Estatística Aplicada a Ciências Ambientais

Testes de Hipótese (pt. 2)

Daniel Detzel detzel@ufpr.br

Agenda

Testes de hipótese

independência estacionariedade aplicações em R

Testes de hipótese testes de adequação de ajustes

Trabalho

Testes de hipótese

Na aula anterior, algumas das premissas dos testes de hipótese foram relaxadas, por motivos didáticos

Dentre elas, estão:

independência: para todos os testes de hipótese

normalidade: para os testes paramétricos

Essas verificações serão tratadas aqui, juntamente com outros testes de hipótese pertinentes às análises de séries de fenômenos naturais

Testes de hipótese | independência e estacionariedade

Objetivo (H ₀)	Teste	Classe	Distribuição amostral	Estimador
Os elementos da amostra são independentes	Teste de Wald e Wolfowitz	Não paramétrico	_	Sequências (runs)
Não há tendência na amostra	Mann-Kendall	Não paramétrico	-	Contagem de elementos
Não há quebra na tendência central da amostra	Pettitt	Não paramétrico	-	Mediana

Testes de hipótese | adequação do ajuste

Objetivo (H ₀)	Teste	Classe	Distribuição amostral	Estimador	
Aderência a uma distribuição de probabilidades	Qui-Quadrado	Não paramétrico	_	Variável qui- quadrado	
	Kolmogorov- Smirnov	Não paramétrico	_	Diferenças entre probabilidades	
	Filliben	Não paramétrico	-	Diferenças entre quantis	

TESTES DE HIPÓTESE

independência

Testes de hipótese | independência

Diz respeito à não influência de uma observação em outra observação seguinte da amostra

fenômeno inverso da persistência, muito comum em séries de processos naturais

Os testes de hipótese têm como premissa que os elementos de uma amostra são independentes entre si

Portanto, é uma verificação a ser feita previamente à aplicação de um teste de hipótese

Teste de Wald e Wolfowitz (ou runs test):

Sem premissas quanto a distribuições

Hipóteses:

H₀: os elementos da amostra são independentes

H_A: os elementos da amostra não são independentes

Este é um teste tipicamente aplicado em sua forma bilateral

Procedimento: dada uma amostra $(X_1, X_2, ..., X_n)$, calculam-se as diferenças X'_i , tal que:

$$(X'_1, X'_2, \dots, X'_n) = (X_1 - \bar{X}, X_2 - \bar{X}, \dots, X_n - \bar{X})$$

onde

 \overline{X} média das amostra

As sequências (runs) são calculadas por:

$$R = \sum_{i=1}^{n-1} (X_i' X_{i+1}') + X_1' X_n'$$

A estatística R segue uma distribuição normal com média

$$E[R] = -\frac{s_2}{n-1}$$

e variância

$$VAR[R] = \frac{s_2^2 - s_4}{n - 1} + \frac{s_2^2 - 2s_4}{(n - 1)(n - 2)} - \frac{s_2^2}{(n - 1)^2}$$

onde

$$s_r = nm'_r$$

$$m_r' = \frac{\sum_{i=1}^n (X_i')^r}{n}$$

Nas equações, r representa a ordem dos momentos amostrais (r=2 para variância e r=4 para curtose)

A estatística do teste é dada por:

$$T = \frac{R - E[R]}{VAR[R]}$$

Rejeita-se H_0 , se $|T| > z_{\alpha/2}$

No R: (necessária a biblioteca `DescTools')

RunsTest(serie > mean(serie))

Testes de hipótese | independência

Caso H₀ seja rejeitada, os elementos da amostra terão algum grau de dependência

ainda é possível aplicar os testes de hipótese de interesse, porém eles perderão o poder

aumenta-se a probabilidade de cometer erro tipo II (rejeitar H₀ quando ela for verdadeira)

A remoção da dependência dos dados é possível por meio da técnica prewhitening

transformação dos dados originais com dependência para uma nova série independente

Testes de hipótese | prewhitening

Portanto, a partir da série original X_t , obtêm-se a série transformada Y_t :

$$Y_t = X_t - \rho X_{t-1}$$

onde

ho coeficiente de correlação serial

O teste prossegue sobre a amostra Y_t

No R: (necessária a biblioteca `psd')
prewhiten(ts(serie), AR.max=1, zero.pad=FALSE)

