

CH32V006/V005 数据手册

V1.5

概述

CH32V006 是基于青稞 RISC-V 内核设计的工业级通用微控制器,支持 48MHz 系统主频,具有宽压、低功耗、单双线调试等特点。CH32V006 内置 1 组 12 位模数转换 ADC,采样率高达 3Msps;内置 OPA 运放,支持高速模式以提高压摆率,其 P 端支持 3 通道轮询;提供了 7 路 DMA 控制器、8 路 TouchKey、多组定时器、2 组 USART 串口、I2C、SPI 等丰富外设资源。

产品特性

● 内核 Core:

- 青稞 32 位 RISC-V2C 内核, RV32EmC 指令集
- 快速可编程中断控制器+硬件中断堆栈
- 支持2级中断嵌套
- 支持系统主频 48MHz

● 存储器:

- 最大 8KB 易失数据存储区 SRAM
- 最大 62KB 程序存储区 CodeFlash
- 3328B 系统引导程序存储区 BootLoader
- 256B 系统非易失配置信息存储区
- 256B 用户自定义信息存储区

● 电源管理和低功耗:

- 系统供电 V₂ 额定电压: 2~5V
- 低功耗模式: 睡眠、待机

● 系统时钟和复位:

- 内置出厂调校的 24MHz 的 RC 振荡器
- 内置约 128KHz 的 RC 振荡器
- 外部支持 3~25MHz 高速振荡器
- 内置系统时钟监控(SCM)模块
- 上/下电复位、可编程电压监测器

● 1 组运放 OPA/PGA/电压比较器:

- 多路输入通道, 可选多档增益
- 2 路输出通道, 可选 ADC 引脚
- P 端支持 3 通道轮询
- 支持高速模式以提高压摆率

● 7路通用 DMA 控制器:

- 7 个通道,支持环形缓冲区管理
- 支持 TIMx/ADC/USART/I2C/SPI
- 12 位模数转换 ADC:
- 模拟输入范围: Vss~V₪
- 8 路外部信号+3 路内部信号通道
- 支持 3M 采样率
- 8路 TouchKey 通道检测

● 多组定时器:

- 1 个 16 位高级定时器,提供死区控制和紧急 刹车,提供用于电机控制的 PWM 互补输出
- 1 个 16 位通用定时器,提供输入捕获、输出 比较、PWM、脉冲计数及增量编码器输入
- 1 个 16 位精简定时器
- 2 个看门狗定时器: 独立和窗口型
- 系统时基定时器: 32 位计数器
- 2组USART 串口:支持LIN
- 1个 120 接口
- 1 个 SPI 接口
- 快速 GPIO 端口:
- 4组 GPIO 端口, 31 个 I/O 口
- 映射 1 个外部中断
- 安全特性:芯片唯一 ID
- 调试模式:
- 支持单线(默认)和双线两种调试模式
- 封装形式: QFN、QSOP、TSSOP

型号	Code Flash	RAM	通 用 I/0	高级定时器	通用定时器	精简定时器	看门狗	ADC	电容 触摸 按键	OPA 运放	OPA 轮询	串口	120	SPI	封装 形式
CH32V006K8U6	62K	8K	31	1	1	1	2	8+3	8路	1	3路	2	1	1	QFN32
CH32V006E8R6	62K	8K	22	1	1	1	2	8+3	8路	1	3路	2	1	1	QS0P24
CH32V006F8U6	62K	8K	18	1	1	1	2	8+3	8路	1	3 路	2	1	1	QFN20
CH32V006F8P6	62K	8K	18	1	1	1	2	8+3	8路	1	3 路	2	1	1	TSS0P20
CH32V005E6R6	32K	6K	22	1	1	_	2	8+3	_	1	_	2	1	1	QS0P24
CH32V005F6U6	32K	6K	18	1	1	_	2	8+3	-	1	_	2	1	1	QFN20
CH32V005F6P6	32K	6K	18	1	1	_	2	8+3	_	1	_	2	1	1	TSS0P20
CH32V005D6U6	32K	6K	11	1	1	_	2	4+3	_	1	_	2	1	_	QFN12

第1章 规格信息

1.1 系统架构

微控制器基于 RISC-V 指令集设计,其架构中将青稞微处理器内核、仲裁单元、DMA 模块、SRAM 存储等部件通过多组总线实现交互。集成通用 DMA 控制器以减轻 CPU 负担、提高访问效率,应用多级时钟管理机制降低了外设的运行功耗,同时兼有数据保护机制,时钟自动切换保护等措施增加了系统稳定性。下图是系列芯片内部总体架构框图。

图 1-1 系统框图

1.2 存储器映射表

图 1-2 存储器地址映射

1.3 时钟树

系统中引入 3 组时钟源: 内部高频 RC 振荡器 (HSI)、内部低频 RC 振荡器 (LSI)、外接高频振荡器 (HSE)。其中,低频时钟源为独立看门狗提供了时钟基准。高频时钟源直接或者间接通过 2 倍频后输出为系统总线时钟(SYSCLK),系统时钟再由各预分频器提供了 HB 域外设控制时钟及采样或接口输出时钟,部分模块工作需要由 PLL 时钟直接提供。

图 1-3 时钟树框图

1.4 功能概述

1.4.1 RISC-V2C 处理器

RISC-V2C 支持 RISC-V 指令集 EmC (1) 子集。处理器内部以模块化管理,包含快速可编程中断控制器 (PFIC)、扩展指令支持等单元。对外多组总线与外部单元模块相连,实现外部功能模块和内核的交互。

处理器以其极简指令集、多种工作模式、模块化定制扩展等特点可以灵活应用不同场景微控制器 设计,例如小面积低功耗嵌入式场景。

- 支持机器模式
- 快速可编程中断控制器 (PFIC)
- 2级硬件中断堆栈
- 支持串行单/双线调试接口
- 自定义扩展指令

注: 1. EmC 中的 "m" 代表指令集中的乘法。

1.4.2 片上存储器

内置最大 8K 字节 SRAM 区,用于存放数据,掉电后数据丢失。

内置最大 62K 字节程序闪存存储区(Code FLASH),即用户区,用于用户的应用程序和常量数据存储。

内置 3328 字节系统存储区(System FLASH), 即 B00T 区, 用于系统引导程序存储, 内置自举加载程序。

内置 256 字节系统非易失配置信息存储区,用于厂商配置字存储,出厂前固化,用户不可修改。 内置 256 字节用户自定义信息存储区,用于用户选择字存储。

1.4.3 供电方案

V₁₀ = 2.0~5.5V: 为 1/0 引脚以及内部调压器供电, 当使用 ADC 时, V₁₀不得小于 2.4V。

1.4.4 供电监控器

芯片内部集成了上电复位 (POR) /掉电复位 (PDR) 电路,该电路始终处于工作状态,保证系统在供电超过 2.0V 时工作;当 V_{10} 低于设定的阈值 ($V_{POR/POR}$)时,置器件于复位状态,而不必使用外部复位电路。

另外系统设有一个可编程的电压监测器(PVD),需要通过软件开启,用于比较 V_{10} 供电与设定的阈值 V_{PVD} 的电压大小。打开 PVD 相应边沿中断,可在 V_{10} 下降到 PVD 阈值或上升到 PVD 阈值时,收到中断通知。关于 $V_{POR/PDR}$ 和 V_{PVD} 的值参考第 3 章。

1.4.5 系统电压调节器 LDO

复位后,系统电压调节器自动开启,根据应用方式有两种操作模式。

- 开启模式:正常的运行操作,提供稳定的内核电源。
- 低功耗模式: 当 CPU 进入待机模式后,调节器低功耗运行。

1.4.6 低功耗模式

系统支持两种低功耗模式,可以针对低功耗、短启动时间和多种唤醒事件等条件下选择达到最佳 的平衡。

● 睡眠模式(SLEEP)

在睡眠模式下,只有 CPU 时钟停止,但所有外设时钟供电正常,外设处于工作状态。此模式是最 浅低功耗模式,但可以达到最快唤醒。

退出条件:任意中断或唤醒事件。

◆ 待机模式(STANDBY)

在内核的深睡眠模式(SLEEPDEEP)基础上结合了外设的时钟控制机制,并让电压调节器的运行处于更低功耗的状态。高频时钟(HSI/HSE/PLL)域被关闭,SRAM 和寄存器内容保持,I/0 引脚状态保持。该模式唤醒后系统可以继续运行,HSI 作为默认系统时钟。

退出条件:任意外部中断或唤醒事件(EXTI信号)、RST上的外部复位信号、IWDG复位,其中EXTI信号包括31个外部 I/O口之一、AWU自动唤醒等。

1.4.7 快速可编程中断控制器(PFIC)

芯片内置快速可编程中断控制器 (PFIC),最多支持 255 个中断向量,以最小的中断延迟提供了灵活的中断管理功能。当前芯片管理了 4 个内核私有中断和 25 个外设中断管理,其他中断源保留。PFIC的寄存器均可以在用户和机器特权模式下访问。

- 2个可单独屏蔽中断
- 提供一个不可屏蔽中断 NMI
- 支持硬件中断堆栈(HPE), 无需指令开销
- 提供 2 路免表中断(VTF)
- 向量表支持地址或指令模式
- 支持2级中断嵌套
- 支持中断尾部链接功能

1.4.8 外部中断/事件控制器(EXTI)

外部中断/事件控制器总共包含 10 个边沿检测器,用于产生中断/事件请求。每个中断线都可以独立地配置其触发事件(上升沿或下降沿或双边沿),并能够单独地被屏蔽;挂起寄存器维持所有中断请求状态。EXTI 可以检测到脉冲宽度小于内部 HB 的时钟周期。多达 31 个通用 I/0 口都可选择连接到同一个外部中断线。

1.4.9 通用 DMA 控制器

系统内置了通用 DMA 控制器,管理 7 个通道,灵活处理存储器到存储器、外设到存储器和存储器 到外设间的高速数据传输,支持环形缓冲区方式。每个通道都有专门的硬件 DMA 请求逻辑,支持一个 或多个外设对存储器的访问请求,可配置访问优先权、传输长度、传输的源地址和目标地址等。

