Hamiltonian Monte Carlo

Thomas Hamelryck
PLTC section
PML 2022

In a nutshell

 Hamiltonian Monte Carlo / NUTS is an efficient way to approximate the Bayesian posterior by a set of samples.

Overview

- Limitations of standard MCMC
 - Poor exploration of the typical set
- Hamiltonian equations of motion
 - Parameters are coordinates of a particle moving in a force field
 - Kinetic energy (momentum)
 - Potential energy (-log posterior)
 - Symplectic integrators
- This is used as a superior proposal in HMC
 - NUTS: automated HMC
- Bonus topic: Diagnostic of convergence

Reading material

- A conceptual introduction to Hamiltonian Monte Carlo
 - o Betancourt, 2017
- Rank-normalization, folding, and localization: An improved R-hat for assessing convergence of MCMC
 - Vehtari, Gelman, Simpson, Carpenter & Bürkner, 2020
 - Diagnostics of MCMC convergence
- HMC/NUTS in Pyro
- Diagnostics from <u>Arviz</u>

Monte Carlo & Bayes

- The Bayesian posterior is often unavailable as a closed-form expression.
- Monte Carlo methods approximate the posterior using samples.
 - Fast computers made this approach mainstream.
- The core idea is simple: approximate an expectation using samples.

$$\mathbb{E}[f(x)] = \int f(x)p(x)dx \approx \frac{1}{S} \sum_{s=1}^{S} f(x_s)$$

Parsimonious expectation computation

- Exploring regions of parameter space that have negligible contributions to the expectation is inefficient.
- Intuition: concentrate on regions where f(.) and the density peak (i.e. >>0)
 - To keep things general, focus is typically on the density
- Naive, flawed approach: focus on neighborhood of mode

$$\mathbb{E}[f(x)] = \int f(x)p(x)dx \approx \frac{1}{S} \sum_{s=1}^{S} f(x_s)$$

Geometry of high dimensional spaces

- It gets worse with increasing dimensionality!
- For increasing D, the volume of neighboring volume elements dominates the volume of the element containing the mode
 - o 3^D-1 neighboring volume elements

Geometry of high dimensional spaces

- We need to consider both density AND volume with increasing D
 - Intuition: Massive volume can compensate for low density

Typical set

- Insignificant contributions
 - High density but no volume
 - High volume but no density
- Significant contributions only come from the typical set
 - In between the above extremes
 - Invariant under transformation
 - Becomes more narrow with D
- This is why brute-force methods involving grids do so poorly

Markov chain Monte Carlo

- Generate samples by jumping from point q to point q' using a Markov transition T(qlq') that preserves the target distribution (ie. the posterior).
 - The chain will move towards the typical set

$$\pi(q) = \int_{\mathcal{Q}} dq' \, \pi(q') \, \mathbb{T}(q \mid q')$$

MCMC estimators

 MCMC estimators will eventually explore the typical set and converge to the true expectation.

$$\hat{f}_N = \frac{1}{N} \sum_{n=0}^{N} f(q_n)$$

$$\lim_{N\to\infty} \hat{f}_N = \mathbb{E}_{\pi}[f]$$

MCMC estimators

MCMC Central Limit Theorem

$$\hat{f}_N^{\text{MCMC}} \sim \mathcal{N}(\mathbb{E}_{\pi}[f], \text{MCMC-SE})$$

- The MCMC estimates will be normally distributed, with mean equal to the true expectation and standard deviation equal to the MCMC standard error (MCMC-SE)
 - For the calculation of the MCMC-SE, we need to take into account that our N samples might be highly correlated.

MCMC estimators

MCMC Central Limit Theorem

$$\hat{f}_N^{\text{MCMC}} \sim \mathcal{N}(\mathbb{E}_{\pi}[f], \text{MCMC-SE})$$

- MCMC standard error (SE) and Effective Sample Size (ESS)
 - ESS < N ≈ effective number of samples / number of sojourns over typical set
 - ρ_i =Lag-I autocorrelation \approx how correlated are our samples?

$$MCMC-SE \equiv \sqrt{\frac{Var_{\pi}[f]}{ESS}} \qquad ESS = \frac{N}{1 + 2\sum_{l=1}^{\infty} \rho_l}$$

Three MCMC phases

- Phase 1: convergence towards typical set
 - Strong bias in MCMC estimators (warm up)

Three MCMC phases

- Phase 2: first sojourn across typical set
 - Accuracy of MCMC estimators rapidly increases

Three MCMC phases

- Phase 3: subsequent exploration of the typical set
 - Accuracy of MCMC estimators increases at slower rate

Pathological behaviour

• Typical set pinches into a region of high curvature.

