

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 07027904 A

(43) Date of publication of application: 31.01.95

(51) Int. CI

G02B 5/02

B32B 7/02

B32B 27/04

B32B 27/20

G02F 1/1335

(21) Application number: 05167701

(22) Date of filing: 07.07.93

(71) Applicant:

MITSUI TOATSU CHEM INC

(72) Inventor:

KIKKAI MASAAKI NARIMATSU OSAMU HOSOKAWA YOICHI SAKAI YOSHIHIRO SANO AKIYOSHI

(54) LIGHT-DIFFUSING SHEET

(57) Abstract:

PURPOSE: To provide such a light-diffusing sheet that both of transmission efficiency and diffusion efficiency for light are largely improved compared with a conventional light-diffusing sheet and high brightness is obtd. when the sheet is used for a back light.

CONSTITUTION: This light-diffusing sheet is obtd. by forming a resin transparent layer 2 and a light-diffusing layer 3 on the one surface of a transparent plastic sheet 1. The difference of refractive index between the resin layer 2 and the plastic sheet 1 is small. The light-diffusing layer 3 consists of 30-97 pts.wt. plastic beads and 70-3 pts.wt. resin component.

COPYRIGHT (C)1995,JPO

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平7-27904

(43)公開日 平成7年(1995)1月31日

(51) Int.Cl. ⁶		all a	明記与	<u>1</u>	庁内整理番号	FΙ	技術表示箇所
G 0 2 B	5/02			В	9224-2K		~ 113 × 12 11/
B 3 2 B	7/02	1	0 3		7148 - 4F		
	27/04			Z	8413-4F		
	27/20			Z	8413-4F		
G 0 2 F	1/1335	5	3 0		7408 - 2K		
						審査請求	末請求 請求項の数4 OL (全 7 頁)
(21)出願番号	特顧平5-	特顧平 5-167701			(71)出願人	000003126	
							三并東圧化学株式会社
(22)出顧日		平成5年(1993)7月7日					東京都千代田区霞が関三丁目2番5号
						(72)発明者	吉開 正彰
							爱知県名古屋市南区丹後通2丁目1番地
							三井東圧化学株式会社内
						(72)発明者	成松 治
							爱知県名古屋市南区丹後通2丁目1番地
							三井東圧化学株式会社内
						(72)発明者	細川 羊一
							爱知県名古屋市南区丹後通2丁目1番地
							三并東圧化学株式会社内
							最終頁に続く

(54)【発明の名称】 光拡散シート

(57)【要約】

【目的】 従来の光拡散シートに比べて光の透渦効率・ 抵散功率がきるに大幅に向上せためられて、ペッケッイ 下に用いた場合高い輝度が得られる優れた素反射して下 全性宿生态。

【構成】 透明なファスチック に トか片表面にファス チックシートトの屈折をの差が小さい透明樹脂層、続い スプラスチックドーズ30~9 7重量部を樹脂分20~ 3 重量部からなる光拡散層を形成して光拡散し、下が得

【特許請求の範囲】

【請述項1】透明樹脂シートの片面に透明樹脂層を設け 更に「ウスチッケビーブと透明樹脂の混合層を積層した こと 主特徴とする先振.散シート。

【請主項2】透明樹脂層の光屈折牵と透明樹脂シートの 光屈折寺の差がロ、25以下である事を特徴とする請求 項1記載の光拡散シート。

【請手項3】フランチックビースの平均粒子径から~5 θ μ m であることを特徴とする請本項 1 記載の先拡散シ - F

【請木重4】プラスチュクビースと透明樹脂の混合比が プラフチックピース30~97重量部に対して透明樹脂 が70~3重量部であることを特徴とする請求項1の光 拡散。一下

【発明の詳細な説明】

[0001]

