#### Number representation

| Bit Pattern         | 0000 | 0001 | I 🛕 | 0011       |                  | , -             | 0110<br><b>D</b> roi | 0111       | 1000     |      | 1010 |    | 1100 | 1101 | 1110 | 1111 |
|---------------------|------|------|-----|------------|------------------|-----------------|----------------------|------------|----------|------|------|----|------|------|------|------|
| Unsigned            | 0    | 1    | 2   | 5138       | 4                | 5               | 6                    | CÇL        | Exa      | 1111 | 10   | 11 | 12   | 13   | 14   | 15   |
| Sign &<br>Magnitude | +0   | +1   | +2  | + <b>h</b> | ttþs             | ://5ti          | ıt&ro                | cst.7c     | om       | -1   | -2   | -3 | -4   | -5   | -6   | -7   |
| 1s<br>Complement    | +0   | +1   | +2  | +3         | / <del>+</del> 4 | :h <sup>5</sup> | +6<br>: CS1          | +7<br>uto1 | -7<br>CS | -6   | -5   | -4 | -3   | -2   | -1   | -0   |
| 2s<br>Complement    | +0   | +1   | +2  | +3         | +4               | +5              | +6                   | +7         | -8       | -7   | -6   | -5 | -4   | -3   | -2   | -1   |
| Excess-8            | -8   | -7   | -6  | -5         | -4               | -3              | -2                   | -1         | 0        | 1    | 2    | 3  | 4    | 5    | 6    | 7    |
| BCD                 | 0    | 1    | 2   | 3          | 4                | 5               | 6                    | 7          | 8        | 9    | -    | ı  | -    | -    | ı    | -    |

#### Number representation Excess-n

-3 in Excess-8?

- Excess-n TO Decimal number: convert to decimal, substract the n from the decimal
- Decimal number TO Excess-n: add the n to the decimal and convert result to binary

```
-3 + 8 = 5
5 in unsigned = 0101 = 5 in one-complement = 9 in two-complement = -3 in Excess 8
                           https://tutorcs.com
5 in Excess-8?
5 + 8 = 13
13 in unsigned: 1101 (beyond 2s complement range but positive (shift like a circular linked list
in 2s complement!). No furth to poce sain an ecessaty orcs
-7 in excess-6?
-7 + 6 = -1 = -1 in 1s complement: 0001 -> (negative number bit inversion rule) -> 1110 =
-1 in 2s complement: 1110 + 1 = 1111 = -7 in excess-6
-8 in excess-6?
-8+6 = -2 ->
2 in unsigned: 0010 -> 1s complement = 0010 -> (negative number bit inversion rule) -> 1101
In 2s complement = 1110 = -8 in excess-6
```

#### Number representation

| Bit Pattern         | 0000 | 0001 | 0010 |            |                  | ٠,              | 0110<br><b>Dro</b> i | 0111                 | 1000         |      | 1010<br><b>L</b> |    | 1100 | 1101 | 1110 | 1111 |
|---------------------|------|------|------|------------|------------------|-----------------|----------------------|----------------------|--------------|------|------------------|----|------|------|------|------|
| Unsigned            | 0    | 1    | 2    | <b>S19</b> | 4                |                 | 6                    | eçt                  | <b>E</b> X 7 | 1111 | 10               | 11 | 12   | 13   | 14   | 15   |
| Sign &<br>Magnitude | +0   | +1   | +2   | + <b>h</b> | ttps             | : <i>//</i> 5ti | ıt&ro                | cs <sup>t.7</sup> co | oīħ          | -1   | -2               | -3 | -4   | -5   | -6   | -7   |
| 1s<br>Complement    | +0   | +1   | +2   | +3         | / <del>+</del> 4 | '.<br>'hat      | +6<br>: CS1          | +7<br>11 <b>10</b> 1 | -7           | -6   | -5               | -4 | -3   | -2   | -1   | -0   |
| 2s<br>Complement    | +0   | +1   | +2   | +3         | +4               | +5              | +6                   | +7                   | -8           | -7   | -6               | -5 | -4   | -3   | -2   | -1   |
| Excess-8            | -8   | -7   | -6   | -5         | -4               | -3              | -2                   | -1                   | 0            | 1    | 2                | 3  | 4    | 5    | 6    | 7    |
| BCD                 | 0    | 1    | 2    | 3          | 4                | 5               | 6                    | 7                    | 8            | 9    | 1                | ı  | 1    | -    | -    | -    |
| Excess-6            | -6   | -5   | -4   | -3         | -2               | -1              | 0                    | 1                    | 2            | 3    | 4                | 5  | 6    | 7    | -8   | -7   |