DMA 用于主要的外设包括:通用/高级定时器 TIMx、ADC、USART、12C、SPI。

注: DMA 和 CPU 经过仲裁器仲裁之后对系统 SRAM 进行访问。

1.4.10 时钟和启动

系统时钟源 HSI 默认开启,在没有配置时钟或者复位后,内部 24MHz 的 RC 振荡器作为默认的 CPU 时钟,随后可以另外选择外部 3~25MHz 时钟或 PLL 时钟。当打开时钟安全模式后,如果 HSE 用作系统时钟(直接或间接),此时检测到外部时钟失效,系统时钟将自动切换到内部 RC 振荡器,同时 HSE 和 PLL 自动关闭;对于关闭时钟的低功耗模式,唤醒后系统也将自动地切换到内部的 RC 振荡器。如果使能了时钟中断,软件可以接收到相应的中断。

此外,为了提高系统的可靠性,还增加了系统时钟监控(System Clock Monitor, SCM)模块。当 其使能位开启后,如果系统时钟失效,就会产生刹车信号给高级定时器 TIM1,同时会置位系统时钟失 效中断标志。若提前使能相应中断使能,则会进入中断。

1.4.11 ADC(模拟/数字转换器)和触摸按键电容检测(TouchKey)

芯片内置 12 位的模拟/数字转换器 (ADC),提供多达 8 个外部通道和 3 个内部通道采样,采样速率可高达 3Msps,提供可编程的通道采样时间,可以实现单次、连续、扫描或间断转换。提供模拟看门 狗功能允许非常精准地监控一路或多路选中的通道,用于监测通道信号电压,监测到电压超过设定的 阈值时,可配置产生复位,保护系统。

ADC 内部通道分别是 ADC_IN8~ADC_IN10。内部参考电压 V_{RF} 被连接到 IN8 输入通道上; OPA 内部输出通道被连接到 IN9 输入通道上,用于将 OPA 的输出转换为数字数值。

触摸按键电容检测单元,提供了多达 8 个检测通道,复用 ADC 模块的外部通道。检测结果通过 ADC 模块转换输出结果,通过触摸检测算法子程序库或用户软件识别触摸按键状态。

1.4.12 定时器及看门狗

● 高级定时器(TIM1)

高级定时器是一个 16 位的自动装载递加/递减计数器, 具有 16 位可编程的预分频器。除了完整的通用定时器功能外,可以被看成是分配到 6 个通道的三相 PWM 发生器,具有带死区插入的互补 PWM 输出功能,允许在指定数目的计数器周期之后更新定时器进行重复计数周期,刹车功能等。高级定时器的很多功能都与通用定时器相同,内部结构也相同,因此高级定时器可以通过定时器链接功能与其他TIM 定时器协同操作,提供同步或事件链接功能。

● 通用定时器(TIM2)

通用定时器是一个 16 位的自动装载递加/递减计数器,具有一个可编程的 16 位预分频器以及 4 个独立的通道,每个通道都支持输入捕获、输出比较、PWM 生成和单脉冲模式输出。通过复用通道 3 和 4,通道 1 和 2 还具有带死区插入的互补 PWM 输出功能。此外,还能通过定时器链接功能与高级定时器 TIM1 共同工作,提供同步或事件链接功能。在调试模式下,计数器可以被冻结,任意通用定时器都能用于产生 PWM 输出。

● 精简定时器(TIM3)

精简定时器是一个 16 位的自动装载递加/递减计数器,支持四路独立的比较通道,并支持输出比较。通过在芯片内部产生信号来配合其他功能使用。能通过定时器链接功能与高级定时器 TIM1 共同工作,可产生特定频率的脉冲配合 TIM1,提供同步或事件链接功能。在调试模式下,计数器可以被冻结。

● 独立看门狗(IWDG)

独立看门狗是一个自由运行的 12 位递减计数器,支持 7 种分频系数。由一个内部独立的约 128KHz 的 RC 振荡器(LSI)提供时钟; LSI 独立于主时钟,可运行于待机模式。IWDG 在主程序之外,可以完全独立工作,因此,用于在发生问题时复位整个系统,或作为一个自由定时器为应用程序提供超时管理。通过选项字节可以配置成是软件或硬件启动看门狗。在调试模式下,计数器可以被冻结。

● 窗口看门狗(WWDG)

窗口看门狗是一个 7 位的递减计数器,并可以设置成自由运行。可以被用于在发生问题时复位整个系统。其由主时钟驱动,具有早期预警中断功能;在调试模式下,计数器可以被冻结。

● 系统时基定时器(SysTick)

青稞微处理器内核自带一个 32 位递增的计数器,用于产生 SYSTICK 异常(异常号: 15),可专用于实时操作系统,为系统提供"心跳"节律,也可当成一个标准的 32 位计数器。具有自动重加载功能及可编程的时钟源。

1.4.13 通用异步收发器(USART)

芯片提供了 2 组通用异步收发器(USART)。支持全双工异步串口通信以及半双工单线通信,也支持 LIN(局部互连网),兼容 IrDA SIR ENDEC 传输编解码规范,以及调制解调器(CTS/RTS 硬件流控)操作,还支持多处理器通信。其采用分数波特率发生器系统,支持 DMA 操作连续通讯。

1.4.14 串行外设接口(SPI)

芯片提供 1 个串行外设 SPI 接口,支持主或从操作,动态切换。支持多主模式,全双工或半双工

同步传输,支持基本的 SD 卡和 MMC 模式。可编程的时钟极性和相位,数据位宽提供 8 或 16 位选择,可靠通信的硬件 CRC 产生/校验,支持 DMA 操作连续通讯。

1.4.15 I2C 总线

芯片提供 1 个 I 2C 总线接口,能够工作于多主机模式或从模式,完成所有 I 2C 总线特定的时序、协议、仲裁等。支持标准和快速两种通讯速度。

I2C 接口提供 7 位或 10 位寻址, 并且在 7 位从模式时支持双从地址寻址。内置了硬件 CRC 发生器 /校验器。

1.4.16 通用输入输出接口(GPIO)

系统提供了 4 组 GP10 端口(PA0~PA7、PB0~PB6、PC0~PC7、PD0~PD7), 共 31 个 GP10 引脚。 多数引脚都可以由软件配置成输出(推挽或开漏)、输入(带或不带上拉或下拉)或复用的外设功能端口。

当 PA1 和 PA2 为晶振引脚, 即 PA1PA2_RM = 1 时, PA1 和 PA2 不能做 GPIO 功能使用。

所有 GP10 引脚支持可控上拉和下拉电阻。PD7、PA7 和 PC5 作为复位引脚时,默认开启上拉电阻并关闭下拉电阻。

所有 GP10 引脚都与数字或模拟的复用外设共用。所有 GP10 引脚都有较大电流驱动能力。提供锁定机制冻结 1/0 配置,以避免意外的写入 1/0 寄存器。

系统中所有 I/0 引脚的电源由 V_{10} 提供,通过改变 V_{10} 供电将改变 I/0 引脚输出电平高值来适配外部通讯接口电平。具体引脚请参考引脚描述。

1.4.17 运放/比较器(OPA)

芯片内置 1 组运放(OPA),也可用作电压比较器,其输入可通过更改配置对多个通道进行选择,包括可编程增益运放(PGA)的放大倍数选择,P 端支持 3 通道轮询;其输出则可通过更改配置对 2 个输出引脚进行选择,额外还有一个内部输出通道直连到 ADC 内部通道 IN9,支持将外部模拟小信号放大送入 ADC 以实现小信号 ADC 转换。支持高速模式,可通过设置高速模式提高压摆率。

1.4.18 调试接口(SDI Serial Debug Interface)

内核自带一个串行单线调试接口(1-wire SDI Serial Debug Interface)和一个串行 2 线调试接口(2-wire SDI Serial Debug Interface)。系统支持单双线两种调试模式;其中,单线调试为默认调试模式,对应 SWIO 引脚(Single Wire Input Output),而双线调试对应 SWDIO 和 SWCLK 引脚,应用于下载时可以提高速度。系统上电或复位后默认调试接口引脚功能开启,主程序运行后可以根据需要关闭 SDI。在使用单线仿真调试接口时必须开启 HSI 时钟。

第2章 引脚信息

2.1 引脚排列

2.1.1 CH32V006 引脚排列

2.1.2 CH32V005 引脚排列

注: 引脚图中复用功能均为缩写。

示例: A:ADC_ (A1:ADC_IN1、AET:ADC_RETR、AET2:ADC_IETR)

T1:TIM1_ (T1C1:TIM1_CH1, T1C1N:TIM1_CH1N, T1BK:TIM1_BKIN, T1E:TIM1_ETR)

T2:TIM2 (T2C1:TIM2 CH1 ETR, T2C2:TIM2 CH2)

USART1_ (RX:USART1_RX, TX:USART1_TX)

U2:USART2_ (U2RX:USART2_RX, U2TX:USART2_TX)

0:0PA_ (0PP0:0PA_P0, 0PN0:0PA_N0, 0P01:0PA_0UT1, 0P0:0PA_0UT0)

12C_ (SDA:12C_SDA, SCL:12C_SCL)

SPI_ (SCK:SPI_SCK, NSS:SPI_NSS, MISO:SPI_MISO, MOSI:SPI_MOSI)

