Teoria dei Linguaggi

Indice

troduzione	5
arte I — Gerarchia di Chomsky	6
Breve ripasso	7
Gerarchia di Chomsky 2.1. Grammatiche 2.2. Gerarchia di Chomsky 2.3. Decidibilità 2.4. Introduzione della parola vuota 2.5. Linguaggi non esprimibili tramite grammatiche finite	
arte II — Linguaggi regolari	20
Automi a stati finiti deterministici	21
Automi a stati finiti non deterministici 2.1. Definizione 2.2. Confronto tra DFA e NFA 2.3. Forme di non determinismo	
Numero minimo di stati 3.1. Distinguibilità 3.1.1. Automa di Meyer-Fischer 3.1.2. Esempi 3.2. Fooling set 3.2.1. Esempi	
Equivalenza tra linguaggi di tipo 3 ed automi a stati finiti 4.1. Dall'automa alla grammatica	
Operazioni tra linguaggi	57

7.1. Teorema di Kleene 7.1.1. Da automa ad espressione regolare 6.6 7.1.2. Da espressione regolare ad automa 6.6 7.1.2.1. State complexity 6.6 7.1.2.2. Espressioni base 6.6 7.1.2.3. Operazioni insiemistiche 6.7 7.1.2.3.1. Complemento 6.7 7.1.2.3.1. DFA 6.7 7.1.2.3.1. DFA 6.7 7.1.2.3.1. NFA 6.7 7.1.2.3.1. DFA 7.1.2.3.1. Operazioni per sottoinsiemi 6.6 7.1.2.3.2. Unione 6.6 7.1.2.3.2. Unione 6.7 7.1.2.3.2. DFA 7.1.2.3.2. NFA 7.1.2.3.2. NFA 7.1.2.3.3. NFA 7.1.2.3.3. Intersezione 7.2 7.1.2.3.3. Intersezione 7.2 7.1.2.4.1. DFA 7.1.2.4.1. DFA 7.1.2.4.1. DFA 7.1.2.4.1. DFA 7.1.2.4.1. NFA 7.1.2.4.1. DFA 7.1.2.4.1. NFA 7.1.2.4.2. Operazioni tipiche 7.1.2.4.1. NFA 7.1.2.4.2. Operazioni di Kleene 7.7 7.1.2.4.2. Operazioni di Kleene 7.7 7.1.2.4.2. NFA 7.1.2.4.2. NFA 7.1.2.4.2. NFA 7.1.2.4.2. NFA 7.1.2.4.3. NFA 7.4. Espressioni regolari estese 8. Operazioni esotiche e avanzate 8.1. Reversal 8.2. Shuffle 8.2.1. Alfabeti disginuti 8.2.2. Stesso alfabeto 8.2.3. Alfabeto unario 8.3. Raddoppio 8.4. Metà 8.2.3. Raddoppio 8.5.1. Prima applicazione: raddoppio 8.5.2. Seconda applicazione: metà 9.4. Prumping Lemma 9.1. Definizione 9.5. Applicazioni 9.6. Prumping Lemma 9.1. Definizione 9.1. Prumping Lemma 9.1. Definizione 9.2. Applicazioni 9.6. Applicazione 9.6. Applicazione 9.7. App	7.	Espressioni regolari	62
7.1.2. Da espressione regolare ad automa 66 7.1.2.1. State complexity 66 7.1.2.2. Espressioni base 66 7.1.2.3. Operazioni insiemistiche 67 7.1.2.3.1. Complemento 66 7.1.2.3.1. DFA 67 7.1.2.3.1. NFA 66 7.1.2.3.2. NFA 66 7.1.2.3.2. Unione 66 7.1.2.3.2. J DFA 70 7.1.2.3.2. Automa prodotto 71 7.1.2.3.2. NFA 72 7.1.2.3.2. NFA 72 7.1.2.3. Intersezione 73 7.1.2.4.1. Prodotto 73 7.1.2.4.1. DFA 73 7.1.2.4.1. DFA 73 7.1.2.4.1. DFA 74 7.1.2.4.2. Obstruzione senza nome 74 7.1.2.4.2. DFA 76 7.1.2.4.2. DFA 76 7.2. Codici 76 7.2. Espressioni regolari estese 75 8. Operazioni esotiche e avanzate 82 8. 1. Reversal 82 8.1. PA 83 8.1. Algoritmo per l'automa minimo 85 8.2. Shuffle 88		7.1. Teorema di Kleene	62
7.1.2.1. State complexity 66 7.1.2.2. Espressioni base 66 7.1.2.3. Operazioni insiemistiche 67 7.1.2.3.1. Complemento 66 7.1.2.3.1. DFA 67 7.1.2.3.1.2. NFA 67 7.1.2.3.2. Unione 68 7.1.2.3.2. Unione 68 7.1.2.3.2. DFA 70 7.1.2.3.2. NFA 72 7.1.2.3.2. NFA 74 7.1.2.3. Intersecione 75 7.1.2.4. Operazioni tipiche 73 7.1.2.4.1. Prodotto 73 7.1.2.4.1. DFA 72 7.1.2.4.1. SIFA 74 7.1.2.4.1. Obstruzione senza nome 74 7.1.2.4.2. Obstruzione senza nome 74 7.1.2.4.2. DFA 76 7.1.2.4.2. DFA 76 7.2. Codici 76 7.2. Codici 76 7.3. Star height 77 7.4. Espressioni regolari estese 75 8. Operazioni esotiche e avanzate 82 8.1. Reversal 83 8.1.1. DFA 83 8.1.2. NFA 83		7.1.1. Da automa ad espressione regolare	63
7.1.2.2. Espressioni base 66 7.1.2.3. Operazioni insiemistiche 67 7.1.2.3.1. Complemento 67 7.1.2.3.1.1 DFA 67 7.1.2.3.1.2 NFA 67 7.1.2.3.2. Unione 66 7.1.2.3.2.1 DFA 76 7.1.2.3.2.2 Automa prodotto 71 7.1.2.3.2.3 NFA 72 7.1.2.3.3 Intersezione 73 7.1.2.4.0 Operazioni tipiche 73 7.1.2.4.1 Prodotto 73 7.1.2.4.1. DFA 73 7.1.2.4.1. DFA 74 7.1.2.4.2. Costruzione senza nome 74 7.1.2.4.2. Lingha 74 7.1.2.4.2. Univara di Kleene 75 7.1.2.4.2. NFA 76 7.2. Codici 76 7.3. Star height 77 7.4 Espressioni regolari estese 82 8. Operazioni esotiche e avanzate 82 8.1. Reversal 82 8.1.3. Reversal di una grammatica 84 8.1.4. Algoritmo per l'automa minimo 85 8.2. Shuffle 88 8.2.1. Alfabeto disgiunti 88 8.		7.1.2. Da espressione regolare ad automa	65
7.1.2.3. Operazioni insiemistiche 67 7.1.2.3.1. Complemento 66 7.1.2.3.1. DFA 61 7.1.2.3.1. NFA 66 7.1.2.3.2. Unione 66 7.1.2.3.2. DFA 76 7.1.2.3.2. Automa prodotto 71 7.1.2.3.2. ANFA 72 7.1.2.3.2. NFA 73 7.1.2.3. Intersezione 72 7.1.2.4.1. Prodotto 73 7.1.2.4.1. DFA 73 7.1.2.4.1. DFA 73 7.1.2.4.1. Ostruzione senza nome 74 7.1.2.4.2. Cotruzione senza nome 74 7.1.2.4.2. DFA 76 7.2. Codici 76 7.3. Star height 77 7.4. Espressioni regolari estese 78 8. Operazioni esotiche e avanzate 82 8.1. Reversal 82 8.1.1. DFA 83 8.1.2. NFA 83 8.1.3. Reversal di una grammatica 84 8.2. Shuffle 82 8.2.1. Alfabeti disgiunti 88 8.2.2. Stesso alfabeto 90 8.2.3. Raddoppio 91		7.1.2.1. State complexity	65
7.1.2.3.1. Complemento 67 7.1.2.3.1.1. DFA 66 7.1.2.3.1.2. NFA 66 7.1.2.3.2. Unione 66 7.1.2.3.2.1. DFA 70 7.1.2.3.2.3. NFA 71 7.1.2.3.2.3. NFA 72 7.1.2.3.3. Intersezione 72 7.1.2.4.0 Operazioni tipiche 73 7.1.2.4.1. Prodotto 73 7.1.2.4.1. DFA 73 7.1.2.4.1. DFA 74 7.1.2.4.1. SNFA 74 7.1.2.4.1. DFA 76 7.1.2.4.2. Chiusura di Kleene 76 7.1.2.4.2. NFA 76 7.2. Codici 76 7.2. Lessesioni regolari estese 77 8. Operazioni esotiche e avanzate 82 8.1. DFA 83 8.1.2. NFA 83 8.1.3. Reversal di una grammatica 84 8.1.4 Algoritmo per l'automa minimo 85 8.2.1 Alfabeti disgiunti 85 8.2.2. Stesso alfabeto 90 8.3. Raddoppio 91 8.4. Metà 92 8.5. Prima applicazione: raddoppio 92 <td></td> <td>7.1.2.2. Espressioni base</td> <td> 66</td>		7.1.2.2. Espressioni base	66
7.1.2.3.1. Complemento 67 7.1.2.3.1.1. DFA 66 7.1.2.3.1.2. NFA 66 7.1.2.3.2. Unione 66 7.1.2.3.2.1. DFA 70 7.1.2.3.2.3. NFA 71 7.1.2.3.2.3. NFA 72 7.1.2.3.3. Intersezione 72 7.1.2.4.0 Operazioni tipiche 73 7.1.2.4.1. Prodotto 73 7.1.2.4.1. DFA 73 7.1.2.4.1. DFA 74 7.1.2.4.1. SNFA 74 7.1.2.4.1. DFA 76 7.1.2.4.2. Chiusura di Kleene 76 7.1.2.4.2. NFA 76 7.2. Codici 76 7.2. Lessesioni regolari estese 77 8. Operazioni esotiche e avanzate 82 8.1. DFA 83 8.1.2. NFA 83 8.1.3. Reversal di una grammatica 84 8.1.4 Algoritmo per l'automa minimo 85 8.2.1 Alfabeti disgiunti 85 8.2.2. Stesso alfabeto 90 8.3. Raddoppio 91 8.4. Metà 92 8.5. Prima applicazione: raddoppio 92 <td></td> <td>7.1.2.3. Operazioni insiemistiche</td> <td> 67</td>		7.1.2.3. Operazioni insiemistiche	67
7.1.2.3.1.2. NFA 67 7.1.2.3.2.1. Unione 66 7.1.2.3.2.1. DFA 76 7.1.2.3.2.2. Automa prodotto 71 7.1.2.3.2.3. NFA 72 7.1.2.3.2.3. Intersezione 72 7.1.2.4.0 Operazioni tipiche 73 7.1.2.4.1. Prodotto 73 7.1.2.4.1. DFA 73 7.1.2.4.1.3. NFA 74 7.1.2.4.2. Costruzione senza nome 74 7.1.2.4.2. DFA 76 7.1.2.4.2. NFA 76 7.1.2.4.2. NFA 76 7.2. Codici 76 7.2. Lespressioni regolari estese 75 8. Operazioni esotiche e avanzate 82 8.1. Reversal 82 8.1.1. DFA 83 8.1.2. NFA 83 8.1.3. Reversal di una grammatica 84 8.1.4. Algoritmo per l'automa minimo 85 8.2. Shuffle 85 8.2.1. Alfabeti disgiunti 86 8.2.2. Stesso alfabeto 90 8.3. Raddoppio 91 8.4. Metà 92 8.5. Automi come matrici 92			
7.1.2.3.1.3. Costruzione per sottoinsiemi 66 7.1.2.3.2. Unione 66 7.1.2.3.2.1. DFA 70 7.1.2.3.2.2. Automa prodotto 71 7.1.2.3.2.3. NFA 72 7.1.2.3.3. Intersezione 72 7.1.2.4.0 Operazioni tipiche 73 7.1.2.4.1. DFA 73 7.1.2.4.1.1. DFA 73 7.1.2.4.1.2. Costruzione senza nome 74 7.1.2.4.1.3. NFA 74 7.1.2.4.2. Chiusura di Kleene 75 7.1.2.4.2. NFA 76 7.2. Codici 76 7.3. Star height 77 7.4. Espressioni regolari estese 75 8. Operazioni esotiche e avanzate 82 8.1. Reversal 83 8.1.1. DFA 83 8.1.2. NFA 83 8.1.3. Reversal di una grammatica 84 8.2.1. Alfabeti disgiunti 85 8.2.2. Stesso alfabeto 96 8.3. Raddoppio 91 8.4. Metà 92 8.5. Automi come matrici 92 8.5. Prima applicazione: raddoppio 93 8.5.3		7.1.2.3.1.1. DFA	67
7.1.2.3.2. Unione 68 7.1.2.3.2.1 DFA 76 7.1.2.3.2.2. Automa prodotto 71 7.1.2.3.2.3. NFA 75 7.1.2.3.3. Intersezione 72 7.1.2.4.0 Operazioni tipiche 73 7.1.2.4.1. Prodotto 73 7.1.2.4.1. DFA 73 7.1.2.4.1. NFA 74 7.1.2.4.1. NFA 74 7.1.2.4.2. Chiusura di Kleene 75 7.1.2.4.2. NFA 76 7.2. Codici 76 7.3. Star height 77 7.4. Espressioni regolari estese 75 8. Operazioni esotiche e avanzate 82 8.1.1. DFA 82 8.1.2. NFA 83 8.1.3. Reversal di una grammatica 84 8.1.4. Algoritmo per l'automa minimo 85 8.2. Shuffle 86 8.2.1. Alfabeti disgiunti 86 8.2.2. Stesso alfabeto 90 8.3. Raddoppio 91 8.4. Metà 92 8.5. Automi come matrici 92 8.5.1. Prima applicazione: raddoppio 93 8.5.2. Seconda applicazione: m		7.1.2.3.1.2. NFA	67
7.1.2.3.2. Unione 68 7.1.2.3.2.1 DFA 76 7.1.2.3.2.2. Automa prodotto 71 7.1.2.3.2.3. NFA 75 7.1.2.3.3. Intersezione 72 7.1.2.4.0 Operazioni tipiche 73 7.1.2.4.1. Prodotto 73 7.1.2.4.1. DFA 73 7.1.2.4.1. NFA 74 7.1.2.4.1. NFA 74 7.1.2.4.2. Chiusura di Kleene 75 7.1.2.4.2. NFA 76 7.2. Codici 76 7.3. Star height 77 7.4. Espressioni regolari estese 75 8. Operazioni esotiche e avanzate 82 8.1.1. DFA 82 8.1.2. NFA 83 8.1.3. Reversal di una grammatica 84 8.1.4. Algoritmo per l'automa minimo 85 8.2. Shuffle 86 8.2.1. Alfabeti disgiunti 86 8.2.2. Stesso alfabeto 90 8.3. Raddoppio 91 8.4. Metà 92 8.5. Automi come matrici 92 8.5.1. Prima applicazione: raddoppio 93 8.5.2. Seconda applicazione: m		7.1.2.3.1.3. Costruzione per sottoinsiemi	69
7.1.2.3.2.1. DFA 70 7.1.2.3.2.2. Automa prodotto 71 7.1.2.3.2.3. NFA 72 7.1.2.3.3. Intersezione 72 7.1.2.4.0 Operazioni tipiche 73 7.1.2.4.1. Prodotto 73 7.1.2.4.1.1. DFA 73 7.1.2.4.1.2. Costruzione senza nome 74 7.1.2.4.1.3. NFA 74 7.1.2.4.2. Chiusura di Kleene 75 7.1.2.4.2.1. DFA 76 7.2. Codici 76 7.2. Star height 76 7.2. Espressioni regolari estese 75 8. Operazioni esotiche e avanzate 82 8.1. Reversal 82 8.1.1. DFA 83 8.1.2. NFA 83 8.1.3. Reversal di una grammatica 84 8.1.4. Algoritmo per l'automa minimo 85 8.2. Shuffle 85 8.2.1. Alfabeti disgiunti 86 8.2.2. Stesso alfabeto 90 8.3. Raddoppio 91 8.4. Metà 92 8.5. Automi come matrici 92 8.5.1. Prima applicazione: raddoppio 93 8.5.2.		<u> -</u>	
7.1.2.3.2.2. Automa prodotto 71 7.1.2.3.2.3. NFA 72 7.1.2.3.3. Intersezione 72 7.1.2.4. Operazioni tipiche 73 7.1.2.4.1. Prodotto 73 7.1.2.4.1. DFA 73 7.1.2.4.1.2. Costruzione senza nome 74 7.1.2.4.2. Chiusura di Kleene 75 7.1.2.4.2. DFA 76 7.1.2.4.2.1. DFA 76 7.2. Codici 76 7.3. Star height 77 7.4. Espressioni regolari estese 75 8. Operazioni esotiche e avanzate 82 8.1.1. DFA 83 8.1.2. NFA 83 8.1.3. Reversal di una grammatica 84 8.1.4. Algoritmo per l'automa minimo 85 8.2. Shuffle 88 8.2.1. Alfabeti disgiunti 86 8.2.2. Stesso alfabeto 90 8.2.3. Alfabeto unario 90 8.5. Automi come matrici 92 8.5.1. Prima applicazione: raddoppio 93 8.5.2. Seconda applicazione: metà 94 8.5.3. Matrici su NFA 95 9. Pumping Lemma 96			
7.1.2.3.2.3. NFA 72 7.1.2.3.3. Intersezione 75 7.1.2.4.0. Operazioni tipiche 73 7.1.2.4.1. Prodotto 73 7.1.2.4.1. DFA 73 7.1.2.4.1.2. Costruzione senza nome 74 7.1.2.4.1.3. NFA 74 7.1.2.4.2. Chiusura di Kleene 75 7.1.2.4.2.1. DFA 76 7.2. Codici 76 7.2. Star height 77 7.4. Espressioni regolari estese 75 8. Operazioni esotiche e avanzate 82 8.1.1. DFA 83 8.1.2. NFA 83 8.1.3. Reversal di una grammatica 84 8.1.4. Algoritmo per l'automa minimo 85 8.2. Shuffle 88 8.2.1. Alfabeti disgiunti 89 8.2.2. Stesso alfabeto 90 8.2.3. Alfabeto unario 90 8.3. Raddoppio 91 8.4. Metà 92 8.5. Automi come matrici 92 8.5. Seconda applicazione: raddoppio 93 8.5. Seconda applicazione: metà 94 8.5. Applicazioni 96			
7.1.2.3.3 Intersezione 72 7.1.2.4. Operazioni tipiche 73 7.1.2.4.1. Prodotto 73 7.1.2.4.1.1 DFA 73 7.1.2.4.1.3 NFA 74 7.1.2.4.1.3 NFA 74 7.1.2.4.2. Chiusura di Kleene 75 7.1.2.4.2.1 DFA 76 7.2. Codici 76 7.3. Star height 77 7.4. Espressioni regolari estese 75 8. Operazioni esotiche e avanzate 82 8.1.1 DFA 83 8.1.2 NFA 83 8.1.3 Reversal di una grammatica 84 8.1.4 Algoritmo per l'automa minimo 85 8.2 Shuffle 85 8.2.1 Alfabeti disgiunti 86 8.2.2 Stesso alfabeto 90 8.3. Raddoppio 91 8.4 Metà 92 8.5.1 Prima applicazione: raddoppio 92 8.5.2 Seconda applicazione: metà 94 8.5.3 Matrici su NFA 95 9. Pumping Lemma 96 9.1 Definizione 96 9.2 Applicazioni 96		-	
7.1.2.4. Operazioni tipiche 73 7.1.2.4.1. Prodotto 73 7.1.2.4.1. DFA 73 7.1.2.4.1.2. Costruzione senza nome 74 7.1.2.4.2.3. NFA 74 7.1.2.4.2. Chiusura di Kleene 75 7.1.2.4.2.1. DFA 76 7.2. Codici 76 7.3. Star height 77 7.4. Espressioni regolari estese 75 8. Operazioni esotiche e avanzate 82 8.1. Reversal 83 8.1.2. NFA 83 8.1.3. Reversal di una grammatica 84 8.1.4. Algoritmo per l'automa minimo 85 8.2. Shuffle 85 8.2.1. Alfabeti disgiunti 88 8.2.2. Stesso alfabeto 90 8.2.3. Alfabeto unario 90 8.5. Automi come matrici 92 8.5.1. Prima applicazione: raddoppio 93 8.5.2. Seconda applicazione: metà 94 8.5.3. Matrici su NFA 95 9. Pumping Lemma 96 9.1. Definizione 96 9.2. Applicazioni 96			
7.1.2.4.1. Prodotto 73 7.1.2.4.1.1. DFA 73 7.1.2.4.1.2. Costruzione senza nome 74 7.1.2.4.1.3. NFA 74 7.1.2.4.2. Chiusura di Kleene 75 7.1.2.4.2.1. DFA 76 7.2. Codici 76 7.3. Star height 77 7.4. Espressioni regolari estese 75 8. Operazioni esotiche e avanzate 82 8.1. Reversal 83 8.1.1. DFA 83 8.1.2. NFA 83 8.1.3. Reversal di una grammatica 84 8.1.4. Algoritmo per l'automa minimo 85 8.2. Shuffle 89 8.2.1. Alfabeti disgiunti 89 8.2.2. Stesso alfabeto 90 8.2.3. Alfabeto unario 90 8.5. Automi come matrici 92 8.5.1. Prima applicazione: raddoppio 93 8.5.2. Seconda applicazione: raddoppio 93 8.5.3. Matrici su NFA 95 9. Pumping Lemma 96 9.1. Definizione 96 9.2. Applicazioni 96			
7.1.2.4.1.1. DFA 73 7.1.2.4.1.2. Costruzione senza nome 74 7.1.2.4.1.3. NFA 74 7.1.2.4.2. Chiusura di Kleene 75 7.1.2.4.2.1. DFA 76 7.1.2.4.2.2. NFA 76 7.2. Codici 76 7.3. Star height 77 7.4. Espressioni regolari estese 75 8. Operazioni esotiche e avanzate 82 8.1. Reversal 83 8.1.2. NFA 83 8.1.3. Reversal di una grammatica 84 8.1.4. Algoritmo per l'automa minimo 85 8.2. Shuffle 86 8.2.1. Alfabeti disgiunti 89 8.2.2. Stesso alfabeto 90 8.3. Raddoppio 91 8.4. Metà 92 8.5.1. Prima applicazione: raddoppio 93 8.5.2. Seconda applicazione: metà 94 8.5.3. Matrici su NFA 95 9. Pumping Lemma 96 9.2. Applicazioni 96		1	
7.1.2.4.1.2. Costruzione senza nome 74 7.1.2.4.1.3. NFA 74 7.1.2.4.2. Chiusura di Kleene 75 7.1.2.4.2.1. DFA 76 7.2. Codici 76 7.3. Star height 77 7.4. Espressioni regolari estese 75 8. Operazioni esotiche e avanzate 82 8.1. Reversal 83 8.1.1. DFA 83 8.1.2. NFA 83 8.1.3. Reversal di una grammatica 84 8.1.4. Algoritmo per l'automa minimo 85 8.2. Shuffle 88 8.2.1. Alfabeti disgiunti 89 8.2.2. Stesso alfabeto 90 8.2.3. Alfabeto unario 90 8.3. Raddoppio 90 8.5. Automi come matrici 92 8.5.1. Prima applicazione: raddoppio 93 8.5.2. Seconda applicazione: metà 94 8.5.3. Matrici su NFA 95 9. Pumping Lemma 96 9.2. Applicazioni 96			
7.1.2.4.1.3. NFA 74 7.1.2.4.2. Chiusura di Kleene 75 7.1.2.4.2.1. DFA 76 7.1.2.4.2.2. NFA 76 7.2. Codici 76 7.3. Star height 77 7.4. Espressioni regolari estese 79 8. Operazioni esotiche e avanzate 82 8.1. Reversal 82 8.1.1. DFA 83 8.1.2. NFA 83 8.1.3. Reversal di una grammatica 84 8.1.4. Algoritmo per l'automa minimo 85 8.2. Shuffle 85 8.2.1. Alfabeti disgiunti 86 8.2.2. Stesso alfabeto 90 8.3. Raddoppio 91 8.4. Metà 92 8.5. Automi come matrici 92 8.5.1. Prima applicazione: raddoppio 93 8.5.2. Seconda applicazione: metà 94 8.5.3. Matrici su NFA 95 9. Pumping Lemma 96 9.1. Definizione 96 9.2. Applicazioni 98			
7.1.2.4.2. Chiusura di Kleene 75 7.1.2.4.2.1 DFA 76 7.1.2.4.2.2. NFA 76 7.2. Codici 76 7.3. Star height 77 7.4. Espressioni regolari estese 79 8. Operazioni esotiche e avanzate 82 8.1. Reversal 82 8.1.1. DFA 83 8.1.2. NFA 83 8.1.3. Reversal di una grammatica 84 8.1.4. Algoritmo per l'automa minimo 85 8.2. Shuffle 85 8.2.1. Alfabeti disgiunti 86 8.2.2. Stesso alfabeto 90 8.3. Raddoppio 91 8.4. Metà 92 8.5. Automi come matrici 92 8.5.1. Prima applicazione: raddoppio 93 8.5.2. Seconda applicazione: metà 94 8.5.3. Matrici su NFA 95 9. Pumping Lemma 96 9.1. Definizione 96 9.2. Applicazioni 98			
7.1.2.4.2.1. DFA 76 7.1.2.4.2.2. NFA 76 7.2. Codici 76 7.3. Star height 77 7.4. Espressioni regolari estese 78 8. Operazioni esotiche e avanzate 82 8.1. Reversal 82 8.1.1. DFA 83 8.1.2. NFA 83 8.1.3. Reversal di una grammatica 84 8.1.4. Algoritmo per l'automa minimo 85 8.2. Shuffle 86 8.2.1. Alfabeti disgiunti 86 8.2.2. Stesso alfabeto 96 8.2.3. Alfabeto unario 96 8.3. Raddoppio 91 8.4. Metà 92 8.5.1. Prima applicazione: raddoppio 93 8.5.2. Seconda applicazione: metà 94 8.5.3. Matrici su NFA 95 9. Pumping Lemma 96 9.1. Definizione 96 9.2. Applicazioni 98			
7.1.2.4.2.2. NFA 76 7.2. Codici 76 7.3. Star height 77 7.4. Espressioni regolari estese 79 8. Operazioni esotiche e avanzate 82 8.1. Reversal 82 8.1.1. DFA 83 8.1.2. NFA 83 8.1.3. Reversal di una grammatica 84 8.1.4. Algoritmo per l'automa minimo 85 8.2. Shuffle 89 8.2.1. Alfabeti disgiunti 86 8.2.2. Stesso alfabeto 90 8.2.3. Alfabeto unario 90 8.3. Raddoppio 91 8.4. Metà 92 8.5.1. Prima applicazione: raddoppio 93 8.5.2. Seconda applicazione: metà 94 8.5.3. Matrici su NFA 95 9. Pumping Lemma 96 9.1. Definizione 96 9.2. Applicazioni 98			
7.2. Codici 76 7.3. Star height 77 7.4. Espressioni regolari estese 79 8. Operazioni esotiche e avanzate 82 8.1. Reversal 82 8.1.1. DFA 83 8.1.2. NFA 83 8.1.3. Reversal di una grammatica 84 8.1.4. Algoritmo per l'automa minimo 85 8.2. Shuffle 86 8.2.1. Alfabeti disgiunti 86 8.2.2. Stesso alfabeto 90 8.2.3. Alfabeto unario 90 8.3. Raddoppio 91 8.4. Metà 92 8.5.1. Prima applicazione: raddoppio 93 8.5.2. Seconda applicazione: metà 94 8.5.3. Matrici su NFA 95 9. Pumping Lemma 96 9.1. Definizione 96 9.2. Applicazioni 98			
7.3. Star height 77 7.4. Espressioni regolari estese 79 8. Operazioni esotiche e avanzate 82 8.1. Reversal 82 8.1.1. DFA 83 8.1.2. NFA 83 8.1.3. Reversal di una grammatica 84 8.1.4. Algoritmo per l'automa minimo 85 8.2. Shuffle 85 8.2.1. Alfabeti disgiunti 85 8.2.2. Stesso alfabeto 90 8.2.3. Alfabeto unario 90 8.3. Raddoppio 91 8.4. Metà 92 8.5. Automi come matrici 92 8.5.1. Prima applicazione: raddoppio 93 8.5.2. Seconda applicazione: metà 94 8.5.3. Matrici su NFA 95 9. Pumping Lemma 96 9.1. Definizione 96 9.2. Applicazioni 98			
7.4. Espressioni regolari estese 75 8. Operazioni esotiche e avanzate 82 8.1. Reversal 82 8.1.1. DFA 83 8.1.2. NFA 83 8.1.3. Reversal di una grammatica 84 8.1.4. Algoritmo per l'automa minimo 85 8.2. Shuffle 89 8.2.1. Alfabeti disgiunti 89 8.2.2. Stesso alfabeto 90 8.3. Raddoppio 91 8.4. Metà 92 8.5. Automi come matrici 92 8.5.1. Prima applicazione: raddoppio 93 8.5.2. Seconda applicazione: metà 94 8.5.3. Matrici su NFA 95 9. Pumping Lemma 96 9.1. Definizione 96 9.2. Applicazioni 98			
8. Operazioni esotiche e avanzate 82 8.1. Reversal 82 8.1.1. DFA 83 8.1.2. NFA 83 8.1.3. Reversal di una grammatica 84 8.1.4. Algoritmo per l'automa minimo 85 8.2. Shuffle 89 8.2.1. Alfabeti disgiunti 89 8.2.2. Stesso alfabeto 90 8.3. Raddoppio 91 8.4. Metà 92 8.5. Automi come matrici 92 8.5.1. Prima applicazione: raddoppio 93 8.5.2. Seconda applicazione: metà 94 8.5.3. Matrici su NFA 95 9. Pumping Lemma 96 9.2. Applicazioni 98		_	
8.1. Reversal 82 8.1.1. DFA 83 8.1.2. NFA 83 8.1.3. Reversal di una grammatica 84 8.1.4. Algoritmo per l'automa minimo 85 8.2. Shuffle 89 8.2.1. Alfabeti disgiunti 89 8.2.2. Stesso alfabeto 90 8.3. Raddoppio 91 8.4. Metà 92 8.5. Automi come matrici 92 8.5.1. Prima applicazione: raddoppio 93 8.5.2. Seconda applicazione: metà 94 8.5.3. Matrici su NFA 95 9. Pumping Lemma 96 9.1. Definizione 96 9.2. Applicazioni 98			
8.1.1. DFA 83 8.1.2. NFA 83 8.1.3. Reversal di una grammatica 84 8.1.4. Algoritmo per l'automa minimo 85 8.2. Shuffle 89 8.2.1. Alfabeti disgiunti 89 8.2.2. Stesso alfabeto 90 8.2.3. Alfabeto unario 90 8.3. Raddoppio 91 8.4. Metà 92 8.5. Automi come matrici 92 8.5.1. Prima applicazione: raddoppio 93 8.5.2. Seconda applicazione: metà 94 8.5.3. Matrici su NFA 95 9. Pumping Lemma 96 9.1. Definizione 96 9.2. Applicazioni 98	8.		
8.1.2. NFA 83 8.1.3. Reversal di una grammatica 84 8.1.4. Algoritmo per l'automa minimo 85 8.2. Shuffle 89 8.2.1. Alfabeti disgiunti 89 8.2.2. Stesso alfabeto 90 8.2.3. Alfabeto unario 90 8.3. Raddoppio 91 8.4. Metà 92 8.5. Automi come matrici 92 8.5.1. Prima applicazione: raddoppio 93 8.5.2. Seconda applicazione: metà 94 8.5.3. Matrici su NFA 95 9. Pumping Lemma 96 9.1. Definizione 96 9.2. Applicazioni 98			
8.1.3. Reversal di una grammatica 84 8.1.4. Algoritmo per l'automa minimo 85 8.2. Shuffle 89 8.2.1. Alfabeti disgiunti 89 8.2.2. Stesso alfabeto 90 8.2.3. Alfabeto unario 90 8.3. Raddoppio 91 8.4. Metà 92 8.5. Automi come matrici 92 8.5.1. Prima applicazione: raddoppio 93 8.5.2. Seconda applicazione: metà 94 8.5.3. Matrici su NFA 95 9. Pumping Lemma 96 9.1. Definizione 96 9.2. Applicazioni 98			
8.1.4. Algoritmo per l'automa minimo 85 8.2. Shuffle 89 8.2.1. Alfabeti disgiunti 89 8.2.2. Stesso alfabeto 90 8.2.3. Alfabeto unario 90 8.3. Raddoppio 91 8.4. Metà 92 8.5. Automi come matrici 92 8.5.1. Prima applicazione: raddoppio 93 8.5.2. Seconda applicazione: metà 94 8.5.3. Matrici su NFA 95 9. Pumping Lemma 96 9.1. Definizione 96 9.2. Applicazioni 98			
8.2. Shuffle 89 8.2.1. Alfabeti disgiunti 89 8.2.2. Stesso alfabeto 90 8.2.3. Alfabeto unario 90 8.3. Raddoppio 91 8.4. Metà 92 8.5. Automi come matrici 92 8.5.1. Prima applicazione: raddoppio 93 8.5.2. Seconda applicazione: metà 94 8.5.3. Matrici su NFA 95 9. Pumping Lemma 96 9.1. Definizione 96 9.2. Applicazioni 98			
8.2.1. Alfabeti disgiunti 89 8.2.2. Stesso alfabeto 90 8.2.3. Alfabeto unario 90 8.3. Raddoppio 91 8.4. Metà 92 8.5. Automi come matrici 92 8.5.1. Prima applicazione: raddoppio 93 8.5.2. Seconda applicazione: metà 94 8.5.3. Matrici su NFA 95 9. Pumping Lemma 96 9.1. Definizione 96 9.2. Applicazioni 98		-	
8.2.2. Stesso alfabeto 90 8.2.3. Alfabeto unario 90 8.3. Raddoppio 91 8.4. Metà 92 8.5. Automi come matrici 92 8.5.1. Prima applicazione: raddoppio 93 8.5.2. Seconda applicazione: metà 94 8.5.3. Matrici su NFA 95 9. Pumping Lemma 96 9.1. Definizione 96 9.2. Applicazioni 98			
8.2.3. Alfabeto unario 90 8.3. Raddoppio 91 8.4. Metà 92 8.5. Automi come matrici 92 8.5.1. Prima applicazione: raddoppio 93 8.5.2. Seconda applicazione: metà 94 8.5.3. Matrici su NFA 95 9. Pumping Lemma 96 9.1. Definizione 96 9.2. Applicazioni 98		9	
8.3. Raddoppio 91 8.4. Metà 92 8.5. Automi come matrici 92 8.5.1. Prima applicazione: raddoppio 93 8.5.2. Seconda applicazione: metà 94 8.5.3. Matrici su NFA 95 9. Pumping Lemma 96 9.1. Definizione 96 9.2. Applicazioni 98			
8.4. Metà 92 8.5. Automi come matrici 92 8.5.1. Prima applicazione: raddoppio 93 8.5.2. Seconda applicazione: metà 94 8.5.3. Matrici su NFA 95 9. Pumping Lemma 96 9.1. Definizione 96 9.2. Applicazioni 98			
8.5. Automi come matrici			
8.5.1. Prima applicazione: raddoppio 93 8.5.2. Seconda applicazione: metà 94 8.5.3. Matrici su NFA 95 9. Pumping Lemma 96 9.1. Definizione 96 9.2. Applicazioni 98			
8.5.2. Seconda applicazione: metà 94 8.5.3. Matrici su NFA 95 9. Pumping Lemma 96 9.1. Definizione 96 9.2. Applicazioni 98			
8.5.3. Matrici su NFA			
9. Pumping Lemma 96 9.1. Definizione 96 9.2. Applicazioni 98			
9.1. Definizione 96 9.2. Applicazioni 98		8.5.3. Matrici su NFA	95
9.1. Definizione 96 9.2. Applicazioni 98	9.	Pumping Lemma	96
		9.2. Applicazioni	98
	10	. Problemi di decisione per i linguaggi regolari	

10.1.	Linguaggio vuoto e infinito	. 99
10.2.	Appartenenza	100
10.3.	Universalità	100
10.4.	Inclusione e uguaglianza	100

Introduzione

In questo corso studieremo dei **sistemi formali** che descrivono dei linguaggi: ci chiederemo cosa sono in grado di fare, ovvero cosa sono in grado di descrivere in termini di **linguaggi**.

Ci occuperemo anche delle **risorse utilizzate**, come il **numero di mosse** eseguite da una macchina che deve riconoscere un linguaggio, oppure il **numero di stati** che sono necessari per descrivere una macchina a stati finiti, oppure ancora lo **spazio utilizzato** da una macchina di Turing.

Un **linguaggio** è «uno strumento di comunicazione usato da membri di una stessa comunità», ed è composto da due elementi:

- sintassi: insieme di simboli (o parole) che devono essere combinati con una serie di regole;
- semantica: associazione frase-significato.

Per i linguaggi naturali è difficile dare delle regole sintattiche: vista questa difficoltà, nel 1956 Noam Chomsky introduce il concetto di grammatiche formali, che si servono di regole matematiche per la definizione della sintassi di un linguaggio.

Il primo utilizzo dei linguaggi formali risale agli stessi anni con il **compilatore Fortran**. Anche se ci hanno messo l'equivalente di 18 anni/uomo, questa è la prima applicazione dei linguaggi formali. Con l'avvento, negli anni successivi, dei linguaggi Algol, ovvero linguaggi con strutture di controllo, la teoria dei linguaggi formali è diventata sempre più importante.

Oggi la teoria dei linguaggi formali è usata nei compilatori di compilatori, dei tool usati per generare dei compilatori per un dato linguaggio fornendo la descrizione di quest'ultimo.

Parte I — Gerarchia di Chomsky

1. Breve ripasso

Prima di addentrarci nello studio della gerarchia di Chomsky facciamo un breve ripasso delle basi che ci serviranno durante lo studio dei linguaggi formali.

Definizione 1.1 (Alfabeto): Un alfabeto è un insieme non vuoto e finito di simboli, di solito indicato con le lettere greche maiuscole

$$\Sigma \mid \Gamma$$
.

Definizione 1.2 (Stringa): Una stringa, o parola, è una sequenza finita di simboli appartenenti all'alfabeto Σ . Viene indicata con la lettera x e la possiamo scrivere come

$$x = a_1 ... a_n \mid a_i \in \Sigma.$$

Data una stringa x, indichiamo il **numero di caratteri** di x con la notazione

e il numero di occorrenze di un carattere di Σ in x con la notazione

$$|x|_a \mid a \in \Sigma.$$

Una stringa/parola molto importante è la **parola vuota**, che possiamo indicare in vari modi:

$$\varepsilon \mid \lambda \mid \Lambda$$
.

Come dice il nome, questa parola non ha simboli, ovvero è l'unica parole tale che

$$|\varepsilon|=0.$$

L'insieme di tutte le possibili parole che possiamo formare usando l'alfabeto Σ si indica con Σ^* . Questo insieme, ovviamente, è un **insieme infinito**.

Con le parole possiamo definire una serie di operazioni, ma la più importante tra tutte è la **concatenazione**, o **prodotto**. Date due stringhe

$$x,y \in \Sigma^* \quad | \quad x = x_1...x_n \wedge y = y_1...y_m$$

allora la concatenazione di x e y è la stringa

$$w=x\cdot y=x_1...x_ny_1...y_m.$$

L'operazione di concatenazione non è commutativa ma è associativa, quindi la struttura

$$(\Sigma^*,\cdot,\varepsilon)$$

è un monoide libero generato da Σ .

Vediamo, per (quasi) finire, alcune proprietà che possiamo dare alle stringhe/parole.

Definizione 1.3 (Prefisso): La stringa $x \in \Sigma^*$ si dice **prefisso** di w se

$$\exists y \in \Sigma^* \mid w = xy.$$

In poche parole, x è prefisso di w se riusciamo a scomporre la stringa w in due parti, dove x è la prima di queste due. Abbiamo due tipi di prefisso:

- **proprio** se $y \neq \varepsilon$;
- non banale se $x \neq \varepsilon$.

Il **numero** di prefissi di una stringa $w \in |w| + 1$.

Definizione 1.4 (Suffisso): La stringa $y \in \Sigma^*$ si dice suffisso di w se

$$\exists x \in \Sigma^* \mid w = xy.$$

In poche parole, vale quanto scritto prima, ma in questo caso y è la seconda delle due parti. Anche qui abbiamo tipi di suffisso:

- **proprio** se $x \neq \varepsilon$;
- non banale se $y \neq \varepsilon$.

Anche il **numero** di suffissi di una stringa $w \in |w| + 1$.

Definizione 1.5 (Fattore): La stringa $y \in \Sigma^*$ si dice fattore di w se

$$\exists x,z \in \Sigma^* \mid w = xyz.$$

In poche parole, vale quanto scritto prima, ma in questo caso dividiamo la stringa w in tre parti e y è la centrale di queste.

Il **numero** di fattori di una stringa w è

$$\leq \frac{|w||w+1|}{2} + 1$$

per via dei possibili doppioni che possiamo trovare.

Definizione 1.6 (Sottosequenza): La stringa $x \in \Sigma^*$ si dice **sottosequenza** di w se x è ottenuta eliminando 0 o più caratteri da w. L'eliminazione può avvenire in maniera non contigua: posso eliminare qualsiasi carattere, ma la stringa risultante che leggiamo deve contenere i caratteri nello stesso ordine di partenza.

Possiamo dire che un fattore è una sottosequenza contigua.

Per finire veramente, diamo forse la definizione più importante, quella di linguaggio.

Definizione 1.7 (Linguaggio): Un **linguaggio** L, definito su un alfabeto Σ , è un qualunque sottoinsieme di Σ^* , ovvero

 $L\subseteq \Sigma^*.$

Ora che abbiamo fatto un ripasso siamo pronti per vedere la gerarchia di Chomsky, per poi addentrarci nello studio di alcune classi di questa gerarchia.

2. Gerarchia di Chomsky

Vogliamo cercare di rappresentare in maniera **finita** un oggetto potenzialmente **infinito**, come ad esempio un linguaggio. Per fare ciò, abbiamo a nostra disposizione due modelli potenti:

- il **modello generativo** fornisce delle regole che, applicate da un certo punto di partenza, generano tutte le parole di un linguaggio;
- il **modello riconoscitivo** utilizza un modello di calcolo che prende in input una parola e ci dice se appartiene o meno al linguaggio.

Esempio 2.1: Consideriamo il linguaggio sull'alfabeto $\Sigma = \{(,)\}$ delle parole ben bilanciate

Un modello generativo per questo linguaggio deve applicare delle regole a partire da una sorgente S per derivare tutte le parole del linguaggio. Le regole potrebbero essere:

- la parola vuota ε è ben bilanciata;
- se x è ben bilanciata, allora anche (x) è ben bilanciata;
- ullet se x e y sono ben bilanciate, allora anche xy è ben bilanciata.

Un **modello riconoscitivo** per questo linguaggio è una black-box che, presa una parola, ci dice se essa appartiene o meno al linguaggio. In realtà questa macchina non potrebbe terminare mai, ma ne parleremo più in fondo in questo capitolo. Una macchina per questo linguaggio deve verificare i seguenti fatti:

• il numero di parentesi aperte è uguale al numero di parentesi chiuse, quindi

$$\#_{(}(x) = \#_{)}(x);$$

• considerato ogni prefisso, il numero di parentesi aperte non deve superare il numero di parentesi chiuse, quindi

$$\forall y \in \Sigma^* \ | \ x = yz \quad \#_{\scriptscriptstyle (}(y) \leq \#_{\scriptscriptstyle)}(y).$$

2.1. Grammatiche

Le grammatiche sono un modello generativo molto potente: vediamo come sono definite.

Definizione 2.1.1 (Grammatica): Una **grammatica** è una quadrupla (V, Σ, P, S) definita da:

- *V* insieme finito e non vuoto di variabili. Sono anche dette simboli non terminali (o meta-simboli) e sono usate durante il processo di generazione delle parole del linguaggio;
- Σ insieme finito e non vuoto di simboli terminali. Sono chiamati così perché appaiono nelle parole generate, a differenza delle variabili che invece non possono essere presenti;
- P insieme finito e non vuoto di regole di produzione;
- $S \in V$ simbolo iniziale o assioma, il punto di partenza della generazione.

Soffermiamoci brevemente sulle regole di produzione: esse sono nella forma

$$\alpha \longrightarrow \beta \mid \alpha \in (V \cup \Sigma)^+ \land \beta \in (V \cup \Sigma)^*.$$

La notazione ()⁺ è praticamente l'insieme ()* senza la parola vuota.

Una regola di produzione viene letta come «se ho α allora posso sostituirlo con β ».

L'applicazione delle regole di produzione è alla base del **processo di derivazione**: esso è formato infatti da una serie di **passi di derivazione**, che permettono di generare una parola del linguaggio.

Definizione 2.1.2 (Derivazione in un passo): Date le stringhe $x, y \in (V \cup \Sigma)^*$ diciamo che x deriva y in un passo, e si indica con

$$x \Rightarrow y$$

se e solo se

$$\exists (\alpha \longrightarrow \beta) \in P \quad \exists \eta, \delta \in (V \cup \Sigma)^* \mid x = \eta \alpha \delta \land y = \eta \beta \delta.$$

Possiamo estendere questa definizione ad un numero definito o arbitrario di passi.

Definizione 2.1.3 (Derivazione in k passi): Date le stringhe $x, y \in (V \cup \Sigma)^*$ diciamo che x deriva y in $k \ge 0$ passi, e si indica con

$$x \stackrel{k}{\Rightarrow} y$$

se e solo se

$$\exists x_0,...,x_k \in (V \cup \Sigma)^* \mid x = x_0 \wedge y = x_k \wedge (\forall i \in \{1,...,k\} \quad x_{i-1} \Rightarrow x_i).$$

Con questa definizione, se contiamo k = 0 andiamo a derivare x da sé stessa, ma questo caso lo usiamo solo per comodità, non ha una vera e propria applicazione pratica.

Quando non abbiamo indicazioni sul numero di passi possiamo:

• usare la notazione

$$x \stackrel{*}{\Rightarrow} y$$

per indicare un processo di derivazione che avviene in un **numero generico di passi**, e questo vale se e solo se

$$\exists k \ge 0 \mid x \stackrel{k}{\Rightarrow} y;$$

• usare la notazione

$$x \stackrel{+}{\Rightarrow} y$$

per indicare un processo di derivazione che avviene in **almeno un passo**, e questo vale se e solo se

$$\exists k > 0 \mid x \stackrel{k}{\Rightarrow} y.$$

Definizione 2.1.4 (Linguaggio generato da una grammatica): Il linguaggio generato dalla grammatica G è l'insieme

$$L(G) = \left\{ w \in \Sigma^* \mid S \stackrel{*}{\Rightarrow} w \right\}.$$

In poche parole, L(G) è l'insieme di tutte le stringhe w che si possono ottenere in un certo numero di passi di derivazione a partire dall'assioma S della grammatica. Notiamo che le stringhe che otteniamo sono formate dai soli **caratteri terminali**. Le stringhe intermedie che utilizziamo invece nei vari passi di derivazione sono dette **forme sentenziali**.

Definizione 2.1.5 (Grammatiche equivalenti): Due grammatiche G_1 e G_2 sono **equivalenti** se e solo se

$$L(G_1) = L(G_2).$$

Vediamo qualche grammatica come esempio.

Esempio 2.1.1: Riprendiamo il linguaggio delle parentesi tonde ben bilanciate.

Possiamo definire una grammatica che ha le seguenti regole di produzione:

$$S \longrightarrow \varepsilon$$
 $S \longrightarrow (S)$ $S \longrightarrow SS$

Esempio 2.1.2: Sia $G = (\{S, A, B\}, \{a, b\}, P, S)$ una grammatica con le seguenti regole di produzione:

$$S \longrightarrow aB \mid bA$$
 $A \longrightarrow a \mid aS \mid bAA$ $B \longrightarrow b \mid bS \mid aBB$

Questa grammatica genera il linguaggio

$$L(G) = \{ w \in \Sigma^* \mid \#_a(w) = \#_b(w) \}.$$

Infatti, ogni forma sentenziale w che generiamo è tale che

$$\#_{\{a,A\}}(w) = \#_{\{b,B\}}(w)$$

e questa relazione viene poi mantenuta trasformando tutte le A e B nei relativi simboli terminali.

Esempio 2.1.3: Definiamo ora la grammatica $G = (\{S, A, B, C, D, E\}, \{a, b\}, P, S)$ che contiene le seguenti regole di produzione:

$$S \longrightarrow ABC$$
 $AB \longrightarrow \varepsilon \mid aAD \mid bAE$ $DC \longrightarrow BaC$ $EC \longrightarrow BbC$ $Da \longrightarrow aD$ $Db \longrightarrow bD$ $Ea \longrightarrow aE$ $Eb \longrightarrow bE$ $C \longrightarrow \varepsilon$ $aB \longrightarrow Ba$ $bB \longrightarrow Bb$

Generando qualche parola ci si accorge che questa grammatica genera il **linguaggio** pappagallo, definito come

$$L(G) = \{ww \mid w \in \Sigma^*\}.$$

2.2. Gerarchia di Chomsky

Negli anni '50 **Noam Chomsky** studia la generazione dei linguaggi formali e crea una **gerarchia di grammatiche formali** che si basa sulla forma delle **regole di produzione** che definiscono la grammatica.

Grammatica	Regole	Modello riconoscitivo	
Tipo 0	Nessuna restrizione, sono il tipo più generale	Macchine di Turing	
Tipo 1, dette context-	Se $(\alpha \longrightarrow \beta) \in P$ allora $ \beta \ge \alpha $, ovvero devo generare parole che non sono più corte di quella di partenza		
sensitive (o dipendenti dal contesto)	Sono dette dipenden- ti dal contesto perché ogni regola $(A \longrightarrow B) \in$ P può essere riscritta co- me $\alpha_1 A \alpha_2 \longrightarrow \alpha_1 B \alpha_2$, con $\alpha_1, \alpha_2 \in (V \cup \Sigma)^*$ che rap- presentano il contesto , $A \in V \in B \in (V \cup \Sigma)^+$	Automi limitati linear- mente	
Tipo 2, dette context- free (o libere dal contesto)	Le regole in P sono del tipo $\alpha \longrightarrow \beta$, con $\alpha \in V$ e $\beta \in (V \cup \Sigma)^+$	Automi a pila	

Tipo	3 ,	${\rm dette}$	grammati-
	cł	ie reg	olari

Le regole in P sono del tipo $A \longrightarrow aB$ oppure $A \longrightarrow a$, $\operatorname{con} A, B \in V$ e $a \in \Sigma$

Automi a stati finiti

La gerarchia che ha definito Chomsky è **propria**, ovvero:

$$L_3 \subset L_2 \subset L_1 \subset L_0$$
.

Come vedremo a fine di questo capitolo, questa gerarchia **non esaurisce** tutti i linguaggi possibili: esistono infatti linguaggi che non sono descrivibili in maniera finita con le grammatiche.

Definizione 2.2.1 (Tipo di una grammatica): Sia $L \subseteq \Sigma^*$ un linguaggio. Allora L è di tipo i se e solo se esiste una grammatica G di tipo i tale che

$$L = L(G)$$
.

La gerarchia data considera dei **modelli deterministici**, ma come cambia considerando invece dei **modelli non deterministici**? Sappiamo che:

- le grammatiche di tipo 3 hanno la stessa potenza computazionale, pagando un costo in termini di descrizione;
- le grammatiche di tipo 2 hanno il modello deterministico strettamente più potente;
- le grammatiche di tipo 1 sono abbastanza complicate, quindi non lo vedremo;
- le grammatiche di tipo 0, come quelle regolari, hanno la stessa potenza computazionale.

Il non determinismo comunque è una nozione del **riconoscitore** che sto usando:

- nel determinismo il riconoscitore può fare una scelta alla volta;
- nel non determinismo può fare più scelte contemporaneamente.

Nelle grammatiche è difficile catturare questa nozione, perché esse lo hanno **intrinsecamente**, perché le derivazioni le applico tutte assieme per ottenere le stringhe del linguaggio.

