直流无刷电机的原理及其控制

2014英飞凌XMC 微控制器巡回研讨会

内容

■直流无刷电动机结构及工作原理

■直流无刷电机的控制技术

- ■电机工作的基本原理
- 1) 通电导体产生磁场,特别的,通电线圈的磁场和磁体类似

2) 磁体同性相吸、异性相斥, 通电线圈和永磁体之间同样存在这样的现象

■ 无刷直流电机利用了通电线圈和永磁体的相互作用原理

定子(通电线 圈),定子绕组 多采用三相并以 星形方式连接

转子(永磁体)

■无刷直流电机的逻辑结构

■ 直流无刷电机的简化逻辑结构

转子可以简化为1对磁极的磁体

定子线圈,根据其绕线方式,可以简化为3个公共点相连的线圈

■ 通电的线圈会产生各自的磁场,他们的合成磁场满足矢量合成的原则

■ 直流无刷电机的6拍工作方式,线圈产生旋转磁场

■ 附: 电角度和机械角度

- 机械角度是指电机转子的旋转角度,由 @ m表示;
- 电角度是指磁场的旋转角度,由@e表示。
- 当转子为一对极时, Θm = Θe;
- 当转子为n对极时, $n * \Theta m = \Theta e$ 。

内容

■直流无刷电动机结构及工作原理

■直流无刷电机的控制技术

BLDC霍尔传感梯形波控制原理

梯形波控制

根据**转子磁极位置**,对定子线圈进行换相通电,形成**6**步的**旋转磁场**, 进而带动转子同步转动的控制方式。

关键技术1—通过安装在电机上的霍尔器件来获取转子磁极位置信息。

关键技术2—通过6个功率器件组成的3相半桥来控制线圈的6拍通电方式,形成**旋转磁场**。

BLDC霍尔传感梯形波控制原理

■ 霍尔传感器是根据霍尔效应制作的一种磁场传感器,它可以有效的反映通过霍尔原件的磁密度

有正向磁场通过霍尔,输出"1"

有反向磁场通过霍尔,输出"0"

霍尔信号实例

| 当霍尔在和电机的转子做相对运动时,会随着转子下磁密度的变化, 产生变化的信号

霍尔的安装示例

霍尔信号的六步变换

■ 电机按一定方向转动时,3个霍尔的输出会按照6步的规律变化

BLDC梯形波控制原理

BLDC梯形波控制原理

三相半桥的6拍换向控制

BLDC的正反转控制

	霍尔 #1	霍尔 #2	霍尔 #3	A+	A-	B+	В-	C+	C-	方向
	1	0	1	关闭	开通	关闭	关闭	开通	关闭	↓
正	0	0	1	关闭	开通	开通	关闭	关闭	关闭	↓
	0	1	1	关闭	关闭	开通	关闭	关闭	开通	↓
转	0	1	0	开通	关闭	关闭	关闭	关闭	开通	↓
	1	1	0	开通	关闭	关闭	开通	关闭	关闭	↓
	1	0	0	关闭	关闭	关闭	开通	开通	关闭	↓

	霍尔 #1	霍尔 #2	霍尔 #3	A+	A-	B+	В-	C+	C-	方向
	1	0	1	关闭	关闭	开通	关闭	关闭	开通	↑
反	0	0	1	开通	关闭	关闭	关闭	关闭	开通	↑
	0	1	1	开通	关闭	关闭	开通	关闭	关闭	↑
转	0	1	0	关闭	关闭	关闭	开通	开通	关闭	↑
	1	1	0	关闭	开通	关闭	关闭	开通	关闭	↑
	1	0	0	关闭	开通	开通	关闭	关闭	关闭	1

BLDC的调速

通过PWM控制的方式调速

调制技术

通过调制技术可以有效的解决续流时候的损耗

