

91258 / B0385 Natural Language Processing

Lesson 11. "More than One" Neuron

Alberto Barrón-Cedeño a.barron@unibo.it

13/11/2024

Previously

- The perceptron
- Intro to neural networks

Table of Contents

1. Backpropagation (brief)

2. Keras

3. Some Guidelines

Chapter 5 of Lane et al. (2019)

Backpropagation (brief)

Weight Updating

Learning in a "simple" perceptron vs a fully-connected network

A. Barrón-Cedeño

¹Remember: aka linear regression DIT, LM SpecTra

2024

Weight Updating

Learning in a "simple" perceptron vs a fully-connected network

(Lane et al., 2019, p. 158, 168)

¹Remember: aka linear regression ←□→←♂→←毫→←毫→ ≥ → △△

²Notice that the first W_{1i} should be W_{1i}

- The error is computed on the output vector
- How much error did W_{1i} "contribute"?

²Notice that the first W_{1i} should be W_{1i}

- The error is computed on the output vector
- How much error did W_{1i} "contribute"?
- "Path": $W_{1i} o [W_{1j}, W_{2j}] o ext{output}$

 2 Notice that the first W_{1j} should be W_{1i}

A. Barrón-Cedeño

A better activation function

Step function:
$$f(\vec{x}) = \begin{cases} 1 & \text{if } \sum_{i=0}^{n} x_i w_i > \text{threshold} \\ 0 & \text{otherwise} \end{cases}$$

³The change of the output is not proportional to the change of the input.

A better activation function

Step function:
$$f(\vec{x}) = \begin{cases} 1 & \text{if } \sum_{i=0}^{n} x_i w_i > \text{threshold} \\ 0 & \text{otherwise} \end{cases}$$

Sigmoid function: non-linear³ and continuously differentiable

$$S(x) = \frac{1}{1 + e^{-x}} \tag{1}$$

³The change of the output is not proportional to the change of the input

A better activation function

Step function:
$$f(\vec{x}) = \begin{cases} 1 & \text{if } \sum_{i=0}^{n} x_i w_i > \text{threshold} \\ 0 & \text{otherwise} \end{cases}$$

Sigmoid function: non-linear³ and continuously differentiable

$$S(x) = \frac{1}{1 + e^{-x}} \tag{1}$$

Let us see

³The change of the output is not proportional to the change of the input ≥ >

A better activation function

Step function:
$$f(\vec{x}) = \begin{cases} 1 & \text{if } \sum_{i=0}^{n} x_i w_i > \text{threshold} \\ 0 & \text{otherwise} \end{cases}$$

Sigmoid function: non-linear³ and continuously differentiable

$$S(x) = \frac{1}{1 + e^{-x}} \tag{1}$$

Let us see

Non-linear \rightarrow model non-linear relationships

Continuously differentiable → partial derivatives wrt various variables to _____update the weights

³The change of the output is not proportional to the change of the input ≥ ∞ ∞

Differentiating to adjust

Squared error⁴

$$SE = (y - f(x))^2 \tag{2}$$

⁴In (Lane et al., 2019, p. 171) they say this is MSE; but there is no mean

Differentiating to adjust

Squared error⁴

$$SE = (y - f(x))^2 \tag{2}$$

Mean squared error

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y - f(x))^{2}$$
 (3)

⁴In (Lane et al., 2019, p. 171) they say this is MSE; but there is no mean

Differentiating to adjust

Squared error⁴

$$SE = (y - f(x))^2 \tag{2}$$

Mean squared error

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y - f(x))^{2}$$
 (3)

8 / 19

Calculus chain rule

$$f(g(x))' = F'(x) = f'(g(x))g'(x)$$
 (4)

⁴In (Lane et al., 2019, p. 171) they say this is MSE; but there is no mean

A. Barrón-Cedeño DIT, LM SpecTra 2024

Differentiating to adjust

Squared error⁴

$$SE = (y - f(x))^2 \tag{2}$$

Mean squared error

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y - f(x))^{2}$$
 (3)

Calculus chain rule

$$f(g(x))' = F'(x) = f'(g(x))g'(x)$$
(4)

With (4) we can find the derivative of the actfunct \forall unit wrt its input.

