BEST AVAILABLE COPY

(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平7-283212

(43)公開日 平成7年(1995)10月27日

(51) Int. Cl. 6

識別記号

FΙ

技術表示箇所

HO1L 21/316

C

23/29 23/31

8617-4M

庁内整理番号

H01L 23/30

審査請求 未請求 請求項の数4 OL (全6頁)

(21)出願番号 特願平7-78745

(22)出願日

平成7年(1995)4月4日

(31)優先権主張番号 225688

(32)優先日

1994年4月11日

(33)優先権主張国

米国(US)

(71)出願人 590001418

ダウ・コーニング・コーポレーション

DOW CORNING CORPORA

TION

アメリカ合衆国ミシガン州ミッドランド(

番地なし)

(72)発明者 ロバート チャールズ カミレッティ

アメリカ合衆国、ミシガン、ミッドランド

. ウッドベリー コート 5710

(72) 発明者 フレドリック チャールズ ダール

アメリカ合衆国、ミシガン、メリル、サウ

ス パドール ロード 4211

(74)代理人 弁理士 石田 敬 (外3名)

最終頁に続く

(54) 【発明の名称】Si-O含有皮膜の形成方法

(57)【要約】

エレクトロニクス基体上に、改善された化学 的、電気的及び機械的性質を持つSi-O含有皮膜を形 成する。

【構成】 エレクトロニクス基体上にSi-O含有皮膜 を形成する方法。この方法は、ハイドロジェンシルセス キオキサン樹脂を、順に湿潤アンモニア、乾燥アンモニ ア及び酸素の下で加熱する。

【特許請求の範囲】

【請求項1】 次の(a)~(d)を含むエレクトロニ クス基体上にSi-O含有皮膜を形成する方法:

- (a) エレクトロニクス基体上にハイドロジェンシルセ スキオキサン樹脂を含む皮膜を被覆し;
- (b) アンモニア及び水蒸気を含む雰囲気で、被覆され た基体を75~400℃の温度で少なくとも15分間加 熱し:
- (c) ステップ(b) で得られた被覆された基体を実質 的に無水のアンモニアを含む雰囲気中で75~400℃ 10 の温度で少なくとも15分間加熱し;そして
- (d) ステップ(c) で得られた被覆された基体を、少 なくとも15分間、前記皮膜をアニールするに充分な時 間、酸素含有気体中で、少なくとも150℃の温度で加 熱すること。

【請求項2】 溶媒及び前記ハイドロジェンシルセスキ オキサン樹脂を含む溶液を前記基体に塗り、次いでこの 溶媒を蒸発することを含む方法により、前記ハイドロジ エンシルセスキオキサン樹脂を前記基体に被覆する請求 項1の方法。

【請求項3】 前記ハイドロジェンシルセスキオキサン 樹脂を含む皮膜が変性用セラミック酸化物前駆体をも含 み、この前駆体はチタン、ジルコニウム、アルミニウ ム、タンタル、バナジウム、ニオブ、ホウ素及び燐から 選ばれる元素を含み、この化合物はアルコキシ基及びア シロキシ基から選ばれる少なくとも1つの加水分解性置 換基を含み、この化合物は前記皮膜が変性用セラミック 酸化物を0.1~30wt%含むような量存在する、請 求項1又は2の方法。

【請求項4】 前記ハイドロジェンシルセスキオキサン 30 樹脂を含む皮膜が白金、ロジウム又は銅触媒をハイドロ ジェンシルセスキオキサン樹脂の重量を基準として5~ 500ppm さらに含む、請求項1、2又は3の方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、Si-O含有セラミッ ク皮膜の形成方法に関する。この方法は、ハイドロジェ ンシルセスキオキサン樹脂の低温加工によりえられる皮 膜を酸素含有アニール用雰囲気に曝すことを含む。えら れた皮膜は望ましい電気的、化学的及び機械的性質を有 40 する。

[0002]

