

FOLHA DE RESPOSTAS

Análise multivariada de dados para tomada de decisões

Com base nos conteúdos aprendidos no curso, desenvolva os exercícios a seguir:

PARTE 1 – REGRESSÃO LOGÍSTICA

Analisando a idade mínima para aposentadoria no Brasil

Fonte: IPEA, Nota Técnica sobre Reforma da Previdência e Mercado de Trabalho. Abril de 2017.

Essa Nota Técnica do IPEA pretendeu demonstrar se há, no Brasil, uma maior probabilidade de desemprego para pessoas na faixa etária de 16 a 54 anos vis-à-vis aquelas de 55 a 64 anos. Para tanto, estimou-se uma regressão logística binária em que os desempregados eram 1 e os ocupados eram 0. As variáveis independentes, também binárias, foram:

- a) sexo, sendo 0 para homens e 1 para mulheres;
- b) idade, sendo 0 para pessoas de 16 a 54 anos e 1 para aquelas de 55 a 64 anos;
- c) posição da família, sendo 0 para chefes e cônjuges e 1 para outras posições;
- d) região do país, sendo 0 para sul e centro-oeste e 1 para demais regiões do país;
- e) educação, sendo 0 para ensino superior e 1 para demais formações.

Os resultados da referida regressão encontram-se a seguir.

Regressão Logística Binária - Probabilidade de Desemprego Brasil - PNAD/IBGE de 2015

Variável	В	S.E	Wald	df	Sig.	Exp(B)
Sexo	0,586	0,001	699759,207	1	0,000	1,797
Idade	-0,813	0,002	232421,205	1	0,000	0,444
Posição na Família	1,118	0,001	2514602,206	1	0,000	3,057
Escolaridade	0,882	0,001	481047,737	1	0,000	2,415
UF/Região	0,376	0,001	172036,452	1	0,000	1,456
Constante	-3,948	0,002	6505749,103	1	0,000	0,019

Fonte: Elaboração a partir dos micro dados da PNAD/IBGE de 2015

Responda aos seguintes questionamentos:

- a) Todas as variáveis independentes foram estatisticamente significantes ao nível de 5%?
 R Sim, todas elas estão abaixo de 5% do p-value, isto é, dentro de uma significância acima ou igual a 95%.
- Qual é a interpretação do sinal de cada uma das variáveis independentes?
 R Para a variável sexo que está com o valor positivo, a mulher tem mais probabilidade de estar desempregada do que os homens, de acordo com este modelo. Para idade com o coeficiente negativo, pessoas entre 16 a 54 anos tem mais chances de ficar desempregados do que pessoas entre 55 a 64 anos.

Já para posição na família, o coeficiente positivo nos diz que os chefes e cônjuges tem menos chances de ficar desempregados do que de outras posições.

No caso de escolaridade, o valor positivo indica que as pessoas com outras formações não sendo formação superior tende a ter mais chances de ficar desempregado, do que os formados, isto é, as pessoas com formação superior tendem a estar menos desempregada.

De acordo com o modelo, o valor positivo da variável indica que as outras regiões do país têm mais probabilidade de terem desempregados, do que as regiões sul e centro-oeste.

c) Qual seria o cenário encontrado (conjunto de variáveis independentes) de maior probabilidade de desemprego?

R – As mulheres entre 16 a 54 anos, possivelmente não casadas e não sendo chefe de família, com baixa formação escolar, no caso, sem formação superior e em grande parte da região brasileira, que contempla: sudeste, norte e nordeste tem maior probabilidade de desemprego.

PARTE 2 – ANÁLISE DE CONGLOMERADOS

Determinado gestor da área de RH ouviu falar, em um noticiário da internet, sobre a técnica

K-Means (análise não hierárquica). Ele deseja avaliar a performance dos seus funcionários com base nas seguintes variáveis: pontualidade, relacionamento e resultados.

Como ele faria a realização dessa técnica no Software R? Digite os comandos necessários.

R – Foi realizado a análise do arquivo de Excel **Desempenho UN4.xIsx** e nela continha linhas em branco do qual foi ajustada dentro do R. Os procedimentos serão descritos abaixo:

Base de dados Original:

Pessoas	Pontualidade	Produtividade	Lideranca	Relacionamento
1	9	8	5	6
2	8	9	4	4.5
		_		
3	9.5	8	5.5	4
4	7	6	3	4.5
5	6		2	2
3	0	5		2
6	3	4	2	1
	3	-		1
7	4	5	2	2
8	5	6	1	2.5
9	8	7	4	3.5
10	7	7	3	1.5
11	3	4	3	2.5
12	6	7	2	1
4.5				2.5
13	4	6	1	2.5

14	9.5	8	5.5	6.5
15	7	6	3	2.5
16	6	7	2	1.5
17	10	8	6	5
18	9	9	5	5
19	3	4.5	1	1.5
20	4	5.5	1	2.5
21	8	8.5	4	6.5

Ações dentro do R Studios:

cluster analysis

import dataset

install.packages('pvclust')

library(cluster)

library(readxl)

#Base carregada

base <- read_excel("D:/cursos/Análise multivariada de dados para tomada de decisões/Desempenho UN4.xlsx")

Retirada de todas as linhas NA

base <- base[complete.cases(base),]

values of data set (mydata)

mydata <- base[, 2:5]

Elimina variável não esperada no escopo da análise mydata\$Lideranca <- NULL

Houve um comportamento não esperado que a função
scale() deixou de funcionar conforme o esperado, tive que transformar
em numérico para poder realizar a padronização dos dados.
mydata\$Pontualidade <- as.numeric(mydata\$Pontualidade)
mydata\$Produtividade <- as.numeric(mydata\$Produtividade)
mydata\$Relacionamento <- as.numeric(mydata\$Relacionamento)

#scaled matrix (zscores)

mydata <- scale(mydata)

- # Distância calculada para todas as variáveis
- # Distance matrix by Euclidean
- d <- dist(mydata, method = 'euclidean');d
- # Hierarchial Method Single
- # Calcula os clusters hierárquico de acordo com a distância definida
- fit <- hclust(d, method = 'single');fit
- # plotando um gráfico dendrogram plot(fit)

Definindo visualmente os grupos

rect.hclust(fit, k = 3, border = 'red')
rect.hclust(fit, k = 4, border = 'orange')
rect.hclust(fit, k = 5, border = 'blue')

rect.hclust(fit, k = 6, border = 'yellow')

Cluster Dendrogram

A quantidade de cluster ideal para este modelo é **3 em vermelho** de acordo com o dendrograma analisado.

k-means com 3 clusters - validation and interpretation

K-means realiza cluster não hierárquicos

fit <- kmeans(mydata, 3);fit

Resultado da implementação do cluster com uma acuracidade de 81,8%. Podemos observar que o grupo 3 tem médias de performance mais alta em relação aos outros grupos. Enquanto o grupo 1 tem a pior performance esperada.

K-means clustering with 3 clusters of sizes 6, 8, 7

Cluster means:

Pontualidade Produtividade Relacionamento 1 -1.27639431 -1.1221012 -0.7064783

2 0.01021115 -0.1402626 -0.4965343 3 1.08238238 1.1221012 1.1730206

Clustering vector:

[1] 3 3 3 2 2 1 1 2 2 2 1 2 1 3 2 2 3 3 1 1 3

Within cluster sum of squares by cluster:

[1] 2.254762 5.613706 3.030028 (between_SS / total_SS = 81.8 %)

Available components:

[1] "cluster" "centers" "totss" "withinss" "tot.w ithinss"

[6] "betweenss" "size" "iter" "ifault"