CAMOZZI

Electroválvulas de mando directo Serie PL

3/2 vías - Normalmente Cerrada (NC).

» Posibilidad de montaje en base individual (con conexiones M5) o en colector (con conexiones M5 y cartucho ø 3 y 4).

Las electroválvulas de mando directo Serie PL están disponibles en la versión normalmente cerrada (NC) y pueden ser montadas en bases individuales o en colectores. Nota: Todas las electroválvulas de la Serie PL son basicamente en corriente continua. Para operar en coriente alterna en la misma tensión, las electroválvulas necesitan usar el conector Mod. 125-900.

CARACTERÍSTICAS GENERALES

CARACTERÍSTICAS TÉCNICAS

Función

Operación tipo corredera de acción directa

Conexiones neumáticas en subbase intercara ISO 15218 por medio de tornillos

Díametro nominal

Caudal nominal 35 Nl/min (aire @ 6 bar ΔP 1 bar)

Coeficiente de flujo kv (l/min) 0.54

Presión de funcionamiento 0 ÷ 3.5 o 4 ÷ 8 bar Temperatura de funcionamiento $0^{\circ}\text{C} \div +50^{\circ}\text{C}$

aire filtrado, clase 5.4.4 de acuerdo a ISO 8573-1 (máx. viscosidad de aceite 32 cSt), gas inerte

Tiempo de respuesta ON < 10 mseg - OFF < 15 mseg

Instalación en cualquier posición

MATERIALES EN CONTACTO CON EL FLUIDO

Cuerpo tecnopolímero PBT Juntas FKM, NBR Partes internas acero inoxidable, NBR

CARACTERÍSTICAS ELECTRICAS

Voltaje 24 V DC - 12 V DC - otros voltajes bajo pedido

Tolerancia de voltaje ±10% Consumo de energía 2.7 W Servicio continuo ED 100%

conector DIN 43650, (Forma C), 9.4 mm Conexión eléctrica

Grado de protección IP65 con conector

Versiones especiales disponibles bajo pedido

€ CAMOZZI

SERIE PL

DISEÑO DEL CUERPO: 0

- 0 = base individual (sólo M5) o intercara
- 1 = colector individual 2 = colector doble
- NÚMERO DE POSICIONES:
 - 00 = intercara

 - 01 = hase individual (solo M5) 02 ÷ 99 = número posiciones colector
- NÚMERO DE VÍAS FUNCIONES: 3
 - 0 = colector o base individual 3 = 3 vías NC
 - 5 = 3 vías NC a 180°
- CONEXIONES DE LA VÁLVULA: 0

0 = intercara (sólo para válvula individual)

CONEXIONES DEL COLECTOR:

- 2 = M5 conexiones laterales
- 3 = tubo ø 3 conexiones laterales
- 4 = tubo ø 4 conexiones laterales 6 = M5 conexiones traseras

- 7 = tubo ø 3 conexiones traseras 8 = tubo ø 4 conexiones traseras
- DIÁMETRO NOMINAL: 3
 - $3 = \emptyset 1,5$
 - 6 = Ø 1,5 NC (para uso con el vacío)
- MATERIALES: PL
 - P = cuerpo tecnopolímero PBT, junta obturador FKM, otras juntas NBR
- CONEXIÓN ELÉCTRICA: 2
- 2 = 2 faston paso 9,4
- VOLTAJES TENSIÓN SOLENOIDE: 3 2 = 12 V DC 2.7W

 - 3 = 24 V DC 2.7 W

FIJACIÓN:

- = con tornillos para metal (estándar)
- = con tornillos para plástico

Electroválvula 3/2 vías NC

Suministrada con: 1 junta intercara 2 tornillos M3X20 UNI 8112 (fijación para metal, estándar) 2 tornillos M3x23 UNI 10227 (fijación para plástico, opción P)

Mod.	Orificio Ø (mm)	kv (l/min)	Qn (Nl/min)	Presión min-max (bar)
PL000-303-PL23	1.5	0.54	35	4 ÷ 8
PL000-503-PL23	1.5	0.54	35	4 ÷ 8
PL000-306-PL23	1.5	0.54	-	0 ÷ 3.5
PL000-506-PL23	1.5	0.54	-	0 ÷ 3.5

Base individual

Mod.

P001-02

Colector individual con salidas traseras

		-	
1		THE PERSON NAMED IN	
M	DOM: NO		
13/3			-
1	-	and the same of th	
1990			

	A 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
29.7	52.9 L1 7
= 10	Ø4.5
5.03	000000000000000000000000000000000000000
31.2	_L2NxL3

Mod.	N° puestos	L	L1	L2	L3	1 (P)	3 (R)
P102-0*	2	53	39	18,5	16	G1/8	G1/8
P103-0*	3	69	55	18,5	16	G1/8	G1/8
P104-0*	4	85	71	18,5	16	G1/8	G1/8
P105-0*	5	101	87	18,5	16	G1/8	G1/8
P106-0*	6	117	103	18,5	16	G1/8	G1/8

* = ver CONEXIONES colector en la TABLA DE EJEMPLO DE CODIFICACIÓN

A = ranura para la identificación de la conexión eléctrica

Colector individual con salidas frontales

Este colector está preparado para ser fijado a través de la guía DIN 46277/3 junto con el accesorio PCF-E520.

