Package 'psychtoolbox'

August 24, 2025

```
Title Tools for psychology research and psychometrics
Version 0.0.1
Description This package contains functions helping to analyse psychological data.
License CC BY 4.0
URL https://gitlab.com/lukas.novak/psychtoolbox
Encoding UTF-8
LazyData true
Roxygen list(markdown = TRUE)
RoxygenNote 7.3.2
Imports docxtractr,
     effectsize,
      dplyr,
      insight,
      lavaan,
     magrittr,
      rmarkdown,
      rstatix,
      stats,
      tidyr,
      expss,
      stringr,
      tidyselect,
      purrr,
      reshape2,
     janitor,
      broom,
      car,
      WRS2,
      nortest,
      rlang,
     haven
Suggests bootnet,
      coin,
      testthat (>= 3.0.0),
      tibble
Config/testthat/edition 3
```

Depends R (>= 2.10)

2 clin_sig_chang

Contents

clin_sig_chang	
edge_weight_summary	3
lasy.lin.reg	4
lasy.log.reg	(
mitab	8
mult.g.comp	
node_predictability_summary	12
paq.validation.study	
RCI	15
small_boot_table	
two.g.comp	18
word2pdf	19
	20
	_

clin_sig_chang

Clinically significant change

Description

This easy function calculates Clinically significant change (clinical cut-off scores) as defined by Jacobson and Truax (1991).

Usage

Index

```
clin_sig_chang(SD_0, SD_1, M_1, M_0)
```

Arguments

SD_0	standard deviation of the non-clinical population
SD_1	standard deviation of the clinical population
M_1	mean of the clinical population
M_0	mean of the non-clinical population

Format

numeric vector of values

Details

This function computes cut-off score differentiating between the clinical and non-clinical population based on the Jacobson and Truax (1991) formula (p. 13). The mathematical formula can be also found in Biescad & Timulak(2014, p. 150).

Value

numeric vector

Author(s)

Lukas Novak, <lukasjirinovak@gmail.com>

References

Jacobson, N. S., & Truax, P. (1991). Clinical significance: A statistical approach to defining meaningful change in psychotherapy research. Journal of Consulting and Clinical Psychology, 59(1), 12-19, DOI: https://doi.org/10.1037/0022-006X.59.1.12

Matus Biescad & Ladislav Timulak (2014). Measuring psychotherapy outcomes in routine practice: Examining Slovak versions of three commonly used outcome instruments, European Journal of Psychotherapy & Counselling, 16:2, 140-162, DOI: https://doi.org/10.1080/13642537. 2014.895772

See Also

RCI() function for calculation of the Reliable Change Index

Examples

edge_weight_summary

Summarizing Bootstrapped Network Estimates from 'bootnet'

Description

Summarizing Bootstrapped Network Estimates from 'bootnet'

Usage

```
edge_weight_summary(
  bootnet_output,
  include_sample_edge_weight = TRUE,
  include_p_values = "none"
)
```

Arguments

bootnet_output Output from the 'bootnet' package after bootstrapping network analysis. include_sample_edge_weight

Logical, whether to include sample edge weight in the summary table.

include_p_values

String, whether to include p-values as significance stars, add p-value column, or exclude p-values entirely. Options are "stars", "exact", or "none". Default is "none".

Format

An object of class "tibble".

4 lasy.lin.reg

Details

This function provides a convenient summary of bootstrapped network estimates from the 'bootnet' package, including edge weights, their confidence intervals, and p-values alternatively. It is tailored to enhance the usability of 'bootnet' output by summarizing critical metrics in a concise format. Importantly, it only summarizes results in edges that were non-zero on sample level. Edges that had zero edge weight in a sample are filtered out.

The empirical p-values are calculated using the following formula:

$$p = \frac{\sum_{i=1}^{n} \mathbf{1}\{|x_i| \ge |x_0|\}}{n}$$

where x_0 is the original estimate and x_i are the bootstrap estimates.

Value

A tibble summarizing edge weights.

