# 7장. 계의 에너지

## (Energy of a System)

- 7.1 계와 환경
- 7.2 일정한 힘이 한 일
- 7.3 두 벡터의 스칼라곱
- 7.4 변하는 힘이 한 일
- 7.5 운동 에너지와 일-운동 에너지 정리
- 7.6 계의 위치 에너지
- 7.7 보존력과 비보존력
- 7.8 보존력과 위치 에너지의 관계
- 7.9 에너지 도표와 계의 평형

- <u>에너지(energy)</u>에 대한 개념은 과학과 공학에서 가장 중요한 주제 중 하나
- 일상생활 속에서 에너지라 하면 교통수단이나 난방에 필요한 연료, 전등이나 가전제품을 위한 전기, 소비하는 음식 등으로 이해
- 이런 생각은 에너지를 제대로 정의한 것이 아니며 연료란 어떤 일을 위해 필요한 것이고, 에너지라고 하는 무엇인가를 제공해 주는 것일 뿐
- 위치나 속도, 가속도, 힘과 같은 양에 대해서 정의하고 뉴턴의 운동 제2법칙과 관련된 원리들을 적용하면 다양한 문제를 해결
- 뉴턴의 운동법칙을 이용해서 풀 수 있는 문제들 중 일부는 실제로 해결하는 것이 매우 어려움. 이런 문제들은 다른 접근 방법으로 훨씬 간단히 해결할 수 있음.
   에너지라는 개념을 이용 (7, 8장)
- 에너지는 우주에 여러 가지 형태로 존재
- 우주에서 일어나는 모든 물리적인 과정들은 에너지, 에너지의 전달 또는 변환을 포함

- 에너지에 대한 개념은 뉴턴의 운동법칙에 의존하지 않고서도 역학계의 동역학(dynamics)에 적용
- 운동을 기술하기 위한 "에너지 접근 방법"은 입자에 작용하는 힘이 일정하지 않을 때특히 유용. 이 경우 가속도가 일정하지 않으므로 등가속도 방정식을 적용할 수 없음
- 자연의 입자들은 때로는 그 입자들의 위치에 따라 변하는 힘을 받음.
   이 힘에는 중력과 용수철에 달린 물체에 작용하는 힘 등이 있음.
   에너지 보존(8장)이라는 중요한 개념을 이용해서 이러한 상황을 다루는 방법을 소개.
   이 접근 방법은 생물학적인 유기체나 공학적 상황에도 적용
- 라그랑지 방법, 양자역학, 우주초기의 모습 등에 핵심적으로 활용되고 있음.
- 앞 장에서 소개된 문제풀이 기법은 하나의 입자나, 하나의 입자로 모형화 할 수 있는 물체의 운동에 관한 것
- 하나의 계(system)에 대해 관심을 집중시키고, 계(system) 모형에서 사용할 기법을 개발하는 것에서 새로운 접근 방법을 찾음

### 7.1 계와 환경

(Systems and Environments)

계 모형에서는, 우리는 우주의 작은 한 부분, 즉 계(system)에 대해 관심을 집중하고 그 계를 제외한 우주의 나머지 부분에 대한 구체적인 사항은 무시한다.

#### 유효한 계는

- •하나의 물체 또는 입자
- •물체나 입자들의 집합
- •공간의 일부 영역 (예: 자동차 엔진의 실린더 내부)
- •크기와 모양이 변할 수 있음(예: 고무공처럼 벽에 부딪치면 변형되는 것)

주어진 문제에서 특정한 계가 무엇이든 간에, 계의 <mark>경계(system boundary)</mark> 라는 가상의 면(꼭 물리적인 면과 동일할 필요는 없다)이 있는데, 이 면은 우주를 계와 그 계를 둘러싼 <mark>환경(environment)</mark>으로 분리한다.

### 7.2 일정한 힘이 한 일

(Work Done by a Constant Force)

일(Work): 어떤 계에 힘이 가해져서 계가 움직였을 때 힘이 계에 대해 일을 했다고 정의한다. (일상적인 의미와 다름)

어떤 계에 일정한 크기의 힘을 가하는 주체가 계에 한 일(work) W는 힘의 크기 F, 힘의 작용점 의 변위 크기  $\triangle r$  그리고  $\cos\theta$ 의 곱이다. 여기서, θ는 힘과 변위 벡터가 이루는 각도이다.



