

Diplomski studij

Informacijska i komunikacijska tehnologija:

Obradba informacija Telekomunikacije i informatika

Višemedijske komunikacije

14.

Prijenos govora protokolom IP (VoIP) Protokoli i standardi za signalizaciju (prijenos kontrolne informacije): SIP, H.323

Pojmovi i terminologija

sjednica

- pojam koji obuhvaća grupu pošiljatelja i primatelja (više)medijskog sadržaja te podatkovne tokove između njih
- VoIP, internetska telefonija, IP telefonija, itd.
- VoIP (Voice over Internet Protocol)
 - generički naziv za svaku govornu komunikaciju putem protokola IP umjesto tehnologije s komutacijom kanala (npr., javna telefonska mreža, PSTN)

internetska telefonija

- usluga krajnjim korisnicima, tj., posebna vrsta VoIP-a u kojem se poziv ostvaruje kroz javnu infrastrukturu Interneta, uz (djelomično ili potpuno) "zaobilaženje" PSTN-a
- može se odvijati između računala (računalo računalo), između računala i (IP) telefona te između (IP) telefona

Svjetsko VoIP tržište

- Broj VoIP pružatelja usluge: 15300[*]
- Veliki broj operatera uz PSTN ima i VoIP pozive
- Trend rasta broja VoIP pretplatnika u SAD-u i Europi (2005 2011) [**];
 predviđeni broj mobilnih VoIP korisnika po regijama (2010-2012) [***]

[*] Izvor: http://www.voipproviderslist.com/ (stanje 06/2018)

Source: Juniper Research

^{**]} Izvor: http://ipvoip.blogspot.com/2007/09/us-voip-market-is-growing-fastbut.html (TeleGeography's US VoIP and Euro-VoIP reports)

^[***] Izvor: http://www.marketingcharts.com/direct/107m-mobile-voip-users-expected-by-2012-13061/juniper-mobile-voip-june-2010jpg/ (Juniper Research, 2010)

Skype, Viber, WhatsApp, Facebook Messenger

Zavod za telekomunikacij

- Svjetsko VoIP tržište su preuzele mobilne aplikacije!
- Danas sve najpopularnije aplikacije za razmjenu instant poruka podržavaju audio pozive putem VoIP tehnologije
- Broj korisnika:
 - WhatsApp 1,5 milijardi
 - Facebook Messenger 1,3 milijarde
 - Viber 900 milijuna
 - WeChat (Kina) 900 milijuna
 - Skype 300 milijuna
- Trend većeg korištenja mobilne u usporedbi s fiksnom telefonijom

VoIP, VoWiFi, VoLTE

- VoIP tehnologija, ali u ovom slučaju pokazuje komunikaciju Over The Top (OTT) pružatelja usluga
- VoWiFi VoIP poziv podržan od operatera usluge preko WiFi mreže
- VoLTE VoIP pozivi podržan od operatera usluge preko LTE

[*] Izvor CVNI Global Mobile Data Traffic Forecast Update, 2015–2020 https://www.cisco.com/c/dam/m/en_in/innovation/enterprise/assets/mobile-white-paper-c11-520862.pdf

Prednosti korištenja VoIP-a

- Iz perspektive krajnjeg korisnika
 - smanjenje troškova
 - dodatne usluge u govornoj komunikaciji dostupne besplatno (npr., skraćeno biranje ili preusmjeravanje poziva)
 - olakšano prenošenje pozivnog broja
 - jednostavnije korištenje drugih vidova komunikacije (npr., video) / drugih aplikacija (konferencijski poziv, dijeljenje podataka)
 - gotovo neograničena dostupnost usluge (uvjetno jednaka širokoj rasprostranjenosti pristupa Internetu)
- Iz perspektive VoIP operatora/pružatelja usluge
 - smanjenje ukupnih troškova (ali, nakon "određenog" razdoblja)
 - jednostavniji instalacija i održavanje opreme/infrastrukture
 - jednostavnije dodavanje/uvođenje novih usluga

