

PATENTS

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:) Confirmation No. 9944
CHOO *et al.*)
Serial No.: 10/580,050) Group Art Unit: 1648
I.A. Filed: November 19, 2004)
) Examiner: TBA
) Atty. Docket No. 51835-US-PCT

For: **METHODS AND REAGENTS FOR TREATING, PREVENTING,
AND DIAGNOSING BUNYAVIRUS INFECTION**

PETITION UNDER 37 C.F.R. § 1.181 TO WITHDRAW
HOLDING OF ABANDONMENT

U.S. Patent and Trademark Office
Randolph Building
401 Dulany Street
Alexandria, VA 22314

Dear Sir:

Applicants petition the Director under 37 C.F.R. § 1.181 to withdraw the holding of abandonment of the application referenced above as set forth in the Notification of Abandonment mailed May 14, 2009. Applicants believe no fee is due in connection with this petition. If a fee is due, please charge our Deposit Account No. 19-0733.

Statement of Facts

1. The present application (Serial No. 10/580,050) is a national phase application of PCT/US2004/039333 filed November 19, 2004. Serial No. 10/580,050 was filed by express mail on May 19, 2006.

2. A Notification of Missing Requirements requesting an executed declaration was mailed on January 16, 2007. The executed declaration was filed by express mail on August 10, 2007 together with payment for a five-month extension of time.

3. On January 31, 2008 Applicants filed by express mail a preliminary amendment and paper and computer readable forms of a sequence listing. The preliminary amendment inserted sequence identifiers into the specification and directed entry of the paper copy of the sequence listing into the specification. Exhibit 1 is a copy of Applicants' sequence listing transmittal letter downloaded from PAIR. The transmittal letter bears a U.S. Patent and Trademark Office receipt stamp of January 31, 2008.

4. Exhibit 2 is a copy of a SCORE placeholder sheet for IFW content downloaded from PAIR. The placeholder sheet is dated January 31, 2008 and indicates receipt of the computer readable form of the sequence listing.

5. Exhibit 3 is a printout of PAIR's "Supplemental Content" view for this application.

6. Exhibit 4 is a copy of the contents of the sequence listing downloaded from the Supplemental Content. tab in PAIR

7. A Notice to Comply with sequence listing requirements was mailed on February 18, 2009. The notice asserted that a computer readable form of the sequence listing had not been submitted. The Notice provided a two-month initial deadline to respond (*i.e.*, until April 18,

2009). The Notice also indicated that extensions of time were available under 37 C.F.R. § 1.136 up to six months from the mailing date of the notice (*i.e.*, until August 18, 2009).

8. On March 20, 2009 Applicants filed by express mail a response to the Notice to Comply. The response noted that the computer readable form of the sequence listing had been filed on January 31, 2008. The response also stated that copies of the sequence listing and preliminary amendment filed on January 31, 2008 were being resubmitted; however, PAIR does not indicate that the sequence listing and preliminary amendment were re-submitted with the response.

9. A Notification of Abandonment was mailed on May 14, 2009, less than one month after the initial deadline for responding to the Notice to Comply. The Notification states that the application is abandoned because “[t]he sequence requirements still haven’t been met.”

Point to be Reviewed

The point to be reviewed is whether the holding of abandonment should be withdrawn because the computer readable form of the sequence listing was filed on January 31, 2008.

Action Requested

Applicant requests that the holding of abandonment of this application be withdrawn.

Argument

The Notification of Abandonment appears to have been issued in error. As an initial matter, the Notification of Abandonment was mailed before the end of the statutory period for responding to the Notice to Comply.

Moreover, the Notice to Comply itself was erroneously issued. First, the U.S. Patent and Trademark Office's own records indicate that the computer readable form of the sequence listing was filed on January 31, 2008 (Exhibit 2). Second, the computer readable form of the sequence listing actually is present under the "Supplemental Content" tab for this application in PAIR (Exhibits 3 and 4). Third, the contents of the computer readable form downloaded from PAIR appears to contain all 191 sequences present in the paper form of the sequence listing filed on January 31, 2008 (Exhibit 4).

Applicants respectfully request that the holding of abandonment of this application be withdrawn.

Respectfully submitted,

BANNER & WITCOFF, LTD.

/Lisa M. Hemmendinger/

Date: May 27, 2009

By:

Lisa M. Hemmendinger
Registration No. 42,653

Customer No. 22907

*Exhibit 1*Express Mail Label No.: ED 954551195 US Date: January 31, 2008

IN THE UNITED STATES DESIGNATED/ELECTED OFFICE (DO/EO/US)

In Re Application of: Qui-Lim Choo

U.S. Appln. No.: 10/580,050

Intl. Appln. No.: PCT/US04/39333

I.A. Filing Date: 11/19/2004

Priority Date: 11/19/2003

Title: METHODS AND REAGENTS FOR
TREATING, PREVENTING AND
DIAGNOSING *BUNYAVIRUS*
INFECTION

Confirmation No.: 7391

Group Art Unit: To Be Assigned

Examiner: To Be Assigned

TRANSMITTAL LETTER

Mail Stop PCT
Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Sir:

Enclosed herewith are the following documents to complete the above-identified application:

1. TRANSMITTAL OF SEQUENCE LISTING INCLUDING:
 - a. Statements Under 37 C.F.R. 1.821(f-g), including statement specifically directing entry of the sequence listing into the application.
 - b. Paper Copy of the Sequence Listing (60 pages).
 - c. Compact Disk Containing CRF Copy of Sequence Listing (1 CD).
2. PRELIMINARY AMENDMENT.
3. RETURN RECEIPT POSTCARD.

The Commissioner is hereby authorized to charge any deficiency in fees or credit any overpayment associated with this communication and which may be required under 37 C.F.R. §§ 1.16 and 1.17 to Deposit Account No. 03-1664.

Respectfully submitted,

NOVARTIS VACCINES AND DIAGNOSTICS, INC.

Dated: January 31, 2005

By: Helen Lee

Helen Lee
Registration No. 39,270

Customer No. 27476

NOVARTIS VACCINES AND DIAGNOSTICS, INC.

Corporate Intellectual Property – R338

P.O. Box 8097

Emeryville, CA 94662-8097

Telephone: (510) 923-2192

Faxsimile: (510) 655-3542

SCORE Placeholder Sheet for IFW Content

Application Number: 10580050

Document Date: 01/31/2008

The presence of this form in the IFW record indicates that the following document type was received in electronic format on the date identified above. This content is stored in the SCORE database.

- Sequence Listing

Since this was an electronic submission, there is no physical artifact folder, no artifact folder is recorded in PALM, and no paper documents or physical media exist. The TIFF images in the IFW record were created from the original documents that are stored in SCORE.

To access the documents in the SCORE database, refer to instructions developed by SIRA.

At the time of document entry (noted above):

- Examiners may access SCORE content via the eDAN interface.
- Other USPTO employees can bookmark the current SCORE URL (<http://es/ScoreAccessWeb>).
- External customers may access SCORE content via the Public and Private PAIR interfaces.

Patent eBusiness

- [+ Electronic Filing](#)
- [+ Patent Application Information \(PAIR\)](#)
- [+ Patent Ownership](#)
- [+ Fees](#)
- [+ Supplemental Resources & Support](#)

Patent Information

- [+ Patent Guidance and General Info](#)
- [+ Codes, Rules & Manuals](#)
- [+ Employee & Office Directories](#)
- [+ Resources & Public Notices](#)

Patent Searches

- [+ Patent Official Gazette](#)
- [+ Search Patents & Applications](#)
- [+ Search Biological Sequences](#)
- [+ Copies, Products & Services](#)

Other

- [+ Copyrights](#)
- [+ Trademarks](#)
- [+ Policy & Law Reports](#)

- Secured Patent Application Information Retrieval

[XML](#) [Download](#) [Order Certified Application As Filed](#) [Order Certified File Wrapper](#) [View Order List](#)

10/580,050

Methods and reagents for treating, preventing and diagnosing bunyavirus infection

[Select New Case](#) [Application Data](#) [Transaction History](#) [Image File Wrapper](#) [Continuity Data](#) [Address & Attorney/Agent](#) [Supplemental Content](#) [Display References](#)

Supplemental Content - Sequences

Use this page to view or retrieve a specific version of the Sequence Listing submitted for this application.

[Previous](#)

Sub-Version	Number of Sequences	Sequence Name	Item Size	Item ID	Download
Version 1	0	US10580050	91,293	09323b6780b376d2	

If you need help:

- Call the Patent Electronic Business Center at (866) 217-9197 (toll free) or e-mail EBC@uspto.gov for specific questions about Patent Application Information Retrieval (PAIR).
- Send general questions about USPTO programs to the [USPTO Contact Center \(UCC\)](#).
- If you experience technical difficulties or problems with this application, please report them via e-mail to [Electronic Business Support](#) or call 1 800-786-9199.

You can suggest USPTO webpages or material you would like featured on this section by E-mail to the webmaster@uspto.gov. While we cannot promise to accommodate all requests, your suggestions will be considered and may lead to other improvements on the website.

