

Title

Fermentative production of amino acids

Inventor Name

Nakayama, Kiyoshi; Araki, Kazumi; Tanaka, Yoshitake

Patent Assignee

Kyowa Hakko Kogyo Co., Ltd., Japan

Publication Source

Jpn. Kokai Tokkyo Koho, 4 pp.

Identifier-CODEN

JKXXAF

Patent Information

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 52018886	A2	19770212	JP 1975-93181	19750801 <--
JP 58038153	B4	19830820		

Priority Application Information

JP 1975-93181 19750801

Abstract

Amino acids except for L-glutamic acid were produced by Microcyclus. Thus, *M. evaneus* HS-22 (FERM-P 3138) was cultured with shaking at 30° for 72 h on a medium (pH 7.1) contg. MeOH 20 mL, NH4H2PO4 2.5, (NH4)2HPO4 7.5, K2HPO4 1, NaCl 0.1, MgSO4.cndot.7H2O 0.5, and CaCO3 30 g/L plus trace amts. of FeSO4, MnSO4, CaCl2, biotin, and phenol red; 2 mL MeOH and 0.2 g urea were added to each dL broth after 24, 32, 48, and 56 h of cultivation. Leucine [61-90-5], isoleucine [73-32-5], valine [72-18-4], alanine [56-41-7], aspartic acid [56-84-8], and lysine [56-87-1] were produced at 0.7, 0.1, 0.7, 0.2, 0.1, and 0.3 mg/mL, resp. These amino acid were purified by ion exchange column chromatog.

International Patent Classification

C12D013-06

Document Type

Patent

Language

Japanese

THIS PAGE BLANK (USPTO)

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 52-018886
(43)Date of publication of application : 12.02.1977

(51)Int.CI.

C12D 13/06

(21)Application number : 50-093181

(71)Applicant : KYOWA HAKKO KOGYO CO LTD

(22)Date of filing : 01.08.1975

(72)Inventor : NAKAYAMA KIYOSHI

ARAKI KAZUMI

TANAKA YOSHITAKE

(54) PRODUCTION OF AMINO ACIDS BY FERMENTATION PROCESS

(57)Abstract:

PURPOSE: Production of amino acids (other than L-Glutamic acid) by fermentation process using amino-acids-producing strains.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

BEST AVAILABLE COPY

(3000円)

特許願 (B)

昭和30年8月1日

特許庁長官 聲

1. 発明の名称

発酵法によるアミノ酸の製造法

2. 発明者

住所 神奈川県相模原市南台1丁目16番9号
氏名 市山 清 (ほか3名)

3. 特許出願人

郵便番号 100

住所 東京都千代田区大手町一丁目6番1号

名称 (102)協和醸酵工業株式会社

代表者 高田 弘

4. 添付書類の目録

(1) 明細書

方録

(2) 願書副本

(3) 微生物保藏委託申請書受取番号票 /通

⑯ 日本国特許庁

公開特許公報

⑩ 特開昭 52-18886

⑪ 公開日 昭52(1977)2.12

⑫ 特願昭 50-93181

⑬ 出願日 昭50(1975)8.1

審査請求 未請求 (全4頁)

庁内整理番号

7110 49

7110 49

⑭ 日本分類

36(2)D252

36(2)D251

⑮ Int.CI²

C12D 13/06

明細書

1. 発明の名称

発酵法によるアミノ酸の製造法

2. 特許請求の範囲

ミクロサイクラス属に属するアミノ酸(たとし、L-グルタミン酸を除く)生産性菌株を培地に培養し、アミノ酸(たとし、L-グルタミン酸を除く)を生成蓄積せしめ、これを採取することを特徴とする発酵法によるアミノ酸(たとし、L-グルタミン酸を除く)の製造法。

3. 発明の詳細な説明

本発明は、発酵法によるアミノ酸の製造法に関するものである。さらに詳しくは、ミクロサイクラス属に属するアミノ酸(たとし、L-グルタミン酸を除く)生産性菌株を、糖質の変化しする炭素源(たとえは、メタノールなどのアルコール、グルコース、フラクトース、糊精、可溶性デンプンなどの糖質、グリセリンなどの糖アルコール、フマル酸、コハク酸、グルコ

ン酸などの有機酸など)、窒素源、および無機物ならびにその他の栄養素を適よく含有する培地に接種、培養してアミノ酸(たとし、L-グルタミン酸を除く)を培養液中に生成蓄積せしめ、これを採取することを特徴とするアミノ酸(たとし、L-グルタミン酸を除く)の製造法に関するものである。

リジン、アスパラギン酸、ロイシン、イソロイシン、バリン、アラニン、セリン、ホモセリンなどのアミノ酸は食品、医薬品、飼料などとして広く利用され、その工業的安価な製法が望まれている。

本発明者らは、比較的安価に、大量に供給されるメタノールを主炭素源とするアミノ酸の製法について研究した。その結果、たとえは、ミクロサイクラス・エバネウス ATCC 21373(アメリカ特許第3663370) (メタノールよりL-グルタミン酸を生産する菌株)より誘導された変異株(チアリジンとホモセリンの共存下で生育する菌株、チアリジンとスレオニン

の共存下で生育する菌株)の培養物中に、リジン、アスパラギン酸、ロイシン、イソロイシン、バリン、アラニン、セリン、ホモセリンなどのアミノ酸が生成蓄積する事実を見い出した。核マイクロサイクラス属の菌を利用する本発明は、従来、メタノールを主炭素源として、発酵法により、アミノ酸を製造する方法として既知な方法即ち、シュウドモナス属、アクロモバクター属の細菌を利用する方法(特公昭49-25273)、バチルス属、ブレビバクテリウム属、マイクロコクカス属、サルシナ属の細菌を利用する方法(特開昭48-98092)、プロタミノバクター属の細菌を利用する方法(フランス特許公開2225-517および同2225-520)とは、使用微生物を異にし、さらに、マイクロサイクラス属の菌を利用するL-グルタミン酸の製造法(アメリカ特許第3663370)とは、生産するアミノ酸の種類において区別され、新規な発明である。

以下本発明を詳細に説明する。

培地組成: メタノール20mM/l、 $\text{NH}_4\text{H}_2\text{PO}_4$ 1g/l、 $(\text{NH}_4)_2\text{HPO}_4$ 3g/l、 K_2HPO_4 0.5g/l、 $\text{MgSO}_4 \cdot 7\text{H}_2\text{O}$ 0.2g/l、 $\text{FeSO}_4 \cdot 7\text{H}_2\text{O}$ 1.0mg/l、 $\text{MnSO}_4 \cdot \text{nH}_2\text{O}$ 10mg/l、 CaCl_2 1.0mg/l、チオ尿素50μg/l、ビオチン1.0μg/l、 NaCl 0.1g/l、寒天 2.0g/l、チアリジン1g/l、ホモセリン 2g/l、水で1lとする。(pH 7.2)

なお、上記培地において、ホモセリンの代りにスレオニンを用いると、チアリジンとスレオニンの共存下で生育できる変異株を誘導することができる。

上記の如き変異誘導法によつて、マイクロサイクラス属のアミノ酸(ただし、L-グルタミン酸を除く)生産性菌株を得ることができるが、天然界より、上記の如き性質をもつた菌株を得ることもできる。

本発明における培地としては、使用菌の資化しうる炭素源、窒素源、無機物、その他の栄養素を極よく含有するものであれば合成培地、天

本発明において使用される微生物はマイクロサイクラス属に属するアミノ酸(ただし、L-グルタミン酸を除く)生産性菌株であればいずれでも良い。この様なアミノ酸生産菌はマイクロサイクラス属に属する細菌に公知の方法で紫外線照射、γ線照射、薬剤処理などの変異処理を施して公知の適当な選択法を併用することによって得ることができる。

次に、原株として、マイクロサイクラス・エバネウス ATCC21373を用いた場合の次にその具体的な操作法について説明する。

原株(ATCC21373)の懸液(10⁸ cells/ml)を調整し、これに、0.01Mリン酸緩衝液(pH 7.0)に溶解したDTG(N-メチル-L-D-ニトロ-L-ニトロソングアニジン)を最終濃度0.5mg/mlになるように加え、室温で60分間処理する。ついで該処理液を下記の培地に塗布し、該培地で生育する菌株(チアリジンとホモセリンの共存下で生育する変異株)の中からアミノ酸生産性の高い菌株を選択する。

J字加入

2字削除

然培地のいずれも使用できる。

炭素源としては、主にメタノールが利用されるが、グルコース、フラクトース、糖蜜、可溶性デンプンなどの糖質、グリセリンなどの糖アルコール、フマル酸、コハク酸、グルコン酸などの有機酸なども主炭素源として利用できる。

主炭素源として使用するメタノールは培養初期から高濃度に使用すると微生物の生育を阻害する場合があるので、通常は0.1~3%の低濃度で培養を開始し、その後必要に応じて逐次添加すると好結果を生じ得る。

培地の窒素源としては、塩化アンモニウム、亜硝酸アンモニウム、硝酸アンモニウム、硫酸アンモニウム、酢酸アンモニウム、クエン酸アンモニウムなど、各種無機酸や有機酸のアンモニウム塩、あるいはアンモニア、尿素、アミン類、その他窒素含有化合物、ならびにペプトン、L-アミン、酵母エキス、肉エキス、コーンスチーブリカ、カゼイン加水分解物、過加水分解物、フィッシュユミールあるいはその消化物、

BEST AVAILABLE COPY

脱脂大豆あるいはその消化物
などの栄養素や糖物質などの種々のものが使用
できる。

さらに無機物として磷酸第一カリウム、磷酸
第二カリウム、硫酸マグネシウム、塩化ナトリ
ウム、硫酸第一鉄、硫酸マンガン、硫酸亜鉛、
炭酸カルシウムなどを使用する。

もちろん本発明に使用する微生物が生育の為
に特定の栄養素を必要とする場合はその栄養素
を適当量培地中に存在せしめなければならない。
しかしこの種の栄養素は前記营养源として例示
した留着性有機物質に含まれて加えられる場合
があり、その様な場合には特に添加する必要は
ない。

