Chapitre 3.

Théorie élémentaire des distributions

1. Dual topologique d'un espace vectoriel Soit (E,+,.) un espace vectoriel sur $I\!\!K = I\!\!R$ ou $I\!\!C$.

Definition 1. Une forme linéaire sur E est une application de E dans $I\!\!K$

Definition 2. Le dual topologique de l'espace vectoriel E, noté E', est l'ensemble des formes linéaires continues sur E.

Proposition 3. Une forme linéaire sur E est continue si et seulement si elle est continue en $0 \in E$.

2. Espace $\mathcal{D}(\Omega)$ des fonctions tests

Definition 4. On appelle support d'une fonction $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ ou \mathbb{C} l'ensemble

$$supp(f) = \overline{\{x \in \mathbb{R}^n : f(x) \neq 0\}}$$

Proposition 5. Soient λ un scalaire non nul, f et g deux fonctions définies sur \mathbb{R} et à valeurs dans \mathbb{R} . Nous avons les propriétés suivantes

- $-\sup(\lambda f) = \sup(f).$
- $-\sup(f \times g) = \operatorname{supp}(f) \cap \operatorname{supp}(g).$
- $-\operatorname{supp}(f+g) \subset \operatorname{supp}(f) \cup \operatorname{supp}(g).$

Soit Ω un ouvert de \mathbb{R}^n . On définit $\mathcal{D}(\Omega)$ par

$$\varphi \in \mathcal{D}(\Omega) \Leftrightarrow \left\{ \begin{array}{l} i) \ \varphi \ \text{est ind\'efiniment diff\'erentiable dans } \Omega. \\ ii) \ \varphi \ \text{est \`a support compact dans } \Omega. \end{array} \right.$$

Proposition 6. Muni de l'addition de deux fonctions et de la multiplication d'une fonction par un scalaire, l'ensemble $\mathcal{D}(\Omega)$ est un espace vectoriel sur \mathbb{R} .

Example 7.

$$\varphi(x) = \begin{cases} \exp\left(-\frac{1}{1 - \|x\|^2}\right) & \text{si} \quad \|x\| < 1\\ 0 & \text{si} \quad \|x\| \ge 1. \end{cases}$$
 (1)

Propriétés • $\mathcal{D}(\Omega)$ est stable par produit . • Si $\varphi \in \mathcal{D}(\Omega)$ alors toutes ses dérivées partielles sont dans $\mathcal{D}(\Omega)$ • Si $\varphi \in \mathcal{D}(\Omega)$ et $\psi \in C^{\infty}$, alors $\varphi \psi \in \mathcal{D}(\Omega)$. Convergence dans $\mathcal{D}(\Omega)$

Definition 8. On dit que la suite $(\varphi_n)_{n\geq 1}$ d'éléments de $\mathcal{D}(\Omega)$ tend vers la fonction nulle dans $\mathcal{D}(\Omega)$ si

- \bullet les supports de tous les $(\varphi_n)_{n\geq 1}$ sont inclus dans un borné fixe dans Ω
- $(\varphi_n)_{n\geq 1}$ ainsi que toutes ses suites dérivées, tendent vers zéro uniformément sur Ω quand n tend vers $+\infty$.

3. Définition d'une Distribution

Definition 9. On appelle distibution sur un ouvert Ω de \mathbb{R}^n toute forme linéaire continue sur $\mathcal{D}(\Omega)$.

On désignera par $\mathcal{D}'(\Omega)$ l'ensemble des distributions sur Ω . Pour $T \in \mathcal{D}'(\Omega)$ et $\varphi \in \mathcal{D}$, on a $T(\varphi) \in \mathbb{R}$. On posera dans toute la suite

$$T(\varphi) = \langle T, \varphi \rangle$$

Proposition 10. Muni de l'addition et de la multiplication par un scalaire, l'ensemble des distributions $\mathcal{D}'(\Omega)$ est un espace vectoriel.

