

Министерство науки и высшего образования Российской Федерации Мытищинский филиал

Федеральное государственное автономное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	космический	•
КАФЕДРА	<u>K2</u>	

ДОМАШНЕЕ ЗАДАНИЕ №3 ПО ДИСЦИПЛИНЕ

«Конструкторско-технологическое обеспечение производства ЭВМ»

Студент К3-66Б	(Подпись, дата)	<u>Несмеянов С.А.</u> (И.О.Фамилия)	
Доцент К2, к.т.н.	(Подпись, дата)	<u>Удалов М.Е.</u> (И.О.Фамилия)	

- 1) Расположение элементов на печатной плате одностороннее;
- 2) Шаг установки компонентов по оси X_{rx} = 0.039 м;
- 3) Шаг установки компонентов по оси Y_{ry} = 0.047 м;
- 4) Расстояние от центра компонента до края печатной платы, м такое, что $k_{\text{комп}-\Pi\Pi}=1.14.$
- 5) Коэффициент перфорации корпуса блока $k_{\text{перф}}$ =0.25;
- 6) Мощность, рассеиваемая блоком (ячейкой), $Q_{6\pi} = Q_{99} = 45 \text{ BT}$;
- 7) Давление окружающей среды, Па, $p_{0.C}$ =1.013·10⁵ Па (нормальное);
- 8) Давление воздуха внутри блока, Па, $p_{\text{вн.бл.}}$ = 1.013·10⁵ Па (нормальное);
- 9) Приведенная степень черноты всей поверхности $\varepsilon_{\text{прив}.i} = 0.5$;
- 10) Мощность, рассеиваемая компонентом, $Q_{\text{комп}} \le 0.223 \text{ Bt}$;
- 11) Площадь поверхности компонента, $S_{\text{пов.комп}} = 0.00031 \text{ м}^2$;
- 12) Площадь основания компонента $S_{\text{осн.комп}} = 0.0000864 \text{ м}^2$ (корпус 2148);
- 13) Толщина зазора между основанием компонента и печатной платы $\delta_{\text{комп}\ \Pi\Pi}$ =0.001 м;
- 14) Коэффициент теплопроводности материала, заполняющего зазор между основанием компонента и печатной платой $\lambda_{\text{м.заз.комп.}-\Pi\Pi}$ = $0.01\frac{\text{BT}}{\text{м}^2*\text{K}}$ (воздух);
- 15) Коэффициент теплопроводности материала печатной платы $\lambda_{\text{м.ПП}}$ =0,372 $\frac{\text{Вт}}{\text{м}^2*\text{K}}$ (стеклотекстолит ВФТ-С);
- 16) Эквивалентный коэффициент теплопроводности модуля, в котором расположена микросхема, λ экв, при отсутствии теплоотвода $\lambda_{\text{экв}} = \lambda_{\text{п}} = \lambda_{\text{м.ПП}} = 0.372 \frac{\text{Вт}}{\text{м²*K}}$;
- 17) Допустимая температура корпуса компонента (интегральная микросхема серии 155) $T_{\text{доп}}$ =70 o C.

Вариант ДЗЗ.

Расчет теплового режима блока ЭА при естественном охлаждении.

Методика расчета 1-го этапа теплового режима блока ЭА.

Расчет проводится в три этапа. На первом этапе расчет осуществляется методом итераций, в соответствии с которым на первой итерации задается температура корпуса.

- 1. Определяю площадь поверхностей блока: для верхней и нижней – $S_{\text{бл.в}} = S_{\text{бл.н}} = l_{\text{бл}} b_{\text{бл}} = 0.19 \cdot 0.09 = 0.0171 \text{ м}^2;$ для боковой - $S_{\text{бл.6}}=2(l_{\text{бл}}+b_{\text{бл}})h_{\text{бл}}=2\cdot(0.19+0.09)\cdot0.32=$ 0.1792 m^2 .
- 2. Задаю перепад температур между корпусом и окружающей средой $\Delta t_{\text{корп-o.c.}} = 10 \, {}^{o}C.$
- 3. Определяю температуру корпуса блока:

$$t_{\text{корп-о.c}} = t_{\text{o.c}} + \Delta t_{\text{корп-o.c}} = 22 + 10 = 32 \, {}^{o}C,$$

где $t_{0,c}$ -максимальная температура окружающей среды, ${}^{o}C$.

