NE 155, Class 28, S15 Taylor Series Methods and Runge-Kutta

guest lecturer: Kathryn Huff

April 3, 2015

1 Introduction

Recall that the initial value problem takes the form:

$$u'(t) = f(u(t), t), \text{ for } t > t_0$$
 (1)

where

$$u(t_0) = u_0 (2)$$

In such a problem, we desire to compute $u(t_1)$, $u(t_2)$, $u(t_n)$ and so on.

There are many methods for solving initial value problems numerically. This lesson will introduce a simple one, Forward Euler, which is derived from a Taylor series expansion. We will then use Forward Euler to introduce a two-stage, explicit Runge-Kutta method as well, for higher accuracy.

2 Taylor Series Derivation of Forward Euler

The simplest method for finding $u(t_n)$ is Forward Euler, which approximates $u(t_n)$. Let's call this approximation, U^n . In this notation, Forward Euler is based on replacing $u'(t_n)$ with $(U^{n+1} - U^n)/k$, where k is the width of the timestep. The Forward Euler method arises from a Taylor series expansion of $u(t_{n+1})$ about $u(t_n)$:

$$u(t_{n+1}) = u(t_n) + ku'(t_n) + \frac{1}{2}k^2u''(t_n) + \cdots$$
(3)

With this, the $O(k^2)$ terms can be dropped to give:

$$u(t_{n+1}) \approx u(t_n) + ku'(t_n) \tag{4}$$

And, based on equation (1) we can replace $u'(t_n)$ with $f(u(t_n), t_n)$:

$$\frac{1}{2}k^2u''(t_n) + \cdots$$
(5)

$$u(t_{n+1}) = u(t_n) + kf(u(t_n), t_n)$$
(6)

This expression gives a truncation error of order $O(k^2)$. More accurate schemes can be derived with a Taylor series expansion by retaining higher order terms in equation (3). Since we are only given $u'(t_n) = f(u(t_n), t_n)$, however, the computation of such schemes requires repeated recursive differentiation of this function, and can get quite messy.

3 Runge-Kutta Methods

Runge-Kutta is a method used in practice to get a higher order approximation *without* explicitly calculating higher order derivatives.

Runge-Kutta uses two stages. The first stage is an update using Euler's method, approximating $u(t_{n+1/2})$.

$$U^{n+1/2} = U^n + \frac{1}{2}kf(U^n) \tag{7}$$

(8)

The second stage evaluates the function, f, at the midpoint to estimate the slope.

$$U^{n+1} = U^n + kf(U^{n+1/2}) (9)$$

These equations can be combined into a single expression:

$$U^{n+1} = U^n + kf(U^n + \frac{1}{2}kf(U^n))$$
(10)

This approximation, because it uses two points, like a centered approximation, is order O(k) accurate.

A generic r-stage Runge-Kutta method can be expressed as:

$$Y_1 = U^n + k \sum_{j=1}^r a_{1j} f(Y_j, t_n + c_j k)$$
(11)

$$Y_2 = U^n + k \sum_{j=2}^r a_{2j} f(Y_j, t_n + c_j k)$$
(12)

:

$$Y_r = U^n + k \sum_{j=r}^r a_{rj} f(Y_j, t_n + c_j k)$$
(13)

$$U^{n+1} = U^n + k \sum_{j=r}^r a_{rj} f(Y_j, t_n + c_j k)$$
(14)

4 Application to PRKE

Each of these can be applied to the PRKE. In particular, let's consider the application of a Forward Euler.

To avoid confusion with the multiplication factor, the width of our timestep will be called Δt .

$$n(t_{n+1}) = n(t) + \Delta t \left[\frac{\rho(t_n) - \beta}{\Lambda} n(t_n) + \sum_{j=1}^{j=J} \lambda_j \zeta_j \right]$$
(15)

(16)