SYNTHESIS OF ORGANOMETALLIC COMPOUND OF CHALOGEN

A THESIS
SUBMITTED TO
BUNDELKHAND UNIVERSITY
FOR THE
AWARD OF DEGREE OF
DOCTOR OF PHILOSOPHY

IN

CHEMISTRY

BY

ANIL KUMAR (Lect.)
POST GRADUATE DEPARTMENT OF CHEMISTRY BIPIN BIHARI COLLEGE, JHANSI
INDIA
JUNE 2005

Dedicated To My Parents, Wife, Brother Sister

Dr. Yogesh PandeyReader in Chemistry Bipin Bihari
(P.G.) Science College, Jhansi.

Date: 10/06/05

CERTIFICATE

Synthesis of Organometallic Compounds of Chalogen is the result of original researches carried out by Mr. Anil Kumar, Lecturer in Chemistry B.B.C. (P.G.) College, Jhansi under my supervision and is suitable for submission for the award of Ph.D. Degree of University of Bundelkhand, Jhansi.

Dr. Yogesh Pandey

Reader in Chemistry Bipin Bihari (P.G.) Science College, Jhansi.

Prof. Shekhar Srivastava Ph.D (Pune)

email: shekharsril@rediffmail.com

DIVISION OF INORGANIC CHEMISTRY

DEPARTMENT OF CHEMISTRY

UNIVERSITY OF ALLAHABAD

ALLAHABAD - 211002 (INDIA)

Phone: 0532 - 2467189

Date: 10/06/05

CERTIFICATE

Synthesis of Organometallic Compounds of Chalogen is the result of original researches carried out by Mr. Anil Kumar, Lecturer in Chemistry B.B.C. (P.G.) College, Jhansi under my supervision and is suitable for submission for the award of Ph.D. Degree of University of Bundelkhand, Ihansi

S. Srivastava

Prof. Shekhar Srivastava

DECLARATION

I here by declare that the thesis intitlled Synthesis of Organometallic Compounds of Chalogen being submitted for the degree of Doctor of Philosophy to the Bundelkhand University, Jhansi (U.P.), is an innovative piece of work carried out with utmost dedication by me, and to the best of my knowledge and belief it has not been submitted elsewhere.

Place :- Jhansi

Date: 10/06/05

Anil Kumar

(Lect. in Chemistry, B.B.C. Jhansi)

ACKNOWLEDGEMENT

I feel it a great pleasure to express my sincere gratitude to my research supervision. **Dr. Yogesh Pandey** Reader in Chemistry Bipin Bihari (P.G.) Science College, Jhansi and Co-supervision **Prof.**Shekhar Srivastava Department of Chemistry University of Allahabad (U.P.) work, valuable guidance, tireless assistance and constant encouragment through all phases of the work.

I also extend my gratitude to the Head, Department of Chemistry, B.B.C. Jhansi (Bundelkhand University) for providing necessary Laboratory Facilities.

I also wish to give a lot of thank to Honable Dr. U.P. Principal, B.B.C., Jhansi (U.P.) for their sincere advise and co-operation.

I also wish to give a lot of thanks to all friend and colleagues especially to Prof. C.M. Gupta (Head of Department in B.B.C., Jhansi), Dr. S.L. Agarwal, Dr. Surabhi Yadav, Dr. P.C. Singhal, Dr. Mukesh Srivastava, Dr. D.K. Agarwal for their sincere advise, help and co-operation.

In last but not least thanks are also due to my family members who have been a great source of inspiration, patience and moral encouragement to me.

Anil Kumar

(Lect. in Chemistry, B.B.C. Jhansi)

CONTENTS

SI. No	<u>D.</u>		PAGE NO.				
1 -	CH	APTER-I	1				
	1.	Introduction					
	1.2	Aim & Scope of Study	ì				
	1.3	References	80				
2 -	CHAPTER - II		106				
	2.1	Introduction					
	2.2	Material Used					
	2.3	Experimental Method					
	2.4	References	117				
3 -	CH	APTER - III	118				
	Complexes of R ₂ TeX ₂ with 3-mercapto-4-salicylaldimino-1,2,4-Triazole						
	3.1	Introduction					
	3.2	Experimental Work					
	3.3	Result & Discussion	121				
	3.4	References	146				
4 -	CH	APTER-IV	147				
	Com	Complexes of R ₂ TeX ₂ with 3-mercapto-4-β-Isatinylimino-1,2,4-Triazo					
	4.1	Introduction					
	4.2	Experimental Work					
	4.3	Result & Discussion	148				
	4.4	References	166				
5 -	CH	APTER-V	167				
	Complexes of R_2 TeX $_2$ with α -phenyl-salicylaldimino methyl- β -napthol						
	5.1	Introduction					
	5.2	Experimental Work					
	5.3	Result & Discussion	168				
	5.4	References	179				
6 -	CHAPTER - VI						
	6.1	Conclusion/Summary	180				
	6.2	References	183				

CHAPTER - I

INTRODUCTION

Organometallic chemistry is a study of the compounds containing at least one direct metal-carbom bond. The term 'metal' is, however, difficult to define with precision. Elements having electronegativity less than that of carbon can be considered as metals, giving rise to 'a carbon metal bond with a differential higher electron density around the carbon atom. Thus, the organometallic compounds contain an anionic carbon.

The importance of organometallic compounds is manifold. The field of synthetic organic chemistry is well established. Further, the electron deficient bridging structure of metal alkyls, the sandwich configuration of ferrocene type compounds¹ and the unusual metal valence state of certain organometallic compounds² have necessiated a drastic revision in the old concepts of structure and bonding and have played a prominent role in advancing new theories of valency. The biological activity of many organometallic compounds have been a new asset to the mankind.

The organometallic chemistry of many main group elements are well known and exhaustively covered in several reviews and books³⁻¹⁴. In contrast to this, the organometallic chemistry of group VI A elements, in general, and tellurium in particular, has been little studied.

The first organic derivative of tellurium, dialkyltelluride, was prepared by wholeler in 1840¹⁵. At first, the organotellurium chemistry remained unexplored, but later on, it was pursued mostly as an extension to corresponding selenium

chemistry. But now it is quite clear that there are at least as many dissimilarities as there are similarities in the chemical behaviour of selenium and tellurium. Some of the workers who greatly enriched the knowledge of organotellurium chemistry include Lederer (1910-1920); Morgan, Drew and co-workers (1920-1935); Petragnani demoura campos and co-workers (1960-70) and Schumann and co-workers (since 1963). Some recent creditable work by Irgolic have appeared in the form of several reviews and books 16-18.

Organotellurium compounds are highly toxic and the effect is often cumulative¹⁹⁻²². Large doses paralyses nerve structure and cause headache, nausea and eczema²³⁻²⁴. Continued inhalation of dimethy1 telluride and other volatile tellurium compounds induces and unpleasant halitosis and debility and causes headache²⁵.

A paper describing the inhibitory action of cyclic tellurium compounds on the growth of bacteria appeared in 1922²⁶. Taniyama and co-workers found that diaryltellurium dihalides possess a strong antibacterial action²⁷. Oefele published a review on therapeutic agents containing tellurium²⁰. Patents covering organic tellurium compounds have also been reported²⁸.

Tellurium is present in the earth's crust to the extent of 2x10⁻⁷ Percent by weight. However, it is generally obtained as a by-product of mining and processing operations of other ores. Today tellurium accumulates as a by-product of the electrolytic copper refining process. The anode sludge can contain

up to 8% tellurium in addition to Se, Cu, Ag, Au, and Platinum group metals. Density of crystalline metals at 449.8°C to a dark liquid and boils at 1390°C²⁹. A detailed discussion of the physical properties of tellurium is available in the literature²⁸.

The properties of the elements in subgroup VIA of the periodic table O, S, Se, Te, and Po undergo striking transition as the group is descended. The chemical behaviour of the group passes from that of the typical non metals O and S to the typical metal Po. A systematic change is also observed in the structure of the elements from diatomic molecules, through ring and chain molecules to a simple lattice compound of polonium atom. A corresponding transition in electrical properties accompanied the structure evolution. Thus, oxygen and sulphur are insulators, Se and Te are semiconductors and Po show metallic conduction.

The industrial applications of tellurium and its compounds have beeen described by champness²⁹, Nachtman³¹, Aborn³¹ and Cooper³², Their applications as rubber vulcanization, accelerators, antiknock agents, antioxidants, insecticides, lubricating oil additives, gel forming clays, curing agents for ethylene propylene terpolyments, Photoconductors, therapeutic agents, dye intermediates and wetting agents are well known¹⁶.

The ecological aspects of tellurium in human and animals health, the toxicity and metabolism of tellurium compounds and the interaction of sodium tellurate with Hg, Cd, Se, Be and As have been reviewed¹⁷.

Electronic Configuration and Stereochemistry

The elements of group VIA have a general electronic configuration [X] $ns^2 np_x^2 np_y^1 np_z^1$ (where x = inert gas core and n = 2 to 6 from oxygen to polonium) and tend to attain an inert gas configuration by gaining or sharing two electons. E^2 - Ion, however, exists in case of oxygen only. The More electropositive elements S, Se and Te form only a few compounds which are more than 50% ionic. The formal oxidation states of II, IV are known for tellurium and are summarized in table I along with the possible stereochemistry.

Table: 1

Valency	CO.	No.		Geometry	Hybrisidisation	Examples
The second of th	NO.	of	lone			
		bonds	pairs			
II	2	2	2	Angular	sp³	R ₂ Te,, RTeX
	3	3	2	Pyramidal	sp²d	[RTeX ₂]
	4	4	2	Square-	sp^3d^2	Te[SC(NH ₂) ₂]Cl ₂ ,
				Planner		$PhTeX_{2}[SC(NH_{2})_{2}]$
IV	4	4	1	Trigonal	sp³d	R ₂ TeX ₂ ,RTeX ₃
				Bipyramidal		R_{4} Te
				Tetrahedral		$R_3 Te^+ X^-$
	5	5	1	Square-	sp^3d^2	[RTeX ₄],RTeX3.L
*				pyramidal (4)		(L=Monodentate)

Fig. 1: Possible oxidation states in tellurium

Te has in the ground state, two unpaired electrons and hence oxidation state(II) is well known. In such compounds one 's' and three 'p' orbitals hybridise, giving four sp³ hybrid orbitals, of which, two are occupied by lone

pairs and the remaining two have bonding electron pairs. The geometry is thus 'V' shaped(Fig.2).

Fig. 2: V-shaped structure for Te(II) compounds

In the first excited state, compounds with tellurium in oxidation state (IV) are obtained by uncoupling the $p_{\rm x}^2$ electrons: one of them being promoted to the empty d orbitals, resulting in the formation of five of sp³d hybrid orbitals of equivalent energy, directed trigonal bipyramidally in spaces about the metal atom (Fig.3).

Fig.3: Trigonal bipyramidal structure for Te(IV) compounds

In the first excited state, coordination number greater than four is achieved by accepting electrons with suitable donors in the empty d-orbitals. The formation of penta-and hexa-cooradinated molecules is visualises on the basis of sp³d³ and sp³d² hybridisation with one lone pair of electrons resulting in pseudooctahedral and octahedral structures respectively³³⁻³⁵. (Fig. 4 and 5).

Fig.4: sp³d³ pseudooctahedral

Fig.5: sp³d² Octahedral

Coordination number greater than six are rare. A sp³d⁴ hybridised tellurium dithiocarbamate with stereochemically inert lone pair of electrons has been reported³⁶. Hepta and octacoordinated tellurium atom having sp³d⁴ and sp³d⁵ hybridisation have also been reported by steinar et al³⁷⁻³⁸. (Fig.6).

Fig.6: Te(Et₂NCS₂)₄

In the second excited state, all the six electrons of outer most orbit of tellurium get uncoupled resulting in sp³d² orbital formation, which are directed

octahedrally about the metal atom39-40.

TeF₆, C_2F_5 TeF₄Cl and $(C_2F_5)_2$ TeF₄ having regular octahedral structure have been confirmed by IR (Fig.7)_F

Fig.7: Regular octahedral structure of Te F₆

Low lying d-orbitals in the outermost valency shell of tellurium are thus involved in the expansion of covalency. The stable coordination compounds with electron donors may be formed when a pronounced stabilisation occurs through the participation of vacant d-orbital. The additional bonds in espansion of bi-and tetra covalency of tellurium may be of the following types:

 $D\sigma$ - bonding: In which there is an overlap of s-orbital of the donor atom with d-orbital of the metal atom e.g., in $R_2TeX_2.nNH_3$.

 $d\pi$ - bonding: Here the empty d-orbital of the metal overlap with the filled p or d orbitals of adjacent donor atom having available lone pair of electrons, which gives a partial double bond character to the donor metal sigma bond. This could be schematically represented as in Fig. 8.

 $d\pi - p\pi$ interaction

 $d\pi$ - $d\pi$ interaction

Fig. 8
Organotellurium compounds

The first organotellurium compound, diethyl telluride, was synthesised by woehler in 1840. Since them many reports have appeared which deal with various aspects of organotellurium chemistry. The organic chemistry of tellurium up to 1974 has been exhaustively reviewed by Irgolic¹⁶.

Methods of preparation of Te-C bonded molecules:

In most of the reactions tellurium metal, tellurium hydride, sodium-and other metal tellurides, tellurium tetrachloride and organic tellurium compounds have been used to synthesise Te-C bonded molecules. A short account of these methods is given below:

A. Elemental tellurium:

A number of organotellurium compounds are synthesised directly from elemental tellurium. The reactions resulting in the formation of the least one C-Te bond are summarized in (Fig.9).

B. Tellurium hydride:

There are a few recent reports of the use of tellurium hydride as a reagent to introduce tellurium in organic molecules^{17,41}.

C. Sodium and other alkali metal tellurides:

Alkali metal tellurides are easily alkylated by organic halides. Upon mixing stoichiometric amounts of diacetylenes with sodium telluride and hydrolysing the product, 2,5-disubstituted tellurophenes are isolated. With aliphatic alcohols at 300-150°, alkali metal tellurides give tellurols and tellurides (Fig.10).

Fig.9

D. Tellurium tetrachloride:

There are a large number of reactions taking place between anhydrous tellurium tetrachloride and organic reagents which proceed with formation of molecules containing at least one carbon-tellurium bond (Fig.11).

E. Organic tellurium compounds :

A general outline of the reactions of organotellurium compounds leading to the formation of additional carbon - tellurium bonds is given in Fig. 12.

Fig. 11

The book "the Organic Chemistry of Tellurium" by Irgolic covers the organotellurium literature during the time span from 1840, When Wohler reported the first organotellurium compounds, through 1971. The organotellurium chemistry after 1971 has progressed unexpectedly. In the preset investigation, a number of organotellurium compounds, have been prepared and characterise. It would, therefore, be appropriate to give a short account of the chemistry of organotellurium compounds before describing the details of the present investigation.

On the basis of oxidation states, the organotellurium compounds may be classified into four main headings:

- (i) Oxidation state zero,
- (ii) Oxidation state two,
- (iii) Oxidation state four and
- (iv) Oxidation state six

(i) Compounds in oxidation state (0)

In 1973, first such compounds $[(C_6H_5)_3P]_2$ Te was prepared in 30% yield, when tellurocyanates reacted with triphenylphosphine in acetonitrile solution on presence of lithium perchlorate. This zero valent compound decomposed at $83-85^{\circ}c^{42}$. The structures of $[(Ch_3)_3P]_2$ Te and $[(CD_3)_3P]_2$ Te have also been suggested on the basis of IR and Raman spectra data⁴³.

(ii) Compounds in oxidation state(II)

These includes tellurols (RTeH), tellureny 1 compounds (RTeX), tellurides (R_2 Te) and ditellurides (R_2 Te $_2$).

Fig. 12

Tellurols: Our knowledge about these compounds in limited owing to the exceedingly unpleasant odour, especially in case of the alky derivatives. How-

ever, methanetellurol and trideuteriomethanetellurol have been prepared by the hydrolysis of dimethyl detelluride⁴⁴. Lederer reported that benzene tellurol reacts with mercuric chloride to yield C₆H₅-Te-HgCl⁴⁵.

Tellureny Compounds: Aliphatic RTeX are still unknown. With the exception of 2-napthyltellurium iodide, it has not been possible to isolate other aryl tellurium halides. However, in solution, aromatic derivatives can be prepared⁴⁶. X-Ray structural analysis established the structure of 2-formylphenyl tellurium (II) derivatives as shown in Fig. 13.

$$\delta^{-}\delta^{+}$$
X—Te
 O
 δ^{-}
 δ^{-}
(X = C1, Br, I, CN, SCN, SeCN)

Fig. 13

PhTeCN has been prepared through reductive cyanation of aryltellurium trichloride and form the reaction of aryltellurium bromide with KCN^{47} . The reactivity of 2 - napthyltellurium iodide has also been reported.

Tellurides: Synthesis and reactivity of diorganyltellurides are shown schematically in (Fig.14), which also includes several new routes for preparation of symmetrical⁵⁰⁻⁵². and asymmetrical⁵³, ¹⁷, ⁵⁴⁻⁵⁷ tellurides. Several tellurides, with two

Fig. 14 Syntheses and reactivity of diorganyl tellurides

tellurium atoms in a molecule have been synthesised by Seeback and Beck⁵⁸. Some of the reactions which were carried out with such type of tellurides are

schemed elow (Fig.15).

RLi

THF, -78°C

$$C_{6}H_{5}$$
-Te-CH₂-Te-C $_{6}H_{5}$

THF, -78°C

 $C_{6}H_{5}$ -Te-CH₂Li

 $+$
 $C_{6}H_{5}$ -Te-CH-Te-C $_{6}H_{5}$

Li

 $C_{6}H_{5}$ -Te-R

 $D_{2}O$
 $C_{6}H_{5}$ -Ch₂Br,THF - 78°C

 $C_{6}H_{5}$ -Te-CH-Te-C $_{6}H_{5}$
 $C_{6}H_{5}$ -Te-CH-Te-C $_{6}H_{5}$

The case with which bis (organo) telluriumdihalides are formed, lead to the investigation of the tellurides as dehalogenating agents⁵⁹. Lederer prepared a number of adducts of diphenyltellurides and dialkyltellurides⁶⁰⁻⁶¹. The structure of tellurides have been determined using UV, PMR and mass spectral data⁶²⁻⁶⁴.

Ditellurides: The first unsymetrical diorganyl ditelluride, perfluorobutylpentafluoroethyl ditelluride, was formed in a reaction between tetrafluoro ethylene and $Te_4(AsF_6)_2$ or $Te_6(AsF_6)_2^{65}$. Recently, some new symmetrical diarylditellurides have been reported $^{66-70}$. All the ditellurides are orange to red solids except methyl derivatives. Fission of Te-Te bond is brought about by halogenolysis with the formation of corresponding organotellurium (II) halides. Thermally, ditellurides decompose of R_2 Te and Te^{71-72} . The struc-

ture of bis(4-chlorophenyl) ditelluride has been determine by single crystal X-ray analysis ⁷⁸ (Fig. 16).

Fig. 16

2-alkoxy ethyl aryl tellurides 4-R¹C₆H₄TeCH₂ CH₂R²(R¹ = H,Me, R² = OMe, OEt) were obtained in 70-80% yield by the reaction of 1-bromo-2methoxy ethane or 1-bromo-2ethoxy ethane with arene telluralate anion. These telluride were converted to their corresponding TeCl₂ which on treatment with NaOCH₂CF₃ in CF₃CH₂OH medium gave the corresponding bis (2,2,2-trifluoroethoxides) in 70-80% yields ⁷⁴.

 $(2\text{-RN:CHC}_6H_4)_2\text{Te}$ (R = alkyl. aryl) were prepared in $\geq 70\%$ yield by condensing $(2\text{-HCOC}_6H_4)_2\text{Te}$ with amines. X-ray analysis of $(2\text{-RN:CHC}_6H_4)_2$ Te (R = $o\text{-MeOC}_6H_4$) showed one intramolecular Te \leftarrow N coordination (2.702 A⁰) in crystal¹²⁵Te NMR spectroscopy showed a trans coordination process occurring via rapid cleavage nd formation of Te \leftarrow N bonds⁷⁵.

The ditelluro ethers $o-C_6H_4(TeMe)_2$ was prepared from $o-C_6H_4Br_2$ and LiTeMe in THF and $o-C_6H_4(TePh)_2$ was obtained similarly from $o-C_6H_4Brl$ and LiTePh. Synthesis of the o-Substituted telluro ethers $o-C_6H_4(TeMe)_y$ (Y=NMe₂,

PMe₂, AsMe₂, SbMe₂, OMe, SMe, SeMe and Cl) are also reported. The compounds have been characterized by mass spectroscopy by multinuclear NMR spectroscopy (¹H,¹³C,¹²⁵Te) and by the preparation of derivatives. The trends in the ¹²⁵Te NMR chemical shifts are compared and comparison are also made with the ⁷⁷Se NMR chemical shifts in corresponding seleno ethers convenient synthesis for *o*-C₆H₄Cl (SMe) and *o*-C₆H₄Cl (SeMe) are reported⁷⁶.

The chloro (phenyl) trimethane selenourea Te(II) compounds were prepared in 69% yield by treating diphenylditelluride with trimethylene selenourea and chlorine in MeOH. The structure of this and bromo (phenyl) trimethne thiourea Te(II) were determined by x-ray crystallography⁷⁷.

Three coordinated Te(II) complexes of type (p-RC₆H₄Te-CH₂ NCSNHN = CR¹R²) Cl (R = H, OH, MeO, R¹ = Ph, C₆H₄OH, R² = H, Me) were prepared by treating p-RC₆H₄TeCl₃ with H₂NCSNHN = CR¹R² in aq.MeOH molecular weight and conductivity measurement suggest that the Cl in these complexes is ionic. The I.R., ¹H and ¹³C NMR data suggests that coordination of H₂NCS-NHN = CR¹R² is through S alone, probably giving three coordinates Te. The nature of Te-S bonding and the stability of complexes is reported⁷⁸.

Diarylditellurium p-RO-C₆H₄Te-TeC₆H₄OR-p(R = Me, Et) react with thiocyanogen in dry absorbtion MeOH at 110° C to give unstable monoaryl Te (II)thiocyanate which were isolated as adducts with neutral M⁻,O⁻,OS⁻ donor ligands for example thiourea, β -picoline, triphenylarsene oxide reaction of

diarylditellurium with IC1, IBr gave p-ROC₆H₄ TeX (X = Cl, Br, I)⁷⁹.

Te $(S_2COEt)X$ have been synthesised by Te $(S_2COEt)_2$ with TeCl₄,CuCl₂ or CuBr₂. The X-ray crystal structure of Te (S_2COEt) Br shows. It is composed of left and right handed helices formed from common sharing $(B_1$ bridges) of planner Te (S_2COEt) Br units. The C-O bond length is the shortest so far observed in metal xanthates⁸⁰.

The IR and Raman spectra of crystal samples of halo (ethylene thio-urea) phenyl tellurium(II) (halo = Cl, Br, I), halo (ethylene selenourea) phenyl tellurium (II) halo-Cl, Br, phenyldithiocyanato and phenyldiselenocyanato tellurate(II) ions, were recorded below 500 cm⁻¹. From these data, the two fundamental stretching frequencies connected with the approximate linear X-Te-Y linkage were assigned. These frequencies were compared with those obtained from a simplified force constants⁸¹.

The porphyrin Fig.(17) was prepared from 2, 5-bis (phenylhydroxy methyl)tellurophene by reaction ewith pyrrole followed by cyclocondensation reaction with 2, 5-bis (phenylhydroxy methyl) thiophene⁸².

Successful reduction of benzene derivatives $p\text{-Cl}_3\text{TeC}_6\text{H}_4\text{R}(\text{R=SiMe}_3)$ with $\text{Na}_2\text{S}_2\text{O}_5$ and Cu affords ditelluride $p\text{-RC}_6\text{H}_4$ Te_2C_6 $\text{H}_4\text{R-}p$ and telluride $(p\text{-RC}_6\text{H}_4)_2$ Te respectively. Reactions of $p\text{-RC}_6\text{H}_4\text{TeC}_6\text{H}_4\text{R-}p$ and $(p\text{-RC}_6\text{H}_4)_2$ (R= SiM₃) with halogens results in oxidation of Te and the formation of the corresponding σ - trelluranes. Alkylation of ditellurophenolates anion following upon reduction of RTeCl₃ furnishes p-bis (alkyltelluryl) benzenes⁸³.

The 125 Te mossbaur spectra for $(CF_3)_2$ Te and $(C_6F_5)_2$ Te exhibit significantly larger quadrupole splittings than those of Me_2 and $Ph_2Te(CF_3)_2TeX_2$ and $(C_6F_5)_2TeX_2$ (X=F,Cl, Br) have consistently smaller quadrupole splittings than Me_2TeX_2 and Ph_2TeX_2 . These observations are consistent with the greater electronegativity of CF_3 and C_6F_5 ligands. The ^{125}Te NMR chemical shifts of $(C_6F_5)_2$ and its dihalides show a consistent trend to more positive values (increased deshielding as the electronegativity of the ligands attached to Te increases), however, for $(CF_3)_2$ Te and its dihalides a more complex pattern is observed which is explained by changes in the mean electronic excitation term in the Ramsay paramagnetic shielding term⁸⁴.

¹²⁵Te NMR spectra of Te(II) complexes contained dithiolene on others unsaturated-1, 1-dithio-1, 1-thioseleno or 1, 1-diseleno ligands are reported. According to their chemical shift value, the complexes can be divided into groups will separated by several hundred ppm⁸⁵.

¹²⁵Te chemical shifts of Te(S₂)₂Te(NR₂)₄ (R=Et,CHMe₂, iso-BuPhCH₂),

 $(R_2N=N-pyrrolyl)$ and $Te(S_2CNEt_2)X$ (X=Cl,Br,I,NCS) are separated by~1400 ppm. When R is an alkyl group, the electronic configuration as contribution to the chemical shift appear to be very small for both oxidation states of Te. The chemical shift of these compounds display a positive temperature dependence consistent with the major contribution arising from paramagnetic shielding. The preparation of $Te(S_2CNEt_2)_2$ from $Te(Et_2NCS_2)_2$ and that of $Te(S_2CNEt_2)_3I$ from $Te(S_2CNEt_2)_3Cl$ and KI are reported addition of $[(Me_2CH)_2NCS]_2$ and $(Et_2NCS)_2$ to $Te(S_2CNEt_2)_2$ and $CdCl_3$ gave mixture $Te(S_2CNEt_2)_2[S_2CN(CHMe_2)_2]4-n$ (n=0-4), $Te(S_2CNR_2)_4$ disproportionate to $Te(S_2CNR_2)_2$ and $(R_2NCS_2)_2^{86}$.

The nature of the bonding to Te in the phosphine complexes R_3PTe and $(R_3P)_2Te$ and in tellurocyanates, TeCn, ArTeCn, ArCH $_2$ TeCN and ArTe(X)CN (X = Cl,Br,I) was studied by ¹²⁵Te solution NMR spectroscopy at ambient temperature and by ¹²⁵ Te mossbaur spectroscopy at 4.2K.No evidence was found for multiple bonding to Te in either solution or the solid state. The phosphine complexes R_3PTe give ¹²⁵Te NMR shifts of-837,-497 ppm (Me $_2$ Te) at ¹²⁵Te quadrupole splitting of 10-12mmS-1. The TeCl- ion has a ¹²⁵Te NMR shift of -509 to -569 ppm dependent on solvent and conversion, ArTeCN and ArCH $_2$ TeCN shifts of +570-580 ppm and the halide derivative ArCH $_2$ Te(X)CN shifts of -586 to 604ppm Te. ¹²⁵Te mossbaur quadrupole splitting of TeCN is 12mmS⁻¹ of ArTeCN and ArCH $_2$ TeCN is 13.7-14.1mmS⁻¹ of ArCH $_2$ Te(X)CN, X=Cl, is 14.5 mms⁻¹, ArCH $_2$ Te(X)CN, X = Br, is 13.8 mms⁻¹ and ArCH $_2$ Te(X) CN, X = I is 14.0 mmS⁻¹ ⁸⁷.

The chloro and bromophenyl (tetramethylthiourea) tellurium (II) are monoclinic, space group $p_{21/n}$ z = 4 chlorophenyl (tetramethylthiourea). Te (II) has a = 7.7301, (b) b = 12.6097 (8), c = 15.2179 (9)A° and β = 99.011 (6)° R = 0.040 bromophenyl (tetramethylthiourea). Te(II) has a = 7.7306 (b), b = (12.8673) (h), c = 15.4239 (II) A° and β = 99.737 (8)° R = 0.044 chlorophenyl (trimorpholinephosphine selenide). Tellurium (II) has a = 9.2467(12), b = 18.9217(16), c = 13.396(12)A° and β = 99.852(9)° R = 0.037. The first two compounds are isomorphous as are also the last two, the fourth complexe are 3 coordinated T- shaped. In a direction nearby perpendicular to Te-C bond. Te is bonded to halogen atom and in transposition to the halogen atom to a tetramethyl thiourea S on a tromorpholylphosphine selenide Se atom. The three centre systems X- Te- X where X is halogen, are nearly linear and At coordinates, bond angles and bond lengths are reported.

The bis(2-hydroxyethyl) dithiocarbaomato tellurium (II) i.e., $Te(C_5H_{10}NO_2S_2)_2$ is monoclinic space group P21/C with a = 11.303 (S), b = 5.543 (1), c = 28.724 (5) A+ and β = 100.30(1)° Dm = 1.76 Dsc = 1.83 mgm⁻³ d (experimental) = 1.76 and d (calculated) = 1.83 for z = 4 final R = 0.066 for 1314 unique observed reflections. Each Te atom is bonded to all 4S atoms of the 2 ligands forming an asymmetrical planner complex with Te-S bond distance of 2.527 (7) - 2.793 (8) A°. The molecules are linked in pairs by a short intermolecular contact Te-S (2) of 3.296 (A)° indicating a tendency towards 5 coordination around Te-two of the four EtOH groups in the molecule show a disorder of orientations⁸⁹.

The tellurium (II) ethyl xanthate with 4,4-bipyridyl is monoclinic space group P21/c with a = 9.0249 (9), b = 13.211 (2), C = 14.347 (2) A^0 And β = 102.3 (2) 0 d (expt L) = 1.77 and d(calculated) = 1.780 for Z = 4 final R = 0.053. Crystals of the adducts consist of molecular binuclear species. Each of Te had planar pentagonal coordination by 4S from two bidentate xanthate ligands and one of the bipyridine 90 .

The trans bis 2(3H)-benzimidazolethione bis(thiourea) tellurium(II) chloride i.e., $Te(CH_4N_2S)_2(C_7H_6N_2S)_2Cl_2$ is monoclinic space group Pzl/C with a 6.623(1), b = 11.3873(3), c = 16.085(3) A 0 and Dc = 1.787 for z = 2. The final R = 0.029 and R $_w$ = 0.027 for 2068 reflections. The Te lying at the crystallography centre of symmetry is bonded to a thiourea 5 atoms and 2 benzimidazole thione 5 system (atoms) in a trans square planar arrangement. The TeS $_4$ group has the dimensions Te-S(1) 2.694(2) Te-S(2) 2.685(1) A 0 and S(1) A 0 and S(1) – Te-S(2) 89.4(1) 91 .

Te(tu)₂(ClO₄)₂ (tu = thiourea is triclinic, space group Pl with a = 15.35, b = 11.97, c = 6.01A⁰, α = 90.1, β = 91.0 and γ = 108.0° 2=2 final R = 0.032 Te(dmtu)₄Cl₂(dmtu = 1,3-dimethy thiourea) is monoclinic space group P21/n with a = 13.70, b = 9.05, c = 10.91A° and β = 101.6° Z = 2 final R = 0.025). In both the complexes the Te is bonded to four 5 atoms in a planar arrangement which is considerable distorted in the perchlorate but nearly regular in the chloride, to explain the structural and ¹²⁵Te, mossbaur spectroscopy results a bonding model involving lone pair with S and p characteristics then proposed⁹².

