

Galvanic Corrosion of Tungsten Coupled With Several Metals/Alloys

by F. C. Chang, J. H. Beatty, M. J. Kane, and J. Beck

ARL-TR-1845 November 1998

19990115 015

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory

Aberdeen Proving Ground, MD 21005-5069

ARL-TR-1845 November 1998

Galvanic Corrosion of Tungsten Coupled With Several Metals/Alloys

F. C. Chang, J. H. Beatty, M. J. Kane, J. Beck Weapons and Materials Research Directorate, ARL

Approved for public release; distribution is unlimited.

Abstract

From an environment perspective, tungsten is a more desirable material than depleted uranium (DU) for penetrator applications. However, the ballistic performance attained by current tungsten (W) alloys is inferior to DU. Recently, advanced tungsten-metal (W-M) composites have been developed to improve their ballistic penetration, but the corrosion properties are unknown and need to be determined. In this work, the galvanic corrosion behavior of W coupled with several selected metals/alloys was investigated. Electrochemical potentiodynamic polarizations and galvanic couplings were employed. The testing was conducted in a 1 wt-% sodium sulfate solution. The selected metals/alloys were: pure W, pure titanium (Ti), Ti 6A1-4V (Ti-6-4), hafnium (Hf), 36Ni64Fe0.03C (Invar), pure iron (Fe), and brass (CDA 260). The galvanic corrosion of these couples is examined and discussed based on the results from electrochemical tests and visual observations.

Table of Contents

		Page
	List of Figures	v
	List of Tables	vii
1.	Introduction	1
2.	Experimental Procedure	1
3.	Results and Discussion	4
4.	Conclusions	12
5.	References	13
	Distribution List	15
	Report Documentation Page	17

List of Figures

<u>Figure</u>		Page
1.	Typical Microstructure of W-Ni-Fe Alloys, Taken From Cai et al. (1995)	2
2.	Experimental Setup Used for Galvanic Testing	3
3.	Galvanic Corrosion Current Densities as a Function of Time: (a) W Coupled With Ti, Ti-6A1-4V, Hf, and Ni; and (b) W Coupled With CDA, Fe, and Invar	5
4.	Schematic Illustrating the Mixed Potential Theory	6
5.	Potentiodynamic Scans and Mixed Potentials	7

List of Tables

<u>Table</u>		Page
1.	Chemical Compositions of Metals and Alloys Selected for This Study	2
2.	Summary of Galvanic Corrosion Tests	6
3.	Mixed Potentials and Mixed Current Densities as Determined From Polarization Curves	10
4.	Average Open-Circuit Potentials Measured After 1 hr of Immersion	11

1. Introduction

Depleted uranium (DU)- and tungsten (W)-based alloys are attractive candidate materials for kinetic energy (KE) penetrator applications (Cai et al. 1995; Chang, Levy, and Lin 1985; Levy and Chang 1981; Stein and Geary 1957) because of their unique combination of mechanical properties and high density. Traditionally, DU penetrators have better ballistic properties than W penetrators, but the toxicity and radioactivity of DU creates environmental repercussions. Thus, efforts to develop W alloys to replace DU have been undertaken by the U.S. Army and Department of Defense (DOD). Potential tungsten alloys have included W-Ni-Fe-Co, W-Ni-Co, W-Ni-Mn, W-Hf, W-Ti, and others (Cai et al. 1995).

These new W alloys are being developed strictly for improved ballistic performance; their corrosion properties are of secondary importance. However, this study is looking to uncover potential galvanic corrosion issues in tandem with the alloy development. Tungsten alloys generally contain at least two discrete phases. In most alloys under consideration, relatively pure W grains are encapsulated by a matrix consisting of the other alloying elements (Cai et al. 1995), as shown in Figure 1 for W-Ni-Fe. Galvanic corrosion can occur between these two discrete phases. The work reported herein is a preliminary study of the galvanic corrosion behavior of tungsten-metal (W-M) couples immersed in test solutions. Both potentiodynamic scans and galvanic couple experiments were performed.

