Formal Verification of the RANKING algorithm for Online Bipartite Matching

Christoph Madlener 22 06 2022

Input

• bipartite graph G = (U, V, E)

V

V₀ ●

Input

- bipartite graph G = (U, V, E)
- · offline vertices V are known

V₁ ●

V₂ ●

V

 π

Input

- bipartite graph G = (U, V, E)
- offline vertices V are known
- online vertices U reveal edges on arrival

V1 •

V₂ ●

- bipartite graph G = (U, V, E)
- · offline vertices V are known
- online vertices U reveal edges on arrival

- bipartite graph G = (U, V, E)
- · offline vertices V are known
- online vertices U reveal edges on arrival

- bipartite graph G = (U, V, E)
- · offline vertices V are known
- online vertices U reveal edges on arrival

- bipartite graph G = (U, V, E)
- · offline vertices V are known
- online vertices U reveal edges on arrival

Input

- bipartite graph G = (U, V, E)
- · offline vertices V are known
- online vertices U reveal edges on arrival

Task

• on arrival of $u \in U$, match to unmatched neighbor $v \in V$ (or not)

Input

- bipartite graph G = (U, V, E)
- · offline vertices V are known
- online vertices U reveal edges on arrival

- on arrival of $u \in U$, match to unmatched neighbor $v \in V$ (or not)
- · maximize size of resulting matching

Input

- bipartite graph G = (U, V, E)
- · offline vertices V are known
- online vertices U reveal edges on arrival

- on arrival of $u \in U$, match to unmatched neighbor $v \in V$ (or not)
- · maximize size of resulting matching

Input

- bipartite graph G = (U, V, E)
- · offline vertices V are known
- online vertices U reveal edges on arrival

- on arrival of $u \in U$, match to unmatched neighbor $v \in V$ (or not)
- · maximize size of resulting matching

Input

- bipartite graph G = (U, V, E)
- · offline vertices V are known
- online vertices U reveal edges on arrival

- on arrival of $u \in U$, match to unmatched neighbor $v \in V$ (or not)
- · maximize size of resulting matching

Input

- bipartite graph G = (U, V, E)
- · offline vertices V are known
- online vertices U reveal edges on arrival

- on arrival of $u \in U$, match to unmatched neighbor $v \in V$ (or not)
- · maximize size of resulting matching

Input

- bipartite graph G = (U, V, E)
- · offline vertices V are known
- online vertices U reveal edges on arrival

- on arrival of $u \in U$, match to unmatched neighbor $v \in V$ (or not)
- · maximize size of resulting matching

Input

- bipartite graph G = (U, V, E)
- · offline vertices V are known
- online vertices U reveal edges on arrival

- on arrival of $u \in U$, match to unmatched neighbor $v \in V$ (or not)
- · maximize size of resulting matching

Input

- bipartite graph G = (U, V, E)
- · offline vertices V are known
- online vertices U reveal edges on arrival

- on arrival of $u \in U$, match to unmatched neighbor $v \in V$ (or not)
- · maximize size of resulting matching

Input

- bipartite graph G = (U, V, E)
- · offline vertices V are known
- online vertices U reveal edges on arrival

- on arrival of $u \in U$, match to unmatched neighbor $v \in V$ (or not)
- · maximize size of resulting matching

Performance of online algorithm ${\cal A}$

 \cdot Compare ${\mathcal A}$ to best offline algorithm

Performance of online algorithm ${\cal A}$

- Compare ${\mathcal A}$ to best offline algorithm

Performance of online algorithm ${\cal A}$

 \cdot Compare ${\mathcal A}$ to best offline algorithm

Competitive ratio for OBM

$$\min_{G} \min_{\pi} \frac{|\mathcal{A}(G,\pi)|}{|\mathcal{M}|}$$

where M is a maximum cardinality matching in G.

Performance of online algorithm ${\cal A}$

 \cdot Compare ${\mathcal A}$ to best offline algorithm

Competitive ratio for OBM

$$\min_{G} \min_{\pi} \frac{\mathbb{E}\big[|\mathcal{A}(G,\pi)|\big]}{|M|}$$

where M is a maximum cardinality matching in G.

<i>V</i> <i>v</i> ₀ •	π	Initialization: Choose a random permutation (ranking) σ of V
		Online Matching:
<i>V</i> ₁ ●		On arrival of $u \in U$
		$N(u) \leftarrow \text{set of unmatched neighbors of } u$
V ₂ ●		if $N(u) \neq \emptyset$
V ₃ ●		match u to the vertex $v \in N(u)$ that minimizes $\sigma(v)$

 simple randomized algorithm due to Karp, Vazirani, and Vazirani is optimal [KVV90]


```
Initialization: Choose a random permutation (ranking) \sigma of V
```

Online Matching:

On arrival of $u \in U$

 $N(u) \leftarrow$ set of unmatched neighbors of u if $N(u) \neq \emptyset$

match u to the vertex $v \in N(u)$ that minimizes $\sigma(v)$

 simple randomized algorithm due to Karp, Vazirani, and Vazirani is optimal [KVV90]

Initialization: Choose a random permutation (ranking) σ of V

Online Matching:

On arrival of $u \in U$

 $N(u) \leftarrow$ set of unmatched neighbors of u if $N(u) \neq \emptyset$

match u to the vertex $v \in N(u)$ that minimizes $\sigma(v)$

 simple randomized algorithm due to Karp, Vazirani, and Vazirani is optimal [KVV90]

Initialization: Choose a random permutation (ranking) σ of VOnline Matching:
On arrival of $u \in U$ $N(u) \leftarrow \text{set of unmatched neighbors of } u$ if $N(u) \neq \emptyset$

minimizes $\sigma(v)$

match u to the vertex $v \in N(u)$ that

,

 simple randomized algorithm due to Karp, Vazirani, and Vazirani is optimal [KVV90]

Initialization: Choose a random permutation (ranking) σ of V

Online Matching:

On arrival of $u \in U$

 $N(u) \leftarrow$ set of unmatched neighbors of u if $N(u) \neq \emptyset$

match u to the vertex $v \in N(u)$ that minimizes $\sigma(v)$

 simple randomized algorithm due to Karp, Vazirani, and Vazirani is optimal [KVV90]


```
Initialization: Choose a random permutation (ranking) \sigma of V
Online Matching:
On arrival of u \in U
N(u) \leftarrow \text{set of unmatched neighbors of } u
if N(u) \neq \emptyset
```

 $N(u) \leftarrow$ set of unmatched neighbors of u if $N(u) \neq \emptyset$ match u to the vertex $v \in N(u)$ that minimizes $\sigma(v)$

 simple randomized algorithm due to Karp, Vazirani, and Vazirani is optimal [KVV90]

Initialization: Choose a random permutation (ranking) σ of VOnline Matching:
On arrival of $u \in U$ | $N(u) \leftarrow$ set of unmatched neighbors of u

 $N(u) \leftarrow$ set of unmatched neighbors of u if $N(u) \neq \emptyset$ match u to the vertex $v \in N(u)$ that minimizes $\sigma(v)$

 simple randomized algorithm due to Karp, Vazirani, and Vazirani is optimal [KVV90]


```
Initialization: Choose a random permutation (ranking) \sigma of V
Online Matching:
On arrival of u \in U
N(u) \leftarrow \text{ set of unmatched neighbors of } u
if N(u) \neq \emptyset
\text{match } u \text{ to the vertex } v \in N(u) \text{ that}
```

minimizes $\sigma(v)$


```
Initialization: Choose a random permutation (ranking) \sigma of V
Online Matching:
On arrival of u \in U
N(u) \leftarrow \text{ set of unmatched neighbors of } u
if N(u) \neq \emptyset
\text{match } u \text{ to the vertex } v \in N(u) \text{ that minimizes } \sigma(v)
```

 simple randomized algorithm due to Karp, Vazirani, and Vazirani is optimal [KVV90]

Initialization: Choose a random permutation (ranking) σ of VOnline Matching:
On arrival of $u \in U$ $N(u) \leftarrow \text{set of unmatched neighbors of } u$ if $N(u) \neq \emptyset$

minimizes $\sigma(v)$

match u to the vertex $v \in N(u)$ that

• competitive ratio of $1 - \frac{1}{e}$ (best possible)

Formalization Outline

 formalization follows proof due to Birnbaum & Mathieu [BM08]

Formalization Outline

- formalization follows proof due to Birnbaum & Mathieu [BM08]
- three parts

- formalization follows proof due to Birnbaum & Mathieu [BM08]
- · three parts
 - 1. Combinatorics

- formalization follows proof due to Birnbaum & Mathieu [BM08]
- · three parts
 - 1. Combinatorics
 - 2. Probability theory

- formalization follows proof due to Birnbaum & Mathieu [BM08]
- · three parts
 - 1. Combinatorics
 - 2. Probability theory
 - 3. Competitive ratio in the limit

- formalization follows proof due to Birnbaum & Mathieu [BM08]
- · three parts
 - 1. Combinatorics
 - 2. Probability theory
 - 3. Competitive ratio in the limit

 original paper (and earlier simplifications) assume G has a perfect matching

- original paper (and earlier simplifications) assume G has a perfect matching
- Birnbaum & Mathieu state a simple structural observation which allows to generalize to arbitrary graphs:

- original paper (and earlier simplifications) assume G has a perfect matching
- Birnbaum & Mathieu state a *simple structural observation* which allows to generalize to arbitrary graphs:

- original paper (and earlier simplifications) assume G has a perfect matching
- Birnbaum & Mathieu state a *simple structural observation* which allows to generalize to arbitrary graphs:

- original paper (and earlier simplifications) assume G has a perfect matching
- Birnbaum & Mathieu state a *simple structural observation* which allows to generalize to arbitrary graphs:

- original paper (and earlier simplifications) assume G has a perfect matching
- Birnbaum & Mathieu state a *simple structural observation* which allows to generalize to arbitrary graphs:

- original paper (and earlier simplifications) assume G has a perfect matching
- Birnbaum & Mathieu state a *simple structural observation* which allows to generalize to arbitrary graphs:

- original paper (and earlier simplifications) assume G has a perfect matching
- Birnbaum & Mathieu state a *simple structural observation* which allows to generalize to arbitrary graphs:

- original paper (and earlier simplifications) assume G has a perfect matching
- Birnbaum & Mathieu state a *simple structural observation* which allows to generalize to arbitrary graphs:

- original paper (and earlier simplifications) assume G has a perfect matching
- Birnbaum & Mathieu state a *simple structural observation* which allows to generalize to arbitrary graphs:

- original paper (and earlier simplifications) assume G has a perfect matching
- Birnbaum & Mathieu state a *simple structural observation* which allows to generalize to arbitrary graphs:

- original paper (and earlier simplifications) assume G has a perfect matching
- Birnbaum & Mathieu state a *simple structural observation* which allows to generalize to arbitrary graphs:

Let $R := Ranking(G, \pi, \sigma)$ for a fixed graph G, arrival order π , and ranking σ .

Specification of alternating path

$$zig(x) = \begin{cases} x \# zag(y) & \{x,y\} \in R \\ [x] & x \text{ unmatched} \end{cases}$$

$$zag(y) = \begin{cases} y \# zag(x') & x' \text{ matched instead} \\ [y] & \text{no other match} \end{cases}$$

Let $R := Ranking(G, \pi, \sigma)$ for a fixed graph G, arrival order π , and ranking σ .

Specification of alternating path

$$zig(x) = \begin{cases} x \# zag(y) & \{x,y\} \in R \\ [x] & x \text{ unmatched} \end{cases}$$

$$zag(y) = \begin{cases} y \# zag(x') & x' \text{ matched instead} \\ [y] & \text{no other match} \end{cases}$$

• non-recursive specification of $Ranking(G, \pi, \sigma)$ \rightarrow interchangeability of U, V

Let $R := Ranking(G, \pi, \sigma)$ for a fixed graph G, arrival order π , and ranking σ .

Specification of alternating path

$$zig(x) = \begin{cases} x \# zag(y) & \{x,y\} \in R \\ [x] & x \text{ unmatched} \end{cases}$$

$$zag(y) = \begin{cases} y \# zag(x') & x' \text{ matched instead} \\ [y] & \text{no other match} \end{cases}$$

- non-recursive specification of $Ranking(G, \pi, \sigma)$ \rightarrow interchangeability of U, V
- · Berge's Lemma [AMN19] for repeated application

rephrase everything as _ pmf (probability mass function)

- rephrase everything as _ pmf (probability mass function)
- finite probability spaces over permutations \rightarrow lots of sums

- rephrase everything as _ pmf (probability mass function)
- finite probability spaces over permutations \rightarrow lots of sums

Switching probability spaces

- rephrase everything as _ pmf (probability mass function)
- finite probability spaces over permutations \rightarrow lots of sums

Switching probability spaces

1. choosing a random permutation vs.

- rephrase everything as _ pmf (probability mass function)
- finite probability spaces over permutations \rightarrow lots of sums

Switching probability spaces

- 1. choosing a random permutation vs.
- choosing a random permutation, a random vertex, and putting that vertex at index t

- rephrase everything as _ pmf (probability mass function)
- finite probability spaces over permutations → lots of sums

Switching probability spaces

- 1. choosing a random permutation vs.
- choosing a random permutation, a random vertex, and putting that vertex at index t

For
$$t = 1$$
 and $V = \{1, 2, 3\}$:

$$\begin{split} \mathbb{P}_1\Big(\big\{[3,2,1]\big\}\Big) &= \frac{1}{3!} \\ \mathbb{P}_2\Big(\big\{[3,2,1]\big\}\Big) &= \mathbb{P}_1\Big(\big\{[2,3,1],[3,1,2],[3,2,1]\big\}\Big) \cdot \mathbb{P}_V\big(\{2\}\big) \\ &= \frac{3}{3!} \cdot \frac{1}{3} = \frac{1}{3!} \end{split}$$

References

Benjamin Birnbaum and Claire Mathieu.
On-line bipartite matching made simple.
Acm Sigact News, 39(1):80–87, 2008.

- Richard M Karp, Umesh V Vazirani, and Vijay V Vazirani.

 An optimal algorithm for on-line bipartite matching.

 In Proceedings of the twenty-second annual ACM symposium on Theory of computing, pages 352–358, 1990.
- Christoph Madlener.
 Formal Verification of the RANKING Algorithm for Online Bipartite Matching.

https://github.com/cmadlener/isabelle-ranking,