Math 7243 Machine Learning - Fall 2021	
Instructor: He Wang	
Test 1.	
Student Name:	/50

Rules and Instructions for Exams:

- 1. Unless otherwise specified, to receive full credits you must show **all** necessary work. The grading is based on your work shown. Only a final result from computer will receive zero point.
- 2. You need to finish the exam yourself. Any discussions with the other people will be considered as academic dishonesty. Cheating, Unauthorized Collaboration, and Facilitating Academic Dishonesty are not allowed. You can read a description of each here http://www.northeastern.edu/osccr/academic-integrity-policy/
- 3. This is an open exam. You are allowed to look at textbooks, and use a computer.
- 4. You are **not** allowed to discuss with any other people.
- 5. You are **not** allowed to ask questions on any internet platform.
- 6. For programming questions, if there is no specific instruction, you can only use numpy library. You should **not** use any build in function from Scikit-learn or StatsModels libraries.

- 1. (10 points) Calculate the **gradient** and **Hessian matrix** of the following functions and find the $\operatorname{argmin}_{\theta}$ of each function. Here the norm $|| \ ||$ is the standard l_2 -norm. You can use any results in the lecture notes.
- (1) Let $\vec{b} \in \mathbb{R}^d$ and let $J(\vec{\theta}) = ||\vec{\theta} \vec{b}||^2$.

(2) Let $X \in \mathbb{R}^{n \times d}$ and $\vec{b} \in \mathbb{R}^d$. Suppose $\operatorname{rank}(X) = d$. Let $F(\vec{\theta}) = ||X\vec{\theta}||^2 + \vec{\theta}^T \vec{b}$.

2. (10 points) In this question, you may use Python (with only numpy library) to solve the matrix equation. Consider the following data points

x_1	x_2	y
1.1	2	2.3
2.2	4	4.3
3.1	6	6.3
4.2	8	7.8
5.3	10	9.8

(1). Fit a linear model $y = \theta_0 + \theta_1 x_1 + \theta_2 x_2$ to this dataset when the loss is RSS= $||X\vec{\theta} - \vec{y}||^2$. You should report the best fit function and the RSS cost value.

(2). Fit a linear function to this dataset when the loss is the Ridge Loss $J(\theta) = ||X\vec{\theta} - \vec{y}||^2 + \lambda(\theta_1^2 + \theta_2^2)$ with $\lambda = 1$ and with $\lambda = 10$. You should report the best fit function and the **RSS** cost value. (Warning: Do not put penalty on θ_0)

The data file $\{\vec{x}^{(i)}, y^{(i)}\}$ for i=1,2,...,n=8 is drawn (with noise) from

$$f(x) = \theta_0 + \theta_1 e^x$$

(1) Find a **closed formula** for parameters $\vec{\theta}$ to minimize the RSS loss

$$J(\vec{\theta}) = \sum_{i=1}^{n} (y^{(i)} - f(x^{(i)}))^{2}$$

(2) Find the function f(x) fitting the data using the result in (1).

The data file $\{\vec{x}^{(i)}, y^{(i)}\}$ for i = 1, 2, ..., n = 8 is drawn (with noise) from the function:

$$g(x) = \theta_0 + e^{\theta_1 x}.$$

Fit the data to the function g(x) by minimizing the RSS loss

$$J(\vec{\theta}) = \sum_{i=1}^{n} (y^{(i)} - g(x^{(i)}))^{2}.$$

(1) Find the **gradient** of the cost function $J(\vec{\theta})$.

(2) Write down the update formula for gradient decent using α for the learning rate.

(3) Use gradient decent(GD) to find θ_* to minimize $J(\vec{\theta})$. You should try different learning rates and recording the cost function values to see what is the best α . Turn in any associated computations, your learning rate, cost values, and the parameters.

5. Consider the categorical learning problem consisting of a data set with two labels:

Label 1: (contains 6 points)

Label 2: (contains 5 points)

- (1) (7 points) For each label above, the data follow a multivariate normal distribution Normal(μ_i, Σ) where the covariance Σ is the same for both labels. Fit a pair of LDA functions to the labels by computing the covariances Σ , means μ_i , and proportion ϕ of data. You may use Python (with only numpy library)
 - (a) You should report the values for ϕ , μ_i and Σ .

(b) Give the **formula for the line** forming the decision boundary.

(2) (3 points) For each label above, use logistic regression to classify the data. You should report the logistic function $p(y=1 \mid \vec{x}) = \frac{1}{1+e^{-\theta^T\vec{x}}}$ and the formula for the line forming the decision boundary. (In this question, you can use any Python library including Scikit-learn.)

5. (continue)

(3)(2 bonus points) Find the probability $P(y=1|\vec{x})$ for a test point $\vec{x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ for both LDA model and the logistics model in the above two questions.

(4) (2 bonus points) Find the boundary using the QDA method. (You may use a computer, but only with numpy library)