Національний університет «Львівська політехніка» Кафедра програмного забезпечення

Організація комп'ютерних мереж

к.т.н., ст. викл. Тушницький Р.Б. ruslan4yk@lp.edu.ua

Лекція 2 (ч. 2).

- 1. Комутація каналів.
- 2. Комутація пакетів.
- 3. Порівняння мереж з комутацією пакетів і каналів.
- 4. Розділення середовища.
- 5. Ethernet.
- 6. Декомпозиція задачі мережевої взаємодії.
- 7. Модель OSI.
- 8. Стандартизація мереж.

Розділення середовища

Розділення передавального середовища — принципи спільного використання каналу декількома інтерфейсами.

Розглянемо як це працює для мереж із комутацією пакетів.

Розділення середовища передачі довгий час був популярною концепцією побудови локальних мереж.

Ethernet, FDDI, Token Ring.

<u>нова сфера</u>:

домашні дротові мережі **Home PNA** = **Home Phoneline Networking Alliance**

персональні радіомережі Bluetooth.

Radio Ethernet

Розділення середовища: принципи

Розділюваним середовищем називають фізичне середовище передачі даних, до якого безпосередньо підключено декілька кінцевих вузлів мережі. Причому в кожний момент часу тільки один із кінцевих вузлів отримує доступ до розділюваного середовища і задіює її для передачі пакета (або декількох пакетів) другому вузлу, підключеному до цього ж середовища.

В якості розділюваного середовища може використовуватись коаксільний кабель, вита пара, оптоволокно або радіохвилі.

Один з підходів розділення середовища – метод випадкового доступу.

Управління доступом є децентралізованим: задіяні всі мережеві інтерфейси, що безпосередньо підключені до розділеного середовища.

(в комп'ютерах цю функцію виконують мережеві адаптери = мережеві інтерфейсні карти).

Розділення середовища: метод випадкового доступу

Метод випадкового доступу:

- 1. Комп'ютер може передавати дані по мережі тільки якщо мережа вільна (інший комп'ютер не бере участь в обміні і електричні сигнали відсутні).
- 2. Після того як комп'ютер впевнюється що середовище вільне, він починає передачу, «захоплюючи» середовище. Час монопольного використання розділюваним середовищем одним вузлом обмежується часом передачі одного кадру.
- 3. При попаданні кадру в розділюване середовище всі мережеві адаптери одночасно починають приймати цей кадр. Кожний з них аналізує адрес призначення, що розташований в одному з початкових полів кадру.
- 4. Якщо цей адрес співпадає з своїм адресом (адаптера), кадр поміщається у внутрішній буфер мережевого адаптера.

Розділення середовища: детермінований доступ

Колізія – ситуація, коли два або більш комп'ютерів вважають що мережа вільна і починають передавати дані.

Сумарний сигнал спотворюється.

Метод детермінованого доступу:

- 1. Використовується кадр спеціального формату, який називають маркером або токеном доступу.
- 2. Комп'ютер має право використовувати розділюване середовище тільки тоді коли він володіє токеном.
- 3. Час володіння токеном обмежене. Після закінчення терміну володіння токеном, комп'ютер зобов'язаний передати токен іншому комп'ютеру.
- 4. Правило, яке визначає порядок передачі токена має гарантувати кожному комп'ютеру доступ до розділюваного середовища протягом деякого фіксованого часу.

Розділення середовища: детермінований доступ

Метод детермінованого доступу може бути реалізований на основі:

- **розподіленого підходу** в мережі немає вузла, який визначає черговість володіння розділюваним середовищем;
- централізованого підходу такий вузол є, і називається арбітром доступу.

Причини структуризації локальних мереж

Перші локальні мережі (10-30 комп'ютерів) — 1 спільне для всіх підключених до мережі пристроїв розділюване середовище.

Топології: **спільна шина** (**зірка**) – Ethernet; **кільце** – FDDI, Token Ring.

