ETH Zurich Guarantees for Machine Learning 23

Homework #1: Concentration bounds

(Due: 12/10/23)

Name: XXX, Student ID: XXX Students discussed with: None

Problem 1: Optional Warm-up Optimality of polynomial Markov

Solution:

(a) Simply we let X=a with probability 1, which is equivalent to the statement $\mathbb{E}(X\geq a)=1$. $\mathbb{E}(X)=\sum_i i*\mathbb{P}(X=i)=a*\mathbb{P}(X=a)=a$ since $\mathbb{P}(x\neq a)=0$ according to the definition of random variable X. Therefore, $\mathbb{E}(X\geq a)=1=\frac{a}{a}=\frac{\mathbb{E}(X)}{a}$, which meets the equality condition of Markov's inequality at a point a>0.

(b) Recall that the Taylor expansion for $e^{\lambda X} = \sum_{i=0} \frac{(\lambda X)^i}{i!}$, then we relate $\mathbb{E}(e^{\lambda X})$ to δ with numerator and denominator multiplying δ^i :

$$\mathbb{E}(e^{\lambda X}) = \sum_{i=0}^{\infty} \frac{(\lambda X)^{i}}{i!} \times \frac{\delta^{i}}{\delta^{i}}$$

$$= \sum_{i=0}^{\infty} \frac{(\lambda \delta)^{i}}{i!} \times \frac{\delta^{i}}{\delta^{i}}$$

$$= \sum_{i=0}^{\infty} \frac{(\lambda \delta)^{i}}{i!} \times \frac{X^{i}}{\delta^{i}}$$

$$\geq \sum_{i=0}^{\infty} \frac{(\lambda \delta)^{i}}{i!} \times \inf_{k=0,1,\dots} \frac{\mathbb{E}|X|^{k}}{\delta^{k}}, \text{ this holds since } X > 0$$

$$= e^{\lambda \delta} \times \inf_{k=0,1,\dots} \frac{\mathbb{E}|X|^{k}}{\delta^{k}}$$

$$(0.1)$$

Therefore, we achieve

$$\frac{\mathbb{E}(e^{\lambda X})}{e^{\lambda \delta}} \geq \inf_{k=0,1,\dots} \frac{\mathbb{E}|X|^k}{\delta^k}$$

Take infimum on both sides, we get:

$$\inf_{\lambda>0}\frac{\mathbb{E}(e^{\lambda X})}{e^{\lambda\delta}}\geq\inf_{k=0,1,\dots}\frac{\mathbb{E}|X|^k}{\delta^k}$$

Problem 2: Concentration and kernel density estimation

Solution: Let $g_n(X_1, X_2, ..., X_n) := ||f_n(x) - f||_1$. We would like to bound $g_n(X_1, X_2, ..., X_n)$ so that we could use McDiarmid inequality to infer $\mathbb{P}(g_n(X_1, X_2, ..., X_n) - \mathbb{E}(g_n(X_1, X_2, ..., X_n)) \ge \delta)$ if such g_n satisfies bounded difference condition.

Given

$$\begin{cases} f_n(x) := \frac{1}{nh} \sum_{i=1}^n K\left(\frac{x - X_i}{h}\right) \\ \|f_n(x) - f\|_1 = \int_{-\infty}^{+\infty} |f_n(t) - f(t)| dt \end{cases}$$

We bound $\epsilon = |g_n(X_1, X_2, ..., X_k, ..., X_n) - g_n(X_1, X_2, ..., X'_k, ..., X_n)|$:

$$\epsilon = \int_{-\infty}^{+\infty} |f_n(t) - f(t)| dt - \int_{-\infty}^{+\infty} |f'_n(t) - f(t)| dt$$

$$\leq \int_{-\infty}^{+\infty} |f_n(t) - f'_n(t)| dt \qquad \text{(triangle inequality)}$$

$$= \int_{-\infty}^{+\infty} |\frac{1}{nh} \left(\sum_{i=1}^{k-1} K \left(\frac{t - X_i}{h} \right) + K \left(\frac{t - X_k}{h} \right) + \sum_{i=k+1}^{n} K \left(\frac{t - X_i}{h} \right) \right)$$

$$- \frac{1}{nh} \left(\sum_{i=1}^{k-1} K \left(\frac{t - X_i}{h} \right) + K \left(\frac{t - X_k'}{h} \right) + \sum_{i=k+1}^{n} K \left(\frac{t - X_i}{h} \right) \right) |dt$$

$$= \int_{-\infty}^{+\infty} |\frac{1}{nh} \left(K \left(\frac{t - X_k}{h} \right) - K \left(\frac{t - X_k'}{h} \right) \right) |dt$$

