Homework 8 - Quantum Algorithms

Son Nguyen

I pledge my honor that I have abided by the Stevens Honor System.

March 5, 2025

Problem 1

For the first circuit, let state $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$. After measurment, the state collapse to either $p(|0\rangle) = |\alpha|^2$ or $p(|1\rangle) = |\beta|^2$. Applying U after the measurment give us either: $p(U|0\rangle) = |\alpha|^2$ or $p(U|1\rangle) = |\beta|^2$.

For the second circuit, we have $|\psi\rangle = (\alpha |0\rangle + \beta |1\rangle) \otimes |0\rangle$. Applying CNOT₀₁ give us:

$$CNOT_{01}[(\alpha | 0\rangle + \beta | 1\rangle) \otimes |0\rangle] = CNOT_{01}(\alpha | 00\rangle + \beta | 10\rangle)$$
$$= \alpha | 00\rangle + \beta | 11\rangle$$

CNOT gate creates a second identical state on the second second qubit. Now we applying unitary U to the first qubit give us.

$$(U \otimes I)(\alpha |00\rangle + \beta |11\rangle) = \alpha(U |0\rangle \otimes |0\rangle) + \beta(U |1\rangle \otimes |1\rangle)$$

Now measuring the second qubit. If the second qubit is measured to be $|0\rangle$, the state of the first qubit is $U|0\rangle$ with probability $|\alpha|^2$. If the second qubit is measured to be $|1\rangle$, the state of the first qubit is $U|1\rangle$ with probability $|\beta|^2$.

Problem 2

In the first circuit, after the measurement, we have state $|0\rangle$. Applying U give us $U|0\rangle$. For the second circuit, starting with state $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$. Measurement will result in either $|0\rangle$ or $|1\rangle$. Applying SWAP gate to the state $|0\rangle$ give us:

$$SWAP(|0\rangle \otimes |0\rangle) = |0\rangle \otimes |0\rangle$$
$$= |0\rangle \otimes |0\rangle = |00\rangle$$
$$SWAP(|0\rangle \otimes |1\rangle) = |1\rangle \otimes |0\rangle$$
$$= |0\rangle \otimes |1\rangle = |01\rangle$$

Now applying U to the first qubit gives us:

$$(U \otimes I) |0\rangle \otimes |0\rangle = U |0\rangle \otimes |0\rangle$$
$$(U \otimes I) |0\rangle \otimes |1\rangle = U |0\rangle \otimes |1\rangle$$

No matter the coefficient α and β , we always have $U|0\rangle$ as the state of the first qubit.

Problem 3

For the first circuit:

Starting with $|\psi\rangle = \alpha |0\rangle + \beta |0\rangle$ state, and $|\phi\rangle$ state, after measurement on $|\psi\rangle$ we have:

$$p(|0\rangle) = |\alpha|^2$$
$$p(|1\rangle) = |\beta|^2$$

Applying Control- $U_{\psi,\phi}$

$$p(CU_{\psi,\theta}(|0\rangle \otimes |\phi\rangle) = |0\rangle \otimes |\phi\rangle) = |\alpha|^2$$
$$p(CU_{\psi,\theta}(|1\rangle \otimes |\phi\rangle) = |1\rangle \otimes U |\phi\rangle) = |\beta|^2$$

For the second circuit:

$$|\psi\rangle \otimes |\phi\rangle = (\alpha |0\rangle + \beta |1\rangle) \otimes |\phi\rangle$$
$$= \alpha(|0\rangle \otimes |\phi\rangle) + \beta(|1\rangle \otimes |\phi\rangle)$$

Applying Control- $U_{\psi,\phi}$:

$$CU_{\psi,\phi}[\alpha(|0\rangle \otimes |\phi\rangle) + \beta(|1\rangle \otimes |\phi\rangle)]$$

= $\alpha(|0\rangle \otimes |\phi\rangle) + \beta(|1\rangle \otimes U |\phi\rangle)$

After measurment:

$$p(|0\rangle \otimes |\phi\rangle) = |\alpha|^2$$
$$p(|1\rangle \otimes U |\phi\rangle) = |\beta|^2$$