Цель исследования: выделите группы пользователей мобильного приложения "Ненужные вещи"

Описание данных:

Датасет содержит данные о событиях, совершенных в мобильном приложении "Ненужные вещи". В нем пользователи продают свои ненужные вещи, размещая их на доске объявлений. В датасете содержатся данные пользователей, впервые совершивших действия в приложении после 7 октября 2019 года. 1 retention rate, 2 время, проведённое в приложении, 3 частота действий, 4 конверсия в целевое действие — просмотр контактов. Проведем исследовательский анализ данных, сегментируем пользователей на основе действий, проверьте статистические гипотезы

Шаг 1: загрузим данные и изучим общую информацию о них

- Изучим общую информацию о датасете
- Что можно сказать о каждом столбце каждой таблицы?
- Каких типов данные присутствуют в столбцах?
- Сколько пользователей представлено?
- Какие есть источники, с которых пользователи установили приложение?
- Какие виды действий пользователей существуют?

```
In [1]: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        from scipy.stats import ttest_ind
        import seaborn as sns
        from scipy import stats as st
In [2]: dataset = pd.read_csv('/Users/Olgaolga/Desktop/mobile_dataset 2.csv')
In [3]: sourses = pd.read_csv('/Users/Olgaolga/Desktop/mobile.csv')
In [4]: dataset.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 74197 entries, 0 to 74196
       Data columns (total 3 columns):
       # Column
                       Non-Null Count Dtype
          event.time 74197 non-null object
       1 event.name 74197 non-null object
                       74197 non-null object
           user.id
       dtypes: object(3)
       memory usage: 1.7+ MB
In [5]: sourses.info()
```

dtypes: object(2)
memory usage: 67.2+ KB

In [6]: dataset.head()

Out[6]

:	event.time	event.name	user.id
0	2019-10-07 00:00:00.431357	advert_open	020292ab-89bc-4156-9acf- 68bc2783f894
1	2019-10-07 00:00:01.236320	tips_show	020292ab-89bc-4156-9acf- 68bc2783f894
2	2019-10-07 00:00:02.245341	tips_show	cf7eda61-9349-469f-ac27- e5b6f5ec475c
3	2019-10-07 00:00:07.039334	tips_show	020292ab-89bc-4156-9acf- 68bc2783f894
4	2019-10-07 00:00:56.319813	advert_open	cf7eda61-9349-469f-ac27- e5b6f5ec475c

In [7]: sourses.head()

Out[7]:		userld	source
	0	020292ab-89bc-4156-9acf-68bc2783f894	other
	1	cf7eda61-9349-469f-ac27-e5b6f5ec475c	yandex
	2	8c356c42-3ba9-4cb6-80b8-3f868d0192c3	yandex
	3	d9b06b47-0f36-419b-bbb0-3533e582a6cb	other
	4	f32e1e2a-3027-4693-b793-b7b3ff274439	google

In [8]: dataset.describe()

Out[8]:		event.time	event.name	user.id
	count	74197	74197	74197
	unique	74197	16	4293
	top	2019-10-07 00:00:00.431357	tips_show	cb36854f-570a-41f4-baa8- 36680b396370
	freq	1	40055	478

```
In [9]: dataset.rename(columns = {'event.time':'event_time', 'event.name':'event_
In [10]: sourses.rename(columns = {'userId':'user_id'},inplace = True)
```

```
In [11]:
         sourses describe()
Out[11]:
                                              user_id source
                                                4293
                                                        4293
          count
                                                 4293
          unique
                                                           3
                 020292ab-89bc-4156-9acf-68bc2783f894
                                                        1934
            freq
In [12]:
         sourses['source'].unique()
Out[12]: array(['other', 'yandex', 'google'], dtype=object)
In [13]:
         dataset['event_name'].unique()
          array(['advert_open', 'tips_show', 'map', 'contacts_show', 'search_4',
Out[13]:
                 'search_5', 'tips_click', 'photos_show', 'search_1', 'search_2',
                 'search_3', 'favorites_add', 'contacts_call', 'search_6',
                 'search_7', 'show_contacts'], dtype=object)
```

Выводы шаг 1:

Мы изучили общую информацию о датасете. Что можно сказать о каждом столбце каждой таблицы? В каждом столбце обеих таблиц содержатся данные типа object. В таблице dataset содержится информация о времени события, совершенного пользователем, наименование события, идентификатор пользователя. В sourses содержится информация об идентификаторах пользоавтелей и о источниках. В таблицах представлено 4293 уникальных пользователей. Существуют следующие источники, с которых пользователи установили приложение: 'other' (другие), 'yandex', 'google'. Также представлена информация о действиях пользователей, таких как: advert_open — открыл карточки объявления, photos_show — просмотрел фотографий в объявлении, tips_show — увидел рекомендованные объявления, tips_click — кликнул по рекомендованному объявлению, contacts_show и show_contacts — посмотрел номер телефона, contacts_call — позвонил по номеру из объявления, map открыл карту объявлений, search_1 — search_7 — разные действия, связанные с поиском по сайту, favorites add — добавил объявление в избранное. Также на шаге 1 я поменяла названия столбцов для удобства использования.