The bromo (o-ethylaxanthato) tellurium(II) is monoclinic space group P21/C with a = 10.636(1), b = 6.030(1), c = 13.364(1)A° and β = 103.32(1)° d (expt) = 266 and d(calculated) = 2.617 for Z = 4final R = 0.077 (R_w = 0.072) each Te is bonded to 2S atoms of the xanthate ligand and 2 Br atoms with each Br atom bonded to another Te atom. The Te and Br atoms adopt a helical structure with a pairs of Br and Te atoms forming the repeat unit 93 .

X-ray data for the bis(thiobenzoate-5) tellurium i.e., $C_{14}H_{10}O_2S_2$ Te indicate that Te is covalently bonded to S. There are weak secondary interactions between Te and O which complete in S_2O_2 coordination around Te. The CO and CS distances of I are normal and agree with published values. The two pH rings are planar with the C atoms derivating from the plan by less than $0.01(1)A^0$. The average CH distance is 0.86 (4) A^0 and the average C-C-H angle is $120(7)^0$

Te(II) 2-oxazollidinene derivatives are useful as intermediate for drugs of animal and human are prepared by treating olefins with carbamates esters in the presence of Lewis acids and ArTe(O)OCR (Ar = Un) substituted aryl haloalkyl as mediators. Cis 4-octene H₂NCOOCF₃ and BF₃Et₂O were added to a solution of PhTe(O)COOCF₃ in dichloroethane and the mixture was refluxed for 12 hours to give 85% cis-4,5-di-n-propyl-1,3-oxazolidine-2-one⁹⁵.

Ethynylepichlorohydrin (R^1 = alkyl, H, Ph, tetrahydropyranyloxymethyl) were treated with Na₂Te to give telluriophenomethanols⁹⁶.

O (Me₃Si)₂C₆H₄ reacted with two equivalent TeCl₄ in O-Cl₂C₆H₄ to give 66% o-(Cl₃Te)₂C₆H₄, which was reduced with Na₂S₂O₅ to give the polymeric ditelluride (o-C₆H₄Te₂)_n. Further reduction of 6-C₆H₄Te₂ with NaBH₄EtOH a nd cyclization of the resulting di-Na derivative with CH₂Br₂ gave 16% benzoditellurole which gave the tetra bromide with Br⁹⁷.

The compound fig.18.(R = H, M = M^1 = Te,Se, R^1 = p-MeOC₆H₄, p-EtOC₆H₄, p-MeC₆H₄, R = Me, M = Te, M^1 Se M= Se M^1 = Se R^1 = p-MeO-C₆H₄) via an intermediate singlet benzyne, have been synthesised⁹⁸.

Fig. 18

Moss-bauer data are reported for a number of heterocyclic compounds contend Te (Fig.19). The influence of the bulky-2-biphenyl ligand on the mossbauer parameters of diaryltellurium dihalides and aryl tellurium trihalides was also investigated⁹⁹.

Fig. 19

Elemental Te reacted with C_2H_2 and PhI in HMPA- H_2O contained Secl₂ and KOH in an autoclave 100-120 and 10-12 atoms to give 20% PhTeCH = $CH_2(I)$, 17% (CH_2 = $CH)_2$ Te and 20% Ph_2 TeI information was reduced to <1%

with PhBr instead of PhI or in the absence of SnCl₂ and was inhibited by added hydroquinone or with PhCl. . An anion radical mechanism was proposed¹⁰⁰.

Solution of disodium ditelluride in DMF react with the solvent to give small yield of the unusual ditelluride [Me₂NC(O)]₂Te. This molecule exhibit interesting photochemical behaviour and was experimentally characterised and its crystal structure was determined¹⁰¹.

XPS (ESCA, electron spectroscopy for chemical analysis) of oxatellurolylium halides Fig.20 ($R = halo, R^1 = alkyl, aryl, R^2 = aryl)$ and dioxatellurapentalenes (same R^1,R^2) have shown them to be Te(II) compounds. When their Te3 $d_{5,2}$ binding energies are compared to those of te(II) models. The oxatellurolylium trihalides (same R^1,R^2) and, by extension, the dioxatellurapentalene dihalides (R = H, Cl) Te3 $d_{5,2}$ binding energies consistent with Te(IV) when compared to te(IV) compounds. Changes in XPS binding energies which result from substituent changes in the carbon framework are similar in magnitude to changes, from substitution in the electronegative ligands attached to Te, this makes quantitative assessment of the effect of higher order bonding on the electronic environment at Te difficult usingh the Te3d_{5,2} binding energies.

R-Te
$$\mathbb{R}^2$$
 \mathbb{R}^2 $\mathbb{R}^$

The Ols electrons of (I-III) have higher binding energies than model compounds (V) (X = Te, TeCl2) suggesting that partial bonding (linear, there is centre four electron bonding) exists between the Te halides. The Te and the one oxygen (RTe...O) while the XPS data show the oxygen atoms to be donating electrons in the 3C-4e bonds, the ¹²⁵Te NMR chemical shifts show deshielding as three centre four electron

Fig. 21: Synthesis and reactivity of R₂TeX₂

Fig. 22: Synthesis and reactivity of RTeCl₃

bonding increase with dioxatellurapentalene (II) $(R^1 = R^2 = Ph)$ as one limit with a symmetrical structure three centre four electron bond and tellurapyranone (V) [X = Te(VI)] as the other unit with no bond between Te and O. The ¹²⁵Te

NMR chemical shifts move subsequently down field from VI to β (tellurophenyl) butenoate ester (I) (R = Ph, R¹ = Me, R² = OEt to (I) (R = iodo to (I) (R = Br to (I) (R = Cl) in the Te(II) series and Te(IV) respectively. The XPS and ¹²⁵Te IMR structure of these compounds are first systematic studies of this type of compounds as, the data suggests that ¹²⁵Te NMR chemical shift are sensitive to the geometry of the complexes, the oxidation state of Te and electronic environment of Te¹²².

(iii) Compounds in oxidation state (IV)

Most common compounds of tellurium have metal in the oxidation state (IV). Organotelluriumtrihalides (RTeX₃), dioganotelluriumdihalides (R₂TeX₂), triorganotellurium halides (R₃TeX), tetraorganotellurium (R₄Te), organotetrahalotellurates $M^+[RTeX_4]^-$ and $M_2[R_2TeX_4]^{103,104}$ and telluroxides (R₂TeO) come under this category.

RTeX₃, R₂TeX₂ and R₃TeX generally behave as Lewis acids of class 'b'. Organotelurium trihalides and dioganotellurium dihalides on reduction yield R₂Te₂ and R₂Te respectively. The hydrolysis product of aryltellurium trihalides is tellurinic acid halide, RTe(O)X, in which tellurium atom is tetracoordinated in a trigonal bipyramidal structure. The following scheme describes the hydrolysis of diorganotellurium dihalides:

The reactivity of organotellurium trihalides when they condense with activated organic compounds with the formation of hydrogen halide and bis(organo) tellurium dihalides decrease in the order Cl > Br > I. RTeX₃ react with various organometallic derivatives of Hg, Sh, Pb, Si, Ga, In and Tl yielding R_2TeX_2 and their organometallic derivatives. Synthesis and reactivity of dihalides and trihalides are summarized in(figures.21 and 22) respectively.

On the basis of X-ray determination, R₂TeX₂ derivatives have been assigned a structure shown in Fig.23^{105,108}.

Fig. 23 Structure of trigonal bipyramidal

The tetrakis (dialkyl dithiocarbamato) tellurium(IV) are highly effective. Thermal antioxidants and melt stabilizers for polypropylene and converted to the bis(dialkyl dithiacarbamato) tellurium(II) complexes¹⁰⁹.

 $Me_2Te(S_2COR)_2$ (R = Me, Et, Me_2CH) are obtained by reaction of Me_2TeI_2 with freshly prepared sodium xanthates. Another preparative method is the insertion of CS_2 into dimethyl tellurium bis(alkoxides). The X-ray analysis of

 $Me_2Te(S_2COMe)_2$ shows that in the crystals the molecule has a four configuration around Te^{110} .

 TeX_4 .L (X = Br,Cl,L=tetramethyl and tetraethyl dithioxamides) were prepared by the addition of CH_2Cl - CH_2Cl solutions of TeX_4 to the ligands. The adducts were characterized by IR and UV spectra. The spectral measurements suggest octahedral structure with coordination through the S atoms. However, the distinction between bridging or bidentate moieties could not be made¹¹¹.

Reactions of PhTeCl₃ with (S₂CNEt₂), (S₂P(OEt)₂) and (S₂COEt) in solution were studied by variable temperature¹²⁵Te, ³¹P, and ¹³C NMR spectroscopy which show the formation of a variety of mixed ligand species; some of which were subsequently isolated. MeTe (I)(S₂CNEt₂) (I) formed by oxidative addition of MeI to Te(S₂CNEt₂)₂ also provides a useful way to the synthesis of mixed ligand species, but in general the products are less stable than the pH analogous. Solvent dependent intramolecular exchange processes were observed for the alkyl and aryl series. The crystal and molecular structure of all mixed ligand complexes and PhTe(S₂CEt₂) (S₂P(OEt)₂) have been also determined¹¹².

 $Ph_2Te(S_2(COR))_2$ and telluracyclopentane-l, l-bis(alkyl xantahates) (R = Me, Et, CHMe₂) are obtained by reaction of Ph_2TeCl_2 or tellura cyclopentane-l, l-diiodide with ROCH₂Na. The insertion of CS_2 into organotellurium bis (alkoxides) is only successful in the case of the cyclic compounds. The prod-

ucts decomposition on heating to Ph₂Te or telluracyclopentane and ROCS₂S₂COR¹¹³.

 $R_2\text{Te}(S_2\text{CNR}_2^{-1})_2$ (R = Me, Ph, R¹ = Me, Et, CHMe₂, cyclohexyl, Ph) were prepared from Me₂TeI₂ or Ph₂TeCl₂ and R₂¹NCS₂Na from R¹₂NH, CS₂ and Me₂TeI₂ or Ph₂TeCl₂ by several other methods. Products of Me₂TeI₂ with NaS₂CNMeCH₂CH₂NMeCS₂Na were obtained as polymers. Decomposition of R₂Te(S₂NR¹₂)₂ gave R₂Te, R¹₂NCS₂S₂CNR¹₂ and other products ¹¹⁴.

Ph₃TeOR (R = Me, Et, CHMe₂,) were obatained by treating Ph₃TeCl with RONa-ROH. Ph₃TeS₂COR were obtained from Ph₃TeCl and NaS₂COR from Ph₃Te OR and CS₂, Ph₂TeS₂CSR were prepared from Ph₃TeCl and NaS₂CSR¹¹⁵.

Preparation and structural aspects of perchlorate complexes of Te(IV) with RR¹NCS-₂ (R = R' = Me, Et, Ph, CHMe₂. PR¹N = piperideno morpholino) are reported¹¹⁶.

A number of dithiacarbamate derivatives $Ph_2Te(S_2CNR_2)_2$ (R = Me,Et) and $Ph_2TeCl(S_2CMR_2)$ (R = Me, Et, CHMe₂) were prepared and characterised initially by analysis and vibrational spectroscopy. The crystal structures were determined so that the effect of the change in the nature of R and the presence of a Cl atom could be compared. The dithiacarbamate groups are monodentate (or anisobidentate) and the geometry about Te is consistently that of a dis-

torted sawhorse structure. Examples of both inter and intramolecular Te-S interactions are observed as well as an intermolecular Te-Cl interaction. The crystal structure of (R = Me) and $(R = Et, CHMe_2)$ were determined. NMR spectra are not simple and indicate that several species are present in solution¹¹⁷.

 $Ph_{2}TeS_{2}CNR_{2} \ (R = Me, CHMe_{2}Ph) \ were prepared \ on heating \ Ph_{3}TeCl$ with R₂NCS₂Na. Ph₃TeS₂CNMe, CH₂CH₂NMeCS₂TePh₃ was similarly prepared . Ph₃TeS₂CNR₂ (R = Me) was also obtained from Ph₃TeO₂CNMe₂ and CS₂ thermal decomposition of Ph₃TeS₂CNR₂ gave R₂NCS₂Ph and Ph₂Te¹¹⁸.

RTeX₂[S₂P(OR¹)₂] and R₂Te [S₂P-(OR¹)₂]₂ (R = p- MeOC₆H₄, Ph, R = Me, Et, CHMe₂; X = Cl,Br) were prepared in 56-57% yields from the NH⁺₄ and Na salts of dithiophosphoric acid and the appropriate aryl tellurium trihalide or diaryl tellurium dichloride in CS₂ and were characterized by elemental analysis with proton NMR, I.R. and Raman spectra¹¹⁹.

The crystal structure of $[p\text{-MeOC}_6H_4\text{TeBr}_2(S_2P(OMe)_2]$ and $Ph_2\text{Te}[S_2P(OMe)_2]_2$ were determined in $[p\text{-MeOC}_6H_4\text{TeBr}_2.S_2P(OMe)_2]$. The dithiophosphate group is bidentate while in $[Ph_2\text{Te }S_2P(OMe)_2]_2$. it is monodentate in first compound the geometry around Te is that of a distorted square pyramidal, whereas in second compound it is that of a distorted sawhorse structure. In both cases a distorted octahedral confirmation about Te is completed¹²⁰.

 ${\rm TeCl_4L_2}(\ L={\rm substituted\ thiourea})$ were prepared and characterized by elemental analysis, electrical conductivity, thermal analysis, I.R. and NMR spectral methods. The complexes are octahedral monomers with S-coordinated ligand¹²¹.

Diphenyl selenium(IV) bis(O, O'-dialkyl dithiophosphates) Ph₂SeS₂P(OR)₂ (R = Et, CHMe₂, CH₂CHMe₂) diphenyl selenium(IV) bis(O, O'-alkylene dithiophosphates)Ph₂Se(S₂POR''O)₂ (R'' = CH₂CMe₂CH₂, CHMeCH₂CMe₂), PhTe[S₂P(OCHMe₂)]₃ and organotellurium(IV) tris(O, O' alkylene dithiophosphates) RTe(S₂POR''O) (R = Ph, p-MeOC₆H₄, R = CH₂CMe₂CH₂) have been prepared and characterized from physicochemical and spectral (IR, ¹H and ³¹PNMR) studies. The results indicate a pseudotrigonal bipyramidal geometry around the selenium atom where the four position are accepted by the two Ph and two dithiphosphate ligands and the remaining one vacant position is occupied by a lone pair of electrons¹²².

In the reaction of 3,3-bis (chloromercuric-2, 4-pentane dione [(HgCl)₂L]) with TeCl₄Ph₂TeCl₂ or Ph₃TeCl replacement of one HgCl group by a Te moiety gives Cl₃TeLHgCl₂.C₄H₈O₂.Ph₂ Te(Cl)LHgCl and Ph₃TeLHgCl respectively. The I.R. and H¹ NMR data indicate that Te is bonded to C₃ carbon of acetyl acetone. In solution the compounds appear to ionize into Cl and an organometallic cation in which Hg seems to be involved in second interaction with the carbonyl groups. Far I.R.and mass spectral data suggest that Hg-O interaction is significant in solid structure or state¹²³.

The complexes $[R_2\text{Te}(p\text{-}\text{OC}_6\text{H}_4\text{CHO})_2]$ (R = Ph, Me, $p\text{-}\text{eOC}_6\text{H}_4$, biphenylene)have been prepared by the reaction of $R_2\text{Te}(\text{OMe})_2$ with salicylaldehyde. It react with haloacetic acid $R^1\text{COOH}$ (R¹ = CF₃, CCl₃, CHCl₂, CH₂Cl) to give mixed ligand complexes $[R_2\text{Te}(p\text{-}\text{OC}_6\text{H}_4\text{CHO})\text{O}_2\text{CR}^1)]^{124}$.

Ph₃Te(RCOH;CR¹O) (R = Me, Ph,CF₃ R¹ = Me, Ph, CF₃, 2-thienyl) were prepared. The I.R., ¹H and ¹³C NMR and mass spectra were discussed in conjunction with molecular weight and constant data, weak coordination of the diketone to the Te atom is common structural feature¹²⁵.

The reaction of (AcAc) with RTeCl₃, R₂TeCl₂ and R₃TeCl (R = Ph, 4-HOC₆H₄, 4-MeOC₆H₄, 4-EtOC₆H₄, 3-Me-4-HOC₆H₃, 3,4-(HO)₂C₆H₃), have been investigated. RTeCl₃ gives RTe(C₅H₄O₂) type derivatives but RTeCl₂ and R₃TeCl do not react even on prolonged refluxing in the presence of anhydrous AlCl₃. The structural features of the new acetyl acetone derivatives RTe(C₅H₄O₂)Cl₂ have been explored by I. R., NMR spectroscopy. The effect of phenyl ring substitution of the keto-enol tautomerism of RTe (C₅H₄O₂)Cl₂ has been found to be minor. The bond formation between Te and C-1 or AcAc and intramolecular secondary interaction between the oxygen of AcAc and Te have been obtained from the spectral data¹²⁶.

Diorganotellurium (IV) bis (β -diketonates) of the formula R_2 Te(acacH)₂ ($R = CH_3$, C_6H_5 , p-CH₃OC₆H₄) (acac H = 2,4 pentanedione) and R_2 Te(dpm)₂ (dpmH = 2,2,6,6-tetramethyl heptane-3,5-dione) have been prepared by the

reaction of R_2 Te(OMe)₂ with (acacH) and (dpmH) in anhydrous condition. R_2 Te(acac)₂ reacts with halocarboxylic acid (R'COOH) (R' = CF₃,CCl₃, CHCl₂, CH₂Cl) to give mixed ligand compound of the type R_2 Te(acac)(R'COO). A weak coordination of the β -diketone group with tellurium atom in solid state is concluded. The geometry around the central tellurium atom is suggested in the basis of physicochemical studies¹²⁷.

Tellurium dioxide trimethyl chlorosilane, acetyl chloride or acetyl bromide in glacial acetic acid generated a homogeneous solution. Addition of cyclohexene produced trans-2-halocylclohexyl tellurium trihalides of excellent purity in 70% yield with dichloromethane or ethanol free chloroform. The same compounds hence obtained from heterogeneous reaction mixture, trans 2-methoxycyclohexyl tellurium trich oride was obtained from tellurium dioxide, trimethylchlorosilane and cyclohexene in absolute methanol. In the absence of cyclohexene TeCl₄ was obtained in 91% yield from tellurium dioxide and trimetylchlorosilane in CHCl₃ and TeBr₄ in 98% yield from tellurium dioxide and acetyl bromide in glacial acetic acid¹²⁸.

Reactions of aryltellurium (IV), chlorides ArTeCl₃ and Ar₃TeCl (Ar = ph, 4-MeOC₆H₄, 4-HOC₆H₄, 3-MeO-4-HOC₆H₃, 2,4-(HO)₂C₆H₃,3,3-bis (chloromercurying)-2-4-pentandione and several β diketones and their sodium salts)¹²⁹.

The I.R. spectra of twenty four diaryltellurium dicarboxylates are re-

ported. The main bonds in the I.R. are tentatively assigned and their frequency values compared to those data of related compounds. The trigonal bipyramidal arrangement is proposed as the more likely structure for these ocmpounds¹³⁰.

NMR chemical shifts, dipole moments and pka values were determined for $RC_6H_4TeX_2C_6H_4NMe_2$ -4 (R=4-Me $_2$ N, 4-MeO, 4-EtO, 4-PhO, 4-Me, H, 4-H, 4-Br, 3-Br, X=Cl, Br, I). The pka values were correlated with substitution constant for $RC_6H_4TeX_2C_6H_4NMe_2$ -4 (X=Cl, Br), electronic effects were transmitted more poorly through $TeCl_2$ and $TeBr_2$ groups than through TeV_2 factors of 2.31 and 3.10 respectively. Transmission factors were also observed for the $C_6H_4TeCl_2$ and $C_6H_4TeBr_2$ group. ¹³¹

Comparison of calculated and experimental dipole moments of $(RC_6H_4)_2Te_2$ (R = H, 4-Me, 4-MeO, 4-EtO, 4-Cl, 4-Br, 3-Cl, 3-Br) indicated that in benzene $(RC_6H_4)_2Te_2$ exist tin the gauch form with dihedral angle of 75°. The effect of including d orbitals of Te in the calculations of the total energy of ditellurides was reported. Rotational barrier for $MeX_2Me(X = S,Se,Te)$ were calculated by the extended Huckel method. The most stable conformation of MeX_2Me was very similar to that of $(RC_6H_4)_2Te_2^{-132}$.

Diphenylene tellurium (IV) dichloride was prepared and its interaction with various silver salts (Ag⁺X⁻) donor bases (L) and R₄NCl have been studied. Its reduction products dephenylene te (II) undergoes oxidative addition with halogens and interhalogen. It also acts as a Lewis base forming molecular adducts with strong acceptors such as HgCl₂. A few organic tellurium derivatives

show appreciable antiviral activity¹³³.

 $(PhCH_2)_2TeX_2$ (X = iodo, cyano, thiocyanato, IO_3 , NO_3 , pyridine, morpholine, piperidine) were prepared and characterized. These compounds are finally or fairly stable. The antibacterial activity indicated that compounds with Te (II) oxidation state possess antibacterial activity comparable to that of tetracycline those of Te(IV) are inactive¹³⁴.

 $RTeCl_{3} (R = Ph, 4-MeOC_{6}H_{4}, 6-PhOC_{6}H_{4}) \ reacted \ with \ Me_{3}SiNR^{1}R^{2}[R^{1}] \\ = R^{2} = Et, \ R^{1}R^{2} = (CH_{2})_{4}] \ under \ dry \ nitrogen \ atmosphere \ to \ give \ (R^{1}R^{2}N)TeCl_{2} \\ and \ Me_{3}SiCl. \ The \ products \ decomposed \ to \ give \ (R^{1}R^{2}NH_{2})^{+}(RTeCl_{4})^{-}. \ R_{2}TeCl_{2} \\ did \ not \ react \ with \ Me_{3}SiR^{1}R^{2} \ even \ on \ refluxing \ for \ 6 \ hours. \ R_{2}TeCl_{2} \ was \\ reduced \ by \ Et_{2}NLi \ to \ give \ R_{2}Te^{135}.$

Coordinative interaction between $TeCl_4$ or $RTeCl_3$ (R = aryl) and transition metal chelates of the general formula: $R_n TeCl_{4-n} M$ (n = 0 or 1) [($R = Ph, p-MeOC_6H_4$, $EtOC_6H_4$,) (M = Ni(II))] $LH_2 = Schiff-bases derived form salicyldehyde or ohyudroxy acetophenone on the complexes in solid state indicate coordination of the metal chelates to <math>Te(IV)$ via 2-phenolic O atoms, planarity about the transition metal ions is thus retaind 136 .

Te(CH₂CH₂ Ph)₂ was prepared by alkylation of Na₂Te with the corresponding alkyl bromide. The resulting slightly air sensitive which can be converted to a stable diiodide and forms stable coordination complexes with PdCl₂ and PtCl₂. The geometry of these complexes MCl₂[Te(CH₂Ch₂Ph)₂]₂ (M=Pd,

Pt) were studied by far I.R and Raman spectroscopy. The Pt complexes was also studied by ¹²⁵ Te NMR spectroscopy, a useful probe for observing cistrans isomerization in such complexes and the first Te-Metal coupling constant for such complexes are reported (JTe¹²⁵-Pt¹⁹⁵ cis 900 HZ trans 544 HZ)¹³⁷.

Treating ph_2TeO with strong lewis acid $SnCl_4$, $TiCl_4$ and $SbCl_5$ gave 75-80% Ph_2TeCl_2 whereas $RTeCl_3$ (R=Me, $p-MeOC_6H_4$, $p-PhOC_6H_4$) gave $RTeCl_3$, Ph_2TeO . The I.R. spectra of ($p-R^1$ C_6H_4)₂ TeO ($R^1=H$, MeO) Were studied¹³⁸.

Some aryl tellurium (IV) compounds (e.g., p-MeOC₆H₄TeCl₃) react with iodine and bromine to give the corresponding aryl halides (e.g., p-MeOC₆H₄I) in good to moderate yields (iodo and bromoditelluration). The addition of NH₄F, CsF, KF, SbCl₅ and HgCl₂ accelerates the reacion in some cases compared to these haloditellurium, chloroditelluration and cyanoditelluration of these compounds were very sluggish¹³⁹.

Twenty five p- $RC_6H_4TeCl_3L$ (R = MeO, PhO; L = N-, O- and S-donor Lewis bases e.g., Et_2N , Ph_3PO , Me_2SO) were prepared by treating $RTeCl_3$ with L in CH_2Cl . They were screened for their antibacterial and antifungal activities 140 .

Reaction of Ph₂TeCl₂ on p-EtOC₆H₄TeCl₃ with donor ligands for example, pyridine, DMF, Me₂So₃, Ph₃ps etc. gave 1:1 complexes. A few of the complexes showed activity against gram negative bacteria. All of the com-

pounds were completely inactive towards pathogenic fungi141.

RTeCl₃ (R = 4-MeOC₆H₄), 4-HOC₆H₄) reacted with (R¹₄N)X(R¹ = Me,Et,Ph,Bu X = Cl, Br,I) to give (R¹₄N(RTeCl₃X))(X = SCN, iodo) were also prepared. The fungicidal and bactericidal activity of RTeCl₃ was affected by complexation¹⁴².

Treatment of mercaptan to azines with Te(IV) halides in dioxanes THF or Me₂CHOH gave 2:1 adducts configuration, the thione tauutomer of the heterocycles, e.g. treatment of l-methyl-2 imidazolethiol with Tecl₄ in dioxane gave 93% of the 2;1 adduct (TeCl₄L₂) dioxane (L = l-methylimidazole-2(3H)thione). The Te (IV) ion in the adducts has a sterically inert lone pair and thus a pseudooctahedral coordinations¹⁴³.

Condensation of TeF_4 or $TeCl_4$ with Me_3SiNR_2 ($NR_2 = Et_2N$, morpholine, piperidine) in C_6H_4 gave 46-94% (R_2N)₂ TeX_2 (X = F,Cl). Treatment of $(R_2N)_2TeF_2$ ($R_2N = morpholine$) with $(Me_3S)_2NSO_3C_6H_4P^1-4$ ($P^1 = H,Me$) gave $(R_2N)_2TeNSO_2C_6H_4R^1-4^{144}$.

 $RC_6H_4TeCl_3$ (R = 4-Me, H, 4-MeO, 4-EtO, 4-PhO, 4-Cl, 4-Br, 3-Cl, 3-Br, 3-O₂N reacted with 4-AcOHgC₆H₄NMe₂ in refluxing dioxane to give $RC_6H_4TeCl_2C_6H_4$ -NMe₂-4. The dipole moments increased in the state order R and their basicity constants decrease in approximate, the same order A correlation analysis indicated transmission coefficient of 0.16 and 0.54 for the C_6H_4Te

and Te bridging groups respectively¹⁴⁵.

Ph₂Te(O₂CCF₃)₂ forms 1:1molecular adducts with various N,O and S donor basis. The corresponding reactions with Ph₂Te (O₂CCCl₃)₂ depend upon the nature of the bases. Ph₂Te (O₂CCCl₃)₂ give 1:1 molecular adducts with diethy1 acetamide and morpholine (whereas the 4picoline, tetramethy1 piperidine and dimethy1 acetamide ligands L afford (Ph₂TeCl₂L with 3-picoline-Moxide (L¹) and Cl⁻ and (Ph₂Te (CCl₃)₂L¹) and (Ph₂Te (CCl₃)₂Cl)⁻ respectively are obtained¹⁴⁶.

The reaction of bis (benzoyl) tellurides with primary or secondary amines or potassium ethanoiate yield the corresponding tellurobenzoic acid salts, which are readily oxidized with iodine or benzene sulfonylurea chloride is afford novel bis (benzoyl) ditelluride¹⁴⁷.

Treating 3-(RC₆H₄OSiMe₃ (R=H, Me) with TeCl₄ in PhMe gave 82-89% below Fig.24 compounds. Bromosalicyldehyde derivative Fig.24 (b) gavetrichlorotellurium derivative Fig.24(c), which is stabilized by carbonyl O-Te interaction¹⁴⁸.

Fig. 24 (43)

 $(R_4N)_2$ [Ph₂Te(NO₃)₂X₂]²⁻ (R = Me, Et, Bu; X = Cl, Br, I, NO₃) were prepared and characterized, physicochemical studies suggested are octahedral geometry for the anions¹⁴⁹.

The pentacoordinated Te(IV) complexes $[R_2\text{TeCl}_2\text{L}](R = C_6\text{H}_5, p-\text{CH}_3\text{OC}_6\text{H}_4; L = \text{Ph}_3\text{PSe}; (p-\text{MeC}_6\text{H}_4)_2p\text{Se}, (\text{Ph}_2\text{P-(Se)}(\text{CH}_2)_2\text{SePh}_2)$ were prepared by the reaction of $R_2\text{TeCl}_2$ with L under anhydrous condition. The reaction of RTeCl₃ and L, however yields tellurium/selenium metal $^1\text{J}(31\text{P-}^{77}\text{Se})$ coupling constant data suggest complexation. In case of bidentate donor bases only one donor site is used in coordination. The complexes posses distorted octahedral geometry around a central Te atom which is surrounded by five groups and one vacant site occupied by a lone pair 150.

Thermal analysis indicated that $4\text{-RC}_6H_4\text{TePhX}_2$ (R = H, Me, X = Cl) form 1:1 complexes with SbCl5. In 1:3 complexes two of the SbCl₅molecules occupy equivalent positions (R = H, X = 1) forms only 1:3 complex with SbCl₅¹⁵¹.

 $\label{eq:mean_sion} Me_3SiO(Ph = CH_2) \ reacted \ with \ TeCl_4 \ in \ Et_2O \ and \ with \ RTeCl_3 \ (R = 4-MeOC_6H_4, \ 3,4-(MeO)_2C_6H_3, \ (4-EtOC_6H_4) \ in \ C_6H_4 \ to \ give \ 63\% \ (PhCOCH_2)_2$ $\ TeCl_2 \ and \ 87-91\% \ PhCOPh_2TeCl_2 \ respectivity^{152}.$

 $(p- RC_6H_4)_2TeCl_2$ (R = H, Br, Me, MeO) were prepared in 86-87% yields by refluxing $(p- RC_6H_4)_2Hg$ with $TeCl_4$ in dioxane one hour, p-MeOC₆H₄TeCl₂C₆H₄R-p (R = H, Me) were prepared in 93-97% yields respectively refluxing $p-MeOC_6H_4Tecl_3$ with $(p- RC_6H_4)_2Hg$ dioxane 8 hours¹⁵³.

The reaction of $(CF_3)_2TeF_2$ with BF_3 , AsF_5 and SbF_5 yield the new complex compounds $[(CF_3)_2Te][B_{F4}]$ and $[(CF_3)_2TeE][CF_6]$ (E = Sb, As) whereas the reaction of $(CF_3)_2TeX_2$ (X = Cl, Br) with halide acceptors caused only decomposition $(CF_3)_2TeX_2$ form with MX (X = F, Cl; M=K, Cs, Ag) isolable salts $M[(CF_3)_2TeX_3]$, $M[(CF_3)_2TeBr_3]$ is only detected in solution evidence for the formation of hexa coordinated tellurates(IV) $M_2[(CF_3)_2TeX_4]$ is found¹⁵⁴.

The interaction of organotellurium trichlorides, p- $RC_6H_4TeCl_3$ (R = H, OH, OCH_3 , OC_2H_5) with Lewis bases (quinoline, 1-methyl-2-pyrolidinone, tetramethylene sulfoxide or 2-aminothiozole) led to the isolation of 16 Lithertato unknown stable molecular adducts. They were screened for their gridae properties and found to be more active against bacteria than fungi¹⁵⁵.

Diphenacyltelluriumdihalides, dipseudohalide, dioximes, dithiacarbamate derivatives e.g. $PhCOCH_2TeR_2$, $CH_2COPh(R=iodo)Br$, NCS, CN, S_2CNHPh , piperidinodithiacarbamate and adducts with some nitrogen donors, e.g., $PhCOCH_2TeR_2(Br_2)CH_2COPh(R^1_2=pyrralidine, pyridino, piperidino, morpholine) have been synthesized and characterized. The$

tetracoordinated organotellurium compounds exhibit keto-enol tautomerism with end form being present to the extent of ~50% while the hexacoordinated Te adducts exist in the keto form. The proton of the enlol form and hydroxy proton of oximes derivative are attached to the lone pairs of Te atoms forming Te-H bonds¹⁵⁶.