# FLOATING POINT NUMBERS



Assignment Project Exam Help

Introduction

https://tutorcs.com

WeChat: cstutorcs

Bernhard Kainz (with thanks to A. Gopalan, N. Dulay and E. Edwards)

b.kainz@imperial.ac.uk

## Why do we need this: large, small and fractional numbers

World population >7, 200, 000, 000 people

One light year 9, 130, 000, 000, 000 km

One solar mass Assignmento Projecto Eccomob Lebp, 000, 000, 000 kg

Pi (to 14 decimal places) 3.14159 26535 8979...

Standard rate of VAT 20%

Googol 1 followed by a 100 zeros ☺

#### Large integers

**Example:** How can we represent integers up to 30 decimal digits long?

#### Assignment Project Exam Help

• Binary:  $2^X = 10^{30} \Rightarrow X = \log_2(10^{30}) \approx 100$  bits (1 decimal digit  $\approx 3.32$  bits) tutores.com

WeChat: cstutorcs

• **BCD**:  $30 \times 4 = 120$  bits

• **ASCII**:  $30 \times 8 = 240$  bits

#### Floating point numbers

Recall scientific notation:

$$M \times 10^E$$
 Assignment Project Exam Help Binary

https://tutorcs.com

This is the basis for most floating point representation schemes

WeChat: cstutorcs

- M is the coefficient (aka. significand, fraction or mantissa)
- E is the exponent (aka. characteristic)
- 10 (or for binary, 2) is the radix (aka. base)
- No. of bits in exponent determines the range (bigness/smallness)
- No. of bits in coefficient determines the precision (exactness)

#### Real vs. floating point numbers

|               |        | Mathematical real                            | Floating point number          |
|---------------|--------|----------------------------------------------|--------------------------------|
| Range         |        | -∞ + ∞                                       | Finite                         |
| No. of values | Assign | (Uncountably) infinite<br>nment Project Exam | Help Finite                    |
| Spacing       |        |                                              | Gap between numbers varies     |
| Errors        |        | tps://tutorcs.com<br>eChat: cstutorcs        | Incorrect results are possible |

Some questions (assume signed 3-digit coefficient and a signed 2-digit exponent as before):

- What are the **closest** floating point numbers to .001  $\times$  10<sup>-99</sup> ? What is the **gap** between this number and them?
- What about  $.001 \times 10^{-50}$ ?

#### Zones of expressibility

 Example: assume numbers are formed with a signed 3digit coefficient and a signed 2-digit exponent

Assignment Project Exam Help

 Zones of expressibility: https://tutorcs.com



#### Normalised floating point numbers

 Depending on how you interpret the coefficient, floating point numbers can have multiple forms, e.g.:

Assignment 
$$\Pr{\overline{\overline{o}}}_{10} = 2.3 \times 10^{3} \text{Help}$$

https://tutorc@.@023  $\times 10^5$ 

- For hardware implementations it is desirable for each number to have a unique floating point representation, a **normalised form**
- We'll normalise coefficients in the range [1, ... R) where R is the base, e.g.:

```
[1, ..., 10) for decimal [1, ..., 2) for binary
```

| Number              | Normalised form |
|---------------------|-----------------|
| 23.24xs1gn4ment Pro | ject Exam Help  |
| https://tutor       |                 |
| WeChat: cs          |                 |
| W CChat. Cs         | tutores         |

