Programming GPUs with PyCuda

Nicolas Pinto (MIT) and Andreas Klöckner (Brown)

SciPy Conference 2009 / Advanced Tutorial http://conference.scipy.org/advanced_tutorials

August 19, 2009

Thanks

- SciPy2009 Organizers
- Andreas Klöckner (!)
- PyCuda contributors
- Nvidia Corporation

- 1 Introduction
- 2 Programming GPUs
- 3 GPU Scripting
- 4 PyCuda Hands-on: Matrix Multiplication

- 1 Introduction
 - GPU Computing: Overview
 - Architectures and Programming Models
- 2 Programming GPUs
- 3 GPU Scripting
- 4 PyCuda Hands-on: Matrix Multiplication

- 1 Introduction
 - GPU Computing: Overview
 - Architectures and Programming Models
- 2 Programming GPUs
- 3 GPU Scripting
- 4 PyCuda Hands-on: Matrix Multiplication

Stream Processing?

- Design target for CPUs:
 - Focus on *Task* parallelism
 - Make a single thread very fast
 - Hide latency through large caches
 - Predict, speculate

Stream Processing?

- Design target for CPUs:
 - Focus on *Task* parallelism
 - Make a single thread very fast
 - Hide latency through large caches
 - Predict, speculate
- Stream Processing takes a different approach:
 - Focus on *Data* parallelism
 - Throughput matters single threads do not
 - Hide latency through parallelism
 - Let programmer deal with "raw" memory hierarchy

CPU Chip Real Estate

Die floorplan: Intel Core i7 (2008). 45 nm, 4x4 SP ops at a time, 4x256KB L2, 8MB L3

GPU Chip Real Estate

Die floorplan: AMD RV770 (2008). 55 nm, 800 SP ops at a time.

Market Overview

Quote Linus Torvalds:

"Hardware that isn't mass market tends to not be worth it in the long run."

Market Overview

Quote Linus Torvalds:

"Hardware that isn't mass market tends to not be worth it in the long run."

Based on that:

- Sony/Toshiba/IBM: Cell Broadband Engine
- ATI: R580 and later
- Nvidia: G80 and later
- Intel: Larabee

- 1 Introduction
 - GPU Computing: Overview
 - Architectures and Programming Models
- 2 Programming GPUs
- 3 GPU Scripting
- 4 PyCuda Hands-on: Matrix Multiplication

Cell BE: Architecture

- 1 Cell BE = 1 dual-core Power + 8 SPEs + Bus
- 1 SPE = SPU + DMA + 256 KiB Local Store
- 1 SPU = 128-bit Vector ALU
- Bus = 200 GB/s Ring
- Ded. RAM (25 GB/s)

GPU: Architecture (e.g. Nvidia)

- 1 GPU = 30 MPs
- 1 MP = 1 ID (1/4 clock) + 8 SP + 1 DP + 16 KiB Shared + 32 KiB Reg + HW Sched
- Scalar cores max 512 threads/MP
- Ded. RAM (140 GB/s)
- PCIe2 Host DMA (6 GB/s)
- Limited Caches

Intel Larabee: Architecture

- Unreleased (2010?)
- x86-64 + SSE + "vector-complete" 512-bit ISA ("LRBni")
- 4x "Hyperthreading"
- 32 (?) cores per chip
- "Fiber/Strand" software threads
- Recursive Launches
- Coherent Caches (w/ explicit control)
- Performance?

- Dedicated Compute APIs
- Not much "graphicsy" stuff visible

 $\mathsf{Hardware} ext{-specific} \longleftrightarrow \mathsf{Abstract}$

Cell	GPU	Larabee
 → Multicore → Open Spec → Hard: DMA sched, Alignment, Small LS → HW Avail. (\$) → Mem BW 		

Cell	GPU	Larabee
 → Multicore → Open Spec → Hard: DMA sched, Alignment, Small LS → HW Avail. (\$) → Mem BW 	 ♣ Available now ♣ OpenCL ♠ Maturing (tools etc.) ♠ Mem BW ④ Reasonably easy ♠ Perf. opaque 	

Cell	GPU	Larabee
 → Multicore → Open Spec → Hard: DMA sched, Alignment, Small LS → HW Avail. (\$) → Mem BW 	 ♣ Available now ♣ OpenCL ♣ Maturing (tools etc.) ♣ Mem BW ♠ Reasonably easy ♣ Perf. opaque 	 Unavailable Programmability? OpenCL Support (→ why wait?) Competitive with next-gen GPU? (→ why specialize?)

Cell	GPU	Larabee
 → Multicore → Open Spec → Hard: DMA sched, Alignment, Small LS → HW Avail. (\$) → Mem BW 	 ♣ Available now ♣ OpenCL ♣ Maturing (tools etc.) ♣ Mem BW ④ Reasonably easy ♠ Perf. opaque Focus Here	 Unavailable Programmability? OpenCL Support (→ why wait?) Competitive with next-gen GPU? (→ why specialize?)

Questions?

?

- 1 Introduction
- 2 Programming GPUs
 - Overview
 - Dealing with Memory
- 3 GPU Scripting
- 4 PyCuda Hands-on: Matrix Multiplication

- 1 Introduction
- 2 Programming GPUs
 - Overview
 - Dealing with Memory
- 3 GPU Scripting
- 4 PyCuda Hands-on: Matrix Multiplication

What is CUDA?

■ CUDA is Nvidia's proprietary compute abstraction.

- CUDA is Nvidia's proprietary compute abstraction.
- Main merit: A well-balanced model of GPU computing.
 - Abstract enough to not be hardware-specific.
 - Concrete enough to expose most hardware features.

What is CUDA?

- CUDA is Nvidia's proprietary compute abstraction.
- Main merit: A well-balanced model of GPU computing.
 - Abstract enough to not be hardware-specific.
 - Concrete enough to expose most hardware features.
- (Very) close semantic relative of OpenCL.

