

UNIVERSIDAD DE GRANADA

SIMULACIÓN DE SISTEMAS

Práctica 4

Alejandro Manzanares Lemus

alexmnzlms@correo.ugr.es

12 de enero de 2021

Índice general

1.	Modelos de Simulación Dinámicos Continuos																2												
	1.1.	Tarea 1																											2
	1.2.	Tarea 2																											2
	1.3.	Tarea 3																											5
	1.4.	Tarea 4																											6
	1.5.	Tarea 5																											8
	1.6.	Tarea 6																										 1	1

Apartado 1: Modelos de Simulación Dinámicos Continuos

1.1: Tarea 1

El código del simulador se encuentra disponible en src/simulador_enfermedad.cpp y src/simulador.cpp.

1.2: Tarea 2

En las siguientes figuras podemos apreciar como evoluciona la población en el tiempo dependiendo del numero inicial de elementos susceptibles (S_0) . Para estas dos simulaciones se han establecido los parametros a = 0.001 y b = 0.125, por tanto b/a = 125. El valor inicial de I_0 es 10 para ambos casos.

Analicemos que ocurre cuando el valor de S_0 es superior o inferior a 125:

En la figura 1.1.a, $S_0 = 90$, por lo que el sistema consta de 100 personas, de las que 10 estan inicialmente infectadas y las 90 restantes son susceptibles a la enfermedad.

Podemos apreciar como el número de infectados (I) se reduce con el tiempo — I(t) tiene una pendiente negativa en la grafica —. De esta forma la enfermedad que simulamos no es capaz de infectar a un número significativo de la población

Figura 1.1: Resultados para S_0 en relación a a/b

Figura 1.2: Resultados para S_0 en relación a a/b

1.3: Tarea 3

Figura 1.3: Evolución del sistema acumulada

Figura 1.4: Plano S-I

1.4: Tarea 4

Figura 1.5: Evolución del sistema con los parámetros por defecto

Figura 1.6: Evolución del sistema disminuyendo a y aumentando b

1.5: Tarea 5

Figura 1.7: Evolución del sistema con los parámetros por defecto

Figura 1.8: Evolución del sistema con el mismo número de infectados que susceptibles

Figura 1.9: Evolución del sistema con el mismo número de susceptibles que recuperados

1.6: Tarea 6

Figura 1.10: Comparativa entre los dos métodos de intergración $\mathrm{dt}=0.1$

Figura 1.11: Comparativa entre los dos métodos de intergración d
t=0.05

Figura 1.12: Comparativa entre los dos métodos de intergración d
t $=0.01\,$

Figura 1.13: Comparativa entre los dos métodos de intergración d
t $=2\,$