

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра системного анализа

## Отчёт по практикуму

# «Линейная Задача Быстродействия»

Студент 315 группы В. А. Сливинский

Руководитель практикума к.ф.-м.н., доцент П.А. Точилин

## Содержание

| 1            | Постановка задачи                             |                                                 | 3  |
|--------------|-----------------------------------------------|-------------------------------------------------|----|
|              | 1.1                                           | Общая формулировка задачи                       | 3  |
|              | 1.2                                           | Формальная постановка задачи                    |    |
| 2            | Нен                                           | которые необходимые теоретические выкладки      | 5  |
| 3            | Написание функции plotFT                      |                                                 | 5  |
|              | 3.1                                           | Разбиение на подзадачи                          | Ę  |
|              | 3.2                                           | Вычисление аппроксимации преобразования Фурье   |    |
|              | 3.3                                           | Подготовка фигуры к выводу графиков             | 7  |
|              | 3.4                                           | Вывод графиков                                  | 7  |
| 4            | Вычисление аналитических преобразований Фурье |                                                 | 8  |
|              | 4.1                                           | Некоторые необходимые обозначения и соотношения | 8  |
|              | 4.2                                           | Вычисление аналитического преобразования Фурье  |    |
|              |                                               | функции $f_1(t)=e^{-2 t }\cos(t)$               | 10 |
|              | 4.3                                           | Вычисление аналитического преобразования Фурье  |    |
|              |                                               | функции $f_2(t)=rac{e^{- t }-1}{t}$            | 11 |
| $\mathbf{C}$ | писо                                          | к литературы                                    | 12 |

#### 1 Постановка задачи

#### 1.1 Общая формулировка задачи

Задана линейная система ОДУ:

$$\dot{x} = Ax + u + f, \ t \in [t_0, +\infty) \tag{1.1}$$

Здесь,  $x, f \in \mathbb{R}^2$ ,  $A \in \mathbb{R}^{2 \times 2}$ ,  $u \in \mathbb{R}^2$ . Кроме того, на управление u наложено дополнительное ограничение  $u \in \mathcal{P}$ . Пусть  $\mathcal{X}_0$  — начальное множество значений фазового вектора,  $\mathcal{X}_1$  — целевое множество значений фазового вектора. Для заданных множеств  $\mathcal{X}_0$ ,  $\mathcal{X}_1$ ,  $\mathcal{P}$  необходимо решить задачу быстродействия, т.е. найти минимальное время T > 0, за которое траектория системы, выпущенная в момент времени  $t_0$  из некоторой точки множества  $\mathcal{X}_0$ , может попасть в некоторую точку множества  $\mathcal{X}_1$ .

$$\mathcal{P} = p + \{(x_1, x_2) \in \mathbb{R}^2 : 9x_1^2 + 4x_2^2 \leqslant r\}, \ p \in \mathbb{R}^2;$$
(1.2)

$$\mathcal{X}_0 = \{x_0\}; \tag{1.3}$$

$$\mathcal{X}_1 = \left\{ x = (x_1, x_2) \in \mathbb{R}^2 : a(x_1 - x_{11})^2 + b|x_2 - x_{12}| \leqslant c \right\}, \ a, b, c > 0.$$
 (1.4)

Требуется:

- 1. Написать в среде Matlab программу с пользовательским интерфейсом, которая по заданным значениям параметров  $A, f, t_0, r, p, x_0, a, b, c, x_{11}, x_{12}$  определяет, разрешима ли задача (1.1). Если задача разрешима, программа должна (приближённо) найти значение T и построить графики компонент оптимального управления, оптимальной траектории, сопряжённых переменных. Кроме того, программа должна допускать возможность улучшения решения, как локальным, так и глобальным методами.
- 2. Для различных значений параметров (в том числе, для различных собственных значений матрицы A) провести анализ системы (1.1), численно решить задачу и построить соответствующие графики.

