08.11.2004

日本 国 特 許 庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application: 2003年10月16日

出 願 番 号

特願2003-356855

Application Number: [ST. 10/C]:

[JP2003-356855]

REC'D 0 2 DEC 2004

WIPO

PCT

出 願 人 Applicant(s):

ボーダフォン株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年11月 1日

【書類名】 特許願 【整理番号】 PT03046

【提出日】平成15年10月16日【あて先】特許庁長官 殿【国際特許分類】H04M 1/00
H04B 7/26

【発明者】

【住所又は居所】 東京都港区愛宕2丁目5番1号 ジェイフォン株式会社内 【氏名】 西方 尚美

【発明者】

【住所又は居所】 東京都港区愛宕2丁目5番1号 ジェイフォン株式会社内 【氏名】 水野 隆久

【発明者】

【住所又は居所】 東京都港区愛宕2丁目5番1号 ジェイフォン株式会社内 【氏名】 池田 秀行

【発明者】

【住所又は居所】 東京都港区愛宕2丁目5番1号 ジェイフォン株式会社内

【氏名】 楠田 洋久

【特許出願人】

【識別番号】 501440684

【氏名又は名称】 ジェイフォン株式会社 【代表者】 ダリル・イー・グリーン

【代理人】

【識別番号】 100098626

【弁理士】

【氏名又は名称】 黒田 壽

【手数料の表示】

【予納台帳番号】 000505 【納付金額】 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

 【物件名】
 明細書 1

 【物件名】
 図面 1

 【物件名】
 要約書 1

 【包括委任状番号】
 0117465

【書類名】特許請求の範囲

【請求項1】

データを記憶する第1の記憶手段及び第2の記憶手段と、

該第2の記憶手段に記憶されたデータを用いて、アプリケーションプログラムを実行す るアプリケーションプログラム実行手段とを備えた移動体通信端末において、

当該移動体通信端末の位置、向き、姿勢及び動きのうちの少なくとも1つを検知するた めの検知手段と、

該検知手段による検知結果に基づいて得られる検知結果データを、上記第1の記憶手段 に記憶する記憶処理を行う記憶処理手段と、

上記アプリケーションプログラム実行手段からのデータ移行命令に応じ、該第1の記憶 手段に記憶された検知結果データを上記第2の記憶手段に移行するデータ移行手段とを有

上記アプリケーションプログラム実行手段は、該第2の記憶手段に記憶された検知結果 データを用いて、上記アプリケーションプログラムを実行することを特徴とする移動体通 信端末。

【請求項2】

請求項1の移動体通信端末において、

上記検知手段は、所定方向に延びる仮想軸のまわりの基準角に対する角度を検知するた めの角度検知手段を含むことを特徴とする移動体通信端末。

【請求項3】

請求項1又は2の移動体通信端末において、

上記検知手段は、当該移動体通信端末に働く所定方向の加速度を検知するための加速度 検知手段を含むことを特徴とする移動体通信端末。

【請求項4】

請求項1、2又は3の移動体通信端末において、

上記アプリケーションプログラム実行手段は、上記アプリケーションプログラムの記述 に従って上記データ移行命令を発生させる命令セットを実装していることを特徴とする移 動体通信端末。

請求項4の移動体通信端末が有するアプリケーションプログラム実行手段により実行さ 【請求項5】 れることにより、上記命令セットを用いて該アプリケーションプログラム実行手段に上記 データ移行命令を発生させるように、該移動体通信端末のコンピュータを機能させること を特徴とするアプリケーションプログラム。

データを記憶する記憶手段に記憶されたデータを用いて、アプリケーションプログラム 【請求項6】 を実行するアプリケーションプログラム実行手段とを備えた移動体通信端末において、

上記アプリケーションプログラムの記述に従って上記アプリケーションプログラム実行 手段が生成する検知命令に応じて、当該移動体通信端末の位置、向き、姿勢及び動きのう ちの少なくとも1つを検知するための検知手段として、3軸の磁気センサ及び2軸の加速 度センサを用い、

該検知手段による検知結果に基づいて得られる検知結果データを、上記記憶手段に記憶 する記憶処理手段を有し、

該アプリケーションプログラム実行手段は、該記憶手段に記憶された検知結果データを 用いて、上記アプリケーションプログラムを実行することを特徴とする移動体通信端末。

【書類名】明細書

【発明の名称】移動体通信端末及びアプリケーションプログラム 【技術分野】

[0001]

本発明は、アプリケーションプログラムを実行可能な携帯電話機等の移動体通信端末及 びそのアプリケーションプログラムに関するものである。

【背景技術】

[0002]

従来、この種の移動体通信端末としては、プラットフォームに依存しないオブジェクト 指向のプログラミング言語で記述されたアプリケーションプログラムを実行可能な携帯電 話機が知られている。例えば、JAVA(サンマイクロシステムズ社の登録商標。以下同 様。)仮想マシン機能を実装し、JAVAで記述されたアプリケーションプログラムを実 行できるようにした携帯電話機が知られている(特許文献1参照)。このような携帯電話 機では、所定のサーバからダウンロードするなどして取得した様々なアプリケーションプ ログラムを利用することが可能である。また、BREW(クアルコム社の登録商標。以下 同様。)のアプリケーション実行環境上で動作するアプリケーションプログラムなどにつ いても、同様である。

[0003]

また、特許文献2には、加速度又は角速度を検知するセンサ(検知手段)を備えた携帯 電話機が開示されている。この携帯電話機は、センサによって検知した加速度又は角速度 に関するデータを表示手段に表示することができる。

また、特許文献3には、加速度を検知するセンサ(検知手段)を備えた携帯電話機が開 示されている。この携帯電話機は、センサによって検知した加速度を用いて、その移動軌 跡を求め、その移動軌跡を入力文字として認識することができる。

また、特許文献4には、方位を検知する地磁気センサ(検知手段)を備えた携帯電話機 が開示されている。この携帯電話機は、複数の方位に数値が関連付けられていて、携帯電 話機本体を特定の方位に向けることで、数値入力を行うことができる。

[0004]

【特許文献1】特開2000-347867号公報

【特許文献2】特開2001-272413号公報

【特許文献3】特開2002-169645号公報

【特許文献4】特開2003-111142号公報

【発明の開示】

【発明が解決しようとする課題】

[0005]

上述した特許文献2、3及び4に記載された携帯電話機は、そのセンサの検知結果に基 づいて、携帯電話機の位置、向き、姿勢あるいは動きを検知することができる。このよう な各種センサは、これらの特許文献には具体的な記載はないが、電話機プラットフォーム によって制御されるものである。また、各種センサによって検知された加速度等のデータ の保存場所についても、これらの特許文献には具体的な記載はないが、その保存場所は、 通常、その電話機プラットフォームが管理するプラットフォーム用記憶領域(第1の記憶 手段)である。そのため、従来の携帯電話機において、上記プラットフォーム用記憶領域 に記憶された加速度等のデータ(検知結果データ)を利用するプログラムは、その記憶領 域を管理する電話機プラットフォーム上で直接動作するものでなければならない。したが って、上記特許文献2、3及び4には明記されていないが、これらの特許文献に開示の携 帯電話機において、その検知結果データを用いて行う各種処理は、電話機プラットフォー ム上で直接動作するプログラムによって実現される。このようなプログラムは、電話機プ ラットフォームに依存するものであるため、通常は、予め携帯電話機に登録して、利用者 に提供される。そのため、検知結果データを用いるプログラムが新たに開発されても、利 用者は、そのプログラムを自分の携帯電話機に登録することができず、これを利用するこ

