MATGRA

Exercice 1 (10 points)

Le but de cet exercice est de déterminer les premiers coefficients de Fourier et les principales harmoniques d'un signal.

Partie A

Pour tout entier naturel n non nul, on considère les intégrales :

$$I_n = \int_{\frac{\pi}{2}}^{\pi} \cos(nx) dx \qquad \text{et} \qquad J_n = \int_{0}^{\frac{\pi}{2}} x \cos(nx) dx.$$

1°) Montrer que $I_n = -\frac{1}{n} \sin n \frac{\pi}{2}$.

2°) A l'aide d'une intégration par parties, montrer que $J_n = \frac{\pi}{2n} \sin(n\frac{\pi}{2}) + \frac{1}{n^2} \cos(n\frac{\pi}{2}) - \frac{1}{n^2}$.

3°) Déterminer I_1, I_2, I_3 , puis J_1, J_2, J_3 .

Partie B

Soit f la fonction numérique définie sur \mathbb{R} , paire, périodique de période 2π , telle que :

$$\begin{cases} \sin 0 \le t \le \frac{\pi}{2} & f(t) = \frac{2E}{\pi}t \\ \sin \frac{\pi}{2} < t \le \pi & f(t) = E \end{cases}$$

où E est un nombre réel donné, strictement positif.

1°) Tracer, dans un repère orthogonal, la représentation graphique de la fonction f sur l'intervalle $[-\pi, 3\pi]$ (on prendra E = 2 uniquement pour construire la courbe représentant f).

2°) Soit a_0 et pour tout entier naturel n supérieur ou égal à 1, a_n et b_n les coefficients de Fourier associés à f.

a) Calculer a_0 .

b) Pour tout $n \ge 1$, donner la valeur de b_n .

c) En utilisant la partie A, vérifier que pour tout $n \ge 1$, $a_n = \frac{2E}{\pi^2} (2J_n + \pi I_n)$. Calculer a_{4k} pour tout entier $k \ge 1$.

Partie C

1°) Déterminer les coefficients a_1 , a_2 , a_3 .

2°) Calculer F^2 , carré de la valeur efficace de la fonction f sur une période. On rappelle que dans le cas où f est paire, périodique de période T, on a :

$$F^2 = \frac{2}{T} \int_0^{\frac{T}{2}} f^2(t) dt.$$

3°) On sait par ailleurs que la formule de Bessel-Parseval donne :

$$F^2 = a_0^2 + \sum_{n=1}^{+\infty} \frac{a_n^2 + b_n^2}{2}.$$

Soit P le nombre défini par $P = a_0^2 + \frac{1}{2}(a_1^2 + a_2^2 + a_3^2)$.

Calculer P , puis donner la valeur décimale arrondie au millième du rapport $\frac{P}{F^2}$.

Ce dernier résultat très proche de l justifie que dans la pratique, on peut négliger les harmoniques d'ordre supérieur à 3.

Exercice 2 (10 points)

On note j le nombre complexe de module 1 et d'argument $\frac{\pi}{2}$

On considère la fonction H définie, pour tout nombre complexe p distinct de 0 et de -1, par :

$$H(p) = \frac{1}{p(1+p)}.$$

Dans toute la suite de l'exercice on prend $p=j\omega$, où ω désigne un nombre réel strictement positif.

1) On note $r(\omega)$ le module du nombre complexe $H(j\omega)$ et on considère la fonction G définie, pour tout réel ω strictement positif, par :

$$G(\omega) = \frac{20}{\ln 10} \ln r(\omega).$$

- a) Montrer que $G(\omega) = -\frac{20}{\ln 10} \ln \left(\omega \sqrt{1 + \omega^2} \right)$.
- b) Déterminer les limites de la fonction G en 0 et en $+\infty$. Montrer que la fonction G est strictement décroissante sur]0; $+\infty[$.
- 2) a) Montrer qu'un argument $\varphi(\omega)$ de $H(j\omega)$ est :

$$\varphi(\omega) = -\frac{\pi}{2} - \operatorname{Arctan}\omega.$$

b) Etudier les variations de la fonction φ sur]0; $+\infty[$ (on précisera les limites en 0 et en $+\infty$).

3) On considère la courbe $\mathscr C$ définie par la représentation paramétrique :

$$\begin{cases} x(\omega) = -\frac{\pi}{2} - \operatorname{Arctan}\omega \\ y(\omega) = -\frac{20}{\ln 10} \ln \left(\omega \sqrt{1 + \omega^2}\right) \end{cases}$$
 pour ω réel strictement positif.

- a) Dresser le tableau des variations conjointes des fonctions x et y.
- b) Recopier et compléter le tableau de valeurs suivant (on donnera des valeurs décimales arrondies au centième) :

63	0.5				
ω	<u> </u>	0,7	0,786	0,9	1.5
$x(\omega)$			-2,24		
$y(\omega)$			0		
<u> </u>					

c) Tracer la courbe $\mathscr C$ dans un repère orthogonal, on prendra pour unités graphiques 5 cm sur l'axe des abscisses et 1 cm sur l'axe des ordonnées.

La courbe $\, \mathcal{C} \,$ correspond au diagramme de Black associé à la fonction de transfert $\, \mathcal{H} \,$