รายงาน

เรื่อง การใช้ข้อมูลฝุ่นละอองขนาดเล็ก PM 2.5 ย้อนหลัง 10 ปี เพื่อหาจำนวนวันและช่วงเวลาที่มีค่าการสะสมเกินค่ามาตรฐาน เพื่อใช้ประกอบการตัดสินใจออกนโยบายและแก้ไขปัญหา

จัดทำโดย

นางสาวณภัทร เสริมสุวรรณสุข รหัสนักศึกษา 63606019 นายสุทิน จั่นเพชร รหัสนักศึกษา 63606020

เสนอ

รศ.ดร.วรพจน์ กรีสุระเดช

รายงานนี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรวิทยาศาสตร์มหาบัณฑิต
สาขาวิชาเทคโนโลยีสารสนเทศ
คณะเทคโนโลยีสารสนเทศ
สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง
ประจำปีการศึกษา 2563

ที่มาและความสำคัญ

ปัญหาฝุ่นละอองขนาดเล็ก (PM2.5) กำลังเป็นปัญหาใหญ่ที่เกิดขึ้นในประเทศไทยและภูมิภาคเอเชียตะวันออกเฉียงใต้ โดยมีแนวโน้มจะมี ความรุนแรงขึ้นในทุกๆ ปี ด้วยประชากรหนาแน่น ความคับคั่งของการจราจร รวมถึงเขม่าควัน และฝุ่นผงจากการก่อสร้าง แต่ปัญหาวิกฤติ ที่ชาวกรุงเทพมหานคร กำลังวิตกคือ ฝุ่นละอองขนาดเล็กว่า 2.5 ไมครอน (Particulate Matter 2.5 – PM2.5) ซึ่งไม่สามารถมองเห็นได้ ด้วยตาเปล่า ทำให้ขาดความตระหนักถึงอันตรายต่อสุขภาพอย่างใหญ่หลวง

ฝุ่นละอองจิ๋ว PM 2.5 ส่วนใหญ่เกิดจากการเผาไหม้เครื่องจักร โดยเฉพาะเครื่องยนต์ของทั้งรถยนต์ใหม่และเก่า มักมีปริมาณสูงสุด ช่วงรถติดมากๆ ในช่วงเช้าและเย็นของวันทำงาน โดยมากจะเกิดในช่วงฤดูหนาวที่อากาศนิ่งและแห้ง ส่งผลให้ฝุ่นไม่ลอยขึ้นที่สูง อีกทั้ง ปัจจุบันกรุงเทพฯ กำลังประสบปัญหาลมพัดผ่านได้ยาก อากาศหยุดนิ่ง เนื่องจากมีตึกสูงปิดกั้นทางลมรวมถึงฝุ่นจากการก่อสร้างที่มีอยู่ แทบทุกพื้นที่ มาเป็นปัจจัยเกื้อหนุนทำให้คุณภาพอากาศเลวร้ายลง คณะผู้จัดทำจึงได้นำข้อมูลฝุ่นละอองขนาดเล็ก (PM 2.5) ย้อนหลัง 10 ปี เพื่อหาหาจำนวนวันและช่วงเวลา เพื่อใช้ประกอบการตัดสินใจออกนโยบายแก้ไขปัญหาต่อไป

ข้อมูลที่ใช้ในการทำงาน

ใช้ข้อมูลจากจุดตรวจวัดคุณภาพอากาศบริเวณริมถนนดินแดง เขตดินแดง จังหวัดกรุงเทพมหานคร โดยเป็นข้อมูลการสะสมของ ปริมาณฝุ่นละอองขนาดเล็ก (PM 2.5) รายชั่วโมง ย้อนหลังไป 10 ปี ตั้งแต่ปี พ.ศ. 2554-2563

วิธีการดำเนินงาน

การนำข้อมูลฝุ่นละอองขนาดเล็ก (PM 2.5) มาดำเนินการวิเคราะห์ จะใช้แนวคิดทาง Data science โดยใช้หลักการ CRISP-DM ดังนี้

