

Vishay Sfernice

12.5 mm Modular Panel Potentiometer Cermet (P11S) or Conductive Plastic Elements (P11A)

LINKS TO ADDITIONAL RESOURCES

Revision: 26-Apr-2024

QUICK REFERENCE DATA					
Multiple module	Up to 7 modules				
Switch module	Yes				
Detent module	Yes				
Special electrical laws	A: linear, L: logarithmic, F: reverse				
Special electrical laws	logarithmic and others see specification				
Sealing level	IP 64				
Lifespan	50K cycles				

FEATURES

- 12.5 mm square single turn panel control
- · Five shaft diameters and 29 terminal styles

- Multiple assemblies up to seven modules
- Tests according to CECC 41000 or IEC 60393-1
- GAM T1
- P11S version for industrial, military, and aeronautics applications
- P11A version for professional audio applications
- Low current compatibility
- · Shaft and panel sealed version
- · Up to twenty-one indent positions
- Rotary and push/push switch options
- · Concentric shafts
- · Custom designs on request
- Trimmer version T11 (see document no. 51021)

(0.024)

(0.100)

2.54 (0.100)

Document Number: 51031

 Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

VERSATILE MODULAR COMPACT ROBUST **CONFIGURATION EXAMPLE** - Dimensions in millimeters (inches) ± 0.5 mm (± 0.02") Single module, single shaft, solder lugs, metric bushing and shaft 5 (0.197) (0.492)M6 x 0.75 1.8 (0.071 (0.094)6.85 (0.492)(0.516)8 (0.315) Ø (0.118) 5.07 (0.200) (0.193) **DETAIL A** (0.866)4.65 (0.183)Single module, single shaft, vertical mounting, PC pins with support plate, metric bushing and shaft M10 x 0 75 8 (0.315) 13.6 6 Ø (0.236) (0.374)Dual modules, single shaft, PC pins with front support plates, imperial bushing and shaft 12.5 3/8" x 3/8" 13.1 (0.516) 6.35 Ø (0.250) (0.143)(0.325)

Vishay Sfernice

GENERAL SPECIFICATIONS

ELECTRICAL (initial)				
- ()		P11A	P11S	
Resistive element		Conductive plastic	Cermet	
Electrical travel		270° ± 10°	270° ± 10°	
Designation of the Linear t	taper	1 kΩ to 500 kΩ	20 Ω to 10 M Ω	
Resistance range (1) Non-linear t	taper	470 Ω to 250 k Ω	100 Ω to 2.2 M Ω	
Tolerance Stan	ndard	± 20 %	± 20 %	
On rec	quest	± 10 %	± 5 % or ± 10 %	
Taper		Elec 31° with	W Solve to the second of the	
Circuit diagram		$ \begin{array}{c} a \\ \bigcirc \longrightarrow \bigvee \bigvee \bigvee \bigvee \bigcirc \stackrel{c}{\bigcirc} \\ (1) \\ b \\ \downarrow \longrightarrow cw $ (2)		
Linear t	taper	0.5 W at +70 °C	1 W at +70 °C	
Non-linear t		0.25 W at +70 °C	0.5 W at +70 °C	
Multiple assem	blies	0.25 W at +70 °C per module	0.5 W at +70 °C per module	
Power rating at 70 °C		P11S Linear Taper P11S Non-Linear Taper P11A Linear Taper P11A Non-Linear Taper 0 10 20 30 40 50	60 70 80 90 100 110 120 130 Ambient Temperature (°C)	
Temperature coefficient (typical)		± 500 ppm	± 150 ppm	
Limiting element voltage		350 V	350 V	
End resistance (typical)	_	2 Ω	2 Ω	
Contact resistance variation (typical) Linear t		1 %	2 % or 3 Ω	
Independent linearity (typical) Linear t	taper	± 5 %	± 5 %	
Insulation resistance		10 ⁶ MΩ min.	10 ⁶ MΩ min.	
Dielectric strength		1500 V _{RMS} min.	1500 V _{RMS} min.	
Attenuation Machanical and warnes		90 dB max./0.05 dB min.	- F0.000la-	
Mechanical endurance		50 000 cycles	50 000 cycles	

