## Problem 1. Gaussian Integrals and moment generating functions

**Motivation:** Consider a harmonic oscillator with potential energy  $U(x) = \frac{1}{2}kx^2$ . If the harmonic oscillator is subjected to an additional constant force f in the x direction its potential energy is  $U(x, f) = \frac{1}{2}kx^2 - fx$ . As we will see shortly, the probability to find the harmonic oscillator coordinate between x and x + dx is

$$P(x)dx = Ce^{-U(x,f)/k_BT}dx. (1)$$

This motivated people to study integrals of the form

$$I(f) \equiv C \int_{-\infty}^{\infty} \mathrm{d}x \, e^{-\frac{1}{2}x^2 + fx} \tag{2}$$

where f is a real number and C is a normalizing constant.

**Method:** Consider integrals of the following form

$$I_n = \langle x^n \rangle = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \mathrm{d}x \, e^{-\frac{1}{2}x^2} x^n \tag{3}$$

which come up a lot in this course. There is a neat trick for evaluating the integrals  $I_n$ , known as the moment generating (or characteristic) function.

Instead of considering  $I_n$ , consider the average of  $\langle e^{ax} \rangle$ .

$$I(a) \equiv \langle e^{ax} \rangle = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}x^2} e^{ax}$$
 (4)

with a a fixed real number. Why would one ever want to do this? Well, if you differentiate with respect to a (under the integral sign) and then set a = 0, you pull down an x:

$$\frac{d}{da}e^{ax}\bigg|_{a=0} = e^{ax}x\bigg|_{a=0} = x. \tag{5}$$

Thus, we may differentiate under the integral sign and find  $\langle x \rangle$  from I(a):

$$\frac{d}{da}I(a)\Big|_{a=0} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}x^2} x = \langle x \rangle \tag{6}$$

The trick can be repeated any number of times. For instance since

$$\left(\frac{d}{da}\right)^4 e^{ax}\Big|_{a=0} = e^{ax} x^4\Big|_{a=0} = x^4$$
 (7)

We have

$$\left(\frac{d}{da}\right)^4 I(a) \bigg|_{a=0} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}x^2} x^4 = \left\langle x^4 \right\rangle \tag{8}$$

In summary, knowing I(a) amounts to know all moments of the probability distribution

$$\langle x^n \rangle$$
 (9)

by differentiation<sup>1</sup>. That is why I(a) is called the moment generating function. This procedure works for any probability distribution and not just the Gaussian (or bell-curve). Now we only need to find I(a)

(a) (Optional) This was done in class. Look over the notes to find it. Show that

$$I_0 = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx \, e^{-\frac{1}{2}x^2} = 1$$
 (13)

(b) Show that

$$I(a) = e^{\frac{1}{2}a^2} \tag{14}$$

*Hint:* Complete the square

$$-\frac{1}{2}x^2 + ax = -\frac{1}{2}(x-a)^2 + \frac{1}{2}a^2$$
 (15)

and then do the integral by a change of variables.

(c) Use the method of generating functions outlined above to prove that

$$\langle x^2 \rangle = 1 \qquad \langle x^4 \rangle = 3 \tag{16}$$

If you are interested, try to prove the general result for yourself

$$I_{2n} = \frac{(2n)!}{n!2^n} \tag{17}$$

Hint: expand the result of (b) and compare with Eq. (12)

(d) For a distribution of the form

$$P(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-x^2/2\sigma^2}$$
 (18)

where  $\sigma$  and x have units of length, determine  $\langle x^2 \rangle$  and  $\langle x^4 \rangle$  using the results of part (c) and a change of variables to  $u = x/\sigma$ .

$$e^{ax} = 1 + ax + \frac{1}{2!}a^2x^2\dots (10)$$

we can see that the Taylor series of I(a) takes the form

$$I(a) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx \, e^{-\frac{1}{2}x^2} \left( 1 + ax + \frac{1}{2!} a^2 x^2 + \dots \right) \tag{11}$$

$$=1 + \langle x \rangle a + \langle x^2 \rangle \frac{a^2}{2!} + \langle x^3 \rangle \frac{a^3}{3!} + \dots$$
 (12)

Thus knowing they Taylor series of I(a) amounts to knowing all  $I_n = \langle x^n \rangle$ . Once simply needs to Taylor expand I(a) in a and read off the coefficients in frount of  $a^n$  – that coefficient is  $I_n/n!$ .

