Высшая математика

Лисид Лаконский

May 2023

Содержание

l	Вы	цая математика — справочный материал к экзамену	2
	1.1	Производные функции одной переменной, экстремумы, выпуклость-вогнутость, возрастание-убывание, ка-	
		сательные и оси	4
		1.1.1 Производные функции одной переменной	4
		1.1.2 Нахождение экстремумов функции одной переменной	4
		1.1.3 Нахождение интервалов выпуклости и интервалов вогнутости	4
		1.1.4 Возрастание и убывание функции на интервале	,
		1.1.5 Касательная к графику функции	,
		1.1.6 Преобразование графиков функций	,
-	1.2	Неопределенные интегралы	2
		1.2.1 Свойства неопределенного интеграла	2
		1.2.2 Таблица неопределенных интегралов	2
		1.2.3 Подведение функции под знак дифференциала	2
		1.2.4 Метод замены переменной в неопределенном интеграле	Ę
		1.2.5 Метод интегрирования по частям	Ę
	1.3	Определенные интегралы	(
		1.3.1 Замена переменной в определенном интергале	(
		1.3.2 Метод интегрирования по частям в определенном интеграле	(
	1.4	Площадь и длина дуги кривой (декартовые, полярные, параметрические координаты)	,
		1.4.1 Вычисление площадей в прямоугольных координатах	,
		1.4.2 Вычисление площадей при параметрическом задании кривой	,
		1.4.3 Площадь в полярных координатах	,
		1.4.4 Длина дуги кривой	,
	1.5	Функции нескольких переменных	8
		1.5.1 Полный дифференциал	8
		1.5.2 Частные производные	8
		1.5.3 Производная функции, заданной неявно	8
		1.5.4 Производная сложной функции и понятие полной производной	8
		1.5.5 Производная по направлению	(
		1.5.6 Градиент функции	Ç
		1.5.7 Локальный экстремум функции двух переменных	9
		1.5.8 Линия уровня функции, поверхность уровня функции, частные производные	,
	1.6	Ряды	1
		1.6.1 Основы	1
		1.6.2 Признак Д'Аламбера, признаки Коши	1
		1.6.3 Знакочередующиеся ряды. Признак Лейбница. Абсолютная и условная сходимость	12
		1.6.4 Функциональные ряды. Степенные ряды. Область сходимости ряда	13
		1.6.5 Разложение функций в степенные ряды. Ряд Тейлора. Ряд Маклорена	13

1 Высшая математика — справочный материал к экзамену

1.1 Производные функции одной переменной, экстремумы, выпуклость-вогнутость, возрастание-убывание, касательные и оси

1.1.1 Производные функции одной переменной

Свойства производных функций

1.
$$(c)' = 0$$

3.
$$(u \pm v)' = u' \pm v'$$

$$5. \left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

6. Если
$$y=f(u), u=\phi(x),$$
 то $(f(\phi(x)))'=f'(u)*u'.$ Пример: $\cos 3x=-\sin 3x*3=-3\sin x$ Еще один пример: $\operatorname{tg}^{2x}e^x=2\operatorname{tg}e^x*\frac{1}{\cos^2 e^x}*e^x$

2. (cu)' = c * u'

4.
$$(u*v)' = u'v + uv'$$

Таблица производных

1.
$$(u^a)' = a * u^{a-1} * u', a \in R$$

 $(\frac{1}{u}) = (u^{-1})' = -1 * \frac{1}{u^2} * u'$
 $(\sqrt{u})' = (u^{\frac{1}{2}})' = \frac{1}{2\sqrt{u}} * u'$

3.
$$(\log_a u)' = \frac{1}{u} \log_a e * u' = \frac{1}{u \ln a} * u'$$

 $(\ln u)' = \frac{1}{u} * u', (\ln |u|)' = \frac{1}{u} * u'$

$$5. (\cos u)' = -\sin x$$

7.
$$(\operatorname{ctg} u)' = -\frac{1}{\sin^2 u} * u'$$

9.
$$(\arccos u)' = -\frac{1}{\sqrt{1-u^2}} * u'$$

11.
$$(\operatorname{arcctg} u)' = -\frac{1}{1+u^2} * u'$$

13.
$$(\cosh u)' = \sinh u * u'$$

15.
$$(\coth u)' = -\frac{1}{\sinh^2 u} * u'$$

2.
$$(a^u) = a^u * \ln a * u'$$

 $(e^u)' = e^u * u'$

$$4. (\sin u)' = \cos x$$

6.
$$(\operatorname{tg} u)' = \frac{1}{\cos^2 u} * u'$$

8.
$$(\arcsin u)' = \frac{1}{\sqrt{1-u^2}} * u'$$

10.
$$(\operatorname{arctg} u)' = \frac{1}{1+u^2} * u'$$

12.
$$(\sinh u)' = \cosh u * u'$$

14.
$$(\tanh u)' = \frac{1}{\cosh^2 u} * u'$$

16.
$$(u(x)^{v(x)})' = v(x) * u(x)^{v(x)-1} * u'(x) + u(x)^{v(x)} * \ln u(x) * v'(x)$$

1.1.2 Нахождение экстремумов функции одной переменной

- 1. Находим производную функции
- 2. Приравниваем эту производную к нулю
- 3. Находим значения переменной получившегося выражения
- 4. Разбиваем этими значениями координатную прямую на промежутки (при этом не нужно забывать о точках разрыва, которые также надо наносить на прямую)
- 5. Вычисляем, на каких из этих промежутков производная будет положительной, а на каких отрицательной

1.1.3 Нахождение интервалов выпуклости и интервалов вогнутости

Пусть функция y = f(x) дважды дифференцируема на некотором интервале. Тогда:

- 1. Если вторая производная f''(x) < 0 на интервале, то график функции f(x) является выпуклым на данном интервале
- 2. Если вторая производная f''(x) > 0 на интервале, то график функции f(x) является вогнутым на данном интервале

2

1.1.4 Возрастание и убывание функции на интервале

Определение возрастающей функции

- 1. если производная функции y = f(x) положительна для любого x из интервала X, то функция возрастает на X
- 2. если производная функции y = f(x) отрицательна для любого x из интервала X, то функция убывает на X

Таким образом, чтобы определить промежутки возрастания и убывания функции необходимо:

- 1. найти область определения функции
- 2. найти производную функции
- 3. решить неравенства f'(x) > 0 и f'(x) < 0 на области определения
- 4. к полученным промежуткам добавить граничные точки, в которых функция определена и непрерывна

1.1.5 Касательная к графику функции

Определение

1. Пусть функция $f:U(x_0)\subset R\to R$ определена в некоторой окрестности точки $x_0\in R$, и дифференцируема в ней: $f\in D(x_0)$. Касательной прямой к графику функции f в точке x_0 называется график линейной функции, задаваемый уравнением

$$y = f(x_0) + f'(x_0)(x - x_0), x \in R$$

2. Если функция f имеет в точке x_0 бесконечную производную $f'(x_0) = \pm \infty$, то касательной прямой в этой точке называется вертикальная прямая, задаваемая уравнением

$$x = x_0$$

Замечание Прямо из определения следует, что график касательной прямой проходит через точку $(x_0, f(x_0))$. Угол α между касательной к кривой и осью Ох удовлетворяет уравнению

$$tg \alpha = f'(x_0) = k$$

где tg обозначает тангенс, а k — коэффициент наклона касательной. Производная в точке x_0 равна угловому коэффициенту касательной к графику функции y = f(x) в этой точке.

1.1.6 Преобразование графиков функций

Функция	Преобразование графика функции $y = f(x)$
y = f(x) + A	Параллельный перенос вдоль оси OY на A единиц вверх,
	если > 0 , и на $ A $ единиц вниз, если < 0
y = f(x - a)	Параллельный перенос вдоль оси OX на a единиц вправо,
	если $a>0$, на $ a $ единиц влево, если $a<0$
y = kf(x)	Растяжение вдоль оси OY относительно оси OX в k раз,
	если $k > 1$, и сжатие в $1/k$ раз, если $0 < k < 1$
y = f(kx)	Сжатие вдоль оси OX относительно оси OY в k раз, если
	k > 1, и растяжение в $1/k$ раз, если $0 < k < 1$
y = -f(x)	Симметричное отражение относительно оси ОХ
y = f(x)	Часть графика, расположенная ниже оси OX , симметрич-
	но отражается относительно этой оси, остальная его часть
	остается без изменения.
y = f(-x)	Симметричное отражение относительно оси ОҮ
y = f(-x) $y = f(x)$	Часть графика, расположенная правее оси ОХ, симмет-
	рично отражается относительно этой оси, остальная его
	часть остается без изменения

1.2 Неопределенные интегралы

 $\int f(x) \, \mathrm{d}x = F(x) + C$ — неопределенный интеграл, где f(x) называется подинтегральной функцией, а x называется переменной интегрирования

1.2.1 Свойства неопределенного интеграла

1.
$$(\int f(x) dx)' = (F(x) + C)' = f(x)$$

2.
$$d(\int f(x) dx) = f(x) dx$$

3.
$$\int d(F(x)) = F(x) + C$$

4.
$$\int (f_1(x) + f_2(x)) dx = \int f_1(x) dx + \int f_2(x) dx$$

5.
$$\int \alpha f(x) dx = \alpha \int f(x) dx$$

6. Если
$$\int f(x) dx = F(x) + C$$
, то

7.
$$\int f(\alpha x) dx = \frac{1}{a} F(\alpha x) + C$$

8.
$$\int f(x+b) dx = F(x+b) + C$$

9.
$$\int f(\alpha x + b) dx = \frac{1}{a}F(\alpha x + b) + C$$

1.2.2 Таблица неопределенных интегралов

1.
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C$$

3.
$$\int \sin x \, \mathrm{d}x = -\cos x + C$$

$$5. \int \frac{\mathrm{d}x}{\cos^2 x} = \operatorname{tg} x + C$$

7.
$$\int \operatorname{tg} x \, \mathrm{d}x = -\ln(\cos x) + C$$

9.
$$\int e^x \, \mathrm{d}x = e^x + C$$

11.
$$\int \frac{dx}{1+x^2} = \arctan x + C$$

13.
$$\int \frac{\mathrm{d}x}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C$$

$$2. \int \frac{\mathrm{d}x}{x} = \ln|x| + C$$

4.
$$\int \cos x \, \mathrm{d}x = \sin x + C$$

6.
$$\int \frac{\mathrm{d}x}{\sin^2 x} = -\operatorname{ctg} x + C$$

8.
$$\int \operatorname{ctg} x \, \mathrm{d}x = \ln|\sin x| + C$$

$$10. \int a^x \, \mathrm{d}x = \frac{a^x}{\ln a} + C$$

12.
$$\int \frac{\mathrm{d}x}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| + C$$

14.
$$\int \frac{dx}{\sqrt{x^2+a}} = \ln|x+\sqrt{x^2+a}| + C$$

1.2.3 Подведение функции под знак дифференциала

Найти неопределенный интеграл. Выполнить проверку. $\int \sin(3x+1)\,\mathrm{d}x$

Смотрим на таблицу интегралов и находим похожую формулу: $\int \sin x \, dx = -\cos x + C$. Но проблема заключается в том, что у нас под синусом не просто буковка «икс», а сложное выражение. Что делать?

