Homework 5 (Due 5/8)

Question 1 Let $\vec{X}_1, \ldots, \vec{X}_n$ be a random sample from $\mathcal{N}_p(\vec{\mu}, \Sigma)$. Show that

1. $\overline{\vec{X}} \sim \mathcal{N}_p(\vec{\mu}, \frac{1}{n}\Sigma);$

2. $\mathbb{E}(S) = \Sigma$.

Question 2 Consider a sample of size n = 10 from a 2-variate population. The summery statistics are

$$\overline{\vec{x}} = \begin{bmatrix} 1.5 \\ 1.6 \end{bmatrix}, \quad \boldsymbol{S} = \begin{bmatrix} 4 & -1 \\ -1 & 4 \end{bmatrix}.$$

1. Test $\mu_1 = 0$ with $\alpha = .05$;

2. Test $\mu_2 = 0$ with $\alpha = .05$;

3. Test $\mu_1 = \mu_2 = 0$ with $\alpha = .05$;

4. Plot the 95% confidence region for $\vec{\mu}$.

Question 3 Let

$$\vec{X}_1,\ldots,\vec{X}_{25}$$

be a random sample from $\mathcal{N}_2(\vec{\mu}, \mathbf{\Sigma})$, where $\vec{\mu} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\mathbf{\Sigma} = \begin{bmatrix} 3 & 1 \\ 1 & 4 \end{bmatrix}$. Denote the sample mean and sample covariance by $\overline{\vec{X}}$ and \mathbf{S} , respectively.

1. Derive the distribution of $\overline{\vec{X}}$.

2. Derive the distribution of $(\overline{\vec{X}} - \vec{\mu})^{\top} S^{-1} (\overline{\vec{X}} - \vec{\mu})$. Furthermore, generate a histogram of this random variable by generating an independent sample of $(\overline{\vec{X}}, S)$, and compare the histogram with the distribution you have derived.

Question 4 Consider a sample of size n = 10 from a 3-variate population. The summary statistics for this sample are

$$\overline{x} = \begin{bmatrix} 5 \\ 4 \\ 6 \end{bmatrix}, \quad S = \begin{bmatrix} 3 & 1 & 0 \\ 1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}.$$

1

Test $H_0: \mu_1 = \mu_2 = \mu_3$ with $\alpha = .05$.

Question 5 For a sample $\vec{x}_1, \ldots, \vec{x}_{10}$ from $\mathcal{N}_4(\vec{\mu}, \Sigma)$, the sample mean and sample covariance matrix are

$$\bar{\vec{x}} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{S}_x = \begin{bmatrix} 3 & 1 & 0 & 0 \\ 1 & 3 & 1 & 0 \\ 0 & 1 & 3 & 1 \\ 0 & 0 & 1 & 3 \end{bmatrix},$$

respectively.

- (a) Test $\mu_1 \mu_3 = \mu_2 \mu_4 = 0$ with $\alpha = .05$ by Hotelling's T^2 .
- (b) Test $\mu_1 \mu_2 = \mu_2 \mu_3 = \mu_3 \mu_4$ with $\alpha = .05$ by Hotelling's T^2 .

Question 6 Consider a sample $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_n$ from $\mathcal{N}_2(\vec{\mu}, \Sigma)$. The sample mean and sample covariance are

$$\overline{\vec{x}} = \begin{bmatrix} \overline{x}_1 \\ \overline{x}_2 \end{bmatrix}, \quad \text{and} \quad \boldsymbol{S} = \begin{bmatrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{bmatrix},$$

respectively.

- (a) Find a 95% confidence interval of $\mu_1 \mu_2$.
- (b) Assume $s_{12} > 0$, and someone ignores this positive correlation and takes the wrong sample covariance

$$\widetilde{\boldsymbol{S}} = \begin{bmatrix} s_{11} & 0 \\ 0 & s_{22} \end{bmatrix}.$$

Will this person derive a wider or narrower 95% confidence interval of $\mu_1 - \mu_2$ than the correct one? Explain.