Automated Synthesis of Run-time Monitors to Enforce Authorization Policies in Business Processes

C. Bertolissi^{1,4}, **D.R. dos Santos**^{1,2,3}, S. Ranise¹

¹Fondazione Bruno Kessler, ²SAP Labs France, ³University of Trento, ⁴University of Marseille

Outline

- Introduction
- Automated Synthesis of Run-time Monitors
 - Off-line
 - On-line
- **Experiments**
 - Real-world workflows
 - Synthetic Benchmarks
- Conclusions

Outline

- Introduction
- 2 Automated Synthesis of Run-time Monitors
 - Off-line
 - On-line
- 3 Experiments
 - Real-world workflows
 - Synthetic Benchmarks
- 4 Conclusions

Context

- A workflow specifies a collection of tasks and the causal relationships between them
- Authorization policies specify which users can execute which tasks
- Additional constraints, such as Separation/Binding of Duty, further restrict the execution of tasks by users

Example

task	roles			
t1	r3			
t2	r2			
t3	r2			
t4	r1			
t5	r2			

roles	users				
r1	а				
r2	a, b, c				
r3	a, b				

Problem

Workflow Satisfiability Problem (WSP)

Is there an assignment of users to tasks such that a workflow terminates while satisfying all authorization constraints?

Run-time WSP

Answering sequences of user requests at execution time ensuring termination with the satisfaction of authorization constraints

Run-time version allows us to divide the problem in two steps

Introduction

task	roles			
t1	r3			
t2	r2			
t3	r2			
t4	r1			
t5	r2			

roles	users				
r1	а				
r2	a, b, c				
r3	a, b				

Satisfying trace: *t1(b)*, *t2(a)*, *t3(c)*, *t4(a)*, *t5(b)*

Contribution

- Automated technique to synthesize run-time monitors solving the run-time WSP
- Divided in off-line (workflow+constraints) and on-line (policy) phases
- Changes in the authorization policies can be accommodated without re-running from scratch the approach
- Main advantage: symbolic representation of users

Outline

- Automated Synthesis of Run-time Monitors

Automated Synthesis of Run-time Monitors

- Off-line
- On-line
- - Real-world workflows
 - Synthetic Benchmarks

Overview

BPMN to Petri Net

Petri Net to Transition System

$$t(u)$$
: $enabled_{CF} \land enabled_{Auth} \longrightarrow act_{CF} || act_{Auth}$

t2(u):
$$p1 \land \neg d_{t2} \land a_{t2}(u) \land \neg h_{t3}(u) \land \neg h_{t1}(u)$$

 $\longrightarrow p1, p4, d_{t2} := F, T, T || h_{t2}(u) := T$

1:
$$p0 \land ... \land p7 \neg pi \land \neg d_{ti}, ..., d_{t5} \land \bigwedge_{i=1,...,5} \forall u. \neg h_{ti}(u)$$

F: $p7 \land \neg p0 \land ... \neg p6 \land d_{t1}... \land d_{t5}$

Computing the Reachability Graph

```
Require: S = (V_{CF} \cup V_{Auth} \cup V_{User}, Ev_S) and F
Ensure: RG = (N, \lambda, E)
 1: #start with a node for the final state
 2: i \leftarrow \text{new}(); N \leftarrow \{i\}; E \leftarrow \emptyset; \lambda[i] \leftarrow F; TBV \leftarrow \{i\};
 3: while TBV \neq \emptyset do #until a fix-point is reached
 4:
         if subsumed(i,N,N') then
              connect(N'.i): TBV \leftarrow TBV - \{i\}:
 5.
 6.
         end if
 7:
         for all ev \in Ev_S do #then for every transition
 8.
              P \leftarrow \mathsf{wlp}(ev, \lambda[i]);
              if P is satisfiable then #add a new node if applicable
 9:
10:
                   j \leftarrow \text{new}(); N \leftarrow N \cup \{j\}; E \leftarrow E \cup \{(i, \overline{ev}, j)\};
                   \lambda[j] \leftarrow P; TBV \leftarrow TBV \cup \{j\};
11.
12:
              end if
13:
         end for
          i \leftarrow pickOne(TBV); TBV \leftarrow TBV - \{i\};
14.
15: end while
16: return (N, λ, E);
```