SEQUENCE LISTING

<110> CHOO, Qui-Lim
HOUGHTON, Michael
SCOTT, Elizabeth
WEINER, Amy

<120> METHODS AND REAGENTS FOR TREATING, PREVENTING AND DIAGNOSING
BUNYAVIRUS INFECTION

<130> 21454

<140> US 10/580,050
<141> 2006-05-19

<150> PCT/US04/039333
<151> 2004-11-19

<160> 191

<170> PatentIn version 3.3

<210> 1
<211> 4527
<212> DNA
<213> La Crosse virus

<400> 1
agtatgtac taccaagtat agataacgtt tgaatattaa agttttgat caaaggccaa 60
gatgatttgt atattgggtc taattacagt tgcatgtca agcccgatgt atcaaagggt 120
tttcggaaat gggggatag tgaagccaaa cccatccaa gaagcaggtt cagagggttg 180
ctctggaaat gatgttagca tgatcaaaac agaggccagg tatgtaaagaa atgcaacagg 240
agtttttca aataatgtcg caataaggaa atggctatgc tctgtttgc atgttgcg 300
gcctaaagaag atcgttggg gacacatcaa tggtaatgaa gttgttgatg acctgtca 360
ccatactgaa tcatatgttt gcggcggc ttgttaccata ggtttagaca aagagactgc 420
acaggttcagg cttagacacat atcaccacaa tcattttgaa attcggcga ctactgtgaa 480
gtcaggatgg ttcaagagca gcacatataat aactcttgcg aacaccctaa 540
agtttctgc gggccaaatct ctgtacatggt ccattgtcgc ttcaatcgcg atatgtctt 600
cgtagatggt ttacacaggaa caaatgtcc ttggctctata gccaatctca tatgtcagaa 660
tatcgaaatc atataatggg ttacatcttcc ttatattatc ttatattatgtt taaggattt 720
aagtagact tataatgtt atttataat gcttccatag catatataatata 780
cggttataatt tacaataatgtt cttgtccaaat atgcaatata ttgtgttgcgat ttgtatcc 840
atttcacacag ttgtggcacac atttgtgtctg ttgtgtccgc tatgtatctt cagatagaat 900
gaaactgtcat agagcttcgtt gattgtgtcc ttgttataaaa agccctaagag ctggccagat 960
catgtgcacat tggaaaggcc ctgcattcaat ttgttctata attactgggg tactgtctt 1020
aacccattttgtt acaccaatca atccatgtt tttagggag agtaaaagaaa cttttgcact 1080
tgaagatgtt ccacacgcga ttgtggaaat ggcatcgaga ataaatttctt attatctcac 1140
ctgtatctttaattatgttgc taagctgggg ttgttgcattt attcgttgcgat ttgtatcc 1200
gttttttaag aaataccacgc acagatttttcaatgttgc gcaatgtact gtgaagaatg 1260
tgacatgttat catgacaatgtt ctgggttgcgaa aagacatgtt gatttcacca acaaatgoag 1320
acagtgccaca tgggttcaat ataaatgtc tgcatgttgc ttgttgcataa gggaaacccata 1380
taactgtctt tgccatgtaca aaccaatgtt gatgtacac ttccgtatata ttatattatc 1440
cttacgttcaat aaccaatgtt ctgtatgttgc ttgtacaatgtt gctggaaactt acttcaccc 1500
ctggcttagatc actgtacatgttgc ttgttgcattt attcgttgcgat ttgtatcc 1560
ttggccaaatg caacaaaaga aagaacccata caccacatc gcaactcgat taaaaggact 1620
aaaggcaatttccgttactatc atgtccatata aaccaatgtt gatgttgcgat ttgtatcc 1680
tgctttaaga tataatgttgc tggacttgcgat ttgtatcc 1740

gatgttaagc	aaatactgtg	actattatac	ccaattctca	gataactcg	gatacagtca	1800
gacaacatgg	agagtgtact	taaggctca	tgatgttgg	gcgttatatac	tatataccaaa	1860
tcagcac	ttt	tcgagatgt	taaaaaatgg	tgagaatgtc	agcagctca	1920
tgccatgaa	atgaaagat	attactctgg	gaacaaaca	aatgttgaca	aggacttaaa	1980
tctagccct	acagcttgc	atcatgcct	caggggacc	tcatctgc	atataggcaac	2040
aatgtctca	aaaagtgcc	atgtgactt	gatgtcatac	acaataataa	agaataaga	2100
atcccagg	aatgttgt	tgaaaggctat	aatagattat	atagcatata	tggaaaagtt	2160
gcaggat	tgatgttca	aatatgtga	attctggat	gaatattactgt	acaacccaa	2220
cccgacaa	aggtcaaaacc	ttgcttaggg	aaagggtca	tcttacaact	tcaaactagc	2280
aatttcatca	aagtctataa	aaaacctcgaa	gaatgtttag	gatgttgcct	gcttatacgcc	2340
aaggctagg	gtatataatg	cttcataat	tgctgtgtt	gaacccatg	ggccaaatgt	2400
gtataggaa	ccatcagg	tggtatcc	actctgact	gatcggtcta	tataactgt	2460
gtgttgc	atgttgt	tgaaatgttga	ggccatccgc	caggaggagc	tgatgtcggt	2520
aaaggaaatcc	aaatgttggg	aaatgttgaata	tctctgcgtca	aaagtcatcc	aaaaggccaa	2580
ttggactaa	agctgttagaa	tgaaaggatc	ttggaaatgc	aatgttgc	ctaacacatg	2640
gcagggtata	caatgttga	tgaaacaaatt	ttaactactca	gacttc	aaaaggattgt	2700
caaagctca	gatattgtc	actattgtt	aaaggcttga	tgatctactg	tcgggtaccc	2760
tattaatcca	aagcacatct	ctaactgtaa	ttggcaagta	agcagatct	gcatagcgaa	2820
gatagatgt	ccaaatattt	aggatgttga	gcaatataa	aaagctataa	ctcagaaact	2880
tcaaacgagc	ctatctctat	tcaagtatgc	aaaacaaaaa	aacttgcgc	acataccaa	2940
aatttataaa	tatataacta	tagaaaggac	agaaactgc	gaaggatata	agagtgcata	3000
catgttgc	aaatgttgc	attgttgc	gacatctatc	gatttcaaa	tcaattctaa	3060
agagggcaag	cacttgcgt	atgttataat	atgttataaa	atgtgcctat	actcttcagt	3120
gtatataaaa	ttgtactca	ctggcccaat	atcaggatata	aatactaaaac	atgtatgtt	3180
gtgttgc	ccatgtcccg	caatataat	tcatcatgtt	gggtgtctga	cattttgc	3240
agagaggaca	agctcatggg	gttgcgaaga	tttgggttgc	ctggctgtaa	tgatgtgggt	3300
ttgttgc	tcatgtcccg	atataataaa	agaaggaaact	tcgtgtctata	ggaaaggagac	3360
ccaggaaatgt	atgtatgtt	gacatgttca	gacaaaat	actgtacaaa	3420	
cttaaaccct	gttacccct	ttataacaga	tttatttgc	gtacagt	ttcaaaatgt	3480
gacccatc	ttgcctgat	tttgttgcgt	gcaatataaa	ttggggcaat	tttttttttt	3540
aaatgttgc	ggatgttact	tcatgttgc	ttggatgtt	caaaaagg	tttttttttt	3600
ttatggcaat	ggatgttccca	gatttgcata	ttatgtccat	ttatgttgc	tttttttttt	3660
cattgttgc	aaatgttgc	acaatgttgc	ttatgttgc	ttatgttgc	tttttttttt	3720
tagtgcata	tcatgttgc	ttatgttgc	ttatgttgc	ttatgttgc	tttttttttt	3780
aggaaacatc	ttatgttgc	ttatgttgc	ttatgttgc	ttatgttgc	tttttttttt	3840
ttgtgcata	ttatgttgc	ttatgttgc	ttatgttgc	ttatgttgc	tttttttttt	3900
tttgcata	ttatgttgc	ttatgttgc	ttatgttgc	ttatgttgc	tttttttttt	3960
atgtatgtt	ttatgttgc	ttatgttgc	ttatgttgc	ttatgttgc	tttttttttt	4020
ttgtgcata	ttatgttgc	ttatgttgc	ttatgttgc	ttatgttgc	tttttttttt	4080
ttatgttgc	ttatgttgc	ttatgttgc	ttatgttgc	ttatgttgc	tttttttttt	4140
atataataa	ttatgttgc	ttatgttgc	ttatgttgc	ttatgttgc	tttttttttt	4200
ttatgttgc	ttatgttgc	ttatgttgc	ttatgttgc	ttatgttgc	tttttttttt	4260
ttatgttgc	ttatgttgc	ttatgttgc	ttatgttgc	ttatgttgc	tttttttttt	4320
ttatgttgc	ttatgttgc	ttatgttgc	ttatgttgc	ttatgttgc	tttttttttt	4380
ttatgttgc	ttatgttgc	ttatgttgc	ttatgttgc	ttatgttgc	tttttttttt	4440
ttatgttgc	ttatgttgc	ttatgttgc	ttatgttgc	ttatgttgc	tttttttttt	4500
ttatgttgc	ttatgttgc	ttatgttgc	ttatgttgc	ttatgttgc	tttttttttt	4527

<210> 2
<211> 299
<212> PRT
<213> La Crosse virus

<400> 2
Met Ile Cys Ile Leu Val Leu Ile Thr Val Ala Ala Ala Ser Pro Val
1 5 10 15

Tyr	Gln	Arg	Cys	Phe	Gln	Asp	Gly	Ala	Ile	Val	Lys	Gln	Asn	Pro	Ser
20															30
Lys	Glu	Ala	Val	Thr	Glu	Val	Cys	Leu	Lys	Asp	Asp	Val	Ser	Met	Ile
35															45
Lys	Thr	Glu	Ala	Arg	Tyr	Val	Arg	Asn	Ala	Thr	Gly	Val	Phe	Ser	Asn
50															60
Asn	Val	Ala	Ile	Arg	Lys	Trp	Leu	Val	Ser	Asp	Trp	His	Asp	Cys	Arg
65															80
Pro	Lys	Ile	Val	Gly	Gly	His	Ile	Asn	Val	Ile	Glu	Val	Gly	Asp	
85															95
Asp	Leu	Ser	Leu	His	Thr	Glu	Ser	Tyr	Val	Cys	Ser	Ala	Asp	Cys	Thr
100															110
Ile	Gly	Val	Asp	Lys	Glu	Thr	Ala	Gln	Val	Arg	Leu	Gln	Thr	Asp	Thr
115															125
Thr	Asn	His	Phe	Glu	Ile	Ala	Gly	Thr	Thr	Val	Lys	Ser	Gly	Trp	Phe
130															140
Lys	Ser	Thr	Thr	Tyr	Ile	Thr	Leu	Asp	Gln	Thr	Cys	Glu	His	Leu	Lys
145															160
Val	Ser	Cys	Gly	Pro	Lys	Ser	Val	Gln	Phe	His	Ala	Cys	Phe	Asn	Gln
165															175
His	Met	Ser	Cys	Val	Arg	Phe	Leu	His	Arg	Thr	Ile	Leu	Pro	Gly	Ser
180															190
Ile	Ala	Asn	Ser	Ile	Cys	Gln	Asn	Ile	Glu	Ile	Ile	Ile	Leu	Val	Thr
195															205
Leu	Thr	Leu	Leu	Ile	Phe	Ile	Leu	Leu	Ser	Ile	Leu	Ser	Lys	Thr	Tyr
210															220
Ile	Cys	Tyr	Leu	Leu	Met	Pro	Ile	Phe	Ile	Pro	Ile	Ala	Tyr	Ile	Tyr
225															240
Gly	Ile	Ile	Tyr	Asn	Lys	Ser	Cys	Lys	Lys	Cys	Lys	Leu	Cys	Gly	Leu
245															255
Val	Tyr	His	Pro	Phe	Thr	Glu	Cys	Gly	Thr	His	Cys	Val	Cys	Gly	Ala
260															270
Arg	Tyr	Asp	Thr	Ser	Asp	Arg	Met	Lys	Leu	His	Arg	Ala	Ser	Gly	Leu
275															285
Cys	Pro	Gly	Tyr	Lys	Ser	Leu	Arg	Ala	Ala	Arg					
290															

