新一代视频编解码技术 HEVC 研究 及应用前景展望

中国电影科学技术研究所 王春梅 崔 强

【摘要】随着数字视频应用产业链的快速发展,视频应用逐渐向高分辨率、高帧率、高压缩比的方向发展。为应对以上发展趋势,2010 年 1 月,ITU一T VCEG 和 ISO/IEC MPEG 联合成立 JCT一VC 联合协作小组,统一制定了下一代编码标准 HEVC。本文介绍 HEVC 编解码技术的发展现状,分析 ITU 参考代码 HM13. 0 的编码流程,比较 HM13. 0 在各种编码工具集下的编码效率,由此得出不同分辨率、不同帧率条件下为保证画面质量所需要的最低码率,在此基础上进一步比较 HEVC、VP9 以及当前主流编码标准 H. 264 之间的编码效率和编码质量,最后对 HEVC 在家庭影院、卫星直播、视频会议以及移动端的应用前景进行了展望。

【关键词】HEVC H. 264 VP9 HM13.0 高清 最低码率

HEVC 是两大组织成立的联合协作小组 JCT-VC研究出的下一代视频压缩编码方案,主要针对 高清和超高清的视频图像。HEVC 的目标是在 H. 264/AVC high profile 的基础上,对高分辨率、高 保真的视频图像压缩效率提高一倍,也就是在保证 相同视频图像质量的前提下,视频流的码流减少 50%。另一方面,HEVC 性能的提升是以复杂度的 显著增加为代价的,普遍认为 HEVC 的编码复杂度 是 H. 264/AVC 的 8 倍以上。HEVC 新视频编码方 案依然沿用 MPEGx 和 H. 26x 系列采用的混合编码 框架,使用帧间和帧内预测编码,消除时间域和空 间域的相关性; 使用变化编码, 对预测残差进行变 换编码以消除空间相关性:使用熵编码,消除统计 上的冗余度。HEVC 主要是在原 H. 264/AVC 的编 码框架上,提出更先进的改进技术,包括扩展的编 码单元尺寸、基于块的更灵活的帧间/帧内预测释 放、大尺寸块的变换和更加复杂的内插滤波器等, 来提供视频压缩率。

本文第一部分讲述 HEVC 编解码器发展现状; 第二部分简单阐述 HM 参考代码的编码流程,以及 各流程模块占用 CPU 时间的百分比;第三部分介绍针对同一测试序列在相同码率条件下 H. 265、VP9 与 H. 264 编码时间和图像质量(使用 PSNR表示)的差异;第四部分讨论 HM13.0 针对不同分辨率、不同帧率的视频序列的参考码率设置;第五部分对 HEVC 在数字电影及相关领域的应用前景进行展望。

1 HEVC 编解码发展现状

目前的 HEVC 标准共有三种模式: Main、Main10 和 Main Still Picture。Main Still Picture是对静态图像进行处理的模式; Main 模式支持 8bit色深(即红绿蓝三色各有 256 级色度,共 1670 万色); Main10 模式支持 10bit 色深,将会用于超高清电视(UHDTV)上。Main 和 Main10 模式都将色度采样格式限制为 4:2:0,预期 2014 年底标准会有所扩展,将会支持 4:2:2 和 4:4:4 采样格式(即提供了更高的色彩还原度)和多视图编码(例如 3D 立体视频编码)。事实上,H. 265 和 H. 264 标准的 High profile 在功能上存在重叠,例如 H. 264 中的 Hi10P 部分就支持 10bit 色深的视

频,Hi444P 还可以支持 4:4:4 色度抽样和 14bit 色深。H. 265 的优势在于用更少的带宽来提供同样 的功能,其代价就是编码的计算量会成倍数增长。

