

Praca końcowa

Klasyfikacja bólów głowy z wykorzystaniem algorytmów uczenia maszynowego*

Konrad Pławik

Promotor: dr hab. inż. Agnieszka Wosiak

Czerwiec 2024

 $[\]overline{^*~{
m SVN}}$: https://github.com/kplawik/HeadacheClassification

Spis treści

\mathbf{Sp}	is ry	sunków
1.	Wst	ęp
2.	Dan	e
	2.1.	Zbiór danych
	2.2.	Informacje prawne
3.	Wst	ęp teoretyczny
	3.1.	Klasyfikacja
		3.1.1. Klasyfikator kNN (k-najbliższych sąsiadów) [15] 6
		3.1.2. Naiwny Klasyfikator Bayesa [15] 6
		3.1.3. SVM - Maszyna Wektorów Nośnych [16] [15]
	3.2.	Ewaluacja modelu klasyfikacyjnego
		3.2.1. Macierz pomyłek [15]
		3.2.2. Walidacja krzyżowa
		3.2.3. Pozostałe podstawowe metryki 8
	3.3.	Sztuczne sieci neuronowe
		3.3.1. Perceptron wielowarstwowy
		3.3.2. Sieci głębokie
		3.3.3. Funkcja aktywacji softmax
4	Flor	perymenty
4.		
	4.1.	Klasyfikacja kNN przy podziale zbioru 80:20
	4.2.	Klasyfikacja kNN przy podziale zbioru 75:25
	4.2.	4.2.1. Wyniki
	4.3.	
	4.5.	
	4 4	v
	4.4.	U U
	4 5	4.4.1. Wyniki
	4.5.	1
	4.6.	4.5.1. Wyniki
	4.0.	4.6.1. Wyniki
5	Mia	ry SHAP i LIME
Li	terati	ura
Sı	ois r	ysunków
1	G 1	- 1 1 1 0000
1.		mat działania SVM
2.	Wyk	resy funkcji strat

1. Wstęp

Bóle głowy bywają trudne do sklasyfikowania. O ile z obserwacji własnych miałem niestety okazję się o tym przekonać to nawet i świat nauki od lat również boryka się z tym problemem. Brytyjski instytut znany jako Headache Classification Committee of the International Headache Society (IHS) rozróżnia 13 kategorii bólów głowy - a samej tylko migreny - 29 typów [1]. Co więcej instytut ten wyraźnie mówi o tym że pacjent może cierpieć na więcej niż jeden z rodzaj ([1] punkt 9 we wstępie). Badania przeprowadzone przez EHF (European Headache Federation) [2] również potwierdzają że dominujący ból głowy nie musi być jedynym [3].

W pomocą przychodzi nam zagadnienie Uczenia Maszynowego oraz powiązane z nim algorytmy klasyfikacyjne. Poniższa praca dokumentuje wyniki kilkudziesięciu eksperymentów mających na celu automatyczną klasyfikację przy użyciu zarówno algorytmów regresyjnych (np. kNN) jak i głębokich Sieci Neuronowych (Deep Learning).

2. Dane

2.1. Zbiór danych

Wykorzystany zbiór danych pozyskano z serwisu codeocean.com [4]. Zbiór ten udostępniona na licencji GNU General Public License (GPL) a jego autorami są:

- 1. Paola A. Sánchez-Sánchez
- 2. José Rafael García-González
- 3. Juan Manuel Rua Ascar.

Cała trójka z pochodzi Universidad Simón Bolívar, Barranquila w Kolumbii.

Zbiór zawierał anonimowe dane 400 rozpoznanych przypadków a każdy z przypadków 23 cechy. Cechy miały różny typ (np. wiek pacjenta (typ całkowity) czy wystąpienie danego objawu (typ binarny)) co przemawiało za użyciem normalizacji przy użyciu MinMaxScalera z biblioteki Scikit-learn.

W zbiorze znajdowały się dane dotyczące 7 rodzajów bólu głowy. Zbiór nie był zbiorem zbalansowanym (co należy mieć na uwadze w dalszej analizie):

```
Type
Basilar-type aura
                                18
Familial hemiplegic migraine
                                24
Migraine without aura
                                60
Other
                                17
Sporadic hemiplegic migraine
                                14
Typical aura with migraine
                               247
Typical aura without migraine
                                20
dtype: int64
```

Zbiór nie posiadał brakujących danych więc nie zaistniała konieczność imputacji.