Example 11. L'ensemble $L^1_{loc}(\mathbb{R}^n)$ désigne l'espace des classes de fonctions $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ intégrables sur tout compact de \mathbb{R}^n . A toute fonction $f \in L^1_{loc}(\mathbb{R}^n)$, on associe une distribution T_f donnée par : En effet, soit f une telle fonction, on définit T_f par :

$$\langle T_f, \varphi \rangle = \int_{\mathbb{R}^n} f(x)\varphi(x)dx$$

pour tout $\varphi \in \mathcal{D}(\Omega)$

Remark 12. On montre que pour tout $f, g \in L^1_{loc}(\mathbb{R}^n)$,

$$f = g \ p.p. \iff T_f = T_q.$$

ce qui permet d'identifier f et T_f . Ainsi, pour tout $f \in L^1_{loc}(\mathbb{R}^n)$ on écrira

$$\langle f, \varphi \rangle = \langle T_f, \varphi \rangle = \int_{\mathbb{R}^n} f(x)\varphi(x)dx.$$

Example 13. Soit $a \in \mathbb{R}^n$. L'application δ_a définie pour $\varphi \in \mathcal{D}$ par

$$<\delta_a, \varphi> = \varphi(a)$$

est une distribution sur \mathbb{R}^n .

Definition 14. Une distribution T est régulière s'il existe une fonction f localement intégrable telle que $T=T_f$. Dans le cas contraire, on dira que T est singulière.

Proposition 15. La distribution de Dirac est singulière.

En effet, si on pose

$$\varphi(x) = \begin{cases} e^{-\frac{1}{1-x^2}} & si \ |x| < 1\\ 0 & sinon \end{cases}$$

et $\varphi_n(x) = \varphi(nx)$, alors $\operatorname{supp}(\varphi_n) \subset B(0,\frac{1}{n})$ et $\varphi_n(0) = \frac{1}{e}$, pour tout n et $\varphi_n(x) \leq \frac{1}{e}$, pour tout $x \in \mathbb{R}$. S'il existe $f \in L^1_{loc}$ tel que $\delta_0 = f$, alors

$$\frac{1}{e} = \int_{\mathbb{R}} f\varphi_n dx \le \frac{1}{e} \int_{\mathbb{R}} f\chi_{B(0,\frac{1}{n})} dx$$

qui tend vers 0; ce qui impossible. 5. Opérations sur les distributions 5.1 Multiplication d'une distribution par une fonction C^{∞} On ne peut pas définir de façon générale le produit de deux distributions. Par exemple, la fonction f définie par, $f(x) = \frac{1}{\sqrt{|x|}}$ est localement intégrable, on peut donc lui associer une distribution T_f , mais on ne peut pas le faire pour $f.f = f^2$. On n'a pas $T_f.T_f = T_{f^2}$. On peut cependant définir le produit d'une distribution par une fonction C^{∞} . En effet, si $f \in L^1_{loc}(\mathbb{R}^n)$ et $\psi \in C^{\infty}(\mathbb{R}^n)$, alors on constate que

$$\langle T_{\psi f}, \varphi \rangle = \langle T_f, \psi \varphi \rangle \quad \forall \varphi \in \mathcal{D}.$$

Ceci nous amène à la définition suivante :

$$\forall T \in \mathcal{D}' \ \forall \psi \in C^{\infty}(\mathbb{R}^n) \ < \psi T, \varphi > = < T, \psi \varphi > \ \forall \varphi \in \mathcal{D}.$$

5.2 Dérivation des distributions Prenons $f \in C^1(\mathbb{R})$. Pour tout $\varphi \in \mathcal{D}$ on a

$$\langle T_{f'}, \varphi \rangle = \int_{-\infty}^{+\infty} f' \varphi dx = [f \varphi]_{-\infty}^{+\infty} - \int_{-\infty}^{+\infty} f \varphi' dx.$$

Comme $[f\varphi]_{-\infty}^{+\infty} = 0$, alors $\langle T_{f'}, \varphi \rangle = -\langle T_f, \varphi' \rangle$.

Definition 16. Soit $T \in \mathcal{D}'$. On définit sa dérivée par rapport à x_i par

$$\forall \varphi \in \mathcal{D} \ \left\langle \frac{\partial T}{\partial x_i}, \varphi \right\rangle = -\left\langle T, \frac{\partial \varphi}{\partial x_i} \right\rangle.$$

Proposition 17. Si $T \in \mathcal{D}'(\mathbb{R}^n)$ alors $\frac{\partial T}{\partial x_i} \in \mathcal{D}'(\mathbb{R}^n)$.