4

Подводим функцию (3x+1) под знак дифференциала: $\int \sin(3x+1) dx = \frac{1}{3} \int \sin(3x+1) d(3x+1)$

Раскрывая дифференциал, легко проверить, что:

$$\frac{1}{3} \int \sin(3x+1) \, d(3x+1) = \frac{1}{3} \int \sin(3x+1) \cdot (3x+1)' \, dx = \frac{1}{3} \int \sin(3x+1) \cdot (3+0) \, dx = \int \sin(3x+1) \, dx$$

Теперь можно пользоваться табличной формулой $\int \sin x \, \mathrm{d}x = -\cos x + C$:

$$\int \sin(3x+1)\,\mathrm{d}x = \frac{1}{3}\int \sin(3x+1)\,\mathrm{d}(3x+1) = -\frac{1}{3}\cos(3x+1) + C$$
, где $C=const$

Метод замены переменной в неопределенном интеграле

Найти неопределенный интеграл.

 $\int \sin(3x+1) dx$

Идея метода замены состоит в том, чтобы сложное выражение (или некоторую функцию) заменить одной буквой

В данном случае напрашивается: t = 3x + 1

Действие следующее. После того, как мы подобрали замену, в данном примере, t=3x+1, нам нужно найти дифференциал dt.

Так как
$$t=3x+1$$
, то $\mathrm{d}t=\mathrm{d}(3x+1)=(3x+1)'\,\mathrm{d}x=3\,\mathrm{d}x$ $\mathrm{d}x=\frac{\mathrm{d}t}{3}$

Таким образом:

$$\int \sin(3x+1)\,\mathrm{d}x = \frac{1}{3}\int \sin t\,\mathrm{d}t = -\frac{1}{3}\cos t + C$$
 Вернемся к переменной x :

Вернемся к переменной
$$x$$
: $\frac{1}{3} \int \sin t \, \mathrm{d}t = -\frac{1}{3} \cos t + C = -\frac{1}{3} \cos(3x+1) + C$

1.2.5 Метод интегрирования по частям

$$\int u \, \mathrm{d}v = uv - \int v \, \mathrm{d}u$$

1. многочлен * тригонометрическую или показательную функцию, то

за u выбирают многочлен, $\mathrm{d}v$ — все, что осталось

Пример
$$\int (3x+1)\cos 5x \, dx = \frac{(3x+1)}{5}\sin 5x - \frac{3}{5}\int \sin 5x \, dx = \frac{(3x+1)}{5}\sin 5x + \frac{3}{25}\cos 5x + C$$
 $du = 3dx, v = \int \cos 5x \, dx = \frac{1}{5}\sin 5x$

Другой пример $\int (3x^2+1)\cos 5x\,\mathrm{d}x = \frac{(3x^2+1)}{5}\sin 5x + \frac{6}{5}\int x\sin 5x\,\mathrm{d}x$, дальше следует применить метод интегрирования по частям заново

2. многочлен * логарифмическую или обратную тригонометрическую функцию, то

за u выбирают функцию, а $\mathrm{d}v$ — все остальное

Пример
$$\int (3x^2 + 5) \ln x \, dx = (\frac{x^3}{3} + 5x) \ln x - \int (\frac{x^2}{3} + 5x) \frac{dx}{1} = (\frac{x^3}{3} + 5x) \ln x - \frac{x^3}{9} - 5x + C$$

$$\ln x = u \Longrightarrow \frac{dx}{x} = du, \, dv = (x^2 + 5) \, dx \Longrightarrow v = \int (x^2 + 5) \, dx = \frac{x^3}{3} + 5x$$

3. тригонометрическая функция * показательную функцию, то

не имеет значения, что выбрать за u, а что за $\mathrm{d}v$, но формулу интегрирования по частям в этом случае **придется** применить два раза подряд единообразно

Пример
$$\int \sin 5x e^x dx = \sin 5x * e^x - 5 \int \cos 5x * e^x dx = \dots$$

Пусть
$$u = \sin 5x \Longrightarrow du = 5\cos 5x dx$$
, $dv = e^x dx \Longrightarrow v = e^x$

Применим метод интегрирования по частям во второй раз, теперь $u=\cos 5x\Longrightarrow \mathrm{d} u=-5\sin 5x\,\mathrm{d} x,$

$$v = e^x dx \Longrightarrow v = e^x$$

$$\cdots = \sin 5x * e^x - 5(\cos 5xe^x + 5 \int \sin 5xe^x dx)$$

$$y = (\sin 5x - 5\cos 5x)e^x - 25y \iff 26y = (\dots)e^x \iff y = \frac{(\sin 5x - 5\cos 5x)e^x}{26}$$
, где $y = \int \sin 5x e^x dx$

1.3 Определенные интегралы

В общем виде определенный интеграл записывается следующим образом:

$$\int_{a}^{b} f(x) \, \mathrm{d}x$$

Как решить определенный интеграл?

$$\int_{a}^{b} f(x) dx = F(X) \Big|_{a}^{b} = F(b) - F(a)$$

Для того чтобы определенный интеграл вообще существовал, достаточно чтобы подынтегральная функция была непрерывной на отрезке интегрирования.

Свойства определенных интегралов:

1.
$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$

2.
$$\int\limits_a^b kf(x)\,\mathrm{d}x=k\int\limits_a^b f(x)\,\mathrm{d}x$$
, где $k=const$

3.
$$\int_{a}^{b} (f(x) \pm g(x)) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$

1.3.1 Замена переменной в определенном интергале

Для определенного интеграла справедливы все типы замен, что и для неопределенного интеграла. **Этапы решения**:

- 1. Выполняем замену
- 2. Находим новые пределы интегрирования, записываем новый интеграл с новыми пределами интегрирования в соответствии с заменой
- 3. Производим интегрирование
- 4. Применяем формулу Ньютона-Лейбница

Никаких обратных замен проводить не надо

Если мы подводим функцию под знак дифференциала, то менять пределы интегрирования не нужно!

