Randomized and Approximation Algorithms Lecture Algorithm Design

Stefano Leonardi, Rebecca Reiffenhäuser

December 04, 2020

Part 1

LP-relaxation and randomized rounding for the weighted Max-SAT problem

Given a collection C of clauses in disjunctive form,

$$C = [C - 1, C_2, \dots, C_t]$$

and weights w_i denoting the weight of clause C_i , with

$$C_i = C_{i1} \vee C_{i2} \vee \cdots \vee C_{ik_i}$$

and *n* boolean variables s.t.

$$C_{ij} \in \{x_1, \overline{x_1}, x_2, \overline{x_2}, \dots, x_n, \overline{x_n}\}$$

Goal: Find an assignment of $x_1, \ldots, x_n \in \{0, 1\}^n$ to maximize the sum of the weights of all satisfied clauses.

Previously in the lecture:

- Write problem as a linear program
- ► Round the fractional solution to yield a feasible one that is an approximation to the (integral) optimum

Today:

Do the same for weighted Max-SAT, but with **randomized rounding step**!

Previously in the lecture:

- Write problem as a linear program
- Round the fractional solution to yield a feasible one that is an approximation to the (integral) optimum

Today:

Do the same for weighted Max-SAT, but with **randomized rounding step**!

 \rightarrow The value of the objective function obtained by the algorithm is a **random variable**:

$$\mathbb{E}[ALG(I)] \ge \frac{1}{2}OPT(I) \ \forall I$$

Previously in the lecture:

- Write problem as a linear program
- Round the fractional solution to yield a feasible one that is an approximation to the (integral) optimum

Today:

Do the same for weighted Max-SAT, but with **randomized rounding step**!

 \rightarrow The value of the objective function obtained by the algorithm is a **random variable**:

$$\mathbb{E}[ALG(I)] \ge \frac{1}{2}OPT(I) \ \forall I$$

 \rightarrow Derandomization possible?

A 2-approximative algorithm

[Johnson, 1974]

Set x_j to 1 with probability 1/2, and to 0 otherwise. C_i is satisfied with probability

$$\geq 1-(\frac{1}{2})^{k_i}\geq \frac{1}{2}$$

$$\mathbb{E}[ALG] \geq \frac{1}{2} \sum_{i=1}^{\tau} w_i \geq \frac{1}{2} OPT$$

(since the sum of all weights is an upper bound for OPT) Note: The algorithm is easy to derandomize

Better approximation ratio

[Yannakakis, 1992]

4/3-approximation
Clauses with only one literal are treated differently!

A 4/3-approximative, LP-based algorithm

[Goemans, Williamson, 1993]

Write problem as an LP (form: $Ax \leq b$).

Then, the x_i depict each literal.

The solution x^* of the LP can be interpreted as a set of probabilities:

$$x_1^*, x_2^*, \dots, x_n^*$$

where instead of ' x_r is 20 percent true', we say ' x_r is true with a probability of 1/5':

Set x_j to 1 with prob. x_j^* , and 0 with prob. $(1 - x_j^*)$.

A 4/3-approximative, LP-based algorithm

Define

 T_i = set of boolean variables that occur **unnegated** in C_i F_i = set of boolean variables that occur **negated** in C_i $z_i = 1$ if C_i is **satisfied**, 0 otherwise.

Problem formulation:

$$\max \sum_{i=i}^t z_i w_i$$

such that

$$\sum_{j\in\mathcal{T}_i}x_j+\sum_{j\in\mathcal{F}_i}(1-x_j)\geq z_i$$

where $x_i, z_i \in \{0, 1\}, j = 1, ..., n \text{ and } i = 1, ..., t$.

Rounding scheme

Let x^*, z^* be the optimal solution of the relaxed LP, with

$$x_j \geq 0$$
 and $z_i \leq 1$

Set

$$egin{aligned} x_j &= 1 & & ext{with prob. } x_j^* \ x_j &= 0 & & ext{with prob. } (1-x_j^*) \end{aligned}$$

Lemma

It holds that

$$P[C_i \text{ is satisfied}] \ge 1 - \prod_{j \in T_i} (1 - x_j^*) \prod_{j \in F_i} x_j^*$$

 $\ge \alpha_{k_i} z_i^*$

with
$$\alpha_{k_i} = 1 - (1 - \frac{1}{k_i})^{k_i}$$
.

