Тематическое моделирование

K. B. Воронцов vokov@forecsys.ru

Этот курс доступен на странице вики-ресурса http://www.MachineLearning.ru/wiki «Машинное обучение (курс лекций, К.В.Воронцов)»

ШАД Яндекс • 17 октября 2017

Содержание

- 🚺 Вероятностное тематическое моделирование
 - Цели, приложения, постановка задачи
 - Аддитивная регуляризация тематических моделей
 - Классические модели: PLSA и LDA
- Регуляризация тематических моделей
 - Мультимодальные тематические модели
 - Классификация и регрессия на текстах
 - Разделение тем на предметные и фоновые
- 3 Оценивание качества и эксперименты
 - Внутренние (intrinsic) критерии качества
 - Внешние (extrinsic) критерии качества
 - Несколько примеров

Что такое «тема» в коллекции текстовых документов?

- тема семантически однородный кластер текстов
- тема специальная терминология предметной области
- тема набор терминов (слов или словосочетаний), совместно часто встречающихся в документах

Более формально,

- тема условное распределение на множестве терминов, p(w|t) вероятность термина w в теме t;
- тематический профиль документа условное распределение p(t|d) вероятность темы t в документе d.

Когда автор писал термин w в документе d, он думал о теме t, и мы хотели бы выявить, о какой именно.

Тематическая модель выявляет латентные темы по наблюдаемым распределениям слов p(w|d) в документах.

Приложения тематического моделирования

разведочный поиск в электронных библиотеках

персонализированный поиск в соцсетях

мультимодальный поиск текстов и изображений

детектирование и трекинг

навигация по большим текстовым коллекциям

управлением диалогом в разговорном интеллекте

Пусть

- W конечное множество слов (терминов, токенов)
- D конечное множество текстовых документов
- Т конечное множество тем
- ullet каждое слово w в документе d связано с некоторой темой t
- ullet D imes W imes T дискретное вероятностное пространство
- порядок слов в документе не важен (bag of words)
- порядок документов в коллекции не важен
- ullet коллекция это i.i.d. выборка $(d_i,w_i,t_i)_{i=1}^n \sim p(d,w,t)$
- \bullet d_i, w_i наблюдаемые, темы t_i скрытые
- ullet гипотеза условной независимости: p(w|d,t)=p(w|t)

Тематическая модель, по формуле полной вероятности:

$$p(w|d) = \sum_{t \in T} p(w|\mathbf{x}|t) p(t|d)$$

Прямая задача — порождение коллекции по p(w|t) и p(t|d)

Вероятностная тематическая модель коллекции документов D описывает появление терминов w в документах d темами t:

$$p(w|d) = \sum_{t \in T} p(w|t) p(t|d)$$

Разработам спектрально-аналитический подход к выявлению размытых протяженных повторов в геномных последовательностях. Метод основан на разномасилатьном оценивании сходства нуклеотидных последовательностей в пространстве коэффициентов разложения фрагментов кривых GC- и GA-содержания по классическим ортогональным базисам. Найдены условия оптимальной аппроксимации, обеспечивающие автоматическое распознавание повторов различных видов (прямых и инвертированных, а также тандемных) на спектральной матрице сходства. Метод одинаково хорошо работает на разных масштабах данных. Он позволяет выявлять следы сегментных дупликаций и мегасателлитные участки в геноме, районы синтении при сравнении пары геномов. Его можно использовать для дегального изучения фрагментов хормосом (поиска размытых участков с умеренной длиной повторяющегося паттериа).

Обратная задача — восстановление p(w|t) и p(t|d) по коллекции

Дано: коллекция текстовых документов

ullet n_{dw} — частоты терминов в документах, $\hat{p}(w|d) = rac{n_{dw}}{n_{d}}$

Найти: параметры тематической модели $p(w|d) = \sum\limits_{t \in T} \phi_{wt} \theta_{td}$

- ullet $\phi_{wt} = p(w|t)$ вероятности терминов w в каждой теме t
- ullet $heta_{td} = p(t|d)$ вероятности тем t в каждом документе d

Это задача стохастического матричного разложения:

Принцип максимума правдоподобия

Правдоподобие — плотность распределения выборки $(d_i, w_i)_{i=1}^n$:

$$\prod_{i=1}^n p(d_i, w_i) = \prod_{d \in D} \prod_{w \in d} p(d, w)^{n_{dw}}$$

Максимизация логарифма правдоподобия

$$\sum_{d \in D} \sum_{w \in d} n_{dw} \ln \frac{p(w|d)}{p(d)} p(d) \to \max_{\Phi, \Theta}$$

эквивалентна максимизации функционала

$$\mathscr{L}(\Phi,\Theta) = \sum_{d \in D} \sum_{w \in d} n_{dw} \ln \sum_{t \in T} \phi_{wt} \theta_{td} \rightarrow \max_{\Phi,\Theta}$$

при ограничениях неотрицательности и нормировки

$$\phi_{wt} \geqslant 0; \quad \sum_{w \in W} \phi_{wt} = 1; \qquad \theta_{td} \geqslant 0; \quad \sum_{t \in T} \theta_{td} = 1.$$

Задачи, некорректно поставленные по Адамару

Задача корректно поставлена, если её решение

- существует,
- единственно,
- устойчиво.

Жак Саломон Адамар (1865–1963)

Наша задача матричного разложения *некорректно поставлена*: если Φ, Θ — решение, то стохастические Φ', Θ' — тоже решения

- $\Phi'\Theta' = (\Phi S)(S^{-1}\Theta)$, rank S = |T|
- $\mathscr{L}(\Phi', \Theta') = \mathscr{L}(\Phi, \Theta)$
- ullet $\mathscr{L}(\Phi',\Theta')\leqslant \mathscr{L}(\Phi,\Theta)+arepsilon$ приближённые решения

Регуляризация — стандартный приём доопределения решения с помощью дополнительных критериев.

ARTM: аддитивная регуляризация тематических моделей

Максимизация логарифма правдоподобия с регуляризатором:

$$\sum_{d,w} n_{dw} \ln \sum_{t \in T} \phi_{wt} \theta_{td} + R(\Phi,\Theta) \rightarrow \max_{\Phi,\Theta}; \quad R(\Phi,\Theta) = \sum_{i} \tau_{i} R_{i}(\Phi,\Theta)$$

ЕМ-алгоритм: метод простой итерации для системы уравнений

Е-шаг:
$$\begin{cases} p_{tdw} \equiv p(t|d,w) = \underset{t \in T}{\operatorname{norm}} \left(\phi_{wt}\theta_{td}\right) \\ \phi_{wt} = \underset{w \in W}{\operatorname{norm}} \left(n_{wt} + \phi_{wt} \frac{\partial R}{\partial \phi_{wt}}\right), \quad n_{wt} = \sum_{d \in D} n_{dw} p_{tdw} \\ \theta_{td} = \underset{t \in T}{\operatorname{norm}} \left(n_{td} + \theta_{td} \frac{\partial R}{\partial \theta_{td}}\right), \quad n_{td} = \sum_{w \in d} n_{dw} p_{tdw} \end{cases}$$

где
$$\operatorname{norm}_{t \in T}(x_t) = \frac{\max\{x_t, 0\}}{\sum\limits_{s \in T} \max\{x_s, 0\}}$$
 — операция нормировки вектора.

Элементарная интерпретация ЕМ-алгоритма

ЕМ-алгоритм — это чередование Е и М шагов до сходимости.

Е-шаг: условные вероятности тем p(t|d,w) для всех t,d,w вычисляются через $\phi_{wt},\;\theta_{td}$ по формуле Байеса:

$$p(t|d,w) = \frac{p(w,t|d)}{p(w|d)} = \frac{p(w|t)p(t|d)}{p(w|d)} = \frac{\phi_{wt}\theta_{td}}{\sum_{s}\phi_{ws}\theta_{sd}}.$$

М-шаг: при R=0 частотные оценки условных вероятностей вычисляются суммированием счётчика $n_{tdw}=n_{dw}p(t|d,w)$:

$$\begin{split} \phi_{wt} &= \frac{n_{wt}}{n_t}, & n_{wt} &= \sum_{d \in D} n_{tdw}, & n_t &= \sum_{w \in W} n_{wt}; \\ \theta_{td} &= \frac{n_{td}}{n_d}, & n_{td} &= \sum_{w \in d} n_{tdw}, & n_d &= \sum_{t \in T} n_{td}. \end{split}$$

Условия вырожденности модели для тем и документов

Решение может быть вырожденным для некоторых тем (столбцов матриц Φ) и документов (столбцов матрицы Θ).

