BOAZ 분석 23기 미니프로젝트1 2조

## 텍스트-음성 데이터 기반 멀티모달 감정 분류 모델

분석 23기 김무연 김윤주 박혜원 백다은 송여경

## 목차

- 0. 팀 소개
- 1. 프로젝트 배경
- 2. 데이터
- 3. 모델 설명
- 4. 실험
- 5. 의의 및 한계

## 0. 팀소개











## 1. 프로젝트 배경







**NLP** 

헬스케어

멀티모달

공통적인 관심사를 접목한 주제 선정하고자 함 음성 데이터와 텍스트 데이터를 활용한 감정 분류 모델을 구현해보자!

→ 텍스트-음성 데이터 기반 멀티모달 감정 분류

## 2. 데이터

#### 2.1 사용한 데이터셋

## 감정 분류를 위한 대화 음성 데이터셋

- Al Hub 제공, 다분류 감정 한국어 데이터
- 데이터셋 크기: 19,374건
- 데이터 구조: wav 파일, csv 포맷 메타 정보(발화문, 상황, 감정 및 세기)
- 데이터 정보: 감성 대화 어플리케이션을 이용해 자연스럽게 대화한 내용을 수집 후 7가지 감정(happiness, angry, disgust, fear, neutral, sadness, surprise)에 대해 사람이 직접 라벨링한 데이터

| wav_id                   | 발화문                                              | 상황       | 1번 감정    | 1번 감정세기 | 9버 가저    | 2번 감정세기 | 2배 가져    | 3번 감정세기 | 4배 가져    | 4번감정세기 | 5번 가저    | 5번 감정세기 | I FOI | 서변     |
|--------------------------|--------------------------------------------------|----------|----------|---------|----------|---------|----------|---------|----------|--------|----------|---------|-------|--------|
| wav_iu                   | 크거만                                              | 08       | 15.99    | 1단 급경제/ | 21.88    | 2단 급경제/ | 3E 88    | 3건 급경제  | 41 88    | 4단급경제기 | 25.98    | 2년 급경세기 | -101  | 02     |
| 5f4141e29dd513131eacee2f | 헐! 나 이벤트에 당첨 됐어.                                 | happines | angry    | 2       | surprise | 2       | happines | 2       | happines | 2      | happines | 2       | 48    | female |
| 5f4141f59dd513131eacee30 | 내가 좋아하는 인플루언서가 이벤트를 하더라고. 그래서 그냥 신청 한번 해봤지.      | happines | neutral  | 0       | happines | 2       | happines | 2       | happines | 2      | happines | 2       | 48    | female |
| 5f4142119dd513131eacee31 | 한 명 뽑는 거였는데, 그게 바로 내가 된 거야.                      | happines | angry    | 2       | happines | 2       | happines | 2       | happines | 2      | happines | 2       | 48    | female |
| 5f4142279dd513131eacee32 | 당연히 마음에 드는 선물이니깐, 이벤트에 내가 신청 한번 해본 거지. 비싼 거야. 그래 | happines | angry    | 2       | happines | 2       | happines | 2       | happines | 2      | happines | 1       | 48    | female |
| 5f3c9ed98a3c1005aa97c4bd | 에피타이저 정말 좋아해. 그 것도 괜찮은 생각인 것 같애.                 | neutral  | happines | 2       | happines | 1       | happines | 2       | happines | 1      | happines | 1       | 48    | female |
| 5f3c9ef78a3c1005aa97c4be | 난 부페 형식의 음식들도 정말 좋아해. 그 것도 좀 알려 줘.               | neutral  | neutral  | 0       | happines | 2       | happines | 1       | happines | 1      | neutral  | 0       | 48    | female |
| 5f3c9f658a3c1005aa97c4c7 | 응. 완전히 끝난 거야. 한 달 동안 주말에 쉬지도 못하고 일만 했거든.         | happines | happines | 2       | happines | . 1     | sadness  | 1       | sadness  | 1      | sadness  | 1       | 48    | female |
| 5f3c9f808a3c1005aa97c4c8 | 신나는 음악 듣는 것도 좋고, 어디 여행 가고 싶고 이 것 저 것 다 해보고 싶어.   | happines | neutral  | 0       | happines | 2       | happines | 2       | happines | 1      | sadness  | 1       | 48    | female |
| 5f3c9f9c8a3c1005aa97c4cb | 친구들도 내 연락 기다리고 있을 텐데 내가 까먹고 있었네?                 | happines | neutral  | 0       | happines | 1       | sadness  | 1       | sadness  | 1      | neutral  | 0       | 48    | female |
| 5f3c9fcc8a3c1005aa97c4ce | 그래. 일단은 친구들부터 만나서 여행 계획에 대해서 얘기 좀 해봐야 되겠어.       | happines | neutral  | 0       | happines | . 1     | neutral  | 0       | neutral  | 0      | neutral  | 0       | 48    | female |
| 5f3ca01b8a3c1005aa97c4d3 | 나 요즘 너무 우울해 죽겠어.                                 | sadness  | sadness  | 2       | sadness  | 2       | sadness  | 2       | sadness  | 1      | sadness  | 2       | 48    | female |