とはできなかった。

[0006]

一方、上述したJAVAで記述されたアプリケーションプログラムは、これを実行する ためのアプリケーション実行環境(JAVA仮想マシン等)上で動作するため、電話機プ ラットフォームに依存しない。よって、上述したように、所定のサーバからダウンロード するなどして自分の携帯電話機に登録して利用することが可能である。しかし、このよう なアプリケーションプログラムは、上記アプリケーション実行環境上で管理されるアプリ ケーション用記憶領域(第2の記憶手段)に記憶されたデータしか利用することができな い。すなわち、電話機プラットフォームが管理するプラットフォーム用記憶領域に記憶さ れたデータは、直接利用することはできない。しかも、従来の携帯電話機には、各種セン サによって検知した加速度等の検知結果データを、プラットフォーム用記憶領域からアプ リケーション用記憶領域へ移行するための手段がない。したがって、JAVAで記述され たアプリケーションプログラムのようにプラットフォームに依存しないアプリケーション プログラムにおいて、検知結果データを用いた処理を行うことができなかった。これは、 BREWのアプリケーション実行環境上で動作するアプリケーションプログラムなどにつ いても、同様である。

[0007]

なお、以上の説明は、携帯電話機を例に挙げて行ったが、他の移動体通信端末において も、同様である。

[0008]

本発明は、上述した背景に鑑みなされたものであり、その目的とするところは、利用者 が登録して利用することが可能なプラットフォームに依存しないアプリケーションプログ ラムで、位置、向き、姿勢、動きを検知するための検知手段によって得られる検知結果デ ータを利用することが可能な移動体通信端末及びアプリケーションプログラムを提供する ことである。

【課題を解決するための手段】

[0009]

上記目的を達成するために、請求項1の発明は、データを記憶する第1の記憶手段及び 第2の記憶手段と、該第2の記憶手段に記憶されたデータを用いて、アプリケーションプ ログラムを実行するアプリケーションプログラム実行手段とを備えた移動体通信端末にお いて、当該移動体通信端末の位置、向き、姿勢及び動きのうちの少なくとも1つを検知す るための検知手段と、該検知手段による検知結果に基づいて得られる検知結果データを、 上記第1の記憶手段に記憶する記憶処理を行う記憶処理手段と、上記アプリケーションプ ログラム実行手段からのデータ移行命令に応じ、該第1の記憶手段に記憶された検知結果 データを上記第2の記憶手段に移行するデータ移行手段とを有し、上記アプリケーション プログラム実行手段は、該第2の記憶手段に記憶された検知結果データを用いて、上記ア プリケーションプログラムを実行することを特徴とするものである。

この移動体通信端末においては、検知手段によって得られる検知結果データが記憶され る第1の記憶手段と、アプリケーションプログラム実行手段が利用可能なデータが記憶さ れる第2の記憶手段とを備えている。このような第2の記憶手段を有することで、アプリ ケーションプログラム実行手段は、プラットフォームに依存しないアプリケーションプロ グラムを実行することが可能となる。このようなアプリケーションプログラムは、プラッ トフォームに依存するアプリケーションプログラムとは異なり、利用者が登録して利用す ることが可能である。そして、このアプリケーションプログラム実行手段からのデータ移 行命令があると、その命令に応じて、第1の記憶手段に記憶された検知結果データが第2 の記憶手段に移行される。よって、アプリケーションプログラム実行手段は、検知手段に よって得られる検知結果データを用いた処理を行うアプリケーションプログラムを実行す ることが可能となる。

[0010]

また、請求項2の発明は、請求項1の移動体通信端末において、上記検知手段は、所定 出証特2004-3098384 方向に延びる仮想軸のまわりの基準角に対する角度を検知するための角度検知手段を含むことを特徴とするものである。

この移動体通信端末においては、当該移動体通信端末の姿勢を特定することができる。 【0011】

また、請求項3の発明は、請求項1又は2の移動体通信端末において、上記検知手段は、当該移動体通信端末に働く所定方向の加速度を検知するための加速度検知手段を含むことを特徴とするものである。

この移動体通信端末においては、当該移動体通信端末の位置や動きを特定することが可能となる。

[0012]

また、請求項4の発明は、請求項1、2又は3の移動体通信端末において、上記アプリケーションプログラム実行手段は、上記アプリケーションプログラムの記述に従って上記データ移行命令を発生させる命令セットを実装していることを特徴とするものである。

アプリケーションプログラム実行手段がアプリケーションプログラムの実行中に検知結果データを利用するためには、第1の記憶手段内の検知結果データを第2の記憶手段へ移行させるべく、データ移行命令を発する必要がある。本移動体通信端末においては、このデータ移行命令を発生させるための命令セットが、アプリケーションプログラム実行手段に予め実装されている。よって、アプリケーションプログラム中に、その命令セットを用いる旨の記述を入れておくだけで、そのアプリケーションプログラムを実行するアプリケーションプログラム実行手段に、検知結果データを利用させることができる。

[0013]

また、請求項5の発明に係るアプリケーションプログラムは、請求項4の移動体通信端末が有するアプリケーションプログラム実行手段により実行されることにより、上記命令セットを用いて該アプリケーションプログラム実行手段に上記データ移行命令を発生させるように、該移動体通信端末のコンピュータを機能させることを特徴とするものである。

このアプリケーションプログラムは、アプリケーションプログラム実行手段に予め実装されている命令セットを用いて、検知手段によって得られる検知結果データを利用した処理を行うことができる。なお、本アプリケーションプログラムの受け渡しは、デジタル情報としてプログラムを記録したFD、CD-ROM等の記録媒体を用いて行なってもいいし、移動体通信ネットワーク等の通信回線を用いて行ってもよい。

[0014]

また、請求項6の発明は、データを記憶する記憶手段に記憶されたデータを用いて、アプリケーションプログラムを実行するアプリケーションプログラム実行手段とを備えた移動体通信端末において、上記アプリケーションプログラムの記述に従って上記アプリケーションプログラム実行手段が生成する検知命令に応じて、当該移動体通信端末の位置、向き、姿勢及び動きのうちの少なくとも1つを検知するための検知手段として、3軸の磁気センサ及び2軸の加速度センサを用い、該検知手段による検知結果に基づいて得られる検知結果データを、上記記憶手段に記憶する記憶処理手段を有し、該アプリケーションプログラム実行手段は、該記憶手段に記憶された検知結果データを用いて、上記アプリケーションプログラムを実行することを特徴とするものである。

この移動体通信端末において、アプリケーションプログラムが利用する検知結果データは、3軸の磁気センサ及び2軸の加速度センサの検知結果に基づいて得られるものである。3軸の磁気センサを用いれば、これにより地磁気を検知することで、簡単な構成で、各軸まわりの基準角に対する角度を特定することができ、当該移動体通信端末の姿勢を特定することができる。また、3軸の磁気センサを用いて地磁気を検知すれば、当該移動体通信端末の向き、すなわち、当該移動体通信端末上の特定方向が向いている方位を特定することができる。更に、本移動体通信端末は、2軸の加速度センサによって加速度も検知できるので、当該移動体通信端末の位置や動きも特定することが可能となる。例えば、2軸の加速度センサによって得られる加速度を時間で積分すれば、当該移動体通信端末の速度(動き)を特定することができる。また、例えば、上記3軸の磁気センサの検知結果と組

