Algorithms and datastructures Exercises

Kristoffer Klokker 2022

Contents

6	Uge			
	6.1		te the following according to figure 1	•
		6.1.a	The attributes of each realtion	•
		6.1.b	The tuples of each realtion	
		6.1.c	The components of one tuble of each realtion	4
		6.1.d	The relation schema of each realtion	4
		6.1.e	The database schema	4
		6.1.f	A suitable domain of each attribute	4
		6.1.g	Another equivalent way to present each relation	4
6.2 In a table with the following attributes which are valid exa				
		of key	s	Ę
	6.3	How n	nany ways can relation be represented if it has:	Ę
		6.3.a	Four attributes and five tuples	
		6.3.b	n attributes and m tuples	ţ
	6.4	a database schema of the following relations	٦	
		6.4.a	Write a schema for <i>Product</i>	ļ
		6.4.b	Write a schema for PC	
		6.4.c	Write a schema for <i>Printer</i>	(
		6.4.d	Write an alternation for Printer and delete the at-	
			tribute color	(
		6.4.e	Add an od attribute for PC, which defaults to none an	
			otherwise can be cd or dvd	(

6 Uge

6.1 Indicate the following according to figure 1.

acctNo	type	balance
12345	savings	12000
23456	checking	1000
34567	savings	25

The relation Accounts

$\underline{\hspace{0.1in} \mathit{firstName}}$	lastName	idNo	account
Robbie	Banks	901-222	12345
Lena	Hand	805-333	12345
Lena	Hand	805-333	23456

The relation Customers

Figure 1: Two relations of a banking database

6.1.a The attributes of each realtion

Accounts: acctNo, type, balance

Customers: firstName, lastName, idNo, account

6.1.b The tuples of each realtion

• 12345, savings, 12000

• 23456, checking, 1000

 \bullet 34567, savings, 25

- Robbie, Banks, 901 222, 12345
- Lena, Hand, 805 − 333, 12345
- \bullet Lena, Hand, 805 333, 23456

6.1.c The components of one tuble of each realtion

12000

Banks

6.1.d The relation schema of each realtion

Accounts(acctNo, type, balance)Customers(firstName, lastName, idNo, account)

6.1.e The database schema

Accounts, Customers

6.1.f A suitable domain of each attribute

- acctNo INT
- type VARCHAR[20]
- balance INT
- firstName VARCHAR[20]
- lastName VARCHAR[20]
- *idNo CHAR*[7]
- ullet account INT

6.1.g Another equivalent way to present each relation.

The attributes could simply just be in a different order.

6.2 In a table with the following attributes which are valid example of keys

title, year, length, genre, studioName, producerC#

- title, year
- title, year, studioName
- title, length
- length, genre, studioName, year

6.3 How many ways can relation be represented if it has:

6.3.a Four attributes and five tuples

 $4! \cdot 5! = 2880$

6.3.b n attributes and m tuples

 $n! \cdot m!$

6.4 Write a database schema of the following relations

The datasbase schema includes Product(make, model, type) PC(model, speed, ramhd, price) Laptop(model, speed, ram, hd, screen, price) Printer(model, color, type, price)

6.4.a Write a schema for Product

CREATE TABLE Product(VARCHAR[20] maker, INT model, INT type) The type is here an int where 0 is PC, 1 is laptop and 2 is printer. There is no foreign keys due to it being the lookup table for the other relations

6.4.b Write a schema for *PC*

CREATE TABLE PC(INT model, FLOAT speed, INT ram, BOOLEAN hd, FLOAT prize, FOREIGN KEY(Products) REFERENCES Products(model)) Here the model is a reference to products, speed is gigahertz of CPU

6.4.c Write a schema for *Printer*

CREATE TABLE Printer(INT model, BOOLEAN color, VARCHAR[20] type, FLOAT price, FOREIGN KEY(Products) REFERENCES Products(model))

6.4.d Write an alternation for Printer and delete the attribute color

ALTER TABKE Printer DROP color

6.4.e Add an *od* attribute for PC, which defaults to none an otherwise can be cd or dvd

ALTER TABLE PC ADD VARCHAR[20] od DEFAULT 'none'