Sample	F	K
1	1	1
2	3	2
3	7	1
4	8	1
5	9	1
6	11	2
7	23	2
8	37	1
9	39	2
10	45	1
11	46	1
12	59	1

ChiMerge Discretization

- •Statistical approach to Data Discretization
- •Applies the Chi Square method to determine the probability of similarity of data between two intervals.

Sample	F	K	Intervals
1	1	1	{0,2}
2	3	2	{2,5}
3	7	1	{5,7.5}
4	8	1	{7.5,8.5}
5	9	1	{8.5,10}
6	11	2	{10,17}
7	23	2	{17,30}
8	37	1	{30,38}
9	39	2	{38,42}
10	45	1	{42,45.5}
11	46	1	{45.5,52}
12	59	1	{52,60}

- •Sort and order the attributes that you want to group (in this example attribute F).
- •Start with having every unique value in the attribute be in its own interval.

Sample	F	K
1	1	1
2	3	2
3	7	1
4	8	1
5	9	1
6	11	2
7	23	2
8	37	1
9	39	2
10	45	1
11	46	1
12	59	1

•Begin calculating the Chi Square test on every interval

Sample	K=1	K=2	
2	0	1	1
3	1	0	1
total	1	1	2

Sample	K=1	K=2	
3	1	0	1
4	1	0	1
total	2	0	2

ChiMerge Discretization Example

Sample	K=1	K=2		$\mathbf{E_{11}} = (1/2) * 1 = .05$
2	0	1	1	$\mathbf{E_{12}} = (1/2) * 1 = .05$
3	1	0	1	$\mathbf{E_{21}} = (1/2) * 1 = .05$
total	1	1	2	$\mathbf{E_{22}} = (1/2) * 1 = .05$

$$\mathbf{X}^2 = (0-.5)^2/.5 + (1-.5)^2/.5 + (1-.5)^2/.5 + (0-.5)^2/.5 = \mathbf{2}$$

Sample	K=1	K=2	
3	1	0	1
4	1	0	1
total	2	0	2

$$\mathbf{E_{11}} = (1/2) * 2 = 1$$

$$\mathbf{E_{12}} = (0/2) * 2 = 0$$

$$\mathbf{E_{21}} = (1/2) * 2 = 1$$

$$\mathbf{E_{22}} = (0/2) * 2 = 0$$

$$\mathbf{X}^2 = (1-1)^2/1 + (0-0)^2/0 + (1-1)^2/1 + (0-0)^2/0 = \mathbf{0}$$

Threshold .1 with df=1 from Chi square distribution chart merge if $\boldsymbol{X^2}\!<\!2.7024$

Sample	F	K	Intervals	Chi ²	
1	1	1	[0,2]	2	
2	3	2	[2,5]	2	•Calculate all
3	7	1	{5,7.5}	2	the Chi Square value for all
4	8	1	{7.5,8.5}	0	intervals
5	9	1	{8.5,10}	0	N
6	11	2	{10,17}	2	 Merge the intervals with
7	23	2	{17,30}	0	the smallest Chi
8	37	1	{30,38}	2	values
9	39	2	{38,42}	2	
10	45	1	{42,45.5}	2	
11	46	1	{45.5,52}	0	
12	59	1	{52,60}	U	

