R crash course - Data frames

Jongbin Jung

Dependencies

- Latest version of R (free from https://www.r-project.org/)
- Latest version of Rstudio (also free from https://www.rstudio.com/)
- ► A bunch of *free* packages

```
# The single tidyverse package includes
# dplyr, tidyr, and many more
install.packages('tidyverse')
# install.packages('dplyr')
# install.packages('tidyr')
```

- Alternatively, use cloud services such as MatrixDS (https://matrixds.com)
 - Works out-of-the-box
 - Consistent access to Rstudio via browser (on all devices)

Data Frames: Introduction

- Data frames are the primary representation of data in R
- You can think of a data frame as a two-dimensional table of data
- ► It helps your sanity to always think of data frames as a table where

Each column represents a variable/feature
Each row represents an observation/instance

- Conceptually, a data frame is also a collection of vectors, i.e.,
 each column is a vector that belongs to the (parent) data frame
- ► The fastest path to achieving R-ninja status is to get familiar with data frames

Data Frames: First Impression

- ► Let's take a look at an existing dataset, txhousing (loaded with ggplot2 which is loaded with tidyverse)
- ➤ Contains data (9 variables) on 8,602 observations about the housing market in Texas, from 2000 to 2015
- See documentation for details on what the 9 variables are

```
library("tidyverse") # or library("ggplot2")
?txhousing
```

Data Frames: First Impression (cont'd)

```
str(txhousing) # take a peek at the data frame
```

```
## Classes 'tbl_df', 'tbl' and 'data.frame': 8602 obs.
##
   $ city
             : Factor w/ 46 levels "Abilene", "Amarillo",
   ##
   $ month : int 1 2 3 4 5 6 7 8 9 10 ...
##
##
   $ sales : num
                  72 98 130 98 141 156 152 131 104 101
   $ volume : num
                  5380000 6505000 9285000 9730000 10590
##
                  71400 58700 58100 68600 67300 66900
##
   $ median
             : num
                  701 746 784 785 794 780 742 765 771
##
   $ listings : num
                  6.3 6.6 6.8 6.9 6.8 6.6 6.2 6.4 6.5
##
   $ inventory: num
##
   $ date
                   2000 2000 2000 2000 2000 ...
             : niim
```

Some Question

- What questions could you ask (and answer) with this data?
 - which cities had the highest/lowest volume in sales?
 - what was the annual/monthly sales per city?
 - are there monthly trends across multiple years in listings?
 - what else?
- By the end of this session, we'll have the tools to answer most (if not all) of the questions you can come up with!

Data Frame Basics

tibble

- ➤ A tibble is a trimmed down version of data.frame that is more convenient to work with
- Throughout this course, we will use the terms tibble and data frames interchangably, which is technically incorrect, but easier to read

Simple Example

- Use tibble() function (from tidyverse) to create a tibble data frame
- Arguments of tibble() are vectors or lists (of equal length) that constitute each column (variable)
- ► For example, let's create a data frame of the following table:

Age	Personality	Income
24	Good	2000
22	Bad	5800
23	Good	4200
25	Bad	1500
22	Good	6000

Simple Example (cont'd)

We'll save the data frame to an object (I'll call mine data)

```
data <- tibble( # start tibble()
  age = c(24, 22, 23, 25, 22),
  personality = c('g', 'b', 'g', 'b', 'g'),
  income = c(2000, 5800, 4200, 1500, 6000)
) # finish the tibble() function</pre>
```

- Note that the new lines are just a matter of coding style, i.e., it makes the code easier to read
- ▶ The same data frame can be created in a single line:

```
data <- tibble(age = c(24, 22, 23, 25, 22),
personality = c('g', 'b', 'g', 'b', 'g'), income
= c(2000, 5800, 4200, 1500, 6000))</pre>
```

Simple Example (cont'd)