#### 2. 데이터

#### 2.2 데이터 전처리

#### 감정 레이블 전처리

- 1번~5번 감정 label과 감정 세기를 곱한 후 더하여 <u>가장 감정 세기가 큰 감정 label</u>을 감정 label로 설정
- 감정 세기가 동일할 경우, 5개의 감정 중에서 가장 많이 등장한 감정에 우선순위를 부여하여 결정
- 전체 7가지 감정 중 인간이 선천적으로 느끼는 기본 정서를 가장 뚜렷하게 나타내는 4개의 감정(sadness, happiness, neutral, angry)만 사용

| 1번 감정     | 1번 감정세기 | 2번 감정     | 2번 감정세기 | 3번 감정     | 3번 감정세기 | 4번 감정     | 4번감정세기 | 5번 감정     | 5번 감정세기 |
|-----------|---------|-----------|---------|-----------|---------|-----------|--------|-----------|---------|
| angry     | 2       | surprise  | 2       | happiness | 2       | happiness | 2      | happiness | 2       |
| neutral   | 0       | happiness | 2       | happiness | 2       | happiness | 2      | happiness | 2       |
| angry     | 2       | happiness | 2       | happiness | 2       | happiness | 2      | happiness | 2       |
| angry     | 2       | happiness | 2       | happiness | 2       | happiness | 2      | happiness | 1       |
| happiness | 2       | happiness | 1       | happiness | 2       | happiness | 1      | happiness | 1       |
| neutral   | 0       | happiness | 2       | happiness | 1       | happiness | 1      | neutral   | 0       |
| happiness | 2       | happiness | 1       | sadness   | 1       | sadness   | 1      | sadness   | 1       |
| neutral   | 0       | happiness | 2       | happiness | 2       | happiness | 1      | sadness   | 1       |
| neutral   | 0       | happiness | 1       | sadness   | 1       | sadness   | 1      | neutral   | 0       |
| neutral   | 0       | happiness | 1       | neutral   | 0       | neutral   | 0      | neutral   | 0       |
| sadness   | 2       | sadness   | 2       | sadness   | 2       | sadness   | 1      | sadness   | 2       |
| neutral   | 0       | sadness   | 1       | sadness   | 2       | sadness   | 1      | sadness   | 2       |



#### 3.1 전체 파이프라인









3.1 멀티모달에서 활용

## MFCC (Mel Frequency Cepstral Coefficients)

음성 및 오디오 신호 처리에서 대표적으로 사용하는 기술로, 음성데이터를 특징백터화해주는 알고리즘

- ① STFT(Short Time Fourier Transform)에 의해 주어진 음성 신호를 작은 프레임 단위로 나누어서 주파수 영역의 데이터로 변환
- ② Mel Filter Bank로 멜 스펙트럼을 계산
- ③ 로그 스케일링하고 DCT(Discrete Cosine Transfrom)을 수행
- => 이를 이용하여 해당 프레임의 특징을 추출



