Lista de exercícios para a 5^a prova

CATÁLISE HETEROGÊNEA

Atkins, 5^a edição, capítulo 28:

- Exercícios 21 e 25
- Problema numérico 12

As fotografias das páginas de exercícios e problemas são as mesmas da lista da prova 4.

Adamson, A. W., Understanding Physical Chemistry, problema 16.5:

A decomposição do HI catalisada por platina obedece à lei de velocidade $-dP_{\rm HI}/dt = k_1$, em altas pressões, com k = 500 torr s⁻¹ a 100°C. Em baixas pressões, a lei de velocidade se torna $-dP_{\rm HI}/dt = k_2P_{\rm HI}$, com $k_2 = 50$ s⁻¹ a 100°C. Calcule a pressão de HI para a qual o valor de $-dP_{\rm HI}/dt$ deveria ser 250 torr s⁻¹ a 100°C. **R** = 10 torr.

Adicional:

A reação de um gás A com outro gás B segue o mecanismo de Eley-Rideal, com adsorção do gás A no catalisador. Mediu-se a velocidade do processo com $P_B = 327$ torr em duas circunstâncias: com pressão muito alta de A, obteve-se $v = 1,43 \times 10^4$ torr s⁻¹, enquanto com uma pressão muito baixa de A (10,7 torr) obteve-se $v = 3,82 \times 10^3$ torr s⁻¹. Calcule a pressão de A para a qual v deveria ser de 8.00×10^3 torr s⁻¹, com a mesma pressão de B dos experimentos. $\mathbf{R} = 50.9$ torr

Adicional:

A reação de um gás A com outro gás B segue o mecanismo de Langmuir-Hinshelwood. Em baixas pressões dos dois gases (5,0 torr), mediu-se uma velocidade do processo de 0,0324 torr s⁻¹. Aumentando-se a pressão de A para 1000 torr, a velocidade **diminui** para 0,00528 torr s⁻¹, e portanto o processo entrou no regime em que $K_AP_A >> 1$. Calcule a velocidade do processo para a mesma pressão de B e uma pressão intermediária de A, 100 torr (considerando $K_AP_A >> K_BP_B$). **R** = 0,0320 torr s⁻¹.

Vemulapalli, G. K., Physical chemistry, capítulo 28, exercício 8 (adaptado):

A reação HI \rightarrow H₂ + I₂ obedece às seguintes leis de velocidade: $v = k[HI]^2$ sem catalisador, v = k'[HI] com platina como catalisador e v = k'' com ouro como catalisador. Explique as ordens de reação do processo catalisado (válidas para pressões "normais") em termos da intensidade de adsorção do reagente aos catalisadores.

Castellan, G. W., Physical Chemistry, capítulo 33, problema 2 (parcial):

Que conclusão pode ser tirada sobre a adsorção de cada um dos seguintes fatos:

- a) Em platina, a velocidade da reação $CO_2 + H_2 \rightarrow H_2O + CO$ é proporcional à pressão do CO_2 em pressões baixas deste gás e é inversamente proporcional à pressão do CO_2 em altas pressões deste gás .
- b) Em platina, a velocidade da reação $SO_2 + \frac{1}{2}O_2 \rightarrow SO_3$ é inversamente proporcional à pressão do SO_3 .

Para um certo sol positivo, a concentração crítica de coagulação do Na_2SO_4 é de 4,56 mmol L^{-1} . Calcule a concentração crítica de coagulação do mesmo sol para o $AlCl_3$, considerando a regra empírica de Schulze-Hardy e a teoria DLVO. $\mathbf{R} = 76,0$ mmol L^{-1} (Schulze-Hardy) e 36,5 mmol L^{-1} (DLVO).

PROPRIEDADES COLIGATIVAS

Atkins, 7^a edição, capítulo 7

- Exercícios (só as letras (a)): 8, 10, 11, 17-19
- Probs. numéricos: 7