Variables, Expresiones e I/O

Clase #03
IIC1103 – Introducción a la Programación

Marcos Sepúlveda (marcos@ing.puc.cl)

Hay varias versiones de Python

- ► En este curso, aprenderemos:
 - Python 3.*

Veremos hoy ...

- Tipos de datos básicos
- Variables
- ► Funciones de Input/Output

TIPOS DE DATOS BÁSICOS

Tipos de datos básicos

En Python, los tipos básicos se dividen en:

- Números int, float , complex
 - Ejemplos:
 - int (entero): 3
 - float (reales; de punto flotante): 15.57
 - complex (complejo): 7+5j
- Cadenas de texto (strings) str
 - Ejemplo:
 - str: "Hola mundo!"
- Valores booleanos bool
 - bool: True (verdadero)
 - bool: False (falso)

Números

Enteros

Números positivos o negativos (además del cero) que no tienen decimales

Reales

Son aquellos números que tienen decimales

Complejos

- Son aquellos que tienen parte imaginaria
- La mayor parte de los lenguajes de programación NO tienen implementado este tipo de dato
- Ejemplo:

```
complejo = 3.0 + 4.5j
print(complejo)
```

Nota: la palabra *complejo* en este ejemplo es el nombre de una variable, y no una palabra reservada

Ejemplos

```
# int (número entero)

6.8

"Hola Mundo" # str (texto)

True # bool (verdadero)

False # bool (falso)
```

```
>>> type(5)
<class 'int'>
>>> type(6.8)
<class 'float'>
>>> type("Hola Mundo")
<class 'str'>
>>> type(True)
<class 'bool'>
>>> type(False)
<class 'bool'>
```

Operadores

Los operadores permiten realizar operaciones aritméticas con los números

Operador	Descripción	Ejemplo	
+	Suma	suma = 3 + 2	# es 5
-	Resta	resta = 4 - 7	# es -3
-	Inverso aditivo	inverso = -7	# es -7
*	Multiplicación	multiplicacion = 2 * 6	# es 12
**	Potencia	potencia = 2 ** 6	# es 64
/	División	division = 3.5 / 2	# es 1.75
//	División entera	division_entera = 3.5 // 2	# es 1.0
9	Módulo	modulo = 7 % 2	# es 1

Nota: El símbolo # sirve para escribir un comentario

Operadores

► En la *división* el resultado que se devuelve es un número real, mientras que en la *división entera* el resultado que se devuelve es solo la parte entera

/	División	division = 3.5 / 2	# es 1.75
//	División entera	division_entera = 3.5 // 2	# es 1.0

► El operador *módulo* no hace otra cosa que devolvernos el resto de la división entre los dos operandos. En el ejemplo, **7/2** sería **3**, con **1** de resto, luego el módulo es **1**.

90	Módulo	modulo = 7 % 2	# es 1
----	--------	----------------	--------

- ► Es posible utilizar Python como una calculadora aplicando operaciones aritméticas a los números.
- Veamos algunos ejemplos:

```
Python 3.2.3 (v3.2.3:3d0686d90f55, Apr 10 2012, 11:25:50)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "copyright", "credits" or "license()" for more information.
>>> 3+5
8
>>>
```

- ¿Más de un operador aritmético?
 - Sí, es posible

```
>>> 3+5+6
14
>>>
```


Asociatividad

El orden en que se efectúan las operaciones es de izquierda a derecha.

Asociatividad

El orden en que se efectúan las operaciones es de izquierda a derecha.

► Aplicando paréntesis...

...que es diferente a...

¿Se puede poner espacios en blanco?R: Sí, es posible

```
>>> 4 + 6 - (2 - 1)
9
>>>
```

...¿Y se puede poner espacios en medio de los números?
 R: No, no es posible


```
>>> 10 + 20+30 #incorrecto por los espacios al comienzo
SyntaxError: unexpected indent
>>>
```


...más operadores aritméticos...

Multiplicación y división

La expresión 3*4/2, equivale a ((3*4)/2) =
$$\frac{3\cdot4}{2}$$

La expresión 12/3*2, equivale a ((12/3)*2) =
$$\frac{12}{3} \cdot 2$$
,

...más operadores aritméticos...

