Algorithms and their Applications CS2004 (2020-2021)

Dr Mahir Arzoky

12.1 Tabu Search and ILS

Cla	ass Tests So Far
	Class Test CRI: 192 attempts
	Class Test CRII: 90 attempts
	Class Test CRIII: 54 attempts
	Class Test CRIV: (maybe) released next week!
	All four class tests must be passed to pass Task #1.
	Task #1 weighs 30% of the coursework
	But, if you do not pass Task #1 you will be capped at D- grade (coursework).
	Class tests needs to be completed by 16/02/2021

Previously On CS2004...

☐ So far we have looked at:
Concepts of Computation and Algorithms
Comparing algorithms
Some mathematical foundation
☐ The Big-Oh notation
Computational Complexity
Data structures
Sorting Algorithms
Various graph traversal algorithms
Heuristic Search
Hill Climbing and Simulated Annealing
Parameter Optimisation (Applications)

Introduction

☐ In this lecture we are going to look into two Heuristic
Search methods:
☐ Tabu Search (TS)
☐ Iterated Local Search (ILS)
☐ These are Meta-Heuristic search methods
☐ We are then going to look into some implementation details involved in applying ILS to the Scales problem
Representation improvements
An Updatable Fitness Function
☐ Performance

Heuristics – Recap

- ☐ A "rule of thumb" or loose set of guidelines
- No guarantees on quality of solution
- Usually fast and are widely used
- ☐ Sometimes we run them multiple times and analyse the results

Popular Heuristics

Hill Climbing
☐ Always go up hill (accept only better quality solutions)
Simulated Annealing The concepts of annealing and temperature
Iterated Local Search See later slides
Tabu Search ☐ See later slides
Genetic Algorithms Simulated evolution See later lecture
Ant Colony Optimisation Pheromones and cooperation See later lecture
Particle Swarm Optimisation Swarming See later lecture
Etc

Local View of Search

Tabu (Taboo) Search

- ☐ Tabu search tries to model human memory processes
 - ☐ Key idea: Use aspects of search history (memory) to escape from local minima
- ☐ A tabu-list is maintained throughout the search
 - ☐ Associate **tabu attributes** with candidate solutions or solution components
 - ☐ Moves according to the items on the list are forbidden

Flow Chart of a Standard Tabu Search

Tabu Search – Key Concepts

■ Aspiration Criteria

□ A search (similar to Hill Climbing) that remembers sets of points in the search space
 □ These are called the Tabu list and are to be avoided
 □ The idea is that this helps in avoiding local optima
 □ However if a point is evaluated to be better than any points discovered so far, then the Tabu list may be updated

Tabu Search Stopping Conditions

□ Some immediate stopping conditions:
 □ No feasible solution in the neighborhood of solution
 □ The maximum amount of iterations or CPU time has been exceeded
 □ The number of iterations since the last improvement is larger than a specified number
 □ Evidence can be given than an optimum solution has been obtained

Pros and Cons for Tabu Search

□ Pro	DS:
	The use of a Tabu list
	Can be applied to discrete and continuous solution spaces
	A meta-heuristic that guides a local search procedure to explore the solution space beyond local optimality
	For difficult problems (e.g. scheduling and vehicle routing), tabu search obtains solutions that rival / surpass other approaches
□ Cor	ns:
	Too many parameters to be determined
	Number of iterations could be very large
	Global optimum may not be found, depends on parameter settings
	Tabu list can grow out of control

Iterated Local Search (ILS) - Key Concepts

- ☐ ILS uses another local search algorithm as part of the algorithm
 - ☐ E.g. Hill Climbing
- ☐ Built on premise that local search algorithms are easily trapped in local optima!
- ☐ It uses information regarding previously discovered local optima (and/or starting points) to locate new (and hopefully better) local optima
 - ☐ The current solution is perturbed (changed), and is then used as a new starting point for the search

ILS – Algorithmic Steps

☐ The key algorithmic steps are as follows:

```
s0 = Generate initial solution
s* = LocalSearch(s0)
history = \( \phi \)
Repeat
history = history \( \phi \) s* [Remember previous optima and maybe start]
scurrent = Perturb(s*, history) [Try to avoid similar starting points]
scurrent* = LocalSearch(scurrent)
s* = Accept(s*, scurrent*, history) [Often just accept best]
Until termination condition met
```