Pathological behaviour

- MCMC will get stuck at the pinch (green) and escape now and then
 - MCMC estimators will oscillate around true value

Pathological behaviour

- We need **geometric ergodicity**, but this is difficult to diagnose
 - o Diagnostics such as **split-R-hat**, **tail-ESS**, **rank plots**,...
 - Diagnostics can always be fooled!

Metropolis-Hastings

- **Proposal step**: stochastic perturbation of previous point
 - Often uses a Gaussian distribution, which is symmetric
- Correction step: rejection of proposals far away from typical set
 - a=probability of accepting new proposal q'

$$a(q' \mid q) = \min\left(1, \frac{\mathbb{Q}(q \mid q') \pi(q')}{\mathbb{Q}(q' \mid q) \pi(q)}\right)$$

• Gaussian case (Metropolis):

$$\mathbb{Q}(q' \mid q) = \mathcal{N}(q' \mid q, \Sigma) \longrightarrow a(q' \mid q) = \min\left(1, \frac{\pi(q')}{\pi(q)}\right)$$

Problems with MH-MCMC

- Scales poorly with D and complexity of distribution
 - Almost every proposal will be outside the typical set (left)
 - Shrinking the proposal range lead to slow convergence (right)

Hamiltonian Monte Carlo

History

- Hybrid Monte carlo
 - Lattice quantum chromodynamics (Duane et al, 1987)
- Bayesian neural networks (Radford Neal, 1995)
- Hamiltonian Monte Carlo (MacKay, 2003)
- Textbooks: MacKay (2003) and Bishop (2006)
- Review by Radford Neal (2011)
- NUTS and Stan PPL (2017)

Effective Markov transitions

Exploit the geometry of the typical set

Effective Markov transitions

- Construct a **vector field that is** aligned with the typical set
 - Use the differential structure of the target distribution

Gradient information

- The gradient will not work
 - The gradient will point to the mode and is sensitive to re-parametrization

Differential geometry

- Gradient-based force field + momentum
 - Physical system: Satellite-in-orbit analogy

- The momentum needs to be just right
 - We get such conservative dynamics from HMC

 As the satellite falls towards the planet the momentum grows until it is large enough to propel the satellite away from the planet.

• Similarly, if the satellite drifts away from the planet then the momentum shrinks and the satellite slows, allowing gravity to pull it back towards the planet.

Central idea

- We introduce an auxiliary parameter: the momentum p
 - This parameter will be integrated away to obtain the posterior.
- Thus, we expand the D-dimensional parameter space to a 2D-dimensional phase space.

Hamiltonian dynamics

• We work in **position-momentum phase-space**

$$q_n \to (q_n, p_n)$$

- Each of the n parameters q_n is augmented with a momentum p_n
- Canonical distribution; joint distribution of p and q
 - H=Hamiltonian

$$\pi(q, p) = \pi(p \mid q) \, \pi(q)$$

$$\pi(q,p) = e^{-H(q,p)}$$

Kinetic and potential energy

- The Hamiltonian can be interpreted using a physical analogy
 - K(p,q)=kinetic energy
 - V(q)=potential energy

$$H(q, p) = -\log \pi(p \mid q) - \log \pi(q)$$

$$\equiv K(p, q) + V(q)$$

Kinetic and potential energy

- The potential energy is fully defined by the posterior.
- The kinetic energy must be specified by the HMC implementation.

$$H(q, p) = -\log \pi(p \mid q) - \log \pi(q)$$

$$\equiv K(p, q) + V(q)$$

Hamilton's equations

- The desired vector field is obtained from integrating **Hamilton's equations**
 - No collapse to the mode as with the gradient
 - Will sojourn on the typical set

$$\frac{\mathrm{d}q}{\mathrm{d}t} = +\frac{\partial H}{\partial p} = \frac{\partial K}{\partial p}$$

$$\frac{\mathrm{d}p}{\mathrm{d}t} = -\frac{\partial H}{\partial q} = -\frac{\partial K}{\partial q} - \frac{\partial V}{\partial q}$$