1.3.2 Метод интегрирования по частям в определенном интеграле

Все выкладки статьи Интегрирование по частям в неопределенном интеграле в полной мере справедливы и для определенного интеграла.

Плюсом идёт только одна деталь, **в формуле интегрирования по частям добавляются пределы интегрирования**:

$$\int_{a}^{b} u \, \mathrm{d}v = uv \bigg|_{a}^{b} - \int_{a}^{b} v \, \mathrm{d}u$$

6

Формулу Ньютона-Лейбница здесь **необходимо применить дважды**: для произведения uv и, после того, как мы возьмем интеграл $\int\limits_{-b}^{b}v\,\mathrm{d}u$

1.4 Площадь и длина дуги кривой (декартовые, полярные, параметрические координаты)

1.4.1 Вычисление площадей в прямоугольных координатах

$$\int\limits_{0}^{b}f(x)\,\mathrm{d}x=S_{\mathrm{криволинейной}}$$
 трапеции

 $\stackrel{\iota\iota}{ ext{Ec}}$ Если график несколько раз пересекает ось OX, надо разбить его на несколько отрезков

1.4.2 Вычисление площадей при параметрическом задании кривой

$$\begin{cases} x = \phi(t) \\ y = \psi(t) = \psi(y(x)) \end{cases}$$
 (1)

$$\alpha \le t \le b, \ \phi(\alpha) = a, \ \phi(\beta) = b$$

$$S = \int_{a}^{b} \phi(x) \, dx = \int_{\alpha}^{\beta} \psi(t) \phi'(t) \, dt$$

1.4.3 Площадь в полярных координатах

Пусть имеем $\rho = f(\theta)$, различные углы $\alpha = \theta_0$, $\beta = \theta_n$, разбивающие график на секторы.

$$S_i = \frac{1}{2}\Delta\Theta\rho^2$$

$$S = \sum_{i=1}^n = \frac{1}{2}\sum_{i=1}^n (f(\theta_i))^2 \Delta\theta_i$$

$$S = \lim_{n \to \infty} \frac{1}{2}\sum_{i=1}^n (f(\theta_i))^2 \Delta\theta_i = \frac{1}{2}\int_{\alpha}^{\beta} (f(\theta))^2 d\theta$$

1.4.4 Длина дуги кривой

- 1. Длина дуги кривой в декартовых координатах $(y=f(x),\,[a;b]),\,$ то $l=\int\limits_a^b\sqrt{1+(f'(x))^2}\,\mathrm{d}x$
- 2. Если

$$\begin{cases} x = \phi(t) \\ y = \psi(t), \ \alpha \le t \le \beta \end{cases}$$

To
$$l = \int_{a}^{b} \sqrt{(\phi'_t)^2 + (\psi'_t)^2} dt$$

3. Если имеем полярные координаты $(\rho=f(\theta)),$ то $l=\int\limits_{\theta_1}^{\theta_2}\sqrt{f^2(\theta)+(f'(\theta))^2}\,\mathrm{d}\theta^2$

Функции нескольких переменных

Для функций нескольких переменных существуют лишь частные производные; пусть z=z(x;y), то $\frac{\delta z}{\delta x}=\lim_{\Delta x\to 0}\frac{z(x+\Delta x,y)-z(x,y)}{\Delta x};\;\frac{\delta z}{\delta y}=\lim_{\Delta y\to 0}\frac{z(x,y+\Delta y)-z(x,y)}{\Delta y}$

$$\frac{\partial z}{\delta x} = \lim_{\Delta x \to 0} \frac{\sum_{(x,y)} \frac{\partial z}{\partial x} + \sum_{(x,y)} \frac{\partial z}{\partial y}}{\sum_{(x,y)} \frac{\partial z}{\partial y}} = \lim_{\Delta y \to 0} \frac{\sum_{(x,y)} \frac{\partial z}{\partial y}}{\sum_{(x,y)} \frac{\partial z}{\partial y}}$$
Пусть $z = 2xy + xy^3$. тогда $\frac{\partial z}{\partial x} = \lim_{\Delta x \to 0} \frac{2(x + \Delta x)y + (x + \Delta x)y^3 - 2xy - xy^3}{\Delta x} = \lim_{\Delta x \to 0} \frac{2xy + 2\Delta xy + xy^3 + \Delta xy^3 - 2xy - xy^3}{\Delta x} = 2y + y^3;$

$$\frac{\partial z}{\partial y} = \lim_{\Delta y \to 0} \frac{2x(y + \Delta y) + x(y + \Delta y)^3 - 2xy - xy^3}{\Delta y} = \lim_{\Delta y \to 0} \frac{2xy + 2x\Delta y + xy^3 + 3xy^2 \Delta y + 3xy(\Delta y)^2 + x(\Delta y)^3 - 2xy - xy^3}{\Delta y} = \lim_{\Delta y \to 0} \frac{2xy + 2\Delta xy + xy^3 + \Delta xy^3 - 2xy - xy^3}{\Delta y} = \lim_{\Delta y \to 0} \frac{2xy + 2\Delta xy + xy^3 + \Delta xy^3 - 2xy - xy^3}{\Delta y} = \lim_{\Delta y \to 0} \frac{2xy + 2\Delta xy + xy^3 + \Delta xy^3 - 2xy - xy^3}{\Delta y} = \lim_{\Delta y \to 0} \frac{2xy + 2\Delta xy + xy^3 + \Delta xy^3 - 2xy - xy^3}{\Delta y} = \lim_{\Delta y \to 0} \frac{2xy + 2\Delta xy + xy^3 + \Delta xy^3 - 2xy - xy^3}{\Delta y} = \lim_{\Delta y \to 0} \frac{2xy + 2\Delta xy + xy^3 + \Delta xy^3 - 2xy - xy^3}{\Delta y} = \lim_{\Delta y \to 0} \frac{2xy + 2\Delta xy + xy^3 + 2xy + xy^3 + 2xy$$

1.5.1 Полный дифференциал

 $du=rac{\delta u}{\delta x}\delta x+rac{\delta u}{\delta y}\delta y$ — полный дифференциал функции от двух переменных

Применение полного дифференциала к вычислению приближенных значений

$$f(x + \Delta x) = f(x) + \delta f \approx f(x_0) + df$$

Например, нам нужно вычислить $1.04^{2.02}$, тогда составим функцию $z=x^y, \ x_0=1, \ y_0=2, \ \delta x=dx=0.04, \ \delta y=dy=0.02$ $z(1.04;2.02)\approx z(1;2)+dz=1+\frac{\delta z}{\delta x}dx+\frac{\delta z}{\delta y}dy=1+yx^{y-1}dx+x^y\ln xdy=1+2*1*0.04+1^2\ln 1*0.02=1.08$

1.5.2 Частные производные

Частные производные $\frac{\delta z}{\delta x}$ и $\frac{\delta z}{\delta y}$ тоже являются функциями, и поэтому от них можно брать частные производные.

Теорема 1 Если функция и ее частные производные определены и непрерывны в точке М и некоторой ее окрестности, то в этой точке выполняется условие: $\frac{\delta}{\delta x}(\frac{\delta z}{\delta y}) = \frac{\delta}{\delta y}(\frac{\delta z}{\delta x})$

Порядок взятия частных производных не имеет значения:

$$\frac{\delta^n z}{\delta x^k \delta y^{n-k}} = \frac{\delta^n z}{\delta y^{n-k} \delta x^k}$$

Производная функции, заданной неявно

Теорема 2 Пусть непрерывная функция y = y(x) задана неявно уравнением F(x,y) = 0, причем сама эта функция и ee первые производные — непрерывные функции в некоторой области, $F_{y}' \neq 0$ в интересующей нас точке, тогда $y'_x = \frac{-F'_x(x,y)}{F'_y(x,y)}$

Например, у нас есть функция $x^2+x\sin y=0$ $(F(x,y)=x^2+x\sin y)$, тогда возьмем производные по x и y: $F'_x=2xy+\sin y,\ F'_y=x^2+x\cos y,\ y'_x=-\frac{2xy+\sin y}{x^2+x\cos y}$

1.5.4 Производная сложной функции и понятие полной производной

Пусть z=z(u;v), u=u(x;y), v=v(x;y), и существуют непрерывные частные производные z по u;v,u,v по x;y, тогда мы можем рассматривать z как функцию от x и y: z=z(u(x,y),v(x,y)), но не всегда так делать целесообразно и поступать лучше следующим образом:

$$\frac{\delta z}{\delta x} = \frac{\delta z}{\delta u} \frac{\delta u}{\delta x} + \frac{\delta z}{\delta v} \frac{\delta v}{\delta x}, \frac{\delta z}{\delta y} = \frac{\delta z}{\delta u} \frac{\delta u}{\delta y} + \frac{\delta z}{\delta v} \frac{\delta v}{\delta y}$$

Но функция может быть и от большего количества переменных: z = z(x; y; t), x = x(t), y = y(t), по аналогии z = z(x(t), y(t), t) — есть зависимость лишь от t, можно говорить о полной производной:

$$\frac{dz}{dt} = \frac{\delta z}{\delta x} \frac{\delta x}{\delta t} + \frac{\delta z}{\delta y} \frac{\delta y}{\delta t} + \frac{\delta z}{\delta t}$$

Например, $z=u\sqrt{v}+vu^2,\ u=\sin(x+y),\ v=\sqrt{x^2+y},\ \frac{\delta z}{\delta u}=\sqrt{v}=2vu,\ \frac{\delta z}{\delta v}=\frac{u}{2\sqrt{v}}+u^2,\ \frac{\delta u}{\delta x}=\cos(x+y),\ \frac{\delta u}{\delta y}=\cos(x+y),$ $\frac{\delta v}{\delta x} = \frac{2x}{2\sqrt{x^2+y}}, \ \frac{\delta v}{\delta y} = \frac{1}{2\sqrt{x^2+y}}$

$$\frac{\delta z}{\delta x} = (\sqrt{v} + 2vu)\cos(x+y) + (\frac{u}{2\sqrt{v}} + u^2) * \frac{x}{\sqrt{x^2 + y}}$$

Другой не менее славный пример: $z=te^{x-2y}+xt^2, \ x=\sin t, \ y=t^3,$ мы желаем посчитать $\frac{\delta z}{\delta t},$ для этого посчитаем много различной фигни: $\frac{\delta z}{\delta x}=te^{x-2y}+t^2, \ \frac{\delta z}{\delta y}=te^{x-2y}(-2), \ \frac{\delta z}{\delta t}=e^{x-2y}+2xt, \ \frac{\delta z}{\delta t}=(te^{x-2y}+t^2)\cos t-2te^{x-2y}*3t^2+e^{x-2y}+2xt$

