Tensor Products of Pointed Sets

December 3, 2023

This chapter contains some material on tensor products of pointed sets.

Contents

1	Bilinear Morphisms of Pointed Sets		2
	1.1	Left Bilinear Morphisms of Pointed Sets	
	1.2	Right Bilinear Morphisms of Pointed Sets	
	1.3	Bilinear Morphisms of Pointed Sets	3
2	Tensors and Cotensors of Pointed Sets by Sets		
	2.1	Tensors of Pointed Sets by Sets	5
	2.2	Cotensors of Pointed Sets by Sets	5
3	The Left Tensor Product of Pointed Sets		6
	3.1	Foundations	6
	3.2	The Skew Associator	7
	3.3	The Skew Left Unitor	8
	3.4	The Skew Right Unitor	9
	3.5	The Left-Skew Monoidal Category Structure on Pointed Sets	10
4	The Right Tensor Product of Pointed Sets		11
	4.1	Foundations	
	4.2	The Skew Associator	
	4.3	The Skew Left Unitor	13
	4.4	The Skew Right Unitor	13
	4.5	The Right-Skew Monoidal Category Structure on Pointed Sets	14
5	Sma	ssh Products of Pointed Sets	15
	5.1	Foundations	15

1 Bilinear Morphisms of Pointed Sets

1.1 Left Bilinear Morphisms of Pointed Sets

Let (X, x_0) , (Y, y_0) , and (Z, z_0) be pointed sets.

Definition 1.1.1.1. A left bilinear morphism of pointed sets from $(X \times Y, (x_0, y_0))$ to (Z, z_0) is a map of sets

$$f: (X \times Y, (x_0, y_0)) \rightarrow (Z, z_0)$$

satisfying the following condition: 1,2

(★) *Left Unital Bilinearity.* The diagram

commutes, i.e. for each $y \in Y$, we have

$$f(x_0, y) = z_0.$$

Definition 1.1.1.2. The set of left bilinear morphisms of pointed sets from $(X \times Y, (x_0, y_0))$ to (Z, z_0) is the set $\operatorname{Hom}_{\mathsf{Sets}_*}^{\otimes, \mathbf{L}}(X \times Y, Z)$ defined by

$$\operatorname{Hom}_{\mathsf{Sets}_*}^{\otimes,\mathsf{L}}(X\times Y,Z)\stackrel{\mathrm{def}}{=}\{f\in\mathsf{Sets}_*(A\times B,C)\mid f\text{ is left bilinear}\}.$$

1.2 Right Bilinear Morphisms of Pointed Sets

Let (X, x_0) , (Y, y_0) , and (Z, z_0) be pointed sets.

$$f(x_0, y) = z_0$$

for each $y \in Y$.

¹ Slogan: f is left bilinear if it preserves basepoints in its first argument.

²Succinctly, f is bilinear if we have

Definition 1.2.1.1. A right bilinear morphism of pointed sets from $(X \times Y, (x_0, y_0))$ to (Z, z_0) is a map of sets

$$f: (X \times Y, (x_0, y_0)) \rightarrow (Z, z_0)$$

satisfying the following condition:^{3,4}

(★) Right Unital Bilinearity. The diagram

commutes, i.e. for each $x \in X$, we have

$$f(x,y_0)=z_0.$$

Definition 1.2.1.2. The **set of right bilinear morphisms of pointed sets from** $(X \times Y, (x_0, y_0))$ **to** (Z, z_0) is the set $\operatorname{Hom}_{\mathsf{Sets}_*}^{\otimes, \mathsf{R}}(X \times Y, Z)$ defined by

$$\operatorname{Hom}_{\operatorname{\mathsf{Sets}}_*}^{\otimes, \mathbf{R}}(X\times Y, Z)\stackrel{\operatorname{\scriptscriptstyle def}}{=} \big\{f\in\operatorname{\mathsf{Sets}}_*(A\times B, C)\ \big|\ f \text{ is right bilinear}\big\}.$$

1.3 Bilinear Morphisms of Pointed Sets

Let (X, x_0) , (Y, y_0) , and (Z, z_0) be pointed sets.

Definition 1.3.1.1. A bilinear morphism of pointed sets from $(X \times Y, (x_0, y_0))$ to (Z, z_0) is a map of sets

$$f: (X \times Y, (x_0, y_0)) \rightarrow (Z, z_0)$$

that is both left bilinear and right bilinear.

$$f(x, y_0) = z_0$$

for each $x \in X$.

³ Slogan: f is right bilinear if it preserves basepoints in its second argument.

⁴Succinctly, *f* is bilinear if we have

Remark 1.3.1.2. In detail, a **bilinear morphism of pointed sets from** $(X \times Y, (x_0, y_0))$ **to** (Z, z_0) is a map of sets

$$f: (X \times Y, (x_0, y_0)) \rightarrow (Z, z_0)$$

satisfying the following conditions:^{5,6}

1. Left Unital Bilinearity. The diagram

commutes, i.e. for each $y \in Y$, we have

$$f(x_0, y) = z_0.$$

2. Right Unital Bilinearity. The diagram

commutes, i.e. for each $x \in X$, we have

$$f(x,y_0)=z_0.$$

Definition 1.3.1.3. The **set of bilinear morphisms of pointed sets from** $(X \times Y, (x_0, y_0))$ **to** (Z, z_0) is the set $\operatorname{Hom}_{\mathsf{Sets}_*}^{\otimes}(X \times Y, Z)$ defined by

$$\operatorname{Hom}_{\operatorname{\mathsf{Sets}}_*}^\otimes(X\times Y,Z)\stackrel{\scriptscriptstyle\rm def}{=}\{f\in\operatorname{\mathsf{Sets}}_*(A\times B,C)\mid f\text{ is bilinear}\}.$$

$$f(x_0,y)=z_0,$$

$$f(x, y_0) = z_0$$

⁵ Slogan: f is bilinear if it preserves basepoints in each argument.

