

Lecture 10 – Image segmentation III Regions

Prof. João Fernando Mari

<u>joaofmari.github.io</u>

joaof.mari@ufv.br

Agenda

- Regions growing
- Region splitting and merging

REGIONS GROWING

- f(x, y) is the input image;
- **S(x, y)** is an image containing seeds:
 - **S** is a binary image with the same size as image f.
 - Pixels with a value of 1 indicate the seeds and 0s indicate the other locations;
- **Q** denotes **some property** to be applied at each position **(x, y)**.

- f(x, y) is the input image;
- **S(x, y)** is an image containing seeds:
 - **S** is a binary image with the same size as image f.
 - Pixels with a value of 1 indicate the seeds and 0s indicate the other locations;
- **Q** denotes **some property** to be applied at each position **(x, y)**.

- Basic region growth algorithm (based on connectivity-8):
 - Reduce each connected component in S(x, y) to a single pixel (morphological erosion).
 - Label all pixels, r = [1, 2, 3, ... N].
 - For each seed r, generate an image f_r where:
 - $f_r(x, y) = r$, if the input image pixel satisfies Q;
 - $f_r(x, y) = 0$, otherwise.
 - The output image g is formed by appending to each seed in $\bf S$ all the pixels labeled with the number $\bf r$ in $\bf f_r$ that are 8-connected to that seed.
 - In case of conflict, assign the lowest label. "The first one takes all".

• (A) Original image f(x, y) with size 5 x 5, 3-bit depth (L = 8) and two seeds.

/ ^ 						_
(A)	7	0	5	6	5	
	5	1	5	7	7	
	0	3	6	5	6	
	2	1	7	7	6	
	0	1	5	6	1	
_	7			f(x	(, y)	•
	-					

• (B) Image with seeds S(x, y). The seeds have already been reduced to a single pixel and labeled.

- (C) Image with the absolute differences between the pixel under the seed labeled 1 and the other pixels.
 - Q property: absolute difference between pixels (T).

(0)						_
(C)	6	1	4	5	4	
	4	0	4	6	6	
	1	2	5	4	5	
	1	0	6	6	5	
	1	0	4	5	0	
	T ₁	=	f(x,	y) -	-1	

- (D) Image with the absolute differences between the pixel under the seed labeled 2 and the other pixels.
 - Q property: absolute difference between pixels (T).

						_
(A)	7	0	5	6	5	
	5	1	5	7	7	
	0	3	6	5	6	
	2	1	7	7	6	
	0	1	5	6	1	
	7			f(x	(, y)	•
,	•					

(0)						_		
(C)	6	1	4	5	4			
	4	0	4	6	6			
	1	2	5	4	5			
	1	0	6	6	5			
	1	0	4	5	0			
$T_1 = f(x, y) - 1 $								

(0)						
(D)	0	7	2	1	2	
	2	6	2	0	0	
	7	4	1	2	1	
	5	6	0	0	1	
	7	6	2	1	6	
•	T_2	=	f(x,	y) -	- 7	,

- (E) Segmentation of image f considering Q = T < 3.
 - Pixels in T₁ that satisfy Q and have an 8-connected path to the seed.

					_
7	0	5	6	5	
5	1	5	7	7	
0	3	6	5	6	
2	1	7	7	6	
0	1	5	6	1	
7			f(x	(, y)	
	5 0 2	5 1 0 3 2 1	5 1 5 0 3 6 2 1 7	5 1 5 7 0 3 6 5 2 1 7 7 0 1 5 6	5 1 5 7 7 0 3 6 5 6 2 1 7 7 6

<i>(</i> 0 <i>)</i>						
(C)	6	1	4	5	4	
	4	0	4	6	6	
	1	2	5	4	5	
	1	0	6	6	5	
	1	0	4	5	0	
_	T_1	=	f(x,	y) -	-1	,

(-)						_
(B)	0	0	0	0	0	
	0	0	0	2	0	
	0	0	0	0	0	
	0	1	0	0	0	
	0	0	0	0	0	
	7			S(x	(, y)	

(D)	0	7	2	1	2	
	2	6	2	0	0	
	7	4	1	2	1	
	5	6	0	0	1	
	7	6	2	1	6	
•	T_2	=	f(x,	y) -	- 7	

					_
0	1	0	0	0	
0	1	0	2	0	
1	1	0	0	0	
1	1	0	0	0	
1	1	0	0	0	
7			T ₁	< 3	
	_		0 1 0 1 1 0 1 1 0	0 1 0 2 1 1 0 0 1 1 0 0 1 1 0 0	0 1 0 2 0 1 1 0 0 0 1 1 0 0 0

- (E) Segmentation of image f considering Q = T < 3.
 - Pixels in T₂ that satisfy Q and have an 8-connected path to the seed.

