Jing Sun

Next Lecture - Nonlinear Regression by David:)

Agenda

Acknowledgement:

Dr. Merve Gürel (regressionS),

Dr. Tom Viering (perceptron),

Dr. David Tax (all the good old stuff and discussions)

Linear Regression:

Ordinary Least Squares (OLS); R²; Absolute Loss and Huber Loss.

- Overfitting and Bias-Variance Tradeoff.
- Regularizations:

Ridge a.k.a. L2 and Lasso a.k.a. L1.

A little bit of the Classifiers:

(Multiclass) Logistic Regression and Perceptron (as there are some links).

Bayesian Linear Regression (also prepare you for the next lecture).

OLS Linear Regression

• Given a set of features $x \in \mathbb{R}^d$, we predict a response variable $y \in \mathbb{R}$

 Let's look at an example, input (x-axis): size of the house output (y-axis): price of the house

- How to predict a new house's price given its size (an unseen x)?
- We can fit a linear function f() to
 map x to y using the observations:

$$y = \beta_1 x_1 + \beta_0$$
, $d = 1$ slope intercept

$$\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_d \end{bmatrix}, \qquad x = \begin{bmatrix} 1 \\ x_1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix}$$

$$y = x^T \beta$$

• How to estimate β ?

Residuals

• Well, we want β to make y and \hat{y} as close as possible, that is to say, to minimize the "residual".

- What is residual r_n ?
- It is the difference between the observed value and the predicted value for a given data point.

$$r_n = y_n - \hat{y}_n = y_n - x_n^T \hat{\beta}$$

OLS

• Minimize the residual sum of squares!

•
$$RSS = \sum_{n=1}^{N} (r_n)^2 = \sum_{n=1}^{N} (y_n - \hat{y}_n)^2$$

sensitive to outliers

OLS

•
$$X = \begin{bmatrix} 1 & \text{for the intercept} \\ 1 & x_{11} & x_{12} & x_{13} & \dots & x_{1d} \\ 1 & x_{21} & x_{22} & x_{23} & \dots & x_{2d} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{N1} & x_{N2} & x_{N3} & \dots & x_{Nd} \end{bmatrix}, \quad \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_d \end{bmatrix}, \quad y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix},$$

Parameter estimation:

$$\hat{\beta}_{OLS} = \underset{\beta \in \mathbb{R}^{d+1}}{\operatorname{argmin}} \sum_{n=1}^{N} (y_n - x_n^T \beta)^2 = \underset{\beta \in \mathbb{R}^{d+1}}{\operatorname{argmin}} (y - X\beta)^T (y - X\beta)$$

Solution given at

$$\frac{\partial}{\partial \beta} (y - X\beta)^T (y - X\beta) = 0 \qquad \qquad \hat{\beta}_{OLS} = (X^T X)^{-1} X^T y$$

OLS – another angle

- Geometric Interpretation to OLS:
- Find the **orthogonal projection** of the *y* onto the *d*-dimensional subspace spanned by the *X*.

$$X^T (y - X \hat{\beta}_{OLS}) = 0$$

$$\hat{\beta}_{OLS} = (X^T X)^{-1} X^T y$$

R^2 : Coefficient of Determination

The proportion of variability in Y that can be explained by the regression.

Total Sum of Squares
$$TSS = \sum (y_n - \bar{y})^2$$

$$R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}$$

$$R^2 = \frac{variation(data) - variation(fit)}{variation(data)}$$

Other Loss Functions

• Absolute Loss= $|y - \hat{y}|$

Huber Loss=

$$\begin{cases} \frac{1}{2}(y-\hat{y})^2, & if|y-\hat{y}| \le \delta \\ \delta\left(|y-\hat{y}| - \frac{\delta}{2}\right), & otherwise \end{cases}$$

• Quadratic Loss: $(y - \hat{y})^2$

Overfitting and Bias-Variance Tradeoff

$$E(Y - \hat{Y}) = E[f(X) + \epsilon - \hat{f}(X)]^{2}$$

$$= [f(X) - \hat{f}(X)]^{2} + Var(\epsilon)$$

$$= reducible \ error + irreducible \ error$$

$$= Bias (\hat{f}(X))^{2} + Var(\hat{f}(X)) + Var(\epsilon)$$

- Do you remember the Bayes error rate?
- -- the lowest possible error rate given the features.
 - -- analogous to the irreducible error.

Variance refers to the amount by which \hat{f} would **change** if we estimated it using a different training data set.

High variance -- small changes in the training data can result in large changes in \hat{f} .

Bias refers to the error that is introduced by **approximating a real-life problem**, which may be extremely complicated, by a much simpler model.

The more we allow the model to accommodate to the training data set, the lower the bias.

Example: the flexible green curve (High Variance and Low Bias → Overfitting)

Each point represents a model that has been fitted using some training data.

Irreducible error

Regularization

Ridge

- Avoid overfitting to the observed data, especially when working with a small data set.
- Worsen the predictions by punishing the model:

$$\hat{\beta}_{\text{Ridge}} = \underset{\beta}{\operatorname{argmin}} \sum_{n=1}^{N} (y_n - x_n^T \beta)^2 + \lambda \beta^T \beta$$

$$= \underset{\beta}{\operatorname{argmin}} (y - X\beta)^T (y - X\beta) + \lambda \beta^T \beta$$

Ridge regression has a closed-form solution:

$$\hat{\beta}_{\text{Ridge}} = (X^T X + \lambda I)^{-1} X^T y$$

Lasso

Lasso: least absolute shrinkage and selection operator

$$\hat{\beta}_{\text{Lasso}} = \underset{\beta}{\operatorname{argmin}} \sum_{n=1}^{N} (y_n - x_n^T \beta)^2 + \lambda \|\beta\|_1$$

$$= \underset{\beta}{\operatorname{argmin}} (y - X\beta)^T (y - X\beta) + \lambda \|\beta\|_1$$

- No closed-form solution.
 - (e.g., coordinate descent. "The elements of statistical learning" Chapter 3.4.4 & 3.8.6 if interested)
- Introduce sparsity to the parameter space.
- Give penalty for having many predictors with small effects.

