

FOR THE BETTER, CRNN IN MUSIC GENRE RECOGNITION PROBLEM

ESRAT MARIA, BYUNGUK MIN, SEUNGHYEON OH, JAMIL SAFDAR

WHAT IS GENRE CLASSIFICATION?

Classical = 89 % Jazz = 7 %

Country = 85 % Blues = 11 %

Disco = 85 % Classical = 10 %

Rock = 85 % Metal = 9 %

OUR APPROACH

How to make a model that can predict music's genre by merely listening to it?

- Mel-Spectogram: We can not train a model with raw audio signal data. We should convert it to image data.
- CNN: We use CNN to train visualized signal's information.
- RNN: Lastly, we use a layer of RNN (LSTM, long short time memory) so that the model can detect dependencies across play time of the music.

FRAMEWORK

- Audio library processor: Librosa
- Deep learning framework: Keras
- Music datasets:
 - GTZAN dataset

DATASET AND PRE-PROCESSING

- GTZAN Music Genre Dataset
 - Collection of 1000 songs
 - I0 genres

Class label	Class description	Mean duration (s)	Number of samples
1	Blues	30	100
2	Classical	30	100
3	Country	30	100
4	Disco	30	100
5	Hip Hop	30	100
6	Jazz	30	100
7	Metal	30	100
8	Pop	30	100
9	Reggae	30	100
10	Rock	30	100

Feature	Feature Type	
OMSC	Long-term	
Low-Energy	Long-term	
MSCM	Long-term	
MSFM	Long-term	
OSC	Short-term	
MFCC	Short-term	
Spectral Centroid	Short-term	
Spectral Rolloff	Short-term	
Spectral Flux	Short-term	
Zero Crossings	Short-term	

SPECTROGRAMS

```
filename = 'C:/Users/Esrat Maria/Desktop/genres/blues/blues.00000.wav'
y, sr = librosa.load(filename)
plt.figure()
plt.subplot(3, 1, 1)
# trim silent edges
whale_song, _ = librosa.effects.trim(y)
librosa.display.waveplot(whale_song, sr=sr)
plt.title("Waveplot of a Song from the Genre Blues")
plt.show()
```


Wave Plot of a Song from the Genre Blues

MEL-SPECTROGRAMS

A spectrogram is a visual representation of the spectrum of frequencies in a sound or other signal as they vary with time or some other variable.

MEL-SPECTROGRAM

CNN

■ I-Dimensional Convolution & 2D kernels? No, 2D Convs & 2D Kernels.

Fig. 2: AUCs for the three structures with $\{0.1, 0.25, 0.5, 1.0, 3.0\} \times 10^6$ parameters. The AUC of SOTA is .851 [2].

CNN-GRU FOR MUSIC CLASSIFICATION

CRNN FOR MUSIC CLASSIFICATION

EXPERIMENT RESULT (CNN-GRUVS CNN-LSTM)

CNN-GRU Accuracy

CNN-LSTM Accuracy

Test accuracy: 50.301%

Test accuracy: 61.007%

IMPROVEMENTS

- Over fitting problem in the classifier layers.
- Our is not complex enough.
- Final performance on GTZAN around 61% of accuracy.
- Lack of data (initially started with small number).

REFERENCES

- Recommending music on Spotify with deep learning https://benanne.github.io/2014/08/05/spotify-cnns.html
- K. Choi, G. Fazekas, K. Cho, and M. Sandler, "A tutorial on deep learning for music information retrieval," arXiv preprint arXiv:1709.04396, 2017.
- Music Genre Recognition by Deep Sound http://deepsound.io/music_genre_recognition.html
- Using CNN and RNN for genre recognition by Medium https://towardsdatascience.com/using-cnns-and-rnns-for-music-genre-recognition-2435fb2ed6af
- K. Choi, G. Fazekas, M. Sandler, and K. Cho, "Convolutional recurrent neural networks for music classification," in Proc. Int. Conf. Acoust, Speech, Signal Process., 2017
- "K. Choi, G. Fazekas, and M. Sandler. Explaining deep convolutional neural networks on music classification" https://arxiv.org/pdf/1607.02444.pdf
- GTZAN dataset http://marsyas.info/downloads/datasets.html
- Librosa on github <a href="https://github.com/librosa/l

THANK YOU

QUESTIONS?