In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
import plotly.graph_objs as go
!pip install statsmodels
```

```
Defaulting to user installation because normal site-packages is not writeable
Requirement already satisfied: statsmodels in c:\programdata\anaconda3\lib\site-packages (0.13.2)
Requirement already satisfied: numpy>=1.17 in c:\programdata\anaconda3\lib\site-packages (from statsmodel
s) (1.21.5)
Requirement already satisfied: scipy>=1.3 in c:\programdata\anaconda3\lib\site-packages (from statsmodel
s) (1.7.3)
Requirement already satisfied: pandas>=0.25 in c:\programdata\anaconda3\lib\site-packages (from statsmode
ls) (1.4.2)
Requirement already satisfied: patsy>=0.5.2 in c:\programdata\anaconda3\lib\site-packages (from statsmode
ls) (0.5.2)
Requirement already satisfied: packaging>=21.3 in c:\programdata\anaconda3\lib\site-packages (from statsm
odels) (21.3)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in c:\programdata\anaconda3\lib\site-packages (fr
om packaging>=21.3->statsmodels) (3.0.4)
Requirement already satisfied: pytz>=2020.1 in c:\programdata\anaconda3\lib\site-packages (from pandas>=
0.25->statsmodels) (2021.3)
Requirement already satisfied: python-dateutil>=2.8.1 in c:\programdata\anaconda3\lib\site-packages (from
pandas>=0.25->statsmodels) (2.8.2)
Requirement already satisfied: six in c:\programdata\anaconda3\lib\site-packages (from patsy>=0.5.2->stat
smodels) (1.16.0)
```

In [2]:

```
df = pd.read_csv("C:\\Users\\HP\\Downloads\\archive (8)\\insurance.csv")
df.head()
```

Out[2]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520

In [3]:

df.head

Out[3]:

<boun< th=""><th>d met</th><th>hod NDFr</th><th>ame.head of</th><th>a</th><th>ige</th><th>sex bm</th><th>i children smoker</th><th>region</th><th>charges</th></boun<>	d met	hod NDFr	ame.head of	a	ige	sex bm	i children smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400	_	_
1	18	male	33.770	1	no	southeast	1725.55230		
2	28	male	33.000	3	no	southeast	4449.46200		
3	33	male	22.705	0	no	northwest	21984.47061		
4	32	male	28.880	0	no	northwest	3866.85520		
			• • •						
1333	50	male	30.970	3	no	northwest	10600.54830		
1334	18	female	31.920	0	no	northeast	2205.98080		
1335	18	female	36.850	0	no	southeast	1629.83350		
1336	21	female	25.800	0	no	southwest	2007.94500		
1337	61	female	29.070	0	yes	northwest	29141.36030		

[1338 rows x 7 columns]>

In [4]:

df.shape

Out[4]:

(1338, 7)

```
In [5]:
```

```
df.dtypes

Out[5]:
age    int64
```

sex object
bmi float64
children int64
smoker object
region object
charges float64
dtype: object

In [6]:

df.isnull()

Out[6]:

	age	sex	bmi	children	smoker	region	charges
0	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False
1333	False	False	False	False	False	False	False
1334	False	False	False	False	False	False	False
1335	False	False	False	False	False	False	False
1336	False	False	False	False	False	False	False
1337	False	False	False	False	False	False	False

1338 rows × 7 columns

In [7]:

df.tail()

Out[7]:

	age	sex	bmi	children	smoker	region	charges
1333	50	male	30.97	3	no	northwest	10600.5483
1334	18	female	31.92	0	no	northeast	2205.9808
1335	18	female	36.85	0	no	southeast	1629.8335
1336	21	female	25.80	0	no	southwest	2007.9450
1337	61	female	29 07	0	ves	northwest	29141 3603

data preprocessing

```
In [8]:
```

```
df.shape
df.describe()
```

Out[8]:

	age	bmi	children	charges
count	1338.000000	1338.000000	1338.000000	1338.000000
mean	39.207025	30.663397	1.094918	13270.422265
std	14.049960	6.098187	1.205493	12110.011237
min	18.000000	15.960000	0.000000	1121.873900
25%	27.000000	26.296250	0.000000	4740.287150
50%	39.000000	30.400000	1.000000	9382.033000
75%	51.000000	34.693750	2.000000	16639.912515
max	64.000000	53.130000	5.000000	63770.428010

In [9]:

```
df.isnull().sum()
```

Out[9]:

age 0
sex 0
bmi 0
children 0
smoker 0
region 0
charges 0
dtype: int64

In [10]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1338 entries, 0 to 1337
Data columns (total 7 columns):
              Non-Null Count Dtype
#
    Column
0
              1338 non-null
                              int64
    age
              1338 non-null
1
    sex
                              object
 2
    bmi
              1338 non-null
                              float64
 3
    children 1338 non-null
                              int64
4
    smoker
              1338 non-null
                              object
    region
              1338 non-null
                              object
6
              1338 non-null
                              float64
    charges
dtypes: float64(2), int64(2), object(3)
memory usage: 73.3+ KB
```

In [11]:

```
df.age
```

Out[11]:

```
0
        19
1
        18
2
        28
3
        33
        32
1333
        50
1334
        18
1335
        18
1336
        21
1337
        61
```

Name: age, Length: 1338, dtype: int64

```
In [12]:
df.sex
Out[12]:
        female
          male
1
          male
3
          male
4
          male
1333
         male
1334
        female
1335
        female
1336
        female
1337
        female
Name: sex, Length: 1338, dtype: object
In [13]:
df.bmi
Out[13]:
        27.900
        33.770
1
2
        33.000
        22.705
3
4
        28.880
        30.970
1333
        31.920
1334
1335
        36.850
        25.800
1336
1337
        29.070
Name: bmi, Length: 1338, dtype: float64
In [14]:
df.children
Out[14]:
0
        0
1
        1
2
        3
3
        0
4
        0
1333
1334
        0
1335
1336
1337
Name: children, Length: 1338, dtype: int64
In [15]:
df.smoker
Out[15]:
        yes
0
1
         no
2
         no
3
         no
4
         no
1333
        no
1334
         no
1335
         no
1336
        no
1337
        yes
Name: smoker, Length: 1338, dtype: object
```

```
In [16]:
df.region
Out[16]:
        southwest
        southeast
1
        southeast
3
        northwest
4
        northwest
1333
        northwest
1334
        northeast
1335
        southeast
1336
        southwest
1337
        northwest
Name: region, Length: 1338, dtype: object
In [17]:
df.charges
```

```
Out[17]:
        16884.92400
         1725.55230
1
         4449.46200
3
        21984.47061
4
         3866.85520
        10600.54830
         2205.98080
1334
1335
         1629.83350
         2007.94500
1336
1337
        29141.36030
Name: charges, Length: 1338, dtype: float64
```

Exploratory data analysis

```
In [18]:

s = df['sex'].value_counts()
plt.pie(s, labels = s.index, autopct='%1.1f%%', shadow=True)
plt.title("Male vs Female Percentage")
```

```
Text(0.5, 1.0, 'Male vs Female Percentage')
```

Male vs Female Percentage

Out[18]:

In [19]:

```
sns.histplot(data=df, x='age', bins=40)
plt.title("Age Distribution")
```

Out[19]:

Text(0.5, 1.0, 'Age Distribution')

In [20]:

In [21]:

```
bmi = df["bmi"]

cond_list = [bmi < 18.5, bmi < 25, bmi < 30, bmi >= 30]
choice_list = ['underweight', 'normal', 'overweight', 'obese']

df["bmi_cat"] = np.select(cond_list, choice_list)
df.head(10)
```

Out[21]:

	age	sex	bmi	children	smoker	region	charges	bmi_cat
0	19	female	27.900	0	yes	southwest	16884.92400	overweight
1	18	male	33.770	1	no	southeast	1725.55230	obese
2	28	male	33.000	3	no	southeast	4449.46200	obese
3	33	male	22.705	0	no	northwest	21984.47061	normal
4	32	male	28.880	0	no	northwest	3866.85520	overweight
5	31	female	25.740	0	no	southeast	3756.62160	overweight
6	46	female	33.440	1	no	southeast	8240.58960	obese
7	37	female	27.740	3	no	northwest	7281.50560	overweight
8	37	male	29.830	2	no	northeast	6406.41070	overweight
9	60	female	25.840	0	no	northwest	28923.13692	overweight

