Solución Parcial

Listado 7: Transformaciones lineales

3. Encuentre una base para cada uno de los siguientes espacios vectoriales

(b)
$$T = \left\{ \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} \in \mathcal{M}_{2\times 3}(\mathbb{R}) : a_{11} + a_{22} = 0 \land a_{23} = a_{13} \right\},$$

$$T = \begin{cases} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} \in M_{2\times3}(\mathbb{R}) : \alpha_{11} = -\alpha_{22} & \alpha_{23} = \alpha_{13} \end{cases}$$

$$= \begin{cases} \left(-0.22 & 0.42 & 0.43\right) & \in \mathcal{N}_{2x3}(R) & : & 0.22, 0.12, 0.43, 0.21 & \in R \end{cases}$$

$$= \left\{ 0 \times 2 \left(\frac{-1}{0} \times \frac{0}{0} \times \frac{0}{0} \right) + 0 \times 2 \left(\frac{0}{0} \times \frac{0}{0} \right) + 0 \times 2 \left(\frac{0}{0} \times \frac{0}{0} \right) + 0 \times 2 \left(\frac{0}{0} \times \frac{0}{0} \right) + 0 \times 2 \left(\frac{0}{0} \times \frac{0}{0} \right) + 0 \times 2 \left(\frac{0}{0} \times \frac{0}{0} \right) + 0 \times 2 \left(\frac{0}{0} \times \frac{0}{0} \right) + 0 \times 2 \left(\frac{0}{0} \times \frac{0}{0} \right) + 0 \times 2 \left(\frac{0}{0} \times \frac{0}{0} \right) + 0 \times 2 \left(\frac{0}{0} \times \frac{0}{0} \right) + 0 \times 2 \left(\frac{0}{0} \times \frac{0}{0} \times \frac{0}{0} \right) + 0 \times 2 \left(\frac{0}{0} \times \frac{0}{0} \times \frac{0}{0} \right) + 0 \times 2 \left(\frac{0}{0} \times \frac{0}{0} \times \frac{0}{0} \times \frac{0}{0} \right) + 0 \times 2 \left(\frac{0}{0} \times \frac{0}{0} \times \frac{0}{0} \times \frac{0}{0} \right) + 0 \times 2 \left(\frac{0}{0} \times \frac{0}{0} \times \frac{0}{0} \times \frac{0}{0} \times \frac{0}{0} \times \frac{0}{0} \right) + 0 \times 2 \left(\frac{0}{0} \times \frac{0}{0} \times$$

Probemos que el conjunto generador $B = \{ \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \}$ Sean $d_1p_1y_1E$ tales que:

enhonus $-\alpha=0$, $\beta=0$, $\gamma=0$, $\epsilon=0$, $\alpha=0$ y $\gamma=0$, por lo que es claro que B es li y por lo tanto

$$B = \left(\begin{array}{c} -1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right), \left(\begin{array}{c} 0 & 1 \\ 0 & 0 \end{array} \right), \left(\begin{array}{c} 0 & 0 & 1 \\ 0 & 0 \end{array} \right), \left(\begin{array}{c} 0 & 0 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{c} 0 & 0 & 1 \\ 0 & 0 \end{array} \right), \left(\begin{array}{c} 0 & 0 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{c} 0 & 0 & 1 \\ 0 & 0 \end{array} \right), \left(\begin{array}{c} 0 & 0 & 0 \\ 0 &$$

- 1. Determine las matrices asociadas a las siguientes transformaciones lineales con respecto a las bases canónicas de los espacios de partida y llegada
 - (b) $T_2: \mathbb{C}^2 \longrightarrow \mathbb{C}^2$, $T_2((x,y)^T) = (x+y, 0)^T$, considerando a \mathbb{C}^2 e.v. complejo,
 - (c) $T_2: \mathbb{C}^2 \longrightarrow \mathbb{C}^2$, $T_2((x,y)^T) = (x+y, 0)^T$, considerando a \mathbb{C}^2 e.v. real,
 - (b) La bose anónica de \mathbb{C}^2 sobre \mathbb{C} es $\mathbb{B} = \{\binom{1}{0}, \binom{0}{1}\}$.

