

한줄 영화 리뷰 분석기

Team: 데이터의 협곡

주제와 선정 배경

수집된 데이터와 전처리

모델 학습과 결과

검색 시스템과 분석 결과 저장

기대효과

한계점과 개선 방안

주제와 선정 배경 - 영화리뷰 <mark>감정 분석</mark> AI -

정보 포화로 영화 선택에 어려움

- 2020에만 1693편 이상의 작품들이 개봉
- 코로나로 인해 집에서 영화를 보는 시간 이 증가했으나
- 그만큼 어떠한 영화를 선택해야 하는지
 기준이 모호함
- 수 많은 리뷰들은 역으로 영화에 대한 전 반적 평가를 어렵게 함
- 감정 서술적 표현이 많아 정확히 댓글의 의도와 감정을 파악하기 어려움

입력 받은 리뷰를 분석해 영화에 대한 긍정과 부정 반응을 알려줄 프로그램 대다수의 소비자들이 이 영화에 대해 만족 → 긍정적 반응의 댓글을 유추할 수 있음 영화 반응 분석을 통해 해당 영화를 시청하지 않아도 전반적인 분위기 파악이 가능

수집된 데이터와 전처리

- Konlpy를 이용한 형태소 분석 -

```
[('./Punctuation', 67778),
('영화/Noun', 50818),
('하다/Yerb', 41209),
('이/Josa', 38540),
('보다/Yerb', 38538),
('의/Josa', 30188),
('../Punctuation', 29055),
('가/Josa', 26627),
('에/Josa', 26468),
('을/Josa', 23118)]
```

▲ 텍스트 빈도 상위 10개

- 원본 데이터 : https://github.com/e9t/nsmc/
- 네이버 영화의 리뷰 게시판에서 수집된 데이터
- 영화당 100개의 리뷰를 모아 총 200,000개의 리뷰
- 리뷰는 긍정(9~10점), 부정(1~4점)으로 분류
- 중립(5~8점)은 예외
- 컬럼은 id(네이버 유저 아이디), document(리뷰 내용), label(긍정(0), 부정(1)) 3가지.

필요한 데이터 전처리 과정

- 불필요한 id는 제외
- KoNLPy로 각 문장을 형태소 분석으로 품사 태깅, 분류
- ▶ 이후 전처리된 데이터는 json이나 pkl로 저장

문장 분석 테스트

• 형태소 분석을 통해 품사 태깅 확인

```
In [1]:
         1 from konlpy.tag import Okt
         2 import json
         3 import os
         4 from pprint import pprint
In [3]:
           # 문장 분석 테스트 (형태소 분석 및 품사 태깅)
          - okt = 0kt()
          |okt.pos('너무 재밌었음 마지막 전투씬은 애니매이션중에선 최고가 아니었을까?..')
Out[3]: [('너무', 'Adverb'),
        ('재밌었음', 'Adjective'),
('마지막', 'Noun'),
        ('전투쒼', 'Noun'),
        ('문', 'Josa'),
        ('애니매이션', 'Noun'),
        ('중', 'Suffix'),
        ('메선', 'Josa'),
        ('최고', 'Noun'),
        ('가', 'Josa'),
        ('아니었을까', 'Adjective'),
        ('?..', 'Punctuation')]
```


▲ 텍스트 빈도 상위 50개 그래프


```
In [8]:

1 #단어 번도수가 높은 10000개의 단어만 사용
2 selected_words = [f[0] for f in text.vocab().most_common(10000)]
3
4 #각 리뷰에 얼만큼 표현되는지 번도를 만들기 위한 함수
6 def term_frequency(doc):
6 return [doc.count(word) for word in selected_words]
7
8 train_x = [term_frequency(d) for d, _ in train_pos]
9 test_x = [term_frequency(d) for d, _ in test_pos]
10 train_y = [c for _, c in train_pos]
11 test_y = [c for _, c in test_pos]
```

- 컴퓨터 성능의 한계로 상위 빈도 단어 10000개 선택
- x → 각 리뷰를 상위 빈도 단어와 매칭하여 확인하는 용도
- y → 각 리뷰 별 긍/부정 여부 저장

모델 학습과 결과

- 케라스 sigmoid를 이용하여 학습 -

```
model = models.Sequential()
model.add(layers.Dense(64, activation= tf.keras.layers.PReLU(
   alpha_initializer='zeros', alpha_regularizer=None,
   alpha_constraint=None, shared_axes=None), input_shape=(10000,)))#10000개를 추출했으므로 shape는10000
model.add(lavers.Dense(1, activation= 'sigmoid'))
#모델 생성
model.compile(optimizer=optimizers.RMSprop(Ir=0.001),
         loss=losses.binary_crossentropy,
         metrics=[metrics.binary_accuracy])
#모델 화습
model.fit(x_train, y_train, epochs=10, batch_size=512)
results = model.evaluate(x test, v test)
#예측 결과
results #85%의 점확도를 가진다.
   uracy, u.b/b9
   Epoch 6/10
   293/293 [======== 0.2741 - binary_accu
   racy: 0.8872
   Epoch 7/10
   293/293 [======= 0.2601 - binary_accu
   racy: 0.8954
   Epoch 8/10
   293/293 [======= 0.2443 - binary.acc
   uracy: 0.9044
   Epoch 9/10
   293/293 [------] - 10s 35ms/step - loss: 0.2234 - binary acc
   uracy: 0.9149
   Epoch 10/10
   293/293 [----- - 10s 35ms/step - loss: 0.2082 - binary_acc
   uracy: 0.9234 Os - loss: 0.2081 - binary_accuracy: 0.
   uracy: 0.8533
   [0.38470733165740967. 0.8532800078392029]
```