⁶Succinctly, f is bilinear if we have

2 Tensors and Cotensors of Pointed Sets by Sets

2.1 Tensors of Pointed Sets by Sets

Let (X, x_0) be a pointed set and let A be a set.

Definition 2.1.1.1. The **tensor of** (X, x_0) **by** A is the pointed set $A \odot (X, x_0)$ satisfying the following universal property:

(UP) We have a bijection

$$\mathsf{Sets}_*(A \odot X, K) \cong \mathsf{Sets}(A, \mathbf{Sets}_*(X, K)),$$

natural in $(K, k_0) \in \text{Obj}(\mathsf{Sets}_*)$.

Remark 2.1.1.2. The tensor of (X, x_0) by A satisfies the following universal property:

$$\mathsf{Sets}_*(A \odot X, K) \cong \mathsf{Sets}_{\mathbb{E}_0}^{\otimes}(A \times X, K),$$

where $\mathsf{Sets}^\otimes_{\mathbb{E}_0}(A \times X, K)$ is the set defined by

$$\mathsf{Sets}_{\mathbb{E}_0}^{\otimes}(A \times X, K) \stackrel{\mathrm{def}}{=} \bigg\{ f \in \mathsf{Sets}(A \times X, K) \, \bigg| \, \begin{array}{l} \text{for each } a \in A, \text{ we have} \\ f(a, x_0) = k_0 \end{array} \bigg\}.$$

Construction 2.1.1.3. Concretely, the **tensor of** (X, x_0) **by** A is the pointed set $A \odot (X, x_0)$ consisting of

• *The Underlying Set.* The set $A \odot X$ given by

$$A \odot X \cong \bigvee_{a \in A} (X, x_0);$$

• *The Basepoint.* The point $[x_0]$ of $\bigvee_{a \in A} (X, x_0)$.

2.2 Cotensors of Pointed Sets by Sets

Let (X, x_0) be a pointed set and let A be a set.

Definition 2.2.1.1. The **cotensor of** (X, x_0) **by** A is the pointed set $A \cap (X, x_0)$ satisfying the following universal property:

(UP) We have a bijection

$$\mathsf{Sets}_*(K, A \pitchfork X) \cong \mathsf{Sets}(A, \mathbf{Sets}_*(K, X)),$$

natural in $(K, k_0) \in \text{Obj}(\mathsf{Sets}_*)$.

Remark 2.2.1.2. The cotensor of (X, x_0) by A satisfies the following universal property:

$$\mathsf{Sets}_*(K, A \pitchfork X) \cong \mathsf{Sets}_{\mathbb{E}_0}^{\otimes}(A \times K, X),$$

where $\mathsf{Sets}_{\mathbb{E}_0}^\otimes(A\times K,X)$ is the set defined by

$$\mathsf{Sets}_{\mathbb{B}_0}^{\otimes}(A \times K, X) \stackrel{\text{def}}{=} \left\{ f \in \mathsf{Sets}(A \times K, X) \, \middle| \, \begin{array}{l} \text{for each } a \in A, \text{ we have} \\ f(a, k_0) = x_0 \end{array} \right\}.$$

Construction 2.2.1.3. Concretely, the **cotensor of** (X, x_0) **by** A is the pointed set $A \pitchfork (X, x_0)$ consisting of

• *The Underlying Set.* The set $A \cap X$ given by

$$A \pitchfork X \cong \bigwedge_{a \in A} (X, x_0);$$

• *The Basepoint.* The point $[(x_0, x_0, x_0, \ldots)]$ of $\bigwedge_{a \in A} (X, x_0)$.

3 The Left Tensor Product of Pointed Sets

3.1 Foundations

Let (X, x_0) and (Y, y_0) be pointed sets.

Definition 3.1.1.1. The **left tensor product of pointed sets** is the functor

$$\triangleleft_{\mathsf{Sets}_*} : \mathsf{Sets}_* \times \mathsf{Sets}_* \to \mathsf{Sets}_*$$

defined as the composition

$$\mathsf{Sets}_* \times \mathsf{Sets}_* \xrightarrow{\mathsf{id} \times \overline{\bowtie}} \mathsf{Sets}_* \times \mathsf{Sets} \xrightarrow{\beta^{\mathsf{Cats}_2}_{\mathsf{Sets}_*}, \mathsf{Sets}} \mathsf{Sets} \times \mathsf{Sets}_* \xrightarrow{\odot} \mathsf{Sets}_*.$$

Remark 3.1.1.2. The left tensor product of pointed sets satisfies the following universal property:⁷

$$\mathsf{Sets}_*\big(X \lhd_{\mathsf{Sets}_*} Y, Z\big) \cong \mathsf{Hom}_{\mathsf{Sets}_*}^{\otimes, \mathsf{L}}(X \times Y, Z).$$

$$f^{\dagger}(x_0, y) = z_0$$

for each $y \in Y$.

for each $x \in X$ and each $y \in Y$.

⁷Namely, a pointed map $f\colon X\lhd_{\mathsf{Sets}_*}Y\to Z$ is the same as a map $f^\dagger\colon X\times Y\to Z$ such that

Remark 3.1.1.3. In detail, the **left tensor product of** (X, x_0) **and** (Y, y_0) is the pointed set $(X \triangleleft_{\mathsf{Sets}_*} Y, [x_0])$ consisting of⁸

• The Underlying Set. The set $X \triangleleft_{\mathsf{Sets}_*} Y$ defined by

$$X \lhd_{\mathsf{Sets}_*} Y \stackrel{\mathrm{def}}{=} |Y| \odot X$$

$$\cong \bigvee_{y \in Y} (X, x_0);$$

• The Underlying Basepoint. The point $[x_0]$ of $\bigvee_{y \in Y} (X, x_0)$.

Proposition 3.1.1.4. Let (X, x_0) and (Y, y_0) be pointed sets.

