

Universidade do Minho

Teoria da Produção e dos Custos

Filipa Dionísio Vieira

1

Sumário

- ✓ Teoria da produção
 - ✓ Função produção
 - ✓ Produto total, médio e marginal
 - ✓ Lei dos rendimentos decrescentes
 - ✓ Curto e longo prazo
- ✓ Teoria dos Custos
 - ✓ Custo Total
 - ✓ Custo Fixo
 - ✓ Custo Variável
 - Custo Marginal
 - ✓ Custo Médio (Custo Unitário)

Filipa Dionísio Vieira

Universidade do Minho

Universidade do Minho

Teoria da Produção

Filipa Dionísio Vieira

3

Fatores de Produção e Produção

Universidade do Minho

- ⇒ Fatores de produção (inputs): são bens ou serviços utilizados pelas empresas no seu processo de produção.
- ⇒ Produção (outputs): são os vários bens ou serviços úteis que tanto são consumidos como utilizados numa produção posterior.

Filipa Dionísio Vieira

Fatores de Produção

Universidade do Minho

- ⇒ Recursos naturais: terra utilizada na agricultura ou na implantação de edifícios, fábricas e estradas; recursos energéticos e recursos não energéticos (ex: minérios de ferro e cobre, areia);
- ⇒ Trabalho (L): consiste no tempo de trabalho humano despendido na produção;
- ⇒ Capital (K): é formado pelos bens duráveis de uma economia, produzidos com vista a produzirem outros bens (ex: máquinas, estradas, computadores).

Filipa Dionísio Vieira

5

Função Produção

Universidade do Minho

Objetivo:

Exprimir a quantidade necessária de fatores de produção, em ordem a obter uma determinada quantidade de produto

Filipa Dionísio Vieira

Função Produção

Universidade do Minho

• Definição:

Determina a quantidade máxima de produto que pode ser produzida com uma dada quantidade de fatores de produção e com o estado atual da tecnologia de produção

$$Q = f(K, L)$$

Filipa Dionísio Vieira

Função Produção

Universidade do Minho

Q = f(K, L) = 2KL

K = equipamento-horas por semana

L = pessoa-horas por semana

Q = refeições por semana

Se K = 2 e L = 3 então Q = 12 refeições/semana

Filipa Dionísio Vieira

9

Função Produção

A função de produção Q = 2KL

Universidade do Minho

	Trabalho (pessoa-horas/semana)									
		1	2	3	4	5				
rto- na)	1	2	4	6	8	10				
Capital (equipamento-horas/semana)	2	4	8	12	16	20				
Cap uipa as/se	3	6	12	18	24	30				
(equ	4	8	16	24	32	40				
	5	10	20	30	40	50				

Filipa Dionísio Vieira

Função Produção

Universidade do Minho

A função de produção Q = 2KL

Linhas Isoquantas: combinações de fatores produtivos que originam uma determinada quantidade de produto.

11

Função Produção

Universidade do Minho

Q(refeições / semana)

86

81

72

58

43

27

14

4

0

1 2 3 4 5 6 7 8 L (pessoa-hora's emana)

Passa pela origem Para algumas funções a produção pode diminuir com aumento de fator de produção.

Filipa Dionísio Vieira

Produto Total (PT)

Universidade do Minho

Quantidade total produzida de um determinado produto, em unidades físicas (por exemplo toneladas)

Nota: PT = Q

Filipa Dionísio Vieira

13

Produto Médio (PM)

Universidade do Minho

Produto total dividido pela totalidade de unidades de fatores de produção (por exemplo produto médio do fator trabalho)

PM = PT / L

Filipa Dionísio Vieira

Produto Marginal (PMg)

Universidade do Minho

O produto marginal de um fator de produção será o produto adicional gerado por uma unidade adicional desse fator de produção, mantendo os restantes fatores constantes

 $PMg = \Delta PT / \Delta L$

Nota: Marginal = Adicional

Filipa Dionísio Vieira

Lei dos Rendimentos Decrescentes

Universidade do Minho

- ⇒ Obteremos cada vez menos produto adicional à medida que acrescentamos doses adicionais de um fator, mantendo fixos os outros fatores de produção.
- → O produto marginal de cada unidade de fator de produção reduzir-se-á com o aumento da quantidade utilizada desse fator.

Filipa Dionísio Vieira

17

Lei dos Rendimentos Decrescentes

Universidade do Minho

Filipa Dionísio Vieira

Curto Prazo e Longo Prazo

Universidade do Minho

- ⇒ O curto prazo é definido como o período durante o qual um ou mais fatores de produção não podem ser alterados (O fator de produção K é fixo e o L é variável).
- → O longo prazo para um determinado processo de produção é definido pelo menor período de tempo necessário para alterar os montantes de todos os fatores de produção (Todos os fatores de produção são variáveis).

Universidade do Minho

Teoria dos Custos

Filipa Dionísio Vieira

Custo Fixo (CF)

Universidade do Minho

- ⇒ Despesa monetária suportada, mesmo que não haja produção
- ⇒ O custo fixo não é afetado por qualquer variação da quantidade produzida
- ⇒ Exemplos: rendas de fábricas, juros de empréstimos, pagamento de equipamentos, pagamento de seguros, ...