Author(s)

Lukas Novak, <lukasjirinovak@gmail.com>

References

Epskamp, S., Borsboom, D., & Fried, E. I. (2018). Network analysis: An integrative approach to the structure of psychopathology. Annual review of clinical psychology, 14, 91-121.

Examples

lasy.lin.reg

Lasy linear regression function

Description

This function performs linear regression and print results in tibble output. This function aims to provide the results of the regression analysis in the format, which is frequently desired in academic journals.

lasy.lin.reg 5

Usage

```
lasy.lin.reg(
  independent.var,
  dependent.var,
  print.cov = FALSE,
  Z_score_independent = FALSE,
  check_multicolinearity = TRUE,
  covariates = NULL,
  data
)
```

Arguments

```
independent.var
independent variable/s

dependent.var dependent variable/s

print.cov Print effect of covariates, default is FALSE

Z_score_independent
Should independent variables be z-scored? Default is FALSE

check_multicolinearity
Should multicolinearity assumption be checked? Default is TRUE

covariates covariates to be included in a model

data frame or tibble object
```

Format

An object of class "tibble"

Details

Currently, this function does not provide model fit indicators such as AIC or BIC.

Value

data frame

Author(s)

Lukas Novak, <lukasjirinovak@gmail.com>

References

Welch, B. L. (1947). "The generalization of "Student's" problem when several different population variances are involved". Biometrika. 34 (1–2): 28–35.

Wilcoxon, F., Individual Comparisons by Ranking Methods, Biometrics Bulletin, Vol. 1, 1945, pp. 80–83. DOI:10.2307/3001968

Dunn, O. J. (1961) Multiple comparisons among means. Journal of the American Statistical Association. 56, 52–64.

Games, P. A., Keselman, H. J., & Clinch, J. J. Tests for homogeneity of variance in factorial designs. Psychological Bulletin, 86, 978–984

6 lasy.log.reg

Examples

```
# data simulation
library(dplyr)
data.PAQ = tibble(.rows = 1000)
data.PAQ <- data.PAQ %>%
 mutate("multiple__exper_1" = rnorm(n = nrow(data.PAQ), mean = 20, sd = 5)) %>%
 mutate("exper_1" = rnorm(n = nrow(data.PAQ), mean = 20, sd = 5)) %>%
 mutate("exper_1" = rnorm(n = nrow(data.PAQ), mean = 20, sd = 5),
        "exper_2" = rnorm(n = nrow(data.PAQ), mean = 20, sd = 5),
        "last_binary_vasd1" = rnorm(n = nrow(data.PAQ), mean = 20, sd = 20),
        "last_binary_val2" = rnorm(n = nrow(data.PAQ), mean = 5, sd = 5),
        "last_binary_val3" = rnorm(n = nrow(data.PAQ), mean = 10, sd = 40),
        "last_binary_val4" = rnorm(n = nrow(data.PAQ), mean = 50, sd = 5),
        "last_binary_val5" = rnorm(n = nrow(data.PAQ), mean = 5, sd = 4),
        "last_binary_val6" = rnorm(n = nrow(data.PAQ), mean = 65, sd = 5))
lin.reg.output <- lasy.lin.reg(independent.var = c("last_binary_vasdl"),</pre>
                              covariates = c("last_binary_val6"),
                              dependent.var = c("last_binary_val5","last_binary_val4"),
                              Z_score_independent = FALSE,
                              check_multicolinearity = TRUE,
                              data = data.PAQ,
                              print.cov = FALSE)
print(lin.reg.output)
```

lasy.log.reg

Lasy logistic regression function

Description

This function performs logistic regression and print results in tibble output. This function aims to provide the results of the regression analysis in the format, which is frequently desired in academic journals.