Rounding scheme

Proof: Assume every variable in $C = \mathcal{C}_{i_1} \lor \cdots \lor \mathcal{C}_{i_k}$ is unnegated; otherwise substitute $\overline{x_j}$ by x_j and x_j by $\overline{x_j}$ in any clause.

$$egin{aligned} P[\textit{C}_i ext{ satisfied}] &\geq 1 - \prod_{j=1}^{k_i} (1 - x_j^*) \ &\geq 1 - \left(rac{\sum_{j=1}^{k_i} (1 - x_j^*)}{k_i}
ight)^{k_i} \ &\geq 1 - \left(1 - rac{\sum_{j=1}^{k_i} x_j^*}{k_i}
ight)^{k_i} \ &\geq 1 - \left(1 - rac{z_i^*}{k_i}
ight)^{k_i} \ &\geq \left(1 - \left(1 - rac{1}{k_i}
ight)^{k_i}
ight) z_i^* \ &= lpha_{k_i} z_i^* \end{aligned}$$

 $\frac{e}{e-1} pprox 1.57$ -approximative algorithm

$$\mathbb{E}[ALG] \ge \sum_{i=1}^{t} \left(1 - \left(1 - \frac{1}{k_i}\right)^{k_i}\right) w_i z_i^*$$

$$\ge \left(1 - \frac{1}{e}\right) \sum_{i=1}^{t} w_i z_i^*$$

$$\ge \left(\frac{e-1}{e}\right) OPT$$

since $\left(1 - \frac{1}{k}\right)^k \leq \frac{1}{e}$.

The LP-relaxation gives an upper bound better than $\sum_{i=1}^{k} w_i!$

Johnson:

$$\mathbb{E}[ALG] \geq \sum_{i=1}^{t} \left(1 - \frac{1}{2^{k_i}}\right) w_i z_i^*$$

Goemans/Williamson:

$$\mathbb{E}[ALG] \geq \sum_{i=1}^{t} \left(1 - \left(1 - \frac{1}{k_i}\right)^{k_i}\right) w_i z_i^*$$

Johnson: Good for large k_i

Goemans/Williamson: Good for small k_i

Strategy: Combine the two algorithms with disjoint 'bad' cases!

▶ Run Johnson with prob. 1/2

► Run G&W with prob. 1/2

Lemma: This algorithm is a 4/3-approximation.

Proof:

$$P[C_i ext{ satisfied}] \geq rac{1}{2} \left[\left(1 - 2^{-k_i}
ight) + \left(1 - \left(1 - rac{1}{k_i}
ight)^{k_i}
ight)
ight] z_i^* \geq rac{3}{4} z_i^*$$

Proof:

$$P[C_i \text{ satisfied}] \ge \frac{1}{2} \left[\left(1 - 2^{-k_i} \right) + \left(1 - \left(1 - \frac{1}{k_i} \right)^{k_i} \right) \right] z_i^* \ge \frac{3}{4} z_i^*$$

$$\mathbb{E}[ALG] \geq \frac{3}{4} \sum_{i=1}^{\tau} w_i z_i^* \geq \frac{3}{4} OPT$$

Approximation algorithms for the Max-Cut problem

The Max-Weighted-Cut problem

Given a graph G=(V,E) and weights $w:E\to\mathbb{R}^+$, find a partition (S,\overline{S}) of V that maximizes

$$\sum_{(i,j)\in E \text{ s.t. } i\in S, j\in \overline{S}} w_{(i,j)}$$

The Max-Weighted-Cut problem

Given a graph G=(V,E) and weights $w:E\to\mathbb{R}^+$, find a partition (S,\overline{S}) of V that maximizes

$$\sum_{(i,j)\in E \text{ s.t. } i\in S, j\in \overline{S}} w_{(i,j)}$$

A 2-approximative algorithm

Algorithm:

Assign *i* to *S*

Assign i to \overline{S}

with prob. $\frac{1}{2}$ with prob. $\frac{1}{2}$

Lemma:

The algorithm is a 2-approximation.

