Tema 4.2- Teoría de Juegos

Teoría de Juegos.
 Definiciones. Tipos. Utilidad.
 Estrategias puras, mixtas. Perfiles.
 Estrategias dominantes.

3.- Estrategias ganadoras.

Juegos simples. Estrategia Maximin. Punto de Silla.

Juegos complejos. Estrategias reactivas.

(-1,-1)	(1,0)
(0,1)	(1/2,1/2)

Bibliografía

- Inteligencia Artificial: Un enfoque moderno. Rusell, Norvig. Prentice Hall, 2004. Cap. 17
- Inteligencia Artificial. Una nueva síntesis. N. Nilsson McGraw Hill (2000). Cap 12

Tipología de Juegos: nº Jugadores, Relaciones, Tipos de Pago, Tipo Movimientos, Información, etc.

Representación de un Juego: Matriz de Pagos, Representación Extensiva

¿Cómo jugar?

Decisión/Estrategia del Juego: Estrategias Puras, Estrategias Mixtas, Perfil de Estrategias

En el conjunto de estrategias posibles, pueden haber peores y mejores...

Estrategias Dominantes.

¿Existe Perfil de Estrategias Dominantes?: Decisión más racional (Adam Smith) ¿Y si no hay? ⇒ Equilibrio de Nash

Equilibrio de Nash: Estrategias de Equilibrio {Puras, Mixtas}. ¡No siempre existe!

Obtención del Equilibrio de Nash en Estrategias Puras

¿Óptimo Global?: Cooperación / Competición

Estrategias Ganadoras en Juegos simples de Suma Constante.

Decisión mejor estrategia: Estrategia Maximin.

Punto de Silla. Estrategia Estable. Juegos Justos.

Teorema de Zemelo: Existencia de una Estrategia Ganadora (juegos sin empate)

Estrategias en Juegos Simultáneos y Repetitivos

Evolución Sistemas Juegos en IA

1.- Teoría de juegos

La Teoría de Juegos es un problema de toma de decisiones con incertidumbre:

La incertidumbre se debe a las decisiones de otros jugadores o al azar.

Se aplica en muchas situaciones, en las que los participantes deben tomar decisiones para optimizar su beneficio:

economía, relaciones entre empresas, diplomáticas, subastas, fijación de precios y/o productos, decisiones militares, decisiones financieras y de inversión, biología evolutiva, etc.

Aplicación de la Teoría de Juegos

- Diseño de los agentes decisores: Dado un juego, el objetivo es determinar la mejor estrategia a seguir por un agente racional y calcular el beneficio esperado de dicha estrategia.
- Diseño del juego: Determinar las <u>reglas</u> a seguir por todos los agentes (es decir, las reglas del juego), de forma que participen racionalmente para que la solución del juego (como acumulación de las soluciones de cada agente) maximice el bien común.

Por ejemplo, determinación de protocolos para ruteo de tráfico, reglas de subastas, normas de actuación en comunidad, etc.

Ventaja: Cada agente puede diseñar su propio comportamiento sin conocer el problema global.

¿Qué es un juego?

Actividad recreativa física o mental en la que compiten dos o más personas sometiéndose a unas reglas (RAE)

- Es una situación en la que compiten dos o más jugadores (Ferguson y Gould, 1975).
- Un juego es una situación en la que los individuos deben tomar decisiones estratégicas y en la que el resultado final depende de lo que cada uno decida hacer (Nicholson, 1997).
- Cualquier problema de toma de decisiones, donde el rendimiento (que obtiene una persona) depende no solo de sus propias decisiones sino también de las decisiones de las otras personas que participan en el juego (Maddala y Miller, 1991).

Teoría de Juegos:

- Modela las *interacciones en estructuras de incentivos (o recompensas)* para llevar a cabo procesos de decisión.
- Determina *patrones de comportamiento racional* en el que los resultados dependen de las acciones de jugadores interdependientes.
- Estudia las *decisiones* en las que, para que un individuo tenga éxito, debe tener en cuenta las decisiones tomadas por el resto de los agentes que intervienen en la situación.

En teoría de juegos no tenemos que preguntarnos qué vamos a hacer, sino qué tenemos que hacer teniendo en cuenta lo que pensamos que harán los demás, considerando que ellos actuarán pensando también cuáles van a ser nuestras decisiones.

Un poco de historia:

El origen de la Teoría de Juegos se puede situar en "Theory of Games and Economic Behavior" (de Von Neumann y Morgenstern, 1944)

Objetivo: optimizar la toma de decisiones, no solo en base a nuestras opciones, sino teniendo presentes las posibles decisiones del contrario.

Idea subyacente: "para obtener el mejor resultado cada miembro del grupo debería hacer lo mejor para él." (Adam Smith, filósofo y economista 1723-1790; según principio de máxima utilidad esperada)

Avance: Equilibrio de Nash (John Forbes Nash, 1951), que rebate el principio de A. Smith: "para obtener el mejor resultado cada miembro del grupo debería hacer lo mejor para él mismo y para el grupo."

Desde su inicio, la teoría de juegos se ha aplicado a múltiples ramas: economía, gestión empresarial, estrategias militares, diplomacia política, psicología, biología... incluso en juegos recreativos.

Un ejemplo cinematográfico:

Tres pistoleros se enfrentan en un duelo en sucesivas rondas. En cada una de ellas, cada uno puede disparar una vez.

A acierta 1/3, B acierta 1/2, y C 3/3.

A tira primero, luego B y finalmente C.

¿Cuál es la mejor opción de A en la primera ronda?

(Serie Numbers, Ep 10, Temp 5)

Tipología de los Juegos

- Nº de jugadores: 2-jugadores, 3-jugadores, n-jugadores.
- Estrategias, alternativas (finitas / infinitas) de decisión de cada jugador.
- Relación entre los jugadores:
 - Juegos sin coaliciones (no se pueden hacer confederaciones ni uniones),
 - juegos cooperativos (las coaliciones se firman con anterioridad),
 - Juegos con coaliciones ocultas.

