Jurnal Spektran Vol. 6, No. 2, Juli 2018, Hal. 195 – 204

e-ISSN: 2302-2590

PENINGKATAN PERSIMPANGAN BANDARA NGURAH RAI DITINJAU DARI PERSPEKTIF KINERJA PERSIMPANGAN

Nyoman Widana Negara

Program Studi Teknik Sipil Universitas Udayana Email: widananegara24@gmail.com

ABSTRAK

Persimpangan Bandara Ngurah Rai memainkan peranan penting untuk pelayanan transportasi, akses Bandara Ngurah Rai dan aktivitas budaya lokal. Kemacetan yang terjadi pada persimpangan ini sebagai dasar Kementerian PUPR, melalui BPJN-8 melaksanakan peningkatan kapasitas persimpangan dengan simpang susun dengan bundaran (roundabut interchange), akan tetapi penerapan konsep ini masih ada pro-kontra dari sisi budaya lokal Bali. Data lalu lintas dan gambar rencana persimpangan, dan jumlah penduduk diperoleh dari instansi terkait. Peramalan dan analisis pergerakan arus lalu lintas (MAT) menggunakan trip distribution Detroit model. Rancangan penelitian adalah analisis perbandingan (comparative analyisis) dengan 2 Skenario yaitu Skenario-1 (do nothing) dan Skenario-2 (roundabout interchange). Hasil analisis kinerja persimpangan diperoleh bahwa Skenario-2 lebih baik dibandingkan Skenario-1, dengan indikasi Skenario-2 mencapai DS>0,75 (macet) pada tahun 2028 dibandingkan dengan Skenario-1 terjadi DS>0,75 (macet) pada Tahun 2018, hal ini disebabkan karena kapasitas pada Skenario-2 lebih besar 63% dibandingkan Skenario-1 dan akibat adanya pengalihan arus lalu lintas melewati underpass sebesar 51.57%. Hasil observasi lapangan dan gambar rencana menunjukan bahwa simpang susun dengan bundaran telahmempertimbangkan aktivitas budaya lokal dengan menyediakan jalur dan ruote alternatif agar aktivitas Agama dan Budaya dengan tidak lewat underpass (mesulub).

Kata kunci; Bandara Ngurah Rai, simpang susun bundaran, budaya lokal

THE IMPROVEMENT OF NGURAH RAI AIRPORT JUNCTION FROM PERFORMANCE PERSPECTIVES

ABSTRACT

Ngurah Rai Airport intersection plays an important role for transportation services, Ngurah Rai Airport access and local cultural activities. Congestion that occurred at this intersection as the basis of the Ministry of PUPR, through BPJN-8 carried out an increase in intersection capacity with interchanges with bundles and (roundabout interchange), but the application of this concept has not been accepted from the point of view of the local culture of Bali. Traffic data and drawing intersection plan, and the number of residents were obtained from relevant agencies. Forecasting and analysis of traffic flow used Detroit model trip distribution. The research design is comparative analysis with 2 Scenarios namely Scenario-1 (do nothing) and Scenario-2 (roundabout interchange). The result of intersection performance analysis shows that Scenario-2 is better than Scenario-1, with indication of Scenario-2 reaching DS> 0.75 (stuck) in 2028 compared to Scenario-1 happened DS> 0,75 (stuck) in Year 2018, this is because the capacity in Scenario-2 is greater than 63% compared to Scenario-1 and due to traffic diversion through the underpass of 51.57%. The results of field observations and plan drawings show that interchanges with roundabouts have considered local cultural activities by providing alternative routes and facilities so that the activities of Religion and Culture do not pass underpasse.

Keywords: Ngurah Rai Airport, roundabout interchange, local cultures

1 PENDAHULUAN

Persimpangan Bandara Ngurah Rai memainkan peranan penting dalam melayani transportasi, akses Bandara Ngurah Rai dan aktivitas budaya lokal. Kemacetan yang terjadi pada persimpangan sebagai dasar Kementerian PUPR, melalui PBJN 8 melakukan peningkatan persimpangan dengan simpang susun dengan bundaran (roundabout interchange), akan tetapi penerapanya konsep ini masih ada pro-contra dari aspek budaya lokal Bali (https://balirage.blongspots.co.id). Salah satu hasil diskusi seperti diungkap oleh Ida Pedanda Gunung (Alm), jika jalan layang atau sejenisnya sebagai pilihan untuk mengatasi masalah transportasi di Bali; asalkan sudah bisa dicarikan solusi umat Hindu yang membawa pratima, tapakan betara, melasti, ataupun prosesi penguburan/ ngaben tak masulub di bawahnya. Terkait hal tersebut, apakah perencanaan peningkatan persimpangan tersebut sudah mempertimbangan aspek budaya lokal (local culture activities) selaian aspek kinerja. Adapun tujuan penelitian adalah menganalisis aspek kinerja persimpangan eksisting dan peningkatan persimpangan dengan simpang susun dengan bundaran.

