Homework 4 Solution

Math 445, Spring 2017

Exercise 6

See handwritten solution.

Exercise 11

See handwritten solution.

Exercise 16

(a) See handwritten solution for derivation.

```
service <- read.csv("https://raw.githubusercontent.com/math445-LU/2016/master/data/Service.csv")

# Calculating MOM estimates using "by hand" formulas
xbar <- mean(service$Times)
sumxi2 <- sum(service$Times^2)
n <- nrow(service)

r_mom <- xbar^2 / ((1/n) * sumxi2 - xbar^2); r_mom

## [1] 2.670167

lambda_mom <- xbar / ((1/n) * sumxi2 - xbar^2); lambda_mom

## [1] 3.84239</pre>
```

(b) Based on a χ^2 test statistic of 1.977 and associaated p-value of 0.9611, there is no evidence that the distribution of service times differs from Gamma(2.67, 3.84).

```
# Define the bins
q <- qgamma(p = seq(0 , 1, by = .1), shape = r_mom, rate = lambda_mom)

# Get the counts in each sub-interval
count <- hist(service$Times, breaks = q, plot = FALSE)$counts
expected <- length(service$Times) * .1

# Compute chi-square test statistic and associated p-value
stat <- sum ((count-expected)^2/expected); stat

## [1] 1.977011

1 - pchisq(stat, df = 10 - 2- 1)

## [1] 0.9611018</pre>
```

```
(c) # Histogram
library(ggplot2)
ggplot(data = service) +
   geom_histogram(mapping = aes(x = Times, y = ..density..), colour = "gray20") +
   stat_function(fun = dgamma, geom = "line", args = list(shape = r_mom, rate = lambda_mom), colour = "orang"
## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
```



```
# ECDF
ggplot(data = service) +
stat_ecdf(mapping = aes(x = Times), geom = "step") +
stat_function(fun = pgamma, geom = "line", args = list(shape = r_mom, rate = lambda_mom), colour = "orang
ylab("F(x)")
```


Exercise 19

See handwritten solution.

Exercise 23

See handwritten solution.

Problem 5: Text messages

The number of text messages sent per day by students at Lawrence is thought to follow a lognormal distribution. Let X_1, X_2, \ldots, X_n be a random sample from LogNorm (μ, σ^2) . The PDF of X_i is given by

$$f(x_i|\mu,\sigma^2) = \frac{1}{x\sqrt{2\pi\sigma^2}} \exp\left(\frac{-\left[\log(x) - \mu\right]^2}{2\sigma^2}\right), \quad x > 0, \quad \mu \in \mathbb{R}, \quad \sigma > 0$$

Note: $\exp x = e^x$.

(a) Let $Y \sim \mathcal{N}(\mu, \sigma^2)$. Define $X = e^Y$. Show that $X \sim \text{LogNorm}(\mu, \sigma^2)$.

See handwritten solution.

(b) Calculate the mean of X. (*Hint:* this can be found directly using the PDF, or by exploiting it's relationship with the normal distribution via the MGF.)

See handwritten solution.

(c) Calculate the variance of X. (*Hint*: this can be found directly using the PDF, or by exploiting it's relationship with the normal distribution via the MGF.)

See handwritten solution.

(d) Find the method of moments estimators for μ and σ^2 by hand.

See handwritten solution.

(e) What is the likelihood function for μ and σ^2 ?

See handwritten solution.

(f) What is the log-likelihood function for μ and σ^2 ?

See handwritten solution.

(g) Find the maximum likelihood estimators of μ and σ^2 by hand.

See handwritten solution.

(h) Write a function in R called lognorm_loglik that computes the log-likelihood for a lognormal distribution. Include the code in your solution.

```
lognorm_loglik <- function(theta, x)
{
  sum(dlnorm(x, meanlog = theta[1], sdlog = theta[2], log = TRUE))
}</pre>
```

(i) The data set stat111texts.csv contains a variable, texts, which measures the typical number of text messages sent per day for a college student a certain prestigious university with a statistics department. In R, read in the data set, and calculate the mean, variance, and number of observations for the variable texts. Include both the code and output in your solution.

```
stat111texts <- read.csv("https://raw.githubusercontent.com/math445-LU/2016/master/data/stat111texts.csv")
texts <- stat111texts$texts
```

```
xbar <- mean(texts); xbar

## [1] 39.66667

s2 <- var(texts); s2

## [1] 2318.315

n <- length(texts); n

## [1] 90</pre>
```

(j) Define a new variable called logtexts = log texts. Calculate the mean and variance of logtexts. Include both the code and output in your solution.

```
logtexts <- log(texts)

log_xbar <- mean(logtexts); log_xbar

## [1] 3.140327

log_s2 <- var(logtexts); log_s2

## [1] 1.180902</pre>
```

(k) Use your results from (i) and (j) to calculate the ML estimates for μ and σ^2 .

```
muML <- mean(logtexts); muML
## [1] 3.140327
sig2ML <- sum((logtexts - mean(logtexts))^2) / n; sig2ML
## [1] 1.167781</pre>
```

(l) Use the optim function in R to calculate the maximum likelihood estimates of μ and σ^2 . Do they agree with your previous calculations? If not, consider different starting values.

