MATH 138 LECTURE 3

Properties of Definite Integrals

Suppose f and g are integrable on [a, b].

- 1. $\int_a^b f(x)dx = 0$ (from the definition of the integral)
- 2. Let c be a real number. Then the function cf is integrable on [a,b] and $\int_a^b cf(x)dx = c\int_a^b f(x)dx$.
- 3. f+g is integrable on [a,b] and $\int_a^b (f+g)(x)dx = \int_a^b f(x)dx + \int_a^b g(x)dx$.
- 4. Max-min Inequality:

If m <= f(x) <= M for every x in [a, b], then $m(b-a) \le \int_a^b f(x) dx \le M(b-a)$.

If $f(x) \ge g(x)$ for every x in [a,b], then $\int_a^b f(x)dx \ge \int_a^b g(x)dx$. In particular, if $f(x) \ge 0$ for every x in [a,b], then $\int_a^b f(x)dx \ge 0$.

- 6. The function |f| is integrable and $|\int_a^b f(x)dx| \le \int_a^b |f(x)|dx$.

7. Order of Integration:
$$\int_a^b f(x) dx = - \int_a^b f(x) dx \text{ (by definition)}$$

8. Additivity:

Suppose I is an interval containing a,b, and c. $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$

$$\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$$

Suppose c lies outside [a, b]. By additivity,

$$\int_{a}^{c} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx$$

$$\implies \int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx - \int_{b}^{c} f(x)dx$$

$$= \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

Proof of the Max-min Inequality

Let $P = \{t_0, ..., t_n\}$ be a partition of [a, b]. For i = 1, 2, ..., k, let c_i be a point in $[t_{i-1}, t_i]$. Then,

$$m\Delta t_i \le f(c_i)\Delta t_i \le M\Delta t_i$$
$$\sum_{i=1}^n m\Delta t_i \le \sum_{i=1}^n f(c_i)\Delta t_i \le \sum_{i=1}^n M\Delta t_i$$
$$\sum_{i=1}^n M\Delta t_i = M\sum_{i=1}^n \Delta t_i = M(b-a)$$

Similarly, $\sum_{i=1}^{n} n\Delta t_i = m(b-a)$.

All Riemann sums satisfy $m(b-a) \leq \sum_{i=1}^{n} f(c_i) \Delta t_i \leq M(b-a)$.

Hence the limit, that is the integral, satisfies $m(b-a) \leq \int_a^b f(x) dx \leq M(b-a)$.

Proof of Property 6

Recall that $|c| \le c \le |c|$. Then $-|f(x)| \le f(x) \le |f(x)|$.

Thus,
$$-\int_a^b |f(x)| dx \le \int_a^b f(x) dx \le \int_a^b |f(x)| dx$$
.

EXERCISE: Suppose f is continuous on [-1,7]. If $\int_{-1}^{1} f(x)dx = 0$ and $\int_{-1}^{7} f(x)dx = 5$. Compute $\int_{7}^{1} f(x)dx$.

If $f(x) \ge 0$ for every x in [a, b], then the integral $\int_a^b f(x) dx$ is equal to the region below the graph of y = f(x) and above the x-axis, between x = a and x = b.

Suppose $f(x) \leq 0$ for each x in [a, b], then

 $\int_a^b f(x)dx$ is the negative of the area of the region above the graph of y=f(x) and below the x-axis, between x=a and x=b.

In other words, $\int_a^b f(x)dx$ is the area of the region under the graph of f, above the x-axis, between x = a and x = b subtract the area of the graph of f, below the x-axis, between x = a and x = b.

2 Average Value of f

Suppose f is continuous on [a, b]. Then, the average value of f is defined to be

$$\frac{1}{b-a} \int_{a}^{b} f(x) dx$$

Average Value Theorem (Mean Value Theorem for Definite Integrals) Suppose f is continuous on [a, b]. Then there exists a point c in [a, b] such that

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x)dx$$

EXERCISE: Suppose f is continuous on [a,b] where $a \neq b$. If $\int_a^b f(x) dx = 0$, then prove that there is a point c in [a,b] such that f(c) = 0.

3 Summary

Properties of the Definite Integral:

They have similar properties to the Riemann sums.

Important Properties:

- 1. Domination: If $f(x) \ge g(x)$, then $\int_a^b f(x)dx \ge \int_a^b g(x)dx$.
- 2. Squeeze Theorem: $\left| \int_a^b f(x) dx \right| \le \int_a^b |f(x)| dx$.
- 3. Average Value: If f is continuous on [a,b], then the average value of f is defined to be $\frac{1}{b-a}\int_a^b f(x)dx$. This is the mean value theorem for integrals.