Note

⁽¹⁾ Consult Vishay Sfernice for other ohmic values

Vishay Sfernice

MECHANICAL (initial)	
Mechanical travel	300° ± 5°
Operating torque (typical)	
Single and dual assemblies	0.4 Ncm to 1.8 Ncm max. (0.57 ozinch to 2.55 ozinch max.)
Three to seven modules (per module)	0.2 Ncm to 0.3 Ncm max. (0.28 ozinch to 0.42 ozinch max.)
End stop torque (all bushing except G and concentric shaft configuration)	
3 mm, 4 mm, and 1/8" dia. shafts	25 Ncm max. (2.2 lb-inch max.)
6 mm and 1/4" dia. shafts	80 Ncm max. (6.8 lb-inch max.)
End stop torque for bushing G	
All shafts dia.	40 Ncm max. (3.4 lb-inch max.)
End stop torque for concentric shaft configuration	
3 mm and 1/8" dia. shafts	25 Ncm max. (2.1 lb-inch max.)
6 mm and 1/4" dia. shafts	40 Ncm max. (3.5 lb-inch max.)
Tightening torque	
6 mm, 7 mm, and 1/4" dia. bushings	150 Ncm max. (13 lb-inch max.)
10 mm and 3/8" dia. bushings	250 Ncm max. (21 lb-inch max.)
Weight	7 g to 9 g per module (0.25 oz. to 0.32 oz.)

ENVIRONMENTAL					
	P11A	P11S			
Operating temperature range	-55 °C to +125 °C	-55 °C to +125 °C			
Climatic category	55 / 125 / 21	55 / 125 / 56			
Sealing	IP64	IP64			

MARKING

- Potentiometer module
 Vishay logo, SAP code of ohmic value, tolerance in %, variation law, manufacturing date (four digits), "3" for the lead 3, product series (P11S, P11A)
- Switch module Version, manufacturing date (four digits), "c" for common lead
- Indent module Version, manufacturing date (four digits)

PACKAGING

Box

PERFORMANCES							
TESTS	CONDITIONS	TYPICAL VALUE AND DRIFTS					
12313	CONDITIONS		P11S	P11A			
Electrical endurance	1000 h at rated power	$\Delta R_{T}/R_{T}$	± 2 %	± 10 %			
Electrical endurance	90'/30' - ambient temp. 70 °C	Contact resistance variation	± 4 %	± 5 %			
Change of temperature	-55 °C to +125 °C, 5 cycles	$\Delta R_{T}/R_{T}$	± 0.2 %	± 0.5 %			
Damp host stoody state	+40 °C, 93 % relative humidity	$\Delta R_{T}/R_{T}$	± 2 %	± 5 %			
Damp heat, steady state	P11S: 56 days, P11A: 21 days	Insulation resistance	$>$ 1000 M Ω	$>$ 10 M Ω			
Mechanical endurance	50 000 cycles	$\Delta R_{T}/R_{T}$	± 5 %	± 6 %			
Mechanical endurance	50 000 cycles	Contact resistance variation	± 5 %	± 4 %			
Climatic sequence	Dry heat at +125 °C/damp heat cold -55 °C/damp heat, 5 cycles	$\Delta R_{T}/R_{T}$	± 1 %	-			
Shock	50 g's, 11 ms	$\Delta R_{T}/R_{T}$	± 0.2 %	± 0.2 %			
SHOCK	3 shocks - 3 directions	$\Delta R_{1-2}/R_{1-2}$	± 0.5 %	± 0.5 %			
N.C. and Co. and	10 Hz to 55 Hz	$\Delta R_{T}/R_{T}$	± 0.2 %	± 0.2 %			
Vibration	0.75 mm or 10 <i>g</i> 's, 6 h	$\Delta V_{1-2}/V_{1-3}$	± 0.5 %	± 0.5 %			

Note

• Nothing stated herein shall be construed as a guarantee of quality or durability