Ці топології володіють *властивістю однорідності* – всі комп'ютери невиразні на рівні фізичних зв'язків.

=> Проста процедура нарощування кількості комп'ютерів.

Великі мережі — однорідна структура зв'язків є недоліком.

Обмеження:

- На довжину зв'язку між вузлами.
- На кількість вузлів в мережі.
- На інтенсивність трафіка, що породжується вузлами мережі.

Ethernet: тонкий коаксіл <= 185 м − 30 комп'ютерів. Якщо інтенсивно обмінюються інформацією → 20 → 10 комп'ютерів.

- Топологія фізичних зв'язків (фізична структура мережі)
- Конфігурація фізичних зв'язків визначається електричними з'єднаннями комп'ютерів і може бути представлена у вигляді графа, вузлами якого є комп'ютери і комунікаційне обладнання, а ребро відповідає відрізкам кабеля, що з'єднує пари вузлів.
- Топологія логічних зв'язків (логічна структура мережі)

Логічні зв'язки — шляхи проходження інформаційних потоків по мережам; вони утворюються шляхом відповідних налаштувань комунікаційного обладнання.

Мета фізичної структуризації єдиного розділюваного середовища— забезпечити побудову мережі не з одного, а з декількох фізичних відрізків кабеля.

Засоби: повторювач (repeater), концентратор (concentrator) = хаб (hub).

Рис. 3.15. Логическая и физическая топологии сети

Повторювач – використовується для фізичного з'єднання різних сегментів кабеля локальної мережі з метою збільшення загальної довжини мережі.

Повторювач повторює сигнали, які проходять з одного сегменту мережі в другі його сегменти, покращуючи фізичні характеристики: потужність, форму сигнала, синхронність слідування.

Добавлення в мережу повторювача завжди змінює її фізичну топологію, але при цьому залишає без змін логічну топологію.

Рис. 3.16. Повторители позволяют увеличить длину сети

Фізична структуризація локальної мережі: Repeater

Концентратор = **хаб** – повторювач, який має декілька портів і з'єднує декілька фізичних сегментів.

Використовуюся у всіх базових технологіях локальних мереж: Ethernet, Fast Ethernet, Gigabit Ethernet, Token Ring, FDDI, 100VG-AnyLAN, ArcNet.

Концентратор Ethernet повторює вхідний сигнал на всіх своїх портах, крім того, з якого поступив цей сигнал.

Концентратор Token Ring повторює вхідний сигнал тільки на одному, сусідньому порту.

Рис. 3.17. Концентраторы различных технологий

Фізична структуризація мережі не дає змогу справитися з такими проблемами:

- дефіцит пропускної здатності;
- неможливість використання в різних частинах мережі ліній зв'язку з різною пропускною здатністю.

Рис. 3.18. Изменение физической структуры сети не сказывается на производительности сети

Локалізація трафіка – поширення трафіка, призначеного для комп'ютерів деякого сегмента мережі, тільки в межах цього сегмента.

Логічна структуризація мережі – процес розбиття мережі на сегменти з локалізованим трафіком.

Логічна структуризація дає змогу диференціювати доступну пропускну здатність в різних частинах мережі.

Логічна структуризація мережі проводиться шляхом використання:

- мостів = bridge
- комутаторів = switch
- маршрутизаторів = router
- шлюзів = gateway.

Mict = bridge – ділить єдине середовище передачі на частини (логічні сегменти), передаючи інформацію з одного сегмента в інший тільки в тому випадку, якщо така передача потрібна, тобто адрес комп'ютера призначення належить іншому сегменту.

Правильно працює в тих мережах, в яких міжсегментні зв'язки не утворюють замкнутих контурів = петлі.

Рис. 3.19. Мост делит единую среду передачи

Micτ = bridge

Wireless ethernet bridge

Zyxel G-470 Wireless Ethernet Bridge, IEEE 802.11b/g

Рис. 3.20. Единая разделяемая среда с помощью моста преобразована в четыре разделяемых среды

Комутатор = switch – функціонально подібний до моста і відрізняється в основному більш високою продуктивністю.