2.3. Decidibilità

Se una grammatica é di tipo 1 allora possiamo costruire una macchina che sia in grado di dire, in tempo finito, se una parola appartiene o meno al linguaggio generato da quella grammatica. Questa macchina è detta **verificatore**, e si dice che le grammatiche di tipo 1 sono **decidibili**.

Teorema 2.3.1 (Decidibilità dei linguaggi context-sensitive): I linguaggi di tipo 1 sono ricorsivi.

Con **ricorsività** non intendiamo le procedure ricorsive, ma si intende una procedura che è calcolabile automaticamente. Nei linguaggi, un qualcosa di ricorsivo intende una macchina che, data una stringa x in input, riesce a rispondere a $x \in L$ terminando sempre dicendo **SI** o **NO**. Si usano i termini **ricorsivo** e **decidibile** come sinonimi.

Dimostrazione 2.3.1.1: In una grammatica di tipo 1 l'unico vincolo è sulla lunghezza delle produzioni, ovvero non possono mai accorciarsi.

In input ho una stringa $w \in \Sigma^*$ la cui lunghezza è |w| = n. Ho una grammatica G di tipo 1 e mi chiedo se $w \in L(G)$. Per rispondere a questo, devo cercare w nelle forme sentenziali, ma possiamo limitarci a quelle che non superano la lunghezza n: infatti, visto che la lunghezza aumenta sempre (o al massimo rimane uguale) posso arrivare al massimo alle stringhe di lunghezza n e controllare solo quelle.

Definiamo quindi gli insiemi

$$T_i = \left\{ \gamma \in (V \cup \Sigma)^{\leq n} \ | \ S \overset{\leq i}{\Rightarrow} \gamma \right\} \quad \forall i \geq 0.$$

Calcoliamo induttivamente questi insiemi.

Se i = 0 non eseguo nessuna derivazione, quindi

$$T_0 = \{S\}.$$

Supponiamo di aver calcolato T_{i-1} . Ma allora

$$T_i = T_{i-1} \cup \{ \gamma \in (V \cup \Sigma)^{\leq n} \mid \exists \beta \in T_{i-1} \mid \beta \Rightarrow \gamma \}.$$

Noi partendo da T_0 calcoliamo tutti i vari insiemi ottenendo una serie di T_i . Per come abbiamo definito gli insiemi, sappiamo che

$$T_0 \subseteq T_1 \subseteq T_2 \subseteq \ldots \subseteq (V \cup \Sigma)^{\leq n}$$

e l'ultima inclusione è vera perché ho fissato la lunghezza massima, non voglio considerare di più perché vogliamo w di lunghezza n.

La grandezza dell'insieme $(V \cup \Sigma)^{\leq n}$ è finita, quindi anche andando molto avanti con le computazioni prima o poi arrivo ad un certo punto dove non posso più aggiungere niente, ovvero vale che

$$\exists i \in \mathbb{N} \mid T_i = T_{i-1}.$$

Ora è inutile andare avanti, questo T_i è l'insieme di tutte le stringhe che riesco a generare nella grammatica. Ora mi chiedo se $w \in T_i$, che posso fare molto facilmente scorrendo l'insieme.

Ma allora G è decidibile.

Ci rendiamo conto che questa soluzione è altamente inefficiente: infatti, in tempo polinomiale non riusciamo a fare questo nelle tipo 1, ma è una soluzione che ci garantisce la decidibilità, quindi sium.

Teorema 2.3.2 (Semi-decidibilità dei linguaggi di tipo 0): I linguaggi di tipo 0 sono ricorsivamente enumerabili.

Dimostrazione 2.3.2.1: In una grammatica di tipo 0 non abbiamo vincoli da considerare.

In input ho una stringa $w \in \Sigma^*$ la cui lunghezza è |w| = n. Ho una grammatica G di tipo 0 e, come prima, mi chiedo se $w \in L(G)$. Per rispondere a questo, devo cercare w nelle forme sentenziali, ma a differenza di prima non possiamo limitarci a quelle che non superano la lunghezza n: infatti, visto che le forme sentenziali si possono accorciare posso anche superare di molto la lunghezza n e poi sperare di tornare indietro in qualche modo.

Definiamo quindi gli insiemi

$$U_i = \left\{ \gamma \in (V \cup \Sigma)^* \mid S \stackrel{\leq i}{\Leftrightarrow} \gamma \right\} \quad \forall i \geq 0.$$

Calcoliamo induttivamente questi insiemi.

Se i=0 non eseguo nessuna derivazione, quindi

$$U_0 = \{S\}.$$

Supponiamo di aver calcolato U_{i-1} . Vogliamo calcolare

$$U_i = U_{i-1} \cup \{ \gamma \in (V \cup \Sigma)^* \mid \exists \beta \in U_{i-1} : \beta \Rightarrow \gamma \}.$$

Noi partendo da U_0 calcoliamo tutti i vari insiemi ottenendo una serie di U_i . Per come abbiamo definito gli insiemi, sappiamo che

$$U_0 \subseteq U_1 \subseteq U_2 \subseteq ... \subseteq (V \cup \Sigma)^*$$
.

A differenza di prima, la grandezza dell'insieme $(V \cup \Sigma)^*$ è infinita, quindi non ho più l'obbligo di stopparmi ad un certo punto per esaurimento delle stringhe generabili.

Come rispondiamo a $w \in L(G)$? Iniziamo a costruire i vari insiemi U_i e ogni volta che termino la costruzione mi chiedo se $w \in U_i$:

- se questo è vero allora rispondo SI;
- in caso contrario vado avanti con la costruzione.

frac(4 pi, lambda) Vista la cardinalità infinita dell'insieme che fa da container, potrei andare avanti all'infinito (a meno di ottenere due insiemi consecutivi identici, in tale caso rispondo NO).

Ma allora G è semi-decidibile.

Usiamo la dicitura **ricorsivamente enumerabile** perché ogni volta che costruisco un insieme U_i posso prendere le stringe $w \in \Sigma^*$ appena generate ed elencarle, quindi enumerarle una per una.

2.4. Introduzione della parola vuota

Introduciamo il **problema della parola vuota**. Dalle grammatiche di tipo 1 a salire abbiamo il vincolo di non poter scendere di lunghezza con le derivazioni, quindi diciamo che la parola vuota ε non la vedremo mai come lato destro di una derivazione. Eppure, ogni tanto la parola vuota dovrebbe appartenere al linguaggio generato da una grammatica. Come possiamo risolvere questo problema, senza far decadere l'intera gerarchia?

Una possibile soluzione è spezzare le regole di produzione.

Partiamo da una grammatica $G = (V, \Sigma, P, S)$ di tipo 1 e definiamo una nuova grammatica

$$G' = (V', \Sigma, P', S')$$

tale che L(G) = L(G'). Vediamo le componenti di questa grammatica:

ullet l'insieme delle variabili contiene un nuovo elemento, il nuovo assioma S', ovvero

$$V' = V \cup \{S'\};$$

• l'insieme delle produzioni mantiene le regole vecchie ma aggiunge due nuove regole, ovvero

$$P' = P \cup \{S' \longrightarrow \varepsilon\} \cup \{S' \longrightarrow S\}$$

dove:

- \blacktriangleright la prima regola permette di generare la parola vuota ε ;
- ▶ la seconda regola permette di far partire la computazione della vecchia grammatica;
- \bullet l'assioma S' ci permette la generazione della parola vuota ma dobbiamo garantire che non appaia mai nel lato destro delle produzioni.

Con questi accorgimenti ora riusciamo a generare anche la parola vuota: infatti, questo lo possiamo fare all'inizio partendo da S'. Se non ci interessa la parola vuota facciamo partire, sempre da S', la computazione della vecchia grammatica.

Come cambia la gerarchia considerando anche la parola vuota? Abbiamo che:

- le grammatiche di tipo 1 mantengono la clausola $|\beta| \ge |\alpha|$ ma è possibile ottenere ε da S' purché S' non appaia mai nel lato destro delle produzioni;
- le grammatiche di tipo 2 modificano la notazione ()⁺ in ()* nel lato destro delle produzioni senza isolare in modo specifico ε perché questo non crea problemi;
- le grammatiche di tipo 3 seguono le precedenti.

Queste particolari produzioni che considerano la parole vuota sono dette ε -produzioni.

2.5. Linguaggi non esprimibili tramite grammatiche finite

Vediamo infine dei linguaggi che non possiamo esprimere tramite **grammatiche finite**. Per fare ciò useremo la famosissima **dimostrazione per diagonalizzazione** di Cantor.

Esempio 2.5.1: Sono più i numeri pari o i numeri dispari? Sono più i numeri pari o i numeri interi? Sono più le coppie di numeri naturali o i naturali stessi?

Per rispondere a queste domande si usa la definizione di **cardinalità**, e tutti questi insiemi che abbiamo ce l'hanno uguale. Anzi, diciamo di più: tutti questi insiemi sono grandi quanto i naturali, perché esistono funzioni biettive tra questi insiemi e l'insieme N.

Esempio 2.5.2: Sono più i sottoinsiemi di naturali o i naturali stessi?

In questo caso, sono di più i sottoinsiemi, che hanno la **cardinalità del continuo**. Per dimostrare questo useremo una dimostrazione per diagonalizzazione.

Teorema 2.5.1: Vale

$$\mathbb{N} \nsim 2^{\mathbb{N}}$$
.

Dimostrazione 2.5.1.1: Per assurdo sia $\mathbb{N} \sim 2^{\mathbb{N}}$, ovvero ogni elemento di $2^{\mathbb{N}}$ è listabile.

Creiamo una tabella booleana M indicizzata sulle righe dai sottoinsiemi di naturali S_i e indicizzata sulle colonne dai numeri naturali. Per ogni insieme S_i abbiamo sulla riga la funzione caratteristica, ovvero

$$M[i,j] = \begin{cases} 1 & \text{se } j \in S_i \\ 0 & \text{se } j \notin S_i \end{cases}$$

Creiamo l'insieme

$$S = \{ x \in \mathbb{N} \mid x \notin S_x \},$$

ovvero l'insieme che prende tutti gli elementi 0 della diagonale di M. Questo insieme non è presente negli insiemi S_i listati perché esso è diverso da ogni S_i in almeno una posizione, ovvero la diagonale.

Abbiamo ottenuto un assurdo, ma allora $\mathbb{N} \sim 2^{\mathbb{N}}$.

Esempio 2.5.3: Sono più le stringhe o i numeri naturali?

Questo è facile: basta trasformare ogni stringa in un numero naturale con una qualche codifica a nostra scelta.

Ora che abbiamo a disposizione queste nozioni possiamo dimostrare il seguente teorema.

Teorema 2.5.2: Esistono linguaggi che non sono descrivibili da grammatiche finite.

Dimostrazione 2.5.2.1: Prendiamo una grammatica $G = (V, \Sigma, P, S)$.

Per descriverla devo dire come sono formati i vari campi della tupla. Cosa uso per descriverla? Sto usando dei simboli come lettere, numeri, parentesi, eccetera, quindi la grammatica è una descrizione che possiamo fare sotto forma di stringa. Visto quello che abbiamo da poco dimostrato, ogni grammatica la possiamo descrivere come stringa, e quindi come un numero intero. Siano G_i tutte queste grammatiche, che sono appunto listabili.

Consideriamo ora, per ogni grammatica G_i , l'insieme $L(G_i)$ delle parole generate dalla grammatica G_i , ovvero il linguaggio generato da G_i . Mettiamo dentro L tutti questi linguaggi.

Per assurdo, siano tutti questi linguaggi listabili, ovvero $\mathbb{N} \sim 2^L$.

Come prima, creiamo una tabella M indicizzata sulle righe dai linguaggi $L(G_i)$ e indicizzata sulle colonne dalle stringhe x_i che possiamo però considerare come naturali. La matrice M ha sulla riga i-esima la funzione caratteristica di $L(G_i)$, ovvero

$$M[i,j] = \begin{cases} 1 & \text{se } x_j \in L(G_i) \\ 0 & \text{se } x_j \notin L(G_i) \end{cases}$$

In poche parole, abbiamo 1 nella cella M[i,j] se e solo se la stringa x_j viene generata da G_i .

Costruiamo ora l'insieme

$$LG = \{x_i \in \mathbb{N} \mid x_i \notin L(G_i)\},\$$

ovvero l'insieme di tutte le stringhe x_i che non sono generate dalla grammatica G_i con lo stesso indice i. Come prima, questo insieme non è presente in L perché differisce da ogni insieme presente in almeno una posizione, ovvero quello sulla diagonale.

Siamo ad un assurdo, ma allora $\mathbb{N} \nsim 2^L$.

 ${\bf Parte~II-Linguaggi~regolari}$

1. Automi a stati finiti deterministici

Nel contesto delle grammatiche di tipo 3 andiamo ad utilizzare le **macchine a stati finiti** per stabilire se, data una stringa x, essa appartiene o meno ad un dato linguaggio. Le macchine a stati finiti da ora le chiameremo anche **FSM** (Finite State Machine) o, nel caso delle macchine deterministiche, **DFA** (Deterministic Finite Automata).

1.1. Definizione

Un DFA è un dispositivo formato da un \mathbf{nastro} , che contiene l'input x da esaminare disposto carattere per carattere uno per cella del nastro da sinistra verso destra. Abbiamo anche una $\mathbf{testina}$ read-only che punta alle celle del nastro e un $\mathbf{controllo}$ a \mathbf{stati} finiti. Il numero di \mathbf{stati} , come si capisce, sono in numero finito, e soprattutto sono $\mathbf{fissati}$, ovvero non dipendono dalla grandezza dell'input. Infine, il modello base che usiamo per ora è quello delle \mathbf{FSM} $\mathbf{one-way}$, ovvero quello che usa una $\mathbf{testina}$ che va sinistra verso destra senza poter tornare indietro.

All'accensione della macchina il controllo si trova nello stato iniziale q_0 con la testina sul primo carattere dell'input. Ad ogni passo della computazione la testina legge un carattere e, in base a questo e allo stato corrente, calcola lo stato prossimo. Questo spostamento avviene grazie alla funzione di transizione, che vedremo dopo. Arrivati alla fine dell'input grazie alla funzione di transizione, la macchina deve rispondere ${\bf SI}$ o ${\bf NO}$.

Definizione 1.1.1 (DFA): Un DFA è una quintupla

$$A=(Q,\Sigma,\delta,q_0,F)$$

formata da:

- Q insieme finito di stati;
- Σ alfabeto di input;
- δ funzione di transizione;
- $q_0 \in Q$ state iniziale;
- $F \subseteq Q$ insiemi degli **stati finali**.

La funzione di transizione, che non abbiamo ancora definito formalmente, è il **programma** dell'automa, il motore che ci manda avanti. Essa è una funzione

$$\delta: Q \times \Sigma \longrightarrow Q$$

che, dati il simbolo letto dalla testina e lo stato corrente, mi dice in che stato muovermi.

La funzione di transizione spesso è comodo scriverla in **forma tabellare**, con le righe indicizzate dagli stati, le colonne indicizzate dai simboli e nelle celle inseriamo gli stati prossimi.

Può essere comodo anche disegnare l'automa. Esso è un grafo orientato, con i vertici che rappresentano gli stati e gli archi che rappresentano le transizioni. Gli archi sono etichettati dai simboli di Σ che causano una certa transizione. Lo stato iniziale è indicato con una freccia che arriva dal nulla, mentre gli stati finali sono indicati con un doppio cerchio o con una freccia che va nel nulla, ma quest'ultima convenzione è francese e noi non lo siamo, viva le lumache.

Dobbiamo modificare leggermente la funzione di transizione: a noi piacerebbe averla definita sulle stringhe e non sui caratteri. Definiamo quindi l'estensione di δ come la funzione

$$\delta^*: Q \times \Sigma^* \longrightarrow Q$$

definita induttivamente come

$$\begin{split} \delta^*(q,\varepsilon) &= q \\ \delta^*(q,xa) &= \delta(\delta^*(q,x),a) \mid x \in \Sigma^* \land a \in \Sigma. \end{split}$$

Per non avere in giro troppo nomi usiamo δ^* con il nome δ anche per le stringhe, è la stessa cosa.

Noi accettiamo se finiamo in uno stato finale. Il linguaggio accettato da A è l'insieme

$$L(A) = \{w \in \Sigma^* \mid \delta(q_0, w) \in F\}.$$

1.2. Esempi

Vediamo un po' di esempi che ci permettono di introdurre anche una serie di situazioni particolari.

Diamo subito una distinzione dei problemi che abbiamo sugli automi:

- se abbiamo in mano un automa e dobbiamo descrivere il linguaggio che riconosce, siamo davanti ad un **problema di analisi**;
- se abbiamo in mano un linguaggio e dobbiamo scrivere un automa che lo riconosce, siamo davanti ad un **problema di sintesi**.

Esemplo 1.2.1: Sia $A = (Q, \Sigma, \delta, q_0, F)$ tale che:

- $\bullet \ \ Q = \{s_0, s_1, s_2\};$
- $\Sigma = \{a, b\}$;
- $q_0 = s_0;$
- $F = s_2$.

Diamo una rappresentazione tabellare della funzione di transizione δ . Essa è

$$\begin{bmatrix} & a & b \\ s_0 & s_0 & s_1 \\ s_1 & s_0 & s_2 \\ s_2 & s_0 & s_0 \end{bmatrix}.$$

Disegniamo anche l'automa A avendo a disposizione la rappresentazione di δ .

Il linguaggio che riconosce questo automa è

 $L = \{x \in \Sigma^* \mid \text{il più lungo suffisso di } x \text{ formato solo da } b \text{ è lungo } 3k + 2 \mid k \ge 0\}.$

Esempio 1.2.2: Sia $\Sigma = \{a,b\},$ vogliamo trovare un automa per il linguaggio

 $L = \{x \in \Sigma^* \mid \text{tra ogni coppia di } b \text{ successive vi è un numero di } a \text{ pari} \}.$

Costruiamo un automa deterministico per L.

Come vediamo dall'esempio precedente, abbiamo uno stato particolare q_T che è detto **stato trappola**: esso viene utilizzato come «punto di arrivo» per esaurire la lettura dell'input e non accettare la stringa data in input. Finiamo in questo stato se, in uno stato q, leggiamo un carattere che rende la stringa non presente in L.

Lo stato trappola è opzionale: per semplicità, quando un automa **non è completo**, ovvero uno stato non ha un arco per un carattere, si assume che quell'arco vada a finire in uno stato trappola. Questa semplificazione permette di disegnare automi molto più compatti, ma io sono un precisino e devo avere tutti gli stati disegnati.

Esempio 1.2.3: Sia $\Sigma = \{a, b\}$, vogliamo trovare un automa per il linguaggio $L = \{x \in \Sigma^* \mid \text{il terzo simbolo di } x \text{ è una } a\}.$

Costruiamo un automa deterministico per L.

Esempio 1.2.4: Sia $\Sigma=\{a,b\}$, vogliamo ora trovare un automa per il linguaggio $L=\{x\in\Sigma^*\mid \text{il terzo simbolo di }x\text{ da destra \`e una }a\}.$

Costruiamo un automa deterministico per L. Qua l'idea è ricordarsi una finestra di 3 simboli e grazie a questa vediamo se il primo carattere che definisce lo stato è una a.

Ci servono per forza 8 stati o possiamo fare meglio? Abbiamo trovato la strada migliore?

Quando introdurremo il concetto di **distinguibilità** vedremo che questo è l'automa migliore che possiamo costruire per questo linguaggio.

2. Automi a stati finiti non deterministici

L'ultimo esempio del capitolo precedente ci ha richiesto 2^n stati. Abbiamo poi detto che con la nozione di **distinguibilità** dimostreremo che non ci sono DFA con meno stati di quello che abbiamo costruito. Ma se invece utilizzassimo degli **automi non deterministici**?

Esempio 2.1: Vediamo un automa non deterministico per il linguaggio dell'ultimo esempio del capitolo precedente.

Abbiamo usato un numero di stati uguale a n+1 (escluso quello trappola), dove n è la posizione da destra del carattere richiesto.

2.1. Definizione

Nello scorso esempio abbiamo generato un **automa non deterministico**. Infatti, dallo stato q_0 noi abbiamo la possibilità di scegliere se restare in q_0 o andare in q_1 , ovvero abbiamo più scelte di transizioni in uno stesso stato. Che significato diamo a questo? Noi non sappiamo a che punto siamo della stringa, quindi usiamo il non determinismo come una **scommessa**: scommetto che, quando sono in q_0 , io sia nel terzultimo carattere, e che quindi riuscirò a finire nello stato q_3 .

Gli automi non deterministici, o NFA, sono definiti dalla quintupla

$$A=(Q,\Sigma,\delta,q_0,F)$$

che differisce da quella dei DFA solo nella funzione di transizione. Essa è la funzione

$$\delta: Q \times \Sigma \longrightarrow 2^Q$$

che, dati lo stato corrente e il carattere letto dalla testina, mi manda in un insieme di stati possibili.

Prima di definire formalmente l'accettazione di una stringa da parte di un automa non deterministico, definiamo l'estensione di δ come la funzione

$$\delta^*: Q \times \Sigma^* \longrightarrow 2^Q$$

definita induttivamente come

$$\begin{split} \delta^*(q,\varepsilon) &= \{q\} \\ \delta^*(q,xa) &= \bigcup_{p \in \delta^*(q,x)} \delta(p,a) \ | \ x \in \Sigma^* \wedge a \in \Sigma. \end{split}$$

Come prima, per non avere in giro troppo nomi, usiamo δ^* con il nome δ anche per le stringhe.

Quando accettiamo una stringa? Avendo teoricamente la possibilità di fare infinite computazioni parallele, visto che ad ogni passo posso sdoppiare la mia computazione, ci basta avere almeno un percorso che finisce in uno stato finale.

Il **linguaggio riconosciuta** dall'automa A non deterministico è

$$L(A) = \{ w \in \Sigma^* \mid \delta^*(q_0, w) \cap F \neq \emptyset \}.$$

Esempio 2.1.1: Considerando l'automa precedente, scriviamo l'albero di computazione che viene generato dall'automa mentre cerca di riconoscere la stringa x = ababa.

Visto che raggiungiamo, all'ultimo livello dell'albero, almeno una volta lo stato finale q_3 , la stringa x viene accettata dall'automa.

2.2. Confronto tra DFA e NFA

Banalmente, ogni automa deterministico è anche un automa non deterministico nel quale abbiamo, per ogni stato, al massimo un arco uscente etichettato con lo stesso carattere. In poche parole, abbiamo sempre una sola scelta. Ma allora la classe dei linguaggi riconosciuti da DFA è inclusa nella classe dei linguaggi riconosciuti da NFA.

Ma vale anche il viceversa: ogni automa non deterministico può essere trasformato in un automa deterministico con una costruzione particolare, detta **costruzione per sottoinsiemi**.

Dato $A = (Q, \Sigma, \delta, q_0, F)$ un NFA, e costruisco

$$A' = (Q', \Sigma, \delta', q, 0, F')$$

un DFA tale che:

- $Q'=2^Q$, ovvero gli **stati** sono tutti i possibili sottoinsiemi;
- $\delta': Q' \times \Sigma \longrightarrow Q'$ è la nuova funzione di transizione che ci permette di navigare tra i possibili sottoinsiemi, ed è tale che

$$\delta'(\alpha, a) = \bigcup_{q \in \alpha} \delta(q, a);$$

- $q'_0 = \{q_0\}$ nuovo stato iniziale;
- $F' = \{ \alpha \in Q' \mid \alpha \cap F \neq \emptyset \}$ nuovo insieme degli stati finali.

Come vediamo, il non determinismo è estremamente comodo, perché ci permette di rendere molto compatta la rappresentazione degli automi, ma è irrealistico pensare di fare sempre la scelta giusta nelle scommesse.

2.3. Forme di non determinismo

Il non determinismo sulle **transizioni**, ovvero avere più opzioni per la stessa lettera a partire da uno stato, non è l'unica forma di non determinismo che abbiamo.

Infatti, un'altra forma di non determinismo è quella di avere **stati iniziali multipli**, ovvero poter scegliere più punti di partenza. Come potenza siamo uguali agli automi deterministici: basta fare una **costruzione per sottoinsiemi** e abbiamo sistemato tutto.

L'ultima forma di non determinismo che abbiamo è quella delle ε -produzioni: esse sono transizioni di stato etichettate dalla ε che permettono di spostarsi da uno stato all'altro senza leggere un carattere della stringa da riconoscere.

Che applicazioni può avere una forma del genere? Nei **compilatori** questo approccio è comodissimo per riconoscere dei numeri che possono essere indicati con o senza segno.

Esempio 2.3.1: Se $\Sigma = \{0, ..., 9, +, -\}$ definiamo un numero come una sequenza non vuota di cifre, con un segno iniziale opzionale.

La epsilon mossa indica una opzionalità: potremmo leggere il prossimo carattere stando nello stato q_0 oppure nello stato q_s .

Questa soluzione aumenta la potenza dell'automa? NO: ogni sequenza nella forma

$$p \stackrel{\varepsilon}{\rightsquigarrow} p' \stackrel{a}{\longrightarrow} q' \stackrel{\varepsilon}{\rightsquigarrow} q$$

può essere tradotta nella transizione

$$p \stackrel{a}{\longrightarrow} q$$
.

Esempio 2.3.2: Andiamo a rimuovere la ε -transizione usando le sequenze appena descritte.

Una soluzione analoga rimuove le ε -transizioni inserendo degli stati iniziali multipli, ma questo mantiene ancora la forma di non determinismo dell'automa e non migliora la potenza, visto che basta trasformare l'NFA in un DFA con la costruzione per sottoinsiemi e come stato iniziale si avranno più di due elementi.

Esempio 2.3.3: Ci vengono dati tre automi, che riconoscono sequenze di $a,\ b$ e c arbitrarie.

Vogliamo costruire un automa che utilizzi le ε -transizioni usando questi tre moduli per riconoscere il linguaggio

$$L = \{a^n b^m c^h \mid m, n, h \ge 0\}.$$

Come lo rendiamo deterministico? Sicuramente non andiamo ad utilizzare gli stati iniziali multipli, che qui ci starebbero molto bene, ma appunto vogliamo un comportamento deterministico.

Siamo nel deterministico, ma l'automa di prima è molto più leggibile di questo.

Esempio 2.3.4: Riprendiamo il linguaggio L_n delle stringhe con l'n-esimo carattere da destra uguale ad una a. Avevamo visto un NFA sulle transizioni, vediamone uno non deterministico sulle ε -transizioni fissando il valore a n=3.