<sup>&</sup>lt;sup>1</sup>An entirely equivalent way of saying this is that the since the Taylor series of  $e^{ax}$  is

The results of this problem show that for a Gaussian probability distribution as presented

$$x^n = \sigma^n \frac{(2n)!}{n!2^n}$$
(19)

### Solution:

- (a) See book
- (b) Completing the square we have

$$I(f) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx e^{-\frac{1}{2}(x-f)^2 + \frac{1}{2}f^2}$$
 (15)

Pulling out the  $e^{\frac{1}{2}f^2}$ , and changing variables to u=(x-f) we find

$$I(f) = e^{\frac{1}{2}f^2} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} du e^{-\frac{1}{2}u^2}$$
 (16)

$$=e^{\frac{1}{2}f^2} \tag{17}$$

(c) We expand  $e^{\frac{1}{2}f^2}$  and compare with

$$\langle e^{fx} \rangle = I_0 + I_1 f + I_2 \frac{f^2}{2!} + I_3 \frac{f^3}{3!} + \dots$$
 (18)

We have

$$e^{\frac{1}{2}f^2} = 1 + \frac{f^2}{2} + \frac{1}{2!} \left(\frac{f^2}{2}\right)^2 + \frac{1}{3!} \left(\frac{f^2}{2}\right)^3 \tag{19}$$

Comparing the terms of  $f^n$ 

$$I_0 = 1 \tag{20}$$

$$I_1 = 0 (21)$$

$$\frac{I_2}{2!} = \frac{1}{2} \tag{22}$$

$$\frac{I_3}{3!} = 0 \tag{23}$$

$$\frac{I_3}{2!} = 0$$
 (23)

$$\frac{I_4}{4!} = \frac{1}{2!} \frac{1}{2^2}$$

$$\frac{I_6}{6!} = \frac{1}{3!} \frac{1}{2^3}$$
(24)

$$\frac{I_6}{6!} = \frac{1}{3!} \frac{1}{2^3} \tag{25}$$

So

$$I_2 = 1$$
  $I_4 = 3$   $I_6 = 15$  (26)

More generally we wee that

$$I_{2n} = \frac{2n!}{2^n n!} \tag{27}$$

(d) This is just a change of variables to  $u=x/\sigma$ 

$$\langle x^n \rangle = \int_{-\infty}^{\infty} \mathrm{d}x x^n \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}x^2/\sigma^2}$$
 (28)

$$= \sigma^n \int \frac{dx/\sigma}{\sqrt{2\pi}} \left(\frac{x}{\sigma}\right)^n e^{-\frac{1}{2}x^2/\sigma^2} \tag{29}$$

$$=\sigma^n \int \frac{du}{\sqrt{2\pi}} u^n e^{-\frac{1}{2}u^2} \tag{30}$$

$$=\sigma^2 I_n \tag{31}$$

Thus

$$\langle x^2 \rangle = \sigma^2 \qquad \langle x^4 \rangle = 3\sigma^4$$
 (32)

## Problem 2. Exponential distribution

A particle is created at time t = 0 and flies a distance x (greater than zero) before being destroyed. The probability of surviving up to a given distance between x and x + dx is

$$P(x)dx = Ae^{-x/\ell}dx \tag{20}$$

with x > 0. For parts (a), (b), you should do the integrals yourself (showing your work explicitly) and dont use Mathematica. For practice switch to some dimensionless variables i.e.  $u = x/\ell$  before trying to do the integrals. In part (d) you will prove the boxed integral.

