AD-A280 726

SOFTWARE DESIGN DOCUMENT

FOR THE

AIRNET AEROMODEL AND

WEAPONS MODEL CONVERSION

VOLUME 1 of 3

Rev. 0.0: 22 January 1993

CONTRACT NO. N61339-91-D-0001

D.O.: 0014

CDRL SEQUENCE NO. A009

Prepared for:

STRICOM

Simulator Training and Instrumentation Command

Simulator Training and Instrumentation Command **Naval Training Systems Center** 12350 Research Parkway Orlando, FL 32826-3275

Prepared by:

LORAL

Approved for public releases **ADST Program Office** 12443 Research Parkway, Suite 303 Orlando, FL 32826

PTIC QUALITY AND BUILD L

94-19504

DISTRIBUTION STATEMENT A

Dienthullen Tulimited

134 6 24

Best Available Copy

REPORT DOCUMENTATION PAGE

Form approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215

Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE 22 January 19		3. REPORT TYPE AN Version 0.0	
Advanced Distributed Sir for the AIRNET Aeromo	mulation Technology Softw del and Weapons Model Co	rare Design D onversion; Vo	ocument lume 1 of 3	5. FUNDING NUMBERS Contract No. N61339-91-D-0001
6. AUTHOR(S) Branson, Roger; McCarter, S	Steve			
7. PERFORMING ORGANIZATION NAME Loral Systems Company ADST Program Office 12443 Research Parkway, Suite 30 Orlando, FL 32826				8. PERFORMING ORGANIZATION REPORT NUMBER ADST/WDL/TR-93-W003036 CDRL A009
9. SPONSORING/MONITORING AGENCY Simulation, Training and Instru STRICOM Naval Training Systems Center 12350 Research Parkway Orlando, FL 32826-3275 11. SUPPLEMENTARY NOTES	mentation Command			10, SPONSORING ORGANIZATION REPORT
12a DISTRIBUTION/AVAILABILITY STATI	EMENT release; distribution is unli	mited.		12b. DISTRIBUTION CODE
13. ABSTRACT (Maximum 200 words) The ADST Software Software software for data	ware Design Document ider file access during initializa	ntifies the motion.	difications ma	de to the AirNET RWA and
14. SUBJECT TERMS				15. NUMBER OF PAGES 481 16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED	17. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED	17. SECURITY CLOF ABSTRACT UNCLASSIF		20. LIMITATION OF ABSTRACT UL

TABLE of CONTENTS

1.	Scope	1
1.1.	Identification	
1.2.	System overview	_
1.3.	Document overview	1
2.	Referenced documents.	
3.	Preliminary design.	
3.1.	CSCI overview	
3.1.1.	CSCI architecture	
3.1.2.	System states and modes	
3.1.3.	Memory and processing time allocation	
3.2.	CSCI design description	
3.2.1.	CSC simulation_state_machine	
3.2.1.1.	Sub-level CSC io-simul	3
3.2.1.1.1.	Sub-level CSC process_a_packet	
3.2.1.1.1.1.	Sub-level CSC do_protocol_on_sim_packet	
3.2.1.1.1.1.	Sub-level CSC process_indirect_fire	
3.2.1.1.1.1.1.	Sub-level CSC failure_check_indir_fire_damages	
3.2.1.1.1.1.1.1.	Sub-level CSC fail_vehicle_is_destroyed	3
3.2.1.2.	Sub-level CSC veh_spec_idle	3
3.2.1.2.1.	Sub-level CSC io_simul_idle	3
3.2.1.2.1.1.	Sub-level CSC process_a_packet	4
3.2.1.2.2.	Sub-level CSC keyboard_simul	
3.2.1.2.2.1.	Sub-level CSC controls_restore_controls	4
3.2.1.2.2.1.1.	Sub-level CSC controls_sim_init	
3.2.1.2.2.2.	Sub-level CSC fail_cat_kill	4
3.2.1.2.2.2.1.	Sub-level CSC fail_vehicle_is_destroyed	
3.2.1.2.2.3.	Sub-level CSC alt_init	.4
3.2.1.2.2.3.1.	Sub-level CSC alt_new_height_is	4
3.2.1.2.2.3.1.1.	Sub-level CSC fail_cat_kill	
3.2.1.3.	Sub-level CSC veh_spec_init	
3.2.1.3.1.	Sub-level CSC controls_sim_init	
3.2.1.3.1.1.	Sub-level CSC controls_radios_init	.5
3.2.1.3.2.	Sub-level CSC rwa_init	.5
3.2.1.3.3.	Sub-level CSC weapons_init	.5
3.2.1.3.3.1.	Sub-level CSC hydra_init	
3.2.1.3.4.	Sub-level CSC alt_init	
3.2.1.4.	Sub-level CSC veh_spec_simulate	
3.2.1.4.1	Sub-level CSC keyboard_simul	
4.	Detailed design.	
4.1.	CSC rwa_init	
4.1.1.	CSU engine init.	

