FOURIER SERIES

Find the Fourier series for the following functions.

FOURIER EXPANSION OF f(x) IN THE INTERVAL $(0, 2\pi)$

1.
$$f(x) = x^2$$
 in $(0, 2\pi)$ Hence deduce that $\frac{\pi^2}{12} = \frac{1}{1^2} = \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \cdots$

[Ans:
$$f(x) = \frac{4\pi^2}{3} + 4\sum_{n=1}^{\infty} \frac{1}{n^2} \cos nx - 4\pi \sum_{n=1}^{\infty} \frac{1}{n} \sin nx$$
]

2.
$$f(x) = e^{-x}$$
, $0 < x < 2\pi$ & $f(x + 2\pi) = f(x)$ Hence deduce the value of
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n^2 + 1}$$

[Ans:
$$f(x) = \frac{1 - e^{-2\pi}}{\pi} \sum_{n=2}^{\infty} \frac{(-1)^n}{1 + n^2}$$
]

3.
$$f(x) = x \sin x$$
 in the interval $0 \le x \le 2\pi$. Hence deduce that $\sum_{n=1}^{\infty} \frac{1}{n^2 - 1} = \frac{3}{4}$

[Ans:
$$f(x) = -1 - \frac{1}{2}\cos x + \sum_{n=2}^{\infty} \frac{2}{n^2 - 1}\cos nx + \pi \sin x$$
]

4.
$$f(x) = \sqrt{1 - \cos x}$$
 in $(0, 2\pi)$ Hence deduce that $\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1} = \frac{1}{2}$

5.
$$f(x) = x$$
, $0 < x \le \pi$
= $2\pi - x$, $\pi \le x < 2\pi$ Hence deduce that $\frac{\pi^2}{96} = \frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \cdots$

[Ans:
$$f(x) = \frac{\pi}{2} - \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\left[1 - (-1)^n\right]}{n^2} \cos nx$$
]

6.
$$f(x) = x$$
 in $(0, 2\pi)$

[Ans:
$$f(x) = \pi - 2 \sum_{n=1}^{\infty} \frac{\sin nx}{n}$$
]

7.
$$f(x) = \frac{3x^2 - 6x\pi + 2\pi^2}{12}$$
 in $(0, 2\pi)$ Hence deduce that $\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots$

[Ans:
$$f(x) = \sum_{n=1}^{\infty} \frac{\cos nx}{n^2}$$
]

8.
$$f(x) = \left(\frac{\pi - x}{2}\right)$$
 in the interval $0 \le x \le 2\pi$ Also deduce that $\frac{\pi}{4} = \frac{1}{1} - \frac{1}{3} + \frac{1}{5} = \frac{1}{7}$

$$f(x) = 1, 0 < x \le \pi$$

$$= 2 - \frac{x}{\pi}, \pi \le x < 2\pi$$

[Ans:
$$f(x) = \frac{3}{4} - \frac{2}{\pi^2} \left[\frac{\cos x}{1^2} + \frac{\cos 3x}{3^2} + \cdots \right] + \frac{1}{\pi} \left[\frac{\sin x}{1} + \frac{\sin 2x}{2} + \cdots \right]$$

10.
$$f(x) = 2x$$
 in $(0, 2\pi)$ Also find $a_4 \& b_{10}$.

[Ans:
$$f(x) = 2\pi - 4 \sum_{n=1}^{\infty} \frac{\sin nx}{n}, 0, -0.4$$
]

11.
$$f(x) = \cos px$$
, in $(0, 2\pi)$

where p is not an integer.

12.
$$f(x) = kx$$
, $0 \le x \le 2\pi$. Also find $a_4 \& b_{10}$.

13.
$$f(x) = e^{2x}$$
in $(0,2\pi)$

14.
$$f(x) = e^{-2x}$$
in $(0,2\pi)$

FOURIER EXPANSION OF f(x) IN THE INTERVAL $(-\pi, \pi)$

15. state the value of f(x) at x = 0 if $f(x) = \begin{cases} -\pi, -\pi < x < 0 \\ x, 0 < x < \pi \end{cases}$ and hence deduce that $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}$

[Ans:
$$f(x) = -\frac{\pi}{4} + \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{\left[(-1)^n - 1 \right]}{n^2} \cos nx + \sum_{n=1}^{\infty} \frac{\left[1 - 2(-1)^n \right]}{n} \sin nx$$
]

16.
$$f(x) = 1/2$$
, $-\pi < x < 0$
= x/π , $0 < x < \pi$ Hence deduce that $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}$

[Ans:
$$f(x) = \frac{1}{2} - \frac{2}{\pi^2} \sum_{n=1}^{\infty} \frac{\cos(2n-1)x}{(2n-1)^2} - \frac{1}{2} \sum_{n=1}^{\infty} \frac{\sin 2nx}{n}$$
]

17.
$$f(x) = -x - \pi, \quad -\pi \le x \le 0$$
$$= x + \pi, \quad 0 \le x \le \pi$$

[Ans:
$$f(x) = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos(2n-1)x}{(2n-1)^2} + 4 \sum_{n=1}^{\infty} \frac{\sin(2n-1)x}{(2n-1)}$$
]

18.
$$f(x) = 0, -\pi \le x \le 0$$

= $x, 0 \le x \le \pi$

Hence, deduce that i)
$$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots$$
 ii) $\frac{\pi}{4} = \frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$