Mod.	N° puestos	L	L1	L2	L3	1(P)	3 (R)
P102-0*	2	53	39	18,5	16	G1/8	G1/8
P103-0*	3	69	55	18,5	16	G1/8	G1/8
P104-0*	4	85	71	18,5	16	G1/8	G1/8
P105-0*	5	101	87	18,5	16	G1/8	G1/8
P106-0*	6	117	103	18,5	16	G1/8	G1/8

* = ver CONEXIONES colector en la TABLA DE EJEMPLO DE CODIFICACIÓN

A = ranura para la identificación de la conexión eléctrica

C∢ CAMOZZI

Colector doble con salidas traseras

Mod.	N° puestos	L	L1	L2	L3	1 (P)	3 (R)
P204-0*	4	53	39	18,5	16	G1/8	G1/8
P206-0*	6	69	55	18,5	16	G1/8	G1/8
P208-0*	8	85	71	18,5	16	G1/8	G1/8
P210-0*	10	101	87	18,5	16	G1/8	G1/8
P212-0*	12	117	103	18,5	16	G1/8	G1/8

* = ver CONEXIONES colector en la TABLA DE EJEMPLO DE CODIFICACIÓN

A = ranura para la identificación de la conexión eléctrica

Colector doble con salidas frontales

Este colector está preparado para ser fijado a través de la guía DIN 46277/3 junto con el accesorio PCF-E520.

Mod.	N° puestos	L	L1	L2	L3	1 (P)	3 (R)
P204-0*	4	53	39	18,5	16	G1/8	G1/8
P206-0*	6	69	55	18,5	16	G1/8	G1/8
P208-0*	8	85	71	18,5	16	G1/8	G1/8
P210-0*	10	101	87	18,5	16	G1/8	G1/8
P212-0*	12	117	103	18,5	16	G1/8	G1/8

* = ver CONEXIONES colector en la TABLA DE EJEMPLO DE CODIFICACIÓN A = ranura para la identificación de la conexión eléctrica

Tapón excluidor

El suministro incluye: N° 1 tapón excluidor N° 1 junta intercara N° 2 tornillos

甘甘

Mod.

P000-TP

Conector Mod. 125-... DIN 43650 interaxe faston 9,4 mm

Mod.	descripción	color	tensión de trabajo	retención de cable	fuerza de sujeción
125-601	conector, diodo + LED	transparente	10/50 V DC	PG7	0.3 Nm
125-701	conector, varistor + LED	transparente	24 V AC/DC	PG7	0.3 Nm
125-800	conector, sin electrónica	педго	-	PG7	0.3 Nm

1 = conector ajustable 90°

Conector Mod. 125-... DIN 43650 interaxe faston 9,4 mm

El rectificador del circuito interno de este conector Mod. 125-900 permite usar electroválvulas con corriente alterna en diferentes voltajes, aun si el voltaje indicado sobre la válvula en corriente continua.

Mod.	descripción	color	tensión de trabajo	longitud del cable [L]	retención de cable	fuerza de sujeción
125-501-2	cable moldeado con diodo + LED	negro	10/50 V DC	2000 mm	-	0.3 Nm
125-550-1	cable moldeado, sin electrónica	negro	-	1000 mm	-	0.3 Nm
125-601-2	cable precableado, diodo + LED	transparente	10/50 V DC	2000 mm	PG7	0.3 Nm
125-571-3	cable moldeado, varistor + LED	negro	24 V AC/DC	3000 mm	-	0.3 Nm
125-900	cable precableado con con	педго	6 V - 110 V	2000 mm	PG7	0.3 Nm

1 = conector ajustable 90°

C₹ CAMOZZI

Conectores en línea estándar industriales (9.4 mm) con cable

Mod.	descripción	color	tensión de trabajo	longitud del cable [L]	retención de cable	fuerza de sujeción
125-503-2	cable moldeado en línea, con diodo + LED	negro	24 V DC	2000 mm	-	0.3 Nm
125-503-5	cable moldeado en línea, con diodo + LED	negro	24 V DC	5000 mm	-	0.3 Nm
125-553-2	cable moldeado en línea, sin electrónica	negro	-	2000 mm	-	0.3 Nm
125-553-5	cable moldeado en línea, sin electrónica	negro	-	5000 mm	-	0.3 Nm

Conectores en línea industriales (9.4 mm) con puente rectificador

Mod.	descripción	color	tensión de trabajo	longitud del cable [L]	retención de cable	fuerza de sujeción
125-903-2	cable moldeado en línea con rectificador de voltaje	negro	6 V - 230 V AC/DC	2000 mm	-	0.3 Nm
125-903-5	cable moldeado en línea con rectificador de voltaje	negro	6 V - 230 V AC/DC	5000 mm	-	0.3 Nm

Productos para aplicaciones industriales. Condiciones Generales de Venta disponibles en www.camozzi.com.