【従来の技術】エレクトロニクス装置にハイドロジェン シルセスキオキサン樹脂(H-樹脂)から誘導されるシ リカ含有セラミック皮膜を使用することはこの技術分野 で公知である。例えば、米国特許No. 4756977は エレクトロニクス装置上に皮膜を形成する方法を記載し ており、この方法は、H-樹脂を溶媒中に溶解し、この 溶液を基体に塗布し、前記溶媒を蒸発し、前記被覆され た基体を空気のような酸素含有雰囲気下に150~10 50 H)及び/又は水素が完全には無くなっていないシリカ

00℃で加熱することを含む。しかしながら、この特許 は本願特許請求の範囲に記載しているような転化とアニ ールのプロセスを述べていない。

【0003】当技術分野では、無水の(「乾燥」)アン モニア又はアンモニア及び水蒸気の雰囲気下でHー樹脂 をSi-O含有セラミックに変えうることも公知である (米国特許No.4847162及び5262201)。 これらの特許も本願発明のアニールプロセスを記載して いない。

[0004]

【発明が解決しようとする課題】本発明が解決しようと する課題は改善された電気的性質を有する皮膜を形成す る方法を提供することである。

[0005]

【課題を解決するための手段及び発明の効果】湿潤/乾 燥アンモニア中でH-樹脂を転化して得られるSi-O 含有皮膜を酸素含有雰囲気中でアニールすると、皮膜の 性質が改善されることを、本発明者等は見いだした。

【0006】本発明は、エレクトロニクス基体上にSi -O含有皮膜を形成する方法を提供する。それは第1に H-樹脂をエレクトロニクス基体上にH-樹脂を含む皮 膜を塗ることを含む。次いで、この被覆されたエレクト ロニクス基体をアンモニア及び水蒸気を含む雰囲気中で 加熱し、最後にH-樹脂をSi-O含有セラミック皮膜 に転化するに充分な温度で実質的に無水のアンモニアを 含む雰囲気中で加熱する。このSi-O含有セラミック 皮膜を、後に、この皮膜をアニールするに充分な時間及 び温度で酸素含有雰囲気に暴露する。

【0007】本発明は、ここに記載し特許請求したH-樹脂の転化及びアニールプロセスが生成物皮膜の性質を 改善するという意外な発見に基づいている。例えば、本 発明の転化とアニール過程は、この皮膜の誘電率を低く し、この皮膜の誘電率をより固定したものとし、誘電損 失又は体積抵抗率を改善する。H-樹脂のこれら与えら れた条件のいずれの下において転化及び/又は加熱して も本発明の結果を再現することはできなかったので、こ れらの効果は特に予想外である。

【0008】これらの効果の故に、本発明の皮膜はエレ クトロニクス基体に特に価値のあるものである。そのよ うな皮膜は、保護皮膜、中間誘電層、トランジスター様 装置を製造するためのドープされた誘電層、コンデンサ 一及びコンデンサー様装置を製造するためのケイ素を含 有するピグメントで充填したバインダー系、多層装置、 3-D装置、絶縁体上のケイ素装置、超伝導体用皮膜、 超格子素子、等に使用できる。

【0009】ここで用いられている、用語「セラミッ ク」は、H-樹脂を加熱した後えられる硬くて、Si-O含有皮膜のことをいう。これらの皮膜はシリカ (Si O、)物質及び残留する炭素、シラノール(Si-O

様物質(例えば、SiO、Si、O、等)の両方を含み うる。これら皮膜はまた、ホウ素又は燐でドープされて いてもよい。「アニール」なる用語はこの明細書の特許 請求の範囲に記載した酸素中での熱処理のことをいう。 用語「エレクトロニクス基体」は、シリコンペースの装 置、ガリウム砒素ペースの装置、焦点面アレー(foc al plane arrays)、光電子装置(op to-electronic device)、光起電 カセル及び光学装置(optical device s) を含む。

【0010】本発明によれば、H-樹脂を含む皮膜は最 初にエレクトロニクス基体に塗る。本発明方法おいて用 いうるH-樹脂は式HSi(OH), (OR), O./: (ここに、各Rは独立に、酸素原子を介してケイ素に結 合すれば、加水分解性の置換基を形成する有機基又は置 換された有機基であり、x=0~2、y=0~2、z= $1\sim3$ 、x+y+z=3である) で示されるヒドリドシ ラン樹脂を含む。Rの例としては、アルキル、例えばメ チル、エチル、プロピル及びプチル;アリール、例えば 含む。これらの樹脂は完全に縮合されるか(HSiO 1/1)。又はそれらは部分的に加水分解され(即ち、い くらかのSi-OHを含む)、及び/又は部分的に縮合 される(即ち、いくらかのSi-〇Hを含む)。この構 造で示されることはないが、これらの樹脂は、それらの 形成又は取扱いに含まれるファクターの故に、少数の

