Kaushik Chakram Professor Julia Kamenetzky phys 425 &01 March 06,2018

Problem 2.27)b)

\$Assumptions =
$$\{x, t, A, a, k, m, \hbar, \alpha, \alpha_1, V_0, a_1, n\} \in Reals$$
 $(x \mid t \mid A \mid k \mid n) \in Reals$

$$\alpha := \frac{\hbar^2}{m * a^2}$$

$$P1 := \frac{(m * a * \alpha)}{\hbar^2} * (1 + e^{-2*\eta})$$

$$\alpha_1 := \frac{\alpha}{4}$$

a := 1

m := 1

ħ := 1

 $Plot[\{\eta, P1\}, \{\eta, 0, 2\}, PlotLabels \rightarrow Placed[\{"\eta", "P1"\}, Above]]$

 $N[Solve[\eta == P1, \eta], 8]$

Solve: Inverse functions are being used by Solve, so some solutions may not be found; use Reduce for complete solution information.

 $\{\,\{\,\eta\,\rightarrow\,\textbf{1.1088576}\,\}\,\}$

P2 :=
$$\frac{(m * a * \alpha_1)}{\tilde{n}^2} * (1 + e^{-2*\eta})$$

Plot[$\{\eta, P2\}$, $\{\eta, 0, 1\}$, PlotLabels \rightarrow Placed[$\{"\eta", "P1"\}$, Above]] N[Solve[$\eta = P2$], 8] (* Now we must account for the odds solutions.*)

Solve: Inverse functions are being used by Solve, so some solutions may not be found; use Reduce for complete solution information.

 $\{\{\eta \rightarrow \mathbf{0.36941752}\}\}$

P3 :=
$$\frac{(m * a * \alpha)}{\hbar^2} * (1 - (e^{-2*\eta_1}))$$

Plot[$\{\eta_1, P3\}$, $\{\eta_1, 0, 1\}$, PlotLabels \rightarrow Placed[$\{"\eta_1", "P3"\}$, Above]] N[Solve[$\eta_1 == P3$], 8]

(* The intersection at η_1 = 0 implies the energy is zero so we pick the other solution.*)

Solve: Inverse functions are being used by Solve, so some solutions may not be found; use Reduce for complete solution information.

 $\{\,\{\,\eta_{\,\! 1} \to 0\,\}\,$, $\,\{\,\eta_{\,\! 1} \to 0\,.79681213\,\}\,\}$

P4 :=
$$\frac{(m * a * \alpha_1)}{\hbar^2} * (1 - (e^{-2*\eta_1}))$$

 $\mathsf{Plot}[\{\eta_1,\,\mathsf{P4}\},\,\{\eta_1,\,\emptyset,\,\mathsf{1}\},\,\mathsf{PlotLabels}\,\rightarrow\,\mathsf{Placed}[\{"\eta_1",\,"\mathsf{P4"}\},\,\mathsf{Above}]]$ N[Solve[$\eta_1 = P4$], 8]

solve: Inverse functions are being used by Solve, so some solutions may not be found; use Reduce for complete solution information.

$$\{\,\{\,\eta_{\textbf{1}}\rightarrow\textbf{0}\}\,\text{, }\{\,\eta_{\textbf{1}}\rightarrow-\textbf{0.62821560}\}\,\}$$

1)Problem 2.29)

$$F1 := \frac{-1}{\sqrt{\left(\frac{\sqrt{2}}{z}\right)^2 - 1}}$$

 $\label{eq:plot_state} Plot[\{Tan[z], F1\}, \{z, 0, 9\}, PlotLabels \rightarrow Placed[\{"Tan[z]", "F1"\}, Above]]$ (*No bound state here.*)

$$F2 := \frac{-1}{\sqrt{\left(\frac{2}{z}\right)^2 - 1}}$$

Plot[$\{Tan[z], F2\}, \{z, 0, 9\}, PlotLabels \rightarrow Placed[\{"Tan[z]", "F2"\}, Above]]$ (* One bound state here.*)

$$F3 := \frac{-1}{\sqrt{\left(\frac{10}{z}\right)^2 - 1}}$$

Plot[$\{Tan[z], F3\}, \{z, 0, 11\}, PlotLabels \rightarrow Placed[\{"Tan[z]", "F3"\}, Above]]$ (* Three bound states here.*)

$$Integrate \left[\left(\frac{1}{\sqrt{a_1}} \right) * \left(\sqrt{\frac{2}{a_1}} \right) Sin \left[\frac{\pi * x}{a_1} \right] * \left(Sin \left[\frac{(n * \pi * x)}{2 * a_1} \right] \right), \{x, \emptyset, a_1\} \right]$$

$$\frac{4\sqrt{2} \sin\left[\frac{n\pi}{2}\right]}{4\pi - n^2\pi}$$

$$\texttt{C1[n_]} := \frac{\left(4\sqrt{2}\right) \, * \texttt{Sin}\left[\frac{n\,\pi}{2}\right]}{4\,\pi - n^2\,\pi}$$

(*Here we are setting it up to calculate the probabilities for the first 6 states*)

In[10]:=
$$\left(\text{C1[1]}\right)^2$$
Out[10]= $\frac{32}{9 \pi^2}$

$$\ln[12] = \left[\operatorname{Integrate} \left[\left(\frac{1}{\sqrt{a_1}} \right) * \left(\sqrt{\frac{2}{a_1}} \right) \operatorname{Sin} \left[\frac{\pi * x}{a_1} \right] * \left(\operatorname{Sin} \left[\frac{\left(2 * \pi * x \right)}{2 * a_1} \right] \right), \{x, \emptyset, a_1\} \right] \right]^2$$

Out[12]=
$$\frac{1}{2}$$

Out[13]=
$$\frac{32}{25 \pi^2}$$

Out[14]= **0**

Out[15]=
$$\frac{32}{441 \pi^2}$$

In[16]:=
$$(C1[6])^2$$

Out[16]= **0**

Integrate
$$\left[\left(\frac{-\hbar^2}{2*m}\right)*\left(\sqrt{\frac{2}{a_1}}\right)^2 Sin\left[\frac{\pi*x}{a_1}\right]*D\left[\left(Sin\left[\frac{(\pi*x)}{a_1}\right]\right), \{x, 2\}\right], \{x, 0, a_1\}\right]$$

(* This is just E₂*)

Out[18]=
$$\frac{\pi^2 \, h^2}{2 \, \text{m a}_1^2}$$