2 PERSIMPANGAN

Persimpangan adalah pertemuan antara dua ruas jalan atau lebih dengan jenis persimpangan sebidang dan tidak sebidang. Pengendalian persimpangan sebidang berupa Prioritas, Bundaran dan Alat Pemberi Isyarat Lalu Lintas (DPU, 1992), sedangkan bentuk pengendalian persimpangan tidak sebidangan meliputi tipe *trompet, diamond, rotary, clover leaf* dan simpang susun dengan bundaran (*roundabout interchange*). Unsur dalam perencanaan persimpangan, meliputi topografi, lalu lintas dan kinerja persimpangan.

2.1 Lalu Lintas

Peningkatan persimpangan dikategorikan perencanaan dengan umur rencana 10 tahun atau lebih. Peramalan lalu lintas dengan pertumbuhan 5-7% (Kwintaryana, 2013), prosentase LHR pada jam pucak (k) sebesar 6-10% dan peak hour factor (PHF) sebesar 0.9-0.95. (DPU,1997). Volume Jam Prencanaan (Qdh=VJP) adalah arus lalu lintas puncak perjam yang dipergunakan untuk tujuan perencanaan (DPU, 1997), dihitung dengan rumus berikut.

$$Qdh = VJP = kLHRT/PHF \tag{1}$$

Dimana:

Qdh = Volume jam perencanaan (kend/jam)

LHRT= Lalu lintas harian rata-rata tahun (kend/hari)

Analisis pergerakan arus lalu lintas dipersimpangan menggunakan Matrik Asal – Tujuan (MAT) dari data pencatatan lalu lintas (Toylor and Young, 1988) serta analisis MAT menggunakan Detroit trip distribution model (Balck,1981) dengan rumus;

$$\sum_{i=1}^{j} (0ij) = \sum_{i=1}^{j} (Dij)$$
 (2)

Penyelesian sel pada MAT dengan menerapkan rumus

$$(Tid) = Oij(Ei.Ed)/E$$
(3)

Dimana:

Tid = Perjalanan akan datang (kend/jam)

Qij = Perjalanan saat ini (kend/jam)

Ei dan Ed = faktor koreksi asal dan tujuan

Nilai sel MAT dilakukan teknik iterasi sehingga total produksi dan tarikan mendekati faktor koreksi yang kecil antara 0.95-1.

2.2 Kinerja Persimpangan Bundaran Sebidang

Kapasitas bundaran adalah jumlah lalu lintas optimum yang dapat alirkan oleh persimpangan dalam kondisi lalu lintas, geometrik dan lingungan tertentu dikalikan dengan faktor penyesuaian (DPU, 1997), dihtung dengan rumus ;

$$C = (135 Ww^{1.3} + (1 + We/Ww)^{1.5} + (1 + \frac{Pw}{3})^{0.5} + (1 + Ww/Lw)^{-1.8} Fcs x Frsu$$
 (4)

Dimana

C = kapasitas (capacity) nyata dalam satuan smp/jam

We =labar rata-rata pendekat masuk jalinan (m)

Ww = lebar jalinan (m)

Lw = panjang jalinan (m)

Pw = prosentase kendaraan menjalin

Fcs = faktor penyesuaian ukuran kota (city size) dan

Frsu = faktor koreksi hambatan samping.

Kriteria kinerja bundaraan berdasarkan perilku lalu lintas DS < 0.75 dengan pertimbangan resiko penutupan (blocking) oleh arus kendaraan yang menjalin (DPU, 1997).

2.3 Kinerja Ruas Jalan

Kapasitas dasar jalan (Co) adalah jumlah lalu lintas optimum yang dapat dialirkan pada segmen jalan pada kondisi geomtrik, lalu lintas dan lingkungan tertentu (DPU, 1997), seperti Tabel 1.