Tipo de pago:

- Juegos de suma-constante: La suma de los beneficios de todos los jugadores siempre es la misma. El beneficio de cada jugadores se resta del contrario (o contrarios).
- Juegos de suma-cero (o suma-nula): Caso particular de suma-constante, donde la suma de beneficios es 0. La ganancia (o pérdida) de un participante es exactamente la pérdida (o ganancia) de los oponentes.

Un juego es 'justo' si el 'valor de juego' (mínimo beneficio que un jugador cabe esperar si juega racionalmente) es el mismo para todos los jugadores (típicamente, el empate).

Un juego de suma-cero, sin posibilidad de empate, no será un juego justo (T. Zemelo).

- Juegos de suma no-nula, o juegos de suma no-constante (típicos empresariales).
- Transferencia de Información:
 - Juegos competitivos (los jugadores compiten por un único bien: uno gana y el otro pierde). Si es suma-nula es 'estrictamente competitivo',
 - Juegos cooperativos (se transfiere información, se coopera, se persigue el bien común).

Tipología de los Juegos /2

- Nº de movimientos:
 - Juegos simultáneos (o estáticos, se juega a la vez, sin conocer la elección del contrario),
 - Juegos de un paso (cada jugador, por turno, un movimiento),
 - Juegos multipasos (cada jugador puede realizar más de un movimiento cada vez),
 - Juegos reiterativos (juegos simultáneos jugados repetidas veces).
- Información disponible:
 - Con información completa: cada jugador conoce todas las estrategias/alternativas disponibles de los demás ante cada posible estado y sus recompensas (damas, ajedrez, etc.),
 - Con información incompleta: hay información oculta (típicamente del adversario) por lo que no se conocen todas sus posibles alternativas de juego o recompensas (bridge, póker, etc.).
 - Con información perfecta (o imperfecta): Se conoce (o no) la evolución pasada del juego, las decisiones que han tomado todos los jugadores hasta el momento.

• Aleatoriedad:

- Juegos *deterministas* (o ciertos): las consecuencias dependen de las decisiones de los jugadores, sin incertidumbre o aleatoriedad,
- Juegos frente a la naturaleza (existe *aleatoriedad o azar*), tal que las alternativas posibles de juego o consecuencias dependen del azar (backgammon, variantes de póker, etc.).

Caso Particular: Métodos Minimax / Alfa-Beta (damas, ajedrez, etc.)

- 2-jugadores, sin coaliciones.
- Juego de suma-nula, con valor del juego igual a 0.
- Juego de un paso (alternativamente cada jugador).
- Con información completa (se conocen alternativas posibles) y perfecta (se conoce evolución pasada).
- Juego estrictamente competitivo, no cooperativo.
- Juego determinista (no azar).
 - ⇒ Árbol de decisión del juego

Juegos complejos (compleja f(n), nº alternativas o niveles, etc.), con información incompleta, o juegos frente a azar:

- ⇒ Método Minimax con nodos posibilidad,
- ⇒ Búsqueda de árboles MonteCarlo.

Existen otros múltiples tipos de juegos, de aplicación en sistemas de decisión en las áreas de economía, empresas, etc.

(del tipo suma no-nula, no completamente informados, multi-jugador, simultáneos, etc.)

Representación de un Juego

Un juego se caracteriza por: Jugadores que participan, Reglas del juego (tipo de juego y acciones posibles ante cada estado), y los Resultados del juego (beneficio final de los jugadores).

a) Representación <u>formal</u> (o estratégica): Mediante la Matriz de Pagos, que representa la utilidad de cada jugador para cada combinación de acciones de los jugadores.

Ejemplo: Pares o Nones (Juego simultáneo de dos jugadores.)

- Dos jugadores eligen simultáneamente un número {Par, Impar} y apuestan a que la suma sea par o impar. I gana si la suma es impar y P gana si es par.
- b) Representación <u>extensiva</u>: mediante árboles, donde cada nodo representa un punto de decisión entre las alternativas (ramas). Las recompensas se muestran en las hojas del árbol.

≈ representación minimax completa Útil para juegos por turnos.

Pagos	I elige Par	I elige Impar
P elige Par	P= 1, I= -1	P= -1, I= 1
P elige Impar	P= -1, I= 1	P= 1, I= -1

Juego simultáneo (o estático), de suma-cero: la suma de balances en las celdas suman 0.

Para decidir la jugada, debo tener en cuenta:

- a) Probabilidad de decisión del contrario.
- b) Utilidad del resultado (matriz de pagos).

Toma de decisiones con incertidumbre.

1.2. Estrategias Puras, Estrategias Mixtas. Perfiles de Estrategias. (en Juegos Simultáneos)

Consideremos juegos simultáneos: los jugadores juegan una sola vez, simultáneamente.

Ejemplo: Pares o Nones.

Jugadores:

I gana si la suma es impar, P gana si es par

Pagos	I elige Par	I elige Impar
P elige Par	P= 1, I= -1	P= -1, I= 1
P elige Impar	P= -1, I= 1	P= 1, I= -1

Ante un juego, cada jugador debe adoptar una estrategia (policy), o criterio para su juego.

Estrategia del juego: Criterio de decisión que siguen los jugadores para decidir entre sus alternativas.

- Estrategias puras: Cada jugador decide una acción concreta a realizar en cada paso (o estado del juego).
 - Un *perfil de estrategias puras* es la asignación de una estrategia pura a cada jugador.

En el ejemplo: El conjunto de estrategias puras de cada jugador es {Par, Impar}, y

Existen 4 perfiles de estrategias puras {(Par, Par) (Par, Impar), (Impar, Par) (Impar, Impar)}

• Estrategias mixtas: Cada jugador decide estocásticamente entre un conjunto de acciones. Es decir, una estrategia mixta es la asignación de una probabilidad $\Pi(A/S)$, para cada posible decisión A a tomar en cada posible estado del juego S.

En el ejemplo, una estrategia mixta podría ser: [0.5: apostar-par; 0.5: apostar-impar]

- Un perfil de estrategias mixtas es la asignación de una estrategia mixta a cada jugador.
- Las estrategias puras son un caso particular de las estrategias mixtas con probabilidades son {0, 1}.

