2.2 Berechnung von Übergangswahrscheinlichkeiten

Wir beschreiben die Situation zum Zeitpunkt t durch einen Zustandsvektor q_t (den wir als Zeilenvektor schreiben). Die i-te Komponente $(q_t)_i$ bezeichnet dabei die Wahrscheinlichkeit, mit der sich die Kette nach t Schritten im Zustand i aufhält. Es gilt

$$\Pr[X_{t+1} = k] = \sum_{i=0}^{n-1} \Pr[X_{t+1} = k \mid X_t = i] \cdot \Pr[X_t = i],$$

also

$$(q_{t+1})_k = \sum_{i=0}^{n-1} p_{ik} \cdot (q_t)_i,$$

bzw. in Matrixschreibweise

$$q_{t+1} = q_t \cdot P.$$

Mit der Matrixschreibweise können wir q_t einfach durch die Startverteilung q_0 ausdrücken:

$$q_t = q_0 \cdot P^t .$$

Ebenso gilt wegen der Zeithomogenität allgemein für alle $t, k \in \mathbb{N}$:

$$q_{t+k} = q_t \cdot P^k.$$

Die Einträge von P^k geben an, mit welcher Wahrscheinlichkeit ein Übergang vom Zustand i zum Zustand i in genau k Schritten erfolgt.

$$p_{ij}^{(k)} := \Pr[X_{t+k} = j \mid X_t = i] = (P^k)_{ij}.$$

Exponentiation von Matrizen

Wenn P diagonalisierbar ist, so existiert eine Diagonalmatrix D und eine invertierbare Matrix B, so dass $P=B\cdot D\cdot B^{-1}$ gilt. Diese erhalten wir durch Berechnung der Eigenwerte und Eigenvektoren von P und durch Transformation von P in den Raum der Eigenvektoren.

Dann gilt

$$P^k = B \cdot D^k \cdot B^{-1} .$$

Beispiel 132

$$P = \begin{pmatrix} 0.8 & 0.2 \\ 0.1 & 0.9 \end{pmatrix}$$

Durch Bestimmung der Nullstellen des charakteristischen Polynoms der Matrix $(P-\lambda\cdot I)$ erhalten wir die Eigenwerte 0,7 und 1, sowie die zugehörigen (rechten) Eigenvektoren

$$u_1 = \begin{pmatrix} -2\\1 \end{pmatrix} \text{ und } \nu_2 = \begin{pmatrix} 1\\1 \end{pmatrix}.$$

Beispiel 132

Damit

$$D = \begin{pmatrix} 0.7 & 0 \\ 0 & 1 \end{pmatrix} \text{ und } B = \begin{pmatrix} -2 & 1 \\ 1 & 1 \end{pmatrix}$$

und

$$B^{-1} = \begin{pmatrix} -\frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix}.$$

Damit ergibt sich beispielsweise

$$P^{3} = \begin{pmatrix} -2 & 1\\ 1 & 1 \end{pmatrix} \begin{pmatrix} 0.7^{3} & 0\\ 0 & 1^{3} \end{pmatrix} \begin{pmatrix} -\frac{1}{3} & \frac{1}{3}\\ \frac{1}{3} & \frac{2}{3} \end{pmatrix} \approx \begin{pmatrix} 0.562 & 0.438\\ 0.219 & 0.781 \end{pmatrix}$$

2.3 Ankunftswahrscheinlichkeiten und Übergangszeiten

Bei der Analyse von Markov-Ketten treten oftmals Fragestellungen auf, die sich auf zwei bestimmte Zustände i und j beziehen:

- Wie wahrscheinlich ist es, von i irgendwann nach j zu kommen?
- Wie viele Schritte benötigt die Kette im Mittel, um von i nach j zu gelangen?

Definition 133

Die Zufallsvariable

$$T_{ij} := \min\{n \ge 0 \mid X_n = j, \text{ wenn } X_0 = i\}$$

zählt die Anzahl der Schritte, die von der Markov-Kette für den Weg von i nach jbenötigt werden. T_{ij} nennen wir die Übergangszeit (engl. hitting time) vom Zustand izum Zustand j. Wenn j nie erreicht wird, setzen wir $T_{ij} = \infty$.

Ferner definieren wir $h_{ij} := \mathbb{E}[T_{ij}]$.