$$\leq \frac{2}{nh} \int_{-\infty}^{+\infty} K \left(\frac{t - X_k}{h} \right) dt \qquad \text{Remove absolute since K: } \mathbb{R} \to [0, \infty]$$

$$= \frac{2h}{nh} \int_{-\infty}^{+\infty} K (w) dw \qquad \text{Change of variable } w = \frac{t - X_k}{h} \to dw = \frac{1}{h} dt$$

$$= \frac{2}{n} \qquad \text{because } \int_{-\infty}^{+\infty} K (w) dw = 1$$

We let $\sigma_k = \frac{2}{n}$. According to the McDiarmid theorem, if g_n satisfies the bounded difference condition, and X is a random vector with n independent entries, then

$$\mathbb{P}(g_n(X) - \mathbb{E}(g_n(X)) \ge \delta) \le e^{-\frac{2\delta^2}{\sum_{k=1}^n \sigma_k^2}}$$

$$= e^{-\frac{2\delta^2}{\frac{2}{n}^2 * n}}$$

$$= e^{-\frac{n\sigma^2}{2}}$$

$$\le e^{-\frac{n\sigma^2}{18}}$$

$$(0.3)$$

Hence we get into the conclusion that:

$$\mathbb{P}[\|f_n - f\|_1 \ge \mathbb{E}[\|f_n - f\|_1] + \delta] \le e^{-\frac{n\sigma^2}{18}}$$
(0.4)

Problem 3: Sub-Gaussian maxima

Solution:

(a) let $Y = \max_{i=1,...,n} X_i$. According to Jensen's inequality applied to the convex function $e^{\lambda Y}$,

$$e^{\lambda \mathbb{E}(\max_{i=1,\dots,n} X_i)} \le \mathbb{E}(e^{\lambda \max_{i=1,\dots,n} X_i})$$

Obviously, max function could be upper bounded by sum of X_1 to X_n :

$$e^{\lambda \max_{i=1,\dots,n} X_i} < e^{\lambda \sum_{i=1}^n X_i}$$

therefore:

$$\mathbb{E}\left(e^{\lambda \max_{i=1,\dots,n} X_i}\right) \le \mathbb{E}\left(e^{\lambda \sum_{i=1}^n X_i}\right)$$

Use the linearity of expectation, we have:

$$\mathbb{E}\left(e^{\lambda \sum_{i=1}^{n} X_i}\right) = \sum_{i=1}^{n} \mathbb{E}\left(e^{\lambda X_i}\right)$$

 X_i serves subgaussian with parameter σ :

$$\mathbb{E}(e^{\lambda X_i}) \le e^{\frac{\lambda^2 \sigma^2}{2}}$$

Combining those facts, we could bound $e^{\lambda \mathbb{E}(\max_{i=1,...,n} X_i)}$:

$$e^{\lambda \mathbb{E}(\max_{i=1,\dots,n} X_i)} \leq \mathbb{E}(e^{\lambda \sum_{i=1}^n X_i})$$

$$= \sum_{i=1}^n \mathbb{E}\left(e^{\lambda X_i}\right)$$

$$\leq \sum_{i=1}^n e^{\frac{\lambda^2 \sigma^2}{2}} = ne^{\frac{\lambda^2 \sigma^2}{2}}$$

$$\to \mathbb{E}(\max_{i=1,\dots,n} X_i) \leq \frac{1}{\lambda} \log ne^{\frac{\lambda^2 \sigma^2}{2}}$$

$$= \frac{\log n}{\lambda} + \frac{\lambda \sigma^2}{2}$$
(0.5)

where it holds for all λ . We could minimize $\frac{\log n}{\lambda} + \frac{\lambda \sigma^2}{2}$ w.r.t. λ . Then solve $\frac{\log n}{\lambda} = \frac{\lambda \sigma^2}{2}$, we get $\lambda = \frac{\sqrt{2 \log n}}{\sigma}$. Then

$$\frac{\log n}{\lambda} + \frac{\lambda \sigma^2}{2} = \frac{\log n}{\frac{\sqrt{2 \log n}}{\sigma}} + \frac{\frac{\sqrt{2 \log n}}{\sigma} \sigma^2}{2}$$

$$= \frac{\sqrt{2 \log n} \sigma}{2} * 2$$

$$= \sqrt{2\sigma^2 \log n}$$
(0.6)

Therefore, we have:

$$\mathbb{E}(\max_{i=1,\dots,n} X_i) \le \sqrt{2\sigma^2 \log n}$$

(b) $\max_{i=1,...,n} |X_i| = \max\{X_1, -X_1, X_2, -X_2, ..., X_n, -X_n\}$. We know that $-X_i$ is also σ -subgaussian with zero mean. X_i itself is σ -subgaussian with zero mean. Therefore, it is equivalent to say that we create a 2n-long X_i with each X_i zero mean and σ -subgaussian. Since we have 1) that

$$\mathbb{E}(\max_{i=1,\dots,n} X_i) \le \sqrt{2\sigma^2 \log n}$$

, substituting 2n instead of n leads to the answer:

$$\mathbb{E}(\max_{i=1,\dots,n}|X_i|) \le \sqrt{2\sigma^2 \log 2n} \le 2\sqrt{\sigma^2 \log n}$$

, since $n \ge 2 \to 2n \le n^2 \to \log 2n \le \log n^2 \to \log 2n \le 2\log n$, which leads to the result.

