Lecture 2. Deep Neural Networks

2.1 What is neural network

Example 1 - single neural network

- 집의 크기로 집 가격을 예측하려고 함
- Linear regression: $price = \beta_0 + \beta_1 size + \epsilon$
 - Input: size of house
 - Output: price
 - 회귀분석에서 eta_0,eta_1 는 회귀계수라고 불리지만 neural network에서는 weight(eta_1)와 bias(eta_0)라고 불림
- 집의 가격은 음수가 될 수 없으므로 Rectified Linear Unit (ReLU) 함수를 사용한다면?
 - The "neuron" implements the function ReLU (blue line)

Housing Price Prediction

Example 2 - Multiple neural network

- Input이 집의 크기 외에 화장실 수, 우편번호, 지역 소득수준 등 여러 개인 경우
- 바로 output으로 연결되는 것이 아닌 hidden layer를 거쳐서 output으로 연결 되는 경우

Neural network representation

• 하나의 hidden node의 구성

- Input vector: $\mathbf{x} = (x_1, x_2, x_3)^T$
- Weights: $w = (w_1, w_2, w_3)^T$
- Bias: $b \in \mathbb{R}$

• Activation function: $\sigma(\cdot)$

$$z = w_1 x_1 + w_2 x_2 + w_3 x_3 + b \Leftrightarrow z = \mathbf{w}^T \mathbf{x} + b$$
$$a = \sigma(z)$$

• Special case: linear regression

$$\hat{\mathbf{y}} = \sigma(\mathbf{w}^T \mathbf{x} + b)$$

$$\sigma(z) = z$$

• Special case: logistic regression

$$\hat{y} = \sigma(\mathbf{w}^T \mathbf{x} + b)$$

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$
: sigmoid function (inverse-logit function)

2.2 Deep neural network

- Input, hidden, output layer로 구성
- 각 layer는 여러 개의 neuron들로 구성
- Deep neural network 구조를 결정하는 요소
 - layer의 개수
 - 한 layer의 neuron(hidden unit)의 개수
 - Activation 함수의 종류

• i 번째 layer의 j 번째 hidden unit에 대한 output

$$z_j^{[i]} = \mathbf{w}_j^{[i]T} \mathbf{x} + b_j^{[i]}$$
$$a_j^{[i]} = \sigma(z_j^{[i]})$$

Example

hidden layer input layer output layer

"Non-deep" feedforward neural network

Deep neural network

- Non-deep neural network
 - Input layer: input neuron들로 구성. dimension=6
 - Hidden layer: 1개 layer, 9개 unit
 - Output layer: 4개 unit
- Deep neural network

Input dimension = 8Hidden layer: 3개 layer, 각 9개 unit

• Output layer: 4개 unit

```
In [3]:
    from keras.models import Sequential
        from keras.layers import Dense
        from keras.utils import plot_model
        from IPython.display import Image

model = Sequential()
    model.add(Dense(9, input_shape=(6,)))
    model.add(Dense(4))
    model.summary()
```

Layer (type)	Output Shape	Param #
dense_9 (Dense)	(None, 9)	63
dense_10 (Dense)	(None, 4)	40
Total params: 103		

Trainable params: 103
Non-trainable params: 0

- Layer 1: weight 547 (6*9) + bias 97 = 637
- Layer 2: weight 36개(9*4) + bias 4개 = 40개
- Total parameters = 63+40 = 103개

Layer (type)	Output Shape	Param #
dense_5 (Dense)	(None, 9)	81
dense_6 (Dense)	(None, 9)	90
dense_7 (Dense)	(None, 9)	90
dense_8 (Dense)	(None, 4)	40
Total params: 301 Trainable params: 301 Non-trainable params: 0		

TO DO: 위의 deep neural network 예에서 parameter 개수는 어떻게 계산이 되는가?

