Car price prediction based on model algorithms using the real data from the website auto.ria.com

Input Data:

NEW cars data from the Ukrainian website Auto.ria.com (parsing of 352 pages with new cars, 6393 objects in total):

Input Data

Only new cars were selected for analysis in order to equalize the criterion of the condition of cars, which affects the price (for example, in used cars, in addition to mileage, the price is also affected by the general condition of the car, which cannot be described in specific parameters)

Selected parameters for evaluation:

- Brand
- Country of production
- Production year
- Engine_power
- Fuel & tank_volume
- Gear_shift_box
- Drive_train
- Price

Database

Database with 6393 rows:

<u>Т</u> аблица	a: 🗐 cars 🔻 🕄 🄏	• •		4 a	Filter in an	y column					
	link	brand	country	year	engine_power	fuel	tank_volume	gear_shift_box	drive_train	price	<u> </u>
		Фильтр	Фильтр	Фил	Фильтр	Фильтр	Фильтр	Фильтр	Фильтр	Фильтр	
1	a.com/uk/newauto/auto-volkswage	Volkswagen	Germany	2021.0	231.0	Дизель	3.0	Автомат	Повний	61300.0	
2	a.com/uk/newauto/auto-bentley	Bentley	Great Britain	2021.0	550.0	Бензин	4.0	Автомат	Повний	355100.0	
3	a.com/uk/newauto/auto-bentley	Bentley	Great Britain	2021.0	550.0	Бензин	4.0	Автомат	Повний	375002.0	
4	a.com/uk/newauto/auto-mercedes	Mercedes-Benz	Germany	2020.0	435.0	Бензин	3.0	Автомат	Повний	192711.0	
5	a.com/uk/newauto/auto-mercedes	Mercedes-Benz	Germany	2021.0	330.0	Дизель	2.9	Автомат	Повний	116866.0	
6	a.com/uk/newauto/auto-mercedes	Mercedes-Benz	Germany	2020.0	435.0	Бензин	3.0	Автомат	Повний	119529.0	
7	a.com/uk/newauto/auto-mercedes	Mercedes-Benz	Germany	2020.0	194.0	Дизель	1.9	Автомат	Повний	74567.0	
8	a.com/uk/newauto/auto-volkswage	Volkswagen	Germany	2021.0	286.0	Дизель	3.0	Автомат	Повний	79150.0	
9	a.com/uk/newauto/auto-mercedes	Mercedes-Benz	Germany	2021.0	245.0	Дизель	1.9	Автомат	Повний	81038.0	
10	a.com/uk/newauto/auto-mercedes	Mercedes-Benz	Germany	2021.0	163.0	Дизель	1.9	Автомат	Повний	66803.0	
11	a.com/uk/newauto/auto-mercedes	Mercedes-Benz	Germany	2021.0	194.0	Дизель	1.9	Автомат	Повний	75304.0	
12	a.com/uk/newauto/auto-mini	MINI	Great Britain	2021.0	190.0	Дизель	2.0	Автомат	Повний	50219.0	
13	a.com/uk/newauto/auto-mercedes	Mercedes-Benz	Germany	2020.0	197.0	Бензин	2.0	Автомат	Повний	75304.0	
14	a.com/uk/newauto/auto-mercedes	Mercedes-Benz	Germany	2021.0	330.0	Дизель	2.9	Автомат	Повний	221131.0	
15	a.com/uk/newauto/auto-volvo	Volvo	Sweden	2021.0	235.0	Гібрид	2.0	Автомат	Повний	70618.0	
16	a.com/uk/newauto/auto-mini	MINI	Great Britain	2020.0	192.0	Бензин	2.0	Механічна	Передній	37647.0	
17	a.com/uk/newauto/auto	Lamborghini	Italy	2021.0	650.0	Бензин	4.0	Автомат	Повний	425527.0	
10	a com/uk/newauto/auto-citroen-	Citroen	France	2021 N	130 0	Лизапь	1 5	Д РТОМЯТ	Пополиій	27308 0	Ŧ
	1 - 19 из 6393					йтик: 1					