#### 1.2 Формальная постановка задачи

- 1. Провести необходимые исследования системы (1.1) и привести сопутствующие теоретические выкладки;
- 2. Разработать и описать численный метод решения задачи и возникающих подзадач;
- 3. Реализовать на языке MATLAB программу, удовлетворяющую условиям из 1.1 и реализующую численный метод из пункта 2. Для этого, реализовать:
  - Пользовательский интерфейс ввода исходных данных;
  - Алгоритм поиска управлений и траекторий, подозрительных на оптимальные, а также алгоритм отбора из них оптимальных (при наличии таковых);
  - Алгоритм и интерфейс построения требуемых графиков;
  - Алгоритм локального и глобального улучшения решения;

- Алгоритм сохранения и загрузки промежуточных данных, значений параметров и полученных ответов.
- 4. Построить, используя написанную программу, графики для различных значений параметров и проанализировать полученные решения.

### 2 Некоторые необходимые теоретические выкладки

Прежде всего, установим принцип максимума Понтрягина в следующей формулировке:<sup>1</sup>

#### Принцип Максимума Понтрягина (В формулировке из [3])

Пусть  $(u^*(\cdot), x^*(\cdot))$  — оптимальная пара. Тогда существует  $\psi(t) \in AC[t_0, t_1], t \in [t_0, t_1]$ :

$$\dot{\psi} = -A^T \psi \tag{2.1}$$

$$\langle Bu^*(t), \psi(t) \rangle = \rho(\psi(t)|B\mathcal{P})$$
 (2.2)

$$\langle \psi(t_0), x^*(t_0) \rangle = \rho(\psi(t_0)|\mathcal{X}_0) \tag{2.3}$$

$$\langle -\psi(t_1), x^*(t_1) \rangle = \rho(-\psi(t_1)|\mathcal{X}_1) \tag{2.4}$$

Систему (2.1) называют сопряжённой системой, её решение  $\psi=\psi(t)-$  сопряжёнными переменными, а условия (2.3) и (2.4)- условиями трансверсальности. Условие (2.2) позволяет выделить из всех возможных управлений семейство «подозрительных» на оптимальные.

Для того, чтобы однозначно определить решение системы (2.1), нам необходимо присовокупить к ней некоторые начальные условия. В результате получим задачу Коши для сопряжённой системы:

$$\begin{cases} \dot{\psi}(t) = -A^T \psi(t), \ t \in [t_0, t_1] \\ \psi(t_0) = \psi_0 \\ \psi(t_1) = \psi_1 \end{cases}$$
(2.5)

Условие (2.2), в силу свойств скалярного произведения, можно переписать в следующем виде:

$$\langle B^T \psi(t), u^*(t) \rangle = \rho(B^T \psi(t) | \mathcal{P})$$

В свою очередь, раскрыв определение опорной функции множества  $\mathcal{P}$  в направлении  $B^T\psi(t)$ , окончательно получим:

$$\langle B^T \psi(t), u^*(t) \rangle = \sup_{u(t) \in \mathcal{P}} \langle B^T \psi(t), u(t) \rangle$$
 (2.6)

Заметим, что множество  $\mathcal{P}$  (см. (1.2)) есть эллипсоид  $\mathcal{E}(p,P)$ , где  $P=\begin{pmatrix} \frac{1}{3} & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$  — матрица конфигурации. Из [1] известно, что решение уравнения (2.6)  $u^*(t)$  представимо в виде:

$$u^*(t) = p + \frac{PB^T \psi(t)}{\sqrt{\langle B^T \psi(t), PB^T \psi(t) \rangle}}$$
 (2.7)

Данное выражение корректно при  $B \neq 0$ , так как из [2] и [4] известно, что  $\psi(t) \neq 0$  для любого допустимого t, а  $P \neq 0$ .

### 3 Написание функции plotFT

#### 3.1 Разбиение на подзадачи

Написание функции plotFT удобно делать по частям, разбив поставленнию задачу на следующие подзадачи

<sup>&</sup>lt;sup>1</sup>Доказательство приведено, например, в [4]

- 1. Вычисление аппроксимации преобразования Фурье
- 2. Подготовка фигуры к выводу графиков
- 3. Вывод графиков быстрого и, при необходимости, аналитического преобразований Фурье

Соответственно, будем решать подзадачи в приведённом порядке, приводя необходимые выкладки и теоретические обоснования<sup>1</sup>.