2. Experimental Procedure

Samples for electrochemical testing were made from pure W, and other seven other metallic materials selected for study, namely: brass (CDA 260), hafnium (Hf), 36Ni64Fe0.03C (Invar), iron (Fe), nickel (Ni), titanium (Ti), and titanium 6Al-4V(Ti-6-4). Their typical chemical compositions are listed in Table 1. Disk-type specimens 0.318 cm thick and 1.588 cm in diameter were used in all of the tests. Immediately before initiating electrochemical tests, the specimens were polished with 600-grit silicon carbide (SiC) paper, rinsed with distilled water, acetone degreased, and air dried. One square centimeter of each specimen was exposed to the test solution.

Figure 1. Typical Microstructure of W-Ni-Fe Alloys, Taken From Cai et al. (1995). The Solubility of Fe and Ni in W Is Extremely Low, Leading to Almost Pure W Grains Surrounded by an Fe-Ni Matrix. The Alloy Shown Is 95W-3.5Ni-1.5Fe.

Table 1. Chemical Compositions of Metals and Alloys Selected for This Study

Material Studied	Nominal Composition		
Pure W	99.99 W		
Fe	99.99 Fe		
Ni	99.7 Ni		
Hf	95.3Hf-3.5Zn-1.2Fe		
Ti	99.9 Ti		
Ti-6-4	90Ti-6A1-4V		
CDA 260	70Cu-30Zn		
Invar	36Ni64Fe0.03C		

Tests were performed in a dilute sodium sulfate solution (1 wt-% Na₂SO₄) to simulate the humid industrial atmosphere. Potentiodynamic tests were conducted at room temperature in a cell manufactured by Princeton Applied Research (PAR) Model K0235 containing about 325 ml of test

solution. A computer-controlled PAR M273 potentiostat was used, with a sweep rate of 0.166 mV/s. Separate specimens were used for the anodic and cathodic portions of the curves. The solution was deaerated with argon gas. The open-circuit corrosion potential was measured for a period of 1 hr before the scans commenced. Potentials were measured against the saturated calomel electrode (SCE).

The galvanic corrosion tests were conducted in a modified version of the PAR Model K0235 flat cell, as shown in Figure 2. Two PAR M273 potentiostats were utilized. A W specimen is placed at one end of the cell, while the other specimen is clamped to the opposite end. The first potentiostat is set to keep the potential difference between the W and the other sample at 0 V (effectively a short circuit) and simultaneously measure the galvanic current (I_g) generated. A second potentiostat is used to monitor the open circuit potential of the corroding couple (E_g) vs. SCE. The galvanic couple cells were not deaerated, and galvanic currents were measured for a period of 3 days.

Figure 2. Experimental Setup Used for Galvanic Testing. Clamps at Both Ends Secure Each Material of the Couple Being Tested. The Potentiostat Is Used to Effectively Short-Circuit Each Specimen and Measure the Galvanic Current.

3. Results and Discussion

In the galvanic tests, variations of the galvanic currents, I_g vs. time, were recorded for the 72 hr of testing. The I_g is useful as an indicator of the severity of galvanic corrosion. Additionally, potentiodynamic scans are often used to predict galvanic corrosion behavior using mixed potential theory. The following results compare the predictions of mixed potential theory to the actual galvanic tests and comment on the implications this will have on the corrosion resistance of W alloys under development.

Figures 3a and b show the variation in galvanic current, I_g, as function of time. "Positive" currents in this case mean that the W is behaving as the anode, while negative currents denote that W is behaving as the cathode. These curves show that at the end of the 72-hr test, only Fe and Invar behaved as anodes with respect to W. Iron was more anodic than W throughout the test, while Invar changed behavior from cathodic to anodic after a few hours of immersion. At the outset of the test Ni, Hf, Ti, and Ti-6-4 were anodic with respect to W in the W-M couples, but they all became more noble (cathodic) in less than 10 hr.

The results of the galvanic corrosion tests are summarized in Table 2. The couples are ranked in decreasing order of the magnitude of the galvanic current density.

