ABSTRACT

In an oxide dispersion strengthened martensitic steel which comprises, by % by weight, 0.05 to 0.25% C, 8.0 to 12.0% Cr, 0.1 to 4.0% W, 0.1 to 1.0% Ti, 0.1 to 0.5% Y_2O_3 with the balance being Fe and unavoidable impurities and in which Y2O3 particles are dispersed in the steel, by adjusting the Ti content within the range of 0.1 to 1.0 % so that an excess oxygen content Ex.O in steel satisfies [0.22 x Ti (% by weight) $\langle \text{Ex.O} (\% \text{ by weight}) \langle 0.46 \times \text{Ti} (\% \text{ by weight}) \rangle$, the oxide particles are finely dispersed and highly densified to thereby obtain an oxide dispersion strengthened martensitic steel excellent in high-temperature strength. It is also possible to reduce the amount of oxygen contamination in steel during the mechanical alloying of raw material powders to provide Ex.O within a predetermined range, by carrying out the mechanical alloying in an Ar atmosphere having a super purity of not less than 99.9999%, by reducing stirring energy during the mechanical alloying or by using a metal Y powder or an Fe_2Y powder in place of the Y_2O_3 powder.