1. Functoriality. The assignments $X, Y, (X, Y) \mapsto X \triangleleft_{\mathsf{Sets}_*} Y$ define functors

$$X \triangleleft_{\mathsf{Sets}_*} -: \mathsf{Sets}_* \to \mathsf{Sets}_*,$$

 $- \triangleleft_{\mathsf{Sets}_*} Y : \mathsf{Sets}_* \to \mathsf{Sets}_*,$
 $-_1 \triangleleft_{\mathsf{Sets}_*} -_2 : \mathsf{Sets}_* \times \mathsf{Sets}_* \to \mathsf{Sets}_*.$

Proof. Item 1, Functoriality: Omitted.

3.2 The Skew Associator

Definition 3.2.1.1. The **skew associator of the left tensor product of pointed sets** is the natural isomorphism

$$\alpha^{\mathsf{Sets}_*, \triangleleft} : \triangleleft_{\mathsf{Sets}_*} \circ (\triangleleft_{\mathsf{Sets}_*} \times \mathsf{id}_{\mathsf{Sets}_*}) \stackrel{\cong}{\Longrightarrow} \triangleleft_{\mathsf{Sets}_*} \circ (\mathsf{id}_{\mathsf{Sets}_*} \times \triangleleft_{\mathsf{Sets}_*}),$$

whose component

$$\alpha_{X,Y,Z}^{\mathsf{Sets}_*,\lhd} \colon \left(X \lhd_{\mathsf{Sets}_*} Y\right) \lhd_{\mathsf{Sets}_*} Z \xrightarrow{\cong} X \lhd_{\mathsf{Sets}_*} \left(Y \lhd_{\mathsf{Sets}_*} Z\right)$$

$$X \times Y \to \underbrace{X \triangleleft_{\mathsf{Sets}_*} Y}_{\cong \bigvee_{y \in Y} (X, x_0)}.$$

sending (x, y) to the element $x \in X$ in the yth copy of X in $\bigvee_{y \in Y} (X, x_0)$. Note that we have

$$x_0 \triangleleft_{\mathsf{Sets}_*} y = x_0 \triangleleft_{\mathsf{Sets}_*} y',$$

for each $y, y' \in Y$.

⁸ Further Notation: We write $x \triangleleft_{\mathsf{Sets}_*} y$ for the image of (x,y) under the map

at (X, Y, Z) is given by the composition⁹

$$\begin{array}{l} (X \lhd_{\mathsf{Sets}_*} Y) \lhd_{\mathsf{Sets}_*} Z \stackrel{\mathrm{def}}{=} |Z| \odot (X \lhd_{\mathsf{Sets}_*} Y) \\ \stackrel{\mathrm{def}}{=} |Z| \odot (|Y| \odot X) \\ \cong \bigvee_{z \in Z} (|Y| \odot X, [x_0]) \\ \stackrel{\mathrm{def}}{=} \bigvee_{z \in Z} (\bigvee_{y \in Y} (X, x_0)) \\ \cong \bigvee_{(z,y) \in \bigvee_{z \in Z} (Y, y_0)} (X, x_0) \\ \stackrel{\mathrm{def}}{=} \bigvee_{(z,y) \in |Z| \odot Y} (X, x_0) \\ \cong ||Z| \odot Y| \odot X \\ \stackrel{\mathrm{def}}{=} |Y \lhd_{\mathsf{Sets}_*} Z| \odot X \\ \stackrel{\mathrm{def}}{=} X \lhd_{\mathsf{Sets}_*} (Y \lhd_{\mathsf{Sets}_*} Z), \end{array}$$

where the isomorphism

$$\bigvee_{z \in Z} \left(\bigvee_{y \in Y} (X, x_0) \right) \cong \bigvee_{(y, z) \in \bigvee_{z \in Z} (Y, y_0)} (X, x_0)$$

is given by $[(z, (y, x))] \mapsto [((z, y), x)].$

3.3 The Skew Left Unitor

Definition 3.3.1.1. The **skew left unitor of the left tensor product of pointed sets** is the natural transformation

$$\lambda^{\mathsf{Sets}_*, \lhd} \colon \lhd_{\mathsf{Sets}_*} \circ \left(\mathbb{1}^{\mathsf{Sets}_*} \times \mathrm{id}_{\mathsf{Sets}_*} \right) \Longrightarrow \mathrm{id}_{\mathsf{Sets}_*},$$

whose component

$$\lambda_X^{\mathsf{Sets}_*, \lhd} \colon S^0 \lhd_{\mathsf{Sets}_*} X \to X$$

$$\alpha_{X,Y,Z}^{\mathsf{Sets}_*,\lhd} \left(\left(x \lhd_{\mathsf{Sets}_*} y \right) \lhd_{\mathsf{Sets}_*} z \right) \stackrel{\mathrm{def}}{=} x \lhd_{\mathsf{Sets}_*} \left(y \lhd_{\mathsf{Sets}_*} z \right)$$

for each $(x \triangleleft_{\mathsf{Sets}_*} y) \triangleleft_{\mathsf{Sets}_*} z \in (X \triangleleft_{\mathsf{Sets}_*} Y) \triangleleft_{\mathsf{Sets}_*} Z$.