4. Нахожу среднюю температуру между корпусом и окружающей средой: $\bar{t}_{\text{корп-o.c}} = \frac{t_{\text{корп.бл}} + t_{\text{o.c}}}{2} = \frac{32 + 22}{2} = 27 \ ^{o}C.$

$$\bar{t}_{\text{корп-o.c}} = \frac{t_{\text{корп.бл}} + t_{\text{o.c}}}{2} = \frac{32 + 22}{2} = 27 \, {}^{o}C$$

5. Определяю закон теплообмена:

$$\Delta t_{\text{корп-o.c}} \leq \left(\frac{0.84}{l_{\text{onp}i}}\right)^3,$$

где $l_{\text{опр}i}$ - определяющий размер поверхности, м. Для верхней и нижней поверхностей блока $l_{\text{опр}i} = min(l_{\text{бл}}, b_{\text{бл}})$. Для боковой поверхности блока $l_{\text{опр}i} = h_{\text{бл}}$.

Если данное условие удовлетворяется, теплообмен проходит по закону 1/4, в противном случае - по закону 1/3.

Для верхней и нижней поверхности:

$$10 \, {}^{o}C \le \left(\frac{0,84}{min(0,19,0,09)}\right)^{3}$$
$$10 \, {}^{o}C \le 813 \, {}^{o}C$$

Следовательно, берем закон 1/4.

Для боковой поверхности:

$$10 \, {}^{o}C \le (\frac{0.84}{0.32})^{3}$$
$$10 \, {}^{o}C \le 18.1 \, {}^{o}C$$

Следовательно, берем закон 1/4.

6. Рассчитываю коэффициенты конвективного теплообмена для каждой поверхности блока:

$$a_{\text{конв}i} = k_{\text{пов.бл}i} A_2 \left(\frac{t_{\text{корп.бл}} - t_{\text{o.c}}}{l_{\text{onp}i}} \right)^{1/4},$$

где $k_{\text{пов.бл}i}$ - коэффициент, учитывающий положение поверхностей корпуса блока (для нижней поверхности 0,7, для боковой - 1, для верхней - 1,3);

 A_2 - коэффициент, зависящий от $\bar{t}_{\text{корп-o.c}}$ (таб. 2).

Таблица 2. 3начения коэффициента A_2 для воздуха и воды

Среда	Значения A_2 при температуре $\overline{t}_{\text{корп-o.c.}}$, °C									
Среда	10	20	30	40	60	80	100	120	140	150
Воздух	1,4	1,38	1,36	1,34	1,31	1,29	1,27	1,26	1,25	1,245
Вода	90	105	127	149	178	205	227	_	_	_

$$a_{\text{конв.н}} = 0.7 \cdot 1.38 \left(\frac{32-22}{0.09}\right)^{\frac{1}{4}} = 3.13;$$
 $a_{\text{конв.в}} = 1.3 \cdot 1.38 \left(\frac{32-22}{0.09}\right)^{\frac{1}{4}} = 5.82;$
 $a_{\text{конв.6}} = 1 \cdot 1.38 \left(\frac{32-22}{0.32}\right)^{\frac{1}{4}} = 3.26;$

7. Определяю коэффициент лучистого теплообмена для каждой поверхности блока:

$$a_{\pi i} = \varepsilon_{\text{корп.}i} \cdot 5,67 \left(\frac{((t_{\text{корп.}6\pi} + 273)/100)^4 - ((t_{\text{o.c}} + 273)/100)^4}{t_{\text{корп.}6\pi} - t_{\text{o.c}}} \right)^{1/4},$$

где $\varepsilon_{\text{корп}.i}$ - коэффициент черноты корпуса блока.

$$a_{\text{\tiny J.B}} = a_{\text{\tiny J.H}} = 0.9 \cdot 5.67 \left(\frac{\left(\frac{32 + 273}{100}\right)^4 - \left(\frac{22 + 273}{100}\right)^4}{32 - 22} \right)^{\frac{1}{4}} = 5.2;$$

$$a_{\text{\tiny JI.6}} = 0.9 \cdot 5.67 \left(\frac{\left(\frac{32 + 273}{100}\right)^4 - \left(\frac{22 + 273}{100}\right)^4}{32 - 22} \right)^{\frac{1}{4}} = 5.2;$$

