Math 107 Lecture 17

Matrix Inverse and Transpose

by Dr. Kurianski on October 28, 2024

» Announcements and Objectives

Announcements

- * Skill Check 5 is next Wed (11/6, 110 mins)
- Solutions to Homeworks 1-8 available in Canvas Modules
- Pre-Notes due before start of next lecture
- Assignments Due Friday (11/1):
 - * HW9 Handwritten Questions
 - * HW9 Coding Problems
 - * HW9 MATLAB File Upload

Objectives

- * Define and compute the inverse of a given matrix
- * Use inverses to solve $A\vec{x} = \vec{b}$
- Discuss properties of the inverse and transpose
- Discuss special types of matrices and their features

What is an inverse?

What is an inverse?

» Identity matrix

Remark: The identity matrix I acts like "1" for matrix multiplication (when the multiplication makes sense).

Example:

What is an inverse?

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

» Identity matrix

Remark: The identity matrix I acts like "1" for matrix multiplication (when the multiplication makes sense).

Example:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

But

What is an inverse?

$$\underbrace{\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}}_{(3\times1)} \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}}_{(3\times3)} = ?$$

doesn't make sense!

Remark: If *A* is a square matrix, then AI = IA = A.

What is an inverse?

What does it mean to solve ax = b?

$$x = \frac{b}{a}$$
 or $x = a^{-1}b$.

Then we can think of a^{-1} as a number such that

$$aa^{-1}=1.$$

What does it mean to solve ax = b?

$$x = \frac{b}{a}$$
 or $x = a^{-1}b$.

Then we can think of a^{-1} as a number such that

$$aa^{-1} = 1.$$

For a square matrix A, the inverse would be a matrix A^{-1} where

$$AA^{-1}=I.$$

What does it mean to solve ax = b?

$$x = \frac{b}{a}$$
 or $x = a^{-1}b$.

Then we can think of a^{-1} as a number such that

$$aa^{-1} = 1.$$

For a square matrix A, the inverse would be a matrix A^{-1} where

$$AA^{-1}=I$$
.

Then we might be able to solve $A\vec{x} = \vec{b}$ by

$$\vec{x} = A^{-1}\vec{b}.$$

What does it mean to solve ax = b?

$$x = \frac{b}{a}$$
 or $x = a^{-1}b$.

Then we can think of a^{-1} as a number such that

$$aa^{-1} = 1.$$

For a square matrix A, the inverse would be a matrix A^{-1} where

$$AA^{-1} = I$$
.

Then we might be able to solve $A\vec{x} = \vec{b}$ by

$$\vec{x} = A^{-1}\vec{b}.$$

Important: Just as the number 0 doesn't have an inverse (because $\frac{1}{0}$ is undefined), the matrix A may not have an inverse.

» Matrix inverse

What is an inverse?

Definition and Computation

Definition: Let A and X be $n \times n$ matrices where

$$AX = I = XA$$
. Then

- 1. A is invertible and
- 2. X is the **inverse** of A, denoted A^{-1}

» Matrix inverse

Definition and Computation

Definition: Let A and X be $n \times n$ matrices where

$$AX = I = XA$$
. Then

- 1. A is invertible and
- 2. X is the **inverse** of A, denoted A^{-1}

How to compute the inverse of A:

- 1. Write down the augmented matrix $[A \mid I]$
- 2. Perform Gaussian elimination
- 3. If you end up with the identity in the place where A was (i.e., $[A \mid I] \rightarrow [I \mid X]$, then the matrix on the right is A^{-1} .
- 4. If you do not end up with the identity in the place where A was, then A is not invertible.

What is an inverse?

MATLAB Example

Use MATLAB's rref() command to find the inverse of

$$A = \begin{bmatrix} 1 & -3 & 2 \\ -1 & 1 & 3 \\ 0 & 2 & -2 \end{bmatrix}$$

by solving AX = I.

What is an inverse?

MATLAB Activity

Use MATLAB's rref() command to find the inverse of

$$A = \begin{bmatrix} -15 & 45 & -3 & 4 \\ 55 & -164 & 15 & -15 \\ -215 & 640 & -62 & 59 \\ -4 & 12 & 0 & 1 \end{bmatrix}$$

by solving AX = I.

What is an inverse?

Example

Example: Find the inverse of $A = \begin{bmatrix} 2 & 6 \\ 1 & 4 \end{bmatrix}$ by hand.

What is an inverse?

Key Idea

Key Idea: Let A be an $n \times n$ matrix. To find A^{-1} , put the augmented matrix $\begin{bmatrix} A & I \end{bmatrix}$ into reduced row echelon form. If the result is of the form $\begin{bmatrix} I & X \end{bmatrix}$, then $A^{-1} = X$. If not, then A is not invertible.

Remark: If the matrix A is invertible, then its reduced row echelon form is I.