19. Obtain Fourier Series for $f(x) = e^{-|x|}, -\pi \le x \le \pi$

20.
$$f(x) = 0, -\pi \le x \le 0$$

= $\sin x, 0 \le x \le \pi$, Hence, deduce that i) $\frac{1}{2} = \frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \cdots$

ii)
$$\frac{1}{4}(\pi - 2) = \frac{1}{1 \cdot 3} - \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} - \dots$$
 [Ans: $f(x) = \frac{1}{\pi} + \frac{\sin x}{2} - \frac{2}{\pi} \left[\frac{\cos 2x}{4 \cdot 1^2 - 1} + \frac{\cos 4x}{4 \cdot 2^2 - 1} + \dots \right]$]

21. It is given that for
$$-\pi < x < \pi$$
, $x^2 = \frac{\pi^2}{3} + 4 \sum (-1)^n \frac{\cos nx}{n^2}$

Using Parsvel's identity prove that
$$\sum \frac{1}{n^4} = \frac{\pi^4}{90}$$

$$f(x) = 1 + \frac{2x}{\pi}, \quad -\pi \le x \le 0$$

$$= 1 - \frac{2x}{\pi}, \quad 0 \le x \le \pi$$

$$[Ans: f(x) = \sum_{n=1}^{\infty} \frac{4}{n^2} n^2 [1 - (-1)^n] \cos nx]$$

$$f(x) = x + \frac{\pi}{2}, \quad -\pi < x < 0$$

$$= \frac{\pi}{2} - x, \quad 0 < x < \pi$$

$$[Ans: f(x) = \sum_{n=1}^{\infty} \frac{4}{n^2} n^2 [1 - (-1)^n] \cos nx]$$

$$f(x) = x + \frac{\pi}{2}, \quad -\pi < x < 0$$

$$= \frac{\pi}{2} - x, \quad 0 < x < \pi$$

$$[Ans: f(x) = \sum_{n=1}^{\infty} \frac{4}{n^2} + \frac{1}{5} \cdots$$

$$[Ans: f(x) = \sum_{n=1}^{\infty} \frac{2}{n^2} n^2 [1 - (-1)^n] \cos nx]$$

$$24. \text{ Prove that } \sin h \alpha x = \frac{2}{\pi} \sinh \alpha \pi \left[\sum_{n=1}^{\infty} \frac{(-1)^{n+1} \cdot n}{n^2 + a^2} \sin nx \right]$$

$$25. f(x) = x \cos x, \quad in \quad (-\pi, \pi)$$

$$[Ans: f(x) = \frac{1}{2} \sin x + 2 \sum_{n=1}^{\infty} (-1)^n \cdot \frac{n}{n^2 - 1} \sin nx]$$

$$26. f(x) = x + x^2, \quad in \quad (-\pi, \pi). \text{ Hence deduce that } i) \frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} \cdots ii) \frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} \cdots in$$

$$27. f(x) = \cos px, \quad in \quad (-\pi, \pi). \text{ Where p is not an integer. Hence, prove that}$$

$$\cot p\pi = \frac{2p}{\pi} \left[\frac{1}{2p^2} - \frac{1}{p^2 - 1^2} + \frac{1}{p^2 - 2^2} - \frac{1}{p^2 - 3^2} + \cdots \right] \text{ And deduce that } \cos \theta = \frac{1}{\theta} - \sum_{n=1}^{\infty} \frac{2\theta}{n^2 \pi^2 - \theta^3}$$

$$Also deduce that $\frac{1}{2} - \frac{\pi\sqrt{3}}{18} = \frac{1}{9 \cdot 1^2 - 1} + \frac{1}{9 \cdot 2^2 - 1} + \frac{1}{9 \cdot 3^2 - 1} + \cdots$

$$28. f(x) = |\sin x|, \quad in \quad (-\pi, \pi) \text{ Hence deduce that } \frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} \cdots in$$

$$[Ans: f(x) = \frac{2}{\pi} - \frac{\pi}{2} \left[\frac{\cos 2x}{1^2} + \frac{\cos 3x}{3^2} + \frac{\cos 5x}{5^2} + \cdots \right]$$

$$30. f(x) = x \sin x, \quad in \quad (-\pi, \pi) \text{ Hence deduce that } \frac{1}{4} (\pi - 2) = \frac{1}{1 \cdot 3} - \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} \cdots$$

$$[Ans: f(x) = \frac{2}{\pi} - \frac{\pi}{2} \left[\frac{(-1)^n}{n^2 - 1} \cos nx \right]$$

$$[Ans: f(x) = \frac{2}{\pi} - \frac{\pi}{2} \left[\frac{(-1)^n}{n^2 - 1} \cos nx \right]$$

$$[Ans: f(x) = \frac{2}{\pi} - \frac{\pi}{2} \left[\frac{(-1)^n}{n^2 - 1} \cos nx \right]$$

$$[Ans: f(x) = \frac{2}{\pi} - \frac{\pi}{2} \left[\frac{(-1)^n}{n^2 - 1} \cos nx \right]$$

$$[Ans: f(x) = \frac{2}{\pi} - \frac{\pi}{2} \left[\frac{(-1)^n}{n^2 - 1} \cos nx \right]$$

$$[Ans: f(x) = \frac{2}{\pi} - \frac{\pi}{2} \left[\frac{(-1)^n}{n^2 - 1} \cos nx \right]$$

$$[Ans: f(x) = \frac{2}{\pi} - \frac{\pi}{2} \left[\frac{(-1)^n}{n^2 - 1} \cos nx \right]$$

