<mark>Alberi n-Ari</mark>

Alberi n-Ari	 Un albero n-ario è un grafo orientato che o è vuoto, oppure ha le seguenti caratteristiche: esiste un nodo detto radice, senza predecessori e con n≥0 successori; tutti gli altri nodi sono divisi in sottoalberi mutuamente disgiunti. Solitamente un albero n-ario è usato per rappresentare relazioni gerarchiche tra oggetti; in questo caso va definita una relazione d'ordine tra i figli di ogni nodo.
	questo caso va definita una relazione d'ordine tra r'iigii di ogni nodo.
Visita di Alberi	La visita di un albero consiste nello stabilire una "rotta" che permette di esaminare ogni nodo di un albero esattamente una volta.
	Esistono diverse strategie per fare ciò: - Previsita (Preordine) Esamina prima la radice e poi i sottoalberi; - Postvisita (Postordine) Esamina prima i sottoalberi e poi la radice; - Invisita (Ordine Simmetrico) Dati T_1 T_k sottoalberi, questa tecnica consiste nell'esaminare T_1 T_i sottoalberi, poi esaminare i restanti T_{i+1} T_k sottoalberi. In pratica scende nell'albero fino a trovare un nodo foglia, poi stampa il suo genitore ed infine il figlio destro (del genitore), il tutto ricorsivamente.
Equivalenza di Alberi n-Ari e Binari	E sempre possibile rappresentare un albero n-ario T ordinato con un albero binario B avente stessi nodi e stessa radice; nell'albero binario ogni nodo ha:
	 come figlio sinistro il primo figlio in <i>T</i>; come nodo destro il fratello successivo in <i>T</i>.
	Questa è un'equivalenza ai fini della previsita: ciò significa che i nodi corrispondono se sono visitati in previsita.
Rappresentazioni: Vettore di Padri	Nella rappresentazione con vettore di padri , i nodi vengono inseriti in un vettore, ed ogni nodo ha un puntatore al padre. Questa rappresentazione rende semplice la visita dei nodi, mentre è più complesso inserire e cancellare interi sottoalberi.
Rappresentazioni: Lista di Figli	Nella rappresentazione con lista di figli si utilizza un vettore dei nodi; in ogni indice del vettore si memorizza un nodo che conterrà: - etichetta del nodo; - riferimento ad una lista di figli, che contiene i riferimenti ai successori del nodo genitore.
Rappresentazioni: Lista Primo Figlio/Fratello	Nella rappresentazione con lista primo figlio/fratello si utilizzano tre vettori: 1. il primo contiene un cursore al primo figlio; 2. il secondo l'etichetta del nodo; 3. il terzo un cursore al fratello del nodo. Ovviamente, le informazioni su uno specifico nodo si troveranno nel medesimo indice in tutti e 3 i vettori. E anche possibile aggiungere un cursore al genitore del nodo.

Rappresentazioni: Lista Dinamica Collegata	Nell'implementazione con lista dinamica collegata , se l'albero è vuoto, la lista che lo implementa è vuota, altrimenti avremo una lista di $k+1$ elementi, dove il primo rappresenta la radice, mentre gli altri sono gli alberi T_1 , T_2 ,, T_k
	La rappresentazione risulta complessa dal momento che, in ogni lista, viene memorizzata la radice del sottoalbero, mentre gli altri elementi sono riferimenti ai sottoalberi (che contengono a loro volta un riferimento alla lista dove c'è la rispettiva radice)
Realizzazione di MFSET	

Specifica Semantica

TIPI:

- **Albero**: insieme degli alberi ordinati $T = \langle N,A \rangle$ in cui ad ogni nodo n in N è associato il livello (n)

- Boolean: insieme dei valori di verità

- Nodo: insieme finito qualsiasi

OPERATORI:

creaAlbero() = T'

POST: $T' = (\emptyset, \emptyset) = (albero vuoto)$

alberoVuoto(T) = b

POST: b = true if T' =

b = false altrimenti

inserisciRadice(u,T) = T'

PRE: T =

POST: T' = (N,A) $N = \{u\}$, LIVELLO(0), $A = \emptyset$

radice(T) = u

PRE: T≠

POST: $u \rightarrow RADICE DI T \rightarrow LIVELLO(u) = 0$

PADRE(u,T) = v

PRE: $T \neq \text{and LIVELLO(u)} > 0$

POST: v =