SYSTEMY WSPOMAGANIA DECYZJI

PROJEKT

TYTUŁ PROJEKTU:

PROBLEM MIESZANEK

Termin: ND. 07:30

Autorzy: Michał PIETRZAK

Łukasz OBRANIAK

Spis treści

1.		Opis problemu	3
		Model matematyczny	
		Dane wejściowe	
		Zmienne decyzyjne	
c)	Warunki ograniczające	5
d)	Funkcje celu	6
3.		Załączniki	7

1. Opis problemu

W zagadnieniu optymalnego składu mieszaniny ważne jest określenie, jakie ilości podstawowych surowców należy zakupić, aby otrzymać produkt o pożądanym składzie chemicznym przy możliwie najniższych kosztach zakupu surowców.

Najważniejszym zagadnieniem w problemie mieszanek jest zagadnienie diety. Jak wiadomo, każdy organizm ludzki potrzebuje odpowiedniej ilości różnych składników do prawidłowego działania. Składniki te zawarte są w różnych produktach żywnościowych. W problemie mieszanek należy tak wszystko zaplanować, aby dokonać zakupu idealnego połączenia mieszanki, a równocześnie koszt ich zakupu był możliwie najniższy.

W *Tabeli 1.* podano zawartość witamin na 100 g produktów wraz z ich cenami oraz szkodliwościami. Należy tak zaplanować zakup produktów na dzień, aby łączny koszt zakupu był minimalny, przy jak najmniejszej łącznej szkodliwości wybranych produktów oraz jak najmniejszym przekroczeniu dziennego zapotrzebowania na witaminy.

Tabela 1. Wykaz produktów (dane podawane w mg)

Witaminy	Chleb	Mleko 2%	Pierś z	Czekolada	Pomarańcza	Marchew	
vv italilliy	żytni	WHERO 2 /0	kurczaka	mleczna	1 Ulliai alicza		
A	0,0021	0,0570	0,0279	0,0525	0,0675	5,0118	
D	0	0,001225	0,000125	0	0	0	
E	0,33	0,03	0,27	3,14	0,18	0,66	
K	1,2	0,2	0,3	5,1	0	13,2	
$\mathbf{B_1}$	0,434	0,039	0,066	0,06	0,087	0,066	
\mathbf{B}_2	0,335	0,185	0,119	0,435	0,04	0,058	
\mathbf{B}_{6}	0,075	0,038	0,56	0,045	0,06	0,138	
B ₁₂ C	0	0,00053	0,00032	0,00067	0	0	
	0,4	0,2	0	0,2	53,2	5,9	
PP	3,805	0,092	12,71	0,742	0,282	0.983	
Szkodliwość	Niska	Niska	Średnia	Wysoka	Niska	Niska	
Cena za 100g	0,60 zł	0,50 zł	1,20 zł	3,50 zł	0,50 zł	0,30 zł	

Na potrzeby projektu, szkodliwość produktów zmapowano do wartości liczbowych, jak przedstawiono to w *Tabeli 2*.

Tabela 2. Wartości liczbowe dla kategorii szkodliwości

Szkodliwość	Wartość użyta w obliczeniach
Niska	0,1
Średnia	0,5
Wysoka	1

2. Model matematyczny

a) Dane wejściowe

- a wiek
- g płeć
- f poziom aktywności fizycznej (brak, mały, umiarkowany, wysoki)
- y_1 dzienne zapotrzebowanie na witaminę A (odczytywane z *Tablicy 1*.)
- y₂ dzienne zapotrzebowanie na witaminę D (odczytywane z *Tablicy 1*.)
- y₃ dzienne zapotrzebowanie na witaminę E (odczytywane z *Tablicy 1*.)
- y₄ dzienne zapotrzebowanie na witaminę K (odczytywane z *Tablicy 1*.)
- y₅ dzienne zapotrzebowanie na witaminę B₁ (odczytywane z *Tablicy 1*.)
- y₆ dzienne zapotrzebowanie na witaminę B₂ (odczytywane z *Tablicy 1*.)
- y_7 dzienne zapotrzebowanie na witaminę B_6 (odczytywane z *Tablicy 1*.)
- y_8 dzienne zapotrzebowanie na witaminę B_{12} (odczytywane z *Tablicy 1*.)
- y₉ dzienne zapotrzebowanie na witaminę C (odczytywane z *Tablicy 1*.)
- z_{10} dzienne zapotrzebowanie na witaminę PP (odczytywane z *Tablicy 1*.)
- z_1 maksymalne dzienne zapotrzebowanie na witaminę A (odczytywane z *Tablicy 1*.)
- z₂ maksymalne dzienne zapotrzebowanie na witaminę D (odczytywane z *Tablicy 1*.)
- z₃ maksymalne dzienne zapotrzebowanie na witaminę E (odczytywane z *Tablicy 1*.)
- z₄ maksymalne dzienne zapotrzebowanie na witaminę K (odczytywane z *Tablicy 1*.)
- z_5 maksymalne dzienne zapotrzebowanie na witaminę B_1 (odczytywane z $Tablicy\ 1$.)
- z₆ maksymalne dzienne zapotrzebowanie na witaminę B₂ (odczytywane z *Tablicy 1*.)
- z_7 maksymalne dzienne zapotrzebowanie na witaminę B₆ (odczytywane z *Tablicy 1*.)
- z₈ maksymalne dzienne zapotrzebowanie na witaminę B₁₂ (odczytywane z *Tablicy 1*.)
- z₉ maksymalne dzienne zapotrzebowanie na witaminę C (odczytywane z *Tablicy 1*.)
- z₁₀ maksymalne dzienne zapotrzebowanie na witaminę PP (odczytywane z *Tablicy 1*.)

