

Spis rozmaitości treściowalnych

06	.10.23	3 Warunkowa wartość oczekiwana	3
		Prawdopodobieństwo warunkowe	
	1.2.	Konstrukcja warunkowej wartości oczekiwanej	3
	1.3.	Prawdopodobieństwo warunkowe	6
09	.10.23	3 : Własności WWO	8
	2.1.	Istnienie i jedyność	8
	2.2.	Własności wwo	10

Wykład 06.10.23 Warunkowa wartość oczekiwana

1.1 Prawdopodobieństwo warunkowe

Tak jak zwykle do tej pory, pracować będziemy na przestrzeni probabilistycznej $(\Omega, \mathcal{F}, \mathbb{P})$.

Przypomnijmy definijcję **prawdopodobieństwa warunkowego** z Rachunku Prawdopodobieństwa 1 (i z liceum). Dla zdarzenia $A \in \mathcal{F}$ takiego, że $\mathbb{P}[A] \in (0,1)$ definiujemy prawdopodobieństwo warunkowe jako

 $\mathbb{P}\left[\mathsf{B}\mid\mathsf{A}\right]=\frac{\mathbb{P}\left[\mathsf{A}\cap\mathsf{B}\right]}{\mathbb{P}\left[\mathsf{A}\right]}.$

Wartość ta informuje nas o zajściu B wtedy, gdy jesteśmy pewni, że A zaszło. Ale co, jeśli nasza wiedza dotycząca A jest mniej pewna? To znaczy, co jeśli $\mathbb{P}[A] = 0$? Dość naturalne wydaje się rozważenie zdarzenia przeciwnego i zsumowania obu prawdopodobieństw:

$$\mathbb{1}_{\mathsf{A}}\mathbb{P}\left[\mathsf{B}\mid\mathsf{A}\right]+\mathbb{1}_{\mathsf{A}^{\mathsf{c}}}\mathbb{P}\left[\mathsf{B}\mid\mathsf{A}^{\mathsf{c}}\right].$$

Zauważmy od razu, że wyrażenie $\mathbb{1}_A \mathbb{P} [B \mid A]$ jest zmienną losową.

W przypadku, gdy mamy dwa zbiory, $A_1, A_2 \in \mathcal{F}$, i chcemy zbadać $\mathbb{P}\left[B \mid A_1 \cap A_2\right]$ możemy powyższe rozumowanie rozszerzyć na wszystkie możliwe kombinacje A_1, A_2 i ich dopełnień:

$$\mathbb{1}_{A_1\cap A_2}\mathbb{P}\left[B\mid A_1\cap A_2\right]+\mathbb{1}_{A_1\cap A_2^c}\mathbb{P}\left[B\mid A_1\cap A_2^c\right]+\mathbb{1}_{A_1^c\cap A_2}\mathbb{P}\left[B\mid A_1^c\cap A_2\right]+\mathbb{1}_{A_1^c\cap A_2^c}\mathbb{P}\left[B\mid A_1^c\cap A_2^c\right].$$

Działanie jak wyżej daje pełną informacje o każdym zdarzeniu z ciała generowanego przez zdarzenia A_1 i A_2 . Nazywamy je **rozbiciem** względem σ -ciała generowanego przez A_1 i A_2 .

Analogicznie możemy zdefiniować $\mathbb{E}\left[\mathbf{X}\mid\mathbf{A}\right]$ dla całkowalnej zmiennej losowej X (tzn. $\mathbb{E}\left[|\mathbf{X}|\right]<\infty$):

$$\mathbb{E}\left[\mathsf{X}\mid\mathsf{A}\right] = \int_{\Omega}\mathsf{X}(\omega)\mathbb{P}\left[\mathsf{d}\omega\mid\mathsf{A}\right] = \frac{1}{\mathbb{P}\left[\mathsf{A}\right]}\mathbb{E}\left[\mathsf{X}\mathbb{1}_{\mathsf{A}}\right],$$

gdzie całka wyżej tłumaczy się na całkę po X względem miary $\mathbb{P}\left[\mathsf{B}\mid\mathsf{A}\right]$.

Uzasadnimy, dlaczego wzór wyżej jest zasadną definicją prawdopodobieństwa warunkowego przy ograniczonej wiedzy o zdarzeniu A.

1.2 Konstrukcja warunkowej wartości oczekiwanej

Zanim zdefiniujemy warunkową wartość oczekiwaną [wwo] zmiennej losowej X, zaczniemy od przyjrzenia się bliżej motywacji i konstrukcji stojącej za tym pojęciem.

Niech Z <mark>będzie c</mark>ałkowalną zmienną losową przyjmującą przeliczalnie wiele wartości. Zdefiniujmy funkcję

 $h(z) = \begin{cases} \mathbb{E} [X \mid Z = z] & \mathbb{P}[Z = z] > 0 \\ 0 & \text{wpp} \end{cases}$

oraz zmienną losową Y = h(Z). Weźmy dowolny C \in Bor($\mathbb R$) i zbadajmy $\mathbb E\left[\mathsf{Y}\mathbb 1_{\{Z\in C\}} \right]$. Zaczniemy od skorzystania z faktu, że Z przyjmuje przeliczalnie wiele wartości, więc możemy zapisać sumę po

nich wszystkich

$$\begin{split} \mathbb{E}\left[Y\mathbb{1}_{\{Z\in C\}}\right] &= \sum_{z\in C} h(z)\mathbb{P}\left[Z=z\right] = \\ &\stackrel{\star}{=} \sum_{z\in C} \mathbb{E}\left[X\mathbb{1}_{\{Z=z\}}\right] \frac{1}{\mathbb{P}\left[Z=z\right]}\mathbb{P}\left[Z=z\right] = \\ &= \sum_{z\in C} \mathbb{E}\left[X\mathbb{1}_{\{Z=z\}}\right] = \\ &= \mathbb{E}\left[\sum_{z\in C} X\mathbb{1}_{\{Z=z\}}\right] = \\ &= \mathbb{E}\left[X\mathbb{1}_{\{Z\in C\}}\right] \end{split}$$

Równość \star wynika ze sposobu w jaki zdefiniowaliśmy $\mathbb{E}\left[X\mid A\right]$ w poprzednim podrozdziale.

