АЛГОРИТМЫ СЛЕДОВАНИЯ ПО ПРЕДПОЛАГАЕМЫМ ТРАЕКТОРИЯМ ОТ ПРЕСЛЕДОВАТЕЛЯ ДО ДИНАМИЧЕСКОЙ ЦЕЛИ

FOLLOW-UP ALGORITHMS FOR THE SUGGESTED TRAJECTORIES FROM A PURCHASER TO A DYNAMIC GOAL

А. А. Дубанов¹, Т. В. Аюшеев²

¹Бурятский Государственный Университет, Улан-Удэ, Российская Федерация ²Восточно-Сибирский Государственный Университет Технологий и Управления, Улан-Удэ, Российская Федерация

A. A. Dubanov, T. V. Ausheev

1Buriat State University, Ulan-Ude, Russian Federation

2 East Siberian State University of Technology and Management, Ulan-Ude, Russian Federation

Аннотация –

Ключевые слова – преследование, уклонение, убегание, моделирование

DOI: устанавливается издательством

І. Введение

В данной статье используются теоретические положения задачи преследования, изложенные в работах Р. Айзекса [1], Л.С. Понтрягина [2], Н.Н. Красовского, А.И. Субботина [3]. Также используются результаты, полученные в работах Ю.Н. Желнина [4], С.В. Бурдакова, П.А. Сизова [5], Э.Н. Симаковой [6].

В данной статье приводится описание алгоритмов, в которых в каждый момент времени моделируется траектория предполагаемого движения от преследователя к цели. В ранее рассматриваемых моделях адаптивного поведения, преследователь и цель анализировали координаты оппонента по игре и принимали в автоматическом режиме решение о направлении движения. То в моделях, описываемых в данной статье, поведение преследователя определяется расположением точки пересечения окружности радиуса равным дискретному шагу цели и предполагаемой смоделированной траектории в данный момент времени

II. Постановка задачи

III. Теория

Рассмотрим задачу моделирования траектории преследователя. Траектория преследователя должна выходить из точки P со значением скорости V_P и настигнуть цель в точке T.

Рис. 5.1 Предполагаемая траектория следования преследователя

Причем, траектория должна быть сконструирована таким образом, чтобы она зашла в точку T сонаправленно вектору V_P' (Рис. 5.1). Предполагаемая траектория движения состоит из двух частей. Из прямолинейного отрезка, соединяющего точки P и P_{tan} , и из дуги T, P_{tan} радиуса R_p .

Ограничение нашей моделируемой траектории заключается в том, радиус кривизны не может быть меньше величины R_p . Угол входа преследователя в точку T определяется вектором скорости V_p' . Направление данного вектора в нашей тестовой программе выбрано такое, что вектор скорости преследователя V_p' перпендикулярен вектору скорости цели V_T . Центр окружности, которая отвечает заданным условиям, вычисляется так: $C_T = T + R_P \cdot \left(-\frac{V_T}{|V_T|}\right)$.

Для нахождения точки P_{tan} , которая также является точкой сопряжения прямой (P, P_{tan}) и дуги T, P_{tan} нами реализована процедура — функция, которая формирует локальную систему координат с центром в точке P и с базисными векторами e_1 и e_2 : $e_1 = \frac{c_{T-P}}{|c_{T-P}|}$ $e_2 = \begin{bmatrix} -e_{1y} \\ e_{1x} \end{bmatrix}$. Базис (e_1, e_2) является ортогональным.

В такой системе координат точка C_T преобразуется к виду: $C_{T,n} = \begin{bmatrix} (C_T - P) \cdot e_1 \\ (C_T - P) \cdot e_1 \end{bmatrix}$. Очевидно, что координаты $C_{T,n}$ будут такими: $C_{T,n} = \begin{bmatrix} |(C_T - P)| \\ 0 \end{bmatrix}$. Пусть модуль вектора $|(C_T - P)|$ будет равен числу C_X (Рис. 5.2), тогда в локальной системе координат (e_1, e_2) с центром в точке P координаты точки сопряжения $P_{tan,n}$ будут удовлетворять системе уравнений: $(P_{tan,n} - C_{T,n}) \cdot (P_{tan,n} - C_{T,n}) = R_P^2$ $(P_{tan,n} - C_{T,n}) \cdot P_{tan,n} = 0$

Данная система уравнений имеет решение: $P_{tan.n} = \begin{bmatrix} \frac{C_X^2 - R_P^2}{C_X} \\ \pm \frac{R_P \cdot \sqrt{(C_X + R_P) \cdot (C_X - R_P)}}{C_X} \end{bmatrix}$. Таково решение в локальной системе координат (e_1, e_2) с центром в точке P.