When two metallic specimens are coupled together and immersed in an aqueous electrolyte, the well-established mixed potential theory states that the corroding potential and corresponding galvanic current can be predicted form the potentiodynamic scans of each metal. Figure 4 shows a schematic illustrating this method. The mixed potential of the couple, E_m , and the galvanic current, I_m , can be represented by the intersection of the anodic polarization curve of the anode (the alloy/metal with the more active E_{corr}) and the cathodic polarization curve of the cathode (the alloy/metal with the more noble E_{corr}) as the two polarization curves are overlapped. Generally, I_m may be considered the corrosion rate of the anode in the couple.

(a)

(b)

Figure 3. Galvanic Corrosion Current Densities as a Function of Time: (a) W Coupled With Ti, Ti-6Al-4V, Hf, and Ni; (b) W Coupled With CDA, Fe, and Invar.

Table 2. Summary of Galvanic Corrosion Tests

W Coupled To	Ig (A/cm²)
Fe	-1×10^{-5}
CDA	1×10^{-6}
Invar	-1×10^{-6}
Ni	1×10^{-7}
Ti	3×10^{-8}
Ti-6A1-4V	3 × 10 ⁻⁸
Hf	0×10^{-8}

Note: Negative sign indicates that the material was anodic with respect to W.

Figure 4. Schematic Illustrating the Mixed Potential Theory. The Combined System Must Equilibrate to a Common Potential and Common Current Density When the Specimens Are Electrically Connected. The Common (Mixed) Potential Is Designated $E_{\rm m}$, and the Current Density Obtained Is $I_{\rm m}$.

Figures 5 a–g show the overlapped potentiodynamic scans of the couples under investigation and the corresponding values of E_m and I_m . Tables 3 and 4 summarize these results, providing the oprn-circuit potentials (E_{corr}) for each metal/alloy studied, as well as the E_m and I_m predicted from

(a) W and Invar.

(b) W and CDA.

Figure 5. Potentiodynamic Scans and Mixed Potentials.

(c) W and Fe.

(d) W and Ni.

Figure 5. Potentiodynamic Scans and Mixed Potentials (continued).

(e) W and Ti.

(f) W and Ti-6Al-4V.

Figure 5. Potentiodynamic Scans and Mixed Potentials (continued).

(g) W and Hf.

Figure 5. Potentiodynamic Scans and Mixed Potentials (continued).

Table 3. Mixed Potentials and Mixed Current Densities as Determined From Polarization Curves

W Coupled To	W is More	E _m (V vs. SCE)	I_m (A/cm ²)
Fe	Noble	-0.748	6.109×10^{-6}
Ni	Noble	-0.443	7.261×10^{-7}
Hf	Noble	-0.431	2.158×10^{-7}
Ti-6-4	Noble	-0.431	2.094×10^{-7}
Ti	Noble	-0.431	1.315×10^{-7}
Invar	Active	-0.403	(1.552×10^{-6})
CDA	Active	-0.383	(2.553×10^{-6})

Table 4. Average Open-Circuit Potentials Measured After 1 hr of Immersion

Material	E _{corr} (V vs. SCE)
CDA	-195
Invar	-277
W	-431
Pure Ti	-463
Pure Ni	-522
Hf	-533
Ti-6A1-4V	-535
Pure Fe	-785

mixed potential theory. Comparing I_m to I_g shows that the mixed potential theory agrees reasonably well with the longer term galvanic couple data. The materials with large I_m 's (Fe, CDA, Invar) show the largest I_g 's. The Fe:W couple sustained the largest current density, at $1 \times 10 - 5$ A/cm². The Invar:W couple shows a reversal of current that is not easily explained. The remaining materials (Ti, Ti-6-4, Ni, and Hf) have E_m 's close to the E_{corr} of W. This means that the W, which is near its free-corrosion potential, can behave either as an anode or a cathode as drifting of the corrosion potential occurs. Long-term measurements of E_{corr} often show "drifting" from 10-30 mV, suggesting that changes in the anodic/cathodic relationship (current reversals) should be expected if the E_m is near E_{corr} of either material in the couple. Current reversals are seen for all of the couples except W-Fe and W-CDA. However, relatively small galvanic currents would be expected, and this is precisely what is observed.