【産業上の利用分野】、体発明は光拡散シートに関する。 詳しては本発明は、透明樹脂層、続いてプラスチックビ ースを含む樹脂層を積層した透明樹脂シートからなる光 拡散 時間の高い光拡散:一下に関する。 料発明にかかる 20 光拡散シートは、ワートプロセッサーやパーフナルコン ピューダー、携帯型のビデオ録画機のモニター等の液晶 表示パネルのバックライト、プロシェクダー方式のディ スプレー等に使用するのに適している。

[00003]

【徒生の技術】近年、液晶表示装置は、からゆる分野で 使用されてきており、特に、サートプロセッサーギバー ソナルコンドューター、液晶表示方式のテレビなどの電 子産業与野で数多く使用されている。この液晶表示装置 の分野 言は、現在液晶素 示面のカルー化や大型化の傾向。30 を示しつつあり、これらの為には被晶表示面の表示品位 を向上させる6用がある。このために、液晶去子装置に 用いて行うベッキン子上は「少し」も多く力先を液晶部 に供給し、自じ切しなすを供給することが末められてい

【000日】また、一方で被晶素と装置は、省電力であ ることを特徴としており、また、この特徴を生かけため に使用するベックフィトも客電力をイプであるものが要 悪されている。

【0.004】 ベック / 子上がら来る 多量に かったってき 100 い、こかも使用する能力をいるとするみ。(1) 判置(1)

一方で、光線透過率が高しても光の拡散効率が低いと、 **光塵の明暗をそのまま液晶部に伝えるために、均っな画** 重が得られなくなる。 速って、液晶部の衰部に置く 万拡 散して上は、全面線透過中が高く、しかも光拡散効率の 高いものが求められている。

【0006】並も、用いいれてきた透明樹脂の表面をエ こずス処理した抵散シートでは、光線透過率は高いもの の人を拡散させる為の物質がシート中に存在しないため に拡散効率が悪って土分であった。拡散功率を向上させ るために特開半3 85586号記載には多数の円錐状 突起を有するアップチックシートが提案されている。し かし、光源を終晶部の後部に直接置く場合には、この拡 散シートを用いることにより切っな明るい光が得られる か、光源を導光板の横に置く場合には、横方向から光を 人財するため、円錐状空起物の効果がです光透過率、光 拡散効率が共に悪くなる欠点があり十分ではない。主 た、特開平1~172801号記載のシリコード球状粒 子を分散させた樹脂からなるシートは、光の拡散効率は 高くなるものの、シリコー、球状粒子自身による光の反 射が起こるために光が透過効率が悪くなり、明らい画面 が得られないという矢点があり、ともにかかる要請に応 えるには不十分であった。

[0007]

【発明が解決しようとする課題】 は発明の目的は、これ らの問題を解決し、従来の光拡散シートに比べて、光の 拡散的率が大幅に向上した、しかも主光線透過時が高 い、被晶表示装置に組み込んた場合高輝度の画面が得ら れる優れた光拡散、一トを供給することにある。

[0008]

【課題を解決するための手段】本発明者らは、鋭意検討 した結果透明樹脂。--トの片面に透明な樹脂層、好まし <江屈折楽が透明樹脂シートと屈折幸の差の少ない樹脂 層を横層すること、より透明 実樹脂 シート単体よりはる かにと透過症が向下 じょこと を発見した ニマー鬼に アン - クピープと注明樹脂の混合層を横層する事により * マチュウト - * よか好を情層した光度散と一下よ りはるか広光形散が大きいことを発見した。更にこれら **の町で積層すら事により相乗的に輝度が向上することか** 見いたし本創明寺完成した

【0000】脚口、长条用点变得过、透明糊脚。 上点 任命, 化新维度型 模式 医乳头 医乳头 医乳头 化二氯二甲二氯

manager and the state of the st "我说:我便说了一点,我们也没有一些人的身体。""你们,我们也没有一个人,我们也会会会会

ルサルフォン ポリエステル、ポリ (メタ) アクリレー ト、ポリカード字一ト、ポリア、ド及びポリ塩化ビニー ル等のはモポリマー またはこれら樹脂のモノマーと共 重合可能なモノマーとのコポリッ 等かに成るシートが 挙げられ、適宜選択して使用することが出来る。