2.3 Anatomy of a neural network

- Layers: network를 구성하는 요소
- Input and target: 학습과 예측을 위한 데이터
- Loss function: 학습이 잘 되고 있는지 평가
- Optimizer: 어떻게 학습을 진행하는가

2.3.1 Layers

- Tensor를 입력받아 tensor를 출력하는 데이터 처리 모듈
- 대부분 가중치를 가짐 (dropout, pooling과 같이 가중치가 없는 layer도 있음)
- 많이 사용되는 Layer의 예
 - Fully connected layer (dense layer)
 - Convolution layer
 - Recurrent layer
 - Embedding layer

Layers in Keras: https://keras.io/layers/about-keras-layers/ (https://keras.io/layers/about-keras-layers/)

2.3.2 Model

- Layer를 쌓아 만드는 네트워크
- 일반적으로 하나의 input을 받아 하나의 output을 주는 층을 순서대로 쌓음
- 다양한 형태의 layer가 가능 (Keras Funtional API 활용: https://keras.io/getting-started/functional-api-guide/)
 - Input이 여러 개인 네트워크

- Output이 여러 개인 네트워크
- Inception block
- 적절한 network architecture를 찾는 것은 과학 보다는 예술의 경지! 창의력이 필요함
- 기존의 잘 작동한 architecture를 모방하는 방식으로 접근

2.3.3 Loss function

- Model을 통해 나온 prediction $\hat{v}^{(i)}$ 와 output $v^{(i)}$ 의 차이를 수량화
- 훈련하는 동안 최소화될 값
- 주어진 문제에 대한 성공 지표

$$J(w,b) = \frac{1}{m} \sum_{i=1}^{m} L(\hat{y}^{(i)}, y^{(i)})$$

- 해결하고자 하는 문제에 따라 표준적인 loss function이 존재함
 - Binary classification
 - 두 개의 클래스를 분류
 - 예) 문장을 입력하여 긍정/부정 구분
 - 。 Binary cross-entropy를 loss로 사용

$$L(\hat{y}^{(i)}, y^{(i)}) = -y^{(i)}log(\hat{y}^{(i)}) - (1 - y^{(i)})log(1 - \hat{y}^{(i)})$$

- Multi-class classification
 - 。 두 개 이상의 클래스를 분류
 - 예) 이미지를 0,1,2,...,9로 구분
 - 。 Categorical cross-entropy를 loss로 사용

$$L(\hat{y}^{(i)}, y^{(i)}) = -\sum_{c=1}^{C} y_c^{(i)} log(\hat{y}_c^{(i)})$$

- Regression
 - 。 연속형 값을 에측
 - 。예) 주가 예측
 - 。 Mean squared error를 loss로 사용

$$L(\hat{y}^{(i)}, y^{(i)}) = \frac{1}{2}(\hat{y}^{(i)} - y^{(i)})^2$$

Loss functions in Keras: https://keras.io/losses/#available-loss-functions (https://keras.io/losses/#available-loss-functions)

Problem type	Last-layer activation	Loss function
Binary classification	sigmoid	binary_crossentropy
Multiclass, single-label classification	softmax	categorical_crossentropy
Multiclass, multilabel classification	sigmoid	binary_crossentropy
Regression to arbitrary values	None	mse
Regression to values between 0 and 1	sigmoid	mse or binary_crossentropy

2.3.4 Optimizer

- Loss function을 기반으로 네트워크가 어떻게 업데이트 될지를 결정하는 알고리즘
- 특정한 종류의 stochastic gradient descent 알고리즘을 구현

Gradient descent

- Gradient: 특정한 점에서 함수 *f*의 기울기
- Gradient의 양의 방향 = 함수 f가 가장 빠르게 증가하는 방향
- Gradient의 음의 방향 = 함수 f가 가장 빠르게 감소하는 방향
 - 예)

$$f(x) = x^2$$

$$\frac{df(x)}{dx} = 2x$$

- x = -1에서의 gradient = -2
- f(x)가 가장 빠르게 감소하는 방향은 +2의 방향

• 예)

$$f(x,y) = x^2 + y^2$$

$$\nabla f(x,y) = \begin{bmatrix} 2x \\ 2y \end{bmatrix}$$

- (x,y) = (-1, -1)에서의 gradient = $(-2, -2)^T$ f(x)가 가장 빠르게 감소하는 방향은 $(2,2)^T$

• Gradient descent algorithm

$$x^{(k+1)} = x^{(k)} - \alpha \nabla f(x^{(k)})$$

- 초기값의 위치에서 가장 기울기가 가파른 방향($-\nabla f$)으로 조금(α , learning rate, step size)
- 이동한 지점에서 다시 gradient를 계산하고 가장 기울기가 가파른 방향으로 조금 이동
- Local minima로 수렴할 가능성이 있음
- 초기값의 위치에 따라 수렴속도가 매우 느릴 수 있음

Stochastic gradient descent (SGD) algorithm

- Gradient 계산 시 전체 데이터를 사용하지 않고 무작위로 선정된 일부 데이터(mini-batch)를 사용
- 계산속도가 빠름
- Local minima에 빠질 가능성을 줄여줌