Шаг 2: выполним предобработку данных

- Изучим, есть ли дубликаты в данных
- Проверим наличие пропусков
- Заменим пропуски, если это требуется

• Посмотрим, присутствуют ли выбросы и аномальные значения

```
dataset.duplicated().sum()
Out[14]:
In [15]: sourses.duplicated().sum()
Out[15]: 0
         dataset.isna().sum()
In [16]:
Out[16]: event_time
                        0
          event_name
                        0
          user id
          dtype: int64
In [17]:
         sourses.isna().sum()
Out[17]: user_id
          source
                     0
          dtype: int64
In [18]: dataset['event_time'] = pd.to_datetime(dataset['event_time'])
In [19]: dataset.groupby('event_name')['event_time'].count().sort_values(ascending
Out[19]:
         event_name
          tips_show
                           40055
                           10012
          photos_show
          advert_open
                            6164
          contacts_show
                            4450
         map
                            3881
                            3506
          search_1
          favorites_add
                            1417
          search_5
                            1049
          tips_click
                             814
          search_4
                             701
                             541
          contacts_call
          search_3
                             522
          search_6
                             460
          search_2
                             324
          search_7
                             222
          show_contacts
                              79
         Name: event_time, dtype: int64
In [20]: dataset['event_name'] = dataset['event_name'].replace('contacts_show', 's
```

Выводы шаг 2:

Дубликаты в таблицах отсутствуют, пропусков также нет. Я перевела значения столбца с временем события к типу datetime для удобства обращения с датой и временем. Также можно заметить, что в dataset присутствовали действия contacts_show и show_contacts, имеющие один и тот же смысл. для удобства я объединила их подназванием 'show_contacts'.

Шаг 3: проведем исследовательский анализ данных

- Какие источники являются наиболее популярными? Наименее популярными?
- Как распределены пользователи по действиям? Сколько пользователей теряется после каждого этапа?
- Сколько времени пользователь проводит на каждом действии?
- Определим конверсию в целевое действие просмотр контактов
- Посчитаем retention rate
- найдем частоту совершения событий
- Определим время, проводимое пользователем в приложении

Изучим популярность источников:

```
In [21]:

sourses_counts = sourses.groupby('source')['user_id'].nunique().sort_valuplt.figure(figsize=(10, 6))
sns.barplot(x='source', y='sourses_count', data=sourses_counts, palette='plt.xlabel('Источники')
plt.ylabel('Количество уникальных пользователей')
plt.title('Количество пользователей в зависимости от источника')
plt.xticks(rotation=45)
plt.grid(axis='y', linestyle='--', alpha=0.7)
for index, value in enumerate(sourses_counts['sourses_count']):
    plt.text(index, value, f'{value}', ha='center', va='bottom')
plt.tight_layout()
plt.show()
```


Наиболее популярным является Яндекс, затем прочие источники, на третьем месте находится Гугл

In [22]:	sourses_counts			
Out[22]:	source sourses_count			

0	yandex	1934
1	other	1230
2	google	1129

Выделим сессии пользователей

```
In [23]: dataset['session_date'] = dataset['event_time'].dt.date
```

Посмотрим на количество пользователей по действиям

```
user_counts = dataset.groupby(['event_name','session_date'])['user_id'].n
In [24]:
         user counts = user counts.groupby('event name')['user count'].sum().reset
         user_counts = user_counts.sort_values(by='user_count', ascending=False)
         plt.figure(figsize=(12, 6))
         sns.barplot(x='event_name', y='user_count', data=user_counts, palette='pa
         plt.xlabel('Действия')
         plt.ylabel('Количество уникальных пользователей')
         plt.title('Pаспределение количества пользователей в зависимости от дейст
         plt.xticks(rotation=45)
         plt.grid(axis='y', linestyle='--', alpha=0.7)
         for index, value in enumerate(user_counts['user_count']):
             plt.text(index, value, f'{value:.2f}', ha='center', va='bottom')
         plt.tight_layout()
         plt.tight_layout()
         plt.show()
```


