Contribuições à modelagem e controle de manipuladores paralelos

André Garnier Coutinho

Escola Politécnica da Universidade de São Paulo

Novembro de 2019

Influência da topologia do robô

Influência da topologia do robô

Seriais

Modelagem Dinâmica

Influência da topologia do robô

- Seriais
 - Cadeia aberta
 - Juntas ativas de 1 gl
 - N° de coord. gen. = N° atuadores = mobilidade
 - Conjunto mínimo de coord. generalizadas
 - Cinemática direta simples
 - Cinemática inversa complexa
 - Dinâmica direta Sistema de EDOs
 - Dinâmica inversa Sistema linear
 - Algoritmos recursivos para mod. dinâmica

Influência da topologia do robô

Paralelos

Modelagem Dinâmica

Influência da topologia do robô

- Paralelos
 - Cadeia fechada
 - Juntas de 1, 2 ou 3 gl, ativas ou passivas
 - Grande número de elos
 - Grande quantidade de variáveis cinemáticas
 - Variáveis independentes e dependentes
 - Cinemática direta complexa
 - Cinemática inversa "simples"
 - Dinâmica direta Sistema de EDAs ou EDOs
 - Dinâmica inversa Sistema não linear
 - Coord. gen. ind.: coord. dos atuadores ou do efetuador

Modelagem Dinâmica

Dinâmica direta - EDAs

$$\mathbb{M}\ddot{\mathbf{q}} + \mathbb{A}^{\mathsf{T}} \mathbf{\lambda} = \mathbf{q} \tag{2.1}$$

$$\bar{\mathbf{q}}(\mathbf{q},t) = \mathbf{0} \tag{2.2}$$

Sendo

$$\mathbb{A}(\mathbf{q},t) = \frac{\partial \bar{\mathbf{q}}}{\partial \mathbf{q}} \tag{2.3}$$

Modelagem Dinâmica

Dinâmica direta - EDOs

$$\underbrace{\begin{bmatrix}
\mathbb{M} & \mathbb{A}^{\mathsf{T}} \\
\mathbb{A} & \mathbb{0}
\end{bmatrix}}_{\mathbb{Y}} \begin{bmatrix}
\ddot{\mathsf{q}} \\
\lambda
\end{bmatrix} = \begin{bmatrix}
\mathsf{n} \\
-\mathsf{b}
\end{bmatrix}$$
(2.4)

Sendo

$$\mathbb{b} = \frac{\partial (\mathbb{A}\dot{q})}{\partial q} \dot{q} + 2 \frac{\partial \mathbb{A}}{\partial t} \dot{q} + \frac{\partial^2 \bar{q}}{\partial t^2}$$
 (2.5)

Modelagem Dinâmica

Dinâmica direta - EDOs

$$\underbrace{\begin{bmatrix} M & A^{\mathsf{T}} \\ A & \emptyset \end{bmatrix}}_{\mathbb{Y}} \begin{bmatrix} \ddot{\mathsf{q}} \\ \mathbb{\lambda} \end{bmatrix} = \begin{bmatrix} \mathsf{n} \\ -\mathsf{b} \end{bmatrix}$$
(2.4)

Sendo

$$\mathbb{b} = \frac{\partial (\mathbb{A}\dot{q})}{\partial q} \dot{q} + 2 \frac{\partial \mathbb{A}}{\partial t} \dot{q} + \frac{\partial^2 \bar{q}}{\partial t^2}$$
 (2.5)

Método estabilização de Baumgarte

$$\mathbb{b}' = \mathbb{b} + 2\hat{\alpha}\dot{\bar{q}} + \hat{\beta}^2\bar{q} \tag{2.6}$$

Propósito

• Simulação

- Simulação
 - Projeto/Dimensionamento do mecanismo/manipulador
 - Grau de detalhamento do modelo depende da aplicação
 - Não necessita rodar em tempo real

Modelagem Dinâmica

- Simulação
 - Projeto/Dimensionamento do mecanismo/manipulador
 - Grau de detalhamento do modelo depende da aplicação
 - Não necessita rodar em tempo real
- Controle