⁹In other words, $\alpha_{X,Y,Z}^{\mathsf{Sets}_*,\triangleleft}$ acts on elements as

at X is given by the composition 10

$$S^0 \lhd_{\mathsf{Sets}_*} X \cong |X| \odot S^0$$

$$\cong \bigvee_{x \in X} S^0$$

$$\to X$$

where $\bigvee_{x \in X} S^0 \to X$ is the map given by

$$(x,0) \mapsto x,$$

 $(x,1) \mapsto x.$

3.4 The Skew Right Unitor

Definition 3.4.1.1. The **skew right unitor of the left tensor product of pointed sets** is the natural transformation

$$\rho^{\mathsf{Sets}_*, \lhd} \colon \mathrm{id}_{\mathsf{Sets}_*} \Longrightarrow \lhd_{\mathsf{Sets}_*} \circ \Big(\mathrm{id}_{\mathsf{Sets}_*} \times \mathbb{1}^{\mathsf{Sets}_*}\Big),$$

whose component

$$\rho_X^{\mathsf{Sets}_*, \lhd} \colon X \to X \lhd_{\mathsf{Sets}_*} S^0$$

at X is given by the composition 11

$$\begin{split} X &\to X \vee X \\ &\cong |S^0| \odot X \\ &\cong S^0 \lhd_{\mathsf{Sets}_*} X, \end{split}$$

where $X \to X \vee X$ is the map sending X to the first factor of X in $X \vee X$.

$$\lambda_X^{\mathsf{Sets}_*, \lhd}(x \lhd_{\mathsf{Sets}_*} 0) \stackrel{\text{def}}{=} x, \\ \lambda_X^{\mathsf{Sets}_*, \lhd}(x \lhd_{\mathsf{Sets}_*} 1) \stackrel{\text{def}}{=} x,$$

for each $x \in X$.

¹¹In other words, $\rho_X^{\mathsf{Sets}_*, \triangleleft}$ acts on elements as

$$\rho_X^{\mathsf{Sets}_*, \triangleleft}(x) \stackrel{\mathrm{def}}{=} x \triangleleft_{\mathsf{Sets}_*} 0$$

for each $x \in X$.

 $^{^{10}}$ In other words, $\lambda_X^{\mathsf{Sets}_*, \lhd}$ acts on elements as

3.5 The Left-Skew Monoidal Category Structure on Pointed Sets

Proposition 3.5.1.1. The category $Sets_*$ admits a left-skew monoidal category structure consisting of 12

• The Skew Monoidal Product. The left tensor product functor

$$\triangleleft_{\mathsf{Sets}_*} : \mathsf{Sets}_* \times \mathsf{Sets}_* \to \mathsf{Sets}_*,$$

of Proposition 3.1.1.4;

• The Skew Monoidal Unit. The functor

$$\mathbb{1}^{\mathsf{Sets}_*} \colon \mathsf{pt} \to \mathsf{Sets}_*$$

defined by

$$\mathbb{1}_{\mathsf{Sets}_*} \stackrel{\mathrm{def}}{=} S^0;$$

• The Skew Associators. The natural isomorphism

$$\alpha^{\mathsf{Sets}_*, \triangleleft} \colon \triangleleft_{\mathsf{Sets}_*} \circ (\triangleleft_{\mathsf{Sets}_*} \times \mathsf{id}_{\mathsf{Sets}_*}) \stackrel{\cong}{\Longrightarrow} \triangleleft_{\mathsf{Sets}_*} \circ (\mathsf{id}_{\mathsf{Sets}_*} \times \triangleleft_{\mathsf{Sets}_*}),$$

of Definition 3.2.1.1;

• The Skew Left Unitors. The natural transformation

$$\lambda^{\mathsf{Sets}_*, \lhd} \colon \lhd_{\mathsf{Sets}_*} \circ \left(\mathbb{1}^{\mathsf{Sets}_*} \times \mathrm{id}_{\mathsf{Sets}_*} \right) \Longrightarrow \mathrm{id}_{\mathsf{Sets}_*},$$

of Definition 3.3.1.1;

• The Skew Right Unitors. The natural transformation

$$\rho^{\mathsf{Sets}_*, \triangleleft} \colon \mathsf{id}_{\mathsf{Sets}_*} \Longrightarrow \triangleleft_{\mathsf{Sets}_*} \circ \Big(\mathsf{id}_{\mathsf{Sets}_*} \times \mathbb{1}^{\mathsf{Sets}_*}\Big),$$

of Definition 3.4.1.1.

Proof. Omitted.

 $^{^{12}}$ Note in particular that, differently from general left-skew monoidal categories, the skew associator of (Sets*, $\lhd_{\mathsf{Sets}*}, S^0$) is a natural isomorphism.

4 The Right Tensor Product of Pointed Sets

4.1 Foundations

Let (X, x_0) and (Y, y_0) be pointed sets.

Definition 4.1.1.1. The **right tensor product of pointed sets** is the functor

$$\triangleright_{\mathsf{Sets}_*} : \mathsf{Sets}_* \times \mathsf{Sets}_* \to \mathsf{Sets}_*$$

defined as the composition

$$\mathsf{Sets}_* \times \mathsf{Sets}_* \xrightarrow{\ \, \bar{\boxtimes} \ \, } \mathsf{Sets} \times \mathsf{Sets}_* \xrightarrow{\ \, \bar{\bigcirc} \ \, } \mathsf{Sets}_*.$$

Remark 4.1.1.2. The right tensor product of pointed sets satisfies the following universal property: ¹³

$$\mathsf{Sets}_* \big(X \rhd_{\mathsf{Sets}_*} Y, Z \big) \cong \mathsf{Hom}_{\mathsf{Sets}_*}^{\otimes, \mathtt{R}} (X \times Y, Z).$$

Remark 4.1.1.3. In detail, the **right tensor product of** (X, x_0) **and** (Y, y_0) is the pointed set $(X \triangleright_{\mathsf{Sets}_*} Y, [y_0])$ consisting of ¹⁴

• *The Underlying Set.* The set $X \triangleright_{\mathsf{Sets}_*} Y$ defined by

$$X \rhd_{\mathsf{Sets}_*} Y \stackrel{\text{def}}{=} |X| \odot Y$$

$$\cong \bigvee_{x \in X} (Y, y_0);$$

• The Underlying Basepoint. The point $[y_0]$ of $\bigvee_{x \in X} (Y, y_0)$.

Proposition 4.1.1.4. Let (X, x_0) and (Y, y_0) be pointed sets.

$$f^{\dagger}(x, y_0) = z_0$$

for each $y \in Y$.