Кожний інтерфейс має процесор, який обробляє кадри за алгоритмом моста, незалежно від процесора інших портів, тобто <u>паралельно</u>.

Mapшpyтизатop = router:

- Більш надійно і більш ефективно, чим міст, ізолюють трафік окремих частин мережі один від одного.
- Можуть працювати в мережах із замкнутими контурами забезпечують при цьому вибір оптимальних маршрутів.
- Можуть зв'язувати в єдину мережу мережі, побудовані на більш ранніх мережевих технологіях: # Ethernet + ATM.

Шлюз = gateway – дає змогу об'єднувати мережі, побудовані на суттєво різних програмних і апаратних платформах.

Unix vs Windows.

Komyтатор = switch

Коммутатор сетевой TP-Link TL-SF1008D

Коммутатор сетевой HP J8699A 48x10/ 100/ 1000TX, Модульной, 19'RM, RS-232

55,640.10 грн

Маршрутизатор=Router

Маршрутизатор D-Link DIR-130

680 грн.

Gateway

Шлюз LinkSys SPA8000-G5

2,405.40 грн

Hub vs Switch vs Router

Концентратор=Hub - найменш інтелектуальний: приймає дані в один порт, а потім ретранслює на всі порти. Це погано для безпеки і трафіку в мережі.

Комутатор=Switch сортує і розподіляє мережеві пакети, надіслані між пристроями в LAN. Співставляє IP-адрес і MAC адрес комп'ютерів. Коли дані надходять у комутатор, він тільки передає дані назад в порт, якому відповідає MAC-адреса даного комп'ютера. Допомагають зменшити трафік для всієї мережі.

Маршрутизатор=Router подібно до моста з'єднює дві або більше мереж, які можуть бути будь-якими комбінаціями мереж LAN, WAN, Internet. Використовує таблиці, щоб визначити найкращий шлях для розповсюдження мережевих пакетів які він отримує, і протокол ІСМР для зв'язку з іншими маршрутизаторами.

Маршрутизатор – більш складний пристрій, ніж комутатор - по суті спеціалізований комп'ютер.

Ethernet: технологія з комутацією пакетів

Ethernet – 10 Mbps.

Топологія:

- *на розділюваному середовищі* всі вузли розділяють спільне середовище передачі даних, мережа будується по топології загальної шини;
- *комутований варіант* дуплексні канали зв'язку, топологія дерева між двома будь-якими вузлами мережі є рівно 1 шлях.

Рис. 3.16. Сеть Ethernet на разделяемой среде

Рис. 3.17. Древовидная топология коммутируемой сети Ethernet

Ethernet: технологія з комутацією пакетів

Способи комутації:

- **дейтаграмна комутація пакетів** (**кадри**). Кадр має фіксований формат.
 - => мережа на комутаторах => кожний комутатор просуває кадри.
 - => мережа односегментна => функції комутаторів розпреділені в мережі між мережевими адапторами і розділюваним середовищем.

Адресація: кожний мережевий адаптер має унікальний адрес (MAC). Адрес Ethernet є плоским числовим адресом, ієрархія не використовується. Підтримуються адреса для вибіркового, широкомовного і групової розсилки.

Розділення середовища і мультиплексування:

- => мережа на комутаторах => кожний канал є дуплексним каналом зв'язку.
- => мережа на розділеному середовищі => кінцеві вузли застосовують спеціальний метод доступу з метою синхронізації використання єдиного напівдуплексного каналу. Всі вузли мають розпреділений випадковий метод доступу.

Ethernet: технологія з комутацією пакетів

Кодування: адаптери Ethernet працюють з тактовою частотою 20 MHz, передаючи в середовище прямокутні імпульси, що відповідають 0 і 1. Під час передачі даних — всі біти надсилаються із постійною швидкістю 10 Mbps (кожен біт за 2 такти). Швидкість визначається пропускною здатністю лінії зв'язку.