(例えば、10%未満)ケイ素に結合した0もしくは2 個の水素原子を有するケイ素原子、又は少数のSiC結 合を含んでいてもよい。更に、この樹脂は所望によりホ ウ素又は燐でドープされていてもよい。

【0011】上記H-樹脂及びその製造方法は当技術分 野で公知である。例えば、米国特許No.3615272 は、殆ど完全に縮合したH-樹脂(これは100~30 0 ppm までのシラノールを含んでいてもよい)を製造す る方法を開示している。この方法は、ベンゼンスルフォ ン酸水和物加水分解媒体中でトリクロロシランを加水分 解し、次いで得られた樹脂を水または硫酸水溶液で水洗 するものである。同様に、米国特許No. 5010159 は、アリールスルフォン酸水和物中でヒドリドシランを 加水分解して樹脂を形成し、次いでこれを中和剤と接触 40 させることを含む代替方法を示している。

【0012】他のヒドリドシラン樹脂、例えば米国特許 No. 4999397又はJP-A59-178749、 同60-86017及び同63-107122並びに他 の均等なヒドリドシランはここで機能するであろう。

【0013】好ましい態様において、上記H-樹脂の特 別の分子量画分も本発明方法において用いうるであろ う。そのような画分及びそれらの製造方法は米国特許N 0.5063267に記載されている。好ましい画分は少 なくとも75%の、数平均分子量1200超のポリマー 50 助けるために、種々の促進手段、例えば攪拌及び/又は

種を有する材料を含み、より好ましい画分は少なくとも 75%の、数平均分子量1200~100,000ポ リマー種を有する材料を含む。

【0014】前記H-樹脂被覆材は他のセラミック酸化 物前駆体を含んでいてもよい。そのようなセラミック酸 化物前駆体は、種々の金属、例えばアルミニウム、チタ ン、ジルコニウム、タンタル、ニオプ及び/又はバナジ ウムの化合物、並びに種々の非金属化合物、例えばホウ 素又は燐の化合物であって、溶剤に溶解し、加水分解さ 10 れ、続いて比較的低い温度で比較的速い反応速度で熱分 解され、セラミック酸化物皮膜を形成するものを含む。 【0015】上記セラミック酸化物前駆体化合物は、前 記金属の原子価に依存して、一般に金属又は非金属に結 合した1又はそれ以上の加水分解性基を有する。これら の化合物中に含まれる加水分解性の基の数は、その化合 物が溶剤に溶解性である限り、重要ではない。同様に、 正確な加水分解性置換基の選択は重要でない。理由は、 それら置換基は系から加水分解又は熱分解により除去さ れるからである。代表的な加水分解性基は、アルコキ フェニル並びにアルケニル、例えばアリル及びピニルを 20 シ、例えばメトキシ、プロポキシ、プトキシ及びヘキソ キシ;アシロキシ、例えばアセトキシ;又は酸素を介し て前記金属もしくは非金属に結合した他の有機基、例え ばアセチルアセトネートを含む。特別の化合物は、ジル コニウムテトラアセチルアセトネート、チタニウムジブ トキシジアセチルアセトネート、テトライソプトキシチ タン、B、 (OCH,), O, 及びP, (OCH, CH

> 【0016】H-樹脂を上述のセラミック酸化物前駆体 と組み合わせるときは、それは最終セラミック皮膜が7 0~99.9wt%のSiO,を含むような量で一般に 用いられる。