The ML estimates are: $\hat{\mu} = 3.1403736$ and $\hat{\sigma}^2 = 1.1679821$ (notice that $\hat{\sigma}$ was returned.

6.6 $(a) L(0|x_{1}-1x) = \frac{\pi}{12} e^{-x_{1}} = e^{-x}$ $(x,0) = e^{-x}$ $(x,0) = e^{-x_{1}}$ 26 L(0) = log(LOIX, --, X)) = n0 - ZX; Taking the desiration we find 10 (b) = N indicating that (10) is startly increasing for $\theta < X_{min}$. Since θ can never equal X_{min} , $\ell(\theta)$ does not achieve a maximum. (b) From part (a) we know that the likelihood is increasing through (0, xmin). Since the likelihood is continues at to xmin, the max, occurs at Xmin.

Math 445, Sping 2016, AW #4 Solution

Problem 1: G.N $X_{1},...,X_{n} \stackrel{iid}{\sim} Exp(\lambda) \quad and \quad Y_{1},...,Y_{m} \stackrel{iid}{\sim} Exp(2\lambda). \quad X_{1} \quad andep \quad Y_{0} \neq i,j$ $L(\lambda \mid X_{1},...,X_{n},Y_{1},...,Y_{m}) = \prod_{i=1}^{n} 1e^{-\lambda X_{i}} \prod_{i=2}^{m} 2\lambda e^{-2\lambda Y_{0}}$ $= \lambda e^{-\lambda Z_{1}} (2\lambda) e^{-\lambda Z_{1}} e^{-\lambda Z_{2}}$

 $l(\lambda) = \log L(\lambda | X_1, ..., X_n, Y_1, ..., Y_m)$ $= n \log \lambda - \lambda = \chi_1 + m \log \lambda - 2\lambda = \chi_2$

1 = 2 X; + 2 5 X; 1 = 2 X; + 2 5 X; 2 = 2 X; + 2 5 X;

x Check that it's a max !

the administration of the public reservoids and publicate consistent model consumpting excessions, in	
	Problem 2: 6.16
	Assume that X,, Xn ~ Gamma (r, 2)
	(a) Mom estimates
	$E(X) = \int_{-\infty}^{\infty} = X_{1} \qquad E(X_{2}) = \int_{-\infty}^{\infty} \frac{1}{2^{2}} = \frac{1}{12} \frac{2}{12} X_{1}^{2}$
	$r = \lambda X_n \qquad \qquad$
	$\frac{\chi_{n}}{\chi_{n}} = \frac{\chi_{n}}{\chi_{n}} = \frac{1}{2} \frac{\chi_{n}}{\chi_{n}}$ $\frac{\chi_{n}}{\chi_{n}} + \frac{1}{2} \chi_{n} = \frac{1}{2} \frac{\chi_{n}}{\chi_{n}}$ $\frac{1}{2} \frac{\chi_{n}^{2} - \chi_{n}^{2}}{\chi_{n}}$ $\frac{1}{2} \frac{\chi_{n}^{2} - \chi_{n}^{2}}{\chi_{n}}$
	Amount Xn L ZX 2 - Xn
	*Since we have data in hard, we could samply have egyated the pop. moments with the values of the sample moments and solve do
	rad A.
	Se R Cock.
	That = 2.67 Amon = 3.84
en de persona per par par par par parterna compresenta a casa caba algana casa a se algana sente a se algana c An esta de persona de p	
er vener kink kung er er vener kink kung di aktiva di nagku pamanangan pangan pangan pangan pangan pangan pang Penerupak kink kung di aktiva di aktiva di aktiva kang di aktiva mananangan pangan pangan pangan pangan pangan	
n e de la compansión de l La compansión de la compa	

Problem 3: 6.19

(a) MOM estimator

$$E(X) = \int_{X}^{\infty} x \cdot \frac{\partial^{2}}{\partial x^{2}} dx = \frac{\partial^{2}}{\partial x^{2}} \int_{X}^{\infty} \frac{\partial^{2}}{\partial x^{2}} dx$$

$$= \frac{\partial^{2}}{\partial x^{2}} \int_{X}^{\infty} \frac{\partial^{2}}{\partial$$

$$\frac{20}{0+1} = \overline{X}_{N} \iff 20 = (0-1)\overline{X}_{N}$$

$$\frac{2}{\overline{X}_{N}} = 1-\frac{1}{0}$$

$$\begin{array}{c} X_{11} \\ X_{12} \\ \hline X_{13} \\ \hline X_{14} \\ \hline X_{15} \\ \hline X_{15}$$

$$L(\theta|X_1,...,X_n) = \prod_{i=1}^{n} \frac{\theta z^{\theta}}{X_i \theta^{+1}} \frac{\theta^2 z^{\theta}}{\prod_{i=1}^{n} X_i \theta^{+1}}$$

$$\frac{3}{30} |N(0)| = \frac{1}{6} + n \log 2 - \frac{2}{5} \log X_1 = 0$$

$$0 = \frac{3}{5} \log X_1 - n \log 2$$

* Check that it's a max

$$E(\overline{X}) = E(X) = \theta + 1 \implies \overline{X} \text{ is braxed becam } E(\overline{X}) \neq \theta$$

$$E(X) = \int x \cdot e^{-x} dx = e^{-x} \int x \cdot e^{-x} dx$$

Using integration by parts =
$$e^{\theta} \left[-xe^{-x} \middle|_{\theta}^{\theta} + \int_{e^{-x}}^{\theta} dx \right]$$

