Automata and Reactive Systems

Lecture No. 9

Prof. Dr. Wolfgang Thomas

thomas@informatik.rwth-aachen.de

Lehrstuhl für Informatik VII
RWTH Aachen

McNaughton's Theorem (1966)

4.4 Theorem: If L is Büchi recognizable then L is recognizable by a deterministic Muller automaton.

For the given Büchi automaton $\mathcal{B}=(Q,\Sigma,q_0,\Delta,F)$ define the Muller automaton $\mathcal{M}=(Q',\Sigma,q_0',\delta,\mathcal{F})$ by

- Q' := set of Safra trees over Q.
- $q_0' :=$ Safra tree consisting just of root labelled $\{q_0\}$
- $S \in \mathcal{F} \iff$ if some node name appears in each tree $s \in S$, and in some tree $s \in S$ the label of this node name carries the marker "!"

Definition of δ

Define $\delta(s, a)$ (for Safra tree s, input letter a) in four stages as follows:

- 1. For each node whose label contains final states, branch off a new son containing these final states. (Take as node name a free number $\leq 2|Q|$)
- 2. To each node label apply the powerset construction via input letter $a: R \to \{r' \mid \exists r \in R : (r, a, r') \in \Delta\}$
- 3. Cancel state q if it occurs also in an older brother node. Cancel a node if it carries label \emptyset (unless it is the root)
- 4. Cancel all sons (and their descendants) if the union of their labels is the parent label, and in this case mark the parent by "!"

Towards the correctness proof

Notation: $P \stackrel{w}{\leadsto} R$ for $P, R \subseteq Q$ means

$$\forall r \in R \ \exists p \in P \ \text{s.t.} \ \mathcal{B} : p \xrightarrow{w} r.$$

We analyze the case where a node name stays alive and has "!" again and again:

$$R_0 \stackrel{u_1}{\leadsto} P_1 \stackrel{v_1}{\leadsto} R_1! \stackrel{u_2}{\leadsto} P_2 \stackrel{v_2}{\leadsto} R_2! \dots P_i \stackrel{v_i}{\leadsto} R_i!$$
 $UI \qquad II \qquad UI \qquad II \qquad UI \qquad II$
 $F_1 \stackrel{v_1}{\leadsto} Q_1 \qquad F_2 \stackrel{v_2}{\leadsto} Q_2 \qquad F_i \stackrel{v_i}{\leadsto} Q_i$

where F_i = set of final states from P_i .

Then $\forall r \in R_i \exists p \in R_0$:

 \mathcal{H} reaches from p via input $u_1v_1u_2v_2\dots u_iv_i$ the state r with $\geq i$ visits of final states.

König's Lemma

4.5 Lemma: An infinite finitely branching tree has an infinite path.

Proof:

Let *t* be an infinite finitely branching tree.

Define a path π such that each node v on π has the following property: the subtree at v is infinite.

The root has the property by assumption.

If v has the property then we can pick a son v' with the same property (because the tree is finitely branching!)

Iterating this we obtain an infinite path.

Run Lemma

4.6 Lemma: Let $R_0 \stackrel{u_1v_1}{\leadsto} R_1! \stackrel{u_2v_2}{\leadsto} R_2! \dots R_i! \stackrel{u_{i+1}v_{i+1}}{\leadsto} \dots$ be as before.

Then on the input $u_1v_1u_2v_2...$ there is a successful run of the Büchi automaton \mathcal{B} , starting in a state of R_0 .

Proof:

Consider for each state from $r \in R_i$ a run from R_0 to r via $u_1v_1 \dots u_iv_i$.

These runs form a run tree which is infinite and finitely branching.

By König's Lemma there is an infinite run in this tree.

By construction, a final state is visited after each prefix $u_1v_1 \dots u_iv_i$.

Correctness of Safra construction

Claim: $L(\mathcal{B}) = L(\mathcal{M})$

Show first $L(\mathcal{M}) \subseteq L(\mathcal{B})$:

Let $\alpha \in L(\mathcal{M})$

Consider the successful run of Safra trees on α .

Pick a node k which from some point onwards occurs in each Safra tree and has marker "!" infinitely often.

Consider the labels where "!" occurs at k, call them R_1, R_2, \ldots

The Run Lemma applies and yields an infinite run of $\mathcal B$ on α .

Show $L(\mathcal{B}) \subseteq L(\mathcal{M})$:

Let $\alpha \in L(\mathcal{B})$, consider a successful run of \mathcal{B} on α , visiting say the final state q again and again.

Consider the \mathcal{M} -run of Safra trees on α

If root is marked "!" infinitely often, $\mathcal M$ accepts.

Otherwise look at first occurrence of q afterwards:

Here q is put into a son of the root, and the Büchi run finally stays in a fixed son k_1 of the root.

If k_1 is marked "!" infinitely often, $\mathcal M$ accepts.

Otherwise we continue analogously and get a son k_2 of k_1 where the Büchi run finally stays.

At some stage the marker "!" occurs infinitely often, otherwise height of the Safra trees would be unbounded.

Rabin automata: Motivation

We may define the sets S which form the acceptance component \mathcal{F} by two conditions:

For some node name j

- S should not contain a tree without node name j
- S should contain a tree where node name j appears with marker "!"

Define

- E_j = set of Safra trees without node name j
- F_j = tree where node name j appears with marker "!"

