Rayleigh: Some Details on the Numerics

Southwest Research Institute

Department of Solar and Heliospheric Physics, Solar System Science and Exploration Division

Rayleigh Solves: The Boussinesq MHD Equations

$$\begin{split} \left[\frac{\partial \boldsymbol{v}}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{v} + \frac{2}{E} \hat{\boldsymbol{z}} \times \boldsymbol{v} \right] &= \frac{Ra}{Pr} \left(\frac{r}{r_o} \right)^n \Theta \, \hat{\boldsymbol{r}} - \frac{1}{E} \boldsymbol{\nabla} P + \frac{1}{EPm} (\boldsymbol{\nabla} \times \boldsymbol{B}) \times \boldsymbol{B} + \boldsymbol{\nabla} \cdot \boldsymbol{\mathcal{D}} \\ \left[\frac{\partial \Theta}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} \Theta \right] &= \frac{1}{Pr} \boldsymbol{\nabla} \cdot \left[\tilde{\kappa}(r) \boldsymbol{\nabla} \Theta \right] \\ \frac{\partial \boldsymbol{B}}{\partial t} &= \boldsymbol{\nabla} \times \left[\boldsymbol{v} \times \boldsymbol{B} - \frac{1}{Pm} \tilde{\eta}(r) \boldsymbol{\nabla} \times \boldsymbol{B} \right] \\ \mathcal{D}_{ij} &= 2\tilde{\nu}(r) e_{ij} \\ \boldsymbol{\nabla} \cdot \boldsymbol{v} &= 0 \end{split}$$

 $\nabla \cdot \boldsymbol{B} = 0$

Rayleigh Solves: The Anelastic MHD Equations

$$egin{aligned} \hat{
ho}(r) \left[rac{\partial oldsymbol{v}}{\partial t} + oldsymbol{v} \cdot oldsymbol{
abla} oldsymbol{v} + 2\Omega_0 \hat{oldsymbol{z}} imes oldsymbol{v}
ight] &= rac{\hat{
ho}(r)}{c_P} g(r)\Theta \, \hat{oldsymbol{r}} + \hat{
ho}(r) oldsymbol{
abla} \left(rac{P}{\hat{
ho}(r)}
ight) \\ &+ rac{1}{4\pi} (oldsymbol{
abla} imes oldsymbol{B} + oldsymbol{
abla} oldsymbol{v} \cdot oldsymbol{
beta} oldsymbol{v} + oldsymbol{
abla} (r) \hat{oldsymbol{v}} + oldsymbol{v} \cdot oldsymbol{
abla} (r) \hat{oldsymbol{v}} + oldsymbol{
abla} (r) \hat{oldsymbol{v}} \cdot oldsymbol{
abla} (r) \hat{oldsymbol{v}} + oldsymbol{
abla} (r) \hat{oldsymbol{v}} \cdot oldsymbol{
abla} (r) \hat{oldsymbol{v}}$$

Serial Numerics

Horizontal "Discretization"

Spherical Harmonics: FFTW + DGEMM (Legendre)

Radial "Discretization"

Chebyshev Polynomials: Colocation scheme

Time-Stepping: Hybrid Crank-Nicolson/Adams-Bashforth

Direct Matrix Solve: LAPack LU Decomposition routines Recalculate matrices when Δt changes

Pseudospectral Method: Quick Overview

- Time-stepping: spectral configuration
- Derivatives: spectral configuration
 - Exponential convergence as ngrid grows
- Nonlinear products: physical configuration

Conceptual View of a Pseudo-Spectral Approach

Movement between configurations requires:

Transforms: O(N²) and O(N log N) ... expensive but accurate

Transposes: All-to-Alls ... limit scalability

Transpose: GLOBAL rearrangement of data

Why a Transpose?

Think of a 3-D FFT

Adapted from D.O. Go'mez et al. 2005

The Problem with Spectral Methods

Strong Scalability

Ideal Scaling:

Time
$$\propto \frac{1}{N_{CORES}}$$

Log N_{CORES}

How Long Should an All-to-All Take?

