

دانشکده فنی دانشگاه تهران

دانشکده برق و کامپیوتر

پروژه 2 اصول سیستمهای مخابراتی 1 Amplitude Modulation

دستیار آموزشی مربوطه:

Darya Afzali

darya.afzali@ut.ac.ir

نيم سال اول 1400-1401

- شما باید کدها و گزارش خود را با الگوی CA2_StudentNumber.zip ، در محل تعیین شده، آبلود کنید.
- گزارشکار شما اصلی ترین معیار ارزیابی خواهد بود ؛ درنتیجه زمان کافی برای تکمیل آن اختصاص دهید.
 - لطفاً، گزارش خود را در قالب قرار داده شده در صفحهی درس بنویسید.
- قسمت اصلی کد شما باید درمحیط Matlab Live Editor نوشته شود و نمودارها، علاوه بر گزارشکار، باید درکد اصلی نیز قرار داشته باشند.
 - شما مى توانىد سوالات خود را از طريق گروه واتساپ كلاس يا ايميل، در ميان بگذاريد.

بخش اول: مدو لاسبون دامنه از نوع متعارف

همانطور که در درس آموختیم، مدو لاسیون دامنه از نوع متعارف¹ سادهترین نوع مدو لاسیون دامنه است.

 f_c تابعی بنویسید که سیگنال پیام $\chi_m(t)$ ، دامنه موج حامل A_c ، اندیس مدولاسیون μ و فرکانس موج حامل \star ر ا به عنوان خروجی بگیرد و سیگنال مدوله شده را بازگر داند.

حال، سیگنال پیام را به صورت زیر در نظر بگیرید:

$$x_m(t) = \begin{cases} 1 & 0 \le t < \frac{t_0}{3} \\ -2 & \frac{t_0}{3} \le t < \frac{2t_0}{3} \\ 0 & o.w. \end{cases}$$

- سیگنال پیام را با فرکانس $t_c=0.15$ ، $t_c=0.85$ ، $t_c=0.85$ هدوله کنید و سیگنال مدوله شده را μ رسم نمایید.
 - ا رسم نمابید طیف مربوط به سیگنال بیام و سیگنال مدوله شده را رسم نمابید
- اگر سیگنال پیام متناوب با دوره تناوب t_0 باشد، توان و بازدهی مدولاسیون 2 را برای سیگنال مدوله شده، 4محاسبه نماييد
- 🚣 با استفاده از تابع ammod ، خواستهی دوم را تکرار کنید و نحوهی استفاده از آن را در خصوص این سوال،

SSB و DSB بخش دوم: مدو لاسيو نهاى

سیگنال پیام m(t) به صورت زیر تعریف شده است. از سیگنال پیام، در بازهی m(t) , 5-m(t) با فرکانس نمو نهبر دار ی کنبد

$$m(t) = sinc^2(30t)$$

🚣 سیگنال پیام را در حوزه زمان بر حسب ثانیه و تبدیل فوریه آن را بر حسب هرتز رسم نمایید.

**راهنمایی: هنگام نمونهبرداری از یک سیگنال پیوسته، سیگنال گسستهای حاصل می شود. در رابطهی 1، ارتباط میان تبدیل های فوریه سیگنال یپوسته و سیگنال نمونهبرداری شدهاش در زمان گسسته، آمده است که در آن، $T_{
m S}$ دوره تناوب نمونهبرداری، ω فرکانس زاویهای تبدیل فوریهی گسسته و Ω فرکانس زاویهای تبدیل فوریهی پیوسته بر حسب $\left[rac{rad}{s}
ight]$ است. $X_{con}(j\Omega)=T_sX_{dis}(e^{j\omega})rect\left(rac{\omega}{2\pi}
ight)$ ا $\omega=\Omega T_s$

$$X_{con}(j\Omega) = T_s X_{dis}(e^{j\omega}) rect\left(\frac{\omega}{2\pi}\right) \mid_{\omega = \Omega T_s}$$

- تابعی بنویسید که سیگنال پیام m(t) ، دامنه موج حامل A_c و فرکانس موج حامل $f_c(t)$ را به عنوان ورودی lacktriangleبگیرد و خروجی حاصل از مدولاسیون DSB را بازگرداند.
- به کمک تابع بخش قبل، سیگنال پیام را با فرکانسهای $f_c = \{50,200\}$ مدوله کنید و خروجیها را رسم lacktriangledownنمایید. در مرحلهای دیگر، سیگنال پیام را با فرکانسهای $f_c = \{600, 1200\}$ مدوله کنید و خروجیها را رسم كنيد. بالاترين فركانس قابل استفادهي موج حامل را، همراه با استدلال تعيين نماييد.