TESTES DE HIPÓTESE

estacionariedade

Testes de hipótese | estacionariedade

Estacionariedade diz respeito à constância de parâmetros como média e variância ao longo do tempo

Quando eles não são constantes, diz-se que a amostra é não estacionária

Estacionária

Não estacionárias

Testes de hipótese | estacionariedade

Além de trazer consequências para a modelagem, séries não estacionárias podem indicar interferências antrópicas e/ou climáticas nos fenômenos

ex.: vazões médias anuais em Foz do Areia entre 1931 e 2020

Teste de Mann-Kendall:

Sem premissas quanto a distribuições

Hipóteses:

H₀: a amostra não possui tendência

H_A: a amostra possui tendência (bilateral)

H_A: a amostra possui tendência de crescimento (unilateral)

H_A: a amostra possui tendência de decrescimento (unilateral)

Procedimento: fixando-se um ano i, contam-se quantos elementos posteriores são maiores ou menores do que ele. Calcula-se:

$$MK = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} sgn[z_{j} - z_{i}]$$

Convenciona-se:

$$sgn[z_j - z_i] = \begin{cases} 1, se(z_j - z_i) > 0 \\ 0, se(z_j - z_i) = 0 \\ -1, se(z_j - z_i) < 0 \end{cases}$$

A variância da variável MK é:

$$VAR[MK] = \frac{n(n-1)(2n+5)}{18}$$

A estatística do teste é dada por:

$$z = \begin{cases} \frac{MK - 1}{\sqrt{VAR[MK]}}, & se \ MK > 0\\ 0, & se \ MK = 0\\ \frac{MK + 1}{\sqrt{VAR[MK]}}, & se \ MK < 0 \end{cases}$$

Rejeita-se H₀, se:

```
|z|>z_{lpha/2} para teste bilateral |z|>z_lpha para teste unilateral
```

onde

 $z_{\alpha/2}, z_{\alpha}$ obtidos da distribuição normal padrão

No R: (necessária a biblioteca 'trend')

```
mk.test(serie, alternative = "two.sided", continuity=TRUE)
mk.test(serie, alternative = "greater", continuity=TRUE)
mk.test(serie, alternative = "less", continuity=TRUE)
```

Teste de Pettitt:

Sem premissas quanto a distribuições

Hipóteses:

H₀: a amostra não possui quebras na tendência central

H_A: a amostra possui quebras na tendência central

Este é um teste tipicamente aplicado em sua forma bilateral

Procedimento: sendo τ ($1 \le \tau \le n$) um ponto arbitrário de divisão da amostra z_t (t = 1, ..., n), tem-se:

$$PT(\tau) = \sum_{i=1}^{\tau} \sum_{j=\tau+1}^{n} sgn[z_j - z_i]$$

Convenciona-se:

$$sgn[z_j - z_i] = \begin{cases} 1, se(z_j - z_i) > 0 \\ 0, se(z_j - z_i) = 0 \\ -1, se(z_j - z_i) < 0 \end{cases}$$

A estatística do teste é dada por (sem divisão prévia da amostra):

$$PT = \max |PT(\tau)|, \quad 1 \le \tau \le n$$

O nível de significância da estatística de Pettitt é aproximado por:

$$\alpha_0 \sim 2 \exp\left(\frac{-6PT^2}{n^3 + n^2}\right)$$

Rejeita-se H_0 se $\alpha \leq \alpha_0$

A vantagem do teste de Pettitt é que, além de indicar a não estacionariedade, ele aponta o ponto provável de quebra da tendência central

No R: (necessária a biblioteca 'trend')

pettitt.test(serie)

Testes de hipótese | estacionariedade

Os testes para diferenças entre grupos mostrados na aula anterior podem ser aplicados para a detecção da não estacionariedade

Nesse caso, é preciso dividir a amostra original em duas subamostras

O critério de divisão é subjetivo e pode variar dependendo da análise

TESTES DE HIPÓTESE

testes de adequação de ajustes

Testes de hipótese | adequação de ajustes

Esses testes de hipótese são aplicados para averiguar se uma amostra se ajusta bem, ou não, a uma distribuição de probabilidades