Vishay Sfernice

			P11S C	ERMET				P1	1A CONDUC	CTIVE PLA	ASTIC		
STANDARD		LINEAR TAF	PER	NON-LINEAR TAPER			I	LINEAR TAI	PER	NO	NON-LINEAR TAPER		
RESISTANCE VALUES	POWER			POWER	MAX. WORKING VOLTAGE			MAX. WORKING VOLTAGE	MAX. CUR. THROUGH WIPER	POWER	MAX. WORKING VOLTAGE	MAX. CUR. THROUGH WIPER	
Ω	W	٧	mA	W	٧	mA	W	V	mA	W	V	mA	
22	1	4.69	213										
47	1	6.86	146										
50	1	7.07	141										
100	1	10.0	100	0.5	7.07	70.7							
220	1	14.8	67.4	0.5	10.5	47.7							
470	1	21.7	46.1	0.5	15.3	32.6							
500	1	22.4	44.7	0.5	15.8	31.6				0.25	11.2	22.4	
1K	1	31.6	31.6	0.5	22.4	22.4	0.5	22.4	22.4	0.25	15.8	15.8	
2.2K	1	46.9	21.3	0.5	33.2	15.1	0.5	33.2	15.1	0.25	23.5	10.7	
4.7K	1	69	14.5	0.5	48.5	10.3	0.5	48.5	10.3	0.25	34.3	7.29	
5K	1	70.7	14.1	0.5	50.0	10.0	0.5	50.0	10.0	0.25	35.4	7.07	
10K	1	100	10.0	0.5	70.7	7.07	0.5	70.7	7.07	0.25	50.0	5.00	
22K	1	148	6.74	0.5	105	4.77	0.5	105	4.77	0.25	74.2	3.37	
47K	1	217	4.61	0.5	153	3.26	0.5	153	3.26	0.25	108	2.31	
50K	1	224	4.47	0.5	158	3.16	0.5	158	3.16	0.25	112	2.24	
100K	1	316	3.16	0.5	224	2.24	0.5	224	2.24	0.25	158	1.58	
220K	0.56	350	1.59	0.5	332	1.51	0.5	332	1.51	0.25	235	1.07	
470K	0.26	350	0.75	0.26	349	0.74	0.26	350	0.74	0.25	343	0.73	
500K	0.25	350	0.70	0.25	350	0.71	0.25	350	0.71	0.25	350	0.71	
1M	0.12	350	0.35	0.12	350	0.34	0.12	350	0.34				
2.2M	0.06	350	0.16	0.056	350	0.16							
4.7M	0.03	350	0.074										
5M	0.02	350	0.070										
10M	0.01	350	0.035										

Vishay Sfernice

	BUSHINGS		G	Т	Q	V	Α	В	С	D	E	F
	BUSHINGS		DIMENSIONS mm (± 0.5)					DIMENSIONS INCHES (± 0.02)				
Α	Shafts	Ø	All Dia.	3	4	6	1/8"	1/8"	1/8"	1/8"	1/8"	1/4"
В	Bushing	Ø	8	6	7	10	1/4"	1/4"	1/4"	1/4"	1/4"	3/8"
С		L	8	8	8	9.5	1/4"	3/8"	1/2"	3/8"	1/2"	3/8"
J	Lead versions X Y		6.7	5	5	7	0.200	0.200	0.200	0.200	0.200	0.278
	K		10.4	9.1	9.1	11.1	0.357	0.357	0.357	0.357	0.357	0.436
G	Panel		7.2	5.2	6.2	8.2	0.197	0.197	0.197	0.197	0.197	0.323
Н	Cutout	Ø	8.5	6.5	7.5	10.5	0.268	0.268	0.268	0.268	0.268	0.394
	Thread		0.75 32 threads/inch									
	Wrench nut		12	8	10	12	0.313	0.313	0.313	0.313	0.313	0.500
	Style									Slotted	Slotted	

Notes

- Hardware supplied in separate bags
- · Slotted bushing for locking nut option

Vishay Sfernice

LOCATING PEGS (anti-rotation lug)

The locating peg is provided by a plate mounted on the bushing and positioned by the module sides. Four set positions are available, clock face orientation: 12, 3, 6, 9.

All P11 bushings have a double flat. When panel mounting holes have been punched accordingly, an anti-rotation lug is not necessary.

CODE	VERSION	BUSHING A, B, C, D, E, T, Q	BUSHING F, V	EFFECTIVE HIGH PEG
А	Ø d mm	2	2	0.7
A	L mm	6.2	6.2	
В	Ø d mm	2	2	0.7
	L mm	7.75	7.75	
С	Ø d mm	-	3.5	1.1
	L mm	-	13.5	

Locating pegs are supplied in separate bags with nuts and washers

Vishay Sfernice

SHAFTS in millimeters ± 0.5

The shaft length is always measured from the mounting face. Standard shafts are designed by a 3 letters code (3 digits). Shafts slots are aligned to $\pm\,10^\circ$ of the wiper position. All standard shafts are slotted except flatted and splined, see exceptions for bushing.

FLATTED SHAFT

BUSHING: Q SPLINED SHAFT: FHK

CUSTOM SHAFTS

When special shafts are required - flat, threated ends, special shaft lengths, etc. a drawing is required.