La scommessa qua l'abbiamo messa nel primo stato, che cerca di indovinare se sia arrivato o meno al terzultimo carattere. Il numero di stati, per L_n generico, è n+2.

3. Numero minimo di stati

3.1. Distinguibilità

Vediamo un esempio per introdurre il concetto di questa sezione.

Esempio 3.1.1: Sia $\Sigma = \{a, b\}$ e vogliamo un automa che riconosca il linguaggio

$$L = \{ x \in \Sigma^* \mid \#_a(x) \text{ pari } \land \#_b(x) \text{ dispari} \}$$

Ogni stato si ricorda il numero di a e b modulo 2 che ha incontrato.

Possiamo usare meno stati per scrivere un automa per questo linguaggio? Sembra di no, ma non siamo rigorosi. Vediamo un criterio per dire ciò. Ragioniamo sui linguaggi e non sugli automi.

Definizione 3.1.1 (Distinguibilità): Sia $L \subseteq \Sigma^*$ un linguaggio. Date $x, y \in \Sigma^*$, allora esse sono **distinguibili** per L se

$$(xz \in L \land yz \notin L) \lor (xz \notin L \land yz \in L).$$

In poche parole, riesco a trovare una stringa $z \in \Sigma^*$ tale che, se attacco z alle due stringhe x e y, da una parte mi trovo in L, dall'altra sono fuori L.

Teorema 3.1.1 (Teorema della distinguibilità): Sia $L \subseteq \Sigma^*$ e sia $X \subseteq \Sigma^*$ un insieme tale che tutte le coppie di stringhe $x, y \in X$, con $x \neq y$, sono distinguibili. Allora ogni automa deterministico che accetta L ha almeno |X| stati.

Dimostrazione 3.1.1.1: Sia $X=\{x_1,...,x_n\}$ e sia $A=(Q,\Sigma,\delta,q_0,F)$ un DFA che accetta il linguaggio L. Definiamo gli stati

$$p_i = \delta(q_0, x_i) \quad \forall i = 1, ..., n$$

che raggiungiamo dallo stato iniziale usando gli stati x_i di X. In poche parole,

$$\begin{array}{c} q_0 \stackrel{x_0}{\leadsto} p_0 \\ \dots \\ q_0 \stackrel{x_n}{\leadsto} p_n \end{array}$$

Per assurdo, supponiamo che |Q| < n. Ma allora esistono due stati tra i vari p_i che sono raggiunti da due stringhe diverse, ovvero

$$\exists i \neq j \mid p_i = p_i$$
.

Per ipotesi x_i e x_j sono due stringhe distinguibili, quindi esiste una stringa $z \in \Sigma^*$ che le distingue. Ma partendo dallo stesso stato $p_i = p_j$ e applicando z vado per entrambe le stringhe in uno stato finale o in uno stato non finale.

Ma questo è un assurdo perché va contro la definizione di distinguibilità, quindi non può succedere che

$$|Q| < n \Longrightarrow |Q| \ge n.$$

Esempio 3.1.2: Trovare un insieme di stringhe distinguibili per il linguaggio precedente.

	ε	a	b	ab
ε	_	b	b	b
\overline{a}	b	_	ab	ab.
\overline{b}	b	ab	_	ε
\overline{ab}	b	ab	ε	

È comodo usare una stringa per ogni stato dell'automa.

Come vediamo, questo teorema è un'arma molto potente: oltre alla possibilità di dare dei **lower bound** al numero di stati di un automa, questo ci permette anche di dire se un linguaggio è di tipo 3 o meno. Infatti, se riusciamo a trovare un insieme X per un linguaggio L che ha un numero infinito di stringhe distinguibili, allora L non può essere riconosciuto da un automa a **STATI FINITI**.

Esempio 3.1.3: Riprendiamo il linguaggio della a in terza posizione da destra e diamogli un nome. Dato l'alfabeto $\Sigma = \{a, b\}$, sia

$$L_3 = \{x \in \Sigma^* \mid \text{il terzo simbolo di } x \text{ da destra è una } a\}.$$

Avevamo visto un DFA per L che prendeva una finestra di 3 simboli, usando 8 stati. Possiamo farlo con meno di 8 stati? Usiamo il teorema precedente e vediamo che succede.

Se scegliamo $X = \Sigma^3$, date due stringhe $\sigma, \gamma \in X$ tali che

$$\sigma = \sigma_1 \sigma_2 \sigma_3 \quad | \quad \gamma = \gamma_0 \gamma_1 \gamma_2$$

allora queste due stringhe le riusciamo a distinguere in base ad una delle posizioni nelle quali hanno un carattere diverso. Infatti, visto che

$$\exists i \mid \sigma_i \neq \gamma_i$$

possiamo affermare che:

- se i = 1 allora scelgo $z = \varepsilon$;
- se i = 2 allora scelgo $z \in \{a, b\}$;
- se i = 3 allora scelgo $z \in \{a, b\}^2$.

Con questa costruzione, noi «rimuoviamo» i caratteri prima della posizione i e aggiungiamo in fondo una qualsiasi sequenza della stessa lunghezza. Abbiamo ottenuto una stringa della stessa lunghezza che però ora ha in prima posizione i due caratteri diversi esattamente nella posizione dove dovremmo avere una a.

Cerchiamo di generalizzare questo concetto.

Esempio 3.1.4: Dato l'alfabeto $\Sigma = \{a, b\}$, chiamiamo

 $L_n = \{x \in \Sigma^* \mid \text{l'}n\text{-esimo simbolo di } x \text{ da destra \`e una } a\}.$

Come prima, definisco $X = \Sigma^n$ insieme di stringhe nella forma $\sigma = \sigma_1 ... \sigma_n$.

Date due stringhe $\sigma, \gamma \in \Sigma^n$ allora

$$\exists i \mid \sigma_i \neq \gamma_i$$
.

Questa posizione può essere la prima o una a caso, è totalmente indifferente.

Scelgo di attaccare una stringa

$$z\in \Sigma^{i-1}$$

che mi permette di distinguere: infatti, come prima, «isoliamo» i primi i-1 caratteri, li «spostiamo» alla fine in un'altra forma e consideriamo solo gli n caratteri di destra. In questa nuova «configurazione» abbiamo l'n esimo carattere della stringa che è quello che era in posizione i, che in una stringa vale a e in una vale b, quindi le due stringhe sono distinguibili.

Ma allora ogni DFA per L_n usa almeno $2^{|X|}=2^n$ stati.

Cosa cambia se invece utilizziamo un NFA per L_n ?

Esempio 3.1.5: Per il linguaggio L_n usiamo uno stato che fa la scommessa di essere arrivati all'n-esimo carattere da destra e uno stato che si ricorda di aver letto una a. Servono poi n-1 stati per leggere i restanti n-1 caratteri della stringa.

Per L_n abbiamo quindi visto che il numero di stati richiesti per un NFA è n+1, mentre per un DFA è almeno 2^n grazie al teorema sulla distinguibilità. Il salto che abbiamo fatto è quindi **esponenziale**.

Tutto bello, ma questo salto esponenziale è evitabile? Possiamo fare di meglio? Possiamo cioè migliorare questa costruzione?

Esempio 3.1.6: Dato il seguente NFA, costruire il DFA associato.

Usando la costruzione per sottoinsiemi otteniamo il seguente DFA.

Escludendo lo stato trappola siamo riusciti ad usare meno stati di quelli del salto $n \to 2^n$, quindi vuol dire che forse si riesce a fare meglio. E invece **NO**. Esiste un caso peggiore, un automa che esegue un salto preciso da n a 2^n preciso preciso.

Come per la teoria della complessità, dobbiamo considerare sempre il caso peggiore, quindi vedremo un salto da n a 2^n esaurendo completamente tutti i possibili sottoinsiemi di n. Poi si può fare di meglio, ma in generale si fa tutto il salto visto che esiste un controesempio.

3.1.1. Automa di Meyer-Fischer

L'automa di Meyer-Fischer, ideato da questi due bro nel 1971, sarà il nostro NFA salvatore che ci permetterà di dimostrare quanto detto fino ad adesso.

Sia $M_n = (Q, \Sigma, \delta, q_0, F)$ tali che:

- $Q = \{0, ..., n-1\}$ insieme di n stati;
- $\Sigma = \{a, b\};$
- $q_0 = 0$ stato iniziale e anche unico stato finale.

La funzione di transizione è tale che

$$\delta(i,x) = \begin{cases} \{(i+1) \bmod n\} & \text{se } x = a \\ \{i,0\} & \text{se } x = b \\ \otimes & \text{se } x = b \wedge i = 0 \end{cases}.$$

L'automa ${\cal M}_n$ lo possiamo disegnare in questo modo.

Teorema 3.1.1.1: Ogni DFA equivalente a ${\cal M}_n$ deve avere almeno 2^n stati.

Dimostrazione 3.1.1.1.1: Sia $S \subseteq \{0, ..., n-1\}$. Definiamo la stringa

$$w_S = \begin{cases} b & \text{se } S = \emptyset \\ a^i & \text{se } S = \{i\} \\ a^{e_k - e_{k-1}} b a^{e_{k-1} - e_{k-2}} b \cdots b a^{e_2 - e_1} b a^{e_1} & \text{se } S = \{e_1, ..., e_k\} \mid k > 1 \wedge e_1 < ... < e_k \end{cases}.$$

Si può dimostrare che per ogni $S\subseteq\{0,...,n-1\}$ vale

$$\delta(q_0, w_S) = S.$$

Si può dimostrare inoltre che dati $S,T\subseteq\{0,...,n-1\}$, se $S\neq T$ allora w_S e w_T sono distinguibili per il linguaggio $L(M_n)$.

Viste queste due proprietà, l'insieme di tutte le stringhe w_S associate ai vari insiemi S è formato da stringhe indistinguibili tra loro a coppie. Definiamo quindi

$$X = \{w_S \mid S \subseteq \{0, ..., n-1\}\}\$$

insieme di stringhe distinguibili tra loro per $L(M_n)$.

Il numero di stringhe in X dipende dal numero di sottoinsiemi di $\{0,...,n-1\}$: questi sono esattamente 2^n , quindi anche $|X|=2^n$. Ma allora, per il teorema sulla distinguibilità, ogni DFA per M_n deve usare almeno 2^n stati.

Formalizziamo un attimo le due proprietà utilizzate. Vediamo la prima.

Lemma 3.1.1.1: Per ogni
$$S \subseteq \{0, ..., n-1\}$$
 vale

$$\delta(q_0, w_S) = S.$$

Esempio 3.1.1.1: Sia M_5 una istanza dell'automa di Meyer-Fischer.

Se scegliamo $S = \{1, 3, 4\}$ allora

$$w_S = a^{4-3}ba^{3-1}ba^1 = abaaba.$$

Facciamo girare l'automa M_5 sulla stringa w_S . Visto che Cetz fa cagare e non funziona niente, ogni stato i viene trasformato nello stato q_i .

Notiamo come l'insieme degli stati finali possibili sia esattamente S.

E ora vediamo la seconda e ultima proprietà.

Lemma 3.1.1.2: Dati $S,T\subseteq\{0,...,n-1\}$, se $S\neq T$ allora w_S e w_T sono distinguibili per il linguaggio $L(M_n)$.

Dimostrazione 3.1.1.2.1: Se $S \neq T$ allora sia $x \in S/T$ uno degli elementi che sta in S ma non in T. Vale anche il simmetrico, quindi consideriamo questo caso per ora.

Per il lemma precedente, sappiamo che

$$\delta(q_0, w_S) = S \quad | \quad \delta(q_0, w_T) = T.$$

Se siamo nello stato x, se vogliamo finire nello stato finale basta leggere la stringa a^{n-x} . Infatti, dato l'insieme S che contiene x, allora

$$w_S a^{n-x} \in L(M_n)$$

perché lo stato x finisce nello stato finale.

Ora, visto che $x \notin T$, allora $w_T a^{n-x} \notin L(M_n)$ perché l'unico modo per finire in 0 leggendo a^{n-x} è essere nello stato x, come visto poco fa.

Ma allora w_S e w_T sono distinguibili.

3.1.2. Esempi

Il teorema sulla distinguibilità che abbiamo visto la scorsa lezione è molto potente e ci permette di dimostrare che un linguaggio non è accettato da un automa a stati finiti se troviamo un insieme X con un numero infinito di stringhe.

Esempio 3.1.2.1: Sia

$$L = \{a^n b^n \mid n \ge 0\}.$$

Se scegliamo $X = \{a^n \mid n \ge 0\}$, esso è un insieme di stringhe tutte distinguibili tra loro.

Infatti, prendendo $x = a^i$ e $y = a^j$, con $i \neq j$, basta scegliere

$$z = b^i$$

per avere xz accettata e yz non accettata.

Ma allora L non può essere riconosciuto da un automa a stati finiti.

Visto che siamo bravi con le scommesse, andiamo a fare un po' di sano gambling.

Esempio 3.1.2.2: Definiamo

 $L_n = \{x \in \{a,b\}^* \mid \exists \text{ due simboli di } x \text{ a distanza } n \text{ che sono diversi}\}.$

Usiamo anche per questo linguaggio la notazione L_n ma sono due linguaggi diversi.

Vediamo un NFA per L_3 , dove appunto viene fissato n=3.

Una NFA per L_n utilizza 2n+2 stati, più un eventuale stato trappola.

Per il DFA riusciamo a trovare un bound al numero di stati?

Esempio 3.1.2.3: Dato L_n il linguaggio di prima, sia $X = \Sigma^n$.

Prendiamo le stringhe $\sigma=\sigma_1...\sigma_n$ e $\gamma=\gamma_1...\gamma_n$ di X, e sia i la prima posizione nella quale le due stringhe sono diverse, ovvero $\sigma_i\neq\gamma_i$. Come stringa z scelgo $\sigma_1...\sigma_{i-1}$: con questa scelta otteniamo le stringhe

$$\begin{split} \sigma z &= \sigma_1...\sigma_{i-1}\sigma_i\sigma_{i+1}...\sigma_n\sigma_1...\sigma_{i-1}\{a,b\} \\ \gamma z &= \gamma_1...\gamma_{i-1}\gamma_i\gamma_{i+1}...\gamma_n\gamma_1...\gamma_{i-1}\{a,b\} \end{split}$$

Notiamo come le prime coppie di caratteri sono tutte uguali, nel primo caso perché sono esattamente la stessa lettera, nel secondo caso perché avevamo imposto la prima diversità in i. In base poi al valore di σ_i e γ_i , e al valore scelto in fondo alla stringa, verrà accettata la prima o la seconda stringa.

Ma allora ogni DFA per L_n richiede almeno 2^n stati.

Vediamo ancora un esempio, ma teniamo a mente il linguaggio L_n che abbiamo appena visto.

Esempio 3.1.2.4: Dato l'alfabeto $\Sigma = \{a, b\}$, definiamo

 $L'_n = \{x \in \Sigma^* \mid \text{ogni coppia di simboli di } x \text{ a distanza } n \text{ è formata dallo stesso simbolo}\}.$

Notiamo che dopo che ho letto n simboli essi si iniziano a ripetere fino alla fine, ma allora

$$x \in L_n' \iff \exists w \in \Sigma^n \land \exists y \in \Sigma^{\leq n} \mid x = w^{m \geq 0} y \land y$$
 suffisso di w .

Posso ripetere w quante volte voglio, ma poi la parte finale deve ripetere in parte w.

Notiamo inoltre che questo linguaggio è il complementare del precedente, ovvero

$$L'_n = L_n^C$$
.

Vogliamo costruire un DFA per questo linguaggio: posso usare l'insieme X di prima ma cambiare il valore di verità finale. Quindi ci servono ancora 2^n stati per il DFA.

Vediamo un esempio di automa con n=3, un po' grossino, ma fa niente. Non viene inserito lo stato trappola per semplicità, ma ci dovrebbe essere anche quello per ogni transizione «sbagliata» nell'ultima parte dell'automa.

Per il linguaggio generico $L_n^\prime,$ l'albero usa un numero di stati pari a

$$2^{n+1} - 1 + -2^n(n-1) + 1 = 2^{n+1} + 2^n(n-1).$$

Una prima versione migliore dell'automa taglia via 4 stati facendo dei cappi negli stati aaa1 e bbb1, ma il numero rimane sempre esponenziale sotto steroidi.

Una seconda versione ancora migliore taglia tutti i $2^n(n-1)$ stati finali che fanno i cicli. Come mai? Possiamo usare tutte le foglie per mantenere comunque i cicli, abbastanza pesante da vedere però un bro è fortissimo e ha visto sta cosa.

Questa bellissima versione ha un numero di stati pari a

$$2^{n+1} - 1 + 1 = 2^{n+1}$$
.

Come vediamo, in entrambi i casi abbiamo un numero esponenziale di stati, ma almeno abbiamo un automa deterministico da utilizzare.

3.2. Fooling set

Avevamo visto un criterio di distinguibilità per i DFA, ma ne esiste uno anche per gli NFA.

Definizione 3.2.1 (Fooling set): Sia $L \subseteq \Sigma^*$. Definiamo

$$P = \{(x_i, y_i) \mid i = 1, ..., N\} \subseteq \Sigma^* \times \Sigma^*$$

un insieme di N coppie formate da stringhe di Σ^* .

L'insieme P è un fooling set per L se:

- 1. $\forall i \in \{1, ..., N\} \quad x_i y_i \in L;$
- $2. \ \forall i,j \in \{1,...,N\} \mid i \neq j \quad x_i y_j \not \in L.$

Cosa ci stanno dicendo queste due proprietà? La prima ci dice che la concatenazione degli elementi della stessa coppia forma una stringa che appartiene al linguaggio, mentre la seconda ci dice che la concatenazione della prima parte di una coppia con la seconda parte di un'altra coppia forma una stringa che non appartiene al linguaggio.

Noi useremo una versione leggermente diversa del fooling set.

Definizione 3.2.2 (Extended fooling set): Un **extended fooling set** è un fooling set nel quale viene modificata la seconda proprietà, ovvero:

- $1. \ \forall i \in \{1, ..., N\} \quad x_i y_i \in L;$
- $2. \ \forall i,j \in \{1,...,N\} \mid i \neq j \quad x_i y_j \not\in L \vee x_j y_i \not\in L.$

Come vediamo, è una versione un pelo più rilassata: prima chiedevo che, presa ogni prima parte di indice i, ogni concatenazione con seconde parti di indice j mi desse una stringa fuori dal linguaggio. Ora invece me ne basta solo uno dei due versi.

Teorema 3.2.1 (Teorema del fooling set): Se P è un extended fooling set per il linguaggio L allora ogni NFA per L deve avere almeno |P| stati.

Dimostrazione 3.2.1.1: Concentriamoci solo sui cammini accettanti che possiamo avere in un NFA per il linguaggio L. Grazie alla prima proprietà di P, sappiamo che le stringhe $z = x_i y_i$ stanno in L. Calcoliamo i cammini per ogni coppia di P, che sono N:

Per assurdo sia A un NFA con meno di N stati. Ma allora esistono due stringhe $x_i \neq x_j$ che mi fanno andare in $p_i = p_j$. Sappiamo che:

- da p_i con y_i vado in uno stato finale;
- da p_i con y_i vado in uno stato finale.

Sappiamo che $p_i = p_j$, ma quindi $x_i y_j$ è una stringa che finisce in uno stato finale, ma questo è un assurdo perché contraddice la seconda proprietà del fooling set.

Quindi ogni NFA deve avere almeno N stati.

3.2.1. Esempi

Usiamo questo teorema per valutare un NFA per il linguaggio precedente.

Esempio 3.2.1.1: Dato il linguaggio L'_n definiamo l'insieme

$$P = \{(x, x) \mid x \in \Sigma^n\}$$

extended fooling set per L'_n . Infatti, ogni stringa z=xx appartiene a L'_n , mentre ogni «stringa incrociata» z=xy, con $x\neq y$, non appartiene a L'_n perché in almeno una posizione a distanza n ho un carattere diverso.

Il numero di elementi di P è 2^n , che è il numero di configurazioni lunghe n di 2 caratteri, quindi ogni NFA per L'_n ha almeno 2^n stati.

Vediamo un mini **riassunto** dei due linguaggi visti di recente.

Linguaggio	DFA	NFA
L_n	$\geq 2^n$	$\leq 2n+2$
L_n'	$\geq 2^n \land \leq 2^{n+1}$	$\geq 2^n$

Finiamo con un ultimo esempio.

Esempio 3.2.1.2: Dato il linguaggio $\Sigma = \{0, 1, 2\}$, definiamo il linguaggio

$$L_n = \big\{ 0^i 1^i 2^i \ | \ 0 \le i \le n \big\}.$$

Diamo un DFA per questo linguaggio, fissando n = 3.

Il numero di stati del linguaggio L_n generico è

$$\sum_{i=1}^{n} i + \sum_{i=1}^{n-1} i = \frac{n(n+1)}{2} + \frac{n(n-1)}{2} = \frac{n^2 + n + n^2 - n}{2} = \frac{2n^2}{2} = n^2.$$

Possiamo mangiare qualche stato, facendo rientrare le computazioni più lunghe in quelle più corte quando stiamo leggendo dei 2, ma il numero rimane comunque $O(n^2)$.

Per finire diamo un NFA per il linguaggio L_n . Visto che non sappiamo su cosa scommettere, diamo un lower bound al numero di stati dei nostri NFA.

Creiamo un fooling set

$$P = \{(0^i 1^j, 1^{i-j} 2^i) \mid i = 1, ..., n \land j = 1, ..., i\}.$$

Questo è un fooling set per L_n :

- una coppia ci dà la stringa $z = 0^i 1^{j+i-j} 2^i = 0^i 1^i 2^i$ che appartiene al linguaggio;
- prendendo due elementi da due coppie diverse:

- \blacktriangleright se sono diverse le i abbiamo un numero di 0 e 2 diversi;
- lacktriangle se sono uguali le i allora sono diverse le j, ma allora la stringa $0^i1^{j+i-j'}2^i$ non appartiene al linguaggio perché $j+i-j'\neq i$.

Il numero di stati di ${\cal P}$ è ancora una somma di Gauss, quindi

$$\sum_{i=1}^{n} = \frac{n(n+1)}{2},$$

quindi ogni NFA per ${\cal L}_n$ ha almeno un numero quadratico di stati.

4. Equivalenza tra linguaggi di tipo 3 ed automi a stati finiti

In questo capitolo mostreremo l'**equivalenza** tra le grammatiche di tipo 3 e gli automi a stati finiti.

4.1. Dall'automa alla grammatica

Dato un automa $A = (Q, \Sigma, \delta, q_0, F)$ per il linguaggio L, costruiamo una grammatica G di tipo 3 che riconosca lo stesso linguaggio L.

Per fare ciò dobbiamo definire le variabili, l'assioma e le produzioni. Definiamo quindi G tale che:

- le **variabili** sono gli stati dell'automa, ovvero V = Q;
- l'assioma è lo stato iniziale dell'automa, ovvero $S = q_0$;
- le **produzioni** derivano dalle transizioni e sono nella forma:
 - $q \longrightarrow ap$ se la funzione di transizione è tale che $\delta(q, a) = p$;
 - \blacktriangleright alla produzione precedente aggiungiamo la produzione $q \longrightarrow a$ se p è uno stato finale, questo perché posso fermarmi in p.

Esempio 4.1.1: Sia $\Sigma = \{4, 5\}$. Ci viene fornito un automa che, date le stringhe sull'alfabeto Σ interpretate come numeri decimali, una volta divise per 3 ci danno 1 come resto.

Costruiamo una grammatica G di tipo 3 analoga a questo automa. Sia quindi G tale che:

- variabili $V = \{r_0, r_1, r_2\};$
- assioma $S = r_0$;
- \bullet produzioni P:
 - $ightharpoonup r_0 \longrightarrow 4r_1 \mid 4 \mid 5r_2;$

 - $ightharpoonup r_2 \longrightarrow 4r_0 \mid 5r_1 \mid 5.$

Proviamo a derivare una stringa per vedere se effettivamente funziona:

$$r_0 \longrightarrow 4r_1 \longrightarrow 45r_0 \longrightarrow 455r_2 \longrightarrow 4555.$$

4.2. Dalla grammatica all'automa

In maniera analoga, data la grammatica G di tipo 3 creiamo un automa A tale che:

- stati $Q = V \cup \{q_F\};$
- stato iniziale $q_0 = S$;
- stati finali $F = \{q_F\}$;
- transizioni della funzione di transizione derivano dalle regole di produzione, ovvero:
 - ▶ per ogni produzione $(A \longrightarrow aB) \in P$ essa ci dice che dallo stato A leggendo una a andiamo a finire in B, ovvero $\delta(A, a) = B$;

▶ per ogni produzione $(A \longrightarrow a) \in P$ essa ci dice che possiamo finire la derivazione, cioè che andiamo da A in uno stato finale tramite a, ovvero $\delta(A, a) = q_F$.

Per essere più precisi, definiamo i passi della funzione di transizione come

$$\delta(A, a) = \{B \mid (A \longrightarrow aB) \in P\} \cup \{q_F \text{ se } (A \longrightarrow a) \in P\}$$

Esempio 4.2.1: Data la grammatica $G = (V, \Sigma, P, S)$ tale che:

- $\bullet \ V = \{r_0, r_1, r_2\};$
- $S = r_0$;
- \bullet produzioni P:
 - $\blacktriangleright \ r_0 \longrightarrow 4r_1 \mid 4 \mid 5r_2;$
 - $\blacktriangleright r_1 \longrightarrow 4r_2 \mid 5r_0;$
 - $ightharpoonup r_2 \longrightarrow 4r_0 \mid 5r_1 \mid 5.$

Ricaviamo un automa dalla grammatica G. Per fare ciò definiamo:

- $Q = \{r_0, r_1, r_2, r_f\};$
- $q_0 = r_0;$
- $\bullet \ F = \{r_f\};$
- funzione di transizione δ che ha il seguente comportamento:

 - \bullet $\delta(r_0, 5) = \{r_2\};$
 - \bullet $\delta(r_1,4) = \{r_2\};$
 - $\delta(r_1, 5) = \{r_0\};$
 - $\quad \bullet \ \delta(r_2,4) = \{r_0\};$
 - $\delta(r_2, 5) = \{r_1, r_f\}.$

Notiamo come l'automa ottenuto sia non deterministico e, soprattutto, non è l'automa minimo che avevamo invece nell'esempio precedente.