 $[HO(CH_2)_2]_2NCS_2H(LH)$ prepared in solution by mixing $[HO(CH_2)_2]NH$ with CS_2 reacted with Se and Te compounds to give TeL_4 , TeI_2L_2 , $TeIL_3$, TeL_2 and SeL_2 . The complexes were characterized by analytical,IR and electronic spectra and thermogravimetric analysis¹⁵⁷.

A freshly prepared solution of tellurocyclopentane diperchlorate reacts with Lewis bases to yield cation complexes $[RTeL_2](ClO_4)_2$ (R = cyclopentyl, L = pyridine-N-oxide lutidine, N-Oxide, β -picoline-N-oxide, quinoline-N-oxide, 2,2-bipyridyl). All were characterized and proposed to have a trigonal bipyramidal structure with one lone pair of electrons occupying on the positions¹⁵⁸.

 $R_2 TeL_2$ (R = Ph or p – MeOC₆H₄) have been prepared by the reaction of $R_2 TeCl_2$ with NH₄L in anhydrous toluene. The product have been characterized using analysis and spectroscopic IR, ¹H, ¹³C, ¹²⁵Te NMR data. The products are monomeric in nature and their possible structures are reported¹⁵⁹.

Several new dimethyl tellurium dicarboxylates Me₂Te(OCOR)₂ (R = alkyl,

aryl) were prepard in high yield and characterized. A probable nonionic trigonal bipyramidal structure was deducted from spectroscopic and conductance data¹⁶⁰.

Organotellurium compounds $(Ph_2CH_2CH_2)_2TeRX$ $(R = Br, Cl, cyano,iodo,Me, Et,CH_2CHCH_2Ph; X = Br,Cl, I)$ were prepared and characterised $(PhCH_2CH_2)TeRX$ (R = alkyl,sameX). Readily eliminated Te alkyl halide in DMSO conductivity measurements indicated that the tellurides behave as weak electrolyte¹⁶¹.

DiaryItellurium bis(trihaloacetate) and diaryIchlorotellurium trihaloacetates e.g., (MeOC₆H₄)₂Te(O₂CCF₃)₂ and (MeOC₆H₄TeCl(O₂CCF₃) have been prepared by metathetical reaction between corresponding dichloride and AgOCOCF₃ or NaOCOCl₃ respectively. A convenient synthesis of diaryItellurium bis(trifluroacetate) from the corresponding telluroxides and trifluroacetic anhydriede is reported. These compounds have been charaterised by IR, ¹H and ¹⁹F NMR spectra and X-ray diffraction studies¹⁶².

12-tetracoordinated diorganotellurium(IV) oximates of the type $Ar_2TeCl(ONCRR')$, $Ar_2Te(ONCRR')$ [Ar = Ph, p- MeC₆H₄, RR' = Me, Me:Me, Ph:Me, Et:Ph, Ph:(CH₂)₅] have been synthesized either by the reactions of diorganotellurium (IV) dichlorides with appropriate oxime in the presense of Et₃N or by the metathetical reactions of Ar_2TeCl_2 with the corresponding sodium salt of the ligand. The organotellurium(IV) oximate derivatives have

been characterised by elemental analysis, IR, NMR, molecular weight and conductance data¹⁶³.

Organotellurium oximates $R_2 TeL_2$ ($R_2 = Me_2(p-MeOC_6H_4)_2$. diphenylene L=8-hydroxyquinolinate,8-hydroxy-2-ethylquinolinate have been prepared in quantitative yields by the interaction of $R_2 TeX_2$ (X = Cl,Br,I) with NaL or HL. $R_2 TeL_2$ react with $R^1 CO_2 H(R^1 = CF_3, CCl_3, CHCl_2, CH_2 Cl)$ to yield mixed ligand complexes $R_2 Te(OCOR^2)L$. The proton magnetic and I.R. spectra suggest that $R_2 TeL_2$ possess two types of oxime groups, one of which is bidentate and the other unidentate. The Te atom thus prefers to remain pentacoordinate in an octahedral geometry, one of the sites being occupied by a lone pair 164.

Hydrolysis of bis(hydroxyaryl)tellurium dihalide appears to in a stepwise manner. In neutral medium $R_2\text{Te}(OH)X(X = \text{halide ion}, R = 4\text{-hydroxy phenyl},$ 3-methyl, 4-hydroxy phenyl) have been lisolated. Further, hydrolysis does not occur appreciably. Alkaline hydrolysis (with NaOH) yield $R_2\text{Te}(OH)_2$ which on heating at 100° c changes to $R_2\text{Te}O$. Isolation of the intermediates in this case is not possible but they are indicated by Ph metric and conductometric titrations. Hydrolysis of these compounds, follows the order Cl>Br>I and O-cresol>phenol¹⁶⁵.

Te reacted with RCl (R = acetyl) to give R_2 Te, which react with SO_2Cl_2 or $Pb(OAC)_4$ to form R_2 TeCl₂ or R_2 Te(OAc)₂ or R_2 Ph₂TeO with maleic anhydride gave $[R'_2$ Te(ma eate)₂](R^1 = acetyl, Ph) which were dimeric. Dimeric

 $[R_2^2 Te(SCH_2CH_2CO_2)_2] \ (R^2 = Ph, \ 4-MeOC_6H_4) \ were prepared from$ $R_2 TeO \ and \ HSCH_2CH_2COOH. \\ R_2^2 TeO \ (R^2 = 4EtOC_6H_4) \ reacted \ with$ $HSCH_2COO(CH_2OC_6H_3(6H)Bu-3,4-(HSR^3)) \ to \ give \ monomeric \ R^2 Te(SR^3)_2.$

Telluracyclopentane ($R^4 = iodo$) or Ph_2TeCl_2 and $AgO_2CKH:CHCOOBu$ gave monomeric [$R^4 = (OOCCH:CHCOO)$ -Bu] or $Ph_2Te(O_2CCH:CHCO_2Bu)_2$ respectively. Attempte to preparation of hexyl or octyl Te compounds from Te and $R^5Br(R^5 = hexyl, acetyl)$ in presence of Et_4N^-Br gave $Et_4N^+Te^-Br_3$ which was brominated to from $Et_4N^+Te^-Br_5^{166}$.

Reaction of $(p\text{-RC}_6\text{H}_4)_2\text{Te}(\text{O}_2\text{CR}^1)_2$ with R¹COC1 (1:2) in CHCl₃ or CCl₄ gave $(p\text{-RC}_6\text{H}_4)\text{TeCl}_2$ and $(\text{R}^1\text{CO})_2\text{O}$ (R = H, MeO, R¹ = Me,Ph, Et)¹⁶⁷.

The reaction of $(p\text{-RC}_6H_4)_2\text{TeO}$ with $(R^1\text{CO})_2\text{O}$ gave sixteen $(p\text{-C}_6H_4)_2\text{Te}(O_2\text{CR}^1)_2$ (R = H, Me, OMe, NMe₂; R¹ = Me, Ph, ClCH₂ F₃C). Similarly, $(p\text{-RC}_6H_4)_2\text{TeO}$ and RCOOH gave $(p\text{-MeO-RC}_6H_4)\text{Te}(O_2\text{CR})_2$ (R = Me,CCl₃). The reaction of $(p\text{-C}_6H_4)_2\text{TeO}$ with HX gave $[(p\text{-RC}_6H_4)_2\text{Te}^+\text{OX}]X^-$ (R = H, OMe; X = ClO₄, O₂CCCl₃). Also $(p\text{-RC}_6H_4)_2\text{Te}(O_2\text{CR}^1)_2$ and R¹COCI gave $(p\text{-C}_6H_4)_2\text{TeCl}_2\text{Me}$, MeO)¹⁶⁸.

The compounds $(4-RC_6H_4)_2Te(O_2CR^1)_2$ (R = H, MeO, R¹ = CF₃, CCl₃, CHCl₂, CH₂Cl) and Me₂Te(O₂CCF₃) were prepared and characterised. Thus Ph₂TeCl₂ was treated with CF₃COOH and Ag₂O in CH₂Cl₂ to give>70% (R = H, R¹ = CF₃). The IR spectral data of the compounds indicates that both

haloacetate groups are equivalent. In refluxing PhMe the trichloroacetates undergo decarboxylation followed by elimination of diclorocarbene and yielding diorganotellurium dichlorides¹⁶⁹.

 TeL_2X_2 (L = thiooxime, X = I, Br) and TeL_3X (X = Cl, Br, I) were prepared from Te(IV) solution contained ML and KX. The complexes were characterized by I.R.¹⁷⁰.

 $(p\text{-RC}_6\text{H}_4)_2\text{TeO}$ (R = H, Me, MeO,Me₂N)reacted with HCOOH in Me₂CHOH at 60°c to give 61-90% $(p\text{-RC}_6\text{H}_4)_2\text{Te}(O_2\text{CH})_2\text{(same R)}$ which decomposed in refluxing o-xylene to give quant yields of $(p\text{-RC}_6\text{H}_4)_2\text{(same R)}$ and HCOOH¹⁷¹.

RR'Te(O₂CR)₂ (R = p-MeOC₆H₄, p-EtOC₆H₄, R' = PhCH₂COPh, CH₂COMeC₆H₄NMe₂-p, R² = Me, CH₂, Cl, Ph) prepared by the metathetical reaction of Ag carboxylates and organotellurium dichlorides act as a unidentate ligands. The thermogravimetric curves for [p-MeOC₆H₄Te(C₆H₄NMe₂)-p](CO₂CR²)₂ (R² = Me, Ph) indicates decomposition at 240°-260°C with loss of 2 moles of CO₂ giving unstable telluraorganotellurium which further decomposed at 380°-400°C yielding R₂² Te. All these compound prepared were antibacterial¹⁷².

The compounds R_2 TeXY [R = hydroxyaryl, HOC_6H_4 , $1,2-(HO)_2-C_6H_3$, $1,3-(HO)_2C_6H_3$, X,Y = halo,OH] particularly diaryl tellurium hydroxides are prepared in one step process with high yield ~95%, by reaction of R_2 TeAB (A,B = halo, OH) with an alkali metal hydroxides. R_2 TeXY are useful in precursor of semiconductors. A mixture of $(4-HOC_6H_4)_2$ TeCl₂ and aqueous NaOH was heated at 400C for 10min., to give R_2 TeXY (R = 4-HOC₆H₄; X=Y=OH)¹⁷³.

Solutions of diorganotellurium (IV) diperchlorates R_2 Te (ClO_4)₂ (R = Ph, p-MeOC₆H₄); may be prepared by the reaction of R_2 TeCl₂ and AgClO₄ on by the reaction of diorganotelluroxide with excess of 70% HClO₄. I.R. and conductivity data indicates that Ph_2 Te (ClO_4)₂ possesses a covalently bonded perchlorates groups in solution. Interaction of the freshy prepared solutions with Lewis bases affords cationic complexes of the types[R_2 Te(ClO_4)(L)][ClO_4] and [R_2 Te(L_2][ClO_4]₂ which have been characterized by I.R., elemental analyses and conductivity measurements. The DMSO complex is as (Fig.25).

Fig. 25

Explodes at its melting points174.

Ph₃TeXTiX₄ and 2Ph₃TeX.TiX₄ (X = Cl,Br) are obtained by reactions of Ph₃TeCl and Ph₃TeBr with TiX₄. Ph₃TeI and TiI₄ yield only Ph₃TeI, TiI₄. Conductivity and molecular weight determination are consistent with their dissociation in dilute solution as Ph₃Te⁺ and TiX₅ or PhTe⁺ and TiX₆²⁻ units. Far IR spectra reflect the formation of TiX₅ and TiX₆²⁻ for 1:1 and 2:1 adducts respectively. The formulation of these compounds are given as [Ph₃Te]⁺[TiX₅]⁻

and $[Ph_3Te]_2^+ [TiX_6]^{2-175}$.

 $Ph_3TeX.SnCl_4$ and $2Ph_3TeX.SnCl_4$ (X = Cl, Br, I) are obtained by reactions for Ph_3TeX with $SnCl_4$. Conductance, molecular weight determination and 1H NMR data are consistent with dissocciation of adducts in dilute solution Ph_3Te and $SnCl_4X^-$ or Ph_3Te^+ and $SnCl_4X_2^{2-}$ units. The absence of Te-Sn and Te-X vibration in the far IR of these copounds reflect the transfer of X from Ph_3TeX to $SnCl_4$. The formulation of these adducts are proposed as $[Ph_3Te][SnCl_4]$ $[Ph_3Te][SnCl_4]$, $[Ph_3Te][SnCl_4Br]$, $[Ph_3Te]_2[SnCl_4Br_2]$, $[Ph_3Te][SnCl_4]$ and $[Ph_3Te][SnCl_4]^{176}$.

The first synthesis of tetratelluradicyclopentanampntalen which is six membered ring isomer of hexamethylene tetratellurafulvalene from 1,2-dibromocyclopentene and Cl₂C=CCl₂ is reported. It was obtained as yellow microcrystals¹⁷⁷.

Fig. 26

Diaryl tellurides RTeR'R = R' = Ph, p-MeOC₆H₄; R=Ph, R' = p-MeOC₆H₄) react with allyl bromide cyclohexyl iodide. MeIPhX (X = Br,I) or SnI₄ to give corresponding triorganotellurium halides the Te-allyl bond is readily cleaved by electrophiles such as Br₂, I₂, ICl, BrCN, ICN. Thus Ph₂Te (CH₂CH:CH₂)Br, which with I₂, IBr and BrCN gave 62-85% Ph₂TeIBr, Ph₂TeBr₂ and Ph₂TeBrCN respectively¹⁷⁸.

Reaction of Tecl_4 with o-or-m- $\operatorname{ClC}_6H_4\operatorname{OH}$ gave 3,4- $\operatorname{Cl}(\operatorname{OH})$ $\operatorname{C}_6H_3\operatorname{TeCl}_3$ and 2,4- $\operatorname{Cl}(\operatorname{OH})\operatorname{C}_6H_3\operatorname{TeCl}_3$ respectively which on halogen exchange with KBr and KI gave the corresponding TeBr_3 and TeI_3 . Conductance and cryoscopic measurements show that the TeCl_3 are almost nonionic, whereas the TeBr_3 and TeI_3 re 1:1 electrolytes in PhNO_2 , $\operatorname{Me}_2\operatorname{SO}$ and MeCN . The $\operatorname{^1H}$ NMR spectra indicate that the $\operatorname{TeX}_3(X = \operatorname{halo})$ groups are para to the OH group. The far I.R. spectra reflect the polymeric mature of these compounds $\operatorname{^{179}}$.

Cresyltelluriumchloride were prepared treating cresols with $TeCl_4$. Other halides were obtained by halogen exchange of the chlorides with KBr or KI. Conductivity and cryoscopic measurements indicates that $RTecl_3$ (R = cresyl) and R_2TeX_2 , (X = halogen) are molecular compounds. While $RTeBr_3$, $RTeI_3$ and R_3TeI are ionic compounds¹⁸⁰.

 $(4-HOC_6H_4)nTeX_{4-n}(n=1 \text{ or } 2, X=Br, Cl \text{ or } I)$ and $(1,2 \text{ and } 1,3 (OH)_2C_6H_3)nTeX_{4n}(n=1,2 \text{ or } 3; X=Cl, Br \text{ or } I)$ were prepared. The chlorides by direct reaction of the hydroxyl benzene with $TeCl_4$ in $CHCl_3$, the bromides

and iodides by halogen exchange of the chloride. The conductivity and cryo-scopic measurement shows that materials of the type RTeBr₃ and RTeI₃ and R₃TeX (X = Cl, Br, I) behaves as 1:1 electrolytes in dilute solutions, whereas compounds with comparisons, R_2 TeX₂ exhibits molecular properties and to polymerize at higher concentration¹⁸¹.

 $[R_2 Te(O-O-C_6 H_4 (R^1NR^2N:CR^1-C_6 H_4 O-O)] \ (R^2 = (CH_2)_4, \ R = Ph_2, \ p-MeOC_6 H_4, p-EtOC_6 H_4, \ R^1 = M, \ R^2 = C_2 H_4, \ R = Ph, \ R^1 = CH_3, \ R^2 = CH_2 CH_2, \ R = Ph, \ R^1 = H, \ R^2 = O-C_6 H_4 \ and \ [Ph_2 Te(O-OC_6 H_4 CH =:NR^3 X)][R^3 = O-C_6 H_4][X = O,S, \ R^3 = C_6 H_4, \ X = O] \ were prepared and characterized by elemental analysis, electrical conductivity, molecular weight, IR and H NMR measurement. The complexes are monomeric and non electrolytes in PhNO₂ 182.$

 R_2 TeCl₂ (R = Me, Et) reacted in HCl SO₃ to give 40-60% R_2 Te(SO₂Cl)₂. Electrical conductivity showed to be nonionic and IR spectroscopy gave a reduced Cs symmetry for the SO₃Cl which indicates covalent bonding in it¹⁸³.

Several organotellurium derivatives of the general foumaula $C_8H_8TeX_2$ (x = Cl, Br, I, SCN, OCOCH₃, OCOCH₃Cl, OCOPh), $(R_4N)^-$ ($C_8H_8TeI_2X^-$) (R = Me, Et, Bu; X=Cl, Br) and RR¹TeX₂(R = p-MeOC₆H₄, R = C₆H₄N(CH₃)₂; X = Cl, OCOCH₃, OCOPh were tested against five bacteria (Bascellus subtilis, staphylo cocus) aureus, Escherechia coli, Salmonella typhi, Mycobacterium tuberculosis, and one fungus (Aspergillus terrus).

The antifungal activity of the anionic complexes was higher than their antibacterial activity compared to the parent compound $C_8H_8TeI_2^{184}$.

 $RC_6H_4TeX_2C_6H_4R^1$ (R = H 4-F, 4-MeO) R = H, Me, MeO,X = Cl,Br) were prepared it. 60-90% yields by treating $(RC_6H_4)_2Te_2$ with $R^1C_6H_4N_2^-$ in the presence of CuCl₂ or CuBr₂¹⁸⁵.

The reaction of $(C_2F_5)_2$ Te and XeF_2 in SO_2CIF yielded $(C_2F_5)_2$ TeF₂ essentially quantity chlorine and $(C_2F_5)_2$ Te gave $(C_2F_5)_2$ TeCl₂. Both $(C_2F_5)_2$ TeF₂ and $(C_2F_5)_2$ Te Cl_2 were assigned a trigonal bipyramidal geometry on the basis of their ¹⁹F NMR and vibrational spectra with the lone pair and C₂F₅ groups in equatorial and the halogens in the axial positions. C₂F₅TeF₃ was prepared, essentially quantity by the reaction of C_2F_5 Te.Te C_2H_5 and XeF_2 in liquid SO_2F_2 . Generally inert SO₂ClF was found to react with C₂F₅TeTeC₂F₅ to give C₂F₅TeCl XF_{3-X} and SO₂. The structure of C₂F₅TeF₃ was determined by X-ray diffraction. Each tellurium atom is surrounded by two terminal fluorine atoms and two bridging fluorine atoms and a C₂F₅ group in an axial position around the apex fo distorted square pyramidal. The square pyramidal units are linked by symmertrical bridging atoms into endless chains with bridging angles of 180° and 177°. The geometry of the (C₂F₅TeF₄) group is consistent with steric activity of the nonbonded electron pair. The 19F NMR and Raman Spectra of $C_2F_5TeF_3$ were recorded and the Raman spectrum assigned trans $C_2F_5TeClF_5$ was prepared by the reaction of C₂F₅TeTeC₂F₅ and an excess of CIF. The trans octahedral geometry of C2F5TeClF4 was unambiguously assigned from its ¹⁹F NMR and vibrational spectra.A mixture of trans (C₂H₅)TeF₄ and trans $C_2F_5TeCl_4$ was obtained from the reaction of $(C_2F_5)_2$ Te and and excess of CIF trans geometry of $(C_2F_5)_2TeF_4$ was unambiguously assigned from its ¹⁹F NMR spectum¹⁸⁶.

The sensitivity and reactivity of some new α , $\alpha' - \text{bis}(2 \text{ and } 4 \text{ substituted benzoyl})$ TeCl₂ (R = H, NO₂, CH₂Cl₂, CONH etc. R¹ = H, NO₂, OMe etc.) Fig.27 are reported. Te-C bond remains stable in many interesting inter conversions of these derivatives 2-substituted derivatives were intramolecular coordinated with the central metal atom ¹⁸⁷.

Fig. 27

Electrophilic substitution of Fig.28(a) (R = H) with TeCl₄, 4hrs refluxing C_6H_6 gave 85% Fig.28(a) (R = Cl₃Te) which was heated in an oil bath 1.5hours at 190°-200°C to give hydrochloride fig.28(b) The letter was dechlorinated with Na₂S₂O₇ followed by neutralization to yield naphthaledene Fig.28(c)¹⁸⁸.

Fig. 28 (56)

Trans metalation of RHgCl (R = 2-(2-pyridyl)phenyl-2-(quinoline-2-yl)phenyl with TeBr₄ gave organotellurium tribromides RTeBr₃. Reduction of the tribromides gave RTeBr and dimmers $R(Te)n R(n = 1-3))^{189}$.

The reaction of $Bu_4N[TeF_5]$ with $HOCHCH_2NH_2$ -l-amino -2 propanol, 2-aminobutanol and 3-amino-l-propanol was followed by ¹⁹F and ¹²⁵Te NMR. The all cases TeO_3L (L = Amino alcohol) were formed in which there are 3Te-F hypervalent bonds¹⁹⁰.

The reaction of unsaturated alcoholwith aryl tellurium trihalides gave cyclic ethers bearing an aryl dihalotelluro group in β -position.

$$\begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c$$

Fig. 29

Reduction of the Te-Cl bond with thiourea dioxide gave the Tellurides. Thus the reaction of CH_2 - $CH(CH_2)OH$ with 4-MeOC₆ H_4 TeCl₃ gave 90% yield of dihalotelluro ether Fig.29(a) which on reduction gave 93% yield of telluride Fig29(b)¹⁹¹.

The compounds $R_2\text{Te}[(O)N = \text{CMeC}(NOH)\text{Me}]_2$ (R = ph, anisyl,Me) were prepared when $Ph_2\text{TeO}$ was treated with MeC(=NOH)C(=NOH)Me (when R = Ph)¹⁹².

 $(PhCOCH_2)_2 TeX_2$ (X = Br, iodo, SCN) $S_2 CNR_2$ (NR₂ = anilino, piperidino) and $(PhCOCH_2)_2 TeBr_2 (NR_3)_2$ (NR₃ = amines) were prepared. Spectral studies indicated that the tetracoordinated tellurium compounds $(PhCOCH_2)_2 TeX_2$ exhibited keto-enol tautomerism (enol form to the extent of 60%). The hexa coordinated Te compounds $(PhCOCH_2)_2 TeBr_2 (NR_3)_2^{193}$.

The reactions of α -Me₂TeI₂ with M₂(CO)₁₀ (M = Mn, Re) CO₂(CO)₈, Na(Co(CO)₄ and Na(Mn[CO)₅] gave cisM(CO)₄ Te(Me₂)I, [CO(CO)₅ TeMe₂]₂, [Co(CO)₄]₂TeMe₂ and Mn(CO₅)₂TeMe₂ respectively (Cp Mo(CO)₃)₂ (Cp = cyclopentadienyl) did not react with α -Me₂TeI₂ whereas (MeCp)MN(CO)₃ (MeCp = methyl cyclopentadienyl) gave a brown oil. The complexes were characterized by I.R. spectra¹⁹⁴.

Fig. 30

The lactones fig.30(a) and cyclic ethers produced in the tellurocyclo functionalisations of unsaturated carboxylic acids and alcohol are efficiently detallurated with CH₂=CHCO₂Me leads to the corresponding adducts Fig.30(b) in moderate to good yield¹⁹⁵.

1-(NMe₂)-4-MeC₆H₄ on o-mercuration followed by reaction with ArTeCl₃ (Ar = Ph, 4-MeOC₆H₄ or 4-EtOC₆H₄) gives 1-(NMe₂)-2-(Ar-TeCl₂-4-Me-C₆H₃) which on reduction with Na₂S₂O₅ gives 1-Me-3-N-2-TeAr-4-Me.C₆H₃(L).L were characterized by elemental and typical reaction with MeI, IR, ¹H, ¹³C NMR spectra, molecular weight and conductance measurements. L reacts with Na₂MCl₄/K₂MCl₄ (M = Pt or Pd) resulting the MCl₂.L. These complexes are monomeric nonelectrolytic and diamagnetic indicating square planar arrangements of ligands around the metal which is supported by electronic spectra. ¹H NMR data in conjunction with IR spectra suggest that L behave as bidentate ligands in these complexes¹⁹⁶.

Lithiation of $Ph_2CH_3NMe_2$ followed by reaction with Te(S) and air oxidation gives a poorly defined tellurium anhydride. Halogenolysis with Br or SO_2Cl_2 gives $o-Me_2NCH_2C_6H_4TeX_3$ (X=Br, Cl). Lithiation of $PhCH_2NMe_2$ followed by reaction with Te(S) then an alkyl halide, then SO_2Cl_2 give $o-R^1TeCl_2$, $C_6H_4CH_2NMe_2(R=Me, Et, Bu)$. The structure of $o-Me_2NCH_2C_6H_4TeX_3$ (X=Br) and the HCl salt of $o-X_2TeCl_2C_6H_4CH_2NMe_2$ (X=Br) were determined by X-ray crystallography. The coordeination of Te in both compounds is essentially octahedral with vacant equatorial site₁₉₇.

The butyl methyl [2-[(phenylimino)methyl] phenyl tellurium perchlorate compound was prepared in 78% yield by treating 2-BuTeC₆H₄CH:NPh with Mel in Me₂COCl and then

With ${\rm AgClO_4}, {\rm 3MeCHI}$. The structure was determined by X-ray crystallography $^{198}.$

 Me_2TeX_2 (X=Cyano, NCO,N₃) have been synthesized by metathesis of Me_2Te with two equivalent AgX in CHCl₃. Reactions of $Me_2Te(N_3)_2$ with Ph_3P and Me^+N^+Cl yields $Me_2Te(N=PPh_3)_2$ and $Me_2N^-Me_2(N_3)_2Cl^-$ respectively ¹⁹⁹.

Halogenation of butyl tellurobenzal anilines (R=H,R¹=H,Me,MeO, R=R'=F; R"=Bu) gave halogenotellurobenzalanilines (R²=Cl,Br,lodo) and (R²=Cl,Br, lodo). The effects of structural feature upon the length of M-Te intramolecualr coordination bonds were studied by X-ray and TeNMR²00.

Reaction of R_2 Te₂ (R=Ph, 4-MeC₆H₄) with Na in THF containing HMPA generated tellurolate anions which on treatment with SO_2Cl_2 gave 80% R(Et)TeCl₂, which on treatment with NaOCH₂CF₃ in CF₃CH₂OH gave 77-78% R(Et) Te (COOCF₃)₂ ²⁰¹.

Cyclohexene or cyclohep tene reacts with TeCl₄ or TeBr₄ and an alcoholic in CCl₄ to give the 2-alkoxy-trans-cycloalkyltellurium (IV) trihalides com-

pounds ¹³C and ¹H NMR and mass spectral data were reported ²⁰².

Reaction of $p\text{-RC}_6\text{H}_4\text{COCl}_2$ (R=MeO,O₂N) with Te (S) and Nal gave 52.73% ($p\text{-RC}_6\text{H}_4\text{CO}$)₂TeI₂. Demethylation of ($p\text{-RC}_6\text{H}_4\text{CO}$)₂ TeI₂ (R=O₂N) gave ($p\text{-RC}_6\text{H}_4\text{CO}$)₂TeI₂ (R=OH). Underwent acetylation and chloroacetylation without cleavage of the C-Te bond²⁰³.

The reaction of methyl ketones, RCOCH₃(R=Ph,4-MeC₆H₄, 2-thienyl, Me₃C) with TeCl₄ in CHCl₃ gives 29.56% (RCOCH₂)TeCl₂ which were reduced to the corresponding diketo tellurides (3-tellurapentane-1,5-diones, (RCOCH₂Te) by aqueous Na₂S₂O₄. Physical and chemical properties of dike to telluride's are also reported²⁰⁴.

Iodine monohalides (ICl,Ibr) CNI and (SCN)₂ add oxidatively to R₂Te (R=Ph, p-CH₃OC₆H₄) under mild condition (~5)⁰c. The resulting organotellurium(IV) derivatives e.g. Ph₂TeICl, undergo to yield several new diaryl tellurium(IV) pseudohalide derivatives e.g. Ph₂TeICN and Ph₂Te(CN)₂²⁰⁵.

The synthesis of $[HOS_3(CO)_{10}](M-TeC_6H_4OMe)$ by the room temperature. Reaction of $[(Ph_3P)_2N][HOS_3(CO)_{11}]$ with $[(COMe)C_6H_4]_2TeCl_2$ and its conversion into $[OS_3Ten(CO)_9]$ under thermolysis are reported²⁰⁶.

Reactions of diaryl telluroxide $R_2\text{TeO}$ (R = Ph, 4-MeOC₆H₄) with Me₃S⁺OI⁻ in MeCNH₂O gave 61-72% (R₂TeI)₂O. Heating R₂TeO (R=Ph, 4-MeO-C₆H₄,4-tolyl) with MeI gave 82.99% R₂TeI₂. Treating R₂TeO (R=Ph, 4-MeO-C₆H₄,4-tolyl) with MeI gave 82.99% R₂TeI₂.

 $Me_2CHC_6H_4$) with $(R'O)_2SO_2(R'=Me,Et)$ gave 91-96% bis (diarylakoxytellurium) sulfates $[R_2Te(OR')\ O]SO_2^{207}$.

Reactions of $4\text{-MeC}_6H_4\text{COCH}_2\text{Bu}_2$ with Se and Te gave $(4\text{-MeC}_6H_4\text{COCH}_2)_2\text{XBr}_2$ (X=Se,Te). Adducts of $(4\text{-MeC}_6H_4\text{COCH}_2)_2$ XBr₂ were prepared with morpholine, piperidine and Me₂NH. Condensation of $(4\text{-MeC}_6H_4\text{COCH}_2)_2$ XBr with diamines, hydrazines and semicarbazides gave heterocycles and [RN=C(C₆H₄Me-4-CH₂)₂XBr₂(R=OH, NHCSNH₂, NHCONH₂, NHphNHC₆H₃(NO₂)₂-2,4]. The prepared compounds were tested for bacterial and fungicidal activity 208.

R₄Te(R= Me, Bu,Me₃SiCH₂, vinyl) were prepared by treating TeCl₄ with equivalent LiR or RMgX and decomposed thermally and photolytically via a free radical pathway while (CH₂=CH)₄ Te decomposed by moncouple reductive elimination. Treating TeCl₄ with 4 equivalent Me₃CLi and CH₂=CH₂MgCl gave the corresponding R₂Te directly (Me₃C)₂ Te was also isolated as a minor product from the reaction of Me₃CTeLi with Me₃CLi in THF. (CH₂=CHCH₂) Te was prepared form Li₂Te and 2 equivalent CH₂= CHCH₂I in THF. These compounds were characterized by ¹H, ¹³C and ¹²⁵ Te NMR spectroscopic²⁰⁹.

TeR¹(S₂CNR₂)n (R¹ = 2-PhN:NC₆H₄CN, R₂ = Me, Et PhCN₂ n=1,3) were prepared and characterized by ¹²⁵Te NMR data indicate dissociation of TeR¹(S₂CNR₂)n (n=3) to TeR¹(S₂CNR₂) n (n=1) in solution and ¹²⁵Te mossbaurer data suggest that TeR¹(S₂CNR₂)n (n=3) are better formulated as charge transfer compounds TeR¹(S₂CNR₂) S₂ (SCNR₂)₂. The crystal and mo-

lecular structure of TeR¹ (S₂CNR₂)n (R=Me, n=1) determined by X-ray diffraction showed a distorted planar enviro\nment for Te²¹⁰.

