HW1 High Dynamic Range Imaging

Appendix

陳立得

Mar 22, 2021

Outline

- Grading
 - Implementation
 - Experiment& Free Study
- Addtional Implementation Details
 - Response Calibration
 - Construct Radiance

Grading

Items		Score
Implementation (65%)	Camera Response Calibration	20%
	Global Tone Mapping	10%
	Local Tone Mapping	15%
	Edge-Preserving Filter	15%
	White Balance	5%
Experiment& Free Study	Experiments	20%
(35%)	Free Study	15%

Grading: Implementation

- You will get full score if your result pass the bar
 - same result with TA's implementation

Complete function globalTM() in tm.py. Your result for /TestImg/memorial.hdr should be similar to /ref/p2_gtm.png (PSNR>45dB), under the default setting s=1.0 to get a full score.

Grading: Experiment& Free Study

- Experiment
 - Finish an asked Figure/Curve/Image
 - Discussion
- Free Study
 - Select Two topics you want
 - Research and discuss on it
- What should be included in Report?
 - i. Assumption
 - ii. Justification

Example: Do not

- For variable x, sweep from 0.1 ~ 200
- Describe the trend (f(x) v.s. x)
 - which maybe already mentioned in class
- Notice something weird around x in (50~60)
- I guess xxx so, xxx ...

Example: Do

- Keep you sweep for observation
 - Describe the trend if it's important to you
- ullet Assume that: $f(x) = f_{ideal}(x) + rac{g(y)}{x-55}$
 - Design a experiment to justify your assumption
 - \blacksquare ex1. sweep y
 - ex2. Design a special experiment to eliminate unideal part
- Describe
 - Where the assumption comes from?
 - Why you design the experiment in this way?
 - Our experiment prove your assumption?

You don't need to be "correct"

- It's ok to provide an assumption that fits reality imperfectly
- We will grade the report based on :
 - Correctness of reasoning
 - Rigorousness of justification

Response Calibration

- ullet We want E (radiance) of a scene
- What do we have?
 - $\circ~Z$ (Pixel value) and Δt (Exposure time)
- What do we know (or assume)?
 - $\circ~Z$ has one-to-one mapping with exposure $E\Delta t$
 - Other setting unchanged
 - The mapping:
 - $g(Z) = \ln E + \ln \Delta t$
- ullet If we have g(Z) for all possible Z ([0:1:256])
 - \circ and exposure time Δt_j for a taken image j
 - \circ We can obtain $\ln E = g(Z) \ln \Delta t$

What do we want again?

- g(Z) for all possible Z ([0:1:256])
 - 256 variables
- What relation do we have?
 - Exposure Mapping

$$g(Z) - \ln E = \ln \Delta t$$

Smoothness Constraint

$$g''(Z) = 0$$

- How to find out g(z)?
 - Measuring a lot of samples
 - \circ Measure Z_{ij} on E_i and Δt_j

Solving Objective Function

$$O = \sum_i \sum_j [g(Z_{ij}) - \ln E_i - \ln \Delta t_j]^2 + \lambda \sum_z [g''(z)]^2$$

- The objective function describes a relation (we want) between
 - variables and measurements
- What are variables?
 - \circ The unknown terms g(z) and $\ln E_i$
- What are measurements?
 - \circ The known terms Z_{ij} and Δt_j

Objective Function in Matrix Form

- ullet M {#(euqations)}: number of measurements($\Delta t_j, Z_{ij}$) -> I imes J
- N {#(variables)}: 256 + #(E_i) -> 256 + I

Data Term Assignment

$$\sum_i \sum_j [g(Z_{ij}) - \ln E_i - ln\Delta t_j]^2$$

That's say in k-th measurement, image 3($\Delta t_3=2$), pixel 12 has intensity $Z_{12,3}=127$.

We want the variables $\ln E_{12}$ and g(127) has the following relationship

$$g(127) - \ln E_{12} = \ln 2$$

Then we should set row k as

- A(k, 127) = 1
- A(k, 256 + 12) = -1
- $b(k) = \ln 2$

Smoothness Term Assignment

$$g''(z) = g(z-1) - 2g(z) + g(z+1) = 0$$

That's say in k-th experiments

Intensity z=16 should have 0 second order derivatives

$$g''(16) = g(15) - 2g(16) + g(17) = 0$$

Then we should set row k as

- A(k, 15) = 1
- A(k, 16) = -2
- A(k, 17) = 1
- b(k) = 0

Bring back Reliability Weight

$$O = \sum_i \sum_j oldsymbol{w(Z_{ij})} [g(Z_{ij}) - \ln E_i - ln\Delta t_j]^2 + \lambda \sum_z [oldsymbol{w(z)} g''(z)]^2$$

That's say in k-th measurement, image 3($\Delta t_3=2$),

pixel 12 has intensity $Z_{12,3}=127$.

We want the variables $\ln E_{12}$ and g(127) has the following relationship

$$w(127)g(127) - w(127) \ln E_{12} = w(127) \ln 2$$

Bring back Reliability Weight

We want the variables $\ln E_{12}$ and g(127) has the following relationship

$$w(127)g(127) - w(127) \ln E_{12} = w(127) \ln 2$$

Then we should set row k as

- A(k, 127) = w(127)
- A(k, 256 + 12) = -w(127)
- $b(k) = w(127) \ln 2$

Solve Least Square Problems

- $||Ax b||^2$
- ullet A is usaully not square matrix
 - We want more measurements(equations) to reduce the measurement error
- If we can find A^{\dagger} (pseudo inverse of A)
- We can obtain
 - $\circ \; x = A^\dagger b$
 - $\circ~$ Which minimize the square error $||Ax-b||^2$

Solve Least Square Problems

- $||Ax b||^2$
- In Numpy, we can solve the least square problem with
 - linalg.lstsq(a, b, rcond='warn')
 - o a : (M, N) array_like "Coefficient" matrix.
 - b : {(M,), (M, K)} array_like
- Returns: × {(N,), (N, K)} ndarray
 - Least-squares solution. If b is two-dimensional, the solutions are in the K columns of x.

Construct Radiance

- ullet For an image j with exposure time (Δt_j)
- The radiance is simplely

$$\circ \ E_i = \exp\left(g(Z_{ij}) - \ln \Delta t_j\right)$$

But why don't we use all availabe images?

$$\circ \, \ln E_i = rac{\sum_j w(Z_{ij})[g(Z_{ij}) - \ln \Delta t_j]}{\sum_j w(Z_{ij})}$$

$$\circ \; E_i = \exp(\ln E_i)$$

Image Filtering

- ullet Covolution between $w_{K imes L}$ and $L_{I imes J}$
- LTI, Symmetric Filter

