Module 9: Tries and String Matching

CS 240 - Data Structures and Data Management

Mark Petrick

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2017

Pattern Matching

- Search for a string (pattern) in a large body of text
- T[0..n-1] The text (or haystack) being searched within
- P[0..m-1] The pattern (or needle) being searched for
- Strings over alphabet Σ
- Return the first *i* such that

$$P[j] = T[i+j]$$
 for $0 \le j \le m-1$

- This is the first occurrence of P in T
- If P does not occur in T, return FAIL
- Applications:
 - Information Retrieval (text editors, search engines)
 - Bioinformatics
 - Data Mining

Pattern Matching

Example:

- T = "Where is he?"
- $P_1 =$ "he"
- $P_2 =$ "who"

Definitions:

- Substring T[i..j] $0 \le i \le j < n$: a string of length j i + 1 which consists of characters T[i], ..., T[j] in order
- A prefix of T: a substring T[0..i] of T for some $0 \le i < n$
- A suffix of T: a substring T[i..n-1] of T for some $0 \le i \le n-1$

General Idea of Algorithms

Pattern matching algorithms consist of guesses and checks:

- A **guess** is a position i such that P might start at T[i]. Valid guesses (initially) are $0 \le i \le n m$.
- A check of a guess is a single position j with 0 ≤ j < m where we compare T[i + j] to P[j]. We must perform m checks of a single correct guess, but may make (many) fewer checks of an incorrect guess.

We will diagram a single run of any pattern matching algorithm by a matrix of checks, where each row represents a single guess.

Brute-force Algorithm

Idea: Check every possible guess.

```
BruteforcePM(T[0..n-1], P[0..m-1])
T: String of length n (text), P: String of length m (pattern)
      for i \leftarrow 0 to n - m do
2. match \leftarrow true
3. i \leftarrow 0
4.
   while j < m and match do
                if T[i+j] = P[j] then
5.
6.
                   i \leftarrow i + 1
7.
                else
                     match \leftarrow false
8.
9.
           if match then
10.
                return i
11.
      return FATL
```

Example

• Example: T = abbbababbab, P = abba

a	b	b	b	a	b	a	b	b	a	b
а	b	b	a							
	a									
		а								
			a							
				a	b	b				
					а					
						a	b	b	a	

• What is the worst possible input?

$$P = a^{m-1}b$$
, $T = a^n$

• Worst case performance $\Theta((n-m+1)m)$

•
$$m \le n/2 \Rightarrow \Theta(mn)$$

Pattern Matching

More sophisticated algorithms

- Deterministic finite automata (DFA)
- KMP, Boyer-Moore and Rabin-Karp
- Do extra preprocessing on the pattern P
- We eliminate guesses based on completed matches and mismatches.

There is a string-matching automaton for every pattern P. It is constructed from the pattern in a preprocessing step before it can be used to search the text string.

Example: Automaton for the pattern P = ababaca

Petrick (SCS, UW)

Let P the pattern to search, of length m. Then

- the states of the automaton are $0, \ldots, m$
- the transition function δ of the automaton is defined as follows, for a state q and a character c in Σ :

$$\delta(q,c) = \ell(P[0..q-1]c),$$

where

- P[0..q-1]c is the concatenation of P[0..q-1] and c
- for a string s, $\ell(s) \in \{0, ..., m\}$ is the length of the longest prefix of P that is also a suffix of s.

Graphically, this corresponds to

Let T be the text string of length n, P the pattern to search of length m and δ the transition function of a finite automaton for pattern P.

```
\begin{split} & \operatorname{FINITE-AUTOMATON-MATCHER}(T,\delta,m) \\ & n \leftarrow \operatorname{length}[T] \\ & q \leftarrow 0 \\ & \text{for } i \leftarrow 0 \text{ to } n-1 \text{ do} \\ & q \leftarrow \delta(q,T[i]) \\ & \text{if } q = m \\ & \text{then print "Pattern occurs with shift" } i - (m-1) \end{split}
```

Idea of proof: the state after reading T[i] is $\ell(T[0..i])$.

- Matching time on a text string of length n is $\Theta(n)$
- This does not include the preprocessing time required to compute the transition function δ . There exists an algorithm with $O(m|\Sigma|)$ preprocessing time.
- Altogether, we can find all occurrences of a length-m pattern in a length-n text over a finite alphabet Σ with $O(m|\Sigma|)$ preprocessing time and $\Theta(n)$ matching time.

KMP Algorithm

- Knuth-Morris-Pratt algorithm (1977)
- Compares the pattern to the text in left-to-right
- Shifts the pattern more intelligently than the brute-force algorithm
- When a mismatch occurs, how much can we shift the pattern (reusing knowledge from previous matches)?