Gains and Losses

Gains	Losses
 → Memory Bandwidth (140 GB/s vs. 12 GB/s) → Compute Bandwidth (Peak: 1 TF/s vs. 50 GF/s, Real: 200 GF/s vs. 10 GF/s) 	

Gains and Losses

Gains

- Memory Bandwidth (140 GB/s vs. 12 GB/s)
- ◆ Compute Bandwidth (Peak: 1 TF/s vs. 50 GF/s,

Real: 200 GF/s vs. 10 GF/s)

Losses

- Recursion
- Function pointers
- Exceptions
- IEEE 754 FP compliance
- Cheap branches (i.e. ifs)

Multi-tiered Parallelism

- Grid of Blocks
- Block of Threads

- Multi-tiered Parallelism
 - Grid of Blocks
 - Block of Threads
- Only threads within a block can communicate

- Multi-tiered Parallelism
 - Grid of Blocks
 - Block of Threads
- Only threads within a block can communicate
 - Each Block is assigned to a physical execution unit.

- Multi-tiered Parallelism
 - Grid of Blocks
 - Block of Threads
- Only threads within a block can communicate
 - Each Block is assigned to a physical execution unit.
- Algorithm must work with blocks executed in any order

GPUs: Threading Model

- Multi-tiered Parallelism
 - Grid of Blocks
 - Block of Threads
- Only threads within a block can communicate
 - Each Block is assigned to a physical execution unit.
- Algorithm must work with blocks executed in any order
- Grids and Blocks replace outer loops in an algorithm.

GPUs: Threading Model

- Multi-tiered Parallelism
 - Grid of Blocks
 - Block of Threads
- Only threads within a block can communicate
 - Each Block is assigned to a physical execution unit.
- Algorithm must work with blocks executed in any order
- Grids and Blocks replace outer loops in an algorithm.
- Indices available at run time

My first CUDA program

```
1 // GPU-side
2
3 __global__ void square_array(float *a, int n)
4 {
5   int i = blockldx.x * blockDim.x + threadldx.x;
6   if (i < n)
7   a[i] = a[i] * a[i];
8 }</pre>
```

```
12
    int main() // CPU-side
13
14
      cudaSetDevice(0); // EDIT ME
15
16
      int n = 4096; int bytes = n*sizeof(float);
17
       float *a_host = (float *) malloc(bytes);
       for (int i = 0; i < n; i++) a_host[i] = i;
18
19
20
       float *a device:
21
      cudaMalloc((void **) &a_device, bytes);
22
      cudaMemcpy(a_device, a_host, bytes, cudaMemcpyHostToDevice);
23
24
      int block_size = 256:
25
       int n_blocks = (n + block_size - 1) / block_size;
26
       square_array <<<n_blocks, block_size>>>(a_device, n);
27
       free (a_host); cudaFree(a_device);
28
29
```

```
#define CUDA_CHK(NAME, ARGS) { \
    cudaError_t cuda_err_code = NAME ARGS; \
    if (cuda_err_code != cudaSuccess) { \
        printf("%s failed with code %d\n", #NAME, cuda_err_code); \
        abort(); \
    } \
}
CUDA_CHK(cudaMalloc, (&result, m_size*sizeof(float)));
```

Typical errors:

- GPUs have (some) memory protection → "Launch failure"
- Invalid sizes (block/grid/...)

Invisible Subtleties

Host Pointer or Device Pointer?

```
float *h_data = (float*) malloc(mem_size);
float *d_data;
CUDA_CHK(cudaMalloc, ((void**) &d_data, mem_size));
\rightarrow Both kinds of pointer share the same data type!
```

Host Pointer or Device Pointer?

Kernel Launches

```
Execution configuration:
dim3 grid_size(gx, gy); // max 2D
dim3 block_size(bx, by, bz); // max 3D
kernel <<<grid_size, block_size>>>(arg, ...);
```

- Do not wait for completion.
- Cheap! ($\sim 2 \mu s$ overhead)

The CUDA Toolchain

Executing CUDA Binaries

Machine	GPUs
iapcuda-01	Device 0: "GeForce GTX 285"
iapcuda-01	Device 1: "Tesla C1060"
iapcuda-01	Device 2: "Tesla C1060"
iapcuda-02	Device 0: "GeForce GTX 295"
iapcuda-02	Device 1: "GeForce GTX 295"
iapcuda-02	Device 2: "Tesla C1060"
iapcuda-02	Device 3: "Tesla C1060"

Prepare your workspace in one of our CUDA demo machine:

ssh scipy09@iapcuda-NN.no-ip.org
(password: GpUh4cK3r)

GPU Demo Machines

Machine	GPUs
iapcuda-01	Device 0: "GeForce GTX 285"
iapcuda-01	Device 1: "Tesla C1060"
iapcuda-01	Device 2: "Tesla C1060"
iapcuda-02	Device 0: "GeForce GTX 295"
iapcuda-02	Device 1: "GeForce GTX 295"
iapcuda-02	Device 2: "Tesla C1060"
iapcuda-02	Device 3: "Tesla C1060"

Prepare your workspace in one of our CUDA demo machine:

- ssh scipy09@iapcuda-NN.no-ip.org
 (password: GpUh4cK3r)
- 2 mkdir lastname.firstname

Machine	GPUs
iapcuda-01	Device 0: "GeForce GTX 285"
iapcuda-01	Device 1: "Tesla C1060"
iapcuda-01	Device 2: "Tesla C1060"
iapcuda-02	Device 0: "GeForce GTX 295"
iapcuda-02	Device 1: "GeForce GTX 295"
iapcuda-02	Device 2: "Tesla C1060"
iapcuda-02	Device 3: "Tesla C1060"