硬件编码器方面, 2014 年 NAB 大会上, 日本 广播公司 NHK 和三菱电机展示了其面向 8K 超高 清视频的 H. 265/HEVC 格式的实时硬件编码器, 整套系统非常庞大,使用了 NHK 和三菱电机开发 的大量定制芯片和电路。系统由 17 块主板组成,每 一块上边都配备一系列芯片(有的还额外有定制芯 片), 能实现 7680×256 分辨率 (最后一块为 7680 ×224))。它支持 H. 265 Main 10 Profile Level 6. 1 编码、Chroma 4:2:0 格式 10bit 色深, 并支持 3G/SDI 输入输出。也是在 NAB 2014 年会上, Harmonic 公司展示了其支持 120fps、4K 和实时 60fps、4K的 HEVC 编码器,其采用 Altera 最新的 4Kp60 H. 265 增强运动估算引擎 (EME) 来实现 4Kp60 内容,极大地提高了 Harmonic 纯压缩引擎 的效率和性能, Altera 的 Stratix V FPGA 结合 Altera 及其合作伙伴经过优化的 IP, 支持 Harmonic 市场领先的编码技术,实现了 4Kp60 实时性能,而 且还为今后的改进预留了足够的空间。

软件编码器方面, 2013 年 6 月 10 日, Vanguard Video 发表消息说,他们的 V. 265 专业 HEVC 编码器加入了 Main 10 profile 的支持,成为 第一个支持 Main 10 profile 的实时 HEVC 软件编码 器。2013年9月4日,Ittiam Systems在2013 IBC 上展示了实时 1080p HEVC 编码和 4K HEVC 解 码。Ittiam 的软件 HEVC 编码器在 Intel x86 平台上 支持UHD分辨率编码以及实时进行广播等级的 HD 1080p 编码,其软件 HEVC 解码器则是能在 Intel x86 和 ARM CortexTM平台上运行 4K/UHD 的实 时解码。国内进展方面,根据 DASCodec Studio 的 描述, 其研发的 HEVC/H. 265 高性能编码器 DAS265,能够充分利用通用多核计算平台的优势, 通过框架、算法、平台等多个层面的全面优化,在 保证 HEVC 高压缩性能的同时,实现了 1080p@ 25fps HEVC 实时编码器。上海交通大学 Media Lab 研发的 ZenHEVC, 可以高效地支持 1920×1080p@

 $60 \mathrm{fps}$ 和 3840×2160 @ $24 \mathrm{fps}$ 的视频压缩。在维持实时编码的前提下,与 HEVC 参考软件(HM10.0)相比,性能损失不到 $0.5 \mathrm{dB}$ 。国内外许多开源社区也都推出了能够支持 HEVC/H. 265 的编码器,如x265、HM 参考代码等。一些编解码工具厂家也在陆续升级自己的产品,以适应 HEVC 的发展,如Divx265、集成视骏编码插件的 GraphStudioNex 和集成 x265 的 MediaCoder 升级版等。

硬件解码器方面,博通公司的 Brahma BCM7445 芯片可以同时转码四个 1080P 视频数据流,或解析分辨率为 4096×2160 编码超高清视频; 松下的 HEVC 解码芯片目前则具备 30fps、150Mbps 码率的高清视频的解码能力,计划 9 月份问世的第二代解码芯片解码能力可以达到 60fps、180M 码率。

软件解码器方面,HM 的 decoder 能够将 hevc 码流解码为 yuv 序列,ffmepg 和 VLC 最新版本均内置了 x265 解码器,可以流畅解码标准 HEVC 流及经过容器封装的 HEVC 流,openHEVC 项目基于 FFMPEG 结构编写,代码也进行了优化。2013年 10月 16日,openHEVC 解码器被加入到 FFmpeg 中。

