APPENDIX 3: THERMODYNAMIC PROPERTIES

Table 3A. \overline{G}_f^0 , \overline{H}_f^0 , and \overline{S}^0 Values for Common Chemical Species in Aquatic Systems:^a Valid at 25°C, 1 atm Pressure, and Standard States^b

	Formation from the Elements		Entropy	
Species	\overline{G}_f^0 (kJ mol ⁻¹)	\overline{H}_f^0 (kJ mol ⁻¹)	$\overline{\tilde{S}}^0$ (J mol ⁻¹ K ⁻¹)	Reference ^c
Ag (Silver)				
Ag (Metal)	0	0	42.6	NBS
Ag ⁺ (aq)	77.12	105.6	73.4	NBS
AgBr	-96.9	-100.6	107	NBS
AgCi	-109.8	-127.1	96	NBS
AgI	-66.2	-61.84	115	NBS
$Ag_2S(\alpha)$	-40.7	-29.4	14	NBS
AgOH(aq)	-92		* *	NBS
Ag(OH) ₂ (aq)	-260.2			NBS
AgCl(aq)	-72.8	-72.8	154	NBS
AgCl ₂ (aq)	-215.5	-245.2	231	NBS
Al (Aluminum)				
Al	0	0	28.3	R
Al ³⁺ (aq)	-489.4	-531.0	-308	R
AlOH ²⁺ (aq)	-698			S
Al(OH)2+(aq)	-911			S
Al(OH) ₃ (aq)	-1115			S
Al(OH) ₄ (aq)	-1325			S
Al(OH) ₃ (amorph)	-1139			R
Al ₂ O ₃ (Corundum)	-1582	-1676	50.9	R
AlOOH (Boehmite)	-922	-1000		
Al(OH) ₃ (Gibbsite)	-1155	- 1293	17.8	R
Al ₂ Si ₂ O ₅ (OH) ₄ (Kaolinite)	-3799	-4120	68.4	R
(Al ₃ Si ₃ O ₁₀ (OH) ₂ (Muscovite)	-1341	-4120	203	R
Ag ₅ Al ₂ Si ₃ O ₁₀ (OH) ₈ (Chlorite)	-1962			R
aAl ₂ Si ₂ O ₈ (Anorthite)	-4017.3	-4243.0		R
laAlSi ₃ O ₈ (Albite)	-3711.7	-3935.1	199	R
As (Arsenic)				R
As (α-Metal)	0	0		
I ₃ AsO ₄ (aq)	-766.0	0	35.1	NBS
2AsO ₄ (aq)	-753.17	-898.7 -904.5	206	NBS
IAsO ₄ ² -(aq)	-714.60		117	NBS
sO ₄ ³ -(aq)	~648.41	-898.7	3.8	NBS
₂ AsO ₃ (aq)	-587.13	~870.3	-145	NBS
a (Barium)	-387.13			NBS
1 ²⁺ (aq)				
SO ₄ (Barite)	-560.7	-537.6	9.6	b
CO ₃ (Witherite)	-1362	-1473	132	R
·	-1132	-1211	112	R
(Beryllium)			112	R
+(aq)	-380	-382		
$(OH)_2(\alpha)$	-815.0	-382 -902	-130	NBS
(OH) ₁ +	-1802	~902	51.9	NBS
(011)3				NBS
Boron) BO ₃ (aq)	~968.7	_ 1072		
Boron) BO ₃ (aq) DH) ₄ (aq)	~968.7 ~1153.3	- 1072 - 1344	162 102	NBS NBS

Table 3A. (Continued)