Prepare your workspace in one of our CUDA demo machine:

- ssh scipy09@iapcuda-NN.no-ip.org
 (password: GpUh4cK3r)
- 2 mkdir lastname.firstname
- 3 cd lastname.firstname

GPU Demo Machines

Machine	GPUs
iapcuda-01	Device 0: "GeForce GTX 285"
iapcuda-01	Device 1: "Tesla C1060"
iapcuda-01	Device 2: "Tesla C1060"
iapcuda-02	Device 0: "GeForce GTX 295"
iapcuda-02	Device 1: "GeForce GTX 295"
iapcuda-02	Device 2: "Tesla C1060"
iapcuda-02	Device 3: "Tesla C1060"

Prepare your workspace in one of our CUDA demo machine:

- ssh scipy09@iapcuda-NN.no-ip.org
 (password: GpUh4cK3r)
- 2 mkdir lastname.firstname
- 3 cd lastname.firstname
- wget is.gd/2o40o && tar xzf scipy09-pycuda-tut.tar.gz

Getting your feet wet

Hands-on Exercise

- Edit 1-cuda-simple/simple.cu: cudaSetDevice(Your GPU #);
- Compile and run: nvcc -o simple.x simple.cu ./simple.x
- 3 Add error checking to the example.
- Modify simple.cu to print the contents of the result.
- Modify simple.cu to compute $c_i = a_i b_i$.
- 6 Modify simple.cu to use blocks of 16×16 threads.

Preliminary bits:

```
#include <stdio.h>
2
3
   #define CUDA_CHK(NAME, ARGS) { \
     cudaError_t cuda_err_code = NAME ARGS; \
5
     if (cuda_err_code != cudaSuccess) { \
6
       printf ("%s failed with code %d\n", #NAME, cuda_err_code); \
       abort(); \
```

The GPU kernel:

```
13     __global__ void square_array(float *a, float *b, int n)
14     {
15         int i = (blockldx.x * blockDim.y + threadldx.y)
            * blockDim.x + threadldx.x;
17         if (i < n)
18            a[i] = a[i] * b[i];
19     }</pre>
```

Allocating memory:

```
23
    int main()
24
      cudaSetDevice(0); // EDIT ME
25
26
27
      const int n = 4096:
28
29
      float *a_host = (float *) malloc(n*sizeof(float ));
30
      float *b_host = (float *) malloc(n*sizeof(float));
31
32
      float *a_device : *b_device :
33
      CUDA_CHK(cudaMalloc, ((void **) &a_device, n*sizeof(float)));
34
      CUDA_CHK(cudaMalloc, ((void **) &b_device, n*sizeof(float)));
```

Transfer and Launch:

```
for (int i = 0; i < n; i++) { a\_host[i] = i; b\_host[i] = i+1; }
38
39
40
      CUDA_CHK(cudaMemcpy, (a_device, a_host, n*sizeof(float),
41
            cudaMemcpyHostToDevice));
42
      CUDA_CHK(cudaMemcpy, (b_device, b_host, n*sizeof(float),
43
            cudaMemcpyHostToDevice));
44
45
      dim3 block_dim(16, 16);
          block_size = block_dim.x*block_dim.y;
46
47
      int n\_blocks = (n + block\_size - 1) / block\_size;
      square_array <<<n_blocks, block_dim>>>(a_device, b_device, n);
48
```

Output and Clean-up:

```
CUDA_CHK(cudaMemcpy, (a_host, a_device, n*sizeof(float),
52
53
            cudaMemcpyDeviceToHost));
54
55
      for (int i = 0; i < n; i++)
         printf ("%.0f", a_host[i]);
56
57
      puts("\n");
58
59
      free (a_host);
60
      CUDA_CHK(cudaFree, (a_device));
61
```

Questions?

?

Outline

- 1 Introduction
- 2 Programming GPUs
 - Overview
 - Dealing with Memory
- 3 GPU Scripting
- 4 PyCuda Hands-on: Matrix Multiplication

Memory Model

Already seen:

Memory Model

Already seen:

Registers

Memory Model

Already seen:

- Registers
- Global

Registers

- 32 KiB of registers per MP
- Per-thread
- Latency: 1 clock
- Variable amount per thread
 - Register count limits max. threads/MP
 - CPUs: Fixed register file (\sim)

Global Memory

- Several GiB usually
- Per-GPU
- Latency: ~1000 clocks
- 512 bit memory bus
 - Best throughput: 16 consecutive threads read aligned chunk

Example: Matrix Transpose

First attempt: Naive port of the CPU code.

```
__global__ void transpose(float *out, float *in, int w, int h) {
  unsigned int xldx = blockDim.x * blockldx.x + threadldx.x;
  unsigned int yldx = blockDim.y * blockldx.y + threadldx.y;

if ( xldx < w && yldx < h ) {
  unsigned int idx_in = xldx + w * yldx;
  unsigned int idx_out = yldx + h * xldx;

  out[idx_out] = in[idx_in];
}
</pre>
```

Measuring Performance

Writing high-performance Codes

Mindset: What is going to be the limiting factor?

- Floating point throughput?
- Memory bandwidth?
 - Cache sizes?

Writing high-performance Codes

Mindset: What is going to be the limiting factor?

- Floating point throughput?
- Memory bandwidth?
 - Cache sizes?

Benchmark the assumed limiting factor right away.

Writing high-performance Codes

■ Floating point throughput?

Miles Miles Constant

- Mindset: What is going to be the limiting factor?
 - Memory bandwidth?
 - Cache sizes?

Benchmark the assumed limiting factor right away.

Evaluate

- Know your peak throughputs (roughly)
- Are you getting close?
- Are you tracking the right limiting factor?

Very likely: Bound by memory bandwidth.

