

SOAL OLIMPIADE SAINS NASIONAL TAHUN 2017

ASTRONOMI RONDE TEORI

Waktu: 240 menit

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT PEMBINAAN SEKOLAH MENENGAH ATAS TAHUN 2017

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT PEMBINAAN SEKOLAH MENENGAH ATAS

Petunjuk:

- Jawablah setiap soal hanya di lembar jawaban dan jangan di berkas soal ini. Lembar jawaban harus dimasukkan kembali ke dalam amplop untuk diserahkan ke pengawas. Tulislah identitasmu pada amplop.
- Naskah soal terdiri dari 10 (sepuluh) soal esai, disertai daftar konstanta dan data astronomi. Naskah soal boleh ditulisi.
- 3. Kalkulator boleh digunakan.
- 4. Tidak ada pengurangan nilai untuk jawaban salah.
- 5. Waktu pengerjaan adalah 240 menit (4 jam).
- 1. Pada tanggal 31 Maret 2017, satelit MAVEN (Mars Atmosphere and Volatile Evolution Mission) milik NASA berhasil memastikan bahwa Planet Mars kehilangan atmosfer oleh sinar dan angin Matahari. Mars diketahui pernah memiliki atmosfer dengan kelimpahan unsur serupa dengan Bumi (antara lain dengan kelimpahan H₂O, N₂, dan CO₂). Bukti kuat menunjukkan bahwa pernah ada jejak kehidupan awal di Planet Mars. Namun, gas CO₂ yang tertinggal menentukan akhir planet. Salah satu pertanyaan besar mengenai atmosfer Mars yaitu H₂ yang lebih mudah hilang dibandingkan dengan CO₂ yang bermassa lebih besar. Molekul H₂ bermassa paling kecil dan terurai dari H₂O.
 - Bagian (a) dari Gambar 1 (halaman 2) dapat digunakan untuk memperlihatkan kurva pembagian kecepatan Maxwell untuk molekul ${\rm CO_2}$ dan ${\rm H_2}$ di Bumi. Sumbu Y adalah prosentase atau rasio jumlah molekul (N) terhadap jumlah awal molekul (N_0) , dan sumbu X adalah perbandingan kecepatan molekul v terhadap v_p , dengan v_p adalah kecepatan kebanyakan molekul (most probable speed) seperti dijelaskan di bagian (b) Gambar 1. Untuk temperatur T berbeda, semakin T membesar, kurva pembagian kecepatan menjadi semakin landai. Puncak kurva ditandai oleh pergeseran v_p ke kanan. Selain kecepatan v_p , kecepatan v_{rms} didefinisikan sebagai nilai kecepatan dengan menghitung akar pangkat dua nilai ratarata kuadrat kecepatannya (vot mean v_q), atau dapat pula didefinisikan sebagai kecepatan rata-rata molekul yang bertumbukan agar tetap berada pada pembagian statistik di harga v0 tertentu.
 - a. Untuk molekul H_2 dan CO_2 , tentukan kecepatan kebanyakan molekul

$$v_p = \sqrt{\frac{2kT}{m}}$$

dan

$$v_{rms} \equiv \sqrt{\langle v^2 \rangle} = \sqrt{\frac{3kT}{m}}$$

untuk berbagai harga $T=1000\,$ K, $10000\,$ K dan $20000\,$ K. Notasi k dan m masing-masing adalah konstanta Boltzmann dan massa molekul gas dalam amu (satuan massa atom). Tuliskan makna kenaikan temperatur T, dan perbedaan kecepatan-kecepatan tersebut bagi kedua jenis molekul.

Gambar 1: (a) Kurva pembagian kecepatan Maxwell untuk berbagai molekul dengan beragam massa dan temperatur (Sumber: http://staff.um.edu.mt/jgri1/teaching/ch237). (b) Contoh nilai kecepatan v_p dan v_{rms} untuk O_2 pada temperatur $300~{\rm K}$ (Sumber: https://chem.libretexts.org/).

