

VLSI Physical Design with Timing Analysis

Lecture – 3: Complexity Analysis for Algorithms

Bishnu Prasad Das

Department of Electronics and Communication Engineering

Contents

- Algorithms
- Data Structures
- Complexity Issues: Asymptotic Notations
- NP-Hardness
 - Polynomial Time (P) Algorithms
 - Non-deterministic polynomial time (NP)
 Algorithms

Algorithms

Algorithm

- Produces an output within a finite timeframe.
- Transforms input into the desired output.

Some basic algorithmic techniques are

Greedy Algorithms

- Divide and Conquer Algorithms
- Dynamic Programming Algorithms
- Linear/Integer Programming Techniques

Data Structures

Data Structure

- Method for storing and organizing data.
- Aims to simplify data access and modifications.
- Basic data structures:
 - Stack, Linked List, Queue, Tree, Graph.....

Data structures related to VLSI Physical Design:

- Linked List of Blocks
- Bin-Based Method
- Neighbor Pointers
- Corner Stitching

Why study Time and Space complexity?

• Studying the time and space complexity of algorithms is essential for several reasons:

- Performance Evaluation
- Algorithm Selection
- Resource Management
- Optimization

Running time of an algorithm

- Depends on the type of input
- Depends on the machine
- Depends on the programming language

Example

1. for
$$i = 0$$
 to n-1 do $-(n+1)$

2.
$$if(X[i] == key) \longrightarrow r$$

- 3. return i → 1
- 4. return -1 → 1

- In this algorithm, each statement takes a different time to execute.
- Ignore the actual costs and assume each statement takes the same time to execute.

So the total time to execute the above algorithm is (2n + 3)

Order of growth

- Remove the constant factors.
 - Now, running time becomes 2n.
- The coefficient can also be ignored.
 - Now, running time becomes n.
- The remaining term is called the order of growth(n).
 - (n)

Examples:

$$-\sqrt{70} \text{nlogn} \rightarrow O(\text{nlogn})$$

$$-\sqrt{8} n^2 + 2n + 10 \rightarrow O(n^2)$$

 $-2n^3logn + 10 \rightarrow O(n^3logn)$

Asymptotic notation

- Analyses the algorithm's running time as the input grows.
- Algorithms need not be implemented in any programming language.
 - Makes analysis faster.
- Measures efficiency of algorithms that won't depend on machine
 - specific constants.

O(big oh) - Notation

• O Notation characterizes an *upper bound* on the asymptotic

behavior of a function.

•
$$f(n) = O(g(n))$$
 if there exists

positive constants c and n_0 such that

$$0 \le f(n) \le cg(n)$$
 for all $n \ge n_0$.

Source: Cormen, Leiserson, Rivest, Stein "Introduction to Algorithms"

O – Notation

Example:

$$-(f(n) = 7n^3 + 6n^2 + 100n + 20)$$
$$-(g(n) = n^3)$$

We need to find positive constants c and
$$n_0$$
 such that
$$7n^3 + 6n^2 + 100n + 20 \le cn^3 \Rightarrow 7 + \frac{6}{n} + \frac{100}{n^2} + \frac{20}{n^3} \le c$$

This inequality is satisfied for many choices of c and n_0 .

 $\therefore f(n) = O(g(n)) = O(n^3).$ For example n_0 133 8.62

$\Omega(Omega) - Notation$

• Ω - notation characterizes a **lower bound** on the asymptotic

behavior of a function.

• $f(n) = \Omega$ (g(n))

if there exists positive constants c and n₀

such that

$$0 \le cg(n) \le f(n)$$
 for all $n \ge n_0$.

Source: Cormen, Leiserson, Rivest, Stein "Introduction to Algorithms"

Ω – Notation

Example:

$$- f(n) = 7n^3 + 6n^2 + 100n + 20$$
$$- g(n) = n^3$$

— We need to find positive constants c and n_0 such that

$$7n^3 + 6n^2 + 100n + 20 \ge cn^3 \implies 7 + \frac{6}{n} + \frac{100}{n^2} + \frac{20}{n^3} \ge c$$

– This inequality holds when $n_0 \ge 1$ and c = 7.

We can also check n_0 for other values of c.

$$\underline{f(n)} = \Omega(g(n)) = \Omega(n^3).$$

Θ(Theta) – Notation

- Θ notation characterizes a *tight bound* on the asymptotic behavior of a function.
- $f(n) = \Theta(g(n))$ iff
 - f(n) = O(g(n)) and
 - $f(n) = \Omega(g(n))$

Θ(Theta) – Notation

•
$$f(n) = \Theta(g(n))$$

• if there exists positive constants c_1 , c_2 and n_0 such that

$$0 \le c_1 g(n) \le f(n) \le c_2 g(n)$$
 for all $n \ge n_0$.