(0)						
(C)	6	1	4	5	4	
	4	0	4	6	6	
	1	2	5	4	5	
	1	0	6	6	5	
	1	0	4	5	0	
•	T ₁	=	f(x,	y) -	-1	ļ

(-)						
(B)	0	0	0	0	0	
	0	0	0	2	0	
	0	0	0	0	0	
	0	1	0	0	0	
	0	0	0	0	0	
	7			S()	(, y)	-

(D)	0	7	2	1	2	→
	2	6	2	0	0	
	7	4	1	2	1	
	5	6	0	0	1	
	7	6	2	1	6	
•	T_2	=	f(x,	y) -	- 7	

/ D\						_
(D)	0	1	0	0	0	
	0	1	0	2	0	
	1	1	0	0	0	
	1	1	0	0	0	
	1	1	0	0	0	
				T ₁	< 3	•

• (F) Segmentation of image f considering Q = T < 3.

(-)						_
(B)	0	0	0	0	0	
	0	0	0	2	0	
	0	0	0	0	0	
	0	1	0	0	0	
	0	0	0	0	0	
	7			S(x	(, y)	

/ ->						
(D)	0	7	2	1	2	
	2	6	2	0	0	
	7	4	1	2	1	
	5	6	0	0	1	
	7	6	2	1	6	
•	T ₂	=	f(x,	у) -	- 7	•

(5)						_
(D)	0	1	0	0	0	•
	0	1	0	2	0	
	1	1	0	0	0	
	1	1	0	0	0	
	1	1	0	0	0	
				T ₁	< 3	
,	•					

/ - \						
(F)	0	1	2	2	2	
	0	1	2	2	2	
	1	1	2	2	2	
	1	1	2	2	2	
	1	1	2	2	0	
				Т	< 3	•

- (G) Segmentation of image f considering Q = T < 5.
 - Pixels in T₁ that satisfy Q and have an 8-connected path to the seed.

						_
(A)	7	0	5	6	5	
	5	1	5	7	7	
	0	3	6	5	6	
	2	1	7	7	6	
	0	1	5	6	1	
	7			f(x	(, y)	

/ ()						_
(C)	6	1	4	5	4	
	4	0	4	6	6	
	1	2	5	4	5	
	1	0	6	6	5	
	1	0	4	5	0	
	T_1	=	f(x,	у) -	- 1	•

(5)						
(B)	0	0	0	0	0	
	0	0	0	2	0	
	0	0	0	0	0	
	0	1	0	0	0	
	0	0	0	0	0	
	7			S(x	(, y)	
,	•					

(D)	0	7	2	1	2	→
	2	6	2	0	0	
	7	4	1	2	1	
	5	6	0	0	1	
	7	6	2	1	6	
1	T_2	=	f(x,	y) -	- 7	

(0)						_
(G)	0	1	1	0	0	
	1	1	1	2	0	
	1	1	0	1	0	
	1	1	0	0	0	
	1	1	1	0	0	
	7			T ₁	< 5	•

- (H) Segmentation of image f considering Q = T < 5.
 - Pixels in T₂ that satisfy Q and have an 8-connected path to the seed.

/ ()						_
(C)	6	1	4	5	4	
	4	0	4	6	6	
	1	2	5	4	5	
	1	0	6	6	5	
	1	0	4	5	0	
	T_1	=	f(x,	у) -	- 1	•

/ ->						_
(B)	0	0	0	0	0	
	0	0	0	2	0	
	0	0	0	0	0	
	0	1	0	0	0	
	0	0	0	0	0	
	7			S(x	(, y)	
,	7					

(D)						_
(D)	0	7	2	1	2	
	2	6	2	0	0	
	7	4	1	2	1	
	5	6	0	0	1	
	7	6	2	1	6	
•	T ₂	=	f(x,	у) -	- 7	•

(0)						_
(G)	0	1	1	0	0	
	1	1	1	2	0	
	1	1	0	1	0	
	1	1	0	0	0	
	1	1	1	0	0	
	7			T ₁	< 5	•

/						_
(H)	2	0	2	2	2	
	2	0	2	2	2	
	0	2	2	2	2	
	0	1	2	2	2	
	0	0	2	2	0	
	7			T ₂	< 5	
,	7					

- (I) Segmentation of image f considering Q = T < 5.
 - In case of conflict, the pixel is arbitrarily assigned to the region with the smallest label.