<211> 984
<212> DNA
<213> La Crosse virus

<400> 3
agtatgtac cccacttcaa tactttgaaa ataaatttgtt gttgactgtt ttttacctaa 60
ggggaaatata tcagaatgt gtatcgat ttgggtttt atgatgtcg atcaacaggat 120
gcaaatggat ttgatccatga tgcaaggat atggacttct gtgtaaaaaa tgcaagaatata 180
ctcaacccatc ctgcagtttag gatcttcctc ctcaatgcgc caaaggccaa ggctgtctc 240
tcgcgtaaagc cagagaggaa ggotaacccat aaatttgag agtggcagg tggagggttac 300
aataatcatt ttccctggaaa caggaacaac ccaatttgta acaacgatct taccatccac 360
agattatctg ggttatttagc cagatgggtc ttgtatcagt ataaacggaaa tgatgtgag 420
tttcacgacy agttatcgtc aacaacttattt atcaacccaa ttgctgagtc taatgggtta 480
ggatgggacaa gtggggccaga gatctatcta tcatttttc caggaacaga aatgtttttg 540
gaaacttca aattctaccc gctgaccatt ggaatttcaca gactcaagca aggcatgtat 600
gaccctcaat accttgcggaa ggcccttaagg caacgtatg gcaacttcac agcagataag 660
tggatgtcac agaaagggtc acaatgttgc aagagcctga aggatgtaga gcagcttaaa 720
tggggaaaagg gggccatgg cgatactgtc aaaacatccc tgccggaaaattt tggcatcagg 780
cttccataaaat tatggcatgaa ggcatccaa tttaggttcta aattctaaat ttatatatgt 840
caatttgatt aatttggttat cc当地gggtt ttcccttaagg gaacccacaaa aatagcagc 900
taaatgggtg ggtggtaggg gagacggaaa aactataat caggtcataa ataaaataaa 960
atgtattcag tggggcacac tact 984

<210> 4
<211> 235
<212> PRT
<213> La Crosse virus

<400> 4
Met Ser Asp Leu Val Phe Tyr Asp Val Ala Ser Thr Gly Ala Asn Gly
1 5 10 15
Phe Asp Pro Asp Ala Gly Tyr Met Asp Phe Cys Val Lys Asn Ala Glu
20 25 30
Leu Leu Asn Leu Ala Ala Val Arg Ile Phe Phe Leu Asn Ala Ala Lys
35 40 45
Ala Lys Ala Ala Leu Ser Arg Lys Pro Glu Arg Lys Ala Asn Pro Lys
50 55 60
Phe Gly Glu Trp Gln Val Glu Val Ile Asn Asn His Phe Pro Gly Asn
65 70 75 80
Arg Asn Asn Pro Ile Gly Asn Asn Asp Leu Thr Ile His Arg Leu Ser
85 90 95
Gly Tyr Leu Ala Arg Trp Val Leu Asp Gln Tyr Asn Glu Asn Asp Asp
100 105 110
Glu Ser Gln His Glu Leu Ile Arg Thr Thr Ile Ile Asn Pro Ile Ala
115 120 125
Glu Ser Asn Gly Val Gly Trp Asp Ser Gly Pro Glu Ile Tyr Leu Ser
130 135 140

Phe	Phe	Pro	Gly	Thr	Glu	Met	Phe	Leu	Glu	Thr	Phe	Lys	Phe	Tyr	Pro
145					150					155					160

Leu Thr Ile Gly Ile His Arg Val Lys Gln Gly Met Met Asp Pro Gln
165 170 175

Tyr Leu Lys Lys Ala Leu Arg Gln Arg Tyr Gly Thr Leu Thr Ala Asp
 180 185 190

Lys Trp Met Ser Gln Lys Val Ala Ala Ile Ala Lys Ser Leu Lys Asp
195 200 205

Val Glu Gln Leu Lys Trp Gly Lys Gly Gly Leu Ser Asp Thr Ala Lys
210 215 220

Thr Phe Leu Gln Lys Phe Gly Ile Arg Leu Pro
225 230 235

<210> 5
<211> 6980
<212> DNA
<213> La Crosse virus

<i><400></i>	5	agtagtgtac	ccctatctac	aaaacttaca	gaaaattcag	tcatatcaca	atatatgcat
ataggactat		caagatgtc	aaaaattttt	ggctaggatt	aatactgaa	gggatgcgt	120
tgttagccaag		gatatcgat	ttgaccattt	aatggccaga	catgattatt	ttggtagaga	180
gctgttcgaag		tccttataat	tagaaatag	gaatgtatg	ccatgtttag	ataataattt	240
ggatataagg		cccgaaatgt	accatataac	catatgtca	ccacatata	ccccacaa	300
ttatctatata		ataaataatg	tgttatata	catagattat	aaggctctg	tatcgaaatg	360
aaggctgggt		ataacaatgt	acaatataat	ttagttaact	aggacatat	cgtatagat	420
aatgttccat		ataagaaatag	ttatcgctcg	tagatggcc	gtaaatagg	atttgcatat	480
taactctgtat		agattnaaag	aactttaccc	tacaatagt	gttggatataa	acttcaatca	540
atttttcgatc		tttttttttt	tttttttttt	aaaaatccgtt	gtatgtatgg	aaattttttt	600
gaaaatgtca		catgttgact	tactcttac	acggcccttg	tcaagactg	gtggcccttg	660
attttggaaa		caccccccatt	ataaagaatt	taaaatggat	atgccagtt	ctgagccggag	720
gctctttggaa		gaatctgtca	agtccatgc	ttatgtatc	gagatgttga	ataactactt	780
ggttttttttt		agagaatattt	caaaaaggaa	ctatccatgg	catatccaa	aaatcgcaaa	840
aaatatttttc		ctggctatgt	gattttttaa	gcagccaaat	agaatgttga	ttatgtgaggg	900
gtggacatata		atgttgatga	gggttcaaga	tcagagagaa	atcccaat	cttcctccat	960
ccggaaacct		agcatatcatc	ttatatgggg	acggccataac	ccggaaaaata	gtataatgtc	1020
aaccttcaaa		ctcatattgc	tttcaagtc	cttacaaagc	ataaaaaggta	tatcaactt	1080
cacagaaggt		tcaaaatctt	tagggaaaaat	gttggatatt	ggatgttgg	ctatggatgt	1140
ttagaagattt		tcgtatgtcc	ttaaaaggca	aaagcatatca	tatggatgtc	aaataatgtaa	1200
caaaaattttt		gagccctaaac	aaataaaacaa	tgccctgtt	ttatggaaac	agcagtttat	1260
gttataatata		gacccgtatg	acaaaatgtt	gaatgttggaa	ttatccaaaat	attttcgccg	1320
ttataggcaaa		caacaagcat	tcagaatata	atgtctagag	gtatgttgg	tgatccaaac	1380
caaataatttt		gactttgtat	acgcaaatat	gtatcttagt	agcctaacc	tgatggaaac	1440
gagtaaaagg		atattgttca	aaaggcaatgg	gttggacccca	gataatttt	tactgtatg	1500
atttttgtcc		aaaatcaatgg	atgtcaatgt	aaagacatat	gaaatcatgc	aaacaaaatgt	1560
tgagacaaga		tattggcaat	gtatatccga	cttctctact	ctgatgaaaa	atatcttatac	1620
tgttgtccca		tataacaggc	acaaacacat	taggtatgt	atgtgtgtca	aaataatgt	1680
ttttgtctata		gtattttcc	ccgtgttgcacat	aaaaacttac	aaacaaatgt	tgatgtttag	1740
cattatagtg		ctgcataaaag	aggaagaaaa	catattcaac	ccaggatgtt	tgacccggcc	1800
atttatagtg		atgtatgttt	atttttccat	atcttgcgtt	ataaagagag	atccatgttt	1860
ttttttttttt		attttttttt	cacccqact	qtttttaaca	acttqccatc	tatccaaaca	1920

tgataatcca actctagtga tgagcgatat tatgaatttt tctataatatac ctatgcgtc
tatccaaag agtggcttat ctttacacaga gccgacacgc tacatgatta tgaatcatt
agcatctcc acgaatgtta aggactatac agcagaaaaaa ttttccccctt acacaaggac
actgttcgt agtcttatata ctagactaat taaaatgtc tgctttgtat cttatgacca
gagacggcgt gtccaaactta gagatataa ttatctgtat tgatgacata cccaaaagg
tattaaagac aataagagac taacaatgtt atgttccctt tggtgttggaa cattaaagg
gtattnaaca caaatatact taccattttt ttttaatgtc aaaggactac atgagaagca
ccatgtcatg gtggatctag caaaagactt attagaataa gatgtggcaaa agagggaaaa
cataaaggag atatggctt caaaatgtac ccaacagaca gtgaacctt aatttttgtat
ccatccctg tgcgaacatt tactagcaga cacttcaaga cacaaccact tgccgaaacag
aataagaaaat aggaaacattt ttagaaggct tataaaactt atttcaacat ttacaaggct
aaagtcttc cttcaaaatag gggacttag aaaaagaaaaaa gactgtcgtg ctttttttt
gaaaaaaaat ttagagggtc agatgtccaa aatggatgtt gatgtgtc gaaatgtct
agatgaacaa gtatgcctt aagttggca tataactaa atgttctatg aggttataatg
ggccaaattt acagattata aagggatgtt agacccaaaaaa aatggatgtt gatgtgtc
ttaaggagg ttagacagaca aacttccat tttcaataaa aggtttttt gatgtgtc
aaaaaaaggc tatttccat aataatgtg tttcaataaa agggccaaaaaa aatggatgtt
atgttcgttga gaatataatg cttttttttt tttttttttt tttttttttt tttttttttt
aagatgtaaa ttaatctgtt aataatgtat aatggatgtt gatgtgtc gaaatgtct
gttggagcaa aatcagaac aaaaatgtc tttttttttt tttttttttt tttttttttt tttttttttt
tcgtggaaatc aatggggatgtt tttttttttt tttttttttt tttttttttt tttttttttt
aaaaaaatgg aatgtttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
tatgtctaaa tgggtgtctc tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
ccctatctcc taccacccagg aaaaagagag aatttttttt tttttttttt tttttttttt tttttttttt
ttaaaaatgg atactggcoag aaaaatgtt aatggatgtt gatgtgtc gaaatgtct
ccagaatgt ataaatgtct aatggatgtt gatgtgtc gaaatgtct tttttttttt tttttttttt
gagaatattt ccaccaaggaa aaaaatgtc tttttttttt tttttttttt tttttttttt tttttttttt
gtctgtgtat aaaaatgtt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
caacttattt gcgtttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
ggaaaatgt aaaatattatg aaaaatgtt tttttttttt tttttttttt tttttttttt tttttttttt
tggatgccaa aaaaatgtt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
attttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
attttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
gggttggatgtt gcttataatag aaaaatgtt tttttttttt tttttttttt tttttttttt tttttttttt
gacagccata aagcatgtttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
tttggatccc tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
tttccctgtca gaaaattagga aaaaatgtt tttttttttt tttttttttt tttttttttt tttttttttt
atttgtcaatg atttagatcac aaaaatgtt tttttttttt tttttttttt tttttttttt tttttttttt
tttggatggaa tatacccccgg tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
agtttaagaac tggaaaggctc aaaaatgtt tttttttttt tttttttttt tttttttttt tttttttttt
cagatattttt gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
catggatgggg aggtttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
atttatattttt ttccatgtttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
gttcaactttt ttgttgcata aaaaatgtt tttttttttt tttttttttt tttttttttt tttttttttt
tttatgtggaa ttgtgttat tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
acagaacccca gcacaattttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
ctttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
acgtggacata ttagggaaaat tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
gtctggctta gaactaaacc tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
tgaccctatg atgtatgtttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
acggggatgtt ggcatgtttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
tcatttttttccca gctttagttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
tgatcccaacg gaaaatgtttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
tttagaaagaa aaaaatgtttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
tagttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
atcttacagaa cacaagatata aaaaatgtttt tttttttttt tttttttttt tttttttttt tttttttttt
tttctgttca cttcatgtttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
ccttaaaaacq atatttttttq tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
ttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt

gcaaaaatatt	gcttttgagt	gttccaatt	aattacccat	tttcgactgt	cattcataga	5400
ttcatttatct	aggtcagtt	ttttgcgagt	gataatagat	gaattcgagt	ataaagatgt	5460
gaaggttagc	aaacctttagt	acataaaaa	gaatgggtat	aatcgaactg	acttcatacc	5520
atggctttt	agaactggcg	attnaagaca	agctgactta	gacaaggatgt	atgctatgaa	5580
aagtcatgag	agggttatcat	ggaaatgttg	gcaaacatct	cgtcacttgg	acatgggctc	5640
aattaatcta	acaaaataccg	gttacaatag	atcaataaca	ataatcgag	aagataacaa	5700
attgacatct	cgacaattat	gtctgactgt	gaaaactctt	gagaatataa	ctataagtgg	5760
cagaaaaatttgc	ctagggtgcaa	ggcatggact	taaatttggaa	aatatgtccca	aaatccaaac	5820
ataccaggc	aatttattaa	taacatata	aaagaaagat	cgccaccagt	ttgtataccat	5880
gatacattct	catgaatcaa	taacaaggag	gaatgaagag	catatggcta	tcaggaccag	5940
aaataacaat	gaaataactc	cgatgtgtt	agttaaacgtt	cgacagggtgg	atggggacca	6000
agttatatttgc	ataagatctt	tagactatgt	aaataatgtat	atattttctc	tttcaaggat	6060
taaagtccgg	cttgacgaat	tttcaacaat	aaaaaaaaagca	catttttgta	aatgtgtctc	6120
atttgaagga	cccccaatta	agacagggtt	ccttcgaccct	actgtatgt	tgaatctca	6180
agatggctt	aaccttattt	atgtatataat	aaggatatgc	aacttggat	ctttttccaa	6240
attgttgc	ttgtgggggt	cgataataat	aatgtatggg	tttagattttc	tgccatgtat	6300
ccctatgtaac	tttacagagg	gttgaagcaat	acattcaaca	ccgatcttta	atatatattta	6360
ctccaaaaga	ggagaagac	atatgacata	caggaatgtca	attaaatttac	tgatagaaag	6420
agaactaaatg	atttttgcg	aacttccatc	atctgtatgt	aatgggttca	tatcgccaga	6480
gaatcttgg	tgctttagaa	cgatgtatc	attaataaaa	ttgttgaaaa	ctaattgtgt	6540
gtccacagg	atagataat	gtttaatata	aagaatgttata	ttggatcacat	6600	
gttacattca	ttttagtgc	ctaaatgttt	tatggggat	cctatcacta	gagacatgaa	6660
tttgatgtat	tttagaaat	tcatcaatag	tttacagggt	acagatatac	caccatggaa	6720
tgtcatgaca	gagaactca	aaaagaaatg	tattgtctg	ataaaactcta	agttagaaac	6780
acagagat	ttctcagaat	tcactaaatc	gatgaaaaag	gaagggtggg	ggagataat	6840
agaatttgat	tagtagttat	gagtttacag	agaacactaca	attaggctat	aaatttgggaa	6900
gggttttggaa	aattggctaa	aattcaaaaa	gagggggatt	aacagacaat	gtataaattt	6960
gttagataggg	gcacactact					6980

<210> 6
<211> 2263
<212> PRT
<213> La Crosse virus

<400> 6
Met Asp Tyr Gln Glu Tyr Gln Gln Phe Leu Ala Arg Ile Asn Thr Ala
1 5 10 15

