Foundations of Data Science & Analytics: Data **Exploration** and Visualization

Ezgi Siir Kibris Introduction to Data Mining, 2nd Edition hv

Tan, Steinbach, Karpatne, Kumar

What is data exploration?

- A preliminary exploration of a data set to better understand its characteristics
 - "Getting your hands on the data"
- Key motivations for data exploration include
 - Selecting the right tool for preprocessing or analysis
 - Making use of human abilities to recognize patterns
 - People can recognize patterns not found immediately by data analysis tools
- In our discussion of data exploration, we focus on
 - Summary Statistics
 - Visualization

Summary Statistics

- For **discrete** features, we first want to look at summary statistics, including:
 - Frequency/count of each value
 - Mode (most frequently occurring value)
- When examining **continuous** features, we look at:
 - Location
 - Mean/median
 - Range of values: [min, max]
 - Spread
 - Variance/standard deviation

Frequency and Mode

- The frequency of an attribute value is the percentage of time the value occurs in the data set
 - For example, given the attribute **Soda** and a representative population of soda drinkers, the value **Coke** occurs about 17% of the time.
- The mode of an attribute is the most frequently occurring attribute value
- The notions of frequency and mode are typically used with discrete data

Location: Mean and Median

- The mean is the most common measure of the location of a set of points.
- However, the mean is very sensitive to outliers.
- Thus, the median is commonly used.
 - Note: the data must be sorted to compute the median!

$$\operatorname{mean}(x) = \overline{x} = \frac{1}{m} \sum_{i=1}^{m} x_i$$

$$median(x) = \begin{cases} x_{(r+1)} & \text{if } m \text{ is odd, i.e., } m = 2r + 1\\ \frac{1}{2}(x_{(r)} + x_{(r+1)}) & \text{if } m \text{ is even, i.e., } m = 2r \end{cases}$$

Median Examples

Measures of Spread: Range and Variance

- Range is defined as the difference between the maximum and minimum values in the data set
- Variance and standard deviation are another common measure of the spread of a set of points. variance $(x) = s_x^2 = \frac{1}{m-1} \sum_{i=1}^{m} (x_i - \overline{x})^2$
- However, both are also sensitive to outliers, so IQR (interquartile range) is often used.

interquartile range(x) =
$$x_{75\%} - x_{25\%}$$

IQR w/Even Number of Samples

IQR w/Odd Number of Samples

Iris Data Set

- Contains 150 data instances
- Divided into three flower types (classes):
 - Setosa
 - Virginica
 - Versicolor
- Has four (non-class) features
 - Sepal width and sepal length
 - Petal width and petal length

Iris Data Set Summary Statistics

Name 🔺	Min	Max	Mean	Std
\blacksquare petal_length	1	6.9000	3.7587	1.7644
\blacksquare petal_width	0.1000	2.5000	1.1987	0.7632
\blacksquare sepal_length	4.3000	7.9000	5.8433	0.8281
\blacksquare sepal_width	2	4.4000	3.0540	0.4336
	count_virginica count_versicolor count_setosa		50 50 50	

Summary statistics don't tell the whole story. We need to visualize the data to understand it.

Visualization

- Conversion of data into a visual form so that the characteristics of the data and the relationships among data instances or attributes can be analyzed or reported.
- Visualizing data is one of the most powerful and techniques for data exploration.
 - Humans have a well developed ability to analyze large amounts of information that is presented visually
 - Can detect general patterns and trends
 - Can detect outliers and unusual patterns

Classic Visualization Example

- Sea Surface Temperature for July 1982
 - Tens of thousands of data points are summarized in a single figure

Basic Data Visualizations

- Line plot
- Scatter plot
- Histogram
- Box plot

Line Plot

Useful for plotting one feature at a time!

Scatter Plot

Useful for plotting two features at a time!

Histograms

- Shows the distribution of values for a single feature
- Divide the values into bins and show a bar plot of the number of objects in each bin. The height of each bar indicates the number of objects
- Shape of histogram depends on the number of bins

Box Plots

Provides a simple graphical depiction of interquartile range and outliers

Box Plot Example

Box plots can be used to compare features across classes or

across the entire data set

Data Visualization in Python

Visualization libraries are available in Python, including matplotlib and scikit-learn

See the Data Visualization.ipynb for examples