A-Lab Tutorial Data Wrangling and Visualization in R

Sebastian Steffen ssteffen@mit.edu

September 26, 2021

Overview

- Teaching Learning Objectives (TLOs)
- Boring Stuff
- Concepts
- R and Tidyverse Crashcourse
- **5** Q & A

Workshop Outline

- Teaching Learning Objectives (TLOs)
- Boring Stuff
- Concepts
- R and Tidyverse Crashcourse
- (5) Q & A

• Install and Set Up R and tidyverse.

- Install and Set Up R and tidyverse.
- Understand key data concepts.

- Install and Set Up R and tidyverse.
- Understand key data concepts.
- Know vocabulary and libraries for better search queries.

- Install and Set Up R and tidyverse.
- Understand key data concepts.
- Know vocabulary and libraries for better search queries.
- Overview of the basics.

- Install and Set Up R and tidyverse.
- Understand key data concepts.
- Know vocabulary and libraries for better search queries.
- Overview of the basics.
- Ultimate Goal is to help you help yourself.

- Install and Set Up R and tidyverse.
- Understand key data concepts.
- Know vocabulary and libraries for better search queries.
- Overview of the basics.

- Ultimate Goal is to help you help yourself.
- Q&A.

Please take a few minutes to think about the data for your own project (alternatively, do this once you have access to it):

• Which questions do you have to answer? Which can you answer? Which do you want to answer? Why are they important? List a few.

- Which questions do you have to answer? Which can you answer? Which do you want to answer? Why are they important? List a few.
- What would the ideal data look like? What variables would you need? What format does the data need to be in (i.e. what should each row look like)?

- Which questions do you have to answer? Which can you answer? Which do you want to answer? Why are they important? List a few.
- What would the ideal data look like? What variables would you need? What format does the data need to be in (i.e. what should each row look like)?
- What are your hypotheses?

- Which questions do you have to answer? Which can you answer? Which do you want to answer? Why are they important? List a few.
- What would the ideal data look like? What variables would you need? What format does the data need to be in (i.e. what should each row look like)?
- What are your hypotheses?
- What method do you need to apply?

- Which questions do you have to answer? Which can you answer? Which do you want to answer? Why are they important? List a few.
- What would the ideal data look like? What variables would you need? What format does the data need to be in (i.e. what should each row look like)?
- What are your hypotheses?
- What method do you need to apply?
- Is there prior work (i.e. literature, news, ...) that attempts to answer it that you can leverage?

Example

Want to understand the value of different skills. Long history in Economics on estimating the 'Returns to "Skill".

- How valuable is learning to code? What's the \$-value associated with R?
- My Research: What skills do employers demand and how much are they willing to pay.
- Ideal data: Panel data of job postings annotated with skills demanded and employer. Each row is a bundle of skills and a \$-value (wage).
- Hypothesis: Value of coding is high and has increased over time.
- Method: OLS Regression (for interpretability) with employer fixed effects
- Conversely, if I wanted to predict the future value of R, I'd instead need a time series of \$-values for R and might use ARIMA.

Data Wrangling

Data Wrangling

Methods to transform raw data into usable a format to answer a specific research question.

• Different research questions require different data formats.

Workshop Outline

- Teaching Learning Objectives (TLOs)
- Boring Stuff
- Concepts
- A R and Tidyverse Crashcourse
- (5) Q & A

Installation of R

- R: https://cloud.r-project.org/
- RStudio Desktop IDE: https://www.rstudio.com/products/rstudio/download/
- Install packages via 'Tools' or via install.packages(<package_name>):
 - tidyverse
 - ★ includes several extremely useful packages: tidyr, dplyr, purrr, stringr, forcats, lubridate, ggplot2

 - mice, tidytext, philentropy, Ife, rpart, causaltree, glmnet, fuzzywuzzy, shinyr, nnet, neuralnet, tensorflow, sf, ...

• Keep project folder organized (i.e. via Gentzkow, Shapiro (2014)).

- Keep project folder organized (i.e. via Gentzkow, Shapiro (2014)).
- Never change the raw data always work on a copy!

- Keep project folder organized (i.e. via Gentzkow, Shapiro (2014)).
- Never change the raw data always work on a copy!
- Try to use functional programming for any task you do more than twice. (a bit of a learning curve with dplyr
 - $\rightarrow \! hrefhttps://dplyr.tidyverse.org/articles/programming.htmlquosures)$

- Keep project folder organized (i.e. via Gentzkow, Shapiro (2014)).
- Never change the raw data always work on a copy!
- Try to use functional programming for any task you do more than twice. (a bit of a learning curve with dplyr
 - \rightarrow hrefhttps://dplyr.tidyverse.org/articles/programming.htmlquosures)
- Use (Jupyter) Notebooks to explore data. Later, move to automating stuff via command line and screen (or batch files, i.e. on Sloan's Engaging Server).

Workshop Outline

- Teaching Learning Objectives (TLOs)
- Boring Stuff
- Concepts
- A R and Tidyverse Crashcourse
- 5 Q & A

• Every column is a variable.

NOT

$brand_model$	year	mileage
Audi_A4	1999	18
$Audi_A4$	2008	20
VWGTI	1999	19
VWGTI	2008	22

• Can be fixed with separate().

- Every column is a variable.
- Every row is an observation.

NOT

brand	model	$mileage_{-}1999$	mileage_2008
Audi	A4	18	20
VW	GTI	19	22

Can be fixed with pivot_longer(), pivot_wider() (formerly gather(), spread()).

- Every column is a variable.
- Every row is an observation.
- Every cell is a single value.

brand	model	mileages_1999_2008
Audi	A4	(18, 20)
VW	GTI	(19, 22)

Can be fixed with separate() and pivot_longer().