Usage

```
lasy.log.reg(
  independent.var,
  dependent.var,
  print.cov = FALSE,
  covariates = NULL,
  check_multicolinearity = TRUE,
  data
)
```

Arguments

```
independent.var
independent variable/s
dependent.var
dependent variable/s
print.cov
Print effect of covariates, default is FALSE
```

lasy.log.reg 7

```
covariates covariates to be included in a model check_multicolinearity
```

Should multicolinearity assumption be checked? Default is TRUE

data frame or tibble object

Format

```
An object of class "tibble"
```

Details

Currently, this function does not provide model fit indicators such as AIC or BIC.

Value

data frame

Author(s)

Lukas Novak, <lukasjirinovak@gmail.com>

References

Welch, B. L. (1947). "The generalization of "Student's" problem when several different population variances are involved". Biometrika. 34 (1–2): 28–35.

Wilcoxon, F., Individual Comparisons by Ranking Methods, Biometrics Bulletin, Vol. 1, 1945, pp. 80–83. DOI:10.2307/3001968

Dunn, O. J. (1961) Multiple comparisons among means. Journal of the American Statistical Association. 56, 52–64.

Games, P. A., Keselman, H. J., & Clinch, J. J. Tests for homogeneity of variance in factorial designs. Psychological Bulletin, 86, 978–984

8 mitab

mitab

Measurement invariance table

Description

Measurement invariance table

Usage

```
mitab(
  group1_nam,
  group2_nam,
  ordered,
  model,
  data,
  std.lv,
  meanstructure,
  group,
  yes_no_results,
  estimator,
  robust = FALSE,
  cfi.difference = TRUE,
  rmsea.difference = TRUE,
  per_group_models = FALSE,
)
```

Arguments

group1_nam name of the first group. Used if per_group_models is TRUE. name of the second group. Used if per_group_models is TRUE. group2_nam logical, if set to TRUE items will be treated as ordered variables ordered model lavaan model to test data data frame or tibble std.lv logical, if TRUE, the latent variables are standardized. logical, if TRUE, the model includes mean structures. ${\it meanstructure}$ name of grouping variable group yes_no_results logical, if TRUE, a column indicating significant model differences is added, based on CFI and RMSEA criteria. name of estimator to be used during fitting procedure (e.g., "MLR", "WLSMV"). estimator logical, if TRUE, robust fit statistics are extracted. This is recommended for robust estimators like MLR or WLSMV. cfi.difference logical, if TRUE, the change in CFI between nested models is included in the output. rmsea.difference

logical, if TRUE, the change in RMSEA between nested models is included in the output.

mitab 9

```
per_group_models
```

logical, if TRUE, single-group models are fitted for each group and included in the output table. Defaults to FALSE.

optional arguments to be passed to the lavaan::cfa function.

Details

This function automates measurement invariance testing using lavaan and presents the results in a clear, formatted table. It uses standard lavaan functions for all model fitting.

Value

A tibble containing a formatted summary of the measurement invariance testing results.

Author(s)

Lukas Novak, <lukasjirinovak@gmail.com>

References

Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling, 9(2), 233-255.

```
# The famous Holzinger and Swineford (1939) example
HS.model \leftarrow 'visual = x1 + x2 + x3
textual =^{\sim} x4 + x5 + x6
speed =~ x7 + x8 + x9 '
library(lavaan)
dat <- HolzingerSwineford1939</pre>
# Example with a robust ML estimator (MLR)
res.tab.mlr <- mitab(</pre>
  group1_nam = "Grant-White",
  group2_nam = "Pasteur",
  ordered = FALSE,
  model = HS.model,
  data = dat,
  std.lv = TRUE,
  meanstructure = TRUE,
  group = "school",
  yes_no_results = TRUE,
  estimator = "MLR",
  robust = TRUE,
  cfi.difference = TRUE,
  rmsea.difference = TRUE,
  per_group_models = TRUE # Optionally show per-group fits
print(res.tab.mlr)
# Example with an ordered dataset and the WLSMV estimator
set.seed(123)
ord_data <- HolzingerSwineford1939</pre>
ord_data[, paste0("x", 1:9)] <- lapply(ord_data[, <math>paste0("x", 1:9)],
```