Рис. 5.2 Определение точки сопряжения в локальной системе координат

Для перевода точки $P_{tan.n}$ в мировую систему координат (H_1,H_2) , где $H_1=\begin{bmatrix}1\\0\end{bmatrix}$, $H_2=\begin{bmatrix}0\\1\end{bmatrix}$, необходимо получить выражения для базиса (H_1,H_2) в базисе (e_1,e_2) : $h_1=\begin{bmatrix}H_1\cdot e_1\\H_1\cdot e_2\end{bmatrix}$ $h_2=\begin{bmatrix}H_2\cdot e_1\\H_2\cdot e_2\end{bmatrix}$

Тогда, точка $P_{tan.n}$ в мировой системе координат будет выглядеть так: $P_{tan} = \begin{bmatrix} P_{tan.n} \cdot h_1 \\ P_{tan.n} \cdot h_2 \end{bmatrix} + P$

В нашей тестовой программе, написанной по материалам главы, мы выбрали вариант, соответствующий верхнему положению точки $P_{tan.n}$.

Поскольку, мы рассматриваем квазидискретную модель задачи преследования, то мы вправе ввести период дискретизации ΔT . Откуда, в рамках настоящей модели, имеем, что шаг преследователя за период дискретизации имеет величину $|V_P| \cdot \Delta T$.

Если минимальный радиус кривизны траектории преследователя равен, то будет обоснованным считать, что угловая частота вращения преследователя P на виражах будет равна $\omega_P = \frac{|V_P|}{R_P}$. Угол поворота при выполнении шага итерации не может превышать величины $\omega_P \cdot \Delta T$.

1. Анализ координат точки касания из динамической системы координат преследователя

Рис. 5.3 Выбор направления движения преследователем

В нашей квазидискретной модели задачи преследования преследователь имеет целью догнать преследуемый объект, чтобы в момент совпадения координат преследователь имел заданный вектор

скорости, при этом минимальный радиус кривизны траектории не был меньше допустимого. Сформируем базис (v_1,v_2) с началом координат в точке P (Рис. 5.3): $v_1=\frac{v_P}{|v_P|}$ $v_2=\begin{bmatrix}-v_1\\v_1\\x\end{bmatrix}$. В данную динамическую систему координат, зависящую от скорости преследователя, переведем координаты точки P_{tan} : $P_{tan.v}=\begin{bmatrix}(P_{tan}-P)\cdot v_1\\(P_{tan}-P)\cdot v_2\end{bmatrix}$. Координаты $P_{i.v}$ в системе координат (v_1,v_2) с началом в точке P будут такие:

$$P_{i,v} = \begin{cases} if \ P_{tan.v_y} \geq 0 \ \begin{bmatrix} |V_P| \cdot \Delta T \cdot cos(\omega_P \cdot \Delta T) \\ |V_P| \cdot \Delta T \cdot sin(\omega_P \cdot \Delta T) \end{bmatrix} \\ if \ P_{tan.v_y} < 0 \ \begin{bmatrix} |V_P| \cdot \Delta T \cdot cos(\omega_P \cdot \Delta T) \\ -|V_P| \cdot \Delta T \cdot sin(\omega_P \cdot \Delta T) \end{bmatrix} \end{cases}$$

Если угол \propto меньше, чем угол $\omega_P \cdot \Delta T$, тогда координаты точки $P_{i,v}$ будут выглядеть иначе:

$$P_{i.v} = \begin{cases} if \ P_{tan.v_y} \geq 0 \ \begin{bmatrix} |V_P| \cdot \Delta T \cdot cos(\alpha) \\ |V_P| \cdot \Delta T \cdot sin(\alpha) \end{bmatrix} \\ if \ P_{tan.v_y} < 0 \ \begin{bmatrix} |V_P| \cdot \Delta T \cdot cos(\alpha) \\ -|V_P| \cdot \Delta T \cdot sin(\alpha) \end{bmatrix} \end{cases}$$