It should be noted that there are certain limitations of the methods used in this preliminary study; for instance, the effect of grain boundaries, solid solubility, and intermetallic compound formation that may result in certain processes have been ignored. Also, other factors such as the ratio of anode/cathode surface area must be accounted for. However, because of the two discrete phases found in W alloy composites (Figure 1), it is reasonable to assume that the galvanic effects measured in this study will agree well with the general corrosion behavior of the W alloys under development.

4. Conclusions

Comparison of mixed potential theory and galvanic corrosion tests provided good agreement for the materials studied. Pure Ti, Ti-6Al-4V, Ni and Hf when coupled with W showed small galvanic current densities ($< 1.0 \times 10^{-7} \text{A/cm}^2$) and maintained galvanic corrosion potentials near the E_{corr} of W. Tungsten alloys utilizing these materials as the matrix material should show little or no galvanic corrosion. When W was coupled to Fe, CDA, and Invar, significantly larger current densities were measured. This suggests that corrosion protection schemes will need to be developed for W alloys under development using these materials in the matrix.

5. References

- Cai, W. D., Y. Li, R. J. Dowding, F. A. Mohamed, and E. J. Lavernia. "A Review of Tungsten-Based Alloys as Kinetic Energy Penetrator Materials." Review in Particulate Materials, vol. 3, pp. 71–131, 1995.
- Chang, F., M. Levy, and S. S. Lin. "The Effect of Ion Implantation on the Corrosion Behavior of a High Density Sintered Tungsten Alloy." *NACE Corrosion*, vol. 85, paper no. 71, 1985.
- Levy, M., and F. Chang. "Corrosion Behavior of High Density Tungsten Alloys." *Proceedings of the Second International Conference on Environmental Degradation of Engineering Materials in Aggressive Environments*, pp. 33–42, 1981.
- Stern, M., and A. Geary. Journal of Electrochemical Society. Vol. 104, p. 56, 1957.

NO. OF COPIES ORGANIZATION

- 2 DEFENSE TECHNICAL INFORMATION CENTER DTIC DDA 8725 JOHN J KINGMAN RD STE 0944 FT BELVOIR VA 22060-6218
- 1 HQDA
 DAMO FDQ
 D SCHMIDT
 400 ARMY PENTAGON
 WASHINGTON DC 20310-0460
- 1 OSD
 OUSD(A&T)/ODDDR&E(R)
 R J TREW
 THE PENTAGON
 WASHINGTON DC 20301-7100
- 1 DPTY CG FOR RDE HQ
 US ARMY MATERIEL CMD
 AMCRD
 MG CALDWELL
 5001 EISENHOWER AVE
 ALEXANDRIA VA 22333-0001
- 1 INST FOR ADVNCD TCHNLGY THE UNIV OF TEXAS AT AUSTIN PO BOX 202797 AUSTIN TX 78720-2797
- 1 DARPA
 B KASPAR
 3701 N FAIRFAX DR
 ARLINGTON VA 22203-1714
- 1 NAVAL SURFACE WARFARE CTR CODE B07 J PENNELLA 17320 DAHLGREN RD BLDG 1470 RM 1101 DAHLGREN VA 22448-5100
- 1 US MILITARY ACADEMY
 MATH SCI CTR OF EXCELLENCE
 DEPT OF MATHEMATICAL SCI
 MAJ M D PHILLIPS
 THAYER HALL
 WEST POINT NY 10996-1786

NO. OF COPIES ORGANIZATION

- 1 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRL D
 R W WHALIN
 2800 POWDER MILL RD
 ADELPHI MD 20783-1145
- 1 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRL DD
 J J ROCCHIO
 2800 POWDER MILL RD
 ADELPHI MD 20783-1145
- 1 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRL CS AS (RECORDS MGMT)
 2800 POWDER MILL RD
 ADELPHI MD 20783-1145
- 3 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRL CI LL
 2800 POWDER MILL RD
 ADELPHI MD 20783-1145

