O Método Simplex

Professores André L.M. Marcato, Ivo C.da Silva Jr, Joao A.Passos Filho

Universidade Federal de Juiz de Fora Programa de Pós-Graduação em Engenharia Elétrica

 $and re.marcato @ufjf.edu.br,\ ivo.junior @ufjf.edu.br,\ joao.passos @ufjf.edu.br$

Primeiro Semestre de 2018

Agenda da Apresentação

- Método Simplex
 - Descrição Geral
 - Forma Padrão
 - Passos da Resolução do PPL via Tableau Simplex
- Pluxograma do Tableau
 - Problema de Maximização
 - Problema de Minimização
 - Exemplo Minimização
- 3 Enumeração Exaustiva
 - Exemplo

••••••

Método Simplex

George Dantzig

George Bernard Dantzig foi um matemático que introduziu o algoritmo simplex e é considerado "pai da programação linear".

Nascimento: 8 de novembro de 1914, Portland

Falecimento: 13 de maio de 2005, Stanford

Prêmio: Prêmio Teoria John von Neumann

Educação: Universidade da Califórnia em Berkeley, Universidade de Maryland, Universidade de Michigan

Descrição Geral Simplex

Início: Forma Padrão

Descrição Geral Simplex (SBF = Solução Básica Factível)

Descrição Geral Simplex (SBF = Solução Básica Factível)

Descrição Geral Simplex (SBF = Solução Básica Factível)

Forma Geral/Original

$$\max Z = c^{T}x$$
s.a.
$$Ax\{=, \leq, \geq\}b$$

$$x > 0$$

Forma Geral/Original

$$\max Z = c^T x$$

s.a.

$$Ax\{=,\leq,\geq\}b$$
$$x>0$$

Forma Padrão

$$\max Z = c^T x$$

s.a.

$$Ax = b$$

$$x \ge 0$$

Forma Geral/Original

$$\max Z = c^T x$$

s.a.

$$Ax\{=,\leq,\geq\}b$$
$$x>0$$

Forma Padrão

$$\max Z = c^T x$$

s.a.

$$Ax = b$$

$$x \ge 0$$

 \checkmark Os termos independentes das restrições devem ser não negativos ($b \ge 0$).

Método Simplex

Forma Geral/Original

$$\max Z = c^T x$$

s.a.

$$Ax\{=,\leq,\geq\}b$$
$$x>0$$

Forma Padrão

$$\max Z = c^T x$$

s.a.

Ax = b

 $x \ge 0$

Todas as restrições na forma de igualdade (exceção: não-negatividade).

Método Simplex

Forma Geral/Original

$$\max Z = c^T x$$

$$Ax\{=,\leq,\geq\}b$$
$$x\geq0$$

Forma Padrão

$$\max Z = c^T x$$

s.a.

Ax = b

$$x \ge 0$$

- Os termos independentes das restrições devem ser não negativos ($b \ge 0$).
- ▼ Todas as restrições na forma de igualdade (exceção: não-negatividade).
 - Não-negatividade: As variáveis de decisão x devem ser não negativas.

Forma Geral/Original

$$\max Z = c^T x$$
s.a.

$$Ax\{=,\leq,\geq\}b$$
$$x>0$$

Forma Padrão

$$\max Z = c^T x$$

s.a.

$$Ax = b$$

$$x \ge 0$$

- ullet Os termos independentes das restrições devem ser não negativos ($b \geq 0$).
- √ Todas as restrições na forma de <u>igualdade</u> (exceção: não-negatividade).
- √ Não-negatividade: As variáveis de decisão x devem ser não negativas.

$$\max z = c_1x_1 + c_2x_2 + \cdots + c_nx_n$$

Sujeito a (restrições de igualdade)

$$a_{11}x_1 + a_{12}x_2 + \dots + c_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + c_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + c_{mn}x_n = b_n$$

$$x_1, x_2, \dots, x_n > 0$$

$$\max z = \sum_{j=1}^{n} c_j x_j$$

Sujeito a (restrições de igualdade)

$$\sum_{j=1}^{n} a_{ij} = b_i \quad \forall i = 1, 2, \cdots, m$$
$$x_j \ge 0 \qquad \forall j = 1, 2, \cdots, n$$

$$\max z = \begin{bmatrix} c_1 & c_2 & \cdots & c_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Sujeito a (restrições de igualdade)

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} e \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \ge \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

$$\max z = \begin{bmatrix} c_1 & c_2 & \cdots & c_n \end{bmatrix}_{\substack{1 \times n}} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}_{\substack{n \times 1}}$$

Sujeito a (restrições de igualdade)

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}_{\mathbf{m} \times \mathbf{n}} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}_{\mathbf{n} \times \mathbf{1}} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}_{\mathbf{m} \times \mathbf{1}}$$

$$\max z = \mathbf{c}^T \mathbf{x}$$

Sujeito a (restrições de igualdade)

$$\begin{aligned} A_{eq}x &= B_{eq} \\ x &\geq 0 \end{aligned}$$

$$\mathbf{c} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \quad \mathbf{B}_{eq} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} \quad \mathbf{A}_{eq} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

Relação entre Maximização e Minimização

Relação entre Maximização e Minimização

- Qualquer que seja o formato do PPL, sempre é possível transforma-lo no formato padrão apresentado.
- Como é a relação entre minimização e maximização?

Relação entre Maximização e Minimização

$$\max z = \sum_{j=1}^n c_j x_j \Leftrightarrow \min(-z) = \sum_{j=1}^n (-c_j) x_j$$

$$\min z = \sum_{j=1}^{n} c_j x_j \Leftrightarrow \max(-z) = \sum_{j=1}^{n} (-c_j) x_j$$

Relação Entre Inequações e Equações

Restrições de Menor ou Igual - Variável de Folga $(+S_i)$

$$\sum_{i=1}^{n} a_{ij} x_{j} \leq b_{i} \Leftrightarrow \begin{cases} \sum_{j=1}^{n} a_{ij} x_{j} + S_{i} = b_{i} \\ 0 \leq S_{i} \geq \infty \end{cases}$$

Relação Entre Inequações e Equações

Restrições de Menor ou Igual - Variável de Folga $(+S_i)$

$$\sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i} \Leftrightarrow \begin{cases} \sum_{j=1}^{n} a_{ij} x_{j} + S_{i} = b_{i} \\ 0 \leq S_{i} \geq \infty \end{cases}$$

Restrições de Maior ou Igual - Variável de Excesso $(-S_i)$

$$\sum_{i=1}^{n} a_{ij} x_j \ge b_i \Leftrightarrow \begin{cases} \sum_{j=1}^{n} a_{ij} x_j - S_i = b_i \\ 0 \le S_i \ge \infty \end{cases}$$

Tratamento de Limites das Variáveis

Limite Inferior ou Lower Bound

$$x_j \ge LB \Leftrightarrow \begin{cases} x_j - LB = x'_j \Rightarrow x_j = x'_j + LB \\ x'_j \ge 0 \end{cases}$$

Tratamento de Limites das Variáveis

Limite Inferior ou Lower Bound

$$x_j \ge LB \Leftrightarrow \begin{cases} x_j - LB = x'_j \Rightarrow x_j = x'_j + LB \\ x'_j \ge 0 \end{cases}$$

Limite Superior ou Upper Bound

$$x_j \le UB \Leftrightarrow \begin{cases} UB - x_j = x'_j \Rightarrow x_j = UB - x'_j \\ x'_j \ge 0 \end{cases}$$

Tratamento de Limites das Variáveis

Limite Inferior ou Lower Bound

$$x_j \ge LB \Leftrightarrow \begin{cases} x_j - LB = x'_j \Rightarrow x_j = x'_j + LB \\ x'_j \ge 0 \end{cases}$$

Limite Superior ou *Upper Bound*

$$x_j \le UB \Leftrightarrow \begin{cases} UB - x_j = x'_j \Rightarrow x_j = UB - x'_j \\ x'_j \ge 0 \end{cases}$$

$$-\infty \le x_j \le \infty \Leftrightarrow \begin{cases} x_j = x_j' - x_j'' \\ x_j' \ge 0 \text{ e } x_j'' \ge 0 \end{cases}$$

Forma Original

max
$$Z = 3x_1 + 2.5x_2 + 1.2x_3$$

Sujeito a
 $x_1 - 2x_2 + 4x_3 \le 40$
 $x_1 + x_2 + 2x_3 \le 60$
 $2x_1 + 3x_2 + x_3 \ge 15$
 $x_1, x_2, x_3 \ge 0$

Forma Original

max
$$Z = 3x_1 + 2.5x_2 + 1.2x_3$$

Sujeito a
 $x_1 - 2x_2 + 4x_3 \le 40$
 $x_1 + x_2 + 2x_3 \le 60$
 $2x_1 + 3x_2 + x_3 \ge 15$
 $x_1, x_2, x_3 > 0$

Forma Padrão

$$\max Z = 3x_1 + 2.5x_2 + 1.2x_3$$
Sujeito a
$$x_1 - 2x_2 + 4x_3 + x_4 = 40$$

$$x_1 + x_2 + 2x_3 + x_5 = 60$$

$$2x_1 + 3x_2 + x_3 - x_6 = 15$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

Coloque o PPL abaixo na forma padrão.

$$\max Z = -2x_1 + x_2 + x_3 - 3x_4 + x_5$$
Sujeito a:
$$x_1 + 2x_2 - x_3 + x_4 + 3x_5 \ge 5$$

$$4x_1 + x_3 - 2x_4 - x_5 \le 0$$

$$-2x_3 + x_4 + 2x_5 \ge -7$$

$$3x_1 + x_2 - x_4 + x_5 = 8$$

$$x_3 \le 0$$

$$x_4 \text{ qualquer}$$

$$x_1, x_2, x_5 \ge 0$$

Resposta: PPL Escrito na Forma Padrão.

