Finishing up Apache Spark

Susan B. Davidson and Zachary G. Ives

University of Pennsylvania

CIS 545 – Big Data Analytics

Portions of this lecture have been contributed to the OpenDS4All project, piloted by Penn, IBM, and the Linux Foundation

Recall: Sharding and Tables

Given a cluster with *n* workers, running remotely, Spark creates a table with *at least n* partitions (here, 200, where 100 are stored on each machine)

Spark will partition "automatically" but it's best to repartition on the key you want!

```
%%spark
# 10
link
                     id
                                                           locality
                                                                                   skills
                                          name
             in-00000001 [given name -> Dr...]
                                                      United States | [Key Account Deve...
my_1
                          given name -> An...
                                               Antwerp Area, Bel...
link
                         [given name -> Sh... | San Francisco, Ca... |
        in-000montgomery [given name -> Ed... | San Francisco Bay...
      in-000vijaychauhan|[given name -> Vi...| Chennai Area, India|[Program Manageme.
     only showing top 5 rows
```

Computation in a Sharded System: Selection, Projection

```
locality
                id
                                                                                skills
                                      name
        in-00000001 [given name -> Dr...]
                                                  United States | [Kev Account Deve...
                     [given name -> An...|Antwerp Area, Bel.
           in-00006 [given name -> Sh... | San Francisco, Ca...
                                                                  DNA, Nanotechnol.
   in-000montgomery [given name -> Ed
 in-000vijaychauhan|[given name -> V
                                                         id
                                                                                       locality
                                                                             name
only showing top 5 rows
                                                 in-00000001 [given name -> Dr... | United States |
                                           in-100percenthair | [given name -> Su... | United States |
  Selection + projection is "farme
                                                  in-1solone | [given name -> Ha... | United States |
                                             in-2raviagarwal|[given name -> Ra...|United States|
   linked df.filter(linked df.ld
                                        in-aarongatescarlton|[given_name -> Aa...|United States|
    'name', 'locality']].show(5)
                                       only showing top 5 rows
```

Apply (with Python Functions) in Spark

https://docs.databricks.com/spark/latest/spark-sql/udf-python.html

```
%%spark
     from pyspark.sql.functions import udf
     from pyspark.sql.types import StringType
     acro = udf(lambda x: ''.join([n[0] for n i
     linked df.select("id", acro("locality").al;
                                                       in-00000001
                                                                         US
  Note also that we used Spark's seld
                                                           in-00001
                                                                        AAB
  arguments looks much like a list for
                                                           in-00006
                                                                        SFC
                                                  in-000montgomery
                                                                       SFBA
                                                in-000vijaychauhan
                                                                        CAI
  As with select / project, apply is run
  parallel!
                                               only showing top 5 rows
https://tinyurl.com/cis545-lecture-02-16-22
```

Grouping

Grouping needs *all* of the tuples in a group to be on the same machine, in order to do a computation over the group!

```
%%spark
# Which industries are most popular?
sqlContext.sql('select count(_id), industry '+\
'from linked_in group by industry '+\
'order by count(_id) desc').show(5)
```

sharded by _id

Failures

 In a large cluster running for a long time – machines may die or software may crash

- Spark actually handles such failures transparently
 - •It periodically "checkpoints" or snapshots what has happened
- *And if a node dies, it can restart the computation elsewhere! https://tinyurl.com/cis545-lecture-02-16-22

Brief Review

https://canvas.upenn.edu/courses/1636888/quizzes/2771539 (08F)

Spark is not written in Python, which means;

- a. Spark is slower than Pandas
- b. schemas are strongly typed
- c. we can't use Python strings
- d. Spark must be written in C

How do we handle (a small number of) worker failures when Spark tasks are executed?