1. Business Understanding

ขั้นตอนแรกมุ่งไปที่การทำความเข้าใจธุรกิจ ปัญหาและวัตถุประสงค์ของโครงการจากมุมมองทางธุรกิจ จากนั้นแปลงปัญหาให้อยู่ในรูปของโจทย์สำหรับการวิเคราะห์ข้อมูล และวางแผนการดำเนินงานเบื้องต้น โดยต้องเข้าใจความสัมพันธ์ของช่วงเวลาที่มีปริมาณฝุ่นละอองขนาดเล็ก (PM 2.5) เกินค่ามาตรฐาน (50 ไมโครกรัม/ลูกบาศก์เมตร) และสามารถใช้ผลลัพธ์ของการทำ Data science ในการออกนโยบายเพื่อแก้ไขปัญหาได้

2. Data Understanding

ขั้นตอนนี้เริ่มต้นด้วยการรวบรวมข้อมูล จากนั้นทำความเข้าใจ ตรวจสอบคุณภาพ และเลือกข้อมูลที่เก็บรวบรวมมาว่าจะใช้ข้อมูลใดบ้าง ในการวิเคราะห์ โดยใช้ข้อมูลปริมาณการสะสมของฝุ่นละอองขนาดเล็ก (PM 2.5) ย้อนหลัง 10 ปี โดยลักษณะข้อมูลที่ได้รับจากหน่วยงาน จะเป็นข้อมูลการสะสมของปริมาณฝุ่นละอองขนาดเล็ก (PM 2.5) รายชั่วโมง โดยข้อมูลที่ได้รับ มี Format ที่ไม่เป็นมาตรฐาน ต้องทำการ ปรับปรุงข้อมูลให้อยู่ในรูปแบบที่สามารถใช้งานต่อได้ การวิเคราะห์ สามารถใช้การทำงานในโมเดล Time series ได้

3. Data Preparation

ขั้นตอนการเตรียมข้อมูล หมายถึง ขั้นตอนทั้งหมดที่จะทำเพื่อให้ข้อมูลดิบที่เรารวบรวมมา กลายเป็นข้อมูลสมบูรณ์ที่พร้อมจะเข้าสู่ โมเดลในขั้นตอนที่ 4 เช่น การสร้างตาราง การลบข้อมูลที่ไม่ต้องการออก การแปลงข้อมูลให้อยู่ในรูปแบบที่ต้องการ เป็นต้น โดยเลือกใช้ ข้อมูลจากจุดตรวจวัด ริมถนนดินแดง เขตดินแดง กรุงเทพมหานคร เพื่อใช้เป็นตัวแทนของข้อมูลการสะสมของปริมาณฝุ่นละอองขนาดเล็ก (PM 2.5) ในจังหวัดกรุงเทพมหานคร และปรับข้อมูลให้อยู่ในรูปแบบที่ต้องการ ใช้เครื่องมือในภาษา Python เช่น pandas, numpy และ รันในโปรแกรม Google colaboratory ในการปรับปรุงข้อมูล โดยมีรายละเอียดดังนี้

ขั้นตอนการ Clean data

- เรียกชุดข้อมูลด้วยคำสั่ง pd.read csv โดยจะเรียกจากทั้ง 2 sheet แยกกัน

1 import pandas as pd

1 df1 = pd.read_excel('/content/drive/MyDrive/Colab Notebooks/Data Science/project/(54t)การเดนะดินแดง_แก้วันที่.xlsx', sheet_name='11-16')

2 df2 = pd.read_excel('/content/drive/MyDrive/Colab Notebooks/Data Science/project/(54t)การเดนะดินแดง_แก้วันที่.xlsx', sheet_name='17-21')

- จากนั้นนำข้อมูลทั้ง 2 ชุดรวมกันด้วยคำสั่ง pd.concat

1 df = pd.concat([df1,df2])	
I ul = pu.concat([ul1,ul2])	
2 df	
2 UI	

	วัน/เดือน/ปี	ชั่วโมง	PM2.5 (มคก./ถบ.ม.)
0	110501	100	NaN
1	110501	200	NaN
2	110501	300	NaN
3	110501	400	NaN
4	110501	500	NaN
36475	210228	2000	66
36476	210228	2100	61
36477	210228	2200	-
36478	210228	2300	57
36479	210228	2400	49

1 df.info()

<class 'pandas.core.frame.DataFrame'> Int64Index: 86208 entries, 0 to 36479 Data columns (total 3 columns):

#	Column	Non-Null Count Dtype
0	วัน/เดือน/ปี	86208 non-null int64
1	ชั่วโมง	86208 non-null int64
2	PM2.5 (มคก.	/ลบ.ม.) 60430 non-null object
44.	n n n n i n t C 4 (2)	abiaat/1)

dtypes: int64(2), object(1) memory usage: 2.6+ MB

86208 rows × 3 columns

- ตรวจสอบข้อมูลพบว่ามีค่า null จึงกำจัดด้วยการลบข้อมูลนั้นออกด้วย df.dropna() จะได้ข้อมูลจำนวน 60,430 ข้อมูล

```
1 df = df.dropna()
```

2 df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 60430 entries, 369 to 36479
Data columns (total 3 columns)

Data columns (total 3 columns):

Column Non-Null Count Dtype

0 วัน/เดือน/ปี 60430 non-null int64 1 ชั่วโมง 60430 non-null int64

2 PM2.5 (มคก./ลบ.ม.) 60430 non-null object

dtypes: int64(2), object(1) memory usage: 1.8+ MB

- ทำการบันทึกข้อมูลเป็นไฟล์ csv แล้วเรียกใช้อีกครั้ง เพื่อทำการกำหนดคอลัมน์ "วัน/เดือน/ปี" ให้เป็นชนิด datetime โดยจะต้องทำการ กำหนดรูปแบบเพื่อให้สามารถแปลงวันที่ได้ถูกต้อง ด้วยการใช้ datetime.strptime()
- strptime ใช้สำหรับแปลงข้อมูลชนิด str เป็น datetime ซึ่งจะต้องกำหนด format โดย %y คือ เลขลงท้ายของปีค.ศ. เช่น 00, 01,...99 %m คือ เดือนที่เป็นเลขฐานสิบ เช่น 01, 02....31

- ทำการแปลงเวลาในคอลัมน์ชั่วโมงให้อยู่ในรูปแบบ %H%M เช่น 10:00, 01:00 เป็นต้น โดยจะต้องเปลี่ยนชั่วโมง 2400, 100 และ 2400 เป็น 0000, 0100 และ 0200 ด้วยคำสั่ง .replace() ก่อน เนื่องจาก pd.to_datetime จะมีรูปแบบเวลาเป็น 00:00 -23:00 นาฬิกา

1 df3['ชั่วโมง'] = df3['ชั่วโมง'].astype(str)	1 df3				
		วัน/เดือน/ปี	ชั่วโมง	PM2.5 (มคก./ถบ.ม.)	time
1 df3['ชั่วโมง'] = df3['ชั่วโมง'].replace(['2400', '100','200'],['0000', '0100', '0200'])	0	2011-05-16	1000	29.0	10:00
	1	2011-05-16	1100	2.0	11:00
1 df3[0:20]	2	2011-05-16	1200	100.0	12:00
	3	2011-05-16	1300	45.0	13:00
1 tt=[]	4	2011-05-16	1400	50.0	14:00
3 for i in range(len(df3)):					
4 t = [df3['ชั่วโมง'][i]]	60425	2021-02-28	2000	66	20:00
5 x = pd.to_datetime(t, format="%H%M") 6 y = x.strftime("%H:%M").tolist()	60426	2021-02-28	2100	61	21:00
7 tt.append(y)	60427	2021-02-28	2200	-	22:00
8	60428	2021-02-28	2300	57	23:00
	60429	2021-02-28	0000	49	00:00
1 df3['time'] = pd.DataFrame(tt)	60430 rov	ws × 4 column	S		