Coloque o PPL abaixo na forma padrão.

$$\max Z = -2x_1 + x_2 + x_3 - 3x_4 + x_5$$
Sujeito a:
$$x_1 + 2x_2 - x_3 + x_4 + 3x_5 \ge 5$$

$$4x_1 + x_3 - 2x_4 - x_5 \le 0$$

$$-2x_3 + x_4 + 2x_5 \ge -7$$

$$3x_1 + x_2 - x_4 + x_5 = 8$$

$$x_3 \le 0$$

$$x_4 \text{ qualquer}$$

$$x_1, x_2, x_5 \ge 0$$

Resposta: PPL Escrito na Forma Padrão.

$$\max Z = -2x_1 + x_2 + x_3 - 3x_4 + x_5$$

Coloque o PPL abaixo na forma padrão.

$$\max Z = -2x_1 + x_2 + x_3 - 3x_4 + x_5$$
Sujeito a:
$$x_1 + 2x_2 - x_3 + x_4 + 3x_5 \ge 5$$

$$4x_1 + x_3 - 2x_4 - x_5 \le 0$$

$$-2x_3 + x_4 + 2x_5 \ge -7$$

$$3x_1 + x_2 - x_4 + x_5 = 8$$

$$x_3 \le 0$$

$$x_4 \text{ qualquer}$$

$$x_1, x_2, x_5 \ge 0$$

Resposta: PPL Escrito na Forma Padrão.

max
$$Z=-2x_1+x_2+x_3-3x_4+x_5$$

Sujeito a:
 $x_1+2x_2-x_3+x_4+3x_5-S_1=5$

Coloque o PPL abaixo na forma padrão.

$$\max Z = -2x_1 + x_2 + x_3 - 3x_4 + x_5$$
Sujeito a:
$$x_1 + 2x_2 - x_3 + x_4 + 3x_5 \ge 5$$

$$4x_1 + x_3 - 2x_4 - x_5 \le 0$$

$$-2x_3 + x_4 + 2x_5 \ge -7$$

$$3x_1 + x_2 - x_4 + x_5 = 8$$

$$x_3 \le 0$$

$$x_4 \text{ qualquer}$$

$$x_1, x_2, x_5 \ge 0$$

Resposta: PPL Escrito na <u>Forma Padrão</u>.

max
$$Z=-2x_1+x_2+x_3-3x_4+x_5$$

Sujeito a:
 $x_1+2x_2-x_3+x_4+3x_5-S_1=5$
 $4x_1+x_3-2x_4-x_5+S_2=0$

Coloque o PPL abaixo na forma padrão.

$$\max Z = -2x_1 + x_2 + x_3 - 3x_4 + x_5$$
Sujeito a:
$$x_1 + 2x_2 - x_3 + x_4 + 3x_5 \ge 5$$

$$4x_1 + x_3 - 2x_4 - x_5 \le 0$$

$$-2x_3 + x_4 + 2x_5 \ge -7$$

$$3x_1 + x_2 - x_4 + x_5 = 8$$

$$x_3 \le 0$$

$$x_4 \text{ qualquer}$$

$$x_1, x_2, x_5 \ge 0$$

Resposta: PPL Escrito na Forma Padrão.

max
$$Z=-2x_1+x_2+x_3-3x_4+x_5$$

Sujeito a:
 $x_1+2x_2-x_3+x_4+3x_5-S_1=5$
 $4x_1+x_3-2x_4-x_5+S_2=0$
 $2x_3-x_4-2x_5+S_3=7$

Coloque o PPL abaixo na forma padrão.

$$\max Z = -2x_1 + x_2 + x_3 - 3x_4 + x_5$$
Sujeito a:
$$x_1 + 2x_2 - x_3 + x_4 + 3x_5 \ge 5$$

$$4x_1 + x_3 - 2x_4 - x_5 \le 0$$

$$-2x_3 + x_4 + 2x_5 \ge -7$$

$$3x_1 + x_2 - x_4 + x_5 = 8$$

$$x_3 \le 0$$

$$x_4 \text{ qualquer}$$

$$x_1, x_2, x_5 \ge 0$$

Resposta: PPL Escrito na Forma Padrão.

max
$$Z=-2x_1+x_2+x_3-3x_4+x_5$$

Sujeito a:
 $x_1+2x_2-x_3+x_4+3x_5-S_1=5$
 $4x_1+x_3-2x_4-x_5+S_2=0$
 $2x_3-x_4-2x_5+S_3=7$
 $3x_1+x_2-x_4+x_5=8$

Coloque o PPL abaixo na forma padrão.

max
$$Z=-2x_1+x_2+x_3-3x_4+x_5$$

Sujeito a:
 $x_1+2x_2-x_3+x_4+3x_5 \ge 5$
 $4x_1+x_3-2x_4-x_5 \le 0$
 $-2x_3+x_4+2x_5 \ge -7$
 $3x_1+x_2-x_4+x_5=8$
 $x_3 \le 0$
 x_4 qualquer
 $x_1,x_2,x_5 \ge 0$

Resposta: PPL Escrito na <u>Forma Padrão</u>.

max
$$Z=-2x_1+x_2+x_3-3x_4+x_5$$

Sujeito a:
 $x_1+2x_2-x_3+x_4+3x_5-S_1=5$
 $4x_1+x_3-2x_4-x_5+S_2=0$
 $2x_3-x_4-2x_5+S_3=7$
 $3x_1+x_2-x_4+x_5=8$
 $x_3=-x_3'$

Coloque o PPL abaixo na forma padrão.

$$\max Z = -2x_1 + x_2 + x_3 - 3x_4 + x_5$$
Sujeito a:
$$x_1 + 2x_2 - x_3 + x_4 + 3x_5 \ge 5$$

$$4x_1 + x_3 - 2x_4 - x_5 \le 0$$

$$-2x_3 + x_4 + 2x_5 \ge -7$$

$$3x_1 + x_2 - x_4 + x_5 = 8$$

$$x_3 \le 0$$

$$x_4 \text{ qualquer}$$

$$x_1, x_2, x_5 \ge 0$$

Resposta: PPL Escrito na Forma Padrão.

max
$$Z=-2x_1+x_2+x_3-3x_4+x_5$$

Sujeito a:
 $x_1+2x_2-x_3+x_4+3x_5-S_1=5$
 $4x_1+x_3-2x_4-x_5+S_2=0$
 $2x_3-x_4-2x_5+S_3=7$
 $3x_1+x_2-x_4+x_5=8$
 $x_3=-x_3'$
 $x_4=x_4'-x_4''$

Coloque o PPL abaixo na forma padrão.

$$\max Z = -2x_1 + x_2 + x_3 - 3x_4 + x_5$$
Sujeito a:
$$x_1 + 2x_2 - x_3 + x_4 + 3x_5 \ge 5$$

$$4x_1 + x_3 - 2x_4 - x_5 \le 0$$

$$-2x_3 + x_4 + 2x_5 \ge -7$$

$$3x_1 + x_2 - x_4 + x_5 = 8$$

$$x_3 \le 0$$

$$x_4 \text{ qualquer}$$

$$x_1 \cdot x_2 \cdot x_5 \ge 0$$

Resposta: PPL Escrito na <u>Forma Padrão</u>.

max
$$Z=-2x_1+x_2+x_3-3x_4+x_5$$

Sujeito a:
 $x_1+2x_2-x_3+x_4+3x_5-S_1=5$
 $4x_1+x_3-2x_4-x_5+S_2=0$
 $2x_3-x_4-2x_5+S_3=7$
 $3x_1+x_2-x_4+x_5=8$
 $x_3=-x_3'$
 $x_4=x_4'-x_4''$
 $x_1,x_2,x_3',x_4',x_4'',S_1,S_2,S_3,x_5\geq 0$

Coloque o PPL abaixo na forma padrão.

max
$$Z=-2x_1+x_2+x_3-3x_4+x_5$$

Sujeito a:
 $x_1+2x_2-x_3+x_4+3x_5 \ge 5$
 $4x_1+x_3-2x_4-x_5 \le 0$
 $-2x_3+x_4+2x_5 \ge -7$
 $3x_1+x_2-x_4+x_5=8$
 $x_3 \le 0$
 x_4 qualquer
 $x_1.x_2.x_5 \ge 0$

Resposta: PPL Escrito na Forma Padrão.

max
$$Z=-2x_1+x_2-x_3'-3(x_4'-x_4'')+x_5$$

Sujeito a:
 $x_1+2x_2+x_3'+x_4'-x_4''+3x_5-S_1=5$
 $4x_1-x_3'-2(x_4'-x_4'')-x_5+S_2=0$
 $-2x_3'-(x_4'-x_4'')-2x_5+S_3=7$
 $3x_1+x_2-(x_4'-x_4'')+x_5=8$
 $x_1,x_2,x_3',x_4',x_4'',S_1,S_2,S_3,x_5\geq 0$

Coloque o PPL abaixo na forma padrão.

max
$$Z=-2x_1+x_2+x_3-3x_4+x_5$$

Sujeito a:
 $x_1+2x_2-x_3+x_4+3x_5 \ge 5$
 $4x_1+x_3-2x_4-x_5 \le 0$
 $-2x_3+x_4+2x_5 \ge -7$
 $3x_1+x_2-x_4+x_5=8$
 $x_3 \le 0$
 x_4 qualquer
 $x_1.x_2.x_5 > 0$

Programa em Matlab

```
clear all; close all; clc;
2 c = -[-2 1 1 -3 1];
 A = \begin{bmatrix} -1 & -2 & 1 & -1 & -3 \end{bmatrix}
          4 0 1 -2 -1; ...
          0 0 2 -1 -2];
6 B = [-5; 0; 7];
7 Aeq = [3 \ 1 \ 0 \ -1 \ 1];
    Beq = 8;
   LB = [0 	 0 - inf - inf 	 0];
10 UB = [inf inf 0 inf inf];
11
    [x, fval, exitflag] = ...
         linprog(c,A,B,Aeq,Beq,LB,UB)
```


Coloque o PPL abaixo na forma padrão.

$$\max Z = -2x_1 + x_2 + x_3 - 3x_4 + x_5$$
Sujeito a:
$$x_1 + 2x_2 - x_3 + x_4 + 3x_5 \ge 5$$

$$4x_1 + x_3 - 2x_4 - x_5 \le 0$$

$$-2x_3 + x_4 + 2x_5 \ge -7$$

$$3x_1 + x_2 - x_4 + x_5 = 8$$

$$x_3 \le 0$$

$$x_4 \text{ qualquer}$$

$$x_1, x_2, x_5 > 0$$

Programa em Matlab

Command Window

New to MATLAB? See resources for Getting Started.