Что касается распределения действий пользователей по количеству, можем сделать следующие выводы: большая часть пользователей содержится на действии с показом рекомендованных объявлений (4642 пользователя). Почти в три раза меньше человек смотрят фотограмии (1981), чуть поменьше - 1945 - пользуются просмотром карты. Эти три действия - самые многочисленные по числу уникальных пользователей, совершающих их.

```
In [25]: user_counts['previous_user_count'] = user_counts['user_count'].shift(1)
    user_counts['from_previous'] = user_counts['user_count'] - user_counts['p
    user_counts.drop(columns=['previous_user_count'], inplace=True)
    user_counts['from_previous'].fillna(0, inplace=True)
```

Также можно узнать различие в количестве пользователей между действиями

```
In [26]: user_counts
```

Out[26]:		event_name	user_count	from_previous
	14	tips_show	4642	0.0
	4	photos_show	1981	-2661.0
	3	map	1945	-36.0
	12	show_contacts	1444	-501.0
	5	search_1	1360	-84.0
	0	advert_open	1079	-281.0
	9	search_5	868	-211.0
	8	search_4	611	-257.0
	2	favorites_add	458	-153.0
	10	search_6	406	-52.0
	13	tips_click	385	-21.0
	6	search_2	286	-99.0
	1	contacts_call	273	-13.0
	7	search_3	272	-1.0
	11	search_7	193	-79.0

In [27]: dataset['time_spent'] = dataset.groupby(['user_id', 'session_date'])['eve
 time_action = dataset.groupby('event_name')['time_spent'].mean().reset_in
 time_action = time_action.sort_values(by='time_spent', ascending=False)
 time_action

Out[27]:		event_name	time_spent
	11	search_7	4998.517178
	8	search_4	3260.958417
	5	search_1	2180.935202
	6	search_2	1547.712203
	4	photos_show	832.601948
	3	map	826.767633
	10	search_6	663.251401
	7	search_3	634.131542
	12	show_contacts	538.662669
	14	tips_show	448.699658
	0	advert_open	363.335365
	13	tips_click	341.372886
	2	favorites_add	316.886520
	9	search_5	221.746542
	1	contacts_call	9.701261

Посмотрим, сколько времени пользователи тратят на определенные действия

```
In [28]: plt.figure(figsize=(12, 8))
    sns.barplot(x='time_spent', y='event_name', data=time_action, palette='pa
    plt.xlabel('Время')
    plt.ylabel('Действия')
    plt.title('Распределение времени по действиям')
    plt.grid(axis='x', linestyle='--', alpha=0.7)
    for index, value in enumerate(time_action['time_spent']):
        plt.text(value, index, f'{value:.2f}', va='center')
    plt.tight_layout()
    plt.show()
```


Также посмотрим распределение пользователей по времени на действиях. Наибольшее время у пользователей содержат действия, связанные с поиском. Какой поиск - не уточняется, но в целом это логично, так кака пользователь заходит с каким-либо запросом в приложение и ищет то, что ему нужно. Также достаточно много времени пользования содержит действие с показом фотографий. Действительно, купить товар, не посмотрев на него, нельзя, поэтому люди тратят время, чтобы изучить всё визуально. Влего лишь на несколько едениц отличается действие с показом карты. Скорее всего, покупатель старается выбирать товар, который находится ближе к нему. Наименее продолжительным являются действия с показом контактов и с еще одним видом поиска

Посчитаем конверсию в просмотр контактов и возвращаемость пользователей:

```
In [29]: unique = dataset['user_id'].nunique()
  target = dataset[dataset['event_name'] == 'show_contacts']['user_id'].nun
  conversion_rate = target / unique
  print(f"Конверсия в просмотр контактов: {conversion_rate:.2%}")
```

Конверсия в просмотр контактов: 22.85%

Как связаны дата и частота событий? Ответим на этот вопрос графиком

```
In [30]: daily_events = dataset.groupby('session_date').size().reset_index(name='e daily_events['day_of_week'] = pd.to_datetime(daily_events['session_date'] daily_events['is_weekend'] = daily_events['day_of_week'].isin([5, 6])

plt.figure(figsize=(12, 8))
sns.lineplot(x='session_date', y='event_count', data=daily_events, label=sns.lineplot(x='session_date', y='event_count', data=daily_events[daily_e label='Выходные', linestyle='--', color=sns.color_palette('p sns.lineplot(x='session_date', y='event_count', data=daily_events[~daily_events]
```

```
label='Будни', linestyle='--', color=sns.color_palette('past
plt.xlabel('Дата')
plt.ylabel('Количество событий')
plt.title('Частота событий в зависимости от даты')
plt.legend()
plt.show()
```

