Bölüm 1. Ardışıl Devreler

Flip Flopların Uyarma Tablolarının Oluşturulması

Ardışıl Devrelerin Analizi Ardışıl bir devrenin durum tablosuna bakılarak gerçeklenmesi

Flip Flopların Uyarma Tablolarının Oluşturulması

Uyarma tablosu, clock geçişiyle birlikte flip flobun çıkışının değişimini ve bu değişimin olabilmesi için girişlerine ne uygulanması gerektiğini gösteren bir tablodur.

D tipi flip flop için uyarma tablosu: D flip flobunun çıkışının, clock geçişinden önceki D girişine uygulanan değere eşit olduğu ve karakteristik denkleminin de Q = D olduğu söylenmişti. Buna göre D flip flobunun uyarma tablosu aşağıda verilmiştir.

qQ	D
0 0	0
0 1	1
1 0	0
1 1	1

Flip Flopların Uyarma Tablolarının Oluşturulması

SR tipi flip flop için uyarma tablosu: SR flip flobunun daha önceden elde ettiğimiz doğruluk tablosundan yola çıkarak uyarma tablosunu elde edebiliriz.

SR	q	Q
0 0	0	0
0 0	1	1
0 1	0	0
0 1	1	0
1 0	0	1
10	1	1
1 1	0	_
1 1	1	_

q Q	SR
0 0	0 x
0 1	1 0
1 0	0 1
1 1	x 0

Bu geçişin sağlanabilmesi için için flip flobun ya durumunu koruması ya da reset edilmesi gereklidir.

$$SR = 00$$
$$SR = 01$$

Öyleyse SR = 0x olmalıdır.

Flip Flopların Uyarma Tablolarının Oluşturulması

T tipi flip flop için uyarma tablosu: T flip flobu, şayet T=0 ise mevcut durumunu koruyor, T=1 ise mevcut durumunun tersini alıyordu. Bu bilgiden yola çıkarak uyarma tablosunu kolaylıkla oluşturabiliriz.

qQ	T
0 0	0
0 1	1
1 0	1
1 1	0

JK tipi flip flop için uyarma tablosu:

q Q	JK	_
0 0	0 x	\Rightarrow Ya JK= 00 ya da JK=01 olmalıdır.
0 1	1 x	⇒Ya JK= 10 ya da JK=11 olmalıdır.
10	x 1	\Rightarrow Ya JK= 01 ya da JK=11 olmalıdır.
1 1	x 0	\Rightarrow Ya JK= 00 ya da JK=10 olmalıdır.

Ardışıl Devrelerin Analizi

Analiz işlemini 3 aşamada yapabiliriz:

- 1. Çıkışlar ve bir sonraki durumlarla ilgili denklemlerin çıkarılması.
- 2. Giriş, çıkış ve bir sonraki durumları gösteren durum tablosunun çıkarılması. Bu tablo bir sonraki clock saykılında bellek elemanlarına ne yükleneceğini gösterir.
- 3. Durum tablosundan da tüm durumları içeren durum diyagramının oluşturulması.

Ardışıl Devrelerin Analizi

1 giriş ve 1 çıkış içeren bir sistem için bu tabirlerin ne manaya geldiği inceleyelim;

Şimdiki	Sonraki			
Durum	Durum		Çıkış (z)	
	x=0	x=1	x=0	x=1
A	A	В	0	0
В	С	В	0	0
C	D	A	1	0
D	A	D	0	0
	Durum tablosu			
Durumlar				

Durum diyagramı

Ardışıl Devrelerin Analizi

Örnek:

Devreye bakarak girişleri, çıkışları ve bellek elemanlarını söyleyebiliriz. Gerek kombinasyonel gerekse ardışıl devrelerde x ile girişler z ile de çıkışlar belirtilir. Bu devre 1 girişe 1 çıkışa ve 2 tane de bellek elemanına sahiptir.

Örnek (devamı-1):

Birinci adım olarak durum denklemlerinin çıkartılması gereklidir.

D flip flobu için Q = D olduğundan, $Q_1 = D_1$ ve $Q_2 = D_2$ dir.

$$D_1 = x.q_1 + x.q_2 = x.(q_1 + q_2)$$

$$D_2 = x.q_1'$$

O halde
$$Q_1 = x.(q_1+q_2)$$
 $Q_2 = x.q_1$

Çıkışımız
$$z = x' \cdot (q_1 + q_2)$$

Örnek (devamı-2):

İkinci adım, durum denklemlerine bakarak durum tablosunun oluşturulmasıdır;

$$Q_1 = x.(q_1+q_2)$$

 $Q_2 = x.q_1$

$$z = x'.(q_1 + q_2)$$

_	Şimdiki Durum		Sonraki Durum		Çıkış
$\overline{q_1}$	$\overline{q_2}$	X	\mathbf{Q}_{1}	Q_2	Z
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

Şimdiki	So	nraki		
Durum	Duru	$m(Q_1Q_2)$	Çıkı	
$\mathbf{q_1} \; \mathbf{q_2}$	$\mathbf{x} = 0$	x = 1	$\mathbf{x} = 0$	x = 1
(A) 0 0	0 0	0 1	0	0
(B) 0 1	0 0	11	1	0
(C)1 0	0 0	10	1	0
(D)1 1	0 0	10	1	0

