Лабораторна Робота №5 Тема: Дослідження методів ансамблевого навчання

Посилання на гітхаб: https://github.com/ViMIMercurysMight/python-ai.git

Завдання 2.1. Створення класифікаторів на основі випадкових та гранично випадкових лісів

Лістинг програми

```
import argparse
import matplotlib.pyplot as plt
def build arg parser():
   parser = argparse.ArgumentParser(description='Classify \ data using Ensemble
```

					Житомирська політехніка 22.121.06.000 — Лр5			
Змн.	Арк.	№ докум.	Підпис	Дата	22.121.00.000 - J1p3			
Розр	0 δ.	Мєдвєдєв В.В				Лim.	Арк.	Аркушів
Пере	евір.	Філіпов В.О			2 :		1	
Керіс	зник				Звіт з			
Н. контр.					лабораторної роботи	ФІКТ Гр. ПІ-6 1		ПІ-61
Зав.	каф.				1		•	

```
# * * + Q =
                                                 # ( ) + Q = B
                                                                                                      # (* ) + Q = B
                                                                                                       Classifier performance on training dataset
                                                      lassifier performance on traininig dataset
                                                                                                                               recall f1-score support
                                                                  precision recall f1-score support
                                                                                                           Class-1
                                                                                                          macro avq
                                                                                                                        0.87
                                                        macro avo
                                                       eighted avg
```

Pисунок 1. Результат виконання (rf, edge rf, erf, edge rf, rf консоль, erf консоль)

		$M \epsilon \partial \epsilon \partial \epsilon \delta \epsilon \delta \epsilon B.B$		
		. Філіпов В.О		
Змн.	Арк.	№ докум.	Підпис	Дата

```
input file = 'data imbalance.txt'
data = np.loadtxt(input file, delimiter=',')
X_{,} y = data[:, :-1]_{,} data[:, -1]_{,}
# Поділ вхідних даних на два класи на підставі міток
class 0 = np.array(X[y == 0])
class 1 = np.array(X[y == 1])
plt.figure()
plt.title('Input data')
X_train, X_test, y_train, y_test = train_test_split(
params = {'n estimators': 100, 'max depth': 4, 'random state': 0}
classifier = ExtraTreesClassifier(**params)
classifier.fit(X_train, y_train)
visualize classifier(classifier, X train, y train)
y_test_pred = classifier.predict(X test)
class names = ['Class-0', 'Class-1']
print("\n" + "#" * 40)
print("\nClassifier performance on training dataset\n")
print(classification report(y train, classifier.predict(X train), tar-
print("#" * 40 + "\n")
print("#" * 40)
print("\nClassifier performance on test dataset\n")
print(classification report(y test, y test pred, target names=class names))
print("#" * 40 + "\n")
plt.show()
```

		Мєдвєдєв. В.В		
		. Філіпов В.О		
Змн.	Арк.	№ докум.	Підпис	Дата

	precision	recall	f1-score	support
Class-0 Class-1	0.45 0.98	8.94 8.74	0.61 0.84	69 306
accuracy macro avg weighted avg	0.72 0.88	9.84 9.78	0.78 0.73 0.80	375 375 375

Рисунок 2. Резльтат виконання

Завдання 3. Знаходження оптимальних навчальних параметрів за допомогою сіткового пошуку

Лістинг програми mport numpy as np class 2 = np.array(X[y == 2])

		$M \epsilon \partial \kappa \delta \epsilon \partial \epsilon \kappa . B.B$		
		. Філіпов В.О		
Змн.	Арк.	№ докум.	Підпис	Дата

Рисунок 3. Результат виконання (оптимуми precision_weighted / recall_weighted)

Завдання 4 Обчислення відносної важливості ознак

Під час виконання завдання, виникла проблема, а саме функцію було видалено з необхідного модуля. Згідно з рекомендаціями до виконання отриманими на лекції було вирішино пропустити дане завдання

Завдання 5. Прогнозування інтенсивності дорожнього руху за допомогою класифікатора на основі гранично випадкових лісів

Лістинг програми

		$M \epsilon \partial \epsilon \delta \epsilon \partial \epsilon \epsilon$. $B.B$			Житомирська політехніка	Арк.
		. Філіпов В.О			22.121.06.000 - Jp5	5
Змн.	Арк.	№ докум.	Підпис	Дата)

```
import numpy as np
with open(input file, 'r') as f:
data = np.array(data)
X = X_encoded[:, :-1].astype(int)
y = X encoded[:, -1].astype(int)
params = {'n estimators': 100, 'max depth': 4, 'random state': 0}
regressor.fit(X train, y train)
print("Mean absolute error:", round(mean absolute error(y test, y pred), 2))
test_datapoint = ['Saturday', '10:20', 'Atlanta', 'no']
test_datapoint_encoded = [-1] * len(test_datapoint)
print("Predicted traffic:", int(regressor.predict([test datapoint encoded])[0
```

```
Mean absolute error: 7.42
Predicted traffic: 6
```

Рисунок 4. Результат виконання

Висновок: Під час виконання лабораторної роботи дослідили методи ансамблів у машинному навчанні.

		Мєдвєдєв. В.В		
		. Філіпов В.О		
Змн.	Арк.	№ докум.	Підпис	Дата