【例题1】用力矩分配法作弯矩图。(梁1-1)

【例题2】用力矩分配法作弯矩图。(梁1-2)

$$S_{BA} = \frac{2EI}{3}$$
 $S_{BC} = 3 \times \frac{EI}{3}$

$$\mu_{BA} = 0.4$$
 $\mu_{BC} = 0.6$

【例题3】用力矩分配法作弯矩图。(梁1-3)

0.6	0.4	
0 0	20 40	-40 0
0 <u>~18</u>	<u>12</u> → 0	
0 18	32 40	-40 0
	0 0 0 18	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

$$S_{BA} = 3 \times \frac{2EI}{4}$$
 $S_{BC} = 3 \times \frac{EI}{3}$

$$\mu_{BA} = 0.6$$
 $\mu_{BC} = 0.4$

【例题4】用力矩分配法作弯矩图。(梁1-6)

$$S_{BA} = 4 \times \frac{EI}{l}$$
 $S_{BC} = 3 \times \frac{2EI}{l}$

$$\mu_{BA} = 0.4$$
 $\mu_{BC} = 0.6$

【例题5】用力矩分配法作弯矩图。(梁1-9)

分配系数		$\frac{2}{3}$	1/3	
固端弯矩	12 <i>i</i>	6i	0	0
分配传递	-2i -	4 <i>i</i>	−2 <i>i</i> →	0
杆端弯矩	10 <i>i</i>	2i	-2 <i>i</i>	0

	2i	
%		
	<u> </u>	
10 <i>i</i>	717.	777,
101	M	<u>{</u>

$$S_{CA} = 4 \times \frac{3EI}{l} \quad S_{CB} = 3 \times \frac{2EI}{l}$$

$$\mu_{CA} = \frac{2}{3} \qquad \mu_{CB} = \frac{1}{3}$$

【例题6】用力矩分配法作弯矩图。(梁1-13)

$$S_{CA} = \frac{2EI}{l} \quad S_{CB} = 3 \times \frac{3EI}{l}$$

$$u_{CB} = -2 / u_{CB} = 9 / u_{CB}$$

$$\mu_{CA} = \frac{2}{11}$$
 $\mu_{CB} = \frac{9}{11}$

【例题7】用力矩分配法作弯矩图。(梁1-16)

结点		C	В				
杆端	CA	СВ	BC				
分配系数	1/4	3/4					
固端弯矩	0	-3i/ _l	0				
分配传递	3i/ /4l	9i/ _{4l} _	- 0				
杆端弯矩	3i/4l	-3i/4l	0				

$$S_{CA} = k_{\varphi} \quad S_{CB} = 3 \times \frac{EI}{l}$$

$$\mu_{CA} = \frac{1}{4} \quad \mu_{CB} = \frac{3}{4}$$

【例题8】用力矩分配法作弯矩图。(梁1-20)

$$S_{CA} = k_{\varphi} \quad S_{CB} = 4 \times \frac{EI}{l}$$

$$\mu_{CA} = \frac{1}{5} \quad \mu_{CB} = \frac{4}{5}$$

【例题9】用力矩分配法作弯矩图。(梁1-32)

$$S_{CA} = 4 \times \frac{EI}{l} \quad S_{CB} = 4 \times \frac{EI}{l}$$

$$\mu_{CA} = \frac{1}{2} \qquad \mu_{CB} = \frac{1}{2}$$

【例题10】用力矩分配法作弯矩图。(梁1-35)

$$S_{CA} = 4 \times \frac{EI}{l} \quad S_{CB} = 3 \times \frac{EI}{l}$$

$$\mu_{CA} = \frac{4}{7} \qquad \mu_{CB} = \frac{3}{7}$$

【例题11】用力矩分配法作弯矩图。(梁1-39)

S_{CA}	$=\frac{EI}{l}$	$S_{CB} = 3 \times$	$\frac{EI}{l}$
CA	l	CB	l

$$\mu_{CA} = \frac{1}{4} \qquad \mu_{CB} = \frac{3}{4}$$

结点	A	C		В	
杆端	AC	CA	СВ	BC	
分配系数		1/4	3/4		
固端弯矩	0	0	0	0	× <i>M</i>
分配传递	1/4 -	<u>-1/</u> <u>-1/4</u>	$\frac{-3}{4}$ -	→ 0	$\times M$
杆端弯矩	1/4	-1/4	$-\frac{3}{4}$	0	×M

【例题12】用力矩分配法作弯矩图。(梁1-40)

$$S_{CA} = 4 \times \frac{EI}{l}$$
 $S_{CB} = 3 \times \frac{EI}{l}$

$$\mu_{CA} = \frac{4}{7}$$
 $\mu_{CB} = \frac{3}{7}$

结点	A		C	В	
杆端	AC	CA	СВ	BC	
分配系数		4/7	3/7		
固端弯矩	-1/ 12	1/12	0	0	$\times ql^2$
分配传递	-2/ ₄₈	-4/ 84	⁻³ / ₈₄ -	→ 0	xql^2
杆端弯矩	-1/ ₈	1/28	-1/28	0	$\times ql^2$

【例题13】用力矩分配法作弯矩图。(刚架1-1)