A 2-approximative algorithm

Lemma:

The algorithm is a 2-approximation.

Proof:

$$P\left[\left(i \in S \land j \in \overline{S}\right) \lor \left(i \in \overline{S} \land j \in S\right)\right] = \frac{1}{2}$$

(each single edge is in the cut with probability 1/2.)

$$\mathbb{E}[ALG] = \frac{1}{2} \sum_{(i,j) \in E} w_{(i,j)} \ge \frac{1}{2} OPT$$

(no more than all of the edges can be in the cut.)

Better bounds

- ▶ We used a very pessimistic bound on *OPT*: $\sum_{(i,j)\in E} w_{(i,j)}$.
- ► A better *OPT*-bound can be achieved via quadratic programming
- ► This allows to prove even a 0.8785-approximation [Goemans, Williamson, 1994]

Goal: Find a deterministic version of the algorithm that keeps the approximation ratio!

We define

$$x_i = 1$$
 IF $v_i \in A$ $x_i = 0$ IF $v_i \in B$

W: An instance of the Max-Cut problem $\mathbb{E}[W]$: Expected value of a random assignment

Strategy:

Given all previous assignments for x_1, \ldots, x_i , choose for x_{i+1} the set that maximizes the expectation when the rest of the choices is made at random!

$$\underbrace{\mathbb{E}\left[W|x_{1}=a_{1},\ldots,x_{i}=a_{i}\right]}_{\underbrace{1}_{2}} = \underbrace{\frac{1}{2}\underbrace{\mathbb{E}\left[W|x_{1}=a_{1},\ldots,x_{i}=a_{i},x_{i+1}=1\right]}_{(2)}}_{(2)} + \underbrace{\frac{1}{2}\underbrace{\mathbb{E}\left[W|x_{1}=a_{1},\ldots,x_{i}=a_{i},x_{i+1}=0\right]}_{(3)}}_{(3)}$$

Strategy:

Given all previous assignments for x_1, \ldots, x_i , choose for x_{i+1} the set that maximizes the expectation when the rest of the choices is made at random!

$$\underbrace{\mathbb{E}\left[W|x_{1}=a_{1},\ldots,x_{i}=a_{i}\right]}_{1} = \underbrace{\frac{1}{2}\mathbb{E}\left[W|x_{1}=a_{1},\ldots,x_{i}=a_{i},x_{i+1}=1\right]}_{(2)} + \frac{1}{2}\mathbb{E}\left[W|x_{1}=a_{1},\ldots,x_{i}=a_{i},x_{i+1}=0\right]}_{(3)}$$
(2) > (3) IF $w(x_{1},x_{1},R) > w(x_{1},x_{2},R)$

$$(2) \geq (3) \text{ IF } w(v_{i+1}, B) \geq w(v_{i+1}, A).$$

Strategy:

Given all previous assignments for x_1, \ldots, x_i , choose for x_{i+1} the set that maximizes the expectation when the rest of the choices is made at random!

$$\underbrace{\mathbb{E}\left[W|x_{1}=a_{1},\ldots,x_{i}=a_{i}\right]}_{\underbrace{1}_{2}} = \underbrace{\frac{1}{2}\underbrace{\mathbb{E}\left[W|x_{1}=a_{1},\ldots,x_{i}=a_{i},x_{i+1}=1\right]}_{(2)}}_{(2)} + \underbrace{\frac{1}{2}\underbrace{\mathbb{E}\left[W|x_{1}=a_{1},\ldots,x_{i}=a_{i},x_{i+1}=0\right]}_{(3)}}_{(3)}$$

- $(2) \geq (3) \text{ IF } w(v_{i+1}, B) \geq w(v_{i+1}, A).$
- $(1) \le (2)$ or $(1) \le (3)$ must hold: Not all (i+1)-choices can be worse than a random (i+1)-choice!

Deterministic Algorithm:

$$A = \{v_1\}, B = \emptyset.$$

FOR i = 2, ..., n:

Add x_i to the set that maximizes the expected cut-weight.