【0011】また、透明樹脂層の先屈折寺と透明樹脂ン 一十の光望折寺の差がり、25以上である事が好まし く、ローココ以上であることが更に好ましい。 透明樹脂 層の光屈折至自透明樹脂シートの洗屈折点の差がり、2 5以上である場合には、透明樹脂シート、透明樹脂層。 透明樹脂層でインスチックビースと透明樹脂の混合層界 面での光の散乱・反射がないために光線誘調率が高くな る。- 方、屈折その差がり、25より大きい場合には透 明樹脂シートア透明樹脂層、透明樹脂層パラスチック ビースと透明樹脂の混合層界面での光の散乱・反射が起 ころために光線透過率が落ち、輝度の高い光拡散シート は得りしたたい。

【0012】透明樹脂層に用いる樹脂としては上記の条 作売満たしていれば特に限定しないが、例えばプラスチ ラグミートとしてポリエチレンテレフタレートを用いる。20 場合にはポリプチェアクリレート、ポリュチルアクリレ ートなどのアクリレート、メタクリレート樹脂、ポリプ 口比1.31、常见以升122、常见比率407.4 年一九、宋贝 酢酸ビニュたとの樹脂があげられる。

【0013】透明樹脂屬の形成法としてはカレンター。 法、押出法、キャスト法が使用でき、特に限定はしない が、液体状の樹脂を差布する場合には例えば、リバース ロールローター、デジドアコーター、バーコーター、ガ イローター、コンマコーター等のコーティング方法、主 たは、スプレー逐布法等の公知の桑布方法が挙げられ る。乾燥温度は通常100℃前後で、乾燥時間は通常1 分間前後である。

【0014】また。透明樹脂層の原みとしては特に限定 はしないが、知確性、インドリング性よりも、50gm ガ-女子ましい。

【0.015】 イスメチャラピー(表表表示) 非サフロト モン、ボリ塩化ビニリテン、ボリアクリロニモリシ、ホ リメチルメダクリニー 上、オリスチレン等のは主まりマ 一」したは、おもの樹脂のモノマーと共重合可能があれる しいはお思い。等からはるい、その学げられ、適官、40、配位したか。 With the Might be the total of

-1 mより大きくなると樹脂とのう散性が悪くなり、 また 生産性。ここドリング性が悪いなり好ましてない。

【0018】また、プラスチュニビースと混合する樹脂 としては、例えば、ポリトニルでルコール。 ロチレンニ ビニルアルコール世重合体、アクリル樹脂、ポリエステ ル樹脂、メチレン樹脂、アルキ・ド樹脂、アニノ樹脂、 ウレタン樹脂、エポキン樹脂等が重けられ、高宜選択し で使用することができる。また、上記で用いた透明樹脂 層の樹脂を同ってあってもかまいない、樹脂の形状は、 - エマルジェン型、ディスペーション型、震削型等が好法 しいが、金布できる比較ならばいずれの型でも使用でき

【0019】樹脂とプラスチュクヒースとの混合割合。 は、樹脂で0~3重量部に対してブラフチックヒーズ3 0~97重量部が好まして、樹脂50~5重量部に対し てプラスチョクビーノ50~95重量部がされに好まし い。樹脂とプラスチックビースとの混合割合かごの範囲 にある場合には変布した場合にプラスチックビースが密 に詰まった良好な金布膜が得られるが、樹脂の割合が大 さすぎるとプラスチュカビースが富に配列しないため に、元の拡散物系が悪くなる。一方、プラスチックビー スの割合が大きくなうと全布膜の接着強度が悪くなるた めに適したい。

【0000】樹脂とパパスチェクビーブとの混合物から なる先拡散層の形成法としてはリュースロール コータ 一、グラトアコーター、・シーコ・- ター、タイコーター。 は17で1年一年一等の会類のコー・ディン学方法が 室げられ