Proposition 18. Soient $T \in \mathcal{D}'(\mathbb{R}^n)$ et $f \in C^{\infty}(\mathbb{R}^n)$. On a

$$\frac{\partial}{\partial x_i}(fT) = \frac{\partial f}{\partial x_i}T + f\frac{\partial T}{\partial x_i}.$$

5.3 Dérivée au sens des distribution d'une fonction discontinue Considérons une fonction f de classe C^1 sur \mathbb{R} sauf en un point a où elle admet une discontinuité de première espèce. Le saut de f en a est désigné par $\sigma_a = f(a^+) - f(a^-)$. En intégrant par parties, nous avons pour tout $\varphi \in \mathcal{D}$

$$\int_{-\infty}^{a} f(t)\varphi'(t)dt = f(a^{-})\varphi(a^{-}) - \int_{-\infty}^{a} f'(t)\varphi(t)dt$$

$$\int_{a}^{+\infty} f(t)\varphi^{'}(t)dt = -f\left(a^{+}\right)\varphi\left(a^{+}\right) - \int_{a}^{+\infty} f^{'}(t)\varphi(t)dt.$$

Il vient alors

$$-\int_{-\infty}^{+\infty} f(t)\varphi'(t)dt = -\int_{-\infty}^{a} f(t)\varphi'(t)dt - \int_{a}^{+\infty} f(t)\varphi'(t)dt$$
$$= [f(a^{+}) - f(a^{-})]\varphi(a) + \int_{-\infty}^{+\infty} f'(t)\varphi(t)dt$$
$$= \sigma_{a}\varphi(a) + \int_{-\infty}^{+\infty} f'(t)\varphi(t)dt.$$

Finalement, nous avons le résultat suivant

Proposition 19. Soit f une fonction de classe C^1 sur \mathbb{R} sauf en un point a où elle admet une discontinuité de première espèce. Alors

$$(T_f)' = T_{f'} + \sigma_a \delta_a.$$

Notons que si la fonction f est de classe C^1 sur $\mathbb{R} \setminus \{a_i / i \in \mathbb{N}\}$ où les a_i sont des points de discontinuités de première espèce, alors

$$(T_f)' = T_{f'} + \sum_{i} \sigma_{a_i} \delta_{a_i}. \tag{2}$$

Example 20. Soit la fonction partie entière E définie sur $I\!\!R$ par

$$E(x) = k \in \mathbb{Z} \text{ si } x \in [k, k+1[.$$

La fonction E est de classe C^1 sur \mathbb{R} sauf aux entiers k de \mathbb{Z} qui sont des points de singularités de première espèce. En tout entier k le saut σ_k vaut 1 et sur chaque intervalle]k, k+1[, la dérivée de la fonction E est nulle. D'après (2), nous avons

$$(T_E)' = \sum_{k=-\infty}^{+\infty} \delta_k$$

5.4 Convergence d'une suite de distributions

Definition 21. On dit que la suite (T_m) de distributions converge vers la distribution T si

$$\forall \varphi \in \mathcal{D} \quad \langle T_m, \varphi \rangle \longrightarrow \langle T, \varphi \rangle.$$

Remark22. • Il s'agit donc de la limite simple sur l'ensemble des fonctions tests. On écrira

$$T = \lim_{m} T_m \text{ ou } T_m \xrightarrow{\mathcal{D}'} T.$$

• La convergence d'une suite de fonctions localement intégrables (f_m) vers f localement intégrable, au sens des distributions s'écrit

$$f_m \xrightarrow{\mathcal{D}'} f \iff \forall \varphi \in \mathcal{D} \quad \int_{-\infty}^{+\infty} f_m \varphi dx \longrightarrow \int_{-\infty}^{+\infty} f \varphi dx.$$

Proposition 23. Si $T_m \xrightarrow{\mathcal{D}'} T$ alors $\frac{\partial T_m}{\partial x_i} \xrightarrow{\mathcal{D}'} \frac{\partial T}{\partial x_i} \ \forall i = 1, 2, \dots, n$.