Die Wahrscheinlichkeit, vom Zustand i nach beliebig vielen Schritten in den Zustand jzu gelangen, nennen wir Ankunftswahrscheinlichkeit f_{ij} . Formal definieren wir

$$f_{ij} := \Pr[T_{ij} < \infty].$$

Im Fall i=j gilt $T_{ii}=0$ und somit auch $h_{ii}=0$, sowie $f_{ii}=1$. Anschaulich ist dies klar: Wenn Anfangs- und Zielzustand identisch sind, so ist die Übergangszeit gleich Null. Für viele Zwecke ist es andererseits auch interessant zu messen, wie lange es dauert, bis Zustand i zu einem späteren Zeitpunkt wieder besucht wird. Wir ergänzen Definition 133 für diesen Fall.

Definition 134

Die Zufallsvariable

$$T_i := \min\{n \ge 1 \mid X_n = i, \text{ wenn } X_0 = i\}$$

zählt die Anzahl Schritte, die von der Markov-Kette benötigt werden, um von i nach izurückzukehren (Rückkehrzeit, engl. recurrence time). Der Erwartungswert sei $h_i := \mathbb{E}[T_i]$. Die Wahrscheinlichkeit, mit der T_i einen endlichen Wert annimmt, nennt man Rückkehrwahrscheinlichkeit:

$$f_i := \Pr[T_i < \infty].$$

Beispiel zur Berechnung von f_{ij} und h_{ij}

Wir betrachten die obige Markov-Kette. Einige Besonderheiten fallen sofort auf:

• Beginnt man im Zustand 0, so kann man niemals einen der übrigen Zustände erreichen. Die Übergangszeiten T_{01} , T_{02} und T_{03} sind daher ∞ .

Beispiel 135 $1,0 \underbrace{0,5}_{0,5} \underbrace{0,5}_{0,5} \underbrace{0,5}_{0,5}$

ullet Beginnt man im Zustand 1, so entscheidet sich im ersten Schritt, ob die Kette sich zukünftig im "linken Teil" (Zustand 0) oder im "rechten Teil" (Zustand 2 und 3) aufhält. Für die Übergangszeit T_{10} gilt daher

$$T_{10} = \begin{cases} 1 & \text{falls } X_1 = 0, \\ \infty & \text{falls } X_1 = 2. \end{cases}$$

Wegen $\Pr[X_1 = 0 \mid X_0 = 1] = 0.5$ folgt $f_{10} = 0.5$ und $\mathbb{E}[T_{10}] = \infty$.

 Beginnt man im Zustand 2 oder 3, so wird die Kette auch weiterhin zwischen den Zuständen 2 und 3 "hin und her pendeln". Genauer: Die Anzahl der Schritte, in denen die Kette im Zustand 3 bleibt, ist geometrisch verteilt mit Parameter 0.5. Der Zustand 3 wird daher im Mittel nach 1/0.5 = 2Schritten verlassen. Da Zustand 2 der einzige Nachbar von 3 ist, folgt $h_{32}=2$ und somit insbesondere auch $f_{32} = 1$.

Lemma 136

Für die erwarteten Ubergangs-/Rückkehrzeiten gilt

$$h_{ij}=1+\sum_{k\neq j}p_{ik}h_{kj} \mbox{ f\"ur alle } i,j\in S, i\neq j,$$

$$h_{j}=1+\sum_{k\neq j}p_{jk}h_{kj} \ ,$$

sofern die Erwartungswerte h_{ij} und h_{kj} existieren.

Für die Ankunfts-/Rückkehrwahrscheinlichkeiten gilt analog

$$f_{ij}=p_{ij}+\sum_{k
eq j}p_{ik}f_{kj}$$
 für alle $i,j\in S, i
eq j;$
$$f_{j}=p_{jj}+\sum_{k
eq j}p_{jk}f_{kj}\;.$$

Beweis:

Sei $i \neq j$. Wir bedingen auf das Ergebnis des ersten Schritts der Markov-Kette und erhalten aufgrund der Gedächtnislosigkeit $\Pr[T_{ij} < \infty \mid X_1 = k] = \Pr[T_{kj} < \infty]$ für $k \neq j$ sowie $\Pr[T_{ij} < \infty \mid X_1 = j] = 1$.

$$\begin{split} f_{ij} &= \Pr[T_{ij} < \infty] = \sum_{k \in S} \Pr[T_{kj} < \infty \mid X_1 = k] \cdot p_{ik} \\ &= p_{ij} + \sum_{k \neq j} \Pr[T_{kj} < \infty] \cdot p_{ik} = p_{ij} + \sum_{k \neq j} p_{ik} f_{kj} \,. \end{split}$$

Die Ableitung für f_j (also i = j) ist analog.