8. Рассчитываю тепловую проводимость между поверхностью корпуса и окружающей средой:

$$\sigma_{\text{т.корп-o.c}} = (a_{\text{конв.н}} + a_{\text{л.н}})S_{\text{бл.н}} + (a_{\text{конв.б}} + a_{\text{л.б}})S_{\text{бл.б}} + (a_{\text{конв.в}} + a_{\text{л.в}})S_{\text{бл.в}},$$

где $a_{\text{конв.н}}$, $a_{\text{конв.в}}$, $a_{\text{конв.в}}$ - коэффициенты конвективного теплообмена для нижней, боковой и верхней поверхности корпуса блока соответственно;

 $a_{\text{л.н.}}, a_{\text{л.б.}}, a_{\text{л.в.}}$ - коэффициенты лучистого теплообмена для нижней, боковой и верхней поверхности блока соответственно.

$$\sigma_{\text{т.корп-o.c}} = (3.13 + 5.2) \cdot 0.0171 + (3.26 + 5.2) \cdot 0.1792 + (5.82 + 5.2) \cdot 0.0171 = 1.8481$$

9. Рассчитываю перепад температур между корпусом и окружающей средой во втором приближении:

$$\Delta t_{\text{корп-o.c}}^* = \frac{Q_{\text{бл}}}{\sigma_{\text{т.корп-o.c}}},$$

где $Q_{\mathrm{бл}}$ - мощность, рассеиваемая блоком, $\mathrm{Bt}.$

$$\Delta t_{\text{корп-o.c}}^* = \frac{45}{1,8481} = 24,349 \, {}^{o}C$$

10.Определяем ошибку (точность) расчета:

$$\Delta_p = |\Delta t_{\text{корп-o.c}}^* - \Delta t_{\text{корп-o.c}}| = |24,349 - 10| = 14,349 \, ^{o}C.$$

Если $\Delta_p \leq 1$, перехожу к следующему этапу 1-го расчета, если $\Delta_p \geq 1$ - к п. 3 1-го этапа, считая, что $\Delta t_{\text{корп-o.c}} = \Delta t_{\text{корп-o.c}}^*$.

В моем случае, я провожу еще 2 итерации, чтоб $\Delta_p \leq 1$, при котором $\Delta t^*_{\text{корп-o.c}} = 22,22 \, {}^o C$, и $\Delta t_{\text{корп-o.c}} = 21,92 \, {}^o C$.

11. Определяю температуру корпуса с учетом перфорации и поправки на атмосферное давление окружающей среды:

$$\Delta t'_{\text{корп-o.c}} = \Delta t_{\text{корп-o.c}} \cdot k_{k_{\text{nep}\phi}} \cdot k_{p_{\text{o.c}}},$$

где $k_{k_{\mathrm{nep}\varphi}}$ - коэффициент, зависящий от коэффициента перфорации блока $k_{p_{\mathrm{o},\mathrm{c}}}$ (рис. 1);

 $k_{p_{
m o.c}}$ - коэффициент, зависящий от атмосферного давления окружающей среды

 $p_{\text{o.c}}$ (рис. 2).

Puc.~1.~3ависимость коэффициента $k_{\mathrm{nep} \phi}$ от коэффициента перфорации корпуса блока $k_{\mathrm{nep} \phi}.$

 $Puc.\ 2.\ 3 a в u c u м o c m ь к o э ф ф u ц u e h m a k_{p_{o,c}} o m a m м o c ф e p h o г o давления o к p у жающей c p e ды <math>p_{o,c}.$

По графикам видно, что при $p_{\rm o.c}=1.013\cdot 10^5$ Па, $k_{p_{\rm o.c}}=1.2$, а при $k_{\rm пер\phi}=0.25,~k_{k_{\rm пер\phi}}=0.7.$

$$\Delta t'_{\text{корп-o.c}} = 21,92 \cdot 0,7 \cdot 1,2 = 18,41 \, {}^{o}C.$$

12.Определяю температуру корпуса блока:

$$t_{\text{корп.бл}} = t_{\text{o.c}} + \Delta t'_{\text{корп-o.c}} = 22 + 18,41 = 40,41$$
 °C.

Методика расчета 2-го этапа теплового режима блока ЭА.

