

Блок управления AUMATIC AC 01.2 Profibus DP

Применять только с инструкцией по эксплуатации!

- Краткое руководство не является заменой инструкции по эксплуатации!
- Оно предназначено только для специалистов, которые ознакомлены с общей инструкцией по эксплуатации, включающей указания по безопасности, монтажу, управлению и вводу в эксплуатацию.
- Инструкция по эксплуатации должна всегда быть в распоряжении персонала!

Оглавление		Страница	
1.	Краткое описание	3	
2.	Оптоволоконное соединение	4	
2.1	Общие указания	4	
2.2	Порядок открытия отсека оптоволоконных соединений	5	
2.3	Подключение оптоволоконных кабелей	5	
2.4	Порядок закрытия отсека оптоволоконных соединений	7	
3.	Топология сети	8	
3.1	Линейная топология	8	
3.2	Топология «звезда»	9	
3.3	Топология «кольцо» (двойное кольцо)	10	
4.	Устранение неисправностей	12	
4.1	Светодиодная индикация	12	
5.	Технические характеристики	13	
5.1	Оптоволоконная соединительная плата	13	
6.	Приложение	15	
6.1	Методики измерения	15	
6.2	Контакты поставщика	15	
6.3	Справочная литература	15	

1. Краткое описание

Блоки управления электроприводами AUMA с оптоволоконным соединением предназначены для подключения к оптическим сетям полевой шины.

Оптоволоконное соединение в схеме электрического подключения позволяет преобразовывать электрические сигналы RS-485 в оптические сигналы и наоборот.

Оптоволоконное соединение интегрировано в шину, то есть управление приводами AUMA через шину с оптоволоконными участками осуществляется так же, как и при кабельном соединении с медными проводниками (RS-485).

В отличие от систем RS-485 оптоволоконные соединения позволяют применять различные топологии:

- Линейная топология
- Топология типа «звезда»
- Дублирующая топология типа «кольцо»

Кроме передачи данных на большие расстояния, оптоволоконная система обладает и другими преимуществами:

- Повышенная электромагнитная совместимость
- Защита от ударов молний и повышенного напряжения
- Выравнивание потенциалов и заземление
- Гальваническая развязка приводов
- Применение общих трасс для силовых и сигнальных кабелей
- Недопустимость воздействия излучений на участке передачи

Эти преимущества позволяют использовать оптоволоконные системы в различных сферах применения, таких как водоснабжение, установки сточных вод, туннельные системы, электростанции, теплостанции, телемеханика и др.

2. Оптоволоконное соединение

2.1 Общие указания

№ ОПАСНО

Опасное напряжение!

Существует опасность поражения электрическим током. Несоблюдение инструкции может привести к смерти или материальному ущербу.

- → Подключение разрешается выполнять только квалифицированному персоналу.
- → Подготовка к открыванию крышки: Отключить питание системы и оконечного устройства.
- → Ознакомиться с инструкциями настоящей главы.
- → Соблюдать правила техники безопасности, изложенные в инструкции по эксплуатации электропривода.

Существует опасность повреждения глаз от лучей открытых концов оптоволоконного кабеля!

→ Запрещается смотреть на открытые концы кабелей и оптоволоконных разъемов.

ВНИМАНИЕ

Несоблюдение инструкций по монтажу ведет к потере соединения и приема!

- → Разрешается применять только те оптоволоконные соединители (типы штекеров), которые соответствуют характеристикам, указанным в настоящем руководстве.
- → Штекеры с блокировкой применять только для соответствующих позиций.
- → Неиспользуемые оптоволоконные соединители закрыть от загрязнения и пыли с помощью защитных колпачков и заглушек (в комплекте поставки).
- → Входные ОВК подключить к оптическому приемнику. Выходные ОВК соединить с оптическим передатчиком. НЕ НАОБОРОТ!
- → Запрещается перегибать оптоволоконные кабели! Соблюдать радиус изгиба согласно инструкции производителя кабеля.