I.R. indicates that the undentate NO_3 group in $Ph_2Te(NO_3)_2L$ (L = pyridine, N-Oxide, Ph_3PO , DMSO, l-methyl-2-pyrrolidinone, tetramethylpiperidine, $Me_2^*NCH_2CH_2NMe_2$ on 2,2-bipyridine formed from $Ph_2Te(NO_3)_2$ and L is covalently bonded²¹¹.

Synthesis of bis(alkyltelluro) methanes are reported. ¹²⁵Te NMR chemical shifts measured in CDCl₃ are reported relative to neat Me₂Te and range from 213.5 ppm for (MeTe)₂CH₂ to 713 ppm for (Me₃(Te)₂CH₂). The dihalides of bis(methyltelluro) and bis(phenyl telluro) methane were prepared and yield chemical shifts in the relatively narrow range of 786 ppm for CH₂(TeMe)₂ to 834 ppm for CH₂(TeClMe)₂. The trends in the chemical shifts and the ¹²⁵Te mossbauer parameters are compared with those previously reported for the diorganyl tellurides and their halides²¹².

 19 F chemical shifts were obtained for $4-RC_6H_4XC_6H_4F-4$ (R = Me_2N MeO, Me, H, F, Cl, Br, X=Te, $TeCl_2$) and 13 C chemical shifts were obtained 213 .

 Δ The ¹²⁵Te NMR shifts for Ph₄Te(508.9 ppm) and bis (2,2'-biphenylene) TeI (486.3) ppm were measured at ambient temperature together with the ¹²⁵Te mossbauer parameters for the heat solids. Ph₄Te (δ 0.09, \triangle 5.60 mmS⁻¹ I(δ 0.42, \triangle 6.40 mmS⁻¹) at 4.2K. These results are compared with those for other

organotellurium compounds. The mass spectra of these compounds are also reported)²¹⁴.

 125 Te mossbaur parameters were measured at $4.2^{^{0}}$ K for $p\text{-RC}_{_{6}}\text{H}_{_{4}})_{_{2}}\text{TeF}_{_{2}}$, $p\text{-RC}_{_{6}}\text{H}_{_{4}}\text{TeF}_{_{3}}$, $(p\text{-RC}_{_{6}}\text{H}_{_{4}})_{_{2}}\text{Te}(\text{OAC})_{_{2}}$, $(p\text{-RC}_{_{6}}\text{H}_{_{4}})_{_{2}}\text{Te}(\text{OBu})_{_{2}}$, (R=H,EtO,MeO,Me), $P\text{h}_{_{2}}\text{MeTeI}$ and $P\text{hMe}_{_{2}}\text{TeI}$. The structure of difluoride was the similar to that of other halides whereas the coordination of trifluorides was different from that of the other trihalides. The dicarboxylates had parameters similar to that of dihalides. Suitable changes in the coordination about Te occurred with changes in the acyl ligand²¹⁵.

The reaction of thirteen aliphatic ketones with $TeCl_4$ was studies with 1H , ^{13}C and ^{125}Te NMR. $TeCl_4$ adds electrophilically to the α -carbon of the enol to form keto tellurium trichlorides. Unsymmetrical ketones gave mixture of isomeric ketonyl tellurium trichlorides Stearic hindrance determined which Ketonyltellurium trichlorides form. Except for the ketonyl tellurium trichloride form 2-butanone Te reacts preferentially with the least substituted α -C. Six methyl alkyl ketones also yielded appreciable amount of diketonyl tellurium dichlorides. In all diketonyl tellurium dichlorides, Te is bonded to less hindered methylene carbons²¹⁶.

 35 Cl NQR spectra are reported for RR 1 TeCl $_{2}$ (R = Ph, R 1 = Cl; R = Ph, R 1 = 3, 4-(MeO) $_{2}$ C $_{6}$ H $_{3}$, R = R 1 = 3, 4- (MeO) $_{2}$ C $_{6}$ H $_{3}$)splittings in the NQR spectrum of PhTeCl $_{3}$ are consistent with the reported polymeric structure of this compound. With a square pyramidal six coordination polyhedron for Te,

decreasing Te-Cl bond length corresponded to increase in NQR frequency of the participating Cl atom. A correlation between NQR frequency on Te-Cl bond length was valid for organotellurium chloride without bridging Cl atom²¹⁷.

Bis(P-phenoxy phenyl) tellurium dichloride is monoclinic space group $p^{21/C}$ with a = 8.063(27), b = 21.695(5), c = (12.622)2A⁰ and β = 101.57(2⁰) Z = 4. Final R = 0.055 for 2135 reflections. At coordination are given, the compounds adopts a primary four coordinate geometry based on distorted trigonal bipyramidal with an equitorial lone pair. A weak Te-Cl secondary interactions links, the molecule into centrosymmetric dimers²¹⁸.

Crystals of bis (4-phenoxy-3-methylphenyl) tellurium(IV) dichloride are monoclinic space group $p^{21/C}$ with a = 14.651(3), b = 12.787(3), c = 8.279(2)A⁰ and β = 92.64(2)⁰ Z = 4. R = 0.0298 for 1907 observed reflections, at parameters are given. The coordination about Te is trigonal bipyramidal with a vacant equatorial position Cl atoms axial and aryl ligands equatorial. An intermolecular OH-Cl hydrogen bond occurs in the crystal. But unlike other R₂TeCl₂ structure, there is no significant secondary bonding between Te and Cl in neighbouring molecules²¹⁹.

The (*p*-phenoxy phenyl) tellurium trichloride is triclinic space group p^1 with a = 8.521(2), b = 10.917(2), C = 14.813 (2) A^0 α = 81.84 (1) β = 83.38, and γ = 88.41(1) 0 , Zn = 2. The final R = 0.0359 220 .

The (*p* - bromophenyl) dichloro (Phenyl) tellurium (IV) is triclinic space (65)

group p_1 with a = 11.257(7), b = 10.817(4), c = 12.358(5)A⁰ α = 82.61(4) β = 80.72(5) and γ = 69.38(4)⁰ Z = 2(2 mole) for dc = 2.067 and do = 2.06 final R = 0.048, Rw = 0.052 for 3428 reflections. The structure consist of discrete tetramers in which individual molecules are linked through weak Te-Cl interactions²²¹.

The dichloro bis (*p*-methoxyphenyl) tellurium (IV) i.e., $TeCl_2$ ($C_7H_7O)_2$ is triclinic space group *p*-l with a = 10.245(5), b = 12.480(94), c = 13.654(4) A⁰ α = 109.22(2) β = 80.42(3) and γ = 77.30(3)⁰ do = 1.75 and dc = 1.76 for Z = 4 final R = 0.028 for 3406 unique observed reflections. At coordinates are given. The structure consists of isolated step like tetramers in which two independent molecules and their centrosymmetric equivalents are linked through Te - Cl secondary interactions the Te-Cl bonds occupy the equatorial and axial positions, respectively in the saw-horse structure. The Ph rings are in a propeller arrangement²²².

The tetrakis(L-hydroxy ethyl) dithiacarbamato tellurium(IV) i.e., $C_{20}H_{40}N_4O_8$, S_8 Te is triclinic space group PI with a = 9.008(2), b = 17.194(4), c = 14.501(2)A 0 α = 127.38(2), β = 9.60(2) γ = 97.13(2) 0 Z = 4 for dc = 1.654, R = 0.042 and Rw = 0.045 for 3482 reflections. The central Te is bonded to all eight atoms in a highly distorted dodecahedral configuration. The two plannar trapezoids, each contain a Te-S bond lengths are 2.637(4) – 2.857(4) A 0 the average being 2.738 (4) A 0 . The extensive H-bonding of the terminal OH groups 2.678 (13)-2.676 (14)A 0 hinderd the autoredox reaction in TeL $_4$ and also pro-

vides stability for the crystal packing²²³.

 $(C_6H_5)_2\text{TeF}_2$ is monoclinic space group C_6 with a = 11.088(6), b = 20.040(1), c = 13.208(5)A⁰ and β = 109.07(4)⁰ Z = 4 (2 moles/Z) paris of crystallorgraphy independent molecules are linked by two weak secondary Te-F intermolecular bond. The structural model was refined by full matrix least squares to R = 0.035 for 162 reflection. At coordinates are given. The stere-ochemistry of primary bonding about Te is trigonal bipyramidal as for other $R_2\text{TeX}_2$ species and is compared with that of of $(Ph_2)\text{TeF}_2$. The difference in the stereochemistry of the primary bonding about Te can be attributed to the influence fo the more electron withdrawing C_6H_5 group, and relates to different secondary bonding and the crystal packing ^{125}Te NMR coupling constants are reported for this and two related compounds previous ^{125}Te mossbauer data are discussed with regard to the structure 224 .

The bis(2-hydroxy ethyl) dithiacarbamato diiodo tellurium(IV) i.e., $Te(C_5H_{10}NO_2S_2)_2I_2 \text{ is triclinic space group PI with a} = 10.740(7), b = 11.536(6), c = 11.000(8)A^0 \alpha = 108.90(5) \beta = 121.94(5) \text{ and } \gamma = 90.86(5^0) \text{ dm} = 2.29 \text{ and dc} = 2.316 \text{ for } Z = 2, R = 0.062.$ The atomic parameters are given. The Te atom is seven coordinated to 4 S atoms to two axial I atoms and to an intermolecular bridging I in a distorted pentagonal bipyramidal geometry. The 2S atoms in each bidentate ligands forms unequal bonds. The dithiacarbamates parts of the two ligands are planar²²⁵.

Crystals of $Ph_2Te(S_2CNEt_2)_2$ are monoclinic; one modification has space group pz_1 . A 2^{nd} modification has space group C2/C. Crystals of $Ph_2Te[S_2(OEt)_2]$ are orthorhombic. All three structure are monomeric and contain a stereochemistry active lone pair at the Te atom making it effectively, seven coordinated in each cases²²⁶.

Crystal structure analysis shows that (Ph₂TeNCS)₂O is molecular in the solid states. The molecule has two fold symmetrical, with rotation axis passing through O atom and bisecting the Te-O-Te angle. The ether like Te-O-Te moiety is bent 121.4(4") with Te-O cistance of 1.985(4) A°. An intermolecular Te-S contact at 3.416 (3) A° completes a square pyramidal geometry around the Te atom and links the molecules into chains running parallel to the C-axis. The Te-N bond distance 2.40(1) A°, indicates a tendency towards ionic character in the bond²²⁷.

X-ray crystal structure of $[(C_6H_5TeCl_2)_2]_2CH_2$ and $(TeCl_3)_2CH_2$ were also determined²²⁸.

The crystal structure determination of Ph₃Te(S₂CN)(CHMe₂)₂ indicates a most unusual dimeric structure in which the lignand can be considered as acting as bridge with very long Te-S bonds. The immediate environment about each tellurium atom can be described as that of a distorted octahedron. The three Te-C(phenyl) bonds are mutually cis with two long Te-S bonds of similar length and a lone pair completing the octahedron²²⁹.

Reactions of Te(IV) with excess phenylene thiourea(L) in aqueous methanolic HCl gave $[TeL_4]Cl_2$.2HCl. The crystals are monoclinic space group $p^{-21/6}$ a = 13.939(5), b = 6.52C(9), c = 4.873(2)A 0 and β = 100.29(4 0) d (calculated) = 1.651 gem $^{-3}$ Z = 2 Final R = 0.055 and Rw = 0.056 for 918 independent reflections. The Te atom is bonded to 4 phenylene thiourea S atoms in a square planar arrangement with Te-S(1) = 2.678(6) Te-S(2) = 2.674(5)A 0 and S(1) Te-S(2) =90.5(3 0). The ligand behaves as a thione or atoms remains outside the coordination spehere of the Te and stabilize the packing arrangement in the unit cell through H-bondings to N atoms 230 .

The reactions of Ph_2TeCl_2 with Schiff bases O-HOC₆H₄(R) = NNH₂ (R = H,OH) and hydrazine derivative Fig. 31(R¹ = H, Cl, Br, R² = H, Me) gave Ph_2TeL_2 and $4Ph_2TeL^1$ respectively. The compounds exhibited a pseudoctahedral structure in which the which the Te atom was in a sp³d³ hybridized state resulting in pentagonal bipyramidal geometry with stereochemistry, inert lone pair of electron occupying an equatorial position²³¹.

$$R^{1}$$
 $C=N-N=C$
 R^{1}
 $C=N-N=C$
 R^{1}
 $C=N-N=C$
 R^{1}

Fig. 31

Some diorganotellurium(IV) complexes $(4-RC_6H_4)_2$ TeL [R = H, OMe, Oet], a tetradentate and tridenate Schiff bases derived from $(MeCO)_2CH_2$ and $H_2N(CH_2)nNH_2$ or $2-H_2NC_6H_4XH$, $(n = 2,3 \ X = 0, \ S)$ were prepared and characterized by elemental analysis, conductance; molecular wight, I.R. and 1H NMR data²³².

RR¹TeSalen (R = p-R²OC₆H₄) (R² = Me, Et); R¹ = P-C₆H₄NMe₂, CH₂COCH₃ or CH₂Bu), and salen is the diamon of N, N¹ – ethylene bis (salicylideneimine were synthesized. I.R. and PMR spectral data established metal ligand bonding and the resulting geometry of the complex²³³.

α-lithio derivatives of furanthiophene benzo(6) thiophene, pyridine and M-tosyl pyroll and diodole as well as 4-lithio dibenzo thiophene react readily with Te in THF representative conversions of the resulting heterocyclic Li tellurolates to ditellurides alkyl tellurides and telluroacetate are reported²³⁴.

Several sulfonamide Schiff base complexes of the Te(IV) were prepared and characterized using conductivity measurements and I.R. and NMR spectra, elemental analysis confirmed a 1:2 (Metal-Sulfonamide Schiff base) stoichiometry most of the complexes proved to be biologically active (antibacterial hypoglymeric antiinflammatory) as evidenced by pharamacological tests²³⁵.

Treating iminophenols(Fig.32) (R = R-OMe, 3-F, 4-Br; R^1 = H, O_2N) with $Me_2Te(OMe)_2$ gave 80-93% Fig.33 compounds (same R,R^1)²³⁶.

Fig. 32

Fig. 33

Square pyramidal complexes $PhTeCl_3R^1CR^2:NNHCSNH_2(R^1 = Ph, 2-HOC_6H_4, R^2 = H, Me)$ were prepared. Other synthesized compounds were $Ph_2TeCl_2.R^1CR^2:NNHCSNH_2$ and $(4-R^3C_6H_4)_2.Ph.CH:NNHCSNH_2$ $(R_3 = Me, OMe)^{237}$.

A wide series of diorganyl diaryloxytelluranes e.g., $(R = Me, R^1 = H, 4-NO_2, 5-NO_2, R^2 = 4-NO_2, 3-NO_2, 4-Br, H,4-Me, 4-MeO, 4-NMe^2, R = CH_2Ph4-MeC_6H_4, R^1 = H, R^2 = 4-MeO)$ having an azomethine function in the position ortho to the Te atom have been synthesized by the reaction of diorganyl dimethoxytelluranes with benzylidene o-aminophenols. The X-ray structure of dimethyl-bis [2-(4-nitrobenzalideneimino)phenyloxy] tellurane $(R = Me, R^1 = H, R^2 = 4-NO_2)$ indicates the presese of an intramolecular Te-N coordination

bond.

According to the dpole moment data and the ${}^{1}H$, ${}^{125}Te$ and ${}^{14}N$ NMR spectra compounds (excluding those with $R^2 = 4$ -NO₂) retain the Te-N coordination in nonpolar solvents²³⁸.

The reactions of thiosemicarbazones and semicarbazones of benzaldehyde, salicyldehyde, acetopheone and 2-hydroxy acetophenone with TeCl₄ give Te(HL)Cl₄, TeCl₃ and Te₂LCl₇ (HL = semicarbazone or thiosemicarbazone). The structural features of these Te derivatives are explored by I.R. ¹H, ¹³C and conductance (in MeCN) measurements and structure based on octahedral arrangement of ligand around Te are proposed. The presence fo facial and meridian isomer in equilibrium is indicated in some cases. The complexation occurs through S/O. The nitrogen of the CN group of O (if present on benzene ring) TeL₂Cl₇ seen to have Cl bridged and octahedrally coordinated Te²³⁹.

(IV) Compounds in Oxidation State(IV)

This oxidation state of tellurium is not very common. Till 1974, only $(C_2F_5)TeF_4Cl$ and $(C_2F_5)_2TeF_4$ were reported by Desjardins²⁴⁰. Later on, CH_3TeF_5 was prepared ²⁴¹. The presence of some tellurium fluoroanions TeF_7^{2-242} , TeF_8^{2-242} and $TeO_2F_4^{2-243}$ has also been established by IR and Raman spectra.

The reactions of phenyl tellurium(VI) fluorides $PhTeF_5$, trans- $[Ph_2TeF_4]$ and mer- $[Ph_3TeF_3]$ with alcohol and amines or their trimethyl silyl derivatives are known. The products $[PhTeF_4X]$, $[Ph_2TeF_3X]$ and $[Ph_3TeF_2]$ (X = OMe,

NMe₂, NEt₂) were characterized by ¹⁹F NMR spectroscopy and disomeric structures are assigned on the basis of their NMR spectroscopy samples of trans-[Ph₂TeF₄] contain small amounts of cis-[Ph₂TeF₄]²⁴⁴.

The hydrolysis fo PhTeF₅, trans-[Ph₂TeF₄] and mer-[Ph₃TeF₃] is known. The hydrolysis products (PhTeF₄OH, Ph₂TeF₃OH and Ph₃TeF₂OH, respectively) were identified by ¹⁹F NMR and mass spectrometry and in the case of Ph₃TeF₂OH by X-ray crystallography Ph₃TeF₂OH has nonequivalent F atoms and the condition under which stereoselective F exchange occurs are known. The coordination about Te is octahedral with two Ph groups trans to each other and the third ph trans to an F atom. The molecule exhibits the longest known Te(VI) F bond 2.011(2) A⁰. This same F which undergoes the more rapid exchange in solution is involved in H-bonding in the crystal, linking centrosymmetric related molecule into dimmers where OH-F is 1.90(3) A⁰ < O-H-F is 1.77(4)⁰ However, H-bonding is not responsible for the stereoselective F exchange in solution²⁴⁵.

A series of phenyl tellurium(VI) fluoride PhTeF₅,Ph₃TeF₃, Ph₃TeF₂Cl, and Ph₄TeF₂ were prepared by oxidative fluorination of Te(IV) compounds with XeF₂. The compounds were characterized by elemental analysis, ¹⁹F and ¹²⁵Te NMR mass spectra²⁴⁶.

The reaction of TeMe₄ with XeF₂ in MeCN yielded the new compound cis-TeF₂Me₄ in 87% yield. Difluorotetramethyl tellurium(IV) has been charac-

terized by Mass spectroscopy, ¹H, ¹³C, ¹⁹F and ¹²⁵Te NMR spectra, methylation of TeF₂Me₄ with dimethyl zinc at reduced temperature proceed smoothly in diethyl ether to generate TeMe₆ in 68% yield. Hexamethyl tellurium is more thermally stable than TeMe₄²⁴⁷.

 $(CH_3)_2 TeI_4$ is triclinic, space group PI, with a = 7.640(3), b = 12.600(5), c = 6.592(3)A⁰ α = 82.82(3), β = 106.54(3) and γ = 106.45(3)⁰ d(cald) = 3.832 for Z = 2. The structure was defined by least square to a final R₁ = 0.061. I-I bond (2.748-3.456 A⁰) and weak Te-I bonds (2.809-3.957 A⁰) and does not contain Te(IV)²⁴⁸.

Some other organotellurium compounds which have not been included n the above discussion may be classified as below:

- (i) Tellurium ylides
- (ii) Heterocyclic tellurium compounds

(i) Tellurium ylides

This is a different group of organotellurium compounds. Sadekov prepared a number of tellurium ylides by reacting aryltellurium halides and 1,1-dimethy 1 - 3, 5 - cyclohexanedione in boiling benzene containing triethylamine²⁴⁹⁻²⁵⁰.

$$(4-RC_6H_4)_2Te$$

CH₃
 $(R=H, CH_3, OCH_3)$

CH₃
 $(R=H, CH_3, OCH_3)$
 $(R=H, CH_3, OCH_3)$

Fig. 34

The compound shown in Fig 35 synthesised by Freeman¹⁶ in 1970 is the only other tellurium ylide known.

$$C_6H_5$$
 H_5C_6
 $+$
 $Te (C_6H_5)_2$
 C_6H_5

Fig. 35

(ii) Heterocyclic tellurium Compounds

New tellurium heterocyclic chemistry has been summarized²⁵¹. Telluraphthalic anhydrides (Fig.36) were obtained by treating NaBH₄ with Te followed by phthaloyl chloride²⁵². several five and six membered, 1,1-dihalogeno-1-tellura compounds have been prepared and their properties studied²⁵³⁻²⁵⁹. Treatment of sodium phenyl acetylide with tellurium in DMSO gave the ditellurols (Fig.37)²⁶⁰.

(75)

When equimolar amounts of phenoxtelluride and its 10, 10-di-nitrate were dissolved in dichloreomethane a solid (Fig.38) products separated²⁶¹.

Fig. 38

Some new heterocyclic tellurium rings synthesized are shown in Fig. 39 with references shown in brackets:

A review with 661 references mainly for 1981 of the chemical and properties of monocyclic thiophenes, benzofused thiophenes, thiophene analogous of polycyclic aromatic hydrocarbons, thiophene fused to 5-and 6- membered hetero-atomic ring selenophenes and tellurophenes is reported²⁶²⁻²⁶⁵.

In last few years some new organotellurium complexes have been synthesized. Cyclopentadienyl metal teflate (OTeF₆) complexes²⁶⁶. Reactions of $[M_2(CO)_{10}]$ (M = Mn or Re) with xenon bis [pentafluorooxo-tellurate (VI) and selenate (VI)]²⁶⁷, synthesis and characterization of monomeric telluro complexes of zinc and cadmium. Crystal and molecular structure of bis[2-(4,4-dimethyl-2-oxazolinyl) phenyl] ditelluride,²⁶⁸ synthesis and characterization of Novel Chiral ortho-Tellurated complexes derived from (s) -1-(Dimethylamnio) ethyl Benzene. Crystal and Molecular structure of {2-[(S)-1-(Dimethylamnio)].

ethyl] phenyl1} tellurium trichloride269.

Synthesis, spectroscopic and structural studies on rhodium (I) and (III) and iridium (I) and (III) selenoether and telluroether complexes involving organometallic co-ligasnds²⁷⁰, synthesis and characterization of tris (trimethylsilyl) methylaluminium chalcogenides $[RAl(\mu_3-E)]_4$ ($R=(Me_3Si)_3C$; (E=Se,Te) and 1-Azaallylagallium chalcogenides $[R'Ga(\mu_2-E)_2]$ ($R^1=(Me_3Si)_2C(Ph)C;(Me_3Si)N;$ $E=S,Se,Te)^{271}$, bis (tetraisopropyl cyclopentadienyl nickel) dichalcogenid: complexes of the Novel $[\{CpME\}_2]$ Type ($E=S,Se,Te)^{272}$. Monooxytellurane (IV) derivatives ($\{10-Te-4(C_3O)\}\}$). Sythesis and molecular structure of triaryltelluronium carboxylate compounds²⁷³, organotellurium precursors for metal organic chemical vapour deposition (MOCVD) of mercury cadmium telluride (MCI)²⁷⁴. Stereochemical aspects of Tellurium complexes with sulfur ligands: Molecular compounds and supramolecular associations²⁷⁵.

A very few work have been done on organotellurium complexes with monocyclic ligands²⁷⁶⁻²⁸⁰.

A very few organotellurium compounds with schiff base ligands are known but the reaction of organotellurium compounds (R_2Tex_2) with 3 - mercapto - 4 - salicyldimino - 1,2,4 - triazole; 3 mercapto - 4 - β - isatinylimino - 1,2,4 - triazole and α - phenyl salicylaldimino - methyl - β - naphthol are not known.

The chapters in the thesis have been organized to provide an easy access to the formation available on the topics treated. The first two chapters deals with the general introduction of organotellurium compounds, materials used and the experimental techniques used to characterised and the synthesised compounds. In the third chapter the various organotellurium (IV) compounds of the type (R_2Tex_2) where [($C_6H_5CH_2$) $_2TeI_2$]; [(C_6H_4) $_2TeCI_2$]; [($p-Me_2NC_6H_4$) $_2TeCI_2$]; [($p-Me_2NC_6H_4$) $_3TeCI_2$]; [($p-Me_2NC_6H_4$) ($p-EtOC_6H_4$) $_3TeCI_2$]; and [($p-Me_2NC_6H_4$) ($p-EtOC_6H_4$) $_3TeCI_2$]; and [($p-Me_2NC_6H_4$) ($p-EtOC_6H_4$) $_3TeCI_2$]; and [($p-Me_2NC_6H_4$) ($p-EtOC_6H_4$) $_3TeCI_2$]; and [($p-Me_2NC_6H_4$) ($p-EtOC_6H_4$) $_3TeCI_2$]; and [($p-Me_2NC_6H_4$) ($p-EtOC_6H_4$) $_3TeCI_2$]; and [($p-Me_2NC_6H_4$) ($p-EtOC_6H_4$) $_3TeCI_2$]; and [($p-Me_2NC_6H_4$) ($p-EtOC_6H_4$) $_3TeCI_2$]; and [($p-Me_2NC_6H_4$) ($p-EtOC_6H_4$) $_3TeCI_2$]; and [($p-Me_2NC_6H_4$) ($p-EtOC_6H_4$) $_3TeCI_2$]; and [($p-Me_2NC_6H_4$) ($p-EtOC_6H_4$) $_3TeCI_2$]; and [($p-Me_2NC_6H_4$) ($p-EtOC_6H_4$) (

REFERENCES:

1. G.E. Coates, M.L.H. : "Organometallic compounds", 'The

Green & K. Wade main group elements', methuen and

Co. Ltd., London, Vol. I, 1967.

2. M.L.H. Green : "OrganometallicCompounds", 'The

Transition elements'; Methuen & Co.

Ltd., London, Vol. II, 1968.

3. S. Sorriso : Chem. Rev. 1980, 80, 313-327.

4. A.G. Davies & P.J. Smith : Advn. Inorg. Chem Radiochem. 1980,23,

1-77.

5. M.G. Hutchings : Annu. Rep. Prog. Chem. B 1978, 75, 119 -

34.

6. J.W. Conolly & C. Hoff : Advn. Organomet. Chem., 1981, 19, 123 -

53.

7. D.A. Aarmitage : Organomet. Chem., 1981, 9, 94 -146.

8. P.G. Harrison : J. Organomet. Chem. Libr., 1979, 8, 427 -

563.

9. D.Seyferth : J. Organomet. Chem., 1979, 183, 141 - 263.

10.	R.C. Poller	:	"The chemistry of organotin Compounds" Logas Press, London, 1970.
11.	L.C. Williamsens & C.J. M. Vander Kerk	:	"Investigations in the field of Organo Lead Chemistry", ILZRO, New York 1965.
12.	G.O. Doak & L.D. Freedman	:	"Organometallic Compounds of As, Sb and Bi, "Publishers, Wiley - Inter Science, a division of John Wiley & Sons Inc. New York 1970.
13.	A.N. Nesmeyanov & R.A. Sokalik	:	"The organic chemistry of B, Al, Ga, In and Tl" North Holland, Amsterdam 1967.
14.	A.K. Sawyer	:	"Organotin Compounds" Publishers, Marcel Dekker, Inorganic nuclear Chemistry 1971.
15.	F. Woehler	:	Ann. Chem., 1940, 35, 111.
16.	K.J. Irgolic	:	"The organic chemistry of Tellurium" Gordan Breach Science Publishers, New York 1974.
17.	K.J. Irgolic	•	J. Organomet Chem., 1978, 158, 35-266.
18.	K.J. Irgolic	:	J. Organomet. Chem., 1975, 88, 175.
19.	C. Levaditi	:	Ann. Inst. Pasteur, 1927, 41, 369.
20.	F.V. Oefele	: (8	New York, Med. Monatschr, 1912, 2, 223.

G.T. Morgan, E.A. Cooper: 21. J. Biochem., 1924, 18, 190. & A.W. Burtt D.V. Cow & W.E. Dixon : J. Physical (London) 1922, 56, 42. 22. Chem. Abstr. 62, 11722a. 23. F. Rogaz E.D. Cerwenka, Jr. & W.C.: Arch. Environ. Health, 1961, 3, 189. 24. Cooper 25. H.H. Glazebrook & T.G. : J. Chem Soc., 1939, 589. Pearson 26. G.T. Morgan & H.D.K. J. Chem Soc., 1922, 922. Drew H. Tanivama, F. Miyoshi &: Chem. Abstr. 71, 28990n. 27. E. Sakakibara Ch.3 in "Tellurium" W.C. Cooper, ed, W.M. Becker, V.A. Johnson: 28. & W.Nussbaum Nostrand Reihold Co., New York (1971), 54.Ch.8 in "Tellurium" W.C. Cooper, ed., 29. C.H. Champness van Nostrand Reinhold Co., Newyork 1981, 322. Ch.9 in "Tellurium" W.C. Cooper, ed., E.S. Nachtman 30. van Nostrand Reinhold Co., Newyork 1971, 373.

31. R.H. Aborn : Ch.10 in "Tellurium" W.C. Cooper, ed., van Nostrand Reinhold Co., Newyork 1971, 389.

32.	W.C. Cooper :	J. Organomet Chem., 1978, 11, 263.
33.	N. Petragnani, C.L. Jones: K.J. Wyne & W. Maxwell	J. Organomet Chem., 1973, 55, 295.
34.	F. Einstein, J. Trotter & C.: Williston	J. Chem. Soc. A, 1967, 2018.
35.	E.R. Clark, A.J. Collett & : D.G. Naik	J. Chem. Soc., Dalton Trans. 1973, 1961.
36.	S.E. Spears & S. Husebye:	Acta. Chem. Scand, 1972, 26, 3293.
37.	E. Steinar & H. Steinar :	Acta. Chem. Scand., 1973, 27(2).706.
38.	E. Steinar, H. Steinar & : E.G.S. Stein	Acta. Chem. Scand., 1971, 25(5), 3539.
39.	J. Gaunt :	Trans. Faraday Soc., 1953, 49, 1122; ibid, 1954, 50, 546.
40.	G. gaunt :	Trans. Faraday Soc., 1955, 51, 893.
41.	R.E. Lyons & E.D. : Scudder	Chem. Ber., 1931, 64, 530.
42.	T. Austad :	Acta. Chem. Scand., 1973, 27, 1939.
43.	F. Watan :	Inorg. Chem., 1981, 20, 1776.
44.	C.W. Sink & A.B. Harvey :	J. Chem. Phys., 1972, 57, 4434.
45.	K. Lederer :	Chem. Ber., 1915, 48, 1345.

S. Hange & O. Vikane 46. Acta. Chem. Scand., 1973, 27, 3596. 47. S.J. Falcone & M.P. Cava: J. Org. Chem., 1980, 45, 1044. E.E. Aynslay & R.H. J. Chem. Soc., 1955, 2603. 48. Walton N. Petragnani & M. De 49. Tetrahedron, 1965, 21, 13. Moura Campos 50. I.D. Sadekov Zh. Obshch. Khim., 1973, ,43, 815. W.R. Mc Whinnie & M.G.: J. Chem. Soc. Dalton Trans., 1972, 51. 199. Patel Tetrahedron, 1972, 28, 3323. 52. J. Bergman 53. S.I. Radchenko Zh. Prikl. Spektrosk., 1973, 19, 940. J. Organome. Chem., 1975, 92, 185. N. Petragnani, L. Torres &: 54. K.J. Wynne J. Am. Chem. Soc., 1980, 102, 4438. D.L.J. Clive 55. Bull Soc. Chim. Fr. Part II, 1979, 623. N. Deren & J.L. Piette 56. Zh. Org. Khim., 1978, 14, 2620. V.P. Krasnov, V.I. 57. Naddaka, V.P. Garkin & V.I. Minkin

58. D. Seebach & A.K. Bexck: Chem. Ber., 1975, 108, 314.

59. M. de Moura Campos, N. : Tetr. Lett., 1960, 15, 5. Petragnani & C. Thome

60. K. Lederer : Chem. Ser., 1916, 163.

61. M.L. Bird & F. Challenger: J. Chem. Soc., 1939, 163.

62. V.V. Bairov : Zh. Org. Khim., 1978, 14(3), 671.

63. D. Elmaoeh, S. Patai & : J. Chem. Soc. C, 1971, 3100.

Z. Rappopert

64. P.J. Busse : Org. Mass Spectrum, 1976, 11(6) 640.

65. C.D. Desjardins : J. Chem. Soc., Dalton Trans., 1975, 488.

66. P. Schulz & K. Klar : Z. Naturforsch. Teli B, 1975, 30B, 43.

67. R.J. Lagow, L.L. : J.Am. Chem. Soc., 1975, 97, 518.

Gerchman, R.A. Jacob &

J.A. Morrison

68. J.B.S. Bouilha, N. : Chem. Ber., 1978, 111, 2510.

Petragnani & V.G. Toscano

69. R.E. Cobbledick : J. Chem. Res. (S) 1979,145.

70. M. Schmeisser, R. Walter: Z. Anorg. Allg. Chem., 1980, 464,

& D. Naumann 233.