SW10:SW10/SWD10

SWCK: SWCLK

2.2 引脚描述

注意,下表中的引脚功能描述针对的是所有功能,不涉及具体型号产品。不同型号之间外设资源有差 异,查看前请先根据产品型号资源表确认是否有此功能。

表 2-1 CH32V006 引脚定义

	引脚编号							
TSS0P20	QFN20	QS0P24	QFN32	引脚 名称	引脚 类型	主功能(复位后)	默认复用功能	重映射功能 ^②
7	0	5	0	V _{ss}	Р	V _{SS}		
-	ı	24	1	PB3	1/0	PB3	USART2_RX/SWCLK	TIM1_BKIN_4/TIM1_BKIN_5/ USART1_TX_5/USART1_RX_4/ USART2_RTS_1/USART2_RTS_6/ 12C_SCL_4/SPI_MISO_2
_	_	16	2	PA5	1/0/A	PA5	USART2_RTS/0PA_0UT1	USART1_RTS_4/USART1_RTS_5/ USART2_RX_1/USART2_RX_6
_	_	17	3	PA6 ⁽³⁾	1/0	PA6		USART2_TX_6
-	_	1	4	PA7 ⁽⁵⁾	1/0	PA7	USART2_TX/RST	TIM1_BKIN_6/USART2_CTS_1/ USART2_CTS_6
_	_	18	5	PAO	1/0	PAO		TIM1_CH1_9/TIM1_CH1N_4/ TIM1_CH1N_5/TIM1_CH1N_6/ TIM2_CH1_ETR_5/USART1_TX_8/ USART1_TX_9/USART2_CTS_2/ USART2_CTS_3
5	2	17	6	PA1 ⁽³⁾	I/0/A	PA1	ADC_IN1/TIM1_CH2/ OPA_NO	XI/TIM1_CH2_1/ TIM1_CH2_9/TIM2_CH2_5/ TIM2_CH2_6/USART1_RX_8/ USART2_RTS_2/USART2_RTS_3/ USART2_RTS_4/USART2_RTS_5/ SPI_SCK_5
6	3	19	7	PA2	1/0/A	PA2	ADC_INO/TIM1_CH2N/ OPA_PO	X0/TIM1_CH3_9/ TIM1_CH2N_1/TIM1_CH2N_4/ TIM1_CH2N_5/TIM1_CH2N_6/ TIM2_CH3_5/TIM2_CH3_6/ TIM2_CH3_7/USART2_TX_2/ SPI_MOSI_5/ADC_IETR_1
8	5	20	8	PD0	I/0/A	PD0	TIM1_CH1N/OPA_N1	TIM1_CH1N_1/TIM1_CH3N_4/ TIM1_CH3N_5/TIM1_CH3N_6/ USART1_TX_2/I2C_SDA_1
-	_	21	9	PA3	1/0	PA3		TIM1_CH1_4/TIM1_CH1_5/ TIM1_CH1_6/TIM1_CH4_9/ TIM1_CH1N_8/TIM2_CH4_5/ TIM2_CH4_6/TIM2_CH4_7/ USART2_RX_2

	引脚	编号						
TSS0P20	QFN20	QS0P24	QFN32	引脚 名称	労脚 类型	主功能(复位后)	默认复用功能	重映射功能 ^②
_	ı	22	10	PB0	1/0	PB0		TIM1_CH2_4/TIM1_CH2_5/ TIM1_CH2_6/TIM1_CH2N_8/ USART2_TX_4/SPI_NSS_3/
_	-	23	11	PB1	1/0	PB1		TIM1_CH3_4/TIM1_CH3_6/ TIM1_CH3N_8/TIM2_CH1_ETR_6/ USART2_RX_4/SPI_SCK_3
_	_	_	12	PB2	1/0	PB2		TIM1_CH4_6/TIM1_BKIN_7/ TIM1_BKIN_8/TIM1_BKIN_9/ SPI_MISO_3
10	7	2	13	PC0	1/0	PC0	TIM2_CH3	TIM1_CH3_2/TIM1_CH1N_7/ TIM1_CH1N_9/TIM2_CH1_ETR_4/ TIM2_CH3_1/USART1_TX_3/ SPI_NSS_1/SPI_MOSI_3
11	8	3	14	PC1	1/0	PC1	I2C_SDA/SPI_NSS	TIM1_CH2N_7/TIM1_CH2N_9/ TIM1_BKIN_2/TIM1_BKIN_3/ TIM2_CH1_ETR_1/ TIM2_CH1_ETR_3/TIM2_CH2_4/ TIM2_CH4_2/USART1_RX_3/ SPI_NSS_5
12	9	4	15	PC2	1/0/A	PC2	TIM1_BKIN/USART1_RTS/ I2C_SCL	TIM1_CH3N_7/TIM1_CH3N_9/ TIM2_CH2_2/USART1_RTS_2/ TIM1_BKIN_1/TIM1_ETR_3/ ADC_RETR_1
13	10	-	16	PC3	1/0	PC3	TIM1_CH3	TIM1_CH3_1/TIM1_CH3_5/ TIM1_CH1N_2/TIM1_CH1N_3/ TIM2_CH3_4/USART1_CTS_2
9	6	6	17	V_{DD}	Р	$V_{ exttt{DD}}$		
14	11	8	18	PC4	I/0/A	PC4	ADC_IN2/TIM1_CH4/MCO	TIM1_CH1_3/TIM1_CH1_7/ TIM1_CH1_8/TIM1_CH4_1/ TIM1_CH2N_2/USART1_RX_9/ USART2_TX_5/SPI_NSS_2/ SPI_NSS_6
15	12	7	19	PC5 ⁽⁵⁾	1/0	PC5	TIM1_ETR/SPI_SCK/RST	TIM1_CH2_7/TIM1_CH2_8/ TIM1_CH3_3/TIM1_ETR_2/ TIM2_CH1_ETR_2/USART1_TX_6/ I2C_SCL_2/SPI_SCK_1
16	13	_	20	PC6	1/0	PC6	SPI_MOSI	TIM1_CH1_2/TIM1_CH3_7/ TIM1_CH3_8/TIM1_CH3N_3/ USART1_RX_6/USART1_CTS_1/

	引脚	编号						
TSS0P20	QFN20	QS0P24	QFN32	引脚 名称	学型	主功能 (复位 后)	默认复用功能	重映射功能 ^②
								USART1_CTS_3/SPI_MOSI_1/ I2C_SDA_2
17	14	ı	21	PC7	1/0	PC7	SPI_MISO	TIM1_CH2_2/TIM1_CH2_3/ TIM1_CH4_7/TIM1_CH4_8/ TIM2_CH2_3/USART1_CTS_6/ USART1_CTS_7/USART1_RTS_1/ USART1_RTS_3/SPI_MISO_1/ SPI_MISO_6
_	_	-	22	PB4	1/0	PB4		TIM1_ETR_7/TIM1_ETR_8/ TIM1_ETR_9/USART1_RTS_6/ USART1_RTS_7/SPI_MOSI_6
18	15	1	23	PD1	I/0/A	PD1	TIM1_CH3N/SWIO/SWDIO/ OPA_P3/ADC_IETR	TIM1_CH4_4/TIM1_CH4_5/ TIM1_CH3N_1/TIM1_CH3N_2/ USART1_TX_4/USART1_RX_2/ USART1_RX_5/USART2_RX_5/ I2C_SCL_1/I2C_SDA_4
19	16	9	24	PD2	I/0/A	PD2	ADC_IN3/TIM1_CH1	TIM1_CH1_1/TIM1_CH2N_3/ TIM2_CH3_2/USART1_CTS_8/ USART2_TX_3/SPI_SCK_2
20	17	10	25	PD3	I/0/A	PD3	ADC_IN4/TIM2_CH2/ USART1_CTS/OPA_P2/ ADC_RETR	TIM1_CH4_2/TIM2_CH1_ETR_7/ TIM2_CH2_1/USART1_RTS_8/ USART2_RX_3/SPI_NSS_4/ SPI_MOSI_2
1	18	11	26	PD4	1/0/A	PD4	ADC_IN7/TIM2_CH1_ETR/ OPA_OUTO	TIM1_CH4_3/TIM1_ETR_1/ TIM1_ETR_4/TIM1_ETR_5/ TIM1_ETR_6/TIM2_CH2_7/ USART1_RTS_9/SPI_SCK_4
2	19	12	27	PD5	1/0/A	PD5	ADC_IN5/USART1_TX	TIM2_CH4_3/USART1_RX_1/ USART1_CTS_9/SPI_MISO_4
3	20	13	28	PD6	1/0/A	PD6	ADC_IN6/USART1_RX	TIM2_CH3_3/USART1_TX_1/ SPI_MOSI_4
_	-	-	29	PB5	1/0	PB5		USART1_TX_7/I2C_SCL_3/ SPI_SCK_6/SPI_MISO_5
_	_	_	30	PB6	1/0	PB6		TIM2_CH4_4/USART1_RX_7/ USART2_CTS_4/I2C_SDA_3
4	1	14	31	PD7 ^{(4) (5)}	1/0/A	PD7	TIM2_CH4/RST/OPA_P1	TIM2_CH4_1/USART1_CTS_4/ USART1_CTS_5
		15	32	PA4 ⁽⁴⁾	1/0/A	PA4	USART2_CTS/OPA_N2	USART2_TX_1/USART2_CTS_5