Filipa Dionísio Vieira

21

Custo Variável (CV)

Universidade do Minho

- ⇒ Custo total do fator produtivo variável (L) para cada quantidade de produto.
- ⇒ Despesa monetária que varia com o nível de produção
- ⇒ Exemplos: matérias primas, salários, combustíveis, ...

$CV = W \times L$

L- quantidade de trabalho necessária para produzir uma quantidade de produto W – salário por hora

Filipa Dionísio Vieira

Custo Total (CT)

Universidade do Minho

⇒ É a soma do custo fixo e do custo variável

CT = CF + CV

Filipa Dionísio Vieira

23

Custo Marginal (CMg)

Universidade do Minho

- ⇒ Custo adicional decorrente da produção de uma unidade adicional
- ⇒ Variação no custo total resultante da produção de uma unidade adicional de produto

 $CMg = \Delta CT / \Delta PT$ ou $CMg = \Delta CVT / \Delta PT$

Porque o custo fixo não varia com a quantidade de produto

Filipa Dionísio Vieira

Custo Médio ou Unitário (CM)

Universidade do Minho

- \Rightarrow Custo por unidade produzida
- ⇒ Obtém-se dividindo o custo total pelo nº de unidades produzidas

CTM = CT / PT CFM = CFT / PT CVM = CVT / PT

CTM = CFM + CVM

Filipa Dionísio Vieira

25

Expressões

Universidade do Minho

⇒CT = CVT + CFT

 \Rightarrow CVT = W × L

 \Rightarrow CMT = CT / PT (CMT = CVM + CFM)

 \Rightarrow CMg = Δ CT / Δ PT = Δ CVT / Δ PT

Nota: PT = Q

Filipa Dionísio Vieira

Exemplo

Fatores de produção, produtos e custos w = 10

Universidade do Minho

L	Q	CF	CV	СТ	CFM	CVM	CTM	CMg	
0	0	30	0	30	∞	-	∞	-	
1	4	30	10	40	7.50	2.5	10	2.5	
2	14	30	20	50	2.14	1.43	3.57	1	
3	27	30	30	60	1.11	1.11	2.22	0.77	
4	43	30	40	70	0.70	0.93	1.63	0.63	
5	58	30	50	80	0.52	0.86	1.38	0.67	
6	72	30	60	90	0.42	0.83	1.25	0.71	
7	81	30	70	100	0.37	0.86	1.23	1.11	
8	86	30	80	110	0.35	0.93	1.28	2	

Filipa Dionísio Vieira

27

Curvas do CT, CF e CV

Universidade do Minho

As curvas dos custos total, fixo e variável

Filipa Dionísio Vieira

Considerações

- > A curva do custo variável passa pela origem
- Universidade do Minho
- >O que significa que o custo variável é zero quando não se produz
- > O custo total de não se produzir é igual aos custos fixos CF
- > A distância vertical entre as curvas CV e CT é sempre igual a CF
- > O que significa que a curva do custo total é paralela à curva do custo variável e que se situa CF unidades acima dela

Filipa Dionísio Vieira

Considerações

Universidade do Minho

- ➤ Como o CF não varia com o produto, o custo fixo médio decresce de uma forma permanente, à medida que o produto aumenta
- ➤ A curva de CVM atinge o seu valor mínimo em Q2. Para além deste ponto, a curva de CVM aumenta com o produto.
- ➤ A curva de CTM atinge o seu valor mínimo em Q3. Para além deste ponto, a curva de CTM aumenta com o produto.
- > A curva de CMg será decrescente até Q1 e crescente a partir desse ponto

Filipa Dionísio Vieira

Universidade do Minho

1)CMg = w/PMg

 $CMg = \Delta CV / \Delta PT$

 $CMg = \Delta (W \times L) / \Delta PT$

 $CMg = W \times \Delta L / \Delta PT$

Sendo PMg = Δ PT / Δ L

Vem,

 $CMg = W \times 1/PMg$

CMg = W / PMg

2) CVM = w/PM

CVM = CV / PT

CVM = (W x L) / PT

 $CVM = W \times L / PT$

Sendo PM = PT / L

Vem,

 $CVM = W \times 1/PM$

 $\mathop{\hbox{\rm Filipa Dion ísio Vieira}}^{\hbox{\scriptsize CVM}} = W \ / \ PM$

33

Considerações

Universidade do Minho

- ➤ A partir da primeira equação, **CMg = w/PMg**, verifica-se que o valor mínimo do custo marginal corresponde ao valor máximo de PMg
- ➤ A partir da segunda equação, **CVM = w/PM**, verifica-se que o valor mínimo de CVM corresponde ao valor máximo de PM

Filipa Dionísio Vieira

Exemplos de funções de custos

Universidade do Minho

$$CT = Q^{2} + 2Q + 30$$

 $CVT = Q^{2} + 2Q$
 $CFT = 30$
 $CMg = dCT /dQ = 2Q + 2$

Nota: PT = Q

Filipa Dionísio Vieira

35

Relação entre CVM e PM:

Universidade do Minho

CVM = CV / PT

CVM = (W x L) / PT

 $CVM = W \times L / PT$

Sendo PM = PT / L

Vem,

 $CVM = W \times 1/PM$

CVM = W / PM

Filipa Dionísio Vieira