Working with a DataFrame

My DataFrame:

B [295]: df.info()

B [294]:]: df.head()										
Out[294]:		link	brand	country	vear	engine power	fuel	tank volume	gear shift box	drive train	price
	0	https://auto.ria.com/uk/newauto/auto-volkswage	Volkswagen	Germany	2021.0		Дизель	3.0	Автомат	Повний	61300.0
	1 https://auto.ria.com/uk/newauto/auto-bentley-c		Bentley	Great Britain	2021.0	550.0	Бензин	4.0	Автомат	Повний	355100.0
	2	https://auto.ria.com/uk/newauto/auto-bentley-f	Bentley	Great Britain	2021.0	550.0	Бензин	4.0	Автомат	Повний	375002.0
	3	https://auto.ria.com/uk/newauto/auto-mercedes	Mercedes-Benz	Germany	2020.0	435.0	Бензин	3.0	Автомат	Повний	192711.0
	4	https://auto.ria.com/uk/newauto/auto-mercedes	Mercedes-Benz	Germany	2021.0	330.0	Дизель	2.9	Автомат	Повний	116866.0

		()										
<pre><class 'pandas.core.frame.dataframe'=""> RangeIndex: 6393 entries, 0 to 6392</class></pre>												
	Data	columns (total	otal 10 columns):									
	#	Column	Non-I	Null Count	Dtype							
	0	link	6393	non-null	object							
	1	brand	6393	non-null	object							
	2	country	6230	non-null	object							
	3	year	6393	non-null	float64							
	4	engine_power	6393	non-null	float64							
	5	fuel	6393	non-null	object							
	6	tank_volume	6393	non-null	float64							
	7	<pre>gear_shift_box</pre>	6393	non-null	object							
	8	drive_train	6393	non-null	object							
	9	price	6393	non-null	float64							
	dtypes: float64(4), object(6)											
	memory usage: 499.6+ KB											
		_										

B [296]:	df.des	cribe()			
Out[296]:		vear	engine power	tank volume	price
		your	cligillo_power	tank_volume	price
	count	6393.000000	6393.000000	6393.000000	6.393000e+03
	mean	2020.668387	182.301111	1.910605	5.126554e+04
	std	0.525772	116.109321	0.816865	7.120338e+04
	min	2017.000000	67.000000	0.000000	7.477000e+03
	25%	2020.000000	117.000000	1.500000	2.069500e+04
	50%	2021.000000	147.000000	1.600000	2.845600e+04
	75%	2021.000000	194.000000	2.000000	4.660200e+04
	max	2021.000000	800.000000	6.700000	1.398503e+06

Working with a DataFrame

 Correcting zero values, converting object parameters to numeric ones (fuel, drive_train, gear_shift_box):

```
B [80]: df['fuel'].value counts()
                                                     df['drive_train'].unique()
Out[80]: Бензин
                       3977
                                                     array(['Повний', 'Передній', 'Задній'], dtype=object)
                       1978
         Дизель
         Гібрид
                        347
                                                     df['drive train'] = df['drive train'].replace(['Повний'],'3.0')
         Електро
                         87
                                                     df['drive train'] = df['drive train'].replace(['Передній'],'2.0')
         Бензин/Газ
         Name: fuel, dtype: int64
                                                     df['drive_train'] = df['drive_train'].replace(['Задній'],'1.0')
B [119]: df['fuel'] = df['fuel'].replace(['Гібрид'],'5.0')
         df['fuel'] = df['fuel'].replace(['Електро'],'4.0')
         df['fuel'] = df['fuel'].replace(['Бензин/Газ'],'3.0')
         df['fuel'] = df['fuel'].replace(['Дизель'],'2.0')
         df['fuel'] = df['fuel'].replace(['Бензин'],'1.0')
```