表2-2 CH32V005引脚定义

QFN12	引 0ZdOSS1	编 0EN30	QS0P24	引脚 名称	引脚 类型 ^⑴	主功 能 (复 位后)	默认复用功能	重映射功能②
0	7	0 4	5	Vss	Р	V _{SS}		
_	-	_	24	PB3	1/0	PB3	USART2_RX/SWCLK	TIM1_BKIN_4/TIM1_BKIN_5/ USART1_TX_5/USART1_RX_4/ USART2_RTS_1/USART2_RTS_6/ I2C_SCL_4/SPI_MISO_2
-	ı	_	16	PA5	1/0/A	PA5	USART2_RTS/OPA_OUT1	USART1_RTS_4/USART1_RTS_5/ USART2_RX_1/USART2_RX_6
-	_	_	17	PA6 ⁽³⁾	1/0	PA6		USART2_TX_6
-	1	-	18	PAO	1/0	PA0		TIM1_CH1_9/TIM1_CH1N_4/ TIM1_CH1N_5/TIM1_CH1N_6/ TIM2_CH1_ETR_5/USART1_TX_8/ USART1_TX_9/USART2_CTS_2/ USART2_CTS_3
1	5	2	17	PA1 ⁽³⁾	1/0/A	PA1	ADC_IN1/TIM1_CH2/ OPA_NO	XI/TIM1_CH2_1/TIM1_CH2_9/ TIM2_CH2_5/TIM2_CH2_6/ USART1_RX_8/USART2_RTS_2/ USART2_RTS_3/USART2_RTS_4/ USART2_RTS_5/SPI_SCK_5
2	6	3	19	PA2	I/0/A	PA2	ADC_INO/TIM1_CH2N/ OPA_PO	X0/TIM1_CH3_9/TIM1_CH2N_1/ TIM1_CH2N_4/TIM1_CH2N_5/ TIM1_CH2N_6/TIM2_CH3_5/ TIM2_CH3_6/TIM2_CH3_7/ USART2_TX_2/SPI_MOSI_5/ ADC_IETR_1
3	8	5	20	PD0	1/0/A	PD0	TIM1_CH1N/OPA_N1	TIM1_CH1N_1/TIM1_CH3N_4/ TIM1_CH3N_5/TIM1_CH3N_6/ USART1_TX_2/I2C_SDA_1
-	_	_	21	PA3	1/0	PA3		TIM1_CH1_4/TIM1_CH1_5/ TIM1_CH1_6/TIM1_CH4_9/ TIM1_CH1N_8/TIM2_CH4_5/ TIM2_CH4_6/TIM2_CH4_7/ USART2_RX_2
_	-	-	22	PB0	1/0	PB0		TIM1_CH2_4/TIM1_CH2_5/ TIM1_CH2_6/TIM1_CH2N_8/ USART2_TX_4/SPI_NSS_3/
_	-	_	23	PB1	1/0	PB1		TIM1_CH3_4/TIM1_CH3_6/ TIM1_CH3N_8/TIM2_CH1_ETR_6/ USART2_RX_4/SPI_SCK_3

	引脚	编号				主功		
QFN12	TSS0P20	QFN20	QS0P24	引脚 名称	引脚 类型 ^⑴	能(复位后)	默认复用功能	重映射功能 ^②
5	10	7	2	PC0	1/0	PC0	TIM2_CH3	TIM1_CH3_2/TIM1_CH1N_7/ TIM1_CH1N_9/TIM2_CH1_ETR_4/ TIM2_CH3_1/USART1_TX_3/ SPI_NSS_1/SPI_MOSI_3
-	11	8	3	PC1	1/0	PC1	I2C_SDA/SPI_NSS	TIM1_CH2N_7/TIM1_CH2N_9/ TIM1_BKIN_2/TIM1_BKIN_3/ TIM2_CH1_ETR_1/ TIM2_CH1_ETR_3/TIM2_CH2_4/ TIM2_CH4_2/USART1_RX_3/ SPI_NSS_5
_	12	9	4	PC2	1/0/A	PC2	TIM1_BKIN/USART1_RTS/ I2C_SCL	TIM1_CH3N_7/TIM1_CH3N_9/ TIM2_CH2_2/USART1_RTS_2/ TIM1_BKIN_1/TIM1_ETR_3/ ADC_RETR_1
6	13	10	_	PC3	1/0	PC3	TIM1_CH3	TIM1_CH3_1/TIM1_CH3_5/ TIM1_CH1N_2/TIM1_CH1N_3/ TIM2_CH3_4/USART1_CTS_2
4	9	6	6	V_{DD}	Р	$V_{ exttt{DD}}$		
7	14	11	8	PC4	1/0/A	PC4	ADC_IN2/TIM1_CH4/MCO	TIM1_CH1_3/TIM1_CH1_7/ TIM1_CH1_8/TIM1_CH4_1/ TIM1_CH2N_2/USART1_RX_9/ USART2_TX_5/SPI_NSS_2/ SPI_NSS_6/
-	15	12	7	PC5 ⁽⁵⁾	1/0	PC5	TIM1_ETR/SPI_SCK/RST	TIM1_CH2_7/TIM1_CH2_8/ TIM1_CH3_3/TIM1_ETR_2/ TIM2_CH1_ETR_2/USART1_TX_6/ I2C_SCL_2/SPI_SCK_1
8	16	13	_	PC6	1/0	PC6	SPI_MOSI	TIM1_CH1_2/TIM1_CH3_7/ TIM1_CH3_8/TIM1_CH3N_3/ USART1_RX_6/USART1_CTS_1/ USART1_CTS_3/SPI_MOSI_1/ I2C_SDA_2
9	17	14	-	PC7	1/0 1/0/A	PC7	SPI_MISO TIM1_CH3N/SWIO/SWDIO/	TIM1_CH2_2/TIM1_CH2_3/ TIM1_CH4_7/TIM1_CH4_8/ TIM2_CH2_3/USART1_CTS_6/ USART1_CTS_7/USART1_RTS_1/ USART1_RTS_3/SPI_MISO_1/ SPI_MISO_6 TIM1_CH4_4/TIM1_CH4_5/
10	10	10	'	וטיו	1/ U/ A	וטיו	1 M _O	

	引脚	编号				主功		
QFN12	TSS0P20	QFN20	QS0P24	引脚 名称	引脚 类型 ^⑴	能(复位后)	默认复用功能	重映射功能 ^②
							OPA_P3/ADC_IETR	TIM1_CH3N_1/TIM1_CH3N_2/
								USART1_TX_4/USART1_RX_2/
								USART1_RX_5/USART2_RX_5/
								12C_SCL_1/12C_SDA_4
								TIM1_CH1_1/TIM1_CH2N_3/
-	19	16	9	PD2	1/0/A	PD2	ADC_IN3/TIM1_CH1	TIM2_CH3_2/USART1_CTS_8/
								USART2_TX_3/SPI_SCK_2
							ADC_IN4/TIM2_CH2/	TIM1_CH4_2/TIM2_CH1_ETR_7/
_	20	17	10	PD3	 1/0/A	PD3	USART1_CTS/OPA_P2/	TIM2_CH2_1/USART1_RTS_8/
	20	1,	10	1 00	17 07 7	1 00	ADC RETR	USART2_RX_3/SPI_NSS_4/
							ADO_RETR	SPI_MOSI_2
								TIM1_CH4_3/TIM1_ETR_1/
111	1	18	11	PD4	 1/0/A	PD4	ADC_IN7/TIM2_CH1_ETR/	TIM1_ETR_4/TIM1_ETR_5/
1	'	10		154	17 07 7	''	OPA_OUTO	TIM1_ETR_6/TIM2_CH2_7/
								USART1_RTS_9/SPI_SCK_4
l _	2	19	12	PD5	 1/0/A	PD5	ADC IN5/USART1 TX	TIM2_CH4_3/USART1_RX_1/
	_	.,		1 50	17 07 71	. 50	7,50_11167 667,11111_171	USART1_CTS_9/SPI_MISO_4
_	3	20	13	PD6	 1/0/A	PD6	ADC_IN6/USART1_RX	TIM2_CH3_3/USART1_TX_1/
		20	13	100	17 07 1	1 00	ADO_TNO/ COARTT_RX	SPI_MOSI_4
			14	PD7 ^{(4) (5)}	 1/0/A	PD7	TIM2 CH4/RST/OPA P1	TIM2_CH4_1/USART1_CTS_4/
12	4	1			1, 3, 1	101	1.1m2_011=/ 101/ 01 /1_1 1	USART1_CTS_5
			15	PA4 ⁽⁴⁾	1/0/A	PA4	USART2_CTS/OPA_N2	USART2_TX_1/USART2_CTS_5

注1: 表格缩写解释:

- I = TTL/CMOS 电平斯密特输入; 0 = CMOS 电平三态输出;
- A = 模拟信号输入或输出; P = 电源。
- 注2: 重映射功能下划线后的数值表示AFIO寄存器中相对应位的配置值。例如: TIM1_BKIN_4表示AFIO 寄存器相应位配置为100b。
- 注3: 对于CH32V006E8R6和CH32V005E6R6芯片, PA1与PA6引脚在芯片内部短接合封, 禁止两个I/0均配置 为输出功能。
- 注4: 对于CH32V006F8U6、CH32V006F8P6、CH32V005F6U6、CH32V005F6P6和CH32V005D6U6芯片, PA4与PD7 引脚在芯片内部短接合封,禁止两个I/0均配置为输出功能。
- 注5: 对于CH32V006K8U6芯片, PA7为复位引脚; 对于CH32V006E8R6和CH32V005E6R6芯片, PC5为复位引脚; 对于其余CH32V006和CH32V005芯片, PD7为复位引脚。

2.3 引脚复用功能

注意,下表中的引脚功能描述针对的是所有功能,不涉及具体型号产品。不同型号之间外设资源有差异,查看前请先根据产品型号资源表确认是否有此功能。

表 2-3 引脚复用和重映射功能

复用引脚	ADC	TIM1	TIM2	USART	SYS	120	SPI	OPA
PAO		TIM1_CH1_9 TIM1_CH1N_4 TIM1_CH1N_5 TIM1_CH1N_6	TIM2_CH1_ETR_5	USART1_TX_8 USART1_TX_9 USART2_CTS_2 USART2_CTS_3				
PA1	ADC_IN1	TIM1_CH2 TIM1_CH2_1 TIM1_CH2_9	TIM2_CH2_5 TIM2_CH2_6	USART1_RX_8 USART2_RTS_2 USART2_RTS_3 USART2_RTS_4 USART2_RTS_5	ΧI		SPI_SCK_5	OPA_NO
PA2	ADC_INO ADC_IETR_1	TIM1_CH3_9 TIM1_CH2N TIM1_CH2N_1 TIM1_CH2N_4 TIM1_CH2N_5 TIM1_CH2N_6	TIM2_CH3_5 TIM2_CH3_6 TIM2_CH3_7	USART2_TX_2	ХО		SPI_MOSI_5	OPA_PO
PA3		TIM1_CH1_4 TIM1_CH1_5 TIM1_CH1_6 TIM1_CH4_9 TIM1_CH1N_8	TIM2_CH4_5 TIM2_CH4_6 TIM2_CH4_7	USART2_RX_2				
PA4				USART2_TX_1 USART2_CTS USART2_CTS_5				OPA_N2
PA5				USART1_RTS_4 USART1_RTS_5 USART2_RX_1 USART2_RX_6 USART2_RTS				OPA_OUT1
PA6				USART2_TX_6				
PA7		TIM1_BKIN_6		USART2_TX USART2_CTS_1 USART2_CTS_6	RST (1)			
PB0		TIM1_CH2_4 TIM1_CH2_5 TIM1_CH2_6 TIM1_CH2N_8		USART2_TX_4			SPI_NSS_3	
PB1		TIM1_CH3_4 TIM1_CH3_6 TIM1_CH3N_8	TIM2_CH1_ETR_6	USART2_RX_4			SPI_SCK_3	
PB2		TIM1_CH4_6 TIM1_BKIN_7 TIM1_BKIN_8 TIM1_BKIN_9					SPI_MISO_3	
PB3		TIM1_BKIN_4 TIM1_BKIN_5		USART1_TX_5 USART1_RX_4 USART2_RX USART2_RTS_1 USART2_RTS_6	SWCLK	12C_SCL_4	SPI_MISO_2	
PB4		TIM1_ETR_7 TIM1_ETR_8 TIM1_ETR_9		USART1_RTS_6 USART1_RTS_7			SPI_MOSI_6	
PB5				USART1_TX_7		12C_SCL_3	SPI_SCK_6 SPI_MISO_5	
PB6			T1M2_CH4_4	USART1_RX_7 USART2_CTS_4		12C_SDA_3		
PC0		TIM1_CH3_2 TIM1_CH1N_7 TIM1_CH1N_9	TIM2_CH1_ETR_4 TIM2_CH3 TIM2_CH3_1	USART1_TX_3			SPI_NSS_1 SPI_MOSI_3	