Then: ρ is successful if for some j,

 $\operatorname{Inf}(\rho) \cap E_i = \emptyset \text{ and } \operatorname{Inf}(\rho) \cap F_i \neq \emptyset$

Rabin automata

A (deterministic) Rabin automaton is of the form

 $\mathcal{A} = (Q, \Sigma, q_0, \delta, \Omega)$ where $\Omega = ((E_1, F_1), \dots, (E_k, F_k))$ is a list of "accepting pairs" with $E_i, F_i \subseteq Q$,

used with the following Rabin acceptance condition:

A run ρ is successful if for some $j \leq k$

$$\operatorname{Inf}(\rho) \cap E_i = \emptyset \text{ and } \operatorname{Inf}(\rho) \cap F_i \neq \emptyset$$

 ${\mathcal H}$ accepts α if the unique run of ${\mathcal H}$ on α is successful.

$$L(\mathcal{A}) = \{ \alpha \mid \mathcal{A} \text{ accepts } \alpha \}$$

L is called Rabin recognizable if $L = L(\mathcal{A})$ for a Rabin automaton \mathcal{A}

Equivalence Theorem

The Safra construction transforms a Büchi automaton into a deterministic Rabin automaton

A Rabin automaton $\mathcal{R}=(Q,\Sigma,q_0,\delta,\Omega)$ with $\Omega=((E_1,F_1),\ldots,(E_k,F_k))$ is equivalent to the Muller automaton $\mathcal{M}=(Q,\Sigma,q_0,\delta,\mathcal{F})$ with

$$P \in \mathcal{F} \iff \bigvee_{j=1}^k (P \cap E_j = \emptyset \land P \cap F_j \neq \emptyset)$$

So we have proved

- 4.7 Theorem: For an ω -language, the following are equivalent:
- 1. L is recognized by a nondeterministic Büchi automaton.
- 2. L is recognized by a deterministic Rabin automaton.
- 3. L is recognized by a deterministic Muller automaton.

Complexity of the Safra construction

Question:

Given a Büchi automaton with n states, how many states do we need for an equivalent deterministic Rabin automaton?

Plan:

- First we analyze the Safra construction to obtain an upper bound.
- We obtain $2^{O(n \log n)}$ states, the growth rate of n!
- We show that this growth rate is necessary.

4.8 Lemma: For |Q| = n, a Safra tree over Q has $\leq n$ nodes.

Proof: by induction on the height h of Safra trees.

h = 0: Safra tree has one node, hence $\leq n$ nodes.

$$h+1$$
:

 $Q_1, \dots Q_k$ are disjoint, $\subseteq Q_0 \subseteq Q$.

Subtrees are Safra trees over $Q_1, \ldots Q_k$,

by induction hypothesis with $\leq |Q_1|, \ldots, \leq |Q_k|$ nodes.

Total number of nodes $\leq 1 + |Q_1| + \ldots + |Q_k| \leq |Q|$

Number of Safra trees

If q occurs in Safra tree, there is a unique node ("characteristic node") which contains q but such that no son contains q.

We need four functions to descibe a Safra tree: $(2n+1)^n$

- 1. function $Q \rightarrow \{0, \dots, 2n\}$ giving the characteristic node
- 2. "!"-label function: $\{1, ..., 2n\} \rightarrow \{0, 1\}$ (Value 1 indicates presence of "!")
- 3. parent function: $\{1,\ldots,2n\} \rightarrow \{0,\ldots,2n\}$ $(2n+1)^{2n}$
- **4.** older-brother function: $\{1,\ldots,2n\} \rightarrow \{0,\ldots,2n\}$

Number of Safra trees ≤ number of such functions

4.9 Theorem (Safra):

A Büchi automaton with n states can be transformed into a deterministic Rabin automaton with $2^{O(n \log n)}$ states and O(n) accepting pairs.

4.10 Theorem (M. Michel 1988, C. Löding 1998):

There is no translation from Büchi automata with O(n) states to deterministic Rabin automata with $2^{O(n)}$ states.

Proof strategy:

- 1. Definition of ω -language $L_n \subseteq \{1, \ldots, n, \#\}^{\omega}$, recognizable by a Büchi automaton with O(n) states.
- 2. Proof that L_n is not recogizable by a deterministic Rabin automaton with $2^{O(n)}$ states.

ω -language L_n

Definition of L_n by a Büchi automaton \mathcal{B}_n over the alphabet

Remark: $\alpha \in L_n \iff$

(*) α starts with some i_1 and there are letters $i_1, \ldots, i_k \in \{1, \ldots, n\}$ (pairwise distinct) such that the segments of letter pairs $i_1i_2, i_2i_3, \ldots, i_{k-1}i_k, i_ki_1$ occur infinitely often in α

Characterization of L_n

Remark: $\alpha \in L_n \iff$

(*) α starts with some i_1 and there are letters $i_1,\ldots,i_k\in\{1,\ldots,n\}$ (pairwise distinct) such that the segments of letter pairs $i_1i_2,i_2i_3,\ldots,i_{k-1}i_k,i_ki_1$ occur infinitely often in α

Proof of \Leftarrow :

Assume (*) with i_1, \ldots, i_k . Define a successful run of the Büchi automaton:

Go to q_{i_1} and stay there. By first input pair i_1i_2 do

$$q_{i_1} \stackrel{i_1}{\rightarrow} q_0 \stackrel{i_2}{\rightarrow} q_{i_2}$$

Similarly with i_2i_3, i_3i_4, \ldots in cycles.

This ensures infinitely many visits to q_0 , i.e. acceptance.

Proof of \Rightarrow :

Assume the Büchi automaton accepts α but (*) fails.

Pick position p in α such that the letter pairs i_1i_2 occurring later will occur in fact infinitely often.

If state $q_i \neq q_0$ is visited after p and q_0 later than that, then no return to q_i is possible.

(Otherwise we would get a cycle as in (*))

Since $q_i \neq q_0$ was arbitrary, the run would eventually stay in q_0 .

Contradiction.