#### 3.2 Вычисление аппроксимации преобразования Фурье

1. Найдем число вычисляемых узлов сеточной функции nPoints, хранимое в переменной n по формуле (??):

```
a = inpLimVec(1);
b = inpLimVec(2);
n = floor((b - a) ./ step) + 1;
```

2. Откорректируем значение шага step в соответствии с числом точек (формула (??)):

$$step = (b - a) ./ (n - 1);$$

3. Вычислим на сетке [a,b], состоящей из  $\mathbf{n}$  точек значения самой функции f(t), тем самым получим дискретизацию  $f_{\text{дискр}}(t)$ , затем воспользуемся функциями MATLAB fft() и fftshift(), первая из которых вычисляет дискретное преобразование Фурье (ДПФ) функции  $f_{\text{дискр}}(t)$ , однако возвращает вектор значений в зеркальном виде, а вторая — «отзеркаливает» этот вектор, приводя его к нормальному виду<sup>2</sup>. Искомая аппроксимация преобразования Фурье  $F(\lambda)$  вычисляется по следующей формуле (доказательство её справедливости приведено в [?]):

$$F(\lambda) = \text{step} \cdot F_{\text{MMCKD}}(\lambda) \tag{3.1}$$

Здесь  $F_{\text{дискр}}(\lambda)$  — вектор значений **ДПФ** функции  $f_{\text{дискр}}(t)$ , полученный путем применения fftshift(fft(...)) к вектору значений  $f_{\text{дискр}}(t)$  на заданной сетке. Приведём, в заключение, общую схему работы данного этапа:

$$f(t) \xrightarrow[\text{на сетке}]{\text{дискр}(t)} f_{\text{дискр}}(t) \xrightarrow[]{\text{fftshift(fft())}} F_{\text{дискр}}(\lambda) \xrightarrow[]{(3.1)} F(\lambda)$$

<sup>&</sup>lt;sup>1</sup>Полный код функции plotFT приведён в приложении ?? (стр. ??)

 $<sup>^{2}</sup>$ Здесь и далее все использованные средства языка MATLAB и спецификации взяты из [3] и [5]

4. Преобразование Фурье рассматривается на отрезке  $\left[\frac{-\pi}{\Delta t}, \frac{\pi}{\Delta t}\right]$ , длины  $2\pi/\Delta t$ , разбитом на nSteps точек. Обратившись к [?], установим следующее свойство преобразования Фурье:

$$f(t-t_0) \to e^{-i\lambda t_0} F(\lambda)$$

Соответственно, для получения желаемого результата, полученный вектор значений  $\Pi\Phi$  следует домножить на соответствующие значения экспоненты.

#### 3.3 Подготовка фигуры к выводу графиков

В поле UserData фигуры fHandle будем хранить handle двух соответствующих осей (axes), а также окно вывода по оси абсцисс  $\lambda$ . В случае, если UserData у поданной фигуры пуст, сформируем его, построив две оси для вещественной и мнимой частей преобразования Фурье, соответствующим образом выбирая окно вывода: для этого просматриваем вектор значений ДПФ и находим левую и правую границы, на которых значение превышает некоторое  $\varepsilon$ , обозначенное в программе как moe (англ. margin of error). При наличии у фигуры поля UserData, но отсутствии в нём осей и/или пределов, дополним недостающие поля аналогичным образом. Наконец, сформированную структуру запишем в поле UserData фигуры fHandle.

#### 3.4 Вывод графиков

Вывод графиков осуществляется стандартными средствами языка MATLAB, при этом, если поле fFTHandle не пусто, то выводится и график функции, на которую указывает fFTHandle.

