AYT-Kimya

Modern Atom Teorisi

Atomun Kuantum Modeli

Belirsizlik İlkesi : W. Heisenberg
Orbital Denklemi : Schröndinger

Kuantum Sayıları

n : baş (birincil) kuantum sayısı

र : açısal momentum kuantum sayısı / ikincil (yan) kuantum sayısı

m_e: manyetik kuantum sayısı m_s: spin kuantum sayısı

Baş Kuantum Sayısı (n)

K: n = 1 L: n = 2 M: n = 2 N: n = 3 Atomun hacmi n² ile doğru orantılıdır.

Açısal Momentum Kuantum Sayısı (&)

Orbital türünü belirtir.

Her orbitalin kendine özgü şekli vardır.

e=0: s orbitali e=1: p orbitali e=2: d orbitali e=3: f orbitali

Manyetik Kuantum Sayısı (m_e)

s:
$$m_{\ell} = 0$$

p: $m_{\ell} = -1, 0, 1$
d: $m_{\ell} = -2, -1, 0, 1, 2$
f: $m_{\ell} = -3, -2, -1, 0, 1, 2, 3$

Orbitalin yönelimini belirtir.

Alt enerji düzeyinde kaç orbital olduğunu gösterir. Bir alt enerji düzeyindeki orbital sayısı = $2\ell + 1$

Spin Kuantum Sayısı (m_s)

Elektronun kendi etrafındaki dönme eksenini belirtir, $+\frac{1}{2}$ ya da $-\frac{1}{2}$ değeri alabilir.

Orbitallerin Enerji Seviyeleri

Orbitallerin enerjileri kıyaslanırken:

- (n+ℓ) değeri büyük olan orbitalin enerjisi büyüktür
- $(n+\ell)$ değerleri eşit olan iki orbitalden n değeri büyük olanın enerjisi daha büyüktür.

Periyodik Sistem ve Elektron Sistemi

Pauli İlkesi

Bir atomda bütün kuantum sayıları aynı olan iki atum bulunamaz. Bir orbitalde en fazla iki elektron bulunur. Boş orbitaller $^{\bigcirc}$, yarım dolu orbitaller $^{\textcircled{1}}$ ya da $^{\textcircled{1}}$, tam dolu orbitaller ise $^{\textcircled{1}}$ şeklinde gösterilir.

Aufbau Kuralı

Elektronlar temel halde düşük enerjili orbitalden yüksek enerjili olana doğru sırayla dizilir. $_{24}$ Cr ve $_{29}$ Cu bu kurala aykırıdır.

Hund Kuralı

Elektronlar, eş enerjili orbitallere yerleştirilirken önce boş orbitallere aynı spinli olarak yerleştirilir, hepsi dolduktan sonra mevcut olanlara zıt spinli olarak yerleştirilir.

1 \checkmark , 1 x, 2 x