Угол \propto - это угол между вектором $P_{tan.v}$ и вектором v_1 . Далее, следует перевести координаты $P_{i.v}$ из системы координат (v_1,v_2) мировую. Для этого получим выражения для базиса (H_1,H_2) в базисе (v_1,v_2) : $h_{1.v} = \begin{bmatrix} H_1 \cdot v_1 \\ H_1 \cdot v_2 \end{bmatrix}$ $h_{2.v} = \begin{bmatrix} H_2 \cdot v_1 \\ H_2 \cdot v_2 \end{bmatrix}$. Где $H_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $H_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Откуда выражения для точки преследователя P_i на следующем этапе итераций будут такие: $P_i = \begin{bmatrix} P_{i.v} \cdot h_{1.v} \\ P_{i.v} \cdot h_{2.v} \end{bmatrix} + P$. Итак, моделируемая траектория преследователя P_i приближается к прямой линии (P, P_{tan}) . Наша моделируемая траектория должна на определенных этапах итерационного процесса приближаться к сегменту дуги T, P_{tan} (Рис. 5.1)

2. Анализ координат точек пересечения окружностей

В этом параграфе мы рассмотрим ситуацию, когда расстояние между преследователем P и центром окружности C_T (Рис. 5.1) меньше минимального радиуса кривизны траектории R_P (Рис. 5.4). На Рис. 5.4 показаны две пересекающихся окружности с радиусами r_P и R_P , с центрами в точках P и C_T , соответственно, где $r_P = \omega_P \cdot \Delta T$, а R_P - минимальный радиус кривизны траектории преследователя. Целью задачи, описанной в данном параграфе, является определение координат точки P_i в мировой системе координат на основе анализа точки P_{int} пересечения окружностей. Точку пересечения окружностей удобно будет получить в системе координат (e_1, e_2) с центром в точке P, как и ранее, считается: $e_1 = \frac{c_T - P}{|C_T - P|}$ $e_2 = \begin{bmatrix} -e_{1y} \\ e_{1x} \end{bmatrix}$

В такой системе координат выражения для точки пересечения окружностей $P_{int.n}$:

$$P_{int.n} = \begin{bmatrix} \frac{C_X^2 - R_P^2 + r_P^2}{2 \cdot C_X} \\ \pm \frac{\sqrt{(C_X + R_P - r_P) \cdot (C_X - R_P + r_P) \cdot (R_P - C_X + r_P) \cdot (R_P + C_X + r_P)}}{2 \cdot C_X} \end{bmatrix}$$

В нашей тестовой программе во внимание принята только верхняя точка (Рис. 5.4) с положительным знаком в локальной системе координат. Переведем координаты $P_{int.n}$ в мировую систему координат: $P_{int.n} = \begin{bmatrix} P_{int.n} \cdot h_1 \\ P_{int.n} \cdot h_2 \end{bmatrix} + P$. Векторы h_1 и h_2 имеют смысл: $h_1 = \begin{bmatrix} H_1 \cdot e_1 \\ H_1 \cdot e_2 \end{bmatrix}$ $h_2 = \begin{bmatrix} H_2 \cdot e_1 \\ H_2 \cdot e_2 \end{bmatrix}$, где $H_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $H_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Рис. 5.4 Анализ координат точки пересечения окружностей

Для анализа точки пересечения окружностей, необходимо перейти в систему координат (v_1, v_2) с началом координат в точке P (Рис. 5.5): $v_1 = \frac{v_P}{|V_P|}$ $v_2 = \begin{bmatrix} -v_{1y} \\ v_{1x} \end{bmatrix}$.

Рис. 5.5 Анализ из системы координат преследователя

В системе координат (v_1, v_2) координаты точки P_{int} выглядят так: $P_{int.v} = \begin{bmatrix} (P_{int} - P) \cdot v_1 \\ (P_{int} - P) \cdot v_2 \end{bmatrix}$.

Координаты $P_{i.v}$ в системе координат (v_1, v_2) с началом в точке P будут такие:

$$P_{i.v} = \begin{aligned} & if \ P_{int.v_y} \geq 0 \ \begin{bmatrix} |V_P| \cdot \Delta T \cdot cos(\omega_P \cdot \Delta T) \\ |V_P| \cdot \Delta T \cdot sin(\omega_P \cdot \Delta T) \end{bmatrix} \\ & if \ P_{int.v_y} < 0 \ \begin{bmatrix} |V_P| \cdot \Delta T \cdot cos(\omega_P \cdot \Delta T) \\ -|V_P| \cdot \Delta T \cdot sin(\omega_P \cdot \Delta T) \end{bmatrix} \end{aligned}$$

