Теория вероятностей. Лекция двадцать восьмая Мартингалы-2

Дмитрий Валерьевич Хлопин glukanat@mail.ru

Институт математики и механики им. Н.Н.Красовского

22.05.2019

Что разобрали:

- Марковские цепи с дискретным временем
- Марковские цепи с непрерывным временем
- Фильтрация и моменты остановки
- Мартингалы
- ?Эргодические теоремы?
- ??Введение в финансовую математику??

Фильтрация и моменты остановки

Пусть задано вероятностное пространство $(\Omega, \mathcal{F}, \mathbb{P})$, и время пробегает значения из $T = \mathbb{R}_+$ или $T = \mathbb{N} \cup \{0\}$.

Набор σ -подалгебр $(\mathcal{F}_t)_{t\in T}$ алгебры \mathcal{F} называют фильтрацией [иногда потоком алгебр], если для всех $s\leq t$ $\mathcal{F}_s\subset \mathcal{F}_t$.

Случайную величину au, принимающую значения в $T \cup \{+\infty\}$, называют моментом остановки (относительно фильтрации $\{\mathcal{F}_t\}_{t\in T}$), если для всех $t\in T$ событие $\{\tau\leq t\}=\{\omega\,|\,\tau(\omega)\leq t\}$ лежит в \mathcal{F}_t .

Пусть τ — момент остановки. Введем σ -алгебру событий, произошедших до τ : $\mathcal{F}_{\tau} \stackrel{\triangle}{=} \{A \in \mathcal{F} : A \cap \{\tau \leq t\} \in \mathcal{F}_t$ для всех $t\}$.

Мартингал

Пусть $(\Omega, \mathcal{F}, \mathbb{P})$ — вероятностное пространство, $\{\mathcal{F}_t\}_{t \in T}$ — фильтрация.

Говорят, что согласованный с $\{\mathcal{F}_t\}_{t\in T}$ случайный процесс $(X_t)_{t\in T}$ —

ullet мартингал, если все $\mathbb{E}|X_t|$ существуют и для $s \leq t$

$$X_s = \mathbb{E}(X_t | \mathcal{F}_s);$$

ullet субмартингал, если все $\mathbb{E}|X_t|$ существуют и для $s \leq t$

$$X_s \leq \mathbb{E}(X_t | \mathcal{F}_s);$$

ullet супермартингал, если все $\mathbb{E}|X_t|$ существуют и для $s \leq t$

$$X_s \geq \mathbb{E}(X_t|\mathcal{F}_s).$$

Теорема о произвольном выборе

Пусть τ, σ — некоторые моменты остановки, $\sigma \le \tau \le k$, где k — некоторое число.

- ullet Если $(X_t, \{\mathcal{F}_t\}_{t \in T})$ субмартингал, то $X_{\sigma} \leq \mathbb{E}(X_{\tau} | \mathcal{F}_{\sigma})$;
- ullet если $(X_t, \{\mathcal{F}_t\}_{t \in T})$ мартингал, то $X_{\sigma} = \mathbb{E}(X_{\tau} | \mathcal{F}_{\sigma})$;
- ullet если $(X_t, \{\mathcal{F}_t\}_{t \in T})$ супермартингал, то $X_\sigma \geq \mathbb{E}(X_\tau | \mathcal{F}_\sigma)$.

Неравенство Дуба

Если (X_n,\mathcal{F}_n) — субмартингал, то для любых $n\in\mathbb{N}$ и $\lambda\in\mathbb{R}$

$$\lambda \mathbb{P}(A_{\lambda,n}) \leq \mathbb{E}(X_n \mathbf{1}_{A_{\lambda,n}}) \leq \mathbb{E} \max\{X_n, 0\},$$

где
$$A_{\lambda,n} \stackrel{\triangle}{=} \left\{ \omega : \max_{i=\overline{1,n}} X_i(\omega) \geq \lambda
ight\}.$$

Подумать: как доказать то же неравенство в непрерывном случае для имеющих лишь cádlág траектории мартингалов.