2.2. Informacje prawne

Zbiór udostępniony został na licencji GNU General Public License (GPL) [4].

Wykorzystane oprogramowanie korzystało z licencji:

```
Język Python: Python Software Foundation License [5]
```

```
Biblioteka Pandas: BSD 3-Clause License [6]
Biblioteka NumPy: BSD 3-Clause License [7]
Biblioteka Seaborn: BSD 3-Clause License [8]
Biblioteka TensorFlow: Apache License 2.0 [9]
```

Wspomniane biblioteki zostały szczegołowo opisane w następujących publikacjach naukowych:

```
Język Python [10]
Pandas: https://zenodo.org/records/10957263 [11]
NumPy: https://www.nature.com/articles/s41586-020-2649-2 [12]
```

Seaborn: https://joss.theoj.org/papers/10.21105/joss.03021 [13] TensorFlow: https://zenodo.org/records/10798587 [14]

3. Wstęp teoretyczny

3.1. Klasyfikacja

3.1.1. Klasyfikator kNN (k-najbliższych sąsiadów) [15]

Klasyfikator kNN, ze względu na swoją intuicyjność, jest jednym z najpopularniejszych klasyfikatorów. Działa on zgodnie z regułą: obserwacja x zostaje sklasyfikowana do najliczniejszej klasy z pośród k obserwacji najbliższych punktowi x.

Szacowane prawdopodobieństwo przynależności obserwacji x do danej klasy wśród x najbliższych sąsiadów, zapisujemy jako:

$$\hat{j}|\mathbf{x} = \frac{1}{k} \sum_{i=1}^{n} l\left(\rho(\mathbf{x}, \mathbf{x}_i) \le \rho(\mathbf{x}, \mathbf{x}^{(k)})\right) l(y_i = j), \quad j = 1, \dots, g$$
 (1)

gdzie:

 $x^{(k)}$ - jest k-tym co do odległości xpunktem z próby uczącej ρ - jest pewną odległością, określaną jako miara niepodobieństwa.

3.1.2. Naiwny Klasyfikator Bayesa [15]

Jest klasyfikatorem probabilistycznym, który opiera się na użyciu twierdzenia.

$$P(C|F_1,\ldots,F_n) \tag{2}$$

gdzie:

C - oznacza zmienną zależną, będącą zbiorem etykiet klas F_1,\ldots,F_n - cechami opisującymi zbiór przypadków.

Korzystając z twierdzenia Bayesa, które mówi że dla dowolnej hipotezy $h \in \mathcal{H}$ oraz zbioru danych D zachodzi równość:

$$P(h|D) = \frac{P(h)P(D|h)}{P(D)} \tag{3}$$

oraz niezależności warunkowej cech F_i oraz F_j dla $i \neq j$ otrzymujemy:

$$P(F_i|C, F_j) = P(F_i|C) \tag{4}$$

Co ostatecznie daje:

$$P(C|F_1, ..., F_n) = \frac{1}{Z} P(C) \prod_{i=1}^n P(F_i|C)$$
 (5)

przy czym Z oznacza współczynnik skalujący, zależny od atrybutów F_1, \ldots, F_n i ustalony w przypadku znanych wartości atrybutów cech.

Zatem wynik działania naiwnego klasyfikatora bayesowskiego można zapisać jako:

klasa
$$(f_1, ..., f_n) = \arg \max_{c} P(C = c) \prod_{i=1}^{n} P(F_i = f_i | C = c)$$
 (6)

3.1.3. SVM - Maszyna Wektorów Nośnych [16] [15]

Maszyna Wektorów Nośnych (Maszyna Wektorów Wspierających) jest to abstrakcyjny koncept maszyny, która działa jak klasyfikator, a której nauka ma na celu wyznaczenie hiperpłaszczyzny rozdzielającej z maksymalnym marginesem przykłady należące do dwóch klas.

Zadanie sprowadza się do znalezienia granicy decyzyjnej między klasami i związane jest z pojęciem separowalności liniowej, zgodnie z którym dwie klasy są liniowo separowalne, gdy istnieje hiperpłaszczyzna H postaci g(x) wyrażona równaniem:

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b. \tag{7}$$

przyjmująca wartości:

$$\begin{cases} g(\mathbf{x}_i) > 0 & \text{jeśli } \mathbf{x}_i \in 1, \\ g(\mathbf{x}_i) < 0 & \text{jeśli } \mathbf{x}_i \in -1 \end{cases}$$
 (8)

gdzie: ${\bf x}$ - oznacza wektor danych, zaś ${\bf w}$ oraz bsą parametrami modelu.

