Problem 5: Suppose that the sequence $\{a_n\}_{n=1}^{\infty}$ satisfies $0 < a_n \le a_{2n} + a_{2n+1}$ for all $n \ge 1$. Prove that $\sum_{n=1}^{\infty} a_n$ diverges. (Source: Putnam)

Let
$$b_n = \sum_{k=f(n)}^{g(n)} a_k$$
, where $f(n) = 2^{n-1}$ and $g(n) = 2^n - 1$.

We can write out the first four terms of b_n to make the sequence easier to understand.

$$b_1 = a_1$$

 $b_2 = a_2 + a_3$
 $b_3 = a_4 + a_5 + a_6 + a_7$
 $b_4 = a_8 + a_9 + a_{10} + a_{11} + a_{12} + a_{13} + a_{14} + a_{15}$

For all positive integers n we have $b_n \ge a_1$. (This is because of the condition $0 < a_n \le a_{2n} + a_{2n+1}$.)

Since $\sum_{n=1}^{\infty} a_1$ diverges, we know by the Series Comparison Test that $\sum_{n=1}^{\infty} b_n$ also diverges.

But $\sum_{n=1}^{\infty} b_n$ is another way of writing $\sum_{n=1}^{\infty} a_n$. That is, $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} a_n$. So $\sum_{n=1}^{\infty} a_n$ diverges.