标号法——顺序维护的有力工具

合肥一中 梁泽宇

Mato_No1, RSSC(Real Super Stupid Cross)

关于个人的询问 && 吐槽

- Query0: 你为什么叫 Mato No.1?难道你每次比赛都是第一?
- Answer0: 是的,很多次都是第一,只不过是逆序之后的囧......
- Query1: 额……我记得你好像是在一次比赛之后出名的……而且网上对这次 比赛的争论好像很多的样子……能说一下这究竟是肿么回事么?

- · Answer1:就是一次省选而已,只是它的题目很奇 (dou)特 (bi),多做这种题目对暴搜能力、乱搞能力以及猜数据能力的提高很有帮助......
- · Query2: 也就是说,你很弱?那你这次讲的东西会是什么样子?
- Answer2: 我是真弱,比一般人想像中的更弱,从我在上一个问题中提到的那次比赛中的表现就可以看出来囧……当然,这次讲的东西也很弱,相信在场的大多数人已经懂了,或者很快就能搞懂……被白天讲的虐得想睡觉的可以开始睡了囧……

引入: 序列顺序维护问题

- 先来看一个在某著名世界冠军(吓傻了……)的论文中曾经出现过的 一个问题。
- 序列顺序维护问题 (List Order Maintenance Problem, LOMP)
- 有一个由若干元素组成的序列,三种操作:
- (○)在某个元素的后面(或序列的开头)插入一个新元素;
- (1)删除某个元素;
- (2)询问某两个元素之间的前后关系(即谁在谁前,保证这两个元素此时必然在序列中存在)。
- 要求在线回答。

序列顺序维护问题的常见解法

- —— 这个问题太容易了囧……一棵平衡树不就搞定了?
- 那么,如果你突然不会写平衡树了,或者比赛时间已经不够写平衡树了,肿么办?

- —— 那就用块状链表!!
- 那么,如果题目不支持根号级别的做法呢?

- •
-
- 应该木有别的办法了囧……

下标是什么?

- 如果无视插入和删除操作,也就是这个序列是静态的,则只要一开始 将这个序列存入数组,然后在回答询问的时候,调出两个元素在数组 中的下标,比较大小,就知道谁在前谁在后了……
- 问题是现在有插入和删除操作,使得仅仅用数组无法支持,所有静态的数据结构(线段树等)好像也不能使用了……
- 然而,所谓的"下标"是什么?
- 是一个表示元素的前后位置的数字,下标越小的,位置越靠前;
- 对于一个大小为 N 的数组,其下标总是 $0 \sim N-1$;
- 我们考虑一种广义的"数组",它的下标也满足"表示元素的前后位置的数字,下标越小的,位置越靠前"这个条件,但是它的下标不一定是连续的,也就是大小为 N 的数组,其下标不一定是 N ~ N
- 它可以是任意递增数列!!

好像这可以处理插入和删除

- 比如,一个大小为 4 的广义数组 S,按顺序存放 A、 B、 C、 D 四个元素,则它可以是 S[0]=A、 S[2]=B、 S[15]=C、 S[37]=D,当 然其下标也可以是其它的递增数列。
- 我们发现了一个惊人的事实……
- 这种广义数组好像是可以处理插入和删除操作的!!
- 比如,对于刚才的那个数组,现在要将一个新元素 E 插入到 B 之后,则我们可以给它分配一个大于 B 、小于 B 的任意整数(甚至任意实数)作为 B 的下标。
- · 如果要删除某个元素,只需要将它的下标从下标集合中去掉就行了囧对其它元素的下标木有任何影响......
- 其实,这种广义数组的下标已经超越了下标本身的意义,它只表示一个序号而已……所以可以将它称为"标号"。
 - 利用这种广义数组,我们似乎已经解决了 LOMP......

标号表示法的问题

- 但是……如何将这种广义数组在内存中存储呢囧……
- 显然用一般的数组是不行的……因为其标号可能非常大,甚至可能是 实数……
- 用(标号, 元素)这样的 pair 存储?好像可以......
- 但是还有一个更可怕的问题……
- 如果要在两个元素之间插入一个新元素,而这两个元素的标号相差太小,以至于已经插入不了新元素了(如果是整数标号,相差1;如果是实数标号,相差的值已经小于最小能够识别的精度),肿么办?

