Chapitre: APPLICATAIONS LINEAIRES

1. Définitions - Propriétés

Dans ce paragraphe E et F sont des \mathbb{K} -espaces vectoriels et où $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$.

Définition 1. Une application f de E dans F est une application linéaire si :

1.
$$\forall (x,y) \in E^2$$
, $f(x+y) = f(x) + f(y)$ 2. $\forall (\lambda,x) \in \mathbb{K} \times E$, $f(\lambda x) = \lambda f(x)$

Propriété 1. Soit f une application de E dans F. Alors, $f(0_E) = 0_E$

Démonstration : A faire

- $1^{i\hat{e}re}$ méthode: Calculer $f(0_E) = f(0_E + 0_E)$ et conclure
- $2^{i\grave{e}me}$ méthode : Soit $\lambda\in\mathbb{K}\setminus\{1\}$. Calculer $f\left(\lambda\times 0_{_E}\right)$ et conclure

Propriété 2. Soit f une application de E dans F.

f est une application linéaire $\Leftrightarrow \forall (\lambda, x, y) \in \mathbb{K} \times E \times E$, $f(x + \lambda y) = f(x) + \lambda f(y)$

Démonstration:

- On a évidemment l'implication \Rightarrow
- Supposons que $\forall (\lambda, x, y) \in \mathbb{K} \times E \times E$, $f(x + \lambda y) = f(x) + \lambda f(y)$
 - O Alors pour $\lambda = 1$, on a: $\forall (x, y) \in E^2$, f(x+y) = f(x) + f(y)

Exemple 1. Dites, dans chacun des cas suivants, que les applications de E dans F sont linéaires ou non :

1.
$$E = \mathbb{R}^2$$
, $F = \mathbb{R}$ et $f(x, y) = xy$

Réponse:

Soient par exemple: $u = (1,1) \in \mathbb{R}^2$ et $\lambda = -\sqrt{2}$. Alors $f(\lambda u) = f(-\sqrt{2}, -\sqrt{2}) = 2$ et $\lambda f(u) = -\sqrt{2}$. D'où

 $f(\lambda u) \neq \lambda f(u)$: f n'est donc pas une application linéaire.

2.
$$E = \mathbb{R}^2$$
, $F = \mathbb{R}^3$ et $f(x,y) = (x^2, -2x + y, x)$

Réponse:

Soient par exemple: $\mathbf{u} = (1,0) \in \mathbb{R}^2$ et $\mathbf{v} = (0,1) \in \mathbb{R}^2$. Alors $\mathbf{f}(\mathbf{u}+\mathbf{v}) = \mathbf{f}(1,1) = (4,-2,1)$ et $\mathbf{f}(\mathbf{u}) + \mathbf{f}(\mathbf{v}) = (1,-2,1) + (0,1,0) = (1,-1,1)$. D'où $\mathbf{f}(\mathbf{u}+\mathbf{v}) \neq \mathbf{f}(\mathbf{u}) + \mathbf{f}(\mathbf{v})$: \mathbf{f} n'est donc pas une application linéaire.

3. $E = \mathbb{R}^2$, $F = \mathbb{R}$ et f(x,y) = x + y

Réponse: Soient: $u = (x, y) \in \mathbb{R}^2$, $v = (a, b) \in \mathbb{R}^2$ et $\lambda \in \mathbb{R}$

Alors $f(u + \lambda v) = f(x + \lambda a, y + \lambda b) = x + \lambda a + y + \lambda b = (x + y) + \lambda (a + b) = f(u) + \lambda f(v)$.

 $f(u + \lambda v) = f(u) + \lambda f(v)$: f est donc une application linéaire. D'où

4. $E = \mathcal{M}_2(\mathbb{R})$ et f(M) = AM - MA où A est un élément fixé de E.

Réponse: Soient: $(M, N) \in \mathcal{M}_2(\mathbb{R})^2$ et $\lambda \in \mathbb{R}$.

Alors $f(M+\lambda N) = A(M+\lambda N) - (M+\lambda N)A = (AM-MA) + \lambda(AN-NA) = f(M) + \lambda f(N)$

 $f(M + \lambda N) = f(M) + \lambda f(N)$: f est donc une application linéaire. D'où

5. $E = \mathbb{R}[X]$, $F = \mathbb{R}[X]$ et $f(P) = (X^2 - 1)P'' + 2XP'$

Réponse: Soient: $(P,Q) \in \mathbb{R}[X]^2$ et $\lambda \in \mathbb{R}$.

Alors $f(P + \lambda Q) = (X^2 - 1)(P + \lambda Q)'' + 2X(P + \lambda Q)' = (X^2 - 1)(P'' + \lambda Q'') + 2X(P' + \lambda Q')$ $= (X^{2} - 1)P'' + 2XP' + \lambda((X^{2} - 1)Q'' + 2XQ') = f(P) + \lambda f(Q).$

 $f(P + \lambda Q) = f(P) + \lambda f(Q)$: f est donc une application linéaire. D'où

TD 1. Montrer que les applications $f \in \mathcal{F}(E,F)$ suivantes sont linéaires

1. Montr $E = \mathbb{R}^3$, $F = \mathbb{R}^2$ et f(x, y, z) = (x - y + z, 2x - z)

2.
$$E = \mathcal{M}_2(\mathbb{R})$$
, $F = \mathbb{R}$ et si $M = \begin{pmatrix} x & y \\ z & t \end{pmatrix}$ alors $f(M) = x + t - 2$.

3. $E = \mathcal{C}([a,b],\mathbb{R})$, $F = \mathbb{R}$ et $f(u) = \int_a^b u(t) dt$ 4. $E = \mathcal{M}_n(\mathbb{R})$ où n est un entier supérieur ou égal à 2, $F = \mathbb{R}$ et si $M = (a_{ij})$ alors

 $f(M) = Tr(M) = \sum_{i=1}^{n} a_{ii}$ (Tr(M) est appelé la trace de la matrice M).

Définition 2. Soit f une application linéaire de E dans F.

- 1. On dit aussi que f un **morphisme** d'espaces vectoriels.
- 2. Si E = F alors on dit que f est un **endomorphisme** de E.
- 3. Si $F = \mathbb{K}$ alors on dit que f est une forme linéaire sur E.
- 4. Si f est bijectif alors on dit que f un **isomorphisme** de E.
- Si E = F et si f est bijectif alors on dit que f un automorphisme de E.

Remarque 1. Notations

- 1. On note $\mathcal{L}(E,F)$ l'ensemble des applications linéaires de E dans F.
- 2. Si E = F alors $\mathcal{L}(E,E) = \mathcal{L}(E)$ est l'ensemble des endomorphismes de E.

Propriété 3. Soit f une application de E dans F. Alors, pour tout $(x_1, x_1, ..., x_n) \in E^n$

$$\text{et tout } \left(\lambda_{_{1}},\lambda_{_{2}}...,\lambda_{_{n}}\right) \in \mathbb{K}^{_{n}} \text{ , on a : } f\!\left(\sum_{k=1}^{n}\lambda_{_{k}}x_{_{k}}\right) = \sum_{k=1}^{n}\lambda_{_{k}}f\!\left(x_{_{k}}\right).$$

Démonstration : Par récurrence

• Pour n = 1 on a par définition $f(\lambda_1 x_1) = \lambda_1 f(x_1)$

• Soit
$$n \in \mathbb{N}^*$$
, $(x_1, x_2, ..., x_n) \in E^n$ et $(\lambda_1, \lambda_2, ..., \lambda_n) \in \mathbb{K}^n$ tels que $f(\sum_{k=1}^n \lambda_k x_k) = \sum_{k=1}^n \lambda_k f(x_k)$

• Montrons que pour
$$(x_1, x_2, ..., x_n, x_{n+1}) \in E^{n+1}$$
 et $(\lambda_1, \lambda_2, ..., \lambda_n, \lambda_{n+1}) \in \mathbb{K}^{n+1}$ on a $f\left(\sum_{k=1}^{n+1} \lambda_k x_k\right) = \sum_{k=1}^{n+1} \lambda_k f\left(x_k\right)$.

$$f\Bigg(\sum_{k=l}^{n+l} \lambda_k x_k\Bigg) = f\Bigg(\Bigg(\sum_{k=l}^{n} \lambda_k x_k\Bigg) + \lambda_{n+l} x_{n+l}\Bigg)^{\text{par d\'efinition}} = f\Bigg(\sum_{k=l}^{n} \lambda_k x_k\Bigg) + f\left(\lambda_{n+l} x_{n+l}\right)\Bigg)$$

 $\overset{\text{hypothèse de récurrence}}{=} \sum_{k=1}^{n} \lambda_{k} f\left(x_{k}\right) + \lambda_{n+1} f\left(x_{n+1}\right) = \sum_{k=1}^{n+1} \lambda_{k} f\left(x_{k}\right)$

Propriété 4. Soient E, F et G trois \mathbb{K} -espaces vectoriels, $f \in \mathcal{L}(E,F)$ et $g \in \mathcal{L}(F,G)$ Alors:

1. $g \circ f \in \mathcal{L}(E,G)$

2. Si f est bijective alors $f^{-1} \in \mathcal{L}(F, E)$

Démonstration : A REFAIRE

• Soient $(\lambda, x, x') \in \mathbb{K} \times E \times E$

On a
$$g \circ f(x + \lambda x') = g[f(x + \lambda x')] = g[f(x) + \lambda f(x')]$$
 car $f \in \mathcal{L}(E, F)$

$$= g[f(x)] + \lambda g[f(x')] \text{ car } g \in \mathcal{L}(F, G)$$

$$= g \circ f(x) + \lambda g \circ f(x')$$

• Soient $(\lambda, y, y') \in \mathbb{K} \times F \times F$. Il existe alors $(x, x') \in E^2$ tel que $f^{-1} \circ f(x) = \dots (y, y') = (f(x), f(x'))$.

On a
$$f^{-1}(y) = \dots$$
, $f^{-1}(y') = \dots$ $\forall x \in E$, $f^{-1} \circ f(x) = \dots$?
Et $f^{-1}(y + \lambda y') = f^{-1}(f(x) + \lambda f(x')) = f^{-1} \circ f(x + \lambda x') = x + \lambda x'$
 $= f^{-1}(y) + \lambda f^{-1}(y')$

TD 2. Montrer que f est une application linéaire de \mathbb{K} dans \mathbb{K} si et seulement s'il existe $\lambda \in \mathbb{K}$ tel que $\forall x \in \mathbb{K}$, $f(x) = \lambda x$.

Propriété 5. Soient $f \in \mathcal{L}(E,F)$, E_1 un sous-espace vectoriel de E et F_1 un sous espace vectoriel de F. Alors $f(E_1)$ est un sous-espace vectoriel de F et $f^{-1}(F_1)$ est un sous-espace vectoriel de E.

Démonstration : A REFAIRE

• . Comme $E_1 \subset E$ alors $f(E_1) \subset F$

$$f(E_1) \neq \emptyset$$
 car $f(0_E) = \dots$ et donc $\dots \in f(E_1)$

Soient $(y_1, y_2) \in f(E_1)^2$ et $\lambda \in \mathbb{K}$

Il existe alors $(x_1, x_2) \in E_1^2$ tel que $y_1 = f(x_1)$ et $y_2 = f(x_2)$.

D'où $y_1 + \lambda y_2 = f(x_1) + \lambda f(x_2) = f(x_1 + \lambda x_2)$

Comme $x_1 + \lambda x_2 \in E_1$ alors $y_1 + \lambda y_2 \in f(E_1)$ et donc $f(E_1)$ est un sous-espace de F.

• Comme $F_1 \subset F$ alors $f^{-1}(F_1) \subset E$

 $f^{-1}\big(F_{_{\! I}}\big)\!\neq\!\varnothing\ car\ f\big(0_{_{\! E}}\big)\!=\!......\ et\ donc\\in f^{-1}\big(F_{_{\! I}}\big)$

Soient $(x_1, x_2) \in f^{-1}(F_1)^2$ et $\lambda \in \mathbb{K}$.

Il existe alors $(y_1, y_2) \in F_1^2$ tel que $x_1 = f^{-1}(y_1)$ et $x_2 = f^{-1}(y_2)$.

D'où $x_1 + \lambda x_2 = f^{-1}(y_1) + \lambda f^{-1}(y_2) = f^{-1}(y_1 + \lambda y_2)$

Comme $y_1 + \lambda y_2 \in F_1$ alors $x_1 + \lambda x_2 \in f^{-1}(F_1)$ et donc $f^{-1}(F_1)$ est un sous-espace de E

$$\begin{split} &\textbf{Propriété 6.} \ \ \text{Soient} \ f \in \mathcal{L}\big(E,F\big), \big(e_1,e_2,...,e_n\big) \ \text{une famille de } n \ \ \text{vecteurs}, n \geq 1, \ \text{de } E \ . \ \text{Alors} \\ &f \left(\text{Vect}\big(e_1,e_2,...,e_n\big) \right) = \text{Vect}\big(f\big(e_1\big),f\big(e_2\big),...,f\big(e_n\big) \big). \end{split}$$

Démonstration : Soit $x \in Vect(e_1, e_2, ..., e_n)$. Il existe $(\lambda_1, \lambda_2, ..., \lambda_n) \in \mathbb{K}^n$ tel que $x = \sum_{i=1}^n \lambda_i e_i$.

 $D\text{'où }f\left(x\right) = f\!\left(\sum_{i=1}^{n} \lambda_{i} e_{i}\right) = \sum_{i=1}^{n} \lambda_{i} f\left(e_{i}\right) \in Vect\!\left(f\left(e_{i}\right), f\left(e_{2}\right), ..., f\left(e_{n}\right)\right).$

Remarque 2. Cette propriété est très utile pour déterminer une famille génératrice, puis une base de l'image en dimension finie.

2. Noyau – Image, d'une application linéaire

Définition 3. Noyau

Soit $f \in \mathcal{L}(E,F)$. On appelle noyau de l'application linéaire l'ensemble, noté $\ker f$, défini par : $\ker f = f^{-1}\big(\big\{0_F\big\}\big)$

$$= \{ x \in E / f(x) = 0_F \}$$

Corollaire 1. Soit $f \in \mathcal{L}(E,F)$. Alors ker f est un sous-espace vectoriel de E.

Exemple 2. Déterminer une base du noyau des applications linéaires suivantes:

1.
$$u \in \mathcal{L}(\mathbb{R}^4, \mathbb{R}^3)$$
 tel que $u(x, y, z, t) = (x + y + 2t, 2x - y + 4z, 3x + 2y + z + 6t)$

Réponse: $\ker \mathbf{u} = \left\{ \left(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{t} \right) \in \mathbb{R}^4 / \mathbf{u} \left(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{t} \right) = \mathbf{0}_{\mathbb{R}^3} \right\}$

Soit $(x, y, z, t) \in \mathbb{R}^4$

 $\left(x,y,z,t\right) \in \ker u \iff u\left(x,y,z,t\right) = 0_{\mathbb{R}^3} \iff \left(x+y+2t,2x-y+4z,3x+2y+z+6t\right) = \left(0,0,0\right)$

$$\begin{cases} x + y + 2t = 0 \\ 2x - y + 4z = 0 \\ 3x + 2y + z + 6t = 0 \end{cases} \Leftrightarrow \begin{cases} x + y + 2t = 0 \\ -3y + 4z - 4t = 0 \\ -y + z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x + y + 2t = 0 \\ -3y + 4z - 4t = 0 \Leftrightarrow \\ -z + 4t = 0 \end{cases} \Leftrightarrow \begin{cases} x = -6t \\ y = 4t \\ z = 4t \\ t \in \mathbb{R} \end{cases}$$

Conclusion: $\ker u = \{(-6t, 4t, 4t, t) / t \in \mathbb{R}\} = \operatorname{Vect}(\varepsilon_1) \text{ avec } \varepsilon_1 = (-6, 4, 4, 1) \in \mathbb{R}^4$

2.
$$u \in \mathcal{L}(\mathbb{R}_2[X], \mathbb{R}^2)$$
 tel que $u(P) = (P(0), P'(0))$

Réponse:
$$\ker u = \left\{ P \in \mathbb{R}_2 \left[X \right] / u \left(P \right) = 0_{\mathbb{R}^2} \right\}$$

Soit
$$P \in \mathbb{R}_2[X]$$
. Posons $P = aX^2 + bX + c$

$$P \in \ker u \iff u(P) = 0_{\mathbb{R}^2} \iff (P(0), P'(0)) = (0, 0) \iff (c, b) = (0, 0) \Leftrightarrow \begin{cases} P = aX^2 \\ a \in \mathbb{R} \end{cases}$$

Conclusion: $\ker u = \left\{ aX^2 / a \in \mathbb{R} \right\} = \operatorname{Vect}(X^2)$.

3.
$$u \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R})$$
 tel que $u(M) = Tr(A)$

Réponse:
$$\ker u = \{A \in \mathcal{M}_2(\mathbb{R}) / u(A) = 0\}$$

Soit
$$A \in \mathcal{M}_2(\mathbb{R})$$
. Posons $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

$$A \in \ker u \iff u(A) = 0 \iff a + d = 0 \iff \iff \begin{cases} A = \begin{pmatrix} a & b \\ c & -a \end{pmatrix} \\ (a, b, c) \in \mathbb{R}^3 \end{cases}$$

$$A \in \ker u \iff u(A) = 0 \iff a + d = 0 \iff \Leftrightarrow \begin{cases} A = \begin{pmatrix} a & b \\ c & -a \end{pmatrix} \\ (a, b, c) \in \mathbb{R}^3 \end{cases}$$

$$\text{Conclusion: } \ker u = \left\{ \begin{pmatrix} a & b \\ c & -a \end{pmatrix} / (a, b, c) \in \mathbb{R}^3 \right\} = \operatorname{Vect}(A_1, A_2, A_3), \text{ avec } A_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, A_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \text{ et } A_3 =$$

$$\mathbf{A}_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

TD 3. Déterminer une base du noyau des applications linéaires suivantes

1.
$$u \in \mathcal{L}(\mathbb{R}^4, \mathbb{R}^3)$$
 tel que $u(x, y, z) = (2x - y + z, 2x + t, y - z + t)$

2.
$$u \in \mathcal{L}(\mathcal{M}_{2}(\mathbb{R}))$$
 tel que et si $M = \begin{pmatrix} x & y \\ z & t \end{pmatrix}$ alors $u(M) = \begin{pmatrix} 2x + t & x + y + t \\ x + z + t & -2x - t \end{pmatrix}$

3. $u \in \mathcal{L}(\mathcal{M}_{2}(\mathbb{R}))$ et $A = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$ tel que $u(M) = AM$.

4. $u \in \mathcal{L}(\mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R}))$ tel que $u(f) = f'' - 4f' + 4f$.

5. $u \in \mathcal{L}(\mathbb{R}^{3})$ tel que $u(1,0,0) = (-1,1,1)$, $u(0,1,0) = (0,1,0)$ et $u(0,0,1) = (-2,1,2)$

3.
$$u \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}))$$
 et $A = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$ tel que $u(M) = AM$.

4.
$$u \in \mathcal{L}(\mathcal{C}^{\infty}(\mathbb{R},\mathbb{R}))$$
 tel que $u(f) = f'' - 4f' + 4f$.

5.
$$u \in \mathcal{L}(\mathbb{R}^3)$$
 tel que $u(1,0,0) = (-1,1,1), u(0,1,0) = (0,1,0)$ et $u(0,0,1) = (-2,1,2)$

Propriété 7. Soit $f \in \mathcal{L}(E,F)$. f est injective si et seulement si ker $f = \{0_E\}$

Démonstration : A REFAIRE

Soit
$$(x,y) \in E^2$$
 tel que $f(x) = f(y)$

$$f(x) = f(y) \Leftrightarrow f(x) - f(y) = 0_F \Leftrightarrow f(x-y) = 0_F \text{ car } f \text{ est linéaire}$$

$$\Leftrightarrow x - y \in \ker f$$
Donc f est injective si et seulement si $\ker f = \{0_F\}$

Définition 4. Image

Soit $f \in \mathcal{L}(E,F)$. On appelle image de l'application linéaire l'ensemble, noté Im f, défini par: $Im f = f(E) = \{f(x), x \in E\}$ $= \{ y \in F / \exists x \in E, f(x) = y \}$

Corollaire 2. Soit $f \in \mathcal{L}(E,F)$. Alors Im f est un sous-espace vectoriel de F.

Exemple 3. Déterminer une base du l'mage des applications linéaires suivantes:

1.
$$f \in \mathcal{L}(\mathbb{R}^4, \mathbb{R}^3)$$
 tel que $f(x, y, z, t) = (x + y + 2t, 2x - y + 4z, 3x + 2y + z + 6t)$

Réponse:

$$\mathbb{R}^4 = \operatorname{Vect}(\epsilon_1, \epsilon_2, \epsilon_3, \epsilon_4) \text{ avec } \epsilon_1 = (1,0,0,0), \ \epsilon_2 = (0,1,0,0), \ \epsilon_3 = (0,0,1,0) \text{ et } \epsilon_4 = (0,0,0,4)$$

$$\operatorname{Im} f = f\left(\mathbb{R}^4\right) = f\left(\operatorname{Vect}(\epsilon_1, \epsilon_2, \epsilon_3, \epsilon_4)\right) = \operatorname{Vect}\left(f\left(\epsilon_1\right), f\left(\epsilon_2\right), f\left(\epsilon_3\right), f\left(\epsilon_4\right)\right) \text{ (Voir propriété 6)}$$

$$\operatorname{Or} \ f\left(\epsilon_1\right) = (1,2,3), \ f\left(\epsilon_2\right) = (1,-1,2), \ f\left(\epsilon_3\right) = (0,4,1) \text{ et } f\left(\epsilon_2\right) = (2,0,6)$$

$$\operatorname{D'où} \ \operatorname{Im} f = \operatorname{Vect}\left(u_1, u_2, u_3, u_4\right) \text{ où } u_k = f\left(\epsilon_k\right) \text{ pour } k \in \llbracket 1, 4 \rrbracket.$$

$$\operatorname{Im} f = \operatorname{Vect}\left(u_1, u_2, u_3, u_4\right) \subset \mathbb{R}^3$$

$$\operatorname{dim}\left(\mathbb{R}^3\right) = 3$$
 alors
$$\operatorname{dim}\left(\operatorname{Im} f\right) \leq 3 \text{ donc la famille est liée.}$$

Or
$$\det(\operatorname{mat}(u_1, u_2, u_3), \operatorname{bc}) = \begin{vmatrix} 1 & 1 & 0 \\ 2 & -6 = 1 & 4 \\ 3 & 2 & 1 \end{vmatrix} = 1$$
 donc la famille (u_1, u_2, u_3) est une famille libre de

Im f et une base de \mathbb{R}^3 .

En conclusion: Im $f = Vect(u_1, u_2, u_3, u_4) = Vect(u_1, u_2, u_3)$ car u_4 peut s'écrire comme combinaison linéaire de u_1 , u_2 et u_3 . D'où une base de Imf est (u_1, u_2, u_3) et alors Imf = $\text{Vect}(u_1, u_2, u_3) = \mathbb{R}^3$

2. $f \in \mathcal{L}(\mathbb{R}_2[X], \mathbb{R}^2)$ tel que f(P) = (P(0), P'(0))

Réponse:

$$\mathbb{R}_{2}[X] = \text{Vect}(1, X, X^{2})$$

$$\text{Im } f = f(\mathbb{R}_{2}[X]) = f(\text{Vect}(1, X, X^{2})) = \text{Vect}(f(1), f(X), f(X^{2})) \text{ (Voir propriété 6)}$$

$$\text{Or } f(1) = (1, 0), \ f(X) = (0, 1) \text{ et } f(X^{2}) = (0, 0)$$

$$\text{D'où Im } f = \text{Vect}((1, 0), (0, 1), (0, 0)) = \text{Vect}((1, 0), (0, 1)) = \mathbb{R}^{2}$$

$$\text{En conclusion : Im } f = \text{Vect}((1, 0), (0, 1)) \text{ . D'où une base de Im } f \text{ est } ((1, 0), (0, 1)).$$

3. $f \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R})$ tel que u(M) = Tr(A)

$$\mathcal{M}_{2}(\mathbb{R}) = \text{Vect}(A_{1}, A_{2}, A_{3}, A_{4}) \text{ avec } A_{1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, A_{2} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, A_{3} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \text{ et } A_{4} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\text{Im } f = f\left(\mathcal{M}_{2}(\mathbb{R})\right) = f\left(\text{Vect}(A_{1}, A_{2}, A_{3}, A_{4})\right) = \text{Vect}\left(f\left(A_{1}\right), f\left(A_{2}\right), f\left(A_{3}\right), f\left(A_{4}\right)\right) \text{ (Voir propriété 6)}$$

$$\text{Or } f\left(A_{1}\right) = 1, \ f\left(A_{2}\right) = 0, \ f\left(A_{3}\right) = 0 \text{ et } f\left(A_{4}\right) = 1$$

$$\text{D'où Im } f = \text{Vect}(1, 0, 0, 1) = \text{Vect}(1, 1) = \text{Vect}(1) = \mathbb{R}$$

En conclusion : Im f = Vect(1). D'où une base de Im f est (1).

TD 4. Déterminer une base du l'mage des applications linéaires suivantes

1.
$$u \in \mathcal{L}\left(\mathbb{R}^4, \mathbb{R}^3\right)$$
 tel que $u(x, y, z) = (2x - y + z, 2x + t, y - z + t)$

2.
$$u \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}))$$
 tel que et si $M = \begin{pmatrix} x & y \\ z & t \end{pmatrix}$ alors $u(M) = \begin{pmatrix} 2x+t & x+y+t \\ x+z+t & -2x-t \end{pmatrix}$
3. $u \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}))$ et $A = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$ tel que $u(M) = AM$.

3.
$$\mathbf{u} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}))$$
 et $\mathbf{A} = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$ tel que $\mathbf{u}(\mathbf{M}) = \mathbf{A}\mathbf{M}$

4. $u \in \mathcal{L}(\mathbb{R}^3)$ tel que u(1,0,0) = (-1,1,1), u(0,1,0) = (0,1,0) et u(0,0,1) = (-2,1,2)

Propriété 8. Soit $f \in \mathcal{L}(E,F)$. f est surjective si et seulement si Im f = F

Démonstration: Exercice

Propriété 9. Soient $f \in \mathcal{L}(E,F)$ et $(e) = (e_1,e_2,...,e_n)$ une famille de n vecteurs, $n \ge 1$, de E . Alors :

- 1. Si (e) est liée alors la famille $(f(e_1),f(e_2),...,f(e_n))$ est une famille liée de F .
- 2. Si (e) est libre et si f est injective alors la famille $(f(e_1),f(e_2),...,f(e_n))$ est libre de F .

Démonstration: Exercice

3. Structure de $\mathcal{L}(E,F)$ et de $\mathcal{L}(E)$

Propriété 10.

- 1. L'ensemble $\mathcal{L}(E,F)$ est un sous-espace vectoriel de l'ensemble $\mathcal{F}(E,F)$.
- 2. L'ensemble $(\mathcal{L}(E),+,\circ)$ est un anneau.

Démonstration: Exercice

4. Application linéaire en dimension finie – Théorème du rang

Dans ce paragraphe on suppose que les K-espaces vectoriels E et F sont de dimension finie.

Définition 5. Rang d'une application linéaire

Soit $f \in \mathcal{L}(E,F)$. On appelle rang de l'application linéaire f, le nombre entier, noté rg(f), défini par rg(f) = dim(Im f).

