Given an Array of size N (distinct elements)

Hind any weal minima in the Array.

A no which is lesser than

its available neighbours.

Ali-1] > Alij < Ali+1]

botal Minima

O 1 2 3 4 5 6

3 6 1 0 9 15 8

316 × × × × × ×

Duiz

Duiz

3 5 4 8 10

Qui2 20 16 10 7 5

Qui2 A: 24 21 19 14 15 9 5

NOTE: There mill always be a botal Minima.

$$\Upsilon(N) = \Upsilon(N/2) + \Upsilon(N/2) + 1$$

$$T(N) = 2T(N/2) + 1 \Rightarrow O(N)$$

(1+i)A > [i] A < (1-i)A

ninina

$C_1+ijA > C_1ijA > C_1-ijA$

[1+1]A < [1]A < [1-1]A


```
[l+i]A < [i]A > [l-i]A
                             Move to any side.
            Ci)A
   (1-3]A
                  [1+1]A
C0 3A
  int localMinima (AI), N) {
      if (A[0] < A[1]) return A[0];
      if [A[N-1] < A[N-2]) return A[N-1];
       l= 1, r= N-2;
       while ( 1 (= x) {
            mid = (1+r) |2;
            if ( A[mid] < A[mid+1] &&
                    A[mid] ( A[mid-1] ) {
                   return Almid];
            <u>i</u>
else if (A[mid] > A[mid-1])
                   r= mid-1;
            llse
l= mid+1;
      47||
ટુ
          TC: O(log N)
```

What is the condition to apply Bluary Search?

Binary Search can be applied when me can come up with a logic to discard one tray of the search space in every iteration.

9 8 2 7 6 4 1 5 m

& 1 1	بر 6 2	Almid-13 2 9	A [mid] 7 8	Almid+13 6	Move to Left right
2	2	8	2	7	7
			Local Minima		

D.	Given give	, a	. Si	orte	d I	ont it	too !	atec Disti	d ar	ray,	find	k Hu
Google Micros Rayton Ardish	oft m	1	4:	٥	<u> </u>	26	M) Jt	4 8	5	6 2	4 3	
Amazo GS Zot Rayal	al	K=	1 = 4 = 10	\Rightarrow	3							
Quiz			[4			90		2 K=2				
A:	0 1 2	ر م	345	in 2+	6 8	¥ 10				(1 2 1	12 32	18 40
	0 1	a H	3 &	4 10	512	8	<i>ਸ</i> <u>ਮ</u>	8 21	9 32	10	11 18 1 2	
			1	St 90	ert							Part

Observations.

- 1) Sorted & Rotated Array => Concatenation of 2 Sorted arrays.

 2) All elements of 18t part y All elements of 2nd part.

3) All elements of 2 part (A[0]
All elements of 18t part >= A[0].

Quiz A[0] = 8 $\Rightarrow 2^{\text{nd}}$ $\Rightarrow 2^{\text{nd}}$

COJA > CiJA

Quiz A[0] = 8 1st part. A[i] = 15

> > A[i] (A[o] \Rightarrow 2nd Part A[i] $\gamma = A(o) \Rightarrow 12^{t}$ Part

Pivot

-> last inden of the 1st Part

Pirst inden of the 2nd Part

Starting inden of 2nd Part

0 1 2 3 4 5 8 4 8 9 10 11 12 13 4 5 7 8 10 12 15 17 21 32 40 1 2 3

l	S.	hid	Pivot	Move to			
0	13	6(A16)>=4)	- 1	Rigert			
7	13	10 (40>=4)	 1	Rigert			
11	13	12(2(4) 2nd part	12	left			
11	11	11 (1 (4) 2nd part		left			
11	10						
178 => Break							

if (K > = A[0])

Whis present in 194 Part

BS(A, K, D, Pivot-1);

else

→ K is present in 2d Part

→ BS(A, K, Pivot, N-1);

TC: O(log N)

8C: D(T)

l	S.	hid	Pivot				
D	3	\mathcal{T}	-1				
Z	3	2	-1				
රි	3	3	-1				
4	3						
442 - Break							

if (livot = = -1)
$$\Rightarrow$$
 No rotation
 \hookrightarrow BS(A, K, O, N-1)

Try to implement this in I iteration

B.S.

B.S.

Given N, find
$$99xt(N)$$
.
 $N=25 \Rightarrow JN=5$
 $N=15 \Rightarrow JN=3$
 $N=10 \Rightarrow JD=3$
 $N=20 \Rightarrow J20=4$

T 2

N=36

CN type : DT

$$\frac{\text{ansmax}}{\text{ansmax}} \xrightarrow{1} \frac{1}{N}$$

mid* mid (=N => ans= mid Move to sight.

Given an Array of the nois, find the MAX length ky shech that there exists NO subarray of length k with sum >= B.

=> All subarrays of length k have sum (B.

A: 3 2 5 4 6 3 7 2 , B=20

K=5 X

K=4 x

K=3

=> All subarrays of length 3 have sum < 20.

Knin $\rightarrow 0$ Knax $\rightarrow N$

Brute Force

Iterate from K = N to K = 0 & check if Ki is satisfying the Condition.

All Subarrays of length Ki have Sum (B.

have sum (B.

linearly.

for
$$(K = N; K > = 0; K - -)$$
 (

if (Check (A, K, B)) \(\)

return K ;

3

* Write a function to Check if Au subarrays

of length k have sum (B.

$$\frac{R=4}{2}$$

$$\frac{PS}{N}: O(N) + O(N) \qquad \frac{Sliding Window}{N}$$

$$\frac{PS}{N}: O(N) + O(N) \qquad \frac{SC: O(N)}{SC: O(N)}$$

$$\frac{1}{8}$$

$$3c: O(N)$$

$$3c: O(L)$$

```
A: 3 2 5 4 6 3 7 2
                                N=8
     1st Window
      [C-S]
                    Sun
      [1-4] Sum-A[0] + A[4] *
       [2-5]
                  Sum - A[1] + A[5]
       [3-6]
                  8mn-A[2]+A[6]
                    8um - A[3] + A[7]
N-1
       [4-71
         7 TC: D(N)
1000
     Check (All, H, B) L
    Sum -> [0, 4-1]
    if(sum y= B) return false;
     1/ Sliding Window.
     for (1= k; ix N; i++)
           Sum + = Alin
           Sum - = Ali-K)
           if (sum >= B) return false;
```

Search Space ⇒ [0, N] Target ⇒ Kmax

