C Instructions

IN 1101 PROGRAMMING FUNDAMENTALS

C Instructions

- A program is a set of instructions.
- ☐ Different instructions help us achieve different tasks in a program
- Basic types of instructions,
 - ☐ Type Declaration Instructions
 - Used to declare the type of variables used in a C program.
 - ☐ Arithmetic Instructions
 - Used to perform arithmetic operations on constants and variables.
 - Control Instructions
 - Used to control the sequence of execution of various statements in a C program.

Type Declaration Instructions

☐ Type declaration is used to declare the type of variables being used in the program.

```
E.g.: int num;
float rs, grosssal;
char name, code;
```

Any variable used in the program must be declared before using it in any statement.

Type Declaration Instructions Cont.

- There are several subtle variations of the type declaration instructions.
 - While declaring the type of variable, it can also initialize.

E.g. int
$$i = 10$$
, $j = 25$;

The order in which we define the variables is sometimes important sometimes not.

```
int i = 10, j = 25; \checkmark float a = 1.5, b = a + 3.1; \checkmark float b = a + 3.1, a = 1.5; \times
```

? Will these statements work?

```
    int a, b, c, d;
    a = b = c = 10;
    int a = b = c = d = 10;
```

Arithmetic Instruction

- An arithmetic instruction consists of a variable name on the left hand side of = and variable names and constants on the right hand side of =.
- ☐ The variables and constants appearing on the right hand side of = are connected by arithmetic operators like +, -, *, and /.

```
E.g.: deta = alpha * beta / gamma + 3.2 * 2 / 5;
Here,
*, /, -, + are the arithmetic operators.
= is the assignment operator.
2, 5 are integer constants.
3.2 is real constants.
```

Integer and Float Conversions

- An arithmetic operation between an integer and integer always yields an integer result.
- ☐ An operation between a real and real always yields a real result.
- An operation between an integer and real always yields a real result.

Operation	Results
5/2	2
5.0/2	2.5
5/2.0	2.5
5.0/2.0	2.5

Type Conversion in Assignments

- ☐ The variable type of the expressions in left and right side of an assignment operator may not be same.
- ☐ In such cases, the value of the expression is promoted or demoted depending on the type of the variable on left hand side of assignment operator.

```
E.g.: int i;
float b;
i = 3.5; → What gets stored in I is 3
b = 30; → What gets stored in b is 30.0
```

Hierarchy of Operations

Precedence in which the operations in an arithmetic statement are performed is called the hierarchy of operations.

E.g : Does the expression 2 * x - 3 * y correspond to (2x)-(3y) or to 2(x-3y)?

Does A / B * C correspond to A / (B * C) or to (A / B) * C?

Priority	Operators	Description
1	++	Increment , Decrement
2	* / %	Multiplication, Division, Modular division
3	+ -	Addition, Subtraction
4	=	Assignment

Control Instructions

- ☐ Control instructions enable us to specify the order in which the various instructions in a program are to be executed by the computer.
- Sequence Control Instructions Ensures the instructions are executed in the same order in which they appear in the program.
- ☐ Decision and Case Control Instructions Allow the computer to take a decision as to which instruction is to be executed next.
- Loop Control Instructions Execute a group of statements repeatedly.

Questions?