Notas para la clase

1. Clase 02

Se empieza la clase dando un pequeño resumen de lo visto en la sesión anterior, se hace énfasis en la evaluación de polinomios

$$P(expresi\'on) \rightarrow expresi\'on$$
. (Expresi\'on algebraica \equiv polinomio) $P(constante) \rightarrow constante$. (Constante \equiv número)

Se hace mención a evaluaciones notables como P(0) y P(1). Luego, se introduce la definición de raíz de un polinomio (alución a la **definición 1.1**) y la razón por la que se estudia.

Se muestra el polinomio $M(x) = x^5 - 3x^4 - 29x^3 - 13x^2 + 120x + 140$ y se pide a los estudiante hallar una raíz por tanteo. También, describir el polinomio a manera de ejercicio. El docente podrá hacer las siguientes preguntas ¿qué características tiene M? ¿es mónico? ¿es completo? ¿es simétrico? ¿está ordenado?. Después que el estudiante intentó encontrar soluciones por su cuenta, anunciar que 7 es una raíz. Y a continuación, comprobar que x = 7 es una raíz.

$$1 \times 16807 = +16807$$

$$-3 \times 2401 = -..7203$$

$$-29 \times 343 = -..9947$$

$$-13 \times 49 = -....637$$

$$120 \times 7 = +....840$$

$$1 \times 140 = +....140$$

Hacer la siguiente pregunta: ¿es fácil o obvio deducir que x = 7 es una raíz?. Introducir la definición de factor (alución a la **definición 1.2**) y mencionar la factorización. Luego, expresar el polinomio M como el producto del factor (x - 7) con otro polinomio¹:

$$x^{5} + 4x^{4} - x^{3} - 20x^{2} - 20x$$
$$-7x^{4} - 28x^{3} + 7x^{2} + 140x + 140$$
$$x^{5} - 3x^{4} - 29x^{3} - 13x^{2} + 120x + 140$$
$$\Rightarrow M(x) = (x - 7)(x^{4} + 4x^{3} - x^{2} - 20x - 20)$$

Dar énfasis en cómo los factores dan información de las raíces de un polinomio y hacer referencia al **Teorema del factor**.

¹Preguntar nuevamente si los polinomios son completos y mostrar la completación de polinomios

Terminar la factorización de ${\cal M}$

$$x^{4} + 4x^{3} + 4x^{2}$$

$$-5x^{2} - 20x - 20$$

$$x^{4} + 4x^{3} - x^{2} - 20x - 20$$

$$\Rightarrow M(x) = (x - 7)(x^{2} - 5)(x + 2)^{2}$$

$$\Rightarrow M(x) = (x - 7)(x - \sqrt{5})(x + 2)(x + 2)(x + \sqrt{5})$$

Hacer referencia a que la cantidad de raíces de un polinomio está determinado por su grado e indicar las multiplicidades de las raíces del polinomio M.