- Symmetric Cryptosystem vs Asymmetric Cryptosystem
 - Problems
 - 1 transmission
 - 2 security
 - 3 n choose 2 pair of keys
 - How Asymmetric Cryptosystem solves these problems:
 - 1 transmission
 - 2 security: hard number theory
 - 3 everyone has just one set of public/private keys
- Number Theory:
 - definition(d|a, composite vs prime, common divisor, gcd)
 - propositions(1: a|b, b|c, so a|c, 2: a|b, b!=0, a<=b, 3: d|a, d|b, d|(ra+sb),4: 1 divides a,b, 5: !a=0 & b=0, there are finitely many common divisors)
 - Division lemma
 - Prove Existence(r=a-qn, pick the best q, r must be 0<=r<n)
 - Prove uniqueness(subtract, n<r'-r, contradiction)
 - Thm: $gcd(a,b) = min\{xa+yb: x,y in Z, xa+yb>0\}$
 - Proof
 - d is a common divisor of a,b
 - Suppose d is the smallest x'a+y'b, and 0<r<d, contradiction! So r = 0, d|a
 - d is the greatest
 - Suppose $z|a, z|b, z|x'a+y'b \rightarrow z \le b$
 - Corr
 - $xa+yb=1 \Leftrightarrow gcd(a,b)=1 \Leftrightarrow a,b \text{ rela prime}$
 - Prop: gcd(a,b) = gcd(b,r)
 - Proof
 - x|a & x|b iff x|b & x|r
 - Euclid's Algorithm
 - Algo: while(a i != 0) {compute a i-1 = q*a i + a i+1; i++} output a i-1
 - a i strictly decreases, so terminates eventually
 - $r < \frac{1}{2} a \text{ (if } a \le n)$
 - $Proof(b \le 1/2a, b > 1/2a: a = 1*b + (a-b), a-b \le b)$
 - Number of steps in Euclid Alg is <= 2log 2 a
 - $a 6 < \frac{1}{2} a 4 < \frac{1}{4} a 2 < \frac{1}{8} a 0$
 - a $2j < (\frac{1}{2})^{j}$ a
 - #steps $\leq 2 \log 2$ a(a $2 \log 2$ a $\leq (\frac{1}{2}) \log 2$ a = 1) ≤ 1 integrity

- Extended Euclid Algorithm
 - $x_j+1=q_jx_j+x_j-1 & y_j+1=q_jy_j+y_j-1$
 - $a_j = (-1)^j x_j*a + (-1)^j+1 y_j*b$
 - Prove a $j = (-1)^j x j*a + (-1)^k \{j+1\}y j*b$
 - Induction, express a j+1 as -q j*a j+a j-1
- FTA
 - Prove Existence
 - induction(prime case, not prime case)
 - Thm: if p prime, $p|ab \rightarrow p|a$ or p|b
 - Prove: (suppose p!|b, then 1=xp+yb, multiply by a, p|a)
 - If p|q1q2q3...qm, then p=qi
 - Prove by induction and previous Thm
 - Prove Uniqueness
 - Prove by contradiction and previous Thm
 - $p|ab \rightarrow p|a$ and p|b
 - Proof
 - $gcd(a,b) = Multiplication(p_i^Min\{e_i,d_i\})$
- Fermat's Little Theorem
 - p prime, a in Z_p^* , $a^(p-1) = 1 \mod p$
- Euler's Theorem
 - n > 1, a in Z n^* , $a^(phi(n)) = 1 \mod n$
 - Cor: $a^{(-1)} = a(phi(n)-1) \mod n$
 - proof: order(a)|phi(n)
- Carmichael Numbers
 - when do we use them?
- Abstract Algebra:
 - a congruent to b mod n
 - Definition (n|a-b)
 - mod: a = q*n+r; cong: n|a-b
 - Characteristics
 - a cong a mod n
 - $a cong b mod n \Rightarrow b cong a mod n$
 - $a cong b mod n \Rightarrow b cong c mod n \Rightarrow a cong c mod n$
 - a cong b mod n & c cong d mod n
 - \Rightarrow a + c cong b + d mod n & a*c cong b*d mod n
 - Z n groups
 - a + nZ(congruence classes), Z/nZ
 - (a + nZ) + (b + nZ) = (a + b) + nZ, (a + nZ)*(b + nZ) = (a*b) + nZ
 - because $a+nZ = a'+nZ \Leftrightarrow a \text{ cong } a' \text{ mod } n$

