Inter-Process Communication and Synchronization of Processes, Threads and Tasks:

Lesson-1: PROCESS

Process Concepts

Process

- A process consists of executable program (codes), *state* of which is controlled by OS,
- The *state* during running of a process-represented by process-status (running, blocked, or finished), process-structure—its data, objects and resources, and process control block (PCB).

Process....

- Runs when it is scheduled to run by the OS (kernel)
- OS gives the control of the CPU on a process's request (system call).
- Runs by executing the instructions and the continuous changes of its state takes place as the program counter (PC) changes

Process ...

 Process is that executing unit of computation, which is controlled by some process (of the OS) for a scheduling mechanism that lets it execute on the CPU and by some process at OS for a resourcemanagement mechanism that lets it use the system-memory and other systemresources such as network, file, display or printer

Application program can be said to consist of number of processes

Example — Mobile Phone Device embedded software

- Software highly complex.
- Number of functions, ISRs, processes threads, multiple physical and virtual device drivers, and several program objects that must be concurrently processed on a single processor.

Exemplary processes at the phone device

- Voice encoding and convoluting process— the device captures the spoken words through a speaker and generates the digital signals after analog to digital conversion, the digits are encoded and convoluted using a CODEC,
- Modulating process,
- Display process,

Exemplary processes at the phone device

- GUIs (graphic user interfaces), and
- Key input process for provisioning of the user interrupts

Process

Process Control Block

Process Control Block

- A data structure having the information using which the OS controls the process state.
- Stores in protected memory area of the kernel.
- Consists of the information about the process state

- Process ID,
- process priority,
- parent process (if any),
- child process (if any), and
- address to the next process PCB which will run,

- allocated program memory address blocks in physical memory and in secondary (virtual) memory for the process-codes,
- allocated process-specific data addressblocks

- allocated process-heap (data generated during the program run) addresses,
- allocated process-stack addresses for the functions called during running of the process,

- allocated addresses of CPU register-save area as a process context represents by CPU registers, which include the program counter and stack pointer
- allocated addresses of CPU register-save area as a process context

[Register-contents (define process context) include the program counter and stack pointer contents]

- process-state signal mask [when mask is set to 0 (active) the process is inhibited from running and when reset to 1, the process is allowed to run],
- Signals (messages) dispatch table
 [process IPC functions],

- OS allocated resources' descriptors (for example, file descriptors for open files, device descriptors for open (accessible) devices, device-buffer addresses and status, socket-descriptor for open socket), and
- Security restrictions and permissions.

Context

• Context loads into the CPU registers from memory when process starts running, and the registers save at the addresses of register-save area on the context switch to another process

Context

- The present CPU registers, which include program counter and stack pointer are called context
- When context saves on the PCB pointed process-stack and register-save area addresses, then the running process stops.
- Other process context now loads and that process runs— This means that the context has switched

Summary

- Application program can be said to consist of number of processes
- Process defined as that executing unit of of computation that processes on a CPU and state of which is under the control of kernel of an operating system.

Process state at an instance defines by process-status (running, blocked, or finished), process-structure—its data, objects and resources and process control block.

• OS lets a process execute on the CPU—some process at OS for a resource-management mechanism lets it use the system-memory and other system-resources such as network, file, display or printer

- PCB—a data structure having the information using which the OS controls the process state
- PCB consists of the information about the process state
- PCB stores in protected memory area of the kernel

End of Lesson 1 of Chapter 7