Losing bank customers

• Every bank wants to hold their customers for sustaining their business and thus this Anonymous Multinational bank. You have customer data of account holders at Anonymous Multinational Bank with the aim of understanding • exploring the correlation between variables such as credit score, age, tenure, balance, and geography with customer churn. Assess the impact of demographic factors like gender and the presence of credit cards on churn rates. • Additionally, analyze customer satisfaction scores and complaint resolutions to identify areas for service improvement. Utilize your analytics skills to find factors contributing to potential churn based. This project provides an opportunity to enhance customer retention strategies by uncovering patterns and insights within the dataset.

Losing bank customers

Data description

RowNumber—corresponds to the record (row) number and has no effect on the output.

CustomerId—contains random values and has no effect on customer leaving the bank.

Surname—the surname of a customer has no impact on their decision to leave the bank.

CreditScore—can have an effect on customer churn, since a customer with a higher credit score is less likely to leave the bank.

Geography—a customer's location can affect their decision to leave the bank.

Gender—it's interesting to explore whether gender plays a role in a customer leaving the bank.

Age—this is certainly relevant, since older customers are less likely to leave their bank than younger ones.

Tenure—refers to the number of years that the customer has been a client of the bank. Normally, older clients are more loyal and less likely to leave a bank.

Balance—also a very good indicator of customer churn, as people with a higher balance in their accounts are less likely to leave the bank compared to those with lower balances.

NumOfProducts—refers to the number of products that a customer has purchased through the bank.

HasCrCard—denotes whether or not a customer has a credit card. This column is also relevant, since people with a credit card are less likely to leave the bank.

IsActiveMember—active customers are less likely to leave the bank.

EstimatedSalary—as with balance, people with lower salaries are more likely to leave the bank compared to those with higher salaries.

Exited—whether or not the customer left the bank.

Complain—customer has complaint or not.

Satisfaction Score—Score provided by the customer for their complaint resolution.

Card Type—type of card hold by the customer.

Points Earned—the points earned by the customer for using credit card.

```
1 !gdown 1q1Mh3Mm4kv1LitxWcdY6--gNHVmuAfPP
    Downloading...
    From: https://drive.google.com/uc?id=1q1Mh3Mm4kv1LitxWcdY6--gNHVmuAfPP
    To: /content/Bank-Records.csv
    100% 837k/837k [00:00<00:00, 106MB/s]

1 import pandas as pd
2 import numpy as np
3 import matplotlib.pyplot as plt
4 import seaborn as sns</pre>
```

1 data = pd.read_csv('Bank-Records.csv')

2 data

3	Age	Gender	Geography	CreditScore	Surname	CustomerId	RowNumber	
	42	Female	France	619	Hargrave	15634602	1	0
	41	Female	Spain	608	Hill	15647311	2	1
	42	Female	France	502	Onio	15619304	3	2
	39	Female	France	699	Boni	15701354	4	3
	43	Female	Spain	850	Mitchell	15737888	5	4
	39	Male	France	771	Obijiaku	15606229	9996	9995
	35	Male	France	516	Johnstone	15569892	9997	9996
	36	Female	France	709	Liu	15584532	9998	9997
	42	Male	Germany	772	Sabbatini	15682355	9999	9998
	28	Female	France	792	Walker	15628319	10000	9999

10000 rows × 18 columns

1 data.shape
 (10000, 18)

```
1 data.info()
   <class 'pandas.core.frame.DataFrame'>
   RangeIndex: 10000 entries, 0 to 9999
   Data columns (total 18 columns):
    #
        Column
                            Non-Null Count
                                            Dtype
    0
        RowNumber
                            10000 non-null
                                            int64
    1
        CustomerId
                            10000 non-null
                                            int64
    2
        Surname
                            10000 non-null
                                            object
    3
        CreditScore
                            10000 non-null
                                            int64
       Geography
                            10000 non-null
                                            object
    5
        Gender
                            10000 non-null
                                            object
    6
                            10000 non-null
                                            int64
       Age
    7
       Tenure
                            10000 non-null
                                            int64
    8
        Balance
                            10000 non-null
                                            float64
       NumOfProducts
                           10000 non-null
                                            int64
    10 HasCrCard
                            10000 non-null
                                            int64
    11 IsActiveMember12 EstimatedSalary
                            10000 non-null
                                            int64
                            10000 non-null
                                            float64
    13 Exited
                            10000 non-null
                                            int64
    14 Complain
                            10000 non-null
                                            int64
    15 Satisfaction Score 10000 non-null
                                            int64
    16 Card Type
                            10000 non-null
                                            object
    17 Point Earned
                            10000 non-null
                                            int64
   dtypes: float64(2), int64(12), object(4)
   memory usage: 1.4+ MB
```