Nedostaci korištenja VoIP-a

Kvaliteta usluge

- prijenos IP mrežom može dovesti do kašnjenja/gubitaka paketa koji nose govor
- dolazi do izražaja u slučajevima velikog broja korisnika i izostanka kontrole pristupa mreži
- stalnim razvojem tehnologije razlike u odnosu na "klasičnu" telefoniju ipak su sve manje

Raspoloživost usluge

- ovisi o pouzdanosti mreže (ispadom internetske mreže usluga postaje neraspoloživa)
- Nekompatibilnost VoIP sustava (uređaja)
 - nepostojanje jedinstvenog standarda
- Potreba stalnog napajanja uređaja
 - za razliku od "klasičnog" telefon. uređaja, u slučaju nestanka napajanja, VoIP neće raditi

Sigurnost

prisluškivanje komunikacije

"Klasična" telefonija - PSTN

Tehnička izvedba krajnje točke u VoIP komunikaciji (1/2)

Pojednostavljeni prikaz – medijski i signalizacijski dio

Korisnik priča u mikrofon "klasičnog" ili IP telefona, odnosno mikrofon spojen na osobno računalo

Uređaj digitalizira zvuk korištenjem određenog kodeka (PCM, odnosno ITU-T G.711; ITU-T G.723.1; verzija koder CELP u preporuci ITU-T G.729; Opus; itd.)

Digitalni zvuk se pakira u odgovarajuće protokolne jedinice (pakete) te prenosi infrastrukturom zasnovanom na protokolu IP

IP mreža prenosi datagrame koji u sebi nose govor po istim načelima kao i sav drugi promet ("best-effort" usluga)

Tehnička izvedba krajnje točke u VoIP komunikaciji (2/2)

Pojednostavljeni prikaz – medijski i signalizacijski dio

Da bi se ostvarila komunikacija, prvo se moraju se razmijeniti upravljačke informacije o pozivu, odnosno sjednici, što obavlja protokol SIP.

Session Initiation Protocol (SIP)

- signalizacijski internetski protokol
- uspostavlja i raskida poziv (sjednicu)
- upravlja uslugama vezanima uz poziv (sjednicu)
- omogućuje razmijenu informacija o adresama, medijima, kodecima, i dr.

SIP kao format za opis sjednice koristi Session Description Protocol (SDP).

Neke aplikacije se temelje na SIP-u, dok neke koriste i posebne vlastite zaštićene protokole

Povezivanje javne telefonske mreže i VoIP mreže

Primjer međudjelovanja klasične i IP telefonije (1/2)

Poziv SIP - PSTN

Primjer međudjelovanja klasične i IP telefonije (2/2)

Poziv PSTN – SIP - PSTN

Integracija govorne i podatkovne komunikacije (1/2)

 Primjer poduzeća s odvojenim mrežama za govornu i podatkovnu komunikaciju

Integracija govorne i podatkovne komunikacije (2/2)

 Integracija govorne i podatkovne komunikacije u mreži poduzeća

Studijski slučaj u Hrvatskoj: Snet (1/2)

Brojke (2011):

Poslovni korisnici: Snet (2/2)

izvor: http://www.bnet.hr/cro/poslovni_korisnici/govorna_usluga

Primjer pružatelja VoIP usluga: Skype

 komunikacija zasnovana na mreži ravnopravnih entiteta (peer-to-peer)

 primjenjuje vlasnički protokol koji omogućuje govornu komunikaciju putem IP-a

 uz VoIP, nudi usluge videokonferencije, trenutno poručivanje, slanje datoteka

 pozive moguće ostvariti prema internetskim korisnicima, te na telefonske aparate u fiksnim i mobilnim mrežama

Skype klijenti na raznim operacijskim sustavima

Zavod za telekomunikacije

iPhone

Blackberry

Android

Sadržaj predavanja

- Pojmovi i terminologija
- Arhitektura za VoIP zasnovana na protokolu SIP
- Arhitektura za VoIP zasnovana na standardu H.323