- สร้างคอลัมน์ Timestamp และกำหนดให้เป็นชนิด datetime

```
1 df3['Timestamp'] =df3['วัน/เดือน/ปี'].astype(str) + ' ' + df3['time']
2 df3.head()
                                                                            1 df3.info()
   วัน/เดือน/ปี ชั่วโมง PM2.5 (มคก./ถบ.ม.)
                                                           Timestamp
                                                                           <class 'pandas.core.frame.DataFrame'>
0 2011-05-16
                  1000
                                        29.0 10:00 2011-05-16 10:00
                                                                          RangeIndex: 60430 entries, 0 to 60429
   2011-05-16
                                                                          Data columns (total 5 columns):
                                                     2011-05-16 11:00
                  1100
                                          2.0 11:00
                                                                           # Column
                                                                                          Non-Null Count Dtype
   2011-05-16
                  1200
                                        100.0 12:00
                                                     2011-05-16 12:00
                                                                           0 วัน/เดือน/ปี
                                                                                         60430 non-null datetime64[ns]
3 2011-05-16
                                        45.0 13:00 2011-05-16 13:00
                  1300
                                                                           1 ชั่วโมง
                                                                                           60430 non-null object
                                                                           2 PM2.5 (มคก./ลบ.ม.) 60430 non-null object
   2011-05-16
                  1400
                                        50.0 14:00
                                                     2011-05-16 14:00
                                                                                           60430 non-null object
                                                                           4 Timestamp
                                                                                             60430 non-null datetime64[ns]
                                                                          dtypes: datetime64[ns](2), object(3)
1 df3['Timestamp'] = pd.to_datetime(df3['Timestamp'])
                                                                          memory usage: 2.3+ MB
```

-ทำการจัดรูปข้อมูลให้เรียกใช้งานได้งานต่อการวิเคราะห์ข้อมูล

```
3 df3['Year'] = [year.strftime("%Y") for year in df3['Timestamp']]
4 df3['Month'] = [month.strftime("%Y-%m") for month in df3['Timestamp']]
5 df3['Date'] = [date.strftime("%Y-%m-%d") for date in df3['Timestamp']]
6 df3['Time'] = [time.strftime("%H:%M") for time in df3['Timestamp']]
7
8 df3.drop(['วัน/เดือน/ปี', 'ชั่วโมง', 'time'], axis=1, inplace=True)
9
10 df3[0:10]
```

	PM2.5 (มคก./ลบ.ม.)	Timestamp	Year	Month	Date	Time
0	29.0	2011-05-16 10:00:00	2011	2011-05	2011-05-16	10:00
1	2.0	2011-05-16 11:00:00	2011	2011-05	2011-05-16	11:00
2	100.0	2011-05-16 12:00:00	2011	2011-05	2011-05-16	12:00
3	45.0	2011-05-16 13:00:00	2011	2011-05	2011-05-16	13:00
4	50.0	2011-05-16 14:00:00	2011	2011-05	2011-05-16	14:00
5	23.0	2011-05-16 15:00:00	2011	2011-05	2011-05-16	15:00
6	21.0	2011-05-16 16:00:00	2011	2011-05	2011-05-16	16:00
7	39.0	2011-05-16 17:00:00	2011	2011-05	2011-05-16	17:00
8	36.0	2011-05-16 18:00:00	2011	2011-05	2011-05-16	18:00
9	15.0	2011-05-16 19:00:00	2011	2011-05	2011-05-16	19:00

- กำจัดข้อมูลปี 2021 และ ข้อมูลที่ใส่เครื่องหมาย "-" ออก รวมถึงเปลี่ยนข้อมูล PM2.5 ให้เป็นชนิด float

- หา PM2.5 ต่อวัน โดยการใช้คำสั่ง df3.groupby(by= 'Date')

```
1 PM_per_Day = df3.groupby(by='Date').agg(['min','max','mean','sum','count'])
2 PM_per_Day = PM_per_Day.drop(['Year'], axis=1)
3 PM_per_Day
```

PM2.5 (มคก./ลบ.ม.)

		-	_		
	min	max	mean	sum	count
Date					
2011-05-16	2.0	100.0	44.071429	617.0	14
2011-05-17	1.0	102.0	44.800000	896.0	20
2011-05-18	4.0	82.0	45.380952	953.0	21
2011-05-19	5.0	91.0	49.428571	1038.0	21
2011-05-20	4.0	92.0	43.476190	913.0	21
2020-12-27	31.0	84.0	51.666667	1240.0	24
2020-12-28	26.0	56.0	42.708333	1025.0	24
2020-12-29	23.0	63.0	45.041667	1081.0	24
2020-12-30	11.0	73.0	41.043478	944.0	23

