Multi-Variables

1

1 Multi-Variables

1.1 Inequality

Definition 1.1. A function $f: \mathbb{R}^n \to \mathbb{R}$ is called *convex* provided

$$f(\tau x + (1 - \tau)y) \le \tau f(x) + (1 - \tau)f(y)$$

for all $x, y \in \mathbb{R}^n$ and each $0 \le \tau \le 1$.

Theorem 1.2. Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is convex. Then for each $x \in \mathbb{R}^n$ there exists $r \in \mathbb{R}^n$ such that the inequality

$$f(y) \ge f(x) + r \cdot (y - x)$$

holds for all $y \in \mathbb{R}^n$.

1.2 Theorems

Definition 1.3. We say the boundary ∂U is C^k if for each point $x^0 \in \partial U$ there exist r > 0 and a C^k function $\gamma : \mathbb{R}^{n-1} \to \mathbb{R}$ such that – upon relabeling and reorienting the coordinates axes if necessary – we have

$$U \cap B(x^0, r) = \{x \in B(x^0, r) : x_n > \gamma(x_1, \dots, x_{n-1})\}.$$

Likewise, ∂U is C^{∞} if ∂U is C^k for $k=1,2,\cdots$, and ∂U is analytic if the mapping γ is analytic.

Definition 1.4. 1. If ∂U is C^1 , then along ∂U is defined the *outward pointing unit normal vector field*

$$\nu = (\nu^1, \cdots, \nu^n).$$

The unit normal at any point $x^0 \in \partial U$ is $\nu(x^0) = \nu = (\nu_1, \dots, \nu_n)$.

2. Let $u \in C^1(\overline{U})$. We call

$$\frac{\partial u}{\partial \nu} := \nu \cdot Du$$

the outward normal derivative of u.

Theorem 1.5 (Gauss-Green). 1. Suppose $u \in C^1(\overline{U})$. Then

$$\int_{U} u_{x_i} \, \mathrm{d}x = \int_{\partial U} u \nu^i \, \mathrm{d}S$$

2. (Divergence) We have

$$\int_{U} \operatorname{div} u \, \mathrm{d}x = \int_{\partial U} u \cdot v \, \mathrm{d}S$$

for each vector field $u \in C^1(\overline{U}; \mathbb{R}^n)$.

Proof. (1) follows from (2): apply (2) to
$$w = (0, \dots, u_{x_i}, \dots, 0)$$
.

Theorem 1.6 (Integration by parts formula). Let $u, v \in C^1(\overline{U})$. Then

(1.2.1)
$$\int_{U} u_{x_i} v \, \mathrm{d}x = -\int_{U} u v_{x_i} \, \mathrm{d}x + \int_{\partial U} u v \nu^i \, \mathrm{d}S, \quad (i = 1, \cdots, n).$$

Proof. Apply 1.5 (1) to uv.

Theorem 1.7 (Green). Let $u, v \in C^2(\overline{U})$. Then

- 1. $\int_U \Delta u \, dx = \int_{\partial U} \frac{\partial u}{\partial \nu} \, dS$,
- 2. $\int_U Dv \cdot Du \, dx = -\int_U u \Delta v \, dx + \int_{\partial U} \frac{\partial u}{\partial \nu} u \, dS$,
- 3. $\int_{U} u \Delta v v \Delta u \, dx = \int_{\partial U} u \frac{\partial v}{\partial \nu} v \frac{\partial u}{\partial \nu} \, dS.$

Proof. Using (1.2.1), with u_{x_i} in place of u and $v \equiv 1$, we see

$$\int_{U} u_{x_i x_i} \, \mathrm{d}x = \int_{\partial U} u_{x_i} \nu^i \, \mathrm{d}S.$$

Sum $i = 1, \dots, n$ to establish (1).

To derive (2), we employ (1.2.1) with v_{x_i} replacing v. (3) follows directly from (2).

Theorem 1.8 (Coarea formula). Let $u : \mathbb{R}^n \to \mathbb{R}$ be Lipschitz continuous and assume that for a.e. $r \in \mathbb{R}$ the level set

$$\{x \in \mathbb{R}^n : u(x) = r\}$$

is smooth, (n-1)-dimensional hypersurface in \mathbb{R}^n . Suppose also $f: \mathbb{R}^n \to \mathbb{R}$ is continuous and summable. Then

$$\int_{\mathbb{R}^n} f |Du| \, \mathrm{d}x = \int_{-\infty}^{\infty} \left(\int_{u=r} f \, \mathrm{d}S \right) \, \mathrm{d}r.$$

Theorem 1.9 (Polar coordinates). 1. Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuous and summable. Then

$$\int_{\mathbb{R}^n} f \, \mathrm{d}x = \int_0^\infty \left(\int_{\partial B(x_0, r)} f \, \mathrm{d}S \right) \mathrm{d}r$$

for each point $x_0 \in \mathbb{R}^n$.

2. In particular,

$$\frac{\mathrm{d}}{\mathrm{d}r} \left(\int_{B(x_0,r)} f \, \mathrm{d}x \right) = \int_{\partial B(x_0,r)} f \, \mathrm{d}S$$

for each r > 0.

Proof. (1) follows directly from 1.8.