$$[Ans: f(x) = \frac{2}{\pi} - \frac{\pi}{2} \left[\frac{(-1)^n}{n^2 - 1} \cos nx \right]$$

$$[Ans: f(x) = \frac{2}{\pi} - \frac{\pi}{2} \left[\frac{(-1)^n}{n^2 - 1} \cos nx \right]$$

$$[Ans$$$$

32. $f(x) = \frac{x(\pi^2 - x^2)}{12}$, in $(-\pi, \pi)$

[Ans: $f(x) = \frac{\sin x}{1^3} - \frac{\sin 2x}{2^3} + \frac{\sin 3x}{3^3} - \cdots$]

$$f(x) = 0, \quad -\pi \le x \le 0$$

$$_{33}, \qquad = x^2, \qquad 0 \le x \le \pi$$

$$x^{2} = \frac{\pi}{3} + 4\sum_{n=0}^{\infty} (-1)^{n} \cdot \frac{\cos nx}{n^{2}} \quad \text{for} \quad -\pi < x < \pi, \text{ prove that} \quad \sum_{n=0}^{\infty} \frac{1}{n^{4}} = \frac{\pi^{4}}{90}$$

$$_{35.} f(x) = \sin x$$
, in $(-\pi, \pi)$

$$f(x) = \frac{\pi^2}{12} - \frac{x^2}{4}, \quad \text{in} \quad (-\pi, \pi) \quad [\text{Ans:} \quad f(x) = \frac{\cos x}{1^2} - \frac{\cos 2x}{2^2} + \frac{\cos 3x}{3^2} - \cdots]$$

$$f(x) = x,$$
 $-\pi < x < 0$
= 0, $0 < x < \pi/2$
= $x - \pi/2$, $\pi/2 < x < \pi$

38.
$$f(x) = x^2$$
, in $(-\pi, \pi)$

39.
$$f(x) = \begin{cases} 0, & -\pi < x < 0 \\ x^2, & 0 < x > \pi \end{cases}$$

$$40. f(x) = x \cos x \ in \left(-\pi, \pi\right)$$

41.
$$f(x) = \cosh p x$$
 in $(-\pi, \pi)$, p is not an integer

42.
$$f(x) = \frac{x(\pi-x)(\pi+x)}{12}$$
 in $(-\pi,\pi)$

$$43.f(x) = x|x|, -\pi \le x \le \pi$$

$$44.f(x) = e^{-|x|}, -\pi \le x \le \pi$$

FOURIER EXPANSION OF f(x) IN THE INTERVAL (0, 2l)

45.
$$f(x) = x^2$$
, in $(0, a)$ Hence deduce that $\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots$

[Ans:
$$f(x) = \frac{a^2}{3} + \sum_{n=1}^{\infty} \frac{a^2}{n^2 \pi^2} \cos\left(\frac{n\pi x}{a}\right) - \sum_{n=1}^{\infty} \frac{a^2}{n \pi} \sin\left(\frac{n\pi x}{a}\right)$$
]

46.
$$f(x) = 2x - x^2, 0 \le x \le 3$$

[Ans:
$$f(x) = \sum_{n=1}^{\infty} \frac{-9}{n^2 \pi^2} \cos\left(\frac{2n\pi x}{3}\right) + \sum_{n=1}^{\infty} \frac{3}{n \pi} \sin\left(\frac{2n\pi x}{3}\right)$$
]

47.
$$f(x) = \pi x$$
, $0 < x < 1$
= 0, $1 < x < 2$

[Ans:
$$f(x) = \frac{\pi}{4} - \sum_{n=1}^{\infty} \frac{\left[1 - (-1)^n\right]}{n^2} \cos n\pi x - \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \sin n\pi x$$
]

48.
$$f(x) = \pi x$$
, $0 \le x \le 1$, with period 2, show that $f(x) = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} \cos(2n+1)\pi x$

$$f(x) = \pi x, \qquad 0 < x < 1$$
49. = 0, $x = 1$, Hence show that $\frac{\pi}{4} = \frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$ [Ans: $f(x) = \frac{\pi}{4} + 2 \sum_{n=1}^{\infty} (-1)^{n+1} \sin n\pi x$]
$$= \pi (2-x), \qquad 1 < x < 2$$

$$f(x) = 3kx/l, 0 < x < (l/3)$$
50.
$$= 3k(l-2x)/l, (l/3) < x < (2l/3),$$

$$= \pi(2-x), (2l/3) < x < l$$
[Ans: $\frac{9k}{\pi^2} \sum_{n=1}^{\infty} \frac{2n\pi}{3} \cdot \sin \frac{2n\pi x}{l}$]

51.If
$$x^2 = \frac{4l^2}{3} + \frac{4l^2}{\pi^2} \sum \frac{1}{n^2} \cos\left(\frac{n\pi x}{l}\right) - \frac{4l^2}{\pi} \sum \frac{1}{n} \sin\left(\frac{n\pi x}{l}\right)$$
 in $0 < x < 2l$, find the sum of the series
$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} \dots$$
[Ans: $\frac{\pi^2}{6}$]

52.
$$f(x) = k x$$
 in the interval $0 \le x \le 2$. Hence deduce that $\sum_{n=1}^{\infty} \frac{1}{n^2} \ge \frac{\pi^2}{6}$

