Geometría Diferencial

Ejercicios para Entregar - Práctica 2

Guido Arnone

Sobre los Ejercicios

Además del ejercicio (9), elejí resolver los ejercicios (4) y (12).

Ejercicio 4. Sea $f: M \to N$ una función diferenciable entre variedades de la misma dimensión y supongamos que su dominio es compacto.

- (a) Para cada $q \in N$ que es un valor regular de f el conjunto $f^{-1}(q)$ es finito.
- (b) Sea R el conjunto de los valores regulares de f. El conjunto R es un abierto de N y la función

$$g \in R \mapsto \#f^{-1}(g) \in \mathbb{N}_0$$

es localmente constante. Es necesariamente constante?

Demostración. Veamos primero el inciso (a). Fijemos q ∈ N un valor regular. Como f es diferenciable en particular es continua y entonces el conjunto $E_q := f^{-1}(q)$ es un cerrado de M, al ser la preimagen del cerrado $\{q\} \subset N$. Como E_q es un cerrado y M es compacta, el primero resulta compacto. Por lo tanto, para probar que E_q es finito alcanza con mostrar que es discreto con la topología subespacio de M. Concretamente, basta ver que si $p \in E_q$ entonces existe $U \subset M$ abierto con $U \cap E_q = \{p\}$. Si $p \in E_q$, como q es un valor regular $d_p f : T_p M \to T_q N$ es sobreyectiva. Por otro lado, por hipótesis sabemos que dim $T_p M = \dim M = \dim N = \dim T_q N$. Como $d_p f$ es una función lineal sobreyectiva entre espacios vectoriales de la misma dimensión, es un isomorfismo. El teorema de la función inversa nos asegura entonces que existen abiertos $U \ni p$ y $V \ni q$ de M y N respectivamente tales que la (co) restricción $f|_U^V : U \to V$ de f es un difeomorfismo. En particular $f|_U^V$ es inyectiva y entonces la preimagen de un punto contiene a lo sumo un elemento. Se tiene entonces que

$$U\cap f^{-1}(q)\stackrel{(q\in V)}{=}(f|_U^V)^{-1}(q)\stackrel{(p\in U)}{=}\{p\},$$

lo que concluye la prueba de (a).

Ahora veamos (b). Fijemos $q \in R$. Si $q \notin f(M)$, entonces $\#f^{-1}(q) = 0$. Como M es compacta y N es Hausdorff pues es una variedad, f es cerrada. Entonces f(M) es cerrado y por lo tanto, $f(M)^c$ es un abierto que contiene a q. Allí (vacuamente) todo punto es regular y tiene preimagen de tamao cero: basta probar la afirmación para $q \in R \cap f(M)$. Sea $f^{-1}(q) = \{p_1, \ldots, p_k\}$. Aplicando

el argumento que usamos en (a) a cada punto p_i , obtenemos abiertos $(A_i)_{i=1}^k$ de M y $(B_i)_{i=1}^k$ de N tales que las restricciones $f|_{A_i}^{B_i}:A_i\to B_i$ de f son difeomorfismos con $p_i\in A_i$ y $q\in B_i$ para todo $i\in [\![k]\!]$. Más aún podemos garantizarf que $A_i\cap A_j=\emptyset$ si $i\neq j$. Definimos ahora $B=\cap_{i\in [\![k]\!]}B_i$ y $U_i:=(f|_{A_i}^{B_i})^{-1}(B)$ para cada $i\in [\![k]\!]$. Las (co)restricciones

$$f|_{U_{\mathfrak{i}}}^{B}:U_{\mathfrak{i}}\to B$$

con $1 \le i \le k$ resultan entonces difeomorfismos.

Definimos 2 ahora $C = (\bigcap_{i \in \llbracket k \rrbracket} U_i)^c$. Como f es cerrada, f(C) es cerrado. Ahora, una vez más: definimos los abiertos $V := B \setminus f(C)$ y $O_i := (f|_{U_i}^B)^{-1}(V) \overset{(V \subset B)}{=} U_i \cap f^{-1}(V)$, de forma que cada restricción $f|_{O_i}^V : O_i \to V$ sigue siendo un difeomorfismo. Afirmamos ahora que $f^{-1}(V) = \bigcup_{i \in \llbracket k \rrbracket} O_i$. Por definición ya sabemos que $f^{-1}(V) \supseteq \bigcup_{i \in \llbracket k \rrbracket} O_i$. Recíprocamente si $x \in f^{-1}(V)$ entonces $f(x) \not\in f(C)$ y por lo tanto $x \not\in C$. Entonces $x \in C^c = \bigcup_{i \in \llbracket k \rrbracket} U_i$. Como partimos de que $x \in f^{-1}(V)$, efectivamente obtenemos que

$$x \in f^{-1}(V) \cap \bigcup_{\mathfrak{i} \in \llbracket k \rrbracket} U_{\mathfrak{i}} = \bigcup_{\mathfrak{i} \in \llbracket k \rrbracket} (f^{-1}(V) \cap U_{\mathfrak{i}}) = \bigcup_{\mathfrak{i} \in \llbracket k \rrbracket} O_{\mathfrak{i}}.$$

