Regression Models Course Project

Srilaskhmi Uppalapati October 30, 2016

Link to project on GitHUB

Executive summary

You work for Motor Trend, a magazine about the automobile industry. Looking at a data set of a collection of cars, they are interested in exploring the relationship between a set of variables and miles per gallon (MPG) (outcome). They are particularly interested in the following two questions:

- * "Is an automatic or manual transmission better for MPG"
- * "Quantify the MPG difference between automatic and manual transmissions"

Analysis

Exploratory analysis

```
library (datasets)
data(mtcars) # Loading data
head(mtcars) # Dataset's head
##
                     mpg cyl disp hp drat
                                              wt qsec vs am gear carb
## Mazda RX4
                    21.0
                           6 160 110 3.90 2.620 16.46
                                                                     4
                                                        0
                           6 160 110 3.90 2.875 17.02
                                                                     4
## Mazda RX4 Wag
                    21.0
## Datsun 710
                    22.8 4 108 93 3.85 2.320 18.61 1 1
                                                                     1
## Hornet 4 Drive
                    21.4
                           6
                              258 110 3.08 3.215 19.44
                                                        1
                                                                3
                                                                     1
## Hornet Sportabout 18.7
                           8 360 175 3.15 3.440 17.02
                                                        0
                                                                3
                                                                     2
                                                                3
## Valiant
                    18.1
                           6 225 105 2.76 3.460 20.22 1
                                                                     1
dim(mtcars) # Row's numbers and variable's quantity
```

[1] 32 11

Let's test hypotesys what automatic and manual transmission are the same on average for MPG?

```
result <- t.test(mtcars$mpg ~ mtcars$am)
result$p.value</pre>
```

```
## [1] 0.001373638
```

Since the p-value is 0.00137, we reject our null hypothesis. So, the automatic and manual transmissions are from different populations. Let's show difference:

```
ylab = "Miles Per Gallon (MPG)",
xlab = "Transmission Type",
col = (c("pink","blue")))
```


Regression analysis

```
fit_SLR <- lm(mpg ~ factor(am), data=mtcars)</pre>
summary(fit_SLR)
##
## Call:
## lm(formula = mpg ~ factor(am), data = mtcars)
##
## Residuals:
##
       Min
                1Q Median
## -9.3923 -3.0923 -0.2974 3.2439 9.5077
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                 17.147
                             1.125 15.247 1.13e-15 ***
## factor(am)1
                  7.245
                             1.764
                                    4.106 0.000285 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 4.902 on 30 degrees of freedom
```

```
## Multiple R-squared: 0.3598, Adjusted R-squared: 0.3385
## F-statistic: 16.86 on 1 and 30 DF, p-value: 0.000285
```

The adjusted R squared value is only 33.8% of the regression variance can be explained by our model. Let's see how will other predictor variables impact.

```
see how will other predictor variables impact.
data(mtcars)
fit_MLR <- lm(mpg ~ . ,data=mtcars)</pre>
summary(fit_MLR)
##
## Call:
## lm(formula = mpg ~ ., data = mtcars)
## Residuals:
##
       Min
                1Q Median
                                 3Q
                                         Max
## -3.4506 -1.6044 -0.1196 1.2193
                                     4.6271
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 12.30337
                           18.71788
                                       0.657
                                               0.5181
                            1.04502
                                      -0.107
                                               0.9161
               -0.11144
## cyl
## disp
                0.01334
                            0.01786
                                       0.747
                                               0.4635
                            0.02177
## hp
               -0.02148
                                      -0.987
                                               0.3350
                0.78711
                            1.63537
                                       0.481
                                               0.6353
## drat
                -3.71530
                            1.89441
                                      -1.961
                                               0.0633 .
## wt
                            0.73084
                                       1.123
## qsec
                0.82104
                                               0.2739
                            2.10451
                                       0.151
                                               0.8814
## vs
                0.31776
## am
                2.52023
                            2.05665
                                       1.225
                                               0.2340
                                       0.439
## gear
                0.65541
                            1.49326
                                               0.6652
## carb
                -0.19942
                            0.82875
                                     -0.241
                                               0.8122
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.65 on 21 degrees of freedom
## Multiple R-squared: 0.869, Adjusted R-squared: 0.8066
## F-statistic: 13.93 on 10 and 21 DF, p-value: 3.793e-07
cor(mtcars)[1,]
##
                      cyl
                                 disp
                                              hp
                                                        drat
                                                                      wt
          mpg
##
    1.0000000 -0.8521620 -0.8475514 -0.7761684
                                                  0.6811719 -0.8676594
##
                       vs
         qsec
                                   am
                                            gear
    0.4186840 0.6640389 0.5998324 0.4802848 -0.5509251
From the output we can see cyl, wt, hp, disp show strong correlations and significance for the model. Hence we
choose those variables plus am for a linear model. This gives us the following model below:
fit_MLR_adjusted <- lm(mpg ~ wt+hp+disp+cyl+am, data = mtcars)
summary(fit_MLR_adjusted)
## Call:
## lm(formula = mpg ~ wt + hp + disp + cyl + am, data = mtcars)
##
## Residuals:
##
       Min
                 1Q Median
                                 3Q
                                         Max
```

```
## -3.5952 -1.5864 -0.7157 1.2821 5.5725
##
##
  Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
##
   (Intercept) 38.20280
                           3.66910
                                     10.412 9.08e-11
               -3.30262
                                     -2.913
                                             0.00726 **
##
                           1.13364
  wt
               -0.02796
                                             0.05510
## hp
                           0.01392
                                     -2.008
## disp
                0.01226
                           0.01171
                                      1.047
                                             0.30472
               -1.10638
                           0.67636
                                     -1.636
                                             0.11393
##
  cyl
                1.55649
##
  am
                            1.44054
                                      1.080
                                             0.28984
                     '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
  Signif. codes:
##
## Residual standard error: 2.505 on 26 degrees of freedom
## Multiple R-squared: 0.8551, Adjusted R-squared: 0.8273
## F-statistic: 30.7 on 5 and 26 DF, p-value: 4.029e-10
```

Residual Analysis and Diagnostics

```
par(mfrow = c(2, 2))
plot(fit_MLR_adjusted)
```


According to the residual plots:

- 1. The Residuals vs. Fitted plot shows no consistent pattern, supporting the accuracy of the independence assumption.
- 2. The Normal Q-Q plot indicates that the residuals are normally distributed because the points lie closely

to the line.

- 3. The Scale-Location plot confirms the constant variance assumption, as the points are randomly distributed.
- 4. The Residuals vs. Leverage argues that no outliers are present, as all values fall well within the 0.5 bands.

Conclusions

Using the final multivariable regression model put together we can see the multiple R squared value is much higher at 0.83, where 83% of the regression variance can be explained by the chosen variables. We can thus conclude that wt, hp, disp and cyl are confounding variables in the relationship between 'am and 'mpg' and that manual transmission cars on average have 1.55 miles per gallon more than automatic cars.