10 mult.g.comp

```
function(z) as.integer(cut(z, breaks = 4)))
res.tab.wlsmy <- mitab(</pre>
  group1_nam = "Grant-White",
  group2_nam = "Pasteur",
 ordered = TRUE,
 model = HS.model,
 data = ord_data,
  std.lv = TRUE,
 meanstructure = TRUE,
  group = "school",
  yes_no_results = TRUE,
  estimator = "WLSMV",
  robust = TRUE, # Using robust=TRUE is recommended for WLSMV
  cfi.difference = TRUE,
  rmsea.difference = TRUE
print(res.tab.wlsmy)
```

mult.g.comp

Robust multi-group comparison

Description

This function allows to compare multiple groups in multiple outcome variables with violated parametric assumptions.

Usage

```
mult.g.comp(
   df,
   outcome.var,
   groups,
   desc_only = FALSE,
   short_results = TRUE,
   remove_missings = TRUE,
   percent_decimals = 2,
   show_non_significant_results = FALSE,
   diagnostics = FALSE
)
```

Arguments

```
df data frame or tibble object
outcome.var continuous variable/s
groups grouping variable/s
desc_only print only descriptive statistics, default is FALSE
short_results prints only significance stars without numerical results, default is TRUE
remove_missings
remove missing values from a table, default is TRUE
```

mult.g.comp 11

percent_decimals

number of decimals used to round percenages, default is 2

show_non_significant_results

if TRUE, p-values from non-significant tests are reported. Default is FALSE.

diagnostics if TRUE, prints a detailed diagnostic report for each test run. Default is FALSE.

Format

An object of class "tibble"

Details

This function automatically selects and performs appropriate statistical tests based on the number of groups and the underlying data assumptions. For non-significant results, if show_non_significant_results = TRUE, the p-value of the performed test is reported. For multi-group comparisons, this is the Kruskal-Wallis test. For two-group comparisons, this is the p-value from the specific test chosen by the decision tree.

Two group comparison:

A decision tree based on normality (Shapiro-Wilk for $N \le 5000$, Anderson-Darling for $N \ge 5000$) and homogeneity of variances (Fligner-Killeen) is used. Depending on the assumptions, a Student's t-test, Welch's t-test, Wilcoxon test, or Yuen's test on trimmed means is performed.

Three and more groups comparison:

For comparisons involving three or more groups, a Kruskal-Wallis test is first performed. If significant, post-hoc tests (Dunn's test for equal variances or Games-Howell for unequal variances) are conducted.

Value

data frame

Author(s)

Lukas Novak, <lukasjirinovak@gmail.com>

References

Welch, B. L. (1947). "The generalization of "Student's" problem when several different population variances are involved". Biometrika. 34 (1–2): 28–35.

Wilcoxon, F., Individual Comparisons by Ranking Methods, Biometrics Bulletin, Vol. 1, 1945, pp. 80–83. DOI:10.2307/3001968

Dunn, O. J. (1961) Multiple comparisons among means. Journal of the American Statistical Association. 56, 52–64.

Games, P. A., Keselman, H. J., & Clinch, J. J. Tests for homogeneity of variance in factorial designs. Psychological Bulletin, 86, 978–984

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.

Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Frontiers in psychology, 4, 863.

Wilcox, R. R., & Tian, T. S. (2011). Measuring effect size: A robust heteroscedastic approach for two or more groups. Journal of Applied Statistics, 38(7), 1359-1368.

Examples

node_predictability_summary

Summarizing Node Predictability

Description

Summarizing Node Predictability

Usage

```
node_predictability_summary(predict_function_output)
```

Arguments

Format

An object of class "tibble".

Details

This function provides a summary of node predictability metrics. It is designed to extract and format predictability information from the output of a predictability analysis function.

Value

A tibble summarizing node predictability.