Tabel 1. Kapasitas Dasar (Co) jalan Perkotaan

Tipe Jalan	Kapasitas Dasar (Co)	Ket
2/2 UD	2900 smp/jam/	2 arah
4/2UD atau 6/2 UD	1500 smp/jam	per lajur
4/2D atau 6/2D	1650 smp/jam	per laju
Jalan 1 rah1/1,2/1 atau 3/1	1650 smp/jam	Per laju

Kapasitas Nyata adalah jumlah lalu lintas optimum yang dapat dialirkan pada segmen jalan pada kondisi geomtrik, lalu lintas dan lingkungan sesuai dengan kondisi lapangan (DPU, 1997), dengan rumus:

$$C = Co x Fcw x Fsp x Fsc x Fsf$$
 (5)

Dimana:

C = kapasitas nyata (smp/jam)

Co = kapasitas dasar (smp/jam)

Fcw,Fsp,Fsf,Fcs = Faktor koreksi

Kinerja ruas jalan diukur perilaku lalu lintas yaitu degree of saturation (DS) < 0,75 (DPU,1997).

2.4 Aktivitas Budaya Lokal

Pulau Bali sangat terkenal baik di tingkat Nasional dan Internasional dengan budaya lokal baik berupa aktivtas Agama dan Budaya yang sudah menjadi bagian keseharian masyarakat Bali. Sisi lainya perkembangan teknologi konstruksi infrastruktur transportasi seperti jalan layang dan simpang susun (*interchange*) begitu pesat untuk tujuan mengatasi kemacetan lalu lintas perkotaan. aplikasinya di Bali masih menuai pro-kontra dari sisi budaya aktivtas. Beberapa budaya lokal baik itu aktivitas Agama dan Budaya yang melewati atau bersinggungan pada persimpangan Ngurah Rai adalah:

- 1. *Pitra Yadnya* berupa jalur prosesi Pakiriman / Ngutang janasah (*Ngaben*) anggota banjar Pesalakan Tuban yang melewati persimpangan menuju Kuburan Tuban dan prosesi *Nganyud* ke Segara Kangin (di Utara Pintu Tol), kegiatan ini tidak terjadwal.
- 2. *Dewa yadnya* berupa jalur prosesi *Melasti* mulai dari Pura Dalam Karangasem menuju *Segara Kauh* (sebelah utara Bandara Ngurah Rai), kegiatan ini dilakukan setiap 1 Tahun.
- 3. Dewa yadnya yaitu jalur prosesi perjalanan suci a) *Ida betara Uluwatu* dan *Ide batara Gua Batu Metandal* dari Uluwatu menuju Pura Tambang Badung, di Pemedilan Denpasar, b) perjalanan suci tapakan Ide Batara (*Barong* dan *Rangda*) Desa Pekraman Tuban dari *Pura Puseh* Tuban menuju *Pura Dalam Karangasem* Tuban, dan c) perjalanan suci Tapakan Ida betara (*Barong dan Rangda*) dari Denpasar, Kab. Badung menuju *Pura Dalam Tengkulung* di Tanjung Benoa Nusadua, kegiatan setiap 6 bulan.
- 4. Kegiatan budaya lainnya berupa jalur prosesi ogoh-ogoh desa Pekraman Tuban, setiap tahun.

Gambar 1. Alur Prosesi Aktivitas Agama dan Budaya Bali (Local Calcutres)

Berkenaan dengan hal tersebut, perencana (designer) jalan dan jembatan harus mempertimbangkan faktor budaya lokal dengan menyediakan jalur rute alternatif untuk aktivitas Agama dan Budaya tidak lewat di bawah

(Mesulub) di bawah struktur jalan atau jembatan, baik berupa jalur tersediri (exclusive) maupun jalur berbagi (sharing) dengan lalu lintas.

3 MATERI DAN METODE

3.1 Materi

Lokasi studi adalah persimpangan Bandara Ngurah Rai yaitu perpotongan antara jalan Bypass Ngurah Rai – Tol Bali Mandara – Jalan Bandara Ngurah Rai, Kabupaten Badung yang dikendalikan dengan Bundaran Sebidang (*roundabout*), seperti Gambar 2.

Gambar 2. Persimpangan Ngurah rai Airport dengan Bundaran Sebidang

BPJN-8 telah memutuskan peningkatan persimpangan ini dengan menggunakan Simpang Susun Bundaran (*roundabout interchange*), dengan desain Jalan utama *underpass* berupa tipe 4 lajur-2 arah terbagi (4/2D), Jalan Penghubung (*ramp*) berupa tipe 2 lajur-1 arah (2/1), sedangkan Bundaran dengan 2 lajur, seperti Gambar 2.

