QUANTIFICADORES

Lógica Matemática

QUANTIFICADOR UNIVERSAL

DEFINIÇÃO

X Seja p(x) uma sentença aberta em um conjunto A, não vazio ($A \neq \emptyset$) e seja V_p o seu conjunto-verdade:

$$V_p = \{x | x \in A \land p(x) \}$$

X Quando: $V_p =$

X Temos que, todos os elementos do conjunto A satisfazem a sentença aberta p(x).

- **X** Podemos afirmar que:
 - i) "Para todo elemento x de A, p(x) é verdadeira (V)"
 - ii) "Qualquer que seja o elemento x de A, p(x) é verdadeira (V)"
- **x** ou de maneira mais simplificada:
 - i) "Para todo x de A, p(x)"
 - ii) "Qualquer que seja x de A, p(x)"

QUANTIFICADOR UNIVERSAL

DEFINIÇÃO

X O quantificador universal é o símbolo ∀ que permite expressar esta ideia de maneira simbólica, em alguma das seguintes formas:

i)
$$(\forall x \in A) (p(x))$$

$$ii) \quad \forall x \in A, \quad p(x)$$

iii)
$$\forall x \in A$$
: $p(x)$

X Muitas vezes, para simplificar a notação, omite-se a indicação do domínio A da variável x, resultando na seguinte notação simplificada:

$$(v)$$
 $(\forall x)$ $(p(x))$

$$v) \forall x, p(x)$$

$$vi) \forall x: p(x)$$

X Vale observar a equivalência:

$$(\forall x \in A) \quad (p(x)) \quad \Longleftrightarrow \quad V_p = A$$

QUANTIFICADOR UNIVERSAL

- X Outra observação muito importante é que:
- X Enquanto p(x) é apenas uma sentença aberta, que carece de valor lógico (V) ou (F); a expressão quantificada ($\forall x \in A$) (p(x)) torna-se uma proposição e portanto possui valor lógico, que é verdade (V) se $V_p = A$ e falsidade (F) se $V_p \neq A$.
- X Dada uma sentença aberta p(x) em um conjunto A, o símbolo \forall , referido à variável x, representa uma operação lógica que transforma a sentença aberta p(x)numa proposição, verdadeira ou falsa, conforme p(x) expressa ou não uma condição universal no conjunto A.
- X A esta operação lógica dá-se o nome de quantificação universal e ao seu respectivo símbolo ∀ o de quantificador universal.

QUANTIFICADOR EXISTENCIAL

DEFINIÇÃO

X Seja p(x) uma sentença aberta em um conjunto A, não vazio $(A \neq \emptyset)$ e seja V_p o seu conjunto-verdade:

$$V_p = \{x | x \in A \land p(x) \}$$

 X Quando: V_{2}

X Temos que, pelo menos um elemento do conjunto A satisfaz a sentença aberta p(x).

X Podemos afirmar que:

- i) "Existe pelo menos um elemento x de A tal que p(x) é verdadeira (V)"
- ii) "Para algum elemento x de A, p(x) é verdadeira (V)"
- 🗶 ou de maneira mais simplificada:
 - i) "Existe $x \in A$ tal que p(x)"
 - ii) "Para algum $x \in A$, p(x)"

QUANTIFICADOR EXISTENCIAL

DEFINIÇÃO

X O quantificador existencial é o símbolo 3 que permite expressar esta ideia de maneira simbólica, em alguma das seguintes formas:

i)
$$(\exists x \in A) (p(x))$$

$$ii)$$
 $\exists x \in A, p(x)$

$$iii)$$
 $\exists x \in A$: $p(x)$

X Muitas vezes, para simplificar a notação, omite-se a indicação do domínio A da variável x, resultando na seguinte notação simplificada:

$$(v)$$
 $(\exists x)$ $(p(x))$

$$v) \exists x, p(x)$$

$$vi)$$
 $\exists x: p(x)$

X Vale observar a equivalência:

$$(\exists x \in A) \quad (p(x)) \iff V_p \neq \emptyset$$

QUANTIFICADOR EXISTENCIAL

- X Outra observação muito importante é que:
- X Enquanto p(x) é apenas uma sentença aberta, que carece de valor lógico (V) ou (F); a expressão quantificada ($\exists \ x \in A$) (p(x)) torna-se uma proposição e portanto possui valor lógico, que é verdade (V) se $V_p \neq \emptyset$ e falsidade (F) se $V_p = \emptyset$.
- X Dada uma sentença aberta p(x) em um conjunto A, o símbolo \exists , referido à variável x, representa uma operação lógica que transforma a sentença aberta p(x)numa proposição, verdadeira ou falsa, conforme p(x) expressa ou não uma condição possível no conjunto A.
- X A esta operação lógica dá-se o nome de quantificação existencial e ao seu respectivo símbolo 3 o de quantificador existencial.

