Théorie des graphes - Chapitre 1 : Les graphes

Table des matières

1	Introduction	2
2	Historique	3
3	Application	3
4	Point de vue	3
5	Définition usuelle	3
	5.1 Boucle 5.2 Voisinage d'un somment 5.3 Degrés d'un sommet 5.4 Degrés d'un graphe 5.5 Chemin 5.6 Cycle 5.7 Marche 5.8 Sous-graphe 5.9 Mineur de graphe 5.10 Complémentaire de graphe 5.11 Isomorphisme de graphe	3 4 4 5 5 5 5 6 6
6	Fonction de graphes remarquable	6
	6.1 Stable ou ensemble indépendant	6
	6.2 Clique complémentaire des stables	6
	6.3 Forêts	6
	6.4 Arbre	6
	6.5 Graphe biparti	6
	6.6 Graphe connexe	7
	6.7 Composante connexe	7
7	La représentation des graphes en machine	7
	7.1 La matrice adjacence	7
	7.2 La matrice d'incidence	8
	7.2 Listo adiagonto	0

Modalité d'examen

L'UE de théorie des graphes est à 6 ECTS (Système européen de transfert et d'accumulation de crédits.

L'évaluation se fera en contrôle continue.

Ecrit n°1 (Début novembre) -> 33%

Ecrit n°2 (Fin décembre)-> 33%

Projet (TP) -> 33%

1 Introduction

Un graphe (fini) est défini sur un ensemble de sommet et par un ensemble d'arêtes tel que $E\subseteq V\times V$

Exemple 1:

G = (V, E)

 $V = \{1, 2, 3, 4\}$

 $E = \{(1,2), (2,3), (3,4), (4,1), (1,3)\} \cup \{(3,2), (4,4)\}$ $(1,2) \neq (2,1)$

Il s'agit d'un graphe orienté.

Exemple 2:

H = (w, F)

 $w = \{a, b, c, d\}$

 $F = \{\{a,b\}, \{b,c\}, \{c,d\}\}$

 $a\ b\ c\ d$

2 Historique

1726: Leonard Eules

Problème des 7 ponts Konigsberg

Si on part d'un pont particulier sur le bord de la rivière est ce qu'on peut revenir à ce même point en passant exactement une fois sur chacun des points.

1850: Hamilton

Peut on trouver un cheminement sur un graphe en passant exactement une fois sur chaque sommet.

3 Application

- Trouver un plus court chemin d'un point A à un point B.
- Minimiser le nombre de fréquence nécessaire pour un réseau de téléphonie mobile.

4 Point de vue

- $\hbox{-} Algorithmique \\$
- Algébrique
- Probabiliste
- Combinatoire

5 Définition usuelle

5.1 Boucle

Une arête dont le point de départ est le point d'arrivée.

5.2 Voisinage d'un somment

L'ensemble des sommets w tel que $v.w \in E(G)$

 $N_G(v) = \{ w \mid \{v, w\} \in E(G) \}$

Voisinage fermé noté : $V_G[v] = N_G(v) \cup \{v\}$

$$N(a) = \{b, c, e\}$$

$$N[a] = \{b, c, e, a\}$$

Voisinage entrant : $N^-(a) = \{y \in V \mid yx \in E\}$

Voisinage sortant : $N^+(a) = \{ y \in V \mid xy \in E \}$

5.3 Degrés d'un sommet

Le degré de v
 noté $d_G(v),$ est le nombre de voisin de v
. $d_G(v) = \mid v(v) \mid$

 $d_G(a) = 3$

5.4 Degrés d'un graphe

Le degrés minimum d'un graphe noté $\delta(G)$, est le nombre minimum de voisins pour un sommet dans le graphe.

$$\delta(G) = \min \mid d(v) \mid v \in V(G) \}$$

Le degrés maximum d'un graphe noté $\Delta(G)$, est le nombre maximum de voisins pour un sommet dans le graphe.

$$\Delta(G) = max \mid d(v) \mid v \in V(G) \}$$

$$\begin{array}{l} \delta(G) = 2 \\ \Delta(G) = 3 \end{array}$$

5.5 Chemin

Un chemin P est une séquence linéaire du sommets (v_1, v_2, \dots, v_k) tous les v_i sont distincts. $v_i, v_{i+1} \in E(G)$ pour tous les $i \in \{1, \dots, k-1\}$.

5.6 Cycle

Un cycle est une séquence circulaire $(v_1, v_2, \dots, v_k, v_1)$ $v_i, v_i + 1(\%k) \in E(G)$

5.7 Marche

Une marche (fermé) est une séquence d'arêtes qui sont consécutives sans contrainte de répétions.