Arg Asp Ala Cys Val Ala Lys Asp Ile Asp Val Asp Leu Leu Met Ala
20 25 30

Arg His Asp Tyr Phe Gly Arg Glu Leu Cys Lys Ser Leu Asn Ile Glu
35 40 45

Tyr Arg Asn Asp Val Pro Phe Val Asp Ile Ile Leu Asp Ile Arg Pro
50 55 60

Glu Val Asp Pro Leu Thr Ile Asp Ala Pro His Ile Thr Pro Asp Asn
65 70 75 80

Tyr Leu Tyr Ile Asn Asn Val Leu Tyr Ile Ile Asp Tyr Lys Val Ser
85 90 95

Val Ser Asn Glu Ser Ser Val Ile Thr Tyr Asp Lys Tyr Tyr Glu Leu
100 105 110

Thr Arg Asp Ile Ser Asp Arg Leu Ser Ile Pro Ile Glu Ile Val Ile
115 120 125

Val Arg Ile Asp Pro Val Ser Lys Asp Leu His Ile Asn Ser Asp Arg
130 135 140

Phe Lys Glu Leu Tyr Pro Thr Ile Val Val Asp Ile Asn Phe Asn Gln
145 150 155 160

Phe Phe Asp Leu Lys Gln Leu Leu Tyr Glu Lys Phe Gly Asp Asp Glu
165 170 175

Glu Phe Leu Leu Lys Val Ala His Gly Asp Phe Thr Leu Thr Ala Pro
180 185 190

Trp Cys Lys Thr Gly Cys Pro Glu Phe Trp Lys His Pro Ile Tyr Lys
195 200 205

Glu Phe Lys Met Ser Met Pro Val Pro Glu Arg Arg Leu Phe Glu Glu
210 215 220

Ser Val Lys Phe Asn Ala Tyr Glu Ser Glu Arg Trp Asn Thr Asn Leu
225 230 235 240

Val Lys Ile Arg Glu Tyr Thr Lys Lys Asp Tyr Ser Glu His Ile Ser
245 250 255

Lys Ser Ala Lys Asn Ile Phe Leu Ala Ser Gly Phe Tyr Lys Gln Pro
260 265 270

Asn Lys Asn Glu Ile Ser Glu Gly Trp Thr Leu Met Val Glu Arg Val
275 280 285

Gln Asp Gln Arg Glu Ile Ser Lys Ser Leu His Asp Gln Lys Pro Ser
290 295 300

Ile His Phe Ile Trp Gly Ala His Asn Pro Gly Asn Ser Asn Asn Ala
305 310 315 320

Thr Phe Lys Leu Ile Leu Leu Ser Lys Ser Leu Gln Ser Ile Lys Gly
325 330 335

Ile Ser Thr Tyr Thr Glu Ala Phe Lys Ser Leu Gly Lys Met Met Asp
340 345 350

Ile Gly Asp Lys Ala Ile Glu Tyr Glu Glu Phe Cys Met Ser Leu Lys
355 360 365

Ser Lys Ala Arg Ser Ser Trp Lys Gln Ile Met Asn Lys Lys Leu Glu
370 375 380

Pro Lys Gln Ile Asn Asn Ala Leu Val Leu Trp Glu Gln Gln Phe Met
385 390 395 400

Val Asn Asn Asp Leu Ile Asp Lys Ser Glu Lys Leu Lys Leu Phe Lys
405 410 415

Asn Phe Cys Gly Ile Gly Lys His Lys Gln Phe Lys Asn Lys Met Leu
420 425 430

Glu Asp Leu Glu Val Ser Lys Pro Lys Ile Leu Asp Phe Asp Asp Ala
435 440 445

Asn Met Tyr Leu Ala Ser Leu Thr Met Met Glu Gln Ser Lys Lys Ile
450 455 460

Leu Ser Lys Ser Asn Gly Leu Lys Pro Asp Asn Phe Ile Leu Asn Glu
465 470 475 480

Phe Gly Ser Lys Ile Lys Asp Ala Asn Lys Glu Thr Tyr Asp Asn Met
485 490 495

His Lys Ile Phe Glu Thr Arg Tyr Trp Gln Cys Ile Ser Asp Phe Ser
500 505 510

Thr Leu Met Lys Asn Ile Leu Ser Val Ser Gln Tyr Asn Arg His Asn
515 520 525

Thr Phe Arg Ile Ala Met Cys Ala Asn Asn Asn Val Phe Ala Ile Val
530 535 540

Phe Pro Ser Ala Asp Ile Lys Thr Lys Lys Ala Thr Val Val Tyr Ser
545 550 555 560

Ile Ile Val Leu His Lys Glu Glu Glu Asn Ile Phe Asn Pro Gly Cys
565 570 575

Leu His Gly Thr Phe Lys Cys Met Asn Gly Tyr Ile Ser Ile Ser Arg
580 585 590

Ala Ile Arg Leu Asp Lys Glu Arg Cys Gln Arg Ile Val Ser Ser Pro
595 600 605

Gly Leu Phe Leu Thr Thr Cys Leu Leu Phe Lys His Asp Asn Pro Thr
610 615 620

Leu Val Met Ser Asp Ile Met Asn Phe Ser Ile Tyr Thr Ser Leu Ser
625 630 635 640

Ile Thr Lys Ser Val Leu Ser Leu Thr Glu Pro Ala Arg Tyr Met Ile
645 650 655

Met Asn Ser Leu Ala Ile Ser Ser Asn Val Lys Asp Tyr Ile Ala Glu
660 665 670

Lys Phe Ser Pro Tyr Thr Lys Thr Leu Phe Ser Val Tyr Met Thr Arg
675 680 685

Leu Ile Lys Asn Ala Cys Phe Asp Ala Tyr Asp Gln Arg Gln Arg Val
690 695 700

Gln Leu Arg Asp Ile Tyr Leu Ser Asp Tyr Asp Ile Thr Gln Lys Gly
705 710 715 720

Ile Lys Asp Asn Arg Glu Leu Thr Ser Ile Trp Phe Pro Gly Ser Val
725 730 735

Thr Leu Lys Glu Tyr Leu Thr Gln Ile Tyr Leu Pro Phe Tyr Phe Asn
740 745 750

Ala Lys Gly Leu His Glu Lys His His Val Met Val Asp Leu Ala Lys
755 760 765

Thr Ile Leu Glu Ile Glu Cys Glu Gln Arg Glu Asn Ile Lys Glu Ile
770 775 780

Trp Ser Thr Asn Cys Thr Lys Gln Thr Val Asn Leu Lys Ile Leu Ile
785 790 795 800

His Ser Leu Cys Lys Asn Leu Leu Ala Asp Thr Ser Arg His Asn His
805 810 815

Leu Arg Asn Arg Ile Glu Asn Arg Asn Asn Phe Arg Arg Ser Ile Thr
820 825 830

Thr Ile Ser Thr Phe Thr Ser Ser Lys Ser Cys Leu Lys Ile Gly Asp
835 840 845

Phe Arg Lys Glu Lys Glu Leu Gln Ser Val Lys Gln Lys Lys Ile Leu
850 855 860

Glu Val Gln Ser Arg Lys Met Arg Leu Ala Asn Pro Met Phe Val Thr
865 870 875 880

Asp Glu Gln Val Cys Leu Glu Val Gly His Cys Asn Tyr Glu Met Leu
885 890 895

Arg Asn Ala Met Pro Asn Tyr Thr Asp Tyr Ile Ser Thr Lys Val Phe
900 905 910

Asp Arg Leu Tyr Glu Leu Leu Asp Lys Gly Val Leu Thr Asp Lys Pro
915 920 925

Val Ile Glu Gln Ile Met Asp Met Met Val Asp His Lys Lys Phe Tyr
930 935 940

Phe Thr Phe Phe Asn Lys Gly Gln Lys Thr Ser Lys Asp Arg Glu Ile
945 950 955 960

Phe Val Gly Glu Tyr Glu Ala Lys Met Cys Met Tyr Ala Val Glu Arg
965 970 975

Ile Ala Lys Glu Arg Cys Lys Leu Asn Pro Asp Glu Met Ile Ser Glu
980 985 990

Pro Gly Asp Gly Lys Leu Lys Val Leu Glu Gln Lys Ser Glu Gln Glu
995 1000 1005

Ile Arg Phe Leu Val Glu Thr Thr Arg Gln Lys Asn Arg Glu Ile
1010 1015 1020

Asp	Glu	Ala	Ile	Glu	Ala	Leu	Ala	Ala	Glu	Gly	Tyr	Glu	Ser	Asn
1025						1030						1035		
Leu	Glu	Lys	Ile	Glu	Lys	Leu	Ser	Leu	Gly	Lys	Ala	Lys	Gly	Leu
1040						1045					1050			
Lys	Met	Glu	Ile	Asn	Ala	Asp	Met	Ser	Lys	Trp	Ser	Ala	Gln	Asp
1055						1060					1065			
Val	Phe	Tyr	Lys	Tyr	Phe	Trp	Leu	Ile	Ala	Leu	Asp	Pro	Ile	Leu
1070						1075					1080			
Tyr	Pro	Gln	Glu	Lys	Glu	Arg	Ile	Leu	Tyr	Phe	Met	Cys	Asn	Tyr
1085						1090					1095			
Met	Asp	Lys	Glu	Leu	Ile	Leu	Pro	Asp	Glu	Leu	Leu	Phe	Asn	Leu
1100						1105					1110			
Leu	Asp	Gln	Lys	Val	Ala	Tyr	Gln	Asn	Asp	Ile	Ile	Ala	Thr	Met
1115						1120					1125			
Thr	Asn	Gln	Leu	Asn	Ser	Asn	Thr	Val	Leu	Ile	Lys	Arg	Asn	Trp
1130						1135					1140			
Leu	Gln	Gly	Asn	Phe	Asn	Tyr	Thr	Ser	Ser	Tyr	Val	His	Ser	Cys
1145						1150					1155			
Ala	Met	Ser	Val	Tyr	Lys	Glu	Ile	Leu	Lys	Glu	Ala	Ile	Thr	Leu
1160						1165					1170			
Leu	Asp	Gly	Ser	Ile	Leu	Val	Asn	Ser	Leu	Val	His	Ser	Asp	Asp
1175						1180					1185			
Asn	Gln	Thr	Ser	Ile	Thr	Ile	Val	Gln	Asp	Lys	Met	Glu	Asn	Asp
1190						1195					1200			
Lys	Ile	Ile	Asp	Phe	Ala	Met	Lys	Glu	Phe	Glu	Arg	Ala	Cys	Leu
1205						1210					1215			
Thr	Phe	Gly	Cys	Gln	Ala	Asn	Met	Lys	Lys	Thr	Tyr	Val	Thr	Asn
1220						1225					1230			
Cys	Ile	Lys	Glu	Phe	Val	Ser	Leu	Phe	Asn	Leu	Tyr	Gly	Glu	Pro
1235						1240					1245			
Phe	Ser	Ile	Tyr	Gly	Arg	Phe	Leu	Leu	Thr	Ser	Val	Gly	Asp	Cys
1250						1255					1260			
Ala	Tyr	Ile	Gly	Pro	Tyr	Glu	Asp	Leu	Ala	Ser	Arg	Ile	Ser	Ser
1265						1270					1275			
Ala	Gln	Thr	Ala	Ile	Lys	His	Gly	Cys	Pro	Pro	Ser	Leu	Ala	Trp
1280						1285					1290			
Val	Ser	Ile	Ala	Ile	Ser	His	Trp	Met	Thr	Ser	Leu	Thr	Tyr	Asn
1295						1300					1305			