In [22]:

```
print(df.region.value_counts())
```

southeast 364 southwest 325 northwest 325 northeast 324

Name: region, dtype: int64

In [23]:

0 3641 325

325

2

3 324 Name: region, dtype: int64

In [24]:

```
corr_matrix = df.corr(method='spearman').abs()
plt.figure(figsize=(10, 7))
sns.heatmap(corr_matrix, annot=True, cmap="Reds")
plt.show()
```


In [25]:

sns.pairplot(df)

Out[25]:

<seaborn.axisgrid.PairGrid at 0x157bc376d30>

In [26]:

In [27]:

In [28]:

```
# Here we can see the importance of smoking feature
fig, axes = plt.subplots(nrows=3, ncols=3, figsize=(15, 15))

for i in range(len(df.columns)):
    sns.scatterplot(data=df, x = df.charges, y=df.columns[i],ax = axes[i // 3][i % 3], hue='smoker')

fig.suptitle("Features Distributions")

plt.subplots_adjust(top=0.95)

plt.show()
```


In [29]:

```
cols=['sex', 'children', 'smoker', 'region']
fig, axes = plt.subplots(nrows=2, ncols=2, figsize= (12, 12))

for i in range(len(cols)):
    sns.barplot(data=df, x = cols[i], y = 'charges', ax = axes[i // 2][i % 2], hue='smoker')

fig.suptitle("Bar plots functions of smoking")

plt.subplots_adjust(top=0.95)

plt.show()
```


In [30]:

```
cols=['sex', 'children', 'smoker', 'region']
fig, axes = plt.subplots(nrows=2, ncols=2, figsize= (12, 12))

for i in range(len(cols)):
    sns.boxplot(data=df, x = cols[i], y = 'charges', ax = axes[i // 2][i % 2])

fig.suptitle("Box plots")
plt.subplots_adjust(top=0.95)
plt.show()
```



```
In [31]:
```

```
df.corr
Out[31]:
<bound method DataFrame.corr of</pre>
                                      age
                                              sex
                                                      bmi children smoker region
                                                                                        charges
                                                                                                    bmi_c
at
       19 female 27.900
                                       yes
                                                 1 16884.92400 overweight
            male 33.770
       18
1
                                  1
                                                 0
                                                    1725.55230
                                                                      obese
                                        no
2
       28
             male
                   33.000
                                  3
                                                     4449.46200
                                                                      obese
             male 22.705
                                                    21984.47061
3
                                  0
       33
                                        no
                                                                     normal
4
       32
             male 28.880
                                  0
                                                     3866.85520 overweight
             . . .
            male 30.970
                                                 2 10600.54830
1333
       50
                                  3
                                                                      obese
1334
       18 female 31.920
                                                 3
                                                    2205.98080
                                                                      obese
                                        no
1335
       18 female 36.850
                                        no
                                                 0
                                                    1629.83350
                                                                      obese
1336
       21 female 25.800
                                  0
                                                 1
                                                     2007.94500 overweight
                                       no
1337
       61
          female 29.070
                                  0
                                       yes
                                                 2 29141.36030 overweight
[1338 rows x \ 8 \ columns]>
```

In [32]:

```
from sklearn.preprocessing import LabelEncoder
def labelling(x):
    df[x] = LabelEncoder().fit_transform(df[x])
    return df
cat = ['sex','smoker','bmi_cat']
for i in cat:
    labelling(i)
df
```

Out[32]:

	age	sex	bmi	children	smoker	region	charges	bmi_cat
0	19	0	27.900	0	1	1	16884.92400	2
1	18	1	33.770	1	0	0	1725.55230	1
2	28	1	33.000	3	0	0	4449.46200	1
3	33	1	22.705	0	0	2	21984.47061	0
4	32	1	28.880	0	0	2	3866.85520	2
1333	50	1	30.970	3	0	2	10600.54830	1
1334	18	0	31.920	0	0	3	2205.98080	1
1335	18	0	36.850	0	0	0	1629.83350	1
1336	21	0	25.800	0	0	1	2007.94500	2
1337	61	0	29.070	0	1	2	29141.36030	2