Кабель и типы проводников

Таблица 1. Кабель и проводники в соответствии с DIN VDE 0888, часть 3

Волокно	Многомодовое 62,5 (50)/125 мкм Одномодовое 9/125 мкм
Дальность действия	62,5 (50)/125 мкм, стекловолокно (многомодовое): 2500 м 9/125 мкм, стекловолокно (одномодовое): 15 км
Коэффициент затухания	Рекомендуется: < 2,0 дБ/км (многомодовое) или < 0,4 дБ/км (одномодовое)

Снять прибл. 42 см внешней оболочки с тем, чтобы оптоволоконный кабель можно было кольцеобразно проложить в отсеке контактов.

Рисунок 1: Типы штекера: ST или SC (в зависимости от исполнения)

Блок управления на настенном креплении

При сильных вибрациях арматуры блок управления рекомендуется монтировать на настенном креплении отдельно от привода. Подробнее о настенном креплении смотрите инструкцию по эксплуатации привода.

2.2 Порядок открытия отсека оптоволоконных соединений

Для подключения оптоволоконных соединений в штепсельном разъеме AUMA (шина SDE) предусмотрена соединительная плата. Для доступа к ней требуется снять крышку [1].

Рисунок 2: Штепсельный разъем AUMA шины SDE

Крышка отсека оптоволоконных соединений

- [2] Винты крышки
- [3] Уплотнительное кольцо
- [4] Ввод для оптоволоконных кабелей
- [5] Заглушки
- 1. Ослабить винты [2] и снять крышку [1].
- 2. Закрепить на оптоволоконных кабелях соответствующие вводы.
- Указанная на заводской табличке степень защиты (IP...) гарантируется только при применении соответствующих кабельных вводов.
- ⇒ Пример: Заводская табличка для степени защиты IP68.

- 3. Неиспользуемые кабельные вводы [4] закрыть заглушки [5].
- 4. Вставить кабели в кабельные вводы.

2.3 Подключение оптоволоконных кабелей

Рисунок 4: Соединительная плата со штекером SC (левый), ST (правый)

- [1] Канал 1
- [2] Канал 2 (для линейной типологии или типа «кольцо»)
- [3] Защитный колпачок/заглушка
- ТХ Оптический выход
- **RX** Оптический вход

Наклейка на штекере обозначает технологию соединения (тип волокна и тип штекера).

Таблица 2. Маркировка на наклейке

Тип оптоволокна	Тип оптоволоконного штекера
SM - одномодовое	ST - «straight tip» (фиксация байонетом)
ММ - многомодовое	SC - «subscriber connector» (фиксация защелкой)

Подключение оптоволоконных кабелей:

Проложить кабели в отсеке контактов кольцеобразно с максимально большим радиусом изгиба.

Рисунок 5: Прокладка кабеля в отсеке контактов

- 2. Перед подключением измерить и занести в протокол величину затухания оптоволоконных кабелей.
- 3. Подключение штекерных соединений крест-накрест:

Выход ТХ привода 1 с входом РХ привода 2

Вход **RX** привода 1 с выходом **TX** привода 2

Рисунок 6: Пример для штекера ST с байонетом

- → Соблюдать следующее:
- Убедиться в надежности фиксации байонета штекера ST.
- Штекер SC должен полностью войти в оптоволоконное гнездо.
- 4. Неиспользуемые оптоволоконные соединители закрыть от загрязнения и пыли с помощью защитных колпачков и заглушек (в комплекте поставки).

2.4 Порядок закрытия отсека оптоволоконных соединений

Рисунок 7: Штепсельный разъем AUMA шины SDE

- [1] Крышки
- [2] Винты крышки
- [3] Уплотнительное кольцо
- [4] Ввод для оптоволоконных кабелей
- [5] Заглушки
- 1. Почистить уплотнительные поверхности крышки [1] и корпуса.
- 2. Слегка смазать уплотнительные поверхности некислотной смазкой, например, вазелином.
- 3. Проверить и при необходимости поправить уплотнительное кольцо [3].
- 4. Надеть крышку [1] и равномерно крест-накрест притянуть винты [2].
- 5. Для обеспечения соответствующей степени защиты подтянуть кабельные вводы с предписанным моментом.

3. Топология сети

Структура расположения и соединения сетевых устройств (приводов) называется топологией сети. Для оборудования компании AUMA могут применяться различные типы топологии.