2 HEVC 编码流程分析

EncGOP::compressGOP(int,int,class TComList <class *="" tcompic=""> &,class TComList<class< th=""><th>31,120</th><th>0</th><th>99.91</th></class<></class>	31,120	0	99.91
TEncSlice::compressSlice(class TComPic * &) TEncCu::compressCU(class TComDataCU * &) TEncCu::xCompressCU(class TComDataCU * &,class TComDataCU * &,unsigned		0	99.64
		0	99.54
		2	99.4
■ TEncCu::xCompressCU(class TComDataCU * &,class TComDataCU * &,unsign	26,418	0	84.8
■ TEncCu::xCompressCU(class TComDataCU * &,class TComDataCU * &,un:	20,312	2	65.2
■ TEncCu::xCompressCU(class TComDataCU * &,class TComDataCU * &)	11,489	4	36.8
→ TEncCu::xCheckRDCostInter(class TComDataCU * &,class TComDataCU *	7,131	5	22.8
TEncCu::xCheckRDCostIntra(class TComDataCU * &,class TComDat	3,062	2	9.8
TEncCu::xCheckRDCostMerge2Nx2N(class TComDataCU * &,class	1,170	2	3.7
TComDataCU::initEstData(unsigned int,int,bool)	56	6	0.1
TComDataCU::copyToPic(unsigned char)	15	0	0.0
▶ TComYuv::copyFromPicYuv(class TComPicYuv *,unsigned int,unsign	13	0	0.0
TEncCu::xCopyYuv2Pic(class TComPic *,unsigned int,unsigned int,unsi	10	0	0.0
TEncCu::xComputeQP(class TComDataCU *,unsigned int)	6	1	0.0
→ TComDataCU::getSCUAddr(void)	5	1	0.0

图 1 xCompressCU 函数 4 叉树多层划分嵌套

比起 H. 264/AVC,H. 265/HEVC 提供了更多不同的工具来降低码率,以编码单位来说,H. 264中每个宏块(macroblock/MB)大小都是固定的 16×16 像素,而 H. 265 的编码单位可以选择从最小的 8×8 到最大的 64×64 。从图 1 能够看出,在 CU划分阶段,HM 从 xCompressCU 函数这里开始进

行 4 叉树多层划分嵌套,xCompressCU 在每个 64×64 块内被递归调用四次,代表对 $8 \times 8 \times 16 \times 16 \times 32 \times 32 \times 64 \times 64$ 的编码单元的处理。

HM 的编码流程可以简化为图 2 所示。GOP 进而会划分为 slice,有 raster 顺序的划分和 tile 的划分方式,对每个 slice 会调用 compressSlice 来对其选出最优的参数。然后调用 encodeSlice 来对其进行实际的熵编码工作。H. 265 中的熵编码使用跟H. 264/AVC High Profile 中一样的 CABAC 算法,不再使用 CAVLC。

图 2 HM13.0 编码流程简图

表 1 编码模块 CPU 占用统计表

函数	占用 CPU 百分比	
TEncCu:: xCheckRDCostInter	78. 5	
TEncCu:: xCheckRDCostIntra	11. 02	
TEncCu:: xCheckRDCostMerge2N * 2N	15. 9	
TComLoopFilter:: loopFilterPic	0. 06	
TEncSampleAdaptiveOffset:: SAOProcess	0. 04	
TEncSlice:: encodeSlice	0. 04	
TEncGOP:: xAttachSliceDatyaToNalUnit	0. 01	
TencSearch:: predInterSearch	41. 01	
TEncSearch:: estIntraPredQT	3, 85	
TEncSearch:: estIntraPredChromaQT	1. 04	
TEncSearch:; xMotionEstimation	31. 29	
TencSearch:: xEstimateMvPredAMVP	5. 81	
TencSearch:: xMergeEstimation	3. 22	
TComPrediction: motionCompensation	1. 04	
TencSearch:: encodeResAndCalRdInterCU	14. 48	
TEncSearch:: xEstimateResidualQT	7. 55	
TComTrQuant:: transformN * N	1. 74	
TComTrQuant:: xQuant	1. 51	

表 1 是使用性能分析工具分析 HM13. 0 参考代

码各个模块在整个编码中的复杂度(占用 CPU 百分比),测试按照标准 encoder __lowdelay __main. cfg 工具集进行。从表 1 可见,帧间预测占用将近80%的 CPU 时间,而帧内预测则只占用 11% 的时间。在整个预测过程中,运动估算占用约 30% 的 CPU 时间,自适应环路滤波和 SAO 总共占用的 CPU 时间只有 0.1%。