Optimization terminated.

- 0.0000
- 0.0000
- -0.0000
- -2.6667 5.3333

1

f.

Coloque o PPL abaixo na forma padrão.

$$\max Z = -2x_1 + x_2 + x_3 - 3x_4 + x_5$$
Sujeito a:
$$x_1 + 2x_2 - x_3 + x_4 + 3x_5 \ge 5$$

$$4x_1 + x_3 - 2x_4 - x_5 \le 0$$

$$-2x_3 + x_4 + 2x_5 \ge -7$$

$$3x_1 + x_2 - x_4 + x_5 = 8$$

$$x_3 \le 0$$

$$x_4 \text{ qualquer}$$

$$x_1, x_2, x_5 > 0$$

Programa em Matlab

```
Command Window
New to MATLAB? See resources for Getting Started.
  Optimization terminated.
  x =
       0.0000 X1
       0.0000 X2
      -0.0000 X3
      -2.6667 \times 4
       5.3333 X5
  fval =
     -13.3333 + 13.3333
  exitflag =
         1
                OKIII
```

f.

Resposta: PPL Escrito na Forma Padrão.

$$\max Z = -2x_1 + x_2 - x_3' - 3(x_4' - x_4'') + x_5$$
Sujeito a:
$$x_1 + 2x_2 + x_3' + x_4' - x_4'' + 3x_5 - S_1 = 5$$

$$4x_1 - x_3' - 2(x_4' - x_4'') - x_5 + S_2 = 0$$

$$-2x_3' - (x_4' - x_4'') - 2x_5 + S_3 = 7$$

$$3x_1 + x_2 - (x_4' - x_4'') + x_5 = 8$$

$$x_1, x_2, x_3', x_4', x_4'', S_1, S_2, S_3, x_5 \ge 0$$

Programa em Matlab

Resposta: PPL Escrito na <u>Forma Padrão</u>.

max
$$Z=-2x_1+x_2-x_3'-3(x_4'-x_4'')+x_5$$

Sujeito a:
 $x_1+2x_2+x_3'+x_4'-x_4''+3x_5-S_1=5$
 $4x_1-x_3'-2(x_4'-x_4'')-x_5+S_2=0$
 $-2x_3'-(x_4'-x_4'')-2x_5+S_3=7$
 $3x_1+x_2-(x_4'-x_4'')+x_5=8$
 $x_1,x_2,x_3',x_4',x_4'',S_1,S_2,S_3,x_5\geq 0$

Programa em Matlab

f.

Resposta: PPL Escrito na Forma Padrão.

max
$$Z=-2x_1+x_2-x_3'-3(x_4'-x_4'')+x_5$$

Sujeito a:
 $x_1+2x_2+x_3'+x_4'-x_4''+3x_5-S_1=5$
 $4x_1-x_3'-2(x_4'-x_4'')-x_5+S_2=0$
 $-2x_3'-(x_4'-x_4'')-2x_5+S_3=7$
 $3x_1+x_2-(x_4'-x_4'')+x_5=8$
 $x_1,x_2,x_3',x_4',x_4'',S_1,S_2,S_3,x_5\geq 0$

Programa em Matlab **Command Window** New to MATLAB? See resources for Getting Started Optimization terminated. x = 0.0000 X1 0.0000 X2 0.0000 X3' 0 X4' 2.6667 X4" 5.3333 X5 8.3333 51 0.0000 S2 15.0000 S3 fval = -13.3333 +13.3333

exitflag =

OKIII

f.

Solução Básica Inicial

Observações

 A passagem para forma padrão se faz pelo simples acréscimo de uma variável de folga ou excesso para cada inequação existente

Solução Básica Inicial

Observações

- A passagem para forma padrão se faz pelo simples acréscimo de uma variável de folga ou excesso para cada inequação existente
- 2 A forma padrão resultante consiste em um sistema que tenha uma solução básica inicial mais fácil de ser encontrada:

Solução Básica Inicial

Observações

- A passagem para forma padrão se faz pelo simples acréscimo de uma variável de folga ou excesso para cada inequação existente
- A forma padrão resultante consiste em um sistema que tenha uma solução básica inicial mais fácil de ser encontrada:

Solução Básica Inicial (ESTRATÉGIA):

Anular as variáveis originais

Obter os valores das variáveis de folga e excesso

Observações

- A passagem para forma padrão se faz pelo simples acréscimo de uma variável de folga ou excesso para cada inequação existente
- A forma padrão resultante consiste em um sistema que tenha uma solução básica inicial mais fácil de ser encontrada:

Solução Básica Inicial (ESTRATÉGIA):

Anular as variáveis originais

Obter os valores das variáveis de folga e excesso

- 3 As variáveis nulas recebem o nome de NÃO BÁSICAS (VNB)
- 4 As variáveis não nulas recebem o nome de BÁSICAS (VB)

max
$$Z=3x_1+2,5x_2+1,2x_3$$

Sujeito a
 $x_1-2x_2+4x_3 \le 40$
 $x_1+x_2+2x_3 \le 60$
 $2x_1+3x_2+x_3 \ge 15$
 $x_1,x_2,x_3 > 0$

max
$$Z=3x_1+2,5x_2+1,2x_3$$

Sujeito a
 $x_1-2x_2+4x_3 \le 40$
 $x_1+x_2+2x_3 \le 60$

 $2x_1+3x_2+x_3>15$

 $x_1, x_2, x_3 > 0$

max
$$Z=3x_1+2,5x_2+1,2x_3$$

Sujeito a
 $x_1-2x_2+4x_3 \le 40$
 $x_1+x_2+2x_3 \le 60$
 $2x_1+3x_2+x_3 \ge 15$

 $x_1, x_2, x_3 \ge 0$

max
$$Z=3x_1+2,5x_2+1,2x_3$$

Sujeito a
 $x_1-2x_2+4x_3 \le 40$
 $x_1+x_2+2x_3 \le 60$
 $2x_1+3x_2+x_3 > 15$

 $x_1, x_2, x_3 \ge 0$


```
\max Z = 3x_1 + 2,5x_2 + 1,2x_3
Sujeito a
x_1 - 2x_2 + 4x_3 + x_4 = 40
x_1 + x_2 + 2x_3 + x_5 = 60
2x_1 + 3x_2 + x_3 + x_6 = 15
x_1, x_2, x_3, x_4, x_5, x_6^* \ge 0
```


$$\max Z = 3x_1 + 2, 5x_2 + 1, 2x_3$$
Sujeito a
$$x_1 - 2x_2 + 4x_3 \le 40$$

$$x_1 + x_2 + 2x_3 \le 60$$

$$2x_1 + 3x_2 + x_3 \ge 15$$

$$x_1, x_2, x_3 \ge 0$$

Solução Básica Factível Inicial ???

- As variáveis nulas recebem o nome de NÃO BÁSICAS (VNB)
- As variáveis não nulas recebem o nome de BÁSICAS (VB)

max
$$Z=3x_1+2,5x_2+1,2x_3$$

Sujeito a
 $x_1-2x_2+4x_3 \le 40$
 $x_1+x_2+2x_3 \le 60$
 $2x_1+3x_2+x_3 \ge 15$
 $x_1,x_2,x_3 \ge 0$

Solução Básica Factível Inicial ???

$$VNB = \{x_1, x_2, x_3\} \Leftrightarrow x_1 = 0, x_2 = 0, x_3 = 0$$

$$VB = \{x_4, x_5, x_6^*\} \Leftrightarrow x_4 = 40, x_5 = 60, x_6^* = 15$$

$$Z = 0$$

Passos da Resolução do PPL via Tableau Simplex

Problema em Análise

$$\max Z = 3x_1 + 5x_2$$

Sujeito a:
 $x_1 \le 4$
 $2x_2 \le 12$
 $3x_1 + 2x_2 \le 18$
 $x_1, x_2 > 0$

Problema em Análise

Reescrever a expressão da FOB

$$\max Z - 3x_1 - 5x_2 = 0$$
Sujeito a:
$$x_1 \le 4$$

$$2x_2 \le 12$$

$$3x_1 + 2x_2 \leq 18$$

$$x_1, x_2 \geq 0$$

Passos da Resolução do PPL via Tableau Simplex

Problema em Análise Problema na Forma Padrão

max
$$Z - 3x_1 - 5x_2 = 0$$

Sujeito a:
 $x_1 + S_1 = 4$
 $2x_2 + S_2 = 12$
 $3x_1 + 2x_2 + S_3 = 18$
 $x_1, x_2, S_1, S_2, S_3 > 0$

Problema em Análise

Achar SBF Inicial

$$x_1 + S_1 = 4$$

$$2x_2 + S_2 = 12$$

$$3x_1 + 2x_2 + 5_3 = 18$$

$$x_1, x_2, S_1, S_2, S_3 \geq 0$$

$$S_1 = 4$$
 $x_1 = 0$

$$S_2 = 12 \quad x_2 = 0$$

$$S_3 = 18$$
 $Z = 0$

Passos da Resolução do PPL via Tableau Simplex

Problema em Análise

Achar SBF Inicial

max
$$Z - 3x_1 - 5x_2 = 0$$

Sujeito a:
 $x_1 + S_1 = 4$
 $2x_2 + S_2 = 12$
 $3x_1 + 2x_2 + S_3 = 18$
 $x_1, x_2, S_1, S_2, S_3 > 0$

$$S_1 = 4$$
 $x_1 = 0$
 $S_2 = 12$ $x_2 = 0$
 $S_3 = 18$ $Z = 0$

$$VNB = \{x_1, x_2\}$$

 $VB = \{S_1, S_2, S_3\}$

Atenção

A FOB deve ser sempre formada por VNB.