- b. Diketahui temperatur permukaan Mars adalah $210~{\rm K}$. Dengan menggunakan data Mars yang ada, hitung perbandingan kecepatan kebanyakan molekul (v_p) dengan kecepatan lepas Planet Mars untuk ${\rm H_2}$ dan ${\rm CO_2}$.
- c. Bagian asimtot kurva Maxwell H₂ menunjukkan prosentase H₂ yang berkecepatan sama atau lebih tinggi dari kecepatan lepas. Hal ini dinyatakan oleh

$$\frac{N(X)}{N_0} = \frac{2}{\sqrt{\pi}} X_0 e^{-X_0^2}$$

dengan

$$X_0 = \frac{v_{lepas}}{v_m}$$

pada T = 210 K. Tentukan $\frac{N(X)}{N_0}$ untuk H₂.

d. Waktu lepas (t_{lepas}) molekul H_2 dari Mars, adalah

$$t_{lepas} = \left(\frac{z_0}{v_{lepas}}\right) e^{\frac{z_e}{z_0}} \frac{N_0}{N(X)}$$

 z_0 adalah ketinggian lapisan H $_2$ saat kerapatan H $_2$ menurun sebesar 1/e dari kerapatan di permukaan planet. Untuk Mars, $z_0=kT/mg$. Sedangkan z_e adalah ketinggian lapisan *exosphere*, dengan $z_e pprox 20\ z_0$. Notasi m dan g masing-masing adalah massa molekul H $_2$ dan percepatan gravitasi Mars. Hitung t_{lepas} untuk H $_2$ dan CO $_2$.

2. Pada saat umur alam semesta amat dini, sekitar 13.6 milyar tahun lalu, terdapat dua peristiwa yang dikenal sebagai "produksi pasangan" (pair production) dan "annihilasi pasangan" (pair annihilation) pada pasangan partikel dan anti-partikel. Perhatikan pasangan (e^- , e^+) yang terdiri dari elektron e^- dan anti-elektron e^+ (positron). Kedua partikel ini hanya dibedakan oleh muatannya.

- a. Pasangan (e^-, e^+) terbentuk akibat dari pemusnahan foton berenergi sangat tinggi (sinar γ). Jika foton ini memiliki panjang gelombang $\lambda = 0.001$ nm, hitunglah kecepatan masing-masing anggota pasangan yang terbentuk.
- b. Sebaliknya, akibat pasangan (e^-, e^+) lenyap, timbul sinar γ yang diakibatkan oleh e^- dan sinar γ yang diakibatkan oleh e^+ . Hitunglah frekuensi masing-masing sinar γ tersebut.
- 3. Satelit Gaia merupakan teleskop luar angkasa European Space Agency (ESA) yang dirancang terutama untuk pengamatan astrometri. Gaia memiliki dimensi 4,6 × 4,6 × 4,6 m³ dan memiliki massa 1392 kg. Satelit ini ditempatkan pada suatu orbit di sekitar salah satu titik kesetimbangan Lagrange 2 supaya tidak terkena paparan radiasi Matahari. Sudut elongasi yang dibentuk dari Matahari ke Gaia ke Bumi tidak boleh melebihi 15°. Jika jarak antara Bumi dan Gaia pada sudut elongasi maksimal adalah 1,5 juta km, berapakah temperatur permukaan satelit Gaia? (asumsikan kondisi equilibrium dan albedo satelit 0,6).
- 4. Diketahui sebuah planet kerdil mengorbit Matahari dengan periode 248 tahun. Planet kerdil tersebut mempunyai satelit alam yang mengorbitnya. Melalui pengamatan dengan teleskop ruang angkasa diperoleh data seperti tertera dalam tabel sebagai berikut:

Tahun	Nama Periode Orbit*		Jarak*
Penemuan		(hari Bumi)	(km)
1978	Charon	6,387	19640
2005	Nix	24,9	48700
2005	Hydra	38,2	64750
2011	Kerberos	32,1	59000
2011	Styx	20,2	42000