Exemple 4. Déterminer le rang des applications linéaires suivantes:

1.
$$f \in \mathcal{L}(\mathbb{R}^4, \mathbb{R}^3)$$
 tel que $f(x, y, z, t) = (x + y + 2t, 2x - y + 4z, 3x + 2y + z + 6t)$ **Réponse:**

D'après l'exemple 3.1 $\operatorname{Im} f = \operatorname{Vect}(u_1, u_2, u_3) = \mathbb{R}^3 \operatorname{donc dim}(\operatorname{Im} f) = \operatorname{rg}(f) = 3$

2.
$$u \in \mathcal{L}(\mathbb{R}_2[X], \mathbb{R}^2)$$
 tel que $u(P) = (P(0), P'(0))$ **Réponse:**

D'après l'exemple 3.2 $\operatorname{Im} f = \operatorname{Vect}((1,0),(0,1)) = \mathbb{R}^2$ donc $\operatorname{dim}(\operatorname{Im} f) = \operatorname{rg}(f) = 2$

3.
$$u \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R})$$
 tel que $u(M) = Tr(A)$

Réponse:

D'après l'exemple 3.3 $\operatorname{Im} f = \operatorname{Vect}(1) = \mathbb{R}$ donc $\operatorname{dim}(\operatorname{Im} f) = \operatorname{rg}(f) = 1$

TD 5. Déterminer le rang des applications linéaires suivante

1.
$$u \in \mathcal{L}(\mathbb{R}^4, \mathbb{R}^3)$$
 tel que $u(x, y, z) = (2x - y + z, 2x + t, y - z + t)$

2.
$$u \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}))$$
 tel que et si $M = \begin{pmatrix} x & y \\ z & t \end{pmatrix}$ alors $u(M) = \begin{pmatrix} 2x+t & x+y+t \\ x+z+t & -2x-t \end{pmatrix}$

3.
$$u \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}))$$
 et $A = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$ tel que $u(M) = AM$.

4.
$$u \in \mathcal{L}(\mathbb{R}^3)$$
 tel que $u(1,0,0) = (-1,1,1)$, $u(0,1,0) = (0,1,0)$ et $u(0,0,1) = (-2,1,2)$

5.
$$E = \mathbb{R}_3[X]$$
, $F = \mathbb{R}_3[X]$ et $f(P) = (X^2 - 1)P'' + 2XP'$

Propriété 11. Soit $f \in \mathcal{L}(E,F)$. Si f est un isomorphisme alors dim $E = \dim F$

Démonstration: Exercice

Propriété 12. Théorème du rang

Soit $f \in \mathcal{L}(E,F)$. Alors $\dim E = \dim(\ker f) + \operatorname{rg}(f)$

Démonstration: Posons $n = \dim E$, $n \ge 1$, et $p = \dim(\ker f)$, $p \ge 0$.

Soit $(u_1, u_2, ..., u_p)$ une base de ker f

D'après le théorème de la base incomplète, on peut compléter la famille $(u_1, u_2, ..., u_p)$ par n-p vecteurs $u_{p+1}, u_{p+2}, ..., u_n$ de E pour former une base de E.

Alors $E = Vect(u_1, u_2, ..., u_n, u_{n+1}, ..., u_n)$ et

$$Im f = Vect(f(u_1), f(u_2), ..., f(u_p), f(u_{p+1}), ..., f(u_n))$$

$$= Vect(f(u_{p+1}), ..., f(u_n))$$

$$car f(u_1) = f(u_2) = ... = f(u_p) = 0_F$$

La famille est-elle $(f(u_{p+1}),...,f(u_n))$ libre?

Supposons qu'il existe $(\lambda_{p+1},...,\lambda_n) \in \mathbb{K}^{n-p} \setminus \{0_{\mathbb{K}^{n-p}}\}$ tel que $\sum_{k=p+1}^n \lambda_k f(u_k) = 0_F$.

$$\begin{split} \sum_{k=p+1}^{n} \lambda_{k} f\left(u_{k}\right) &= 0_{F} \quad \Leftrightarrow \quad f\left(\sum_{k=p+1}^{n} \lambda_{k} u_{k}\right) = 0_{F} \quad \Leftrightarrow \quad \sum_{k=p+1}^{n} \lambda_{k} u_{k} \in \ker f \\ & \Leftrightarrow \quad \exists \left(\lambda_{1}, ..., \lambda_{p}\right) \in \mathbb{K}^{p} / \sum_{k=p+1}^{n} \lambda_{k} u_{k} = \sum_{k=1}^{p} \lambda_{k} u_{k} \\ & \Leftrightarrow \quad \exists \left(\lambda_{1}, ..., \lambda_{n}\right) \in \mathbb{K}^{n} \setminus \left\{0_{\mathbb{K}^{n}}\right\} / \sum_{k=p+1}^{n} \lambda_{k} u_{k} - \sum_{k=1}^{p} \lambda_{k} u_{k} = 0_{E} \\ & \Leftrightarrow \quad \exists \left(\alpha_{1}, ..., \alpha_{n}\right) \in \mathbb{K}^{n} \setminus \left\{0_{\mathbb{K}^{n}}\right\} / \sum_{k=p+1}^{n} \alpha_{k} u_{k} = 0_{E} \end{split}$$

Exemple 5.

1. Soit $f \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^3)$. f peut-elle être injective? surjective?

Réponse: D'après le théorème du rang on a: $\dim(\mathbb{R}^2) = \dim(\ker f) + \operatorname{rg}(f)$ ie $\dim(\ker f) + \operatorname{rg}(f) = 2$

- Si f est injective alors $\ker f = \{0_{\mathbb{R}^2}\}$ et donc $\dim(\ker f) = 0$ d'où $\operatorname{rg}(f) = 2$: C'est possible
- Si f est surjective alors Im $f = \mathbb{R}^3$ et donc rg(f) = 3 d'où dim (ker f) = -1: Impossible
- 2. Soit $f \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^2)$. u peut-elle être injective? surjective?

Réponse: D'après le théorème du rang on a: $\dim(\mathbb{R}^3) = \dim(\ker f) + \operatorname{rg}(f)$ ie $\dim(\ker f) + \operatorname{rg}(f) = 3$

- Si f est injective alors $\ker f = \{0_{\mathbb{R}^3}\}$ et donc $\dim(\ker f) = 0$ d'où $\operatorname{rg}(f) = 3$: Impossible
- Si f est surjective alors $\operatorname{Im} f = \mathbb{R}^2$ et donc $\operatorname{rg}(f) = 2$ d'où $\dim(\ker f) = 1$: C'est possible
- 3. Soit $f \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^3)$. u peut-elle être injective? surjective? Est-elle forcément bijective?