1.5.5 Производная по направлению

Пусть D — некоторое пространство, определяющееся функцией u=u(x;y;z), и т. M(x;y;z), т. $M_1(x+\Delta x,y+\Delta y,z+\Delta z)$ лежат в данном пространстве, от нее отложен некоторый $\vec{S} = \{\cos\alpha,\cos\beta,\cos\gamma\}$, при этом $\Delta S = \sqrt{\Delta x^2 + \Delta y^2 + \Delta z^2}$ $\Delta u = \frac{\delta u}{\delta x} \Delta x + \frac{\delta u}{\delta y} \Delta y + \frac{\delta u}{\delta z} \Delta z + E_1 \Delta x + E_2 \Delta y + E_3 \Delta z$ $\frac{\Delta u}{\delta s} = \frac{\delta u}{\delta s} + \frac{\Delta x}{\Delta S} + \frac{\delta u}{\delta y} \frac{\Delta y}{\Delta S} + \frac{\delta u}{\delta z} \frac{\Delta z}{\Delta S} + \dots$ $\frac{\delta u}{\delta s} = \lim_{\Delta S \to 0} \frac{\Delta u}{\Delta S} = \frac{\delta u}{\delta x} \cos\alpha + \frac{\delta u}{\delta y} \cos\beta + \frac{\delta u}{\delta z} \cos\gamma$

$$\frac{\Delta u}{\Delta s} = \frac{\delta u}{\delta x} + \frac{\Delta x}{\Delta S} + \frac{\delta u}{\delta y} \frac{\Delta y}{\Delta S} + \frac{\delta u}{\delta z} \frac{\Delta z}{\Delta S} + \dots$$

$$\frac{\delta u}{\delta s} = \lim_{\Delta S} \frac{\Delta u}{\Delta S} = \frac{\delta u}{\delta x} \cos \alpha + \frac{\delta u}{\delta y} \cos \beta + \frac{\delta u}{\delta z} \cos \gamma$$

Пример
$$M\vec{M}_1=\{3;4\}=\{\frac{3}{5};\frac{4}{5}\},~\mu=\frac{1}{\sqrt{9+16}}=\frac{1}{5}$$
 Пусть $u(x;y)=x^2+3\sqrt{y},$ т. $M(1;1),$ т. $M_1(4;5);~M\to M_1$ в точке $M,$ в этой точке $\frac{\delta u}{\delta x}=2x=2,~\frac{\delta u}{\delta y}=\frac{3}{2\sqrt{y}}=\frac{3}{2}$

1.5.6 Градиент функции

В каждой точке области D, в которой задана функция u = u(x, y, z), определим вектор, координатами которого являются значения частных производных, и назовем его градиентом функции:

$$gradu = \frac{\delta u}{\delta x} \overrightarrow{c} + \frac{\delta u}{\delta y} \overrightarrow{j} + \frac{\delta u}{\delta z} \overrightarrow{k}$$

 $\frac{\delta u}{\delta s}=\Pi p_{\overrightarrow{s}}(gradu)-$ производная по направлению в данной точке имеет наибольшее значение, если направление \overrightarrow{s} совпадает с направлением градиента функции, равное модулю этого градиента.

1.5.7 Локальный экстремум функции двух переменных

Функция z=z(x;y) имеет локальный максимум в точке $M_0(x_0;y_0),\,$ если $z(x_0,y_0)>z(x,y)$ в окрестности точки $M(x,y) \neq M_0(x_0,y_0)$, но достаточно близких к ней. Функция z = z(x;y) имеет локальный минимум в точке $M_0(x_0;y_0)$, если $z(x_0,y_0) < z(x,y)$ в окрестности точки

 $M(x,y) \neq M_0(x_0,y_0)$, но достаточно близких к ней.

Теорема 3 (необходимое условие локального экстремума) Если функция z(=zx;y) достигает экстремума в точке $M_0(x_0,y_0)$, то каждая частная производная или обращается в ноль в этой точке, или не существует: $\frac{\delta z}{\delta x}=0$, $\frac{\delta z}{\delta y}=0$ (*), и такие точки называются стационарными (точками возможного экстремума)

Теорема 4 (достаточное условие локального экстремума) Пусть в некоторой области, содержащей точку $M_0(x_0,y_0)$, выполнены условия (*), и функция z=z(x;y) имеет непрерывные частные производные до третьего порядка включительно: $A = \frac{\delta^2 z}{\delta x^2}, \ B = \frac{\delta^2 z}{\delta x \delta y}, \ C = \frac{\delta^2 z}{\delta y^2}, \ \Delta = \begin{vmatrix} A & B \\ B & C \end{vmatrix} = AC - B^2, \ mo \ ecлu \ \Delta > 0 - экстремум \ ecmb \ A(C) < 0 - максачини A(C) > 0$ (A(C) < 0 — максимум, A(C) > 0 — минмум), $\Delta < 0$ — экстремума не существует, $\Delta = 0$ — спорный случай, который стоит рассматривать отдельно

Линия уровня функции, поверхность уровня функции, частные производные

Определение 1 Если заданы два непустых множества D и G и каждому элементу M множества D по определенному правилу ставится в соответствие один и только один элемент множества G, то говорят, что на области определения задана функция со множеством значений G

Область определения представляет собой часть координатной плоскости, ограниченной плоской кривой.

$$Z = \sqrt{1 - x^2 - y^2} \iff Z^2 = 1 - x^2 - y^2, 1 - x^2 - y^2 \ge 0 \iff x^2 + y^2 \le 0$$

Определение 2 Линией уровня функции двух переменных называется линия на координатной плоскости, где функция сохраняет постоянное значение

Определение 3 Поверхностью уровня функции двух переменных называется поверхность, в точках которых функция сохраняет постоянное значение

$$f = \frac{y}{x}, \frac{y}{x} = c \Longleftrightarrow y = cx$$
 — линия уровня плоскости.