- (a) Find the value of A that makes P(x) a well defined normalized probability distribution with  $\int_0^\infty dx \, P(x) = 1$ . What are the units of A?
- (b) Show that the mean survival length is  $\ell$ , i.e. show that  $\langle x \rangle = \int_0^\infty \mathrm{d}x \, x P(x) = \ell$ .
- (c) Show that variance and std. deviation of the survival length are  $\ell^2$  and  $\ell$  respectively. For any dimensionfull integrals that come up you *must* do the following:
  - (i) First switch to a dimensionless variable  $u = x/\ell$  (x in units of  $\ell$ ), to express the dimensionfull result as  $\ell$  to some power (so that the units are correct), times a dimensionless integral. In this case the dimensionless integrals can be done analytically using the results of the next item, which you may just quote
- (d) For simplicity set  $\ell = 1$  in what follows. This is the equivalent to saying we will measure x in units of  $\ell$ . Use the generating function method of a previous problem, and calculate  $\langle \exp(ax) \rangle$ . Use the result to prove that

$$\langle x^n \rangle = n!$$

The taylor series can be helpful but not essential:

$$\frac{1}{1-a} = 1 + a + a^2 + a^2 + \dots {21}$$

This problem establishes that

$$n! = \int_0^\infty e^{-x} x^n \, \mathrm{d}x$$
 (22)

# Variables u=x/e dx e-x/l = 1 l'du e-u = 1 proved below Then dx x e-x/2 $\int_{0}^{\infty} \frac{dx}{dx} \times \frac{e^{-x/l}}{l}$ du u e-u 1 proved

$$\langle x^2 \rangle = \int_0^\infty dx \ x^2 \ e^{-x/l}$$

$$(\chi^2) = l^2 \int \frac{dx}{l} \left(\frac{x}{l}\right)^2 e^{-x/l}$$

$$(x^2) = l^2 \int_0^{\infty} du \, u^2 e^{-u} = l^2 2!$$

$$(8x^2) = (x^2) - (x)^2 = 2l^2 - l^2 = (8x^2)$$

$$\langle e^{f \times} \rangle = \int_{0}^{\infty} dx \ e^{f \times} e^{-x}$$

$$= \int_{0}^{\infty} dx e^{-(1-f)x}$$

Now according to the generating for method

 $\langle e^{f \times} \rangle = \frac{1}{4} + \langle x \rangle f + \langle x^2 \rangle f^2 + \langle x^3 \rangle f^3 + \dots$ 

The explicit computation gives

 $\langle e_{tx} \rangle = \frac{1}{1 - t} = \frac{1}{1 + t} + \frac$ 

So for instance comparing the coefficient of f3 we conclude

 $(x^3) f^3 = f^3 \text{ or } (x^3) = 3!$ 

· More generally

 $\langle x_{n} \rangle t_{n} = t_{n}$  or

(xh) = n!

Above we used the following integrals

T = 
$$\int_{0}^{\infty} e^{-tx} dx = -e^{-tx} \Big|_{0}^{\infty} = 1$$

T =  $\int_{0}^{\infty} e^{-tx} dx$  we do this by parts

$$= \int_{0}^{\infty} -d(e^{-tx}) u dx$$

$$= -e^{-tx} u \Big|_{0}^{\infty} + \int_{0}^{\infty} e^{-tx} dx$$

$$= \int_{0}^{\infty} -de^{-tx} u^{2} dx$$
We do this by parts
$$= \int_{0}^{\infty} -de^{-tx} u^{2} dx$$

$$= \int_{0}^{\infty} -de^{-tx} u^{2} dx$$

$$= -e^{-tx} u \Big|_{0}^{\infty} + \int_{0}^{\infty} e^{-tx} 2 u dx$$

$$= 0 + 2 \cdot \int_{0}^{\infty} e^{-tx} u dx = 2$$

### Problem 3. The Gamma function

The  $\Gamma(x)$  function can be defined as<sup>2</sup>

$$\Gamma(x) = \int_0^\infty du e^{-u} u^{x-1}$$
(23)

A plot of  $\Gamma(x)$  is shown below.  $\Gamma(n)$  provides a generalization of (n-1)! when when n is not an integer, and even negative. It will come up a number of times in this course and is good to know.



