${\rm Zinc} +$

immediate

 $August\ 20,\ 2025$

- 1 Zip+: A polynomial commitment scheme for $(\mathbb{Q}[X])[\vec{Y}]$
- 1.1 The protocol

Commit(gp, f): $f \in (\mathbb{Q}[X])[\vec{Y}], \vec{Y} \in \mathbb{F}^{2\mu}$

• Compute matrix V^f of size $2^{\mu} \times 2^{\mu}$ and coefficients in $\mathbb{Q}[X]$ that represents f the following way:

$$\mathbf{V}^f = (f_{b_1,b_2}(X))_{b_1,b_2 \in \{0,1\}^{\mu}} \in \mathbb{Q}[X]^{2^{\mu} \times 2^{\mu}}$$

- For each $i \in [2^{\mu}]$, compute $\hat{\mathbf{u}}_{\mathbf{i}} = \mathsf{Enc}(f_{i,b_2}(X))_{b_2 \in \{0,1\}^{\mu}} \in \mathbb{Q}[X]^n$ and matrix $\hat{\mathbf{u}} = (\hat{\mathbf{u}}_{\mathbf{i}})_{i \in [2^{\mu}]} \in \mathbb{Q}[X]^{2^{\mu} \times n}$
- Output com = ($[\![\hat{\mathbf{u}}_i]\!]$) $_{i \in [2^{\mu}]}$, where $[\![\hat{\mathbf{u}}_i]\!]$ denote oracles to $\hat{\mathbf{u}}_i$

Open(gp, com, f, $\hat{\mathbf{u}}$):

- Parse $(\hat{\mathbf{u}}_{\mathbf{i}})_{i \in [2^{\mu}]} \leftarrow \hat{\mathbf{u}}$ and $([[\hat{\mathbf{u}}_{i}]])_{i \in [2^{\mu}]} \leftarrow \mathsf{com}$
- Check that com consists of oracles to $\hat{\mathbf{u}}_i$ and that $\hat{\mathbf{u}}_i$ is δ -close to $\mathsf{Enc}_{\mathcal{C}}(\mathbf{V}_i^f)$ for all i. Aru: how
- Reject if at any moment reading \hat{u} , f, or com some coefficient is not in $\mathbb{Q}[X]$ or is larger than poly()

Evaluation:

TestingPhase: 1. V sends $r_1, \ldots, r_{2^{\mu}} \in [0, q_0 - 1]$ and $\alpha = (\alpha_0, \ldots, \alpha_{Bdeg}) \in [0, q_0 - 1]^{Bdeg}$

2. P computes and outputs

$$\mathbf{v} = \sum_{i \in [2^{\mu}]} r_i \mathbf{V}_i^f(\alpha) \in \mathbb{Q}^{2^{\mu}}$$

- 3. V randomly chooses $J \subset [n]$ with $|J| = \Theta(\delta)$ and for each $j \in J$
 - If \mathbf{v}_i is not an integer or $|\mathbf{v}_i| > ..., V$ rejects
 - Queries $\hat{u}_{1,j}(X), \dots, \hat{u}_{2^{\mu},j}(X) \in \mathbb{Q}[X]$
 - Rejects if
 - Computes $(\hat{u}_{i,j}(\alpha))_{i \in [2^{\mu}]}$
 - V checks whether $\mathsf{Enc}(\mathbf{v})_j = \sum_{i \in [2^{\mu}]} r_i \hat{u}_{i,j}(\alpha)$

EvaluationPhase: 1. V sends $r_1, \ldots, r_{2^{\mu}} \in [0, q_0 - 1]$ and $\alpha = (\alpha_0, \ldots, \alpha_{Bdeg}) \in [0, q_0 - 1]^{Bdeg}$

2. P computes and outputs

$$\mathbf{v} = \sum_{i \in [2^{\mu}]} \phi(q_{1,r}) \phi(\mathbf{V}_i^f) \in \mathbb{F}_q^{2^{\mu}}$$

- 3. V randomly chooses $J \subset [n]$ with $|J| = \Theta(\delta)$ and for each $j \in J$
 - If \mathbf{v}_i is not an integer or $|\mathbf{v}_i| > ..., V$ rejects
 - V checks whether $\mathsf{Enc}(\mathbf{v}_{q,x-\theta})_j = \sum_{i \in [2^{\mu}]} \phi(q_{1,i}) \phi_q(\hat{u}_{i,j}(X))$ and $\phi(y) = \sum_{i \in [2^{\mu}]} (\mathbf{v}_{q,x-\theta})_i \phi(q_{2,i})$