AE1MCS: Mathematics for Computer Scientists

Huan Jin, Heshan Du University of Nottingham Ningbo China

Reading

Kenneth H. Rosen, *Discrete Mathematics and Its Applications*, 7th Edition, 2013.

- Chapter 2, Section 2.3. Functions
- Chapter 2, Section 2.4. Sequences and Summations

Functions

- A function assigns to each element of a first set exactly one element of a second set, where the two sets are not necessarily distinct.
- Functions play important roles throughout discrete mathematics.
- They are used to represent the computational complexity of algorithms, to study the size of sets, to count objects, and in a myriad of other ways.
- Useful structures such as sequences and strings are special types of functions.

Definition

Let A and B be nonempty sets. A function f from A to B is an assignment of exactly one element of B to each element of A. We write f(a) = b if b is the unique element of B assigned by the function f to the element a of A. If f is a function from A to B, we write $f : A \rightarrow B$.

Remark: Functions are sometimes also called *mappings* or transformations

Domain and Range

fas=1 a. pre-image of "1" 1. image of a

Definition

If f is a function from A to B, we say that A is the *domain* of f and B is the *codomain* of f. If f(a) = b, we say that b is the *image* of a and a is a *preimage* of b. The *range*, or *image*, of f is the set of all images of elements of A. Also, if f is a function from A to B, we say that f maps A to B.

Examples

- $f: \mathbb{Z} \to \mathbb{Z}$ defined by f(n) = 3n. The domain and codomain are both the set of integers. However, the range is only the set of integer multiples of 3.
- $g: \{1,2,3\} \rightarrow \{a,b,c\}$ defined by g(1) = c, g(2) = a, g(3) = a.
- Domain

Codomain

\$1,2,39 \$a,b,c} \$a,c}

Range

- {n∈≥|3n

Equal Functions

Two functions are **equal** when they have the same domain, have the same codomain, and map each element of their common domain to the same element in their common codomain.

Image of a Set

Definition

Let f be a function from \overline{A} to B and let S be a subset of A. The *image* of S under the function \overline{f} is the subset of B that consists of the images of the elements of S. We denote the image of S by f(S), so

$$f(S) \Rightarrow \{t \mid \exists s \in S \ (t = f(s))\}.$$

We also use the shorthand $\{f(s) \mid s \in S\}$ to denote this set.

Remark: The notation f(S) for the image of the set S under the function f is potentially ambiguous. Here, f(S) denotes a set, and not the value of the function f for the set S.

One-to-One Function

Definition

A function f is said to be *one-to-one*, or an *injective*, if and only if f(a) = f(b) implies that a = b for all a and b in the domain of f. This is

$$\forall a \forall b (f(a) = f(b) \rightarrow a = b)$$

or equivalently

$$\forall a \forall b (a \neq b \rightarrow f(a) \neq f(b))$$

A function is said to be *injective* if it is one-to-one.

Huan Jin, Heshan Du

Prove or Disprove a Function is Injective

Suppose that $f: A \rightarrow B$.

To show that f is injective Show that for arbitrary $x, y \in A$, if f(x) = f(y), then x = y.

To show that f is not injective Find particular elements $x, y \in A$ such that $x \neq y$ and f(x) = f(y).

Onto Functions

Definition

A function f from A to B is called *onto*, or a *surjection*, if and only if for every element $b \in B$ there is an element $a \in A$ with f(a) = b. This is,

$$\forall b \in B \ \exists a \in A \ (f(a) = b)$$

Range = Godomeir

A function f is called *surjective* if it is onto.

Not surjective

Prove or Disprove a Function is Surjective

Suppose that $f: A \rightarrow B$.

To show that f is surjective Consider an arbitrary element $y \in B$ and find an element $x \in A$ such that f(x) = y.

To show that f is not surjective Find a particular $y \in B$ such that for all $x \in A$, $f(x) \neq y$.

One-to-one Correspondence

Definition

The function *f* is a *one-to-one correspondence*, or a *bijection*, if it is both one-to-one and onto. We also say that such a function is *bijective*.

Example: are the following functions one-to-one? onto? neither? or both? One-one onto one-to-one onto one-to-one onto? neither? or not one-to-one onto one-to-one onto? not a function onto onto one-to-one onto? not a function of the one-to-one onto? $\frac{a}{a}$ of \frac

Inverse Functions

Definition

Let f be a one-to-one correspondence from the set A to the set B. The *inverse function* of f is the function that assigns to an element b belonging to B the unique element a in A such that f(a) = b. The inverse function of f is denoted by f^{-1} . Hence, $f^{-1}(b) = a$ when f(a) = b.

Remark: Be sure not to confuse the function f^{-1} with the function 1/f, which is the function that assigns to each x in the domain the value 1/f(x). Notice that the latter makes sense only when f(x) is a non-zero real number.

Invertible Functions

- A one-to-one correspondence is called **invertible** because we can define an inverse of this function.
- A function is not invertible if it is not a one-to-one correspondence, because the inverse of such a function does not exist.