み合わせることで、2軸の加速度センサによって得られる加速度から、検知開始地点に対する現在位置を特定することが可能となる。このように、本移動体通信端末によれば、簡単な構成で、当該移動体通信端末の位置、向き、姿勢及び動きのすべてを特定することが可能となる。なお、本移動体通信端末のアプリケーションプログラム実行手段が実行するアプリケーションプログラムは、プラットフォームに依存しないアプリケーションプログラムも含まれる。【0015】

なお、上記「移動体通信端末」としては、PDC (Personal Digital Cellular) 方式、GSM (Global System for Mobile Communication) 方式、TIA (Telecommunications Industry Association) 方式等の携帯電話機、IMT (International Mobile Telecommunications) - 2000で標準化された携帯電話機、PHS (Personal Handyphone Service)、自動車電話機等の電話機のうち、プラットフォームに依存しないアプリケーションプログラムを実行可能なものが挙げられる。また、この「移動体通信端末」としては、上記電話機のほか、電話機能を有しないPDA (Personal Digital Assistance)等の移動型の移動体通信端末も挙げられる。

【発明の効果】

[0016]

請求項1乃至5の発明によれば、位置、姿勢、動きを検知するための検知手段によって得られる検知結果データを、利用者が登録して利用することが可能なプラットフォームに依存しないアプリケーションプログラムで利用することが可能となるという優れた効果がある。

特に、請求項2の発明によれば、当該移動体通信端末の姿勢を利用した様々なアプリケーションプログラムを実行することが可能となるという優れた効果がある。

また、請求項3の発明によれば、当該移動体通信端末の位置や動きを利用した様々なアプリケーションプログラムを実行することが可能となるという優れた効果がある。

また、請求項4及び5の発明によれば、アプリケーションプログラムのプログラミングが容易になるという優れた効果がある。

また、請求項6の発明によれば、移動体通信端末の位置、向き、姿勢及び動きの一部又は全部を利用する多種多様なアプリケーションプログラムを実行することが可能となるので、利用者へ提供できるアプリケーションプログラムの種類を増やすことが可能となるという優れた効果がある。

【発明を実施するための最良の形態】

[0017]

以下、本発明の一実施形態を、図面を参照しながら説明する。

図2は、本実施形態に係る移動体通信端末としての携帯電話機が利用可能な移動体通信システムの全体構成を説明するための説明図である。

この移動体通信システムにおいて、ユーザー1が使用する携帯電話機20は、ユーザー1によって登録されたアプリケーションプログラムを実行可能な構成を有している。本実施形態において、このアプリケーションプログラムは、プラットフォームに依存しないオブジェクト指向プログラミングによって開発されたものである。このようなアプリケーションプログラムとしては、JAVAで記述されたアプリケーションプログラム、BREWのアプリケーション実行環境上で動作するアプリケーションプログラムなどが挙げられる。この携帯電話機20は、通信ネットワークとしての携帯電話通信網10に接続可能である。また、この携帯電話通信網10には、プログラム提供用サーバとしてのアプリケーションプログラムダウンロードサーバ(以下、「ダウンロードサーバ」という。)11が接続されている。このダウンロードサーバ11は、携帯電話機20からのダウンロード要求を受け付けると、その要求に係るアプリケーションプログラムを携帯電話機20に対して送信する。

[0018]

ダウンロードサーバ11から提供されるアプリケーションプログラムは、アプリケーシ 出証特2004-3098384 ョンプログラムの開発元2から提供される。具体的には、例えば、アプリケーションプロ グラム開発元2側のパーソナルコンピュータ等から、専用回線や公衆回線を介してダウン ロードサーバ11にアップロードして提供する。なお、開発したアプリケーションプログ ラムを記録した光ディスクや磁気ディスク等の記録媒体を、アプリケーションプログラム 開発元2からダウンロードサーバ11を管理・運営する通信事業者に送り、その記録媒体 内のアプリケーションプログラムをダウンロードサーバ11で読み取るようにして、提供 してもよい。このようにして提供されたアプリケーションプログラムは、携帯電話機20 から携帯電話通信網10を介してダウンロード可能な状態でダウンロードサーバ11に登 録される。

[0019]

図3は、上記ダウンロードサーバ11のハードウェア構成を示す概略構成図である。 このダウンロードサーバ11は、システムバス100、CPU101、内部記憶装置、 外部記憶装置104、入力装置105及び出力装置106を備えている。上記内部記憶装 置は、RAM102やROM103等で構成されている。上記外部記憶装置は、ハードデ ィスクドライブ(HDD)や光ディスクドライブ等で構成されている。上記入力装置10 5は、外部記憶装置104、マウスやキーボード等で構成されている。上記出力装置10 6は、ディスプレイやプリンタ等で構成されている。更に、このダウンロードサーバ11 は、携帯電話通信網10を介して各ユーザー1の携帯電話機20と通信するための携帯電 話用通信装置107を備えている。

上記CPU101やRAM102等の構成要素は、システムバス100を介して、互い にデータやプログラムの命令等のやり取りを行っている。このダウンロードサーバ11を 所定の手順に従って動作させるためのプログラムは、ROM103や外部記憶装置104 に記憶されており、必要に応じてСРИ101やRAM102上の作業エリアに呼び出さ れて実行される。また、このダウンロードサーバ11には、携帯電話機20に提供するア プリケーションプログラムが外部記憶装置104に記憶されている。ダウンロードサーバ 11は、携帯電話機20からのダウンロード要求に応じ、CPU101、RAM102、 携帯電話通信網用通信装置107等が協働して、外部記憶装置104に記憶されているア プリケーションプログラムを、携帯電話通信網10を介して携帯電話機20に送信する機 能を有している。なお、このダウンロードサーバ11は、専用の制御装置として構成して もいいし、汎用のコンピュータシステムを用いて構成してもよい。また、1台のコンピュ ータで構成してもいいし、複数の機能をそれぞれ受け持つ複数台のコンピュータをネット ワークで結んで構成してもよい。

[0020]

図4は、上記携帯電話機20の外観を示す正面図であり、図5は、その携帯電話機20 のハードウェア構成を示す概略構成図である。

この携帯電話機20は、クラムシェル(折り畳み)タイプの携帯電話機であり、システ ムバス200、CPU201、RAM202やROM203等からなる内部制御装置、入 力装置204、出力装置205、携帯電話用通信装置206、加速度センサ207及び地 磁気センサ208を備えている。CPU201やRAM202等の構成要素は、システム バス200を介して、互いに各種データや後述のプログラムの命令等のやり取りを行って いる。上記入力装置204は、データ入力キー(テンキー、*キー、#キー)21、通話 開始キー22、終話キー23、スクロールキー24、多機能キー25、マイク26等から 構成されている。上記出力装置205は、液晶ディスプレイ(LCD)27、スピーカ2 8等から構成されている。上記携帯電話用通信装置206は、携帯電話通信網10を介し て他の携帯電話機や上記ダウンロードサーバ11と通信するためのものである。また、R AM202内には、後述する電話機プラットフォームが管理する第1の記憶手段としての プラットフォーム用記憶領域と、後述するアプリケーション実行環境上で管理される第2 の記憶手段としてのアプリケーション用記憶領域とが存在する。

[0021]