3.1 Линейная топология

Рисунок 8:

- Макс. длина оптоволоконных кабелей в км (соблюдать технические характеристики!)
- [1] Канал 1
- [2] Канал 2
- [3] Любое устройство Profibus DP
- [4] Оптоволоконный разъем для РСУ (необходимо)
- [5] Оптоволоконный разъем для любого устройства Profibus DP

Особенности линейной топологии

Оптический сигнал преобразуется в электрический в каждом устройстве. Для передачи к следующему устройству применяется обратное преобразование электрического сигнала в оптический.

При обрыве оптоволоконного кабеля (событие A) или при сбое соединительной платы оптоволоконной связи (событие B) происходит потеря управления приводов, расположенных дальше по цепи.

Событие А (стандарт)

При отключении электрического разъема блока AC 01.2, оптоволоконное соединение привода также отключается. Как следствие, связь с последующими приводами невозможна. В качестве вспомогательного средства оптоволоконное соединение блока AC 01.2 можно подключить к внешнему источнику напряжения 24 В постоянного тока.

Событие В (опция)

При отключении привода (напряжение электродвигателя) соединительная плата оптоволоконной связи становится недоступной. Как следствие, связь с последующими приводами невозможна. В качестве вспомогательного средства весь блок АС 01.2 можно подключить к внешнему источнику напряжения 24 В постоянного тока.

Справка

- Связь с последующими устройствами контролируется по каналу 2. В случае потери связи (нет обратной связи от последующих устройств) блок AC 01.2 подает сообщение: ПР ОВК.
- Если привод является последним устройством в линейной топологии, мониторинг необходимо отключить (параметр ОВК мониторинг М0709 = Выкл (посл.уст-во)).
- Если оптоволоконное соединение выполнено с помощью кабеля RS-485, необходимо обеспечить соответствующую оконечную нагрузку.

3.2 Топология типа «звезда»

Рисунок 9:

Структура линейной топологии

- Макс. длина оптоволоконных кабелей в км (соблюдать технические характеристики!)
- [1] Канал 1
- [2] Канал 2
- [3] Любое устройство Profibus DP
- [4] Оптоволоконный разъем для РСУ (необходимо)
- [5] Оптоволоконный разъем для любого устройства Profibus DP

Особенности топологии типа «звезда»

Потеря связи с оптоволоконным участком или соединительной платой оптоволоконной связи привода не оказывает влияние на функциональность остальных приводов.

Справка

- Так как все приводы AUMA эксплуатируются в конце оптоволоконного участка и управляются по каналу 1, для параметра OBK мониторинг М0709 следует установить значение Выкл (посл. устр-во).
- Если оптоволоконное соединение выполнено с помощью кабеля RS-485, необходимо обеспечить соответствующую оконечную нагрузку.

3.3 Топология типа «кольцо» (двойное кольцо)

Рисунок 10: Структура топологии типа «кольцо»

- Макс. длина оптоволоконных кабелей в км (соблюдать технические характеристики!)
- [1] Канал 1
- [2] Канал 2
- [3] Интеграция любого устройства Profibus DP (опция)
- [4] Оптоволоконный разъем для РСУ (необходимо)
- [5] Оптоволоконный разъем для любого устройства Profibus DP

Особенности топологии типа «кольцо»

- Потеря оптоволоконного соединения между двумя приводами обнаруживается модулями дублирования (параметр ОВК мониторинг = Вкл (нет посл. устр-ва)). Одновременно через дисплей и шину подается сообщение: ПР ОВК. В этом случае сеть работает как оптическая шина, при этом управление всеми приводами сохраняется.
- При отказе модуля (потеря питания и т.п.) подключенный к данному модулю привод отключается от кольца, а остальная сеть продолжает функционировать как оптическая шина. Управление остальными приводами сохраняется.
- Приводы оснащены дублирующим оптоволоконным соединением со стандартным интерфейсом Profibus DP (без дублирования).

Прокладка кабеля и анализ отказов ПЛК

- Для повышения безопасности системы прямые и обратные кабели кольца прокладываются по раздельным трассам.
- Чтобы обеспечить полный мониторинг дублирующего оптического кольца, все сигналы отказов оптоволоконных линий (в т.ч. выход отказов оптоволоконного соединения главного устройства) должны быть обработаны системой ПЛК.