(0)						_			
(C)	6	1	4	5	4				
	4	0	4	6	6				
	1	2	5	4	5				
	1	0	6	6	5				
	1	0	4	5	0				
$T_1 = f(x, y) - 1 $									

								/- \				
0	0	0	0	0				(D)	0	7	2	1
0	0	0	2	0					2	6	2	0
0	0	0	0	0					7	4	1	2
0	1	0	0	0					5	6	0	0
0	0	0	0	0					7	6	2	1
7			S(x	(, y)					T_2	=	f(x,	y) -
	0 0 0 0	0 0 0	0 0 0 0 0 0	0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0	0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0	0 0 0 2 0 0 0 0 0 0 0 1 0 0 0	0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0	0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0	0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 7 0 1 0 0 0 0 5 0 0 0 0 0 7	0 0 0 0 0 0 7 0 0 0 0 0 7 4 0 1 0 0 0 5 6 0 0 0 0 0 7 6	0 0

					_
0	1	1	2	2	
1	1	1	2	2	
1	1	2	1	2	
1	1	2	2	2	
1	1	1	2	0	
7			Т	< 5	-
	0 1 1 1	0 1 1 1 1 1 1 1 1 1 1	1 1 1 1 2	1 1 1 2 1 1 2 1 1 1 2 2 1 1 1 2	1 1 1 2 2 1 1 2 1 2 1 1 2 2 2

• (J) Segmentation of image f considering Q = T < 5.

<i>(</i> ~)						_
(G)	0	1	1	0	0	•
	1	1	1	2	0	
	1	1	0	1	0	
	1	1	0	0	0	
	1	1	1	0	0	
_	7			T ₁	< 5	•

١١						—
I)	0	1	1	2	2	
	1	1	1	2	2	
	1	1	2	1	2	
	1	1	2	2	2	
	1	1	1	2	0	
,				T	< 5	•
•	7					

- (K) Segmentation of image f considering Q = T < 8.
 - Pixels in T₁ that satisfy Q and have an 8-connected path to the seed.

/ ^ 						_
(A)	7	0	5	6	5	
	5	1	5	7	7	
	0	3	6	5	6	
	2	1	7	7	6	
	0	1	5	6	1	
	7			f(x	(, y)	

(0)						
(C)	6	1	4	5	4	
	4	0	4	6	6	
	1	2	5	4	5	
	1	0	6	6	5	
	1	0	4	5	0	
_	T ₁	=	f(x,	y) -	- 1	

4 – 3									
(D)	0	7	2	1	2				
	2	6	2	0	0				
	7	4	1	2	1				
	5	6	0	0	1				
	7	6	2	1	6				
$T_2 = f(x, y) - 7 $									

(K)	1	1	1	1	1	-
	1	1	1	2	1	
	1	1	1	1	1	
	1	1	1	1	1	
	1	1	1	1	1	
_	,			T ₁	< 8	

(B)

- (L) Segmentation of image f considering Q = T < 8.
 - Pixels in T₂ that satisfy Q and have an 8-connected path to the seed.

<i>(</i> 0 <i>)</i>										
(C)	6	1	4	5	4					
	4	0	4	6	6					
	1	2	5	4	5					
	1	0	6	6	5					
	1	0	4	5	0					
$T_1 = f(x, y) - 1 $										

/ ->						_
(B)	0	0	0	0	0	
	0	0	0	2	0	
	0	0	0	0	0	
	0	1	0	0	0	
	0	0	0	0	0	
	7			S()	(, y)	•
,	7					

(D)	0	7	2	1	2	
	2	6	2	0	0	
	7	4	1	2	1	
	5	6	0	0	1	
	7	6	2	1	6	
•	T_2	=	f(x,	y) -	- 7	

(14)						_
(K)	1	1	1	1	1	
	1	1	1	2	1	
	1	1	1	1	1	
	1	1	1	1	1	
	1	1	1	1	1	
•				T ₁	< 8	•

- (M) Segmentation of image f considering Q = T < 8.
 - In case of conflict, the pixel is assigned to the region with the smallest label arbitrarily.

