Teoria erorilor și aritmetica în virgula flotantă

Radu T. Trîmbiţaş

6 martie 2022

Probleme 1

- P1. Scrieți funcții Matlab pentru a calcula epsilon-ul mașinii, cel mai mare număr reprezentabil în VF și cel mai mic număr normalizat și nenormalizat reprezentabil în VF. Comparați rezultatele cu cele returnate de funcțiile MATLAB eps, realmin, realmax.
- **P2.** Scrieti functii MATLAB pentru calculul lui sin x si cos x folosind formula lui Taylor:

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots$$
 se reduce la primul cadran(-2 pi de cate ori de poate), apoi fiecare "sfert" se reduce la [0, 90] ([90, 180] -> [0, 90], [180, 270] -> [0, 90], [270, 360] -> [0, 90]

cu formulele de sin cos si nebunii)

Știm de la cursul de Analiză matematică următoarele:

- modulul erorii este mai mic decat modulul primului termen negli-
- raza de convergență este $R = \infty$.

Ce se întâmplă pentru $x = 10\pi$ (și în general pentru $x = 2k\pi$, k mare)? Explicați fenomenul și propuneți un remediu.

P3. Scrieți funcții MATLAB pentru calculul lui $\sin x$ și $\cos x$ folosind aproximarea Padé în locul formulei lui Taylor. Atenție la reducerea rangului. P4. Scrieţi o funcţie MATLAB care primeşte la intrare un număr flotant (simplă sau dublă precizie) şi returnează reprezentarea sa binară pe componente: semn, exponent deplasat şi semnificantul (aşa cum este acesta reprezentat intern).

2 Probleme suplimentare

- S1. Fie două numere reale $x_1, x_2 \in \mathbb{R}$, $x_1 \neq x_2$. Considerăm reprezentările lor în virgulă flotantă x_1^* și x_2^* astfel încât $x_1^* = \text{fl}(x_1) = x_1(1 + \delta_1)$, $x_2 = \text{fl}(x_2) = x_2(1 + \delta_2)$ și $|\delta_1| < \delta$, $|\delta_2| < \delta$. Cât de mic trebuie să fie δ , astfel incât să putem testa corect (în virgulă flotantă cu precizia mașinii eps), dacă $x_1 \neq x_2$.
- S2. Același enunț ca la problema P1, dar în Maple.