53. Find Fourier series to represent
$$f(x) = 2x - x^2$$
 in (0,3) and prove that $\frac{\pi^2}{12} = \frac{1}{1^2} \cdot \frac{1}{2^2} + \frac{1}{3^2} \cdot \frac{1}{4^2} + \dots$

54.
$$f(x) = 2 - \frac{x^2}{2}$$
 in $0 \le x \le 2$

FOURIER EXPANSION OF f(x) IN THE INTERVAL (-l, l)

$$55, f(x) = 0, -c < x < 0$$

$$= a, 0 < x < c$$
[Ans: $f(x) = \frac{a}{2} + \frac{2a}{\pi} \left[\frac{1}{1} \sin \frac{\pi x}{c} + \frac{1}{3} \sin \frac{3\pi x}{c} + \cdots \right]$

56.
$$f(x) = -x$$
, $-1 < x < 0$
= x , $0 < x < 1$, [Ans:

$$f(x) = x, -1 < x < 0$$

$$= x + 2, 0 < x < 1$$
[Ans: $f(x) = 1 + \frac{2}{\pi} \sum_{n=1}^{\infty} [1 - 2(-1)^n] \sin n\pi x$

58.
$$f(x) = |x|$$
, $-2 < x < 2$, Hence deduce that $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^4} = \frac{\pi^4}{96}$

[Ans:
$$f(x) = 1 - \frac{8}{\pi^2} \sum \frac{1}{(2n-1)^2} \cos \left[\frac{(2n-1)\pi x}{2} \right]$$
]

$$f(x) = 1 - x^2, \quad -1 < x < 1,$$
 [Ans: $f(x) = \frac{2}{3} - \frac{4}{\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos n\pi x$

$$f(x) = \sin ax, \quad -l < x < l,$$
[Ans:
$$f(x) = 2\pi \sin al \sum \frac{(-n)(-1)^n}{n^2 \pi^2 - a^2 l^2} \sin \frac{n\pi x}{l}$$

$$\begin{aligned}
&f(x) = x - x^2, \quad -1 < x < 1, \\
&f(x) = -\frac{1}{3} - \frac{4}{\pi^2} \sum \frac{(-1)^n}{n^2} \cos n\pi x - \frac{2}{\pi} \sum \frac{(-1)^n}{n} \sin n\pi x
\end{aligned}$$

$$62. \quad f(x) = a^2 - x^2, \quad -a < x < a,$$

$$[Ans: f(x) = \frac{2a^2}{3} + \frac{4a^2}{\pi^2} \left[\frac{1}{1^2} \cos \frac{\pi x}{a} - \frac{1}{2^2} \cos \frac{2\pi x}{a} + \frac{1}{3^2} \cos \frac{3\pi x}{a} - \cdots \right]$$

$$63. \quad f(x) = x^2, \quad -1 < x < 1,$$

$$[Ans: f(x) = \frac{1}{3} - \frac{4}{\pi^2} \left[\frac{1}{1^2} \cos \pi x - \frac{1}{2^2} \cos 2\pi x + \frac{1}{3^2} \cos 3\pi x - \cdots \right]$$

$$64. \quad f(x) = 9 - x^2, \quad -3 < x < 3,$$

$$[Ans: f(x) = 6 + \frac{36}{\pi^2} \left[\frac{1}{1^2} \cos \frac{\pi x}{3} - \frac{1}{2^2} \cos \frac{2\pi x}{3} + \frac{1}{3^2} \cos \frac{3\pi x}{3} - \cdots \right]$$

$$[Ans: f(x) = 6 + \frac{36}{\pi^2} \left[\frac{1}{1^2} \cos \frac{\pi x}{3} - \frac{1}{2^2} \cos \frac{2\pi x}{3} + \frac{1}{3^2} \cos \frac{3\pi x}{3} - \cdots \right]$$

$$[Ans: f(x) = -\frac{1}{3} - \frac{4}{\pi^2} \sum_{n=0}^{\infty} \frac{(-1)^n \sin n\pi x}{n^3}$$

$$[Ans: f(x) = -\frac{1}{3} - \frac{4}{\pi^2} \sum_{n=0}^{\infty} \frac{(-1)^n \cos n\pi x}{n^3} - \frac{2}{\pi} \sum_{n=0}^{\infty} \frac{(-1)^n \sin n\pi x}{n}$$

$$[Ans: f(x) = -\frac{1}{3} - \frac{4}{\pi^2} \sum_{n=0}^{\infty} \frac{(-1)^n \cos n\pi x}{n^2} - \frac{2}{\pi} \sum_{n=0}^{\infty} \frac{(-1)^n \sin n\pi x}{n}$$

$$67. f(x) = x^{2} - 2, -2 \le x \le 2$$

$$68. f(x) = \begin{cases} 0, & -2 < x < -1 \\ 1 + x, & -1 < x < 0 \\ 1 - x, & 0 < x < 1 \end{cases}$$

[Ans:
$$f(x) = -\frac{2}{3} - \frac{16}{\pi^2} \left[\cos \frac{\pi x}{2} - \frac{1}{4} \cos \pi x + \frac{1}{9} \cos \frac{3\pi x}{2} \cdots \right]$$
]
[Ans: $f(x) = \frac{1}{4} + \sum \frac{4}{n^2 \pi^2} \left(1 - \cos \frac{n\pi}{2} \right) \cdot \cos \left(\frac{n\pi x}{2} \right)$]

$$[Ans: f(x) = e^{-x}, (-a, a)]$$

$$[Ans: f(x) = \frac{\sinh a}{a} + 2a \sinh a \sum \frac{(-1)^n}{a^2 + n^2 \pi^2} \cos \frac{n\pi x}{a} + 2\pi \sinh a \sum \frac{(-1)^{n+1} \cdot n}{a^2 + n^2 \pi^2} \sin \frac{n\pi x}{a}]$$

$$70. f(x) = |x|, -1 < x < 1$$

71.
$$f(x) = \begin{cases} 0, & = 2 < x < -1 \\ k, & -1 < x < 1 \\ 0, & 1 < x < 2 \end{cases}$$

$$72.f(x) = \begin{cases} 0, -5 < x < 0 \\ 7, 0 < x < 5 \end{cases}$$
 period of the function is 10.