Inverse of 2×2 matrices

» Formula for 2 imes 2 matrix

Let

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

be an invertible 2×2 matrix. Then

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

» Example

Example: Find the inverse of $A = \begin{bmatrix} 2 & 6 \\ 1 & 4 \end{bmatrix}$ using the formula for 2×2 matrices.

Solving
$$A \vec{x} = \vec{b}$$

» Solving $Aec{x}=ec{b}$

Theorem: Let \vec{b} be any $n \times 1$ column vector. If A is an invertible $n \times n$ matrix, then $A\vec{x} = \vec{b}$ has **exactly one solution** given by $\vec{x} = A^{-1}\vec{b}$.

» Solving $Aec{x}=ec{b}$

Theorem: Let \vec{b} be any $n \times 1$ column vector. If A is an invertible $n \times n$ matrix, then $A\vec{x} = \vec{b}$ has **exactly one solution** given by $\vec{x} = A^{-1}\vec{b}$.

Example: Let
$$A=\begin{bmatrix}2&6\\1&4\end{bmatrix}$$
 and $\vec{b}=\begin{bmatrix}3\\5\end{bmatrix}$. Use A^{-1} to solve $A\vec{x}=\vec{b}$.

Concept questions

» Question 1

If A is **not** invertible, how many solutions is it possible for $A\vec{x} = \vec{b}$ to have? (Select all that apply)

- (a) exactly one
- (b) infinite
- (c) none

» Question 2

True or False? If *A* is invertible, then the only solution to $A\vec{x} = \vec{0}$ is $\vec{x} = \vec{0}$.

» Activity

Let
$$A = \begin{bmatrix} 3 & 2 \\ 0 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} -2 & 0 \\ 1 & 1 \end{bmatrix}$.

Compute the following using MATLAB:

- (a) A^{-1}
- (b) B^{-1}
- (c) $(AB)^{-1}$
- (d) $A^{-1}B^{-1}$
- (e) $B^{-1}A^{-1}$

» Inverse of product

Theorem: Let A and B be two invertible $n \times n$ matrices. Then $\overline{(AB)}^{-1} = B^{-1}A^{-1}$.

» Diagonal entries

Definition: Let A be an $m \times n$ matrix. The diagonal of A consists of the entries a_{11}, a_{22}, \ldots

Example:
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}$$

Example:
$$B = \begin{bmatrix} 3 & 1 & 7 \\ 8 & 7 & -2 \\ 0 & 5 & -1 \end{bmatrix}$$

» Diagonal matrix

Definition

Definition: A diagonal matrix is an $n \times n$ matrix in which the only nonzero entries lie on the diagonal.

Example:
$$B = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

Remark: For a matrix to be a diagonal matrix, it must be square (same number of rows as columns).

» Inverse of diagonal matrices

Fact: If *A* is a diagonal matrix with diagonal entries d_1 , d_2 , ..., d_n , i.e.,

$$A = \begin{bmatrix} d_1 & 0 & \dots & 0 \\ 0 & d_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & d_n \end{bmatrix}$$

where none of the diagonal entries are zero then A^{-1} exists and is equal to

$$A^{-1} = egin{bmatrix} 1/d_1 & 0 & \dots & 0 \ 0 & 1/d_2 & \dots & 0 \ dots & dots & \ddots & dots \ 0 & \dots & 0 & 1/d_n \end{bmatrix}$$

Properties of Transpose

» Transpose

Definition

Definition: Let A be an $m \times n$ matrix. The **transpose** of A, denoted A^T , is the $n \times m$ matrix whose columns are the respective rows of A.

» Properties of the Matrix Transpose

Let A and B be matrices where the following operations are defined, and let k be a scalar. Then:

1.
$$(A + B)^T = A^T + B^T$$

$$2. (kA)^T = kA^T$$

3.
$$(AB)^T = B^T A^T$$

4.
$$(A^{-1})^T = (A^T)^{-1}$$

$$5. (A^T)^T = A$$

» Transpose of Product

Question: Let
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 1 & -1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 7 & 0 \\ 6 & -2 \\ 1 & 0 \end{bmatrix}$.

Use MATLAB to compute the following:

- (a) A^T
- (b) B^T
- (c) $(AB)^T$
- (d) A^TB^T
- (e) $B^T A^T$

» Properties of the Matrix Transpose

Example

Question: Let A and B be any $n \times n$ invertible matrices. Simplify $((A^{-1}B^{-1})^T)^{-1}$.

» Symmetric and Skew Symmetric

Definition: A matrix A is symmetric if $A^T = A$

Example:
$$A = \begin{bmatrix} 1 & 6 & 5 \\ 6 & 4 & 3 \\ 5 & 3 & 2 \end{bmatrix}$$

Definition: A matrix A is skew symmetric if $A^{T} = -A$.

Example:
$$A = \begin{bmatrix} 0 & -1 & 2 \\ 1 & 0 & 1 \\ -2 & -1 & 0 \end{bmatrix}$$