Дискр. матем., 4-й сем., ИУ6, Модуль 2, ДЗ (2012)

Дискр. матем., 4-й сем., ИУ6, Модуль 2, ДЗ (2012)

- 2

- Задача 1. (1 балл) Для функции f вычислить таблицу значений.
- Задача 2. (1 балл) Для функций f и q построить полиномы Жегалкина.

Задача 3. (1 балл) Для функций f и g проверить, является ли система функций $F = \{f, w\}$ полной. Если система F не полна, дополнить ее некоторой функцией h до полной системы $F' = \{f, w, h\}$.

У к а з а н и е. Дополнительную функцию h следует выбирать из стандартных функций так, чтобы системы $\{f, h\}$ и $\{g, h\}$ не были полными (если это возможно).

Задача 4. (2 балла) Для заданных функций f и g реализовать константы 0, 1, отрицание и коньюнкцию формулами над системой функций F или системой F', построенной в предыдущей задаче.

Задача 5. (1 балл) Для булевой функции φ , заданной вектором значений:

- а) найти сокращенную ДНФ;
- б) найти ядро.

Задача 6. (2 балла) Для булевой функции φ , заданной вектором значений:

- получить все тупиковые ДНФ и указать, какие из них являются минимальными;
- на картах Карно указать ядро и покрытия, соответствующие минимальным ЛНФ.

Варианты к задачам 5 и 6

1.	1111 0100 1011 0101.	11. 1011 1111 1110 0110.	21. 1101 1011 0010 1110.
2.	1111 0010 1110 0111.	12. 1010 1100 1010 0101.	22. 1110 0101 1111 0001.
3.	0011 0101 1110 1100.	13. 1111 1011 0000 1101.	23. 1011 1101 1111 1000.
4.	1111 1100 1110 0111.	14. 1000 1011 0111 1110.	24. 1011 0011 1100 0101.
5.	1011 0101 1010 1100.	15. 1010 1011 1010 1101.	25. 1011 1101 1111 0011.
6.	1100 1101 1101 1001.	16. 1111 1001 1010 1011.	26. 1010 0011 1110 0101.
7.	0111 0110 1101 0011.	17. 1010 1100 0011 0111.	27. 0111 0110 0011 0111.
8.	1010 0111 1010 1110.	18. 1011 1001 1110 1111.	28. 0111 1100 1101 1101.
9.	1010 1110 1111 0110.	19. 1110 0101 1010 0011.	29. 1111 1000 0111 1100.
10.	1100 1101 1010 0011.	20. 0000 0111 1111 1110.	30. 1111 1000 1101 1011.

