

Network partition

Stale blocks = lost efforts

Selfish Mining

Denial of Service

Double Spending

Blockchain Forks

Types of Fork

- P —> P'
 Protocol is updated from P to P'
- V —> V'
 Validity set is changed from old P to P'
- N
 The difference between V and V'
- Bitcoin Improvement Proposals (BIP) https://github.com/bitcoin/bips
- Ethereum Improvement Proposals (EIP) https://github.com/ethereum/EIPs

Ethereum Improvement Proposals

Hard Fork

- Makes previously invalid blocks/transactions valid (and vice-versa)
- All nodes need to upgrade to the latest version

A Hard Fork: Non-Upgraded Nodes Reject The New Rules, Diverging The Chain

Hard Fork Example

- Ethereum forked because a smart contract vulnerability was exploited.
- The fork "reversed" the hack.
- The blockchain was no longer append-only

Soft Fork

- Only previously valid blocks/transactions are made invalid —> reducing functionality
- Backwards compatible
 - Old nodes accept new blocks as valid
- Miner-activated Soft Fork (MASF)
 - Majority of miners upgrade to enforce
- User-activated Soft Fork (UASF)
 - Full nodes coordinate to enforce rules without miners.

Soft Fork Examples

- Make transactions > 1 kb invalid
- Pay-to-script Hash (P2SH)
 - Send transactions to a Script hash (3xxxx) instead of a public key hash (1xxxx)
 - Recipient must provide a Script matching the Script hash and input data that makes the script evaluate to *true*.

Types of Fork

Type	pe Validity Set		Incurred Fork		Examples
	New	Relation to Old	Soft	Permanent / Hard	
Expanding	$\mathcal{V}' = \mathcal{V} \cup \mathcal{N},$ $\exists n \in \mathcal{N} : n \notin \mathcal{V}$	$\mathcal{V}'\supset\mathcal{V}$	never	\mathcal{V}' is majority	Blocksize increase, new opcode
Reducing	$\mathcal{V}' = \mathcal{V} \setminus \mathcal{N}, \ \mathcal{N} \subset \mathcal{V}$	$\mathcal{V}'\subset\mathcal{V}$	\mathcal{V}' is majority	${\cal V}$ is majority	Blocksize decrease, opcode removal, SegWit
Conflicting (Bilateral)	$\mathcal{V}' = \ (\mathcal{V} \cup \mathcal{N}) \setminus (\mathcal{V} \cap \mathcal{N}) = \ V \triangle N$	$(\mathcal{V}' \not\subseteq \mathcal{V}),$ $(\mathcal{V} \not\subseteq \mathcal{V}'),$ $V' \cap V \neq \emptyset$	never	always	Opcode redefinition, chain ID for replay protection
Conditionally Reducing (Velvet)	$\mathcal{V}'=\mathcal{V}$	$\mathcal{V}'=\mathcal{V}$	never	never	P2Pool, merged mining, colored coins

Segregated Witness

<Sig> < PubKey> OP_DUP OP_HASH160 < PubKeyHash> OP_EQUALVERIFY OP_CHECKSIG

- Signatures are malleable (can change while remaining valid)
- Separating transaction signature (65% of the data) from transaction data.
- Advantages
 - Increases the number of transactions that can be stored in a block.
 - Removes transaction malleability
- Disadvantages
 - Signatures required to validate a block
 - Complex

Voting through Blocks

- BIP written
- BIP discussed
- BIP implemented
- BIP voted by miners
 - Coinbase transaction contains data field
 - E.g. vote over the last 100 blocks
 - If majority (>55%) then miners implement