

Design III

Remise 1

présenté à

Philippe Giguère, Dominique Grenier, Denis Laurendeau

par Équipe 7 — Zière

matricule	nom	signature
111 114 478	Garvin, Sébastien	
111 040 128	Kedzierski, Xavier	
111 066 466	Magnan, Charles-Olivier	
111 071 384	Provencher, Jean-Michel	
111 073 630	Bourque, Emile	
111 075 478	Sylvain, Matthieu	
111 074 361	Brown, Jérémy	
907 196 009	Garneau, Laurent	

Université Laval 31 janvier 2016

Historique des versions					
version	date	description			
1.0	24 janvier 2016	Création du document			
2.0	31 janvier 2016	Remise 1			

Table des matières

1	Dia	Diagrammes					
	1.1	Diagramme de contexte]				
	1.2	Description des propriétés fonctionnelles	1				
	1.3	Diagrammes de classes	1				
	1.4	Diagrammes de séquences	-				
2	Des	scription des cas d'utilisation	•				
3	Fan	Familiarisation avec équipements et expériences préliminaires					
	3.1	Structure mécanique	4				
	3.2	Système de préhenseur et d'électroaimant	4				
	3.3	Station de recharge	ļ				
	3.4	Asservissement des moteurs	!				
	3.5	Localisation du robot et des îles	ļ				
	3.6	Repérage des trésors et de la station de recharge	ļ				
	3.7	Alimentation du robot	ļ				
	3.8	Communications sans fil	,				

Chapitre 1

Diagrammes

1.1 Diagramme de contexte

FIGURE 1.1 – Diagramme de contexte

- 1.2 Description des propriétés fonctionnelles
- 1.3 Diagrammes de classes
- 1.4 Diagrammes de séquences

FIGURE 1.2 – Description des propriétés fonctionnelles

Chapitre 2

Description des cas d'utilisation

Chapitre 3

Familiarisation avec équipements et expériences préliminaires

3.1 Structure mécanique

3.2 Système de préhenseur et d'électroaimant

Afin de rendre le préhenseur le plus simple possible mécaniquement, nous choisissons de le faire en forme d'équerre. Aux deux extrémités de l'équerre sont situés l'électroaimant et le secondaire du transformateur qui permet de charger le condensateur d'alimentation de l'électroaimant. Il devient donc très aisé d'enligner le système de recharge avec la station de recharge ainsi que de soulever les trésors en faisant tourner l'équerre de 90 degrés dans un sens ou dans l'autre. Cette rotation est assurée par un servomoteur situé au centre de l'équerre. INSERT CAD HERE permet de comprendre facilement la mécanique du préhenseur.

L'électroaimant est un modèle pré-fait acheté sur Internet. Il s'agit du modèle *Grove* de la compagnie seed VOIR SOURCE XXXXXX. Cet aimant peut soulever une charge de 1kg pour un courant de 400mA. En assumant que la force générée par l'aimant dépend quadratiquement du courant le parcourant et en sachant que le poids des trésors est de 30g l'unité, on estime le courant nécessaire pour soulever les trésors autour de 5mA. Pour avoir une marge de sécurité ainsi que de pouvoir attirer les trésors «à distance», on augmente ce courant à 20mA. Le courant dans l'électroaimant est contrôllée par une source de courant à diode Zener (voir figure XXXXXXX).

L'énergie nécessaire pour soulever un trésor pendant 10 minutes par l'électroaimant est de 60J (U = 5V * 20mA * 10min * 60sec/min). Un condensateur de 0.5F à 5V contient 62.5J d'énergie ($U = 0.5C * V^2$). C'est donc cette valeur de condensateur qui est choisie pour alimenté l'électroaimant.

Afin de permettre de faire des tests ainsi que de s'assurer un degré de sûreté, un condensateur de 1F est également considéré dans le design de ce système

source aimant: http://www.seeedstudio.com/depot/Grove-Electromagnet-p-1820.html

CHAPITRE 3. FAMILIARISATION AVEC ÉQUIPEMENTS ET EXPÉRIENCES PRÉLIMINAIRES5

- 3.3 Station de recharge
- 3.4 Asservissement des moteurs

Placeholder de démo pour faire vos propres tex

- 3.5 Localisation du robot et des îles
- 3.6 Repérage des trésors et de la station de recharge
- 3.7 Alimentation du robot
- 3.8 Communications sans fil