- Every column is a variable.
- Every row is an observation.
- Every cell is a single value.

brand	model	year	mileage	
Audi	A4	1999	18	
Audi	A4	2008	20	
VW	GTI	1999	19	
VW	GTI	2008	22	
VW	GTI	2012	24	
Mazda	CX-5	2017	23	

- Tidy data: Each row has a unique key (or index) and values.
- Here, the key/index is **brand x model x year**, values are mileage.

• Example I: Which car has the lowest fuel consumption?

- Example I: Which car has the lowest fuel consumption?
- Example II: Which car brand is the most innovative (in terms of updated models)?

- Example I: Which car has the lowest fuel consumption?
- Example II: Which car brand is the most innovative (in terms of updated models)?
- Example III: Predict average fuel consumption in 2016.

- Example I: Which car has the lowest fuel consumption?
- Example II: Which car brand is the most innovative (in terms of updated models)?
- Example III: Predict average fuel consumption in 2016.
- Definition of clean data depends on the question(s). → Need to know how to transform one data format into another.

Workshop Outline

- Teaching Learning Objectives (TLOs)
- Boring Stuff
- Concepts
- R and Tidyverse Crashcourse
- 5 Q & A

Chaining with Pipes

ullet Pipes let you read code from left to right by chaining commands together. o More legible code.

Without Chaining	With Chaining
f(x)	x o f
f(x, y)	x o f(y)
f(g(x))	$x\tof\tog$

Basic Operations

- filter: filter data based on logical condition.
- mutate: create new (and change old) variables.
- group_by, ungroup(): define (temporary) keys.
- summarize: Used with group_by to aggregate columns. arrange: reorder rows (i.e. sort). select: subset (and reorder) columns.

Quick Example

Common Operations

- Log: log(x+1)
- %-Change over time: $group_by(Group)\% > \%arrange(-T)\% > \%mutate(Change = last(X)/first(X) 1$
- •

More Advanced Words

- across (supersedes mutate_at and mutate_if).
- pivot_longer, pivot_wider: Make dataset longer or wider (i.e. from time series to panel or vice versa).

Types of Data

- Cross-Sectional Data: Many subjects, one point in time.
- Time Series: One subject, many points in time.
- Panel Data: Many subjects, many points in time. May be unbalanced, i.e. some (subject, time) combinations are missing.
- Multidimensional Panel Data: More than 2 dimensions, i.e. (subject, time, group)

Long versus Wide Data

• The first allows analyses at the id (1, 2) level, the second at the id, key level.

A-Lab September 26, 2021

20/31

Aggregation

- Groups/Reduces multiple rows into one:
- df <- cars %>% group_by(brand, year) %>% summarize(num_models =
 n(), mean_mpg = mean(mpg, na.rm = TRUE)
- Common Aggregation functions: mean(), sd(), first(), last(), sum(), min(), max(), n()

Joins/Merges and Appends

- Append: Requires same column names (bind_rows(), bind_cols()
- Join/Merge: Requires key to identify matching rows.
 - Left Outer Join: Keep all (including unmatched) rows from left. (left_join).
 - Inner Join: Only keep matching rows (inner_join()).
 - Anti Join: Only keep unmatched rows from left (anti_join()).
 - ► Full Join: Keep all rows from both left and right (full_join()).

22 / 31

September 26, 2021

Join Types Visualized

dplyr joins

Package Overview

Туре	R	Python
Missing Values	mice	fancyimpute, statsmodels
Data Wrangling	dplyr	pandas
Strings	stringr	built-in, pandas
(Fuzzy) String Matching	fuzzywuzzyR	fuzzywuzzy
Dates	lubridate	built-in, pandas
Geographical	ggmap, maps, maptools	geopandas
Visualization	ggplot2, bokeh	plotnine, bokeh, matplotlib
Regressions (with p-values)	lm, lfe	statsmodels
Machine Learning	caret, glmnet, rpart	scikit-learn
Deep Learning	ttensorflow, keras	tensorflow, keras, pytorch

• All Python packages can also be accessed in R with the R package reticulate (may be slower than built-ins though).

Visualizations with ggplot2

- Plots are built layer-by-layer.
- Most important layer: the geom layer

Visualization Advice

- No double Y-axes → Very misleading.
- Maximize the 'Data-Ink-Ratio' → Keep it simple.
- use themes like theme_bw() to make figures consistent.
- thick/horizontal lines to highlight, no or muted tick lines
- Think about aspect ratio of your presentation (on Zoom it's usually 16:9, while in-person it's often 4:3) versus write-up. Often need to make axes titles larger than defaults.

A-Lab

Tips & Tricks I

- Start early!!!
- Don't oversell your data.
- Communicate well with your team, your mentor, your company.
- Robustness checks, Validity tests, Simplicity (start with a baseline).
- Clean, consistent figures and formatting.
- Practice for your final presentation.

Tips & Tricks II

- Use flags in the header of your script to set constant variables, i.e. path/file names, etc.
- Keep a diary of what you've tried. Spending < 2 Minutes per day on this is already enough and really helps.
- Read the documentation.
- Use github for version control (especially good with team mates).
- Proper motivation and embedding in existing literature or context for final write-up.
- Cite references (use citation management like Zotero or Mendeley).

Workshop Outline

- A R and Tidyverse Crashcourse
- **5** Q & A

Q & A

- These were just very general points, vocab, and code snippets to get you started.
- While there's a lot to learn and do, don't feel overwhelmed. A lot of the material here may not apply to your specific project.
- There are incredible online resources use them!

You can always talk to you mentors!

Thank You!

For feedback, questions, or comments, please email me: ssteffen@mit.edu sebastiansteffen.com

A-Lab