- Recordar que la asociatividad es de izquierda a derecha.
- Además, hay que aplicar precedencia

La expresión 2*4+5, equivale a ((2*4)+5)

La expresión 2+4*5, equivale a (2+(4*5))

...más operadores aritméticos...

- Recordar que la asociatividad es de izquierda a derecha.
- Además, hay que aplicar precedencia

```
>>> 2**3
8
>>>
```

La expresión 2**3, equivale a 2³=8

La expresión 2**3**2, equivale a:

$$2^{(3^2)} = 2^9 = 512$$
, y no a $(2^3)^2 = 8^2 = 64$

Nota: La exponenciación es asociativa por la derecha

Precedencia de operadores en expresiones aritméticas

Operación	Operador	Aridad	Asociatividad	Precedencia
Exponenciación	**	Binario	Por la derecha	1
Identidad	+	Unario	_	2
Cambio de signo	-	Unario	_	2
Multiplicación	*	Binario	Por la izquierda	3
División	/	Binario	Por la izquierda	3
Módulo (o resto)	%	Binario	Por la izquierda	3
Suma	+ -	Binario	Por la izquierda	4
Resta		Binario	Por la izquierda	4

Tabla 2.1: Operadores para expresiones aritméticas. El nivel de precedencia 1 es el de mayor prioridad y el 4 el de menor.

Bool

Los objetos de tipo bool son variables que pueden tomar sólo dos valores:
True o False.

Operadores booleanos:

- **>==, >=, <=, >, <, !=**
 - Válido tanto para tipos int, float, complex y str, entre otros.
- and, or, not
 - Válido para tipos bool.
 - Permiten operadores lógicos sobre variables o expresiones booleanas.

Ejemplos

```
variable1 = 2>5  # Es False
variable2 = 3<5  # Es True
variable3 = True # Es True
variable4 = 5==5 # Es True ya que 5 es igual a 5
text = "hola"
var5 = text == "hola" # Es True
var6 = 5=="5" # Es False pues el entero 5 es distinto al string "5"
var7 = 5>=4  # Es True pues 5 es mayor o igual a 4
dist = 5!=4  # Es True pues 5 es distinto de 4
nodist = not (5!=4) # Es False pues negamos el valor de 5!=4
hola = 5>4 and 5<4  # Es False pues and exige que todas sean True
chao = 5>4 or 5<4  # Es True pues or exige al menos una sea True</pre>
```

Precedencia de operadores en expresiones booleanas

► Entre los operadores del tipo **bool**, las precedencias son las siguientes:

Mayor precedencia

- <, <=, >, >=, !=, ==
- not
- and
- or

Menor precedencia

- ► Ejemplo:
 - expr1 and not expr2 or expr3 es equivalente a
 - (expr1 and (not expr2)) or expr3

- Más sobre precedencia de operadores:
 - https://docs.python.org/3/reference/expressions.html#operator-precedence

Precedencia de operadores

- Mi recomendación: "Usa siempre paréntesis para dejar claro lo que quieres"
- ► En vez de 2*4+5, escribe (2*4)+5
- ► En vez de 2**3**2, escribe 2** (3**2)
- ► En vez de año%4 == 0 and año%100 != 0 or año%400 == 0, escribe ((año%4 == 0) and (año%100 != 0)) or (año%400 == 0)

VARIABLES Y EXPRESIONES...

Contexto

- En ocasiones se necesita que el computador "recuerde" ciertos valores para ser utilizados más adelante.
- ► Ejemplo: calcular el perímetro y área de un círculo de radio 1.298373.
- Solución: aplicando las formulas 2*π*r y π*r**2, obtenemos el perímetro y área, respectivamente.

```
>>> 2 * 3.14159265359 * 1.298373
8.157918156839218
>>> 3.14159265359 * 1.298373 ** 2
5.296010335524904
>>>
```


Variables

Se introdujeron dos veces los valores de π y r, con muchos decimales. Es fácil cometer errores al manipular tantos números...

Para prevenirlos, se usarán *Variables*

Variables

- ¿Qué es lo que sucede internamente en el computador?
 - Se crea la variable pi con el valor 3.14159265359
 - Se crea la variable r con el valor 1.298373
 - Al asignar el valor a una variable que no existía, Python reserva un espacio en la memoria, almacena el valor en él, y crea una asociación entre el nombre de la variable y la dirección de memoria de dicho espacio.

