GRAFOVÉ ALGORITMY

2010/2011 - 1. termín

1. Minimální doplnění na silně souvislý graf

Je dán orientovaný graf G = (V, E). Množina hran $F \subseteq V \times V$ je jeho **doplněním**, je-li graf $(V, E \cup F)$ silně souvislý. Úkolem je najít doplnění minimální kardinality.

Pro $v \in V$ označíme [v] silně souvislou komponentu obsahující vrchol v. Definujeme **faktorový** graf $G^{SCC} = (V^{SCC}, E^{SCC})$, kde

$$V^{SCC} = \{ [v] \mid v \in V \}, \quad E^{SCC} = \{ ([u], [v]) \mid (u, v) \in E, \ [u] \neq [v] \}$$

Zvolme zobrazení α přiřazující každé komponentě reprezentanta, neboli $\alpha: V^{SCC} \to V$ splňující $[\alpha([v])] = [v]$.

- - b) Naopak, je-li H doplnění grafu G^{SCC} bez smyček, je

...... doplněním grafu G stejné mohutnosti.

Tedy obecný problém je převeden na problém hledání minimálního doplnění acyklického grafu. Vrchol bez výstupních hran označíme **stok**, vrchol bez vstupních hran **zdroj**. Vrchol, který je zároveň stok i zdroj nazveme **izolovaný**. Nechť v částech c) – j) je G acyklický bez izolovaných vrcholů, $|V| = n \ge 2$, |E| = m, s množinou zdrojů S a množinou stoků T, $|S| = s \ge 1$, $|T| = t \ge 1$.

c) Lze předpokládat, že $s \leq t,$ jinak bychom graf
 Gnahradili

.....

Níže bude podán algoritmus, který najde $r \leq s$, označí prvky množiny S symboly v_1, \ldots, v_s a prvky množiny T symboly w_1, \ldots, w_t tak, aby platilo:

- (i) pro každé $i=1,\ldots,r$ existuje cesta z v_i do w_i ; tyto dvojice (v_i,w_i) názýváme **páry**,
- (ii) pro každé $i = r + 1, \ldots, s$ existuje $j \in \{1, \ldots, r\}$ a cesta z v_i do w_j ,
- (iii) pro každé $j = r + 1, \dots, t$ existuje $i \in \{1, \dots, r\}$ a cesta z v_i do w_j .

Nechť $S = \{a_1, \dots, a_s\}, T = \{b_1, \dots, b_t\}.$

Algoritmus 1:

- 1. Pro $i=1,\dots,s$ vedeme z a_i cestu. Vrcholy na ní označujeme symbolem i. Jsou dvě možnosti :
 - a) narazíme na vrchol již označený; ten nepřeznačujeme a zvyšujeme i.
 - b) skončíme ve vrcholu $b_i \in T$; pak prohlásíme (a_i, b_i) za nový pár a zvýšíme i.
- 2. Nyní si všímáme neoznačených prvků z T. Postupně z každého takového, řekněme b_k , vedeme zpětnou cestu. Navštíveným neoznačeným vrcholům dáváme značku k'. Jsou tři možnosti :
- 2a) narazíme na vrchol se značkou ia a_i je v nějakém páru; bereme další neoznačený prvek z ${\cal T},$
 - 2b) narazíme na vrchol se značkou i a a_i není v žádném páru; pak

(otázka d))	
(Otazka a))	

- 2c) narazíme-li na vrchol se značkou j', bereme další neoznačený prvek z T.
- 3. Vzniklé páry nechť jsou $(v_1, w_1), \ldots, (v_r, w_r)$, zbývající prvky z S resp. T označíme symboly v_{r+1}, \ldots, v_s resp. symboly w_{r+1}, \ldots, w_t libovolně.
 - e) Složitost algoritmu je, neboť každé hrany si všímáme

..... a

f) K čemu bylo dobré předpokládat acykličnost?.....

Algoritmus 2:

Klademe

$$F = \{ (w_1, v_2), \dots, (w_{r-1}, v_r), \underbrace{(w_r, w_{s+1}), (w_{s+1}, w_{s+2}), \dots, (w_{t-1}, w_t), (w_t, v_1)}_{\text{jen } (w_r, v_1) \text{ pro } s=t} \}$$

$$(w_{r+1}, v_{r+1}), \ldots, (w_s, v_s) \}$$
.

Uvažme uzavřenou cestu Q v $(V, E \cup F)$:

$$Q = (\underbrace{v_1, \dots, w_1}_{\text{z párování}}, \underbrace{v_2, \dots, w_2}_{\text{z párování}}, \dots, \underbrace{v_r, \dots, w_r}_{\text{z párování}}, \underbrace{w_{s+1}, \dots, w_t}_{s+t}, v_1) \ .$$

g) Vše demonstrujte na následujícím grafu. Uveď te všechny páry, připište označení v_1, \ldots, w_1, \ldots a přikreslete hrany z F. Kvůli jednoznačnosti dáváme přednost vrcholům, které jsou dříve v uspořádání

$$a < \ldots < d < 1 < 2 < \ldots < 17 < p < \ldots < u$$
.

Ukážeme, že $(V, E \cup F)$ je silně souvislý :

Skutečně, lib. $u \in V$ mimo Q lze na Q napojit : v G existuje cesta z u do nějakého w_j . Je-li $j \in \{1, \ldots, r, s+1, \ldots, t\}$ jsme hotovi. V opačném případě použijeme novou hranu (w_j, v_j) a podmínku (iii).

h) Dále pro lib. takové u vede z Q do u cesta :

.....

i) Máme $ F = \dots$
j) Ukažte, že naše doplnění je minimální
k) Graf složený z p izolovaných vrcholů má minimální doplnění z hran; jak
vypadá ?
l) Konečně, nechť acyklický graf má p izolovaných vrcholů, $s \geq 1$ zdrojů a $t \geq s$ stoků.
Takový graf má minimální doplnění z hran; jak vypadá?

2. Silně souvislé komponenty

Orientovaný graf $G = (V, E), V = \{1, \dots, 20\}$ je dán seznamy sousedů :

- 1:8
- 2:1,3
- 3:9
- 4:5
- 5:10
- 6:1,11
- 7:4
- 8:2
- 9:4,12,13,15
- 10:19
- 11:7,16
- 12:7,16
- 13:6
- 14:20
- 15:
- 16:17
- 17:18
- 18:12,14
- 19:12
- 20:15

Obrázek :

a) Aplikujte na graf G průzkum do hloubky. Přitom každý seznam sousedů procházíme zleva a seznam seznamů shora. Nakreslete příslušný les i s časy objevení a ukončení jednotlivých vrcholů.

b) Připravte si seznamy sousedů pro transponovaný graf. Využijte přitom řádky výše uve-
deného seznamu pro G. Nechť položky v každém řádku jsou uspořádány rostoucím způsobem. c) Dokončete algoritmus pro hledání silně souvislých komponent. Nakreslete příslušný les a v diagramu výše vyznačte komponenty.
d) Uveď te příslušný faktorový graf.
6