ABERDEEN PROVING GROUND

4 DIR USARL AMSRL CI LP (305)

NO. OF COPIES ORGANIZATION

- 1 CDR
 US ARMY NATICK RD&E CTR
 TECHL LBRY
 NATICK MA 01760-5010
- 1 CDR
 US ARMY SAT COMMCTN AGCY
 TECHL DCMNT CTR
 FORT MONMOUTH NJ 07703
- 1 CDR TACOM AMSTA TSL TECHL LBRY WARREN MI 48397-5000
- 1 PRES
 AIRBRN ELECT & SPEC WARFARE BD
 LBRY
 FORT BRAGG NC 28307
- 1 CDR DUGWAY PRVNG GRND TECHL LBRY TECHL INFO DIV DUGWAY PROVING GROUND UT 84022
- 1 CDR
 USA AEROMEDICAL RSRCH UNIT
 TECHL LBRY
 PO BOX 577
 FORT RUCKER AL 36360
- 1 DIR
 US ARMY AVN TRAIN LBRY
 BLDG 5906 5907
 FORT RUCKER AL 36360
- 1 CDR
 US ARMY AGCY FOR AVN SFTY
 TECHL LBRY
 FORT RUCKER AL 36362
- 1 CDR
 CLARKE ENGR SCHL LBRY
 LBRY
 3202 NEBRASKA AVE N
 FORTLEONARD WOOD MO 65473-5000

NO. OF COPIES ORGANIZATION

- 1 CDR
 US ARMY ENGR WATEWAYS
 EXPRMNT STA
 RSRCH CTR LBRY
 PO BOX 631
 VICKSBURG MS 39180
- 1 CDR
 US ARMY QUARTERMASTER SCHL
 QUARTERMASTER SCHL LBRY
 FORT LEE VA 23801
- 1 DIR
 NATL INST OF STAND & TECHLGY
 GAITHERSBURG MD 20899
- 1 CDR
 NAVAL CIVIL ENGR LAB
 TECHL LBRY
 PORT HUENEME CA 93043
- 1 DIR LLNL TECHL LBRY PO BOX 1663 LIVERMORE CA 94550
- 1 DIR SANDIA NATL LAB TECHL LBRY ALBUQUERQUE NM 87185-5800
- 1 CDR ARDEC TECHL LBRY PICATINNY ARSENAL NJ 07806-5000
- 1 CDR NWC TECHL LBRY CHINA LAKE CA 93555
- 1 CDR NSWC TECHL LBRY DAHLGREN VA 22448-5000
- 1 DIR
 AIR FORCE WRIGHT LAB
 TECHL LBRY
 ARMAMENT DIV
 101 EGLIN AVE STE 239
 EGLIN AFB FL 32542

NO. OF COPIES ORGANIZATION

- 1 DIR SOUTHWEST RSRCH INST TECHL LBRY PO DRAWER 28510 SAN ANTONIO TX 78228-0510
- 1 DIR
 INST FOR ADVANCED TECHLGY
 UNIV OF TEXAS AUSTIN
 TECHL LBRY
 AUSTIN TX 78759
- 1 DIR
 DEFENSE NUCLEAR AGCY
 TECHL LBRY
 6801 TELEGRAPH RD
 ALEXANDRIA VA 22192
- I DIR
 NAVAL RSRCH LAB
 TECHL LBRY
 WASHINGTON DC 20375
- 1 CDR
 USAF WRIGHT RSRCH & DEV CTR
 TECHL LBRY
 WRIGHT PATTERSON AFB OH
 45433-6523
- 1 DIR
 BENET WEAPONS LAB
 LCWSL
 USA AMCCOM
 TECHL LBRY
 WATERVLIET NY 12189
- 1 CDR
 USA FOREIGN SCI & TECHLGY CTR
 TECHL LBRY
 220 7TH ST NE
 CHARLOTTESVILLE VA 22901-5396

ABERDEEN PROVING GROUND

20 DIR USARL

AMSRL WM MC

F CHANG (5 CP)

K BEATTY (5 CP)

M KAME (5 CP)

J BECK (5 CP)