Species Br (Bromide) Br ₂ (1) Br ₂ (aq) Br - (aq) HBrO(aq) BrO - (aq) C (Carbon) C (Graphite) C (Diamond) CO ₂ (g) H ₂ CO ₃ *(aq) H ₂ CO ₃ (aq) ("true") HCO ₃ - (aq) CO ₄ (g) CO ₄ (g) CO ₄ (q) CO ₄ (q)	\overline{G}_f^0 (kJ mol ⁻¹) 0 3.93 -104.0 -82.2 -33.5 0 3.93 -394.37 -623.2	0 -259 -121.5 -113.0 -94.1 0 -2.59	\$\overline{S}^0\$ (J mol^{-1} K^{-1})\$ 152 130.5 82.4 147 42	NBS NBS NBS NBS NBS NBS
Br ₂ (l) Br ₂ (aq) Br ⁻ (aq) BrO ⁻ (aq) BrO ⁻ (aq) C (Carbon) C (Graphite) C (Diamond) CO ₂ (g) H ₂ CO ₃ *(aq) H ₂ CO ₃ (aq) ("true") HCO ₃ ⁻ (aq) CO ₃ ² ⁻ (aq)	3.93 -104.0 -82.2 -33.5 0 3.93 -394.37 -623.2	-259 -121.5 -113.0 -94.1	130.5 82.4 147	NBS NBS NBS
Br ₂ (aq) Br (aq) HBrO(aq) BrO (aq) C (Carbon) C (Graphite) C (Diamond) CO ₂ (g) H ₂ CO ₃ (aq) H ₂ CO ₃ (aq) CO ₃ (aq) CO ₃ (aq)	3.93 -104.0 -82.2 -33.5 0 3.93 -394.37 -623.2	-259 -121.5 -113.0 -94.1	130.5 82.4 147	NBS NBS NBS
Br ₂ (aq) Br (aq) HBrO(aq) BrO (aq) C (Carbon) C (Graphite) C (Diamond) CO ₂ (g) H ₂ CO ₃ *(aq) H ₂ CO ₃ (aq) CO ₃ *(aq) CO ₃ *(aq)	3.93 -104.0 -82.2 -33.5 0 3.93 -394.37 -623.2	-259 -121.5 -113.0 -94.1	130.5 82.4 147	NBS NBS NBS
Br (aq) HBrO(aq) BrO (aq) C (Carbon) C (Graphite) C (Diamond) CO ₂ (g) H ₂ CO ₃ *(aq) H ₂ CO ₃ (aq) CO ₃ * (aq) CO ₃ * (aq)	-104.0 -82.2 -33.5 0 3.93 -394.37 -623.2	-121.5 -113.0 -94.1	82.4 147	NBS NBS
HBrO(aq) BrO ⁻ (aq) C (Carbon) C (Graphite) C (Diamond) CO ₂ (g) H ₂ CO ₃ *(aq) H ₂ CO ₃ (aq) ("true") HCO ₃ (aq) CO ² ₃ ⁻ (aq)	-82.2 -33.5 0 3.93 -394.37 -623.2	-113.0 -94.1	147	NBS
BrO ⁻ (aq) C (Carbon) C (Graphite) C (Diamond) CO ₂ (g) H ₂ CO ₃ *(aq) H ₂ CO ₃ (aq) ("true") HCO ₃ ⁻ (aq) CO ₃ ² ⁻ (aq)	-33.5 0 3.93 -394.37 -623.2	-94.1 U		
C (Graphite) C (Diamond) CO ₂ (g) H ₂ CO ₃ *(aq) H ₂ CO ₃ (aq) ("true") HCO ₃ (aq) CO ₃ ² (aq)	3.93 -394.37 -623.2			בעווי
C (Diamond) CO ₂ (g) H ₂ CO ₃ *(aq) H ₂ CO ₃ (aq) (''true'') HCO ₃ (aq) CO ₃ ² (aq)	3.93 -394.37 -623.2			
C (Diamond) CO ₂ (g) H ₂ CO ₃ *(aq) H ₂ CO ₃ (aq) (''true'') HCO ₃ (aq) CO ₃ ² (aq)	3.93 -394.37 -623.2		160	NEC
CO ₂ (g) H ₂ CO ₃ *(aq) H ₂ CO ₃ (aq) (''true'') HCO ₃ (aq) CO ₃ ² (aq)	-394.37 -623.2		152	NBS
H ₂ CO ₃ *(aq) H ₂ CO ₃ (aq) (''true'') HCO ₃ (aq) CO ₃ ⁻ (aq)	-623.2	-393.5	130.5	NBS
H ₂ CO ₃ (aq) ("true") HCO ₃ (aq) CO ₃ ² (aq)		-699.6	213.6	NBS
HCO ₃ ⁻ (aq) CO ₃ ² ⁻ (aq)	607.1	-055.0	187.0	\mathbb{R}^d
$CO_3^{2-}(aq)$	~ -607.1			S
	-586.8	-692.0	91.2	S
CH.(a)	-527.9	-677.1	-56.9	NBS
	-50.79	-74.80	186	NBS
CH ₄ (aq)	-34.39	-89.04	83.7	NBS
CH ₃ OH(aq)	-175.4	-245.9	133	NBS
HCOOH(aq)	-372.3	-425.4	163	NBS
HCOO (aq)	-351.0	-425.6	92	NBS
CH ₂ O(aq)	-129.7		/-	NDS
CH ₂ O(g)	-110.0	-116.0	218.6	S
HCN(aq)	112.0	105.0	129	NBS
CN ⁻ (aq)	166.0	151.0	118	NBS
COS(g)	-169.2	-137.2	234.5	NBS
CNS (aq)	88.7	72.0		
H ₂ C ₂ O ₄ (aq)	-697.0	-818.26		S
$IC_2O_4^-(aq)$	-690.86	-818.8		S
$C_2O_4^{2-}(aq)$	-674.04			S
'a (Calcium)	377.04	-818.8	45.6	S
a ²⁺ (aq)				
aOH ⁺ (aq)	-553.54	-542.83	~53	ъ
a(OH) ₂ (aq)	-718.4		~33	R
a(OH) ₂ (Portlandite)	-868.1	-1003	74.6	NBS
aCO ₃ (Calcite)	-898.4	-986.0	-74.5	NBS
aCO ₃ (Carche)	-1128.8	-1207.4	83	R
aMg(CO ₃) ₂ (Dolomite)	-1127.8	-1207.4	91.7	R
SiO ₃ (Wollastonite)	-2161.7	-2324.5	88.0	R
SO ₄ (Anhydrite)	~1549.9	-1635.2	155.2	R
SO 12 HO (C-	-1321.7	-1434.1	82.0	R
SO ₄ · 2 H ₂ O (Gypsum)	-1797.2	-2022.6	106.7	R
5(PO ₄) ₃ OH	-6338.4	-6721.6	194.1	R
ydroxyapatite)		V/21.U	390.4	R
(Cadmium)				
(γ-Metal)				
²⁺ (aq)	-77.58	75.00		
OH ⁺ (aq)	-284.5	-75.90	-73.2	R
OH) ₃ (aq)	-600.8			R
OH) ₄ ²⁻ (aq)	~758.5			R
OH) ₂ (aq)				R
) (s)	-392.2			
OH) ₂ (precip.)	-228.4	-258.1	54.8	R
On a inferior	-473.6	-560.6		
∪n _{/2} (precip.) 'l^(an)		-00.0	06.3	73
OH) ₂ (precip.) +(aq) ₂ (aq)	-224.4 -340.1	-240.6		R R