Простое следствие: неравенство Колмогорова

Пусть ξ_1, ξ_2, \ldots — суммируемые с квадратом независимые случайные величины, тогда для всех положительных λ

$$\mathbb{P}\left(\max_{i=1,\ldots,n}\left|\xi_1+\ldots+\xi_i-\mathbb{E}\xi_1-\ldots-\mathbb{E}\xi_i\right|\geq\lambda\right)\leq\frac{1}{\lambda^2}\sum_{i=1}^nD\xi_i.$$

Для доказательства заметим, что $X_n \stackrel{\triangle}{=} \xi_1 + \ldots + \xi_n$ — мартингал относительно естественной фильтрации, тогда X_n^2 — субмартингал относительно естественной фильтрации, к которому можно применить неравенство Дуба.

Замкнутые справа мартингалы

Будем говорить, что $(X_n, \mathcal{F}_n)_{n \in \mathbb{N}}$ — замкнутый справа мартингал, если для некоторой суммируемой случайной величины X_∞ выполнено при всех $n \in \mathbb{N}$

$$X_n = \mathbb{E}(X_{\infty}|\mathcal{F}_n).$$

Теорема Дуба о замкнутых мартингалах. Пусть (X_n, \mathcal{F}_n) — замкнутый справа мартингал, тогда

$$X_n \xrightarrow{\text{n.b.}} X_{\infty}, \qquad X_n \xrightarrow{L^1} X_{\infty}.$$

Подумать: а что такое тогда \mathcal{F}_{∞} ?

Подумать: чем такая теорема может быть полезна для X_n = $Y_{1-1/n}$,или в случае Ω = $\mathbb R$ для

$$X_n(\omega) = \frac{f(2^{-n}\lceil \omega 2^n \rceil + 2^{-n}) - f(2^{-n}\lceil \omega 2^n \rceil)}{2^{-n}}.$$

Полезный факт

Прежде чем доказывать теорему, докажем факт попроще.

Предложение. Если мартингал замыкаем, то последовательность случайных величин X_n равномерно интегрируема.

Замечание. Обратный факт тоже верен, но доказывается сложно. Доказательство. Нам нужно лишь доказать, что

$$\lim_{\lambda \to \infty} \sup_{n \in \mathbb{N}} \mathbb{E} 1_{\{|X_n| > \lambda\}} |X_n| = 0.$$

По неравенству Йенсена $|X_n|=|\mathbb{E}(X_\infty\,|\,\mathcal{F}_n)|\leq \mathbb{E}(|X_\infty|\,|\,\mathcal{F}_n)$, в частности $\mathbb{E}1_{\{|X_n|>\lambda\}}|X_n|\leq \mathbb{E}1_{\{|X_n|>\lambda\}}|X_\infty|$, и осталось заметить

$$\lim_{\lambda \to \infty} \sup_{n \in \mathbb{N}} \mathbb{P}\{|X_n| > \lambda\} \le \lim_{\lambda \to \infty} \sup_{n \in \mathbb{N}} \mathbb{E}|X_n|/\lambda \le \lim_{\lambda \to \infty} \mathbb{E}|X_\infty|/\lambda = 0.$$

Доказательство теоремы Дуба. Построение

Зафиксируем $\varepsilon > 0$. Рассмотрим $\mathcal{F}_{\infty} = \sigma(\cup_{i=1}^{\infty}\mathcal{F}_i)$. Для каждого $A \in \mathcal{F}_{\infty}$ найдутся $N \in \mathbb{N}$ и $B \in \mathcal{F}_N$, для которых $\mathbb{E}(|1_A - 1_B|) < \varepsilon$. Всевозможные индикаторы элементов \mathcal{F}_n и их конечные суммы всюду плотны в множестве всех суммируемых \mathcal{F}_n -измеримых функций. Значит индикаторы элементов $\cup_{i=1}^{\infty}\mathcal{F}_i$ и их конечные суммы всюду плотны в множестве всех суммируемых \mathcal{F}_{∞} -измеримых функций. Тогда объединение конечных сумм индикаторов элементов \mathcal{F}_n (по всем n) всюду плотно в множестве всех суммируемых \mathcal{F}_{∞} -измеримых

В частности, $\mathbb{E}(|X_{\infty}-Y_{\infty}|)<\varepsilon^2$ для некоторой \mathcal{F}_N -измеримой функции Y_{∞} .