【ロロ31】樹脂とピシ ハチッツヒーブの混合層の厚み としてはプロスチッとビーズの事均粒子径より大き点。 プロスチックピーズの平均粒子径の三倍より小さいこと が好ましい。写みが上記の範囲書である場合にはプレス チャクピーでが、厨留に求んだ混合層が得り行う。 原 な イスチークピースの事物粒子詳1の引きい場合。は アースチックドースが金布されてい 一方。ファスカッ タン・スペパ 切除に直径り (倍調のおとさい場合には、部 今的にプラフチックビーズが「簡単もだ不均一で混合層 さんと約~な光の反射が得られた。なり好まし、ない。 乾燥温度計通常100℃前後で、乾燥時間計通常1分間

100 000 1

^{9.4} HANNE CHARLES AND THE BELL ST.

脂層を得た。これ透明樹脂層上に乾燥分中で90重量% のボリメチルメダクリレートビーズ(松本油脂製薬

(株)製マツモトマイクロスフェアーM 500:平均 粒子径20μm)を含むホリビニルアルコール(日本合成化学(株)製コーナノール区H 17)水溶液をメイヤーバーロー上点により塗布し、120でで2分間乾燥し、腱厚20μmの光拡散層を得た。得られた光拡散シートを導光板方式のコックライト装置(富土通(株))の光拡散シートの位置に置き、導光板上での輝度を測定した。また、得られたツートの全光線透過率。ペース(HAZE)を測定した。その結果を表1および表2に示す、輝度測定には1、ルタカメラ(株)製輝度計しS-110型を、全光線透過率、ペーズの測定には日本電色(株)製がDH 300Aを用いた。

【0023】実施例2

固用分45%のポリ酢酸ビニル(和光純菜(株)製:屈 折幸1.47) エタノール溶液を厚み100μmのポリエチレンテレフタレートシート(ユニチカ(株)製エンプレットT 100:屈折率1.66)の片面にメイヤーニーコート法により産布し、120%で2分間乾燥さ 20世、膜厚20μmの透明樹脂層立得た以外は実施例1と同様にして光拡散シートの輝度、光透過率、およびペーズを実施例1と同様にして制度、光透過率、およびペーズを実施例1と同様にして制定した。結果を表1に合わせて示す。

【0024】実施例3

実施例 1 において用いるプラスチックビーズをポリフチレンビーズ(積水化成品工業(株)製MBP: 平均粒発 3 O μ m) とした以外は実施例 1 と同様にして光拡散 シートを得たところ光拡散層の厚々は3 O μ m であった。この光拡散: 一上の輝度、光透過率、およびペーズを実 30施例 1 と同様にして測定した、結果を封 1 および表 2 に合わせて示す。

【0023】(4)施例4

生施例 1 においておりメチルマダクリン・トレープル割合を乾燥分中でも0 重量幅とした以外は実施例より同様によって抵散。一下に頻度、 によって抵散。一下を得た一下の変拡散。一下に頻度、 光線で過ぎ、およいた。 スを実施例 1 と同様によっ測定 した。結果を表しおよび表とに合わせ、小に

【ひひひも】狂鼬倒言

事験例11714年、直域下方は簡単監督と、必要が中で8 40 の重量性できませたとよるができません。 フェスカラメル フィルムを得た。この光拡散フィルムの輝度、光線透過 等、およびペーズを実施例1号同様にして測定した。結 集を表1および表2に合わせて示す。

【0028】比較例1

 ま面をマット状にコッホス加工した厚み100μmのポ サエチレッテレンタレートシート(東レ (株) 製、ルミ シー×44) 産光拡散シートとした。この光拡散シート 5用いた場合の輝度、光線透過浮むよびペープが実施例 1と同様にして測定した。結果を表14はひ表2に併せ 10 で元十。

