Flows for simultaneous manifold learning and density estimation (by Johann Brehmer and Kyle Cranmer) M-Flows

Jona Braun

ETHZ

March 2021

Outline

- Introduction
 - Normalizing Flow
 - Manifold
- Contribution
 - Comparison of models
 - M-Flows

- **Training**
- Experiments
 - Polynomial surface
 - Image manifolds
- Critic
- Discussion

March 2021

Section 1: Introduction

- Introduction
 - Normalizing Flow
 - Manifold
- 2 Contribution
 - Comparison of models
 - M-Flows

- Training
- 4 Experiments
 - Polynomial surface

3/36

- Image manifolds
- 6 Critic
- 6 Discussion

Introduction

- Generative modeling: Infer a probability distribution over a random variable X given observations $\{x^{(i)}\}_{i=1}^N$
 - Generative adversarial networks (GANs)
 - intractable density

- lower dimensional latent space
- Variational autoencoders (VAEs)
 - approx. tractable density
- lower dimensional latent space

- Normalizing Flows
 - tractable density

- no lower dimensional latent space
- Manifold-Flow is a combination of these methods
 - Learns a lower dimensional data space
 - 2 Learns a tractable probability density on the data manifold
 - Claim: allows for dimensionality reduction, denoising and out-of-distribution detection

Normalizing Flow I

 A normalizing flow describes the transformation of a probability density through a sequence of invertible mappings¹

Figure: Normalizing flow²

5/36

Normalizing Flow II

• Let f be an invertible smooth function $f: \mathbb{R}^d \mapsto \mathbb{R}^d$ with smooth inverse f^{-1} . Further let z_0 be a random variable $z_0 \sim p(z_0)$. Using the change-of-variable formula the random variable $z_1 = f(z_0)$ has distribution:

$$p_1(z_1) = p_0(f^{-1}(z_1)) \left| \det \frac{\partial f^{-1}}{\partial z_1} \right| = p_0(z_0) \left| \det \frac{\partial f}{\partial z_0} \right|^{-1}$$

 Through successive application of such transformations we can obtain a complex probability density

$$z_K = f_K \circ ... \circ f_2 \circ f_1(z_0)$$

$$\ln p_K(z_K) = \ln p_0(z_0) - \sum_{k=1}^K \ln \left| \det \frac{\partial f_k}{z_{k-1}} \right|$$

6/36

Jona Braun (ETHZ) M-Flows March 2021

¹Variational Inference with Noramlizing Flows, Danilo Jimenez Rezende Shakir Mohamed

 $^{^2} https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html \\$

Manifold³

- An n-manifold is a topological space that locally resembles an n-dimensional Euclidean space near each point
- Coordinate chart / map: An invertible map between a subset of the manifold and a simpler space (homeomorphism)
- Atlas: Collection of charts which cover a manifold
- Transition map: Mapping between overlapping charts
- Diffrentiable manifold
 - Charts need to be diffeomorphisms
 - 2 Transition maps need to be diffeomorphisms

7/36

Jona Braun (ETHZ) M-Flows March 2021

[•] Given two Manifolds M, N. A diffeomorphism is a smooth bijective function $f: M \mapsto N$ of which the inverse f^{-1} is also smooth.

³https://en.wikipedia.org/wiki/Manifold

Section 2: Contribution

- Introduction
 - Normalizing Flow
 - Manifold
- 2 Contribution
 - Comparison of models
 - M-Flows

- Training
- 4 Experiments
 - Polynomial surface
 - Image manifolds
- 6 Critic
- 6 Discussion

Comparison of different approaches I

- General setting: $x \in \mathcal{M}^* \subset X = \mathbb{R}^d$ with $x \sim p^*(x)$, where
 - x is a sample
 - X is the d-dimensional data space
 - \mathcal{M}^* is a *n*-dimensional manifold
- Given training samples $\{x_i\} \sim p^*(x)$ the goal is to estimate the
 - Density $p^*(x)$
 - Manifold M*
- Let $u \in U$ and $v \in V$ be latent variables, where
 - $U = \mathbb{R}^n$ is the latent space that maps to the manifold \mathcal{M} (coordinates of the manifold)
 - $V = \mathbb{R}^{d-n}$ represents the remaining latent variables (direction "off the manifold")