 $W \equiv F\Delta r \cos \theta = (F\cos \theta)\Delta r$  (스칼라 량)

어떤 힘이 물체의 위치를 바꾸지 못했다면 물체에 한 일은 없다. 움직이는 물체에 작용하는 힘이 그 작용점 의 변위에 대해 수직이라면 그 힘이 한 일은 영이다.



일의 단위:  $1J = 1N \cdot m = 1kg \cdot m^2 / s^2 = 10^7$  erg in CGS unit

일은 <u>에너지의 전달</u>이다.

₩가 계에 더해진 일이고 ₩가 양(+)이라면 에너지는 계로 전달된 것이고, ₩가 음(-)이라면 에너지는 계로부터 환경으로 전달된 것이다. 따라서 계가 환경과 상호 작용한다면 이 상호 작용은 계의 경계를 통한 에너지의 전달로 묘사할 수 있다. 이 결과로 계에 저장된 에너지가 변한다.



어떤 힘이 물체의 위치를 바꾸지 못했다면 물체에 한 일은 없다. 움직이는 물체에 작용하는 힘이 그 작용점의 변위에 대해 수직이라면 그 힘이 한 일은 영이다.

일은 에너지의 전달이다.

W가 계에 더해진 일이고 W가 양(+)이라면 에너지는 계로 전달된 것이고, W가 음(-)이라면 에너지는 계로부터 환경으로 전달된 것이다.

따라서 계가 환경과 상호 작용한다면 이 상호 작용은 계의 경계를 통한 에너지의 전달로 묘사할 수 있다. 이 결과로 계에 저장된 에너지가 변한다.

#### 예제 7.1 진공청소기를 끄는 남자

그림과 같이 마루를 청소하는 사람이 F=50.0 N의 힘으로 수평 방향과 30.0°의 각도로 진공청소기를 끌고 있다. 진공청소기가 오른쪽으로 3.00m 움직이는 동안 이 힘이 진공청소기에 한 일을 구하라

풀이

$$W = F\Delta r \cos \theta = (50.0 \text{ N})(3.00 \text{ m})(\cos 30.0^{\circ})$$
  
= 130 J



#### 심화 예제 얼마나 빨리 돌아 올 수 있나?

사냥을 성공적으로 끝내고 돌아오는 에스키모인이 연어를 실은 썰매를 끌고 있다. 썰매와 연어의 전체 질량은  $50.0 \mathrm{kg}$  이고 에스키모인이 줄을 통하여 썰매에  $1.20 \times 10^2 \, \mathrm{N}$  힘을 가하고 있다.

(a) 줄이 지면과 수평을 이루면서 5.00m 를 끌었다면, 얼마의 일을 하였는가?

풀이 
$$\theta = 0$$
 이므로

$$W = \vec{F} \cdot \Delta \vec{x} = F \Delta x \cos \theta$$
$$= (1.20 \times 10^2 \text{ N}) \times (5.00 \text{ m}) \cos 0^\circ = 6.00 \times 10^2 \text{ J}$$

(b) 같은 거리를 지면과  $\theta = 30.0^{\circ}$  의 각도로 끌었다면 얼마의 일을 하였는가? 썰매를 점으로 간주하여 줄을 맨 위치 등은 고려하지 않는다.



풀이 
$$W = F\Delta x \cos \theta$$

=
$$(1.20 \times 10^2 \text{ N}) \times (5.00 \text{ m}) \cos 30.0^\circ = \frac{5.20 \times 10^2 \text{ J}}{}$$

### 7.3 두 벡터의 스칼라 곱

(The Scalar Product of Two Vectors)

임의의 두 벡터 A와 B의 스칼라곱



$$\mathbf{A} \cdot \mathbf{B} \equiv AB \cos \theta$$
 (정의)

$$\mathbf{A} \cdot \mathbf{B} = \mathbf{B} \cdot \mathbf{A}$$
 (교환법칙)

$$\mathbf{A} \cdot (\mathbf{B} + \mathbf{C}) = \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{C}$$
 (분배법칙)

$$(x,y,z)$$
 $y$ 

단위벡터 사이의 스칼라곱

$$\hat{\mathbf{i}} \cdot \hat{\mathbf{i}} = \hat{\mathbf{j}} \cdot \hat{\mathbf{j}} = \hat{\mathbf{k}} \cdot \hat{\mathbf{k}} = 1$$

$$\hat{\mathbf{i}} \cdot \hat{\mathbf{j}} = \hat{\mathbf{i}} \cdot \hat{\mathbf{k}} = \hat{\mathbf{j}} \cdot \hat{\mathbf{k}} = 0$$

