# Inga vizsgálata

## Márton Tamás

Eötvös Lóránd Tudományegyetem, Informatikus Fizikus Számítógépes szimulációk laboratórium.
II. jegyzőkönyv.
Inga.



| OD /1 1 | . /   | . 1 | •            | /1      |
|---------|-------|-----|--------------|---------|
| ำ ลท    | ไลซลา | たへん | 1007         | 77.0 K0 |
| Tab.    | iaza  | OLL | $J \cup S.y$ | zéke    |

| 1  | A = in ma leas d'manana étanai |      |      |      | 0 |
|----|--------------------------------|------|------|------|---|
| 1. | Az inga kezdőparaméterei       | <br> | <br> | <br> |   |
|    |                                | <br> | <br> | <br> |   |

## Tartalomjegyzék

| 1.  | Fizikai probléma ismertétése        | 1  |
|-----|-------------------------------------|----|
| 2.  | A megoldási módszerek ismertetése   | 2  |
| 3.  | Eredmények ismertetése              | 3  |
|     | 3.1. Matematikai inga               | 3  |
|     | 3.2. Csillapított inga              | 8  |
|     | 3.3. Gerjesztett inga               | 11 |
|     | 3.4. Gerjesztetve csillapított inga | 14 |
| Iro | odalomjegyzék                       | 14 |

# Ábrák jegyzéke

| 3.1.1. Matematikai inga kitérés-idő grafikonja                          | 3   |
|-------------------------------------------------------------------------|-----|
| 3.1.2.Matematikai inga sebesség-idő grafikonja                          | 4   |
| 3.1.3.Matematikai inga energia-idő grafikonja                           | 4   |
| 3.1.4. Matematikai inga energia-idő grafikonja.                         | 5   |
| 3.1.5.Matematikai inga energia-idő grafikonja                           | 5   |
| 3.1.6.Matematikai inga energia-idő grafikonja                           | 6   |
| 3.1.7.Matematikai inga fázis diagramja                                  | 7   |
| 3.2.1.Csillapított inga kitérés-idő grafikonja                          | 8   |
| 3.2.1.Csillapított inga sebesség-idő grafikonja                         | Ć   |
| 3.2.2.Csillapított inga energia-idő grafikonja                          | Ć   |
| 3.2.3. Csillapított inga fázis diagramja                                | .(  |
| 3.3.1. Gerjesztett inga kitérés-idő grafikonja                          | . 1 |
| 3.3.2. Gerjesztett inga sebesség-idő grafikonja                         | . 1 |
| 3.3.2. Gerjesztett inga energia-idő grafikonja                          | 2   |
| 3.3.3. Gerjesztett inga energia-idő grafikonja hosszabb időre vizsgálva | 2   |
| 3.3.3. Gerjesztett inga fázis diagramja                                 |     |
| 3.4.1. Gerjesztve csillapított inga kitérés-idő grafikonja              | 4   |
| 3.4.2. Gerjesztve csillapított inga sebesség-idő grafikonja             | Į.  |
| 3.4.3. Gerjesztve csillapított inga energia-idő grafikonja              | L   |
| 3.4.4. Gerjesztve csillapított inga fázis diagramja                     | .6  |

#### 1. Fizikai probléma ismertetése

Ideális esetben az inga mozgásegyenlete az alábbi:

$$\frac{\partial^2 \Theta}{\partial t^2} = -\frac{g}{l} \Theta. \tag{1.1}$$

A modellünkben definiálhatok egy súrlódási erőt is, mint csillapítási tényezőt:

$$\frac{\partial^2 \Theta}{\partial t^2} = -\frac{g}{l} \Theta - q \frac{\partial \Theta}{\partial t}. \tag{1.2}$$

Valamint tovább bővíthetem még egy gerjesztő erővel is:

$$\frac{\partial^2 \Theta}{\partial t^2} = -\frac{g}{l}\Theta - q\frac{\partial \Theta}{\partial t} + F_D sin(\Omega_D t). \tag{1.3}$$

Az egyenletekből látható, hogy a kezdő feltételek megválasztásától függ az inga viselkedése. A jegyzőkönyv megírásához a szimulációt négy különböző esetben vizsgáltam:

- 1. lineáris matematikai inga.
- 2. nem lineáris csillapított inga.
- 3. nem lineáris gerjesztett inga.
- 4. nem lineáris csillapítással gerjesztett inga.