结点	A		C	В	_
杆端	AC	CA	СВ	BC	_
分配系数		8/ /11	3/11		_
固端弯矩	0	0	-1/8	0	$\times ql^2$
分配传递	4/ /88 -	8/ /88	3/ ₈₈ -	→ 0	$\propto ql^2$
杆端弯矩	1/22	1/ /11	-1/ /11	0	$\times ql^2$
					

$$S_{CA} = 4 \times \frac{2EI}{l} \quad S_{CB} = 3 \times \frac{EI}{l}$$

$$\mu_{CA} = \frac{8}{11} \quad \mu_{CB} = \frac{3}{11}$$

【例题14】用力矩分配法作弯矩图。(刚架1-3)

					_
结点	A	,	C	В	_
杆端	AC	CA	СВ	BC	
分配系数		6/ ₇	1/7		_
固端弯矩	0	1/8	0	0	$\times ql^2$
分配传递	0 -	$\frac{42}{56}$	7/ ₅₆ -	- -7/ ₅₆	$\times ql^2$
杆端弯矩	0	7/8	1/8	-1/8	$\times ql^2$
·					_

$$S_{CA} = 3 \times \frac{2EI}{l}$$
 $S_{CB} = \frac{EI}{l}$ $\mu_{CA} = \frac{6}{7}$ $\mu_{CB} = \frac{1}{7}$

【例题15】用力矩分配法作弯矩图。(刚架1-4)

					_	
结点	A		C	В		
杆端	AC	CA	СВ	ВС	_	
分配系数		2/3	1/3			
固端弯矩	0	0	-1/2	-1/2	$\times F_{\rm p} l$	
分配传递	1/6	$\frac{2}{6}$	1/6 -	- -1/ ₆	$\times F_{\rm P} l$	
杆端弯矩	1/6	1/3	-1/ ₃	-2/3	$ imes F_{ ext{P}} l$	
g 4 EI g 2EI						

$$S_{CA} = 4 \times \frac{EI}{l} \quad S_{CB} = \frac{2EI}{l}$$

$$\mu_{CA} = \frac{2}{3} \quad \mu_{CB} = \frac{1}{3}$$

【例题16】用力矩分配法作弯矩图。(刚架1-6)

	A	,	C	В	_	
杆端	AC	CA	СВ	ВС		
分配系数		2/3	1/3			
固端弯矩	-1/ /8	1/8	-1/3	-1/ ₆	$\times ql^2$	
分配传递	5/ ₇₂	$\frac{10}{72}$	5/ ₇₂ -	$-\frac{5}{72}$	$\times ql^2$	
杆端弯矩	-1/ /18	19/72	-19/ ₇₂	-17/ ₇₂	$\times ql^2$	
$S_{CA} = 4 \times \frac{EI}{l}$ $S_{CB} = \frac{2EI}{l}$						
$\mu_{CA} = \frac{2}{3}$	$\mu_{\scriptscriptstyle CB}$	$=\frac{1}{3}$				

【<mark>例题17</mark>】用力矩分配法作弯矩图。(刚架1-8)

					_
结点	A		C	В	
杆端	AC	CA	СВ	ВС	
分配系数		1/3	2/3		_
固端弯矩	-1/ ₁₂	1/12	-3/ /16	0	$\sim ql^2$
分配传递	5/ /288	5/ /144	10/ 144 –	→ 0	$ \times ql^2$
杆端弯矩	-19/ 288	17/ /144	-17/ /144	0	$ \times ql^2$
					_

$$S_{CA} = 4 \times \frac{EI}{l} \quad S_{CB} = 3 \times \frac{2EI}{l}$$

$$\mu_{CA} = \frac{1}{3} \quad \mu_{CB} = \frac{2}{3}$$

【例题19】用力矩分配法作弯矩图。(刚架1-12)

		•	•					_	7 32
		A		C		В	D	-	
	杆端	AC	CA	СВ	CD	ВС	DC	_	$S_{CA} = 4 \times \frac{EI}{I}$
	分配系数		4/13	6/ /13	3/ /13				$S_{CB} = 3 \times \frac{2EI}{l}$
	固端弯矩	0	0	1/8	-1/2	0	-1	$\times ql^2$	l
	分配传递	6/ /104	12/ -/104	18/ /104	9/ /104	-0	0	$\times ql^2$	$S_{CD} = 3 \times \frac{EI}{l}$
•	杆端弯矩	3/52	3/26	31/104	-43/ 104	0	-1	$\times ql^2$	

【例题18】用力矩分配法作弯矩图。(刚架1-1)

							_	
结点	A		C		В	D	_	$S_{CA} = 4 \times \frac{2EI}{I}$
杆端	AC	CA	СВ	CD	BC	DC	_	ι
分配系数		8/ /11	3/11	0				$S_{CB} = 3 \times \frac{EI}{l}$
固端弯矩	0	0	1/8	1	0	-1	$\times ql^2$	$S_{CD}=0$
分配传递	-36/ /88	-72/ /88	-27/ /88	0 -	→ 0	0	$\times ql^2$	
杆端弯矩	-9/ 22	-9/ /11	-2/11	1	0	-1	$\times ql^2$	