Asignación

- Acto de dar valor a una Variable
 - El valor de la expresión que está a la derecha del signo =, se asigna a la variable de la izquierda

- Otros ejemplos:
 - salario = 23000
 - impuesto = 27.4
 - medallas_de_oro = 31

Asignación

 Resultados de operaciones aritméticas también pueden ser asignados a variables

```
>>> pi = 3.14159265359
>>> r = 1.298373
>>> perimetro = 2 * pi * r
>>> area = pi * r ** 2
>>>
```

Desplegando valor de una variable

 Se puede desplegar el valor de las variables con tan sólo escribirlas en el área de trabajo o utilizando el comando *print*

```
>>> pi = 3.14159265359
>>> r = 1.298373
>>> perimetro = 2 * pi * r
>>> area = pi * r ** 2
>>> area
5.296010335524904
>>> print(area)
5.296010335524904
>>> print(perimetro)
8.157918156839218
>>> perimetro
8.157918156839218
```

Resumiendo

Para asignar valor a una variable, la sentencia es la siguiente:

Asignación de derecha a izquierda

Asignación versus Comparación

== no es = (comparar no es asignar)

Al aprender a programar, muchas personas confunden el operador de asignación, =, con el operador de comparación, ==. El primero se usa exclusivamente para asignar un valor a una variable. El segundo, para comparar valores.

Observa la diferente respuesta que obtienes al usar = y == en el entorno interactivo:

```
>>> a = 10 \, \downarrow

>>> a \, \downarrow

10

>>> a == 1 \, \downarrow

False

>>> a \, \downarrow

10
```

Asignación versus Ecuación

Una asignación no es una ecuación

```
>>> x = 3
>>> x = 3 + 1
>>> x
4
>>>
```


Nombres de variables

 Palabras que no se pueden ocupar como nombre de variables


```
and, asset, break, class, continue, def, del, elif, else, except, exec, finally, for, from, global, if, import, in, is, lambda, not, or, pass, print, raise, return, try, while, y field
```

- Estas palabras pertenecen al lenguaje Python, por lo tanto son reservadas
- Nombres de variables válidos:
 - Aceleracion_1
 - alumno 23
 - prueba 123
 - Integral15

Asignaciones con operador

► Fijarse que la sentencia *i=i+1* aplica un incremento unitario al contenido de la variable *i*. Esta forma de incremento es frecuente, por lo que se puede resumir de la siguiente manera:

```
>>> i += 1
Traceback (most recent call last):
  File "<pyshell#11>", line 1, in <module>
    i += 1
NameError: name 'i' is not defined
```

Error, ya que no estaba declarada la variable *i*.

Primero debemos declarar la variable y asignarle un valor

```
>>> i=0
>>> i += 1
>>> i
1
>>>
```

Notar que entre el signo + y el signo = no debe haber espacios

Asignaciones con operador

Se puede incrementar una variable con cualquier cantidad, incluso con una que resulte de evaluar una expresión:

```
>>> a = 3
>>> b = 2
>>> a += 4 * b
>>> a
11
>>>
```

a += 4*b es equivalente a la asignación a = a + 4*b

Asignaciones con operador

- ► Todos los operadores aritméticos tienen su asignación con operador asociado.
- Supongamos que tenemos la variable Z

$$7. = 5$$

$$z += 2$$

$$z \star = 2$$

$$z /= 2$$

$$z -= 2$$

$$z **= 2$$

Solución:

1.0

Ejercicios

¿Cuál es el resultado final de las siguientes sentencias?

```
incognita = 5
incognita += 4
incognita *= 2
incognita /= 6
incognita **= 3
incognita %= 9
```

Solución: *0.0*

Ejercicios

Evalúa el polinomio $x^4 + x^3 + 2x^2 - x$ en x = 1.1.

Evalúa el polinomio $x^4 + x^3 + \frac{1}{2}x^2 - x$ en x = 10.

