Problem 1.1

1.1.1 $M, w_1 \Vdash q$

 $M, w \Vdash q \text{ iff } w \in V(q) \text{ but } w_1 \not\in V(q), \text{ so it is FALSE.}$

1.1.2 $M, w_3 \Vdash \neg q$

 $M, w \Vdash \neg q \text{ iff } w \in V(\neg q). \ w_3 \in V(\neg q), \text{ so it is True.}$

1.1.3 $M, w_1 \Vdash p \vee q$

 $M, w \Vdash p \lor q \text{ iff } w \in V(p) \text{ or } w \in V(q). \ w_1 \in V(p), \text{ so it is True.}$

1.1.4 $M, w_1 \Vdash \Box (p \lor q)$

$$M, w_1 \Vdash \Box(p \lor q) \implies \forall v \in V : Rw_1v \Rightarrow M, v \Vdash (p \lor q)$$

$$\Rightarrow \forall v \in V : Rw_1v \Rightarrow v \in V(p) \text{ or } v \in V(q)$$
 Because $w_3 \in V$ with Rw_1w_3 , but $w_3 \not\in V(p)$ and $w_3 \not\in V(q)$
$$\Rightarrow \text{ False}$$

1.1.5 $M, w_3 \Vdash \Box q$

$$M, w_3 \Vdash \Box q \ \Rightarrow \ \underbrace{\forall v \in V : Rw_1 v}_{\text{False}} \Rightarrow M, v \Vdash q$$

Because the left side of the statement is False everything can follow \Rightarrow True

1.1.6 $M, w_3 \Vdash \Box \bot$

$$M, w_3 \Vdash \Box \bot \Rightarrow \underbrace{\forall v \in V : Rw_1 v}_{\text{False}} \Rightarrow M, v \Vdash \bot$$

Because the left side of the statement is False everything can follow \Rightarrow True

1.1.7 $M, w_1 \Vdash \diamond q$

$$\begin{aligned} M, w_1 \Vdash \diamond q & \Rightarrow \exists v \in V : Rw_1v \Rightarrow M, v \Vdash q \\ & \Rightarrow \exists v \in V : Rw_1v \Rightarrow v \in V(q) \\ & \text{BECAUSE} \ w_2 \in V : Rw_1w_2 \ and \ w_2 \in V(q) \\ & \Rightarrow \text{TRUE} \end{aligned}$$

1.1.8 $M, w_1 \Vdash \Box q$

$$\begin{aligned} M, w_1 \Vdash \Box q &\Rightarrow \forall v \in V : Rw_1v \Rightarrow M, v \Vdash q \\ &\Rightarrow \forall v \in V : Rw_1v \Rightarrow v \in V(q) \\ &\text{BECAUSE } w_3 \in V : Rw_1w_3, \ but \ w_3 \not\in V(q) \\ &\Rightarrow \text{FALSE} \end{aligned}$$

1.1.9 $M, w_1 \Vdash \neg \Box \Box \neg q$

$$\begin{array}{l} M, w_1 \Vdash \neg \Box \Box \neg q \; \Rightarrow \; \nexists v_1 \in V : Rw_1v_1 \Rightarrow M, v_1 \Vdash \Box \neg q \\ \\ \Rightarrow \; \nexists v_1 \in V : Rw_1v_1 \Rightarrow \underbrace{\forall v_2 \in V : Rv_1v_2}_{\text{False}} \Rightarrow M, v_2 \Vdash \neg q \\ \\ \Rightarrow \; \nexists v_1 \in V : Rw_1v_1 \Rightarrow \; \text{True} \\ \\ \Rightarrow \; \text{False} \end{array}$$

Problem 1.5

1.5.1 $p \rightarrow \Box p$

For w_1 :

 $M, w_1 \Vdash p_1 \rightarrow \diamond p_1$ holds, because w_2, w_3 have p_1 .

 $M, w_1 \Vdash p_2 \rightarrow \diamond p_2$ holds, because $M, w_1 \not\Vdash p_2$.

 $M, w_1 \Vdash p_3 \rightarrow \diamond p_3$ holds, because $M, w_1 \not\Vdash p_3$.

For w_2 :

 $M, w_2 \Vdash p_1 \rightarrow \diamond p_1$ holds, because w_3 has p_1 .

 $M, w_2 \Vdash p_2 \rightarrow \diamond p_2$ holds, because w_3 has p_2 .

 $M, w_21 \Vdash p_3 \rightarrow \diamond p_3$ holds, because $M, w_2 \not\Vdash p_3$.

For w_3

 $M, w_3 \Vdash p_1 \rightarrow \Diamond p_1$ holds, because we have Rw_3w_3 with $M, w_3 \Vdash p_1$.

Same for p_2 and p_3 .