2-й этап для тепловых схем ТС 1.

Расчет проводится на основе закона Фурье.

1. Определяем площадь контакта между ПП и направляющей:

$$S_{\kappa.\Pi\Pi-\text{Hamp}} = 2l_{\Pi\Pi} * (h_{\Pi\Pi} + h_{\text{Hamp}}),$$

Где l_{nn} – длина стороны ПП, контактирующей с направляющей, м; h_{nn} – толщина ПП, м; $h_{\text{напр}}$ – высота (толщина) направляющей, м;

$$S_{\text{к.ПП-напр}} = 2l_{\Pi\Pi} * (h_{\Pi\Pi} + h_{\text{напр}}) = 2 * 0.7 * (0.0011 + 0.0022) = 0.0046 \text{ m}^2$$

2. Определяем тепловое сопротивление материала в зазоре между ПП и направляющей:

$$R_{\text{т.м.заз.}\Pi\Pi-\text{напр}} = \frac{k_{\text{м.}\Pi\Pi}}{S_{\text{к.}\Pi\Pi-\text{напр}}},$$

где $k_{\text{м.ПП}}$ — коэффициент, зависящий от материала ПП и наличия теплоотвода от неё (от металлической рамки: 1,57 * 10^{-3} для ПП из стеклотекстолита без теплоотвода);

$$R_{\text{т.м.заз.}\Pi\Pi-\text{напр}} = \frac{k_{\text{м.}\Pi\Pi}}{S_{\text{к.}\Pi\Pi-\text{напр}}} = \frac{0,00157}{0,0046} = 0,341 \text{ Om}$$

3. Определяем перепад температур в зазоре между корпусом и МММ:

$$\Delta t_{
m 3а3. Kopп-MMM} = Q_{
m Sq} R_{
m T.M.3a3.\Pi\Pi-Hanp} = 45*0,341 = 15,345~^oC$$
, Где $Q_{
m Sq}$ — мощность, рассеиваемая ячейкой, Вт.

Расчет передачи теплоты с учетом топологии.

Методика расчета 3-го этапа теплового режима блоков ЭА.

Теплоотводящими компонентами являются интегральные микросхемы, транзисторы, резисторы, диоды.

При расчете необходимо учитывать взаимное расположение компонентов на плате. Необходимо также учитывать положение компонента относительно края ПП и расположение компонентов относительно края ПП и расположение компонентов с одной или с двух ее сторон.

1. Рассчитываю эквивалентные радиусы компонентов:

$$r_{\text{комп}i} = \sqrt{\frac{S_{\text{осн.комп}i}}{\pi}} = \sqrt{\frac{0,0000864}{3,14}} = 0,00525 \text{ M},$$

где $S_{\text{осн.комп}i}$ - площадь основания i-го компонента, м 2 .

2. Определяю приведенный коэффициент теплоотдачи:
$$k_{\scriptscriptstyle \mathrm{T.прив}} = \sqrt{\frac{17}{h_{\scriptscriptstyle \mathrm{III}}\lambda_{\scriptscriptstyle \mathrm{III}}}} = \sqrt{\frac{17}{0,0011\cdot0,372}} = 203,8.$$

3. Вычисляю переменные, зависящие от расстояния между рассчитываемым и остальными компонентами:

$$\chi_i = k_{\mathrm{т.прив}} l_{\mathrm{ц.ан-комп}i},$$

 $\chi_i - \kappa_{\text{т.прив}} \iota_{\text{ц.ан-комп}i},$ где $l_{\text{ц.ан-комп}i}$ - расстояние между центром анализируемого компонента и центрами і-х компонентов.

По оси X: $l_{\text{ц.ан-комп}x} = r_x = 0$,039 м;

По оси Y: $l_{\text{ц.ан-комп}y} = r_y = 0$,047 м;

По оси диагонали Z: $l_{\text{ц.ан-комп}z} = \sqrt{r_x^2 + r_y^2} + r_{\text{комп}i} = 0,0663$ м. Переменные по осям:

По горизонтали $\chi_x = 203.8 * 0.039 = 7.9482.$

 $\chi_x \leq 10$, отсюда два компонента, расположенных по горизонтали оказывают тепловое влияние друг на друга. По вертикали $\chi_y=203.8*0.047=9.5786.$

 $\chi_y \leq 10$, отсюда два компонента, расположенных по вертикали оказывают тепловое влияние друг на друга.