1338 rows × 8 columns

Train-Test split

```
In [33]:
```

```
x = df.drop("bmi",axis=1)
y = df["bmi"]
```

```
In [34]:
```

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.3,random_state=23)
```

```
In [35]:
```

```
from sklearn.linear_model import LinearRegression
```

```
In [36]:
model = LinearRegression()
In [37]:
model.fit(X_train,y_train)
Out[37]:
LinearRegression()
In [38]:
model.intercept_
Out[38]:
30.972842843720212
In [39]:
model.coef_
Out[39]:
array([-3.17132357e-02, 3.02799086e-01, -9.35575339e-02, -7.38178067e+00, -1.41745867e+00, 3.07895827e-04, 5.73600193e-01])
In [40]:
train_predictions = model.predict(X_train)
In [41]:
test_predictions = model.predict(X_test)
In [42]:
from sklearn.metrics import mean_absolute_error
print("MAE for test data: ",mean_absolute_error(y_test,test_predictions))
print("MAE for train data: ",mean_absolute_error(y_train,train_predictions))
MAE for test data: 4.296922287205947
MAE for train data: 4.446706134683215
In [43]:
from sklearn.metrics import mean_absolute_error
print("MSE for test data: ",mean_absolute_error(y_test,test_predictions))
print("MSE for train data: ",mean_absolute_error(y_train,train_predictions))
MSE for test data: 4.296922287205947
MSE for train data: 4.446706134683215
In [44]:
from sklearn.metrics import mean_squared_error
print("RMSE for test data: ",np.sqrt(mean_squared_error(y_test,test_predictions)))
print("RMSE for train data: ",np.sqrt(mean_squared_error(y_train,train_predictions)))
RMSE for test data: 5.324991306012566
RMSE for train data: 5.647891089758658
In [45]:
from sklearn.metrics import r2_score
print("R2 for test data: ",r2_score(y_test,test_predictions))
print("R2 for train data: ",r2_score(y_train,train_predictions))
R2 for test data: 0.11300011110165908
R2 for train data: 0.18369254028695137
```

```
In [46]:
```

```
model.score(X_test,y_test)
```

Out[46]:

0.11300011110165908

In [47]:

```
model.score(X_train,y_train)
```

Out[47]:

0.18369254028695137

In [48]:

```
from sklearn.model_selection import cross_val_score
scores = cross_val_score(model,x,y,cv=5)
print(scores)
cv_score = scores.mean()
print("Cross Validation Score:",cv_score)
```

[0.1210946 0.11595634 0.14870749 0.20824497 0.16474452] Cross Validation Score: 0.1517495857091608

In [49]:

```
test_res = y_test - test_predictions
```

In [50]:

```
plt.scatter(y_test,test_res)
plt.xlabel("observed_values")
plt.ylabel("fitted_values")
plt.show()
```


In [51]:

```
sns.displot(test_res,kde=True)
plt.show()
```


In [52]:

```
plt.scatter(test_predictions,test_res,c="g")
plt.axhline(y=0,color='blue')
plt.xlabel("fitted_values")
plt.ylabel("residuals")
plt.show()
```


In [53]:

```
import statsmodels.formula.api as smf
model2=smf.ols("y~x",data=df).fit()
model2.summary()
```

Out[53]:

OLS Regression Results

OLS Regres	DLS Regression Results										
Dep. \	/ariable:		у	F	0.174						
	Model:		OLS	Adj. F	0.170						
	Method:	Least S	Squares	ı	: 40.11						
	Date:	Wed, 19 A	pr 2023	Prob (F	: 2.19e-51						
	Time:	1	1:15:01	Log-L	ikelihood.	-4189.0					
No. Obser	vations:		1338		: 8394.						
Df Re	siduals:		1330		BIC	: 8436.					
D	f Model:		7								
Covarian	ce Type:	no	nrobust								
	coef	std err	t	P> t	[0.025	0.975]					
Intercept	30.9613	0.593	52.247	0.000	29.799	32.124					
x[0]	-0.0306	0.013	-2.420	0.016	-0.055	-0.006					
x[1]	0.5459	0.305	1.791	0.074	-0.052	1.144					
x[2]	-0.0978	0.127	-0.772	0.441	-0.346	0.151					
x[3]	-6.9682	0.683	-10.199	0.000	-8.309	-5.628					
x[4]	-1.3901	0.135	-10.328	0.000	-1.654	-1.126					
x[5]	0.0003	2.39e-05	12.060	0.000	0.000	0.000					
x[6]	0.3112	0.217	1.437	0.151	-0.114	0.736					
Omi	nibus: 1	8.091 D	urbin-Wa	itson:	2.081						
Prob(Omn	ibus):	0.000 Jar	que-Bera	(JB):	18.544						
;	Skew:	0.270	Prol	o(JB):	9.40e-05						
Kur	rtosis:	3.203	Con	d. No.	8.33e+04						

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 8.33e+04. This might indicate that there are strong multicollinearity or other numerical problems.

In [54]:

```
import statsmodels.api as sm
sm.graphics.influence_plot(model2)
```

Out[54]:

In [55]:

from joblib import dump

In [56]:

```
dump(model, 'bmi_model.joblib')
```

Out[56]:

['bmi_model.joblib']

In [57]:

from joblib import load

In [58]:

```
loaded_model = load('bmi_model.joblib')
```

In [59]:

from sklearn.linear_model import LinearRegression

In [60]:

```
model = LinearRegression()
```

```
In [61]:
model.fit(X_train,y_train)
Out[61]:
LinearRegression()
In [62]:
model.intercept_
Out[62]:
30.972842843720212
In [63]:
model.coef_
Out[63]:
array([-3.17132357e-02, 3.02799086e-01, -9.35575339e-02, -7.38178067e+00, -1.41745867e+00, 3.07895827e-04, 5.73600193e-01])
In [64]:
train_predictions = model.predict(X_train)
In [65]:
test_predictions = model.predict(X_test)
In [66]:
from sklearn.metrics import mean_squared_error
test_RMSE = np.sqrt(mean_squared_error(y_test,test_predictions))
train_RMSE = np.sqrt(mean_squared_error(y_train,train_predictions))
print(train_RMSE,test_RMSE)
5.647891089758658 5.324991306012566
In [67]:
model.score(X_test,y_test)
Out[67]:
0.11300011110165908
In [68]:
model.score(X_train,y_train)
Out[68]:
0.18369254028695137
In [69]:
from sklearn.model_selection import cross_val_score
scores = cross_val_score(model,x,y,cv=5)
print(scores)
cv_score = scores.mean()
print("Cross Validation Score:",cv_score)
[0.1210946  0.11595634  0.14870749  0.20824497  0.16474452]
Cross Validation Score: 0.1517495857091608
In [70]:
test_res = y_test - test_predictions
```

In [71]:

```
plt.scatter(y_test,test_res)
plt.xlabel("observed_values")
plt.ylabel("fitted_values")
plt.show()
```


In [72]:

```
sns.displot(test_res,bins=15,kde=True)
plt.show()
```


In [73]:

```
plt.scatter(test_predictions,test_res,c="r")
plt.axhline(y=0,color='blue')
plt.xlabel("fitted_values")
plt.ylabel("residuals")
plt.show()
```


In [74]:

```
import statsmodels.formula.api as smf
model1=smf.ols("y~x",data=df).fit()
model1.summary()
```

Out[74]:

OLS Regression Results

OLO Regres	DEO Regression Results										
Dep. \	/ariable:		у	F	R-squared	0.174					
	Model:		OLS	Adj. F	R-squared	l: 0.170					
	Method:	Least S	Squares	ı	: 40.11						
	Date:	Wed, 19 Apr 2023		Prob (F	2.19e-51						
	Time:	1	1:15:04	Log-L	l: -4189.0						
No. Obser	vations:		1338		AIC	8394.					
Df Re	siduals:		1330		BIC	8436.					
D	f Model:		7								
Covarian	ce Type:	no	nrobust								
	coef	std err	t	P> t	[0.025	0.975]					
Intercept	30.9613	0.593	52.247	0.000	29.799	32.124					
x[0]	-0.0306	0.013	-2.420	0.016	-0.055	-0.006					
x[1]	0.5459	0.305	1.791	0.074	-0.052	1.144					
x[2]	-0.0978	0.127	-0.772	0.441	-0.346	0.151					
x[3]	-6.9682	0.683	-10.199	0.000	-8.309	-5.628					
x[4]	-1.3901	0.135	-10.328	0.000	-1.654	-1.126					
x[5]	0.0003	2.39e-05	12.060	0.000	0.000	0.000					
x[6]	0.3112	0.217	1.437	0.151	-0.114	0.736					
Omi	nibus: 1	8.091 D	urbin-Wa	iteon:	2.081						
Prob(Omn			que-Bera								
			•	. ,							
		0.270		b(JB):							
Kui	rtosis:	3.203	Con	d. No.	8.33e+04						

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 8.33e+04. This might indicate that there are strong multicollinearity or other numerical problems.

In [75]:

```
import statsmodels.api as sm
sm.graphics.influence_plot(model1)
```

Out[75]:

In [76]:

df.iloc[130]

Out[76]:

59.00000 age 0.00000 sex 26.50500 bmi children 0.00000 0.00000 smoker region 3.00000 charges 12815.44495 2.00000 bmi_cat Name: 130, dtype: float64

In [77]:

```
df_new=df.drop(df.index[[130]],axis=0)
df_new
```

Out[77]:

	age	sex	bmi	children	smoker	region	charges	bmi_cat
0	19	0	27.900	0	1	1	16884.92400	2
1	18	1	33.770	1	0	0	1725.55230	1
2	28	1	33.000	3	0	0	4449.46200	1
3	33	1	22.705	0	0	2	21984.47061	0
4	32	1	28.880	0	0	2	3866.85520	2
1333	50	1	30.970	3	0	2	10600.54830	1
1334	18	0	31.920	0	0	3	2205.98080	1
1335	18	0	36.850	0	0	0	1629.83350	1
1336	21	0	25.800	0	0	1	2007.94500	2
1337	61	0	29.070	0	1	2	29141.36030	2

1337 rows × 8 columns

In [78]:

```
lm = smf.ols(formula='age~sex + bmi + children + smoker + region + charges',data=df_new).fit()
lm.summary()
```

Out[78]:

OLS Regression Results

Dep. \	/ariable:		age	R	-squared:	0.271
	Model:		OLS	Adj. R	-squared:	0.268
	Method:	Least S	quares	F-statistic:		82.42
	Date:	Wed, 19 Apr 2023		Prob (F	-statistic):	8.11e-88
	Time:	1	1:15:06	Log-Likelihood:		-5218.0
No. Obser	vations:		1337		AIC:	1.045e+04
Df Re	siduals:		1330		1.049e+04	
D	f Model:		6			
Covarian	се Туре:	noi	nrobust			
	coef	std err	t	P> t	[0.025	0.975]
Intercept	35.4968	1.965	18.062	0.000	31.641	39.352
sex	-0.3664	0.660	-0.555	0.579	-1.662	0.929
bmi	-0.1391	0.059	-2.352	0.019	-0.255	-0.023
children	-0.1113	0.274	-0.406	0.685	-0.649	0.427
smoker	-24.6507	1.377	-17.908	0.000	-27.351	-21.950
region	-0.0492	0.303	-0.163	0.871	-0.643	0.544
charges	0.0010	4.68e-05	21.562	0.000	0.001	0.001
Om	nibus: 3	4.910 D	urbin-Wa	tson:	1.986	
Prob(Omr			ue-Bera			
•	,	0.216	•	. ,	5.26e-06	
Kurtosis:		2.500		` ,	1.09e+05	

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.09e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [79]:
```

```
rsq_sex = smf.ols('sex~bmi+children+smoker+region+charges',data=df).fit()
rsq_sex.summary()
```

Out[79]:

OLS Regression Results

Dep. Variable: 0.009 sex R-squared: Model: OLS Adj. R-squared: 0.005 Method: Least Squares F-statistic: 2.330 Date: Wed, 19 Apr 2023 Prob (F-statistic): 0.0405 Log-Likelihood: Time: 11:15:06 -965.21 No. Observations: 1338 AIC: 1942. **Df Residuals:** 1332 BIC: 1974. Df Model: 5

