ERQ I – Teste 2017.2 Resolução

Felipe B. Pinto 61387 – MIEQB

9 de dezembro de 2023

Conteúdo

A reacção reversível A \Longrightarrow B é conduzida, na fase gasosa, num reactor tubular adiabático. O reagente A (30%) e um inerte são alimentados, à temperatura de 773 K, a um caudal volumétrico de 100 L/min. A figura representa a variação da conversão de equilíbrio com a temperatura.

Dados: • $C_{pA} = C_{pB} = 10 \, \text{cal/mol K}$

•
$$C_{pI} = 12 \, \mathrm{cal/mol \, K}$$
 • $R = 1.987 \, \mathrm{cal \, mol^{-1} \, K^{-1}}$

•
$$K_{e\,(773\,\mathrm{K})}=30$$
 • $\Delta H_R=20\,\mathrm{kcal/mol}$

• $Ea = 25 \, \text{kcal/mol}$

• Constante cinética da reação direta
$$k_{(773\,\mathrm{K})} = 8.57\,\mathrm{min}^{-1}$$

Q1 a. Determine, usando o gráfico, o valor do calor de reação

Resposta

 $\Delta H : k_{e(T)} = k_{e(T_R)} \exp\left(-\frac{\Delta H}{R}(T^{-1} - T_R^{-1})\right)$

$$k_e = \frac{\sum p_{1\,E}}{\sum p_{0\,E}} = \frac{p_{B\,E}}{p_{A\,E}} =$$

$$= \frac{C_{BE}RT}{C_{AE}RT} = \frac{C_{A0}X}{C_{A0}(1-X)} = \frac{1}{-1+1/X} \Longrightarrow$$

$$\Longrightarrow X = \frac{1}{1+1/K_e} \Longrightarrow X = 0.5 \begin{cases} K_e = 1 \\ T \cong 610 \text{ K} \end{cases} \Longrightarrow$$

$$\implies \Delta H = -\frac{R}{(610^{-1} - 773^{-1})} \ln \frac{k_{e \, (610 \, \text{K})}}{k_{e \, (773 \, \text{K})}} \cong$$

$$\cong -\frac{1.987}{(610^{-1} - 773^{-1})} \ln \frac{1}{30} \cong 19.552 \, \text{kcal/mol}$$
Q1 b.

Determine a conversão de equilíbrio e a correspondente temperatura de equilíbrio.

Resposta $X_{1 (520 \text{ K})} = \frac{C_{pA} + \theta_I C_{pI} (T - T_0)}{-\Delta H_R} = \frac{C_{pA} + \frac{Y_{I0}}{Y_{A0}} C_{pI} (T - T_0)}{-\Delta H_R} \cong$

$$\begin{array}{l}
-\Delta H_R & -\Delta H_R \\
\cong \frac{(10 + \frac{0.7}{0.3} 12)(520 - 773)}{-19.552 \,\mathrm{E}^3} \cong 0.492 \\
\begin{cases}
T_0 = 773 \,\mathrm{K}; & X_0 = 0 \\
T_1 = 520 \,\mathrm{K}; & X_1 = 0.492
\end{cases}$$

0.7
0.6
$$\times$$
 0.5
0.4
0.3
0.2
0.1
0
 \times 0.7
0.6
 \times 0.5
 \times 0.5
 \times 0.5
 \times 0.5
0.4
 \times 0.5
0.4
0.3
 \times 0.5
0.4
0.8
 \times 0.7
0.6
 \times 0.8
0.9
 \times 0.9
 \times 0.9
0.1
 \times 0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9

95% da conversão de equilíbrio.

Calcule o volume do reactor, necessário a uma conversão de

 $V: V = F_{A0} \int_{0}^{X} \frac{dX}{-r_{A}} = C_{A0} v_{0} \int_{0}^{X} \frac{dX}{-r_{A}};$

Resposta

Q1 c.

$$-r_A = k(C_A - C_B/K_e) =$$

$$= k\left(\left(\frac{C_{A\,0}(1-X)}{1+\varepsilon\,X}\frac{T_0}{T}\right) - \left(\frac{C_{A\,0}\,X}{1+\varepsilon\,X}\frac{T_0}{T}\right)/K_e\right) =$$

$$= k \left(\frac{C_{A0}(1 - X(1 - 1/K_e))}{1 + \varepsilon X} \frac{T_0}{T} \right) =$$

$$= k \left(\frac{C_{A0}(1 - X(1 - 1/K_e))}{1 + y_{A0} \delta X} \frac{T_0}{T} \right) =$$

$$= k \left(\frac{C_{A0}(1 - X(1 - 1/K_e))}{1 + y_{A0} (1 - 1) X} \frac{T_0}{T} \right) =$$

$$= k C_{A0}(1 - X(1 - K_e)) \frac{T_0}{T} \Longrightarrow$$

$$\Rightarrow V = \int_0^{.95*.29} \frac{v_0}{k \frac{T_0}{T} (1 - X(1 - 1/K_e))} dX =$$