Definition 24. Soit (T_m) une suite de distributions. On dit que la série $\sum_{k=0}^{\infty} T_k$ converge et a pour somme S si la suite des sommes partielles $S_m = \sum_{k=0}^{\infty} T_k$ converge vers la distribution S.

Remark 25. Compte tenu des résultats précédents si $S = \sum_{k=0}^{\infty} T_k$ alors

$$\frac{\partial S}{\partial x_i} = \sum_{k=0}^{\infty} \frac{\partial T_k}{\partial x_i}.$$

On peut dériver terme à terme une série convergente de distributions. Il n'y a donc aucune précaution spéciale à prendre.

6. Support d'une distribution Il s'agit là aussi d'étendre aux distributions la notion de support connue pour les fonctions.

Definition 26. On dit que la distribution T est nulle sur l'ouvert \mathcal{O} si pour tout $\varphi \in \mathcal{D}$ tel que $supp(\varphi) \subset \mathcal{O}$, on a

$$\langle T, \varphi \rangle = 0.$$

Definition 27. Le support d'une distribution T, noté supp(T), est le complémentaire du plus grand ouvert sur lequel T est nulle.

Example 28. La distribution δ_0 est nulle sur l'ouvert \mathbb{R}^* . Par conséquent

$$supp (\delta_0) = \{0\}.$$

Proposition 29. Soit f une fonction localement intégrable et T_f la distribution régulière correspondante. Alors

$$supp(T_f) = supp(f).$$

- 7. Transformée de Fourier d'une distribution tempérée Soit $f: \mathbb{R}^n \longrightarrow \mathbb{R}$; on dit que f est :
 - 1. à décroissance rapide si pour tout entier n, il existe $c_n > 0$ tels que

$$|f(x)| \le \frac{c_n}{(1+||x||^2)^n}$$

2. à croissance lente (ou tempérée) si pour tout entier n, il existe $c_n > 0$ tels que

$$|f(x)| \le c_n (1 + ||x||^2)^n$$

3. de Schwartz si elle est \mathcal{C}^{∞} et $D^{\alpha}f$ est à décroissance rapide pour tout $\alpha \in \mathbb{N}^n$.

Example 30. 1. $f(x) = e^{-\|x\|}$ est à décroissance rapide; mais elle n'est pas de Schwartz (non dérivable).

- 2. $f(x) = e^{-\|x\|^2}$ est de Schwartz.
- 3. $1 + t^2 \sin(t)$ est tempérée

On désigne par $\mathcal{S}(\mathbb{R}^n)$ l'ensemble des fonctions de Schwartz défini par :

$$\mathcal{S}(I\!\!R^n) = \{f: I\!\!R^n \longrightarrow I\!\!R; \quad x^\alpha D^\beta f(x) \quad \text{est born\'ee sur } I\!\!R^n, \forall \alpha, \beta \in I\!\!N^n \}$$

Tous les éléments de $\mathcal{S}(\mathbb{R}^n)$ sont des fonctions à décroissance rapide.

Proposition 31.

$$\mathcal{S}(I\!\!R^n) = \{f: I\!\!R^n \longrightarrow I\!\!R; \quad (1 + \|x\|^2)^m D^\beta f(x) \quad est \ born\acute{e}e \ sur \ I\!\!R^n, \ \forall (m,\beta) \in I\!\!N \times I\!\!N^n \}$$

Proposition 32. Une suite $(f_k)_k$ converge vers f dans $\mathcal{S}(\mathbb{R}^n)$ si et seulement si pour tous $\alpha, \beta \in \mathbb{N}^n$, la suite $x^{\alpha}D^{\beta}f_k(x)$ converge uniformément vers $x^{\alpha}D^{\beta}f(x)$.

Proposition 33. Pour tout $f \in \mathcal{S}(\mathbb{R}^n)$; on a $\hat{f} \in \mathcal{S}(\mathbb{R}^n)$.

