

University of Engineering & Management, Kolkata University of Engineering & Management, Jaipur Institute of Engineering & Management, Kolkata

Department of Computer Science

DETAILED SYLLABUS

Course Code- PCCCS401
Course Title – Discrete Mathematics
Credit – 3
Category - Professional Core Course
Semester – IV
L:T:P:S - 3:0:0:0
Pre-requisite –

Course Outcomes:

CO1	
CO2	
CO3	
CO4	

Study material	Coursera	Linkedin	NPTEL

Module No.	Topic	Sub-topics	Mapping with Industry and International Academia	Lecture Hours	Corresponding Lab Assignments	Textbook Mapping
1	Sets, Relation and Function, Principles of mathematical induction	Operations and Laws of Sets, Cartesian Products, Binary Relation, Partial Ordering Relation, Equivalence Relation, Image of a Set, Sum and Product of Functions, Bijective functions, Inverse and Composite Function, Size of a Set, The Well-Ordering Principle, The Division algorithm, Prime Numbers, The Greatest Common Divisor, Euclidean Algorithm, The Fundamental Theorem of Arithmetic. Coprimality (or Euler's totient function), Chinese Remainder Theorem.	International Academia: https://ocw.mit.ed u/courses/18-310- principles-of- discrete-applied- mathematics-fall- 2013/pages/syllab us/ AICTE-prescribed syllabus: https://www.aicte- india.org/sites/defa ult/files/Model Cur riculum/AICTE%2 0-%20UG%20CSE. pdf Industry Mapping: https://www.sagem ath.org/, MATLAB	10	Implement Euclidean algorithm using C/ Python; Implement RSA algorithm using C/ Python; Implement Fermat's little theorem / Primality checking using C / Python; Check if any two given number is co- prime using Python / C.	Discrete Mathematics and Application by Kenneth Rosen, 8th Edition. Chapters: 2, 4, 5, 9
2	Basic counting techniques, Propositional Logic, Proof Techniques	Basic counting techniques: Inclusion and exclusion principle, pigeon-hole principle, permutation and	International Standards: https://ocw.mit.ed u/courses/18-310- principles-of-	14	Constructing n-SAT/3-SAT solver using C/Python;	Discrete Mathematics and Application by Kenneth

combination; recurrence relations, generating functions. Propositional Logic: Syntax, Semantics, Validity and Satisfiability, Basic Connectives and Truth Tables, Logical Equivalence: The Laws of Logic, Logical Implication, Rules of Inference, The use of Quantifiers. Proof Techniques: Some Terminology, Proof Methods and Strategies, Forward Proof, Proof by Contradiction, Proof of Necessity and Sufficiency.	discrete-applied-mathematics-fall-2013/pages/syllab us/ AICTE prescribed syllabus: https://www.aicte-india.org/sites/defa ult/files/Model Curriculum/AICTE%2 0-%20UG%20CSE.pdf Industry Mapping:	propositional logic examples using Python;	Rosen, 8th Edition. Chapters: 1, 6, 8, 12
Boolean Algebra: Identities of Boolean Algebra, Duality, Representation of Boolean Function, Disjunctive and Conjunctive Normal Form.			

3	Algebraic Structures and Morphism	Algebraic Structures with one Binary Operation, Semi Groups, Monoids, Groups, Permutation Groups, Normal Subgroups, Ring, Field, Vector spaces, Innerproduct spaces	International Standards: https://ocw.mit.ed u/courses/18-310- principles-of- discrete-applied- mathematics-fall- 2013/pages/syllab us/ AICTE prescribed syllabus: https://www.aicte- india.org/sites/defa ult/files/Model Cur riculum/AICTE%2 0-%20UG%20CSE. pdf Industry Mapping: https://www.sagem ath.org/ MATLAB	6	Conversion of First Order Logic statements to Conjunctive Normal Form using Python/ SAGEMATH; Conversion of First Order Logic statements to Disjunctive Normal Form using Python/ SAGEMATH;	A BOOK OF ABSTRACT ALGEBRA by Charles C. Pinter Chapters: 1, 2, 3, 5, 7, 8, 17, 28
4	Graphs and Trees	Graphs and their properties, Degree, Connectivity, Path, Cycle, Sub Graph, Isomorphism, Eulerian and Hamiltonian Walks, Graph Coloring, Planar Graphs, Matching, Trees	International Standards: https://ocw.mit.ed u/courses/18-310- principles-of- discrete-applied- mathematics-fall- 2013/pages/syllab us/ AICTE prescribed syllabus: https://www.aicte-	6	Implementation of maximum flow problem using Python; Checking a graph is Hamiltonian using Python / SAGEMATH.	Discrete Mathematics and Application by Kenneth Rosen, 8th Edition. Chapter: 10

	india.org/sites/defa		
	ult/files/Model_Cur		
	riculum/AICTE%2		
	<u>0-%20UG%20CSE.</u>		
	<u>pdf</u>		
	Industry Mapping:		
	https://www.sagem		
	ath.org/		
	<u>MATLAB</u>		

- 1. Discrete Mathematics and Application by Kenneth Rosen, 8th Edition
- 2. A BOOK OF ABSTRACT ALGEBRA by Charles C. Pinter, 2nd Edition

Reference books:

1. Introductory Discrete Mathematics by V. K. Balakrishnan, Prentice Hall

Online Resources:

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												

Course Code- PCCCS402

Course Title – Computer Organization & Architecture

Credit – 3

Category – Professional Core Course

Semester – IV

L:T: P:S-3:0:0:0

Pre-requisite – Digital Electronics, Basic Electronics

Course Outcomes:

CO1	Ability to design the Instruction set Architecture of a Computer System
CO2	Ability to design Arithmetic Logic Unit and Control Unit to execute the instructions
CO3	Ability to apply the concepts in Memory Organization
CO4	Ability to understand parallel processing

Study Material	terial Coursera NPTI		LinkedIn Learning	Infosys Springboard	

Module	Topic	Sub-topics	Mapping with	Lecture	Corresponding	Textbook
No.	_	_	Industry and	Hours	Lab	Mapping
			International		Assignments	
			Academia		8	
1	Introduction and	Role of abstraction, basic	International	3	1. Familiar	Computer
	Performance	functional units of a	Academia:		ization of	Organization
	Evaluation	computer, Stored Program	https://ocw.mit.edu/c		Hardware	and Design:
		Architecture, Von-	ourses/6-823-		assembling for	The
		Neumann model of	computer-system-		a digital	Hardware/Sof
		computation, A note on	architecture-fall-		computer.	tware
		Moore's law, clocking	2005/pages/lecture-			Interface",
		methodology, Amdahl's	<u>notes/</u>		2. Familiar	David A.
		law, Notion of IPC, and			ization of	Patterson and
		performance.	AICTE-prescribed		SPEC	John L.
			syllabus:		Benchmark	Hennessy, 5th
			https://www.aicte-		Application for	Edition,
			india.org/sites/defaul		CPU.	Elsevier.
			t/files/Model_Curric			

			ulum/Updated-			Chapter: 1
			AICTE%20-%20UG			Chapter. 1
			%20CSE.pdf			
			Industry Mapping:			
			<u>SPEC</u>			
			(https://www.spec.or			
2	D. 4	T' 1 1 C' .'	<u>g</u>	7	1 7 1	1.0
2	Data	Fixed and floating point	International	7	1. Implem	1. Computer
	representation	(IEEE 754 Single and	Academia:		entation of Half	System
	and basic	double precision format)	https://web.stanford.		Adder, Half	Architecture:
	operations	representation of numbers;	edu/class/cs107/		Subtractor, Full	Third
		Overflow; Design of			Adder, Full	Edition,
		Adders - Ripple Carry	AICTE-prescribed		Subtractor	Morris
		Adder, Carry Look Ahead	syllabus:		using VHDL	Mano. –
		Adder, multiplication -	https://www.aicte-		(Dataflow	
		shift-and-add, Booth	india.org/sites/defaul		Model).	Chapter: 3
		multiplier, carry save	<u>t/files/Model_Curric</u>		2.a)	
		multiplier, etc. Division -	<u>ulum/Updated-</u>		Implementation	2. Computer
		non-restoring and restoring	<u>AICTE%20-%20UG</u>		of Full Adder	Organization
		techniques, floating point	<u>%20CSE.pdf</u>		using VHDL	: Fifth
		arithmetic.	Industry Mapping:		(Behavioral	Edition Carl
			VHDL - online		Model).	Hamacher,
			<u>platform</u>		2.b)	Zvonko
			(https://www.edapla		Implementation	Vranesic and
			yground.com/)		of n-bit Carry	Safwat Zaky.
					propagation	•
			VHDL- Xilinx ISE		adder in VHDL	Chapter: 6
					(Behavioral	1
			Hardware Chipsets		Model).	
			(TTl IC Chipsets		3.	
			7400, 7402, 7404,		Implementation	
			7408, 7432,7486,		of 4:1 MUX	
			74151, 74153,		using 2:1 MUX	
			7483; CMOS IC		(using	
			<u>Chipsets</u>		Structural	