Source: Cormen, Leiserson, Rivest, Stein "Introduction to Algorithms"

Example

• Example:

$$- f(n) = 7n^3 + 6n^2 + 100n + 20$$

$$- g(n) = n^3$$

- From previous examples we have, $f(n) = O(g(n)) = \Omega(g(n))$
- So, we can say $f(n) = \Theta(g(n)) = \Theta(n^3)$

or

Example

- We need to find positive constants c_1 , c_2 and n_0 such that

$$0 \le c_1 n^3 \le 7n^3 + 6n^2 + 100n + 20 \le c_2 n^3$$

$$\rightarrow 0 \le c_1 \le 7 + \frac{6}{n} + \frac{100}{n^2} + \frac{20}{n^3} \le c_2$$

- The above inequality can be satisfied for many choices of c_1 , c_2 , and n_0 . For example,

$$c_1 = 7$$
, $c_2 = 133$, $n_0 = 1$

- So, we can say $f(n) = \Theta(g(n)) = \Theta(n^3)$

Different Order of Time Complexities

Different order of Time Complexities

- Examples of different order of time complexities.
 - O(1)
 - O(logn) ← Binary Search
 - O(n) Linear Search
 - O(nlogn) Merge sort, Insertion sort

 - O(2ⁿ) SAT problem, Knapsack Problem

f(n) = O(n)

Sum of 'n' natural numbers:

- Input: An integer n
- Output: Sum of first n natural numbers

2. for
$$i = 1$$
 to n do \longrightarrow $(n + 1)$

3.
$$a = a + X[i]$$

$$f(n) = \Omega(n)$$

4. return a
$$\longrightarrow$$
 1 $f(n) = \Theta(n)$

$$f(n) = 2n + 3$$

A better approach

1.
$$a = [n(n+1)]/2$$

2. return a

$$f(n) = O(1)$$

$$f(n) = \Omega(1)$$

$$f(n) = \Theta(1)$$

Searching Algorithms:

- Input: An n-element array X of sorted integers
- Output: The index at which the key present

- **1. for** i = 0 to n-1 do
- 2. if(X[i] == key)
- 3. return i
- 4. return -1

Linear Search

					5				_	_
15	23	3	12	45	31	56	9	55	76	

Linear Search

Linear Search

Linear Search

Linear Search

Linear Search

Linear Search

Linear Search

The key 56 is found at index i = 6

Binary_search(X, low, high, key)

1. for
$$i = 0$$
 to $n-1$ do

2.
$$mid = low + (high - low) / 2$$

- 3. if(X[i] == key)
- 4. return m
- 5. if(X[i] < key)
- 6. low = mid + 1
- 7. else
- 8. high = mid 1

Binary Search

0	1	2	3	4	5	6	7	8	9	_
3	9	12	15	23	31	45	55	56	76	Sorted Array

Binary Search

$$56 > 23 \rightarrow low = mid + 1 = 5$$

mid = 5 + (9-5)/2 = 7

Example - 2

Binary Search

Example - 2

Key: 56

The key 56 is found at index i = 6

Classes of Algorithms

- Algorithms are classified into different complexity classes to categorize their computational complexity.
- Helps us understand their efficiency and solvability.

Р	We can efficiently find a solution
NP	Verifying solutions is easier than finding them
NP-	a benchmark for the difficulty of other
complete	/ problems within NP
NP-hard	at least as difficult as the hardest problems in
	NP

P (Polynomial Time) Algorithms

- P = {Problems solvable in polynomial time}
- Polynomial time: O(n^k) where k is some constant and n is the input size

NP(Non-deterministic polynomial time) Algorithms

- NP = {Problems solvable in **Non-deterministic** polynomial time}
- Non-deterministic: guessing the correct answer or solution from many options in polynomial time.
- NP can also be considered a class of problems "whose solutions are verifiable in polynomial time."

Reduction

• A problem 'A' can be **reduced** to another problem 'B' if any instance of 'A' can be rephrased to an instance of 'B' so that solving the instance of 'B' also solves the instance of 'A'.

NP-hard Algorithms

• (A problem χ is NP-hard if every problem Y ϵ NP reduces to X.

 Simply, A problem is NP-hard if all problems in NP are reducible to it in polynomial time.

NP-Complete

• A problem X is NP-complete if $X \in NP$ and $X \in NP$ -hard.

How to prove a problem X is NP-complete?

- Prove X ∈ NP
 - By guessing and verifying or
 - By giving non-deterministic algorithm
- Reduce from known NP-complete problem Y to X.

Algorithms for NP-hard problems

- Most optimization problems in physical design are NP-hard.
- Hence, a polynomial time algorithm won't exist for these problems.
- But a solution is needed even if it is not optimal due to the

practical nature of Physical Design Automation.

Algorithms for NP-hard problems

- There are four choices of algorithms to solve NP-hard or NP-complete problems:
 - Exponential Algorithms
 - Special Case Algorithms
 - Approximation Algorithms
 - Heuristic Algorithms

Exponential Algorithms

• Exponential time complexity algorithms can be practical for small input sizes.

- Large problems can be tackled by using exponential-time
 algorithms for smaller sub-cases and combining results with other
 - techniques for a global solution.

Special Case Algorithms

- Simplifying a general problem by imposing restrictions can lead to polynomial-time solvability in many cases.
- For instance, the graph coloring problem is NP-complete for general graphs,
 - But it can be solved in polynomial time for specific graph

classes relevant to physical design.

K=2

Approximation Algorithms

- If near-optimality suffices, designers use approximation algorithms instead of strict optimality.
- Often in physical design algorithms, near-optimality is good enough.

- hspice more time, solur is accurate

 fine sim less time, solur is not accurate

 The performance ratio of an algorithm is defined as $\gamma = \frac{\Phi}{\Phi^*}$, Where
 - Φ is the solution produced by the algorithm
 - $\Phi *$ is the optimal solution for the problem.

Heuristic Algorithms

- Heuristic algorithms are often used for NP-complete problems, offering solutions without guaranteeing optimality.
- Effective heuristics should have,
 - low time and space complexity.
 - produce optimal or near-optimal solutions in most realistic cases.
 - exhibit good average case performance.

Thank You