두 벡터를 성분으로 표시하면

$$\mathbf{A} = A_x \mathbf{i} + A_y \mathbf{j} + A_z \mathbf{k} \qquad \mathbf{B} = B_x \mathbf{i} + B_y \mathbf{j} + B_z \mathbf{k}$$

$$\mathbf{A} \cdot \mathbf{B} = A_x B_x + A_y B_y + A_z B_z$$

$$\mathbf{A} = \mathbf{B}$$
인 경우  $\mathbf{A} \cdot \mathbf{A} = A_x^2 + A_y^2 + A_z^2$ 

따라서 일(work)은  $W = F\Delta r \cos \theta = \mathbf{F} \cdot \Delta \mathbf{r}$ 

(참고) 두 벡터의 벡터 곱

$$\mathbf{A} \times \mathbf{B} \mid \equiv AB \sin \theta$$
 (크기)

(방향: 두 벡터에 수직)

### 7.4 변하는 힘이 한 일

(Work Done by a Varying Force)

힘이 일을 하는 동안 변하거나 이동 경로가 직선이 아닌 경우에는 힘을 일정하게 취급하거나 경로를 직선으로 근사할 수 있을 만큼 충분히 작은 변위 △x 동안한 일을 구한 후 모두 더한다.

오른쪽 그림에서

변위  $\triangle x$  동안 한 일:  $\Delta W \approx F_x \Delta x$ 

전체 변위에 대하여 더하면  $W pprox \sum_{x_i}^{x_f} F_x \Delta x$ 

구간의 크기를 0으로 접근시키면

$$\lim_{\Delta x \to 0} \sum_{x_i}^{x_f} F_x \Delta x \equiv \int_{x_i}^{x_f} F_x dx$$

$$\therefore W = \int_{x_i}^{x_f} F_x dx$$

 $x_i$ 에서  $x_f$ 로의 변위에 대해 한 전체 일은 모든 사각형의 넓이의 합과 거의 같다.



입자가  $x_i$ 에서  $x_f$ 로 움직일 때 변하는 힘의 성분인  $F_x$ 가 한 일은 정확히 이 곡선 아래의 넓이와 같다.



어떤 계에 하나 이상의 힘이 작용하고 그 계가 입자로 모형화될 수 있다면, 그 계에 대해 해준 전체 일은 <u>알짜힘이 한 일</u>과 같다.

$$\sum W = W_{net} = \int_{x_i}^{x_f} (\sum F_x) dx$$

보다 일반적인 경우

$$\sum W = W_{net} = \int (\sum \mathbf{F}) \cdot d\mathbf{r}$$

### 예)

## ◈ 용수철이 한 일(Work Done by a Spring)

용수철이 평형 상태에서 작은 거리만큼 늘어나거나 줄어들면 이 용수철이물체에 작용하는 힘은 다음과 같다.



$$\mathbf{F}_{s} = F_{s}\mathbf{i} = -kx\mathbf{i}$$
 로 표현하면



 $-x_{max}$ 에서 0까지 물체가 움직일 때 용수철이 한 일

### => 이것은 **면적**과 같다!!!

$$W_s = \int \mathbf{F}_s \cdot d\mathbf{r} = \int_{x_i}^{x_f} (-kx\mathbf{i}) \cdot (dx\mathbf{i})$$
$$= \int_{-x_{\text{max}}}^{0} (-kx) dx = \frac{1}{2}kx_{\text{max}}^{2}$$

임의의 구간 동안 용수철이 물체에 한 일은

$$\therefore W_s = \int_{x_i}^{x_f} (-kx) dx = \frac{1}{2} k x_i^2 - \frac{1}{2} k x_f^2$$

외부에서 힘을 작용하여 물체를  $x_i = -x_{max}$ 에서  $x_f = 0$ 까지 매우 천천히 움직이도록 한 경우

$$(\mathbf{F}_{app} = -F_s \mathbf{i} = -(-kx)\mathbf{i})$$

$$W_{app} = \int \mathbf{F}_{app} \cdot d\mathbf{r} = \int_{x_i}^{x_f} (kx\mathbf{i}) \cdot (dx\mathbf{i})$$
$$= \int_{-x_{\text{max}}}^{0} kx dx = -\frac{1}{2} kx_{\text{max}}^{2}$$

만일 이 물체가 움직이는 과정이 매우 천천히 일어난다면,  $\vec{F}_{app}$ 는 항상  $\vec{F}_s$ 와 크기는 같고 방향은 반대이다.



