

✓ Congratulations! You passed!

Keep Learning

100%

Natural Language Processing & Word Embeddings

LATEST SUBMISSION GRADE

100%

1.	Suppose you learn a word embedding for a vocabulary of 10000 words. Then the embedding vectors should be 10000
	dimensional, so as to capture the full range of variation and meaning in those words,

1/1 point

O True

False

✓ Correct

The dimension of word vectors is usually smaller than the size of the vocabulary. Most common sizes for word vectors ranges between 50 and 400.

2. What is t-SNE?

- A linear transformation that allows us to solve analogies on word vectors
- A non-linear dimensionality reduction technique
- A supervised learning algorithm for learning word embeddings
- An open-source sequence modeling library

Correct

3. Suppose you download a pre-trained word embedding which has been trained on a huge corpus of text. You then use this 1/1 point word embedding to train an RNN for a language task of recognizing if someone is happy from a short snippet of text, using a small training set.

x (input text)	y (happy?)
I'm feeling wonderful today!	1
I'm bummed my cat is ill.	0
Really enjoying this!	1

Then even if the word "ecstatic" does not appear in your small training set, your RNN might reasonably be expected to recognize "I'm ecstatic" as deserving a label y=1.

True

False

Yes, word vectors empower your model with an incredible ability to generalize. The vector for "ecstatic would contain a positive/happy connotation which will probably make your model classified the sentence as a "1".

4. Which of these equations do you think should hold for a good word embedding? (Check all that apply)

 $ightharpoonup e_{boy} - e_{girl} pprox e_{brother} - e_{sister}$

	$igsqcup e_{boy} - e_{girl} pprox e_{sister} - e_{brother}$
	$m ec{m e}_{boy} - e_{brother} pprox e_{girl} - e_{sister}$
	✓ Correct Yes!
	$oxed{\Box} \; e_{boy} - e_{brother} pprox e_{sister} - e_{girl}$
	Let E be an embedding matrix, and let o_{1234} be a one-hot vector corresponding to word 1234. Then to get the embedding 1/1 point of word 1234, why don't we call $E*o_{1234}$ in Python?
	It is computationally wasteful.
	$igcap$ The correct formula is $E^Tst o_{1234}.$
	This doesn't handle unknown words (<unk>).</unk>
	None of the above: calling the Python snippet as described above is fine.
	Correct Yes, the element-wise multiplication will be extremely inefficient.
	When learning word embeddings, we create an artificial task of estimating $P(target \mid context)$. It is okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings.
	● True
(C False
	✓ Correct
	In the word2vec algorithm, you estimate $P(t \mid c)$, where t is the target word and c is a context word. How are t and c chosen from the training set? Pick the best answer.
	$\bigcirc \ c$ is a sequence of several words immediately before $t.$
	$\bigcirc \ c$ is the one word that comes immediately before $t.$
	lack c and t are chosen to be nearby words.
	$\bigcirc \ c$ is the sequence of all the words in the sentence before $t.$
	✓ Correct
	Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The word2vec model uses the following softmax function:
	$P(t\mid c)=rac{e^{ extstyle ar{ au}_t^2 \epsilon_c}}{\sum_{l'=1}^{10000}e^{ extstyle ar{ au}_l' \epsilon_c}}$
	Which of these statements are correct? Check all that apply.
	$m ec{ heta}_t$ and e_c are both 500 dimensional vectors.
	✓ Correct
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
	$m{arphi}_t$ and e_c are both trained with an optimization algorithm such as Adam or gradient descent.
	✓ Correct
	After training, we should expect $ heta_t$ to be very close to e_c when t and c are the same word.

9.	Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The GloVe model minimizes this objective:	1/1 point
	$\min \sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (heta_i^T e_j + b_i + b_j$ ' $- log X_{ij})^2$	
	Which of these statements are correct? Check all that apply.	
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
	$oldsymbol{arphi}$ $ heta_i$ and e_j should be initialized randomly at the beginning of training.	
	✓ Correct	
	$ ot Z X_{ij} $ is the number of times word j appears in the context of word i.	
	✓ Correct	
	lacksquare The weighting function $f(.)$ must satisfy $f(0)=0.$	
	✓ Correct	
	The weighting function helps prevent learning only from extremely common word pairs. It is not necessary that it satisfies this function.	
10	. You have trained word embeddings using a text dataset of m_1 words. You are considering using these word embeddings for a language task, for which you have a separate labeled dataset of m_2 words. Keeping in mind that using word embeddings is a form of transfer learning, under which of these circumstance would you expect the word embeddings to be helpful?	1/1 point
	(a) $m_1 >> m_2$	
	$\bigcap m_1 \ll m_2$	

✓ Correct