# CICLO FORMATIVO DE GRADO SUPERIOR DESARROLLO DE APLICACIONES WEB

## **CURSO 2022/2023**

Módulo : Sistemas Informáticos Práctica : Gestión de Procesos



Victor Stala.



#### Ejercicio 1:

Teniendo la memoria dividida en unidades de asignación de tamaño 20k, 14k, 20k, 12k, 7k, 2k, 15k, respectivamente ¿Según los algoritmos anteriores en qué unidades se asignarían los procesos P1, P2, P3 sabiendo que ocupan 30k, 2k, 13k respectivamente? ¿cuál de ellos produce menos fragmentación interna?

Procesos: P1(30K) P2(2K) P3(13K), P1 no cabe y el mejor ajuste tiene menos

| •       | 4      |       |       |   |
|---------|--------|-------|-------|---|
| fragmen | +      | n ini | torna | • |
| HAUHHEI | 114616 |       |       |   |
|         |        |       |       |   |

|      | Primero    | Mejor    | Peor       | Siguiente  |
|------|------------|----------|------------|------------|
| 20k  | P2         |          | P2         | P2         |
| 14k  | P3         | P3       |            | P3         |
| 20k  |            |          | P3         |            |
| 12k  |            |          |            |            |
| 7k   |            |          |            |            |
| 2k   |            | P2       |            |            |
| 15k  |            |          |            |            |
| FRAG | 18k+1k=19k | 1k+0k=1k | 18K+7K=25K | 18K+1K=19K |

#### Ejercicio 2:

Teniendo la memoria dividida en unidades de asignación de tamaño 8k, 14k, 10k, 7k, 7k, 2k, 15k, respectivamente ¿Según los algoritmos anteriores en qué unidades se asignarían los procesos P1, P2, P3 sabiendo que ocupan 7k, 15k, 13k respectivamente? ¿cuál de ellos produce menos fragmentación interna?

Procesos: P1(7K) P2(10K) P3(12K), el mejor ajuste tiene menos fragmentación interna.

|      | Primero     | Mejor       | Peor      | Siguiente   |
|------|-------------|-------------|-----------|-------------|
| 8k   | P1          |             |           | P1          |
| 14k  | P2          | P3          | P3        | P2          |
| 10k  |             | P2          | P2        |             |
| 7k   |             | P1          |           |             |
| 7k   |             |             |           |             |
| 2k   |             |             |           |             |
| 15k  | P3          |             | P1        | P3          |
| FRAG | 1k+4k+3k=8K | 0K+0K+2K=2K | 8K+2K=10K | 1k+4k+3k=8K |

Victor Stala Pg.2



### Ejercicio 3:

Teniendo la memoria dividida en unidades de asignación de tamaño 10k, 4k, 2k, 22k, 1k, 12k, 5k, respectivamente ¿Según los algoritmos anteriores en qué unidades se asignarían los procesos P1, P2, P3 sabiendo que ocupan 2k, 10k, 12k respectivamente? ¿cuál de ellos produce menos fragmentación interna?

Procesos: P1(2K) P2(10K) P3(12K), el mejor ajuste tiene menos fragmentación interna.

|      | Primero       | Mejor       | Peor          | Siguiente     |
|------|---------------|-------------|---------------|---------------|
| 10k  | P1            | P2          | P2            | P1            |
| 4k   |               |             |               |               |
| 2k   |               | P1          |               |               |
| 22k  | P2            |             | P1            | P2            |
| 1k   |               |             |               |               |
| 12k  | P3            | P3          | P3            | P3            |
| 5k   |               |             |               |               |
| FRAG | 8K+12K+0K=20K | 0K+0K+0K=0K | 20K+0K+0K=20K | 8K+12K+0K=20K |

Victor Stala Pg.3