Protokoli za podršku sjednice - podsjetnik

- Protokol za opis sjednice (engl. Session Description Protocol, SDP)
 - obuhvaća propisani skup parametara koji služi za opis sjednice
 - standardni format za opis medija koji sudjeluju u sjednici, podataka o protokolima i formatima koji će se koristiti u sjednici i sl.
- Protokol za pokretanje sjednice (engl. Session Initiation Protocol, SIP)
 - služi za razmjenu podataka o sjednici
 - služi kao poziv određenom korisniku za sudjelovanje u sjednici

SIP: Session Initiation Protocol

- Definiran od strane standardizacijskog tijela IETF (dokument: RFC 3261)
- SIP je protokol aplikacijskog sloja koji služi za pokretanje, promjenu i raskid sjednice s jednim ili više sudionika
- Primjeri sjednica:
 - pozivi u internetskoj telefoniji
 - distribucija višemedijskog sadržaja
 - višemedijska konferencija
- osnovna ideja: omogućiti pozivanje osobe u sjednicu putem jedinstvene adrese (neovisno o trenutnom položaju)

[sip:]<user>@(<host>|<domain>)

• SIP koristi posredničke (*proxy*) poslužitelje za preusmjeravanje poziva prema trenutnom položaju pozivane osobe (o tome više kasnije)

Osnovne SIP funkcionalnosti

23

- Određivanje lokacije krajnjeg korisnika
- Određivanje dostupnosti krajnjeg korisnika
- Određivanje parametara medija koji će se koristiti tijekom sjednice
- Uspostava sjednice
- Upravljanje sjednicom (promjene parametara, raskid)

SIP usluge općenito

SIP usluge

- Uspostava VoIP poziva
- Uspostava višemedijskih konferencija
- Obavijesti o događajima usluga prisutnosti
- Tekstualne poruke i trenutno poručivanje
- Usluge koje SIP pruža mogu se izvesti u sljedećim entitetima komunikacijskog puta:
 - poslužitelji usluga se kreira i pruža korisniku u poslužiteljima na komunikacijskom putu
 - pozvani UA usluga se kreira i pruža korisniku u pozvanom agentu
 - pozivajući UA usluga se kreira i pruža korisniku u pozivajućem agentu

Adresiranje

- Koristi URL (*Uniform Resource Locators*), te podržava podržava internetske i PSTN adrese
- Primjeri:

```
sip:pero.peric@tel.fer.hr

sip:Pero <pero@tel.fer.hr>

sip:+1-385-1-6129-123@tel.fer.hr;user=phone

sip:pero@136.16.20.100:8001

sip:790-7360@pulver.com;phone-context=VNET
```

 Za siguran prijenos se može koristiti SIPS URI (koristi šifrirani transport: TLS preko TCP-a), npr: sips:pero.peric@tel.fer.hr

Format SIP poruke (1/2)

- format SIP poruke je tekstualni format (ISO10646 UTF-8)
- SIP poruke su slične porukama protokola HTTP i RTSP, osnovna podjela na zahtjeve (metode) i odgovore (statusni kod)
- zahtjevi i odgovori koriste generički oblik poruke:
 - početni redak, sadrži zahtjev ili statusni kod odgovora
 - jedno ili više zaglavlja
 - prazni redak za odvajanje zaglavlja poruke i opcionalnog tijela poruke
 - opcionalni dio poruke npr. SDP opis sjednice
- za pozivanje korisnika u sjednicu, SIP koristi SDP za opis sjednice (SDP opis umeće se u SIP poruku)
- SIP je neovisan o transportnom protokolu i o vrsti sjednice

Format SIP poruke (2/2)

Zahtjev

Odziv

method URL SIP/2.0

SIP/2.0 status reason

Via: SIP/2.0/ protocol host:port

From: user <sip:from_user@source> **To:** user <sip:to_user@destination>

Call-ID: localid@host CSeq: seq#method Content-Length: length of body

Content-Type: *media type of body*

Header: parameter ;par1=value;par2="value"

prazni redak

V=0

o= orgin_user timestamp timestamp IN IP4 host

c=IN IP4 media destination address

t=0 0

m= *media type port* **RTP/AVP** *payload types*

zaglavlje poruke

tijelo poruke

SIP zahtjevi i odgovori

ZAHTJEVI (METODE)