São soluções mais objetivas do que as análises gráficas baseadas em histogramas ou nas funções de probabilidade empíricas

muito embora as análises não sejam excludentes

Os testes a serem descritos são para adequação de ajustes a quaisquer distribuições

diversos testes são usados para uma distribuição específica, o que exige cuidados na sua aplicação

Teste Qui-Quadrado:

Sem premissas quanto a distribuições

Hipóteses:

 H_0 : a população pode ser modelada por uma distribuição $f_x(x)$

 H_A : a população não pode ser modelada por uma distribuição $f_{\chi}(x)$

A distribuição $f_x(x)$ é escolhida pelo analista

Este é um teste tipicamente aplicado em sua forma unilateral

Procedimento: a amostra em análise deve ser arranjada em um histograma com k classes (mínimo de 3 a 5 valores por classe)

A estatística do teste é dada por:

$$\chi^{2} = \sum_{i=1}^{k} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

onde

 O_i frequência observada para a classe i

 E_i frequência esperada para a classe i

As frequências esperadas são determinadas de acordo com a distribuição a ser testada

ex.: para distribuição normal, é possível gerar N valores pseudoaleatórios com média e desvio padrão estimados da amostra (N>1000)

```
No R: rnorm(N, mean = média, sd = desv.pad)
```

Na sequência, deve-se obter o histograma para a amostra gerada

Rejeita-se
$$H_0$$
, se $\chi^2 > \chi^2_{\alpha,k-p-1}$

onde

```
\chi^2_{\alpha,k-p-1} obtido da distribuição Qui-Quadrado, com significância \alpha e k-p-1 graus de liberdade número de parâmetros da distribuição testada
```

```
No R: (necessária a biblioteca `EnvStats')
gofTest(serie, test = "chisq", distribution = "norm", n.classes = k)
```

A lista de distribuições pode ser consultada em: https://search.r-project.org/CRAN/refmans/EnvStats/html/Distribution.df.html

Teste de Kolmogorov-Smirnov:

Sem premissas quanto a distribuições

Hipóteses:

```
H_0: P(X < x) = F_x(x) | os valores da amostra foram retirados de F_X(x)

H_A: P(X < x) \neq F_x(x) | pelo menos um valor da amostra não foi retirado de F_X(x)
```

(bilateral)

$$H_A$$
: $P(X < x) < F_X(x)$ | pelo menos valor um da amostra é menor do que $F_X(x)$ (unilateral)

$$H_A$$
: $P(X < x) > F_X(x)$ pelo menos um valor da amostra é maior do que $F_X(x)$ (unilateral)

A função $F_X(x)$ é escolhida pelo analista

O teste se baseia na diferença entre os valores da distribuição empírica e da distribuição $F_X(x)$ a ser testada

Procedimento:

- 1. Ordenar a série de forma crescente
- 2. Atribuir posições de plotagem p_i . Essas serão as probabilidades empíricas $F'_X(x)$

$$p_i = \frac{i}{n+1}$$

Procedimento: (cont.)

- 3. Obter as probabilidades teóricas substituindo os valores da amostra na função teórica $F_X(x)$
- 4. Calcular a estatística do teste

$$D_N = \max |F_X'(x) - F_X(x)|$$

A estatística D_N representa a máxima diferença entre os valores das duas funções