Zauważmy, że dowolne zdarzenie $F \in \sigma(Z)$ jest postaci $F = \{z \in C\}$ dla pewnego $C \in Bor(\mathbb{R})$. Wyprowadziliśmy więc równość:

$$\mathbb{E}[Y\mathbb{1}_{\mathsf{F}}] = \mathbb{E}[X\mathbb{1}_{\mathsf{F}}] \quad \mathsf{F} \in \sigma(\mathsf{Z}).$$

Pozostaje zapytać, co z tej zależności wynika?

Dla F = Ω dostajemy

$$\mathbb{E}\left[h(Z)\right] = \mathbb{E}\left[Y\right] = \mathbb{E}\left[X\right].$$

Dygresja

W tym miejscu kuszące byłoby rozpisanie Y = h(Z) wprost z definicji, tzn. $h(Z) = \mathbb{E}\left[X \mid Z = Z\right]$, ale jest to całkowitą brednią. W definicji funkcji h podanej na samym początku przykładu z jest teoretycznym punkcikiem, natomiast przy definiowaniu Y = h(Z) ów Z jest już obserwowaną przez nas, konkretną zmienną losową. W takim razie, bardziej poprawny byłby zapis

$$h(Z(\omega)) = \mathbb{E} [X \mid {\omega' : Z(\omega') = Z(\omega)}].$$

Przykład(y) 1.1

 Ze zbioru {1, 2, ..., 10} losujemy w sposób jednostajny liczbę i oznaczamy ją jako N. W drugim losowaniu, również w sposób jednostajny, wybieramy liczbę ze zbioru {1, ..., N} i nazywamy ją M. Chcemy znaleźć średnią wartość liczby M. Oczywiście, nie jest trudno zrobić to metodami poznanymi na poprzednich przygodach probabilistycznych, jednak w tym przypadku użyjemy konstrukcji wyżej.

Funkcja h będzie wyglądać następująco:

$$h(n) = \mathbb{E}\left[M \mid N = n\right] = \sum_{1 \le i \le n} \frac{i}{n} = \frac{1}{n} \cdot \frac{n(n+1)}{2} = \frac{n+1}{2}$$

czyli h(N) = $\frac{N+1}{2}$.

Stosując notację jak wyżej, mamy

$$Z = N$$

 $X = M$

czyli podstawiając do wzoru:

$$\begin{split} \mathbb{E}\left[\mathsf{M}\right] &= \mathbb{E}\left[\mathsf{h}(\mathsf{N})\right] = \mathbb{E}\left[\frac{\mathsf{N}+1}{2}\right] = \\ &= \frac{1}{2}\left(\mathbb{E}\left[\mathsf{N}\right]+1\right) = \frac{1}{2}\left(\sum_{1 \leq i \leq 10} \frac{\mathsf{i}}{10} + 1\right) = \\ &= \frac{1}{2}\left(\frac{11}{2} + 1\right)\frac{13}{4} \end{split}$$

Definicja 1.1

Niech $\mathcal{G} \subseteq \mathcal{F}$ będzie σ -ciałem, a X całkowalną zmienną losową.

Zmienną losową Y nazywamy warunkową wartością oczekiwaną [wwo] X pod warunkiem \mathcal{G} , jeśli następujące warunki są spełnione:

(W1) Y jest G-mierzalne

(W2) $(\forall G \in \mathcal{G}) \mathbb{E}[X1_G] = \mathbb{E}[Y1_G]$

Nasuwają się teraz pytania o poprawność Y zdefiniowanego jak wyżej. Czy zawsze istnieje i czy jest on jedyny?

Przykład(y) 1.2

1. Niech $\mathcal{G} = \sigma(Z)$, gdzie Z jest zmienną losową przyjmującą przeliczalnie wiele wartości. Wówczas Y = h(Z) dla h(z) = $\mathbb{E}[X \mid Z = z]$ jest wwo X względem \mathcal{G} .

Twierdzenie 1.1: poprawność wwo

Dla σ -ciała $\mathcal{G} \subseteq \mathcal{F}$ i całkowalnej zmiennej losowej X **istnieje jedyna zmienna losowa** Y będąca wwo X względem \mathcal{G} . Będziemy ją oznaczać

$$\mathbb{E}\left[X\mid\mathcal{G}\right]=Y.$$

Jeśli Y, Y' są wwo X względem \mathcal{G} , to Y = Y' prawie wszędzie.

Dowód

Dowód na następnym wykładzie.

Uwaga 1.2

O wwo X pod warunkiem \mathcal{G} należy myśleć jako o przybliżeniu X na podstawie informacji zawartych w \mathcal{G} (więcej na wykładzie 3).

Przykład(y) 1.3

1. Jeśli X i $\mathcal G$ są niezależne, to znaczy dla każdego B \in Bor($\mathbb R$) i dla każdego G \in $\mathcal G$ zachodzi

$$\mathbb{P}\left[X\in\mathsf{B},\mathsf{G}\right]=\mathbb{P}\left[X\in\mathsf{B}\right]\mathbb{P}\left[\mathsf{G}\right],$$

5

to wtedy
$$\mathbb{E}\left[X\mid\mathcal{G}\right]=\mathbb{E}\left[X\right]=Y$$
.

Warunek (W1) jest oczywiście spełniony, bo Y jest funkcją stałą, więc jego przec<mark>iwobraz to całość lub \emptyset (czyli jest \mathcal{G} -mierzalny). Warunek (W2) sprawdzamy dla dowolnego $G \in \mathcal{G}$:</mark>

$$\mathbb{E}\left[\mathsf{X}\mathbb{1}_{\mathsf{G}}\right] = \mathbb{E}\left[\mathsf{X}\right]\mathbb{E}\left[\mathbb{1}_{\mathsf{G}}\right] = \mathbb{E}\left[\mathbb{E}\left[\mathsf{X}\right]\mathbb{1}_{\mathsf{G}}\right] = \mathbb{E}\left[\mathsf{Y}\mathbb{1}_{\mathsf{G}}\right].$$

2. Rozważmy pokrycie Ω rozłącznymi zbiorami $\{A_n\}_{n\in\mathbb{N}}$, gdzie $A_i\in\mathcal{F}$ dla każdego i. Niech $\mathcal{G}=\sigma(A_i:i\in\mathbb{N})$ będzie σ -ciałem rozpinanym przez to pokrycie. Wówczas

$$\mathbb{E}\left[\mathsf{X}\mid\mathcal{G}\right] = \sum_{\mathsf{i}\in\mathbb{N}} \mathbb{1}_{\mathsf{A}_{\mathsf{i}}}\mathbb{E}\left[\mathsf{X}\mid\mathsf{A}_{\mathsf{i}}\right]$$