I got a table with 6342 rows; I left the car brand and country of production in the object type for the convenience of graphical data analysis;

set the price up to \$800,000

```
df['gear shift box'].value counts()
Автомат
                3602
Механічна
                1675
                 920
Варіатор
Роботизована
                 129
Тіптронік
                  59
Редуктор
Name: gear shift box, dtype: int64
df['gear_shift_box'] = df['gear_shift_box'].replace(['Bapiatop'],'6.0')
df['gear shift box'] = df['gear shift box'].replace(['ABTOMAT'],'5.0')
df['gear shift box'] = df['gear shift box'].replace(['Τίπτρομίκ'],'4.0')
df['gear shift box'] = df['gear shift box'].replace(['Роботизована'],'3.0')
df['gear_shift_box'] = df['gear_shift_box'].replace(['Механічна'],'2.0')
df['gear shift box'] = df['gear shift box'].replace(['Редуктор'],'1.0')
```

Data analysis Price distribution

Car pricing by country of production

*Groups of countries and car brands included in their group:

		brand
		count
country	brand	
China	Chery	290
	FAW	14
	Haval	27
	JAC	28
	Jetour	36
Czech Republic	Skoda	105
France	Citroen	186
	DS	12
	Peugeot	423
	Renault	264
Germany	Audi	88
	BMW	82
	Mercedes-Benz	604
	Opel	138
	Porsche	98
	Volkswagen	306

Great Britain	Bentley	12
	Jaguar	37
	Land Rover	152
	MINI	4
	Rolls-Royce	3
Italy	Alfa Romeo	11
	Ferrari	1
	Fiat	172
	Iveco	2
	Lamborghini	5
	Maserati	21
Japan	Acura	1
	Honda	79
	Infiniti	25
	Isuzu	2
	Lexus	36
	Mazda	265
	Mitsubishi	343
	Nissan	317
	Subaru	81
	Suzuki	209
	Toyota	175

Korea	Hyundai	363
	Kia	518
Russia	Lada	204
	ГАЗ	3
	УАЗ	1
Spain	SEAT	28
Sweden	Volvo	102
USA	Cadillac	2
	Chevrolet	5
	Dodge	1
	Ford	347
	GMC	1
	Jeep	22
	Lincoln	1
Uzbekistan	Ravon	88

Car pricing by country of production

	price	price mean	price max
	min		
country			
China	10400	17770.52	44604
Czech Republic	15547	28346.30	44455
France	11689	25597.41	74431
Germany	16499	111065.69	561791
Great Britain	37096	154186.82	711204
Italy	12096	44185.13	490444
Japan	15946	32837.60	251013
Korea	13500	26063.26	62280
Russia	7477	11895.32	26045
Spain	17227	28904.04	43998
Sweden	38847	64208.91	97441
USA	12988	40751.62	299999
Uzbekistan	9782	11376.10	12320

Average car price by country of production

Average car price by country and year of production

Price analysis with boxplot

Dependence of price on engine power

The dependence of the price on the engine power, broken down by country of production

Engine power analysis with boxplot

Preparing the model

- Next, 2 methods of encoding data by car brand and country of production were performed:
- 1) encoding categorical features by the LabelEncoder() method that assign a unique number to each category and replace the feature value with the corresponding number:

	brand	country	year	engine_power	fuel	tank_volume	gear_shift_box	drive_train	price
0	1.0	1.0	2021	231.0	2.0	3.0	5.0	3.0	61300
1	2.0	2.0	2021	550.0	1.0	4.0	5.0	3.0	355100
2	2.0	2.0	2021	550.0	1.0	4.0	5.0	3.0	375002
3	3.0	1.0	2020	435.0	1.0	3.0	5.0	3.0	192711
4	3.0	1.0	2021	330.0	330.0 2.0		5.0	3.0	116866
6388	36.0	11.0	2021	106.0	1.0	1.6	2.0	2.0	11315
6389	36.0	11.0	2021	87.0	1.0	1.6	2.0	2.0	7654
6390	38.0	9.0	2021	147.0	1.0	1.5	5.0	2.0	19900
6391	26.0	9.0	2020	147.0	1.0	1.5	5.0	2.0	22000
6392	31.0	6.0	2021	218.0	5.0	2.5	6.0	2.0	37930

• 2) the get_dummies method (turning categorical features into new ones that answer the question whether the car belongs to a certain brand and country or not. With this approach as many new columns appear for each categorical feature as there are possible categories. One of the columns will be filled with 1 and the rest - with 0):

	year	engine_power	fuel	tank_volume	gear_shift_box	drive_train	price	Acura	Alfa Romeo	Audi	 Germany	Great Britain	Italy	Japan	Korea	Russia	Spain
0	2021	231.0	2.0	3.0	5.0	3.0	61300	0	0	0	 1	0	0	0	0	0	0
1	2021	550.0	1.0	4.0	5.0	3.0	355100	0	0	0	 0	1	0	0	0	0	0
2	2021	550.0	1.0	4.0	5.0	3.0	375002	0	0	0	 0	1	0	0	0	0	0
3	2020	435.0	1.0	3.0	5.0	3.0	192711	0	0	0	 1	0	0	0	0	0	0
4	2021	330.0	2.0	2.9	5.0	3.0	116866	0	0	0	 1	0	0	0	0	0	0

In the new table with 8 columns, it became 73.

A pairplot according to 1 option

 We are only interested in the last line with graphs of price dependence on other parameters

Modeling Linear Regression

RMSE: 19940.438660182124

1 option (LabelEncoder)

```
model_1.score(X_train,y_train)

0.8184907048729514

model_1.score(X_test, y_test)

0.8355265991027254

from sklearn import metrics
print('MAE:', metrics.mean_absolute_error(y_test, predictions_1))
print('MSE:', metrics.mean_squared_error(y_test, predictions_1))
print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, predictions_1)))

MAE: 14091.60780889322
MSE: 599216655.2981906
RMSE: 24478.902248634244
```


2 option (get_dummies)

```
model_1.score(X_train,y_train)

0.8790166448113139

model_1.score(X_test, y_test)

0.9031410513779253

from sklearn import metrics
print('MAE:', metrics.mean_absolute_error(y_test, predictions_1))
print('MSE:', metrics.mean_squared_error(y_test, predictions_1))
print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, predictions_1)))

MAE: 11527.785478838294
MSE: 397621093.9604858
```

Coefficient 2305.707284 engine power 394.896911 -2137.159067 fuel tank volume 7607.752652 gear_shift_box -844.912238 Russia -11195.002129 Spain -6846.217948 Sweden -6063.095747 USA -32770.237571 Uzbekistan -6645.473481

Linear Regression

1 option (LabelEncoder)

Linear Regression

Decision Tree

1 option (LabelEncoder)

```
model 2.score(X train,y train)
0.9730207556536934
model_2.score(X_test, y_test)
0.9407030909579164
print('MAE:', metrics.mean absolute error(y test, predictions 2))
print('MSE:', metrics.mean squared error(y test, predictions 2))
print('RMSE:', np.sqrt(metrics.mean squared error(y test, predictions 2)))
MAE: 4873.845548611746
MSE: 216033080.80137807
                                         Parameters' importance
RMSE: 14698.06384532936
```

```
model_2.score(X_train,y_train)

0.9725210978626069

model_2.score(X_test, y_test)

0.9391317698623047

print('MAE:', metrics.mean_absolute_error(y_test, predictions_2))
print('MSE:', metrics.mean_squared_error(y_test, predictions_2))
print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, predictions_2)))

MAE: 5003.814229460336
MSE: 249873580.07800144
RMSE: 15807.390046367598
```