b) Zmienne decyzyjne

- x₁ ilość zakupionego produktu "Chleb żytni" (szt.)
- x₂ ilość zakupionego produktu "Mleko 2%" (szt.)
- x₃ ilość zakupionego produktu "Pierś z kurczaka" (szt.)
- x₄ ilość zakupionego produktu "Czekolada mleczna" (szt.)
- x₅ ilość zakupionego produktu "Pomarańcza" (szt.)
- x₆ ilość zakupionego produktu "Marchew" (szt.)

c) Warunki ograniczające

(1) Dla witaminy A:

$$0.0021x_1 + 0.057x_2 + 0.0279x_3 + 0.0525x_4 + 0.0675x_5 + 5.0118x_6 \ge y_1$$

 $0.0021x_1 + 0.057x_2 + 0.0279x_3 + 0.0525x_4 + 0.0675x_5 + 5.0118x_6 \le Z_1$

(2) Dla witaminy D:

$$0x_1 + 0.001225x_2 + 0.000125x_3 + 0x_4 + 0x_5 + 0x_6 \ge y_2$$

$$0x_1 + 0.001225x_2 + 0.000125x_3 + 0x_4 + 0x_5 + 0x_6 \le z_2$$

(3) Dla witaminy E:

$$0.33x_1 + 0.03x_2 + 0.27x_3 + 3.14x_4 + 0.18x_5 + 0.66x_6 \ge y_3$$

 $0.33x_1 + 0.03x_2 + 0.27x_3 + 3.14x_4 + 0.18x_5 + 0.66x_6 \le z_3$

(4) Dla witaminy K:

$$1,2x_1 + 0,2x_2 + 0,3x_3 + 5,1x_4 + 0x_5 + 13,2x_6 \ge y_4$$
$$1,2x_1 + 0,2x_2 + 0,3x_3 + 5,1x_4 + 0x_5 + 13,2x_6 \le z_4$$

(5) Dla witaminy B₁:

$$0.434x_1 + 0.039x_2 + 0.066x_3 + 0.06x_4 + 0.087x_5 + 0.066x_6 \ge y_5$$

 $0.434x_1 + 0.039x_2 + 0.066x_3 + 0.06x_4 + 0.087x_5 + 0.066x_6 \le z_5$

(6) Dla witaminy B₂:

$$0.335x_1 + 0.185x_2 + 0.119x_3 + 0.435x_4 + 0.04x_5 + 0.058x_6 \ge y_6$$

 $0.335x_1 + 0.185x_2 + 0.119x_3 + 0.435x_4 + 0.04x_5 + 0.058x_6 \le z_6$

(7) Dla witaminy B_6 :

$$0.075x_1 + 0.038x_2 + 0.56x_3 + 0.045x_4 + 0.06x_5 + 0.138x_6 \ge y_7$$

 $0.075x_1 + 0.038x_2 + 0.56x_3 + 0.045x_4 + 0.06x_5 + 0.138x_6 \le z_7$

(8) Dla witaminy B₁₂:

$$0x_1 + 0.00053x_2 + 0.00032x_3 + 0.00067x_4 + 0x_5 + 0x_6 \ge y_8$$

$$0x_1 + 0.00053x_2 + 0.00032x_3 + 0.00067x_4 + 0x_5 + 0x_6 \le z_8$$

(9) Dla witaminy C:

$$0.4x_1 + 0.2x_2 + 0x_3 + 0.2x_4 + 53.2x_5 + 5.9x_6 \ge y_9$$

 $0.4x_1 + 0.2x_2 + 0x_3 + 0.2x_4 + 53.2x_5 + 5.9x_6 \le z_9$

(10) Dla witaminy PP:

$$3,805x_1 + 0,092x_2 + 12,71x_3 + 0,742x_4 + 0,282x_5 + 0,983x_6 \ge y_{10}$$
$$3,805x_1 + 0,092x_2 + 12,71x_3 + 0,742x_4 + 0,282x_5 + 0,983x_6 \le z_{10}$$