73.
$$f(x) = \begin{cases} 0, -2 < x < 0 \\ x + 5, 0 < x < 2 \end{cases}$$

74.
$$f(x) = 1 - x^2$$
 in $(-1,1)$ hence find $\frac{1}{1^2} \cdot \frac{1}{2^2} \cdot \frac{1}{3^2} \cdot \frac{1}{4^2} + \dots$
75. $f(x) = \begin{cases} -\sin\frac{\pi x}{k}, -k < x < 0 \\ \sin\frac{\pi x}{k}, 0 < x < k \end{cases}$

76.
$$f(x) = \begin{cases} 2(x-4), -4 < x < 0 \\ 2(x+4), 0 < x < 4 \end{cases}$$

77.
$$f(x) = x^2 - 2$$
 on $(-2,2)$

HALF RANGE SERIES

78. Obtain half range sine series for $f(x) = x, \qquad 0 < x < \pi/2 \\ = \pi - x, \quad \pi/2 < x < \pi$ Hence find $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^4}$ [Ans: $f(x) = \sum_{\pi} \frac{4}{\pi} \frac{\sin(n\pi/2)}{x^2} \cdot \sin nx$]

79. Find half range cosine series for f(x) = x, (0, 2). Using Parsvel's identity, deduce that

i)
$$\frac{\pi^4}{96} = \frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \cdots$$
 ii) $\sum \frac{1}{n^4} = \frac{\pi^4}{90}$.

ii)
$$\sum \frac{1}{n^4} = \frac{\pi^4}{90}$$
.

80. Obtain the expression of $f(x) = x(\pi - x)$, $0 < x < \pi$ as a half-range cosine series. Hence, show that i) $\frac{\pi^2}{6} = \sum_{i=1}^{\infty} \frac{1}{n^2}$

ii)
$$\frac{\pi^2}{12} = \sum_{1}^{\infty} \frac{(-1)^{n+1}}{n^2}$$
 iii) $\sum_{1} \frac{1}{n^4} = \frac{\pi^4}{90}$

ii)
$$\frac{\pi^2}{12} = \sum_{1}^{\infty} \frac{(-1)^{n+1}}{n^2}$$
 iii) $\sum \frac{1}{n^4} = \frac{\pi^4}{90}$. [Ans: $f(x) = \frac{\pi^2}{6} - \left[\frac{1}{1^2}\cos 2x + \frac{1}{2^2}\cos 4x + \frac{1}{3^2}\cos 6x + \cdots\right]$

81. Show that if $0 < x < \pi$, $\cos x = \frac{8}{\pi} \sum_{n=1}^{\infty} \frac{m}{4m^2 - 1} \sin 2mx$

82. Expand $f(x) = lx - x^2$, 0 < x < l in a half range i) cosine series, ii) sine series.

Hence from sine series deduce that $\frac{\pi^3}{32} = 1 - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \cdots$

[Ans: i)
$$f(x) = \frac{l^2}{6} - \frac{4l^2}{\pi^2} \left[\frac{1}{2^2} \cos \frac{2\pi x}{l} + \frac{1}{4^2} \cos \frac{4\pi x}{l} + \frac{1}{6^2} \cos \frac{6\pi x}{l} + \cdots \right]$$

ii) $f(x) = \frac{8l^2}{\pi^3} \left[\frac{1}{1^3} \sin \frac{\pi x}{l} + \frac{1}{3^3} \sin \frac{3\pi x}{l} + \frac{1}{5^3} \sin \frac{5\pi x}{l} + \cdots \right]$

83. Find half range cosine series for $f(x) = \begin{cases} x, & 0 < x < (\pi/2) \\ \pi - x, & (\pi/2) < x < \pi \end{cases}$

[Ans:
$$f(x) = \frac{\pi}{4} - \frac{8}{\pi} \left[\frac{1}{2^2} \cos 2x + \frac{1}{6^2} \cos 6x + \frac{1}{10^2} \cos 10x + \cdots \right]$$
]

84. Prove that in the interval $0 < x < \pi$, $\frac{e^{ax} - e^{-ax}}{e^{a\pi} - e^{-a\pi}} = \frac{2}{\pi} \left| \frac{\sin x}{a^2 + 1} - \frac{2\sin 2x}{a^2 + 4} + \frac{3\sin 3x}{a^2 + 9} - \cdots \right|$

85. Obtain half-range sine series for f(x) = x(2-x) in 0 < x < 2 and hence find $\sum \frac{1}{n^6} = \frac{\pi^6}{0.45}$

86. Obtain half range sine series for
$$f(x) = \begin{cases} (1/4) - x, & 0 < x < (1/2) \\ x - (3/4), & (1/2) < x < 1 \end{cases}$$

