2021. 8. 3. Week3 HW WJ

```
Import Data
In [1]:
         import numpy as np
         import pandas as pd
         from sklearn.model_selection import train_test_split
         from sklearn.linear_model import LinearRegression, Ridge, Lasso
         import matplotlib.pyplot as plt
         from sklearn.metrics import mean_squared_error
        data = pd.read_csv('data.csv')
        data.head()
        #Age: 나이
        #Experience: 경력
         #Income: 수입
         #Family: 가족단위
         #CCAvg: 월 카드 사용량
          Age Experience Income Family CCAvg
        0
           25
                     1
                            49
                                        1.6
        1
           45
                     19
                            34
                                   3
                                        1.5
        2
                                        1.0
           39
                     15
                            11
                                   1
                                        2.7
        3
           35
                     9
                           100
                                   1
           35
                     8
                            45
                                   4
                                        1.0
In [4]:
        #결측치 확인(없음)
         data.isnull().sum()
Out[4]:
       Age
                    0
       Experience
                    0
        Income
                    0
       Family
                    0
       CCAvg
                    0
       dtype: int64
In [5]:
        data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2500 entries, 0 to 2499
Data columns (total 5 columns):
Column Non-Null Count Divo

#	Column	Non-Null Count	Dtype
0	Age	2500 non-null	int64
1	Experience	2500 non-null	int64
2	Income	2500 non-null	int64

2021. 8. 3. Week3_HW_WJ

dtypes: float64(1), int64(4)

Family

CCAvg

2500 non-null

2500 non-null

int64

float64

```
memory usage: 97.8 KB
        #Y = 수입, X = 나이, 경력, 가족단위, 월 카드 사용량
         y = data['Income']
         X = data.drop(['Income'], axis = 1)
         x_train, x_test, y_train, y_test = train_test_split(X, y, train_size =
         0.7, random_state = 1000)
         #7:3으로 train-test split
       Linear Regression
         reg = LinearRegression()
         results1 = reg.fit(x_train, y_train)
         reg.coef_
Out[8]: array([-3.07793956, 2.89401562, -3.37220023, 16.09065086])
       Ridge Regression
         #alpha, 즉 lambda가 0일 때에는 LSE와 같은 값이 나온다!
         rreg = Ridge(alpha = 0) # alpha = Lambda
         rreg.fit(x_train, y_train)
Out[9]: Ridge(alpha=0)
In [10]:
         rreg.coef
Out[10]: array([-3.07793956, 2.89401562, -3.37220023, 16.09065086])
In [11]:
         #alpha를 -3부터 3까지 log를 취해 7개 생성
         alpha = np.logspace(-3,3,7)
         alpha
Out[11]: array([1.e-03, 1.e-02, 1.e-01, 1.e+00, 1.e+01, 1.e+02, 1.e+03])
In [12]:
         df = []
         acc_table = []
         for i, a in enumerate(alpha):
```

2021. 8. 3. Week3 HW WJ

Out[12]:		0.001	0.010	0.100	1.000	10.000	100.000	1000.000
	0	132.296084	132.295649	132.291303	132.247877	131.817002	127.823048	105.704966
	1	-3.077937	-3.077919	-3.077732	-3.075864	-3.057321	-2.884607	-1.883048
	2	2.894014	2.893995	2.893806	2.891920	2.873198	2.698718	1.681685
	3	-3.372199	-3.372192	-3.372122	-3.371422	-3.364435	-3.295822	-2.731156
	4	16.090648	16.090622	16.090363	16.087768	16.061871	15.807207	13.634454

Lasso Regression

C:\Users\smile\anaconda3\lib\site-packages\sklearn\linear_model_coordinate_descent.p y:530: User\arning: Coordinate descent with no regularization may lead to unexpected r esults and is discouraged.

model = cd_fast.enet_coordinate_descent(

C:\Users\smile\unders\u

Out[13]: Lasso(alpha=0)

```
In [14]: Ireg.coef_
```

Out[14]: array([-3.07790231, 2.8939786, -3.37220244, 16.09065156])

2021. 8. 3. Week3_HW_WJ

```
df_lasso = pd.DataFrame(df,index = alpha).T
df_lasso
#Ridge와 유사한 방식. lambda가 커질수록 shrink. 그러나 Ridge와는 달리
Lasso는 0까지 shrink.
```

C:\Users\smile\anaconda3\lib\site-packages\sklearn\linear_model_coordinate_descent.p y:530: Convergence\underling: Objective did not converge. You might want to increase the number of iterations. Duality gap: 3094.379392363131, tolerance: 373.84840920000005 model = cd_fast.enet_coordinate_descent(

Out[15]:

	0.001	0.010	0.100	1.000	10.000	100.000	1000.000
0	132.261976	131.960877	128.945930	98.937749	54.569493	73.876	73.876
1	-3.076625	-3.065044	-2.949074	-1.794975	-0.134206	-0.000	-0.000
2	2.892703	2.881139	2.765340	1.612913	-0.000000	-0.000	-0.000
3	-3.371595	-3.366136	-3.311548	-2.765340	-0.000000	-0.000	-0.000
4	16.090400	16.088142	16.065558	15.839618	13.184919	0.000	0.000

In [16]:

```
import matplotlib.pyplot as plt

ax1 = plt.subplot(121)
plt.semilogx(df_ridge.T)
plt.xticks(alpha)
plt.title("Ridge")

ax2 = plt.subplot(122)
plt.semilogx(df_lasso.T)
plt.xticks(alpha)
plt.title("Lasso")

plt.show()
```


In []: