Group Name: Attack on Data

Team Members:

Name	Email	Country	College/Company	Specialization
Armin	Northatlas@gmail.com	UAE	-	Data Science
Khayati				
Ezzuldin	Ezzulding.zaky@gmail.com	UAE	American	Data Science
Zaky			University of	
			Sharjah	

Problem description

One of the challenges for all pharmaceutical companies is to understand the persistency of drug as per the physician prescription. To solve this problem ABC pharma company approached an analytics company to automate this process of identification.

Exploratory data analysis (EDA)

Our dataset has 69 columns, 67 of them are categorical and two of them are numerical. There are no nan values in the dataset. The main problem of it is that some columns have rare labels. As we can see in the bellow charts rare categories is the main issue.

For gender variable 94% of values are female and only 5% are male and it means results for this dataset are mostly accurate for women. It is also the same for Caucasian Race and Not Hispanic Ethnicity. Also we can observe the imbalanceness of age bucket variable for younger patients. It can be seen than most people on the dataset belonged to the aged class, but the non-persistency level (or ratio) is more among the older patients. As discussed earlier, this study has been imbalanced towards female subjects but among females, the non-persistency level is higher than the males. But no concrete conclusion can be drawn due to the data imbalance. Also, low risk patients were found to be less persistent than the high-risk ones.

By a look at Concomitancy of Drugs bellow we can see that Cholesterol drug is more used than others beside the main drug. For other drugs, Concomitancy percentage is very low.

Also for Comorbidity of Diseases, we can see that disorders of lipoprotein have higher percentage to comorbid with main disease than other diseases and disorders of bone density is the lowest among all.

And among the risk factors most of them have less than 5% chance to endanger treatment. The risk factor with highest chance is Vitamin D Insufficiency and others above 5% are:

- Poor Health Frailty
- Family History of Osteoporosis
- Chronic Malnutrition or Malabsorption
- Smoking Tobacco
- Patient Parent Fractured Their Hip

Rest of the factors have less than 5% risk to endanger treatment.

Recommendation

- 1. Handling **Unknown** values for Race, Region, and Ethnicity Variables
 - Using mode as an imputer as an imputer on *Race* and *Ethnicity* variables.
 - For *Region* variable, because most of the people with **Unknown** Region have **Not Hispanic** Ethnicity, and Most of people with Not
 Hispanic Ethnicity, have Midwest Region, we will replace Unknown
 Regions with **Midwest**.
- 2. Handling **Rare Labels**: Finding categories less than 5 percent in each variable, then merging those categories into one or drop them if the variable only has 2 categories (e.g., Y/N) and cardinality of one them is less than 5 percent.
- 3. Grouping integer values of Count_Of_Risks variable into two bins.

Group	Variable	Categories to Merge
	Race	African American,
		Asian
Variables	Age_Bucket	<55, 55-65
Chosen to	Ntm_Speciality	OBSTETRICS AND
Merge		GYNECOLOGY,
Categories		UROLOGY,
		ORTHOPEDIC
		SURGERY,
		CARDIOLOGY,
		PATHOLOGY ,
		HEMATOLOGY &
		ONCOLOGY,
		OTOLARYNGOLOGY,
		PEDIATRICS,
		PHYSICAL MEDICINE
		AND
		REHABILITATION,
		PULMONARY
		MEDICINE , SURGERY
		AND SURGICAL
		SPECIALTIES,
		PSYCHIATRY AND
		NEUROLOGY ,
		NEPHROLOGY ,
		ORTHOPEDICS,
		PLASTIC SURGERY , VASCULAR SURGERY ,
		HOSPICE AND
		PALLIATIVE
		MEDICINE,
		GERIATRIC MEDICINE
		GENIATING MILDICINE
		GASTROENTEROLOGY
		, TRANSPLANT
		SURGERY , CLINICAL
		NURSE SPECIALIST,