培養は振盪あるいは深部通気攪拌などの好氣
的条件で行う。培養温度は通常20~40℃の
範囲で、培地のpHは3~9の範囲、好ましく
は中性付近に保持することが望ましいが、これ
以外の温度条件あるいはpH条件下でも使用菌
が生育すれば実施可能である。培地のpH調節
は炭酸カルシウム、pH緩衝剤、あるいは酸土

該菌株を、メタノール20ml、(NH₄)₂HPO₄
2.5g、(NH₄)₂HPO₄ 2.5g、K₂HPO₄ 1g、
NaCl 0.1g、MgSO₄·7H₂O 0.5g、FeSO₄
·7H₂O 1.0g、MnSO₄·nH₂O 1.0g、CaCO₃
1.0g、ビオチン1.0mg、フェノールレッド
(pH指示薬)1.0g、およびCaCO₃ 3.0g
を1/6の蒸留水に溶解した培地(pH7.1)5
mlを含む50ml容大型試験管に接種して30℃、
72時間振盪培養を行なつた。この際、培養開
始後24、32、48、56時間目にメタノー
ルをそれぞれ2ml/dl(合計8ml/dl)および
尿素を0.2g/dl添加した。この時培養液中に
生成したアミノ酸の蓄積量は次の通りである。

蓄積したアミノ酸	蓄積量(mg/ml)
ロイシン	0.7
イソロイシン	0.1
バリン	0.7
アラニン	0.3
アスパラギン酸	0.1
リジン	0.3

特開昭52-18886(3)
たはアルカリ溶液を添加することにより目的を
達するが、使用菌株によつてはpH調節を必须
としない場合がある。培養期間は通常1~7日
間で培養液中にアミノ酸が生成蓄積する。

培養終了後、菌体や炭酸カルシウムなどの沈
殿物を除去し、実施例に示すようなイオン交換
樹脂処理により培養物から個々のアミノ酸を回
収する。その他公知のイオン交換樹脂処理法、
溶離法、吸着法などを併用することによつても
回収することができる。

次下に実施例をあげて本発明を具体的に示す。

実施例1

種菌としてミクロサイクラス・エバネウス
T B - 22 K Y 7831(微研寄託受理番
号第3138号)を使用した(本菌株はミクロ
サイクラス・エバネウス K Y 3832(ATCC
21373)を親株としてチアリジン1mg/ml
およびホモセリン2mg/mlの両者を含む培地に
生育可能な変異株として取得されたものであつ
て、親株はこの条件下で全く生育できない。)

培養終了後の培養液500mlから菌体、炭酸
カルシウムその他の沈殿物を除き、pHを強酸
性陽イオン交換樹脂ダイヤイオンB E - 1(B⁺
型)(三菱化成社製)のカラムに通してロイシ
ンを吸着させ、水洗後0.5規定アンモニア水で
溶出してロイシン画分を集め、濃縮してpH
より5の等電点で晶出させることにより純度
98%以上のロイシン1.0gを得た。
ロイシン以外の他のアミノ酸も、上記の如きイ
オン交換処理法を適宜応用することによつて精
製単離される。

実施例2

種菌としてミクロサイクラス・エバネウス
K Y 3832(ATCC21373)から誇導され
たミクロサイクラス・エバネウス T B - 19
K Y 7832(微研寄託受理番号第3139号)
を使用した。本菌株はチアリジン1mg/mlおよ
びレースレオニン2mg/mlの共存下で生育可能
な菌株として取得された変異株であつて、親株
はこの条件下で全く生育できない。

この操作を実施例1の場合と同様に培養し、
培養終了後固体、炭酸カルシウムその他の沈澱物を除き、培養液を濃縮した後、規定培養中にて120℃、2時間加熱したところ、このサンプル中のアミノ酸としてホモセリン0.4mg/ml
およびセリン0.35mg/ml(培養液中の濃度として)が蓄積した。

実施例3

種菌として実施例1で使用したミクロサイク
ラス・エバネウス日8-22 XY783/
(微研客託受理番号第3138号)を使用し、
実施例1で使用した培地にさらにコーンスチー
ブリカーオタモを添加した培地(pH7.1)
を使用する他は実施例1の場合と同様に培養し
たところ、培養液中にロイシン0.9mg/ml、イ
ソロイシン0.2mg/ml、バリン1.0mg/ml、アラ
ニン0.6mg/ml、アスパラギン酸0.2mg/ml、
およびリシン0.3mg/ml(培地中の各アミノ酸
の濃度と差し引いた値)がそれぞれ生成蓄積し
た。

上記以外の発明者

氏名	アラキ カズミ
住所	東京都町田市山崎町3130番地
氏名	荒木 和美
住所	東京都町田市金井町3133
氏名	田中 芳武

アラキ カズミ
東京都町田市金井町3133
田中 芳武