Ejemplos de Estrategias

1) Ante la ruleta de un casino {0, 1-36}, {Rojo, Negro}

Juego frente a la naturaleza de n jugadores.

a) Una posible estrategia podría ser apostar repetidamente al Rojo, doblando cada vez la apuesta (estrategia martingala, ¿siempre viable?)

Es una típica Estrategia Pura.

b) Otra posible estrategia es apostar Rojo o Negro, con probabilidad 1/2.

Es una típica Estrategia Mixta.

2) Juego Piedra, Papel, Tijera

Juego simultáneo de 2 jugadores.

- a) Una típica elección es 1/3 probabilidad para cada alternativa (*estrategia mixta*).
- b) Cualquier elección en base al resultado previo, la convertiría en estrategia pura; es decir no probabilista

1.3.- Estrategias Dominantes (con Estrategias Puras): el Dilema del Prisionero (Tucker,95)

Dos sospechosos son detenidos como cómplices en un delito, pero no hay pruebas concluyentes para condenarlos.

Tras separarlos, se les ofrece el mismo trato a cada uno:

- Si uno delata (inculpa del delito) al cómplice y su cómplice no lo hace, el cómplice será condenado a la pena de 10 años, y el primero será liberado.
- Si ambos se delatan entre sí, ambos serán condenados a 5 años.
- Si ambos se callan (ninguno delata al cómplice), serán condenados a 1 año por posesión de material robado.

Matriz de Pagos	Acción: Yo delato	Acción: Yo no delato
Estado: Cómplice delata	Ambos condenados a 5 años	Yo condenado a 10 años, cómplice libre
Estado: Cómplice no delata	Yo libre, cómplice a 10 años	Ambos condenados a 1 año

Estrategias: {Delatar, No-Delatar}

¿Qué debería hacer yo?, ¿Qué estrategia seguir?

Matriz de Pagos	Acción: Yo delato	Acción: Yo no delato
Estado: Cómplice delata	Ambos condenados a 5 años	Yo condenado a 10 años, cómplice libre.
Estado: Cómplice no delata	Yo libre, cómplice a 10 años	Ambos condenados a 1 año

Principio de la Máxima Utilidad Esperada: max [U(
$$[p_1,S_1],[p_2,S_2],....[p_n,S_n]$$
)] = max(Σ_i p_iU(S_i))

$$U(Yo delato) = 0.5 * (-5) + 0.5 * 0 = -2.5$$

$$U(\underline{Yo \text{ no delato}}): 0.5 * (-10) + 0.5 * (-1) = -5.5$$

Estrategias dominantes. Equilibrio.

- Una estrategia e para un jugador domina a una estrategia e', si:
 Utilidad (e) ≥ Utilidad (e'), para cada estrategia posible de los otros jugadores.
- Una estrategia e es dominante si domina a todas las demás estrategias del jugador.
 - ⇒ Resulta óptima para un jugador independientemente de lo que hagan los otros jugadores.

¿Tiene ese juego una estrategia dominante (solo dos estrategias)?

Matriz de Pagos	Acción: Yo delato	Acción: Yo no delato
Estado: Cómplice delata	Ambos condenados a 5 años	Yo condenado a 10 años, cómplice libre.
Estado: Cómplice no delata	Yo libre, cómplice a 10 años	Ambos condenados a 1 año

Estrategia dominante (Yo): Delatar

Estrategia dominante (Cómplice): Delatar

Claramente, la mejor decisión (individual) es delatar (estrategia dominante).

Es irracional no jugar con una estrategia dominante, si esta existe.

Estrategias Dominantes:

Cuando cada jugador tiene una estrategia dominante, la combinación de todas se llama equilibrio de estrategias dominantes.

Es un perfil de equilibrio: Sea cual sea la decisión del otro, a ambos les conviene delatar al otro.

Si cada jugador tiene una estrategia dominante se puede *predecir* el resultado del juego.

Puede haber un *óptimo global* (de ambos jugadores): *Ambos no-delatan (se callan)*.

- Pero *no es razonable* que un jugador siga unilateralmente esa estrategia. No es un equilibrio.

 Esa cooperación, o compromiso global (entre parte de los jugadores), para obtener la máxima ganancia común, a menudo vibra la reglas del juego: *Colusión* (pactar con un tercero) en empresas competidoras.
- En otros casos, el óptimo global se puede forzar por premios, multas, etc.

Otro Ejemplo:

Dos empresas A y B venden productos rivales y tienen que decidir si emprenden o no una campaña publicitaria. La decisión que tome cada una afectará a las ventas propias y de la otra empresa. Cada empresa desea obtener su máximo beneficio.

La matriz de ganancias es:

	B: Si publicidad	B: No Publicidad
A: Si publicidad	(A: 10, B: 5)	(A: 15, B: 0)
A: No Publicidad	(A: 6, B: 8)	(A: 20, B: 2)

¿Tiene A una estrategia dominante?

¿Y B?

A la empresa <u>B</u> le conviene hacer publicidad pues sí tiene una estrategia dominante:

Es su elección más racional.

B=SI, A=SI es un Equilibrio
(a nadie le interesa cambiar de opción)

¿Y si no hay un perfil de estrategias dominantes?

Lamentablemente (o no!), no todos los juegos tienen perfiles de estrategias dominantes.

Juego de la gallina	Yo: Gallina	Yo: No gallina
Contrario: Gallina	Cada uno obtiene +5	Yo obtengo 10, el otro 1.
Contrario: No gallina	Yo obtengo 1, el otro 10	Ambos obtienen -20

Automóviles enfrentados, carrera armamentística, guerra nuclear, etc.

¿Tiene una estrategia dominante?

[U(Gallina, Contrario=Gallina) > U(No-Gallina, Contrario=Gallina)]?

[U(No-Gallina, Contrario=No-Gallina) > U(Gallina, Contrario=No-Gallina)]?

¿Qué estrategia seguir?