Para teste unilateral, D_N deve ser calculado sem o módulo

Rejeita-se H_0 , se $|D_N| > D_{crit}$, sendo D_{crit} retirado de tabelas

Tabela 7.5 — Valores críticos da estatística $\mathcal{D}_{_{\mathcal{N}^{lpha}}}$ do teste de aderência KS									
N	$D_{N,0,10}$	$D_{N,0,05}$	$D_{N, 0,02}$	$D_{N,0,01}$	N	$D_{N, 0, 10}$	$D_{N,0,05}$	$D_{N, 0,02}$	$D_{N, 0,01}$
10	0,369	0,409	0,457	0,489	26	0,233	0,259	0,290	0,311
11	0,352	0,391	0,437	0,468	27	0,229	0,254	0,284	0,305
12	0,338	0,375	0,419	0,449	28	0,225	0,250	0,279	0,300
13	0,325	0,361	0,404	0,432	29	0,221	0,246	0,275	0,295
14	0,314	0,349	0,390	0,418	30	0,218	0,242	0,270	0,290
15	0,304	0,338	0,377	0,404	31	0,214	0,238	0,266	0,285
16	0,295	0,327	0,366	0,392	32	0,211	0,234	0,262	0,281
17	0,286	0,318	0,355	0,381	33	0,208	0,231	0,258	0,277
18	0,279	0,309	0,346	0,371	34	0,205	0,227	0,254	0,273
19	0,271	0,301	0,337	0,361	35	0,202	0,224	0,251	0,269
20	0,265	0,294	0,329	0,352	36	0,199	0,221	0,247	0,265
21	0,259	0,287	0,321	0,344	37	0,196	0,218	0,244	0,262
22	0,253	0,281	0,314	0,337	38	0,194	0,215	0,241	0,258
23	0,247	0,275	0,307	0,330	39	0,191	0,213	0,238	0,255
24	0,242	0,269	0,301	0,323	40	0,189	0,210	0,235	0,252
25	0,238	0,264	0,295	0,317	>40	$1,22/\sqrt{N}$	$1,36/\sqrt{N}$	$1,52/\sqrt{N}$	$1,63/\sqrt{N}$

Imagem: Naghettini e Pinto (2007, p. 277)

<u>No R</u>:

```
ks.test(amostra, pdist, par1, par2, alternative = "two.sided")
```

Para o caso unilateral em que se testa $P(X < x) < F_{\chi}(x)$:

```
ks.test(amostra, pdist, par1, par2, alternative = "less")
```

Para o caso unilateral em que se testa $P(X < x) > F_x(x)$:

```
ks.test(amostra, pdist, par1, par2, alternative = "greater")
```

As entradas par1, par2 se referem aos parâmetros da distribuição paist

Ex.: para distribuição normal e teste unilateral:

```
ks.test(amostra, "pnorm", mean(amostra), sd(amostra), alternative = 'less')
```

Teste de Filliben (probability plot correlation coefficient, ou ppcc):

Sem premissas quanto a distribuições

Hipóteses:

 H_0 : r=1 | há correlação linear entre a amostra e a distribuição teórica

 H_A : $r < 1 \mid$ não há correlação linear entre a amostra e a distribuição teórica

Este é um teste tipicamente aplicado em sua forma bilateral

O teste parte da premissa que há uma associação linear entre as observações X_i e os quantis teóricos W_i

Procedimento:

- 1. Ordenar a série X_i de forma crescente
- 2. Obter os quantis teóricos W_i aplicando posições de plotagem p_i na função inversa de distribuição acumulada da distribuição a ser testada

$$W_i = F_X^{-1}(1 - p_i)$$

Procedimento: (cont.)

3. Calcular a estatística do teste

$$r = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(W_i - \bar{W})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2 \sum_{i=1}^{n} (W_i - \bar{W})^2}}$$

onde

 \overline{X} e \overline{W} médias de X_i e W_i , respectivamente

A decisão de rejeitar, ou não, H0 é tomada após consulta a tabelas específicas que estabelecem valores limite de r para diferentes distribuições (ver Naghettini e Pinto, 2007, p. 283 e 284)

```
No R: (necessária a biblioteca 'ppcc')
ppccTest(serie, qfn = "funcao_quantil")
```

A funcao quantil recebe a distribuição a ser testada

Ex.: para distribuição normal: ppccTest(serie, qfn = "qnorm")

Ver lista completa em:

https://cran.r-project.org/web/packages/ppcc/ppcc.pdf

Revisão

A independência estatística é importante para garantir o poder dos testes de hipótese e evitar falsos negativos

A não estacionariedade é uma característica relevante para o gerenciamento de recursos hídricos e de qualidade da água está atrelada a comportamentos de longo prazo

Os testes de aderência auxiliam a tomada de decisão pela escolha da distribuição de probabilidades a ser utilizada nas análises porém, não dispensam totalmente as análises gráficas

Estatística Aplicada a Ciências Ambientais

Daniel Detzel detzel@ufpr.br