- INVITE
 - Poziv na sjednicu
- ACK
 - Potvrda, uspješan odgovor
- CANCEL
 - Opoziv zahtjeva
- BYE
 - Završetak poziva ili zahtjeva
- OPTIONS
 - Provjera mogućnosti primatelja
- REGISTER
 - Prijava trenutnog položaja korisnika

ODGOVORI (STATUSNI KODOVI)

- 1xx: info o statusu poziva
 - npr. 180 "Ringing", 181 "Call is Being Forwarded"
- 2xx: uspješni ishod
 - npr. 200 "OK"
- 3xx: preusmjeravanje
 - npr. 301 "Moved Permanently", 302 "Moved Temporarily"
- 4xx: pogreška klijenta
 - npr 404 "Not Found", 420 "Bad Extension", 486 "Busy Here"
- 5xx: pogreška poslužitelja
 - npr. 500 "Internal Server Error", 504"Server Time Out"
- 6xx: globalna pogreška
 - npr. 603 "Decline", 604 "Does Not Exist Anywhere"

Primjer: SIP zahtjev i SIP odgovor

INVITE sip:ana@example.se SIP/2.0

Via: SIP/2.0/UDP science.fiction.com

;branch=z9hG4bKnashd

Max-Forwards: 70

To: Ana <sip:ana@example.se>

From: Pero <sip:pp@fiction.com>; tag=123455

Call-ID: 1234567890@science.fiction.com

CSeq: 1 INVITE

Subject: Rucak u gradu

Content-Type: application/sdp

v=0 SDP

0=

s=

c=IN IP4 128.2.3.1

t=

m=audio 5004 RTP/AVP 0 4

a=rtpmap:0 PCMU/8000

a=rtpmap:4 GSM/8000

SIP/2.0 200 OK

Via: SIP/2.0/UDP sippo.example.se

;branch=z9hG4bKkljdrf

Via: SIP/2.0/UDP science.fiction.com

;branch=z9hG4bKnashd

From: Pero <sip:pp@fiction.com>; tag=123455

To: Ana<sip:ana@example.se>; tag=5372908

Call-ID: 1234567890@science.fiction.com

CSeq: 1 INVITE

Subject: Rucak u gradu

Content-Type: application/sdp

v=0

SDP

0=

s=

c=IN IP4 16.2.3.1

t=

m=audio 6004 RTP/AVP 0

a=rtpmap:0 PCMU/8000

SIP mrežni entiteti (1/2)

- SIP klijent, odnosno korisnički agent (engl. User Agent, UA)
 - krajnja točka koja koristi SIP za uspostavu i raskid sjednica
 - nalazi se na korisničkim uređajima uglavnom u obliku aplikacija

₋ dijeli se na klijentski UA (engl. UA *Client*, UAC) i poslužiteljski UA (engl. UA S*erver*,

UAS)

SIP mrežni entiteti (2/2)

SIP poslužitelji:

- Posrednički poslužitelj (engl. Proxy server) usmjerava zahtjeve (i odgovore) do trenutnog položaja korisnika (korisničkih agenata) koristeći podatke iz Registra
- Poslužitelj preusmjeravanja (engl. Redirect server) prima odgovarajuće zahtjeve; odgovara s popisom svih mogućih adresa korisnika (na temelju podataka iz Registra ili Lokacijskog poslužitelja)
- Registar (engl. Registrar) entitet kojem korisnički agenti prijavljuju trenutni položaj (trenutnu IP adresu) s ciljem ispravnog usmjeravanja zahtjeva
- Lokacijski poslužitelj (engl. Location Server): čuva podatke o trenutnoj lokaciji korisničkog agenta

Primjer izravnog poziva

Registracija

- Korisnički agent obavještava mrežu o svojoj lokaciji
- Zahtjev se šalje i prosljeđuje dok ne dođe do nadležnog poslužitelja za registraciju u domeni

sip:tihana@carnet.hr

Primjer poziva preko posredničkih poslužitelja

Primjer preusmjeravanja poziva

Preusmjeravanje kod zauzeća

Preusmjeravanje kad nema odziva

SIP transakcije i dialozi (1/2)