W rezultacie można uzyskać zbiór wielu możliwych rozwiązań (czyli hiperpłaszczyzn), z których wybierane jest takie, które maksymalizuje margines klasyfikatora liniowego:

Rysunek 1. Schemat działania SVM

Powyższy rysunek przedstawia uproszczony schemat działania SVM - źródło: materiały wykładowe.

3.2. Ewaluacja modelu klasyfikacyjnego

3.2.1. Macierz pomyłek [15]

Macierz pomyłek (błędów, ang. confusion matrix), inaczej określana mianem tablicy kontyngencji (ang. contingency table). prezentuje liczby przypadków należących do poszczególnych poprawnych klas decyzyjnych oraz tych, które są przewidywane.

W przypadku wielu etykiet macierz pomyłek jest macierzą kwadratowa m x m:

	$Class_1$	$Class_2$		Class_m
$Class_1$	n_{11}	n_{12}		n_{1m}
$Class_2$	n_{21}	n_{22}		n_{2m}
:	•	•	:	:
$Class_m$	n_{m1}	n_{m2}		n_{mm}

W klasyfikacji wieloklasowej oznaczamy często tylko jedną klasę jako pozytywną, a pozostałe łącznie definiujemy jako negatywne - sprowadzając problem do wielu klasyfikacji binarnych.

3.2.2. Walidacja krzyżowa

W związku z tym że wykorzystany wzór nie jest zbiorem zbyt licznym warto zastosować tzn. walidację krzyżową (inaczej kroswalidację, ang. cross-validation).

- 1. K-krotna walidacja krzyżowa polega na podzieleniu całego zbioru przypadków na k rozłącznych i równolicznych części
- 2. Kolejno każda z tych części stanowi wydzielony zbiór testowy, a pozostałe k-1 zbiór uczący.
- 3. Walidację przeprowadza się na każdej z k części zbioru, zaś wynik końcowy jest średnią z poszczególnych wyników częściowych.

3.2.3. Pozostałe podstawowe metryki

W pracy wykorzystano również: dokładność (Accuracy), precyzja (Precision), czułość (Sensitivity), specyficzność (Specificity) oraz predykcję klasy negatywnej (Negative Predictive Value).

3.3. Sztuczne sieci neuronowe

3.3.1. Perceptron wielowarstwowy

Perceptron wielowarstwowy (MLP, ang. Multi-Layer Perceptron) jest podstawowym typem sztucznej sieci neuronowej, który składa się z co najmniej trzech warstw: warstwy wejściowej, jednej lub więcej warstw ukrytych oraz warstwy wyjściowej. Każdy neuron w jednej warstwie jest połączony z każdym neuronem w warstwie następnej, co umożliwia przetwarzanie skomplikowanych wzorców i zależności. W przeciwieństwie do prostego perceptronu jednopoziomowego, MLP jest zdolny do rozwiązywania problemów, które

nie są liniowo separowalne. Proces uczenia w MLP opiera się na algorytmie wstecznej propagacji błędów, który minimalizuje błąd sieci poprzez dostosowanie wag połączeń między neuronami. Perceptrony wielowarstwowe są powszechnie stosowane w zadaniach takich jak klasyfikacja, regresja oraz rozpoznawanie wzorców. Ze względu na swoją elastyczność i moc obliczeniową, MLP stanowi fundament dla bardziej zaawansowanych struktur sieci neuronowych, takich jak sieci konwolucyjne i rekurencyjne. Jego zdolność do uczenia się nieliniowych relacji sprawia, że jest to narzędzie niezwykle użyteczne w szerokim zakresie zastosowań, od rozpoznawania obrazów po przetwarzanie języka naturalnego.