<학습 조건>

- 활성 함수 : Sigmoid
 긍정과 부정 2가지로 이진분류
- Epoch = 10
- batch_size = 512

<결과>

- Loss: 0.3859
- binary_accuracy : 0.8534
- Prelu나 다른 함수를 사용하여도 85% 이상을 넘어가기가 힘듬.

검색 시스템과 분석결과 저장

- 3단계를 따라 구현 -

1단계 개별적인 문장 수준 감정 분석 2단계 원하는 영화 검색과 전체 리뷰 크롤링 3단계 긍/부정 파이차트와 워드 클라우드 저장

1단계: 개별적인 리뷰를 입력하면 몇 %확률로 긍/부정 문장인지 분석

2단계: 네이버 영화 검색 페이지를 이용해 영화를 검색하고 선택한 영화의 리뷰들 전체 크롤링

3 단계 : 전체 긍/부정 %를 구하여 파이차트로 만들고 추가로 워드클라우드까지 저장

1. 개별적인 문장 수준 감정 분석

- 앞서 전처리/정제한 데이터 10000개 투입
- 비꼬기, 중립적 표현, 장/단점 함께 쓴 경우가 아니면 거의
 90% 이상의 정확도를 보여줌

```
def predict_pos_text(text):
    token = tokenizing(text) #okt.pos로 토콘화한 단어를 정리
    tf =term_frequency(token)#토콘화된 단어를 이용해서 가장 많이 등장하는 단어와의 빈도수 제크

data = np.expand_dims(np.asarray(tf).astype('float32'), axis=0)

score = float(model.predict(data)) #새로운 데이터를 받으면 결과 예측
    if(score > 0.5):
        print("[{}]는 {:.2f}% 확률로 긍정 리뷰입니다.\\n".format(text, score * 100))

else:
        print("[{}]는 {:.2f}% 확률로 부정 리뷰입니다.\\n".format(text, (1 - score) * 100))
```

- 1 | predict_pos_text("이거는 정말 세기에 남을 명작이다")
- 2|predict_pos_text("이 영화를 보다가 잠들었어요.")

[이거는 정말 세기에 남을 명작이다]는 95.91% 확률로 긍정 리뷰입니다.

[이 영화를 보다가 잠들었어요.]는 98.80% 확률로 부정 리뷰입니다.

2. 원하는 영화 검색과 전체 리뷰 크롤링

- 네이버 영화 검색의 HTML 응용
- 리뷰가 많은 영화의 경우 시간이 많이 소요
- 제목 검색

네이버 영화 제목 :

리뷰 감정 분석을 하고 싶은 영화의 이름을 띄워쓰기 없이 써주세요.

영화 선택

더 레이서 (The Racer)

7.76 (참여 59명)

드라마! 벨기에!97분 |2020

감독 : 키메론 J. 월쉬[출연 : 이아인 글렌, 루이스 탈페, 마테오 시모니, 타라 리

번호 2

더 레이서 (The Racer) 다큐멘터리! 영국[10분 |2018

감독 : 알렉스 해론

번호 3 더 레이서

7.50 (참여 2명)

하고 12015

감독 : 김재혁1출연 : 류시원, 신아영

개별 리뷰 분석 결과 도출

선택한 영화 제목 : 더 레이서

[벨기에 / 프랑스 쪽 전자음악, 일렉트로닉 음악이 완전 좋다. 속도감도 있어 몰입감도 좋다.]는 99.82% 확률로 긍정 리뷰입니다.

[꼭 제일 잘 달리지는 않아도 된다. 달리는 것 자체를 즐길 수 있다면 그것이 참 행복이 아닐런지..세상은 잘 달리면 흰호와 갈채를 보낸다. 그러나 더 잘 달리는 것이 나타나면 아무도 그를 거들떠 보지 않는다. 여기...]는 75.46% 확률로 긍정 리뷰입니다.

[화면도 멋지고 음악도 힙하고 잼있게 잘 봤습니다 .]는 97.10% 확률로 긍정 리뷰입니다.

[개인적으로 아주 재미있게 봤습니다.]는 96.64% 확률로 긍정 리뷰입니다.

