Переходные процессы в электрических цепях с сосредоточенными параметрами и методы их расчета

Лекция 13

Цель лекции №13:

Ознакомившись с лекцией №13 по теории электрических цепей студент должен знать:

- 1 Область применения интеграла Дюамеля для расчета переходных процессов.
- 2 Владеть методикой расчета переходных характерист к по току и напряжению.
- 3 Рассчитывать переходной ток и напряжение на отдельных участках цепи, используя интеграл Дюамеля при воздействии на входе напряжения произвольной аналитической и кусочно-аналитической формы..

13.1 РАСЧЕТЫ ПРИ ВОЗДЕЙСТВИИ НАПРЯЖЕНИЯ ПРОИЗВОЛЬНОЙ ФОРМЫ. ИНТЕГРАЛ НАЛОЖЕНИЯ (ДЮАМЕЛЯ) И ЕГО ПРИМЕНЕНИЕ ПРИ АНАЛИЗЕ ПЕРЕХОДНЫХ ПРОЦЕССОВ.

Интеграл Дюамеля применяют для расчета переходного процесса (выходного сигнала) в линейной пассивной электрической цепи с нулевыми начальными условиями при воздействии на нее напряжения U(t), имеющего произвольную аналитическую или кусочно - аналитическую форму (рис. 13.1)

Рисунок 13.1 Электрическая цепь (a) и воздействующие на нее напряжения произвольной формы (б, в, г)

Применение интеграла Дюамеля требует знания выражений для переходной характеристики цепи и входного воздействия (сигнала) $f_{\rm BX}(t)$.

13.1.1 Расчет переходных характеристик цепи

Переходной характеристикой цепи называют реакцию цепи с нулевыми начальными условиями на единичное воздействие, т.е. на входной сигнал единичной величины.

Т.к. воздействие и реакция могут быть током или напряжением, то возможны четыре их сочетания. Различают переходную проводимость g(t), переходное сопротивление z(t) и переходные характеристики передачи по току — $h_i(t)$ и по напряжению $h_u(t)$.

Переходная характеристика цепи совпадает с переходным током или напряжением при подключении цепи к источнику постоянного напряжения (тока) единичной величины.

Например, при заданных R и L, требуется определить переходную проводимость g(t) и переходные функции по напряжению на участках с резистором и индуктивностью: $h_{U_R}(t)$, $h_{U_L}(t)$

Рисунок 13.2 Цепь R – L для определения переходных характеристик по току и напряжению.

Известно, что при подключении такой цепи на постоянное напряжение U ток переходного режима определяется соотношением:

$$i(t) = \frac{U}{R} \left(1 - e^{-\frac{R}{L}t} \right).$$

Напряжение на активном сопротивлении и на индуктивности определяют выражениями:

$$U_{R}(t) = U \left(1 - e^{-\frac{R}{L}t} \right);$$

$$U_{L}(t) = U e^{-\frac{R}{L}t}.$$

Тогда

$$g(t) = i(t)|_{U=1} = \frac{1}{R} \left(1 - e^{-\frac{R}{L}t} \right);$$

$$h_{U_R}(t) = U_R(t)|_{U=1} = \left(1 - e^{-\frac{R}{L}t}\right);$$

$$h_{U_L}(t) = U_L(t)|_{U=1} = e^{-\frac{R}{L}t}.$$

13.1.2 Применение интеграла Дюамеля

Таблица 13.1

$f_{\scriptscriptstyle \mathrm{BX}}(t)$	$f_{\scriptscriptstyle m BMX}(t)$	h(t)	$f_{\text{BMX}}(t) = f_{\text{BX}}(0)h(t) + \int_0^t f'_{\text{BX}}(\tau)h(t-\tau)d\tau$
и	и	$h_u(t)$ — переходная характеристика по напряжению	$u_{\text{BbIX}}(t) = u_{\text{BX}}(0)h_{u}(t) + \int_{0}^{t} u'_{\text{BX}}(\tau)h_{u}(t-\tau)d\tau$
i	i	$h_i(t)$ — переходная характеристика по току	$i_{\text{BMX}}(t) = i_{\text{BX}}(0)h_i(t) + \int_0^t i'_{\text{BX}}(\tau)h_i(t-\tau)d\tau$
и	i	g(t) — переходная проводимость	$i_{\text{BMX}}(t) = u_{\text{BX}}(0)g(t) + \int_0^t u'_{\text{BX}}(\tau)g(t-\tau)d\tau$
i	и	z(t) — переходное сопротивление	$u_{\text{BbIX}}(t) = i_{\text{BX}}(0)z(t) + \int_0^t i'_{\text{BX}}(\tau)z(t-\tau)d\tau$

Если напряжение, воздействующее на линейную пассивную цепь (Рис.13.1, а), является непрерывно изменяющейся функцией времени (рис. 13.1, б), то ток в любой ветви определяется формулой (13.1), а напряжение на отдельном участке формулой (13.2):

$$i(t) = U(0)y(t) + \int_{0}^{t} U'(\tau)y(t-\tau)d\tau$$
 (13.1)

$$i(t) = U(0)y(t) + \int_{0}^{t} U'(\tau)y(t-\tau)d\tau$$

$$U_{ab}(t) = U(0) \cdot h_{u}(t) + \int_{0}^{t} U'(\tau)h'_{U}(t-\tau)d\tau$$
(13.1)
(13.2)

где U(0) — входное напряжение в момент включения;

 $U'(\tau)$ — производная по времени от входного напряжения, в которой t заменено на τ ;

 $y(t), h_U(t)$ — переходные проводимость и функция по напряжению соответственно;

 $y(t-\tau), h_U(t-\tau)$ — переходные проводимость и функция по напряжению, в которых t заменено на $t-\tau$.

В зависимости от вида входного и выходного сигналов (см. табл. 13.1) выбирается соответствующая формула записи интеграла Дюамеля.

Если воздействующее на цепь напряжение изменяется хотя и непрерывно, но имеет разные аналитические выражения на отдельных интервалах времени (рис. 13.1, в), то ток и напряжение на каком-либо участке цепи в переходном режиме находятся для каждого интервала отдельно. Так, если воздействующее на цепь напряжение имеет два аналитических выражения $U_1(t)$ и $U_2(t)$ (рис. 13.1, в), то ток и напряжение на каком-либо участке в переходном режиме будут определяться двумя аналитическими выражениями. Одно из них будет соответствовать первому интервалу времени от 0 до t_1 , когда входное напряжение изменяется по закону $U_1(t)$, другое будет соответствовать интервалу времени от t_1 до ∞ , когда входное напряжение изменяется по закону $U_2(t)$. В первом интервале времени $0 \le t < t_1$, ток в какой-либо ветви и напряжение на каком либо участке цепи ab определятся формулами (13.3) и (13.4) соответственно:

$$i_1(t) = U_1(0)g(t) + \int_0^t U_1'(\tau)g(t-\tau)d\tau,$$
 (13.3)

$$U_{ab_1}(t) = U_1(0) \cdot h_u(t) + \int_0^t U_1'(\tau) h_u(t-\tau) d\tau.$$
 (13.4)

Во втором интервале времени $t_1 \le t < \infty$ ток в этой же ветви и напряжение на этом же участке цепи ab определятся формулами (13.5), (13.6):

$$i_2(t) = U_1(0)g(t) + \int_0^t U_1'(\tau)g(t-\tau)d\tau + \int_{t_1}^t U_2'(\tau)g(t-\tau)d\tau,$$
 (13.5)

$$U_{ab2}(t) = U_1(0) \cdot h_u(t) + \int_0^t U_1'(\tau)h_u(t-\tau)d\tau + \int_{t_1}^t U_2'(\tau)h_u(t-\tau)d\tau$$
 (13.6)