STANDARD COMBINATION OF SHAFT STYLES AND BUSHINGS								
SHAFT DIA.	BUSHING CODE	SHAF	SHAFT LENGTH AND STYLE AVAILABLE IN STANDARD (others on request)					
3	Т	AAS	ABS	AJS				
3.17	Α	BAS	BBS	BGS	BGF	BHS	BJS	
3.17	В	BBS	BGS	BHS	BJS			
3.17	С	BGS	BHS	BJS				
4	Q	EAS	EBS	EJS	FHK			
6	V	FGS	FLS	FRS				
6.35	F	GGS	GHS	GJS	GLS	GOS	GHF	

Revision: 26-Apr-2024 7 Document Number: 51031

Vishay Sfernice

	FIRST DIGIT
Υ	Soldering lugs
X	PCB pins
Z	PCB pins with front support plate
Α	PCB pins with front and back support plates
w	PCB pins - vertical mounting with 2 extra pins - 1 module only (more modules on request)

Leads X.. Y.

Leads Z0. with rotary switch

Е

	SECOND DIGIT
0	Y = 4.65 (0.183") A, X, Z, W = 5.08 (0.200") pin spacing pins section 0.9 x 0.3 (0.035" x 0.012")
1	2.54 (0.100") pin spacing pin section 0.6 x 0.3 (0.024" x 0.012")

5.08 (0.200") pin spacing pins section 0.6 x 0.3 (0.024" x 0.012")

	THIRD DIGIT
0	5.08 (0.200") space between modules
3	7.62 (0.300") space between modules
4	10.16 (0.400") space between modules

Leads A., Z1, Z2,: 3.81 (0.150")

0.200

0.006

0.200

0.006

0.200

0.006

0.278

0.0846

2.15

0.200

0.006

0.200

0.006

Leads Z0.: 5.08 (0.200"

5

0.15

5

0.15

6.7

1.45

Vishay Sfernice

Use our Part Number Generator tool to build the exact product required for your specific application:

https://www.vishav.com/en/resistors/p11-panel-potentiometer-part-number-generator/

SPECIAL CODES GIVEN BY VISHAY

www.vishay.com

Option available:

- Custom shaft
- · Custom design on request
- · Specific linearity
- · Specific interlinearity
- Specific taper
- Multiple assemblies with various modules

Vishay Sfernice

P11 OPTION: ROTARY SWITCH MODULES

- · Rotary switches
- Current up to 2 A
- · Actuation CW or CCW position
- Sealing IP60

MODULES: RS ON/OFF SWITCH RSI CHANGEOVER SWITCH

The position of each module is free.

RS and RSI rotary switches are housed in a standard P11 module size 12.7 mm x 12.7 mm x 5.08 mm (0.5" x 0.5" x 0.2"). They have the same terminal styles as the assembled electrical modules.

An assembly can comprise 1 or more switch modules.

Switch actuation is described as seen from the shaft end. D: Means actuation in maximum CCW position F: Means actuation in maximum CW position

The switch actuation travel is 25° with a total mechanical travel of 300° \pm 5° and electrical travel of electrical modules is 238° \pm 10°.

Leads finish: Gold plated

RSD SINGLE POLE SWITCH, NORMALLY OPEN

In full CCW position, the contact between 1 and 3 is open. It is made at the beginning of the travel in CW direction.

RSF SINGLE POLE SWITCH, NORMALLY OPEN

In full CW position, the contact between 1 and 3 is open. It is made at the beginning of the travel in CCW direction.

RSID SINGLE POLE CHANGEOVER

In full CCW position, the contact is made between 3 and 2 and open between 3 and 1. Switch actuation (CW direction) reverses these positions.

RSIF SINGLE POLE CHANGEOVER

In full CW position, the contact is made between 1 and 2 and open between 1 and 3. Switch actuation (CCW direction) reverses these positions.