Fantastic! About same as CPU. Why?

```
__global__ void transpose(float *out, float *in, int w, int h) {
  unsigned int xldx = blockDim.x * blockldx.x + threadldx.x;
  unsigned int yldx = blockDim.y * blockldx.y + threadldx.y;

if ( xldx < w && yldx < h ) {
  unsigned int idx_in = xldx + w * yldx;
  unsigned int idx_out = yldx + h * xldx;

  out[idx_out] = in[idx_in];
}</pre>
```

```
__global__ void transpose(float *out, float *in, int w, int h) {
  unsigned int xldx = blockDim.x * blockldx.x + threadldx.x;
  unsigned int yldx = blockDim.y * blockldx.y + threadldx.y;

if ( xldx < w && yldx < h ) {
  unsigned int idx_in = xldx + w * yldx;
  unsigned int idx_out = yldx + h * xldx;

  out[idx_out] = in[idx_in];
}
</pre>
```

Reading from global mem:


```
--global_- void transpose(float *out, float *in, int w, int h) {
  unsigned int xldx = blockDim.x * blockIdx.x + threadIdx.x;
  unsigned int yldx = blockDim.y * blockIdx.y + threadIdx.y;

if ( xldx < w && yldx < h ) {
  unsigned int idx_in = xldx + w * yldx;
  unsigned int idx_out = yldx + h * xldx;

  out[idx_out] = in[idx_in];
}
</pre>
```

Reading from global mem:


```
__global__ void transpose(float *out, float *in, int w, int h) {
  unsigned int xldx = blockDim.x * blockldx.x + threadldx.x;
  unsigned int yldx = blockDim.y * blockldx.y + threadldx.y;

if ( xldx < w && yldx < h ) {
  unsigned int idx_in = xldx + w * yldx;
  unsigned int idx_out = yldx + h * xldx;

  out[idx_out] = in[idx_in];
}</pre>
```

Reading from global mem:

stride: $1 \rightarrow$ one mem.trans.

Writing to global mem:

stride: 16

Naive: Using global memory

```
__global__ void transpose(float *out, float *in, int w, int h) {
  unsigned int xldx = blockDim.x * blockldx.x + threadldx.x;
  unsigned int yldx = blockDim.y * blockldx.y + threadldx.y;

if ( xldx < w && yldx < h ) {
  unsigned int idx_in = xldx + w * yldx;
  unsigned int idx_out = yldx + h * xldx;

  out[idx_out] = in[idx_in];
}</pre>
```

Reading from global mem:

stride: $1 \rightarrow$ one mem.trans.

Writing to global mem:

stride: $16 \rightarrow 16$ mem.trans.!

Texture Memory

- Same memory as global
- But: more access patterns achieve usable bandwidth
- Optional: 2D and 3D indexing
- Small, incoherent Cache (prefers nD-local access)
- Read-only
- Latency: ~1000 clocks (despite cache!)
- Optional: Linear Interpolation

Transpose with Textures

```
texture < float, 1, cudaReadModeElementType> in_tex;
__global__ void transpose(float *out, int w, int h) {
 unsigned int vldx = blockDim.x * blockldx.x + threadldx.x;
 unsigned int xldx = blockDim.y * blockldx.y + threadldx.y;
  if (xldx < w \&\& yldx < h)
   unsigned int idx_in = xIdx + w * yIdx;
   unsigned int idx_out = yldx + h * xldx;
   out[idx_out] = tex1Dfetch(in_tex, idx_in);
#define PREPARE \
 cudaBindTexture(0, in_tex, d_idata, mem_size); \
 std::swap(grid.x, grid.y); \
 std :: swap(threads.x, threads.y);
```

Performance: Transpose with Textures

Better! But texture units can't quite hide wide data bus. Need different idea.

- 16 KiB of shared mem per MP
- Per-block
- Latency: 2 clocks
- Variable amount per block
 - Shared memory limits max. blocks/MP
- Banked

Transpose: Idea

- Global memory dislikes non-unit strides.
- Shared memory doesn't mind.

Idea

- Don't transpose element-by-element.
- Transpose block-by-block instead.
- Read untransposed block from global and write to shared
- Read block transposed from shared and write to global

Illustration: Blockwise Transpose

C _{1,1}	C _{1,2}	C _{1,3}	C _{1,4}	$C_{1,1}^T$	$C_{2,1}^T$	$C_{3,1}^T$
$C_{2,1}$	C _{2,2}	C _{2,3}	C _{2,4}	$C_{1,2}^T$	$C_{2,2}^T$	$C_{3,2}^T$
C _{3,1}	C _{3,2}	C _{3,3}	C _{3,4}	$C_{1,3}^T$	$C_{2,3}^T$	$C_{3,3}^T$
C _{4,1}	C _{4,2}	C _{4,3}	C _{4,4}	$C_{1,4}^T$	$C_{2,4}^T$	$C_{3,4}^T$

Improved: Using shared memory

```
__global__ void transpose( float *out, float *in, int w, int h ) {
 __shared__ float block[BLOCK_DIM*BLOCK_DIM];
 unsigned int xBlock = blockDim.x * blockldx.x:
 unsigned int yBlock = blockDim.y * blockIdx.y;
 unsigned int \times Index = \times Block + threadIdx.x:
 unsigned int yIndex = yBlock + threadIdx.y;
 unsigned int index_out, index_transpose:
 if (xIndex < w && yIndex < h)
   unsigned int index_in = w * vIndex + xIndex:
   unsigned int index_block = threadIdx.v * BLOCK_DIM + threadIdx.x:
   block[index_block] = in[index_in];
   index\_transpose = threadIdx.x * BLOCK\_DIM + threadIdx.v:
   index\_out = h * (xBlock + threadIdx.y) + yBlock + threadIdx.x;
 __syncthreads ():
 if (xIndex < w && yIndex < h)
   out[index_out] = block[index_transpose]:
```

Performance: Transpose with Shared Memory

Not bad! Are we done?