функций.

Доказательство теоремы Дуба. Оценки

Примем $Y_n=\mathbb{E}(Y_\infty|\mathcal{F}_n)$, тогда по неравенству Чебышева $\mathbb{P}(|X_\infty-Y_\infty|>\varepsilon)\leq \varepsilon$. Теперь $Y_n=\mathbb{E}(Y_\infty|\mathcal{F}_n)$ — мартингал, $X_n-Y_n=\mathbb{E}(X_\infty-Y_\infty|\mathcal{F}_n)$ — мартингал, $(X_n-Y_n)^2=\mathbb{E}((X_\infty-Y_\infty)^2|\mathcal{F}_n)$ — субмартингал. По неравенству Дуба, для n>N.

$$\mathbb{P}(\limsup_{n \in \mathbb{N}} |X_n - Y_{\infty}| > \varepsilon) \le \mathbb{P}(\sup_{n \in \mathbb{N}} |X_n - Y_n| > \varepsilon) \le \sup_{n \in \mathbb{N}} \mathbb{E}|X_n - Y_n|/\varepsilon$$

$$\le \mathbb{E}|X_{\infty} - Y_{\infty}|/\varepsilon \le \varepsilon.$$

Таким образом, $\mathbb{P}(\limsup_{n\in\mathbb{N}}|X_n-X_\infty|>2\varepsilon)\leq 2\varepsilon$, и сходимость почти всюду показана. Для сходимости в L_1 достаточно заметить сходимость матожиданий в силу $\mathbb{E}|X_n-Y_n|\leq \mathbb{E}|X_\infty-Y_\infty|\leq \varepsilon^2$.

Подумать: а зачем нам предыдущее предложение, вроде обошлись без него?

Сходимость мартингалов [без д-ва]

Теорема. Пусть (X_n, \mathcal{F}_n) — супермартингал, причем $\mathbb{E}|X_n|$ ограничены, тогда

$$X_n \xrightarrow{\Pi.B.} Y$$

для некоторой суммируемой случайной величины Y. Если X_n равномерно интегрируемы, то имеет место сходимость и в L_1 . Замечание. В принципе можно обойтись ограниченностью $\mathbb{E}\max(X_n,0)$, аккуратно поправляя все формулировки о суммируемости. Тогда достаточно потребовать неположительность $\mathbb{E}X_n$.

Замечание. В непрерывном случае все вышесказанное работает, если предположить для фильтрации обычные условия и ограничиться имеющими лишь cádlág траектории мартингалами.

Задача об оптимальной остановке

Пусть набор моментов времени конечен $n \in \mathcal{N} \stackrel{\triangle}{=} \{0,1,\dots,N\}$, фиксировано вероятностное пространство с фильтрацией $(\Omega,\mathcal{F},\{\mathcal{F}_n\}_{n\in\mathcal{N}},\mathbb{P})$, и для каждого момента времени задана случайная величина, описывающая качество остановки $f_n:\Omega\to[0,+\infty)$. Естественно предполагать, что f_n \mathcal{F}_n -измеримо. Пусть \mathfrak{W}_n обозначает семейство моментов остановки, принимающих значение во множестве $\{n,\dots,N\}$. Требуется найти

$$\sup_{\tau \in \mathfrak{W}_0} \mathbb{E} f_{\tau}, \quad \text{ess-sup}_{\tau \in \mathfrak{W}_0} \mathbb{E} (f_{\tau} | \mathcal{F}_0).$$

