Shuja Khwaja

Period

$$T=rac{2\pi}{\omega_0} \ \omega_0=2\pi f_0=rac{2\pi}{T_0}$$

Periodicity of Multiple Signals

$$rac{T_1}{T_2} = rac{k}{l} \; where \; k, l \; \in \mathbb{Z}$$

$$T_0 = LCM(T_1, T_2, ...)$$

 $LCM(\frac{a_1}{b_1}, \frac{a_2}{b_2}, ..., \frac{a_n}{b_n}) = \frac{LCM(a_1, a_2, ..., a_n)}{GCD(b_1, b_2, ..., b_n)}$

Support

- Smallest closed set where signal is non-zero,
- Include boundaries and ignore simple intersections $supp(x) = [0,1] \cup [2,\infty)$

Even and Odd

$$x_{even}(t) = \frac{1}{2}(x(t) + x(-t))$$

 $x_{odd}(t) = \frac{1}{2}(x(t) - x(-t))$

Special Signals

Unit Step: CT ≈ DT

$$u(t) = \begin{cases} 1 & t \ge 0 \\ 0 & t < 0 \end{cases}$$

Impulse: CT is derived from integral

$$\delta[n] = \left\{ egin{matrix} 1 & n = 0 \\ 0 & t
eq 0 \end{matrix}
ight.$$

Sifting:

$$x(t)\delta(t-t_0) = x(t_0)\delta(t-t_0)$$

$$\therefore \int_{-\infty}^{\infty} x(t)\delta(t-t_0) dt = x(t_0)$$

Sinusoids

$$\omega_0=2\pi f_0=rac{2\pi}{N_0}$$

DT: e^{jwn} is periodic N_0 if ω is an integer multiple of $\frac{2\pi}{N}$

Frequency Periodicity:

$$e^{j\omega n} = e^{j\omega n + 2\pi}$$
$$e^{j\pi n} = (-1)^n$$

Theorem 2.3:

Let $N_0 \in \mathbb{Z}_{\geq 1}$ be a desired period. There are exactly N_0 distinct DT complex exponential signals of period N_0 given by

$$\phi_k[n]=e^{jk\omega_0n}, \quad k\inig\{0,1,...,N_0-1ig\}$$

CT Fourier Series

Existence:

$$\begin{array}{c} \text{If x has finite action, $x \in L_1^{per}$} \\ \text{then α_k are well defined and} \\ \lim_{k \to \pm \infty} |\alpha_k| = 0 \end{array}$$

Convergence:

Let $e_k=\hat{x}_k-x$ be the error of approximation of x \hat{x} converges to x i. pointwise if $\lim_{k\to\infty}e_k(t_0)=0,\ t_0$ is the point of interest ii. uniformly if $\lim_{k\to\infty}||e_k||_\infty=0,\$ amplitude of error goes to 0 iii. in energy if $\lim_{k\to\infty}||e_k||_2=0,\$ energy of error goes to 0

i. if x has finite action and $\frac{d}{dt}x$ is cont. at t_o , then \hat{x} converges to x OR if there is a finite discontinuity (left and right limits exist) \hat{x} converges to the midpoint of the discontinuities, *Gibbs Phenomenon*

ii. if x has finite action and $\frac{d}{dt}x$ is cont. everywhere, then \hat{x} converges to x uniformly

iii. if x has finite energy, $x \in L_2^{per}$

- 1. \hat{x} converges to x in energy
- 2. $\left\{ lpha_{k}
 ight\}$ have finite energy, $lpha\in l_{2}^{per}$
- 3. the signal and coefficients satisfy *Parsevals Relation*:

$$\begin{split} \frac{1}{T_0}||x||_2^2 &= ||\alpha||_2^2 \\ \frac{1}{T_0} \int_0^{T_0} |x(t)|^2 \ dt = \sum_{k=-\infty}^\infty |\alpha_k|^2 \\ \text{energy of } x &= \text{energy of } \alpha_k \\ \text{scaled by period} \end{split}$$

Finding α_k from sinusoidal signal:

Given
$$x(t) = \sin(16\pi t) + \cos(12\pi t)$$

$$Recall \;\; cos(heta) = rac{e^{j heta} + e^{-j heta}}{2}, \; sin(heta) = rac{e^{j heta} - e^{-j heta}}{2j}$$

$$\therefore x(t) = \frac{1}{2} j e^{-16j\pi t} - \frac{1}{2} j e^{16j\pi t} + \frac{1}{2} e^{-12j\pi t} + \frac{1}{2} e^{12j\pi t}$$

$$x(t) = \frac{1}{2}je^{-4j4\pi t} - \frac{1}{2}je^{4j4\pi t} + \frac{1}{2}e^{-3j4\pi t} + \frac{1}{2}e^{3j4\pi t}$$

$$\alpha_0 = 0$$
, otherwise