3.3.2. Sieci głębokie

Sieci głębokie (ang. Deep Neural Networks, DNN) to zaawansowane struktury sztucznych sieci neuronowych, które charakteryzują się dużą liczbą warstw ukrytych pomiędzy warstwą wejściową a wyjściową. Dzięki wielowarstwowej architekturze, sieci głębokie mogą modelować bardzo złożone i nieliniowe relacje w danych. Proces uczenia tych sieci wykorzystuje zaawansowane techniki, takie jak wsteczna propagacja błędów oraz optymalizatory gradientowe, które umożliwiają skuteczne dostosowanie wag neuronów. Sieci głębokie sa niezwykle efektywne w zadaniach zwiazanych z przetwarzaniem dużych ilości danych, takich jak rozpoznawanie obrazów, analiza dźwięku czy przetwarzanie języka naturalnego. Wprowadzenie warstw konwolucyjnych i rekurencyjnych w ramach sieci głębokich dodatkowo rozszerza ich możliwości, umożliwiając analizę sekwencji i wykrywanie istotnych wzorców w danych przestrzennych. Rozwój technologii sprzętowych, takich jak GPU, oraz technik takich jak dropout, znacząco przyczynił się do sukcesu i szerokiego zastosowania sieci głębokich. Dzięki swojej zdolności do automatycznego ekstraktowania cech i wysokiej dokładności predykcji, sieci głębokie stanowią fundament współczesnej sztucznej inteligencji i uczenia maszynowego.

3.3.3. Funkcja aktywacji softmax

Funkcja aktywacji softmax jest powszechnie stosowana w sieciach neuronowych, szczególnie w warstwach wyjściowych modeli klasyfikacyjnych, aby przekształcić surowe wartości wyjściowe neuronów w prawdopodobieństwa. Softmax przekształca wektor wartości rzeczywistych w wektor wartości, które sumują się do 1, co umożliwia interpretację wyniku jako rozkład prawdopodobieństwa między różnymi klasami. Wartości wyjściowe są eksponowane i następnie normalizowane, co podkreśla różnice między nimi i pomaga w dokładniejszej klasyfikacji. Dzięki swoim właściwościom, funkcja softmax jest idealna do zadań wieloklasowej klasyfikacji, gdzie model musi przypisać jedno z wielu możliwych oznaczeń do danego wejścia.

4. Eksperymenty

4.1. Klasyfikacja kNN przy podziale zbioru 80:20

W przeprowadzonym eksperymencie dokonano podziału zbioru 80:20 (20 procent danych testowych). Następnie zdefiniowano klasyfikator z parametrem n_neighbors równym 5. Kolejnym krokiem było wytrenowanie klasyfikatora i przeprowadzenie predykcji na zbiorze testowym:

```
from sklearn.neighbors import KNeighborsClassifier
from sklearn import metrics

knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(X_train, y_train)

y_pred = knn.predict(X_test)
```

Listing 1. Definicja i uzycie kNN

4.1.1. Wyniki

Podstawowe metryki dla pierwszego eksperymentu wynosiły precyzja (*Precision*): 0.85 a dokładność (*Accuracy*): 0.7875. Co nie stanowi wiele informacji, korzystam więc z gotowych metryk dostępnych w bibliotece scikit-learn:

1	pre	ecision	recall	f1-score	support
2					
3	Basilar-type aura	1.00	0.29	0.44	7
4	Familial hemiplegic migraine	0.50	0.80	0.62	5
5	Migraine without aura	0.62	0.62	0.62	8
6	Other	1.00	0.67	0.80	3
7	Sporadic hemiplegic migraine	0.00	0.00	0.00	4
8	Typical aura with migraine	0.82	0.94	0.88	49
9	Typical aura without migraine	1.00	1.00	1.00	4
10					
11	accuracy			0.79	80
12	macro avg	0.71	0.62	0.62	80
13	weighted avg	0.77	0.79	0.76	80

Listing 2. Szczegółowa tabela walidacji

F	recision	recall	f1-score	support
Basilar-type aura	1.00	0.29	0.44	7
Familial hemiplegic migraine	0.50	0.80	0.62	5
Migraine without aura	0.62	0.62	0.62	8
Other	1.00	0.67	0.80	3
Sporadic hemiplegic migraine	0.00	0.00	0.00	4
Typical aura with migraine	0.82	0.94	0.88	49
Typical aura without migraine	1.00	1.00	1.00	4
accuracy			0.79	80

macro	avg	0.71	0.62	0.62	80
weighted	avg	0.77	0.79	0.76	80

Jak widzimy na powyższym listingu (i o czym również informuje nas warning biblioteki scikit-learn) klasa Sporadic hemiplegic migraine nie wystąpiła w zbiorze testowym ani razu. Zbiór nie jest ani specjalnie liczny ani tez zbalansowany wiec sytuacja taka jest jest zaskoczeniem ale nie przestaje to podważać efektywności walidacji naszych badań. W kolejnym eksperymencie przedstawiam za to inne proporcje podziały zbioru.