О терминологии

Будем говорить, что расширенная (т.е. принимающая значения в $\mathbb{R} \cup \{+\infty\}$) случайная величина ξ есть существенный супремум ξ_{α} и писать

$$\xi = \operatorname{ess-sup} \xi_{\alpha},$$
 $\alpha \in \mathfrak{A}$

если

- $lacksymbol{0}$ для всех $\alpha \in \mathcal{A}$ $\xi \geq \xi_{\alpha}$ \mathbb{P} -п.н.
- $oldsymbol{2}$ если расширенная случайная величина η такова, что для всех $lpha \in \mathcal{A} \ \eta \geq \xi_{lpha} \ \mathbb{P}$ -п.н., то

$$\eta \geq \xi$$
 \mathbb{P} -п.н.

Это определение необходимо в силу неизмеримости (в общем случае) обычного супремума при несчетном \mathfrak{A} .

Обход трудности

Предложение Случайная величина $\xi=\mathrm{ess\text{-}sup}_{\alpha\in\mathfrak{A}}\,\xi_{\alpha}$ существует. Более того, найдется счетное множество $\mathfrak{A}_0\subset\mathfrak{A}$ такое, что

$$\xi(\omega) = \sup_{\alpha \in \mathfrak{A}_0} \xi_{\alpha}(\omega).$$

 $\underline{\mathcal{A}}$ оказательство. Поскольку всегда можно перейти к $\widetilde{\xi}_{\alpha} \stackrel{\triangle}{=} \operatorname{arctg}(\xi_{\alpha})$, будем считать, что все ξ_{α} ограничены. Пусть S есть супремум значений $\mathbb{E} \max_{\alpha \in A} \xi_{\alpha}$ по всем конечным множествам $A \subset \mathfrak{A}$. Найдется A_n , для которого $\mathbb{E} \max_{\alpha \in A_n} \xi_{\alpha} \geq S - \frac{1}{n}$; примем

$$\mathfrak{A}_{\infty} \stackrel{\triangle}{=} \bigcup_{n=1}^{\infty} A_n, \qquad \xi(\omega) \stackrel{\triangle}{=} \sup_{\alpha \in \mathfrak{A}_{\infty}} \xi_{\alpha}(\omega).$$

По построению ξ — случайная величина и ξ = ess- $\sup_{\alpha \in \mathfrak{A}} \xi_{\alpha}$; действительно, всегда $\mathbb{E} \max\{\xi,\eta\}$ = $\mathbb{E} \xi$, откуда $\xi \geq \eta$ п.в.

Теорема об оптимальной остановке

Для

$$v_N \stackrel{\triangle}{=} f_N, \quad v_n \stackrel{\triangle}{=} \max\{f_n, \mathbb{E}(v_{n+1}|\mathcal{F}_n)\}, \tau_n \stackrel{\triangle}{=} \min\{k \in \overline{n, N} : v_k = f_k\}$$

имеют место утверждения:

f 0 моменты остановки au_n оптимальны в классе ${\mathfrak W}_n$:

$$\mathbb{E}f_{\tau_n} = V_n \stackrel{\triangle}{=} \sup_{\tau \in \mathfrak{W}_n} \mathbb{E}f_{\tau};$$

f 2 "стохастические цены" совпадают с v_n , т.е.

ess-sup
$$\mathbb{E}(f_{\tau}|\mathcal{F}_n) = v_n$$
.

Подумать: свяжите числа V_n и случайные величины v_n ; можно ли утверждать, что $V_0 = v_0$ и $V_N = \mathbb{E} f_N$?

Доказательство теоремы: $\mathbb{E}(f_{\tau}|\mathcal{F}_{k-1}) \leq v_{k-1}$ \mathbb{P} -п.н

