Introduction to Neural Networks

Data-X Spring 2019

Tanya Piplani

What is a Neural Network?

•Like other machine learning methods that we saw earlier in the class, it is a technique to:

map features to labels or some dependent continuous value.
or

•compute the function that relates features to labels or some dependent continuous value.

What is a Neural Network?

•Like other machine learning methods that we saw earlier in the class, it is a technique to:

map features to labels or some dependent continuous value.

or

f(v|x)

•compute the function that relates features to labels or some dependent continuous value.

Single (Biological) Neuron

[image source: cs231n.stanford.edu]

Single (Artificial) Neuron

Types of Learning

- Supervised Learning
- Unsupervised Learning
- •Reinforcement Learning

•[also Transfer Learning, Imitation Learning, Meta Learning etc ...]

Supervised Learning: X → Y

- Ex 1: Image Recognition
 - X = pixel values
 - Y = one hot vector encoding category

[figure sources: https://en.wiktionary.org/wiki/cat; https://www.guidedogs.org/]

Unsupervised Learning

Unsupervised learning is a type of machine

Learning algorithm used to draw inferences
from datasets consisting of input data
without labeled responses.

Neural Networks

- Origins: Algorithms that try to mimic the brain.
- Very widely used in 80s and early 90s; popularity diminished in late 90s.
- Recent resurgence: State-of-the-art technique for many applications
- Artificial neural networks are not nearly as complex or intricate as the actual brain structure

Neural networks

Layered feed-forward network

- Neural networks are made up of nodes or units, connected by links
- · Each link has an associated weight and activation level
- Each node has an input function (typically summing over weighted inputs), an activation function, and an output

Neural networks

Layered feed-forward network

- Neural networks are made up of nodes or units, connected by links
- Each link has an associated weight and activation level
- Each node has an input function (typically summing over weighted inputs), an activation function, and an output

Neural networks

Fully Connected !! Why?

- Layered feed-forward network
- Neural networks are made up of nodes or units, connected by links
- Each link has an associated weight and activation level
- Each node has an input function (typically summing over weighted inputs), an activation function, and an output

Neuron Model: Logistic Unit

Sigmoid (logistic) activation function:
$$g(z) = \frac{1}{1 + e^{-z}}$$

$$A = \frac{1}{1+e^{-x}}$$

Neuron Model: Logistic Unit

Sigmoid (logistic) activation function: $g(z) = \frac{1}{1 + e^{-z}}$

Why have non-linearity???

$$A = \frac{1}{1+e^{-x}}$$

A feed-forward neural network with linear activation and any number of hidden layers is equivalent to just a linear neural neural network with no hidden layer. For example let us consider the neural network in figure with two hidden layers and no activation-

Why have non-linearity???

$$A = \frac{1}{1 + e^{-x}}$$

Why have non-linearity???

$$A = \frac{1}{1 + e^{-x}}$$

Neural Network

Feed-Forward Process

- Input layer units are set by some exterior function (think of these as sensors), which causes their output links to be activated at the specified level
- Working forward through the network, the input function of each unit is applied to compute the input value
 - Usually this is just the weighted sum of the activation on the links feeding into this node
- The activation function transforms this input function into a final value
 - Typically this is a nonlinear function, often a sigmoid function corresponding to the "threshold" of that node

Neural Network

$$a_i{}^{(j)} =$$
 "activation" of unit i in layer j

 $\Theta^{(j)} = \text{weight matrix controlling function}$ mapping from layer j to layer j+1

$$a_{1}^{(2)} = g(\Theta_{10}^{(1)}x_{0} + \Theta_{11}^{(1)}x_{1} + \Theta_{12}^{(1)}x_{2} + \Theta_{13}^{(1)}x_{3})$$

$$a_{2}^{(2)} = g(\Theta_{20}^{(1)}x_{0} + \Theta_{21}^{(1)}x_{1} + \Theta_{22}^{(1)}x_{2} + \Theta_{23}^{(1)}x_{3})$$

$$a_{3}^{(2)} = g(\Theta_{30}^{(1)}x_{0} + \Theta_{31}^{(1)}x_{1} + \Theta_{32}^{(1)}x_{2} + \Theta_{33}^{(1)}x_{3})$$

$$h_{\Theta}(x) = a_{1}^{(3)} = g(\Theta_{10}^{(2)}a_{0}^{(2)} + \Theta_{11}^{(2)}a_{1}^{(2)} + \Theta_{12}^{(2)}a_{2}^{(2)} + \Theta_{13}^{(2)}a_{3}^{(2)})$$

