

CHEMISTRY Chapter 03

Configuración Electrónica

Configuración Electrónica

CIENCIAS QUÍMICA Modelo atómico

Configuración electrónica

 $1s^2\,2s^22p^63s^23p^64s^2\,3d^{10}\,4p^65s^2\,4d^{10}\,5p^66s^2\,4f^{14}\,5d^{10}\,6p^67s^2\,5f^{14}\,6d^{10}\,7p^6$

Regla de la máxima multiplicidad de Hund: Configuración electrónica

Cuando una serie de orbitales de igual energía (p, d, f) se estan llenando con electrones, éstos permanecerán desapareados mientras sea posible, manteniendo los espines paralelos.

Incorrecto

PRINCIPIO EXCLUSION DE PAULI

El principio de exclusión de Pauli establece que dos electrones en un átomo no pueden tener los cuatro números cuánticos iguales.

Para el caso del 2He

Configuración electrónica es 1s²

$$n=1$$
 1=0 $m_1=0$

Los números cuánticos para ambos electrones serán:

$$(1, 0, 0, +1/2)$$

$$(1, 0, 0, -1/2)$$

CIENCIAS QUÍMICA Modelo atómico

Ejercicio de aplicación

CASOS ESPECIALES DE LA CONFIGURACIÓN ELECTRÓNICA

I) CASO d⁴

II) CASO d⁹

26Fe: 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁶

Donde cada subnivel se ubica de acuerdo en forma ascendente. Al respecto, es incorrecto decir que

- A) El orden de cada subnivel está determinado por la suma de n + ℓ
- B) Esta configuración electrónica obedece a tres reglas o principios.
- C) De acuerdo a la regla de Hund, en el subnivel 3d hay 4 electrones.
- D) En el subnivel 4s se acomodan dos electrones con espines opuestos.
- E) Igual que el ₂₀Ca , el ₂₆Fe tiene solo 2 electrones en la capa de valencia.

RESOLUCIÓN

A) Verdadero

B) Verdadero

Para la configuración electrónica por orbitales es necesario las tres reglas o principios.

C) Falso

En el subnivel 3d existen 6 electrones

D) Verdadero

El subnivel "S" admite solo dos electrones los cuales tienen espines opuestos.

E) Verdadero

C.E. ₂₀Ca: **1s**² **2s**² **2p**⁶ **3s**² **3p**⁶ **4s**² 2 electrones de valencia.

₂₆Fe: [Ar] 4S² 3d⁶

Un átomo termina su configuración en 4p² y presenta 38 neutrones. Determine su número másico.

RESOLUCIÓN:

Realizando la C.E.

$$_{Z}E: 1s^{2} 2s^{2}2p^{6}3s^{2}3p^{6}4s^{2} 3d^{10}4p^{2}$$

$$#e^{-} = #p^{+} = 32$$

Además #n⁰ = 38 Entonces:

$$A = \#p^+ + \#n^0$$

$$A = 32 + 38$$

$$A = 70$$

Pregunta N°3

Un átomo presenta 9 electrones en el cuarto nivel. Determine la carga nuclear.

RESOLUCIÓN:

Realizando la

$$#e^{-} = #p^{+} = 39$$

La carga nuclear es igual al #p+

$$Z = 39$$

Indique el número de orbitales llenos y semillenos de 16 S

Realizando la C.E. por subniveles

C.E.
$$_{16}S$$
: $1s^2$ $2s^2$ $2p^6$ $3s^2$ $3p^4$

Realizando la C.E. por orbitales

$$1s^2 2s^2 2p_x^2 2p_y^2 2p_z^2 3s^2 3p_x^2 3p_y^1 3p_z^1$$

Orbitales llenos: 7

Orbitales semillenos: 2

Un átomo es isóbaro con el $^{40}_{19}K$ isótono con el $^{43}_{21}Sc$. ¿Cuántos electrones acepta en total en los subniveles s?

$$A_X = A_K = 40$$

$$N_X = N_K =$$
22

$$Z_x = A - N = 18$$

Respecto al ₂₅Mn³⁺, indique lo incorrecto.

- A) Su distribución electrónica es $[Ar]4s^2 3d^3$.
- B) Posee 4 orbitales semillenos.
- C) Posee 22 electrones.
- D) Presenta hasta 3 niveles de energía. 1s² 2s²2p63s²3p64s² 3d5
- E) Tiene 12 electrones en su tercer nivel.

RESOLUCION:

- I) C.E.₂₅Mn = [Ar] $4s^23d^5$
- II) C.E. $25^{Mn^{+3}}$ = [Ar] $4s^0$ $3d^4$

- A)Falso Porque termina en $3d^4$
- B)Verdadero
- C) Verdadero

$$e^-$$
= 25-3=22

- D) Verdadero
- Si al perder el 45° solo tiene 3 niveles
- E) Verdadero
- 12 e^- en el tercer nivel

Cierto electrón está en

n=3, l=1, ml =0, ms =+ 1/2 Respecto a lo anterior, escriba verdadero (V) o falso (F) según corresponda.

- a. Está en el subnivel p. ()
- b. Presenta spín horario. ()
- c. 1s² 2s² 2p⁶ 3s² 3p² es la configuración del átomo si dicho electrón fuese el último. ()

RESOLUCIÓN:

n I m s
(3, 1, 0, +1/2)
$$3p^{2} \quad \uparrow \quad \uparrow \quad --- \quad --- \quad 0$$

- a) Verdadero
- b) Falso
- c) Verdadero

Para el tecnecio (Z=43), su configuración electrónica con un gas noble será:

RESOLUCIÓN:

$$C.E.:_{43} Tc = [Kr] 5s^2 4d^5$$