Частные производные

Пример 1

$$\begin{array}{l} \frac{\delta^2 z}{\delta x \delta y}, \text{ если } z(x,y) = \frac{x}{3y+2x^2} \text{ в т. } V(1,0) \\ \frac{\delta z}{\delta x} = \frac{1(3y+2x^2)-x(4x)}{(3y+2x^2)^2} = \frac{3y-2x^2}{9y^2+12x^2y+4x^4} \\ \frac{\delta^2 z}{\delta x \delta y} = \frac{3(9y^2+12x^2y+4x^4)-(3y-2x^2)(18y+12x^2)}{(9y^2+12x^2y+4x^4)^2} = \frac{3*4-(-2)*12}{16} = \frac{9}{4} \end{array}$$

Пример 2

Найти
$$\frac{\delta x}{\delta y}$$
 для $x^2+2xyz-\frac{z}{x}-2yz^2=0$ в т. $M(2;0;8)$ $\frac{\delta f}{\delta y}=2xz-2z^2;\; \frac{\delta f}{\delta z}=2zy-\frac{1}{x}-4yz;\; \frac{\delta f}{\delta x}=2x+2yz-\frac{(x-z)}{x^2}$ $\frac{\delta z}{\delta y}=\frac{-\frac{\delta f}{\delta y}}{\frac{\delta f}{\delta z}}$

Пример 3

Найти
$$\frac{\delta^2 z}{\delta x \delta y}$$
, если $z(x,y) = \frac{x^2}{x-26}$ в т. $M(1;0)$
$$\frac{\delta z}{\delta x} = \frac{(x^2)'*(x-2y)-x^2(x-2y)'}{(x-2y)^2} - \frac{2x*(x-2y)-x^2}{(x-2y)^2} = \frac{2x^2-4xy}{(x-2y)^2}$$

$$\frac{\delta^2 z}{\delta x} \delta y = \frac{(2x^2-4xy)'*(x-2y)^2-(2x^2-4xy)((x-2y)^2)'}{(x-2y)^4} = \frac{(-4)*(x-2y)^2-(2x^2-4xy)*(x^2-4xy+4y^2)'}{(x-2y)^2} = \frac{-4-2*(-4)}{1} = -4+8=4$$

1.6 Ряды

1.6.1 Основы

Понятие числового ряда В общем виде **числовой ряд** можно записать так: $\sum_{n=1}^{\infty} a_n$ Здесь:

- 1. \sum математический знак суммы
- $2. \ a_n$ общий член ряда
- 3. n переменная-«счетчик»

Слагаемые a_1, a_2, a_3, \ldots — это **числа**, которые называются **членами** ряда. Если все они неотрицательны, то такой ряд называют **положительным числовым рядом**.

Сходимость числовых рядов Одной из ключевых задач темы является **исследование ряда на сходимость**. При этом возможны два случая:

1. Ряд $\sum_{n=1}^{\infty} a_n$ расходится. Это значит, что бесконечная сумма равна бесконечности:

$$a_1 + a_2 + a_3 + a_4 + a_5 + \dots = \infty$$

Либо суммы вообще не существует

2. Ряд $\sum_{n=1}^{\infty} a_n$ **сходится**. Это значит, что бесконечная сумма равна некоторому конечному числу S:

$$a_1 + a_2 + a_3 + a_4 + a_5 + \dots = S$$

Необходимый признак сходимости ряда Если ряд сходится, то его общий член стремится к нулю:

$$\lim a_n = 0$$

п—— Если общий член ряда **не стремится к нулю**, то ряд **расходится**

Признаки сравнения для положительных числовых рядов Существуют два признака сравнения, один из них я буду называть просто **признаком сравнения**, другой – **предельным признаком сравнения**.

Сначала рассмотрим признак сравнения, а точнее, первую его часть:

Рассмотрим два положительных числовых ряда $\sum_{n\to\infty} a_n$ и $\sum_{n\to\infty} b_n$. **Если известно**, что ряд $\sum_{n\to\infty} b_n - \mathbf{cxoдитс}\mathbf{x}$, и, начиная с некоторого номера n, выполнено неравенство $a_n \leq b_n$, то ряд $\sum_{n\to\infty} a_n$ тоже **сходится**.

Иными словами: Из сходимости ряда с бОльшими членами следует сходимость ряда с меньшими членами

Предельный признак сравнения числовых положительных рядов Рассмотрим два положительных числовых ряда $\sum_{n \to \infty} a_n$ и $\sum_{n \to \infty} b_n$. Если предел отношения общих членов этих рядов равен конечному, отличному от нуля числу A: $\lim_{n \to \infty} \frac{a_n}{b_n} = A$, то оба ряда сходятся или расходятся одновременно

1.6.2 Признак Д'Аламбера, признаки Коши

Признак сходимости Д'Аламбера Основные предпосылки для применения признака Д'Аламбера:

- 1. В общий член ряда входит какое-нибудь число в степени, например, 2^n , 3^n , 5^n и так далее.
- 2. В общий член ряда входит факториал
- 3. Если в общем члене ряда есть «цепочка множителей», например, $1*3*5*\cdots*(2n-1)$

Рассмотрим **положительный числовой ря**д $\sum\limits_{n=1}^{\infty}a_n$. Если существует предел отношения последующего члена к предыдущему: $\lim\limits_{n\to\infty}\frac{a_{n+1}}{a_n}=D$, то:

- 1. При D < 1 ряд **сходится**. В частности, ряд сходится при D = 0
- 2. При D > 1 ряд **расходится**. В частности, ряд расходится при $D = \infty$
- 3. При D=1 признак не дает ответа. Нужно использовать другой признак.

Радикальный признак сходимости Коши Рассмотрим **положительный числовой ряд** $\sum_{n=1}^{\infty} a_n$. Если существует предел: $\lim_{n\to\infty} \sqrt[n]{a_n} = D$, то:

- 1. При D < 1 ряд **сходится**. В частности, ряд сходится при D = 0
- 2. При D>1 ряд **расходится**. В частности, ряд расходится при $D=\infty$
- 3. При D=1 признак не дает ответа. Нужно использовать другой признак. Интересно отметить, что если признак Коши не даёт нам ответа на вопрос о сходимости ряда, то признак Даламбера тоже не даст ответа. Но если признак Даламбера не даёт ответа, то признак Коши вполне может «сработать».

