Отчет по лабораторной работе № 1.3.1

«Определение модуля Юнга на основе исследования деформаций растяжения и изгиба»

Выполнил Смирнов Иван и Сапронов Юрий, студент Б02-004 13 декабря 2020 г.

Аннотация

Работа заключается в экспериментальном получении значения модуля Юнга. Для этого в первой части эксперимента с помощью прибора Лермантова измеряется зависимость между напряжением и деформацией для одноосного растяжения, а во второй части с помощью перечисленного ниже оборудования измеряется та же зависимость для чистого изгиба.

В работе используются: в первой части - прибор Лермантова, проволока из исследуемого материала, зрительная труба со шкалой, набор грузов, микрометр, рулетка; во второй части - стойка для изгибания балки, индикатор для измерения величины прогиба, набор исследуемых стержней, грузы, линейка, штангенциркуль.

В первой части эксперимента производится растяжение, что соответствует одноосному наппряженному состоянию, которое описывается формулой, основанной на эмпирических данных:

$$\sigma = E\epsilon, \tag{1}$$

где σ - напряжение, E - модуль упругости, он же модуль Юнга, ϵ - деформация, она же в данном случае относительное удлинение.

Во второй части же измерения производят при изгибе балки. Связь между ее прогибом и величиной силы, приложенной посредине между точками опор балки, может быть выражена через модуль Юнга.

Одноосное напряжение

Теоретическая справка

Запишем закон Гука:

$$\frac{P}{S} = E \frac{\Delta L}{L},\tag{2}$$

где S - площадь поперечного сечения проволоки, P - вес нагрузки.

При малых ΔL угол α также можно считать малым, тогда, пользуясь геометрией установки, распишем тангенс угла между рычагом и горизонталью, который, как может быть видно, также равен углу между лучами из трубки:

$$2\alpha = \frac{\Delta L}{r}, \Delta S \approx 2\alpha h \Rightarrow \Delta L \approx \frac{\Delta Sr}{2h}.$$
 (3)

Рассчитаем величину предельной нагрузки, действие которой приводит к необратимой деформации. Она составляет не более 30% от разрушающей равной $900H/\text{мм}^2$. То есть, говоря о массе грузов, мы можем навесить не больше

Рис. 1: L - длина проволоки, r - длина рычага, ΔL - удлинение проволоки, α - угол отклонения зеркала, h - расстояние от шкалы до зеркала, ΔS - изменение по шкале.

10 килограмм. Выходит так, что лабораторная установка не позволяет использовать и половины такой нагрузки, поэтому необратимой деформацией мы пренебрегаем.

Измерения, погрешности и конечный результат

Снимем зависимость удлинения проволоки, то есть числа делений п по шкале, от массы грузов *т* при увеличении и уменьшении нагрузки. Результаты приведем в таблице 2. Усредним измерения для каждой нагрузки и учтем погрешности - таблица 2. Подставим измерения по шкале в формулу (4), рассчитаем погрешности, результаты вынесем в таблицу 3 и на основании них построим график зависимости удлинения проволоки от нагрузки - рисунок 2. На рисунке 2 видим аппроксимирующую прямую, которая была построена по МНК. Коэффициент наклона известен и погрешность рассчитана, вычисления приведены не будут.

Модуль Юнга будем рассчитывать по следующей формуле:

$$E = \frac{4kl}{\pi d^2},\tag{4}$$

Где $d=0,73\times 10^{-4}$ м, $l=(17747\pm 7)\times 10^{-4}$ м. В результате имеем таблицу 4 с конечными результатами измерения.

Вес нагрузки, Н	Измерение 1, мм	Измерение 2, мм
4.6	16.7	16.8
9.6	19.5	19.5
14.6	21.3	21.6
19.5	23.2	23.5
24.4	26.5	26.5
29.3	28.9	29.1
24.4	26.5	26.6
19.5	23.5	23.7
14.6	21.5	21.6
9.6	19.9	20.1
4.6	16.8	16.5

Таблица 1: Измерение изменения на шкале в зависимости от нагрузки.

Измерение по шкале, мм	Случайная, мм	Статистическая,мм	Полная, мм
16.7	1.62	0.05	1.62
19.8	0.30	0.05	0.30
21.5	0.14	0.05	0.15
23.5	0.21	0.05	0.21
26.5	0.06	0.05	0.08
29.0	0.14	0.05	0.15

Таблица 2: Усреднение измерений и их погрешности.

Вес нагрузки, Н	Удлинение, мм	Погрешность, мм
4.6	0.079	0.008
9.6	0.094	0.001
14.6	0.102	0.001
19.5	0.112	0.001
24.4	0.126	0.000
29.3	0.138	0.001

Таблица 3: Точки для графика.

Рис. 2: График зависимости удлинения проволоки от веса нагрузки.

Коэффициент наклона к [Н/мм]	430.98
Коэффициент смещения b [мм]	0.069
Погрешность коэффициента наклона к [Н/мм]	8.444
Модуль Юнга [Н/м^2]	1.4×10^{11}
Погрешность определения модуля Юнга [Н/м^2]	3×10^{9}

Таблица 4: Итог первого эксперимента.

Изгиб балки

Теоретическая справка

Рис. 3: Изгиб балки.

Рассмотрим деформацию балки. В силу симметричного расположения призм опоры можем считать, что если в центр балки действует сила P, то в точках

опоры действуют силы P/2. Считаем, что напряжения в слоях связаны с их деформацией законом Гука:

$$\sigma = E \frac{dl - dl_0}{dl_0}. (5)$$

В выделенном на рисунке элементе балки наклон средней линии на ее длине dl_0 меняется от α до $\alpha - d\alpha$. Длину дуги можно выразить через радиус ее кривизны R:

$$dl_0 = -Rd\alpha. (6)$$

Знак минус здесь потому, что R мы считаем положительным, а угол наклона средней линии балки в выбранных на рисунке координатах уменьшается по длине балки. Если y(x) - зависимость, описывающая форму средней линии балки в выбранной системе координат x,y, то угол наклона средней линии определяется выражением, соответствующий геометрическому смыслу производной функции:

$$\frac{dy(x)}{dx} = \tan \alpha. \tag{7}$$

Длину средней линии малого элемента балки можно выразить следующим образом:

$$dl_0 = \sqrt{(dx)^2 + (dy)^2} = dx\sqrt{1 + (\frac{dy}{dx})^2}.$$
 (8)

Из этого же треугольника:

$$\frac{dx}{dl_0} = \cos \alpha. \tag{9}$$

Дифференцируя (6) по x и пользуясь (2), получаем:

$$\frac{d^2y}{dx^2} = -(\frac{dl_0}{dx})^3 \frac{1}{R}. (10)$$

Отсюда и из (7) следует:

$$\frac{1}{R} = -\frac{y''}{(1+y'^2)^{3/2}}. (11)$$

Сумма сил упругости, действующих в сечении балки, равна нулю, поэтому их суммарный момент не зависит от положения точки, относительно которой он вычисляется. Выберем эту точку на среденей линии балки, проинтегрируем элементарный момент по dS и получим:

$$M = \frac{E}{R}I. (12)$$

I - момент инерции поперечного сечения балки относительно оси, проходящей через среднюю линию балки. Из рисунка видно, что для части былки от x=0 до x равновесие обеспечивается равенствомсил, приложенных в точке опоры и в рассматриваемом сечении, а также равенством моментов этих сил и момента, определяемого формулой (11). Равенство моментов дает:

$$\frac{EI}{R} = \frac{xP}{2}. (13)$$

Тогда при малых прогибах $y'' \ll 1$ из (12) следует:

$$y'' = -\frac{P}{2EI}x \Rightarrow y' = -\frac{P}{4EI}x^2 + C.$$
 (14)

C - постоянная, которая определяется из условия симметрии прогиба балки y'=0 при x=l/2. Тогда:

$$y' = -\frac{P}{4EI}(x^2 - \frac{l^2}{4}) \Rightarrow y = \frac{Px}{48EI}(3l^2 - 4x^2). \tag{15}$$

Максимальный прогиб балки, который определяется величиной y при x=l/2, равен:

$$y_m ax = \frac{Pl^3}{48EI}. (16)$$

В случае прямоугольного сечения балки:

$$I = -\int_{-b/2}^{b/2} \xi^2 dS = a \int_{-b/2}^{b/2} \xi^2 d\xi = \frac{ab^3}{12}.$$
 (17)

Тогда окончательно получаем выражение для модуля Юнга:

$$E = \frac{Pl^3}{4ab^3 y_{max}}. (18)$$

Здесь P - нагрузка, вызывающая прогиб стержня, l - расстояние между призмами A и B, a и b - ширина и высота сечения стержня.

Измерения, погрешности и конечный результат

Измерим указанные геометрические параметры каждой балки и результаты выведем в таблицу 5. В ней же рассчитаем полную погрешность для каждого параметра - она равна корню из суммы квадратов инструментальной и случайной погрешностей:

Д	еревянная бал	тка 1	Μe	таллическая	балка	Деревянная	я балка 2	
Длина, см	Высота, мм	Ширина, мм	Длина, см	Высота, мм	Ширина, мм	Длина, см	Высота, мм	Ширина, мм
50.5	9.17	19.1	50.5	3.92	21.7	50.5	10.25	19.86
-	9.12	19.3	-	3.98	21.9	-	10.17	20.72
-	9.13	19.1	-	3.97	21.9	-	10.21	20.81
-	9.03	19.3	=	4.03	22.0	-	10.21	20.70
-	9.05	19.5	-	4.06	22.2	-	9.95	20.56
-	8.97	19.6	=	3.94	21.9	-	9.96	20.43
-	8.9	19.4	=	3.98	21.7	-	10.04	20.40
-	9.17	19.3	-	3.93	21.6	-	10.15	20.45
-	9.21	19.2	=	3.94	21.5	=	10.19	20.51
-	9.23	18.9	-	3.93	21.6	-	10.22	20.51
	Средние значения		Средние значения			C	редние значе	кин
50.5	9.10	19.27	50.5	3.97	21.8	50.5	10.14	20.495
Случайна	Случайная погрешность измерения		Случайная погрешность измерения		Случайна	я погрешност	ь измерения	
-	0.108	0.206	=	0.046	0.22	=	0.111	0.261
Инструм	Инструментальная погрешность		Инструментальная погрешность		иность Инструментальная погрешност		грешность	
0.05	0.005	0.005	0.05	0.005	0.005	0.05	0.005	0.005
По	лная погреш	ность	Полная погрешность Полная погрешность		ность			
0.005	0.108	0.206	0.005	0.047	0.22	0.005	0.111	0.261

Таблица 5: Измерение геометрических параметров балок.

Изучение первой деревянной балки

Положим первую деревянную балку на стойку. Снимем зависимость стрелы прогиба y_{max} от величины нагрузки Р. Затем сместим точку приложения нагрузки. Перевернем балку и проделаем те же действия. Будем снимать зависимость при возрастании и убывании нагрузки. Результаты выведем в таблице 6.

Построим графики зависимостей величины прогиба от величины нагрузки для каждого из измерений - рисунок 4. На графиках изображены аппроксимирующие прямые, построенные по МНК. Коэффициенты наклона и смещения прямых, их погрешности - отразим в таблице 7.

Получив коэффициент наклона и его погрешность, подставим необходимые данные в формулу (18). Погрешность посчитаем как для степенной зависимости:

$$\sigma_E = E \times \sqrt{\left(\frac{\sigma_k}{k}\right)^2 + \left(\frac{\sigma_a}{a}\right)^2 + 9\left(\frac{\sigma_b}{b}\right)^2 + 9\left(\frac{\sigma_l}{l}\right)^2}.$$

Получим итоговое значение модуля Юнга первой деревянной балки:

$$E = (669 \pm 55) \times 10^8 \Pi a$$

Величина	Прогиб	Прогиб	Прогиб	Прогиб	
нагрузки, Н	посередине,	со смещением,	посередине балки,	со смещением, мм	
нагрузки, п	мм сторона 1	мм сторона 1	мм сторона 2	сторона 2	
4.5	0.58	0.56	0.61	0.59	
9.5	1.25	1.24	1.25	1.23	
14.1	1.85	1.84	1.86	1.83	
18.7	2.50	2.43	2.47	2.48	
14.1	1.88	1.87	1.90	1.89	
9.5	1.28	1.24	1.28	1.28	
4.5	0.60	0.55	0.59	0.58	
		Усреднение г	величин	•	
4.5	0.59	0.56	0.60	0.59	
9.5	1.27	1.24	1.27	1.26	
14.1	1.87	1.86	1.88	1.86	
18.7	2.50	2.43	2.47	2.48	
Статистическая погрешность					
во всех измерениях					
${ m coctab}$ ля ${ m er}$ $0.02~{ m mm}$					
- погрешность инструмента.					

 Таблица 6: Зависимость величины прогиба от величины нагрузки для первой деревянной балки.

Рис. 4: Графики зависимостей величины прогиба y_{max} от величины нагрузки P для каждого из экспериментов.

МНК для зависимостей прогиба от нагрузки					
Коэффициент наклона для первого эксперимента [мм/Н]	0.1	34			
Коэффициент наклона для второго эксперимента [мм/Н]	0.1	32			
Коэффициент наклона для третьего эксперимента [мм/Н]	0.1	32			
Коэффициент наклона для четвертого эксперимента [мм/Н]	0.1	33			
Коэффициент смещения для первого эксперимента [мм]	-0.0)12			
Коэффициент смещения для второго эксперимента [мм]	-0.0)22			
Коэффициент смещения для третьего эксперимента [мм]	0.0	13			
Коэффициент смещения для четвертого эксперимента [мм]	-0.007				
Погрешность вычисления коэффициентов М1	łK				
Коэффициент наклона для первого эксперимента [мм/Н]	0.00889	6.63%			
Коэффициент наклона для второго эксперимента [мм/Н]	0.01716	13.00%			
Коэффициент наклона для третьего эксперимента [мм/Н]	0.00774	5.87%			
Коэффициент наклона для четвертого эксперимента [мм/Н]	0.00534	4.02%			
Итоговый коэффициент наклона [мм/H]	Итоговый коэффициент наклона [мм/Н]				
Усредненный коэффициент наклона [мм/Н]	0.1327	-			
Случайная погрешность вычисления коэффициента наклона	0.0009	-			
Статистическая погрешность вычисления коэффициента наклона	0.0098	=			
Полная погрешность вычисления коэффициента наклона	0.0098	7.40%			

Таблица 7: Коэффициенты МНК для первой деревянной балки.

Изучение металлической балки

Положим металлическую балку на стойку. Снимем зависимость стрелы прогиба y_{max} от величины нагрузки Р. Затем сместим точку приложения нагрузки. Перевернем балку и проделаем те же действия. Будем снимать зависимость при возрастании и убывании нагрузки. Результаты выведем в таблице 8.

Построим графики зависимостей величины прогиба от величины нагрузки для каждого из измерений - рисунок 5. На графиках изображены аппроксимирующие прямые, построенные по МНК. Коэффициенты наклона и смещения прямых, их погрешности - отразим в таблице 7.

Получив коэффициент наклона и его погрешность, подставим необходимые данные в формулу (18). Погрешность посчитаем как для степенной зависимости:

$$\sigma_E = E \times \sqrt{\left(\frac{\sigma_k}{k}\right)^2 + \left(\frac{\sigma_a}{a}\right)^2 + 9\left(\frac{\sigma_b}{b}\right)^2 + 9\left(\frac{\sigma_l}{l}\right)^2}.$$

Получим итоговое значение модуля Юнга первой деревянной балки:

$$E = (135 \pm 15) \times 10^8 \Pi a.$$

Рис. 5: Графики зависимостей величины прогиба y_{max} от величины нагрузки P для каждого из экспериментов.

Величина	Прогиб	Прогиб	Прогиб	Прогиб	
нагрузки, Н	посередине,	со смещением,	посередине,	со смещением,	
нагрузки, п	мм сторона 1	мм сторона 1	мм сторона 2	мм сторона 2	
4.5	1.01	0.99	1.03	0.96	
9.5	2.19	2.10	2.30	2.15	
14.1	3.19	3.25	3.35	3.23	
18.7	4.28	4.31	4.54	4.29	
14.1	3.25	3.26	3.49	3.35	
9.5	2.17	2.25	2.45	2.35	
4.5	1.01	1.16	1.22	1.10	
	7	Усреднение велич	чин		
4.5	1.01	1.08	1.13	1.03	
9.5	2.18	2.18	2.38	2.25	
14.1	3.22	3.26	3.42	3.29	
18.7	4.28	4.31	4.54	4.29	
	Статистическая погрешность				
во всех измерениях					
составляет 0,02 мм					
	- пог	решность инстру	умента.		

 Таблица 8: Зависимость величины прогиба от величины нагрузки для

 первой деревянной балки.

МНК для зависимостей прогиба от нагрузки			
Коэффициент наклона для первого эксперимента [мм/Н]	0.2298	99497	
Коэффициент наклона для второго эксперимента [мм/Н]	0.2281	22757	
Коэффициент наклона для третьего эксперимента [мм/Н]	0.2388	37042	
Коэффициент наклона для четвертого эксперимента [мм/Н]	0.2293	61091	
Коэффициент смещения для первого эксперимента [мм]	-0.0173	324121	
Коэффициент смещения для второго эксперимента [мм]	0.0384	63747	
Коэффициент смещения для третьего эксперимента [мм]	0.0731	06604	
Коэффициент смещения для четвертого эксперимента [мм]	0.031475233		
Погрешность вычисления коэффициентов МІ	IK		
Коэффициент наклона для первого эксперимента [мм/Н]	0.00928	4.04%	
Коэффициент наклона для второго эксперимента [мм/Н]	0.01951	8.55%	
Коэффициент наклона для третьего эксперимента [мм/Н]	0.02721	11.39%	
Коэффициент наклона для четвертого эксперимента [мм/Н]	0.03880	16.91%	
Итоговый коэффициент наклона [мм/Н]			
Усредненный коэффициент наклона [мм/Н]	0.2316	-	
Случайная погрешность вычисления коэффициента наклона	0.0043	-	
Статистическая погрешность вычисления коэффициента наклона	0.0237	-	
Полная погрешность вычисления коэффициента наклона	0.0241	10.40%	

Таблица 9: Коэффициенты МНК для металлической балки.

Изучение второй деревянной балки

Положим металлическую балку на стойку. Снимем зависимость стрелы прогиба y_{max} от величины нагрузки Р. Затем сместим точку приложения нагрузки. Перевернем балку и проделаем те же действия. Будем снимать зависимость при возрастании и убывании нагрузки. Результаты выведем в таблице 10.

Построим графики зависимостей величины прогиба от величины нагрузки

для каждого из измерений - рисунок 6. На графиках изображены аппроксимирующие прямые, построенные по МНК. Коэффициенты наклона и смещения прямых, их погрешности - отразим в таблице 7.

Получив коэффициент наклона и его погрешность, подставим необходимые данные в формулу (18). Погрешность посчитаем как для степенной зависимости:

$$\sigma_E = E \times \sqrt{\left(\frac{\sigma_k}{k}\right)^2 + \left(\frac{\sigma_a}{a}\right)^2 + 9\left(\frac{\sigma_b}{b}\right)^2 + 9\left(\frac{\sigma_l}{l}\right)^2}.$$

Получим итоговое значение модуля Юнга первой деревянной балки:

$$E = (447 \pm 38) \times 10^8 \Pi a.$$

Вывод

Изучена зависимость между напряжением и деформацией (закон Гука) для двух простейших напряженных состояний упругих тел: одноосного растяжения и чистого изгиба; по результатам измерений были вычислены модули Юнга для каждого из материалов.

Величина	Прогиб	Прогиб	Прогиб	Прогиб		
нагрузки, Н	посередине,	со смещением,	посередине,	со смещением,		
нагрузки, п	мм сторона 1	мм сторона 1	мм сторона 2	мм сторона 2		
4.5	0.58	0.56	0.52	0.54		
9.5	1.36	1.27	1.22	1.24		
14.1	1.95	1.89	1.85	1.83		
18.7	2.63	2.53	2.49	2.50		
14.1	2.01	1.93	1.89	1.91		
9.5	1.38	1.32	1.31	1.32		
4.5	0.69	0.65	0.65	0.68		
	7	Усреднение велич	нин			
4.5	0.64	0.61	0.59	0.61		
9.5	1.37	1.30	1.27	1.28		
14.1	1.98	1.91	1.87	1.87		
18.7	2.63	2.53	2.49	2.50		
Статистическая погрешность						
во всех измерениях						
составляет 0,02 мм						
	- погрешность инструмента.					

Таблица 10: Зависимость величины прогиба от величины нагрузки для второй деревянной балки.

Рис. 6: Графики зависимостей величины прогиба y_{max} от величины нагрузки P для каждого из экспериментов.

МНК для зависимостей прогиба от нагрузки				
Коэффициент наклона для первого эксперимента [мм/Н]	0.1394	47236		
Коэффициент наклона для второго эксперимента [мм/Н]	0.1349	78464		
Коэффициент наклона для третьего эксперимента [мм/Н]	0.1334	88873		
Коэффициент наклона для четвертого эксперимента [мм/Н]	0.1326	27423		
Коэффициент смещения для первого эксперимента [мм]	0.0234	67337		
Коэффициент смещения для второго эксперимента [мм]	0.0082	51974		
Коэффициент смещения для третьего эксперимента [мм]	-0.0068	319813		
Коэффициент смещения для четвертого эксперимента [мм]	0.013259153			
Погрешность вычисления коэффициентов МНК				
Коэффициент наклона для первого эксперимента [мм/Н]	0.01713	12.28%		
Коэффициент наклона для второго эксперимента [мм/Н]	0.00701	5.20%		
Коэффициент наклона для третьего эксперимента [мм/Н]	0.00646	4.84%		
Коэффициент наклона для четвертого эксперимента [мм/Н]	0.00972	7.33%		
Итоговый коэффициент наклона [мм/Н]				
Усредненный коэффициент наклона [мм/Н]	0.1351	ı		
Случайная погрешность вычисления коэффициента наклона	0.0026	-		
Статистическая погрешность вычисления коэффициента наклона	0.0101	=		
Полная погрешность вычисления коэффициента наклона	0.0104	7.71%		

Таблица 11: Ko эффициенты MHK для металлической балки.