Spełnianie pierwszego warunku jest oczywiste, bo mamy doczynienia z funkcją prostą. Warunek (W2) wystarczy sprawdzić dla atomów, czyli $G = A_i$, bo wszystkie zmienne losowe \mathcal{G} -mierzalne są stałe na A_i .

$$\begin{split} \mathbb{E}\left[\left[\sum\mathbb{1}_{A_{i}}\mathbb{E}\left[X\mid A_{i}\right]\right]\mathbb{1}_{A_{j}}\right] &= \mathbb{E}\left[\mathbb{E}\left[X\mid A_{j}\right]\mathbb{1}_{A_{j}}\right] = \\ &= \mathbb{E}\left[\mathbb{1}_{A_{j}}\frac{\mathbb{E}\left[X\mathbb{1}_{A_{j}}\right]}{\mathbb{P}\left[A_{j}\right]}\right] = \\ &= \mathbb{E}\left[\mathbb{1}_{A_{j}}\right]\frac{\mathbb{E}\left[X\mathbb{1}_{A_{j}}\right]}{\mathbb{P}\left[A_{j}\right]} = \mathbb{E}\left[X\mathbb{1}_{A_{j}}\right], \end{split}$$

$$\text{gdyż}\,\mathbb{E}\left[\mathbb{1}_{A_j}\right]=\mathbb{P}\left[A_j\right].$$

3. Jeśli w przykładzie wyżej weźmiemy $A_1 = A$, $A_2 = A^c$ i $A_3 = A_4 = ... = \emptyset$ oraz $\mathcal{G} = \sigma(A)$, to dostajemy to samo co na samym początku tego wykładu:

$$\mathbb{E}\left[X\mid\mathcal{G}\right]-\mathbb{1}_{A}\mathbb{E}\left[X\mid A\right]+\mathbb{1}_{A^{C}}\mathbb{E}\left[X\mid A^{C}\right].$$

1.3 Prawdopodobieństwo warunkowe

Definicja 1.2: prawdopodobieństwo warunkowe

Dla σ -ciała $\mathcal{G}\subseteq\mathcal{F}$ definiujemy **prawdopodobieństwo warunkowe** pod warunkiem \mathcal{G} jako

$$\mathbb{P}\left[\mathsf{A}\mid\mathcal{G}\right]=\mathbb{E}\left[\mathbb{1}_{\mathsf{A}}\mid\mathcal{G}\right]$$

Prawdopodobieństwo $\mathbb{P}\left[\mathsf{A}\mid\mathcal{G}\right]$ jest zmienną losową taką, że:

 $\mathbb{P}\left[\mathsf{A}\mid\mathcal{G}\right]$ jest \mathcal{G} -mierzalna (ze względu na wwo w definicji)

$$\mathbb{E}\left[\mathbb{P}\left[\mathsf{A}\mid\mathcal{G}\right]\mathbb{1}_\mathsf{G}\right]=\mathbb{E}\left[\mathbb{1}_\mathsf{A}\mathbb{1}_\mathsf{G}\right]=\mathbb{P}\left[\mathsf{A}\cap\mathsf{G}\right]$$

Przykład(y) 1.4

1. Niech E₁, E₂ będą niezależnymi zmiennymi losowymi z rozkładem exp(1). Chcemy się zastanowić jak wygląda prawdopodobieństwo

$$\mathbb{P}\left[\mathsf{E}_1 + \mathsf{E}_2 > \mathsf{t} \mid \sigma(\mathsf{E}_1)\right]$$

dla t > 0. Ponieważ liczymy to prawdopodobieństwo względem $\sigma(E_1)$, to tak naprawdę wszystkie informacje o E_1 mamy w ręku, gdyż tę zmienną obserwujemy. Czyli E_1 możemy w takim przypadku potraktować jako zwykłą stałą i zgadnąć, że

$$\mathbb{P}\left[\mathsf{E}_1 + \mathsf{E}_2 > \mathsf{t} \mid \sigma(\mathsf{E}_1)\right] = \mathsf{e}^{-(\mathsf{t} - \mathsf{E}_1)}.$$

Dla pewności, przerachujemy cały ten przykład wprost z definicji, żeby przekonać się że strzał był poprawny.

Niech $G \in \sigma(E_1)$, wtedy zgodnie z wcześniejszą obserwacją istnieje pewne $C \in Bor(\mathbb{R})$ takie, że G jest postaci $G = \{E_1 \in C\}$. Policzymy $\mathbb{E}\left[\mathbb{P}\left[\{E_1 + E_2 > t\} \mid \sigma(E_1)\right]\right]$ gdyż jak wyżej zauważyliśmy, $\mathbb{P}\left[A \mid \mathcal{G}\right]$ jest zmienną losową. Mamy więc

$$\begin{split} \mathbb{E}\left[\mathbb{P}\left[E_1+E_2>t \mid \sigma(E_1)\right]\mathbb{1}_G\right] &\overset{\star}{=} \mathbb{P}\left[\{E_1+E_2>t\} \cap G\right] = \\ &= \mathbb{P}\left[\{E_1+E_2>t\} \cap \{E_1 \in C\}\right] = \\ &= \iint\limits_{\substack{C \times \mathbb{R}_+ \\ x+y>t}} e^{-x}e^{-y}dxdy = \\ &= \int_C e^{-x}\left[\int_{x+y>t} e^{-y}dy\right]dx = \\ &= \int_C e^{-x}e^{-(t-x)}dx = \mathbb{E}\left[e^{-(t-E_1)}\mathbb{1}_{\{E_1 \in C\}}\right] = \mathbb{E}\left[e^{-(t-E_1)}\mathbb{1}_G\right] \end{split}$$

Równość \star wynika z uwagi pod definicją prawdopodobieństwa warunkowego. Całka $\star\star$ jest równa 1 gdy x > t (gdyż wtedy dla każdego y mamy x + y > t), natomiast dla x \leq t wynosi ona $e^{-(t-x)}$.

Wykład 09.10.23: Własności WWO

Na tym wykładzie zajmiemy się dowodzeniem własności wwo, w tym pokażemy jej <mark>istnienie i</mark> jedyność.