71. W.V. Farrar : Research, London, 1951, 4, 177.

72. N. Petragnani & M. de : Chem. Ber., 1961, 94,1759.

Moura Campos

73. F.H. Kurse, R.E. March & : Acta. Crystallogr., 1957, 10, 201.

J.D. Mc Cullogh

74. A. Sandher, S. Sid, K.K. : Synth. React Inorg. Met - Org. Chem. Bhasin & R.D. Vernia 1989, 19(2), 169.

75. I.D. Sadekov, A.A. : Metallorg. Khim., 1989, 2(2), 298.

Maksimenko A.G.

Maslakov, G.K. Mehrotra,

G.S. Borodkin, O.E.

Kompman, Yu T. Struchkov,

M.A.Fedotov, V.I. Minkin

76. Tim Levason & William : Organometallics, 1998, 8(5), 1303. Kemmitt

77. Sverre Hange & Olav : Acta Chem. Scand. Ser. A, 1988, A
Vikane 42 (1), 87.

78. A.K. Singh & J.K. : J. Organomet Chem., 1988, 346,(3),
Basumatary 349.

79. T. N. Srivastava & Mala : Ind. J. Chem., Sect. A. 1982, 21(A), 305. Singh

80. Gable Robert, W. Hoskin, : Inorg. Chim. Acta, 1983, 72(2), 173.
F. Bernard, J. Steen
Robyn & Winter George

81. Peter Klacboe : Acta Chem. Scnad. Ser. A, 1977, A 31(2), 120.

82. A. Ulman, J. Frolow, F. : Tetrahedron Lett., 1978, (21), 1885.

Manassen & D.Robinovich

83. I.D. Sadekov & B. Rivkin: Zh. Obshch. Khim., 1987, 57(7), 1559. (86)

84.	C.H.W. Jones, R.D. : Sharma & D. Naumann	Can. J. Chem., 1986, 64(5), 987.
85.	Wolfgang Dietzsch, Maria: Ruth Olk, Eberhard Hoyer, Worfgang Meiler & Worfgang Robien	Mag. Reson. Chem., 1989, 27(5), 500.
86.	W. Mazherk & A.G. Moritz:	Inorg. Chem. Acta. 1988, 154(1), 71.
87.	C.H.W. Jones & R.D. : Sharma	Organometallics, 1987, 6(7), 1419.
88.	S. Nauje & O. Vikane :	Acta Chem Scand Ser. A., 1985, A39 (80), 553.
89.	G.C. Rout, K. Radha, M. : Scahawayee & G. Aravamudan	Commun., 1983, C39(8), 1021.
90.	Hoskins Bernard, F. Oliver: Pamela & J. Winter George	Inorg. Chim. Acta, 1984, 86(1), L21.
91.	G.C. Rout, M. Seshasyee, : G. Aravanudan & S. Sowirajan	Acta Crystallogr. Section C; Crystal Structure Commun., 1984, 40(6), 963.
92.	R.W.C. Bernards, J.D. : Dena Idson, R.M.A. Grimsey, G. Dennes, U. Russo & S. Calogero	Inorg. Chim. Acta, 1981, 51(2), 217.
93.	W. Gable Robert, F. : Hoskins Bernard, W.Steen	Inorg. Chim. Acta, 1982, 252.

Robert. F. Bernard Hoskins, J. Steen Robyn & George Winder

94. T. Subrahmaydn, G. : Acta Crystallog. Sect. C:Crystal Struct.
Arvamudan, G.C. Rout & Commun., 1984, C40(6), 963.

M. Seshasyee

95. Ko Nanse Yoshio : Tokkyo Koho Japan 0166, 176 (89,66. 176) (II. C07D03/20), 13 March 1989.

96. A.K. Singh, K. Jayanta, : Phosphorous Sulfur, 1988, 37(3 - 4)111.

Basumutary & Neelam

Mann

97. B.B. Rivikin, I.D. Sadekov: Khim Getrostsikl Soedin, 1988, (8). & V.I. Minkin 1144.

98. B. Rao, B.S. Petraganani, : Chem. Ber., 1978, 111(7), 2510.
Toscano Micolar &
G. Vicente

99. S. Nigel & H.W. Colin Jones: Can. J. Chem., 1978, 56(13),1746.

100. V.A. Potapov, S.V. : Akad. Nauk SSSR, Ser Khim, 1988, (1), Amosova, A.S. Kashik & 200.

D.G. sokolova

101. A. Ralpn Zingaro, Chris : J. Organomet. Chem., 1980, 306(2), C Herrera & D.G. Sokolova 30.

102. R. Michael Detly, C. : Organometallics, 1989, 8(4), 866.

William Lenjart, G. Paul

Gassmann & R. Mathew

Callstrom

N. Petragnani 103. J. Organo Metal. Chem., 1973, 55, 295. 104. P. Thavornyutikarn & W. J. Organomet. Chem., 1973, 50, 135. R. Mcwhinnie E.L. Muelterties & R.A. Quart. Rev. London, 1966, 20, 245. 105. Schunn 106. G.Y. Chao & J.D. Acta crystallogr., 1962, 15, 887. McCullogh G.D. Christofferson & J.D.: Acta crystallogr., 1958, 11, 249. 107. McCullogh G.D. Christofferson, R.A.: Acta crystallogr., 1958, 11, 782. 108. Sparks & J.D. McCullogh J. Appl. Polym. Sci., 1986, 32(5), 4857. Alis Abed, M.A.K. Ahmed: 109. W.R. Mcwhinie & G. Scott Anorg. Allg. Chem., 1985, 5, 127. 110. M. Weiber, E. Schmaidt & : C. Burshka · Acta Cient Compostelana, 1977, 14(4), C. Marig, M.R. Bermejo, : 111. 493. A. Castineiras & M. Gayese J. Am. Chem. Soc., 1988, 110(20), 6762. Digiacome Dainis, Gable: 112. Robert, W. Robert, & F. Fernard Hoshpins Phosphorus Sulfur, 1988, 35(3-4), 233. Markus Wieber & Elmer 113. Schmidt

M. Wieber & E. Schmidt :

114.

Z. Anorg. Allg. Chem., 1988, 556, 179.

M. Wieber & E. Schmidt Z. Anorg. Allg. Chem., 1988, 556, 189. 115. S. Chidambaram, G. Plyhedron, 1988, 7(14), 771. 116. Aravamudan, M. Seshasayee, T. A. Shibanova & V.I. Simonov H.E. Jane Bailey, John E. Can. J. Chem., 1989, 67(11), 1735. 117. Praka, Anil B. Sarkar & L.Y. Maria A.K. Singh & J.K. J. Organomet. Chem., 1988, 346(3), 118. 349. Basumatry Organometallics, 1987, 6(4), 813. Raj. K. Chadha & John 119. E. Darke Organometallics, 1987, 6(4), 813. Neil t. Mcmanus, Betsu A. : 120. Quinlan, Anil B. Sarkar Curr Sci., 1983, 52(21), 1013. 121. G.C. Yember & A.S.R. Murty. Synth. React. Inorg. Met-Org, 1990, 122. T.N. Srivastava, Jai Deo 20(5), 503. Singh & Sanjay K. Srivastava J. Organomet. Chem., 1987, 283. B.L. Khandelwal, A.K. 123. Singh, N.S. Bhandari Ind. J.Chem. Sec. A., 1986, 25A(5), 480. T.N. Srivastava, Jai Deo 124.

125. B.L. Khandelwal, A.K. : J. Organomet. Chem, 1985, 185. Singh, H.B. Singh, K.M.

Singh & Shashi Mehrotra

(90)

Prassad, N.S. Bhandari & W.R. Mcwinnie

126. B.L. Khandelwal. A.K. Singh & N.S. Bhandari

Phosphorus Sulfur, 1987, 38(1-2), 157.

127. T.N. Srivastava, Jai Deo Singh, Sanjay K. Srivastava & S. Srivastava Ind. J. Chem. Sect. A, 1990, 29(A) (7)

703.

128. Shinchi Fukuzawa, K.J. Irgolic & D.H. 'O' Brien

Heteroat. Chem. 1990, 1(1), 43.

129. B.L. Khandelwal

Proc.Indian malt. Sci. Acad., part A,

1989, 55(2), 318.

130. N. Petraganani, J.S.

Comasseto, N.F. Hochr &

R. Rittner

An. Acad. Bras. Cienc, 1986, 53(1), 47.

10. 10.

131. I.D. sadekov, M.L.

Zh. Obsch. Khim, 1978, 48(2), 390.

Cherkinskaya, V.L. Rovola,

V.A. Bren & V.I. Minkin

132. I.D. Sadekov, L.M. Sauapina:

R.M. Minacy & V.I. Minkin

Zh. Obsch. Khim, 1977, 47(a), 2006.

133. T.N. Srivastava &

Shashi Mehrotra

Synth. React. Inorg. Met. Org. Chem.

1985, 15(6), 709.

134. Y.D. Kulkarni & Surendra

Srivastava

Indian J. Chem. Sect. A, 1985, 24A(8)

710.

135. Miller Sianes, M. Jack &

: Organome. Chem., 1981, 216(2), 177.

Raj K.C. Chadha

(91)

136.	T.N. Srivastava, A.K.S. Chauhan & G.K. Mehrotra	:	Transition Met. Chem., 1981, 6(4), 252.
137.	H.J. Gysling, M. Zymbulyadis & J.A. Robertoson	:	J. Organomet. Chem., 1981, 209(2) C41.
138.	Raj K.R.Chadha & B.S. Singh Bhande	:	Inorg. Chim. Acta, 1981, 52(1), 125.
139.	Sakal Vemura, Wakasaugi Rukuza Shinich & Okano Masaya Mikio	:	J. Organomet Chem., 1981, 214(3), 319.
140.	T.N. Srivastava & R.C. Srivastava & V:K. Srivastava	:	Ind. J. Chem. Sect. A, 1982, 21A(5), 539.
141.	T.N. Srivastava, Mala Singh & H.B. Singh	:	Ind. J. Chem. Sect. A, 1982, 21A(3), 307.
142.	T.N. Srivastava, R.C. Srivastava & V.K. Srivastava	:	Ind. J. Chem., 1983, 60(2), 104.
143.	Dieter Mandak, Werner Sehabel & Guenter Klar	:	J. Chem. Res. Synop., 1984, (3), 74.
144.	L.N. Markovskii, E.A. Stukalo & G.P. Kunitskaua	:	Zh. Org. Khim., 1977, 13(12), 2514.
145.	I.D. Sadekov, M.L. Cherkinsakaya, V.L. Pavola, V.A. Bren & V.I. Minkin	:	Zh. Org. Khim., 1977, 7(12), 2774.
		/(471

(92)

T.N. Srivastava & Jia Deo 146. J. Indian Chem. Soc., 1986, 83(12), 1015. Singh Takahiro Kanda Takeaki, 147. Chem. Lett., 1987, (3), 475. Ishida Masaru & Shinzi Kata 148. I.D. Sadekov, A.A. Zh. Org. Khim., 1987, 23(3), 656. Maksimenko, G.K. Mehrotra & V.I. Minkin 149. T.N. Srivastava, & P. Ind. J. Chem. Sect. A, 1987, 26A(3), Kumar 263. 150. T.N. Srivastava, Jai Deo Plyhedron, 1987, 6(2), 219. Singh & Sanjay K. Srivastava Zh. Obshch. Khim., 1987, 57(8), 1786. 151. D. ya Movshovich, E.G. Amarskii, L.E. Rybalkina, S.B. Bulgarevich, V.A. Kogan & I.D. Sadekov Zh. Org. Khim. 1978, 14(4), 874. 152. I.D. Dadekov, A.A. : Maksimenko & B.B. Rivkin Zh. Obshch, Khim., 1977, 47(10), 2229. 153. I.D. Sadekov, A.A. Maksimenko & A. Ladatko Z. Anarg. Allg. Chem., 1988, 560, 154. Dieter Naumann & A. 14752. Ladatko

155. T.N. Srivastava, P.C. : Bokin bobai, 1983, 11(4), 151. Srivastava, Rakesh Kumar,

(93)

O.P. Srivastava & S.K. Awasthi

156. Surendra Srivastava, Ajay Singh & Y.D. Kulkarni

Ind. J. Chem. Sect. A, 1988, 27A(8), 734.

157. B.G. Sejaka, Chhaya Jankram & G. Aravamudan J. Inorg. Nucl. Chem., 1978, 40(2), 211.

158. T.N. Srivastava, M.A.: Siddique & S.K. Srivastava

Ind. J. Chem. Sect. A, 1988, 27(A)(6), 550.

159. T.N. Srivastava, Jai Deo Singh & Sanjay K. Srivastava

Polyhedron, 1990, 9(7), 943.

P.C. Srivastava & A.
 Trivedi

Ind. J. Chem. Sect. A, 1990, 29(A)(5), 489.

161. Z. AI Rubaie Ali, A. anuis : AI Najar & A. Faris Jassim

Inorg. Chim. Acta, 1990, 175(2), 181.

162. Arun Sandhu, K.K. Sukhjinder Bhasin & R.D. Verma. Ind. J. Chem. Sect. A., 1989, 28A(6), 528.

163. Prem Raj, Kiran Singhal & : Firoz Jee

Synth. React. Inorg. Met. Org. Chem. 1989, 19(4), 369.

164. T.N. Srivastava, Jai Deo Singh, Shashi Mehrotra

Ind. J. Chem. Sect. A, 1985, 24A(10), 849.

165. B.C. Khandelwal, A.K. Singh, R. Mehta & K. Kumar

Synth. React. Inorg. Met. Org. Chem. 1984, 14(7), 921.

166. Ali. Abed, S. Sera & W.R. J. Organomet. Chem., 1989, 277(3), Mcwhinnie 365. 167. I.D. Sadekov, B.B. Rivkin Zh. Org. Khim., 1981, 11(9), 2013. & A.A. Maksimenko 168. I.D. Sadekov & A.A. Zh. Obshch. Khim., 1977, 47(11), 2536. Maksimenko 169. T.N. Srivastava & V.I. Ind. J. Chem. Sect., 1987, 26A(3), 260. Suprunovich 170. A.D. Sushchinski & Jai Ukr. Khim. Zh., 1988, 54(1), 103. Deo Singh Zh. Org. Khim., 1981, 17(1), 205. 171. I.D. Sadekov, B.B. Rivkin, : A.A. Maksimenko & V.I. Minkin Ind. J. Chem. Sect. A, 1982, 21A(3), 172. T.N. Srivastava, P.C. 309. Srivastava & Rakesh Kumar Indian I.N. 162, 096 (CI, C07 (165/00) 173. B.L. Khandelwal, A.K. 26 March 1988 April 84/E953; 20 Dec. Singh, Ramesh Kumar & Krishan Kumar 1984, 14pp) Polyhedron, 1985, 4(4), 1223. T.N. Srivastava, V.K. 174. Srivastava & R.C. Srivastava Synth. React. Inorg. Met. Org. Chem. 175. K.K. Verma, O.P. Agarwal: 1990, 20(7), 851. & Anita Saini Synth. React. Inorg. Met. Org. Chem. 176. K.K. Verma, Anita Saini & :

O.P. Agarwal

1990, 20(5), 559.

177. Naoko Okada, Gunzi Sito : Chem. Lett., 1986, 3, 31114. & Takehelko Moni

178. T.N. Srivastava, R.C. : Ind. J. Chem. Sect. A, 1980, 19A(5), Srivastava & Mala Singh 435.

179. B.L. Khandelwal & : Synth. React. Inorg. Met. Org. Chem. Krishan Kumar 1981, 11(5), 394.

180. B.L. Khandelwal, Krishan : Synth. React. Inorg. Met. Org. Chem. Kumar & Krishana Raina 1981, 11(1), 65.

181. B.L. Khandelwal, Krishan : Inorg. Chem. Acta, 1981, 47(2), 135. Kumar & J. Berry Frank

182. T.N. Sirvastava, A.K.: Synth. React. Inorg. Met. Org. Chem. Chauhan & G.K. Mehrotra 1982, 12(6), 705.

183. Z.A. Siddiqui, M. Aslam & : Synth. React. Inorg. Met. Org. Chem. S.A.M. Zaidi 1983, 13(2), 173.

184. T.N. Srivastava, P.C. : bokin bobai, 1982, 10(2), 523.

Srivastava & Rakesh

Kumar

185. I.D. Sadekov, A.A. : Zh. Org. Khim., 1983, 19(3), 616.

Maksimentko & B.B.

Rivkin

186. Clement Lau, Jack : Can. J. Chem., 1985, 63(8), 2273.

passmore, E. Richardson,
Whidden Keith, K. Tom &
S. White Peter

187. Y.D. Kulkarni, Surendra : Synth. React. Inorg. Met. Org. Chem. (96)

Srivaatava, S.H.R. Abdi &

1985, 15(8), 1043.

Mohammed Athar.

188. Jasomska Zankewska:

Ze. Nauk Univ. Jagiellon, Pr. Chem.

Burgiel Wanda &

1977, 22, 49.

Magdalcha Maria

189. Salim - Al Majih, Antony

J.C.S. Dalton Trans, 1988, (9),

A. Heest, William R. Mc

2363

Whinnie, & Thomas Hamer

190. Yu. V. Kokunov, V.M.:

Dokl. Akad. Nauk SSSR, 1988, 303 (3),

Afanasev, M. P.

637.

Gustyakova & Yu. A.

Busalev

191. Joao V. Cosmassets,

Tetrahedron Lett., 1987, 28 (4-6), 5611.

Helena M.C. Ferraz, Nicola

Petraganani, Carols A.

Brundt

192. T.N. Srivastava, Jai Deo

Ind. J. Chem. Sect. A, 1987, 26A(6),

Singh & S. Srivastava

519.

193. Y.D. Kulkarni, Surendra Srivastava & Mohd Athar Ind. J. Che., Sect. A, 1985, 24(A), 1069.

194. Peter Jaitner & Wolfgang:

Inorg. Chim Acta, 1987, 134(2), 201.

Winder

195. J.V. Comnsseto, H.M.C.

Tetrahedron Lett., 1989, 30(10), 1209.

Ferraz & C.A. Brandt

196. A.K. Singh, V. Srivastava

Polyhedron, 1990, 9(4) 495.

& B.L. Khandelwal

(97)

197. H.B. Singh, Narsimhan Sudha, Antony A. West & Thomas A. Hamor

J.C.S. Dalton Trans, 1990, 3, 907.

198. I.D. Sadekov, A.A.

Maksimenko, O.E.

Kompan, A.G. Mastakov,

Yu. T. Struchkov & V.I.

Metalloorg. Khim., 1989, 2,(6), 1260.

199. P.C. Srivastava & A. Trivedi

Minkin

Ind. J. Chem. Sect. A, 1989, 28A(12)

1110.

200. V.I. Minkin, I.D. SadekoA.A. Maksimenko, O.E.Kompan & Yu. I. Struchkov

J. Organomet Chem., 1991 402(3), 331.

201. A. Sandhu, K.K. Bhasin

Ind. J. Chem. Sect A, 1990, 29A(12),

& R.D. Verma

1178.

202. M.E. Ali Sabir Malik:

Inorg. Chim. Acta, 1989, 162(2), 157.

Mi Azad & Barry C. Smith

203. Y.D. kulkarni & Nishi

Indian J. Chem. Soc A, 1990, 29A(2),

Saxena

183.

204. Akinito Ishii, Juzo Nakayama, Yasuaki Honkawa & Masamatsu Sulphur Lett., 1989, 10(1-2), 71.

Hoshino

206.

205. T.N. Srivastava, R.C.:

J. Organomet Chem., 1978, 160(2), 449.

Srivastava, Mala Singh

P. Mathur & D. Chakrabarty:

J. Organomet Chem., 1989, 373(1), 129.

(98)

207.	I.D. Sadekov, A.A. Maksimenko, B.B. Rivkin & V.I. Minkin	:	Zh. Obshch. Khim. 1989, 59(9), 2015.
208.	Y.D. kulkarni & Nishi Saxena	;	Ind. J. Chem. Sect. A 1990, 29A(1),77.
209.	Robert W. Gedridge, T. Kelvin Hija & Robin A. Nissan	:	Organometallics 1991, 10(1), 286.
210.	A.K. Mohammed, E. Anne Mc Carthy William R. Mc Whinnie & Frank J. Berry	:	J. Chem. Soc. Dalton Trans., 1986, (4), 771.
211.	T.N. Srivastava & P. Kumar	:	Acad. Sci. Lett. 1982, 5(12), 399.
212.	C.H.W. Jones & R.D. Sharma	:	Organometallics, 1986, 5(4), 805.
213.	I.D. Sadekov, M.C. Cherbinskaya, V.P. Methushenko, Yu. E. Chernysh & V.I. Minkin	:	Zh. Obshch. Khim., 1981, 51(5), 1000.
214.	C.H.W. Jones & R.D. Sharma	:	J. Organomet. Chem., 1989, 332 (1-2), 115.
215.	Frank J. Berry & H.W. Jone Colin	:	Can. J. Chem. 1976, 54(23), 3737.
216.	Daniel H. Obren K. J. Irgolic & Chang K. Huag	:	Heteroat. Chem. 1990, 1(3), 215. (99)

217. V.P. Feshim, G.V. Metalloorg. Khim., 1989, 2(6), 1221. Dolgushin, M.G. Voronkot, I.D. Sadekov & A.A. Maksimenko 218. Raj K. Chadha & John E. J. Crystallogr. Spectrosc. Res., 1986. Drake 16(6), 907. 219. Richard H. Jones & J. Organomet. Chem., 1984, 262(2), Thomas A. Hamer 151. 220. Raj K. Chadha John E. J. Organomet. Chem., 1985, 293(1), 97. Drake 221. Raj K. Chadha, John E. Acta Crystallogr. Sect. C, 1983, C39(1), Drake & A. Khanmasood 45. 222. Raj K. Chadha & John E. Acta Crystallogr. Sect. C: Crystal Struct. Commun., 1984, C40(80), 1349. Drake 223. G.C. Rout & A. Acta Crystallogr. Sect. C.: Crystal Structure Commun., 1984, C40(7), 1142. Seshasayee Can. J. Chem., 1987, 65(11), 2643. 224. J. Aramine, R.J. Batcholor: C.H.W. Jones, F.W.B. Einstein & R.D. Sharma Acta Crystallogr., 1983, C39(8), 1018. 225. G.V.N. Rao, Seshasayee, M. Aravamudam, & K. Radha J. Organomet. Chem., 1988, 349(3), 226. D. Dakternieks, Gia Como: Dt. Gable Robert W. Robert 305. & Bernard F. Hoskin

(100)

Cheryl S. Mancinelli, D.

227.

J. Organomet. Chem., 1977, 140(1),

donald	Titus	&	Ronald	F.
Ziolo				

11325.

228. R.J. Batchelor, F.W.B. Einstein, C.H.P. Jones & R.D. Sharma

Organometallics, 1987, 6(11), 2164.

229. John E. Drake & L.Y. Maria Wong

J. Organomet. Chem., 1989, 377(1), 43.

230. G.C. Rout, M. Seshasayee, : G Aravamudan & S. Sowrirajan

Polyhedron, 1984, 3(8), 921

231. T.N. Srivastava & M.A. Ind. J. Chem. Sect. A, 1986, 25A(8),

Siddiqui

785.

232. T.N. Srivastava, A.K.S.

Ind. J. Chem. Sect. A, 1988, 22A(8).

Chauhan & G.K. Mehrotra

712.

T.N. Srivastava, A.K.S. 233. Chauhan & G.K. Mehrotra Ind. J. Chem. Sect. A, 1985, 24A(8), 708.

234. Lars Engman & P. Cava Michael

Organometallics, 1982, 1(3), 470.

W.E. Rudzinski, T.M. 235. Aminabtavi, M.S. Birader & C.S. Patill

1Inorg. Chim Acta, 1982, 67(b), 177.

236. I.D. Sadekov, A.A.

Zh. Org. Khim., 1987, 23(3), 657.

Maksimenko, G.K.

Mehrotra & V.I. Minkin

A.K. Singh, J.K. Phosphorous Sulfur, 1988, 40 (1-2), 237. 2732. Basumuatary J. Organomet. Chem., 1988, 348(1), 63. V.I. Minkin, A.A. 238. Maksimendo, G.K. Mehrotra, A.G. Maslakov, O.E. Kompan, I.D. Sadekov, Yu. I. Struchkov & D.S. Yufit Polyhedron, 1988, 7(8), 635. 239. J.K. Basumatary, A.K. Singh, B.L. Khandelwal & W.R. Mcwhinnie 240. C.D. Desjardins, C. Lau & : Inorg. Nucl. Chem. Lett., 1984, 10(2), 151. J. Passmore Inorg. Chim. Acta., 1975, 15, 39. D.R. Armstrong, G.W. 241. Fraser & G.D. Meikle Inorg. Chem., 1974, 13, 1508. 242. H. Selig, S. Sarig & S. Abramowitz Inorg. Chem. 1973, 12, 2240. J.B. Milne & D. Moffett 243. Rodd's Chemistry of Carbon Com 244. Rodd pounds", Elsevier, Amsterdam,, Vol. IV, part E, 1977, Chap. 21; Part H (1978), Chap 40 and part K 1978 Chaps. 50, 52, 55 & 56.

245. J. Bergman L. Engman : Org. Prep. Proced. Int., 1978, 10, 289.

246. C. Knobler & R.F. Ziolo : J. Organometal. Chem., 1979, 178, 423.

Yu. V. Migalina Chem Abstr., 1979, 90, 6360. 247. J. Organometal. Chem., 1978, 157, 405. T.N. Srivastava, R.C. 248. Srivastava & M. Singh Indian J. Chem., 1979, 18A, 71. 249. T.N. Srivastava, R.C. Srivastava & H.B. Singh Indian J. Chem., 1979, 18A, 236. 250. T.N. Srivastava, R.C. Srivastava & A. Bhargava Indian J. Chem., 1979, 18A, 367. T.N. Srivastava, R.C. 251. Srivastava H.B. Singh & M. Singh J. Organometal. Chem., 1978, 146, 245. R.F. Ziolo & W.H.H. 252. Guenther Zh. Org. Khim., 1979, 15, 2596. M.L. Petrov, V.Z. Laishev : 253. & A.A. Petrov J. Hetrocycl. Chem., 1973, 10, 543. 254. M.M. Mangion, M.R. Smith & E.A. Meyers Recl. Trav. Chim. Pays-bas, 1975, 94, A. Naaktegeboren 92. Recl. Trav. Chim. Pays-bas, 1975, 94, 256. A. Zilverschoon 163. USSR 450, 806; Chem. Abstr. 82. 257. Yu.V. Migalin, I.V. 125418. Smolanka, V.I. Staninets, V.G. Lendel & I.M. Balog

C.R. Hebd Science Acad. Sci. Ser C, 258. C. Cagniant 1975, 281 187. Synthesis, 1975, 265. E. Mueller, E. Luppold & 259. W. Winter Hetrocycles Chem, 1985, (1), 71. 260. S. Gronowitz Yakugaku Zasshi, 1957, 77, 191. 261. H. Taniyama, F. Miyoshi, E. Sakakibara & H. Uchida J. Chem. Soc. Ind., 1924, 43, 3041. 262. G.T. Morgan, E.A. Cooper & F.J. Corby. New York, Med, Monatscher, 22, 223. 263. F.V. Oetele Ann. Chem., 1968, 712, 1. 264. D. Hellwinkle & G. Fahrabach J. Polym. Sc., part B, 1971, 955. 265. H.K. Linngstone & R. Krosee J. Chem. Soc. Dalton Trans., 1996, 509-266. Martin C. Crossman, Eric 511. G. Hope and Graham C. Sounders J. Chem Soc., Dalton Trans, 1998, 267. Martin C. Crossman, Eric 1813-1817. G. Hope & Lee t. Wootton J. of organometallic Chemistry 577, 268. G. Mugesh, H.B. Singh, R. 1998, 243-248. J. Butcher Inorganic Chemistry, Vol. 31, No. 8, 269. H.B. Singh, N. Sudha And 1992, 1431-1435. R.J. Butcher

270.	W. Levason, S.D. Orchard, Gillian Reid and Joan M. Street	:	J. Chem. Soc. Dalton Trans., 2000, 2537 - 3543.
271.	Klans S. Klimek, Jorg Prust, Herbert W. Roeoky, Mathias Nottemeyer and Hans. George Schmidt	:	Organometallics, 2001, 20, 2047 - 2051.
272.	Helmut Sitzmann, Dirk Sourenz, Gotthelf Wolmers hauser, Axel Klein and R. Boese	:	Organometallics, 2001, 20, 700 - 705.
273.	Soichi Sato, Norihisa Kondo, Ernst Horn and Naomichi Furukawa	:	Organometallics, 1998, 17, 1897 - 1900.
274.	H.B. Singh and N. Sudha	:	Polyhedron, Vol. 15, No. 5-6, 1996, 745 - 763.
275.	I. Haidu	:	Chem. Rev. 1994, 94, 301 - 326.
276.	R. Kaur, S.C. Menon and H.B. Singh	:	Proc. Indian Acad. Sci (Chem Sci.) Vol. 108, No. 3, 1996, 159 - 164.
277.	W. Levason, S.D. Ordhard and Gillian Reid	:	Chem. Commum., 2001, 427 - 428
278.	S.C. Menan, A. Panda H. B. Sing and R.J. Butcher	:	Chem. Commun. 2000, 143 - 144.
279.	S.C. Menon, H.B. Singh R.J. Patel and S.K. Kulshreshtha	:	J. Chem. Soc., Dalton Trans., 1996, 1203 - 1207.
	A. Panda, S.C. Menon H.	:	J. Of Organometallic chemistry, 2001,

623, 87 - 94.

(105)

B. Singh, R.J. Butcher,

CHAPTER - II

STARTING MATERI-ALS, ANALYTICAL METHODS AND EXPERIMENTAL TECHNIQUES This chapter deals with the source from where various starting materials have been obtained. There are several physico-chemical methods for the study of newly synthesized complexes are also given.

Materials

- (i) **Solvents**: E.Merck(L.R.Grade) and Ranbaxy solvents were used after purification and drying by conventional methods¹.
- (ii) Tellurium Powder: Finely divided tellurium powder received from Aldrich was used without further purification.
- (iii) Tellurium tetrachloride: Anhydrous tellurium tetrachloride was obtained from B.D.H. Other stating materials used in the present investigation, prepared either from reported methods or obtained from commercial sources as listed in table 1 and were used after purification.

Table1: Specifications and abbreviaton of materials employed.

Name	Source	Abbreviation
Salicylaldehyde	SISCO	
Isatin	SISCO	-
β-naphtol	BDH	-
3-mercapto-4-amino 1,2,4-triazole	BDH	
α-Phenyl-amino-methyl-β-naphtol	Aldrich	-
	(106)	

Experimental Techniques

A brief description of the techniques used in the investigation of the newly synthesised complexes described in the present work are given below:

- 1. Infrared Spectroscopy
- 2. Molar Conductivity Measurement
- 3. Elemental Anaysis and
- 4. X-Ray Photoelectron Spectroscopy

When infrared light is passed through a sample of a compound, some of the frequencies are absorbed, while other frequencies are transmitted through the sample without being absorbed. If we plot the absorbance or transmittance against frequency, the result is an infrared spectrum. Infrared spectrum of all these complexes were recorded in KBr or CsI on a perkin Elemer 621 and /or 782 spectrophotometer.