### 4 Вычисление аналитических преобразований Фурье

#### 4.1 Некоторые необходимые обозначения и соотношения

Напомним, что преобразование Фурье  $\mathfrak{F}(\lambda)$  функции f(t) задаётся формулой (??):

$$\mathfrak{F}(\lambda) = \int_{-\infty}^{+\infty} f(t)e^{-i\lambda t} dt$$

Впредь, будем для краткости писать:

$$f(t) \to \mathfrak{F}(\lambda)$$

Напомним также следующие свойства преобразования Фурье:

Свойство 4.1. Пусть

$$f(t) = \alpha \cdot f_1(t) + \beta \cdot f_2(t), \ u \begin{cases} f_1(t) \to \mathfrak{F}_1(\lambda) \\ f_2(t) \to \mathfrak{F}_2(\lambda) \end{cases}$$

Тогда:

$$f(t) \to \alpha \cdot \mathfrak{F}_1(\lambda) + \beta \cdot \mathfrak{F}_2(\lambda)$$

Свойство 4.2. Пусть

$$f(t) = f_1(t) \cdot f_2(t)$$
,  $u \begin{cases} f_1(t) \to \mathfrak{F}_1(\lambda) \\ f_2(t) \to \mathfrak{F}_2(\lambda) \end{cases}$ 

Тогда:

$$2\pi f_1(t)\cdot f_2(t)\to (\mathfrak{F}_1\ast\mathfrak{F}_2)(\lambda)\ ,\ \text{ide } (\mathfrak{F}_1\ast\mathfrak{F}_2)(\lambda)=\int\limits_{-\infty}^{+\infty}\left[\mathfrak{F}_1(\lambda-s)\cdot\mathfrak{F}_2(s)\right]ds$$

Отметим некоторые тривиальные преобразования Фурье:

$$\delta(\lambda) \to 1$$
 (4.1)

$$1 \to 2\pi\delta(\lambda) \tag{4.2}$$

$$e^{iat} \to 2\pi\delta(\lambda - a)$$
 (4.3)

$$\cos(t) = \frac{e^{it} + e^{-it}}{2} \to \pi(\delta(\lambda - 1) + \delta(\lambda + 1))$$
(4.4)

$$\frac{1}{t} \to -i\pi \operatorname{sgn}(t) \tag{4.5}$$

Где  $\delta(t) = \begin{cases} +\infty, & t=0 \\ 0, & t\neq 0 \end{cases}$  — дельта-функция Дирака, а соотношение (4.4) вытекает из свойства 4.1, с учётом (4.3).

<sup>&</sup>lt;sup>1</sup>Вывод этих преобразований, а также доказательства свойств (4.1) и (4.2) можно найти в ?

Установим также важное отношения для свёртки дельта-функции с произвольной функцией  $\varphi(t)$ :

$$\left[ \left( \delta * \varphi \right) (s) = \int_{-\infty}^{+\infty} \delta(s - T) \cdot \varphi(T) \, dT = \varphi(s) \right] \tag{4.6}$$

Докажем следующее соотношение:

Лемма 4.1.

$$e^{-A|t|} \to \frac{2A}{A^2 + \lambda^2} \tag{4.7}$$

Доказательство:

$$\int_{-\infty}^{+\infty} e^{-A|t|} \cdot e^{-i\lambda t} dt = \int_{-\infty}^{0} e^{(A-i\lambda)t} dt + \int_{0}^{+\infty} e^{-(A+i\lambda)t} dt =$$

$$= \left[ e^{(A-i\lambda)t} \cdot \frac{1}{A-i\lambda} \right]_{t=-\infty}^{0} - \left[ e^{-(A+i\lambda)t} \cdot \frac{1}{A+i\lambda} \right]_{t=0}^{+\infty} =$$

$$= \frac{1}{A-i\lambda} + \frac{1}{A+i\lambda} = \frac{2A}{A^2 + \lambda^2}$$

# **4.2** Вычисление аналитического преобразования Фурье функции $f_1(t) = e^{-2|t|}\cos(t)$

Преобразование Фурье  $\mathfrak{F}_1(\lambda)$  функции  $f_1(t)=e^{-2|t|}\cos(t)$  задаётся формулой:

$$\mathfrak{F}_{1}(\lambda) = \int_{-\infty}^{+\infty} e^{-2|t|} \cos(t) e^{-i\lambda t} dt$$

Утверждение.