3.2 오디오 [ResNet (Mel Spectogram)]

## Mel Spectogram

음향 신호를 분석하는 도구로, 음성이나 음악 등의 오디오 데이터를 시각적으로 표현한 것

일반적인 spectogram은 시간에 따른 주파수 성분의 강도를 보여주는데, mel spectogram은 이를 인간의 청각 특성에 맞게 변환한 것

```
def wav_to_spectrogram(wav_file, n_fft=400, hop_length=160, n_mels=128):
    waveform, sample_rate = torchaudio.load(wav_file)
    spectrogram_transform = torchaudio.transforms.MelSpectrogram(
        sample_rate=sample_rate, n_fft=n_fft, hop_length=hop_length, n_mels=n_mels
)
    spectrogram = spectrogram_transform(waveform)
    return spectrogram

def pad_spectrogram(spectrogram, max_len):
    c, h, w = spectrogram.size()
    if w < max_len:
        pad = max_len - w
        spectrogram = F.pad(spectrogram, (0, pad), mode='constant', value=0)
    return spectrogram</pre>
```





3.2 오디오 [ResNet (MFCC)]

#### ResNet

**1** Residual Learning

입력 layer를 다시 이용하는 residual function을 사용하여 더 쉬운 최적화와 깊은 네트워크에서의 정확도 향상이 가능



**2** Identity Mapping by Shortcuts

모델은 입력과 출력간의 차이를 학습하는 대신, 잔차(residual)를 학습하여 더 효과적인 학습을 이룰 수 있음

$$\mathbf{y} = \mathcal{F}(\mathbf{x}, \{W_i\}) + W_s \mathbf{x}.$$



3.2 오디오 [wav2vec 2.0]

#### wav2vec 2.0

#### 1 Feature Encoder (X -> Z)

- multi-layer CNN으로 구성
- 원시 음성 신호 sequence 입력값인 X를 입력 받아서 매 시점마다 latent speech representation(z1,…,zT) 출력

#### **2** Quantization module (Z -> Q)

- 일부 Z를 quantization하여 추후 모델이 예측해야 하는 target 으로 사용
- one-hot vector로 생성

#### **3 Contexualized Representations with Transformers (Z -> C)**

- 나머지 z1,···,zT sequence가 입력되면, Transformer에 입력되기 전에 일부가 마스킹되어 quantization된 벡터를 예측하도록 학습
- transformer 블록에 의해 sequence 내 모든 맥락 정보가 파악된 c1,…,cT sequence 출력



3.2 텍스트 - BERT의 파생모델 (KoBERT, Klue-RoBERTa, KoELECTRA)

## • BERT(Bidirectional Encoder Representation from Transformer)

: Transformer의 attention 기법을 이용한 embedding model



- transformer Encoder의 multi-head attention mechanism만을 사용
- 토큰 임베딩, 세그먼트 임베딩, 위치 임베딩을 합산하여 BERT의 입력으로 제공됨
- 거대한 말뭉치를 기반으로 MLM, NSP task를 동시에 사용하여 사전 학습
- MLM : 주어진 입력 문장 중 전체 단어의 15%를 무작위로 마스킹하고 이를 예측하도록 모델을 학습
- NSP: 두 문장을 입력하고 두 번째 문장이 첫 번째 문장의 다음 문장인지 예측하도록 하는 이진 분류 task