Random Forest

1 option (LabelEncoder)

```
model_3.score(X_train, y_train)
0.9687388015492082

model_3.score(X_test,y_test)
0.9515702566590641

print('MAE:', metrics.mean_absolute_error(y_test, predictions_3))
print('MSE:', metrics.mean_squared_error(y_test, predictions_3))
print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, predictions_3)))

MAE: 4766.810790403959
MSE: 176441349.5640577
RMSE: 13283.122733907781
```



```
model_3.score(X_train, y_train)
0.9663669344627227

model_3.score(X_test,y_test)
0.9453378016584275

print('MAE:', metrics.mean_absolute_error(y_test, predictions_3))
print('MSE:', metrics.mean_squared_error(y_test, predictions_3))
print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, predictions_3)))

MAE: 5007.581906675893
MSE: 224396851.42222992
RMSE: 14979.881555680937
```



```
from sklearn.linear_model import Ridge
from sklearn.linear model import Lasso
from sklearn.linear model import ElasticNet
from sklearn.linear model import LarsCV
from sklearn.linear model import BayesianRidge
from sklearn.neighbors import KNeighborsRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.svm import LinearSVR
from sklearn.svm import SVR
from sklearn.ensemble import AdaBoostRegressor
from sklearn.ensemble import BaggingRegressor
from sklearn.ensemble import ExtraTreesRegressor
from sklearn.ensemble import GradientBoostingRegressor
```

• After going through the following algorithms, *Decision Tree Regressor* showed the highest accuracy. The other high-accurate algorithms are XGBRegressor, BaggingRegressor, and GradientBoostingRegressor.

XGB Boost

1 option (LabelEncoder)

```
model_4.score(X_train, y_train)
0.9729684015610486

model_4.score(X_test,y_test)
0.9508025436043144

print('MAE:', metrics.mean_absolute_error(y_test, predictions_4))
print('MSE:', metrics.mean_squared_error(y_test, predictions_4))
print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, predictions_4)))
MAE: 4715.8523917827115
MSE: 179238315.19124255
```

RMSE: 13387.991454704568


```
model_4.score(X_train, y_train)
0.9723475206340607

model_4.score(X_test,y_test)
0.9303614875144459

print('MAE:', metrics.mean_absolute_error(y_test, predictions_4))
print('MSE:', metrics.mean_squared_error(y_test, predictions_4))
print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, predictions_4)))

MAE: 5109.1274691319995
MSE: 285876957.26831686
RMSE: 16907.89629931284
```


Bagging Regressor

1 option (LabelEncoder)

```
model_5.score(X_train, y_train)
0.9681546643002782

model_5.score(X_test,y_test)
0.950694507380788

print('MAE:', metrics.mean_absolute_error(y_test, predictions_5))
print('MSE:', metrics.mean_squared_error(y_test, predictions_5))
print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, predictions_5)))

MAE: 4803.856765499738
MSE: 179631917.46467614
RMSE: 13402.68321884376
```

```
model_5.score(X_train, y_train)

0.9663711388661019

model_5.score(X_test,y_test)

0.9463068908788026

print('MAE:', metrics.mean_absolute_error(y_test, predictions_5))
print('MSE:', metrics.mean_squared_error(y_test, predictions_5))
print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, predictions_5)))

MAE: 4987.589948915292
MSE: 220418588.99596384
RMSE: 14846.500900749774
```

Gradient Boosting Regressor

1 option (LabelEncoder)

```
model_6.score(X_train, y_train)

0.9569157670737161

model_6.score(X_test,y_test)

0.9481500413321353

print('MAE:', metrics.mean_absolute_error(y_test, predictions_6))
print('MSE:', metrics.mean_squared_error(y_test, predictions_6))
print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, predictions_6)))

MAE: 5996.076365627338
MSE: 188902026.95882934
RMSE: 13744.163377915345
```



```
model_6.score(X_train, y_train)
0.9543633800768756

model_6.score(X_test,y_test)
0.9404646507724556

print('MAE:', metrics.mean_absolute_error(y_test, predictions_6))
print('MSE:', metrics.mean_squared_error(y_test, predictions_6))
print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, predictions_6)))

MAE: 6425.255463728908
MSE: 244401896.01418686
RMSE: 15633.358436823064
```