Let's take a look at our new data frame

data

```
## # A tibble: 5 x 3
##
       age personality income
##
     <dbl> <chr>
                        <dbl>
## 1
       24 g
                         2000
## 2
     22 b
                         5800
## 3
    23 g
                         4200
## 4
     25 b
                         1500
       22 g
                         6000
## 5
```

Indexing: The \$ Operator

► The \$ operator lets you reference elements of an object (e.g., column vectors of a data frame) in R

data\$age

```
## [1] 24 22 23 25 22
```

data\$personality

```
## [1] "g" "b" "g" "b" "g"
```

Indexing: The [Operator

▶ The [operator, similar to the \$ operator, lets you reference elements of an object (e.g., column vectors of a data frame) either by name or by index

data['age']

```
## # A tibble: 5 x 1
## age
## <dbl>
## 1 24
## 2 22
## 3 23
## 4 25
## 5 22
```

Indexing: The [Operator (cont'd)

data[1]

```
## # A tibble: 5 x 1
## age
## <dbl>
## 1 24
## 2 22
## 3 23
## 4 25
## 5 22
```

Indexing: The [[Operator (cont'd)

- Note that when using the [operator, unlike \$, you get a new data frame of the indexed column, *not* a vector.
- ▶ Use the [[operator if you want a vector instead

data[[1]]

```
## [1] 24 22 23 25 22
```

Indexing: Numeric Row/Column

Since a data frame is a table of data, you can treat it like a matrix, and index its entries by [row #, col #] notation

```
data[2, 3] # item in row 2 column 3
data[, 2] # entire column 2
data[4,] # entire row 4
```

Indexing: Named Variables

Since the columns represent variables with names, you can index columns by a string representing variable names

```
data[, 'age'] # entire 'age' column
# entries 3~5 of 'personality' column
data[3:5, 'personality']
```

Indexing: Vectors

 As with vectors/matrices, you can index a data frame with vectors (either numeric or string)

```
data[1:3, c('age', 'income')]
```

```
## # A tibble: 3 x 2
## age income
## < dbl> <dbl>
## 1 24 2000
## 2 22 5800
## 3 23 4200
```

data[c(1, 4), 2:3]

Conditional Indexing

 Pick out entries that match specific criteria by first creating a binary vector for indexing

```
# find the 22-year-olds
ind <- data$age == 22
data[ind, ] # index rows by binary vector ind</pre>
```

Chained Indexing

- Note that
 - ▶ when you index rows of a single column, the result is a vector
 - when you index multiple columns, the result is a new data frame
- You can chain indices to pin-point elements of a data frame
- ► For example, all of the following operations are (almost) equivalent can you tell how the first two are different from the last two?

```
# (Almost) Equivalent operations to get the age of
# third observation (row 3)
data[3, 1] # if you know that 'age' is column 1
data[3, 'age']
data[3, ]$age # get 'age' of row 3
data$age[3] # get third observation of 'age' variable
```

Column (Variable) Names

- ► To see the column name of a data frame, use the colnames() function
- ► The column names can be changed by directly assigning a new vector of names to the colnames() function

```
## # A tibble: 5 x 3

## age attitude income

## <dbl> <chr> <dbl> ## 1 24 g 2000

## 2 22 b 5800

## 3 23 g 4200

## 4 25 b 1500

## 5 22 g 6000
```

Write Data Frames to Files

- Use write_tsv() (from the readr package) to write data frames to tab-separated (text) files
- ► The syntax is

```
write_tsv(x, path = "")
```

► For example, to save our sample data to a file named data.tsv with the entries of each row separated by a tab character, write

```
write_tsv(data, path = 'data.tsv')
```

- Recall, the default directory is the current working directory, specified with setwd(), and retrieved with getwd()
- For more options, see documentation

?write_tsv

Read Data Frames from Files

- ➤ To read data frames that exist as text files, use the general read_table() function
- Note that specific options for read_table() will depend on the structure of the text file you wish to read (e.g., comma-separated or tab-separated)
- ▶ Some shortcuts for pre-defined for (commonly used) formats

```
read_csv(file)  # comma-separated values
read_tsv(file)  # tab-separated values
read_delim(file, delim)  # custom delimiters
```