图 3 同码率条件下各编码工具集的视频压缩时间

图 4 同码率条件下各编码工具集的视频压缩质量

针对不同的应用场景,HM 提供了不同的编码工具集,主要包括:Allintra 工具集、lowdelay 工具集、lowdelay 工具集、lowdelay 工具集、lowdelay 工具集、lowdelay 工具集和 randomaccess 工具集。使用 Allintra 编码时,编码器只采用帧内编码,即所有的帧都是 I 帧,这种编解码耗时最短,编码质量最好,但是相比其他三种编码方式,同样 PSNR条件下码率最高,所以并不实用。使用 lowdelay 工具集时,默认情况下生成 I 帧和 B 帧。当采用lowdelay __p 工具集时,默认则会生成 I 帧和 P 帧,没有 B 帧。使用 randomaccess 工具集时,I 帧分布比较均匀,基本上每秒钟会有一个 I 帧,以符合randomaccess 的要求。图 3、图 4 分别表示在设定

比特率条件下各种工具集编码时间和编码质量的差异。本测试基于 $24 \mathrm{fps}$ 、 1920×1080 的 $2 \mathrm{k}$ 视频序列 ducks _take _off _1080p _420 _50 _500. yuv,取 其前 250 帧进行编码。可见 Random Access 工具集 时视频压缩时间仅仅大于 Allintra,但是视频质量 却是最高的。本文后续比较试验都是基于 Random-Access 工具集。

3 HEVC、VP9、H. 264 编码效率比较分 析

表 2 各编码器编码能力比较

编码器	Bitrate	Bit 深度	采样格式	输入格式	输出格式
HM13. 0	30M+	10	4:2:0	YUV 序列	Raw byteStrem
x265	12M	8	4:2:0	YUV 序列、 Y4M 序列	Raw byteStrem
Divx265	12M	8	4:2:0	YUV 序列, avi、avs	Divx265
x264	12M	8	4:2:0	YUV 序列、 Y4M 序列	Raw byteStream mkv、flv、mp4
VP9	30M+	8	4:2:0	YUV 序列	raw bytestream

D: YUU>D: VHM-13.0 VHM-13.0 Vbin \wc8 \win32 \release \TappEncoder.exe -wdt 1920 -hgt 1688 -c D: VHM-13.0 VHM-13.0 Vefgrencoder loudelay_P_main.cfg -o 1920.8.075.puc -fr 24 -f 250 -b d: YUU \ucks_take_off_10809_120 -fr 10809_10.0 Vefgrencoder loudelay_P_main.cfg -o 1920.8.0 Vefgrencoder loudelay_P_main.cfg -o 1920.8.0 Vefgrencoder -fr 10809_100 -fr

图 5 HM 参考代码编码参数设置和编码损耗

图 6 DivX265 编码参数设置和编码损耗

本小节对目前流行的开源软件解码器的编码时

的参数设置、CPU 和内存占用情况进行比较。表 2 是各流行编码器能力比较。大部分编码器的输入序列只能是 YUV 序列,且 x265 、 x264 和 Divx265 的码率只能到 12M 。

图 7 x265 编码参数设置和编码损耗

图 8 x264 编码参数设置和编码损耗

图 9 VP9 编码参数设置和编码损耗

图 $5\sim$ 图 9 表示各主流编码器的编码参数和资源占用率。总体来说,x265/x264 在程序并行化设计方面做得比较好,资源占用率最大,能够到达将近 100%的 CPU 占用率,从而其编码所用时间也比

HM 参考代码要快很多,其编码所用总时间也最短。 HM 是 ITU 标准的完全实现,编码损耗较小,编码 时间最长,但是同等码率条件下编码质量最好。

不同编码器编码 1080p、24fps、250 帧 YUV 序列 ducks _take _off _1080p. yu 所需时间如表 3 所示。编码后视频峰值信噪比如表 4 所示。从表 4 可以看出,6M-8Mbps 码率条件的 x265 其 PSNR 值与 x264 12Mbps 码率下的 PSNR 值大体相当,充分说明 HEVC 在相同画面质量下的视频压缩比比 h 264 提升了 30-50%。随着编码软件的不断升级和硬件编码器的后续出现,HEVC 与 h264 在编码时间上的差距将会缩小,HEVC 的优势将会进一步体现。另外,在同等码率条件下,VP9 的画面质量低于 H 265,但是高于 H 264。