Proposition 34. $f \longrightarrow \hat{f}$ est un automorphisme de $\mathcal{S}(\mathbb{R}^n)$ dans $\mathcal{S}(\mathbb{R}^n)$

Les éléments f de $\mathcal{S}(\mathbb{R}^n)$ définissent des distributions vérifiant :

$$\int_{\mathbb{R}^n} \hat{f}(t)\varphi(t)dt = \int_{\mathbb{R}^n} f(t)\hat{\varphi}(t)dt$$

pour tout $\varphi \in \mathcal{D}(\mathbb{R}^n)$.

Une généralisation naturelle de cette définition est

$$<\hat{T}, \varphi> = < T, \hat{\varphi}>$$

pour tout $\varphi \in \mathcal{D}(\mathbb{R}^n)$.

Definition 35. Pour tout $T \in \mathcal{S}'(\mathbb{R}^n)$, on définit la transformée de Fourier de T par

$$<\hat{T}, \varphi> = < T, \widehat{\varphi} >$$

pour tout $\varphi \in \mathcal{S}(\mathbb{R}^n)$, cette définition a un sens car $\widehat{\varphi} \in \mathcal{S}(\mathbb{R}^n)$, pour tout $\varphi \in \mathcal{S}(\mathbb{R}^n)$.

Proposition 36. \hat{T} est une distribution tempérée.

La transformée de Fourier de la masse de Dirac en a est donnée

$$<\widehat{\delta_a}, \varphi> = <\delta_a, \widehat{\varphi}> = \widehat{\varphi}(a) = \int_{\mathbb{R}^n} \varphi(t) e^{-i(2\pi) < a, t>} dt = < e_{-a}, \varphi>$$

Donc $\widehat{\delta_a} = e_a = e^{-i(2\pi) < .,a>}$. En particulier $\widehat{\delta_0} = 1$.

La fonction localement intégrable x^α définit une distribution tempérée (croissance polynômiale). On a

$$<\widehat{x^{\alpha}}, \varphi> = < x^{\alpha}, \widehat{\varphi}> = \int_{\mathbb{R}^n} x^{\alpha} \widehat{\varphi}(x) dx = \frac{1}{(-2\pi i)^{|\alpha|}} D^{\alpha} \varphi(0)$$

ce qui donne $\widehat{x^{\alpha}} = \frac{1}{(-2\pi i)^{|\alpha|}} D^{\alpha} \delta_0$. On en déduit que la transformée de Fourier d'un polynôme est une combinaison linéaire de dérivées de la masse de Dirac en 0.

Example 37. $\mathcal{F}\delta_a = 1$. En effet, pour tout $\varphi \in \mathcal{S}(\mathbb{R}^n)$, on a

$$<\hat{\delta}_a,\varphi> = <\delta_a,\hat{\varphi}> = \hat{\varphi}(a) = \int_{-\infty}^{+\infty} \varphi(t)e^{-i(2\pi)at}dt = < T_{e^{-i(2\pi)ta}},\varphi>$$

Donc $\mathcal{F}\delta_a = e^{-i(2\pi)ta}$. En particulier $\mathcal{F}\delta = 1$.

Example 38. La fonction constante 1 n'est ni dans L^1 , ni dans L^2 mais elle une transformée de Fourier aus sens des distributions.

$$<\mathcal{F}1, \varphi> = \int_{-\infty}^{+\infty} \hat{\varphi}(t)dt = \varphi(0) = <\delta, \varphi>$$

Donc $\mathcal{F}1 = \delta_0$.

Proposition 39. Pour tout $T \in \mathcal{S}'(\mathbb{R}^n)$ et $\alpha \in \mathbb{N}^n$, on a $D^{\alpha}\hat{T} = (-2\pi i)^{|\alpha|}\widehat{x^{\alpha}T}$ et $\widehat{D^{\alpha}T} = (2\pi i)^{|\alpha|}x^{\alpha}\widehat{T}$.

Proposition 40. Si $T \in \mathcal{S}'(\mathbb{R}^n)$, alors $e_a T \in \mathcal{S}'(\mathbb{R}^n)$ et on a $\widehat{e_a T} = \tau_a \hat{T}$, $\widehat{\tau_a T} = e_{-a} \hat{T}$