Надійність: підрахунок контрольної суми і передача її в кінці кадру. Якщо помилка – кадр відхиляється. Повторна передача кадрів не виконується (здійснюється протоколом TCP в мережах TCP/IP).

Черги:

- => мережа на комутаторах => організовуються з допомогою буферної пам'яті інтерфейсів комутатора.
- => мережа на розділеному середовищі => комутатори відсутні, тому затримки на внутрішніх буферах адаптерів Ethernet.

Архітектура і стандартизація мереж

Архітектура передбачає представлення мережі у вигляді системи елементів, кожний з яких виконує визначену часткову функцію.

Комунікаційний протокол — формалізований набір правил взаємодії вузлів мережі.

Модель взаємодії відкритих систем = Open System Interconnection = OSI рівні = стек протоколів

Архітектура комп'ютерної мережі визначає розподілення протоколів між елементами мережі — кінцевими вузлами (комп'ютерами) і проміжними вузлами (комутаторами і маршрутизаторами).

Проміжні вузли виконують лише транспортні функції стека протоколів, передаючи трафік між кінцевими вузлами.

Кінцеві вузли підтримують функції стеку протоколів, надаючи інформаційні послуги # веб-сервіс.

Таке розподілення функцій означає зміщення «інтелекта» мережі на її периферію.

Декомпозиція задачі мережевої взаємодії

Декомпозиція — розбиття одної складної задачі на декілька більш простих задач-модулів.

Чітко визначені функції кожного модуля.

Можливість незалежної розробки, тестування, модифікації.

Багаторівневий підхід — більш ефективна концепція, що розвиває ідею декомпозиції. Після декомпозиції модулі групуються і впорядковуються по рівнях, утворюючи ієрархію.

Рис. 4.2. Многоуровневый подход — создание иерархии задач

Декомпозиція задачі мережевої взаємодії

Міжрівневий інтерфейс = інтерфейс послуг — визначає набір функцій, які нижній рівень надає тому, який знаходиться вище.

Рис. 4.3. Концепция многоуровневого взаимодействия

Протокол і стек протоколів

Протокол ≡ інтерфейс — формалізований опис процедури взаємодії двох об'єктів.

Протокол – правила взаємодії модулів *одного рівня в різних вузлах*.

Інтерфейс – правила взаємодії модулів сусідніх рівнів в одному вузлі.

Рис. 4.5. Взаимодействие двух узлов

Протокол і стек протоколів

Стек протоколів – ієрархічно організований набір протоколів, достатній для організації взаємодії вузлів в мережі

Протоколи нижніх рівнів часто реалізуються комбінацією програмних і апаратних засобів; верхніх рівнів, як правило, програмними засобами.

Програмний модуль, який реалізує деякий протокол називають протокольною сутністю або просто протоколом.

Робота кожного протокольного модуля полягає в інтерпретації заголовків повідомлень, що надходять до нього, і виконанні пов'язаних з цим дій.

Модель OSI

Кінець 70-х рр. – вже існували також стеки протоколів **DECnet**, **TCP/IP**, **SNA**.

Поч. 80-х. рр. - міжнародна організація по стандартизації:

International Organization for Standartization = ISO =

International Standards Organization

- + International Telecommunications Union (ITU)
- + etc
- = модель взаємодії відкритих систем = Open System Interconnections = OSI.

Модель OSI:

- ✓ Визначає рівні взаємодії систем в мережах з комунікаціїю пакетів.
- ✓ Визначає стандартні назви рівнів.
- ✓ Визначає функції, які повинен виконувати кожен рівень.
- ✓ Не містить опису реалізацій конкретного набору протоколів.
- ✓ Описує лише системні засоби взаємодії, що реалізуються операційною системою, системними утилітами, системними апаратними засобами.
- ✓ Не включає засоби взаємодії застосувань кінцевих користувачів.