Cell constant X conductance

Concentration solute expressed in mol-1 cm²

Conventionally solution of 10^{-3} M strength are used for the conductance measurement. The electrical conductivities of $1x10^{-3}$ M solution in DMSO were obtained on digisun electronic conductivity bridge equilibrated at $25 \pm 0.1^{\circ}$ C.

The chemical analysis is quite helpful in fixing the stoichiometric composition of the ligands as well as its complexes. Elemental analysis of C,H,N,O and Te were carried out on semimicro scale at central Drug Research Institute, Lucknow, India.

The X-ray photoelectron spectra i.e. XPS were recorded on a VG scientific ESCA-3MKII electron spectrometer at National Chemical Laboratory, Pune-8. The Mg K α x-ray line(1253.6 eV) was used for photoexcitation. The Cu2P $_3$ (BE = 932.8 \pm 0.2) and Au4f $_{7/2}$ (BE = 83.8 \pm 0.1) lines were used to calibrate the instrument and Ag3d $_{5/2}$ (BE = 368.2 eV) was used for cross-checking 3 . All the spectra were recorded using the same spectrometer parameter of 50 eV pass energy and 4 mn slit width. The reduced full width at half maximum (FWHM) at the Au4f $_{7/2}$ (BE = 83.8 eV) level under these conditions was 1.2 eV.

The powdered sample was mixed with high purity silver powder to reduce the charging effect. A thin layer of such a sample was pressed in a gold metal gauze which was welded to nickel sample holder. The $Ag3d_{5.2}$ level (BE = 368.2 eV) obtained from this sample was sharp and did not show any observfable shift. Thus the changing of the the sample if at all present was negligible. The spectra were recorded in triplicate in the region of the interest. In the most of cases the binding energies were reproductable within ± 0.1 eV.

Preparation of (C₆H₅CH₂)₂TeI₂

A mixture of benzylchloride (2.53g, 0.02 mol, tellurium powder (1.26 g, 0.01 mol and sodium iodide (3g, 0.02 mol) was heated under reflux at 110° C

for 40 hrs. The reaction mixture was extracted with dry chloroform, the chloroform extract concentrated and the residue recrystallised from chloroform-pet ether⁴.

Preparation of (C₆H₄)₂TeCl₂

0.125 mol of biphenyl (19.25g) was heated with 0.100 mol TeCl₄ (26.89g). At 110°C HCl was evolved. The reaction was continued between 140-160°C till HCl ceased to evolved (~18hrs). The solid thus obtained was washed several times with pet-ether (60-80°C) to remove excess reactants and the product was recrystallised from dry acetone⁵.

Preparation of Bis(p-methoxyphenyl) telluriumdihalide (p- $MeOC_6H_4$)₂TeCl₂

Tellurium tetrachloride (22.5g; 0.08 mol) and anisole (45.0 g; 0.4, 0.41 mol) were heated for 6 hrs at 160°c and the mixture was concentraterd under reduced pressure to crystallization. The dichloride was recrystallized from cold acetonitrile⁷.

Yield =
$$27.5 \text{ g}$$
; 80%
m.p. = $182 - 83^{\circ}$ [Reported ($182 - 183^{\circ}$)]

Preparation of p-dimethylaminophenyl(aryl) tellurium dihalides (p- $Me_2NC_6H_4$)RTeCl₂:

The title compounds were prepared by mixing aryltelluium trichloride (109)

with dimethylkaniline at room temperature according to the following equation⁸.

RTeCl₃ +
$$\left(\begin{array}{c} Cl \\ N(CH_3)_2 \end{array}\right) \xrightarrow{24 \text{ hrs room temperature}} R - Te - \left(\begin{array}{c} Cl \\ N(CH_3)_2 \end{array}\right)$$

$$(R = p\text{-}CH_3OC_6H_4, p - C_2H_5OC_6H_4)$$

Preparation of $[(p-Me_2NC_6H_4)(p-MeOC_6H_4)]$ Te and $[p-Me_2NC_6H_4]$ (P-EtOC₆H₄]Te:

p-dimethylaminophenyl(p-mehoxyphenyl) telluride and p-dimethylaminophenyl (p-ethoxyphenyl) telluride were similarly prepared by reduction of corresponding dichlorides and had m.p. 96°c (reported 96-97°c) and 126°c (reported 126-127°c)^{9.8}.

yield = 100%

Preparation of dimethyltellurium diiodide(CH₃)₂TeI₂

In a glass bulb of 150-200 ml copacity, was sealed a mixture of 10.0g (0.07 mol) of amorphous tellurium and 22.4g (0.15mol) of methyl iodide. The sealed bulb, was kept in a water bath at 80°c for 36-48 hrs. The brittle red mars thus obtained, was powdered and extracted with chloroform. The mixture was filtered through a hot funnel to separate unreacted tellurium. The yield of dimethyltelluriumdiiodide based on the amount of crystalline solid obtained from the chloroform soluition, was about 53% It was recrystallized from a nonaquous solvent such as chloroform, benzene or acetone¹⁰.

Yield = 17.0g(53%)m.p. = $127^{0}(d)$ [Reported $127^{0}(d)$]

Preparation of p-dimethylaminopheny(p-methoxy phenyl tellurium dichloride (p-Me₂NC₆H₄) (p-MeOC₆H4) TeCl₂:

p – methoxyphenyl tellurium trichloride (34.0g,0.10mol) was intimately mixed with N, N - dimethylailine (36.0g, 0.30 mol). The reaction was exothermic, and a transient bluish green colour appeared. After 24 hrs the mixture was extracted several times with methanol, leaving a yellow crystalline residue of the dichloride. The product was recrystallised from methanol or benzene/methanol as yellow prism⁵.

Yield=32g(75%)

m.p. = 169-170°c[reported 170-172°c]

PrePararation of [(p-Me2NC6H4)(p-EtOC6H4)]TeCl2:

It was prepared similarly8.

 $m.p. = 149-150^{\circ} c[reported 153-154^{\circ}c]$

Preparation of 3-mercapto-4-β-Isatinylimino-1,2,4-trizole:

The compound is formed by reflexing 3-mercapto-4-amino-1,2,4-triazole with molar proportion of isatin in aqueous methanol.

SH
$$N = C$$

$$N = N - NH_{2} + O = C$$

$$H$$

$$3-\text{mercapto-4-amino}$$

$$1,2,4-\text{triazole}$$

$$N - N$$

$$C C - SH$$

$$H N$$

$$N - N$$

$$C C - SH$$

$$H N$$

$$N - N$$

$$C C - SH$$

$$H N$$

$$N - N$$

$$C C - SH$$

$$H N$$

3-mercapto-4- β - Isatinylimino - 1,2,4 - triazole

Procedure

About 11.6g of 3-mercapto-4-amino-1,2,4-triazole was dissolved in 50-60ml not aqueous methanol and treated with 14.8 g of isatin dissolved in 50-60ml methanol. The resulting solution was refluxed for one hour when cream yellow product separated gradually. The product was collected on a filter, washed with aqueous methanol and dried in air. The Schiff base of isatin obtained from 4-amino-triazole is less soluble in methanol or ethanol but dissolves appreciably in pyridine and dioxane. The lignad is highly soluble in DMF. The product obtained by recrystallisation it with methanol. It was found to contain N =

Preparation fo 3-mercapto-4-salicylaldimino-1,2,4-triazole:

The comound was prepared by condensing 3-mercapto-4-amino-1,2,4-triazole with equimolecular proportion of salicylaldehyde in aqueous methanol.

$$N = C$$

$$N = N - NH_{2} + OHC$$

$$H \rightarrow HO$$

3-mercapto-4-amino 1,2,4 - triazole

Salicylaldehyde

$$N = C$$

$$N = C$$

$$N = C$$

$$H$$

$$HO$$

Procedure

3-mercapto-4- Salicylaldimino - 1,2,4 - triazole

About 11.6g of mercapto-4-amino-1,2,4-triazole was refluxed with 12.2g of salicylaldehyde in 60-70ml aqueous methanol containing 2-3ml glacial acetic acid for one hour. On refluxing, a clear solution was formed within 5-10 minutes from which crystallined needles separated gradually. The refluxate on cooling at room temperature deposited cream coloured product. The product was collected on a filter and recrystsallised with dioxan-methanol mixture. The

recrystallised product was collected on a filter, washed with methanol and dried in a desiccator over $CaCl_2$. the product on analyse was found to contain N=25.34% The title product requires N=25.45%.

3-mercapto-4-salicylaldimino-5-methyl-1,2,4-triazole i.e.(5Me-salmtrH₂) and 3-mercapto-4-salicylaldimino-5 phenyl-1,2,4-triazole i.e.(5Ph-salmtrH₂) were prepared by same method as for 3-mercapto-4-salicyladimino-1,2,4-triazole; by taking 3-mercapto-4-amino-5methyl 1,2,4-triazole and 3-mercapto-4-amino-5phenyl 1,2,4-triazole respectively.

Preparation of α -phenylsalicylaldimino-methyl- β -napthol:

The compound was prepared in two steps by reported method:

- (a) Preparation of α -phenyl-amino-methyl- β -naphtol.
- (b) Condensation of α -phenyl-amino-methyl- β -naphthol with Salicylaldehyde.
- (c) Condensation of α -phenyl-aminomethyl- β -naphtol with salicylaldehyde.
- (d) α -phenyl-aminomethyl- β -naphthol was prepared by reacting β -naphthol with benzaldehyde and aminonia in hot ethanol.

CHO
$$C_6H_5$$
 - CH - NH₂
OH
+ NH₃ OH

β-naphthol Benzaldehyde $α$ -phenyl-amino- $β$ -naphtol

(114)

Procedure

About 21.2g o freshly distilled bezaldehyde was dissolved in 50 ml ethanol. Crystallined 28.8 g β – naphthol was dissolved in 150 ml hot methanol and taken in a three necked 500 ml round bottom flask fitted with a mecehanical stirrer. The solution was maintained at 90-95° and ethanolic solution of benzaledehyde and cone. ammonia (30 ml) were added dropwise from separating funnel to β naphtol solution. The addition of reactant were completed in half an hour while maintaining the temperature to 90-95°C and stirring to reaction mixture with mechanical stirrer. When the addition of benzaldehyde and ammonia was complete the resulting solution was refluxed for 4 hours on steam bath . After refluxing the volume of refluxate was reduced to ½ by distilling the alcohol as a steam bath. The concentrated solution was mixed with 500 ml of cold water when white product separated. It was collected on a filter. The residue was dried and extracted with ether the product obtained on evaporation fo ether was recrystallised with ethanol. M.P.Found : 244°c.

(b) Condensation of salicylaldehyde with α -phenyl –aminomethyl – β -naphthol easily yields the Schiff base.

Procedure

About 12.2g salicyldehyde was dissolved in 20-30ml ethanol and added to ethanolic solution of 25g of α-phenyl-aminomethyl-β-naphthol dissolved in 50ml hot ethanol. The resulting solution was treated with 2ml glacial acetic acid and refluxed on steam bath for an hour when light yellow product separated. The product was collected on a filter and washed with ethanol. Found N= 3.81% and required for titled product N=3.96%.

REFERENCES:

1. A.I.Vogel : "Pracatical Organic Chemistry" IIIrd

Ed.[London](1948)

2. R.M.Silverstein : "Spectrometric identification of Organic

Compounds"5th Ed.John Wiley & sons,

NewYork(1992)

3. Shekhar srivastava: Applied Spectros. Reviews, 1986, 22(4)401

4. Y.D.Kulkarni and: Ind. Journal of Chem., vol.24 A, 1985, 710-

S.Srivastava 712

5. Shashi Mehrotra : "Synthesis and reactivity of some

organotellurium Complexes" Ph.D. Thesis

Lucknow University, Lucknow (India).

6. F.Kraft and : Chem. Ber., 1894,27,1768,

R.E.Lyons

7. J.Bergaman : *Tetrahedran*, 1972, 28, 3323.

8. N.Petragnami : Tetrahedran, 1961,12,219.

9. H. Taniyama, F. : Chem. Astr. 51, 10407i.

Miyoshi E.Sakaki

bare and H.Uehide

10. R.H. Vernon : J.Chem.Soc.,1920,117,86

11. A.I. Vogel : Practical Organic Chemistry ELB S Longman

Green & Co.Ltd.

CHAPTER – III "COMPLEXES OF R₂TeX₂ WITH 3 MERCAPTO - 4 SALICYLALDIMINO 1, 2, 4 - TRIAZOLE"

"COMPLEXES OF R₂TeX₂ WITH 3 - MERCAPTO - 4 - SALICYLALDIMINO -1, 2, 4 - TRIAZOLE"

3-Mercapto-4-amino-1,2,4-triazole(I) is potential 'N' and 'S' donor ligand and its complexes with transition metals are well known ¹⁻⁵. The methyl derivatives 5-methyl-3-mercapto-4-amino-1,2,4-triazole(ii) and 5-phenyl-3 mercapto-4-amino-1,2,4-triazole (III) have same donor sites similar to parent ligand(I).

The NH₂ group of these triazole derivatives condenses with aldehyde or Ketone and forms Schiff base ligands with salicylaldehyde.

3 - mercapto - 4 - salicylaldimino - 1, 2, 4 - triazole i.e. abbreviated as (SalmtrH₂)

Schiff Base

5 - methyl - 3 - mercapto - 4 - salicylaldimino - 1, 2, 4 - triazole i.e. (5 - Me - SalmtrH₂)

$$C_{6}H_{5}$$
 N SH $C_{6}H_{5}$ N CHO
 $C_{6}H_{5}$ CHO
 $C_{6}H_{5}$ CHO
 $C_{6}H_{5}$ CHO
 $C_{6}H_{5}$ CHO
 $C_{6}H_{5}$ CHO
 $C_{7}H_{5}$ CHO
 CHO

Schiff Base

5 - phenyl - 3 - mercapto - 4 - salicylaldimino - 1, 2, 4 - triazole i.e. (5 - Ph - SalmtrH₂)

Although various Schiff base ligands interaction with $R_2 TeX_2$ have been studied, to know the geometry and significance of the produced complexes, the interaction of $R_2 TeX_2$ with salmtrH₂ and its derivatives Schiff base ligands have been not studied, to know the site of coordination and geometry. This chapter deals with such type of study.

Preparation of $[R_2Te(salmtr)]$ $R_2Te(5-Me-salmtr)]$ and $[R_2Te(5-Ph-sakmtr)]$ complexes:

The $R_2 TeX_2(1mmol)$ i.e. $[(C_6H_5CH_2)_2 TeI_2]$; $[(C_6H_4)_2 TeCI_2]$; $[(p-Me_2NC_6H_4)PhTeCI_2]$; $[(p-Me_2NC_6H_4)(p-Me_2NC_6H_4)PhTeCI_2]$; $[(p-Me_2NC_6H_4)(p-$

 $MeOC_6H_4)TeCl_2$]; [($p-Me_2NC_6H_4$)($p-EtOC_6H_4$)TeCl_2] and [(CH_3)_2Tel_2] was dissolved in dry methanol (30ml) and Schiff base ligand i.e. salmtrH₂ or 5-MesalmtrH₂ or 5-Ph-salmtrH₂(1mmol) was mixed in this solution. The mixture was refluxed for 3-4 hrs. The solid product was obtained filtered product was washed with pet-ether and air dried.

Preparation of $[R_2Te(salmtrH)_2]R_2Te(5-Me-salmtrH)_2]$ and $[R_2Te(5-Me-salmtrH)_2]$ complexes:

The $R_2\text{TeX}_2(1\text{mmol})$ i.e. $[(C_6H_5\text{CH}_2)_2\text{TeI}_2]; [(C_6H_4)_2\text{TeCI}_2]; [(p-\text{MeOC}_6H_4)_2\text{TeCI}_2]; [(p-\text{Me}_2\text{NC}_6H_4)\text{PhTeCI}_2]; [(p-\text{Me}_2\text{NC}_6H_4)(p-\text{MeOC}_6H_4)\text{TeCI}_2]; [(p-\text{Me}_2\text{NC}_6H_4)(p-\text{EtOC}_6H_4)\text{TeCI}_2] \text{ and } [(CH_3)_2\text{TeI}_2] \text{ was dissolved in dry methanol (40ml) and Schiff base ligand salmtrH2 or 5-MesalmtrH2 or 5-Ph-salmtrH2(2mmol) was mixed in this solution. The mixture was refluxed for two hrs. The solid product was obtained filtered washed with pet-ether and air dried.$

RESULTS AND DISCUSSION

The all prepared complexes – $[R_2\text{Te}(\text{salmtr})]$; $[R_2\text{Te}(5\text{-Me-salmtr})]$; $[R_2\text{Te}(5\text{-Me-salmtr})]$; $[R_2\text{Te}(5\text{-Me-salmtr})]$; $[R_2\text{Te}(5\text{-Me-salmtr})]$ and $[R_2\text{Te}(5\text{-Me-salmtr})]$ were found to be air stable. The observed molor conductance values of all the complexes in acetone were observed 20-30 ohm⁻¹ em² mol⁻¹ indicate that they all are non-electrolyte in nature (Table 2).

The IR spectra of 3-mercapto 4-salicylaldimino-1,2,4,-triazole i.e.

(salmtrH₂) contains a phenolic OH and a mercapto sulphur capable of existing in Retoenol tautomeric form:-

The IR bands position of ligand salmtrH₂ are listed in table the ligand displays a medium band at 3230 cm⁻¹ asssignable to ν (OH) of phenolic hydroxygroup and sharp band at 3115 cm⁻¹ attributable to ν N-H group. The absence of ν S-H in the region 2400-2850 cm⁻¹ indicate that ligands exclusively exists in thion tautomer rather than thiol form. The free ligand displays ν C=N aldimino part at 1615 cm⁻¹. The ν C=N vibration is shifted to higher frequency

$$CH=N-N C=N$$

$$C=N$$

$$C=N$$

$$C=N$$

$$C=N$$

$$R$$

 $R^1 = H$, Me, Ph

Structure of [R₂Te(Salmtr)], [R₂Te(5 - Me - Salmtr)] and [R₂Te(5 - Ph - Salmtr)] complexes

$$CH=N-N$$

$$C=N$$

$$C=N$$

$$C=N$$

$$C=N$$

$$R$$

$$SH$$

$$C=N$$

 $R^1 = H$, Me, Ph

Structure of $[R_2\text{Te}(\text{SalmtrH})_2]$, $[R_2\text{Te}(5 - \text{Me - SalmtrH})_2]$ and $[R_2\text{Te}(5 - \text{Ph - SalmtrH})_2]$ complexes

and observed as broad and strong bands due to mixing of VC=N of triazole ring. The thioamide band I of free ligand is observed at 1536 cm⁻¹, Thioamide band II is observed at 1342 cm⁻¹. The $\delta(OH)$ of free ligand is assigned to a bond at 1320cm⁻¹. The VC-O phenolic group is assigned to a band at 1145 cm⁻¹. The thiomide bands III and IV of free ligand are attributed to IR bands at 1232 and 940cm⁻¹.

Table 1: IR spectral bands of ligand SalmtrH₂

Band Position		Assignments
3250 m	ę	υОН
3115 a		υNH
3060 w		υCH Phenyl group

Continue of Table 1......

Continue of 140te 1	
2980 w	υCH side chain
1635 s	ν CN+ ν C=C
1568 m	Phenyl ring skeletal
1536 s	δNH +thiomideI
1482 m ¬	- δNHring+phenylring
1445 vs	skeletal vibration
1342 s	thiomide band II
1320 w	δOH phenolic
1278 va	vc-n
1232 m	thiomide band III
1215 s	vc-c
1200 s	UN-N
1145 m	vc-o
1125 s –	phenyl and
1050 s	triazole ring
1030 m	VC-C and VC-N
962 s	band
940 vs	thioamide band IV
820 s ¬	phenyl ring (C-H) and.
805 vs	triazole ring (N-H) and
758 s	(C-H) out of plane
730 s	bending band
700 m ¬	phenyl ring and

Continue of Table 1......

660 a		
610 m		
578 s		
540 w		
490 m		
465 m		
430 w		
375 w	Tayon and the same state of th	
278 m _	The state of the s	

triazole ring deformation
vibrations + thioamide
group deformation
vibrations

W = weak; m= medium; s= strong; vs = very strong

The VC=N frequency of $[R_2Te(salmtr)]$, $R_2Te(5-Me-salmtr)]$ and $R_2Te(5-Ph-salmtr)]$ complex have shown bands at 1655-1632-1 cm $^{-1}$ which was same asin their Schiff base ligand, suggesting noninvolument of nitrogen atom group of VC in coordination. But the VC=N frequency band in $[R_2Te(salmtrH)_2]$, $[R_2Te(5-Me-salmtrH)_2]$ and $[R_2Te(5-Ph-salmtrH)_2]$ complexes have shown at 1620-1610 cm $^{-1}$ which normally appeared at 1655-1632 cm $^{-1}$ in their Schiff vase ligands, suggesting ivolument of VC=N group, nitrogen to the tellurium metal ion. The $\delta(OH)$ of free ligand is assigned to a band at 1320 cm $^{-1}$, disappeared in all these prepared complexes. The VC-O phenolic group is assigned to a band at 1145cm $^{-1}$ which shifts to higher wave number and observed around 1350-1370cm $^{-1}$.

In $[R_2\text{Te (salmtr)}]$, $R_2\text{Te (5 - Me (salmtr)}]$ and $[R_2\text{Te (5 - Ph - salmtr)}]$

complexes.

The thioamide bands which appear in free ligand attributed at 1232 and 940 cm⁻¹ the former band shifts to higher wave number and latter move around 820-840 cm⁻¹. The major shift of thioamide band (which appear at 940 cm⁻¹) in the complexes is attributed to deprotonation of thiol SH and bonding of thioamede group through deprotonated thio sulphur atom of the ligand molecule. But in [R₂Te(salmtrH)₂], R₂Te(5-Te-salmtrH)₂] and [R₂Te(5-Ph-salmtrH)₂] complexes the thioamide bands which appears at 1232 and 940 cm⁻¹ in the free ligand have shown no change suggesting non-involvument of SH group in the complexation. In far IR UTe-C was observed 560-540 cm⁻¹ in all these prepared complexes.

The X-ray photoelectron spectra data for $Te3d_{3\cdot 2}$, $_{5\cdot 2}$, N1s, O1s and 2p are listed in table 3. It was noticed that $Te3d_{3\cdot 2}$, $_{5\cdot 2}$ binding energy value decrease with respect to their R_2TeX_2 ; suggesting increase of electron density on tellurium metal ion due to coordination. (Fig 1 to 7).

In complexes [R₂Te(salmtr)] [R₂Te(5-Me-salmtr)] and [R₂Te(5-ph-salmtr)] O₁s and s2p binding energy values were observed more than their respective Schiff base ligand suggesting involument of oxygen and sulphur atom in the complexation. But during the analysis of N1s binding energy data, it was observed, no change in BE value with respect to their respective Schiff base ligand. Suggesting noninvolvement of nitrogen (of VC=N gp) in the complexation⁸. (Fig. 8)

During the study of $[R_2\text{Te}(\text{salmtrH})_2]$, $[R_2\text{Te}(5\text{-Me-salmtrH})_2]$, and $[R_2\text{Te}(5\text{-Ph-salmtrH})_2]$, it was observed that O1s and N1s binding energies values were increase with respect to their respective Schiff base light, while S2p binding energy values were observed same as in ligand. These observations concluded the involuement of nitrogen and oxygen atom, not sulphur atom in the complexation of these complexes (Fig 10).

Further it was noticed that all these prepared complexes have not shown X2p (X = Cl or I) photoelectron peak, suggesting their absence in the complexes.

On the badis of elemental analysis, molar conductivity IR and XPS data , the geometry of these complexes can be concluded and as shown in fig. i.e. trigonal bipyramidal in $[R_2\text{Te}(\text{Samtr})]$ and Pseudooctahedral in $[R_2\text{Te}(\text{Samtr}H)_2]$ complexes.

Geometry of [R₂Te(Samtr)] and [R₂Te.(SamtrH)]

Table-3 Te3d_{3/2}, 5/2; NIs, OIs and S2p binding energies(eV) in R₂TeX₂, [R₂Te(salmtr)₂] and [R₂Te(salmtrH)₂] complexes.

Ligand and Complexes SalmtrH ₂ 5-Me- SalmtrH ₂ (C ₆ H ₅ CH ₂) ₂ Tel ₂ [(C ₆ H ₅ CH ₂) ₂ Te(Salmtr)] [(C ₆ H ₅ CH ₂) ₂ Te(Salmtr)] [(C ₆ H ₅ CH ₂) ₂ Te(SheSalmtr)] [(C ₆ H ₅ CH ₂) ₂ Te(She-Salmtr)] [(C ₆ H ₅ CH ₂) ₂ Te(She-SalmtrH) ₂] [(C ₆ H ₅ CH ₂) ₂ Te(She-SalmtrH) ₂] [(C ₆ H ₅ CH ₂) ₂ Te(She-SalmtrH) ₂] [(C ₆ H ₃ CH ₂) ₂ Te(She-SalmtrH) ₂] [(C ₆ H ₃) ₂ Te(Salmtr)] [(C ₆ H ₄) ₂ Te(Salmtr)] [(C ₆ H ₄) ₂ Te(Salmtr)]

Continue of Table 3

16.	[(C ₆ H ₄) ₂ Te(SalmtrH) ₂]	584.2	574.0	402.6	534.6	165.2
17.	[(C ₆ H ₄) ₂ Te(SalmtrH) ₂]	584.2	574.0	402.6	534.6	165.2
18.	[(p-MeOC ₆ H ₄) ₂ TeCl ₂	585.6	575.6	4	ŧ	8
19.	[(p-MeOC ₆ H ₄) ₂ Te(Salmtr)]	584.2	574.0	399.4	534.6	166.4
20.	[(p-MeOC ₆ H ₄) ₂ Te(5Me-Salmtr)]	584.2	574.0	399.4	534.6	166.4
21.	[(p -MeOC ₆ H ₄) ₂ Te(5Ph-Salmtr)]	584.2	574.0	399.4	534.6	166.4
22.	$[(p \text{-MeOC}_6H_4)_2\text{Te}(\text{SalmtrH})_2]$	584.2	574.0	402.6	534.6	165.2
23.	$[(p \text{-MeOC}_6H_4)_2\text{Te}(5\text{Me-SalmtrH})_2]$	584.2	574.0	402.6	534.6	165.2
24.	[(p -MeOC ₆ H ₄) ₂ Te(5Ph-SalmtrH) ₂]	584.2	574.0	402.6	534.6	165.2
25.	[(p -Me ₂ NC ₆ H ₄)C ₆ H ₅ TeCl ₂]	585.6	575.6	ī	t	1
26.	[(p -Me ₂ NC ₆ H ₄)(C ₆ H ₅)Te(salmtr)]	584.4	574.2	399.4	534.6	166.4
27.	[(p -Me ₂ NC ₆ H ₄)(C ₆ H ₅)Te(5Me-salmtr)]	584.4	574.2	399.4	534.6	166.4
28.	[(p -Me ₂ NC ₆ H ₄)(C ₆ H ₅)Te(5Ph-salmtr)]	584.4	574.2	399.4	534.6	166.4
29.	[(p -Me ₂ NC ₆ H ₄)C ₆ H ₅ Te(salmtrH) ₂]	584.4	574.2	402.6	534.6	165.2
30.	[(p -Me ₂ NC ₆ H ₄)C ₆ H ₅ Te(5Me-salmtrH) ₂]	584.4	574.2	402.6	534.6	165.2
31.	[(p -Me ₂ NC ₆ H ₄)C ₆ H ₅ Te(5Ph-salmtrH) ₂]	584.4	574.2	402.6	534.6	165.2
32.	$[(p - Me_2NC_6H_4)(p - MeOC_6H_4)TeCl_2]$	585.8	575.4	er de de de la companya de la compa	 O TO Programme may be defended on a state from Account of the Programme and a state of the state	And continued and the property of the continued and the continued
33.	[(p -Me ₂ NC ₆ H ₄)(p -MeOC ₆ H ₄)Te(salmtr)]	584.2	574.0	399.4	534.6	166.4
34.	[(p -Me ₂ NC ₆ H ₄)(p -MeOC ₆ H ₄)Te(5Me salmtr)]	584.2	574.0	399.4	534.6	166.4
35.	[(p -Me ₂ NC ₆ H ₄)(p -MeOC ₆ H ₄)Te(5Ph- salmtr)]	584.2	574.0	399.4	534.6	166.4

