

By Robert Harrow

01

Business Problem

What we set out to solve

03

Product Demo

Presenting our MVP

02

Data Methods

How we solved it

04

Next Steps

What happens next

Delays Are a Major Headache

"In the first five months of 2022, **more than 1 in 5 domestic flights were delayed**" - <u>ValuePenguin</u>

"Almost 79% of 2022 travelers experienced problems during a trip[...] **During the July 4 holiday weekend, airlines reported thousands of canceled and delayed flights**" - <u>CBS News</u>

"61% of Summer Travelers Had Flight Delayed or Canceled, 83% Of Those Lost Money" - <u>Forbes</u>

Flight Chicken wants to alleviate the worst problems

Flight Chicken wants to build a service that warns travelers if an upcoming flight runs the risk of being severely delayed by 1 hour or more.

Their hope is that giving travelers this heads up allows them to adjust plans and prepare.

As such, our job is to:

- Build a model that detects delays of 1 hour or more
- Productionize the model so a non-technical stakeholder can use it
- Set goals for future product iterations

Data & Methods

7M Domestic Flights

We analyzed and cleaned over 7M flight records between June 2021 and June 2022
Source: Bureau of Transportation Statistics

Weather API

We leveraged a weather API to pull in detailed daily weather data on over 124 locations over the last year Source: weather API.com

Machine Learning

We then trained machine learning algorithms on our data to detect severe flight delays.

Success Metrics

F1 Score

Balance between precision (no false positives) and recall (tolerating some false positives)

Accuracy

While F1 is the primary metric, we can use Accuracy as a tiebreaker

Though bad, severe delays are infrequent

- Flight Chicken is going after the most severe delays first though they happen just 7% of the time
- Future versions of the product can explore other types of delays

The Relationship Between Delays and Different Factors is Complicated

What that same plot looks like for Los Angeles International Airport

XGBoost was our best model

Model	Accuracy	Precision	Recall	F1
Logistic Regression	0.645	0.121	0.655	0.204
Random Forest	0.625	0.111	0.631	0.189
XGBoost	0.72	0.137	0.622	0.24
LightGBM	0.697	0.136	0.638	0.224

Final Model Evaluation on Unseen Data

Our final model is able to **predict a** severe delay in 62% of cases

• Accuracy: 0.72

• Precision: 0.14

• Recall: 0.62

F1 score: 0.24

03 **PRODUCT**

And Demonstration

Product overview

Flight Predictions

Get prediction about whether your flight will experience a severe delay

Airport Dashboard

See when delays are most common at your home airport

DEMO

CONCLUSIONS & NEXT STEPS

- We built a model that **detects major delays 64%** of the time
- The model is currently **fully usable by non-technical users**
- Future updates to product may include:
 - Training model on more data
 - Exploring other types of delays (sub 1-hour)
 - Expand coverage to more airlines & airports

Thanks

Do you have any questions?

rharrow928@gmail.com 718 483 1580 robertharrow.com

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon** and infographics & images by **Freepik**