SIP transakcije i dialozi (2/2)

- Posrednički poslužitelji mogu čuvati stanje (stateful) ili biti bez stanja (stateless)
 - Dialog stateful: čuva stanje dialoga od inicijalnog zahtjeva (INVITE) do terminirajučeg zahtjeva (BYE)
 - Transaction stateful: za vrijeme trajanja transakcije čuva stanje transakcije
 - Stateless: nema stanja transakcije prilikom prosljeđivanja zahtjeva i odgovora
- U slučaju grananja poziva (forking) stvara se više dialoga

Struktura protokola SIP

Korisnik transakcije (transaction user)

Sloj transakcije (transaction layer)

Transport

Sintaksa i kodiranje (syntax and encoding)

Struktura protokola SIP

Klijentske i poslužiteljske transakcije

Back to Back User Agent (B2BUA)

Posrednički poslužitelj (B2BUA)

Bilježenje rute (Record-Route)

SIP grananje zahtjeva (engl. request forking)

Paralelno grananje zahtjeva

Sekvencijalno grananje zahtjeva

Modifikacija postojeće sjednice

FER talekom

- šalje se re-INVITE s novim opisom sjednice (novi SDP)
- referencira se postojeći dialog
- ukoliko pozvani korisnik ne prihvaća promjene, parametri sjednice ostaju nepromjenjeni

Raskid sjednice

 Raskid sjednice: jedan od korisničkih agenata šalje zahtjev BYE nakon što je sjednica uspostavljena; zahtjev s kraja na kraj

Prekid sjednice

 Prekid sjednice: iniciran od korisničkih agenata ili posredničkog poslužitelja; šalje se zahtjev CANCEL tijekom uspostave sjednice; zahtjev od točke do točke

Upravljanje pozivom od treće strane

Engl.: Third Party Call Control (3PCC)

Integracija SIP-a i mehanizama upravljanja resursima (1/

- Zavod za telekomunikacije
- RFC 3312: Integration of Resource Management and SIP
- Specificiraju se preduvjeti za uspostavu poziva (engl. preconditions)
- Preduvjeti zahtjevaju rezervaciju mrežnih resursa prije uspostave sjednice → osigurava se kvaliteta usluge
- Dodatna signalizacija potrebna
- Koristi se metoda PRACK (Provisional Response ACK, RFC 3262):
 - osigurava pouzdanost privremenih odgovora
 - isto kao ACK, ali se šalje nakon primitka privremenog odgovora (183 Session Progess)
- Pozvanom korisniku ne "zazvoni" telefon dok preduvjeti (rezervacija mrežnih resursa) nisu uspješno izvršeni

Integracija SIP-a i mehanizama upravljanja resursima (2/2)

Višemedijske usluge 53

SIP pokretljivost

SIP pruža podršku za pokretljivost na aplikacijskom sloju

pokretljivost uređaja/terminala (engl. terminal mobility)	uređaj mijenja položaj i/ili pristupnu točku u mreži	
pokretljivost osobe (engl. <i>personal mobility</i>)	osoba koristi različite uređaje za pristup uslugama; adresiranje korisnika pomoću jedinstvene adrese	
pokretljivost usluge (engl. service mobility)	korisnik ostvaruje usluge "u pokretu" (pristup uslugama neovisan o promjeni uređaja i/ili mreže)	
pokretljivost sjednice (engl. session mobility)	korisnik mijenja uređaje za vrijeme odvijanja komunikacije	

Pokretljivost uređaja/terminala

Pokretljivost tijekom uspostavljene sjednice (re-INVITE)

Pokretljivost osobe

Pokretljivost sjednice

- RFC 5631 (2009): SIP Session Mobility
- Moguće prenijeti sjednicu (engl. transfer) na drugi uređaj, te ju ponovnu vratiti na početni uređaj (engl. retrieval)

