Homework 3

Discrete Structures Due Tuesday, January 26, 2021

Submit each question separately in .pdf format only

1. (a) Given the Venn diagram on the left, write all the elements of the sets on the right.

(b) Describe the following sets using A, B, C, D from above and set operations on them.

$$E = \{16, 29, 0\}$$
 $F = \{6, 7, 16, 19\}$ $G = \{3, 18, 0, 4, 7\}$

(c) Simplify the following sets as much as possible. That is, rewrite them without using the union \cup or intersection \cap symbols.

$$X = \bigcup_{i=0}^{\infty} [i, i+1] \qquad Y = \bigcap_{n=1}^{\infty} \left[0, \frac{1}{n} \right] \qquad Z = \bigcap_{n=1}^{\infty} \left\{ \frac{n}{x} \ : \ x \in \mathbf{Z}_{\geqslant n} \right\}$$

- 2. Let A, B, C be sets, and let $f: A \to B$ and $g: B \to C$ be functions.
 - (a) Using logical symbols, express the following statements.
 - i. g is injective when restriced to the range of f
 - ii. there exists an element in C whose preimage in g is not f(a) for any a in A
 - (b) If f and g are injective, prove that $g \circ f$ is injective.
 - (c) If $g \circ f$ is surjective, prove that g must be surjective.
- 3. Let A, B, C be arbitrary sets in the same universe U. Prove or disprove the following statements:
 - (a) $(B \cup C) A = (B C) \cup (C A)$.
 - (b) $(B \oplus C) A = (B A) \oplus (C A)$.
 - (c) $\overline{A} \times \overline{(B \cup C)} = \overline{A \times (B \cup C)}$.
- 4. Prove or disprove the following statements about power sets.
 - (a) There is a set X such that its powerset $\mathcal{P}(X)$ equals

$$\{\varnothing, \{a\}, \{\varnothing\}, \{a, \{\varnothing\}\}\}\}.$$

1

(b) There is a set X such that its powerset $\mathcal{P}(X)$ equals

$$\{\varnothing, \{\varnothing\}, \{\{a\}\}, \{\{a,b\}\}, \{\varnothing, \{a\}\}, \{\varnothing, \{a,b\}\}, \{\{a\}, \{a,b\}\}\}, \{\varnothing, \{a\}, \{a,b\}\}\}.$$

- (c) For any two sets A and B, $\mathcal{P}(A) \subseteq \mathcal{P}(B)$ iff $A \subseteq B$.
- 5. Prove the following three tautologies using Coq. Submit your file tautology.v as the solution for your Problem 5.

```
Lemma Sample5A: forall P Q, ~(~P /\ ~Q) -> P \/ Q.
Proof.
  (* Place your proof here *)
Qed.

Lemma Sample5B: forall P Q, (P -> Q) -> (~P \/ Q).
Proof.
  (* Place your proof here *)
Qed.

Lemma Sample5C: forall P Q, (P -> Q) <-> (~Q -> ~P).
Proof.
  (* Place your proof here *)
Qed.
```

Note. Most lemmas in the non-constructive mathematics are proven using some tautology as an axiom. Either the "NNPP axiom" $(\neg \neg A \to A, \text{ double negation elimination})$ or the "classic axiom" $(A \lor \neg A, \text{ the law of the Excluded Middle})$. See the link Week3 > Two Nonconstructive Proofs of the Same Lemma in ORTUS. You can try out whichever method you want. For these axioms to work the first line in your proof should be: Require Import Classical Prop.