External

Registers

CLIDR_EL1, Cache Level ID Register

The CLIDR EL1 characteristics are:

Purpose

Identifies the type of cache, or caches, that are implemented at each level and can be managed using the architected cache maintenance instructions that operate by set/way, up to a maximum of seven levels. Also identifies the Level of Coherence (LoC) and Level of Unification (LoU) for the cache hierarchy.

Configuration

AArch64 System register CLIDR_EL1 bits [31:0] are architecturally mapped to AArch32 System register CLIDR[31:0].

Attributes

CLIDR EL1 is a 64-bit register.

Field descriptions

Bits [63:47]

Reserved, res0.

Ttype<n>, bits [2(n-1)+34:2(n-1)+33], for n = 7 to 1 When FEAT_MTE2 is implemented:

Tag cache type. Indicate the type of cache that is implemented and can be managed using the architected cache maintenance instructions that operate by set/way at each level, from Level 1 up to a maximum of seven levels of cache hierarchy.

Ttype <n></n>	Meaning
0b00	No Tag Cache.
0b01	Separate Allocation Tag Cache.

0b10	Unified Allocation Tag and
	Data cache, Allocation Tags
	and Data in unified lines.
0b11	Unified Allocation Tag and
	Data cache, Allocation Tags
	and Data in separate lines.

Otherwise:

Reserved, res0.

ICB, bits [32:30]

Inner cache boundary. This field indicates the boundary for caching Inner Cacheable memory regions.

ICB	Meaning
0b000	Not disclosed by this mechanism.
0b001	L1 cache is the highest Inner Cacheable level.
0b010	L2 cache is the highest Inner Cacheable level.
0b011	L3 cache is the highest Inner Cacheable level.
0b100	L4 cache is the highest Inner Cacheable level.
0b101	L5 cache is the highest Inner Cacheable level.
0b110	L6 cache is the highest Inner Cacheable level.
0b111	L7 cache is the highest Inner Cacheable level.

LoUU, bits [29:27]

Level of Unification Uniprocessor for the cache hierarchy.

For a description of the values of this field, see Terminology for Clean, Invalidate, and Clean and Invalidate instructions.

Note

This field does not describe the requirements for instruction cache invalidation. See <u>CTR ELO</u>.DIC.

Note

When FEAT_S2FWB is implemented, the architecture requires that this field is zero so that no levels of data cache need to be cleaned in order to manage coherency with instruction fetches.

LoC, bits [26:24]

Level of Coherence for the cache hierarchy.

For a description of the values of this field, see Terminology for Clean, Invalidate, and Clean and Invalidate instructions.

LoUIS, bits [23:21]

Level of Unification Inner Shareable for the cache hierarchy.

For a description of the values of this field, see Terminology for Clean, Invalidate, and Clean and Invalidate instructions.

Note

This field does not describe the requirements for instruction cache invalidation. See <u>CTR ELO</u>.DIC.

Note

When FEAT_S2FWB is implemented, the architecture requires that this field is zero so that no levels of data cache need to be cleaned in order to manage coherency with instruction fetches.

Ctype<n>, bits [3(n-1)+2:3(n-1)], for n = 7 to 1

Cache Type fields. Indicate the type of cache that is implemented and can be managed using the architected cache maintenance instructions that operate by set/way at each level, from Level 1 up to a maximum of seven levels of cache hierarchy. Possible values of each field are:

Ctype <n></n>	Meaning
0b000	No cache.
0b001	Instruction cache only.
0b010	Data cache only.
0b011	Separate instruction and data caches.

All other values are reserved.

If software reads the Cache Type fields from Ctype1 upwards, once it has seen a value of 000, no caches that can be managed using the architected cache maintenance instructions that operate by set/way exist at further-out levels of the hierarchy. So, for example, if Ctype3 is the first Cache Type field with a value of 000, the values of Ctype4 to Ctype7 must be ignored.

Accessing CLIDR EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CLIDR EL1

op0	op1	CRn	CRm	op2
0b11	0b001	0b0000	0b0000	0b001

```
if PSTATE.EL == ELO then
    if IsFeatureImplemented(FEAT_IDST) then
        if EL2Enabled() && HCR_EL2.TGE == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        else
            AArch64.SystemAccessTrap(EL1, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TID2 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.TID4 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) | |
SCR_EL3.FGTEn == '1') && HFGRTR_EL2.CLIDR_EL1 ==
then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        X[t, 64] = CLIDR\_EL1;
elsif PSTATE.EL == EL2 then
    X[t, 64] = CLIDR\_EL1;
elsif PSTATE.EL == EL3 then
   X[t, 64] = CLIDR\_EL1;
```

AArch32AArch64AArch32AArch64Index byExternalRegistersRegistersInstructionsInstructionsEncodingRegisters

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright \hat{A} © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.