 $\mathit{Tema}\ t\ \mathit{вырожденa},\ \mathsf{если}\ \mathsf{дл}\mathsf{Я}\ \mathsf{всеx}\ \mathsf{терминов}\ w\in W$

$$n_{wt} + \phi_{wt} \frac{\partial R}{\partial \phi_{wt}} \leqslant 0.$$

Если тема t вырождена, то $p(w|t) = \phi_{wt} \equiv 0$; это означает, что тема исключается из модели (происходит отбор тем).

Документ d вырожден, если для всех тем $t \in \mathcal{T}$

$$n_{td} + \theta_{td} \frac{\partial R}{\partial \theta_{td}} \leq 0.$$

Если документ d вырожден, то $p(t|d) = \theta_{td} \equiv 0$; это означает, что модель не в состоянии описать данный документ.

Напоминания. Условия Каруша-Куна-Таккера

Задача математического программирования:

$$\begin{cases} f(x) \to \min_{x}; \\ g_{i}(x) \leqslant 0, \quad i = 1, \dots, m; \\ h_{j}(x) = 0, \quad j = 1, \dots, k. \end{cases}$$

Необходимые условия. Если x — точка локального минимума, то существуют множители μ_i , $i=1,\ldots,m$, λ_j , $j=1,\ldots,k$:

$$\begin{cases} \frac{\partial \mathscr{L}}{\partial x} = 0, & \mathscr{L}(x; \mu, \lambda) = f(x) + \sum\limits_{i=1}^{m} \mu_i g_i(x) + \sum\limits_{j=1}^{k} \lambda_j h_j(x); \\ g_i(x) \leqslant 0; & h_j(x) = 0; \text{ (исходные ограничения)} \\ \mu_i \geqslant 0; & \text{ (двойственные ограничения)} \\ \mu_i g_i(x) = 0; & \text{ (условие дополняющей нежёсткости)} \end{cases}$$

Вывод системы уравнений из условий Каруша-Куна-Таккера

1. Условия ККТ для ϕ_{wt} (для θ_{td} всё аналогично):

$$\sum_{d} n_{dw} \frac{\theta_{td}}{p(w|d)} + \frac{\partial R}{\partial \phi_{wt}} = \lambda_t - \mu_{wt}; \quad \mu_{wt} \geqslant 0; \quad \mu_{wt} \phi_{wt} = 0.$$

2. Умножим обе части равенства на ϕ_{wt} и выделим p_{tdw} :

$$\phi_{wt}\lambda_t = \sum_d n_{dw} \frac{\phi_{wt}\theta_{td}}{p(w|d)} + \phi_{wt} \frac{\partial R}{\partial \phi_{wt}} = n_{wt} + \phi_{wt} \frac{\partial R}{\partial \phi_{wt}}.$$

- 3. Если $\lambda_t \leqslant 0$, то тема t вырождена, $\phi_{wt} \equiv 0$ для всех w .
- 4. Если $\lambda_t>0$, то либо $\phi_{wt}=0$, либо $n_{wt}+\phi_{wt}\frac{\partial R}{\partial \phi_{wt}}>0$:

$$\phi_{wt}\lambda_t = \left(n_{wt} + \phi_{wt} \frac{\partial R}{\partial \phi_{wt}}\right)_+.$$

5. Суммируем обе части равенства по $w \in W$:

$$\lambda_t = \sum_{w \in W} \left(n_{wt} + \phi_{wt} \frac{\partial R}{\partial \phi_{wt}} \right)_+.$$

