PUOLOP 迪浦

60V/20A N-Channel Advanced Power MOSFET

Features

- ◆ Low On-Resistance
- ♦ Fast Switching
- ♦ 100% Avalanche Tested
- ◆ Repetitive Avalanche Allowed up to Tjmax
- ♦ Lead-Free, RoHS Compliant

Description

PTD20N06 designed by the trench process techniques to achieve extremely low on-resistance. Additional features of this design can operate at high junction temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in Motor applications and a wide variety of other applications.

General Features

♦ V_{DS} =60V,I_D =20A

 $R_{DS(ON)}$ <44m Ω @ V_{GS} =10V

TO-252-2L

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (Ta) is 25°C, unless otherwise specified.

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	60	V	
Gate-Source Voltage	V _G S	±20	V	
Drain Current-Continuous	I _D	20	А	
Drain Current-Continuous(T _C =100°C)	I _D (100℃)	14	Α	
Pulsed Drain Current	I _{DM}	60	Α	
Maximum Power Dissipation	P _D	40	W	
Derating factor		0.27	W/℃	
Single pulse avalanche energy (Note 5)	E _{AS}	72	mJ	
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 175	$^{\circ}$	
Thermal Resistance,Junction-to-Case ^(Note 2)	R _{eJC}	3.7	°C/W	

60V/20A N-Channel Advanced Power MOSFET

Electrical Characteristics (T_c=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit	
Off Characteristics	<u>.</u>						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	60	-	-	V	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =60V,V _{GS} =0V	-	-	1	μA	
Gate-Body Leakage Current	I _{GSS}	V_{GS} =±20 V , V_{DS} =0 V	-	-	±100	nA	
On Characteristics (Note 3)	<u>.</u>						
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.0	2.0	3.0	V	
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =20A	-	37	44	mΩ	
Forward Transconductance	G FS	V _{DS} =5V,I _D =4.5A	11	-	-	S	
Dynamic Characteristics (Note4)	<u> </u>		•				
Input Capacitance	C _{lss}	V_{DS} =30V, V_{GS} =0V, F=1.0MHz	-	500	-	PF	
Output Capacitance	C _{oss}		-	60	-	PF	
Reverse Transfer Capacitance	C _{rss}		-	25	-	PF	
Switching Characteristics (Note 4)			•				
Turn-on Delay Time	t _{d(on)}	V_{DD} =30V, I_D =2A, R_L =6.7 Ω V_{GS} =10V, R_G =3 Ω	-	5	-	nS	
Turn-on Rise Time	t _r		-	2.6	-	nS	
Turn-Off Delay Time	$t_{\sf d(off)}$		-	16.1	-	nS	
Turn-Off Fall Time	t _f		-	2.3	-	nS	
Total Gate Charge	Qg	V _{DS} =30V,I _D =4.5A, V _{GS} =10V	-	14		nC	
Gate-Source Charge	Q_{gs}		-	2.9		nC	
Gate-Drain Charge	Q_{gd}		-	5.2		nC	
Drain-Source Diode Characteristics							
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =20A	-		1.2	V	
Diode Forward Current (Note 2)	Is		-	-	20	Α	
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF =20A	-	35	-	nS	
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	53	-	nC	
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)					

Figure 1 Output Characteristics

Figure 4 Rdson-Junction Temperature

Figure 2 Transfer Characteristics

Figure 5 Gate Charge

Figure 3 Rdson- Drain Current

Figure 6 Source- Drain Diode Forward

60V/20A N-Channel Advanced Power MOSFET

Figure 7 Capacitance vs Vds

Figure 9 BV_{DSS} vs Junction Temperature

Figure 8 Safe Operation Area

Figure 10 V_{GS(th)} vs Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance

4- 2015-3-26