Compositions of Functions

Definition

Let g be a function from the set A to the set B and let f be a function from the set B to the set C. The *composition* of the functions f and g, denoted for all $a \in A$ by $f \circ g$, is defined by

$$(f \circ g)(a) = f(g(a)).$$

Note that the *composition* $f \circ g$ cannot be defined unless the range of g is a subset of the domain of f.

Huan Jin, Heshan Du AE1MCS 16 / 26

Identity Function

Suppose that f is a one-to-one correspondence from the set A to the set B. f(a) = b.

$$(f^{-1} \circ f)(a) = f^{-1}(f(a)) = f^{-1}(b) = a$$

$$(f \circ f^{-1})(b) = f(f^{-1}(b)) = f(a) = b$$

 $f^{-1} \circ f$ and $f \circ f^{-1}$ are the identity functions on the sets A and B respectively. $(f^{-1})^{-1} = f$.

The Graphs of Functions

$$f(x) = x^{2} \qquad |R \rightarrow |R|$$

$$(0,0).$$

$$(1,1)$$

$$(-1,1)$$
Definition

Definition

Let f be a function from the set A to the set B. The *graph* of the function f is the set of ordered pairs $\{(a,b) \mid a \in A \land f(a) = b\}$.

Example

IR >IR

Consider f(n)=2n+3, is it bijective from \mathbb{Z} to \mathbb{Z} ?

No, because it's not surfective.

for a element o= 0 in the codomain.

We can't find a E Z, s.t. f(a)=b

Example

For each of the following functions, is it invertible? If yes, what is its inverse?

- (a) Let f(x) be a function from \mathbb{R} to \mathbb{R} . f(x) = 2x + 1
- (b) Let f(x) be a function from \mathbb{R}^+ to \mathbb{R} $g(x) = log_2(2x) 1$

$$f^{-1}(x) = \frac{x-1}{2}$$

$$|R \rightarrow |R|$$

$$\begin{array}{lll}
\text{m} & \text{m} &$$

Definition

A *sequence* is a function from a subset of the set of integers (usually either the set $\{0, 1, 2, ...\}$ or the set $\{1, 2, 3, ...\}$) to a set S. We use the notation a_n to denote the image of the integer n. We call a_n a term of the sequence.

Geometric Progression

$$\begin{cases} b_n \end{cases}, \quad \alpha = [, \quad Y = -], \quad n = 0, 1, \ge, \cdots \\ b_0 = \alpha \cdot Y^0 = [1 \cdot (-1)^0 =], \quad \begin{cases} 1, -1, 1, -1, \cdots \end{cases} \end{cases}$$
Definition
$$b_1 = \alpha \cdot Y^1 = [1 \cdot (-1)^1 = -]$$
A geometric progression is a sequence of the form

$$a, ar, ar^2, ..., ar^n, ...$$

where the initial term a and the common ratio r are real numbers.

Remark: A geometric progression is a discrete analogue of the exponential function $f(x) = ar^x$.

Arithmetic Progression

$$\{s_n\}, \quad a=-1, \quad d=4, \quad n=0, 1, 2, \dots$$

 $\{s_n\}, \quad a=-1, \quad d=4, \quad n=0, 1, 2, \dots$
 $\{s_n\}, \quad a=-1, \quad d=4, \quad n=0, 1, 2, \dots$
 $\{s_n\}, \quad a=-1, \quad d=4, \quad n=0, 1, 2, \dots$
 $\{s_n\}, \quad a=-1, \quad d=4, \quad n=0, 1, 2, \dots$
 $\{s_n\}, \quad a=-1, \quad d=4, \quad n=0, 1, 2, \dots$

Definition $\frac{1}{8}$ At nd = -1 + 4dAn *arithmetic progression* is a sequence of the form

$$a, a + d, a + 2d, ..., a + nd, ...$$

where the initial term a and the common difference d are real numbers.

Remark: An arithmetic progression is a discrete analogue of the linear function f(x) = dx + a.

Recurrence Relation

$$a_0 = a_1$$
 $a_1 = a_{n-1} + a_{n-2}$

Definition

A recurrence relation for the sequence $\{a_n\}$ is an equation that expresses a_n in terms of one or more of the previous terms of the sequence, namely, $a_0, a_1, ..., a_{n-1}$, for all integers n with $n \ge n_0$, where n_0 is a nonnegative integer. A sequence is called a *solution* of a recurrence relation if its terms satisfy the recurrence relation.

e.g.
$$a_0 = 1$$
. $a_{n+1} = a_n + 1$ for $n = 0, 1, 2, ...$

$$0 = 2$$

$$0 = 3$$

$$\vdots$$

Homework

Learn the following definitions by yourself.

- Real-valued and Integer-valued Functions
- Adding and Multiplying Real-valued Functions
- Increasing and Decreasing Functions
- Floor Function and Ceiling Function

Reading

Kenneth H. Rosen, *Discrete Mathematics and Its Applications*, 7th Edition, 2013.

- Chapter 2, Section 2.3. Functions
- Chapter 2, Section 2.4. Sequences and Summations