4.2. Klasyfikacja kNN przy podziale zbioru 75:25

Przebieg eksperymentu był dokładnie taki sam jak w poprzednim z tym że podział zbioru na dane uczące i testowe dokonał się w proporcjach 75:25 (tak jak poprzednio ze sztuczną losowością aby zapewnić powtarzalność wyników).

4.2.1. Wyniki

Zmiana podziału zbioru nie wpłynęła zasadniczo na wartość precyzji i dokładności ale nie istniał juz problem braku klas w zbiorze testowym, co nie przekreśla juz sensowności przeprowadzonych obliczeń. Nadal jednak zaden z obiektów klasy "Sporadic hemiplegic migraine" nie został poprawnie rozpoznany co dalej, dla tego podzbioru klas zarówno precyzje jak i recall równe zero.

pr	ecision	recall	f1-score	support
Basilar-type aura	1.00	0.12	0.22	8
Familial hemiplegic migraine	0.57	0.80	0.67	5
Migraine without aura	0.64	0.64	0.64	11
Other	1.00	0.50	0.67	4
Sporadic hemiplegic migraine	0.00	0.00	0.00	5
Typical aura with migraine	0.77	0.94	0.85	62
Typical aura without migraine	1.00	0.60	0.75	5
accuracy			0.75	100
macro avg	0.71	0.51	0.54	100
weighted avg	0.75	0.75	0.71	100

Ogólna wartość precyzji (Precision) dla całego zbioru testowego pozostała na poziomie 85%. Dokładność (Accuracy) na zbioru testowego spadła o 3,75 punktu procentowego (do poziomu 75%).

W przypadku walidacji krzyzowej precyzja wahała się pomiędzy 57 a 100% (w stosunku do poprzedniego podziału nieznaczne wzrosty w przypadku mniej licznych klas). Recall charakteryzował się duzym rozrzutem wartości - mniej liczne klasy miały recall niekiedy i 0-12% a te bardziej liczne 80-90%.

Średnia wartość recallu to 51% a średnia wazona 75% (ta właśnie uwzględniała nierówną liczebność klas). Podobna różnica miała miejsce w przypadku precyzji wyliczonej przy zastosowaniu walidacji krzyzowej - średnia wartość 71% - średnia wazona 75%.

4.3. Klasyfikacja Naiwnym Klasyfikatorem Bayesa

W eksperymencie tym sprawdziłem wyniki klasyfikacji Naiwnym Klasyfikatorem Bayesa. Biblioteka scikit-learn umozliwia przeprowadzenie tzn *Categorical Classication (Categorical Naive Bayes)* gdzie w przeciwieństwie do popularnej klasyfikacji binarnej, metoda jest w stanie zwrócić dwie informacje: etykietę klasy będącej wynikiem klasyfikacji oraz listę ze stopniami podobieństwa dla wszystkich klas.

```
from sklearn.naive_bayes import CategoricalNB

gnb = CategoricalNB()

y_pred = gnb.fit(X_train, y_train).predict(X_test)
```

Listing 3. Definicja i uzycie CategoricalNB

4.3.1. Wyniki

O ile wyniki dokładności (*Accuracy*) wyglądały podobnie niz dla np. kNN - dokładnie 75%. O tyle wyniki dla całości zbiory prezentowały się gorzej o 5-6 punktów procentowych niz dla kNN - precyzja średnia 64% (względem 71%) oraz precyzja wazona 69% (względem 75%). Wyniki dla poszczególnych klas dla precyzji potrafiły się różnić o 20-30 punktów procentowych względem kNN nie dając wyraźniej korelacji względem liczebności klas. Wyniki dla recall po trafiły być niekiedy diametralnie różne - 88%-12% a niekiedy znikomo - 92%-94% względem kNN.

	precision	recall	f1-score	support
Basilar-type aura	1.00	0.88	0.93	8
Familial hemiplegic migraine	0.75	0.60	0.67	5
Migraine without aura	0.29	0.18	0.22	11
Other	1.00	1.00	1.00	4
Sporadic hemiplegic migraine	0.00	0.00	0.00	5
Typical aura with migraine	0.76	0.92	0.83	62
Typical aura without migraine	0.67	0.40	0.50	5
accuracy			0.75	100
macro avg	0.64	0.57	0.59	100
weighted avg	0.69	0.75	0.71	100

Niezwykle istotną możliwością wykorzystania Naiwnego Klasyfikatora Bayesa było wyświetlenie podobieństwa testowanej klasy względem wszystkich

klas.