이 일은 같은 변위에 대해 용수철 힘이 한 일의 음(-)과 같다. 물체가  $-x_{max}$ 에서 0까지 움직이는 동안 외부 주체가 용수철이 늘어나지 못하도록 안쪽으로 밀어주어 그 방향이 힘의 작용점의 변위와 반대가되기 때문이다. 물체의 변위에 대해 <u>작용력이 한 일</u>은

:. 
$$W_{app} = \int_{x_i}^{x_f} kx dx = \frac{1}{2}kx_f^2 - \frac{1}{2}kx_i^2$$

### 예제 7.4 그래프로 전체 일 계산하기

어떤 입자에 작용하는 힘이 그림과 같이 x에 따라 변한다. 입자가 x=0에서부터 x=6.0 m까지 움직이는 동안 이 힘이 한 일을 구하라

사각형 부분의 넓이를 계산한다

$$W_{\text{AB}} = (5.0 \text{ N})(4.0 \text{ m}) = 20 \text{ J}$$

삼각형 부분의 넓이를 계산한다

$$W_{\text{@©}} = \frac{1}{2}(5.0 \text{ N})(2.0 \text{ m}) = 5.0 \text{ J}$$

힘이 입자에 한 전체 일을 계산한다

$$W_{\otimes \odot} = W_{\otimes \otimes} + W_{\otimes \odot} = 20 \text{ J} + 5.0 \text{ J} = 25 \text{ J}$$



#### 예제 7.5 용수철의 힘 상수 k 측정하기

용수철의 힘 상수를 구하는 통상적인 방법이 그림 7.11에 나타나 있다. 그림 7.11a와 같이 용수철은 연직으로 매달려 있고, 질량 m 인 물체를 그 아래쪽 끝에 매단다. 용수철은 그림 7.11b와 같이 매달린 mg의 물체에 의하여 평형 위치로부터 거리 d 만큼 늘어난다.

- (A) 질량이 0.55 kg인 물체가 매달려 2.0 cm만큼 늘어났다면 용수철의 힘 상수는 얼마 인가?
- (B) 길이가 늘어나는 도안 용수철이 한 일을 구하라

(A) 
$$k = \frac{mg}{d} = \frac{(0.55kg)(9.8)}{2.0 \times 10^{-2}} = 2.7 \times 10^2 \text{ N/m}$$

(B) W = 
$$0 - \frac{1}{2}(kd^2)$$
  
=  $-\frac{1}{2}(2.7 \times 10^2)(2.0 \times 10^{-2})$   
=  $-5.4 \times 10^{-2}$ 



그림 7.11 (예제 7.5) 용수철의 힘 상수 k 구하기

### 7.5 운동 에너지와 일-운동 에너지 정리

(Kinetic Energy and the Work-Kinetic Energy Theorem)



물체에 알짜힘이 작용하여 그 물체가 <u>가속도</u>를 가지고 (속도 변화) 움직이는 경우를 생각하면

$$W_{net} = \int_{x_i}^{x_f} \sum F dx$$

$$\sum F = ma$$
를 대입하면

$$W_{net} = \int_{x_i}^{x_f} madx = \int_{x_i}^{x_f} m \frac{dv}{dt} dx = \int_{x_i}^{x_f} m \frac{dv}{dx} \frac{dx}{dt} dx = \int_{v_i}^{v_f} mv dv$$

$$\therefore W_{net} = \frac{1}{2} m v_f^2 - \frac{1}{2} m v_i^2$$

알짜힘이 질량 m인 입자에 한 일은 운동에너지의 처음 값과 나중 값의 차이와 같다.

운동에너지(kinetic energy)

$$K \equiv \frac{1}{2}mv^2$$
 (정의) 스칼라량, 단위는 J

$$W_{net} = K_f - K_i = \Delta K$$
 일-(운동)에너지 정리

어느 계에 일이 가해지고 그 계의 유일한 변화가 속력의 변화라면, 알짜힘이 한 일은 그 계의 운동 에너지의 변화와 같다.