复用引脚	ADC	TIM1	TIM2	USART	SYS	120	SPI	OPA
PC1		TIM1_CH2N_7 TIM1_CH2N_9 TIM1_BKIN_2 TIM1_BKIN_3	TIM2_CH1_ETR_1 TIM2_CH1_ETR_3 TIM2_CH2_4 TIM2_CH4_2	USART1_RX_3		12C_SDA	SPI_NSS SPI_NSS_5	
PC2	ADC_RETR_1	TIM1_CH3N_7 TIM1_CH3N_9 TIM1_BKIN TIM1_BKIN_1 TIM1_ETR_3	T1M2_CH2_2	USART1_RTS USART1_RTS_2		12C_SCL		
PC3		TIM1_CH3 TIM1_CH3_1 TIM1_CH3_5 TIM1_CH1N_2 TIM1_CH1N_3	T1M2_CH3_4	USART1_CTS_2				
PC4	ADC_IN2	TIM1_CH1_3 TIM1_CH1_7 TIM1_CH1_8 TIM1_CH4 TIM1_CH4_1 TIM1_CH2N_2		USART1_RX_9 USART2_TX_5	MCO		SPI_NSS_2 SPI_NSS_6	
PC5		TIM1_CH2_7 TIM1_CH2_8 TIM1_CH3_3 TIM1_ETR TIM1_ETR_2	TIM2_CH1_ETR_2	USART1_TX_6	RST (1)	12C_SCL_2	SPI_SCK SPI_SCK_1	
PC6		TIM1_CH1_2 TIM1_CH3_7 TIM1_CH3_8 TIM1_CH3N_3		USART1_RX_6 USART1_CTS_1 USART1_CTS_3		12C_SDA_2	SPI_MOSI SPI_MOSI_1	
PC7		TIM1_CH2_2 TIM1_CH2_3 TIM1_CH4_7 TIM1_CH4_8	T1M2_CH2_3	USART1_CTS_6 USART1_CTS_7 USART1_RTS_1 USART1_RTS_3			SPI_MISO SPI_MISO_1 SPI_MISO_6	
PD0		TIM1_CH1N TIM1_CH1N_1 TIM1_CH3N_4 TIM1_CH3N_5 TIM1_CH3N_6		USART1_TX_2		I2C_SDA_1		OPA_N1
PD1	ADC_IETR	TIM1_CH4_4 TIM1_CH4_5 TIM1_CH3N TIM1_CH3N_1 TIM1_CH3N_2		USART1_TX_4 USART1_RX_2 USART1_RX_5 USART2_RX_5	SWIO SWDIO	12C_SCL_1 12C_SDA_4		OPA_P3
PD2	ADC_IN3	TIM1_CH1 TIM1_CH1_1 TIM1_CH2N_3	T1M2_CH3_2	USART1_CTS_8 USART2_TX_3			SPI_SCK_2	
PD3	ADC_IN4 ADC_RETR	TIM1_CH4_2	TIM2_CH1_ETR_7 TIM2_CH2 TIM2_CH2_1	USART1_CTS USART1_RTS_8 USART2_RX_3			SPI_NSS_4 SPI_MOSI_2	OPA_P2
PD4	ADC_IN7	TIM1_CH4_3 TIM1_ETR_1 TIM1_ETR_4 TIM1_ETR_5 TIM1_ETR_6	TIM2_CH1_ETR TIM2_CH2_7	USART1_RTS_9			SPI_SCK_4	OPA_OUTO
PD5	ADC_IN5		T1M2_CH4_3	USART1_TX USART1_RX_1 USART1_CTS_9			SPI_MISO_4	
PD6	ADC_IN6		T1M2_CH3_3	USART1_TX_1 USART1_RX			SPI_MOSI_4	
PD7			TIM2_CH4 TIM2_CH4_1	USART1_CTS_4 USART1_CTS_5	RST (1)			0PA_P1

注1: 对于CH32V006K8U6芯片,PA7为复位引脚;对于CH32V006E8R6和CH32V005E6R6芯片,PC5为复位引脚;对于其余CH32V006和CH32V005芯片,PD7为复位引脚。

第3章 电气特性

3.1 测试条件

除非特殊说明和标注,所有电压都以 Vss 为基准。

所有最小值和最大值将在最坏的环境温度、供电电压和时钟频率条件下得到保证。典型数值是基于常温 25° C和 V_{DD} = 3. 3V 或 5V 的环境下用于设计指导。

对于通过综合评估、设计模拟或工艺特性得到的数据,不会在生产线进行测试。在综合评估的基础上,最小和最大值是通过样本测试后统计得到。除非特殊说明为实测值,否则特性参数以综合评估或设计保证。

供电方案:

图 3-1 常规供电典型电路

3.2 绝对最大值

临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏。

表 3-1 绝对最大值参数表

符号	描述	最小值	最大值	单位
T _A	工作时的环境温度	-40	85	°C
Ts	存储时的环境温度	-40	125	°C
V_{DD} – V_{SS}	外部主供电引脚 V∞上的电压	-0. 3	5. 5	٧
V_{1N}	1/0 引脚上的电压	V _{ss} -0. 3	V _{DD} +0. 3	V
$ \triangle V_{DD_x} $	主供电引脚各 V∞之间的电压差		50	mV
$ \triangle V_{ss_x} $	公共地引脚各 Vss 之间的电压差		50	mV
V _{ESD (HBM)}	普通 I/O 引脚的 ESD 静电放电电压(HBM)	4	ŀK	V
I _{VDD}	所有 V∞主供电引脚的合计总电流		100	mA
I vss	所有 Vss 公共地引脚的合计总电流		200	mA
I 10	任意 1/0 和控制引脚上的灌电流		30	
I 10	任意 1/0 和控制引脚上的源电流		-30	
	HSE 的 XI 引脚		+/-4	mA
INJ (PIN)	其他引脚的注入电流		+/-4	
Σ I INJ (PIN)	所有 I/0 和控制引脚的总注入电流		+/-20	

3.3 电气参数

3.3.1 工作条件

表 3-2 通用工作条件

符号	参数	条件	最小值	最大值	单位	
F _{HCLK} 或 F _{SYS}	内部系统总线频率 或微处理器主频			48	MHz	
, ,	标准工作电压	未使用 ADC 功能	2. 0	5. 5	V	
$V_{ extsf{DD}}$	秋水连二1F电压 	使用 ADC 功能	2. 4	5. 5	V	
T _A	环境温度		-40	85	°C	
TJ	结温度范围		-40	105	°C	

表 3-3 上电和掉电条件

符号	参数	条件	最小值	最大值	单位
_	V∞上升速率		0	∞	us/V
LVDD	V∞下降速率		40	∞	us/V

3.3.2 内置复位和电源控制模块特性

表 3-4 复位及电压监测

符号	参数	条件	最小值	典型值	最大值	单位
		PLS[1:0] = 00 上升沿		1. 86		V
		PLS[1:0] = 00 下降沿		1. 85] '
		PLS[1:0] = 01 上升沿		2. 22		V
,	可编程电压检测器的电平 选择	PLS[1:0] = 01 下降沿		2. 21] '
$V_{\mathtt{PVD}}$		PLS[1:0] = 10 上升沿		2. 42		V
		PLS[1:0] = 10 下降沿		2. 4		\ \ \
		PLS[1:0] = 11 上升沿		2. 64		V
		PLS[1:0] = 11 下降沿		2. 59		V
$V_{ t PVDhyst}$	PVD 迟滞		5	20	60	mV
,	│ · 上电/掉电复位阈值	上升沿	1. 7	1. 85	2. 0	V
$V_{ t POR/PDR}$	/ 工电/ 挥电复型関阻 	下降沿	1. 6	1. 75	1. 9	V
V _{PDRhyst}	PDR 迟滞		60	80	100	mV
_	上电复位	RST_MODE[1:0] = 11		2		ms
t _{rsttempo}	其他复位			300		us

注: 1. 常温测试值。

3.3.3 内置的参考电压

表 3-5 内置参考电压

符号	参数	条件	最小值	典型值	最大值	单位
V _{REFINT}	内置参考电压	$T_A = -40^{\circ}C \sim 85^{\circ}C$	1. 18	1. 2	1. 22	٧
$T_{S_vrefint}$	当读出内部参考电压时, ADC 的采样时间	建议慢速采样	3		240	1/f _{ADC}

3.3.4 供电电流特性

电流消耗是多种参数和因素的综合指标,这些参数和因素包括工作电压、环境温度、1/0 引脚的

负载、产品的软件配置、工作频率、I/O 脚的翻转速率、程序在存储器中的位置以及执行的代码等。 电流消耗测量方法如下图:

图 3-2 电流消耗测量

微控制器处于下列条件:

常温 V_{DD} = 3. 3V 或 5V 情况下,测试时:所有 I/O 端口配置下拉输入; HSI = 24MHz (已校准),寄存器 PWR_CTLR 的位 LDO_MODE = 10,使能或关闭所有外设时钟的功耗。

表 3-6 运行模式下典型的电流消耗,数据处理代码从内部闪存中运行

<i>55</i> □	* **h		条件		典型	值	* <i>(</i> -			
符号	参数	HS1/HSE	HSI_LP	F _{HCLK}	使能所有外设	关闭所有外设	単位			
			时钟 (HSE)	时钟 (HSE)		F _{HCLK} = 48MHz	4. 4	3. 5		
							F _{HCLK} = 24MHz	3. 3	2. 8	
	(HSE_				Х	$F_{HCLK} = 16MHz$	2. 8	2. 5		
				$F_{HCLK} = 8MHz$	2. 5	2. 4				
			HOL_LI - 17		F _{HCLK} = 750KHz	1. 7	1. 7			
I _{DD} (1)				$F_{HCLK} = 48MHz$	3. 7	2. 8	mA			
	电流			$F_{HCLK} = 24MHz$	2. 5	2. 0				
	运行于高速内部 RC振荡器(HSI)	<u> </u>	1	0	$F_{HCLK} = 16MHz$	2. 1	1. 7			
					F _{HCLK} = 8MHz	1. 8	1. 6			
				F _{HCLK} = 750KHz	0. 9	0. 9				
			1	F _{HCLK} = 40KHz	0. 6	0.6				

注:以上为实测参数。

表 3-7 睡眠模式下典型的电流消耗,数据处理代码从内部闪存或 SRAM 中运行

符号	公 Жь		条件		典型	业值	畄/☆		
付写	参数	HS1/HSE	HSI_LP	F _{HCLK}	使能所有外设	关闭所有外设	単位		
		大下的供 HSE_LP = 1)	二 二二 古 古 协		F _{HCLK} = 48MHz	3. 0	2. 1		
			Х	F _{HCLK} = 24MHz	2. 3	1.8			
	SLEEP睡眠			$F_{HCLK} = 16MHz$	2. 1	1.8			
				$F_{HCLK} = 8MHz$	1.8	1. 7			
	使式下的供		HOL_LF = 17	HOL_LI - 17	-	110E_E1 17	$F_{HCLK} = 750KHz$	1. 6	1.6
I _{DD} (1)	时外设供电		+	$F_{HCLK} = 48MHz$	2. 2	1.3	mA		
	和时钟保	, 		F _{HCLK} = 24MHz	1. 5	1.0			
	持)	部 RC 振 荡 器 $ (HSI) $	0	$F_{HCLK} = 16MHz$	1. 3	1.0			
	147		$F_{HCLK} = 8MHz$	1. 1	0. 9				
				F _{HCLK} = 750KHz	0. 9	0. 9			
			1	F _{HCLK} = 40KHz	0. 6	0.6			

注:以上为实测参数。

表 3-8 待机模式下典型的电流消耗

符号	- ₩h		条件			单位	
付写	参数	独立看门狗	LSI	$V_{ extsf{DD}}$	典型值	半亚	
	CTANDDY 往机	开白	开启 开启	3. 3V	10. 7		
		开启 开启	5 V	11. 6			
,	STANDBY 待机 模式下的供	关闭	关闭 3. 3V 5V	Υ '□	3. 3V	10. 2]
l _{DD}	使 氏 下 的 供 应电流	ZNJ		5 V	11. 1	· uA	
		关闭	πь	3. 3V	10. 7		
		Z NJ	开启	5 V	11. 6		

注: 以上为实测参数。

3.3.5 外部时钟源特性

表 3-9 来自外部高速时钟

符号	参数	条件	最小值	典型值	最大值	单位
F _{HSE_ext}	外部时钟频率		3	24	32	MHz
V _{HSEH} ⁽¹⁾	XI 输入引脚高电平电压		0. 8V _{DD}		V _{DD}	V
$V_{HSEL}^{(1)}$	XI 输入引脚低电平电压		0		0. 2V _{DD}	٧
$C_{in(HSE)}$	XI 输入电容			5		рF
DuCy _(HSE)	占空比(Duty cycle)		40	50	60	%
ΙL	XI 输入漏电流				±1	uA

注: 1. 不满足此条件可能会引起电平识别错误。

图 3-3 外部提供高频时钟源电路

表 3-10 使用一个晶体/陶瓷谐振器产生的高速外部时钟

符号	参数	条件	最小值	典型值	最大值	单位
F _{x1}	谐振器频率		3	24	32	MHz
$R_{\scriptscriptstyle F}$	反馈电阻 (无需外置)			250		kΩ
C_{LOAD}	建议的负载电容与对应晶体 串行阻抗 R _s	$R_s = 60 \Omega^{(1)}$		20		pF
		HSE_LP = 0, 20p 负载		1.6		Л
HSE	HSE 驱动电流	HSE_LP = 1, 20p 负载		0.8		mA
g _m	振荡器的跨导	启动		21		mA/V
t _{SU (HSE)}	启动时间	V∞是稳定		1. 5 (2)		ms

注: 1.25M 晶体 ESR 建议不超过 80 欧,低于 25M 可适当放宽。

2. 启动时间指从 HSEON 开启到 HSERDY 被置位的时间差。

电路参考设计及要求:

晶体的负载电容以晶体厂商建议为准,通常情况 CL1 = CL2。

图 3-4 外接 24M 晶体典型电路

3.3.6 内部时钟源特性

表 3-11 内部高速(HSI)RC 振荡器特性

符号	参数	条件	最小值	典型值	最大值	单位
F _{HS1}	频率(校准后)	HSI_LP = 0		24		MHz
FHSI		HSI_LP = 1	30	42	58	KHz
DuCy _{HS1}	占空比(Duty cycle)		45	50	55	%
	HSI 振荡器的精度(校准后)	HSI_LP = 0,	-2. 0		2. 0	%
ACC _{HS1}		$T_A = -10^{\circ}C \sim 70^{\circ}C$	2.0		2.0	/0
AUOHSI		$HSI_{LP} = 0,$	-3. 0		3. 0	%
		$T_A = -40^{\circ}C \sim 85^{\circ}C$	-3.0		3.0	/0
t _{SU(HSI)} (1)	HSI 振荡器启动稳定时间			3	8	us
,	HSI 振荡器功耗	HSI_LP = 0		200		
DD (HSI)		HSI_LP = 1		8. 5		uA

注: 1. 寄存器 RCC_CTLR HSION 置 1, 等待 HSIRDY 置 1。

表 3-12 内部低速(LSI)RC 振荡器特性

符号	参数	条件	最小值	典型值	最大值	单位
F _{LS1}	频率		90	128	172	KHz
DuCy _{LSI}	占空比(Duty cycle)		45	50	55	%
t _{SU(LSI)} (1)	LSI 振荡器启动稳定时间			30	100	us
I _{DD (LSI)} (1)	LSI 振荡器功耗			550		nA

注: 1. 寄存器 RCC_CTLR LSION 置 1, 等待 LSIRDY 置 1。

3.3.7 从低功耗模式唤醒的时间

表 3-13 低功耗模式唤醒的时间

符号	参数	条件	典型值	单位
twusleep	从睡眠模式唤醒	使用 HSI RC 时钟唤醒	10	us
twustdby	从待机模式唤醒	LDO 稳定时间+使用 HSI RC 时钟唤醒	250	us

注: 以上为实测参数。

3.3.8 存储器特性

表 3-14 闪存存储器特性

符号	参数	条件	最小值	典型值	最大值	单位
t _{prog_page}	页(256 字节)编程时间			1. 5	2. 0	ms
t _{erase_page}	页(256 字节)擦除时间			2. 5	3. 1	ms
t _{erase_sec}	扇区(1K 字节)擦除时间			2. 7	3. 3	ms

表 3-15 闪存存储器寿命和数据保存期限

符号	参数	条件	最小值	典型值	最大值	单位
N _{END}	擦写次数	$T_A = 25^{\circ}C$	100K			次
t _{RET}	数据保存期限		10			年

3.3.9 I/O 端口特性

表 3-16 通用 I/0 静态特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{IH}	标准 I/0 引脚,输入高电平电压		0. 3*V _{DD} +0. 7		$V_{ exttt{DD}}$	٧
V _{IL}	标准 I/0 引脚,输入低电平电压		0		0. 15*V _{DD} +0. 3	٧
V_{hys}	标准 I/0 施密特触发器电压迟滞		150			mV
I Ikg	标准 I/0 引脚输入漏电流				1	uA
$R_{\scriptscriptstyle{PU}}$	上拉等效电阻		35	45	55	kΩ
R_{PD}	下拉等效电组		35	45	55	kΩ
Cıo	1/0 引脚电容			5		pF

输出驱动电流特性

GP10(通用输入/输出端口)可以吸收或输出多达 $\pm 8mA$ 电流,并且吸收或输出 $\pm 20mA$ 电流(不严格达到 V_{oc}/V_{od})。在用户应用中,所有 1/0 引脚驱动总电流不能超过 3.2 节给出的绝对最大额定值。

表 3-17 输出电压特性

符号	参数	条件	最小值	最大值	单位
V_{OL}	输出低电平,8个引脚吸收电流	TTL端口, I₁₀ = +8mA		0. 4	V
V_{OH}	输出高电平,8个引脚输出电流	2. 7V< V _{DD} <5. 5V	V _{DD} -0. 4		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
V_{oL}	输出低电平,8个引脚吸收电流	CMOS端口, I₁₀ = +8mA		0. 4	V
V_{OH}	输出高电平,8个引脚输出电流	2. 7V< V _{DD} <5. 5V	2. 3		V
V _{oL}	输出低电平,8个引脚吸收电流	I ₁₀ = +20mA		1. 3	V
V _{oH}	输出高电平,8个引脚输出电流	2. 7V< V _{DD} <5. 5V	V _{DD} -1.3		V

