Elementary functions

- Exponential Function: e^z
- Trigonometric functions: $\sin z$, $\cos z$,...
- Hyperbolic functions: sinh z, cosh x, . . .
- Logarithm function: log z, Log z
- Complex exponents / Power function: z^w
- Inverse trigonometric functions: $\sin^{-1} z, \cos^{-1} z, \dots$

The Exponential Function

Recall:

- $e^x : \mathbb{R} \to \mathbb{R}$ and $e^{x+y} = e^x e^y$ for any $x, y \in \mathbb{R}$.
- Euler's Formula: For $\theta \in \mathbb{R}, \ e^{i\theta} = \cos \theta + i \sin \theta$.
- For $\theta, \phi \in \mathbb{R}$, $e^{i(\theta+\phi)} = e^{i\theta}e^{i\phi}$.

Definition: For z = x + iy e^z or $e^z(z)$ is defined by the formula

$$e^z = e^{(x+iy)} := e^x(\cos y + i \sin y) = e^x e^{iy}.$$

 $e^z:\mathbb{C}\to\mathbb{C}$ is called the exponential function.

Properties of Exponential Function

 \bullet $e^{z+w}=e^ze^w$ for all $z,w\in\mathbb{C}$. For $z=x+iy,\ w=s+it$

$$\begin{array}{lcl} e^{z+w} & = & e^{(x+s)+i(y+t)} = e^{(x+s)}e^{i(y+t)} \\ & = & (e^xe^s)(e^{iy}e^{it}) = (e^xe^{it})(e^se^{iy}) = e^ze^w. \end{array}$$

- \bullet $|e^z| = e^{\Re(z)}$ and $arg(e^z) = \Im(z) + 2n\pi, n \in \mathbb{Z}$.
- $e^z \neq 0$, for all $z \in \mathbb{C}$. Indeed $|e^z| = e^{\Re(z)} > 0$.

The Exponential Function

Properties of Exponential Function

• $\frac{d}{dz}e^z=e^z, z\in\mathbb{C}$: e^z is an entire function. $\left[e^z=e^x\cos y+ie^x\sin y, i.e., u=e^x\cos y, v=e^x\sin y.\right]$ Check: Everywhere in \mathbb{C} , $u_x=v_y, u_y=-v_x$ and the partial derivatives are continuous. Thus, e^z is entire and

$$\frac{d}{dz}e^{z} = u_{x} + iv_{x} = e^{x}\cos y + ie^{x}\sin y = e^{z}.$$

A function $f: \mathbb{C} \to \mathbb{C}$ is said to be **periodic** if there is a $w \in \mathbb{C}$ such that f(z+w)=f(z) for all $z \in \mathbb{C}$. Then, w is called a **period** of f.

- e^z is periodic of period $2n\pi i$ for any $n \in \mathbb{Z}$. $[e^{z+2n\pi i} = e^z \ \forall z \in \mathbb{C}.]$
- e^z is not injective (one-one) in \mathbb{C} , unlike the real exponential. $[e^0 = e^{2n\pi i} = 1 \text{ for any } n \in \mathbb{Z}.]$
- $\bullet \ \overline{e^z} = e^{\overline{z}}. \ \left[\overline{e^z} = \overline{e^x e^{iy}} = e^x \, \overline{e^{iy}} = e^x e^{-iy} = e^{x-iy} = e^{\overline{z}}. \right]$
- $|e^z| = e^{|z|}$ if $z \ge 0$.

Image under the Exponential Function

A horizontal line in $\mathbb C$ is mapped to an open ray (open at 0). $\{x+ci:x\in\mathbb R\}\longmapsto\{(r,\phi):r=e^x,\phi=c,\ x\in\mathbb R\}$

Image under the Exponential Function

A vertical line in \mathbb{C} is mapped to a circle centered at 0. $\{a+iy:y\in\mathbb{R}\}\longmapsto\{(r,\theta):r=e^a,\,\theta=y,\,y\in\mathbb{R}\}$

Image under the Exponential Function

A small rectangular region in $\mathbb C$ is mapped to an annular segment.

$$\{x+iy:a\leq x\leq b,\ c\leq y\leq d\}\longmapsto \{(r,\theta):e^a\leq r\leq e^b,\ c\leq \phi\leq d\}.$$