Continue of Table 3

26H4)Te(salmtrH)2 584.2 36H4)Te(salmtrH)2 584.2 36H4)Te(salmtrH)2 585.4 36H4)Te(salmtrH)2 584.2 36H4)Te(salmtr)3 584.2 36H4)Te(5Ph- salmtr)3 584.2 36H4)Te(5Ph- salmtrH)2 584.2 36H4)Te(5Ph-salmtrH)2 584.2 44)Te(5Ph-salmtrH)2 584.2 584.2 584.2							
[(p -Me ₂ NC ₆ H ₄)(p -MeOC ₆ H ₄)Te(salmtrH) ₂] 584.2 [(p -Me ₂ NC ₆ H ₄)(p -MeOC ₆ H ₄)Te(salmtrH) ₂] 584.2 [(p -Me ₂ NC ₆ H ₄)(p -EtOC ₆ H ₄)Te(SMe salmtr)] 584.2 [(p -Me ₂ NC ₆ H ₄)(p -EtOC ₆ H ₄)Te(5Me salmtr)] 584.2 [(p -Me ₂ NC ₆ H ₄)(p -EtOC ₆ H ₄)Te(5Me salmtrH) ₂] 584.2 [(p -Me ₂ NC ₆ H ₄)(p -EtOC ₆ H ₄)Te(5Me salmtrH) ₂] 584.2 [(p -Me ₂ NC ₆ H ₄)(p -EtOC ₆ H ₄)Te(5Me salmtrH) ₂] 584.2 [(p -Me ₂ NC ₆ H ₄)(p -EtOC ₆ H ₄)Te(5Me salmtrH) ₂] 584.2 (CH ₃) ₂ Te(₅ Salmtr)] 584.2 (CH ₃) ₂ Te(₅ Salmtr)] 584.2 [(CH ₃) ₂ Te(₅ Sh-salmtr)] 584.2 ((CH ₃) ₂ Te(₅ Sh-salmtr) ₂] 584.2 ((CH ₃) ₂ Te(₅ Sh-salmtr) ₂] 584.2	36.	$[(p - Me_2NC_6H_4)(p - MeOC_6H_4)Te(salmtrH)_2]$	584.2	574.0	402.8	534.6	165.2
[(p -Me ₂ NC ₆ H ₄)(p -MeOC ₆ H ₄)Te(salmtrH) ₂] 584.2 [(p -Me ₂ NC ₆ H ₄)(p -EtOC ₆ H ₄)Te(Salmtr)] 584.2 [(p -Me ₂ NC ₆ H ₄)(p -EtOC ₆ H ₄)Te(5Me salmtr)] 584.2 [(p -Me ₂ NC ₆ H ₄)(p -EtOC ₆ H ₄)Te(5Me salmtr)] 584.2 [(p -Me ₂ NC ₆ H ₄)(p -EtOC ₆ H ₄)Te(5Me salmtrH) ₂] 584.2 [(p -Me ₂ NC ₆ H ₄)(p -EtOC ₆ H ₄)Te(5Me salmtrH) ₂] 584.2 [(p -Me ₂ NC ₆ H ₄)(p -EtOC ₆ H ₄)Te(5Me salmtrH) ₂] 584.2 (CH ₃) ₂ Tel ₂ [(CH ₃) ₂ Tel ₂ [(CH ₃) ₂ Te(5Me salmtr)] 584.2 ((CH ₃) ₂ Te(5Me salmtr)] 584.2 ((CH ₃) ₂ Te(5Me salmtr)] 584.2 ((CH ₃) ₂ Te(5Me salmtrH) ₂] 584.2	37.	$[(p - Me_2NC_6H_4)(p - MeOC_6H_4)Te(salmtrH)_2]$	584.2	574.0	402.8	534.6	165.2
[(p -Me ₂ NC ₆ H ₄)(p -EtOC ₆ H ₄)TeCl ₂] 585.4 [(p -Me ₂ NC ₆ H ₄)(p -EtOC ₆ H ₄)Te(salmtr)] 584.2 [(p -Me ₂ NC ₆ H ₄)(p -EtOC ₆ H ₄)Te(5Me salmtr)] 584.2 [(p -Me ₂ NC ₆ H ₄)(p -EtOC ₆ H ₄)Te(salmtrH) ₂] 584.2 [(p -Me ₂ NC ₆ H ₄)(p -EtOC ₆ H ₄)Te(5Me salmtrH) ₂] 584.2 [(p-Me ₂ NC ₆ H ₄)(p-EtOC ₆ H ₄)Te(5Me salmtrH) ₂] 584.2 [(CH ₃) ₂ Te(salmtr)] 584.2 [(CH ₃) ₂ Te(salmtr)] 584.2 [(CH ₃) ₂ Te(salmtr)] 584.2 [(CH ₃) ₂ Te(she salmtr)] 584.2 [(CH ₃) ₂ Te(she salmtrH) ₂] 584.2 [(CH ₃) ₂ Te(she salmtrH) ₂] 584.2	38.	$[(p - Me_2NC_6H_4)(p - MeOC_6H_4)Te(salmtrH)_2]$	584.2	574.0	402.8	534.6	165.2
[(p -Me ₂ NC ₆ H ₄)(p -EtOC ₆ H ₄)Te(salmtr)] 584.2 [(p -Me ₂ NC ₆ H ₄)(p -EtOC ₆ H ₄)Te(5Me salmtr)] 584.2 [(p -Me ₂ NC ₆ H ₄)(p -EtOC ₆ H ₄)Te(5Me salmtrH) ₂] 584.2 [(p -Me ₂ NC ₆ H ₄)(p -EtOC ₆ H ₄)Te(5Me salmtrH) ₂] 584.2 [(p-Me ₂ NC ₆ H ₄)(p -EtOC ₆ H ₄)Te(5Me salmtrH) ₂] 584.2 (CH ₃) ₂ Te(2 585.6 [(CH ₃) ₂ Te(5Me salmtr)] 584.2 [(CH ₃) ₂ Te(5Me salmtr)] 584.2 [(CH ₃) ₂ Te(5Me salmtrH) ₂] 584.2 [(CH ₃) ₂ Te(5Me salmtrH) ₂] 584.2 [(CH ₃) ₂ Te(5Me salmtrH) ₂] 584.2	39.	$[(p - Me_2NC_6H_4)(p - EtOC_6H_4)TeCl_2]$	585.4	575.6		ŧ	8
[(p -Me ₂ NC ₆ H ₄)(p -EtOC ₆ H ₄)Te(5Me salmtr)] 584.2 [(p -Me ₂ NC ₆ H ₄)(p -EtOC ₆ H ₄)Te(5Ph- salmtrH) ₂] 584.2 [(p -Me ₂ NC ₆ H ₄)(p -EtOC ₆ H ₄)Te(5Me salmtrH) ₂] 584.2 [(p -Me ₂ NC ₆ H ₄)(p -EtOC ₆ H ₄)Te(5Ph-salmtrH) ₂] 584.2 (CH ₃) ₂ Te(salmtr)] 584.2 (CH ₃) ₂ Te(salmtr)] 584.2 (CH ₃) ₂ Te(5Ph-salmtr)] 584.2 (CH ₃) ₂ Te(5Ph-salmtr)] 584.2 (CH ₃) ₂ Te(salmtrH) ₂] 584.2 (CH ₃) ₂ Te(salmtrH) ₂] 584.2 (CH ₃) ₂ Te(salmtrH) ₂] 584.2	40.	$[(p - Me_2NC_6H_4)(p - EtOC_6H_4)Te(salmtr)]$	584.2	574.2	399.4	534.6	166.4
[(p -Me ₂ NC ₆ H ₄)(p -EtOC ₆ H ₄)Te(5Ph- salmtr)] 584.2 [(p -Me ₂ NC ₆ H ₄)(p -EtOC ₆ H ₄)Te(5Me salmtrH) ₂] 584.2 [(p-Me ₂ NC ₆ H ₄)(p-EtOC ₆ H ₄)Te(5Me salmtrH) ₂] 584.2 (CH ₃) ₂ TeI ₂ 584.2 (CH ₃) ₂ Te(salmtr)] 584.2 (CH ₃) ₂ Te(5Me salmtr)] 584.2 (CH ₃) ₂ Te(5Ph-salmtr)] 584.2 (CH ₃) ₂ Te(5Ph-salmtr)] 584.2 (CH ₃) ₂ Te(salmtrH) ₂] 584.2 (CH ₃) ₂ Te(salmtrH) ₂] 584.2 (CH ₃) ₂ Te(salmtrH) ₂] 584.2	41.	[$(p - Me_2NC_6H_4)(p - EtOC_6H_4)Te(5Me salmtr)$]	584.2	574.2	399.4	534.6	166.4
(p -Me ₂ NC ₆ H ₄)(p -EtOC ₆ H ₄)Te(salmtrH) ₂] 584.2 (fp-Me ₂ NC ₆ H ₄)(p-EtOC ₆ H ₄)Te(5Me salmtrH) ₂] 584.2 (CH ₃) ₂ Tel ₂ 585.6 (CH ₃) ₂ Tel ₂ 584.2 (CH ₃) ₂ Te(salmtr)] 584.2 (CH ₃) ₂ Te(5Me salmtr)] 584.2 (CH ₃) ₂ Te(5Ph-salmtr)] 584.2 (CH ₃) ₂ Te(5Ph-salmtr)] 584.2 (CH ₃) ₂ Te(salmtrH) ₂] 584.2 (CH ₃) ₂ Te(salmtrH) ₂] 584.2	42.	$[(p - Me_2NC_6H_4)(p - EtOC_6H_4)Te(5Ph - salmtr)]$	584.2	574.2	399.4	534.6	166.4
[(p-Me ₂ NC ₆ H ₄)(p-EtOC ₆ H ₄)Te(5Me salmtrH) ₂] 584.2 [(p-Me ₂ NC ₆ H ₄)(p-EtOC ₆ H ₄)Te(5Ph-salmtrH) ₂] 584.2 (CH ₃) ₂ Te(salmtr)] 584.2 [(CH ₃) ₂ Te(5Me salmtr)] 584.2 [(CH ₃) ₂ Te(5Ph-salmtr)] 584.2 [(CH ₃) ₂ Te(salmtrH) ₂] 584.2 [(CH ₃) ₂ Te(salmtrH) ₂] 584.2 [(CH ₃) ₂ Te(salmtrH) ₂] 584.2	43.	$[(p - Me_2NC_6H_4)(p - EtOC_6H_4)Te(salmtrH)_2]$	584.2	574.2	402.8	534.6	165.2
(P-Me ₂ NC ₆ H ₄)(p-EtOC ₆ H ₄)Te(5Ph-salmtrH) ₂] 584.2 (CH ₃) ₂ TeI ₂ 584.2 [(CH ₃) ₂ Te(salmtr)] 584.2 [(CH ₃) ₂ Te(5Ph-salmtr)] 584.2 [(CH ₃) ₂ Te(5Ph-salmtrH) ₂] 584.2 [(CH ₃) ₂ Te(salmtrH) ₂] 584.2 [(CH ₃) ₂ Te(5Me salmtrH) ₂] 584.2	44.	$[(p-Me_2NC_6H_4)(p-EtOC_6H_4)Te(5Me salmtrH)_2]$	584.2	574.2	402.8	534.6	165.2
(CH ₃) ₂ Tel ₂ 585.6 [(CH ₃) ₂ Te(salmtr)] 584.2 [(CH ₃) ₂ Te(5Me salmtr)] 584.2 [(CH ₃) ₂ Te(5Ph-salmtr)] 584.2 [(CH ₃) ₂ Te(5Ph-salmtrH) ₂] 584.2 [(CH ₃) ₂ Te(5Me salmtrH) ₂] 584.2	45.	[(p-Me ₂ NC ₆ H ₄)(p-EtOC ₆ H ₄)Te(5Ph-salmtrH) ₂]	584.2	574.2	402.8	534.6	165.2
[(CH ₃) ₂ Te(salmtr)] 584.2 [(CH ₃) ₂ Te(5Me salmtr)] 584.2 [(CH ₃) ₂ Te(5Ph-salmtr)] 584.2 [(CH ₃) ₂ Te(salmtrH) ₂] 584.2 [(CH ₃) ₂ Te(5Me salmtrH) ₂] 584.2	46.	(CH ₃) ₂ Tel ₂	585.6	575.8	enandalististis di distributura compressona della Riccia (della cossissione della cossissione).	E E	4
[(CH ₃) ₂ Te(5Me salmtr)] 584.2 [(CH ₃) ₂ Te(5Ph-salmtr)] 584.2 [(CH ₃) ₂ Te(salmtrH) ₂] 584.2 [(CH ₃) ₂ Te(5Me salmtrH) ₂] 584.2	47.	[(CH ₃) ₂ Te(salmtr)]	584.2	574.2	399.4	534.6	166.4
[(CH ₃) ₂ Te(5Ph-salmtr)] 584.2 [(CH ₃) ₂ Te(salmtrH) ₂] 584.2 [(CH ₃) ₂ Te(5Me salmtrH) ₂] 584.2	48.	[(CH ₃) ₂ Te(5Me salmtr)]	584.2	574.2	399.4	534.6	166.4
[(CH ₃) ₂ Te(salmtrH) ₂] 584.2 [(CH ₃) ₂ Te(5Me salmtrH) ₂] 584.2	49.	[(CH ₃) ₂ Te(5Ph-salmtr)]	584.2	574.2	399.4	534.6	166.4
. [(CH ₃) ₂ Te(5Me salmtrH) ₂] 584.2	50.	[(CH ₃); Te(salmtrH);]	584.2	574.2	402.8	534.6	165.2
	51.	[(CH ₃) ₂ Te(5Me salmtrH) ₂]	584.2	574.2	402.8	534.6	165.2
584.2	52.	[(CH ₃) ₂ Te(5Ph-salmtrH) ₂]	584.2	574.2	402.8	534.6	165.2

Table 2:- Elemental and molar conductivity data of $[R_2Te(sulmtr)]$ and $[R_2Te(sulmtrH)_2]$ complexes.

Continue of Table 2

8.	[(C ₆ H ₅ CH ₂) ₂ Te(5-Me Salmtr)]	24.8	56.2	4.2	5.4	24
		(24.8)	(56.0)	(4.2)	(5.4)	
9.	[(C ₆ H ₄) ₂ Te(5-Me Salmtr)]	26.2	54.4	3.0	5.4	26
		(26.4)	(54.6)	(3.3)	(5.8)	
10.	[(p -MeOC ₆ H ₄) ₂ Te(5-Me Salmtr)]	24.1	54.2	4.0	5.0	28
		(24.0)	(54.3)	(4.1)	(5.2)	
=	[(p -MeNC ₆ H ₄)C ₆ H ₅ Te(5-Me Salmtr)]	22.8	51.4	4.1	12.4	24
		(22.9)	(51.7)	(4.1)	(12.5)	
12.	$[(p - Me_2NC_6H_4)(p - MeOC_6H_4)Te(5Me Salmtr)]$	22.4	53.6	4.2	7.2	20
		(22.8)	(53.7)	(4.4)	(7.5)	
13.	[$(p - Me_2NC_6H_4)(p - EtOC_6H_4)Te(5Me-Salmtr)$]	22.0	54.2	4.6	7.2	16
		(22.2)	(54.4)	(4.7)	(7.3)	
14.	[(CH3)2Te(5-Me-Salmtr)]	35.4	40.2	4.0	7.4	. 81
		(35.8)	(40.4)	(3.9)	(7.8)	
15.	[(C ₆ H ₅ CH ₂) ₂ Te(5Ph-Salmtr)]	26.8	52.4	5.2	5.4	16
		(26.8)	(52.1)	(5.0)	(8.8)	
16.	[(C ₆ H ₄) ₂ Te(5Ph-Salmtr)]	23.2	59.4	3.4	5.4	16
		(23.4)	(59.4)	(3.2)	(5.1)	
17.	[(p -MeOC ₆ H ₄) ₂ Te(5-Ph Salmtr)]	20.2	55.2	3.8	4.2	20
		(20.0)	(55.4)	(3.8)	(4.4)	

Continue of Table 2

	Samuel and the same of the sam					
18.	$[(p \text{ -MeNC}_6H_4)C_6H_5\text{Te}(5\text{-Ph SalmtrH})_2]$	24.4	43.2	4.3	8.0	26
		(24.2)	(43.2)	(4.7)	(7.9)	
19.	$[(p - Me_2NC_6H_4)(p - MeOC_6H_4)Te(5-Ph Salmtr)]$	20.2	58.4	4.2	9.9	22
		(20.5)	(58.0)	(4.3)	(6.7)	
20.	[$(p - Me_2NC_6H_4)(p - EtOC_6H_4)Te(5-Ph salmtr)$]	23.8	69.2	5.4	7.6	15
		(23.8)	(69.5)	(5.4)	(7.8)	
21.	[(CH ₃) ₂ Te(5-Ph Salmtr)]	30.0	48.0	3.6	6.5	20
		(30.1)	(48.1)	(3.8)	(9.9)	
22.	[(C ₆ H ₅ CH ₂) ₂ Te(SalmtrH) ₂]	18.2	55.2	4.1	8.1	22
		(18.4)	(55.5)	(4.0)	(8.0)	
23.	[(C ₆ H ₄) ₂ Te(SalmtrH) ₂]	19.2	54.2	3.2	8.2	24
		(19.3)	(54.4)	(3.3)	(8.4)	
24.	[(p -MeOC ₆ H ₄) ₂ Te(SalmtrH) ₂]	17.4	53.2	3.8	7.6	26
		(17.6)	(53.0)	(3.9)	(7.7)	
25.	[(p -MeOC ₆ H ₄)(C ₆ H ₅)Te(salmtrH) ₂]	18.2	54.2	4.0	9.4	14
		(18.0)	(54.3)	(4.1)	(6.9)	
26.	[(p - Me2NC6H4)(p - MeOC6H4)Te(salmtrH)2]	17.2	53.4	4.0	9.2	18
		(17.3)	(53.8)	(4.2)	(9.5)	The content of the co
27.	[$(p - Me_2NC_6H_4)(p - EtOC_6H_4)Te(salmtrH)_2$]	16.8	54.2	4.2	9.2	20
		(16.9)	(54.4)	(4.4)	(9.3)	*

Continue of Tuble 2

	The contributions is a contribution of the con			to the second section of the section	The state of the s		
28.	$[(CH_3)_2Te(salmtrH)_2]$	23.4	44.2	3.6	10.2	22	
		(23.6)	(44.4)	(3.7)	(10.4)		
29.	[(C ₆ H ₅ CH ₂) ₂ Te(5-Me SalmtrH) ₂]	17.6	56.4	4.2	7.6	12	
		(17.7)	(56.7)	(4.4)	(7.8)		
30.	$[(C_6H_4)_2Te(5-Me SalmtrH)_2]$	18.2	55.6	3.6	8.0	01	
		(18.5)	(55.7)	(3.8)	(8.1)		
31.	[$(p - MeOC_6H_4)_2Te(5-Me SalmtrH)_2$]	16.8	54.2	4.0	7.2	81	
		(16.9)	(54.3)	(4.2)	(7.4)		
32.	[(p -MeOC ₆ H ₄)C ₆ H ₅ Te(5-Me SalmtrH) ₂]	17.0	55.2	4.8	9.4	91	
		(17.3)	(55.5)	(4.9)	(6.5)		
33.	$[(p-Me_2NC_6H_4)(p-MeOC_6H_4)Te(5-Me SalmtrH)_2]$	16.4	54.4	4.2	0.6	14	
		(16.7)	(54.9)	(4.6)	(9.2)		
34.	$[(p - Me_2NC_6H_4)(p-EtOC_6H_4)Te(5-Me SalmtrH)_2]$	16.2	55.2	4.6	8.4	22	
		(16.4)	(55.5)	(4.8)	(8.9)		
35.	[(CH ₃) ₂ Te(5-Me SalmtrH) ₂]	22.2	46.4	4.0	9.4	22	
		(22.4)	(46.5)	(4.2)	(8.8)	And the gold of the gold of the second of th	
36.	[(C ₆ H ₅ CH ₂) ₂ Te(5-Ph SalmtrH) ₂]	15.0	62.4	4.0	6.3	24	
		(15.1)	(62.6)	(4.3)	(9.9)		
37.	[(C ₆ H ₄) ₂ Te(5-Ph SalmtrH) ₂]	15.6	8.19	3.4	6.4	26	
mesons on the second	· ·	(15.7)	(6.19)	(3.6)	(8.9)	1	
I worker of the							

Continue of Table 2

		The same of the sa	The same and the same of the s	The state of the s	The state of the s	
38.	38. $[(p - MeOC_6H_4)_2Te(5-Ph SalmtrH)_2]$	14.2	60.2	4.0	6.2	20
		(14.6)	(14.6) (60.3) (4.1)	(4.1)	(6.4)	
39.	39. [(p -MeOC ₆ H ₄)C ₆ H ₅ Te(5-Ph SalmtrH) ₂]	14.4 61.2	61.2	4.2	8.0	22
		(14.9)	(14.9) (61.5)	(4.3)	(8.2)	
40.	40. [(p -Me ₂ NC ₆ H ₄)(p-MeOC ₆ H ₄)Te(5-Ph SalmtrH) ₂] 14.2	14.2	60.2	4.1	7.6	24
		(14.3)	(14.3) (60.8)	(4.3)	(7.8)	
41.	41. [(p-Me ₂ NC ₆ H ₄)(p-EtOC ₆ H ₄)Te(5-Ph SalmtrH) ₂] 14.0 61.0	14.0	61.0	4.4	7.2	28
		(14.1)	(14.1) (61.1)	(4.5)	(7.7)	
42.	42. [(CH ₃) ₂ Te(5-Ph SalmtrH) ₂]	18.2	18.2 55.2	4.0	8.0	26
		(18.4)	(18.4) (55.5)	(4.0)	(8.0)	

Fig 1 : Te $3d_{3/2}$ binding energies (ev) in $(C_6H_5CH_2)_2$ Te I_2 [$(C_6H_5CH_2)_2$ Te(Salmtr)] and [$(C_6H_5CH_2)_2$ Te.(SalmtrH) $_2$]

Fig 2: Te 3d_{3/2} binding energies (ev) in $(C_6H_4)_2$ Te Cl_2 , $[(C_6H_4)_2$ Te(Salmtr)] and $[(C_6H_4)_2$ Te.(SalmtrH)₂]

Fig 3: Te $3d_{3/2}$ binding energies (ev) in [(p-MeOC₆H₄)₂ Te Cl₂] [(p-MeOC₆H₄)₂Te(Salmtr)] and [(p-MeOC₆H₄)₂Te.(SalmtrH)₂]

Fig 4: Te $3d_{3/2}$ binding energies (ev) in [(p-Me₂NC₆H₄) C₆H₅ Te Cl₂], [(p-Me₂NC₆H₄)(C₆H₅)Te(Salmtr)] and [(p-Me₂NC₆H₄)(C₆H₅)Te.(SalmtrH)₂]

Fig 5 : Te 3d_{3/2} binding energies (ev) in [(p-Me₂NC₆H₄)(p-MeOC₆H₄) Te Cl₂]; [(p-Me₂NC₆H₄)(p-MeOC₆H₄)Te(Salmtr)] and [(p-Me₂NC₆H₄)(p-MeOC₆H₄)(SalmtrH)₂]

Fig 6 : Te $3d_{3/2}$ binding energies (ev) in [(p-Me₂NC₆H₄)(p-EtOC₆H₄) Te Cl₂] [(p-Me₂NC₆H₄)(p-EtOC₆H₄)Te(Salmtr)] and [(p-Me₂NC₆H₄)(p-EtOC₆H₄)Te.(SalmtrH)₂]

Fig 7 : Te 3d_{3/2} binding energies (ev) in $[(CH_3)_2 \text{ Te } I_2]$; $[(CH_3)_2 \text{Te}(Salmtr)]$ and $[(CH_3)_2 \text{Te}.(SalmtrH)_2]$

Fig 8: N1s photoelectron peak in ligands, $[R_2\text{Te.}(L)]$ and $[(R_2)\text{Te.}(LH)_2]$ complexes

Fig 9 : O1s binding energies in Ligands $[R_2\text{Te.(L)}]$ and $[R_2\text{Te.(LH)}_2]$

Fig 10 : S2p binding energies (ev) in Ligands; $[R_2\text{Te.}(L)]$ and $[R_2\text{Te.}(LH)_2]$ complexes

References:

1.	J.P.Srivastava,	J.Inorg. Nucl. Chem., 39,
	B.K.Sinha, R.Singh	1797(1977).
	and L.K.Mishra	
2.	R.V.Gadag and	Indian J.Chem., 16A, 703(1978)
	M.R.Gajendragad	
3.	M.R. Gajendragad and	Z.anorg. allgem. Chem., 84,
	U.Agarwala	415(1975)
4.	B.N.Keshri and L.K.Mishra	J.Indian Chem. Soc., 58,
		1149(1981)
5.	B.K.Gupta, D.S.Gupta,	Indian J.Chem. 15A, 624(1977)
	S.K.Dikshit and U.Agarwala	
6.	W.J.Greary	Coord.Chem.Rev.7,81(1971)
7.	Y.D.Kulkarni, and	Indian J. Chem. 24A, 7,10,
	S.Srivastava	(1985)
8.	S.Srivastava	Applied spectro Sc. Rev., 22,
		401(1986)

CHAPTER IV

COMPLEXES OF

R₂TeX₂ WITH 3
MERCAPTO-4-βISATINYLIMINO-1,2,4
TRIAZOLE

"COMPLEXES OF R₂TeX₂ WITH 3-MERCAPTO-4-β-ISATINYLIMINO-1,2,4-TRIAZOLE"

4-amino-3-mercapto-1,2,4-triazole(mtrH) readily condenses with isatine in hot methanol giving 3-mercapto-4- β -isatainylimino-1,2,4-triazole(IstmtrH).

$$C = N - N$$

$$C = O$$

$$C = N$$

Structure of (Ist mtrH)

The consedered Schiff Base (IstmtrH) contains several donor sites, four nitro, one sulphur and one oxygen.

EXPERIMENTAL

Preparation of $[R_2TeX_2, (IstmtrH)]$

The R₂TeX₂(1mmol) i.e. $(C_6H_5CH_2)_2$ TeI₂; $(C_6H_4)_2$ TeCl₂; $(p-MeOC_6H_4)_2$ TeCl₂; $(p-Me_2N.C_6H_4)$ PhTeCl₂; $(p-Me_2N.C_6H_4)$ $(p-MeOC_6H_4)$ TeCl₂; $[(p-Me_2N.C_6H_4)(p-EtOC_6H_4)$ TeCl₂] and $(CH_3)_2$ TeI₂. was dissolved in CH₃OH with istmtrH ligand (1 mmol) and refluxed for 2-3 hrs. The solid product obtained after rotary evaporation was purified by pet. Ether(b.p. 60-80°), air-dried and kept in desiccators.

Preparation of [R₂Te(Istmtr)₂]

The $R_2TeX_2(1mmol)$ i.e. $(C_6H_5CH_2)_2TeI_2$; $(C_6H_4)_2TeCI_2$; $(p-MeOC_6H_4)_2TeCI_2$; $(p-Me_2N.C_6H_4)$ PhTeCl₂; $(p-Me_2NC_6H_4)$ $(p-MeOC_6H_4)TeCI_2$; $(p-Me_2NC_6H_4)$ $(p-EtOC_6H_4)TeCI_2$] and $(CH_3)_2TeI_2$. was dissolved in CH₃OH with istmtrH ligand (2 mmol) and refluxed for 3 hrs. The solid product obtained after rotary evaporation was purified by pet. Ether(b.p. $60-80^\circ$), air-dried and kept in desiccators.

Results and Discussions

The results of elemental analysis and molar conductivity of $[R_2TeX_2.(IstmtrH)]$ and $[R_2Te.(Ismtr)_2]$ complexes are listed in table 1. The complexes are quite stable in air and partially soluble in mthanol, ethanol, dioxin, DMF and DMSO. The DMF solutions of complexes at room temperature display negligible electrical conductance value indicating their non-ionic nature¹.

IR data of ligand (IstmtrH) are listed in table 2. The prepared [R₂TeX₂.(IstmtrH)] complexes and [R₂TeX₂.(Istmtr)₂] complexes exhibited $\mathcal{V}_{C=N}$ band at around 1620 - 1610 cm⁻¹. The lowering of this band in the complexes indicates the coordination of nitrogen atoms of azomethine groups to the tellurium metal ion the far IR for Te-N² and $v_{\text{Te-C}^2}$ appeared at 420-410, and 560-540 cm-1 respectively. But vTe-X were absent in $[R_2Te(Ismtr)_2]$ complexes. The $v_{c=0}$ band(isatinic ketone) in [R₂TeX₂.(IsmtrH)] complexes at 1720-1740, which normally appeared in ligand at 1760-1732 cm-1. The lowereing of $\upsilon_{_{C=\mathrm{O}}}$ in the complexes also indicate the coordination of oxygen atom of isatinic ketone with tellurium metal ion. But the position of $v_{C=0}$ in $[R_2(Te.1stmtr)_2]$ complexes does not change with respect ot ligand. This indicate the non-coordination of oxygen of isatinic ketone with tellurium metal ion in these complexes. The thioamide band I, and II and III were observed in the ligand at 1498 cm-1, 1375 and 1208 cm-1, which is observed to appear on the same positon in these [R2TeX2.(IstmtrH)] tellurium metal complexes, suggesting non-involvement of thioamide group. But the frequency position of thioamide band I, II and III is observed to raised to higher frequencies in [R2Te(Istmtr)2] complexes which are taken to be taken characteristic of coordinated thioamide group.

It was observed that the binding energy fo Te3d_{3/2}, _{5/2} in the starting material R₂TeX₂ was higher than their prepared complexes table 3. This observation concludes that electron density on Te metal ion has been increased by coordination of Schiff base ligands with tellurium metal ion³. (Fig. 1 & 2)

$$\begin{array}{c|c}
N & N \\
\parallel & \parallel \\
C & C \\
N & SH \\
R & X \\
Te \\
X \\
N & R
\end{array}$$

Structure of [R₂TeX₂(IstmtrH)] complexes

Structure of [R, Te(Istmtr)2] complexes

It was observed that N1s binding energies of C=N group were higher in all these prepared complexes than the ligands; suggesting ivolvement of nitrogen atom in the coordination. It was noticed that 01s binding energy in [R₂TeX₂.(IstmtrH)] complexes were higher than 01s binding energy of ligand suggesting involvement of oxygen atom in coordination but 01s binding

energy were same in the ligand and [R2Te(Istmtr),] complexes, suggesting non-involvement of oxygen atom in coordination in [R2Te.(Istmtr)2] complexes3 Fig.3 and 4. Morever, S2p_{3/2} photoelectron peak have shown same binding energy data in [R2TeX2.(IstmtrH)] complexes as in ligand suggesting non involvement of sulphur atom in coordination in these [R2Te(Istmtr)2] complexes3 but in [R,Te(Istmtr),] complexes photoelectron binding energy is increased than the ligand, suggesting involvement of sulphur atom in coordination in these complexes i.e. in [R,Te.(Istmtr),] complexes³ Fig5 and 6.

On the basis of elemental analysis, conductivity results showing the all the complexes to be non-ionic and IR and X-Ray photoelectron(XPS) identifying the site of coordinaation it is possible to conclude that all these prepared complexes have pseudoctahedral geometry as show in fig 7(a) and 7(b).