| Number              | Normalised form                  |
|---------------------|----------------------------------|
| 23.24xs1g04ment Pro | ject Exam. Blely 10 <sup>5</sup> |
| https://tutor       | cs.com                           |
| •                   |                                  |
| WeChat: cs          | tutores                          |

| Number                               | Normalised form                  |
|--------------------------------------|----------------------------------|
| 23.24xs1g04ment Pro                  | ject Exam. Blely 10 <sup>5</sup> |
| $-4.01 \times 10^{-3}$ https://tutor | es.com                           |
| WeChat: cs                           |                                  |

| Number                 | Normalised form                  |
|------------------------|----------------------------------|
| 23.24xs1g04ment Pro    | ject Exam. Blely 10 <sup>5</sup> |
| $-4.01 \times 10^{-3}$ | $-4.01 \times 10^{-3}$           |
| WeChat: cs             |                                  |

| Number                                                                                                                  | Normalised form                  |
|-------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 23.24xs1gn4ment Pro                                                                                                     | ject Exam. Blely 10 <sup>5</sup> |
| $-4.01 \times 10^{-3}$                                                                                                  | $-4.01 \times 10^{-3}$           |
| $-4.01 \times 10^{-3}$<br>https://tutor<br>$343\ 000 \times 10^{0}$<br>WeChat: cs<br>$0.000\ 000\ 098\ 9 \times 10^{0}$ | $3.43 \times 10^5$               |
| $0.000\ 000\ 098\ 9 \times 10^{\circ}$                                                                                  | tutores                          |

| Number                                                                                                                    | Normalised form                  |
|---------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 23.24×s1ghment Pro                                                                                                        | ject Exam. Blely 10 <sup>5</sup> |
| $-4.01 \times 10^{-3}$                                                                                                    | $-4.01 \times 10^{-3}$           |
| -4.01 × 10 <sup>-3</sup><br>https://tutor<br>343 000 × 10 <sup>0</sup><br>WeChat: cs<br>0.000 000 098 9 × 10 <sup>0</sup> | $3.43 \times 10^5$               |
| $0.000\ 000\ 098\ 9 \times 10^{\circ}$                                                                                    | 9.89 $\times 10^{-8}$            |

| Number                                                                                                                 | Normalised form       |
|------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 100. Als signment Pro                                                                                                  | ject Exam (1901) × 23 |
| 1010.11 \(\frac{2^2}{\text{https://tutor}}\)                                                                           | $1.01011 \times 2^5$  |
| $1010.11 \times 2^{2}$ $0.00101 \times 2^{-2}$ $0.00101 \times 2^{-2}$ $0.00101 \times 2^{-2}$ $0.00101 \times 2^{-2}$ | $1.01 \times 2^{-5}$  |
| $1100101 \times 2^{-2}$                                                                                                | 1.100101 $\times 2^4$ |

| Binary                | Decimal        |
|-----------------------|----------------|
| 0.1<br>Assignment Pro | ject Exam Help |
| https://tutor         | cs.com         |
| WeChat: cs            | tutorcs        |
|                       |                |
|                       |                |
|                       |                |

| Binary                | Decimal               |
|-----------------------|-----------------------|
| 0.1<br>Assignment Pro | o.5<br>ject Exam Help |
| https://tutor         | cs.com                |
| WeChat: cs            | tutores               |
|                       |                       |
|                       |                       |
|                       |                       |

| Binary         | Decimal        |
|----------------|----------------|
| 0.1            | 0.5            |
| Assignment Pro | ject Exam Heip |
| https://tutor  | cs.com         |
| WeChat: cs     | tutorcs        |
|                |                |
|                |                |
|                |                |

| Binary                        | Decimal                       |
|-------------------------------|-------------------------------|
| 0.1<br>Assignment Pro<br>0.01 | 0.5<br>ject Exam Help<br>0.25 |
| https://tutor                 | cs.com                        |
| WeChat: cs                    | tutores                       |
|                               |                               |
|                               |                               |
|                               |                               |

