CSE 310 Data Structures and Algorithms

Asymptotic Notations

- Time complexity of an algorithm revisited
 - Worst-case running time
 - > Asymptotic running time
- Asymptotic notations
- Review of commonly-used functions & notations

Time complexity of an algorithm

- We saw the analysis of the Insertion Sort algorithm: its best-case and worst-case time complexity.
- Sometimes we want to know the lower bound on the running time: the best-case complexity
- We often care more about the worst-case complexity of an algorithm.
 - The worst-case running time is an *upper bound* on running time of an algorithm on *any* input.
 - For some algorithms, the worst case occurs fairly often (e.g., searching for absent data in a database)

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

- The "average case" is often roughly as bad as the worst case.
 - Look at the Insertion Sort algorithm again

"On average", we check half of the sub-array A[1...j-1]

- $\rightarrow t_i = j/2$ ("on average")
- \rightarrow Average-case running time is a quadratic function on n -- the same as the worst case
- Further, often the "average case" is difficult to compute
- So, unless stated explicitly otherwise, when we talk about "time complexity", we mean the worse case by default.

- •Also, we care more about the complexity when n becomes very huge \rightarrow asymptotic complexity
 - To further simplify the analysis, we are concerned with only the *order of growth* rather than the exact running time
 - E.g., $3n^2 + 2n + 9 \rightarrow 3n^2 \rightarrow n^2$
- •We will define some formal notations for such analysis
 - O, Ω , Θ -notations

O-notation

- This is used to denote the asymptotic **upper bound (to within a constant factor)** on a function, in particular on the running time of an algorithm.
 - For a given g(n), O(g(n)) is the set of functions
 - $O(g(n)) = \{f(n): \text{ there exist positive constants } c, n_0 \text{ such that } 0 \le f(n) \le c \ g(n) \text{ for all } n \ge n_0 \}.$
- While it is a little abuse of notation, we often write something like $f(n) = O(n^2)$, or t(n) = O(g(n)), etc.
 - $f(n) = O(n^2)$ means f(n) is a member of the set $O(n^2)$
 - Or simply f(n) is upper bounded by n^2 .
 - -t(n) = O(g(n)) means t(n) is a member of the set O(g(n))
 - Or simply t(n) is upper-bounded by g(n).

O-notation illustrated

$$f(n) = O(g(n)) = O(n^3)$$

Questions:

Can we write $f(n) = O(n^4)$?

Can we write $f(n) = O(n^2)$?

Ω -notation

- This is used to denote the asymptotic **lower bound (to within a constant factor)** on a function, in particular on the running time of an algorithm.
 - For a given g(n), $\Omega(g(n))$ is the set of functions

$$\Omega(g(n)) = \{f(n): \text{ there exist positive constants } c, n_0 \text{ such that } 0 \le c \ g(n) \le f(n) \text{ for all } n \ge n_0 \}.$$

- Similar to before, we often write things like $f(n) = \Omega(n^2)$, or $t(n) = \Omega(g(n))$, etc.
 - $-f(n) = \Omega(n^2)$ means f(n) is a member of the set $\Omega(n^2)$
 - Or simply f(n) is lower-bounded by n^2
 - $-t(n) = \Omega(g(n))$ means t(n) is a member of the set $\Omega(g(n))$
 - Or simply t(n) is lower-bounded by g(n)

Ω -notation illustrated

$$f(n) = \Omega(g(n)) = \Omega(n^2)$$

Questions:

Can we write $f(n) = \Omega(n^3)$?

Can we write $f(n) = \Omega(n)$?

Yes, but not very practically useful in the latter case

Θ-notation

- This is used to denote asymptotic tight **bound** (to within a constant factor) on a function, in particular on the running time of an algorithm.
 - For a given g(n), $\Theta(g(n))$ is the set of functions
 - $\Theta(g(n)) = \{f(n): \text{ there exist positive constants } c_1, c_2, n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}.$

- Similar to before, we often write things like $f(n) = \Theta(n^2)$, or $t(n) = \Theta(g(n))$, etc.
 - $-f(n) = \Theta(n^2)$ means f(n) is a member of the set $\Theta(n^2)$
 - Or simply f(n) has the same order of growth as n^2
 - $-t(n) = \Theta(g(n))$ means t(n) is a member of the set $\Theta(g(n))$
 - Or simply t(n) has the same order of growth as g(n)

Θ-notation illustrated

Usually, people use the O-notation even when we have a tight bound.