Table 3A. (Continued)

	Formation fron	the Elements	Entropy	
Species	\overline{G}_f^0 (kJ mol ⁻¹)	\overline{H}_f^0 (kJ mol ⁻¹)	\overline{S}^0 (J mol ⁻¹ K ⁻¹)	Reference
CdCl ₃ (aq)	-487.0	-561.0	203	R
CdCO ₃ (s)	669.4	-750.6	92.5	R
Cl (Chlorine)				
Cl ⁻ (aq)	-131.3	-167.2	56.5	NBS
Cl ₂ (g)	0	0	223.0	NBS
Cl ₂ (aq)	6.90	-23.4	121	NBS
HClO(aq)	-79.9	-120.9	142	NBS
CIO ⁻ (aq)	-36.8	-107.1	42	NBS
ClO ₂ (aq)	117.6 17.1	74.9 -66.5	173 101	NBS NBS
ClO ₂ (aq)				
ClO ₃ (aq)	-3.35 B.62	-99.2	162	NBS
C1O ₄ (aq)	-8.62	-129.3	182	NBS
Co (Cobalt)				
Co (Metal)	0	0	30.04	R
Co ²⁺ (aq)	-54.4	-58.2	-113	R
Co ³⁺ (aq)	134	92	-305	R
HCoO ₂ (aq)	-407.5			NBS
Co(OH) ₂ (aq)	-369	-518	134	NBS
Co(OH) ₂ (blue precip.)	450	027.0	52.0	NBS
CoO(s) Co ₃ O ₄ (Cobalt Spinel)	-214.2 -725.5	-237.9 -891.2	53.0 102.5	R R
coso4 (coom spinos)	720.0	031.2	102,0	
Cr (Chromium)				
Cr (Metal)	0	0	23.8	Man
Cr ²⁺ (aq) Cr ³⁺ (aq)		-143.5	23.0	NBS
	-215.5	-256.0	308	NBS NBS
Cr ₂ O ₃ (Eskolaite) HCrO₄ (aq)	-1053	-1135	81	R
CrO ₄ ²⁻ (aq)	-764.8	-878.2	184	R
	-727.9	-881.1	50	R
$Cr_2O_7^{2-}(aq)$	-1301	-1490	262	R
Cr(OH) ₃ (hydrous)	-858	-984	(1051)	
Cr(OH) ²⁺	-430	-495	(~156)	Bard et al.
Cr(OH) ₂ ⁺	-653	-748	(-27)	Bard et al. Bard et al.
Cr(OH) ₄	-1013	-1169	(238)	Bard et al.
Cu (Copper)			·,	Dura et ai.
Cu (Metal)	0	0		
Cu ⁺ (aq)	50.0	71.7	33.1	NBS
u ²⁺ (aq)	65.5	64.8	40.6	NBS
Cu(OH) ₂ (aq)	-249.1	-395.2	-99.6	NBS
CuO ₂ (aq)	-258	272.2	-121	NBS
uS (Covellite)	-53.6	-53.1		
u ₂ S (α)	-86.2	-79.5	66.5	NBS
uO (Tenorite)	-129.7	-157.3	121 43	NBS
uCO ₃ · Cu(OH) ₂	-893.7	-1051.4	186	NBS
(Malachite) CuCO ₃ · Cu(OH) ₂			100	NBS
(Azurite)		-1632		NBS
(Fluorine)				
(g)	0	0		
	v	- 11	202	A 170 m
(aq)	-278.8	-332.6	202 13.8	NBS

Table 3A. (Continued)

