Zero-Knowledge Proofs for Balancing Privacy and Accountability

Anna Lysyanskaya Brown University

The Money Cycle

The Money Cycle

- Three protocols: Withdraw, Spend, Deposit
- Desirable properties:
 - can't forge/copy money
 - can't trace how cash was spent

Electronic Payments

- Three protocols: Witheran Spend, Deposit
- Desirable properties:
 - can't forge/copy money
 - can't trace how cash was spent

Ecash [Chaum82,CFN89]

- Unforgeability: Alice can't spend more \$\$ than she withdrew
 - Online ecash: each coin has a serial number, Merchant can't deposit unless it's unspent
 - Offline ecash: if Alice double-spent, can ID and punish her after the fact
- · Privacy: colluding B&M can't trace how a coin is spent.

Roadmap for This Talk

- Main idea of off-line ecash [CFN89 + CL02] and compact ecash [CHL05] [
- Balancing anonymity and accountability:
 - How to prevent money laundering [CHL06]
 - How to trace rogue users' transactions
 - How to implement authorized watchlists [KLN23]
- · What to standardize to make this a reality

Warning: there might be a pop quiz...

- Building blocks we will optimize them later:
 - digital signatures
 - secure two-party computation
 - ZK proofs of knowledge

WITHDRAW a coin under Bank's public key pk:

SPEND:

· DEPOSIT:

Can't Forge Money/Double-Spend

R

A (the coin's serial number)
T = x + RB mod Q (double-spending equation)

NIZKPOK of (x,B,σ) such that

1. T = x + RB

2. VerifySig(pk,(x,A,B), σ) =

TRUE

User Privacy

R

A (the coin's serial number)
T = x + RB mod Q (double-spending equation)

NIZKPOK of (x,B,σ) such that

- 1. T = x + RB
- 2. VerifySig(pk,(x,A,B), σ) =

TRUE

Real-Life Money (again)

Compact Ecash

- · Algs: Setup, Withdraw, Spend, Deposit, Identify
- Withdraw: a wallet with N coins
- Spend, deposit: just one coin
- Want: complexity of protocols O(log N), not O(N)

Compact Ecash: Main Idea [CHL05]

WITHDRAW \$N:

• SPEND \$1 for the i^{th} time: Let $F_{()}()$ be a pseudorandom function family

 $A = F_s(i)$ (the coin's serial number) $T = x+RF_t(i) \mod Q$ (double-spending equation)

NIZKPOK of (i,x,s,t,σ) such that

- $1.1 \le i \le N$
- 2. $A = F_s(i)$
- 3. $T = x + RF_{+}(i)$
- 4. $VerifySig(pk,(x,s,t), \sigma) = TRUE$

Compact Ecash: Main Idea [CHL05]

Coming up soon: a POP QUIZ!

Roadmap for This Talk

- Main idea of off-line ecash [CFN89 + CL02] and compact ecash [CHL05] [
- Balancing anonymity and accountability:
 - How to prevent money laundering [CHL06]
 - How to trace rogue users' transactions
 - How to implement authorized watchlists [KLN23]
- · What to standardize to make this a reality

POP QUIZ:

Each user is allowed to spend only up to 100 coins with the Cheshire Cat. Modify the Compact Ecash construction so that the 101^{st} spend with the Chesire Cat leads the Bank to identify the user

Hint: a coin can have multiple serial numbers

Preventing Money Laundering [CHL06]

WITHDRAW \$N:

SPEND the ith coin; this is the jth time with this Merchant

Cannot be done with physical cash! Was an open problem too, for a while.

Preventing Money Laundering [CHL06]

Cannot be done with physical cash! Was an open problem too, for a while.

POP QUIZ 2:

If you double-spend < 4 e-tokens, these e-tokens are linked, but your identity cannot be established. If you double-spend 4 times, you are identified.

Hint: use multiple R₁, ..., R_L

Glitc

Suppose spend N+4 coins

- => repeating $A=F_s(i)$ for some i (possibly for i_1 , i_2 , i_3 , i_4)
- => L pops out of repeating A using T, T', R, R'
 - => link them together!
- => F_u(i) pops out of repeating A using Y, Y', R, R'
- => each overspending gives $x + r_1 z_1 + r_2 z_2 + r_3 z_3 = Z - F_{ij}(i)$

$$A = F_s(i)$$

 $T = L + RF_t(i)$
 $Y = F_u(i) + RF_v(i)$
 $Z = x + r_1 z_1 + r_2 z_2 + r_3 z_3 + F_u(i)$

NIZKPOK of $(i,x,s,t,u,v,L,z_1,z_2,z_3,\sigma)$ such that

- $1.1 \le i \le N$
- 2. $A = F_s(i)$, $T = L + RF_t(i)$, $Y = F_{ii}(i) + RF_v(i)$
- 3. $Z = x + r_1 z_1 + r_2 z_2 + r_3 z_3 + F_u(i)$
- 4. VerifySig(pk,(\bar{x} , \bar{s} ,t,u, \bar{v} , \bar{L} , z_1 , \bar{z}_2 , z_3), σ)

POP QUIZ 3:

Construct an ecash scheme where double-spending leads not just to identification, but also to traceability of past transactions from the same wallet.

