Corridor Charging Infrastructure: Accessibility and Redundancy

Aaron Rabinowitz, Vaishnavi Karanam 5/16/2024

Definition

The purpose of infrastructure is to provide access for people to opportunities

Transportation Accessibility:

"The ease with which individuals can access opportunities subject to the transportation system in the relevant area"

Transportation Accessibility definitions differ on the following points:

- What opportunities to consider?
- What transportation options to consider?
- What area to consider?

Circuit Analogy

"The ease with which individuals can access opportunities subject to the transportation system in the relevant area"

Circuit Analogy

"The ease with which individuals can access opportunities subject to the transportation system in the relevant area"

Land-use / personal preference

Methodology

- The main subject of debate is how to select opportunities. There are several approaches:
 - Nearest Proximity: Pick the closest opportunity.
 - Isocost: Pick all opportunities in an isocost polygon
 - Gravity/Entropy: Weigh all opportunities by mutual similarity
 - Discrete Choice: Fit a model to observed behavior

- The resistance component is universal shortest paths
 - Shortest paths computed for each mode considered
 - Sufficiently different cars should be considered as different modes

Road-Trip Accessibility

Background

- Modern BEVs have the range to be interchangeable with ICEVs for routine use
 - With reliable long-dwell charging they can even offer convenience and cost benefits
- However, for long road-trips, modern BEVs still lag behind. This is because BEVs have:
 - Lower maximum ranges
 - Lower range-addition rates
 - Less mature supply infrastructure
- The longer the trip the more disadvantaged the BEV is. This hinders goals like:
 - Single ICEV dependence to single BEV dependence
 - *Mixed household fleets* to *BEV only household fleets*

Road-Trip Accessibility

Background

Road-Trip Accessibility: "The ease with which all important locations within a region can be reached by a given individual using a given road-vehicle"

- Land-use: how big is the region and how spread-out are its population centers?
- Transportation: Layout of roads and distribution of supply stations
- Individual: What are the capabilities of cars driven and how risk tolerant are drivers?
- Temporal: Traffic patterns and seasonal infrastructure

$$A_{rt} = \frac{1}{N^2} \sum_{i=0}^{N} \sum_{j=0}^{N} W_i W_j C(O_i, O_j)$$

- A_{rt} regional road-trip accessibility
 - N number of locations
- W -weights for locations (all 1 here)
- C cost (time) for traversal of O/D arc (i, j)

California's Regional Land-Use

For purposes of evaluation, the following 15 locations were selected as origins/destinations:

Index	Location	
0	Crescent City	
1	Yreka	
2	Redding	
3	Chico	
4	Reno (State Line)	
5	Sacramento	
6	Stockton	
7	San Francisco	
8	San Jose	
9	Fresno	
10	Las Vegas (State Line)	
11	Bakersfield	
12	Los Angeles	
13	Phoenix (State Line)	
14	San Diego	

California's DC Charger Networks

Station Locations

California contains 10+ Non-Proprietary and 2 Proprietary Networks combining for ~1,900 DCFC stations

California also contains ~8,000 gas stations

California's DC Charger Networks

Redundancy

The purpose of charger networks is to provide redundancy

Roughly speaking, California's DCFC stations can be divided into Tesla and Non-Tesla networks

These are largely separate and unequal networks which lead to unequal experiences because they have *different levels of and approaches to redundancy*

- Tesla has 6,277 chargers concentrated in 403 stations
- Non-proprietary networks have 3,667 chargers spread among 1,425

California's DC Charger Networks

Queuing

- Redundancy matters because it allows for demand to be spread among ports.
 - If demand exceeds redundancy a queue will form
 - The most important factor in reducing expected queue length is port redundancy
- Redundancy in-station is different than betweenstation for two reasons:
 - Information: Little information is available about status of chargers that you can't physically see
 - Latency: A charger in a different station which is free now might be occupied by the time you drive to it.

Driver Risk-Attitudes

Cautious decision-makers will focus on bad outcomes

Aggressive decision-makers will focus on good outcomes

Neutral decision-makers will weight all outcomes

We can represent this dynamic with the Superquantile Risk function which is used to inform optimal routing

$$S(D, p_0, p_1) = \frac{1}{p_1 - p_0} \int_{p_0}^{p_1} Q(D, \alpha) d\alpha$$

Specific Accessibility Example

Different Drivers from Fresno

Consider, as an example, the following four scenarios for a driver based out of Fresno:

- Risk neutral driver using a generic ICEV
 - Takes "direct path"
- Risk neutral driver using a Tesla Model 3
 - High range
 - High charger reliability
- Risk-cautious driver using a Chevrolet Bolt EV
 - Low range
 - Low charger reliability
- Risk-aggressive driver using a Chevrolet Bolt EV
 - Low range
 - Low charger reliability

