Term 2 Week 7

1. Find all polynomials f(x) such that f(2x) = f'(x).f''(x)

Start by supposing that the polyomial is of degree n. Then comparing degrees on each side we have the following:

$$x^n = x^{n-1} \times x^{n-2} = x^{2n-3}$$

This means that n=2n-3, giving n=3, therefore f(x) is a cubic. Note that this assumes that n-1 is non-zero.

If f(x) was linear, meaning n-1=0, then the degree on the right would be zero, the second derivative would be zero, giving f(x) = 0 as one valid solution.

Looking at the cubic solution, we examine the coefficients:

$$f(x) = ax^3 + bx^2 + cx + d$$

$$f'(x) = 3ax^{2} + 2bx + c$$

$$f''(x) = 6ax + 2b$$

$$f(2x) = a(2x)^{3} + b(2x)^{2} + c(2x) + d = 8ax^{3} + 4bx^{2} + 2cx + d$$

Equating the two sides one term at a time:

 x^3 terms:

$$8ax^3 = 3ax^2 \times 6ax = 18a^2x^3$$

Therefore, $8a = 18a^2$, meaning $a = \frac{4}{9}$

This makes our cubic $f(x) = \frac{4}{9}x^3 + bx^2 + cx + d$

$$f'(x) = \frac{4}{3}x^2 + 2bx + c$$

$$f''(x) = \frac{8}{3}x + 2b$$

$$f(2x) = \frac{32}{9}x^3 + 4bx^2 + 2cx + d$$

 x^2 terms:

$$4bx^{2} = \frac{4}{3}x^{2} \times 2b + 2bx \times \frac{8}{3}x$$
$$4b = \frac{8}{3}b + \frac{16}{3}b = 8b$$
$$4b = 8b \Rightarrow b = 0$$

$$4b = \frac{8}{3}b + \frac{16}{3}b = 8b$$

$$4b = \overset{3}{8}b \Rightarrow \overset{3}{b} = 0$$

This makes our cubic $f(x) = \frac{4}{9}x^3 + cx + d$

$$f'(x) = \frac{4}{3}x^2 + c$$

$$f''(x) = \frac{24}{9}x$$

$$f(2x) = \frac{32}{9}x^3 + 2cx + d$$

x terms:

$$2c = \frac{24}{9}c \Rightarrow c = 0$$

This makes our cubic $f(x) = \frac{4}{9}x^3 + d$

$$f'(x) = \frac{4}{3}x^2$$

$$f''(x) = \frac{24}{9}x$$

$$f(2x) = \frac{32}{9}x^3 + d$$

Constant term must therefore be zero.

This means the only possible solutions for f(x) are f(x) = 0 and $f(x) = \frac{4}{9}x^3$.

2. Let x, y and z be three 3-digit Real numbers that, between them, contain all the digits from 1-9.

If:

- $\bullet \ x + y = z$
- \bullet z is a power of a prime
- ullet Each digit of x is lower than the corresponding digit of y

Find x, y and z.

3.
$$e^{i(A-B)} = e^{iA}e^{-iB}$$

This means that:

$$\cos(A - B) + i\sin(A - B) = (\cos(A) + i\sin(A))(\cos(-B) + i\sin(-B))$$
$$= (\cos(A) + i\sin(A))(\cos(B) - i\sin(B))$$

Equating real and imaginary parts:

$$\cos(A - B) = \cos(A)\cos(B) + \sin(A)\sin(B)$$

$$\sin(A - B) = \cos(B)\sin(A) - \cos(A)\sin(B)$$

Substituting -B for B in the second equation:

$$\sin(A + B) = \sin(A)\cos(-B) - \cos(A)\sin(-B) = \sin(A)\cos(B) + \cos(A)\sin(B)$$

4. $\int \sin^2(x) \cos^2(x) dx$

Use the Double Angle identities to rewrite each factor:

$$\cos 2x = 2\cos^2 x - 1$$

$$\cos^2 x = \frac{1}{2}(1 + \cos 2x)$$

$$\cos 2x = 1 - 2\sin^2 x \sin^2 x = \frac{1}{2}(1 - \cos 2x)$$

Substituting into the integral:

$$\int_{\frac{1}{4}}^{\frac{1}{2}} (1 + \cos 2x) \times \frac{1}{2} (1 - \cos 2x) dx$$

$$\frac{1}{4} \int_{\frac{1}{4}}^{\frac{1}{2}} (1 + \cos 2x) (1 - \cos 2x)$$

$$\frac{1}{4} \int_{\frac{1}{4}}^{\frac{1}{2}} (1 - \cos^2 2x) dx$$

Use the Double Angle identity a second time:

$$\cos 4x = 2\cos^{2} 2x - 1$$
$$\cos^{2} 2x = \frac{1}{2}(1 + \cos 4x)$$

Substitute into the integral:

$$\frac{1}{4} \int (1 - \frac{1}{2}(1 + \cos 4x)) dx
\frac{1}{4} \int (1 - \frac{1}{2} - \frac{1}{2}\cos 4x) dx
\frac{1}{4} \int (\frac{1}{2} - \frac{1}{2}\cos 4x) dx
\frac{1}{4} \int \frac{1}{2}(1 - \cos 4x) dx
\frac{1}{8} \int (1 - \cos 4x) dx$$

Finally, integrate term by term:
$$\frac{1}{8}\int(1-\cos 4x)\,dx=\frac{1}{8}(x-\tfrac{\sin 4x}{4})+c=\tfrac{x}{8}-\tfrac{\sin 4x}{32}+c$$