Theorem 1.10. Consider a family of smooth, bounded regions $U(\tau) \subseteq \mathbb{R}^n$ that depend smoothly upon the parameter $\tau \in \mathbb{R}$. Write v for the velocity of the moving boundary $\partial U(\tau)$ and v for the outward pointing unit normal. If $f = f(x,\tau)$ is a smooth function, then

$$\frac{\mathrm{d}}{\mathrm{d}\tau} \int_{U(\tau)} f \, \mathrm{d}x = \int_{\partial U(\tau)} f v \cdot \nu \, \mathrm{d}S + \int_{U(\tau)} f_\tau \, \mathrm{d}x.$$

1.2 Theorems

3

If $U \subseteq \mathbb{R}^n$ is open and $\varepsilon > 0$, we write

$$U_{\varepsilon} := \{ x \in U : \operatorname{dist}(x, \partial U) > \varepsilon \}.$$

Definition 1.11. 1. Define $\eta \in C^{\infty}(\mathbb{R}^n)$ by

$$\eta(x) := \begin{cases} C \exp\left(\frac{1}{|x|^2 - 1}\right) & \text{if } |x| < 1\\ 0 & \text{if } |x| \ge 1 \end{cases}$$

the constant C > 0 selected so that $\int_{\mathbb{R}^n} \eta \, \mathrm{d}x = 1$.

2. For each $\varepsilon > 0$, set

$$\eta_{\varepsilon}(x) := \frac{1}{\varepsilon^n} \eta\left(\frac{x}{\varepsilon}\right).$$

We call η the standard mollifier. The function η_{ε} are C^{∞} and satisfy

$$\int_{\mathbb{R}^n} \eta_{\varepsilon} \, \mathrm{d}x = 1, \quad \operatorname{supp}(\eta_{\varepsilon}) \subseteq B(0, \varepsilon).$$

Definition 1.12. If $f: U \to \mathbb{R}$ is locally integrable, define its mollification

$$f^{\varepsilon} := \eta_{\varepsilon} * f \text{ in } U_{\varepsilon}.$$

That is,

$$f^{\varepsilon}(x) = \int_{U} \eta_{\varepsilon}(x - y) f(y) \, \mathrm{d}y = \int_{B(0,\varepsilon)} \eta_{\varepsilon}(y) f(x - y) \, \mathrm{d}y$$

for $x \in U_{\varepsilon}$.

Theorem 1.13. 1. $f^{\varepsilon} \in C^{\infty}(U_{\varepsilon})$.

- 2. $f^{\varepsilon} \to f$ a.e. as $\varepsilon \to 0$.
- 3. If $f \in C(U)$, then $f^{\varepsilon} \to f$ uniformly on compact subsets of U.
- 4. If $1 \le p < \infty$ and $f \in L^p_{loc}(U)$, then $f^{\varepsilon} \to f$ in $L^p_{loc}(U)$.

Proof. 1. Fix $x \in U_{\varepsilon}$, $i \in \{1, \dots, n\}$, and h so small that $x + he_i \in U_{\varepsilon}$ so small that $x + he_i \in U_{\varepsilon}$. Then

$$\frac{f^{\varepsilon}(x + he_{i}) - f^{\varepsilon}(x)}{h} = \frac{1}{\varepsilon^{n}} \int_{U} \frac{1}{h} \left[\eta \left(\frac{x + he_{i} - y}{\varepsilon} - \eta \left(\frac{x - y}{\varepsilon} \right) \right) \right] f(y) \, dy$$
$$= \frac{1}{\varepsilon^{n}} \int_{V} \frac{1}{h} \left[\eta \left(\frac{x + he_{i} - y}{\varepsilon} - \eta \left(\frac{x - y}{\varepsilon} \right) \right) \right] f(y) \, dy$$

for some open set $V \subset U$. As

$$\frac{1}{h} \left[\eta \left(\frac{x + he_i - y}{\varepsilon} \right) - \eta \left(\frac{x - y}{\varepsilon} \right) \right] \to \frac{1}{\varepsilon} \eta_{x_i} \left(\frac{x - y}{\varepsilon} \right)$$

uniformly on V, the partial derivative $f_{x_i}^{\varepsilon}(x)$ exists and equals

$$\int_{U} \eta_{\varepsilon,x_i}(x-y) f(y) \, \mathrm{d}y.$$

A similar argument shows that $D^{\alpha}f^{\varepsilon}(x)$ exists and

$$D^{\alpha} f^{\varepsilon}(x) = \int_{U} D^{\alpha} \eta_{\varepsilon}(x - y) f(y) \, dy, \quad (x \in U_{\varepsilon}),$$

for each multiindex α .

2. By Lebesgue's Differentiation Theorem,

$$\lim_{r \to 0} \frac{1}{\alpha(n)r^n} |f(y) - f(x)| dy = 0$$

for a.e. $x \in U$. Fix such a point x. Then

$$|f^{\varepsilon}(x) - f(x)| = \left| \int_{B(x,\varepsilon)} \eta_{\varepsilon}(x - y) [f(y) - f(x)] \, \mathrm{d}y \right|$$

$$\leq \frac{1}{\varepsilon^n} \int_{B(x,\varepsilon)} \eta\left(\frac{x - y}{\varepsilon}\right) |f(y) - f(x)| \, \mathrm{d}y$$

$$\leq C \frac{1}{\alpha(n)r^n} \int_{B(x,\varepsilon)} |f(y) - f(x)| \, \mathrm{d}y \to 0 \text{ as } \varepsilon \to 0.$$