

Substitute SEQUENCE LISTING

<110> Kwon, Byoung

<120> NEW RECEPTOR AND RELATED PRODUCTS AND
METHODS

<130> 740.013US2

<140> 08/955,572

<141> 1997-10-22

<150> 08/461,652

<151> 1995-06-05

<150> 08/122,796

<151> 1993-09-03

<160> 12

<170> FastSEQ for Windows Version 3.0

<210> 1

<211> 838

<212> DNA

<213> Homo sapiens

<400> 1

aatcagctt	gctagtatca	tacctgtgcc	agatttcatc	atggaaaca	gctgttacaa	60
catagtagcc	actctgtgc	tgtcctcaa	ctttgagagg	acaagatcat	tgcagatcc	120
tttagtagaac	tgcccagctg	gtacattctg	tgataataac	aggaatcaga	tttgcagtcc	180
ctgtcctcca	aatagttct	ccagcgcagg	tggacaaagg	acctgtgaca	tatgcaggca	240
gtgtaaagg	gttttcagga	ccaggaagga	gtgttcctcc	accagcaatg	cagagtgtga	300
ctgcaactcca	gggtttact	gcctggggc	aggatgcaggc	atgtgtgaac	aggatgtaa	360
acaaggtaa	gaactgacaa	aaaaagggtt	taaagactgt	tgctttggga	catttaacga	420
tcagaaacgt	ggcatctgtc	gaccctggac	aaactgttct	ttggatggaa	agtctgtgct	480
tgtgaatggg	acgaaggaga	gggacgtgg	ctgtggacca	tctccagctg	acctctctcc	540
gggagcatcc	tctgtgaccc	cgctgcccc	tgcgagagag	ccaggacact	ctccgcagat	600
cacatcttc	tttcttgccg	tgacgtcgac	tgcggtgctc	tccctgctgt	tcttcctcac	660
gctccgttcc	tctgttgtt	aacggggcag	aaagaaaactc	ctgttatatat	tcaaacaacc	720
atttatgaga	ccagtacaaa	ctactcaaga	ggaagatggc	tgtagctgcc	gattttccaga	780
agaagaagaa	ggaggatgtg	aactgtgaaa	tggaaagtcaa	tagggctgtt	gggacttt	838

<210> 2

<211> 255

<212> PRT

<213> Homo sapiens

<400> 2

Met	Gly	Asn	Ser	Cys	Tyr	Asn	Ile	Val	Ala	Thr	Leu	Leu	Leu	Val	Leu
1							5			10				15	
Asn	Phe	Glu	Arg	Thr	Arg	Ser	Leu	Gln	Asp	Pro	Cys	Ser	Asn	Cys	Pro
							20			25			30		
Ala	Gly	Thr	Phe	Cys	Asp	Asn	Asn	Arg	Asn	Gln	Ile	Cys	Ser	Pro	Cys
							35			40		45			
Pro	Pro	Asn	Ser	Phe	Ser	Ser	Ala	Gly	Gly	Gln	Arg	Thr	Cys	Asp	Ile
							50			55		60			
Cys	Arg	Gln	Cys	Lys	Gly	Val	Phe	Arg	Thr	Arg	Lys	Glu	Cys	Ser	Ser
						65			70		75		80		
Thr	Ser	Asn	Ala	Glu	Cys	Asp	Cys	Thr	Pro	Gly	Phe	His	Cys	Leu	Gly

85	90	95													
Ala	Gly	Cys	Ser	Met	Cys	Glu	Gln	Asp	Cys	Lys	Gln	Gly	Gln	Glu	Leu
100						105								110	
Thr	Lys	Lys	Gly	Cys	Lys	Asp	Cys	Cys	Phe	Gly	Thr	Phe	Asn	Asp	Gln
115						120								125	
Lys	Arg	Gly	Ile	Cys	Arg	Pro	Trp	Thr	Asn	Cys	Ser	Leu	Asp	Gly	Lys
130						135								140	
Ser	Val	Leu	Val	Asn	Gly	Thr	Lys	Glu	Arg	Asp	Val	Val	Cys	Gly	Pro
145						150								160	
Ser	Pro	Ala	Asp	Leu	Ser	Pro	Gly	Ala	Ser	Ser	Val	Thr	Pro	Pro	Ala
														175	
Pro	Ala	Arg	Glu	Pro	Gly	His	Ser	Pro	Gln	Ile	Ile	Ser	Phe	Phe	Leu
														190	
Ala	Leu	Thr	Ser	Thr	Ala	Leu	Leu	Phe	Leu	Leu	Phe	Phe	Leu	Thr	Leu
														195	
Arg	Phe	Ser	Val	Val	Lys	Arg	Gly	Arg	Lys	Lys	Leu	Leu	Tyr	Ile	Phe
														210	
Lys	Gln	Pro	Phe	Met	Arg	Pro	Val	Gln	Thr	Thr	Gln	Glu	Glu	Asp	Gly
														225	
Cys	Ser	Cys	Arg	Phe	Pro	Glu	Glu	Glu	Gly	Gly	Cys	Glu	Leu		
														245	
														250	
														255	