Index	ICEV	Model 3 Neutral	Bolt Cautious	Bolt Aggressive
0	8.79	9.28	15.58	13.66
1	6.73	7.07	13.31	10.04
2	5.28	5.60	8.78	8.35
3	4.40	4.54	7.54	5.96
4	4.63	4.74	7.85	6.34
5	2.79	2.82	4.01	4.17
6	2.09	2.09	2.09	2.09
7	3.08	3.18	4.34	4.50
8	2.71	2.71	2.71	2.71
9	0.00	0.00	0.00	0.00
10	5.86	6.13	8.88	9.05
11	1.64	1.64	1.64	1.64
12	3.32	3.32	4.72	4.73
13	6.80	7.31	11.21	10.50
14	5.29	5.47	8.41	8.32

Hours to traverse arcs

Specific Accessibility Example

Different Drivers from Fresno

Hours to traverse arcs

Experimental Design

How easy are BEV long trips in California? A full-factorial study was conducted on the following parameters:

- Vehicle range [200 miles, 300 miles, 400 miles] (maximum charging speeds scale with capacity)
- Charger network access [Tesla, Non-Tesla, Combined]
- Charger equipment reliability [50%, 75%, 99%]
- Driver risk-attitude [Cautious (worst 50% of outcomes), Neutral (all outcomes), Aggressive (best 50% of outcomes)]
- State-wide Road-Trip Accessibility was computed for each case

Regression Results

Linear Regression based on Road-Trip Accessibility metric produced the following significant terms:

Parameter	β	p-value
Intercept	6.678	0.000
Range	-0.903	0.035
Attitude	2.633	0.000
Attitude:Range	-2.570	0.000
Attitude:Reliability	-2.028	0.003
Attitude:Non-Tesla Access	1.406	0.021

Regression Results

Linear Regression based on Road-Trip Accessibility metric produced the following significant terms:

Parameter	β	p-value
Intercept	6.678	0.000
Range	-0.903	0.035
Attitude	2.633	0.000
Attitude:Range	-2.570	0.000
Attitude:Reliability	-2.028	0.003
Attitude:Non-Tesla Access	1.406	0.021

All else being equal, BEV travel takes more time than ICEV travel

Regression Results

Linear Regression based on Road-Trip Accessibility metric produced the following significant terms:

Parameter	β	p-value
Intercept	6.678	0.000
Range	-0.903	0.035
Attitude	2.633	0.000
Attitude:Range	-2.570	0.000
Attitude:Reliability	-2.028	0.003
Attitude:Non-Tesla Access	1.406	0.021

Increasing range can often mean dropping one charging event

Regression Results

Linear Regression based on Road-Trip Accessibility metric produced the following significant terms:

Parameter	β	p-value
Intercept	6.678	0.000
Range	-0.903	0.035
Attitude	2.633	0.000
Attitude:Range	-2.570	0.000
Attitude:Reliability	-2.028	0.003
Attitude:Non-Tesla Access	1.406	0.021

More cautious decision-makers will be put off by the immature DC charging network, especially in the more rural areas of the state. Better vehicles and networks can help alleviate this.

Regression Results

Linear Regression based on Road-Trip Accessibility metric produced the following significant terms:

Parameter	β	p-value
Intercept	6.678	0.000
Range	-0.903	0.035
Attitude	2.633	0.000
Attitude:Range	-2.570	0.000
Attitude:Reliability	-2.028	0.003
Attitude:Non-Tesla Access	1.406	0.021

Tesla's DC charging network provides the best redundancy and this matters to more cautious drivers.

Regression Results

Changing the regressors to include Redundancy In-Station and Between-Station directly

Parameter	β	p-value
Intercept	6.800	0.000
Range	-0.921	0.012
Attitude	3.640	0.000
Attitude:Range	-3.559	0.000
Attitude:Reliability	-2.772	0.000
Attitude:Redundancy-IS	-1.339	0.026
Attitude:Range:Reliability	2.754	0.002

Redundancy In-Station is significant but Redundancy Between-Station is not

Conclusions

- DC charging is needed to enable long road-trips for BEVs
 - People tend to over-weigh long trips in purchasing decisions compared to their frequency
 - In the US, a mode switch will usually be to a higher emission mode
- DC charging networks are not yet mature
 - Speeds and redundancy need to improve to approach ICEV parity
 - At the moment information and latency issues make concentrated networks more beneficial for long roadtrip travel
 - Tesla's network is currently the most useful might be a good model
- Generally better utilization and reliability data will enable better analysis and better operation