Trigonometric Functions

Define for $z \in \mathbb{C}$

$$\sin z = \frac{1}{2i} (e^{iz} - e^{-iz}); \quad \cos z = \frac{1}{2} (e^{iz} + e^{-iz}).$$

Properties:

- $\sin^2 z + \cos^2 z = 1$.
- $\sin(-z) = -\sin z$, $\cos(-z) = \cos z$, $\sin(z + 2k\pi) = \sin z$, $\cos(z + 2k\pi) = \cos z$,.
- $\sin z = 0 \iff z = n\pi \text{ and } \cos z = 0 \iff z = (n + \frac{1}{2})\pi, \ , \ n \in \mathbb{Z}.$
- sin z, cos z are entire functions.
- Is $\sin z$ a bounded function? Note $\sin(-iy) = \frac{1}{2i}(e^y - e^{-y}) \to \infty$ as $y \to \infty$.

We define
$$\tan z = \frac{\sin z}{\cos z}$$
, $\sec z = \frac{1}{\cos z}$ for $z \neq (n + \frac{1}{2})\pi$,

$$\cot z = \frac{\cos z}{\sin z}, \ \csc z = \frac{1}{\sin z} \text{ for } z \neq n\pi, \ n \in \mathbb{Z}$$

These functions are analytic.

Trigonometric functions

• For $z \in \mathbb{C}$, $e^{iz} = \cos z + i \sin z$: Follows from definitions

$$\sin z = \frac{1}{2i} (e^{iz} - e^{-iz}); \quad \cos z = \frac{1}{2} (e^{iz} + e^{-iz}).$$

- \bullet $\sin(z+w) = \sin z \cos w + \cos z \sin w$, cos(z + w) = cos z cos w - sin z sin w.
- For real y, $\cosh y = \frac{1}{2}(e^y + e^{-y})$, $\sinh y = \frac{1}{2}(e^y e^{-y})$. So,

$$\sin(iy) = \frac{1}{2i}(e^{-y} - e^y) = i \sinh y, \quad \cos(iy) = \frac{1}{2}(e^y + e^{-y}) = \cosh y.$$

Thus.

$$\sin z = \sin(x + iy) = \sin x \cosh y + i \cos x \sinh y,$$

$$\cos z = \cos(x + iy) = \cos x \cosh y - i \sin x \sinh y.$$

Exercise. Prove: For any $z \in \mathbb{C}$

$$|\sin z|^2 = \sin^2 x + \sinh^2 y$$
, $|\cos z|^2 = \cos^2 x + \sinh^2 y$.

Hint. Use $\cosh^2 v - \sinh^2 v = 1$.

Lecture 6

Elementary functions

Hyperbolic Trigonometric functions

Define for $z \in \mathbb{C}$

$$\sinh z = \frac{e^z - e^{-z}}{2}, \quad \cosh z = \frac{e^z + e^{-z}}{2}.$$

Properties:

- sinh z, cosh z are entire functions.
- $\sinh(-z) = -\sinh z$, $\cosh(-z) = \cosh z$,
- $\sinh(z + 2k\pi i) = \sinh z$, $\cosh(z + 2k\pi i) = \cosh z$, $k \in \mathbb{Z}$.
- $\sinh(iz) = i \sin z$ and $\cosh(iz) = \cos z$
- $\sinh z = 0 \iff z = n\pi i$ and $\cosh z = 0 \iff z = (n + \frac{1}{2})\pi i$, $n \in \mathbb{Z}$.
- $\frac{d}{dz}(\sinh z) = \cosh z$, $\frac{d}{dz}(\cosh z) = \sinh z$.

We define
$$\tanh z = \frac{\sinh z}{\cosh z}$$
, $\operatorname{csc} h z = \frac{1}{\sinh z}$ for $z \neq (n + \frac{1}{2})\pi i$, $\coth z = \frac{\cosh z}{\sinh z}$, $\operatorname{sec} h z = \frac{1}{\cosh z}$ for $z \neq n\pi i$, $n \in \mathbb{Z}$

These functions are analytic.