4.3. Grammatiche lineari

Stiamo parlando di grammatiche, quindi vediamo un tipo particolare di grammatiche che però incontreremo molto più avanti: le **grammatiche lineari**.

4.3.1. Grammatiche lineari a destra

Potrebbero capitarci delle grammatiche che hanno una forma simile a quelle regolari, ma che in realtà non lo sono. Queste grammatiche hanno le produzioni nella forma

$$A \longrightarrow xB \mid x$$
 tale che $x \in \Sigma^*$.

Non abbiamo più, come nelle grammatiche regolari, la stringa x formata da un solo terminale, ma possiamo averne un numero arbitrario.

Queste grammatiche sono dette **grammatiche lineari a destra**, ma nonostante questa aggiunta di terminali non aumentiamo la potenza del linguaggio: per generare quella sequenza di terminali x basta aggiungere una serie di regole che rispettano le grammatiche regolari che generino esattamente la stringa x.

Esempio 4.3.1.1: Dato l'automa in figura, andare a scrivere l'automa regolare corrispondente.

Nella grammatica avremmo una serie di regole che seguono la forma delle grammatiche regolari per generare la stringa x, ovvero:

Abbiamo quindi sostituito la stringa $x = a_1...a_n$ con una serie di stati intermedi.

4.3.2. Grammatiche lineari a sinistra

Esistono anche le grammatiche lineari a sinistra, che hanno le produzioni nella forma

$$A \longrightarrow Bx \mid x$$
 tale che $x \in \Sigma^*$.

Si dimostra che anche queste grammatiche non vanno oltre i linguaggi regolari, anche se è un accrocchio passare da queste grammatiche a quelle regolari.

4.3.3. Grammatiche lineari

E se facciamo un **mischione** delle due grammatiche precedenti?

Le produzione di queste grammatiche sono nella forma

$$A \longrightarrow xB \mid Bx \mid x$$
 tale che $x \in \Sigma^* \land A, B \in V$.

Queste grammatiche, che generano i cosiddetti **linguaggi lineari**, sono a cavallo tra le grammatiche di tipo 3 e le grammatiche di tipo 2. Quindi siamo un pelo più forti delle grammatiche regolari, ma non quanto le grammatiche CF.

Esempio 4.3.3.1: Definiamo una grammatica che utilizza le seguenti produzioni:

$$S \longrightarrow aA \mid \varepsilon$$
 $A \longrightarrow Sb$

Con queste regole di una grammatica lineare stiamo generando il linguaggio

$$L = \{a^n b^n \mid n \ge 0\},\$$

che non è un linguaggio di tipo 3.

La cosa che stiamo aggiungendo è una sorta di **ricorsione**, che mi permette di saltare fuori dai linguaggi regolari e catturare di più di prima.

5. Automa minimo

Negli scorsi capitoli abbiamo visto dei metodi che limitavano il numero di stati di DFA e NFA per un certo linguaggio. In questo capitolo vediamo invece un criterio che lavora direttamente sugli automi e non sui linguaggi.

5.1. Introduzione matematica

Definizione 5.1.1 (Relazione binaria): Sia S un insieme. Una **relazione binaria** sull'insieme S è definita come l'insieme

$$R \subseteq S \times S$$
.

Come notazione useremo

oppure $(x, y) \in R$, molto di più la prima che la seconda.

Ci interessiamo ad un tipo molto particolare di relazioni.

Definizione 5.1.2 (Relazione di equivalenza): La relazione R è una **relazione di equivalenza** se e solo se R è:

- riflessiva, ovvero $\forall x \in S \quad x R x$;
- simmetrica, ovvero $\forall x, y \in S \quad x R y \Longrightarrow y R x$;
- transitiva $\forall x, y, z \in S$ $x R y \land y R z \Longrightarrow x R z$.

Una relazione di equivalenza induce sull'insieme S una partizione formata da classi di equivalenza. Queste classi sono formate da elementi che sono equivalenti tra di loro. Le classi di equivalenza le indichiamo con $[x]_B$, dove $x \in S$ è detto rappresentante (credo).

Se R è una relazione di equivalenza, l'**indice** di R è il numero di classi di equivalenza.

Esempio 5.1.1: Sia $S = \mathbb{N}$. Definiamo la relazione $R \subseteq \mathbb{N} \times \mathbb{N}$ tale che

$$x R y \iff x \mod 3 = y \mod 3.$$

Questa è una relazione di equivalenza (non lo dimostriamo) che ha tre classi di equivalenza:

- $[0]_R$ formata da tutti i multipli di 3;
- $[1]_R$ formata da tutti i multipli di 3 sommati a 1;
- $[2]_R$ formata da tutti i multipli di 3 sommati a 2.

L'indice di questa relazione è quindi 3.

Definizione 5.1.3 (Relazione invariante a destra): Sia · un'operazione sull'insieme S. La relazione R è **invariante a destra** rispetto a · se presi due elementi nella relazione R, e applicando · con uno stesso elemento, otteniamo ancora due elementi in relazione, ovvero

$$x R y \Longrightarrow \forall z \in S \quad (x \cdot z) R (y \cdot z).$$

Esempio 5.1.2: Sia R la relazione dell'esempio precedente. Definiamo $\cdot = +$ l'operazione di somma. La relazione R è invariante a destra?

Dobbiamo verificare se

$$x R y \Longrightarrow \forall z \in \mathbb{N} \quad (x+z) R (y+z),$$

ovvero se

$$x \mod 3 = y \mod 3 \Longrightarrow \forall z \in \mathbb{N} \quad (x+z) \mod 3 = (y+z) \mod 3.$$

Questo è vero perché ce lo dice l'algebra modulare, quindi R è invariante a destra.

Ora vediamo una definizione che va contro la semantica italiana.

Definizione 5.1.4 (Raffinamento): Sia S un insieme e siano $R_1, R_2 \subseteq S \times S$ due relazioni di equivalenza su S.

Diciamo che R_1 è un **raffinamento** di R_2 se e solo se:

- 1. ogni classe di equivalenza di R_1 è contenuta in una classe di equivalenza di R_2 **OPPURE**
- 2. ogni classe di R_2 è l'unione di alcune classi di R_1 **OPPURE**
- 3. vale

$$\forall x, y \in S \quad (x, y) \in R_1 \Longrightarrow (x, y) \in R_2.$$

Il primo punto è la definizione, le altre sono solo conseguenze.

Perché non rispecchia molto la semantica italiana? Perché un raffinamento di solito è qualcosa di migliore, in questo caso invece è il contrario: se R_1 è un raffinamento di R_2 allora R_1 è peggiore di R_2 in termini di classi di equivalenza.

Esempio 5.1.3: Data la relazione R di prima, definiamo ora la relazione R' tale che

$$x R' y \iff x \mod 2 = y \mod 2.$$

Le classi di equivalenza di questa relazione sono $[0]_{R'}$ e $[1]_{R'}$.

Come è messa R rispetto a R'? E R' rispetto a R?

Nessuna delle due è un raffinamento dell'altra: ci sono elementi sparsi un po' qua e là quindi non riusciamo a unire le classi di una nelle classi dell'altra.

Sia invece R'' la relazione tale che

$$x R'' y \iff x \mod 6 = y \mod 6.$$

La relazione R'' ha 6 classi di equivalenza con le varie classi di resto da 0 a 5.

Come è messa R' rispetto a R''? E R'' rispetto a R'?

Possiamo dire che R'' è un raffinamento di R': infatti, la classe $[0]_{R'}$ la possiamo scrivere come

$$\bigcup_{i \text{ pari}} [i]_{R''}$$

mentre la classe $[1]_{R^\prime}$ la possiamo scrivere come

$$\bigcup_{i \text{ dispari}} [i]_{R''}.$$

Infine, come è messa R rispetto a R''? E R'' rispetto a R?

Anche in questo caso, possiamo dire che R'' è un raffinamento di R: infatti, la classe $[0]_R$ la possiamo scrivere come

$$[0]_{R''} \cup [3]_{R''}$$

la classe $[1]_R$ la possiamo scrivere come

$$[1]_{R''} \cup [4]_{R''}$$

mentre la classe $[2]_R$ la possiamo scrivere come

$$[2]_{R''} \cup [5]_{R''}$$
.

5.2. Relazione R_M

Sia $M = (Q, \Sigma, \delta, q_0, F)$ un DFA. Definiamo la relazione

$$R_M \subseteq \Sigma^* \times \Sigma^*$$

tale che

$$x R_M y \iff \delta(q_0, x) = \delta(q_0, y).$$

In poche parole, due stringhe sono in relazione se e solo se vanno a finire nello stesso stato.

Lemma 5.2.1: La relazione R_M è una relazione di equivalenza.

Dimostrazione 5.2.1.1: Facciamo vedere che R_M rispetta RST.

La relazione ${\cal R}_M$ è riflessiva: banale per la riflessività l'uguale.

La relazione ${\cal R}_M$ è simmetrica: banale per la simmetria dell'uguale.

La relazione ${\cal R}_M$ è transitiva: banale per la transitività dell'uguale.

Ma allora R_M è di equivalenza.

Lemma 5.2.2: La relazione R_M è invariante a destra rispetto all'operazione di concatenazione.

Dimostrazione 5.2.2.1: Dobbiamo dimostrare che

$$x\,R_M\,y\Longrightarrow\forall z\in\Sigma^*\quad (xz)\,R_M\,(yz).$$

Ma questo è vero: con x e y vado nello stesso stato per ipotesi, quindi applicando z ad entrambe le stringhe finiamo nello stesso stato.

Quante classi di equivalenza abbiamo? Al massimo il numero di stati dell'automa. Come mai diciamo **AL MASSIMO** e non esattamente il numero di stati? Perché in un DFA potremmo avere degli stati che sono irraggiungibili e che quindi non vanno a creare nessuna classe di equivalenza.

In poche parole, R_M è una relazione di equivalenza, invariante a destra e di indice finito limitato dal numero di stati dell'automa M.

Notiamo inoltre che se $(x R_M y)$ allora x e y sono due stringhe non distinguibili per L(M): infatti, esse vanno nello stato e, aggiungendo qualsiasi stringa $z \in \Sigma^*$ per l'invariante a destra, finisco sempre nello stesso stato. In particolare, se finiamo in uno stato finale accettiamo sia x che y, altrimenti entrambe non sono accettate da M.

Abbiamo appena dimostrato che L(M) è l'**unione** di alcune classi di equivalenza di R_M , ovvero tutte le classi di equivalenza che sono definite da stati finali.

Esempio 5.2.1: Dato il seguente automa deterministico, determinare le classi di equivalenza della relazione R_M appena studiata.

Abbiamo 4 classi di equivalenza, che sono tutte le varie combinazioni di a e b pari/dispari.

Questo automa accetta:

• stringhe con a dispari e b dispari;

 \bullet stringhe con a pari e b dispari.

Vedremo dopo come migliorare questo automa.

5.3. Relazione R_L

Dato un linguaggio $L\subseteq \Sigma^*$, ad esso ci associamo una relazione

$$R_L \subseteq \Sigma^* \times \Sigma^*$$

tale che

$$x R_L y \iff \forall z \in \Sigma^* \quad (xz \in L \iff yz \in L)$$

In poche parole, se a due elementi in relazione attacco una stringa z qualsiasi, allora esse vanno a finire entrambe in stati accettanti oppure no. È praticamente il contrario della distinguibilità.

Lemma 5.3.1: La relazione R_L è una relazione di equivalenza.

Dimostrazione 5.3.1.1: Facciamo vedere che R_L rispetta RST.

La relazione ${\cal R}_L$ è riflessiva: banale perché sto valutando la stessa stringa.

La relazione R_L è simmetrica: banale per la simmetria del se e solo se.

La relazione R_L è transitiva: banale per la transitività del se e solo se.

Ma allora R_L è di equivalenza.

Lemma 5.3.2: La relazione R_L è invariante a destra rispetto all'operazione di concatenazione.

Dimostrazione 5.3.2.1: Dobbiamo dimostrare che

$$x\,R_L\,y\Longrightarrow\forall w\in\Sigma^*\quad (xw)\,R_L\,(yw).$$

Se $(x R_L y)$ allora

$$\forall w \in \Sigma^* \quad (xw \in L \iff yw \in L).$$

Prendiamo ora una qualsiasi stringa $z \in \Sigma^*$ e aggiungiamola alle due stringhe, ottenendo xwz e ywz. Se chiamiamo z' = wz, con un semplice renaming quello che otteniamo è comunque una stringa di Σ^* che mantiene la relazione R_L , ma effettivamente abbiamo aggiunto qualcosa, la stringa z, quindi abbiamo dimostrato che R_L è invariante a destra.

Se prendiamo la stringa $z = \varepsilon$, le stringhe x e y che sono nella relazione R_L sono o entrambe dentro o entrambe fuori da L. Ma allora L è l'**unione** di alcune classi di equivalenza di R_L .

Esempio 5.3.1: Definiamo il linguaggio

$$L = \{x \in \{a, b\}^* \mid \#_a(x) = \text{dispari}\}.$$

Per questo linguaggio abbiamo due classi di equivalenza rispetto alla relazione R_L : una per le a pari e una per le a dispari.

Non abbiamo ancora parlato di **indice** per R_L . Ci sono linguaggi che hanno un numero di classi di equivalenza infinito: ad esempio il linguaggio

$$L = \{a^n b^n \mid n \ge 0\}$$

ha un numero di classi di equivalenza infinito perché non è un linguaggio di tipo 3.

Se confrontiamo gli ultimi due esempi fatti, notiamo che essi descrivono lo stesso linguaggio, ovvero quello delle stringhe con un numero di a dispari, ma abbiamo due situazioni diverse:

- $\bullet\,$ nel primo esempio la relazione R_M ha 4 classi di equivalenza e il DFA ha 4 stati;
- \bullet nel secondo esempio la relazione R_L ha 2 classi di equivalenza e il DFA (non disegnato) ha 2 stati.

Ma allora R_M è un **raffinamento** di R_L . Questa cosa vale solo per questo esempio? **NO**.

5.4. Teorema di Myhill-Nerode

Teorema 5.4.1 (Teorema di Myhill-Nerode): Sia $L \subseteq \Sigma^*$ un linguaggio.

Le seguenti affermazioni sono equivalenti:

- 1. L è accettato da un DFA, ovvero L è regolare;
- 2. L è l'unione di alcune classi di equivalenza di una relazione E invariante a destra di indice finito;
- 3. la relazione R_L associata a L ha indice finito.

Queste relazioni che abbiamo visto fin'ora sono dette relazioni di Nerode.

Dimostrazione 5.4.1.1: Facciamo vedere $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 1$.

$$[1 \Longrightarrow 2]$$

Sia M un DFA per L. Consideriamo la relazione R_M : abbiamo osservato che essa è:

- di equivalenza;
- invariante a destra;
- di indice finito.

Inoltre, rende L unione di alcune classi di equivalenza, quindi è esattamente quello che vogliamo dimostrare.

$$[2 \Longrightarrow 3]$$

Supponiamo di avere una relazione

$$E \subset \Sigma^* \times \Sigma^*$$

di equivalenza, invariante a destra, di indice finito e che L è l'unione di alcune classi di E.

Sia (x E y). Sappiamo che E è invariante a destra, ovvero vale che

$$\forall z \in \Sigma^* \quad (xz) E(yz).$$

Inoltre, vale che

$$\forall z \in \Sigma^* \quad (xz \in L \Longleftrightarrow yz \in L)$$

perché L è unione di alcune classi di equivalenza di E.

Ma allora

$$x R_L y$$

per tutta la catena che abbiamo costruito.

Inoltre, E è un raffinamento di R_L , quindi vuol dire che l'indice di E è maggiore di R_L , ovvero

$$indice(R_L) \leq indice(E)$$
.

Visto che E ha indice finito, anche R_L ha indice finito.

$$[3 \Longrightarrow 1]$$

Sia R_L di indice finito, costruiamo l'automa M' che deve essere un DFA per L.

Definiamo quindi l'automa $M' = (Q', \Sigma, \delta', q'_0, F')$ tale che:

ullet Q' insieme degli stati formato delle classi di equivalenza di R_L , ovvero

$$\{[x] \mid x \in \Sigma^*\};$$

• q'_0 stato iniziale che poniamo uguale alla classe di equivalenza che contiene la parola vuota, ovvero

$$q_0' = [\varepsilon];$$

 $\bullet~\delta$ funzione di transizione tale che

$$\forall \sigma \in \Sigma \quad \delta'([x], \sigma) = [x\sigma];$$

• F insieme degli stati finali formato dalle classi di equivalenza che contengono stringhe del linguaggio, ovvero

$$F' = \{ [x] \mid x \in L \}.$$

Ma allora L(M') = L(M) per costruzione.

Visto che abbiamo dimostrato questo teorema, possiamo porre E uguale a R_M : otteniamo

$$\operatorname{indice}(R_L) \leq \operatorname{indice}(R_M)$$

se L è una tipo 3, altrimenti partiamo a ∞ con le classi di equivalenza di R_L .

5.5. Automa minimo

Finiamo con le nozioni di automa minimo.

Con automa minimo intendiamo il DFA per L con il minimo numero di stati.

Teorema 5.5.1 (Teorema dell'automa minimo): Dato un linguaggio L accettato da automi, il DFA minimo per L è unico. Con unicità intendiamo la non esistenza di una configurazione diversa del grafo.

L'automa minimo contiene anche l'eventuale stato trappola dove mandiamo i pattern non accettanti.

L'automa minimo M' è ottenuto grazie alla relazione R_L .

Per calcolare l'automa minimo abbiamo algoritmi per farlo in modo efficiente, che cercano le stringhe non distinguibili per abbassare il numero di stati. Se troviamo delle stringhe distinguibili siamo arrivati all'automa minimo.

5.6. Applicazioni agli NFA

Cosa succede se applichiamo tutte questi concetti sugli NFA?

Ovviamente non possiamo andare sotto i 2 stati perché almeno un carattere lo dobbiamo leggere, quindi tutti questi sono **automi minimi** ma **non sono unici**.

Inoltre, per i DFA abbiamo algoritmi polinomiali ben studiati negli anni '60, per gli NFA non abbiamo algoritmi efficienti perché esso è un problema difficile, estremamente difficile, che è ben oltre gli NP-completi, ovvero è un problema PSPACE-completo

Per fare un confronto, un problema NP-completo è CNF-SAT, un problema PSPACE-completo è CNF-SAT con una serie arbitraria di \forall e \exists posti davanti alla formula CNF.

6. Operazioni tra linguaggi

Supponiamo di avere in mano una serie di linguaggi. Vediamo un po' di **operazioni** che possiamo fare su essi per combinarli assieme e ottenere altri linguaggi importanti.

6.1. Operazioni insiemistiche

I linguaggi sono insiemi di stringhe, quindi perché non iniziare dalle **operazioni insiemistiche**?

Fissato un alfabeto Σ , siano $L', L'' \subseteq \Sigma^*$ due linguaggi definiti sullo stesso alfabeto Σ . Se i due alfabeti sono diversi allora si considera come alfabeto l'**unione** dei due alfabeti.

Partiamo con l'operazione di unione:

$$L' \cup L'' = \{ x \in \Sigma^* \mid x \in L' \lor x \in L'' \}.$$

Continuiamo con l'operazione di **intersezione**:

$$L' \cap L'' = \{x \in \Sigma^* \mid x \in L' \land x \in L''\}.$$

Terminiamo con l'operazione di complemento:

$$L'^C = \{ x \in \Sigma^* \mid x \notin L' \}.$$

Per ora tutto facile, sono le classiche operazioni insiemistiche.

6.2. Operazioni tipiche

Passiamo alle operazioni tipiche dei linguaggi, definite comunque molto semplicemente.

Partiamo con l'operazione di **prodotto** (o concatenazione):

$$L' \cdot L'' = \{ w \in \Sigma^* \mid \exists x \in L' \land \exists y \in L'' \mid w = xy \}.$$

In poche parole, concateniamo in tutti i modi possibili le stringhe del primo linguaggio con le stringhe del secondo linguaggio. Questa operazione, in generale, è **non commutativa**, e lo è se Σ è formato da una sola lettera.

Esempio 6.2.1: Vediamo due casi particolari e importanti di prodotto:

$$L \cdot \otimes = \otimes \cdot L = \otimes$$

$$L \cdot \{\varepsilon\} = \{\varepsilon\} \cdot L = L.$$

Andiamo avanti con l'operazione di **potenza**:

$$L^k = \underbrace{L \cdot \ldots \cdot L}_{k \text{ volte}}.$$

In poche parole, stiamo prendendo k stringhe da L' e le stiamo concatenando in ogni modo possibile. Possiamo dare anche una definizione induttiva di questa operazione, ovvero

$$L^k = \begin{cases} \{\varepsilon\} & \text{se } k = 0 \\ L^{k-1} \cdot L & \text{se } k > 0 \end{cases}$$

Infine, terminiamo con l'operazione di **chiusura di Kleene**, detta anche **STAR**. Questa operazione è molto simile alla potenza, ma in questo caso il numero k non è fissato e quindi

questa operazione di potenza viene ripetuta all'infinito. Vengono quindi concatenate un numero arbitrario di stringhe di L, e teniamo tutte le computazioni intermedie, ovvero

$$L^* = \bigcup_{k>0} L^k.$$

Ecco perché scriviamo Σ^* : partendo dall'alfabeto Σ andiamo ad ottenere ogni stringa possibile.

Esiste anche la **chiusura positiva**, definita come

$$L^+ = \bigcup_{k \geq 1} L^k.$$

Che relazione abbiamo tra le due chiusure? Questo dipende da ε , ovvero:

- se $\varepsilon \in L$ allora $L^* = L^+$ perché $L^1 \subseteq L^+$ e visto che $\varepsilon \in L^1$ abbiamo gli stessi insiemi;
- se $\varepsilon \notin L$ allora $L^+ = L^*/\{\varepsilon\}$ perché l'unico modo di ottenere ε sarebbe con L^0 .

Esempio 6.2.2: Vediamo una cosa simpatica:

$$abla^* = \{\varepsilon\}.$$

Abbiamo appena generato qualcosa dal nulla, fuori di testa. La generazione si blocca con la chiusura positiva, ovvero

$$\emptyset^+ = \emptyset$$
.

Infine, vediamo una cosa abbastanza banale sull'insieme formato dalla sola ε , ovvero

$$\{\varepsilon\}^* = \{\varepsilon\}^+ = \{\varepsilon\}.$$

Con la chiusura di Kleene, partendo da un **linguaggio finito** L, otteniamo una chiusura L^* di cardinalità infinita, perché ogni volta andiamo a creare delle nuove stringhe.

Partendo invece da un **linguaggio infinito** L, otteniamo ancora una chiusura L^* di cardinalità infinita ma ci sono alcune situazioni particolari.

Esempio 6.2.3: Vediamo tre linguaggi infiniti che hanno comportamenti diversi.

Consideriamo il linguaggio

$$L_1 = \{a^n \mid n \ge 0\}.$$

Calcolando la chiusura L_1^* otteniamo lo stesso linguaggio L_1 perché stiamo concatenando stringhe che contengono solo a, che erano già presenti in L_1 .

Consideriamo ora il linguaggio

$$L_2 = \{a^{2k+1} \mid k \ge 0\}.$$

Calcolando la chiusura L_2^* otteniamo il linguaggio L_1 perché:

- ullet in L^1_2 ho tutte le stringhe formate da a di lunghezza dispari;
- in L_2^2 ho tutte le stringhe formate da a di lunghezza pari (dispari + dispari).

Già solo con $L_2^0 \cup L_2^1 \cup L_2^2$ generiamo tutto il linguaggio L_1

Consideriamo infine

$$L_3 = \{a^n b \mid n \ge 0\}.$$

Proviamo a calcolare prima la potenza ${\cal L}_3^k$ di questo linguaggio, ovvero

$$L_3^k = \{a^{n_1}b...a^{n_k}b \mid n_1,...,n_k \ge 0\}.$$

La chiusura L_3^{\ast} conterrà stringhe in questa forma con kogni volta variabili.

Abbiamo quindi visto diverse situazioni: nel primo linguaggio non abbiamo dovuto calcolare nessuna chiusura, nel secondo linguaggio abbiamo calcolato un paio di linguaggi, nel terzo linguaggio non ci siamo mai fermati.

Indice

Int	rodu	zione	. 5
1.	Bre	ve ripasso	. 7
2.	Gera 2.1. 2.2. 2.3. 2.4. 2.5.	Grammatiche Gerarchia di Chomsky Decidibilità Introduzione della parola vuota Linguaggi non esprimibili tramite grammatiche finite	10 13 15 17
1.	Auto 1.1. 1.2.	omi a stati finiti deterministici	21
2.	Aut 2.1. 2.2. 2.3.	omi a stati finiti non deterministici	25 26
3.	Nun 3.1.	nero minimo di stati Distinguibilità 3.1.1. Automa di Meyer-Fischer 3.1.2. Esempi Fooling set 3.2.1. Esempi	30 34 37 40
4.	Equ 4.1. 4.2. 4.3.	ivalenza tra linguaggi di tipo 3 ed automi a stati finiti	44 44 45 46 46
5.	5.1. 5.2. 5.3. 5.4. 5.5. 5.6.	$\begin{array}{c} \textbf{oma minimo} \\ \textbf{Introduzione matematica} \\ \textbf{Relazione } R_M \\ \textbf{Relazione } R_L \\ \textbf{Teorema di Myhill-Nerode} \\ \textbf{Automa minimo} \\ \textbf{Applicazioni agli NFA} \end{array}$	48 50 52 53
6.	Ope 6.1. 6.2.	razioni tra linguaggi Operazioni insiemistiche Operazioni tipiche	. 57
7.	Esp. 7.1.	Teorema di Kleene 7.1.1. Da automa ad espressione regolare 7.1.2. Da espressione regolare ad automa 7.1.2.1. State complexity	62 63 65

		7.1.2.2. Espressioni base	66
		7.1.2.3. Operazioni insiemistiche	67
		7.1.2.3.1. Complemento	67
		7.1.2.3.1.1. DFA	67
		7.1.2.3.1.2. NFA	67
		7.1.2.3.1.3. Costruzione per sottoinsiemi	69
		7.1.2.3.2. Unione	
		7.1.2.3.2.1. DFA	70
		7.1.2.3.2.2. Automa prodotto	71
		7.1.2.3.2.3. NFA	
		7.1.2.3.3. Intersezione	72
		7.1.2.4. Operazioni tipiche	73
		7.1.2.4.1. Prodotto	73
		7.1.2.4.1.1. DFA	73
		7.1.2.4.1.2. Costruzione senza nome	74
		7.1.2.4.1.3. NFA	74
		7.1.2.4.2. Chiusura di Kleene	75
		7.1.2.4.2.1. DFA	76
		7.1.2.4.2.2. NFA	76
	7.2.	Codici	76
	7.3.	Star height	77
	7.4.	Espressioni regolari estese	79
8.	Oper	razioni esotiche e avanzate	82
•	8.1.	Reversal	
	0.1.	8.1.1. DFA	
		8.1.2. NFA	
		8.1.3. Reversal di una grammatica	
		8.1.4. Algoritmo per l'automa minimo	
	8.2.	Shuffle	
		8.2.1. Alfabeti disgiunti	
		8.2.2. Stesso alfabeto	
		8.2.3. Alfabeto unario	
	8.3.	Raddoppio	91
	8.4.	Metà	
	8.5.	Automi come matrici	92
		8.5.1. Prima applicazione: raddoppio	93
		8.5.2. Seconda applicazione: metà	94
		8.5.3. Matrici su NFA	95
9.	Pum	pping Lemma	96
•	9.1.	Definizione	
	9.2.	Applicazioni	
10		••	
TO.		olemi di decisione per i linguaggi regolari	
		Linguaggio vuoto e infinito	
		Appartenenza	
		Inclusione e uguaglianza	
	10.4.	INCIUNIONO O UZUAZNANZA	

7. Espressioni regolari

7.1. Teorema di Kleene

Con le operazioni che abbiamo visto noi possiamo creare dei nuovi linguaggi. Tra queste operazioni, possiamo raggruppare unione, prodotto e chiusura di Kleene sotto il cappello delle operazioni regolari. Come mai questo nome? Perché esse sono usate per definire i linguaggi regolari.