上記加速度センサ207は、LCD27の画像表示面に対して平行な面内で互いに直交

する 2 方向(図 4 中、 X 軸方向及び Y 軸方向)に向かう加速度 α_x , α_Y を検出するための 2 軸のセンサである。この加速度センサ 2 0 7 は、携帯電話機 2 0 の内部に設けられた図示しない回路基板上に実装されており、上記加速度 α_x , α_Y を検出できる公知のものを用いることができる。

また、上記地磁気センサ208は、上記X軸及び上記Y軸並びにこれらの軸に直交する 2 軸からなる 3 次元座標上における地磁気の方向を検知する 3 軸のセンサである。そして、本実施形態では、この地磁気センサ208の検知結果を利用して、X 軸、Y軸及びZ 軸のまわりの角度 θ_x , θ_Y , θ_Z を検出する。具体的には、地磁気の方向が、基準となる地磁気の方向(基準方向)に対して変化したときの変化量を、X 軸、Y軸及びZ 軸のまわりの角度 θ_x , θ_Y , θ_Z を用いて検出する。これにより、地磁気の方向が基準方向にあるときの姿勢から携帯電話機がその姿勢を変化させたとき、その変化後の姿勢を各角度 θ_x , θ_Y , θ_Z によって特定することができる。なお、以下の説明では、X 軸まわりの角度 θ_X をピッチ角といい、Y 軸まわりの角度 θ_X をピッチ角といい、Y 軸まわりの角度 θ_X をピッチ角といい、Y 軸まわりの角度 θ_X を用いることで、例えば上記 Y 軸が北方位に対してどの向きに向いているかを検知することもできる。この場合、例えば、上記 Y 軸と北方位とのなす角(以下、「方位角」という。) θ_X によって携帯電話機が向いている方角を特定する。この地磁気センサ208も、携帯電話機20の内部に設けられた図示しない回路基板上に実装されている。

なお、これらのセンサ207,208は、携帯電話機20の本体とは別体の装置として構成してもよい。この場合、例えば、これらのセンサ207,208を備えた外部装置を、携帯電話機20の本体に設けられる外部端子に接続し、その外部装置と携帯電話機20の本体とが一体となるように構成する。

[0022]

図6は、上記携帯電話機20の主要部を抽出して示したブロック図であり、図7は、その携帯電話機20におけるソフトウェア構造の説明図である。

この携帯電話機20は、電話通信部211、データ通信部212、操作部213、アプリケーションプログラム実行管理部214、主制御部215、出力部216、検知手段としてのセンサ検知部217等を備えている。後述する動作例1及び動作例2においては、アプリケーションプログラム実行管理部214がアプリケーションプログラム実行手段として機能し、後述する動作例3においては、主制御部215がアプリケーションプログラム実行手段として機能する。

[0023]

上記電話通信部 2 1 1 は、他の携帯電話機や固定電話機と電話通信を行うために、携帯電話通信網 1 0 の基地局と無線通信を行うものであり、上述のハードウェア構成上の携帯電話用通信装置 2 0 6 等に対応する。

[0024]

上記データ通信部 2 1 2 は、上記電話通信部 2 1 1 と同様に、上述のハードウェア構成上の携帯電話用通信装置 2 0 6 等に対応する。このデータ通信部 2 1 2 は、携帯電話機通信網 1 0 を介して他の携帯電話機とメールのやり取りを行ったり、携帯電話機通信網 1 0 からゲートウェイサーバを介して、インターネット等の外部の通信ネットワークに接続し、インターネット上での電子メールのやり取りやWebページの閲覧等を行ったりするためのものである。また、このデータ通信部 2 1 2 は、携帯電話機通信網 1 0 を介して、ダウンロードサーバ 1 1 が提供するアプリケーションプログラムをダウンロードするためにも用いられる。

[0025]

上記操作部 2 1 3 は、ユーザー 1 が操作可能な上述のテンキー 2 1、通話開始キー 2 2、終話キー 2 3 等で構成されている。この操作部 2 1 3 を操作することにより、ユーザーは、携帯電話機 2 0 に対して U R L 等のデータを入力したり、電話着信の際に通話の開始及び終了を行ったり、アプリケーションプログラムの選択、起動及び停止を行ったりすることができる。また、ユーザーは操作部 2 1 3 を操作することにより、上記ダウンロード

・サーバ11からアプリケーションプログラムをダウンロードすることもできる。 [0026]

上記アプリケーションプログラム実行管理部214は、上述のシステムバス200、C PU201やRAM202の一部等で構成されている。このアプリケーションプログラム 実行管理部214は、図7のソフトウェア構造上において中央の「アプリケーション実行 環境」に対応しており、オブジェクト指向プログラミングで開発されたアプリケーション プログラムに利用されるクラスライブラリ、実行環境管理ライブラリ、アプリケーション 管理等のソフトウェアを提供し、アプリケーションプログラムの実行環境を管理する。こ のアプリケーション実行環境は、実行するアプリケーションプログラムに応じて適宜選定 される。例えば、実行するアプリケーションプログラムがJAVAで記述されたものであ る場合には、JAVAのアプリケーション実行環境を選定する。また、実行するアプリケ ーションプログラムがBREWの実行環境上で動作するC言語で記述されたものである場 合には、BREWのアプリケーション実行環境を選定する。なお、実行するアプリケーシ ョンプログラムがJAVAで記述されたものである場合には、BREWのアプリケーショ ン実行環境上に更にJAVAのアプリケーション実行環境を構築することで、これを実行 することができる。

[0027]

ここで、アプリケーションプログラムは、クラスライブラリAPI(アプリケーション インターフェース)を介して上記アプリケーション実行環境内にある関数等のクラスライ プラリを呼び出して使用できるようになっている。この関数等のクラスライブラリの呼び 出しの履歴は、アプリケーションプログラムの仮想的な実行環境(仮想マシン:VM)が 終了するまで、RAM202内におけるアプリケーション用記憶領域に記憶される。また 、アプリケーション実行環境は、アプリケーションプログラムの実行に際して用いる各種 データも、そのアプリケーション用記憶領域に記憶する。そして、この各種データを用い るときには、このアプリケーション用記憶領域から読み出したり、書き込んだりする。ま た、アプリケーション実行環境内の実行環境管理ライブラリは、電話機プラットフォーム APIを介して後述の電話機プラットフォーム内の電話機プラットフォームライブラリを 呼び出して使用できるようになっている。

[0028]

後述の動作例1,2において説明するように、加速度センサ207及び地磁気センサ2 0 8 等で構成される後述のセンサ検知部 2 1 7 で検知した検知結果データ (加速度 α x, α Y及びピッチ角 θ x、ロール角 θ Y、ヨー角 θ Z)は、アプリケーションプログラムで利用 される。従来のアプリケーション実行環境においては、アプリケーションプログラムが上 記検知結果データを利用する手段がなかったため、本実施形態では、クラスライブラリに 新しいクラス(Orientationクラス)を追加している。このOrientationクラスには、加速 度 α x, α y α アータを取得するためのメソッドや、ピッチ角 θ x、ロール角 θ y、ヨー角 θ 2を取得するためのメソッドが個別に用意されており、いくつかの命令セットを定義可能 である。よって、本実施形態によれば、アプリケーションプログラムは、これらのメソッ ドを使用して上記検知結果データを取得し、これを利用することができる。

[0029]