¹ Conventional Amplitude Modulation

² Modulation Efficiency

- سیگنال پیام را با $f_c=100~Hz$ و $A_c=1$ مدوله کنید و تبدیل فوریه سیگنال خروجی را بر حسب هرتز رسم نمایید.
- تابعی بنویسید که سیگنال مدوله شده $x_c(t)$ ، دامنه موج حامل A_c و فرکانس موج حامل f_c را به عنوان ورودی بگیرد و سیگنال پیام را استخراج کند. برای دمدولاسیون پیام، میتوانید از دیاگرام شکل 1 استفاده کنید. برای اعمال فیلتر پایینگذر، می توانید از تابع lowpass استفاده کنید.

شكل 1: دياگرام دمدو لاسيون DSB

- به تابع قسمت قبل، سیگنال مدوله شده در بخش چهارم را ورودی بدهید و سایر پارامتر های لازم را خودتان به شکل مناسب تعیین کنید. سپس سیگنالهای y(t) و z(t) را، که در شکل 1 آمدهاند، در حوزه زمان و فرکانس رسم نمایید. سیگنال z(t) همان خروجی تابعی است که در بخش قبل ساخته اید. پیام استخراج شده و سیگنال پیام اولیه را در یک نمودار رسم نمایید. با استفاده از معیار میانگین مجذور خطاz اختلاف آنها را بدست آورید.
 - **سیگنال ها را در بازه زمانی و فرکانسی مناسب رسم کنید تا شکل موج واضحی داشته باشند.
- سم کنید $f_c = [-500, 500]$ نمودار خطای بست آمده در قسمت قبل را نسبت به فرکانس موج حامل $f_c = [-500, 500]$ هرتز رسم کنید و بهترین مقدار برای فرکانس حامل را تعیین نمایید.
 - 🚣 خواستهی چهارم را با استفاده از تابع ammod تکرار کنید و نتایج را مقایسه نمایید.
- درخواسته ی ششم z(t) را با استفاده از تابع amdemod درحوزه زمان و فرکانس به دست آورید و نتایج را مقابسه کنید.
- و Iower-sideband سیگنال پیام را با $f_c=100~Hz$ و $A_c=1$ به دوشکل ssbmod با استفاده از تابع upper-sideband مدوله کنید و تبدیل فوریه ی سیگنال خروجی را بر حسب هرتز رسم نمایید.

بخش سوم: آشنایی با تبدیل هیلبرت و آشکارساز پوش

آنچه در درس آموختیم، تبدیل هیلبرت 4 سیگنالهای پیوسته است. با توجه به اینکه در پیادهسازیهای نرمافزاری، از سیگنالهای گسسته در زمان استفاده می شوند، تبدیل هیلبرت از نوع گسسته کاربرد فراوانی دارد.

³ Mean Squared Error (MSE)

⁴ Hilbert Transform

- پ در مورد تبدیل هیلبرت از نوع گسسته تحقیق کرده و به اندازهی یک پاراگراف در گزارشکار خود بیاورید. همچنین، این تبدیل را در حوزههای زمان پیوسته و گسسته مقایسه نمایید.
- سیگنال متناوب پیام به صورت زیر تعریف شده است. با استفاده از تابع hilbert سیگنال متناوب پیام به صورت زیر تعریف شده است. با استفاده از تابع $m(t) = \begin{cases} sinc(t) & 0 \leq t \leq 1 \\ 0 & -1 \leq t < 0 \end{cases}$, m(t+2) = m(t)
- این پیام را با استفاده از فرکانس مناسبی که در بخش دوم تعیین نمودید، به صورت DSB با دامنه \mathbf{u} سیگنال حامل بر ابر $\mathbf{1}$ ، مدوله کرده و در حوزه زمان، رسم نمایید.
- با استفاده از آشکارساز پوش⁵ (به وسیلهی تبدیل هیلبرت بدست آمده) ، سیگنال پیام را بازیابی نمایید. آیا این پیام قابل بازیابی است؟ اگر بله، روش بازیابی سیگنال را توضیح دهید و اگر خیر، راهی پیشنهاد دهید که بتوان سیگنال پیام را با استفاده از آشکارساز پوش، بازیابی کرد.

-

⁵ Envelope Detector