# Bayesian Statistics

Class Assignment 1

 $Simon\ Roth$  nomis.roth@gmx.net 28.11.2018

#### **Packages**

Note: This is powerful R-markdown document which combines the entire code, outputs and text. If you don't have pacman installed, just do it once and it will manage all the rest of the dependecies.

```
pacman::p_load(rjags, dplyr, purrr, tidyr, ggplot2, broom, rjags, texreg, ggthemes, janitor, knitr)
ggplot2::theme_set(theme_bw())
set.seed(2018)
```

#### Data

A reduced dataset of Student Panel Survey during the Lecture in Introduction to Political Methodology Winter term 2016/2017 at the University of Konstanz

- poleff Political Efficacy (Likert Score based on 7 items) A larger value = higher level of efficacy
- friend Number of alteri in friendship network
- poldisc Number of alteri in political discussion network
- lr.self Ideological orientation (left right self-placement) 1: Left <- -> 11: Right
- lr.self.2 Ideological orientation (left right self-placement, second measurement) 1: Left <- -> 11: Right
- univ.election Vote intention at the next university election. 1: Yes; 0: other (No and DK)
- polint interest at university politics 1: not interested at all <- -> 5 strongly interested
- tuition opinion on the general tuition fee for German universities 1: support; 2: reject; 3: indifferent
- acceptable acceptable level of the tuition fee (in Euro per Semester) (Only those who support the tuition fee or indifferent)
- protest1 protest6 willingness to participate a protest action against the general tuition fee 1: yes; 0: no
  - protest1 demonstration in Konstanz
  - protest2 demonstration in Stuttgart
  - protest3 giving signature at petitions
  - protest4 strike
  - protest5 occupation of university buildings
  - protest6 legal dispute at courts

```
dat <- get(load("../data/Bayes_Student_Survey.RData")) %>%
  mutate(friend_log = log(friend + 1))
# glimpse(dat)
```

#### 1 Frequentist Estimation

Estimate the parameters of a bivariate regression via OLS. You can choose a dependent variable and one independent variable from the dataset for yourself.

Political interest might influence the general openess to communicate and make friends.

```
dat %>%
   ggplot(aes(polint, friend_log)) +
   geom_jitter() +
   geom_smooth(method = "lm")
```



```
lm(friend_log ~ polint, data = dat) %>%
texreg::texreg(float.pos = "ht!")
```

|                                                | Model 1     |  |
|------------------------------------------------|-------------|--|
| (Intercept)                                    | 0.60*       |  |
|                                                | (0.24)      |  |
| polint                                         | $0.22^{**}$ |  |
|                                                | (0.07)      |  |
| $\mathbb{R}^2$                                 | 0.05        |  |
| $Adj. R^2$                                     | 0.05        |  |
| Num. obs.                                      | 165         |  |
| RMSE                                           | 0.73        |  |
| *** $p < 0.001$ , ** $p < 0.01$ , * $p < 0.05$ |             |  |

Table 1: Statistical models

## 2 Bayesian Estimation

Run the MCMC to obtain the posterior of the same regression model above with 5 chains. You have to run the first 200 iterations without collecting posterior. Thereafter collect your posterior in 1000 iterations. Use the same prior as on the slides.

```
reg.model <- "model{</pre>
  for (i in 1:N){
    y[i] ~ dnorm(mu[i], tau)
    mu[i] \leftarrow beta0 + beta1 * x[i]
  }
  beta0 ~ dnorm(0, 0.0001)
  beta1 ~ dnorm(0, 0.0001)
 tau ~ dgamma(0.001, 0.001)
 sigma <- 1/sqrt(tau)</pre>
write(reg.model, "Bayes_Bivariate_Reg_Student_Survey.bug")
jags.data <- list(</pre>
 y = dat\friend_log,
 x = dat$polint,
 N = nrow(dat)
jags.inits <- 1:5 %>%
  map(~ list(beta1 = runif(1, min = -100, max = 100) %>% round()))
jags.reg <- jags.model(</pre>
 file = "Bayes_Bivariate_Reg_Student_Survey.bug",
 inits = jags.inits,
 data = jags.data,
  n.chains = length(jags.inits)
## Compiling model graph
      Resolving undeclared variables
##
##
      Allocating nodes
## Graph information:
##
      Observed stochastic nodes: 165
##
      Unobserved stochastic nodes: 3
##
      Total graph size: 350
##
## Initializing model
update(jags.reg, 200)
jags.reg.out <- coda.samples(</pre>
  jags.reg,
  variable.names = c("beta0", "beta1", "sigma"),
 n.iter = 1000,
  thin = 1
jags.reg.out %>%
summary() %>%
```

# .\$statistics %>% kable

|                | Mean                   | SD                    | Naive SE              | Time-series SE         |
|----------------|------------------------|-----------------------|-----------------------|------------------------|
| beta0<br>beta1 | 0.6036442<br>0.2143240 | 0.2385909 $0.0728827$ | 0.0033742 $0.0010307$ | 0.0194307<br>0.0059053 |
| 50001          | 0.7363239              | 0.0.2002.             | 0.0010307 $0.0005857$ | 0.0005913              |

## 3 Check Covergence

based on visible inspection and the Gelman-Rubin-Statistics.

gelman.plot(jags.reg.out)







#autocorr.plot(jags.reg.out)

### 4 Report the posterior

by using summary() and plot().

## `geom\_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'



# 5 Calculate the probability that beta1 is positive

Which percentage of posterior is greater than zero (positive)?

```
unlist(jags.reg.out) %>%
  tibble(p = . > 0) %>%
  tabyl(p) %>%
  kable
```

| p     | n     | percent   |
|-------|-------|-----------|
| FALSE | 19    | 0.0012667 |
| TRUE  | 14981 | 0.9987333 |

Answer: 99%

6 Repeat 2-4 with different prior.