3.2 Homework: Mixed review

- 1. Demonstrate your ability to classify angles and use standard terminology.
 - (a) Which of the following are true with respect to the angle, $m \angle PQR$?

True False It is a right angle \overrightarrow{P} True False It's measure is 180° \overrightarrow{QR} True False \overrightarrow{QP} is perpendicular to \overrightarrow{Q}

(b) What is the sum of the degree measures of this linear pair, $\angle ABD$ and $\angle CBD$?

(c) The given angle $\angle UVW$ is which of the following: acute, obtuse, or right?

2. A linear pair is formed by two angles, $m\angle RUT = 110^{\circ}$ and $m\angle SUT = 5x + 20$.

Write an equation, then solve for x.

3. Given $m\angle ABD = 4x - 6$, $m\angle DBC = 5x + 10$, and $m\angle ABC = 130^{\circ}$, as shown.

Model the situation with an equation, then solve for x. Check your solution for full credit.

4. Given vertical angles, $m\angle APD = 3x - 5$, $m\angle BPC = 2x + 20$, as shown.

Find x. Check your solution for full credit.

5. In the diagram shown, $\overrightarrow{BD} \perp \overleftarrow{ABC}$ with $\text{m} \angle DBE = 7x - 1^{\circ}$ and $\text{m} \angle EBC = 6x^{\circ}$. Find x. Show the check for full credit.

Name:

6. Given \overrightarrow{ABC} , right angle $\angle DBE$, $m\angle ABE = 4x + 12$, and $m\angle CBD = 3x - 6$.

Find $m\angle CBD$.

7. Ray \overrightarrow{BF} is the angle bisector of $\angle ABC$. Given that the angle measures are $\mathbb{m}\angle ABF = 7x + 9$ and $\mathbb{m}\angle CBF = 9x - 13$.

Find $m \angle ABC$.

8. Ray \overrightarrow{XL} is the angle bisector of $\angle KXM$. Given $m\angle JXN = 2x + 3$.

Find x.

9. Apply the Angle Addition postulate. Write and equation to support your work.

Given m $\angle ABD = 75^{\circ}$, m $\angle ABC = 90^{\circ}$.

Find $m \angle CBD$.