| Binary             | Decimal                       |
|--------------------|-------------------------------|
| 0.1                | 0.5<br>ject Exam Help<br>0.25 |
| 0.0 =              | 0.20                          |
| 0.001https://tutor | cs.com                        |
| WeChat: cs         | tutorcs                       |
|                    |                               |
|                    |                               |
|                    |                               |

| Binary             | Decimal                       |  |
|--------------------|-------------------------------|--|
| 0.1                | 0.5<br>ject Exam Help<br>0.25 |  |
|                    |                               |  |
| 0.001https://tutor | cs.com 0.125                  |  |
| WeChat: cstutorcs  |                               |  |
|                    |                               |  |
|                    |                               |  |
|                    |                               |  |

| Binary             | Decimal                |
|--------------------|------------------------|
| 0.1                | 0.5                    |
| 0.02               | ject Exam Help<br>0.25 |
| 0.001https://tutor | cs.com 0.125           |
| 0.11 WeChat: cs    | tutorcs                |
|                    |                        |
|                    |                        |
|                    |                        |

| Binary             | Decimal                |
|--------------------|------------------------|
| 0.1                | 0.5                    |
| 0.01               | ject Exam Help<br>0.25 |
| 0.001https://tutor | cs.com 0.125           |
| 0.11 WeChat: cs    | tutores 0.75           |
|                    |                        |
|                    |                        |
|                    |                        |

| Binary             | Decimal                |
|--------------------|------------------------|
| 0.1                | 0.5                    |
| 0101               | ject Exam Help<br>0.25 |
| 0.001https://tutor | cs.com 0.125           |
| 0.11 WeChat: cs    | tutorcs 0.75           |
| 0.111              |                        |
|                    |                        |
|                    |                        |

| Binary             | Decimal                |
|--------------------|------------------------|
| 0.1                | 0.5                    |
| 0.02               | ject Exam Help<br>0.25 |
| 0.001https://tutor | cs.com 0.125           |
| 0.11 WeChat: cs    | tutores 0.75           |
| 0.111              | 0.875                  |
|                    |                        |
|                    |                        |

| Binary             | Decimal                |
|--------------------|------------------------|
| 0.1                | 0.5                    |
|                    | ject Exam Help<br>0.25 |
| 0.001https://tutor | cs.com 0.125           |
| 0.11 WeChat: cs    | tutores 0.75           |
| 0.111              | 0.875                  |
| 0.011              |                        |
|                    |                        |

| Binary             | Decimal                |
|--------------------|------------------------|
| 0.1                | 0.5                    |
|                    | ject Exam Help<br>0.25 |
| 0.001https://tutor | cs.com 0.125           |
| 0.11 WeChat: cs    | tutores 0.75           |
| 0.111              | 0.875                  |
| 0.011              | 0.375                  |
|                    |                        |

| Binary             | Decimal                |
|--------------------|------------------------|
| 0.1                | 0.5                    |
|                    | ject Exam Help<br>0.25 |
| 0.001https://tutor | cs.com 0.125           |
| 0.11 WeChat: cs    | tutores 0.75           |
| 0.111              | 0.875                  |
| 0.011              | 0.375                  |
| 0.101              |                        |

| Binary             | Decimal                |
|--------------------|------------------------|
| 0.1                | 0.5                    |
| 0.02               | ject Exam Help<br>0.25 |
| 0.001https://tutor | cs.com 0.125           |
| 0.11 WeChat: cs    | tutores 0.75           |
| 0.111              | 0.875                  |
| 0.011              | 0.375                  |
| 0.101              | 0.625                  |

#### Binary fraction to decimal fraction

What is the binary value 0.01101 in decimal?

• 
$$\frac{1}{4} + \frac{1}{8} + \frac{1}{32} = \frac{13}{32} = 12499925$$
 futorcs.com

| 32 | 16 <b>W</b> | eChat: | cstútoro | 2S 2 | 1 |
|----|-------------|--------|----------|------|---|
|    | 0           | 1      | 1        | 0    | 1 |

$$\bullet \frac{8+4+1}{2^5} = \frac{13}{32}$$

What about 0.000 110 011?