Species	\overline{G}_f^0 (kJ mol ⁻¹)	$\overline{\overline{H}}_f^0$ (kJ mol ⁻¹)	$\overline{\overline{S}^0}$ (J mol ⁻¹ K ⁻¹)	Reference ^c
HF(aq)	-296.8	320.0	88.7	NBS
$HF_2(aq)$	-578.1	-650	92.5	NBS
Fe (Iron)				
Fe (Metal)	0	0	27.3	NBS
Fe ²⁺ (aq)	-78.87	-89.10	-138	NBS
FeOH ⁺ (aq)	-277.4	324.7	29	NBS
Fe(OH) ₂ (aq)	-441.0	_	_	NBS
Fe ³⁺ (aq)	-4.60	-48.5	-316	NBS
FeOH ²⁺ (aq)	-229.4	-324.7	-29.2	NBS
Fe(OH) ₂ ⁺ (aq)	-438	250.8	142.0	NBS
Fe(OH) ₃ (aq)	-659.4	_	_	NBS
Fe(OH) ₄ (aq)	-842.2	_	34.5	NBS
$Fe_2(OH)_2^{4+}(aq)$	-467.27	612.1	356.0	NBS
FeS ₂ (Pyrite)	-160.2	-171.5	52.9	R
FeS ₂ (Marcasite)	-158.4	-169.4	53.9	R
FeO(s)	-251.1	-272.0	59.8	R
Fe(OH) ₂ (precip.)	-486.6	-569	87.9	NBS
α-Fe ₂ O ₃ (Hematite) ^e	-742.7	-824.6	87.4	R
Fe ₃ O ₄ (Magnetite)	-1012.6	-1115.7	146	R
α-FeOOH (Goethite) ^e	-488.6	-559.3	60.5	R
ReOOH (amorph) ^e	-462	557.5	0.50	S
Fe(OH) ₃ (amorph) ^e	-699(-712)			S
FeCO ₃ (Siderite)	-666.7	-737.0	105	R
Fe ₂ SiO ₄ (Fayalite)	-1379.4	-1479.3	148	R
H (Hydrogen)				
H ₂ (g) H ₂ (aq)	0	0	130.6	NBS
H ⁺ (aq)	17.57	-4.18	57.7	NBS
$H_2O(1)$	0	0	0	NBS
$I_2O(g)$	-237.18	-285.83	69.91	NBS
$I_2O_2(aq)$	-228.57	-241.8	188.72	R
1202(aq) HO ₂ (aq)	-134.1	-191.17	143.9	NBS
-0 ₂ (ug)	-67.4	-160.33	23.8	NBS
Ig (Mercury)				
[g(l) [g ₂ ²⁺ (aq)	0	0	76.0	NBS
ig ²⁺ (aq)	153.6	172.4	84.5	NBS
	164.4	171.0	-32.2	NBS
g ₂ Cl ₂ (Calomel)	-210.8	265.2	192.4	NBS
gO(red)	-58.5	-90.8	70.3	NBS
gS (Metacinnabar)	-43.3	-46.7	96.2	NBS
gI ₂ (red)	-101.7	-105.4	180	NBS
gCl+(aq)	-5.44	-18.8	75.3	NBS
gCl ₂ (aq)	-173.2	-216.3	155	NBS
gCl ₃ (aq)	-309.2	-388.7	209	NBS
gCl ₄ ² -(aq)	-446.8	-554.0	293	
gOH ⁺ (aq)	-52.3	-84.5	71	NBS
g(OH) ₂ (aq)	-274.9	-355.2		NBS
$gO_2^-(aq)$	-190.3	333.2	142	NBS NBS
Iodine)				
(Crystal)	0	0	116	NBS
aq)	16.4	22.6	137	NBS
(aq)	-51.59	-55.19	111	
		-33.13	111	NBS

Formation from the Elements

Entropy

Table 3A. (Continued)