(0)						_
(C)	6	1	4	5	4	
	4	0	4	6	6	
	1	2	5	4	5	
	1	0	6	6	5	
	1	0	4	5	0	
_	T ₁	=	f(x,	y) -	- 1	•

/-·						
(D)	0	7	2	1	2	
	2	6	2	0	0	
	7	4	1	2	1	
	5	6	0	0	1	
	7	6	2	1	6	
	T_2	=	f(x,	y) -	- 7	Į.
,	,					

T < 8

T < 8

- (N) Segmentation of image f considering Q = T < 8.
 - With T < 8, all pixels assigned to seed 1.

(0)						lacksquare
(C)	6	1	4	5	4	
	4	0	4	6	6	
	1	2	5	4	5	
	1	0	6	6	5	
	1	0	4	5	0	
•	T_1	=	f(x,	y) -	-1	•

/- \						
(D)	0	7	2	1	2	
	2	6	2	0	0	
	7	4	1	2	1	
	5	6	0	0	1	
	7	6	2	1	6	
	T_2	=	f(x,	y) -	- 7	

	_	+	-	+	-				+	+	+	
	1	1	1	2	1				1	1	1	
	1	1	1	1	1				1	1	1	
	1	1	1	1	1				1	1	1	
	1	1	1	1	1				1	1	1	
_				T_1	< 8			7	7			
	•							•				
(L)	2	2	2	2	2	-	(N)	1	1	1	
(L)	2	2	2	2	2	→	(N))	1	1	1	
(L)						→	(N))				
(L)	2	2	2	2	2	→	(N)	1	1	1	
(L)	2	2	2	2	2	→	(N))	1	1	1	
(L)	2 2 2	2 2 1	2 2	2 2 2 2	2 2	•	(N)		1 1 1	1 1 1	1 1 1	

• Image segmentations f considering (G) Q = T < 3; (J) Q = T < 5; (N) Q = T < 8.

/- \						_
(D)	0	7	2	1	2	
	2	6	2	0	0	
	7	4	1	2	1	
	5	6	0	0	1	
	7	6	2	1	6	
•	T_2	=	f(x,	y) -	- 7	•
,	,					

(0)						_
(G)	0	1	2	2	2	
	0	1	2	2	2	
	1	1	2	2	2	
	1	1	2	2	2	
	1	1	2	2	0	
				Т	< 3	ı
,	•					

/ N I \						_
(N)	1	1	1	1	1	
	1	1	1	2	1	
	1	1	1	1	1	
	1	1	1	1	1	
	1	1	1	1	1	
_		-		Т	< 8	
	7					

REGION SPLITTING AND MERGING

Divisão e fusão de regiões

- Region splitting and merging algorithm.
 - 1. Divide into four quadrants any region R_i in which Q(R_i)=False.
 - 2. When it is not possible to divide a region, merge the adjacent regions R_j and R_k where $Q(R_j \cup R_k) = Truth$.
 - 3. Stop when merging is no longer possible.

R1	R2	
D2	R41	R42
R3	R43	R44

0	0	0	0	0	0	0	0
0	5	5	5	1	1	2	2
0	5	5	5	1	1	2	2
0	5	5	5	3	3	2	2
0	0	6	4	0	0	2	0
0	0	3	6	0	0	4	0
0	1	2	1	7	7	1	7
0	0	0	0	0	0	0	2

Q: $\mu > 2.5 \text{ e } \sigma > 1.0$

 μ =1.88 σ =2.24

0	0	0	0	0	0	0	0
0	5	5	5	1	1	2	2
0	5	5	5	1	1	2	2
0	5	5	5	3	3	2	2
0	0	6	4	0	0	2	0
0	0	3	6	0	0	4	0
0	1	2	1	7	7	1	7
0	0	0	0	0	0	0	2

Q: $\mu > 2.5 \text{ e } \sigma > 1.0$

 μ =1.88 σ =2.24

0	0	0	0	0	0	0	0
0	5	5	5	1	1	2	2
0	5	5	5	1	1	2	2
0	5	5	5	3	3	2	2
0	0	6	4	0	0	2	0
0	0	3	6	0	0	4	0
0	1	2	1	7	7	1	7
0	0	0	0	0	0	0	2