⁴In (Lane et al., 2019, p. 171) they say this is MSE; but there is no mean

Differentiating to adjust

Squared error⁴

$$SE = (y - f(x))^2 \tag{2}$$

Mean squared error

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y - f(x))^{2}$$
 (3)

Calculus chain rule

$$f(g(x))' = F'(x) = f'(g(x))g'(x)$$
 (4)

With (4) we can find the derivative of the actfunct \forall unit wrt its input. Plain words: find the contribution of a weight to the error and adjust it!

(no further math)

⁴In (Lane et al., 2019, p. 171) they say this is MSE; but there is no mean

~Gradient descent: minimising the error

Convex error curve

 \sim Gradient descent: minimising the error

Convex error curve

Non-convex error curve

2024

Batch learning

- Aggregate the error for the batch
- Update the weight at the end

2024

Batch learning

- Aggregate the error for the batch
- Update the weight at the end
- ullet ightarrow hard to find global minimum

2024

Batch learning

- Aggregate the error for the batch
- Update the weight at the end
- ullet ightarrow hard to find global minimum

Stochastic gradient descent

- Look at the error for each single instance
- Update the weights right away

Batch learning

- Aggregate the error for the batch
- Update the weight at the end
- ullet ightarrow hard to find global minimum

Stochastic gradient descent

- Look at the error for each single instance
- Update the weights right away
- ullet o more likely to make it to the global minimum

Batch learning

- Aggregate the error for the batch
- Update the weight at the end
- ullet ightarrow hard to find global minimum

Stochastic gradient descent

- Look at the error for each single instance
- Update the weights right away
- ullet o more likely to make it to the global minimum

Mini-batch

- Much smaller batch, combining the best of the two worlds
- ullet ightarrow Fast as batch, resilient as stochastic gradient descent

Batch learning

- Aggregate the error for the batch
- Update the weight at the end
- ullet ightarrow hard to find global minimum

Stochastic gradient descent

- Look at the error for each single instance
- Update the weights right away
- ullet o more likely to make it to the global minimum

Mini-batch

- Much smaller batch, combining the best of the two worlds
- ullet ightarrow Fast as batch, resilient as stochastic gradient descent

Important parameter: learning rate α

A parameter to define at what extent should we "correct" the error

Some Popular Libraries

There are many high- and low-level libraries in multiple languages

- PyTorch
 Community-driven; https://pytorch.org/
- TensorFlow Google Brain; https://www.tensorflow.org/
- Others

Some Popular Libraries

There are many high- and low-level libraries in multiple languages

- PyTorch
 Community-driven; https://pytorch.org/
- TensorFlow
 Google Brain; https://www.tensorflow.org/
- Others

We will use Keras; https://keras.io/

What is Keras

A high-level wrapper with an accessible API for Python

What is Keras

- A high-level wrapper with an accessible API for Python
- It gives access to three alternative backends
 - TensorFlow
 - CNTK (MS)

Logical exclusive OR (XOR) in Keras

input		output
0	0	0
0	1	1
1	0	1
1	1	0

Logical exclusive OR (XOR) in Keras

input		output
0	0	0
0	1	1
1	0	1
1	1	0

1	•	•
0	•	•
	0	1

Logical exclusive OR (XOR) in Keras

input		output
0	0	0
0	1	1
1	0	1
1	1	0

First dense layer

- 2 inputs, 10 units
- 30 parameters

Logical exclusive OR (XOR) in Keras

input		output
0	0	0
0	1	1
1	0	1
1	1	0

1	•	•
0	•	•
	0	1

First dense layer

- 2 inputs, 10 units
- 30 parameters
- $2 \times 10 \rightarrow 20$

Logical exclusive OR (XOR) in Keras

input		output
0	0	0
0	1	1
1	0	1
1	1	0

1	•	•
0	•	•
	0	1

First dense layer

- 2 inputs, 10 units
- 30 parameters
- $2 \times 10 \rightarrow 20$
- But we also have the bias! (10 more weights)