Según Adam Smith, "cada miembro del grupo debería hacer lo mejor para él." (Principio de MUE):

U(Gallina) = U(Gallina, Contrario=Gallina) * P1 + U(Gallina, Contrario=No-Gallina) * (1-P1)

U (no-Gallina) = U(No-Gallina, Contrario=Gallina) * P1 + U(No-Gallina, Contrario=No-Gallina) * (1-P1)

$$U(Gallina) = 5 * 0.5 + 1 * 0.5 = 3$$

U (no-Gallina) =
$$10 * 0.5 + (-20) * 0.5 = -5$$

Si P1= 0.8:

$$U(Gallina) = 5 * 0.8 + 1 * 0.2 = 4.2$$

$$U (no-Gallina) = 10 * 0.8 + (-20) * 0.2 = 4$$

Aunque seguir este criterio puede fallar.... ⇒ mejor seguir Estrategia de Nash

¿Y si P1= 0.9?

2.- Estrategias de Equilibrio. Equilibrio de Nash

Dado un juego con N jugadores, las estrategias $\{S^*_1, S^*_2,, S^*_n\}$ son un Equilibrio de Nash si, para cualquier jugador_i, la estrategia S^*_i es la mejor respuesta a la estrategias $\{S^*_1, S^*_2, ..., S^*_{i-1}, S^*_{i+1}, ..., S^*_n\}$ de los demás jugadores:

$$U(S^*_{1}, S^*_{2}, ..., S^*_{i-1}, S^*_{i}, S^*_{i+1}, ..., S^*_{n}) \ge U(S^*_{1}, S^*_{2}, ..., S^*_{i-1}, S^*_{i}, S^*_{i+1}, ..., S^*_{n}),$$

$$\forall jugador_i \in N, y \forall estrategia S_i \in S.$$

Simplificadamente,

dados dos jugadores A y B, (a*, b*) es un Equilibrio de Nash, si la estrategia a* es óptima para A frente a la estrategia b* (de B), y b* es óptima para B frente a la estrategia a* (de A).

El equilibrio de Nash es un concepto fundamental en teoría de juegos:

- Es la combinación de estrategias en la que cada jugador elige su mejor estrategia, ante la expectativa de que los demás elegirán su mejor estrategia.
- El Equilibrio de Nash constituyen un equilibrio de estrategias: ningún jugador puede beneficiarse si cambia unilateralmente de estrategia. De otro modo, si algún jugador se beneficiara al cambiar, no supondría un equilibrio.
- Si un juego tiene un único equilibrio de Nash y los jugadores son completamente racionales, los jugadores deberían escoger las estrategias que forman el equilibrio. Son estrategias estables.
- Puede no ser un óptimo global, pero es un equilibrio entre las estrategias de los jugadores.
- Todos los equilibrios en estrategias dominantes son, a su vez, equilibrios de Nash. Pero no todos los equilibrios de Nash son equilibrios en estrategias dominantes. Un equilibrio de Nash nunca incluirá estrategias dominadas (nunca son mejores respuestas).

Equilibrio Nash: Estado estable en un sistema con varios participantes, en el que ningún participante puede mejorar su beneficio cambiando su estrategia, si los demás participantes no cambian la suya.

- Un juego puede tener uno, muchos o ningún Equilibrio de Nash.
- No todos los juegos de estrategias puras tienen equilibrio de Nash (pares o nones, piedra-papel-tijeras, etc.), pero...

Nash demostró (1951) que "todos los juegos con estrategias mixtas tienen, al menos, un equilibrio de Nash"

Dilema del Prisionero:

Prisionero	Yo delato	Yo no delato
Cómplice delata	(Yo: 5, C: 5)	(Yo: 10, C: 0)
Cómplice no delata	(Yo: 0, C: 10)	(Yo: 1, C: 1)

Equilibrio de Nash: (Delatar, Delatar)

Es único.

Pero el Equilibrio de Nash no tiene por qué ser la estrategia óptima:

Solución óptima del conjunto: Ambos No-delatar (1, 1).

Pero es una estrategia inestable, ya que un jugador puede mejorar su resultado cambiando su estrategia: requiere la cooperación y que se mantenga!

"Ambos no-delatan (se callan)" no es un equilibrio de Nash, pero sí un óptimo de Pareto.

El Equilibrio de Nash representa la *competencia imperfecta* en economía, en la que las empresas competidoras alcanzan un equilibrio de precios, como mejor opción común.

2.1. Obtención del Equilibrio de Nash en Estrategias Puras

- 1) Búsqueda, para cada jugador, de su mejor estrategia (respuesta) para cada posible combinación de las mejores estrategias del resto de jugadores (puede haber una o varias mejores estrategias de respuesta).
- 2) Determinación de las combinaciones de estrategias, para todos los jugadores, que son simultáneamente las mejores respuestas: Equilibrio.

Ejemplo: La caza del ciervo

Típico ejemplo sobre la cooperación en las relaciones (Jean-Jacques Rousseau).

Dos individuos (I1, I2) salen de caza, pudiendo cazar un ciervo o una liebre. Una liebre vale menos que un ciervo, pero para cazar un ciervo, se necesita la cooperación del contrario.

¿Qué decisión deben tomar? (No hay estrategia dominante)

	I2: Liebre	I2: Ciervo
I1: Liebre	(11: 1, 12: 1)	(11: 1, 12: 0)
I1: Ciervo	(11: 0, 12: 1)	(11: 3, 12: 3)

Estrategia Contrario (I2)	Mi Mejor Respuesta (I1)
Liebre	Liebre
Ciervo	Ciervo

Dos Equilibrios de Nash (cualquier cambio unilateral supone una pérdida)

(Liebre, Liebre): Estrategia de riesgo dominante (mínima utilidad que puedo conseguir, minimiza riesgo)

(Ciervo, Ciervo): Estrategia de recompensa dominante (máxima utilidad)

Convirtamos la caza del ciervo en un juego <u>competitivo</u> (en el que busco cazar mejor pieza que el contrario).

La matriz de pagos resulta:

	I2: Liebre	I2: Ciervo
I1: Liebre	(11: 1, 12: 1)	(11: 1, 12: 0)
I1: Ciervo	(11: 0, 12: 1)	(11: 3, 12: 3)

¿Existe Equilibrio de Nash?