Jona Braun (ETHZ) \mathcal{M} -Flows March 2021 9 / 36

Comparison of different approaches II

- Assumptions for simplification
 - 1 The dimension of the manifold is known and it is n
 - ② The manifold is topologically equal to $\mathbb{R}^n \to \operatorname{can}$ be mapped by a single chart and it is connected

Figure: Sphere 2-Manifold

 $egin{array}{ll} X = \mathbb{R}^d & ext{data space} \ U = \mathbb{R}^n & ext{coordinates of the manifold} \ V = \mathbb{R}^{d-n} & ext{direction "} \textit{off"} ext{ the manifold} \end{array}$

Normalizing flow (Ambient Flow)

AF:
$$x \stackrel{f}{\longleftarrow} (u, v) \sim p_{uv}$$

• Flow on a prescribed Manifold (FOM)

FOM:
$$x \leftarrow g^*$$
 $\tilde{u} \sim p_{\tilde{u}}$

• Pseudo-invertible encoder (PIE)

PIE:
$$x \leftarrow f$$
 $(u, v) \xrightarrow{\text{Split}} u \leftarrow h$ $\tilde{u} \sim p_{\tilde{u}}$ $v \sim p_v$

Jona Braun (ETHZ) M-Flows March 2021 11/36

Different flow models II

Figure: Gaussian on circle

 $egin{array}{ll} X = \mathbb{R}^d & ext{data space} \ U = \mathbb{R}^n & ext{coordinates of the manifold} \ V = \mathbb{R}^{d-n} & ext{direction "off" the manifold} \end{array}$

- Given base density $p_{\tilde{u}}(\tilde{u})$
- Learn a *n*-dimensional flow h, that maps u to \tilde{u}

$$egin{aligned} h : ilde{U} &\mapsto U, & ilde{U}, U = \mathbb{R}^n \ & p_u(u) = p_{ ilde{u}}(h^{-1}(u)) \left| \det J_h(h^{-1}(u))
ight|^{-1} \end{aligned}$$

- Learn diffeomorphism $f: U \times V \mapsto X = \mathbb{R}^d$ between latent space and data space
- ullet Let the model manifold ${\mathcal M}$ be defined by the level set

$$g:U\mapsto M\subset X$$
 with $u\to g(u)=f(u,0)$ $g=f_k\circ\ldots\circ f_1\circ \mathsf{Pad}$

where Pad represents a n-dimensional vector with zero padding

$$Pad(u) = (u_0, ..., u_{n-1}, 0, ..., 0)^T$$

Jona Braun (ETHZ) March 2021 14 / 36

Than the probability density on the manifold is

$$p_{\mathcal{M}}(x) = p_{\tilde{u}}(h^{-1}(g^{-1}(x))) \left| \det J_h(h^{-1}(g^{-1}(x))) \right|^{-1}$$
$$\times \left| \det \left[J_g^T(g^{-1}(x)) J_g(g^{-1}(x)) \right] \right|^{-\frac{1}{2}}$$

where J_g is a $d \times n$ dimensional Jacobian matrix

- The density is equal to the FOM models, except the transformation g
 is learnable rather than given
- Sampling from an \mathcal{M} -flow: Draw $\tilde{u} \sim p_{\tilde{u}}(\tilde{u})$, $u = h(\tilde{u})$ and compute x = g(u) = f(u,0)

- g is a decoder: maps from a lower dimensional space to the data space
- Let g^{-1} be the encoder defined as $g^{-1}: X \mapsto U$

$$g^{-1}(x) = \text{Proj}(f^{-1}(x)), \text{ with } \text{Proj}(u, v) = u$$

Like that the inverse of g is extended to the entire data space X and not only defined for $x \in \mathcal{M}$.

Jona Braun (ETHZ) M-Flows March 2021 16/36

- Encoder and decoder are exact inverses of each other for points on the manifold!
- Reconstruction error

$$||x - x'|| = ||x - g(g^{-1}(x))||$$

- M-flows allow for
 - Computation of the likelihood on the manifold $p_{\mathcal{M}}(x')$
 - Denosing of the input: by using the projection $x' = g(g^{-1}(x))$
 - Anomaly or out-of-distribution detection by using the reconstruction error ||x-x'||

Jona Braun (ETHZ) M-Flows March 2021 17 / 36,

18/36

Manifold-learning flows with separate encoder (\mathcal{M}_e -flow)