### 2. A megoldási módszerek ismertetése

A differenciál egyenletet négy különböző numerikus eljárással vizsgáltam:

- 1. Euler-módszer
- 2. Euler-Cromer-módszer
- 3. Negyedrendű Runge-Kutta-módszer
- 4. Negyedrendű adaptív lépéshosszú Runge-Kutta-módszer

A szimulációkat az alábbi kezdőparamérerekkel vizsgáltam:

1. táblázat. Az inga kezdőparaméterei

| Módszer      | 1/n | L[m] | q   | $\Omega_D[1/s]$ | $F_D$ | $\Theta_0[rad]$ | $\omega[1/s]$ | $t_{max}$ [s] |
|--------------|-----|------|-----|-----------------|-------|-----------------|---------------|---------------|
| Matematikai  | 1   | 12   | 0   | 0               | 0     | 0.2             | 0             | 100           |
| Csillapított | n   | 12   | 0.4 | 0               | 0     | 1               | 0             | 100           |
| Gerjesztett  | n   | 12   | 0   | 0.5             | 0.1   | 1               | 0             | 100           |
| Csillgerj.   | n   | 12   | 0.4 | 0.5             | 0.1   | 1               | 0             | 100           |

Ahol a paraméterek jelentése a következők:

• 1/n : lineáris vagy nem lineáris a viselkedés

• L : az inga hossza méterben

• q : csillapítási tényező

•  $\Omega_D$ : gerjesztés körfrekvenciája

 $\bullet$   $F_D$ : gerjesztés amplitúdója

•  $\Omega_0$ : kezdeti kitérési szöge az ingának

 $\bullet \ \omega_0$ : kezdeti szögsebessége az ingának

•  $t_{max}$ : integrációs idő

#### 3. Eredmények ismertetése

Az alábbi fejezetben bemutatom az ingák kitérés - idő, szögsebesség - idő, energia - idő, valamint a fázistér diagramjait, amikről a következők leolvashatók:

- 1. a matematikai inga esetében látszik az Euler-módszer energia meg nem tartása,
- 2. a csillapított inga esetében a négy módszer ugyan olyan megoldást ad, és a csillapítás szépen megállítja a rendszert,
- 3. a gerjesztett inga esetében az Euler–módszer energia meg nem tartása továbbra is szembetűnő, illetve a fázistér struktúrája a gerjesztés miatt a várt módon deformálódott.
- 4. az egyszerre csillapított és gerjesztett inga esetében a négy módszer szinte tökéletesen ugyan azt a megoldást adják, a fázistérben a kezdő időpontokban van egy kicsi eltérés köztük, de a utána egymásba konvergálnak.

#### 3.1. Matematikai inga



3.1.1. ábra. Matematikai inga kitérés-idő grafikonja



3.1.2. ábra. Matematikai inga sebesség-idő grafikonja



3.1.3. ábra. Matematikai inga energia-idő grafikonja.



3.1.4. ábra. Matematikai inga energia-idő grafikonja.



3.1.5. ábra. Matematikai inga energia-idő grafikonja.



3.1.6.ábra.  $Matematikai\ inga\ energia-idő\ grafikonja.$ 



3.1.7.ábra.  ${\it Matematikai inga fázis diagramja.}$ 

## 3.2. Csillapított inga



3.2.1. ábra. Csillapított inga kitérés-idő grafikonja



3.2.1. ábra. Csillapított inga sebesség-idő grafikonja



3.2.2. ábra. Csillapított inga energia-idő grafikonja.

3.2.3.ábra. Csillapított inga fázis diagramja.

#### 3.3. Gerjesztett inga



3.3.1. ábra. Gerjesztett inga kitérés-idő grafikonja



3.3.2. ábra. Gerjesztett inga sebesség-idő grafikonja



3.3.2. ábra. Gerjesztett inga energia-idő grafikonja.



3.3.3. ábra. Gerjesztett inga energia-idő grafikonja hosszabb időre vizsgálva.



3.3.3.ábra.  $Gerjesztett \ inga fázis \ diagramja.$ 

### 3.4. Gerjesztetve csillapított inga



3.4.1. ábra. Gerjesztve csillapított inga kitérés-idő grafikonja



3.4.2. ábra. Gerjesztve csillapított inga sebesség-idő grafikonja



3.4.3. ábra. Gerjesztve csillapított inga energia-idő grafikonja.



3.4.4. ábra. Gerjesztve csillapított inga fázis diagramja.