

PRML Summer School 2019

[Session 2 (Learning Theory): ML Basics]

Prof. Sungroh Yoon

ECE | Seoul National University

© 2019 Sungroh Yoon. this material is for educational uses only. some contents are based on the material provided by other paper/book authors and may be copyrighted by them.

(last compiled at 23:37:00 on 2019/07/23)

Outline

Machine Learning Basics

References

- books
 - Learning from Data by Abu-Mostafa et al.
 - Pattern Recognition & Machine Learning by Bishop
 - ► Deep Learning by Goodfellow, Bengio and Courville Link
- online resources:

 - Stanford CS231n: CNN for Visual Recognition Link
 - Machine Learning Yearning Link

Outline

Machine Learning Basics

Machine learning

- learning from ____
- what do we mean by learning?
 - ▶ Mitchell (1997):

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."

- common types:
 - supervised
 - unsupervised
 - reinforcement
 - many more

Tasks in ML

- described in terms of how to process an example
- an "example":
 - a collection of features quantitatively measured from object/event
 - ▶ represented as a vector $x \in \mathbb{R}^n$ (each entry x_i : a feature)
 - e.g. features of an image: pixels values
- common ML tasks:
 - T1 classification
 - T2. classification with missing inputs
 - T3. regression
 - T4. transcription
 - T5. machine translation

- T6. structured output
- T7. anomaly detection
- T8. synthesis and sampling
- T9. imputation of missing values
- T10. denoising
- T11. density/pmf estimation

Data set

- a collection of examples
 - training set: for fitting
 - validation set ("dev set"): for model selection
 - ▶ test set: for

10-fold cross-validation:

Performance measure

- ullet specific to task T
 - e.g. classification: accuracy, error rate $E \leftarrow$ we focus on this for a while density estimation: average log-probability the model assigns to examples
- evaluated using data sets
 - training/dev/test sets $\Rightarrow E_{\rm train}$, $E_{\rm dev}$, $E_{\rm test}$
- often challenging to choose
 - 1. difficult to decide what to measure
 - e.g. penalize frequent mid-sized mistakes or rare large mistakes?
 - 2. know ideal measure but measurement is
 - e.g. density estimation

a lake whose depth at $\mathbf{x} = (x, y)$ is $P(\mathbf{x})$

Central challenge in ML

- - ability to perform well on previously unobserved examples
- ullet generalization error $E_{
 m gen}$
 - ▶ expected error on a new example ⇒ implausible to calculate
- ullet training error E_{train}
 - \blacktriangleright measured on a training set \Rightarrow bad proxy for $E_{\rm gen}$
- \bullet test error E_{test}
 - measured on a test set (not used in training) \Rightarrow better proxy for $E_{\rm gen}$

Two specific objectives

- \bullet objective: $\boxed{E_{\rm gen}=0}$ in theory or $\boxed{E_{\rm test}\simeq 0}$ in practice
- split into two objectives:
 - 1. $E_{test} \simeq E_{train}$
 - 2. $E_{train} \simeq 0$
- objective 1: make $E_{\rm test} \simeq E_{\rm train}$
 - failure: \rightarrow high variance
 - cure: regularization, more data
- objective 2: make $E_{\rm train} \simeq 0$
 - ▶ failure: underfitting → high bias
 - cure: optimization, more complex model

Capacity of a model

- the ability of the $\underbrace{\mathsf{model}}_{\uparrow}$ to fit various functions representation (+ learning algorithm)
- altering capacity controls over/underfitting
 - example (truth: quadratic; fit: linear, quadratic, degree-9)

Choosing a model (conventional advice)

- Occam's razor (a principle of parsimony)
 - ▶ among competing hypotheses, choose the " one
- why? **VC generalization bound**: for any $\epsilon > 0$ and N > 0

$$\mathbb{P}[\underbrace{\left|\mathbf{E}_{\mathrm{train}}(f) - \mathbf{E}_{\mathrm{test}}(f)\right|}_{\text{bad event}} > \epsilon \quad] \leq \underbrace{4 \cdot (2N)}^{\text{capacity}} \cdot e^{-\frac{1}{8}\epsilon^2 N}$$

- ightharpoonup N: # of training examples
- f : a model ($d_{
 m VC}$: its *VC dimension*, a measure of model capacity)
- ullet in words: discrepancy between E_{train} and E_{test}
 - grows as model capacity grows

