LMPL-Validity is Decidable

Branden Fitelson June 18, 2010

Let p be a (closed) sentence of LMPL which contains k predicate symbols P_1, \ldots, P_k . And, let \mathcal{I} be an interpretation of p with a (possibly infinite) domain \mathcal{D} , and which assigns extensions and references as follows:

- $\operatorname{Ext}_{\mathcal{I}}(P_i) = E_i$.
- $\operatorname{Ref}_{\mathcal{I}}(\tau) = r_{\tau}$.

Here is a recipe for constructing an interpretation \mathcal{I}' of p with a *finite* domain \mathcal{D}' (a domain of size 2^k).

First, note that there are 2^k *categories* (*viz.*, properties) that can be defined in terms of the k predicates P_1, \ldots, P_k . And, every object $d \in \mathcal{D}$ must fall under *exactly one* of these categories. Now, we can use this fact to construct \mathcal{I}' , as follows. Let the domain, extensions, and references of \mathcal{I}' be given by the following.

- $\mathcal{D}' = \{d' \subseteq \mathcal{D} \mid d' \text{ is a category, definable in terms of } P_1, \dots, P_k\}$. [Thus, $|\mathcal{D}'| = 2^k$.]
- $\operatorname{Ext}_{T'}(P_i) = E'_i = \{d' \in \mathcal{D}' \mid d' \subseteq E_i\}$. [That is, E'_i is the collection of categories that are subsets of E_i .]
- $\operatorname{Ref}_{T'}(\tau) = r'_{\tau} = \{d' \in \mathcal{D}' \mid r_{\tau} \in d'\}$. [That is, r'_{τ} is the collection of categories of which r_{τ} is a member.]

Theorem. p is true on \mathcal{I} iff p is true on \mathcal{I}' .

Proof. The proof goes by induction on the number of connectives + quantifiers in p.

Basis Case. p contains zero connectives + quantifiers. Thus, p is an atomic sentence of the form $P_i\tau$. Then, by the semantics of LMPL, $P_i\tau$ is true on \mathcal{I} iff $r_{\tau} \in E_i$. But, by our construction of \mathcal{I}' , $r_{\tau} \in E_i$ iff $r_{\tau}' \in E_i'$ (pause here to take some time to convince yourself that this is in fact the case!). Hence, $P_i\tau$ is true on \mathcal{I} is true on \mathcal{I}' . And, this establishes the basis case of the Theorem.

Inductive Case. Suppose (as inductive hypothesis) that the theorem holds for all p with fewer than n connectives + quantifiers. All that is left is to show that the theorem continues to hold for sentences p with exactly n connectives + quantifiers. The only interesting cases from an LMPL point of view are the *quantified* sentences p. There are two such cases. First, suppose p is of the form $\lceil (\forall v) \phi v \rceil$. In this case, p will be true on p iff all of p's p-instances are true on p. But, all of p's p-instances will have fewer than p quantifiers p is of the form p (p) p0, then p1 will be true on p1 iff some of its p0-instances are true on p1. But, by the inductive hypothesis, this will be the case iff some of p's p0-instances are true on p1. This shows that the theorem holds for all quantified sentences of LMPL. I leave the proofs for the cases involving the LSL connectives (which are quite straightforward) as (simple) exercises for the reader.

Our theorem suggests a *decision procedure* for LMPL. Any LMPL argument \mathscr{A} of the form $p_1, \ldots, p_n : q$ (with k predicate symbols P_1, \ldots, P_k) will be valid iff its *corresponding conditional* $\mathfrak{c} = {}^{\mathfrak{c}}(p_1 \& \cdots \& p_n) \to q^{\mathfrak{d}}$ is a logical truth of LMPL. That is, \mathscr{A} will be invalid iff there exists an LMPL-interpretation \mathscr{I} on which \mathfrak{c} is false. By our Theorem, if there exists an LMPL interpretation \mathscr{I} on which \mathfrak{c} is false. Hence, \mathscr{A} will be invalid iff there exists an LMPL-interpretation \mathscr{I}' with a finite domain of size 2^k on which \mathfrak{c} is false. Thus, invalidity in LMPL is *decidable*. Specifically, in order to decide whether or not an LMPL argument \mathscr{A} is valid, all we need to do (in the *worst* case) is compute the truth-value of \mathfrak{c} on all of its LMPL interpretations that have domains of size 2^k . So, in the worst case, we will need to calculate the truth-value of \mathfrak{c} on $2^{k \cdot 2^k}$ interpretations. This worst-case computation will not be feasible for large k (even for k=3, this involves checking 16.7 million LMPL-interpretations!). But, in principle, validity in LMPL is decidable via such a method.

¹For further discussion concerning the decidability of LMPL-validity, see pages 212–215 of Hunter's text *Metalogic*.