	I2: Liebre	I2: Ciervo
I1: Liebre	(11:0, 12:0)	(11: 1, 12: 0)
I1: Ciervo	(11:0, 12: 1)	(11: 0, 12: 0)

Estrategia Contrario (I2)	Mi Mejor Respuesta (I1)	
Liebre	Liebre	
Ciervo	Liebre <i>(no estable)</i>	

Un Equilibrio de Nash: (Liebre, Liebre).

Al ser competitivo, se elimina el equilibrio que supone la opción de cooperar! (cazar al ciervo): cualquiera de los dos tendría la tentación de cambiar para ganar al contrario.

Ejemplo Previo:

Dos empresas A y B venden productos rivales y tienen que decidir si emprenden o no una campaña publicitaria. La decisión que tome cada una afectará a las ventas propias y de la otra empresa. Cada empresa desea obtener su máximo beneficio.

La matriz de ganancias es:

	B: Si publicidad	B: No Publicidad
A: Si publicidad	(A: 10, B: 5)	(A: 15, B: 0)
A: No Publicidad	(A: 6, B: 8)	(A: 20, B: 2)

A no tiene una estrategia dominante, pero B sí (B=SI publicidad). Luego:

- B racionalmente elegirá su estrategia dominante: B=SI publicidad
- A debería elegir su mejor estrategia, frente a la mejor estrategia del contrario: A=SI publicidad

(A=SI pub, B=SI pub) es una Estrategia de Equilibrio de Nash (a nadie le interesa cambiar de opción)

En un juego de n jugadores, si n-1 tienen una única estrategia dominante (que elegirán de forma racional), existe un equilibrio de Nash: el jugador n elegirá su mejor estrategia, frente a las estrategias dominantes del resto.

- Si todos los jugadores tienen una única estrategia dominante, constituye un equilibrio de Nash: Ejemplo de prisioneros.
- Si no existe estrategia dominante para los jugadores, puede haber varios equilibrios de Nash: Ejemplo La caza del ciervo

Ejemplos de Estrategias de Nash en **Juegos Competitivos** (Estrategias Puras)

Dos jugadores eligen simultáneamente un número entre 0 y 100. Los jugadores ganan el menor valor en €. Pero además, si los números son distintos, el que ha escogido el mayor le debe pagar 20€ al otro.

Es único. Se garantiza no perder (con cualquier otra opción podría perder).
Solución óptima del conjunto: (100, 100).

Cualquier otra opción es inestable. Por ejemplo, la elección óptima (100,100) NO es un equilibrio de Nash, porque un jugador preferiría cambiar su decisión a 99. Así ganaría 99+20=119, mejorando su utilidad.

Juego de la Gallina	A: Gallina	A: No gallina
B: Gallina	(A:5, B:5)	(A:10, B:1)
B: No gallina	(A:1, B:10)	(A: -20, B:-20)

Dos equilibrios de Nash:

(A: Gallina, B: No-Gallina)

(A: No-Gallina, B: Gallina)

Cualquier otra opción es inestable. Particularmente, la 'cooperación' (Gallina, Gallina) es un equilibrio inestable, ya que cualquier jugador puede mejorar su beneficio cambiando su estrategia.

Equilibrio de Nash:

Con la repetición del juego, una y otra vez,
todos los jugadores mantienen el mismo equilibrio sin interesarles cambiar.

Equilibrio de Nash en Juegos de Cooperación (Estrategias Puras)

La guerra de sexos. Un chico y una chica tienen distinta preferencia para comer, pero quieren estar juntos.

Guerra de Sexos	El: Carne	El: Pescado
Ella: Carne	(El:5, Ella:1)	(El:0, Ella:0)
Ella: Pescado	(El:0, Ella:0)	(El:1, Ella:5)

Dos equilibrios de Nash:

(El: Carne, Ella: Carne)

(El: Pescado, Ella: Pescado)

Conducción	A: Izq	A: Der
B: Izq	(A:10, B:10)	(A:-1, B:-1)
B: Der	(A:-1, B:-1)	(A: 10, B:10)

Dos equilibrios de Nash:

(A: Izq, B: Izq), no choque

(A: Der, B:Der), no choque

El mejor perfil es 'cooperar'

Un fabricante debe decidir si su próxima consola utilizará DVD o tarjetas de memoria. A la vez, el fabricante de software tiene que decidir si produce su próximo juego para DVD o para tarjetas. Los beneficios para ambos serán positivos si coinciden y negativos en caso contrario.

	Consola: Memoria	Consola: DVD
Soft: Memoria	Consola=9, Soft=9	Consola=-4, Soft=-1
Soft: DVD	Consola=-3, Soft=-1	Consola=5, Soft=5

Dos equilibrios de Nash (cooperar): (Memoria, Memoria) (DVD, DVD)

No hay una estrategia dominante para un jugador.

La mejor elección sería elegir el Equilibrio de Nash que conduce al óptimo: (Memoria, Memoria)

Equilibrio de Nash: un ejemplo cooperativo

- El equilibrio de Nash representa un perfil de 'equilibrio' entre las estrategias de los jugadores.
- Puede haber muchos Equilibrios de Nash (o ninguno): Si solo hay uno, es la elección más razonable para los jugadores. Si hay más de uno, se debería escoger uno de ellos.
- Los perfiles distintos a Nash son inestables (un jugador podría aumentar su beneficio cambiando la elección).
- El equilibrio de Nash no supone el óptimo global. Podría ser posible lograr un mayor beneficio conjunto con decisiones coordinadas (colusión) o cambios multilaterales de estrategia.
 - Pero no sería un Equilibrio: es precisa una coordinación, recompensas, castigos, multas, etc. para forzar un perfil inestable.
 - ¿Cuál es el equilibrio de Nash?
 - ¿Es estable el perfil de 'ir todos a por la fea'?

Inestable!!, pero es lo mejor para el grupo

John Nash recibió el Premio Nobel de Economía en 1994 por demostrar matemáticamente que la colaboración (aunque inestable) es más beneficiosa que la competitividad.

Una mente maravillosa (2001)

Smith: Lo mejor para la sociedad es que cada miembro busque su propio interés.