/var/folders/j2/5vsypwjx25x_h3d_1msym38c0000gn/T/ipykernel_67020/225263733 0.py:6: UserWarning: Ignoring `palette` because no `hue` variable has been assigned. sns.lineplot(x='session date', y='event count', data=daily events, label ='Bcero', color='b', palette='pastel') /opt/anaconda3/lib/python3.11/site-packages/seaborn/_oldcore.py:1119: Futu reWarning: use_inf_as_na option is deprecated and will be removed in a fut ure version. Convert inf values to NaN before operating instead. with pd.option_context('mode.use_inf_as_na', True): /opt/anaconda3/lib/python3.11/site-packages/seaborn/_oldcore.py:1119: Futu reWarning: use_inf_as_na option is deprecated and will be removed in a fut ure version. Convert inf values to NaN before operating instead. with pd.option_context('mode.use_inf_as_na', True): /opt/anaconda3/lib/python3.11/site-packages/seaborn/_oldcore.py:1119: Futu reWarning: use_inf_as_na option is deprecated and will be removed in a fut ure version. Convert inf values to NaN before operating instead. with pd.option_context('mode.use_inf_as_na', True): /opt/anaconda3/lib/python3.11/site-packages/seaborn/_oldcore.py:1119: Futu reWarning: use inf as na option is deprecated and will be removed in a fut ure version. Convert inf values to NaN before operating instead. with pd.option_context('mode.use_inf_as_na', True): /opt/anaconda3/lib/python3.11/site-packages/seaborn/_oldcore.py:1119: Futu reWarning: use_inf_as_na option is deprecated and will be removed in a fut ure version. Convert inf values to NaN before operating instead. with pd.option_context('mode.use_inf_as_na', True): /opt/anaconda3/lib/python3.11/site-packages/seaborn/_oldcore.py:1119: Futu reWarning: use_inf_as_na option is deprecated and will be removed in a fut ure version. Convert inf values to NaN before operating instead. with pd.option_context('mode.use_inf_as_na', True):

С частотой совершения событий ситуация следующая:кроме общего количества событий по дням также будет интересно сравнить активность пользователей в будние дни и в выходные. С 9 октября наблюдалась общая тенденция к уменьшению числа событий. Затем к 13 октября начался рост. Вслед за этим прослеживалась тенденция на уменьшение до 21 сентября, после чего последовал скачок. До 29 октября наблюдались небольшие колебаниЯ, закончившиеся резким падением к 1 ноября. Затем количество событий снова скачкообразно выросло. Можем заметить, что количество событий, совершаемых в будние дни, гораздо стабильнее, чем в выходные, причем стабильно в положительном смысле.

Учитывая, что одну сессию мы считаем одним календарным днем, посмотрим, сколько времени пользователи проводят в прилождении. Затем уточним некоторые детали по полученной таблице

```
In [31]: durations_minutes = dataset.groupby(['user_id', 'session_date']).agg(sess
In [32]: durations_minutes
```

Out[32]:		user_id	session_date	session_start	session_end
	0	0001b1d5-b74a- 4cbf-aeb0- 7df5947bf349	2019-10-07	2019-10-07 13:39:45.989359	2019-10-07 13:49:41.716617
	1	0001b1d5-b74a- 4cbf-aeb0- 7df5947bf349	2019-10-09	2019-10-09 18:33:55.577963	2019-10-09 18:42:22.963948
	2	0001b1d5-b74a- 4cbf-aeb0- 7df5947bf349	2019-10-21	2019-10-21 19:52:30.778932	2019-10-21 20:07:30.051028
	3	0001b1d5-b74a- 4cbf-aeb0- 7df5947bf349	2019-10-22	2019-10-22 11:18:14.635436	2019-10-22 11:30:52.807203
	4	00157779-810c- 4498-9e05- a1e9e3cedf93	2019-10-19	2019-10-19 21:34:33.849769	2019-10-19 21:59:54.637098
	•••		•••		
	7812	fffb9e79-b927- 4dbb-9b48- 7fd09b23a62b	2019-10-29	2019-10-29 13:58:47.865084	2019-10-29 16:13:00.681459
	7813	fffb9e79-b927- 4dbb-9b48- 7fd09b23a62b	2019-10-30	2019-10-30 00:15:43.363752	2019-10-30 11:31:45.886946
	7814	fffb9e79-b927- 4dbb-9b48-	2019-11-01	2019-11-01 00:24:31 162871	2019-11-01 00:24:53 473219