Q: $\mu > 2.5 \text{ e } \sigma > 1.0$

0	0	0	0
0	5	5	5
0	5	5	5
0	5	5	5

0	0	0	0
1	1	2	2
1	1	2	2
3	3	2	2

0	0	6	4
0	0	3	6
0	1	2	1
0	0	0	0

0	0	2	0
0	0	4	0
7	7	1	7
0	0	0	2

 μ =1.88 σ =2.24

0	0	0	0	0	0	0	0
0	5	5	5	1	1	2	2
0	5	5	5	1	1	2	2
0	5	5	5	3	3	2	2
0	0	6	4	0	0	2	0
0	0	3	6	0	0	4	0
0	1	2	1	7	7	1	7
0	0	0	0	0	0	0	2

Q: $\mu > 2.5 \text{ e } \sigma > 1.0$

μ=2.81 σ=2.48

 $\mu = 1.44$

0	0	0	0
0	5	5	5
0	5	5	5
0	5	5	5

μ=1.88 σ=2.69

 $\mu = 1.38$

 $\sigma = 0.99$

0

0

0

0

3

0 2.03						
0	0	2	0			
0	0	4	0			
7	7	1	7			
0	0	0	2			

 μ =1.88 σ =2.24

0	0	0	0	0	0	0	0
0	5	5	5	1	1	2	2
0	5	5	5	1	1	2	2
0	5	5	5	3	3	2	2
0	0	6	4	0	0	2	0
0	0	3	6	0	0	4	0
0	1	2	1	7	7	1	7
0	0	0	0	0	0	0	2

Q: $\mu > 2.5 \text{ e } \sigma > 1.0$

ι=2.81	
=2.48	

0	0	0	0
0	5	5	5
0	5	5	5
0	5	5	5

$$\mu$$
=1.44 σ =2.09

0	0	6	4
0	0	3	6
0	1	2	1
0	0	0	0

$$\mu$$
=1.88 σ =2.69

 μ =1.38 σ =0.99

0	0	2	0
0	0	4	0
7	7	1	7
0	0	0	2

 μ =1.88 σ =2.24

0	0	0	0	0	0	0	0
0	5	5	5	1	1	2	2
0	5	5	5	1	1	2	2
0	5	5	5	3	3	2	2
0	0	6	4	0	0	2	0
0	0	3	6	0	0	4	0
0	1	2	1	7	7	1	7
0	0	0	0	0	0	0	2

Q: $\mu > 2.5 e \sigma > 1.0$

u=2.81	
5=2.48	

 $\mu = 1.44$

0	0	0	0
0	5	5	5
0	5	5	5
0	5	5	5

 μ =1.38 σ =0.99

 μ =1.88

0	0	
0	5	

0	0
5	5

0	5	5
0	5	5

0	0
0	0

6	4
3	6

0	0	1 4
0	0	4

0	1
0	0

7	7
0	0

 $\mu = 1.88$ $\sigma = 2.24$

0	0	0	0	0	0	0	0
0	5	5	5	1	1	2	2
0	5	5	5	1	1	2	2
0	5	5	5	3	3	2	2
0	0	6	4	0	0	2	0
0	0	3	6	0	0	4	0
0	1	2	1	7	7	1	7
0	0	0	0	0	0	0	2

Q: $\mu > 2.5 e \sigma > 1.0$

u=2.81	
₅ =2.48	

0	0	0	0
0	5	5	5
0	5	5	5
0	5	5	5

 $\mu = 1.38$ $\sigma = 0.99$

 $\mu = 1.88$

 $\mu = 1.44$ $\sigma = 2.09$

0	0	6	4
0	0	3	6
0	1	2	1
0	0	0	0

	μ=1 σ=2	
	0	
	0	
'	μ=2 σ=2	
	0	
	0	
'	μ=0 σ=0	
	0	
	0	
	μ=0 σ=0	
	0	

0

0

μ=0 σ=0			μ=1 σ=1	
0	0		2	(
0	0		4	(
μ=3 σ=3			μ=2 σ=2	
				1

1

0

2

 μ =1.88 $\sigma = 2.24$

0	0	0	0	0	0	0	0
0	5	5	5	1	1	2	2
0	5	5	5	1	1	2	2
0	5	5	5	3	3	2	2
0	0	6	4	0	0	2	0
0	0	3	6	0	0	4	0
0	1	2	1	7	7	1	7
0	0	0	0	0	0	0	2