上記主制御部215は、上記電話通信部211、データ通信部212、操作部213、 センサ検知部217を制御するものであり、上述のシステムバス200、CPU201や RAM202等で構成されている。この主制御部215は、アプリケーションプログラム 実行管理部214との間で制御命令や各種データのやりとりを行い、これらと協働して制 御を行う。また、主制御部215は、図7のソフトウェア構造上において最下部の「電話 機プラットフォーム」に対応しており、上記電話通信部211等を制御するための制御用 プログラムやユーザインターフェースを実行したり、電話機プラットフォームライブラリ を提供したりする。この電話機プラットフォームは、上記アプリケーション実行環境内の 実行環境管理ライプラリに対してイベントを送ることにより、アプリケーションプログラ ムにおいて各種処理を実行したり、アプリケーション管理APIを介して上記アプリケー ション実行環境内のアプリケーション管理のソフトウェアを呼び出して使用したりできる ようになっている。また、アプリケーション実行環境が電話機プラットフォームAPIを 介して電話機プラットフォームライブラリを呼び出して使用したとき、電話機プラットフ ォームは、その電話機プラットフォームライブラリに応じた処理を実行する。例えば、電 話機プラットフォームは、電話機プラットフォームライブラリを利用したアプリケーショ ン実行環境からの指示に基づき、RAM202内における電話機プラットフォームが管理 するプラットフォーム用記憶領域に記憶されたデータを読み出して、これをアプリケーシ ョン用記憶領域に移行することができる。

[0030]

上記出力部216は、上述の液晶ディスプレイ27、スピーカ28等からなる出力装置 205等で構成されている。この出力部216は、上記データ通信部212で受信したW e bページ画面を液晶ディスプレイ27に表示する。また、この出力部216の液晶ディ スプレイ27は、上記電話通信部211やデータ通信部212で情報を着信した旨をユー ザーに報知するときに用いられる。具体的には、その情報を着信すると、主制御部215 により、出力部216の液晶ディスプレイ27に着信報知画像を表示したり、スピーカ2 8から着信音を出力させたりする。更に、この出力部216は、アプリケーション実行環 境上で実行されるアプリケーションプログラムの実行中に、そのプログラム実行に関連し たメニュー画面等の表示や音楽の出力にも用いられる。

[0031]

上記センサ検知部217は、上述の加速度センサ207及び地磁気センサ208等で構 成されている。このセンサ検知部217は、上記主制御部215の制御の下で動作し、そ の検出結果は主制御部 2 1 5 が取得する。その検出結果が示す加速度 αχ, αγ並びにピッ チ角 θ_x 、ロール角 θ_Y 及びヨー角 θ_Z のデータは、上述したようにRAM 2 0 2 のプラッ トフォーム用記憶領域に記憶される。

例えばユーザー1によって携帯電話機20が変位すると、X軸方向及びY軸方向に働く 加速度がセンサ検知部217を構成する加速度センサ207によって検知される。その検 知信号が主制御部215に入力されると、主制御部215は、その検出信号からX軸方向 の加速度 α_x 及び Y 軸方向の加速度 α_Y を算出する。算出した加速度 α_X , α_Y のデータは、 記憶処理手段として機能する主制御部215によって、RAM202内のプラットフォー ム用記憶領域に記憶される。

また、携帯電話機 2 0 の姿勢が変わると、その姿勢の変化後におけるピッチ角 θ_{x} 、ロ ール角 heta γ 及びヨー角 heta z がセンサ検知部 2 1 7 を構成する地磁気センサ 2 0 7 によって検 知される。その検知信号が主制御部215に入力されると、主制御部215は、その検出 信号から姿勢変化後のそれぞれの角度 $heta_{x}$, $heta_{Y}$, $heta_{Z}$ を算出する。算出した各角度 $heta_{x}$, heta γ , θ zのデータは、加速度 α x, α γ の場合と同様に、主制御部 2 1 5 によって R A M 2 02内のプラットフォーム用記憶領域に記憶される。

また、携帯電話機 2 0 の向きが変わると、その向きの変化後における方位角 θ N がセン サ検知部217を構成する地磁気センサ208によって検知される。その検知信号が主制 御部215に入力されると、主制御部215は、その検出信号から姿勢変化後の方位角 hetaNを算出する。算出した方位角 heta Nのデータも、同様に、主制御部 2 1 5 によって R A M 20 2内のプラットフォーム用記憶領域に記憶される。

[0032]

なお、プラットフォーム記憶領域へ記憶する加速度 $lpha_x$, $lpha_Y$ や各角度 eta_x , eta_Y , eta_Z の データを、主制御部215がセンサ検知部217から取得する方法としては、次のような ・ものが挙げられる。例えば、主制御部215からセンサ検知部217ヘリクエストを送り 、これに応じてセンサ検知部217が出力したデータを主制御部215が受信する取得方 法である。また、例えば、リクエストがなくてもセンサ検知部217が連続的に出力する データを、主制御部 2 1 5 が適宜受信する取得方法を採用してもよい。また、アプリケー ションプログラムがアプリケーションプログラム実行管理部214を介して出力したリク エストに応じて主制御部215がセンサ検知部217ヘリクエストを送り、これに応じて

センサ検知部217が出力したデータを主制御部215が受信する取得方法を採用するこ ともできる。・

[0033]

携帯電話機20を所定の手順に従って動作させる電話機プラットフォームを構築するた めの制御用プログラムは、RAM202やROM203に記憶されている。また、基本O S(オペレーティングシステム)のプログラムや、上記アプリケーション実行環境を構築 するためのプログラム及びアプリケーションプログラムも、RAM202やROM203 に記憶されている。そして、これらのプログラムは、必要に応じてCPU201やRAM 202中の作業エリアに呼び出されて実行される。

[0034]

「動作例1]

次に、上記加速度 α_x , α_Y を用いたアプリケーションプログラムを実行するための処理 動作(以下、「動作例1」という。)について説明する。本動作例1のアプリケーション プログラムは、上記携帯電話機20を、ノートパソコン等の携帯型パーソナルコンピュー タやPDA等のポインティングデバイスであるマウスとして動作させるためのものである 。もちろん、据え置き型のパーソナルコンピュータなどのポインティングデバイスとして も同様に動作させることができる。

[0035]

図1は、本動作例1におけるアプリケーションプログラムを実行するための処理の流れ を示すフローチャートである。

まず、ユーザー1は、マウス用のアプリケーションプログラムを上記ダウンロードサー バ11からダウンロードして取得し、これを登録する(S1)。具体的には、ユーザー1 は、操作部213のキーを操作して、ダウンロードサーバ11にアクセスする。これによ り、ダウンロード可能なアプリケーションプログラムを選択するためのダウンロード選択 画面が液晶ディスプレイ27上に表示される。そして、そのダウンロード選択画面におい て、実行対象となるマウス用のアプリケーションプログラムをスクロールキー24を用い て選択し、多機能キー25を押下すると、主制御部215がデータ通信部212を制御し て、そのアプリケーションプログラムをダウンロードサーバ11からダウンロードする。 このようにしてダウンロードされたアプリケーションプログラムは、主制御部215によ り、RAM202に記憶される。

[0036]