• KMP Answer: this depends on the largest prefix of P[0..j] that is a suffix of P[1..j]

what next slide would match with the text?

Suppose we have a match up to position T[i-1] = P[j-1], but not at the next position.

Define F[j-1] as the index we will have to check in P, after we bring the pattern to its next possible position (previous example: j=6, F[5]=2).

This can be computed by trying all sliding positions until finding the first one matching the text (as in previous example). We can do better:

- any possible sliding position corresponds to a prefix of P[0..j-1] that is also a *strict* suffix of it = a suffix of P[1..j-1]
- the next possible sliding position corresponds to the largest such prefix / suffix
- we let F[j-1] be the length of this prefix / suffix.

Schematically:

Schematically:

Petrick (SCS, UW) CS240 - Module 9 Fall 2017 20 / 51

Schematically:

Petrick (SCS, UW) CS240 - Module 9 Fall 2017 21 / 51

Schematically:

Schematically:

- F[0] = 0
- F[j], for j > 0, is the length of the largest prefix of P[0..j] that is also a suffix of P[1..j]
- Consider P = abacaba

j	P[1j]	Р	F[j]
0	_	abacaba	0
1	b	abacaba	0
2	ba	<u>a</u> bacaba	1
3	bac	abacaba	0
4	baca	<u>a</u> bacaba	1
5	bacab	abacaba	2
6	bac <mark>aba</mark>	abacaba	3

Computing the Failure Array

```
failureArray(P)
P: String of length m (pattern)
1. F[0] \leftarrow 0
2. i \leftarrow 1
3. i \leftarrow 0
4. while i < m do
5. if P[i] = P[j] then
6.
            F[i] \leftarrow j+1
               i \leftarrow i + 1
7.
         i \leftarrow i + 1
8.
          else if i > 0 then
9.
                 i \leftarrow F[i-1]
10.
            else
11.
                  F[i] \leftarrow 0
12.
                  i \leftarrow i + 1
13.
```

KMP Algorithm

```
KMP(T, P), to return the first match
T: String of length n (text), P: String of length m (pattern)
1. F \leftarrow failureArray(P)
2. i \leftarrow 0
3. j \leftarrow 0
4. while i < n do
            if T[i] = P[j] then
5.
6.
                 if j = m - 1 then
7.
                       return i = i //match
                 else
8.
                       i \leftarrow i + 1
9.
                      i \leftarrow i + 1
10.
11.
            else
12.
                 if j > 0 then
                      i \leftarrow F[i-1]
13.
14.
                 else
                       i \leftarrow i + 1
15.
16.
       return -1 // no match
```

KMP: Example

P = abacaba

	j	0	1	2	3	4	5	6
I	-[<i>j</i>]	0	0	1	0	1	2	3

 $T={\tt abaxyabacabbaababacaba}$

Exercise: continue with T = abaxyabacabbacaba

KMP: Analysis

failureArray

- At each iteration of the while loop, at least one of the following happens:
 - 1 increases by one, or
 - 2 the index i j increases by at least one (F[j-1] < j)
- There are no more than 2m iterations of the while loop
- Running time: $\Theta(m)$

KMP: Analysis

failureArray

- At each iteration of the while loop, at least one of the following happens:
 - 1 increases by one, or
 - 2 the index i j increases by at least one (F[j-1] < j)
- There are no more than 2m iterations of the while loop
- Running time: $\Theta(m)$

KMP

- failureArray can be computed in $\Theta(m)$ time
- At each iteration of the while loop, at least one of the following happens:
 - ① *i* increases by one, or
 - ② the index i j increases by at least one (F[j-1] < j)
- There are no more than 2n iterations of the while loop
- Running time: $\Theta(n)$

Boyer-Moore Algorithm

Based on three key ideas:

- Reverse-order searching: Compare P with a subsequence of T moving backwards
- Bad character jumps: When a mismatch occurs at T[i] = c
 - ▶ If P contains c, we can shift P to align the last occurrence of c in P with T[i]
 - ▶ Otherwise, we can shift P to align P[0] with T[i+1]
- Good suffix jumps: If we have already matched a suffix of P, then get
 a mismatch, we can shift P forward to align with the previous
 occurrence of that suffix (with a mismatch from the suffix we read). If
 none exists, look for the longest prefix of P that is a suffix of what we
 read. Similar to failure array in KMP.
- Can skip large parts of T

$$P = a \mid d \mid o$$
 $T = w \mid h \mid e \mid r \mid e \mid i \mid s \mid w \mid a \mid d \mid o$

