中国科学技术大学数学科学学院 2024 ~ 2025 学年第 1 学期期末考试试卷

$\lambda \rightarrow \lambda \lambda$	□Β券
/\ —/-	- $+$ $+$ $+$
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
11 / 11	1 1 1 11

	31/3.	学分析 (B	3)	课程编号		MATH100	08
考试时	付间 _2025 年	2025年1月11日14:30		考试形式		闭卷	
姓名		学号			学院		
题号	<u></u>		三	四	五.	六	总分
得分	}						
【30 分】:	填空题与判断	子 是页。					
			\ nh 사	(0.2. 2.	2 . 2 2	∖ пи ∠√	(0, 0, 0) H
	^{®3} 到自身的映 ♪将 (2023, 202						(0,0,0) 処
VXX	11 (2020, 202	14, 2020) b	())X(<u> </u> ·	
	3 阶实对称方						
么逐	首数 $x\mathbf{A}x^{\mathrm{T}}$ +	$x_1 + x_2 +$	x_3 在约	$ 東条件 x_1^2 $	$+x_2^2+x_2^2$	$\frac{2}{3} = 27 $	的最小值
	·						
$(3) \mathbb{R}^2 \not$	的子集 {(x,y)	$) 0 \le x, y \le$	$\leq 1, x \in \mathbb{Q}$	+ (n) +			
判断				$y, y \notin \mathbb{Q}$ (1)	了面积.		
	f正误:		-	$y \notin \mathbb{Q}$ 1	可面积.		
	f正误:		-	$\{y,y\notin\mathbb{Q}\}$ (5)	可面积.		
$(A) \mathbb{R}^n$			-	2, y ∉ Q} Æ	可面积.		
\ /	中的凸集一定	连通.		$\{y,y\notin\mathbb{Q}\}$ (5)	可面积.		
()		连通.		2, y ∉ ℚ} Æ	可面积.		
判谢	中的凸集一定 f正误:	连通.	-			-	
判)	中的凸集一定 f正误: F 向量空间 ℝ"	连通.	- _p 范数得3				
判) 判) (5) 对实	中的凸集一定 f正误:	连通.	- _p 范数得3				
判 (5) 对实 判 場	中的凸集一定 f正误: F 向量空间 ℝ"	连通. · 赋予 ·	- _p 范数得3 -			·.	

二、【16 分】设 M 是 n 维欧氏空间 $(\mathbb{R}^n,\langle\cdot\,,\cdot\rangle)$ 中的闭子集, 且是 m 维 C^1 曲面. 取定 $x\in\mathbb{R}^n$, 定义它到 M 的距离为

$$d(x, M) := \inf_{y \in M} \sqrt{\langle x - y, x - y \rangle} = \inf_{y \in M} |x - y|.$$

证明如下两个结论:

(1) 存在 $x_0 \in M$, 使得 $d(x, M) = |x - x_0|$;

(2) 任取 $v \in T_{x_0}M$, 成立 $\langle x - x_0, v \rangle = 0$.

$$\int_{1 \le x_1^2 + \dots + x_n^2 \le R^2} \frac{\mathrm{d}x_1 \cdots \mathrm{d}x_n}{(x_1^2 + \dots + x_n^2)^{\frac{p}{2}}} = \int_{\substack{(x_1, \dots, x_n) \in \mathbb{R}^n \\ 1 \le x_1^2 + \dots + x_n^2 \le R^2}} \frac{\mathrm{d}x_1 \cdots \mathrm{d}x_n}{(x_1^2 + \dots + x_n^2)^{\frac{p}{2}}},$$

当 $R \to +\infty$ 的极限, 要有详细过程.

- 四、【12 分】设 \mathbb{M}_n 为 n 阶实方阵的全体,将它等同于 \mathbb{R}^{n^2} . 设 \mathbb{S}_n 为 n 阶实对称方阵的 全体,将它等同于 $\mathbb{R}^{\frac{n(n+1)}{2}}$. 定义映射 $F: \mathbb{M}_n \to \mathbb{S}_n$ 为 $F(X) = XX^T$.
 - (1) 任给 $X, H \in \mathbb{M}_n$, 求 F 在 X 处的微分下 H 的像 $\mathrm{d}F_X(H)$.

(2) 任给 n 阶正交阵 A, 证明 F 在其处的微分 $\mathrm{d}F_A:\mathbb{R}^{n^2}\to\mathbb{R}^{\frac{n(n+1)}{2}}$ 为满射.

- 五、【18 分】将 2 阶实方阵的全体 \mathbb{M}_2 等同于四维欧氏空间 \mathbb{R}^4 ,设 $S=\{X\in\mathbb{M}_2:|\det X|=1\}.$
 - (1) 证明 S 不连通.

(2) 讨论 \mathbb{M}_2 上的函数 $f(A) = \operatorname{trace}(AA^T)$ 在约束 $\det A = 1$ 下的极值问题.