Gambar 2. Gambar Rencana Roundabout Interchange

Perancangan persimpangan Gambar-2 berdasarkan ketentuan BSN (2004) untuk perencanaan Jalan dan Bundaran sebidang didasarkan pada ketentuan Dep.Kimpraswil (2004) dan (DPU, 1992).

3.2 Metode

Data berupa data sekunder terdiri gambar perencanaan persimpangan dan geometrik, Lalu Lintas Harian rata-rata (LHR) dan jumlah penduduk berasal dari isntansi terkait. Rancangan penelitian menggunakan analisis perbandinngan (*comparative analysis*) dengan 2 (tiga) Skenario:

- a. Skenario-1: Do nothing: Bundaran sebidang tanpa peningkatan
- b. Skenario-2: Simpang susun dengan bundaran (roundabout interchange).

Analisis pergerakan arus lalu lintas dipersimpangan menggunakan Matrik Asal – Tujuan (MAT) dari data pencatatan lalu lintas (Taylor and Young, 1988), analisis kinerja ruas jalan, ramp dan bundaran menggunakan pendekatan Manual Kapasitas Jalan Indonesia (DPU, 1997).

4 HASIL DAN PEMBAHASAN

4.1 Peramalan Lalu Lintas dan Volume Jam Perencanaan

Wilayah tangkapan penduduk yang menggunakan persimpangan ini wilayah Denpasar, Badung, Gianyar dan Tabanan (Sarbagita) sebesar 1.2286.800 jiwa Tahun 2018 (BPS, provinsi Bali 2017). Peramalan lalu lintas pada tahun dasar (*base year*) 2018, tingkat pertumbuhan 6% untuk dari Tahun 2014 sampai 2028 dan pertumbuhan 4% dari Tahun 2028 sampai 2033 serta nilai k sebesar 0.7 dan PHF sebesar 0.95. Hasil peramalan lalu lintas dan Volume Jam Perencanaan (VJP) tahun dasar 2018 sampai dengan tahun 2033, seperti pada Tabel 2.

Tabel 2. Peramalan Lalu Lintas dan Volume Jam Perencanaan (VJP)

	rabei 2. Peramaian Laiu Lintas dan Volume Jam Perencanaan (VJP)								
Pendekat	LH	R14	LHR 2018		LHR	2028	LHR	2033	
rendekat	Masuk	Keluar	Masuk	Keluar	Masuk	Keluar	Masuk	Keluar	
Utara (A)	58.320	59.529	73.628	75.153	119.877	122.361	145.849	148.871	
Timur (B)	22.500	22.829	28.406	28.821	46.249	46.925	56.269	57.091	
Nusadua (C)	69.031	67.862	87.150	85.675	141.894	139.492	172.636	169.713	
Bandara (D)	23.870	21.131	30.135	26.678	49.065	43.435	59.695	52.846	
Pendekat	VJP 2014		VJP	2018	VJP:	2028	VJP	2033	
rendekat	Masuk	Keluar	Masuk	Keluar	Masuk	Keluar	Masuk	Keluar	
Utara (A)	4.297	4.386	5.425	5.538	8.833	9.016	10.747	10.969	
Timur (B)	1.658	1.682	2.093	2.124	3.408	3.458	4.146	4.207	
Nusadua (C)	5.086	5.000	6.422	6.313	10.455	10.278	12.721	12.505	
Bandara (D)	1.759	1.557	2.220	1.966	3.615	3.200	4.399	3.894	

4.2 Analisis Peramalan dan Matrik Asal Tujuan (MAT) Pergerakan Lalu Lintas

Analisis pergerakan arus lalu lintas dipersimpangan menggunakan pendekatan Matrik Asal Tujuan (MAT) Tahun 2014 dengan target Tahun 2018, 2028 dan 2033, berurutan seperti Tabel 3 dan Tabel 4 serta Tabel 5.