Beweis:

Sei wiederum $i \neq j$. Wegen der Gedächtnislosigkeit folgt $\mathbb{E}[T_{ij} \mid X_1 = k] = 1 + \mathbb{E}[T_{kj}]$ für $k \neq j$. Ferner gilt $\mathbb{E}[T_{ij} \mid X_1 = j] = 1$.

Bedingen wir wieder auf das Ergebnis des ersten Schritts, so folgt (siehe Satz 36):

$$\begin{split} h_{ij} &= \mathbb{E}[T_{ij}] \ = \ \sum_{k \in S} \mathbb{E}[T_{ij} \mid X_1 = k] \cdot p_{ik} \\ &= p_{ij} + \sum_{k \neq j} (1 + \mathbb{E}[T_{kj}]) \cdot p_{ik} \ = \ 1 + \sum_{k \neq j} h_{kj} \cdot p_{ik}. \end{split}$$

Wiederum ist die Herleitung für h_i analog.

Für die Berechnung der Ubergangszeiten für die Zustände 2 und 3 erhalten wir die Gleichungen

$$h_2 = 1 + h_{32}, \qquad h_3 = 1 + \frac{1}{2} \cdot h_{23}$$

und

$$h_{23} = 1,$$
 $h_{32} = 1 + \frac{1}{2}h_{32} = 2.$

Durch Lösen dieses Gleichungssystems erhalten wir die Werte $h_2 = 3$, $h_3 = 1.5$, $h_{23} = 1$ und $h_{32} = 2$, die man leicht verifiziert. Die Ankunftswahrscheinlichkeiten lassen sich analog herleiten. Man erhält $f_2 = f_3 = f_{23} = f_{32} = 1$.

2.4 Das Gambler's Ruin Problem

Anna und Bodo spielen Poker, bis einer von ihnen bankrott ist. A verfügt über Kapital a, und B setzt eine Geldmenge in Höhe von m-a aufs Spiel. Insgesamt sind also m Geldeinheiten am Spiel beteiligt. In jeder Pokerrunde setzen A und B jeweils eine Geldeinheit. A gewinnt jedes Spiel mit Wahrscheinlichkeit p. B trägt folglich mit Wahrscheinlichkeit q:=1-p den Sieg davon. Wir nehmen an, dass diese Wahrscheinlichkeiten vom bisherigen Spielverlauf und insbesondere vom Kapitalstand der Spieler unabhängig sind.

Wir modellieren das Spiel durch die Markov-Kette

A interessiert sich für die Wahrscheinlichkeit, mit der sie B in den Ruin treibt, also für die Wahrscheinlichkeit $f_{a,m}$ (wir schreiben hier der Deutlichkeit halber $f_{i,j}$ statt f_{ij}).

Wir erhalten:

$$f_{i,m} = p \cdot f_{i+1,m} + q \cdot f_{i-1,m} \text{ für } 1 \le i < m-1,$$

$$f_{m-1,m} = p + q \cdot f_{m-2,m},$$

$$f_{0,m} = 0.$$
(10)

Wir wollen nun $f_{i,m}$ allgemein als Funktion von m berechnen. Dazu beobachten wir zunächst, dass wir (10) wegen $f_{m,m}=1$ umschreiben können zu

$$f_{i+1,m} = (1/p) \cdot f_{i,m} - (q/p) \cdot f_{i-1,m} \text{ für } 1 \le i < m.$$
 (11)

Wir ergänzen (11) um die Anfangswerte

$$f_{0,m} = 0 \text{ und } f_{1,m} = \xi.$$

(Für den Moment fassen wir ξ als Variable auf. Nach Lösung der Rekursion werden wir ξ so wählen, dass die Bedingung $f_{m,m}=1$ erfüllt ist.)

Als Lösung dieser linearen homogenen Rekursionsgleichung 2. Ordnung (11) ergibt sich für $p \neq 1/2$:

$$f_{i,m} = \frac{p \cdot \xi}{2p-1} \cdot \left(1 - \left(\frac{1-p}{p}\right)^i\right).$$

Setzen wir nun i=m, so folgt aus $f_{m,m}=1$, dass

$$\xi = \frac{2p - 1}{p \cdot \left(1 - \left(\frac{1 - p}{p}\right)^m\right)}$$

gelten muss.