Следует особое внимание обратить на случай, когда воздействующее на цепь напряжение не только определяется несколькими аналитическими выражениями, но и претерпевает скачки в какие - то моменты времени. Так, если на цепь воздействует напряжение, имеющее форму, показанную на рис 13.1, г, то время переходного процесса разбивается на три интервала:

- 1) Интервал $0 \le t < t_1$, не включая скачка напряжения от U_m до $-U_n$. В этом интервале ток в ветви и напряжение на участке цепи ab определяется по формулам (13.3) и 13.(4);
- 2) Второй интервал $t_1 \le t < t_2$, не включая скачка от U_l до нуля. В этом интервале ток и напряжение в переходном режиме определяются формулами (13.7) и (13.8):

$$i_{2}(t) = U_{1}(0)g(t) + \int_{0}^{t_{1}} U'_{1}(\tau)g(t-\tau)d\tau - (U_{m} + U_{n})g(t-t_{1}) + \int_{t_{1}}^{t} U'_{2}(\tau)g(t-\tau)d\tau;$$

$$(13.7)$$

$$U_{ab_{2}}(t) = U_{1}(0) \cdot h_{u}(t) + \int_{0}^{t_{1}} U'_{1}(\tau) h_{u}(t-\tau) d\tau - (U_{m} + U_{n}) h_{u}(t-t_{1}) + \int_{0}^{t} U'_{2}(\tau) h_{u}(t-\tau) d\tau.$$

$$(13.8)$$

Примечание: Определенные пределы у интегралов отражают окончание и начало их действия. Переходная характеристика в третьем члене выражения получила смещение на величину t_1 , т.к. определяется реакция цепи для $t > t_1$. Во втором интеграле этого смещения вводить не нужно, т.к. оно учтено нижним пределом интегрирования.

Заметим также, что нельзя использовать предыдущий результат расчета, т.к. изменились пределы интегрирования.

3) Третий интервал $t_2 \le t < \infty$. В этом интервале воздействующее напряжение равно нулю. Ток и напряжение U_{ab} переходного режима в этом интервале определяются выражениями (13.9) и (13.10):

$$i_{2}(t) = U_{1}(0)g(t) + \int_{0}^{t_{1}} U'_{1}(\tau)g(t-\tau)d\tau - (U_{m} + U_{n})g(t-t_{1}) + \int_{0}^{t_{2}} U'_{2}(\tau)g(t-\tau)d\tau - U_{l}g(t-t_{2}) + 0,$$

$$(13.9)$$

$$\begin{split} U_{ab_3}(t) &= U_1(0) \cdot h_u(t) + \int\limits_0^{t_1} U_1'(\tau) h_u(t-\tau) d\tau - (U_m + U_n) h_u(t-t_1) + \\ &+ \int\limits_{t_1}^{t_2} U_2'(\tau) h_u(t-\tau) d\tau - U_l h_u(t-t_2) + 0. \end{split} \tag{13.10}$$

13.1.3 Алгоритм расчета переходного процесса с помощью интеграла Дюамеля

- 1. Рассчитывают необходимые переходные характеристики цепи.
- 2. Записывают аналитически выражение входного сигнала f(t) на каждом интервале времени.
- 3. Определяют формулу интеграла Дюамеля для каждого интервала времени.
- 4. Записывают необходимые для решения интеграла функции, которые получают путем подстановки $t = \tau$ или $t \tau$ в выражения g(t), h(t), h'(t), f(t), f'(t).
- 5. Получают выражения для расчета выходного сигнала на каждом интервале, приводя их к более простому виду.
- 6. Делают оценку полученных результатов (верно неверно).
- 7. Результаты расчета сводят в таблицу.
- 8. Строят в масштабе совмещенные графики входного и выходного сигналов (масштабы для сигнала и реакции выбирают так, чтобы графики получались соизмеримыми).