	Formation from		Entropy	
Species	\overline{G}_f^0 (kJ mol ⁻¹)	\overline{H}_f^0 (kJ mol ⁻¹)	\overline{S}^0 (J mol ⁻¹ K ⁻¹)	Reference'
I ₃ (aq)	-51.5	-51.5	239	NBS
HIO(aq)	-99.2	-138	95.4	NBS
IO ⁻ (aq)	-38.5	-107.5	-5.4	NBS
HIO ₃ (aq)	-132.6	-211.3	167	NBS
IO ₃	-128.0	-221.3	118	NBS
Mg (Magnesium)				
Mg (Metal)	0	0	32.7	R
Mg ²⁺ (aq)	-454.8	-466.8	-138	R
MgOH ⁺ (aq)	-626.8	700.0	-156	S
$Mg(OH)_2(aq)$	−769.4	-926.8	-149	NBS
Mg(OH) ₂ (Brucite)	-833.5	-924.5	63.2	R
Mn (Manganese)				
Mn (Metal)	0	0	32.0	R
Mn ²⁺ (aq)	-228.0	-220.7	-73.6	R
Mn(OH) ₂ (precip.)	-616	- 220.7	-75.0	S
Mn ₃ O ₄ (Hausmannite)	-1281			S
α-MnOOH (α-Manganite)	-557.3			S
MnO ₂ (Manganate) (IV)	331,3			J
(MnO _{1.7} -MnO ₂)	-453.1			S
MnO ₂ (Pyrolusite)	-465.1	-520.0	53	R
MnCO ₃ (Rhodochrosite)	-816.0	-889.3	100	R
MnS (Albandite)	-218.1	-213.8	87	R
MnSiO ₃ (Rhodonite)	-1243	-1319	131	R
N (Nitrogen)				
N (Nitrogen) $N_2(g)$	0	0		
N (Nitrogen) N ₂ (g) NO(g)	0 86 57	0	191.5	NBS
N ₂ (g) NO(g)	86.57	90.25	210.6	S
$N_2(g)$ $NO(g)$ $NO_2(g)$	86.57 51.3	90.25 33.2	210.6 240.0	S S
$N_2(g)$ $NO(g)$ $NO_2(g)$ $N_2O(g)$	86.57 51.3 104.2	90.25 33.2 82.0	210.6 240.0 220	S
$N_2(g)$ $NO(g)$ $NO_2(g)$ $N_2O(g)$ $NH_3(g)$	86.57 51.3 104.2 -16.48	90.25 33.2 82.0 -46.1	210.6 240.0 220 192	S S NBS NBS
$N_2(g)$ $NO(g)$ $NO_2(g)$ $N_2O(g)$ $NH_3(g)$ $NH_3(aq)$	86.57 51.3 104.2 -16.48 -26.57	90.25 33.2 82.0 -46.1 -80.29	210.6 240.0 220 192 111	S S NBS NBS NBS
$N_2(g)$ $NO(g)$ $NO_2(g)$ $N_2O(g)$ $NH_3(g)$ $NH_3(aq)$ $NH_4^+(aq)$	86.57 51.3 104.2 -16.48 -26.57 -79.37	90.25 33.2 82.0 -46.1 -80.29 -132.5	210.6 240.0 220 192 111 113.4	S S NBS NBS
$N_2(g)$ $NO(g)$ $NO_2(g)$ $N_2O(g)$ $N_3(g)$ $NO_4(aq)$ $NO_4(aq)$	86.57 51.3 104.2 -16.48 -26.57 -79.37 -55.6	90.25 33.2 82.0 -46.1 -80.29 -132.5 -119.2	210.6 240.0 220 192 111	S S NBS NBS NBS
$N_2(g)$ $NO(g)$ $NO_2(g)$ $N_2O(g)$ $NH_3(g)$ $NH_4(aq)$ $NH_4^+(aq)$ $NO_2(aq)$ $NO_2^-(aq)$	86.57 51.3 104.2 -16.48 -26.57 -79.37 -55.6 -37.2	90.25 33.2 82.0 -46.1 -80.29 -132.5 -119.2 -104.6	210.6 240.0 220 192 111 113.4	S S NBS NBS NBS NBS
$N_2(g)$ $NO(g)$ $NO_2(g)$ $NO_2(g)$ $N_2O(g)$ $N_3(g)$ $N_3(aq)$ $N_4(aq)$ $NO_2(aq)$ $NO_2(aq)$ $NO_3(aq)$	86.57 51.3 104.2 -16.48 -26.57 -79.37 -55.6 -37.2 -111.3	90.25 33.2 82.0 -46.1 -80.29 -132.5 -119.2 -104.6 -207.3	210.6 240.0 220 192 111 113.4 153	S S NBS NBS NBS NBS NBS NBS NBS
$N_2(g)$ NO(g) $NO_2(g)$ $N_2O(g)$ $NH_3(g)$ $NH_3(aq)$ $NH_4^+(aq)$ $4NO_2(aq)$ $4NO_2^-(aq)$ $4NO_3^-(aq)$ $4NO_3^-(aq)$	86.57 51.3 104.2 -16.48 -26.57 -79.37 -55.6 -37.2	90.25 33.2 82.0 -46.1 -80.29 -132.5 -119.2 -104.6	210.6 240.0 220 192 111 113.4 153	S S NBS NBS NBS NBS NBS
N ₂ (g) NO(g) NO ₂ (g) N ₂ O(g) N ₄ (aq) NH ₄ (aq) HNO ₂ (aq) NO ₂ (aq) HNO ₃ (aq)	86.57 51.3 104.2 -16.48 -26.57 -79.37 -55.6 -37.2 -111.3	90.25 33.2 82.0 -46.1 -80.29 -132.5 -119.2 -104.6 -207.3	210.6 240.0 220 192 111 113.4 153 140	S S NBS NBS NBS NBS NBS NBS NBS NBS
$N_2(g)$ NO(g) $NO_2(g)$ $N_2O(g)$ $N_3(g)$ $NH_3(aq)$ $NH_4^+(aq)$ $NO_2(aq)$ $NO_2(aq)$ $NO_3(aq)$ $NO_3^-(aq)$ $NO_3^-(aq)$ $NO_3^-(aq)$ $NO_3^-(aq)$	86.57 51.3 104.2 -16.48 -26.57 -79.37 -55.6 -37.2 -111.3 -111.3	90.25 33.2 82.0 -46.1 -80.29 -132.5 -119.2 -104.6 -207.3	210.6 240.0 220 192 111 113.4 153 140 146	S S NBS NBS NBS NBS NBS NBS NBS NBS NBS
N ₂ (g) NO(g) NO ₂ (g) N ₂ O(g) N ₃ (aQ) NH ₃ (aq) NH ₄ ⁺ (aq) NO ₂ (aq) NO ₂ (aq) INO ₃ (aq) IO ₃ ⁻ (aq) Ii (Nickel) Ii ²⁺ (aq) IiO (Bunsenite)	86.57 51.3 104.2 -16.48 -26.57 -79.37 -55.6 -37.2 -111.3 -111.3	90.25 33.2 82.0 -46.1 -80.29 -132.5 -119.2 -104.6 -207.3 -207.3	210.6 240.0 220 192 111 113.4 153 140 146 146.4	S S NBS NBS NBS NBS NBS NBS NBS NBS NBS
N ₂ (g) NO(g) NO ₂ (g) N ₂ O(g) N ₂ O(g) N ₃ (aq) N ₄ (aq) NO ₂ (aq) NO ₃ (aq) NO(b) No(c) No(86.57 51.3 104.2 -16.48 -26.57 -79.37 -55.6 -37.2 -111.3 -111.3	90.25 33.2 82.0 -46.1 -80.29 -132.5 -119.2 -104.6 -207.3 -207.3	210.6 240.0 220 192 111 113.4 153 140 146	S S NBS NBS NBS NBS NBS NBS NBS NBS NBS
N ₂ (g) NO(g) NO ₂ (g) N ₂ O(g) N ₃ O(g) NH ₃ (aq) NH ₄ ' (aq) HNO ₂ (aq) NO ₂ (aq) INO ₃ (aq) Ii (Nickel) Ii ²⁺ (aq) Iii (Bunsenite) Iiis (Millerite) Iii (Oxygen)	86.57 51.3 104.2 -16.48 -26.57 -79.37 -55.6 -37.2 -111.3 -111.3	90.25 33.2 82.0 -46.1 -80.29 -132.5 -119.2 -104.6 -207.3 -207.3	210.6 240.0 220 192 111 113.4 153 140 146 146.4	S S NBS NBS NBS NBS NBS NBS NBS NBS RBS R