			Method) in
			VHDL.
			4.
			Implementation
			of signed
			multiplier using
			VHDL.
			5.
			Implementation
			of signed
			multiplier using VHDL.
			6.
			Implementation
			of Non-
			Restoring
			Division
			algorithm using
			VHDL.
			7. Realization
			of Boolean
			Expressions
			Using Basic
			Gates (IC
			Chips).
			8. Design an 8
			to 1 multiplexer
			unit (MUX)
			using basic
			gates and using
			IC 74151.
			9. Design of A
			4-Bit Parallel
			Binary Adder
			Circuit Using
	l		Circuit Osilig

3	Instruction Set Architecture	CPU registers, instruction format and encoding, addressing modes, instruction set, instruction types, instruction decoding and execution, basic instruction cycle, Reduced Instruction Set Computer (RISC), Complex Instruction Set Computer (CISC), Case study - instruction sets of some common CPUs.	International Academia: https://ocw.mit.edu/c ourses/6-823- computer-system- architecture-fall- 2005 https://www.cse.iitd. ac.in/~srsarangi AICTE-prescribed syllabus: https://www.aicte- india.org/sites/defaul t/files/Model Curric ulum/Updated- AICTE%20-%20UG %20CSE.pdf Industry Mapping: Keil MDK	6	The IC-Chip7483. 10. Use a multiplexer unit to design a composite ALU [ALU Logic circuit, shift circuit and arithmetic circuit].11. Implementation of Full adder using FPGA kit. 1. Generat e Happy numbers. 2. Generat e Autonomic numbers 3. Generat e Hardy-Ramanujan number 4. Implement a 4-function calculator.	Computer System Architecture: Third Edition, Morris Mano. Chapter: 8
---	---------------------------------	---	---	---	---	--

			(https://www.keil.com) TRACE32 Simulator (https://www.lauterbach.com) Arm Instruction Emulator (https://developer.arm.com/Tools%20and%20Software/Arm%20Instruction%20Emulator)			
4	Processor Design	Hardwired and micro- programmed design approaches, Case study - design of a simple hypothetical CPU	International Academia: https://ocw.mit.edu/c ourses/6-823- computer-system- architecture-fall- 2005 AICTE-prescribed syllabus: https://www.aicte- india.org/sites/defaul t/files/Model_Curric ulum/Updated- AICTE%20-%20UG %20CSE.pdf Industry Mapping: Keil MDK (https://www.keil.co	3	Design a primitive CPU for the given instruction subset- i) data transfer ii) arithmetic operations iii) logical operations iv) branch statements	1. Computer System Architecture: Third Edition, Morris Mano. Chapter: 7 2. Computer Organization : Fifth Edition Carl Hamacher, Zvonko Vranesic and Safwat Zaky.

			m TRACE32 Simulator https://www.lauterba ch.com Arm Instruction Emulator https://developer.ar m.com/Tools%20and %20Software/Arm% 20Instruction%20Em ulator			Chapter: 7
5	Memory hierarchy	Memory hierarchy; Main memory organization - paging, segmentation, virtual memory; Cache memory- different indexing mechanisms, Trade-offs related to block size, associativity, and cache size, Processor-cache interactions for a read/write request, basic optimizations like write through/write-back caches, Average memory access time, Cache replacement policies (LRU), locality of reference, Memory interleaving; introduction to magnetic disks (notion of tracks, sectors).	International Academia: https://ocw.mit.edu/c ourses/6-823- computer-system- architecture-fall- 2005 AICTE-prescribed syllabus: https://www.aicte- india.org/sites/defaul t/files/Model Curric ulum/Updated- AICTE%20-%20UG %20CSE.pdf Industry Mapping: VHDL - online platform (https://www.edapla yground.com/)	7	 Implem entation of memory unit consisting of 16X4 RAM and 8X 4 ROM. Implement Read Write operation using 16X4 RAM. 	Computer System Architecture: Third Edition, Morris Mano. Chapter: 12

			VHDL- Xilinx ISE			
6	Input/Output Organization	Programmed I/O, Interrupt-driven I/O, and DMA	International Academia: https://ocw.mit.edu/c ourses/6-823- computer-system- architecture-fall- 2005 AICTE-prescribed syllabus: https://www.aicte- india.org/sites/defaul t/files/Model_Curric ulum/Updated- AICTE%20-%20UG %20CSE.pdf Industry Mapping: ATMEGA 16 Microcontroller	2	1. Interfac e LCD with ATmega16 and display your name continuously. 2. Interfac e LCD with ATmega16 to display any string with a blinking cursor at the end.	Computer System Architecture: Third Edition, Morris Mano. Chapter: 11
7	Parallel Processing	Pipelining - Basic concepts, instruction and arithmetic pipeline, different types of dependencies and hazards, techniques for handling hazards, Pipeline optimization techniques - reservation table; Superscalar, super pipelined and VLIW processor architectures; Array and vector processors;	International Academia: https://ocw.mit.ed u/courses/6-823- computer-system- architecture-fall- 2005 AICTE-prescribed syllabus: https://www.aicte- india.org/sites/def ault/files/Model_C urriculum/Update d-	6	1) Implem ent a Pipelined Multiplier using VHDL and FPGA Kit. 2. Implement a Pipeline Control Unit using RIPES	"Computer Organization and Design: The Hardware/So ftware Interface", David A. Patterson and John L. Hennessy, 5th Edition, Elsevier.

	processor ecture: taxonomy of	AICTE%20- %20UG%20CSE. pdf		Chapters: 4 and 6
parall Centr	el architectures; alized shared- ory architecture and	Industry Mapping: RIPES		
distril archit	buted shared memory ecture; Cache	https://github.co m/mortbopet/Ripe s		
Cohe	rence;	VHDL - online platform		
		https://www.edapl ayground.com,		
		<u>VHDL- Xilinx</u> <u>ISE</u>		

- 1. Computer System Architecture: Third Edition, Morris Mano.
- 2. Computer Organization: Fifth Edition Carl Hamacher, Zvonko Vranesic and Safwat Zaky.
- 3. Computer Organization and Design: The Hardware/Software Interface: David A. Patterson and John L. Hennessy.

Reference books:

- 1. Computer Organization and Architecture Designing for Performance: William Stallings
- 2. Computer Architecture and Organization: John P Hayes
- 3. Computer Architecture and Parallel Processing: K. Hwang, F. A. Briggs

Online Resources:

List of Assignments:

- 1) Familiarization of Hardware assembling for a digital computer.
- 2) Familiarization of SPEC Benchmark Application for CPU.