Sir William Rowan Hamilton (1805 - 1865)

Volume is preserved in position-momentum phase space

Marginalization to target

• Marginalizing the momentum gives us the target distribution again

Idealized Hamiltonian Markov transition

• **Lift up** an initial point q (random)

$$p \sim \pi(p \mid q)$$

 Integrate Hamilton's equations for some time t (deterministic)

$$(q,p) \to \phi_t(q,p)$$

 Return to target distribution by projecting away the momentum p (deterministic)

$$(q,p) \to q$$

Geometry of phase space

- Every orbit is confined to an energy level set
 - Value of the Hamiltonian is preserved

$$H^{-1}(E) = \{q, p \mid H(q, p) = E\}$$

- The concentric level sets decompose or foliate the phase space
- Microcanonical decomposition
 - \circ $\theta_{\rm F}$ =position within the level set
 - Microcanonical distribution
 - Marginal energy distribution

$$\pi(q, p) = \pi(\theta_E \mid E) \pi(E)$$

Hamiltonian transitions

Deterministic exploration within a level set

Stochastic exploration between level sets Deterministic Random

Projection + random lift=Momentum resampling step

Momentum resampling

• We have efficient momentum resampling when marginal $\pi(E)$ and transition $\pi(E|q)$ are well matched.

Tuning HMC: choice of kinetic energy

- Infinite range of possibilities
- Euclidean-Gaussian kinetic energy
 - \circ Euclidean metric g for q
 - g = DxD mass matrix
 - M=Rotated (R) and scaled(S) natural metric
 - Also defines a metric for the momenta p
 - Construct π(plq)
 - This defines K

$$\Delta(q, q') = (q - q')^T \cdot g \cdot (q - q')$$

$$M = R \cdot S \cdot g \cdot S^T \cdot R^T$$

$$\Delta(p, p') = (p - p')^T \cdot M^{-1} \cdot (p - p')$$

$$\pi(p \mid q) = \mathcal{N}(p \mid 0, M)$$

$$K(q, p) = \frac{1}{2}p^{T} \cdot M^{-1} \cdot p + \log|M| + \text{const.}$$

Tuning HMC: Kinetic energy, warm up

- The **choice of M**-1 rotates and scales parameter space
 - If close to the covariance of the target distribution, it de-correlates the target distribution.
 - This makes the energy level sets more uniform and easier to explore
- Warm up iterations
 - Get to the typical set
 - Start with a default Euclidean metric
 - Sample from HMC
 - Estimate target covariance
 - Update metric
 - Repeat

$$M^{-1} = \mathbb{E}_{\pi}[(q - \mu) (q - \mu)^T]$$

Tuning HMC: Riemannian HMC

- Unless the target is Gaussian, no global rotation and rescaling will yield uniform level sets. Strong local curvature can slow down exploration.
- Solution: Use a Riemannian metric, which unlike to Euclidean metric, varies throughout parameter space
- Gaussian distribution whose covariance is now a function of q

$$\pi(p \mid q) = \mathcal{N}(p \mid 0, \Sigma(q))$$

• Riemannian-Gaussian kinetic energy

$$K(q, p) = \frac{1}{2}p^T \cdot \Sigma^{-1}(q) \cdot p + \frac{1}{2}\log|\Sigma(q)| + \text{const}$$

Tuning HMC: Integration time

- How long should we follow an orbit?
 - Too long is wasteful, as we might return to visited neighborhoods
 - NUTS: heuristic stopping rule based on avoiding U-turns

Numerical integration

- Solving Hamilton's equations is done numerically
 - Numerical inaccuracies lead to drift

Symplectic integrators

- Robust to drift
- Exactly preserve phase space volume
 - Interleave p and q updates
- Oscillate around exact energy level set
- Example
 - Leapfrog estimator

Divergence

- Even symplectic integrators can diverge around regions of high curvature
 - Easy to identify (infinite energy) and thus used for diagnostics

