Árboles binarios mellados

Suponemos un árbol no vacío de altura $k \ge 1$ cuyos niveles están completos hasta la altura k-1. Es decir, para todo i tal que $1 \le i \le k-1$, el nivel i-ésimo del árbol tiene 2^{i-1} nodos. El nivel k-ésimo puede estar completo o no. Si no lo está, llamamos mella al "hueco" que dejan las hojas consecutivas que faltan en el último nivel si lo recorremos de izquierda a derecha. Por ejemplo, suponiendo el siguiente árbol:

El árbol tiene altura 4 y sus niveles 1°, 2° y 3° están completos. Si completásemos el último nivel, pintando del mismo color las hojas consecutivas, obtendríamos el siguiente árbol:

Por tanto, decimos que el árbol original tiene **tres** mellas. La primera corresponde a las hojas de color azul del árbol completado, la segunda corresponde a las hojas de color rojo, y la tercera a las hojas de color verde.

A continuación se muestran más ejemplos:

El árbol de la izquierda tiene una mella. El árbol del centro tiene dos mellas. El árbol de la derecha no tiene mellas, porque tiene altura 2 y su último nivel (el 2º) está completo.

Se pide:

1. Implementar una función num_mellas con la siguiente cabecera:

```
template <typename T>
int num_mellas(const BinTree<T> &t)
```

La función debe devolver el número de mellas del árbol t pasado como parámetro. Puedes suponer que el árbol no es vacío y que todos sus niveles están completos, salvo el nivel inferior, que puede estar completo o no.

Puedes implementar las funciones auxiliares que sean necesarias.

2. Indica y justifica el coste de la función num_mellas y de las funciones auxiliares que hayas implementado.

Entrada

La entrada comienza con un número que indica el número de casos de prueba que vienen a continuación. Cada caso de prueba consiste en una línea con la descripción de un árbol binario mediante la notación vista en clase. El árbol vacío se representa mediante . y el árbol no vacío mediante (iz x dr), siendo x la raíz, e iz y dr las representaciones de ambos hijos.

La entrada no contiene árboles vacíos.

Salida

Para cada caso de prueba debe imprimirse una línea con el número de mellas del árbol.

Entrada de ejemplo 🛭

Salida de ejemplo 🛭

```
1
2
0
3
```

Créditos

Autor: Manuel Montenegro