

Continuous Assessment Test I - March 2023

Programme	: B.Tech			
Course	Digital System Design	Semester	1	WS 2022-23
		Code	13	BECE102L
Faculty	A LUCEUM PROPERTY OF THE PROPERTY AND ADDRESS AS A SALE	Class Nbr	2	CH202223230013
	: Prof. J. Divya	Slot	:	D1
Time	: 90 Minutes	Max. Marks	:	50

Answer ALL the questions

		AND the questions	
Q.No.	Sub- divisio n	Question Text	
1/		A logic 'voter' circuit has 4 inputs a , b , c , d and one output v . The output is to be logic 1 if any 3 or all 4 inputs are at logic 1. Draw a truth table map for each input and hence write down the simplified Boolean equations using K-Map method of reduction. Design a circuit using NOR gates to satisfy this requirement.	[10]
2.		Draw a CMOS logic circuit for the given expression. (Assume both true and complementary inputs are available) $F = (A + \overline{CD})(\overline{A} + B).$	[5]
3. 		Write the Boolean expression for output x in Figure 1. Determine the value of x for all possible input conditions in a truth table. Figure 1 Simplify the given function $F1=\sum (1, 5, 6, 7, 11, 12, 13, 15)$ For the original and the simplified expression, write the Verilog HDL code using	[5]
1	/	dataflow modelling.	[5]+[
5./		Write a gate level Verilog code for the schematic shown in Figure 2 and write a test bench for the same.	[10]

Figure 2

Design a 4:2 priority encoder. Also discuss the differences between encoder and priority [10] encoder?

Total Marks [50]