Math 21-269, Vector Analysis I, Spring 2024 Assignment 1 The due date for this assignment is Friday, January 26.

- 1. Let $G \subseteq \mathbb{R}$ be an additive group. Prove that the following two conditions are equivalent:
 - (a) for every 0 < x < y there exists $g \in G$ such that x < g < y,
 - (b) $\inf\{g \in G : g > 0\} = 0$.

2.

$$f(x) = \arcsin \frac{1 - x^2}{1 + x^2},$$

- (a) find the domain D of f,
- (b) find its derivative and the sets in which f is increasing,
- (c) sketch the graph of f,
- (d) find the supremum and the infimum of the set

$$E = \left\{ y \in \mathbb{R} : y = \arcsin \frac{1 - x^2}{1 + x^2}, x \in D \right\}.$$

JUSTIFY ALL YOUR ANSWERS Solutions

1. **Proof.** We start by showing $(a) \Longrightarrow (b)$. We need to prove that for all $\epsilon > 0$, there exists $g \in G$ such that $0 < g < \epsilon$. This is saying that there is no positive $g < \epsilon$ that is a lower bound, and therefore the infimum is 0. Fix $x = \frac{\epsilon}{2}$ and $y = \epsilon$ for $\epsilon > 0$ (which means $\frac{\epsilon}{2} > 0$). By condition (a), there exists $g \in G$ such that $\frac{\epsilon}{2} < g < \epsilon$. This yields that $0 < g < \epsilon$ as desired. Thus, we have shown that (a) \Longrightarrow (b).

Now, we show that (b) \Longrightarrow (a). We need to prove that for all 0 < x < y, there exists $g \in G$ such that x < g < y. Given any 0 < x < y, choose ϵ such that $0 < \epsilon < y - x$. We know that there is an $\epsilon \in \{g \in G : g > 0\}$ that suffices this inequality because if there weren't, that would mean y - x would be a lower bound of $\{g \in G : g > 0\}$, which contradicts the fact that the infimum is 0.

Consider the element $\epsilon \left\lfloor \frac{x}{e} \right\rfloor + \epsilon$, which we know is in G because it is an additive group (multiplication is repeated addition). Then, we have:

$$x < \epsilon \left \lfloor \frac{x}{e} \right \rfloor + \epsilon \le x + \epsilon < x + (y - x) = y$$

Thus, we have shown that (b) \implies (a).

Therefore, we have shown that (a) and (b) are equivalent.

2. (a) The argument of arcsin needs to be in [-1,1]. So, we are limited to points where $\frac{1-x^2}{1+x^2} \in [-1,1]$. I claim that this is true for all $x \in \mathbb{R}$.

Proof. If $\frac{1-x^2}{1+x^2} < -1$, we have the following:

$$\frac{1-x^2}{1+x^2} < -1$$

$$1-x^2 < -1-x^2$$

$$1 < -1$$

The above is a contradiction. If we have $\frac{1-x^2}{1+x^2} > 1$, we have the following:

$$\frac{1 - x^2}{1 + x^2} > 1$$
$$1 - x^2 > 1 + x^2$$
$$1 > 2$$

The above is another contradiction. Thus, we have that $\frac{1-x^2}{1+x^2}\in[-1,1]$ for all $x\in\mathbb{R}$. Thus, the domain of f is \mathbb{R} .

(b) Finding the derivative:

$$f(x) = \arcsin \frac{1 - x^2}{1 + x^2}$$

$$f'(x) = \frac{d}{dx} \arcsin \frac{1 - x^2}{1 + x^2}$$

$$= \frac{1}{\sqrt{1 - \left(\frac{1 - x^2}{1 + x^2}\right)^2}} \cdot \frac{d}{dx} \left(\frac{1 - x^2}{1 + x^2}\right)$$

$$= \frac{\frac{d}{dx}(1 - x^2)(1 + x^2) - (1 - x^2) \cdot \frac{d}{dx}(1 + x^2)}{\sqrt{1 - \left(\frac{1 - x^2}{1 + x^2}\right)^2}}$$

$$= \frac{(-2x)(1 + x^2) - (1 - x^2)(2x)}{(x^2 + 1)^2 \sqrt{1 - \left(\frac{1 - x^2}{1 + x^2}\right)^2}}$$

$$= \frac{-4x}{(x^2 + 1)^2 \sqrt{1 - \left(\frac{1 - x^2}{1 + x^2}\right)^2}}$$

We can see that f'(x) < 0 when x < 0. This is because the denominator is always positive (a squared value multiplied by a square rooted value, both of which are for sure positive). Though this is not the case when x = 0, which makes the square root value 0 and therefore f is indifferentiable at x = 0. However, we still only need to analyze the sign of -4x, which is positive when x is negative and vice versa. Therefore, f is increasing on $(-\infty, 0)$.

- (c) Here are some key facts we need to realize before sketching:
 - i. f is defined for all $x \in \mathbb{R}$.
 - ii. f is increasing on $(-\infty, 0)$ and vice versa.
 - iii. f is limited by the range of arcsin, which is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Since the argument of arcsin has an asymptote at y=-1, we can say that f has an asymptote at $y=-\frac{\pi}{2}$.

(d) I claim that the supremum is $\frac{\pi}{2}$ and the infimum is $-\frac{\pi}{2}$.

Supremum: $\arcsin(z)$ as a function is bounded above by $\frac{\pi}{2}$, which occurs when z=1. We can see that $z=\frac{1-x^2}{1+x^2}$, which equals 1 when x=0. Thus, the supremum is $\frac{\pi}{2}$.

Infimum: $\arcsin(z)$ as a function is bounded below by $-\frac{\pi}{2}$, which occurs when z=-1. Since the horizontal asymptote of $z=\frac{1-x^2}{1+x^2}$ is y=-1, we can say that z approaches, but never reaches -1. This means that for f, we approach, but never $\cos -\frac{\pi}{2}$. Thus, the infimum is $-\frac{\pi}{2}$.

If we want to be more rigorous, let $y = -\frac{\pi}{2} + \epsilon$ for $\pi \ge \epsilon \ge 0$.

$$-\frac{\pi}{2} + \epsilon = \arcsin \frac{1 - x^2}{1 + x^2}$$

$$\sin \left(-\frac{\pi}{2} + \epsilon\right) = \frac{1 - x^2}{1 + x^2}$$

$$-\cos(\epsilon) = \frac{1 - x^2}{1 + x^2}$$

$$-\cos(\epsilon)(1 + x^2) = 1 - x^2$$

$$-\cos(\epsilon) - x^2 \cos(\epsilon) = 1 - x^2$$

$$x^2 \cos(\epsilon) - x^2 = 1 + \cos(\epsilon)$$

$$x^2(\cos(\epsilon) - 1) = 1 + \cos(\epsilon)$$

$$x^2 = \frac{1 + \cos(\epsilon)}{\cos(\epsilon) - 1}$$

$$x = \pm \sqrt{\frac{1 + \cos(\epsilon)}{\cos(\epsilon) - 1}}$$

The only time this value will be undefined is when the denominator of the square root is equal to 0. This happens when $\cos(\epsilon) = 1 \Rightarrow \epsilon = 0$.

Thus, we have that $x = \pm \sqrt{\frac{1 + \cos(\epsilon)}{\cos(\epsilon) - 1}}$ is defined for all $\pi \ge \epsilon > 0$.

Thus, we have that $-\frac{\pi}{2} + \epsilon$ is in the range of f for all $\pi \ge \epsilon > 0$. Thus, the infimum is $-\frac{\pi}{2}$.