Selected Problems Chapter 3 Linear Algebra Done Right, Sheldon Axler, 3rd Edition

Mustaf Ahmed

February 7, 2021

Problem Integration. Define $T \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathbb{R})$ by

$$Tp = \int_0^1 p(x)dx.$$

Show that T is a linear map.

Proof.

Additivity

Given $p, q \in \mathcal{P}(\mathbb{R})$, we want the additivity propriety to hold for T. Applying T to the sum of p and q, we have

$$T(p+q) = \int_0^1 p(x) + q(x)dx$$

= $\int_0^1 p(x)dx + \int_0^1 q(x)dx$
= $T(p) + T(q)$,

since integration of a sum is equal to the sum of the integrated parts.

Homogeneity

Given $p \in \mathcal{P}(\mathbb{R})$ and $a \in F$, we want the homogeneity property to hold. Applying T to the scalar multiple of p, we have

$$T(a * p) = \int_0^1 a * p(x)dx$$
$$= a * \int_0^1 p(x)dx$$
$$= a * T(p),$$

since constants can be separated in integration.

Problem Theorem 3.5. Suppose v_1, \ldots, v_n is a basis of V and $w_1, \ldots, w_m \in W$. Show that there exists a unique linear map $T: V \to W$ such that

$$T(v_j) = w_j$$

for each $j = 1, \ldots, n$.

Proof. We must first show the existence of a linear map with the desired properties. Define $T: V \to W$ by

$$T(a_1v_1 + \dots + a_nv_n) = a_1w_1 + \dots + a_nw_n$$

, where a_1, \ldots, a_n are coefficients in F.

We must show that T is a linear map. Given $a_1v_1, \ldots, a_nv_n \in V$ and $b_1v_1, \ldots, bn_vn \in V$, we have

$$T'((a_1v_1 + \dots + a_nv_n) + ((b_1v_1 + \dots + b_nv_n))) = T((a_1 + b_1)v_1 + \dots + (a_n + b_n)v_n)$$

$$= (a_1 + b_1)w_1 + \dots + (a_n + b_n)w_n$$

$$= (a_1w_1 + \dots + a_nw_n) + (b_1w_1 + \dots + b_nw_n)$$

$$= T(a_1v_1 + \dots + a_nv_n) + T(b_1v_1 + \dots + b_nv_n).$$

Similarly, given $a_1v_1 + \cdots + a_nv_n \in V$ and $\lambda \in F$, we have

$$T(\lambda(a_1v_1 + \dots + a_nv_n)) = T((\lambda * a_1)v_1 + \dots + (\lambda * a_n)v_n$$

$$= (\lambda * a_1)w_1 + \dots + (\lambda * a_n)w_n$$

$$= \lambda(a_1w_1 + \dots + a_nw_n)$$

$$= \lambda * T(a_1v_1 + \dots + a_nv_n)$$

Thus, we have shown T to be a linear map.

Assume the existence of another linear map $T': V \to W$ with the property

$$T'(v_j) = w_j$$

for each j = 1, ..., n. To show uniqueness, we want that T(v) = T'(v) for all $v \in V$. Given $v \in V$, we can write $v = a_1v_1 + \cdots + a_nv_n$, since we have a basis for V. Then,

$$T(v) = T(a_1v_1 + \dots + a_nv_n)$$

$$= a_1T(v_1) + \dots + a_nT(v_n)$$

$$= a_1T'(v_1) + \dots + a_nT'(v_n)$$

$$= T'(a_1v_1 + \dots + a_nv_n)$$

$$= T'(v),$$

since $T(v_i) = w_i = T'(v_i)$ for each j = 1, ..., n.

Problem 3.A.11. Suppose V is finite-dimensional. Prove that every linear map on a subspace of V can be extended to a linear map on V. In other words, show that if U is a subspace of V and $S \in \mathcal{L}(U,W)$, then there exists $T \in \mathcal{L}(V,W)$ such that Tu = Su for all $u \in U$.

Proof. Given a subspace U of V and a linear map $S \in \mathcal{L}(U, W)$, we want to extend S to be a linear map on V. Choose a basis of U to be u_1, \ldots, u_m . We can extend our chosen basis for U to be a basis of V as the list $u_1, \ldots, u_m, v_1, \ldots, v_n$. Let

$$w_j = Su_j$$

for j = 1, ..., m. Thus the linear map S can be explicitly written as

$$Su = S(a_1u_1 + \dots + a_mu_m)$$

= $a_1w_1 + \dots + a_mw_m$

, for all $u \in U$.

We are now in the position to define the extension linear map T. We define T by

$$Tv = T(a_1u_1 + \dots + a_mu_m + a_{m+1}v_1 + \dots + a_{m+n}v_n)$$

= $a_1w_1 + \dots + a_mw_m$

, for all $v \in V$. It is clear that Tu = Su for all $u \in U$ by the definition of T; T is also a linear map.

Problem 3.A.14. Suppose V is finite-dimensional with $\dim V \geq 2$. Prove that there exists $S, T \in \mathcal{L}(V, V)$ such that $ST \neq TS$.

Proof. Assume that $n \geq 2$. Choose a basis $v_1, \ldots, v_n \in V$. We will define both linear maps as follows:

$$Tv = T(a_1v_1 + \dots + a_nv_n)$$

= $a_nv_1 + a_1v_2 + \dots + a_{n-1}v_n$

, which shifts coefficients by 1 in a circle; Also,

$$Sv = S(a_1v_1 + \dots + a_nv_n)$$

= a_1v_1 .

We will now show that these linear maps do not commute. Let $v = v_1 + 2v_2$. We have

$$ST(v) = ST(v_1 + 2v_2)$$

= $S(2v_1 + v_2)$
= $2v_1$,

and

$$TS(v) = TS(v_1 + 2v_2)$$
$$= T(v_1)$$
$$= v_2.$$

Thus, $ST \neq TS$.

Problem Extra (not from LADR). If V is a vector space over the field F, the dual vector space V^* is the vector space $\mathcal{L}(V, F)$ of linear maps from V to F.

Assume that $\dim V = n$, and that v_1, \ldots, v_n is a basis for V. Find a basis for V^* . What is $\dim V^*$?

Proof. Let $T_i: V \to F$ be defined as

$$T_i(v) = T_i(a_1v_1 + \dots a_nv_n) = a_i$$

for i = 1, ..., n be our chosen list of vectors.

We will first show that our list spans $\mathcal{L}(V, F)$. Choose $M \in \mathcal{L}(V, F)$ and choose $v \in V$. We have that

$$M(v) = M(a_1v_1 + \dots + a_nv_n)$$

= $a_1M(v_1) + \dots + a_nM(v_n)$
= $M(v_1)T_1(v) + \dots + M(v_n)T_n(v)$

Next, we will show that our list is linearly independent. Assume that

$$c_1 T_1(v) + \dots + c_n T_n(v) = 0$$