일-운동 에너지 정리에 의하면 어떤 계의 속력은 가해진 알짜일의 부호가 양(+)이면 증가하는데, 그 이유는 나중 운동 에너지가 처음 운동 에너지보다 크기 때문이다. 알짜일이 음(-)이라면 속력은 감소하는데, 이것은 나중 운동 에너지가 처음 운동 에너지보다 작기 때문이다.

일-운동 에너지 정리의 △*K*는 단지 처음과 나중 위치에서의 속력에만 관계하고, 이 두 점 사이의 구체적인 경로와는 무관하다.

### 예제 7.6 마찰이 없는 평면에서 물체를 밀기

6.0 kg인 물체가 처음에 정지해 있다가 크기가 12 N인 일정한 수평력을 받아서 마찰이 없는 수평면을 따라 오른쪽으로 움직이고 있다. 물체가 수평 방향으로 3.0 m 움직인 후의 속력은 얼마인가?

$$W_{\text{ext}} = \Delta K = K_f - K_i = \frac{1}{2}mv_f^2 - 0 = \frac{1}{2}mv_f^2$$

$$v_f = \sqrt{\frac{2W_{\mathrm{ext}}}{m}} = \sqrt{\frac{2F\Delta x}{m}}$$

$$v_f = \sqrt{\frac{2(12 \text{ N})(3.0 \text{ m})}{6.0 \text{ kg}}} = 3.5 \text{ m/s}$$



### 7.6 계의 퍼텐셜 에너지

(Potential Energy of a System)



책과 지구로 구성된 계에서 두 물체(책과 지구)는 중력에 의해 상호 작용한다. 이 때 책을 천천히 들어올리면 계에 일을 하게 된다.

일은 에너지의 전달이므로, 계에 한 일은 계의 에너지 증가로 나타나야 한다. 또 책은 일을 하기 전후에 정지 상태이다. 따라서 계의 운동 에너지는 변하지 않는다.

계의 에너지 변화가 운동 에너지 변화가 아니기 때문에, 다른 형태의 에너지로 저장되어야 한다. 책을 들어올린 후 놓으면 낙하할 때 운동 에너지를 가지며, 그 에너지는 책을 들어올릴 때 해 준 일에서 온 것이다.

책이 높은 위치에 있을 때, 계에는 운동 에너지로 바뀔 수 있는 잠재적인에너지가 있었고, 이것이 책이 떨어지면서 운동 에너지로 바뀌게 된 것이다. 책을 놓기 전의 에너지 저장 형태를 <u>퍼텐셜 에너지(potential energy)</u>라 한다. 외력이 책-지구계에 한 일은  $mgy_f - mgy_i$ 이다.



책을 가속도 없이 천천히 들어올리는 경우, 들어올리는 힘은 물체에 작용하는 중력과 크기가 같으며, 물체는 평형 상태에서 등속 운동한다.

$$W_{net} = (\mathbf{F}_{app}) \cdot \Delta \mathbf{r} = (mg\mathbf{j}) \cdot ((y_f - y_i)\mathbf{j})$$
$$= mgy_f - mgy_i$$

<u>중력 퍼텐셜 에너지</u>(gravitational potential energy):  $LU_{\varrho} \equiv mgy$  (정의)

중력 퍼텐셜 에너지는 단지 지표면 위 물체의 연직 높이에만 의존한다. 물체 -지구 계에 한 일은 물체를 연직 방향으로 들어올리거나, 같은 지점에서 출 발하여 마찰이 없는 경사면을 따라 같은 높이까지 밀어 올릴 때 한 일과 같 다.  $W_{net} = (\mathbf{F}_{app}) \cdot \Delta \mathbf{r} = (mg\mathbf{j}) \cdot ((x_f - x_i)\mathbf{i} + (y_f - y_i)\mathbf{j})$ 

$$= mgy_f - mgy_i$$

이 개념을 이용하여 갈릴레이는 뉴턴의 운동 1법칙을 확립하였 <u> C</u>

### 예제 7.7 훌륭한 운동 선수와 아픈 발가락

운동 선수의 부주의로 손에서 트로피가 미끄러져 선수의 발가락에 떨어졌다. 바닥을 좌표의 원점(y = 0)으로 하고, 트로피가 떨어짐에 따라 트로피-지구 계의 중력 퍼텐셜 에너지의 변화를 추정하라. 또한 운동 선수의 머리를 좌표의 원점으로 하고 앞의 계산을 다시 하라.

