

# Semester 2 Examination, 2012 Question/Answer Booklet

# MATHEMATICS 3C/3D (Year 12) Section One: Calculator-free

| Your name:    |         |           |          |
|---------------|---------|-----------|----------|
| Your teacher: | S Ehort | T Hosking | S Rowden |

### Time allowed for this section

Reading time before commencing work: five minutes Working time for paper: fifty minutes

# Material required/recommended for this section

To be provided by the supervisor

This Question/Answer booklet Formula sheet

To be provided by the candidate

Standard items: pens, pencils, pencil sharpener, eraser, correction fluid/tape, ruler, highlighters

Special items: nil

# Important note to candidates

No other items may be used in this section of the examination. It is **your** responsibility to ensure that you do not have any unauthorised notes or other items of a non-personal nature in the examination room. If you have any unauthorised material with you, hand it to the supervisor **before** reading any further.



## Structure of this paper

| Section                            | Number of questions available | Number of questions to be answered | Working time<br>(minutes) | Marks available |
|------------------------------------|-------------------------------|------------------------------------|---------------------------|-----------------|
| Section One:<br>Calculator-free    | 7                             | 7                                  | 50                        | 50              |
| Section Two:<br>Calculator-assumed | 13                            | 13                                 | 100                       | 100             |
|                                    |                               |                                    |                           | 150             |

#### Instructions to candidates

- 1. The rules for the conduct of Western Australian external examinations are detailed in the *Year 12 Information Handbook 2012*. Sitting this examination implies that you agree to abide by these rules.
- 2. Write your answers in the spaces provided in this Question/Answer Booklet. Spare pages are included at the end of this booklet. They can be used for planning your responses and/or as additional space if required to continue an answer.
  - Planning: If you use the spare pages for planning, indicate this clearly at the top of the page.
  - Continuing an answer: If you need to use the space to continue an answer, indicate
    in the original answer space where the answer is continued, i.e. give the page
    number. Fill in the number of the question(s) that you are continuing to answer at the
    top of the page.
- 3. **Show all your working clearly**. Your working should be in sufficient detail to allow your answers to be checked readily and for marks to be awarded for reasoning. Incorrect answers given without supporting reasoning cannot be allocated any marks. For any question or part question worth more than two marks, valid working or justification is required to receive full marks. If you repeat an answer to any question, ensure that you cancel the answer you do not wish to have marked.
- 4. It is recommended that you **do not use pencil** except in diagrams.

DO NOT WRITE IN THIS AREA

**Section One: Calculator-free** 

(50 Marks)

This section has **seven (7)** questions. Answer **all** questions. Write your answers in the space provided.

Working time for this section is 50 minutes.

Question 1 (5 marks)

For the two independent events A and B, P(A) = 0.3 and P(B) = 0.1.

Calculate

(a)  $P(\overline{B})$ 

[1]

(b)  $P(A \cap B)$ 

[1]

(c)  $P(A \cup \overline{B})$ 

[2]

(d)  $P(\overline{A}|B)$ 

[1]



1234567-8

Question 2 (5 marks)

Solve the system of equations

$$3x + 2y + 6z = 3$$
$$x + 3y + 4z = 9$$
$$2x + 8 = 2z + y$$



1234567-8

**Question 3** 

D O

Z

0 T

WRITE

\_ Z

SH

A R

 $\mathbb{H}$ 

(7 marks)

(a) Differentiate the following with respect to X. There is no need to simplify your answer.

(i) 
$$y = \frac{1}{2e^{-x^2}}$$

[2]

(ii)  $y = 2x^3\sqrt{3-x^2}$ 

[2]

(b) Simplify  $\frac{d}{dx} \int_{2}^{x^2} \left(\frac{t^2}{3}\right) dt$ 

[3]

**Question 4** (9 marks)

A function is defined by  $f(x) = 6x^2 - 2x^3$ .

Find the coordinates of the turning points of f(x) and state their nature. (a)

[4]

Find the coordinates of the point of inflection of f(x). (b)

[1]

Sketch the graph of y = f(x). Show clearly the key features. (c)



[3]

What is the maximum value of f(x) in the interval  $-2 \le x \le 4$ ? (d)

[1]

**Question 5** (8 marks)

Let 
$$f(x) = \frac{1}{1-x}$$
 and  $g(x) = e^{2x}$ .

Determine the domain of f(g(x)). (a)

[2]

Determine the range of g(f(x)). (b)

[2]

Solve  $f(x) \ge 3 - 2x$ . (c)

 $\Box$ 

0

Z 0

WRITE

Z

I

 $\triangleright$ IJ П  $\triangleright$ 

[4]

OO NOT WRITE IN THIS AREA

Question 6 (9 marks)

(a) Determine 
$$\int x(3x^2 + 6x)^4 + (3x^2 + 6x)^4 dx$$

[3]

(b) Calculate the area bounded by the functions  $f(x) = (x-2)^2 - 3$  and g(x) = 2x - 4.

[6]

DO

Z

WRIT

Ш

Z

I

AREA

A closed cylindrical can of radius  $^r$  cm has a volume of  $^{250\pi}$  cm³.

(a) Show that the total surface area,  $A \text{ cm}^2$ , of this can is given by  $A = \frac{300\%}{r} + \frac{1}{r}$ 

. [2]

(b) Determine the minimum possible surface area of the can and the radius and height required to achieve this optimum area.

[5]

**Additional working space** 

Question number(s):\_\_\_\_\_

**Additional working space** 

Question number(s):\_\_\_\_\_



1234567-8