아두이노 프로젝트 기획&요약서 (이름 : 조상호)	
프로젝트 명	Arduino Rc Car With Android Accelerometer Sensor
개발 동기	현실과 비슷한 조작이 가능하도록 3축 가속도 센서를 활용하여 아두이노 RC차량을 조종하는 것을 목표로 개발하였다.
사용 부품	Arduino Uno R3, Gear motor 2Ea, LED 2ea, Resistance 2ea(220Ω 추천, 1㎏ 사용하였음), Motor driver, Battray(LR06 4ea, 1604a 1ea), HC-06, On-Off switch
작동 방식	1. 블루투스 연결 2. (Android 기기) 기울이면 (앞으로 / 뒤로 / 좌로 / 우로) 3. (아두이노) 모터 동작 (전진 / 후진 / 좌회전/ 우회전) 4. (Android 기기) 버튼 클릭 (왼쪽 방향 지시등 / 경고등 / 오른쪽 방향지시등) 5. (아두이노) LED 점멸 (왼쪽 / 양쪽 / 오른쪽)
제품구조 (회로도)	Fritzing
소스코드	<pre>uint8_t MoterStatus = 0; if(Serial.available() > 0)</pre>

```
Motor_GoLeft();
else if( MoterStatus == 4 )
     Motor_GoRight();
else if ( MoterStatus == 0 )
     Motor_Stop();
if( MoterStatus== 5 && led_status != 3)
 if( led_status != 1)
     LED_SW_LEFT = !LED_SW_LEFT;
     led_status = 1;
     cnt = 0;
 }
 else
     led_status =0;
else if( MoterStatus == 6 && led_status != 3 )
 if( led_status != 2)
     LED_SW_RIGHT = !LED_SW_RIGHT;
     led_status = 2;
     cnt = 0;
 }
 else
     led_status =0;
else if( MoterStatus == 7 )
 if( led_status != 3)
     LED_SW_LEFT = !LED_SW_LEFT;
     LED_SW_RIGHT = !LED_SW_RIGHT;
     led_status = 3;
     cnt = 0;
 }
 else
     led_status = 0;
if(led_status!=0 )
     cnt = (cnt +1)\%LED_FREQ;
if(cnt==0 &&led_status == 3)
     digitalWrite(PIN_LED_LEFT,LED_SW_LEFT);
     digitalWrite(PIN_LED_RIGHT,LED_SW_RIGHT);
```

```
LED_SW_LEFT = ! LED_SW_LEFT;
                     LED_SW_RIGHT = ! LED_SW_RIGHT;
                 }
                else if(cnt==0 && led_status == 1)
                     digitalWrite(PIN_LED_LEFT,LED_SW_LEFT);
                     LED_SW_LEFT = ! LED_SW_LEFT;
                if(cnt==0 && led_status == 2)
                     digitalWrite(PIN_LED_RIGHT,LED_SW_RIGHT);
                     LED_SW_RIGHT = ! LED_SW_RIGHT;
               delay(100);
기대효과
            실 운전과 비슷한 조종으로 모형운전 연습의 일부 효과를 기대한다.
            ● 직좌 / 직우 조향이 불가능 함
            ● LED Off시 ON상태에서 OFF버튼 누를시 ON에서 멈추는 현상이
개선 방향
              존재
            ● 실시간 처리가 불가능 딜레이가 심함.
            ● 정확한 조작에 처리가 불가능.
```