Lecture7 Illumination

1. Introduction

- Illumination (lighting) is one component for creating graphics images
- An illumination model is used to determines the color of a surface point by simulating some light attributes
- Using illumination models, we can simulate **shading**, **reflection**, and **refraction** of light, comparable to what we see in the real world.

Illumination Model

- · Light Source
 - Color
 - Position
 - o Direction
- Object Properties
 - Geometry
 - Material
- Observer (camera)

2. Basic Light Sources

Ambient light source

- simulates the effect that even in a dark environment there is usually still some light somewhere giving objects some color
- a very simple model of global illumination, which uses a small **constant light (color)** added to the final color of objects
- · Property: no spatial or directional characteristics

Specification

- constant color [R, G, B]
- ullet intensity I_a

Directional light source

- · emits light from an infinite distance
- · Example: the sun
- Property: All the rays emitted are parallel, and thus can be defined by a vector

Specification

- constant color [R, G, B]
- ullet intensity I_{source}
- direction vector v_d

Point(positional) light source

- emits light from a particular location
- · Property: emitting rays in all directions

The following pseudo-codes define 3 light sources:

Specification

- constant color [R, G, B]
- ullet intensity I_{source}
- location (x_0, y_0, z_0)

```
float intensity
Vector3d color;
Vector3d dir;
} lightA;
```

```
struct {
    float intensity;
} lightB;
```

```
Vector3d color;
Vector3d loc;
} lightC;
```

Which one defines an ambient light, a point light, and a directional light?

- light A: directional light
- light B: ambient light
- light C: point light

3. Phone Illumination Model

$$I = k_a I_a + \sum_{egin{array}{c} ext{for each} \ ext{light } s \end{array}} k_d I_s cos heta + \sum_{egin{array}{c} ext{for each} \ ext{light } s \end{array}} k_s I_s cos^n \phi$$

It contains three parts

- · ambient reflection
- diffuse reflection
- · specular reflection

Ambient reflection

Ambient reflection roughly tells how much of the ambient light is reflected

$$A = k_a I_a$$

- ullet k_a : the ambient reflection coefficient $\,k_a\in[0,1]\,$
- ullet I_a : the ambient light color or intensity

Diffuse reflection

Diffuse reflection is based on Lambert's (cosine) law

$$D = \sum_{egin{array}{c} ext{for each} \ ext{light } s \end{array}} k_d I_s cos heta$$

ullet k_d : the diffuse reflection coefficient $k_d \in [0,1]$

- ullet I_s : the directional/point light color or intensity
- θ : the angle of incidence(入射角), i.e., the angle between the **surface normal** and the **vector to the light source**

Specular reflection

Specular reflection accounts for the highlight in a shiny, glossy surface (very smooth surface)

$$S = \sum_{\substack{ ext{for each} \ ext{light } s}} k_s I_s cos^n \phi$$

- k_s : the specular reflection coefficient $k_s \in [0,1]$
- ullet I_s : the directional/point light color or intensity
- n: specular exponent (specular-reflection parameter)
 - \circ the bigger the n, the faster the highlight falls off
- ullet ϕ : the angle between the viewing direction V and the reflected vector R

4. Computation with Phone Illumination Model

Calculation Steps

Given information

- ullet Position of the point light source: P
- Location of viewer: Q
- ullet Point on the surface: S

We need to calculate four vectors (unit vector)

- ullet Lighting vector $ec{L}$: a vector from a point on the surface towards a light source
- $\circ \quad \vec{L} = \frac{P-S}{|P-S|}$ Viewing vector \vec{V} : a vector from a point on the surface towards the viewer
 - \circ $ec{V}=rac{Q-S}{|Q-S|}$
- Normal vector \vec{N} : a vector perpendicular to the surface
 - The calculation of normal vector is depending on the geometry shape
- Reflected vector \vec{R} : the image of the lighting vector L reflected off the surface

$$ullet R_{vec} = 2(ec{N} \cdot ec{L}) \cdot ec{N} - ec{L}$$

$$\circ$$
 $ec{R}=rac{R_{vec}}{|R_{nec}|}$

Computation of surface normal vectors

Polygonal surfaces

• use cross product of 2 vectors lying on a facet (right-hand rule)

Implicit surface

$$f(x,y,z)=0
ightarrow N(x,y,z)=\pm \left[egin{array}{cc} rac{\partial f}{\partial x} & rac{\partial f}{\partial y} & rac{\partial f}{\partial z} \end{array}
ight]$$

Parametric surface

$$N(u,v) = rac{\partial P}{\partial u} imes rac{\partial P}{\partial v} = egin{bmatrix} rac{\partial x}{\partial u} & rac{\partial y}{\partial u} & rac{\partial z}{\partial u} \end{bmatrix} imes egin{bmatrix} rac{\partial x}{\partial v} & rac{\partial y}{\partial v} & rac{\partial z}{\partial v} \end{bmatrix}$$

Plane

$$f(x, y, z) = Ax + By + Cz + D = 0$$

One normal vector is $\vec{N}=\pm[A\;\;B\;\;C]$ (unified it)

Sphere

Sphere centered at $C=\left(x_{0},y_{0},z_{0}\right)$ with radius r:

$$f(x,y,z) = r^2 - (x-x_0)^2 - (y-y_0)^2 - (z-z_0)^2$$

The outward normal vector is $ec{N}=(x,y,z)-(x_0,y_0,z_0)$