If network has s_j units in layer j and s_{j+1} units in layer j+1, then $\Theta^{(j)}$ has dimension $s_{j+1}\times(s_j+1)$

 $Y = x1*w1 + x2*w2 + x3*w3 + \cdots + xn*wn$ --linear regression

Example:

 $Y = x1*w1 + x2*w2 + x3*w3 + \cdots + xn*wn$ --linear regression

For sample 1:					
x 6 5 3 1					
w	0.3	0.2	-0.5	0	
Y = ?					

For sample 2:					
x 20 5 3 1					
w	0.3	0.2	-0.5	0	
Y = ?					

Example:

 $Y = x1*w1 + x2*w2 + x3*w3 + \cdots + xn*wn$ --linear regression

For sample 1:					
x 6 5 3 1					
w	0.3	0.2	-0.5	0	
Y = sum(x * w) =1.3					

For sample 2:					
x 20 5 3 1					
w	0.3	0.2	-0.5	0	
Y = sum(x * w) = 5.5					

Lets us apply a **threshold function** on the output:

For sample 1:					
x 6 5 3 1					
w	0.3	0.2	-0.5	0	
Y = f(sum(x * w)) = f(1.3) = 1.3					

For sample 2:					
x 20 5 3 1					
w	0.3	0.2	-0.5	0	
Y = f(sum(x * w)) = f(5.5) = 0					

Now, if we apply a **logistic/sigmoid function** on the output it will squeeze all the output between 0 and 1:

Y = Sigmoid(x1*w1 + x2*w2 + ... + xn*wn) --logistic regression

Logistic/sigmoid function

$$S(x) = rac{1}{1 + e^{-x}} = rac{e^x}{e^x + 1}.$$

For sample 1:					
x 6 5 3 1					
w	0.3	0.2	-0.5	0	
$Y = \sigma(sum(x * w)) = \sigma(1.3) = 0.78$					

For sample 2:					
x 20 5 3 1					
w	0.3	0.2	-0.5	0	
$Y = \sigma(sum(x * w)) = \sigma(5.5) = 0.99$					

Now, if we apply a **logistic/sigmoid function** on the output it will squeeze all the output between 0 and 1:

Y = Sigmoid(x1*w1 + x2*w2 + .. + xn*wn) --logistic regression

Logistic/sigmoid function

$$S(x) = rac{1}{1 + e^{-x}} = rac{e^x}{e^x + 1}.$$

For sample 1:					
x 6 5 3 1					
w	0.3	0.2	-0.5	0	
$Y = \sigma(sum(x * w)) = \sigma(1.3) = 0.78$					

For sample 2:					
x 20 5 3 1					
w	0.3	0.2	-0.5	0	
$Y = \sigma(sum(x * w)) = \sigma(5.5) = 0.99$					

Now, if we apply a threshold on the logistic/sigmoid output it will set the final output as 0 or 1:

Logistic/sigmoid function

$$S(x) = rac{1}{1 + e^{-x}} = rac{e^x}{e^x + 1}.$$

For sample 1:					
x 6 5 3 1					
w	0.3	0.2	-0.5	0	
Y = $\mathbf{f}(\sigma(\text{sum}(x * w))) = f(\sigma(1.3)) = f(0.78) = 1$					

For sample 2:					
x 20 5 3 1					
w	0.3	0.2	-0.5	0	
Y = $\mathbf{f}(\sigma(\text{sum}(x * w))) = f(\sigma(5.5)) = f(0.99) = 1$					