트로피가 떨어지기 직전의 트로피-지구 계의 중력 퍼텐셜 에너지를 계산한다.

$$U_i = mgy_i = (2 \text{ kg})(9.80 \text{ m/s}^2)(1.4 \text{ m}) = 27.4 \text{ J}$$

트로피가 선수의 발가락 위에 떨어지는 순간의 트로피-지구 계의 중력 퍼텐셜 에너지를 계산한다.

$$U_f = mgy_f = (2 \text{ kg})(9.80 \text{ m/s}^2)(0.05 \text{ m}) = 0.98 \text{ J}$$

트로피-지구 계의 중력 퍼텐셜 에너지의 변화를 계산한다.

$$\Delta U_g = 0.98 \,\mathrm{J} - 27.4 \,\mathrm{J} = -26.4 \,\mathrm{J}$$

### ◈ 탄성 퍼텐셜 에너지(Elastic Potential Energy)

용수철과 물체로 구성된 계를 고려하면  $W_{ann}$ 

$$W_{app} = \frac{1}{2} k x_f^2 - \frac{1}{2} k x_i^2$$

<u>탄성 퍼텐셜 에너지</u>(elastic potential energy)

$$\therefore U_g \equiv \frac{1}{2}kx^2$$
 (정의)



### 7.7 보존력과 비보존력

(Conservative and Nonconservative Forces)



마찰력에 의해서 멈춘다. (a)

처음에는 운동에너지를 가지고 있었다. (b)

표면이 다소 따뜻해졌으며, 계의 운동에너지가 변환되었기 때문이며 온도와 연관된 이 에너지를 <u>내부 에너</u> 지(internal energy)라고 하고  $E_{int}$ 라 한다. (c)

- 지표면 근처에서 아래로 떨어지는 물체; <u>중력</u>이 물체에 한 일은 연직으로 떨어지거나 경사면을 미끄러지거나 관계하지 않는다. 중요한 것은 물체의 고도 변화이다. 그러나 경사면에서의 <u>마찰</u>에 의한 내부 에너지로의 변환은 물체가 미끄러지는 거리에 의존한다

이러한 <u>경로 의존성</u>에 따라 힘을 <u>보존력</u>과 <u>비보존력</u>으로 구분한다. 위에서 살펴본 힘 중에서 중력은 보존력이고, 마찰력은 비보존력이다.

### ♦ 보존력(Conservative Forces)

- 1. 두 점 사이를 이동하는 입자에 보존력이 한 일은 이동 경로와 무관하다.
- 2. 폐경로를 따라 이동하는 입자에 보존력이 한 일은 영(0)이다 (폐경로는 출발점과 도착점이 같은 경로를 말한다).

일반적으로 계의 구성 요소 중 한 물체가 한 점에서 다른 점으로 이동할 때, 보존력이 한 일  $W_c$ 는 계의 위치 에너지의 처음 값에서 나중 값을 뺀 것과 같다.  $W_c = U_i - U_f = -\Delta U$ 

### ♦ 비보존력(Nonconservative Forces)

보존력에 대한 성질 1과 2를 만족하지 못하는 힘을 비보존력이라고 한다. 마찰력이 대표적인 비보존력이다.

계의 운동 에너지와 위치 에너지의 합을 역학적 에너지(mechanical energy)라고 정의한다.  $E_{mech} = K + U$ 

계 내부에서 작용하는 비보존력은 역학적 에너지의 변화를 초래한다.

### 7.8 보존력과 위치 에너지의 관계

(Relationship Between Conservative Forces and Potential Energy)

보존력이 계 내부에서 한 일과 위치 에너지의 감소가 같도록 위치 에너지 함수(potential energy function) *U*를 정의할 수 있다. 1차원으로 고려하면

$$W_c = \int_{x_i}^{x_f} F_x dx = -\Delta U$$

$$\Delta U = U_f - U_i = -\int_{x_i}^{x_f} F_x dx \qquad \therefore U_f(x) = -\int_{x_i}^{x_f} F_x dx + U_i$$

일반적으로  $U_f$ 의 값을 영(0)으로 잡는다. 실제로  $U_f$ 를 어떤 값으로 잡든지 관계 없다. 왜냐하면 영이 아닌 값은  $U_f(x)$ 를 상수 만큼만 이동시킬 뿐이고, 물리적으로 의미를 갖는 것은 위치 에너지 변화이기 때문이다.