- e. Spark handles this transparently
- f. We need to buy new servers
- g. We have to retry our jobs
- h. We have to write try/except blocks in Python

Recap

Summary of Big Data so far:

- We need to partition or shard data by keys, allowing machines to work in parallel across different shards
- Apache Spark is the most popular system for doing this right now
 - Supports Spark dataframes or Spark SQL
 - Some variations from Pandas: strong typing, syntax variations, special udf function
 - You can control sharding via repartition
 - Select, project, apply all work in parallel across shards
 - •Grouping typically requires the machines to exchange or repartition data

Big Data and Cloud Services

Susan B. Davidson and Zachary G. Ives

University of Pennsylvania

CIS 545 – Big Data Analytics

Portions of this lecture have been contributed to the OpenDS4All project, piloted by Penn, IBM, and the Linux Foundation

What Do People Mean by "Big Data"?

"5 V's of Big Data", seeking value:

- •Veracity: Data is of high quality
- Variety: Data is heterogeneous
- •Volume:
 - Many rows
 - Large data objects
- Velocity: Data changes often

Data has many dimensions

Roadmap for this Module

- Cloud-hosted compute clusters for big data
- Distributed Spark execution and joins
- Storing big data on the cloud
- View materialization

... Preparing us for looking at complex *graphs* of relationships!

Elastic MapReduce and Clusters on the Cloud

Susan B. Davidson and Zachary G. Ives

University of Pennsylvania

CIS 545 – Big Data Analytics

Portions of this lecture have been contributed to the OpenDS4All project, piloted by Penn, IBM, and the Linux Foundation

Clusters on the Cloud

How do we run Spark in clusters on the cloud?

- Cloud service "layers"
- Platform-as-a-service for big data

An Overwhelming Array of Services

Amazon has over 50 cloud services!

(Azure, Google, Oracle have fewer, but still a large number)

How do we decide what we need? Understand our options

No cloud standard exists, but we've converged on a rough taxonomy...

A Taxonomy: Cloud Service Layers

Software as a Service (SaaS) – applications hosted on the cloud

Netflix, GMail, Facebook, Salesforce

Platform as a Service (PaaS) – libraries, specialized platforms Colab, Google Compute Engine, Amazon Elastic MapReduce

Infrastructure as a Service (laaS) – "raw" machines & storage Amazon Elastic Compute Cloud, Simple Storage Service https://tinyurl.com/cis545-lecture-02-16-22

Colab (and AWS SageMaker Notebook)

Cloud-hosted Platform-as-a-Service / Software-as-a-Service hybrid

- Google-customized Jupyter Notebook on Ubuntu 16.04 with Python 3.6
- (Possible to install single-node Spark)

But to get the most out of Spark, we need to connect Colab to a cluster!

Our Main Focus: AWS Elastic MapReduce

Preconfigured compute clusters!

Built over EC2, and you can always go down to the EC2 level

Pick number of machines, configura details, launch and use!

Software

Software Configuration

- •For now: need at least Spark, Livy, Hive
 - We'll have a largely-preconfigured template for you
- Later for deep learning: MXNet, PyTorch

Creating a Cluster

	Add configuration settings			Use on-demand a	s max price ~
Task - 3	4 vCore, 16 GiB memory, EBS only stora EBS Storage: 64 GiB	m5a.24xlarge	96	384 Spot 5	EBS only
Task	m5.xlarge	m5a.16xlarge	64	256	EBS only
	Add configuration settings	m5a.12xlarge	48	192	EBS only
Core - 2	4 vCore, 16 GiB memory, EBS only stora EBS Storage: 64 GiB 🐧 🖋	m5a.8xlarge	32	128	EBS only
		m5a.4xlarge	16	64	EBS only
Core	m5.xlarge 🖋	m5a.2xlarge	8	32	EBS only
	Add configuration settings	m5a.xlarge	4	16	EBS only
	EBS Storage: 64 GiB 🐧 🖍	m5.24xlarge	96	384	EBS only
Master Master - 1 🎤	m5.xlarge	m5.16xlarge	64	256	EBS only
•••		m5.12xlarge	48	192	EBS only
lode type	Instance type	m5.8xlarge	32	128	EBS only

