《数值分析》15

主要内容:

离散数据的最小二乘逼近

线性拟合与二次拟合

数据拟合的线性模型

一次多项式拟合公式

离散数据的最小二乘逼近

引例1. 我国上世纪90年代初人口数量(单位:亿)

年份	1991	1992	1993	1994	1995	1996
数量	11.58	11.72	11.85	11.98	12.11	12.24

引例2. 极坐标数据拟合慧星轨道方程

2.70	2.00	1.61	1.20	1.02
48°	67°	83°	108°	126°

离散数据的最小二乘逼近

引例3. 离散数据的多项式(1、3、5、6)拟合实验:

离散数据的线性拟合

\mathcal{X}	x_1	x_2	• • • • • • • •	$x_{\rm m}$
f(x)	y_1	\mathcal{Y}_2	• • • • • • • •	\mathcal{Y}_{m}

求拟合函数: ϕ

$$\varphi(x) = c_1 + c_2 x$$

$$\begin{cases}
c_1 + c_2 x_1 = y_1 \\
c_1 + c_2 x_2 = y_2 \\
\vdots & \vdots \\
c_1 + c_2 x_m = y_m
\end{cases}$$

$$\Rightarrow GX = F$$

$$\begin{bmatrix}
c_1 \\
c_2
\end{bmatrix} = \begin{bmatrix}
y_1 \\
y_2 \\
\vdots \\
y_m
\end{bmatrix}$$

$$\exists Ez f \text{ } \exists u$$

方程组 GX = F 的残差向量: r = F - GX

最小二乘问题
$$\min_{X \in R2} ||GX - F||_2^2$$

$$||GX - F||_{2}^{2} = (GX - F, GX - F)$$

$$= (GX, GX) - 2(GX, F) + (F, F)$$

$$= (X, G^{T}GX) - 2(X, G^{T}F) + (F, F)$$

$$f(X) = (X, G^TGX) - 2(X, G^TF)$$

$$\min_{X \in \mathbb{R}^2} f(X) = \min_{X \in \mathbb{R}^2} [(X, G^T G X) - 2(X, G^T F)]$$

$$\Leftrightarrow (G^T G) X = (G^T F)$$

$$S(c_1, c_2) = ||r||_2^2 = \sum_{k=1}^m [(c_1 + c_2 x_k) - y_k]^2$$

超定方程组: *GX=F* →

正规方程组: $G^TGX=G^TF$

$$G^{T}G = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ x_{1} & x_{2} & \cdots & x_{m} \end{bmatrix} \begin{bmatrix} 1 & x_{1} \\ 1 & x_{2} \\ \vdots & \vdots \\ 1 & x_{m} \end{bmatrix} = \begin{bmatrix} m & \sum_{j=1}^{m} x_{j} \\ \sum_{j=1}^{m} x_{j} & \sum_{j=1}^{m} x_{j}^{2} \\ \vdots & \vdots & \vdots \\ y_{m} \end{bmatrix} G^{T}F = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ x_{1} & x_{2} & \cdots & x_{m} \end{bmatrix} \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{m} \end{bmatrix} = \begin{bmatrix} \sum_{j=1}^{m} y_{j} \\ \sum_{j=1}^{m} x_{j} y_{j} \end{bmatrix}$$

引例4 实验数据线性拟合。

解: 设拟合曲线方程为

$$\begin{bmatrix} 1 & -3 \\ 1 & -2 \\ 1 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} -0.277 \\ 0.895 \\ -1.565 \\ 3.456 \\ 3.060 \\ 4.856 \\ 3.898 \end{bmatrix} \xrightarrow{c_1} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} -0.277 \\ 0.895 \\ -1.565 \\ 3.456 \\ 3.898 \end{bmatrix}$$

$$\varphi(x) = c_1 + c_2 x$$

$$c_1 = 2.0464, c_2 = 0.8955$$

残差2范数: $||r||_2 = 3.4142$

引例5 实验数据3次多项式拟合。

解: 设
$$\varphi(x) = c_1 + c_2 x + c_2 x^2 + c_3 x^3$$

$$\begin{bmatrix} 1 & -3 & 9 & -27 \\ 1 & -2 & 4 & -8 \\ 1 & -1 & 1 & -1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = \begin{bmatrix} -0.277 \\ 0.895 \\ -1.565 \\ 3.456 \\ 3.060 \\ 4.856 \\ 3.898 \end{bmatrix}$$

$$c_1 = 2.0563, c_2 = 1.7531$$

中国人口数据1991--2008(单位:亿)