[Ans:
$$f(x) = \left(\frac{1}{\pi} - \frac{4}{\pi^2}\right) \sin \pi x + \left(\frac{1}{3\pi} - \frac{4}{3^2 \pi^2}\right) \sin 3\pi x + \left(\frac{1}{5\pi} - \frac{4}{5^2 \pi^2}\right) \sin 5\pi x + \cdots$$
]

87. Obtain half-range cosine series for f(x) = x in 0 < x < l. Hence deduce that $\frac{1}{2^4} + \frac{1}{4^4} + \frac{1}{6^4} + \cdots = \frac{\pi^4}{1440}$

88. Obtain half-range cosine series for $f(x) = \begin{cases} kx, & 0 < x < (l/2) \\ l - x, & (l/2) < x < l \end{cases}$

Hence, deduce that i) $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots$ ii) $\frac{\pi^4}{96} = \frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \cdots$

[Ans:
$$f(x) = \frac{kl}{4} - \frac{8kl}{\pi^2} \left[\frac{1}{2^2} \cos \frac{2\pi x}{l} + \frac{1}{6^2} \cos \frac{6\pi x}{l} + \frac{1}{10^2} \cos \frac{10\pi x}{l} + \cdots \right]$$
]

89. Find half range sine series of period 2l for $f(x) = \begin{cases} \frac{2x}{l}, & 0 < x < (l/2) \\ \frac{2}{l}(l-x), & (l/2) < x < l \end{cases}$

[Ans:
$$f(x) = \frac{8}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \sin \frac{n\pi}{2} \cdot \sin \frac{n\pi x}{l}$$
]

90. Obtain sine series for $f(x) = \begin{cases} mx, & 0 < x \le (\pi/2) \\ m(\pi - x), & (\pi/2) \le x < \pi \end{cases}$ Ans: $f(x) = \frac{4m}{\pi} \left[\frac{\sin x}{1^2} - \frac{\sin 3x}{3^2} + \frac{\sin 5x}{5^2} - \cdots \right]$

91. Obtain half range cosine series for $f(x) = \sin\left(\frac{\pi x}{l}\right)$ in 0 < x < l.

[Ans:
$$f(x) = \frac{2}{\pi} - \frac{4}{\pi} \left[\frac{1}{1 \cdot 3} \cos \frac{2\pi x}{l} + \frac{1}{3 \cdot 5} \cos \frac{4\pi x}{l} + \cdots \right]$$
]

92. Obtain half-range cosine series for $f(x) = (x-1)^2$ in 0 < x < 1. Hence, find $\sum_{n=1}^{\infty} \frac{1}{n^2}$ & $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$

[Ans:
$$f(x) = \frac{1}{3} + \frac{4}{\pi^2} \sum_{n=1}^{\infty} \frac{\cos n\pi x}{n^2}$$
]

93. Find HRSS for
$$f(x) = \begin{cases} \frac{2x}{3}, & 0 \le x \le \frac{\pi}{3} \\ \frac{\pi - x}{3}, & \frac{\pi}{3} \le x \le \pi \end{cases}$$

[Ans:
$$f(x) = \frac{\sqrt{3}}{\pi} \left[\frac{1}{1^2} \sin x + \frac{1}{2^2} \sin 2x - \frac{1}{4^2} \sin 4x - \frac{1}{5^2} \sin 5x + \cdots \right]$$

94. Obtain the half range sine series for $f(x) = x(\pi - x)$, $0 < x < \pi$ Hence, find $\sum_{n=1}^{\infty} \frac{(-1)^3}{(2n-1)^3}$

95. Show that in the interval $0 < x < \pi$, $\sin x = \frac{2}{\pi} - \frac{4}{\pi} \left[\frac{\cos 2x}{2^2 - 1} + \frac{\cos 4x}{4^2 - 1} + \cdots \right]$

96. Obtain half-range sine series for $f(x) = x^2$ in 0 < x < 3.

97 Obtain HRCS for
$$f(x) = x(2-x)$$
 in $0 < x < 2$

97. Obtain HRCS for
$$f(x) = x(2-x)$$
 in $0 < x < 2$ [Ans: $f(x) = \frac{2}{3} - \frac{8}{\pi^2} \sum_{n=1}^{\infty} \frac{[1 + (-1)^n]}{n^2} \cos\left(\frac{n\pi x}{2}\right)$]

98. Find half range cosine series for $f(x) = \begin{cases} kx & 0 < x < 1/2 \\ 0 & 1/2 < x < 1 \end{cases}$ Hence deduce that $\frac{\pi^2}{11} = \frac{1}{12} + \frac{1}{31} + \frac{1}{51} + \frac{1}{71} + \cdots$ 99. Find half range cosine series for f(x) = x on (0,2) hence deduce that $\frac{\pi^4}{90} = \frac{1}{14} + \frac{1}{24} + \frac{1}{34} + \cdots$

COMPLEX FORM OF FOURIER SERIES

Obtain complex form of Fourier series for the following functions:

$$100$$
, $f(x) = e^{ax}$ in $(-\pi, \pi)$ where a is not an integer

[Ans:
$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n \sinh a\pi \cdot (a+ln)}{\pi (a^2 + n^2)} e^{inx}$$
]

$$101. f(x) = e^{ax}$$
 in $(-1,1)$, where a is not an integer.