Passos da Resolução do PPL via Tableau Simplex

Problema em Análise Montar o TABLEAU Simplex

$$\max Z - 3x_1 - 5x_2 = 0$$

Sujeito a:

$$x_1 + S_1 = 4$$

 $2x_2 + S_2 = 12$

$$3x_1 + 2x_2 + \frac{5_3}{2} = 18$$

$$x_1, x_2, S_1, S_2, S_3 \geq 0$$

$$S_1 = 4$$
 $x_1 = 0$
 $S_2 = 12$ $x_2 = 0$

$$S_3 = 18$$
 $Z = 0$

Passos da Resolução do PPL via Tableau Simplex

Problema em Análise

max
$$Z - 3x_1 - 5x_2 = 0$$

Sujeito a:
 $x_1 + S_1 = 4$
 $2x_2 + S_2 = 12$
 $3x_1 + 2x_2 + S_3 = 18$
 $x_1, x_2, S_1, S_2, S_3 \ge 0$

	Base	Z	X_1	X_2	S_1	S_2	S_3	b
Restr.(1)	S_1							
Restr.(2)	S_2							
Restr.(3)	<i>S</i> ₃							
FOB ¹	Z							

Passos da Resolução do PPL via Tableau Simplex

Problema em Análise

max
$$Z - 3x_1 - 5x_2 = 0$$

Sujeito a:
 $x_1 + S_1 = 4$
 $2x_2 + S_2 = 12$
 $3x_1 + 2x_2 + S_3 = 18$
 $x_1, x_2, S_1, S_2, S_3 \ge 0$

	Base	Z	X_1	X_2	S_1	S_2	S_3	b
Restr.(1)	S_1	0						
Restr.(2)	S_2							
Restr.(3)	<i>S</i> ₃							
FOB ¹	Ζ							

Passos da Resolução do PPL via Tableau Simplex

Problema em Análise

max
$$Z - 3x_1 - 5x_2 = 0$$

Sujeito a:
 $x_1 + S_1 = 4$
 $2x_2 + S_2 = 12$
 $3x_1 + 2x_2 + S_3 = 18$
 $x_1, x_2, S_1, S_2, S_3 \ge 0$

	Base	Z	X_1	X_2	S_1	S_2	<i>S</i> ₃	b
Restr.(1)	S_1	0	1					
Restr.(2)	S_2							
Restr.(3)	<i>S</i> ₃							
FOB ¹	Z							

Passos da Resolução do PPL via Tableau Simplex

Problema em Análise

max
$$Z - 3x_1 - 5x_2 = 0$$

Sujeito a:
 $x_1 + S_1 = 4$
 $2x_2 + S_2 = 12$
 $3x_1 + 2x_2 + S_3 = 18$
 $x_1, x_2, S_1, S_2, S_3 \ge 0$

	Base	Z	X_1	X_2	S_1	S_2	<i>S</i> ₃	b
Restr.(1)	S_1	0	1	0				
Restr.(2)	S_2							
Restr.(3)	<i>S</i> ₃							
FOB ¹	Z							

Passos da Resolução do PPL via Tableau Simplex

Problema em Análise

max
$$Z - 3x_1 - 5x_2 = 0$$

Sujeito a:
 $x_1 + S_1 = 4$
 $2x_2 + S_2 = 12$
 $3x_1 + 2x_2 + S_3 = 18$
 $x_1, x_2, S_1, S_2, S_3 \ge 0$

	Base	Z	X_1	X_2	S_1	S_2	<i>S</i> ₃	b
Restr.(1)	S_1	0	1	0	1			
Restr.(2)	S_2							
Restr.(3)	<i>S</i> ₃							
FOB ¹	Ζ							

Passos da Resolução do PPL via Tableau Simplex

Problema em Análise

max
$$Z - 3x_1 - 5x_2 = 0$$

Sujeito a:
 $x_1 + S_1 = 4$
 $2x_2 + S_2 = 12$
 $3x_1 + 2x_2 + S_3 = 18$
 $x_1, x_2, S_1, S_2, S_3 \ge 0$

	Base	Z	X_1	X_2	S_1	S_2	<i>S</i> ₃	b
Restr.(1)	S_1	0	1	0	1	0		
Restr.(2)	S_2							
Restr.(3)	<i>S</i> ₃							
FOB ¹	Ζ							

Passos da Resolução do PPL via Tableau Simplex

Problema em Análise

max
$$Z - 3x_1 - 5x_2 = 0$$

Sujeito a:
 $x_1 + S_1 = 4$
 $2x_2 + S_2 = 12$
 $3x_1 + 2x_2 + S_3 = 18$
 $x_1, x_2, S_1, S_2, S_3 \ge 0$

	Base	Z	X_1	X_2	S_1	S_2	<i>S</i> ₃	Ь
Restr.(1)	S_1	0	1	0	1	0	0	
Restr.(2)	S_2							
Restr.(3)	<i>S</i> ₃							
FOB ¹	Z							

Passos da Resolução do PPL via Tableau Simplex

Problema em Análise

max
$$Z - 3x_1 - 5x_2 = 0$$

Sujeito a:
 $x_1 + S_1 = 4$
 $2x_2 + S_2 = 12$
 $3x_1 + 2x_2 + S_3 = 18$
 $x_1, x_2, S_1, S_2, S_3 \ge 0$

	Base	Z	X_1	X_2	S_1	S_2	S_3	b
Restr.(1)	S_1	0	1	0	1	0	0	4
Restr.(2)	S_2							
Restr.(3)	<i>S</i> ₃							
FOB ¹	Z							

Passos da Resolução do PPL via Tableau Simplex

Problema em Análise

max
$$Z - 3x_1 - 5x_2 = 0$$

Sujeito a:
 $x_1 + S_1 = 4$
 $2x_2 + S_2 = 12$
 $3x_1 + 2x_2 + S_3 = 18$
 $x_1, x_2, S_1, S_2, S_3 > 0$

	Base	Z	X_1	X_2	S_1	S_2	S_3	b
Restr.(1)	S_1	0	1	0	1	0	0	4
Restr.(2)	S_2	0						
Restr.(3)	<i>S</i> ₃							
FOB ¹	Z							

Passos da Resolução do PPL via Tableau Simplex

Problema em Análise

max
$$Z - 3x_1 - 5x_2 = 0$$

Sujeito a:
 $x_1 + S_1 = 4$
 $2x_2 + S_2 = 12$
 $3x_1 + 2x_2 + S_3 = 18$
 $x_1, x_2, S_1, S_2, S_3 \ge 0$

	Base	Z	X_1	X_2	S_1	S_2	S_3	b
Restr.(1)	S_1	0	1	0	1	0	0	4
Restr.(2)	S_2	0	0					
Restr.(3)	<i>S</i> ₃							
FOB ¹	Z							

Passos da Resolução do PPL via Tableau Simplex

Problema em Análise

max
$$Z - 3x_1 - 5x_2 = 0$$

Sujeito a:
 $x_1 + S_1 = 4$
 $2x_2 + S_2 = 12$
 $3x_1 + 2x_2 + S_3 = 18$
 $x_1, x_2, S_1, S_2, S_3 \ge 0$

	Base	Z	X_1	X_2	S_1	S_2	<i>S</i> ₃	b
Restr.(1)	S_1	0	1	0	1	0	0	4
Restr.(2)	S_2	0	0	2				
Restr.(3)	<i>S</i> ₃							
FOB ¹	Ζ							

Passos da Resolução do PPL via Tableau Simplex

Problema em Análise

max
$$Z - 3x_1 - 5x_2 = 0$$

Sujeito a:
 $x_1 + S_1 = 4$
 $2x_2 + S_2 = 12$
 $3x_1 + 2x_2 + S_3 = 18$
 $x_1, x_2, S_1, S_2, S_3 \ge 0$

	Base	Z	X_1	X_2	S_1	S_2	S_3	b
Restr.(1)	S_1	0	1	0	1	0	0	4
Restr.(2)	S_2	0	0	2	0			
Restr.(3)	<i>S</i> ₃							
FOB ¹	Ζ							

Passos da Resolução do PPL via Tableau Simplex

Problema em Análise

max
$$Z - 3x_1 - 5x_2 = 0$$

Sujeito a:
 $x_1 + S_1 = 4$
 $2x_2 + S_2 = 12$
 $3x_1 + 2x_2 + S_3 = 18$
 $x_1, x_2, S_1, S_2, S_3 > 0$