2.1 Istnienie i jedyność

Lemat 2.1: WWO jest całkowalna

To znaczy, że mając całkowalną zmienną losową X oraz σ -ciało $\mathcal{G} \subseteq \mathcal{F}$, to zachodzi $\mathbb{E}\left[\left|\mathbb{E}\left[X\mid\mathcal{G}\right]\right|\right]<\infty$.

Dowód

Rozważmy zbiór

$$\mathsf{A} = \{\omega \ : \ \mathbb{E}\left[\mathsf{X} \mid \mathcal{G}\right](\omega) > 0\} = \{\omega \ : \ \mathbb{E}\left[\mathsf{X} \mid \mathcal{G}\right] \in (0, \infty)\} = \left[\mathbb{E}\left[\mathsf{X} \mid \mathcal{G}\right]\right]^{-1}((0, \infty))$$

jako przeciwobraz zbioru $(0,\infty)\in \mathrm{Bor}(\mathbb{R})$ przez funkcję \mathcal{G} -mierzalną $\mathbb{E}\left[\mathsf{X}\mid\mathcal{G}\right]$ wiemy, że $\mathsf{A}\in\mathcal{G}$. Ponieważ $\mathbb{E}\left[\mathsf{X}\mid\mathcal{G}\right]$ jest wwo X pod warunkiem \mathcal{G} , to musi warunek (W2):

$$0 \leq \mathbb{E}\left[\mathbb{E}\left[X \mid \mathcal{G}\right] \mathbb{1}_{\mathsf{A}}\right] = \mathbb{E}\left[X \mathbb{1}_{\mathsf{A}}\right] \leq \mathbb{E}\left[|X| \mathbb{1}_{\mathsf{A}}\right] < \infty$$

bo X jest całkowalna.

Analogicznie postępujemy dla zbioru A^C:

$$0 \leq \mathbb{E} \left[-\mathbb{E} \left[X \mid \mathcal{G} \right] \mathbb{1}_A \right] = \mathbb{E} \left[-X \mathbb{1}_{A^C} \right] \leq \mathbb{E} \left[|X| \mathbb{1}_{A^C} \right] < \infty.$$

Zauważmy, że

$$\left| \mathbb{E} \left[\mathsf{X} \mid \mathcal{G} \right] \right| = \mathbb{E} \left[\mathsf{X} \mid \mathcal{G} \right] \mathbb{1}_{\mathsf{A}} - \mathbb{E} \left[\mathsf{X} \mid \mathcal{G} \right] \mathbb{1}_{\mathsf{A}^\mathsf{C}}$$

Dodając obie te nierówności (i korzystając z liniowości wartości oczekiwanej) uzyskujemy

$$0 \leq \mathbb{E}\left[\mathbb{E}\left[X \mid \mathcal{G}\right] \mathbb{1}_{A}\right] - \mathbb{E}\left[\mathbb{E}\left[X \mid \mathcal{G}\right] \mathbb{1}_{A^{C}}\right] = \mathbb{E}\left[\mathbb{E}\left[X \mid \mathcal{G}\right] \mathbb{1}_{A} - \mathbb{E}\left[X \mid \mathcal{G}\right] \mathbb{1}_{A^{C}}\right] = \mathbb{E}\left[\left|\mathbb{E}\left[X \mid \mathcal{G}\right]\right|\right] < \infty$$

Lemat 2.2: jedyność p.w.

Niech $\mathcal{G} \subseteq F$ będzie σ -ciałem. Jeśli Y i Y' są obie wersjami $\mathbb{E}[X \mid \mathcal{G}]$, to Y = Y' p.w..

Dowód

Ustalmy $\varepsilon > 0$ i rozważmy zdarzenie

$$A_{\varepsilon} = \{Y - Y' > \varepsilon\} \in \mathcal{G}$$

które jest \mathcal{G} -mierzalne, bo Y i Y' takie są.

$$\begin{split} \varepsilon \mathbb{P} \left[\mathsf{A}_{\varepsilon} \right] + \mathbb{E} \left[\mathsf{Y}' \mathbb{1}_{\mathsf{A}_{\varepsilon}} \right] &= \mathbb{E} \left[\varepsilon \mathbb{1}_{\mathsf{A}_{\varepsilon}} \right] + \mathbb{E} \left[\mathsf{Y}' \mathbb{1}_{\mathsf{A}_{\varepsilon}} \right] = \\ &= \mathbb{E} \left[(\varepsilon + \mathsf{Y}') \mathbb{1}_{\mathsf{A}_{\varepsilon}} \right] \leq \\ &\stackrel{\star}{\leq} \mathbb{E} \left[\mathsf{Y} \mathbb{1}_{\mathsf{A}_{\varepsilon}} \right] \stackrel{(\mathsf{W2})}{=} \mathbb{E} \left[\mathsf{X} \mathbb{1}_{\mathsf{A}_{\varepsilon}} \right] = \\ &= \mathbb{E} \left[\mathsf{Y}' \mathbb{1}_{\mathsf{A}_{\varepsilon}} \right] \end{split}$$

gdzie \star wynika z tego, że na zbiorze $A_{\varepsilon} Y > Y' + \varepsilon$.

Dostajemy więc, że

$$\varepsilon \mathbb{P}\left[\mathsf{A}_{\varepsilon}\right] + \mathbb{E}\left[\mathsf{Y}'\mathbb{1}_{\mathsf{A}_{\varepsilon}}\right] \leq \mathbb{E}\left[\mathsf{Y}'\mathbb{1}_{\mathsf{A}_{\varepsilon}}\right]$$

co po przeniesieniu $\mathbb E$ na jedną stronę daje

$$\varepsilon \mathbb{P}\left[\mathsf{A}_{\varepsilon}\right] \leq \mathsf{0}$$

a ponieważ ε > 0, to musi być $\mathbb{P}[A_{\varepsilon}] = 0$.

Wówczas

$$\mathbb{P}\left[Y > Y'\right] = \underbrace{\mathbb{P}\left[\left(\exists \ n\right) \ Y \geq Y' + \frac{1}{n}\right]}_{\mathbb{P}\left[A_{\frac{1}{n}}\right]} = \mathbb{P}\left[\bigcup A_{\frac{1}{n}}\right] = \lim \mathbb{P}\left[A_{\frac{1}{n}}\right] = 0$$

ponieważ $A_{\frac{1}{n}} \subseteq A_{\frac{1}{n+1}}$.

