Last name	
First name	

LARSON—MATH 610—HOMEWORK h06 Test 1 Review

Concepts For each concept, give a definition and an example.

- 1. What is \mathbb{R}^{∞} ?
- 2. What is a *subspace* of a vector space V?
- 3. What is $U_1 \oplus U_2$ for subspaces U_1, U_2 of a vector space V?
- 4. What is a linear combination of vectors v_1, \ldots, v_m (over a field \mathbb{F})?
- 5. What is the span of vectors v_1, \ldots, v_m (over a field \mathbb{F})?
- 6. What is a *linearly independent* list of vectors?
- 7. What is a *linearly dependent* list of vectors?
- 8. What is a *basis* of a vector space?
- 9. What is the *dimension* of a finite-dimensional vector space?
- 10. What is a linear map?
- 11. What is $\mathcal{L}(V, W)$?
- 12. Let $T \in \mathcal{L}(V, W)$. What is the null space of T?
- 13. What is a vector space *isomorphism*?
- 14. What is an eigenvalue of $T \in \mathcal{L}(V)$?
- 15. What is an eigenvector of $T \in \mathcal{L}(V)$?

- 16. (Basis Criterion). A list $v_1 ext{...}; v_n$ of vectors in a vector space V is a basis of V if and only if every $v \in V$ can be written uniquely in the form $v = a_1v_1 + \ldots + a_nv_n$ $(a_i \in \mathbb{F})$.
- 17. (Linearly independent list extends to a basis). Every linearly independent list of vectors in a finite-dimensional vector space can be extended to a basis of the vector space.
- 18. (**Linear map lemma**.) If v_1, \ldots, v_n is a basis for vector space V and w_1, \ldots, w_n is a basis for vector space W then there is a unique linear map $T: V \to W$ with $Tv_i = w_i$.
- 19. Rank-Nullity Theorem.
- 20. Linearly independent eigenvectors: Suppose $T \in \mathcal{L}(V)$. Every list of eigenvectors of T corresponding to distinct eigenvalues is linearly independent.

Problems Explain everything. As scientists it is never enough to write answers. They must be communicated—convincingly—to others.

- 21. **Show:** \mathbb{R}^{∞} is a vector space.
- 22. Show: The span of vectors v_1, \ldots, v_m in V is a subspace of V?
- 23. Let $T \in \mathcal{L}(V, W)$. Show: null T is a subspace of V.
- 24. Let $T \in \mathcal{L}(V, W)$. Show: T is injective if and only if $null\ T = \{0\}$.
- 25. For $T \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^3)$ with T(x, y) = (x + 3y, 2x + 5y, 7x + 9y), find $\mathcal{M}(T)$.
- 26. **Show**: For vector spaces V, W, U, and linear maps $S: U \to V$ and $T: V \to W$, define TS and show that it is linear.
- 27. **Show**: λ is an eigenvalue of T if and only if $T \lambda I$ is not injective.
- 28. Suppose $T \in \mathcal{L}(\mathbb{R}^2)$, with T(z, w) = (w, z). Find all eigenvalues and eigenvectors of T.
- 29. Suppose $P \in \mathcal{L}(V)$, with $P^2 = P$ and λ is an eigenvalue of P. Show: λ is 0 or 1.