(but
$$\underbrace{\text{shrinks as } N \text{ increases}}_{\uparrow}$$
)

power of big data

A tradeoff: the main challenge in ML

• approximation-generalization tradeoff or bias-variance tradeoff

- in theory: choose simpler functions
 - better generalization (smaller gap between training/test error)
- in practice: must still choose a sufficiently complex hypothesis
 - to achieve low training error

Two major weapons to fight the tradeoff

- optimization: ____ reduction (better approximation)
 - ▶ finds model parameters that minimize error
 - e.g. stochastic gradient descent
- regularization: _____ reduction (better generalization)
 - constrains model capacity by reflecting prior knowledge
 - e.g. dropout, weight decay

Choosing a model (modern advice)

- complex model + effective + big data
- complex model
 - ▶ higher chance of fitting data $\rightarrow E_{\rm train} \simeq 0$
- regularization + big data
 - lacktriangleright reduces generalization gap ightarrow $E_{\mathrm{test}} \simeq E_{\mathrm{train}}$

Big picture

Outline

Machine Learning Basics

- machine learning: learn from data to achieve generalization
 - lacktriangle objectives: making $E_{
 m test} \simeq E_{
 m train}$ + making $E_{
 m train} \simeq 0$
 - challenge: approximation-generalization or bias-variance tradeoff
 - weapons: big data, optimization, regularization
 - example: linear models for classification/regression/prob estimation

PRML Summer School 2019

[Session 2 (Learning Theory): VC Analysis]

Prof. Sungroh Yoon

ECE | Seoul National University

© 2019 Sungroh Yoon. this material is for educational uses only. some contents are based on the material provided by other paper/book authors and may be copyrighted by them.

Outline

Prerequisites

Handling Infinite Number of Hypotheses Dichotomy and Shattering

VC Analysis

Growth Function
Break Point
VC Dimension and VC Bound

Interpretation and Analysis

Effective Number of Parameters Penalty for Model Complexity Alternatives to VC Analysis

Readings

- Learning from Data by Abu-Mostafa, Magdon-Ismail, and Lin
 - ► Chapter 2: Training versus Testing (Sections 2.1 & 2.2)

Recap

questions on why and how machines can learn:

- 1. can we make sure that $E_{out}(g) \approx E_{in}(g)$?
- 2. can we make $\mathrm{E_{in}}(g)$ small enough?
- how the complexity of finite ${\cal H}$ affects learning:

	complex ${\cal H}$	simple ${\cal H}$	why?
Q1	(3)	©	$\mathbb{P}[bad] \leq 2M \cdots$
Q2	©	②	to fit training data ${\cal D}$

- ullet choosing the right ${\cal H}$ is therefore critical
 - what if $M = |\mathcal{H}| = \infty$?

Today's plan

• we know machines can learn (for finite M) with enough data:

$$\mathbb{P}\left[\underbrace{|\mathcal{E}_{\text{in}}(g) - \mathcal{E}_{\text{out}}(g)| > \epsilon}_{\text{bad event}}\right] \leq \underbrace{2 \cdot M \cdot e^{-2\epsilon^2 N}}_{\text{small with large } N} \tag{1}$$

- can machines learn even when M is infinite?
 - yes, we will derive a new bound

$$\mathbb{P}[|\mathcal{E}_{\text{in}}(g) - \mathcal{E}_{\text{out}}(g)| > \epsilon] \le 4 \cdot m_{\mathcal{H}}(2N) \cdot e^{-\frac{1}{8}\epsilon^2 N}$$

where

$$m_{\mathcal{H}}(2N) \le (2N)^{d_{\text{VC}}}$$

- that is, we will find a _____ quantity that can replace _____ M
 - ▶ the growth function polynomially bounded by VC dimension
 - ⇒ gives VC generalization bound

Outline

Prerequisites

Handling Infinite Number of Hypotheses

Dichotomy and Shattering

VC Analysis

Growth Function
Break Point
VC Dimension and VC Bound

Interpretation and Analysis

Effective Number of Parameters Penalty for Model Complexity Alternatives to VC Analysis

Key observation

• let \mathcal{B}_m be the (\mathcal{B} ad) event

$$|\mathrm{E}_{\mathrm{in}}(h_m) - \mathrm{E}_{\mathrm{out}}(h_m)| > \epsilon$$

▶ then

$$\mathbb{P}[\mathcal{B}_1 \text{ or } \mathcal{B}_2 \text{ or } \cdots \text{ or } \mathcal{B}_M] \leq \underbrace{\mathbb{P}[\mathcal{B}_1] + \mathbb{P}[\mathcal{B}_2] + \cdots + \mathbb{P}[\mathcal{B}_M]}_{\text{no overlaps: } M \text{ terms}}$$

- lacktriangle this is how we got M in generalization bound
- the union bound becomes loose
 - if $\mathcal{B}_1,\ldots,\mathcal{B}_M$ strongly _____

- typical learning model
 - many hypotheses: very _____
 - if $h_1 \approx h_2$, \mathcal{B}_1 and \mathcal{B}_2 are likely to coincide for most data
 - $\Rightarrow \mathcal{B}_m$'s do often strongly overlap

- ex) perceptron
 - ▶ if you slowly vary weight w
 - ⇒ you will get infinitely many hypotheses that differ only infinitesimally

Overlap engineering

- theory of generalization hinges on the observation:
 - many hypotheses are indeed very similar
- idea:
 - 1. categorize similar hypotheses into m groups/types
 - 2. regard m as the '_____' number of hypotheses
 - 3. replace M with m in the bound, if m is finite
- how to group similar/overlapping hypotheses?

How many line types (seen by 1 point)?

hypothesis set
$$\mathcal{H}=\{\mathsf{all\ lines\ in\ }\mathbb{R}^2\}$$

- how many lines in \mathcal{H} ?
- ullet how many types of lines does input point ${f x}_1$ see? llet

- type 1: h_1 -like lines that classify \mathbf{x}_1 as -1
- type 2: h_2 -like lines that classify x_1 as +1

How many line types (seen by 2 points)?

hypothesis set $\mathcal{H}=\{\mathsf{all} \; \mathsf{lines} \; \mathsf{in} \; \mathbb{R}^2\}$

ullet for two input points ${f x}_1$ and ${f x}_2$?

How many line types (seen by 3 points)?

$$\mathcal{H} = \{\mathsf{all\ lines\ in}\ \mathbb{R}^2\}$$

• for three input points?

- for this specific configuration
 - for any three inputs?

How many line types (seen by another 3 points)?

$$\mathcal{H} = \{\mathsf{all\ lines\ in}\ \mathbb{R}^2\}$$

• how about these three?

- for this specific configuration
 - fewer than $8=2^3$
- at most for any three inputs

How many line types (seen by 4 points)?

$$\mathcal{H} = \{ ext{all lines in } \mathbb{R}^2 \}$$

• for four input points?

- at most for any four inputs
 - fewer than $16 = 2^4$

How many lines types (in general)?

- how many line 'groups' do N points $\mathbf{x}_1, \dots, \mathbf{x}_N$ in \mathbb{R}^2 see?
 - ▶ according to previous examples →
 - this can be considered as the effective number of lines in H
 - ▶ this number must be $\leq 2^N$ in any case (why?)

N	# line types
1	2
2	4
3	6, 8
4	14
5	22

- ullet if this number is $\ll 2^N$ for sufficiently large N
 - \Rightarrow we can plug it into the bound (1) to replace M
 - ⇒ is feasible with infinite lines!
- let's formulate this idea

Outline

Prerequisites

Handling Infinite Number of Hypotheses Dichotomy and Shattering

VC Analysis

Growth Function
Break Point
VC Dimension and VC Bound

Interpretation and Analysis

Effective Number of Parameters Penalty for Model Complexity Alternatives to VC Analysis

Concept

- assume a binary target function
 - ▶ each $h \in \mathcal{H}$ maps \mathcal{X} to $\{-1, +1\}$
- ullet instead of the whole input space ${\mathcal X}$
 - consider a _____ set of input points, and
 - count the number of dichotomies (
- example (N = 6, perceptron): how many different dichotomies?

Dichotomy

• definition: given $\mathbf{x}_1, \dots, \mathbf{x}_N \in \mathcal{X}$

$$\underbrace{\mathcal{H}(\mathbf{x}_{1},\ldots,\mathbf{x}_{N})}_{\uparrow} = \{ (h(\mathbf{x}_{1}),\ldots,h(\mathbf{x}_{N})) \mid h \in \mathcal{H} \}$$
 (2) dichotomies generated by \mathcal{H} on these points

- dichotomies ≈ 'mini-hypotheses'
 - ▶ a set of hypotheses (just like H)
 - lacktriangle these mini-hypotheses: seen through the N points only

Comparison

- domain
 - ▶ hypothesis $h: \mathcal{X} \to \{-1, +1\}$
 - ▶ dichotomy $h: \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N\} \rightarrow \{-1, +1\}$
- diversity
 - ▶ the number of hypotheses $M = |\mathcal{H}|$: can be _____
 - ▶ the number of dichotomies $|\mathcal{H}(\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_n)|$: at most ____
- key point
 - $|\mathcal{H}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N)| \leq 2^N$ even for infinite $|\mathcal{H}|$
 - \Rightarrow candidate for replacing M

Shatter?

v. shatter

- ▶ to (make something) suddenly break into small pieces
- ▶ to destroy something completely (esp. feelings, hopes)

[from Oxford Advanced American Dictionary]

Definition

hypothesis set \mathcal{H} can shatter $\mathbf{x}_1, \dots, \mathbf{x}_N$ $\Leftrightarrow \mathcal{H}$ can generate _____ dichotomies on $\mathbf{x}_1, \dots, \mathbf{x}_N$ $\Leftrightarrow \mathcal{H}(\mathbf{x}_1, \dots, \mathbf{x}_N) = \{-1, +1\}^N$ $\Leftrightarrow |\mathcal{H}(\mathbf{x}_1, \dots, \mathbf{x}_N)| =$

- this signifies that
 - $m \mathcal{H}$ is as diverse as can be on the particular example
 - \blacktriangleright any learning problem definable by N examples can be learned with no training ____ by a hypothesis drawn from ${\cal H}$

Example

- $\mathcal{H}_1 = \{ \text{lines in } \mathbb{R}^2 \}$
 - ightharpoonup can shatter ____ points in \mathbb{R}^2

• can \mathcal{H}_1 shatter four points in \mathbb{R}^2 ?

Outline

Prerequisites

Handling Infinite Number of Hypotheses Dichotomy and Shattering

VC Analysis

Growth Function

Break Point VC Dimension and VC Bound

Interpretation and Analysis

Effective Number of Parameters Penalty for Model Complexity Alternatives to VC Analysis

Generalization bound

- ullet bounds E_{out} in terms of E_{in}
 - e.g. Hoeffding inequality

$$\mathbb{P}[|\mathcal{E}_{\text{in}}(g) - \mathcal{E}_{\text{out}}(g)| > \epsilon] \le 2Me^{-2\epsilon^2 N}$$
(3)

equivalently

$$E_{\text{out}}(g) \le E_{\text{in}}(g) + \sqrt{\frac{1}{2N} \ln \frac{2M}{\delta}}$$
 (4)

with probability $\geq 1 - \delta$ for a tolerance level δ (e.g. 0.05)

- meaningless if M is _____
- key observation: infinitely many h's differ only infinitesimally
 - lacktriangle we can find something ____ that can replace infinite M

Growth function

- notation: $m_{\mathcal{H}}(N)$
 - lacktriangle the growth function of ${\mathcal H}$ on N points
- $m_{\mathcal{H}}(N)$ captures how different h's in \mathcal{H} are
 - \Rightarrow gives effective # of h's
 - \Rightarrow can replace M in the bound (4)
- definition
 - lacktriangle the max number of dichotomies ${\cal H}$ generates on N points
 - $\Rightarrow m_{\mathcal{H}}(N) \leq 2^N$

Example

- \mathcal{X} : Euclidean plane \mathbb{R}^2 , and \mathcal{H} : 2D perceptrons
- what is $m_{\mathcal{H}}(3)$? ans: $m_{\mathcal{H}}(3) = \underline{\hspace{1cm}}$

Example

- \mathcal{X} : Euclidean plane \mathbb{R}^2 , and \mathcal{H} : 2D perceptrons
- how about $m_{\mathcal{H}}(4)$? ans: $m_{\mathcal{H}}(4) = \underline{\hspace{1cm}}$

Summary so far

we have tried to replace

$$E_{\text{out}}(g) \le E_{\text{in}}(g) + \sqrt{\frac{1}{2N}} \ln \frac{2M}{\delta}$$

with

$$E_{\text{out}}(g) \stackrel{?}{\leq} E_{\text{in}}(g) + \sqrt{\frac{1}{2N} \ln \frac{2m_{\mathcal{H}}(N)}{\delta}}$$

- ullet key for learning: having ${\mathcal H}$ with polynomial $m_{{\mathcal H}}(N)$
 - ▶ why?

Example: positive rays

• $\mathcal{H} = \{ h \mid h(x) = \text{sign}(x - a), x \in \mathbb{R} \}$

i.e. -1 to the left of some a and +1 to the right of a

- ullet given N points
 - ▶ line: split into N+1 regions
 - dichotomy on N points: decided by which region has a

location of \boldsymbol{a}	x_1	x_2	x_3	x_4
$-\infty < a < x_1$	0	0	0	0
$x_1 < a < x_2$	X	0	0	0
$x_2 < a < x_3$	X	X	0	0
$x_3 < a < x_4$				
$x_4 < a < \infty$	X	X	X	X

ullet thus, $m_{\mathcal{H}}(N) = \underline{\hspace{1cm}} \ll 2^N$ for sufficiently large N

Example: convex sets

- \mathcal{H} consists of all hypotheses in 2D $h: \mathbb{R}^2 \to \{-1, +1\}$
 - that are positive inside a convex set and negative elsewhere
- a set is convex
 - ▶ if the line segment connecting any two points in the set lies entirely _____ the set

- ullet let's choose N points on the perimeter of a circle
 - \blacktriangleright consider any dichotomy on these points by assigning an arbitrary pattern of ± 1 's to them
- observe:
 - ▶ the polygon formed by connecting +1's: always a
 - ▶ no matter how you assign ±1's, you can always separate +'s and -'s perfectly
 - $\Rightarrow \mathcal{H}$ manages to shatter these points

Checkpoint

- example growth functions
 - positive rays
 - convex sets $m_{\mathcal{H}}(N) = 2^N$
 - ▶ 2D perceptrons

 $m_{\mathcal{H}}(N) < 2^N \text{ for } N > 2$

 $m_{\mathcal{H}}(N) = N + 1$

• what if $m_{\mathcal{H}}(N)$ replace M in the generalization bound?

$$\mathbb{P}[|\mathcal{E}_{\text{in}}(g) - \mathcal{E}_{\text{out}}(g)| > \epsilon] \le 2 \cdot m_{\mathcal{H}}(N) \cdot e^{-2\epsilon^2 N}$$

- ▶ GOOD if $m_{\mathcal{H}}(N)$ is in N
- ▶ BAD if $m_{\mathcal{H}}(N)$ is in N
- computing $m_{\mathcal{H}}(N)$ is not trivial \Rightarrow any alternative?

Challenge & solution

- ullet it is not practical to compute $m_{\mathcal{H}}(N)$ for every ${\mathcal{H}}$ we use
 - fortunately, we don't have to
- our approach: find a polynomial bound on $m_{\mathcal{H}}(N)$ to show $m_{\mathcal{H}}(N)$ is polynomial we show $m_{\mathcal{H}}(N) \leq \cdots \leq$ a _____
- getting a good bound on $m_{\mathcal{H}}(N)$
 - will be much easier than computing $m_{\mathcal{H}}(N)$ itself
 - thanks to the notion of a break point

Outline

Prerequisites

Handling Infinite Number of Hypotheses Dichotomy and Shattering

VC Analysis

Growth Function

Break Point

VC Dimension and VC Bound

Interpretation and Analysis

Effective Number of Parameters Penalty for Model Complexity Alternatives to VC Analysis

Concept

- if the condition $m_{\mathcal{H}}(N)=2^N$ breaks at any point k i.e. $m_{\mathcal{H}}(k)<2^k$ and \mathcal{H} cannot shatter k examples
- ullet then we can bound $m_{\mathcal{H}}(N)$ by a simple polynomial of N
 - ightharpoonup this bound is based on break point k
 - spoiler: $m_{\mathcal{H}}(N) = O($

Definition

if no data set of size k can be shattered by \mathcal{H} $\Rightarrow k$ is said to be a *break point* for \mathcal{H}

- for any break point k, $m_{\mathcal{H}}(k) < 2^k$
 - i.e. 'brake' for shattering
 - $k+1, k+2, \ldots$ are also break points
 - we focus on the _____ break point

- in general, a break point k is easier to find than $m_{\mathcal{H}}(N)$
 - e.g. ____ for 2D perceptron
 - ▶ a bigger data set cannot be shattered either

Examples

- ▶ break point
- ► $m_{\mathcal{H}}(2) = 3 < 2^2$

• 2D perceptron: $m_{\mathcal{H}}(N) < 2^N$

• convex sets: $m_{\mathcal{H}}(N) = 2^N$

- break point
- $m_{\mathcal{H}}(4) = 14 < 2^4$

break point
(i.e. no break point)

Key fact

theorem (see textbook for proof):

$$\qquad \qquad \text{if} \ \underbrace{m_{\mathcal{H}}(k) < 2^k}_{k: \text{ break point}} \ \text{for some} \ k \Longrightarrow m_{\mathcal{H}}(N) \leq \underbrace{\sum_{i=0}^{k-1} \binom{N}{i}}_{\text{polynomial in } N}, \forall N$$

- in words
 - lacktriangleright if ${\mathcal H}$ has a _____ \Rightarrow polynomial bound on $m_{{\mathcal H}}(N)$ exists
 - ⇒ we have what we want to ensure good generalization
- ullet the degree of the polynomial bound on $m_{\mathcal{H}}(N)$
 - $k-1 \Rightarrow \mathsf{called}$

Outline

Prerequisites

Handling Infinite Number of Hypotheses Dichotomy and Shattering

VC Analysis

Growth Function Break Point

VC Dimension and VC Bound

Interpretation and Analysis

Effective Number of Parameters Penalty for Model Complexity Alternatives to VC Analysis

Vapnik-Chervonenkis (VC) dimension

- formal name of the ______ point
 - ▶ a single parameter that characterizes the growth function
 - measures the capacity of a learning algorithm

Alexey Chervonenkis and Vladimir Vapnik

- $d_{\mathrm{VC}}(\mathcal{H})$: the VC dimension of \mathcal{H}
 - lacktriangle the largest N that ${\cal H}$ can
 - *i.e.* the largest N for which $m_{\mathcal{H}}(N) = 2^N$
 - if $m_{\mathcal{H}}(N) = 2^N$ for all $N \Rightarrow d_{VC}(\mathcal{H}) \triangleq \infty$
- property:
 - $k = d_{\rm VC} + 1$: the minimum break point for $m_{\mathcal{H}}$
 - $d_{\rm VC}$: the order of the polynomial bound on $m_{\mathcal{H}}(N)$
 - ▶ the polynomial bound on $m_{\mathcal{H}}(N)$: $m_{\mathcal{H}}(N) \leq$ _____

Examples

• positive rays: $m_{\mathcal{H}}(N) = N+1$

- break point k=2
- $d_{VC} = 1$

• 2D perceptron: $m_{\mathcal{H}}(N) \leq N^3$

• convex sets: $m_{\mathcal{H}}(N) = 2^N$

- break point k=4

- ightharpoonup break point $k=\infty$

General idea: good vs bad models

$$\mathbb{E}_{\text{out}} \stackrel{?}{\leq} \mathbb{E}_{\text{in}} + \sqrt{\frac{1}{2N} \ln \frac{2m_{\mathcal{H}}(N)}{\delta}}$$

- good models:
 - $\Rightarrow m_{\mathcal{H}}(N)$ is bounded by a polynomial in N
 - \Rightarrow the term $\ln m_{\mathcal{H}}(N)$ grows logarithmically in N
 - \Rightarrow so it will be crushed by the $\frac{1}{N}$ factor
 - \Rightarrow for any fixed tolerance $\delta,$ the bound on $E_{\rm out}$ will be arbitrarily close to $E_{\rm in}$ for sufficiently large N
 - \Rightarrow $E_{out} \approx E_{in}$ for sufficiently large N (E_{in} "generalizes" to E_{out})
- bad models:
 - ⇒ the above arguments will all fail
 - \Rightarrow no matter how large data set is, cannot make generalization conclusion from $E_{\rm in}$ to $E_{\rm out}$ based on VC analysis

Example: good versus bad models

• generalization performance ($\delta = 0.1$)

\mathcal{H}	$d_{ m VC}$
convex sets 10D perceptrons 2D perceptrons	∞ 11 3
positive rays	1

error bar used: $\sqrt{\frac{1}{2N}\ln\frac{2m_{\mathcal{H}}(N)}{\delta}}$; for the perceptrons, additional bound used: $m_{\mathcal{H}}(N) \leq N^d \text{VC} + 1$

The VC generalization bound

for any tolerance $\delta>0$

$$E_{\text{out}} \le E_{\text{in}} + \sqrt{\frac{8}{N} \ln \frac{4m_{\mathcal{H}}(2N)}{\delta}}$$
 (5)

with probability $\geq 1 - \delta$

- the most important mathematical result in theory of learning
- ▶ holds for any binary target function f, any hypothesis set \mathcal{H} , any learning algorithm \mathcal{A} , and any input prob. distribution P
- meaning: if $d_{VC}(\mathcal{H}) \neq \infty$ (i.e. \mathcal{H} has a _____ VC dimension)
 - \Rightarrow with enough data $(N \to \infty)$, each and every hypothesis h (even in an infinite \mathcal{H}) will _____ well from E_{in} to E_{out}