As MH-MCMC proposal

- Idea: Use Hamiltonian transition as a MH-MCMC proposal
 - Easy way to get rid of symplectic integrator error
- But conventional Hamiltonian transitions are deterministic and not reversible

Reversible Hamiltonian transitions

• Flip the sign of the momentum

Reversible proposal

Metropolis-Hasting with the reversible proposal

$$a(q_{L}, -p_{L} \mid q_{0}, p_{0}) = \min\left(1, \frac{\mathbb{Q}(q_{0}, p_{0} \mid q_{L}, -p_{L}) \pi(q_{L}, -p_{L})}{\mathbb{Q}(q_{L}, -p_{L} \mid q_{0}, p_{0}) \pi(q_{0}, p_{0})}\right)$$

$$= \min\left(1, \frac{\delta(q_{L} - q_{L}) \delta(-p_{L} + p_{L}) \pi(q_{L}, -p_{L})}{\delta(q_{0} - q_{0}) \delta(p_{0} - p_{0}) \pi(q_{0}, p_{0})}\right)$$

$$= \min\left(1, \frac{\pi(q_{L}, -p_{L})}{\pi(q_{0}, p_{0})}\right)$$

$$= \min\left(1, \frac{\exp\left(-H(q_{L}, -p_{L})\right)}{\exp\left(-H(q_{0}, p_{0})\right)}\right)$$

$$= \min(1, \exp\left(-H(q_{L}, -p_{L}) + H(q_{0}, p_{0})\right)),$$

Tuning HMC: Symplectic integrator

- Two hyperparameters: step size ε and #gradient evaluations K
- Compare with a "shadow Hamiltonian" H for which the integrator is exact
 - We should get the same topology

No-U-Turn (NUTS) termination criterion

- Stop when trajectories, expanded in both directions, turn towards each other
 - Hofman & Gelman, 2014; Stan PPL

Robustness and problems

- Heavy tails due to bad model or bad kinetic energies
 - Visualize marginal and transition energy density.
 - \circ Is π(Elq) narrower than π(E)?
 - Can be done in <u>Arviz</u>
- Large curvature (pinching)
 - Hierarchical models are problematic
 - Divergent trajectories
- General diagnostics
 - R-split, ESS, rank plots...

Diagnostics

Convergence diagnostics

- MCMC is guaranteed to converge to the posterior for infinite samples.
 - But there are rarely any strong guarantees for finite samples.
- Diagnostics are needed, for example from running multiple chains.
 - Trace plots

Trace plots

- Left: trace plots look stable, but did not converge to the same distribution.
- Right: trace plots are not stationary, though they seem to cover similar distributions.

Trace plots

- We need both between-sequence and within-sequence diagnostics.
- We can't visually inspects trace plots of 1000s of variables.
 - We need numerical summaries.

Split-R-hat

- Question: "Did the chains mix well?"
 - The mixing time is the time until the chain is "close" to its steady state distribution.
 - We have M chains with we have N samples per chain
- B=between-chain variance

$$B = \frac{N}{M-1} \sum_{m=1}^{M} (\overline{\theta}^{(.m)} - \overline{\theta}^{(..)})^2$$
 Average for chain m
$$\overline{\theta}^{(.m)} = \frac{1}{N} \sum_{n=1}^{N} \theta^{(nm)}, \quad \overline{\theta}^{(..)} = \frac{1}{M} \sum_{m=1}^{M} \overline{\theta}^{(.m)}$$

Split-R-hat

- Question: "Did the chains mix well?"
 - We have M chains
 - We have N samples per chain
- W=within-chain variance

$$W = \frac{1}{M} \sum_{m=1}^{M} s_m^2$$

$$s_m^2 = \frac{1}{N-1} \sum_{m=1}^{N} (\theta^{(nm)} - \overline{\theta}^{(.m)})^2$$

Split-R-hat

Weighted average of W and B

$$\widehat{\operatorname{var}}^+(\theta|y) = \frac{N-1}{N}W + \frac{1}{N}B.$$

Split-R-hat, which declines to 1 for N → inf

$$\widehat{R} = \sqrt{\frac{\widehat{\text{var}}^+(\theta|y)}{W}}$$

Monte Carlo standard error (MCSE)