ダウンロードしたアプリケーションプログラムを実行する場合、ユーザー1は、まず、 携帯電話機20の外部端子と、ノートパソコン等のUSB (Universal Serial Bus) 端子 とを接続する。本実施形態の接続方式は、USB端子を利用した有線接続であるが、その 他の有線接続又は無線接続を用いた方式であってもよい。また、本携帯電話機20をノー トパソコン等に接続する場合に用いる携帯電話機20側の通信手段としては、その外部端 子に限らず、ノートパソコン等との間でデータ通信が可能なあらゆる通信手段を利用する ことが可能である。携帯電話機20とノートパソコン等とを接続したら、ユーザー1は、 操作部213のキーを操作して、実行するアプリケーションプログラムを選択するための アプリケーション選択画面を液晶ディスプレイ27上に表示させる。そして、そのアプリ ケーション選択画面において、実行対象であるマウス用のアプリケーションプログラムを スクロールキー24を用いて選択し、多機能キー25を押下する。すると、図7に示した 電話機プラットフォームすなわち図6に示した主制御部215に、アプリケーションプロ グラムの実行指示が入力される(S2)。これにより、主制御部215は、図7に示した アプリケーション実行環境すなわち図6に示したアプリケーションプログラム実行管理部 214を起動させる(S3)。そして、アプリケーションプログラム実行管理部214は 、アプリケーションプログラム実行手段として機能し、マウス用のアプリケーションプロ グラムを読み出してこれを起動する(S4)。

[0037]

マウス用のアプリケーションプログラムが起動した後、そのアプリケーションプログラ

ムは、センサ検知部217によって検知される加速度αχ,αγのデータをほぼリアルタイ ムで取得する。そして、アプリケーションプログラムは、取得したデータに基づいて携帯 電話機20の移動量及び移動方向を求める。この移動量及び移動方向は、所定の短い時間 間隔で、連続的に携帯電話機20の外部端子を介してノートパソコン等に出力される。

具体的に説明すると、図8に示すように、アプリケーション実行環境において、起動し たアプリケーションプログラムは、アプリケーションプログラム実行管理部214に対し て、加速度データの取得要求を送る。本動作例 1 では、加速度 αχ, αγのデータを取得す るメソッドとしてgetXGravity()及びgetYGravity()の命令セットが定義されているので、 これらの命令セットを利用する要求を送る。これを受けたアプリケーションプログラム実 行管理部214は、電話機プラットフォームの主制御部215に対してデータ移行命令で ある加速度データの取得要求を送る(S5)。これを受けた主制御部215は、RAM2 0 2内のプラットフォーム用記憶領域に記憶した加速度 α_x , α_Y のデータを、アプリケー ションプログラム実行管理部214に送り、このデータはアプリケーションプログラムに 渡される(S6)。そして、加速度 αx , αY のデータを取得したアプリケーションプログ ラムは、そのデータを、RAM202内のアプリケーション用記憶領域に記憶する。そし て、その加速度 α x , α y のデータから携帯電話機 2 0 の移動量及び移動方向を算出し、そ の移動量及び移動方向の情報を外部端子からノートパソコン等に出力する処理を実行する (S7)。本動作例1において、主制御部215は、アプリケーションプログラム実行管 理部214から加速度データの取得要求を受け取ると、その後、プラットフォーム記憶領 域内の加速度 αx , αy が更新されるたびに、更新後のデータをアプリケーションプログラ ム実行管理部214に送る。よって、マウス用のアプリケーションプログラムは、ほぼリ アルタイムで、加速度 αx , αy のデータを取得し、ノートパソコン等に移動量及び移動方 向の情報を出力することができる。

[0038]

以上、本動作例1によれば、電話機プラットフォームに依存しない利用者が登録して利 用することが可能なアプリケーションプログラムにより、電話機プラットフォームが制御 するセンサ検知部 2 1 7 によって得られる加速度 αx, αγのデータを用いた処理を行うこ とができる。具体的には、携帯電話機20を、携帯型パーソナルコンピュータ等のポイン ティングデバイスとして利用することができる。一般に、携帯型パーソナルコンピュータ 等は小型化のため、備え付けのポインティングデバイスの操作性は、ディスクトップ型パ ーソナルコンピュータには劣るものである。そのため、ユーザーの中には、携帯型パーソ ナルコンピュータ等とは別個に、いわゆる外付けマウスを携帯する者も多い。本動作例 1 においては、一般のユーザーであればほぼ常時携帯している携帯電話機20を、外付けマ ウスとして利用することができる。よって、従来のように、外付けマウスをわざわざ持ち 歩かなくても、ディスクトップ型パーソナルコンピュータと同様の操作性を得ることがで きる。

[0039]

なお、本動作例 1 では、加速度 α_x , α_Y のデータを用いたアプリケーションプログラム として、マウス用のアプリケーションプログラムを例に挙げて説明したが、これに限られ るものではない。

他のアプリケーションプログラムとしては、例えば、携帯電話機20を万歩計(登録商 標)として動作させるものが挙げられる。この場合、そのアプリケーションプログラムは 、例えば、上記と同様にほぼリアルタイムで加速度データを連続的に取得し、ある一定の 閾値を越える加速度が検知された回数をカウントするような内容とする。また、上述した 加速度 α x , α y のデータを用いれば、その加速度変化から、歩いている時、走っている時 、電車に乗っている時などのユーザー1の動きを推測することが可能である。これらの推 測をもとに、ユーザー1の1日の行動履歴を記録するようなアプリケーションプログラム を提供することも可能である。このとき、上記地磁気センサ208によって検知される方 位角 θ Nのデータも利用すれば、ユーザー1が移動した方角も把握することができ、より 詳細な行動履歴を記録することが可能となる。この行動履歴の保存先は、携帯電話機20 内に限らず、データ通信部212から通信ネットワーク上の所定のサーバに保存するよう にしてもよい。

また、他のアプリケーションプログラムとしては、例えば、携帯電話機20に衝撃を与 えることでアラームを止めることができるような目覚まし時計として、携帯電話機20を 動作させるものも挙げられる。この場合、そのアプリケーションプログラムは、例えば、 アラームが鳴っている間に一定以上の加速度が発生したら、アラームを止めるような内容 とする。これによれば、ユーザーは、アラームを止める時に、従来のようにボタン操作を 行う必要がなくなるので、ユーザーの利便性向上を図ることができる。

[0040]

[動作例2]

次に、上記ピッチ角 θ_x 、ロール角 θ_Y 及びヨー角 θ_Z を用いたアプリケーションプログ ラムを実行するための処理動作(以下、「動作例 2 」という。)について説明する。本動 作例2のアプリケーションプログラムは、ゲームであるフライトシミュレータである。

[0041]

図9は、本動作例2におけるアプリケーションプログラムを実行するための処理の流れ を示すフローチャートである。

ユーザー1は、上記動作例1と同様にして、フライトシミュレータ用プログラム(アプ リケーションプログラム)を上記ダウンロードサーバ11からダウンロードして取得し、 これを起動する(S11~S14)。このプログラムが起動すると、出力部216が、飛 行機の操縦席からの視界を擬似的に表したゲーム画面をLCD27に表示する。また、こ のプログラムは、センサ検知部 2 1 7 によって検知されるピッチ角 $heta_x$ 、ロール角 $heta_Y$ 及び たデータに応じてLCD27に表示されるゲーム画面の内容を更新する。例えば、ユーザ -1が携帯電話機20のアンテナ側を鉛直方向下方に傾けると、これによりピッチ角 $\theta_{ extbf{x}}$ が変化し、ゲーム上の飛行機の機首が鉛直方向下方に向いたゲーム画面に更新される。ま た、例えば、ユーザー 1 が携帯電話機 2 0 を左側に傾けると、これによりロール角 θ γ が 変化し、ゲーム上の飛行機が左側に傾いたゲーム画面に更新される。