Nash: Cada miembro del grupo debe hacer lo mejor para él... y para el grupo, aunque sea inestable.

La colaboración es a menudo una situación inestable.

Por ello, es difícil que se mantenga: requiere de acuerdos, o de premios, o castigos externos.

Ejemplo: Dos empresas pueden acordar bajar la producción para elevar precios. Pero, si una incumple obtendrá mayores beneficios. La matriz de ganancias es:

	B: Baja producción (cumple acuerdo)	B: Alta producción (incumple acuerdo)
A: Baja producción (cumple acuerdo)	A:50, B:50	A:30, B:70
A: Alta producción (incumple acuerdo)	A:70, B:30	A:40, B:40

Máximo beneficio común (inestable, requiere un acuerdo): A y B: 'Baja producción'

Pero es una situación inestable, cualquier empresa puede tener la tentación de incumplir el acuerdo y ampliar su beneficio. De hecho, jes una **estrategia dominada**!

Por ello, **los acuerdos tienden a fracasar**... salvo que se fuercen (multas, premios, etc.)

¿Cuál es el Equilibrio de Nash?

Otro ejemplo: "La tragedia de los Comunes"

2.2. Equilibrio de Nash en Estrategias Mixtas

- Con una estrategia pura, cada jugador elige un criterio de decisión específico y lo mantiene durante todo el juego. Ej: se elige una acción con probabilidad 1
- Estrategias mixtas: Selección aleatoria de entre varias posibles estrategias puras. Un jugador toma decisiones de forma estocástica entre sus alternativas, con posibles probabilidades y no siempre guiado por una única estrategia pura.
- El criterio de estrategia mixta consiste, pues, en elegir una distribución de probabilidad sobre el vector de estrategias puras de cada jugador.

El equilibrio de Nash en estrategias mixtas es aquel en el que cada jugador elige la <u>frecuencia óptima</u> con la que seguirá cada una de sus estrategias, dadas las frecuencias (esperadas) que elijará el otro.

Es razonable poder obtener la distribución de probabilidades que usan otros jugadores,

- Si se repite muchas veces el juego,
- Si se conoce la forma de jugar del adversario, sus preferencias, etc.

En estos casos, nuestra mejor elección será elegir una estrategia mixta que sea Equilibrio de Nash.

Equilibrio de Nash en Estrategias Mixtas. EJEMPLO.

Estrategia Mixta: Distribución de probabilidad sobre el conjunto de estrategias puras del jugador.

Juego: Piedra, Papel, Tijera

Matriz de Pagos	Yo: Piedra	Yo: Papel	Yo: Tijera
Contra: Piedra	0	-1	+1
Contra : Papel	+1	0	-1
Contra: Tijera	-1	+1	0

No hay estrategia dominante.

• Un jugador con una estrategia pura (eligiendo siempre lo mismo, ej. piedra, papel o tijera), acabaría perdiendo siempre.

Debe utilizar una estrategia mixta, con una probabilidad asociada a cada elección.

- Equilibrio de Nash: (1/3:Piedra, 1/3 Papel, 1/3: Tijera)
- Cualquier distribución no equitativa es perdedora.

En 2014, la U. de Zhejiang desarrolló un sistema ganador, al comprobar que las elecciones no suelen responder al azar sino que mantienen patrones; un jugador que gana: tiende a repetir la elección, después de perder con piedra, tiende a elegir papel, suelen imitar al oponente ganador, etc.

3.- Estrategias ganadoras. Juegos simples de Suma Constante

¿Hay una estrategia siempre ganadora en un juego?

Por ejemplo, Juego de Nim (Probar aquí)

Juego para dos jugadores, con diversas variantes. Supongamos, por ejemplo, que se parte de N palillos y cada jugador puede retirar 1, 2 o 3 palillos. Pierde (o gana) el que retira el último palillo.

¿Existe una estrategia ganadora?

Teorema de Zermelo (1913): En todo juego finito, por turnos entre dos jugadores, informados, sin azar, competitivo, sin empate, uno de los dos jugadores siempre puede tener una estrategia ganadora.

Siempre hay una estrategia que garantiza la victoria para un jugador (haga lo que haga el rival).

(Pero no siempre se puede conocer/calcular)

- En caso de 2 jugadores, por turnos y juegos informados, la secuencia de movimientos de la estrategia ganadora podría obtenerse mediante algoritmos minimax o alfa-beta (completos!!),
- Siguiendo una cierta estrategia de decisión (esquema o algoritmo) invencible. Ejemplo Nim.

Los programas de juego funcionarían mejor con menos técnicas de búsqueda y más razonamiento (McCarthy, 1997) Por ejemplo, hay una estrategia siempre ganadora para el ajedrez (o al menos, forzar tablas).

... Pero su obtención es de tal complejidad que todavía no se conoce...

Estrategias en juegos de suma-constante

En caso de que no se conozca una estrategia ganadora (o no exista por el tipo de juego) se pueden seguir otras estrategias 'razonables'.

Estrategia Maximin (típica): elegir la jugada que maximice el beneficio mínimo a obtener.

Supongamos el siguiente juego simultáneo, de suma constante (10 en todas las celdas), pero no es un juego de suma-cero, donde cada jugador puede elegir {A, B, C}:

	Contrario: A	Contrario: B	Contrario: C	MAXIMIN (YO)
Yo: A?	Yo: 9, C:1	Yo: 1, C:9	Yo: 2, C:8	1
Yo: B?	Yo: 6, C:4	Yo: 5, C:5	Yo: 4, C:6	→ 4
Yo: C?	Yo: 7, C:3	Yo: 8, C:2	Yo: 3, C:7	3
	1	2	6	←MAXIMIN (Contrario)

Según Maximin, la mejor jugada mía sería B: Máximo de los mínimos de las filas:

- a) Si elijo A, puedo obtener 9, 1 o 2. Como mínimo 1.
- b) Si elijo B, puedo obtener 6, 5 o 4. Como mínimo 4. (eligiendo B, me garantizo un valor 4)
- c) Si elijo C, puedo obtener 7, 8 o 3. Como mínimo 3.

La mejor jugada maximin del contrario sería C: máximo de los mínimos de las columnas (contrario)

Realmente, es una estrategia **minimax**, que minimiza las ganancias mías (yo), porque esa es la estrategia que minimiza sus pérdidas.

Punto de Silla: Cuando coinciden las estrategias maximin de ambos jugadores.

Un par de estrategias (s, t) es un punto silla si, desde el punto de vista del jugador (YO), no hay resultados mejores que V(s,t) en la columna t, ni peores que V(s,t) en la fila s.

	Contrario: A	Contrario: B	Contrario: C	MAXIMIN (YO) ↓
Yo: A	Yo: 9, C:1	Yo: 1, C:9	Yo: 2, C:8	1
Yo: B	Yo: 6, C:4	Yo: 5, C:5	Yo: 4, C:6	4
Yo: C	Yo: 7, C:3	Yo: 8, C:2	Yo: 3, C:7	3
	1	2	6	←MAXIMIN (C)

La elección [Yo:B, Contrario:C], es un Punto de Silla

- La existencia de un Punto de Silla depende de los valores de la Matriz de Pagos.
- Es una situación estable: Por mucho que se repita el juego, ningún jugador puede mejorar su resultado cambiando su estrategia. Resulta un juego de Estrategia Pura (no hay razón para dudar de la jugada). Un juego es estrictamente determinado si tiene por lo menos un punto de silla. Un punto de silla constituye un Equilibrio de Nash.
- El valor del punto de silla se conoce como 'valor del juego': mínimo beneficio que un jugador cabe esperar si juega racionalmente.
 - Un juego es **justo** si el valor del juego para ambos jugadores es el mismo. Si no, es injusto o parcial. El caso anterior es injusto (YO:4, C:6) pues favorece al contrario.

Así, jugando racionalmente con un juego justo (valor=0) de dos jugadores, puedo garantizar al menos empatar (Teorema de Zermelo). Cuando se gana en un juego justo, siempre es por fallo del contrario.

Consideremos una matriz de pagos distinta:

	Contrario: A	Contrario: B	Contrario: C	MAXIMIN (YO) ↓
Yo: A	Yo: 9, C:1	Yo: 1, C:9	Yo: 2, C:8	1
Yo: B	Yo: 6, C:4	Yo: 4, C:6	Yo: 5, C:5	4
Yo: C	Yo: 7, C:3	Yo: 8, C:2	Yo: 3, C:7	3
	1	2	5	⟨ ←MAXIMIN (C)

Con la estrategia Maximin, la mejor jugada para YO es [Yo:B] y para el contrario [Contrario:C].

NO existe punto de silla: No coinciden las estrategias maximin (celdas) de ambos jugadores.

No hay una situación estable:

- Inicialmente, YO elegiré B como mejor jugada. Típicamente, Contrarío elegirá C.
- Si el juego se repite muchas veces (y yo sigo eligiendo B), el contrario puede tener tentación de cambiar de C a B, incrementando su ganancia de 5 a 6.
- Si el contrario cambia a B, yo puedo cambiar a C, incrementando mi ganancia a 8.
- Entonces el contrario, cambiaría a C, y así sucesivamente...

Luego no se alcanzará una situación estable (punto de silla): No es un juego estable e interesa aplicar una *Estrategia Mixta* (ya que el contrario puede cambiar en cualquier momento su decisión).

3.2.- Estrategias en Juegos Simultáneos y Repetitivos

Juegos simultáneos (los jugadores deciden simultáneamente) y repetitivos (se juegan sucesivamente)

El resultado final es la suma de los pagos de cada jugada.

- Si existe una Estrategia de Nash, entonces es la mejor elección.
 - Ejemplo: en 'Piedra, papel, tijera', la mejor estrategia es elegir cada vez una opción al azar.
- Pero pueden ser necesarias estrategias alternativas:
 - Porque no existe Estrategia de Nash, o no es única.
 - Porque es muy compleja la obtención de la estrategia (no es conocida).
 - Porque los jugadores contrarios pueden no elegir siempre la Estrategia de Nash (comportamiento no racional; ej. dilema del prisionero con un prisionero que quiere estar más tiempo en la cárcel).
 - Porque, conforme se juega, se intuyen costumbres del adversario.
 - Porque, tras muchas repeticiones, se llega a cierta cooperación (Dilema del prisionero).

A menudo se adoptan **Estrategias Reactivas**

- El jugador decide su estrategia en función de las decisiones del oponente.
- Suelen ser útiles en algunos juegos con repetición.

Estrategias Reactivas: El jugador decide su estrategia en función de las decisiones del oponente.

Ejemplo: Jugar repetidamente al dilema del prisionero, decidiendo cada vez una estrategia.

	Yo delato	Yo no delato
Cómplice delata	Ambos 5 años	Yo 10 años, cómplice libre.
Cómplice no delata	Yo libre, cómplice 10 años	Ambos 1 año

Estrategias:

- Estrategia 'siempre delatar' (basada en el equilibrio de Nash), independientemente de lo que haga el contrario. Recomendable y de equilibrio. Además de ser una estrategia dominante en este caso
- Estrategia 'siempre no delatar' (basada en la colaboración). Arriesgada porque el cómplice puede incumplir su palabra; puede tratar de delatarme para rebajar su condena
- Estrategia 'ojo por ojo' (del talión): Primero se elije delatar (como Equilibrio de Nash). En las siguientes jugadas, se elije la misma opción que eligió el oponente en la jugada anterior: "si el otro coopera, yo cooperaré. Si el otro es un traidor, yo seré un traidor".
 - Suele dar buen resultado (malos en el 'juego de la gallina'!!).
- Estrategia de la gallina (o del torito): Se elije lo contrario que haga el oponente en la jugada previa: "Si el otro jugador es leal en una jugada, yo le traicionaré en la siguiente; si el otro jugador me ha traicionado, yo le seré leal a la siguiente oportunidad"
 - Suele dar malos resultados (buenos en el 'juego de la gallina'!!)