Niektóre z klas (niekoniecznie te bardziej licznie) przedstawiały bardzo jednoznaczną klasyfikację, np:

Other

0.0009411289994916489: Basilar-type aura

0.00024106562936048384: Familial hemiplegic migraine

1.3757510137960067e-06: Migraine without aura

0.9987800638900048: Other

5.212399025390643e-06: Sporadic hemiplegic migraine 3.406207926665455e-08: Typical aura with migraine 3.111926902521578e-05: Typical aura without migraine

dla innych (często dla konkretnych jak np. Typical aura without migraine czy Migraine without aura) mieliśmy rozkłady bardzo zróżnicowane:

Typical aura without migraine

0.08048228203931468: Basilar-type aura

0.2633221828713967: Familial hemiplegic migraine

0.0009416760319083586: Migraine without aura

0.005682255909626338: Other

0.22367861315019222: Sporadic hemiplegic migraine 0.15361555787258202: Typical aura with migraine 0.2722774321249797: Typical aura without migraine

albo nawet niemal bilateralne:

Migraine without aura

0.000315062484758524: Basilar-type aura

0.0008466488192796888: Familial hemiplegic migraine

0.516090617842986: Migraine without aura

0.001079067159295874: Other

0.0038615304383266213: Sporadic hemiplegic migraine 0.4772101808065339: Typical aura with migraine 0.0005968924488194133: Typical aura without migraine

4.4. Selekcja i ekstrakcja cech

W czasie wykonanych eksperymentów wykorzystano dwa sposoby selekcji cech: SKB i RFE, oraz mechanizm wyodrębnienia cech PCA.

Definicja algorytmu selekcji cech SKB (czyli Select k Best), wybór k dziesięciu najlepszych i wyświetlenie nowych nazw cech:

```
from sklearn.feature_selection import SelectKBest, chi2
skb = SelectKBest(chi2, k = 10)
X2 = skb.fit_transform(X, y)
```

Listing 4. Definicja selektora SKB

Definicja selektora cech RFE (dla klasyfikatora SVC i redukcji do 10 cech):

```
from sklearn.feature_selection import RFE

svc = SVC(kernel = 'linear')

rfe = RFE(estimator = svc, n_features_to_select = 10, step = 1)
X3 = rfe.fit_transform(X, y.values.ravel())
```

Listing 5. Definicja selektora RFE

Definicja ekstraktora cech PCA (ekstrakcja do 4 cech).

```
from sklearn.decomposition import PCA

pca = PCA(n_components = 4)
X4 = pca.fit_transform(X)
```

Listing 6. Definicja ekstraktora cech PCA

4.4.1. Wyniki

Wyniki prezentowały się następująco:

Średnia dokładność klasyfikacji z wykorzystaniem klasyfikatora ...

```
kNN wyniosła:
                              0.802499999999999
kNN i metody SKB wyniosła:
                              0.7825
kNN i metody RFE wyniosła:
                              0.865
kNN i metody PCA:
                              0.7
SVC wyniosła:
                              0.8825
SVC i metody SKB wyniosła:
                              0.8
SVC i metody RFE wyniosła:
                              0.8825
SVC i metody PCA:
                              0.735
```

Co interesujące to właśnie dyskusyjny eksperyment klasyfikacji KNN z selekcją RFE poprawił wynik dla kNN o 8 punktów procentowych a np. SKB pogorszył go o dwa. W przypadku klasyfikatora SVC w/w metody albo nie zmieniły wyniku (RFE) albo pogorszyły wynik od 8-10 punktów procentowych.

Uzyty zbiór nie był zbiorem licznym ani tez obliczenia na nim wykonywane nie wymagały duzych mocy obliczeniowych. Nie istniało zatem zadne uzasadnienie stosowania którejkolwiek z w/w metod poniewaz przy praktycznie zerowej optymalizacji otrzymywaliśmy gorsze wyniki.