Problem 4 Bonus: Sharper tail bounds for bounded variables: Bennett's inequality

Solution: (a) We could rewrite $\mathbb{E}e^{\lambda X_i}$ as:

$$\mathbb{E}e^{\lambda X_i} = \mathbb{E}(1 + \lambda X_i + e^{\lambda X_i} - 1 - \lambda X_i)$$

With the linearity of expectation and $\mathbb{E}X_i = 0$ as given,

$$\mathbb{E}e^{\lambda X_i} = \mathbb{E}(1) + \lambda \mathbb{E}(X_i) + \mathbb{E}(e^{\lambda X_i} - 1 - \lambda X_i)$$

$$= 1 + \mathbb{E}\left(\lambda^2 X_i^2 \frac{e^{\lambda X_i} - 1 - \lambda X_i}{\lambda^2 X_i^2}\right)$$
(0.7)

We let $g(x) = \frac{e^x - 1 - x}{x^2}$. It can be rewritten in the form of Talyer expansion to observe the trend of g(x):

$$g(x) = \frac{e^x - 1 - x}{x^2} = \sum_{i=2}^{\infty} \frac{x^i}{i!} * x^{-2}$$

$$g'(x) = \sum_{i=2} (i-2) \frac{x^{i-3}}{i!} > 0$$

, when x > 0, the gradient is above zero, so the maximum of g(x) is bounded by $g(\lambda \max_i X_i) = g(\lambda b)$ Therefore,

$$1 + \mathbb{E}\left(\lambda^2 X_i^2 \frac{e^{\lambda X_i} - 1 - \lambda X_i}{\lambda^2 X_i^2}\right) \le 1 + \mathbb{E}\left(\lambda^2 X_i^2 \frac{e^{\lambda b} - 1 - \lambda b}{\lambda^2 b^2}\right)$$
$$= 1 + \mathbb{E}(\lambda^2 X_i^2) \frac{e^{\lambda b} - 1 - \lambda b}{\lambda^2 b^2}$$
 (0.8)

$$\mathbb{E}(X_i^2) = V(X_i) + \mathbb{E}(X_i)^2 = \sigma_i^2 \to$$

$$1 + \mathbb{E}(\lambda^2 X_i^2) \frac{e^{\lambda b} - 1 - \lambda b}{\lambda^2 b^2} = 1 + \lambda^2 \sigma_i^2 \frac{e^{\lambda b} - 1 - \lambda b}{\lambda^2 b^2}$$

$$\to \log \mathbb{E} e^{\lambda X_i} \le \log \left(1 + \lambda^2 \sigma_i^2 \frac{e^{\lambda b} - 1 - \lambda b}{\lambda^2 b^2} \right)$$

$$\le \lambda^2 \sigma_i^2 \frac{e^{\lambda b} - 1 - \lambda b}{\lambda^2 b^2} \quad \text{since } \log(1 + x) \le x$$

$$(0.9)$$

Finish the proof.

(b) Bound $\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\geq\delta\right)\leftrightarrow$ bound $\mathbb{P}\left(\sum_{i=1}^{n}X_{i}-\mathbb{E}X\geq n\delta\right)$, where we let $X=\sum_{i=1}^{n}X_{i}$, where the expectation is zero as X_{i} has zero mean. Then we could use Chernoff bound:

$$\mathbb{P}\left(\sum_{i=1}^{n} X_{i} - \mathbb{E}X \ge n\delta\right) \le \frac{\mathbb{E}e^{\lambda \sum_{i=1}^{n} X_{i}}}{e^{\lambda n\delta}}$$

$$\log \mathbb{P}\left(\sum_{i=1}^{n} X_{i} - \mathbb{E}X \ge n\delta\right) \le \sum_{i=1}^{n} \log \mathbb{E}e^{\lambda X_{i}} - \lambda n\delta$$

$$\le \sum_{i=1}^{n} \lambda^{2} \sigma_{i}^{2} \frac{e^{\lambda b} - 1 - \lambda b}{\lambda^{2} b^{2}} - \lambda n\delta$$

$$= n\lambda^{2} \sigma^{2} \frac{e^{\lambda b} - 1 - \lambda b}{\lambda^{2} b^{2}} - \lambda n\delta$$

