WSU-CPTS-415

Charles Nguyen – 011606177

Homework 1

- Volume, Velocity, Variety, Veracity, Value
 Example: Atmospheric Radiation Measurement (ARM) user facility at the Pacific Northwest
 National Lab (PNNL). I worked with a team of scientists there during my Capstone to investigate the possibility of writing API for querying on a data collection of 1000TB.
 - Volume: 1000TB
 - Velocity: Near real-time; a time series is so large that they must be computed on cloud server and only results are sent back to user.
 - Variety: Data is mostly structured, but some part was unstructured due to both old and new measurement devices.
 - Veracity: Data is trusted but the degrees of accuracy and precision are completely dependent on measurement devices.
 - Value: Highly meaningful meteoric information that helps shape socio-economic policies for the Pacific Northwest and the nation at large.

2.

- a. Terms:
- Relation schema: informally a data table; formally a set of attributes each with domain
 - `airports` is a *relation schema*, wherein its attributes are `AirportID`, `Name` and so on.
- **Relational database schema**: the layout that reflects the relations among multiple *relation schemas*; transcendent over *relation schema*
 - o `airports`, `airline` and `route` compose a *relational database schema*.
- **Domain**: a range of all possible values, which itself must be defined with a specific data type and format with the possibility for NULL value.
 - Latitude` and `Longitude` both belong to one domain and are both a double type ≥
 0 and cannot be NULL.
- Attribute: informally a column in the table; formally a particular feature in the set of attributes
 - `Name`, `City`, `Altitude` and so on are all attributes of the relation schema `airports`.
- Attribute domain: defines the role of a domain in a relation schema.
 - Latitude` and `Longitude` are independent attributes with attribute domains orthogonal to each other.
- Relation instance: informally a set of rows of selected attributes in the table; formally an ordered n-tuple of values, each derived from a proper domain.
 - `FROM airports SELECT AirportID, Name, City, Country INTO location OFFSET 5;`

1	Goroka Airport	Goroka	Papua New Guinea
2	Madang Airport	Madang	Papua New Guinea
3	Mount Hagen Kagamuga Airport	Mount Hagen	Papua New Guinea
4	Nadzab Airport	Nadzab	Papua New Guinea
5	Port Moresby Jacksons International Airport	Port Moresby	Papua New Guinea

b. Relational database schema and Relation schemas for `airports`, `airline` and `route`:

- o Airport:
 - AirportID (PK)
 - Name
 - City
 - Country
 - IATA
 - ICAO
 - Latitude
 - Longitude
 - Altitude
 - Timezone
 - DST
 - Tz database time zone
 - Type
 - Source
- o Airline:
 - AirlineID (PK)
 - Name
 - Alias
 - IATA
 - ICAO
 - Callsign
 - Country
 - Active
- o Route:
 - Airline
 - AirlineID (FK=Airline.AirportID, PK1)
 - SourceAirport
 - SourceAirportID (FK=Airport.AirportID, PK2)
 - DestinationAirport
 - DestinationAirportID (FK=Airport.AirportID, PK3)
 - Codeshare
 - Stops
 - Equipment

Functional dependencies: all primary keys should have full functional dependencies over the remaining attributes in the table. In other words, given a foreign key (which is also a primary key pointing to another table), a query should be able to retrieve at most all information from the second table. For example, a query in Route using the foreign key AirlineID should be able to extract any and all information in the table Airline.

3. Functional Dependencies:

- a. Armstrong's:
 - Reflexive: Given the primary key AirlineID and we select some columns into a new table, all instances in the new table should have the same values as all instances in the table Airline.

$$NewTable \subseteq Airline$$

ii. Augmentation: In the table Route, using AirlineID to query only Name and Alias into a new table NameAlias. Using AirlineID again to query Callsign, Country and Active into a new table CCA. Every single attribute in either is fully dependent on AirlineID. Therefore, joining the two table makes a new table that is a proper subset of Airline.

$$(NameAlias + CCA) \subset Airline$$

- b. Proofs:
 - i. Decomposition: if $X \to YZ$ then: $X \to Y$ and $X \to Z$.

From a.ii. above, we can see that the table (NameAlias + CCA) can be decomposed back into NameAlias and CCA by making appropriate queries from (NameAlias + CCA).

- 1. $X \rightarrow YZ$
- 2. $YZ \rightarrow Y$ (Reflexive on $X \rightarrow YZ$)
- 3. $X \rightarrow Y$ (Transitive on 1 and 2)
- ii. Pseudo transitivity: if $X \rightarrow Y$ and $YW \rightarrow Z$ then: $XW \rightarrow Z$.
 - 1. $X \rightarrow Y$
 - 2. $WY \rightarrow Z$
 - 3. $WX \rightarrow WY$ (Augmenting W to $X \rightarrow Y$)
 - 4. $WX \rightarrow Z$ (Applying transitivity on 3 and 2)

4. Normalization

Given:

$$R(A_1, A_2, A_3, A_4)$$

 $F_{one}: A_2, A_3 \to A_4$
 $F_{two}: A_3, A_4 \to A_1$
 $F_{three}: A_1, A_2 \to A_3$

3NF and BCNF:

- Using augmentation on F_{one} :
 - $(A_1 \cdot F_{one}) = \{A_1, A_2, A_3\} \rightarrow (A_1 A_4 \rightarrow A_4 \text{ or } A_1 A_4 \rightarrow A_1) \text{ (decomposition)}$
 - o $(A_1 \cdot F_{one}) \rightarrow A_4$ where key: (A_2, A_3) (3NF)
 - Given $(A_1A_2) \rightarrow A_3$, we have: $R_1(A_1, A_2, A_3)$ in BCNF
- Using augmentation on F_{two} :
 - $\circ \quad (F_{two} \cdot A_2) = \{A_3, A_4, A_2\} \rightarrow (A_1A_2 \rightarrow A_1 \ or \ A_1A_2 \rightarrow A_2) \ (\text{decomposition})$
 - \circ $(F_{two} \cdot A_2) \rightarrow A_1$ where key: (A_3, A_4) (3NF)
 - Given $(A_2, A_3) \rightarrow A_4$, we have: $R_2(A_2, A_3, A_4)$ in BCNF
- Using augmentation on F_{three} :
 - $\circ \quad (F_{three} \cdot A_4) = \{A_1, A_2, A_4\} \rightarrow (A_3 A_4 \rightarrow A_1)$
 - \circ Already in F_{two} so we discard.