<210> 3

<211> 20

<212> DNA

<213> Homo sapiens

<400> 3

ttytgymgaa artayaaycc 20

<210> 4

<211> 20

<212> DNA

<213> Homo sapiens

<400> 4

ttytcstscsca htggtgacca 20

<210> 5

<211> 20

<212> DNA

<213> Homo sapiens

<400> 5

cccargswrc aggtttrca 20

<210> 6

<211> 20

<212> DNA

<213> Homo sapiens

<400> 6

ttytgrtcrt traatgttcc 20

<210> 7

<211> 25

<212> DNA

<213> Homo sapiens

<400> 7

aataagcttt gctagtatca tacct 25

<210> 8
<211> 30
<212> DNA
<213> Homo sapiens

<400> 8

ttaagatctc tgcggagagt gtcctggctc

30

<210> 9
<211> 2350
<212> DNA
<213> Mus musculus

<220>

<221> unsure
<222> (1253)...(1255)
<223> (a or g or c or t/u)

<400> 9

atgtccatga	actgctgagt	ggataaacag	cacggatat	ctctgtctaa	aggaatatta	60
ctacaccagg	aaaaggacac	attcgacaac	aggaaaggag	cctgtcacag	aaaaccacag	120
tgtcctgtgc	atgtgacatt	tcgccatggg	aaacaactgt	tacaacgtgg	tggtcattgt	180
gctgctgcta	gtgggctgtg	agaaggtggg	agccgtcag	aactcctgtg	ataactgtca	240
gcctggact	ttctgcagaa	aatacaatcc	agtctgcaag	agctgcctc	caagtacatt	300
ctccagcata	ggtggacagc	cgaactgtaa	catctgcaga	gtgtgtcag	gctatttcag	360
gttcaagaag	ttttgtccct	ctacccacaa	cgcggagtgt	gagtgcattt	aaggattcca	420
ttgcttgggg	ccacagtgc	ccagatgtga	aaaggactgc	aggcctggcc	aggagcta	480
gaagcagggt	tgcaaaacct	gtagcttggg	aacatttaat	gaccagaacg	gtactggcgt	540
ctgtcgaccc	tggacgaact	gctctctaga	cggaggtct	gtgcttaaga	ccgggaccac	600
ggagaaggac	gtggtgtgtg	gaccggctgt	ggtgacgttc	tctcccagta	ccaccatttc	660
tgtgactcca	gagggaggac	caggaggcga	ctccttgcag	gtccttacct	tgttcttggc	720
gctgacatcg	gctttgtgc	tggccctgtat	cttcattact	ctcctgttct	ctgtgctcaa	780
atggatcagg	aaaaaattcc	ccacatatt	caagcaacca	ttttaagaaga	ccactggagc	840
agctcaagag	gaagatgtt	gtagctgcgc	atgtccacag	gaagaagaag	gaggaggagg	900
aggctatgag	ctgtgtatgt	ctatccttagg	agatgtgtgg	gcccggaaaccg	agaagcacta	960
ggaccccccacc	atcctgtgg	acagcacaag	caacccacc	accctgttct	tacacatcat	1020
cctagatgt	gtgtggcgc	gcacccatc	caagtcttct	ctaaacgtcaa	catatttgc	1080
tttacctttt	ttaaatttt	tttaatattt	aaattttatg	tgtgtgagtt	ttttgcctgc	1140
ctgtatgcac	acgtgtgtgt	gtgtgtgtgt	gtgacactcc	tgtatgcctga	ggaggtcaga	1200
agacaaagg	ttggttccat	aagaactgg	gttatggat	gtgtgagcc	ggnnnngatag	1260
gtcgggacgg	agacctgtct	tcttatttt	acgtgactgt	ataataaaaa	aaaaatgtata	1320
ttcgggaaat	tgttagagatt	gtcctgacac	ccttcttagt	aatgtctta	gaggaattgt	1380
tgatacgtat	tatactgtat	atgtgtatgt	atatgtatata	gtatataata	gactctttt	1440
ctgtcaaagt	caacctagag	tgtctggta	ccaggtcaat	tttattggac	attttacgtc	1500
acacacacac	acacacacac	acacacacgt	ttataactacg	tactgttatac	ggtattctac	1560
gtcatataat	gggatagggt	aaaaggaaac	caaagagtga	gtgatattat	tgtggaggt	1620
acagactacc	ccttctgggt	acgtaggac	agacccctt	cggactgtct	aaaactcccc	1680
ttagaagtct	cgtcaagtcc	ccggacgaag	aggacagagg	agacacacgtc	cgaaaaagtta	1740
ttttccggc	aaatccccc	cctgtttcgt	gacactccac	cccttggta	cacttgagtg	1800
tcatccttgc	gccggaaagg	caggtggta	ccgtctgttag	gggcggggag	acagagccgc	1860
gggggagcta	cgagaatcga	ctcacaggc	gccccgggt	tgc当地at	aacttttta	1920
atctcacaag	tttcgtccgg	gctcgccg	cctatggcg	cgatccttat	taccttatacc	1980
tggcgccaag	ataaaaacaac	caaaaaggctt	gactccgta	ctaaattctcc	ctggccggccc	2040
ccgtaaagcat	aacgcggcga	tctccacttt	aagaacctgg	ccgcgttctg	cctggtctcg	2100
cttcgtaaa	cgggttctac	aaaagtaatt	agttctgtct	ttcagcctcc	aagcttctcg	2160
tagtctatgg	cagcatcaag	gctggatatt	gctacggctg	accgctacgc	cgccgcaata	2220
agggtactgg	gcggcccg	gaaggccctt	tggttcaga	aacccaaggc	ccccctcata	2280
ccaacgttcc	gactttgatt	cttgcggta	cgtgggtgg	ggtgccttag	ctcttctcg	2340
atagtttagac						2350