$$= -\frac{n\sigma^{2}}{b^{2}} \left(\lambda n\delta * \frac{b^{2}}{n\sigma^{2}} - e^{\lambda b} + 1 + \lambda b\right)$$

$$= -\frac{n\sigma^{2}}{b^{2}} \left(\frac{b\delta}{\sigma^{2}} * \lambda b - e^{\lambda b} + 1 + \lambda b\right)$$
(0.10)

let $h(t) = \inf_x (t * x - e^x + 1 + x)$. Set the gradient w.r.t. x equal to $0 \to t - e^x + 1 = 0 \to x = \log(t+1)$. So $h(t) = t \log(t+1) - 1 - t + 1 + \log(t+1) = (t+1) \log(t+1) - t$, which leads: $\left(\frac{b\delta}{\sigma^2} * \lambda b - e^{\lambda b} + 1 + \lambda b\right) = h\left(\frac{b\delta}{\sigma^2}\right)$. Therefore:

$$\log \mathbb{P}\left(\sum_{i=1}^{n} X_i - \mathbb{E}X \ge n\delta\right) \le -\frac{n\sigma^2}{b^2} h(\frac{b\delta}{\sigma^2})$$

, which is equivalently the Bennett's inequality:

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i} \geq \delta\right) \leq e^{-\frac{n\sigma^{2}}{b^{2}}h(\frac{b\delta}{\sigma^{2}})}$$

, where $h(t) = (t + 1) \log(t + 1) - t$ for $t \ge 0$

(c) remind the Bernstein's inequality for this question:

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i} \ge \delta\right) \le e^{-\frac{t^{2}}{2(\sigma^{2}+bt)}}$$

To show that Bennett's inequality is at least as good as Bernstein's inequality:

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^n X_i \geq \delta\right) \leq e^{-\frac{n\sigma^2}{b^2}h(\frac{b\delta}{\sigma^2})} \leq e^{-\frac{\delta^2}{2(\sigma^2+b\delta)}}$$

We must have

$$-\frac{\sigma^2}{b^2}h\left(\frac{b\delta}{\sigma^2}\right) \le -\frac{\delta^2}{2(\sigma^2 + b\delta)}$$

$$= -\frac{\sigma^2}{b^2} \frac{b^2\delta^2}{2(\sigma^2 + b\delta)\sigma^2}$$

$$= -\frac{\sigma^2}{b^2} \frac{(b\delta/\sigma^2)^2}{2(1 + b\delta/\sigma^2)}$$

$$(0.11)$$

Let $g(x) = \frac{x^2}{2(1+x)}$, then it is equivalently to prove that:

$$h\left(\frac{b\delta}{\sigma^2}\right) \ge g\left(\frac{b\delta}{\sigma^2}\right)$$

Let $f(t)=h(t)-g(t)=(t+1)\log(t+1)-t-\frac{t^2}{2(1+t)}$. We first check that f(0)=0. Then we check the first order derivative of f(t) at t=0: $f'(t)=1+\log(t+1)-1-\frac{2t}{2(1+t)}+\frac{t^2}{2(t+1)^2}=0$. So we additionally check the second order derivative of f(t): $f''(t)=\frac{1}{t+1}-\frac{1}{(1+t)^2}-\frac{t}{(t+1)^3}=\frac{t^2}{(1+t)^3}\geq 0$ when $t\geq 0$. Therefore,

$$f\left(\frac{b\delta}{\sigma^2}\right) \geq 0 \to h\left(\frac{b\delta}{\sigma^2}\right) \geq g\left(\frac{b\delta}{\sigma^2}\right)$$

Then we could equivalently state that Bennett's inequality is at least as good as Bernstein's inequality.

Problem 5 Sharp upper bound on binomial tails

Solution: (a) We can use the Chernoff bound:

$$\mathbb{P}[Z_n \leq \delta n] = \mathbb{P}[e^{-\lambda Z_n} \geq e^{-\lambda \delta n}]$$

$$\leq e^{\lambda \delta n} \mathbb{E}[e^{-\lambda Z_n}] \quad \text{Chernoff bound}$$

$$= e^{\lambda \delta n} \mathbb{E}[e^{-\lambda \sum_{i=1}^n X_i}] \quad \text{Definition of } Z_i$$

$$= e^{\lambda \delta n} \prod_{i=1}^n \mathbb{E}[e^{-\lambda X_i}] \quad \text{i.i.d of } X_i$$

$$= e^{\lambda \delta n} \prod_{i=1}^n [\alpha e^{-\lambda} + (1-\alpha)] \quad \text{Bernoulli variable } X_i \text{ with parameter } \alpha$$

$$= e^{\lambda \delta n} \left(\alpha e^{-\lambda} + (1-\alpha)\right)^n$$

$$\to \log \mathbb{P}[Z_n \leq \delta n] \leq n \log \left(\alpha e^{-\lambda} + (1-\alpha)\right) + \lambda \delta n$$