Bootstrap Actions

To install Python (or Java/Scala) packages across the cluster, set up a shell script as a *bootstrap action* and place on AWS S3

A Spark Cluster

Summary Configuration details Release label: emr-6 1 0 ID: j-1TI9TBPVGD6YY Hadoop distribution: Amazon 3.2.1 Creation date: 2020-10-03 10:28 (UTC-4) Applications: Hive 3.1.2, Pig 0.17.0, Hue 4.7.1, Spark 3.0.0, Livy 0.7.0, MXNet 1.6.0 Elapsed time: 9 minutes Log URI: s3://aws-logs-884743372678-us-east-After last step completes: Cluster waits 1/elasticmapreduce/ Termination protection: Off Change EMRFS consistent view: Disabled Custom AMI ID: --Tags: -- View All / Edit Master public DNS: ec2-54-159-35-214.compute-1.amazonaws.com Connect to the Master Node Using SSH ▲ Not secure | ec2-54-159-35-214.compute-1.amazonaws.com:8998/ui ☆ LVY Sessions Interactive Sessions Show 10 v entries Search: Session Id La Application Id I↑ Name 1 Owner In Proxy User Session Kind State 1↑ Logs

https://tinyurl.com/cis545-lecture-02-16-22

Showing 1 to 1 of 1 entries

pyspark

starting

session

Previous

Google DataProc

https://tinyurl.com/cis545-lecture-02-16-22

Custom image

Microsoft Azure Databricks

Brief Review

https://canvas.upenn.edu/courses/1636888/quizzes/2771536 (09B)

Apache Spark is an instance of:

- a. Software-as-a-Service (SaaS)
- b. Cloud-as-a-Service (CaaS)
- c. Platform-as-a-Service (PaaS)
- d. Infrastructure-as-a-Service (laaS)

To pip install Python packages so they are usable in Spark jobs, you need to

- e. Run !pip install from Colab
- f. Add an EMR bootstrap action
- q. Run!pip install from your %%spark cell
- h. Run anaconda from Colab

Recap of Cloud Cluster Management

One type of *platform-as-a-service* – pay-as-you-go clusters with preconfigured software

You'll generally:

- Install Apache Spark + Livy (and Hive for its SQL libraries)
 - Bootstrap script lets you install libraries on all nodes
- •Configure at least 16GB RAM, 3 nodes beware you are billed by how long the cluster is running!
- •We'll have a preconfigured CloudFront template for you

How Spark Works on a Cluster

Susan B. Davidson and Zachary G. Ives

University of Pennsylvania

CIS 545 – Big Data Analytics

Portions of this lecture have been contributed to the OpenDS4All project, piloted by Penn, IBM, and the Linux Foundation

From SQL to a Spark Query Plan

https://tinyurl.com/cis545-007

```
yelp business sdf = spark.read.format("csv").option("header",
"true").load("yelp business.csv")
                                                                     name neighborhood
avg reviews by city sdf = spark.sql(\
                                                                             null 4855 E Warner Rd,...
                                                              Dental by Design
                                                                                                Ahwatukee
                                                            Stephen Szabo Salon
                                                                             null | 3101 Washington Rd|
                                                                                                        PAI
   'select city, avg(stars) as avg rating '\
                                                           Western Motor Veh...
                                                                             null 6025 N 27th Ave, ...
                                                                                                 Phoenix
                                                                                                        AZ
                                                                             null 5000 Arizona Mill
                                                                                                  Tempe
                                                                                                        AZ
  'from yelp
                                                                                          Ave|Cuvahoga Falls|
                                                                                          'group by
avg reviews k
                                      Hash Pre-
                          File
                                                                         Hash Avq
                                                       Exchange
*(2) HashAggrega
                          Scan
                                     Aggregate
                                                                        Aggregate
+- Exchange hash
                     yelp_business.csv
                                         city
                                                          city
                                                                            city
   +-*(1) Hash
            [part
      +- FileSca
          Location: InmemoryFileIndex[file:/content/yelp business.csv],
          PartitionFilters: [], PushedFilters: [], ReadSchema: struct<city:string,stars:string>
```



```
same_city_sdf = spark.sql(
   'select b1.name, b2.name from yelp_business b1 join yelp_business b2 '\
   ' on b1.city = b2.city and b1.name <> b2.name')
```