4.5. Perceptron wielowarstwowy

Kolejnym z przeprowadzonych eksperymentów było użycie perceptronu wielowarstwowego. Podział zbioru to 75% na dane treningowe i 25% na dane testowe. Ponownie wykorzystaliśmy bibliotekę scikit-learn:

```
from sklearn.neural_network import MLPClassifier
mlp = MLPClassifier(hidden_layer_sizes=(6),
max_iter=50000,
alpha=0.0001,
solver='adam',
activation='logistic',
random_state=25,
tol=0.0000001)
```

Listing 7. Definicja perceptronu wielowarstwowego

Wyjaśnienie wykorzystanych parametrów:

- 1. hidden_layer_sizes ilość warstw ukrytych
- 2. max_iter liczba epok
- 3. alpha współczynnik regularyzacji który zapobiega zjawisku przeuczenia
- 4. solver wybór algorytmu optymalizacji "adam".
- 5. activation wybór sigmoidalnej funkcji aktywacji
- 6. random_state ziarno generatora liczb losowych
- 7. tol tolerancja dla kryterium stop. Algorytm zatrzymuje się, jeśli zmiana wyniku (kosztu) jest mniejsza niż ta wartość.

4.5.1. Wyniki

Wyniki działania perceptronu okazały się zaskakująco dobre. Przy relatywnie niskiej ilości warstw ukrytych (6), przeciętnej ilości epok (50000) i popularnym optymalizatorze ("adam") osiągnęliśmy dokładność (Accuracy) na poziomie 94% i średnią ważoną precyzję 95%. Recall wahał się od 60% do 100% (przy średniej wazonej wartości 94%) a współczynnik F1 od 75% do 100% (przy średniej ważonej wartości 93%).

	precision	recall	f1-score	support
Basilar-type aura	1.00	0.20	0.33	5
Familial hemiplegic migraine	0.57	0.20	0.67	5
Migraine without aura	1.00	1.00	1.00	12
Other	1.00	1.00	1.00	3
Sporadic hemiplegic migraine	0.75	1.00	0.86	3
Typical aura with migraine	0.97	0.99	0.98	67
Typical aura without migraine	1.00	1.00	1.00	5
accuracy			0.94	100
macro avg	0.90	0.86	0.83	100
weighted avg	0.95	0.94	0.93	100

NN Accuracy = 0.94

Przy mniejszej ilości epok (5000) takiej samej ilości warstw ukrytych (6) i tym samym optymalizatorze ("adam") osiągnęliśmy dokładność (Accuracy) na poziomie 96% i średnią ważoną precyzję 97%. Recall wahał się od 60% do 100% a współczynnik F1 od 75% do 100% (przy średniej wazonej wartości 96%) z tym że biblioteka wyświetliła ostrzeżenie że optymalizator nie zakoń-

czył działania więc wyniki mogę byś nieoptymalne.

	precision	recall	f1-score	support
Basilar-type aura	1.00	0.60	0.75	5
Familial hemiplegic migraine	0.67	0.80	0.73	5
Migraine without aura	1.00	1.00	1.00	12
Other	1.00	1.00	1.00	3
Sporadic hemiplegic migraine	0.75	1.00	0.86	3
Typical aura with migraine	0.99	0.99	0.99	67
Typical aura without migraine	1.00	1.00	1.00	5
accuracy			0.96	100
macro avg	0.91	0.91	0.90	100
weighted avg	0.97	0.96	0.96	100

NN Accuracy = 0.96

4.6. Sieć głęboka z funkcją aktywacji Softmax

Perceptron wielowarstwowy choć dawał świetne wyniki to jednak dawał wynik przynależności do najbardziej prawdopodobnej klasy. W zagadnieniu klasyfikacji bólów głowy interesującym byłoby pokazać wynik w postać stopnia podobieństwa przynależności do każdej z mozliwych klas. Z pomocą przychodzi nam funkcja aktywacji Softmax i możliwość zastosowania jej w głębokich sieciach neuronowych.

W przypadku funkcji aktywacji Softmax konieczne jest uzycie enkodera etykiet klas - czy zamianę etykiet na przyporządkowane im liczby. Następnie w/w liczby zamieniamy na tzw. format hot-one czyli format gdzie danej liczbie przyporządkowujemy ciąg binarny zer oraz jednej jedynki w miejscu w szeregu odpowiadającym danej liczbie. Po testowej klasyfikacji musimy nasze wyniki zdekodować z powrotem do formatu etykiet. Wszystkie te operacje umozliwia nam biblioteka scikit-learn.