6. Подставим λ_t из (5) в (4), получим требуемое. ■

Рациональный ЕМ-алгоритм для тематического моделирования

```
Идея: Е-шаг встраивается внутрь М-шага,
чтобы не хранить трёхмерный массив значений n_{dwt}.
Вход: коллекция D, число тем |T|, число итераций i_{max};
Выход: матрицы терминов тем \Theta и тем документов \Phi;
инициализация \phi_{wt}, \theta_{td} для всех d \in D, w \in W, t \in T;
для всех итераций i=1,\ldots,i_{\mathsf{max}}
     n_{wt}, n_{td} := 0 для всех d \in D, w \in W, t \in T;
     для всех документов d \in D и всех слов w \in d
          n_{tdw}:=n_{dw} \operatorname{norm}_{t \in \mathcal{T}} \left(\phi_{wt} 	heta_{td} 
ight) для всех t \in \mathcal{T};
          увеличить n_{wt}, n_{td} на n_{tdw} для всех t \in \mathcal{T};
    \phi_{wt} := \underset{w \in W}{\mathsf{norm}} \Big( n_{wt} + \phi_{wt} \frac{\partial R}{\partial \phi_{wt}} \Big) для всех w \in W, t \in \mathcal{T};
    	heta_{td}:= \operatorname*{norm}_{t \in \mathcal{T}} \left( n_{td} + 	heta_{td} rac{\partial R}{\partial 	heta_{td}} 
ight) для всех d \in \mathcal{D}, t \in \mathcal{T};
```

Классические модели PLSA и LDA

PLSA: probabilistic latent semantic analysis [Hofmann, 1999] (вероятностный латентный семантический анализ):

$$R(\Phi,\Theta)=0.$$

М-шаг — частотные оценки условных вероятностей:

$$\phi_{wt} = \underset{w}{\mathsf{norm}} (n_{wt}), \qquad \theta_{td} = \underset{t}{\mathsf{norm}} (n_{td}).$$

LDA: latent Dirichlet allocation (латентное размещение Дирихле):

$$R(\Phi,\Theta) = \sum_{t,w} (\beta_w - 1) \ln \phi_{wt} + \sum_{d,t} (\alpha_t - 1) \ln \theta_{td}.$$

М-шаг — сглаженные частотные оценки с параметрами β_{w} , α_{t} :

$$\phi_{wt} = \underset{w}{\mathsf{norm}} \big(n_{wt} + \frac{\beta_w}{-1} \big), \qquad \theta_{td} = \underset{t}{\mathsf{norm}} \big(n_{td} + \frac{\alpha_t}{-1} \big).$$

Hofmann T. Probabilistic latent semantic indexing. SIGIR 1999. Blei D., Ng A., Jordan M. Latent Dirichlet allocation. 2003.

Вероятностная байесовская интерпретация LDA [Blei, 2003]

Гипотеза. Вектор-столбцы $\phi_t = (\phi_{wt})_{w \in W}$ и $\theta_d = (\theta_{td})_{t \in T}$ порождаются распределениями Дирихле, $\alpha \in \mathbb{R}^{|T|}$, $\beta \in \mathbb{R}^{|W|}$:

$$\operatorname{Dir}(\phi_t|\beta) = \frac{\Gamma(\beta_0)}{\prod\limits_{w} \Gamma(\beta_w)} \prod\limits_{w} \phi_{wt}^{\beta_w-1}, \quad \phi_{wt} > 0; \quad \beta_0 = \sum\limits_{w} \beta_w, \ \beta_t > 0;$$

$$\mathrm{Dir}(\theta_d|\alpha) = \frac{\Gamma(\alpha_0)}{\prod\limits_t \Gamma(\alpha_t)} \prod\limits_t \theta_{td}^{\alpha_t - 1}, \quad \theta_{td} > 0; \quad \alpha_0 = \sum\limits_t \alpha_t, \ \alpha_t > 0;$$

Пример. Распределение $\mathsf{Dir}(\phi|\beta)$ при $|W|=10, \ \phi,\beta\in\mathbb{R}^{10}$:

Максимизация апостериорной вероятности для модели LDA

Совместное правдоподобие данных и модели:

$$\ln \prod_{d \in D} \prod_{w \in d} p(d, w | \Phi, \Theta)^{n_{dw}} \prod_{t \in T} \mathsf{Dir}(\phi_t | \beta) \prod_{d \in D} \mathsf{Dir}(\theta_d | \alpha) \to \max_{\Phi, \Theta}$$

Регуляризатор — логарифм априорного распределения:

$$R(\Phi, \Theta) = \sum_{t,w} (\beta_w - 1) \ln \phi_{wt} + \sum_{d,t} (\alpha_t - 1) \ln \theta_{td}$$

М-шаг — сглаженные или слабо разреженные оценки:

$$\phi_{wt} = \underset{w}{\mathsf{norm}} (n_{wt} + \beta_w - 1), \qquad \theta_{td} = \underset{t}{\mathsf{norm}} (n_{td} + \alpha_t - 1).$$

при $\beta_w>1$, $\alpha_t>1$ — сглаживание, при $0<\beta_w<1$, $0<\alpha_t<0$ — слабое разреживание, при $\beta_w=1$, $\alpha_t=1$ априорное распределение равномерно, PLSA.