Fig. C.1 The gamma function  $\Gamma(n)$  showing the singularities for integer values of  $n \leq 0$ . For positive, integer n,  $\Gamma(n) = (n-1)!$ .

Figure 1: Appendix C.2 of our book

- (a) Explain briefly why  $\Gamma(n) = (n-1)!$  for n integer.
- (b) Prove that  $\Gamma(\frac{1}{2}) = \sqrt{\pi}$ . Hint: try a substitution  $y = \sqrt{u}$ .

The following identity is needed below.

$$\Gamma(x+1) = x\Gamma(x), \qquad (24)$$

or

$$x! = x \cdot (x-1)!, \qquad (25)$$

but now x is a real number, and x! is defined by  $\Gamma(x+1)$ .

(c) (Optional. Dont turn in) Use integration by parts to prove the identity in Eq. (24).

- (d) Use the results of this problem to show that  $\Gamma(\frac{7}{2}) = 15\sqrt{\pi}/8$ . What is the result numerically? 7/2 is between two integers. Show that  $\Gamma(7/2)$  is between the appropriate factorials related to those two integers?
- (e) The "area" (i.e. circumference) of a "sphere" in two dimensions (i.e. the circle) is  $2\pi r$ . The area of a sphere in three dimensions is  $4\pi r^2$ . A general formula for the area of the sphere in d dimensions is derived in the book is (the proof is simple, using what we know)

$$A_d(r) = \frac{2\pi^{d/2}}{(\frac{d}{2} - 1)!} r^{d-1} = \frac{2\pi^{d/2}}{\Gamma(d/2)} r^{d-1}$$
(26)

Show that this formula gives the familiar result for d=2 and d=3.

According to the previous problem  $\int dx e^{-x} x^{n+1} = \prod (n+1)^{n}$ definition of M(n+1)  $\Gamma(1/2) = \int_{-x}^{x} dx e^{-x} x^{1/2}$  $y = \sqrt{x}$  dy = 1 dx or  $2\sqrt{x}$ 2 dy = dx So we find oo J'dy e-y2 4 = J dy e-y2 = 1 gaussian integral  $\int dx e^{-\frac{1}{2}x^2} = \sqrt{2115^2}$ This  $\Gamma(V_2) = \sqrt{\Pi}$ with 02 = 1/2

$$\Gamma(x+1) = \int_0^x du e^{-u} u^x$$

$$= e^{-u} \times | + \int_{0}^{\infty} e^{-u} \times u^{\times -1}$$

$$= 0.+ \times \int_{0}^{\infty} e^{-u} u^{\chi-1}$$

[d) So if 
$$\Gamma(7/2) = 5\Gamma(5) = 5.3\Gamma(3)$$

$$= 5, \frac{3}{2} \cdot \frac{1}{2} \cdot \frac{\Gamma(\frac{1}{2})}{2}$$

$$= 15 \sqrt{\pi} \approx 3.3$$

$$2! < 15 \sqrt{11} < 3!$$
 or  $2 < 3.3 < 6$ 

$$A_3 = 2 \pi^{3/2} r^2 = 2\pi^{3/2} r^2$$

$$\frac{1}{\Gamma(3)} \Gamma(1/2)$$

using [1/2] = To we have &

# Problem 4. Combinatorics and The Stirling Approximation

Consider a chain of  $6 \times 10^{23}$  atoms, laid out in a row. The atoms can be in two states, a ground state, and an excited state. 1/3 of them are in the excited states. Using the Stirling approximation, show that the number of configurations with this number of excited states is approximately