$$= \int_0^{0.2755} \frac{100}{k \frac{773}{T} (1 - X(1 - 1/K_e))} dX;$$

$$T: X = \frac{(C_{pA} + \theta_I C_{pI})(T - T_0)}{-\Delta H_R} \implies$$

$$\implies T = T_0 - \frac{X \Delta H_R}{C_{pA} + \theta_I C_{pI}} \cong 773 - \frac{X 19.552 E^3}{10 + \frac{0.7}{0.3} 12} \cong$$

$$\cong 773 - X 5.145 E^2;$$

$$k_{(T)} = k_{(T_R)} \exp\left(-\frac{Ea}{R}(T^{-1} - T_R^{-1})\right) \cong$$

$$\cong 8.57 \exp\left(-\frac{25 E^{3}}{1.987} (T^{-1} - 773^{-1})\right) \cong$$

$$\cong 8.57 \exp\left(-12.580 E^{3} (T^{-1} - 773^{-1})\right);$$

$$K_{e(T)} = K_{e(T_{R})} \exp\left(-\frac{\Delta H}{R} (T^{-1} - T_{R}^{-1})\right) \cong$$

$$\cong 30 \exp\left(-\frac{19.552 \,\mathrm{E}^3}{1.987} (T^{-1} - 773^{-1})\right) \cong$$

$$\cong 30 \exp\left(-9.839 \,\mathrm{E}^3 (T^{-1} - 773^{-1})\right);$$

$$h = \frac{X_1 - X_0}{2} = \frac{0.2755}{2} = 0.13775; X_1 = 0.13775$$

$$X_1 = 0.13775$$

$$X_2 = 0.13775; X_4 = 0.13775$$

f(X)

$$V = \frac{h}{3} \left(f_{(X_0)} + 4 f_{(X_1)} + f_{(X_2)} \right) =$$

$$= \frac{0.13775}{3} \left(f_{(X_0)} + 4 f_{(X_1)} + f_{(X_2)} \right) = \dots$$

A reacção elementar em fase líquida, A --- B, é conduzida num reactor CSTR adiabático, de 1 m³, a funcionar em estado estacionário. A alimentação ao reactor, a um caudal volumétrico de 20 L/min é constituída por A (10 mol %) e um inerte I. A figura mostra a curva de geração de calor.

Dados:

•
$$\Delta H_R = -25 \,\mathrm{kcal/mol}$$

•
$$C_{pI} = 18 \operatorname{cal/mole K}$$

$$C_{pA} = C_{pB} = 8 \, \text{car/mor K}$$

•
$$C_{pA} = C_{pB} = 8 \operatorname{cal/mol K}$$
 • $R = 1.987 \operatorname{cal mol}^{-1} \operatorname{K}^{-1}$

Determine:

 $\overline{Q2}$ a.

O valor da temperatura da corrente de saída, correspondente a uma conversão de 90%

Resposta

$$T: G_{(T)} = -\Delta H_{RT} X = 25 \,\mathrm{E}^3 * .90 \cong 22.500 \,\mathrm{E}^3 \,\mathrm{cal/mol} \implies T_{(22.5 \,\mathrm{E}^3)} \cong 370 \,\mathrm{K}$$

Q2 b.

O valor da temperatura da alimentação, nas condições da alínea a).

$$T_0: R_{(T)} = (C_{pA} + \theta_I C_{pI}) (T - T_0) = G_{(T)} \Longrightarrow$$

$$\Longrightarrow T_0 = T - \frac{G_{(T)}}{C_{pA} + \theta_I C_{pI}} \cong 370 - \frac{22.5 E^3}{8 + \frac{0.9}{0.1} 18} \cong 237.647 K$$

Q2 c.

Os valores das temperaturas de ignição e extinção. Resposta

$$\begin{cases} T_0 \cong 237.647 \,\mathrm{K}; & G_{(T_0)} = 0 \\ T_1 \cong 370 \,\mathrm{K}; & G_{(T_1)} = 22.5 \,\mathrm{E}^3 \end{cases}$$

$$G_{(T)} = m \, T + b = m \, T + (-m \, T_0) = m \, (T - T_0) = \frac{\Delta 22.5 \,\mathrm{E}^3}{\Delta 370 - 237.647} \, (T - 237.647) = 170 \, T - 40400 \implies$$

$$\Longrightarrow \begin{cases} T_2 = 250; & G_{(T_2)} = 2100 \end{cases}$$

A composição da alimentação, nas condições da alínea a),

Q2 d.

para uma temperatura da alimentação de 298 K.

$$Y_{A0}: R_{(T)} = G_{(T)} = (C_{pA} + \theta_I C_{pI}) (T - T_0) =$$

$$= \left(C_{pA} + \frac{1 - Y_{A0}}{Y_{A0}} C_{pI}\right) (T - T_0) \implies$$

$$\implies Y_{A0} = \left(1 + \frac{\frac{G_{(T)}}{T - T_0} - C_{pA}}{C_{pI}}\right)^{-1} = \left(1 + \frac{\frac{22.5 E^3}{370 - 298} - 8}{18}\right)^{-1} \cong$$

$$\approx 0.056$$