注:以上条件中如果多个 I/0 引脚同时驱动,电流总和不能超过表 3.2 节给出的绝对最大额定值。另外多个 I/0 引脚同时驱动时,电源/地线点上的电流很大,会导致压降使内部 I/0 的电压达不到表中电源电压,从而导致驱动电流小于标称值。

表 3-18 输入输出交流特性

符号	参数	条件	最小值	最大值	单位
F _{max (10) out}	最大频率	$CL = 50pF, V_{DD} = 2.7-5.5V$		30	MHz
t _{f(10) out}	输出高至低电平的下降时间	$CL = 50pF, V_{DD} = 2.7-5.5V$		10	ns

t _{r (10) ou}	输出低至高电平的上升时间	$CL = 50pF, V_{DD} = 2.7-5.5V$		10	ns
t _{EXTIPM}	EXTI 控制器检测到外部信号的脉冲宽度		10		ns

注: 以上均为设计参数保证。

3.3.10 RST 引脚特性

表 3-19 外部复位引脚特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{IH(RST)}	RST 输入高电平电压		0. 3*V _{DD} +0. 7		$V_{ extsf{DD}}$	٧
V _{IL (RST)}	RST 输入低电平电压		0		0. 15*V _{DD} +0. 3	٧
$V_{hys(RST)}$	RST 施密特触发器电压迟滞		150			mV
R_{PU}	上拉等效电阻		35	45	55	kΩ
$V_{\text{F (RST)}}$	RST 输入可被滤波脉宽				100	ns
V _{NF (RST)}	RST 输入无法滤波脉宽		300			ns

电路参考设计及要求:

图 3-5 外部复位引脚典型电路

注:图中的电容是可选的,可以用于滤除按键抖动。

3.3.11 TIM 定时器特性

表 3-20 TIMx 特性

符号	参数	条件	最小值	最大值	单位
_	定时器基准时钟		1		t _{TIM×CLK}
t _{res(TIM)}		f _{TIMxCLK} = 48MHz	20. 8		ns
F _{EXT}	CH1 至 CH4 的定时器外部时钟频率		0	f _{TIMxCLK} /2	MHz
FEXT	001 主 004 可处的估外的的协会	f _{TIMxCLK} = 48MHz	0	24	MHz
R_{esTIM}	定时器分辨率			16	位
_	当选择了内部时钟时, 16 位计数		1	65536	t _{TIM×CLK}
t _{counter}	器时钟周期	f _{TIMxCLK} = 48MHz	0. 0208	1363	us
_	具 十可能的计 数			65535	t _{TIM×CLK}
t _{MAX_COUNT}	最大可能的计数	f _{TIMxCLK} = 48MHz		1363	us

3.3.12 I2C 接口特性

图 3-6 120 总线时序图

表 3-21 120 接口特性

<i>ሎ</i> ታ 🗆	参数	标准	120	快速	12C	☆ /∴
符号	つ グ グ グ グ グ グ グ グ		最大值	最小值	最大值	単位
t _{w(SCKL)}	SCL 时钟低电平时间	4. 7		1. 2		us
t _{w (SCKH)}	SCL 时钟高电平时间	4. 0		0. 6		us
t _{SU(SDA)}	SDA 数据建立时间	250		100		ns
t _{h (SDA)}	SDA 数据保持时间	0		0	900	ns
$t_{r(SDA)}/t_{r(SCL)}$	SDA 和 SCL 上升时间		1000	20		ns
$t_{f(SDA)}/t_{f(SCL)}$	SDA 和 SCL 下降时间		300			ns
t _{h(STA)}	开始条件保持时间	4. 0		0.6		us
t _{SU(STA)}	重复的开始条件建立时间	4. 7		0. 6		us
t _{SU(STO)}	停止条件建立时间	4. 0		0. 6		us
t _{w(STO:STA)}	停止条件至开始条件的时间(总线空闲)	4. 7		1. 2		us
Сь	每条总线的容性负载		400		400	рF

3.3.13 SPI 接口特性

图 3-7 SPI 主模式时序图

图 3-8-1 SPI 从模式时序图(CPHA=0, CPOL=0)

图 3-8-2 SPI 从模式时序图(CPHA=0, CPOL=1)

图 3-9-1 SPI 从模式时序图 (CPHA=1, CPOL=0)

图 3-9-2 SPI 从模式时序图 (CPHA=1, CPOL=1)

表 3-22 SPI 接口特性

符号	参数		条件	最小值	最大值	单位
£ /±	CD I 叶th此 女	主模式			24	MHz
f _{sck} /t _{sck}	SPI 时钟频率	从模式			24	MHz
$t_{r(SCK)}/t_{f(SCK)}$	SPI 时钟上升和下降时间	负载电容	字: C = 30pF		10	ns
t _{su (NSS)}	NSS 建立时间	从模式		2t _{HCLK}		ns
t _{h (NSS)}	NSS 保持时间	从模式		2t _{HCLK}		ns
$t_{w(SCKH)}/t_{w(SCKL)}$	SCK 高电平和低电平时间	主模式, 分频系数	f _{HCLK} = 24MHz,预 数=4	70	97	ns
		→ +# →	HSRXEN = 0	15		
t _{su(MI)}	数据输入建立时间	主模式	HSRXEN = 1	15-0. 5t _{sck}		ns
t _{su(s1)}		从模式		4		ns
_		→ ## →	HSRXEN = 0	-4		
t _{h(MI)}	数据输入保持时间	主模式	HSRXEN = 1	0. 5t _{sck} -4		ns
t _{h(SI)}		从模式		4		ns
t _{a (S0)}	数据输出访问时间	从模式,	$f_{HCLK} = 20MHz$	0	1t _{HCLK}	ns
t _{dis(S0)}	数据输出禁止时间	从模式		0	10	ns
t _{V(S0)}	数据输出有效时间	从模式	(使能边沿之后)		15	ns
t _{V (MO)}	剱垢制山竹双門門	主模式	(使能边沿之后)		5	ns
t _{h(S0)}	*************************************	从模式	(使能边沿之后)	6		ns
t _{h (MO)}	数据输出保持时间 	主模式	(使能边沿之后)	0		ns

3. 3. 14 12 位 ADC 特性

表 3-23 ADC 特性

符号	参数	条件	最小值	典型值	最大值	单位
M	жаас	f _s < 1MHz	2. 4		5. 5	٧
$V_{ extsf{DD}}$	供电电压	$f_s = 3MHz$	4. 5		5. 5	٧
	ADC 供电电流	f _s = 3MHz		1. 34		mA
l _{DDA}	(不含 buffer)	$f_s = 1MHz$		0. 42		mA
1	│ │ ADC buffer 自身电流	ADC_LP = 0		0. 68		mA
l BUF	ADC buller 自身电流	ADC_LP = 1		0. 13		mA
$f_{\mathtt{ADC}}$	ADC 时钟频率			16	48	MHz
fs	采样速率		0. 06		3	MHz
		$f_{ADC} = 16MHz$			900	KHz
$f_{ exttt{TRIG}}$	外部触发频率	$f_{ADC} = 48MHz$			2. 7	MHz
					18	1/f _{ADC}
VAIN	转换电压范围		0		V _{DD}	٧
RAIN	外部输入阻抗				50	kΩ
R _{ADC}	采样开关电阻			0. 6	1.5	kΩ
\mathbf{C}_{ADC}	内部采样和保持电容			4		pF
	拉维叶间	$f_{ADC} = 16MHz$			6. 25	us
t _{CAL}	校准时间				100	1/f _{ADC}
+	注入触发转换时延	f _{ADC} = 16MHz			0. 125	us
t_{lat}	注八触友转换的延	$f_{ADC} = 48MHz$			0. 042	us

				2	1/f _{ADC}
		f _{ADC} = 16MHz		0. 125	us
t _{latr}	常规触发转换时延	f _{ADC} = 48MHz		0. 042	us
				2	1/f _{ADC}
		$f_{ADC} = 16MHz$	0. 218	14. 97	us
_	双+4中间		3. 5	239. 5	1/f _{ADC}
t _s	采样时间 	$f_{ADC} = 48MHz$	0. 073	0. 739	us
			3. 5	35. 5	1/f _{ADC}
t _{STAB}	上电时间			1	us
		$f_{ADC} = 16MHz$	1	15. 75	us
_	 总的转换时间(包括采样时间)		16	252	1/f _{ADC}
t _{conv}	态的较换时间(包括未件时间)	$f_{ADC} = 48MHz$	0. 33	1	us
			16	48	1/f _{ADC}

注: 以上均为设计参数保证。

公式:最大 RAIN

$$R_{AIN} < \frac{T_S}{f_{ADC} \times C_{ADC} \times \ln 2^{N+2}} - R_{ADC}$$

上述公式用于决定最大的外部阻抗,使得误差可以小于 1/4 LSB。其中 N=12(表示 12 位分辨率)。

表 3-24-1 f_{ADC} = 16MHz 时的最大 R_{AIN}

T _s (周期)	t _s (us)	最大 R _{AIN} (kΩ)
3. 5	0. 22	4
7. 5	0. 47	10
13. 5	0. 84	20
28. 5	1. 78	45
41. 5	2. 59	65
55. 5	3. 47	/
71. 5	4. 47	/
239. 5	14. 97	/

表 3-24-2 f_{ADC} = 48MHz 时的最大 R_{AIN}(高速模式)

T _s (周期)	t _s (us)	最大 R _{AIN} (kΩ)
3. 5	0. 073	1. 5
7. 5	0. 16	3
11. 5	0. 24	5
19. 5	0. 41	9
35. 5	0. 74	17
55. 5	1. 16	28
71. 5	1. 49	37
239. 5	4. 99	/

表 3-25 ADC 误差(f_{ADC} = 16MHz, ADC_LP = 1)

符号	参数	条件	最小值	典型值	最大值	单位
E0	偏移误差	D / 101-0		±2	±6	
ED	微分非线性误差	$R_{AIN} < 10k \Omega$, $V_{DD} = 5V$		±2	±8	LSB
EL	积分非线性误差	V _{DD} — OV		±2	±8	