,),Oを含む。

【0017】前記H-樹脂含有材料は、シリカへの転化 の速度と程度を増すために、白金触媒、ロジウム触媒又 は銅触媒を含んでいてもよい。一般に、可溶化できるど んな白金、ロジウム又は銅の化合物又は錯体をも用いう る。例えば、白金アセチルアセトネート、Dow Co rning Corporation, Midlan d, Michiganから入手できるロジウム触媒 R h C 1, [S (CH, CH, CH, CH,),], 、又 はナフテン酸第1銅は全て本発明において機能する。こ れらの触媒は一般に、Hー樹脂の重量を基準にして5~ 1000ppmの白金、ロジウム又は銅の金属となるよう に添加する。

【0018】H-樹脂を望みの基体へ塗るときは、どん な実際的な手段であってもよいが、好ましいアプローチ は適当な溶剤中に溶解したHー樹脂を含む溶液を用い る。もしこのアプローチを用いるとすれば、この溶液 は、溶剤又は溶剤混合物中にH-樹脂を単に溶解し又は 懸濁することによって、一般に形成される。この溶解を

加熱を用いることができる。用いうる溶剤は、上記物質 を低固形分となるように溶解するに充分な量の、アルコ ール、例えばエチルアルコールもしくはイソプロピルア ルコール、芳香族炭化水素、例えばペンゼンもしくはト ルエン、脂肪族炭化水素、例えばn-ヘプタンもしくは ドデカン、ケトン、鎖状もしくは環状のポリシロキサ ン、エステル、又はエーテルを含む。例えば、充分な溶 ・・ 剤は0.1~50wt%の溶液を形成するように含まれ る。

【0019】次いで、前記H-樹脂溶液は基体に塗られ 10 る。スピン、スプレー、浸漬又は流し塗りは全てここで 機能するであろう。塗った後、前記溶剤を単純な空気乾 燥、周囲雰囲気への暴露及び真空又は温和な加熱をかけ ることによって蒸発させる。

【0020】上記記載の方法は、第1に溶液のアプロー チを用いることに焦点を当てたが、当業者は、塗布の他 の均等手段(例えば、溶融被覆)も許容できるであろう ことを理解するであろう。

【0021】次いで、被覆したエレクトロニクス基体 を、H-樹脂をSi-O含有セラミック皮膜に転化する 20 に充分な温度に加熱する。第1のステップにおいて、H - 樹脂をアンモニア及び水蒸気の両方を含む雰囲気

(「湿潤アンモニア」)の下で加熱する。このプロセス は、米国特許No.5262201に充分に記載されてい る。一般に、それは水蒸気及びアンモニアの両方を含む 雰囲気中で、被覆された基体を75~400℃の範囲の 温度に加熱することを含む。そのような雰囲気はアンモ ニアを水に通して泡立てることによって、水蒸気及びア ンモニアの両方を雰囲気中に導入することによって、又 は水酸化アンモニウムを加熱することによって作りだす 30 ことができる。好ましい温度は150~300℃の範囲 である。一般的にいって、アンモニア/水蒸気雰囲気下 での加熱時間は、少なくとも15分であるが、30分~ 6時間の範囲が好ましい。この過程の間に、H-樹脂は 加水分解され、部分的に硬化される。

【0022】本発明の第2ステップにおいて、Hー樹脂 を実質的に無水のアンモニア(「乾燥アンモニア」)を 含む雰囲気の下で加熱する。ここで用いている「実質的 に無水のアンモニア」は好ましくは100%(容量%) のアンモニアを含む雰囲気をいうが、それは少量(例え 40 ば、<1%)の他の不純物の存在を許容する。そのよう な方法は米国特許No. 4847162に記載されてい る。このプロセスは、実質的に無水のアンモニアを含む 雰囲気下で75~400℃の範囲の温度に、被覆された 基体を加熱することを単に含むだけである。一般に、実 質的に無水のアンモニアの下における加熱時間は、少な くとも15分であり、30分~6時間の範囲の時間が好 ましい。このステップの間に、この皮膜のシラノール含 量が減り、Si-O含有セラミック皮膜が得られる。

た基体を加熱装置中に置き、加熱を開始し、湿潤アンモ ニア雰囲気をこの加熱装置中に導入し、この湿潤アンモ ニアを停止し、次いで乾燥アンモニア雰囲気をこの加熱 装置中に導入することによって行われる。

