ELEMENTARY SET THEORY

An SAD3 Formalisation of the Appendix of "General Topology" by John L. Kelley Relations and Preliminaries

October 26, 2018

0.1 Preliminaries

[prove off] Let x, y, z stand for *classes*. [object/-s]

Signature (Ontology). An object is a notion. Let a, b, c, d, e stand for objects.

Let $a \in x$ stand for a is an element of x.

Axiom. Every element of x is an object.

Axiom (I). For each x for each y x = y iff for each z $z \in x$ iff $z \in y$.

[set/-s]

Definition (1). A set is a class that is an object.

Definition (2). $x \cup y = \{object \ u \mid u \in x \ or \ u \in y\}.$

Definition (3). $x \cap y = \{object \ u \mid u \in x \ and \ u \in y\}.$

Definition (25). A subclass of y is a class x such that each element of x is an element of y. Let $x \subset y$ stand for x is a subclass of y. Let x is contained in y stand for $x \subset y$.

Theorem (27). x = y iff $x \subset y$ and $y \subset x$.

Theorem (28). If $x \subset y$ and $y \subset z$ then $x \subset z$.

Signature (48). (a, b) is an object.

Definition (48a). An ordered pair is an object c such that there exist objects a and b such that c = (a, b).

Axiom (55). If (a, b) = (c, d) then a = c and b = d.

0.2 Relations

[relation/-s]

Definition (56). A relation is a class r such that every element of r is an ordered pair.

Let r, s, t stand for relations.

Definition (57). $r \circ s = \{(x, z) \mid x, z \text{ are objects and there exists b such that } (x, b) \in s \text{ and } (b, z) \in r\}.$

Theorem (58). $(r \circ s) \circ t = r \circ (s \circ t)$.

Proof.
$$(r \circ s) \circ t \subset r \circ (s \circ t)$$
 and $r \circ (s \circ t) \subset (r \circ s) \circ t$.

[/prove]

Theorem (59a). $r \circ (s \cup t) = (r \circ s) \cup (r \circ t)$.

Proof.
$$r \circ (s \cup t) \subset (r \circ s) \cup (r \circ t)$$
. $(r \circ s) \cup (r \circ t) \subset r \circ (s \cup t)$.

Theorem (59b). $r \circ (s \cap t) \subset (r \circ s) \cap (r \circ t)$.

Definition (60). $r^{-1} = \{(b, a) \mid a, b \text{ are objects and } (a, b) \in r\}$. Let the relation inverse to r stand for r^{-1} .

Lemma. r^{-1} is a relation.

Theorem (61). $(r^{-1})^{-1} = r$.

Proof.
$$r \subset (r^{-1})^{-1}$$
. $(r^{-1})^{-1} \subset r$.

Lemma (62a). Assume $r \subset s$. Then $r^{-1} \subset s^{-1}$.

Lemma (62b). $(r \circ s)^{-1} \subset (s^{-1}) \circ (r^{-1})$.

Lemma. $(s^{-1}) \circ (r^{-1}) \subset (r \circ s)^{-1}$.

Proof.
$$((s^{-1}) \circ (r^{-1}))^{-1} \subset ((r^{-1})^{-1}) \circ ((s^{-1})^{-1})$$
 (by 62b) . $((s^{-1}) \circ (r^{-1}))^{-1} \subset r \circ s$ (by 61) . $(((s^{-1}) \circ (r^{-1}))^{-1})^{-1} \subset (r \circ s)^{-1}$ (by 62a). $(s^{-1}) \circ (r^{-1}) \subset (r \circ s)^{-1}$ (by 61).

Theorem (62). $(r \circ s)^{-1} = (s^{-1}) \circ (r^{-1})$.

Proof.
$$(r \circ s)^{-1} \subset (s^{-1}) \circ (r^{-1})$$
. $(s^{-1}) \circ (r^{-1}) \subset (r \circ s)^{-1}$.