Настройка времени отклика и времени канала

На главном устройстве необходимо выполнить следующие настройки:

- Минимальное время отклика всех подчиненных устройств (миним. Т_{SDR}) установить на значение 11 длительностей бита (стандартная настройка) или более. В случае повторяющихся сбоев связи требуется проверить данную настройку.
- Время канала Profibus (T_{SL}) настраивается таким образом, чтобы даже в случае сбоя оптической шины главное устройство на свой запрос получало ответный сигнал подчиненного устройства в течение времени канала. Минимальное время канала в длительностях бита зависит от скорости передачи данных, общей длины оптоволоконных кабелей и от количества приводов в кольце.

Расчет времени канала:

 $T_{SL} \ge max_{SDR} + L_{LWL} * t_{LWL} + n_{DL} * t_{DL}$

T_{SL} время канала

max_T_{SDR} Максимальное время отклика самого медленного подчиненного устройства (в длительностях бита). В таблице ниже представлены значения для АС 01.2.

L_{LWL} Общая длина оптоволоконных кабелей кольца (в км).

Если к разъемам кольца подключены сегменты шины, длина которых с помощью оптоволоконных соединений или репитеров увеличена на величину, превышающую максимальную электрическую длину участка, то к длине оптоволоконных кабелей необходимо прибавить длины обоих длиннейших сегментов шины.

t_{LWL} Постоянная, которая учитывает длительности бита на километр оптоволоконного кабеля (см. таблицу).

 n_{DL} Количество приводов в кольце.

t_{DL} Постоянная, которая учитывает время хода оптоволоконного модуля в длительностях бита (см. таблицу).

Скорость пере- дачи данных [кбит/с]	t _{LWL} [длительно- сти бита/км]	t _{DL} [длительности бита]	max_T _{SDR}
1500	30	10	20
500	10	4	15
187,5	3,75	3	15
93,75	1,875	3	15
45,45	0,909	3	15
19,2	0,384	2	15
9,6	0,192	2	15

4. Устранение неисправностей

4.1 Светодиодная индикация

Рисунок 11: Лампы на соединительной плате

- [1] Канал 1
- [2] Канал 2

Лампа	Наиме-	Цвет	Функция
1	PWR	зеленая	Устройство готово к работе (питание подается).
2	ERROR	красная	Общая ошибка ОВК: горят лампы 5 и 6, или 8, или 9, либо сбой внутреннего соединения RS-485.
3	STATUS	красная	Получен байт с ошибкой формата на RS-485.
4	RX	зеленая	Получен байт на RS-485.
5	Fail	красная	Ошибка оптического приемного сигнала (канал 1), отсутствует сигнал или недостаточный уровень приема. Одновременно через дисплей и шину Profibus DP подается сообщение: ПР ОВК
6	Limit	желтая	Горит с лампой 7 (зеленая): Достигнут резерв системы (канал 1). Критический, но еще допустимый уровень приема. На дисплее отображается сообщение: Диагностика > ОВК > ОВК уровень канал 1 = Предел достиг, нет Rx или Предел достигнут, Rx Также на дисплей блока AUMATIC и через шину Profibus DP подается сообщение: ПР ОВК бюджет
7	Link/Act	зеленая	Горит, лампа 6 (желтая) не горит: Хороший уровень приема (канал 1). Мигает: Идет прием данных (канал 1). На дисплее отображается сообщение: Диагностика > OBK > OBK уровень канал 1 = Хорошо, нет Rx или Хорошо, Rx
8	Fail	красная	Ошибка оптического приемного сигнала (канал 2), отсутствует сигнал или недостаточный уровень приема. Одновременно через дисплей и шину Profibus DP подается сообщение: ПР ОВК
9	Limit	желтая	Горит с лампой 10 (зеленая): Достигнут резерв системы (канал 2). Критический, но еще допустимый уровень приема. На дисплее отображается сообщение: Диагностика > ОВК > ОВК уровень канал 2 = Предел достиг, нет Rx или Предел достигнут, Rx Также на дисплей блока AUMATIC и через шину Profibus DP подается сообщение: ПР ОВК бюджет
10	Link/Act	зеленая	Горит, лампа 9 (желтая) не горит: Хороший уровень приема (канал 2). мигает: Идет прием данных (канал 2). На дисплее отображается сообщение: Диагностика > OBK > OBK уровень канал 2 = Хорошо, нет Rx или Хорошо, Rx

5. Технические характеристики

Справка

В таблице ниже, рядом со стандартным исполнением также приводятся возможные опции. Фактическое исполнение указано в соответствующей заказу технической документации. Техническую документацию по своему заказу на английском и немецком языках можно загрузить с сайта http://www.auma.com (необходимо указать комиссионный номер).