Варианты к задачам 1-4

- **31.** $f = (x_2 \mid (x_2 \lor x_3))(x_2 \downarrow \overline{x_3}) \lor (x_1 \oplus x_3), \quad w = 00101001.$
- **32.** $f = (((\overline{x}_1 \to (\overline{x}_3 \to x_1)) \downarrow (x_2 x_3)) \lor (\overline{x}_1 \downarrow x_3), \quad w = 10010111.$
- **33.** $f = (((x_3 \to (x_1 \sim x_2)) \oplus (\overline{x}_3 \to \overline{x}_1)) \to (\overline{x}_2 \mid \overline{x}_3), \quad w = 01100101.$
- **34.** $f = (x_1 \overline{x}_2 x_3 \vee \overline{x}_2 \vee \overline{x}_3) \rightarrow (x_1 \oplus x_3), \quad w = 01010100.$
- **35.** $f = (x_1(x_1 \oplus \overline{x}_3) \to (x_1 \sim \overline{x}_2)) \mid (x_1 \downarrow \overline{x}_2), \quad w = 10101110.$
- **36.** $f = (x_3 \to (x_2 \sim \overline{x}_3)) \lor (x_1 \oplus \overline{x}_2) \oplus x_1 x_2, \quad w = 11010100.$
- **37.** $f = (\overline{x}_1 \vee (\overline{x}_1 \oplus x_2) \vee x_2 \overline{x}_3) \mid (\overline{x}_1 \sim \overline{x}_3), \quad w = 10110010.$
- **38.** $f = \overline{((\overline{x}_2 \vee \overline{x}_3) \to x_3) \to \overline{(x_1 \sim \overline{x}_2)})} \downarrow (x_1 \sim x_3) \ w = 10010110.$
- **39.** $f = (x_1 \oplus x_3 \oplus (x_2 \mid x_2 x_3)) \mid (\overline{x}_1 \perp \overline{x}_3), \quad w = 01001101.$
- **40.** $f = ((x_1 \lor (x_2 \to x_3)) \to x_1 x_2) \lor (\overline{x}_1 \to \overline{x}_3), \quad w = 11101100.$
- **41.** $f = ((x_2 \to (x_1 \oplus x_3)) \oplus (\overline{x}_2 \sim x_3)) \to (\overline{x}_2 \mid \overline{x}_3), \quad w = 11010111.$
- **42.** $f = \overline{x}_2 \overline{x}_3 \lor ((\overline{x}_3 \oplus (x_2 \to x_1)) \to (\overline{x}_1 \sim x_2)), \quad w = 0.0110111.$
- **43.** $f = ((\overline{x}_1 \to (\overline{x}_2 \sim x_3)) \oplus (\overline{x}_1 \vee \overline{x}_2)) \vee (x_1 \oplus \overline{x}_2), \quad w = 01011101.$
- **44.** $f = (\overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3 \vee (\overline{x}_3 \to \overline{x}_1)) \sim (\overline{x}_2 \downarrow \overline{x}_3), \quad w = 10010110.$
- **45.** $f = (\overline{x}_2 \vee x_2 \overline{x}_3)(\overline{x}_1 \oplus x_3) \oplus (\overline{x}_2 \to \overline{x}_3), \quad w = 11011101.$
- **46.** $\overline{((\overline{x}_2 \vee (\overline{x}_3 \to \overline{x}_2)) \downarrow (x_1 \vee \overline{x}_3))} \to (x_2 \sim x_3), \quad w = 00000111.$
- **47.** $((\overline{x}_1 \lor x_2) \sim x_3) \sim (x_2 \sim x_3)) \rightarrow (\overline{x}_1 \lor x_3), \quad w = 11110000.$
- **48.** $(x_1 \oplus (x_1 \vee \overline{x}_3))(x_2 \oplus \overline{x}_3) \sim \overline{x}_1 \overline{x}_3, \quad w = 11011101.$
- **49.** $((\overline{x}_1 \lor x_2 \lor x_3) \to (\overline{x}_2 \sim x_3)) \sim (x_1 \sim \overline{x}_3), \quad w = 111111100.$
- **50.** $\overline{x}_1(x_1 \downarrow \overline{x}_2)(x_1 \oplus \overline{x}_3) \to (x_2 \sim x_3), \quad w = 00001111.$
- **51.** $(((\overline{x}_1 \mid x_3) \oplus x_2) \to (x_2 \to \overline{x}_1)) \oplus \overline{x}_2 \oplus \overline{x}_3, \quad w = 11000011.$
- **52.** $(\overline{x}_1 \oplus \overline{x}_3 \oplus x_3 \oplus (x_1 \sim \overline{x}_2)) \mid (x_1 \downarrow x_3), \quad w = 10110101.$
- **53.** $(\overline{x}_1(\overline{x}_2 \to \overline{x}_1) \sim (x_2 \mid x_3)) \downarrow \overline{(x_1 \lor x_2)}, \quad w = 10111010.$
- **54.** $(((x_1 \oplus x_2) \vee x_2) \to (\overline{x}_2 \mid x_3)) \vee (x_2 \oplus \overline{x}_3), \quad w = 11001010.$
- **55.** $((x_1 | \overline{x}_3) \oplus (x_2 x_3 \vee \overline{x}_3)) \rightarrow (x_2 \sim x_3), \quad w = 0.1101001.$
- **56.** $((\overline{x}_1\overline{x}_2 \vee \overline{x}_3) \oplus (\overline{x}_3 \to \overline{x}_1)) \sim (\overline{x}_2 \mid \overline{x}_3), \quad w = 10010111.$
- **57.** $(((\overline{x}_1 \rightarrow (x_1 \sim \overline{x}_3)) \sim (\overline{x}_1 \downarrow \overline{x}_2)) \vee x_1, \quad w = 11100110.$
- **58.** $((x_1 \lor x_1 x_3) \oplus (x_2 \downarrow \overline{x}_3)) \rightarrow (x_2 \sim x_3), \quad w = 01010010.$
- **59.** $((\overline{x}_3 \to (x_2 \mid \overline{x}_3))(\overline{x}_1 \sim \overline{x}_3)) \sim (x_1 \sim x_2), \quad w = 10101010.$
- **60.** $x_1(\overline{x}_1 \mid x_3)(\overline{x}_1 \oplus \overline{x}_3) \to (x_2 \sim x_3), \quad w = 11100110.$