Time = Initiation Time + Transmission Time

Local Problem Size: P

Number of MPI Ranks: N

Single Message Initiation Time: I

Bandwidth: B

Message Size

Transmission Time =
$$N \times (P/N) / B = P/B \dots constant$$

Initiation Time = N x I ... *growing*

Try to limit message count

Mitigation Strategy #1: 2-D Domain Decomposition

1-D Domain Decomposition

One Large All-to-All

2-D Domain decomposition

Mitigation Strategy #2: Collect the Collectives

Example: Entropy Advection

Obvious approach: *transpose each field*

Spectral space

Physical space

Six Transposes

$$T = \frac{6P}{B} + 6NI$$

Alternative approach: *transpose a buffer*

Transpose the buffer

Single Transpose

$$T = \frac{6P}{B} + NI$$
Lower init time...

Rayleigh Parallelization: Load Balancing

Triangular Truncation:

$$0 \le \ell \le \ell_{\text{max}}$$
 $0 \le m \le \ell$

Uniform resolution on the Sphere.

Natural Load Balancing:

Keep all ℓ 's for each m in processor.

Pair high and low m modes.

Max Angular NCPUs =
$$\frac{\ell_{\text{max}} + 1}{2}$$

Example Mode Distribution

$$\ell_{\text{max}} = 5$$

Distributing m's is awkward

Fold the triangle

m = 0	m = 1	m = 2	m = 3	m = 4	m = 5
l	ig	l	ℓ	l	ℓ
0	1	2	3	4	5
1	2	3	4	5	
2	3	4	5		
3	4	5		_	
4	5				

Rayleigh Parallelization: Load Balancing

Triangular Truncation:

$$0 \le \ell \le \ell_{\text{max}}$$
 $0 \le m \le \ell$

Uniform resolution on the Sphere.

Example **Mode Distribution**

$$\ell_{\rm max} = 5$$

Distribute pairs of m-values

Each process gets same number of *ℓ*-values


```
Rank 2
m = 2
   2
   3
   4
   5
   ħ
۳ = ع
```

Rayleigh Parallelization

2-D Domain Decomposition

- Pure MPI
- Processes placed in columns and rows
- Three Configurations

Configuration 1

- ℓ-values distributed across rows
- m-values distributed across columns
- Radius in-processor
- Chebyshev Transforms
- Linear Solves

Rayleigh Parallelization

2-D Domain Decomposition

- Pure MPI
- Processes placed in columns and rows
- Three Configurations

Configuration 2

- Radial levels distributed across rows
- m-values distributed across columns
- ℓ/θ in-processor
- Legendre Transforms

Rayleigh Parallelization

2-D Domain Decomposition

- Pure MPI
- Processes placed in columns and rows
- Three Configurations

Configuration 3

- Radial levels distributed across rows
- θ -values distributed across columns
- m/∮ in-processor
- Fourier Transforms

Spectral Space

r in-processor $(\ell, m distributed)$

- 1. Time-stepping
- 2. Radial Derivatives

The Flow of Rayleigh

Transpose

1 iteration

4 Calls to All-to-All

Transpose

Hybrid Space

ℓ in-processor (r, m distributed)

- 1. θ -derivatives
- 2. Legendre Transforms

1. θ -derivatives

Transpose

Physical Space

Hybrid Space

 ℓ in-processor

(r, m distributed)

2. Legendre Transforms

φ in-processor $(r, \theta \text{ distributed})$

- 1. φ-derivatives
- 2. Fourier Transforms
- 3. Nonlinear Terms

Transpose

What about Memory?

Assumes $N_r = \frac{1}{2} N_{theta}$

N _{theta}	Max CPUs	10% Max CPUs
256	50 kB	500 kB
512	100 kB	1 MB
1024	200 kB	2 MB

Largest Buffer holds 20 Fields
Often fits into cache...

Rayleigh Performance

Mira (IBM Blue Gene/Q Argonne)

