Running Online Surveys with **Nonprobability Samples**

Thomas J. Leeper

Department of Political Science and Government Aarhus University

10 December 2015 **EUI Quantitative Methods Working Group**

Overview

- What is this course about?
- Who are you?

Learning Goals

By the end of today you should be able to:

- Describe logic of design-based and model-based representativeness
- Evaluate the quality of a convenience sample
- Design simple web forms using several tools
- Evaluate trade-offs between various technologies for behavioral research
- Apply all of this to your own research

1 "The Gold Standard"

2 Web Questionnaires

3 Recruitment in Practice

4 Challenges and Opportunities

Introductions

- Who are you?
- What field are you from?

About Me

- Assistant Professor at London School of Economics since September
- Postdoc at Aarhus University 2012–2015
- PhD in Political Science from Northwestern University (2015)
- Interested in:
 - Political psychology
 - Survey—experimental methods
 - Reproducible computational social science

taken a course on survey methods?

- taken a course on survey methods?
- taken a course on experimental design?

- taken a course on survey methods?
- taken a course on experimental design?
- written HTML markup before?

- taken a course on survey methods?
- taken a course on experimental design?
- written HTML markup before?
- run a study on MTurk or Crowdflower, with a vendor like YouGov, or another online platform?

1 "The Gold Standard"

2 Web Questionnaires

3 Recruitment in Practice

4 Challenges and Opportunities

"The Gold Standard"

a population-based experiment uses survey sampling methods to produce a collection of experimental subjects that is representative of the target population of interest for a particular theory ... the population represented by the sample should be representative of the population ot which the researcher intends to extend his or her findings. In population-based experiments, experimental subjects are randomly assigned to conditions by the researcher

p2. from Mutz, Diana. 2011. *Popuation-Based Survey Experiments*. Princeton University Press.

Causal inference is a comparison of two potential outcomes

- Causal inference is a comparison of two potential outcomes
- A potential outcome is the value of the outcome (Y) for a given unit (i) after receiving a particular version of the treatment (X)

- Causal inference is a comparison of two potential outcomes
- A potential outcome is the value of the outcome (Y) for a given unit (i) after receiving a particular version of the treatment (X)
- Each unit has multiple potential outcomes, but we only observe one of them

- Causal inference is a comparison of two potential outcomes
- A potential outcome is the value of the outcome (Y) for a given unit (i) after receiving a particular version of the treatment (X)
- Each unit has multiple potential outcomes, but we only observe one of them
- A causal effect is the difference between these (e.g., $Y_{X=1} - Y_{X=0}$), all else constant

■ We cannot see individual-level causal effects

"The Gold Standard"

Causal Inference in Experiments II

■ We cannot see individual-level causal effects.

- We can see *average causal effects*
 - Ex.: Average difference in participation between those with and without university degrees

■ We cannot see individual-level causal effects.

- We can see *average causal effects*
 - Ex.: Average difference in participation between those with and without university degrees

■ We want to know: $TE_i = Y_{1i} - Y_{0i}$

■ We want to know: $TE_i = Y_{1i} - Y_{0i}$

- We want to know: $TE_i = Y_{1i} Y_{0i}$
- We can average: $ATE = E[Y_{1i} - Y_{0i}] = E[Y_{1i}] - E[Y_{0i}]$

- We want to know: $TE_i = Y_{1i} Y_{0i}$
- We can average: $ATE = E[Y_{1i} - Y_{0i}] = E[Y_{1i}] - E[Y_{0i}]$

But we still only see one potential outcome for each unit:

$$ATE_{naive} = E[Y_{1i}|X=1] - E[Y_{0i}|X=0]$$

- We want to know: $TE_i = Y_{1i} Y_{0i}$
- We can average: $ATE = E[Y_{1i} - Y_{0i}] = E[Y_{1i}] - E[Y_{0i}]$
- But we still only see one potential outcome for each unit:

$$ATE_{naive} = E[Y_{1i}|X=1] - E[Y_{0i}|X=0]$$

Is this what we want to know?

What we want and what we have:

$$ATE = E[Y_{1i}] - E[Y_{0i}]$$
 (1)

$$ATE_{naive} = E[Y_{1i}|X=1] - E[Y_{0i}|X=0]$$
 (2)

What we want and what we have:

$$ATE = E[Y_{1i}] - E[Y_{0i}] \tag{1}$$

$$ATE_{naive} = E[Y_{1i}|X=1] - E[Y_{0i}|X=0]$$
 (2)

Are the following statements true?

$$E[Y_{1i}] = E[Y_{1i}|X=1]$$

$$E[Y_{0i}] = E[Y_{0i}|X=0]$$

What we want and what we have:

$$ATE = E[Y_{1i}] - E[Y_{0i}] \tag{1}$$

$$ATE_{naive} = E[Y_{1i}|X=1] - E[Y_{0i}|X=0]$$
 (2)

- Are the following statements true?
 - $E[Y_{1i}] = E[Y_{1i}|X=1]$
 - $E[Y_{0i}] = E[Y_{0i}|X=0]$
- Not in general!

Only true when both of the following hold:

$$E[Y_{1i}] = E[Y_{1i}|X=1] = E[Y_{1i}|X=0]$$
 (3)

$$E[Y_{0i}] = E[Y_{0i}|X=1] = E[Y_{0i}|X=0]$$
 (4)

- In that case, potential outcomes are independent of treatment assignment
- If true, then:

$$ATE_{naive} = E[Y_{1i}|X = 1] - E[Y_{0i}|X = 0]$$
 (5)
= $E[Y_{1i}] - E[Y_{0i}]$
= ATE

- This holds in experiments because of randomization
 - Units differ only in what side of coin was up
 - Experiments randomly reveal potential outcomes

- This holds in experiments because of randomization
 - Units differ only in what side of coin was up
 - Experiments randomly reveal potential outcomes
- Matching/regression/etc. attempts to eliminate those confounds, such that:

$$E[Y_{1i}|Z] = E[Y_{1i}|X = 1, Z] = E[Y_{1i}|X = 0, Z]$$

 $E[Y_{0i}|Z] = E[Y_{0i}|X = 1, Z] = E[Y_{0i}|X = 0, Z]$

- We want to speak to a population
- But what population is it?

- We want to speak to a population
- But what population is it?
 - A national population?

- We want to speak to a population
- But what population is it?
 - A national population?
 - Adults in Western, industrialized democracies?

- We want to speak to a population
- But what population is it?
 - A national population?
 - Adults in Western, industrialized democracies?
 - All human beings?

- We want to speak to a population
- But what population is it?
 - A national population?
 - Adults in Western, industrialized democracies?
 - All human beings?
- This is rarely specified, but is important when we think about whether a sample is appropriate

Think about your own work

Consider the following:

- What is your research about?
- 2 What population do you aim to generalize to?

Discuss with the person next to you.

A Hypothetical Census

Advantages

Disadvantages

A Hypothetical Census

- Advantages
 - Perfectly representative
 - Sample statistics are population parameters

Disadvantages

A Hypothetical Census

- Advantages
 - Perfectly representative
 - Sample statistics are population parameters

- Disadvantages
 - Costs
 - Feasibility
 - Need

So, instead we sample!

Sampling Frames

- Enumeration (listing) of all units eligible for sample selection
- Random sample from that list

Sampling Frames

- Enumeration (listing) of all units eligible for sample selection
- Random sample from that list
- Building a sampling frame
 - Combine existing lists
 - Canvass/enumerate from scratch

Sampling Frames

- Enumeration (listing) of all units eligible for sample selection
- Random sample from that list
- Building a sampling frame
 - Combine existing lists
 - Canvass/enumerate from scratch
- Concern about coverage: Does frame match population?

Sample Estimates from an SRS

- Each unit in frame has equal probability of selection
- Sample statistics are unweighted
- Variances are easy to calculate
- Easy to calculate sample size need for a particular variance

Sample mean

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i \tag{5}$$

where y_i = value for a unit, and n = sample size

$$SE_{\bar{y}} = \sqrt{(1-f)\frac{s^2}{n}} \tag{6}$$

where f = proportion of population sampled, $s^2 =$ sample element variance, and n = sample size

If all we cared about was a single proportion:

$$Var(p) = (1 - f)\frac{p(1 - p)}{p - 1} \tag{7}$$

Given a large population:

$$Var(p) = \frac{p(1-p)}{n-1} \tag{8}$$

Need to solve the above for n.

(9)

If all we cared about was a single proportion:

$$Var(p) = (1 - f)\frac{p(1 - p)}{p - 1} \tag{7}$$

Given a large population:

$$Var(p) = \frac{p(1-p)}{n-1} \tag{8}$$

Need to solve the above for n.

$$n = \frac{p(1-p)}{v(p)} = \frac{p(1-p)}{SE^2}$$
 (9)

Determining sample size requires:

- \blacksquare A possible value of p
- A desired precision (standard error)

If support for each coalition is evenly matched (p = 0.5):

$$n = \frac{0.5(1 - 0.5)}{SE^2} = \frac{0.25}{SE^2} \tag{10}$$

What precision (margin of error) do we want?

 \blacksquare +/- 2 percentage points: SE = 0.01

$$n = \frac{0.25}{0.01^2} = \frac{0.25}{0.0001} = 2500 \tag{11}$$

What precision (margin of error) do we want?

 \blacksquare +/- 2 percentage points: SE = 0.01

$$n = \frac{0.25}{0.01^2} = \frac{0.25}{0.0001} = 2500 \tag{11}$$

 \blacksquare +/- 5 percentage points: SE = 0.025

$$n = \frac{0.25}{0.000625} = 400 \tag{12}$$

What precision (margin of error) do we want?

 \blacksquare +/- 2 percentage points: SE = 0.01

$$n = \frac{0.25}{0.01^2} = \frac{0.25}{0.0001} = 2500 \tag{11}$$

 \blacksquare +/- 5 percentage points: SE = 0.025

$$n = \frac{0.25}{0.000625} = 400 \tag{12}$$

 \blacksquare +/- 0.5 percentage points: SE = 0.0025

$$n = \frac{0.25}{0.0000625} = 40,000 \tag{13}$$

Sampling Considerations...

Sampling Considerations...

- More complex designs possible, all based on each unit having a known, non-zero probability of being sampled
 - Stratified sampling can produce lower variances

Sampling Considerations...

- More complex designs possible, all based on each unit having a known, non-zero probability of being sampled
 - Stratified sampling can produce lower variances
- Random sampling ensures that samples are, in expectation, representative of the population in all respects
 - Demographics
 - Psychological traits
 - Covariances
 - Potential outcomes

What does it mean for a sample to be representative?

Census

- Census
- SRS (or more complex) design

- Census
- SRS (or more complex) design
- Quota sampling (common prior to the 1940s)

- Census
- SRS (or more complex) design
- Quota sampling (common prior to the 1940s)
- Demographics match population

- Census
- SRS (or more complex) design
- Quota sampling (common prior to the 1940s)
- Demographics match population
- Others?

What does it mean for a sample to be representative?

- Census
- SRS (or more complex) design
- Quota sampling (common prior to the 1940s)
- Demographics match population
- Others?

Which of these matter?

Combining Probability Sampling and Experimental Design

- Sample is representative of population in every respect (in expectation)
- Sample Average Treatment Effect (SATE) is the average of the sample's individual-level treatment effects
 - Unbiased estimate of PATE
 - Not necessarily any unit's individual treatment effect
 - Blocking might reduce variance
- Says nothing about effect heterogeneity
 - Design is optimized for estimating SATE

Credibility of all of this is based on design only

Sampling aspect only works in a world of perfect coverage and no response bias

My View

100% design-based inference does not exist

My View

100% design-based inference does not exist

All survey designs involve reweighting adjustments

My View

100% design-based inference does not exist

- All survey designs involve reweighting adjustments
- Representativeness is a more complex issue than demographic comparisons

My Own Research

	GfK	Poll	Student	Staff	MTurk	Ads	ANES
Dem. (%)	51.3	86.1	75.7	66.4	62.1	72.1	46.2
Rep. (%)	46.0	7.7	17.8	16.4	20.3	14.7	39.3
Lib. (%)	27.8	75.4	68.5	62.7	60.4	66.2	23.8
Con. (%)	35.3	9.4	14.7	19.8	19.1	17.7	36.1
Fem. (%)	51.1	60.8	56.4	50.8	41.7	65.3	51.9
White (%)	77.9	67.6	62.9	60.2	76.0	53.8	80.4
Age	49.4	40-49	18-24	25-34	25-34	25-34	50-54
Interest	2.8	3.5	3.2	2.8	2.7	3.0	3.0
N	593	741	299	128	1024	80	_

Mullinix et al. In press. "The Generalizability of Survey Experiments." Journal of Experimental Political Science.

My View

100% design-based inference does not exist

- All survey designs involve reweighting adjustments
- Representativeness is a more complex issue than demographic comparisons

My View

100% design-based inference does not exist

- All survey designs involve reweighting adjustments
- Representativeness is a more complex issue than demographic comparisons
- Randomization gives us clear causal inference about a *local* effect
 - I would always sacrifice representativeness for clarity of causal inference
 - Focus on figuring out the nature of the *localness*

SUTO Framework

- Cronbach (1986) talks about generalizability in terms of UTO
- Shadish, Cook, and Campbell (2001) speak similarly of:
 - Settings
 - Units
 - Treatments
 - Outcomes
- External validity depends on all of these things

- Setting
- Units
- Treatments
- Outcomes

Your Study

- Setting
- Units
- Treatments
- Outcomes

- Setting
- Units
- Treatments
- Outcomes

Your Study

- Setting
- Units
- Treatments
- Outcomes

In your study, how do these correspond?

- Setting
- Units
- Treatments
- Outcomes

Your Study

- Setting
- Units
- Treatments
- Outcomes

In your study, how do these correspond? how do these differ?

- Setting
- Units
- Treatments
- Outcomes

Your Study

- Setting
- Units
- Treatments
- Outcomes

In your study, how do these correspond?

how do these differ?

do these differences matter?

Common Differences

- Most common thing to focus on is demographic representativeness
 - Sears (1986): "students aren't real people"
 - Western, educated, industrialized, rich, democratic (WEIRD) psychology participants

Common Differences

- Most common thing to focus on is demographic representativeness
 - Sears (1986): "students aren't real people"
 - Western, educated, industrialized, rich, democratic (WEIRD) psychology participants
- But do those characteristics actually matter?

Common Differences

- Most common thing to focus on is demographic representativeness
 - Sears (1986): "students aren't real people"
 - Western, educated, industrialized, rich, democratic (WEIRD) psychology participants
- But do those characteristics actually matter?
- Shadish, Cook, and Campbell tell us to think about:
 - Surface similarities
 - Ruling out irrelevancies
 - Making discriminations
 - Interpolation/extrapolation

 Think about and make an evidence-based argument for why you think there are (or are not) heterogeneous effects

- Think about and make an evidence-based argument for why you think there are (or are not) heterogeneous effects
- If you think there is heterogeneity, then we probably do not care about the SATE anyway
 - Focus on CATE instead
 - $E[Y_{1i}|X=1,Z=z]-E[Y_{0i}|X=0,Z=z]$

- Think about and make an evidence-based argument for why you think there are (or are not) heterogeneous effects
- If you think there is heterogeneity, then we probably do not care about the SATE anyway
 - Focus on CATE instead
 - $E[Y_{1i}|X=1,Z=z]-E[Y_{0i}|X=0,Z=z]$
- Two formal analytic strategies
 - Regression with large number of interactions
 - Bayesian Additive Regression Trees

- Think about and make an evidence-based argument for why you think there are (or are not) heterogeneous effects
- If you think there is heterogeneity, then we probably do not care about the SATE anyway
 - Focus on CATE instead
 - $E[Y_{1i}|X=1,Z=z]-E[Y_{0i}|X=0,Z=z]$
- Two formal analytic strategies
 - Regression with large number of interactions
 - Bayesian Additive Regression Trees
- But remember: you have to convince reviewers!

BART

- Estimate conditional average treatment effects
- BART is essentially an ensemble machine learning method
- Iteratively split a sample into more and more homogeneous groups until some threshold is reached using binary (cutpoint) decisions
- Repeat this a bunch of times, aggregating across results

Green and Kern. 2012. "Modeling Heterogeneous Treatment Effects in Survey Experiments with Bayesian Additive Regression Trees." Public Opinion Quarterly.

Green and Kern. 2012. "Modeling Heterogeneous Treatment Effects in Survey Experiments with Bayesian Additive Regression Trees." Public Opinion Quarterly.

Stratification/Blocking

As soon as we care about heterogeneous effects, it makes sense to stratify and block on factors that might moderate the treatment effect.

Stratification/Blocking

As soon as we care about heterogeneous effects, it makes sense to stratify and block on factors that might moderate the treatment effect.

As soon as we identify all sources of heterogeneity, it doesn't matter what sample we use because effects are *by definition* homogeneous within such strata.

Stratification/Blocking

As soon as we care about heterogeneous effects, it makes sense to stratify and block on factors that might moderate the treatment effect.

As soon as we identify all sources of heterogeneity, it doesn't matter what sample we use because effects are *by definition* homogeneous within such strata.

But, we never know when we've reached that point!

Aside: Induced Value Theory

- Incentivized (economic) experiments rely on induced value theory
- This is a way to reduce heterogeneity
 - Incentives reduce variation across individuals
 - Sample characteristics should matter less (than in other types of research)
- Actually merits empirical testing, though

If we acknowledge and start thinking about effect heterogeneity, does this mean we can use any convenient group of participants as if they were probability samples?

No. Of course not.

Different types:

- Different types:
 - Passive/opt-in/"river sampling"

- Different types:
 - Passive/opt-in/"river sampling"
 - Sample of convenience (not a sample per se)
 - Email list
 - Snowball sample
 - Respondent-driven Sampling
 - Students
 - Crowdsourcing

- Different types:
 - Passive/opt-in/"river sampling"
 - Sample of convenience (not a sample per se)
 - Email list
 - Snowball sample
 - Respondent-driven Sampling
 - Students
 - Crowdsourcing
- Differ in numerous ways
 - Cost
 - "Experience"
 - Attentiveness
 - Demographics

Costs per participant

From one of my studies:

Sample	Cost	n	Cost/participant
National	\$13200	593	\$22.26
Exit Poll	\$3000	741	\$4.05
Students	\$0	299	\$0
Staff	\$1280	128	\$10.00
MTurk	\$550	1024	\$0.54
Ads	\$636	80	\$7.95

- A lot of growing concern about experience
- Larger literature on "panel conditioning"
 - Inconclusive evidence

- A lot of growing concern about experience
- Larger literature on "panel conditioning"
 - Inconclusive evidence

- A lot of growing concern about experience
- Larger literature on "panel conditioning"
 - Inconclusive evidence
- Some numbers:
 - MTurk workers are doing 100+ studies per month

- A lot of growing concern about experience
- Larger literature on "panel conditioning"
 - Inconclusive evidence
- Some numbers:
 - MTurk workers are doing 100+ studies per month
 - Numbers are the same for YouGov panelists

My Advice

- Only work with enumerated populations
 - Each unit is uniquely identifiable

My Advice

- Only work with enumerated populations
 - Each unit is uniquely identifiable
- Without this, you risk many things:
 - Ambiguous eligibility
 - Retakes, treatment crossover
 - No way to evaluate response rates/bias

My Advice

- Only work with enumerated populations
 - Each unit is uniquely identifiable
- Without this, you risk many things:
 - Ambiguous eligibility
 - Retakes, treatment crossover
 - No way to evaluate response rates/bias
- Know something about your sample
 - How does it differ from your target of inference?
 - What theories or evidence would suggest those differences should matter?
 - What can you do to adjust or control for those consequential differences?

Measure, Measure, Measure

The only way to evaluate a sample is to know something about it.

The best way to convince reviewers is to rule out irrelevancies.

Don't forget statistical power...

1 "The Gold Standard"

2 Web Questionnaires

3 Recruitment in Practice

4 Challenges and Opportunities

1 your browser sends an HTTP request to a server

- your browser sends an HTTP request to a server
- the server processes the request and executes server-side code

- your browser sends an HTTP request to a server
- the server processes the request and executes server-side code
- the server replies with the contents of the page

- your browser sends an HTTP request to a server
- the server processes the request and executes server-side code
- the server replies with the contents of the page
- your browser executes client-side

Questionnaires are client side

A web page consists of four things:

- HTML describing content
- Cascading style sheets (CSS) to style that content
- Images or other multimedia content
- Javascript code that makes a page dynamic

```
<html>
<head>
  <title>Survey</title>
</head>
<body>
  <form action="http://httpbin.org/post" method="POST";</pre>
    >
      <label for="q1">Name:
        <input type="text" id="q1" name="q1" />
      </label>
   <input type="submit">
  </form>
</body>
</html>
```

- Every element should have an opening <tag> and closing </tag>
- Necessary tags:
 - <html></html>
 - <head></head>
 - <body></body>

- Every element should have an opening <tag> and closing </tag>
- Necessary tags:
 - <html></html>
 - <head></head>
 - <body></body>
- Use an intelligent text editor (not Notepad)

- Every element should have an opening <tag> and closing </tag>
- Necessary tags:
 - <html></html>
 - <head></head>
 - <body></body>
- Use an intelligent text editor (not Notepad)
- Use a validator: https://validator.w3.org/nu/

- Every element should have an opening <tag> and closing </tag>
- Necessary tags:
 - <html></html>
 - <head></head>
 - <body></body>
- Use an intelligent text editor (not Notepad)
- Use a validator: https://validator.w3.org/nu/
- Remember that browsers differ

Test Yourself!

Make a simple complete HTML document that passes displays a paragraph of text and passes the validator

https://validator.w3.org/nu/

- Common elements
 - <div></div>
 -

 - <h1>, <h2>, ...
 -

- Tag attributes describe each element:
 - id: unique identifier for each element
 - class: grouping identifier for elements (useful for CSS)
 - style: in-line CSS styling

- Common form elements
 - <form></form>
 - <input />
 - <label></label>
 - <button />

- Common form elements
 - <form></form>
 - <input />
 - <label></label>
 - <button />
- Attributes specific to form elements
 - type: the kind of input
 - "radio"
 - "checkbox"
 - "text"
 - name: the "variable" being recorded
 - value: the default variable value

Test Yourself!

Make a simple HTML form that displays a question and a free response answer and passes the validator

https://validator.w3.org/nu/

Test Yourself!

Make a simple HTML form that displays a question and a multiple choice answer and passes the validator

https://validator.w3.org/nu/

Some other elements:

- Bullet list:
- Enumerated list:
 - List element:
- Tables:
 - Table:

HTML files can also contain other content

- Style sheets (CSS) in <style></style> elements in head
- Javascript in <script></script> elements in head and/or body
- Images ()
- HTML5 features (e.g., <canvas>, <svg>)

■ HTML originally (until 1996) had to be styled manually

You can search the White House web site for:

- . All White House web features combined: Press releases, Radio Addresses, photographs and Web Pages.
 - · White House documents: Publicly-released documents since the start of the Clinton Administration.
 - · The contents of this web site: Just the pages of this service.
 - o Radio Addresses of the President: Search and listen to the President's Saturday Radio Addresses.
 - Executive Orders: Official actions, procedural changes, and organizational changes.
 - o White House photographs: Search a public collection of photographs.
- · You can also search the GovBot database all government sites

You can also browse some historic national documents:

- · The Declaration of Independence
- . The Constitution of the United States of America

If you wish to receive White House publications on a daily basis, you can subscribe to the publications mailing list

Presidential addresses and the White House press releases may be found in the Briefing Room.

■ HTML originally (until 1996) had to be styled manually

- HTML originally (until 1996) had to be styled manually
- CSS allows you to style a document separately from its content
 - Class- and element-specific styling
 - Change styling without changing the HTML

- HTML originally (until 1996) had to be styled manually
- CSS allows you to style a document separately from its content
 - Class- and element-specific styling
 - Change styling without changing the HTML
- Can be included inline, in <head>, or in separate document

Test Yourself!

Make a simple HTML form uses CSS to style the answer options to your past survey and passes the validator

https://validator.w3.org/nu/

```
<html>
<head>
  <title>Redirect</title>
</head>
<body>
  <script>
 var u = new Array ();
 u[0] = "http://www.google.com";
 u[1] = "http://www.bing.com";
 u[2] = "http://www.yahoo.com";
 var i = Math.floor(u.length*Math.random());
 document.write("Redirecting to " + u[i]);
  window.location.replace(u[i]);
  </script>
</body>
</html>
```

```
<html>
<head>
  <title>Redirect</title>
</head>
<body>
  Please read the following:
  <script>
 var u = new Array ();
 u[0] = "Treatment 1":
 u[1] = "Treatment 2";
 u[2] = "Treatment 3";
 var i = Math.floor(u.length*Math.random());
 document.write("<p><b>" + u[i] + "</b></p>");
  </script>
</body>
</html>
```

Test Yourself!

Make a simple HTML form that displays a randomly selected piece of text and passes the validator

https://validator.w3.org/nu/

```
<ht:ml>
<head>
  <title>Survev</title>
</head>
<body>
  <div id="player"></div>
 <script>
 var tag = document.createElement('script');
 tag.src = "https://www.youtube.com/iframe_api";
 var firstScriptTag = document.getElementsByTagName('script')[0];
 firstScriptTag.parentNode.insertBefore(tag, firstScriptTag);
  var player;
  function onYouTubeIframeAPIReady() {
    player = new YT.Player('player', {
      height: '390'.
      width: '640'.
      videoId: 'OBmhjfOrKe8',
      playerVars: {
        'controls': '0'.
        'showinfo': '0',
        'rel': '0'
      ٦.
      events: {
        'onReady': onPlayerReady
    });
 function onPlayerReady(event) {
    event.target.playVideo();
  </script>
</body>
</html>
```

If client-side is so cool...

... why do we care about server-side technology?

Server-Side

- HTML (markup)
- CSS (styling)
- Javascript (scripting)

Server-Side

- HTML (markup)
- CSS (styling)
- Javascript (scripting)

Server-Side

- Python, PHP, ...
- Cookies
- Databases

- HTML (markup)
- CSS (styling)
- Javascript (scripting)

Server-Side

- Python, PHP, ...
- Cookies
- Databases

We need a server to record a participant's behavior

Web Questionnaires

- Google Spreadsheet Forms: https://www.google.co.uk/forms/about/
- Survey Monkey:
 https://www.surveymonkey.com/home/
- Qualtrics: https://www.qualtrics.com/login/

Web Questionnaires

- Google Spreadsheet Forms: https://www.google.co.uk/forms/about/
- Features
 - Free!
 - Somewhat complex branching
 - No randomization

Google Consumer Surveys

- http://www.google.com/insights/ consumersurveys/home
- Features
 - Cheap and fast
 - Very limited functionality
 - One-off questionnaires
 - Great for pilot testing

Survey Monkey

- https://www.surveymonkey.com/home/
- Features
 - Free account
 - Limited surveys and respondents
 - No randomization in free account
 - Nice respondent management tools ("collectors")

Test Yourself!

Create a simple survey and create a panel including yourself and maybe me (thosjleeper@gmail.com) as recipients. Try sending the survey.

Qualtrics

- https://www.qualtrics.com/login/
- Features
 - Free account w/ limited surveys and respondents
 - Much more expensive than SurveyMonkey
 - Powerful randomization functionality
 - Useful "embedded data" controls
 - Optimized for mobile

Test Yourself!

Create two kinds of randomization:

- Using a random embedded data field
- Using block randomization

Preview the survey to make sure it works.

Connecting Surveys to MTurk

```
<ht.ml>
<head></head>
<body>
  <script>
 function turkGetParam( name ) {
   var regexS = "[\?&]"+name+"=([^&#]*)";
   var regex = new RegExp( regexS );
   var tmpURL = window.location:
   var results = regex.exec( tmpURL ):
   if ( results == null ) {
     return "":
   } else {
     return results[1];
 var assign = turkGetParam('assignmentId');
 var worker = turkGetParam('workerId');
  var surveylink = new String("http://httpbin.org/get?"+"assignmentId="+assign+"&workerId="+worker);
  if(assign=="ASSIGNMENT_ID_NOT_AVAILABLE") {
     /* DO NOTHING */
 else {
     document.write("Visit <a href='" + surveylink + "' target='_blank'>this link</a>");
  </script>
  <form action="http://httpbin.org/post">
    <label for="code">Code: <input type="text" id="code" name="code" /></label>
   <input type="submit">
  </form>
</body>
</html>
```

Test Yourself!

Setup an embedded data field in Qualtrics and then use a webform or simple hyperlink to redirect someone to your survey using that embedded data field.

Try out the form (or link) and see how it is registered in your Qualtrics data.

 Qualtrics highlights challenge of modern devices

Recruitment

 Qualtrics highlights challenge of modern devices

- Qualtrics highlights challenge of modern devices
- But it's not just device size
 - Different browsers
 - Readability
 - Images/video

- Qualtrics highlights challenge of modern devices
- But it's not just device size
 - Different browsers
 - Readability
 - Images/video
- Web represents a general loss of control

- Qualtrics highlights challenge of modern devices
- But it's not just device size
 - Different browsers
 - Readability
 - Images/video
- Web represents a general loss of control
- So, key is know your sample before you use it

Two flavors of pretesting

- Technical pretesting
 - Make sure your instrument works
 - Across browsers/platforms/devices

- Substantive pretesting
 - Does your instrument make sense
 - Does it make sense for your participants

Recruitment

1 "The Gold Standard"

2 Web Questionnaires

Recruitment in Practice

4 Challenges and Opportunities

For Multi-Person Games

- Simultaneous participation can be challenging
- Best workflow is lab-like:
 - 1 Recruit participants
 - 2 Schedule them for time slots
 - 3 Monitor to ensure participants show up
 - 4 Pay a show-up fee
- So, think of the following as relevant to the first two steps in that process

"The Gold Standard"	Web Questionnaires	Recruitment	Challenges and Opportunities

Professional Panels

■ Big players: SSI, YouGov, GfK, TNS/Gallup

Recruitment

- Online panels of respondents
- Respondents participate for incentives
- Study costs are negotiated
 - Sample size
 - Study length (number of survey items)
 - Targetting
 - Timing

Considerations

- Recruitment
 - Sampling
 - Opt-in
 - A mix of each
- Incentives
- Frequency of participation
- "Profile" variables
- Quotas, post-stratification, weighting
- Respondent "quality"

KnowledgeNetworks versus YouGov

- Big debate in early 2000s about online panels
 - KN used ABS to build a representative panel
 - YouGov created an opt-in panel; used "sample matching"

KnowledgeNetworks versus YouGov

- Big debate in early 2000s about online panels
 - KN used ABS to build a representative panel
 - YouGov created an opt-in panel; used "sample matching"
- YouGov's process:
 - Randomly sample from a list
 - Match each sampled individual to someone in their opt-in panel
 - Survey the matched individuals

KnowledgeNetworks versus YouGov

- Big debate in early 2000s about online panels
 - KN used ABS to build a representative panel
 - YouGov created an opt-in panel; used "sample matching"
- YouGov's process:
 - Randomly sample from a list
 - Match each sampled individual to someone in their opt-in panel
 - Survey the matched individuals
- Evidence inconclusive but many think KN approach is better

Opt-in Crowdsourcing Sites

- Not exactly a panel (fully opt-in)
- Incentivized participation

Opt-in Crowdsourcing Sites

- Not exactly a panel (fully opt-in)
- Incentivized participation
- Prominent examples
 - MTurk
 - Crowdflower
 - Microworkers
 - Prolific Academic

"The Gold Standard"	Web Questionnaires	Recruitment	Challenges and Opportunities

Test Yourself!

Use one of the sites we discussed to setup a basic study invitation.

Probably best to try Crowdflower or Prolific Academic.

Other Recruitment Methods

- Online advertising
- Webforums
- Email lists (students, staff, etc.)

Randomization

- Two flavors of randomness
- Pseudo-random
 - Not actually random
 - Reproducible
 - Implemented everywhere
 - Excel: =RANDBETWEEN(1,3)
 - R: sample(1:3, 100, TRUE)
- Truly random
 - Not reproducible
 - http://www.random.org/

"The Gold Standard"	Web Questionnaires	Recruitment	Challenges and Opportunities

Open Science Considerations

- Regardless of how you run studies, try to make them *reproducible*
- What does this mean?
- Why do we care?

Reproducibility

Recruitment

Reproducibility

- Everything you do for your study should be publicly shared after publication
 - Dataverse
 - Open Science Framework
 - figshare

Recruitment

Reproducibility

- Everything you do for your study should be publicly shared after publication
 - Dataverse
 - Open Science Framework
 - figshare
- This helps others build on your work

Reproducibility

Everything you do for your study should be publicly shared after publication

Recruitment

- Dataverse
- Open Science Framework
- figshare
- This helps others build on your work
- Makes it easier for you to build on your work

Reproducibility

- Everything you do for your study should be publicly shared after publication
 - Dataverse
 - Open Science Framework
 - figshare
- This helps others build on your work
- Makes it easier for you to build on your work
- Makes you a more careful researcher

Some Examples

- Leeper, Thomas J. 2014. "The Informational Basis for Mass Polarization." Public Opinion Quarterly 78(1): 27–46.
 - On Dataverse: http://hdl.handle.net/1902.1/21964
- Mullinix, Kevin J., Leeper, Thomas J., Druckman, James N., and Freese, Jeremy. 2015. "The Generalizability of Survey Experiments." Journal of Experimental Political Science: In press.
 - On Dataverse: http://dx.doi.org/10.7910/DVN/MUJHGR

What should be shared?

- Recruitment protocol and materials
- Complete questionnaire (plain text)
- Web forms/markup
- Data (raw, but anonymized)
- Codebook
- Data Preparation Code
- Analysis Code
- Manuscript pre-print
- Preanalysis plan (if applicable)
- README

Recruitment

Be selfish

Be selfish: Be reproducible for yourself first; benefits for science are a positive externality

- Be selfish: Be reproducible for yourself first; benefits for science are a positive externality
- Start early

- Be selfish: Be reproducible for yourself first; benefits for science are a positive externality
- Start early: Develop a reproducible workflow from day 1

- Be selfish: Be reproducible for yourself first; benefits for science are a positive externality
- Start early: Develop a reproducible workflow from day 1
- Save everything

- Be selfish: Be reproducible for yourself first; benefits for science are a positive externality
- Start early: Develop a reproducible workflow from day 1
- Save everything: Archive frequently so you never lose your work

"The Gold Standard"	Web Questionnaires	Recruitment	Challenges and Opportunities

Developing Custom Apps

- Apps provide much more data than HTML forms
 - Geolocation
 - Accelerometer (and other sensors)
 - User account data (with permissions)

Developing Custom Apps

Apps provide much more data than HTML forms

Recruitment

- Geolocation
- Accelerometer (and other sensors)
- User account data (with permissions)
- MIT AppInventor: http://appinventor.mit.edu/
- Trinity edX course (link)

"The Gold Standard"	Web Questionnaires	Recruitment	Challenges and Opportunities

1 "The Gold Standard"

2 Web Questionnaires

3 Recruitment in Practice

Challenges and Opportunities

Reweighting

- It may be possible to reweight convenience sample data to match a population
- Any method for this is "model-based" (rather than "design-based")
- Not widely used or evaluated (yet)
- All techniques build on the idea of stratification

Overview of Stratification

- Define population
- Construct a sampling frame
- Identify variables we already know about units in the sampling frame
- Stratify sampling frame based on these characteristics
- 5 Collect an SRS (of some size) within each stratum
- 6 Aggregate our results

Estimates from a stratified sample

- Within-strata estimates are calculated just like an SRS
- Within-strata variances are calculated just like an SRS

- Sample-level estimates are weighted averages of stratum-specific estimates
- Sample-level variances are weighted averages of strataum-specific variances

 Used to correct for nonresponse, coverage errors, and sampling errors

- Used to correct for nonresponse, coverage errors, and sampling errors
- Reweight sample data to match population distributions
 - Divide sample and population into strata
 - Weight units in each stratum so that the weighted sample stratum contains the same proportion of units as the population stratum does

- Used to correct for nonresponse, coverage errors, and sampling errors
- Reweight sample data to match population distributions
 - Divide sample and population into strata
 - Weight units in each stratum so that the weighted sample stratum contains the same proportion of units as the population stratum does
- There are numerous other related techniques

 Imagine our sample ends up skewed on immigration status and gender relative to the population

Group	Pop.	Sample	Rep.	Weight
Native-born, Female	.45	.5		
Native-born, Male	.45	.4		
Immigrant, Female	.05	.07		
Immigrant, Male	.05	.03		

 Imagine our sample ends up skewed on immigration status and gender relative to the population

Group	Pop.	Sample	Rep.	Weight
Native-born, Female	.45	.5	Over	
Native-born, Male	.45	.4	Under	
Immigrant, Female	.05	.07	Over	
Immigrant, Male	.05	.03	Under	

 Imagine our sample ends up skewed on immigration status and gender relative to the population

Group	Pop.	Sample	Rep.	Weight
Native-born, Female	.45	.5	Over	0.900
Native-born, Male	.45	.4	Under	
Immigrant, Female	.05	.07	Over	
Immigrant, Male	.05	.03	Under	

 Imagine our sample ends up skewed on immigration status and gender relative to the population

Group	Pop.	Sample	Rep.	Weight
Native-born, Female	.45	.5	Over	0.900
Native-born, Male	.45	.4	Under	1.125
Immigrant, Female	.05	.07	Over	0.714
Immigrant, Male	.05	.03	Under	1.667

- This is the basis for inference in non-probability samples
 - Demographic representativeness
- Online panels will reweight sample based on age, sex, education, etc.
- Purely design-based surveys are increasingly rare

The Xbox Study

Wang et al. 2015. "Forecasting elections with non-representative polls." International Journal of Forecasting.

Challenges and Opportunities

The Xbox Study

Wang et al. 2015. "Forecasting elections with non-representative polls." *International Journal of Forecasting*.

Mullinix et al. In press. "The Generalizability of Survey Experiments." *Journal of Experimental Political Science*.

Propensity Score Approach

- Define a target population to which sample inference is intended to generalize
- Estimate a propensity score model
 - Pool experimental samples and target population units
 - Predict membership of all target and sample units in the experimental sample
- Using fitted logits, divide the population and sample into strata
 - Number of strata is commonly 5 (Cochran, 1968)
- Estimate stratum-specific ATE
- 5 Calculate weighted average of stratum-level estimates

Propensity Score Approach

Target population average treatment effect:

$$\sum_{\nu=1}^{5} p(\nu) T(\nu) \tag{14}$$

where p(v) is the proportion of the target population in a given stratum, v, and T(v) is the estimated effect from stratum v of the experimental sample

Propensity Score Approach

Effect variance.

$$\sum_{v=1}^{5} p(v)^{2} V(v), \tag{15}$$

where V(v) is the variance of the estimated experimental sample effect for stratum v

Propensity Score Subclassification Estimator

Weights				Estimates		
Stratum	Nat'l	Sample	Loan	DREAM (Pro)	DREAM (Con)	Rally (All)
1	0.20	0.83	0.94 (0.08)	0.06 (0.11)	-0.22 (0.12)	0.74 (0.10)
2	0.20	0.11	0.99 (0.26)	0.22 (0.37)	-0.28 (0.36)	0.77 (0.29)
3	0.20	0.04	1.28 (0.43)	-0.61 (0.58)	-1.76 (0.54)	1.00 (0.45)
4	0.20	0.01	1.99 (0.73)	0.29 (1.12)	0.56 (0.89)	1.44 (0.79)
5	0.20	0.00				
Sample	-	-	1.04 (0.30)	-0.01 (0.44)	-0.34 (0.38)	0.79 (0.33)
Nat'l	-	-	1.14 (0.18)	0.02 (0.22)	-0.94 (0.23)	0.94 (0.19)

So does reweighting solve everything forever?

