

ในบทเรียนที่ผ่านมาโครงสร้างของ NN และ CNN นั้นมีขนาด Input ที่ตายตัวเท่านั้น ทำให้ไม่ สามารถรองรับข้อมูลที่มีลักษณะสัมพันธ์ตามลำดับก่อนหลัง (Sequence) ได้

- 🔲 ข้อความต่างๆ ประโยคภาษาต่างๆ
- 🔲 ข้อมูลที่มีลำดับเวลา เช่น สภาพอากาศ การเปลี่ยนแปลงค่าเงิน
- ☐ ข้อมูลประเภทเสียง สัญญาณที่ได้รับจาก Sensor ในช่วงเวลาต่างๆ

ข้อมูลต่างๆ ในลักษณะนี้ ถ้าเราสามารถนำมาสร้าง Model ได้ จะทำให้เราสามารถนำผลลัพธ์ที่ได้ ไปประยุกต์ใช้ให้เกิดการใช้งานได้หลากหลายรูปแบบ ตัวอย่างเช่น

- 🔲 การแปลภาษา (Translation)
- ากรวิเคราะห์ทำนายความรู้สึกจากข้อความ (Sentimental Analysis)
- 🔲 การทำนายหรือพยากรณ์เหตุการณ์ในอนาคต เช่น สภาพอากาศ การเกิดแผ่นดินไหว
- 🗖 การวิเคราะห์และทำนายปริมาณการเข้าใช้บริการ หรือการทำนายราคาหุ้น

Image Captioning

RNNs are used to caption an image by analyzing the activities present.

"A Dog catching a ball in mid air"

When it rains, look for rainbows. When it's dark, look for stars.

Positive Sentiment

การปรับรูปแบบการเขียนโครงสร้างเพื่อให้สะดวกต่อการทำความเข้าใจ

ตัวอย่าง ถ้าพิจารณาข้อมูลต่อไปนี้

1, 2, 3, 4, 1, 2, 3, 4, ...

ABCDEF...

GFEDCB...

- อ่านข้อมูลที่ละครั้ง (Step) แล้วเก็บข้อมูลที่เป็นประโยชน์ไว้ประมวลผลในรอบถัดไป (State) หรือเรียกว่า (Hidden State)
- ความสัมพันธ์ของข้อมูลเชิงลำดับ (Sequence) นั้น มีความสำคัญอย่างมาก เราจะพิจารณา ข้อมูลปัจจุบันจาก "ความรู้ก่อนหน้า" หรือ State ซึ่งแตกต่างจาก NN ปกติ ที่จะไม่มีการเก็บ State ไว้ (หรือจะมองว่าเป็นระบบที่มี Memory ก็ได้)

สถาปัตยกรรมของ RNN

เนื่องจาก RNN มีการเก็บค่าสถานะ ดังนั้นจึงจำเป็นต้องมีตัวแปรเรื่องของเวลา (t) เข้ามาเกี่ยวข้อง

สถาปัตยกรรมของ RNN

เนื่องจาก RNN มีการเก็บค่าสถานะ ดังนั้นจึงจำเป็นต้องมีตัวแปรเรื่องของเวลา (t) เข้ามาเกี่ยวข้อง

A, B and C are the parameters

สถาปัตยกรรมของ RNN

สถาปัตยกรรมของ RNN

 W_{xh} คือ Weight ที่นำมาคูณกับค่า Input W_{hh} คือ Weight จาก State ก่อนหน้า h_t คือ ค่าสถานะของ State ปัจจุบัน x_t คือ Input ที่เวลา State ปัจจุบัน y_t คือ Output ที่เวลา State ปัจจุบัน

การเขียนโครงสร้าง RNN

```
import keras.api.models as mod
import keras.api.layers as lay
model = mod.Sequential()
model.add(lay.SimpleRNN(units=1,
                        input shape=(1,1),
                        activation="relu"))
model.summary()
model.save("RNN.h5")
```


ทดลองสร้างข้อมูลสำหรับใส่ใน RNN

```
Example 2.py > ...
      import numpy as np
      import matplotlib.pyplot as plt
      pitch = 20
      step = 1
      N = 100
      n_train = int(N*0.7) # 70% for Training set
  8
      def gen_data(x):
  9
 10
          return (x%pitch)/pitch
 11
 12
      t = np.arange(1, N+1)
      y = [gen_data(i) for i in t]
 13
      y = np.array(y)
 14
 15
      plt.figure()
 16
      plt.plot(y)
 17
      plt.show()
 18
```


เตรียมข้อมูลสำหรับใส่ใน RNN

Dataset

2

3

4

5

6

8

x_train y_train

[[1] [234567]
[2]
[3]
[4]
[5]
[6]]

Step = 1

เตรียมข้อมูลสำหรับใส่ใน RNN

Dataset

2

5

6

8

x_train		y_train	
1	2		3
2	3		4
3	4		5
4	5		6
5	6		7
6	7		8
7	8		9
8	9		

x_train y_train

[[1 2] [3 4 5 6 7 8]

[2 3]

[3 4]

[4 5]

[5 6]

[6 7]]

Step = 2

เตรียมข้อมูลสำหรับใส่ใน RNN

```
def convertToMatrix(data, step=1):
         X, Y = [], []
24
         for i in range(len(data)-step):
25
             d = i + step
26
             X.append(data[i:d,])
27
             Y.append(data[d,])
28
         return np.array(X), np.array(Y)
29
30
    train, test = y[0:n_train], y[n_train:N]
31
32
    x_train, y_train = convertToMatrix(train, step)
33
34
    x_test, y_test = convertToMatrix(test, step)
35
36
     print("Dimension (Before): ", train.shape, test.shape)
     print("Dimension (After) : ", x_train.shape, x_test.shape)
```

สร้าง Model และทำการ Training

```
model = mod.Sequential()
45
    model.add(lay.SimpleRNN(units=32,
46
                             input_shape=(step,1),
47
48
                             activation="relu"))
    model.add(lay.Dense(units=1))
49
50
    model.compile(optimizer="adam", loss="mse", metrics=["accuracy"])
51
    hist = model.fit(x_train, y_train, epochs=30, batch_size=1, verbose=1)
52
53
    plt.plot(hist.history['loss'])
54
    plt.show()
55
```

สร้าง Model และทำการ Training

เปรียบเทียบผลลัพธ์การ Predict กับข้อมูลจริง

Classwork

- [1] สร้างฟังก์ชั่น Plot เปรียบเทียบ ผลลัพธ์การ Predict กับต้นฉบับ
- [2] ทดลองปรับค่า Parameter ของ
 Model เพื่อให้ได้ผลลัพธ์ใกล้เคียง
 กับต้นฉบับที่สุด

[3] ทดลองเปลี่ยนสัญญาณ Input ให้เป็นลักษณะต่างๆ


```
y = np.sin(0.05*t*10) + 0.8 * np.random.rand(N)
```

Types of Recurrent Neural Networks

RNN มีโครงสร้างทั้งหมด 4 รูปแบบ

Vanilla Neural Network

Image caption

Sentiment analysis

Machine translation

Two **Issues** of Standard RNNs

Vanishing Gradient Problem & Exploding Gradient Problem

Gradient Problem Solutions

Long short-term memory (LSTM)

Example

https://keras.io/examples/nlp/bidirectional_lstm_imdb/ https://huggingface.co/spaces/keras-io/bidirectional_lstm_imdb https://github.com/MRYingLEE/Stock-Price-Specific-LSTM