Zamieniając miejscami Y i Y' w dowodzie dostaniemy $\mathbb{P}\left[Y' > Y\right] = 0$, czyli obie możliwości są miary zero.

Twierdzenie 2.3: o istnieniu WWO

Niech $\mathcal{G}\subseteq\mathcal{F}$ będzie σ -ciałem, a X jest całkowalną zmienną losową. Istnieje zmienna losowa Y spełniająca oba postulaty wwo X pod warunkiem \mathcal{G} .

Jest to Twierdzenie 1.1 z poprzedniego wykładu.

Zanim jednak przejdziemy do dowodu 2.3, przypomnijmy *twierdzenie Radona-Nikodyma* z teorii miary:

Dygresja: twierdzenie Radona-Nikodyma

Niech μ i ν będą σ -miarami na przestrzeni (Ω, \mathcal{G}) takimi, że ν jest absolutnie ciągła względem μ [$\nu \ll \mu$], tzn μ (A) = 0 $\Rightarrow \nu$ (A) = 0. Wówczas istnieje \mathcal{G} -mierzalna funkcja f : $\Omega \to \mathbb{R}$ taka, że

$$\nu(A) = \int_{\Lambda} f(x)\mu(dx)$$

Funkcję f jak wyżej często oznaczamy f = $\frac{\mathrm{d}\nu}{\mathrm{d}\mu}$ i nazywamy pochodną Radona-Nikodyma.

Dowód

Wracając do dowodu twierdzenia 2.3. Najpierw pokażemy prostszy przykład, gdy $X \ge 0$, a potem uogólnimy go do dowolnego X.

Załóżmy, że X \geq 0 p.w. Wtedy możemy rozważyć miary μ = $\mathbb{P} \upharpoonright \mathcal{G}$ oraz ν (A) = $\mathbb{E} [X1_A]$. Od razu widać, że w takim ułożeniu $\nu \ll \mu$, więc na mocy twierdzenia Radona-Nikodyma istnieje f \mathcal{G} -mierzalna taka, że

$$\mathbb{E}\left[\mathsf{f}\mathbb{1}_\mathsf{A}\right] = \int_\mathsf{A} \mathsf{f}(\omega)\mu(\mathsf{d}\omega) = \nu(\mathsf{A}) - \mathbb{E}\left[\mathsf{X}\mathbb{1}_\mathsf{A}\right].$$

Funkcja f spełnia (W1) z definicji wwo, bo jest \mathcal{G} -mierzalna, a (W2) jest potwierdzone przez rachunek wyżej. Czyli f jest wwo X pod warunkiem \mathcal{G} .

Niech teraz X będzie dowolną zmienną losową. Możemy ją rozbić jako

$$X = X^{+} - X^{-},$$

gdzie $X^+ = \max(0,X) \ge 0$ oraz $X^- = -\min(0,X) \ge 0$. Do obu tych zmiennych możemy zastosować pierwszą część dowodu, by dostać zmienne $\mathbb{E}\left[X^+ \mid \mathcal{G}\right]$ oraz $\mathbb{E}\left[X^- \mid \mathcal{G}\right]$. Wystarczy zauważyć, że dzięki liniowości \mathbb{E} możemy w prosty sposób pokazać

$$\mathbb{E}\left[X\mid\mathcal{G}\right] = \mathbb{E}\left[X^{+}\mid\mathcal{G}\right] - \mathbb{E}\left[X^{-}\mid\mathcal{G}\right]$$

2.2 Własności wwo

Twierdzenie 2.4: o arytmetyce wwo

Niech $\mathcal{G}, \mathcal{G}_1, \mathcal{G}_2 \subseteq \mathcal{F}$ będą σ -ciałami, a X, X₁, X₂ całkowalnymi zmiennymi losowymi

- 1. $\mathbb{E}\left[\mathbb{E}\left[X\mid\mathcal{G}\right]\right] = \mathbb{E}\left[X\right]$
- 2. Jeśli X \geq 0, to również $\mathbb{E}\left[X \mid \mathcal{G} \right] \geq 0$
- 3. $\mathbb{E}\left[aX_1 + bX_2 \mid \mathcal{G}\right] = a\mathbb{E}\left[X_1 \mid \mathcal{G}\right] + b\mathbb{E}\left[X_2 \mid \mathcal{G}\right]$
- 4. $|\mathbb{E}[X \mid \mathcal{G}]| \leq \mathbb{E}[|X| \mid \mathcal{G}]$
- 5. Jeśli $\mathcal{G}_1 \subseteq \mathcal{G}_2$, to wówczas

$$\mathbb{E}\left[\mathbb{E}\left[X\mid\mathcal{G}_{1}\right]\mid\mathcal{G}_{2}\right]=\mathbb{E}\left[\mathbb{E}\left[X\mid\mathcal{G}_{2}\right]\mid\mathcal{G}_{1}\right]=\mathbb{E}\left[X\mid\mathcal{G}_{1}\right]$$

To znaczy, że mając informacje o X w dwóch zawartych w sobie ciałach, to mniejsze zawsze wygrywa.

6. Jeśli Y jest \mathcal{G} -mierzalna i XY jest całkowalna, to $\mathbb{E}\left[\mathsf{XY}\mid\mathcal{G}\right]=\mathsf{Y}\mathbb{E}\left[\mathsf{X}\mid\mathcal{G}\right]$, czyli Y możemy traktować jako stałą.

Dowód

1. Wystarczy wstawić G = Ω w warunek (W2):

$$\mathbb{E}\left[\mathbb{E}\left[\mathbf{X}\mid\mathcal{G}\right]\right] = \mathbb{E}\left[\mathbb{E}\left[\mathbf{X}\mid\mathcal{G}\right]\mathbb{1}_{\Omega}\right] \stackrel{\text{(W2)}}{=} \mathbb{E}\left[\mathbf{X}\mathbb{1}_{\Omega}\right] = \mathbb{E}\left[\mathbf{X}\right]$$

2. Wynika z dowodu twierdzenia o istnieniu, bo $\frac{d\nu}{d\mu} = \mathbb{E}\left[X \mid \mathcal{G}\right]$. Gdyby A = $\{\omega : \mathbb{E}\left[X \mid \mathcal{G}\right] < 0\}$, to wówczas

$$\mathbb{E}\left[X\mathbb{1}_{\mathsf{A}}\right] = \nu(\mathsf{A}) = \int_{\mathsf{A}} \mathbb{E}\left[X \mid \mathcal{G}\right] (\omega) \mu(\mathsf{d}\omega) = \mathbb{E}\left[\mathbb{E}\left[X \mid \mathcal{G}\right] \mathbb{1}_{\mathsf{A}}\right] < 0$$

ale przecież $X \ge 0 \Rightarrow \mathbb{E}[X1_A] \ge 0$, więc $A = \emptyset$.

