آزمون میانترم درس مکانیک کوانتمی ۳

- ۱- (چگالی) لاگرانژی $au = rac{1}{2} \partial_{\mu} arphi \partial^{\mu} arphi$ را که متناظر با میدان آزاد بدون جرم است، در نظر بگیرید. (ترتیب پاسخدادن به قسمتها اهمیت ندارد.)
 - الف) تقارن لا گرانژی را مشخص کنید.
 - ب) تكانهٔ مزدوج ميدان را بدست آوريد.
 - پ) همیلتونی را بدست آورید.
 - ت) معادلهٔ حرکت (اویلر-لاگرانژ) را بدست آورید.
 - ث) چگالی جریان نوتر را بدست آورید.
 - ج) بار نوتر را بدست آورید.
 - چ) نشان دهید باری که بدست آوردهاید بقا دارد.
- *) چنانچه تبدیلی در لاگرانژی در حالت کلی به گونهای بدست آورید که در آخر بار بقادار داشته باشید، امتیازی اضافه بر نمرهٔ این پرسش خواهید داشت.
 - $arphi_b$ و $arphi_b$ و $arphi_a$ و میدان حقیقی $\mathscr{L}=rac{1}{2}\partial_\mu \varphi_a \partial^\mu \varphi_a + rac{1}{2}\partial_\mu \varphi_b \partial^\mu \varphi_b rac{1}{2}m_a^2(\varphi_a)^2 rac{1}{2}m_b^2(\varphi_b)^2 g_1(\varphi_a+g_2\varphi_b)^2$ را با دو میدان حقیقی $arphi_a$ و $arphi_a$ مقادیر مثبت هستند. برای هر یک از میدانها،
 - الف) تكانهٔ مزدوج،
 - ب) معادلة حركت،
 - پ) جرم متناظر،
 - ت) منبع ایجاد (source) و
 - ث) ترم برهم كنشي
 - را بدست آورید.
 - ث) همیلتونی سیستم را حساب کنید.
- حال فرض کنید که $g_2=0$. با این فرض که ذرات متناظر با این دو میدان، جز جرم ویژگی دیگری ندارند (و در نتیجه پادذره و ذرهٔ متناظر با هر میدان با هم یکی هستند)،
 - ج) روابط (غیرصفر) جابه جاشونده های همزمان را بنویسید.
 - د) تبدیل فوریهٔ عمل گرهای $\hat{arphi}_a(x)$ و $\hat{arphi}_b(x)$ را مشخص کنید.
 - *) همیلتونی کوانتیزه و نرمال مرتب را پیدا نمایید.
 - **) چرا به نوشتن همیلتونی به این شکل کوانتیزه کردن میدان می گویند؟