- Need well-defined target population
 - and detailed covariate data
 - and large stratum sizes

- Need well-defined target population
 - and detailed covariate data
 - and large stratum sizes
- Purely model-based, so only as good as the model
 - What unobservables might be hiding bias?
 - What reweighting might worse bias?

- Need well-defined target population
 - and detailed covariate data
 - and large stratum sizes
- Purely model-based, so only as good as the model
 - What unobservables might be hiding bias?
 - What reweighting might worse bias?
- Non-coverage is a potentially huge problem

- Need well-defined target population
 - and detailed covariate data
 - and large stratum sizes
- Purely model-based, so only as good as the model
 - What unobservables might be hiding bias?
 - What reweighting might worse bias?
- Non-coverage is a potentially huge problem
- Not well-tested on experimental data

Mode Effects and Comparisons

Behavioral research is historically lab-based

Mode Effects and Comparisons

- Behavioral research is historically lab-based
- Online mode is different in many ways aside from mode
 - Self-paced
 - Anonymous
 - Private
 - Computer-based
 - General loss of experimental control

Mode Effects and Comparisons

- Behavioral research is historically lab-based
- Online mode is different in many ways aside from mode
 - Self-paced
 - Anonymous
 - Private
 - Computer-based
 - General loss of experimental control
- Two big consequences
 - Attrition
 - Lower attention

Attrition

- We care about two issues:
 - Who leaves a study early
 - When they leave a study

Attrition

- We care about two issues:
 - Who leaves a study early
 - When they leave a study
- We care about representativeness (not just demographically)

Attrition

- We care about two issues:
 - Who leaves a study early
 - When they leave a study
- We care about representativeness (not just demographically)
- Analyze when participants leave study to identify difficult, confusing, or problematic study elements
 - Ideally, do pilot tests

Custom Panels

- Creating your own panel is great
 - Carefully sample on specific characteristics
 - Organize repeated interviewing or interaction
- Lots of additional issues
 - Attrition
 - Compensation
 - Panel Conditioning
- See Callegaro et al. 2014. Online Panel Research: A Data Quality Perspective. Wiley.

Attention Checking

- Online mode invites satisficing
- Attention checking can help, but is imperfect

Apparent Satisficing

- Filter out respondents based on response behavior
- Some common measures:
 - "Straightlining"
 - Non-differentiation
 - Acquiescence
 - Nonresponse
 - DK responding
 - Speeding
- Difficult to detect
- Difficult to distinguish from "real" responses

Metadata/Paradata

- Timing
 - Some survey tools will allow you to time page
 - Make a prior rules about dropping participants for speeding

Metadata/Paradata

- Timing
 - Some survey tools will allow you to time page
 - Make a prior rules about dropping participants for speeding
- Mousetracking or eyetracking
 - Mousetracking is unobtrusive
 - Eyetracking requires participants opt-in

Metadata/Paradata

- Timing
 - Some survey tools will allow you to time page
 - Make a prior rules about dropping participants for speeding
- Mousetracking or eyetracking
 - Mousetracking is unobtrusive
 - Eyetracking requires participants opt-in
- Record focus/blur browser events

Direct Measures

How closely have you been paying attention to what the questions on this survey actually mean?

Direct Measures

How closely have you been paying attention to what the questions on this survey actually mean?

- While taking this survey, did you engage in any of the following behaviors? Please check all that apply.
 - Use your mobile phone
 - Browse the internet
 -

Substantive Manipulation Check

- Two common approaches:
 - Information recall or understanding
 - Measure level of manipulated treatment variable
- Risky to remove cases based on this because it is a form of conditioning on post-treatment variables
- May be useful to consider either a mediator of effects

Instructional Manipulation Check

We would like to know if you are reading the questions on this survey. If you are reading carefully, please ignore this question, do not select any answer below, and click "next" to proceed with the survey.

Strongly disagree
Somewhat disagree
Neither agree nor disagree
Somewhat agree
Strongly agree

Instructional Manipulation Check

Do you agree or disagree with the decision to send British forces to fight ISIL in Syria? We would like to know if you are reading the questions on this survey. If you are reading carefully, please ignore this question, do not select any answer below, and click "next" to proceed with the survey.

Strongly disagree
Somewhat disagree
Neither agree nor disagree
Somewhat agree
Strongly agree

Attention Checking

In summary...

- Attention checking can be useful
- Lots of options
- No obvious best metric
- Can be analytically consequential

To Sum Up...

- Nationally representative samples are a hypothetical gold standard for behavioral research
- We can get a lot of leverage from non-representative samples
- Online context also enables innovative designs
- Wide array of tools available to implement experiments and recruit participants

Thanks!

I will be around for questions.

But don't hesitate to be in touch later on:

- Slides: http://www.thomasleeper.com/websurveycourse
- Email: thosjleeper@gmail.com
- Twitter: @thosjleeper
- GitHub: @leeper

Experimental Methods

- Druckman et al. 2011. Cambridge Handbook of Experimental Political Science. Cambridge.
- Gerber and Green. 2011. Field Experiments. W.W. Norton.
- Mutz. 2011. *Population-Based Survey Experiments*. Princeton.
- Shadish et al. 2001. Experimental and Quasi-Experimental Designs for Generalized Causal Inference. Houghton Mifflin.

Survey Methods

- Groves et al. 2008. *Survey Methodology*. 2nd Edition. Wiley.
- Lohr. 2010. Sampling: Design and Analysis. 2nd Edition. Cengage.

Online Surveys

- Callegaro et al. 2015. Web Survey Methodology. Sage.
- Callegaro et al. 2015. *Online Panel Research:* A Data Quality Perspective. Wiley.