- Dva načina prijenosa sjednice:
 - Metoda upravljanja pomoću pokretnog čvora (engl. Mobile Node Control, MNC): pokretni čvor koristi mehanizam upravljanja pozivom treće strane (3PCC) te kontrolira signalizaciju
 - Metoda preuzimanja sjednice (engl. Session Handoff, SH): pokretni čvor prenosi sjednicu slanjem SIP zahtjeva REFER; potpuno se prenosi signalizacija i medijski tokovi

Metoda upravljanja pomoću pokretnog čvora

Metoda preuzimanja sjednice (1/2)

Prijenos cijele sjednice ili prijenos pojedinih komponenata

Metoda preuzimanja sjednice (2/2)

SIP PROŠIRENJA

Obavijest o događajima (3265)

SIMPLE

- SIP for Instant Messaging and Presence Leveraging Extensions (SIMPLE)
 - Radna skupina IETF-a koja definira proširenja protokola SIP za prisutnost i trenutno poručivanje
- SIP poruke:
 - SUBSCRIBE i NOTIFY za prisutnost [RFC 3856]
 - MESSAGE za trenutno poručivanje [RFC 3428]

Prisutnost

Watcher: korisnik koji prati prisutnost

Presence UA: manipulira podacima o prisutnosti za korisnika

Trenutno poručivanje

- Razmjena kratkih tekstualnih poruka između grupe korisnika u gotovo stvarnom vremenu
- MESSAGE poruke same po sebi ne uspostavljaju SIP dialog

Kreiranje SIP usluga

- Za izvedbu usluga koriste se sljedeće tehnologije:
 - CPL (Call Processing Language)
 - SIP CGI (Common Gateway Interface)
 - SIP API (Application Programming Interface):
 - JAIN (Java APIs for Integrated Networks) SIP protokolni složaj
 - · SIP servleti (IETF i JAIN)
 - SIP i VoiceXML

Sadržaj predavanja

- Pojmovi i terminologija
- Arhitektura za VoIP zasnovana na protokolu SIP
- Arhitektura za VolP zasnovana na standardu H.323

Standard H.323

- ITU-T preporuka H.323 opisuje terminale i druge entitete te definira protokole za pružanje višemedijskih komunikacijskih usluga u paketskim mrežama bez garantirane kvalitete usluge (primjerice, u Internetu)
- specifikacija (okvirne) arhitekture za višemedijsku komunikaciju obuhvaća niz drugih specifikacija
- svojstva:
 - standardna kompresija/dekompresija
 - povezivanje različite opreme
 - neovisnost o mreži
 - neovisnost o opremi i aplikacijama
 - podrška za konferencijsku vezu
 - nadzor mreže
 - podrška za komunikaciju s više krajnjih točaka

H.323 protokolni složaj

podaci	kontrola i signalizacija		audio/video	registracija
T.120	H.225.0 signalizacija	H.245 konferencije	RTP/RTCP	H.225.0 RAS
TCP		UDP		
Mrežni sloj (IP)				
Sloj podatkovne poveznice (<i>link</i>)				
Fizički sloj				

Protokoli standarda H.323

- H.225.0 Registration, Admission, and Status (RAS)
 - upravljanje prijavom krajnje točke, kontrola pristupa krajnjim uređajima, razlučivanje adresa
- H.225.0 Call Signaling
 - signalizacija između krajnjih točaka kod uspostave veze
- H.245 (Control Signaling)
 - kontrola višemedijske veze/komunikacije
- Real-time Transport Protocol (RTP)
- RTP Control Protocol (RTCP)
- T.38, T.120, V.150, itd.

Komponente standarda H.323

- Terminal
- Gateway
- Gatekeeper
- MCU (Multipoint Control Unit)

Uspostava veze

H.323 Gateway

- Omogućava vezu s različitim vrstama ne-H.323 terminala:
 - analogni PSTN terminali, ISDN terminali, B-ISDN terminali
- Obavlja pretvorbu protokola za uspostavu i raskidanje veze/poziva
- Obavlja pretvorbu formata medija između različitih mreža
- Obavlja prijenos podataka između H.323 i ne-H.323 mreža

