $\Sigma \lambda_i$. [X_i], avec λ_i la conductivité molaire ionique de l'ion X_i et $[X_i]$ sa concentration dans la solution et K la constante de la cellule conductimètrique, sa valeur K = 0.01 m.
- Le tableau suivant donne les valeurs des conductivités molaires ioniques des ions présents dans le milieu réactionnel:

ion	Na ¹ _{ng}	HO- _{*4}	HCO _{2 aq}
λ (S.m².mol-1)	5,01.10-3	19,9.10-3	5,46.10-3

On modélise la transformation étudiée par l'équation chimique suivante

- 1-1- Donner le bilan des ions présents dans le mélange à l'instant t.
 - **1-2-** Dresser le tableau d'avancement de cette transformation chimique.
 - 1-3- Montrer que la conductance G dans le milieu réactionnel vérifie la relation : $G = -0.72x + 2.5.10^{-3}$
 - **1-4** Interpréter la diminution de la conductance pendant la réaction.
 - **1-5** Trouver le temps de demi-réaction $t_{1/2}$.

Exercice 5 On étudie l'évolution au cours du temps de la réaction d'oxydation des ions iodure I (aq) par le peroxyde d'hydrogène H₂O₂(eau oxygénée) en milieu acide. L'équation chimique qui symbolise la réaction associée à la transformation chimique étudiée est :

$$H_2O_2 + 2I^- + 2H^+ \rightarrow 2H_2O + I_2$$

À la date t = 0, on mélange un volume $V_1 = 100 \ mL$ d'une solution (S_1) d'eau oxygénée de concentration molaire C_1 avec un volume $V_2 = 100 \ mL$ d'une solution (S_2) d'iodure de potassium (KI) de concentration molaire C_2 et quelques gouttes d'acide sulfurique concentré. Le suivi temporel de cette transformation chimique a permis de tracer, sur

le graphe cidessous, les courbes représentant les variations de la molarité des ions iodure I- et celle des molécules de diiode I_2 en fonction du temps

- 1. Associer, en le justifiant, chacune des courbes (a) et (b) à la grandeur qu'elle représente.
- 2. L'ion iodure $I_{(aq)}^-$ est-il le réactif limitant ? Justifier la réponse. 3. En exploitant le graphe, trouver la concentration initiale $[I^-]_0$ et finale $[I^-]_f$ dans le mélange.
- **4.** Calculer la concentration initiale $[H_2O_{2_{(aq)}}]_0$ de l'eau oxygénée dans le mélange.
- **5.** Déterminer graphiquement la valeur de vitesse volumique à l'instant t = 10 min.

7. Quelle est la valeur du temps de demi-réaction $t_{1/2}$?					
8.	Di	re, en le justifiant, comment varie $t_{1/2}$ si :			
	a-	On abaisse la température du milieu réactionnel ? L'évolution s'effectuait dans un grand volume d'eau.			

••••					
••••					
••••					
••••					
• • • • •					
• • • • •					
••••					
	. 				
••••					
• • • • • •					
••••					
••••					

 ••••
 ••••
••••
••••
••••
 ••••
 •••••
 ••••
 ••••
 •••••
••••
 ••••
 •••••
 ••••
 ••••
 •••••