注: 以上均为设计参数保证。

 C_p 表示 PCB 与焊盘上的寄生电容(大约 5pF),可能与焊盘和 PCB 布局质量有关。较大的 C_p 数值将降低转换精度,解决办法是降低 f_{ADC} 值。

图 3-10 ADC 典型连接图

图 3-11 模拟电源及退耦电路参考

3.3.15 OPA 特性

表 3-26-1 OPA 运放特性

符号	参数	条件	最小值	典型值	最大值	单位
$V_{ exttt{DD}}$	供电电压	建议不低于 2. 5V	2. 0	5	5. 5	٧
V _{CMIR}	共模输入电压		0		$V_{ t DD}$	٧
VIOFFSET	输入失调电压			±3	±12	mV
I LOAD	驱动电流	$R_{LOAD} = 4k \Omega$			1.4	mA
LOAD_PGA	PGA 模式驱动电流				500	uA
I DDOPAMP	消耗电流	无负载,静态模式		420		uA
CMRR ⁽¹⁾	共模抑制比	@1kHz		96		dB
PSRR ⁽¹⁾	电源抑制比	@1kHz		82		dB
Av ⁽¹⁾	开环增益	C _{LOAD} = 5pF		110		dB
G _{BW} ⁽¹⁾	单位增益带宽	C _{LOAD} = 5pF		12		MHz

P _M ⁽¹⁾	相位裕度	$C_{LOAD} = 5pF$		75		٥	
S _R ⁽¹⁾	压摆率	$C_{LOAD} = 5pF$		10		V/us	
t _{WAKUP} (1)	关闭到唤醒时间 0.1%	输入 $V_{DD}/2$, $C_{LOAD} = 50$ pF, $R_{LOAD} = 4$ k Ω			1	us	
R _{LOAD}	阻性负载		4			kΩ	
C _{LOAD}	容性负载				50	pF	
V (2)	方 加 和松山中区	$R_{LOAD} = 4k \Omega$	V _{DD} -160			W	
V _{OHSAT} (2)	高饱和输出电压	$R_{LOAD} = 20k\Omega$	V _{DD} -35			mV	
V _{OLSAT} (2)	化均和松山中 区	$R_{LOAD} = 4k \Omega$			25	mV	
V OLSAT	低饱和输出电压	$R_{LOAD} = 20k\Omega$			5		
V _B	PGA 模式输出直流偏置			V _{DD} /2		٧	
	电压			V _{DD} /2		٧	
	PGADIF = 1 模式同相	Gain = 4/8/16	-3		3	%	
DO.	内部同相 PGA	$Gain = 4, V_{INP} < (V_{DD}/3)$	-1		1	%	
PGA Gain ⁽¹⁾		$Gain = 8, V_{INP} < (V_{DD}/7)$	-1		1	%	
Gain		Gain = 16, V _{INP} < (V _{DD} /15)	-1		1	%	
		Gain = 32, $V_{INP} < (V_{DD}/31)$	-1		1	%	
V _B	PGA 模式输出直流偏置 电压			V _{DD} /2		V	
Delta R	电阻绝对值变化		-15		15	%	
eN ⁽¹⁾	空边检入品主	$R_{LOAD} = 4k \Omega@1kHz$		100		nV/	
	等效输入噪声	$R_{LOAD} = 20k \Omega@1KHz$		60		sqrt(Hz)	

注: 1. 设计参数保证。

2. 负载电流会限制饱和输出电压。

表 3-26-2 OPA 运放特性(高速模式)

符号	OPA 运放行性(高述候) 参数	条件	最小值	典型值	最大值	单位
V _{DD}	供电电压		2. 7	<u> </u>	5.5	V + 132
V _{CMIR}			0	J	V _{DD}	V
V _{IOFFSET}	输入失调电压			±3	±12	mV
LOAD	驱动电流	$R_{LOAD} = 4k \Omega$			1. 4	mA
LOAD_PGA	PGA 模式驱动电流				500	uA
l DDOPAMP	消耗电流			1. 4		mA
CMRR ⁽¹⁾	共模抑制比	@1kHz		96		dB
PSRR ⁽¹⁾	电源抑制比	@1kHz		82		dB
Av ⁽¹⁾	开环增益	$C_{LOAD} = 5pF$		115		dB
G _{BW} ⁽¹⁾	单位增益带宽	$C_{LOAD} = 5pF$		64		MHz
P _M ⁽¹⁾	相位裕度	$C_{LOAD} = 5pF$		72		0
S _R ⁽¹⁾	压摆率	C _{LOAD} = 5pF		36		V/us
t _{WAKUP} (1)	关闭到唤醒时间 0.1%	输入 V _{DD} /2, C _{LOAD} = 50pF,			1	us
CWARUP	人的近外在10001/	$R_{LOAD} = 4k \Omega$				us
R _{LOAD}	阻性负载		4			kΩ
C_{LOAD}	容性负载				20	pF
V _{OHSAT} (2)	高饱和输出电压	$R_{LOAD} = 4k \Omega$	V _{DD} -160			mV

		$R_{LOAD} = 20k \Omega$	V _{DD} -35			
V _{OLSAT} (2)	低饱和输出电压	$R_{LOAD} = 4k \Omega$			25	\/
		$R_{LOAD} = 20k \Omega$			5	mV
	PGADIF = 1 模式同相	Gain = 4/8/16	-3		3	%
PGA	内部同相 PGA	Gain = 4, $V_{INP} < (V_{DD}/3)$	-1		1	%
Gain ⁽¹⁾		Gain = 8, V _{INP} < (V _{DD} /7)	-1		1	%
		Gain = 16, V _{INP} < (V _{DD} /15)	-1		1	%
		Gain = 32, V _{INP} < (V _{DD} /31)	-1		1	%
$V_{\scriptscriptstyle B}$, PGA 模式输出直流偏	OPA_VBSEL = 0		$V_{\text{DD}}/2$		٧
置电加置电加	置电压	OPA_VBSEL = 1		$V_{\text{DD}}/4$		٧
eN ⁽¹⁾	等效输入噪声	$R_{LOAD} = 4k \Omega@1kHz$		100		nV/
		$R_{LOAD} = 20k \Omega@1KHz$		60		sqrt(Hz)

注: 1. 设计参数保证。

^{2.} 负载电流会限制饱和输出电压。

第4章 封装及订货信息

芯片封装

封装形式	塑体尺寸	引脚节距		引脚节距		封装说明	订货型号
QFN32	4*4mm	0. 4mm	15.7mil	四边无引线 32 脚	CH32V006K8U6		
QS0P24	3. 9*8. 7mm	0. 635mm	25. Omil	1/4 尺寸 24 脚贴片	CH32V006E8R6		
QFN20	3*3mm	0. 4mm	15.7mil	四边无引线 20 脚	CH32V006F8U6		
TSS0P20	4. 4*6. 5mm	0. 65mm	25.6mil	薄小型的 20 脚贴片	CH32V006F8P6		
QS0P24	3. 9*8. 7mm	0. 635mm	25. Omil	1/4 尺寸 24 脚贴片	CH32V005E6R6		
QFN20	3*3mm	0. 4mm	15.7mil	四边无引线 20 脚	CH32V005F6U6		
TSS0P20	4. 4*6. 5mm	0. 65mm	25.6mil	薄小型的 20 脚贴片	CH32V005F6P6		
QFN12	2*2mm	0. 4mm	15.7mil	四边无引线 12 脚	CH32V005D6U6		

说明:尺寸标注的单位是 mm(毫米),引脚中心间距总是标称值,没有误差,除此之外的尺寸误差不大于±0.2mm或者±10%两者中的较大值。

图 4-2 QSOP24 封装

图 4-4 TSS0P20 封装

图 4-5 QFN12 封装

系列产品命名规则

T 6

F = Arm 内核, 通用 MCU

V = 青稞 RISC-V 内核, 通用 MCU

L = 青稞 RISC-V 内核, 低功耗 MCU

X = 青稞 RISC-V 内核, 专用或特殊外设 MCU

M = 青稞 RISC-V 内核, 内置预驱的电机 MCU

产品类型(*)+产品子系列(**)

产品类型	产品子系列
0 = 青稞 V2/V4 内核,	02 = 16K 闪存超值通用型
超值版,主频<=48M	03 = 16K 闪存基础通用型, OPA
	05 = 32K 闪存增强通用型,OPA、双串口
	06 = 64K 闪存多能通用型,OPA、双串口、TKey
	07 = 基础电机应用型, OPA+CMP
	35 = 连接型, USB、USB PD/Type-C
	33 = 连接型, USB
1 = M3/青稞 V3/V4 内核,	03 = 连接型, USB
基本版,主频<=96M	05 = 连接型, USB HS、SDIO、CAN
2 = M3/青稞 V4 非浮点内核,	07 = 互联型, USB HS、CAN、以太网、SDIO、FSMC
增强版,主频<=144M	08 = 无线型, BLE5.x、CAN、USB、以太网
3 = 青稞 V4F 浮点内核,	17 = 互联型, USB HS、CAN、以太网(内置 PHY)、
增强版,主频<=144M	SDIO, FSMC

引脚数目

 J = 8 脚
 D = 12 脚
 A = 16 脚
 F = 20 脚
 E = 24 脚

 G = 28 脚
 K = 32 脚
 T = 36 脚
 C = 48 脚
 R = 64 脚

W = 68 脚 V = 100 脚 Z = 144 脚

闪存存储容量

4 = 16K 闪存存储器 6 = 32K 闪存存储器 7 = 48K 闪存存储器 8 = 64K 闪存存储器 B = 128K 闪存存储器 C = 256K 闪存存储器

封装

T = LQFP U = QFN R = QSOP P = TSSOP M = SOP

温度范围

 $6 = -40^{\circ}\text{C} \sim 85^{\circ}\text{C}$ (工业级) $7 = -40^{\circ}\text{C} \sim 105^{\circ}\text{C}$ (汽车 2 级) $3 = -40^{\circ}\text{C} \sim 125^{\circ}\text{C}$ (汽车 1 级) $D = -40^{\circ}\text{C} \sim 150^{\circ}\text{C}$ (汽车 0 级)