Reachability Graph

Reachability Graph to Datalog

$$\neg p0 \land \neg p1 \land \neg p2 \land \neg p3 \land p4 \land p5 \land p6 \land d_{t1} \land d_{t2} \land d_{t3} \land d_{t4} \land \neg d_{t5} \land (a_{t5}(u1) \land \neg h_{t2}(u1) \land \neg h_{t3}(u1))$$

$$can_do(u1, t5) \leftarrow \neg p0 \land \neg p1 \land \neg p2 \land \neg p3 \land p4 \land p5 \land p6 \land d_{t1} \land d_{t2} \land d_{t3} \land d_{t4} \land \neg d_{t5} \land a_{t5}(u1) \land \neg h_{t2}(u1) \land \neg h_{t3}(u1)$$

On-line

Policy

RBAC Policy

$$U = \{a, b, c\} R = \{r_1, r_2, r_3\}$$

$$UA = \{(a, r1), (a, r2), (a, r3), (b, r2), (b, r3), (c, r2)\}$$

$$TA = \{(r_3, t1), (r_2, t2), (r_2, t3), (r_1, t4), (r_2, t5)\}$$

Policy in Datalog

```
ua(a, r1) ua(a, r2) ua(a, r3) ua(b, r2) ua(b, r3) ua(c, r2) pa(r_3, t1) pa(r_2, t2) pa(r_2, t3) pa(r_1, t4) pa(r_2, t5) a_t(u) \leftarrow ua(u, r) \land pa(r, t) for each t \in \{t1, ..., t5\}
```

On-line

Example trace

	CF	Auth			can_do			
#	Token in	h_{t1}	h _{t2}	h_{t3}	h _{t4}	h _{t5}	(u,t)	Resp.
0	<i>p</i> 0	-	-	-	-	-	(a, t1)	deny
1	<i>p</i> 0	-	-	-	-	-	(b, t1)	grant
2	<i>p</i> 1, <i>p</i> 2, <i>p</i> 3	b	-	-	-	-	(b, t2)	deny
3	<i>p</i> 1, <i>p</i> 2, <i>p</i> 3	b	-	-	-	-	(a, t2)	grant
4	<i>p</i> 4, <i>p</i> 2, <i>p</i> 3	b	а	-	-	-	(c, t3)	grant
5	<i>p</i> 4, <i>p</i> 5, <i>p</i> 3	b	а	С	-	-	(a, t4)	grant
6	<i>p</i> 4, <i>p</i> 5, <i>p</i> 6	b	а	С	а	-	(b, t5)	grant
7	p7	b	а	С	а	b	-	-

Outline

- - Off-line
- **Experiments**
 - Real-world workflows
 - Synthetic Benchmarks

Description

- Real-world for validity
 - Moderate number of tasks
 - Complex control-flow
- Synthetic for scalability
 - Huge number of tasks
 - Simple control-flow
- ullet State space explosion o need for heuristics

Hierarchical descriptions

Real-world workflows

Drug dispensation process

Synthetic Benchmarks

Off-line

Number of tasks

(pa,pc) = (authorization density, constraint density)

Synthetic Benchmarks

On-line

Number of tasks

(pa,pc) = (authorization density, constraint density)

Conclusions

Outline

- - Off-line
 - On-line
- - Real-world workflows
 - Synthetic Benchmarks
- Conclusions

Conclusions

- Synthesize run-time monitors to ensure the termination of workflows with authorization constraints
 - Off-line: compute a symbolic representation of all behaviors
 - On-line: add the authorization policy and derive the monitor
- Parametric wrt the number of users
- Scalable with the use of hierarchical representations
- Future work: integrate the monitor in a real workflow engine to collect data about performance

Thank you!

www.secentis.eu

bertolissi@fbk.eu dossantos@fbk.eu ranise@fbk.eu