如何重新分配标号

- 设想一下这样的局面:桌子上放了一堆物件,摆成一排。
- 现在要将一个新的物件塞到已有的两个物件之间,但这个新物件太大 了,以至于塞不进去……
- 将与它相邻的几个物件往两边移开,给新物件留出足够空间......

- 里新分配标号的过程,原来如此.....
- 当然,为了保证效率,我们希望能找到一种重新分配标号的方案,使得在最坏情况下,每次插入所引发的重新分配标号的平均次数(即重新分配标号的元素平均个数)不要太多……

动态标号法

- · 这种用标号来表示各个元素的位置顺序,以及在插入过程中重新分配标号的办法,称为动态标号法(Online Monotonic List Labeling,OMLL)。
- 动态标号,最容易想到的实现方法是使用重量平衡树……
- 比如 Scapegoat Tree......
- 它可以在任何时刻保证绝对平衡,即它的深度永远不会超过 logN 级别……假设某一时刻它的深度为 D ,则对于一个结点 x ,只要从根结点走到 x ,同时让一个整数从 2^{D-1} 开始,在第 i 层(根为第 0 层)进入左子树时这个整数减去 2^{D-2-i} ,进入右子树时这个整数加上 2^{D-2-i} ,则到达 x 时这个整数的值就是 x 的标号。
- 它维护平衡的方法是将某棵子树整体拆掉,然后建成完全二叉树……由于一棵子树在 DFS 序列中表示连续的一段……所以实际上就是重新分配了连续一段元素的标号……
- 根据 Scapegoat Tree 的性质可得,平均每次插入时重新分配标号的次数是O(logN) 的。

有木有不用平衡树的方法?

- 然而, Scapegoat Tree 并不是很好写囧......
- 有木有好写一些的做法?最好不要使用平衡树。
- 考虑在 $0 \sim 2^{M}-1$ 的整数范围内给元素分配标号。建立一棵深度为 (M+1) 的满二叉树,同时选定一个临界因子 ϵ ($1/2 < \epsilon < 1$)。
- 在这棵树中,一个结点的管辖范围内,被元素占用的标号个数除以总标号个数的值,称为这个结点的密度(Density),记作 D(x)。
- 对于任意非叶结点 x ,显然有 D(x)=(D(x.1c)+D(x.rc))/2。
- 下起第 i 层(叶结点为下起第 0 层)的结点的临界密度为 ϵ^i 。在任意时刻,如果某个结点的密度大于其临界密度,则称它是越界的,否则称它是不越界的。

有木有不用平衡树的方法?

- 以下为 M=4 , $\varepsilon=3/4$ 的情况,结点上标记的数字为该结点目前的密度。
- 显然,目前所有结点都是不越界的......

插入及重标号过程

- 现在是如何插入一个元素,以及进行重新分配标号的过程。
- 假设待插入的元素为 X ,要插在 B 的后面。

插入及重标号过程

- 假设待插入的元素为 X , 要插在 B 的后面。
- 先将 X 插入到和 B 相同的位置 , 即 B 和 X 标号相同......
- ——这……难道还可以有两个不同的元素标号相同?
- 这只是开始,后面会调整的囧......

插入及重标号过程

- 插入X之后,其所有祖先的密度都增加了,而这可能导致越界(对于X 所在的叶结点来说,由于其此时的密度为X2,所以必然越界)。
- 找到 X 的祖先中,从下到上第一个不越界的结点 S 。
- 将子树 S 内的所有元素等距离重新标号。

M的范围分析

• 显然,树的深度 M 不能太小,它必须满足在任意时刻,整棵树的根是不越界的。因此,若序列中最多有 M 个元素,则有

$$(2\varepsilon)^M \ge N$$

解得

$$2^M \ge N^{\log_{2\kappa} 2}$$

当ε取3/4时,标号范围约为 N^{1.7095}。当ε取2/3时,标号范围约为 N^{2.4094},可见,一般情况下,标号范围在 N²左右。

时间复杂度分析

- 接下来就是时间复杂度分析了囧……显然主要的问题是,最坏情况下 插入所引起的重新分配标号的平均次数是多少?
- 为了方便描述,以下设 T(x) 为以 x 为根的子树, |T(x)| 为以 x 为 根的子树管辖范围中的占用标号个数(即元素个数)。
- 对树中的每个结点 x 定义势能函数 $\Delta(x)$: 当 x 是叶结点时 $\Delta(x) = 0$, 否则 $\Delta(x) = \max\{||T(x.1c)| |T(x.rc)||$, $1\} 1$ 。
- 一棵子树的势能函数值为子树内所有结点的势能函数值之和,即

