娄底一中学校内测试题

2017年10月1日

(请选手务必仔细阅读本页内容)

一、题目概况

中文题目名称	高精度减法	排序工作量	DNA 序列搜寻	打包
英文题目名称	sub	sort	dna	back
可执行文件名	sub	sort	dna	back
输入文件名	sub.in	sort.in	dna.in	back.in
输出文件名	sub. out	sort.out	dna. out	back. out
每个测试点时限	1 秒	1秒	1秒	1秒
测试点数目	10	10	10	10
每个测试点分值	10	10	10	10
附加样例文件	无	无	无	无
题目类型	传统	传统	传统	传统

二、提交源代码文件名

对于pascal语言	sub. pas	sort.pas	dna. pas	back. pas
对于C语言	sub. c	sort.c	dna. c	back. c
对于 C++语言	sub. cpp	sort.cpp	dna. cpp	back. cpp

三、编译命令(不包含任何优化开关)

对于 pascal 语言	fpc sub.pas	fpc sort.pas	fpc dna.pas	fpc back.pas
对于 C 语言	gcc -o sub	gcc -o sort	gcc -o dna	gcc -o back
	sub.c -lm	sort.c -lm	dna.c −1m	back.c -1m
对于C++语言	g++ -o sub	g++ -o sort	g++ -o dna	g++ -o back
	sub.cpp -lm	sort.cpp -lm	dna.cpp −1m	back.cpp -1m

四、允许内存限制

<u> </u>					
内存上限	128M	128M	128M	128M	

五、注意事项

- 1、每位选手提交一个以自己姓名命名的文件夹,其中只包含4个源程序,名称分别为: sub、sort、dna、back。
- 2、 文件夹名、文件名(程序名和输入输出文件名)必须使用英文小写。
- 3、 C/C++中函数main()的返回值类型必须是int,程序正常结束时的返回值必须是0。
- 4、 统一评测时采用的机器配置为:windows下评测。
- 5、 最终测试时, 所有编译命令均不打开任何优化开关。

第一题、高精度减法

【问题描述】

输入两个整数 m 和 n, m 和 n 不大于 200 位。输出 m-n 的差。

【输入】

输入分两行:

m

n

其中-10²⁰⁰<m, n<10²⁰⁰

【输出】

m-n

【输入输出样例】

输人: 256

567

输出: -311

第二题、排序工量(100分)

【问题描述】

SORT 公司是一个专门为人们提供排序服务的公司,该公司的宗旨是:"顺序是最美丽的"。他们的工作是通过一系列移动,将某些物品按顺序摆好。他们的服务是通过工作量来计算的,即移动东西的次数。所以,在工作前必须先考察工

作量,以便向用户提出收费数目。

用户并不需要知道精确的移动次数,实质上,大多数人都是凭感觉来认定这一列物品的混乱程度,根据 SORT 公司的经验,人们一般是根据"逆序对"的数目多少来称呼这一序列的混乱程度。假设我们将序列中第 i 件物品的参数定义为Ai,那么排序就是指将 Ai,…,An 从小到大排序。若 i<j 且 Ai>Aj,则<i,j>就为一个"逆序对"。

例如,数组(3, 1, 4, 5, 2)的"逆序对"有<3, 1>, <3, 2>, <4, 2>, <5, 2>, 共4个, 如下图所示。

SORT 公司请你写一个程序,在尽量短的时间内,统计出"逆序对"的数目。

【输入】

n, A1, ···, An, 1≤ n≤10000, Ai 为小于 1000 的正整数

【输出】

数列 A1, …, An 的"逆序对"数目,即"逆序数"

【输入输出样例】

输入: 5 3 1 4 5 2

输出: 4

第三题、DNA 序列搜寻

【问题描述】

随着人类 DNA 密码的完全破译,各种利用 DNA 的技术都有了巨大的发展。 其中一种应用是用 DNA 检测患某种疾病。检测人员获取受检者的部分 DNA 序列,在其中寻找某个特别的 DNA 片段,以此判断受检者患相应疾病的可能性大小。

例如,如果某部分 DNA 序列中含有 ATAA 的话,则有很大的患病可能,而受检者的这部分 DNA 序列可能为:

ATCATAATCATAC

我们发现其中确实有 ATAA。

正如你所想的那样,这个工作完全可利用计算机完成。

【输入】

待测 DNA 序列,这个序列可以表示成一个字符串,每个字符是 A, T, G, C之一,以'.'结束,字符串的长度不超过 10000。下一行是致病 DNA 序列。

【输出】

致病的 DNA 片段在待测 DNA 序列中出现的次数。

【输入输出样例】

AATTAATTAA

输出: 4(致病的 DNA 片段为 AATTAATTAA)

第四题、打包

【问题描述】

某个工厂生产出的产品都要被打包放人正四棱柱的盒子内。所有盒子的高度都为 h,但底面的尺寸不同,可以为 1x1,2x2,3x3,4x4,5x5,或 6x6,如图所示。

这些盒子将被放人高度为 h,底面尺寸为 6 (6 的箱子里,送到消费者手中。为了降低运送成本,工厂希望尽量减少箱子的数量。如果有一个好的算法,能使箱子的数量降到最低,这将给工厂节省不少资金。请你写一个这样的程序。

【输入】

6 个非负整数 a1,a2,a3,a4,a5,a6 (取值是整数范围之内)。它们分别为底面尺寸为 1x1, 2x2, 3X3, 4x4, 5x5, 6X6 的盒子的个数。

【输出】

一个数 B, 即箱子的最少个数。

【输入输出样例】

输入: 7 5 1 0 0 0时, B=1。如图所示。

输出: 1