¹⁴ Further Notation: We write $x \triangleright_{\mathsf{Sets}_*} y$ for the image of (x, y) under the map

$$X \times Y \to \underbrace{X \rhd_{\mathsf{Sets}_*} Y}_{\cong \bigvee_{x \in X} (Y, y_0)}$$
.

sending (x, y) to the element $y \in Y$ in the xth copy of Y in $\bigvee_{x \in X} (Y, y_0)$. Note that we have

$$x \triangleright_{\mathsf{Sets}_*} y_0 = x' \triangleright_{\mathsf{Sets}_*} y_0$$

for each $x, x' \in X$.

¹³Namely, a pointed map $f: X \triangleleft_{\mathsf{Sets}_*} Y \to Z$ is the same as a map $f^{\dagger}: X \times Y \to Z$ such that

1. Functoriality. The assignments $X, Y, (X, Y) \mapsto X \triangleright_{\mathsf{Sets}_*} Y$ define functors

$$X \rhd_{\mathsf{Sets}_*} -: \mathsf{Sets}_* \to \mathsf{Sets}_*,$$
 $- \rhd_{\mathsf{Sets}_*} Y \colon \mathsf{Sets}_* \to \mathsf{Sets}_*,$
 $-_1 \rhd_{\mathsf{Sets}_*} -_2 \colon \mathsf{Sets}_* \times \mathsf{Sets}_* \to \mathsf{Sets}_*.$

Proof. Item 1, Functoriality: Omitted.

4.2 The Skew Associator

Definition 4.2.1.1. The **skew associator of the right tensor product of pointed sets** is the natural isomorphism

$$\alpha^{\mathsf{Sets}_*, \triangleright} \colon \rhd_{\mathsf{Sets}_*} \circ (\mathsf{id}_{\mathsf{Sets}_*} \times \rhd_{\mathsf{Sets}_*}) \stackrel{\cong}{\Longrightarrow} \rhd_{\mathsf{Sets}_*} \circ (\rhd_{\mathsf{Sets}_*} \times \mathsf{id}_{\mathsf{Sets}_*}),$$

whose component

$$\alpha_{X,Y,Z}^{\mathsf{Sets}_*, \rhd} : X \rhd_{\mathsf{Sets}_*} \big(Y \rhd_{\mathsf{Sets}_*} Z \big) \xrightarrow{\cong} \big(X \rhd_{\mathsf{Sets}_*} Y \big) \rhd_{\mathsf{Sets}_*} Z$$

at (X, Y, Z) is given by the composition ¹⁵

$$\begin{split} X \rhd_{\mathsf{Sets}_*} & \left(Y \rhd_{\mathsf{Sets}_*} Z \right) \stackrel{\mathrm{def}}{=} |X| \odot \left(Y \rhd_{\mathsf{Sets}_*} Z \right) \\ \stackrel{\mathrm{def}}{=} |X| \odot \left(|Y| \odot Z \right) \\ & \cong |X| \odot \left(\bigvee_{y \in Y} (Z, z_0) \right) \\ & \cong \bigvee_{x \in X} \left(\bigvee_{y \in Y} (Z, z_0) \right) \\ & \cong \bigvee_{(x,y) \in \bigvee_{x \in X} (Y, y_0)} (Z, z_0) \\ & \cong \left| \bigvee_{x \in X} (Y, y_0) \right| \odot Z \\ \stackrel{\mathrm{def}}{=} |X \odot Y| \odot Z \\ \stackrel{\mathrm{def}}{=} |X \rhd_{\mathsf{Sets}_*} Y| \odot Z \\ \stackrel{\mathrm{def}}{=} (X \rhd_{\mathsf{Sets}_*} Y) \rhd_{\mathsf{Sets}_*} Z \end{split}$$

$$\alpha_{X,Y,Z}^{\mathsf{Sets}_*, \triangleright}(x \triangleright_{\mathsf{Sets}_*} (y \triangleright_{\mathsf{Sets}_*} z)) \stackrel{\text{def}}{=} (x \triangleright_{\mathsf{Sets}_*} y) \triangleright_{\mathsf{Sets}_*} z$$

 $^{^{15} {\}rm In}$ other words, $\alpha_{X,Y,Z}^{{\sf Sets}_*, \rhd}$ acts on elements as

where the isomorphism

$$\bigvee_{x \in X} \left(\bigvee_{y \in Y} (Z, z_0) \right) \cong \bigvee_{(x,y) \in \bigvee_{x \in X} (Y, y_0)} (Z, z_0)$$

is given by $[(x, (y, z))] \mapsto [((x, y), z)].$

4.3 The Skew Left Unitor

Definition 4.3.1.1. The **skew left unitor of the right tensor product of pointed sets** is the natural transformation

$$\lambda^{\mathsf{Sets}_*, \triangleright} : \mathsf{id}_{\mathsf{Sets}_*} \Longrightarrow \triangleright_{\mathsf{Sets}_*} \circ \Big(\mathbb{1}^{\mathsf{Sets}_*} \times \mathsf{id}_{\mathsf{Sets}_*} \Big),$$

whose component

$$\lambda_X^{\mathsf{Sets}_*, \rhd} \colon X \to S^0 \rhd_{\mathsf{Sets}_*} X$$

at X is given by the composition 16

$$X \to X \lor X$$

$$\cong |S^0| \odot X$$

$$\cong S^0 \rhd_{\mathsf{Sets}} X,$$

where $X \to X \vee X$ is the map sending X to the first factor of X in $X \vee X$.

4.4 The Skew Right Unitor

Definition 4.4.1.1. The **skew right unitor of the right tensor product of pointed sets** is the natural transformation

$$\rho^{\mathsf{Sets}_*, \triangleright} \colon \rhd_{\mathsf{Sets}_*} \circ \left(\mathrm{id}_{\mathsf{Sets}_*} \times \mathbb{1}^{\mathsf{Sets}_*} \right) \Longrightarrow \mathrm{id}_{\mathsf{Sets}_*},$$

for each $x \rhd_{\mathsf{Sets}_*} (y \rhd_{\mathsf{Sets}_*} z) \in X \rhd_{\mathsf{Sets}_*} (Y \rhd_{\mathsf{Sets}_*} Z)$.