Hint: double-spending makes s recoverable

Traceability [CHKLM06]

WITHDRAW:

SPEND \$1 for the ith time:

Roadmap for This Talk

- Main idea of off-line ecash [CFN89 + CL02] and compact ecash [CHL05] [
- Balancing anonymity and accountability:
 - How to prevent money laundering [CHL06] [
 - How to trace rogue users' transactions [CHL06] [
 - How to implement authorized watchlists [KLN23]
- · What to standardize to make this a reality

Watchlists [KLN23]

WITHDRAW:

Escrow = { Enc(random) otherwise

NOTE: using homomorphic encryption can compute Escrow

without knowing the watchlist

NIZKPOK of $(x,seeds,name,\sigma)$ such that

- 1. E-coin was computed correctly from seeds
- 2. Escrow was computed correctly from name and encrypted watchlist
- 3. VerifySig(pk,(x,seeds,name), σ)

Roadmap for This Talk

- Main idea of off-line ecash [CFN89 + CL02] and compact ecash [CHL05] [
- Balancing anonymity and accountability:
 - How to prevent money laundering [CHL06] [
 - How to trace rogue users' transactions [CHL06] [
 - How to implement authorized watchlists [KLN23] [
- · What to standardize to make this a reality

Building Blocks to Standardize

- Pedersen commitments [Ped92]:
 - If G is a group with generators $g_1, g_2, ..., g_n$, h commit to $x_1, x_2, ... x_n$ $C = g_1^{\times 1} g_2^{\times 2} ... g_n^{\times n} h^r$ for random r < |G|
 - [Krenn,Orrù,ZKProof'21]: ZKPOKs of committed values w a Boolean props
- CL sigs -- the one that's a serious contender is BBS+
 - Efficient, provably secure sig (Strong RSA [CLO2], LRSW or SDHI [B. 4,CLO4])
 - Efficient protocol for getting a sig on a set of Ped-committed values (x_1, \dots, x_n)
 - Efficient protocol for proving knowledge of a sig on a set of Ped-committee lives

Building Blocks to Standardize

.041)

SPEND:

 $A = F_s(i)$, $T = x+RF_t(i) \mod Q$ C_i, C_x, C_s, C_t : Pedersen commitments to i,x,s,t ZKPÔΚ of (i,×,s,t,σ) such that

seeds s,t

 $\sigma = \sigma_{nk}(x,s,t)$

- 0. They correspond to C_i, C_j, C_c, C_t
- 1. 1 ≤ i ≤ N
- 2. $A = F_s(i)$
- 3. $T = x + RF_{t}(i)$
- 3. $T = x + RF_{+}(i)$?????? 4. $VerifySig(pk,(x,s,t), \sigma) = TRUE$

Building Blocks to Standardize Pedersen commitments [Ped92]:

- - If G is a group with generators $g_1, g_2, ..., g_n$, h commit to $x_1, x_2, ... x_n$: $C = g_1^{\times 1} g_2^{\times 2} ... g_n^{\times n} h^r \text{ for random } r < |G|$
 - [Krenn, Orrù, ZKProof'21]: NIZKPOKs of committed values w algebraic and Boolean props
- CL sigs -- the one that's a serious contender is BBS+
 - Efficient, provably secure sig (Strong RSA [CL02], LRSW or SDHI [BBS04,CL04])
 - Efficient protocol for getting a sig on a set of Ped-committed values $(x_1, x_2, ..., x_n)$
 - Efficient protocol for proving knowledge of a sig on a set of Ped-committed values
- Dodis-Yampolsky PRF with proof protocols (based on NIZKPOKs above)
- For watchlists: ElGamal encryption
 - NIZK proof that escrow was computed correctly is also based on the same NIZKPOK proof systems

LEGO · In stock Identity and Landscape Kit 2000430 ...

Conclusion + Discussion

- In theory, we can have our cake and eat it too! What's stopping us in practice?
 - Policy makers are not aware/mistrustful of these tools?
 - https://www.aclu.org/documents/paths-toward-accepta ble-public-digital-currency
 - Lack of standards and practical implementations?
 - https://datatracker.ietf.org/doc/draft-irtf-cf rg-bbs-signatures/
 - Hyperledger project's implementation
 - What are the practical use cases? E.g. what does the Federal Reserve want/need a digital dollar to look like?