- Is a variant of M-flows
- We replace the encoder g^{-1} with a separate function

$$e: X \mapsto U$$

- The encoder is not restricted to be invertible this increases the expressiveness
- Encoder and decoder may be inconsistent, which during training has to be penalized (similar to VAEs)

Jona Braun (ETHZ) March 2021 19/36

Probabilistic autoencoder (PAE)

PAE:
$$x \longrightarrow u \xrightarrow{e} \tilde{u} \sim p_{\tilde{u}}$$

ullet Like the $M_{
m e}$ -flow but we replace the invertible transformation g with a decoder

$$e: U \mapsto X$$

that does not need to be invertible

- This is an autoencoder where the latent space is modeled with a flow
- Pro: decoder gains expressivity
- Con: the density of the model is intractable

Jona Braun (ETHZ) M-Flows March 2021

20 / 36

Relaxing simplifications

- Learn the dimensionality
 - Brute force search for the right dimension *n*
 - Evaluate different *n* with the reconstruction error
- Manifold with multiple disjiont pieces
 - Sugesstion: mixture model with separate transformations from latent to data space
- Still open research how we can learn manifolds with complex topology

Section 3: Training

- Introduction
 - Normalizing Flow
 - Manifold
- 2 Contribution
 - Comparison of models
 - M-Flows

- Training
- 4 Experiments
 - Polynomial surface
 - Image manifolds
- 6 Critic
- 6 Discussion

Challanges training \mathcal{M} -Flows

- Maximum likelihood not good enough:
 - Maximizing the likelihood $p(x \mid \phi_f, \phi_h)$ does not encourage the network to learn the correct manifold
 - Extreme case: model manifold is perpendicular to the true data manifold (might project all points to a small region whit high density)
- ② Computing the determinant of $J_g^T J_g$ is not efficient $(J_g \in \mathbb{R}^{n \times d})$ is not square

$$L[h] = -\frac{1}{n} \sum_{x} \left(\log p_{\bar{u}}(h^{-1}(u)) - \log \det J_h(h^{-1}(u)) - \frac{1}{2} \log \det \left[J_g^T(u) J_g(u) \right] \right)$$

Training M-Flows I

- Different training strategies are possible
- ullet Separate manifold and density training (M/D) into two phases
 - In the same spirit as the EM-algorithm
 - Manifold phase: only learn function g using the reconstruction error
 - 2 Density phase: only learn function h using maximum likelihood
- Loss of the density phase with $u = g^{-1}(x)$ is

$$L[h] = -\frac{1}{n} \sum_{x} \left(\log p_{\bar{u}}(h^{-1}(u)) - \log \det J_h(h^{-1}(u)) - \frac{1}{2} \log \det \left[J_g^T(u) J_g(u) \right] \right)$$

• Using maximum likelihood only to update h allows for efficient computation, because we do not need to evaluate $\det \left[J_g^T(u) J_g(u) \right]$

Jona Braun (ETHZ) M-Flows March 2021 24/36

Training \mathcal{M} -Flows II

- M/D-training schedule: Alternating vs Sequential update
- Likelihood evaluation during inference or testing is still problematic for high dimensional data

Section 4: Experiments

- Introduction
 - Normalizing Flow
 - Manifold
- Contribution
 - Comparison of models
 - M-Flows

- Training
- 4 Experiments
 - Polynomial surface

26 / 36

- Image manifolds
- 6 Critic
- 6 Discussion

Mixture model on a polynomial surface I

ullet Comparison of \mathcal{M} -flow, \mathcal{M}_e -flow, AF, PIE and PAE

 \bullet Synthetic example with a two-dimensional mainfold in \mathbb{R}^3

- ullet Training and test data is genearted by a mixture of two Gaussians in the latent space, conditioned on the parameter $heta \in [-1,1]$
- ullet In all metrics except out-of-distribution detection ${\mathcal M}$ -flows provide the best results

Mixture model on a polynomial surface II

- MMD: Maximum mean discrepancies between the true and the approximate posteriors
- OOD: Out-of-distribution detection

Model	Manifold distance	Reconstruction error	Posterior MMD	OOD AUC
AF	0.005	_	0.071	0.990
PIE (original)	0.035	1.278	0.131	0.933
PIE (uncond. manifold)	0.006	1.253	0.075	0.972
PAE	0.002	0.002	_	0.990
M-flow (alternating M/D)	0.002	0.003	0.020	0.986
M-flow (sequential M/D)	0.009	0.013	0.017	0.961
\mathcal{M}_e -flow (alternating M/D)	0.003	0.003	0.030	0.985
\mathcal{M}_e -flow (sequential M/D)	0.002	0.002	0.007	0.987