$$\Delta(T(x)) = \sum_{y \in T(x)} \Delta(y)$$

- (其实这就是 Scapegoat Tree 的势能函数.....)
- 由于重新分配标号后,所有元素的标号是均匀(等距离)分布的,所以对 T(x) 重新分配标号后显然有 $\Delta(T(x))=0$ 。

时间复杂度分析

在上面的重新分配过程中、S是不越界的、设S的层数为i,则有

$$|T(S)| \leq (2\varepsilon)^i$$

• 不妨设新结点插入到 S 的左子树里,则插入后 S 的左子结点越界,而 S 的右子结 点必然不越界(否则 S 越界,矛盾)。进一步,根据此时 S 不越界,可以得出:

$$D(S.lc)-D(S)>\varepsilon^{i-1}-\varepsilon^{i}$$

• 又因为 2D(S)=D(S.1c)+D(S.rc),并且此时显然有 |T(S.1c)|≠| T(S.rc)|。易得:

$$\Delta(S) = ||T(S.lc)| - |T(S.rc)||$$

$$= 2^{i-1} |D(S.lc) - D(S.rc)|$$

$$> 2^{i-1} \cdot 2(\varepsilon^{i-1} - \varepsilon^{i})$$

$$= (2\varepsilon)^{i} (\frac{1}{\varepsilon} - 1)$$

$$\Delta(S) > (2\varepsilon)^{i} (\frac{1}{\varepsilon} - 1)$$

 因此,在对 T(S) 重新分配标号之前,有

$$\geq |T(S)|(\frac{1}{\varepsilon}-1)$$

时间复杂度分析

- 在重新分配 T(S) 内的标号过程中,更改了 |T(S)| 个元素的标号。
- 分配完后,整棵树释放的势能至少为 $|T(S)|(1/\epsilon-1)$ 。
- 而每次插入操作(不计重新分配标号),最多能使新结点所在位置的 每个祖先的势能都增加1,所以整棵树的势能增加了

$$O(M) = O(logN)$$
.

这样,可得每次插入后重新分配标号的平均次数为:

$$\frac{|T(S)| \cdot O(logN)}{|T(S)|(\frac{1}{\varepsilon} - 1)} = O(logN)$$

更好的做法

- 以上方法的均摊重新分配次数都是 O(logN) 的,但是,会不会存在均 摊重新分配次数 O(1) 的做法?
- 化悲剧的是,P.F.Dietz、J.I.Seiferas 和J.Zhang 在1994年的一篇论文中证明了,动态标号中,如果采用整数标号,且标号范围为 N 的多项式级别,则插入操作的均摊重新分配次数的下界为logN。具体的证明很复杂,这里由于时间有限就不说了囧.....
- 但是,我们没必要采用整数标号!!实数标号也可以!!进一步,我 们甚至木有必要用一个数字作为标号,可以用一个pair作为标号。
- (这也可以?其实只要这东西能比较大小就行)
- 使用 pair 标号,借助分块思想,可以很容易设计出一个均摊重新分配 次数 ○(1)的做法。

更好的做法

- 设这个序列中的元素个数为 N , 将这个序列分成 N/logN 块,每块 logN 个元素。每个元素的位置用一个 pair 标号 (first, second)表示,其中 first 为它所在的块的链接, second 为它在块内的标号(为整数)。同时,每个块也有一个整数标号。
- 插入一个元素时,直接插到对应块里,并取其两个相邻元素块内标号 second
 的算术平均数作为新元素的块内标号 second。
- 如果某个块的大小达到 $2\log N$,则分成两个块。由于增加了一个新块,相当于在块序列中插入一个新元素,按照前面所说的方法对这个新块重新分配标号,同时修改原来的块中部分(不超过 $\log N$ 个)元素的块链接 first 。
- 中由于一个块的大小始终不会超过 $2\log N$,所以 second 的范围只需要取到 $4^{\log N}$ 即 N^2 ,就可以使得块内插入不会重新分配标号。
- 时间复杂度分析:插入新元素后,如果木有增加新块,则本次插入的时间为O(1),否则(增加了新块),需要用O(logN)的时间重新分配块标号,并用O(logN)的时间更改元素的 first。然而,至少每 logN 次插入才会出现一次增加新块的操作,所以总的均摊时间复杂度是 O(1) 的。

