

CS2022 Symbolic Notation for Micro-ops

- Because human beings working in binary code tend to be highly error-prone, we usually employ intuitive symbols to specify datapath micro-ops.
- ► Typical symbol/code assignments are:

CS2022 Symbol-binary Map of Control Word Fields

	DA, AA, E	3A	MB		FS		
7 6 5 4 03	Function	Code	Function	Code	Function	Code	2 87654 03 02 3
E-	R0	000	Register	0	G = A	00000	
GALL	R1	001	Constant	GALL 5	G = A + 1	00001	
GALZZVIO C/II Voca IZ I/OIO	R2	010			G = A + B	00010	ASC/11 Vec 28 1281212 1/010 28808
214 1/08 G	R3	011	MD		G = A + B +1	00011	
617 1/05 1 618 1/04 1 619 1/03 1	R4	100	Function	Code	G = A + B	00100	
	R5	101	Function	Organi Tilling	G = A + B + 1	00101	
	R6	110	Data In	1	G = A - 1	00110	
	R7	11 TELS293 +V			G = A	00111	
			RW		$G = A \wedge B$	01000	
			Function	Code	$G = A \vee B$	01010	
			No Write	0	$G = A \oplus B$	01100	
			Write	1	$G = \overline{A}$	01110	
					G = B	10000	
E3 [MC 88	008		EROM 9		G = sr B	10100	

CS2022 Symbol Conversion

With the symbolic notation it is easy to accurately specify control words which may then be automatically converted to binary.

► For example: R1←R2 + R3 +1

Field: BA **MB** FS RW DA MD Register F=A+B+1 Function Write Symbol: R1 R2 R3 011 00101 001 010 **Binary:**

CS2022 Microoperations Example

DIY - Convert these to binary and check your results against the table on the next slide.

Micro- operation	DA	AA	ВА	МВ	FS	MD	RW
$R1 \leftarrow R2 + \overline{R3} + 1$	R1	R2	R3	Register	$F = A + \overline{B} + 1$	Function	Write
R4←sl R6	R4	_	R6	Register	$F = \operatorname{sl} B$	Function	Write
$R7 \leftarrow R7 + 1$	R7	R7	_	Register	F = A + 1	Function	Write
$R1 \leftarrow R0 + 2$	R1	R0	-	Constant	F = A + B	Function	Write
Data out $\leftarrow R3$	_	_	R3	Register	_	_	No Write
R4←Data in	R4	_	_	_		Data in	Write
$R5 \leftarrow 0$	R5	R0	R0	Register	$F = A \oplus B$	Function	Write

CS2022 Binary Control Words from Example

Micro- operation	DA	AA	ВА	МВ	FS	MD	RW
$R1 \leftarrow R2 - R3$	001	010	011	0	00101	0	1
R4←sl R6	100	000	110	0	11000	0	1
$R7 \leftarrow R7 + 1$	111	111	000	0	00001	0	1
$R1 \leftarrow R0 + 2$	001	000	000	1	00010	0	1
Data out $\leftarrow R3$	000	000	011	0	00000	0	0
R4←Data in	100	000	000	0	00000	1	1
$R5 \leftarrow 0$	101	000	000	0	01100	0	1

CS2022 Conventional and Pipelined Datapath Timing

Clock cycle

R1 ← R2 - R3 1

R4 ← sl R6 2

R7 ← R7 + 1 3

R1 ← R0 + 2 4

Data out ← R3 5

R4 ← Data in 6

R5 ← 0 7

	1	2	3	4	5	6	7	8
(OF	EX	WB					
		OF	EX	WB				
			OF	EX	WB			
				OF	EX	WB		
					OF	EX	WB	
					1	OF	EX	WB
							Transcence 1	District

Microoperation

OF

EX

WB