Veamos que esto implica ambas afirmaciones de (b). Por un lado, si $\mathfrak{p} \in f^{-1}(V)$ entonces $\mathfrak{p} \in O_i$ para algún $\mathfrak{i} \in [\![k]\!]$ y como $f|_{O_i}^V$ es un difeomorfismo entonces via los isomorfismos $T_\mathfrak{p}O_i \simeq T_\mathfrak{p}M$ y $T_{\mathfrak{q}'}V \simeq T_{\mathfrak{q}'}N$, tenemos que $d_\mathfrak{p}f$ es un isomorfismo:

$$T_{p}M \xrightarrow{d_{p}f} T_{q'}N$$

$$\downarrow^{\ell} \qquad \qquad \downarrow^{\ell}$$

$$T_{p}O_{i} \xrightarrow{d_{p}f|_{O_{i}}^{V}} T_{q'}V$$

En particular d_pf resulta sobreyectivo. Como $p \in f^{-1}(q')$ era arbitario, vemos que para cada punto en la preimagen de q' el diferencial allí es sobreyectivo: esto quiere decir que q' es un punto regular, y como $q' \in V$ era arbitrario, es $V \subset R$. Esto prueba que R es abierto: partimos de un punto $q \in R$ y obtuvimos un entorno abierto $V \ni q$ contenido en R. Además, para cada $q' \in V$ tenemos que $f^{-1}(q') \subset f^{-1}(V) \subset \bigcup_{i \in [\![k]\!]} O_i$ así que

$$f^{-1}(\mathfrak{q}')=f^{-1}(\mathfrak{q}')\cap\bigcup_{\mathfrak{i}\in[\![k]\!]}O_{\mathfrak{i}}=\bigcup_{\mathfrak{i}\in[\![k]\!]}(O_{\mathfrak{i}}\cap f^{-1}(\mathfrak{q}'))=\bigcup_{\mathfrak{i}\in[\![k]\!]}f|_{O_{\mathfrak{i}}}^{V}(\mathfrak{q}').$$

Como los conjuntos $(O_i)_{i\in [\![k]\!]}$ son disjuntos dos a dos pues $O_i\subset A_i$ para cada i, ási que de la anterior igualdad es $\#f^{-1}(q')=\sum_{i=1}^k\#(f|_{O_i}^{V}^{-1}(q'))$. Cada restricción $f|_{O_i}^{V}$ es biyectiva (pues es un difeomorfismo), de modo que la preimagen de q' en cada caso tiene exactamente un punto:

¹Como M es Hausdorff, existen entornos abiertos $U_i \ni p_i$ para cada $i \in \llbracket k \rrbracket$ disjuntos dos a dos. Luego las (co) restricciones $f: A_i \cap U_i \to f(A_i \cap U_i)$ siguen siendo difeomorfismos y los abiertos $(A_i \cap U_i)_{i=1}^k$ son disjuntos dos a dos. Por lo tanto, podemos suponer directamente que los abiertos lo eran.

 $^{^2}$ Dado q' \in B, nos gustaría afirmar que su preimagen cae enteramente en la unión de los abiertos U_i pues esto implicaría que es un valor regular. Esto no es necesariamente cierto, al menos a simple vista. Intuitivamente, forzamos esta situación quitandole a B los puntos de f(C), y luego corestringiendo apropiadamente conseguimos nuevos abiertos en M y N que cumplen con lo que buscamos.

$$f^{-1}(q') = \sum_{i=1}^k \#(f|_{O_i}^V(q')) = \sum_{i=1}^k 1 = k = \#f^{-1}(q).$$

Como esto es cierto para cualquier $q' \in V$, la aplicación $q \in R \mapsto \#f^{-1}(q) \in \mathbb{N}_0$ es localmente constante.

Por último, observemos que en general **no es cierto que la aplicación sea constante**. Veamos el siguiente contraejemplo: tomamos $M=N=S_1\sqcup S_2$ con $S_1=S_2=\mathbb{S}^1$ que es una variedad compacta, con las inclusiones $j_i:S^1=S_i\hookrightarrow S_1\sqcup S_2$ diferenciables³. Si $f_1,f_2:S^1\to S^1$ son diferenciables, entonces $f_1\sqcup f_2:S_1\sqcup S_2\to S_1\sqcup S_2$ lo es: basta probar diferenciabilidad restringiendo a los abiertos S_1 y S_2 . Esto es como ver que la precomposición por las inclusiónes es diferenciable, lo que es cierto pues ésta se factoriza por las aplicaciones j_i y f_i , todas diferenciables:

$$S_{1} \sqcup S_{2} \xrightarrow{f_{1} \sqcup f_{2}} S_{1} \sqcup S_{2}$$

$$j_{i} \int \qquad \qquad \downarrow j_{i}$$

$$S_{i} \xrightarrow{f_{i}} S_{i}$$

Del diagrama anterior y usando que las inclusiones de abiertos inducen isomorfismos en los tangentes, tenemos para cada $p \in S_i$ que

$$T_{p}S_{i} \xrightarrow{d_{p}f_{i}} T_{f_{i}(p)}S_{i}$$

$$\downarrow^{?} \qquad \downarrow^{?}$$

$$T_{p}(S_{1} \sqcup S_{2}) \xrightarrow{d_{p}f_{1} \sqcup f_{2}} T_{f_{i}(p)}(S_{1} \sqcup S_{2})$$

conmuta. Como f_1 , f_2 y $f_1 \sqcup f_2$ son funciones entre variedades de igual dimensión, sus diferenciales son sobreyectivos si y sólo si son isomorfismos. En particular, si $q \in S_i$ es un valor regular para f_i es también un valor regular para $f_1 \sqcup f_2$.

Ahora, pasemos a una función concreta: tomamos $g:z\in \mathbb{S}^1\mapsto z^2\in \mathbb{S}^1$, pensando a $\mathbb{S}^1\subset \mathbb{C}$, y consideramos id \sqcup g. Por la observación anterior, todo punto p de \mathbb{S}_1 es regular, y su preimagen es exactamente $\{p\}\subset \mathbb{S}_1$. Por otro lado, si $\mathfrak{p}\in \mathbb{S}_2$ es $\#(\mathrm{id}\sqcup g)^{-1}(\mathfrak{p})=\#g^{-1}(\mathfrak{p})=2$. Por lo tanto, resta probar que existe algún valor regular $\mathfrak{p}\in \mathbb{S}^1$ de g para concluir que la función $\mathfrak{q}\in \mathbb{R}\mapsto (\mathrm{id}\sqcup g)^{-1}(\mathfrak{p})$ en este caso no es constante. Más aún, como aquí los espacios tangentes son 1-dimensionales, basta ver que existe $\mathfrak{p}\in \mathbb{S}^1$ tal que $d_\mathfrak{p}g$ es no nulo, pues en tal caso será sobreyectivo⁴. Veamos que $d_{(1,0)}g$ es no nulo. Para esto, consideramos la carta

$$\phi:(x,y)\in\{(x,y)\in\mathbb{S}^1:x>0\}\mapsto y\in(-1,1)$$

 $^{^3}$ Tomamos la topología coproducto y las siguientes cartas: para cada carta (U,ϕ) en el atlas maximal de S^1 tenemos dos cartas (U_i,ϕ_i) con $U_i=U$ visto en S_i y $\phi_i=\phi$ bajo la misma identificación. Por lo tanto, si $p\in S^1$, tomamos (U,ϕ) una carta de S^1 con $U\ni p$ y (U_i,ϕ_i) en $S_1\sqcup S_2$. Entonces $\phi_ij_i\phi^{-1}=\phi^{-1}\phi=id_{\phi(U)}$. Esto dice que las inclusiones j_1,j_2 resultan diferenciables.

 $^{^4}$ Como S^1 es conexa y g no es constante, el ejercicio (12) que resolvemos más adelante garantiza que debe existir cierto $\mathfrak{p} \in S^1$ para el cual es $d_{\mathfrak{p}} g \neq 0$. De todas formas, optamos por una resolución elemental.

alrededor de (0,1). Como g(1,0)=(1,0), luego $\frac{d}{dt}\Big|_{(1,0)}^{\phi}$ es una derivación en (1,0) y entonces basta con ver que

$$d_{(0,1)}g\left(\frac{d}{dt}\Big|_{(1,0)}^{\varphi}\right)(\varphi) = \frac{d}{dt}\Big|_{(1,0)}^{\varphi}(\varphi g) = \frac{d(\varphi g \varphi^{-1})}{dt}\Big|_{0}$$

es distinto de cero para concluir que $d_{(1,0)}g \neq 0$. Como $g(x,y) = (x^2 - y^2, 2xy)$, es

$$\phi g \phi^{-1}(y) = \phi g(\sqrt{1-y^2}, y) = \phi(1-y^2-y^2, 2\sqrt{1-y^2}y) = 2y\sqrt{1-y^2}$$

y entonces $\frac{d(\phi g \phi^{-1})}{dt} = \frac{2-4y^2}{\sqrt{1-y^2}}$. Por lo tanto,

$$d_{(0,1)}g\left(\frac{d}{dt}\Big|_{(1,0)}^{\varphi}\right)(\varphi) = \frac{2-4y^2}{\sqrt{1-y^2}}\Bigg|_{0} = 2 \neq 0.$$

Esto termina de mostrar que si bien la aplicación del ejercicio es localmente constante, no necesariamente resulta constante.