Q: $\mu > 2.5 e \sigma > 1.0$

μ=2	.81
$\sigma=2$	48

 $\mu = 1.44$

 $\sigma = 2.09$

0

0

0	0	0	0
0	5	5	5
0	5	5	5
0	5	5	5

		0-2	.03
6	4	0	0
3	6	0	0
2	1	7	7
0	0	0	0

ι=1.38	
=0.99	

0	0	0	0
1	1	2	2
1	1	2	2
3	3	2	2

88		
69		

0	0	2	0
0	0	4	0
7	7	1	7
0	0	0	2

0	0
0	5

כ	٥	٥	٥
0	5	5	5
		μ=5. σ=0.	
0	5	5	5
0	7	7	7

 μ =0.75

μ=0.	.00
σ=0.	00

0-0	.00
0	0
0	0
μ=0	
$\sigma=0$.43

=0.43		σ=0.	83
0	1	2	1
0	0	0	0

μ =0.00
$\sigma = 0.00$

0	0
0	0

2	0
4	0

7	7
0	0

 μ =1.88 $\sigma = 2.24$

0	0	0	0	0	0	0	0
0	5	5	5	1	1	2	2
0	5	5	5	1	1	2	2
0	5	5	5	3	3	2	2
0	0	6	4	0	0	2	0
0	0	3	6	0	0	4	0
0	1	2	1	7	7	1	7
0	0	0	0	0	0	0	2

Q: $\mu > 2.5 e \sigma > 1.0$

u=2.81	
$\tau = 2.48$	

0	0	0	0
0	5	5	5
0	5	5	5
0	5	5	5

	1	1	2	2
	1	1	2	2
	3	3	2	2
,				

0

 $\mu = 1.38$ σ =0.99

 $\mu = 1.88$

 $\mu = 1.44$ $\sigma = 2.09$ 6 0

0

0

0

σ=2.69				
0	0	2	0	
0	0	4	0	
7	7	1	7	
0	0	0	2	

0	0
0	5

ט	כ
0	0
μ=0 σ=0	
0	1

6	4	
3	6	
μ=0.75 σ=0.83		
2	1	

μ=0 σ=0	
0	0
0	0
7	7
0	0

 μ =1.88 σ =2.24

0	0	0	0	0	0	0	0
0	5	5	5	1	1	2	2
0	5	5	5	1	1	2	2
0	5	5	5	3	3	2	2
0	0	6	4	0	0	2	0
0	0	3	6	0	0	4	0
0	1	2	1	7	7	1	7
0	0	0	0	0	0	0	2

Q: $\mu > 2.5 \text{ e } \sigma > 1.0$

ı=2.81	
5=2.48	

 μ =1.44 σ =2.09

0

0

0

0	0	0	0
0	5	5	5
0	5	5	5
0	5	5	5

6

0

0

u=1.88
μ =1.66 σ =2.69

0-2.03			
0	0	2	0
0	0	4	0
7	7	1	7
0	0	0	2

=1.38	
=0.99	

0	0	0	0
1	1	2	2
1	1	2	2
3	3	2	2

σ=0.00					
	0	0			
	0	0			
	μ=0.25 σ=0.43				
	0	1			

 $\mu = 0.75$

 σ =0.83

μ=0 σ=0	
0	0
0	0
7	7
0	0

Bibliography

- GONZALEZ, R.C.; WOODS, R.E. **Digital Image Processing**. 3rd ed. Pearson, 2007.
- MARQUES FILHO, O.; VIEIRA NETO, H. Processamento digital de imagens. Brasport, 1999.
 - (in Brazilian Portuguese)
 - Available on the author's website (for personal use only)
 - http://dainf.ct.utfpr.edu.br/~hvieir/pub.html
- J. E. R. Queiroz, H. M. Gomes. Introdução ao Processamento Digital de Imagens. RITA. v. 13, 2006.
 - (in Brazilian Portuguese)
 - http://www.dsc.ufcg.edu.br/~hmg/disciplinas/graduacao/vc-2016.2/Rita-Tutorial-PDI.pdf


```
@misc{mari_im_proc_2023,
author = {João Fernando Mari},
title = {Image segmentation III - Regions},
year = {2023},
publisher = {GitHub},
journal = {Introduction to digital image processing - UFV},
howpublished = {\url{https://github.com/joaofmari/SIN392_Introduction-to-digital-image-processing_2023}}
```

THE END