- 最后还有一个问题,之前所说的这种动态标号方法,如何存储这些标号?
- 直接用数组或 set 存储是不行的,因为它不能快速得到树上一个结点管辖范围内的 元素个数,进而得到它的密度。
- 我们再来审视一下这棵树:

- 最后还有一个问题,之前所说的这种动态标号方法,如何存储这些标号?
- 直接用数组或 set 存储是不行的,因为它不能快速得到树上一个结点管辖范围内的 元素个数,进而得到它的密度。
- 我们再来审视一下这棵树:

- 线段树!!!
- 进一步,将其中所有密度为 0 的结点都去掉不看……

• 动态开结点的线段树!!!

- · 可以发现,这棵表示一段内密度的树就是一棵现成的线段树,而且可 以动态开结点。
- 所以,我们就用动态开结点的线段树来存储标号,以及计算密度。
- 木有标记的动态开结点线段树是很好写的,至少比平衡树好写很多... ...

• 至此,我们终于完美解决了传说中的序列顺序维护问题……

静态(离线)标号

- 有了动态标号,自然也应该有静态标号……
- 静态标号就是已知各个元素之间的前后顺序,并且不再有新的元素插入,或者虽然有新的元素插入但插入位置可以预先知道(一般出现在可以离线的问题中,所以静态标号又叫离线标号)。这时,可以将所有元素的标号一次算出来,而不用重新分配标号。

- —— 那样直接排序然后用下标不就行了,还要标号么囧……
- 确实,静态标号很多时候就是直接用下标,但是……可能有无法直接 排序的时候……
- —— 那是肿么回事?
- · 后面自然就知道了囧......

标号法在实际问题中的应用

- —— 标号法有什么用呢囧……难道只能来解决 LOMP ?
- 当然不是,不然本沙茶也不敢来这里讲这个了……否则太侮辱神犇们 的智商了囧……
- 各位神犇不要鄙视啊……

- 实际上,标号法在实际问题中是有大用的。
- 主要体现在以下几个方面:

- 数据结构
- 递推 /DP 中的字典序问题
- 复杂元素的有序化
- ▶ 动态离散,离线转在线

数据结构

- 显然, 标号法最直接的应用就是在数据结构问题中了......
- 有一类这样的数据结构问题——
- 在无视插入删除操作的情况下,很容易解决(秒过的节奏.....)
- 在有插入删除操作,但可以离线的情况下,也很容易解决(继续秒过……)
- 但是题目中有插入和删除操作,而且要求在线!!!!

数据结构

- 显然,标号法最直接的应用就是在数据结构问题中了……
- 有一类这样的数据结构问题——
- 在无视插入删除操作的情况下,很容易解决(秒过的节奏.....)
- 在有插入删除操作,但可以离线的情况下,也很容易解决(继续秒过.....)
- 但是题目中有插入和删除操作,而且要求在线!!!!
- 对于这类问题的常见解法展示——

题解之一——替罪羊套函数式线段树

题解之二——Treap套函数式线段树

- 这些解法的共同特点为,需要使用很 繁琐的数据结构。
 - 从它们的代码量也可以看出来囧——

题解之三——划分树崛起

题解之四——根号大军

【块状链表套线段树】

【朝鲜树套函数式线段树】

3065_seg_splay	3065	Time_Limit_Exceed	50508 kb	61223 ms	C++	6831 B
albus	3065	Time_Limit_Exceed	60352 kb	61011 ms	C++	6891 B
albus	3065	Time_Limit_Exceed	60352 kb	61003 ms	C++	6793 B
3065_seg_treap	3065	Accepted	60352 kb	43416 ms	C++	7093 B
3065_seg_splay	3065	Time_Limit_Exceed	395048 kb	61879 ms	C++	6755 B
3065_seg_splay	3065	Wrong_Answer	395044 kb	448 ms	C++	6714 B
3065_treap_seg	3065	Accepted	199052 kb	44860 ms	C++	8007 B
3065_scap_seg	3065	Accepted	179260 kb	31496 ms	C++	8608 B
3065_scap_seg	3065	Runtime_Error	179260 kb	204 ms	C++	8717 B

数据结构

- 显然,标号法最直接的应用就是在数据结构问题中了……
- 有一类这样的数据结构问题——
- 在无视插入删除操作的情况下,很容易解决(秒过的节奏.....)
- 在有插入删除操作,但可以离线的情况下,也很容易解决(继续秒过.....)
- 但是题目中有插入和删除操作,而且要求在线!!!!

题解之五——动态标号

3065_OMLL_seg 3065 Accepted 490628 kb 31796 ms C++ 4968 B

在这种问题中应用标号法(主要是动态标号)会取得很好的效果,省去了很 多代码量。

ALOEXT

- 本沙茶至今在 BZOJ 上的唯一一道原创题......
- 有一个整数序列,所有数都在 0 ~ 2²⁰-1 之间,四种操作:
- (0)在某个位置插入一个新的整数(当然也在 0 ~ 2²⁰-1 之间);
- (1)删除某个数;
- (2)修改某个数;
- (3)给出一个区间[1, r],设序列中第1个到第r个数中的次大值为∇,询问第1个到第r个数中与∇作按位异或(xor)结果的最大值。
- 要求在线。
- 相信许多神犇已经用各种" XX 树套平衡树"或者"平衡树套 XX 树"等的 办法搞定了囧……
- ▶ 但有木有不用平衡树的办法呢?平衡树有时候很讨厌的样子……

ALOEXT

- 考虑用标号来维护这个序列中各个元素的位置顺序。
- 建立一棵动态开结点的标号线段树,内层再套一棵表示标号在此范围内的所有元素的值的线段树(同样是动态开结点的),值线段树的每个结点存储一个 sum 表示值在此范围内的元素个数......
- 插入时,按照前面的方法重新分配标号,注意先将外层标号线段树中的 T(S) 整体销毁,得到新的标号后再重建 T(S) (得到每个结点的内层的值线段树的时候需要使用线段树的合并技巧,参见去年主席的讲稿);
- 删除、修改直接搞就行了;
- 询问时,先通过整体二分在 O(log²N) 时间内找到次大值,然后可以发现,内层的值线段树其实具备了 Trie 的功能,所以可以直接在里面找到询问的答案,同样使用整体二分。

ALOEXT

- —— 这样做好像仍然很繁琐的样子……有木有代码量更小的做法?
- "我们要充分发挥人类智慧,探索、测试、改进解决方案的能力。"——lemon_workshop, IOI2013 #3。
- 我们还可以将内层的值线段树换成 map,它的每个元素 <first, second> 表示该结点值线段树中的编号为 first 的结点目前的 sum 为 second。
- 合并的时候扫一遍就行了囧……
- · 只是这种方法由于 map 自身的速度问题,很可能会 T 掉。

递推/DP中的字典序问题

- 在某些递推 / DP 问题中,需要输出方案......
- 如果有多个可行或最优方案,有的题目要求输出字典序(或者按照其它有阶段性的序)最小(或最大)的那个(或前若干个)。
- 对于这种问题,一般有两种方法:
- —— 预存具体方案;
- —— 找到决策之间本身的决定字典序的顺序关系;
- 比较囧的是,有时候决策本身木有什么特点,而预存具体方案在时间 或空间上无法承受。
- 这时,可以将可行解之间的字典序(或其它顺序)转化为标号......

Undecodable Codes

- Source: ACM World Final 2002
- 有 N 个已知的 01 串片段,求出最短的 01 串使得它可以用这些片段以至少两种不同方式拼成(每个片段可以使用任意次,当然也可以是 0 次)。
- 如果有多解,输出字典序最小的。
- 1<=N<=64 **,** 1<= **片段长度** len<=64 **。**

(原题为20,这里加强)

(其实把 01 串换成任意字符串也可以囧.....)