- หาวันที่ค่าเฉลี่ย PM2.5 เกินค่ามาตรฐานจากชุดข้อมูล PM_per_Day[PM_per_Day[('PM2.5 (มคก./ลบ.ม.)', 'mean')]> 50]

```
1 Over_Std_day = PM_per_Day[PM_per_Day[('PM2.5 (มคก./ลบ.ม.)', 'mean')]> 50]
2 Over_Std_day
```

	PM2.5 (มคก./ถบ.ม.)						
	min	max	mean	sum	count		
Date							
2011-10-19	45.0	83.0	57.041667	1369.0	24		
2011-10-20	48.0	86.0	64.125000	1539.0	24		
2011-10-21	44.0	80.0	56.083333	1346.0	24		
2011-10-24	46.0	71.0	57.541667	1381.0	24		
2011-11-03	29.0	68.0	50.125000	1203.0	24		
2020-12-16	24.0	104.0	62.208333	1493.0	24		
2020-12-17	27.0	152.0	57.791667	1387.0	24		
2020-12-23	44.0	62.0	53.166667	1276.0	24		
2020-12-24	39.0	67.0	56.000000	1344.0	24		
2020-12-27	31.0	84.0	51.666667	1240.0	24		

- หาช่วงเวลาที่ค่าPM2.5 เกินค่ามาตรฐาน โดยใช้ df3[df3['PM2.5 (มคก./ลบ.ม.)']> 50]

```
1 #ช่วงเวลาที่ค่าPM2.5 เกินค่ามาตรฐาน
2 Over_Std = df3[df3['<mark>PM2.5 (มคก./ลบ.ม.)</mark>']> 50]
3 Over_Std
```

	PM2.5 (มคก./ถบ.ม.)	Timestamp	Year	Month	Date	Time
2	100.0	2011-05-16 12:00:00	2011	2011-05	2011-05-16	12:00
11	77.0	2011-05-16 21:00:00	2011	2011-05	2011-05-16	21:00
12	78.0	2011-05-16 22:00:00	2011	2011-05	2011-05-16	22:00
13	52.0	2011-05-16 00:00:00	2011	2011-05	2011-05-16	00:00
14	78.0	2011-05-17 01:00:00	2011	2011-05	2011-05-17	01:00
58765	63.0	2020-12-30 06:00:00	2020	2020-12	2020-12-30	06:00
58766	68.0	2020-12-30 07:00:00	2020	2020-12	2020-12-30	07:00
58767	68.0	2020-12-30 08:00:00	2020	2020-12	2020-12-30	08:00
58768	73.0	2020-12-30 09:00:00	2020	2020-12	2020-12-30	09:00
58769	55.0	2020-12-30 10:00:00	2020	2020-12	2020-12-30	10:00

10745 rows × 6 columns

-หาจำนวนครั้งที่มีค่าเกินมาตรฐานในแต่ละชั่วโมง โดยใช้ Over_std.gruopby(['Time'])

- 1 # จำนวนครั้งที่มีค่าเกินมาตรฐานในแต่ละชั่วโมง
- 2 data_Over_Std_Time = Over_Std.groupby(['Time'])['PM2.5 (มคก./ลบ.ม.)'].agg(['min','max','mean','sum','count'])
- 3 data_Over_Std_Time

	min	max	mean	sum	count
Time					
00:00	50.18	151.65	69.067374	31563.79	457
01:00	50.18	163.29	67.805356	27596.78	407
02:00	50.43	152.00	67.890197	24168.91	356
03:00	50.18	151.00	67.501360	22342.95	331
04:00	50.18	133.00	68.584858	21741.40	317
05:00	50.18	148.54	68.175586	22088.89	324
06:00	50.43	154.00	68.948438	25166.18	365
07:00	50.18	156.00	69.702120	30250.72	434
08:00	50.18	196.69	70.105741	37366.36	533
09:00	50.18	200.05	69.357143	47579.00	686
10:00	50.18	202.64	69.101713	49615.03	718

- หาจำนวนครั้งที่มีค่าเกินมาตรฐานต่อวัน โดยใช้ Over_std.gruopby(['Date'])

```
1 # จำนวนครั้งที่มีค่าเกินมาตรฐานต่อวัน
```

2 data_Over_Std = Over_Std.groupby(['Date'])['PM2.5 (มคก./ลบ.ม.)'].agg(['min','max','mean','sum','count'])