Regularizations

Classifiers: Logistic Regression and Perceptron

Logistic Regression

Logistic regression model arises from the desire to model the
 posterior probabilities of the K classes via linear functions in x,
 while at the same time ensuring that they sum to one and remain in [0, 1].

-- Two classes

-- More than two classes

The Bayes Rule if you still remember...

posterior
$$p(A|B) = \frac{p(B|A)p(A)}{p(B)}$$
 evidence

Logistic Regression

Consider the case of two classes,

$$p(C_1|x) = \frac{p(x|C_1)p(C_1)}{p(x|C_1)p(C_1) + p(x|C_2)p(C_2)}$$

• We define $a = \ln\left(\frac{p(C_1|x)}{p(C_2|x)}\right) = \ln\frac{p(x|C_1)p(C_1)}{p(x|C_2)p(C_2)}$

The inverse of the logistic sigmoid, i.e., the logit function, a.k.a. the log odds.

$$p(C_1|x) = \frac{1}{1 + \exp(-a)} = \sigma(a)$$

The logistic **sigmoid** (S-shaped) function.

Logistic Regression

• Consider the case K > 2 classes,

$$p(C_k|x) = \frac{p(x|C_k)p(C_k)}{\sum_j p(x|C_j)p(C_j)}$$

$$a_k = \ln p(x|C_k)p(C_k)$$

$$p(C_k|x) = \frac{exp(a_k)}{\sum_j exp(a_j)} = \sigma(a)$$

The normalized exponential, a.k.a. the softmax function, is a multiclass generalization of the logistic sigmoid.

Perceptron

- Invented in 1957 by Frank Rosenblatt
- Linear classifier combined with a Heaviside/unit step function
- Step functions a.k.a. non-linearities

$$Heaviside(z) = \begin{cases} 0 & if \ z < 0 \\ 1 & if \ z \ge 0 \end{cases}$$

- For regression?
- What if we use the sigmoid function as the step function?

Multilayer Perceptron (MLP)

Bayesian Linear Regression

Look at OLS again from a probabilistic perspective

We assume:

$$y_n = x_n^T \beta + \epsilon$$
, where ϵ i.i.d with $\mathcal{N}(0, \sigma_{\epsilon}^2)$

 Making assumption that data points are drawn independently from the above distribution, the likelihood function is:

$$p(y|X,\beta,\sigma_{\epsilon}^{2}) = \prod_{n=1}^{N} p(y_{n}|x_{n}^{T}\beta,\sigma_{\epsilon}^{2})$$

$$= \frac{1}{\sqrt{(2\pi)^{N}\sigma_{\epsilon}^{2N}}} \exp(-\frac{1}{2\sigma_{\epsilon}^{2}}(y - X\beta)^{T}(y - X\beta))$$

Look at OLS again from a probabilistic perspective

• Estimate parameters where $p(y|X, \beta, \sigma_{\epsilon}^2)$ is maximized:

$$\hat{\beta}_{ML} = \underset{\beta}{\operatorname{argmax}} p(y|X,\beta,\sigma_{\epsilon}^2)$$

We get:

$$\hat{\beta}_{ML} = (X^T X)^{-1} X^T y$$

• Similarly, we can maximize the log likelihood function with respect to the σ_{ϵ}^2 .

• Similarly, we can maximize
$$\hat{\sigma}_{ML}^2 = \frac{1}{N} \sum_{n=1}^{N} (r_n)^2$$
• TudeIft

Pattern Recognition and

Look at OLS again from a probabilistic perspective

Recall

$$\hat{\beta}_{OLS} = (X^T X)^{-1} X^T y$$

We see

$$\hat{\beta}_{ML} = \hat{\beta}_{OLS}$$

OLS could be motivated as the maximum likelihood solution under an assumed Gaussian noise.

• What is the limitation? -- There is no representation of our uncertainty.

Bayesian Linear Regression

The aim is not to find the best "single" value for the parameters, but rather to determine their posterior distribution.

Recall the Bayes rule again,

posterior
$$p(A|B) = \frac{p(B|A)p(A)}{p(B)}$$
 evidence

$$p(\beta|D) = \frac{p(D|\beta)p(\beta)}{p(D)} \quad D = ((x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)), x_n \in \mathbb{R}^d, y_n \in \mathbb{R}$$

Maximum a Posterior (MAP) Estimation

• We have
$$y \sim \mathcal{N}(X\beta, \sigma_{\epsilon}^2 I)$$

$$\hat{\beta}_{MAP} = \underset{\beta}{\operatorname{argmax}} p(\beta|X, y)$$

Likelihood of the response given the predictors and the model

Prior probability of the model parameters (we can use prior such as Gaussian)

$$= \operatorname{argmax}_{\beta} \frac{p(y|X,\beta) p(\beta)}{p(y|X)}$$

$$= \underset{\beta}{\operatorname{argmax}} p(y|X,\beta)p(\beta)$$

$$\hat{\beta}_{MAP} = \left(\frac{\sigma_{\epsilon}^2}{\sigma_{\beta}^2}I + X^TX\right)^{-1} X^Ty$$
Try the derivation!