

Analysis

© Abhijit Gogulapati

Analysis of real life systems

- Real-life structures are complex multi-component systems with distributed mass and stiffness properties
- Key questions in analysis:
 - What is the goal of the analysis?
 - What essential features do we need to include?

Abhijit Gogulapati

What does analysis entail? Engineering sense and decision making understanding Engineering Physics Validation Compare predictions with reality or experiment

Key steps in analysis

Abhijit Gogulapati

- 1) Identify the physical system of interest as an object of analysis or design. Physical system may be a complete system, sub-system, or component. (Engineering judgement and decision making)
- 2) Conceive and sketch an idealized representation of the real life system. This is version of the real life system we use for all subsequent purposes. (**Abstraction**)
- Apply mathematical reasoning to convert the idealized representation to a mathematical model. (Mathematical modeling)
 - a) Formulation of governing equations,
 - b) Identification of boundary and initial conditions

and solution

- c) Application of selected solution procedures
- 4) Compare with physical observations from a laboratory model or actual system. (Validation)
- 5) Interpret comparisons physically in context of the original object of the analysis of design (Insight & understanding)
- 6) Return to step 1 or step 2 based on nature of discrepancy or improvement sought. (Iteration / Improvement)

Abhijit Gogulapati 25

Design of vibratory systems

- Identifying and / or anticipating the predominant features of motion and motion-induced quantities over the entire operational envelope is the most important challenge.
- Simple models that capture the predominant features of motion and motion-induced quantities with reasonable accuracy are extremely useful.
- · Relevant concepts:
 - (a) Concepts of force, momentum, and energy
 - (b) Kinematics and degrees of freedom
 - (c) Discretization
 - (d) Abstraction
 - (e) Formulation and solution

Abhijit Gogulapati 27

Kinematics, coordinates and degrees of Freedom

© Abhijit Gogulapati

What are kinematics?

- Kinematics is the branch of mechanics that deals with the geometry of motion.
- Kinematics includes a complete description of the motion, i.e., the positions, velocities, and accelerations, of all points within a system at all times.
- The description of motion is intimately dependent on the reference coordinate system in which the motion of observed.
- Coordinate system can be inertial (fixed or moving with constant velocity) or non-inertial (accelerating).
- It is advantageous to choose a reference coordinate system in which the description of kinematics is the simplest.
- However, one may describe the kinematics uniquely and effectively in several types of coordinate systems.

Abhijit Gogulapati 56

How to choose a reference coordinate system?

Oblique: Non-orthogonal intersecting linear axes.

Orthogonal intersecting curves: Confocal ellipses and hyperbolas

3-D spherical:

- $R \theta \phi$ for solid
- $\theta \lambda$ (latitude-longitude) for shell

© Abhijit Gogulapati

57

What are coordinates?

Coordinates provide a unique and complete measure of the position of a particle along each of the selected coordinate axes.

- Coordinates are mutually-independent functions of time.
- Coordinates and their temporal derivates are intimately tied to the specific coordinate frame.
- More than one physical coordinate system can be used to describe any given motion.

What are degrees of freedom?

- Consider a mechanical system of N free particles. Here, 'free' implies that they are not restricted in any manner.
- In a rectangular Cartesian coordinate system, we require a minimum of 3N coordinates (x, y, z values for each particle) to uniquely and completely describe the motion of each particle at any given time.
- Note that require a minimum of 3N coordinates are required even if any other coordinate system was used to describe the motion.
- Thus, n = 3N is a characteristic constant of the system, irrespective of the coordinate system used.
- This characteristic constant identifies the <u>number of degrees of freedom</u> or simply the degrees of freedom (DOF) of the system.

© Abhijit Gogulapati 59

What happens when some directions of motion are constrained?

- Now what happens if we impose m independent kinematic constraints on the particles?
- In this case, the total number of 'free' or 'unrestricted' coordinates is reduced to (3N m).
- Thus, in this case n = (3N m) is the characteristic constant, or the DOFs, of the system.
- Note that the DOFs of a given system are fixed (or constant) whether we are able to identify a set of n generalized coordinates or not.