Activation functions

We use activation functions in neurons to induce nonlinearity in the neural nets so that it can learn complex functions.

$$A = \frac{1}{1 + e^{-x}}$$

$$f(x) = tanh(x) = \frac{2}{1+e^{-2x}} - 1$$

Problem -

- Towards either end of the sigmoid/tanh function, the Y values tend to respond very less to changes in X.
- The gradient at that region is going to be small. It gives rise to a problem of "vanishing gradients"

$$f(x) = \max(0, x)$$

Multiple Output Units: One-vs-Rest

We want:

$$h_{\Theta}(\mathbf{x}) \approx \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \qquad h_{\Theta}(\mathbf{x}) \approx \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \qquad h_{\Theta}(\mathbf{x}) \approx \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \qquad h_{\Theta}(\mathbf{x}) \approx \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$
 when pedestrian when car when motorcycle when truck

Representing Boolean Functions

Simple example: AND

$$x_1, x_2 \in \{0, 1\}$$
$$y = x_1 \text{ AND } x_2$$

$$h_{\Theta}(\mathbf{x}) = g(-30 + 20x_1 + 20x_2)$$

x_{1}	x_2	$\mathrm{h}_{\Theta}(\mathbf{x})$
0	0	<i>g</i> (-30) ≈ 0
0	1	<i>g</i> (-10) ≈ 0
1	0	<i>g</i> (-10) ≈ 0
1	1	<i>g</i> (10) ≈ 1

Based on slide and example by Andrew Ng

Representing Boolean Functions

Α	OR	В
---	----	---

Inp	Input	
А	В	Y=A+B
0	0	0
0	1	1
1	0	1
1	1	1

(NOT x_1) AND (NOT x_2)

????

Representing Boolean Functions

INPUTS		ОИТРИТ
×	Y	Z
0	0	1
0	1	0
1	0	0
1	1	0

Neural Network Learning

What does the machine learn?

One question that people often have when getting started in ML is:

"What does the machine (i.e. the statistical model) actually learn?"

This will vary from model to model, but in simple terms the model learns a function f such that f(X) maps to y. Put differently, the model learns how to take X (i.e. features, or, more traditionally, independent variable(s)) in order to predict y (the target, response or more traditionally the dependent variable).

In the case of the simple linear regression ($y \sim b0 + b1 * X$ where X is one column/variable) the model "learns" (read: estimates) two parameters;

- b0: the bias (or more traditionally the intercept); and,
- b1: the slope

Learning parameters: Cost functions

Remember that in ML, the focus is on **learning from data**. **cost function**—it helps the learner to correct / change behaviour to minimize mistakes.

In ML, cost functions are used to estimate how badly models are performing. Put simply, a cost function is a measure of how wrong the model is in terms of its ability to estimate the relationship between X and y.

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

The theta values are the *parameters*.

$$\theta_0 = 1.5$$
$$\theta_1 = 0$$

This yields h(x) = 1.5 + 0x. 0x means no slope, and y will always be the constant 1.5. This looks like:

How about

$$\theta_0 = 1$$
$$\theta_1 = 0.5$$

x = [1, 1, 2, 3, 4, 3, 4, 6, 4]y = [2, 1, 0.5, 1, 3, 3, 2, 5, 4]

You want to match your hypothesis to your best fit line

x = [1, 1, 2, 3, 4, 3, 4, 6, 4]y = [2, 1, 0.5, 1, 3, 3, 2, 5, 4]

$$ext{MSE} = rac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2.$$

Mean Squared Error

$$x = [1, 1, 2, 3, 4, 3, 4, 6, 4]$$

 $y = [2, 1, 0.5, 1, 3, 3, 2, 5, 4]$

$$ext{MSE} = rac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2.$$

 $= \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

Backpropagation

Given the cost function how do you update parameters?