5.8 Sous-graphe

Un sous-graphe est un graphe partiel. Soit G=(V,E) est un graphe, H=(W,F) est un sous-graphe de G si $W\subseteq V$ et $F\subseteq E$

Soit G=(V,E) est un graphe, H=(W,F) est un sous-graphe induit de G si $W\subseteq F$ et $F=E\cap (w\times w)$

H est souvent induit si on peut obtenir H à partir de G en supprimant des sommets

5.9 Mineur de graphe

Soit G = (V, E) est un graphe, H = (W, F) si H peut être obtenue à partir de G alors :

- Supprimer des sommets isolés
- Supprimer des arêtes
- Contracter d'arêtes

5.10 Complémentaire de graphe

Soit G=(V,E) un graphe non orienté. Le complémentaire de G noté \overline{G} avec $\overline{G}=(V,\overline{G})$. $\overline{E}=\begin{pmatrix} V\\2 \end{pmatrix}\backslash 2$ $\overline{G}=(V,\overline{G})$ est l'ensemble des couples $v_i,v_j\forall v_i,v_j\in V$ et $v_i\neq v_j$

5.11 Isomorphisme de graphe

Deux graphes qui sont « égaux ».

G=(V,E) et H=(W,E) sont isomorphe si et seulement si il existe une fonction bijective $v\to w$ tel que $u,v\in E(G)$ si et seulement si $\varphi(u),\varphi(v)\in E(H)$. G isomorphe à H noté $G\sim H$.

6 Fonction de graphes remarquable

6.1 Stable ou ensemble indépendant

Ensemble de sommet qui ne contient qui ne contient pas d'arêtes. S=(V,E) est un ensemble de sommet où $E=\emptyset$

6.2 Clique complémentaire des stables

K=(V,E) $E=\begin{pmatrix}V\\2\end{pmatrix}$ toutes les arêtes sont présents dans le graphe une clique sur n sommets notée k_n .

 k_1 .

k₂ ---

k₃ △

k₄ 📐

6.3 Forêts

Un graphe sans cycle

6.4 Arbre

Un graphe sans cycle et connexe

6.5 Graphe biparti

Un graphe G = (v, E) pour lequel on peut partitionner.

 $V = A \cup B(A \cap B = \emptyset)$

tel que G[A] (le graphe induit par A) et G[B] forment des stables.

6.6 Graphe connexe

Un graphe G' = (V, E) est connexe si et seulement si entre chaque paire de sommets a, b il existe un chemin dans G qui relie les sommets a et b.

6.7 Composante connexe

Une composante connexe de graphe G = (v, E) est un sous ensemble maximal S de sommets de G tel que G[S] est connexe.

Remarque : L'ensemble des composantes connexes d'un graphe forment une partition des sommets. Cette partition est unique.

La représentation des graphes en machine

La matrice adjacence 7.1

Soit M avec n lignes et n colonnes.

Chaque lignes et chaque colonnes représentent un sommet.

$$M_{i,j} = \begin{cases} 1 & \text{si } (v_i, v_j) \in E \\ 0 & \text{sinon.} \end{cases}$$

Exemple:

$$M = \begin{pmatrix} 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

Soit G un graphe avec n sommets et m arrêtes.

- espace : $O(n^2)$

- Tester l'adjacence de deux sommets : O(1)

- Connaître les voisins : O(n)

7.2 La matrice d'incidence

Les lignes représentent les sommets et les colonnes représentent les arêtes, le coefficient de la matrice d'incidence en ligne i et en colonne j vaut :

1 si le sommet v_i est une extrémité de l'arête x_j

2 si l'arête x_i est une boucle sur v_i

 $0 \, \mathrm{sinon}$

Exemple:

Prenons le cas du graphe ci-contre. Il possède 5 sommets et 6 arêtes, la matrice d'incidence aura donc 5 lignes et 6 colonnes :

le sommet 1 est l'aboutissement des arêtes 1 et 5

le sommet 2 est l'aboutissement des arêtes 1, 2 et 6

le sommet 3 est l'aboutissement des arêtes 2 et 3

le sommet 4 est l'aboutissement des arêtes 3 et 4

le sommet 5 est l'aboutissement des arêtes 4, 5 et 6

$$M = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix}$$

7.3 Liste adjacente

Une première liste qui correspond au sommet.

Pour chaque sommet on la liste des voisins.

Exemple:

Soit G un graphe avec n sommets et m arrêtes.

- Espace : O(n+m)
- Tester l'adjacence de deux sommets : $O(\min\{d(u),d(v)\})$
- Connaître les voisins : O(d(v))