Outline

Prerequisites

Handling Infinite Number of Hypotheses Dichotomy and Shattering

VC Analysis

Growth Function
Break Point
VC Dimension and VC Bounce

Interpretation and Analysis

Effective Number of Parameters

Penalty for Model Complexity Alternatives to VC Analysis

VC dimension versus # parameters

1-dim perceptron

$$d_{VC} = 2$$

- d-dim perceptron
 - $d_{VC} = d + 1$

2-dim perceptron

•
$$d_{VC} = 3$$

 what is # of parameters of d-dim perceptron?

• positive rays $(d_{VC} = 1)$:

- however, this is not always the case in general
 - is there any physical intuition behind d_{VC} ?

Interpreting $d_{ m VC}$

- parameters create '_______' (DOF)
 - lacktriangle the more parameter a model has, the more diverse its ${\cal H}$ is
- perceptron: $h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\top}\mathbf{x})$
 - ▶ parameters: $w_0, w_1, \ldots, w_d \Rightarrow d+1$ in total
- in other models (e.g. multi-layer perceptrons)
 - some parameters may not directly contribute to DOF
 - ⇒ effective parameters may be less obvious or implicit
- ullet $d_{
 m VC}$ measures these ______ of parameters or DOF

Degrees of freedom (DOF)

- hypothesis parameters $\mathbf{w} = (w_0, \dots, w_d)$
 - creates degrees of freedom
- # hypotheses $M = |\mathcal{H}|$
 - 'continuous' degrees of freedom
- # dichotomies reflected in $m_{\mathcal{H}}(N)$
 - 'binary' degrees of freedom
- ullet VC dimension $d_{
 m VC}$
 - degrees of freedom

Outline

Prerequisites

Handling Infinite Number of Hypotheses Dichotomy and Shattering

VC Analysis

Growth Function
Break Point
VC Dimension and VC Bound

Interpretation and Analysis

Effective Number of Parameters
Penalty for Model Complexity

Decomposing VC generalization bound

• two parts make up the bound (5):

$$E_{\text{out}} \le \underbrace{E_{\text{in}}}_{1\text{st part}} + \underbrace{\sqrt{\frac{8}{N} \ln \frac{4m_{\mathcal{H}}(2N)}{\delta}}}_{2\text{nd part}}$$
 (5)

• second part: increases as increases

$$E_{out}(g) \le E_{in}(g) + \underbrace{\Omega(N, \mathcal{H}, \delta)}_{\uparrow}$$
 (6)

$$\Omega(N, \mathcal{H}, \delta) = \sqrt{\frac{8}{N} \ln \left(\frac{4m_{\mathcal{H}}(2N)}{\delta} \right)} \leq \sqrt{\frac{8}{N} \ln \left(\frac{4((2N)^{d_{\text{VC}}} + 1)}{\delta} \right)}$$

Interpreting $\Omega(N, \mathcal{H}, \delta)$ as penalty for model complexity

with probability
$$\geq 1-\delta$$
,
$$E_{out} \leq E_{in} + \underbrace{\Omega(N,\mathcal{H},\delta)}_{=\sqrt{\frac{8}{N}\ln\frac{4m_{\mathcal{H}}(2N)}{\delta}}}$$

- penalty $\Omega(N, \mathcal{H}, \delta)$ gets worse (\Rightarrow worse bound on E_{out}) if
 - we have a smaller training set
 - we use a more complex \mathcal{H} (d_{VC})
 - we insist on higher confidence ($__$ δ)
- penalty $\Omega(N, \mathcal{H}, \delta)$ gets better if
 - we have more training examples
 - we use a simpler model
 - we want lower confidence (higher δ)

Tradeoff

```
model complexity \uparrow d_{\mathrm{VC}} \uparrow \Rightarrow \mathrm{E_{in}} \downarrow \mathrm{but} \Omega \uparrow \mathrm{and} \mathrm{E_{out}} - \mathrm{E_{in}} \uparrow \mathrm{model} complexity \downarrow d_{\mathrm{VC}} \downarrow \Rightarrow \Omega \downarrow \mathrm{but} \mathrm{E_{in}} \uparrow
```


using powerful ${\cal H}$ is not always good!