Estas alternativas se suelen encontrar a menudo en la vida real

Para terminar... una cronología de la victoria de las máquinas

Desde mediados del siglo pasado se han ideado sistemas computacionales para ganar a los humanos en sus juegos. Estas son algunas de sus victorias:

- El juego Conecta 4 (ideado en los 70 como una versión más compleja del tres en raya) queda resuelto (1988). El matemático James Allen diseñó la estrategia para ganar siempre, algoritmos invencibles (si inician el juego).
- Chinook, primer programa en ganar a un campeón humano al juego de damas. En los años 90, se aceptó que las máquinas participaran en el campeonato mundial. En 1996, el programa Chinnok (Universidad de Alberta), se convirtió en el campeón del mundo. La solución matemática perfecta se desarrolló en 2007. Desde entonces, un humano jamás podrá ganar.

- "Para los investigadores en IA, con cualquier juego, hay dos grandes hitos:
- 1. la primera vez que un programa informático derrota a un campeón humano , y
- 2. la primera vez que un programa resuelve el juego creando una estrategia matemáticamente perfecta e imbatible, de modo que nunca más pierda con cualquier oponente, humano o máquina".
- Ajedrez. En 1997, <u>Deep Blue</u> ganó al campeón de ajedrez Gary Kasparov (profundidad ~40). Hoy, los algoritmos ganarían casi siempre a los humanos pero aún no se ha creado el algoritmo capaz de desarrollar la estrategia matemática imbatible. El problema es de poder de computación.... pero es solo cuestión de tiempo...
- En Marzo'16, AlphaGo (de Google) ganó *por primera vez* al campeón mundial del juego 'Go' por goleada: 4-1. Go es un juego con más de 2.500 años de antigüedad y es considerado como uno de los más complicados juegos de estrategia.

- Backgammon (juego de azar, TD-Gammon está reconocido entre los tres mejores del mundo), Otelo (o Reversi, actualmente no tiene competidor humano), Bridge (información imperfecta, en 1998 se ganó el campeonato mundial), etc....
- En 2011, <u>Watson</u> derrotó a los mejores jugadores humanos del concurso televisivo Jeopardy. Puede entender cualquier pregunta en lenguaje natural y puede acceder a todo el conocimiento humano.
- En 2014, la U. de Zhejiang desarrolló un sistema ganador para el juego piedra, papel, tijeras, al comprobar que las elecciones humanas no suelen responder al azar sino que mantienen patrones: tienen a repetir una elección previa ganadora; después de perder con piedra, tiende a elegir papel; etc.

• Póker:

En los campeonatos mundiales de 2008, <u>Polaris</u> gana por primera vez a un jugador profesional. El paso es importante porque el póker es una familia de juegos de información imperfecta, interviene el azar y los jugadores no tienen pleno conocimiento de las alternativas.

En 2014, <u>CFR+</u> de la Univ. de Alberta (Canadá) se convierte en el mejor jugador de póquer en la variante Texas hold'em. Con 200x24 procesadores y 11 TB de espacio, en apenas dos meses, tendría la estrategia imbatible.

En mayo'2015, se enfrentaron en el casino de Pittsburg 4 jugadores profesionales con el programa <u>Claudico</u> (Carnegie Mellon University) en la variante de póker Heads-Up (No-limit Texas Hold'em). La cara de póquer de Claudico es inmejorable, aunque todavía ganaron los profesionales... Ahora juega su hemano mayor <u>Libratus</u>.

En la Univ. de Alberta (Canadá) continúan desarrollando el <u>proyecto Cepheus</u> para el póker estilo Holdem Texas "heads up". Aseguran que es imbatible.... Y se puede jugar contra el!

Teoría de juegos. Conclusiones.

- La Teoría de Juegos resulta de utilizad en muchas áreas, donde la toma de decisiones depende de las alternativas posibles, beneficios a obtener y de las posibles (o esperadas) decisiones de otros participantes.
 - Es un problema de toma de decisiones con incertidumbre (no se conocen las decisiones del adversario)
- En IA, el objetivo es diseñar sistemas que obtengan la mejor decisión de juego.
- Hay muchos tipos de juego: Cooperativos/no-cooperativos, simultáneos/repetitivos, informados/no-informados, deterministas/no-deterministas, etc.
- Representación de un juego: Matriz de ganancias. Estrategias.
- Estrategia del juego: criterio de decisión que siguen los jugadores para decidir entre sus alternativas. Estrategias puras, Estrategias mixtas.
- Mejor decisión: Estrategias dominantes. Si no existen, ¿Adam Smith (Principio de MUE)?: No siempre es lo mejor para el grupo.
- Estrategias de equilibrio: Equilibrio de Nash (la mejor estrategia, frente a las mejores estrategias de los adversarios). Puede no existir (o haber varias). Estrategias de equilibrio vs Cooperación (inestable).
- Estrategias ganadoras (si existen). Estrategia Maximin, Punto de silla. Estrategias en juegos repetitivos.
- Logros en el desarrollo de sistemas para juegos en IA. Aplicación en otras áreas de decisión.

Tipología de Juegos: nº Jugadores, Relaciones, Tipos de Pago, Tipo Movimientos, Información, etc.

Representación de un Juego: Matriz de Pagos, Representación Extensiva

¿Cómo jugar?

Decisión/Estrategia del Juego: Estrategias Puras, Estrategias Mixtas, Perfil de Estrategias

En el conjunto de estrategias posibles, pueden haber peores y mejores...

Estrategias Dominantes.

¿Existe Perfil de Estrategias Dominantes?: Decisión más racional (Adam Smith) ¿Y si no hay? ⇒ Equilibrio de Nash

Equilibrio de Nash: Estrategias de Equilibrio {Puras, Mixtas}. ¡No siempre existe!

Obtención del Equilibrio de Nash en Estrategias Puras

¿Óptimo Global?: Cooperación / Competición

Estrategias Ganadoras en Juegos simples de Suma Constante.

Decisión mejor estrategia: Estrategia Maximin.

Punto de Silla. Estrategia Estable. Juegos Justos.

Teorema de Zemelo: Existencia de una Estrategia Ganadora (juegos sin empate)

Estrategias en Juegos Simultáneos y Repetitivos

Evolución Sistemas Juegos en IA