^{*} terhadap Pluto

- a. Tentukan massa Pluto dan tentukan sumber kesalahan dalam penentuan massa Pluto.
- b. Tentukan periode sinodis satelit alam Pluto, bila pengamat berada di permukaan Pluto.
- c. Tentukan diameter dan panjang fokus sebuah teleskop (minimal) agar Pluto dan satelit alamnya bisa diamati terpisah.
- 5. Sebuah bintang dengan kelas spektrum G5 diketahui memiliki magnitudo visual V=9.85 dan indeks warna B-V=1.15. Diketahui pula ekstingsi pada daerah visual sebesar tiga kali ekses warna pada B-V. Pada arah bintang tersebut ekstingsi visual dapat diasumsikan mengikuti hubungan

$$A_v = a d$$

dimana d adalah jarak ke bintang dalam satuan parsek, dan $a=0{,}003$ magnitudo per parsek adalah ekstingsi per satuan jarak.

Untuk kelas spektrum G5, magnitudo mutlak visual dan warna intrinsik $(B-V)_0$ untuk tiap kelas luminositas bintang mengikuti tabel berikut.

	Super-raksasa	Raksasa	Deret Utama
M_V	-3,8	1,0	5,0
$(B - V)_0$	0,85	0,79	0,68

Tentukan, apakah bintang tersebut sebuah bintang kelas luminositas super-raksasa, raksasa atau deret utama.

Gambar 2: Sketsa orbit komet P/OSN2017. Tanda • untuk mewakili Bumi, tanda o untuk mewakili komet P/OSN2017. Informasi waktu dinyatakan dalam format (bulan)/(tanggal).

- Gambar 2 adalah sketsa orbit komet P/OSN2017 saat melintas dekat Matahari. Gambar tersebut memperlihatkan posisi Bumi dan komet P/OSN2017 terhadap Matahari, serta informasi waktu ke waktu. Anggap bahwa inklinasi bidang orbit komet P/OSN2017 adalah 0°.
 - a. Pada gambar yang sudah disediakan, buatlah sketsa jejak orbit Bumi dan komet P/OSN2017.
 - b. Gambarkan pula ekor ion dan ekor debu pada setiap titik posisi komet tersebut.
 - c. Tanggal berapa orang di Bumi diperkirakan dapat melihat ekor komet paling panjang?
 - d. Pada arah konstelasi apa komet tampak memiliki ekor paling panjang?
 - e. Perkirakan tanggal terjadinya hujan meteor yang disebabkan oleh komet ini.
 - Sebutkan dua konstelasi yang akan menjadi radian bagi hujan meteor yang disebabkan oleh komet ini.
- 7. Pada peristiwa migrasi planet di awal pembentukan Tata Surya, gesekan (friksi) protoplanet dengan gas piringan Tata Surya menyebabkan protoplanet bermigrasi dari luar ke dalam, mendekat ke proto-Matahari. Semula, orbit protoplanet adalah elips dengan setengah sumbu panjang sebesar α dan setengah sumbu pendek sebesar b, namun karena kejadian migrasi tersebut orbit protoplanet berubah menjadi lingkaran berjejari r₀. Saat itu, nilai setengah sumbu pendek b berubah mendekati nilai setengah sumbu panjang α. Protoplanet kehilangan energi total, namun dapat mempertahankan nilai awal momentum sudut.
 - a. Dengan energi total awal sebesar E dan mengambil $r \approx r_0$ sebagai jarak akhir protoplanet dari proto-Matahari, buktikan bahwa energi total ϵ menyusut sebesar 1/n kali energi total awal, dengan n adalah bilangan bulat positif.
 - b. Apa yang terjadi saat protoplanet bermigrasi ke dalam dan momentum sudut berubah?
- 8. Sebuah planetesimal bola homogen B berjejari r_p = 1 km dan bermassa m_p = 10^{20} kg mempunyai kecepatan v_p = 3 km/detik terhadap Matahari. Planetesimal tersebut menabrak protoplanet bola homogen

A berjejari R = 500 km dan bermassa $M = 10^{21}$ kg, pada lintang selatan 30° dari ekuator protoplanet. Lihat gambar penampang di sumbu XY.