【0029】比較例2

ンサコーン球状粒子(東芝ンサコーン(株)製トスパール120)とヌククサルブレポリマーとを混合し、二枚のカラス板の間に注入、硬化、ブレス延伸させ、厚み100μmの光拡散シートを得た。シート中のシサコン球状粒子の割合は5重量%であった。この光拡散シートを用いた場合の輝度、光線透過率、ペーズを実施例1と同様にして測定した。結果を表1および表2に併せて示す。

20 【0030】比較例3

厚カ0.5 mmのアルミ板に繰さ20μm、頂点の角度 50度の円錐上の凹部を形成した。このアルミ板ともう 一枚のアルミ板の間にメタクリルプレポリマーを注入、硬化させ厚み150μmの光拡散 アートを得た。この光拡散シートを用いた場合の輝度、光線透過率、およびペープを実施例1と同様にして測定した。結果を表141よび表2に併せて示す。

【0031】比較例4

実施例1において用いた厚み100μmのボリエチレン プレンタレートシートエにボリメチルメタクリレートピーズを敷き詰め、枚の鉄板の間に挟み230℃、15μ tmの条件で1時間熱でレンを行いビーズを開立した 得られたシートを先り抵散。一下とし、用い実施例1と 同様にして、頻度、光型は微率、及び、一つ空間立した た一結果を表したひ去でに併せる示す。

【0088】抵動網点

実施例1において乾燥分中で80重量%のボリスチェスタッリレートレースを含む水中分散型ペクリエエスエディンを小りエチレート・トトレストン・トール・ステン・ロース・トー・エースをし、1000円に対し、砂

The second secon

⁽⁴⁾ The first section of the first section is a section of the first section of the first section is a section of the first section

【0034】比較例7

園形分30%のクロロトリアルオロエザレン(ダイキン工業 (株) 製:屈折率1.38)の水性ディスパージョン溶液主実施例1において用いたボリエチレンテレフタレートシートの片面にメイヤーパーコート法により塗布し、120℃で2分間乾燥し、透明樹脂層を得た以外は実施例1と同様にして光拡散シートを得た。この光拡散シートの輝度、光線透過率、およびペーズを実施例1と同様にして測定した。結果を表1むよび表2に合わせて示す。

【0035】比較例8

実施例もにおいて用いたボリメチルメタクリレートビーズを積水化成品工業(株)製テクボリマーMB 10 0:平均経100μmとした以外は同様にして光拡散シートを得たところ光拡散層の厚みは100μmであった。得られた光拡散フィルムの輝度、光線透過率、およびペープを実施例1と同様にして測定した。結果を表1および去2に合わせて示す。

【0036】比較例9

実施例6において用いたポリメチルメタクリレートビー*20

*ズを積水化成品工業(株)製デタボリマーMB +4 : 平均全4μmとした以外は同様にして光拡散シートを得たところ光拡散層の厚みは4μmであった。得られた光振、散シートの輝度、光線透過率、およびペーズを実施例1と同様にして測定した。結果を表1および表2に合わせて示す。

【0037】比較例10

実施例1においてボリメチルメタクリレートビーズの割合を乾燥分中で9.9%ととした以外は実施例1と同様にして光拡散シートを作成したが、光拡散層の密着力がわる自良好な塗布膜が得られなかった。

【0038】比較例11

生施例1においてボリメチルメタクリレートビーズの割合を乾燥分中で25%ととした以外は実施例1と同様にして光拡散シートを得た。この光拡散シートの輝度、光線透過率、およひへ一ズを測定した結果を表1および表2に合わせて示す。

[0039]