Ensemble Voting Regressor

■ 1 option (LabelEncoder)

```
ensemble.score(X_train, y_train)

0.9625843066709693

ensemble.score(X_test,y_test)

0.9721549877375725

print('MAE:', metrics.mean_absolute_error(y_test, predictions_ensemble))
print('MSE:', metrics.mean_squared_error(y_test, predictions_ensemble))
print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, predictions_ensemble)))

MAE: 4570.963445877583
MSE: 101446161.04247761
RMSE: 10072.048502786194
```

```
ensemble.score(X_train, y_train)

0.9638693160068686

ensemble.score(X_test,y_test)

0.9738959330481685

print('MAE:', metrics.mean_absolute_error(y_test, predictions_ensemble))
print('MSE:', metrics.mean_squared_error(y_test, predictions_ensemble))
print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, predictions_ensemble)))

MAE: 4379.340936354549
MSE: 107161267.03691565
RMSE: 10351.872634307072
```

Algorithms comparison

1 option (LabelEncoder)

```
resultt

{'LinearRegression': 'Test R^2 = 0.8355',
   'DecisionTreeRegressor': 'Test R^2 = 0.9730',
   'RandomForestRegressor': 'Test R^2 = 0.9516',
   'XGBRegressor': 'Test R^2 = 0.9508',
   'BaggingRegressor': 'Test R^2 = 0.9507',
   'GradientBoostingRegressor': 'Test R^2 = 0.9482',
   'Ensemble VotingRegressor': 'Test R^2 = 0.9722'}
```

 Decision Tree has the highest accuracy – 0.9730. Linear Regression has the lowest accuracy – only 0.8355. 2 option (get_dummies)

```
result

{'LinearRegression': 'Test R^2 = 0.9031',
    'DecisionTreeRegressor': 'Test R^2 = 0.9725',
    'RandomForestRegressor': 'Test R^2 = 0.9453',
    'XGBRegressor': 'Test R^2 = 0.9304',
    'BaggingRegressor': 'Test R^2 = 0.9463',
    'GradientBoostingRegressor': 'Test R^2 = 0.9405',
    'Ensemble VotingRegressor': 'Test R^2 = 0.9739'}
```

 Ensemble Voting Regressor has the highest accuracy – 0,9739. Linear Regression has the lowest accuracy – 0,9031.

 All in all, the first option with LabelEncoder is more appropriate and shows higher accuracy than the second one.

Price prediction

On the website Auto.ria.com, I chose a car priced at \$71,211:

Comparison of the predicted price by different algorithms

1 option (LabelEncoder)

```
_predictions

{'LinearRegression': 137805,
   'DecisionTreeRegressor': 72780,
   'RandomForestRegressor': 72800,
   'XGBRegressor': 72800,
   'BaggingRegressor': 73013,
   'GradientBoostingRegressor': 78878,
   'Ensemble VotingRegressor': 83885}
```

 The closest forecast to the real price is by DecisionTreeRegressor algorithm – \$72,780 2 option (get_dummies)

```
_predictions

{'LinearRegression': 109689,
   'DecisionTreeRegressor': 73737,
   'RandomForestRegressor': 74097,
   'XGBRegressor': 73762,
   'BaggingRegressor': 73722,
   'GradientBoostingRegressor': 106776,
   'Ensemble VotingRegressor': 82623}
```

 The closest forecast to the real price is by BaggingRegressor – \$73,722

 In general, the price prediction is better in the first option – the forecast is closer to the real price on the website.

Cross Validation 2 option (get_dummies)

Evaluation of the effectiveness of each algorithm is performed using cross-validation. The output message contains the following information: the name of the algorithm as an abbreviation, the average score of 10-fold cross-validation on the training data (metric 'r2'), the standard deviation in parentheses, and the coefficient of determination r2 on the test data.

```
LinearRegression: train = 0.8828 (0.0248) / test = 0.8087

DecisionTreeRegressor: train = 0.9313 (0.0207) / test = 0.7899

RandomForestRegressor: train = 0.9447 (0.0175) / test = 0.8134

XGBRegressor: train = 0.9447 (0.0169) / test = 0.7874

BaggingRegressor: train = 0.9444 (0.0178) / test = 0.8120

GradientBoostingRegressor: train = 0.9383 (0.0194) / test = 0.8025

VotingRegressor: train = 0.9449 (0.0184) / test = 0.8178
```

Boxplot of each algorithm's span