또, 힘의 작용점이 미소 변위 dx 만큼 움직인다면, 계의 미소 위치 에너지 변화 dU는

$$dU = -F_x dx$$
 \ \cdot\ \therefore F\_x = -\frac{dU}{dx} \ (U = f(x) 呈 표현)

### 7.9 에너지 도표와 계의 평형

(Energy Diagrams and Equilibrium of a System)

용수철이 갖는 위치에너지는  $U_s = \frac{1}{2}kx^2$  이므로

$$F_s = -\frac{dU_s}{dx} = -kx$$

 $U_{s} = \frac{1}{2}kx^{2}$   $-x_{\text{max}} \quad 0 \quad x_{\text{max}} \quad x$ 

위치에너지 곡선의 기울기가 보존력의 크기에 대응한다. 기울기가 0인 점은 힘이 작용하지 않는 평형점에 해당 한다.



### 예제 7.8 원자 크기에서의 힘과 에너지

분자 내 두 중성 원자 사이의 힘에 관계된 위치 에너지는 아래 위치 에너지 함수로 모형화할 수 있다.  $\left\lceil \left(\sigma\right)^{12} \right\rceil \left(\sigma\right)^6$ 

 $U(x) = 4\varepsilon \left[ \left( \frac{\sigma}{x} \right)^{12} - \left( \frac{\sigma}{x} \right)^{6} \right]$ 

여기서, x는 원자 간 간격이고. 두 매개변수는  $\sigma$  =0.263 nm와  $\epsilon$ =1.51 ×10<sup>-22</sup> J이다. 이 함수의 그래프를 그리고, 두 원자 사이의 평형 거리를 구하라.

### 풀이 위치 에너지와 보존력과의 관계로부터

$$\frac{dU(x)}{dx} = 4\varepsilon \frac{d}{dx} \left[ \left( \frac{\sigma}{x} \right)^{12} - \left( \frac{\sigma}{x} \right)^{6} \right] \qquad x_{eq} = 2^{1/6} \sigma$$

$$= 2.95 \times 10^{-10} m$$

$$= 4\varepsilon \left[ \frac{-12\sigma^{12}}{x^{13}} + \frac{6\sigma^{6}}{x^{7}} \right] \qquad U(10^{-23} \text{ J})$$

평형점을 고려하면

$$4\varepsilon \left[ \frac{-12\sigma^{12}}{x_{eq}^{13}} + \frac{6\sigma^{6}}{x_{eq}^{7}} \right] = 0$$



- 1. 슈퍼마켓에서 한 구매자가 쇼핑 카트를 수평 아래 25.0°의 각도로 35.0 N의 힘으로 밀고 있다. 이 힘은 다양한 마찰력과 균형을 이루고 있으므로 쇼핑 카트는 일정한 속력으로 움직인다.
- (a) 구매자가 쇼핑 카트를 밀고 길이 50.0 m인 통로 에서 이동할 때 구매자가 쇼핑 카트에 한 일을 구하라.
- (b) 모든 힘이 쇼핑 카트에 한 알짜일은 얼마인가? 왜 그런가?
- (c) 구매자가 다음 통로에서 수평 방향으로 힘을 주면서 같은 속력을 유지하며 이동한다. 만약 마찰력이 바뀌지 않았다 면, 구매자가 주어야 하는 힘은 더 큰가, 같은가, 아니면 보다 작은가?
- (d) 구매자가 쇼핑 카트에 한 일은 어떠한가?

- 2. 3.35×10<sup>-5</sup> kg의 빗방울이 중력과 공기 저항의 영향에 따라 일정한 속력으로 연직으로 떨어진다. 빗방울은 입자로 모형화한다. 이 빗방울이 100 m를 떨어진다고 할 때
- (a) 중력이 빗방울에 한 일과
- (b) 공기 저항이 빗방울에 한 일을 구하라.

