UNDERSTADING LINEAR MAPS WITH GAUSS-JORDAN ELIMINATION

RAMON MASSONI AND FERRAN MUIÑOS

ABSTRACT. We study some basic properties of linear maps by using columnwise Gauss-Jordan elimination.

1. Gauss-Jordan Elimination

- **1.1.** Given an $m \times n$ matrix A, we denote $f_A : \mathbb{R}^n \to \mathbb{R}^m$ the linear map defined by A in coordinates of the canonical basis. We denote $\mathbb{R}^{m \times n}$ the space of matrices of shape $m \times n$.
- **1.2.** We say that a pair of matrices (A, B) where $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times n}$ is a (column-wise) Gauss-Jordan pair.
- 1.3. Our discussion is based entirely on column-wise operations, so we will implicitly assume elimination as being column-wise in this text. Likewise, matrix pairs can be defined column-wise and row-wise.
- **1.4.** Gauss-Jordan pairs are meant to represent the steps in the execution of Gauss-Jordan elimination.
- 1.5. Column-wise elementary operations can be either of three kinds:
 - (1) Permutating columns.
 - (2) Replacing a column c_i with λc_i where $\lambda \neq 0$.
 - (3) Replacing a column c_i with $c_i + \mu c_j$ where μ can be any scalar.

We will generally denote the transform of a matrix A by an elementary operation e as e(A).

- **1.6.** Elementary operations are linear maps $\mathbb{R}^n \to \mathbb{R}^n$. We say that E is the matrix representing the elementary operation e if the transform matrix of A can be written e(A) = AE for all $A \in \mathbb{R}^{m \times n}$.
- **1.7.** Elementary operations are injective to injective linear maps $\mathbb{R}^n \to \mathbb{R}^n$, hence the transformation $A \mapsto AE$ preserves the rank.
- **1.8.** We can extend operations to Gauss-Jordan pairs as follows $(A, B) \mapsto (AE, BE)$.
- **1.9.** Whenever (A, B) can be transformed into (A', B') by applying a sequence of elementary operations, we denote it as $(A, B) \sim (A', B')$.

- 1.10. Column-wise Gauss-Jordan elimination is the method whereby the Gauss-Jordan pair (A, I_n) is transformed into another pair (L, B) with L in lower (column) echelon form by means of applying a sequence of elementary operations. Following our notation: $(A, I_n) \sim (L, B)$.
- **1.11.** If $(A, I_n) \sim (L, B)$ then L = AB.

Proof. Let $E = E_1 \cdots E_k$ the product of the matrices encoding the elementary operations that have been applied. By definition L = AE and $B = I_n E = E$, so it follows that L = AB.

- **1.12.** Observe that $rank(B) = rank(I_n) = n$.
- **1.13.** If A is a square, full-rank matrix, then $(A, I_n) \sim (I_n, A^{-1})$.

Proof. If $(A, I_n) \sim (I_n, B)$ for some matrix B, then we know that $I_n = AB$, so B is the inverse of A.

- **1.14.** For the next discussion, let $(A, I_n) \sim (L, B)$, with L in lower echelon form. Let $B = [b_1 \dots b_n]$ be the matrix B specified by its columns B_i .
- **1.15.** The rank of A is precisely the number of non-zero columns in L: these are the generators of $\text{Im}(f_A)$. Since any subset of non-zero columns of L is a linearly independent set, it follows that then $\dim \operatorname{Im}(f_A) = \operatorname{rank}(A)$.
- **1.16.** Likewise, the last n rank(A) columns of L are zero.
- **1.17.** The last n rank(A) columns of B form a basis of the null-space of f_A .

Proof. We already know the following:

- (1) b_1, \ldots, b_n is a basis of \mathbb{R}^n .
- (2) $\{Ab_i \mid 1 \leq i \leq \text{rank}(A)\}$ is a linearly independent set. (3) $Ab_i = 0$ for $\text{rank}(A) + 1 \leq i \leq n$. Consequently,

$$S = \operatorname{span}\{b_i \mid \operatorname{rank}(A) + 1 \le i \le n\}\} \subset \ker(f_A).$$

But there is no vector v outside of S with $v \in \ker(f_A)$. Let's reason by contradiction assuming there is one. Since $\{b_1,\ldots,b_n\}$ is a basis, we can write $v=\sum \lambda_i b_i$. Then $f_A(v) = 0 = \sum_{i \leq \operatorname{rank}(A)} \lambda_i A b_i$, which is in contradiction with point (1). We conclude that $S = \ker(\overline{f_A})$.

- **1.18.** It follows that dim $\ker(f_A) = n \operatorname{rank}(A)$.
- 1.19. The following important result follows from all the discussion above. For any linear map $f_A: \mathbb{R}^n \to \mathbb{R}^m$ the following identity holds:

$$\dim \ker(f_A) + \dim \operatorname{Im}(f_A) = n.$$