1 data['CustomerId'].nunique()
 10000

Performing Basic Exploring data analysis

1 data[['CustomerId','Exited']]

	CustomerId	Exited
0	15634602	1
1	15647311	0
2	15619304	1
3	15701354	0
4	15737888	0
9995	15606229	0
9996	15569892	0
9997	15584532	1
9998	15682355	1
9999	15628319	0

10000 rows × 2 columns

```
1 plt.figure(figsize=(4,4))
2 sns.countplot(x = data['Exited'])
3 plt.title("people churned V/S not churned")
4 plt.show()
```


from above observation it is clear that 2038 people exited from bank and 7962 are still account holder at the bank out of 10000

```
1 ax1 = sns.countplot(x=data['Complain'],hue=data['Exited'])
2 for container in ax1.containers:
3     ax1.bar_label(container)
4 plt.title('Customer with complaint or Exited')
5 plt.show()
```


out of 2038 customer churned there were 2034 customer who complained

```
1 ax2 = sns.countplot(x=data['Satisfaction Score'],hue=data['Exited'])
2 for container in ax2.containers:
3     ax2.bar_label(container)
4 plt.title('People with Satisfaction score or Exited')
5
6 plt.show()
```


1 pd.crosstab(columns = data['HasCrCard'],index = data['Exited'])
2

HasCrCard	0	1
Exited		
0	2332	5630
1	613	1425

from above observation it is cleared that people who have no card and exited were 613 and people with card and exited were 1425 which shows people having card exited more than who have no cards

```
1 ax3 = sns.countplot(x = data['HasCrCard'],hue=data['Exited'])
2 for container in ax3.containers:
3     ax3.bar_label(container)
4 plt.title("Credit card Vs churn")
5 plt.show()
```


1 pd.crosstab(columns = data['Card Type'],index = data['Exited'])
2

Card Type DIAMOND GOLD PLATINUM SILVER

Exited				
0	1961	2020	1987	1994
1	546	482	508	502

from above observation we can see almost all different type of Card Type holders have Equally churned out

```
1 ax4 = sns.countplot(x=data['Card Type'],hue=data['Exited'])
2 for container in ax4.containers:
3     ax4.bar_label(container)
4 plt.title('Card Type vs Exited')
5 plt.show()
```



```
1 data[data['Exited']== 1]['CreditScore'].max()
    850
```

1 bins = [300,400,500,600,700,800,900]

1 credit_bin = pd.cut(data[data['Exited']== 1]['CreditScore'],bins)

1 pd.crosstab(columns = credit_bin ,index = data['Exited'])

CreditScore	(300, 400]	(400, 500]	(500, 600]	(600, 700]	(700, 800]	(800, 900]
Exited						
1	19	133	513	753	493	127

people with credit score in between 500 - 600 and 600-700 left the banking service the most

```
1 sns.barplot(pd.crosstab(columns = credit_bin ,index = data['Exited']))
2 plt.title('People churned v/s Credit score')
```

Text(0.5, 1.0, 'People churned v/s Credit score')

People churned v/s Credit score

1 pd.crosstab(columns = data['Gender'],index = data['Exited'])

Gender	Female	Male

Exited		
0	3404	4558
1	1139	899

1 pd.crosstab(columns = data['Geography'],index = data['Exited'])

Geography France Germany Spain Exited 1 4203 1695 2064 1 811 814 413

1 pd.crosstab(columns = data['Geography'],index = data['Gender'])

Geography France Germany Spain Gender 2261 1193 1089 Male 2753 1316 1388

1 pd.crosstab(columns = [data['Geography'],data['Gender']],index = data['Exit

Geography	France		Germany	•	Spain	
Gender	Female	Male	Female	Male	Female	Male
Exited						
0	1801	2402	745	950	858	1206
1	460	351	448	366	231	182

1 sns.countplot(x= data[data['Exited']==1]['Geography'],hue=data[data['Exited
2 plt.title("Gender churned v/s Geography")

Text(0.5, 1.0, 'Gender churned v/s Geography')

1 pd.crosstab(columns = [data['HasCrCard'],data['Gender']],index = data['Exit

HasCrCard 0 1

Gender	Female	Male	Female	Male
Exited				
0	1007	1325	2397	3233
1	344	269	795	630