	Base	Z	X_1	X_2	S_1	S_2	S_3	b
Restr.(1)	S_1	0	1	0	1	0	0	4
Restr.(2)	S_2	0	0	2	0	1		
Restr.(3)	<i>S</i> ₃							
FOB ¹	Ζ							

Passos da Resolução do PPL via Tableau Simplex

Problema em Análise

max
$$Z - 3x_1 - 5x_2 = 0$$

Sujeito a:
 $x_1 + S_1 = 4$
 $2x_2 + S_2 = 12$
 $3x_1 + 2x_2 + S_3 = 18$
 $x_1, x_2, S_1, S_2, S_3 \ge 0$

	Base	Z	X_1	X_2	S_1	S_2	S_3	b
Restr.(1)	S_1	0	1	0	1	0	0	4
Restr.(2)	S_2	0	0	2	0	1	0	
Restr.(3)	<i>S</i> ₃							
FOB ¹	Z							

Problema em Análise

max
$$Z - 3x_1 - 5x_2 = 0$$

Sujeito a:
 $x_1 + S_1 = 4$
 $2x_2 + S_2 = 12$
 $3x_1 + 2x_2 + S_3 = 18$
 $x_1, x_2, S_1, S_2, S_3 \ge 0$

	Base	Z	X_1	X_2	S_1	S_2	S_3	b
Restr.(1)	S_1	0	1	0	1	0	0	4
Restr.(2)	S_2	0	0	2	0	1	0	12
Restr.(3)	<i>S</i> ₃							
FOB ¹	Z							

Passos da Resolução do PPL via Tableau Simplex

Problema em Análise

max
$$Z - 3x_1 - 5x_2 = 0$$

Sujeito a:
 $x_1 + S_1 = 4$
 $2x_2 + S_2 = 12$
 $3x_1 + 2x_2 + S_3 = 18$
 $x_1, x_2, S_1, S_2, S_3 \ge 0$

	Base	Z	X_1	X_2	S_1	S_2	S_3	b
Restr.(1)	S_1	0	1	0	1	0	0	4
Restr.(2)	S_2	0	0	2	0	1	0	12
Restr.(3)	<i>S</i> ₃	0						
FOB ¹	Ζ							

Passos da Resolução do PPL via Tableau Simplex

Problema em Análise

max
$$Z - 3x_1 - 5x_2 = 0$$

Sujeito a:
 $x_1 + S_1 = 4$
 $2x_2 + S_2 = 12$
 $3x_1 + 2x_2 + S_3 = 18$
 $x_1, x_2, S_1, S_2, S_3 \ge 0$

	Base	Z	X_1	X_2	S_1	S_2	S_3	Ь
Restr.(1)	S_1	0	1	0	1	0	0	4
Restr.(2)	S_2	0	0	2	0	1	0	12
Restr.(3)	<i>S</i> ₃	0	3					
FOB ¹	Ζ							

Passos da Resolução do PPL via Tableau Simplex

Problema em Análise

max
$$Z - 3x_1 - 5x_2 = 0$$

Sujeito a:
 $x_1 + S_1 = 4$
 $2x_2 + S_2 = 12$
 $3x_1 + 2x_2 + S_3 = 18$
 $x_1, x_2, S_1, S_2, S_3 > 0$

	Base	Z	X_1	X_2	S_1	S_2	<i>S</i> ₃	b
Restr.(1)	S_1	0	1	0	1	0	0	4
Restr.(2)	S_2	0	0	2	0	1	0	12
Restr.(3)	<i>S</i> ₃	0	3	2				
FOB ¹	Ζ							

Passos da Resolução do PPL via Tableau Simplex

Problema em Análise

max
$$Z - 3x_1 - 5x_2 = 0$$

Sujeito a:
 $x_1 + S_1 = 4$
 $2x_2 + S_2 = 12$
 $3x_1 + 2x_2 + S_3 = 18$
 $x_1, x_2, S_1, S_2, S_3 \ge 0$

	Base	Z	X_1	X_2	S_1	S_2	S_3	Ь
Restr.(1)	S_1	0	1	0	1	0	0	4
Restr.(2)	S_2	0	0	2	0	1	0	12
Restr.(3)	<i>S</i> ₃	0	3	2	0			
FOB ¹	Z							

Passos da Resolução do PPL via Tableau Simplex

Problema em Análise

max
$$Z - 3x_1 - 5x_2 = 0$$

Sujeito a:
 $x_1 + S_1 = 4$
 $2x_2 + S_2 = 12$
 $3x_1 + 2x_2 + S_3 = 18$
 $x_1, x_2, S_1, S_2, S_3 \ge 0$

	Base	Z	X_1	X_2	S_1	S_2	S_3	Ь
Restr.(1)	S_1	0	1	0	1	0	0	4
Restr.(2)	S_2	0	0	2	0	1	0	12
Restr.(3)	<i>S</i> ₃	0	3	2	0	0		
FOB ¹	Ζ							

Passos da Resolução do PPL via Tableau Simplex

Problema em Análise

max
$$Z - 3x_1 - 5x_2 = 0$$

Sujeito a:
 $x_1 + S_1 = 4$
 $2x_2 + S_2 = 12$
 $3x_1 + 2x_2 + S_3 = 18$
 $x_1, x_2, S_1, S_2, S_3 \ge 0$

	Base	Z	X_1	X_2	S_1	S_2	S_3	Ь
Restr.(1)	S_1	0	1	0	1	0	0	4
Restr.(2)	S_2	0	0	2	0	1	0	12
Restr.(3)	<i>S</i> ₃	0	3	2	0	0	1	
FOB ¹	Z							

Passos da Resolução do PPL via Tableau Simplex

Problema em Análise

max
$$Z - 3x_1 - 5x_2 = 0$$

Sujeito a:
 $x_1 + S_1 = 4$
 $2x_2 + S_2 = 12$
 $3x_1 + 2x_2 + S_3 = 18$
 $x_1, x_2, S_1, S_2, S_3 > 0$

	Base	Z	X_1	X_2	S_1	S_2	<i>S</i> ₃	b
Restr.(1)	S_1	0	1	0	1	0	0	4
Restr.(2)	S_2	0	0	2	0	1	0	12
Restr.(3)	<i>S</i> ₃	0	3	2	0	0	1	18
FOB ¹	Z	1	-3	-5	0	0	0	0

INÍCIO

Base	Z	<i>X</i> ₁	<i>X</i> ₂	S_1	<i>S</i> ₂	<i>S</i> ₃	b
<i>S</i> ₁	0	1	0	1	0	0	4
<i>S</i> ₂	0	0	2	0	1	0	12
<i>S</i> ₃	0	3	2	0	0	1	18
Z	1	-3	-5	0	0	0	0

Parte da Solução Básica Factível (SBF) inicial.

Base	Z	<i>X</i> ₁	<i>X</i> ₂	S_1	S_2	<i>S</i> ₃	b
S_1	0	1	0	1	0	0	4
S_2	0	0	2	0	1	0	12
<i>S</i> ₃	0	3	2	0	0	1	18
Z	1	-3	-5	0	0	0	0

Verificar se a solução é ótima! (Linha de Z).

Base	Z	<i>X</i> ₁	<i>X</i> ₂	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	b
<i>S</i> ₁	0	1	0	1	0	0	4
<i>S</i> ₂	0	0	2	0	1	0	12
<i>S</i> ₃	0	3	2	0	0	1	18
Z	1	-3	-5	0	0	0	0

Entra

Base

Escolhe variável com coeficiente mais negativo na FOB para entrar na base.

Base	Z	<i>X</i> ₁	<i>X</i> ₂	S_1	<i>S</i> ₂	S ₃	b	
S_1	0	1	0	1	0	0	4	4÷0=∞
S_2	0	0	2	0	1	0	12	12÷2=+6
<i>S</i> ₃	0	3	2	0	0	1	18	18÷2=+9
Z	1	-3	-5	0	0	0	0	

1

Entra

Base

Para cada linha do Tableau calcular razão $\frac{b_i}{\text{coluna}}$.

Base	Z	X_1	X_2				b		
<i>S</i> ₁	0	1	0	1	0	0	4	4÷0=∞	
<i>S</i> ₂	0	0	2	0	1	0	12	12÷2=+6	4
<i>S</i> ₃	0	3	2	0	0	1	18	18÷2=+9	4
Z	1	-3	-5	0	0	0	0		
			1					•	

Entra

Base

Verifica se existe razão positiva e finita.

Base	Z	<i>X</i> ₁	X_2	S_1	S_2	<i>S</i> ₃	b
S_1	0	1	0	1	0	0	4
<i>S</i> ₂	0	0	2	0	1	0	12
<i>S</i> ₃	0	3	2	0	0	1	18
Z	1	-3	-5	0	0	0	0

Entra

Base

A linha com a menor razão positiva finita sairá da base.

Base	Z	<i>X</i> ₁	X_2	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	b
S_1	0	1	0	1	0	0	4
X_2	0	0	2	0	1	0	12
<i>S</i> ₃	0	3	2	0	0	1	18
Z	1	-3	-5	0	0	0	0

4÷0=∞		
12÷2=+6	4	Sai Base
18÷2=+9		

Entra

Base

Troca de Base

Cada linha da tabela deve possuir apenas uma VB com coeficiente unitário.