- 3) Realization of Boolean Expressions Using Basic Gates (IC Chips).
- 4) Design an 8 to 1 multiplexer unit (MUX) using basic gates and using IC 74151.
- 5) Design of A 4-Bit Parallel Binary Adder Circuit Using The IC-Chip7483.
- 6) Implementation of Half Adder, Half Subtractor, Full Adder, Full Subtractor using VHDL and Verilog (Dataflow Model).
- 7) a) Implementation of Full Adder using Verilog (Behavioral Model). b) Implementation of n-bit Carry propagation adder in VHDL (Behavioral Model).
- 8) Implementation of 4:1 MUX using 2:1 MUX (using Structural Method) in VHDL.
- 9) Implementation of signed multiplier using VHDL.
- 10) Implementation of Non-Restoring Division algorithm using VHDL.
- 11) Use a multiplexer unit to design a composite ALU [ALU Logic circuit, shift circuit and arithmetic circuit].
- 12) Implementation of Full adder using FPGA kit.
- 13) Design a primitive CPU for the given instruction subset
 - i) data transfer
 - ii) arithmetic operations
 - iii) logical operations
 - iv) branch statements
- 14. Interface LCD with ATmega16 and display your name continuously.
- 15. Interface LCD with ATmega16 to display any string with a blinking cursor at the end.
- 16. Implementation of memory unit consisting of 16X4 RAM and 8X 4 ROM.
- 17. Implement Read Write operation using 16X4 RAM.
- 18. Implement a Pipelined Multiplier using VHDL and FPGA Kit.

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	3	3	2	2	2	3	2	2	3
CO2	3	3	3	3	3	2	2	2	3	2	2	3
CO3	3	3	3	3	3	2	2	2	3	2	2	3
CO4	3	3	2	3	2	2	2	2	3	2	2	3

Course Code- PCCCS403

Course Title - Artificial Intelligence & Machine Learning

Credit – 3
Category – Professional Core Course
Semester – IV
L:T:P – 3:0:0
Pre-requisite –

Course Outcomes:

CO1	
CO2	
CO3	
CO4	

Mod	Topic	Sub-topics	Mapping with Industry and International Academia	Lect	Correspondi	Textb
ule				ure	ng Lab	ook
No.				Hour	Assignments	Mappi
				S		ng
1	Introducti	Definitio	International Academia: https://ocw.mit.edu/courses/6-	5	1. Basic	
	on to	n and	867-machine-learning-fall-2006/pages/syllabus/		Practice	
	Artificial	Scope of	AICTE-prescribed syllabus: https://www.aicte-		programs	
	Intelligenc	AI -	india.org/sites/default/files/Model_Curriculum/AICTE%		using Python.	
	e	History	20-%20UG%20CSE.pdf		2.	
		&	Industry Mapping:		Introduction	
		Evolution				

		of AI,	Al using Python	to Weka	
		Sub		Toolkit.	
		fields of			
		AI,			
		Ethical			
		Consider			
		ations			
		Problem			
		Solving			
		in AI –			
		Searching			
		, Optimizat			
		ion,			
		Planning,			
		Game			
		Theory			
		Knowledge			
		Representa			
		tion —			
		Proposition			
		al Logic,			
		Predicate			
		Logic			
2	Problem	State space	AICTE-prescribed	1. Python	
	solving	search,	syllabus:	programming,	
	technique	cont	https://www.aicte-	symbolic	
	s	rol	india.org/sites/default/files/UG_Emerging.pdf	algebra,	
		strategies,		Water Jug	
		heuristic	International Academia: https://ocw.mit.edu/courses/6-	Problem	
		search,	034-artificial-intelligence-fall-2010/resources/lecture-1-	2. Perform	
		problem	introduction-and-scope/	BFS and DFS	
		characteristi	Industry Mapping:	analysis on	
		cs,	Python	Facebook SN	
		production	Tydion	Dataset	

		system characteristi cs., Generate and test, Hill climbing, best first search, A* search, Constraint satisfaction problem, Mean- end analysis, Min-Max Search, Alpha-Beta Pruning,		3. Implementati on of A* search 4. N-Queens Problem	
		Additional refinements , Iterative			
		Deepening.			
3	Introducti	Machine	International Academia: https://ocw.mit.edu/courses/6-	1. Load	
	on to	Learning	867-machine-learning-fall-2006/pages/syllabus/	and	
	Machine Learning	Definition & Scope –	AICTE-prescribed syllabus: https://www.aicte-	Interpret Data with	
	Learning	Evolution	india.org/sites/default/files/Model_Curriculum/AICTE% 20-%20UG%20CSE.pdf	Weka in	
		of Learning	Industry Mapping:	the arff	
		Systems	Python, Weka Toolkit	format or	
		Data		csv format	
		Representa		using	
		tion –		Python.	
		Features,		2.	
		Covariance,		Distinguis	

Orthogonali	h between
ty, Feature	normalizat
Selection vs	ion and
Feature	standardiz
Extraction	ation of
overview,	datasets.
	datasets.
Missing Data,	
	Implement
Outliers,	an
Noise,	algorithm
Normalizati	in Python
on,	to handle
Standardiza	missing
tion,	data.
Training	4. Data
Validation	visualizati
and Testing.	on using-
	Histogram
Model	Plot,
Selection-	Scatter
Holdout,	Plot etc.
Cross	
validation,	
k-fold	
Cross	
validation,	
random	
sampling,	
Bias-	
Variance	
tradeoff,	
overfitting,	
underfitting	

		Machine			
		Learning			
		Types –			
		Supervised,			
		Unsupervis			
		ed,			
		Reinforcem			
		ent,			
		Adversarial,			
		Meta-			
		Learning -			
		Zero-shot &			
		One-shot			
		Learning,			
		Transfer			
		Learning,			
		Ensemble			
		Learning –			
		Bagging			
		and			
		Boosting.			
4	Supervise	Regression	International Academia: https://ocw.mit.edu/courses/6-	1. Using	
	d	– Linear	867-machine-learning-fall-2006/pages/syllabus/	Weka and	
	Learning	Regression,	https://ocw.mit.edu/courses/6-046j-design-and-	Python	
		Polynomial	analysis-of-algorithms-spring-2015/pages/syllabus/	compare	
		Regression,	AICTE-prescribed syllabus: https://www.aicte-	the	
		regularizati	india.org/sites/default/files/Model_Curriculum/AICTE%	performan	
		on	20-%20UG%20CSE.pdf	ce of	
		C1 101 11	Industry Mapping:	Decision	
		Classificati	Python and Weka Toolkit, Sci-kit Learning and Matplotlib	Trees,	
		on –	Visualization	Random	
		Logistic		Forest,	
		Regression,		Naïve	
		Decision		Bayes and	
		Trees,		K-Nearest	

Bayesian	Neighbor
Classifier,	algorithms
Parametric	
and Non-	2. Using
parametric	LibSVM
estimation	implement
of	support
probability	vector
densities	machines
(Maximum	and
Likelihood	compare
Estimate,	the
Bayesian	different
Estimation),	kernel
Naïve	functions.
Bayes	3.
Classifier,	Implement
K- Nearest	K Nearest
Neighbours,	Neighbor
Support	Algorithm
Vector	4.
Machines	Implement
	a
Representa	perceptron
tion	using
Learning –	python
Perceptron,	and
activation	develop
functions,	the
XOR	perceptron
problem,	training
Multi-	rule.
layered	Project 1
Perceptron,	- Write a
Gradient	code in

	1	Dagaget		nython to
		Descent,		python to
		Backpropag		create a
		ation		multi-
				layered
		Performan		perceptron
		ce Metrics		which can
		Confusion		be trained
		Matrix,		using
		Precision,		backpropa
		Recall, F-		gation
		Measure,		using
		Area under		Numpy
		ROC		and
		Curve.		visualize
				the
				training
				using
				Matplotlib
5	Unsuperv	Dimensio	International Academia: https://ocw.mit.edu/courses/6-	1. Use Weka
	ised	nality	867-machine-learning-fall-2006/pages/syllabus/	and Python
	Learning	Reduction	AICTE-prescribed syllabus: https://www.aicte-	to
		:	india.org/sites/default/files/Model_Curriculum/AICTE%	implement
		Eigen	20-%20UG%20CSE.pdf	various
		Value	Industry Mapping:	feature
		Decompos	Weka Toolkit, Sci-kit Learning and Matplotlib	extraction
		ition,	Visualization	techniques
		Principal	VIOGUIZATION	2. Visualize
		Componen		data clusters
		t Analysis,		using t-SNE
		Linear		visualization
		Discrimina		and
		nt		
1		-		silhouette
		Δ nalvere		cc· ·
		Analysis, Singular		coefficient

