Example of Proof by Contradiction

1. Use proof by contradiction to prove the following statement:

```
If A and B are sets, then A \cap (B - A) \equiv \emptyset
```

Proof. Suppose not.

That is, suppose A and B are sets but $A \cap (B - A) \not\equiv \emptyset$.

Then there is an element $e \in A \cap (B - A)$.

By the definition of Intersection, $A \cap (B - A) \equiv \{x \mid x \in A \text{ and } x \in B - A\}$

By the definition of Set Difference, $B-A \equiv \{x \mid x \in B \text{ and } x \not \in A\}$

Combining these two definitions, we have $A \cap (B - A) \equiv \{x \mid x \in A \text{ and } x \in B \text{ and } x \notin A\}$

Then $e \in \{x \mid x \in A \text{ and } x \in B \text{ and } x \notin A\}$

Which means $e \in A$ and $e \notin A$

This is a contradiction.

 \therefore If A and B are sets, then $A \cap (B - A) \equiv \emptyset$