Figure: Polynomial Surface Results

Image manifolds I

- Three image datasets
 - The images are generated with a Style-GAN2 model trained on the Flickr-Faces-HQ (FFHQ) dataset downsampled to 64x64
 - Sample n latent variable of the GAN while keeping others fixed
 - n = 2 and n = 64 (traing set size: 10'000 and 20'000 images)
 - Third dataset is the real-world CelebA-HQ set downsampled to 64x64 images (existence of a manifold nor its dimension is known)
 - n was set to 512
- Results
 - ullet ${\cal M}$ -flows better on StyleGAN
 - Slightly worse than AF on the CelebA-HQ dataset (possible reason: suboptimal choice of *n*)

Jona Braun (ETHZ) \mathcal{M} -Flows March 2021 29 / 36

Image manifolds II

• FID: Fréchet inception distance

Model	FID scores			Log posterior
	n=2	n = 64	CelebA	n = 64
AF	58.3 ± 1.5	24.0 ± 0.0	33.6 ± 0.2	0.17 ± 1.18
PIE	139.5 ± 5.0	32.2 ± 0.8	75.7 ± 5.1	-6.40 ± 1.54
$\mathcal{M} ext{-flow}$	43.9 ± 0.2	20.8 ± 0.5	37.4 ± 0.2	2.67 ± 0.27
\mathcal{M}_e -flow	43.5 ± 0.2	23.7 ± 0.2	35.8 ± 0.4	1.81 ± 0.70

Figure: Image Manifolds: Results

Figure: StyleGAN: Latent Representation

Image manifolds IV

Figure: StyleGAN: Projection onto manifold (n=64)

Section 5: Critic

- Introduction
 - Normalizing Flow
 - Manifold
- 2 Contribution
 - Comparison of models
 - M-Flows

- 3 Training
- 4 Experiments
 - Polynomial surface
 - Image manifolds
- 6 Critic
- 6 Discussion

Critic

- Good
 - Well structured
 - Motivation through comparison of different models
 - Novel model to learn both the manifold and the density
- Improvements
 - Experiments
 - More real data (mostly synthetic or simulation data was used)
 - Comparison to GAN
 - ullet In depth analysis of $\mathcal{M} ext{-Flow}$ versus $\mathcal{M}_e ext{-Flow}$ performance
 - Deeper analysis of computational complexity

Section 6: Discussion

- Introduction
 - Normalizing Flow
 - Manifold
- Contribution
 - Comparison of models
 - M-Flows

- Training
- 4 Experiments
 - Polynomial surface
 - Image manifolds
- 6 Critic
- 6 Discussion

Discussion

Appendix

Section 7: Introduction

- Introduction
 - GAN
 - VAE
- Model comparison
 - AF
 - FOM
 - GAN
 - PIE
 - Overview

- Training
 - Naive maximum likelihood
 - M/D training
- Experiments
 - Architecture
 - StyleGAN
 - CelebA
 - Lorenz attractor
 - Particle physics
- 11 Change of variable

Generative adversarial networks⁵

- Generator
 - Prior distribution on input noise variables $p_z(z)$
 - Mapping from z to the data space X modeled by a differential function $G(z; \theta_g)$ (modeled by a MLP with parameters θ_g)
- Discriminator
 - $D(x; \theta_d)$ modeled by a MLP that outputs a single output the probability that x came from real data rather than from p_G the generator
- Goal learn the distribution of the generator $p_G(x)$
- Training
 - train D to maximize the probability of discriminating the correct label
 - train simultaneously G to minimize log(1 D(G(z))

Figure: GAN⁴

3/26

⁴TDS: Generative Adversarial Networks — Explained

⁵Generative Adversarial Nets, Ian J. Goodfellow et al.

Variational Autoencoders⁶⁷

- Dataset $X = \{x^{(i)}\}_{i=1}^N$ of N i.i.d samples
- Assumption: Data is generated by some random process
 - ① $z^{(i)}$ is generated from prior $p_{\theta^*}(z)$
 - 2 $x^{(i)}$ is generated from $p_{\theta^*}(x \mid z)$
- θ^* and the values of the latent variables $z^{(i)}$ are unknown
- Goal: compute approximation $q_{\phi}(z \mid x)$ of the intractable true posterior $p_{\theta}(z \mid x) = \frac{p_{\theta}(z)p_{\theta}(x|z)}{p_{\theta}(x)}$
- Training is done by optimizing the **ELBO**

4/26

Jona Braun (ETHZ) M-Flows March 2021

⁶Auto-Encoding Variational Bayes, Diederik P. Kingma, Max Welling

⁷An Introduction to Variational Autoencoders, Diederik P. Kingma, Max Welling

Section 8: Model comparison

- Introduction
 - GAN
 - VAE
- Model comparison
 - AF
 - FOM
 - GAN
 - PIE
 - Overview

- Training
 - Naive maximum likelihood
 - M/D training
- Experiments
 - Architecture
 - StyleGAN
 - CelebA
 - Lorenz attractor
 - Particle physics
- Change of variable

Ambient flow (AF) I

AF:
$$x \stackrel{f}{\longleftarrow} (u, v) \sim p_{uv}$$

- Euclidean normalizing flow $f: U \times V \mapsto X$
 - is a diffeomorphism in the ambient/surrounding space
 - can be modeled as a neural network
- Tractable base density $p_{u,v}(u,v)$
- The density of the data is than given by

$$p_{x}(x) = p_{u,v}(f^{-1}(x)) \left| \det J_{f}(f^{-1}(x)) \right|^{-1}$$

- Generative mode:
 - sample $(u, v) \sim p_{u,v}$
 - apply the transformation x = f(u, v), which leads to samples $x \sim p_x(x)$

Jona Braun (ETHZ) M-Flows March 2021 6/26

Ambient flow (AF) II

- No explicit alignment of the latent variables u, v
 - \longrightarrow no notion of the data manifold

Figure: Gaussian on a circle - Truth

Figure: Gaussian on a circle - AF

Flow on a prescribed manifold (FOM) I

FOM:
$$x \leftarrow g^*$$
 $\tilde{u} \sim p_{\tilde{u}}$

- ullet Given a priori: Chart $g^*:U\mapsto \mathcal{M}^*\subset X$ for the data manifold
- ullet Than the density (only defined) over \mathcal{M}^* is

$$p_{\mathcal{M}^*}(x) = p_u(g^{*-1}(x)) \left| \det \left[J_g^T(g^{*-1}(x)) J_g(g^{*-1}(x)) \right] \right|^{-\frac{1}{2}},$$
 where J_g is the Jacobian a $n \times d$ matrix of g^*

- $p_u(u)$ is modeled with a normalizing flow (diffeomorphism) h
- ullet h maps from a set of latent variables $ilde{u}\sim p_{ ilde{u}}(ilde{u})$ to u and is learnable

Jona Braun (ETHZ) M-Flows March 2021

8/26

Flow on a prescribed manifold (FOM) II

Figure: Gaussian on a circle - Truth

Figure: Gaussian on a circle - FOM

9/26

Generative adversarial networks (GAN)

GAN:
$$x \leftarrow g$$
 $u \sim p_u$

- Learn a mapping from the *n*-dimensional latent space U to the data space: $g:U\mapsto M\subset X$
- g might not be invertible nor injective
- Hence g is not a chart and the transformation not a manifold
- Pro: g is not restricted, which increases the expressivenes of the neural network
- Con: Model density is intractable

Pseudo-invertible encoder (PIE) I

PIE:
$$x \leftarrow f$$
 $(u, v) \xrightarrow{\text{Split}} u \leftarrow h$ $\tilde{u} \sim p_{\tilde{u}}$ $v \sim p_v$

- Splits the latent variables u, v of an ambient flow into two vectors sampled from different base densities
- The distribution of u models the coordinates on the manifold. h is again a n-dim. eucledian flow that maps to the latent variable \tilde{u} .
- v should represent the off-dimension-direction of the manifold in the latent space. $p_v(v)$ is the base density that sharply peaks around 0.
- In practice with this bias an alignment of *u* with the data manifold can be achieved.
- Sampling: $u \sim p_u(u)$ and apply x = f(u, 0)