Review: Memory Model

Туре	Per	Access	Latency	
Registers	thread	R/W	1	
Local	thread	R/W	1000	
Shared	block	R/W	2	
Global	grid	R/W	1000	Not cached
Constant	grid	R/O	1-1000	Cached
Texture	grid	R/O	1000	Spatially cached

Important

Don't "choose one" type of memory.

Successful algorithms combine many types' strengths.

Questions?

?

- 1 Introduction
- 2 Programming GPUs
- 3 GPU Scripting
 - Scripting + GPUs: A good combination
 - Whetting your Appetite
 - Working with PyCuda
 - A peek under the hood
 - Metaprogramming CUDA
- 4 PyCuda Hands-on: Matrix Multiplication

Outline

- 1 Introduction
- 2 Programming GPUs
- 3 GPU Scripting
 - Scripting + GPUs: A good combination
 - Whetting your Appetite
 - Working with PyCuda
 - A peek under the hood
 - Metaprogramming CUDA
- 4 PyCuda Hands-on: Matrix Multiplication

Python:

- is discoverable and interactive.
- has comprehensive built-in functionality.
- manages resources automatically.
- uses run-time typing.
- works well for "gluing" lower-level blocks together.

Scripting: Goals

Scripting languages aim to reduce the load on the programmer:

- Reduce required knowledge
- Encourage experimentation
- Eliminate sources of error
- Encourage abstraction wherever possible
- Value programmer time over computer time

Think about the tools you use.

Use the right tool for the job.

Our mantra: always use the right tool!

Why do Scripting for GPUs?

- GPUs are everything that scripting languages are not.
 - Highly parallel
 - Very architecture-sensitive
 - Built for maximum compute/memory throughput
 - → complement each other
- CPU: largely restricted to control tasks ($\sim 1000/\text{sec}$)
 - Scripting fast enough
- Realize a promise: Use Scripting. . .
 - from first prototype
 - to full-scale production code.

Scripting: Speed

- Usual answer to the "Speed Question": Hybrid ("mixed") Code.
- Plays to the strengths of each language.
- But: Introduces (some) complexity.

Observation: GPU code is already hybrid.

Consequence: No added complexity through hybrid code.

?

- 1 Introduction
- 2 Programming GPUs
- 3 GPU Scripting
 - Scripting + GPUs: A good combination
 - Whetting your Appetite
 - Working with PyCuda
 - A peek under the hood
 - Metaprogramming CUDA
- 4 PyCuda Hands-on: Matrix Multiplication

Whetting your appetite

```
import pycuda.driver as cuda
   import pycuda.autoinit
   import numpy
4
5
   a = numpy.random.randn(4,4).astype(numpy.float32)
   a_gpu = cuda.mem_alloc(a.nbytes)
   cuda.memcpy_htod(a_gpu, a)
```

[This is examples/demo.py in the PyCuda distribution.]

Whetting your appetite

```
mod = cuda.SourceModule("""
         __global__ void doublify (float *a)
                                                    Compute kernel
 3
 4
           int idx = threadIdx.x + threadIdx.y*4;
 5
          a[idx] *= 2:
 6
        """)
8
 9
    func = mod.get_function("doublify")
10
    func(a_gpu, block=(4,4,1))
11
12
    a_{doubled} = numpy.empty_like(a)
13
    cuda.memcpy_dtoh(a_doubled, a_gpu)
    print a_doubled
14
15
    print a
```

Whetting your appetite, Part II

Did somebody say "Abstraction is good"?

```
import numpy
     import pycuda. autoinit
 3
     from pycuda import gpuarray
 4
 5
    a_{cpu} = \frac{\text{numpy.random.randn}(4,4).astype(\frac{\text{numpy.float32}}{\text{numpy.float32}})
     b_{cpu} = numpy.random.randn(4,4).astype(numpy.float32)
     c_{cpu} = a_{cpu} * b_{cpu}
8
     a_gpu = gpuarray.to_gpu(a_cpu)
     b_gpu = gpuarray.to_gpu(b_cpu)
10
     c_gpu = (a_gpu * b_gpu).get()
11
12
13
     print c_cpu — c_gpu
```

Remember me?

```
trivia
#include < stdio.h >
#define CUDA_CHK(NAME, ARGS) { \
  cudaError_t cuda_err_code = NAME ARGS; \
  if (cuda_err_code != cudaSuccess) { \
    printf ("%s failed with code %d\n", #NAME, cuda_err_code);
   abort(); \
// end
                                                                   8
// kernel
__global__ void square_array (float *a, float *b, int n)
                                                                   9
                                                                  10
                                                                  11
  int i = (blockldx.x * blockDim.v + threadldx.v)
    * blockDim.x + threadIdx.x;
                                                                  13
  if (i < n)
    a[i] = a[i] * b[i];
                                                                  14
                                                                  15
// end
                                                                  16
                                                                  17
                                                                  18
// main1
                                                                  19
int main()
                                                                  20
                                                                  21
 cudaSetDevice(0): // EDIT ME
                                                                  22
                                                                  23
 const int n = 4096:
                                                                  24
  float *a_host = (float *) malloc(n*sizeof(float )):
                                                                  25
  float *b_host = (float *) malloc(n*sizeof(float )):
                                                                  26
  float *a_device, *b_device;
  CUDA_CHK(cudaMalloc, ((void **) &a_device, n*sizeof(float)));
  CUDA_CHK(cudaMalloc, ((void **) &b_device, n*sizeof(float)));
 / end
```

```
// main2
  for (int i = 0; i < n; i++) { a\_host[i] = i; b\_host[i] = i+1;
  CUDA_CHK(cudaMemcpv, (a_device, a_host, n*sizeof(float),
        cudaMemcpvHostToDevice)):
  CUDA_CHK(cudaMemcpy, (b_device, b_host, n*sizeof(float),
        cudaMemcpvHostToDevice)):
  dim3 block_dim(16, 16);
  int block_size = block_dim.x*block_dim.y;
  int n_blocks = (n + block_size - 1) / block_size;
  square_array < < < n_blocks, block_dim> > > (a_device, b_device, n);
// end
// main3
 CUDA_CHK(cudaMemcpy, (a_host, a_device, n*sizeof(float),
       cudaMemcpvDeviceToHost)):
  for (int i = 0; i < n; i++)
    printf ("%.0f", a_host[i]);
  puts("\n");
  free (a_host ):
  CUDA_CHK(cudaFree, (a_device)):
// end
```