Réponse: D'après le théorème du rang on a: $\dim(\mathbb{R}^3) = \dim(\ker f) + \operatorname{rg}(f)$ ie $\dim(\ker f) + \operatorname{rg}(f) = 3$

- Si f est injective alors $\ker f = \{0_{\mathbb{R}^3}\}$ et donc $\dim(\ker f) = 0$ d'où $\operatorname{rg}(f) = 3$: C'est possible
- Si f est surjective alors Im $f = \mathbb{R}^3$ et donc rg(f) = 3 d'où dim(ker f) = 0 : C'est possible
- Non f n'est pas forcément bijective: on peut avoir $\dim(\ker f) = 1$ et $\operatorname{rg}(f) = 2$

Exemple 6. En utilisant le théorème du rang, déterminer une base de l'image de l'endomorphisme $f \in \mathcal{L}(\mathbb{R}_3[X])$ tel que $\forall P \in \mathbb{R}_3[X]$, $f(P) = (X^2 - 1)P'' + 2XP'$

Réponse: D'après le théorème du rang on a: $\dim(\mathbb{R}_3[X]) = \dim(\ker f) + \operatorname{rg}(f)$ ie $\dim(\ker f) + \operatorname{rg}(f) = 4$

• Déterminons ker f

$$\ker f = \left\{ P \in \mathbb{R}_3 [X] / f(P) = 0_{\mathbb{R}_3[X]} \right\}$$

Soit $P \in \mathbb{R}_3[X]$. Posons $P = aX^3 + bX + cX + d$

$$P \in \ker f \iff \left(X^2 - 1\right)P'' + 2XP' = 0_{\mathbb{R}_{3}[X]} \iff \left(X^2 - 1\right)\left(6aX + 2b\right) + 2X\left(3aX^2 + 2bX + c\right) = 0_{\mathbb{R}_{3}[X]}$$

$$\Leftrightarrow 12aX^{3} + 6bX^{2} - 2(3a - c)X - 2b = 0_{\mathbb{R}_{3}[X]} \qquad \Leftrightarrow \begin{cases} a = 0 \\ b = 0 \\ c = 0 \\ d \in \mathbb{R} \end{cases}$$

Donc $\ker f = \operatorname{Vect}(1)$ et donc $\dim(\ker f) = 1$ d'où $\operatorname{rg}(f) = 3$

• $\mathbb{R}_3[X] = \text{Vect}(1, X, X^2, X^3)$ $\text{Im } f = f(\mathbb{R}_3[X]) = f(\text{Vect}(1, X, X^2, X^3)) = \text{Vect}(f(1), f(X), f(X^2), f(X^3)) \text{ (Voir propriété 6)}$ Or $f(1) = 0_{\mathbb{R}_3[X]}$, f(X) = 2X, $f(X^2) = 2X^2 + 4X - 2$ et $f(X^3) = 12X^3 - 6X$ D'où $Im f = Vect(0_{\mathbb{R}_3[X]}, 2X, 2X^2 + 4X - 2, 12X^36 - X) = Vect(2X, 2X^2 + 4X - 2, 12X^36 - X)$ Comme rg(f) = 3 et $Im f = Vect(2X, 2X^2 + 4X - 2, 12X^36 - X)$ alors $(2X, 2X^2 + 4X - 2, 12X^36 - X)$ est une base de Im f.

TD 6. En utilisant le théorème du rang, déterminer une base de l'image des applications linéaires suivantes:

- $1. \quad u \in \mathcal{L}\left(\mathbb{R}^4, \mathbb{R}^3\right) \text{ tel que } \ u\left(x,y,z,t\right) = \left(x+y+2t,2x-y+4z,3x+2y+z+6t\right)$
- 2. $\mathbf{u} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}))$ tel que et si $\mathbf{M} = \begin{pmatrix} \mathbf{x} & \mathbf{y} \\ \mathbf{z} & \mathbf{t} \end{pmatrix}$ alors $\mathbf{u}(\mathbf{M}) = \begin{pmatrix} 2\mathbf{x} + \mathbf{t} & \mathbf{x} + \mathbf{y} + \mathbf{t} \\ \mathbf{x} + \mathbf{z} + \mathbf{t} & -2\mathbf{x} \mathbf{t} \end{pmatrix}$

Corollaire 3. Soit $f \in \mathcal{L}(E,F)$. Si dim $E = \dim F$ alors il y a équivalence entre les propositions suivantes :

- 1. f est injective 2. f surjective
- 3. f est bijective

Démonstration : A REFAIRE

- $1 \Rightarrow 2$: f injective \Rightarrow ker f = $\{0_E\}$
 - \Rightarrow dim(ker f) = 0
 - \Rightarrow dim(Imf) = n = dimF (théorème du rang)
 - \Rightarrow Im f = F car Im f \subset F et dim(Im f) = dim F
 - \Rightarrow f est surjective
- $2 \Rightarrow 3$: f surjective \Rightarrow Im f = F
 - \Rightarrow dim(Imf) = dimF = n
 - \Rightarrow dim(ker f) = 0 (théorème du rang)
 - \Rightarrow ker f = $\{0_E\}$
 - \Rightarrow f est injective et donc bijective.
- $3 \Rightarrow 1$: f bijective \Leftrightarrow f injective et surjective. (définition)

5. Matrice d'une application linéaire

Dans ce paragraphe on suppose que les K-espaces vectoriels E et F sont de dimension finie.

Supposons que $\dim E = p$ et $\dim F = n$ où n et p sont deux entiers supérieurs ou égaux à 1.

Soient $(e) = (e_j)_{1 \le i \le p}$ une base de E et $(\epsilon) = (\epsilon_i)_{1 \le i \le n}$ une base de F.

Définition 6. Matrice d'une application linéaire

Soit $f \in \mathcal{L}(E,F)$. On appelle matrice de l'application linéaire f relativement aux bases (e) de E et (ϵ) de F, la matrice, notée $Mat(f,(e),(\epsilon))$, définie par :

$$Mat(f,(e),(\epsilon)) = Mat((f(e_1),f(e_2),...,f(e_p)),(\epsilon)).$$

Remarque 3.

1. Si
$$E = F$$
 et $(\varepsilon) = (e)$ alors $Mat(f,(e),(e)) = Mat(f,(e))$

2. On peut avoir E = F et $(\varepsilon) \neq (e)$.

$$\begin{cases} f\left(e_{1}\right) = a_{11}\varepsilon_{1} + a_{21}\varepsilon_{2} + \dots + a_{i1}\varepsilon_{i} + \dots + a_{n1}\varepsilon_{n} \\ f\left(e_{2}\right) = a_{12}\varepsilon_{1} + a_{22}\varepsilon_{2} + \dots + a_{i2}\varepsilon_{i} + \dots + a_{n2}\varepsilon_{n} \end{cases}$$

3. Si
$$\begin{cases} f(e_{j}) = a_{1j}\varepsilon_{1} + a_{2j}\varepsilon_{2} + \dots + a_{ij}\varepsilon_{i} + \dots + a_{nj}\varepsilon_{n} \\ f(e_{p}) = a_{1p}\varepsilon_{1} + a_{2p}\varepsilon_{2} + \dots + a_{ip}\varepsilon_{i} + \dots + a_{np}\varepsilon_{n} \end{cases}$$

$$f\left(e_{1}\right) \qquad f\left(e_{2}\right) \qquad ... \qquad f\left(e_{j}\right) \qquad ... \qquad f\left(e_{p}\right) \\ \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\ \\ \left(a_{11} \qquad a_{12} \qquad ... \qquad a_{1j} \quad ... \qquad a_{1p} \\ a_{21} \qquad a_{22} \qquad ... \qquad a_{2j} \quad ... \qquad a_{2p} \\ ... \qquad ... \qquad ... \qquad ... \qquad ... \\ a_{i1} \qquad a_{i2} \qquad ... \qquad a_{ij} \quad ... \qquad a_{ip} \\ ... \qquad ... \qquad ... \qquad ... \qquad ... \\ a_{n1} \qquad a_{n2} \qquad ... \qquad a_{nj} \quad ... \qquad a_{np} \qquad \leftarrow \epsilon_{n}$$

Exemple 7.