yelp_business

id	name	city	
FYNWN1	Dental by Design	Ahwatukee	Server o
BADF	My Wine Cellar	Ahwatukee	Server 1
KQPW8	Western Motor Vehicles	Phoenix	Server o
8DShNS	Sports Authority	Tempe	Server 1

Sharded by ID

```
same_city_sdf = spark.sql(
   'select b1.name, b2.name from yelp_business b1 join yelp_business b2 '\
   ' on b1.city = b2.city and b1.name <> b2.name')
```

yelp_business

id	name	city	
FYNWN1	Dental by Design	Ahwatukee	Server o
BADF	My Wine Cellar	Ahwatukee	Server 1
KQPW8	Western Motor Vehicles	Phoenix	Server o
8DShNS	Sports Authority	Tempe	Server 1

Create two copies, sharded by city

Sharded by ID

```
same_city_sdf = spark.sql(
  'select b1.name, b2.name from yelp_business b1 join yelp_business b2 '\
  ' on b1.city = b2.city and b1.name <> b2.name')
```

yelp_business

id	name	city	
FYNWN1	Dental by Design	Ahwatukee	Server o
BADF	My Wine Cellar	Ahwatukee	Server 1
KQPW8	Western Motor Vehicles	Phoenix	Server o
8DShNS	Sports Authority	Tempe	Server 1

yelp_business

id	name	city	
FYNWN1	Dental by Design	Ahwatukee	Server o
BADF	My Wine Cellar	Ahwatukee	Server o
KQPW8	Western Motor Vehicles	Phoenix	Server 1
8DShNS	Sports Authority	Tempe	Server 1

Exchange / repartition / shuffle


```
same_city_sdf = spark.sql(
  'select b1.name, b2.name from yelp_business b1 join yelp_business b2 '\
  ' on b1.city = b2.city and b1.name <> b2.name')
```

yelp_business (b1)

id	name	city
FYNWN1	Dental by Design	Ahwatukee
BADF	My Wine Cellar	Ahwatukee
KQPW8	Western Motor Vehicles	Phoenix
8DShNS	Sports Authority	Tempe

Server o	
Server o	>
Server 1	>
Server_1	

yelp_business (b2)

			ı
id	name	city	
FYNWN1	Dental by Design	Ahwatukee	Server o
BADF	My Wine Cellar	Ahwatukee	Server o
KQPW8	Western Motor Vehicles	Phoenix	Server 1
8DShNS	Sports Authority	Tempe	Server 1

name	name
My Wine Cellar	Dental by Design
Dental by Design	My Wine Cellar

Variation: (Left) Outerjoin

```
same_city_sdf = spark.sql(
   'select b1.name, b2.name from yelp_business b1 left join yelp_business b2 '\
   ' on b1.city = b2.city and b1.name <> b2.name')
```

yelp_business (b1)

yelp_business (b2)

id	name	city			id	name		city	
FYNWN1	Dental by Design	Ahwatukee	Server o	-	FYNWN1	Dental by	y Design	Ahwatukee	Ser
BADF	My Wine Cellar	Ahwatukee	Server o	*	BADF	My Wine	Cellar	Ahwatukee	Ser
KQPW8	Western Motor Vehicles	Phoenix	Server 1	-	KQPW8	Western	Motor Vehicles	Phoenix	Ser
8DShNS	Sports Authority	Tempe	name	na	ime		thority	Tempe	Ser
			My Wine Cellar	De	ental by Desig	gn	,	·	
			Dental By Design	M	y Wine Cellar				
		Western Motor	N	ULL					
			Sports Authority	N	ULL				

Minimizing Shuffle/Exchange Steps

- Every time we do a join or a group-by, we need the data to be sharded on the key
 - •If it isn't, we need to do an exchange or repartition!
- •A good strategy: *amortize* the repartitions across multiple operations if possible!