 $10^{1.67 \times 10^{23}} \tag{27}$ 

For instance, if the number of atoms is five, and the number of excited atoms (shown by the black circles) is 2, then two possible configurations are shown below.

| $\bigcirc$ | $\bigcirc$ |            | C         |
|------------|------------|------------|-----------|
|            | $\bigcirc$ | $\bigcirc$ | $\subset$ |

# Combinatorics and Stirling The number of selections is $\frac{N_A \cdot C_F = \frac{N_A!}{(\frac{1}{3}N_A)! \cdot (\frac{2}{3}N_A)!} \quad \text{with } r = \frac{1}{3}N_A}{(\frac{1}{3}N_A)!}$ · Taking the log log NAC = log NA! - log ((3NA)!) - log ((3NA)! = NA log NA - NA - (INA log (INA) - INA) - (3 NA log (2 NA) - 2 NA -1 NA log (3) +2 NA log (3) = NA log (27) = 0.64 NA NAC = e0.64 NA = (e log 10) 0.64 Na/log 10 = 100,64NA/10g10 = 101,66×1023

### Problem 5. Central Limit Theorem and Random Walk

In a random walk, a collegiate drunkard starts at the origin and takes a step of size a, to the right with probability p and to the left with probability 1 - p.

- (a) What is the mean and variance variance in his position X after one step, and after two steps.
- (b) After n steps (with  $n \gg 1$ ) find his mean position  $\langle X \rangle$ , and the std. deviation in his position  $\sigma_X = \sqrt{\langle \delta X^2 \rangle}$ . You can check your result by comparing with the figure below



Figure 2: Probability of our drunkard having position X after n=10 steps (the blue points). Of course after 10 steps the drunkard will be between -10...10, and it is easy to show that he will be only at the even sites, i.e. -10, -8, -6, ...10. For p=0.6, I find  $\langle X \rangle = 2.0$ . Twice the std deviation,  $2\sigma_X$ , is shown in the figure and is about six in this case. The orange curve is a gaussian (a.k.a the "bell-shaped" curve) approximation discussed in class and approximately agrees with the points – this is the central limit theorem. Recall that the central limit theorem says that if the number of steps n is large, the probability of X (a sum of n independent events) is approximately  $P(x) dX \propto \exp(-(X - \langle X \rangle)^2/2\sigma_X^2)$ . Evidently the gaussian approximation works well already for n=10.

Hint: X is a sum N independent events  $x_i$  where  $x_i = \pm a$ . Use results from class on the probability distribution of a *sum* of independent events.

(c) (Optional. Don't turn in) If p is very nearly  $\frac{1}{2}$ , say p=0.5001, determine how many steps it will take before the mean value  $\langle X \rangle$  is definitely different from zero. By "definitely" I mean that  $\langle X \rangle$  is "more than two sigma" away from zero,  $\langle X \rangle > 2\sigma_X$ . If  $p=\frac{1}{2}+\epsilon$  (with  $\epsilon$  tiny), you should find (approximately) that

$$N_{\text{steps}} \simeq \frac{1}{\epsilon^2}$$
 (28)

up to corrections of order  $\epsilon$ . Here  $p = \frac{1}{2} + \epsilon$  with  $\epsilon = 0.0001$ , how does the result scale with  $\epsilon$ , e.g. if I where two half  $\epsilon$  how would the number of required steps change?

$$\langle x \rangle = \alpha (2p-1)$$

$$\langle x^2 \rangle = \rho a^2 + (1-\rho) a^2 = a^2$$

So

$$(x^27 - 4)^2 = a^2(1 - (2p-1)^2)$$

$$= a^{2} (1 - 4p^{2} + 4p - 1)$$

(b) After n steps

$$\langle \chi \rangle = n \langle \chi \rangle = n (2p-1) \alpha$$

(c) Then we have to require

$$\times$$
 > 2 $\sigma_{\times}$ 

n (2p-1)a > 2/4p(1-p) /n a · So = 1 + 0,000 | we have