le cnam

Liquidity connectedness between decentralised cryptocurrency exchanges and their centralised counterparts during US banking crisis

Presented by Daniel FINNAN

Under the direction of Elisa DARRIET

Master Stratégie Economiques, Numérique et Données, 2022/2023

Background & problem

US banking turmoil

SIGNATURE BANK®

Regulation

Securities and Exchange Commission

Commodity Futures Trading Commission

US National Futures Association

US House of Representations draft bill on crypto stablecoins

EU regulation for crypto assets

Uniswap

Decentralised exchange based on constant function market maker

Transparency

Operates on blockchain

Custody of wallet

Connection with banking system

Binance

Centralised exchange with double auction limit order book

Hypothesis

Uniswap acts as a satellite or proxy to Binance

Liquidity on Binance drives Uniswap?

Shocks to Binance reverberate in Uniswap

Uniswap is insulated from connection to traditional financial system?

Methodology

- Collect appropriate data
- Find comparable & representative token pairs

- 2
- Identify and construct relevant variables
- Examine data & transform if necessary
- Use a suitable model to explore relationship between DEX and CEX

Data collection & processing

Sample code

Python script merging order book, trades and Uniswap liquidity variables together in a Pandas dataframe

```
for timestamp in df.index:
   print(f'Looking for timestamp: {timestamp}')
    start_timestamp = (int(timestamp)-hour)*1000
    end_timestamp = (int(timestamp)-1)*1000
    file_name = f'{token_pair["binance"]}_{start_timestamp}_{end_timestamp}.pkl'
    file_path = f'{trades_dir}{token_pair["binance"]}/{file_name}'
    if os.path.exists(file_path) == True:
       with open(file_path, 'rb') as file:
           trade_indicators = pickle.load(file)
       df.loc[timestamp, 'num_txs'] = trade_indicators['num_txs']
       df.loc[timestamp, 'vol'] = trade_indicators['vol']
       df.loc[timestamp, 'trade_size'] = trade_indicators['trade_size']
       df.loc[timestamp, 'amihud'] = trade_indicators['amihud']
    else:
       print('File does not exist.')
        auit()
   uniswap_v3_file = token_pair['uniswap']
   with open(f'{uniswap_v3_dir}{uniswap_v3_file}.pkl', 'rb') as liquidity_file:
        liquidity_snapshots = pickle.load(liquidity_file)
```

R script creating combinations of regressors to determine optimum lag length using Akaike information criterion

```
regressors <- c('total2', 'total1', 'QS', 'num_txs', 'vol', 'trade_size', 'amihud')
combos <- combn(regressors, 3, simplify = FALSE)</pre>
lowest AIC <- 1000000000
for(i in 1:length(combos)) {
 ind_vars <- unlist(combos[i], use.names = FALSE)</pre>
  dep_var <- "uniswap_root_k"</pre>
  formula_concat <- as.formula(paste(dep_var, paste(ind_vars, collapse=" + "), sep=" ~ "))</pre>
  max lag <- 3
 USDT_DAI_panel_a_lags <- auto_ardl(formula_concat, data = USDT_DAI_panel_a, max_order = max_lag)</pre>
  USDT_DAI_panel_b_lags <- auto_ardl(formula_concat, data = USDT_DAI_panel_b, max_order = max_lag)</pre>
 USDT_DAI_panel_c_lags <- auto_ardl(formula_concat, data = USDT_DAI_panel_c, max_order = max_lag)</pre>
  current_AIC_a <- USDT_DAI_panel_a_lags$top_orders[1,]$AIC</pre>
  current_AIC_b <- USDT_DAI_panel_b_lags$top_orders[1,]$AIC</pre>
  current_AIC_c <- USDT_DAI_panel_c_lags$top_orders[1,]$AIC</pre>
  total AIC <- current AIC a + current AIC b + current AIC c
  if(total_AIC < lowest_AIC)</pre>
    lowest AIC <- total AIC
    best_order_total_a <- USDT_DAI_panel_a_lags$best_order</pre>
    best order total b <- USDT DAI panel b lags$best order</pre>
    best_order_total_c <- USDT_DAI_panel_c_lags$best_order</pre>
```

Sample data

BTC/USDT order book with 3 bids and 3 asks of depth, via Binance API

lastUpdateId	bids		asks	
	price	quantity	price	quantity
32857738668	24,250.09	0.04123	24,634.80	0.04000
	24,250.00	11.37131	24,634.86	0.00070
	24,249.95	0.00042	24,634.88	0.01056

ETH/BTC trade data for 5 trades, via Binance

id	price	qty	quoteQty	time	isBuyerMaker	isBestMatch
155601310	0.017954	0.22	0.00394988	1577836801725	TRUE	TRUE
155601311	0.017953	0.313	0.00561928	1577836801725	TRUE	TRUE
155601312	0.01795	3.189	0.05724255	1577836801725	TRUE	TRUE
155601313	0.017948	1.956	0.03510628	1577836801725	TRUE	TRUE
155601314	0.017951	0.272	0.00488267	1577836802641	TRUE	TRUE

WBTC/WETH liquidity pool on 5 May 2021 15:59:58, Uniswap v3, via subgraph hosted on TheGraph

id		0xcbcdf9626bc03e24f779434178a73a0b4bad62ed			volumeToken0	0.00186388
feeTier		3000			volumeToken1	0.03
liquidity		38565229780743		feePercent	0.003	
token0	symbol	WBTC	typename	Token	tvlAdjust0	0.00000279582
token1	symbol	WETH	typename	Token	tvlAdjust1	0.00004499999999999996
totalValueLockedToken0 0.24085025			tvlToken0	0.24084745417999998		
totalValu	totalValueLockedToken1 2.942327559186704555		tvlToken1	2.9422825591867046		