Base	Z	<i>X</i> ₁	X_2	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	b
S_1	0	1	0	1	0	0	4
<i>X</i> ₂	0	0	2	0	1	0	12
<i>S</i> ₃	0	3	2	0	0	1	18
Ζ	1	-3	-5	0	0	0	0

Entra

Base

Zerar a coluna de X_2 com exceção da linha referente ao pivô que deve assumir o valor unitário. Para tanto:

 $\begin{array}{c} \mathsf{Linha}_1' = \mathsf{Linha}_1 \\ \mathsf{Linha}_3' = \mathsf{Linha}_3 - \mathsf{Linha}_2 \\ \mathsf{Linha}_4' = \mathsf{Linha}_4 + \frac{2}{5}\mathsf{Linha}_2 \\ \mathsf{Linha}_2' = \frac{1}{2}\mathsf{Linha}_2 \end{array}$

Base	Z	<i>X</i> ₁	X_2	S_1	S ₂	S ₃	b
<i>S</i> ₁	0	1	0	1	0	0	4
X_2	0	0	1	0	1/2	0	6
<i>S</i> ₃	0	3	0	0	-1	1	6
Z	1	-3	0	0	5/2	0	30

Novo Tableau !!!!

Linhas com apenas uma VB com coeficiente unitário.

Base	Z	<i>X</i> ₁	X_2	S_1	S ₂	<i>S</i> ₃	b
<i>S</i> ₁	0	1	0	1	0	0	4
X_2	0	0	1	0	1/2	0	6
S ₃	0	3	0	0	-1	1	6
Z	1	-3	0	0	5/2	0	30

Verificar se a solução é ótima! (Linha de Z).

Base	Z	<i>X</i> ₁	X_2	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	b
<i>S</i> ₁	0	1	0	1	0	0	4
X_2	0	0	1	0	1/2	0	6
<i>S</i> ₃	0	3	0	0	-1	1	6
Z	1	-3	0	0	5/2	0	30
		1					

Entra

Base

Escolhe variável com coeficiente mais negativo na FOB para entrar na base.

X ₂ 0 0 1 0 1/2 0 6 6÷0=0 S ₃ 0 3 0 0 -1 1 6 6÷3=+	Base	Z	<i>X</i> ₁	X_2	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	b	
S ₄ 0 3 0 0 -1 1 6 6÷3=+	<i>S</i> ₁	0	1	0	1	0	0	4	4÷1=+4
	<i>X</i> ₂	0	0	1	0	1/2	0	6	6÷0=∞
Z 1 -3 0 0 5/2 0 30	<i>S</i> ₃	0	3	0	0	-1	1	6	6÷3=+2
	Z	1	-3	0	0	5/2	0	30	

1

Entra

Base

Para cada linha do Tableau calcular razão $\frac{b_i}{\text{coluna}}$.

Base	Z	<i>X</i> ₁	<i>X</i> ₂	S_1	S ₂	<i>S</i> ₃	b
<i>S</i> ₁	0	1	0	1	0	0	4
X_2	0	0	1	0	1/2	0	6
<i>S</i> ₃	0	3	0	0	-1	1	6
Z	1	-3	0	0	5/2	0	30

Entra

Base

Verifica se existe razão positiva e finita.

Base	Z	<i>X</i> ₁	X_2	<i>S</i> ₁	<i>S</i> ₂	S ₃	b			
<i>S</i> ₁	0	1	0	1	0	0	4	4÷1=+4		
<i>X</i> ₂	0	0	1	0	1/2	0	6	6÷0=∞		
<i>S</i> ₃	0	3	0	0	-1	1	6	6÷3=+2	(Sai Base
Z	1	-3	0	0	5/2	0	30			

1

Entra

Base

A linha com a menor razão positiva finita sairá da base.

Base	Z	X_1	X_2	S_1	<i>S</i> ₂	<i>S</i> ₃	Ь			
S_1	0	1	0	1	0	0	4	4÷1=+4		
X ₂	0	0	1	0	1/2	0	6	6÷0=∞		
X ₁	0	3	0	0	-1	1	6	6÷3=+2	4	Sai Base
Z	1	-3	0	0	5/2	0	30			
		1						•		

Entra

Base

Troca de Base

Cada linha da tabela deve possuir apenas uma VB com coeficiente unitário.

Base	Z	X_1	X_2	S_1	<i>S</i> ₂	S ₃	b			
<i>S</i> ₁	0	1	0	1	0	0	4	4÷1=+4		
X_2	0	0	1	0	1/2	0	6	6÷0=∞		
X ₁	0	3	0	0	-1	1	6	6÷3=+2	4	S
Z	1	-3	0	0	5/2	0	30			

7

Entra

Base

```
Linha'_1 = Linha_1 - \frac{1}{2}Linha_3
      Linha'_2 = Linha_2
 Linha'_4 = Linha_4 + Linha_3
      Linha'_3 = \frac{1}{2}Linha_3
```


Base	Z	X_1	X_2	S_1	<i>S</i> ₂	<i>S</i> ₃	b
S ₁	0	0	0	1	1/3	-1/3	2
<i>X</i> ₂	0	0	1	0	1/2	0	6
X_1	0	1	0	0	-1/3	1/3	2
Z	1	0	0	0	3/2	1	36

Novo Tableau !!!!

Linhas com apenas uma VB com coeficiente unitário.

Base	Z	X_1	X_2	S_1	S_2	S ₃	b
S_1	0	0	0	1	1/3	-1/3	2
<i>X</i> ₂	0	0	1	0	1/2	0	6
X_1	0	1	0	0	-1/3	1/3	2
Z	1	0	0	0	3/2	1	36

Verificar se a solução é ótima! (Linha de Z).

Base	Z	X_1	X_2	<i>S</i> ₁	S_2	<i>S</i> ₃	b
<i>S</i> ₁	0	0	0	1	1/3	-1/3	2
X_2	0	0	1	0	1/2	0	6
X_1	0	1	0	0	-1/3	1/3	2
Z	1	0	0	0	3/2	1	36

OPTIMAL SOLUTION FOUND !!!!

Base	Z	X_1	<i>X</i> ₂	<i>S</i> ₁	S_2	S ₃	b
	0	0	0	1	1/3	-1/3	2
	0	0	1	0	1/2	0	6
	0	1	0	0	-1/3	1/3	2
Z	1	0	0	0	3/2	1	36

Tipo	Variável	Valor
	<i>X</i> ₁	2
VB	X_2	6
	S_1	2
VNB	S_2	0
VIND	<i>S</i> ₃	0
FOB	Z	36

Fluxograma Tableau Simplex - MAXIMIZAÇÃO

Fluxograma Tableau Simplex - MINIMIZAÇÃO

Utilize o Tableau Simplex para resolver o seguinte problema de programação linear:

min
$$Z = x_1 + x_2 - 4x_3$$

Sujeito à:
 $x_1 + x_2 + 2x_3 \le 9$
 $x_2 + x_2 - x_3 \le 2$
 $-x_1 + x_2 + x_3 \le 4$
 $x_1, x_2, x_3 \ge 0$

Reescrever a expressão da FOB

min
$$Z - x_1 - x_2 + 4x_3 = 0$$

Sujeito à:
 $x_1 + x_2 + 2x_3 \le 9$
 $x_2 + x_2 - x_3 \le 2$
 $-x_1 + x_2 + x_3 \le 4$
 $x_1, x_2, x_3 > 0$

Problema na Forma Padrão

min
$$Z - x_1 - x_2 + 4x_3 = 0$$

Sujeito à:
 $x_1 + x_2 + 2x_3$ $+x_4$ $= 9$
 $x_2 + x_2 - x_3$ $+x_5$ $= 2$
 $-x_1 + x_2 + x_3$ $+x_6$ $= 4$
 $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$

Achar SBF Inicial

$$VNB \begin{cases} x_1 = 0 \\ x_2 = 0 \\ x_3 = 0 \end{cases}$$

$$VB \begin{cases} x_4 = 9 \\ x_5 = 2 \\ x_6 = 4 \end{cases}$$

Мо	Montar o Tableau Simplex											
		Z	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	X4	<i>x</i> ₅	<i>x</i> ₆	Ь			
X	4	0	1	1	2	1	0	0	9			
X	5	0	1	1	-1	0	1	0	2			
×	6	0	-1	1	1	0	0	1	4			
2	?	1	-1	-1	4	0	0	0	0			

Exemplo Minimização - 1^a Interação

	Z	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3				Ь
X4	0	1	1	2	1	0	0	9
<i>X</i> 5	0	1	1	-1	0	1	0	2
<i>x</i> ₆	0	-1	1	1	0	0	1	4
Z	1	-1	-1	4	0	0	0	0

Exemplo Minimização - 1^a Interação

	z	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3				Ь
X4	0	1	1	2	1	0	0	9
<i>x</i> ₅	0	1	1	-1	0	1	0	2
<i>x</i> ₆	0	-1	1	1	0	0	1	4
z	1	-1	-1	4	0	0	0	0

Entra

	Z	<i>x</i> ₁	<i>x</i> ₂	Х3	X4	<i>X</i> 5	<i>x</i> ₆	Ь
<i>X</i> 4	0	1	1	2	1	0	0	9
<i>X</i> 5	0	1	1	-1	0	1	0	2
<i>x</i> ₆	0	-1	1	1	0	0	1	4
z	1	-1	-1	4	0	0	0	0
				1				

