Homework 4 of Computational Mathematics

Chang, Yung-Hsuan 111652004
Department of Applied Mathematics
April 29, 2024

Problem 1. Use the following data and the knowledge that the first five derivatives of f are bounded on [1,5] by 2, 3, 6, 12, and 23, respectively, to approximate f'(3) as accurately as possible. Find a bound for the error.

Solution. By the five-point midpoint formula,

$$f'(3) = \frac{1}{12 \cdot 1} (f(1) - 8 \cdot f(2) + 8 \cdot f(4) - f(5)) + \frac{h^4}{30} \cdot f^{(5)}(\xi)$$

$$= \frac{1}{12} (2.4142 - 8 \cdot 2.6734 + 8 \cdot 4.0976 - 3.2804) + \frac{(0.1)^4}{30} \cdot f^{(5)}(\xi)$$

$$= 0.8773 + \frac{(0.1)^4}{30} \cdot f^{(5)}(\xi),$$

where $\xi \in (1,5)$. The bound for the error is

$$\left| \frac{(0.1)^4}{30} \cdot f^{(5)}(\xi) \right| \le \frac{(0.1)^4}{30} \cdot 23$$
$$= 7.667 \cdot 10^{-5}.$$

Problem 2. Let $f(x) = 3xe^x - \cos x$. Use the following data and equation (4.9) to approximate f''(1.3) with h = 0.1 and with h = 0.01.

$$x$$
 1.20
 1.29
 1.30
 1.31
 1.40

 $f(x)$
 11.59006
 13.78176
 14.04276
 14.30741
 16.86187

Compare your results to f''(1.3).

Solution. We first deal with the case h = 0.1. By the second derivative midpoint formula,

$$f''(1.3) = \frac{1}{(0.1)^2} (f(1.20) - 2 \cdot f(1.30) + f(1.40)) - \frac{(0.1)^2}{12} \cdot f^{(4)}(\xi_1)$$

$$= \frac{1}{0.01} \cdot (11.59006 - 2 \cdot 14.04276 + 16.86187) - \frac{0.01}{12} \cdot f^{(4)}(\xi_1)$$

$$= 36.641 - \frac{0.01}{12} \cdot f^{(4)}(\xi_1),$$

where $\xi_1 \in (1.20, 1.40)$. We now deal with the case h = 0.01. Again by the second derivative midpoint formula,

$$f''(1.3) = \frac{1}{(0.01)^2} (f(1.29) - 2 \cdot f(1.30) + f(1.31)) - \frac{(0.01)^2}{12} \cdot f^{(4)}(\xi_2)$$

$$= \frac{1}{0.0001} \cdot (13.78176 - 2 \cdot 14.04276 + 14.30741) - \frac{0.0001}{12} \cdot f^{(4)}(\xi_2)$$

$$= 36.5 - \frac{0.0001}{12} \cdot f^{(4)}(\xi_2),$$

where $\xi_2 \in (1.29, 1.31)$. The actual value of f''(1.3) can be calculated as follows:

$$f'(x) = 3e^x + 3xe^x + \sin x$$

$$\implies f''(x) = 6e^x + 3xe^x + \cos x$$

$$\implies f''(1.3) = 6e^{1.3} + 3 \cdot 1.3 \cdot e^{1.3} + \cos(1.3)$$

$$= 36.59354.$$

The case with h = 0.01 is closed to the true value, and the other is farther to the true value.

Problem 3. Derive an $\mathcal{O}(h^4)$ five-point formula to approximate $f'(x_0)$ that uses $f(x_0 - h)$, $f(x_0)$, $f(x_0 + h)$, $f(x_0 + 2h)$, and $f(x_0 + 3h)$. [Hint: Consider the expression $A \cdot f(x_0 - h) + B \cdot f(x_0 + h) + C \cdot f(x_0 + 2h) + D \cdot f(x_0 + 3h)$. Expand in fourth Taylor polynomials, and choose A, B, C, and D, appropriately.]

Problem 4. The following data give approximations to the integral

$$M = \int_0^\pi \sin x \, \mathrm{d}x.$$

$$N_1(h) = 1.570796, \quad N_1\left(\frac{h}{2}\right) = 1.896119, \quad N_1\left(\frac{h}{4}\right) = 1.974232, \quad N_1\left(\frac{h}{8}\right) = 1.993570.$$

Assuming $M = N_1(h) + K_1h^2 + K_2h^4 + K_3h^6 + K_4h^8 + \mathcal{O}(h^{10})$, construct an extrapolation table to determine $N_4(h)$.