Tabel 3. MAT Tahun 2014

D	- 1	2	3	1	Pij	Taget	Ep
O	1	2	3	4	11)	Ptij	ьр
1	47	491	2.519	1.335	4.392	5.425	1,235
2	275	13	596	772	1.656	2.093	1,264
3	2.542	584	118	1.604	4.848	6.422	1,325
4	474	288	557	57	1.376	2.220	1,613
Aji	3.338	1.376	3.790	3.768	12.272		
Atji	5.538	2.124	6.313	1.966		16.160	
Ea	1,659	1,544	1,666	0,522			1,317

Tabel 4. MAT Tahun 2018

O D	1	2	3	4	Pij	Ptij	Ер
1	66	687	3.979	620	5.352	5.425	1,014
2	470	22	1.139	434	2.065	2.093	1,014
3	4.261	969	221	884	6.335	6.422	1,014
4	741	446	974	29	2.190	2.220	1,014
Aji	5.538	2.124	6.313	1.966	15.941		
Atji	5.538	2.124	6.313	1.966	_	16.160	
Ea	1	1	1	1			1,014

Tabel 5. MAT Tahun 2028 dan MAT Tahun 2033

O D	1	2	3	4	Oij	Otij	Eoij
1	108	1.118	6.478	1.009	8.713	8.833	1,01
2	765	36	1.855	706	3.362	3.408	1,01
3	6.936	1.578	360	1.439	10.313	10.455	1,01
4	1.206	726	1.586	48	3.566	3.615	1,01
Dij	9.016	3.458	10.278	3.201	25.953		
Dtij	9.016	3.458	10.278	3.201		26.311	
Ed	1,00	1,00	1,00	1,00			1,01

D O	1	2	3	4	Oij	Otij	Eoij
1	131	1.360	7.881	1.227	10.600	10.746	1,01
2	931	44	2.257	859	4.091	4.147	1,01
3	8.440	1.920	438	1.750	12.548	12.721	1,01
4	1.468	883	1.929	58	4.338	4.398	1,01
Dij	10.970	4.207	12.505	3.894	31.576		
Dtij	10.970	4.207	12.505	3.894		32.012	
Ed	1,00	1,00	1,00	1,00			1,01

a. MAT Tahun 2028

b. MAT Tahun 2033

4.3 Analisis Peramalan Pergerakan Arus Lalu Lintas pada Persimpangan

Hasil analisis estimasi pergerakan arus lalu lintas pada bundaran existing dari MAT Tahun 2018 sampai dengan Tahun 2033 dengan komposisi LHR tahun 2014 diperoleh pergerakan arus lalu lintas yang melewati Bundaran existing seperti Tabel 6.

Tabel 6. Arus Lalu Lintas yang Melalui Bundaran Existing Skenario-1

Volsi Simpona	Pergerakan	Та	hun 20	18	Та	hun 20	28	Tahun 2033		
Kaki Simpang	Lalu Lintas	KR	KB	SM	KR	KB	SM	KR	KB	SM
	Belok Kiri	206	22	459	335	36	747	407	44	909
Kuta (A)	Menerus	1.191	131	2.657	1.939	213	4.325	2.359	260	5.262
Kuta (A)	Belok Kanan	186	20	414	302	33	673	368	40	819
	Memutar	20	3	44	32	5	71	39	6	87
	Belok Kiri	342	36	761	557	59	1.239	678	72	1.507
Toll BM (B)	Menerus	130	14	290	211	23	472	257	28	574
TOILDINI (D)	Belok Kanan	140	15	314	228	25	512	278	30	623
	Memutar	7	2	14	11	3	22	13	3	27
	Belok Kiri	269	22	592	439	36	964	534	44	1.173
Nusa Dua (C)	Menerus	1.299	106	2.856	2.115	172	4.650	2.573	209	5.658
Nusa Dua (C)	Belok Kanan	295	25	649	481	41	1.057	585	49	1.286
	Memutar	67	6	148	110	9	241	133	11	293
Bandara (D)	Belok Kiri	213	8	521	346	13	848	421	15	1.031
	Menerus	128	5	313	209	8	509	255	9	619
	Belok Kanan	280	10	684	456	17	1.113	554	21	1.354
	Memutar	8	1	21	13	1	33	16	1	41

Besaran prosentase yang penglaihan (*diversion*) perjalanan melalaui *Underpass* dilakukan secara *trial and error* seperti Tabel 7. Berdasarkan Tabel 7, pengalihan perjalanan (*diversion*) melalui underpass dipakai 51,57 % dengan pertimbangan kinerja jalan Underpass selama umur rencana paling kecil dibandingkan yang lainnya. Hasil analisis pergerakan arus lalu lintas sesuai Skenario-2, dari MAT Tahun 2018 sampai dengan Tahun 2033 dengan komposisi kendaranaan sesuai LHR Tahun 2014 dan prosentase yang melewati underpass sebesar 51,57%, ditunjukan berurutan seperti pada Tabel 8, Tabel 9 dan Tabel 10.