		Value		3.
		Decompos		Implement
		ition		K-Means
		Clusterin		
				Clustering 4. Find the
		g: Gaussian		
		Mixture		correct value
				of K in K
		Models,		Means
		Expectatio		Clustering
		n Maximizat		using
				Cluster
		ion, K-		Validity
		Means		Indices.
		Algorithm		
		S,		Project 2:
		Hierarchic		Compare
		al Chastaria		various
		Clustering		clustering
		(AGNES)		algorithms
		Metrics:		to cluster
		Similarity		aerial
		Measures,		images
		silhouette		and
		coefficient		visualize
		, Cluster		the results.
		Linkage		
		Metrics,		
		Cluster		
		Validity		
	Dire	Indices.	T	During 2
6	Reinforce	Definition	International Academia: https://ocw.mit.edu/courses/6-	Project 3:
	ment	and Key	867-machine-learning-fall-2006/pages/syllabus/	Use the
	Learning	Concepts:	https://ocw.mit.edu/courses/6-046j-design-and-	OpenAI
		Agent,	analysis-of-algorithms-spring-2015/pages/syllabus/	Gymnasiu
		Environmen		m to train a

t, Reward,	AICTE-prescribed syllabus: https://www.aicte-	Reinforcem
Policy,	india.org/sites/default/files/Model_Curriculum/AICTE%	ent
Value	20-%20UG%20CSE.pdf	Learning
Function	'	Bot.
Algorithms	Industry Mapping:	
: Q-	Open AI Gymnasium	
Learning,		
Exploration		
VS		
Exploitation		
,		
Convergenc		
e, Issues		
and		
Challenges		

- 1. Machine Learning by Tom Mitchell. Mc Graw Hill
- 2. Machine Learning by S. Sridhar, M. Vijayalakshmi Oxford University Press
- 3. Machine Learning: The Art and Science of Algorithms That Make Sense Of Data Peter Flach, Cambridge
- 4. Pattern Recognition and Machine Learning by Christopher Bishop Springer NP Exclusive (CBS)
- 5. Machine Learning: Theory and Practice M.N. Murty, V.S. Ananthanarayana, Universities Press
- 6. Artificial Intelligence: A Modern Approach Russell, Norvig, Pearson
- 7. Artificial Intelligence George Luger, Pearson (Indian Edition)
- 8. First Course In Artificial Intelligence Deepak Khemani, McGraw-Hill
- 9. An Introduction to Statistical Learning James, Witten, Hastie, Tibshirani, Springer

_	_			_		
		~**	~~	h		ks:
KP	ıer	en	6.6	114	м	K C
		$\mathbf{v}_{\mathbf{I}}$		\mathbf{v}		

Online Resources:

List of Assignments:

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												

Course Code- PCCCS404
Course Title – Design & Analysis of Algorithm
Credit – 3
Category – Professional Core Course
Semester – IV
L:T:P:S – 3:0:0:0
Pre-requisite –

Course Outcomes:

CO1	
CO2	
CO3	
CO4	

Mod	Topic	Sub-	Mapping with Industry and International Academia	Lect	Correspondi	Textb
ule		topics		ure	ng Lab	ook
No.		_		Hour	Assignments	Mappi
				S		ng

1	Introducti	Characteri	International Academia: https://ocw.mit.edu/courses/6-046j-	5	1. Verify the	
	on	stics of	design-and-analysis-of-algorithms-spring-		different	
		algorithm.	2015/pages/syllabus/AICTE-prescribed		input case	
		Analysis	syllabus:		scenario with	
		of	https://www.aicte-		insertion	
		algorithm:	<pre>india.org/sites/default/files/Model_Curriculum/AICTE%20-%2</pre>		sort,	
		Asymptoti	<u>0UG%20CSE.pdf</u> Industry Mapping:		Selection	
		c analysis	<u>GNU</u>		sort and	
		of	<u>C Compiler</u>		Bubble sort.	
		complexit			2. Verify the	
		y bounds			different	
		– best,			input case	
		average			scenario with	
		and worst-			linear search	
		case			and binary	
		behavior;			search.	
		Performan				
		ce				
		measurem				
		ents of				
		Algorithm				
		, Time and				
		space				
		trade-offs,				
		Analysis				
		of .				
		recursive				
		algorithms				
		through				
		recurrence				
		relations:				
		Substitutio				
		n method,				
		Recursion				
		tree				

		method				
		and				
		Master's				
		theorem;				
		Divide				
		and				
		Conquer				
		algorithms				
		– Merge				
		Sort,				
		Quick				
		Sort,				
		Finding				
		lower				
		bound of				
		compariso				
		n-based				
		sorting				
		algorithms				
		,				
		Strassen's				
		algorithm				
		for				
		multiplyin				
		g .				
	Fd	matrices	International Academia:	_	1. Find	
2	Fundam ental	Brute-		5		
		force,	https://ocw.mit.edu/courses/6-046j-design-and-analysis-of-		maximum and	
	Algorith mic	Greedy,	algorithms-spring-2015/pages/syllabus/AICTE-prescribed		and Minimum	
		Dynamic	syllabus: https://www.aicte-			
	Strategie	Programm	india.org/sites/default/files/Model_Curriculum/AICTE%20-%2 OUG%20CSE.pdfIndustry Mapping: Hardware Chipsets (IC		using the divide &	
	S	ing, Branch	7408, 7432,7404),			
		and	7408, 7432,7404), Software- Tinker Cad		conquer approach and	
		Bound	Software- Tinker Caa			
		DUIIU			verify its	

	ı			1	201.1	1
		and			efficiency.	
		Backtracki			2. Verify the	
		ng			different	
		methodolo			input case	
		gies for			scenario with	
		the design			Quick sort,	
		of			Merge sort	
		algorithms			and heap	
		•			sort.	
		Illustratio			3. Verify	
		ns of these			quick sort	
		techniques			with different	
		for			pivot	
		Problem			position.	
		solving,			4. Verify	
		Bin			Strassen's	
		Packing,			matrix	
		Knapsack,			multiplicatio	
		TSP,			n.	
		Heuristics				
		_				
		characteris				
		tics and				
		their				
		applicatio				
		n				
		domains,				
		KMP				
		algorithm.				
3	Graph	Graph and	International Academia:	6	1. Review of	
	and	Tree	https://ocw.mit.edu/courses/6-046j-design-and-analysis-of-		BFS/DFS.	
	Tree	Algorithm	algorithms-spring-2015/pages/syllabus/AICTE-prescribed		2. Checking	
	Algorith	s:	syllabus: https://www.aicte-		if a graph is	
	ms	Traversal	india.org/sites/default/files/Model_Curriculum/AICTE%20-%2		biconnected.	
		algorithms	<u>OUG%20CSE.pdf</u> Industry Mapping:		3. Review of	

		: Depth First	Hardware Chipset (IC 7408, 7432,7404, 74153, 74155, 74180)		Spanning Tree.	
		Search (DFS) and Breadth	Software: LogiSim and VHDL		4. Verify Knapsack	
		First Search			problem. 5. Job	
		(BFS),			sequence	
		Disjoint Set Data			with deadline.	
		Structures, Shortest				
		paths algorithms				
		Minimum				
		Spanning Tree,				
		Topologic				
		al sorting, Network				
		Flow				
4	Tracta	Problem. Tractable	International Academia:	6	1. Design	
	ble	and	https://ocw.mit.edu/courses/6-046j-design-and-analysis-of-	U	of R-S, J-	
	and	Intractable	algorithms-spring-2015/pages/syllabus/AICTE-prescribed		K, D and	
	Intrac	Problems:	syllabus: https://www.aicte-		T Flip	
	table	Computab	india.org/sites/default/files/Model_Curriculum/AICTE%20-%2		flops	
	Proble	ility of	<u>0UG%20CSE.pdf</u> Industry Mapping:		using	
	ms	Algorithm	Hardware Chipset (IC 7476, 7474)		universal	
		s,	Software: LogiSim and VHDL		gates and	
		Computab			also study	
		ility			master	
		classes –			slave J-K	
		P, NP,			flip flop	