Ejercicio 9. Sea M una variedad diferenciable de dimensión n y $\mathcal A$ su atlas maximal. Sea $TM = \bigsqcup_{p \in M} T_p M$ y sea $\pi : TM \to M$ la función tal que $\pi(\nu) = p$ si $\nu \in T_p M$. Para cada $(U, x) \in \mathcal A$, sea $TU = \bigsqcup_{p \in U} T_p M \subset TM$ y $\overline{x} : TU \to x(U) \times \mathbb R^n$ la función tal que

$$\overline{\mathbf{x}}(\mathbf{v}) = (\mathbf{x}(\pi(\mathbf{v})), \mathbf{v}(\mathbf{x}^1), \dots, \mathbf{v}(\mathbf{x}^n))$$

cada vez que $v \in TU$. Probar que:

(a) La función $\bar{x}: TU \to x(U) \times \mathbb{R}^n$ es una biyección con inversa

$$\overline{x}^{-1}(a, b^1, \dots, b^n) = \sum_{i=1}^n b^i \frac{\partial}{\partial x^i} \Big|_{x^{-1}(a)}$$

para cada $a \in x(U)$.

- (b) Si (U,x), $(V,y) \in \mathcal{A}$ y $U \cap V \neq \emptyset$, entonces $\overline{x}(TU \cap TV) = x(U \cap V) \times \mathbb{R}^n$ es un abierto de \mathbb{R}^{2n} y la biyección $\overline{x} \circ \overline{y}^{-1} : y(U \cap V) \times \mathbb{R}^n \to x(U \cap V) \times \mathbb{R}^n$ es un difeomorfismo.
- (c) El conjunto TM admite una estructura diferenciable que lo transforma en una variedad diferenciable de dimensión 2n, con atlas

$$\overline{\mathcal{A}} = \{(TU, \overline{x}) : (U, x) \in \mathcal{A}\}.$$

(d) Con respecto a esta estructura diferenciable, la proyección π : TM \rightarrow M es diferenciable.

Demostración. Hacemos cada inciso por separado,

(a) Sean $(a,b)=(a,b^1,\ldots,b^n)\in x(U)\times\mathbb{R}^n$ y $h(a,b):=\sum_{i=1}^n b^i\frac{\partial}{\partial x_i}|_{x^{-1}(a)}$. Como h(a,b) es una combinación lineal de derivaciones en $x^{-1}(a)$, resulta una derivación en $x^{-1}(a)$. Por lo tanto, $h(a,b)\in T_{x^{-1}(a)}M$ y entonces $x\pi(h(a,b))=xx^{-1}(a)=a$. Además, si $\pi_j:\mathbb{R}^n\to\mathbb{R}$ es la proyección en la j-ésima coordenada, para cada $j\in [n]$ es $x^j=\pi_j x$ y entonces

$$\begin{split} h(\alpha,b)(x^j) &= \left(\sum_{i=1}^n b^i \frac{\partial}{\partial x_i}\Big|_{x^{-1}(\alpha)}\right)(x^j) = \sum_{i=1}^n b^i \frac{\partial}{\partial x_i}\Big|_{x^{-1}(\alpha)}(x^j) = \sum_{i=1}^n b^i \frac{\partial (x^j x^{-1})}{\partial x_i}\Big|_{\alpha} \\ &= \sum_{i=1}^n b^i \frac{\partial \pi_j}{\partial x_i}\Big|_{\alpha} = \sum_{i=1}^n b^i \delta_{ij} = b^j. \end{split}$$

Concluimos así que $\overline{x}(h(a,b)) = (a,b) \in x(U) \times \mathbb{R}^n$. Recíprocamente si $v \in M_p$ con $p \in U$, luego

$$\begin{split} h(\overline{x}(\nu)) &= h(x\pi(\nu), \nu(x^1), \dots, \nu(x^n)) = \sum_{i=1}^n \nu(x^i) \frac{\partial}{\partial x_i} \Big|_{x^{-1}(x\pi(\nu))} = \\ &= \sum_{i=1}^n \nu(x^i) \frac{\partial}{\partial x_i} \Big|_p. \end{split}$$

Esto último coincide justamente la expresión de ν en la base $\left\{\frac{\partial}{\partial x_i}\Big|_p\right\}_{i=1}^n$, lo que termina de probar que $h = \overline{x}^{-1}$.

(b) En primer lugar, notemos que como $U \cap V$ es abierto y x homeomorfismo, $x(U \cap V)$ es abierto y así $x(\underline{U} \cap V) \times \mathbb{R}^n$ es abierto en \mathbb{R}^{2n} . Tenemos también que $TU \cap TV = T(U \cap V)$ y usando (a), es $\overline{x|_{U \cap V}} = \overline{x}|_{T(U \cap V)}$ por lo que $\overline{x|_{U \cap V}}$ resulta sobreyectiva (ya que $x|_{U \cap V}$ es otra carta de M). Luego (b) nos dice que en efecto $\overline{x}(TU \cap TV) = x(U \cap V) \times \mathbb{R}^n$.

Veamos ahora que \overline{xy}^{-1} es un difeomorfismo. Como \overline{x} e \overline{y} son biyectivas, basta ver que las composiciones \overline{xy}^{-1} y \overline{yx}^{-1} son diferenciables. Por simetría (ya que podemos intercambiar los roles de x e y) basta probar un caso: lo hacemos para \overline{xy}^{-1} . Por un cálculo directo, si $(a,b) \in y(U \cap V) \times \mathbb{R}^n$ y $\pi_j : \mathbb{R}^n \to \mathbb{R}$ es la proyección en la j-ésima coordenada, para cada $j \in [n]$ es $x^jy^{-1} = \pi_jxy^{-1} = (xy^{-1})^j$. Por lo tanto,

$$\overline{y}^{-1}(a,b)(x^{j}) = \sum_{i=1}^{n} b^{i} \frac{\partial}{\partial y_{i}} \Big|_{y^{-1}(a)}(x^{j}) = \sum_{i=1}^{n} b^{i} \frac{\partial x^{j} y^{-1}}{\partial x_{i}} \Big|_{a}$$
$$= \sum_{i=1}^{n} b^{i} \frac{\partial (xy^{-1})^{j}}{\partial x_{i}} \Big|_{a} = [J(xy^{-1})_{a} \cdot b]_{j}$$

con $\mathbb{J}(xy^{-1})_{\mathfrak{a}}$ la matriz jacobiana de $xy^{-1}:y(U\cap V)\subset\mathbb{R}^n\to x(U\cap V)\subset\mathbb{R}^n$ en el punto $\mathfrak{a}\in y(U\cap V)$. Por (a) sabemos que $\pi\overline{y}^{-1}(\mathfrak{a},\mathfrak{b})=y^{-1}(\mathfrak{a})$, así que

$$\begin{split} x\overline{y}^{-1}(a,b) &= (x\pi(\overline{y}^{-1}(a,b)), \overline{y}^{-1}(a,b)(x^{1}), \dots, \overline{y}^{-1}(a,b)(x^{n})) \\ &= (xy^{-1}(a), [J(xy^{-1})_{a} \cdot b]_{1}, \dots, [J(xy^{-1})_{a} \cdot b]_{n}) \\ &= (xy^{-1}(a), J(xy^{-1})_{a} \cdot b). \end{split}$$

Como M es variedad diferenciable, xy^{-1} es suave y entonces $a \mapsto \mathbb{J}(xy^{-1})_a$ es suave. Ésto último dice que $(a,b) \mapsto \mathbb{J}(xy^{-1})_a \cdot b$ es suave⁵, de lo que concluimos que \overline{xy}^{-1} es diferenciable.

(c) Procedemos por pasos: primero dotaremos al fibrado tangente de una topología que hará del mismo un espacio T_2 localmente euclídeo con base numerable. Es decir, le daremos a TM una estructura de variedad topológica, donde además cada función $\overline{x}: TU \to x(U) \times \mathbb{R}^n$ resultará un homeomorfismo. Por último, concluiremos que con esta estructura $\overline{\mathcal{A}}$ es un altas diferenciable.

En primer lugar, afirmamos que la colección

$$\mathcal{B} = \{\overline{x}^{-1}(V) : (U, x) \in \mathcal{A}, V \subset x(U) \times \mathbb{R}^n \text{ abierto}\}$$

es una base para una topología en TM. Dado $v \in T_pM \subset TM$, existe una carta (U,x) con $U \ni p$ y entonces $v \in TU = \overline{x}^{-1}(x(U) \times \mathbb{R}^n) \in \mathcal{B}$. Por lo tanto es $\bigcup_{U \in \mathcal{B}} U = TM$. Ahora, sean $\overline{x_1}^{-1}(W_1), \overline{x_2}^{-1}(W_2) \in \mathcal{B}$ con $(U_1, x_1), (U_2, x_2) \in \mathcal{A}$ y $W_1, W_2 \subset \mathbb{R}^{2n}$ abiertos. Entonces, se tiene que

$$\begin{split} \overline{x_1}^{-1}(W_1) \cap \overline{x_2}^{-1}(W_2) &= (\overline{x_1}^{-1}(W_1) \cap TU_1) \cap (TU_2 \cap \overline{x_2}^{-1}(W_2)) \\ &= \overline{x_1}^{-1}(W_1) \cap \overline{x_2}^{-1}(x_2(U_1 \cap U_2) \times \mathbb{R}^n) \cap \overline{x_2}^{-1}(W_2) \\ &= \overline{x_1}^{-1}(W_1) \cap \overline{x_2}^{-1}(x_2(U_1 \cap U_2) \times \mathbb{R}^n \cap W_2) \\ &= \overline{x_1}^{-1}(W_1) \cap \overline{x_1}^{-1} \circ \overline{x_1} \circ \overline{x_2}^{-1}(x_2(U_1 \cap U_2) \times \mathbb{R}^n \cap W_2) \\ &= \overline{x_1}^{-1}(W_1 \cap \overline{x_1} \circ \overline{x_2}^{-1}(x_2(U_1 \cap U_2) \times \mathbb{R}^n \cap W_2)). \end{split}$$