【例题20】用力矩分配法作弯矩图。(刚架1-13)

结点	A	(C		В	D	-
杆端	AC	CA	СВ	CD	BC	DC	
分配系数		4/9	3/9	2/9			
固端弯矩	0	0	1/8	0	0	0	×
分配传递	$-\frac{2}{72}$	$-\frac{4}{72}$	-3/ /72	$\frac{-2}{72}$	- 0	² / ₇₂	×
杆端弯矩	-1/ ₃₆	-1/ ₁₈	1/12	-1/ ₃₆	0	1/36	×

$$S_{CA} = 4 \times \frac{EI}{l}$$

$$S_{CB} = 3 \times \frac{EI}{l}$$

$$S_{CD} = \frac{2EI}{l}$$

【例题21】用力矩分配法作弯矩图。(刚架1-16)

	结点	\boldsymbol{A}	(\mathcal{C}		В	D	_
	杆端	AC	CA	CB	CD	BC	DC	_
	分配系数		2/3	1/3	0			
	固端弯矩	0	0	1/12	1	-1/ ₁₂	-1	$\times ql^2$
,	分配传递	-13/ /36	-26/ /36	-13/ /36	0 -	-13/ -72	0	$\times ql^2$
	杆端弯矩	-13/ /36	-13/ 18	-5/ /18	1	-19/ /72	-1	$\times ql^2$

$$S_{CA} = 4 \times \frac{2EI}{l}$$

$$S_{CB} = 4 \times \frac{EI}{l}$$

$$S_{CD}=0$$

【例题23】用力矩分配法作弯矩图。(刚架1-18)

< '	- 2 /2~	$\stackrel{\iota}{\longrightarrow}$	-				*	J
结点	A		C		В	D	•	
杆端	AC	CA	СВ	CD	BC	DC		$S_{CA} = \frac{EI}{I}$
分配系数		1/5	3/5	1/5				ι
固端弯矩	0	0	0	0	0	0	×M	$S_{CB} = 3 \times \frac{EI}{l}$
分配传递	1/5	-1/ ₅	-3/ /5	-1/5 -	• 0	1/5	×M	$S_{CD} = \frac{EI}{l}$
杆端弯矩	1/5	-1/5	-3/5	-1/5	0	1/5	×M	

【例题22】用力矩分配法作弯矩图。(刚架1-17

结点	A		C		В	D
杆端	AC	CA	СВ	CD	BC	DC
分配系数		1/2	3/8	1/8		
固端弯矩	0	0	1/8	0	0	0
分配传递	$-\frac{1}{32}$	-1/ -/16	-3/ /64	-1/ /64 -	- 0	1/ /64
杆端弯矩	-1/32	-1/ /16	5/ ₆₄	-1/64	0	1/64

【例题24】用力矩分配法作弯矩图。(刚架1-19)

杆端弯矩

 $\times F_{\rm p}l$

M 图 $\times F_{P}l$

 $S_{CA} = \frac{EI}{l}$

 $S_{CB} = \frac{EI}{l}$

 $M \boxtimes \times ql^2$

【例题27】用力矩分配法作弯矩图。(刚架1-28)

	-	_			////	4		
结点	A		C	В	}	D		$S_{CA} = 4 \times \frac{1}{2}$
杆端	AC	CA	СВ	BC	BD	DВ	_	
分配系数		1	0					$S_{CB} = 0$
固端弯矩	0	0	-1/2	1/2	-1/2	0	$\times ql^2$	
分配传递	1/4	$-\frac{1}{2}$	0 -	- 0			$\times ql^2$	
杆端弯矩	1/4	1/2	-1/2	1/2	-1/2	0	$\times ql^2$	

【<mark>例题26</mark>】用力矩分配法作弯矩图。(刚架1-27)

【例题28】用力矩分配法作弯矩图。(刚架1-30)

【例题31】用力矩分配法作弯矩图。(刚架1-38)

	-1-		1					
结点	A		C	В	3	D	•	r.i
杆端	AC	CA	CB	BC	BD	DB		$S_{BC} = 3 \times \frac{EI}{I}$
分配系数				3/4	1/4			s – EI
固端弯矩	0	1/2	-1/2	-1/4	0	0	$\times ql^2$	$S_{BD} = \frac{Dl}{l}$
分配传递			0	_15/ /16	5/ /16 –	-5/ -/16	$\times ql^2$	
————— 杆端弯矩	0	1/2	-1/2	11/ /16	5/16		$\times ql^2$	

【例题30】用力矩分配法作弯矩图。(刚架1-35)

【例题32】用力矩分配法作弯矩图。(刚架1-40)

 $-\frac{2}{40}$

分配传递

杆端弯矩

 $-\frac{3}{80}$ $-\frac{1}{40}$

 $S_{CD} = 3 \times \frac{EI}{I}$

	1						•	
	\boldsymbol{A}		C		B	D		
杆端	AC	CA	СВ	CD	BC	DC		$S_{CA}=4$
分配系数		4/5	1/5	0			•	$S_{CB} = \frac{I}{I}$
固端弯矩	0	0	-1/2	-1	-1/2	0	$ imes F_{ ext{P}} l$	$S_{CD} = 0$
分配传递	6/10	12/ /10	3/ /10	0 –	$\frac{-3}{10}$	0	$ imes F_{ ext{P}} l$	~ СД
杆端弯矩	3/5	6/ /5	-1/ ₅	-1	-4/ ₅	0	$ imes F_{ ext{P}} l$	