$$P = a \quad I \quad d \quad o$$
 $T = w \quad h \quad e \quad r \quad e \quad i \quad s \quad w \quad a \quad I \quad d \quad o$

$$P = a \quad I \quad d \quad o$$
 $T = w \quad h \quad e \quad r \quad e \quad i \quad s \quad w \quad a \quad I \quad d \quad o$

$$P = m \circ o r e$$
 $T = b \circ y e r m \circ o r e$

$$P = m \circ o r e$$
 $T = b \circ y e r m \circ o r e$

$$P = m o o r e \\ T = b o y e r m o o r e \\ \hline (r) e \\ \hline (m) e \\ \hline (m) e \\ \hline$$

$$P = a \mid d \mid o$$
 $T = w \mid h \mid e \mid r \mid e \mid i \mid s \mid w \mid a \mid d \mid o$

6 comparisons (checks)

$$P = m o o r e$$
 $T = b o y e r m o o r e$
 $(r) e$
 $(m) o o r e$

7 comparisons (checks)

check m after o

 $P = sells_shells$

 $P = sells_shells$

 $P = sells_shells$

 $P = sells_shells$

 $P = sells_shells$

	S	h	е	i	ı	а	S	е	ı	ı	S	S	h	е	ı	ı	S
							h	е	1		s						
Ì							S	(e)	(1)	(I)	(s)	 S	h	е	I	I	S

- Good suffix moves further than bad character for 2nd guess.
- Bad character moves further than good suffix for 3rd guess.
- This is out of range, so pattern not found.

Last-Occurrence Function

- Preprocess the pattern P and the alphabet Σ
- Build the last-occurrence function L mapping Σ to integers
- L(c) is defined as
 - ▶ the largest index i such that P[i] = c or
 - ▶ -1 if no such index exists
- Example: $\Sigma = \{a, b, c, d\}, P = abacab$

С	а	b	С	d
L(c)	4	5	3	-1

- The last-occurrence function can be computed in time $O(m+|\Sigma|)$
- In practice, L is stored in a size- $|\Sigma|$ array.

- Again, we preprocess P to build a table.
- Suffix skip array S of size m: for $0 \le i < m$, S[i] is the largest index j such that P[i+1..m-1] = P[j+1..j+m-1-i] and $P[j] \ne P[i]$.
- Note: in this calculation, any negative indices are considered to make the given condition true (these correspond to letters that we might not have checked yet).
- Similar to KMP failure array, with an extra condition.
- Computed similarly to KMP failure array in $\Theta(m)$ time.

i	0	1	2	3	4	5	6	7
P[i]	b	0	n	0	b	0	b	0
<i>S</i> [<i>i</i>]								

i	0	1	2	3	4	5	6	7
P[i]	b	0	n	0	b	0	b	0
S[i]								6

i	0	1	2	3	4	5	6	7
P[i]	b	0	n	0	b	0	b	0
S[i]							2	6

i	0	1	2	3	4	5	6	7
P[i]	b	0	n	0	b	0	b	0
<i>S</i> [<i>i</i>]						-1	2	6

i	0	1	2	3	4	5	6	7
P[i]	b	0	n	0	b	0	b	0
<i>S</i> [<i>i</i>]					2	-1	2	6

i	0	1	2	3	4	5	6	7
P[i]	b	0	n	0	b	0	b	0
<i>S</i> [<i>i</i>]				-3	2	-1	2	6

Example: P = bonobobo

i	0	1	2	3	4	5	6	7
P[i]	b	0	n	0	b	0	b	0
<i>S</i> [<i>i</i>]	-6	-5	-4	-3	2	-1	2	6

• Computed similarly to KMP failure array in $\Theta(m)$ time.

Boyer-Moore Algorithm

```
boyer-moore(T,P)
1. L \leftarrow last occurrence array computed from P
2. S \leftarrow \text{good suffix array computed from } P
3. i \leftarrow m-1, \quad j \leftarrow m-1
4. while i < n and j > 0 do
5. if T[i] = P[j] then
         i \leftarrow i - 1
6.
7.
           i \leftarrow i - 1
          else
8
                i \leftarrow i + m - 1 - \min(L[T[i]], S[j])
9.
10. j \leftarrow m-1
11. if j = -1 return i + 1
12. else return FAIL
```

Exercise: Prove that i - j always increases on lines 9–10.

Boyer-Moore algorithm conclusion

- Worst-case running time $\in O(n + |\Sigma|)$
- This complexity is difficult to prove.
- Worst-case running time O(nm) if we want to report all occurrences
- ullet On typical English text the algorithm probes approximately 25% of the characters in T
- Faster than KMP in practice on English text.