Почему именно распределение Дирихле?

Плюсы:

- удобно для байесовского вывода, т. к. является сопряжённым к мультиномиальному распределению
- описывает широкий класс распределений на симплексе
- ullet позволяет управлять разреженностью $\phi_{\it wt}$ и $heta_{\it td}$
- ullet при малых n_{wt} , n_{td} уменьшает переобучение

Минусы:

- не имеет лингвистических обоснований
- не даёт выигрыша против PLSA на больших коллекциях
- ullet слабый разреживатель: запрещены $eta_w \leqslant 0, \ lpha_t \leqslant 0$
- слабый регуляризатор: проблема неединственности остаётся

Задачи мультимодального тематического моделирования

Темы определяют распределения не только терминов p(w|t), но и других модальностей: $p(\mathsf{автор}|t)$, $p(\mathsf{время}|t)$, $p(\mathsf{ссылкa}|t)$, $p(\mathsf{баннер}|t)$, $p(\mathsf{элемент}$ изображения|t), $p(\mathsf{пользователь}|t)$,...

Мультимодальная ARTM

 W^m — словарь токенов m-й модальности, $m \in M$

Максимизация суммы log правдоподобий с регуляризацией:

$$\sum_{\mathbf{m} \in \mathbf{M}} \tau_{\mathbf{m}} \sum_{d \in D} \sum_{\mathbf{w} \in \mathbf{W}^{\mathbf{m}}} n_{d\mathbf{w}} \ln \sum_{t \in T} \phi_{\mathbf{w}t} \theta_{td} + R(\Phi, \Theta) \ \rightarrow \ \max_{\Phi, \Theta}$$

ЕМ-алгоритм: метод простой итерации для системы уравнений

Е-шаг:
$$\begin{cases} p_{tdw} = \underset{t \in T}{\mathsf{norm}} \left(\phi_{wt} \theta_{td} \right) \\ \phi_{wt} = \underset{w \in \mathcal{W}^m}{\mathsf{norm}} \left(n_{wt} + \phi_{wt} \frac{\partial R}{\partial \phi_{wt}} \right), \quad n_{wt} = \sum_{d \in D} \tau_{m(w)} n_{dw} p_{tdw} \\ \theta_{td} = \underset{t \in T}{\mathsf{norm}} \left(n_{td} + \theta_{td} \frac{\partial R}{\partial \theta_{td}} \right), \quad n_{td} = \sum_{w \in d} \tau_{m(w)} n_{dw} p_{tdw} \end{cases}$$

Регуляризатор для классификации и категоризации текстов

Y — множество классов:

 $n_{dv} = [$ документ d относится к классу y] — обучающие данные;

$$p(y|d) = \sum\limits_{t \in \mathcal{T}} \phi_{yt} heta_{td}$$
 — линейная модель классификации.

Регуляризатор — правдоподобие модальности классов:

$$R(\Phi,\Theta) = \tau \sum_{d \in D} \sum_{y \in Y} n_{dy} \ln \sum_{t \in T} \phi_{yt} \theta_{td} \ \rightarrow \ \max,$$

это тематическая модель с двумя модальностями, W и Y. TM превосходит SVM в случае несбалансированных классов.

Rubin T. N., Chambers A., Smyth P., Steyvers M. Statistical topic models for multi-label document classification. Machine Learning, 2012.

Vorontsov, Frei, Apishev, Romov, Suvorova, Yanina. Non-Bayesian additive regularization for multimodal topic modeling of large collections. CIKM-2015 WTM.

Регуляризатор для задач регрессии

 $y_d \in \mathbb{R}$ для всех документов d — обучающие данные.

$$E(y|d) = \sum\limits_{t \in T} v_t heta_{td}$$
 — линейная модель регрессии, $v \in \mathbb{R}^{|T|}$.

