FUNDAMENTOS INGENIERÍA ELÉCTRICA EXAMEN FINAL FEBRERO DE 2024

NOMBRE						FIRMA			
GRADO: [□ Eléctrico	□ Electrónico	□ Mecánico	□ Diseño	GRUI	PO: □ A	ПВ	ПС	

Ejercicio 1 (1 punto) Escribe las ecuaciones del método matricial de mallas. Indica claramente las variables adicionales en el circuito y las ecuaciones adicionales en el recuadro. No hace falta resolver el circuito.

Ejercicio 2 (1 punto) Escribe las ecuaciones del método matricial de nudos. Indica claramente las variables adicionales en el circuito y las ecuaciones adicionales en el recuadro. No hace falta resolver el circuito.

Ejercicio 3 (1.25 punto) Determina la resistencia que conectada entre A y B consumiría la máxima potencia, así como el valor de dicha potencia.

$R^{máx}(\Omega)$	
P ^{máx} (W)	

Ejercicio 4 (1.25 puntos) En el circuito de la figura, en régimen permanente senoidal, se sabe que $v_1(t) = 1000 \cos(1000t)$ y $v_2(t) = 200 \cos(1000t - 30^\circ)$. Determina la impedancia compleja Z y la potencia activa y reactiva que cede la fuente.

Impedancia compleja ${\cal Z}$	
Potencia activa fuente (W)	
Potencia reactiva fuente (VAr)	

Ejercicio 5 (1.25 puntos) En el circuito de corriente alterna de la figura, los tres amperímetros marcan lo mismo. Sabiendo que la frecuencia es 100 rad/s, determinar el valor de L_1 y L_2 .

Ejercicio 6 (1.25 puntos) Determinar la potencia activa cedida por la fuente de intensidad sabiendo que el vatímetro marca cero y que el amperímetro mide 4A.

Ejercicio 7 (1.5 puntos) El circuito trifásico de la figura se encuentra alimentado por un generador trifásico equilibrado cuya frecuencia es 50Hz y secuencia directa. Se sabe que la impedancia de la carga conectada en estrella es de 2Ω y que las indicaciones de los amperímetros son: A_3 =40 A, A_1 =50 A, A_2 =50 A. Determinar V_1 , V_2 , el valor del vatímetro W, y el valor del condensador C para que el generador trabaje con factor de potencia unitario.

Ejercicio 8 (1.5 puntos) El circuito trifásico equilibrado de la figura cuenta con dos cargas conectadas en paralelo, una carga inductiva dispuesta en estrella de valor 30j y otra dispuesta en triángulo, y es alimentado por un generador de frecuencia 50Hz y de secuencia desconocida a través de una línea puramente resistiva de valor $R = 10\Omega$. Se sabe que la medida de los vatímetros W_1 y W_3 es la misma. También se sabe que los W_2 y W_4 suman 2772W y que el amperímetro A mide 4A. Determinar el valor de los cuatro vatímetros, el valor del voltímetro V y el valor de la impedancia de la carga en triángulo Z^{Δ} .