I/O - INPUT/OUTPUT

I/O – Input/Output

- Python incluye algunos comandos básicos para desplegar información al usuario o solicitarle datos.
 - Son funciones que vienen implementadas en Python.
 - Una función es una entidad que recibe ciertos parámetros, y en base a eso, ejecuta ciertas acciones que pueden terminar con el retorno de un valor.
- print(): función que recibe como parámetro un valor y lo imprime en la consola.
 - En general, usaremos strings
 - Para combinar valores de variables y textos, usaremos otra función llamada str().
- str(): función que transforma una expresión a un string.
- input(): función que recibe como parámetro un string y pide otro string en consola.
 - Este string puede ser asignado a una variable.
 - Si queremos pedir un número, debemos transformar el string ingresado mediante int()
 o float(). Se debe realizar lo mismo al recibir un bool().

Ejemplos

```
# ejemplos de print
print("hola")  # imprime en consola hola
print("Mi nombre es: "+"Juan") # imprime en consola Mi nombre es: Juan
a = 3
print(a)  # imprime en consola 3
print("El numero es: "+a)  # genera error de tipos
print("El numero es: "+str(a)) # imprime en consola El numero es: 3

# ejemplos de input
a = input("Diga un nombre : ")
b = int(input("Diga un número : "))
c = int(input("Diga otro número : "))
print("La suma de los números de "+a+" es: "+str(b+c))
```

I/O – Input/Output

- El ingreso de texto a través del teclado es capturado por Python a través de sys.stdin. Para utilizarlo hay que importar sys.
- readline(): función de sys.stdin que lee una línea del input.
- strip(): función que permite eliminar espacios y saltos de línea de un string.

```
# ejemplos de readline

import sys  # solo se requiere la primera vez

print("Ingrese un texto y luego presione 'Enter'.")

s = sys.stdin.readline()

Está es una línea de texto. Termina cuando presiono 'Enter'.

s 
"Está es una línea de texto. Termina cuando presiono 'Enter'.\n"

s = s.strip()

s 
"Está es una línea de texto. Termina cuando presiono 'Enter'."
```

Ejemplos

```
# ejemplos de readline
import sys  # solo se requiere la primera vez
print("Diga un nombre : ")
a = sys.stdin.readline()
nombre = a.strip()
print("Diga un número : ")
b = int(sys.stdin.readline())
print("Diga otro número : ")
c = int(sys.stdin.readline())
print("La suma de los números de "+nombre+" es: "+str(b+c))
```

EJERCICIOS

Ejercicio 1 – describiendo un cuadrado

Escriba un programa que pida al usuario el lado de un cuadrado, y luego despliegue el área, el perímetro y la diagonal de dicho cuadrado.

```
▶ lado = float (input ("Ingrese el lado del cuadrado: "))
  perimetro = lado*4
  area = 1ado**2
  diagonal = lado * (2**(1/2))
  print("El perímetro es: "+str(perimetro))
  print("El área es: "+str(area))
  print("La diagonal es: "+str(diagonal))
  import sys
  print("Ingrese el lado del cuadrado: ")
  lado = float(sys.stdin.readline())
  perimetro = lado*4
 area = 1ado**2
  diagonal = lado * (2**(1/2))
  print("El perímetro es: "+str(perimetro))
  print("El área es: "+str(area))
  print("La diagonal es: "+str(diagonal))
```

Ejercicio 2 – ¿pasó el curso?

- ► Un curso tiene 3 pruebas que ponderan un 20% cada una, y un examen que pondera el 40% restante. El curso se aprueba si el promedio no aproximado del curso es mayor o igual que 4.0.
- Escriba un programa que reciba las 4 notas e imprima *True* si usted aprueba el curso y *False* en caso contrario.

```
import sys
print("Ingrese las notas de las tres pruebas: ")
n1 = float(sys.stdin.readline())
n2 = float(sys.stdin.readline())
n3 = float(sys.stdin.readline())
print("Ingrese la nota del examen: ")
ex = float(sys.stdin.readline())
pasaste = (0.2* n1 +0.2* n2 +0.2* n3 +0.4* ex ) >= 4.0
print(pasaste)
```

Ejercicio 3 – "Adivino lo que piensas"

- Piensa un número del 2 al 10 ...
- Multiplica el número por 9
- Suma las dos cifras
- Réstale 5
- Transforma número en letra:
 - 1->A, 2->B, 3->C, ... etc.
- Piensa un país que empiece con esa letra ...
- ▶ Piensa un animal que empiece con la 2a letra del país ...

¡¡ Pero ... si en Dinamarca no hay Iguanas !!