Örnek (devamı-3):

Son adım durum diyagramının çizilmesidir;

Şimdiki	So	nraki		
Durum	Durui	$m(Q_1Q_2)$	Çıkı	
$q_1 q_2$	$\mathbf{x} = 0$	$\mathbf{x} = 1$	$\mathbf{x} = 0$	x = 1
0 0	0 0	0 1	0	0
0 1	0 0	1 1	1	0
10	0 0	1 0	1	0
11	0 0	1 0	1	0

Örnek (devamı-4):

Şayet giriş aşağıdaki gibi uygulanırsa devrenin davranışı, zaman ekseninde şu şekilde olur;

Ali Gülbağ

11

Ardışıl Bir Devrenin Durum Tablosuna Bakılarak Gerçeklenmesi

Örnek: Aşağıdaki durum tablosunu, flip floplar kullanarak gerçekleyelim.

	Sonraki			
Şimdiki	Durum		Çıkış	$\mathbf{S}(\mathbf{Z})$
Durum	x=0	x=1	x=0	x=1
A	A	В	0	0
В	C	В	0	0
C	D	A	1	0
D	A	D	0	0

Durum tablosunda 4 durum olduğundan 2 bellek elemanı (flip flop) gereklidir. Durumları şu şekilde kodlayabiliriz ;

Durumlar	$\mathbf{y_1}\mathbf{y_2}$	$y_1 y_2$
A	0 0	0 0
В	0 1	0 1
C	1 0	1 1
D	1 1	1 0

Örnek (devamı-1):

Durumlar	$y_1 y_2$	
A	0 0	
В	0 1	
C	1 0	•
D	1 1	•

	Soni	raki		
Şimdiki	Dur	rum	ım Çıkış (z)	
Durum	x=0	x=1	x=0	x=1
A	A	В	0	0
В	C	В	0	0
C	D	A	1	0
D	A	D	0	0

Şimdiki	Sonraki			
Durum	Durum (Y ₁ Y ₂)		Çıkış	s(z)
y_1y_2	x=0	x=1	x=0	x=1
0 0	0 0	0 1	0	0
0 1	1 0	0 1	0	0
10	1 1	0 0	1	0
11	0 0	1 1	0	0

Örnek (devamı-2):

durum tablosu

ı	ı	1
Şimdiki	Sonraki	
Durum	Durum (Y_1Y_2)	(z) Cıkış (z)
y_1y_2	x=0 $x=1$	x=0 $x=1$
0 0	00 01	0 0

0

0

0

0 1

0 0

1 1

1 0

0.0

	\Rightarrow
•	

q Q	JK
0 0	0 x
0 1	1 x
1 0	x 1
1 1	x 0

doğruluk tablosu

	Şimdiki Durum	Sonraki Durum	Uya İşlev		Çıkış
	$\mathbf{x} \mathbf{y_1} \mathbf{y_2}$	$\mathbf{Y_1Y_2}$	$J_1 K_1$	J_2K_2	Z
>	000	0 0	0 x	0 x	0
	0 0 1	10	1 x	x 1	0
	0 1 0	11	x 0	1 x	1
	0 1 1	0 0	x 1	x 1	0
	100	0 1	0 x	1 x	0
	1 0 1	0 1	0 x	x 0	0
	110	0 0	x 1	0 x	0
	1 1 1	1 1	x 0	x 0	0

01

10

11

Örnek (devamı-3):

Şimdiki Durum	Sonraki Durum	Uyarma İşlevleri	Çıkış
$\mathbf{x} \mathbf{y_1} \mathbf{y_2}$	$\mathbf{Y_1Y_2}$	$\mathbf{J_1}\mathbf{K_1}\ \mathbf{J_2}\mathbf{K_2}$	Z
000	0 0	0 x 0 x	0
0 0 1	10	1 x x 1	0
0 1 0	11	x 0 1 x	1
0 1 1	0 0	x 1 x 1	0
100	0 1	0 x 1 x	0
1 0 1	0 1	0 x x 0	0
1 1 0	0 0	x 1 0 x	0
111	1 1	x 0 x 0	0

		J_2		
x y ₁ y ₂	00	01	11	10
0	0	х	X	1)
1	(1	X)	Х	0

$$J_2 = xy_1' + x'y_1 = x \oplus y_1$$

		K_2		
x y ₁ y ₂	00	01	11	10
0	X	1	1	X
1	Х	0	0	Х

$$K_2 = x'$$

		J ₁		
x y ₁ y ₂	00	01	11	10
0	0	1	X)	Х
1	0	0	х	х

$$J_1 = x'y_2$$

			K_1			
	x y ₁ y ₂	00	01	11	10	
	0	Х	(X	1)	0	
_	1	ж	Х	0	(1	

$$K_1 = xy_2' + x'y_2 = x \oplus y_2$$

Doğruluk tablosundan; $z = x'y_1y_2'$

Örnek (devamı-4):

$$J_1 = x'y_2$$

$$K_1 = xy_2' + x'y_2 = x \oplus y_2$$

$$J_2 = xy_1' + x'y_1 = x \oplus y_1$$

$$K_2 = x$$

Ali Gülbağ