Solution. By the formula for the $\mathcal{O}(h^{2j})$ approximation

$$N_j(h) = N_{j-1}\left(\frac{h}{2}\right) + \frac{N_{j-1}\left(\frac{h}{2}\right) - N_{j-1}(h)}{4^{j-1} - 1},$$

we can have the following table:

$\mathcal{O}(h^2)$	$\mathcal{O}(h^4)$	$\mathcal{O}(h^6)$	$\mathcal{O}(h^8)$
1.570796			
1.896119	2.004560		
1.974232	2.000270	1.999984	
1.993570	2.000016	1.999837	1.999834

 ${f Problem~5}.$ The forward-difference formula can be expressed as

$$f'(x_0) = \frac{1}{h} \left(f(x_0 + h) - f(x_0) \right) - \frac{h}{2} f''(x_0) - \frac{h^2}{6} f'''(x_0) + \mathcal{O}(h^3).$$

Use extrapolation to derive an $\mathcal{O}(h^3)$ formula for $f'(x_0)$.

Problem 6. Find the degree of precision of the quadrature formula

$$\int_{-1}^{1} f(x) dx = f\left(-\frac{\sqrt{3}}{3}\right) + f\left(\frac{\sqrt{3}}{3}\right).$$

Solution. For $f(x) = P_0(x) = 1$, it is clear that

$$\int_{-1}^{1} 1 \, \mathrm{d}x = f\left(-\frac{\sqrt{3}}{3}\right) + f\left(\frac{\sqrt{3}}{3}\right) = 2.$$

For $f(x) = P_1(x) = x$, it is also clear that

$$\int_{-1}^{1} x \, \mathrm{d}x = f\left(-\frac{\sqrt{3}}{3}\right) + f\left(\frac{\sqrt{3}}{3}\right) = 0.$$

For $f(x) = P_2(x) = x^2$,

$$\int_{-1}^{1} x^2 \, \mathrm{d}x = \frac{2}{3}$$

and

$$f\left(-\frac{\sqrt{3}}{3}\right) + f\left(\frac{\sqrt{3}}{3}\right) = \frac{1}{3} + \frac{1}{3} = \frac{2}{3}.$$

For $f(x) = P_3(x) = x^3$, it is clear that

$$\int_{-1}^{1} x^3 \, \mathrm{d}x = f\left(-\frac{\sqrt{3}}{3}\right) + f\left(\frac{\sqrt{3}}{3}\right) = 0.$$

For $f(x) = P_4(x) = x^4$,

$$\int_{-1}^{1} x^4 \, \mathrm{d}x = \frac{2}{5}$$

and

$$f\left(-\frac{\sqrt{3}}{3}\right) + f\left(\frac{\sqrt{3}}{3}\right) = \frac{1}{9} + \frac{1}{9} = \frac{2}{9}.$$

Hence, the degree of precision of this quadrature formula is 3.

Problem 7. Find the constants x_0 , x_1 , and c_1 so that the quadrature formula

$$\int_0^1 f(x) \, \mathrm{d}x = \frac{1}{2} f(x_0) + c_1 f(x_1)$$

has the highest possible degree of precision.

Solution. Set $f(x) = P_0(x) = 1$. Then

$$1 = \frac{1}{2} + c_1.$$

This implies that c_1 must be $\frac{1}{2}$. Set $f(x) = P_1(x) = x$. Then

$$\frac{1}{2} = \frac{1}{2}x_0 + \frac{1}{2}x_1.$$

Set $f(x) = P_2(x) = x^2$. Then

$$\frac{1}{3} = \frac{1}{2}x_0^2 + \frac{1}{2}x_1^2.$$

Since there are two unknowns and two equations, two unknowns may be solved:

$$\frac{1}{3} = \frac{1}{2} (1 - x_1)^2 + \frac{1}{2} x_1^2$$

$$2 = 3(1 - x_1)^2 + 3x_1^2$$

$$x_1 = \frac{3 \pm \sqrt{3}}{6}.$$

Choose $x_0 < x_1$. Then $(x_0, x_1, c_1) = \left(\frac{3 - \sqrt{3}}{6}, \frac{3 + \sqrt{3}}{6}, \frac{1}{2}\right)$.

Problem 8. Determine the values of n and h required to approximate

$$\int_0^2 e^{2x} \sin 3x \, \mathrm{d}x$$

to within 10^{-4} . Use

- a. composite trapezoidal rule;
- b. composite Simpson's rule; and
- c. composite midpoint rule.

Problem 9. Determine to within 10^{-6} the length of the graph of the ellipse with $4x^2 + 9y^2 = 36$.

Problem 10. Show that the error E(f) for composite Simpson's rule can be approximated by

$$-\frac{h^4}{180} (f'''(b) - f'''(a)).$$

[Hint:
$$\sum_{j=1}^{n/2} f^{(4)}(\xi_j)(2h)$$
 is a Riemann sum for $\int_a^b f^{(4)}(x) dx$.]

Problem 11. Use the following data to approximate $\int_1^5 f(x) dx$ as accurately as possible.

x	1	2	3	4	5
f(x)	2.4142	2.6734	2.8974	3.0976	3.2804

Problem 12. Show that the approximation obtained from $R_{k,2}$ is the same as that given by the composite Simpson's rule described in Theorem 4.4 with $h = h_k$.

Problem 13. Use composite Simpson's rule with n = 4, 6, 8, ..., until successive approximations to the following integrals agree to within 10^{-6} . Determine the number of nodes required. Use the adaptive quadrature algorithm to approximate the integral to within 10^{-6} , and count the number of nodes. Did the adaptive quadrature produce any improvement?

a.
$$\int_0^{\pi} x \sin(x^2) dx$$
; and

b.
$$\int_0^{\pi} x^2 \sin x \, \mathrm{d}x.$$

Problem 14. Approximate the following integral using Gaussian quadrature with n = 2, 3, 4. Compare your answers with the exact values of the integral.

$$\int_{1}^{1.6} \frac{2x}{x^2 - 4} \, \mathrm{d}x.$$

Solution. We first transform the interval [1, 1.6] to [-1, 1] by using $t = \frac{2x - 2.6}{0.6}$. Hence the integral becomes

$$\int_{-1}^{1} \frac{1.2t + 5.2}{\left(\frac{0.6t + 2.6}{2}\right)^{2} - 4} \cdot \frac{0.6}{2} dt = \int_{-1}^{1} \frac{12t + 52}{3t^{2} + 26t - 77} dt.$$

We now deal with the case n = 2. Using Table 4.12, the approximation is

$$1 \cdot \frac{12 \cdot 0.5773502692 + 52}{(0.5773502692)^2 + 26 \cdot 0.5773502692 - 77} + 1 \cdot \frac{12 \cdot (-0.5773502692) + 52}{(-0.5773502692)^2 + 26 \cdot (-0.5773502692) - 77} = -1.4474.$$

The exact value of the integral is

$$\int_{1}^{1.6} \frac{2x}{x^2 - 4} dx = \int_{-3}^{-1.44} \frac{1}{u} du$$
$$= 0.364643 - 1.098612$$
$$= -0.733969.$$

Problem 15. Determine constants a, b, c, and d that will produce a quadrature formula

$$\int_{-1}^{1} f(x) dx = a \cdot f(-1) + b \cdot f(1) + c \cdot f'(-1) + d \cdot f'(1).$$

that has degree of precision 3.

Solution. Set $f(x) = P_0(x) = 1$. Then

$$2 = a + b$$
.

Set $f(x) = P_1(x) = x$. Then

$$0 = -a + b + c + d.$$

Set $f(x) = P_2(x) = x^2$. Then

$$\frac{2}{3} = a + b - 2c + 2d.$$

Set $f(x) = P_3(x) = x^3$. Then

$$0 = -a + b + 3c + 3d.$$

Hence, (a, b, c, d) = (1, 1, 1/3, -1/3).

Problem 16. The improper integral

$$\int_0^\infty f(x) \, \mathrm{d}x$$

cannot be converted into an integral with finite limits using the substitution $t = \frac{1}{x}$ because the limit at zero becomes infinite. The problem is resulved by first writing

$$\int_0^\infty f(x) \, \mathrm{d}x = \int_0^1 f(x) \, \mathrm{d}x + \int_1^\infty f(x) \, \mathrm{d}x.$$

Apply this technique to approximate the following improper integrals to within 10^{-6} .

a.
$$\int_0^\infty x \frac{1}{1+x^4} dx$$
; and

b.
$$\int_0^\infty \frac{1}{(1+x^2)^3} \, \mathrm{d}x$$
.

 ${\bf Solution}.$