

Introduction to Deep Learning

Alexander Amini MIT 6.S191 January 24, 2022

What is Deep Learning?

ARTIFICIAL

Any technique that enables computers to mimic human behavior

MACHINE LEARNING

Ability to learn without explicitly being programmed

DEEP LEARNING

Extract patterns from data using neural networks

3 1 3 4 7 2

Why Now?

Neural Networks date back decades, so why the resurgence?

1952

1958

:

1986

1995

:

Stochastic Gradient
Descent

Perceptron

Learnable Weights

Backpropagation

Multi-Layer Perceptron

Deep Convolutional NN

Digit Recognition

I. Big Data

- Larger Datasets
- Easier Collection
 & Storage

2. Hardware

- Graphics
 Processing Units
 (GPUs)
- Massively
 Parallelizable

3. Software

- Improved
 Techniques
- New Models
- Toolboxes

The Perceptron The structural building block of deep learning

Inputs Weights Sum Non-Linearity Output

$$\hat{y} = g \left(w_0 + \sum_{i=1}^m x_i w_i \right)$$

$$\hat{y} = g(w_0 + X^T W)$$

where:
$$\boldsymbol{X} = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}$$
 and $\boldsymbol{W} = \begin{bmatrix} w_1 \\ \vdots \\ w_m \end{bmatrix}$

Activation Functions

$$\hat{y} = g(w_0 + X^T W)$$

Example: sigmoid function

$$g(z) = \sigma(z) = \frac{1}{1 + e^{-z}}$$

Z

Common Activation Functions

Sigmoid Function

$$g\left(z\right) = \frac{1}{1 + e^{-z}}$$

$$g'(z) = g(z)(1 - g(z))$$

Hyperbolic Tangent

$$g(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

$$g'(z) = 1 - g(z)^2$$

Rectified Linear Unit (ReLU)

$$g(z) = \max(0, z)$$

$$g'(z) = \begin{cases} 1, & z > 0 \\ 0, & \text{otherwise} \end{cases}$$

NOTE: All activation functions are non-linear

Importance of Activation Functions

The purpose of activation functions is to introduce non-linearities into the network

What if we wanted to build a neural network to distinguish green vs red points?

Importance of Activation Functions

The purpose of activation functions is to introduce non-linearities into the network

Linear activation functions produce linear decisions no matter the network size

Importance of Activation Functions

The purpose of activation functions is to introduce non-linearities into the network

Linear activation functions produce linear decisions no matter the network size

Non-linearities allow us to approximate arbitrarily complex functions

We have:
$$w_0 = 1$$
 and $W = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$

$$\hat{y} = g(w_0 + X^T W)$$

$$= g\left(1 + \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 3 \\ -2 \end{bmatrix}\right)$$

$$\hat{y} = g(1 + 3x_1 - 2x_2)$$

This is just a line in 2D!

Assume we have input: $X = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$

$$\hat{y} = g(1 + (3*-1) - (2*2))$$

= $g(-6) \approx 0.002$

Building Neural Networks with Perceptrons

The Perceptron: Simplified

$$\hat{y} = g(w_0 + X^T W)$$

Inputs Weights Sum Non-Linearity Output

The Perceptron: Simplified

$$z = w_0 + \sum_{j=1}^m x_j w_j$$

Multi Output Perceptron

Because all inputs are densely connected to all outputs, these layers are called **Dense** layers

$$z_i = w_{0,i} + \sum_{j=1}^m x_j w_{j,i}$$

Dense layer from scratch


```
class MyDenseLayer(tf.keras.layers.Layer):
 def init (self, input dim, output dim):
   super(MyDenseLayer, self) init_()
   # Initialize weights and bias
   self W = self add weight([input_dim, output_dim])
   self b = self add weight([1, output dim])
 def call(self, inputs):
   # Forward propagate the inputs
   z = tf matmul(inputs, self W) + self b
   # Feed through a non-linear activation
   output = tf math sigmoid(z)
   return output
```

Multi Output Perceptron

Because all inputs are densely connected to all outputs, these layers are called **Dense** layers

Single Layer Neural Network

Single Layer Neural Network

Multi Output Perceptron

Deep Neural Network

Deep Neural Network

Inputs

Hidden

Output

$$z_{k,i} = w_{0,i}^{(k)} + \sum_{j=1}^{n_{k-1}} g(z_{k-1,j}) w_{j,i}^{(k)}$$

Applying Neural Networks

Example Problem

Will I pass this class?

Let's start with a simple two feature model

 x_1 = Number of lectures you attend

 x_2 = Hours spent on the final project

Quantifying Loss

The loss of our network measures the cost incurred from incorrect predictions

$$\mathcal{L}(f(x^{(i)}; W), y^{(i)})$$
Predicted Actual

Empirical Loss

The empirical loss measures the total loss over our entire dataset

$$\mathbf{X} = \begin{bmatrix} 4 & 5 \\ 2 & 1 \\ 5 & 8 \\ \vdots & \vdots \end{bmatrix} \qquad \begin{array}{c} \mathbf{x_1} \\ \mathbf{x_2} \\ \mathbf{z_3} \end{array} \qquad \begin{array}{c} f(\mathbf{x}) & \mathbf{y} \\ \begin{bmatrix} 0 & 1 \\ 0 & 8 \\ 0 & 6 \\ \vdots \end{bmatrix} \\ \mathbf{x} \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \end{bmatrix}$$

Also known as:

Objective function

- Cost function
- Empirical Risk

Predicted

Actual

Binary Cross Entropy Loss

Cross entropy loss can be used with models that output a probability between 0 and 1

$$J(\mathbf{W}) = -\frac{1}{n} \sum_{i=1}^{n} y^{(i)} \log \left(f(x^{(i)}; \mathbf{W}) \right) + (1 - y^{(i)}) \log \left(1 - f(x^{(i)}; \mathbf{W}) \right)$$
Actual Predicted Actual Predicted

Mean Squared Error Loss

Mean squared error loss can be used with regression models that output continuous real numbers

loss = tf keras losses MSE(y, predicted)

6.S191: Introduction to Deep Learning

Lab 1: Introduction to TensorFlow and Music Generation with RNNs

Link to download labs: http://introtodeeplearning.com#schedule

- 1. Open the lab in Google Colab
- 2. Start executing code blocks and filling in the #TODOs
- 3. Need help? Come to the class Gather. Town or 10-250!