Lab 1

0.1 Overview

Note

To complete this lab, you will need:

- access to the shared posit.cloud space for this course (link in Brightspace)
- a quarto.pub account (free)
- GitHub Copilot account approved and enabled in posit.cloud

Go to the shared posit.cloud workspace for this class and open the Labs project. Open the lab01.qmd file and complete the exercises. Below is an annotated guide to assist you. There is also a video in the Brightspace Todo section for this module.

We will be using the gapminder data for this lab so let's start by loading the tidyverse family of packages and gapminder. Since this is more of a report, we'll also be using the message: false option to suppress the output message from loading tidyverse.

```
""
fr
"| message: false
library(tidyverse)
library(gapminder)
```

0.2 Exercises

There are seven exercises in this lab. Grading is shown in Section 0.3 at the end of the document.

0.2.1 Exercise 1

Using ggplot plot the changes in life expectancy over time for the US, Japan, and Russia. Use a line plot. The geom is geom_line()

First, let's glimpse() the data to remind us what it looks like.

```
glimpse(gapminder)
```

Next, let's check the correct spelling of each country to see how we should reference them, remember that country names may have changed over time (e.g., USSR -> Russia and other countries). We can use the pull() function so we don't get pages of output for a single column and can easily see the names.

```
gapminder |>
  distinct(country) |>
  pull()
```

[1]	Afghanistan	Albania	Algeria
[4]	Angola	Argentina	Australia
[7]	Austria	Bahrain	Bangladesh
[10]	Belgium	Benin	Bolivia
[13]	Bosnia and Herzegovina	Botswana	Brazil
[16]	Bulgaria	Burkina Faso	Burundi
[19]	Cambodia	Cameroon	Canada
[22]	Central African Republic	Chad	Chile
[25]	China	Colombia	Comoros
[28]	Congo, Dem. Rep.	Congo, Rep.	Costa Rica
[31]	Cote d'Ivoire	Croatia	Cuba
[34]	Czech Republic	Denmark	Djibouti
[37]	Dominican Republic	Ecuador	Egypt
[40]	El Salvador	Equatorial Guinea	Eritrea

[43]	Ethiopia	Finland	France
	Gabon	Gambia	Germany
[49]	Ghana	Greece	Guatemala
[52]	Guinea	Guinea-Bissau	Haiti
[55]	Honduras	Hong Kong, China	Hungary
[58]	Iceland	India	Indonesia
[61]	Iran	Iraq	Ireland
[64]	Israel	Italy	Jamaica
[67]	Japan	Jordan	Kenya
[70]	Korea, Dem. Rep.	Korea, Rep.	Kuwait
[73]	Lebanon	Lesotho	Liberia
[76]	Libya	Madagascar	Malawi
[79]	Malaysia	Mali	Mauritania
[82]	Mauritius	Mexico	Mongolia
[85]	Montenegro	Morocco	Mozambique
[88]	Myanmar	Namibia	Nepal
[91]	Netherlands	New Zealand	Nicaragua
[94]	Niger	Nigeria	Norway
[97]	Oman	Pakistan	Panama
[100]	Paraguay	Peru	Philippines
[103]	Poland	Portugal	Puerto Rico
[106]	Reunion	Romania	Rwanda
[109]	Sao Tome and Principe	Saudi Arabia	Senegal
[112]	Serbia	Sierra Leone	Singapore
[115]	Slovak Republic	Slovenia	Somalia
[118]	South Africa	Spain	Sri Lanka
[121]	Sudan	Swaziland	Sweden
[124]	Switzerland	Syria	Taiwan
[127]	Tanzania	Thailand	Togo
[130]	Trinidad and Tobago	Tunisia	Turkey
[133]	Uganda	United Kingdom	United States
	Uruguay	Venezuela	Vietnam
[139]	West Bank and Gaza	Yemen, Rep.	Zambia
[142]	Zimbabwe		

142 Levels: Afghanistan Albania Algeria Angola Argentina Australia ... Zimbabwe

It looks like Russia isn't included in the dataset. Instead of Russia, we'll examine Bulgaria, Japan, United States. We'll create a new tibble called three_countries to store our restricted data. Since we are looking at life expectancy changes over time, the three columns we'll need are country, year, and lifeExp.

```
three_countries <- gapminder |>
  select(country, year, lifeExp) |>
  filter(country %in% c("Bulgaria", "Japan", "United States"))
```

Now we can use ggplot to create our chart.

```
three_countries |>
  ggplot(aes(x = year, y = lifeExp)) +
  geom_line(aes(color = country))
```


0.2.2 Exercise 2

Modify the code below to add a title to the plot, create a more meaningful y-axis label, and use theme_minimal() to change the theme of the plot.

Refer to the Getting Started chapter, which is when we first labeled the axes and added a title to plots.

```
three_countries |>
  ggplot(aes(x = year, y = lifeExp)) +
  geom_line(aes(color = country))
```


0.2.3 Exercise 3

In the empty code chunk below, create the same graphic using three new countries of your choosing. Set the chunk option to render the plot, but not the code.

insert code here

0.2.4 Exercise 4

Try to recreate the plot and the linked reference to it shown below.

You can see in Figure 1 that Bulgaria's life expectancy increase slowed starting in the mid 1960s.

- use the chunk option fig-cap: "Write your caption here" to replicate the caption towards the bottom of the plot.
- use the chunk option label: fig-unique_label_name to make a label that becomes cross-referenceable. Ideally, unique_label_name should be something unique and meaningful like three_country_life_exp. The fig- prefix is required

Figure 1: Life expectancy trend - Bulgaria, Japan, United States

to properly cross reference figures.

• After the code chunk with the label has been run or rendered, in the visual editor, you should be able to select Insert -> Cross Reference to place it in the narrative text. It will default as link to "Figure 1" which is the first labeled figure in the document.

insert code here

0.2.5 Exercise 5

Copilot doesn't suggest completions when in Visual mode.

Insert a code chunk below using Insert -> Exectuable Cell -> R in the visual editor, then switch to Source mode.

While in source mode, type the following comment line: # Create a plot of life expectancy over time for the United States and Portugal.

In the narrative below the plot, describe how well Copilot did.

0.2.6 Exercise 6

In the YAML section at the top of the document, replace the author's name with your own.

0.2.7 Exercise 7

Publish your document to quarto.pub and copy/paste the link to the Lab 1 assignment in Brightspace.

0.3 Grading

Exercise	Points
Exercise 1	10
Exercise 2	10
Exercise 3	10
Exercise 4	10
Exercise 5	10
Exercise 6	10
Exercise 7	40
Total	100