

ACADEMIC GRADUATE STUDIES AND RESEARCH DIVISION SECOND SEMESTER 2023-2024

Course Handout (Part -II)

Date: 12.08.2023

In addition to part I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No.: CE G565

Course Title: Transportation Planning

Instructor-in-charge: Prasanta Sahu (prasanta.sahu@hyderabad.bits-pilani.ac.in)

Office: D-327

1. Scope and objectives of the course:

Scope: This course aims to provide a comprehensive scientific insight of transportation system planning in general, associated modelling techniques and relevant applications in specific. The course aims to provide students with an in-depth theoretical understanding of typical four-stage sequential transportation planning. It also incorporates the concepts of transportation system management and accessibility and mobility considerations in transportation planning.

Course Outcome: At the end of this course, the students are expected to develop ability to:

- 1. Develop an understanding of transportation planning to measure transportation demand.
- 2. Design various travel behavior surveys to collect transportation planning related data and analyze the data for calibration and validation of various types of models involved in traditional four-step travel demand forecasting process.
- 3. Develop in-depth knowledge on the classic four stage demand models including: 1) trip generation, 2) trip distribution, 3) mode choice, and 4) trip assignment.
- 4. Able to understand econometric models and use statistical packages
- 5. Learn the concepts of sustainable transportation planning and land-use transport

Student Learning Outcomes (SLOs) assessed in this course -(a), (b), (c), (e), (h), (i), (j), and (k).

2. Textbook(s):

Text Book (TB)

• T1: Sarkar, P.K., Maitri, V., and Joshi, G.J. Transportation Planning, Principles, Practices and Policies, PHI Pvt. Ltd., 2016

• **T2:** Papacosta, C.S., and Prevedouros Transportation Engineering and Planning, PHI Pvt. Ltd.,2004

Reference Books (RB)

- R1: De Dios Ortuzar, J., and Willumsen, L. G. Modelling transport. John Wiley & Sons., 2011
- **R2:** Hutchinson B.G; Principles of Urban Transport Systems Planning; McGraw-Hill Book Company, 1974.
- R3: Chakroborty, P. and Das, A. Principles of Transportation Engineering, PHI Pvt. Ltd., 2012
- R4: Train, K. E. Discrete choice methods with simulation. Cambridge university press, 2009
- R5: Kadiyali, L. R. Traffic Engineering and Transport Planning, Khanna Publishers, 2015

Lecture wise Course Plan

Lecture No.	Topics Covered	Learning objectives	Reference to TB, RB	SLO*
1	System components of transportation		T1:Ch.1; T2:Ch.7; R1: Ch.1; R2: Ch. 1; R3: Ch. 8	a, c
2-4	Basics of Transportation Planning process; Characteristics of transportation problem: Transportation; transportation demand and supply problem; concept of equilibrium	Transportation planning with emphasis on	R1: Ch.1; R2: Ch.1;	a,c,e
5-6	Introduction to transportation modelling: Revealed and stated- preference models; Aggregate and disaggregate models; Cross-section and time-series models	To learn different types of transportation models; To be able to design Revealed and Stated preference experiments	T1: Ch.1; T2:Ch.7R1: Ch.1; R2: Ch.1; R3: Ch. 8	a,b,j
7-9	Overview of Traditional Four-Step Travel Demand Forecasting Process; Information needs for travel demand forecasting; Zoning and O-D matrix estimation from traffic surveys	To gain an overview of classic four stage Transportation Planning process; To be able to understand and conduct Origin-Destination studies	R1: Ch.1; R2: Ch.1;	a,c,e
10-11	Type of data collection methods; Survey instrument design; Sampling procedures	To learn different data collection methods; To design and collect travel behaviour data for reallife transportation problems	R2: Ch.1; R3: Ch.9;	a,b,j,k
12-17	Introduction to trip-generation concepts; Factors affecting trip	_	T1: Ch.5 ; T2:Ch.8; R1: Ch.4 ; R2: Ch.2 ;	a,b,e,j,k