Read Data Frames from Files (cont'd)

For example, to read the tsv file we just saved,

```
data <- read_tsv('data.tsv', col_names = TRUE)</pre>
```

```
## Parsed with column specification:
## cols(
## age = col_integer(),
## attitude = col_character(),
## income = col_double()
## )
```

- Notice how read_tsv() guesses the type of your columns
- It's good practice to specify column types manually so that
 - 1. you know exactly what you want, and
 - 2. you get what you want

Specify types for columns

You can use the output message from the previous read_tsv() call as a boiler plate input to the col_types parameter, e.g.,

```
data <- read_tsv('data.tsv', col_types = cols(
   age = col_double(),
   personality = col_character(),
   income = col_double()
), col_names = TRUE)</pre>
```

Or, you can use a compact specification,

See the documentation for more details

```
?read_delim
```

Read Data from Online Database

- read_*() can also load data frames from an online database
- While loading data directly from the web is not recommended, this can be useful when making a local copy of an online database
- For example, to make a local copy of the dataset saved in https://goo.gl/MGzatX

```
address <- 'https://goo.gl/MGzatX'
data <- read_tsv(address)
write_tsv(data, path='data.tsv')</pre>
```

Note that you can read data in one format (e.g., comma-separated) and save the local copy in another (e.g., tab-separated)

Exploring Data Frames

Display Structure with str()

- Let's start looking at the txhousing data frame
- ► The str() function is useful for exploring the overall structure of a data frame

str(txhousing)

```
Classes 'tbl_df', 'tbl' and 'data.frame': 8602 obs.
    $ city
               : Factor w/ 46 levels "Abilene", "Am"...
##
##
   $ year : int
                     2000 2000 2000 2000 2000 2000...
##
   $ month : int
                     1 2 3 4 5 6 7 8 9 10 ...
                     72 98 130 98 141 156 152 131 ...
##
   $ sales
              : num
                     5380000 6505000 9285000 97300...
##
   $ volume
              : num
                     71400 58700 58100 68600 67300...
##
   $ median
               : niim
##
   $ listings : num
                     701 746 784 785 794 780 742 7...
##
   $ inventory: num
                     6.3 6.6 6.8 6.9 6.8 6.6 6.2 6..
##
    $ date
                     2000 2000 2000 2000 2000 ...
               : niim
```

Factors

- Note that the city column should be a factor − a data frame representation of categorical variables
- Use factor() to force variables into factor variables

```
txhousing$city <- factor(txhousing$city)</pre>
```

The entries of a factor variable is defined by levels

levels(txhousing\$city)

unique values

Use unique() to list the unique values of any variable

```
unique(txhousing$year)
```

```
## [1] 2000 2001 2002 2003 2004 2005 2006 2007 2008
## [10] 2009 2010 2011 2012 2013 2014 2015
```

Data Frame Basics: Exercise

- From the txhousing data
 - create a new data frame for the city "Paris" (i.e., city ==
 "Paris")
 - generate a summary() of the inventory in Paris
- ► These are just (very) basic operations
- ► For more complicated operations, we'll use dlyr and tidyr (both part of tidyverse and covered next)

Exercise Solution

WARNING

- ▶ Solutions to the exercise are presented in the next slide
- ► Try the exercise before proceeding!