Fuente: https://elabacodemadera.files.wordpress.com/2012/08/iguana.jpg?w=682

Ejercicio 3 – "Adivino lo que piensas"

```
print("")
print("TE ADIVINO LO QUE PIENSAS")
print("")
n1 = int(input("Piensa un número del 2 al 10; y escríbelo: "))
print(">> ", n1)
input("Multiplica el número por 9 y aprieta <enter>")
n2 = n1 * 9
print(">> ", n2)
input("Suma las dos cifras y aprieta <enter>")
cifral = n2 // 10
cifra2 = n2 % 10
n3 = cifra1 + cifra2
print(cifra1, "+", cifra2, "=", n3)
input("Réstale 5 y aprieta <enter>")
n4 = n3 - 5
print(">> ", n4)
input("Transforma número en letra: 1->A, 2->B, 3->C, ... <enter>")
print(">> ", n4, "-> D")
input ("Piensa un país que empiece con esa letra ... <enter>")
input ("Piensa un animal que empiece con la 2a letra del país ... <enter>")
# Leer mente
print("")
input("Aprieta <enter> cuando estés listo para que te lea la mente")
print("." * 10)
print("." * 10)
print("Pero si en DINAMARCA no hay IGUANAS !!!!")
```

Ejercicio 4 – "Te adivino la edad ... con Chocolates"

- ¿Cuántos chocolate comes al día? (elige un número entre 1 y 10)
- Multiplica ese número por 2
- Suma 5 al resultado anterior
- Multiplica eso por 50
- Súmale el año actual
- Si ya pasó tu cumpleaños de este año, entonces réstale 250
- Si todavía no pasa, réstale 251
- Réstale tu año de nacimiento
- Terminarás con un número de 3 o 4 dígitos.
- Los dos últimos dígitos son tu edad.
- La otra parte del número es las veces que comes chocolate al día.

Ejercicio 4 – "Te adivino la edad ... con Chocolates"

```
print("")
print("TE ADIVINO LA EDAD ... CON CHOCOLATES")
print("")
print("¿Cuántos chocolate comes al día?")
n = int(input("Elige un número entre 1 y 10: "))
print(">> ", n)
print("Multiplica ese número por 2")
n *= 2
print(">> ", n) # 2 * n
print("Suma 5 al resultado anterior")
n += 5
print(">> ", n) # 2* n + 5
print("Multiplica eso por 50")
n *= 50
print(">> ", n) # 100 * n + 250
añoActual = int(input(";En qué año estamos?: "))
print("Súmale el año actual")
n += añoActual
print(">> ", n) # 100 * n + añoActual + 250
yaFue = input("¿Ya fue tu cumpleaños este año? (si - no): ")
if vaFue == "si":
    print ("Dado que ya pasó tu cumpleaños de este año, ")
    print("entonces réstale 250")
    n = 250
   print(">> ", n) # 100 * n + añoActual
else:
    print("Dado que todavía no pasa, réstale 251")
    n -= 251
    print(">> ", n) # 100 * n + añoActual - 1
añoNacimiento = int(input("¿En qué año naciste?: "))
print("Réstale tu año de nacimiento")
n -= añoNacimiento
print(">> ", n) # 100 * n + edad
print("")
print("Terminarás con un número de 3 o 4 dígitos.")
print("Los dos últimos dígitos son tu edad.")
print("La otra parte del número es las veces que comes chocolate al día.")
print("")
print(">> ", n)
print("")
edad = n % 100
cantidad = n // 100
print("Tu edad es ", edad,
      "años ... y te gusta comer", cantidad,
      "chocolates al día")
```

Ejercicios propuestos

- Calcule la hipotenusa de un triángulo rectángulo:
 - 1) Los lados **a** y **b** deben ser seleccionados al azar
 - 2) Usted solicita los lados al usuario
- Determinar si un número es par o impar
- Determinar si año es bisiesto:
 - Un año es bisiesto si es divisible entre 4, a menos que sea divisible entre 100. Sin embargo, si un año es divisible entre 100 y además es divisible entre 400, también resulta bisiesto
- Calcular el mínimo entre 2 números:
 - 1) Los números deben ser seleccionados al azar
 - 2) Usted solicita los números al usuario
- Calcule la sumatoria de 1 hasta N
 - 1) Usted solicita el valor de N al usuario