СК"НЧЕННО-СТАНОВА СПРЯЖЕНН"СТЬ СФЕРИЧНО-ТРАНЗИТИВНИХ АВТОМОРФ"ЗМ"В КОРЕНЕВОГО Б"НАРНОГО ДЕРЕВА.

к.ф.-м.н. Морозов Денис Иванович

Анотація. У статті досліджується питання скінченно-станової спряженості 0повних сферично-транзитивних автоморфізмів кореневого бінарного дерева. Наведено рекурсивний критерій скінченно-станової спряженості сферично-транзитивних автоморфізмів.

1

Дослідження групових автоматів шляхом їх представлення автоморфізмами кореневого однорідного дерева надає зручну техніку для вирішення низки проблем, пов'язаних з групою обертовних автоматів Мілі. (див. [1]).

Розглянемо проблему скінченно-станової спряженності для сферично-транзитивних автоморфізмів кореневого бінарного дерева.

Теорема 1 надає рекурсивний критерій скінченно-станової спряженності сферичнотранзитивних ізометрій бінарного кореневого дерева. Теорема 4 дозволяє при перевірці скінченно-станової спряженності 0-повних сферично-транзитивних ізометрій обмежитися перевіркою 0-розв'язку рівняння спряженності.

Definition 1. Множину автоморфізмів кореневого бінарного дерева позначимо як $AutT_2$.

Definition 2. При дії автоморфізма a на дерево T_2 цей автоморфізм індукує дію на піддеревах. Ці дії також є автоморфізмами дерева T_2 , оскільки T_2 є самоподібним. Назвемо ці автоморфізми станами автоморфізму a.

Definition 3. Автоморфізм дерева T_2 , що має скінченну кількість різних станів, назвемо скінченно-становим. Множину скінченно-станових автоморфізмів кореневого бінарного дерева позначимо як $FAutT_2$.

Definition 4. Нехай x, y - кінці дерева T_2 (нескінченні прості шляхи з початком у корені). Те, що ізометрія $a \in AutT_2$ переводить $x \in T_2$ в $y \in T_2$ позначимо, як:

$$x * a = y$$

Суперпозицію ізометрій $a, b \in AutT_2$ позначимо, як:

 $a \circ b$

Definition 5. Назвемо автоморфізм кореневого бінарного дерева сферично-транзитивним, якщо його дерево типу є ланцюгом.

Множину сферично-транзитивних автоморфізмів позначимо як $STAutT_2$

Definition 6. Означимо функцію $\varphi: STAutT_2 \to STAutT_2$ наступним чином $\varphi(x) = x_1 \circ x_2$, де x_1, x_2 визначаються співвідношеням $x = (x_1, x_2) \circ \sigma$ (запис $x = (x_1, x_2) \circ \sigma$ означає, що автоморфізм х діє на лівому піддереві дерева T_2 за допомогою автоморфізму x_1 , на правому піддереві дерева T_2 за допомогою автоморфізму x_2 та міняє місцями вершини першого рівня.)

Функція визначена корректно, оскільки, якщо $x=(x_1,x_2)\circ\sigma$ є сферичнотранзитивним автоморфізмом дерева T_2 , то і $x_1\circ x_2$ є сферично-транзитивним автоморфізмом дерева T_2 .

Definition 7. Означимо функцію $\pi_L : AutT_2 \to AutT_2$ наступним чином $\pi_L(x) = x_1$, де x_1 визначається співвідношеням $x = (x_1, x_2)$ або $x = (x_1, x_2) \circ \sigma$

Definition 8. Означимо функцію $\pi_R : AutT_2 \to AutT_2$ наступним чином $\pi_R(x) = x_2$, де x_2 визначається співвідношеням $x = (x_1, x_2)$ або $x = (x_1, x_2) \circ \sigma$

Очевидно, що для сферично-транзитивного автоморфізма a має місце рівність $a = (\pi_L(a), \pi_R(a)) \circ \sigma$ і значення $\pi_L(a), \pi_R(a)$ та $\varphi(a)$ зв'язані наступним співвідношенням:

$$\varphi(a) = \pi_L(a) \circ \pi_R(a)$$

Крім того, для автоморфізмів $a=(a_1,a_2),\ b=(b_1,b_2)\circ\sigma$ мають місце наступні співвідношення:

$$\pi_L(a^{-1}) = (\pi_L(a))^{-1}, \ \pi_R(a^{-1}) = (\pi_R(a))^{-1}$$

$$\pi_L(b^{-1}) = (\pi_R(b))^{-1}, \ \pi_R(b^{-1}) = (\pi_L(b))^{-1}$$

$$\pi_L(a \circ b) = \pi_L(a) \circ \pi_L(b), \ \pi_R(a \circ b) = \pi_R(a) \circ \pi_R(b)$$

$$\pi_L(b \circ a) = \pi_L(b) \circ \pi_R(a), \ \pi_R(b \circ a) = \pi_R(b) \circ \pi_L(a)$$

Lemma 1. Скінченно-станові сферично-транзитивні автоморфізми а і в спряжені в $FAutT_2$ тоді, і лише тоді, коли $\varphi(a)$ і $\varphi(b)$ спряжені в $FAutT_2$.

Застосувавши лему 1 n разів отримаємо рекурсивний критерій спряженності сферично-транзитивних скінченно-станових ізометрій дерева T_2 :

Definition 9. Назвемо 0-розв'язком рівняння спряженності $a^{\chi} = b$ автоморфізм χ_0 такий, що

$$0 * \chi_0 = 0, \quad a^{\chi_0} = b$$

Theorem 2. Нехай a,b - сферично-транзитивні ізометрії дерева T_2 , а χ_0 - 0-розв'язок рівняння спряженості $a^{\chi_0} = b$. Тоді $\forall n \in \mathbb{N}$ має місце рівність

$$\varphi^n(a)^{\pi_L^n(\chi_0)} = \varphi^n(b)$$

Theorem 3. Нехай a, b - сферично-транзитивні скінченно-станові ізометрії дерева T_2 . Тоді χ_0 - 0-розв'язок рівняння спряженості $a^{\chi_0} = b$ є скінченностановим тоді, і тільки тоді, коли $\pi_L^n(\chi_0)$ є скінченностановим для деякого $n \in \mathbb{N}$.

Definition 10. Назвемо скінченно-станову ізометрію f 0-повною, якщо образ 0 при дії на нього централізатором цього елементу співпадає з множиною квазіперіодичних елементів дерева T_2

$$0 * C_{FAutT_2}(f) = T_2 \cap \mathbb{Q}$$

Lemma 2. Скінченно-станова ізометрія а є 0-повною тоді і лише тоді, коли $\varphi^n(a)$ є 0-повною для деякого $n \in \mathbb{N}$.

Theorem 4. Нехай b - скінченно-станова 0-повна сферично-транзитивна ізометрія. Скінченно-станові ізометрії а та b спряженні в $FAutT_2$ тоді, і лише тоді, коли існує скінченностановий 0-розв'язок рівняння спряженності $a^{\chi} = b$.

ЛІТЕРАТУРА

- [1] *Р. И. Григорчук, В. В. Некрашевич, В. И. Сущанский* Автоматы, динамические системы и группы. Динамические системы, автоматы и бесконечные группы, Сборник статей, Тр. МИАН, 231, Наука, М., 2000, 134–214
- [2] *Морозов Д. І.* Спряженність транзитивно-стабільних автоморфізмів F AutT2. Наукові записки НаУКМА. Фізико-математичні науки. 2012.— Т.126. —С.7-9.