- 1. Soit $f \in \mathcal{L}\left(\mathbb{R}^3\right)$ tel que, $\forall u = (x, y, z) \in \mathbb{R}^3$, f(u) = (x + y, 2x z, 3x + y z). On note $(e) = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 .
 - a. Déterminer l'image de (e) c'est à dire $f(e_1), f(e_2)$ et $f(e_3)$.
 - b. Déterminer la matrice A de f dans la base (e).

- 2. Soit $f \in \mathcal{L}\left(\mathbb{R}^4, \mathbb{R}^2\right)$ tel que, $\forall u = (x, y, z, t) \in \mathbb{R}^4$, f(u) = (x + y + z + t, x + 2y + 3z + 4t). On note $bc_2 = (e_1, e_2)$ la base canonique de \mathbb{R}^2 et $bc_4 = (\epsilon_1, \epsilon_2, \epsilon_3, \epsilon_4)$ la base canonique de \mathbb{R}^4 . Déterminer la matrice A de f dans les base bc_4 et bc_2 .
- 3. Soient $f \in \mathcal{L}(\mathbb{R}_2[X], \mathbb{R}_3[X])$ tel que, $\forall P \in \mathbb{R}_2[X], \forall x \in \mathbb{R}$, $f(P)(x) = \int_l^x P(t) dt$ et $g \in \mathcal{L}(\mathbb{R}_3[X], \mathbb{R}^2)$ tel que, $\forall P \in \mathbb{R}_3[X], g(P) = (P'(0), 2P(1))$. On note B_2 la base canonique de $\mathbb{R}_2[X]$, B_3 la base canonique de $\mathbb{R}_3[X]$ et $bc_2 = (e_1, e_2)$ la base canonique de \mathbb{R}^2 . Déterminer les matrices f et g dans les bases B_2, B_3 et bc_2 .
- 4. Soient $f \in \mathcal{L}\big(\mathcal{M}_2\big(\mathbb{R}\big)\big)$ tel que, $\forall M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2\big(\mathbb{R}\big)$, $f(M) = \frac{a+d}{2}I_2 + \frac{b+c}{2}J$ où $J = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. On note $B = \big(E_{11}, E_{12}, E_{21}, E_{22}\big)$ la base canonique de $\mathcal{M}_2\big(\mathbb{R}\big)$. Déterminer la matrice A de f dans la base B.

Propriété 13. Soient $f \in \mathcal{L}(E,F)$, (e) une base de E et (ε) une base de F. Alors : $\forall x \in E$, $Mat(f(x),(\varepsilon)) = Mat(f,(\varepsilon),(\varepsilon)) \times Mat(x,(\varepsilon))$.

Démonstration

$$\begin{array}{ccc} \left(E,(e)\right) & \xrightarrow{f} & \left(F,(\epsilon)\right) \\ x & \mapsto & f(x) \\ \updownarrow & \updownarrow & \updownarrow \\ Mat(x,(e)) & Mat(f,(e),(\epsilon)) & Mat(f(x),(\epsilon)) \end{array}$$

$$\begin{aligned} & \begin{cases} f\left(e_{_{1}}\right) = a_{_{11}}\epsilon_{_{1}} + a_{_{21}}\epsilon_{_{2}} + + a_{_{i1}}\epsilon_{_{i}} + + a_{_{n1}}\epsilon_{_{n}} \\ f\left(e_{_{2}}\right) = a_{_{12}}\epsilon_{_{1}} + a_{_{22}}\epsilon_{_{2}} + + a_{_{i2}}\epsilon_{_{i}} + + a_{_{n2}}\epsilon_{_{n}} \\ & \vdots \\ f\left(e_{_{j}}\right) = a_{_{1j}}\epsilon_{_{1}} + a_{_{2j}}\epsilon_{_{2}} + + a_{_{ij}}\epsilon_{_{i}} + + a_{_{nj}}\epsilon_{_{n}} \end{aligned} \quad et \quad x = \sum_{j=1}^{p} x_{_{j}}e_{_{j}} \\ & \vdots \\ f\left(e_{_{p}}\right) = a_{_{1p}}\epsilon_{_{1}} + a_{_{2p}}\epsilon_{_{2}} + + a_{_{ip}}\epsilon_{_{i}} + + a_{_{np}}\epsilon_{_{n}} \end{aligned}$$

On a alors $f(x) = f\left(\sum_{j=1}^p x_j e_j\right) = \sum_{j=1}^p x_j f(e_j) = \sum_{j=1}^p x_j \left(\sum_{i=1}^n a_{ij} \epsilon_i\right) = \sum_{i=1}^n \left(\sum_{j=1}^p a_{ij} x_j\right) \epsilon_i$

$$D'où\ Mat\Big(f\big(x\big), \big(\epsilon\big)\Big) = \begin{pmatrix} \sum_{j=1}^{p} a_{1j} x_j \\ \sum_{j=1}^{p} a_{2j} x_j \\ \dots \\ \sum_{j=1}^{p} a_{ij} x_j \\ \dots \\ \sum_{j=1}^{p} a_{nj} x_j \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1j} & \dots & a_{1p} \\ a_{21} & a_{22} & \dots & a_{2j} & \dots & a_{2p} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ a_{i1} & a_{i2} & \dots & a_{ij} & \dots & a_{ip} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nj} & \dots & a_{np} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_j \\ \dots \\ x_p \end{pmatrix}$$

$$= Mat\Big(f, (e), (\epsilon)\big) \times Mat\big(x, (e)\big)$$

Remarque 4.

En posant
$$A = Mat(f,(e),(\epsilon))$$
, $X = Mat(x,(e))$ et $Y = Mat(f(x),(\epsilon))$ on a $Y = AX$

Exemple 8.

