

SÍLABO TECNOLOGÍA DE CEREALES Y LEGUMINOSAS

ÁREA CURRICULAR: TECNOLOGÍA

CICLO: Electivo SEMESTRE ACADÉMICO: 2017-I

I. CÓDIGO DEL CURSO : 090838E1030

II. CRÉDITOS : 03

III. REQUISITO : 09083608040 -Tecnología de alimentos II

IV. CONDICIÓN DEL CURSO : Electivo

V. SUMILLA

El curso corresponde al área de Tecnología de la Escuela de Ingeniería en Industrias Alimentarias, siendo de carácter teórico práctico. Comprende los principios científicos y técnicos referente a los diferentes granos de cereales y leguminosas, su transformación industrial, así como del control de calidad de la materia prima y sus productos derivados. Los contenidos del curso se desarrollan en tres unidades de aprendizaje:

UNIDAD I. Estructura, composición, almacenamiento y

UNIDAD II. Control de calidad de cereales, leguminosas y productos derivados

UNIDAD III. Productos derivados de cereales y leguminosas

VI. FUENTES DE CONSULTA:

Bibliográficas

- Calaveras, J. (2004). Nuevo tratado de panificación y bollería. 622 p. Editorial Mundi —Prensa
- · Callejo González, María (2002). Industrias de cereales y derivados. España. Mundi Prensa.
- Dendy, David A.V. (2001). Cereales y productos derivados. Química y tecnología. Zaragoza. Editorial Acribia.
- De Zanche, Cesare (1991). Secaderos de cereales. España
- Hoseney, R. (1991). Principios de Ciencia y tecnología de los Cereales. España. Editorial Acribia.
- Kent, Norman Leslie (1971). Tecnología de los cereales. España. Editorial Acribia.
- Manley, Duncan J. (1983). Tecnología de la industria galletera; galletas, crakers y otros horneados. España. Editorial Acribia.
- · Quaglia, G. (1991). Ciencia y Tecnología de Panificación. España. Editorial Acribia.
- Repo-Carrasco V, R. (1995). Introducción a la ciencia y tecnología de cereales y de granos andinos. Perú.
- Robin C. E. Guy (2001). Extrusión de alimentos: tecnología y aplicaciones. España. Acribia, Editorial, S.A.
- · Serna Saldivar, Sergio R. (1996). Química, almacenamiento e industrialización de los cereales. Mexico AGT Editor.

VII. UNIDADES DE APRENDIZAJE

UNIDAD I. ESTRUCTURA, COMPOSICIÓN, ALMACENAMIENTO

OBJETIVOS DE APRENDIZAJE:

- Describir la estructura de los granos de cereales, leguminosas y cultivos andinos, sus diferencias y valorar su composición química y nutricional
- Explicar los métodos de almacenamientos de cereales, leguminosas, cultivos andinos y derivados para alargar su vida útil.

PRIMERA SEMANA

Primera sesión:

Introducción. Producción, Industrialización, Comercialización y Consumo de cereales y leguminosas en el Perú y el Mundo.

Segunda sesión:

Introducción. Control de Lectura. Formación de grupos.

SEGUNDA SEMANA

Primera sesión:

Estructura y Composición de Cereales y leguminosas.

Segunda Sesión:

Laboratorio N° 01: Análisis físicos de granos

TERCERA SEMANA

Primera Sesión:

Materias Primas (cereales y leguminosas) que se emplean en la industria de panificación, galletería y pastas alimenticias.

Segunda Sesión:

Laboratorio N° 02: Calidad Tecnológica de semillas en cereales y leguminosas

CUARTA SEMANA

Primera Sesión:

Almacenamiento de granos

Segunda Sesión:

Práctica Calificada N° 1. (P1)

UNIDAD II. CONTROL DE CALIDAD DE CEREALES, LEGUMINOSAS Y PRODUCTOS. DERIVADOS

OBJETIVOS DE APRENDIZAJE:

- Describir los métodos de control de calidad de los cereales y leguminosas, así como de las harinas que se obtienen
- Clasificar los diferentes tipos de granos y harinas de acuerdo a sus características fisicoquímicas y nutricionales.
- Conocer los diferentes organismos que regulan la calidad de los granos de cereales y leguminosas.