1 sns.countplot(x = data[data['Exited'] == 1]['HasCrCard'] ,hue = data[data['
2 plt.title('Churned customer Having credit Card vs Gender')

Text(0.5, 1.0, 'Churned customer Having credit Card vs Gender')

Churned customer Having credit Card vs Gender

1 sns.histplot(data = data, x= data['Balance'],hue =data['Exited'],kde =True)
2 plt.title('Customer churned v/s Balance')

Text(0.5, 1.0, 'Customer churned v/s Balance')


```
1 sns.boxplot(data=data,x=data['Exited'],y = data['Balance'])
2 plt.title("Customer Churned V/S Exited")
```

Text(0.5, 1.0, 'Customer Churned V/S Exited')

1 pd.crosstab(columns = data['Tenure'],index = data['Exited']) Tenure **Exited** 318 803 847 796 786 803 771 95 232 201 213 203 209 196 177 197 214 101

1 sns.displot(x = data['Tenure'],hue = data['Exited'],kde =True)
2 plt.title('Tenure V/s Exited')

Text(0.5, 1.0, 'Tenure V/s Exited')

1 data[data['Exited']==1]['Tenure'].value_counts().reset_index()

	index	Tenure
0	1	232
1	9	214
2	3	213
3	5	209
4	4	203
5	2	201
6	8	197
7	6	196
8	7	177
9	10	101
10	0	95

1 sns.countplot(x =data[data['Exited']==1]['Tenure'])

<Axes: xlabel='Tenure', ylabel='count'>

Lets check Estimated salary v/s balance of people w.r.t to Geography for different genders who left the bank

Male

Female

lets create functions for our Hypothesis test inorder to check correlations

Credit score vs Customer churn

we will use ANOVA for our hypothesis testing

```
1 d1 = data [['CreditScore','Exited']]
2 d1
```

	CreditScore	Exited
0	619	1
1	608	0
2	502	1
3	699	0
4	850	0
9995	771	0
9996	516	0
9997	709	1
9998	772	1
9999	792	0

10000 rows × 2 columns

1 from scipy.stats import f_oneway,kruskal,ttest_ind,chi2_contingency

Ho: Customer churn is independent of Credit score

Ha: customer churn is dependent on Credit score

```
1 t_stats, p_value = ttest_ind(data[data['Exited'] == 0]['CreditScore'],data[
2 print("t_stats :",t_stats)
3 print("p_value",p_value)
4 if p_value < 0.05:
5    print("Null hypothesis is rejected")
6 else:
7    print("Null hypothesis is accepted")
8

    t_stats : 2.6778368664704235
    p_value 0.0074220372427342435
    Null hypothesis is rejected</pre>
```

Age vs Customer churn

we will use ttest_ind

1 data[['Age','Exited']]

	Age	Exited
0	42	1
1	41	0
2	42	1
3	39	0
4	43	0
9995	39	0
9996	35	0
9997	36	1
9998	42	1
9999	28	0

10000 rows x 2 columns

H0: Customer churn is independent of Age

Ha: Customer churn is dependent of Age

```
1 t_stats, p_value = ttest_ind(data[data['Exited'] == 0]['Age'],data[data['Ex
2 print("t_stats :",t_stats)
3 print("p_value",p_value)
4 if p_value < 0.05:
5  print("Null hypothesis is rejected")
6 else:
7  print("Null hypothesis is accepted")
  t_stats : -29.76379695489027
  p_value 1.3467162476197306e-186
  Null hypothesis is rejected</pre>
```


Tenure V/s Customer churn

1 data[['Tenure','Exited']]

	Tenure	Exited
0	2	1
1	1	0
2	8	1
3	1	0
4	2	0
9995	5	0
9996	10	0
9997	7	1
9998	3	1
9999	4	0

10000 rows × 2 columns

H0: Customer churn is independent of tenure

Ha: Customer churn is dependent of tenure

```
1 t_stats, p_value = ttest_ind(data[data['Exited'] == 0]['Tenure'],data[data[
2 print("t_stats :",t_stats)
3 print("p_value",p_value)
4 if p_value < 0.05:
5  print("Null hypothesis is rejected")
6 else:
7  print("Null hypothesis is accepted")
  t_stats : 1.365570678788837
  p_value 0.1721044754880606
  Null hypothesis is accepted</pre>
```