- 3. 그림에서와 같이, 질량 m = 2.50 kg인 물체가 크기 F = 16.0 N이고 수평 방향과 각도  $\Theta$ = 25.0°를 이루는 일정한 힘을 받아, 마찰이 없는 책상의 수평면 위에서 d = 2.20 m 움직인다. 이때
- (a) 외력이 물체에 한 일,
- (b) 책상에 의한 수직항력이 한 일,
- (c) 중력이 한 일,
- (d) 물체에 작용하는 알짜힘이 한 일을 구하라.
- (P162.3번)



- 4.그림과 같이 힘이 입자에 작용하고 있다. 입자가 (a) x = 0부터 x = 8.00 m까지,
- (b) x = 8.00 m부터 x = 10.0 m까지,
- (c) x = 0부터 x = 10.0 m까지 움직이는 동안 힘이 입자에 한 일을 구하라.(P163.8번)



- 5.질량 4.00 kg의 물체가 훅의 법칙을 따르는 가벼운 용수철에 수직으로 매달려 있을 때, 용수철은 2.50 cm 늘어난다. 4.00 kg의 물체를 제거하고, (a) 1.5 kg의 물체를 매달면 얼마나 늘어나는가?
- (b) 외부 인자가 평형 위치로부터 4.0 cm를 늘이는 데 한 일은 얼마인가?(P163.11번)

- 6. 훅의 법칙을 따르는 가벼운 용수철의 늘이지 않은 처음 길이는 35.0 cm이다. 용수철의 한쪽 끝을 문틀의 상부에 부착 하고 7.50 kg의 물체를 용수철의 다른 쪽 끝에 매달았을 때, 용수철의 길이는 41.5 cm이다.
- (a) 용수철의 힘 상수를 구하라.
- (b) 용수철을 수평으로 놓고 두 명이 용수철의 양 끝에서 190 N의 힘으로 서로 반대 방향으로 잡아당긴다. 이 상황에서 용수철의 길이를 구하라.(P163.12번)

- 7. 궁수가 활시위를 자신의 몸 쪽으로 0.400 m 당긴다. 이때 작용하는 힘은 0에서 230 N까지 일정하게 증가한다.
- (a) 이 활의 등가 용수철 상수는 얼마인가?
- (b) 궁수가 활시위에 한 일은 얼마인가?(P163.13번)

- 8.한 노동자가 35.0 kg의 나무상자를 일정한 속력으로 나무 바닥을 따라 밀어 12.0 m의 거리를 움직였다. 이때 나무상 자에 일정한 수평력 F 를 가해서 한 일은 350 J이다. 이때
- (a) F 의 값을 구하라.
- (b) 만약 노동자가 F 보다 큰 힘을 가한다면, 나무상자의 움직임은 어떻게 되는가?
- (c) 또 F 보다 작은 힘을 가한다면 어떻게 되는가? (P164.25번)

9. 2,100 kg짜리 말뚝박는 기계로 I빔을 땅에 박으려고 한다. 빔의 머리를 때리기에 앞서 해머는 5.00 m를 낙하하고, 빔을 땅속으로 12.0 cm 박은 후 멈추게 된다. 에너지를 고려 하여 해머가 정지할 때까지 빔이 해머에 작용하는 평균력을 구하라.(P164.27번)

- 10. 0.20 kg의 돌이 우물의 맨 위쪽에서 1.3 m 위에 고정되어 있다가 우물 안으로 떨어진다. 우물의 깊이는 5.0 m이다.
- 우물의 맨 위쪽에 돌이 있는 위치를 기준으로 하여,
- (a) 돌이 떨어지기 전과
- (b) 돌이 우물 바닥에 도달하는 순간에서의 돌-지구 계의 중력 퍼텐셜 에너지를 구하라.
- (c) 돌이 떨어지기 시작할 때부터 우물 바닥에 도달하기까지 돌-지구 계의 중력 퍼텐셜 에너지는 얼마나 변하는가?(P165.30번)

- 11.무게 400 N인 어린이가 길이 2.00 m인 한 쌍의 밧줄에 매달려서 앞뒤로 흔들리고 있다. 어린이가 가장 최하점에 있을 때를 기준으로 해서
- (a) 밧줄이 수평일 때,
- (b) 밧줄이 연직과 30.0°의 각도를 이룰 때,
- (c) 어린이가 원호의 맨 아래에 있을 때의 어린이-지구 계의 중력 퍼텐셜 에너지를 구하라.