【例题33】用力矩分配法作弯矩图。(2个位移1-1)

	1			7		İ	Г	D		T	•
结点 	A						E	В	D	F	
杆端	AC	CA	CB	CD	CE	EC	EF	BC	DC	FE	
分配系数		1/9	1/3	4/ ₉	1/9	1/4	3/4				
固端弯矩	0	0	1/8	0	0	0	0	0	0	0	×ql
分配传递 E					-1/4 -	_1/4	3/4				×ql
分配传递 C	$-\frac{1}{72}$	$-\frac{1}{72}$	1/ ₂₄	1/18	$\frac{1}{72}$ –	-1/ ₇₂			1/36		×ql
分配传递 E					-1/ /288	$-\frac{1}{288}$	1/96				$\times ql$
分配传递 C	-1/ ₂₅₉₂	1/ 2592	3/ /2592	4/ 2592	1/ ₂₅₉₂				² / ₂₅₉₂		$\times ql$
杆端弯矩	-37/ 2592	37/ 2592	435/ 2592	148/ 2592	-620/ 2592	23/ /96	73/ /96	0	74/ 2592	0	$\times ql$

【例题34】用力矩分配法作弯矩图。(2个位移1-2)

									_
结点	\boldsymbol{A}		В		D	-	C	\boldsymbol{E}	
杆端	AB	BA	BD	DB	DC	DE	CD	ED	_
分配系数		4/ ₅	1/5	1/5	4/ ₅	0			_
固端弯矩	-1/ ₁₂	1/12	0	0	0	-1/2	0	0	$\times ql^2$
分配传递 D			-1/10	1/10	² / ₅	0 -	1/5		$\times ql^2$
分配传递 B	1/150	- 1/ /75	1/300	$\frac{-1}{300}$					$\times ql^2$
分配传递 D			-1/ /1500	1/ /1500	1/ /375	0 🗕	¹ / ₇₅₀		$\times ql^2$
分配传递B	² / ₇₅₀₀	4/ 7500	1/ 7500						$\times ql^2$
杆端弯矩	$\frac{-573}{7500}$	$\frac{729}{7500}$	$\frac{-729}{7500}$	$\frac{73}{750}$	$\frac{302}{750}$	-1/2	$\frac{151}{750}$	0	$\times ql^2$

【例题35】用力矩分配法作弯矩图。(2个位移1-4)

									_
结点	A		C	1	D	E	E	В	_
杆端	AC	CA	CD	DC	DE	ED	EB	BE	_
分配系数		1/5	4/ ₅	2/ ₅	3/5				-
固端弯矩	0	0	0	0	1/2	1	-1	0	$\times F_{_{ m P}}$
一一一一 分配传递 <i>D</i>			-1/ /10	<u>-1/</u> 5	-3/ /10	→ 0		;	$ imes F_{ m p}$ l
分配传递 C	-1/50	$-\frac{1}{50}$	2/25-	1/25				>	$\times F_{_{\mathrm{P}}} l$
分配传递 D			-1/250	-2/ 125	-3/ /125	→ 0		>	$\times F_{ m P} l$
分配传递 C	$-\frac{1}{1250}$	1/ /1250	4/ 1250					>	$\times F_{ m P} l$
杆端弯矩	$\frac{-13}{625}$	$\frac{13}{625}$	$\frac{-13}{625}$	$\frac{-22}{125}$	$\frac{22}{125}$	1	-1	0 ×	$\langle F_{_{ m P}} l$

【例题36】用力矩分配法作弯矩图。(2个位移1-5)

		C	A	1	3	D
杆端	CA	СВ	AC	BC	BD	DB
分配系数	2/3	1/3		1/2	1/2	
固端弯矩	0	-1/ ₁₂	0	1/12	0	0
$\overline{}$ 分配传递 C	1/ /18	1/ /36	1/36	1/72		
—————————————————————————————————————		$\frac{-7}{288}$		$\frac{-7}{144}$	$\frac{-7}{144}$	$\frac{-7}{288}$
分配传递 <i>C</i>	$\frac{7}{432}$	$\frac{7}{864}$	$\frac{7}{864}$	$\frac{7}{1728}$		
分配传递 B				$\frac{-7}{3456}$	$\frac{-7}{3456}$	$\frac{-7}{6912}$
杆端弯矩	$\frac{31}{432}$	$\frac{-31}{432}$	31 864	$\frac{175}{3456}$	$\frac{-175}{3456}$	$\frac{-175}{6912}$

【例题37】用力矩分配法作弯矩图。(2个位移1-14)