Como $x_2(U_1 \cap U_2) \times \mathbb{R}^n \cap W_2$ es abierto y $\overline{x_1} \circ \overline{x_2}^{-1}$ es difeomorfismo, $\overline{x_1} \overline{x_2}^{-1} (x_2(U_1 \cap U_2) \times \mathbb{R}^n \cap W_2)$ es abierto. Luego

$$W_1 \cap \overline{x}_1 \circ \overline{x_2}^{-1}(x_2(U_1 \cap U_2) \times \mathbb{R}^n \cap W_2)$$

resutla abierto y por lo tanto, $\overline{x_1}^{-1}(W_1) \cap \overline{x_2}^{-1}(W_2)$ se puede escribir como la preimagen por $\overline{x_1}$ de un abierto de $x_1(U_1) \times \mathbb{R}^n$. En particular esto termina de probar que \mathcal{B} es una base. Dotamos entonces a TM de la topología generada por \mathcal{B} .

Si (U,x) es una carta de M, afirmamos ahora que $\overline{x}: TU \to x(U) \times \mathbb{R}^n$ es un homeomorfismo. Por construcción de la topología en TM, resulta continua. Resta ver que es abierta: si tomamos un abierto básico $TU \cap \overline{y}^{-1}(W)$ con $(V,y) \in \mathcal{A}$ y $W \subset \mathbb{R}^{2n}$ abierto, es

$$\begin{split} \overline{x}(TU \cap \overline{y}^{-1}(W)) &= \overline{x}(TU \cap TV \cap \overline{y}^{-1}(W)) = \overline{x}(\overline{y}^{-1}(U \cap V \times \mathbb{R}^n) \cap \overline{y}^{-1}(W)) \\ &= \overline{x} \circ \overline{y}^{-1}(U \cap V \times \mathbb{R}^n \cap W). \end{split}$$

Efectivamente $\overline{x}(TU \cap \overline{y}^{-1}(W))$ es entonces abierto, ya que $U \cap V \times \mathbb{R}^n \cap W$ es abierto y $\overline{x} \circ \overline{y}^{-1}$ un difeomorfismo. Como \overline{x} es además biyectiva, es un homeomorfismo. En particular TM es **localmente euclídeo**: si $v \in T_pM \subset TM$, tomando una carta (U,x) de M con $p \in U$ tenemos un homeomorfismo $\overline{x} : TU \to x(U) \times \mathbb{R}^n$ con $TU \ni v$.

⁵Esto es porque en cada componente $(a,b) \mapsto \mathbb{J}(xy^{-1})_a \cdot b$ coincide con $(a,b) \mapsto \sum_{i=1}^n b^i \frac{\partial (xy^{-1})^i}{\partial x_i} \Big|_a$ que es una suma de productos de proyectar a $\mathbb{J}(xy^{-1})$ o $(a,b) \mapsto b$ en alguna coordenada, y todas las funciones involucradas son suaves.

A continuación, veamos que TM resulta **Hausdorff**. Sean $v \neq w \in TM$ dos derivaciones, de forma que existen $p, q \in M$ con $v \in T_pM$ y $w \in T_qM$. Si p = q, tomamos una carta (U, x) de M con $p \in U$. Luego $v, w \in TU$ y $\overline{x}(v) \neq \overline{x}(w)$ así que como \mathbb{R}^{2n} es T_2 , existen abiertos disjuntos $U \ni \overline{x}(v)$ y $V \ni \overline{x}(w)$. Por lo tanto $\overline{x}^{-1}(U)$ y $\overline{x}^{-1}(V)$ son dos abiertos disjuntos que separan a v de w. Si en cambio $p \neq q$, consideramos cartas (U, x) y (V, y) con U y V disjuntos. Tenemos entonces que $TU \cap TV = \emptyset$ y $v \in TU$, $w \in TV$. En cualquier caso, siempre existen abiertos disjuntos que separan a v y w.

