

Out-of-distribution detection in 3D semantic segmentation models

Master thesis

September 10, 2021

Lokesh Veeramacheneni

Content

- 1. RandLA-Net Semantic3D flipout performance
- 2. RandLA-Net Semantic3D ensemble performance
- 3. Triangular detections in S3DIS datasets
- 4. What thresholds to be used?
- 5. Out-of-distribution (OOD) dataset Toronto3D
- 6. Next steps

RandLA-Net Semantic3D flipout performance

			IoU per class							
#Passes	MeanIOU	C1	C2	C3	C4	C5	C6	C 7	C8	Accuracy
1	69.95	94.24	80.09	86.16	22.48	88.70	39.41	57.42	91.12	90.71
5	69.83	94.38	80.21	84.10	23.32	87.80	39.68	57.75	91.43	90.43
10	69.84	94.38	80.16	83.90	23.46	87.73	39.75	57.83	91.47	90.40
15	69.86	94.38	80.17	83.80	23.48	87.73	39.82	57.96	91.57	90.40
20	69.87	94.38	80.18	83.80	23.57	87.72	39.84	57.92	91.57	90.40

Table 1: Illustration of performance of RandLA-Net on Semantic3D over flipout initalized with variance 1. meanIOU and IOU per class and overall accuracy are represented here. C1 to C8 are the classes of Semantic3D which are Manmadeterrain, Naturalterrain, Highvegetation, Lowvegetation, Buildings, Hardscapes, Scanningartifacts, and Cars.

RandLA-Net Semantic3D ensemble performance

		IoU per class								
#Ensembles	MeanIOU	C1	C2	C3	C4	C5	C6	C7	C8	Accuracy
1	68.19	94.55	81.19	84.67	29.43	81.37	18.85	64.74	90.74	88.78
5	69.51	94.73	81.92	84.42	28.05	86.41	28.50	61.03	91.03	90.04
10	69.97	95.25	83.73	86.63	30.36	84.13	18.60	66.01	92.61	89.94
15	70.32	95.27	83.54	88.22	32.19	84.82	26.17	61.67	90.75	90.57
20	70.80	95.55	84.11	86.65	29.60	85.41	29.58	62.47	93.06	90.56

Table 2: Illustration of performance of RandLA-Net on Semantic3D over number of ensembles. meanIOU and IOU per class and overall accuracy are represented here. C1 to C8 are the classes of Semantic3D which are Manmadeterrain, Naturalterrain, Highvegetation, Lowvegetation, Buildings, Hardscapes, Scanningartifacts, and Cars.

RandLA-Net Semantic3D ensemble performance

Figure 1: Distribution of training points in million per class in Semantic3D dataset.

- Triangle detections of the rectangular spaces PNG images
- What thresholds to be used? ipynb file
- Toronto3D dataset study

Out-of-distribution (OOD) dataset - Toronto3D

Indoor dataset

Classes are:

Semantic3D(ID)	Toronto3D (OOD)				
Manmade terrain	Road				
Natural terrain	Road marking				
High vegetation	Natural				
Low vegetation	Building				
Buildings	Utility line				
Hardscapes	Pole				
Scanning artifacts	Car				
Cars	Fence				

Table 3: Classes in both the datasets, In-distribution (ID) dataset is Semantic3D and OOD dataset is Toronto3D

Next steps

- Toronto3D evaluation using deep ensembles
- Semantic3D Vs S3DIS (outdoor vs indoor) evaluation using flipout