Catalyst: Spark's Query Optimizer Generates the Plans

- Spark's query optimizer seeks to:
 - Estimate how big the input sources are
- Estimate how many results will be produced in each filter,
 join, groupby compare different orderings of operations

•Find the strategy that minimizes the overall cost, including repartitions and join costs

Spark Handles Failures!

What happens if one of our worker nodes dies?

Spark re-reads its input data using the other nodes, and re-executes the missing part of the query!

Brief Review

https://canvas.upenn.edu/courses/1636888/quizzes/2771512 (09C)

When Spark runs on a cluster, it creates and executes a Spark query plan when

- a. we execute a cell with a Pandas operation
- b. we execute a cell that invokes an action like show() or save()
- c. we execute a cell with a dataframe operation like a join
- d. we execute a cell with an SQL query

Given two dataframes **students(id,name)** and **enrolled(course_id,student_id)**, if we execute a query to join on the student IDs, Spark must:

- e. ensure **students** is sharded by **ID** and **enrolled** is sharded by **student_id**, or add exchange operators as needed
- f. perform a hash join within each of the worker nodes, without adding any exchange operators
- g. ensure **students** is sharded by ID and **enrolled** is sharded by **course_id**, or add exchange operators as needed
- h. sort the **enrolled** dataframe by **course_id**

Recap

Apache Spark queries are *lazy* to maximize what can be optimized

Upon an *action* like show(), the queries are combined and a *plan* is generated – which minimizes cost

Group-by and join require the data to be sharded on the key – may need to exchange or reshuffle or repartition data

If a worker fails in execution, its work is re-executed

Spark's Catalyst query optimizer seeks to find the minimum-cost plan, but occasionally you may need to manually override it

Storing Data on the Cloud

Susan B. Davidson and Zachary G. Ives

University of Pennsylvania

CIS 545 – Big Data Analytics

Portions of this lecture have been contributed to the OpenDS4All project, piloted by Penn, IBM, and the Linux Foundation

Where Do We Put Our Big Data?

- •A cloud file system?
- •A cloud NoSQL system?
- •A cloud relational DBMS?

Key questions

How complex and large is the data and its content? videos, images; JSON; large CSVs

How will I query my data?

e.g., by pathname, by properties, by features

Do I need transactions?

S3 (or GCS) for Storing Large Objects

- Amazon S3 supports "buckets" virtual disk volumes
- •Can use "s3a://bucketname/filename" to specify an S3 file
 - •For dataframes: df.write.parquet(), sqlContext.read.parquet()

DynamoDB (or BigTable) for Small Object Lookup

- Given objects in a map from keys to hierarchical values –
 DynamoDB is a good choice
 - Values may be JSON data, dictionaries (max 4KB / field)
- Queries largely limited to lookups by key https://tinyurl.com/cis545-lecture-02-16-22

RDBMSs for Queriable Objects

- •Relational DBMSs are best if we want:
 - Complex queries that return subsets of data to Spark
 - Atomic updates across tables, in transactions
- Interoperability with the most tools

 Amazon RDS lets us launch PostgreSQL, Oracle, MariaDB, ... https://tinyurl.com/cis545-lecture-02-16-22

Brief Review

https://canvas.upenn.edu/courses/1636888/quizzes/2771525 (09D)

If we have tabular data that we are retrieving solely by an ID, our best choice(s) for storage are likely to be:

- a. DynamoDB or RDS
- b. neither DynamoDB nor RDS
- c. DynamoDB only
- d. RDS only

If we have satellite photos, we are likely to want to store these on:

- e. RDS
- f. our laptop
- g. DynamoDB
- h. S3

Recap

- Our focus in this class: processing big data
- •But there are multiple places we can save it:
 - "Large object stores" like S3 videos, images, large CSVs, large parquet files
 - NoSQL stores like DynamoDB JSON, simple objects
 - •RDBMSs like RDS tabular data that we'll query

Materialization of Query Results

Susan B. Davidson and Zachary G. Ives

University of Pennsylvania

CIS 545 – Big Data Analytics

Portions of this lecture have been contributed to the OpenDS4All project, piloted by Penn, IBM, and the Linux Foundation

When We Have Big Data, We May Need to Make Storage Decisions

We've seen data with embedded hierarchy

- LinkedIn people included lists of education or job experiences
- •Key idea: split these into subtables, explode the lists
- There's a goal of storing data without redundancy

But: Sometimes portions of data *overlap*, e.g., both parent and subclasses have some common instances

An Example of Instances and Subclasses

Materialization

Ideally, our original data is stored without redundancy – this makes it easier to maintain

But as we generate analysis results, we may want to strategically store redundant info! "View materialization"!

Let's apply to people, students, and workers...

Student and Worker are Naturally Views

CREATE VIEW WorkerPerson(id, name, employer) AS
 SELECT *
 FROM Person NATURAL JOIN Worker

WorkerPerson

id	name	employer
789	Kaye	Lutron

CREATE VIEW StudentPerson(id, name, employer) AS
SELECT *
FROM Person NATURAL JOIN Student

StudentPerson

id	name	school
456	Jay	Penn
789	Kaye	MIT

but views are simply named queries treated as tables...

An Example of Instances and Subclasses with Redundancy!

Person

id	name
123	Ai
456	Jay
789	Kaye

StudentPerson

id	name	school
456	Jay	Penn
789	Kaye	MIT

Worker

id	employer
789	Lutron

Student

id	school
456	Penn
789	MIT

WorkerPerson

id	name	employer
789	Kaye	Lutron

More Generally...

In Spark, we can take any Dataframe and persist it...

```
same_city_sdf = spark.sql('select b1.name, b2.name as name2 '\
   from yelp_business b1 join yelp_business b2 '\
   ' on b1.city = b2.city and b1.name <> b2.name')
same_city_sdf.persist()
```

•Now any time we reference same_city_sdf it will use the stored version!

Other Uses for Materialization

Commonly used subqueries

Generated reports or hierarchical data

Recursive computations (we'll see these over graphs)

Brief Review

https://canvas.upenn.edu/courses/1636888/quizzes/2771500 (09E)

If we use inheritance in an E-R diagram, the tables are naturally partitioned such that

- a. we only store instances in the child tables
- b. instances show up in parent and child tables, but columns other than ID are split
- c. the same columns show up in parent and child tables, but instances are split
- d. we repeat both instances and all columns in parent and child tables

View materialization is accomplished by

- e. calling materialize() on a dataframe
- f. creating a view in SparkSQL
- g. saving the input CSV
- h. calling persist() on a dataframe

Recap

- View materialization sacrifices storage (and cost of updating) for query performance
- Very commonly used in big data scenarios

 Can be done by saving a result directly, or by DataFrame.persist()

Module Wrap-up

- As we scale to bigger and more complex data, need to harness compute clusters
- Spark runs across multiple workers, shuffles data as necessary for joins and grouping
 - Query optimizer seeks to minimize these costs
- We have a series of options for storing our data
- •Sometimes it's useful to trade off space for query htpenformances 45-lecture-02-16-22

More Complex Relationships

- Most of our discussion has been about "direct" relationships
 - Student TAKES a class.
 - a student ISA person

- In the real world, lots of transitive relationships!
 - •Real and digital social networks, the Internet, road networks, supplier networks, ...
- Leads to Part 3: graphs! https://tinyuri.com/cis545-lecture-02-16-22