Undecodable Codes

- 先无视字典序这个限制。
- 设 F [i 1] [j 1] [i 2] [j 2] 表示目前两种方式分别到达第 i 1 个片段的第 j 2 个字符,经过的最短长度。
- 若两种方式同时到达片段末尾,则已找到最优解。
- 若一种方式到达末尾,另一种未到达,枚举一个新的片段替换上它。
- 若两种都没到末尾,继续推到下一个字符。
- BFS 即可实现。
- 时间复杂度 O (N²len²) 。

Undecodable Codes

- 有了字典序最小的限制肿么办?
- 显然不能预存具体方案,这样在时间、空间上都无法承受......
- BFS 具有自然的阶段性!!它总是把第 i 层(值为 i)的状态全部扩展出来后,才会开始扩展第 (i+1) 层(值为 (i+1))的状态。
- 因此,我们可以每扩展出一层状态,就将这层状态按照字典序递增排 序,然后在扩展下一层状态时,遇到前趋状态字典序更小的解,显然 更优。
- 问题是怎么排序?标号再一次派上用场了,只不过这次用静态标号。
- 扩展完一层状态后,就将其按照(前趋状态标号,本状态最后一个字符)这个 pair 递增排序,排序后的下标作为其标号。
- 注意,字典序完全相等的,也要使用相等的标号。

Ideal Path(EXT)

- Source: NEERC 2010, 有加强。
- 给出一个图,每条边有一个权值和一个颜色(用数字表示)。
- 要求找出从一个给定的起点 S 到一个给定的终点 T 的最短路径,如果有多条,找到那条经过的边数最少的,如果还有多条,找到从 S 到 T 经过的所有边颜色字典序最小的。
- 1<= 点数 N<=100000 , 1<= 边数 M<=200000 , 颜色用 1 ~ 10⁹的 正整数表示。

Ideal Path(EXT)

- 本题的字典序……还是不好直接搞啊囧……继续上标号……
- 然而最可怕之处在于……求最短路径的算法木有明显的阶段性,因此上面那 题的"分阶段排序"显然不适用了。
- 静态标号不适用了,用动态标号!!
- SPFA。对每个点,按照其(最短路径长度,经过的边数,前趋状态的标号,上一条边的颜色)这个四元组进行递增排序,同时用标号维护顺序......
- 用一个 map 来存储这些四元组和标号。
- 每当一个点被更新时,就在 map 中删去其原有信息,在标号线段树中删去其原有标号,然后根据新的四元组找到它的前趋和后继,再将这个新的四元组插入 map ,同时在标号线段树中重新分配标号……
- 时间复杂度○(MlogM)。

平面线段排序

- 下面来看一个喜闻乐见的问题: 平面线段排序。
- 给出在二维平面上的 N 条线段,所有线段端点的 X 坐标互不相同,且
 任意两条线段不内交(即任意两条线段的交点只可能是它们的端点)。
- 现在要求出这 N 条线段的一个顺序,使得对于任意两条线段 i 和 j,如果存在实数 x0,使得在 x=x0 处 i 在 j 的下方(Y 坐标比 j 小),则 i 要排在 j 的前面。
- 1<=N<=100000 •

平面线段排序

- 对于这种问题,首先容易想到的是定义一个 < 关系,能直接判断两条线段的 前后关系。
- 如果两条线段在 X 坐标跨度上有交集,显然可以判断出来。
- 如果没交集?
- 或许……或许……或许也可以判断出来吧囧……
- 可是残酷的事实告诉我们……
- 如果 C 存在,则 B<C , C<A ,得出 B<A.....
- 如果 D 存在,则 A<D , D<B ,得出 A<B......

- 也就是, A 和 B 两条线段的前后关系与其它线段相关,不可直接比较,故所谓的 < 关系是构造不出来的囧.....
- 幸运的是 C 和 D 不可能都存在,因为题目说了任意两条线段不内交。事实上,满足题目要求的顺序是一定存在的囧……

平面线段排序

- 扫描线?
- 题目中说了所有线段端点的 X 坐标互不相同,因此木有与 Y 轴平行的线段,可以按照 X 坐标扫描。
- 维护一个 set , 存储目前扫描线经过的线段。
- 每插入一条线段, 就在 set 中找到其前趋和后继。
- 扫描完后,就得到了○(N)个前趋和后继关系。
- 再将它们转化为标号即可得到顺序(因为可以离线,可用静态标号)。
- —— 求出前趋和后继,直接建出图,拓扑一下不就行了么囧……
- ▶ 好像是可以……
- ▶ 但是……这题还可以加强一下……

平面线段排序(动态版)