The derandomized algorithm preserves the oringinal approximation ratio of the randomized algorithm, i.e. 2.

This is called derandomization via conditional expectation.

Derandomization of Max-Cut: Efficiency

We have to compute the expected weights for both choices for x_{i+1} in *polynomial time*.

What happens in step i + 1 (randomized version) is as follows:

- ightharpoonup Decisions on x_1, \ldots, x_i are fixed
- ► For all j = i + 1, ..., n:

Add
$$w(v_j, A)$$
 with probability $\frac{1}{2}$ Add $w(v_j, B)$ with probability $\frac{1}{2}$

▶ For all $(v_j, v_k) \in E$, add $w(v_j, v_k)$ with probability $\frac{1}{2}$.

We replace the probabilities in the second point by choosing the larger one!

Derandomization of Max-Cut: Efficiency

$$\mathbb{E}[W|x_{1} = a_{1}, \dots, x_{i} = a_{i}, x_{i+1} = 1]$$

$$= W_{A \wedge B} + w(v_{i+1}, A) + \frac{1}{2} \sum_{(v_{j}, v_{k}) \in E, j > i+1} w(e)$$

$$\mathbb{E}[W|x_{1} = a_{1}, \dots, x_{i} = a_{i}, x_{i+1} = 0]$$

$$= W_{A \wedge B} + w(v_{i+1}, B) + \frac{1}{2} \sum_{(v_{i}, v_{k}) \in E, j > i+1} w(e)$$

Derandomization of Max-Cut: Efficiency

The only difference in the expectations is having

$$w(v_{i+1}, A)$$
 OR $w(v_{i+1}, B)$

Therefore, computing which is larger is easy!

A greedy algorithm for Max-Cut

Let us define

$$w(v, A)$$
 for $A \subseteq V$

as the total weight of edges from v to vertices in A.

Algorithm:

$$A = \{v_1\}, \ B = \{v_2\}.$$
FOR $v \in V \setminus \{v_1, v_2\}$ DO:

IF $w(v, A) \ge w(v, B)$
THEN $B = B \cup \{v\}$
ELSE $A = A \cup \{v\}$
Output A and B as S and \overline{S} .

A greedy algorithm for Max-Cut

Lemma:

The greedy algorithm is a 2-approximation.

Proof:

Vertices are considered in order v_1, \ldots, v_n . $w(v_1, v_2)$ is in the cut. Let $w_<(v_i)$ be the total weight of edges from v_i to v_1, \ldots, v_{i-1} . At least $\frac{w_<(v_i)}{2}$ weight is separated by the cut.

$$ALG \geq \frac{1}{2} \sum_{i=2}^{n} w_{<}(v_i) \geq \frac{OPT}{2}$$

A greedy algorithm for Max-Cut

Lemma:

The greedy algorithm is a 2-approximation.

Proof:

Vertices are considered in order v_1, \ldots, v_n . $w(v_1, v_2)$ is in the cut.

Let $w_{<}(v_i)$ be the total weight of edges from v_i to v_1, \ldots, v_{i-1} .

At least $\frac{w_{<}(v_i)}{2}$ weight is separated by the cut.

$$ALG \geq \frac{1}{2} \sum_{i=2}^{n} w_{<}(v_i) \geq \frac{OPT}{2}$$

Exercises

An exercise: Multiway Cut

Problem 3 (Approximation Algorithm for multiway cut). We are given an undirected graph G=(V,E), costs $c_e\geq 0$ for all edges $e\in E$, and k distinguished vertices s_1,\ldots,s_k . The goal is to remove a minimum-cost set of edges F such that no pair of distinguished vertices s_i and s_j for $i\neq j$ are in the same connected component of (V,E-F).

We know that when k=2 then the problem is just the min-cut problem, and it can be solved in polynomial time via max-flow. Consider the following algorithm for the problem with k vertices. For i=1,...,k let F_i be the min-cut that separates vertex s_i and vertices $s_1,s_2,...,s_{i-1},s_{i+1},...,s_k$. Solution $\bigcup_{i=1,...,k} F_i$ is obviously a feasible solution, i.e. it separates all $s_1,...,s_k$. Show that it is also a 2-approximation of the optimal solution.