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	0.3517	0.081	4.341	0.000	0.193	0.511
bmi	0.0045	0.002	1.817	0.070	-0.000	0.009
children	0.0076	0.011	0.665	0.506	-0.015	0.030
smoker	0.1311	0.057	2.299	0.022	0.019	0.243
region	0.0018	0.013	0.143	0.886	-0.023	0.026
charges	-1.563e-06	1.94e-06	-0.805	0.421	-5.37e-06	2.25e-06

 Omnibus:
 5015.796
 Durbin-Watson:
 2.010

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 215.406

 Skew:
 -0.019
 Prob(JB):
 1.68e-47

 Kurtosis:
 1.035
 Cond. No.
 1.08e+05

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.08e+05. This might indicate that there are strong multicollinearity or other numerical problems.

In [80]:

```
rsq_bmi = smf.ols('bmi~children+smoker+region+charges',data=df).fit().rsquared
vif_bmi = 1/(1-rsq_bmi)
```

In [81]:

```
rsq_children = smf.ols('children~bmi+smoker+region+charges',data=df).fit().rsquared
vif_children = 1/(1-rsq_children)
```

In [82]:

```
rsq_smoker = smf.ols('smoker~bmi+children+region+charges',data=df).fit().rsquared
vif_smoker = 1/(1-rsq_smoker)
```

In [83]:

```
rsq_region = smf.ols('region~smoker+bmi+children+charges',data=df).fit().rsquared
vif_region = 1/(1-rsq_region)
```

In [84]:

```
rsq_charges = smf.ols('charges~region+smoker+bmi+children',data=df).fit().rsquared
vif_charges = 1/(1-rsq_charges)
```

In [85]:

```
d1 = {'Variables':['bmi','children','smoker','region','charges'],'VIF':[vif_bmi,vif_children,vif_smoker,vif_region,vif_c
vif_frame = pd.DataFrame(d1)
vif_frame
```

Out[85]:

	Variables	VIF
0	bmi	1.201145
1	children	1.010680
2	smoker	2.845317
3	region	1.081956
4	charges	2.970807

In [86]:

sm.graphics.plot_partregress_grid(lm)

