Combinatorics

Thomas Fleming

September 24, 2021

Contents

Lecture 13 Fri 24 Sep 2021 10:20

I originally missed this lecture, so this is transcribed from a classmates notes.

Lecture 14: Quasi-Random Graphs

Fri 24 Sep 2021 10:21

Remark. Random graphs have applications in ramsey theory. For instance, if $p \geq 2$, $q \geq 2$, then there is a ramsey number R(p,q) such that for a graph G of order at least R(p,q), then either G constains a p-clique or an independent set of q vertices.

It is a well known result that R(3,3) = 6.

A counterexample to a graph of order 5 is K_5 .

We can even obtain an upper bound $R\left(p,q\right) \leq {p+q-2 \choose q-1}$. This is obtained from the trivial fact that $R\left(p,q\right) \leq R\left(p,q-1\right) + R\left(p-1,q\right)$.

Now, we examine the diagonal case, $R(k,k) \leq {2k-2 \choose k-1} \leq \frac{4^{k-1}}{\sqrt{k}}$. From this we obtain, $\sqrt[k]{R(k,k)} \leq 4$, and a probabalistic argument from erdos yields

$$\sqrt{2} \le \sqrt[k]{R(k,k)} \le 4$$

Proposition 0.1. For all k and n with $n \leq \sqrt{2}^k$, there is a graph of order n such that G has no k-clique and no independent set of order k.

Halmos. Fix n vertices, $1, 2, \ldots, n$ and consider all labeled graphs , denoted LG. Now, recall there are $2^{\binom{n}{2}}$ labeled graphs of order n. Next, denote $k_k(G)$ to be the number of k-cliques in a graph G and we see an independent set is simply a clique of \overline{G} , so we see we need only consider $k_k(G) + k_k(\overline{G})$, hence the total number of graphs with either a k-clique or k-independent set of order n are $S = \sum_{g \in LG(n)} k_k(G) + k_k(\overline{G}) = 2 \cdot \binom{n}{k} 2^{\binom{n}{2} - \binom{k}{2}}$.

The leading $\binom{n}{k}$ is due to the fact that there are $\binom{n}{k}$ subsets of order k in a

set of order n and the exponent comes from the total amount of possible edges outside of the k-clique.

Now we construct a bipartite graph G with A = LG(n) and B being the set of all possible k-cliques. We see each $a \in A$ is a labeled graph, so it may have differing numbers of k-cliques, each $b \in B$ is a k-clique, and all k-cliques participate in the same number of labeled graphs of order n hence B is regular to A.

Taking our earlier definition of S and manipulating yields

$$S \le 2^{\binom{n}{2}} \left(\frac{2\binom{n}{k}}{2\binom{k}{2}} \right).$$

Hence,

$$\frac{S}{2^{\binom{n}{2}}} \le \frac{2\binom{n}{k}}{2^{\binom{k}{2}}} < 1.$$

Assuming $k \geq 3$ and applying definitions yields

$$\begin{split} \frac{2\binom{n}{k}}{2^{\binom{k}{2}}} &< \frac{2n^k}{k!2^k\frac{k-1}{2}}\\ \binom{n}{k} &= \frac{n\left(n-1\right)\ldots\left(n-k+1\right)}{k!}\\ &\leq \frac{2\cdot2^{\frac{k^2}{2}}}{k!2^{\binom{k(k-1)}{2}}}\\ \text{taking } k &= \sqrt{2}^k \text{ yields } \frac{2\left(\sqrt{2}\right)^k}{k!}. \end{split}$$

Remark. Note that after $\binom{n}{2}$ flips of a fair coin, one obtains a graph in LG(n). Take a subset M of cardinality k in the set of all such graphs and note that there is a $\frac{1}{2\binom{k}{2}}$ probability this will be a k-clique. Hence the total probability summed over all subsets M is $\binom{n}{k}\frac{2}{2\binom{k}{2}}$. Applying the subbadditivity of probability yields that this is strictly less than 1. Hence, there is such a graph not containing a k-clique or independent set of order 20.