3 data_Over_Std

		min	max	mean	sum	count
	Date					
2011	-05-16	52.0	100.0	76.750000	307.0	4
2011	-05-17	52.0	102.0	76.000000	608.0	8
2011	-05-18	53.0	82.0	69.125000	553.0	8
2011	-05-19	55.0	91.0	72.777778	655.0	9
2011	-05-20	53.0	92.0	67.444444	607.0	9
2020	-12-26	54.0	72.0	64.000000	320.0	5
2020	-12-27	51.0	84.0	60.538462	787.0	13
2020	-12-28	52.0	56.0	54.285714	380.0	7
2020	-12-29	51.0	63.0	56.875000	455.0	8
2020	-12-30	55.0	73.0	62.400000	624.0	10
1394 rd	ows × 5 c	olumn	S			

- หาจำนวนครั้งที่มีค่าเกินมาตรฐานต่อเดือน โดยใช้ Over_std.groupby(['Month'])

```
1 \ \ Over\_Std\_Month = Over\_Std.groupby(['Month'])['PM2.5 \ (มคก./ลบ.ม.)'].agg(['min','max','mean','sum','count'])
```

2 Over_Std_Month

	min	max	mean	sum	count
Month					
2011-05	52.0	102.0	68.355932	4033.0	59
2011-06	52.0	93.0	62.529412	2126.0	34
2011-07	51.0	82.0	59.727273	1971.0	33
2011-08	51.0	88.0	60.211538	3131.0	52
2011-09	51.0	91.0	60.728571	4251.0	70
2020-06	51.0	53.0	52.000000	104.0	2
2020-09	53.0	59.0	55.800000	279.0	5
2020-10	51.0	66.0	55.416667	1330.0	24
2020-11	51.0	95.0	58.186275	5935.0	102
2020-12	51.0	160.0	72.617886	17864.0	246

86 rows × 5 columns

4. Modeling

ในขั้นตอนนี้เราจะเลือกและทดสองสร้างโมเดลหลายๆแบบที่น่าจะสามารถแก้ไขปัญหาที่ต้องการได้ จากนั้นค่อยๆปรับ ค่าพารามิเตอร์ในแต่ละโมเดล เพื่อให้ได้โมเดลที่เหมาะสมที่สุดมาใช้ในการแก้ไขปัญหา โดยทำการ Visualization ข้อมูล ด้วย โปรแกรม Tableau โดยข้อมูลจะออกมาในรูปแบบกราฟเปรียบเทียบทางสถิติ ดังนี้

- ค่าเฉลี่ยการสะสมปริมาณฝุ่นละอองขนาดเล็ก (PM2.5) ในชั่วโมงที่มีค่าเกินมาตรฐาน (50 ไมโครกรัม/ลูกบาศก์เมตร)
- จำนวนวันที่มีค่าเฉลี่ยการสะสมของปริมาณฝุ่นละอองขนาดเล็ก เฉลี่ย 24 ชั่วโมง เกินค่ามาตรฐาน (50 ไมโครกรัม/ลูกบาศก์เมตร)
- ช่วงเวลาที่มีค่าการสะสมของปริมาณฝุ่นละอองขนาดเล็ก (PM2.5) เกินค่ามาตรฐาน (50 ไมโครกรัม/ลูกบาศก์เมตร) ราย ชั่วโมง ตั้งแต่ปี 2011-2020

(ดูรายละเอียดเพิ่มเติมได้ที่ >> https://public.tableau.com/profile/suthin.junphet#!/)

สรุปผลการดำเนินงาน

1. ค่าเฉลี่ยการสะสมปริมาณฝุ่นละอองขนาดเล็ก (PM2.5) ในชั่วโมงที่มีค่าเกินมาตรฐาน (50 ไมโครกรัม/ลูกบาศก์เมตร)