Если n=N, то $v_N=f_N$, и все доказано. Пусть теперь теорема доказана для $n=N,N-1,\ldots,k$. Докажем её для n=k-1. Пусть $\tau\in\mathfrak{W}_{k-1}$ и $A\in\mathcal{F}_{k-1}$. Положим $\bar{\tau}\stackrel{\triangle}{=}\max\{\tau,k\}$. Заметим, что $\bar{\tau}\in\mathfrak{W}_k$. Также отметим, что событие $\{\tau\geq k\}$ лежит в \mathcal{F}_{k-1} . Имеем, что

$$\mathbb{E}(\mathbf{1}_{A}f_{\tau}) = \mathbb{E}[\mathbf{1}_{A\cap\{\tau=k-1\}}f_{\tau}] + \mathbb{E}[\mathbf{1}_{A\cap\{\tau\geq k\}}f_{\tau}]$$

$$= \mathbb{E}[\mathbf{1}_{A\cap\{\tau=k-1\}}f_{\tau}] + \mathbb{E}[\mathbf{1}_{A\cap\{\tau\geq k\}}\mathbb{E}(f_{\tau}|\mathcal{F}_{k-1})]$$

$$= \mathbb{E}[\mathbf{1}_{A\cap\{\tau=k-1\}}f_{\tau}] + \mathbb{E}[\mathbf{1}_{A\cap\{\tau\geq k\}}\mathbb{E}(\mathbb{E}(f_{\bar{\tau}}|\mathcal{F}_{k})|\mathcal{F}_{k-1})]$$

$$\leq \mathbb{E}[\mathbf{1}_{A\cap\{\tau=k-1\}}f_{\tau}] + \mathbb{E}[\mathbf{1}_{A\cap\{\tau\geq k\}}\mathbb{E}(v_{k}|\mathcal{F}_{k-1})]$$

$$\leq \mathbb{E}(\mathbf{1}_{A}v_{k-1}).$$

Это означает, что $\mathbb{E}(f_{\tau}|\mathcal{F}_{k-1}) \leq v_{k-1}$ для всех $\tau \in \mathfrak{W}_n$.

Доказательство теоремы: $\mathbb{E}(f_{\tau_{k-1}}|\mathcal{F}_{k-1}) = v_{k-1}$ \mathbb{P} -п.н.

Заметим, что на множестве $\{ au_{k-1} \ge k\}$ по предположению индукции $au_{k-1} = au_k$ и $\mathbb{E}(f_{ au_k}|\mathcal{F}_k) = v_k$ \mathbb{P} -п.н.

$$\mathbb{E}(\mathbf{1}_{A}f_{\tau_{k-1}}) = \mathbb{E}[\mathbf{1}_{A \cap \{\tau_{k-1} = k-1\}} f_{k-1}] + \mathbb{E}[\mathbf{1}_{A \cap \{\tau_{k-1} \ge k\}} f_{\tau_{k-1}}]$$

$$= \mathbb{E}[\mathbf{1}_{A \cap \{\tau_{k-1} = k-1\}} f_{k-1}] + \mathbb{E}[\mathbf{1}_{A \cap \{\tau_{k-1} \ge k\}} \mathbb{E}(f_{\tau_{k}} | \mathcal{F}_{k-1})]$$

$$= \mathbb{E}[\mathbf{1}_{A \cap \{\tau_{k-1} = k-1\}} f_{k-1}] + \mathbb{E}[\mathbf{1}_{A \cap \{\tau_{k-1} \ge k\}} \mathbb{E}(v_{k} | \mathcal{F}_{k-1})]$$

$$= \mathbb{E}(\mathbf{1}_{A} v_{k-1}).$$

Последнее равенство выполнено в силу $v_{k-1} = \max\{f_{k-1}, \mathbb{E}(v_k|\mathcal{F}_{k-1})\}$ и равенств $v_{k-1} = f_{k-1}$ при $\tau_{k-1} = k-1$ и $v_{k-1} = \mathbb{E}(v_k|\mathcal{F}_{k-1})$ при $\tau_{k-1} \geq k$. Тем самым показано, что

$$\mathbb{E}(f_{ au_{k-1}}|\mathcal{F}_{k-1})$$
 = v_{k-1} \mathbb{P} -п.н.

Поскольку для всех моментов остановки au выполнено $\mathbb{E}(f_{ au}|\mathcal{F}_{k-1}) \leq v_{k-1}$ п.в., теорема доказана.

