What is claimed is:

- 1 1. A knitted wire mesh element, comprising: a combination of an annealed soft wire mesh and a hard wire mesh that does not soften at the elevated temperature of a catalytic converter, the soft wire mesh being present on the outer surface of the element.
 - 2. The element of claim 1, wherein the soft wire is flat.
- 1 3. The element of claim 1, wherein the soft wire is at least as heat resistant as type 309 stainless steel.
- 1 4. The element of claim 1, wherein the soft wire has an oxide coating on its surface.
- The element of claim 1, wherein the hard wire is precipitation-hardened.
- 1 6. The element of claim 1, wherein the element has a rectilinear geometry, an elliptical geometry, or a combination thereof.
 - 7. The element of claim 6, wherein the ring has a flange at one edge.
 - 8. The element of claim 6, wherein the ring is has multiple mesh layers.

- 9. A catalytic converter assembly, comprising: a substrate for a catalytic converter disposed in a housing and a wire mesh element disposed on the upstream side of the converter; said wire mesh element comprising a combination of an annealed soft wire mesh and a hard wire mesh that does not soften at the elevated temperature of a catalytic converter, the soft wire mesh being present on the outer surface of the element.
 - 10. The assembly of claim 9, wherein the monolith is elliptical, rectilinear, or a combination thereof in cross-section, and one wire mesh element is disposed at each end thereof.
 - 11. The assembly of claim 9, wherein the soft wire is flat.
 - 12. The assembly of claim 10, wherein the soft wire is flat.

2

3

- 1 13. The assembly of claim 9, wherein the hard wire is precipitation-2 hardened stainless steel.
- 1 14. The assembly of claim 10, wherein the hard wire is precipitation-2 hardened stainless steel.
- 1 15. The assembly of claim 11, wherein the hard wire is precipitation-2 hardened stainless steel.

	•	
•	4.0	
1	16.	A method for making a wire mesh seal element, comprising:
2		A. providing a first wire, knitting the first wire into a first wire mesh
3		tube, and annealing the first wire mesh tube;
4		B. providing a second wire, knitting the second wire as a second
5		knitted wire mesh tube;
6		C. disposing the first wire mesh tube within the second wire mesh
7	*	tube;
8		D. rolling up the tube within a tube structure to produce a ring having
9		the mesh of the first wire on the outside; and
10		E. compressing the ring into a desired geometry.
1	17.	The method of claim 16, further comprising in step A., prior to knitting,
2	the step o	f flattening the first wire.
1	18.	The method of claim 17, wherein the compressing step is performed in
2	a mold.	
	*-	
1	19.	The method of claim 16, wherein the second wire is provided as
2	precipitation	on-hardened stainless steel.
1	20.	The method of claim 16, wherein the second wire mesh is knitted as a
2		the first wire mesh tube.
		(
1	21.	The method of claim 16, wherein the tube with a tube structure has
2	·	ends, and each end is rolled up.
_	opposition	chas, and cach cha is relica up.

22. The method of claim 16, wherein the rolled up tube within a tube structure is inverted to place the first wire mesh on the outside.

2

23. A knitted wire mesh element, made by the process of: providing a first knitted mesh tube of a soft wire inside of a second knitted mesh tube of a precipitation-hardened wire; rolling up and inverting the tubes to produce a multilayered ring; and pressing the ring into a desired geometry.