© Abhijit Gogulapati 60

Example: Unconstrained and constrained motion

Consider a particle moving inside a sphere

We may use (x,y,z) or (r,θ,ϕ) coordinates to describe the motion. In this case, the relations are

$$x = r \sin \theta \cos \phi$$
 $y = r \sin \theta \sin \phi$ and $z = r \cos \theta$

Consider a particle moving on a sphere

Now suppose we confine the particle to move only along the surface of the sphere, or the spherical shell. Then, r = R = constant.

We still require (x,y,z) to fully describe the motion. We have to introduce a constraint that $x^2 + y^2 + z^2 = R^2$ along with the description.

Handling the constraint is very straightforward if (r, θ, ϕ) coordinates are used to describe the motion.

© Abhijit Gogulapati 61

Another example: Constrained and generalized coordinates

Consider a triple pendulum

The positions of the pendulum bobs can be uniquely described using 6 constrained coordinates: (x_i, y_i) , where i = 1, 2, 3. The constraints are

$$x_1^2 + y_2^2 = l_1^2$$

$$(x_2 - x_1)^2 + (y_2 - y_1)^2 = l_2^2$$

$$(x_3 - x_2)^2 + (y_3 - y_2)^2 = l_3^2$$

Alternately, one may choose the angular positions of the bobs, for example with respect to the vertical - θ_i , where i = 1, 2, 3 - as coordinate. In this case, only 3 coordinates are adequate to fully describe the positions of the bob.

Abhijit Gogulapati

Discretization

© Abhijit Gogulapati

All matter as a collection of particles

- One can attempt to describe the motion of any object theoretically by describing the motion of each particle that is present in the system.
- Problem we end up with a large number of particles when dealing with realistic structures!

Example:

The molar mass of iron is 55.845 grams per mole.

Each mole contains an Avagadro number of atoms, i.e. 6.023 x 10²³ atoms.

We end up with 6.023×10^{23} descriptions!

Most practical structures composed of iron weigh in the order of kilograms or more.

• To avoid impractical scenarios, we rely on the assumption of continuum and produce 'continuous' structures that have distributed thermo-mechanical properties.

© Abhijit Gogulapati 64

How do we visualize a continuous structure?

Example: Transverse vibration of beads on a string.

 Each arrangement shown in the picture is independent and cannot be obtained as a weighted combination of the other arrangements.

As the number of beads increases

- Geometry approaches a continuous shape
- Number of basic arrangements approaches infinity

© Abhijit Gogulapati

65

Can we analyze continuous structures?

The answer is 'No' except for very simple geometries.

Discretization is a necessity!

What is discretization?

It is a systematic procedure to convert an theoretically infinite DOF system to one that has finite DOFs.

Why does it work?

- Only a few degrees of freedom are prominent in any given situation.
- Adequate accuracy of representation can be achieved using only a limited number of DOFs.

Useful discretization procedures

- Distributed coordinates
- Lumping
- · Weighted residuals

© Abhijit Gogulapati

Distributed coordinates

Response variables are expressed as a weighted sum of predetermined shapes

The q's are the distributed coordinates

- ψ_j satisfies geometric (kinematic) boundary conditions
- q_j Time dependent amplitude of j^{th} shape in the response

+ • •

© Abhijit Gogulapati

Lumping procedures

Mass / stiffness of a continuous system is assumed to be concentrated or lumped at specific locations.

Distributed inertia loads

Discrete inertia loads

- Mass is lumped by selecting points on the structure to represent inertia forces to desired level of accuracy.
- Stiffness is lumped using either stiffness or flexibility approach.

© Abhijit Gogulapati

Finite element procedures are based on weighted residual methods

Model a continuum (fluid or solid) as an assembly of interconnected finite number of discrete elements

Plate or shell (2D)

- Rectangular Element

 3
 Triangular Element
- Divide structure into a number of interconnected segments (called *elements*) whose ends are connected at 'nodes'.
- Nodal displacements are the generalized coordinates.
- Deflection of the entire element is obtained by interpolating nodal displacements using user defined *shape functions*.
- Procedure involves formulation of the element (i.e., the repeating unit) and assembly based on connectivity.

© Abhijit Gogulapati