Vediamo tre versioni del seguente teorema, ma ci interesseremo solo della prima e della terza.

Teorema 7.1.1 (Teorema di Kleene): La classe dei linguaggi accettati da automi a stati finiti coincide con la più piccola classe contenente i linguaggi

$$\otimes$$
 | $\{\varepsilon\}$ | $\{a\}$

e chiusa rispetto alle operazioni di unione, prodotto e chiusura di Kleene.

Questa prima versione ci dice che possiamo costruire la classe dei linguaggi regolari partendo da tre linguaggi base e applicando in tutti i modi possibili le tre operazioni regolari.

Teorema 7.1.2 (Teorema di Kleene): La classe dei linguaggi accettati da automi a stati finiti coincide con la più piccola classe che contiene i linguaggi finiti.

Seconda versione carina, ma che non commentiamo.

Teorema 7.1.3 (Teorema di Kleene): La classe dei linguaggi accettati da automi a stati finiti coincide con la classe dei linguaggi espressi con le espressioni regolari.

Tutto bello, ma cosa sono le **espressioni regolari**?

Simbolo/espressione	Linguaggio associato
Ø	Ø
ε	$\{arepsilon\}$
a	$\{a\}$
$E_1 + E_2$	$L(E_1) \cup L(E_2)$
$E_1 \cdot E_2$	$L(E_1) \cdot L(E_2)$
E^*	$(L(E))^*$

Le espressioni regolari sono una **forma dichiarativa**, ovvero grazie ad esse dichiariamo come sono fatte le stringhe di un certo linguaggio. Fin'ora avevamo usato gli automi (**forma riconoscitiva**) e le grammatiche (**forma generativa**).

Esempio 7.1.1: Vediamo un po' di espressioni regolari per alcuni linguaggi.

Linguaggio	Espressione regolare
$L = \{a^n \mid n \ge 0\}$	a^*
$L = \left\{a^{2k+1} \mid k \ge 0\right\}$	$(aa)^*a$
$L = \{a^n b \mid n \ge 0\}$	a^*b
$L = \left\{ \left(a^n b \right)^k \mid n \ge 0 \land k > 0 \right\}$	$(a^*b)^k$
L_3 terzultimo simbolo da destra è una \boldsymbol{a}	$(a+b)^*a(a+b)(a+b)$

Il penultimo linguaggio ha una espressione regolare che non abbiamo visto: si tratta di una piccola estensione algebrica che ci permette di unire assieme una serie di fattori identici.

Andiamo ora a dimostrare il teorema di Kleene.

Dimostrazione 7.1.3.1: Dobbiamo mostrare una doppia implicazione.

$[Automa \longrightarrow RegExp]$

Dobbiamo far vedere che, dato un automa per il linguaggio L, possiamo costruire una operazione regolare che indica lo stesso linguaggio.

Vedi l'esempio successivo su come fare questa operazione.

$[RegExp \longrightarrow Automa]$

Dobbiamo far vedere che, data una espressione regolare che denota un linguaggio L, possiamo costruire un automa A che riconosce lo stesso linguaggio.

Vedi la sezione sulle operazioni per questa operazione.

7.1.1. Da automa ad espressione regolare

Vediamo un esempio di come passare da un automa ad una espressione regolare.

Esempio 7.1.1.1: Per ricavare una espressione regolare da un automa si usa un algoritmo di **programmazione dinamica** molto simile all'algoritmo Floyd-Warshall sui grafi, che cerca i cammini minimi imponendo una serie di vincoli.

Un altro approccio invece cerca di risolvere un **sistema di equazioni** associato all'automa.

Dato un automa, costruiamo un sistema di n equazioni, dove n è il numero di stati dell'automa. Supponendo di numerare gli stati da 1 a n, la i-esima equazione descrive i cambiamenti di stato che possono avvenire partendo dallo stato i.

Ogni **cambiamento di stato** è nella forma aB, dove a è il carattere che causa una transizione e B è lo stato di arrivo. Tutti i cambiamenti di stato a partire da i vanno sommati tra loro. Inoltre, se lo stato i-esimo è uno stato finale si aggiunge anche ε all'equazione.

Questa somma di cambiamenti di stati va posta uguale allo stato i-esimo.

Associamo all'automa precedente un sistema di 3 equazioni, nel quale indichiamo gli stati con le variabili X_i e i caratteri sono quelli dell'alfabeto $\{a,b\}$. Il sistema è il seguente:

$$\begin{cases} X_0 = aX_1 + bX_0 \\ X_1 = aX_2 + bX_0 \\ X_2 = aX_2 + bX_1 + \varepsilon \end{cases}.$$

Ora dobbiamo risolvere questo sistema di equazioni. Per fare ciò, dobbiamo introdurre una **regola fondamentale** che ci permetterà di risolvere tutti i sistemi che vedremo.

Il sistema di equazioni per questo automa è

$$\begin{cases} X = AX + BY \\ Y = \varepsilon \end{cases}.$$

Sostituendo $Y = \varepsilon$ nella prima equazione otteniamo

$$X = AX + B$$
.

L'espressione regolare per questo automa è

$$A^*B$$
.

Visto che le due cose che abbiamo scritto devono essere identiche, ogni volta che abbiamo una equazione nella forma

$$X = AX + B$$

la possiamo sostituire con l'equazione

$$X = A^*B$$

Riprendiamo il sistema dell'automa dell'esempio e andiamo a risolvere le nostre equazioni:

$$\begin{cases} X_0 = a(aX_2 + bX_0) + bX_0 \\ X_2 = aX_2 + b(aX_2 + bX_0) + \varepsilon \end{cases}$$

$$\begin{cases} X_0 = aaX_2 + abX_0 + bX_0 \\ X_2 = aX_2 + baX_2 + bbX_0 + \varepsilon \end{cases}$$

$$\begin{cases} X_0 = (ab + b)X_0 + aaX_2 \\ X_2 = (a + ba)X_2 + bbX_0 + \varepsilon \end{cases}$$

$$\begin{cases} X_0 = (ab + b)X_0 + aaX_2 \\ X_2 = (a + ba)^*(bbX_0 + \varepsilon) \end{cases}$$

$$X_0 = (ab + b)X_0 + aa((a + ba)^*(bbX_0 + \varepsilon))$$

$$X_0 = (ab + b)X_0 + aa((a + ba)^*bbX_0 + aa(a + ba)^*$$

$$X_0 = (ab + b + aa(a + ba)^*bbX_0 + aa(a + ba)^*.$$

Applicando un'ultima volta la regola fondamentale otteniamo l'espressione regolare

$$(ab + b + aa(a + ba)*bb)*aa(a + ba)*.$$

E pensare che l'algoritmo basato su Floyd-Warshall è anche più difficile...

7.1.2. Da espressione regolare ad automa

Per dimostrare questa parte dell'implicazione dobbiamo costruire un automa per ogni espressione regolare possibile, quindi per le tre espressioni base e per le tre operazioni regolari. In realtà, in questa sezione vedremo gli automi di un po' tutte le operazioni che abbiamo visto per adesso.

7.1.2.1. State complexity

Durante questa dimostrazione vogliamo studiare anche il numero di stati che sono **necessari** per definire un automa. Vediamo due quantità che sono chiave in questo studio.

Definizione 7.1.2.1.1 (State complexity deterministica): Sia $L \subseteq \Sigma^*$. Indichiamo con

$$\operatorname{sc}(L)$$

il **minimo numero di stati** di un DFA completo per L.

Abbiamo poi visto che l'automa con questo numero di stati è anche unico.

Definizione 7.1.2.1.2 (State complexity non deterministica): Sia $L \subseteq \Sigma^*$. Indichiamo con

$$\operatorname{nsc}(L)$$

il **minimo numero di stati** di un NFA per L.

In questo caso abbiamo visto che l'NFA minimo **non è unico**. Inoltre, non abbiamo la nozione di **completo** perché la funzione di transizione associa ad ogni passo di computazione una serie di scelte, che può essere anche la scelta vuota.

Lemma 7.1.2.1.1: Se L non è un linguaggio regolare allora

$$\operatorname{sc}(L) = \operatorname{nsc}(L) = \infty.$$

Lemma 7.1.2.1.2: Se L è un linguaggio regolare allora

$$\operatorname{sc}(L) < \infty \wedge \operatorname{nsc}(L) < \infty.$$

Avevamo inoltre il bound per passare da NFA a DFA, che nel caso peggiore trasformava n stati di un NFA in 2^n stati di un DFA con l'automa di **Meyer-Fischer**.

Esempio 7.1.2.1.1: Sia L_n il solito linguaggio dell'n-esimo simbolo da destra uguale ad a.

Avevamo visto un NFA che utilizzava n+1 stati, quindi

$$\operatorname{nsc}(L_n) \le n+1.$$

Si dimostra poi l'uguaglianza dei due valori utilizzando un fooling set.

Avevamo poi visto un DFA che utilizzava 2^n stati, quindi

$$\operatorname{sc}(L_n) = 2^n.$$

Con un insieme di stringhe distinguibili avevamo mostrato che servivano almeno 2^n stati, ma con la realizzazione effettiva abbiamo uguagliato il bound.

7.1.2.2. Espressioni base

Costruiamo degli automi per le espressioni regolari di base e poi costruiamo gli automi per le operazioni che usiamo per chiudere questa classe di linguaggi.

Espressione regolare	Automa
----------------------	--------

Per essere precisi, dovremmo utilizzare dei DFA che sono completi, quindi dobbiamo considerare anche lo stato trappola. In realtà, se vogliamo fare un conto asintotico non ci interessa molto, ma se vogliamo il numero preciso di stati allora quello stato è necessario.

7.1.2.3. Operazioni insiemistiche

7.1.2.3.1. Complemento

Dato il linguaggio L con sc(L) = n, vogliamo valutare la quantità $sc(L^C)$ del **complemento** di L.

7.1.2.3.1.1. DFA

Se abbiamo un DFA per L, passare a L^C è molto facile: tutte le stringhe che prima accettavo ora le devo rifiutare e viceversa. Parlando in termini di dell'automa, invertiamo ogni stato finale in non finale e viceversa, mantenendo intatte le transizioni.

Dato $A=(Q,\Sigma,\delta,q_0,F)$ un DFA per L, costruisco l'automa $A'=(Q,\Sigma,\delta,q_0,F')$ un DFA per L^C tale che

$$F' = Q/F$$
.

Dobbiamo imporre che A sia **completo** perché ciò che andava nello stato trappola ora deve essere accettato. Ma allora

$$\operatorname{sc}(L^C) = \operatorname{sc}(L).$$

7.1.2.3.1.2. NFA

Come ci comportiamo sugli NFA?

Esempio 7.1.2.3.1.2.1: Sia L_3 l'istanza del linguaggio L_n classico con n=3. Andiamo a vedere un automa che cerca di calcolare L_3^C con la tecnica che abbiamo appena visto nei DFA.

Abbiamo un problema: questo automa accetta tutto. Ma perché succede questo? Negli NFA accettiamo se esiste almeno un cammino accettante e rifiutiamo se ogni cammino è rifiutante. Quando accettiamo è molto probabile che ci sia, oltre al cammino accettante, anche qualche cammino rifiutante. Facendo il complemento, accettiamo ancora quando abbiamo almeno un cammino accettante, ma questo deriva da uno dei cammini rifiutanti precedenti.

È importantissimo avere il DFA, per via di questa asimmetria tra accettazione e non accettazione.

Ma se volessimo per forza un NFA per il complemento? Questo va molto a caso, dipende da linguaggio a linguaggio, potrebbe essere molto facile da trovare come molto difficile.

Esempio 7.1.2.3.1.2.2: Sempre per il linguaggio L_3 , diamo due NFA per riconoscere L_3^C .

Una prima soluzione utilizza una serie di stati iniziali multipli.

Una seconda soluzione utilizza invece il non determinismo puro.

Questo approccio di cercare a tutti i costi un NFA può essere difficoltoso. Vediamo un algoritmo che ci permette di avere un automa per L^C , per ci darà un automa deterministico.

7.1.2.3.1.3. Costruzione per sottoinsiemi

Sia $A = (Q, \Sigma, \delta, q_0, F)$ un NFA per L, voglio un automa per il linguaggio L^C . Un modo sistematico e ottimo per avere un automa sotto mano è passare al DFA di A e poi eseguire la costruzione del complemento che abbiamo visto prima.

Quanti stati abbiamo? Sappiamo che abbiamo un salto esponenziale passando dall'NFA al DFA, e poi uno stesso numero di stati, quindi

$$\mathrm{nsc}\big(L^C\big) \leq 2^{\mathrm{nsc}(L)}.$$

Possiamo fare di meglio? Sicuramente esistono esempi di salti che non sono esattamente esponenziali, come i linguaggi delle coppie di elementi uguali/diversi a distanza n, che avevano un salto del tipo

$$2n+2\longrightarrow 2^n$$

ma si può costruire un esempio che faccia un salto esponenziale perfetto.

Abbiamo quindi visto che del complemento negli NFA non ce ne facciamo niente, questo proprio per la natura del non determinismo.

7.1.2.3.2. Unione

Dati due linguaggi $L', L'' \subseteq \Sigma^*$ rispettivamente riconosciuti dagli automi $A' = (Q', \Sigma, \delta', q'_0, F')$ e $A'' = (Q'', \Sigma, \delta'', q''_0, F'')$, vogliamo costruire un automa per l'**unione**

$$L' \cup L''$$
.

Per risolvere questo problema pensiamo agli automi come se fossero delle scatole, che prendono l'input nello stato iniziale e poi arrivano alla fine nell'insieme degli stati finali.

L'idea per costruire l'automa l'unione è combinare i due automi A' e A'' usando il non determinismo per scegliere in quale automa finire con una ε -mossa.

Visto che il linguaggio dell'unione deve stare in almeno uno dei due, metto una scommessa all'inizio per vedere se andare nel primo o nel secondo automa. Bella soluzione, funziona, ma non ci piace tanto, come mai?

7.1.2.3.2.1. DFA

Non ci piace tanto questa soluzione perché se partiamo da due DFA andiamo a finire in un NFA. Infatti, la componente, non deterministica viene inserita con le due ε -mosse iniziali. La stessa componente non deterministica l'avremmo inserita con gli stati iniziali multipli, che sarebbero stati in corrispondenza dei due stati iniziali q_0' e q_0'' senza lo stato q_0 .

Se vogliamo rimanere nel mondo DFA dobbiamo unire i due automi con questa costruzione e poi passare al DFA con la costruzione per sottoinsiemi. Il numero di stati dell'NFA è

$$\operatorname{nsc}(L' \cup L'') \le 1 + \operatorname{nsc}(L') + \operatorname{nsc}(L''),$$

quindi con la costruzione per sottoinsiemi arriveremmo ad avere un numero di stati pari a

$$\operatorname{sc}(L' \cup L'') \le 2^{\operatorname{nsc}(L' \cup L'')}$$
.

Questa costruzione è altamente inefficiente. Si può fare molto meglio.

7.1.2.3.2.2. Automa prodotto

Utilizzando una costruzione particolare, la **costruzione dell'automa prodotto**, siamo in grado di abbassare di brutto la complessità in stati dei DFA per l'unione di linguaggi.

L'automa prodotto fa partire in parallelo i due automi, e alla fine controlla che almeno uno dei due abbia dato un cammino accettante. Definiamo quindi $A = (Q, \Sigma, \delta, q_0, F)$ tale che:

• gli **stati** rappresentano i due automi che viaggiano in parallelo, come se avessi due pc davanti, ognuno che lavora da solo. Gli stati sono quindi l'insieme

$$Q = Q' \times Q'';$$

• lo stato iniziale è la coppia di stati iniziali, ovvero

$$q_0 = (q_0', q_0'');$$

• la funzione di transizione lavora ora sulle coppie di stati, che deve portare avanti in parallelo, quindi

$$\delta((q,p),a) = (\delta'(q,a), \delta''(p,a));$$

• gli stati finali sono tutte le coppie dove riesco a finire in almeno uno stato finale, ovvero

$$F = \{(q, p) \mid q \in F' \lor p \in F''\}.$$

Come cambia la complessità dell'automa rispetto alla costruzione per sottoinsiemi? Qua il numero di stati è

$$\operatorname{sc}(L' \cup L'') < \operatorname{sc}(L') \cdot \operatorname{sc}(L''),$$

quindi abbiamo una soluzione notevolmente migliore. Inoltre, non si può fare meglio di così.

Esempio 7.1.2.3.2.2.1: Fissati due valori m, n positivi, definiamo i linguaggi

$$L' = \{x \in \{a, b\}^* \mid \#_a(x) \text{ è multiplo di } m\}$$

$$L'' = \{x \in \{a, b\}^* \mid \#_b(x) \text{ è multiplo di } n\}.$$

I due automi A' e A'' per L' e L'' sono molto semplici, devono solo contare il numero di a e b. Vediamo un esempio con m=n=2.

7.1.2.3.2.3. NFA

Negli NFA non abbiamo nessun problema: partiamo da NFA e vogliamo restare in NFA, quindi non servono ulteriori costruzioni per avere un automa di questa classe. Il numero di stati è

$$\mathrm{nsc}(L' \cup L'') \leq 1 + \mathrm{nsc}(L') + \mathrm{nsc}(L'').$$

Perdiamo il termine noto di questa quantità se non usiamo ε -mosse ma stati iniziali multipli.

7.1.2.3.3. Intersezione

Per l'intersezione di linguaggi non dobbiamo definire molto di nuovo.

Per i DFA, possiamo utilizzare la costruzione dell'automa prodotto appena definita modificando l'insieme degli stati finali F rendendolo l'insieme

$$F = \{(q, p) \mid q \in F' \land p \in F''\}.$$

Ma allora la state complexity vale

$$\operatorname{sc}(L' \cap L'') \le \operatorname{sc}(L') \cdot \operatorname{sc}(L'').$$

Esempio 7.1.2.3.3.1: Riprendendo i due linguaggi di prima, l'automa prodotto viene costruito nello stesso modo, ma cambia l'insieme degli stati finali, che si riduce al singleton {00}.

Per gli NFA, possiamo riutilizzare la costruzione dell'automa prodotto per permetterci di navigare tutte le possibile coppie di cammini, e scommettendo bene su entrambi i cammini possiamo accettare la stringa. Va sistemata un pelo la definizione della funzione di transizione, ma la costruzione rimane uguale. Vale quindi

$$\operatorname{nsc}(L' \cap L'') \le \operatorname{nsc}(L') \cdot \operatorname{nsc}(L'').$$

7.1.2.4. Operazioni tipiche

7.1.2.4.1. Prodotto

Riprendiamo velocemente la definizione di **prodotto** di linguaggi. Dati due linguaggi L' e L'', allora

$$L' \cdot L'' = \{ w \mid \exists x \in L' \land \exists y \in L'' \mid w = xy \}.$$

Sfruttiamo la rappresentazione black box degli automi: mettendoli in serie utilizzando le ε -mosse.

In poche parole, ogni volta che arriviamo in uno stato finale di A' facciamo partire la computazione su A'', ma in A' andiamo avanti a scandire la stringa. Stiamo scommettendo di essere arrivati alla fine della stringa x e di dover iniziare a leggere la stringa y.

Bella costruzione, ma ci va veramente bene una roba del genere?

7.1.2.4.1.1. DFA

La risposta, come prima, è **NO**: se partiamo da due DFA andiamo a finire in un NFA, che non ci va bene perché per poi tornare in un DFA ci costa un salto esponenziale. Visto che

$$\operatorname{nsc}(L' \cdot L'') = \operatorname{nsc}(L') + \operatorname{nsc}(L''),$$

possiamo dire che

$$\operatorname{sc}(L' \cdot L'') \le 2^{\operatorname{nsc}(L' \cdot L'')}.$$

Come prima, possiamo ottimizzare questa costruzione, anche se non di molto stavolta.

7.1.2.4.1.2. Costruzione senza nome

Il problema dell'esplosione del doppio esponenziale deriva dal fatto che, quando arrivo in uno stato finale del primo automa, devo far partire il secondo automa, ma il primo continua ancora a scandagliare la stringa perché deve scommettere.

La soluzione inefficiente di prima prendeva i due automi A' e A'', li univa in un NFA ed effettuava la costruzione per sottoinsiemi. La soluzione che facciamo adesso **incorpora** i sottoinsiemi nei passi del DFA, così da evitare l'esecuzione non deterministica.

Costruisco l'automa $A = (Q, \Sigma, \delta, q_0, F)$ che, ogni volta che A' finisce in uno stato finale, avvia anche A'' dal punto nel quale si trova. Esso è definito da:

• gli **stati** sono tutte le coppie di stati di A' con i sottoinsiemi di A'', così da incorporare i sottoinsiemi nel DFA direttamente, ovvero

$$Q = Q' \times 2^{Q''};$$

• lo stato iniziale dipende se siamo già in una configurazione che permette lo start di A'', ovvero

$$q_0 = \begin{cases} (q_0', \otimes) & \text{se } q_0' \notin F' \\ (q_0', \{q_0''\}) & \text{se } q_0' \in F'; \end{cases}$$

• la funzione di transizione deve lavorare sulla prima componente ma anche su tutte quelle presenti nella seconda componente, quindi essa è definita come

$$\delta((q,\alpha),a) = \begin{cases} (\delta'(q,a), \{\delta''(p,a) \mid p \in \alpha\}) & \text{se } \delta'(q,a) \notin F' \\ (\delta'(q,a), \{\delta''(p,a) \mid p \in \alpha\} \cup \{q_0''\}) & \text{se } \delta'(q,a) \in F'; \end{cases}$$

• gli stati finali sono quelli nei quali riusciamo ad arrivare con il secondo automa, ovvero

$$F = \{ (q, \alpha) \mid \alpha \cap F'' \neq \emptyset \}.$$

La prima componente la mandiamo avanti deterministicamente, ma la manteniamo sempre accesa per far partire la seconda computazione. Quest'ultima è anch'essa deterministica, ma simula un po' il comportamento non deterministico.

Il numero di stati massimo che abbiamo è

$$\operatorname{sc}(L' \cdot L'') = \operatorname{sc}(L')2^{\operatorname{sc}(L'')},$$

che rappresenta comunque un gap esponenziale ma abbiamo abbassato di un po' la complessità.

7.1.2.4.1.3. NFA

Come per l'unione, qua siamo molto tranquilli: partiamo da NFA e arriviamo in NFA, quindi a noi va tutto bene. La state complexity, come visto prima, è

$$\operatorname{nsc}(L' \cdot L'') < \operatorname{nsc}(L') + \operatorname{nsc}(L'').$$

Piccole osservazioni da aggiungere alla lezione precedente:

- abbiamo un suffisso e un prefisso, ma non sapendo quando finisce il primo e inizia il secondo devo scommettere quando arrivo in uno stato finale del primo automa; ci possono essere tante suddivisioni, devo indovinare quella giusta;
- l'automa A che abbiamo costruito ha una prima parte deterministica, mentre la seconda è sì deterministica ma emula la costruzione per sottoinsiemi;

• non possiamo evitare il salto esponenziale: se concateniamo $(a+b)^*$ con $a(a+b)^{n-1}$ otteniamo il solito L_n , che ha bisogno di 2^n stati partendo da n+1.

7.1.2.4.2. Chiusura di Kleene

Con questa ultima operazione chiudiamo la dimostrazione del teorema di Kleene.

Questa operazione è definita come

$$L^* = \bigcup_{k \geq 0} L^k = \{ w \in \Sigma^* \mid \exists x_1, ..., x_k \in L \mid k \geq 0 \mid w = x_1, ..., x_k \}.$$

Un automa per la star deve cercare di scomporre la stringa in ingresso in più stringhe di L. Possiamo prendere spunto dall'automa per la concatenazione: facciamo partire l'automa per L, ogni volta che arriviamo in uno stato finale lo facciamo ripartire dallo stato iniziale. Devo accettare anche la parola vuota, quindi aggiungiamo uno stato iniziale finale.

Abbiamo bisogno dello stato iniziale q_0' perché dentro l'automa ci possono essere delle transizioni che mi fanno ritornare indietro e mi fanno accettare di più di quello che dovrei.

Esempio 7.1.2.4.2.1: Consideriamo il seguente automa **sbagliato** per la chiusura di Kleene del linguaggio delle sequenze dispari di a seguite da una b. Se vogliamo l'espressione regolare per questo linguaggio, essa è $(aa)^*ab$.