【表1】

	基	オシート		透明樹脂層						
	樹脂*2	屈折率	厚み µm	樹 脂	屈折率	厚 み μm				
実施例 1	PET	1.66	100	アクリルエマルジョン	1. 53	20				
実施例 2	PET	1.66	100	ポリ酢酸ビニル	1.47	20				
実施例 3	PET	1.66	100	アクリルエマルジョン	1.53	20				
実施例 4	PET	1.66	100	アクリルエマルジョン	1.53	20				
実施例 5	PET	1.66	100	アクリルエマルジョン	1.53	20				
実施例 6	PC	1. 59	100	アクリルエマルジョン	1. 53	20				
比較例 1	PET	1. 66	100	 	 理					
比較例 2			_		9					
比較例 3	円錐状突起を有するPMMAシート									
比較例 4	PET	1.66	100	-	- [_				
比 較例 5	PET	1. 66	100		į	_				
比較例 6	PET	1.66	100	アクリルエマルジョン	1.53	20				
比較例 7	PET	1.66	100	PCTFE**	1. 38	20				
比較例 8	PC	1.59	100	アクリルエマルジョン	1. 53	20				
生物研究			i							

[- : }

	0 == 0 0 0 0 0 0 0	· decentrate	光拡散					
	樹脂"	ピーズ 粒子径 μ m	樹脂	ピーズ の割合 %		輝度 cd/㎡	光線透過率	ヘーズ
実施例 1	PMMA	20	PVA	90	20	1560	99. 7	99. 0
実施例 2	PMMA	20	PVA	90	20	1510	99. 2	98. 9
実施例 3	PS	30	PVA	90	30	1480	98. 9	99. 0
実施例 4	PMMA	20	PVA	60	20	1460	98.6	98. 6
実施例 5	PMMA	20	• 1	80	20	1530	99.4	98.5
実施例 6	PMMA	20	PVA	90	20	1450	98.6	98.8
比較例 1	-	_	-	-	-	880	98.4	90.0
比較例 2		-		-	- 6	990	95.0	92. 5
比較例 3	Si02	4	PMMA	2	1000	980	94.5	97.0
比較例 4	PMMA	20	-	100	20	880	96.6	9 0. 0
比較例 5	PMMA	20	PVA	80	20	860	95.1	97. 0
比較例 6	PMMA	20	-	100	20	760	96.0	91. 0
比較例 7	PMMA	20	PVA	90	20	980	94.0	99. 0
比較例 8	PMMA	4	PVA	90	4	910	99.0	84. 0
比較例 9	PMMA	100	PVA	90	100	960	98.0	99. 1
比較例10	PMMA	20	PVA	99	20	-		-
比較例11	PMMA	20	PVA	25	20	820	98. 8	85. 0

* 1

: アクリルエマルション

* 2 PLT:ポリエチレンテレフタレート

PC:ポリカーボネート

* 3 - PMMA: ポリメチルメタクリレート

PS:ポリスチレン

PVA: ホリビニルアルコール * 4

*5 PTCFE: ポリテトラクロロフルオロマチレン [0041]

【発明の効果】本章明のでラスチックジートと屈折率の 差が小さい樹脂を有する ジェスチョグシート むこえ ス チックピースを含む樹脂解を全布した光拡散し、下は、 従来の南北散ら一トと比って、高い赤禅透過幸とニース を保持し、アニン 諸晶麦子装置などの ニックライトに用 いると高い輝度で得くまるパラクスイト内なる。

【図面の簡単な説明】

【図1】 本発明の光拡散シートの一実施例の断面図で ある。

【図2】 光源部を透明な導光板の横に置く方式の、液 30 晶芸宗装置用バックライトの一実施例の概略図である。

【符号の説明】

- 1. 透明樹脂シート
- 2. 透明樹脂属
- 3. 混合層
- 4. 光源部
- う。 インスワス用電反射板
- 6. 噴光板
- 7. 医散板
- 8. バックか了下用光反射:--ド

(100)

フロントページの続き

(72) 卷明者 坂井 祥浩 愛知県名古屋市南区丹後通2丁目1番地 三井東圧化学株式会社内

(72) 発明者。佐野。明美 愛知県名古屋市南区丹後通2丁目1番地 三井東圧化学株式会社内