Then we solve

$$\inf_{\lambda>0} n \log \left(\alpha e^{-\lambda} + (1-\alpha)\right) + \lambda \delta n$$

$$\frac{d \left(n \log \left(\alpha e^{-\lambda} + (1-\alpha)\right) + \lambda \delta n\right)}{d\lambda} = \frac{-n\alpha e^{-\lambda}}{(\alpha e^{-\lambda} + (1-\alpha))} + \delta n = 0$$

$$\rightarrow \delta n \left(\alpha e^{-\lambda} + (1-\alpha)\right) = n\alpha e^{-\lambda}$$

$$n\alpha (1-\delta) e^{-\lambda} = \delta n (1-\alpha)$$

$$e^{\lambda} = \frac{1-\delta}{\delta} * \frac{\alpha}{1-\alpha}$$

$$\lambda = \log \left(\frac{1-\delta}{\delta} * \frac{\alpha}{1-\alpha}\right)$$
(0.12)

Then we take $e^{-\lambda}$ and λ back to the RHS of the log-inequality above, we'll achieve:

RHS =
$$n \log \left(\alpha \frac{\delta}{1 - \delta} * \frac{1 - \alpha}{\alpha} + (1 - \alpha) \right) + \delta n \log \left(\frac{1 - \delta}{\delta} * \frac{\alpha}{1 - \alpha} \right)$$

= $n \log \frac{1 - \alpha}{1 - \delta} + \delta n \log \left(\frac{1 - \delta}{\delta} * \frac{\alpha}{1 - \alpha} \right)$
= $-n \left(\delta \log \frac{\delta}{\alpha} + (1 - \delta) \log \frac{1 - \delta}{1 - \alpha} \right)$
= $-nD(\delta || \alpha)$ (0.13)

where $D(\delta||\alpha) = \left(\delta \log \frac{\delta}{\alpha} + (1-\delta) \log \frac{1-\delta}{1-\alpha}\right)$ represents the KL divergence between the Bernoulli distributions with parameters δ and α . Therefore,

$$\mathbb{P}[Z_n \le \delta n] \le e^{-nD(\delta||\alpha)}$$

(b) We know that a bounded variable within range [a, b] is $\frac{b-a}{2}$ -subgaussian, therefore we quickly know that Bernoulli random variable X_i is $\frac{1}{2}$ -subgaussian. Therefore the sum of Bernoulli random variable Z_i is $\frac{n}{2}$ -subgaussian. From probability theory we know that the expectation of Bernoulli random variable X_i is equal to its parameter which means that $\mathbb{E}[X_i] = \alpha$, then we could write the Hoeffding bound on random variable Z_i :

$$\mathbb{P}\left[\sum_{i=1}^{n} Z_{i} \leq \delta n\right] = \mathbb{P}\left[\sum_{i=1}^{n} X_{i} - \mathbb{E}X_{i} \leq (\delta - \alpha)n\right]$$

. According to the symmetric property of Hoeddfing bound, we could let $t = (\alpha - \delta)n$, since from symmetry and Hoeffding, we know that

$$\mathbb{P}[\sum_{i=1}^{n} X_i - \mathbb{E}X_i \le -t] = \mathbb{P}[\sum_{i=1}^{n} X_i - \mathbb{E}X_i \ge t] \le e^{-\frac{nt^2}{2\sigma^2}}$$

, where here $\sigma = \frac{n}{2}$ being analyzed before. Then,

$$\mathbb{P}[\sum_{i=1}^{n} X_i - \mathbb{E}X_i \ge t] \le e^{-\frac{n(\alpha - \delta)^2/n^2}{2n^2/2^2}} = e^{-2n(\alpha - \delta)^2}$$

If the bound from part (a) is strictly better than Hoeffding bound as shown above, we must have:

$$\mathbb{P}[Z_n \le \delta n] \le e^{-nD(\delta||\alpha)} \le e^{-2n(\alpha - \delta)^2} \tag{0.14}$$

which means:

$$D(\delta||\alpha) \ge 2n(\alpha - \delta)^2 \tag{0.15}$$

Proof of $D(\delta||\alpha) \ge 2n(\alpha - \delta)^2$: Let $f(x) = \delta \log x + (1 - \delta) \log(1 - x)$, then

$$\begin{split} D(\delta||\alpha) &= f(\delta) - f(\alpha) \\ &= \int_{\alpha}^{\delta} f'(x) dx \\ &= \int_{\alpha}^{\delta} \frac{\delta}{x} - \frac{1 - \delta}{1 - x} dx \\ &= \int_{\alpha}^{\delta} \frac{\delta - x}{x(1 - x)} dx \\ &\geq 4 \int_{\alpha}^{\delta} \delta - x dx \quad \text{since } \frac{1}{x(1 - x)} \geq 4, \forall x \in (0, \frac{1}{2}] \\ &= 4 \left(\left(-\frac{1}{2} (\delta - x)^2 \right) \Big|_{x = \delta} - \left(-\frac{1}{2} (\delta - x)^2 \right) \Big|_{x = \alpha} \right) \\ &= 4 \left(0 + \frac{1}{2} (\delta - \alpha)^2 \right) \\ &= 2(\delta - \alpha)^2 \end{split}$$