- \bullet regularization: instead of using $E_{\rm in}$ as proxy for $E_{\rm out}$
 - \blacktriangleright use ___ and _ together (i.e. augmented error $E_{\rm aug})$

Outline

Prerequisites

Handling Infinite Number of Hypotheses Dichotomy and Shattering

VC Analysis

Growth Function
Break Point
VC Dimension and VC Bound

Interpretation and Analysis

Effective Number of Parameters Penalty for Model Complexity Alternatives to VC Analysis

Alternative #1: test-set based approach

- VC analysis
 - we do not know g (the best $h \in \mathcal{H}$) in advance
 - ⇒ should consider all cases by using the union bound

$$\mathbb{P}[|\mathcal{E}_{\text{in}}(g) - \mathcal{E}_{\text{out}}(g)| > \epsilon] \le 2M e^{-2\epsilon^2 N}$$

- \Rightarrow infinite M issue \Rightarrow (all the hassles) \Rightarrow VC bound
- E_{test} approach
 - ightharpoonup g is fixed by training before we compute E_{test} (i.e. _____)
 - ⇒ can use the single inequality

$$\mathbb{P}[|\mathcal{E}_{\text{in}}(q) - \mathcal{E}_{\text{out}}(q)| > \epsilon] \le 2e^{-2\epsilon^2 N}$$

⇒ much tighter than VC bound

Test set versus training set

- common: both are finite samples
 - normally have some variance due to sample size
- ullet a training set has an bias in its estimate of E_{out}
 - : it was used to choose a hypothesis that looked good on it
 - VC bound implicitly considers that bias ⇒ huge error bar
- a test set has no optimistic/pessimistic bias
 - \Rightarrow when you report E_{test} to customers and they try on new data
 - ightharpoonup mostl likely: not surprised (: generalization of $E_{\rm test}$)

$$\mathrm{E}_{\mathrm{out}}(g) \underset{\approx}{\approx} \mathrm{E}_{\mathrm{in}}(g) \underset{\approx}{\approx} 0$$

Alternative #2: bias-variance analysis

- VC analysis: based on binary target functions, but
 - can be extended to real-valued functions
 - as well as to other types of functions
- proofs in those cases: quite technical
 - \Rightarrow no addition to insight VC analysis of binary functions provides
- an alternative approach for real-valued functions
 - lacksquare _____ analysis: $egin{aligned} \mathrm{E}_{\mathrm{out}} = \mathsf{bias} + \mathsf{variance} \end{aligned}$
 - provides new insights into generalization

Outline

Prerequisites

Handling Infinite Number of Hypotheses Dichotomy and Shattering

VC Analysis

Growth Function Break Point VC Dimension and VC Bound

Interpretation and Analysis

Effective Number of Parameters Penalty for Model Complexity Alternatives to VC Analysis

$$E_{out}(g) \le E_{in}(g) + \sqrt{\frac{1}{2N} \ln \frac{2M}{\delta}}$$
 (4)

if ${\cal H}$ has	no break point	any break point
$m_{\mathcal{H}}(N)$ if $m_{\mathcal{H}}(N)$ replaced M in inequality (4)	2^{N} $\sqrt{\frac{1}{2N} \ln \frac{2M}{\delta}} \not\rightarrow 0$ regardless of N	polynomial in N $\sqrt{\frac{1}{2N} {\ln \frac{2M}{\delta}}} \ \to \ 0$ as $N \to \infty$
generalize well?	no	yes
example	convex set	perceptron

- $d_{\mathrm{VC}}(\mathcal{H})$, VC dimension of \mathcal{H} : the most points \mathcal{H} can shatter
 - definition: the largest non-break point (minimum k-1)
 - example: $d_{VC} = d + 1$ for d-dimensional perceptron
 - physical intuition: $d_{\rm VC} pprox \#$ (effective) parameters
 - utility: estimating model complexity & sample complexity
 - rule of thumb: $N \ge 10 \times d_{\rm VC}$ for decent generalization
 - generalization bound: $E_{out} \leq E_{in} + \Omega(N, \mathcal{H}, \delta)$
 - lacktriangle bottom line: models with lower $d_{
 m VC}$ tend to generalize better
- alternatives to VC analysis
 - ightharpoonup test set: use E_{test} as proxy for E_{out} (tighter than VC bound)
 - bias-variance analysis: for real-valued targets