SWITCH SPECIFICATIONS					
Switching power maximum		62.5 VA v 15 VA =			
Switching current maximum		0.25 A 250 V v 0.5 A 30 V =			
Maximum current through element		2 A			
Contact resistance		100 mΩ			
Dielectric strength	Terminal to terminal	1000 V _{RMS}			
	Terminal to bushing	2000 V _{RMS}			
Maximum voltage operation		250 V v 30 V =			
Insulation resistance between contacts		$10^6\mathrm{M}\Omega$			
Life at P _{max.}		10 000 actuations			
Minimal travel		25°			
Operating temperature		-40 °C to +85 °C			

ELECTRICAL DIAGRAM

RSD	RSID	RSIF
RSF	CCW POSITION	CW POSITION

Note
(1) Common

ORDERING INFORMATION (First order only)

RSID

RSD SPST: Single pole, open switch in CCW position - 2 pins
RSF SPST: Single pole, open switch in CW position - 2 pins
RSID SPDT: Single pole, changeover switch in CCW position - 3 pins
RSIF SPDT: Single pole, changeover switch in CW position - 3 pins

P11 OPTION: PUSH/PUSH OR MOMENTARY/PUSH SWITCH MODULES

- Push/push or momentary push
- Current up to 2 A
- Sealing IP60

MODULES: PUSH/PUSH SWITCH RSPP MOMENTARY/PUSH SWITCH RSMP

They have to be the last element of potentiometer Options:

2 reversing switches F2
4 reversing switches F4
6 reversing switches F6
8 reversing switches F8

Not available with panel sealed option.

Number of modules before the switch limited to 3 modules. Length of shaft (FMF) 25 mm maximum.

RSPP F2: PUSH/PUSH SWITCH WITH TWO REVERSING SWITCHES

Idle position: The contact is made between 1 and 2 and a and b. It is open between 2 and 3 and b and c.

Pushed position: The contact is made between 2 and 3 and b and c. It is open between 1 and 2 and a and b.

SWITCH SPECIFICATIONS					
Switching por	50 VA v				
Switching current maximum		0.5 A v			
Maximum cur	2 A				
Contact resis	Contact resistance				
Dielectric strength	Terminal to terminal	1500 V _{RMS}			
	Terminal to bushing	2000 V _{RMS}			
Maximum voltage operation		250 V v			
Insulation resistance between contacts		$10^3~\mathrm{M}\Omega$			
Life at P _{max.}		100 000 actuations			
Travel		3.3 mm to 4.7 mm			
Operating temperature		-40 °C to +70 °C			

ELECTRICAL DIAGRAM

IDLE POSITION PUSHED POSITION

ORDERING INFORMATION (First order only for special code creation)

RSPP F2

RSPP: Push/push **F2:** 2 reversing switches (standard version) **RSMP:** Momentary/push **F4:** 4 reversing switches

F4: 4 reversing switchesF6: 6 reversing switchesF8: 8 reversing switches

Vishay Sfernice

www.vishay.com

P11 OPTION: CONCENTRIC SHAFTS

The CC concentric shaft versions allies the total flexibility of the P11 modular system to the advantage of having two separate shafts.

The outer 6 mm or 1/4" or 1/8" dia. shaft drives the modules situated immediately behind the panel, before the spacer module.

The inner 3 mm or 1/8" or 0.07" dia. shaft drives the modules situated after the spacer module.

Spacer is available with a choice of two spacer thickness:

5.08 mm designations or 2.54 mm designation. See dimensional drawing

BUSHING	OUTER SHAFT DIAMETER			INNER SHAFT DIAMETER			
CODE	DIAMETER	LENGTH L	SHAFT STYLE	DIAMETER	LENGTH I	SHAFT STYLE	
V	6	16	R	3	28.5	R	
F	6.35 (1/4")	16	R	3.17 (1/8")	28.5	R	
Α	3.17 (1/8")	12.7 (1/2")	R	1.8 (0.07")	22.2 (7/8")	R	

ORDERING INFORMATION (First order only for special code creation)

5.08

2.54: Mechanical spacer of 2.54 mm **5.08:** Mechanical spacer of 5.08 mm

Customer should define witch modules is driven by each shaft (see example of ordering information at the end of the datasheet)

P11 OPTION: DETENT MODULES

The detents mechanism is housed in a standard P11 module. Up to 21 detent positions available.

Count detents as follows: 1 for CCW position, 1 for full CW position, plus the other positions forming equal resistance increments (linear taper) - not equal angles.

Available: CVID - CVIF - CVIM CV3 - CV11 - CV21

Mechanical endurance: 10 000 cycles

CVID CVIM CVIF CV11 $\alpha = \frac{270^{\circ}}{n-1}$ $\beta = \alpha + 15^{\circ}$

ORDERING INFORMATION (First order only for special code creation)

CV1M

CV1M 1 detent at half travel

CV1M J84 CV1M with accuracy of center point ± 2 % (all tapers except S)

CV1D 1 detent at CCW position CV1F 1 detent at CW position

CV3 3 detents CV11 11 detents CV21 21 detents

P11 OPTION: NEUTRAL MODULES "EN"

Neutral or screen module is housed in a standard P11 module.