Therefore we prove the property for bounding $D(\delta||\alpha)$, where $D(\delta||\alpha) \ge 2(\delta - \alpha)^2$. Therefore we could get into the conclusion that: the bound from part (a) is strictly better than Hoeffding bound.

Problem 6 Robust estimation of the mean

Solution: We evaluate the **empirical** mean of these $X_1, X_2, ..., X_n$ for a simple sample case:

$$Z = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Then we can compute the variance of Z:

$$Var(Z) = Var(\frac{1}{n}\sum_{i=1}^{n} X_i) = \frac{1}{n^2}\sum_{i=1}^{n} Var(X_i) = \frac{\sigma^2}{n}$$

We investigate the probability that Z goes outside the region $[\mu - \epsilon, \mu + \epsilon]$:

$$\mathbb{P}[|Z - \mu| > \epsilon] = \mathbb{P}[|Z - \mu|^2 > \epsilon^2] \le \frac{\mathbb{P}[|Z - \mu|^2]}{\epsilon^2} = \frac{Var(Z)}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2}$$

Let the above probability equal to $\frac{1}{4} = \frac{\sigma^2}{n\epsilon^2}$, therefore, $n = \frac{4\sigma^2}{\epsilon^2}$. Which means that if we want this probability less than a value e.g. $\frac{1}{4}$, we must at least $n = \lceil \frac{4\sigma^2}{\epsilon^2} \rceil = O(\frac{\sigma^2}{\epsilon^2})$ for a single sample.

Suppose that we require such K samples in order to achieve overall $O(\log(\frac{1}{\delta})\frac{\sigma^2}{\epsilon^2})$ samples to compute ϵ -accurate estimate of the mean with prob at least $1-\delta$, where a simple sample is $X_1, ..., X_n$ as given. Suppose that $\hat{\mu} = \text{median}\{\mu_1, \mu_2, ..., \mu_K\}$, where μ_i is the mean for the sample s_i . Here we bound this median with deciding whether μ_i is in the range:

$$\begin{split} \mathbb{P}[|\hat{\mu} - \mu| > \epsilon] &= \mathbb{P}[\sum_{i=1}^K \mathbb{I}(|\hat{\mu}_i - \mu| \le \epsilon) \ge \frac{K}{2}] \quad \text{according to definition of median prob.} \\ &= \mathbb{P}[\sum_{i=1}^K \theta_i \ge \frac{K}{2}] \quad \theta_i = \mathbb{I}(|\hat{\mu}_i - \mu| \le \epsilon) \\ &= \mathbb{P}[\sum_{i=1}^K \theta_i - \mathbb{E}[\theta_i] \ge \frac{K}{2} - \sum_{i=1}^K \mathbb{E}[\theta_i]] \end{split} \tag{0.16}$$

In first part of the solution, we simply let $\mathbb{E}[\theta_i] = \mathbb{E}[\mathbb{I}(|\hat{\mu}_i - \mu| \le \epsilon)] = \mathbb{P}[|\hat{\mu}_i - \mu| \le \epsilon) = \frac{1}{4}$, then

$$\mathbb{P}[|\hat{\mu} - \mu| = \mathbb{P}[\sum_{i=1}^{K} \theta_i - \frac{1}{4} \ge \frac{K}{2} - K * \frac{1}{4}]$$
(0.17)

Using Hoeffding inequality, we get:

$$\mathbb{P}[\sum_{i=1}^{K} \theta_{i} - \frac{1}{4} \ge \frac{K}{4}] \le e^{-\frac{2\frac{K}{4}^{2}}{\sum_{i=1}^{K} (1-0)^{2}}}$$

$$= e^{-\frac{K}{8}} = \delta$$

$$\to K = 8 \log \frac{1}{\delta}$$
(0.18)

This means that it requires at least $\lceil 8 \log \frac{1}{\delta} \rceil = O(\log \frac{1}{\delta})$ samples.

