

MULTIPLIER CIRCUIT

COMBINATIONAL LOGIC CIRCUITS

........

Gyro A. Madrona

Electronics Engineer

TOPIC OUTLINE

Multiplier Circuit

MULTIPLIER CIRCUIT

MULTIPLICATION

Decimal Multiplication

 $imes rac{8}{3}$ Multiplicand $rac{3}{24}$ Product

Binary Multiplication

$$imes rac{1000}{ imes 0011}$$
 Multiplier $ho rac{1000}{ imes 1000}$ Partial product 0 Partial product 1 $ho 1000$ Product

EXERCISE

Create a block-level representation of a 2-bit binary multiplier.

EXERCISE

Synthesize and implement a 2-bit parallel binary multiplier.

Solution

<u>note</u>

The use of XOR or XNOR gates is not allowed.

LABORATORY

