Solutions to Algebraic Curves

Meng-Gen Tsai plover@gmail.com

March 9, 2021

Contents

Chapter 1: Affine Algebraic Sets	2
1.1. Algebraic Preliminaries	2
Problem 1.1.*	2
Problem 1.5.*	3
Problem 1.6.*	3
1.2. Affine Space and Algebraic Sets	4
Problem 1.8.*	4

Chapter 1: Affine Algebraic Sets

1.1. Algebraic Preliminaries

Problem 1.1.*

Let R be a domain.

- (a) If F, G are forms of degree r, s respectively in $R[X_1, \ldots, X_n]$, show that FG is a form of degree r + s.
- (b) Show that any factor of a form in $R[X_1, ..., X_n]$ is also a form.

Proof of (a).

(1) Write

$$F = \sum_{(i)} a_{(i)} X^{(i)},$$
$$G = \sum_{(j)} b_{(j)} X^{(j)},$$

where $\sum_{(i)}$ is the summation over $(i) = (i_1, \dots, i_n)$ with $i_1 + \dots + i_n = r$ and $\sum_{(j)}$ is the summation over $(j) = (j_1, \dots, j_n)$ with $j_1 + \dots + j_n = s$.

(2) Hence,

$$\begin{split} FG &= \sum_{(i)} \sum_{(j)} a_{(i)} b_{(j)} X^{(i)} X^{(j)} \\ &= \sum_{(i),(j)} a_{(i)} b_{(j)} X^{(k)} \end{split}$$

where $(k) = (i_1 + j_1, \ldots, i_n + j_n)$ with $(i_1 + j_1) + \cdots + (i_n + j_n) = r + s$. Each $X^{(k)}$ is the form of degree r + s and $a_{(i)}b_{(j)} \in R$. Hence FG is a form of degree r + s.

Proof of (b).

- (1) Given any form $F \in R[X_1, ..., X_n]$, and write F = GH. It suffices to show that G (or H) is a form as well.
- (2) Write

$$G = G_0 + \dots + G_r,$$

$$H = H_0 + \dots + H_s$$

where $G_r \neq 0$ and $H_s \neq 0$. So

$$F = GH = G_0H_0 + \cdots + G_rH_s$$
.

Since R is a domain, $R[X_1, \ldots, X_n]$ is a domain and thus $G_r H_s \neq 0$. The maximality of r and s implies that $\deg(F) = r + s$. Therefore, by the maximality of r + s, $F = G_r H_s$, or $G = G_r$, or G is a form.

Problem 1.5.*

Let k be any field. Show that there are an infinitely number of irreducible monic polynomials in k[X]. (Hint: Suppose F_1, \ldots, F_n were all of them, and factor $F_1 \cdots F_n + 1$ into irreducible factors.)

Proof (Due to Euclid).

(1) If F_1, F_2, \ldots, F_n were all irreducible monic polynomials, then we consider

$$G = F_1 F_2 \cdots F_n + 1 \in k[X].$$

So there is an irreducible monic polynomial F dividing G since

$$\deg G = \deg F_1 + \deg F_2 + \dots + \deg F_n \ge 1.$$

(2) F can not be any of F_i for all i; otherwise F would divide the difference $G - F_1 F_2 \cdots F_n = 1$. That is, $F \neq F_i$ for all i, contrary to the assumption.

Problem 1.6.*

Show that any algebraically closed field is infinite. (Hint: The irreducible monic polynomials are X - a, $a \in k$.)

Proof (Due to Euclid).

(1) Let k be an algebraically closed field. If a_1, \ldots, a_n were all elements in k, then we consider a monic polynomials

$$F(X) = (X - a_1) \cdots (X - a_n) + 1 \in k[X].$$

(2) Since k is algebraically closed, there is an element $a \in k$ such that F(a) = 0. By assumption, $a = a_i$ for some $1 \le i \le n$, and thus $F(a) = F(a_i) = 1$, contrary to the fact that a field is a commutative ring where $0 \ne 1$ and all nonzero elements are invertible.

1.2. Affine Space and Algebraic Sets

Problem 1.8.*

Show that the algebraic subsets of $\mathbb{A}^1(k)$ are just the finite subsets, together with $\mathbb{A}^1(k)$ itself.

Proof.

- (1) Show that k[X] is a PID if k is a field.
 - (a) Let I be an ideal of k[X].
 - (b) If $I = \{0\}$ then $I = \{0\}$ and I is principal.
 - (c) If $I \neq \{0\}$, then take F to be a polynomial of minimal degree in I. It suffices to show that I = (F). Clearly, $(F) \subseteq I$ since I is an ideal. Conversely, for any $G \in I$,

$$G = FQ + R$$

for some $Q, R \in k[X]$ with R = 0 or $\deg R < \deg F$. Now as

$$R = G - FQ \in I$$
.

R=0 (otherwise contrary to the minimality of F), we have $G\in (F)$ for all $G\in I$.

- (2) Let X be an algebraic subset of $\mathbb{A}^1(k)$, say X = V(I) for some ideal I of k[X]. Since k[X] is a PID, I = (F) for some $F \in k[X]$.
 - (a) If F = 0, then I = (0) and $X = V(0) = \mathbb{A}^{1}(k)$.
 - (b) If $F \neq 0$, then F(X) = 0 has finitely many roots in k, say $P_1, \ldots, P_m \in k$. Hence,

$$X = V(I) = V(F) = \{F(P) = 0 : P \in k\} = \{P_1, \dots, P_m\}$$

is a finite subsets of X.

By (a)(b), the result is established.

Notes.

(1) By the Hilbert basis theorem, k[X] is Noetherian as k is Noetherian. Hence, for any algebraic subset X = V(I) of $\mathbb{A}^1(k)$, we can write $I = (F_1, \dots, F_m)$. Note that

$$V(I) = V(F_1) \cap \cdots \cap V(F_m).$$

Now apply the same argument to get the same conclusion.

(2) Suppose $k = \overline{k}$. $\mathbb{A}^1(k)$ is irreducible, because its only proper closed subsets are finite, yet it is infinite (because k is algebraically closed, hence infinite).