[Ans:
$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n \sinh al \cdot (al + \ln \pi)}{(a^2 l^2 + n^2 \pi^2)} e^{\ln \pi x/l}$$
]

$$_{102.} f(x) = \cosh ax + \sinh ax$$
 in $(-1,1)$

[Ans:
$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n \sinh al \cdot (al + \ln \pi)}{(a^2 l^2 + n^2 \pi^2)} e^{\ln n x/l}$$
]

$$f(x) = \cosh ax$$
 in $(-1,1)$

[Ans:
$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n al \sinh al}{(a^2 l^2 + n^2 \pi^2)} e^{ln\pi x/l}$$
]

$$104. f(x) = \sin ax$$
 in $(-\pi, \pi)$, where a is not an integer.

[Ans:
$$f'(x) = \frac{\sin a\pi}{\pi i} \sum_{n=1}^{\infty} (-1)^n \cdot \frac{n}{(a^2 - n^2)} \cdot e^{\ln x}$$
]

.105.
$$f(x) = e^{ax}$$
 in $(0,a)$

105.
$$f(x) = e^{ax}$$
 in $(0,a)$ [Ans: $f(x) = (e^{a^2} - 1) \sum_{-\infty}^{\infty} \frac{e^{2in\pi x/a}}{(a^2 - 2in\pi)}]_{106}$, $f(x) = e^{ax}$ in $(-1,1)$

[Ans:
$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n \sinh a \cdot (a + \ln \pi)}{(a^2 + n^2 \pi^2)} e^{\ln \pi x}$$
]

$$_{107} f(x) = \cosh 3x + \sinh 3x$$
 in $(-\pi, \pi)$

[Ans:
$$f(x) = \sum_{-\infty}^{\infty} \frac{(-1)^n \sinh 3\pi \cdot (3+in)}{(9+n^2)\pi} e^{inx}$$
]

108.
$$f(x) = 0, 0 < x < l$$

= $a, l < x < 2l$

[Ans:
$$f(x) = \frac{a}{2} + \frac{ai}{\pi} \left[(e^u - e^{-u}) + \frac{1}{3} (e^{3u} - e^{-3u}) + \cdots \right]$$
 where $u = \frac{i\pi x}{l}$]

109.
$$f(x) = e^{-x}$$
 in $(-\pi, \pi)$ and $(-1, 1)$.

[Ans:
$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n (1 - i n \pi) \sinh 1}{1 + n^2 \pi^2} e^{i n \pi x}$$
]

$$f(x) = \cos ax$$
 in $(-\pi, \pi)$, where a is not an integer.

[Ans:
$$f(x) = \frac{a \sin a\pi}{\pi} \sum_{-\infty}^{\infty} \frac{(-1)^n}{(a^2 - n^2)} e^{inx}$$
]

111.
$$f(x) = e^{ax}$$
 in $(0,2\pi)$ where a is not an integer.

112.
$$f(x) = 2x$$
 in $(0,2\pi)$ [Ans: $f(x) = \sum_{n=0}^{\infty} \frac{2i}{n} e^{inx}$]

$$f(x) = \cosh 2x + \sinh 2x$$
 in $(-5,5)$

[Ans:
$$f(x) = \sum_{-\infty}^{\infty} \frac{(-1)^n \sinh 10 \cdot (10 + in\pi)}{(100 + n^2 \pi^2)} e^{in\pi x/5}$$
]

$$f(x) = \cosh 2x + \sinh 2x$$
 in $(-2,2)$

$$f(x) = \cosh 2x + \sinh 2x \quad in \quad (-2,2)$$
 [Ans: $f(x) = \sum_{-\infty}^{\infty} \frac{(-1)^n \sinh 4 \cdot (4 + in\pi)}{(16 + n^2\pi^2)} e^{in\pi x/2}$]

115.
$$f(x) = 1$$
, $0 < x < 1$

$$= 0, 1 < x < 2$$

$$116. f(x) = \cosh ax \quad in \quad (-\pi, \pi)$$

[Ans:
$$f(x) = \frac{a \sinh a\pi}{\pi} \sum_{-\infty}^{\infty} \frac{(-1)^n}{(a^2 + n^2)} e^{inx}$$
]

$$\frac{1}{117} f(x) = x^2 + x$$
 in $(-\pi, \pi)$

 $f(x) = e^{-ax}$ in (-2,2) where a is not an integer.

$$119.f(x) = \cos hx \text{ in } (=1,1)$$

$$119.f(x) = \cos hx \text{ in } (=1,1)$$

$$120. \text{ If } f(x) = \begin{cases} 1, & 0 < x < 1 \\ 0, & 1 < x < 2 \end{cases} \text{ and } f(x) = f(x+2) \text{ for all } x$$

And hence prove that $f(x) = \frac{1}{2} + \frac{2}{\pi} \left\{ \frac{\sin(\pi x)}{1} + \frac{\sin(3\pi x)}{2} + \frac{\sin(5\pi x)}{5} + \cdots \right\}$

FOURIER INTEGRAL

121. Express the function
$$f(x) = \begin{cases} -e^{kx}, & \text{for } x < 0 \\ e^{-kx}, & \text{for } x > 0 \end{cases}$$
 as Fourier Integral and prove that

$$\int_{0}^{\infty} \frac{\omega \sin \omega x}{\omega^{2} + k^{2}} d\omega = \frac{\pi}{2} e^{-kx} \quad \text{if } x > 0, k > 0$$

122. Using Fourier Cosine integral prove that
$$e^{-x} \cos x = \frac{2}{\pi} \int_{0}^{\infty} \frac{(\omega^2 + 2)}{(\omega^4 + 4)} \cdot \cos \omega x \, d\omega$$

