Time Value of Money

# Basic Financial Arithmetic

## Simple Interest

Total Proceed = Principal 
$$\times \left(1 + \text{interest rate} \times \frac{\text{days}}{\text{year}}\right)$$

\$104 = \$100 
$$\times \left(1 + 4\% \times \frac{365}{365}\right)$$

\$104

4\%

\$104

\$104

invest at 4% for 1 year (i.e. simple interest at 4%)

### Compound Interest

Total Proceed = Principal 
$$\times \left(1 + \text{interest rate} \times \frac{\text{days}}{\text{year}}\right)^{N}$$

$$$108.16 = $100 \times \left(1 + 4\% \times \frac{365}{365}\right)^2$$



2 years – assume reinvest at 4% after 1 year i.e. compounding yearly at 4% for 2 years

### Nominal and Effective Rates

- Consider 4% per annum and quarterly interest payments
- Assume reinvest at 4%

Total Return = Principal 
$$\times \left(1 + \frac{\text{interest rate}}{n}\right)^{n}$$
  
 $\$104.06 = \$100 \times \left(1 + \frac{4\%}{4}\right)^{4}$ 

What are the nominal and effective interest rate?

### Nominal and Effective Rates

- 4% is the nominal rates (annualised)
- 4.06% is the effective rates (annualised)

$$1 + \text{effective rate} = \left(1 + \frac{\text{nominal rate}}{n}\right)^{n}$$

$$\text{effective rate} = \left[\left(1 + \frac{\text{nominal rate}}{n}\right)^{n} - 1\right]$$

$$\text{nominal rate} = \left[\left(1 + \text{effective rate}\right)^{\frac{1}{n}} - 1\right] \times n$$

where n = no. of compounding periods in a year

## Example

5% is the nominal interest rate quoted for a 1-year deposit when the interest is paid all at maturity. What is the quarterly equivalent?

$$\left[ (1.05)^{\frac{1}{4}} - 1 \right] \times 4 = 4.91\%$$

### Interest Rate

- The period for which the investment/loan will last
- The absolute period to which the quoted interest rate applies
  - > 10% for 6-month?
- The frequency with which interest is paid

# Example

| Deposit period | HK \$10,000<br>to<br>HK \$99,999 | HK \$100,000<br>to<br>HK \$499,999 | HK \$500,000<br>to<br>HK \$999,999 | HK \$1,000,000<br>or above |
|----------------|----------------------------------|------------------------------------|------------------------------------|----------------------------|
| 1 day          |                                  |                                    |                                    | 2.5000%                    |
| 1 week         | 2.5000%                          | 2.5000%                            | 2.5000%                            | 2.5000%                    |
| 2 weeks        | 2.5000%                          | 2.5000%                            | 2.5000%                            | 2.5000%                    |
| 1 month        | 2.5000%                          | 2.5500%                            | 2.6000%                            | 2.6500%                    |
| 2 months       | 2.5000%                          | 2.5500%                            | 2.6000%                            | 2.6500%                    |
| 3 months       | 2.5500%                          | 2.6000%                            | 2.6500%                            | 2.7000%                    |
| 6 months       | 2.6000%                          | 2.6500%                            | 2.7000%                            | 2.7500%                    |
| 9 months       | 2.6500%                          | 2.7000%                            | 2.7500%                            | 2.8500%                    |
| 12 months      | 2.7500%                          | 2.8500%                            | 2.9500%                            | 3.0500%                    |

Interest is calculated on the following year basis:

Hong Kong Dollar - 365 days or 366 days (in leap years), Pound Sterling, Singapore Dollar, Thai Baht - 365 days and other currencies - 360 days.

Example - Cont'd

| INTEREST CALCULATOR                    | INTEREST RATES                                                                                                                                |  |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|
| Currency Deposit Period Deposit Amount | Hong Kong Dollar  1 Month  1000000                                                                                                            |  |
|                                        | CALCULATE                                                                                                                                     |  |
| Your calculation results:              | Deposit Period: 1 Month Deposit Amount: HKD 1,000,000.00 Interest Rate: 2.6500% Maturity Date: 20 Sep 2007 Interest At Maturity: HKD 2,250.68 |  |
|                                        | The above calculated figures are for indication only.                                                                                         |  |

Interest At Maturity = \$1000000 × 
$$\frac{2.65}{100}$$
 ×  $\frac{31}{365}$ 

### Annually Compound Rates

The interest rate for a 5-month (153-day) investment is 10.2%. What is the annually compounded rates?

Annually Compound Rate = 
$$\left(1 + 0.102 \times \frac{153}{365}\right)^{\frac{305}{153}} - 1 = 10.5038\%$$

Annually Compound Rate = 
$$\left(1 + \text{nominal rate} \times \frac{\text{days}}{\text{year}}\right)^{\frac{365}{\text{days}}} - 1$$

Interest = 
$$(1+10.5038\%)^{\frac{153}{365}} - 1 = 0.042756$$
 or

Interest = 
$$\left(1 + 0.102 \times \frac{153}{365}\right) - 1 = 0.042756$$

### Compound Yield

The interest rate for a 5-month (153-day) investment is 10.2%. What is the compound yield?

