Ćwiczenie 29

AUTOR

1 Wstęp Teoretyczny

Celem ćwiczenia jest wyznaczenie współczynnika rozszerzalności liniowej metalu. Wykaz przyrządów:

- Czujnik mikrometryczny do pomiaru wydłużenia drutu
- Zasilacz prądu stałego: wydajność prądowa = 5A , $U_{wy} = \min.~10\mathrm{V}$
- \bullet Woltomierz
- Cyfrowy miernik temperatury.

Rysunek 1: Schemat układu

2 Opracowanie wyników

Niepewności pomiarów oraz ich przykładowe obliczenia:

$$L_0 = 0,875 \pm 0,004m$$

Temperatura:	T[C]	I[A]	U[V]	deltaL[mm]
1	23	0	0	0
2	33	0,52	1,9	0,15
3	38,5	0,67	2,5	0,24
4	45,3	0,83	3	0,35
5	51,5	0,94	3,5	0,44
6	59,3	1,08	4	0,56
7	67,5	1,22	4,5	0,69
8	75,7	1,35	5	0,82
9	95,6	1,63	6	1,14
10	116	1,9	7	1,49
11	140,7	2,15	8	1,82

Rysunek 2: tabela pomiarów

Rysunek 3: Wykres zależności długości od temperatury

$$T_0 = 23^{\circ}C$$

$$\Delta p(L) = 0,01mm$$

$$u_B(L) = \frac{\Delta p(T)}{\sqrt{3}} \approx 5, 8 \cdot 10^{-6} m$$

$$\Delta p(T) = 0,05\% + 0,5^{\circ}C = \tfrac{0.05}{100} + 0,5 = 0,5005^{\circ}C$$

$$u_B(T) = \frac{\Delta p(C)}{\sqrt{3}} = \frac{0.5005}{\sqrt{3}} \approx 0.29^{\circ}C$$

$$\Delta p(I) = 1\% + 0,01A = \frac{1}{100} + 0,01 = 0,02A$$

$$u_B(I) = \frac{\Delta p(I)}{\sqrt{3}} = \frac{0.02}{\sqrt{3}} \approx 0.012A$$

$$\Delta p(U) = 1\% + 0, 1V = \frac{1}{100} + 0, 1 = 0, 11V$$

$$\begin{split} u_B(U) &= \frac{\Delta p(U)}{\sqrt{3}} = \frac{0.11}{\sqrt{3}} \approx 0,064V \\ u_c\left(\frac{\Delta L}{L_0}\right) &= \sqrt{\sum_{j=1}^k \left(\frac{\partial f}{\partial x_j}\right)^2 \cdot u^2(x_j)} = \sqrt{\frac{1}{L_0^2} \cdot u_B^2(\Delta L) + \frac{\Delta L}{L_0^4} \cdot u_B^2(L_0)} \approx 2,3 \cdot 10^{-5} m \end{split}$$

Z regresji liniowej wynika, że $\alpha=18\cdot 10^{-6}\frac{1}{\circ C}$ natomiast jej błąd wynosi $u(\alpha)=0,15\cdot 10^{-6}\frac{1}{\circ C}$

3 Wnioski

Po obliczeniu α można wywnioskować, że drut był zrobiony z brązu. Przyrost procentowy drutu rośnie liniowo.