- 仍然是二维平面上的线段。
- 仍然木有两个端点的 X 坐标相同。
- 仍然木有两条线段内交。
- 但是,可以在过程中实时增加新的线段!!
- 也可以实时删除线段!!
- 要求实时维护顺序。

- 先降低一点难度,一开始告诉你一些点(其 x 坐标互不相同),然后 所有出现的线段的端点都在这些点中。

平面线段排序(动态版)

- 由于一开始已知端点,先将这些端点的 X 坐标离散化。
- 注意到两个区间 (l1, r1) 和 (l2, r2) 相交当且仅当 l2<r1 && r2>l1。
- 因此,可以用动态标号维护这些线段的顺序。建立动态开结点的标号线段 树,每个结点中套两棵动态开结点的值线段树,分别存储标号在这个区间内 的所有线段的左、右端点 x 坐标的分布情况。
- 这样对于一条已知的线段,设其 x 坐标跨度为 (11, r1) ,则外层标号线段树的某个结点范围内,和这条线段相交的线段条数为 ("结点内线段总条数"-"左端点 >=r1 的线段条数"-"右端点 <=11 的线段条数"),根据这个值是否为 0,可以对标号范围进行二分。
- 每次插入一条线段的时候,其前趋和后继就是和它的 x 坐标跨度有交集的线 段标号的前趋和后继,这个可以用上述办法在 $O(\log^2 N)$ 时间内找到。
- 找到前趋和后继之后,先将新线段插入标号线段树,重新分配标号,再将新 线段引起的左右端点分布的变化,在内层值线段树上处理。

平面线段排序(动态版 EXT)

- 其它条件与动态版相同,只是去掉为了降低难度的"预先给出所有端点"的条件。
- 由于连端点的 X 坐标也不知道了,所以在插入线段的过程中可能会插入新的 端点(及其 X 坐标),一种很自然的思路是,对端点序列(对应内层线段 树)也用动态标号维护。
- 但是直接这样做会出现很可怕的问题……在重新分配标号的时候,如果某个 端点关联的线段过多,而它又被重新分配了标号,则它关联的这些线段都要 修改标号,时间上不能承受。
- 所以,应该将每条线段的两个端点都视为"独立端点",即如果两条不同的线段有公共端点,这个公共端点在两条线段中仍被视为不同的独立端点。用动态标号维护独立端点序列,修改一个独立端点的标号时只要同时处理它属于的那条线段即可,和别的线段无关。
- 这样会导致端点序列(对应内层线段树)中不同的元素的 x 坐标相同,因此在找与 (11, r1) 相交的线段时,也要将"左端点 z=r1"和"右端点 z=r1"改一下。

总结

- 标号的本质: 顺序的数量化表示。
- 在数据结构题中,标号法可以来解决一系列静态(无插入删除)较容易解决,动态(有插入删除)较难解决的题目。
- 利用标号,可以将难以排序的量变得容易排序,将难以比较的量变得容易比较,因此标号法可以用来解决一些有关字典序的问题。
- 此外,动态标号还可以实现动态离散化或其它一些离线转在线的问题。

参考文献

- [0] 陈立杰,《重量平衡树和后缀平衡树在信息学奥赛中的应用》,2013年候选队论文。
- [1] List Order Maintenance && Monotonic List Labeling Density Maintenance.
- [2] P.Dietz and D.Sleator. Two algorithms for maintaining order in a list. In STOC, 1987.
- [3] P.F.Dietz, J.I.Seiferas, and J.Zhang. A tight lower bound for on-line monotonic list labeling. In SWAT, 1994.
- [4] D.Willard. A density control algorithm for doing insertions and deletions in a sequentially ordered file in good worst-case time.
 Information and Computation, 97(2):150-204, 1992.
- [5] 吕凯风,《对无旋转操作的平衡树的一些探究》。
- [6] 黄嘉泰,《线段树的合并》,2013年冬令营营员交流讲稿。

Thanks

- 感谢 CCF 给我提供了这次培训和交流的机会。
- 感谢主席(黄嘉泰)、 vfleaking (吕凯风)、 taorunz (陶润 洲)等神犇在我完成有关标号法的研究的过程中对我的帮助。
- 感谢董宏华神犇帮助审稿。
- 感谢在场的各位神犇不鄙视我这样的沙茶,听到了这里……

Time for further queries...