

Shin-Han Shiu

Gustavo de los Campos

Andrew McCarren

AAC Mark TA Roantree

TO BENCHMASKING GOVERNMENT TO CONTINUE TO THE CONTINUE TO THE

TGAGACATACTGAAA CONTINENTALIA ATGATAGTA TETGATE COATGAATCACATCT ATGAGACT TO AT

Genomic Prediction: Breeding & Basic Science

GEBV: genomic estimated breeding value

Genomic Prediction Models

Quantitative phenotype of individual i

SNP genotype of individual i

$$y_i = g(x_i) + e_i$$

Residual

Function relating genotype to phenotype

Performance
Metric (r) $COT(y, \hat{y})$

Outline

- Data and algorithms included in benchmark
- Intro to Neural Networks
- Performance on predicting height in 6 species
- Improvements to artificial neural networks
 - Feature selection and seeded starting weights
- Final results

Data Used

Species	Population	Markers	Source
Maize	391	332,178	Hansey et. al 2011 Hirsch et. al 2014
Rice	327	73,147	Spindel et. al 2015
Sorghum	451	58,961	Fernandes et. al 2017
Soy	5,014	4,240	Xavier et. al 2016
Spruce	Partial 1,722 DM	6,932	Beaulieu et. al 2014
Switchgrass	514	218,528	Lipka et. al 2014 Evans et. al 2017

GP Algorithm Comparisons

What is a Neural Network?

Difficulties

- Large hyper-parameter space
- 2. When to stop training?

1. Grid Search

- Network Architecture
- Activation Function
- Learning Rate
- Type/degree of regularization

2. When to stop training?

Testing

Models can have very different ideal training times

Minimize validation error

No one algorithm always performs best

What is a Neural Network?

Difficulties

- Large hyper-parameter space
- 2. When to stop training?
- 3. Not robust when p >> n
- 4. Large variation in model performance using same data and hyper-parameters.

3. Addressing p >> n with feature selection

1. Feature Selection

Training & Validation Data

Feature Selection

Random Forest Bayes A Elastic Net 2. Select hyperparameters

& train model

Training Data

Validation Data

Grid Search

Train model

3. Performance

Testing Data

Height in maize

Dimension reduction improves ANN performance

p:n ratio

850

224

131

0.85

425

Difficulties

- Large hyper-parameter space
- When to stop training?
- Not robust when p >> n
- 4. Large variation in model performance using same data and hyper-parameters.

Random initialization of starting weights

Random Starting Weights

	Node 1	Node 2	Node 3
SNP A	-0.2	8.0	-0.2
SNP B	-0.4	1.2	0.6
SNP C	0.1	0.6	8.0
SNP D	0.4	-0.1	-0.5

^{**}Reduces bias in the model**

Seeded starting weights approach

Seeded starting weights approach

25% Seed Score + Noise Infusion

	rrBLUP coef.
SNP A	-0.6
SNP B	-0.4
SNP C	0.1
SNP D	0.4

	Node 1	Node 2
SNP A	-0.7	-0.8
SNP B	-0.5	-0.4
SNP C	0.2	0.1
SNP D	0.4	0.5

Seeded starting weights for top 8k maize markers sometimes improves performance

Ensemble Predictors: mean predicted trait value from 5/11 GP algorithms

Ensemble Size • 5 • 11

--- Top Single Algorithm

Final Benchmark Analysis Results...

Final Benchmark Analysis Results...

↓species best

0

10

20

Hierarchical clustering of GP algorithms

Why do linear algorithms consistently perform well?

- ▶ H1: Complex biological systems generate signals that are consistent with linear, additive, genetic models (Hill, Goddard, & Visscher 2008).
- ▶ H2: The amount of training data available for most GP problems is insufficient for learning nonlinear interactions when p>>n.

ML and Deep Learning Pipelines

azodichr/ML-Pipeline/README.md

Future Directions

- Wrap up and submit GP algorithm comparison manuscript.
- Use gene expression levels as input into GP algorithms.
 - Are transcriptomes more predictive than genotype data?
 - Can we better predict traits by combining genotype & transcriptome data?
 - ▶ Is transcript data useful when dissecting GP models to learn about the genetic basis of a trait?
- ▶ Use "deep Connection Weight" (dCW) approach to interpret deep learning models to identify markers and interactions between markers important for a trait

Thanks!

Random expectation for triple overlap: ~10

Genotype X

Genotype Y

Role of the bias term....

Drop out Explanation

1st Hidden Layer

	Node A1	Node A2	 Node An
SNP A	-0.66	-0.8	 -0.21
SNP B	-0.44	0.66	 0.64
SNP C	0.18	0.66	 0.84
SNP D	0.45	0.78	 0.52

2nd Hidden Layer

	Node B1	Node B2	 Node Bn
Node A1	-0.44	0.18	 -0.38
Node A2	0.15	0.15	 0.24
Node An	1.59	0.65	 0.37

Output Layer

	Output Layer	
Node B1	0.00001	
Node B2	1.44	
Node Bn	2.14	