[0042]

具体的に説明すると、図10に示すように、アプリケーション実行環境において、起動 したアプリケーションプログラムは、アプリケーションプログラム実行管理部214に対 して、角度データの取得要求を送る。本動作例 2 では、ピッチ角 $heta_x$ 、ロール角 $heta_Y$ 、ヨー 角 θ z のデータを取得するメソッドとしてgetPitch()、getRoll()、getCompassBearing() 等の命令セットが定義されているので、これらの命令セットを利用する要求を送る。これ を受けたアプリケーションプログラム実行管理部214は、電話機プラットフォームの主 制御部215に対してデータ移行命令である角度データの取得要求を送る(S15)。こ れを受けた主制御部215は、RAM202内のプラットフォーム用記憶領域に記憶した ピッチ角 θ_x 、ロール角 θ_Y 及びヨー角 θ_Z のデータを、アプリケーションプログラム実行 管理部214に送り、これらのデータはアプリケーションプログラムに渡される(S16)。そして、ピッチ角 θ x、ロール角 θ y 及びヨー角 θ z のデータを取得したアプリケーシ ョンプログラムは、そのデータを、RAM202内のアプリケーション用記憶領域に記憶 する。そして、ピッチ角 θ_x 、ロール角 θ_Y 及びヨー角 θ_Z に基づいてゲーム画面を更新し 、その更新後のゲーム画面を携帯電話機20のLCD27に表示する処理を実行する(S 17)。なお、本動作例2においても、上記動作例1と同様に、主制御部215は、アプ リケーションプログラム実行管理部214から角度データの取得要求を受け取った後は、 プラットフォーム記憶領域内の角度 $heta_{x}$, $heta_{Y}$, $heta_{Z}$ のデータが更新されるたびに、更新後 のデータをアプリケーションプログラム実行管理部214に送る。よって、ユーザー1は 、携帯電話機20のLCD27を見ながら携帯電話機20の本体を傾けることで、ゲーム 上の飛行機を操縦するというゲームを楽しむことができる。

[0043]

以上、本動作例2によれば、電話機プラットフォームに依存しない利用者が登録して利

用することが可能なアプリケーションプログラムにより、電話機プラットフォームが制御 するセンサ検知部 2 1 7 によって得られる角度 $heta_{x}$, $heta_{Y}$, $heta_{2}$ のデータを用いた処理を行 うことができる。具体的には、携帯電話機20の本体を傾ける操作を行うことで、フライ トシミュレータ上の飛行機を操縦するというゲームを提供することができる。フライトシ ミュレータ上の飛行機の操縦は、携帯電話機20の操作部213を操作することでも可能 ではあるが、本動作例2の方が操縦の臨場感を高めることができる。

[0044]

なお、本動作例 2 では、ピッチ角 θ_x 、ロール角 θ_Y 及びヨー角 θ_Z のデータを用いたア プリケーションプログラムとして、フライトシミュレータ用のプログラムを例に挙げて説 明したが、これに限られるものではない。

他のアプリケーションプログラムとしては、例えば、LCD27に表示されるゲーム画 面上においてボールを穴に落とすというゲームが挙げられる。この場合、そのアプリケー ションプログラムは、例えば、携帯電話機20を傾けることで、ゲーム画面上のボールが その傾きの方向に移動するような内容とする。

[0045]

[動作例3]

次に、上記動作例1と同様に、上記加速度 αx , αy を用いたマウス用のアプリケーショ ンプログラムを実行するための処理動作(以下、「動作例3」という。)について説明す る。

本動作例3で実行されるアプリケーションプログラムは、電話機プラットフォームに依 存するものである点で、上記動作例1のようにアプリケーション実行環境上で実行される 電話機プラットフォームに依存しないアプリケーションプログラムとは異なるものである 。なお、電話機プラットフォームに依存するアプリケーションプログラムとは、電話機プ ラットフォーム上で直接動作するもの、すなわち、アプリケーションプログラム実行手段 として機能する主制御部215により実行されるものである。本動作例3における基本的 な動作は、上記動作例1と同様であるので、以下、主に異なる点について説明する。

[0046]

図11は、本動作例3におけるアプリケーションプログラムを実行するための処理の流 れを示すフローチャートである。

本動作例3の実行対象であるマウス用のアプリケーションプログラムは、出荷段階で予 めROM203に記憶されている。よって、上記動作例1のように、実行前に、アプリケ ーションプログラムを上記ダウンロードサーバ11からダウンロードして取得し、これを 登録する処理を必要としない。アプリケーションプログラムを実行する場合、ユーザー1 は、まず、上記動作例1と同様に、携帯電話機20をノートパソコン等に接続した後、操 作部213のキーを操作して、実行するアプリケーションプログラムを選択する。すると 、図7に示した電話機プラットフォームすなわち図6に示した主制御部215に、アプリ ケーションプログラムの実行指示が入力される(S21)。これにより、主制御部215 は、マウス用のアプリケーションプログラムを読み出してこれを起動する(S22)。こ のとき、本動作例3では、アプリケーション実行環境を起動させる必要がない。

[0047]

マウス用のアプリケーションプログラムが起動した後、そのアプリケーションプログラ ムは、センサ検知部217によって検知される加速度αx,αγのデータをほぼリアルタイ ムで取得する。そして、アプリケーションプログラムは、取得したデータに基づいて携帯 電話機20の移動量及び移動方向を求める。この移動量及び移動方向は、所定の短い時間 間隔で、連続的に携帯電話機20の外部端子を介してノートパソコン等に出力される。

具体的に説明すると、図12に示すように、電話機プラットフォームにおいて、起動し たアプリケーションプログラムは、主制御部215に対して、加速度データの取得要求を 送る(S23)。これを受けた主制御部215は、RAM202内のプラットフォーム用 記憶領域に記憶した加速度 α_x , α_Y のデータを、アプリケーションプログラムに受け渡す (S24)。そして、加速度 α_x 、 α_Y のデータを取得したアプリケーションプログラムは 、そのデータから携帯電話機 20 の移動量及び移動方向を算出し、その移動量及び移動方向の情報をノートパソコン等に出力する処理を実行する(S25)。本動作例 3 において、主制御部 215 は、アプリケーションプログラムから加速度データの取得要求を受け取ると、その後、プラットフォーム記憶領域内の加速度 α_x , α_Y が更新されるたびに、更新後のデータをアプリケーションプログラムに送る。よって、マウス用のアプリケーションプログラムは、ほぼリアルタイムで、加速度 α_x , α_Y のデータを取得し、ノートパソコン等に移動量及び移動方向の情報を出力することができる。

[0048]

以上、本動作例3によれば、上記動作例1と同様に、携帯電話機20を、携帯型パーソナルコンピュータ等のポインティングデバイスとして利用することができる。

なお、本動作例3において実行されるアプリケーションプログラムは、主制御部215により実行される電話機プラットフォームに依存するものである。したがって、本動作例3は、アプリケーションプログラム実行管理部214を有しない携帯電話機に対しても適用することができる。

[0049]

その他、加速度 α_x , α_Y 、角度 θ_x , θ_Y , θ_Z 、方位角 θ_N を用いたアプリケーションプログラムとしては、例えば、携帯電話機 20の位置、向き、姿勢、動きなどによって、マナーモード設定等の各種設定の変更を行うための入力手段として、携帯電話機 20 を動作させるものが挙げられる。この場合、そのアプリケーションプログラムは、例えば、携帯電話機 20 が起立した状態にあるときはマナーモードに設定されたり、携帯電話機 20 が 静止状態にあるときは省電力モードに設定されたりするような内容とする。