eval_env: 1

Out[86]:


```
In [87]:
final_model = smf.ols(formula='charges ~ children + smoker',data=df).fit()
final_model.summary()
Out[87]:
OLS Regression Results
                          charges
    Dep. Variable:
                                        R-squared:
                                                       0.624
                             OLS
                                    Adj. R-squared:
                                                       0.623
          Model:
         Method:
                     Least Squares
                                        F-statistic:
                                                       1106.
            Date: Wed, 19 Apr 2023 Prob (F-statistic): 5.54e-284
           Time:
                          11:15:08
                                    Log-Likelihood:
                                                      -13824
 No. Observations:
                             1338
                                              AIC: 2.765e+04
                                              BIC: 2.767e+04
     Df Residuals:
                             1335
        Df Model:
                               2
 Covariance Type:
                         nonrobust
               coef std err
                                  t P>|t|
                                             [0.025
                                                      0.975]
 Intercept 7755.6647 292.878 26.481 0.000 7181.114 8330.216
 children
           622.4433 168.684
                              3.690 0.000
                                           291.528
                                                     953.358
           2.36e+04 503.717 46.855 0.000 2.26e+04 2.46e+04
  smoker
      Omnibus: 139.785
                          Durbin-Watson:
                                            2.029
                  0.000 Jarque-Bera (JB): 219.354
Prob(Omnibus):
         Skew:
                  0.741
                                Prob(JB): 2.33e-48
       Kurtosis:
                  4.317
                               Cond. No.
                                             4.58
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
In [88]:
from sklearn.linear_model import LinearRegression
In [89]:
model = LinearRegression()
In [90]:
model.fit(X_train,y_train)
Out[90]:
LinearRegression()
In [91]:
test_predictions = model.predict(X_test)
In [92]:
model.intercept_
Out[92]:
30.972842843720212
```

```
In [93]:
model.coef_
Out[93]:
array([-3.17132357e-02, 3.02799086e-01, -9.35575339e-02, -7.38178067e+00,
       -1.41745867e+00, 3.07895827e-04, 5.73600193e-01])
In [94]:
test_predictions = model.predict(X_test)
train_predictions = model.predict(X_train)
In [95]:
model.score(X_test,y_test)
Out[95]:
0.11300011110165908
In [96]:
from sklearn.model_selection import cross_val_score
scores = cross_val_score(model,x,y,cv=5)
print(scores)
cv_score = scores.mean()
print("Cross Validation Score:",cv_score)
[0.1210946  0.11595634  0.14870749  0.20824497  0.16474452]
Cross Validation Score: 0.1517495857091608
In [97]:
from sklearn.metrics import mean_squared_error
test_RMSE = np.sqrt(mean_squared_error(y_test,test_predictions))
train_RMSE = np.sqrt(mean_squared_error(y_train,train_predictions))
print(train_RMSE,test_RMSE)
5.647891089758658 5.324991306012566
In [98]:
from sklearn.preprocessing import PolynomialFeatures
polynomial_converter=PolynomialFeatures(degree=2,include_bias=False)
X_poly=polynomial_converter.fit_transform(x)
X_train, X_test, y_train, y_test = train_test_split(X_poly, y, test_size=0.3,random_state=23)
model=LinearRegression()
model.fit(X_train,y_train)
train_pred=model.predict(X_train)
test_pred=model.predict(X_test)
print(model.score(X_train,y_train))
print(model.score(X_test,y_test))
0.6978876884460314
0.7093223892522964
In [99]:
train_rmse_errors=[]
test_rmse_errors=[]
for d in range(1,10):
    polynomial_converter=PolynomialFeatures(degree=d,include_bias=False)
    X_poly=polynomial_converter.fit_transform(x)
    X_train, X_test, y_train, y_test = train_test_split(X_poly, y, test_size=0.3,random_state=23)
    model=LinearRegression()
    model.fit(X_train,y_train)
    train pred=model.predict(X train)
    test_pred=model.predict(X_test)
```

train_rmse_errors.append(train_rmse)

test_rmse_errors.append(test_rmse)

train_rmse=np.sqrt(mean_squared_error(y_train,train_pred))

test_rmse=np.sqrt(mean_squared_error(y_test,test_pred))

In [100]:

```
train_rmse_errors
```

Out[100]:

```
[5.647891089758658,
3.43592474170093,
5.4449752867434835,
3.826720382415379,
4.717947507708819,
5.735857780002097,
5.424114727941829,
5.678029943107806,
7.498024402975816]
```

In [101]:

```
test_rmse_errors
```

Out[101]:

```
[5.324991306012565,
3.048336535036782,
6.236691028913041,
4.752871721997629,
5.668354657635049,
7.272698960660427,
6.337946622269486,
6.200308644187235,
7.563679066395718]
```

In [102]:

```
plt.plot(range(1,10),train_rmse_errors,label='Train')
plt.plot(range(1,10),test_rmse_errors,label='Test')
plt.xlabel("polynomial complexity")
plt.ylabel("rmse")
plt.legend()
plt.show()
```


In [103]:

```
final_poly_converter=PolynomialFeatures(degree=2,include_bias=False)
X_poly=final_poly_converter.fit_transform(x)
X_train, X_test, y_train, y_test = train_test_split(X_poly, y, test_size=0.3,random_state=23)
final_model=LinearRegression()
final_model.fit(X_train,y_train)
train_pred=final_model.predict(X_train)
test_pred=final_model.predict(X_test)
print("train r2:",final_model.score(X_train,y_train))
print("test r2:",final_model.score(X_test,y_test))
```

train r2: 0.6978876884460314 test r2: 0.7093223892522964

In [104]:

```
sns.relplot(x = 'age', y ='charges', kind = 'line', data = df)
plt.show()
```


In [106]:

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=101)
```

In [108]:

```
from sklearn.ensemble import RandomForestRegressor
model = RandomForestRegressor()
model.fit(X_train,y_train)
```

Out[108]:

RandomForestRegressor()