## Кафедра ПОИТ Лабораторная работа №4 по дисциплине «Метода оптимизации» на тему «Нелинейная оптимизация»

Выполнил Студент гр.051006 Шуляк А. В. Проверил: Петюкевич Н.С.

## Вариант 29

## Задача 1:

Функция:  $f(x) = x^2 - 11x + 5$ ,  $x \in [0, 8]$ , e=0.1, a) N=16, б) N=17

File Edit View Options Tools Window Help



Min f(x) = (5.5, -25.25)

## 1. Пассивный поиск

а) N – чётное, потому наилучшее разбиение точек х\_i – на равноотстоящие

е-пары 
$$x_{2j-1} = \frac{8}{9}j - 0.05, x_{2j} = \frac{8}{9}j + 0.05, j \in [1, \frac{N}{2}]$$
 
$$L_d = \frac{8}{9} + 0.05$$
 Получим, что  $\mathbf{x}^* = \min(\mathbf{x}) = 5.3833333333, f(\mathbf{x}^*) = -25.23638889$ 

б) N – нечётное, разбиение – равномерное,

$$x_i = \frac{8}{18}i, i \in [1, N], L_N = 2 * \frac{8}{18} = \frac{8}{9}$$
  
Получим, что  $x^* = \min(x) = 5.333333333, f(x^*) = -25.22222222$ 

- 2. Метод дихотомии, N = 16, e = 0.1
  - 1. Задаются N (либо  $\delta$ ) и  $\varepsilon$ , полагается j=1.
  - 2. На *j*-й итерации вычисляются

$$x_1^{(j)} = \frac{1}{2} (a^{(j-1)} + b^{(j-1)}) - \frac{\varepsilon}{2}, \quad x_2^{(j)} = \frac{1}{2} (a^{(j-1)} + b^{(j-1)}) + \frac{\varepsilon}{2},$$
$$f_1^{(j)} = f(x_1^{(j)}), \quad f_2^{(j)} = f(x_2^{(j)}).$$

Если 
$$f_1^{(f)} \le f_2^{(f)}$$
, то  $a^{(f)} = a^{(f-1)}$ ,  $b^{(f)} = x_2^{(f)}$ .  
Если  $f_1^{(f)} > f_2^{(f)}$ , то  $a^{(f)} = x_1^{(f)}$ ,  $b^{(f)} = b^{(f-1)}$ .

3. Проверяется условие окончания вычислений:

а) 
$$j=N/2$$
 либо б)  $\frac{L_{2,f}}{L_0} \le \delta$ .

Если оно выполняется, то определяются итоговый отрезок локализации, оценки точки минимума  $x^*$  и величины минимума  $f^* = f(x^*)$ , и вычисления завершаются.

Если условие не выполняется, то полагается j = j + 1 и осуществляется переход к n.2.

Получим, что  $x^* = min(x) = 5.49296875$ ,  $f(x^*) = -25.24995056$ , промежуток при этом равен [5.43125, 5.562109375]

3. Метод Фибоначчи

N=16, e=0.2

1. Задается N, определяются числа Фибоначчи  $F_k$ ,  $k = \overline{0, N+1}$ , выбирается  $\varepsilon$  из условия

$$\varepsilon < \frac{b-a}{F_{N+1}}$$
.

Полагается j=1.

2. На ј-й итерации вычисляются

$$\begin{split} x_1^{(j)} &= a^{(j-1)} + \frac{F_{N-j-1}}{F_{N-j+1}} (b^{(j-1)} - a^{(j-1)}) - \frac{(-1)^{N-j+1}}{F_{N-j+1}} \varepsilon, \\ x_2^{(j)} &= a^{(j-1)} + \frac{F_{N-j}}{F_{N-j+1}} (b^{(j-1)} - a^{(j-1)}) + \frac{(-1)^{N-j+1}}{F_{N-j+1}} \varepsilon, \\ f_1^{(j)} &= f(x_1^{(j)}), \ f_2^{(j)} = f(x_2^{(j)}). \end{split}$$

Если 
$$f_1^{(j)} \leq f_2^{(j)}$$
, то  $a^{(j)} = a^{(j-1)}, \ b^{(j)} = x_2^{(j)}, \ x_2^{(j+1)} = x_1^{(j)}$ 

Если 
$$f_1^{(/)} > f_2^{(/)}$$
, то  $a^{(/)} = x_1^{(/)}$ ,  $b^{(/)} = b^{(/-1)}$ ,  $x_1^{(/+1)} = x_2^{(/)}$ .

3. Проверяется условие окончания вычислений

$$i = N - 1$$
.

Если оно выполняется, то определяются итоговый отрезок локализации, оценки точки минимума  $x^*$  и величины минимума  $f^* = f(x^*)$  и вычисления завершаются.

Если условие не выполняется, то полагается j=j+1 и осуществляется переход к  $\pi.2$ .

Необходимые числа Фибоначчи:

Таким образом получим, точка минимума локализована на отрезке [5.495354415, 5.501509706],  $x^* = 5.498509706$ ,  $f(x^*) = -25.24999778$ 

4. Метод золотого сечения

N = 16

- 1. Задается N (либо  $\delta$ ), полагается j=1.
- На ј-й итерации вычисляются

$$\begin{split} x_1^{(j)} &= a^{(j-1)} + \varPhi_1(b^{(j-1)} - a^{(j-1)}), \\ x_2^{(j)} &= a^{(j-1)} + \varPhi_2(b^{(j-1)} - a^{(j-1)}), \\ f_1^{(j)} &= f(x_1^{(j)}), \quad f_2^{(j)} = f(x_2^{(j)}). \end{split}$$
 Если  $f_1^{(j)} \leq f_2^{(j)}$ , то  $a^{(j)} = a^{(j-1)}, \ b^{(j)} = x_2^{(j)}, \ x_2^{(j+1)} = x_1^{(j)}.$  Если  $f_1^{(j)} > f_2^{(j)}$ , то  $a^{(j)} = x_1^{(j)}, \ b^{(j)} = b^{(j-1)}, \ x_1^{(j+1)} = x_2^{(j)}. \end{split}$ 

3. Проверяется условие окончания вычислений:

a) 
$$j = N - 1$$
 либо б)  $\frac{L_{j+1}}{L_0} \le \delta$ .

Если оно выполняется, то определяются итоговый отрезок локализации, оцепки точки минимума х\* и величины минимума f\* и вычисления завершаются.

Если условие не выполняется, то полагается j=j+1 и осуществляется переход к n.2.

Таким образом получим, что минимум локализован на отрезке [5.49534157, 5.501206669],  $x^* = 5.498966401$ ,  $f(x^*) = -25.24999893$ 

Необходимая складская

площадь

Издержки работы

Без ограничений С ограничениями 3115.361 1500 3129.622 3380.841

Оптимальный выбор товаров без ограничений:

|                  | 24.4949 | 100     | 80 | 54.77226 | 6.324555 |
|------------------|---------|---------|----|----------|----------|
| С ограничениями: |         |         |    |          |          |
|                  | 23.2134 | 79.8805 |    |          | 4.06727  |

Решение вручную – методом наискорейшего спуска

1 67.4886 18.7179

Рассматривается следующая многомерная задача локальной безусловной оптимизации: найти минимум критерия оптимальности  $\Phi(\mathbf{X})$ , определенного в n -мерном евклидовом пространстве  $\mathbb{R}^n$ ,

$$\min_{\mathbf{X} \in \mathbb{R}^n} \Phi(\mathbf{X}) = \Phi(\mathbf{X}^*) = \Phi^*. \tag{1}$$

Положим, что функция  $\Phi(\mathbf{X})$  всюду дифференцируема в n-мерном евклидовом пространстве  $\mathbb{R}^n$  .

Направление спуска в градиентных методах оптимизации совпадает с направлением антиградиента минимизируемой функции  $\Phi(\mathbf{X})$ . Итерационная формула градиентных методов оптимизации имеет вид

$$\mathbf{X}^{r+1} = \mathbf{X}^r + \lambda^r \mathbf{S}^r. \tag{2}$$

Получим, что:

 $L^* = 3129.63, F^* = 3113.16$ 

Оптимальный выбор товаров:

24.49 100 80 54.72 6.32