- Isomorphism between a and a+nZ
- Abelian Groups
 - Closed, associ(a+(b+c)=(a+b)+c), identity(a*epsilon = epsilon*a = a),
 inverse(a*b = b*a = epsilon), group, abelian(AB=BA, must satisfy group property)
 - Rubik's cube example
 - Suppose G = (V,0) is a group
 - Unique identity
 - Unique inverse
 - Definition of unit
 - a is a unit in n iff gcd(a,n) = 1
 - Definition of Z n*
 - Z n*,* is a group
 - Definition of phi(n)
- Chinese Remainder Thm(n1...nk rela prime, x solves x cong b_i mod n_i)
 - x cong Summation(b_i*N_i*N_i_inverse)
 - Proof: if $x = x' \mod n1$, n2, n3...nk, then $x = x' \mod n1*n2$..=n
 - n1|x x', n2|x x'... since n1, n2... rela prime, n|x-x'
- Definition of subgroup
 - $alpha^0 = epsilon$
 - <alpha>: subgroup of G generated by alpha(alpha*alpha...)
 - order(alpha) = $min\{i \text{ in } Z: alpha^i = epsilon\}$
 - Prop: order(alpha) < infinity, <alpha> isomorphic to (Z_order(alpha),+), alpha^(order(alpha)-1) = alpha^(-1)
 - Prove prop(2. $alpha^(s+t)=alpha^(qm+r)$)
- Lagrange Thm: |H| | |G| (proven by propositions below)
- Left coset
 - Each left coset has cardinality |H|
 - Left coset partition G
 - Proof
 - $g^{(-1)gh1}=g^{(-1)gh2} -> h1=h2$
 - $g1h1=g2h2 \longrightarrow g1H$ belongs to g2H
- Summation(phi(d) = n) (d|n)
 - Proof 1(paired off), $2(1 \le x \le n/b \text{ bijection } 1 \le x \le n)$, $3(U = \gcd(a, n) = d)$
 - Cor:phi(pq)=(p-1)(q-1)
- Computational Complexity
 - 2^x is $O(e^x)$ but e^x is not in $O(2^x)$
 - length(n) = Theta(log n)
 - $d^k \le n \le d^k(k+1)$

- $k \le \log d n \le k+1$
- Running time = Theta(size of input) -> efficient!
- Example 1: Euclid's Alg -> efficient
 - Theta(x)
- Example 2: Bruce force primality testing -> exponential
 - Theta (2^x)
 - Theta(sqrt(2)^x) ---modified
- Fast Exponentiation
 - 1. write b as b_i*2^i (remainder is for i=0...k, divide until quotient is 0)
 - 2. 5^{(2^a)*5(2^b)*5(2^c)...}
 - k operations -> efficient
- Ciphers
 - RSA
 - To do list(find large primes, find units in phi(n), security)
 - public: (n,e) private: (p,q,d) (m^e)^d mod n = m mod n
 - What is the prob that n is not invertible
 - (n-invertible)/n = (pq (p-1)(q-1))/pq = (p+q-1)/pq
 - Digital signatures
 - Authentication, nonrepudiation, efficiency
 - Why cannot forge signature
 - $s = m^dA m = s^eA$, as hard as RSA!
 - Rabin
 - m² cong c mod p, no other square roots besides m and -m
 - Prove by contradiction, suppose $a^2 = c \mod p$, $p|a^2 m^2$, $p|(a-m)(a+m) -> a=m \mod p$ or $a=-m \mod p$
 - p cong 3 mod 4, square roots are $c^{((p+1)/4)}$
 - Proof: $(c^{(p+1)/4})^2 = c \mod p$
 - p,q distinct primes, how to find four sq roots of pq
 - $m1 = c^{(p+1)/4} \mod p$, $m1 = c^{(q+1)/4} \mod q$
 - $m2 = c^{((p+1)/4)} \mod p$, $m1 = -c^{((q+1)/4)} \mod q$
 - $m3 = -c^{((p+1)/4)} \mod p$, $m1 = c^{((q+1)/4)} \mod q$
 - $m4 = -c^{(p+1)/4} \mod p$, $m1 = -c^{(q+1)/4} \mod q$
 - Proof: $m^2 = c \mod pq \Rightarrow pq|m^2-c \Rightarrow p|m^2-c \& q|m^2-c \Rightarrow m^2 = c \mod p, m^2 = c \mod q \Rightarrow m = +-c^{(p+1)/4} \mod p, m = +-c^{((q+1)/4)} \mod q$
 - Efficient algo for computing 4 distinct sq roots provides and efficient factorization of pq