#### 3.2 텍스트 (KoBERT)

- 구글 <u>BERT base multilingual cased</u>의 한국어 성능 한계로 SKT-Brain에서 한국어 자연어 처리를 위해 최적화한 BERT 기반 모델
- training set data : 한국어 위키 / 문장 : 5M / 단어 : 54M
- batchsize: 16 / lr: 2e-5 로 text model hyperparameters 통일

```
!pip install git+<u>https://git@github.com/SKTBrain/KoBERT.git@master</u>
!pip install 'git+<u>https://github.com/SKTBrain/KoBERT.git#egg=kobert_tokenizer&subdirectory=kobert_hf</u>'
```

```
# KoBERT tokenizer 및 모델 불러오기
from kobert_tokenizer import KoBERTTokenizer
from transformers import BertModel
from transformers import Adam₩
from transformers.optimization import get_cosine_schedule_with_warmup
device = torch.device("cuda:O" if torch.cuda.is_available() else "cpu")
tokenizer = KoBERTTokenizer.from_pretrained('skt/kobert-base-v1')
bertmodel = BertModel.from_pretrained('skt/kobert-base-v1', return_dict=False)
vocab = nlp.vocab.BERTVocab.from_sentencepiece(tokenizer.vocab_file, padding_token='[PAD]')
```

3.2 텍스트 (RoBERTa)

RoBERTa: Robustly Optimized BERT pre-training Approach

- MLM task에서 dymamic masking 적용
- BERT와 달리 NSP task 제거
- 배치 크기를 키워 학습 속도 및 모델 성능 향상
- tokenizer: larger byte-level BPE
- original BERT보다 훨씬 큰 데이터셋 사용 16GB -> 160GB

Klue-Roberta : KLUE(Korean Language Understanding Evaluation) 한국어에 특화된 대규모 텍스트 데이터 를 사용하여 학습됨.

```
from transformers import AutoModel, AutoTokenizer

model = AutoModel.from_pretrained("klue/roberta-base")

tokenizer = AutoTokenizer.from_pretrained("klue/roberta-base")
```

3.2 텍스트 (KoELECTRA)

Electra: Efficiently Learning an Encoder that Classifies Token Replacements Accurately



기존의 BERT와 같은 MLM 학습이 아닌Generator(G), discriminator(D)를 이용한 RTD(Replaced Token Detection) pre-training 학습

실제 orgin 데이터(input token)을 Generator 에서 replaced token, 혹은 origin token으로 바꾸고, 이를 Discriminator 에서 이게 origin token 인지 replaced token 인지에 대해 판별하는 프로세스

#### 3.2 텍스트 (KoELECTRA)

#### KoELECTRA - ELECTRA의 한국어버전 language model

#### **Pretraining Details**

| Model      | Batch Size | Train Steps | LR   | Max Seq Len | Generator Size | Train Time |
|------------|------------|-------------|------|-------------|----------------|------------|
| Base v1,2  | 256        | 700K        | 2e-4 | 512         | 0.33           | 7d         |
| Base v3    | 256        | 1.5M        | 2e-4 | 512         | 0.33           | 14d        |
| Small v1,2 | 512        | 300K        | 5e-4 | 512         | 1.0            | 3d         |
| Small v3   | 512        | 800K        | 5e-4 | 512         | 1.0            | 7d         |

Model: KoELECTRA-base / KoELECTRA-Small Version: v1,2,3

#### 사용 모델: KoELECTRA-base v3

koelectra\_tokenizer = ElectraTokenizer.from\_pretrained("monologg/koelectra-base-discriminator")
koelectra\_model = ElectraForSequenceClassification.from\_pretrained("monologg/koe|ectra-base-discriminator", num\_labels=4).to(device)

3.3 멀티모달 (RoBERTa, KoELECTRA)

## <u>1st Step.음성 데이터 처리</u>

#### data augmentation

noise: random noise 추가

stretch: 시간적으로 음성 데이터를 늘리기, 축소하기

pitch: 음성의 피치 변경

#### extract\_features

음성 데이터의 Mel\_spectogram 추출

librosa.feature.melspectrogram를 사용해 오디으의 Mel\_spectogram계산

## 2nd Step. 특성 추출 후, 데이터 프레임 생성

문장과 레이블 추가해서 하나의 벡터로 결합하여 최종 df 생성

```
def noise(data):
    noise_amp = 0.005 * np.random.uniform() * np.amax(data)
    return data + noise_amp * np.random.normal(size=data.shape)

def stretch(data, rate=0.8):
    return librosa.effects.time_stretch(y=data, rate=rate)

def pitch(data, sampling_rate, pitch_factor=0.7):
    return librosa.effects.pitch_shift(y=data, sr=sampling_rate, n_steps=pitch_factor)

def extract_features(data, sample_rate):
    # Using Mel spectrogram instead of MFCC
    mel_spectrogram = librosa.feature.melspectrogram(y=data, sr=sample_rate, n_mels=13)
    mel_spectrogram_db = librosa.power_to_db(mel_spectrogram, ref=np.max)
    mel_mean = mel_spectrogram_db.mean(axis=1)
    return mel_mean
```