16 In other words, $\lambda_X^{\mathsf{Sets}_*, \rhd}$ acts on elements as

$$\lambda_X^{\mathsf{Sets}_*, \triangleright}(x) \stackrel{\mathrm{def}}{=} 0 \triangleright_{\mathsf{Sets}_*} x$$

for each $x \in X$.

whose component¹⁷

$$\rho_X^{\mathsf{Sets}_*, \rhd} \colon X \rhd_{\mathsf{Sets}_*} S^0 \to X$$

at *X* is given by the composition

$$X \rhd_{\mathsf{Sets}_*} S^0 \cong |X| \odot S^0$$
$$\cong \bigvee_{x \in X} S^0$$
$$\to X$$

where $\bigvee_{x \in X} S^0 \to X$ is the map given by

$$(x,0) \mapsto x,$$

 $(x,1) \mapsto x.$

4.5 The Right-Skew Monoidal Category Structure on Pointed Sets

Proposition 4.5.1.1. The category Sets_{*} admits a right-skew monoidal category structure consisting of ¹⁸

• The Skew Monoidal Product. The right tensor product functor

$$\triangleright_{\mathsf{Sets}_*} : \mathsf{Sets}_* \times \mathsf{Sets}_* \to \mathsf{Sets}_*,$$

of Item 1;

• The Skew Monoidal Unit. The functor

$$\mathbb{1}^{\mathsf{Sets}_*} \colon \mathsf{pt} \to \mathsf{Sets}_*$$

defined by

$$\mathbb{F}_{\mathsf{Sets}_n} \stackrel{\mathrm{def}}{=} S^0;$$

• The Skew Associators. The natural isomorphism

$$\alpha^{\mathsf{Sets}_*, \triangleright} : \rhd_{\mathsf{Sets}_*} \circ (\rhd_{\mathsf{Sets}_*} \times \mathsf{id}_{\mathsf{Sets}_*}) \stackrel{\cong}{\Longrightarrow} \rhd_{\mathsf{Sets}_*} \circ (\mathsf{id}_{\mathsf{Sets}_*} \times \rhd_{\mathsf{Sets}_*}),$$

of Definition 4.2.1.1;

$$\begin{split} & \rho_X^{\mathsf{Sets}_*, \triangleright} \left(x \rhd_{\mathsf{Sets}_*} 0 \right) \overset{\text{def}}{=} x, \\ & \rho_X^{\mathsf{Sets}_*, \triangleright} \left(x \rhd_{\mathsf{Sets}_*} 1 \right) \overset{\text{def}}{=} x \end{split}$$

for each $x \in X$.

 $^{^{17} \}text{In other words,} \rho_X^{\mathsf{Sets}_*, \rhd}$ acts on elements as

 $^{^{18}}$ Note in particular that, differently from general right-skew monoidal categories, the skew associator of

• The Skew Left Unitors. The natural transformation

$$\lambda^{\mathsf{Sets}_*, \triangleright} \colon id_{\mathsf{Sets}_*} \Longrightarrow \rhd_{\mathsf{Sets}_*} \circ \Big(\rlap{\cancel{\hspace{1pt} \hspace{1pt} \hspace{1pt}}}^{\mathsf{Sets}_*} \times id_{\mathsf{Sets}_*} \Big),$$

of Definition 3.3.1.1;

• The Skew Right Unitors. The natural transformation

$$\rho^{\mathsf{Sets}_*, \triangleright} : \rhd_{\mathsf{Sets}_*} \circ \left(\mathrm{id}_{\mathsf{Sets}_*} \times \mathbb{1}^{\mathsf{Sets}_*} \right) \Longrightarrow \mathrm{id}_{\mathsf{Sets}_*},$$

of Definition 3.4.1.1.

Proof. Omitted.

5 Smash Products of Pointed Sets

5.1 Foundations

Let (X, x_0) and (Y, y_0) be pointed sets.

Definition 5.1.1.1. The **smash product of** (X, x_0) **and** $(Y, y_0)^{19}$ is the pointed set $X \wedge Y^{20}$ such that we have a bijection

$$\mathsf{Sets}_*(X \wedge Y, Z) \cong \mathsf{Hom}_{\mathsf{Sets}_*}^{\otimes}(X \times Y, Z),$$

natural in (X, x_0) , (Y, y_0) , (Z, z_0) ∈ Obj(Sets_{*}).

Remark 5.1.1.2. In detail, the **smash product of** (X, x_0) **and** (Y, y_0) is the pair $((X \land Y, [(x_0, y_0)]), \iota)$ consisting of

- A pointed set $(X \wedge Y, [(x_0, y_0)])$;
- A bilinear morphism of pointed sets $\iota \colon (X \times Y, (x_0, y_0)) \to X \land Y$;

satisfying the following universal property:

- **(UP)** Given another such pair $((Z, z_0), f)$ consisting of
 - A pointed set (Z, z_0) ;
 - A bilinear morphism of pointed sets f: (X × Y, (x₀, y₀)) → X ∧ Y;

 $[\]left(\mathsf{Sets}_*, \rhd_{\mathsf{Sets}_*}, S^0\right)$ is a natural isomorphism.

¹⁹ Further Terminology: Also called the **tensor product of** \mathbb{F}_1 -modules of (X, x_0) and (Y, y_0) or the **tensor product of** (X, x_0) and (Y, y_0) over \mathbb{F}_1 .

²⁰ Further Notation: Also written $X \otimes_{\mathbb{F}_1} Y$.

there exists a unique morphism of pointed sets $X \wedge Y \stackrel{\exists !}{\longrightarrow} Z$ making the diagram

commute.