Pada awalnya, protoplanet A tidak bergerak dan tidak berputar. Setelah tabrakan, protoplanet berputar dengan kecepatan sudut ω berlawanan perputaran jarum jam pada sumbu Z (yang tegak lurus bidang XY).

- a. Tentukan kecepatan sudut ω protoplanet.
- b. Tentukan arah dan besar pergerakan pusat protoplanet setelah tabrakan.
- c. Tentukan energi kinetik planetesimal B saat menumbuk protoplanet.
- d. Energi ikat gravitasi (gravitational binding energy) planetesimal berwujud bola homogen adalah

$$E_{ikat} = \frac{3}{5} \frac{Gm_p^2}{r_p}.$$

Energi ikat gravitasi adalah energi yang membuat planetesimal tidak tercerai berai, dan tetap utuh berwujud bola. Tentukan harga E_{ikat} dan bandingkan dengan energi kinetik planetesimal saat membentur protoplanet. Tuliskan kesimpulan untuk perbandingan kedua besaran energi itu tersebut.

- 9. Karakteristik seismik bintang berdenyut dengan massa M akan ditinjau untuk modus rambatan gelombang bunyi dalam arah radial. Gelombang ini dapat diandaikan merambat dengan kecepatan v_b dari pusat bintang ke arah permukaan bintang (berjejari R), dan kemudian memantul kembali ke dalam bintang hingga kembali ke pusatnya.
 - a. Jika au adalah periode gelombang bunyi, turunkan rumus sederhana untuk menghitung au. Berikan penjelasan untuk setiap notasi atau besaran fisis.
 - b. Materi gas di dalam bintang dianggap sudah berwujud plasma dengan kerapatan massa per satuan volume yang bernilai seragam sebesar ρ . Dalam hal ini, tekanan (P) yang diberikan materi plasma seukuran 1 m^3 dapat dipandang sebagai kerapatan energi per satuan volume plasma. Turunkanlah rumus yang menghubungkan kecepatan rambatan gelombang bunyi dan tekanan.
 - c. Energi potensial gravitasi hingga permukaan bintang, yang setara dengan

$$\frac{GM^2}{R}$$
,

dianggap memberikan tekanan sebesar P_0 pada pusat bintang. Turunkan pula rumus untuk menghitung nilai hampiran dari P_0 .

d. Dengan menggunakan hasil di soal (9c), hitung kembali rumus perhitungan periode denyutan τ (di soal [9a]) di pusat bintang untuk menunjukkan hubungan antara periode denyutan τ dengan kerapatan massa ρ . Hubungan ini dapat digunakan untuk menjelaskan hubungan periode denyutan dan luminositas pada bintang Cepheid dan bintang variabel lain.

Gambar 3: Kedudukan bintang-bintang Cepheid klasik, W Virginis, RR Lyrae, bintang kerdil ZZ Ceti, dan δ Scutis di diagram HR. (Sumber: http://astronomy.swin.edu.au)

- e. Luminositas bintang Cepheid klasik paling besar dibandingkan dengan W Virginis, RR Lyrae, bintang kerdil ZZ Ceti, dan δ Scutis (lihat Gambar 3). Dengan menggunakan hubungan yang diperoleh di soal (9d), urutkan bintang-bintang tersebut mulai dari periode denyutan paling panjang hingga paling pendek.
- 10. Kalendar Matahari adalah sebuah sistem penanggalan yang bertujuan memanfaatkan fenomena yang berulang akibat revolusi Bumi mengelilingi Matahari. Kalender ini adalah salah satu kalender yang dapat digunakan untuk keperluan praktis kehidupan sehari-hari. Pemanfaatan ini misalnya dilakukan di Mesir sekitar 4000 SM untuk mengantisipasi kedatangan banjir sungai Nil (yang sekarang dibendung dengan bendungan Aswan). Kehadiran banjir sungai Nil pada masa itu dimanfaatkan para pekerja untuk merapat lebih dekat dan membawa pahatan batu dari lokasi yang jauh dari pembangunan lembah Piramida (dan Sphinx) di Giza (nama kawasan dekat bagian yang lebih rendah sungai Nil di Kairo).