Geometry of [R,TeX, (IstmtrH)] complexes

(a)

Geometry of [R, Te (Istmtr),] complexes

(b)

Fig. 7

Table 1:- Elemental analysis and molar conductivity values for the compounds

Sr.	Compound		Found (Found (Calc.)(%)	ika di disebu pangsala manakan sa disebut ilibih buli sa dalam kapan sa di	Molar conductivity (ohm-1
°Z		Te	C	Е	Z	cm ² mol ⁻¹)
l.	[(C ₆ H ₅ CH ₂) ₂ Tel ₂ .(IstmtrH)]	12.2	27.0	1.8	6.4	10
		(12.0)	(27.1)	(1.9)	(9.9)	
2.	[(C ₆ H ₄) ₂ TeCl ₂ .(IstmtrH)]	44.2	21.2	2.4	28.4	15
		(44.3)	(21.4)	(2.5)	(28.5)	
3.	[(p -MeOC ₆ H ₄) ₂ TeCl ₂ .(IstmtrH)]	19.4	44.6	3.0	10.8	20
part to the second		(19.8)	(44.8)	(3.2)	(10.9)	
4;	[(p -Me ₂ NC ₆ H ₄) ₂ PhTeCl ₂ (IstlmtrH)]	14.2	32.4	2.4	9.4	22
		(14.4)	(32.5)	(2.5)	(9.5)	
5.	[(p -Me ₂ NC ₆ H ₄)(p-MeOC ₆ H ₄)TeCl ₂ (IsmtrH)]	18.8	45.0	3.4	12.0	24
in was and the second		(18.9)	(45.2)	(3.5)	(12.4)	
9	$[(p - Me_2NC_6H_4)(p - EtOC_6H_4)TeCP_2(IsmtrH)]$	18.4	45.2	2.0	12.0	26
www.		(18.6)	(45.6)	(2.3)	(12.2)	
<u></u>	(CH ₃) ₂ Tel ₂ (IsmtrH)]	0.1	15.4	1.4	7.6	28
enthouse only year of		(0.1)	(15.8)	(1.4)	(7.7)	ending property to the explanation to the explanation of the explanati

Continue of Table 1

∞.	$[(C_6H_5CH_2)_2Te. (Ismtr)_2]$	15.8	51.2	3.2	17.4	26
		(15.9)	(51.4)	(3.3)	(17.5)	
6	[(C ₆ H ₄) ₂ Te. (Ismtr) ₂]	16.8	50.2	2.4	18.0	24
		(16.6)	(50.0)	(2.6)	(18.2)	
10.	10. $[(p - \text{MeOC}_6\text{H}_4)_2\text{Te}(\text{Istmtr})_2]$	15.4	50.5	3.0	17.0	22
		(15.6)	(50.8)	(3.1)	(17.2)	
11.	11. $[(p - Me_2NC_6H_4)_2 Ph Te.(Ismtr)_2]$	15.4	50.0	3.3	18.8	20
		(15.7)	(50.2)	(3.3)	(18.9)	
12.	[(p - Me2NC6H4) (p - MeOC6H4)2 Te.(1smtr)2]	15.0	49.6	3.2	18.2	26
		(15.1)	(49.8)	(3.4)	(18.3)	
13.	[(p -Me ₂ NC ₆ H ₄) (p -EtOC ₆ H ₄) ₂ Te.(lsmtr) ₂]	14.8	50.2	3.4	17.8	22
		(14.9)	(50.4)	(3.6)	(17.9)	
14.	14. [(CH ₃) ₂ Te.(lstmtr) ₂]	9.61	40.6	2.6	21.6	4.
		(19.8)	(40.8)	(2.8)	(21.7)	
-						

Table 2:- IR of Ligand (IstmtrH)

Band Position 3220-3100 abr 2950 wbr 2840-2800 wbr 1820 wbr	Assignments NH stretching band C-H stretching band Over tone band Vc=o isatanic ketone
1655-1632 vsbr 1498 s 1440 sbr 1375 mbr 1350 W 1325 wbr	Azomethyl (C=N)+ Vc=c Thioamide band I Phenyl ring skeletal band Thioamide band II 8 NH Ve-N of triazole + Ve-N of side chain

Continue of Table 2

		Thioamide band III	Phenyl and triazole	Ring different mode of vibrations		Vc-N, Vc-C, VN-N,	C-H and N-H out of plane bending band.	Thioamide band IV	C-H and N-H out of plane bending band.			Triazole and isatine part ring deformation vibrations.
1270 s	1240 wbr	1208 s	1170 wbr	1105 m	1062 mbr	1015 mbr	970 m	945 m	852 mbr	760-755 sbr	705	660 mbr

Continue of Table 2

615-600 mbr	560 wbr	362 wbr

W = weak, wbr = weak and board, m= medium, mbr = medium and board; s = strong, sbr = strong and broad, vsbr = very strong and broad

Table 3:- Te3d_{3,2}, 5,2, NIs, 01s and S2p binding energies (ev) in ligand (IstmtrH), $[R_2TeX_2,(IstmtrH)]$ and $[R_2Te,(Istmtr)]$ complexes

Metal Ion Te3d3n Te3dsn - - 585.8 575.4 584.0 574.0 584.0 574.0 584.0 574.0 584.4 574.0 584.4 574.0 584.4 574.0 584.6 574.2 584.6 574.2 584.6 574.2 584.2 574.2 584.2 574.2 584.2 574.2 584.2 575.4 584.2 575.4 584.2 575.4 584.2 575.4 584.2 575.4 584.2 575.4					AND THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN		
Ligand(IsmtrH)	Sr.	Compound	Meta	ul Ion	N1s(for ligand	Ols for ligand	S2p
Ligand(IsmtrH) (C ₆ H ₅ CH ₂) ₂ TeI ₂ [(C ₆ H ₅ CH ₂) ₂ TeI ₂ [(C ₆ H ₅ CH ₂) ₂ Te ₂ .(IsmtrH)] (C ₆ H ₅ CH ₂) ₂ Te. (Ismtr) ₂] (C ₆ H ₄) ₂ TeCI ₂ .(IsmtrH)] (C ₆ H ₄) ₂ TeCI ₂ .(IsmtrH)] (C ₆ H ₄) ₂ Te.(IstmtrH)] (C ₆ H ₄) ₂ Te.(IsmtrH)] (C ₆ H ₄) (C ₆ H ₄) ₂ Te.(IsmtrH)] (C ₆ H ₄) (C ₆ H	Š.		Te3d _{3/2}	Te3ds/2	nitrogen only)	Oxygen	
(C ₆ H ₅ CH ₂) ₂ Tel ₂ (1stmtrH)] 584.0 [(C ₆ H ₅ CH ₂) ₂ Te ₁ . (1stmtrH)] 584.0 (C ₆ H ₄) ₂ TeCl ₂ (1stmtrH)] 584.4 [(C ₆ H ₄) ₂ TeCl ₂ . (1stmtrH)] 584.4 [(C ₆ H ₅) ₂ Te. (1stmtrH)] 584.4 [(p-MeOC ₆ H ₄) ₂ TeCl ₂ . (1stmtrH)] 584.6 [(p-MeOC ₆ H ₄) ₂ TeCl ₂ . (1stmtrH)] 584.6 [(p-MeOC ₆ H ₄) ₂ TeCl ₂ . (1stmtrH)] 584.6 [(p-MeNC ₆ H ₄) ₂ PhTeCl ₂ (1stmtrH)] 584.2 [(p-MeNC ₆ H ₄) ₂ PhTeCl ₂ (1stmtrH)] 584.2 (p-MeNC ₆ H ₄) ₂ PhTeCl ₂ (1stmtrH)] 584.2 (p-MeNC ₆ H ₄) ₂ PhTeCl ₂ (1stmtrH)] 584.2 4. [(p-MeNC ₆ H ₄) ₂ PhTe. (1smtr) ₂] 585.8		Ligand(IsmtrH)	1	gg .	400.2	533.2	165.2
. [(C ₆ H ₅ CH ₂) ₂ TeI ₂ .(IstmtrH)] 584.0 [(C ₆ H ₅ CH ₂) ₂ Te. (Ismtr) ₂] 584.0 (C ₆ H ₄) ₂ TeCl ₂ . (IstmtrH)] 584.4 [(C ₆ H ₄) ₂ TeCl ₂ .(IstmtrH)] 584.4 (p-MeOC ₆ H ₄) ₂ TeCl ₂] 585.8 (p-MeOC ₆ H ₄) ₂ TeCl ₂] 585.8 (p-MeOC ₆ H ₄) ₂ Te(IstmtrH)] 584.6 (p-MeNC ₆ H ₄) ₂ Te(IstmtrH)] 584.6 1. (p-MeNC ₆ H ₄) ₂ Te(IstmtrH)] 584.2 2. [(p-MeNC ₆ H ₄) ₂ PhTeCl ₂ (IstmtrH)] 584.2 3. [(p-MeNC ₆ H ₄) ₂ PhTeCl ₂ (IstmtrH)] 584.2 4. [(p-MeNC ₆ H ₄) ₂ PhTeCl ₂ (IstmtrH)] 585.8	2.	$(C_6H_5CH_2)_2Tel_2$	585.8	575.4	en erik kapan en en en en en en er er en	The state of the s	1
	3.	[(C ₆ H ₅ CH ₂) ₂ Tel ₂ .(IstmtrH)]	584.0	574.0	402.8	534.8	165.2
(C ₆ H ₄) ₂ TeCl ₂ 585.6 [(C ₆ H ₄) ₂ TeCl ₂ .(IstmtrH)] 584.4 [(C ₆ H ₅) ₂ Te.(Istmtr) ₂] 584.4 [(p -MeOC ₆ H ₄) ₂ TeCl ₂] 585.8 [(p -MeOC ₆ H ₄) ₂ TeCl ₂ .(IstmtrH)] 584.6 [(p -MeOC ₆ H ₄) ₂ Te(IstmtrH)] 584.6 [(p -MeNC ₆ H ₄)PhTeCl ₂ .(IstmtrH)] 585.6 [(p -MeNC ₆ H ₄)2PhTeCl ₂ (IstmtrH)] 584.2 [(p -MeNC ₆ H ₄)2PhTeCl ₂ (IstmtrH)] 584.2 [(p -MeNC ₆ H ₄)2PhTeCl ₂ (IstmtrH)] 585.8	4	[(C ₆ H ₅ CH ₂) ₂ Te. (Ismtr) ₂]	584.0	574.0	402.8	532.2	166.0
[(C ₆ H ₄) ₂ TeCl ₂ .(IstmtrH)] 584.4 [(C ₆ H ₅) ₂ Te.(Istmtr) ₂] 584.4 [(p -MeOC ₆ H ₄) ₂ TeCl ₂] 585.8 [(p -MeOC ₆ H ₄) ₂ TeCl ₂ .(IstmtrH)] 584.6 [(p -MeOC ₆ H ₄) ₂ Te(IstmtrH)] 584.6 (p -MeNC ₆ H ₄)PhTeCl ₂ [(p -MeNC ₆ H ₄)PhTeCl ₂ [(p -MeNC ₆ H ₄)PhTeCl ₂ (IstmtrH)] 584.2 [(p -MeNC ₆ H ₄) ₂ PhTeCl ₂ (IstmtrH)] 584.2	5.	$(C_6H_4)_2TeCl_2$	585.6	575.2	Tyderin var sy'n ganarania aw de Nichele phairiceann am de Nichele ph	Egi	
[(C ₆ H ₅) ₂ Te.(lstmtr) ₂] 584.4 [(p -MeOC ₆ H ₄) ₂ TeCl ₂] 585.8 [(p -MeOC ₆ H ₄) ₂ TeCl ₂ .(lstmtrH)] 584.6 (p -MeOC ₆ H ₄) ₂ Te(lstmtr) ₂] 584.6 (p -MeNC ₆ H ₄)PhTeCl ₂ [(p -MeNC ₆ H ₄)PhTeCl ₂ (lstmtrH)] 584.2 [(p -MeNC ₆ H ₄) ₂ PhTeCl ₂ (lstmtrH)] 584.2 [(p -MeNC ₆ H ₄) ₂ PhTeCl ₂ (lstmtrH)] 584.2	.9	[(C ₆ H ₄) ₂ TeCl ₂ .(IstmtrH)]	584.4	574.0	402.8	534.6	165.2
[(p -MeOC ₆ H ₄) ₂ TeCl ₂] 585.8 [(p -MeOC ₆ H ₄) ₂ TeCl ₂ .(IstmtrH)] 584.6 (p -MeOC ₆ H ₄) ₂ Te(Istmtr) ₂] 584.6 (p -MeNC ₆ H ₄)PhTeCl ₂ [(p -MeNC ₆ H ₄)PhTeCl ₂ (IstmtrH)] 584.2 [(p -MeNC ₆ H ₄) ₂ PhTeCl ₂ (IstmtrH)] 584.2	7.	[(C ₆ H ₅) ₂ Te.(lstmtr) ₂]	584.4	574.0	402.8	533.2	166.0
[(p -MeOC ₆ H ₄) ₂ TeCl ₂ .(IstmtrH)] 584.6 [(p -MeOC ₆ H ₄) ₂ Te(Istmtr) ₂] 584.6 (p -MeNC ₆ H ₄)PhTeCl ₂ 585.6 [(p -MeNC ₆ H ₄)2PhTeCl ₂ (IstmtrH)] 584.2 [(p -MeNC ₆ H ₄) ₂ PhTeCl ₂ (IstmtrH)] 584.2	œ.	$[(p \text{-MeOC}_6H_4)_2\text{TeC}]_2$	585.8	575.4	en er selv, mannet de en er er er en en en er		remande (Linkswerte): Engagement de Mandelstein (1988)
[(p -MeOC ₆ H ₄) ₂ Te(Istmtr) ₂] 584.6 (p -MeNC ₆ H ₄)PhTeCl ₂ 585.6 [(p -MeNC ₆ H ₄) ₂ PhTeCl ₂ (IstmtrH)] 584.2 [(p -MeNC ₆ H ₄) ₂ Ph Te.(Ismtr) ₂] 584.2 [(p -MeNC ₆ H ₄) (p -MeOC ₆ H ₄) TeCl ₂ 585.8	9.	$[(p \text{-MeOC}_6H_4)_2\text{TeCl}_2.(\text{IstmtrH})]$	584.6	574.2	402.6	534.6	165.2
(p -MeNC ₆ H ₄)PhTeCl ₂ 585.6 [(p -MeNC ₆ H ₄) ₂ PhTeCl ₂ (lstmtrH)] 584.2 [(p -MeNC ₆ H ₄) ₂ Ph Te ₁ (lsmtr) ₂] 584.2 [(p -MeNC ₆ H ₄) (p -MeOC ₆ H ₄) TeCl ₂ 585.8	10.	$[(p \text{-MeOC}_6H_4)_2\text{Te}(\text{Istmtr})_2]$	584.6	574.2	402.6	533.2	166.0
[(p -MeNC ₆ H ₄) ₂ PhTeCl ₂ (IstmtrH)] 584.2 [(p -MeNC ₆ H ₄) ₂ Ph Te ₁ (Ismtr) ₂] 584.2 [(p -MeNC ₆ H ₄) (p -MeOC ₆ H ₄) TeCl ₂ 585.8	Ë	(p -MeNC ₆ H ₄)PhTeCl ₂	585.6	575.6	e des d'apprente de la company de la comp Esta de la company de la compa		voje filofonia da spojenje me a dale sije voje voje s srane Da
[(p -MeNC ₆ H ₄) ₂ Ph Te.(Ismtr) ₂] 584.2 [(p -MeNC ₆ H ₄) (p -MeOC ₆ H ₄) TeCl ₂ 585.8	<u>2</u>	[(p -MeNC ₆ H ₄) ₂ PhTeCl ₂ (IstmtrH)]	584.2	574.2	402.6	534.8	165.2
[(p -MeNC ₆ H ₄) (p -MeOC ₆ H ₄) TeCl ₂ 585.8	13.	$[\rho \text{-MeNC}_6H_4]_2 \text{ Ph Te.(Ismtr)}_2$	584.2	574.2	402.6	533.2	166.0
	14.	$[(p \text{-MeNC}_6H_4) (p \text{-MeOC}_6H_4) \text{ TeC}]_2$	585.8	575.4	desseller, es printesse personale de semisemente desselle; soldas productions and en sector delle colonia de Spor Ma	en e	de (Older de _{Andréa de} Angrés de La Marie Pade) y 1974 des Pade) de Pade (Pade) y 1984 de la Pade) de Pade) de Pade (Pade) de Pade) de Pade (Pade) de Pade) de Pade (Pade) de Pade) de Pade) de Pade (Pade) de Pade) de P

Continue of Table 3

	Annual control of the			ASSERTED THE THE PROPERTY OF T		
15.	$[(p \text{-MeNC}_6H_4)(p -$	584.4	574.2	402.6	534.8	165.2
	MeOC ₆ H ₄)TeCl ₂ (IsmtrH)]					
16.	$[(p \text{-Me}_2\text{NC}_6\text{H}_4) (p \text{-Me}_6\text{C}_6\text{H}_4) \text{ Te}_1(\text{Ismtr})_2]$	584.4	574.2	402.6	533.2	166.0
17.	$[(p - MeNC_6H_4) (p - EtOC_6H_4) TeCl_2$	585.4	575.6	en and Paper (All Anna an and Paper (All Anna an Anna Anna Anna Anna Anna Ann	*	To the second se
18.	$[(p - MeNC_6H_4)(p - EtOC_6H_4)TeCl_2(lsmtrH)]$	584.2	584.2	402.8	534.8	165.2
19.	[(p - Me2NC6H4) (p - EtOC6H4) Te (Ismtr)2]	584.2	584.2	402.8	533.2	166.0
20.	$(CH_3)_2Tel_2$	585.6	575.8	A P		E E
21.	(CH ₃) ₂ Tel ₂ (IsmtrH)]	584.2	584.2	402.6	534.8	165.2
22.	$[(CH_3)_2Te.(lstmtr)_2]$	584.2	584.2	402.6	533.2	166.0

Fig 1: Te $3d_{3/2}$ binding energies (ev) in $[R_2TeX_2]$; $[R_2TeX_2(IstmtrH)]$ and $[R_2Te.(Istmtr)_2]$ complexes

Fig 2: Te $3d_{3/2}$ binding energies (ev) in $[R_2TeX_2]$; $[R_2TeX_2(IstmtrH)]$ and $[R_2Te.(Istmtr)_2]$ complexes

Fig 3: N1s binding energies (ev) in (IstmtrH) Ligand, [R₂TeX₂(IstmtrH)] and [R₂Te.(IstmtrH)₂] complexes

Fig 4: N1s binding energies (ev) in (IstmtrH) Ligand, [R₂TeX₂(IstmtrH)] and [R₂Te.(Istmtr)₂] complexes

O1s photoelectron spectra

Fig 5: O1s binding energies (ev) in Ligand, (IstmtrH) $[R_2\text{TeX}_2.(\text{IstmtrH})]$ and $[R_2\text{Te}.(\text{Istmtr})_2]$ complexes

Fig 6 : O1s binding energies (ev) in Ligand, (IstmtrH), $[R_2\text{TeX}_2(\text{IstmtrH})]$ and $[R_2\text{Te}.(\text{Istmtr})_2]$ complexes

Fig 7(a): S2p binding energies (ev) in Ligand, $[R_2\text{TeX}_2(\text{IstmtrH})]$ and $[R_2\text{Te.(Istmtr)}_2]$ complexes

S2p photoelectron Spectra.

Fig 7(b): S2p binding energies (ev) in ligand, $[R_2\text{TeX}_2(\text{IstmtrH})]$ and $[R_2\text{Te}.(\text{Istmtr})_2]$ complexes

References:

1. W.J.Greary : Coord.chem.Rev. 7,81(1971)

2. Y.D. Kulkarni and S. Srivastava : Indian J.Chem., 24A, 710(1985)

3. S.Srivastava : Applied spectro Sc. Rev., 22,

401(1986)

Chapter - V

"COMPLEXES OF

R₂TeX₂ WITH

α-PHENYL
SALICYLALDIMINO

METHYL - β
NAPTHOL"

"COMPLEXES OF R_2 TeX $_2$ WITH α -PHENYL-SALICYLALDIMINO-METHYL- β -NAPTHOL"

The Schiff base, α -phenylsalicylaldiminomethyl- β -napthol (i.e. $PSnH_2$) is potential tridentate (O,N,O) donor ligand and is expected to behave as monoanionic or dianionic coordinating molecular by deprotonation of one phenolic OH or both phenolic OH respectively.

$$C_{6}H_{5}$$
 - CH - N = CH - OH HO

 α - phenylsalicylaldiminomethyl - β - napthol (i.e. $psnH_{\gamma})$

Although many molecular adducts of $R_2 TeX_2$ with various Schiff base ligands have been synthesized and characterized by various spectroscopy to establish their bonding, the interaction of $R_2 TeX_2$ with ONO donor Schiff base ligands are scare ¹. This chapters deal with the interaction of $R_2 TeX_2$ with α -phenylsalicylaldimino methyl- β -napthol (i.e. $pSnH_2$) and establish geometry of the products.

Preparation of [R2Te(psn)]

The R₂TeX₂ (lmmol) i.e. $(C_6H_5CH_2)TeI_2$; $(C_6H_4)_2TeCI_2$; $(p-MeOC_6H_4)TeCI_2$; $(p-Me_2N.CH_4)C_6H_5TeCI_2$; $(p-Me_2N.C_6H_4)$ $(p-EtOC_6H_4)TeCI_2$]; and $(CH_3)_2TeI_2$ was dissolved in 50 ml dry methanol and α -

phenyl Salicylaldimino methyl- β -napthol i.e. $(pSnH_2)$ (lmmol) was mixed in above solution drop by drop wise and mixture was refluxed for 3-4 hrs. The Resulting solid product was filtered washed with pet-ether and air-dried.

Preparation of [R,Te.(psnH),]

The $R_2 TeX_2$ (lmmol) i.e. $(C_6 H_5 CH_2) TeI_2$; $(C_6 H_4)_2 TeCI_2$; $(p-MeOC_6 H_4)_2 TeCI_2$; $(p-Me_2 N.CH_4) C_6 H_5 TeCI_2$; $(p-Me_2 N.C_6 H_4)$ $(p-EtOC_6 H_4) TeCI_2$]; and $(CH_3)_2 TeI_2$ was dissolved in 50 ml dry methanol and α -phenyl Salicylaldimino methyl- β -napthol i.e. $(pSnH_2)$ (2mmol) was mixed in above solution. The mixture was refluxed for 3-4 hrs. and the resulting solid product was obtained, filtered. It washed with pet-ether and air-dried.

RESULTAND DISCUSSIONS

The all prepared complexes $[R_2\text{Te}(p\text{Sn})]$ and $[R_2\text{Te}.(p\text{SnH})_2]$ were found to be air stable. The molar conductance values of all the complexes in acetone were observed 20-30 ohm⁻¹ cm² mol⁻¹ indicating they are non electrolyte in nature².

The free ligand displays a strong broad band at 3270-3220 cm⁻¹ attributed from VOH of phenolic group of ligand. The VOH of ligand disappeared in these $[R_2\text{Te}(p\text{sn})]$ complexes suggesting deprotonation of both penolic proton in the complexes. But in case of $[R_2\text{Te}.(p\text{SnH})_2]$. Its presence was observed.

The strong band at 1620 cm⁻¹ in free ligand is attributed to $v_{\text{C=N}}$ which shifts to lower frequency in almost all the complexes suggesting coordination of aldimino v(C=N) nitrogen to metal ion. The far IR for $v_{\text{Te-N}}$, $v_{\text{Te-C}}$ were

appeared at 420-410 and 560-540 cm $^{-1}$ in all these prepared complexes 3 , while $V_{\text{Te-Cl}}$ was found absent which normally appear at 270 - 300 cm $^{-1}$.

Structure of [R2Te. (psn)]

Structure of [R₂Te.(psnH)₂]

XPS data of $Te3d_{3/2, 5/2}$. N1s and 01s $[R_2Te(psn)]$ and $[R_2Te(psnH)_2]$ complexes are listed in table 2. It was observed that the binding energy of Te $3d_{3/2, 5/2}$ in the starting material was higher than their prepared molecular adducts. These observations concluded that electron density on tellurium metal ion has been increased by coordination of Schiff base ligands with tellurium metal ion. 4 (Fig 1and 2).

It was noticed that N1s binding of C=N group were higher in all these $[R_2\text{Te}.(p\text{Sn})]$ and $[R_2\text{Te}(p\text{snH})_2]$ complexes than ligands; suggesting involvement of nitrogen atom of (C=Ngroup) in the complexation (Fig. 4 and 5). Furthermore, it was noticed 01s binding energy were more in $[R_2\text{Te}(p\text{sn})]$ and $[R_2\text{Te}(p\text{snH})_2]$ complexes, than ligands suggesting the involvement of oxygen atom in the complexes⁴. In case of $[R_2\text{Te}(p\text{snH})_2]$ complexes 01s photoelectron peak have shown two peaks with same intensity, one wth same position as in ligand and other higher than ligand suggesting only two oxygen atoms are involved in coordination, remaining two oxygen atoms are uncoordinated 4. (Fig. 5 and 6).

The X2p photoelectron spectra (x = Cl or I) were observed absent in $[R_2Te(PsnH)_2]$ complexes and $[R_2Te(psn)_2]$ complexes.

On the basis of elemental analysis, molar conductivity, IR and XPS data, it is possible to conclude that prepared molecular adducts $[R_2\text{Te}(p\text{sn})]$ have octahedral structure, while $[R_2\text{Te}(p\text{snH})_2]$ molecular adducts are pseudo octahedral in geometry as shown in fig. 7(a) and fig. 7(b).

Fig. 7: Geometry of $[R_2\text{Te}(p\text{sn})]$ and $[R_2\text{Te}(p\text{snH})_2]$ complexes (170)

Table 1: Elemental and molar conductivity of $[R_2Te(pSn)]$ and $[R_2Te(pSnH)_2]$ complexes

S.No.	Compound	Found (Calc.) (%)				Molar	
		Те	C	H	N	Conductivity (ohm ⁻¹ cm ² mol ⁻¹)	
1.	$[(C_6H_5CH_2)_2Te$	19.0	69.1	4.5	2.0	10	
	(pSn)	(19.3)	(69.0)	(4.7)	(2.1)		
2.	$[(C_6H_4)_2Te.(pSn)]$	20.2	68.2	3.4	2.0	15	
		(20.0)	(68.7)	(3.9)	(2.2)		
3.	$[(p-MeOC_6H_4)_2]$	19.2	69.2	4.5	2.0	22	
	Te(pSn)	(19.3)	(69.0)	(4.6)	(2.1)		
4.	$[(p-Me_2NC_6H_4)$	16.2	69.2	5.2	5.2	24	
	$C_6H_5Te.(psn)$	(16.0)	(69.4)	(5.3)	(5.3)		
5.	$[(p-Me_2NC_6H_4)(p-$	18.2	66.2	4.6	3.8	28	
	$MeOC_6H_4)Te.(pSn)$	(18.0)	(66.3)	(4.8)	(3.9)		
6.	$[(p-Me_2NC_6H_4)(p-$	17.2	65.0	5.0	3.6	18	
	$EtOC_6H_4)Te.(pSn)$	(17.3)	(65.1)	(5.0)	(3.8)		
7.	$[(CH_3)_2 Te.(pSn)]$	24.6	2.6	4.2	6.0	16	
		(24.8)	(2.7)	(4.5)	(6.2)		
8.	[(C ₆ H ₅ CH ₂) ₂ Te.(12.4	73.4	4.6	2.6	12	
	$pSnH)_2$	(12.6)	(73.5)	(4.7)	(2.7)		
9.	$[(C_6H_4)_2\text{Te.}(p\text{SnH})_2]$	12.8	73.2	4.2	2.8	14	
		(12.9)	(73.3)	(4.0)	(2.9)		
10.	[(p-	12.0	71.0	4.5	2.6	16	
	MeOC ₆ H ₄) ₂ Te(pSnH	(12.2)	(71.2)	(4.6)	(2.7)		
)2]						
11.	$[(p-Me_2NC_6H_4)]$	12.2	72.4	4.6	4.2	12	
	$C_6H_5Te(psnH)_2$	(12.4)	(72.5)	(4.8)	(4.0)		
12.	$[(p-Me_2NC_6H_4)(p-$	12.2	71.3	4.6	4.0	18	
	MeOC ₆ H ₄)Te.((12.4)	(71.6)	(4.7)	(4.0)		
	$pSnH)_2$						
13.	[(p-Me ₂ NC ₆ H ₄) (p-	12.2	72.6	5.2	3.4	20	
	$EtOC_6H_4)Te.(pSn)$	(12.0)	(72.8)	(5.0)	(3.9)		
14.	$[(CH_3)_2Te.(pSnH)_2]$	14.6	69.6	4.2	3.0	22	
	1 721	(14.8)	(69.7)	(4.6)	(3.2)		

Table 2:- $Te3d_{3/2,5/2}N1s$ and 01s binding energies (ev) in (IstmtrH), $[R_2TeX_2.(pSn)]$ and $[R_2Te.(pSnH)_2]$ complexes

S.No.	compounds	Metal	Ion	01s	N1s
		Te3d _{3/2}	Te3d		
			5/2	State of the state	
1.	Ligand(psnH) ₂	-	-	532.6	399.0
2.	$(C_6H_5CH_2)_2TeI_2$	585.8	575.4	-	William Control of the Control of th
3.	$[(C_6H_5CH_2)_2Te(pSn)]$	584.2	574.0	534.4	400.8
4.	$[(C_6H_5CH_2)_2Te(pSnH)_2]$	584.2	574.0	532.6-534.4	400.8
5.	(C ₆ H ₄) ₂ TeCl ₂	585.6	575.2	-	AS4
6.	$[(C_6H_4)_2Te(pSn)]$	584.2	574.0	534.4	400.8
7.	$[(C_6H_4)_2Te(pSnH)_2]$	584.2	574.0	532.6-534.4	400.8
8.	[(p-MeOC ₆ H ₄) ₂ TeCl ₂]	585.8	575.4		***************************************
9.	[(p-MeOC6H4)2Te(psn)]	584.2	574.0	534.4	400.8
10.	$[(p-MeOC_6H_4)_2Te(psnH)_2]$	584.2	574.0	532.6-534.4	400.8
11.	$[(p-Me_2NC_6H_4) C_6H_5TeCl_2]$	585.6	575.6	-	
12.	$[(p-Me_2NC_6H_4C_6H_5Te(psn)]$	584.0	574.2	534.4	400.8
13.	$[(p-Me_2NC_6H_4)_2 C_6H_5Te(psnH)_2]$	584.0	574.2	532.6-534.4	400.8
14.	[(p-Me ₂ NC ₆ H ₄) (p-	585.8	575.4		
	MeOC ₆ H ₄)TeCl ₂]				
15.	$[(p-Me_2NC_6H_4)(p-$	584.0	574.2	534.6	400.8
	$MeOC_6H_4)Te.(psn)]$				
16.	$[(p-Me_2NC_6H_4) (p-$	584.0	574.2	532.6-534.6	400.8
	$MeOC_6H_4)Te.(psnH)_2$				
17.	$[(p-Me_2NC_6H_4)(p-$	585.4	575.6	-	***
	EtOC ₆ H ₄)TeCl ₂]				
18.	$[(p-Me_2NC_6H_4)(p-EtOC_6H_4)Te$	584.0	574.2	534.6	400.8
10	(psn)]	5040	574.3	522 (524 (400.0
19.	[p-Me ₂ NC ₆ H ₄ (p-	584.0	574.2	532.6-534.6	400.8
20	EtOC ₆ H ₄)Te(psnH) ₂]	505 (575.0		gar die langer autoriginative branden volgen verbilden der jege
20.	[(CH ₃) ₂ TeI ₂]	585.6	575.8	F246	400.0
21.	$[(CH_3)_2 Te(psn)]$	584.0	574.2	534.6	400.8
22.	[(CH3)2Te(psnH)2]	584.0	574.2	532.6-534.6	400.8

Fig 1: Te 3d_{3/2} binding energies (ev) in [R₂TeX₂]; [R₂Te(psn)] and [R₂Te.(psnH)₂] complexes

Fig 2 : Te $3d_{3/2}$ binding energies (ev) in R_2 TeX₂; $[R_2$ Te(psn)₂] and $[R_2$ Te.(psnH)₂] complexes

N1s photoelectron peak

Fig 3: N1s binding energies (ev) in Ligand, $(psnH_2)$, $[R_2Te(psn)]$ and $[R_2Te.(psnH)_2]$ complexes

Fig 4: N1s binding energies (ev) in Ligand, (psnH₂), [R2Te(psn)] and [R₂Te.(psnH)₂] complexes

Fig 5: O1s binding energies (ev) in Ligand, [R₂Te(psn)] and [R₂Te.(psnH)₂] complexes

O1s photoelectron peak

Fig 6: O1s binding energies (ev) in Ligand, [R₂Te(psn)] and [R₂Te.(psnH)₂] complexes

References:

- 1. Shekhar Srivas and Abul Kalam: Indian J.chim.40A,1323(2001).
- 2. W.J.Greay Coord.chem. Rev.7,81(1971).
- Y.D. Kulkarni and S.Srivastava: Indian J. Chemistry, 24A, 710(1985).
 S.Srivastava Appl. Spectrosc Rev. 22,401(1986)

CHAPTER - VI SUMMARY

The elements of group VI A have a general electronic configuration [x] $npx^2npx^1npz^1$ (where x = inert gas core and n = 2 to 6 from oxygen to polonium) and tend to attain an inert gas configuration by gaining or sharing two electrons. Only few compounds are known which are more than 50% ionic for Te electropositive elements. The known formal oxidation state for tellurium are II and IV.

In chapter III, tellurium is in IV oxidation state in $R_2\text{TeX}_2$ which form with SamtrH_2 or $5\text{Me} - \text{SamtrH}_2$ or 5Ph-SamtrH_2 ligand $[R_2\text{Te}(\text{Satrm})]$ complexes and $[R_2\text{Te}.(\text{Satrm}H)_2]$ complexes and their established geometry are as given below:

In chapter IV, the acceptor property of $R_2\text{TeX}_2$ with 3 – mercapto – 4β – isatinylimino – 1, 2, 4 triazole in 1:1 and 1:2 molar ratio have been studied. it was established $[R_2\text{Te}(\text{Istmtr})_2]$ and $[R_2\text{TeX}_2(\text{IstmtrH})]$ molecular adducts with all octahedral i.e. (sp^3d^3) geometry as given below.

Geometry of [R₂Te (Istmtr)₂] complexes

In chapter V, the acceptor property of $R_2\text{TeX}_2$ with α – phenyl salicylaldimino methyl – β – naphthol in 1:1 and 1:2 molar ratio have been studied and it was established $[R_2\text{Te}(p\text{sn})]$ and $[R_2\text{Te}(p\text{snH})_2]$ molecular adducts with all octahedral and pseudooctahedral geometry respectively.

Geometry of $[R_2\text{Te}(p\text{sn})]$ (octahedral)

Geometry of [R₂Te(psnH)₂] (pseudooctahedral)

These prepared molecular adducts of R₂TeX₂ may be useful as antibacterial action¹, as medicine², as polymer³⁻⁴, as Therapeutic agents⁴⁻⁵, as oxi-

dants⁶⁻⁷, antiknocking agents⁶⁻⁷, in photochemical preparation⁶⁻⁷, photoconductors insecticides⁶⁷, lubricating oil additives⁶⁻⁷, pharmacological agents⁶⁻⁷, corrosion inhibitors⁶¹ etc.

Refrences:

3-

1- H. Taniyama Yakugaku Zasshi,

F. Miyoshi 77, 191 (1957)

E. Sakakibara

H. Uchida

2- G.T. Morgan J. Chem. Soc. Ind.,

E.A. Cooper and 43, 3041 (1924)

F.J. Corby
F.V. Oetele New York Med.,

Monatscher, 22, 232 (1968)

4- D. Hellwinkel and Ann. Chem.,

G. Fahrbach 1, 712 (1968).

5- H.K. Linngstone J. Polym. Sc.

and R.Krosee Part B 9, 95 (1971).

6- K.J. Irgolic "The Organic Chemistry of

Tellurium" Gordan Breach Science

Publishers, New York (1974).

7- Shekhar Srivastava Indian J. Chem.

And Abul Kalam 40A, 1323 (2001)