3. Można to zrobić na dwa sposoby: licząc wszystko pokolei, albo można sprawdzić, czy Y = $a\mathbb{E}\left[X_1\mid\mathcal{G}\right]+b\mathbb{E}\left[X_2\mid\mathcal{G}\right]$ spełnia warunki wwo tej samej zmiennej co $\mathbb{E}\left[aX_1+bX_2\mid\mathcal{G}\right]$. Wówczas obie te zmienne są równe prawie wszędzie.

Warunek \mathcal{G} -mierzalności dla Y jest spełniony, bo Y jest kombinacją liniową dw<mark>óch funkcji \mathcal{G} -mierzalnych. Wystarczy więc sprawdzić warunek (W2). W tym celu ustalmy $A \in \mathcal{G}$.</mark>

$$\begin{split} \mathbb{E}\left[Y\mathbb{1}_{A}\right] &\stackrel{\star}{=} a\mathbb{E}\left[\mathbb{E}\left[X_{1} \mid \mathcal{G}\right] \mathbb{1}_{A}\right] + b\mathbb{E}\left[\mathbb{E}\left[X_{2} \mid \mathcal{G}\right] \mathbb{1}_{A}\right] = \\ &= a\mathbb{E}\left[X_{1}\mathbb{1}_{A}\right] + b\mathbb{E}\left[X_{2}\mathbb{1}_{A}\right] = \\ &= \mathbb{E}\left[\left(aX_{1} + bX_{2}\right)\mathbb{1}_{A}\right] = \mathbb{E}\left[\mathbb{E}\left[aX_{1} + bX_{2} \mid \mathcal{G}\right] \mathbb{1}_{A}\right] \end{split}$$

4. Wiemy, $\dot{z}e - |X| \le X \le |X|$. Korzystając z punktu 2 dostajemy

$$0 \leq X + |X| \Rightarrow 0 \leq \mathbb{E}\left[|X| \mid \mathcal{G}\right] + \mathbb{E}\left[X \mid \mathcal{G}\right] \Rightarrow -\mathbb{E}\left[|X| \mid \mathcal{G}\right] \leq \mathbb{E}\left[X \mid \mathcal{G}\right]$$

$$0 \leq |X| - X \Rightarrow 0 \leq \mathbb{E}\left[|X| \mid \mathcal{G}\right] - \mathbb{E}\left[X \mid \mathcal{G}\right] \Rightarrow \mathbb{E}\left[X \mid \mathcal{G}\right] \leq \mathbb{E}\left[|X| \mid \mathcal{G}\right]$$

Po złożeniu tych dwóch nierówności:

$$-\mathbb{E}\left[\left|X\right|\mid\mathcal{G}\right]\leq\mathbb{E}\left[X\mid\mathcal{G}\right]\leq\mathbb{E}\left[\left|X\right|\mid\mathcal{G}\right]$$

wiemy, że – $|\mathbb{E}\left[X\mid\mathcal{G}\right]|\leq\mathbb{E}\left[X\mid\mathcal{G}\right]\leq|\mathbb{E}\left[X\mid\mathcal{G}\right]|$, więc musi być

$$\left|\mathbb{E}\left[X\mid\mathcal{G}\right]\right|\leq\mathbb{E}\left[\left|X\right|\mid\mathcal{G}\right].$$

5. Zaczniemy od sprawdzenia, że $\mathbb{E}\left[\mathbb{E}\left[X\mid\mathcal{G}_{2}\right]\mid\mathcal{G}_{1}\right]$ = $\mathbb{E}\left[X\mid\mathcal{G}_{1}\right]$. Wybierzmy A $\in\mathcal{G}_{1}\subseteq\mathcal{G}_{2}$:

$$\mathbb{E}\left[\mathbb{E}\left[X\mid\mathcal{G}_{1}\right]\mathbb{1}_{A}\right]=\mathbb{E}\left[X\mathbb{1}_{A}\right]=\mathbb{E}\left[\mathbb{E}\left[X\mid\mathcal{G}_{2}\right]\mathbb{1}_{A}\right]$$

co potwierdza warunek (W2). \mathcal{G}_1 -mierzalność $\mathbb{E}\left[\mathsf{X}\mid\mathcal{G}_2\right]$ jest oczywista, gdyż $\mathcal{G}_1\subseteq\mathcal{G}_2$, $\mathbb{E}\left[\mathsf{X}\mid\mathcal{G}_2\right]$ jest \mathcal{G}_2 -mierzalne, a po obcięciu do \mathcal{G}_1 dostajemy funkcję \mathcal{G}_1 -mierzalną.

Pozostaje nam sprawdzić czym jest $\mathbb{E}\left[\mathbb{E}\left[X\mid\mathcal{G}_1\right]\mid\mathcal{G}_2\right]$. Roboczo nazwiemy Y = $\mathbb{E}\left[X\mid\mathcal{G}_1\right]$. Jest to funkcja \mathcal{G}_1 -mierzalna, ale dzięki $\mathcal{G}_1\subseteq\mathcal{G}_2$ mamy też \mathcal{G}_2 -mierzalność. W takim razie (tak jak w jednym z przykładów z pierwszego wykładu) $\mathbb{E}\left[Y\mid\mathcal{G}_2\right]$ = Y. Pisząc bez używania litery Y dostajemy

$$\mathbb{E}\left[\mathbb{E}\left[\mathbf{X}\mid\mathcal{G}_{1}\right]\mid\mathcal{G}_{2}\right]=\mathbb{E}\left[\mathbf{X}\mid\mathcal{G}_{1}\right]$$

6. Ćwiczenie, a poniżej moja próba.