A multiple valued function

- The function z^2 is not one-one: $z^2 = (-z)^2$. Can z^2 have an inverse? Is $w = z^{1/2}$ a function?
- If $0 \neq z = re^{i\theta}$ then $w^2 = z$ if

$$w = w_1 = \sqrt{r}e^{i\theta/2}$$
 or $w = w_2 = \sqrt{r}e^{i(\pi + \theta/2)}$.

We write $z^{1/2} = \{w_1, w_2\}$, and say $z^{1/2}$ is a multiple valued function.

Consider the two functions

$$f_1(z) = \sqrt{|z|}e^{i\text{Arg}(z)/2}, \quad f_2(z) = \sqrt{|z|}e^{i(\pi + \text{Arg}(z)/2)}$$

for $z \neq 0$, and 0 at z = 0. Then, $(f_1(z))^2 = z = (f_2(z))^2$ for all z.

- f_1 maps $\mathbb{C} \setminus \{0\}$ into the right half plane and f_2 into the left half plane. Note: $f_2(z) = -f_1(z)$.
- -π < Arg(z) ≤ π, and f₁ and f₂ are discontinuous at every point on negative real axis (i.e. when Arg(z) = π).
- f_1 and f_2 when restricted to the open set $\mathbb{C} \setminus \{z : z \leq 0\}$ are analytic. These analytic functions are two branches of $z^{1/2}$.
- The closed ray $\{z: z \leq 0\}$ is the branch cut for f_1 and f_2 .
- In fact, for any $\alpha \in \mathbb{R}$ you can get a branch of $z^{1/2}$ with the ray $\theta = \alpha$ as the branch cut. Take $z = re^{i\theta}$ where $\alpha < \theta < \alpha + 2\pi$.

Branches of a multiple valued function

Branch: Let F be a multiple valued function defined on a domain D. A single valued function f defined on a domain $D_0 \subset D$ is a branch of F, if f is analytic in D_0 and f(z) takes a value of F(z).

Example. f_1 and f_2 just defined are branches of $z^{1/2}$.

 Branch Cut: The portion of a line or a curve introduced in order to define a branch f of a multiple valued function F is called the branch cut for the branch.

Example. The closed ray $\{z: z \leq 0\}$ is the branch cut for f_1 and f_2 .

 Branch Point: Any point that is common to all branch cuts for a multiple valued function F is called a branch point for F.

Example. z = 0 is the branch point for $z^{1/2}$.

Logarithm function

• Given $z \in \mathbb{C}$ is there $w \in \mathbb{C}$ such that $e^w = z$? Yes, if $z \neq 0$. Let $z = re^{i\theta}, \ w = u + iv$. Then

$$e^{w} = z \implies e^{u}e^{iv} = re^{i\theta} \implies u = \ln r,$$

 $v = \theta + 2n\pi = \arg(z).$

i.e., $w = \ln |z| + i \arg(z) = \{ \ln |z| + i(\operatorname{Arg}(z) + 2n\pi) : n \in \mathbb{Z} \}.$ For each value of w we have $e^w = z$.

 \bullet Define complex logarithm to be the multiple valued function on $\mathbb{C}\setminus\{0\}$ given by

$$\log z = \ln|z| + i\arg(z) = \{\ln|z| + i(\operatorname{Arg}(z) + 2n\pi) : n \in \mathbb{Z}\}.$$

• Consider the horizontal strip $H = \{z = x + iy : -\pi < y \le \pi\}$. $e^z : H \to \mathbb{C} \setminus \{0\}$ is a bijection. The inverse of this function is the **principal branch** of $\log z$: $\log z = \ln |z| + i \operatorname{Arg}(z)$.