Solution

```
ind_paris <- txhousing$city == "Paris"
paris <- txhousing[ind_paris, ]
summary(paris$inventory)

## Min. 1st Qu. Median Mean 3rd Qu. Max.</pre>
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 4.50 8.78 10.00 10.16 11.60 14.50
## NA's
## 19
```

Wrangling Data with dplyr

Introduction to dplyr

- dplyr is a package that provides a convenient framework (along with a handful of useful functions) for wrangling data (frames)
- dplyr is a part of the tidyverse, so if you load tidyverse, dplyr is also loaded
- ➤ You can also, but don't have to, install and load the dplyr as a standalone package like you would any other R package

```
# Only need to do this once on a single machine.
install.packages("dplyr")
# load package into workspace
library("dplyr")
```

Data Frames: First Impression

- We'll primarily use the diamonds data that's included with tidyverse
- ► Take a look by typing diamonds in the R console
- diamonds is a dataset containing the prices and other attributes of almost 54,000 diamonds. Included variables are:
 - price, carat, cut, color, clarity, dimensions (x, y, z, depth, table)
- See documentation for more details

?diamonds

Verbs

- A verb in the world of dplyr is a function that
 - takes a data frame as its first argument, and
 - returns another data frame as a result
- For example, the head() function can be considered a verb

head(diamonds, n = 3)

- Note that the result of the head() function is another data frame (in this case, with 3 rows)
- ► The core idea of dplyr is that most of your data manipulation needs can be satisfied with 5 basic verbs (or 4, depending on how you categorize them)

Five basic verbs

► The five basic verbs of dplyr and associated actions are presented below

verb	action
filter() select()	select a subset of <i>rows</i> by specified conditions select a subset of <i>columns</i>
mutate()	create a new column (often from existing columns)
<pre>arrange() summarize()</pre>	reorder (sort) <i>rows</i> by values of specified <i>column</i> (s) aggregate values and reduce to single value

▶ Some verbs have additional options or convenient wrappers

Selecting rows (1/5)

Selecting Rows: filter()

- Select a subset of rows
- Multiple conditions can be used
- ▶ Use & to specify AND conditions
- ▶ Use | to specify OR conditions
- ▶ AND(&)/OR(|) operations can be used together (where default behavior for multiple conditions is AND)

▶ Use %in% to match on a collection of values

```
filter(diamonds, cut %in% c("Fair", "Ideal"))
```

Selecting Rows: slice()

- To select rows by numerical index (position), use slice()
- ► For example, to select the first 10 rows

```
slice(diamonds, 1:10)
```

or to select the last 10 rows

```
slice(diamonds, (n() - 9):n())
```

Use n() inside a dplyr verb to to indicate the number of rows of the data frame

Selecting columns (2/5)

Selecting Columns: select()

- ► Select a subset of *columns*
- ▶ Either specify the columns that you want to select

```
select(diamonds, cut, price)
```

Or specify the columns you wish to drop

```
select(diamonds, -x, -y, -z)
```

Selecting Columns: select() (cont'd)

- dplyr provides useful helper functions you can use to select() columns that match specific criteria such as
 - starts_with(x): names that start with x
 - ends_with(x): names that end with x
 - contains(x): names that contain x
 - matches(x): names that match the (regular expression) x
- See the documentation for more details

?dplyr::select

While you can assign new column names with select() the convenience function rename() lets you rename columns while retaining the rest of the data frame

```
rename(diamonds, cut_type = cut)
```

Creating new columns (3/5)

Create New Columns: mutate()

- Create new columns, usually as a function of existing columns
- You can refer to new columns you just created, inside the same mutate() function

```
mutate(diamonds,
    price_per_carat = price / carat,
    volume = x * y * z,
    # Use the volume column we just created
    # to create a price_per_volume column
    price_per_volume = price / volume)
```

Use transmute() to create a new data frame just from the new column(s)

Sorting (4/5)

Sorting Rows by Column Value: arrange()

- Reorder the rows of a data frame by the specified column"s value
- ▶ Multiple conditions are arranged from left to right
- ▶ Use desc() to arrange in descending order

```
arrange(diamonds, carat, price)
arrange(diamonds, carat, desc(price))
arrange(diamonds, desc(carat), desc(price))
```

Aggregating (5/5)

Aggregate Data: summarize()

- Aggregate/collapse the data into a single row
- ► Think of as applying a function to columns

```
summarize(diamonds, avg_price = mean(price))
```

```
## # A tibble: 1 x 1
## avg_price
## <dbl>
## 1 3933.
```

Recap:

► The five basic verbs:

verb	action
filter() select()	select a subset of <i>rows</i> by specified conditions select a subset of <i>columns</i>
mutate()	create a new column (often from existing columns)
<pre>arrange() summarize()</pre>	reorder (sort) <i>rows</i> by values of specified <i>column</i> (s) aggregate values and reduce to single value

- ▶ But what about . . .
 - Average price of diamonds for each cut type?
 - Largest (carat) diamond in each color category?
 - **.** . . .