Jona Braun (ETHZ) M-Flows March 2021 11/26

Pseudo-invertible encoder (PIE) II

Figure: Gaussian on a circle - Truth

Figure: Gaussian on a circle - PIE

Model comparison overview

AF:
$$x \stackrel{f}{\longleftarrow} (u, v) \sim p_{uv}$$

FOM:
$$x \leftarrow g^*$$
 $u \leftarrow h$ $\tilde{u} \sim p_{\tilde{u}}$

GAN:
$$x \blacktriangleleft \dots \qquad u \sim p_u$$

PIE:
$$x \leftarrow f$$
 $(u, v) \xrightarrow{\text{Split}} u \xrightarrow{h} \tilde{u} \sim p_{\tilde{u}}$

PAE:
$$x \longrightarrow \frac{e}{q}$$
 $u \longleftarrow h$ $\tilde{u} \sim p_{\tilde{u}}$

$$\mathcal{M}\text{-flow: }x \xrightarrow{f} (u,v) \xrightarrow{\text{Proj}} u \xrightarrow{h} \tilde{u} \sim p_{\tilde{u}}$$

$$g = f \circ \text{Pad}$$

$$e$$

$$u \xrightarrow{h} \tilde{u} \sim p_{\tilde{u}}$$

$$\mathcal{M}_{e}\text{-flow: }x \xrightarrow{f} (u,v) \xrightarrow{\text{Pad}} u \xrightarrow{h} \tilde{u} \sim p_{\tilde{u}}$$

$$g = f \circ \text{Pad}$$

Figure: Model overview

Model	Manifold	Chart	Tractable density	Restr. to \mathcal{M}
AF	no manifold	×	✓	×
FOM	prescribed	1	✓	✓
GAN	learned	×	×	✓
VAE	learned	×	only ELBO	(\times)
PIE	learned	1	✓	(×)
PAE	learned	×	×	V
\mathcal{M} -flow	learned	1	✓	✓
\mathcal{M}_e -flow	learned	1	✓	✓

Figure: Model comparison

13 / 26

Section 9: Training

- Introduction
 - GAN
 - VAE
- Model comparison
 - AF
 - FOM
 - GAN
 - PIE
 - Overview

- Training
 - Naive maximum likelihood
 - M/D training
- Experiments
 - Architecture
 - StyleGAN
 - CelebA
 - Lorenz attractor
 - Particle physics
- 11 Change of variable

Naive maximum likelihood training

M/D-Phase training

- M: manifold phase
 - \bullet Update the parameters of f
 - ullet f defines the manifold ${\mathcal M}$ and the chart g
 - We minimize the squared reconstruction error

$$L_{manifolod}^{M/D}[g] = \frac{1}{b} \sum_{x} ||x - g(g^{-1}(x))||_{2}^{2}$$

where b is the batch size.

- ullet For the \mathcal{M}_e model we also update the parameters of the encoder e
- O: density phase
 - Update only the parameters of h by maximum likelihood
 - ullet The manifold stays fixed, because h only affects the density p_u
 - We minimize the negative log likelihood

$$L_{density}^{M/D}[h] = -\frac{1}{b} \sum_{x} \log p_u(g^{-1}(x))$$

Section 10: Experiments

- Introduction
 - GAN
 - VAE
- Model comparison
 - AF
 - FOM
 - GAN
 - PIE
 - Overview

- Training
 - Naive maximum likelihood
 - M/D training
- Experiments
 - Architecture
 - StyleGAN
 - CelebA
 - Lorenz attractor
 - Particle physics
- Change of variable

Experiments general architecture

- Comparision of: \mathcal{M} , \mathcal{M}_e -flows, AF, PIE, PAE
- Based on rational-quadratic neural spline flows
- For tabular datasets
 - model transformations f an h by alternating coupling layers (20-35 layers)
- For image datasets
 - *f* is based on a multi-scale architecture (20-28 layers) across four levels interspersed with actnorm and 1x1 convolution layers
 - for \mathcal{M} -flows, \mathcal{M}_e -flows and PIE: additionally for a subset of the channels two invertible transformations are applied before the projection to the manifold coordinates u
 - h is the same as for the tabular datasets

StyleGAN Samples

Figure: StyleGAN: Generated Samples (n = 2)

Figure: StyleGAN: Generated Samples (n = 64)