Non abbiamo inserito uno stato iniziale aggiuntivo. Che succede? La stringa aa adesso viene accettata, anche se palesemente non appartiene al linguaggio, così come la stringa abaa.

Un automa per la star di questo linguaggio, inoltre, è molto facile da trovare perché la lettera b fa da marcatore, e il numero di stati rimane quello dell'automa di partenza.

7.1.2.4.2.1. DFA

Ci piace questa soluzione, perché stiamo aumentando solo di uno il numero di stati dell'automa, ma siamo caduti nel non determinismo, e partire da DFA e finire in NFA non ci piace molto.

Purtroppo, come spesso ci succede, per tornare nei DFA dobbiamo, nel caso peggiore, applicare la costruzione per sottoinsiemi e fare un salto esponenziale nel numero degli stati. In poche parole

$$\operatorname{sc}(L^*) \le 2^{\operatorname{nsc}(L^*)}$$
.

7.1.2.4.2.2. NFA

L'abbiamo formulato nella scorsa sezione: se partiamo da NFA otteniamo ancora degli NFA, quindi ci piace, e lo facciamo in modo semplice aggiungendo solo uno stato, ovvero

$$\operatorname{nsc}(L^*) \le \operatorname{nsc}(L) + 1.$$

7.2. Codici

Per ora abbiamo visto l'esempio del linguaggio $L = (aa)^*b$, che era estremamente comodo da scomporre per via della presenza di una sola b nella stringa in input. Vediamo ora qualche altro esempio notevole.

Esempio 7.2.1: Definito il linguaggio $L = aaaba^*$, dobbiamo calcolare L^* .

Questo linguaggio è «facilmente» scomponibile: ogni volta che troviamo una b torniamo indietro di 3 caratteri e dividiamo la stringa in quel punto.

Ad esempio, la stringa

aaabaaaaaaabaaabaaaab

viene suddivisa nel seguente modo:

 $aaabaaaa \mid aaab \mid aaaba \mid aaab.$

L'automa comunque esegue un sacco di test non deterministici ogni volta che legge delle a dopo una b, perché rimaniamo sempre in uno stato finale.

Esempio 7.2.2: Definito invece il linguaggio $L = a(b + baab)a^*$, dobbiamo calcolare L^* .

Questo linguaggio invece è più difficile da scomporre. Ad esempio, data la stringa

abaabaaaaabaaba

essa la possiamo dividere in

 $aba \mid abaaaa \mid abaaba$

oppure la possiamo dividere in

 $abaabaaaa \mid abaaba$.

Per questa stringa abbiamo già due modi di scomposizione possibili.

Cambiamo la stringa: data la stringa

abaabaabaabaaaba

essa la possiamo dividere in

$$aba \mid aba \mid aba \mid abaa \mid aba$$

oppure la possiamo dividere in

 $abaaba \mid abaabaa \mid aba.$

In generale, si possono creare delle stringhe che hanno un numero di suddivisioni enorme.

A cosa servono i tre esempi che abbiamo introdotto nella sezione precedente?

Definizione 7.2.1 (Codice): Dato $X \subseteq \Sigma^*$, diciamo che X è un **codice** se e solo se $\forall w \in X^* \quad \exists ! \text{ decomposizione di } w \text{ come } x_1...x_k \mid x_i \in L \land k \geq 0.$

Dei tre esempi che abbiamo visto, solo i primi due sono dei codici: è facile dimostrare che lo sono, soprattutto il primo per via della b che fa da delimitatore. L'ultimo esempio, invece, abbiamo visto che ha delle stringhe scomponibili in più modi, quindi non è un codice.

Tra tutti i codici a noi interessano quelli che possono essere **decomposti in tempo reale**: essi sono chiamati **codici prefissi**, e sono dei codici tali che

$$\forall i \neq j \quad x_i \text{ non è prefisso di } x_i.$$

In poche parole, il codice contiene parole che **non** sono prefisse di altre. Essi sono i più **efficienti**.

Dei due codici che abbiamo a disposizione, il primo è un codice prefisso: ogni volta che troviamo una b sappiamo che dobbiamo dividere. Il secondo, invece, deve aspettare una b e poi tornare indietro di 3 posizioni per avere la decomposizione.

7.3. Star height

Per definire le espressioni regolari abbiamo a disposizione le tre operazioni

Concentriamoci un secondo sulla chiusura di Kleene e vediamo un esempio.

Esempio 7.3.1: Date le espressioni regolari

$$(a^*b^*)^*$$
 $(ab^*)^*$

ci chiediamo che linguaggio stanno denotando. Questo è facile: $\{a,b\}^*$. Ognuna lo fa a modo proprio, in base a come ha risolto il sistema delle equazioni dell'automa associato.

Nell'esempio abbiamo visto diverse espressioni per lo stesso linguaggio, ma quante star mi servono per definire completamente un linguaggio?

Definizione 7.3.1 (Star height): La **star height** è il massimo numero di star innestate in una espressione regolare. Possiamo definire la quantità induttivamente, ovvero

$$\begin{split} h(\boxtimes) &= h(\varepsilon) = h(a) = 0 \\ h(E' + E'') &= h(E' \cdot E'') = \max\{h(E'), h(E'')\} \\ h(E^*) &= 1 + h(E). \end{split}$$

Nell'esempio precedente, le espressioni regolari hanno star height rispettivamente 2, 1 e 2. A noi piacerebbe scrivere un'espressione regolare con la minima star height.

Sia L un linguaggio regolare. Definiamo con h(L) la **minima altezza** delle espressioni regolari che definiscono L, ovvero

$$h(L) = \min\{h(E) \mid L = L(E)\}.$$

Questa quantità, nei linguaggi infiniti, è almeno 1, non posso usare meno star.

Teorema 7.3.1 (Un bro nel 1966): Vale

$$\forall q > 0 \quad \exists W_q \in \{a, b\}^* \mid h(W_q) = q.$$

Il linguaggio W_q è definito come

$$W_q = \{w \in \{a,b\}^* \mid \#_a(w) \equiv \#_b(w) \, \mathrm{mod} \, 2^q \}.$$

Esempio 7.3.2: Proviamo a disegnare W_q per q=1.

La sua espressione regolare, dopo un po' di conti, è la seguente:

$$L = (a(bb)^*a + a(bb)^*ba(aa + ab(bb)^*ba)^*ab(bb)^*a)^*(a(bb)^*ba(aa + ab(bb)^*ba)^*ab(bb)^*b).$$

A quanto pare ho sbagliato a risolvere il sistema, sono scarso scusate.

Abbiamo quindi fatto vedere che se fissiamo il numero q > 0 di star che vogliamo usare in una espressione regolare, riusciamo a trovare un linguaggio W_q che usa quel numero di star.

Teorema 7.3.2: Se $|\Sigma| = 1$ è sufficiente una star innestata per definire completamente L, ovvero vale che

$$\forall L \subseteq \{a\}^* \text{ regolare } h(L) \leq 1.$$

7.4. Espressioni regolari estese

Cosa succede se nelle espressioni regolari, oltre alle operazioni regolari di unione, concatenazione e chiusura, utilizziamo anche le operazioni di **intersezione** e **negazione**?

Esse sono definite **espressioni regolari estese**, e sono molto potenti ma devono essere usate con cautela. Vediamo il perché con qualche esempio.

Esempio 7.4.1: Sia

$$L = \{ w \in \{a, b\}^* \mid \#_a(w) \text{ pari } \land \#_b(w) \text{ pari} \}.$$

Se mi chiedono l'espressione regolare di questo linguaggio mi mandano a quel paese, ma usando le espressioni regolari estese questo è molto facile.

Per il linguaggio $L_a = \{w \in \{a,b\}^* \mid \#_a(w) \text{ pari}\}$ possiamo scrivere l'espressione regolare $(b+ab^*a)^*$, mentre per il linguaggio $L_b = \{w \in \{a,b\}^* \mid \#_b(w) \text{ pari}\}$ possiamo scrivere l'espressione regolare $(a+ba^*b)^*$.

Utilizzando l'intersezione possiamo banalmente concatenare le due espressioni, ovvero

$$(b + ab^*a)^* \cap (a + ba^*b)^*$$
.

Esempio 7.4.2: Vogliamo un'espressione regolare per le stringhe che non contengono tre a consecutive. Per fare ciò, costruiamo un automa e poi ricaviamo l'espressione regolare.

Partiamo da automi che accettano stringhe con tre a consecutive e poi complementiamo. In ordine, vediamo un NFA e un DFA per questo linguaggio di transizione.

Avevamo visto che il complemento non si comportava bene con gli NFA, quindi diamo un DFA, che invece funzionava bene con il complemento.

Siamo rimasti in un numero di stati accettabile. Andiamo a complementare questo DFA, che manterrà lo stesso numero di stati, fortunatamente.

Ora di questo dovrei farci l'espressione regolare. Sicuramente esce una bestiata enorme, con un po' di star qua e là visto che il linguaggio è infinito.

Con le espressioni regolari estese possiamo evitare l'uso delle star. Prima prendiamo tutte le stringhe che hanno tre a consecutive: esse sono nella forma

$$(a+b)^*aaa(a+b)^*$$
.

Dobbiamo applicare il complemento a questa espressione per ottenere L, quindi

$$\overline{(a+b)^*aaa(a+b)^*}.$$

L'insieme di tutte le stringhe su un alfabeto lo possiamo vedere come il complemento dell'insieme vuoto rispetto all'insieme delle stringhe su quell'alfabeto, ovvero

$$(a+b)^* = \overline{\boxtimes}.$$

Ma allora l'espressione regolare diventa

$$\overline{\overline{\otimes}}aaa\overline{\overline{\otimes}},$$

che come vediamo è un'espressione che non utilizza alcuna star.

Siamo stati in grado di non usare le star per un linguaggio infinito, cosa che nelle espressioni regolari classiche non è possibile. Bisogna stare attenti però: il complemento è molto comodo ma è anche molto insidioso perché fa saltare il numero di stati esponenzialmente se usiamo degli NFA.

Come nelle espressioni regolari, possiamo chiederci il **minimo numero di star** che sono necessarie per descrivere completamente un linguaggio.

Definizione 7.4.1 (Star height generalizzata): L'altezza generalizzata, o star height generalizzata, è il massimo numero di star innestate di una espressione regolare estesa. Possiamo definire la quantità induttivamente, ovvero

$$\begin{split} \operatorname{gh}(\boxtimes) &= \operatorname{gh}(\varepsilon) = \operatorname{gh}(a) = 0 \\ \operatorname{gh}(E' + E'') &= \operatorname{gh}(E' \cdot E'') = \operatorname{gh}(E' \cap E'') = \operatorname{max}\{\operatorname{gh}(E'), \operatorname{gh}(E'')\} \\ \operatorname{gh}\big(E^C\big) &= \operatorname{gh}(E) \\ \operatorname{gh}(E^*) &= 1 + \operatorname{gh}(E). \end{split}$$

Come prima, dato un linguaggio L, possiamo definire la quantità

$$gh(L) = \min\{g(E) \mid L = L(E)\}\$$

come la minima star height generalizzata di tutte le espressioni regolari estese che generano L.

Le espressioni regolari estese sono molto comode, ma di queste non si sa quasi niente:

- si sa che esistono linguaggi di altezza 0 (pefforza);
- si sa che esistono linguaggi di altezza 1;
- non si sa niente sui linguaggi di altezza almeno 2.

Quale è il cambio di marcia tra le espressioni regolari estese e quelle classiche? L'operazione di **not**: questa ci permette di dichiarare cosa non ci interessa, mentre nelle espressioni regolari classiche noi possiamo solo dire cosa vogliamo, avendo un modello dichiarativo.

8. Operazioni esotiche e avanzate

In questo capitolo andiamo a vedere alcune operazioni avanzate.

8.1. Reversal

Sia $L\subseteq \Sigma^*$ un linguaggio. Chiamiamo

$$L^R = \{ w^R \mid w \in L \}$$

il linguaggio delle stringhe ottenute ribaltando tutte le stringhe di L, ovvero

$$w = a_1...a_n \Longrightarrow w^R = a_n...a_1.$$

Questa operazione sul linguaggio L viene detta **reversal**.

Lemma 8.1.1: L'operazione di reversal preserva la regolarità.

Dimostrazione 8.1.1.1 (Espressioni regolari): Le espressioni regolari di base possono essere definite nel seguente modo:

$$(\lozenge)^R = \lozenge$$

$$(\varepsilon)^R = \varepsilon$$

$$(a)^R = a.$$

Ora vediamo come definiamo le espressioni regolari induttive:

$$(E_1 + E_2)^R = E_1^R + E_2^R$$

$$(E_1\cdot E_2)^R=E_2^R\cdot E_1^R$$

$$\left(E^*\right)^R = \left(E^R\right)^*.$$

Queste espressioni sono ancora regolari, quindi reversal preserva la regolarità.

Possiamo dimostrare questo lemma anche usando gli **automi**. Supponiamo di avere $A = (Q, \Sigma, \delta, q_0, F)$ DFA che riconosce L. Vogliamo trovare un automa A' per L^R : questo è facile, basta mantenere la struttura dell'automa invertendo il senso delle transizioni, rendendo finale lo stato iniziale e rendendo iniziali tutti gli stati finali.

In poche parole, definiamo l'automa

$$A' = (Q, \Sigma, \delta', F, \{q_0\})$$

definito dalla funzione di transizione δ' tale che

$$\delta'(q, a) = \{ p \mid \delta(p, a) = q \}.$$

In poche parole, visto che ho reversato le transizioni, devo vedere tutti gli stati p che finivano in q con a per poter fare il cammino inverso.

8.1.1. DFA

Ci piace questa soluzione? \mathbf{NO} : siamo partiti da un DFA e abbiamo ottenuto un NFA per via degli stati iniziali multipli F e per il fatto che la funzione di transizione può mappare in più stati con la stessa lettera letta.

Se voglio ottenere un DFA devo fare il classicissimo salto esponenziale con la costruzione per sottoinsiemi. Con il reversal dell'automa non abbiamo cambiato il numero degli stati, quindi

$$\operatorname{sc}(L^R) \le 2^{\operatorname{nsc}(L^R)}$$
.

Possiamo fare di meglio o nel caso peggiore abbiamo questo salto esponenziale?

Esempio 8.1.1.1: Prendiamo

$$L = (a+b)^{n-1}a(a+b)^*$$

il linguaggio che ha l'n-esimo simbolo da sinistra uguale ad una a, che riconosco con il seguente automa deterministico.

In questo caso, il numero di stati è esattamente n, visto che ne abbiamo n-1 all'inizio per eliminare gli n-1 caratteri iniziali e poi uno stato per verificare di avere una a.

Il suo reversal è $L^R=L_n$, il solito linguaggio dell'n-esimo simbolo da destra uguale ad una a. Abbiamo visto che un NFA per L_n ha n+1 stati mentre il DFA ha 2^n stati, visto che deve osservare finestre di n caratteri consecutivi.

Il gap esponenziale non riusciamo purtroppo ad evitarlo.

Esempio 8.1.1.2: Molto curiosa la situazione inversa: se partiamo da L_n riconosciuto da un DFA di 2^n stati noi otteniamo un reversal $L_n^R = L$ che, minimizzato, ha n stati (escluso lo stato trappola).

8.1.2. NFA

Se partiamo invece da un NFA, con la costruzione precedente manteniamo lo status di NFA, mantenendo inoltre il numero degli stati, quindi siamo contenti, ottenendo

$$\mathrm{nsc}\big(L^R\big)=\mathrm{nsc}(L).$$

8.1.3. Reversal di una grammatica

Abbiamo già visto l'operazione di reversal applicato ad un linguaggio, ovvero dato L regolare definiamo

$$L^R = \{w^R \mid w \in L\}$$

anch'esso regolare formato da tutte le stringhe di L lette in senso opposto. In poche parole, se $w = a_1 ... a_n$ allora $w^R = a_n ... a_1$. Ovviamente, il reversal è **idempotente**, ovvero

$$\left(L^R\right)^R = L.$$

Cosa succede se applichiamo il reversal ad una grammatica?

Data una grammatica G di tipo 2 per L, come otteniamo una grammatica per L^R ? Abbiamo scelto una grammatica di tipo 2 perché le regole sono «standard» nella forma $A \longrightarrow \alpha$ con $\alpha \in (V \cup \Sigma)^+$. Questa costruzione è facile: invertiamo ogni parte destra delle regole di derivazione, ovvero definiamo

$$\forall (A \longrightarrow \alpha)$$
 definiamo $A \longrightarrow \alpha^R$.

Esempio 8.1.3.1: Data una grammatica per L con regola di produzione

$$A \longrightarrow aaAbBb$$
,

una grammatica per \mathbb{L}^R ha come regola di produzione

$$A \longrightarrow bBbAaa$$
.

Prendiamo ora una grammatica di tipo 3, che sappiamo essere capace di generare i linguaggi regolari, a meno della parola vuota. Le regole di produzione sono nella forma

$$A \longrightarrow aB \mid a$$
.

Avevamo visto due estensioni delle grammatiche regolari: una di queste è rappresentata dalle grammatiche lineari a destra, ovvero quelle grammatiche con regole di produzione

$$A \longrightarrow wB \mid w$$
 tale che $w \in \Sigma^*$.

Avevamo anche dimostrato che queste grammatiche sono equivalenti alle grammatiche di tipo 3 trasformando la stringa w in una serie di derivazioni che rispettino le grammatiche regolari.

L'altra estensione sono le grammatiche lineari a sinistra, con regole di produzione

$$A \longrightarrow Bw \mid w$$
 tale che $w \in \Sigma^*$.

Cosa possiamo dire di queste?

Lemma 8.1.3.1: Le grammatiche lineari a sinistra generano i linguaggi regolari.

Dimostrazione 8.1.3.1.1: Partiamo da una G lineare a sinistra e applichiamo il **reversal**: otteniamo una grammatica G' lineare a destra, visto che applichiamo la trasformazione

$$A \longrightarrow Bw \mid w \implies A \longrightarrow wB \mid w.$$

Possiamo quindi dire che

$$L(G') = (L(G))^R.$$

Sappiamo che i linguaggi regolari sono chiusi rispetto all'operazione di reversal, quindi essendo L(G') regolare allora anche L(G) lo deve essere. Quindi anche le grammatiche lineari a sinistra generano i linguaggi regolari.

Se prendiamo un linguaggio che è sia lineare a destra e a sinistra otteniamo le **grammatiche** lineari, che però generano di più rispetto alle grammatiche regolari.

8.1.4. Algoritmo per l'automa minimo

Dato $M=(Q,\Sigma,\delta,q_0,F)$ un DFA senza stati irraggiungibili, costruiamo l'automa per il reversal del linguaggio accettato da M. Definiamo quindi l'automa $M^R=(Q,\Sigma,\delta^R,F,\{q_0\})$ definito dalla **funzione di transizione**

$$\delta^R(p, a) = \{ q \mid \delta(q, a) = p \}.$$

Questo automa, ovviamente, è NFA per via del non determinismo sulle transizioni e del non determinismo sugli stati iniziali multipli. A noi non piace, vogliamo ancora un DFA, quindi applichiamo la **costruzione per sottoinsiemi**.

Definiamo allora l'automa $N = \text{sub}(M^R)$ DFA ottenuto dalla **subset construction**, definito dalla tupla $(Q'', \Sigma, \delta'', q_0'', F'')$ tale che:

- $Q'' \leq 2^Q$ insieme degli stati raggiungibili, ovvero andiamo a rimuovere dall'automa tutti gli stati che sono irraggiungibili; con stati, ovviamente, ci stiamo riferendo ai vari sottoinsiemi;
- δ'' funzione di transizione tale che

$$\delta''(\alpha,a) = \bigcup_{p \in \alpha} \delta^R(p,a);$$

- $q_0'' = F$ stato iniziale preso da M^R , che aveva già un insieme come stato iniziale;
- F'' insieme degli stati finali tale che

$$F'' = \{ \alpha \in Q'' \mid q_0 \in \alpha \}$$

perché per il reversal lo stato iniziale diventava finale.

Vediamo adesso un risultato abbastanza strano di questa costruzione.

Lemma 8.1.4.1: N è il DFA minimo per il reversal del linguaggio riconosciuto da M.

Dimostrazione 8.1.4.1.1: Per prima cosa, dimostriamo che N riconosce il reversal del linguaggio riconosciuto da M. Ma questo è banale: l'abbiamo fatto per costruzione, usando prima il reversal e poi la costruzione per sottoinsiemi.

Dimostriamo quindi che N è **minimo**. In un automa minimo, tutti gli stati sono distinguibili tra loro. Analogamente, al posto di dimostrare questo, possiamo fare vedere che

$$\forall A, B \in Q'' \quad A, B \text{ non distinguibili} \Longrightarrow A = B.$$

Assumiamo quindi che $A, B \in Q''$ siano due stati non distinguibili e che allora vale A = B. Questi due stati sono sottoinsiemi derivanti dalla costruzione per sottoinsiemi, quindi per dimostrare l'uguaglianza di insiemi devo dimostrare che

$$A \subseteq B \land B \subseteq A$$
.

Partiamo con $A \subseteq B$. Sia $p \in A$, allora, visto che tutti gli stati sono raggiungibili, esiste una stringa $w \in \Sigma^*$ tale che, nell'automa M, vale

$$\delta(q_0, w) = p.$$

Per come abbiamo definito l'NFA per il reversal, allora

$$q_0 \in \delta^R(p, w^R)$$
.

Usando invece il DFA, abbiamo che

$$q_0 \in \delta''(A, w^R)$$

perché abbiamo assunto che $p \in A$. Ma allora w^R è accettata da N partendo da A.

Ora, visto che A e B non sono distinguibili per ipotesi, la stringa w^R è accettata da N partendo anche da B, cioè

$$q_0 \in \delta''(B, w^R)$$

quindi esiste un elemento $p' \in B$ tale che

$$q_0 \in \delta^R(p', w^R)$$

e quindi che

$$\delta(q_0, w) = p'.$$

L'automa è deterministico, quindi p=p', e quindi che $p\in B$, e quindi

$$A \subseteq B$$
.

La dimostrazione è analoga per la seconda inclusione.

Questa costruzione è un po' strana e contro quello che abbiamo sempre fatto: la costruzione per sottoinsiemi di solito fa esplodere il numero degli stati, mentre stavolta ci dà l'automa minimo per il reversal. Cosa possiamo fare con questo risultato?

Algoritmo di Brzozowski

Sia K un DFA per il linguaggio L senza stati irraggiungibili

- 1: Costruiamo K^R NFA per L^R
- 2: Costruiamo $M = \text{sub}(K^R)$ DFA per L^R
- 3: Costruiamo M^R NFA per $(L^R)^R = L$
- 4: Costruiamo $N = \text{sub}(M^R)$ DFA per L

Teorema 8.1.4.1: N è l'automa minimo per L.

Dimostrazione 8.1.4.1.2: La dimostrazione è una conseguenza del lemma precedente: la prima coppia reversal+subset costruisce l'automa minimo per L^R , mentre la seconda coppia reversal+subset costruisce l'automa minimo per $(L^R)^R = L$.

Grazie all'algoritmo di Brzozowski noi abbiamo a disposizione un algoritmo di minimizzazione un po' strano dal punto di vista pratico che però ottiene l'automa minimo, anche se non è il più efficiente, ce ne sono di migliori.

Esempio 8.1.4.1: Ci viene dato il DFA K della seguente figura.

Notiamo subito che lo stato q_2 è ridondante. Andiamo a costruire ${\cal K}^R.$

Rendiamo DFA questo automa, e chiamiamolo M.

Facciamo il renaming, chiamando A l'insieme iniziale e B l'insieme finale. Rifacciamo ora la costruzione del reversal, ottenendo M^R .

Infine, facciamo la costruzione per sotto
insiemi su ${\cal M}^R$ ottenendo N.

8.2. Shuffle

L'operazione di **shuffle**, applicata a due stringhe, le prende e le mescola, mantenendo l'ordine dei caratteri mentre le mischiamo. In poche parole, possiamo pensare di avere due **mazzieri**, ognuno dei quali tiene una stringa come lista ordinata (non lessicograficamente, ma proprio come è stata scritta) dei suoi caratteri. Ad ogni iterazione scegliamo a quale mazziere chiedere un carattere, e lo aggiungiamo alla stringa finale.

Come vediamo, l'inserimento che facciamo **non è atomico**: posso chiedere al mazziere che voglio ad ogni iterazione, l'unica cosa che mi viene chiesta è di mantenere l'ordine.

Esempio 8.2.1: Date le stringhe aabb e b, possiamo ottenere le stringhe

baabb ababb aabbb aabbb aabbb

Ovviamente, le ultime tre stringhe sono tutte uguali e vanno considerate come stringa unica.

Esempio 8.2.2: Date le stringhe *aabb* e *ab*, possiamo ottenere molte stringhe con lo shuffle. Ne vediamo un paio per vedere la non atomicità dell'operazione.

aababb aaabbb

L'operazione di shuffle, se la applichiamo ai **linguaggi** L' e L'', è il linguaggio di tutte le stringhe ottenute tramite shuffle di una stringa di L' con una stringa di L''. Ovviamente prendiamo tutte le possibili coppie di stringhe per ottenere il linguaggio completo.

8.2.1. Alfabeti disgiunti

Consideriamo due DFA A' e A'' per i due linguaggi appena definiti. Il caso più semplice di automa per lo shuffle parte con gli alfabeti per i due linguaggi **disgiunti**, ovvero L' definito sul'alfabeto $\Sigma' = \{a, b\}$ e L'' definito sull'alfabeto $\Sigma'' = \{c, d\}$.

Prendiamo spunto dall'automa prodotto: uniamo i due automi e ne mandiamo avanti uno alla volta in base al carattere che leggiamo. Definiamo quindi

$$A = (Q, \Sigma, \delta, q_0, F)$$

tale che:

• gli stati sono tutte le possibili coppie di stati dei due automi, ovvero

$$Q = Q' \times Q'';$$

• lo stato iniziale è formato dai due stati iniziali base, ovvero

$$q_0 = (q'_0, q''_0);$$

• l'alfabeto è l'unione dei due alfabeti di base, ovvero

$$\Sigma = \Sigma' \cup \Sigma'';$$

• la funzione di transizione, in base al carattere che legge, deve mandare avanti uno dei due automi e mantenere l'altro nello stesso stato, ovvero

$$\delta((q,p),x) = \begin{cases} (\delta'(q,x),p) & \text{se } x \in \Sigma' \\ (q,\delta''(p,x)) & \text{se } x \in \Sigma'' \end{cases};$$

• gli **stati finali** sono tutte le coppie formate da stati finali, perché devo riconoscere sia la prima che la seconda stringa, ovvero

$$F = \{(q, p) \mid q \in F' \land p \in F''\}.$$

Il numero di stati di questo automa è il prodotto del numero di stati dei due automi, ovvero

$$\operatorname{sc}(\operatorname{shuffle}(L', L'')) = \operatorname{sc}(L') \cdot \operatorname{sc}(L'').$$

Abbiamo considerato solo il caso in cui A' e A'' sono DFA. Per il caso non deterministico, basta modificare leggermente la funzione di transizione ma il numero di stati rimane invariato.