Регуляризатор — среднеквадратичная ошибка (МНК):

$$R(\Theta, v) = -\tau \sum_{d \in D} \left(y_d - \sum_{t \in T} v_t \theta_{td} \right)^2 \to \max$$

Подставляем, получаем формулы М-шага:

$$\theta_{td} = \underset{t \in T}{\text{norm}} \left(n_{td} + \tau v_t \theta_{td} \left(y_d - \sum_{t \in T} v_t \theta_{td} \right) \right);$$
$$v = (\Theta \Theta^{\mathsf{T}})^{-1} \Theta y.$$

Sokolov E., Bogolubsky L. Topic Models Regularization and Initialization for Regression Problems // CIKM-2015 Workshop on Topic Models. ACM, pp. 21-27.

Примеры задач регрессии на текстах

```
MovieReview [Pang, Lee, 2005]
d — текст отзыва на фильм
y_d — рейтинг фильма (1..5), поставленный автором отзыва
Salary (kaggle.com: Adzuna Job Salary Prediction)
d — описание вакансии, предлагаемой работодателем
y_d — годовая зарплата
Yelp (kaggle.com: Yelp Recruiting Competition)
d — отзыв (на ресторан, отель, сервис и т.п.)
y_d — число голосов «useful», которые получит отзыв
Прогнозирование скачков цен на финансовых рынках
d — текст новости
y_d — изменение цены в последующие 10–60 минут
```

B. Pang, L. Lee. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales // ACL, 2005.

Разделение тем на предметные и фоновые

Предметные темы S содержат термины предметной области, $p(w|t),\; p(t|d),\; t\in S$ — разреженные, существенно различные

 \mathcal{D} оновые темы B содержат слова общей лексики, $p(w|t),\; p(t|d),\; t\in B$ — существенно отличные от нуля

Регуляризаторы сглаживания и разреживания

Сглаживание фоновых тем:

Распределения ϕ_{wt} близки к заданному распределению eta_w Распределения θ_{td} близки к заданному распределению α_t

$$R(\Phi,\Theta) = \beta_0 \sum_{t \in B} \sum_{w \in W} \beta_w \ln \phi_{wt} + \alpha_0 \sum_{d \in D} \sum_{t \in B} \alpha_t \ln \theta_{td} \rightarrow \max,$$

где eta_0 , $lpha_0$ — коэффициенты регуляризации

Разреживание предметных тем:

Распределения ϕ_{wt} далеки от заданного распределения eta_w Распределения θ_{td} далеки от заданного распределения α_t

$$R(\Phi,\Theta) = -\beta_0 \sum_{t \in S} \sum_{w \in W} \beta_w \ln \phi_{wt} - \alpha_0 \sum_{d \in D} \sum_{t \in S} \alpha_t \ln \theta_{td} \rightarrow \max.$$

где $eta_0, \ lpha_0$ — коэффициенты регуляризации.

Регуляризатор декоррелирования тем

Цель: усилить различность тем; выделить в каждой теме лексическое ядро, отличающее её от других тем; вывести слова общей лексики из предметных тем в фоновые.

Минимизируем ковариации между вектор-столбцами ϕ_t :

$$R(\Phi) = -\frac{\tau}{2} \sum_{t \in \mathcal{T}} \sum_{s \in \mathcal{T} \backslash t} \sum_{w \in \mathcal{W}} \phi_{wt} \phi_{ws} \to \max.$$

Подставляем, получаем ещё один вариант разреживания постепенное контрастирование строк матрицы Ф:

$$\phi_{wt} = \underset{w}{\mathsf{norm}} \Big(n_{wt} - \tau \phi_{wt} \sum_{s \in T \setminus t} \phi_{ws} \Big).$$

Tan Y., Ou Z. Topic-weak-correlated latent Dirichlet allocation // 7th Int'l Symp. Chinese Spoken Language Processing (ISCSLP), 2010. — Pp. 224–228.