Exemplo Minimização - 1^a Interação

	Z	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	<i>x</i> ₆	Ь
X4	0	1	1	2	1	0	0	9
<i>x</i> ₅	0	1	1	-1	0	1	0	2
<i>x</i> ₆	0	-1	1	1	0	0	1	4
Z	1	-1	-1	4	0	0	0	0
				1				

$$2 \div (-1) = -2$$

	Z	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3				Ь
X4	0	1	1	2	1	0	0	9
<i>X</i> 5	0	1	1	-1	0	1	0	2
	0	-1	1	1	0	0	1	4
z	1	-1	-1	4	0	0	0	0
				1				

$$9 \div 2 = 4.5$$

 $2 \div (-1) = -2$
 $4 \div 1 = 4$

Sai Bas

Entra Base

	Z	<i>x</i> ₁	<i>x</i> ₂	Х3	<i>X</i> 4	<i>X</i> 5	<i>x</i> ₆	Ь
X4	0	1	1	2	1	0	0	9
<i>X</i> 5	0	1	1	-1	0	1	0	2
	0	-1	1	1	0	0	1	4
Z	1	-1	-1	4	0	0	0	0
				1				

Sai Bas

Entra Base

$$Linha'_1 = Linha_1 - 2 * Linha_3$$

Exemplo Minimização - 1^a Interação

	z	<i>x</i> ₁	<i>x</i> ₂	X3				Ь
X4	0	1	1	2	1	0	0	9
<i>X</i> 5	0	1	1	-1	0	1	0	2
	0	-1	1	1	0	0	1	4
Z	1	-1	-1	4	0	0	0	0
				1				

÷1=4 **←** Sai Bas

Entra Base

$$Linha'_1 = Linha_1 - 2 * Linha_3$$

 $Linha'_2 = Linha_2 + 1 * Linha_3$

Exemplo Minimização - 1^a Interação

	Z	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3				Ь
X4	0	1	1	2	1	0	0	9
<i>X</i> ₅	0	1	1	-1	0	1	0	2
	0	-1	1	1	0	0	1	4
z	1	-1	-1	4	0	0	0	0
				1				

$$9 \div 2 = 4.5$$

 $2 \div (-1) = -2$
 $4 \div 1 = 4$

年 🏻 Sai Bas

Entra Base

$$Linha'_1 = Linha_1 - 2 * Linha_3$$

 $Linha'_2 = Linha_2 + 1 * Linha_3$
 $Linha'_3 = Linha_3$

$$9 \div 2 = 4.5$$

 $2 \div (-1) = -2$

 $4 \div 1 = 4$

$$\begin{aligned} \mathsf{Linha}_1' &= \mathsf{Linha}_1 - 2 * \mathsf{Linha}_3 \\ \mathsf{Linha}_2' &= \mathsf{Linha}_2 + 1 * \mathsf{Linha}_3 \\ \mathsf{Linha}_3' &= \mathsf{Linha}_3 \\ \mathsf{Linha}_4' &= \mathsf{Linha}_4 - 4 * \mathsf{Linha}_3 \end{aligned}$$

Exemplo Minimização - 2^a Interação

	Z	<i>x</i> ₁	<i>X</i> 2				<i>X</i> 6	Ь
X4	0	3	-1	0	1	0	-2	1
X5	0	0	2	0	0	1	1	6
X3	0	-1	1	1	0	0	1	4
Z	1	3	-5	0	0	0	-4	16

Exemplo Minimização - 2^a Interação

	Z	<i>x</i> ₁	<i>X</i> ₂	Х3	X4	<i>X</i> 5	<i>X</i> 6	Ь
X4	0	3	-1	0	1	0	-2	1
<i>X</i> ₅	0	0	2	0	0	1	1	6
X3	0	-1	1	1	0	0	1	4
z	1	3	-5	0	0	0	-4	16
		1						

Entra

	Z	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	X4	<i>X</i> 5	<i>x</i> ₆	Ь
X4	0	3	-1	0	1	0	-2	1
<i>X</i> 5	0	0	2	0	0	1	1	6
X3	0	-1	1	1	0	0	1	4
z	1	3	-5	0	0	0	-4	16
		4						

Entra

Exemplo Minimização - 2ª Interação

	Z	<i>x</i> ₁	<i>x</i> ₂				<i>X</i> 6	Ь
X4	0	3	-1	0	1	0	-2	1
<i>x</i> ₅	0	0	2	0	0	1	1	6
X3	0	-1	1	1	0	0	1	4
Z	1	3	-5	0	0	0	-4	16
		4						

 $1 \div 3 = 0.33$

SaiBase

Entra

Entra

	Z	<i>x</i> ₁	<i>X</i> ₂	Х3	X4	<i>X</i> 5	<i>X</i> 6	Ь
X4	0	3	-1	0	1	0	-2	1
<i>X</i> 5	0	0	2	0	0	1	1	6
X3	0	-1	1	1	0	0	1	4
Z	1	3	-5	0	0	0	-4	16
		Î						

Base

	Z	<i>x</i> ₁	<i>X</i> ₂	Х3	X4	<i>X</i> 5	<i>x</i> ₆	Ь
X4	0	3	-1	0	1	0	-2	1
<i>X</i> 5	0	0	2	0	0	1	1	6
X3	0	-1	1	1	0	0	1	4
z	1	3	-5	0	0	0	-4	16
		Î						

Entra Base

$$\mathsf{Linha}_1' = (1/3) * \mathsf{Linha}_1$$

Exemplo Minimização - 2ª Interação

	Z	<i>x</i> ₁	<i>x</i> ₂				<i>x</i> ₆	Ь
<i>X</i> 4	0	3	-1	0	1	0	-2	1
<i>X</i> 5	0	0	2	0	0	1	1	6
X3	0	-1	1	1	0	0	1	4
Z	1	3	-5	0	0	0	-4	16
		仓						

SaiBase

Entra Base

$$Linha'_1 = (1/3) * Linha_1$$

 $Linha'_2 = Linha_2$

Método Simplex

Exemplo Minimização - 2^a Interação

	Z	<i>x</i> ₁	<i>X</i> ₂				<i>x</i> ₆	Ь
X4	0	3	-1	0	1	0	-2	1
<i>X</i> 5	0	0	2	0	0	1	1	6
<i>X</i> 3	0	-1	1	1	0	0	1	4
Z	1	3	-5	0	0	0	-4	16
		1						

$$1 \div 3 = 0.33$$

 $6 \div 0 = \infty$
 $4 \div (-1) = -4$

Entra Base

$$\begin{aligned} & \mathsf{Linha}_1' = (1/3) * \mathsf{Linha}_1 \\ & \mathsf{Linha}_2' = \mathsf{Linha}_2 \\ & \mathsf{Linha}_3' = \mathsf{Linha}_3 + (1/3) * \mathsf{Linha}_1 \end{aligned}$$

SaiBase

$$\begin{aligned} &\mathsf{Linha}_1' = (1/3) * \mathsf{Linha}_1 \\ &\mathsf{Linha}_2' = \mathsf{Linha}_2 \\ &\mathsf{Linha}_3' = \mathsf{Linha}_3 + (1/3) * \mathsf{Linha}_1 \\ &\mathsf{Linha}_4' = \mathsf{Linha}_4 - 1 * \mathsf{Linha}_1 \end{aligned}$$

Exemplo Minimização - 3ª Interação

	Z		<i>x</i> ₂		X4		<i>x</i> ₆	Ь
<i>x</i> ₁	0	1	-1/3	0	1/3	0	-2/3	1/3
<i>x</i> ₅	0	0	2	0	0	1	1	6
<i>x</i> ₃	0	0	2/3	1	1/3	0	1/3	13/3
z	1	0	-4	0	-1	0	-2	-17

Exemplo Minimização - 3ª Interação

	Z		<i>x</i> ₂		<i>X</i> 4		<i>X</i> 6	Ь
<i>x</i> ₁	0	1	-1/3	0	1/3	0	-2/3	1/3
<i>X</i> 5	0	0	2	0	0	1	1	6
X3	0	0	2/3	1	1/3	0	1/3	13/3
z	1	0	-4	0	-1	0	-2	-17

OPTIMAL SOLUTION FOUND !!!!

Todos os coeficientes da Linha da FOB Negativos

Exemplo Minimização - 3ª Interação

Tipo	Variável	Valor	
	<i>X</i> ₁	1/3	
VB	<i>X</i> ₅	6	
	<i>X</i> ₃	13/3	
	<i>X</i> ₂	0	
VNB	X ₄	0	
	<i>X</i> ₆	0	
FOB	Z	-17	

Exemplo Minimização - Matlab

Problema de PL:

```
min Z=x_1+x_2-4x_3

Sujeito à:

x_1+x_2+2x_3 \le 9

x_2+x_2-x_3 \le 2

-x_1+x_2+x_3 \le 4
```

 $x_1, x_2, x_3 > 0$

Programa em Matlab

```
X: 3x1 double =

0.33333
9.8252e-14
4.3333
```


Exemplo 1 - Modelo Matemático Completo

Exemplo 1 - Modelo Matemático Completo

Forma Padrão - Escolha 1

Método Simplex

$$\max Z - 600x_1 - 800x_2 = 0$$

Sujeito a:

sujeito a:

$$x_1 + x_2 + x_3 = 100$$

 $3x_1 + 2x_2 + x_4 = 240$
 $x_1 + x_5 = 60$
 $x_2 + x_6 = 80$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

VB
$$\begin{cases} x_3 = 100 \\ x_4 = 240 \\ x_5 = 60 \\ x_6 = 80 \end{cases}$$
 VNB
$$\begin{cases} x_1 = 0 \\ x_2 = 0 \end{cases}$$

$$Z = 0$$

 $x_2 + x_6 = 80$

 $x_1, x_2, x_3, x_4, x_5, x_6 > 0$

max
$$Z - 600x_1 - 800x_2 = 0$$

Sujeito a:
 $x_1 + x_2 + x_3 = 100$
 $3x_1 + 2x_2 + x_4 = 240$
 $x_1 + x_5 = 60$

$$Z = 0$$

VB
$$\begin{cases} x_3 = 100 \\ x_4 = 240 \\ x_5 = 60 \\ x_6 = 80 \end{cases}$$
 VNB
$$\begin{cases} x_1 = 0 \\ x_2 = 0 \end{cases}$$

$$\max Z - 600x_1 - 800x_2 = 0$$
 Sujeito a:

$$x_1 + \cancel{2} + x_3 = 100$$

 $3x_1 + 2\cancel{2} + x_4 = 240$
 $x_1 + \cancel{3} = 60$
 $\cancel{2} + x_6 = 80$

