MACHINE LEARNING MODEL TO PREDICT MATERNAL HEALTH RISK LEVEL

INURI MUTHUKUMARANA 30TH APRIL 2022

INTRODUCTION

- Maternal mortality is unacceptably high, especially in rural areas due to lack of information and quality health services. Every day, approximately 810 women die from preventable causes related to pregnancy and childbirth (WHO).
- Early identification of potential health risk allows physicians to come up with comprehensive intervention strategies to minimize maternal deaths and pregnancy-related complications.
- However, more human effort and time is required to manually analyze the health data of pregnant women to identify risk intensity levels.
- Therefore, a machine learning model would be of great benefit for early detection and management of risk factors associated with pregnancy.

DATA

Check out the beta version of the new UCI Machine Learning Repository we are currently testing! Contact us if you have a

Maternal Health Risk Data Set Data Set

Download: Data Folder, Data Set Description

Abstract: Data has been collected from different hospitals, community clinics, maternal health cares from the rural areas of Bangladesh

Data Set Characteristics:	N/A	Number of Instances:	1014	Area:	Life
Attribute Characteristics:	N/A	Number of Attributes:	7	Date Donated	2020-12-31

Ĺ	RiskLevel	HeartRate	BodyTemp	BS	DiastolicBP	SystolicBP	Age
(high risl	86	98.0	15.0	80	130	25
(high risl	70	98.0	13.0	90	140	35
(high risl	80	100.0	8.0	70	90	29
(high risl	70	98.0	7.0	85	140	30
(low rist	76	98.0	6.1	60	120	35

Data Source https://archive.ics.uci.edu/ml/datasets/

Maternal+Health+Risk+Data+Set

File Format CSV file

File size 30 KB (7 Columns and 1014 rows)

Data Attributes Age in years

Systolic blood pressure in mmHg

Diastolic blood pressure in mmHg

Blood sugar in mmol/L

Body temperature in F

Heart rate in beats per minute

Risk intensity level (Low, Mid and High)

SOLUTION APPROACH & TOOLS

Multiclass Classification Problem

INPUT

Health Data

Age, SystolicBP, DiastolicBP, BS, BodyTemp, HeartRate

ML Model

Multiclass Classifier

OUTPUT

Risk Level

Low(0), Mid(1), High(2) Tool Box

Pre-processing, Exploratory Data Analysis

Check data types

Descriptive statistics

Graphs (Bar charts, Boxplots)

Treat missing values

Treat Outliers

Encoding


```
# Assign numbers to class labels
data['y_act'] = data['RiskLevel']
data['y_act'].replace('low risk', 0, inplace=True)
data['y_act'].replace('mid risk', 1, inplace=True)
data['y_act'].replace('high risk', 2, inplace=True)
```

	count	unique	top	freq	mean	std	min	25%	50%	75%	max
Age	1014.0	NaN	NaN	NaN	29.871795	13.474386	10.0	19.0	26.0	39.0	70.0
SystolicBP	1014.0	NaN	NaN	NaN	113.198225	18.403913	70.0	100.0	120.0	120.0	160.0
DiastolicBP	1014.0	NaN	NaN	NaN	76.460552	13.885796	49.0	65.0	80.0	90.0	100.0
BS	1014.0	NaN	NaN	NaN	8.725986	3.293532	6.0	6.9	7.5	8.0	19.0
BodyTemp	1014.0	NaN	NaN	NaN	98.665089	1.371384	98.0	98.0	98.0	98.0	103.0
HeartRate	1014.0	NaN	NaN	NaN	74.301775	8.088702	7.0	70.0	76.0	80.0	90.0
RiskLevel	1014	3	low risk	406	NaN	NaN	NaN	NaN	NaN	NaN	NaN


```
#Calculate Upper & Lower bound
q3 = np.quantile(data['HeartRate'], 0.75)
q1 = np.quantile(data['HeartRate'], 0.25)
IQR = q3-q1
upper_limit = q3 + 1.5 * IQR
lower_limit = q1 - 1.5 * IQR
data.loc[(data['HeartRate']<= lower_limit) | (data['HeartRate']>= upper_limit)]
```

Model Building

Correlation Matrix and Heatmap

Prepare X variables and y variable

Train Test Split

Train Models

<pre>X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)</pre>
<pre>print(F"Train sample size = {len(X_train)}") print(F"Test sample size = {len(X_test)}")</pre>

Train sample size = 809
Test sample size = 203

Independent	Age, SystolicBP, DiastolicBP, BS, BodyTemp,
variables	HeartRate
Dependent variables	y_act

Decision	Random	Support Vector	k-Nearest
Trees	Forest (RF)	Machines	Neighbors

Model Comparison

Test Models

Comparison

Hyperparameter Tuning

Randomized Search

Based on Accuracy, Precision, recall and F1 score, Random Forest classifier was selected

Model	accuracy	precision	recall	f1_score
Decision Tree				
Random Forest	0.832512	0.838724	0.832512	0.832419
SVM	0.650246	0.635250	0.650246	0.626198
K-Neighbour	0.689655	0.689837	0.689655	0.688362

```
# Define Hyperparameter Grid
               'n estimators': [100, 200, 250],
              "max_depth": [10, 20, 50],
              "min_samples_leaf": [1, 2, 5],
              "min_samples_split": [2, 5, 10]
# Create model object
model = RandomForestClassifier()
# Create RandomizedSearchCV object
model_cv = RandomizedSearchCV(estimator = model, param_distributions = param_grid, cv = 5)
model_cv.fit (X_train, y_train)
# Print the tuned parameters and score
print("Tuned Model Parameters: {}".format(model_cv.best_params_))
print("Best model score: {}".format(model_cv.best_score_))
Tuned Model Parameters: {'n_estimators': 250, 'min_samples_split': 2, 'min_samples_leaf': 1, 'max_depth': 10}
```

Best model score: 0.8083965953531171

Evaluation Matrices

Feature Importance

Save Model

Accuracy, Precision, recall, F1 score, Weighted AUC score for one vs one and one vs rest were used as evaluation matrices.

```
# Model evaluation matrices
print("f1_score:",metrics.f1_score(test_result['y_act'], test_result['y_pred'], average='weighted'))
print('\n')

print("classification_report:\n",classification_report(test_result['y_act'], test_result['y_pred']))

# Calculate AUC OVO & OVR
print("Weighted_auc_score_ovo:", metrics.roc_auc_score(y_test,model.predict_proba(X_test), multi_class="ovo", average="weighted"))
print("Weighted_auc_score_ovr:", metrics.roc_auc_score(y_test,model.predict_proba(X_test), multi_class="ovo", average="weighted"))
```

Final model was saved as pickle file

```
import pickle

save_file = 'model_rf.pickle'
pickle.dump(model, open(save_file, 'wb'))
```

RESULTS & CONCLUSION

Blood sugar level is identified as most significant risk factor that can increase the maternal mortality risk.

Accuracy	0.83
Precision (Weighted Avg)	0.84
Recall (Weighted Avg)	0.83
F1-score (Weighted Avg)	0.83
AUC (Weighted Avg) - OVR	0.92

Physicians can use this machine learning model as a supporting tool to accurately determine the **maternal health risk level** and identify of **potential risk factors.**

THANK YOU!