

Recommender Systems Node Ranking

Professor Robin Burke Spring 2019

Node Ranking

- Non-personalized case
- Suppose our items are nodes in a directed network
 - We retrieve some of the items based on their features
 - But we want to rank them by "importance"
- Search engine problem
 - Not enough to retrieve pages based on content
 - Adversarial issues

Problem: Adversarial IR

NASA, mars, rover, photo NASA, mars, rover, photo

NASA, mars, rover, photo

"Random surfer" model

- We conduct a random walk on the web
- The number of times that we encounter a page = its "importance"

Matrix definition

- Instead of an adjacency matrix
 - we need a "transition probability" matrix
- A Markov model
 - for each node,
 - equal probability of moving to all linked nodes
- New adjacency matrix
 - each row is divided by degree

Weight = probability = 1/d

$$M = \begin{vmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{vmatrix}$$

$$M = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \qquad N = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 1 \\ \frac{1}{3} & \frac{1}{3} & 0 & \frac{1}{3} \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

* Markov model

- A model of a process that can be in multiple states
- Transitions between states are defined by links
 - the transitions are probabilistic
- Always add up to 1
 - leaving any node

After k steps?

$$v_k = (N^T)^k v_0$$

- We are interested in convergence
- So, at what vector v* does
 - $\mathbf{v}^* = (\mathbf{N}^T)\mathbf{v}^*$
 - probability must sum to 1

+ Eigenvectors

- In a Markov matrix
 - Only one real positive non-zero eigenvalue = 1
- That's our (Basic) PageRank
 - Named after Larry Page

+ Problem

■ Random surfer might get "stuck"

No way out...

+ Fix

- Add a random jump probability
- Each iteration
 - small probability of jumping to a random node anywhere in the network
 - if not, then random surf
 - choose an edge randomly from the current node
- This is enough to avoid sinks

+

New equation

$$\mathbf{v}_{t} = \mathbf{P}\mathbf{v}_{t-1}$$

■ where P has entries

$$p_{i,j} = \alpha \frac{m_{i,j}}{deg_{out}(i)}, if m_{i,j} = 1$$

$$\frac{\beta}{n - deg_{out}(i)}, if m_{i,j} = 0$$

- $\alpha + \beta = 1$
 - lacksquare eta is the random jump probability
 - 0.15 suggested in the original article
 - Still probabilistic, but now non-connected nodes can be reached

■ Solve as before

- eigenvalues of new matrix
- largest eigenvector = PageRank vector
- Now the matrix is dense
 - Solution is harder to compute efficiently

+ Weight = $p_{i,j}$

$$M = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \qquad P = \begin{bmatrix} 0.075 & 0.425 \\ 0.05 & 0.05 \\ 0.283 & 0.283 \\ 0.05 & 0.05 \end{bmatrix}$$

$$P = \begin{bmatrix} 0.075 & 0.425 & 0.425 & 0.075 \\ 0.05 & 0.05 & 0.05 & 0.85 \\ 0.283 & 0.283 & 0.15 & 0.283 \\ 0.05 & 0.05 & 0.85 & 0.05 \end{bmatrix}$$

PageRank

- Similar to eigenvector centrality
 - accounts for "attention" effect
 - 1 friend in 50 < 1 friend in 5
- Makes sense in information networks
 - models connected edges
- A node is central IF
 - if it connected to other central nodes
 - who are selective
- Very effective for adversarial IR
- But NOT personalized
 - The same for all users

- One way that spammers try to get their pages ranked more highly is to create "link farms" where they create many web pages with links to a desired target page. What would you expect relative to this technique?
- A. It won't work very well because the pages linking to the target page won't have high PageRank themselves.
- B. It will work well because the target page will attract a lot of PageRank value by having such high in-degree.
- C. It will work well because the link farm creates a circular system that traps the PageRank value and allows it to build up.
- D. It will not work well because such link configurations can be easily detected.

+

Personalized PageRank

- Instead of jumping to a random location
 - Jump back to a "root" node
 - Has the effect of finding "important" items in a given network neighborhood
- Example
 - You could use this to recommend people to follow on LinkedIn
 - Random surfer model
 - But always re-starting at the user node
 - Personalized PageRank
 - Nodes with a high Personalized PageRank
 - Would be nodes highly associated with user's network neighborhood

Personalized equation

■ where P_k has entries

$$p_{i,j} = n_{i,j}$$
, if $m_{i,k} = 1$, else $\alpha \frac{m_{i,j}}{deg_{out}(i)}$, if $m_{i,j} = 1$ β , if $m_{i,j} = 0$ and $j = k$

0. otherwise

Original PageRank for direct neighbors

- $\alpha + \beta = 1$
 - lacksquare β is the random jump probability
 - 0.15 suggested in the original article
 - Still probabilistic, but now non-connected nodes can be reached

Weight = $P_A(i,j)$

$$M = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \qquad P_A = \begin{bmatrix} 0.15 & 0.425 & 0.425 \\ 0.15 & 0.0 & 0.0 \\ 0.333 & 0.333 & 0.0 \\ 0.15 & 0.0 & 0.85 \end{bmatrix}$$

$$P_A = \begin{bmatrix} 0.15 & 0.425 & 0.425 & 0.0 \\ 0.15 & 0.0 & 0.0 & 0.85 \\ 0.333 & 0.333 & 0.0 & 0.333 \\ 0.15 & 0.0 & 0.85 & 0.0 \end{bmatrix}$$

Personalized PageRank

- Also has a solution
 - Still Markov matrix
 - Still has largest eigenvalue = 1
 - Use associated eigenvector
- Different solution for each user

In a network with approx. 10,000 nodes, there is one node D that has high (regular) PageRank, approx. 10x larger than the next highest node. You compute the personalized PageRank (PPR) for two randomly chosen nodes A and B in the network. You would expect

- A. $PPR_A(D)$ would be very different from $PPR_B(D)$
- B. $PPR_A(D)$ would be similar to $PPR_B(D)$ but quite different from PR(D)
- C. PPR_A(D), PPR_B(D) and PR(D) would all be similar in value
- D. It depends on the network's structure