

Computação Gráfica

Hitalo Nascimento

Primitivas Gráficas Aula 05

OBJETIVOS

Apresentar os conceitos relacionados ao desenho de curvas em geral.

INTRODUÇÃO

- Várias funções de curva são úteis em modelagem de objetos, especificações de caminho de animação, gráficos de dados e funções, e outras aplicações gráficas;
- Comumente As curvas encontradas incluem funções cônicas, trigonométricas e exponenciais, distribuições de probabilidade, polinômios gerais e funções spline.

CURVAS

Conic Sections

In general, we can describe a conic section (or conic) with the second-degree equation:

$$Ax^2 + By^2 + Cxy + Dx + Ey + F = 0$$

where values for parameters A, B, C, D, E, and F determine the kind of curve we are to display. Given this set of coefficients, we can determine the particular conic that will be generated by evaluating the discriminant $B^2 - 4AC$:

$$B^2 - 4AC$$
 $\begin{cases} < 0, & \text{generates an ellipse (or circle)} \\ = 0, & \text{generates a parabola} \\ > 0, & \text{generates a hyperbola} \end{cases}$

FACULDADE INTEGRADA DA GRANDE FORTALEZA

MID POINT ALGORITHM

Midpoint Ellipse Algorithm

 Input r_x, r_y, and ellipse center (x_c, y_c), and obtain the first point on an ellipse centered on the origin as

$$(x_0, y_0) = (0, r_y)$$

2. Calculate the initial value of the decision parameter in region 1 as

$$p1_0 = r_y^2 - r_y^2 r_y + \frac{1}{4} r_x^2$$

At each x_k position in region 1, starting at k = 0, perform the following test: If p1_k < 0, the next point along the ellipse centered on (0, 0) is (x_{k-1}, y_k) and

$$p1_{k+1} = p1_k + 2r_k^2 x_{k+1} + r_k^2$$

Otherwise, the next point along the circle is $(x_k + 1, y_k - 1)$ and

$$p1_{k+1} = p1_k + 2r_y^2 x_{k+1} - 2r_x^2 y_{k+1} + r_y^2$$

with

$$2r_y^2x_{k+1} = 2r_y^2x_k + 2r_y^2$$
, $2r_x^2y_{k+1} = 2r_x^2y_k - 2r_x^2$

and continue until $2r_y^2x \ge 2r_x^2y$.

 Calculate the initial value of the decision parameter in region 2 using the last point (x₀, y₀) calculated in region 1 as

$$p2_0 = r_y^2 \left(x_0 + \frac{1}{2}\right)^2 + r_x^2 (y_0 - 1)^2 - r_x^2 r_y^2$$

At each y_k position in region 2, starting at k = 0, perform the following test: If p2_k > 0, the next point along the ellipse centered on (0, 0) is (x_k, y_k = 1) and

$$p2_{k+1} = p2_k - 2r_k^2 y_{k+1} + r_k^2$$

Otherwise, the next point along the circle is $(x_k + 1, y_k - 1)$ and

$$p2_{k+1} = p2_k + 2r_k^2x_{k+1} - 2r_k^2y_{k+1} + r_k^2$$

using the same incremental calculations for x and y as in region 1.

- Determine symmetry points in the other three quadrants.
- Move each calculated pixel position (x, y) onto the elliptical path centered on (x_c, y_c) and plot the coordinate values:

$$x = x + x_0$$
 $y = y + y_0$

Repeat the steps for region 1 until 2r_y²x ≥ 2r_y²y.

Bibliografia

- https://www.tutorialspoint.com/computer_graphics/computer_graphics_quick_guide.htm
- Donald Hearn and M. Pauline Baker. Computer Graphics C version. Second Ed.