	generation; Types of trips;	models; To calibrate	R3: Ch.9; R5:Ch.31	
	Regression analysis; Linear	multiple linear	Ro. Chi, Ro. Chioi	
	regression technique and related	regression equations; To		
	statistical parameters; Development	be familiar with		
	of regression models from field	econometric and		
	datasets; Category analysis; Temporal			
		as SPSS		
	and geographical stability Trip distribution models: Growth	To learn and solve trip	T1. Ch 6 . T2.Ch 9.	a,b,e,k
				а,р,е,к
18-24	factor models including Uniform		R1: Ch.5; R2: Ch.4;	
	factor method, Average factor		R3: Ch.9; R5:Ch.32	
	method, Fratar method and Furness			
	method; Synthetic methods including			
	Gravity model, Intervening			
	opportunities model and Competing			
	opportunities model			
	Basic modal split models: Trip end		T1: Ch.7,8 ; T2:Ch.8;	a,b,e,k
	and Trip interchange type modal split		R1: Ch. 6, 7, 8 ; R2:	
	models: Random Utility theory;	To understand the	Ch.3; R3: Ch.9;R4:Ch.	
	Discrete choice modelling	mathematical basis	2, 3,6; R5:Ch.34	
25-32	framework: Estimation, assumption	behind travel behaviour		
	and specifications of binary,	analysis; To develop		
23-32		Logit models related to		
	and Probit models; Modelling with	Transportation Demand		
	RP and SP data; Model aggregation	application; To apply		
	and transferability; Introduction and	N-Logit econometric		
	application of N-logit econometric	package for Model		
	package	estimation		
	Basic concepts of assignment; Speed-	To learn various trip	T1: Ch.9; T2: Ch.8;	a,b,c,e.k
	flow and cost-flow curves; All-or-	assignment models for	R1: Ch. 10; R2: Ch.5;	
	Nothing assignment; Incremental	transportation planning;	R3: Ch.9; R5:Ch.33	
	assignment; Capacity restraint	To gain knowledge on		
	assignment; Stochastic assignment;	different shortest path		
33-39	Stochastic user equilibrium	models; To develop		
	assignment; System optimum	various shortest path		
	assignment and introduction to	algorithms		
	Dynamic assignment; Shortest path			
	tree building algorithms; Public			
	transport assignments			
	Long-term Transport Planning;	To introduce different	T1: Ch. 11,13	c,e,i,j
39-40	Accessibility and Mobility	transportation systems		
	considerations	management measures		
	Regional planning models; Land-use	Š	T1: Ch.12,14;	a,f,h,i,j
	Transport models; Transit-Oriented-	_	R5:Ch.36	, , , , , , , ,
41-42	Development	sustainable		
	· ·	transportation; To know		
		basics of land-use		
		transport planning		
		process and Transit-		
		oriented-Development		
	I .			

*Student Learning Outcomes (SLOs):

SLOs are outcomes (a) through (k) plus any additional outcomes that may be articulated by the program.

- (a) an ability to apply knowledge of mathematics, science and engineering
- (b) an ability to design and conduct experiments, as well as to analyze and interpret data
- (c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- (d) an ability to function on multidisciplinary teams
- (e) an ability to identify, formulate, and solve engineering problems
- (f) an understanding of professional and ethical responsibility
- (g) an ability to communicate effectively
- (h) the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
- (i) a recognition of the need for, and an ability to engage in life-long learning
- (i) a knowledge of contemporary issues
- (k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Evaluation Scheme

Ec. No.	Evaluation component	Duration	Weightage	Date, time	Nature of component
1.	Quiz (at least two)	45 Minutes	10%	To be announced in class	ОВ
2.	Assignments (at least 2)	-	15%	Continuous	ОВ
3.	Term Paper	-	15%	Continuous	OB
4.	Mid-semester exam	90 Minutes	25%	09/10 - 4.00 - 5.30PM	CB
5.	Comprehensive Exam	3 Hours	35%	07/12 FN	СВ

Office Consultation Hour: To be announced in the class.

Notices: All Notices concerning the course will be displayed on CMS, Google Classroom

and Notice Board of Civil Engg. Department.

Make up policy: Makeup will be given only to the genuine cases with prior permission.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-in-charge

CE G565