ILS – Perturbation and Acceptance Criteria

□ Perturbation is key
 □ Needs to be chosen so that it cannot be undone easily by subsequent local search
 □ It may consist of many perturbation steps
 □ Strong perturbation: more effective escape from local optima but similar drawbacks as random restart
 □ Weak perturbation: short subsequent local search phase but risk of revisiting previous optima
 □ Acceptance criteria: usually either the more recent or the best

ILS - Pros and Cons

☐ Pros: ☐ Often leads to very good performance ☐ Easy to implement a simple ILS ☐ State-of-the-art results with further optimisations ☐ Cons: Deep understanding of the problem and, trial and error may be required for a good perturbation method Using a bad perturbation method: keep returning to the same local optima or our metaheuristic may resemble random restart!

- ☐ We are going to look at some performance considerations that can be applied to all Heuristic Search Methods applied to the Scales Problem
- ☐ We will briefly look at how we implement ILS and how it performs compared to other heuristic search methods

Tabu Search and ILS

Slide 17

□ Representation
 □ At the moment we are representing a solution as a Binary String or Array of Integers
 □ Is this a good idea?
 □ Each digit or part is either 0 or 1
 □ This just needs one bit, but we are using 32 bits!!! (or 64 bits – I assume we are using 32...)
 □ This is like writing on a pad of paper by using one sheet per letter...

- Representation
 - ☐ We can save space and thus efficiency (speed) by just using the number of bits we need
 - \Box For n weights and b bits (32) we would need the following number of integers (m)

$$m = \left\lceil \frac{n}{b} \right\rceil$$

- to represent our weight/scales allocation
- ☐ We would need 32 integers for 1000 weights...

☐ Luckily the latest version of Java comes with a built in class!

```
import java.util.BitSet;
public class BitSetTest {
   public static void main(String args[]) {
      int n = 25;
      BitSet bs = new BitSet(n);
                                                   Output:
      bs.set(0,n,true);
      ShowBits(bs,n);
      bs.flip(0,n);
      ShowBits(bs,n);
      bs.set(17, true);
      ShowBits(bs,n);
   private static void ShowBits(BitSet bs,int n) {
      for(int i=0;i<n;++i) System.out.print((bs.get(i))?"1":"0");</pre>
      System.out.println();
```

□ Fitness \Box Our fitness function for the Scales problem is an O(n)algorithm ☐ However note the following: ☐ If we record and remember the *LHS* and *RHS* totals and the position (index) of the last small change ☐ If we changed a '1' to a '0' (moved from right to left) \square NewLHS = LHS + weight(index) \square NewRHS = RHS - weight(index) ☐ If we changed a '0' to a '1' (moved from left to right) \square NewLHS = LHS - weight(index) \square NewRHS = RHS + weight(index)

☐ Fitness ■ Thus we have created an updatable fitness function ■ New Fitness = Old Fitness + Value based on small change \square We have reduced our time complexity from O(n) to O(1)[the notation for constant time] ☐ I.e. For 1000 weights our program could be up to 1000 times faster!!! ☐ Combining this with the more compact representation discussed previously we now have a much more efficient algorithm

■ Implementation Base our algorithm on RRHC method ☐ Reuse any code we might have Need a way of generating starting positions that is not entirely random ☐ These starting positions should be different to previous starting points and local optima Generate the first starting point randomly ☐ Remember the local optima Bias the way that each starting point is generated based on the recorded starting points and local optima

- ☐ Results
 - Experiments were conducted on 10,000 weights generated randomly (UR) between 100 and 1000
 - ☐ 100 Repeats
 - ☐ All methods were allowed 10,000 fitness function calls
 - ☐ Worst Fitness = 5524223.536
 - \square RMHC = 65.418
 - ☐ RRHC = 8.248
 - ☐ ILSHC = 8.192

- ☐ Results
 - ☐ ILS is less than 1% better than RRHC!
 - ☐ But it is better...
 - ☐ Better ways of combining the starting positions and previously discovered local optima might results in a better performance...

This Weeks Laboratory

- ☐ There is no new worksheet this week!!
- ☐ Make sure that you use the laboratory to catchup with your worksheets and CodeRunner class tests

Next Lecture

☐ We will be looking at Genetic Algorithms