(11) $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$

d) Funkcje celu

(1) Minimalizacja kosztu:

$$F(x_1, x_2, x_3, x_4, x_5, x_6) = 0.60x_1 + 0.50x_2 + 1.20x_3 + 3.50x_4 + 0.50x_5 + 0.30x_6$$

$$\rightarrow min$$

(2) Minimalizacja szkodliwości:

$$F(x_1, x_2, x_3, x_4, x_5, x_6) = 0.1x_1 + 0.1x_2 + 0.5x_3 + 1x_4 + 0.1x_5 + 0.1x_6 \rightarrow min$$

(3) Minimalizacja ilości witamin:

$$F(x_1, x_2, x_3, x_4, x_5, x_6)$$

$$= 1(0,0021x_1 + 0,057x_2 + 0,0279x_3 + 0,0525x_4 + 0,0675x_5 + 5,0118x_6)$$

$$+ 1(0x_1 + 0,001225x_2 + 0,000125x_3 + 0x_4 + 0x_5 + 0x_6)$$

$$+ 1(0,33x_1 + 0,03x_2 + 0,27x_3 + 3,14x_4 + 0,18x_5 + 0,66x_6)$$

$$+ 1(1,2x_1 + 0,2x_2 + 0,3x_3 + 5,1x_4 + 0x_5 + 13,2x_6)$$

$$+ 1(0,434x_1 + 0,039x_2 + 0,066x_3 + 0,06x_4 + 0,087x_5 + 0,066x_6)$$

$$+ 1(0,335x_1 + 0,185x_2 + 0,119x_3 + 0,435x_4 + 0,04x_5 + 0,058x_6)$$

$$+ 1(0,075x_1 + 0,038x_2 + 0,56x_3 + 0,045x_4 + 0,06x_5 + 0,138x_6)$$

$$+ 1(0x_1 + 0,00053x_2 + 0,00032x_3 + 0,00067x_4 + 0x_5 + 0x_6)$$

$$+ 1(0,4x_1 + 0,2x_2 + 0x_3 + 0,2x_4 + 53,2x_5 + 5,9x_6)$$

$$+ 1(3,805x_1 + 0,092x_2 + 12,71x_3 + 0,742x_4 + 0,282x_5 + 0,983x_6)$$

$$\cong 6,581x_1 + 0,843x_2 + 14,053x_3 + 9,775x_4 + 53,917x_5$$

$$+ 25,034x_6 \rightarrow min$$

3. Załączniki

[1] Tablica 1. Minimalna i maksymalna dzienna dawka witamin w zależności od wieku i płci

Tablica 1. Minimalna i maksymalna dzienna dawka witamin w zależności od wieku i płci

Wiek	Płeć	Witamina A - min	Witamina A - max	Witamina B6 - min	Witamina B6 - max	Witamina C - min	Witamina C - max	Witamina E - min	Witamina E - max
1-3 lata	Kobieta	0,3	0,6	0,5	30,0	15,0	400,0	6,0	200,0
1-3 lata	Mężczyzna	0,3	0,6	0,5	30,0	15,0	400,0	6,0	200,0
4-8 lat	Kobieta	0,4	0,9	0,6	40,0	25,0	650,0	7,0	300,0
4-8 lat	Mężczyzna	0,4	0,9	0,6	40,0	25,0	650,0	7,0	300,0
9-13 lat	Kobieta	0,6	1,7	1,0	60,0	45,0	1200,0	11,0	600,0
9-13 lat	Mężczyzna	0,6	1,7	1,0	60,0	45,0	1200,0	11,0	600,0
14-18 lat	Kobieta	0,7	2,8	1,2	80,0	65,0	1800,0	15,0	800,0
14-18 lat	Mężczyzna	0,9	2,8	1,3	80,0	75,0	1800,0	15,0	800,0
19-30 lat	Kobieta	0,7	3,0	1,3	100,0	75,0	2000,0	15,0	1000,0
19-30 lat	Mężczyzna	0,9	3,0	1,3	100,0	90,0	2000,0	15,0	1000,0
31-50 lat	Kobieta	0,7	3,0	1,3	100,0	75,0	2000,0	15,0	1000,0
31-50 lat	Mężczyzna	0,9	3,0	1,3	100,0	90,0	2000,0	15,0	1000,0
51-70 lat	Kobieta	0,7	3,0	1,5	100,0	75,0	2000,0	15,0	1000,0
51-70 lat	Mężczyzna	0,9	3,0	1,7	100,0	90,0	2000,0	15,0	1000,0
> 70 lat	Kobieta	0,7	3,0	1,3	100,0	75,0	2000,0	15,0	1000,0
> 70 lat	Mężczyzna	0,9	3,0	1,7	100,0	90,0	2000,0	15,0	1000,0