Keras

Logical exclusive OR (XOR) in Keras

input		output
0	0	0
0	1	1
1	0	1
1	1	0

1	•	•
0	•	•
	0	1

First dense layer

- 2 inputs, 10 units
- 30 parameters
- $2 \times 10 \rightarrow 20$
- But we also have the bias! (10 more weights)

Second dense layer

- 10 inputs, 1 unit
- 11 parameters

Keras

Logical exclusive OR (XOR) in Keras

input		output
0	0	0
0	1	1
1	0	1
1	1	0

1	•	•
0	•	•
	0	1

First dense layer

- 2 inputs, 10 units
- 30 parameters
- $2 \times 10 \rightarrow 20$
- But we also have the bias! (10 more weights)

Now we can compile the model

Second dense layer

- 10 inputs, 1 unit
- 11 parameters

Some Guidelines

Activation functions

Sigmoid

ReLU Rectified linear unit (and variations)

tanh Hyperbolic tangent

Activation functions

Sigmoid

ReLU Rectified linear unit (and variations)

tanh Hyperbolic tangent

A. Barrón-Cedeño DIT, LM SpecTra 2024 16 / 19

Activation functions

- Sigmoid
- ReLU (rectified linear unit)
- tanh (hyperbolic tangent)

Learning rate

- Choosing one in advance
- Use momentum to perform dynamic adjustments

Activation functions

- Sigmoid
- ReLU (rectified linear unit)
- tanh (hyperbolic tangent)

Learning rate

- Choosing one in advance
- Use momentum to perform dynamic adjustments

Dropout

Ignore randomly-chosen weights in a training pass to prevent overfitting

Activation functions

- Sigmoid
- ReLU (rectified linear unit)
- tanh (hyperbolic tangent)

Learning rate

- Choosing one in advance
- Use momentum to perform dynamic adjustments

Dropout

 Ignore randomly-chosen weights in a training pass to prevent overfitting

Regularisation

Dampen a weight from growing/shrinking too far from the rest to prevent overfitting

17 / 19

Example House classification.

Input number of bedrooms, last selling price

Output Likelihood of selling

Vector input_vec = [4, 12000]

Example House classification.

Input number of bedrooms, last selling price

Output Likelihood of selling

Vector input_vec = [4, 12000]

All input dimensions should have comparable values

Ideally, all features should be in the range $\left[-1,1\right]$ or $\left[0,1\right]$

Example House classification.

Input number of bedrooms, last selling price

Output Likelihood of selling

Vector input_vec = [4, 12000]

All input dimensions should have comparable values

Ideally, all features should be in the range $\left[-1,1\right]$ or $\left[0,1\right]$

Typical normalisation: mean normalisation, feature scaling, coefficient of variation

Example House classification.

Input number of bedrooms, last selling price

Output Likelihood of selling

Vector input_vec = [4, 12000]

All input dimensions should have comparable values

Ideally, all features should be in the range $\left[-1,1\right]$ or $\left[0,1\right]$

Typical normalisation: mean normalisation, feature scaling, coefficient of variation

NLP typically uses TF–IDF, one-hot encoding, word2vec (already normalised)

References

Kandel, I. and M. Castelli

2020. Transfer learning with convolutional neural networks for diabetic retinopathy image classification. a review. Applied Sciences, 10(6).

Lane, H., C. Howard, and H. Hapkem

2019. Natural Language Processing in Action. Shelter Island, NY: Manning Publication Co.