- m1^2=c mod pq, m2^2=c mod pq => m1^2=m2^2 mod pq => pq|(m1+m2)(m1-m2) [p,q must one in (m1+m2), one in (m1-m2)] => gcd(pq,(m1-m2)) = p or q
- Proof
- Elgamal
 - Primitive root definition($\langle r \rangle = Z p^*, r \text{ in } Z p^*$)
 - All primes p have a primitive root
 - Discrete logarithm
 - No efficient algorithm for computing dlogr
 - Diffie Hellman Key Exchange
 - $A = r^a \mod p$, $B = r^b \mod p$
 - $k = A^b$ or B^a but Eve cannot know k,a,b
 - Problem: find k efficiently from p,r,A,B
 - Elgamal Cryptosystem
 - $c = km \mod p$, $m = k^{-1}c \mod p$
 - Bob inverts k
 - Use Euclid's Algo
 - $k^{(-1)}=A^{(p-1-b)} \mod p$
- Factorization
 - Running time
 - $2^r \le p1p2...pr = n \implies r \le log2 n$
 - r is in x, so running time is xP(x) if factoring is in polynomial time
 - Factoring
 - Trial division
 - Method: divide 1...sqrt(n)
 - Analysis: not efficient
 - $sqrt(e)^x$
 - Even only check primes [density of primes 1/log_e m]
 sqrt(n)/logsqrt(n) n^0.00000001 > log n
 sqrt(n)/n^0.00000001is not helping
 - Fermat Factorization
 - Method: for i = 0,1,2... terminate if $n + i^2 = x^2$
 - Analysis: n,a,b odd, set i = (b-a)/2
 - RSA prime choosing lesson: do not take a,b to be too close
 - Exponent Factorization
 - Thm: $x^2 = y^2 \mod n$, if $x != y \mod n$ and $x != y \mod n$, then gcd(x-y,n) nontrivial factor
 - Method :
 - Express $k = 2^s *b$ (b odd integer)

- mu $0 = a^b \mod n$, for i = 1...s, mu i = mu $(i-1)^2$
- if mu (j-1) != -1, last mu that is not 1
- gcd(mu_(j-1)-1, n) is a non trivial factor also
 gcd(mu_(j-1)+1, n)
- Analysis: hope happens
- Use Exponent Factorization to factor n into p,q in RSA
 - Method: ed-1 = i*phi(n)
 - ½ fail, ½^l fail
 - ed poly in n
- P-1 Method
 - Method: 2^(B!) = ((2^2)^3)^4... if gcd(b-1, n) > 1, then gcd(b-1, n) is nontrivial factor
 - Analysis: Suppose p-1 has small primes in its prime decomp, so p-1|B!, suppose q-1!|B!, 2^(B!) = 2^(p-1*(B!/(p-1))) = 1 mod p, p|b-1, but q!|b-1, n: pq,p,q,1 but b-1 doesn't have pq as factor, then gcd(b-1,n) = p
 - Lesson: Do not choose p if (p-1) is just small primes in its prime factorization, do not choose q if (q-1) is just small primes in its prime factorization
- Quadratic Sieve
 - Given odd int to factor, if $x^2 \cos y^2 \mod n$, $x != +-y \mod n$ (then n divides x+y or n divides x-y), then nontrivial factor is gcd(x+y,n), gcd(x-y,n) [***some n's factors in x+y, some in x-y]
 - Pick a_i near sqrt(n), sqrt(2n), sqrt(3n) so that
 a_i^2=const*n+small_integer ⇔ a_i^2 = small_integer mod n
 Hope small_integer is a square
 - Analysis: more columns than rows -> linear dependence(det = 0)
- Sieve of Eratosthenes
- Generating Large Primes
 - Density(1/log e n, 1/6log elog en)
 - Efficient Testing(O(log e n) tests will be efficient)
 - Ex. 20log e n numbers will almost guarantee 20 primes
- Primality Testing (both Fermat and M-R, if not 1 => not prime immediately)
 - Fermat Test: if n prime then $a^n-1= 1 \mod n$
 - Method: randomly choose a, test $a^n-1= 1 \mod n$
 - Analysis: mysterious
 - Odd, composite n is Carmichael number if a^n-1= 1 mod n for all a in Z n*
 - Ex. 561

- There are infinitely many Carmichael numbers
- Miller-Rabin Thm: if n prime, either mu_0 = 1 or mu_i = -1, can filter out some Carmichael numbers!
 - Method: randomly choose 1 integers, check criterion, tell prime/not
 - Analysis: if prime, both says prime

If not prime, maybe Fermat says prime but M-R doesn't P(M-R wrongfully suggests "prime") $\langle = \frac{1}{4} \rangle = P(wrong) = (\frac{1}{4})^{n}$

- Silly Primality Testing: randomly choose a in 1,2...n-1, compute gcd(a,n)
- Other
 - Lagrange interpolation scheme
 - Given x1,x2...xk distinct, y1,y2...yk, find $P(x) = a k-1x^{(k-1)}+...+a 1x+a 0$ s.t P(xj) = yj
 - Vandermonde matrix: det(V) = Product(xi-xj) for all i $\leq j$, invertible!
 - Existence + Uniqueness
 - Another approach: Li(x) = Product((x-xj)/(xi-xj)) (j!=i) j changes so P(xj)= Sum i to k yiLi(xj)
 - Existence shown above
 - Uniqueness: suppose P(xi)=P'(xi) for i=1...k -> P-P' is poly with <=k-1 degree but k roots => P-P' cong 0
 - Field
 - Def: a set V with two binary operations: * and +
 - Z p,+,* is a field iff p is prime(all units can find inverses)
 - Secret exchange
 - Pick P(x), a 0=s <- secret
 - pick distinct x1,x2...xw
 - distribute (x1, y1), (x2, y2)...(xw,yw) to w people
 - Any k of them can derive secret together