5.1 Оптоволоконная соединительная плата

Оптоволоконное соединение	ST (фиксация байонетом) или SC (фиксация защелкой)
Каналы (оптические)	Для линейной топологии: 2 x IN/OUT Для топологии типа «звезда»: 1 x IN/OUT Для топологии типа «кольцо»: 2 x IN/OUT
Скорость передачи данных	До 1,5 Мбит/с Автоматическое определение следующих скоростей передачи данных: 9,6 кбит/с, 19,2 кбит/с, 45,45 кбит/с, 93,75 кбит/с, 187,5 кбит/с, 500 кбит/с, 1,5 Мбит/с
Тип передачи	Полудуплекс
Время распространения сигнала	RS-485 ↔ оптоволокно: < 3 Тбит Тх ↔ Rx: 11 Тбит
Волокно	Многомодовое 62,5 (50)/125 мкм Одномодовое 9/125 мкм
Оптический баланс	Для многомодового волокна: 13 дБ Для одномодового волокна: 17 дБ
Макс. длина ОВК	62,5/125 мкм, стекловолокно (многомодовое): 2500 м (затухание ОВК: до 2,0 дБ/км без дополнительного затухания).
	50/125 мкм, стекловолокно (многомодовое): 2500 м (затухание ОВК: до 2,0 дБ/км без дополнительного затухания).
	9/125 мкм, стекловолокно (одномодовое): 15 км (затухание ОВК: до 0,4 дБ/км без дополнительного затухания).
Длина волны	1310 нм
Рабочая температура	От – 25 °C до +50 °C
Напряжение питания	24 B=/70 мА от встроенного блока питания AUMATIC. Возможен внешний источник питания AUMATIC 24 B=/500 мА. В случае сбоя питания привода соединение шины сохраняется только при внешнем источнике питания AUMATIC.

Светодиодная индикация	 2 лампы для общей диагностики: Лампа PWR (зеленая) = устройство готово к работе (питание подается) Лампа ERROR (красная) = ошибка 2 лампы состояния для интерфейса RS-485: Лампа RX (зеленая) = на RS-485 получен байт Лампа STATUS (красная) = на RS-485 получен байт с ошибкой формата 3 лампы состояния на каждый канал: Лампа FAIL (красная) = недостаточный уровень приема или сигнал не принят Лампа LIMIT (желтая) = критический, но еще допустимый уровень приема Лампа Link/Act (зеленая) = хороший уровень приема Прием данных по каналу RS-485
Системы шины	Profibus DP
Необходимые оптоволо-конные модули для глав- ного устройства	 d-Light RS485 производства eks Engel GmbH & Co. KG, поставщик AUMA или www.eks-engel.de Исполнения: 13-MM-ST, 13-MM-SC, 13-SM-ST, 13-SM-SC Оптоволоконное соединение для линейной топологии и топологии типа «звезда»:

6. Приложение

6.1 Методики измерения

Рисунок 12: Измерение затухания

6.2 Контакты поставщика:

 Необходимый оптоволоконный модуль для главного устройства: eks Engel GmbH & Co. KG Schützenstr. 2, 57482 Wenden-Hillmicke, Германия Тел.: 02762 - 9313 - 60, www.eks-engel.de

6.3 Справочная литература

AUMA Riester GmbH & Co. KG Postfach 1362 **D 79373 Müllheim** Tel +49 7631 809 - 0 Fax +49 7631 809 - 1250 riester@auma.com www.auma.com

ООО «ПРИВОДЫ АУМА»

Россия 141400 Московская область, г.Химки, квартал Клязьма 1Г тел.: +7 495 221 64 28 факс: +7 495 221 64 38 aumarussia@auma.ru

