In [13]: dataset = pd.read_csv("Iris.csv") In [14]: dstaset.head() Out[14]: v
In [15]: dataset.shape Out[15]: (150, 6) In [17]: from sklearn.tree import DecisionTreeClassifier from sklearn.tree import export_graphviz from sklearn.model_selection import train_test_split In [20]: featurenames = ['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm'] #separating features features = dataset.loc[:, featurenames] #separating target labels = dataset.loc[:, 'Species'] In [22]: from sklearn.preprocessing import StandardScaler
In [25] import numpy as no port = PCA(n_components=2)
2 - 2. 367959 - 3.318477 3 - 2. 304197 - 0.1575308 4 - 2. 388777 8 1874787 - 145 1. 879622 9 1. 388322 145 1. 85862 9 1. 388322 146 1. 5. 50403 9 1. 50403 9
If (31): Import sealors as siss If (37): If (applit sealors (\$5,8)) are if goald residual (*ferical Component 2*, fortiszize = 15) as.set_Atabet(*ferical Component 2*, forti
Principal Component 1 From Sklearn import mosel_selection From sklearn import mosel_selection From sklearn import mosel_selection From sklearn metrics import doctations principal From sklearn metrics import doctation select real rest. From sklearn metrics import doctation select real rest. From sklearn metrics import doctation select From sklearn metrics import doctation. From sklearn interior sklear i
0.7 0.6 0.5 0.7 0.7 0.7 0.8 0.9 10
else: return -1 In [43]: features = dataset[['SepalLengthCm', 'SepalWidthCm', 'PetalWidthCm']] labels = dataset[['SepalLengthCm', 'SepalWidthCm', 'PetalWidthCm']] In [44]: from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(features,labels,test_size = 0.2, random_state=42) In [45]: model = DecisionTreeClassifier(criterion="entropy",max_depth=3, random_state=32) model.fit(X_train, y_train) Out[45]: