Universidade Federal de Ouro Preto Campus João Monlevade

CSI 488 – ALGORITMOS E ESTRUTURAS DE DADOS I

Noções de Análise de Complexidade

Prof. Mateus Ferreira Satler

Índice

	· Introdução
2	• Melhor Caso, Pior Caso e Caso Médio
3	· Análise Assintótica
4	• Notação O
5	· Notação Ω
6	· Notação Θ
7	• Outras Informações
8	• Referências

- Análise de um algoritmo particular:
 - Qual é o custo de usar um dado algoritmo para resolver um problema específico?
 - Características que devem ser investigadas:
 - Análise do número de vezes que cada parte do algoritmo deve ser executada,
 - Estudo da quantidade de memória necessária.

- Análise de uma classe de algoritmos:
 - Qual é o algoritmo de menor custo possível para resolver um problema particular?
 - Toda uma família de algoritmos é investigada.
 - Procura-se identificar um que seja o melhor possível.
 - Coloca-se limites para a complexidade computacional dos algoritmos pertencentes à classe.

Custo de um Algoritmo

- Determinando o menor custo possível para resolver problemas de uma dada classe, temos a medida da dificuldade inerente para resolver o problema.
- Quando o custo de um algoritmo é igual ao menor custo possível, o algoritmo é ótimo para a medida de custo considerada.
- Podem existir vários algoritmos para resolver o mesmo problema.
- Se a mesma medida de custo é aplicada a diferentes algoritmos, então é possível compará-los e escolher o mais adequado.

Medida do Custo pela Execução do Programa

- Tais medidas são bastante inadequadas e os resultados jamais devem ser generalizados:
 - Os resultados são dependentes do compilador que pode favorecer algumas construções em detrimento de outras.
 - Os resultados dependem do hardware.
- Apesar disso, há argumentos a favor de se obterem medidas reais de tempo.
 - Ex.: quando há vários algoritmos distintos para resolver um mesmo tipo de problema, todos com um custo de execução dentro de uma mesma ordem de grandeza.
 - Assim, são considerados tanto os custos reais das operações como os custos não aparentes, tais como alocação de memória, indexação, carga, dentre outros.

Medida do Custo por meio de um Modelo Matemático

- Usa um modelo matemático baseado em um computador idealizado: Random Access Machine (RAM)
 - Para cada algoritmo, permite definir uma função, com base na entrada, para estimar o tempo gasto.
- Deve ser especificado o conjunto de operações e seus custos de execuções.
 - É mais usual ignorar o custo de algumas das operações e considerar apenas as operações mais significativas.
- Ex.: Algoritmos de ordenação
 - Consideramos o número de comparações entre os elementos do conjunto a ser ordenado e ignoramos as operações aritméticas, de atribuição e manipulações de índices, caso existam.

Função de Complexidade

- Para medir o custo de execução de um algoritmo é comum definir uma função de custo ou função de complexidade f.
- f(n) é a medida do tempo necessário para executar um algoritmo para um problema de tamanho n.
- Função de complexidade de tempo: f(n) mede o tempo necessário para executar um algoritmo em um problema de tamanho n.
- Função de complexidade de espaço: f(n) mede a memória necessária para executar um algoritmo em um problema de tamanho n.

- Função de Complexidade
 - Utilizaremos f para denotar uma função de complexidade de tempo daqui para a frente.
 - A complexidade de tempo na realidade não representa tempo diretamente, mas o número de vezes que determinada operação considerada relevante é executada.

1.1. Exemplo

Considere o algoritmo para encontrar o maior elemento de um vetor de inteiros A[n], onde n >= 1.

```
int max(int* A, int n){
 int i, temp;
  temp = A[0];
 for(i=1; i<n; i++)
   if(temp < A[i]) ←
      temp = A[i];
  return temp; }
```

- Seja f uma função de complexidade tal que f(n) é o número de comparações entre os elementos de A, se A contiver n elementos.
- Qual a função f(n)? f(n) = n-1

$$f(n) = n-1$$

1.1. Exemplo

- ► Teorema: Qualquer algoritmo para encontrar o maior elemento de um conjunto com n elementos, n >= 1, faz pelo menos n-1 comparações.
- Prova: Cada um dos n-1 elementos tem de ser investigado por meio de comparações, que é menor do que algum outro elemento.
 - Logo, n-1 comparações são necessárias
- O teorema acima nos diz que, se o número de comparações for utilizado como medida de custo, então a função max do programa anterior é ótima.

- A medida do custo de execução de um algoritmo depende principalmente do tamanho da entrada dos dados.
- É comum considerar o tempo de execução de um programa como uma função do tamanho da entrada.
- Para alguns algoritmos, o custo de execução é uma função da entrada particular dos dados, não apenas do tamanho da entrada.
 - No caso da função max do programa do exemplo, o custo é uniforme sobre todos os problemas de tamanho n.
 - Já para um algoritmo de ordenação isso não ocorre: se os dados de entrada já estiverem quase ordenados, então o algoritmo pode ter que trabalhar menos.

2. Melhor Caso, Pior Caso e Caso Médio

- Imagine agora uma função que retorna "1" se um determinado elemento pertence a um vetor, e retorna "0" caso contrário.
 - Depende da posição desse elemento dentro do vetor.
- Melhor caso: o elemento está na primeira posição do vetor.
 Menor tempo de execução sobre todas as entradas de tamanho n.
- Pior caso: o elemento estar na última posição do vetor. Maior tempo de execução sobre todas as entradas de tamanho n.
 - Se f é uma função de complexidade baseada na análise de pior caso, o custo de aplicar o algoritmo nunca é maior do que f(n).
- Caso médio (ou caso esperado): média dos tempos de execução de todas as entradas de tamanho n.

2. Melhor Caso, Pior Caso e Caso Médio

- Na análise do caso médio esperado, supõe-se uma distribuição de probabilidades sobre o conjunto de entradas de tamanho n e o custo médio é obtido com base nessa distribuição.
- A análise do caso médio é geralmente muito mais difícil de obter do que as análises do melhor e do pior caso.
- É comum supor uma distribuição de probabilidades em que todas as entradas possíveis são igualmente prováveis.
- Na prática isso nem sempre é verdade.

- Considere o problema de encontrar um número de matrícula em um vetor de matrículas.
- Cada posição do vetor contém uma matrícula única.
- O problema: dada uma matrícula qualquer, localize a posição do vetor que contenha esta matrícula.
- O algoritmo de pesquisa mais simples é o que faz a pesquisa sequencial.

Seja f uma função de complexidade tal que f(n) é a quantidade de matrículas consultados no vetor (número de vezes que se compara a matrícula buscada com as matrículas armazenadas no vetor):

Melhor caso:

- A matrícula procurada é a primeiro consultada
- f(n) = 1

Pior caso:

- A matrícula procurada é a última consultada ou não está presente no vetor
- f(n) = n

Caso Médio:

- No estudo do caso médio, vamos considerar que toda pesquisa recupera uma matrícula.
- Se p_i for a probabilidade de que a i-ésima matrícula seja procurada, e considerando que para recuperar a i-ésima matrícula são necessárias i comparações, então:

$$f(n) = 1 \times p_1 + 2 \times p_2 + 3 \times p_3 + \dots + n \times p_n$$

Caso Médio:

- Para calcular f(n) basta conhecer a distribuição de probabilidades p_i
- Se cada registro tiver a mesma probabilidade de ser acessado que todos os outros, então:

$$p_i = \frac{1}{n}$$
, $1 \le i \le n$

- Nesse caso: $f(n) = \frac{1}{n}(1+2+3+\cdots+n) = \frac{1}{n}(\frac{n(n+1)}{2}) = \frac{n+1}{2}$
- A análise do caso esperado revela que uma pesquisa com sucesso examina aproximadamente metade dos registros.

- O parâmetro n fornece uma medida da dificuldade para se resolver o problema.
- Para valores suficientemente pequenos de n, qualquer algoritmo custa pouco para ser executado, mesmo os ineficientes.
 - A escolha do algoritmo não é um problema crítico para problemas de tamanho pequeno.
- Logo, a análise de algoritmos é realizada para valores grandes de n.
- Estuda-se o comportamento das funções de custo f(n).

- Precisamos de ferramentas matemáticas para comparar funções.
- Na análise de algoritmos usa-se a Análise Assintótica.
 - Estudo do comportamento de algoritmos para entradas arbitrariamente grandes ou a "descrição" da taxa de crescimento.
- Permite "simplificar" expressões como as mostradas anteriormente focando apenas nas ordens de grandeza.

- Para entradas grandes o bastante, as constantes multiplicativas e os termos de mais baixa ordem de um tempo de execução podem ser ignorados.
- Considerando a função $f(n) = 3n^2 + 10n + 50$

n	$3n^2 + 10n + 50$	3 <i>n</i> ²
64	12978	12288
128	50482	49152
512	791602	786432
1024	3156018	3145728
2048	12603442	12582912
4096	50372658	50331648
8192	201408562	201326592
16384	805470258	805306368
32768	3221553202	3221225472

- A análise de um algoritmo geralmente conta com apenas algumas operações elementares.
- A medida de custo ou medida de complexidade relata o crescimento assintótico da operação considerada.
- **Definição**: Uma função f(n) domina assintoticamente outra função g(n) se existem duas constantes positivas $c \in n_0$ tais que, para $n \ge n_0$ temos $|g(n)| \le c \times |f(n)|$

Exemplo:

- Sejam $g(n) = (n + 1)^2 e^{-r} f(n) = n^2$
- As funções g(n) e f(n) dominam assintoticamente uma a outra, já que:
 - $|(n+1)^2| \le 4 |(n^2)|$ para $n \ge 1$ e
 - $|(n^2)| \le |(n+1)^2|$ para $n \ge 0$

- É interessante comparar algoritmos para valores grandes de n.
- O custo assintótico de uma função T(n) representa o limite do comportamento de custo quando n cresce.
- Em geral, o custo aumenta com o tamanho n do problema.

Observação:

 Para valores pequenos de n, mesmo um algoritmo ineficiente não custa muito para ser executado.

- Notação assintótica de funções
 - Existem três notações principais na análise assintótica de funções:
 - 1. Notação O ("O" grande, big "O")
 - 2. Notação Ω (ômega)
 - 3. Notação Θ (theta)

- f(n) = O(g(n))
 - Significa que $c \times g(n)$ é um limite superior de f(n)

- A notação O define um limite superior para a função, por um fator constante.
- Escreve-se f(n) = O(g(n)), se existirem constantes positivas **c** e \mathbf{n}_0 tais que para $\mathbf{n} \ge \mathbf{n}_0$, o valor de f(n) é menor ou igual a $c \times g(n)$.
 - Pode-se dizer que g(n) é um **limite assintótico superior** (em inglês, asymptotically upper bound) para f(n)

$$f(n) = O(g(n)), \exists c > 0 e n_0 / 0 \le f(n) \le c \times g(n), \forall n \ge n_0$$

- Escrevemos f(n) = O(g(n)) para expressar que g(n) domina assintoticamente f(n).
 - Lê-se f(n) é da ordem no máximo g(n).
- Observe que a notação O define um conjunto de funções:

$$O(g(n)) = \{ f: \aleph \to \Re^+ \mid \exists c > 0, \ n_0, \ 0 \le f(n) \le c \times g(n), \ \forall n \ge n_0 \}$$

Exemplos:

- 1. Seja $f(n) = (n + 1)^2$
 - Logo f(n) é $O(n^2)$, quando $n_0 = 1$ e c = 4, já que $(n+1)^2 \le 4n^2$ para $n \ge 1$
- 2. Seja f(n) = n e $g(n) = n^2$. Mostre que g(n) não é O(n).
 - Sabemos que f(n) é $O(n^2)$, pois para $n \ge 0$, $n \le n^2$.
 - Suponha que existam constantes $c \in n_0$ tais que para todo $n \ge n_0$, $n^2 \le c \times n$.
 - Assim, $c \ge n$ para qualquer $n \ge n_0$.
 - No entanto, não existe uma constante c que possa ser maior ou igual a n para todo n.

- Quando a notação O é usada para expressar o tempo de execução de um algoritmo no pior caso, está se definindo também o limite superior do tempo de execução desse algoritmo para todas as entradas.
- Por exemplo, o algoritmo de ordenação por inserção é $O(n^2)$ no pior caso.
 - Este limite se aplica para qualquer entrada.

Operações com a notação O

$$f(n) = O(f(n))$$

$$c \times O(f(n)) = O(f(n)) \ c = constante$$

$$O(f(n)) + O(f(n)) = O(f(n))$$

$$O(O(f(n)) = O(f(n))$$

$$O(f(n)) + O(g(n)) = O(max(f(n), g(n)))$$

$$O(f(n))O(g(n)) = O(f(n)g(n))$$

$$f(n)O(g(n)) = O(f(n)g(n))$$

- Operações com a notação O: Exemplos
 - Regra da soma O(f(n)) + O(g(n))
 - Suponha três trechos cujos tempos de execução sejam O(n), O(n²) e O(n log n)
 - O tempo de execução dos dois primeiros trechos é $O(max(n,n^2)) = O(n^2)$
 - O tempo de execução de todos os três trechos é então O(max(n², n log n)) que é O(n²)

Regras Práticas:

- Multiplicação por uma constante não altera o comportamento:
 - $O(c \times f(n)) = O(f(n))$
 - $99 \times n^2 = O(n^2)$
- Em um polinômio $a_x n^x + a_{x-1} n^{x-1} + ... + a_2 n^2 + a_1 n + a_0$ podemos nos focar na parcela com o **maior expoente**:
 - $3n^3 5n^2 + 100 = O(n^3)$
 - $6n^4 20^2 = O(n^4)$
 - $0.8\mathbf{n} + 224 = O(\mathbf{n})$
- Em uma soma/subtração podemos nos focar na parcela dominante:
 - $2^n + 6n^3 = O(2^n)$
 - $n! 3n^2 = O(n!)$
 - $n \log n + 3n^2 = O(n^2)$

Exemplos Práticos:

- Um programa tem dois pedaços de código $A \in B$, executados um a seguir ao outro, sendo que A corre em $O(n \log n)$ e B em $O(n^2)$.
 - O programa corre em $O(n^2)$, porque $n^2 > n \log n$
- Um programa chama n vezes uma função O(log n), e em seguida volta a chamar novamente n vezes outra função O(log n)
 - O programa corre em *O(n log n)*
- Um programa tem 5 ciclos, chamados sequencialmente, cada um deles com complexidade O(n)
 - O programa corre em O(n)
- Um programa P_1 tem tempo de execução proporcional a $100 \times n \log n$. Um outro programa P_2 tem $2 \times n^2$. Qual é o programa mais eficiente?
 - P_1 é mais eficiente porque $n^2 > n \log n$. No entanto, para um n pequeno, P_2 é mais rápido e pode fazer sentido ter um programa que chama P_1 ou P_2 de acordo com o valor de n.

Exercício:

- Considere $f(n) = 3n^2 100n + 6$
 - a) $f(n) = O(n^2)$?
 - b) $f(n) = O(n^3)$?
 - c) f(n) = O(n)?

Exercício:

- Considere $f(n) = 3n^2 100n + 6$
 - a) $f(n) = O(n^2)$? SIM
 - b) $f(n) = O(n^3)$? SIM
 - c) $f(n) = O(n) ? NAO \rightarrow f(n) \neq O(n)$

- $f(n) = \Omega(g(n))$
 - Significa que $c \times g(n)$ é um limite inferior de f(n)

- lacksquare A notação Ω define um **limite inferior** para a função, por um fator constante.
- Escreve-se $f(n) = \Omega(g(n))$, se existirem constantes positivas **c** e \mathbf{n}_0 tais que para $\mathbf{n} \geq \mathbf{n}_0$, o valor de f(n) é maior ou igual a $c \times g(n)$.
 - Pode-se dizer que g(n) é um limite assintótico inferior (em inglês, asymptotically lower bound) para f(n)

$$f(n) = \Omega(g(n))$$
, $\exists c > 0 e n_0 / 0 \le c \times g(n) \le f(n)$, $\forall n \ge n_0$

ightharpoonup Observe que a notação Ω define um conjunto de funções:

$$\Omega(g(n)) = \{ f: \aleph \to \Re^+ \mid \exists c > 0, n_0, 0 \le c \times g(n) \le f(n), \forall n \ge n_0 \}$$

- Quando a notação Ω é usada para expressar o tempo de execução de um algoritmo no melhor caso, está se definindo também o limite (inferior) do tempo de execução desse algoritmo para todas as entradas.
- Por exemplo, o algoritmo de ordenação por inserção é $\Omega(n)$ no melhor caso.
 - O tempo de execução do algoritmo de ordenação por inserção é $\Omega(n)$.
- O que significa dizer que "o tempo de execução" (sem especificar se é para o pior caso, melhor caso, ou caso médio) é $\Omega(g(n))$?
 - O tempo de execução desse algoritmo é pelo menos uma constante vezes *g(n)* para valores suficientemente grandes de n.

Exemplos:

- 1. Para mostrar que $f(n) = 3n^3 + 2n^2$ é $\Omega(n^3)$ basta fazer c = 1, e então $3n^3 + 2n^2 \ge n^3$ para $n \ge 0$.
- 2. Seja f(n) = n para n impar $(n \ge 1)$ e $f(n) = n^2/10$ para n par $(n \ge 0)$.
 - Neste caso f(n) é $\Omega(n^2)$, bastando considerar c = 1/10 e n = 0, 2, 4, 6, ...

Exercício:

- Considere $f(n) = 3n^2 100n + 6$
 - a) $f(n) = \Omega(n^2)$?
 - **b**) $f(n) = \Omega(n^3)$?
 - c) $f(n) = \Omega(n)$?

Exercício:

- Considere $f(n) = 3n^2 100n + 6$
 - a) $f(n) = \Omega(n^2)$? SIM
 - b) $f(n) = \Omega(n^3)$? NÃO $-> f(n) \neq \Omega(n^3)$
 - c) $f(n) = \Omega(n)$? SIM

- $f(n) = \Theta(g(n))$
 - Significa que $c_1 \times g(n)$ é um limite inferior de f(n) e $c_2 \times g(n)$ é um limite superior de f(n)

- A notação Θ limita a função por fatores constantes.
- Escreve-se $f(n) = \Theta(g(n))$, se existirem constantes positivas \mathbf{c}_1 , \mathbf{c}_2 e \mathbf{n}_0 tais que para $\mathbf{n} \geq \mathbf{n}_0$, o valor de f(n) está sempre entre $c_1 \times g(n)$ e $c_2 \times g(n)$ inclusive.
 - Pode-se dizer que g(n) é um limite assintótico firme (em inglês, asymptotically tight bound) para f(n)

$$f(n) = \Theta(g(n))$$
, $\exists c_1 > 0$, $c_2 > 0$ e $n_0 / 0 \le c_1 \times g(n) \le f(n) \le c_2 \times g(n)$, $\forall n \ge n_0 / 0 \le c_1 \times g(n) \le f(n) \le c_2 \times g(n)$

Observe que a notação O define um conjunto de funções:

$$\Theta(g(n)) = \{ f: \aleph \to \Re^+ \mid \exists c_1 > 0, c_2 > 0, n_0, 0 \le c_1 \times g(n) \le f(n) \le c_2 \times g(n), \forall n \ge n_0 \}$$

Exemplos:

- 1. Mostre que $\frac{1}{2}n^2 3n = \Theta(n^2)$
 - Para provar esta afirmação, devemos achar constantes $c_1>0,\ c_2>0,\ n_0>0$, tais que: $c_1n^2\leq\frac{1}{2}n^2-3n\leq c_2n^2$, para todo $n\geq n_0$.
 - Se dividirmos a expressão acima por *n*², temos:

$$c_1 \leq \frac{1}{2} - \frac{3}{n} \leq c_2$$

Exemplos:

- A inequação mais a direita será sempre válida para qualquer valor de n \geq 1 ao escolhermos $c_2 \geq \frac{1}{2}$
- Da mesma forma, a inequação mais a esquerda será sempre válida para qualquer valor de $n \ge 7$ ao escolhermos $c_1 \le \frac{1}{14}$
- Assim, ao escolhermos $c_1 \le \frac{1}{14}$, $c_2 \le \frac{1}{2}$ e $n_0=7$, podemos verificar que $\frac{1}{2}n^2-3n=\Theta(n^2)$
- Note que existem outras escolhas para as constantes c_1 e c_2 , mas o fato importante é que a escolha existe.
- Note também que a escolha destas constantes depende da função $\frac{1}{2}n^2 3$
- Uma função diferente pertencente a $\Theta(n^2)$ irá provavelmente requerer outras constantes

Exercício:

- Considere $f(n) = 3n^2 100n + 6$
 - a) $f(n) = \Theta(n^2)$?
 - **b**) $f(n) = \Theta(n^3)$?
 - c) $f(n) = \Theta(n)$?

Exercício:

- Considere $f(n) = 3n^2 100n + 6$
 - a) $f(n) = \Theta(n^2)$? SIM
 - b) $f(n) = \Theta(n^3)$? NÃO $-> f(n) \neq \Theta(n^3)$
 - c) $f(n) = \Theta(n)$? NÃO $-> f(n) \neq \Theta(n^3)$

• $f(n) = \Theta(g(n))$ implica que f(n) = O(g(n)) e $f(n) = \Omega(g(n))$

7. Outras Informações

Resumo das Notações

7.1. Propriedades das Notações

Reflexividade:

- f(n) = O(f(n)).
- $f(n) = \Omega(f(n))$.
- $f(n) = \Theta(f(n))$.

Simetria:

• $f(n) = \Theta(g(n))$ se, e somente se, $g(n) = \Theta(f(n))$.

Simetria Transposta:

• f(n) = O(g(n)) se, e somente se, $g(n) = \Omega(f(n))$.

Transitividade:

- Se f(n) = O(g(n)) e g(n) = O(h(n)), então f(n) = O(h(n)).
- Se $f(n) = \Omega(g(n))$ e $g(n) = \Omega(h(n))$, então $f(n) = \Omega(h(n))$.
- Se $f(n) = \Theta(g(n))$ e $g(n) = \Theta(h(n))$, então $f(n) = \Theta(h(n))$.

7. Outras Informações

Quais as notações mais indicadas para expressar a complexidade de casos específicos de um algoritmo, do algoritmo de modo geral e da classe de algoritmos para o problema?

Casos específicos:

- O ideal é a notação Θ, por ser um limite assintótico firme.
- A notação O também é aceitável e bastante comum na literatura.
- Embora possa teoricamente ser usada, a notação Ω é mais fraca neste caso e deve ser evitada para casos específicos.

Algoritmo de forma geral:

- Se o algoritmo comporta-se de forma idêntica para qualquer entrada, a notação Θ é a mais precisa (lembre-se que $f(n)=\Theta(g(n)) \Rightarrow f(n)=O(g(n))$).
- Se os casos melhor e pior são diferentes, a notação mais indicada é a O, já que estaremos interessados em um limite assintótico superior.
- O pior caso do algoritmo deve ser a base da análise.

Para uma classe de algoritmos:

• Neste caso estamos interessados no limite inferior para o problema e a notação deve ser a Ω .

7.2. Outras Notações

- Existem duas outras notações na análise assintótica de funções:
 - 1. Notação o ("O" pequeno)
 - 2. Notação ω (ômega minúsculo)
- Estas duas notações não são usadas normalmente, mas é importante saber seus conceitos e diferenças em relação às notações O e Ω, respectivamente.

7.2.1. Notação o

- O limite assintótico superior definido pela notação O pode ser assintoticamente firme ou não.
 - Por exemplo, o limite $2n^2 = O(n^2)$ é assintoticamente firme, mas o limite $2n = O(n^2)$ não é.
- A notação o é usada para definir um limite superior que não é assintoticamente firme.
- Formalmente a notação *o* é definida como:
 - f(n) = o(g(n)), para qualquer c > 0 e $n_0 / 0 \le f(n) < c \times g(n)$, $\forall n \ge n_0$
- Exemplo:
 - $2n = o(n^2) \text{ mas } 2n^2 \neq o(n^2)$

7.2.1. Notação o

- As definições das notações O e o são similares
 - A diferença principal é que em f(n) = o(g(n)), a expressão $0 \le f(n) < c \times g(n)$ é válida para todas constantes c > 0.
- Intuitivamente, a função *f(n)* tem um crescimento muito menor que *g(n)* quando *n* tende para infinito.
 - Isto pode ser expresso da seguinte forma:

$$\lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) = 0$$

Alguns autores usam este limite como a definição de o

7.2.2. Notação ω

- Por analogia, a notação ω está relacionada com a notação Ω da mesma forma que a notação o está relacionada com a notação o
- Formalmente a notação ω é definida como:
 - $f(n) = \omega(g(n))$, para qualquer c > 0 e $n_0 / 0 \le c \times g(n) < f(n)$, $\forall n \ge n_0$
- Por exemplo, $\frac{n^2}{2} = \omega(n)$, mas $\frac{n^2}{2} \neq \omega(n^2)$
- A relação $f(n) = \omega(g(n))$ implica em:

$$\lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) = \infty$$

se o limite existir!

- Se f é uma função de complexidade para um algoritmo F, então O(f) é considerada a complexidade assintótica ou o comportamento assintótico do algoritmo F.
- A relação de dominação assintótica permite comparar funções de complexidade.
- Entretanto, se as funções **f** e **g** dominam assintoticamente **uma a outra**, então os algoritmos associados são equivalentes.
 - Nestes casos, o comportamento assintótico não serve para comparar os algoritmos.
- Por exemplo, considere dois algoritmos F e G aplicados à mesma classe de problemas, sendo que F leva <u>três vezes</u> o tempo de G ao serem executados, isto é, f(n) = 3g(n), sendo que O(f(n)) = O(g(n)).
 - Logo, o comportamento assintótico não serve para comparar os algoritmos F e G, porque eles diferem apenas por uma constante.

7.4. Comparação de Programas

- Podemos avaliar programas comparando as funções de complexidade, negligenciando as constantes de proporcionalidade.
- Um programa com tempo de execução O(n) é melhor que outro com tempo $O(n^2)$
 - Porém, as constantes de proporcionalidade podem alterar esta consideração.
- Exemplo: um programa leva 100n unidades de tempo para ser executado e outro leva $2n^2$. Qual dos dois programas é melhor?
 - Depende do tamanho do problema
 - Para n < 50, o programa com tempo $2n^2$ é melhor do que o que possui tempo 100n
 - Para problemas com entrada de dados pequena é preferível usar o programa cujo tempo de execução é O(n²)
 - Entretanto, quando **n** cresce, o programa com tempo de execução $O(n^2)$ leva muito mais tempo que o programa O(n)

- 1. Complexidade constante \leftarrow f(n) = O(1)
 - O uso do algoritmo independe do tamanho de n
 - As instruções do algoritmo são executadas um número fixo de vezes