- 1. Calculate the partial derivative $rac{\partial}{\partial heta_i} J(heta)$ for all j
- Form the update rule for every parameter:

$$\theta_{j,iter+1} := \theta_{j,iter} - \alpha \frac{\partial}{\partial \theta_j} J(\theta) = \theta_{j,iter} - \alpha / m \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

$$\frac{1}{2} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Repeat {
$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$
 (for every $j = 0, \dots, n$)

Motivation: loss minimization

Optimization problem:

$$\begin{aligned} & \underset{\mathbf{V}, \mathbf{w}}{\min} \operatorname{TrainLoss}(\mathbf{V}, \mathbf{w}) \\ & \operatorname{TrainLoss}(\mathbf{V}, \mathbf{w}) = \frac{1}{|\mathcal{D}_{\mathsf{train}}|} \sum_{(x,y) \in \mathcal{D}_{\mathsf{train}}} \operatorname{Loss}(x, y, \mathbf{V}, \mathbf{w}) \\ & \operatorname{Loss}(x, y, \mathbf{V}, \mathbf{w}) = (y - f_{\mathbf{V}, \mathbf{w}}(x))^2 \\ & f_{\mathbf{V}, \mathbf{w}}(x) = \sum_{i=1}^k w_j \sigma(\mathbf{v}_j \cdot \phi(x)) \end{aligned}$$

Goal: compute gradient

$$\nabla_{\mathbf{V},\mathbf{w}}\mathsf{TrainLoss}(\mathbf{V},\mathbf{w})$$

Approach

Mathematically: just grind through the chain rule

Next: visualize the computation using a computation graph

Advantages:

- Avoid long equations
- Reveal structure of computations (modularity, efficiency, dependencies)

Functions as boxes

$$2\mathsf{in}_1 + \mathsf{in}_2 * \mathsf{in}_3 = \mathsf{out}_1$$

Partial derivatives (gradients): how much does the output change if an input changes?

Example:

$$2\mathsf{in}_1 + (\mathsf{in}_2 + \epsilon)\mathsf{in}_3 = \mathsf{out} + \mathsf{in}_3\epsilon$$
Source - Stanford CS221 Liang

Basic building blocks

Composing functions

Chain rule:

$$\frac{\partial \mathsf{out}}{\partial \mathsf{in}} = \frac{\partial \mathsf{out}}{\partial \mathsf{mid}} \frac{\partial \mathsf{mid}}{\partial \mathsf{in}}$$

 $Loss(x, y, \mathbf{w}) = \max\{1 - \mathbf{w} \cdot \phi(x)y, 0\}$

 $\mathsf{Loss}(x, y, \mathbf{w}) = \max\{1 - \mathbf{w} \cdot \phi(x)y, 0\}$

 $Loss(x, y, \mathbf{w}) = \max\{1 - \mathbf{w} \cdot \phi(x)y, 0\}$

Gradient: multiply the edges

$$-\mathbf{1}[\mathsf{margin} < 1]\phi(x)y$$

Neural Network

2 layer Neural Network

Other Types of Optimizers

Apart from gradient descent there are other optimizers widely used-

- Adagrad Adagrad adapts the learning rate specifically to individual features: that means that some
 of the weights in your dataset will have different learning rates than others.
- RMSProp RMSProp is Root Mean Square Propagation. It was devised by Geoffrey Hinton.
 RMSProp tries to resolve Adagrad's radically diminishing learning rates by using a moving average of the squared gradient.
- Adam Adam stands for adaptive moment estimation, and is another way of using past gradients to calculate current gradients. A combination of RMSProp and Adagrad. Widely used in Computer Vision tasks.

Training a Neural Network

Pick a network architecture

```
# of input units = # of features
# of output units = # of classes
```

- 2. Randomly initialize weights
- 3. Implement forward propagation to get h(x) for any x
- 4. Compute cost function
- 5. Use gradient descent/optimizer with backprop to fit the network

Resources-

https://www.youtube.com/watch?v=aircAruvnKk

https://www.youtube.com/watch?v=Ilg3gGewQ5U

https://towardsdatascience.com/activation-functions-and-its-types-which-is-better-a9a5310cc8f

http://neuralnetworksanddeeplearning.com/

https://playground.tensorflow.org

Stanford CS229 course