It is used as a screen between two electrical modules.

The leads can be connected to ground.

ORDERING INFORMATION (First order only for special code creation)

ΕN

EN Neutral module

Vishay Sfernice

P11 OPTION: CENTER CURRENT TAP "J"

The extra terminal is a solder lug connected at 50 % of electrical travel and located in the potentiometer module opposite the terminals.

Center tap presents a short circuit of 11° of travel.

Sealing IP60

ORDERING INFORMATION (First order only)

J

J Center tap

P11 OPTION: SPECIAL LINEARITY - CONFORMITY

The independent linearity (conformity for the non-linear laws) is the maximum gap ΔV between the actual variation curve and the theoretical variation curve the nearest to it. The linearity and the conformity are expressed in percentage of the total applied voltage E

linearity conformity =
$$\frac{\pm \Delta V_{max.}}{E}$$

They are measured over 90 % of actual electrical travel (centered).

On request linearity can be guaranteed in linear taper.

ORDERING INFORMATION (First order only)

J123

J123 Independent linearity ± 3 % (linear law)
J145 Independent linearity ± 2 % (linear law)

For other request, contact us.

P11 OPTION: SPECIAL INTERLINEARITY - INTERCONFORMITY

It is the maximum deviation between the actual voltage outputs of 2 or more pot modules in the same assembly. It is expressed as a percentage of the total applied voltage, or in dB attenuation.

Interlinearity is measured between 2 pot modules, over 20 to 90 % of the attenuation.

The interlinearity or interconformity is expressed as a percentage of the total applied voltage:

Or in decibels by comparison between outputs V1 and V2

$$I dB = 20 \log \frac{V_1}{V_2}$$

ORDERING INFORMATION (First order only)

J44

J44 Interlinearity ± 2 % (linear taper)

For other request, contact us.

Vishay Sfernice

EXAMPLES OF FIRST ORD	ER INFORMAT	ΓΙΟΝ						
FIRST EXAMPLE: Triple module (switch is counted as a module)								
P 1 1 S 3 MODEL STYLE S MODULES	Q 0 A BUSHING Q (Ø 7: L8) LC		Y CUSTOM S		SOLDER	RLUGS	SPECIAL DEFINED E	
ORDERING INFORMATION:								
PART NUMBER	P1	1S3Q0APSY00	ı					
SHAFT AND BUSHING	See drawin	g of special shaft	attached					
MODULE NO. 1	RSID							
MODULE NO. 2	103 M A	J123						
MODULE NO. 3	503 M A	J						
P 1 1 S 5 MODEL STYLE S MODULES	V 0 C	C R	Y STANDA CONCEN	TRIC	0 SOLDEF	RLUGS	SPECIAL DEFINED E	
			SHAFT (CCR				
ORDERING INFORMATION: PART NUMBER	P1	1S5V0CCRY00						
SHAFT AND BUSHING								
MODULE NO. 1	CV1M		,		Dr	iven by out	er shaft	
MODULE NO. 2	502 K A				Dr	iven by out	er shaft	
MODULE NO. 3	5.08		Mechanical spacer 5.08 mm					
MODULE NO. 4	103 M A	J44	Driven by inner shaft					
MODULE NO. 5	103 M A	J44	Driven by inner shaft					
PART NUMBER DESCRIPT	ION (used on so	ome Vishay doo	ument o	or labe	, for info	ormation	only)	
P11S 2 Q	0 EA	S Y00	10K	20 %	Α			e3
MODEL MODULES BUSHING	OCATING SHAFT PEG	SHAFT STYLE LEADS	VALUE	TOL.	TAPER	SPECIAL	SPECIAL	LEAD (Pb)-FREE
ACCESSORIES								
Additional Accessories (to order separately) www.vishay.com/doc?51051								
DELATED DOCUMENTS								
RELATED DOCUMENTS APPLICATION NOTES								
Potentiometers and Trimmers www.vishay.com/doc?51001								
Guidelines for Vishay Sfernice Resistive and Inductive Components			<u>V</u>	www.visha	y.com/doc	?52029		
Capabilities and Custom Options <u>www.vishay.com/doc?48463</u>								

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.