7817 rows × 4 columns

7815

7816

```
In [33]: durations_minutes['session_duration'] = (durations_minutes['session_end']
    mean = durations_minutes['session_duration'].mean()
    median = durations_minutes['session_duration'].median()
    print(f'Средняя продолжительность сессии: {mean:.2f} минут')
    print(f'Медианная продолжительность сессии: {median:.2f} минут')
    long = durations_minutes[durations_minutes['session_duration'] >= 90]
    short = durations_minutes[durations_minutes['session_duration'] <= 1]
    print(f'Количество длительных сессий: {len(long)}')
    print(f'Количество коротких сессий: {len(short)}')</pre>
```

2019-11-02

2019-11-03

Средняя продолжительность сессии: 83.03 минут Медианная продолжительность сессии: 11.81 минут

Количество длительных сессий: 1448 Количество коротких сессий: 1477

7fd09b23a62b

fffb9e79-b927-

7fd09b23a62b

fffb9e79-b927-

7fd09b23a62b

4dbb-9b48-

4dbb-9b48-

Посмотрим, как распределены пользователи с короткими сессиями по источниам

00:24:53.473219

19:30:50.471310

16:08:25.388712

2019-11-02

2019-11-03

00:24:31.162871

01:16:48.947231

14:32:55.956301

2019-11-02

2019-11-03

```
In [34]: short_users = short['user_id'].unique()
    short_sources = sourses[sourses['user_id'].isin(short_users)]
    short_counts = short_sources['source'].value_counts()
    print("Распределение источников для пользователей с короткими сессиями:")
    print(short_counts)
```

Pаспределение источников для пользователей с короткими сессиями: source yandex 401 other 333 google 250 Name: count, dtype: int64

Лидер по числу пользователей с самыми короткими сессиями - Яндекс. Возможно, стоит обратить внимание на пользователей этого источника с целью придумать что-либо для того, чтобы побудить их вернуться к использованию приложения. Насколько я знаю, такое иногда используют маркетплейсы. Анализируют активность пользователей и тем пользователям, которые, к примеру, совершают меньше сессий, делают персональные предложения, чтобы они заходили в приложение снова и снова.

Изменяется ли авктивность пользователей в течение дня?

Посмотрим на активность пользователей по часам дня: можем заметить, что большинство пользователей используют приложение в периоде 12:00-16:00, а также 20:00 - 21:00.

Выводы шаг 3:

Наиболее популярным источником является Яндекс, затем "другие" и Гугл. Также посмотрим распределение пользователей по времени на действиях. Наибольшее время у пользователей содержат действия, связанные с поиском. Какой поиск - не уточняется, но в целом это логично, так кака пользователь заходит с каким-либо запросом в приложение и ищет то, что ему нужно. Также достаточно много времени пользования содержит действие с показом фотографий. Действительно, купить товар, не посмотрев на него, нельзя, поэтому люди тратят время, чтобы изучить всё визуально. Влего лишь на несколько едениц отличается действие с показом карты. Скорее всего, покупатель старается выбирать товар, который находится ближе к нему. Наименее продолжительным являются действия с показом контактов и с еще одним видом поиска. Что касается распределения действий пользователей по количеству, можем сделать следующие выводы: большая часть пользователей содержится на действии с показом рекомендованных объявлений (4642 пользователя). Почти в три раза меньше человек смотрят фотограмии (1981), чуть поменьше - 1945 - пользуются просмотром карты. Эти три действия самые многочисленные по числу уникальных пользователей, совершающих их. Конверсия в целевое действие — просмотр контактов - 22.85%. По тепловой карте удержания можем сделать следующие выводы: с удержанием пользователей дела идут не очень хорошо. После первого дня дял группы пользователей, присоединившихся к приложению 7 октября, на второй денб осталось лишь 18%. К 27-му дню остается 1%. Теряется большое число пользователей. С частотой совершения событий ситуация следующая:кроме общего количества событий по дням также будет интересно сравнить активность пользователей в будние дни и в выходные. С 9 октября наблюдалась общая тенденция к уменьшению числа событий. Затем к 13 октября начался рост. Вслед за этим прослеживалась тенденция на уменьшение до 21 сентября, после чего последовал скачок. До 29 октября наблюдались небольшие колебаниЯ, закончившиеся резким падением к 1 ноября. Затем количество событий снова скачкообразно выросло. Можем заметить, что количество событий, совершаемых в будние дни, гораздо стабильнее, чем в выходные, причем стабильно в положительном смысле. Также определили время, проводимое пользователем в приложении. За сессию в среднем пользователь проводит в нем около 83.03 минут. Медианное значение - 11.81 минут. Также посмотрим на активность пользователей по часам дня: можем заметить, что большинство пользователей используют приложение в периоде 12:00-16:00, а также 20:00 - 21:00.

Шаг 4: сегметация

source user_count
yandex 1934
other 1230
google 1129

Выводы шаг 4:

Мы разбили пользователей по источникам. Такой вариант разбивки достаточно практичный, так как ориентируясь на источники пользователей, можно дорабатывать приложение под источник, привлекающий большую часть клиентов. Также количество человек, участвующих. в каждой группе при разбивке, не критично различается. Что касается результатов сегментации, можем сделать следующие выводы: наибольшим количеством пользователей обладает Яндекс, вслед за ним идут прочие источники, на третьем месте Гугл.

Out[37]:

In [37]: dataset

	event_time	event_name	user_id	session_date	time_spent	hc
0	2019-10-07 00:00:00.431357	advert_open	020292ab- 89bc-4156- 9acf- 68bc2783f894	2019-10-07	NaN	
1	2019-10-07 00:00:01.236320	tips_show	020292ab- 89bc-4156- 9acf- 68bc2783f894	2019-10-07	0.804963	
2	2019-10-07 00:00:02.245341	tips_show	cf7eda61- 9349-469f- ac27- e5b6f5ec475c	2019-10-07	NaN	
3	2019-10-07 00:00:07.039334	tips_show	020292ab- 89bc-4156- 9acf- 68bc2783f894	2019-10-07	5.803014	
4	2019-10-07 00:00:56.319813	advert_open	cf7eda61- 9349-469f- ac27- e5b6f5ec475c	2019-10-07	54.074472	
•••		•••	•••	•••	•••	
74192	2019-11-03 23:53:29.534986	tips_show	28fccdf4- 7b9e-42f5- bc73- 439a265f20e9	2019-11-03	4.572126	
74193	2019-11-03 23:54:00.407086	tips_show	28fccdf4- 7b9e-42f5- bc73- 439a265f20e9	2019-11-03	30.872100	
74194	2019-11-03 23:56:57.041825	search_1	20850c8f- 4135-4059- b13b- 198d3ac59902	2019-11-03	NaN	
74195	2019-11-03 23:57:06.232189	tips_show	28fccdf4- 7b9e-42f5- bc73- 439a265f20e9	2019-11-03	185.825103	
74196	2019-11-03 23:58:12.532487	tips_show	28fccdf4- 7b9e-42f5- bc73- 439a265f20e9	2019-11-03	66.300298	

74197 rows × 6 columns

Шаг 5: основные вопросы исследования

- Пользователи с какой группы склонны часто возвращаться в приложение?
- Пользователи какой группы часто делают целевое событие? (конверсия в целевое действие)

Для начала посмотрим на возвращаемость пользователей из различных источников

```
In [38]:
         dataset merged = dataset.merge(sourses, on='user id', how='left')
         dataset merged['first'] = dataset merged.groupby('user id')['session date
In [39]: | dataset_merged['session_date'] = pd.to_datetime(dataset_merged['session_d
         dataset_merged['first'] = dataset_merged.groupby('user_id')['session_date
         dataset merged['after first'] = (dataset merged['session date'] - dataset
         sourcesu = dataset_merged['source'].unique()
         for source in sourcesu:
             source_data = dataset_merged[dataset_merged['source'] == source]
             groups = source_data.groupby(['first', 'after_first']).agg({'user_id'}
             groups_groups = groups.pivot(index='first', columns='after_first', va
             size = groups groups[0]
             retention_matrix = groups_groups.divide(size, axis=0)
             retention_matrix.index = retention_matrix.index.strftime('%Y-%m-%d')
             retention_matrix = retention_matrix.fillna(0)
             plt.figure(figsize=(15, 8))
             sns.heatmap(retention matrix, annot=True, fmt=".0%")
             plt.title(f'Тепловая карта удержания для источника: {source}')
             plt.xlabel('Количество дней')
             plt.ylabel('Дата начала когорты')
             plt.show()
```