[0050]

なお、本実施形態においては、主制御部 2 1 5 は、アプリケーションプログラム実行管理部 2 1 4 を介して又はアプリケーションプログラムから直接に、取得要求を受けた後、プラットフォーム記憶領域内のデータ更新のたびに、更新後のデータを送るように動作するが、アプリケーションプログラムの内容に応じて適宜変更できる。例えば、取得要求を受けたら、プラットフォーム記憶領域内のデータを、1回だけ送るように動作させてもよい。また、上記動作例 1 及び動作例 2 においては、アプリケーションプログラムからの指示を待たずに、アプリケーションプログラム実行管理部 2 1 4 が取得要求を出力するようにしてもよい。

また、本発明は、携帯電話機のほか、PHS、自動車電話機等の電話機、携帯型のPD Aの場合についても適用でき、同様な効果が得られるものである。

【図面の簡単な説明】

[0051]

【図1】実施形態の動作例1における携帯電話機でアプリケーションプログラムを実行するための処理の流れを示すフローチャート。

【図2】同携帯電話機が利用可能な移動体通信システムの全体構成を説明するための説明図。

【図3】同移動体通信システムを構成するダウンロードサーバのハードウェア構成を示す概略構成図。

- 【図4】同携帯電話機の外観を示す正面図。
- 【図 5 】 同携帯電話機のハードウェア構成を示す概略構成図。
- 【図6】同携帯電話機の主要部を抽出して示したプロック図。
- 【図7】同携帯電話機におけるソフトウェア構造の説明図。
- 【図8】同携帯電話機でアプリケーションプログラムを実行する際のシーケンスフロー図。
- 【図9】動作例2における携帯電話機でアプリケーションプログラムを実行するための処理の流れを示すフローチャート。
- 【図10】同携帯電話機でアプリケーションプログラムを実行する際のシーケンスフロー図。

- 【図11】動作例3における携帯電話機でアプリケーションプログラムを実行するための処理の流れを示すフローチャート。
- 【図12】同携帯電話機でアプリケーションプログラムを実行する際のシーケンスフロー図。

【符号の説明】

- [0052]
- 10 携帯電話通信網
- 11 ダウンロードサーバ
- 20 携帯電話機
- 207 加速度センサ
- 208 地磁気センサ
- 212 データ通信部
- 2 1 3 操作部
- 214 アプリケーションプログラム実行管理部
- 2 1 5 主制御部
- 216 出力部
- 217 センサ検知部

【書類名】図面

【図1】

【図4】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【書類名】要約書

【要約】

【課題】 利用者が登録して利用することが可能なプラットフォームに依存しないアプリ ケーションプログラムで、位置、向き、姿勢、動きを検知するための検知手段によって得 られる検知結果データを利用することを可能とする。

【解決手段】 アプリケーションプログラムを携帯電話機にダウンロードして、これを実 行する場合、まず、そのアプリケーション実行環境を起動し、その環境下においてアプリ ケーションプログラムを動作させる。起動したアプリケーションプログラムは、加速度デ ータの取得要求を送り、これを電話機プラットフォームが受け付けると、携帯電話機に設 けられた加速度センサによって検知した加速度データをアプリケーションプログラムに受 け渡す。これにより、アプリケーションプログラムでは、加速度データを利用した処理を 行うことができる。

【選択図】 図1

ページ: 1/E

認定・付加情報

特許出願の番号 特願2003-356855

受付番号 50301721675

書類名 特許願

担当官 末武 実 1912

作成日 平成15年11月19日

<認定情報・付加情報>

【特許出願人】

【識別番号】 501440684

【住所又は居所】 東京都港区愛宕二丁目5番1号

【氏名又は名称】 ボーダフォン株式会社

【代理人】 申請人

【識別番号】 100098626

【住所又は居所】 神奈川県横浜市港北区新横浜2丁目14番地26

石川ビル302号室 黒田特許事務所

【氏名又は名称】 黒田 壽

【書類名】手続補正書(方式)【提出日】平成15年11月14日【あて先】特許庁長官 殿

【事件の表示】

【出願番号】 特願2003-356855

【補正をする者】

【識別番号】 501440684

【氏名又は名称】 ボーダフォン株式会社

【代理人】

【識別番号】 100098626

【弁理士】

【氏名又は名称】 黒田 壽 【発送番号】 107370

【手続補正1】

【補正対象書類名】 特許願 【補正対象項目名】 特許出願人 【補正方法】 変更

【補正の内容】

【特許出願人】

【識別番号】 501440684

【氏名又は名称】 ボーダフォン株式会社 【代表者】 ダリル・イー・グリーン

ページ: 1/E

認定・付加情報

特許出願の番号 特願2003-356855

受付番号 50301887311

書類名 手続補正書(方式)

担当官 末武 実 1912

作成日 平成15年11月19日

<認定情報・付加情報>

【補正をする者】

【識別番号】 501440684

【住所又は居所】 東京都港区愛宕二丁目5番1号

【氏名又は名称】 ボーダフォン株式会社

【代理人】 申請人

【識別番号】 100098626

【住所又は居所】 神奈川県横浜市港北区新横浜2丁目14番地26

石川ビル302号室 黒田特許事務所

【氏名又は名称】 黒田 壽

手続補正書 【書類名】 平成15年11月14日 【提出日】 特許庁長官 殿 【あて先】 【事件の表示】 特願2003-356855 【出願番号】 【補正をする者】 501440684 【識別番号】 ボーダフォン株式会社 【氏名又は名称】 【代理人】 100098626 【識別番号】 【弁理士】 黒田 壽 【氏名又は名称】 【手続補正1】 特許願 【補正対象書類名】 発明者 【補正対象項目名】 変更 【補正方法】 【補正の内容】 【発明者】 東京都港区愛宕2丁目5番1号 ボーダフォン株式会社内 【住所又は居所】 西方 尚美 【氏名】 【発明者】 東京都港区愛宕2丁目5番1号 ボーダフォン株式会社内 【住所又は居所】 水野 隆久 【氏名】 【発明者】 東京都港区愛宕2丁目5番1号 ボーダフォン株式会社内 【住所又は居所】 池田 秀行 【氏名】 【発明者】 東京都港区愛宕2丁目5番1号 ボーダフォン株式会社内 【住所又は居所】 楠田 洋久 【氏名】 誤記の理由は、発明者データ入力時における住所又は居所の欄の 【その他】 会社名データの誤入力です。

ページ: 1/E

認定・付加情報

特許出願の番号 特願2003-356855

受付番号 50301887312

書類名 手続補正書

担当官 末武 実 1912

作成日 平成15年11月19日

<認定情報・付加情報>

【補正をする者】

【識別番号】 501440684

【住所又は居所】 東京都港区愛宕二丁目5番1号

【氏名又は名称】 ボーダフォン株式会社

【代理人】 申請人

【識別番号】 100098626

【住所又は居所】 神奈川県横浜市港北区新横浜2丁目14番地26

石川ビル302号室 黒田特許事務所

【氏名又は名称】 黒田 壽

特願2003-356855

出願人履歴情報

識別番号

[501440684]

1. 変更年月日 [変更理由] 2003年10月 6日

名称変更

住 所

東京都港区愛宕二丁目5番1号

ボーダフォン株式会社 氏 名