Others variants

- weight를 업데이트 할 때 현재 ggradient 뿐만 아니라 이전에 업데이트된 weight, 기울기 등을 여러 방식으로 고려하려 SGD를 개선하는 방법들이 있음
- Adagrad, RMSProp, momentum, Adam 등이 많이 사용됨

Images credit: <u>Alec Radford (https://twitter.com/alecrad)</u>

Optimizers in Keras: https://keras.io/optimizers/)

Backpropagation

• 신경망은 여러 개의 텐서 연산으로 연결되어 있음

$$z = \mathbf{w}^{T} \mathbf{x} + b$$
$$y = \sigma(z)$$
$$L(\mathbf{w}) = \sum_{i} \frac{1}{2} (\hat{y}^{(i)} - y^{(i)})^{2}$$

- $\frac{dL}{dw_1}$ 을 어떻게 계산?
- Chain rule을 이용 (연쇄법칙)
 - 합성함수의 미분을 차례로 한 단계씩 계산해나가는 과정

$$y = (x^{2} + 1)^{3}, \frac{dy}{dx}?$$

$$g(x) = u = x^{2} + 1$$

$$y = f(u) = u^{3}$$

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = (3u^{2})(2x) = 3(x^{2} + 1)^{2}(2x) = 6x(x^{2} + 1)^{2}$$

• Chain rule을 사용하여 loss function의 gradient를 계산

$$\frac{dL}{dw_1} = \frac{dL}{dy}\frac{dy}{dz}\frac{dz}{dw_1}$$

- Loss 값에 각 parameter가 기여한 정도를 계산하기 위해 최상층 부터 하위 층까지 거꾸로 연쇄법칙을 적용하여 계산 backpropagation algorithm(reverse-mode automatic differentiation)
- Tensorflow처럼 symbolic differentiation이 가능한 프레임워크를 사용하여 빠르게 계산 가능

In [3]: # Do not run

model.compile(optimizer='adam', loss='binary_crossentropy')

2.3.5 Activation

• Sigmoid (inverse-logit)

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

- 0과 1사이의 값을 출력
- Output layer에서 확률값을 출력하고자 할 때 주로 사용
- Hypterbolic tangent

$$tanh(z) = 2\sigma(2z) - 1$$

- -1 < tanh(z) < 1
- Sigmoid의 이동한 형태
- Output이 0을 중심으로 분포하므로 sigmoid보다 학습에 효율적
- ReLU(Rectified Linear Unit)

$$Relu(z) = max(0, z)$$

- 최적화 과정에서 gradient가 0과 가까워져 수렴이 느려지는 문제를 해결
- 음수를 모두 0으로 처리하고 평균이 0이 되지 않는 다는 단점
- Leaky ReLU, ELU 등 변화된 형태도 있음
- Softmax

$$\sigma(z_j) = \frac{exp(z_j)}{\sum_{k=1}^{K} exp(z_k)}, j = 1, 2, ..., K$$

- 각 class의 score를 정규화 하여 각 class에 대한 확률값으로 변환(sum=1)
- Multi-class classification 문제의 output layer에서 사용

Activation functions in Keras: https://keras.io/activations/ (https://keras.io/activations/)

Sigmoid	Tanh	ReLU	Leaky ReLU
$g(z) = \frac{1}{1+e^{-z}}$	$g(z)=rac{e^z-e^{-z}}{e^z+e^{-z}}$	$g(z) = \max(0,z)$	$g(z) = \max(\epsilon z, z)$ with $\epsilon \ll 1$
$\begin{array}{c c} 1 \\ \hline \\ \frac{1}{2} \\ \hline \\ -4 & 0 \end{array}$	1 — 1 — 4 — 4 — — — — — — — — — — — — —	0 1	0 1

```
In []: # Do not run

model = Sequential()

model.add(Dense(9, input_shape=(8,)))

model.add(Dense(9, activation='relu'))

model.add(Dense(9, activation='relu'))

model.add(Dense(4, activation='softmax'))
```

References

- https://www.coursera.org/specializations/deep-learning (https://www.coursera.org/specializations/deep-learning)
- <u>Hands on Machine Learning with Scikit-Learn and Tensorflow, Aurélien Géron (http://www.hanbit.co.kr/store/books/look.php?p_code=B9267655530)</u>
- <u>Deep Learning with Python, François Chollet, (https://www.manning.com/books/deep-learning-with-python)</u>
- https://stanford.edu/~shervine/teaching/cs-229/