Выводы можем сделать следующие: наибольшее значение удержания пользователей у источников категории "другие". Для "других" на второй день максимально осталось 30% пользователей, что является максимальным значением среди всех источников. У Яндекс максимальное число процентов удержания пользователей составляет 24%, у гугл - 27%. В целом везде пользователи удерживаются достаточно плохо. Надо исправлять ситуацию.

```
In [40]: main = 'show_contacts'
    main_events = dataset_merged[dataset_merged['event_name'] == main]
    main_unique_users = main_events.groupby('source')['user_id'].nunique().re
    total_unique_users = dataset_merged.groupby('source')['user_id'].nunique(
    conversions = pd.merge(main_unique_users, total_unique_users, on='source'
    conversions['conversion'] = (conversions['main_events_count'] / conversio
    conversions = conversions.sort_values(by='conversion', ascending=False)
    plt.figure(figsize=(10, 6))
    sns.barplot(x='source', y='conversion', data=conversions, palette='pastel
```

```
plt.xlabel('Источник')
plt.ylabel('Конверсия (%)')
plt.title('Конверсия по источникам')
plt.xticks(rotation=45)
plt.grid(axis='y', linestyle='--', alpha=0.7)
for index, row in enumerate(conversions.itertuples()):
    plt.text(index, row.conversion, f'{row.conversion:.2f}%', ha='center'
plt.tight_layout()
plt.show()
```


Выводы шаг 5:

Пользователи из "прочих" источников возвращаются чаще, чем из Яндекс и Гугл.Для "других" на второй день максимально осталось 30% пользователей, что является максимальным значением среди всех источников. У Яндекс максимальное число процентов удержания пользователей составляет 24%, у гугл - 27%. В целом везде пользователи удерживаются достаточно плохо. Надо исправлять ситуацию. Пользователи из Яндекс имеют более высокую конверсию в просмотр контактов, что является целевым действием. На втором месте находится Гугл.

Шаг 6: проверка гипотез

Н0: Конверсия у пользователей Гугл и Яндекс одинакова

Н1: Конверсия у пользователей Гугл и Яндекс различается

In [41]: conversions

Out[41]: source		source	main_events_count	total_events_count	conversion
	2	yandex	478	1934	24.715615
	0	google	275	1129	24.357839
	1	other	228	1230	18.536585

Используем z-тест для сравния двух независимых групп пользователей и проверим, существует ли статистически значимая разница в их конверсиях.

```
In [42]: yandex users = sourses[sourses['source'] == 'yandex']['user id'].unique()
         google users = sourses[sourses['source'] == 'google']['user id'].unique()
         #посчитаем общее количество уникальных пользователей гугл/яндекс
         yandex_total = len(yandex_users)
         google total = len(google users)
         #посчитаем количество пользователей, совершивших целевое действие
         yandex merged = dataset merged[(dataset merged['user id'].isin(yandex use
         ['user id'].nunique()
         google_merged = dataset_merged[(dataset_merged['user_id'].isin(google_use
         ['user id'].nunique()
         #рассчет конверсии гугл/яндекс
         p_yandex = yandex_merged / yandex_total
         p_google = google_merged / google_total
         #скомбинированная конверсия
         p_comb = (yandex_merged + google_merged) / (yandex_total + google_total)
         #разность конверсии у гугл/яндекс
         difference = p_yandex - p_google
         #z-статистика
         z_{stat} = difference / (p_{comb} * (1 - p_{comb}) * (1/yandex_{total} + 1/google)
         distribution = st.norm(0, 1)
         p_value = (1 - distribution.cdf(abs(z_stat))) * 2
         print(f'p-value: {p_value:.4f}')
         if p_value < 0.05:
             print('Отвергаем нулевую гипотезу: разница между конверсиями у гугл и
         else:
             print('He отвергаем нулевую гипотезу, разница между конверсиями отсу
         print(f'Конверсия пользователей яндекс: {p_yandex:.4f}')
         print(f'Конверсия пользователей гугл: {p google:.4f}')
```

p-value: 0.8244

Не отвергаем нулевую гипотезу, разница между конверсиями отсутствует Конверсия пользователей яндекс: 0.2472 Конверсия пользователей гугл: 0.2436

H0: Пользователи, открывшие карту объявлений, не совершают действия поиска и не открывают карточки объявлений чаще, чем те, кто карту не открывал

H1: Пользователи, открывшие карту объявлений, совершают действия поиска и открывают карточки объявлений чаще, чем те, кто карту не открывал