Правдоподобие и перплексия (perplexity)

Правдоподобие языковой модели p(w|d) (чем выше, тем лучше):

$$\mathscr{L}(\Phi, \Theta) = \sum_{d \in D} \sum_{w \in d} n_{dw} \ln p(w|d), \qquad p(w|d) = \sum_{t} \phi_{wt} \theta_{td}$$

Перплексия языковой модели p(w|d) (чем меньше, тем лучше):

$$\mathcal{P}(D) = \exp\left(-\frac{1}{n}\sum_{d \in D}\sum_{w \in d}n_{dw}\ln p(w|d)\right), \quad n = \sum_{d \in D}\sum_{w \in d}n_{dw}$$

Интерпретация перплексии:

- ullet если распределение $p(w|d)=rac{1}{|W|}$ равномерное, то $\mathcal{P}=|W|$
- мера различности или неопределённости слов в тексте
- коэффициент ветвления (branching factor) текста

Перплексия тестовой (отложенной) коллекции

Перплексия тестовой коллекции D' (hold-out perplexity):

$$\mathcal{P}(D') = \exp\left(-\frac{1}{n''}\sum_{d \in D'}\sum_{w \in d''}n_{dw}\ln p(w|d)\right), \quad n'' = \sum_{d \in D'}\sum_{w \in d''}n_{dw}$$

 $d = d' \sqcup d''$ — случайное разбиение тестового документа на две половины равной длины;

параметры ϕ_{wt} оцениваются по обучающей коллекции D; параметры θ_{td} оцениваются по первой половине d'; перплексия вычисляется по второй половине d''.

Интерпретируемости и когерентность

Тема интерпретируемая, если по топовым словам темы эксперт может определить, о чём эта тема, и дать ей название.

- Экспертные оценки:
 - интерпретируемость темы по балльной шкале;
 - каждую тему оценивают несколько экспертов.
- Метод интрузий (intrusion):
 - в список топовых слов внедряется лишнее слово;
 - измеряется доля ошибок экспертов его при определении

Нужна автоматически вычисляемая мера интерпретируемости, коррелирующая с экспертными оценками.

Ею оказалась когерентность (согласованность, coherence).

Newman D., Lau J.H., Grieser K., Baldwin T. Automatic evaluation of topic coherence // Human Language Technologies, HLT-2010, Pp. 100–108.

Эксперимент. Связь когерентности и интерпретируемости

Измерялась ранговая корреляция Спирмена между 15 метрикам и экспертными оценками интерпретируемости.

PMI — лучшая метрика.

Gold-standard — средняя корреляция Спирмена между оценками разных экспертов.

	3.5.43.3			
Resource	Method	Median	Mean	
	HSO	0.15	0.59	
	JCN	-0.20	0.19	
	LCH	-0.31	-0.15	
	Lesk	0.53	0.53	
WordNet	Lin	0.09	0.28	
	PATH	0.29	0.12	
	RES	0.57	0.66	
	VECTOR	-0.08	0.27	
	WUP	0.41	0.26	
	RACO	0.62	0.69	
Wikingdia	MIW	0.68	0.70	
Wikipedia	DOCSIM	0.59	0.60	
	PMI	0.74	0.77	
Google	TITLES	0.51		
Google	LogHits	-0.19		
Gold-standard	IAA	0.82	0.78	

Вывод: когерентность близка к «золотому стандарту».

Newman D., Lau J.H., Grieser K., Baldwin T. Automatic evaluation of topic coherence // Human Language Technologies, HLT-2010, Pp. 100–108.

Когерентность как внутренняя мера интерпретируемости

Когерентность (согласованность) темы t по k топовым словам:

$$PMI_t = \frac{2}{k(k-1)} \sum_{i=1}^{k-1} \sum_{j=i}^{k} PMI(w_i, w_j)$$

где $w_i - i$ -й термин в порядке убывания ϕ_{wt} .

 $\mathsf{PMI}(u,v) = \mathsf{In} \, \frac{|D|N_{uv}}{N,N} - \mathsf{поточечная} \, \mathsf{взаимная} \, \mathsf{информация}$ (pointwise mutual information),

 N_{uv} — число документов, в которых термины u, v хотя бы один раз встречаются рядом (в окне 10 слов),

 N_{u} — число документов, в которых u встретился хотя бы 1 раз.

Newman D., Lau J.H., Grieser K., Baldwin T. Automatic evaluation of topic coherence // Human Language Technologies, HLT-2010, Pp. 100-108.