表 3 不同编码器不同码率条件下编码时间比较

编码器 (s)	HM13. 0	Divx265	x265	x264	VP9
码率 (bps)					
2M	26, 061	260	77	14	7, 960
4 M	29, 975	318	88	19	9, 780
6M	32, 685	368	94	15	13, 260
8M	34, 030	404	99	14	15, 480
10M	37, 283	447	106	16	16, 200
12M	39, 082	460	113	20	16, 740

表 4 不同编码器不同码率条件下图片质量比较

编 码 器 码率 (bps)	HM13. 0	Divx265	x 265	x264 (r 2230)	VP9
2 M	27. 832	26. 211	26. 369	24. 366	26. 646
4 M	28. 970	28. 211	28. 152	25. 670	27. 725
6 M	29. 939	29. 072	28. 968	26. 478	28. 804
8M	30, 623	29. 729	29. 869	27. 342	29. 345
10M	31. 178	30. 272	30. 638	28. 163	29. 551
12M	31. 668	30. 723	31. 213	29. 608	30. 637
14M	32, 100	N/A	N/A	N/A	31. 746

4 不同分辨率、帧率视频序列参考码率

本小节使用 HM-RA 工具对不同分辨率、帧率的视频序列进行编码分析,得出为保证画面质量所需要的参考码率。如表 5 所示,当 PSNR 大于 30时,认为视频质量足够好。不同的视频序列,由于纹理复杂程度、运动剧烈程度不同,为保证画面质量所需要的码率大小也不同。例如,为确保画面质量,1080p、24fps 的视频序列,码率需在 7Mbps 以上。

5 HEVC 应用展望

HEVC 主要的应用场合有三种,第一种典型场合是数字电视广播应用,此时需要满足 RandomAccess 的需求:

表 5 不同分辨率、帧率的视频序列参考码率

YUV 序列	帧率 (fps)	分辨率	码率 (Mbps)	PSNR (db)
ducks <u>take</u> off <u>2160p.</u> yuv	50	3840×2160	19. 350	30. 501
crowdrun2160p. yuv	50	3840×2160	25. 741	31. 116
ducks <u>take</u> off <u>2160p.</u> yuv	24	3840×2160	9. 288	30. 600
crowdrun2160p. yuv	24	3840×2160	12, 356	31. 116
ducks _take _off _1080p. yuv	50	1920×1080	12. 011	30. 276
crowd _run _1080p. yuv	50	1920×1080	16. 069	31. 406
ducks _take _off _1080p. yuv	24	1920×1080	6. 761	30. 200
crowd _run _1080p. yuv	24	1920×1080	6. 438	31. 137
park _joy _720p. yuv	50	1280×720	7. 991	30. 193
in _to _tree _720p. yuv	50	1280×720	6. 996	30. 630
park _joy _720p. yuv	24	1280×720	3. 993	30. 305
in <u>to</u> <u>tree</u> <u>720p.</u> yuv	24	1280×720	3. 001	31. 264

第二种是对时延有严格限制的实时会话业务应用,此时禁止图像编码顺序重排列;第三种是视频存储领域。本章分别对其进行描述。

5.1 H. 265 使 4K 直播成为可能

采用 8psk、3/4 调制方式的 DVB-S2 卫星,其传输速率可达 90Mbps,如果采用更高的调制方式,则可高达 120Mbps,这得益于 H. 265 的高压缩比。在硬件编码器的支持下,用户可以通过卫星传输,观看 4K、60fps 的直播实况。