Balance vs Customer Churn

```
1 print(" max Balance of person who churned ", data[data['Exited'] == 1]['Bala 2 print(" min Balance of person who churned ", data[data['Exited'] == 1]['Bala 3 print(" max Balance of person who didn't churned ", data[data['Exited'] == 4 print(" min Balance of person who didn't churned ",data[data['Exited'] == 5
max Balance of person who churned 250898.09
min Balance of person who churned 0.0
max Balance of person who didn't churned 221532.8
```

```
1 sns.boxplot(y = data['Balance'], x= data['Exited'])
```

min Balance of person who didn't churned 0.0

<Axes: xlabel='Exited', ylabel='Balance'>

from graphical observation it is Difficult to conclude about correlation of customer churn and their balance in account

Ho: Customer Churn is independent of Balance

Ha: Customer Churn is dependent of Balance

```
1 t_stats, p_value = ttest_ind(data[data['Exited'] == 0]['Balance'],data[data
2 print("t_stats :",t_stats)
3 print("p_value",p_value)
4 if p_value < 0.05:
5    print("Null hypothesis is rejected")
6 else:
7    print("Null hypothesis is accepted")
    t_stats : -11.940747722508185
    p_value 1.2092076077156017e-32
    Null hypothesis is rejected</pre>
```

Geogrpahy v/s customer churn

```
1 GC = pd.crosstab(columns = data['Geography'],index = data['Exited'])
2 GC
```

Geography	France	Germany	y Spain		
Exited					
0	4203	1695	2064		
1	811	814	413		

1 sns.countplot(x=data['Geography'],hue=data['Exited'])

<Axes: xlabel='Geography', ylabel='count'>

Since this is a case of categorical - categorical we would apply chi2_contingency or Chi_square test of independence

H0: Geography and Customer churn are independent

Ha: Geography and Customer churn are dependent

```
1
 2 t_stats, p_value, dof, array = chi2_contingency (GC)
 3 print("Result:",chi2_contingency (GC))
 4 print("t_stats :",t_stats)
 5 print("p_value",p_value)
 6 if p_value < 0.05:
    print("Null hypothesis is rejected")
    print("Geography and Customer churn are dependent")
10 else:
    print("Null hypothesis is accepted")
    print("Geography and Customer churn are Independent")
    Result: Chi2ContingencyResult(statistic=300.6264011211942, pvalue=5.245736
           [1021.8532, 511.3342, 504.8126]]))
    t_stats : 300.6264011211942
    p_value 5.245736109572763e-66
    Null hypothesis is rejected
    Geography and Customer churn are dependent
```

Impact assessement of different features on Customer churn

Gender and Customer Churn

```
1 Gec = pd.crosstab(columns = data['Gender'],index = data['Exited'])
2 Gec
```

Gender	Female	Male
Exited		
0	3404	4558
1	1139	899

H0: Gender and Customer churn are independent

Ha: Gender and Customer churn are dependent

```
1
 2
 3 t_stats, p_value, dof, array = chi2_contingency (Gec)
 4 print("Result:",chi2_contingency (Gec))
 5 print("t_stats :",t_stats)
 6 print("p_value",p_value)
 7 if p_value < 0.05:
    print("Null hypothesis is rejected")
    print("Gender and Customer churn are dependent")
 9
10
11 else:
12
    print("Null hypothesis is accepted")
13
    print("Gender and Customer churn are Independent")
    Result: Chi2ContingencyResult(statistic=112.39655374778587, pvalue=2.92536
            [ 925.8634, 1112.1366]]))
    t_stats : 112.39655374778587
    p_value 2.9253677618642e-26
    Null hypothesis is rejected
    Gender and Customer churn are dependent
```

Impact of Credit Card on Churn rate

```
1 Cc = pd.crosstab(columns = data['Card Type'],index = data['Exited'])
2 Cc
```

Card Type DIAMOND GOLD PLATINUM SILVER

Exited				
0	1961	2020	1987	1994
1	546	482	508	502

H0: Credit Card and Customer churn are independent

Ha: Credit Card and Customer churn are dependent

```
1
 2
 3 t_stats, p_value, dof, array = chi2_contingency (Gec)
 4 print("Result:",chi2_contingency (Gec))
 5 print("t_stats :",t_stats)
 6 print("p_value",p_value)
 7 if p_value < 0.05:
    print("Null hypothesis is rejected")
9
    print("Credit Card and Customer churn are dependent")
10
11 else:
    print("Null hypothesis is accepted")
12
    print("Credit Card and Customer churn are Independent")
13
    Result: Chi2ContingencyResult(statistic=112.39655374778587, pvalue=2.92536
           [ 925.8634, 1112.1366]]))
    t stats: 112.39655374778587
    p_value 2.9253677618642e-26
    Null hypothesis is rejected
    Credit Card and Customer churn are dependent
```