Jeśli Y jest \mathcal{G} -mierzalne, to Y $\mathbb{E}\left[X\mid\mathcal{G}\right]$ też takie jest jako iloczyn dwóch funkcji \mathcal{G} -mierzalnych. Pozostaje sprawdzić warunek (W2).

Zacznijmy od Y = $\sum a_i \mathbb{1}_{A_i}$ dla $A_i \in \mathcal{G}$, czyli od funkcji prostej. Wybierając $A \in \mathcal{G}$ możemy ograniczyć się do zbiorów A_i , gdyż są one rozłączne i na dowolnym innym zbiorze Y = 0. Mamy więc

$$\begin{split} \mathbb{E}\left[\mathbb{E}\left[XY\mid\mathcal{G}\right]\mathbb{1}_{A_{i}}\right] &\stackrel{\text{(W2)}}{=}\mathbb{E}\left[XY\mathbb{1}_{A_{i}}\right] = \mathbb{E}\left[a_{i}X\mathbb{1}_{A_{i}}\right] = a_{i}\mathbb{E}\left[X\mathbb{1}_{A_{i}}\right] = \\ &= a_{i}\mathbb{E}\left[\mathbb{E}\left[X\mid\mathcal{G}\right]\mathbb{1}_{A_{i}}\right] = \mathbb{E}\left[(a_{i}\mathbb{E}\left[X\mid\mathcal{G}\right])\mathbb{1}_{A_{i}}\right] = \\ &= \mathbb{E}\left[(Y\mathbb{E}\left[X\mid\mathcal{G}\right])\mathbb{1}_{A_{i}}\right] \end{split}$$

Czyli $\mathbb{E}[XY \mid \mathcal{G}] = Y\mathbb{E}[X \mid \mathcal{G}]$ dla przypadku gdy Y jest funkcją prostą.

Jeśli teraz Y jest dowolną nieujemną funkcją mierzalną, to istnieje ciąg funkcji prostych

$$s_1 \leq s_2 \leq ... \leq s_n \leq ... \quad lim \, s_i = Y$$

Wówczas dla dowolnego A $\in \mathcal{G}$

$$\begin{split} \mathbb{E}\left[\mathbb{E}\left[XY\right]\mathbb{1}_{A}\right] &= \mathbb{E}\left[XY\mathbb{1}_{A}\right] = \mathbb{E}\left[X\lim s_{i}\mathbb{1}_{A}\right] \stackrel{\star}{=} \lim \mathbb{E}\left[Xs_{i}\mathbb{1}_{A}\right] = \\ &\stackrel{\star\star}{=} \lim \mathbb{E}\left[s_{i}\mathbb{E}\left[X\mid\mathcal{G}\right]\mathbb{1}_{A}\right] = \mathbb{E}\left[\lim s_{i}\mathbb{E}\left[X\mid\mathcal{G}\right]\mathbb{1}_{A}\right] = \\ &= \mathbb{E}\left[Y\mathbb{E}\left[X\mid\mathcal{G}\right]\mathbb{1}_{A}\right] \end{split}$$

 \star można zrobić na mocy twierdzenia o monotoniczności ciągu s_i dla zwykłej $\mathbb E$, natomiast $\star\star$ stosuje poprzedni przypadek Y.

Pozostaje przypadek, gdy Y jest dowolną \mathcal{G} -mierzalną zmienną losową. Wówczas możemy rozbić Y = Y⁺ – Y⁻ i skorzystać z liniowości wwo:

$$\mathbb{E}\left[XY\mid\mathcal{G}\right] = \mathbb{E}\left[XY^{+}\mid\mathcal{G}\right] - \mathbb{E}\left[XY^{-}\mid\mathcal{G}\right] = Y^{+}\mathbb{E}\left[X\mid\mathcal{G}\right] - Y^{-}\mathbb{E}\left[X\mid\mathcal{G}\right] = Y\mathbb{E}\left[X\mid\mathcal{G}\right]$$

Twierdzenie 2.5: o zbieżności i ciągłości

Niech $\mathcal{G}\subseteq\mathcal{F}$ będzie σ -ciałem, a X, X₁, X₂, ... będzie ciągiem całkowalnych zmiennych losowych. Wówczas

- 1. Jeśli $0 \le X_1 \le X_2 \le ...$ oraz $X_n X$, to $\mathbb{E}\left[X_n \mid \mathcal{G}\right] \mathbb{E}\left[X \mid \mathcal{G}\right]$ p.w. (twierdzenie o zbieżności monotonicznej)
- 2. Jeśli $X \geq 0$, to $\mathbb{E}\left[\liminf_n X_n \mid \mathcal{G}\right] \leq \liminf_n \mathbb{E}\left[X_n \mid \mathcal{G}\right]$ (lemat Fatou).
- 3. Jeśli $|X_n| \leq Y$ oraz Y jest całkowalny i $X_n \to X$ p.w., to $\mathbb{E}\left[X_n \mid \mathcal{G}\right] \to \mathbb{E}\left[X \mid \mathcal{G}\right]$ (twierdzenie o zbieżności ograniczonej)

Dowód

1. Zauważamy, że ciąg $\mathbb{E}\left[X_n\mid\mathcal{G}\right]$ jest niemalejący i ograniczony przez $X\mathcal{G}$ (na mocy punktu 2 z poprzedniego twierdzenia).

Niech Y = $\lim \mathbb{E} \left[X_n \mid \mathcal{G} \right]$. Wystarczy, że pokażemy Y = $\mathbb{E} \left[X \mid \mathcal{G} \right]$ p.w., czyli sprawdzimy warunki (W1) i (W2). Oczywiście, warunek (W1) wynika z faktu, że granica ciągu funkcji \mathcal{G} -mierzalnych jest nadal \mathcal{G} -mierzalna. Dla sprawdzenia warunku (W2) wybierzmy A $\in \mathcal{G}$

$$\mathbb{E}[Y\mathbb{1}_{A}] = \mathbb{E}\left[\lim \mathbb{E}\left[X_{n} \mid \mathcal{G}\right] \mathbb{1}_{A}\right] \stackrel{\star}{=} \lim \mathbb{E}\left[\mathbb{E}\left[X_{n} \mid \mathcal{G}\right] \mathbb{1}_{A}\right] = \lim \mathbb{E}\left[X_{n}\mathbb{1}_{A}\right] = \mathbb{E}\left[\lim X_{n}\mathbb{1}_{A}\right] = \mathbb{E}\left[X\mathbb{1}_{A}\right]$$

czyli Y =
$$\mathbb{E}\left[X \mid \mathcal{G}\right]$$
 p.w.