7

- 1 Introduction
- 2 Programming GPUs
- 3 GPU Scripting
 - Scripting + GPUs: A good combination
 - Whetting your Appetite
 - Working with PyCuda
 - A peek under the hood
 - Metaprogramming CUDA
- 4 PyCuda Hands-on: Matrix Multiplication

PyCuda Philosophy

- Provide complete access
- Automatically manage resources
- Provide abstractions
- Allow interactive use
- Check for and report errors automatically
- Integrate tightly with numpy

PyCuda: Completeness

PyCuda exposes all of CUDA.

For example:

- Arrays and Textures
- Pagelocked host memory
- Memory transfers (asynchronous, structured)
- Streams and Events
- Device queries
- (GL Interop)

PyCuda supports every OS that CUDA supports.

- Linux
- Windows
- OS X


```
mod = pycuda.driver.SourceModule(
    "__global__ my_func(float *out, float *in ){...}")
func = mod.get_function("my_func")
src = numpy.random.randn(400).astype(numpy.float32)
dest = numpy.empty_like(src)
my_func(
        cuda.Out(dest),
        cuda. In (src),
        block=(400,1,1))
```

- "InOut" exists, too.
- Only for immediate invocation style.

- Reachable objects (memory, streams, ...) are never destroyed.
- Once unreachable, released at an unspecified future time.
- Scarce resources (memory) can be explicitly freed. (obj.free())
- Correctly deals with multiple contexts and dependencies.

gpuarray: Simple Linear Algebra

pycuda.gpuarray:

- Meant to look and feel just like numpy.
 - gpuarray.to_gpu(numpy_array)
 - numpy_array = gpuarray.get()
- No: nd indexing, slicing, etc. (yet!)
- Yes: +, -, *, /, fill, sin, exp, rand, take, ...
- Random numbers using pycuda.curandom
- Mixed types (int32 + float32 = float64)
- print gpuarray for debugging.
- Memory behind gpuarray available as .gpudata attribute.
 - Use as kernel arguments, textures, etc.

gpuarray: Elementwise expressions

Avoiding extra store-fetch cycles for elementwise math:

```
from pycuda.curandom import rand as curand
a_gpu = curand((50,))
b_gpu = curand((50,))
from pycuda elementwise import ElementwiseKernel
lin_comb = ElementwiseKernel(
       "float a, float *x, float b, float *y, float *z",
       "z[i] = a*x[i] + b*v[i]")
c_gpu = gpuarray.empty_like(a_gpu)
lin_comb(5, a_gpu, 6, b_gpu, c_gpu)
assert la.norm((c_gpu - (5*a_gpu+6*b_gpu)).get()) < 1e-5
```

PyCuda: Vital Information

- http://mathema.tician.de/ software/pycuda
- X Consortium License (no warranty, free for all use)
- Requires: numpy, Boost C++, Python 2.4+.
- Support via mailing list.

Questions?

?

Outline

- 1 Introduction
- 2 Programming GPUs
- 3 GPU Scripting
 - Scripting + GPUs: A good combination
 - Whetting your Appetite
 - Working with PyCuda
 - A peek under the hood
 - Metaprogramming CUDA
- 4 PvCuda Hands-on: Matrix Multiplication

CUDA APIs

CUDA APIs

CUDA has two Programming Interfaces:

- "Runtime" high-level (libcudart.so, in the "toolkit")
- "Driver" low-level (libcuda.so, comes with GPU driver)

(mutually exclusive)

Runtime vs. Driver API

Runtime ↔ Driver differences:

Explicit initialization.

Runtime vs. Driver API

Runtime \leftrightarrow Driver differences:

- Explicit initialization.
- Code objects ("Modules") become programming language objects.

Runtime \leftrightarrow Driver differences:

- Explicit initialization.
- Code objects ("Modules") become programming language objects.
- Texture handling requires slightly more work.

Runtime vs. Driver API

Runtime \leftrightarrow Driver differences:

- Explicit initialization.
- Code objects ("Modules") become programming language objects.
- Texture handling requires slightly more work.
- Only needs nvcc for compiling GPU code.

Runtime \leftrightarrow Driver differences:

- Explicit initialization.
- Code objects ("Modules") become programming language objects.
- Texture handling requires slightly more work.
- Only needs nvcc for compiling GPU code.