. ۱۱ ک

- 六、【12 分】设 $U\subset\mathbb{R}^n$ 是开集, 设 $\varphi:U\to\mathbb{R}^m$ 是 C^1 映射. 设 \mathbb{R}^m 上的连续实值函数 f 满足: $f\circ\varphi\equiv 0$, 且 $f^{-1}(0)\subset\mathbb{R}^m$ 无内点.
 - (1) 证明: φ 在任意 $x \in U$ 处的微分的秩都小于 m.

(2) 证明: $\varphi(U) \subset \mathbb{R}^m$ 是 Lebesgue 零测集.

2025 年数分 (B3) A 卷评分标准

- 1. 每题 5 分. 答案依次为: (0,0,0), -36, 错误、正确、错误、错误.
- 1.6. 下面我们构造一个没有面积的平面有界区域。
- (a) 先构造一个 (0, 1) 的开子集 A, 想法来自于 Cantor 集的构造: 取 $\{t_i = 8^{-i}\}_{i=1}^{\infty}$, 那么 $\sum_{i=1}^{\infty} 2^i t_i = \frac{1}{3} < \frac{1}{2}$. 易见如下可数个 (0, 1) 中的开区间

$$\left(\frac{2j+1}{2^i} - t_i, \frac{2j+1}{2^i} + t_i\right), \quad j = 0, 1, 2, \dots, 2^i - 1, \quad i = 1, 2, \dots$$
 (1)

两两不交, 且它们的长度之和小于 $\frac{1}{2}$, 记上述开区间的并集为 A.

- (b) ∂A 不是 Jordan 零测集. 若不然,则存在有限个开区间 $J_1, ..., J_m$,它们覆盖 $\partial A = [0, 1] \backslash A$,且它们的长度和小于 $\frac{1}{2}$. 于是 $J_1, ..., J_m$ 与(1)中的可数个开区 间 $\{I_k\}$ 构成 [0, 1] 的开覆盖,存在有限子覆盖 $J_1, ..., J_m, I_1, ..., I_N$,但是这有限个开区间的长度之和小于 $\frac{1}{2} + \frac{1}{2} = 1$. 矛盾!
- (c) $\Diamond \Omega = A \times (0, 1) \cup (0, 1) \times A$, 那么 $\Omega \in \mathbb{R}^2$ 的连通开集.
- (d) 由于 $\partial\Omega = ([0, 1] \times [0, 1]) \setminus \Omega$, 注意到(1)中的开区间们的长度之和小于 $\frac{1}{2}$, 利用 类似于 (b) 里的反证法, 可得 $\partial\Omega$ 不是零面积集合. 从而 Ω 没有面积.
- 2. 每小问 8 分.
- **2.1.** 证明只用到 M 是非空闭子集. 事实上, 取 $z \in M$, 那么

$$B = M \cap \{ y \in \mathbb{R}^n : |y| \le |x| + |x - z| \}$$

包含 z, 并且它紧致 (3 分). 由于 $|x-\cdot|: B \to \mathbb{R}$ 为紧致集上的连续函数, 可取到最小值 (2 分). 于是, 存在 $x_0 \in B \subset M$, 满足

$$|x - x_0| = \inf_{y \in B} |x - y| = \inf_{y \in M} |x - y|$$
 (3 分).

2.2. 这是一道作业题 (习题 17.5:11), 按照步骤给分.

3. 利用 n 维极坐标换元公式,将原积分化为如下单变量定积分

$$c_n \int_1^R r^{n-1-p} \, \mathrm{d}r,$$

其中常数 $c_n = \frac{2\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2})}$ 为 \mathbb{R}^n 中单位球面的面积 (6 分). 当 $R \to +\infty$ 时, 可分如下两种情况讨论极限问题:

- (a) 当 $p \le n$ 时, 极限为 $+\infty(3 \ \beta)$;
- (b) 当 p > n 时, 极限为 $\frac{c_n}{p-n}(3 \ \mathcal{D})$.

备注: 如果没有写出 c_n 具体值, 只扣 1 分.

- 4. 本题是作业题 (习题 17.5:10) 改编而来, 每问 6 分.
- **4.1.** $dF_X(H) = HX^T + XH^T$. 按步骤给分.
- **4.2.** 任取 $2S \in \mathbb{S}_n$, 令 $H = SA(3 \ \%)$, 那么由第一问得

$$dF_A(SA) = SAA^T + A(SA)^T = S + S^T = 2S \quad (3 \%).$$

- 5. 第一问 6 分, 第二问 12 分.
- **5.1.** 记 $S_{\pm} = \{X \in S : \det X = \pm 1\}$, 那么 S_{\pm} 都非空 (2 分). 由于行列式函数 $\det : S \to \mathbb{R}$ 连续,

$$S_{-} = (\det)^{-1}(-1.5, -0.5), \quad S_{+} = (\det)^{-1}(0, 5, 1.5)$$

都是 S 的非空不交开子集 (2 分). 因此 S 不连通 (2 分).