N ₂ (g) NO(g) NO ₂ (g) N ₂ O(g) N ₂ O(g) NH ₃ (aq) NH ₄ ⁺ (aq) HNO ₂ (aq) NO ₂ (aq) INO ₃ (aq) II (Nickel) Ii ²⁺ (aq) IiO (Bunsenite) IiS (Millerite) (Oxygen)	86.57 51.3 104.2 -16.48 -26.57 -79.37 -55.6 -37.2 -111.3 -111.3 -45.6 -211.6 -86.2	90.25 33.2 82.0 -46.1 -80.29 -132.5 -119.2 -104.6 -207.3 -207.3	210.6 240.0 220 192 111 113.4 153 140 146 146.4	S S NBS NBS NBS NBS NBS NBS NBS RBS RR R
N ₂ (g) NO(g) NO ₂ (g) N ₂ O(g) N ₃ O(g) NH ₃ (aq) NH ₄ + (aq) HNO ₂ (aq) NO ₂ (aq) HNO ₃ (aq) NO ₃ (aq) Ni (Nickel) Ni (Nickel) Ni (Bunsenite) Ni (Millerite) (Oxygen) (2(g)) (2(qq))	86.57 51.3 104.2 -16.48 -26.57 -79.37 -55.6 -37.2 -111.3 -111.3 -45.6 -211.6 -86.2	90.25 33.2 82.0 -46.1 -80.29 -132.5 -119.2 -104.6 -207.3 -207.3 -54.0 -239.7 -84.9	210.6 240.0 220 192 111 113.4 153 140 146 146.4	S S NBS NBS NBS NBS NBS NBS NBS R R R R
N ₂ (g) NO(g) NO ₂ (g) N ₂ O(g) N ₂ O(g) NH ₃ (aq) NH ₄ ⁺ (aq) HNO ₂ (aq) HO ₂ (aq) HO ₃ (aq) HO (aq) HO (ad) HO (bunsenite)	86.57 51.3 104.2 -16.48 -26.57 -79.37 -55.6 -37.2 -111.3 -111.3 -45.6 -211.6 -86.2	90.25 33.2 82.0 -46.1 -80.29 -132.5 -119.2 -104.6 -207.3 -207.3 -54.0 -239.7 -84.9	210.6 240.0 220 192 111 113.4 153 140 146 146.4	S S NBS NBS NBS NBS NBS NBS NBS NBS NBS
N ₂ (g) NO(g) NO ₂ (g) N ₂ O(g) N ₂ O(g) NH ₃ (aq) NH ₄ ⁺ (aq) HNO ₂ (aq) HO ₂ (aq) HO ₃ (aq) HO (86.57 51.3 104.2 -16.48 -26.57 -79.37 -55.6 -37.2 -111.3 -111.3 -45.6 -211.6 -86.2	90.25 33.2 82.0 -46.1 -80.29 -132.5 -119.2 -104.6 -207.3 -207.3 -54.0 -239.7 -84.9	210.6 240.0 220 192 111 113.4 153 140 146 146.4	S S NBS NBS NBS NBS NBS NBS NBS NBS NBS
N ₂ (g) NO(g) NO ₂ (g) N ₂ O(g) N ₂ O(g) NH ₃ (aq) NH ₄ ⁺ (aq) NO ₂ (aq) NO ₂ (aq) NO ₃ (aq) NO ₄ (aq) NO ₅ (aq) NO ₆ (aq) NO ₇ (aq) NO ₈ (aq)	86.57 51.3 104.2 -16.48 -26.57 -79.37 -55.6 -37.2 -111.3 -111.3 -45.6 -211.6 -86.2	90.25 33.2 82.0 -46.1 -80.29 -132.5 -119.2 -104.6 -207.3 -207.3 -54.0 -239.7 -84.9	210.6 240.0 220 192 111 113.4 153 140 146 146.4	S S NBS NBS NBS NBS NBS NBS NBS NBS NBS
N ₂ (g) NO(g) NO ₂ (g) N ₂ O(g) N ₂ O(g) NH ₃ (aq) NH ₄ *(aq) NO ₂ (aq) NO ₂ (aq) NO ₃ (aq) NO ₃ (aq) Ni (Nickel) Ni (Nickel) Ni (Millerite) (Oxygen) (Qxygen) (Qxygen) (Qxyaq) (Qxyaq) (Qxyaq) (Qxyaq) (Qxyaq) (Qxyaq) (Qxyaq) (Qxyaq)	86.57 51.3 104.2 -16.48 -26.57 -79.37 -55.6 -37.2 -111.3 -111.3 -45.6 -211.6 -86.2	90.25 33.2 82.0 -46.1 -80.29 -132.5 -119.2 -104.6 -207.3 -207.3 -54.0 -239.7 -84.9	210.6 240.0 220 192 111 113.4 153 140 146 146.4	S S NBS NBS NBS NBS NBS NBS NBS NBS R R R R R NBS NBS NBS NBS NBS NBS NBS
N ₂ (g) NO(g) NO ₂ (g) N ₂ O(g) N ₂ O(g) NH ₃ (aq) NH ₄ (aq) NO ₂ (aq) NO ₂ (aq) NO ₃ (aq) NIO ₃ (aq) NIO(Bunsenite) NIO(Bunse	86.57 51.3 104.2 -16.48 -26.57 -79.37 -55.6 -37.2 -111.3 -111.3 -45.6 -211.6 -86.2	90.25 33.2 82.0 -46.1 -80.29 -132.5 -119.2 -104.6 -207.3 -207.3 -54.0 -239.7 -84.9	210.6 240.0 220 192 111 113.4 153 140 146 146.4 -129 38 66	S S NBS NBS NBS NBS NBS NBS NBS NBS R R R R R NBS
N ₂ (g) NO(g) NO ₂ (g) N ₂ O(g) N ₂ O(g) NH ₃ (aq) NH ₄ ⁺ (aq) HNO ₂ (aq) NO ₂ (aq) HNO ₃ (aq) Hi (Nickel) Hi (Nickel) Hi (Mickel) Hi (86.57 51.3 104.2 -16.48 -26.57 -79.37 -55.6 -37.2 -111.3 -111.3 -45.6 -211.6 -86.2 0 16.32 163.2 31.84 4.44 -105.6	90.25 33.2 82.0 -46.1 -80.29 -132.5 -119.2 -104.6 -207.3 -207.3 -54.0 -239.7 -84.9	210.6 240.0 220 192 111 113.4 153 140 146 146.4 -129 38 66 205 111 239	S S NBS NBS NBS NBS NBS NBS NBS NBS NBS
N ₂ (g) NO(g) NO ₂ (g) N ₂ O(g) NH ₃ (g) NH ₃ (aq) NH ₄ ⁺ (aq) HNO ₂ (aq) NO ₂ (aq) HNO ₃ (aq) NO ₃ (aq)	86.57 51.3 104.2 -16.48 -26.57 -79.37 -55.6 -37.2 -111.3 -111.3 -45.6 -211.6 -86.2 0 16.32 163.2 31.84 4.44 -105.6 -134.1	90.25 33.2 82.0 -46.1 -80.29 -132.5 -119.2 -104.6 -207.3 -207.3 -54.0 -239.7 -84.9 0 -11.71 142.7 125.9	210.6 240.0 220 192 111 113.4 153 140 146 146.4 -129 38 66 205 111 239	S S NBS NBS NBS NBS NBS NBS NBS NBS R R R R R NBS
N ₂ (g) NO(g) NO ₂ (g) NO ₂ (g) N ₂ O(g) NH ₃ (aq) NH ₄ (aq) HNO ₂ (aq) NO ₂ (aq) HNO ₃ (aq) NI (Nickel) NI (Nickel) NI (Nickel) NI (Millerite) O(Oxygen) O(2(aq) O(2(aq) O(2(aq) O(2(aq) O(2(aq) O(2(aq)	86.57 51.3 104.2 -16.48 -26.57 -79.37 -55.6 -37.2 -111.3 -111.3 -45.6 -211.6 -86.2 0 16.32 163.2 31.84 4.44 -105.6	90.25 33.2 82.0 -46.1 -80.29 -132.5 -119.2 -104.6 -207.3 -207.3 -54.0 -239.7 -84.9	210.6 240.0 220 192 111 113.4 153 140 146 146.4 -129 38 66 205 111 239	S S NBS NBS NBS NBS NBS NBS NBS NBS NBS