Por último, TM tiene una **base numerable**: como M es una variedad, tiene una base numerable. En particular, el cubrimiento $\{U:(U,x)\in\mathcal{A}\}$ de M tiene un subcubrimiento numerable $(U_n)_{n\in\mathbb{N}}$ con $(U_n,x_n)_{n\in\mathbb{N}}$ cartas de M. Para cada $n\in\mathbb{N}$, el abierto $x_n(U_n)\times\mathbb{R}^n$ tiene una base numerable $\{V_j^n\}_{j\in\mathbb{N}}$. Afirmamos entonces que el conjunto numerable $\mathcal{B}'=\{\overline{x_n}^{-1}(V_j^n)\}_{(n,j)\in\mathbb{N}^2}$ es una base de TM. Sea (U,x) una carta de M, $W\subset x(U)\times\mathbb{R}^n$ abierto y $v\in\overline{x}^{-1}(W)$. Veamos que hay un abierto de \mathcal{B}' que contiene a v y está contenido en $\overline{x}^{-1}(W)$. De que $v\in\mathbb{T}U$ sabemos que existe $p\in U$ tal que v es una derivación en p y, como tenemos que $(U_n)_{n\in\mathbb{N}}$ cubre M, existe $k\geq 1$ con $U_k\ni p$. En consecuencia es $v\in\mathbb{T}U_k\cap\overline{x}^{-1}(W)$. Entonces podemos escribir

$$TU_k \cap \overline{x}^{\;-1}(W) = \overline{x}_k^{-1} \overline{x}_k (TU_k \cap \overline{x}^{-1}(W))$$

y como $\overline{x}_k(\nu) \in \overline{x}_k(TU_k \cap \overline{x}^{-1}(W)) \subset x_n(U_n) \cap \mathbb{R}^n$, existe $l \geq 1$ tal que $\overline{x}_k(\nu) \in V_l^k \subset \overline{x}_k(TU_k \cap \overline{x}^{-1}(W))$. Esto dice que

$$\nu \in \overline{x}_k^{-1}(V_l^k) \subset \overline{x}_k^{-1}\overline{x}_k(TU_k \cap \overline{x}^{-1}(W)) \subset \overline{x}^{-1}(W),$$

así que existe un tal entorno de \mathcal{B}' , como afirmamos.

En conclusión, TM es una variedad topológica. Como $\bigcup_{(U,x)\in\mathcal{A}} TU = T(\bigcup_{(U,x)\in\mathcal{A}} U) = TM$ y las funciones $\{\overline{x}: (U,x)\in\mathcal{A}\}$ resultan homeomorfismos, para concluir que $\overline{\mathcal{A}}$ es un atlas diferenciable resta ver que los cambios de coordenadas son difeomorfismos. Esto es precisamente el inciso (b). Concluimos entonces que TM con la estructura que le provee $\overline{\mathcal{A}}$ resulta una variedad diferenciable de dimensión 2n.

(d) Sea $v \in TM$. Existen entonces $p \in M$ tal que $v \in T_pM$ y una carta (U,x) de M con $\pi(v) = p \in U$. Por (c) sabemos que (TU, \overline{x}) es una carta de v, y por definición de TU es también $\pi(TU) = U$. Por lo tanto, resta ver que *bajando* con estas cartas la función que resulta es diferenciable entre abiertos euclídeos. Es decir, basta probar que $x \circ \pi \circ \overline{x}^{-1}$ es diferenciable.

Como para todo $\nu \in TU$ el vector $x \circ \pi(\nu)$ coincide con las primeras n coordenadas de $\overline{x}(\nu)$, notando $\pi_1: (p,q) \in \mathbb{R}^n \times \mathbb{R}^n \mapsto p \in \mathbb{R}^n$ es entonces $x \circ \pi \circ \overline{x}^{-1} = \pi_1|_{x(U) \times \mathbb{R}^n} \circ \overline{x} \circ \overline{x}^{-1} = \pi_1|_{x(U) \times \mathbb{R}^n}$. Esta última es diferenciable ya que es la restricción al abierto $x(U) \times \mathbb{R}^n$ de la función diferenciable π_1 . Consecuentemente, $\pi: TM \to M$ resulta diferenciable.

Observación. Sean M una variedad diferenciable $y \in C^{\infty}(M)$ una función que vale constantemente $\mu \in \mathbb{R}$. Si $\nu : C^{\infty}(M) \to \mathbb{R}$ es una derivación en $p \in M$, entonces $\nu(f) = 0$. En efecto, notando $1 : M \to \mathbb{R}$ a la función que vale constantemente 1 es

$$\nu(1) = \nu(1 \cdot 1) \stackrel{(Leibniz)}{=} 1(p)\nu(1) + 1(p)\nu(1) = 2\nu(1),$$

lo que implica v(1) = 0. En consecuencia, $v(f) = v(\mu \cdot 1) = \mu v(1) = 0$.

Recuerdo ahora el siguiente resultado que utilizaré a continuación,

Proposición. Sea X un espacio topológico conexo y $f: X \to Y$ una función. Si f es localmente constante, entonces es constante.