Tabel 7. Hubungan Pengalihan Perjalanan dengan Kinerja Jalan Underpass

Prosentase Alihan	Pengalihan Melalui Underpass	Kii	nerja Jalan (I	OS)
%	%	2018	2028	2033
60/60	51,57%	0,63	1,00	1,19
70/70	52,30%	0,64	1,00	1,20
70/75	52,47%	0,64	1,02	1,21
75/75	52,62%	0,64	1,02	1,21

Tabel 8. Peramalan Arus Lalu Lintas pada Jalan Underpass Skenario-2

Kaki Simpang	D 1	Komposisi Arus Lalu Lintas yang Melalui Underpass (kend/jam)								
	Pergerakan Lalu Lintas	Tahun 2018			Tahun 2028			Та	Tahun 2033	
		KR	KB	SM	KR	KB	SM	KR	KB	SM
Kuta (A)	Kuta-Nusadua	1.143	126	2.551	1.861	205	4.153	2.265	249	5.052
Nusadua (C)	Nusadua-Kuta	1.247	101	2.742	2.030	165	4.464	2.470	201	5.431

Tabel.9. Peramalan Arus Lalu Lintas pada Bundaran Skenario-2

	ъ .	Kon	nposisi A	Arus Lalu	Lintas	yang M	Ielalui Bu	ındaran	(kend/	jam)	
Kaki Simpang	Pergerakan Lalu Lintas	T	Tahun 2018			Tahun 2028			Tahun 2033		
	Eura Emas	KR	KB	SM	KR	KB	SM	KR	KB	SM	
	Belok Kiri	206	22	459	335	36	747	407	44	909	
Kuta (A)	Menerus	48	5	106	78	9	173	94	10	210	
Kuta (A)	Belok Kanan	186	20	414	302	33	673	368	40	819	
	Memutar	20	3	44	32	5	71	39	6	87	
	Belok Kiri	342	36	761	557	59	1.239	678	72	1.507	
Toll BM (B)	Menerus	130	14	290	211	23	472	257	28	574	
Toll BM (B)	Belok Kanan	140	15	314	228	25	512	278	30	623	
	Memutar	7	2	14	11	3	22	13	3	27	
	Belok Kiri	269	22	592	439	36	964	534	44	1.173	
Nusa Dua (C)	Menerus	52	4	114	85	7	186	103	8	226	
Nusa Dua (C)	Belok Kanan	295	25	649	481	41	1.057	585	49	1.286	
	Memutar	67	6	148	110	9	241	133	11	293	
Bandara (D)	Belok Kiri	213	8	521	346	13	848	421	15	1.031	
	Menerus	128	5	313	209	8	509	255	9	619	
	Belok Kanan	280	10	684	456	17	1.113	554	21	1.354	
	Memutar	8	1	21	13	1	33	16	1	41	

Tabel 10. Peramalan Arus Lalu Lintas pada Ramp

77.1.		Komposisi Arus Lalu Lintas yang Melalui Ramp (kend/jam)								
Kaki Simpang	Arus Lalu Lintas Ramp	Tahun 2018			Tahun 2028			Tahun 2033		
	Linus Rump	KR	KB	SM	KR	KB	SM	KR	KB	SM
Kuta (A)	Entry Ramp	459	51	1.022	747	83	1.664	908	101	2.025
Kuta (A)	Exit Ramp	424	30	993	691	49	1.617	841	60	1.967
Nusadua	Entry Ramp	684	57	1.504	1.114	92	2.448	1.355	112	2.978
(C)	Exit Ramp	737	58	1.699	1.200	94	2.766	1.460	114	3.365

Tabel 6 dan Tabel 10 memperlihatkan pergerakan lalu lintas pada Bundaran menurun akibat adanya peralihan melalui Underpass dari pendekat Kuta dan Nusa Dua.

4.4 Analisis Kinerja Persimpangan

4.4.1 Analisis Kinerja existing Skenario-1: Do Nothing

Hasil analisis jika tampa tindakan (Do nothing) sesuai Skenrio -1, diperoleh bahwa Tahun 2018 persimpangan mengalami macet dengan penilaian degree of saturation (DS)>0,75 dan kemacetan bertambah pada Tahun 2028 dan 2033, seperti ditunjukkan pada Tabel 11.