QUINTA SEMANA

Primera Sesión:

Cultivos Andinos y su procesamiento

Segunda Sesión:

Laboratorio Nº 03: Nixtamalización

SEXTA SEMANA

Obtención de harinas

Segunda Sesión:

Laboratorio N° 04: Molienda y granulometría

SÉPTIMA SEMANA

Primera Sesión:

Calidad en harinas

Segunda Sesión:

Práctica Calificada N° 2. (P2)

OCTAVA SEMANA

Examen parcial

UNIDAD III. PRODUCTOS DERIVADOS DE CEREALES Y LEGUMINOSAS

OBJETIVOS DE APRENDIZAJE:

 Enumerar los diversos productos industriales que se pueden obtener a base de cereales y leguminosas

- Describir los procesos que intervienen en la obtención de productos derivados de cereales y leguminosas
- Conocer las propiedades y características de los derivados de cereales y leguminosas

NOVENA SEMANA

Primera Sesión:

Mezclas alimenticias

Segunda Sesión:

Mezclas alimenticias

DÉCIMA SEMANA

Primera Sesión:

Malteo

Práctica Calificada N° 3. (P3)

Segunda Sesión:

Laboratorio N° 05: Malteo

UNDÉCIMA SEMANA

Primera Sesión:

Panificación. Métodos de Panificación

Segunda Sesión:

Laboratorio Nº 06: Elaboración de Panes

DUODÉCIMA SEMANA

Primera Sesión:

Panificación. Tipos de panes.

Segunda Sesión:

Laboratorio N° 07: Sucedáneos en panificación

DECIMOTERCERA SEMANA

Primera Sesión:

Galletería

Práctica Calificada N° 4. (P4)

Segunda Sesión:

Laboratorio N° 08: Elaboración de galletas

DECIMOCUARTA SEMANA

Primera Sesión:

Fideería

Segunda Sesión:

Laboratorio N° 09: Elaboración de fideos

DECIMOQUINTA SEMANA

Primera Sesión:

Extrusión

Segunda Sesión:

Laboratorio Nº 10: Obtención de harinas precocidas

DECIMOSEXTA SEMANA

Examen final.

Exposición de trabajos

DECIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

a. Matemática y Ciencias Básicas
b. Tópicos de Ingeniería
c. Educación General
0

IX. PROCEDIMIENTOS DIDÁCTICOS

Las clases se realizarán basadas en:

- Método Expositivo Interactivo. Comprende la exposición del docente y la interacción con el estudiante.
- Método de Discusión Guiada. Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones.
- Método de Demostración ejecución. Se utiliza para ejecutar, demostrar, practicar y retroalimentar lo expuesto.
- Trabajo Final: Los alumnos realizarán un trabajo final que será grupal en el que desarrollaran una metodología de análisis para un determinado tipo de alimento y lo expondrán.

X. MEDIOS Y MATERIALES

Equipos: Computadora, ecran, proyector multimedia

Materiales: Material del Docente, Guía Práctica y Textos base.

XI. EVALUACIÓN

El promedio final se obtiene del modo siguiente:

PF = (2*PE+EP+EF)/4

PE = ((P1+P2+P3+P4-MN)/3 + W1)/2

Donde:

PF = Promedio Final

EF = Examen Final

P1 = Práctica Calificada N° 1

P2 = Práctica Calificada N° 2

EP = Examen Parcial

P3 = Práctica Calificada N° 3

PE = Promedio de Evaluaciones

P4 = Práctica Calificada N° 4

W1= Trabajo MN= Menor nota de las prácticas calificadas

XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para las Escuelas Profesionales de: Ingeniería Electrónica, Ingeniería Industrial, Ingeniería Civil, Ingeniería de Industrias Alimentarias, se establece en la tabla siguiente:

K = clave **R** = relacionado **Recuadro vacío** = no aplica

(a)	Habilidad para aplicar conocimientos de matemática, ciencia e ingeniería			
(b)) Habilidad para diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos			
(c)	(c) Habilidad para diseñar sistemas, componentes o procesos que satisfagan las necesidades requeridas			
(d)	Habilidad para trabajar adecuadamente en un equipo multidisciplinario			
(e)	Habilidad para identificar, formular y resolver problemas de ingeniería			
(f)	Comprensión de lo que es la responsabilidad ética y profesional			
(g)) Habilidad para comunicarse con efectividad			
(h)	Una educación amplia necesaria para entender el impacto que tienen las soluciones de la ingeniería dentro de un contexto social y global.			
(i)	Reconocer la necesidad y tener la habilidad de seguir aprendiendo y capacitándose a lo largo de su vida.			
(j)	Conocimiento de los principales temas contemporáneos.	K		
(k)	Habilidad de usar técnicas, destrezas y herramientas modernas necesarias en la práctica de la ingeniería			

XIII. HORAS, SESIONES, DURACIÓN

a)	Horas de clase:	Teoría	Práctica	Laboratorio
		1	0	4

- b) Sesiones por semana: Una sesión teórica y una sesión de laboratorio.
- c) **Duración**: 6 horas académicas de 45 minutos.

XIV. JEFE DE CURSO

Ing. Germán Manuel Vásquez Castillo

XV. FECHA

La Molina, marzo de 2017.