Когда нужно использовать радикальный признак Коши? Радикальный признак Коши обычно использует в тех случаях, когда корень $\sqrt[n]{a_n}$ «хорошо» извлекается из общего члена ряда.

Интегральный признак сходимости Коши Для того чтобы применять интегральный признак Коши необходимо более или менее уверенно уметь находить производные, интегралы, а также иметь навык вычисления **несобственного интеграла** первого рода.

Рассмотрим **положительный числовой ря**д $\sum\limits_{n=1}^{\infty}a_{n}$. Если существует несобственный интеграл $\int\limits_{1}^{+\infty}a_{x}\,\mathrm{d}x$, то ряд **сходится или расходится вместе с этим интегралом**.

1.6.3 Знакочередующиеся ряды. Признак Лейбница. Абсолютная и условная сходимость

Признак Лейбница Если члены знакочередующегося ряда **монотонно убывают** по модулю, то ряд **сходится**. Или в два пункта:

- 1. Ряд является знакочередующимся
- 2. Члены ряда убывают по модулю: $\lim_{n \to \infty} |a_n| = 0$, причём, убывают монотонно

Если выполнены эти условия, то ряд сходится.

Абсолютная и условная сходимость Сходимость бывает разной. А именно:

- 1. сходящийся ряд $\sum\limits_{n=1}^{\infty}a_n$ называются **абсолютно сходящимся**, если сходится ряд $\sum\limits_{n=1}^{\infty}|a_n|$
- 2. в противном случае ряд $\sum\limits_{n=1}^{\infty}a_n$ сходится условно

1.6.4 Функциональные ряды. Степенные ряды. Область сходимости ряда

Понятие функционального ряда и степенного ряда Обычный числовой ряд, вспоминаем, состоит из чисел:

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + a_4 + a_5 + \dots$$

ⁿ⁼¹ Функциональный же ряд состоит из **функций**:

$$\sum_{n=1}^{\infty} u_n(x) = u_1(x) + u_2(x) + u_3(x) + u_4(x) + u_5(x) + \dots$$

Наиболее популярной разновидностью функционального ряда является **степенной ряд**. Членами степенного ряда являются целые положительные степени переменной x либо двучлена (x-a) (a=const), умноженные на числовые коэффициенты:

$$\sum_{n=0}^{\infty} c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2 + c_3 (x-a)^3 + \dots$$

Исследование степенного ряда на сходимость Найти область сходимости степенного ряда $\sum_{n=1}^{\infty} \frac{x^n}{n^2}$

На первом этапе находим интервал сходимости ряда. Технически нам нужно вычислить предел $\lim_{n \to \infty} |\frac{u_{n+1}(x)}{u_n(x)}|$:

$$\lim_{n \to \infty} |\frac{u_{n+1}(x)}{u_n(x)}| = \lim_{n \to \infty} |\frac{\frac{x^{n+1}}{(n+1)^2}}{\frac{x^n}{n^2}}| = \lim_{n \to \infty} |\frac{n^2 * x^{n+1}}{(n+1)^2 * x^n}| = \lim_{n \to \infty} |\frac{n^2 * x * x^n}{(n^2 + 2n + 1) * x^n}| = |x| \lim_{n \to \infty} \frac{n^2}{n^2 + 2n + 1} = \frac{\infty}{\infty} = |x| \lim_{n \to \infty} \frac{\frac{n^2}{n^2}}{\frac{n^2 + 2n + 1}{n^2}} = |x| \lim_{n \to \infty} \frac{1}{1 + \frac{2}{n} + \frac{1}{n^2}} = |x| * 1 = |x|$$

После того, как предел найден, нужно проанализировать, что у нас получилось:

- 1. **Если в пределе получается ноль**, то алгоритм решения заканчивает свою работу, и мы даём окончательный ответ задания: «ряд сходится при $x \in (-\infty; +\infty)$ »
- 2. **Если в пределе получается бесконечность**, то алгоритм решения также заканчивает свою работу, и мы даём окончательный ответ задания: «ряд сходится при x=0 (или при x=a, либо x=-a)»
- 3. **Если в пределе получается не ноль и не бесконечность**, то у нас самый распространенный на практике случай №1 ряд сходится на некотором интервале

Как найти интервал сходимости ряда? Составляем неравенство:

|x| < 1

В ЛЮБОМ задании данного типа в левой части неравенства должен находиться результат вычисления предела, а в правой части неравенства – строго единица

На втором этапе необходимо исследовать сходимость ряда на концах найденного интервала. И после этого записать результат

1.6.5 Разложение функций в степенные ряды. Ряд Тейлора. Ряд Маклорена

Если функция f(x) в некотором интервале раскладывается в степенной ряд по степеням (x-a), то это разложение единственно, задается следующей формулой и называется **рядом Тейлора**:

$$f(x) = f(\alpha) + \frac{f'(\alpha)}{1!}(x - \alpha) + \frac{f''(\alpha)}{2!}(x - \alpha)^2 + \frac{f'''(\alpha)}{3!}(x - \alpha)^3 + \dots + \frac{f^{(n)}(\alpha)}{n!}(x - \alpha)^n + \dots$$

На практике процентах в 95-ти приходится иметь дело с частным случаем формулы Тейлора, когда a=0, и данный ряд называется рядом **Маклорена**:

$$f(x) = f(\alpha) + \frac{f'(\alpha)}{1!}x + \frac{f''(\alpha)}{2!}x^2 + \frac{f'''(\alpha)}{3!}x^3 + \dots + \frac{f^{(n)}(\alpha)}{n!}x^n + \dots$$