VARIÁVEL LIVRE E VARIÁVEL APARENTE

DEFINIÇÃO

- X Dada uma expressão, chama-se de variável aparente (ou muda) a qualquer variável que é afetada por um quantificador.
- X Caso contrário, a variável é chamada de variável livre.
- **X** Considere as seguintes sentenças abertas:

i)
$$3x - 1 = 14$$
 (Equação)

$$ii)$$
 $x + 1 > x$ (Inequação)

X A variável x é uma variável livre.

X Considere agora as seguintes sentenças quantificadas:

iii)
$$(\exists x)(3x - 1 = 14)$$

$$(\forall x)(x+1>x)$$

X Neste caso, a variável x é uma variável aparente.

QUANTIFICADOR DE EXISTÊNCIA E UNICIDADE

DEFINIÇÃO

- **X** Considere a sentença aberta $x^3 = 27$ em \mathbb{R} , e as seguintes proposições:
 - *i*) $(\exists x \in \mathbb{R})(x^3 = 27)$
 - *ii*) $(x^3 = 27) \land (y^3 = 27) \Rightarrow (x = y)$
- A primeira proposição, diz que existe pelo menos um $x \in \mathbb{R}$ tal que $x^3 = 27$. Esta é uma afirmação de existência.
- A segunda proposição, diz que não pode existir mais de um $x \in \mathbb{R}$ tal que $x^3 = 27$. Esta é uma afirmação de unicidade.
- O A conjunção das duas proposições, diz que existe um $x \in \mathbb{R}$ e um só tal que $x^3 = 27$.

X Esta afirmação é representada simbolicamente como:

$$(\exists ! x \in \mathbb{R}) \ (x^3 = 27)$$

X Onde o símbolo 3! é chamado de quantificador existencial de unicidade e se lê: "Existe um e um só".

- X Tanto o quantificador universal quanto o quantificador existencial podem ser precedidos de um símbolo de negação ¬.
- X Como mencionado anteriormente, sentenças abertas quantificadas tornam-se proposições, com isso, a negação de um quantificador poderá afetar o valor lógico da proposição.
- X Considere o seguintes exemplos:

- X Dado o conjunto-universo H que compreende a todos os seres humanos podemos definir as seguintes expressões quantificadas:
 - i) $(\forall x \in H)$ (x fala francês)
 - ii) $(\exists x \in H) (x \text{ foi à lua})$
- **X** Podemos negar os quantificadores nas expressões acima de maneira a obter as seguintes expressões:
 - iii) $\neg (\forall x \in H) (x \text{ fala francês})$
 - iv) $\neg(\exists x \in H)$ (x foi à lua)

- * A expressões anteriores são proposições que podem ser expressadas em linguagem comum da seguinte maneira:
 - i) (∀x ∈ H) (x fala francês)"Todas as pessoas falam francês""Todos falam francês"
 - ii) (∃x ∈ H) (x foi à lua)"Existem pessoas que foram à lua""Alguém foi à lua"

- Enquanto as expressões com o quantificador negado podem ser expressadas em linguagem comum da seguinte maneira:
 - iii) ¬(∀x ∈ H) (x fala francês)
 "Nem todas as pessoas falam francês"
 "Existem pessoas que não falam francês"
 - iv) ¬(∃x ∈ H) (x foi à lua)
 "Não existem pessoas que foram à lua"
 "Ninguém foi à lua"
 "Todas as pessoas não foram à lua"

EQUIVALÊNCIAS

X Nos exemplos anteriores, podemos observar as seguintes equivalências:

```
iii) \neg(\forall x \in H) (x fala francês) \iff (\exists x \in H) (\neg x fala francês)
```

iv) $\neg (\exists x \in H) (x \text{ foi à lua}) \iff (\forall x \in H) (\neg x \text{ foi à lua})$

EQUIVALÊNCIAS

- X De modo geral, a negação da proposição $(\forall x \in A) (p(x))$ é equivalente a afirmação de que $(\exists x \in A) (\neg p(x))$
- X De maneira análoga, a negação da proposição $(\exists x \in A) \ (p(x))$ é equivalente a afirmação de que $(\forall \ x \in A) \ (\neg p(x))$
- **X** Temos assim as seguintes equivalências:

$$\neg[(\forall x \in A) (p(x))] \iff (\exists x \in A) (\neg p(x))$$
$$\neg[(\exists x \in A) (p(x))] \iff (\forall x \in A) (\neg p(x))$$

- Estas duas importantes equivalências são conhecidas como as segundas regras de negação de De Morgan.
- A negação transforma o quantificador universal em quantificador existencial seguido de uma negação.
- A negação transforma o quantificador existencial em quantificador universal seguido de uma negação.

EXEMPLOS

- X 1) A negação da proposição: "Todo aluno da turma A é bem comportado"
- \circ é a proposição: "Existe pelo menos um aluno da turma A que não é bem comportado"
- o u "Nem todo aluno da turma A é bem comportado"

- X 2) A negação da proposição: "Existe pelo menos um aluno da turma A que está doente"
- \circ é a proposição: "Qualquer que seja o um aluno da turma A, ele não está doente"
- o v "Nenhum aluno da turma A está doente"

EXEMPLOS

- × 3) A negação da proposição: "Existe um planeta que é habitável"
- o é a proposição: "Todos os planetas não são habitáveis" ou
- o "Nenhum planeta é habitável"

Considerando P o conjunto de todos os planetas, temos simbolicamente:

$$\neg(\exists x \in P) \ (x \text{ \'e habit\'avel}) \iff (\forall x \in P) \ (x \text{ n\~ao\'e habit\'avel})$$

- **X** 4) A negação da proposição: "Para todo número natural n tem-se n+2>8"
- \circ é a proposição: "Existe pelo menos um número natural n tal que n+2 > 8"

Considerando $\mathbb N$ o conjunto de números naturais, temos simbolicamente:

$$\neg(\forall n \in \mathbb{N}) (n+2>8) \iff (\exists n \in \mathbb{N}) (n+2\leq 8)$$

EXEMPLOS

\$\times\$ 5) As seguintes proposições s\(\tilde{a}\) equivalentes:

$$\neg(\exists x \in \mathbb{R}) \ (x^2 < 0) \iff (\forall x \in \mathbb{R}) \ (x^2 \ge 0)$$

x 6) As seguintes proposições são equivalentes:

$$\neg(\forall x \in \mathbb{R}) (3x - 5 = 0) \iff (\exists x \in \mathbb{R}) (3x - 5 \neq 0)$$

7) As seguintes proposições são equivalentes:

$$\neg(\forall x \in \mathbb{R}) (|x| \ge 0) \iff (\exists x \in \mathbb{R}) (|x| < 0)$$

X 8) As seguintes proposições são equivalentes:

$$\neg(\exists x \in \mathbb{R}) \ (sen \ x = 0) \iff (\forall x \in \mathbb{R}) \ (sen \ x \neq 0)$$

PROVAS POR CONTRA-EXEMPLO

- X Para mostrar que uma proposição da forma $(\forall x \in A)(p(x))$ é falsa (F), basta provar que a sua negação $(\exists x \in A)(\neg p(x))$ é verdadeira (V).
- **X** Isso significa, provar que existe pelo menos um elemento $x_0 \in A$ tal que $p(x_0)$ é falsa.
- X Diz-se que, o elemento x_0 é um contra-exemplo para a proposição $(\forall x \in A) (p(x))$.

PROVAS POR CONTRA-EXEMPLO

EXEMPLOS

X 1) Prove que a seguinte proposição é falsa:

$$(\forall n \in \mathbb{N})(2^n > n^2)$$

Mostre que existe pelo menos um (contra-exemplo) n_0 tal que $(2^n > n^2)$

De fato existe mais de um contra-exemplo:

Para
$$n_0 = 2$$
 temos que: $2^2 = 2^2$

Para
$$n_1 = 3$$
 temos que: $2^3 < 3^2$

Para
$$n_2 = 4$$
 temos que: $2^4 = 4^2$

2) Prove que a seguinte proposição é falsa:

$$(\forall x \in \mathbb{R})(|x| \neq 0)$$

- Mostre que existe pelo menos um x_0 tal que: $(|x_0| = 0)$
- Neste caso $x_0 = 0$ é um contra-exemplo, já que: (|0| = 0)
- ✗ 3) Prove que a seguinte proposição é falsa:

$$(\forall x \in \mathbb{R})(x^2 > x)$$

- Mostre que existe pelo menos um x_0 tal que: $(x^2 > x)$
- O Neste caso $x_0 = \frac{1}{3}$ é um contra-exemplo, já que: $\left(\frac{1}{3}\right)^2 < \left(\frac{1}{3}\right)$

PROVAS POR CONTRA-EXEMPLO

EXEMPLOS

- 4) Prove que a seguinte proposição é falsa: $(\forall x \in \mathbb{R})((x+2)^2 = x^2 + 4)$
 - O Mostre que existe pelo menos um x_0 tal que: $((x+2)^2 \neq x^2 + 4)$
 - Neste caso $x_0 = 1$ é um contra-exemplo, já que: $((1+2)^2 \neq 1^2 + 4)$ $9 \neq 5$
- **x** 5) Prove que a seguinte proposição é falsa: $(\forall x \in \mathbb{Z}^+)(x^2 + x + 41)$ é primo.
- Mostre que existe pelo menos um x_0 tal que: $(x^2 + x + 41)$ não é primo.
- o Neste caso $x_0 = 40$ é um contra-exemplo, já que: $(40^2 + 40 + 41) = 40(40 + 1) + 41 = 40(40 + 1)$
- o No es primo. $40(41) + 41 = 41^2$

REFERÊNCIAS

<u>De Alencar Filho, Edgar</u>. Iniciação à Lógica Matemática. Capítulo 16. Quantificadores. Editora Nobel. São Paulo. 1975. Reimpresso em 2015.