							-
杆端	CA	СВ	AC	BC	BD	DB	-
分配系数	1/3	2/3		4/5	1/5		•
固端弯矩	-1/4	0	1/4	0	0	0	$ imes F_{ m P} l$
	1/12	1/ ₆	1/24	1/12			$ imes F_{ ext{P}} l$
分配传递 B		-1/30		-1/ /15	-1/ ₆₀	1/60	$\times F_{\mathrm{P}} l$
分配传递 C	1/90	1/ ₄₅	1/180	1/ ₉₀			$\times F_{\mathrm{P}} l$
分配传递 B				$-\frac{2}{225}$	$-\frac{1}{450}$	1/450	$\times F_{\mathrm{P}}l$
杆端弯矩	$\frac{-7}{45}$	$\frac{7}{45}$	$\frac{107}{360}$	$\frac{17}{900}$	$\frac{-17}{900}$	17 900	$ imes F_{ ext{P}} l$

【例题38】用力矩分配法作弯矩图。(2个位移1-15)

		C	A	1	3	D	•
杆端	CA	CB	AC	BC	BD	DB	•
分配系数	1/2	1/2		4/7	3/7		ı
固端弯矩	0	0	0	0	0	0	×M
		2/7		4/7	3/7		×M
分配传递 C	-1/7	-1/7	-1/ 14	-1/ ₁₄			×M
分配传递 B		1/49		2/ ₄₉	3/98		×M
分配传递 C	-1/ ₉₈	-1/ ₉₈	-1/ 196				×M
杆端弯矩	$\frac{-15}{98}$	$\frac{15}{98}$	$\frac{-15}{196}$	$\frac{53}{98}$	$\frac{45}{98}$	0	×M

【例题39】用力矩分配法作弯矩图。(2个位移1-16)

							_
		C	\boldsymbol{A}	1	3	D	
杆端	CA	СВ	AC	BC	BD	DB	
分配系数	3/7	4/7		4/5	1/5		
固端弯矩	0	0	0	0	-1/2	-1/2	$\times F_{\mathrm{P}} l$
		1/5		2/ ₅	1/ /10	-1/ /10	$\times F_{\mathrm{P}} l$
分配传递 C	-3/ /35	-4/ ₃₅		$\frac{-2}{35}$			$\times F_{\mathrm{P}}l$
分配传递 B		4/ /175		8/ /175	2/ /175	$\frac{-2}{175}$	$\times F_{ m P} l$
分配传递 C	$\frac{-12}{1225}$	$\frac{-16}{1225}$					$\times F_{_{ m P}} l$
杆端弯矩	$\frac{-117}{1225}$	$\frac{117}{1225}$	0	$\frac{68}{175}$	$\frac{-68}{175}$	$\frac{-107}{175}$	$ imes F_{ m P} l$

【<mark>例题40</mark>】用力矩分配法作弯矩图。(2个位移1-17)

		C	A	1	3	D	_
杆端	CA	СВ	AC	BC	BD	DB	
分配系数	4/5	1/5		1/5	4/5		-
固端弯矩	0	0	0	0	0	0	×M
 分配传递 <i>C</i>	4/5	1/5	2/5	-1/ ₅			×M
一 分配传递 <i>B</i>		$-\frac{1}{25}$		1/ ₂₅	$\frac{4}{25}$	² / ₂₅	×M
分配传递 C	4/ 125	1/125	2/ /125	-1/ /125			×M
分配传递 B				$\frac{1}{625}$	$\frac{4}{625}$	$\frac{2}{625}$	×M
杆端弯矩	$\frac{104}{125}$	$\frac{21}{125}$	$\frac{52}{125}$	$\frac{-104}{625}$	$\frac{104}{625}$	$\frac{52}{625}$	×M

【例题41】用力矩分配法作弯矩图。(2个位移1-20)

			1	1			-
		C	A	I	3	D	
杆端	CA	CB	AC	BC	BD	DB	_
分配系数	3/7	4/7		4/7	3/7		_
固端弯矩	0	0	0	0	1/2	1	×
		-1/7		-2/ ₇	-3/ ₁₄		×
	3/49	4/ ₄₉		2/ ₄₉			· >
		$\frac{-4}{343}$		$\frac{-8}{343}$	$\frac{-6}{343}$	_	· >
分配传递 C	$\frac{12}{2401}$	$\frac{16}{2401}$					×
杆端弯矩	$\frac{159}{2401}$	$\frac{-159}{2401}$	0	$\frac{-92}{343}$	$\frac{92}{343}$	1	×

【例题42】用力矩分配法作弯矩图。(2个位移2-2)

	_			_					_
结点	A		C	1	D		E	В	•
杆端	AC	CA	CD	DC	DE	DB	ED	BD	
分配系数		1/5	4/ ₅	4/7	3/7	0			
固端弯矩	0	0	0	0	0	1	0	0	$\times F_{ m P} l$
分配传递 D			-2/7	<u>-4/</u> 7	-3/ ₇	0		`	$\times F_{_{ m P}} l$
分配传递 C	$-\frac{2}{35}$	$-\frac{2}{35}$	⁸ / ₃₅ –	4/35				×	$\langle F_{ ext{P}} l$
分配传递 D			$\frac{-8}{245}$	$-\frac{-16}{245}$	$\frac{-12}{245}$	0		>	$\langle F_{ m p} l$
分配传递 C	$\frac{-8}{1225}$	8 1225	$\frac{32}{1225}$					>	$< F_{ m P} l$
杆端弯矩	$\frac{-78}{1225}$	$\frac{78}{1225}$	$\frac{-78}{1225}$	$\frac{-128}{245}$	$\frac{-117}{245}$	1	0	0 ×	$\langle F_{ m P} l \rangle$