Analayze Area for service improvement

```
1 pd.crosstab(columns = [data['Complain'],data['Satisfaction Score']],index =
```

Complain	0					1					
Satisfaction Score	1	2	3	4	5	1	2	3	4	5	
Exited											
0	1544	1574	1636	1594	1604	1	1	5	0	3	
1	1	2	0	1	0	386	437	401	413	397	

1 sns.countplot(x=data['Satisfaction Score'],hue= data['Exited'])

<Axes: xlabel='Satisfaction Score', ylabel='count'>

people who raised the complaint and churned = 1 and their satisfaction score were 1,23,4,5

Strategies for customer retenion strategies

1 data_banking_behaviour = data.loc[data['Exited'] ==1,['CustomerId','Tenure'
2 data_banking_behaviour

	CustomerId	Tenure	NumOfProducts	EstimatedSalary	Balance
0	15634602	2	1	101348.88	0.00
2	15619304	8	3	113931.57	159660.80
5	15574012	8	2	149756.71	113755.78
7	15656148	4	4	119346.88	115046.74
16	15737452	1	1	5097.67	132602.88
9981	15672754	3	1	53445.17	152039.70
9982	15768163	7	1	115146.40	137145.12
9991	15769959	4	1	69384.71	88381.21
9997	15584532	7	1	42085.58	0.00
9998	15682355	3	2	92888.52	75075.31

2038 rows × 5 columns

1 data_banking_behaviour['Spent'] = data_banking_behaviour['EstimatedSalary']
2 data_banking_behaviour

	CustomerId	Tenure	NumOfProducts	EstimatedSalary	Balance	Spen
0	15634602	2	1	101348.88	0.00	202697.7
2	15619304	8	3	113931.57	159660.80	751791.7
5	15574012	8	2	149756.71	113755.78	1084297.9
7	15656148	4	4	119346.88	115046.74	362340.7
16	15737452	1	1	5097.67	132602.88	-127505.2
9981	15672754	3	1	53445.17	152039.70	8295.8
9982	15768163	7	1	115146.40	137145.12	668879.6
9991	15769959	4	1	69384.71	88381.21	189157.6
9997	15584532	7	1	42085.58	0.00	294599.0
9998	15682355	3	2	92888.52	75075.31	203590.2

2038 rows × 6 columns

1 data_banking_behaviour[data_banking_behaviour['Balance'] < 0]</pre>

CustomerId Tenure NumOfProducts EstimatedSalary Balance Spent

we don't have any negative balance account it shows we have no customer who have dfaulted while exiting the bank after using its service

1 data_banking_behaviour[data_banking_behaviour['Spent'] < 0]</pre>

	CustomerId	Tenure	NumOfProducts	EstimatedSalary	Balance	Spen
16	15737452	1	1	5097.67	132602.88	-127505.2
35	15794171	0	1	27822.99	134264.04	-134264.04
54	15569590	1	1	40014.76	98495.72	-58480.90
70	15703793	2	4	28373.86	133745.44	-76997.7;
127	15782688	0	1	46824.08	148507.24	-148507.24
9863	15726179	5	2	3497.43	131433.33	-113946.1
9882	15785490	3	1	16281.68	105229.72	-56384.6
9920	15673020	3	1	738.88	204510.94	-202294.30
9924	15578865	5	1	6985.34	107959.39	-73032.69
9947	15732202	1	2	73124.53	83503.11	-10378.5

350 rows \times 6 columns

The above analysis shows the out of total people who left 350 are of people whose balance were more than their estimated salary according to Their bank tenure usage which speaks that apart from their estimated salary they have had more balance not from salary but from other assets

bank is at loss for loosing such customers

Lets check the people whose balance were not zero or
 less but have complaint and churned out of the bank
 with different credit card

1 sns.countplot(x = data[data['Exited'] == 1]['Card Type'],hue = data['Gender
2 plt.title("churned customer Credit card type V/S Gender")

Text(0.5, 1.0, 'churned customer Credit card type V/S Gender')

churned customer Credit card type V/S Gender

1 data.loc[data['Exited'] == 1,['Balance','Complain','Card Type','Satisfaction

	Balance	Complain	Card Type	Satisfaction Score
0	0.00	1	DIAMOND	2
2	159660.80	1	DIAMOND	3
5	113755.78	1	DIAMOND	5
7	115046.74	1	DIAMOND	2
16	132602.88	0	SILVER	2
9981	152039.70	1	GOLD	3
9982	137145.12	1	GOLD	4
9991	88381.21	1	GOLD	3
9997	0.00	1	SILVER	3
9998	75075.31	1	GOLD	2