Construction 5.1.1.3. Concretely, the **smash product of** (X, x_0) **and** (Y, y_0) is the pointed set $(X \wedge Y, [(x_0, y_0)])$ consisting of 21

• *The Underlying Set.* The set $X \wedge Y$ defined by

where \sim is the equivalence relation of $X \times Y$ obtained by declaring $(x, y) \sim (x', y')$ iff $(x, y), (x', y') \in X \vee Y$, i.e. by declaring

$$(x_0, y) \sim (x_0, y'),$$

 $(x, y_0) \sim (x', y_0)$

for all $x \in X$ and all $y \in Y$;

• The Basepoint. The element $[(x_0, y_0)]$ of $X \wedge Y$ given by the equivalence class of (x_0, y_0) under the equivalence relation \sim on $X \times Y$.

$$X \times Y \twoheadrightarrow \underbrace{\frac{X \times Y}{X \vee Y}}_{\stackrel{\text{def}}{=} X \wedge Y}$$

Note that we have

$$x \wedge y_0 = x' \wedge y_0,$$

$$x_0 \wedge y = x_0 \wedge y'$$

for each $x, x' \in X$ and each $y, y' \in Y$.

²¹ *Further Notation:* We write $x \wedge y$ for the image of (x, y) under the quotient map

Example 5.1.1.4. Here are some examples of smash products of pointed sets.

1. Smashing With S^0 . For any pointed set X, we have isomorphisms of pointed sets

$$S^0 \wedge X \cong X,$$
$$X \wedge S^0 \cong X.$$

Proposition 5.1.1.5. Let (X, x_0) and (Y, y_0) be pointed sets.

1. Functoriality. The assignments (X, x_0) , (Y, y_0) , $((X, x_0), (Y, y_0)) \mapsto X \land Y$ define functors

$$X \land -: \mathsf{Sets}_* \to \mathsf{Sets}_*,$$

 $- \land Y : \mathsf{Sets}_* \to \mathsf{Sets}_*,$
 $-_1 \land -_2 : \mathsf{Sets}_* \times \mathsf{Sets}_* \to \mathsf{Sets}_*.$

2. Adjointness. We have adjunctions

$$(X \land \neg \dashv \mathbf{Sets}_*(X, \neg)) : \quad \underbrace{\mathsf{Sets}_*}_{X \land \neg} \underbrace{\mathsf{Sets}_*(X, \neg)}_{S \mathsf{ets}_*(X, \neg)} \mathsf{Sets}_*,$$

$$(\neg \land Y \dashv \mathbf{Sets}_*(Y, \neg)) : \quad \underbrace{\mathsf{Sets}_*}_{X \land \neg} \underbrace{\mathsf{Sets}_*}_{X \land \neg} \mathsf{Sets}_*,$$

witnessed by bijections

$$\mathsf{Sets}_*(X \wedge Y, Z) \cong \mathsf{Sets}_*(X, \mathbf{Sets}_*(Y, Z)),$$

 $\mathsf{Sets}_*(X \wedge Y, Z) \cong \mathsf{Sets}_*(X, \mathbf{Sets}_*(A, Z)),$

natural in (X, x_0) , (Y, y_0) , $(Z, z_0) \in Obj(\mathsf{Sets}_*)$, which internalise to isomorphisms of pointed sets

$$\mathsf{Sets}_*(X \wedge Y, Z) \cong \mathsf{Sets}_*(X, \mathsf{Sets}_*(Y, Z)),$$

 $\mathsf{Sets}_*(X \wedge Y, Z) \cong \mathsf{Sets}_*(X, \mathsf{Sets}_*(A, Z)),$

again natural in (X, x_0) , (Y, y_0) , $(Z, z_0) \in Obj(Sets_*)$.

3. Closed Symmetric Monoidality. The quadruple ($\mathsf{Sets}_*, \wedge, S^0, \mathsf{Sets}_*$) is a closed symmetric monoidal category.

4. Morphisms From the Monoidal Unit. We have a bijection of sets²²

$$\mathsf{Sets}_*(S^0,X)\cong X,$$

natural in $(X, x_0) \in \mathsf{Obj}(\mathsf{Sets}_*)$, internalising also to an isomorphism of pointed sets

$$\mathbf{Sets}_*(S^0, X) \cong (X, x_0),$$

again natural in $(X, x_0) \in \text{Obj}(\mathsf{Sets}_*)$.

5. Symmetric Strong Monoidality With Respect to Free Pointed Sets. The free pointed set functor of Pointed Sets, Item 1 of Proposition 4.2.1.2 has a symmetric strong monoidal structure

$$((-)^+, (-)^{+,\times}, (-)^{+,\times}_{\mathbb{I}^{\vee}}) : (\mathsf{Sets}, \times, \mathsf{pt}) \to (\mathsf{Sets}_*, \wedge, S^0),$$

being equipped with isomorphisms of pointed sets

$$(-)_{X,Y}^{+,\times} \colon X^{+} \wedge Y^{+} \xrightarrow{\cong} (X \times Y)^{+},$$
$$(-)_{\mathbb{K}}^{+,\times} \colon S^{0} \xrightarrow{\cong} \mathsf{pt}^{+},$$

natural in $X, Y \in Obj(Sets)$.

6. Distributivity Over Wedge Sums. We have isomorphisms of pointed sets

$$X \wedge (Y \vee Z) \cong (X \wedge Y) \vee (X \wedge Z),$$

$$(X \vee Y) \wedge Z \cong (X \wedge Z) \vee (Y \wedge Z),$$

natural in $(X, x_0), (Y, y_0), (Z, z_0) \in Obj(Sets_*).$

- 7. *Universal Property I*. The symmetric monoidal structure on the category Sets* is uniquely determined by the following requirements:
 - (a) Two-Sided Preservation of Colimits. The smash product

$$\wedge : \mathsf{Sets}_* \times \mathsf{Sets}_* \to \mathsf{Sets}_*$$

of Sets* preserves colimits separately in each variable.

