IoT-integrated Edge Computing Device and ML-SVM Classifier for Damage Detection in Metallic Structure

Shanker Malla and Amit Shakya

Undergraduate Creative Group

Enablers

Market Prospects

Core Technology

- By analyzing lamb wave we can detect damage in the structure
- PZT converts lamb wave to electric signal and vice versa

TD RMS (Time Domain Root Mean Square)

$$DI_{TDRMS} = \frac{\int_{t_1}^{t_2} |S_m(t) - S_b(t)|^2 dt}{\int_{t_1}^{t_2} |S_b(t)|^2 dt}$$

Procedures

Testing Procedure

Overview

Foundational/Preliminary work (1)

Foundational/Preliminary work (2)

Intact data: ~14 Impact data: ~17

Foundational/Preliminary work (3)

Figure: Scanning Area

Figure: Video of Wireless UPI experiment

The acquired ultrasounds were processed for damage detection and evaluation

 Mismatch of movie is due to mismatch of the signal while triggering LMS and Wireless Ultrasonic Device (WUD)

Sensor circuit and controller circuit was successfully used to capture the ultrasonic wave generated by laser and send it to Laptop to generate Video to visualize damage

Figure: Reference video for UPI system

Figure: Video from wireless UPI system

Foundational/Preliminary work (4)

Damage index captured at the Raspberry pi.
Damage index was calculated in the
Microcontroller itself, showcasing the edge
computing capability of the microcontroller

Product prototype

Final product

 IOT based ultrasonic device with edge computing capability that can monitor damage of the structure at the early stage

Features

- The ability to perform spatial SHM over large structural
- areas without a need to deploy hundreds of sensing nodes
- On-board computation algorithms
- Reliable wireless communication techniques
- Reducing the deployment cost via material design, optimal sensor placement strategies, etc.
- Enhancing sensitivity to various damage types
- Integrating the sensor with different plug-in functionalities

Specification	Performance
Power supply	15 V
Microcontroller	168 MHz, ADC: 10 bit, 2.5 MSPS, FPU
Actuator signal	138 kHz, 15 Vp-p, 6 cycle
Communication	Wireless

Final Product

Our Team

Members

Amit Shakya
Cosmos College of Management and Technology,
Pokhara University
Nepal

Undergraduate, Final year student Electronics and Communication,

Shanker Malla
Pulchowk Engineering Campus
Tribhuvan University
Nepal

Undergraduate, Final year student Aerospace Engineering

Our Team (Technical Mentor and Advisors)

Mentors

Manish Man Shrestha
Professor,
Cosmos College of Management and Technology;
Pokhara University

CTO, Electronics
Samadhan Engineering

Master in Mechanical Design Designer for Honda Research for autonomous Vehicles

Mr. Rupak Aryal
MBA
Faculty Member, International Business
Isilington College

Marketing Manager, Samadhan Engineering Winner of Innovation awards in National competition

Prof. Bikash Nakarmi Professor, Nanjing University of Aeronautics and Astronautics Jiangsu, Nanjing, China

Feedback

- Professor Dr. Tri Ratna Bajracharya
- Former dean of Tribhuvan
 University, Institute of Engineering
- Director, Center for Energy Studies

"It is an innovative and unique piece of equipment with immense business potential. Recently it was used in the university for the testing and laboratory Use in our newly opened Aerospace program"

Feedback

- Vijay Lal Nyachhyon
- Director, MULTI Disciplinary Consultants (P) Ltd.

"It is a novel device and I am looking forward to using it in our heritage conservation project."

Business Plan

Capital Investment

Capital Investment

Capital Overview (Unit: USD \$)

Lender	Use of capital (Managing cost / Investment in equipment, etc.)	Size of loan	Loan interest	Loan repayment period
Equity	252,000			
Loan	105,000	25%	15%	3 years
Grant	63,000			
Total	420,000	26,250		

Capital & Financing Plan (Next 3 Years, Unit: USD \$)

		Financing plan		Major	
	Total capital	Equity capital	Outside capital	Contribution Source	
Working capital	130,000	83,000	47,000	Equity	
Equipment capital	290,000	169,000	121,000	Loan+Grant+Equity	
Total	420,000	252,000	\$168,000		

Performance Plan

Year	Product	Implementation plan Sale Plan			
		Number of Units	Per unit price	Total Sales	Main Market/Customer
1 st year 2022	IoT- based Edge computing SHM	10	\$5000	\$50,000	Heritage Conservation units universities+ construction consultants (Nepal)
2 nd year	IoT- based Edge computing SHM + Laser-based SHM	40 + 10	\$5,000 + \$12,000	\$200,000 + \$120,000	Heritage Conservation units universities+ construction consultants+ Hydropower +oilfield (Nepal+Bhutan+UAE)
3 rd year	IoT- based Edge computing SHM + Laser-based SHM Restaurant	75 + 30	\$6,000 + \$14,000	\$450,000 + \$420,000	Heritage Conservation units universities+ construction consultants+ Hydropower+oilfield+Aeronautics (Nepal+Bhutan+UAE+ Africa+South East Asia)

Market Characteristics

SHM market characteristics and attributes with regional relevance, 2021

Source: Future market insights

Target Market

Micro Hydro Plants of Nepal

Heritage Conservation Sites

University Laboratory collaboration for Testing Equipment

Turbines

Builders and Consultants

Oilfield

Aeronautical Fields

Market Size

Hydro plants capacity in Nepal

Length of active pipelines in Arab countries especially for oil and gas

Turbines Operation and Maintenance market. Source: Data Bridge market Research

SHM in Construction works source: The university of Mexico research report

Global Structural

Health Monitoring

Market(USD

Billion)

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026

4.73

Entry Strategy

Exhibition

Secure funding

Patent Application

Expansion Strategy

Expand on the capacity

2024

Upgrade the system with AI and the laser control

2022

- Patent Filling
- Application for the Industry Standardization
- Secure Financing

Undergraduate Creative Group

Product showcase, delivery, and customer feedback

- Expanding customer base outside Nepal
- First product delivery of laser-based SHM

Market Penetration

Technology Maturation

Expansion

Acknowledgement