2. Complexidade Logarítmica \leftarrow f(n) = O(log n)

- Ocorre tipicamente em algoritmos que resolvem um problema transformando-o em problemas menores.
- Nestes casos, o tempo de execução pode ser considerado como sendo menor do que uma constante grande.
- Supondo que a base do logaritmo seja 2:
 - Para n = 1.000, $\log_2 \approx 10$
 - Para n = 1.000.000, $\log_2 \approx 20$
- Exemplo:
 - Algoritmo de pesquisa binária

- 3. Complexidade Linear \leftarrow f(n) = O(n)
 - Em geral, um pequeno trabalho é realizado sobre cada elemento de entrada
 - Esta é a melhor situação possível para um algoritmo que tem que processar/produzir n elementos de entrada/saída
 - Cada vez que n dobra de tamanho, o tempo de execução também dobra
 - Exemplo:
 - · Algoritmo de pesquisa sequencial

- 4. Complexidade Linear Logarítmica \leftarrow f(n) = O(n log n)
 - Este tempo de execução ocorre tipicamente em algoritmos que resolvem um problema quebrando-o em problemas menores, resolvendo cada um deles independentemente e depois agrupando as soluções
 - Caso típico dos algoritmos baseados no paradigma divisão-econquista.
 - Supondo que a base do logaritmo seja 2:
 - Para n = 1.000.000, $n \log_2 \approx 20.000.000$
 - Para n = 2.000.000, $n \log_2 \approx 42.000.000$
 - Exemplo:
 - Algoritmo de ordenação MergeSort

- 5. Complexidade Quadrática \leftarrow f(n) = O(n²)
 - Algoritmos desta ordem de complexidade ocorrem quando os itens de dados são processados aos pares, muitas vezes em um anel dentro do outro
 - Para n = 1.000, o número de operações é da ordem de 1.000.000
 - Sempre que n dobra o tempo de execução é multiplicado por 4
 - Algoritmos deste tipo são úteis para resolver problemas de tamanhos relativamente pequenos
 - Exemplos:
 - Algoritmos de ordenação simples como seleção e inserção

- 6. Complexidade Cúbica \leftarrow f(n) = O(n³)
 - Algoritmos desta ordem de complexidade geralmente são úteis apenas para resolver problemas relativamente pequenos
 - Para n = 100, o número de operações é da ordem de 1.000.000
 - Sempre que n dobra o tempo de execução é multiplicado por 8
 - Exemplo:
 - Algoritmo para multiplicação de matrizes

- 7. Complexidade Exponencial \leftarrow f(n) = O(2ⁿ)
 - Algoritmos desta ordem de complexidade não são úteis sob o ponto de vista prático
 - Eles ocorrem na solução de problemas quando se usa a força bruta para resolvê-los
 - Para n = 20, o tempo de execução é cerca de 1.000.000
 - Sempre que n dobra o tempo de execução fica elevado ao quadrado

- 8. Complexidade Fatorial \leftarrow f(n) = O(n!)
 - Um algoritmo de complexidade O(n!) é dito ter complexidade fatorial (ou até mesmo exponencial), apesar de O(n!) ter comportamento muito pior do que O(2n)
 - Geralmente ocorrem quando se usa força bruta na solução do problema
 - Considerando:
 - n = 20, temos que 20! = 2.432.902.008.176.640.000, um número com 19 dígitos
 - n = 40 temos um número com 48 dígitos

Crescimento Assintótico

Função	Nome	Exemplos		
1	constante	Somar dois números		
log n	logarítmica	Pesquisa binária, inserir um número em uma heap		
n	linear	1 ciclo para buscar o valor máximo em um vetor		
n log n	linearítimica	Ordenação (merge sort, heap sort)		
n²	quadrática	2 ciclos (bubble sort, selection sort)		
n³	cúbica	3 ciclos (Floyd-Warshall)		
2 ⁿ	exponencial	Pesquisa exaustiva (subconjuntos)		
n!	fatorial	Todas as permutações		

Crescimento Assintótico

Crescimento Assintótico

f(n)	Tamanho <i>n</i>						
f(n)	10	20	30	40	50	60	
n	0,00001	0,00002	0,00003	0,00004	0,00005	0,00006	
	S	S	S	s	S	s	
n²	0,0001	0,0004	0,0009	0,0016	0,0025	0,0036	
	S	s	S	s	s	s	
n³	0,001	0,008	0,027	0,64	0,125	0,316	
	S	S	S	S	S	s	
n⁵	0,1	3,2	24,3	1,7	5,2	13	
	s	s	s	min	min	min	
2 ⁿ	0,001	1,0	17,9	12,7	35,7	366	
	s	s	min	dias	anos	séc	
3 ⁿ	0,059	58	6,5	3855	10 ⁸	10 ¹³	
	s	min	anos	séc	séc	séc	

