**Module 1: Statistical** 

Learning

Lecture 2 Jan 11th, 2023





- Inputs X are voting records for each Senator
- Output: relationships between Senators
- When training the model, no output is available.
- Unsupervised learning



# **Unsupervised Learning**

• We only have X in the data and want to output something not in the data

|   |        | Senate X | Senate Y | Senate XY | Senate Z |  |  |
|---|--------|----------|----------|-----------|----------|--|--|
| 7 | Bill 1 | 06       | 1        | 1         | 1        |  |  |
|   | Bill 2 | 04       | 0        | 1         | 1        |  |  |
|   | Bill 3 | 1 '      | 1        | 0         | 1        |  |  |
|   | Bill 4 | 1        | 1        | 0         | 1        |  |  |
|   | Bill 5 | 0        | 0        | 1         | 1        |  |  |
|   | Bill 6 | 0        | 0        | 0         | 1        |  |  |

## Announcement



- Go to our **Team** Channel.
  - +1 point on the first HW if you post a gif in the thread!



## Recap: Supervised Learning

• Inputs X and output Y both in the data.



#### An example data set: Advertising

|    | -  | $\mathcal{J}$ |       |           | I V   |
|----|----|---------------|-------|-----------|-------|
| 1  |    | TV            | Radio | Newspaper | Sales |
| 2  | 1  | 230.1         | 37.8  | 69.2      | 22.1  |
| 3  | 2  | 44.5          | 39.3  | 45.1      | 10.4  |
| 4  | 3  | 17.2          | 45.9  | 69.3      | 9.3   |
| 5  | 4  | 151.5         | 41.3  | 58.5      | 18.5  |
| 6  | 5  | 180.8         | 10.8  | 58.4      | 12.9  |
| 7  | 6  | 8.7           | 48.9  | 75        | 7.2   |
| 8  | 7  | 57.5          | 32.8  | 23.5      | 11.8  |
| 9  | 8  | 120.2         | 19.6  | 11.6      | 13.2  |
| 10 | 9  | 8.6           | 2.1   | 1         | 4.8   |
| 11 | 10 | 199.8         | 2.6   | 21.2      | 10.6  |
| 12 | 11 | 66.1          | 5.8   | 24.2      | 8.6   |

- Sales of a product in 200 markets, along with spent on three type of ad.
- · Goal:?

TV. Ral- Wen



Predicting Failure time for a machine

BEEL















## Sale-Advertising

- Sales of a product in 200 different markets
- Expense on TV, radio, and newspaper in these markets



## Notation



- We wish to predict sale. We refer it to be the response Y
- TV is a feature (input) which we can control. We denote i(X1) Similarly, Radio as X2 and so on. We can also to the input vector collectively as

$$X = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \\ \vdots \\ X_N \end{pmatrix}$$



Now we can write our model as

$$Y = f(X)$$

$$Y = f(X) + \varepsilon$$

$$Y = f(X)$$

## Errors in Machine Learning: World is





ENNO,

- World is too complex to model precisely
- Measurement error may not be avoidable
- Many features are not captured
- The error is where the statistics kicks in. Confidence interval, etc....

|          | d  |       | L     | 6     |   |
|----------|----|-------|-------|-------|---|
|          | Y  | $X_1$ | $X_2$ | $X_3$ |   |
| Market 1 | 10 | 101   | 20    | 35    |   |
| Market 2 | 20 | 66    | 41    | 85    |   |
| Market 3 | 11 | 101   | 43    | 78    | Г |
| Market 4 | 25 | 25    | 10    | 61    |   |
| Market 5 | 5  | 310   | 51    | 11    |   |

Dataset:

rows are samples



# Supervised Machine Learning Algorithm

Input:

Training data-set with features (X) and targets (Y)

• Output:

• Prediction function f

of f fre funct finatal true funct known



## Prediction vs Inference

### Prediction

# Prediction: Make predictions about future: Inputs X are readily available, but output Y is hard to obtain

Build a model:

$$\hat{Y} = \hat{f}(X)$$

Example: If we spend \$150 on TV advertising, what will we make in sales?



- Want to get a good guess for f, which is unknown blue
- Model is  $\hat{f}$  is green dashed lines

## Is there an Ideal f(X)?





• Given X = 4, what is 'the best' prediction for Y? or what can an Oracle say?



## Is there an Ideal f(X)?





- Given X = 4, what is 'the best' prediction for Y? or what can an Oxacle say?
- A good value is

$$f(4) = E(Y|X = 4) < \Xi$$

$$E(Y|X=2) = E(Y|X=2)$$
Is the expected value of  $Y$  given (condition on)  $Y = A$ 

where E(Y|X=4) is the expected value of Y given (condition on) X=4.

• This f(x) = E(Y|X = x) is called the regression function or Oracle function.

## The regression function f(x)



The regression function is also defined for vector X as

$$f(x) = f(x_1, x_2, x_3) = E(Y|X_1 = x_1, X_2 = x_2, X_3 = x_3)$$

• f(x) = E(Y|X = x) is the best predictor of Y given x in what sense? It is the best for the mean-squared prediction error over all function g(.) at all points X = x. gcx)= ECY(X)

$$f(x) = \operatorname*{argmin}_{g} \mathrm{E}\left[\left(Y - g(X)\right)^{2} | X = x\right]$$

Q: Let's prove it.

Given two random variables X and Y with joint probability density functior  $f_{X,Y}(x,y)$ 

• 
$$E(Y) = \int_{\Omega_Y} y f_Y(y) dy$$

• 
$$E(Y|X=x)=?$$

$$E(Y|X=x) = \int_{\Omega_Y} \underline{y} f_{Y|X}(y,x) dy$$

$$= \left[ -\left( \underbrace{\mathcal{G}(X)} \right) \right] \times \underbrace{(X)}$$

• 
$$E(f(Y) - g(X) \mid X = \underline{x}) = ?$$

$$E(f(Y) - g(X) \mid X = x) = ? = E(f(Y) \mid X = x) - E(g(X) \mid X = x)$$

$$= E(f(Y) \mid X = x) - g(X) \mid X = x$$

# The regression function f(x)g(x) s. E min [ =>mr = ((Y-9Cx))2 | X=x) $\Rightarrow$ min $\left(y + 9ca\right)^2 f(y, x) c$ $\Rightarrow \int \int (y-g)^2 \int_{Y(x)} (y,x) dy$ (2.cy-g).(1) fxix(y, x) dy

 $\int y f_{Y|X}(y,x) dy - fg f_{Y|X}(y,x) dy = 0$ 

## The regression function f(x)

It is the best predictor of Y with regards to mean-squared prediction error over all function g at all points X = x.

$$f(x) = E(Y|X = x) = \underset{f}{\operatorname{argmin}} \operatorname{E}\left[\left(Y - g(X)\right)^{2} | X = x\right]$$

- $f(x) = E(Y|X=x) = \underset{f}{\operatorname{argmin}} \operatorname{E}\left[\left(Y-g(X)\right)^2|X=x\right]$   $\epsilon = Y-f(x)$  is the irreducible error. Even if we knew f(x), we will still make errors in prediction. What cause this?
- For any estimate  $(\widehat{f}(x))$  of f(x), we have





### Inference

- Inference: Understand the relationship between X and Y within f what kind of ads work? Why?
- Which predictors are associated with the response?
- What is the relationship between the response and each predictor?
- Can the relationship between Y and each predictor be adequately summarized using

a linear equation? Is it more complicated?

# Inference is important



## Plan for the lab

- Find a group of 4 or so.
- Download the jupyter notebook and the csv file from github.
- Get started!