Example.
$$\log i = i(\pi/2 + 2k\pi), \ k \in \mathbb{Z}, \ \log i = i\pi/2.$$
 $\log(-1) = i(\pi + 2k\pi), \ k \in \mathbb{Z}, \ \log(-1) = i\pi$ $\log(-1 - i) = \ln(\sqrt{2}) + i(\frac{-3\pi}{4} + 2k\pi), \ k \in \mathbb{Z}, \ \log(-1 - i) = \dots$

Complex Logarithm

- Log $z = \ln |z| + i \operatorname{Arg}(z)$. So, for z = x > 0, Log $z = \ln z$, i.e., Log extends ln.
- For $z \neq 0$ $e^{\log z} = e^{\ln|z| + i \operatorname{Arg}(z)} = e^{\ln|z|} e^{i \operatorname{Arg}(z)} = |z| e^{i \operatorname{Arg}(z)} = z$. Is $\log(e^z) = z$? What is $\log(e^z)$?
- The identity Log $(z_1z_2) = \text{Log} z_1 + \text{Log} z_2$ is not always valid. Give example. Valid if and only if Arg $z_1 + \text{Arg} z_2 \in (-\pi, \pi]$ (Check).
- Log z is not continuous on the negative real axis $\mathbb{R}^- = \{z = x < 0\}$. To see this consider the point $z_0 = -\alpha$, $\alpha > 0$. Then, as $\theta \to \pi^-$ we have $z = \alpha e^{i\theta} \to z_0$ from above and $\text{Log } z \to (\ln \alpha + i\pi)$, as $\theta \to -\pi^+$ we have $z = \alpha e^{i\theta} \to z_0$ from below and $\text{Log } z \to (\ln \alpha i\pi)$. So, Log z is not continuous at z_0 .
- Log z is analytic on $\mathbb{C}\setminus\mathbb{R}^-$: Let $z=re^{i\theta},\ r>0, \theta\in(-\pi,\pi)$. Then $\log z=\ln r+i\theta=u(r,\theta)+iv(r,\theta)$. Now, $u_r=\frac{1}{r}v_\theta=\frac{1}{r}$, $v_r=-\frac{1}{r}u_\theta=0$, and the partial derivatives are continuous. Thus, $\frac{d}{dz} \log z=e^{-i\theta}(u_r+iv_r)=\frac{1}{r}e^{-i\theta}=\frac{1}{z}$.
- Log z on $\mathbb{C} \setminus \mathbb{R}^-$ is a branch of log z. Branch cut: \mathbb{R}^- . What are other branches? What are the branch points?

Complex Exponents

Let $w \in \mathbb{C}$. For any $z \neq 0$, define

$$z^w = e^{w \log z} = exp(w \log z)$$

- $i^i = \exp[i \log i] = \exp[i(\log 1 + i\frac{\pi}{2})] = \exp(-\frac{\pi}{2}).$
- For fixed $a, c \in \mathbb{C}$ a^z and z^c are multiple valued functions.

Inverse trigonometric functions

Note: $\sin(z + 2n\pi) = \sin z$. So, $\sin z$ is not one-one. However, it is onto (Range of $\sin z$ is \mathbb{C}).

Suppose $w \in \mathbb{C}$. Then, $\sin w = z \Rightarrow \frac{e^{iw} - e^{-iw}}{2i} = z \Rightarrow e^{2iw} - 2ize^{iw} - 1 = 0$.

i.e.,
$$e^{iw} = \frac{2iz + ((-2iz)^2 - 4)^{1/2}}{2} = iz + (1 - z^2)^{1/2}$$
.

- $\arcsin(z) = \sin^{-1}(z) = -i \log [iz + (1-z^2)^{1/2}].$
- $arc cos(z) = cos^{-1}(z) = -i log [z + i(1 z^2)^{1/2}].$
- $\bullet \ \operatorname{arc tan}(z) = \tan^{-1}(z) = \left(\frac{i}{2}\right) \log \left(\frac{i+z}{i-z}\right).$

$$\frac{d}{dx} \left(\sin^{-1} z \right) = \frac{1}{(1 - z^2)^{1/2}},$$

$$\frac{d}{dx} \left(\cos^{-1} z \right) = \frac{-1}{(1 - z^2)^{1/2}},$$

$$\frac{d}{dx} \left(\tan^{-1} z \right) = \frac{1}{(1 + z^2)},$$

Inverse hyperbolic functions

•
$$\sinh^{-1}(z) = \log [z + (z^2 + 1)^{1/2}].$$

•
$$\cosh^{-1}(z) = \log [z + (z^2 - 1)^{1/2}].$$

•
$$\tanh^{-1}(z) = \log [z + (z^2 - 1)^{1/2}].$$