ND	10.7476
NP-	IC 7476.
complete	2.
and NP-	Design
hard,	of
Cook's	synchro
theorem,	nous
Standard	and
NP-	asynchr
complete	onous
problems	counter
and	using
Reduction	Flip
techniques	Flop IC
	7476.
	3. Design
	of 4-bit
	shift
	register
	(shift
	right) IC
	7476/747
	4
	4.Implemen
	tation of
	sequential
	circuits
	using
	Logisim
	and VHDL

5	Advan	Advanced	International Academia:	4	1. Design	
	ced	Topics:	https://ocw.mit.edu/courses/6-046j-design-and-analysis-of-		of PLA and	
	Topics	Approxim	algorithms-spring-2015/pages/syllabus/AICTE-prescribed		PAL using	
		ation	syllabus: <u>https://www.aicte-</u>		basic logic	
		algorithms	<u>india.org/sites/default/files/Model_Curriculum/AICTE%20-%2</u>		gates (IC	
		,	<u>OUG%20CSE.pdf</u> Industry Mapping:		7408,	
		Randomiz	Hardware Chipset (IC 7408, 7432,7404),		l '	
		ed	FPGA Kit		7432,7404	
		algorithms)	
		, Class of			2. Design	
		problems			and	
		beyond			testing of	
		NP - P			half/full	
		SPACE.			adder and	
					multiplexe	
					r by	
					burning	
					FPGA Kit.	

- 1. Introduction to Algorithms, 4th Edition, Thomas H Cormen, Charles E Lieserson, Ronald L Rivest and Clifford Stein, MIT Press/McGraw-Hill.
- 2. Algorithms In A Nutshell, George T. Heineman, Gary Pollice and Stanley Selkow, O'Reilly.
- 3. Fundamental pf Algorithms E. Horowitz et al.
- 4. Algorithm Design, 1st Edition, Jon Kleinberg and EvaTardos, Pearson.
- 5. Algorithm Design: Foundations, Analysis, and Internet Examples, Second Edition, Michael T Goodrich and Roberto Tamassia, Wiley.
- 6. Algorithms A Creative Approach, 3rd Edition, UdiManber, Addison-Wesley, Reading, MA.

7.	Design & Analysis of Algorithms,	Gajendra Sharma,	Khanna Publishing Housh	(AICTE Recommended	Textbook -2018).
----	----------------------------------	------------------	-------------------------	--------------------	---------------------

Reference books:

Online Resources:

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO ₂												
CO3												
CO4												

Course Code- PCCCS405
Course Title – Advanced Programming
Credit – 3
Category – Professional Core Course
Semester – IV
L:T:P:S – 3:0:0:0
Pre-requisite –

Course Outcomes:

CO1	
CO2	
CO3	
CO4	

Desirable/Advanced outcome:

- 1. Ability to implement basic event-driven programming.
- 2. Understanding of the fundamentals of parallel programming.

Mod ule No.	Topic	Sub- topics	Mapping with Industry and International Academia	Lect ure Hou rs	Corresponding Lab Assignments	Textbook Mapping
1	Familia rity with the progra mming environ ment	Understa nding the build system, IDE, debuggin g, profiling and source code managem ent. Introducti on to various program ming paradigm s,	International Academia: https://drive.google.com/file/d/10z00dMd26WjiPTh hCercGbsi6u3ciE62/view https://drive.google.com/file/d/1k3qrfDL9p5_IJR_iP 2mt6c6AzwmByNtf/view AICTE-prescribed syllabus: https://www.aicteindia.org/sites/default/files/Model_Cu rricul um/AICTE%20-%20UG%20CSE.pdf Industry Mapping: Hackerrank, TCS Codevita projects, GitHub platform. NetBeans and Eclipse IDE will be used.	3	Familiarity with terminal/comma nd prompt, using git commands and github to pull/commit/ push/merge code, writing, compiling and running simple programs, debugging by setting breakpoints	Herbert Schildt, Java: The Complete Reference, 11 th edition Chapters: 1,2 E. Balagurus wami, Programm ing with Java, 6 th edition

2 Basic princ of the object orien devel ent proces	Object Oriented Paradigm : Data encapsul	International Academia: https://ocw.mit.edu/courses/6-096-introduction- to-c-january-iap- 2011/270def7b1f68535b7c3846c606b220eb_MIT6 _096IAP11_lec07.pdf https://ocw.mit.edu/courses/6-00sc-introduction- to-computer-science-and-programming-spring- 2011/resources/lecture-11-oop-and-inheritance/ AICTE-prescribed syllabus: https://www.aicteindia.org/sites/default/files/Model_Curricul_um/AICTE%20- %20UG%20CSE.pdf Industry Mapping: Hackerrank,TCS Codevita projects, GitHub platform. NetBeans and Eclipse IDE will be used.	4	Importing pre- written classes using the this keyword, calling and defining methods, writing and instantiating classes, setter/getter methods, instance variables, returning values, debugging using print function, containment and association, scope and parameter passing	Chapters: 1,2,3 Herbert Schildt, Java: The Complete Reference, 11st edition Chapters: 3,4,5 E. Balagurusw ami, Programmi ng with Java, 6th edition Chapters: 6,7,8
--	--	---	---	---	--

3	Advanc ed features of OOP	Polymor phism, Inheritan ce, abstract classes & Interface s, copying and cloning objects, Wrapper class, Stream, I/O operations	International Academia: International Standards Mapping (MIT Open Courseware): String: immutability, BufferReader, StringBuilder https://ocw.mit.edu/courses/6-088-introduction-to-c- memory-management-and-c-object-oriented- programming-january-iap- 2010/resources/mit6 088iap10 lec05/ Polymorphism: Methods: Overloading and overriding Methods, overloading constructors https://ocw.mit.edu/courses/6-092-introduction-to- programming-in-java-january-iap-2010/download/ AICTE-prescribed syllabus: https://www.aicteindia.org/sites/default/files/Model Cu rricul um/AICTE%20- %20UG%20CSE.pdf Industry Mapping: Hackerrank,TCS Codevita projects, GitHub platform. NetBeans and Eclipse IDE will be used.	8	Parameter polymorphism, method resolution, declared v/s actual type, partially and fully overriding methods, calling superclass constructor from child class constructor, protected fields and methods, using an abstract parent class v/s an interface with default and abstract methods, object equality check, object comparison (Comparable/Co mparator interface), Cloneable interface/copy constructor Exception	Herbert Schildt, Java: The Complete Reference, 11 th edition Chapters: 7,8,20 E. Balaguru swami, Program ming with Java, 6 th edition Chapters: 9,10
7	modifiers , Exceptio	modifiers , packages , Java	https://drive.google.com/file/d/1yFNf2IBXgy6ch47 hR6TGHzddvCPfVm8p/view AICTE-prescribed syllabus	U	handling using try/catch block, nesting try/catch	Schildt, Java: The Complete

	ns & Multithre ading	APIs, Exceptio n handling, Java Thread Program ming	https://www.aicteindia.org/sites/default/files/Model_Curricul_um/AICTE%20- %20UG%20CSE.pdf Industry Mapping: Hackerrank, TCS Codevita projects, GitHub platform. NetBeans and Eclipse IDE will be used.		blocks, throw and throws keywords, rethrowing exceptions, handling checked exception, user defined exceptions. Thread Synchronization and Thread Communication	Reference, 11th edition Chapters: 9, 10 E. Balaguru swami, Program ming with Java, 6th edition Chapters: 11, 12, 13
5	Collection Framewo rk	Languag e supporte d libraries for handling advanced data structures (Hierarch y of Collectio n Framewo rk, ArrayList	International Academia: https://drive.google.com/file/d/1kbRGF396sQPdQb A4w-N81ElKU_bdGgFs/view AICTE prescribed syllabus: https://www.aicteindia.org/sites/default/files/Model_Cu rricul_um/AICTE%20- %20UG%20CSE.pdf Industry Mapping: Hackerrank, TCS Codevita projects, GitHub platform. NetBeans and Eclipse IDE will be used.	4	Time complexity analysis, Java collection framework (or Boost libraries), sorting objects, iterating over objects	Herbert Schildt, Java: The Complete Reference, 11 th edition Chapters: 18, 19 E. Balaguru swami, Program ming with Java, 6 th edition