CelebA-HQ Results

Figure:	CelebA-H	Q
---------	----------	---

Model FID score		Reconstruction error	
AF	$\textbf{33.6} \pm 0.2$	_	
PIE	$\textbf{75.7} \pm 5.1$	6970 ± 97	
$\mathcal{M} ext{-flow}$	$\textbf{37.4} \pm \textbf{0.2}$	830 ± 5	
\mathcal{M}_e -flow	$\textbf{35.8} \pm \textbf{0.4}$	991 ± 4	

Figure: CelebA-HQ: Results

- $x \in \mathbb{R}^3$ changes with time based on three diffrential equations
- With certain initial parameter choices the solution tends towards the Lorenz attractor
- \bullet Generated 100 trajectories with different initial conditions (from t=0 to t=1000)

Particle physics I

- Proton-proton collision at the Large Hadron Collider
- Observations $x \in \mathbb{R}^{40}$
- $p(x \mid \theta)$ is conditional on 3 constants of nature θ
- By the laws of particle physics the data must be restricted by a 14-dimensional manifold
- The goal is to infer the posterior over θ given observations x_i
- Trained on 10⁶ samples generated by a simulator

Particle physics II

Figure: Posterior samples from an MCMC

Particle physics III

Model (algorithm)	Sample closure	Mean reconstruction error	Log posterior
AF	0.0019 ± 0.0001	_	-3.94 ± 0.87
PIE (original)	0.0023 ± 0.0001	2.054 ± 0.076	-4.68 ± 1.56
PIE (unconditional manifold)	0.0022 ± 0.0001	1.681 \pm 0.136	-1.82 ± 0.18
PAE	0.0073 ± 0.0001	0.052 ± 0.001	_
$\mathcal{M} ext{-flow}$	0.0045 ± 0.0004	0.012 ± 0.001	-1.71 ± 0.30
\mathcal{M}_e -flow	0.0046 ± 0.0002	0.029 ± 0.001	-1.44 ± 0.34
AF (SCANDAL)	0.0565 ± 0.0059	_	-0.40 ± 0.09
PIE (original, SCANDAL)	0.1293 ± 0.0218	3.090 ± 0.052	$\textbf{0.03} \pm \textbf{0.17}$
PIE (uncond. manifold, SCANDAL)	0.1019 ± 0.0104	1.751 \pm 0.064	0.23 ± 0.05
PAE (SCANDAL)	0.0323 ± 0.0010	0.053 ± 0.001	_
\mathcal{M} -flow (SCANDAL)	0.0371 ± 0.0030	0.011 ± 0.001	$\textbf{0.11} \pm 0.04$
\mathcal{M}_e -flow (SCANDAL)	0.0291 ± 0.0010	$\textbf{0.030} \pm 0.002$	$\textbf{0.14} \pm 0.09$
Likelihood ratio estimator (ALICES)	-	-	$\textbf{0.05} \pm \textbf{0.05}$

Figure: Results

Section 11: Change of variable

- Introduction
 - GAN
 - VAE
- Model comparison
 - AF
 - FOM
 - GAN
 - PIE
 - Overview

- Training
 - Naive maximum likelihood
 - M/D training
- Experiments
 - Architecture
 - StyleGAN
 - CelebA
 - Lorenz attractor
 - Particle physics
- Change of variable

Change of variable⁸

- $M \subset \mathbb{R}^m$ where M is a *n*-manifold and n < m
- $\overrightarrow{x} = \phi(\overrightarrow{u}) : \mathbb{R}^n \mapsto \mathbb{R}^m$ maps the embedded manifold to its intrinsic Euclidean space
- $d\overrightarrow{x}=\sqrt{\det J_{\phi}^{\mathcal{T}}J_{\phi}}d\overrightarrow{u}$ describes the change of volumes
- Formula to compute the density over M

$$\int_{M\subset\mathbb{R}^m} f(\vec{x}) d\vec{x} = \int_{\mathbb{R}^n} (f\circ\phi)(\vec{u}) \sqrt{\det J_\phi^T J_\phi} d\vec{u}$$

Then the density becomes

$$p(\overrightarrow{u}) = (f \circ \phi)(\overrightarrow{u})\sqrt{\det J_{\phi}^{T}J_{\phi}(\overrightarrow{u})} = f(\overrightarrow{x})\sqrt{\det J_{\phi}^{T}J_{\phi}(\phi^{-1}(\overrightarrow{x}))}$$

Jona Braun (ETHZ) M-Flows March 2021 26 / 26

⁸Normalizing Flows on Riemannian Manifolds, Mevlana C. Gemici et al.