【例题43】用力矩分配法作弯矩图。(2个位移2-4)

结点	A		C	1	D		\boldsymbol{B}	E
杆端	AC	CA	CD	DC	DE	DB	BD	ED
分配系数		3/ ₇	4/7	1/2	3/8	1/8		
固端弯矩	0	0	0	0	0	1/2	1/2	$0 \times F_{\rm P} l$
分配传递 D			-1/8	-1/ ₄	-3/ /16	-1/ /16	1/16	$\times F_{\rm P} l$
分配传递 C		3/ /56	1/14 -	$\frac{1}{28}$				$\times F_{\mathrm{P}}l$
分配传递 D			$\frac{-1}{112}$	$-\frac{-1}{56}$	$\frac{-3}{224}$	$\frac{-1}{224}$	$\frac{1}{224}$	$\times F_{\rm p}l$
分配传递C	·	$\frac{3}{784}$	$\frac{1}{196}$					$\times F_{\rm P} l$
杆端弯矩	0	$\frac{45}{784}$	$\frac{-45}{784}$	$\frac{-13}{56}$	$\frac{-45}{224}$	$\frac{97}{224}$	$\frac{127}{224}$	$0 \times F_{\rm P} l$

【例题44】用力矩分配法作弯矩图。(2个位移3-3)

结点	A		C	1	D	1	В	E
杆端	AC	CA	CD	DC	DB	BD	BE	EB
分配系数		3/7	4/ ₇	2/ ₅	3/5			
固端弯矩	0	0	0	0	1/4	1/2	-1/2	$0 \times ql^2$
分配传递 D			-1/ ₂₀	$\frac{-1}{10}$	$-\frac{3}{20}$	0		$\times ql^2$
分配传递 C	0	$\frac{3}{140}$	$\frac{1}{35}$	$\frac{1}{70}$				$\times ql^2$
分配传递 D			$\frac{-1}{350}$	$\frac{-1}{175}$	$\frac{-3}{350}$	0		$\times ql^2$
分配传递 C		$\frac{3}{2450}$	$\frac{2}{1225}$					$\times ql^2$
杆端弯矩	0	$\frac{111}{4900}$	$\frac{-111}{4900}$	$\frac{-16}{175}$	$\frac{16}{175}$	1/2	-1/2	$0 \times ql^2$

【例题45】用力矩分配法作弯矩图。(2个位移3-4)

精确解 M _{CA} :	$=\frac{5ql^2}{104}M_{DB}=$	$3ql^2$
7 Б 10 П Л Т СА	$-\frac{104}{104}$ M_{DB} $-$	52

	_							
结点	A		C	1	D	1	8	E
杆端	AC	CA	CD	DC	DB	BD	BE	EB
分配系数		3/7	4/ ₇	1/2	$\frac{1}{2}$			
固端弯矩	0	0	-1/ ₁₂	1/12	0	0	0	$0 \times ql^2$
分配传递 D			-1/ ₄₈	-1/24	-1/ 24	-1/ ₄₈	1/48	$\times ql^2$
分配传递 C	0	$\frac{5}{112}$	$\frac{5}{84}$	$\frac{5}{168}$				$\times ql^2$
分配传递 D			$\frac{-5}{672}$	$\frac{-5}{336}$	$\frac{-5}{336}$	$\frac{-5}{672}$	$\frac{5}{672}$	$\times ql^2$
分配传递 C		$\frac{5}{1568}$	$\frac{5}{1176}$					$\times ql^2$
杆端弯矩	0	75 1568	$\frac{-75}{1568}$	$\frac{19}{336}$	$\frac{-19}{336}$	$\frac{-19}{672}$	$\frac{19}{672}$	$0 \times ql$

【例题46】用力矩分配法作弯矩图。(2个位移3-5)

		B	A		\mathcal{C}	D
杆端	BA	BC	AB	СВ	CD	DC
分配系数	3/7	4/7		2/3	1/3	
固端弯矩	0	-1/ ₁₂	0	1/12	0	0 ×
分配传递 B	1/ ₂₈	1/ /21	0	1/42		×
分配传递 C		$\frac{-1}{28}$		$\frac{-1}{14}$	$\frac{-1}{28}$	$\frac{1}{28}$ ×
分配传递 B	$\frac{3}{196}$	$\frac{1}{49}$	0	$\frac{1}{98}$		×
分配传递 C				$\frac{-1}{147}$	$\frac{-1}{294}$	$\frac{1}{294} \times$
杆端弯矩	$\frac{5}{98}$	$\frac{-5}{98}$	0	$\frac{23}{588}$	$\frac{-23}{588}$	$\frac{23}{588} \times $

【例题47】用力矩分配法作弯矩图。(2个位移3-6)