	LinkedLi st, Vector, HashSet)				Chapters: 17, 18
Modeling and Design patterns	Basic modeling techniqu es – e.g. Class diagram, sequence diagram, use case diagrams, etc. Introduct ion to design patterns: iterator, singleton , flyweight , adapter, strategy, template, prototype , factory, façade, decorator , composit e, proxy, chain of responsib	International Academia: https://drive.google.com/file/d/1DQVPfhmcyKog- PryPdZ-bxufUC7D0Cfl/view AICTE-prescribed syllabus https://www.aicteindia.org/sites/default/files/Model_Cu rricul um/AICTE%20- %20UG%20CSE.pdf Industry Mapping: Hackerrank,TCS Codevita projects, GitHub platform. NetBeans and Eclipse IDE will be used.	4	UML modeling using Rational rose, draw.io, Edraw Max, . www.starUML.io, argouml.tigris. org/	Herbert Schildt, Java: The Complete Reference, 11th edition Chapters: 18, 19 E. Balaguru swami, Program ming with Java, 6th edition Chapters: 19

		ility, observer, state) Model View Controlle r				
7	Basic Android Program ming & UI Design	Android Compone nts – Activity, Services, Content Provider, Broadcast Receiver; Simple UI Design, Applet and Swing	International Academia: https://online.stanford.edu/courses/cs108-object- oriented-systems-design AICTE-prescribed syllabus: https://www.aicteindia.org/sites/default/files/Model_Cu rricul um/AICTE%20- %20UG%20CSE.pdf Industry Mapping: Hackerrank, TCS Codevita projects, GitHub platform, Android Studio will be used.	7	Android app making, stand alone and web app development.	Barry A. Burd and John Mueller, Android Applicatio n Developme nt All-in- One For Dummies Chapters: 1,2,3,4 Rick Rogers, John Lombardo, Zigurd Mednieks and Blake Meike Android Applicatio n

			Developme nt
			Chapters: 1,2,3,5

Textbooks:

- 1. Herbert Schildt, Java: The Complete Reference, 11th edition
- 2. E. Balaguruswami, Programming with Java, 6th edition
- 3. Barry A. Burd and John Mueller, Android Application Development All-in-One For Dummies
- 4. Rick Rogers, John Lombardo, Zigurd Mednieks and Blake Meike, Android Application Development, O REILLY
- 5. Grady Booch, Robert A. Maksimchuk, Michael W. Engle, Bobbi J. Young, Jim Conallen, Kelli A. Houston. Object-Oriented Analysis and Design with Applications
- 6. Paul Deitel, Harvey Deitel, Java How to Program: Early Objects, 11e, Pearson Education

Reference books:

- 1. J. Rumbaugh et al. The Unified Modeling Language Reference Manual.
- 2. P. Van Roy and S. Haridi. Concepts, Techniques, and Models of Computer Programming.
- 3. Horton, I. (2005). Ivor Horton's Beginning Java 2. John Wiley & Sons.

Online Resources:

https://missing.csail.mit.edu/

https://www.baeldung.com/junit

https://www.tutorialspoint.com/junit/index.htm

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												

Course Code- HSMCS471

Course Title – Management 1 (Finance & Accounting)

Credit - 3

Category – Humanities & Social Sciences including Management Course

Semester – IV

L:T:P:S - 3:0:0:0

Pre-requisite -

Course Outcomes:

CO1	
CO2	
CO3	
CO4	

Relevant Links:

Module	Topic	Sub-topics	Mapping with Industry and	Lecture	Corresponding	Textbook
No.	_	_	International Academia	Hours	Lab	Mapping
					Assignments	
1	Introduction to	The principles of	International Academia:	8	1. Easy Tally	
	Finance and	financial and cost	(Accounting, Finance & Valuation			
	Accounting	accounting	<u>Course I Stanford Online)</u>		2. Preparation of	
		Financial			Basic financial	
		Management,	AICTE-prescribed		and accounting	
		Financial	<u>syllabus:</u>		statements	
		Planning and	(Microsoft Word -			
		Capitalization-	<u>Information_Technology_Syllabus.doc</u>		3. Analysis of	
		definitions,	(makautwb.ac.in))		Financial	

		objectives, changing roles and functions, Financial Decision. Basic accounting concepts, important definitions, uses, limitations, advantages; types of Accounting, Financial statements, introduction to Journal Accounting; double entry bookkeeping, different types of transactions related to Financial	Industry Mapping: Designing an accounting system		statements of listed companies	
		Accounting.				
2	Capital Budgeting	Managerial accounting tools and practices Nature of Investment decision, Importance of Capital Budgeting, The Capital.	International Academia: (Accounting, Finance & Valuation Course I Stanford Online) AICTE-prescribed syllabus: (Microsoft Word - Information Technology Syllabus.doc (makautwb.ac.in))	6	Mapping and Techniques using Excel and Tally 1. Analysis of Financial statements of	

		Budgeting Process - Investment Criterion, Pay- back period, Accounting, ROR (Rate of Return) Method, Discounting Cash flow method, Net — present value method, IRR (Internal Rate of Return) method, The Benefit-Cost Ratio method. Related module	Industry Mapping: Financial long term forecasting		listed companies (International & India) comparison 2. Oracle netsuite
3	Management of Working Capital	Various concepts, Elements, Classification, Financing and importance of working capital, Investment analysis, Cash flow determination, cost of capital, capital budgeting methods.	International Academia: (Accounting, Finance & Valuation Course I Stanford Online) AICTE-prescribed syllabus: (Microsoft Word - Information Technology Syllabus.doc (makautwb.ac.in)) Industry Mapping: Financial daily or short term fund planning and management	8	Mapping Techniques using Tally and Excel
4	Cost - Volume	Analysis of	International Academia: (Accounting, Finance & Valuation	8	Mapping and

	- Profit Analysis	Costing and Classification of costs, Allocation, apportionment and absorption, Cost centers, different costing systems, Cost analysis for managerial decisions, Meaning of Linear CVP analysis, Objectives, Assumptions, Break – Even analysis, determining the Break-Even point profit, Volume graph profit, Volume ratios margin of Safety.	Course I Stanford Online) AICTE-prescribed syllabus: (Microsoft Word - Information Technology Syllabus.doc (makautwb.ac.in)) Industry Mapping: Analysis of sales and cost dependency on profit margin using cost analysis methods.		solving Techniques using Tally and Excel Power BI
5	Financial Control	Posting of Ledgers and preparation of Trial Balance; preparation of Balance Sheet and Profit and Loss Accounts; Controlling other departments by	AICTE-prescribed syllabus: (Microsoft Word - Information Technology Syllabus.doc (makautwb.ac.in)) Industry Mapping: Design and analysis of company health using Balance sheet using available tools and techniques.	6	

Financial Accounting (A practical	
Approach).	

Textbooks:

Reference books:

Online Resources:

CO-PO Mapping:

		0										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												

Course Code- MCC471

Course Title – Sustainability, Climate Actions & Environmental Sciences

Credit - 2

Category – Mandatory Course

Semester – IV

L:T:P:S - 1:0:2:0

Pre-requisite –

Course Outcomes:

CO1	Understand fundamental concepts of environmental systems, sustainability, United Nations
	Sustainable Development Goals (UNSDGs) and their interrelationship with human society.
CO2	Apply knowledge of sustainable practices, different technical tools and existing frameworks to
	address environmental and societal challenges.
CO3	Analyze the challenges and strategies associated with climate change mitigation, sustainable cities,
	and waste management within the context of international agreements and frameworks.
CO4	Evaluate and design innovative approaches to energy, water, and waste management, considering the
	principles of the circular economy and global SDG progress reports.