Met Leu Pro Gly Gln Ser Asn Asp Pro Ile Asp Tyr Phe Pro Ala
1310 1315 1320

Glu Asn Arg Lys Asp Ile Pro Ile Glu Leu Asn Gly Val Leu Asp
1325 1330 1335

Ala Pro Leu Ser Met Ile Ser Thr Val Gly Leu Glu Ser Gly Asn
1340 1345 1350

Leu Tyr Phe Leu Ile Lys Leu Leu Ser Lys Tyr Thr Pro Val Met
1355 1360 1365

Gln Lys Arg Glu Ser Val Val Asn Gln Ile Ala Glu Val Lys Asn
1370 1375 1380

Trp Lys Val Glu Asp Leu Thr Asp Asn Glu Ile Phe Arg Leu Lys
1385 1390 1395

Ile Leu Arg Tyr Leu Val Leu Asp Ala Glu Met Asp Pro Ser Asp
1400 1405 1410

Ile Met Gly Glu Thr Ser Asp Met Arg Gly Arg Ser Ile Leu Thr
1415 1420 1425

Pro Arg Lys Phe Thr Thr Ala Gly Ser Leu Arg Lys Leu Tyr Ser
1430 1435 1440

Phe Ser Lys Tyr Gln Asp Arg Leu Ser Ser Pro Gly Gly Met Val
1445 1450 1455

Glu Leu Phe Thr Tyr Leu Leu Glu Lys Pro Glu Leu Leu Val Thr
1460 1465 1470

Lys Gly Glu Asp Met Lys Asp Tyr Met Glu Ser Val Ile Phe Arg
1475 1480 1485

Tyr Asn Ser Lys Arg Phe Lys Glu Ser Leu Ser Ile Gln Asn Pro
1490 1495 1500

Ala Gln Leu Phe Ile Glu Gln Ile Leu Phe Ser His Lys Pro Ile
1505 1510 1515

Ile Asp Phe Ser Gly Ile Arg Asp Lys Tyr Ile Asn Leu His Asp
1520 1525 1530

Ser Arg Ala Leu Glu Lys Glu Pro Asp Ile Leu Gly Lys Val Thr
1535 1540 1545

Phe Thr Glu Ala Tyr Arg Leu Leu Met Arg Asp Leu Ser Ser Leu
1550 1555 1560

Glu Leu Thr Asn Asp Asp Ile Gln Val Ile Tyr Ser Tyr Ile Ile
1565 1570 1575

Leu Asn Asp Pro Met Met Ile Thr Ile Ala Asn Thr His Ile Leu
1580 1585 1590

Ser Ile Tyr Gly Ser Pro Gln Arg Arg Met Gly Met Ser Cys Ser
1595 1600 1605

Thr Met Pro Glu Phe Arg Asn Leu Lys Leu Ile His His Ser Pro
1610 1615 1620

Ala Leu Val Leu Arg Ala Tyr Ser Lys Asn Asn Pro Asp Ile Gln
1625 1630 1635

Gly Ala Asp Pro Thr Glu Met Ala Arg Asp Leu Val His Leu Lys
1640 1645 1650

Glu Phe Val Glu Asn Thr Asn Leu Glu Glu Lys Met Lys Val Arg
1655 1660 1665

Ile Ala Ile Asn Glu Ala Glu Lys Gly Gln Arg Asp Ile Val Phe
1670 1675 1680

Glu Leu Lys Glu Met Thr Arg Phe Tyr Gln Val Cys Tyr Glu Tyr
1685 1690 1695

Val Lys Ser Thr Glu His Lys Ile Lys Val Phe Ile Leu Pro Thr
1700 1705 1710

Lys Ser Tyr Thr Thr Thr Asp Phe Cys Ser Leu Met Gln Gly Asn
1715 1720 1725

Leu Ile Lys Asp Lys Glu Trp Tyr Thr Val His Tyr Leu Lys Gln
1730 1735 1740

Ile Leu Ser Gly Gly His Lys Ala Ile Met Gln His Asn Ala Thr
1745 1750 1755

Ser Glu Gln Asn Ile Ala Phe Glu Cys Phe Lys Leu Ile Thr His
1760 1765 1770

Phe Ala Asp Ser Phe Ile Asp Ser Leu Ser Arg Ser Ala Phe Leu
1775 1780 1785

Gln Leu Ile Ile Asp Glu Phe Ser Tyr Lys Asp Val Lys Val Ser
1790 1795 1800

Lys Leu Tyr Asp Ile Ile Lys Asn Gly Tyr Asn Arg Thr Asp Phe
1805 1810 1815

Ile Pro Leu Leu Phe Arg Thr Gly Asp Leu Arg Gln Ala Asp Leu
1820 1825 1830

Asp Lys Tyr Asp Ala Met Lys Ser His Glu Arg Val Thr Trp Asn
1835 1840 1845

Asp Trp Gln Thr Ser Arg His Leu Asp Met Gly Ser Ile Asn Leu
1850 1855 1860

Thr Ile Thr Gly Tyr Asn Arg Ser Ile Thr Ile Ile Gly Glu Asp
1865 1870 1875

Asn Lys Leu Thr Tyr Ala Glu Leu Cys Leu Thr Arg Lys Thr Pro
1880 1885 1890

Glu Asn Ile Thr Ile Ser Gly Arg Lys Leu Leu Gly Ala Arg His
1895 1900 1905

Gly Leu Lys Phe Glu Asn Met Ser Lys Ile Gln Thr Tyr Pro Gly
1910 1915 1920

Asn Tyr Tyr Ile Thr Tyr Arg Lys Lys Asp Arg His Gln Phe Val
1925 1930 1935

Tyr Gln Ile His Ser His Glu Ser Ile Thr Arg Arg Asn Glu Glu
1940 1945 1950

His Met Ala Ile Arg Thr Arg Ile Tyr Asn Glu Ile Thr Pro Val
1955 1960 1965

Cys Val Val Asn Val Ala Glu Val Asp Gly Asp Gln Arg Ile Leu
1970 1975 1980

Ile Arg Ser Leu Asp Tyr Leu Asn Asn Asp Ile Phe Ser Leu Ser
1985 1990 1995

Arg Ile Lys Val Gly Leu Asp Glu Phe Ala Thr Ile Lys Lys Ala
2000 2005 2010

His Phe Ser Lys Met Val Ser Phe Glu Gly Pro Pro Ile Lys Thr
2015 2020 2025

Gly Leu Leu Asp Leu Thr Glu Leu Met Lys Ser Gln Asp Leu Leu
2030 2035 2040

Asn Leu Asn Tyr Asp Asn Ile Arg Asn Ser Asn Leu Ile Ser Phe
2045 2050 2055

Ser Lys Leu Ile Cys Cys Glu Gly Ser Asp Asn Ile Asn Asp Gly
2060 2065 2070

Leu Glu Phe Leu Ser Asp Asp Pro Met Asn Phe Thr Glu Gly Glu
2075 2080 2085

Ala Ile His Ser Thr Pro Ile Phe Asn Ile Tyr Tyr Ser Lys Arg
2090 2095 2100

Gly Glu Arg His Met Thr Tyr Arg Asn Ala Ile Lys Leu Leu Ile
2105 2110 2115

Glu Arg Glu Thr Lys Ile Phe Glu Glu Ala Phe Thr Phe Ser Glu
2120 2125 2130

Asn Gly Phe Ile Ser Pro Glu Asn Leu Gly Cys Leu Glu Ala Val
2135 2140 2145

Val Ser Leu Ile Lys Leu Leu Lys Thr Asn Glu Trp Ser Thr Val
2150 2155 2160

Ile Asp Lys Cys Ile His Ile Cys Leu Ile Lys Asn Gly Met Asp
2165 2170 2175

His Met Tyr His Ser Phe Asp Val Pro Lys Cys Phe Met Gly Asn
2180 2185 2190

Pro Ile Thr Arg Asp Met Asn Trp Met Met Phe Arg Glu Phe Ile
2195 2200 2205

Asn Ser Leu Pro Gly Thr Asp Ile Pro Pro Trp Asn Val Met Thr
2210 2215 2220

Glu Asn Phe Lys Lys Lys Cys Ile Ala Leu Ile Asn Ser Lys Leu
2225 2230 2235

Glu Thr Gln Arg Asp Phe Ser Glu Phe Thr Lys Leu Met Lys Lys
2240 2245 2250

Glu Gly Gly Arg Ser Asn Ile Glu Phe Asp
2255 2260

<210> 7
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense primer derived from M segment of LACV genome

<400> 7
cgatcaacaa tccaatgata acaag 25

<210> 8
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Sense primer derived from M segment of LACV genome

<400> 8
tggaaatggc atcgagaata aa 22

<210> 9
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from M segment of LACV genome

<400> 9
attatctcac ctgttatcttg aattatgctg taagctggg 39

<210> 10
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Sense primer derived from S segment of LACV genome

<400> 10
gtctcagcac gagttgatca gaa 23

<210> 11
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense primer derived from S segment of LACV genome

<400> 11
aatggtcagc gggtagaatt tg 22

<210> 12
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 12
tggtgttagga tgggacagtg ggc 25

<210> 13
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Sense primer derived from L segment of LACV genome

<400> 13
aaagtccgggc ttgacgaatt t 21

<210> 14
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense primer derived from L segment of LACV genome

<400> 14		
cgAACAGAAA CTCTAAACCCA TCA		23
<210> 15		
<211> 25		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Probe derived from L segment of LACV genome		
<400> 15		
CCCCCAATTAA AGACAGGGCT CCTCG		25
<210> 16		
<211> 25		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic oligonucleotide specific for LACV sequence		
<400> 16		
CATGAGGCAT TCAAATTAGG TTCTA		25
<210> 17		
<211> 174		
<212> PRT		
<213> La Crosse virus		
<400> 17		
Val Met Cys Lys Ser Lys Gly Pro Ala Ser Ile Leu Ser Ile Ile Thr		
1 5 10 15		
Ala Val Leu Val Leu Thr Phe Val Thr Pro Ile Asn Ser Met Val Leu		
20 25 30		
Gly Glu Ser Lys Glu Thr Phe Glu Leu Glu Asp Leu Pro Asp Asp Met		
35 40 45		
Leu Glu Met Ala Ser Arg Ile Asn Ser Tyr Tyr Leu Thr Cys Ile Leu		
50 55 60		
Asn Tyr Ala Val Ser Trp Gly Leu Val Ile Ile Gly Leu Leu Ile Gly		
65 70 75 80		
Leu Leu Phe Lys Lys Tyr Gln His Arg Phe Leu Asn Val Tyr Ala Met		
85 90 95		
Tyr Cys Glu Glu Cys Asp Met Tyr His Asp Lys Ser Gly Leu Lys Arg		
100 105 110		
His Gly Asp Phe Thr Asn Lys Cys Arg Gln Cys Thr Cys Gly Gln Tyr		
115 120 125		

Glu Asp Ala Ala Gly Leu Met Ala His Arg Lys Thr Tyr Asn Cys Leu
130 135 140

Val Gln Tyr Lys Ala Lys Trp Met Met Asn Phe Leu Ile Ile Tyr Ile
145 150 155 160

Phe Leu Ile Leu Ile Lys Asp Ser Ala Ile Val Val Gln Ala
165 170

<210> 18
<211> 968
<212> PRT
<213> La Crosse virus

<400> 18
Ala Gly Thr Asp Phe Thr Thr Cys Leu Glu Thr Glu Ser Ile Asn Trp
1 5 10 15

Asn Cys Thr Gly Pro Phe Leu Asn Leu Gly Asn Cys Gln Lys Gln Gln
20 25 30

Lys Lys Glu Pro Tyr Thr Asn Ile Ala Thr Gln Leu Lys Gly Leu Lys
35 40 45

Ala Ile Ser Val Leu Asp Val Pro Ile Ile Thr Gly Ile Pro Asp Asp
50 55 60

Ile Ala Gly Ala Leu Arg Tyr Ile Glu Glu Lys Glu Asp Phe His Val
65 70 75 80

Gln Leu Thr Ile Glu Tyr Ala Met Leu Ser Lys Tyr Cys Asp Tyr Tyr
85 90 95

Thr Gln Phe Ser Asp Asn Ser Gly Tyr Ser Gln Thr Thr Trp Arg Val
100 105 110

Tyr Leu Arg Ser His Asp Phe Glu Ala Cys Ile Leu Tyr Pro Asn Gln
115 120 125

His Phe Cys Arg Cys Val Lys Asn Gly Glu Lys Cys Ser Ser Ser Asn
130 135 140

Trp Asp Phe Ala Asn Glu Met Lys Asp Tyr Tyr Ser Gly Lys Gln Thr
145 150 155 160

Lys Phe Asp Lys Asp Leu Asn Leu Ala Leu Thr Ala Leu His His Ala
165 170 175

Phe Arg Gly Thr Ser Ser Ala Tyr Ile Ala Thr Met Leu Ser Lys Lys
180 185 190

Ser Asn Asp Asp Leu Ile Ala Tyr Thr Asn Lys Ile Lys Thr Lys Phe
195 200 205

Pro Gly Asn Ala Leu Leu Lys Ala Ile Ile Asp Tyr Ile Ala Tyr Met

210

215

220

Lys Ser Leu Pro Gly Met Ala Asn Phe Lys Tyr Asp Glu Phe Trp Asp
 225 230 235 240

Glu Leu Leu Tyr Lys Pro Asn Pro Ala Lys Ala Ser Asn Leu Ala Arg
 245 250 255

Gly Lys Glu Ser Ser Tyr Asn Phe Lys Leu Ala Ile Ser Ser Lys Ser
 260 265 270

Ile Lys Thr Cys Lys Asn Val Lys Asp Val Ala Cys Leu Ser Pro Arg
 275 280 285

Ser Gly Ala Ile Tyr Ala Ser Ile Ile Ala Cys Gly Glu Pro Asn Gly
 290 295 300

Pro Ser Val Tyr Arg Lys Pro Ser Gly Gly Val Phe Gln Ser Ser Thr
 305 310 315 320

Asp Arg Ser Ile Tyr Cys Leu Leu Asp Ser His Cys Leu Glu Glu Phe
 325 330 335

Glu Ala Ile Gly Gln Glu Glu Leu Asp Ala Val Lys Lys Ser Lys Cys
 340 345 350

Trp Glu Ile Glu Tyr Pro Asp Val Lys Leu Ile Gln Glu Gly Asp Gly
 355 360 365

Thr Lys Ser Cys Arg Met Lys Asp Ser Gly Asn Cys Asn Val Ala Thr
 370 375 380

Asn Arg Trp Pro Val Ile Gln Cys Glu Asn Asp Lys Phe Tyr Tyr Ser
 385 390 395 400

Glu Leu Gln Lys Asp Tyr Asp Lys Ala Gln Asp Ile Gly His Tyr Cys
 405 410 415

Leu Ser Pro Gly Cys Thr Thr Val Arg Tyr Pro Ile Asn Pro Lys His
 420 425 430

Ile Ser Asn Cys Asn Trp Gln Val Ser Arg Ser Ser Ile Ala Lys Ile
 435 440 445

Asp Val His Asn Ile Glu Asp Ile Glu Gln Tyr Lys Lys Ala Ile Thr
 450 455 460

Gln Lys Leu Gln Thr Ser Leu Ser Leu Phe Lys Tyr Ala Lys Thr Lys
 465 470 475 480

Asn Leu Pro His Ile Lys Pro Ile Tyr Lys Tyr Ile Thr Ile Glu Gly
 485 490 495

Thr Glu Thr Ala Glu Gly Ile Glu Ser Ala Tyr Ile Glu Ser Glu Val
 500 505 510

Pro Ala Leu Ala Gly Thr Ser Ile Gly Phe Lys Ile Asn Ser Lys Glu

	515		520		525
Gly Lys His Leu Leu Asp Val Ile Ala Tyr Val Lys Ser Ala Ser Tyr					
530	535		540		
Ser Ser Val Tyr Thr Lys Leu Tyr Ser Thr Gly Pro Thr Ser Gly Ile					
545	550		555		560
Asn Thr Lys His Asp Glu Leu Cys Thr Gly Pro Cys Pro Ala Asn Ile					
565	570		575		
Asn His Gln Val Gly Trp Leu Thr Phe Ala Arg Glu Arg Thr Ser Ser					
580	585		590		
Trp Gly Cys Glu Glu Phe Gly Cys Leu Ala Val Ser Asp Gly Cys Val					
595	600		605		
Phe Gly Ser Cys Gln Asp Ile Ile Lys Glu Glu Leu Ser Val Tyr Arg					
610	615		620		
Lys Glu Thr Glu Glu Val Thr Asp Val Glu Leu Cys Leu Thr Phe Ser					
625	630		635		640
Asp Lys Thr Tyr Cys Thr Asn Leu Asn Pro Val Thr Pro Ile Ile Thr					
645	650		655		
Asp Leu Phe Glu Val Gln Phe Lys Thr Val Glu Thr Tyr Ser Leu Pro					
660	665		670		
Arg Ile Val Ala Val Gln Asn His Glu Ile Lys Ile Gly Gln Ile Asn					
675	680		685		
Asp Leu Gly Val Tyr Ser Lys Gly Cys Gly Asn Val Gln Lys Val Asn					
690	695		700		
Gly Thr Ile Tyr Gly Asn Gly Val Pro Arg Phe Asp Tyr Leu Cys His					
705	710		715		720
Leu Ala Ser Arg Lys Glu Val Ile Val Arg Lys Cys Phe Asp Asn Asp					
725	730		735		
Tyr Gln Ala Cys Lys Phe Leu Gln Ser Pro Ala Ser Tyr Arg Leu Glu					
740	745		750		
Glu Asp Ser Gly Thr Val Thr Ile Ile Asp Tyr Lys Lys Ile Leu Gly					
755	760		765		
Thr Ile Lys Met Lys Ala Ile Leu Gly Asp Val Lys Tyr Lys Thr Phe					
770	775		780		
Ala Asp Ser Val Asp Ile Thr Ala Glu Gly Ser Cys Thr Gly Cys Ile					
785	790		795		800
Asn Cys Phe Glu Asn Ile His Cys Glu Leu Thr Leu His Thr Thr Ile					
805	810		815		
Glu Ala Ser Cys Pro Ile Lys Ser Ser Cys Thr Val Phe His Asp Arg					

	820	825	830
Ile Leu Val Thr Pro Asn Glu His Lys Tyr Ala Leu Lys Met Val Cys			
835	840	845	
Thr Glu Lys Pro Gly Asn Thr Leu Thr Ile Lys Val Cys Asn Thr Lys			
850	855	860	
Val Glu Ala Ser Met Ala Leu Val Asp Ala Lys Pro Ile Ile Glu Leu			
865	870	875	880
Ala Pro Val Asp Gln Thr Ala Tyr Ile Arg Glu Lys Asp Glu Arg Cys			
885	890		895
Lys Thr Trp Met Cys Arg Val Arg Asp Glu Gly Leu Gln Val Ile Leu			
900	905		910
Glu Pro Phe Lys Asn Leu Phe Gly Ser Tyr Ile Gly Ile Phe Tyr Thr			
915	920		925
Phe Ile Ile Ser Ile Val Val Leu Leu Val Ile Ile Tyr Val Leu Leu			
930	935		940
Pro Ile Cys Phe Lys Leu Arg Asp Thr Leu Arg Lys His Glu Asp Ala			
945	950	955	960
Tyr Lys Arg Glu Met Lys Ile Arg			
965			
 <210> 19			
<211> 92			
<212> PRT			
<213> La Crosse virus			
 <400> 19			
Met Met Ser His Gln Gln Val Gln Met Asp Leu Ile Leu Met Gln Gly			
1	5	10	15
Ile Trp Thr Ser Val Leu Lys Met Gln Asn Tyr Ser Thr Leu Leu Gln			
20	25	30	
Leu Gly Ser Ser Ser Ser Met Pro Gln Arg Pro Arg Leu Leu Ser Arg			
35	40	45	
Val Ser Gln Arg Gly Arg Leu Thr Leu Asn Leu Glu Ser Gly Arg Trp			
50	55	60	
Arg Leu Ser Ile Ile Ile Phe Leu Glu Thr Gly Thr Thr Gln Leu Val			
65	70	75	80
Thr Thr Ile Leu Pro Ser Thr Asp Tyr Leu Gly Ile			
85	90		
 <210> 20			
<211> 25			

<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from M segment of the LACV genome

<400> 20
ttgtacaaggc tgctggaaact gactt

25

<210> 21
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from M segment of the LACV genome

<400> 21
tgtggtgcccc gctatgatac tt

22

<210> 22
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from M segment of the LACV genome

<400> 22
tgtggtgcccc gctatgatac

20

<210> 23
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from M segment of the LACV genome

<400> 23
ctgtggtgccc cgctatgata c

21

<210> 24
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from M segment of the LACV genome

<400> 24
ctgtggtgccc cgctatgata

20

<210> 25
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from M segment of the LACV genome

<400> 25
tctgtgggtgc ccgctatgat a 21

<210> 26
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from M segment of the LACV genome

<400> 26
tctgtgggtgc ccgctatgat 20

<210> 27
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from M segment of the LACV genome

<400> 27
gtgtctgtgg tgcccgctat 20

<210> 28
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from M segment of the LACV genome

<400> 28
agacagtggc actgtgacca taa 23

<210> 29
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from M segment of the LACV genome

<400> 29
agacagtggc actgtgacca taat

<210> 30
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from M segment of the LACV genome

<400> 30
aagacagtgg cactgtgacc ata

<210> 31
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from M segment of the LACV genome

<400> 31
aagacagtgg cactgtgacc ataa

<210> 32
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from M segment of the LACV genome

<400> 32
aagacagtgg cactgtgacc ataat

<210> 33
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from M segment of the LACV genome

<400> 33
gaagacagtg gcactgtgac cata

<210> 34
<211> 25
<212> DNA
<213> Artificial Sequence

24

23

24

25

25

24

<220>
<223> Forward primer derived from M segment of the LACV genome

<400> 34
agaagacagt ggcactgtga ccata

25

<210> 35
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from M segment of the LACV genome

<400> 35
ctgggccatt tttgaacctc gggaa

25

<210> 36
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from M segment of the LACV genome

<400> 36
ctgggccatt tttgaacctc ggaa

24

<210> 37
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from M segment of the LACV genome

<400> 37
cactgggccca tttttgaacc tcgg

24

<210> 38
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from M segment of the LACV genome

<400> 38
ctgggccatt tttgaacctc ggg

23

<210> 39
<211> 25

<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from M segment of the LACV genome

<400> 39
tgaacctcggaatggccaa aagca 25

<210> 40
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from M segment of the LACV genome

<400> 40
tgcaactgggc cattttgaa cctcg 25

<210> 41
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from M segment of the LACV genome

<400> 41
actgggccat ttttgaacct cggga 25

<210> 42
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from M segment of the LACV genome

<400> 42
actgggccat ttttgaacct cggg 24

<210> 43
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from M segment of the LACV genome

<400> 43
tggggcattt ttgaacctcg gga 23

<210> 44
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from M segment of the LACV genome

<400> 44
tggccat~~t~~ ttgaac~~c~~ ggaat 25

<210> 45
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from M segment of the LACV genome

<400> 45
cactggcca ttttgaacc tcggg 25

<210> 46
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from M segment of the LACV genome

<400> 46
tggccat~~t~~ ttgaac~~c~~ ggaa 24

<210> 47
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from M segment of the LACV genome

<400> 47
tgtcaagtc gaaaggcc~~t~~ gca 23

<210> 48
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from M segment of the LACV genome

<400> 48
catgtgcaag tcgaaaaggc ctgc 24

<210> 49
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from M segment of the LACV genome

<400> 49
tcatgtgcaa gtcgaaaaggc cctg 24

<210> 50
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from M segment of the LACV genome

<400> 50
atgtgcaagt cgaaaaggcc tgca 24

<210> 51
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from M segment of the LACV genome

<400> 51
tcatgtgcaa gtcgaaaaggc cctgc 25

<210> 52
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from M segment of the LACV genome

<400> 52
taaccgcaga agggtcatgc accg 24

<210> 53
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from M segment of the LACV genome

<400> 53
ccgcagaagg gtcatgcacc g

21

<210> 54
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from M segment of the LACV genome

<400> 54
aaccgcagaa gggtcatgca ccg

23

<210> 55
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from M segment of the LACV genome

<400> 55
ataaccgcag aagggtcatg caccg

25

<210> 56
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from M segment of the LACV genome

<400> 56
accgcagaag ggtcatgcac cg

22

<210> 57
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from M segment of the LACV genome

<400> 57
cagaagggtc atgcacccggc tgt

23

<210> 58
<211> 21

<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from M segment of the LACV genome

<400> 58
cgcagaaggg tcatgcaccc g 21

<210> 59
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from M segment of the LACV genome

<400> 59
agtcccttta actgagttgc aatgt 25

<210> 60
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from M segment of the LACV genome

<400> 60
aaggtaaga ccagtaccgc agtaa 25

<210> 61
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from M segment of the LACV genome

<400> 61
gtgtgcaacg ttaattcgca at 22

<210> 62
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from M segment of the LACV genome

<400> 62
tgtggtgtgc aacgttaatt cg 22

<210> 63
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from M segment of the LACV genome

<400> 63
tcaatttgtgg tgtgcaacgt ta

22

<210> 64
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from M segment of the LACV genome

<400> 64
tcaatttgtgg tgtgcaacgt taa

23

<210> 65
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from M segment of the LACV genome

<400> 65
tcaatttgtgg tgtgcaacgt t

21

<210> 66
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from M segment of the LACV genome

<400> 66
tcaatttgtgg tgtgcaacgt taat

24

<210> 67
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from the S segment of the LACV genome

<400> 67
tctcagcacg agttgatcg aac

<210> 68
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from the S segment of the LACV genome

<400> 68
ctcagcacga gttgatcaga aca

<210> 69
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from the S segment of the LACV genome

<400> 69
tcagcacgag ttgatcagaa caa

<210> 70
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from the S segment of the LACV genome

<400> 70
tctaccgcgt gaccattggaa at

<210> 71
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from the S segment of the LACV genome

<400> 71
gagtgtatg tcggatttgg tgtt

<210> 72
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from the S segment of the LACV genome

<400> 72
agtctcagca cgagttgatc agaa

24

<210> 73
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from the S segment of the LACV genome

<400> 73
gtctcagcac gagttgatca gaac

24

<210> 74
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from the S segment of the LACV genome

<400> 74
tctcagcacg agttgatca gaaa

24

<210> 75
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from the S segment of the LACV genome

<400> 75
ctcagcacga gttgatcaga acaa

24

<210> 76
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from the S segment of the LACV genome

<400> 76
tcagcacgag ttgatcagaa ca

22

<210> 77
<211> 21

<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from the S segment of the LACV genome

<400> 77
tctaccgcgt gaccattggaa a

21

<210> 78
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from the S segment of the LACV genome

