1 Вращательное движение твёрдого тела

Поступательное движение	Вращательное движение
$ec{r}$	α
$\frac{\mathrm{d} \vec{r}}{\mathrm{d} t} = \vec{v} \left[\frac{\mathrm{M}}{\mathrm{c}} \right]$	$rac{\mathrm{d} lpha}{\mathrm{d} t} = ec{\omega} \left[rac{\mathrm{pa} \mu}{\mathrm{c}} ight]$
$ec{f}$ сила	$ec{M} = [ec{r} imes ec{f}]$ момент силы
m macca	<i>I</i> момент инерции
$ec{p}=mec{v}$ импульс	$ec{L} = I ec{\omega}$ момент импульса
$rac{\mathrm{d}ec{p}}{\mathrm{d}t}=ec{f}$	$rac{\mathrm{d}ec{L}}{\mathrm{d}t}=ec{M}$

Таблица 1: Сравнение параметров движения

Тип системы	Формула момента инерции	
Точечные массы	$I = \sum_{i} m_{i} r_{i}^{2} = m_{1} r_{1}^{2} + m_{2} r_{2}^{2} + \dots + m_{n} r_{n}^{2}$	
Непрерывное тело	$I=\int r^2dm=\int_V \rho(\vec{r})r^2dV$	
Линейная плотность	$I = \int r^2 dm = \int_L \lambda(l) r^2 dl, dm = \lambda dl$	
Поверхностная плотность	$I = \int r^2 dm = \int_S \sigma(\vec{r}) r^2 dS, dm = \sigma dS$	

Таблица 2: Общие формулы для вычисления момента инерции

Теорема Гюйгенса-Штейнера	Схема
$I_{\mathrm{new}} = I_{\scriptscriptstyle{\mathrm{II},\mathrm{M.}}} + md^2$	$I_{\text{пеw}}$ Новая ось I_{new} Новая ось $I_{\text{пеw}}$

Тело	Ось вращения	Момент инерции
Стержень	Через центр	$\frac{1}{12}mL^2$
Стержень	Через конец	$\frac{1}{3}mL^2$
Кольцо	Через центр	mR^2
Диск	Через центр	$\frac{1}{2}mR^2$
Шар	Через центр	$\frac{2}{5}mR^2$
Сфера	Через центр	$\frac{2}{3}mR^2$
Цилиндр	Ось симметрии	$\frac{1}{2}mR^2$
Пластина $a \times b$	Через центр	$\frac{1}{12}m(a^2+b^2)$

Таблица 3: Моменты инерции однородных тел

2 Энергия

w.i.p