年份	1991	1992	1993	1994	1995	1996	1997	1998	3 1999
人数	11.5	11.7	11.8	11.9	12.1	12.2	12.3	12.4	12.5
	2000								
人数	12.6	12.7	12.8	12.9	13.0	13.0	13.1	13.2	13.2

离散数据表

X	x_1	x_2	• • • • • • • •	\mathcal{X}_{m}
f(x)	y_1	y_2	• • • • • • • •	\mathcal{Y}_{m}

线性模型

$$\varphi(x) = a_0 \varphi_0(x) + a_1 \varphi_1(x) + \dots + a_n \varphi_n(x)$$

三角函数
$$\varphi(x) = a_0 + a_1 \cos(\frac{\pi}{12}x) + a_2 \sin(\frac{\pi}{12}x)$$

收集24小时室外温度数据 (每小时记录一次),以三角 函数作数据拟合

拟合函数:
$$\varphi(x) = \sum_{j=0}^{n} a_j \varphi_j(x)$$

拟合数据: $f(x_j)=y_j$, $(j=1,2,3,\dots,m)$

$$\begin{cases} \varphi(x_1) = y_1 \\ \varphi(x_2) = y_2 \\ \varphi(x_3) = y_3 \\ \dots \\ \varphi(x_m) = y_m \end{cases} \begin{bmatrix} \varphi_0(x_1) & \varphi_1(x_1) & \cdots & \varphi_n(x_1) \\ \varphi_0(x_2) & \varphi_1(x_2) & \cdots & \varphi_n(x_2) \\ \vdots \\ \varphi_0(x_m) & \varphi_1(x_m) & \cdots & \varphi_n(x_m) \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$

m > n+1 超定方程组

系数矩阵按列分块
$$G = [\vec{\varphi}_0 \ \vec{\varphi}_1 \ \cdots \ \vec{\varphi}_n]$$

$$\vec{\varphi}_0 = \begin{bmatrix} \varphi_0(x_1) \\ \varphi_0(x_2) \\ \vdots \\ \varphi_0(x_m) \end{bmatrix} \vec{\varphi}_1 = \begin{bmatrix} \varphi_1(x_1) \\ \varphi_1(x_2) \\ \vdots \\ \varphi_1(x_m) \end{bmatrix} \dots \vec{\varphi}_n = \begin{bmatrix} \varphi_n(x_1) \\ \varphi_n(x_2) \\ \vdots \\ \varphi_n(x_m) \end{bmatrix} F = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$

$$GX=F \rightarrow G^TGX=G^TF$$

$$GX = F \Rightarrow G^T GX = G^T F \begin{bmatrix} (\vec{\varphi}_0, \vec{\varphi}_0) & (\vec{\varphi}_0, \vec{\varphi}_1) & \cdots & (\vec{\varphi}_0, \vec{\varphi}_n) \\ (\vec{\varphi}_1, \vec{\varphi}_0) & (\vec{\varphi}_1, \vec{\varphi}_1) & \cdots & (\vec{\varphi}_1, \vec{\varphi}_n) \\ \cdots & \cdots & \cdots \\ (\vec{\varphi}_n, \vec{\varphi}_0) & (\vec{\varphi}_n, \vec{\varphi}_1) & \cdots & (\vec{\varphi}_n, \vec{\varphi}_n) \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} (\vec{\varphi}_0, \vec{y}) \\ (\vec{\varphi}_1, \vec{y}) \\ \vdots \\ (\vec{\varphi}_n, \vec{y}) \end{bmatrix}$$