2013 年 10 月 29 日,Elemental Technologies 发表实时 4K HEVC 视频处理的支持,是业界第一 次的 4K HEVC 视频实时传输。Elemental 提供了 2013 年 10 月 27 日的大阪马拉松实况视频流,采用 了日本电信营运商 K—Opticom 设计的工作流,观 众可在大阪国际展览中心(Intex Osaka)观看此竞 赛的 4K HEVC 实况转播。

5.2 H. 265 能够促进电视高清化,并使手机流播高清视频成为可能

如表 5 所示,对使用 HEVC 编码的 2K 电影来说,在 8M 码率下,PSNR 可以达到 30 以上,加上 1M 的 16 路 PCM 声音信号,在一个有线电视高清频道就可以完成高清电影的实时传输播放,这就可以在现有带宽条件下,轻松支持全高清 1080P 电视。在网络时代,手机等移动设备的兴起,对流播视频的数据量提出了苛刻要求,H. 265 在播放 2K、4K、8K 电影时可以节约大量空间和带宽。

5.3 H 265 可以让蓝光光盘容量瞬间翻倍

对于蓝光来说,H. 265 的 HEVC 编码技术足以将巨大的 4K 电影压缩进一张蓝光光盘。尽管未来会出现 100GB 以上的大容量蓝光盘,但使用 HEVC 编码的蓝光盘更节省空间,还不用花钱去升级兼容更大容量蓝光盘的光驱。

5.4 H. 265 能够促进视频会议向高清化发展

对于视频会议这种视频应用技术,对视频的要求更高,不仅是远程通信技术,而且是双向实时交互式应用。由于用户群较为高端,因此在低延时视频编解码技术上,视频会议一直是个先行者。目前主流的 H. 264 视频会议系统最新的以 H. 264 High

Profile 为主,可以在 1Mbps 带宽下达到 1080P 30fps 实时通信,且能够让用户体验到很好的图像效果,也减少了网络传输高清的压力,目前应用得较为广泛。但是随着数字化高清的持续发展,用户的需求也越来越高,视频会议作为视频编解码的高端应用,当然是要继续发展到更高标准更优化的视频编解码新技术。采用 HEVC 编码技术,有望在512K 带宽下实现 1080P 30fps 高用户体验的实时通信,或者在 1Mbps 带宽下提供更好的画面质量。

6总结

本文分析了 HM 的编码流程及编码器关键路径,通过大量试验给出了不同分辨率和帧率的视频序列在使用 HEVC 编码时的参考码率,通过对H. 265、VP9 和 H. 264 的比较分析,得出与 H. 264相比,HEVC 能以 50%的码率提供相同质量的视频图像,与 VP9 相比,HEVC 在同等码率条件下视频质量明显优于后者的结论。但是目前 HEVC 技术还不够成熟,譬如没有提供 high profile,只能对 4:2:0 采样格式的视频序列进行编码、编码复杂度较高、部分软件编码器的编码能力只能达到12Mbps、码率控制不够精确等。预计 2014 年底,HEVC 标准将会有一个较大的更新,实用的软、硬件编码器届时也会出现。**

参考文献

- [1] Gary J. Sullivan, Jens Rainer Ohm, Woo Jin Han, Thomas Wiegand, Overview of the High Efficiency Video Coding (HEVC) Standard [J]. IEEE Trans. Circuitsand Systems for Video Technology 2012, 20 (12): 1649—1668.
- [2] Jens Rainer Ohm, Gary J. Sullivan, Heiko Schwarz, Thiow Keng Tan, Thomas Wiegand Comparison of the Coding Efficiency of Video Coding Standards Including High Efficiency Video Coding (HEVC) [J]. IEEE Trans. Circuits and Systems for Video Technology 2012, 20 (12): 1669—1684.
- [3] UGUR K, ANDERSSON K, FULDSETH A, etal High performance, low complexity video coding and the emerging HEVC standard [J]. IEEE Trans. Circuits and Systems for Video Technology 2010, 20 (12): 1688—1697.
- [4] 维基百科 [EB/OL], http://zh.wikipedia.org/wiki/HEVC