Table 3A. (Continued)

	Formation from the Elements		Entropy	
Species	\overline{G}_f^0 (kJ mol ⁻¹)	\overline{H}_f^0 (kJ mol $^{-1}$)	\overline{S}^0 (J mol ⁻¹ K ⁻¹)	Reference
OH'(aq)	7.74			NBS
OH ⁻ (aq)	-157.29	-230.0	-10.75	NBS
P (Phosphorus)				
P (α, white)	0	0	41.1	
2O ₄ (aq)	-1018.8	-1277.4	-222	NBS
HPO ₄ ²⁻ (aq)	-1089.3	-1292.1	-33.4	NBS
H ₂ PO ₄ (aq)	-1130.4	-1296.3	90.4	NBS
H ₃ PO ₄ (aq)	-1142.6	-1288.3	158	NBS
Pb (Lead)				
b (Metal)	0	0	64.8	NBS
Pb ²⁺ (aq)	-24.39	-1.67	10.5	NBS
PbOH+(aq)	-226.3			NBS
Pb(OH) (aq)	-575.7			NBS
b(OH) ₂ (precip.) bO (yellow)	-452.2 -197.0	215.0		NBS
bO ₂	-187.9 -217.4	-217.3 -277.4	68.7	NBS
b₃O₄	-601.2	-277.4 -718.4	68.6 211	NBS
bS	-98.7	-718.4 -100.4	91.2	NBS NBS
bSO ₄	-813.2	-920.0	149	NBS
bCO ₃ (Cerussite)	-625.5	-699.1	131	NBS
(Sulfur)				
(rhombic)	0	0	31.8	NBS
O ₂ (g)	-300.2	-296.8	248	NBS
O ₃ (g)	-371.1	-395.7	257	NBS
I ₂ S(g)	-33.56	-20.63	205.7	NBS
I ₂ S(aq)	-27.87 85.8 ^f	-39.75 33.0	121.3	NBS
^{2 –} (aq) [S [–] (aq)	12.05	-17.6	14.6 62.8	NBS NBS
03 (aq)	-486.6	-635.5	-29	NBS
(SO ₃ (aq)	-527.8	-626.2	140	NBS
I ₂ SO ₃ *	-537.9	-608.8	232	NBS ^g
₂ SO ₃ (aq) ("true")	~ -534.5	000.0	232	S
O_4^{2-} (aq)	-744.6	-909.2	20.1	NBS
(SO₄ (aq)	-756.0	-887.3	132	NBS
e (Selenium)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
e (black)	0	0	42.4	NBS
eO ₃ ²⁻ (aq)	-369.9	-509.2	12.6	NBS
ISeO ₃ (aq)	-411.5	-514.5	135	NBS
I ₂ SeO ₃ (aq)	-426.2	-507.5	208	NBS
$eO_4^{2-}(aq)$	-441.4	-599.1	54.0	NBS
ISeO ₄ (aq)	-452.3	-581.6	149	NBS
i (Silicon)				
	_	0	18.8	NBS
i (Metal)	0			
iO ₂ (α, Quartz)	-856.67	-910.94	41.8	NBS
iO ₂ (α, Quartz) iO ₂ (α, Cristobalite)	-856.67 -855.88	-910.94 -909.48	42.7	NBS
iO_2 (α , Quartz) iO_2 (α , Cristobalite) iO_2 (α , Tridymite)	-856.67 -855.88 -855.29	-910.94 -909.48 -909.06	42.7 43.5	NBS NBS
Si (Metal) SiO ₂ (α , Quartz) SiO ₂ (α , Cristobalite) SiO ₂ (α , Tridymite) SiO ₂ (amorph) I_4 SiO ₄ (aq)	-856.67 -855.88	-910.94 -909.48	42.7	NBS