Modelagem Dinâmica

- Simulação
 - Projeto/Dimensionamento do mecanismo/manipulador
 - Grau de detalhamento do modelo depende da aplicação
 - Não necessita rodar em tempo real
- Controle
 - Projeto do controlador
 - Compensação de não linearidades
 - Modelos demasiadamente complexos dificultam o projeto e podem aumentar o custo computacional
 - Modelos muito simplistas podem comprometer o desempenho
 - Muitas vezes precisa rodar em tempo real

Modelagem Dinâmica

Principais formulações

- Formalismo de Newton-Euler (Arian et al., 2017; Zhang et al., 2014)
- Formalismo de Lagrange (Singh e Santhakumar, 2015; Yao et al., 2017)
- Princípio dos Trabalhos/Potências Virtuais (Gallardo-Alvarado et al., 2018; Li e Staicu, 2012)
- Formulação Lagrange-D'Alambert (Cheng *et al.*, 2001; Yen e Lai, 2009)
- Método de Kane (Ben-Horina et al., 1998; Shukla e Karki, 2014)
- Formalismo de Boltzmann-Hammel (Abdellatif e Heimann, 2009; Altuzarra *et al.*, 2015)
- Formulação do Complemento Ortogonal Natural (Akbarzadeh *et al.*, 2013; Khan *et al.*, 2005)

Principais técnicas

- Controle Proporcional-Integral-Derivativo
- Controle por Torque Computado (Shang e Cong, 2009; Yen e Lai, 2009)
- Controle por Torque Computado com pré-alimentação (Siciliano et al., 2010; Spong et al., 2006)
- Controle por Torque Computado Estendido (Zubizarreta et al., 2013; Zubizarreta et al., 2012)
- Controle Preditivo Baseado em Modelo (Duchaine et al., 2007; Vivas e Poignet, 2005)
- Controle Adaptativo (Chemori et al., 2013; Honegger et al., 2000)
- Controle por Modos Deslizantes (Hu e Woo, 2006; Sadati e Ghadami, 2008)

Controle Proporcional-Integral-Derivativo (PID)

- Técnica de controle linear descentralizado
- Não baseado no modelo dinâmico do mecanismo
- Simples implementação
- Baixo custo computacional
- Desempenho bastante limitado

Controle por Torque Computado (CTC)

- Técnica de controle não linear centralizado
- Baseado no modelo dinâmico do mecanismo
- Realiza compensação de não linearidades por realimentação
- Desempenho superior ao PID, porém bastante dependente da qualidade do modelo dinâmico
- Implementação mais complexa
- Maior custo computacional

Controle por Torque Computado com pré-alimentação (CTCp)

- Lei de controle similar ao CTC
- Realiza compensação de não linearidades por pré-alimentação
- Menor custo computacional em relação ao CTC
- Implementação mais simples que o CTC
- Menor robustez em relação ao CTC

Controle por Torque Computado Estendido (CTCe)

- Lei de controle similar ao CTC
- Realiza compensação de não linearidades por realimentação
- Utiliza informação redundante obtida pelo sensoriamento de juntas passivas na lei de controle p/ aumentar robustez
- Robusto a incertezas nos parâmetros cinemáticos

Controle Preditivo Baseado em Modelo (CPM)

- Técnica de controle multi-variável baseado em modelo
- Muito utilizado no controle de processos industriais
- Realiza otimização em tempo real de uma custo que envolve o erro e o esforço de controle em tempo futuro
- Custo computacional bastante dependente da complexidade do modelo
- Maior robustez a incertezas paramétricas

Controle Adaptativo (CA)

- Técnica de controle baseado em modelo
- Estimação em tempo real de parâmetros do sistema
- Baixa sensibilidade a incertezas paramétricas
- Necessita de modelo dinâmico linear em relação aos parâmetros
- Alternativamente pode realizar a estimação termos não lineares de compensação dinâmica
- Custo computacional adicional relativo a integração das leis de adaptação
- Maior complexidade de projeto e implementação

Controle por Modos Deslizantes (CMD)

- Técnica de controle não linear robusto
- Alta robustez em relação a incertezas estruturadas e não estuturadas
- Desempenho menos dependente da qualidade do modelo dinâmico
- Utiliza funções descontínuas na lei de controle, o que pode causar chattering