Do definicji sieci głębokiej uzywam biblioteki TensorFlow i jej części Keras.

Listing 8. Definicja sieci głębokiej z funkcją aktywacji Softmax

W powyższej definicji mamy:

- 1. definicje modelu sekwencyjnego
- 2. definicje warstwy gęstej (Dense, wszystkie neurony połączone) z 64 neuronami i funkcją aktywacji ReLU.
- 3. definicje warstwy gęstej (Dense, wszystkie neurony połączone) z 32 neuronami i funkcją aktywacji ReLU.
- 4. definicje warstwy gęstej (Dense) z funkcją aktywacji Softmax.
- 5. określenie ilości wejść 23 bo tyle mamy cech.
- 6. kompilację modelu z optymalizatorem "adam", określeniem funkcji straty "categorical_crossentropy" i definicje metryk.

Następnie rozpoczynam trenowanie modelu dla 50 epok, wydzielenie 20% zbioru testowego na zbiór walidacyjny i zapis modelu:

Listing 9. Definicja sieci głębokiej z funkcją aktywacji Softmax

Wyświetlenie wykresu wartości funkcji straty i porównanie jej z wartością straty na zbioru walidacyjnego daje mi orientacyjną możliwość oceny słuszności doboru ilości epok.

Rysunek 2. Wykresy funkcji strat

4.6.1. Wyniki

Dla zbioru testowego osiągnęliśmy 95% dokładność.

```
4/4 ========== 0s 801us/step - accuracy: 0.9446 - loss: 0.2267
Loss: 0.21024955809116364, Accuracy: 0.949999988079071
```

Najciekawszym aspektem wykorzystania funkcji Softmax jest możliwość wyświetlenia podobieństwa do wszystkich możliwych klas. Oto kilka przykładów dla konkretnych przypadków, co zrobiłem na dwa sposoby. Pierwszy z nich wyświetlał wszystkie klasy i podobieństwa konkretnego przypadków do każdej z nich:

```
Class: Basilar-type aura, Probability: 0.25
Class: Familial hemiplegic migraine, Probability: 0.63
Class: Migraine without aura, Probability: 0.00
Class: Other, Probability: 0.09
Class: Sporadic hemiplegic migraine, Probability: 0.03
Class: Typical aura with migraine, Probability: 0.00
Class: Typical aura without migraine, Probability: 0.00
```

a drugi z nich wyświetlał tabelę: enkodowana etykieta klasy, pełna etykieta klasy i prawdopodobieństwo do danej klasy analizowanego przypadku. Wartości uszeregowane malejąco wg podobieństwa:

	Туре	Probabilities
1	Familial hemiplegic migraine	0.63
0	Basilar-type aura	0.25
3	Other	0.09
4	Sporadic hemiplegic migraine	0.03
5	Typical aura with migraine	0.00
6	Typical aura without migraine	0.00
2	Migraine without aura	0.00

5. Miary SHAP i LIME

Literatura

- [1] https://www.researchgate.net/publication/291331282_The_ International_Classification_of_Headache_Disorders_3rd_edition_ beta_version
- [2] https://www.ehf-headache.com/
- [3] https://link.springer.com/article/10.1186/s10194-018-0909-4
- [4] https://codeocean.com/capsule/1269964/tree/v1
- [5] https://docs.python.org/3/license.html
- [6] https://github.com/pandas-dev/pandas/blob/main/LICENSE
- [7] https://github.com/numpy/numpy/blob/main/LICENSE.txt
- [8] https://github.com/mwaskom/seaborn/blob/master/LICENSE.md
- [9] https://github.com/tensorflow/tensorflow/blob/master/LICENSE
- [10] Van Rossum, Guido and Drake, Fred L. "Python 3 Reference Manual", 2009 ISNB 1441412697
- [11] https://zenodo.org/records/10957263
- [12] https://doi.org/10.1038/s41586-020-2649-2
- [13] https://joss.theoj.org/papers/10.21105/joss.03021
- [14] https://zenodo.org/records/10798587
- [15] Materiały wykładowe przedmiotu.
- [16] https://pl.wikipedia.org/wiki/Maszyna_wektor%C3%B3w_no%C5%9Bnych