精确解 M _{AB} =	$\frac{4ql^2}{M}$	$_{-}ql^{2}$
7日7月月十 <i>1</i> AB —	31 M DI	$\frac{1}{62}$

结点	E	F	4	1	D	Ì	В	C
杆端	ED	AB	AD	DA	DE	BA	BC	СВ
分配系数		3/7	4/ ₇	4/ ₅	1/5			
固端弯矩	0	1/4	0	0	0	1/2	-1/2	$0 \times ql^2$
分配传递 A		-3/ ₂₈	-1/7	-1/ 14		0		$\times ql^2$
分配传递 D	$\frac{-1}{70}$		$\frac{1}{35}$	$\frac{2}{35}$	$\frac{1}{70}$			$\times ql^2$
分配传递 A		$\frac{-3}{245}$	$\frac{-4}{245}$	$\frac{-2}{245}$		0		$\times ql^2$
分配传递 D	$\frac{-2}{1225}$			$\frac{8}{1225}$	$\frac{2}{1225}$			$\times ql^2$
杆端弯矩	$\frac{-39}{2450}$	$\frac{32}{245}$	$\frac{-32}{245}$	$\frac{-39}{2450}$	$\frac{39}{2450}$	1/2	-1/2	$0 \times ql^2$

【例题48】用力矩分配法作弯矩图。(2个位移3-7)

				-					_
结点	A	(C		D		\boldsymbol{E}	В	
杆端	AC	CA	CD	DB	DC	DE	ED	BD	_
分配系数		1/2	1/2	3/8	1/2	1/ ₈			
固端弯矩	0	0	0	0	0	-1/3	-l/ ₆	0 ×	ql^2
分配传递 D			1/12	1/8	1/ 6	1/ ₂₄	$\frac{-1}{24}$	0 ,	$\times ql^2$
分配传递 C	-1/48	-1/ 24	-1/24		-1/48			×	$\langle ql^2$
分配传递 D			$\frac{1}{192}$	$\frac{1}{128}$	$\frac{1}{96}$	$\frac{1}{384}$	$\frac{-1}{384}$	0 >	$\langle ql^2$
分配传递 C	$\frac{-1}{768}$	$\frac{-1}{384}$	$\frac{-1}{384}$					×	ql^2
杆端弯矩	$\frac{-17}{768}$	$\frac{-17}{384}$	$\frac{17}{384}$	$\frac{17}{128}$	$\frac{5}{32}$	$\frac{-37}{128}$	$\frac{-27}{128}$	0 >	$\langle ql^2$

【例题49】用力矩分配法作弯矩图。(2个位移3-9)

									_
结点	E	1	D		В		C	A	_
杆端	ED	DB	DE	BD	BA	BC	CB	AB	
分配系数		4/ ₅	1/5	3/ ₈	1/2	1/8			-
固端弯矩	-1/6	0	-1/3	0	0	0	0	0 >	- <ql<sup>2</ql<sup>
分配传递 D	$\frac{-1}{15}$	4/ /15	1/15	² / ₁₅					$\times ql^2$
分配传递 B		$\frac{-1}{40}$		$\frac{-1}{20}$	$\frac{-1}{15}$	$\frac{-1}{60}$	$\frac{1}{60}$	0 ;	$\times ql^2$
分配传递 D	$\frac{-1}{200}$	$\frac{1}{50}$	$\frac{1}{200}$	$\frac{1}{100}$					$\times ql^2$
分配传递 B				$\frac{-3}{800}$	$\frac{-1}{200}$	$\frac{-1}{800}$	$\frac{1}{800}$		$\langle ql^2$
杆端弯矩	$\frac{-143}{600}$	$\frac{157}{600}$	$\frac{-157}{600}$	$\frac{43}{480}$	$\frac{-43}{600}$	$\frac{-43}{2400}$	$\frac{43}{2400}$	0	$\times ql^2$

【例题50】用力矩分配法作弯矩图。(2个位移3-11)

									_
结点	A	(C		D		E	В	•
杆端	AC	CA	CD	DB	DC	DE	ED	BD	
分配系数		1/2	1/2	4/ ₉	4/ ₉	1/9			
固端弯矩	0	0	0	0	0	1/6	1/3	0 ×	ql^2
分配传递 D			$\frac{-1}{27}$	$\frac{-2}{27}$	$\frac{-2}{27}$	$\frac{-1}{54}$	$\frac{1}{54}$	$\frac{-1}{27}$ >	$\langle ql^2$
分配传递 C	$\frac{1}{108}$	$\frac{1}{54}$	$\frac{1}{54}$		$\frac{1}{108}$			×	ql^2
分配传递 D			$\frac{-1}{486}$	$\frac{-1}{243}$	$\frac{-1}{243}$	$\frac{-1}{972}$	$\frac{1}{972}$	$\frac{-1}{486}$ ×	$\langle ql^2$
分配传递 C	$\frac{1}{1944}$	$\frac{1}{972}$	$\frac{1}{972}$					×	ql^2
杆端弯矩	19 1944	19 972	$\frac{-19}{972}$	$\frac{-19}{243}$	$\frac{-67}{972}$	$\frac{143}{972}$	$\frac{343}{972}$	$\frac{-19}{486}$ ×	$\langle ql^2$