Author(s)

Lukas Novak, <lukasjirinovak@gmail.com>

References

Epskamp, S., Borsboom, D., & Fried, E. I. (2018). Network analysis: An integrative approach to the structure of psychopathology. Annual review of clinical psychology, 14, 91-121.

paq.validation.study 13

Examples

paq.validation.study paq.validation.study

Description

This dataset contains data which were used for validation of the Perth Alexithymia Questionnaire in the Czech Republic.

Usage

```
paq.validation.study
```

Format

A data frame with 848 rows and 53 variables:

```
P_DIF double COLUMN DESCRIPTION
```

P_DDF double COLUMN DESCRIPTION

P_DAF double COLUMN_DESCRIPTION

N_DIF double COLUMN_DESCRIPTION

N_DDF double COLUMN_DESCRIPTION

N_DAF double COLUMN_DESCRIPTION

G_EOT double COLUMN_DESCRIPTION

G_DIF double COLUMN_DESCRIPTION
G_DDF double COLUMN_DESCRIPTION

G_DAF double COLUMN_DESCRIPTION

family_status integer COLUMN_DESCRIPTION

Gender integer COLUMN_DESCRIPTION

TEQ_1 double COLUMN_DESCRIPTION

TEQ_3 double COLUMN_DESCRIPTION

TEQ_5 double COLUMN_DESCRIPTION

14 paq.validation.study

TEQ_16 double COLUMN DESCRIPTION TEQ_CON_2 double COLUMN_DESCRIPTION TEQ_CON_4 double COLUMN_DESCRIPTION TEQ_CON_14 double COLUMN_DESCRIPTION TEQ double COLUMN_DESCRIPTION Age double COLUMN DESCRIPTION age_group double COLUMN_DESCRIPTION age.quality double COLUMN_DESCRIPTION ethnicity integer COLUMN_DESCRIPTION education integer COLUMN_DESCRIPTION economical_status integer COLUMN DESCRIPTION PAQ_1 double COLUMN_DESCRIPTION PAQ_2 double COLUMN_DESCRIPTION PAQ_3 double COLUMN_DESCRIPTION PAQ_4 double COLUMN_DESCRIPTION PAQ_5 double COLUMN_DESCRIPTION PAQ_6 double COLUMN_DESCRIPTION PAQ_7 double COLUMN DESCRIPTION PAQ_8 double COLUMN_DESCRIPTION PAQ_9 double COLUMN_DESCRIPTION PAQ_10 double COLUMN_DESCRIPTION PAQ_11 double COLUMN_DESCRIPTION PAQ_12 double COLUMN_DESCRIPTION PAQ_13 double COLUMN_DESCRIPTION PAQ_14 double COLUMN DESCRIPTION PAQ_15 double COLUMN_DESCRIPTION PAQ_16 double COLUMN_DESCRIPTION PAQ_17 double COLUMN_DESCRIPTION PAQ_18 double COLUMN DESCRIPTION PAQ_19 double COLUMN_DESCRIPTION PAQ_20 double COLUMN_DESCRIPTION PAQ_21 double COLUMN DESCRIPTION PAQ_22 double COLUMN_DESCRIPTION PAQ_23 double COLUMN_DESCRIPTION PAQ_24 double COLUMN_DESCRIPTION

PAQ double COLUMN_DESCRIPTION edu_dich integer COLUMN_DESCRIPTION

econom_stat_dich integer COLUMN_DESCRIPTION

Details

This dataset contains data from a validation study. See the examples for how derived variables like edu_dich can be created.

RCI 15

Examples

```
## Not run:
  # Load the dataset first
  data(pag.validation.study)
  # Example of how to create dichotomized variables using the .data pronoun
  # to avoid NOTES during R CMD check.
  paq.validation.study_modified <- paq.validation.study %>%
   dplyr::mutate(edu_dich = as.factor(ifelse(
      .data$education == "University master or higher",
      "University", "lower_edu"
   )),
   econom_stat_dich = as.factor(ifelse(
      .data$economical_status == "Student",
      "Student", "non_student"
   )))
  # Show the first few rows of the new variables to confirm it worked
  head(paq.validation.study_modified[, c("edu_dich", "econom_stat_dich")])
## End(Not run)
```

RCI

Reliable Change Index (RCI)

Description

This function calculates Reliable Change Index (RCI) as modified by Wiger and Solberg (2001, p.148).