Bad example:

- A natural, but tedious way to compute:
- Average price of diamonds for each cut type?
 - use filter to create five different data frames, one for each cut type
 - use summarize to compute the mean price for each data frame
- Largest (carat) diamond in each color category?
 - use filter to create seven different data frames, one for each color category
 - use arrange to sort in descending order of carat for each data frame
 - use slice to get the first row from each of the arranged data frames
- The pattern:
 - split the data, grouping by some categorical value
 - do some operations, but to each category of the group

Split-Apply-Combine

Figure 1: Illustration of SAC

Grouped Operations

- If a data frame is grouped, operations are applied to each group separately, and the results are combined back to a single data frame
- ► The group_by() verb lets you specify the grouping variables (e.g., cut, color)

diamonds_by_cut <- group_by(diamonds, cut)</pre>

When the data frame is group_by'd, all verbs/functions will operate as if each category of the grouping variable is its own data frame, e.g.,

verb	group specific action
arrange() slice()	sort rows within each group extract rows within each group
<pre>summarize() n()</pre>	aggregate values group-wise count the number of rows in each group

Grouped slice()

Retrieve one diamond from each cut

slice(diamonds_by_cut, 1)

```
## # A tibble: 5 x 10
## # Groups: cut [5]
   carat cut
##
                color clarity depth table price
## <dbl> <ord> <ord> <dbl> <dbl> <int>
                    VS2 65.1
## 1 0.22 Fair E
                                  61 337
## 2 0.23 Good E VS1
                           56.9 65 327
## 3 0.24 Very Good J VVS2
                           62.8 57 336
## 4 0.21 Premium E SI1
                           59.8 61 326
## 5 0.23 Ideal E SI2
                           61.5 55 326
## # ... with 3 more variables: x <dbl>, y <dbl>,
## #
     z < dbl >
```

Grouped summarize()

▶ Retrieve (1) number of diamonds and (2) average price by cut type

```
## # A tibble: 5 x 3
## cut count avg_price
## <ord> <int> <dbl>
## 1 Fair 1610 4359.
## 2 Good 4906 3929.
## 3 Very Good 12082 3982.
## 4 Premium 13791 4584.
## 5 Ideal 21551 3458.
```

Multiple (Chained) Operations

Multiple (Chained) Operations

- Wish to compute: Proportion of different colors in each cut category
- We can achieve the desired result with a few operations
 - 1. group_by cut
 - 2. mutate to create a column with total diamonds for each cut
 - re-group_by cut and color
 - Use the new column from above to summarize the proportion of each color within each cut
- Note that dplyr verbs do not modify the original data frame (i.e., they don't have side effects)
 - ► This is generally a good thing, since it guarantees the integrity of your data
 - But it makes multiple operations on a data frame difficult

Multiple Operations: The OK Way

- One way to perform multiple operations is to save intermediate data frames as new data frames
- ➤ This method delivers desired results, but makes your workspace quite messy (i.e., you"II end up with a workspace full of intermediate results)

- ► This method might be preferred if you need the intermediate results in the future
- ▶ If not, there is a better way to chain multiple operations with dplyr

The Pipe Operator %>%

- ► The pipe operator, takes the output from its left-hand side, and uses it as the first argument to whatever is on its right-hand side¹
- For example:

```
by_cut <- group_by(diamonds, cut)
count_cuts <- mutate(by_cut, N = n())</pre>
```

is equivalent to

```
count_cuts <- diamonds %>%
  group_by(cut) %>%
  mutate(N = n())
```