8.2.2. Stesso alfabeto

Se invece i due linguaggi sono definiti sullo stesso alfabeto Σ come ci comportiamo? Dobbiamo fare affidamento sul **non determinismo**: dobbiamo scommettere se il carattere che abbiamo letto deve mandare avanti il primo automa o il secondo automa. Tra tutte le possibili computazioni ce ne deve essere una che termina in una coppia di stati entrambi finali. Se nessuna computazione termina in uno stato accettabile allora rifiutiamo la stringa data.

Se partiamo da due DFA otteniamo un NFA con un numero di stati uguale al prodotto degli stati dei due automi iniziali. Questa situazione non ci piace, quindi torniamo in un DFA facendo un salto esponenziale con la costruzione per sottoinsiemi, quindi

$$\mathrm{sc}(\mathrm{shuffle}(L',L'')) \leq 2^{\mathrm{nsc}(\mathrm{shuffle}(L',L''))}.$$

Invece, se partiamo da due NFA otteniamo ancora un NFA, quindi la situazione ci piace. Il numero di stati l'abbiamo già definito ed è uguale a

$$\operatorname{nsc}(\operatorname{shuffle}(L', L'')) = \operatorname{nsc}(L') \cdot \operatorname{nsc}(L'').$$

8.2.3. Alfabeto unario

Infine, se i due linguaggi sono definiti sull'alfabeto unario, ovvero

$$L', L'' \subseteq \{a\}^*$$

l'operazione di shuffle collassa banalmente l'operazione di **prodotto**, perché alla fine stiamo facendo shuffle su stringhe che sono formate sempre da una e una sola lettera, quindi non conta come le mischiamo ma conta la lunghezza finale della stringa che ci esce.

8.3. Raddoppio

Sia L regolare, definiamo l'operazione α tale che

$$\alpha(L) = \{ x \in \Sigma^* \mid xx \in L \}.$$

Esempio 8.3.1: Dato il linguaggio $L = \{a^n b^n \mid n \ge 0\}$ allora

$$\alpha(L) = \{\varepsilon\}.$$

Dato invece il linguaggio $L=a^*$ allora

$$\alpha(L) = a^*$$
.

Infine, dato il linguaggio $L = \{a^n \mid n \text{ pari}\}$ allora

$$\alpha(L) = a^*$$
.

Se L è regolare, riesco a dimostrare che anche $\alpha(L)$ è regolare? Abbiamo a disposizione un automa A per L, vogliamo sapere se il mio input, raddoppiato, viene accettato da L.

Come possiamo ragionare? Vogliamo cercare un cammino che fa da q_0 a $q_f \in F$ leggendo la stringa xx. Nell'automa A, leggendo x, finiamo in uno stato p: dobbiamo cercare di indovinare questo p per far partire la computazione una seconda volta e arrivare in $q_f \in F$.

L'idea è quindi di scommettere lo stato che raggiungiamo con A leggendo x, e poi mandare in parallelo due copie di A, uno dall'inizio e uno dallo stato indovinato.

Formalizziamo questo automa. Dato $A = (Q, \Sigma, \delta, q_0, F)$ DFA per L, costruiamo l'automa

$$A' = (Q', \Sigma, \delta', I', F')$$

tale che:

• l'insieme degli stati $Q = Q^3$ è formato da triple

dove:

- \triangleright p è lo stato che abbiamo scommesso di raggiungere con x in A;
- q' è lo stato che portiamo avanti in A a partire da q_0 ;
- ▶ q'' è lo stato che portiamo avanti in A a partire da p;
- l'insieme degli stati iniziali (multipli)

$$I' = \{ [p, q_0, p] \mid p \in Q \}$$

dove scommettiamo un qualunque stato p come stato intermedio;

• l'insieme degli stati finali

$$F' = \{ [p, p, q] \mid q \in F \}$$

formato da tutti gli stati dove l'automa A finisce in p nella computazione iniziale e finisce in uno stato finale nella computazione da p

 \bullet la funzione di transizione δ' è tale che

$$\delta'([p,q',q''],a) = [p,\delta(q',a),\delta(q'',a)]$$

che manda avanti i due automi in parallelo.

Purtroppo, quello che otteniamo è un NFA per via di tutti gli stati iniziali multipli.

8.4. Metà

Un'altra operazione strana che vediamo prende un linguaggio regolare L e calcola

$$\frac{1}{2}L=\{x\in\Sigma^*\mid\exists y\mid|y|=|x|\land xy\in L\}.$$

In poche parole, prendo le stringhe di L di lunghezza pari e prendo la prima metà di queste.

Esempio 8.4.1: Dato il linguaggio $L = \{a^n b^n \mid n \ge 0\}$ allora

$$\frac{1}{2}L = a^*.$$

Si può dimostrare che questa operazione **mantiene la regolarità**, ma come facciamo? Possiamo ricondurre questo problema a quello precedente, variando un po' la seconda computazione.

In questo caso facciamo molte più scommesse: al posto di mandare avanti in parallelo i due automi, con la scommessa sullo stato intermedio p, qua mandiamo avanti il primo automa normalmente e il secondo lo mandiamo avanti non deterministicamente prendendo ogni simbolo possibile di Σ . Infatti, la stringa y è randomica, la dobbiamo inventare noi.

Cambia quindi la funzione di transizione δ' , che prende ancora la tripla dello stato ma ora:

- mantiene invariato lo stato scommessa;
- manda avanti deterministicamente il primo automa;
- \bullet per ogni carattere di Σ fa partire una computazione con quel carattere.

Quello che otteniamo è un **turbo NFA**, se non volessimo utilizzarlo? Abbiamo rappresentazioni alternative che ci bypassano il non determinismo?

8.5. Automi come matrici

Possiamo rappresentare gli automi come **matrici di adiacenza**: esse sono matrici indicizzate, su righe e colonne, dagli stati dell'automa, e ogni cella è un valore booleano che viene posto a 1 se e solo se abbiamo una transizione dallo stato riga allo stato colonna.

Queste matrici sono dette **matrici di transizione**, e rappresentano le transizioni che possiamo fare all'interno dell'automa. Queste matrici possono essere anche **associate ad una lettera** di Σ , e queste rappresentano le transizioni che possono essere fatte nell'automa con quella lettera. Se invece le matrici sono **associate ad una stringa** rappresentano le transizioni che possono essere fatte nell'automa leggendo quella stringa, ma queste le vedremo meglio dopo.

Il **numero di possibili matrici** che possiamo costruire è finito: esso è $2^{n \times n}$, con n = |Q|. Questa informazione ci servirà dopo per costruire degli automi.

Esempio 8.5.1: Costruiamo le matrici di transizione del seguente automa.

Andiamo a calcolare le due matrici di transizione delle lettere $a \in b$.

$$M_a = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \qquad \qquad M_b = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Ovviamente, se l'automa è un DFA abbiamo un solo 1 per ogni riga.

Se calcoliamo M_aM_b otteniamo la matrice che ci dice in che stato finiamo leggendo ab in base allo stato di partenza che scegliamo. Infatti:

$$M_{ab} = M_a M_b = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

che indica esattamente gli stati che raggiungiamo leggendo la stringa ab.

Possiamo banalmente estendere questa moltiplicazione ad una stringa generica $w=a_1...a_n$, calcolando la matrice M_w come

$$M_w=M_{a_1}{\cdots}M_{a_n}.$$

Queste matrici ci danno informazioni molto interessanti: ogni riga ci dice in che stato possiamo arrivare partendo dallo stato della riga leggendo una certa sequenza di caratteri. Come possiamo utilizzare questa matrice a nostro vantaggio?

8.5.1. Prima applicazione: raddoppio

Riprendiamo l'operazione α : possiamo utilizzare le matrici per risolvere questo problema evitando il non determinismo. Se noi avessimo M_x sarebbe molto facile rispondere a $xx \in L$:

- \bullet prendiamo la riga dello stato iniziale q_0 e vediamo la colonna p che contiene l'1 della riga;
- prendiamo la riga p e vediamo la colonna q_f che contiene l'1 della riga;
- verifichiamo se $q_f \in F$.

Con queste tabelle è molto facile risolvere α : ce le teniamo nello stato e mano a mano costruiamo l'automa con le tabelle nuove, e poi alla fine verifichiamo quello scritto sopra.

Definiamo quindi l'automa

$$A' = (Q', \Sigma, \delta', q'_0, F')$$

tale che:

• l'insieme degli stati tiene tutte le possibili matrici booleane con indici in Q, ovvero

$$Q' = \{0, 1\}^{|Q| \times |Q|};$$

- lo stato iniziale è la matrice identità $I_{|Q|}$ perché all'inizio non viene letto niente (viene letta ε) e quindi non ci spostiamo dallo stato nel quale siamo;
- la funzione di transizione δ' è tale che

$$\delta'(M, a) = MM_a;$$

• l'insieme degli stati finali contiene tutti gli stati che hanno delle matrici con le proprietà descritte all'inizio della sezione, ovvero

$$F' = \{ M \mid \exists p \in Q \mid M[q_0, p] = 1 \land \exists q \in F \mid M[p, q] = 1 \}.$$

Sicuramente questo è un automa a stati finiti: il numero di matrici, anche se esponenziale, è comunque un numero finito. Inoltre, questo automa che otteniamo è DFA, a differenza del precedente.

8.5.2. Seconda applicazione: metà

Torniamo ora sull'operazione $\frac{1}{2}L$: come possiamo fare questo con le matrici definite poco fa? Se prima le matrici per entrambi gli automi erano le stesse, qua la seconda parte, visto che viene inventata, si riduce ad un problema di **raggiungibilità del grafo**.

Quello che faremo è mandare avanti il primo automa deterministicamente e il secondo invece verrà rappresentato dalle potenze della **matrice dell'automa** per vedere la raggiungibilità. Qua con matrice dell'automa intendiamo la prima versione che abbiamo definito della matrice.

La matrice dell'automa la otteniamo come somma booleana di tutte le matrici M_x associate al carattere $x \in \Sigma$. Facendo poi la potenza k-esima di questa matrice riusciamo a vedere la raggiungibilità dopo aver letto k simboli.

Definiamo quindi l'automa

$$A' = (Q', \Sigma, \delta', q'_0, F')$$

tale che:

• l'insieme degli stati è formato da tutte le coppie

$$Q' = Q \times \{0,1\}^{|Q| \times |Q|}$$

dove la prima componente rappresenta lo stato dell'automa che viene mandato avanti deterministicamente e il secondo rappresenta tutte le potenze della matrice dell'automa;

• lo stato iniziale parte dallo stato iniziale e dalla matrice identità, ovvero

$$q_0' = \left(q_0, I_{|Q|}\right);$$

• la funzione di transizione δ' è tale che

$$\delta'([q, K], a) = (\delta(q, a), KM);$$

• l'insieme degli stati finali contiene tutte le coppie dove la matrice, osservata nella riga definita dalla prima componente, contiene un 1 in una colonna di uno stato finale, ovvero

$$F' = \{ [p, K] \mid \exists q \in F \mid K[p, q] = 1 \}.$$

Il numero di stati è considerevole, considerando anche il prodotto cartesiano, ma abbiamo ottenuto un DFA, che invece prima non avevamo.

8.5.3. Matrici su NFA

Per ora abbiamo calcolato la matrice delle transizioni dei DFA, che succede se abbiamo un NFA? Ovviamente, in un NFA, avendo la possibilità di fare delle computazioni parallele, nella riga di una matrice associata ad una lettera possiamo avere più valori a 1.

Calcolando però le potenze della matrice dell'automa cosa otteniamo?

Esempio 8.5.3.1: Dato il seguente automa divertiamoci con qualche matrice.

Le matrici di transizione associate alle lettere a e b sono:

$$M_a = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \qquad \qquad M_b = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$$

Proviamo a calcolare la matrice ${\cal M}_{aa}$ calcolandola con la somma intera:

$$M_{aa} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}.$$

Questa matrice non rappresenta più la raggiungibilità con una matrice booleana, ma **conta** il **numero di cammini** che abbiamo nell'automa per raggiungere quello stato. Usando la somma booleana invece avremmo ancora la matrice che definisce la raggiungibilità.

I numeri che vediamo scritti nella tabella sono i **gradi di ambiguità** delle varie stringhe (se ci limitiamo a quelle accettate): questo rappresenta appunto il numero di modi in cui possiamo arrivare a quella stringa partendo dallo stato che indicizza la riga. Il **grado di ambiguità del grafo** è il massimo grado di ambiguità delle stringhe accettate.

9. Pumping Lemma

Come facciamo a dimostrare che un linguaggio non è regolare? Che tecniche abbiamo?

Prima di tutto abbiamo il **criterio di distinguibilità**: se troviamo un insieme X di parole distinguibili tra loro per un linguaggio L, allora ogni DFA per L ha almeno |X| stati. Come lo utilizziamo? Se $|X| = \infty$ allora servono un numero infinito di stati, cosa che negli automi a **stati finiti** non è possibile.

Esempio 9.1: Definiamo il linguaggio

$$L=\{a^nb^n\ |\ n\geq 0\}.$$

Gli automi a stati finiti **non sanno contare**, quindi non posso contare quante a ci sono nella stringa e poi verificare lo stesso numero di b.

Definiamo l'insieme $X = \{a^n \mid n \ge 0\}$. Esso è formato da stringhe distinguibili tra loro: infatti, dati a^i e a^j per distinguere utilizzo $z = b^i$.

Un altro modo per dimostrare la non regolarità è far vedere che il linguaggio dato fa saltare qualche proprietà di chiusura.

Esempio 9.2: Definiamo il linguaggio

$$L = \{ w \in \{a, b\}^* \mid \#_a(w) = \#_b(w) \}$$

che palesemente non è regolare perché non posso contare, ma come lo dimostro?

Con la **distinguibilità** posso usare lo stesso insieme X di prima, ma facciamo finta di non saperlo fare.

Sappiamo che i linguaggi regolari sono chiusi rispetto all'operazione di intersezione. Prendiamo quindi un linguaggio regolare e facciamo l'intersezione con L, ad esempio facciamo

$$L \cap a^*b^*$$
.

Visto che a^*b^* è un linguaggio regolare e l'intersezione chiude i linguaggi regolari, anche il linguaggio risultante deve essere regolare, ma questa intersezione genera il linguaggio dell'esempio precedente, perché date tutte le stringhe con a e b uguali filtriamo tenendo solo quelle che hanno tutte le a all'inizio e poi tutte le b.

Visto che il linguaggio risultante non è regolare, non lo è nemmeno L.

9.1. Definizione

L'ultimo metodo che abbiamo a disposizione è il pumping lemma per i linguaggi regolari.

Lemma 9.1.1 (Pumping lemma per i linguaggi regolari): Sia L un linguaggio regolare. Allora esiste una costante N tale che $\forall z \in L$, con $|z| \ge N$, possiamo scrivere z come

$$z = uvw$$

con:

- 1. $|uv| \leq N$;
- 2. $v \neq \varepsilon$;
- 3. $\forall k \ge 0 \quad uv^k w \in L$.

Un po' strano: il succo di questo lemma è che se prendiamo delle stringhe lunghe prima o poi qualcosa si deve ripetere. Infatti, i tre punti ci dicono questo:

- 1. il primo punto ci dice che la parte che contiene la parte ripetuta è all'inizio e non è troppo lontana:
- 2. il secondo punto ci dice che effettivamente viene ripetuto qualcosa;
- 3. il terzo punto ci dice che possiamo ripetere all'infinito la parte centrale senza uscire dal linguaggio, appunto pumping, pompare.

In poche parole, la scomposizione di z avviene nei punti di ripetizione: u è la parte prima della ripetizione, v è la parte che viene ripetuta e w è la parte dopo la ripetizione.

Questa è una **condizione necessaria**: se faccio vedere se un linguaggio viola questo lemma allora non è regolare, ma potrebbe non bastare questo per far vedere che un linguaggio non è regolare.

Dimostrazione 9.1.1.1: Sia $A=(Q,\Sigma,\delta,q_0,F)$ un DFA per L. Sia N=|Q|.

Prendiamo una stringa $z=a_1...a_m\in L$ con $|z|\geq N.$ Un qualsiasi cammino accettante per z è nella forma

$$q_0 = p_0 \xrightarrow{a_1} p_1 \xrightarrow{a_2} \dots \xrightarrow{a_m} p_m \in F$$

che attraversa N+1 stati, ma noi avendone N vuol dire che almeno uno stato lo stiamo visitando 2+ volte.

Ma allora esistono $i, j \mid i < j$ tali che $p_i = p_j$. Andiamo a scomporre la nostra stringa z come z = uvw tali che

$$\begin{split} u &= a_1...a_i\\ v &= a_{i+1}...a_j\\ w &= a_{j+1}...a_m. \end{split}$$

Visto che i < j allora la parte centrale ha almeno un elemento, quindi $v \neq \varepsilon$.

Inoltre, visto che $p_i=p_j$ vuol dire che partendo da p_i , leggendo la parte di stringa v, finiamo in p_j . Ma allora è possibile ripetere un numero questo cammino un numero arbitrario di volte.

Infine, per assunzione la lunghezza della stringa è $|z|=m\geq N$. Quando arriviamo all'N-esimo carattere abbiamo visto N+1 stati, ovvero sono già passato in uno stato ripetuto, quindi $|uv|\leq N$ perché la ripetizione deve avvenire prima dell'inizio dell'ultima parte della stringa.

9.2. Applicazioni

Vediamo come utilizzare il pumping lemma per dimostrare la non regolarità. Generalmente, faremo delle dimostrazioni per assurdo: assumendo la regolarità faremo vedere che esiste una stringa tale che ogni sua scomposizione possibile fa cadere almeno uno dei punti del pumping lemma.

Esempio 9.2.1: Definiamo il linguaggio $L = \{a^n b^n \mid n \ge 0\}.$

Per assurdo sia L un linguaggio regolare. Sia N la costante del pumping lemma. Definiamo la stringa $z=a^Nb^N$ che rispetta la minima lunghezza delle stringhe. Infatti, $|z|=2N\geq N$.

Scriviamo ora z come z = uvw. Deve valere il punto 1, ovvero $|uv| \le N$, ma questo implica che u e v sono formate da solo a, quindi

$$u = a^i \wedge v = a^j \wedge w = a^{N-i-j}b^N \quad | \quad j \neq 0$$

perché deve valere $v \neq \varepsilon$.

Sappiamo inoltre che la ripetizione arbitraria di v mi mantiene nel linguaggio, ovvero che $\forall k \geq 0$ allora $uv^kw \in L$ ma questo non è vero: se scegliamo k=0 la stringa uw non è più accettata perché essa è nella forma

$$uw = a^i a^{N-i-j} b^N = a^{N-j} b^N$$

e ovviamente $N - j \neq N$, quindi L non è regolare.

Facciamo un ultimo esempio dell'applicazione del pumping lemma.

Esempio 9.2.2: Definiamo il linguaggio

$$L = \left\{a^{2^n} \mid n \geq 0\right\} = \left\{a^{2^0}, a^{2^1}, \ldots\right\} = \left\{a, aa, aaaa, \ldots\right\}$$

insieme delle potenze di due scritte in unario.

Questo ovviamente non è regolare. Come lo dimostriamo con il pumping lemma?

Sia N la costante del PL per L. Prendiamo una stringa di L lunga almeno N, ovvero la stringa $z=a^{2^N}$ la cui lunghezza è $|z|\geq N$. Scomponiamo ora z come z=uvw, cosa possiamo dire?

Sappiamo che $v \neq \varepsilon$, quindi $|v| \geq 1$.

Inoltre, sappiamo della ripetizione arbitraria di v, quindi le stringhe uv^kw devono stare in L. Cosa possiamo dire della lunghezza di questa stringa? Sappiamo che

$$\left|uv^kw\right|=2^N+|v|(k-1)=2^N+j(k-1)\stackrel{k=2}{=}2^N+j<2^{N+1}.$$

Che valore assume j? La potenza successiva è 2^{N+1} ma j essendo un pezzo di z è al massimo 2^N quindi $j < 2^N$ e quindi $2^N + j < 2^{N+1}$.

Ma allora L non è regolare.

10. Problemi di decisione per i linguaggi regolari

I **problemi di decisione** sono dei problemi che hanno come unica risposta **SI** oppure **NO**. Sui linguaggi regolari abbiamo una serie di problemi di decisione interessanti che possono essere risolti in maniera automatica. Questa lista di problemi diventerà ancora più briosa quando andremo nei linguaggi context-free.

10.1. Linguaggio vuoto e infinito

Dato un linguaggio L possiamo chiederci se $L \neq \emptyset$, ovvero se L non è vuoto, o se L è infinito.

Lemma 10.1.1: Sia L un linguaggio regolare e sia N la costante del pumping lemma per L. Allora:

- 1. $L \neq \emptyset \iff L$ contiene almeno una stringa di lunghezza $\langle N;$
- 2. L'è infinito \iff L' contiene almeno una stringa z con $N \leq |z| < 2N$.

Dimostrazione 10.1.1.1: Partiamo con la dimostrazione del punto 1.

 $[\Leftarrow]$ Se L contiene una stringa di lunghezza < N allora banalmente $L \neq \emptyset$.

 $[\Longrightarrow]$ Se $L \neq \emptyset$ sia $z \in L$ la stringa di lunghezza minima in L. Per assurdo sia $|z| \geq N$, ma allora per il pumping lemma possiamo dividere z come z = uvw. Sappiamo dal terzo punto che possiamo ripetere un numero arbitrario di volte la stringa v e stare comunque in L. Ripetiamo v un numero di volte pari a 0: otteniamo la stringa z' = uw che appartiene a L per il pumping lemma. Avevamo detto che z era la stringa più corta di L, ma abbiamo appena mostrato che |z'| < |z|: questo è assurdo e quindi |z| < N.

Dimostriamo ora il punto 2.

[\Leftarrow] Se L contiene una stringa z di lunghezza $N \leq |z| \leq 2N$, visto che $|z| \geq N$ applichiamo il pumping lemma per scomporre z in z = uvw. Per il terzo punto possiamo ripetere un numero arbitrario di volte il fattore v e rimanere comunque in L. Ma allora L è infinito.

 $[\Longrightarrow]$ Se L è infinito, sicuramente esiste una stringa z che è lunga almeno N. Tra tutte queste stringhe, scegliamo la più corta di tutte. Per assurdo sia $|z| \geq 2N$, ma allora possiamo scomporre z come z = uvw con $|uv| \leq N$ e $v \neq \varepsilon$. Adesso andiamo a ripetere un numero di volte pari a 0 il fattore v, ottenendo $z' = uw \in L$. Quale è la sua lunghezza? Possiamo dire che |z'| = |z| - |v| ma |v| è al massimo N per il primo punto analizzato, quindi |z'| è almeno N e al massimo 2N, ma questo è assurdo perché z era la più corta tra tutte le stringhe e, per assurdo, l'avevamo posta di lunghezza $\geq 2N$.

Questo lemma ci dice che se vogliamo sapere se un linguaggio non è vuoto basta generare tutte le stringhe di lunghezza fino a N escluso e vedere se ne abbiamo una nel linguaggio, mentre se vogliamo sapere se un linguaggio è infinito basta generare tutte le stringhe di lunghezza compresa tra N incluso e 2N escluso e vedere se ne abbiamo una nel linguaggio.

Quale è il problema? Sicuramente è un approccio **inefficiente**, visto che dobbiamo generare un numero esponenziale di casi da analizzare. Possiamo fare di meglio? **SI**: per vedere se un linguaggio non è vuoto devo cercare un **cammino** dallo stato iniziale ad uno stato finale, mentre

per vedere se un linguaggio è infinito potrei cercare i **cicli** sui cammini del punto precedente. Ci siamo quindi ricondotti a dei **problemi su grafi**, che sappiamo risolvere efficientemente.

10.2. Appartenenza

Dato L un linguaggio regolare e $x \in \Sigma^*$ una stringa, il problema di **appartenenza** si chiede se $x \in L$. Questo lo sappiamo fare tranquillamente in tempo lineare: basta eseguire il DFA (se ce l'abbiamo) e vedere se finiamo in uno stato finale.

10.3. Universalità

Dato L un linguaggio regolare, il problema di **universalità** si chiede se $L = \Sigma^*$, ovvero L contiene tutte le stringhe della chiusura di Kleene dell'alfabeto Σ . Questo sembra difficile, ma possiamo sfruttare le operazioni che rendono chiusi i linguaggi regolari: infatti, possiamo chiederci invece se

$$L = \Sigma^* \iff L^C = \emptyset$$

e questo lo sappiamo fare grazie al lemma precedente.

10.4. Inclusione e uguaglianza

Infine, l'ultimo problema che vediamo prende due linguaggi L_1 e L_2 regolari e si chiede se $L_1 \subseteq L_2$. Questo problema si chiama problema dell'**inclusione** e lo possiamo risolvere manipolando quello che ci viene chiesto: infatti, al posto dell'inclusione, possiamo chiederci se

$$L_1\subseteq L_2 \Longleftrightarrow L_1\cap L_2^C= \otimes,$$

che sappiamo fare tranquillamente grazie al lemma.

Se non volessimo utilizzare le proprietà di chiusura, possiamo costruire un automa prodotto che ha come stati finali tutte le coppie di stati dove il primo accetta L_1 e il secondo rifiuta L_2 .

E se invece volessimo risolvere il problema di **uguaglianza**, ovvero quello che si chiede se $L_1 = L_2$? Basta dimostrare la doppia inclusione $L_1 \subseteq L_2 \wedge L_2 \subseteq L_1$ e siamo a cavallo. Un algoritmo diverso utilizza le classi di equivalenza, ma non lo vedremo.