Модель OSI

Модель OSI: рівні

- 1. Прикладний
- 2. Представлення
- 3. Сеансовий
- 4. Транспортний
- 5. Мережевий
- 6. Канальний
- 7. Фізичний

API = Application Program Interface = прикладний програмний інтерфейс

Рис. 4.7. Вложенность сообщений различных уровней

Модель OSI

Модель OSI

Модель OSI

Дані	Рівень				
Дані	Прикладний	доступ до мережних служб			
Дані	Представлення	представлення і кодування даних			
Дані	Сеансовий	керування сеансом зв'язку			
Блоки	Транспортний	безпечне та надійне з'єднання «точка - точка»			
Пакети	<u>Мережний</u>	визначення маршруту та IP (логічна адресація)			
Кадри	Канальний	MAC та LLC (фізична адресація)			
Біти	<u>Фізичний</u>	кабель, сигнали, бінарна передача			

Модель OSI: фізичний рівень

Фізичний = Physical Layer – передача потоку бітів по фізичним каналам зв'язку: коаксільний кабель, вита пара, оптоволоконний кабель, або цифровий територіальний канал.

Функції реалізуються на всіх пристроях, підключених до мережі. Зі сторони комп'ютера функції виконуються мережевими адаптерами або послідовним портом.

10Base-T:

- > Ethernet,
- неекранована вита пара категорії 3 з волоконним опором 100 Ом,
- ▶ роз'єм RJ-45,
- тах довжина фізичного сегмента 100 м,
- манчестерський код для представлення даних в кабелі
- > etc.

Модель OSI: канальний рівень

Канальний = Data Link Layer – забезпечує прозорість з'єднання для мережевого рівня. Для цього він надає йому такі послуги:

- Встановлення логічного з'єднання між взаємодіючими вузлами.
- Узгодження в рамках з'єднання швидкостей передавача і приймача інформації.
- Забезпечення надійності передачі, виявлення і корекція помилок.

Перший рівень, який працює в режимі комутації пакетів.

Формує з пакетів свою протокольну одиницю даних — **кадри**, які складаються з поля даних і заголовка. Поміщає пакет в поле даних одного або декількох кадрів і заповнює своєю службовою інформацією.

Функції засобів канального рівня:

- В локальних мережах має забезпечувати доставку кадру між <u>будь-якими</u> вузлами мережі. При цьому припускається що мережа має типову топологію (загальна шина, кільце, зірка, дерево). # Ethernet, FDDI, Token Ring.
- В глобальних мережах має забезпечувати доставку кадру тільки між двома <u>сусідніми</u> вузлами, з'єднаними індивідуальною лінією зв'язку. # двохточкових з'єднань PPP, HDLC. Можуть бути побудовані мережі довільної топології.

Модель OSI: канальний рівень

Протоколи канального рівня реалізуються як на кінцевих вузлах (засобами мережевих адаптерів і їх драйверів), так і на всіх проміжних мережевих пристроях (мости, комутатори, маршрутизатори).

- 1. Мережевий рівень відправника передає канальному рівні пакет, а також вказівки якому вузлу його передати.
- 2. Для цього формується кадр = дані + заголовок. Канальний рівень інкапсулує (поміщає) дані в поле даних кадру + службова інфа. В заголовку **адрес** призначення, на основі якого комутатори мережі будуть просувати пакет.
- 3. Пошук і корекція помилок. Фіксування границь кадра -> FCS = Frame Check Sequence = контрольна послідовність кадра.
- 4. Входить не обов'язкова функція повторної передачі пошкоджених *кадрів*. # в Ethernet, Token Ring, FDDI, Frame Relay відсутня.
- 5. В мережах, побудованих на <u>розділюваному середовищі</u> виконує ще таку функцію: перевіряє доступність розділюваного середовища. Цю функцію іноді виділяють в окремий підрівень управління доступом до середовища = Medium Access Control = MAC.
- 6. Якщо розділюване середовище вільне кадр передається засобами фізичного рівня в мережу.