【0024】次いで、得られたSi-O含有セラミック 皮膜を酸素含有雰囲気下に、この皮膜をアニールするに 充分な時間及び温度で加熱する。理論に拘束されること を望む訳ではないが、本発明者等は、酸素アニールは水 及びシラノール(Si-OH)を皮膜から取り除き、こ れによってその電気的性質を改善するものと仮定してい る。そうだとして、アニールの温度/時間は、水及び/ 又はシラノールを完全に除くものであるべきである。

【0025】前記酸素アニールは、Si-O含有セラミ ック皮膜の形成の直後に行いうるし、又はこれに代え て、アニールはその後のいずれの時間にも行いうる。一 般的にいって、このアニールは酸素含有雰囲気をアニー ルに用いるための加熱室又は炉中に導入することによっ て達成される。

【0026】ここで用いられる酸素はどんな実用的な濃 度であってもよい。例えば、0.01~100容量%の 濃度を用いうる。好ましい濃度は1~30容量%であ る。例えば、空気中での加熱はここで用いうる1つの有 効な方法である。

【0027】酸素の希釈ガスは同様に重要でない。不活 性ガス、例えば窒素、アルゴンもしくはヘリウム、又は 反応性ガス、例えば空気は全て用いうる。

【0028】酸素アニールの間に用いられる温度も、広 い範囲で変化しうる。150~600℃の温度はすべて ここでは機能する。好ましい温度は一般に300~50 0℃の範囲にあり、400℃が最も好ましい。

【0029】酸素アニールに用いる時間も、広い範囲で 変わりうる。一般的に、15分を超えるアニール時間は 機能し望むだけ長い間(例えば数日)続けることができ る。好ましいアニール時間は1~72時間である。

【0030】上述の加熱ステップのそれぞれの間、殆ど どんな加熱装置も用いうる。例えば、熱対流炉、急速熱 加工 (rapid thermal processi ng)、ホットプレート、輻射エネルギー又はマイクロ 波エネルギーを用いることができる。加熱速度も重要で ないが、できるだけ速く加熱するのが実用的であり好ま しい。最後に、上述の加熱及びアニールは、大気圧以下 から大気圧以上にわたるどんな望みの圧力の下でも行い

【0031】本発明者等が得た皮膜は、他の方法によっ て形成された皮膜に比べて、望ましい電気的特性を持っ ている。例えば、本発明皮膜の誘電定数(DK)は、1 MH2にて2. 5未満に低くすることができる。加え て、このDKは100Hz~1MHzの範囲の全体にわ たって、比較的安定である。同様に、本発明皮膜の誘電 【0023】一般に、上記の加熱ステップは、被覆され 50 損失は70%改善され、体積抵抗率は7桁の大きさで改 善される。そのようなものとして、本発明皮膜はエレク トロニクス装置に有用であり、また、それらの性質は予 想外であることは明らかである。

[0032]

【実施例】以下に、当業者が本発明をより容易に理解で きるようにするために、例を挙げるが、これらは本発明 を制限するものではない。

【0033】 (例1) H-樹脂 (米国特許No.3615 272の方法で製造したもの)を表1に示す濃度に、表 1に示す溶媒で希釈した。6枚の、直径100㎜のシリ コンウェーハーを3000RPMで回転させつつ20秒 間これらの溶液で被覆した。

【0034】H-樹脂で被覆したウェーハーの2枚を本 発明方法により以下のようにして転化しアニールした (例2及び4):2枚のウェーハーを管状炉中で、アン モニア及び水を含む雰囲気(炉中に注入された水蒸気及 びアンモニア)の下で、250℃で2.5時間、次いで 無水アンモニア雰囲気(アンモニアのみを炉中に注入) 中で、250℃で1時間、加熱した。得られたセラミッ クSi-〇含有皮膜を室温に冷却した。次いで、この皮 20 特性に劇的な効果を与える。 膜を400℃で72時間空気中で加熱した。得られた皮 膜の電気特性を表1に示す。