123. Find Fourier Integral for
$$f(x) =\begin{cases} 1 - x^2 & \text{for } |x| \le 1 \\ 0 & \text{for } |x| > 1 \end{cases}$$
 [Ans: $f(x) = \frac{4}{\pi} \int_{0}^{\infty} \frac{\sin \omega + \omega \cos \omega}{\omega^3} \cdot \cos \omega x \, d\omega$]

124. Express the function
$$f(x) = \begin{cases} \sin x, & 0 < x \le \pi \\ 0, & x < 0, x > \pi \end{cases}$$
 as Fourier Integral. and prove that

$$f(x) = \frac{1}{\pi} \int_{0}^{\infty} \frac{\sin \omega x + \cos \left[\omega(\pi - x)\right]}{1 - \omega^{2}} d\omega \qquad \text{Hence deduce that} \qquad \int_{0}^{\infty} \frac{\cos(\omega \pi / 2)}{1 - \omega^{2}} d\omega = \frac{\pi}{2}$$

125. Find Fourier Integral representation for
$$f(x) = \begin{cases} e^{ax} & x \le 0, \ a > 0 \\ e^{-ax} & x \ge 0, \ a > 0 \end{cases}$$

Hence show that
$$\int_{0}^{\infty} \frac{\cos \omega x}{\omega^{2} + a^{2}} d\omega = \frac{\pi}{2a} e^{-ax}, \quad x > 0, \, a > 0$$

126. Find Fourier Sine integral representation for
$$f(x) = \frac{e^{-ax}}{x}$$
 [Ans: $f(x) = \frac{2}{\pi} \int_{0}^{\infty} \sin \omega x \cdot \tan^{-1}(\omega/a) d\omega$]

127. Find Fourier Cosine integral for
$$f(x) = \begin{cases} 1 - x^2 & 0 \le x \le 1 \\ 0 & x > 1 \end{cases}$$
 Hence evaluate $\int_0^\infty \frac{\sin \omega - \omega \cos \omega}{\omega^3} \cos \frac{\omega}{2} d\omega$ [Ans: $\frac{3\pi}{16}$] Hint: put $x = 1/2$

D1. Express the function
$$f(x) = \begin{cases} \sin x, & 0 < x \le \pi \\ 0, & x < 0, x > \pi \end{cases}$$
 as Fourier sine Integral and evaluate $\int_{0}^{\infty} \frac{\sin \omega x \cdot \sin \pi \omega}{1 - \omega^{2}} d\omega$

D2. Find Fourier sine integral of
$$f(x)$$
 where $f(x) = \begin{cases} x & \text{, } 0 < x < 1 \\ 2 - x, 1 < x < 2 \\ 0 & \text{, } x > 2 \end{cases}$

D3. Express $f(x) = e^{-kx} (k > 0)$ as Fourier Sine and Cosine Integral and show respectively that

i)
$$\int_{0}^{\infty} \frac{\omega \sin \omega x}{k^{2} + \omega^{2}} d\omega = \frac{\pi}{2} e^{-kx}$$
 ii)
$$\int_{0}^{\infty} \frac{\omega \cos \omega x}{k^{2} + \omega^{2}} d\omega = \frac{\pi}{2k} e^{-kx}$$

D4. Find Fourier Integral representation for
$$f(x) = \begin{cases} x, & 0 < x < a \\ 0, & x > a \end{cases}$$
 and $f(-x) = f(x)$

FOURIER TRANSFORM

D5. Find Fourier Transform of
$$f(x) = \begin{cases} x, & |x| \le a \\ 0, & |x| > a \end{cases}$$

D6. Find Fourier Transform of
$$f(x) = \begin{cases} 1 - |x|, & |x| \le 1 \\ 0, & |x| > 1 \end{cases}$$
, hence show that $\int_0^\infty \frac{\sin^2 x}{x^2} dx = \frac{\pi}{2}$

D7. Find Inverse Fourier Transform of
$$\Phi$$
 (s) defined as Φ (s =
$$\begin{cases} 1 + s^2, |s| \le 1 \\ 0, |s| > 1 \end{cases}$$

D8. Find Fourier Cosine Transform of
$$e^{-ax}$$
, $a > 0$

D8. Find Fourier Cosine Transform of
$$e^{-ax}$$
, $a > 0$
D9. Find Fourier Sine Transform of e^{-ax} , $a > 0$, hence find $F_S(xe^{-ax})$ and $F_S = \frac{e^{-ax}}{x}$. Also deduce the value of $\int_0^\infty \frac{\sin sx}{x} dx$.

D10. Find Fourier Cosine Transform of
$$f(x) = \begin{cases} \cos x, & 0 < x < a \\ 0, & x > a \end{cases}$$

D11. Find
$$f(x)$$
 if $\int_0^\infty f(x) \sin sx \, dx = e^{-as}$

D12. Find Inverse Fourier Cosine Transform of
$$\frac{1}{1+s^2}$$

D12. Find Inverse Fourier Cosine Transform of
$$\frac{1}{1+s^2}$$
D13. Find Fourier Sine Transform and Fourier Cosine Transform of $f(x)$ if $f(x) = \begin{cases} 1, & 0 < x < 1 \\ 0, & x > 1 \end{cases}$

D14. Find
$$f(x)$$
 if $\int_0^\infty f(x) \cos sx \ dx = \frac{\sin s}{s}$