Модель OSI: канальний рівень

Протокол канального рівня працює в межах мережі, що є одною з складових більш крупної складової мережі, яка об'єднана протоколами мережевого рівня.

Адреса, з якими працює протокол канального рівня, використовуються для доставлення кадрів тільки в межаї цієї мережі, а для переміщення пакетів між мережами застосовуються вже адреса мережевого рівня.

Модель OSI: мережний рівень

Мережний = Network Layer – служить для формування єдиної транспортної системи, що об'єднює декілька мереж, які називаються **складовою мережею** або **інтернетом**.

Технологія, що дає змогу об'єднювати в єдину мережу множину мереж, в загальному випадку побудованих на різних технологіях, називається технологією міжмережної взаємодії = internetworking.

Модель OSI: мережний рівень

Функції мережного рівня реалізуються:

- Групою протоколів
- Спеціальними пристроями маршрутизаторами.

Мережні адреса NET-A1, NET-A2 Адрес канального рівня MAC1 Віртуальні канали ID1, ID2

Одна з функцій маршрутизатора — фізичне з'єднання мереж.

Маршрутизатор має декілька мережевих інтерфейсів, до яких може бути приєднана одна мережа.

Модель OSI: мережний рівень

Дані разом з заголовком утворюють **пакет**. Заголовок пакета мережного рівня має уніфікований формат, який не залежить від формату кадрів канального рівня тих мереж, які можуть входити в складову мережу, і несе крім службової інформації дані про адрес призначення цього пакета.

Вузли складової мережі мають адреса, унікальні в межах даної складової мережі. Такі адреса називаються мережними = глобальними.

Кожен вузол крім <u>адреса</u> (з канального рівня) повинен мати <u>мережний адрес</u>.

Задача — визначення маршруту — послідовності мереж (або маршрутизаторів), через які повинен пройти пакет, щоб попасти до адресата. Таблиця маршрутизації.

Вирішує задачу створення надійних і гнучких бар'єрів на шляху небажаного трафіка між мережами.

На мережному рівні визначається два види протоколів:

- 1. Маршрутизовані протоколи реалізують просування пакетів через мережу.
- 2. Маршрутизаційними протоколами = протоколами маршрутизації з їх допомогою маршрутизатори збирають інформацію про топологію міжмережних з'єднань, на основі яких здійснюється вибір маршруту просування пакетів.

Модель OSI: транспортний рівень

Транспортний = Transport Layer – забезпечує застосуванням або верхнім рівням стека – прикладному, представленню і сеансовому – передачу даних з тим рівнем надійності, який їм вимагається.

Визначено **5 класів транспортного сервіса** від нижчого класа 0 до вищого 4. Відрізняються якістю послуг: терміновістю, можливістю відновлення перерваного зв'язку, наявністю засобів мультиплексування декількох з'єднань між різними прикладними протоколами через спільний транспортний протокол, можливістю виявлення і виправлення помилок передачі (спотворення, втрата, дублювання) пакетів.

Вибір класа залежить від класу задач застосувань, від надійності системи передачі даних.

Всі протоколи, починаючи з транспортного рівня і вище, реалізуються програмними засобами кінцевих вузлів мережі — компонентами з мережних операційних систем. # протоколи **TCP** і **UDP** стека **TCP/IP**, протокол **SPX** стека **NoveII**.

Протоколи нижніх 4 рівнів загально називають мережним транспортом, або транспортною підсистемою.

Модель OSI: сеансовий рівень

Сеансовий = Session Layer – керує взаємодією сторін: фіксує, яка з сторін є активною в поточний момент, і надає засоби синхронізації сеансу.

Ці засоби дають змогу в ході довгих передач зберігати інформацію про стан цих передач у вигляді контрольних точок, щоб у випадку відмови можна було вернутися назад до останньої контрольної точки, а не починати все з початку.