Логика следующая: карта объявлений - достаточно необычное нововведение в приложении. Посмотрим, стимулирует ли это действие пользователей на такие важные шаги как совершение поиска товаров и открытие карточек объявлений?

```
In [43]: #создадим столбец, показывающий, относится ли действие к поиску 1-7
         dataset['search'] = dataset['event_name'].str.startswith('search')
         #отберем уникальных пользователей, совершивших действие с картой
         map_users = dataset.loc[dataset['event_name'] == 'map', 'user_id'].unique
         #датафрейм в котором содержатся все записи пользователей, открывших карту
         opened_map = dataset[dataset['user_id'].isin(map_users)]
         #наоборот не открывшие карту пользователи
         not opened map = dataset[~dataset['user id'].isin(map users)]
         #количество действий пользователя, открывшего карту
         search map = opened map[opened map['search']].groupby('user id').size()
         #количество действий пользователя , не открывшего карту
         search_nomap = not_opened_map[not_opened_map['search']].groupby('user_id'
         #количество открытий карточек объявлений для каждого пользователя, открыв
         advert map = opened map[opened map['event name'] == 'advert open'].groupb
         #количество открытий карточек объявлений для каждого пользователя, не отк
         advert_nomap = not_opened_map[not_opened_map['event_name'] == 'advert_ope'
         search_results = st.ttest_ind(search_map, search_nomap, equal_var=False)
         advert_open_results = st.ttest_ind(advert_map, advert_nomap, equal_var=Fa
         print('p-value для действий поиска:', search_results.pvalue)
         print('p-value для карточек объявлений:', advert_open_results.pvalue)
         if search results.pvalue < 0.05 and advert open results.pvalue < 0.05:</pre>
             print("Отвергаем нулевую гипотезу: пользователи, открывшие карту, чащ
         else:
             print("Не получилось отвергнуть нулевую гипотезу: пользователи, откры
```

p-value для действий поиска: 0.8157662454883214 p-value для карточек объявлений: 0.05322374183731996 Не получилось отвергнуть нулевую гипотезу: пользователи, открывшие карту, совершают действия поиска и открывают карточки объявлений не чаще

Выводы шаг 6:

Мы проверяли 2 гипотезы:

- -Пользователи, открывшие карту объявлений, не совершают действия поиска и не открывают карточки объявлений чаще, чем те, кто карту не открывал
- -Конверсия у пользователей Гугл и Яндекс одинакова

Обе гипотезы подтвердились. Можем прийти к выводу, что Гугл и Яндекс эквиваленты но конверсии пользователей. Также можно сделать вывод, Что карта объявлений не мотивирует пользователей совершать другие действия, такие как поиск и просмотр карточек.

Общие выводы:

1. Структура данных:

Данные представлены в таблицах, содержат информацию о событиях пользователей и источниках. Пропуски и дубликаты отсутствуют, а временные метки приведены к типу datetime для удобства анализа.

2. Анализ данных:

Источники установки: Наиболее популярным источником является Яндекс, за ним следуют «другие» и Гугл. Пользователи из «других» источников чаще возвращаются в приложение.

3. Действия пользователей:

Наиболее популярные действия — просмотр рекомендованных объявлений, фотографий и карты. Однако, карта объявлений не стимулирует пользователей к дальнейшим действиям, таким как поиск и открытие карточек.

4. Конверсия и удержание:

Конверсия в просмотр контактов составляет 22.85%, а retention rate достаточно низкий везде. Пользователи из Яндекс показывают более высокую конверсию в целевое действие.

5. Активность пользователей:

Пользователи наиболее активны в период с 12:00 до 16:00 и с 20:00 до 21:00. Активность в будние дни более стабильна положительная по сравнению с выходными.

6. Гипотезы:

Первая гипотеза о том, что открытие карты не увеличивает частоту поиска и открытия карточек, подтвердилась.

Вторая гипотеза о равенстве конверсии пользователей из Яндекса и Гугла также подтвердилась.

7. Выводы и рекомендации:

Приложение следует оптимизировать с учетом наиболее активных временных интервалов пользователей. К примеру, можно ввести "темную тему" для тех, кто использует его вечером, чтобы было комфортнее читать в темноте.

Стоит обратить внимание на улучшение функционала карты, чтобы она могла стимулировать дальнейшие действия пользователей.

Так как конверсии пользователей Яндекса и Гугла равны, стоит обратить внимание на увеличение удержания пользователей Яндекса, по причине того, что оно ниже.