По диагонали $\chi_z = 203.8 * 0.0663 = 13.51$.

 $\chi_{z} \ge 10$, отсюда четыре компонента, расположенных по диагонали не оказывают тепловое влияние на центральный компонент.

4. Определяю перепад температур между компонентом и МММ, т.е Н3:

$$\Delta t_{\text{комп-MMM}} = \\ = k_{\text{комп-ПП}} \left(\frac{Q_{\text{комп}}}{a_{\text{конв}}(S_{\text{пов.комп}} - S_{\text{осн.комп}}) + \frac{Q_{\text{комп}}}{\sum_{i=1}^{N_{\text{комп-ПП}}} + \frac{1}{k_{\text{расп1}} + n_{\text{kpacn2}} r_{\text{комп}} \lambda_{\Pi}} \delta a_{\text{конв}_{\Pi}} k_{\text{т.прив}} \frac{K_{1}(k_{\text{т.прив}} r_{\text{комп}})}{K_{0}(k_{\text{т.прив}} r_{\text{комп}})}} \right) + \\ + \sum_{i=1}^{n_{\text{комп.т.в.л}}} \frac{Q_{\text{комп}}}{a_{\text{конв}i}(S_{\text{пов.комп}i} - S_{\text{осн.комп}i})} \left(1 + \left(\frac{\delta_{\text{комп-ПП}i}}{\lambda_{\text{м.заз.комп-Пп}i} \pi r_{\text{комп}i}^{2}} + \frac{1}{S_{\text{пов.комп}i} - S_{\text{осн.комп}i}}\right)\right)$$

$$\cdot \frac{\frac{K_1(\chi_i)}{K_0(k_{\scriptscriptstyle \mathrm{T.\Pi P B}i}r_{\scriptscriptstyle \mathrm{KOM\Pi}i})}}{k_{\scriptscriptstyle \mathrm{pacn}1i} + \pi k_{\scriptscriptstyle \mathrm{pacn}2}r_{\scriptscriptstyle \mathrm{KOM\Pi}i}\lambda_{\scriptscriptstyle \Pi}\delta_{\scriptscriptstyle \Pi}k_{\scriptscriptstyle \mathrm{T.\Pi P B}B}\frac{K_1(\chi_i)}{K_0(k_{\scriptscriptstyle \mathrm{T.\Pi P B}}r_{\scriptscriptstyle \mathrm{KOM\Pi}i})} =$$

$$= 1.14 \left(\frac{0.15}{40 \cdot (0.00031 - 0.0000864) + \frac{0.001}{0.01 \cdot 3.14 \cdot 0.00525^{2}} + \frac{1}{2 + 3.14 \cdot 0.000216 \cdot 0.00525 \cdot 0.372 \cdot 0.0011 \cdot 0.0015 \cdot 203.8 \cdot \frac{0.53545}{0.3813}} \right) + \frac{1}{40 \cdot (0.00031 - 0.0000864) \cdot \left(1 + \left(\frac{0.001}{0.01 \cdot 3.14 \cdot 0.00525^{2}} + \frac{1}{0.00031 - 0.0000864} \right) \right) \cdot \frac{\frac{0.000164}{0.3813}}{2 + 3.14 \cdot 0.000216 \cdot 0.00525 \cdot 0.372 \cdot 0.0015 \cdot 203.8 \cdot \frac{0.000164}{0.3813}} + \frac{1}{40 \cdot (0.00031 - 0.0000864) \cdot \left(1 + \left(\frac{0.001}{0.01 \cdot 3.14 \cdot 0.00525^{2}} + \frac{1}{0.00031 - 0.0000864} \right) \right) \cdot \frac{\frac{0.000029}{0.3813}}{2 + 3.14 \cdot 0.000216 \cdot 0.00525 \cdot 0.372 \cdot 0.0015 \cdot 203.8 \cdot \frac{0.000029}{0.3813}} - \frac{1}{2 + 3.14 \cdot 0.000216 \cdot 0.00525 \cdot 0.372 \cdot 0.0015 \cdot 203.8 \cdot \frac{0.000029}{0.3813}} = 17,43 \, {}^{\circ}C,$$

