DoS attack mitigation in SDN networks using a deeply programmable packet-switching node based on a hybrid FPGA/CPU data plane architecture

Enio Kaljic Almir Maric Pamela Njemcevic

XXVII International Conference on Information, Communication and Automation Technologies (ICAT) 20-23 October 2019, Sarajevo, Bosnia and Herzegovina

Introduction

Transition from traditional to SDN architecture

Introduction

OpenFlow-based SDN - Switch architecture

- Three-stage packet processing
- Flow-level granularity
- Absence of advanced packet processing functionalities (e.g. DPI, DoS attack detection)

Motivation

OpenFlow-based SDN under DoS attack

OpenFlow switch-controller communication overhead

Motivation

How can deep network programmability help?

Five levels of data plane programmability:

- Very low flow table management
- Low definition of arbitrary packet headers and parsers
- Medium programming arbitrary actions
- High management of basic processes after the action is taken (e.g. output queuing)
- Very high full programmability of all data plane processes

OpenFlow

Deep network programmability

Proposed solution

Firewall based on a deeply programmable hybrid FPGA/CPU data plane architecture

- ► Hardware Services Layer FPGA for high-speed processing
- Software Services Layer CPU for high level of flexibility

Scenarios

Measurements - Forwarding throughput

Measurements - Forwarding throughput

Measurements – Forwarding throughput

	Throughput			
Case	Maximum (Gbps)	Minimum (Gbps)	Average (Gbps)	Relative (%)
Normal operation	9.57	9.31	9.39	100.00
Under attack	9.49	0.00	6.82	72.60
DROP	9.42	0.00	7.01	74.67
TAKEDOWN	9.66	8.28	9.39	99.95
REDIRECT	9.56	0.00	7.02	74.76

Measurements – Forwarding latency

Conclusion

- ► SDN firewall based on a deeply programmable hybrid FPGA/CPU data plane architecture has been proposed
- Experimental evaluation showed that DoS traffic filtering on the firewall input interface (i.e. TAKEDOWN strategy) is the best strategy
- Negative impacts of DoS attacks in SDN network have been reduced by applying the concept of deep network programmability

DoS attack mitigation in SDN networks using a deeply programmable packet-switching node based on a hybrid FPGA/CPU data plane architecture

Questions?

enio.kaljic@etf.unsa.ba