На практиці не багато застосувань використовують сеансовий рівень.

Модель OSI: рівень представлення

Рівень представлення = Presentation Layer – забезпечує представлення інформації, яка передається по мережі, не міняючи при цьому її зміст.

За рахунок рівня представлення інформація, що передається прикладним рівнем однієї системи, завжди зрозуміла прикладному рівні іншої системи.

З допомогою засобів даного рівня протоколи прикладних рівнів можуть подолати синтаксичні відмінності в представленні даних або відмінностях в кодах символів, # **ASCII EBCDIC**.

На цьому рівні можуть виконуватись шифрування і дешифрування даних, завдяки чому секретність обміну інформації забезпечується одразу для всіх прикладних служб.

протоколу – SSL = Secure Socket Layer – шар захищених сокетів, який забезпечує секретний обмін повідомленнями для протоколів прикладного рівня стека TCP/IP.

Модель OSI: прикладний рівень

Прикладний = Application Layer — набір різних протоколів, з допомогою яких користувачі мережі отримують доступ до розділюваних ресурсів, # файли, принтери, гіпертекстові сторінки, організація роботи по протоколу епошти.

Одиниця даних – повідомлення.

```
# HTTP.
# реалізації мережевих файлових служб:
# NFS і FTP в стеку TCP/IP,
# SMB в Microsoft Windows,
# NCP в операційній системі Novell NetWare
```

Модель OSI vs мережі з комутацією каналів

OSI – описує процес взаємодії пристроїв в мережі з <u>комутацією пакетів</u>.

Загальної моделі для мереж з комутацією каналів немає.

Чому?

- 1. Різні типи телефонних мереж мають власні стеки протоколів, що відрізняються кількістю рівнів і розприділенням функцій між рівнями.
- 2. Первинні мережі **SDH** або **DWDM** також мають власну ієрархію протоколів.
- 3. Сучасні мережі з комутацією каналів задіюють цю техніку лише для передачі користувацьких даних, а для управління процесом встановлення з'єднання в мережі і спільного управління мережею застосовують техніку комутації пакетів. # ISDN, SDH, DWDM.

Стандартизація мереж: відкрита система

Суть мережі – з'єднання різного обладнання.

Потреба сумісності, загальноприйнятих стандартів для обладнання.

Ідеологічною основою стандартизації є модель **OSI**.

Відкрита система — будь-яка система, яка побудована у відповідності до відкритих специфікацій.

комп'ютер, обчислювальна мережа, ОС, програмний пакет, апаратні продукти

Відкрита специфікація — опублікована, загальнодоступна специфікація, яка відповідає стандартам і прийнята в результаті обговорення всіма зацікавленими сторонами.

Переваги:

- 1. Можливість побудови мережі з апаратних і програмних засобів різних виробників, які дотримують того ж самого стандарту.
- 2. Легка заміна окремих компонент мережі іншими, білш вдосконалених, що дає змогу мережі розвиватись мінімальними затратами.
- 3. Легкість сполучення одної мережі з іншою.

Стандартизація мереж: джерела стандартів

Стандарти окремих фірм

- # стек протоколів **SNA** компанії **IBM**,
- # графічний інтерфейс **OPEN LOOK** для **Unix**-систем компанії **Sun**.

Стандарти спеціальних комітетів і об'єднань

- # стандарти технології **ATM** : **ATM Forum** = {100 колективних учасників},
- # стандарти союзу Fast Ethernet Alliance щодо 100 Mpbs Ethernet.

Національні стандарти

- # стандарт **FDDI** iнституту **ANSI**,
- # стандарти безпеки для ОС, розроблен π х центром **NCSC** Мін-оборони США.

Міжнародні стандарти

- # модель і стек комунікаційних протоколів організації **ISO**,
- # стандарти організації **ITU**,
- # стандарти на мережі з комутацією пакетів X.25, мережі Frame Relay, ISDN,
- # модеми

etc.