【0035】H-樹脂で被覆したウェーハーの2枚を、

湿潤アンモニア及び乾燥アンモニアの下で(アニールな し) Si-O含有セラミックに、以下のようにして転化 した(例1及び3):2枚のウェーハーを管状炉中で、 アンモニア及び水を含む雰囲気(炉中に注入された水蒸 気及びアンモニア)の下で、250℃で2.5時間、次 いで無水アンモニア雰囲気(アンモニアのみを炉中に注 入) 中で、250℃で1時間、加熱した。得られたセラ ミックSi-O含有皮膜を室温に冷却した。得られた皮 膜の電気特性を表1に示す。

【0036】H-樹脂で被覆したウェーハーの2枚を空 気中、400℃で硬化し、Si-O含有セラミックに、 以下のようにして転化した(湿潤アンモニア及び乾燥ア ンモニアなし) (例5及び6):2枚のウェーハーを管 状炉中、空気中で、400℃で72時間加熱した。得ら れたセラミックSi-O含有皮膜を室温に冷却した。得 られた皮膜の電気特性を表1に示す。

【0037】この表から明らかなように、低温度湿潤ア ンモニア及び乾燥アンモニアによる転化に引き続いて空 気アニールを行うという組み合わせを用いると、電気的

[0038] 【表1】

701	. when when					
例 No.	濃度 (溶剤)	誘電定数	(DK)	誘電損失		体積抵抗率 (Ω-cn)
1	18% (CDMS*)	100 Hz 1 KHz 10 KHz 100 KHz 1 MHz	- 5. 66 - 4. 28 - 3. 71 - 3. 13 - 2. 56	100 Hz 1 KHz 10 KHz 100 KHz 1 MHz	- 0.085 - 0.097 - 0.074 - 0.149 - 0.227	4.53×10 ⁷
2	18% (CDMS*)	100 Hz 1 KHz 10 KHz 100 KHz 1 MHz	- 3. 38 - 3. 21 - 2. 97 - 2. 68 - 2. 42	100 Hz 1 KHz 10 KHz 100 KH2 1 MHz	- 0.024 - 0.024 - 0.038 - 0.053 - 0.061	4. 27×10 ¹⁵
3	25% (MIBK*)	100 Hz 1 KHz 10 KHz 100 KHz 1 MHz	- 6. 04 - 4. 67 - 3. 97 - 3. 57 - 2. 84	100 Hz 1 KHz 10 KHz 100 KHz 1 MHz	- 0. 212 - 0. 133 - 0. 070 - 0. 010 - 0. 149	7.85×10 ⁷
4	25% (MIBK*)	100 Hz 1 KHz 10 KHz 100 KHz 1 MHz	- 3. 98 - 3. 85 - 3. 96 - 3. 88 - 3. 71	100 Hz 1 KHz 10 KHz 100 KHz 1 MHz	- 0.006 - 0.006 - 0.007 - 0.028 - 0.035	7.83×10 ¹⁵
5	22% (MIBK*)	100 Hz 1 KHz 10 KHz 100 KHz 1 MHz	- 4. 29 - 4. 28 - 4. 27 - 4. 26 - 4. 24	100 Hz 1 KHz 10 KHz 100 KHz 1 MHz	- 0.001 - 0.001 - 0.003 - 0.004 - 0.004	2.9 ×10 ¹⁵
6	18% (CDMS*)	100 Hz 1 KHz 10 KHz 100 KHz 1 MHz	- 5. 14 - 5. 09 - 5. 06 - 5. 01 - 4. 92	100 Hz 1 KHz 10 KHz 100 KHz 1 MHz	- 0.01 - 0.005 - 0.005 - 0.008 - 0.023	2.3 ×10 ¹⁵

- CDMS=環状ジメチルポリシロキサン
- MIBK=メチルイソプチルケトン

フロントページの続き

(72)発明者 ダイアナ カイ ダン アメリカ合衆国, ミシガン, ミッドラン ド, イーストローン ドライブ 502 υ,

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:			
☐ BLACK BORDERS			
Mage cut off at top, bottom or sides			
☐ FADED TEXT OR DRAWING			
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING			
☐ SKEWED/SLANTED IMAGES	•		
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	٠.		
☐ GRAY SCALE DOCUMENTS			
☐ LINES OR MARKS ON ORIGINAL DOCUMENT			
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR	R QUALITY		
Потигр			

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.