

SOMMAIRE

- ENJEUX ENVIRONNEMENTAUX
 - OBJECTIFS
- EXPLICATION ÉTAPE PAR ÉTAPE
 - LIMITES DU PROJET
 - CONCLUSION

UNE MER DE PLASTIQUE...

- 8 MILLIONS DE TONNES DE PLASTIQUES DÉVERSÉS TOUS LES ANS DANS LA MER
- LA SURFACE DE LA MER MÉDITERRANÉE RENFERMERAIT PLUS DE **250 MILLIARDS DE MICRO**FRAGMENTS ISSUS DE LA DÉGRADATION DES SACS PLASTIQUES ET DES DÉCHETS DE TYPE
 POLYSTYRÈNE

OBJECTIFS:

- BATEAU **AUTONOME** QUI ÉVITE LES OBSTACLES
- RAMASSE LES DÉCHETS DE SURFACE

Conçu pour des plans d'eau calme comme les ports, les lacs ou les baies fermées.

CONCEPTION DU SUPPORT DU PROTOTYPE:

FIXATION ET PROGRAMMATION DES MOTEURS

→ Batterie 7.4 v

moteurspeed=800; //definition de la vitesse des moteurs// if (distance>longobstacle) { analogWrite(ENA, moteurspeed); digitalWrite(avantA, HIGH); digitalWrite (arriereB, LOW); Serial.println("moteur A et B en marche avant"); analogWrite(ENB, moteurspeed); digitalWrite(avantB, HIGH); digitalWrite(arriereB, LOW); delay(100); analogWrite(ENA, moteurspeed); //Moteur A en marche arriere pour stopper le bateau// digitalWrite(avantA, LOW); digitalWrite(arriereB, HIGH); analogWrite(ENB, moteurspeed); //Moteur B en markce arriere pur stopper le bateau// digitalWrite(avantB, LOW); digitalWrite (arriereB, HIGH); Serial.println("moteurs A et B en marche arriere"); delay(100); //a definir par test// analogWrite(ENA, moteurspeed); digitalWrite (avantA, HIGH); digitalWrite(arriereB, LOW); analogWrite (ENB, moteurspeed); digitalWrite (avantB. LOW); digitalWrite(arriereB, LOW); delay(100); // a definir par test//

INSTALLATION BOÎTE ÉTANCHE AVEC ÉLECTRONIQUE

PROGRAMMATION ET FIXATION DES DEUX CAPTEURS

Capteurs étanches (un derrière, un devant)

```
#include < NewPing.h>
int trig=12;
int echo=11;
unsigned long int lecture echo=0;
int distance= 0;
void setup() {
 Serial.begin(9600);
 pinMode(trig,OUTPUT);
 pinMode (echo, INPUT);
void loop() {
 digitalWrite(trig, HIGH); //generalisation de l'impulsion trig//
 digitalWrite(trig, LOW);
 lecture echo= pulseIn(echo, HIGH); //lecture longueur d'onde//
 distance = (lecture_echo) *0.017 ;//convertion distance//
 Serial.print("temps ");
 Serial.println(lecture echo);
 Serial.print("distance ");
 Serial.println(distance);
 delay(60);
```

Ajout de conditions sur le programme des moteurs pour éviter les obstacles

FIXATION ET BRANCHEMENT PANNEAU SOLAIRE

Système de fixation pour ne pas modifier le panneau solaire

SYSTÈME BLUETOOTH

Module Bluetooth

Premier test

Dernier test

LIMITES DU PROJET

- PUISSANCE MOTEURS TROP FAIBLE POUR LA TRACTION DU FILET
- CAPTEUR REMPLISSAGE AVEC ENVOIE SMS LORSQUE LE FILET EST PLEIN
- PANNEAU SOLAIRE QUI RECHARGE LA BATTERIE DIRECTEMENT

LE BATEAU EST CONÇU POUR RÉCUPÉRER LES DÉCHETS EN SURFACE UNIQUEMENT, IL FAUDRAIT UN BATEAU « SOUS MARIN » POUR UNE MEILLEURE EFFICACITÉ!

CONCLUSION

Nouvelles connaissances technique

CONFIANCE EN SOI

Nouvelles idées de projets

Merci pour votre attention!