Compound Yield = 
$$\left(1 + 0.102 \times \frac{153}{365}\right)^{\frac{365}{153}} - 1 = 10.50\%$$

Compound Yield = 
$$\left(1 + \text{nominal rate} \times \frac{\text{days}}{\text{year}}\right)^{\frac{365}{\text{days}}} - 1$$

# **Daily Compounding**

### Daily equivalent rate

Equivalent rate with daily compounding for an annual rate of 9.3%

$$\left[ (1+9.3\%)^{\frac{1}{365}} - 1 \right] \times 365 = 8.894\%$$

$$\left(1 + \frac{8.894\%}{365}\right)^{365} = ?$$

### Continuous Compounding

Equivalent rate with continuous compounding for an annual rate of 9.3%

$$\lim_{n \to \infty} \left( 1 + \frac{r_c}{n} \right)^n = 1 + 9.3\%$$

$$e^{r_c} = 1 + 9.3\%$$

$$r_c = \ln(1 + 9.3\%) = 8.8926\%$$

### Continuous Compounding

### Continuously compounded rate

$$r = \ln(1+i)$$

where i is the nominal rate for a year

Or,

$$i = (e^r - 1)$$

## Time Value of Money

You have 2 payment options:

■ Receive \$100 now?

Or

■ Receive \$100 after 1 years?

Time value of money? What are the key factors you consider?

### Time Value of Money

- Future Value (FV) the amount of money received in the future, including interest by investing a given amount of money now
- **Present Value (PV)** the amount of money that needs to be invested now to received a given amount in the future when interest is added

# Future Value/Present Value



## Future Value/Present Value

#### **Future Value**



**Present Value** 

$$100 = \frac{101.6}{\left(1 + 0.04 \times \frac{146}{365}\right)}$$

## Time Value of Money

- \$100 received today is worth more than \$100 received at some time in the future, because over time you can earn more interest on your money
- These concepts based on a relationship between
   Present Value (PV) and Future Value (FV)

For Simple Interest

$$FV = PV \left( 1 + i \times \frac{days}{year} \right)$$

# Time Value of Money

Present Value (PV) and Future Value (FV)

For Annually Compound Interest
$$FV = PV \times (1 + i_c)^{\frac{days}{year}}$$

For Continuous Compound Interest

$$FV = PV \times e^{i_{cc} \times \frac{days}{year}}$$

# Future Value / Present Value Yield/Rate of Return

### For short-term investments

Simple Yield = 
$$\left(\frac{FV}{PV} - 1\right) \times \frac{year}{days}$$

Compound Yield = 
$$\left(1 + \text{simple yield} \times \frac{\text{days}}{\text{year}}\right)^{\frac{\text{year}}{\text{days}}} - 1$$

Compound Yield = 
$$\left(\frac{FV}{PV}\right)^{\frac{year}{days}} - 1$$

# Future Value / Present Value Long-Term Investment

For long-term investments,

$$FV = PV \times (1 + i_c)^{\frac{days}{year}}$$

$$PV = \frac{FV}{(1 + i_c)^{\frac{days}{year}}}$$

Compound Yield = 
$$\left(\frac{FV}{PV}\right)^{\frac{year}{days}} - 1$$

### Example

I invest \$138 now. After 64 days I receive back a total (principal + interest) of \$139.58. What is my (simple) yield on this investment?

simple yield = 
$$\left(\frac{139.58}{138.00} - 1\right) \times \frac{365}{64} = 0.0653 = 6.53\%$$

### **Discount Factors**

 Discounting is the process to bring the future cashflow to the present value cashflow

$$PV = FV \times Discount Factor$$

### For simple interest

$$Discount Factor = \frac{1}{1+i \times \frac{days}{year}}$$

## **Discount Factors**

$$PV = FV \times Discount Factor$$

### For Compound Interest

Discount Factor = 
$$\frac{1}{(1+i_c)^{\frac{days}{year}}}$$

### **Discount Factors**

$$PV = FV \times Discount Factor$$

### For Continuous Compound Interest

Discount Factor = 
$$e^{-i_{cc} \times \frac{days}{year}}$$

## Examples

What is the 3-year discount factor based on a 3-year interest rate of 8.5% compounded annually?

discount factor = 
$$\frac{1}{(1+0.085)^3} = 0.7829$$

What is the present value of \$100 in 3 years time?

$$100 \times 0.7829 = 78.29$$

### Net Present Value

### NPV = sum of all the present values

Cashflow



Discounting at rate of 7.5%

$$NPV = \frac{83}{(1.075)} - \frac{10}{(1.075)^2} + \frac{150}{(1.075)^3}$$

## Which is better?

### **Investment 1:**



### **Investment 2:**



### Internal Rate of Return

■ the one single interest rate used when discounting a series of future value to achieve a given net present value

#### Investment 1:

IRR = 5.0000%  

$$1000 = \frac{50}{(1 + IRR)^{2}} + \frac{50}{(1 + IRR)^{2}} + \frac{50}{(1 + IRR)^{3}} + \frac{50}{(1 + IRR)^{4}} + \frac{50}{(1 + IRR)^{5}} + \frac{1050}{(1 + IRR)^{6}}$$

### **Investment 2:**

IRR = 5.4718%  

$$1000 = \frac{200}{(1+IRR)^{2}} + \frac{200}{(1+IRR)^{2}} + \frac{200}{(1+IRR)^{3}} + \frac{200}{(1+IRR)^{4}} + \frac{200}{(1+IRR)^{5}} + \frac{200}{(1+IRR)^{6}}$$