Idea: use hashing

- Compute hash function for each text position
- No explicit hash table: just compare with pattern hash
- If a match of the hash value of the pattern and a text position found, then compares the pattern with the substring by naive approach

Idea: use hashing

- Compute hash function for each text position
- No explicit hash table: just compare with pattern hash
- If a match of the hash value of the pattern and a text position found, then compares the pattern with the substring by naive approach

Example:

Hash "table" size = 97

Search Pattern P: 5 9 2 6 5

Search Text T: 3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6

Hash function: $h(x) = x \mod 97$ and h(P) = 95.

Idea: use hashing

- Compute hash function for each text position
- No explicit hash table: just compare with pattern hash
- If a match of the hash value of the pattern and a text position found, then compares the pattern with the substring by naive approach

Example:

```
Hash "table" size = 97

Search Pattern P: 5 9 2 6 5

Search Text T: 3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6

Hash function: h(x) = x \mod 97 and h(P) = 95.

31415 mod 97 = 84

14159 mod 97 = 94

41592 mod 97 = 76

15926 mod 97 = 18
```

 $59265 \mod 97 = 95$

Guaranteeing correctness

- Need full compare on hash match to guard against collisions
 - ▶ 59265 mod 97 = 95
 - ▶ 59362 mod 97 = 95

Running time

- Hash function depends on *m* characters
- Running time is $\Theta(mn)$ for search miss (how can we fix this?)

The initial hashes are called **fingerprints**.

Rabin & Karp discovered a way to update these fingerprints in constant time.

Idea:

To go from the hash of a substring in the text string to the next hash value only requires constant time.

- Use previous hash to compute next hash
- O(1) time per hash, except first one

Example:

- Pre-compute: 10000 mod 97 = 9
- Previous hash: 41592 mod 97 = 76
- Next hash: 15926 mod 97 = ??

Example:

- \bullet Pre-compute: 10000 mod 97 = 9
- Previous hash: 41592 mod 97 = 76
- Next hash: 15926 mod 97 = ??

Observation:

- Choose table size at random to be huge prime
- Expected running time is O(m+n)
- \bullet $\Theta(mn)$ worst-case, but this is (unbelievably) unlikely

Main advantage:

Extends to 2d patterns and other generalizations

Suffix Tries and Suffix Trees

- What if we want to search for many patterns P within the same fixed text T?
- Idea: Preprocess the text T rather than the pattern P
- Observation: P is a substring of T if and only if P is a prefix of some suffix of T.

We will call a trie that stores all suffixes of a text T a suffix trie, and the compressed suffix trie of T a suffix tree.

Suffix Trees

- Build the suffix trie, i.e. the trie containing all the suffixes of the text
- Build the suffix tree by compressing the trie above (like in Patricia trees)
- Store two indexes I, r on each node v (both internal nodes and leaves) where node v corresponds to substring T[I..r]

T =bananaban

Suffix Tree (compressed suffix trie): Example

T =bananaban

i	0	1	2	3	4	5	6	7	8	9
T[i]	b	a	n	a	n	a	b	a	n	\$

45 / 51

Suffix Trees: Pattern Matching

To search for pattern P of length m:

- Similar to Search in compressed trie with the difference that we are looking for a prefix match rather than a complete match
- If we reach a leaf with a corresponding string length less than *m*, then search is unsuccessful
- Otherwise, we reach a node v (leaf or internal) with a corresponding string length of at least m
- It only suffices to check the first m characters against the substring of the text between indices of the node, to see if there indeed is a match
- We can then visit all children of the node to report all matches

T = bananaban

P = ana

i	0	1	2	3	4	5	6	7	8	9
T[i]	b	a	n	a	n	a	b	a	n	\$

T = bananaban

P = ban

i	0	1	2	3	4	5	6	7	8	9
T[i]	b	a	n	a	n	a	b	a	n	\$

T = bananaban

P = nana

i	0	1	2	3	4	5	6	7	8	9
T[i]	b	a	n	a	n	a	b	a	n	\$

T = bananaban

P = bbn not found

i	0	1	2	3	4	5	6	7	8	9
T[i]	b	a	n	a	n	a	b	a	n	\$
	b	b	\overline{n}							

Pattern Matching Conclusion

	Brute- Force	DFA	KMP	ВМ	RK	Suffix trees
Preproc.:	_	$O(m \Sigma)$	O (m)	$O(m+ \Sigma)$	O (m)	$O(n^2)$ $(o O(n))$
Search time:	O (nm)	O (n)	O (n)	O(n) (often better)	$\widetilde{O}(n+m)$ (expected)	O (m)
Extra space:	-	$O(m \Sigma)$	O (m)	$O(m + \Sigma)$	O(1)	O (n)