

<u>Help</u>

konainniaz 🗸



Programming Assignments due Jul 26, 2022 23:00 PKT Completed

Click this link to download the Ridge Regression notebook and then complete problems 1-3.

If you are completely stuck on this notebook, you can consult these hints.

1/1 point (graded)

In setting the step size, does it make sense in practice to pick a fixed schedule like 1/t (where  $t=1,2,3,\ldots$  is the iteration)? Select all that apply.

| Yes, that should work well in general.                                                                                                                   |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Not really: it is important to adapt to the scale of the loss function and/or gradient; otherwise, the steps might be much too big or much too small.    |  |  |  |  |  |
| Not really: there is no need to reduce the step size with time.                                                                                          |  |  |  |  |  |
| $oxedsymbol{oxed}$ Yes: in fact any schedule that decreases with $oldsymbol{t}$ will work well.                                                          |  |  |  |  |  |
|                                                                                                                                                          |  |  |  |  |  |
| Submit                                                                                                                                                   |  |  |  |  |  |
| Problem 2                                                                                                                                                |  |  |  |  |  |
| 1/1 point (graded) Is it possible to design the gradient descent scheme so that the loss values are monotonically decreasing with successive iterations? |  |  |  |  |  |
| Yes: in fact, this is guaranteed to happen in any case.                                                                                                  |  |  |  |  |  |
| O No: we cannot hope for this if we want guaranteed convergence.                                                                                         |  |  |  |  |  |
| Yes: this can be ensured by choosing a step size adaptively.                                                                                             |  |  |  |  |  |
| O No: in general it is not possible to avoid having the loss function go up and down.                                                                    |  |  |  |  |  |
|                                                                                                                                                          |  |  |  |  |  |

## Problem 3

Submit

1/1 point (graded)

In the notebook, the data was generated using a sparse regression function w, in which only 10 of the 100 features were set. Did your solver do a good job of identifying the relevant features? Select all that apply.

igspace Yes, in the sense that the  ${f 10}$  highest-valued coordinates were the relevant features.

In general, we should not expect ridge regression to yield sparse solutions.



© All Rights Reserved



## edX

**About** 

**Affiliates** 

edX for Business

Open edX

Careers

<u>News</u>

## Legal

Terms of Service & Honor Code

Privacy Policy

**Accessibility Policy** 

Trademark Policy

<u>Sitemap</u>

## **Connect**

**Blog** 

**Contact Us** 

Help Center

Media Kit