- **5.2.** 首先陈述结论: 行列式 1 的 $X \in \mathbb{M}_2$ 是 f 的条件极值点当且仅当 $XX^T = I_2$; 此时, X 是 f 的最小值点. 答案写对就给 4 分. 问题的讨论分如下四个部分, 分值分别为 4,4,2,2.
- (1) 设 $f(A) = \operatorname{tr} AA^T$, $\Phi(A) = \det A 1$. 记 $A = (a_{ij})$, 记 A_{ij} 为 a_{ij} 的代数余子式. 对于任意 $A \in \{\Phi = 0\}$,

$$\frac{\partial \Phi}{\partial a_{ij}} = A_{ij},$$

可以将 $\nabla \Phi(A)$ 等同于 A 的伴随 A^* . 由于 $\det A = 1$, $A^* = A^{-1}$ 不是零矩阵. 由隐函数定义, $\{\Phi = 0\}$ 是 $\mathbb{M}_2 = \mathbb{R}^4$ 中的 3 维 C^1 曲面.

(2) 设 A 为 $f|_{\{\Phi=0\}}$ 的极值点. 那么由 Lagrange 乘数法的几何意义, 存在 $\lambda \in \mathbb{R}$, 使得对于任意 $1 \le i, j \le 2$, $a_{ij} = \lambda A_{ij}$, i.e. $A = \lambda (A^*)^T$. 由于 det A = 1, 我们有 $A^* = A^{-1}$ 以及

$$AA^T = \lambda AA^* = \lambda AA^{-1} = \lambda I_2.$$

对上式两边取 trace 得, $0 < \text{tr } AA^T = 2\lambda$, 从而 $\lambda > 0$. 对上式两边取行列式得 $\lambda^2 = 1$, 所以 $\lambda = 1$, 从而 $AA^T = I_2$, 此时 f(A) = 2.

- (3) f(A) 的几何意义是零矩阵 $\mathbf{0}$ (原点) 到 A 的距离的平方. 由于 $\{\Phi = 0\} \subset \mathbb{M}_n$ 为闭子集, f 在 $\{\Phi = 0\}$ 上一定取到最小值, 也是极小值. 由第 2 步知道 $f|_{\{\Phi = 0\}}$ 的所有极小值点构成集合 $SO(2) := \{A \in \mathbb{M}_2 : \det A = 1, AA^T = I_2\}$, 且极小值为 2.
- (4) 若能证明 SO(2) 是 M₂ 的 1 维 C^1 曲面, 那么 $f|_{SO(2)}$ 为常值 2, 从而第 3 步中的极小值点都不是严格的. 由于 O(2) = $\{A \in M_2 : AA^T = I_2\}$ 是 M₂ 的 1 维曲面. 任取 $A \in SO(2) \subset O(2)$, 存在 4 维开球 $B_{\delta}(A)$ 使得 $B_{\delta}(A) \cap O(2)$ 可以表达成 1 维开集上的 C^1 映射的图像. 当 0 < δ << 1 时, 由 det 的连续性, $B_{\delta}(A) \cap O(2)$ 中的矩阵的行列式等于 1, 从而 $B_{\delta}(A) \cap O(2) \subset SO(n)$. 即证 SO(2) 是 M₂ 的 1 维子流形. 事实上, O(2) 恰好有两个相同维数的连通分支: SO(2) 和 NO(2) = $\{A \in O(2) : \det A = -1\}$.

- 6. 每问 6 分.
- **6.1.** 由于 $\varphi(U) \subset f^{-1}(0)$ 以及后者没有内点,那么 $\varphi(U) \subset \mathbb{R}^m$ 也没有内点 $(1 \ \beta)$. (反证法) 假设存在 $x^0 \in U$, φ 在 x^0 处的微分的秩序等于 m, 不妨设 $n \geq m(1 \ \beta)$. 由于 φ 的微分的秩取得最大值 m 是一个开性质,存在 x^0 的邻域 $V \subset U$,使得 $d\varphi$ 在 V 上的秩恒为 $m(2 \ \beta)$. 利用秩定理,略去参数变换,在 $x^0 = (0, \dots, 0) \in \mathbb{R}^n$ 的附近我们可把 φ 看成 $(x_1, \dots, x_n) \mapsto (x_1, \dots, x_m)$. 于是 $(0, \dots, 0) \in \mathbb{R}^m$ 是 $\varphi(V) \subset \varphi(U)$ 的内点,矛盾 $(2 \ \beta)$.
- 6.2. 证明分如下三步, 分值均为 2 分.
- (a) 任取 U 的紧致子集 K, 利用 $\operatorname{rk} \operatorname{d} \varphi$ 恒小于 m, 模仿例 18.1.2. 的证明, 可以证得 $\varphi(K) \subset \mathbb{R}^m$ 是 Jordan 零测集, 从而也是 Lebesgue 零测集.
- (b) 断言: 存在一列紧致集合 $\{K_n\}$, 使得 $U = \bigcup_{n=1}^{\infty} K_n$. 事实上, 先不妨设 $U \neq \mathbb{R}^n$, 那么可以如下构造 K_n :

$$K_n = \left\{ x \in U : |x| \le n, |x - y| \ge \frac{1}{n} \text{ as } y \notin U \right\}.$$

(c) 注意到可数个 Lebesgue 零测集之并也是 Lebesgue 零测集, 以及 $\varphi(U) = \bigcup_{n=1}^{\infty} \varphi(K_n)$, 得证.