2038 rows × 4 columns

1 pd.crosstab(index = data[data['Exited'] == 1]['Card Type'],columns = data[d

Complain	Card Type	0	1	All
0	DIAMOND	1	545	546
1	GOLD	1	481	482
2	PLATINUM	0	508	508
3	SILVER	2	500	502
4	All	4	2034	2038

satisfaction score for Customer who churned out and have complained to banking services were visualize as below shown

1 Start coding or generate with AI.

1 sns.countplot(x = data[(data['Exited'] ==1) & (data['Complain']==1)]['Card
2 plt.title('Churned Customer Satisfaction Score V/S Card Type')

Text(0.5, 1.0, 'Churned Customer Satisfaction Score V/S Card Type')

Checking Credit card Age wise

<Figure size 500x500 with 0 Axes>

the people who churned were more active member in age group of 30-55.

these are set of people who are customer of the bank now we will analyze customer who were churned were of

```
2 sns.displot(data=data, x="Gender", hue="HasCrCard")
3 plt.figure(figsize=(5, 5)) # Create a new figure
4 sns.displot(data=data[data["Exited"] == 1], x="Gender", hue="HasCrCard")
5 plt.figure(figsize=(5, 5))
6 sns.displot(data=data[data["Exited"] == 1], x="Gender", hue="IsActiveMember")
```

<seaborn.axisgrid.FacetGrid at 0x7e2800235540>
<Figure size 500x500 with 0 Axes>

<Figure size 500x500 with 0 Axes>

Descriptive analysis

Churn rate

for different type of tenures

1 sns.countplot(x=data['Tenure'],hue= data['Exited'])

<Axes: xlabel='Tenure', ylabel='count'>

1 pd.crosstab(columns = data['Tenure'],index= data['Exited'],margins = True)

Tenure	0	1	2	3	4	5	6	7	8	9	10	All
Exited												
0	318	803	847	796	786	803	771	851	828	770	389	7962
1	95	232	201	213	203	209	196	177	197	214	101	2038
All	413	1035	1048	1009	989	1012	967	1028	1025	984	490	10000

1 churn_data = pd.crosstab(columns = data['Tenure'],index= data['Exited'],nor

2 churn_data

Tenure	0	1	2	3	4	5	6	7
Exited								
0	0.769976	0.775845	0.808206	0.7889	0.794742	0.793478	0.797311	0.827821
1	0.230024	0.224155	0.191794	0.2111	0.205258	0.206522	0.202689	0.172179

1 Start coding or generate with AI.

1 churn_data[1:2].reset_index()

Tenure	Exited	0	1	2	3	4	5	6
0	1	0.230024	0.224155	0.191794	0.2111	0.205258	0.206522	0.202689

from above table the 2nd rows show the churning rate for every different tenure

0.20 0.15 0.10 0.05 0.00 0 1 2 3 4 7 5 6 8 9 10 Tenure

The Customer churning are dependent on Variables like Credit Score ,Age and Geography Tenure has no relation with customer who churned

Recommendation:

Focus on Customer with Credit score between 600-700 as they are more likely to churn. Keep a guard rail check on the 30-40 year of age people as they are loyal customers the Age from 40 – 50 were the mostly who churned so incentivize them too so they not churned in future Gender has an impact on churning so and incentives for gender can benefits the customer Focus on credit card service and bring innovation as people who left were most of who have credit card with them

Observation & Recommendation:

The Customer churning are dependent on Variables like Credit Score, Age and Geography, Balance Tenure has no relation with customer who churned

Recommendation

Focus on Customer with Credit score between 600-700 as they are more likely to churn.

Keep a guard rail check on the 30-40 year of age people as they are loyal customers ,the Age from 40-50 were the mostly who churned so incentivize them too so they not churned in future

Gender has an impact on churning so an incentives for both gender can benefits the customer

Focus on credit card service and bring innovation as people who left were most of who have credit card with them

Geography especially France as most customer centric and Balance should be considered for predicting the next possible churn

Conclusion

Customer leaving the bank makes a significant impact on firm reputation and leads to financial loss and in order to deal with this crisis a comprehensive data analysis needed for making an informed decision by decision makers