$$\boxed{\mathfrak{F}_1(\lambda) = \frac{4(\lambda^2 + 5)}{\lambda^4 + 6\lambda^2 + 25}} \tag{4.8}$$

Доказательство: Заметим, что  $f_1(t)$  представима в виде:

$$f_1(t) = g_1(t) \cdot g_2(t), \text{ где } g_1(t) = e^{-2|t|}, g_2(t) = \cos(t)$$
 (4.9)

Пользуясь этим соотношением, выражениями для преобразований Фурье  $g_1(t)$  (4.7) и  $g_2(t)$  (4.4), установленным свойством 4.2 и соотношением (4.6) для свёртки с дельтафункцией, получим:

$$\mathfrak{F}_{1}(\lambda) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{4}{4+T^{2}} \cdot \pi(\delta(\lambda-T-1) + \delta(\lambda+1-T)) dT =$$

$$= \frac{2}{4+(\lambda-1)^{2}} + \frac{2}{4+(\lambda+1)^{2}} = \frac{4(\lambda^{2}+5)}{\lambda^{4}+6\lambda^{2}+25}$$

# 4.3 Вычисление аналитического преобразования Фурье функции $f_2(t) = \frac{e^{-|t|}-1}{t}$

Преобразование Фурье  $\mathfrak{F}_2(\lambda)$  функции  $f_2(t)=rac{e^{-|t|}-1}{t}$  задаётся формулой:

$$\mathfrak{F}_{2}(\lambda) = \int_{-\infty}^{+\infty} \frac{e^{-|t|} - 1}{t} e^{-i\lambda t} dt$$

Утверждение.

$$\left[\mathfrak{F}_{2}(\lambda) = i\left(\pi \operatorname{sgn}(\lambda) - 2\operatorname{arctg}(\lambda)\right)\right] \tag{4.10}$$

Доказательство: Аналогично (4.9) представим  $f_2(t)$  в виде:

$$f_2(t) = g_1(t) \cdot g_2(t)$$
 где  $g_1(t) = \left(e^{-|t|} - 1\right), g_2(t) = \frac{1}{t}$  (4.11)

Пользуясь установленными свойствами 4.1, 4.2, выражениями для преобразований Фурье  $g_1(t)$  (4.7), (4.2) и  $g_2(t)$  (4.5) и соотношением (4.6) для свёртки с дельта-функцией, получим:

$$f_2(t) \to \mathfrak{F}_2(\lambda) = \int_{-\infty}^{+\infty} \frac{e^{-|t|} - 1}{t} e^{-i\lambda t} dt = \frac{1}{\pi} \left[ \left( \frac{1}{1 + (\cdot)^2} - \pi \delta(\cdot) \right) * (-i\pi \operatorname{sgn}(\cdot)) \right] (\lambda) =$$

$$= -i \int_{\lambda}^{+\infty} \frac{1}{1 + T^2} dT + i \int_{-\infty}^{\lambda} \frac{1}{1 + T^2} dT + \pi i \operatorname{sgn}(\lambda) =$$

$$= i (\pi \operatorname{sgn}(\lambda) - 2 \operatorname{arctg}(\lambda))$$

#### Список литературы

- [1] И. В. Рублёв. Лекционный курс Оптимальное Управление (Линейные Системы), кафедра Системного Анализа, Факультет Вычислительной Математики и Кибернетики, МГУ им. М. В. Ломоносова, 2017
- [2] И. В. Рублёв. Лекционный курс Оптимальное Управление (Нелинейные Системы), кафедра Системного Анализа, Факультет Вычислительной Математики и Кибернетики, МГУ им. М. В. Ломоносова, 2018
- [3] Точилин П. А. *Лекционный курс Программирование на языке МАТLAB*, кафедра Системного Анализа, Факультет Вычислительной Математики и Кибернетики, МГУ им. М. В. Ломоносова, 2017 2018
- [4] Понтрягин Л. С., Болтянский В. Г., Гамкрелидзе Р. В., Мищенко Е. Ф. Математическая теория оптимальных процессов, М.: Наука, 1976.
- [5] Справочные средства языка МАТLAВ