正规方程组的解称为超定方程组的最小二乘解

药物浓度模型:考虑药品针剂注射后,血液中药物浓度的衰减曲线。模型为

$$u(t) = ct \exp(-bt)$$

T小时	1	2	3	4	5	6	7	8
u浓度	8.0	12.3	15.5	16.8	17.1	15.8	15.2	14.0

拟合函数: $u(t) = 9.79t \exp(-0.215t)$

拟合函数
$$u(t) = ct \exp(-bt)$$
 对数变换 $\ln u(t) = \ln c + \ln t - bt$ 线性模型 $\ln c - bt = \ln \frac{u(t)}{t}$ 令 $\ln c = a$ 即 $c = \exp(a)$

由数据,得超定方程组
$$a-bt_k = \ln \frac{u_k}{t_k}$$

高矩阵
$$G = \begin{bmatrix} 1 & -t_1 \\ 1 & -t_2 \\ \vdots & \vdots \\ 1 & -t_m \end{bmatrix}$$

$$u(t) = 9.79t \exp(-0.215t)$$

 $u'(t) = 9.79(1 - 0.215t) \exp(-0.215t)$

最大值点: t0=1/0.215=4.6512, u(t0)=16.7513

求u(t1)=16.7513/2; 半衰期: t1=12.4574,

$$\begin{bmatrix} (\vec{\varphi}_0, \vec{\varphi}_0) & (\vec{\varphi}_0, \vec{\varphi}_1) \\ (\vec{\varphi}_1, \vec{\varphi}_0) & (\vec{\varphi}_1, \vec{\varphi}_1) \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} (\vec{\varphi}_0, \vec{y}) \\ (\vec{\varphi}_1, \vec{y}) \end{bmatrix}$$

$$\begin{bmatrix} (\vec{\varphi}_0, \vec{\varphi}_0) & \\ (\vec{\varphi}_1, \ \vec{\varphi}_1) \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} (\vec{\varphi}_0, \ \vec{y}) \\ (\vec{\varphi}_1, \ \vec{y}) \end{bmatrix}$$

$$a_0 = \frac{(\vec{\varphi}_0, \ \vec{y})}{(\vec{\varphi}_0, \ \vec{\varphi}_0)} \qquad a_1 = \frac{(\vec{\varphi}_1, \ \vec{y})}{(\vec{\varphi}_1, \ \vec{\varphi}_1)}$$

$$\varphi(x) = \frac{(\vec{\varphi}_0, \vec{y})}{(\vec{\varphi}_0, \vec{\varphi}_0)} \varphi_0(x) + \frac{(\vec{\varphi}_1, \vec{y})}{(\vec{\varphi}_1, \vec{\varphi}_1)} \varphi_1(x)$$

一次多项式拟合公式

MATLAB中的多项式拟合命令

$$P = polyfit(X, Y, n)$$

求出(最小二乘意义下)n次拟合多项式

$$P(x)=a_0x^n+a_1x^{n-1}+\cdots\cdots+a_{n-1}x+a_n$$

计算结果为系数: $P=[a_0, a_1, \dots, a_{n-1}, a_n]$

多项式求值命令

$$y1=polyval(P, x)$$

其中,P是n次多项式的系数,x是自变量的值,y1是多项式在x处的值

思考与练习

- 1. 收集中国人口数据和世界人口数据, 利用数据拟合方法分析人口变化规律。
- 2. 收集我国粮食生产数据,分析总产量或亩产量变化规律。
- 3. 收集近四年我国高考人数数据, 分析并预测 今后几年内参加高考人数变化规律。
- 4. 收集血液中酒精含量测试数据, 分析人体内 酒精浓度变化规律。

邓良剑 Web. Link

学到了什么?

离散数据的最小二乘逼近

线性拟合与二次拟合

数据拟合的线性模型

一次多项式拟合公式