Altogether we need $nK = \frac{4\sigma^2}{\epsilon^2} * 8\log\frac{1}{\delta} = 32\log\frac{1}{\delta}\frac{\sigma^2}{\epsilon^2} = O(\log\frac{1}{\delta}\frac{\sigma^2}{\epsilon^2})$ samples which suffices to ensure an ϵ -accurate estimate of the mean with prob. at least $1 - \delta$.

Problem 7 Best-arm identification

Solution:

a) We have defined

$$\begin{cases} \epsilon = \bigcup_{k=1}^{K} \bigcup_{t=1}^{\infty} \{ |\mu_{k,t} - \mu_{k}| > U(t, \delta/K) \} \\ \mathbb{P} \left(\bigcup_{t=1}^{\infty} \{ |\mu_{k,t} - \mu_{k}| > U(t, \delta) \} \right) \leq \delta \end{cases}$$

Using the **union bound** and the above definition, we have:

$$\mathbb{P}(\epsilon) = \mathbb{P}\left(\bigcup_{k=1}^{K} \bigcup_{t=1}^{\infty} \{|\mu_{k,t}^{-} - \mu_{k}| > U(t, \delta/K)\}\right) \text{ definition}$$

$$\leq \sum_{k=1}^{K} \mathbb{P}\left(\bigcup_{t=1}^{\infty} \{|\mu_{k,t}^{-} - \mu_{k}| > U(t, \delta/K)\}\right) \text{ union bound}$$

$$\leq \sum_{k=1}^{K} \frac{\delta}{K} = K * \frac{\delta}{K}$$

$$= \delta$$
(0.19)

Therefore, we prove that $\mathbb{P}(\epsilon) \leq \delta$

b) We know that if we want to drop i, there exists some k in S_{t-1} s.t.

$$\hat{\mu}_{k,t} - U(t, \delta/K) > \hat{\mu}_{i,t} + U(t, \delta/K)$$

We assume that ϵ holds such that arm i and k are contained in confidence interval $U(t, \delta/K)$, so that we have:

$$\begin{cases} \mu_{k,t}^2 - U(t,\delta/K) \leq \mu_k & \text{since } |\hat{\mu}_{k,t} - \mu_k| \leq U(t,\delta/K) \\ \mu_{i,t}^2 + U(t,\delta/K) \geq \mu_i & \text{since } |\hat{\mu}_{i,t} - \mu_i| \leq U(t,\delta/K) \end{cases}$$

Therefore, it is obvious that:

$$\mu_k \ge \hat{\mu_{k,t}} - U(t, \delta/K) > \hat{\mu_{i,t}} + U(t, \delta/K) \ge \mu_i$$

which means that given an i, we will always find a k in S_{i-1} s.t. $\mu_k > \mu_i$. The best arm is always in the set. Suppose that we want to drop the best arm k^* . There's no other possible arms k in S_t to make $\mu_k > \mu_{k^*}$ since k^* is defined as: $k^* = \max_k \mu_k$. Therefore the best arm k^* is contained in the set $S_t, \forall t \geq 1$.

c) Using the union bound, as well as the valid definition of Z_t for any-time confidence interval, we have:

$$\mathbb{P}\left(\bigcup_{t=1}^{\infty} |\mu_{k,t} - \mu_k| > U(t,\delta)\right) \leq \sum_{i=1}^{\infty} \mathbb{P}\left(|\mu_{k,t} - \mu_k| > U(t,\delta)\right)$$
$$= \sum_{i=1}^{\infty} \mathbb{P}\left(\left|\frac{1}{t}\sum_{i=1}^{t} Z_t - \mathbb{E}[Z_t]\right| > U(t,\delta)\right)$$

Since Z_t is bounded within [a, b], therefore we know that it is $\frac{b-a}{2}$ -subgaussian. We also have defined $U(t,\delta)$ as:

$$U(t,\delta) = \sqrt{\frac{(b-a)^2 \log(4t^2/\delta)}{2t}}$$

. Therefore, we could then bound the prob. $\mathbb{P}\left(\left|\frac{1}{t}\sum_{i=1}^{t}Z_{t}-\mathbb{E}[Z_{t}]\right|>U(t,\delta)\right)$ using the Hoeffding bound:

$$\mathbb{P}\left(\left|\frac{1}{t}\sum_{i=1}^{t} Z_{t} - \mathbb{E}[Z_{t}]\right| > U(t,\delta)\right) \leq 2e^{-\frac{tU(t,\delta)^{2}}{2\frac{b-a}{2}^{2}}}$$

$$= 2e^{-\frac{t\frac{(b-a)^{2}\log(4t^{2}/\delta)}{2\frac{b-a}{2}^{2}}}{2\frac{b-a^{2}}{2}}}$$

$$= 2e^{-\log(4t^{2}/\delta)}$$

$$= 2 * \frac{\delta}{4t^{2}} = \frac{\delta}{2t^{2}}$$
(0.20)