【例题51】用力矩分配法作弯矩图。(2个位移3-13)

A	(C		D		\boldsymbol{E}	В
AC	CA	CD	DB	DC	DE	ED	BD
	1/2	1/2	3/ ₁₀	² / ₅	3/ /10		
0	0	0	0	0	-1/ ₈	0	$0 \times ql$
		$\frac{1}{40}$	$\frac{3}{80}$	$\frac{1}{20}$	$\frac{3}{80}$	0	$0 \times q$
$\frac{-1}{160}$	$\frac{-1}{80}$	$\frac{-1}{80}$		$\frac{-1}{160}$			$\times ql$
		$\frac{1}{800}$	$\frac{3}{1600}$	$\frac{1}{400}$	$\frac{3}{1600}$	0	$0 \times qi$
$\frac{-1}{3200}$	$\frac{-1}{1600}$	$\frac{-1}{1600}$					$\overline{}$ $\times ql$
$\frac{-21}{3200}$	$\frac{-21}{1600}$	$\frac{21}{1600}$	$\frac{63}{1600}$	$\frac{37}{800}$	$\frac{-137}{1600}$	0	$0 \times qi$
	$ \begin{array}{c c} & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline	$ \begin{array}{c cccc} AC & CA \\ \hline & 1/2 \\ 0 & 0 \\ \hline & -1 \\ \hline & 160 \\ \hline & -21 \\ \hline & -21 \\ \hline & -21 \\ \hline \end{array} $	$ \begin{array}{c cccc} AC & CA & CD \\ \hline & 1/2 & 1/2 \\ 0 & 0 & 0 \\ \hline & 0 & \frac{1}{40} \\ \hline & \frac{-1}{160} & \frac{-1}{80} & \frac{-1}{80} \\ \hline & 0 & 0 & 0 \\ \hline & 0 & 0 $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

【例题52】用力矩分配法作弯矩图。(2个位移3-16)

											_
结点	\boldsymbol{A}	j	E		D		Ì	F	B	C	
杆端	AD	ED	EF	DA	DC	DE	FE	FB	BF	CD	
分配系数		4/7	3/7	3/10	3/ ₁₀	² / ₅					
固端弯矩	0	0	-1/4	0	0	0	-1/2	1/2	0	0	$\times ql^2$
分配传递 E		1/7	$\frac{3}{28}$			$\frac{1}{14}$	0			0	$\times ql^2$
分配传递 $_D$	0	$\frac{-1}{70}$		$\frac{-3}{140}$	$\frac{-3}{140}$	$\frac{-1}{35}$					$\times ql^2$
分配传递 E		$\frac{2}{245}$	$\frac{3}{490}$			$\frac{1}{245}$	0			0	$\times ql^2$
分配传递 D	0			$\frac{-3}{2450}$	$\frac{-3}{2450}$	$\frac{-2}{1225}$					$\times ql^2$
杆端弯矩	0	$\frac{67}{490}$	$\frac{-67}{490}$	$\frac{-111}{4900}$	$\frac{-111}{4900}$	$\frac{111}{2450}$	-1/2	1/2	0	0	$\times ql^2$

【例题53】用力矩分配法作弯矩图。(2个位移3-17)

结点	\boldsymbol{A}	(C	1)	1	E	B
杆端	AC	CA	CD	DC	DE	ED	EB	BE
分配系数		1/4	3/4	2/ ₅	3/5			
固端弯矩	0	0	0	0	-1/4	-1/2	1/2	0 ×
分配传递 D			$\frac{1}{20}$	$\frac{1}{10}$	$\frac{3}{20}$	0		0 ×
分配传递 C	$\frac{1}{80}$	$\frac{-1}{80}$	$\frac{-3}{80}$	$\frac{-3}{160}$				×
分配传递 D			$\frac{3}{800}$	$\frac{3}{400}$	$\frac{9}{800}$	0		0 ×
分配传递 C	$\frac{3}{3200}$	$\frac{-3}{3200}$	$\frac{-9}{3200}$					×
杆端弯矩	$\frac{43}{3200}$	$\frac{-43}{3200}$	$\frac{43}{3200}$	$\frac{71}{800}$	$\frac{-71}{800}$	-1/2	1/2	0 ×

【例题54】用力矩分配法作弯矩图。(2个位移3-20)

		B	\boldsymbol{A}	(7	D
杆端	BA	BC	AB	СВ	CD	DC
分配系数	2/5	3/5		4/5	1/5	
固端弯矩	0	-1/ ₁₂	0	1/12	0	0
分配传递 B	1/ /30	1/20	1/60	1/40		
分配传递 C		$\frac{-13}{300}$		$\frac{-13}{150}$	$\frac{-13}{600}$	0
分配传递 B	$\frac{13}{750}$	$\frac{13}{500}$	$\frac{13}{1500}$	$\frac{13}{1000}$		
分配传递 C				$\frac{-13}{1250}$	$\frac{-13}{5000}$	0 :
杆端弯矩	$\frac{19}{375}$	$\frac{-19}{375}$	$\frac{19}{750}$	$\frac{91}{3750}$	$\frac{-91}{3750}$	0 ;