(b) The Unit Object Is S^0 . We have $\mathbb{1}_{Sets_*} = S^0$.

²²In other words, the forgetful functor

8. *Universal Property II*. The symmetric monoidal structure on the category Sets_{*} is the unique symmetric monoidal structure on Sets_{*} such that the free pointed set functor

$$(-)^+$$
: Sets \rightarrow Sets_{*}

admits a symmetric monoidal structure.

- 9. *Existence of Monoidal Diagonals.* The triple (Sets**, \wedge , S^0) is a monoidal category with diagonals:
 - (a) Monoidal Diagonals. The natural transformation

$$\Delta \colon \mathrm{id}_{\mathsf{Sets}_*} \Longrightarrow \wedge \circ \Delta^{\mathsf{Cats}_2}_{\mathsf{Sets}_*}, \qquad \underbrace{\mathsf{Sets}_*}^{\mathsf{id}_{\mathsf{Sets}_*}} \xrightarrow{\Delta} \wedge \\ \mathsf{Sets}_* \times \mathsf{Sets}_*,$$

whose component

$$\Delta_X \colon (X, x_0) \to (X \land X, [(x_0, x_0)])$$

at $(X, x_0) \in \text{Obj}(\mathsf{Sets}_*)$ is given by the composition

$$(X, x_0) \xrightarrow{\Delta_X} (X \times X, (x_0, x_0))$$

$$\xrightarrow{} (\frac{X \times X}{X \vee X}, [(x_0, x_0)])$$

$$\xrightarrow{\text{def}} (X \wedge X, [(x_0, x_0)])$$

in Sets*, is a monoidal natural transformation:

i. *Naturality*. For each morphism $f: X \to Y$ of pointed sets, the diagram

$$X \xrightarrow{f} Y$$

$$\Delta_X \downarrow \qquad \qquad \downarrow \Delta_Y$$

$$X \wedge X \xrightarrow{f \wedge f} Y \wedge Y$$

commutes.

ii. Compatibility With Strong Monoidality Constraints. For each $(X, x_0), (Y, y_0) \in$

defined on objects by sending a pointed set to its underlying set is corepresentable by S^0 .

Obj(Sets_{*}), the diagram

$$X \wedge Y \xrightarrow{\Delta_X \wedge \Delta_Y} (X \wedge X) \wedge (Y \wedge Y)$$

$$\downarrow \\ \downarrow \\ X \wedge Y \xrightarrow{\Delta_{X \wedge Y}} (X \wedge Y) \wedge (X \wedge Y)$$

commutes.

iii. Compatibility With Strong Unitality Constraints. The diagram

commutes.

(b) The Diagonal of the Unit. The component

$$\Delta_{S^0}^{\mathsf{Sets}_*} \colon S^0 \xrightarrow{\cong} S^0 \wedge S^0$$

of the diagonal natural transformation of Sets_* at S^0 is an isomorphism.

10. Comonoids in Sets*. The symmetric monoidal functor

$$\big((-)^+,(-)^{+,\times},(-)_{\mathbb{F}}^{+,\times}\big)\colon (\mathsf{Sets},\times,\mathsf{pt})\to \big(\mathsf{Sets}_*,\wedge,S^0\big),$$

of Pointed Sets, Item 4 of Proposition 4.2.1.2 lifts to an equivalence of categories

$$\mathsf{CoMon}(\mathsf{Sets}_*, \wedge, S^0) \stackrel{\mathsf{eq.}}{\cong} \mathsf{CoMon}(\mathsf{Sets}, \times, \mathsf{pt})$$

 $\cong \mathsf{Sets.}$

Proof. Item 1, Functoriality: Omitted.

Item 2, Adjointness: Omitted.

Item 3, Closed Symmetric Monoidality: Omitted.

Item 4, Morphisms From the Monoidal Unit: Omitted.

Item 5, Symmetric Strong Monoidality With Respect to Free Pointed Sets: Omitted.

Item 6, Distributivity Over Wedge Sums: This follows from Item 3, Monoidal Categories,

?? of ??, and the fact that \vee is the coproduct in Sets_{*}.

Item 7, *Universal Property I*: Omitted.

Item 8, Universal Property II: See [GGN15, Theorem 5.1].

Item 9, Existence of Monoidal Diagonals: Omitted.

Item 10, Comonoids in Sets_{*}: See [PS19, Lemma 2.4].

Appendices

A Other Chapters

Set Theory

- 1. Sets
- 2. Constructions With Sets
- 3. Pointed Sets
- 4. Tensor Products of Pointed Sets
- 5. Indexed and Fibred Sets
- 6. Relations
- 7. Spans
- 8. Posets

Category Theory

- 9. Categories
- 10. Constructions With Categories
- 11. Kan Extensions

Bicategories

- 12. Bicategories
- 13. Internal Adjunctions

Internal Category Theory

14. Internal Categories

Cyclic Stuff

15. The Cycle Category

Cubical Stuff

16. The Cube Category

Globular Stuff

17. The Globe Category

Cellular Stuff

18. The Cell Category

Monoids

- 19. Monoids
- 20. Constructions With Monoids

Monoids With Zero

- 21. Monoids With Zero
- 22. Constructions With Monoids With Zero

Groups

- 23. Groups
- 24. Constructions With Groups

Hyper Algebra

- 25. Hypermonoids
- 26. Hypergroups
- 27. Hypersemirings and Hyperrings
- 28. Quantales

Near-Rings

- 29. Near-Semirings
- 30. Near-Rings

Real Analysis

- 31. Real Analysis in One Variable
- 32. Real Analysis in Several Variables

Measure Theory

- 33. Measurable Spaces
- 34. Measures and Integration

Probability Theory

34. Probability Theory

Stochastic Analysis

- 35. Stochastic Processes, Martingales, and Brownian Motion
- 36. Itô Calculus
- 37. Stochastic Differential Equations

Differential Geometry

38. Topological and Smooth Manifolds

Schemes

39. Schemes