Driver API:

- Conceptually cleaner
- Less sugar-coating (provide in Python)
- Not very different otherwise

PyCuda: API Tracing

With ./configure --cuda-trace=1:

PyCuda: API Tracing

With ./configure --cuda-trace=1:

```
import pycuda, driver as cuda
import pycuda, autoinit
import numpy
a = numpy.random.randn(4,4).astype(numpy.float32)
a_gpu = cuda.mem_alloc(a.nbytes)
cuda.memcpy_htod(a_gpu, a)
mod = cuda.SourceModule("""
    __global__ void doublify (float *a)
      int idx = threadIdx.x + threadIdx.y*4;
     a[idx] *= 2;
func = mod.get_function("doublify")
func(a_gpu, block=(4,4,1))
a_doubled = numpy.empty_like(a)
cuda.memcpy_dtoh(a_doubled, a_gpu)
print a doubled
print a
```

```
cuInit.
cuDeviceGetCount
cuDeviceGet
cuCtxCreate
cuMemAlloc
cuMemcpyHtoD
cuCtxGetDevice
cuDeviceComputeCapability
cuModuleLoadData
cuModuleGetFunction
cuFuncSetBlockShape
cuParamSetv
cuParamSetSize
cuLaunchGrid
cuMemcpyDtoH
cuCtxPopCurrent
cuCtxPushCurrent
cuMemFree
cuCtxPopCurrent
cuCtxPushCurrent
cuModuleUnload
cuCtxPopCurrent
cuCtxDestrov
```

Questions?

?

Outline

- 1 Introduction
- 2 Programming GPUs
- 3 GPU Scripting
 - Scripting + GPUs: A good combination
 - Whetting your Appetite
 - Working with PyCuda
 - A peek under the hood
 - Metaprogramming CUDA
- 4 PyCuda Hands-on: Matrix Multiplication

In PyCuda,
CUDA C code
does not need to
be a compile-time
constant.

Idea

Machine

Metaprogramming: machine-generated code

Why machine-generated code?

- Automated Tuning (cf. ATLAS, FFTW)
- Data types
- Specialize code for given problem
- Constants faster than variables (→ register pressure)
- Loop Unrolling

PyCuda: Support for Metaprogramming

- Access properties of compiled code: func.{num_regs,shared_size_bytes,local_size_bytes}
- Exact GPU timing via events
- Can calculate hardware-dependent MP occupancy
- codepy (by Andreas):
 - Build C syntax trees from Python
 - Generates readable, indented C
- Or use a templating engine (many available, e.g. Cheetah)

Questions?

?

Outline

- 1 Introduction
- 2 Programming GPUs
- 3 GPU Scripting
- 4 PyCuda Hands-on: Matrix Multiplication
 - Simple
 - Tiled
 - Meta-programming / Auto-tuning

Outline

- PyCuda Hands-on: Matrix Multiplication
 - Simple

 - Meta-programming / Auto-tuning

- Multiply two (small) square matrices together.
- Use global memory only.
- Use a single block of threads.
- Each thread computes one element of the resulting matrix.

Instructions

- cd 3-pycuda-matrixmul-simple
- Edit matrixmul_simple.py
- 3 Complete the *TODOs*.

Initialization:

```
import numpy as np
from pycuda import driver, compiler, gpuarray, tools
import atexit
\# — initialize the device
# the following lines are equivalent to "import pycuda. autoinit"
# only if GPU_NUMBER = 0
GPU_NUMBER = 0 \# TODO: change me
driver . init ()
assert (driver . Device . count() >= 1)
dev = tools. get_default_device (GPU_NUMBER)
ctx = dev.make\_context()
atexit register (ctx.pop)
```

Memory allocation and transfer:

```
# define the (square) matrix size
# note that we'll only use *one* block of threads here
# as a consequence this number (squared) can't exceed max_threads.
  see http://documen.tician.de/pycuda/util.html#pycuda.tools.DeviceData
  for more information on how to get this number for your device
MATRIX_SIZE = 2
# create two random square matrices
a\_cpu = np.random.randn(MATRIX\_SIZE, MATRIX\_SIZE).astype(np.float32)
b_cpu = np.random.randn(MATRIX_SIZE, MATRIX_SIZE).astype(np.float32)
# compute reference on the CPU to verify GPU computation
c_cpu = np.dot(a_cpu, b_cpu)
# transfer host (CPU) memory to device (GPU) memory
a_gpu = gpuarray.to_gpu(a_cpu)
b_gpu = gpuarray.to_gpu(b_cpu)
# create empty gpu array for the result (C = A * B)
c_gpu = gpuarray.empty((MATRIX_SIZE, MATRIX_SIZE), np.float32)
```

Code

GPU code compilation and execution:

```
# by specifying the constant MATRIX_SIZE
kernel_code = kernel_code_template % {
    'MATRIX SIZE': MATRIX SIZE
# compile the kernel code
mod = compiler.SourceModule(kernel_code)
# get the kernel function from the compiled module
matrixmul = mod.get_function("MatrixMulKernel")
# call the kernel on the card
matrixmul(
    # inputs
   a_gpu, b_gpu,
   # output
   c_gpu,
    # (only one) block of MATRIX_SIZE x MATRIX_SIZE threads
    block = (MATRIX_SIZE, MATRIX_SIZE, 1),
```

GPU kernel code:

```
kernel_code_template = '
__global__ void MatrixMulKernel(float *a, float *b, float *c)
   // 2D Thread ID (assuming that only *one* block will be executed)
   int tx = threadIdx.x:
   int tv = threadIdx.v:
   // Pvalue is used to store the element of the matrix
   // that is computed by the thread
    float Pvalue = 0;
   // Each thread loads one row of M and one column of N,
   // to produce one element of P.
   for (int k = 0; k < %(MATRIX_SIZE)s; ++k) {
        float Aelement = a[ ... ]; // TODO
        float Belement = b[ ... ]; // TODO
       Pvalue += Aelement * Belement:
   // Write the matrix to device memory;
   // each thread writes one element
   c[ ... ] = Pvalue; // TODO
```

