Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТСИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

Кафедра комплексной информационной безопасности электронновычислительных систем (КИБЭВС)

СПОСОБЫ ЗАДАНИЯ ОБЩЕЙ ТОЧКИ ТРАНЗИСТОРНОГО КАСКАДА Отчет по лабораторной работе №4

По дисциплине «Электроника и смехотехника»

Выполнили
студенты гр. 728-2
Геворгян Д.Р.
Морошкин М.С.
Принял
Старший преподаватель
кафедры КИБЭВС
Cemënor A C

1 Введение

Целью работы является:

- 1. Построение нагрузочной линии транзисторного каскада.
- 2. Задание рабочей точки транзисторного каскада.
- 3. Исследование параметров рабочей точки транзистора.
- 4. Исследование условий для перевода транзистора в режим насыщения и отсечки.
- 5. Определение статического коэффициента передачи транзистора по экспериментальным данным.

2 Ход выполнения работы

1. Исследование параметров рабочей точки при задании тока базы с помощью одного резистора

Рис. 1. - Схема для исследования параметров рабочей точки при задании тока базы с помощью одного резистора

Собрали схему как показано на рис. 1. Включили схему. Записали результаты измерений для тока базы, тока коллектора, значение β_{DC} , напряжения коллектор-эмиттер и напряжения база-эмиттер.

βDC	16	Uб-э	lĸ	Uк-э	Ek
244,4831	0,00002012	0,6867	0,004919	10,16	20

Для схемы на рис. 1 по формулам из теоретической части вычислили базовый ток, напряжение коллектор-эмиттер. Ток коллектора вычислить, используя значение тока базы, полученное в п. а) и значение βDC, подсчитанное в эксперименте 1 предыдущего раздела. Сравнили их с экспериментальными данными.

Базовый ток транзистора

$$I_{\text{B}} = \left(E_{\text{K}} - U_{\text{B}\ni 0}\right) / R_{\text{B}}$$

Ток коллектора вычисляется по формуле:

$$I_K\!=\beta_{DC}\,I_{B}$$

Напряжение коллектор-эмиттер определяется из уравнения нагрузочной прямой:

$$U_{K\mathfrak{I}} = E_K - I_K R_K$$

I6 = 0.000020118 A

 $U_{K-9} = 10,162 \text{ B}$

 $I_K = 0.004919$

Построить нагрузочную прямую по постоянному току на выходной характеристике транзистора. Используя значения токов и напряжений, полученные в пункте а), определить рабочую точку (Q) на нагрузочной линии и отметить ее положение на графике.

рис 2 - нагрузочная прямая.

Изменение коэффициента передачи β_{DC} привело к изменению значений тока базы, тока коллектора и напряжения коллектор-эмиттер:

βDC	Іб	Uб-э	lĸ	Uк-э	Ek
304,8	0,00002011	690,9	0,005574	8,852	20

рис 3 - нагрузочная прямая.

Восстановив прежнее значение коэффициента передачи и рассчитав сопротивление $R_{\rm B}$, необходимое для перевода транзистора в режим насыщения ($R_{\rm B}\approx 472~{\rm kOm}$) результаты измерений для тока базы, тока коллектора и напряжения коллектор-эмиттер выглядят следующим образом:

I6 = 0,000004105 A

 $I_K = 0.008717 A$

 $U_{K-9} = 2,566 B$

Уменьшив $R_{\text{Б}} \approx 12$ кОм результаты измерений для тока базы, тока коллектора и напряжения коллектор-эмиттер выглядят следующим образом:

I6 = 0,000004194 A

 $I_K = 0.008849 A$

 $U_{K-9} = 2,303 \text{ B}$

2. Исследование параметров рабочей точки при задании тока базы с помощью делителя напряжения (NPN-транзистор)

Рис. 4 — Схема для исследования параметров рабочей точки NPNтранзистора при задании тока базы с помощью делителя напряжения

Собрали схему как показано на рис. 4. Записали результаты измерений для тока базы, тока коллектора, тока эмиттера, напряжения коллектор-эмиттер и напряжения на базе. Вычислили коэффициент передачи β_{DC} .

R	Кэ	Ек	Іб мкА	Ік мА	Іэ мА	Uкэ	Uб
	660	12	9,066	1,986	1,995	6,71	1,982

 $\beta_{DC} = 219,0602.$

Для схемы рис. 4 по формулам из теоретической части вычислили значение напряжения в точке $U_{\rm B}$. Вычислили ток эмиттера и рассчитать ток коллектора по полученному значению тока эмиттера ($U_{\rm B90}=0.7{\rm B}$), вычислили значение напряжения коллектор-эмиттер по полученным ранее току коллектора и току эмиттера.

$$U6 = 2 B$$

 $I_9 = 0.00197 A$

 $I_K = 0.001995 A$

Рис 5 - нагрузочная прямая

После изменения коэффициента передачи потоку на 50 единиц, результаты измерений для тока базы, тока коллектора и напряжения коллектор-эмиттер имеют следующий вид:

Ек	Іб микр	Ік мили	Іэ мили	Uкэ	Uб
12	7,967	1,99	1,998	6,701	1,983

 $\beta_{DC}=249{,}78\overline{03}$

Рис 6 - нагрузочная прямая

После восстановления прежнего значения коэффициента передачи, результаты измерений для тока базы, тока коллектора, напряжения на базе и напряжения коллектор-эмиттер:

Ек	Іб микр	Ік мили	Іэ мили	Икэ	Uб
12	621,1	4,345	4,966	0,03357	3,987

3. Задание тока базы с помощью делителя напряжения (PNP-транзистор)

Рис. 7 Схема для задания тока базы p-n-p транзистора с помощью делителя напряжения

Собрали схему как показано на рис. 7. Записали результаты измерений для тока базы, тока коллектора, тока эмиттера, напряжения коллектор-эмиттер и напряжения на базе. Вычислили статический коэффициент передачи β_{DC} .

Rэ		Еэ		Іб микр	Ік мили	Іэ мили	Uкэ	Uб
6	80		10	7,652	1,881	1,888	4,955	7,999

 $\beta_{DC}=245,\!8181$

Для схемы рис. 7 по формулам теоретического раздела вычислить значение напряжения в точке $U_{\rm B}$. Вычислили ток эмиттера и рассчитали ток коллектора по полученному значению тока эмиттера ($U_{\rm BOO}=0.7~{\rm B}$), вычислили значение напряжения коллектор-эмиттер по полученным ранее току коллектора и току эмиттера.

U6 = 1,28314 B

 $I_9 = 0.001888 A$

 $I_K = 0.001881 A$

 $U_{K9} = 4,955 B$

После увеличения коэффициента передачи току на 30 единиц результаты измерений для тока базы, тока коллектора и напряжения коллектор-эмиттер имеют следующий вид:

Іб микр	Ік мили	Іэ мили	Uкэ
6,698	1,887	1,894	4,938

 $\beta_{DC} = 281,7259$

4. Исследование параметров рабочей точки при задании тока базы с помощью дополнительного источника в цепи эмиттера

Соберите схему как показано на рис. 8. Записали результаты измерений для тока базы, тока коллектора, тока эмиттера, напряжения коллектор-эмиттер и напряжения на базе. Вычислили статический коэффициент передачи β_{DC} .

βDC	Iб	Ik	lэ	Uкэ
250,0213	0,00002347	0,005868	0,005892	8,228

Для схемы на рис. 8 по формулам из теоретического раздела вычислили напряжение в точке $U_{\rm b}$ по измеренному ранее значению тока базы, рассчитали

ток эмиттера и вычислили ток коллектора по величине тока эмиттера ($U_{\rm b90}=0.7\,$ В). Вычислили значение напряжения коллектор-эмиттер по полученным значениям тока эмиттера и тока коллектора.

 $\beta_{DC} = 250,0213$

U6 = 8,2 B

 $I_9 = 0.005 A$

 $I_K = 0.005868 A$

 $U_{K9} = 7,066 B$

Рисунок 9 - нагрузочная прямая

После изменения коэффициента потока, получились следующие значения тока базы, тока коллектора и напряжения коллектор-эмиттер:

βDC	Іб	Ik	lэ	Uкэ
200	0,00002789	0,005805	0,005833	8,348

рис 10 нагрузочная прямая

5. Исследование параметров рабочей точки при задании тока базы с помощью резистора в цепи база-коллектор

Собрали схему как показано на рис. 11. Записали результаты измерений для тока базы, тока коллектора, тока эмиттера и напряжения коллекторэмиттер. Вычислили статический коэффициент передачи β_{DC} .

βDC	lб	Ik	lэ	Uкэ
1,019893	0,0004876	0,0004973	0,000009751	9,751

По формулам из теоретического раздела вычислили ток коллектора, используя значение β_{DC} , вычисленное ранее. $U_{EEO}=0.7~B$. По полученному току коллектора вычислить значение напряжения коллектор-эмиттер.

 $\beta_{DC} = 1,019893$

 $I_K = 0.00473498$

Uк $\theta = 9,763250859$

рис 12 нагрузочная прямая

Результаты измерении после изменения коэффициента для тока базы, тока коллектора и напряжения коллектор-эмиттер:

βDC	lб	Ik	lэ	Uкэ
1,019893	0,0004876	0,0004973	0,000009751	9,751

рис 13 нагрузочная прямая

3 Заключение

В ходе лабораторной работы мы научились строить нагрузочные линии транзисторного каскада и задавать рабочую точку. Исследовали параметры рабочей точки транзистора и условия для перевода транзистора в режим насыщения и отсечки. Научились определять статический коэффициент передачи транзистора по экспериментальным данным.