Study Material LinkedIn NPTEL Coursera	Study Material	LinkedIn	<u>NPTEL</u>	Coursera
--	-----------------------	----------	--------------	----------

Mo	Topic	Sub-topics	Mapping with Industry and International Academia	Le	Corres	Text
dul				ctu	pondi	book
e				re	ng	Map
No.				Ho	Lab	ping
				urs	Assign	
					ments	
1	Overvi	Basic ideas	International Academia:	4	Assess	Field
	ew -	of	https://unccelearn.org/course/view.php?id=170&page=overview		the	work
	United	environmen			college	will
	Nation	t, basic	https://unccelearn.org/course/view.php?id=181&page=overview		campu	be
	S	concepts:			S	assig
	Sustai	man,	AICTE prescribed		alignm	ned
	nable	society &	syllabus:		ent	for
	Develo	environmen			with	each
	pment	t, their	Industry Mapping:		the	and
	Goals	interrelation			United	every
	(UNS	ship.			Nation	stude
	DGs)	Significanc			S	nt/
		e of			Sustain	grou
		sustainabilit			able	p of
		y in today's			Develo	stude

 ,		, , , , , , , , , , , , , , , , , , , ,
world. 17	pment	nts,
United	Goals	on
Nations	(SDGs	comp
Sustainable) and	letio
Developme	rank	n of
nt Goals	the	whic
(UNSDGs)	perfor	h
	mance	they
background	across	have
	selecte	to
significance	d goals	give
	mentio	a
interconnec	ning	prese
tedness of	the	ntati
goals,	actiona	on
global	ble	along
challenges	strategi	with
and recent	es for	a
progress.	improv	mode
Climate	ement.	1
change and		displ
mitigation.		ay if
Explain and		possi
evaluate the		ble.
evidence		
for human-		
caused		
climate		
change, in		
the context		
of historical		
climate		
change, as		
well as the		
relevant		

	1				l I	
		scientific				
		uncertaintie				
		s and				
		possible				
		evidence to				
		the				
	g	contrary.	T 1 G	4		
2	Sustai		International Standards:	4	Design	
	nable	Sustainabl	https://ocw.mit.edu/courses/res-env-006-teaching-with-sustainability- january-iap-2022/		and	
	Mana	е	AICTE prescribed		propo	
	gemen	manageme	syllabus:		se	
	t	nt of water	Symous.		innova	
		and			tive,	
		sanitation-			sustai	
		introductio	Industry Mapping:		nable	
		n, key	7 11 0		solutio	
		componen			ns for	
		ts,			manag	
		challenges			ing	
		and			water,	
		innovative			energy	
		approache			, and	
		s. Ensure			urban	
		access to			syste	
		affordable,			ms,	
		reliable,			inspire	
		sustainabl			d by	
		e, and			the	
		modern			princi	
		energy-			ples of	
		introductio			SDG 6,	
		n,			SDG 7	

	I				1	
		importanc			and	
		e, key			SDG	
		targets,			11.	
		challenges				
		and				
		strategies.				
		Sustainabl				
		e Cities				
		and				
		Communiti				
		es-				
		Definition				
		of				
		sustainabl				
		e cities,				
		current				
		challenges				
		,				
		strategies,				
		innovative				
		solution,				
		smart city				
3	Climat	Climate	International Standards:	4	Using	
	e	change and	https://unccelearn.org/course/view.php?id=7&page=overview⟨=en		data	
	Action	its			analyti	
		consequenc	https://unccelearn.org/course/view.php?id=145&page=overview		cs and	
		es,			modeli	
		internationa	https://unccelearn.org/course/view.php?id=48&page=overview		ng	
		l o amo o ma a mata	https://ocw.mit.edu/courses/res-env-001-climate-action-hands-on-harnessing-science-with-communities-to-cut-carbon-january-iap-2017/		tools -	
		agreements on climate	narnessing-science-wan-communates-to-cat-carbon-january-tap-2017/		evalua	
		change,			te	
		change,		1		

	strategies		climat	
	and	AICTE prescribed	e	
	actionable	syllabus:		
	step, Life	symmons.	chang	
	Below	Industry Mapping:	e	
	Water-	Thursdy hzupping.	impac	
	Importance		ts,	
	of water		asses	
	bodies and		S	
	marine		ecosy	
	ecosystem,		stem	
	strategies		health	
	for		, and	
	protecting		propo	
2	aquatic life		se	
	and water		techni	
l	bodies, Life		cal	
	on Land-		solutio	
i	importance			
	of		ns for	
	biodiversity		mitiga	
,			tion	
	sequestratio		and	
	n, Food		conser	
	security,		vation	
	Strategies		efforts	
	for		•	
	Conservatio			
	n and			
	Restoration of			
	Ecosystems			
'	, Sustainable			
	Land			
	Lana			

Managama		
Manageme		
nt, Biodiversit		
Conservatio		
Conservatio		
n,		
Accountabl		
e steps for		
life on land.		
The		
successes		
and failures		
of past		
national and		
internationa		
1 efforts to		
address		
climate		
change,and		
evaluate		
prospects		
for future		
managemen		
t of climate		
change.		
Provisions		
of the		
United		
Nations		
Framework		
Convention		
on Climate		
Change,		
Paris		
Agreement		

4	UN-	Focus on	International Standards:	4	Using	
	call for	annual	https://unccelearn.org/course/view.php?id=175&page=overview		quantit	
	Action	SDG Goals			ative	
		Report and	AICTE prescribed		analysi	
		the United	syllabus:		s,	
		Nations			strategi	
		Secretary-	Industry Mapping:		c	
		General's			planni	
		calls for			ng, and	
		action to			innova	
		accelerate			tive	
		the progress			approa	
		on the			ches,	
		Sustainable			evaluat	
		Developme			e the	
		nt Goals			global	
		(SDGs).			progre	
		Examine			ss on	
		the global			the	
		progress			Sustain	
		trends,			able	
		challenges			Develo	
		highlighted			pment	
		in recent			Goals	
		reports, and			(SDGs	
		key) as	
		priorities			highlig	
		proposed by			hted in	
		the			the	
		Secretary-			annual	
		General to			SDG	
		achieve the			Goals	
		2030			Report.	
		Agenda.				

5	Enviro	Environme	International Academia: https://www.lse.ac.uk/united-	4	Life	
	nment	ntal impact	states/Assets/Documents/Syllabus-Hub-PDFs/Michael-Carbajales-Dale-		Cycle	
	al	assessment	Clemson-Environmental-Systems-Analysis.PDF		Asses	
	Syste	- lifecycle			sment	
	ms	assessment	https://www.igmpi.ac.in/environmental-social-governance?gad_source=1		of a	
	Analys	(LCA),				
	is	Using of	https://www.iso.org/standard/60857.html#:~:text=ISO%2014001%20is%20th		colleg	
		LCA	e%20internationally,continually%20improve%20their%20environmental%20		e	
		software	performance.		buildin	
		tools –			g	
		OpenLCA,	Industry Mapping:		using	
		Environme			OpenL	
		ntal, social,			CA	
		and			softwa	
		governance			re.	
		(ESG),				
		Integrated				
		Impact				
		Assessment of ESG,				
		Carbon				
		Manageme				
		nt, Green				
		Hydrogen,				
		Importance				
		of green				
		building				
		(LEED,				
		IGBC etc.)				
		certification				
		•				
		Environme				
		ntal				
		Manageme				
		nt System				

		T :				
		(EMS) in				
		industry -				
		ISO 14001.				
6	Waste	Waste	International Academia: https://cpcb.nic.in/rules-6/	5	Map	
	Mana	Manageme	https://ocw.mit.edu/courses/ec-716-d-lab-waste-fall-2015/		ping	
	gemen	nt Rules -			the	
	t	Hazardous	https://unccelearn.org/course/view.php?id=131&page=overview		suppl	
		Waste, E-			y	
		waste,	https://unccelearn.org/course/view.php?id=87&page=overview		chain	
		Municipal			of	
		Solid	Industry Mapping:		diffe	
		Waste, Bio-			rent	
		medical			wast	
		waste,			e	
		Plastic			mana	
		Waste &			geme	
		Constructio			nt	
		n and			syste	
		Demolition			ms	
		Waste.			and	
		Manageme			findi	
		nt of			ng	
		different			the	
		waste			issue	
		streams –			s &	
		collection,			chall	
		transportati			enge	
		on,			S.	
		treatment,				
		storage and				
		disposal.				
		Basel				
		Convention,				
		Extended				
		producer				

			1
re	esponsibili		
ty	y (EPR)		
E	Energy &		
R	Resource		
R	Recovery -		
	ncineration		
,	C_{0}		
	processing,		
	Composting		
,	Bio-		
	nethanatio		
n			
	Manageme		
n	t of solar		
	hoto-		
	roltaic		
	nodules or		
	anels or		
c	ells,		
	Battery		
	Vaste		
	Manageme		
n	t Rules,		
	Circular		
	Sconomy		

Textbooks:

This syllabus has been designed for the United Nations Sustainability Development Goals, so there are no prescribed textbooks. Please refer to the study material and online courses.

