ARITHMÉTIQUE -

Exercices complémentaires – Feuille 4

1 Groupes et sous-groupes

Exercice 1. Les lois de composition interne sur G indiquées ci-dessous définissent-elles une structure de groupe? Dans un cas affirmatif, s'agit-il d'un groupe abélien.

- a) G =]-1,1[avec $x \star y = \frac{x+y}{1+xy}, \forall x,y \in G.$
- b) $G = \{z \in \mathbb{C} \mid |z| = 2\}$ pour la multiplication usuelle.
- c) $G = \mathbb{R}_+$ pour la multiplication usuelle.
- d) $G = \{f_{a,b} : \mathbb{R} \to \mathbb{R} \text{ avec } x \mapsto ax + b \mid a \in \mathbb{R}^*, b \in \mathbb{R} \}$ pour la loi de compositions des applications.
- e) $G = \mathbb{R} \setminus \{-1\}$ muni de la loi $x * y = x + y + xy, \forall x, y \in G$.
- f) $G = \{-1, 1, i, -i\} \subset \mathbb{C}$ pour la multiplication usuelle.
- g) $G = \{\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \mid a \in \mathbb{R} \setminus \{0\}\}$ muni de la loi de multiplication usuelle des matrices de $\mathcal{M}_2(\mathbb{R})$.

Exercice 2. Soit $G = \{f_1, f_2, f_3, f_4\}$ d'ensemble composé par quatre fonctions de \mathbb{R}^* dans \mathbb{R}^* définies par

$$f_1(x) = x$$
 $f_2(x) = \frac{1}{x}$ $f_3(x) = -x$ $f_4(x) = -\frac{1}{x}$

Montrer que G muni de la loi de composition sur les fonctions est un groupe. Est-il abélien?

Exercice 3. Soit $\triangle ABC$ un triangle équilatéral dans le plan réel, dont le centre d'équilibre est O.

- a) Soit $\mathcal{R} = \{\rho_{\alpha} : \mathbb{R}^2 \to \mathbb{R}^2 \text{ rotation de } \alpha \text{ degrés et centre } O\}$. Vérifier que (\mathcal{R}, \circ) muni de la loi de compositions entre applications est un groupe.
- b) Déterminer \mathcal{R}_{ABC} , l'ensemble des rotations de centre O qui laissent invariant l'ensemble $\{A,B,C\}$.
- c) Est-ce que \mathcal{R}_{ABC} est un sous-groupe de \mathcal{R} avec la loi de composition \circ ?
- d) Dresser la table de groupe de \mathcal{R}_{ABC} . Est-il un groupe abélien?
- e) Soient L_1, L_2, L_3 les trois médianes du triangle, et on considère $\sigma_1, \sigma_2, \sigma_3 : \mathbb{R}^2 \to \mathbb{R}^2$ les réflexions du plan euclidien par rapport aux droites L_1, L_2, L_3 . On définit $G = \mathcal{R}_{ABC} \cup \{\sigma_1, \sigma_2, \sigma_3\}$.

On admit que \circ est une loi de composition interne dans \mathcal{R}_{ABC} . Construire la table d'opérations de (G, \circ) et en déduire qu'il a une structure de groupe (appelé le groupe diédral d'ordre 6).

f) Est-ce que (G, \circ) est-il un groupe abélien? Déterminer les sous-groupes de (G, \circ) . Forment les réflexions $\{\sigma_1, \sigma_2, \sigma_3\}$ un sous-groupe de G?

2 Arithmétique des entiers

Exercice 4. En utilisant des congruences :

- a) Montrer que $34^{57} 1$ est multiple de 11.
- b) Trouver le reste de la division euclidienne de 2^2 et 2^{342} par 5.
- c) Montrer que $9518^{42} 4$ est divisible par 5.

Exercice 5. Montrer que, pour tout n entier impair, $n^2 - 1$ est divisible par 8.

Exercice 6. Démontrer que, pour tout $n \in \mathbb{N}$:

$$n^2 + 4n + 7 \equiv 3 \quad [n+2]$$

En déduire le reste r dans la division euclidienne de $n^2 + 4n + 7$ par n + 2, pour tout $n \in \mathbb{N}$.

Exercice 7. On va calculer les deux dernières chiffres du nombre 2^{1000} .

- a) Calculer $2^{12} \equiv -2^2$ [100].
- b) Montrer que $2^{20} \equiv -2^{10}$ [100].
- c) Soit $a = 2^{10}$, vérifier que $a^2 \equiv -a$ [100]. Montrer que $a^{2^n} \equiv -a$ [100], pour tout $n \in \mathbb{N}^*$.
- d) Exprimer $100 = \overline{100}^2$ en base 2. En déduire le résultat.

Exercice 8. En utilisant l'algorithme d'Euclide, déterminer le PGCD de 57970 and 10353 et déterminer deux entiers relatifs u et v tels que 57970u + 10353v = 34.

Exercice 9. Le but de cet exercice est de démontrer que $2222^{5555} + 5555^{2222}$ est multiple de 7.

- a) Calculer 2222 [7], 5555 [7], 2222 [6], 5555 [6].
- b) Déterminer la suite des 3^n [7]. Quelle est sa période?
- c) En utilisant les résultats précédents, démontrer que $2222^{5555} \equiv 5$ [7], $5555^{2222} \equiv 2$ [7] et en déduire le résultat.

Exercice 10. Combien l'armée de Han Xing comporte-t-elle de soldats si, rangés par trois colonnes, il reste deux soldats, rangés par cinq colonnes, il reste trois soldats et, rangés par sept colonnes, il reste deux soldats?

Exercice 11. Montrer que le PGCD de 2n + 4 et 3n + 3 ne peut être que 1, 2, 3 ou 6.

Exercice 12. Est-ce que peut-on préparer un envoie postal de 2 euros et 11 centimes avec des timbres de 15 et 21 centimes? Et avec des timbres de 2 et 13 centimes? Donner les solutions, s'il en existent.

Exercice 13. Soient a et b des nombres premiers entre eux. Montrer que $a \wedge (a+b) = b \wedge (a+b) = 1$, puis $(a+b) \wedge ab = 1$.