3. 긍/부정 파이차트와 워드 클라우드 저장

```
# 분석 결과를 osv로 저장
2
   f = open("data/%s.csv" %movie_name_t, "w")
      # data라는 폴더 미리 안 만들어서 에러뜨면 그냥 %s만 쓸것
   f.write('긍정 반응 리뷰 : ' + str(text_p) + '빠빠'
         + '부정 반응 리뷰 : ' + str(text_n) + '㎜,
                        수 : ' + str(len(score_p)) + '\\""
                    정확도 평균 : ' + str(avg_p) + '㎜''
                    리뷰 수 : ' + str(len(score_n)) + '빿빿'
         + '부정 반응 정확도 평균 : ' + str(avg_n))
13 f.close()
```


극장판 귀멸의 칼

날 무한열차편

_positive_negativ

e_ratio.png

날 무한열차편

_positive_wordcl

oud.png

래곤.csv

_negative_wordcl

oud.png

_positive_wordcl

oud.png

반지의 제왕 두

개의 탑

_negative_wordcl

oud.png

소울

_positive_wordcl

oud.png

모리타니안.csv 모리타니안 _negative_wordc oud.png

미나리

_negative_wordcl

oud.png

정말

_positive_negativ

e_ratio.png

미나리

_positive_wordcl

oud.png

물그냥 80

반지의 제왕 두

개의 탑.csv

래곤

_positive_negativ

e_ratio.png

반지의 제왕 두 개의 탑 _positive_negativ e_ratio.png

반지의 제왕 왕의

반지의 제왕 왕의 반지의 제왕 왕의 귀환 귀환 _negative_wordcl _positive_negativ oud.png e_ratio.png

반지의 제왕 왕의 귀환 _positive_wordcl oud.png

소울 _negative_wordcl oud.png

소울 _positive_negativ e_ratio.png

_negative_wordcl oud.png

검색 시스템과 분석결과 저장

소물_positive, negative ratio, total 8162

중경삼림_positive, negative ratio, total 2165

미나리_positive, negative ratio, total 2319

라야와 마지막 드래곤_positive, negative ratio, total 1108

극장판 귀멸의 칼날 무한열차편_positive, negative ratio, total 8102

리스타트_positive, negative ratio, total 189

모리타니안_positive, negative ratio, total 43

반지의 제왕 두 개의 탑_positive, negative ratio, total 2644

정말 먼 곳_positive, negative ratio, total 42

반지의 제왕 왕의 귀환_positive, negative ratio, total 6814

실제 예매 순위와 비교 🔍

4. 실제 예매 순위와 비교

▲ 현재 개봉 중인 영화 예매율 상위 10편

영화 제목	긍정(%)	부정(%)
소울	87.9	12.1
라야와 마지막 드레곤	84.4	15.6
모리타니안	83.7	16.3
정말 먼 곳	83.3	16.7
중경삼림	80.1	19.9
귀멸의 칼날	79.9	20.1
반지의 제왕 : 두개의 탑	79.2	20.8
반지의 제왕 : 왕의 귀환	78.6	21.4
미나리	70.9	29.1
리스타트	48.1	51.9

▲ 긍/부정 리뷰 비율로 재구성한 순위

예상 수요자 : 관람객과 영화 배급사

영화에 대한 모집단 리뷰의 전체적인 감정 평가 지표 제공

스포일러를 회피하고 간단한 평가만 알고 싶은 잠재적 관람객

한국 컨텐츠 배급을 고려하고 있는 해외 영화 배급사

한계점과 개선 방안

1. 한정된 데이터와 낮은 정확도

- 컴퓨터 성능 한계로 모든 데이터를 다루지 못함
- 원본 데이터 안에 포함된 비꼬기, 반어법, 낚시성 리뷰, 영화와 상관 없는 리뷰 등을 걸러내지 못해 모델 정확도가 90%를 넘지 못함

2. 낮은 시간 효율성

- 네이버 영화 HTML에 의존한다는 한계로 인해 발생
- 리뷰 게시판 마지막에서 자동적으로 멈출 수 없어서 임의로 무조건 천 페이지 정도 반복하게 만듬

3. 복잡한 파일 구성

- 쥬피터로 실행 시 학습된 모델의 가중치(.h5)와 감정 분석 코드 파일(.py)이 함께 있어야만 정상 작동
- .py 사용 시 가중치 파일만 있어도 되지만 라이브러리가 제대로 호출 안 될수 있음

1. 데이터 필터링

- 수동으로 불필요하거나 부정확한 리뷰 제거
- 특정 단어(ex-평론가 이름) 필터링 강화
- 유명한 망작 영화는 크롤링 리스트에서 제거

2. 웹크롤링 기능 개선

- 네이버 영화 HTML 웹크롤링 방식 개선
- 기존 중복 리뷰 확인 방식에서 리뷰 리스트 페이지를 먼저 읽고 페이지 수 만큼 반복 크롤링 하도록 개선

3. ZIP 파일로 배포

- 만약 독립 프로그램으로 만들어서 배포 시
- Zip 파일로 만들어서 묶음으로 배포

THANK YOU Q & A