Reference books:

Online Learning Resources:

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												

Course Code- PCCCS481
Course Title – Data Analytics
Credit – 1
Category – Professional Core Course (Sessional)
Semester – IV

L:T:P:S – 0:0:0:2

Pre-requisite –

Course Outcomes:

CO1	
CO2	
CO3	
CO4	

Modul e No.	Topic	Sub-topics	Mapping with Industry and International Academia	Lectur e	Correspondin g Lab	Textboo k
	Introduction to Data Analytics	Definition and Importance of Data Analytics, Types of Data (Structured, Unstructured, Semistructured), Applications of Data Analytics in Real-world Scenarios (e.g., fraud detection, recommendation systems, precision agriculture) Data Analytics Workflow: Data Collection, Cleaning,			-	
		Cleaning, Analysis, and Reporting Overview of Data Analytics Tools (Excel,			3. Basic Power BI functions (Aggregation, text, logical, filter, ranking, statistical, data	

	Python, Tableau, Power BI, and R)			visualization, table manipulation) 4. Basic data handling using R: importing, exploring, and manipulating datasets
2 Data Preprocessin g and Cleaning	Data Quality Issues and Handling Missing Data in R, Techniques for Data Cleaning (Removing duplicates, fixing invalid entries), Data Transformation and Standardization (Normalization, Encoding), Introduction to Python Libraries for Data Preprocessing (Pandas, NumPy), Handling Outliers and	International Academia: How to Process, Analyze and Visualize Data: https://ocw.mit.edu/courses/res-6-009-how-to-process-analyze-and-visualize-data-january-iap-2012/ Introduction to R and Geographic Information Systems (GIS) https://ocw.mit.edu/courses/introduction-to-r-and-gis-fall-2023/ Industry Mapping: Power BI, R, Excel	5	1. Hands-on exercises on data cleaning and preprocessing using R. 2. Working on datasets with missing and noisy data.

				(e) Three dimensional plotting 4. Create visualizations: histograms, scatter plots, boxplots, and bar plots using ggplot2 using R and using Power BI.
Basic Statistical and Machine Learning Techniques	Descriptive Statistics (Mean, Median, Mode, Standard Deviation, Variance, Correlation), Basics of Probability in Data Analytics, Introduction to Regression (Linear, Polynomial) and Classification, Basics of Machine Learning Workflow: Training,	International Academia: Statistics and Visualization for Data Analysis and Inference: https://ocw.mit.edu/courses/res-9-0002- statistics-and-visualization-for-data- analysis-and-inference-january-iap-2009/ Introduction to R and Geographic Information Systems (GIS) https://ocw.mit.edu/courses/introduction -to-r-and-gis-fall-2023/	6	1. Implement basic statistical functions in Excel. 2. Implementing simple regression models (Linear Regression) using R. 3. Building a basic classification model (e.g., Logistic Regression) in R.

Testing, and Validation, Evaluating Model Performance (Accuracy, Precision, Recall, F1- Score, Confusion Matrix), Introduction to Python's Scikit- learn Library. Analyze datasets using basic statistical measures and visualization tools in R.		4. (a) Compute mean, median, mode, variance, and standard deviation using R, (b) Analyze distributions and correlations. 5. Creating data analysis dashboard using Power BI.
--	--	--

Projects: The projects will be performed by groups of students.

- 1. Sales and Customer Analysis Dashboard creation using Power BI.
- 2. Scrape IMDB movie ratings and details using R and save the details of top movies to .csv file.
- 3. Create a dashboard for COVID-19 Data Analysis using Power BI. **Tasks:** Import a public COVID-19 dataset with columns like Date, Country, New Cases, New Deaths, and Total Vaccinations, **Transform data:** Group data by Country or Region, Calculate daily growth rates for cases and deaths. **Visualizations:** Global Cases and Deaths Trends (Line Chart), Cases by Country (Map Visualization),

Vaccination Progress (Clustered Column Chart). **Outcome:** An interactive dashboard presenting global COVID-19 trends.

- 4. Exploratory Data Analysis on Iris Dataset using R/Python.
- 5. Create a simple dashboard to analyze sales performance using Power BI. Import a sample sales dataset with columns like Order ID, Date, Sales, Profit, Category, and Region, perform basic data cleaning in Power Query (e.g., handle null values, format dates), create visualizations as follows:
 - Total Sales (Card).
 - Sales by Region (Map).
 - Monthly Sales Trends (Line Chart).
 - Sales by Category (Bar Chart or Pie Chart).

Then add a slicer for filtering by year or region. The outcome will be a basic dashboard showcasing sales performance across regions and categories.

- 6. House Price Prediction using Machine Learning in Python/R.
- 7. Create a dashboard for **Employee Performance Analysis using Power BI.** Import an employee dataset with columns like Employee ID, Name, Department, Salary, Performance Score, and Joining Date, Create calculated columns:
 - Years of Service = DATEDIFF(Joining Date, TODAY(), YEAR).
 - Performance Tier = IF(Performance Score > 80, "High", IF(Performance Score > 50, "Medium", "Low")).

Visualizations:

- Salary Distribution (Histogram).
- Performance by Department (Clustered Bar Chart).
- Employee Count by Performance Tier (Pie Chart).

It will output a report highlighting employee performance and salary distribution.

- 8. Zomato Data Analysis using Python/R.
- 9. Analyze sales performance and trends using Excel operations. **Tasks**: Import a sales dataset with columns like Order ID, Date, Product, Category, Sales Amount, Quantity, and Region.
 - Calculate Total Sales, Average Sales, and Quantity Sold using basic formulas.
 - Use **Filters** and **Sort** to analyze sales for specific categories or regions.
 - Create a **Pivot Table** to show total sales by product category and region.
 - Visualize:
 - Monthly sales trends (Line Chart).
 - Sales by region (Bar Chart or Pie Chart).
 - Identify the top-performing product and region.

- 10. Loan Approval Prediction including visualization of data and data preprocessing using Python/R.
- 11. Explore customer data to understand demographics and spending behaviour using Excel operations. **Tasks**: Dataset includes Customer ID, Name, Age, Gender, Location, Total Spend.
 - o Calculate average customer spend and age using basic formulas.
 - o Use **COUNTIF** to calculate the number of male vs. female customers.
 - o Create a **Pivot Table** to summarize total spend by location.
 - o Visualize:
 - § Age distribution (Histogram).
 - § Spending by gender (Bar Chart).
 - o Use **Slicers** in Pivot Tables to filter data by gender or location

Uber Rides Data Analysis using Python/R.

Textbooks:

- 1. "Data Analytics for Beginners" by Aileen Nielsen
- 2. "Practical Statistics for Data Scientists" by Peter Bruce and Andrew Bruce, O'Reilly Media, Inc.
- 3. "Data Analytics Using R", Seema Acharya, Mc Graw Hill.
- 4. "Fundamentals of Data Visualization", Claus O. Wilke. O'Reilly Media, Inc.

Reference books:

Online Learning Resources:

- Complete Guide to Power BI for Data Analysts by Microsoft Press: http://surl.li/gmcctm
- Excel Data Visualization: https://shorturl.at/IQwfM
- Creating Interactive Tableau Dashboards: https://shorturl.at/HqeeT

• R for Data Science: Analysis and Visualization: https://shorturl.at/oUI8H

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												