Example: Give the PE function

 $V(\vec{r}) = \alpha x^2 + \beta xy + \delta z + C$ where $\alpha, \beta, \delta \in C$ are constants.

Find the force function for this V(r).

$$\vec{F} = -\vec{\nabla} V = -\frac{\partial V}{\partial x} \hat{i} - \frac{\partial V}{\partial y} \hat{j} - \frac{\partial V}{\partial z} \hat{k} = -\left(2 \times x + \beta_{y}\right) \hat{i} - \beta_{x} \hat{j} - \gamma_{x} \hat{k}$$

Suppose a particle of mass m is moving in the above force field and at time t=0 the particle passes through the origin of speed Vo. What will the speed of the particle be if if when it passes through $\vec{r}=\hat{i}+2\hat{j}+\hat{k}$?

Since this is a consv. force (V exists)

Lets pick C=0, so const. = 1 mvo2

At some later time when particle is at \vec{r} $\frac{1}{2}mV_0^2 = \frac{1}{2}mV^2 + \alpha + 2\beta + \gamma$ Solve for $V = [1/2] 2\pi / 42$

Example: Show that the inverse-square law of force in 3D $\hat{F} = \begin{pmatrix} -K \\ \overline{r^2} \end{pmatrix} \hat{r}$ is conservative. Take curd of F. Use curl in sph. coords $\frac{2}{\sqrt{x}} = \frac{1}{\sqrt{2}} \left| \frac{1}{\sqrt{x}} \right| = 0$ $\left| \frac{1}{\sqrt{x}} \right| = \frac{1}{\sqrt{2}} \left| \frac{1}{\sqrt{x}} \right| = 0$ $\left| \frac{1}{\sqrt{x}} \right| = \frac{1}{\sqrt{2}} \left| \frac{1}{\sqrt{x}} \right| = 0$ $\left| \frac{1}{\sqrt{x}} \right| = \frac{1}{\sqrt{2}} \left| \frac{1}{\sqrt{x}} \right| = 0$ $\left| \frac{1}{\sqrt{x}} \right| = \frac{1}{\sqrt{2}} \left| \frac{1}{\sqrt{x}} \right| = 0$ $\left| \frac{1}{\sqrt{x}} \right| = \frac{1}{\sqrt{x}} \left| \frac{1}{\sqrt{x}} \right| = 0$ $\left| \frac{1}{\sqrt{x}} \right| = \frac{1}{\sqrt{x}} \left| \frac{1}{\sqrt{x}} \right| = 0$ $\left| \frac{1}{\sqrt{x}} \right| = \frac{1}{\sqrt{x}} \left| \frac{1}{\sqrt{x}} \right| = 0$ $\left| \frac{1}{\sqrt{x}} \right| = \frac{1}{\sqrt{x}} \left| \frac{1}{\sqrt{x}} \right| = 0$ $\left| \frac{1}{\sqrt{x}} \right| = \frac{1}{\sqrt{x}} \left| \frac{1}{\sqrt{x}} \right| = 0$ $\left| \frac{1}{\sqrt{x}} \right| = \frac{1}{\sqrt{x}} \left| \frac{1}{\sqrt{x}} \right| = 0$ $\left| \frac{1}{\sqrt{x}} \right| = \frac{1}{\sqrt{x}} \left| \frac{1}{\sqrt{x}} \right| = 0$ $\left| \frac{1}{\sqrt{x}} \right| = \frac{1}{\sqrt{x}} \left| \frac{1}{\sqrt{x}} \right| = 0$ $\left| \frac{1}{\sqrt{x}} \right| = \frac{1}{\sqrt{x}} \left| \frac{1}{\sqrt{x}} \right| = 0$ $\left| \frac{1}{\sqrt{x}} \right| = \frac{1}{\sqrt{x}} \left| \frac{1}{\sqrt{x}} \right| = 0$ $\left| \frac{1}{\sqrt{x}} \right| = \frac{1}{\sqrt{x}} \left| \frac{1}{\sqrt{x}} \right| = 0$ $\left| \frac{1}{\sqrt{x}} \right| = \frac{1}{\sqrt{x}} \left| \frac{1}{\sqrt{x}} \right| = 0$ $\left| \frac{1}{\sqrt{x}} \right| = \frac{1}{\sqrt{x}} \left| \frac{1}{\sqrt{x}} \right| = 0$ $\left| \frac{1}{\sqrt{x}} \right| = \frac{1}{\sqrt{x}} \left| \frac{1}{\sqrt{x}} \right| = 0$ $\left| \frac{1}{\sqrt{x}} \right| = \frac{1}{\sqrt{x}} \left| \frac{1}{\sqrt{x}} \right| = 0$ $\left| \frac{1}{\sqrt{x}} \right| = \frac{1}{\sqrt{x}} \left| \frac{1}{\sqrt{x}} \right| = 0$ $\left| \frac{1}{\sqrt{x}} \right| = \frac{1}{\sqrt{x}} \left| \frac{1}{\sqrt{x}} \right| = 0$ $\left| \frac{1}{\sqrt{x}} \right|$ Projectile Motion It a Cartesian coordinate system can be chosen such that the Forces involved in a motion involve only the respective coordinates e-g, F(r) = Fx(x)î + Fx(y)î + Fz(z) R The the force is called separable and it will be conservative ($\vec{V} \times \vec{F} = 0$)

(note that if \vec{F} is a function of time, or \vec{r} then will not be conservative) In this case, the e.o.m. can be treated as 3 separate equ. that can be treated up already studied techniques $MX = F_{x}$ my = Fy MZ= FZ Motion of a Projectile m a Uniform Gravitational Field a) No air resistance so only force is growity. Choose coord's

so the tre z-axis is pointing up. Equi of motion is $m\ddot{r} = -mg\hat{k}$ where g is assumed constant i. Force is separable and is conservative $\frac{d}{dt}\left(\frac{dr}{dt}\right) = -gK$ $\frac{d\vec{r}}{dt} = -gt \hat{K} + \vec{V}_0 \quad \text{where } V_0 \text{ is the initial vel},$ $\vec{V} = -\frac{1}{2}gt^2\vec{K} + \vec{V}_0t + \vec{V}_0$ is the origin In components $X = X_6 \uparrow$ y = jot $Z = 20t - 29t^2$ To determine the path of the projectile, eliminate t from the x' y egns. $y = \begin{pmatrix} \dot{y_0} \\ \dot{x} \end{pmatrix} \times path$ lies entirely in a plan $y = \left(\frac{\dot{y_0}}{\dot{x_0}}\right) \times \Rightarrow \text{path lies entirely in a plane}$ Eliminate to blu the xiz equis, get $Z = \begin{pmatrix} \frac{2}{5} \\ \hat{x}_{\delta} \end{pmatrix} \times - \begin{pmatrix} \frac{9}{5} \\ 2\hat{x}_{\delta} \end{pmatrix} \times \begin{pmatrix} \frac{9}{5} \\$ To find the range set z=0, $0=x\left(\frac{z}{z_0}-\frac{qx}{x_0}\right)$ x=0, obviouly, or $\frac{z_0}{x_0}=\frac{qx}{x_0}$ $\Rightarrow x=2\frac{z}{20}\frac{x}{0}$ If laweled @ angle &, Xo = Vocosx ; Zo = Vosinx

$SO = 2V_0 S M COS $	= Vo 514 20x	
9	5	