7.6. Revisão de Matemática

Propriedades de Logaritmos:

$$\circ \log_b xy = \log_b x + \log_b y$$

$$\circ \log_b \frac{x}{y} = \log_b x - \log_b y$$

$$\circ \log_b x^a = a \log_b x$$

•
$$b^{\log_c a} = a^{\log_c b}$$

$$\circ \log_b a = \frac{\log_c a}{\log_c b}$$

$$\circ \log_a b = x \leftrightarrow a^x = b$$

7.6. Revisão de Matemática

Propriedades de Expoentes:

$$a^{b+c} = a^b \times a^c$$

$$\circ (a^b)^c = a^{bc}$$

$$a^b = a^{b-c}$$

•
$$b = a^{\log_a b}$$

•
$$b^c = a^{c \times \log_a b}$$

Repetições:

 O tempo de execução de uma repetição é o tempo dos comandos dentro da repetição (incluindo testes) multiplicado pelo número de vezes que é executada.

- Repetições aninhadas:
 - A análise é feita de dentro para fora
 - O tempo total de comandos dentro de um grupo de repetições aninhadas é o tempo de execução dos comandos multiplicado pelo produto do tamanho de todas as repetições.
 - O exemplo abaixo é O(n²)

```
para i := 0 até n faça
  para j := 0 até n faça
  faça k := k+1;
```

- Comandos consecutivos
 - É a soma dos tempos de cada um bloco, o que pode significar o máximo entre eles.
 - O exemplo abaixo é O(n²), apesar da primeira repetição ser O(n)

```
para i := 0 até n faça
  faça k := 0;

para i := 0 até n faça
  para j := 0 até n faça
  faça k := k+1;
```

- Se... então... senão
 - Para uma cláusula condicional, o tempo de execução nunca é maior do que o tempo do teste mais o tempo do maior entre os comandos relativos ao então e os comandos relativos ao senão
 - O exemplo abaixo é O(n)

```
se i < j
então i := i+1
senão para k := 1 até n faça
    i := i*k;</pre>
```

- Chamadas a sub-rotinas
 - Uma sub-rotina deve ser analisada primeiro e depois ter suas unidades de tempo incorporadas ao programa/sub-rotina que a chamou.

- Sub-rotinas recursivas
 - Análise de recorrência
 - Recorrência: equação ou desigualdade que descreve uma função em termos de seu valor em entradas menores
 - Caso típico: algoritmos de dividir-e-conquistar, ou seja, algoritmos que desmembram o problema em vários subproblemas que são semelhantes ao problema original, mas menores em tamanho, resolvem os subproblemas recursivamente e depois combinam essas soluções com o objetivo de criar uma solução para o problema original.

- Sub-rotinas recursivas
 - Exemplo:

```
int fat (int n) {
    if (n == 1)
        return 1;
    else
```

```
T(n) = c+T(n-1)
= c+(c+T(n-2)) = 2c+T(n-2)
= ...
= nc +T(1)
= O(n)
```

```
else
    return n * fat(n-1);
```

7.8. Exemplo

	Custo	N° Vezes			
<pre>int hasDuplicate(int* vet, int n){</pre>	C_1	1			
<pre>int i, j;</pre>	C_2	1			
<pre>int duplicate = 0;</pre>	C_3	1			
for (i = 0; i < n; i++){	C_4	n+1			
for (j = 0; j < n; j++){	C ₅	n x (n+1)			
if (i != j && A[i] == A[j])	C_6	n x n			
return 1;	C ₇	1			
}	0	-			
}	0	-			
return 0;	C ₈	1			
}	0	-			
$T(n) = C_1 + C_2 + C_3 + C_4(n+1) + C_5(n^2+n) + C_6n^2 + C_7 + C_8 = O(n^2)$					

7.8. Exemplo

Operações com a notação O

$$f(n) = O(f(n))$$

$$c \times O(f(n)) = O(f(n)) \ c = constante$$

$$O(f(n)) + O(f(n)) = O(f(n))$$

$$O(O(f(n)) = O(f(n))$$

$$O(f(n)) + O(g(n)) = O(max(f(n), g(n)))$$

$$O(f(n))O(g(n)) = O(f(n)g(n))$$

$$f(n)O(g(n)) = O(f(n)g(n))$$

8. Referências

- Cormen, Thomas H.; Leiserson, Charles E., Rivest, Ronald L., Stein, Clifford. Introduction to Algorithms. 3a Ed. Cambridge: MIT Press and McGraw-Hill, 2009. ISBN: 0-262-03384-4.
- Levitin, Anany. Introduction to the Design and Analysis of Algorithms. 3a Ed. Nova Jérsei: Addison- Wesley, 2012. ISBN: 0-13-231681-1