Usage

```
RCI(SD_0, test.ret.rel)
```

Arguments

SD_0 standard deviation of the non-clinical population test.ret.rel test-retest reliability of the instrument

Format

numeric vector of values

Details

This function computes value corresponding to "the minimum amount of change that could not be attributed to the error of measurement" (Biescad & Timulak, 2014, p. 150). If score change from before to post treatment is lower that value resulting from this function, than change in client score can not be attributed to the effectiveness of the therapy but rather other factors such as a measurement error (Biescad & Timulak, 2014). This function is a result of modification of the original Jacobson and Truax (1991) formula by Wiger and Solberg (2001, p.148).

16 small_boot_table

Value

numeric vector

Author(s)

Lukas Novak, <lukasjirinovak@gmail.com>

References

Jacobson, N. S., & Truax, P. (1991). Clinical significance: A statistical approach to defining meaningful change in psychotherapy research. Journal of Consulting and Clinical Psychology, 59(1), 12-19, DOI: https://doi.org/10.1037/0022-006X.59.1.12

Matus Biescad & Ladislav Timulak (2014). Measuring psychotherapy outcomes in routine practice: Examining Slovak versions of three commonly used outcome instruments, European Journal of Psychotherapy & Counselling, 16:2, 140-162, DOI: https://doi.org/10.1080/13642537. 2014.895772

Wiger, D. E., & Solberg, K. B. (2001). Tracking Mental Health Outcomes: A Therapist's Guide to Measuring Client Progress, Analyzing Data, and Improving Your Practice (1., Vol. 2001). Wiley.

See Also

clin_sig_chang() function for calculation of the clinical cut-off scores

Examples

```
re.ch.in = RCI(SD_0 = 4.87, test.ret.rel = 0.66) re.ch.in
```

small_boot_table

Summarizing Bootstrapped Network Estimates from 'bootnet'

Description

Summarizing Bootstrapped Network Estimates from 'bootnet'

Usage

```
small_boot_table(
  bootnet_output,
  predict_function_output = NULL,
  include_sample_edge_weight = TRUE,
  include_p_values = "none"
)
```

small_boot_table 17

Arguments

bootnet_output output from the 'bootnet' package after bootstrapping network analysis. predict_function_output

optional, output from a predictability analysis function.

include_sample_edge_weight

Logical, whether to include sample edge weight in the summary table.

include_p_values

String, whether to include p-values as significance stars, add p-value column, or exclude p-values entirely. Options are "stars", "exact", or "none". Default is "none".

Format

An object of class "tibble".

Details

This function provides a convenient summary of bootstrapped network estimates from the 'bootnet' package, including edge weights, their confidence intervals, and optionally p-values and node predictability metrics if provided. It is tailored to enhance the usability of 'bootnet' output by summarizing critical metrics in a concise format. Importantly, it only summarizes results in edges that were non-zero on sample level. Edges that had zero edge weight in a sample are filtered out.

The empirical p-values are calculated using the following formula:

$$p = \frac{\sum_{i=1}^{n} \mathbf{1}\{|x_i| \ge |x_0|\}}{n}$$

where x_0 is the original estimate and x_i are the bootstrap estimates.

Value

A tibble summarizing edge weights and, optionally, node predictability.