REPORT DOCUMENTATION PAGE					Form Approved OMB No. 0704-0188	
Public reporting burden for this collection of information and maintaining the data needed, and com-	apietina and reviewing t	he collection of information.	Send comments regarding this bure	ien estimate o	rany other aspect of this	
collection of information, including suggestions for Davis Highway, Suite 1204, Arlington, VA 22202-430	reducing this burden, to 2. and to the Office of M	o Washington Headquarters lanacement and Budget, Par	Services, Directorate for Information erwork Reduction Project(0704-0188)	. Washington.	DC 20503.	
1. AGENCY USE ONLY (Leave blank)		RT DATE	3. REPORT TYPE AND	DATES CO	DVERED	
4. TITLE AND SUBTITLE	No	vember 1998	Final, 1994 - 1997	5. FUNDI	NG NUMBERS	
Galvanic Corrosion of Tungster	- Counted Wit	h Cavaral Matals	/Allows			
Galvanic Corrosion of Tungster	n Coupled wit	ii Severai Metais	Alloys			
6. AUTHOR(S)		_		88M458		
F. C. Chang, J. H. Beatty, M. J.	Kane, and J.	Beck				
7. PERFORMING ORGANIZATION NAM	ME(S) AND ADDR	ESS(ES)			ORMING ORGANIZATION RT NUMBER	
U.S. Army Research Laborator	y			A.D.	T TTD 1045	
ATTN: AMSRL-WM-MC				AR	L-TR-1845	
Aberdeen Proving Ground, MD	21005-5069					
9. SPONSORING/MONITORING AGEN	CY NAMES(S) AN	D ADDRESS(ES)			SORING/MONITORING CY REPORT NUMBER	
11. SUPPLEMENTARY NOTES						
11. GOFFLEWEITANI NOILO						
12a. DISTRIBUTION/AVAILABILITY ST	ATEMENT			12b. DIS	FRIBUTION CODE	
Approved for public release; di	stribution is w	nlimited.				
13. ABSTRACT (Maximum 200 words)						
	ective tungst	en is a more desi	irable material than de	nleted u	ranium (DU) for penetrator	
applications. However, the ba	llistic perform	ance attained by	current tungsten (W)	alloys is	s inferior to DU. Recently,	
advanced tungsten-metal (W-	M) composite	s have been de	eveloped to improve	their ba	llistic penetration, but the	
corrosion properties are unknown	own and need	to be determine	ed. In this work, the	galvani	c corrosion behavior of W	
coupled with several selected	metals/alloys	s was investigat	ed. Electrochemical	potentio	dynamic polarizations and	
galvanic couplings were empl	oyed. The te	sting was condu	cted in a 1 wt-% sod	ium suli	fate solution. The selected	
metals/alloys were: pure W, pure titanium (Ti), Ti 6A1-4V (Ti-6-4), hafnium (Hf), 36Ni64Fe0.03C (Invar), pure iron						
(Fe), and brass (CDA 260). The galvanic corrosion of these couples is examined and discussed based on the results						
from electrochemical tests and visual observations.						
14. SUBJECT TERMS					15. NUMBER OF PAGES	
galvanic corrosion, tungsten, depleted uranium (DU), penetrator application					25 16. PRICE CODE	
	18. SECURITY CL		19. SECURITY CLASSIFIC	ATION	20. LIMITATION OF ABSTRACT	
OF REPORT UNCLASSIFIED	OF THIS PAGE		OF ABSTRACT UNCLASSIFIE		UL	

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers to the items/questions below will aid us in our efforts.

1. ARL Report Nun	nber/Author	ARL-TR-1845 (Chang)	Date of R	eport November 1998
2. Date Report Rece	eived			
		(Comment on purpose, relate	=	terest for which the report will
4. Specifically, how	is the report b	eing used? (Information sour	rce, design data, procedure,	source of ideas, etc.)
	_			dollars saved, operating costs
	•	ou think should be changed to	•	licate changes to organization,
	Org	anization		
CURRENT	Nan	ne	E-mail Name	
ADDRESS	Stre	et or P.O. Box No.		
	City	, State, Zip Code		
7. If indicating a Chaor Incorrect address	•	s or Address Correction, pleas	e provide the Current or Cor	rect address above and the Old
	Org	anization		
OLD	Nan	ne		
ADDRESS	Stre	et or P.O. Box No.		
	City	, State, Zip Code		
	(Re	nove this sheet, fold as indica	ted, tape closed, and mail.)	

(Remove this sheet, fold as indicated, tape closed, and mail.)
(DO NOT STAPLE)