- นำค่าการสะสมปริมาณฝุ่นละอองขนาดเล็ก (PM2.5) ที่เกินมาตรฐานรายชั่วโมงมาทำการหาค่าเฉลี่ยจากระยะเวลา 10 ปี พบว่า ปีที่มีค่าเฉลี่ยของการสะสมปริมาณฝุ่นละอองขนาดเล็ก (PM2.5) เกินค่ามาตรฐานสูงสุด คือ ปี พ.ศ. 2559 โดยค่าเฉลี่ยอยู่ที่ 71 ไมโครกรัม/ลูกบาศก์เมตร และเมื่อดูจากเส้นแนวโน้มพบว่าค่าเฉลี่ยของรายชั่วโมงที่มีค่าเกินมาตรฐานมีแนวโน้มลดลงเล็กน้อย 2. จำนวนวันที่มีค่าเฉลี่ยการสะสมของปริมาณฝุ่นละอองขนาดเล็ก เฉลี่ย 24 ชั่วโมง เกินค่ามาตรฐาน (50 ไมโครกรัม/ลูกบาศก์เมตร)

จำนวนวันที่มีค่าเฉลี่ยการสะสมของปริมาณฝุ่นละอองขนาดเล็ก เฉลี่ย 24 ชั่วโมง เกินค่ามาตรฐาน 50 (มคก./ลบม.)รายปี

- ปีที่มีจำนวนวันที่ค่าเฉลี่ยการสะสมของปริมาณฝุ่นละอองขนาดเล็ก เฉลี่ย 24 ชั่วโมง เกินค่ามาตรฐานมากที่สุด คือปี 2015 เป็น จำนวน 62 วัน
- เดือนที่มีจำนวนวันที่ค่าเฉลี่ยการสะสมของปริมาณฝุ่นละอองขนาดเล็ก เฉลี่ย 24 ชั่วโมง เกินค่ามาตรฐาน ได้แก่ เดือนมกราคม, กุมภาพันธ์, มีนาคม, ตุลาคม, พฤศจิกายน และธันวาคมของทุกปี
- จากกราฟพบว่าแนวโน้มของจำนวนวันที่ค่าเฉลี่ยการสะสมของปริมาณฝุ่นละอองขนาดเล็ก เฉลี่ย 24 ชั่วโมง เกินค่ามาตรฐาน มี แนวโน้มลดลงเล็กน้อย

3. ช่วงเวลาที่มีค่าการสะสมของปริมาณฝุ่นละอองขนาดเล็ก (PM2.5) เกินค่ามาตรฐาน (PM2.5) รายชั่วโมง ตั้งแต่ปี 2011-2020 ช่วงเวลาที่มีค่าการสะสมของปริมาณฝุ่นละอองขนาดเล็ก (PM2.5) เกินค่ามาตรฐาน (PM2.5) รายชั่วโมง ตั้งแต่ปี 2011-2020

- ช่วงเวลา 10.00 น. ของแต่ละวัน จะมีค่าการสะสมของปริมาณฝุ่นละอองขนาดเล็ก (PM2.5) เกินค่ามาตรฐาน มากที่สุดอยู่ที่ 718 ครั้ง/10ปี
- ช่วงเวลาที่ควรให้ความสนใจเพื่อหาที่มาของแหล่งกำเนิด คือช่วงเวลา 08.00-11.00น. และช่วงเวลา 20.00-24.00น. ซึ่งเป็น ช่วงเวลาที่เป็นชั่วโมงเร่งด่วน มีการจราจรหนาแน่น การออกนโยบายควรเกี่ยวกับการจำกัดปริมาณรถที่วิ่งเข้าสู่แยกดินแดงใน ชั่วโมงเร่งด่วน เป็นต้น

รายละเอียดเกี่ยวกับกราฟข้อมูลสามารถดูเพิ่มเติมได้ที่

https://public.tableau.com/profile/suthin.junphet#!/vizhome/PM2_550__/Dashboard1
https://public.tableau.com/profile/suthin.junphet#!/vizhome/AVGCNTmonth/Dashboard1
https://public.tableau.com/profile/suthin.junphet#!/vizhome/Freq_Hour/Freq_hour

บรรณานุกรม

Thapanee Boonchob. (2020). เข้าใจ CRISP-DM ฉบับเร่งรัด. ค้นเมื่อ 27 มีนาคม 2563, จาก https://kamboonchob.medium.com

Samitivejchinatown. (2021). PM 2.5 ฝุ่นเล็กจิ๋ว แต่ส่งผลต่อสุขภาพมหาศาล. ค้นเมื่อ 27 มีนาคม 2563, จาก https://www.samitivejchinatown.com/th/health-article/PM-25-Effects-Your-Health