• If we have S **independent** samples, the accuracy of the sample average estimator $\bar{\theta}$ for the posterior mean $\mathbb{E}(\theta \mid y)$ is

$$\operatorname{Var}(\bar{\theta}) = \frac{\operatorname{Var}(\theta|y)}{S}$$

- The square root is called the MCSE
- But MCMC samples are correlated!
 - We need to replace S with the effective sample size (ESS)

Effective sample size (ESS)

- The effective sample size (ESS) measures the worth of the MCMC estimator.
- It is defined as the number of samples simulated from the target pdf S_{eff} that would provide an estimator with a variance equal to the variance of the MCMC estimator based on S samples.

Can be approximated

$$\operatorname{Var}(\bar{\theta}) = \frac{\operatorname{Var}(\theta|y)}{S_{\text{EFF}}} = \frac{\operatorname{Var}(\theta_S)}{S} \Rightarrow S_{\text{EFF}} = S \frac{\operatorname{Var}(\theta|y)}{\operatorname{Var}(\theta_S)}$$
Here we assume independence

Effective sample size (ESS)

- MCMC samples are not independent, but correlated.
- The ESS heuristic estimates the effective number of independent samples
- Single chain case
 - \circ Autocorrelation ρ_{t} is calculated using FFT

$$N_{\text{eff}} = \frac{N}{\sum_{t=-\infty}^{\infty} \rho_t} = \frac{N}{1 + 2\sum_{t=1}^{\infty} \rho_t}$$

$$\rho_t = \frac{1}{\sigma^2} \int_{\Theta} (\theta^{(n)} - \mu)(\theta^{(n+t)} - \mu) p(\theta) d\theta$$

Effective sample size (ESS)

- MCMC samples are not independent, but correlated.
- The ESS heuristic estimates the effective number of independent samples
- Multiple chain case
 - Uses quantities calculated for split-R-hat
 - Uses truncated lag (T)

$$S_{\text{eff}} = \frac{NM}{1 + 2\sum_{t=1}^{T} \rho_t}$$

$$\hat{\rho}_t = 1 - \frac{W - \frac{1}{M} \sum_{m=1}^{M} s_m^2 \hat{\rho}_{t,m}}{\widehat{\text{var}}^+}$$

ESS rules-of-thumb

- Antithetic Markov chains
 - Chains that have negative autocorrelations
 - Super-efficient chains with S_{eff} >S
 - This can happen for NUTS, for example, but of limited practical use
- For four chains, in order to use R-hat diagnostics
 - Multichain ESS>400
 - Individual chain ESS>50
 - R-hat is close to 1

HMC in Pyro

NUTS in Pyro

```
pyro.sample("x", ...)
# Run HMC / NUTS
nuts kernel=pyro.infer.NUTS(model, jit compile=True)
mcmc=pyro.infer.MCMC(nuts_kernel, num_samples=2000, num_chains=2,
    warmup steps=100)
mcmc.run()
                                 pyro.sample("x", ...)
# Get the samples
samples = mcmc.get samples()["x"]
```

Diagnostics with Arviz

- https://arviz-devs.github.io/arviz/
- "ArviZ is a Python package for exploratory analysis of Bayesian models.
- Includes functions for posterior analysis, data storage, sample diagnostics, model checking, and comparison.
- The goal is to provide backend-agnostic tools for diagnostics and visualizations of Bayesian inference in Python, by first converting inference data into xarray objects."

Diagnostics with arviz

```
data = arviz.from_pyro(mcmc)
# ESS, r-hat
summary = arviz.summary(data)
print(summary)
# Density plot
arviz.plot_posterior(data)
plt.show()
```

Diagnostics with arviz

94% HDI

-3

2

1.0

Conclusions

- Monte Carlo + Hamiltonian dynamics
 - Parameters + momentum
- HMC solves many classic MCMC issues
- NUTS fully automates HMC
 - Ideal for PPLs (Stan, Numpyro)
 - Diagnosis with arviz
- Scaling to tall data is a timely problem
 - Subsampling HMC
 - Subsampling HMC in Numpyro by PhD student Ola Rønning