Ethernet = Digital Equipment + Intel + Xerox ->> IEEE 802.3 ->> ISO 8802.3

Стандартизація Інтернета

Інтернет – приклад відкритої системи.

Стандарти, що визначають роботу Інтернет – теми для обговорення = Request For Comments = RFC

Оранізації: ISO, ITU-Т

Спільнота Інтернета = Internet Society = ISOC
Рада по архітектурі Інтернета = Internet Architecture Board = IAB
Internet Research Task Force = IRTF — дослідницькі проекти TCP/IP.
Internet Engineering Task Force = IETF — поточні тех-проблеми,
специфікації

Всі документи **RFC** на відміну від стандартів **ISO** є у вільному доступі.

Стандартні стеки комунікаційних протоколів

Стеки протоколів:

OSI

IPX/SPX

NetBIOS/SMB

DECnet

SNA

TCP/IP:

Ініціатива Міністерства оборони США для зв'язку **ARPAnet** з іншими мережами.

Університет Берклі реалізував протоколи стека у своїй версії ОС Unix.

Відповідність стеків протоколів моделі OSI

Модель OSI	IBM/Microsoft	TCP/IP	Novell	Стек OSI			
Прикладной	SMB	Telnet, FTP, SNMP.		X.400, X.500, FTAM			
Представления	SIVIB	SMTP, WWW	NCP, SAP	Протокол уровня представления OSI			
Сеансовый				Свансовый протокол OSI			
Транспортный	NetBIOS	TCP	SPX	Транспортный протокол OSI			
Сетевой		IP, RIP, OSPF	IPX, RIP, NLSP	ES-ES, IS-IS			
Канальный	802.3 (E	802.3 (Ethernet), 802.5 (Token Ring), FDDI, ATM, PPP					
Физический		Коаксиал, экранированная и неэкранированная витая пара, оптоволокно, радиоволны					

Рис. 4.14. Соответствие популярных стеков протоколов модели OSI

Відповідність стеків протоколів моделі OSI

Причини невідповідності:

- 1. Принцип ієрархії: кожний вищий рівень дає запити для нижнього рівня і навпаки. Одиниці даних вищого рівня інкапсульовані в нижньому.
- 2. Ідеальна декомпозиція передбачає те, що всі модулі, віднесені до одного рівня, відповідальні за вирішення загальної для всіх них задачі.

Інформаційні і транспортні послуги

Транспортні послуги — передача інформації між користувачами мережі у незмінному вигляді. При цьому мережа приймає інформацію від користувача на одному з інтерфейсів, передає її через проміжні комутатори і видає іншому користувачеві через другий інтерфейс.

об'єднання локальних мереж клієнтів.

Інформаційні послуги — надання користувачу деякої нової інформації. Завжди пов'язана з обробкою інформації: збереження в упорядковому вигляді (файлова система, БД), пошук і перетворення інформації.

існували до появи мереж – довідкові послуги телефонних мереж

Використовується: програмування, управління БД і файловими архівами, вебсервіс, електронна пошта.

Інфокомунікаційні мережі.

<u>Спеціалісти інформаційних технологій</u> – програмісти, розробники БД, адміністратори ОС, веб-дизайнери.

Мережеві спеціалісти – вибір топології, підтримка комунікаційного обладнання.

Розподілення протоколів по елементам мережі

Рис. 4.15. Соответствие функций различных устройств сети уровням модели OSI

Література

- 1. Олифер В.Г., Олифер Н.А. Компьютерные сети. Принципы, технологии, протоколы: Учебник для вузов. 3-е изд. СПб.: Питер, 2006. 956 с.
- 2. Олифер В.Г., Олифер Н.А. Компьютерные сети. Принципы, технологии, протоколы: Учебник для вузов. 4-е изд. СПб.: Питер, 2010. 944 с.