Homework 1 Review

1.26 Which of the following sets are equal?

$$A = \{x \mid x^2 - 4x + 3 = 0\}, \quad C = \{x \mid x \in \mathbb{N}, x < 3\}, \quad E = \{1, 2\}, \quad G = \{3, 1\}, \quad B = \{x \mid x^2 - 3x + 2 = 0\}, \quad D = \{x \mid x \in \mathbb{N}, x \text{ is odd}, x < 5\}, \quad F = \{1, 2, 1\}, \quad H = \{1, 1, 3\}.$$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 + 3 = 0\}$
 $A = \{x \mid x^2 - 4x + 3 + 3 = 0\}$

1.8 Prove Theorem 1.4. The following are equivalent: $A \subseteq B$, $A \cap B = A$, $A \cup B = B$.

Suppose $A \subseteq B$ and let $x \in A$. Then $x \in B$, hence $x \in A \cap B$ and $A \subseteq A \cap B$. By Theorem 1.3, $(A \cap B) \subseteq A$. Therefore $A \cap B = A$. On the other hand, suppose $A \cap B = A$ and let $x \in A$. Then $x \in (A \cap B)$; hence $x \in A$ and $x \in B$. Therefore, $A \subseteq B$. Both results show that $A \subseteq B$ is equivalent to $A \cap B = A$.

Suppose again that $A \subseteq B$. Let $x \in (A \cup B)$. Then $x \in A$ or $x \in B$. If $x \in A$, then $x \in B$ because $A \subseteq B$. In either case, $x \in B$. Therefore $A \cup B \subseteq B$. By Theorem 1.3, $B \subseteq A \cup B$. Therefore $A \cup B = B$. Now suppose $A \cup B = B$ and let $x \in A$. Then $x \in A \cup B$ by definition of the union of sets. Hence $x \in B = A \cup B$. Therefore $A \subseteq B$. Both results show that $A \subseteq B$ is equivalent to $A \cup B = B$.

Thus $A \subseteq B$, $A \cup B = A$ and $A \cup B = B$ are equivalent.

1.31 See solutions posted on Canvas

1.12 Prove: $(A \cup B) \setminus (A \cap B) = (A \setminus B) \cup (B \setminus A)$. (Thus either one may be used to define $A \oplus B$.) Using $X \setminus Y = X \cap Y^C$ and the laws in Table 1.1, including DeMorgan's Law, we obtain:

should be
$$\Pi \leftarrow (A \cup B) \setminus (A \cap B) = (A \cup B) \cap (A \cap B)^{C} = (A \cup B) \cap (A^{C} \cup B^{C})$$

$$= (A \bigcirc A^{C}) \cup (A \cap B^{C}) \cup (B \cap A^{C}) \cup (B \cap B^{C})$$

$$= \emptyset \cup (A \cap B^{C}) \cup (B \cap A^{C}) \cup \emptyset$$

$$= (A \cap B^{C}) \cup (B \cap A^{C}) = (A \setminus B) \cup (B \setminus A)$$

$$treat A \cup B \text{ as a whole}$$

$$(A \cup B) \cap (A^{c} \cup B^{c})$$

= $((A \cup B) \cap A^{c}) \cup ((A \cup B) \cap B^{c})$
= $(A^{c} \cap (A \cup B)) \cup (B^{c} \cap (A \cup B))$
= $((A^{c} \cap A) \cup (A^{c} \cap B)) \cup ((B^{c} \cap A) \cup (B^{c} \cap B))$
= $(A^{c} \cap B) \cup (B^{c} \cap A)$
= $(B \setminus A) \cup (A \setminus B)$

- **1.34** The Venn diagram in Fig. 1-5(a) shows sets A, B, C. Shade the following sets:
 - (a) $A \setminus (B \cup C)$; (b) $A^{\mathbb{C}} \cap (B \cup C)$; (c) $A^{\mathbb{C}} \cap (C \setminus B)$.

1.21 Let $N = \{1, 2, 3, ...\}$ and, for each $n \in N$, Let $A_n = \{n, 2n, 3n, ...\}$. Find:

- (a) $A_3 \cap A_5$; (b) $A_4 \cap A_5$; (c) $\bigcup_{i \in Q} A_i$ where $Q = \{2, 3, 5, 7, 11, ...\}$ is the set of prime numbers.
- (a) Those numbers which are multiples of both 3 and 5 are the multiples of 15; hence $A_3 \cap A_5 = A_{15}$.
- (b) The multiples of 12 and no other numbers belong to both A_4 and A_6 , hence $A_4 \cap A_6 = A_{12}$.
- (c) Every positive integer except 1 is a multiple of at least one prime number; hence

Should be
$$A \neq A \cap Ab$$

$$\bigcup_{i \in Q} A_i = \{2, 3, 4, \ldots\} = \mathbf{N} \setminus \{1\}$$
 (Least Common Multiple)

1.47 Determine whether or not each of the following is a partition of the set **N** of positive integers:

- (a) $[\{n \mid n > 5\}, \{n \mid n < 5\}];$ (b) $[\{n \mid n > 6\}, \{1, 3, 5\}, \{2, 4\}];$
- (c) $[\{n \mid n^2 > 11\}, \{n \mid n^2 < 11\}].$

(c)
$$n^{2} > 11$$

 $n > \sqrt{11}$ or $n < -\sqrt{11} \rightarrow \{n \mid n \in \mathbb{Z}, n < -4 \text{ or } n > 4\}$
 $n^{2} < 11$
 $-\sqrt{11} < n < \sqrt{11} \rightarrow \{n \mid -3, -2, +1, 0, 1, 2, 3\}$

Partitions

Let S be a nonempty set. A partition of S is a subdivision of S into nonoverlapping, nonempty subsets. Precisely, a partition of S is a collection $\{A_i\}$ of nonempty subsets of S such that:

- (i) Each a in S belongs to one of the A_i .
- (ii) The sets of $\{A_i\}$ are mutually disjoint; that is, if

$$A_i \neq A_k$$
 then $A_i \cap A_k = \emptyset$