Insgesamt erhalten wir somit das Ergebnis:

$$f_{j,m} = rac{1-\left(rac{1-p}{p}
ight)^j}{1-\left(rac{1-p}{p}
ight)^m}.$$

Für p = 1/2 verläuft die Rechnung ähnlich.

Beispiel 138

Wir wollen berechnen, wie lange A und B im Mittel spielen können, bis einer von ihnen bankrott geht.

 $h_{a,m}$ eignet sich dazu i.a. nicht (warum?).

Wir betrachten stattdessen:

 $T'_i :=$, Anzahl der Schritte von Zustand i nach Zustand 0 oder m"

und setzen

$$d_i := \mathbb{E}[T_i'].$$

Offensichtlich gilt $d_0 = d_m = 0$ und für $1 \le i < m$

$$d_i = qd_{i-1} + pd_{i+1} + 1 .$$

Beispiel (Forts.)

Wir betrachten nun nur den Fall p = q = 1/2 und erhalten

$$d_i = i \cdot (m-i)$$
 für alle $i = 0, \dots, m$.

Wegen $d_i \leq mi \leq m^2$ folgt also, dass das Spiel unabhängig vom Startzustand im Mittel nach höchstens m² Schritten beendet ist.

2.5 Stationäre Verteilung

Reale dynamische Systeme laufen oft über eine lange Zeit. Für solche Systeme ist es sinnvoll, das Verhalten für $t \to \infty$ zu berechnen.

Wir betrachten wieder die Markov-Kette aus unserem Beispiel. Wir hatten gezeigt, dass für die Übergangsmatrix P gilt:

$$P = B \cdot D \cdot B^{-1} = \begin{pmatrix} -2 & 1 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} \frac{7}{10} & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} -\frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix}.$$

Daraus folgt

$$P^{t} = B \cdot D^{t} \cdot B^{-1} = \begin{pmatrix} -2 & 1 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} \left(\frac{7}{10}\right)^{t} & 0 \\ 0 & 1^{t} \end{pmatrix} \cdot \begin{pmatrix} -\frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix},$$

und für $t \to \infty$ erhalten wir

$$\lim_{t \to \infty} P^t = \begin{pmatrix} -2 & 1\\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0\\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} -\frac{1}{3} & \frac{1}{3}\\ \frac{1}{3} & \frac{2}{3} \end{pmatrix} = \begin{pmatrix} \frac{1}{3} & \frac{2}{3}\\ \frac{1}{3} & \frac{2}{3} \end{pmatrix}.$$

Für eine beliebige Startverteilung $q_0 = (a, 1 - a)$ folgt

$$\lim_{t \to \infty} q_t = \lim_{t \to \infty} q_0 \cdot P^t = (a, 1 - a) \cdot \begin{pmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix}$$
$$= \left(\frac{1}{3}a + \frac{1}{3}(1 - a), \frac{2}{3}a + \frac{2}{3}(1 - a)\right) = (\frac{1}{3}, \frac{2}{3}).$$

Das System konvergiert also unabhängig vom Startzustand in eine feste Verteilung. Der zugehörige Zustandsvektor $\pi = (\frac{1}{2}, \frac{2}{3})$ hat eine interessante Eigenschaft:

$$\pi \cdot P = (\frac{1}{3}, \frac{2}{3}) \cdot \begin{pmatrix} 0.8 & 0.2 \\ 0.1 & 0.9 \end{pmatrix} = (\frac{1}{3}, \frac{2}{3}) = \pi.$$

 π ist also ein Eigenvektor der Matrix P zum Eigenwert 1 bezüglich Multiplikation von links. Dies bedeutet: Wenn die Kette einmal den Zustandsvektor π angenommen hat, so bleibt dieser bei allen weiteren Übergängen erhalten.

Definition 139

P sei die Übergangsmatrix einer Markov-Kette. Einen Zustandsvektor π mit $\pi = \pi \cdot P$ nennen wir stationäre Verteilung der Markov-Kette.

Besitzen alle Markov-Ketten die Eigenschaft, dass sie unabhängig vom Startzustand in eine bestimmte stationäre Verteilung konvergieren?

Nein!

Eine Markov-Kette mit absorbierenden Zuständen

Die Abbildung zeigt die Kette aus dem "gamblers ruin problem" für m=2. Man sieht sofort, dass hier sowohl $\pi_1 = (1,0,0)$ als auch $\pi_2 = (0,0,1)$ stationäre Verteilungen sind. Die beiden Zustände 0 und 2 haben jeweils keine ausgehenden Kanten. Solche Zustände heißen absorbierend.