(except in the second case, the by_cut data frame is never created)

¹Ctrl + Shift + M will insert %>% in Rstudio

The Pipe Operator %>%

Using the pipe, we can complete the entire task without saving any intermediate data frames

```
proportions <- diamonds %>%
  group_by(cut) %>%
  mutate(N = n()) %>%
  group_by(cut, color) %>%
  summarize(prop = mean(n()/N))
```

- No need to save intermediate results
- Easier to read (i.e., you can follow the operations step-by-step without too much mental accounting)

dplyr: Exercise

- Find the most expensive diamond for each cut.
- ► How many 1 carat diamonds are "Premium" cut, and what are the min/median/max prices?
- ▶ What is the average price for diamonds grouped by 0.1 carats?

Exercise Solution

WARNING

- ▶ Solutions to the exercise are presented in the next slide
- ► Try the exercise before proceeding!

Solutions

Find the most expensive diamond for each cut.

```
diamonds %>%
  group_by(cut) %>%
  arrange(desc(price)) %>%
  slice(1)
```

```
## # A tibble: 5 x 10
## # Groups: cut [5]
##
   carat cut color clarity depth table price
## <dbl> <ord> <ord> <dbl> <dbl> <int>
## 1 2.01 Fair
                G
                     SI1
                            70.6 64 18574
## 2 2.8 Good G
                  SI2
                            63.8 58 18788
                            63.5 56 18818
## 3 2 Very Good G SI1
## 4 2.29 Premium I VS2
                            60.8 60 18823
## 5 1.51 Ideal G IF
                            61.7 55 18806
## # ... with 3 more variables: x <dbl>, y <dbl>,
     z <dbl>
```

Solutions

How many 1 carat diamonds are "Premium" 'cut?

```
## # A tibble: 1 x 4
## N min med max
## <int> <dbl> <dbl> <dbl> bl> <dbl> ## 1 462 1681 5118. 10752
```

Solutions

▶ What is the average price for diamonds grouped by 0.1 carats?

```
diamonds %>%
  mutate(carat_bin = round(carat, digits = 1)) %>%
  group_by(carat_bin) %>%
  summarize(avg_price = mean(price))
```

```
## # A tibble: 38 \times 2
     carat_bin avg_price
##
##
         <dbl>
                   <dbl>
## 1
           0.2
                    506.
##
           0.3
                    703.
##
   3
           0.4
                    923.
           0.5
##
   4
                   1590.
           0.6
##
   5
                   1872.
           0.7
                   2623.
##
   6
   7
           0.8
                   2998.
##
           0.9
##
   8
                   3940.
                   5400.
##
```

Reference

- Rstudio comes loaded with a bunch of cheatsheets: see [Help][Cheatsheets]
- ► Introductory text book by the creator of tidyverse: http://r4ds.had.co.nz/

Reshape Data with tidyr

Introduction to tidyr

Recall, the prefered way to think about a data frame:

Each column represents a variable/feature
Each row represents an observation/instance

 Consider the following (fictional) data frame of students' homework grades

ID	HW1	HW2	HW3
jamie	6	7	3
cersei	8	5	2
hodor	9	10	9

- What are the variables of this data?
- What are the potential issues with this representation?
- What are the benefits of this representation?

Introduction to tidyr: An Example

- For data manipulation/visualization we often prefer to have data in long form
- ▶ The *long* form of the previous data would be

core
)
•
.0
)

▶ tidyr is a package that provides a tools for converting data between *long* and *wide* forms

Introduction to tidyr: Getting Started

- tidyr is also part of the tidyverse, so if you load tidyverse, tidyr is also loaded
- ➤ You can also, but don't have to, install and load tidyr as a standalone package like you would any other R package

```
# Only need to do this once on a single machine.
install.packages('tidyr')
# load package into workspace
library('tidyr')
```

