

Probability

We will be covering...

- Concept of Probability
- Types of Events
 - Collectively Exhaustive
 - Mutually Exclusive
 - Independent
- Rules
 - Complement
 - Addition
 - Multiplicative

11/9/2023

Probability

- A probability in statistical theory is a number between 0 and 1 that measures the likelihood that some event will occur.
- A zero probability of an event signifies event not occurring and probability one signifies event being almost sure

Collectively Exhaustive Events

 Events A1, A2, ... An are said to be collectively exhaustive events if at least one of the events must occur

• Example:

– A1: Rain

A2: Sunny Weather

- A3: Cloudy

– A4: Snowfall

Rules

$$P(A) = 0.7$$

 $P(A^{c}) = 1-0.7 = 0.3$

- If A and B are events then:
 - Rule of Complement : P(Non-occurrence of A) = 1 P(A)
 - Addition Rule: P(Occurrence of at least one of the events) = P(A) + P(B) P(Occurrence of both A and B)
 - Multiplication Rule: P(Occurrence of A given that B has occurred) = P(Occurrence of both A and B) / P(B)

Addition Rule

- P(Occurrence of at least one of the events) = P(A) + P(B) P(Occurrence of both A and B)
- By Notation:

$$P(A \text{ or } B \text{ or } A \text{ and } B) = P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

- Example:
 - A: Ad Campaign will fail
 - B: Competitor launches a new product
 - $-A \cap B : A \text{ and } B \text{ both occur}$

Say
$$P(A) = 0.23$$
, $P(B) = 0.39$, $P(A \cap B) = 0.18$ then

$$P(A U B) = P(A) + P(B) - P(A \cap B) = 0.23 + 0.39 - 0.18$$

= 0.44

Mutually Exclusive Events

- The two events A and B are said to be mutually exclusive (disjoint) if they both cannot occur simultaneously
- In case of mutually exclusive events A and B,
 - $P(A \cap B) = 0$
 - $P(A \cup B) = P(A) + P(B)$

Example: A: Snowfall, B: Temperature > 50 degrees Celsius

$$P(A) = 0.25, P(B) = 0.20 \text{ then } P(A \text{ or } B) = 0.45$$

Multiplication Rule

- P(Occurrence of both A and B) = P(Occurrence of A given that B has occurred)*P(B)
 Or
- P(Occurrence of A given that B has occurred) = P(Occurrence of both A and B) / P(B)
- By Notations, $P(A \mid B) = P(A \cap B) / P(B)$, $P(A \mid B)$ is read as A given B
- Similarly, P(B | A) = P(A \cap B) / P(A)
- P(A|B) and P(B|A) are called conditional probabilities
- Example:
 - A: Ad Campaign will fail
 - B: Competitor launches a new product
 - $-A \cap B : A \text{ and } B \text{ both occur}$

$$P(A) = 0.25, P(B) = 0.32, P(A \cap B) = 0.17$$
 then

$$P(A|B) = P(A \cap B) / P(B) = 0.17 / 0.32 = 0.5312,$$

 $P(B|A) = P(A \cap B) / P(A) = 0.17 / 0.25 = 0.68$

$$P(A \cap B) = P(A) P(B \mid A)$$

= $P(B) P(A \mid B)$

Independence of Events

- If A and B are independent events then: $\Rightarrow P(B|A) = P(B)$ = P(Occurrence of both A strol B) = P(A|B) = P(A)
 - P(Occurrence of both A and B) = P(A) P(B)
- By Notations, $P(A \cap B) = P(A) * P(B)$
- Example:
 - A: Ad Campaign will fail
 - B: Sensex goes up
 - $-A \cap B : A \text{ and } B \text{ both occur}$

Say,
$$P(A) = 0.32$$
, $P(B) = 0.64$, $P(A \cap B) = P(A)*P(B) = 0.2048$