 $x_1, x_2, x_3, x_4, x_5, x_6 > 0$

$$VB \begin{cases} x_1 = 60 \\ x_3 = 40 \\ x_4 = 60 \\ x_6 = 80 \end{cases} VNB \begin{cases} x_2 = 0 \\ x_5 = 0 \end{cases}$$

$$Z = 36000$$

$$\max Z - 600x_1 - 800x_2 = 0$$

Sujeito a:

$$x_1 + x_2 + x_3 = 100$$

 $3x_1 + 2x_2 + x_4 = 240$
 $x_1 + x_5 = 60$
 $x_2 + x_6 = 80$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

VB
$$\begin{cases} x_1 = 60 \\ x_2 = 30 \\ x_3 = 10 \\ x_6 = 50 \end{cases}$$
 VNB
$$\begin{cases} x_4 = 0 \\ x_5 = 0 \end{cases}$$

Z = 60000

max
$$Z - 600x_1 - 800x_2 = 0$$

Sujeito a:
 $x_1 + x_2 + 36 = 100$

$$3x_1 + 2x_2 + x_4 = 240$$

$$x_1 + x_5 = 60$$

$$x_2 + x_6 = 80$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

$$VB \begin{cases} x_1 = 40 \\ x_2 = 60 \\ x_5 = 20 \\ x_6 = 20 \end{cases} VNB \begin{cases} x_3 = 0 \\ x_4 = 0 \end{cases}$$

$$Z = 72000$$

$$\max Z - 600x_1 - 800x_2 = 0$$
 Sujeito a:

$$x_1 + x_2 + x_3 = 100$$

 $3x_1 + 2x_2 + x_4 = 240$
 $x_1 + x_5 = 60$
 $x_2 + x_6 = 80$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

VB
$$\begin{cases} x_1 = 20 \\ x_2 = 80 \\ x_4 = 20 \\ x_5 = 40 \end{cases}$$
 VNB
$$\begin{cases} x_3 = 0 \\ x_6 = 0 \end{cases}$$

Z = 76000 Optimal Solution!

$$\max Z - 600x_1 - 800x_2 = 0$$
 Sujeito a:

$$x_1 + x_2 + x_3 = 100$$

 $3x_1 + 2x_2 + x_4 = 240$
 $x_1 + x_5 = 60$
 $x_2 + x_6 = 80$

 $x_1, x_2, x_3, x_4, x_5, x_6 > 0$

$$Z = 64000$$

VB
$$\begin{cases} x_2 = 80 \\ x_3 = 20 \\ x_4 = 80 \\ x_5 = 60 \end{cases}$$
 VNB
$$\begin{cases} x_1 = 0 \\ x_6 = 0 \end{cases}$$

$$\max Z - 600x_1 - 800x_2 = 0$$
 Sujeito a:

$$x_1 + x_2 + x_3 = 100$$

 $3x_1 + 2x_2 + x_4 = 240$

$$x_1 + x_5 = 60$$

$$x_2 + x_6 = 80$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

VB
$$\begin{cases} x_1 = 60 \\ x_2 = 80 \\ x_3 = -40 \\ x_4 = -100 \end{cases}$$
 VNB
$$\begin{cases} x_5 = 0 \\ x_6 = 0 \end{cases}$$

$$\max Z - 600x_1 - 800x_2 = 0$$

Sujeito a:

$$x_1 + x_2 + x_3 = 100$$

 $3x_1 + 2x_2 + \cancel{4} = 240$
 $x_1 + x_5 = 60$

$$x_2 + x_6 = 80$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

VB
$$\begin{cases} x_1 = 26,67 \\ x_2 = 80 \\ x_3 = -6,67 \\ x_5 = 33,33 \end{cases}$$
 VNB
$$\begin{cases} x_4 = 0 \\ x_6 = 0 \end{cases}$$

$$\max Z - 600x_1 - 800x_2 = 0$$
 Sujeito a:

$$x_1 + x_2 + 3 = 100$$

 $3x_1 + 2x_2 + x_4 = 240$
 $x_1 + 3 = 60$
 $x_2 + x_6 = 80$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

VB
$$\begin{cases} x_1 = 60 \\ x_2 = 40 \\ x_4 = -20 \\ x_6 = 40 \end{cases}$$
 VNB
$$\begin{cases} x_3 = 0 \\ x_5 = 0 \end{cases}$$

$$\max Z - 600x_1 - 800x_2 = 0$$
 Sujeito a:

$$x_1 + \cancel{y_1} + x_3 = 100$$

 $3x_1 + 2\cancel{y_1} + x_4 = 240$
 $x_1 + x_5 = 60$
 $\cancel{y_2} + \cancel{y_6} = 80$

 $x_1, x_2, x_3, x_4, x_5, x_6 > 0$

VB
$$\begin{cases} x_1 = ??? \\ x_3 = ??? \\ x_4 = ??? \\ x_5 = ??? \end{cases}$$
 VNB
$$\begin{cases} x_2 = 0 \\ x_6 = 0 \end{cases}$$

Solução Impossível !!!

$$\max Z - 600x_1 - 800x_2 = 0$$

Sujeito a:

$$x_1 + \cancel{x} + x_3 = 100$$

 $3x_1 + 2\cancel{x} + \cancel{x} = 240$
 $x_1 + x_5 = 60$
 $\cancel{x} + x_6 = 80$
 $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$

VB
$$\begin{cases} x_1 = 80 \\ x_3 = 20 \\ x_5 = -20 \\ x_6 = 80 \end{cases}$$
 VNB
$$\begin{cases} x_2 = 0 \\ x_4 = 0 \end{cases}$$

$$\max Z - 600x_1 - 800x_2 = 0$$

Sujeito a:

$$x_1 + \cancel{y} + \cancel{y} = 100$$

 $3x_1 + 2\cancel{y} + x_4 = 240$
 $x_1 + x_5 = 60$
 $\cancel{y} + x_6 = 80$
 $x_1, x_2, x_3, x_4, x_5, x_6 > 0$

VB
$$\begin{cases} x_1 = 100 \\ x_4 = -60 \\ x_5 = -40 \\ x_6 = 80 \end{cases}$$
 VNB
$$\begin{cases} x_2 = 0 \\ x_3 = 0 \end{cases}$$

$$\max Z - 600x_1 - 800x_2 = 0$$
 Sujeito a:

$$x_1 + x_2 + x_3 = 100$$

 $3x_1 + 2x_2 + x_4 = 240$
 $x_1 + x_2 = 60$
 $x_2 + x_6 = 80$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

VB
$$\begin{cases} x_2 = ??? \\ x_3 = ??? \\ x_4 = ??? \\ x_6 = ??? \end{cases}$$
 VNB
$$\begin{cases} x_1 = 0 \\ x_5 = 0 \end{cases}$$

Solução Impossível !!!

$$\max Z - 600x_1 - 800x_2 = 0$$

Sujeito a:

$$x_1 + x_2 + x_3 = 100$$

 $3x_1 + 2x_2 + x_4 = 240$
 $x_1 + x_5 = 60$
 $x_2 + x_6 = 80$

$$x_1, x_2, x_3, x_4, x_5, x_6 \geq 0$$

VB
$$\begin{cases} x_2 = 120 \\ x_3 = -20 \\ x_5 = 60 \\ x_6 = -40 \end{cases}$$
 VNB
$$\begin{cases} x_1 = 0 \\ x_4 = 0 \end{cases}$$

$$\max Z - 600x_1 - 800x_2 = 0$$

Sujeito a:

$$x_1 + x_2 + x_3 = 100$$

$$3x_1 + 2x_2 + x_4 = 240$$

$$x_1 + x_5 = 60$$

$$x_2 + x_6 = 80$$

$$x_1, x_2, x_3, x_4, x_5, x_6 > 0$$

VB
$$\begin{cases} x_2 = 100 \\ x_4 = 40 \\ x_5 = 60 \\ x_6 = -20 \end{cases}$$
 VNB
$$\begin{cases} x_1 = 0 \\ x_3 = 0 \end{cases}$$

Conclusão

Em um sistema linear Ax = B, onde A é de ordem $m \times n$ e $m \le n$, podem haver até $\frac{n!}{m!(n-m)!}$ soluções básicas, por se tomar todas as combinações distintas de m variáveis básicas entre as n variáveis existentes.

Conclusão

Em um sistema linear Ax = B, onde A é de ordem $m \times n$ e m < n, podem haver até $\frac{n!}{m!(n-m)!}$ soluções básicas, por se tomar todas as combinações distintas de m variáveis básicas entre as n variáveis existentes.

- No exemplo do agricultor
 - m = 4 Equações, logo, existirão 4 Variáveis Básicas (VB).
 - n = 6 Variáveis de decisão, logo, existirão 6 4 ou 2 Variáveis Não Básicas (VNB)
 - Número de combinações será $\frac{6!}{4!(6-4)!} = \frac{6 \cdot 5 \cdot 4!}{4!2!} = \frac{30 \cdot \cancel{A!}}{\cancel{4!}} = 15$.

Fim

