

The Evolution of Database Technology

Duration: 2 hours

Detailed Syllabus

1.1. The Evolution of Database Technology (2hrs.)

1.1.1. Data

Information

Database

Database management system

Database system

Data processing and data management

Increasing use of data as a corporate resource

1.1.2. File oriented systems:

Meeting the need for random access processing

Limitations of Traditional File Systems:

Data redundancy

Inadequate data manipulation capabilities

Program-data dependency

Data independence

Main References

- Database Management and Design by GW Hansen and JV Hansen.
- Fundamentals of Database Systems by Ramez Elmasri, Shamkant B. Navathe.

Components of Database System Environment

Components of Database System Environment

Hardware

Set of physical devices on which a database resides. Can range from a PC to a network of computers.

Software

- database management system (DBMS)
- operating system
- application programs
- User Interface

Data

 Used by the organization and a description of this data called the schema.

BIT

Components of Database System Environment

Data

–A representation of facts, concepts or instructions in a formalised manner suitable for communication, interpretation or processing by human beings or by automatic means.

-Raw data which is unprocessed

Text, colours, symbols, shapes, graphics, images, temperatures, sound, video or other facts and figures are data suitable for processing.

Components of Database System Environment

- E.g. Person or Employee or Customer
- name, address, phone, date of birth, designation, department, salary,
- employee no, photograph

Components of Database System Environment

Procedures

Instructions and rules that should be applied to the design and use of the database.

People

Two different types of people (end-users and practitioners) are concerned with the database.

End-Users

- are the 'clients' of the database, who need information from the database to carry out their duties.
- e.g. Executives, managers, staff, clerical personnel

Components of Database System Environment - People

Practitioners

 people responsible for the database system and its associated application software.

e.g. Data and Database administrators, Database designers, Application developers.

Information

- Information
- Knowledge derived from data.
- Processed or organised or summarised data.

Eg:-

- Process Date of Birth -> Age
- Process Salary (all) ->Highest paid employee
- Process all -> No of employees
- •Process all -> Employees working for 2007, UCSC

Why use a Database?

- Many people collect things
 - How about you?
- If you collect any thing, you probably are familiar with some of the problems of managing a collection
 - e.g. stamps, photos, paper cuttings
- One way to keep track of a collection is to create a database

Why Database Technology?

The need to manipulate large collection of data for frequent used data queries and reports.

E.g. Collection of information on library books Queries:

- List of books written by a particular author
- List of books about a particular subject
- Borrowing a book
- Reserving a book for borrowing

Examples of Database Applications

- Purchases from the supermarket
- Purchases using your credit card
- Booking a holiday at the travel agents
- Using the Internet
- Studying at university

Manual Systems – Information on library books

- Before and during most of last century, libraries used card catalogues stored in drawers of special cabinets
 - cards with typed book information
 e.g. the title index has one card for every book in the library

File-Based Systems

- Collection of application programs that perform services for the end users (e.g. reports).
- Each program defines and manages its own data.

Data Redundancy

Limitations of File-Based Approach

- Separation and isolation of data
 - Each program maintains its own set of data.
 - Users of one program may be unaware of potentially useful data held by other programs.
- Duplication of data
 - Same data is held by different programs.
 - Wasted space and potentially different values and/or different formats for the same item.

BIT

Limitations of File-Based Approach

- Data dependence
 - File structure is defined in the program code.
- Incompatible file formats
 - Programs are written in different languages, and so cannot easily access each other's files.
- Fixed Queries/Proliferation of application programs
 - Programs are written to satisfy particular functions.
 - Any new requirement needs a new program.

Database Approach

Arose because:

- Definition of data was embedded in application programs, rather than being stored separately and independently.
- No control over access and manipulation of data beyond that imposed by application programs.

• Result:

the database and Database Management System (DBMS).

Database

- Shared collection of logically related data (and a description of this data), designed to meet the information needs of an organization.
- System catalog or data dictionary provides description of data (metadata) to enable program—data independence.
- Logically related data comprises entities, attributes, and relationships of an organization's information.

Database Management System (DBMS)

• A software system that enables users to define, create, and maintain the database and that provides <u>controlled access</u> to this database.

BIT

Database Approach

e.g. Integrated human resources database

- Employees: Name, Address, NID number, Designation
- Payroll: Hours worked, Pay rate
- Benefit: Insurance, Pension plan

Data Hierarchy

Data Hierarchy

Employee (Empno, Name, Designation, Salary, Depart)

1 De SilvaManager 50000 Personnel

2 Perera Secretary 15000 Personnel

3 Dias Salesman 25000 Sales Department (Depart, Manager, Dept Addr, Dept Phone)

PersonnelDe SilvaColombo589123SalesAlwisKandy987275

Data Hierarchy

Byte

•A single character (letter, number, symbol) is represented using a group of bits, E.g. 10101010 letter J in ASCII

Bit