Model kalendar Matahari di Mesir merupakan kalendar sederhana setahun terdiri dari 12 bulan, tiap bulan terdiri 30 hari, setahun terdiri dari 360 hari ditambah dengan 5 hari tambahan, tanpa aturan tahun kabisat dan tanpa bulan sisipan. Piramida tersebut telah berusia hampir 4500 tahun, dibangun sekitar 2500 SM (2467 ± 5 SM). Posisi kawasan Piramida Giza adalah lintang utara 29° 58' 35,3280'' dan bujur timur 31° 7' 52,6872''. Diketahui posisi Sirius adalah (RA, Dec) = (6h 45m 9s, -16° 42' 58'') sedangkan posisi Polaris adalah (RA, Dec) = (2h 31m 49s, $+89^{\circ}$ 15' 51'').

Diketahui saat ini sebagai zaman Pisces, karena *vernal equinox* berada di arah rasi Pisces (dan selanjutnya ada zaman Virgo, zaman Skorpio, zaman Leo, dan seterusnya). Bila periode presesi adalah 25800 tahun, tentukan zaman ketika pembangunan Piramida Giza. Tentukan pula zaman ketika kalendar Mesir Kuno dipergunakan sekitar 4000 SM. Diketahui pada zaman Pisces diadakan pengamatan perjalanan Matahari di ekliptika seperti diperlihatkan dalam Tabel 1 (halaman 7)

Tabel 1: Saat Matahari melewati rasi bintang di ekliptika.

No	Rasi	Tanggal
1	Capricornus	21 Januari–16 Februari
2	Aquarius	16 Februari–11 Maret
3	Pisces	11 Maret-18 April
4	Aries	18 April–13 Mei
5	Taurus	13 Mei-22 Juni
6	Gemini	22 Juni–21 Juli
7	Cancer	21 Juli-10 Agustus
8	Leo	10 Agustus–16 September
9	Virgo	16 September–31 Oktober
10	Libra	31 Oktober–23 November
11	Scorpius	23 November–29 November
12	Ophiuchus	29 November–18 Desember
13	Sagittarius	18 Desember–21 Januari

Nama konstanta	Simbol	Harga	
Kecepatan cahaya	c	$2,99792458 \times 10^8 \mathrm{m/s}$	
Konstanta gravitasi	G	$6,673 \times 10^{-11} \text{ m}^3/\text{kg/s}^2$	
Konstanta Planck	h	$6,6261 imes10^{-34}\mathrm{J}\;\mathrm{s}$	
Konstanta Boltzmann	k	$1,3807 \times 10^{-23} \text{ J/K}$	
Konstanta kerapatan radiasi	a	$7,5659 \times 10^{-16} \mathrm{J/m^3/K^4}$	
Konstanta Stefan-Boltzmann	σ	$5,6705 \times 10^{-8} \text{W/m}^2/\text{K}^4$	
Muatan elektron	e	$1,6022 \times 10^{-19} \text{ C}$	
Massa elektron	m_{e}	$9{,}1094 imes10^{-31}\;{\rm kg}$	
Massa proton	m_{p}	$1,6726 \times 10^{-27} \text{ kg}$	
Massa neutron	m_{n}	$1,6749 \times 10^{-27} \text{ kg}$	
Massa atom ₁ H ¹	m_{H}	$1,6735 \times 10^{-27} \text{ kg}$	
Massa atom ₂ He ⁴	mHe	$6,6465 \times 10^{-27} \text{ kg}$	
Massa inti ₂ He ⁴		$6,6430 imes10^{-27}~{ m kg}$	
Konstanta gas	R	8,3145 J/K/mol	