- 1. Soit $f \in \mathcal{L}\left(\mathbb{R}^2, \mathbb{R}^3\right)$. On note $bc_2 = (e_1, e_2)$ la base canonique de \mathbb{R}^2 , $bc_3 = (\epsilon_1, \epsilon_2, \epsilon_3)$ la base canonique de \mathbb{R}^3 et $A = Mat(f, bc_2, bc_3) = \begin{pmatrix} 1 & 0 \\ -1 & 2 \\ 1 & 1 \end{pmatrix}$.
 - a. Soit $u = (x, y) \in \mathbb{R}^2$. Déterminer $Mat(f(u), bc_3)$
 - b. Soit $v = (3,-2) \in \mathbb{R}^2$. Déterminer f(v)
 - c. Déterminer l'image de bc_2 c'est à dire $f(e_1)$ et $f(e_2)$.
- 2. Soit $f \in \mathcal{L}(\mathbb{R}^4)$. On note $bc_4 = (e_1, e_2, e_3, e_4)$ la base canonique de \mathbb{R}^4 , et

$$A = Mat(f,bc_4) = \begin{pmatrix} 1 & 0 & 2 & -1 \\ -1 & 2 & 0 & -1 \\ 1 & -1 & 1 & 0 \\ 2 & 3 & 7 & -5 \end{pmatrix}.$$

- a. Soit $v = (1, -1, 0, 2) \in \mathbb{R}^4$. Déterminer f(v)
- b. Soit $u = (x, y, z, t) \in \mathbb{R}^4$. Déterminer f(u)
- c. Déterminer l'image de bc_4 c'est à dire $f(e_1)$, $f(e_2)$, $f(e_3)$ et $f(e_4)$.

Corollaire 4. Soient (e) et (e') deux base de E . $\forall x \in E , \operatorname{Mat}(\operatorname{Id}_{E}(x),(e)) = \operatorname{Mat}(\operatorname{Id}_{E},(e'),(e)) \times \operatorname{Mat}(x,(e'))$

Remarque 5. Relation de changement de bases

En posant $P = Mat(Id_E, (e'), (e))$, $X = Mat(Id_E(x), (e)) = Mat(x, (e))$ et X' = Mat(x, (e')) on a X = PX' ou

 $X' = P^{-1}X'$ car $P = Mat(Id_E, (e'), (e)) = Mat((e'), (e))$ est inversible.

Propriété 14. Soient E, F et G trois \mathbb{K} -espaces vectoriels de dimensions finies, $(f,f_1,f_2) \in \mathcal{L}(E,F)^3$, $g \in \mathcal{L}(F,G)$, (e) une base de E, (ϵ) une base de F et (ϵ 0) une base de G. Alors on a :

- 1. $Mat(g \circ f,(e),(\omega)) = Mat(g,(\epsilon),(\omega)) \times Mat(f,(e),(\epsilon))$
- 2. Si est bijective alors $Mat(f,(e),(\epsilon))$ est inversible et on a :

$$\operatorname{Mat}(f^{-1},(\varepsilon),(e)) = \operatorname{Mat}(f,(e),(\varepsilon))^{-1}$$

 $3. \quad \forall \lambda \in \mathbb{K} \text{ , } Mat\big(f_1 + \lambda f_2, (e), (\epsilon)\big) = Mat\big(f_1, (e), (\epsilon)\big) + \lambda Mat\big(f_2, (e), (\epsilon)\big)$

Démonstration: Exercices

Exemple 9.

Soient $f \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^2)$ tel que, $\forall u = (x, y, z) \in \mathbb{R}^3$, f(u) = (2x - z, 3x + y + 2z) et

$$g \in \mathcal{L}\!\left(\mathbb{R}^2, \mathbb{R}^3\right) \text{ tel que, } \forall u = \! \left(x,y\right) \! \in \! \mathbb{R}^2, \ g\!\left(u\right) \! = \! \left(x+y,\!-y,\!2x-y\right).$$

On note $bc_2 = (e_1, e_2)$ la base canonique de \mathbb{R}^2 et $bc_3 = (\epsilon_1, \epsilon_2, \epsilon_3)$ la base canonique de \mathbb{R}^3 .

- 1. Déterminer les matrices A et B respectivement de f et de g dans les bases bc2 et bc3.
- 2. Pour tout $u = (x, y, z) \in \mathbb{R}^3$ determiner $g \circ f(u)$
- 3. Déterminer la matrice C de $g \circ f$ dans la base bc_3 et la matrice D de $f \circ g$ dans la base bc_2 .
- 4. Comparer C, D, AB et BA. Calculer (AB)².
- 5. Montrer que AB est inversible et determiner (AB)⁻¹.
- 6. Expliciter l'application $(f \circ g)^2$.

Propriété 15. Soit $f \in \mathcal{L}(E,F)$.

f est un isomorphisme si et seulement si $Mat(f,(e),(\epsilon))$ est inversible.

Démonstration: Exercices

6. Matrice d'une application linéaire et changement de bases

 $Soient \ \left(e\right) = \left(e_{j}\right)_{1 \leq i \leq p} \ et \ \left(e'\right) = \left(e_{j}^{'}\right)_{1 \leq i \leq p} deux \ bases \ de \ E \ , \ \left(\epsilon\right) = \left(\epsilon_{i}^{'}\right)_{1 \leq i \leq n} et \ \left(\epsilon'\right) = \left(\epsilon_{i}^{'}\right)_{1 \leq i \leq n} deux \ bases \ de \ F \ ,$

 $A = Mat\big(f, \big(e\big), \big(\epsilon\big)\big), \ A' = Mat\big(f, \big(e'\big), \big(\epsilon'\big)\big), \ P = Mat\big(Id_{_E}, \big(e'\big), \big(e\big)\big) \ et \ Q = Mat\big(Id_{_F}, \big(\epsilon'\big), \big(\epsilon\big)\big).$

$$(E,(e)) \xrightarrow{f} (F,(\epsilon))$$

$$\operatorname{Id}_{\scriptscriptstyle{E}} \;\; \bigvee \; \operatorname{P}^{-1} \qquad \qquad \operatorname{Id}_{\scriptscriptstyle{F}} \;\; \bigwedge \; \operatorname{Q}$$

$$\left(E,(e')\right) \xrightarrow{f} \left(F,(\epsilon')\right)$$

D'après la propriété **14.1** on a :

$$A = QA'P^{-1}$$
 ou $A' = Q^{-1}AP$.

Exemple 10.

On pose $P_0 = X + 1$, $P_1 = (X + 1)^2$, $P_2 = (X + 1)^3$, $P_3 = (X + 1)^4 - X^4$ et $B_3' = (P_0, P_1, P_2, P_3)$. On note $B_3 = (1, X, X^2, X^3)$ la base canonique de $\mathbb{R}_3[X]$

- 1. Montrer que $B_3^{'}$ est une base de $\mathbb{R}_3[X]$ et déterminer les matrices $P=Mat\Big(Id_{\mathbb{R}_3[X]},B_3^{'},B_3\Big) \text{ et } P^{-1}.$
- 2. Soit u l'endomorphisme de $\mathbb{R}_3[X]$ tel que $: u(P_0) = 1 + X$, $u(P_1) = X + X^2$, $u(P_2) = X^2 + X^3$ et $u(P_3) = 1 + X^3$.

Ecrire la matrice $A = Mat(u, B_3, B_3)$, puis exprimer en fonction de A, P et P^{-1} chacune des matrices $B = Mat(u, B_3)$, $C = Mat(u, B_3)$ et $D = Mat(u, B_3, B_3)$.