Therefore:

$$\mathbb{P}\left(\bigcup_{t=1}^{\infty} |\mu_{k,t} - \mu_{k}| > U(t,\delta)\right) \leq \sum_{t=1}^{\infty} \mathbb{P}\left(\left|\frac{1}{t}\sum_{t=1}^{t} Z_{t} - \mathbb{E}[Z_{t}]\right| > U(t,\delta)\right) \\
\leq \sum_{t=1}^{\infty} \frac{\delta}{2t^{2}} \tag{0.21}$$

We know that:

$$\sum_{t=1}^{\infty} \frac{1}{t^2} = \frac{\pi^2}{6}$$

so

$$\sum_{t=1}^{\infty} \frac{\delta}{2t^2} \leq \frac{\pi^2}{12} \delta \approx 0.82 \delta \leq \delta$$

Therefore,

$$\mathbb{P}\left(\bigcup_{t=1}^{\infty}|\hat{\mu_{k,t}}-\mu_{k}|>U(t,\delta)\right)\leq\sum_{i=1}^{\infty}\mathbb{P}\left(|\frac{1}{t}\sum_{i=1}^{t}Z_{t}-\mathbb{E}[Z_{t}]|>U(t,\delta)\right)\leq\delta$$

Proof ends.

d) Removing i from S_{t-1} requires

$$\hat{\mu}_t^* - U(t, \delta/K) \ge \hat{\mu}_{k,t} + U(t, \delta/K)$$

Assume that the event ϵ holds. Therefore:

$$\begin{cases} \hat{\mu^*} - U(t, \delta/K) \le \mu_t^* & \text{since } |\hat{\mu_t^*} - \mu^*| \le U(t, \delta/K) \\ \hat{\mu_{k,t}} \le U(t, \delta/K) + \mu_k & \text{since } |\hat{\mu}_{k,t} - \mu_k| \le U(t, \delta/K) \end{cases}$$

Therfore: if we guarantees

$$\begin{split} \hat{\mu^*} - 2U(t, \delta/K) &\geq \mu_k + 2U(t, \delta/K) \\ &\rightarrow \hat{\mu^*} - \mu_k \geq 4U(t, \delta/K) \\ &\rightarrow \Delta_k \geq 4U(t, \delta/K) \quad \text{Define } \Delta_k := \mu^* - \mu_k \end{split}$$

Then the event ϵ always holds. In this question, we want to prove that after $\sum_{k \neq k^*} \lceil c\Delta_k^{-2} \log \left(K\Delta_k^{-1}\right) \rceil$ samples, the Successive Elimination algorithm terminates. We could let $T_k = c\Delta_k^{-2} \log \left(K\Delta_k^{-1}\right)$ s.t. $\Delta_k \geq 4U(T_k, \delta/K)$. We need to find that such c exists for T_k :

$$\Delta_{k} \geq 4U(T_{k}, \delta/K)$$

$$= 4\sqrt{\frac{(b-a)^{2}\log(4KT_{k}^{2}/\delta)}{2T_{k}}}$$

$$= 4\sqrt{\frac{(b-a)^{2}\log(4K\left(c\Delta_{k}^{-2}\log\left(K\Delta_{k}^{-1}\right)\right)^{2}/\delta)}{2c\Delta_{k}^{-2}\log\left(K\Delta_{k}^{-1}\right)}}$$

$$\to \Delta_{k}^{2} \geq \frac{8\log(4K\left(c\Delta_{k}^{-2}\log\left(K\Delta_{k}^{-1}\right)\right)^{2}/\delta)}{c\Delta_{k}^{-2}\log\left(K\Delta_{k}^{-1}\right)}, a = 0, b = 1$$

$$\to \log(K\Delta_{k}^{-1}) \geq \frac{8}{c}\log(4K\left(c\Delta_{k}^{-2}\log\left(K\Delta_{k}^{-1}\right)\right)^{2}/\delta)$$

$$(0.22)$$

We focus on RHS of this inequality. We know that $\frac{a}{c} \log bc$ ranges from $(-\infty, m]$ where m is some constant.

Therefore we could always find such c that the above inequality holds. If an arm k requires $T_k = c\Delta_k^{-2} \log (K\Delta_k^{-1})$ to be removed from the set S_{t-1} , the overall samples which is non-optimal need to be removed from S_{t-1} within:

$$\sum_{k \neq k^*}^K \lceil T_k \rceil = O(\sum_{k \neq k^*}^K \lceil c\Delta_k^{-2} \log \left(K \Delta_k^{-1} \rceil \right)) = O(\sum_{k \neq k^*}^K c\Delta_k^{-2} \log \left(K \Delta_k^{-1} \right))$$

with $\Delta_k := \mu^* - \mu_k$. Proof ends.