Table 3A. (Continued)

Species	Formation from	Formation from the Elements		
	\overline{G}_f^0 (kJ mol ⁻¹)	$\overline{H_f^0}$ (kJ mol ⁻¹)	\overline{S}^0 (J mol ⁻¹ K ⁻¹)	Reference
Sr (Strontium)		-		
Sr ²⁺ (aq) SrOH ⁺ (aq)	-559.4 -721	-545.8	-33	R NBS
SrCO ₃ (Strontianite) SrSO ₄ (Celestite)	-1137.6 -1341.0	-1218.7 -1453.2	97 118	R R
Zn (Zinc)				
Zn (Metal) $Zn^{2+}(aq)$ $ZnOH^+(aq)$ $Zn(OH)_2(aq)$ $Zn(OH)_3^-(aq)$ $Zn(OH)_4^{4-}(aq)$	0 -147.0 -330.1 -522.3 -694.3 -858.7	0 -153.9	29.3 112	NBS NBS NBS NBS NBS NBS
ZnO (solid) Zn(OH) ₂ (solid β) ZnCl ⁺ (aq) ZnCl ₂ (aq) ZnCl ₃ (aq) ZnCl ₄ ² (aq)	-318.32 -553.6 -275.3 -403.8 -540.6 -666.1	-348.28 -641.9	43.64 81.2	NBS NBS NBS NBS NBS S
ZnCO ₃ (Smithsonite)	-731.6	-812.8	82.4	NBS

"The quality of the data is highly variable; the authors do not claim to have critically selected the "best" data. For information on precision of the data and for a more complete compendium, which includes less common substances, the reader is referred to the references. For research work, the original literature should be consulted.

^bThermodynamic properties taken from Robie, Hemingway, and Fisher are based on a reference state of the elements in their standard states at 1 bar (10⁵ P = 0.987 atm). This change in reference pressure has a negligible effect on the tabulated values for the condensed phases. [For gas phases only data from NBS (reference state = 1 atm) are given.]

'NBS: D. D. Wagman et al., Selected Values of Chemical Thermodynamic Properties, U.S. National Bureau of Standards, Technical Notes 270-3 (1968), 270-4 (1969), 270-5 (1971). R: R. A. Robie, B. S. Hemingway, and J. R. Fisher, Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (10⁵ Pascals) Pressure and at Higher Temperatures, Geological Survey Bulletin No. 1452, Washington, DC, 1978. Bard et al.: Bard, A. J., R. Parsons and D. L. Parkhurst, Standard Potentials in Aqueous Solution, Marcel Dekker, New York (1985). S: Other sources (e.g., computed from data in Stability Constants).

 $^{d}[H_{2}CO_{3}^{*}] = [CO_{2}(aq)] + "true" [H_{2}CO_{3}].$

The thermodynamic stability of oxides, hydroxides, or oxyhydroxides of Fe(III) depends on mode of preparation, age, and molar surface. Reported solubility products ($K_{r0} = \{Fe^{3+}\} \{OH^-\}^3$) range from $10^{-37.3}$ to $10^{-43.7}$. Correspondingly, FeOOH may have G_f^a values between -452 J mol^{-1} (freshly precipitated amorphous FeOOH) and -489 J mol^{-1} (aged goethite). If the precipitate is written as Fe(OH)₃, its G_f^a values vary from -692 to -729 J mol⁻¹.

The value for this species appears too low, on the basis of recently reported pK_2 values for $H_2S(aq)$.

 ${}^{8}[H_{2}SO_{3}^{*}] = [SO_{2}(aq)] + "true" [H_{2}SO_{3}].$

^hR value yields a solubility constant for quartz more in accord with observation.