<210> 10

<211> 256
<212> PRT
<213> Mus musculus

<400> 10
Met Gly Asn Asn Cys Tyr Asn Val Val Val Ile Val Leu Leu Val
1 5 10 15
Gly Cys Glu Lys Val Gly Ala Val Gln Asn Ser Cys Asp Asn Cys Gln
20 25 30
Pro Gly Thr Phe Cys Arg Lys Tyr Asn Pro Val Cys Lys Ser Cys Pro
35 40 45
Pro Ser Thr Phe Ser Ser Ile Gly Gly Gln Pro Asn Cys Asn Ile Cys
50 55 60
Arg Val Cys Ala Gly Tyr Phe Arg Phe Lys Lys Phe Cys Ser Ser Thr
65 70 75 80
His Asn Ala Glu Cys Glu Cys Ile Glu Gly Phe His Cys Leu Gly Pro
85 90 95
Gln Cys Thr Arg Cys Glu Lys Asp Cys Arg Pro Gly Gln Glu Leu Thr
100 105 110
Lys Gln Gly Cys Lys Thr Cys Ser Leu Gly Thr Phe Asn Asp Gln Asn
115 120 125
Gly Thr Gly Val Cys Arg Pro Trp Thr Asn Cys Ser Leu Asp Gly Arg
130 135 140
Ser Val Leu Lys Thr Gly Thr Thr Glu Lys Asp Val Val Cys Gly Pro
145 150 155 160
Pro Val Val Ser Phe Ser Pro Ser Thr Thr Ile Ser Val Thr Pro Glu
165 170 175
Gly Gly Pro Gly Gly His Ser Leu Gln Val Leu Thr Leu Phe Leu Ala
180 185 190
Leu Thr Ser Ala Leu Leu Leu Ala Leu Ile Phe Ile Thr Leu Leu Phe
195 200 205
Ser Val Leu Lys Trp Ile Arg Lys Lys Phe Pro His Ile Phe Lys Gln
210 215 220
Pro Phe Lys Lys Thr Thr Gly Ala Ala Gln Glu Glu Asp Ala Cys Ser
225 230 235 240
Cys Arg Cys Pro Gln Glu Glu Gly Gly Gly Gly Tyr Glu Leu
245 250 255

<210> 11
<211> 24
<212> PRT
<213> Homo sapiens

<220>
<221> ZN_FING
<222> 2...3, 5...13, 15...17, 19...21, 23
<223> Putative zinc finger structure

<400> 11
Cys Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Cys Xaa Xaa
1 5 10 15
Xaa His Xaa Xaa Xaa Cys Xaa Cys
20

<210> 12
<211> 12
<212> PRT
<213> Homo sapiens

<400> 12

Leu Gln Asp Pro Cys Ser Asn Cys Pro Ala Gly Thr
1 5 10

卷之三