Econometrics

- Construction of liquidity measures
 - ► Total 2% depth (*total2*)
 - ► Total 1% depth (*total1*)
 - ▶ Quoted spread (*QS*)
 - ▶ Number of trades (*num_txs*)
 - ▶ Volume of tokens (*vol*)
 - ► Size of trades (*trade_size*)
 - ► Amihud illiquidity ratio (*amihud*)
 - ▶ Uniswap (\sqrt{k})
- Autoregressive Distributed Lag Model

$$Y_{t} = \beta_{0} + \beta_{1}Y_{t-1} + \beta_{2}Y_{t-2} + \dots + \beta_{p}Y_{t-p} + \delta_{1}X_{t-1} + \delta_{2}X_{t-2} + \dots + \delta_{q}X_{t-q} + u_{t}$$

Our variables, e.g.

$$\begin{split} \sqrt{k}_{t} &= \beta_{0} + \beta_{1} \sqrt{k}_{t-1} + \beta_{2} \sqrt{k}_{t-2} + \ldots + \beta_{p} \sqrt{k}_{t-p} \\ &+ \delta_{1} total2_{t-1} + \delta_{2} total2_{t-2} + \ldots + \delta_{q} total2_{t-q} + u_{t} \end{split}$$

Error Correction Model (ECM)

- Descriptive statistics
 - Skewness and kurtosis
- Line plots
- Temporal patterns
- Autocorrelation
- Structural breaks (Chow test)
- Unit root tests (Augmented Dickey Fuller)
- Order of integration
- ► Lag selection using (AIC)
- Pesaran et al. 2001 approach:
 - Residual autocorrelation
 - Residual heteroscedasticity
- ► F-bounds test
- ► T-bounds test

Results of preliminary analysis

ARDL results

Unrestricted ECM for USDT/DAI with Heteroscedasticity-consistent standard errors

	Dependent variable					
	Δuniswap_root_k					
Characteristic	Beta ¹	SE ²	95% CI ²	p-value		
Intercept	124,560.2	65,927	-4,654.33,	0.059		
	1		253,774.74			
$uniswap_root_k_{t-1}$	-0.19**	0.070	-0.33, -0.06	0.005		
$total2_{t-1}$	0.02	0.009	0.00, 0.04	0.056		
$total1_{t-1}$	-0.02	0.015	-0.04, 0.01	0.28		
num_txs_{t-1}	-31.59	19.8	-70.49, 7.31	0.11		
Δtotal2	0.09*	0.044	0.00, 0.17	0.042		
$\Delta total2_{t-1}$	0.03	0.028	-0.02, 0.09	0.23		
$\Delta total2_{t-2}$	0.03	0.019	-0.01, 0.07	0.10		
Δtotal1	-0.03	0.022	-0.07, 0.02	0.21		
$\Delta total1_{t-1}$	0.03	0.027	-0.02, 0.09	0.21		
$\Delta total1_{t-2}$	0.03	0.017	0.00, 0.06	0.059		
Δnum_txs	-8.35	44.9	-96.34, 79.64	0.85		
Δnum_txs_{t-1}	115.40	63.1	-8.30, 239.09	0.067		
/*** 0.05. **** 0.01. ***** 0.001						

¹ *p<0.05; **p<0.01; ***p<0.001

- Restricted (ECM) using Case 3: Unrestricted intercept and no trend.
- Robustness
- ► Long-run relationship USDT/DAI *ARDL*(1,3,3,2)

$$uniswap \sqrt{k} = 640,249.9 + 0.09total2 - 0.08total1 - 162.39num_txs - 0.19$$

$$(204,929.4) \quad (0.05) \quad (0.07) \quad (76.53) \quad (0.07)$$

$$[0.002] \quad [0.07] \quad [0.28] \quad [0.03] \quad [0.006]$$

² SE = Standard Error, CI = Confidence Interval

Conclusion

- Binance shows clear temporal patterns in the number of transactions and volume
- ▶ 71% of our variables across 8 token pairs support 2 structural breaks
- Mix of stationary and non-stationary variables
- ▶ Evidence for 3 cointegrating relationships with USDT/DAI, ETH/DAI & ETH/USDT
- ► ETH/DAI and USDT/DAI show evidence (at least 10% level) for significance of Binance liquidity measures on Uniswap in the long-run relationship
- ► USDT/DAI shows total depth at 1% and 2% are both significant at < 1% level in short run dynamics

Discussion, limitations & future research

- ► Lack of evidence for Panel A & Panel C restricts ability to make inferences
- ► All cointegrating relationships involve stablecoins
- ► Investigate non-cointegrating relationships
- \blacktriangleright Questions over specification of model: Uniswap \sqrt{k} , liquidity indicators
- Problems with Uniswap v2 data
- ► Econometric technique: analysis of variance, e.g. ARCH or GARCH
- ► Flows of liquidity on Binance might be better examined through public wallets
- ► Flows of liquidity on Uniswap could be explored through "mints" or "burns"

References

- ▶ Images Binance order book for BTC/USDT via Binance web app.
- ► Code All code hosted on https://github.com/daniel-finnan/memoire/ with access available on request.
- Data presented in samples via Binance API, Binance historical trades & TheGraph subgraph.
- ► Autoregressive Distributed Lag Model Stock, J. H., & Watson, M. W. (2018). *Introduction to Econometrics*. Pearson.
- ► Pesaran, M. H., Shin, Y., & Smith, R. J. (2001). Bounds Testing Approaches to the Analysis of Level Relationships. *Journal of Applied Econometrics*, 289-326.