GPU kernel code (solution):

```
kernel_code_template =
__global__ void MatrixMulKernel(float *a, float *b, float *c)
   // 2D Thread ID (assuming that only *one* block will be executed)
   int tx = threadIdx.x:
   int tv = threadIdx.v:
   // Pvalue is used to store the element of the matrix
   // that is computed by the thread
    float Pvalue = 0;
   // Each thread loads one row of M and one column of N,
   // to produce one element of P.
   for (int k = 0; k < %(MATRIX_SIZE)s; ++k) {
        float Aelement = a[ty * \%(MATRIX\_SIZE)s + k];
        float Belement = b[k * \%(MATRIX\_SIZE)s + tx];
       Pvalue += Aelement * Belement:
   // Write the matrix to device memory;
   // each thread writes one element
   c[ty * \%(MATRIX\_SIZE)s + tx] = Pvalue;
```

Outline

- 1 Introduction
- 2 Programming GPUs
- 3 GPU Scripting
- 4 PyCuda Hands-on: Matrix Multiplication
 - Simple
 - Tiled
 - Meta-programming / Auto-tuning

- Multiply two square matrices together.
- Use global memory and shared memory.
- Each thread block is assigned a "tile" of the resulting matrix and is responsible for generating the elements in that tile.
- Each thread in a block computes one element of the tile.

Code

GPU kernel code:

```
kernel_code_template =
__global__ void MatrixMulKernel(float *A, float *B, float *C)
 const uint wA = %(MATRIX_SIZE)s;
 const uint wB = %(MATRIX_SIZE)s;
 // Block index
 const uint bx = blockldx.x:
 const uint by = blockldx.y;
 const uint tx = threadIdx.x:
 const uint ty = threadIdx.y;
 // Index of the first sub-matrix of A processed by the block
 const uint aBegin = wA * %(BLOCK_SIZE)s * by;
 // Index of the last sub-matrix of A processed by the block
 const uint aEnd = aBegin + wA - 1;
 // Step size used to iterate through the sub-matrices of A
 const uint aStep = %(BLOCK_SIZE)s:
 // Index of the first sub-matrix of B processed by the block
 const uint bBegin = %(BLOCK_SIZE)s * bx;
 // Step size used to iterate through the sub-matrices of B
 const uint bStep = %(BLOCK_SIZE)s * wB;
```

GPU kernel code (cont'd):

```
// The element of the block sub-matrix that is computed
// by the thread
float Csub = 0;
// Loop over all the sub-matrices of A and B required to
// compute the block sub-matrix
for (int a = aBegin, b = bBegin;
     a \le aEnd:
     a += aStep, b += bStep)
    // Shared memory for the sub-matrix of A
    __shared__ float As[%(BLOCK_SIZE)s][%(BLOCK_SIZE)s];
    // Shared memory for the sub-matrix of B
    __shared__ float Bs[%(BLOCK_SIZE)s][%(BLOCK_SIZE)s];
    // Load the matrices from global memory to shared memory;
    // each thread loads one element of each matrix
    As[ty][tx] = A[a + wA * ty + tx];
    Bs[ty][tx] = B[b + wB * ty + tx];
    // Synchronize to make sure the matrices are loaded
    __syncthreads ();
```

GPU kernel code (cont'd):

```
// Multiply the two matrices together;
    // each thread computes one element
    // of the block sub-matrix
    for (int k = 0; k < \%(BLOCK\_SIZE)s; ++k)
      Csub += As[ty][k] * Bs[k][tx];
    // Synchronize to make sure that the preceding
    // computation is done before loading two new
    // sub-matrices of A and B in the next iteration
    __syncthreads ();
// Write the block sub-matrix to global memory;
// each thread writes one element
const uint c = wB * \%(BLOCK\_SIZE)s * by + \%(BLOCK\_SIZE)s * bx;
C[c + wB * ty + tx] = Csub;
```

11 11 11

Outline

- PyCuda Hands-on: Matrix Multiplication
 - Simple
 - Tiled
 - Meta-programming / Auto-tuning

- Multiply two matrices together (any size).
- Use global memory and shared memory.
- Implement various optimizations:
 - different granularities of parallelism (block and work sizes),
 - loop unrolling,
 - register pressure (spilling),
 - pre-fetching (global memory load).
- "Instrumentalize" the code using a template engine (Cheetah).
- Auto-tune depending on the hardware and the input data.

Instructions

- 1 cd 5-pycuda-matrixmul-opt
- 2 Implement your auto-tuning function.
- 3 Use PyCuda to gather informations (registers, occupancy).

Code

Show the code ;-)

Some numbers

3D Filterbank Convolutions used in our Visual Cortex Simulations:

Conclusions

■ GPUs (or something like them) are here to stay.

Conclusions

- GPUs (or something like them) are here to stay.
- First factor of 5-10 is usually easy to reach.

Conclusions

- GPUs (or something like them) are here to stay.
- First factor of 5-10 is usually easy to reach.
- Next factor of 5-10 is a little bit harder.

- GPUs (or something like them) are here to stay.
- First factor of 5-10 is usually easy to reach.
- Next factor of 5-10 is a little bit harder.
- Next factor of 5-10 is a lot harder.
 - Reqires deep understanding of the hardware architecture.
 - Usually involves significant rethinking of algorithm.

- GPUs (or something like them) are here to stay.
- First factor of 5-10 is usually easy to reach.
- Next factor of 5-10 is a little bit harder.
- Next factor of 5-10 is a lot harder.
 - Reqires deep understanding of the hardware architecture.
 - Usually involves significant rethinking of algorithm.
- GPUs and scripting work surprisingly well together.
 - Favorable balance btw ease-of-use and raw performance.
 - Enable (easy) Metaprogramming.

- GPUs (or something like them) are here to stay.
- First factor of 5-10 is usually easy to reach.
- Next factor of 5-10 is a little bit harder.
- Next factor of 5-10 is a lot harder.
 - Reqires deep understanding of the hardware architecture.
 - Usually involves significant rethinking of algorithm.
- GPUs and scripting work surprisingly well together.
 - Favorable balance btw ease-of-use and raw performance.
 - Enable (easy) Metaprogramming.
- Python / PyCuda rocks!

Thank you