Demostración. Si y ∈ im f, el conjunto $E_y := f^{-1}(y) = \{x \in X : f(x) = y\}$ es abierto: para cada $z \in E_y$ existe por hipótesis un abierto $U \ni z$ donde f es constante, y como f(z) = y luego f vale constantemente y en todo U. Por lo tanto, $z \in U \subset E_y$. Además los conjuntos $(E_y)_{y \in \text{im } f}$ son disjuntos, pues si $z \in E_y \cap E_{y'}$ entonces y = f(z) = y'. Como X es conexo y

$$X = \bigsqcup_{y \in \text{im } f} E_y$$

es una unión de abiertos disjuntos no vacíos, necesariamente # im f=1. Esto es precisamente que f sea una función constante. \Box

Ejercicio 12. Sean M y N variedades diferenciables y sea $f: M \to N$ una función diferenciable. Probar que

- Si f es constante, entonces $f_{*p} = 0$ para todo $p \in M$.
- Si M es conexa y $f_{*p} = 0$ para todo $p \in M$, entonces f es constante.

Demostración. Notaremos $c_q: M \to N$ a la función que vale constantemente q y definimos $m:=\dim M$, $n:=\dim N$. Supongamos en primer lugar que $f=c_q$ para cierto $q\in N$. Sea $p\in M$ y veamos que f_{*p} es nula. Dada una derivación $v:C^\infty(M)\to \mathbb{R}$ en p y $g\in C^\infty(M)$, luego es

$$f_{*p}(v)(g) = v(-\circ f)(g) = v(gf) = v(gc_q) = v(c_{g(q)}) = 0,$$

pues notamos anteriormente que las funciones constantes tienen imagen nula por una derivación. Como $f_{*p}(\nu)$ se anula en toda función, es $f_{*p}(\nu)=0$. Por lo tanto, f_{*p} se anula en toda derivación: esto dice que $f_{*p}=0$. Como p era arbitario, f_{*p} resulta nula para cualquier $p\in M$.

Supongamos ahora que M es conexa y veamos para este caso la afirmación recíproca. Alcanza con probar que f es localmente constante: fijemos entonces $p \in M$ y veamos que existe un entorno abierto de p donde f es constante. Consideramos ahora una carta (V,ψ) de N con $f(p) \in V$ y una carta (U,ϕ) de M con $p \in U \subset f^{-1}(V)$ y U conexo⁶. Luego, los ganchos $\left\{\frac{\delta}{\delta x_i}\Big|_q^\phi\right\}_{i=1}^n$ son

⁶Como f es continua $f^{-1}(V)$ es abierto, y entonces $f^{-1}(V) \cap U$ es un abierto de M que contiene a p. Por lo tanto $f^{-1}(V) \cap U$ es un abierto en U, y como éste es homeomorfo a un abierto euclídeo, también lo es $f^{-1}(V) \cap U$. En particular tenemos un entorno conexo \tilde{U} de p contenido en $f^{-1}(V) \cap U$. La restricción de la carta a \tilde{U} es una carta que cumple lo que pedimos, por lo que podemos sin pérdida de generalidad asumir directamente a U conexo con $U \subset f^{-1}(V)$.

una base de T_qM para cada $q \in U$. Por hipótesis, si $g \in C^{\infty}(N)$ y v es una derivación en q, es $\nu(gf) = f_{*q}(\nu)(g) = 0$. En particular,

$$\left. \frac{\partial}{\partial x_i} \right|_q^{\varphi}(gf) = \left. \frac{\partial gf\varphi^{-1}}{\partial x_i} \right|_{\varphi^{-1}(q)} = 0$$

para todo $i \in [m]$ y $q \in U$. Es decir, la función diferenciable $gf\phi^{-1}: \phi^{-1}(U) \to \mathbb{R}$ tiene gradiente nulo. Como U es conexo y ϕ es homeomorfismo, luego $\phi^{-1}(U)$ es conexo. Como $gf\phi^{-1}$ tiene gradiente nulo y dominio conexo, es constante:

$$gf\phi^{-1}(x)=\mu_g\in\mathbb{R}\quad (\forall x\in\phi^{-1}(U)).$$

Equivalentemente, se tiene que $gf \equiv c_{\phi(\mu_g)}$ en U para cada $g \in C^{\infty}(N)$. Ahora, dado $i \in \llbracket n \rrbracket$ siempre existe $\overline{\psi}^i \in C^{\infty}(N)$ tal que $\overline{\psi}^i|_V = \psi^i$ y existen entonces constantes $c_1, \ldots, c_n \in \mathbb{R}$ tales que $\overline{\psi}^i f \equiv c_i$ en U. Como $f(U) \subset V$, es

$$c_i \equiv \overline{\psi}^i|_V \circ f \Big|_U^V = \psi^i \circ f \Big|_U^V$$

en U para cada $i \in [n]$, de forma que $\psi f \Big|_U^V \equiv (c_1, \ldots, c_n) =: c$. Como ψ es homeomorfismo, luego $f \Big|_U^V \equiv \psi^{-1}(c)$. Vemos así que f es constante en el abierto $U \ni p$, lo que completa la demostración.