Introduction to tidyr: Getting Started (cont'd)

Create some random data

Create *long* data with gather()

With the grades data, we would like to create a data frame in the form of

ID	info	HW	score
	-	-	-

- ► The verb for gathering multiple columns into key-value pairs in tidyr is gather()
- ► The syntax is

```
gather(data, key, value, ...)
```

▶ where the ... should be replaced by column specifications

Create *long* data with gather() (cont'd)

```
grades_tidy <- gather(grades, HW, score, HW1:HW3)
grades_tidy</pre>
```

```
## # A tibble: 6 x 4
## ID
           info
                          HW
                                score
## <chr> <chr>
                          <chr> <dbl>
## 1 jamie male/lannister HW1
                                 4.50
## 2 cersei female/lannister HW1
                                 1.78
## 3 hodor male/stark
                                 8.87
                          HW1
  4 jamie male/lannister HW2
                                 8.39
## 5 cersei female/lannister HW2
                                 6.82
  6 hodor male/stark
                          HW2
                                 1.82
```

Split a Column to Multiple Variables with separate()

- Often, there will be column that you'd prefer to split into multiple variables, e.g., splitting a date column to year, month, and day
- From the grades data, notice that the info column combines two variables: sex and house
- We can split such columns to multiple variables with the separate() verb in tidyr

Split a Column to with separate() (cont'd)

```
grades_split <- separate(
  grades_tidy, info,
  into = c('sex', 'house'),
  sep = '/'
  )
grades_split</pre>
```

```
## # A tibble: 3 x 5
## ID sex house HW score
## <chr> <chr> <chr> <chr> <chr> <chr> HW score
## 1 jamie male lannister HW1 4.50
## 2 cersei female lannister HW1 1.78
## 3 hodor male stark HW1 8.87
```

Chaining tidyr verbs

- ► Note that tidyr operations are also verbs that can be chained with the pipe operator %>%
- ► For example, we can do the previous operations on the grades data with the chained operation

```
grades_final <- grades %>%
  gather(HW, score, HW1:HW3) %>%
  separate(info, into=c('sex', 'house'), sep='/')
```

tidyr verbs can also be chained with dplyr verbs (and any other function that qualifies as a verb, i.e., takes a data frame as the first argument and results in a new data frame)

Exercise

Download and load some toy data

```
address <- "https://goo.gl/0hFk2w"
finance <- read_tsv(address)</pre>
```

1. Tidy the data to fit the form

ID	type	year	amount
-	-	-	-

2. Find the mean and total Income/Expense for each ID across all years

Exercise Solution

WARNING

- ▶ Solutions to the exercise are presented in the next slide
- ► Try the exercise before proceeding!

Solution 1

```
finance <- finance %>%
  gather(year, amount, 2:7) %>%
  separate(year, c('type', 'year'), sep='_')
finance
```

```
## # A tibble: 8 x 4
##
    ID
          type year
                       amount
##
    <chr> <chr> <chr> <chr> <dbl>
## 1 leia Income 2013 4174.
## 2 han Income 2013 11065.
## 3 luke Income 2013 11342.
## 4 leia Income 2014 17344.
## 5 han
          Income 2014 - 5024.
## 6 luke Income 2014
                        3547.
                        3028.
## 7 leia Income 2015
                        -757.
## 8 han Income 2015
```

Solution 2

```
finance_summary <- finance %>%
  group_by(ID, type) %>%
  summarize(mean=mean(amount), total=sum(amount))
finance_summary

## # A tibble: 6 x 4
## # Groups: ID [?]
## ID type mean total
## <chr> <chr> <dbl> <dbl>
```

1 han Expense 8170. 24509. ## 2 han Income 1761. 5284. ## 3 leia Expense 8818. 26453. ## 4 leia Income 8182. 24546. ## 5 luke Expense 12820. 38461. ## 6 luke Income 8803. 26408.

