

Технологии машинного обучения

ИУ-5, бакалавриат, 6 семестр, весна 2021 года

Создание вебприложений для
демонстрации
моделей машинного
обучения

Краткий план лекции

- Библиотеки (фреймворки) для демонстрации моделей машинного обучения:
 - streamlit
 - gradio
 - dash (наиболее старый и стабильный)
- Сравнение фреймворков

Фреймворки для демонстрации моделей машинного обучения

- Основное отличие от традиционных серверных фреймворков, таких как Django или Flask:
 - Традиционные фреймворки ориентированы на работу с базами данных, ввод данных, формирование отчетов.
 - Фреймворки для демонстрации моделей машинного обучения позволяют быстро создать пользовательский интерфейс для моделей машинного обучения.
 - Фреймворки для демонстрации моделей машинного обучения используют принцип дашбордов (приборных панелей).

Фреймворк streamlit (введение)

- Установка
 - Как пакет Python с помощью рір, но при этом устанавливается исполняемый файл streamlit (streamlit.exe для windows) и запуск проектов производится с его помощью.
- Примеры приложений
 - Стандартные примеры запускаются командой streamlit hello
 - Примеры на сайте https://streamlit.io/gallery
- Основные особенности фреймворка:
 - Streamlit-приложение является веб-приложением и запускается в браузере.
 Поддерживается режим «горячего обновления» можно внести изменения в код на Python, сохранить изменения, обновить окно браузера, и изменения автоматически применятся.
 - <u>Реактивность</u> изменения компонентов автоматически передаются всем связанным компонентам. Это упрощает разработку, но может приводить к задержкам при работе приложения.
 - Входные и выходные компоненты располагаются в общем потоке и могут перемешиваться.
 Для удобства расположения компонентов предусмотрена боковая панель.

Фреймворк streamlit (документация)

- Страница документации https://docs.streamlit.io/en/stable/
- Тьюториалы по созданию приложений (TUTORIALS)
 - Пример простого приложения https://docs.streamlit.io/en/stable/tutorial/create_a_data_explorer_app.html
 - Пример приложения, использующего модели машинного обучения https://towardsdatascience.com/building-machine-learning-apps-with-streamlit-667cef3ff509
- Основные концепции создания streamlit-приложения https://docs.streamlit.io/en/stable/main_concepts.html
- Описание основных функций (API) https://docs.streamlit.io/en/stable/api.html
- Ускорение работы приложений и кэширование https://docs.streamlit.io/en/stable/caching.html
- Конфигурирование приложений https://docs.streamlit.io/en/stable/streamlit_configuration.html
- Расширение фреймворка за счет разрабатываемых компонентов https://docs.streamlit.io/en/stable/streamlit_components.html

Фреймворк streamlit (примеры)

- Примеры находятся в репозитории https://github.com/ugapanyuk/ml_streamlit_example
- Запуск примеров:
 - «streamlit run сценарий.ру»

Фреймворк <u>streamlit</u> (example_1)

Вывод данных и графиков Данные загружены! Первые 5 значений Humidity Light HumidityRat Temperature 2015-02-04 17:51:00 23.1800 27.2720 721.2500 0.00 2015-02-04 17:51:59 23.1500 27.2675 429.5000 714 0.00 2015-02-04 17:53:00 27.2450 713.5000 0.00 23.1500 2015-02-04 17:54:00 23.1500 27.2000 708.2500 0.00 2015-02-04 17:55:00 23.1000 27.2000 704.5000 0.00 Показать все данные Скрипичные диаграммы для числовых колонок

21

Temperature

20

22

23

19

Фреймворк <u>streamlit</u> (example_2)

Фреймворк <u>streamlit</u> (example_3)

Количество строк в наборе данных - 500

Максимальное допустимое количество ближайших соседей с учетом выбранного количества фолдов - 426

Возможные значения соседей - [1 42 83 124 165 206 247 288 329 370 411]

Оценка качества модели

Лучшее значение параметров - {'n neighbors': 1}

Фреймворк <u>streamlit</u> (example_4)

Фреймворк gradio

- Основные особенности фреймворка:
 - Gradio-приложение является веб-приложением и запускается в браузере. Режим «горячего обновления» НЕ поддерживается - необходимо останавливать и перезапускать приложение.
 - Вместо реактивности:
 - 1. Создаются функции обработки данных;
 - 2. К входам и выходам функций присоединяются компоненты;
 - 3. Компоненты явно разделяются на входные и выходные, приложение содержит две панели для входных и выходных компонентов.
 - 4. Функции и компоненты оборачиваются в основной компонент, который называется «интерфейс».
 - 5. Удобная функциональность для создания копий экрана, выводится время работы функций.
- Базовый пример приложения https://www.gradio.app/getting_started
- Работа с моделями машинного обучения https://www.gradio.app/ml_examples
- Описание основных функций (API) https://www.gradio.app/docs
- Примеры находятся в репозитории https://github.com/ugapanyuk/ml_gradio_example

Фреймворк gradio (example_1)

Метод ближайших соседей

Фреймворк <u>gradio</u> (example_2)

Модели машинного обучения

Фреймворк <u>dash</u> (введение)

- Основные особенности фреймворка:
 - Dash является единственным из рассматриваемых фреймворков, который является достаточно зрелым для разработки промышленных решений.
 - Dash-приложение является веб-приложением и запускается в браузере.
 Поддерживается режим «горячего обновления» можно внести изменения в код на Python, сохранить изменения, обновить окно браузера, и изменения автоматически применятся.
 - <u>Реактивность</u> изменения компонентов автоматически передаются связанным компонентам.
 - Приложение на dash состоит из двух основных элементов:
 - Layout определяет расположение компонентов. В отличие от динамического добавления компонентов в streamlit, dash ориентирован на статическое расположение компонентов.
 - Callbacks определяют связь между компонентами. Реактивность реализуется только в необходимых случаях.
 - Может выводиться граф вызова callback'ов.

Фреймворк <u>dash</u> (документация)

- Базовый тьюториал установка и создание простого приложения.
- Dash содержит очень развитую документацию и большое количество компонентов.
- Разделы документации:
 - Dash Callbacks разработка callback'ов.
 - Open Source Component Libraries библиотеки компонентов.
 - Creating Your Own Components создание собственных компонентов.
 - Beyond the Basics дополнительные разделы, увеличение производительности приложения.
- Примеры находятся в репозитории https://github.com/ugapanyuk/ml_dash_example

Фреймворк dash (example_1)

Метод ближайших соседей

Фреймворк <u>dash</u> (example_2)

Модели машинного обучения

Граф вызова callback'ов

Фреймворк <u>dash</u> (example_2)

Детальные сообщения об ошибках выдаются в браузере

Выводы

- Фреймворки streamlit и gradio в большей степени предназначены для быстрого создания визуальных интерфейсов на основе моделей машинного обучения.
- Фреймворк dash является промышленным решением с большим количеством компонентов.
- Трудоемкость разработки приложения для dash, как правило, выше чем для streamlit и gradio.