Some helpful tricks for O, Ω, Θ

• Assume the following:

$$f(n) = O(s(n))$$

 $g(n) = O(r(n))$

Then

$$c*f(n) = O(s(n))$$
 (for any constant $c>0$)
 $f(n)+c = O(s(n))$ (for any constant c)
 $f(n)+g(n) = O(s(n)+r(n))$
 $f(n)*g(n) = O(s(n)*r(n))$

Some helpful tricks (cont'd)

• Consider only the leading term of a formula (drop lower-order terms).

ex:
$$f(n) = n^3 + 2n^2 - n + 5 = O(n^3)$$
$$= \Omega(n^3)$$
$$= \Theta(n^3)$$
(However, $f(n) = \Omega(n^2)$ but $f(n) \neq O(n^2)$
$$f(n) = O(n^9)$$
 but $f(n) \neq \Omega(n^9)$)

• Ignore the leading term's coefficient

ex:
$$f(n) = 3n^3 - 2n^2 = O(n^3)$$

 $= \Omega(n^3)$ (therefore also $\Theta(n^3)$)
 $f(n) = 3*2^n + \log n = O(2^n)$
 $= \Omega(2^n)$ (therefore also $\Theta(2^n)$)

Efficiency of Algorithms

- So what can we do with those fancy notations?
 - They help us to analyze and compare algorithms
- We consider one algorithm to be more efficient than another if its worst-case running time has a lower order of growth.
 - This evaluation may not be true for small inputs, but is <u>true</u> for <u>large</u> enough inputs → Asymptotic performance.

Example: An algorithm with $\Theta(n^2)$ worst-case running time will run more quickly than a $\Theta(n^3)$ worst-case running time algorithm, for large enough inputs.

• Usually we say that an algorithm is efficient if it runs in polynomial time (or less) --- non-polynomial e^n , 2^n , n^n , ...

Optimal Algorithms

• An optimal algorithm for solving a certain problem is one that has minimum asymptotic running time among all possible algorithms for solving the problem.

usually not easy to determine

• Note: an optimal algorithm defined as such is not necessarily one that finds an *optimal solution* to the given problem; similar definitions can be made for space optimality.

Example:

Merge-Sort, Heap-Sort are optimal algorithms for the problem of sorting by comparison, since their running time is $O(n \log n)$ and we can show a lower bound of $\Omega(n \log n)$ for sorting by comparison.

Common Functions & Properties

- Refer to Section 3.2 for reviewing the following concepts, definitions, or functions:
 - Monotonicity
 - Floors and ceilings: $\lfloor x \rfloor$
 - Modular arithmetic: $a \mod n = a n \lfloor a/n \rfloor$
 - Polynomials
 - Exponentials
 - Logarithms
 - Factorials: n! = 1*2*3*...*n
 - Stirling's approximation

Summary & Reading Assignment

- The time complexity of an algorithm depends on
 - Input size (e.g., 6 elements v.s. 6000 elements)
 - Input itself (e.g., partially sorted or not.)
- Analysis of an algorithm: best-case, worst-case, average-case
- Performance bounds: upper, lower, tight
- Analysis via asymptotic notations: $\mathbf{O}, \mathbf{\Omega}, \mathbf{\Theta}$

Again: usually, people use the O-notation even when we have a tight bound \rightarrow Make sure you at least know what t(n) = O(g(n)) means.

- Read Chapter 3 to review topics covered in this set of slides (except the o-notation (small ω)).
- To prepare for next week, read Section 2.3, Introduction of Chapter 4 (before Sect. 4.1), Sections 4.3, 4.4, 4.5.