Если угол \propto меньше, чем угол $\omega_P \cdot \Delta T$, тогда координаты точки $P_{i.v}$ будут выглядеть иначе:

$$P_{i.v} = \begin{cases} if \ P_{int.v_y} \geq 0 \ \begin{bmatrix} |V_P| \cdot \Delta T \cdot cos(\alpha) \\ |V_P| \cdot \Delta T \cdot sin(\alpha) \end{bmatrix} \\ if \ P_{int.v_y} < 0 \ \begin{bmatrix} |V_P| \cdot \Delta T \cdot cos(\alpha) \\ -|V_P| \cdot \Delta T \cdot sin(\alpha) \end{bmatrix} \end{cases}$$

Угол \propto - это угол между вектором $P_{int.v}$ и вектором v_1 . Далее, следует перевести координаты $P_{i.v}$ из системы координат (v_1,v_2) мировую. Для этого получим выражения для базиса (H_1,H_2) в базисе (v_1,v_2) : $h_{1.v}=\begin{bmatrix} H_1\cdot v_1\\ H_1\cdot v_2 \end{bmatrix}$ $h_{2.v}=\begin{bmatrix} H_2\cdot v_1\\ H_2\cdot v_2 \end{bmatrix}$. Где $H_1=\begin{bmatrix} 1\\ 0 \end{bmatrix}$, $H_2=\begin{bmatrix} 0\\ 1 \end{bmatrix}$. Откуда выражения для точки преследователя P_i на следующем этапе итераций будут такие: $P_i=\begin{bmatrix} P_{i.v}\cdot h_{1.v}\\ P_{i.v}\cdot h_{2.v} \end{bmatrix}+P$. Итак, в этом параграфе мы разобрали часть алгоритма, в котором преследователь стремиться выйти на дугу P_{int} , T (Рис. 5.4).

3. Случай непересекающихся окружностей

Во избежание в нашем алгоритме неизвестных ситуаций, рассмотрим случай, когда $|P-C_P| < R_P-r_p$. В этом случае мы вправе назначить точку P_{int} на оси (P,C_P) . На Рис. 5.6 слева от точки P. Если рассматривать из системы координат (e_1,e_2) с центром в точке C_T , то это точка $P_{int.n} = \begin{bmatrix} -R_P \\ 0 \end{bmatrix}$.

Рис. 5.6 Анализ случая непересекающихся окружностей

Для нас необходимо рассчитать угол \propto между вектором V_P , приложенным к точке P, и вектором $\overrightarrow{P,P_{int}}$.

Если угол \propto меньше, чем угол $\omega_P \cdot \Delta T$, тогда координаты точки $P_{i.v}$ следующего этапа итераций в системе координат (v_1, v_2) с началом в точке $P: P_{i.v} = \begin{bmatrix} |V_P| \cdot \Delta T \cdot cos(\propto) \\ |V_P| \cdot \Delta T \cdot sin(\propto) \end{bmatrix}$

Если точка T в системе координат (e_1, e_2) с центром в точке C_T , находится в верхней полуплоскости.

Если в нижней, то: $P_{i.v} = - \begin{bmatrix} |V_P| \cdot \Delta T \cdot cos(\propto) \\ |V_P| \cdot \Delta T \cdot sin(\propto) \end{bmatrix}$. Если \propto больше, чем угол $\omega_P \cdot \Delta T$, тогда координаты точки $P_{i.v}$ будут такие: $P_{i.v} = \begin{bmatrix} |V_P| \cdot \Delta T \cdot cos(\omega_P \cdot \Delta T) \\ |V_P| \cdot \Delta T \cdot sin(\omega_P \cdot \Delta T) \end{bmatrix}$. Если точка T находится в верхней полуплоскости. Если в нижней полуплоскости, то: $P_{i.v} = - \begin{bmatrix} |V_P| \cdot \Delta T \cdot cos(\omega_P \cdot \Delta T) \\ |V_P| \cdot \Delta T \cdot sin(\omega_P \cdot \Delta T) \end{bmatrix}$.

Следует отметить, в процессе моделирования данная ситуация встречалась когда скорость преследователя намного превышала скорость цели. Еще может повлиять низкая угловая скорость преследователя. То есть цель на высокой скорости при большой инертности может попасть в ситуацию, когда $|P-C_P| < R_P - r_p$.