Внешние критерии качества

- Полнота и точность тематического поиска
- Качество классификации документов
- Экспертное оценивание тем методом интрузий
- Точность соответствия тем заданным концептам (число ненайденных и расщеплённых тем и концептов)

Chuang J., Gupta S., Manning C., Heer J. Topic Model Diagnostics: Assessing Domain Relevance via Topical Alignment. ICML-2013.

Пример тем. Мультиязычная модель Википедии

216 175 русско-английских пар статей. Языки — модальности. Первые 10 слов и их вероятности p(w|t) в %:

Тема 68				Тема 79			
research	4.56	институт	6.03	goals	4.48	матч	6.02
technology	3.14	университет	3.35	league	3.99	игрок	5.56
engineering	2.63	программа	3.17	club	3.76	сборная	4.51
institute	2.37	учебный	2.75	season	3.49	фк	3.25
science	1.97	технический	2.70	scored	2.72	против	3.20
program	1.60	технология	2.30	cup	2.57	клуб	3.14
education	1.44	научный	1.76	goal	2.48	футболист	2.67
campus	1.43	исследование	1.67	apps	1.74	гол	2.65
management	1.38	наука	1.64	debut	1.69	забивать	2.53
programs	1.36	образование	1.47	match	1.67	команда	2.14

Дударенко М. А. Регуляризация многоязычных тематических моделей. Вычислительные методы и программирование. 2015. Т. 16. С. 26–36.

Пример тем. Мультиязычная модель Википедии

216 175 русско-английских пар статей. Языки — модальности. Первые 10 слов и их вероятности p(w|t) в %:

Тема 88			Тема 251				
opera	7.36	опера	7.82	windows	8.00	windows	6.05
conductor	1.69	оперный	3.13	microsoft	4.03	microsoft	3.76
orchestra	1.14	дирижер	2.82	server	2.93	версия	1.86
wagner	0.97	певец	1.65	software	1.38	приложение	1.86
soprano	0.78	певица	1.51	user	1.03	сервер	1.63
performance	0.78	театр	1.14	security	0.92	server	1.54
mozart	0.74	партия	1.05	mitchell	0.82	программный	1.08
sang	0.70	сопрано	0.97	oracle	0.82	пользователь	1.04
singing	0.69	вагнер	0.90	enterprise	0.78	обеспечение	1.02
operas	0.68	оркестр	0.82	users	0.78	система	0.96

Асессор оценил 396 тем из 400 как хорошо интерпретируемые.

Биграммы радикально улучшают интерпретируемость тем

Коллекция 850 статей конференций ММРО, ИОИ на русском

распознавание об	разов в биоинформатике	теория вычислительной сложности		
unigrams	bigrams	unigrams	bigrams	
объект	задача распознавания	задача	разделять множества	
задача	множество мотивов	множество	конечное множество	
множество	система масок	подмножество	условие задачи	
мотив	вторичная структура	условие	задача о покрытии	
разрешимость	структура белка	класс	покрытие множества	
выборка	распознавание вторичной	решение	сильный смысл	
маска	состояние объекта	конечный	разделяющий комитет	
распознавание	обучающая выборка	число	минимальный аффинный	
информативность	оценка информативности	аффинный	аффинный комитет	
состояние	множество объектов	случай	аффинный разделяющий	
закономерность	разрешимость задачи	покрытие	общее положение	
система	критерий разрешимости	общий	множество точек	
структура	информативность мотива	пространство	случай задачи	
значение	первичная структура	схема	общий случай	
регулярность	тупиковое множество	комитет	задача MASC	

Стенин С. С. Мультиграммные аддитивно регуляризованные тематические модели. Магистерская диссертация, МФТИ, 2015.

- Тематическое моделирование это восстановление латентных тем по коллекции текстовых документов
- Задача сводится к стохастическому матричному разложению
- Стандартные методы PLSA и LDA.
- Задача является некорректно поставленной, так как множество её решений в общем случае бесконечно
- Аддитивная регуляризация позволяет комбинировать модели и строить модели с заданными свойствами
- В отличие от классических задач машинного обучения, регуляризаторы весьма разнообразны
- На практике важны внешние критерии качества моделей