= $e^{\theta} \left[\theta e^{-\theta} + \left(-e^{-x} \middle|_{\theta}^{\theta} \right) \right]$
= $e^{\theta} \left[\theta e^{-\theta} + e^{-\theta} \right]$

Since Bias (X) = 1, an inbiased estimate of 0 is gir by 0=X-1.

Philam 5

This, the PDF of X's

$$f_{\chi}(x) = \frac{1}{4x} f_{\chi}(\log(x)) = f_{\chi}(\log(x))(x)$$

$$= \frac{1}{x\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\sigma^2}(\log(x) - \mu)^{\frac{1}{2}} f_{\chi}(x)$$

$$= \frac{1}{x\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\sigma^2}(\log(x) - \mu)^{\frac{1}{2}} f_{\chi}(x)$$

(6) Recall that the MGF of Y-N(M,02) is Mx(t) = e 4+62+2/2

$$E(X) = E(E') = M_{X}(1) = E$$

(C) Using a similar strategy

$$E(\chi^2) = E(e^2 \gamma) = M_{\gamma}(2) = e^{2\mu + 2\sigma^2}$$

$$Var(X) = E(X^2) - [E(X)]^2 = e^{-2\mu+26^2} - e^{-2\mu+6^2}$$

$$\mu = \log(\bar{X}_n) - \pm \sigma^2$$

$$=2\log(R_n)-\frac{1}{2}\log(\frac{1}{n}\xi X_1^2)$$

$$\frac{2\mu+3\sigma^{2}}{\epsilon} = n \sum_{i=1}^{N} X_{i}^{2}$$

$$\frac{2\sigma^{2}}{\sigma^{2}} = lghn \sum_{i=1}^{N} X_{i}^{2} - 2\mu$$

$$\frac{2\sigma^{2}}{\sigma^{2}} = \frac{lghn}{2} \left(\frac{\pi}{3}X_{i}^{2}\right)^{2} - lg_{i}(X_{i}) + \frac{1}{2}\sigma^{2}$$

$$\frac{1}{2}\sigma^2 = \frac{1}{2}\log(\frac{1}{4}\frac{2}{4}X_1^2) - \log(\frac{1}{4}x_1)$$

$$G_{\text{mom}}^2 = \log\left(\frac{1}{n} \sum_{i} X_i^2\right) - 2\log(\bar{X}_n)$$

		(3)
manamoure et al mana a consequente en esta esta esta esta esta esta esta esta	(e) $L(\mu o^2 X_1,, X_n) = \frac{1}{11} \frac{1}{X_1} \frac{1}{2\pi o^2} e^{-\frac{1}{2} \frac{1}{v^2} \frac{1}{v^2} \frac{1}{v^2} \frac{1}{v^2} 1$	
	(f) $I(\mu_1 \sigma^2) = -\frac{1}{2} log(2\pi \sigma^2) - \frac{2}{2} log(X_1) - \frac{1}{2} \sigma^2 \frac{2}{2} \left(log(X_1) - \mu \right)^2$ = $-\frac{2}{2} log(2\pi) + log(\sigma^2) - \frac{2}{2} log(X_1) - \frac{1}{2} \sigma^2 \frac{2}{2} \left(log(X_1) - \mu \right)^2$	
	(9) $\frac{1}{3\mu} _{\mu, \sigma^2} = \frac{1}{6^2} \frac{1}{2} \left(\log(X_1) - \mu \right) = 0$ $\lim_{M \to \infty} \frac{1}{4\pi} \frac{1}{2} \log(X_1)$	
	$\frac{2}{2\sigma^{2}} _{M, \sigma^{2}}\rangle = -\frac{1}{2} \cdot \frac{1}{\sigma^{2}} + \frac{1}{2(\sigma^{2})^{2}} = \left(_{M}(Y_{i}) - y_{i} ^{2} \right) = 0$ $= \left(_{M}(Y_{i}) - \frac{1}{\sigma^{2}} _{M}(Y_{i}) - \frac{1}{\sigma^{2}} _{M}(Y_{i}) \right)^{2} = n\sigma^{2}$ $= \frac{1}{\sigma^{2}} + \frac{1}{\sigma^{2}} \left(_{M}(Y_{i}) - \frac{1}{\sigma^{2}} _{M}(Y_{i}) \right)^{2}$ $= \frac{1}{\sigma^{2}} + \frac{1}{\sigma^{2}} \left(_{M}(Y_{i}) - \frac{1}{\sigma^{2}} _{M}(Y_{i}) \right)^{2}$	
	* You can cheek that it's a max.	
Anna management of the control of th		