Author(s)

Lukas Novak, <lukasjirinovak@gmail.com>

References

Epskamp, S., Borsboom, D., & Fried, E. I. (2018). Network analysis: An integrative approach to the structure of psychopathology. Annual review of clinical psychology, 14, 91-121.

```
# Load required package

# Simulate data using base R
set.seed(654899)
Sigma <- matrix(0.5, nrow = 5, ncol = 5) + diag(0.5, 5)
chol_decomp <- chol(Sigma)
z <- matrix(rnorm(100 * 5), nrow = 100, ncol = 5)
sim_data <- z %*% chol_decomp
sim_data_df <- as.data.frame(sim_data)</pre>
```

18 two.g.comp

```
# Estimate a network using 'EBICglasso'
estimate <- bootnet::estimateNetwork(sim_data_df, default = "EBICglasso")
# Perform bootstrapping on the estimated network
boot_results <- bootnet::bootnet(estimate, nBoots = 100, nCores = 1)
# Summarize the bootstrapped network
summary <- small_boot_table(bootnet_output = boot_results)
print(summary)</pre>
```

two.g.comp

Automatic two-groups comparison

Description

Automatic two-groups comparison

Usage

```
two.g.comp(df, y, group.var)
```

Arguments

df data frame or tibble with one socio-demographic variable and one continuous

variable

y continuous variable

group.var binary grouping variable

Format

An object of class "tibble"

Details

This function computes either Wilcox test or t-test depending on whether homogeneity of variances assumption is met or not.

Value

data frame

Author(s)

Lukas Novak, <lukasjirinovak@gmail.com>

References

Myles Hollander and Douglas A. Wolfe (1973). Nonparametric Statistical Methods. New York: John Wiley & Sons. Pages 27–33 (one-sample), 68–75 (two-sample). Or second edition (1999).

word2pdf

Examples

word2pdf

word to pdf

Description

Conversion of word document to pdf using either R Markdown package or Libre office. The latter represents higher quality approach - in general.

Usage

```
word2pdf(imp_file, out_file)
```

Arguments

Format

An object of class "pdf"

Details

this function is currently running only on windows

Value

pdf file

Author(s)

Lukas Novak, <lukasjirinovak@gmail.com>

```
# example from word do pdf
#word2pdf(imp_file = "example.docx",out_file = "example1.pdf")
```

Index

```
* 'bootnet'
                                                        node_predictability_summary, 12
    edge_weight_summary, 3
                                                        small_boot_table, 16
                                                   * of
    small_boot_table, 16
                                                        mitab, 8
* Dunn-test,
                                                   * pdf,word
    mult.g.comp, 10
                                                        word2pdf, 19
* Games-Howell
                                                   * predictability,
    \texttt{mult.g.comp}, \textcolor{red}{10}
                                                        node_predictability_summary, 12
* MI,
                                                   * test,
    mitab, 8
                                                        \mathsf{mult.g.comp},\, 10
* Wilcoxon
                                                   * testing,
    two.g.comp, 18
                                                        mult.g.comp, 10
* Yuen's
                                                   * test
    mult.g.comp, 10
                                                        mult.g.comp, 10
* analysis,
                                                        two.g.comp, 18
    edge_weight_summary, 3
                                                   * two
    small_boot_table, 16
                                                        two.g.comp, 18
* analysis
    node_predictability_summary, 12
                                                   clin_sig_chang, 2
* a
                                                   clin_sig_chang(), 16
    mitab, 8
* bootstrapping,
                                                   edge_weight_summary, 3
    edge_weight_summary, 3
    small_boot_table, 16
                                                   lasy.lin.reg, 4
* comparison,
                                                   lasy.log.reg, 6
    two.g.comp, 18
                                                   mitab, 8
* datasets
                                                   mult.g.comp, 10
    paq.validation.study, 13
* equivalence,
                                                   node_predictability_summary, 12
    mitab, 8
* group
                                                   paq.validation.study, 13
    two.g.comp, 18
* invariance
                                                   RCI, 15
    mitab, 8
                                                   RCI(), 3
* linear-regression
                                                   small_boot_table, 16
    lasy.lin.reg, 4
* logistic-regression
                                                   two.g.comp, 18
    lasy.log.reg, 6
* measurement
                                                   word2pdf, 19
    mitab, 8
* multiple-groups
    mult.g.comp, 10
* network
    edge_weight_summary, 3
```