

planetmath.org

Math for the people, by the people.

lattice of topologies

Canonical name LatticeOfTopologies
Date of creation 2013-03-22 16:54:42
Last modified on 2013-03-22 16:54:42

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 8

Author CWoo (3771)
Entry type Definition
Classification msc 54A10
Related topic Coarser

Defines common refinement

Let X be a set. Let L be the set of all topologies on X. We may order L by inclusion. When $\mathcal{T}_1 \subseteq \mathcal{T}_2$, we say that \mathcal{T}_2 is http://planetmath.org/Finerfiner than \mathcal{T}_1 , or that \mathcal{T}_2 refines \mathcal{T}_1 .

Theorem 1. L, ordered by inclusion, is a complete lattice.

Proof. Clearly L is a partially ordered set when ordered by \subseteq . Furthermore, given any family of topologies \mathcal{T}_i on X, their intersection $\bigcap \mathcal{T}_i$ also defines a topology on X. Finally, let \mathcal{B}_i 's be the corresponding subbases for the \mathcal{T}_i 's and let $\mathcal{B} = \bigcup \mathcal{B}_i$. Then \mathcal{T} generated by \mathcal{B} is easily seen to be the supremum of the \mathcal{T}_i 's.

Let L be the lattice of topologies on X. Given $\mathcal{T}_i \in L$, $\mathcal{T} := \bigvee \mathcal{T}_i$ is called the *common refinement* of \mathcal{T}_i . By the proof above, this is the coarsest topology that is than each \mathcal{T}_i .

If X is non-empty with more than one element, L is also an atomic lattice. Each atom is a topology generated by one non-trivial subset of X (non-trivial being non-empty and not X). The atom has the form $\{\emptyset, A, X\}$, where $\emptyset \subset A \subset X$.

Remark. In general, a *lattice of topologies* on a set X is a sublattice of the lattice of topologies L (mentioned above) on X.