TC 1 1 1 1	T7' '	D 1	0 1 1 1	01 . 1
Tabel 11.	Kineria	Bundaran	Sebidang	Skenario-1

Jalinan	Kinerja Bundaran Existing (DS)			
	2018	2028	2033	
AB	0,85	1,38	1,67	
BC	0,91	1,49	1,81	
CD	0,97	1,57	1,91	
DA	0,99	1,62	1,97	
Penilaian	DS>0,75	DS>0,75	DS>0,75	

4.4.2 Analisis Skenario-2: Roundabout interchange

Hasil analisis Skenario-2 menunjukan bahwa kinerja bagian Bundaran (roundabout) cukup baik dengan DS<0,75 pada Tahun 2018 sampai dengan Tahun 2028, tetapi antara Tahun 2028 sampai 2033 sudah mengalami kemacetan (DS>0,75, seperti ditunjukan pada Tabel 12a. Hasil analisis kinerja pada Jalan utama *Underpass* cukup baik dengan DS<0,75 antara tahun 2018 sampai dengan tahun 2028, namun mengalami kemacetan antara Tahun 2028 sampai tahun 2033, seperti ilustrasi Tabel 12b. Sedangkan hasil analisis bagian Jalan Penghubung (*ramp*) memiliki kinerja sangat baik dengan DS<0,75 dari Tahun 2018 sampai dengan Tahun 2033, seperti terlihat pada Tabel 12c.

Tabel 12. Kinerja Simpang Susun Bundaran Skenario-2

Jalinan	Kinerja (DS)		
Bundaran	2018	2028	2033
AB	0,50	0,86	1,10
BC	0,49	0,83	1,07
CD	0,51	0,85	1,10
DA	0,54	0,91	1,17
Penilaian	DS<0,75	DS>0,75	DS>0,75

Jalan	I	Kinerja (DS)
Utama	2018	2028	2033
Underpass	0,64	1,08	1,31
Penilaian	DS<0,75	DS>0,75	DS>0,75

a) Kinerja Bundaran

b) Kinerja Jalan Underpass

Ramp	Kinerja (DS)		
Kamp	2018	2028	2033
Ramp Utara	0,26	0,44	0,54
Ramp selatan	0,37	0,61	0,81
Penilaian	DS<0,75	DS<0,75	DS>0,75

c) Kinerja Jalan Penghubung (*Ramp*)

Tabel 11 dan Gambar 3 memperlihat kinerja Skenario 2 lebih baik dari pada Skenario-1 dilihat dari indikator penilaian DS< 0,75 pada Tahun dasar 2018. Penilaian tersebut dipertegas dari perbandingan kapasitas tersedia (*supply side*) Skenario-2 lebih besar 35.272 smp/jam (52,8%) dibandingkan Skenario-2 sebesar 23.392 smp/jam, seperti ditunjukkan Gambar 3a, dan Gambar 3b menunjukkan masa pelayanan Skenario-2 lebih baik sebesar 5 sampai 10 Tahun (2018-2028) dibandingkan Skenario-1 hanya ssampai Tahun dasar 2018 disamping itu Skenario-2 mampu menurunkan sebesar 51,7% dari total arus lalu lintas yang masuk Bundaran akibat pengalihan arus lalu lintas melalui Underpass.

Gambar 3. Perbandingan Kapasitas dan Kinerja antara Skenario-1 dengan Skenario-2.

4.4.3 Analisis terhadap Budaya Lokal

Hasil analisis secara kualitatif menunjukkan bahwa desain peningkatan persimpangan sudah memberikan alternatif jalur perjalanan menghindari semua aktivitas budaya tidak Mesulub, seperti tertuang pada Tabel 13.