2. Zaczniemy od dwóch obserwacji:

Dla ciągu {a_n} lim inf a_n to najmniejszy z jego punktów skupienia, równoważnie:

$$\liminf_n a_n = \lim_{k \to \infty} \inf_{n \ge k} a_n$$

 \Re Dla dowolnej przeliczalnej rodziny zmiennych losowych $\{Z_n\}_{n\in T}$ i dla dowolnego $t\in T$ mamy

$$\inf_{s \in T} Z_s \leq Z_t$$

$$\begin{split} \mathbb{E}\left[\inf_{s \in T} Z_s\right] &\leq \mathbb{E}\left[Z_t\right] \\ \mathbb{E}\left[\inf_{s \in T} Z_s\right] &\leq \inf_{t \in T} \mathbb{E}\left[Z_t\right] \end{split}$$

(co jest tak naprawdę wersją lematu Fatou dla $\mathbb E$ z RP1R).

Stosując obserwację w przejściach \star , obserwację w przejsciu $\star\star$ oraz ptk 1. (inf_{n>k} $X_n \le \inf_{n>k+1} X_n$) w $\star\star\star$, dostajemy

$$\begin{split} \mathbb{E}\left[\lim_{n} \inf X_{n} \mid \mathcal{G} \right] &\stackrel{\star}{=} \mathbb{E}\left[\lim_{k} \inf_{n > k} X_{n} \mid \mathcal{G} \right] \stackrel{\star \star \star}{=} \lim_{k} \mathbb{E}\left[\inf_{n > k} X_{n} \mid \mathcal{G} \right] \leq \\ &\stackrel{\star \star}{\leq} \lim_{k} \inf_{n > k} \mathbb{E}\left[X_{n} \mid \mathcal{G} \right] \stackrel{\star}{=} \lim_{n} \inf_{n} \mathbb{E}\left[X_{n} \mid \mathcal{G} \right] \end{split}$$

3. Rozważmy zmienne $X_n' = Y + X_n$. Ponieważ $|X_n| \le Y$, to $Y + X_n \ge 0$.

$$\begin{split} \mathbb{E}\left[Y + \lim\inf X_n \mid \mathcal{G}\right] &= \mathbb{E}\left[\lim\inf (X_n + Y) \mid \mathcal{G}\right] \overset{3.}{\leq} \lim\inf \mathbb{E}\left[Y + X_n \mid \mathcal{G}\right] = \\ &= \mathbb{E}\left[Y\right] + \lim\inf \mathbb{E}\left[X_n \mid \mathcal{G}\right] \end{split}$$

To daje nam, że $\mathbb{E}\left[\lim\inf X_n\mid\mathcal{G}
ight]\leq \liminf\mathbb{E}\left[X_n\mid\mathcal{G}
ight].$

Postępując analogicznie dla X_n " = Y – X_n (które dalej jest ≥ 0) dostaniemy $\mathbb{E}\left[\limsup X_n \mid \mathcal{G}\right] \geq \lim \sup \mathbb{E}\left[X_n \mid \mathcal{G}\right]$:

$$\begin{split} \mathbb{E}\left[Y - lim \, sup \, X_n \mid \mathcal{G}\right] &= \mathbb{E}\left[lim \, sup(Y - X_n) \mid \mathcal{G}\right] = \\ &= -\mathbb{E}\left[lim \, inf(X_n - Y) \mid \mathcal{G}\right] \overset{3.}{\geq} - lim \, inf \, \mathbb{E}\left[X_n - Y \mid \mathcal{G}\right] = \\ &= lim \, sup \, \mathbb{E}\left[Y - X_n \mid \mathcal{G}\right] \end{split}$$

Ale wiemy, że lim inf $X_n = X$ oraz lim sup $X_n = X$, czyli

$$\begin{split} \lim\inf\mathbb{E}\left[X_n\mid\mathcal{G}\right] \geq \mathbb{E}\left[\lim\inf X_n\mid\mathcal{G}\right] &= \mathbb{E}\left[X\mid\mathcal{G}\right] = \mathbb{E}\left[\lim\sup X_n\mid\mathcal{G}\right] \geq \lim\sup\mathbb{E}\left[X_n\mid\mathcal{G}\right] \\ \text{ale przecież lim inf } \mathbb{E}\left[X_n\mid\mathcal{G}\right] \leq \lim\sup\mathbb{E}\left[X_n\mid\mathcal{G}\right], \text{czyli musi być} \end{split}$$

$$\lim\inf\mathbb{E}\left[X_{n}\mid\mathcal{G}\right]=\mathbb{E}\left[X\mid\mathcal{G}\right]=\lim\sup\mathbb{E}\left[X_{n}\mid\mathcal{G}\right]$$

i ponieważ lim inf = lim sup = lim to mamy

$$\lim \mathbb{E} \left[X_n \mid \mathcal{G} \right] = \mathbb{E} \left[X \mid \mathcal{G} \right].$$

Twierdzenie 2.6

Niech $\mathcal{G} \subseteq \mathcal{F}$ będzie σ -ciałem. Załóżmy, że

🐃 X jest \mathcal{G} -mierzalna

 \forall Y jest niezależna od $\mathcal G$

funkcja $\psi:\mathbb{R}^2 \to \mathbb{R}$ jest mierzalna taka, że

$$\mathbb{E}\left[\psi(\mathsf{X},\mathsf{Y})\right]<\infty.$$

Wówczas

$$\mathbb{E}\left[\psi(\mathsf{X},\mathsf{Y})\mid\mathcal{G}\right]=\Psi(\mathsf{X}),$$

gdzie funkcja $\Psi:\mathbb{R} \to \mathbb{R}$ jest zdefiniowana jako $\Psi(\mathbf{X})$ = $\mathbb{E}\left[\psi(\mathbf{X},\mathbf{Y})\right]$.

Dowód Jeśli ψ (x, y) = xy, to korzystając z punktu 3. twierdzenia **??** dostajemy

$$\psi(\mathbf{x}) = \mathbb{E}\left[\mathbf{x}\mathbf{Y}\right] = \mathbf{x}\mathbb{E}\left[\mathbf{Y}\right]$$