		Jejari			Jarak rerata
Objek	Massa	ekuatorial	P _{rotasi}	$\mathbf{P}_{sideris}$	ke Matahari
	(kg)	(km)		(hari)	$(10^3 \; { m km})$
Merkurius	$3,30 \times 10^{23}$	2.440	58,646 hari	87,9522	57.910
Venus	$4,87 \times 10^{24}$	6.052	243,019 hari	244,7018	108.200
Bumi	$5,97 \times 10^{24}$	6.378	23 ^j 56 ^m 4 ^d ,1	365,2500	149.600
Mars	$6,42 \times 10^{23}$	3.397	24 ^j 37 ^m 22 ^d ,6	686,9257	227.940
Jupiter	$1,90 \times 10^{27}$	71.492	9j ₅₅ m ₃₀ d	4.330,5866	778.330
Saturnus	$5,69 \times 10^{26}$	60.268	10 ^j 39 ^m 22 ^d	10.746,9334	1.429.400
Uranus	$8,66 \times 10^{25}$	25.559	₁₇ j ₁₄ m ₂₄ d	30.588,5918	2.870.990
Neptunus	$1,03 \times 10^{26}$	24.764	16 ^j 6 ^m 36 ^d	59.799,8258	4.504.300

Nama besaran	Notasi	Harga
Satuan astronomi	au	$1,49597870 \times 10^{11} \text{ m}$
Parsek	рс	$3,0857 \times 10^{16} \text{ m}$
Tahun cahaya	ly	$0.9461 \times 10^{16} \text{ m}$
Tahun sideris		365,2564 hari
Tahun tropis		365,242199 hari
Tahun Gregorian		365,2425 hari
Tahun Julian		365,2500 hari
Periode sinodis Bulan (synodic month)		29,5306 hari
Periode sideris Bulan (sidereal month)		27,3217 hari
Hari Matahari rerata (mean solar day)		24 ^j 3 ^m 56 ^d ,56
Hari sideris rerata (mean sidereal day)		23 ^j 56 ^m 4 ^d ,09
Massa Matahari	M_{\odot}	$1,989 \times 10^{30} \text{ kg}$
Jejari Matahari	R_{\odot}	$6,96 \times 10^{8} \text{ m}$
Temperatur efektif Matahari	$T_{eff, o}$	5.785 K
Luminositas Matahari	L_{\odot}	$3.9 \times 10^{26} \text{ W}$
Periode rotasi Matahari (di ekuator)		27 hari
Magnitudo semu visual Matahari	V	-26,78
Indeks warna Matahari	B – V	0,62
	U – B	0,10
Magnitudo mutlak visual Matahari	M_V	4,79
Magnitudo mutlak biru Matahari	M_B	5,48
Magnitudo mutlak bolometrik Matahari	M_{bol}	4,72
Massa Bulan	$M_{\mathbb{Q}}$	$7,348 \times 10^{22} \text{ kg}$
Jejari Bulan	$R_{\mathbb{Q}}$	1.738.000 m
Jarak rerata Bumi-Bulan		384.399.000 m
Konstanta Hubble	H_0	69,3 km/s/Mpc
1 jansky	1 Jy	$1 \times 10^{-26} \; \mathrm{Wm^{-2} Hz^{-1}}$

LEMBARAN TAMBAHAN

A. RALAT NASKAH SOAL

100 K, 1000 K dan 2000 K.	3 dari bawah 1000 K, 10000 K dan 20000 K. 100 K, 1000 K dan 2000 K.	3 dari bawah	1
Seharusnya	Tertulis	No. Baris	Hal.

B. DATA TAMBAHAN

	4	З	2	1
(saat Pluto beroposisi)	Jarak Pluto–Bumi	Magnitudo satelit alam	Magnitudo Pluto	Eksentrisitas Pluto
			=	
$5,75054 \times 10^9 \text{ km}$		18–19	17	0,055