Combining Data with joins

Basic concatenations

- rbind: concatenate rows
- cbind: concatenate columns
- ► For data frames, bind_rows() and bind_cols() from dplyr is usually much faster.

Example (with matrix, but works with data frames too)

```
A \leftarrow matrix(1:4, 2, 2)
B \leftarrow matrix(5:8, 2, 2)
rbind(A, B)
## [,1] [,2]
## [1,] 1 3
## [2,] 2 4
## [3,] 5 7
## [4,] 6 8
cbind(A, B)
```

```
## [,1] [,2] [,3] [,4]
## [1,] 1 3 5 7
## [2,] 2 4 6 8
```

Introduction to joins

- Sometimes, you will find relevant data across multiple datasets, e.g., a list of grades in one dataset and a list of contact information in another
- ▶ In such cases, you may want to join the two datasets into a single data frame prior to further analysis
- ► For a successful join you must determine
 - 1. One or more variables that uniquely identify matching observations (rows) in both datasets
 - 2. How you wish to join the data, i.e.,
 - ▶ Left/right join Retain one of the datasets entirely, while only keeping matching entries of the other, possibly resulting in a few missing values (NA)
 - Inner join Retain only complete matches, possibly dropping some rows of both datasets
 - Outer (full) join Retain all rows of both datasets, but potentially resulting in many missing values (NA)

Example Datasets

For illustration, let's create two data frames

```
info <- tibble(</pre>
  name=c('tony', 'tony', 'rey'),
  job=c('scientist', 'tiger', 'scavenger'),
  score=rnorm(3)
power <- tibble(</pre>
  name=c('tony', 'hank', 'rey'),
  job=c('scientist', 'scientist', 'scavenger'),
  strength=rexp(3)
```

How is an observation (row) uniquely identified?

Left/Right join

▶ Retain rows of one dataset, and match the rows of the other

```
left_join(info, power, by=c('name', 'job'))
```

```
## # A tibble: 3 x 4
## name job score strength
## <chr> <chr> <chr> <dbl> <dbl>
## 1 tony scientist 0.110 1.80
## 2 tony tiger -0.163 NA
## 3 rey scavenger -0.344 0.634
```

right_join(info, power, by=c('name', 'job'))

```
## # A tibble: 3 x 4

## name job score strength

## <chr> <chr> <chr> <dbl> <dbl> ## 1 tony scientist 0.110 1.80

## 2 hank scientist NA 0.124

## 3 rey scavenger -0.344 0.634
```

Inner join

Retain only the rows that have matches on both datasets

```
inner_join(info, power, by=c('name', 'job'))
## # A tibble: 2 x 4
## name job score strength
## <chr> <chr> <dbl> <dbl> <dbl>
## 1 tony scientist 0.110 1.80
## 2 rey scavenger -0.344 0.634
```

Outer (Full) join

Retain all rows

```
full_join(info, power, by=c('name', 'job'))
```

```
## # A tibble: 4 x 4
## name job score strength
## <chr> <chr> <chr> <dbl> ## 1 tony scientist 0.110 1.80
## 2 tony tiger -0.163 NA
## 3 rey scavenger -0.344 0.634
## 4 hank scientist NA 0.124
```

Tip: Replace NA entries

➤ To replace all NA entries in a data frame — assuming you know exactly what you want to change them to! — index by is.na and re-assign, e.g.,

```
everyone <- full_join(info, power, by=c('name', 'job'))
# Replace the NAs with 0 (BAD IDEA!)
everyone[is.na(everyone)] <- 0
everyone</pre>
```

```
## # A tibble: 4 x 4
## name job score strength
## <chr> <chr> <chr> <dbl> ** 1 tony scientist 0.110 1.80
## 2 tony tiger -0.163 0
## 3 rey scavenger -0.344 0.634
## 4 hank scientist 0 0.124
```

Reference

- Rstudio comes loaded with a bunch of cheatsheets: see [Help][Cheatsheets]
- ► Introductory text book by the creator of tidyverse: http://r4ds.had.co.nz/