Tabel 13. Analisis Kualitatif terhadap Budaya Lokal

No	Jenis Aktivitas Agama dan Budaya	Pola Perjaanan Aktivtas agar tidak Mesulub atau tidak
	yang Melewati Persimpangna	melewati Underpass
1	Aktivitas <i>Melast</i> i pura Karangasem ke	Aktivitas 1 dan 2 memiliki pola perjalanan Barat- Timur,
	Segara Kauh	sehingga rute perjalanan Melasti dan Tapakan Ide Betara Desa
2	Aktivitas perjalanan Tapakan Barong	Pekraman Tuban, dapat menggunakan Ramp Timur, bagian
	dan Rangda desa pekraman Tuban dari	Bundaran dan pendekat Bandara Ngurah.
	Pura Puseh ke Pura Karangasem	
	Perjalanan suci Ide batara Uluwatu	Aktivitas 3 dan 4 dengan pola perjalanan Utara-Selatan,
3	dan Gua Metandal ke pura Tambang	sehingga rute perjalanan Suci Ide Betara Uluwatu dan Gua
	Badung Denpasar	Metandal serta perjalanan Tapakan Ide Batera dapat
	Perjalanan suci Tapakan Barong dan	menggunakan Ramp Barat dan Timur supaya tidak lewat
4	Rangda dari Denpasar, Badung	Underpass (Mesulub)
	menuju Pura Tengkulung Nusadua	
	Pelaksanaan prosesi Pekiriman	Aktivitas 5 mengikuti pola perjalanan Utara – Selatan dan
5	Jenasah dan Nganyud anggota Banjar	Barat- Timur, untuk itu rute prosesi Pekiriman Janasah dan
	Pesalakan ke Setra/ Kuburan Tuban	Nganyut bisa menggunakan Ramp Barat dan Timur, bagin
		Bundaran dan pendekat Bandara Ngurah Rai, supaya tidak
		melewati Underpass (Mesulub).
6	Aktivitas budaya berupa prosesi	Aktivitas 6 menganut pola Utara-Selatan dan Barat, sehingga
	aktivitas ogoh-ogoh	rute prosesi pengarakan ogoh dapat dapat menggunakan Ramp
		Barat dan Timur serta Bundaran, supaya tidak melewati
		Underpass (mesulub)

Kajian ini sangat sederhana berdasarkan observasi dan aktivitas Agama dan Budaya yang sudah berjalan karena tidak ada norma atau peraturan sebagai acuan. Sehubungan dengan hal tersebut pemangku kepentiangan (*steakholder*) yaitu pemerintah, politisi, budayawan, pakar dan masyarakat duduk bersama untuk membuat aturan atau norma berupa Peraturan Daerah atau jenisnya tentang sakral atau tidak sakral pada bangunan Jalan dan Jembatan, sebagai dasar acuan pelaksana kegiatan (PU), Dinas Perhungan dan Perencana Jalan dan Jembatan di Bali untuk berkarya untuk kepentingan budaya Bali yang adi luhung tersebut.

5 SIMPULAN DAN SARAN

Dari hasil analisis dapat disimpulkan sebagai berikut:

- 1. Hasil analisis menunjukkan bahwa Skenario 2 lebih baik dari pada Skenario-1 dilihat dari kinerja persimpangan dari penilaian DS< 0,75, disebabkan kapasitas tersedia (*supply side*) Skenario-2 lebih besar 52,8% dibandingkan Skenario-1 dan Skenario-2 mampu menurunkan sebesar 51,7% dari total jumlah arus lalu lintas yang masuk bundaran akibat pengalihan arus melalui underpass.
- 2. Hasil analisis memperlihatkan bahwa desain persimpangan secara tegas sudah mempertimbangkan aspek budaya dengan memberikan alternatif ruang atau jalur jalan untuk aktivitas Agama dan Budaya yang melewati persimpangan dengan tidak lewat di bawah (*mesulub*).

6 UCAPAN TERIMA KASIH

Penelitian ini menggunakan dana pribadi dan terima kasih kepada Kepala BPJN-8 dan PT.Wisma Karma atas bantuan data lalu lintas.

7 DAFTAR PUSTAKA

Badan Standar Nasional. BSN, 2004. Geometrik Jalan Perkotaan, RSNI T-14-2004

Badan Pusat Statistik Provinsi Bali. 2017. Data proyeksi penduduk Provinsi Bali menurut kabupaten/kota dan jenis kelamin, 2011-2020.

Departemen Pemukiman dan Prasarana Wilayah. Dep. Kimpraswil, 2004. *Tata cara perencanaan Bundaran sebidang*, Pd T 20-2004-B.

Depertemen Pekerjaan Umum. 1997. Manual Kapasitas Jalan Indonesia.

Depertemen Pekerjaan Umum. 1992. *Tata Cara Perencanaan Persimpangan Sebidang*, Direktorat Jenderal Bina Marga.

Departemen Pekerjaan Umum. 2014. Data leger Jalan Nasional Provinsi Bali Tahun 2014, BPJN 8 Provinsi Bali.

https://balirage.blogspot.co.id/2009/01/diskusi-bali-post-1/jalan-layang-solusi/ unduh 5 Agustus 2017

Taylor, M.P dan W.Young. 1990. *Traffic Analysis New Technology and New Solutions*, Hargreen Publishing Company, Victoria, Australia.

Kwintarnaya. 2013. *Analisis Pemilihan Tipe Intrchange Jalan Tol Kuta-Tanah Lot-Soka*, Makalah Konferensi Nasional Teknik Sipil-7, Universitas Sebelas Maret, Surakarta.

.