Oblemos
$$T_2(\binom{1}{0}) = \binom{1+0}{0} = \binom{1}{0} = \binom{1}{0} + \binom{1}{0} = \binom{1}{0} = \binom{1}{0} = \binom{1}{0}$$
. Admas $\begin{bmatrix} \binom{1}{0} \end{bmatrix}_B = \binom{1}{0}$

por lo que
$$\begin{bmatrix} T_2 \end{bmatrix}_{\mathcal{B}} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

(c) La bone canónica de \mathbb{C}^2 sobre \mathbb{R} es \mathbb{B}_2 = $\left\{\binom{4}{0},\binom{0}{1},\binom{i}{0},\binom{i}{0}\right\}$

Objection of
$$T_2\left(\binom{1}{0}\right) = \binom{1}{0}$$
, $T_2\left(\binom{0}{1}\right) = \binom{1}{0}$, $T_3\left(\binom{1}{0}\right) = \binom{1}{0}$, $T_4\left(\binom{0}{1}\right) = \binom{1}{0}$

Admás,
$$\begin{bmatrix} \begin{pmatrix} i \\ 0 \end{pmatrix} \end{bmatrix}_{B_2} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
 y $\begin{bmatrix} \begin{pmatrix} i \\ 0 \end{pmatrix} \end{bmatrix}_{B_2} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

$$\begin{bmatrix} T_2 \end{bmatrix}_{B_2}^{B_2} =
\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

2. Sea $T: \mathcal{P}_2(\mathbb{R}) \longrightarrow \mathcal{P}_1(\mathbb{R})$ la aplicación lineal definida por

$$T(a_0 + a_1x + a_2x^2) = 2a_2x + a_1.$$

Calcule la matriz asociada a esta aplicación con respecto a las siguientes bases B_1 de $\mathcal{P}_2(\mathbb{R})$ y B_2 de $\mathcal{P}_1(\mathbb{R})$.

(b)
$$B_1 = \{1 - x, 1 + x, 1 + x + x^2\}, B_2 = \{1 + x, 1 - x\}.$$

Primero oblenemos
$$T(1-x) = 2 \cdot 0 \cdot x + -1 = -1$$
, $T(1+x) = 2 \cdot 0 \cdot x + 1 = 1$ y $T(1+x+x^2) = 2 \cdot 1 \cdot x + 1 = 2x + 1$. Necenitamos $[T(1-x)]_{B_2}$, $[T(1+x)]_{B_2}$ y $[T(1+x+x^2)]_{B_2}$, es de cir, necenitamos $[-1]_{B_2}$, $[1]_{B_2}$ y $[2x+1]_{B_2}$.

$$\forall_{\mathsf{X}} : -1 = \alpha' (\mathsf{A} + \mathsf{X}) + \beta (\mathsf{A} - \mathsf{X}) \Rightarrow -1 = \alpha + \beta \wedge 6 = \alpha - \beta \Rightarrow 2\alpha = -1 \wedge \alpha = \beta \Rightarrow \alpha = \beta = -1/2 \Rightarrow [-1]_{\mathsf{B}_2} = \begin{pmatrix} -1/2 \\ -1/2 \end{pmatrix}$$

$$\forall x : 2x+1 = \alpha'(1+x) + \beta(1-x) \Rightarrow 1=\alpha+\beta \wedge 2=\alpha-\beta \Rightarrow 2\alpha=3 \wedge \beta=\alpha-2 \Rightarrow \alpha=\frac{3}{2} \wedge \beta=-\frac{1}{2} \Rightarrow \begin{bmatrix} 2x+1 \end{bmatrix}_{B_2} = \begin{pmatrix} 3/2 \\ -1/2 \end{pmatrix}$$

Finalment,
$$\begin{bmatrix} T \end{bmatrix}_{B_1}^{B_2} = \begin{pmatrix} -1/2 & 1/2 & 3/2 \\ -1/2 & 1/2 & -1/2 \end{pmatrix}$$