• Answer: 
$$\frac{32+16+2+1}{2^9} = \frac{51}{512} = 0.099609375$$

#### Decimal fraction to binary fraction

What is the decimal value 0.6875 in binary?

$$0.6875 = \frac{1.375}{Assignment} = \frac{1}{Project} = \frac{0.375}{Exam_4HeIp_2} + \frac{1.5}{8}$$

$$\frac{\text{htlps:1/tulorcs.com}}{2} + \frac{1}{8} = \frac{1}{2} + \frac{1}{8} + \frac{1}{16}$$
WeChat: cstutorcs

So the answer is **0.1011** 

What is the decimal value 0.1 in binary?

$$0.1 = \frac{1.6}{16} = \frac{1}{16} + \frac{0.6}{16} = \frac{1}{16} + \frac{1.2}{32} = \frac{1}{16} + \frac{1}{32} + \frac{0.2}{32} = \frac{1}{16} + \frac{1}{32} + \frac{1.6}{256}$$

. . .

#### Floating point multiplication

$$N_{1} \times N_{2} = \left(M_{1} \times 10^{E_{1}}\right) \times \left(M_{2} \times 10^{E_{2}}\right)$$

$$= \left(M_{1} \times M_{2}\right) \times \left(10^{E_{1}} \times 10^{E_{2}}\right)$$
Assignment Project Exam+Lelp

- That is, we multiply the goefficients and add the exponents
- Example:

$$(2.6 \times 10^6) \times (5.4 \times 10^{-3}) = (2.6 \times 5.4) \times (10^3)$$
  
=  $14.04 \times 10^3$ 

• We must also **normalise the result**, so final answer is  $1.404 \times 10^4$ 

#### Truncation and rounding

- For many computations, the result of a floating point operation is too large to store in the coefficient
- Example (with a gardigitt queffectent) am Help

$$(2.3 \times \text{https://tutorcs.com} 5.29 \times 10^2)$$

#### WeChat: cstutorcs

- Truncation  $\rightarrow$  5.2 × 10<sup>2</sup> (biased error)
- Rounding  $\rightarrow$  5.3 × 10<sup>2</sup> (unbiased error)

#### Floating point addition

• A floating point addition such as  $4.5 \times 10^3 + 6.7 \times 10^2$  is not a simple coefficient addition, unless the exponents are the same. Otherwise, we need to align them first

Assignment Project Exam Help

$$N_1 + N_2 = (M_1 \times 10^{E_1}) + (M_2 \times 10^{E_2})$$
  
https://tutorcs.com  
 $M_1 + M_2 \times 10^{E_2-E_1}) \times 10^{E_1}$ 

#### WeChat: cstutorcs

 To align, choose the number with the smaller exponent and shift its coefficient the corresponding number of digits to the right

$$4.5 \times 10^{3} + 6.7 \times 10^{2} = 4.5 \times 10^{3} + 0.67 \times 10^{3}$$
  
=  $5.17 \times 10^{3} = 5.2 \times 10^{3}$   
(rounded)

#### Exponent overflow and underflow

- Exponent overflow occurs when the result is too large i.e. when the result's exponent > maximum exponent
- Example: if massignments Project Examo Help0198 (overflow)

To handle overflow pset that eras in thing or raise an exception

- Exponent underflow scenative feature result is too small i.e. when the result's exponent < smallest exponent
- **Example:** if min exponent is -99 then  $10^{-99} \times 10^{-99} = 10^{-198}$  (underflow)

To handle **underflow**, set value as zero or raise an exception

#### Comparing floating point values

- Because of the potential for producing inexact results, comparing floating point values should account for close results
- If we know the **Gestree magnifice and precision** of results, we can adjust for closeness (**epsilon**). For example: https://tutorcs.com

$$a = b$$
 (b - we chat: cstutorcs)  
 $a = 1$   $1 - 0.0000005 < a < 1 + 0.000005$   
 $0.9999995 < a < 1.0000005$ 

 A more general approach is to calculate closeness of two numbers based on the relative size of the two numbers being compared