 $\Rightarrow p \rightarrow \diamond p \text{ holds for all } w \in W.$

1.5.2 $A \rightarrow \diamond A$

$$A = ((p_2 \to \bot) \land (p_3 \to \bot))$$

Then $M, w_1 \Vdash A$ holds

but $M, w_2 \not\Vdash A$ and $M, w_3 \not\Vdash A$.

Therefore $A \to \Box A$ is not True.

1.5.3 $\Box p \rightarrow p$

does not hold because:

 $M, w_1 \Vdash \Box p_2 \text{ holds but } M, w_1 \not\Vdash p_2$

1.5.4 $\neg p \rightarrow \Diamond \Box p$

For w_1 :

 $M, w_1 \Vdash \neg p_1 \rightarrow \Diamond \Box p_1 \text{ holds, because } M, w_1 \not\models \neg p_1.$

 $M, w_1 \Vdash \neg p_2 \rightarrow \Diamond \Box p_2$ holds, because we have Rw_1w_2 with $M, w_2 \Vdash \Box p_2$, because we have Rw_2w_3 with $M, w_3 \Vdash p_2$.

 $M, w_1 \Vdash \neg p_3 \rightarrow \Diamond \Box p_3$ holds, because we have Rw_1w_2 with $M, w_2 \Vdash \Box p_3$, because we have Rw_2w_3 with $M, w_3 \Vdash p_3$.

For w_2 :

 $M, w_2 \Vdash \neg p_1 \rightarrow \Diamond \Box p_1 \text{ holds, because } M, w_2 \not\Vdash \neg p_1.$

 $M, w_2 \Vdash \neg p_2 \rightarrow \Diamond \Box p_2 \text{ holds, because } M, w_2 \not\Vdash \neg p_2.$

 $M, w_2 \Vdash \neg p_3 \rightarrow \Diamond \Box p_3$ holds, because we have Rw_2w_3 with $M, w_3 \Vdash \Box p_3$, because we have Rw_3w_3 with $M, w_3 \Vdash p_3$.

For w_3 :

 $M, w_3 \Vdash \neg p_1 \rightarrow \Diamond \Box p_1 \text{ holds, because } M, w_3 \not\Vdash \neg p_1.$

 $M, w_3 \Vdash \neg p_2 \rightarrow \Diamond \Box p_2 \text{ holds, because } M, w_3 \not\Vdash \neg p_2.$

 $M, w_3 \Vdash \neg p_3 \rightarrow \Diamond \Box p_3 \text{ holds, because } M, w_3 \not\Vdash \neg p_3.$

 $\Rightarrow \neg p \to \Diamond \Box p \text{ holds for all } w \in W.$

1.5.5 ⋄□*A*

$$A = \neg p_1$$

 $M, w_1 \Vdash \diamond \Box \neg p_1$ does not hold because this implies Rw_1w_2 with $M, w_2 \Vdash \Box \neg p_1$ but we have Rw_2w_3 with $M, w_3 \not\models \neg p_1$.

1.5.6 $\square \diamond p$

For w_1 :

 $M, w_1 \Vdash \Box \diamond p_1$ holds because:

For Rw_1w_2 with $M, w_2 \Vdash \diamond p_1$ we have Rw_2w_3 with $M, w_3 \Vdash p_1$ For Rw_1w_3 with $M, w_3 \Vdash \diamond p_1$ we have Rw_3w_3 with $M, w_3 \Vdash p_1$

 $M, w_1 \Vdash \Box \diamond p_2$ holds because:

For Rw_1w_2 with $M, w_2 \Vdash \diamond p_2$ we have Rw_2w_3 with $M, w_3 \Vdash p_2$ For Rw_1w_3 with $M, w_3 \Vdash \diamond p_2$ we have Rw_3w_3 with $M, w_3 \Vdash p_2$ $M, w_1 \Vdash \square \diamond p_3$ holds because:

For Rw_1w_2 with $M, w_2 \Vdash \diamond p_3$ we have Rw_2w_3 with $M, w_3 \Vdash p_3$ For Rw_1w_3 with $M, w_3 \Vdash \diamond p_3$ we have Rw_3w_3 with $M, w_3 \Vdash p_3$ For w_2 :

 $M, w_2 \Vdash \Box \diamond p_1$ holds because:

For Rw_2w_3 with $M, w_3 \Vdash \diamond p_1$ we have Rw_3w_3 with $M, w_3 \Vdash p_1$ $M, w_2 \Vdash \square \diamond p_2$ holds because:

For Rw_2w_3 with $M, w_3 \Vdash \diamond p_2$ we have Rw_3w_3 with $M, w_3 \Vdash p_2$ $M, w_2 \Vdash \square \diamond p_3$ holds because:

For Rw_2w_3 with $M, w_3 \Vdash \diamond p_3$ we have Rw_3w_3 with $M, w_3 \Vdash p_3$ For w_3 :

 $M, w_3 \Vdash \Box \diamond p_1$ holds because:

For Rw_3w_3 with $M, w_3 \Vdash \diamond p_1$ we have Rw_3w_3 with $M, w_3 \Vdash p_1$ $M, w_3 \Vdash \square \diamond p_2$ holds because:

For Rw_3w_3 with $M, w_3 \Vdash \diamond p_2$ we have Rw_3w_3 with $M, w_3 \Vdash p_2$ $M, w_3 \Vdash \square \diamond p_3$ holds because:

For Rw_3w_3 with $M, w_3 \Vdash \diamond p_3$ we have Rw_3w_3 with $M, w_3 \Vdash p_3$ $\Rightarrow \Box \diamond p$ holds for all $w \in W$.

Problem 1.6

Show that the following are valid:

$$\mathbf{1.6.1} \models \Box p \rightarrow \Box (q \rightarrow p)$$

We will show that the negation of this statement is always False:

$$\frac{\neg(\Box p \to \Box (q \to p))}{\neg p} \mid \frac{\neg(\Box (q \to p))}{\neg (q \to p)} \\ \frac{\neg (q \to p)}{q \mid \neg p}$$

Because we get p and $\neg p$ to be True we can conclude that our assumption must be False.

$1.6.2 \models \Box \neg \bot$

We will show that the negation of this statement is always FALSE:

$$\frac{\neg(\Box\neg\bot)}{\neg\neg\bot}$$

It is obvious that this statement is always FALSE.

$$1.6.3 \models \Box p \rightarrow (\Box q \rightarrow \Box p)$$

We will show that the negation of this statement is always False:

$$\frac{\neg(\Box p \to (\Box q \to \Box p))}{\Box p} \mid \frac{\neg(\Box q \to \Box p)}{\Box q} \mid \frac{\neg\Box p}{\neg p}$$

Because We get p and $\neg p$ to be TRUE we can conclude that our assumption must be FALSE.

Problem 1.10

Show that none of the following formulas are valid:

1.10.1
$$\Box p \rightarrow \diamond p$$

In this model $\Box p$ is clearly TRUE. But because there is no world that can be reached from $w_1 \diamond p$ is FALSE and therefore $\Box p \to \diamond p$ is also FALSE.

1.10.2 $\square p \rightarrow p$

In this model $\Box p$ is clearly True in all worlds. But p is not True in all worlds. Therefore $\Box p \to p$ is False.

1.10.3 $p \rightarrow \Box \diamond p$

In this model is p is clearly TRUE. But world w_2 has no following world and therefore $\diamond p$ is FALSE and therefore the statement is not valid.

Modal Logic Exercise 01

13-123-922 Elias Wipfli 16-124-836 Marcel Zauder

1.10.4 $\Box p \rightarrow \Box \Box p$

In this model $\Box p$ is True but we cannot reach a world from w_2 where p is True and therefore $\Box\Box p$ is False.

1.10.5 $\diamond p \rightarrow \Box \diamond p$

In this model $\diamond p$ is TRUE because we can reach w_1 from w_1 . But there is no following world for w_2 and therefore $\square \diamond p$ is FALSE.

Problem 1.13

For each of the following schemes find a model M such that every instance of the formula is TRUE in M:

1.13.1 $p \rightarrow \diamond \diamond p$

1.13.2 $\diamond p \rightarrow \Box p$

Problem 1.14

Show that $\Box(A \land B) \models \Box A$.

Let $M = \langle W, R, V \rangle$ be a model and $w \in W$. Then we have:

$$\Box(A \land B) \models \Box A \Rightarrow \forall w \in W : M, w \Vdash \Box(A \land B)$$

$$\Rightarrow \forall w' \in W : Rww' \Rightarrow M, w' \Vdash (A \land B)$$

$$\Rightarrow w' \in V(A \land B)$$

$$\Rightarrow w' \in V(A) \text{ and } w' \in V(B)$$

$$\Rightarrow M, w' \Vdash A$$

$$\text{Because } w' \text{ is arbitrary :}$$

$$\Rightarrow \models \Box A$$

Problem 1.15

Show that $\Box(p \to q) \not\models p \to \Box q$ and $p \to \Box q \not\models \Box(p \to g)$. First we show $\Box(p \to g) \not\models p \to \Box q$:

 $\Box(p \to q)$ is True for w_1 and w_2 but $p \to \Box q$ is False for w_1 .

Now we show that $p \to \Box q \not\models \Box (p \to g)$:

 $p \to \Box q$ is True for w_1 and w_2 but $\Box (p \to q)$ is False for w_1 .