1. Kombinációs hálózatok mérési gyakorlatai

1.1 Logikai alapkapuk vizsgálata

ÉS:

A	В	F	Mért
0	0	0	0
0	1	0	0
1	0	0	0
1	1	1	1

VAGY:

A	В	F	Mért
0	0	0	0
0	1	1	1
1	0	1	1
1	1	1	1

NAND:

A	В	F	Mért
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

NOR:

A	В	F	Mért
0	0	1	1
0	1	0	0
1	0	0	0
1	1	0	0

XOR:

A	В	F	Mért
0	0	0	0
0	1	1	1
1	0	1	1
1	1	0	0

XNOR:

A	В	F	Mért
0	0	1	1
0	1	0	0
1	0	0	0
1	1	1	1

INV:

A	F	Mért
0	1	1
1	0	0

A kétbemenetű XOR kaput vezérelt inverterként is használhatjuk, ebben az esetben a vezérlőjel az A, a feldolgozandó jel a B.

A kapcsolási rajz a melléklet 1.1-es lapján található meg.

1.2 Logikai függvények egyszerűsítése. Diszjunktív és konjunktív alakok megvalósítása NAND és NOR hálózattal

A mérés során az fl függvényt kellett NAND kapukkal megvalósítanom.

Karnaugh tábla:

 $f1=\sum(3,4,5,6,7,8,10,12)$

0	0	1	0
1	1	1	1
1	0	0	0
1	0	0	1

Igazságtábla:

A	В	С	D	F	Mért
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	0
0	0	1	1	1	1
0	1	0	0	1	1
0	1	0	1	1	1
0	1	1	0	1	1
0	1	1	1	1	1
1	0	0	0	1	1
1	0	0	1	0	0
1	0	1	0	1	1
1	0	1	1	0	0
1	1	0	0	1	1
1	1	0	1	0	0
1	1	1	0	0	0
1	1	1	1	0	0

A leggazdaságosabb kivitelezés mindkettő függvény megvalósítása NOR kapukkal, mert ezekben az elrendezésben kell a legkevesebb kaput felhasználni.

A kapcsolási rajz a melléklet 1.2-es lapján található meg.

1.3 Paritásgenerátor

Igazságtábla:

DEC			BIN			P
0	0	0	0	0	0	0
1	0	0	0	0	1	1
2	0	0	0	1	0	1
3	0	0	0	1	1	0
4	0	0	1	0	0	1
5	0	0	1	0	1	0
6	0	0	1	1	0	0
7	0	0	1	1	1	1
8	0	1	0	0	0	1
9	0	1	0	0	1	0
10	0	1	0	1	0	0
11	0	1	0	1	1	1
12	0	1	1	0	0	0
13	0	1	1	0	1	1
14	0	1	1	1	0	1
15	0	1	1	1	1	0
16	1	0	0	0	0	1
17	1	0	0	0	1	0
18	1	0	0	1	0	0
19	1	0	0	1	1	1
20	1	0	1	0	0	0
21	1	0	1	0	1	1
22	1	0	1	1	0	1
23	1	0	1	1	1	0
24	1	1	0	0	0	0
25	1	1	0	0	1	1
26	1	1	0	1	0	1
27	1	1	0	1	1	0
28	1	1	1	0	0	1
29	1	1	1	0	1	0
30	1	1	1	1	0	0
31	1	1	1	1	1	1

$\mathbf{P} = \mathbf{A} \bigoplus \mathbf{B} \bigoplus \mathbf{C} \bigoplus \mathbf{D} \bigoplus \mathbf{E}$

DEC		BIN					
5	0	0 0 1 0 1					
10	0	1	0	1	0	0	
16	1	0	0	0	0	1	
23	1	0	1	1	1	0	
26	1	1	0	1	0	1	

Páros paritású paritásgenerátort valósítottam meg. A kimenet negálásával megváltoztatható a partiás.

A kapcsolási rajz a melléklet 1.3-es lapján található meg.

1.4 4 bites Bináris-Gray kódátalakító vizsgálata

Igazságtábla:

DEC		BIN				GR	AY	
	B ₃	\mathbf{B}_{2}	\mathbf{B}_1	$\mathbf{B_0}$	G_3	G ₂	G_1	G_0
0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	1
2	0	0	1	0	0	0	1	1
3	0	0	1	1	0	0	1	0
4	0	1	0	0	0	1	1	0
5	0	1	0	1	0	1	1	1
6	0	1	1	0	0	1	0	1
7	0	1	1	1	0	1	0	0
8	1	0	0	0	1	1	0	0
9	1	0	0	1	1	1	0	1
10	1	0	1	0	1	1	1	1
11	1	0	1	1	1	1	1	0
12	1	1	0	0	1	0	1	0
13	1	1	0	1	1	0	1	1
14	1	1	1	0	1	0	0	1
15	1	1	1	1	1	0	0	0

 $G_0 = B_0 \oplus B_1$

 $G_1 = B_1 \oplus B_2$

 $G_2 = B_2 \oplus B_3$

 $G_2 = B_3$

A kapcsolási rajz a melléklet 1.4-es lapján található meg.

1.5 Logikai komparátor vizsgálata

A COMP4 áramkör működési táblája:

Bemenet				Kimenet	
A3, B3	A2, B2	A1, B1	A0, B0	GT	LT
A3>B3	X	X	X	1	0
A3 <b3< td=""><td>X</td><td>Χ</td><td>X</td><td>0</td><td>1</td></b3<>	X	Χ	X	0	1
A3=B3	A2>B2	X	X	1	0
A3=B3	A2 <b2< td=""><td>X</td><td>X</td><td>0</td><td>1</td></b2<>	X	X	0	1
A3=B3	A2=B2	A1>B1	X	1	0

Koncz István Márton A2754O

Digitális technika II. laboratórium Óbudai Egyetem Kandó Kálmán Villamosmérnöki Kar

VL6 2017.09.15

A3=B3	A2=B2	A1 <b1< th=""><th>X</th><th>0</th><th>1</th></b1<>	X	0	1
A3=B3	A2=A2	A1=B1	A0>B0	1	0
A3=B3	A2=B2	A1=B1	A0 <b0< td=""><td>0</td><td>1</td></b0<>	0	1
A3=B3	A2=B2	Δ1=R1	Δ0=B0	Ο	0

Mért értékek a lenti beállításokkal:

A	В	A > B(L1)	A < B (L2)	A = B (L3)
0011	1000	0	1	0
1101	0101	1	0	0
0110	0111	0	1	0
1110	1110	0	0	1
0111	1111	0	1	0

A kapcsolási rajz a melléklet 1.5-ös lapján található meg.