linear legression
* y is a vector
* ERd > * is a vector of legyth of
y is a scalar
y∈R Prediction or Regression
Predict future income
Current $\# AI$ $Y = 7000$ GPA, courses taken $Y = 300000$
3-8 4 y ?
Training data GRA, HAI Income Janood

Monday Feb 8

 \longrightarrow \rightarrow

functional models! Probabilistic Models.

y = f(x)

p(x, y)

p(y|x) = Bayes

Rule

 \times_1

x 1 x 1

×, y, z

×, ×2

 \times 11 X12 - --

$$|x| = \frac{2}{12} |x|$$

$$= \frac{1}{12} |x|$$

$$|x||_{2} = \frac{2}{12} |x|^{2}$$

$$|x||_{2} = \frac{2}{12} |x|^{2$$

$$Z = X^T Y = (1 \times 1) = (X^T) \cdot Y$$

(b)

(mm)

$$(b) \rightarrow y = y \times + 0$$

$$(C)$$
 \rightarrow $y = ax^3 + bx^2 + cx + d$

$$(d) \rightarrow y = a x^{(0)} + b x^{(4)} + - - - + -$$

linear Regression

,Χ y = Wo + W, >
hias-ferm Given some data: is find the best wo, wi 28 which "fits"
the data best. 15 48 56 Wed, Feblo Resources on Piazza

 $\frac{y_1}{y_1} = w_0 + w_{x_1}$ $\frac{y_1}{y_1} = w_0 + w_{x_1}$

From: $e_i = y_i - \overline{y}_i$ $J = L \sum_{i=1}^{N} e_i^2$

$$\frac{2}{2} = 1$$

$$\int (w_0, w) = \frac{1}{2} \sum_{i=1}^{N} (y_i - (w_0 + w_i x_i))^2$$

$$Squared$$

$$loss function$$

$$\frac{1}{2} \Rightarrow \text{just for mathematical convenience}$$

Squared loss Function

$$J(\mathbf{W}) = \frac{1}{2} \underbrace{\left(y_i - \mathbf{W} \mathbf{X}_i^* \right)^2}_{\text{albsorbed}}$$
absorbed
added a

Find w frat minimires J(W)

$W_{X_i} = \sum_{j=0}^{d} (w_j \times x_{ij})$	w·×:
X1 X2 X3 Y3 Y3 (N) X is a makix (N)	rectur XI)
Training data: X, y (Nx(d+1)) (Nx1)	farget vector

$$J(w) = \frac{1}{2} \sum_{i=1}^{N} (y_i - w^T x_i)^2$$

$$x_i \quad y_i - w^T x_i$$

$$x_2 \quad y_2 - w^T x_2$$

$$y_N - w^T x_N$$

$$y$$

Jaw = 0 at a given w that means $w \rightarrow point q$ minima or a saddle point na d J(w) = 0

d W

Solution for fluis

will give us

will give us

will give us

which oass is mining