		OCCUPATIONAL
		MEDICINE , HOSPITAL
		MEDICINE,
		OPHTHALMOLOGY,
		PODIATRY,
		EMERGENCY
		MEDICINE,
		RADIOLOGY,
		OBSTETRICS &
		OBSTETRICS &
		GYNECOLOGY &
		OBSTETRICS &
		GYNECOLOGY,
		NEUROLOGY , PAIN
		MEDICINE, NUCLEAR
		MEDICINE
	Change_T_Score	Improved, Worsened
	Change_Risk_Segment	Improved, Worsened
	Count_Of_Risks	Bin 1 is [0,1,2,3] and
		bin 2 is [4,5,6,7]
	Ethnicity	
	Risk_Type_1_Insulin_Dependent_Diabetes	
Variables	Risk_Osteogenesis_Imperfecta	
Chosen to	Risk_Rheumatoid_Arthritis	
Drop	Risk_Untreated_Chronic_Hyperthyroidism	
	Risk_Untreated_Chronic_Hypogonadism	
	Risk_Untreated_Early_Menopause	
	Risk_Chronic_Liver_Disease	
	Risk_Low_Calcium_Intake	
	Risk_Excessive_Thinness	
	Risk_Hysterectomy_Oophorectomy	
	Risk_Estrogen_Deficiency	
	Risk_Immobilization	
	Risk_Recurring_Falls	
	Dexa_Freq_During_Rx	
-		

- 4. One hot encoding all the variables after doing above tasks
- 5. Removing variables with more than **98% correlation**.

6. Try different machine learning approaches and select the best model.

ML model evaluation and selection

The following models were trained and tested on the processed dataset:

- 1. GradientBoostingClassifier
- 2. ExtraTreesClassifier
- 3. RandomForestClassifier
- 4. LogisticRegression
- 5. SVR (RBF kernel)
- 6. SVR (Linear kernel)
- 7. SVR (Polynomial kernel)
- 8. SVR (Sigmoid kernel)
- 9. XGBClassifier

Results:

For each model, the accuracy, precision, recall, f1-score and support were noted. The figures below illustrate

Accuracy RandomForestClassifier: 0.81

	precision	recall	f1-score	support
0	0.80	0.91	0.85	515
1	0.82	0.66	0.73	341
accuracy			0.81	856
macro avg	0.81	0.78	0.79	856
weighted avg	0.81	0.81	0.80	856

Accuracy LogisticRegression: 0.81

	precision	recall	f1-score	support
0	0.82	0.88	0.85	515
1	0.79	0.72	0.75	341
accuracy			0.81	856
macro avg	0.81	0.80	0.80	856
weighted avg	0.81	0.81	0.81	856

Accuracy SVC linear: 0.81

Confusion Matrix for SVC linear 0.8 - 0.7 0.88 0 - 0.6 True label 0.5 0.4 1 -0.7 0.3 0.2 ó i Predicted label

	precision	recall	f1-score	support
0	0.81	0.88	0.85	515
1	0.80	0.70	0.74	341
accuracy			0.81	856
macro avg	0.81	0.79	0.80	856
weighted avg	0.81	0.81	0.81	856

Accuracy SVC RBF: 0.79

	precision	recall	f1-score	support
0 1	0.78 0.82	0.91 0.62	0.84 0.70	515 341
accuracy macro avg weighted avg	0.80 0.80	0.76 0.79	0.79 0.77 0.79	856 856 856

Accuracy SVC polynomial: 0.77

macro avg

weighted avg

0.81

0.79

0.73

0.77

0.73

0.75

Accuracy SVC sigmoid: 0.74

856

856

macro avg

weighted avg

0.74

0.74

0.70

0.74

0.71

0.73

856

856

Accuracy XGBClassifier: 0.76

	precision	recall	f1-score	support
0	0.73	0.96	0.83	515
1	0.88	0.47	0.61	341
accuracy			0.76	856
macro avg	0.80	0.71	0.72	856
weighted avg	0.79	0.76	0.74	856

Final Recommendations

The highest accuracies belonged to Gradient boosting, Extra Trees classifier and the random forest classifiers, having accuracies of 83%, 82% and 81% respectively. The random forest classifier is 1% more likely to make a false negative prediction on the drug persistency, which is favorable to the contrary. A physician can follow up on the patient that is predicted to stop the medication regardless of their actual drug persistency. The models also have the highest F1 scores: 0.85 0.85 and 0.84 respectively.

Github Repo:

https://github.com/Arminkhayati/dataglacier internship