3.3 멀티모달 (RoBERTa, KoELECTRA)

## 3rd Step. train, test 데이터셋 분리

- scaler 사용(표준화)

#### 4th Step.custom model 분석

```
1D 합성곱 신경망(CNN) 기반의 감정 분류 모델
Conv1D(256, kernel_size=5, strides=1) 256개의 필터 사용
padding = 'same' 입력데이터와 출력 데이터 크기 동일하게 유지
activation = 'relu' 비선형성
Dropout(0.2) 뉴런 무작위 비활성화 - 과적합 방지
Dense(units=32, activation='relu') 출력 Layer: Softmax
```

#### 5th Step. 토크나이저 로딩/ 텍스트 임베딩

- klue/roberta-base: AutoModel, AutoTokenizer를 사용.
- monologg/koelectra-base-discriminator: ElectraForPreTraining과 ElectraTokenizer 사용

3.3 멀티모달 (RoBERTa, KoELECTRA)

#### 6th Step.학습

- scaler 사용(표준화)
- 임베딩 생성: 각 사전 학습된 모델에 대해 텍스트 임베딩을 생성
- 데이터 분리: train\_test\_split훈련 세트, 테스트 세트로 분리
- 데이터 표준화: StandardScaler를 사용해 훈련 및 테스트 데이터를 표준화
- 차원 확장: 입력 데이터를 모델이 처리할 수 있는 형태로 차원을 확장
- 모델 훈련: custom\_model을 사용해 모델을 빌드하고, 훈련을 진행
- 모델 평가: 테스트 데이터를 사용해 모델의 성능을 평가하고 정확도를 출력

#### batch\_size=64, epochs=10로 통일 후 진행

Pre-trained Model: klue/roberta-base

Test Accuracy: 0.5437144041061401

Pre-trained Model: monologg/koelectra-base-discriminator

Test Accuracy: 0.5046559572219849

## 4. 실험 결과

• 텍스트 단일 모델

• 오디오 단일 모델

• 멀티모달

|          | KoELECTRA | KLUE-RoBerta |
|----------|-----------|--------------|
| accuracy | 0.68      | 0.70         |
| F1-score | 0.66      | 0.69         |

|          | ResNet_Mel-spectrogram |
|----------|------------------------|
| accuracy | 0.3679                 |
| F1-score | 0.2437                 |

|          | KoELECTRA_Mel       | KLUE-RoBerta_Mel   |  |  |
|----------|---------------------|--------------------|--|--|
| accuracy | 0.36792758107185364 | 0.6117038726806641 |  |  |
| F1-score | 0.1979208623126626  | 0.5977136346400203 |  |  |

#### 4.1 Ensemble



성능 향상을 목표로 각 모듈 별 가장 높은 성능을 보이는 모델을 채택하여 Ensemble 수행

#### 4.1 Ensemble

## Stacking

여러 가지 모델들의 예측값을 결합하여 최종 모델의 학습 데이터로 사용해 예측하는 방법



• Accuracy: 0.6133

• F1\_score: 0.5978

## 5. 의의 및 한계

#### 의의

- 감정 데이터(음성, 텍스트)를 이용해서 멀티모달에 대해 학습하고 구현
- 텍스트 및 음성 처리 모델에 대해 학습할 수 있었음
- 앙상블을 통해 성능 개선

#### 한계

- 리소스 문제로 인해 초기에 설정한 모델을 모두 돌려보지 못함
- 기대한 것보다 좋지 않은 성능을 보여 코드 개선이 필요해보임

# 감사합니다

Thank you