<400> 78
taccccgctgaa ccattggaaat tc

22

<210> 79
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from the S segment of the LACV genome

<400> 79
caagagtgtg atgtcggatt tggt

24

<210> 80
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from the S segment of the LACV genome

<400> 80
aagagtgtga tgtcggattt ggt

23

<210> 81
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from the S segment of the LACV genome

<400> 81
cctgatgcag ggtatatggaa ctt

23

<210> 82
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from the S segment of the LACV genome

<400> 82
tgcagggtat atggacttct gtgt

24

<210> 83
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from the S segment of the LACV genome

<400> 83
gatgagtc tc agcacgagtt gatc

24

<210> 84
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from the S segment of the LACV genome

<400> 84
gagtctc agc acgagttgat cagaa

25

<210> 85
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from the S segment of the LACV genome

<400> 85
agtctc agc ca cgagttgatc agaac

25

<210> 86
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from the S segment of the LACV genome

<400> 86
tctaccgcgt gaccattgga

<210> 87
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from the S segment of the LACV genome

<400> 87
ctaccccgctg accattggaa t
21

<210> 88
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from the S segment of the LACV genome

<400> 88
cgctgaccat tggaattcac a
21

<210> 89
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from the S segment of the LACV genome

<400> 89
cctgatgcag ggtatatggc ctcc
24

<210> 90
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from the S segment of the LACV genome

<400> 90
atgcagggtt atggacttc tgtgt
25

<210> 91
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 91
caagcaaggc atgatggacc ctcaa 25

<210> 92
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 92
tcaagcaagg catgatggac cctca 25

<210> 93
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 93
tgtcgcatca acaggtgcaa atgga 25

<210> 94
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 94
caatgccgca aaggccaagg c 21

<210> 95
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 95
atgcccggaaa ggccaaggct gct 23

<210> 96
<211> 22

<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 96
ccgcaaaggc caaggctgct ct 22

<210> 97
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 97
ccgcaaaggc caaggctgct ctct 24

<210> 98
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 98
atgcccggaaaa ggccaaggct g 21

<210> 99
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 99
tgcccgcaaaag gccaaaggctg c 21

<210> 100
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 100
caatggccgca aaggccaagg ctg 23

<210> 101
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 101
aggccaaggc tgctctctcg cgta 24

<210> 102
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 102
cgcaaaggcc aaggctgctc tct 23

<210> 103
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 103
ccaaggctgc tctctcgctg aagc 24

<210> 104
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 104
caaaggccaa ggctgctctc tcgc 24

<210> 105
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 105	
aggccaaggc tgctctctcg cg	22
<210> 106	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Probe derived from S segment of LACV genome	
<400> 106	
aaaggccaag gctgctctc cgctgt	25
<210> 107	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Probe derived from S segment of LACV genome	
<400> 107	
ttccctcaat gccgcaaagg cca	23
<210> 108	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Probe derived from S segment of LACV genome	
<400> 108	
tcttcctcaa tgccgcaaag gcc	23
<210> 109	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Probe derived from S segment of LACV genome	
<400> 109	
aaggccaagg ctgctctctc gcgt	24
<210> 110	
<211> 24	
<212> DNA	
<213> Artificial Sequence	

<220>
<223> Probe derived from S segment of LACV genome

<400> 110
tcttcctcaa tgccgcaaag gccaa

24

<210> 111
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 111
tctttcttcaatgccgca aaggc

25

<210> 112
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 112
tcaatgccgc aaaggccaag gc

22

<210> 113
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 113
ttcttcctca atgcccggaaa ggcca

25

<210> 114
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 114
cctcaatgcc gcggaaaaggcca agg

23

<210> 115
<211> 25

<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 115
cttcctcaat gccgcaaagg ccaag 25

<210> 116
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 116
tttttcctca atgccgaaaa ggcc 24

<210> 117
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 117
ctcaatgccg caaaggccaa ggc 23

<210> 118
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 118
ttcctcaatg ccgcaaaggc caa 23

<210> 119
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 119
tcctcaatgc cgcaaaggcc aag 23

<210> 120
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 120
tcctcaatgc cgcaaaggcc a 21

<210> 121
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 121
tcaatgccgc aaaggccaag gct 23

<210> 122
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 122
caatgcccga aaggccaagg ct 22

<210> 123
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 123
cttcttcctc aatgccgcaa aggcc 25

<210> 124
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 124
ctcaatgccg caaaggccaa gg 22

<210> 125
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 125
aatgccgccaa aggccaaggc tg 22

<210> 126
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 126
atgccgccaaaggc gc 22

<210> 127
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 127
tgccgc当地 gccaaggctg 20

<210> 128
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 128
ctcaatgccg caaaggccaa ggct 24

<210> 129
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 129
cctcaatgcc gcaaaggcca ag 22

<210> 130
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 130
cttcctcaat gccgcaaagg ccaa 24

<210> 131
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 131
tcttcctcaa tgccgcaaag gccaa 25

<210> 132
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 132
tcctcaatgc cgcaaaggcc aa 22

<210> 133
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 133
ttcctcaatg ccgcaaaggc ca 22

<210> 134
<211> 24

<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 134
ttccctcaatg ccgcaaaggc caag 24

<210> 135
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 135
aggccaaggc tgctctctcg cgt 23

<210> 136
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 136
caaggcgtgct ctctcgcgta agcc 25

<210> 137
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 137
ccaaggcgtgc tctctcgcgta aagcc 25

<210> 138
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 138
aggccaaggc tgctctctcg cgtaa 25

<210> 139
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 139
ccgcaaaggc caaggctgct c 21

<210> 140
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 140
aaggctgctc tctcgcgtaa gccag 25

<210> 141
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 141
aaggctgctc tctcgcgtaa gcca 24

<210> 142
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 142
caaggctgct ctctcgcgtaa agcc 24

<210> 143
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 143
cgcaaaggcc aaggctgctc tc 22

<210> 144
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 144
ccgcaaaggc caaggctgct ctc 23

<210> 145
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 145
aaggccaagg ctgctctctc gcgtta 25

<210> 146
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 146
aaggccaagg ctgctctctc gcg 23

<210> 147
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 147
cgcaaaggcc aaggctgctc tctc 24

<210> 148
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe derived from S segment of LACV genome

<400> 148
aaaggccaag gctgctctc cgcg 24

<210> 149
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from S segment of LACV genome

<400> 149
caatggtcag cgggtagaat tt 22

<210> 150
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from S segment of LACV genome

<400> 150
ccaatggtca gcggtagaa tt 22

<210> 151
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from S segment of LACV genome

<400> 151
tccaatggtc agcggtaga at 22

<210> 152
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from S segment of LACV genome

<400> 152
tccttcaggc tcttagaat tgc 23

<210> 153
<211> 22

<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from S segment of LACV genome

<400> 153
cttgcggca ttgaggaaga ag 22

<210> 154
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from S segment of LACV genome

<400> 154
atggtcagcg ggtagaattt ga 22

<210> 155
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from S segment of LACV genome

<400> 155
ccaatggtca gcgggtagaa t 21

<210> 156
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from S segment of LACV genome

<400> 156
tccaatggtc agcgggtaga a 21

<210> 157
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from S segment of LACV genome

<400> 157
tccaatggtc agcgggtaga 20

<210> 158
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from S segment of LACV genome

<400> 158
catcccttcag gctcttagca attg 24

<210> 159
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from S segment of LACV genome

<400> 159
tgccggcattt aggaagaaga t 21

<210> 160
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from S segment of LACV genome

<400> 160
ttgcggcattt gaggaagaag 20

<210> 161
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from S segment of LACV genome

<400> 161
cttgcggca ttgaggaaga a 21

<210> 162
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from S segment of LACV genome

<400> 162
gccactctcc aaattttaggg ttag 24

<210> 163
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from S segment of LACV genome

<400> 163
cacctgcccc tctccaaatt tag 23

<210> 164
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from S segment of LACV genome

<400> 164
tcagcgggta gaatttgaaa gtt 23

<210> 165
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from S segment of LACV genome

<400> 165
tggtcagcgg gtagaatttg aa 22

<210> 166
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from S segment of LACV genome

<400> 166
atggtcagcgg ggtagaattt gaa 23

<210> 167
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from S segment of LACV genome

<400> 167
aatggtcagc gggtagaatt tga 23

<210> 168
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from S segment of LACV genome

<400> 168
caatggtcag cgggtagaat ttg 23

<210> 169
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from S segment of LACV genome

<400> 169
ccaaatggtca gcgggtagaa 20

<210> 170
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from S segment of LACV genome

<400> 170
atcccttcagg ctcttagcaa ttgc 24

<210> 171
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from S segment of LACV genome

<400> 171
tctacatccct tcaggctttt agca 24

<210> 172
<211> 23

<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from S segment of LACV genome

<400> 172
acctggccact ctccaaattt agg 23

<210> 173
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from L segment of LACV genome

<400> 173
taaagtgcggg cttgacgaat tt 22

<210> 174
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from L segment of LACV genome

<400> 174
ttaaagtgcgg gcttgacgaa tt 22

<210> 175
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from L segment of LACV genome

<400> 175
ttaaagtgcgg gcttgacgaa ttt 23

<210> 176
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from L segment of LACV genome

<400> 176
attaaaagtgcg ggcttgacga att 23

<210> 177
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from L segment of LACV genome

<400> 177
attaaaagtcg ggcttgacga attt 24

<210> 178
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from L segment of LACV genome

<400> 178
gattaaaagtc gggcttgacg aa 22

<210> 179
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from L segment of LACV genome

<400> 179
gattaaaagtc gggcttgacg aat 23

<210> 180
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from L segment of LACV genome

<400> 180
gattaaaagtc gggcttgacg aatt 24

<210> 181
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from L segment of LACV genome

<400> 181
gattaaagtc gggcttgacg aattt 25

<210> 182
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from L segment of LACV genome

<400> 182
caaggattaa agtcgggctt ga 22

<210> 183
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from L segment of LACV genome

<400> 183
caaggattaa agtcgggctt gac 23

<210> 184
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from L segment of LACV genome

<400> 184
tcaaggattta aagtccggct tga 23

<210> 185
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from L segment of LACV genome

<400> 185
tcaaggattta aagtccggct tgac 24

<210> 186
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer derived from L segment of LACV genome

<400> 186
ttcaaggatt aaagtcgggc ttga 24

<210> 187
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from L segment of LACV genome

<400> 187
cggacagaaa ctctaaaccc tcat 24

<210> 188
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from L segment of LACV genome

<400> 188
cggacagaaa ctctaaaccc tcatt 25

<210> 189
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from L segment of LACV genome

<400> 189
tcggacagaaa actctaaaccc atca 24

<210> 190
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from L segment of LACV genome

<400> 190
tcggacagaaa actctaaaccc atcat 25

<210> 191
<211> 25

<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer derived from L segment of LACV genome

<400> 191
atcggacaga aactctaacc catca

25