где $a_{\text{конв}}$, $a_{\text{конв}i}$ - коэффициенты конвективного теплообмена рассчитываемого и расположенного рядом компонентов соответственно (рис. 4);

 $S_{\text{пов.комп}}, S_{\text{пов.комп}i}$ - площади поверхности рассчитываемого и расположенного рядом компонентов соответственно, м²; $S_{\text{осн.комп}}, S_{\text{осн.комп}i}$ - площади основания рассчитываемого и расположенного рядом компонентов соответственно, м²; $\delta_{\text{комп}-\Pi\Pi}, \delta_{\text{комп}-\Pi\Pi i}$ - зазор между компонентом и $\Pi\Pi$, м; $\lambda_{\text{м.заз.комп}-\Pi\Pi}, \lambda_{\text{м.заз.комп}-\Pi\Pi i}$ - коэффициент теплопроводности материала зазора между компонентом и $\Pi\Pi$, $\frac{\text{Вт}}{\text{м²*к}}$;

 $k_{\text{комп-\Pi\Pi}}$ - коэффициент, учитывающий расположение компонента относительно края ПП;

 $k_{\rm pacn1}$ и $k_{\rm pacn2}$ - коэффициенты, учитывающие одно- или двустороннее расположение компонентов ($k_{\rm pacn1}=1, k_{\rm pacn2}=0$ - для двустороннего расположения элементов; $k_{\rm pacn1}=2, k_{\rm pacn2}=2,5\pi r_{\rm комп}^2$ - для одностороннего расположения элементов);

 $n_{{
m комп.т.в.}}$ - число компонентов, оказывающих тепловое влияние на рассчитываемый компонент;

 $K_0(\chi_i)$, $K_1(\chi_i)$ - модифицированные функции Бесселя.

Рис. 4. Определение коэффициента конвективного теплообмена

По графику видно, что при $S=0.00031,\,a_{\mathrm{конв}}=a_{\mathrm{конв}i}=40.$ Используя wolfram:

```
K_1(k_{\text{т.прив}}r_{\text{комп}}) = 0,53545 \text{ (рис. 5)};

K_0(k_{\text{т.прив}}r_{\text{комп}}) = 0,3813 \text{ (рис. 6)};
```

 $K_1(\chi_x) = 0.000164(\text{puc.} 7);$

 $K_1(\chi_{\nu}) = 0.000029 (\text{рис. 8});$

**WolframAlpha

 $Puc.~5.~Moдифицированная функция Бесселя для <math>K_1(k_{\scriptscriptstyle \mathrm{T.Прив}} r_{\scriptscriptstyle \mathrm{КОМП}})$

 $Puc.~6.~Moдифицированная функция Бесселя для <math>K_0(k_{\scriptscriptstyle \mathrm{T.Прив}} r_{\scriptscriptstyle \mathrm{КОМП}})$

FROM THE MAKERS OF WOLFRAM LANGUAGE AND MATHEMATICA

WOLFRAM LANGUAGE AND MATHEMATICA

WOLFRAM LANGUAGE AND MATHEMATICA

Рис. 7. Модифицированная функция Бесселя для $K_1(\chi_x)$

FROM THE MAKERS OF WOLFRAM LANGUAGE AND MATHEMATICA

Рис. 8. Модифицированная функция Бесселя для $K_1(\chi_y)$

5. Вычисляю температуру элемента:

$$t_{\text{комп}} = t_{\text{o.c}} + \Delta t_{\text{корп-o.c}} + \Delta t_{\text{заз.корп-MMM}} + \Delta t_{\text{комп-MMM}} = 22 + 21,92 + 15,345 + 17,43 = 76,695 °C.$$

Результаты

Температура элемента $t_{\text{комп}} = 76,695\,^o C$, что превышает допустимую температуру Tдоп = 70 $^o C$.

Вывод: температура элемента превышает $70\,^{o}$ С, следовательно необходимо использовать систему принудительного охлаждения для того, чтобы предотвратить перегрев и поломку элемента.

Список источников

1. Конструкторско-технологические расчеты электронной аппаратуры [Текст]: учебное пособие / Э. Н. Камышная, В. В. Маркелов, В. А Соловьев. - Москва: Издво МГТУ им. Н. Э Баумана, 2014. - 165 с.: ил., табл.; 21 см.; ISBN 978-5 7038-3943-0