TABLE of CONTENTS

4.1.1.1.	CSU engine_init design specification/constraints	
4.1.1.2.	CSU engine_init design	6
4.1.2.	CSU aerodyn_init	13
4.1.2.1.	CSU aerodyn_init design specification/constraints	
4.1.2.2.	CSU aerodyn_init design	13
4.1.3.	CSU veh_spec_kinematics_init	24
4.1.3.1.	CSU veh_spec_kinematics_init design	
	specification/constraints	24
4.1.3.2.	CSU veh_spec_kinematics_init design	24
4.2.	CSC weapons_init	30
4.2.1.	CSU missile_tow_init	30
4.2.1.1.	CSU missile_tow_init design specification/constraints	31
4.2.1.2.	CSU missile_tow_init design	
4.2.2.	CSU missile_hellfire_init	
4.2.2.1.	CSU missile_hellfire_init design specification/constraints	43
4.2.2.2.	CSU missile_hellfire_init design	
4.2.3.	CSU missile_stinger_init	52
4.2.3.1.	CSU missile_stinger_init design specification/constraints	52
4.2.3.2.	CSU missile_stinger_init design	
4.2.4.	CSU hydra_init	61
4.2.4.1.	CSU hydra_init design specification/constraints	61
4.2.4.2.	CSU hydra_init design	61
4.2.5.	CSU missile_hydra_init	65
4.2.5.1.	CSU missile_hydra_init design specification/constraints	66
4.2.5.2.	CSU missile_hydra_init design	66
4.2.6.	CSU missile_m73_init	71
4.2.6.1.	CSU missile_m73_init design specification/constraints	71
4.2.6.2.	CSU missile_m73_init design	71
4.2.7.	CSU missile_flechette_init	77
4.2.7.1.	CSU missile_flechette_init design specification/constraints	77
4.2.7.2.	CSU missile_flechette_init design	77
4.3.	CSC controls_restore_controls	83
4.3.1.	CSU controls_radios_init	83
4.3.1.1.	CSU controls_radios_init design specification/constraints	83
4.3.1.2.	CSU controls_radios_init design	
4.4.	CSC fail_vehicle_is_destroyed	85
4.4.1.	CSU controls_kill_radios	
4.4.1.1.	CSU controls_kill_radios design specification/constraints	85
4.4.1.2.	CSU controls_kill_radios design.	85
4.5.	Additional CSUs	
4.5.1.	CSU missile_adat_init	
4.5.1.1.	CSII missile adat init design specification/constraints	8

TABLE of CONTENTS

4.5.1.2.	CSU missile_adat_init design	87
4.5.2.	CSU missile_atgm_init	
4.5.2.1.	CSU missile_atgm_init design specification/constraints	102
4.5.2.2.	CSU missile_atgm_init design	102
4.5.3.	CSU missile_kem_init	113
4.5.3.1.	CSU missile_kem_init design specification/constraints	114
4.5.3.2.	CSU missile_kem_init design	
4.5.4.	CSU missile_maverick_init	125
4.5.4.1.	CSU missile_maverick_init design specification/constraint	ts125
4.5.4.2.	CSU missile_maverick_init design	125
4.5.5.	CSU missile_nlos_init	134
4.5.5.1.	CSU missile_nlos_init design specification/constraints	134
4.5.5.2.	CSU missile_nlos_init design	134
5.	CSCI data	144
5.1.	Data elements internal to the CSCI	144
5.2.	Data elements of the CSCI's external interfaces	196
6.	CSCI data files.	197
7 .	Requirements traceability	198
8.	Notes	204
8.1	Acronyms and abbreviations	204
	,	
	WA AirNet Call Tree Structure	
	ource code listing for rwa_aerodyn.cl	
	ource code listing for rwa_engine.c	
	ource code listing for rwa_kinemat.c	
	ource code listing for miss_adat.c	
	ource code listing for miss_atgm.c	
	ource code listing for miss_hellfr.c	
	ource code listing for miss_kem.cI	
Appendix I - So	urce code listing for miss_maverck.c	.I-1
	urce code listing for miss_nlos.c	
Appendix K - So	ource code listing for miss_stinger.c1	K-1
Appendix L - So	ource code listing for miss_tow.c	L-1
Appendix M - Se	ource code listing for rkt_hydra.c	Л-1
Appendix N - Se	ource code listing for rwa_hydra.c	V-1
Appendix O - So	ource code listing for sub_flech.c	O-1
Appendix P - So	ource code listing for sub_m73.c	P-1
*	-	

LIST OF TABLES

TABLE 4.1.1.1 - CSU ENGINE_INIT LOCAL DATA DEFINITION TABLE	
TABLE 4.1.2.1 - CSU AERODYN_INIT LOCAL DATA DEFINITION TABLE	Ξ
	14
TABLE 4.1.3.1 - CSU VEH_SPEC_KINEMATICS_INIT LOCAL DATA	
DFFINITION TABLE	25
TABLE 4.2.1.1 - CSU MISSILE_TOW_INIT LOCAL DATA DEFINITION	
TABLE	32
TABLE 4.2.2.1 - CSU MISSILE_HELLFIRE_INIT LOCAL DATA DEFINITIO	N
-	44
TABLE 4.2.3.1 - CSU MISSILE_STINGER_INIT LOCAL DATA DEFINITION	N
TABLE	54
TABLE 4.2.4.1 - CSU HYDRA INIT LOCAL DATA DEFINITION TABLE	62
TABLE 4.2.5.1 - CSU MISSILE HYDRA INIT LOCAL DATA DEFINITION	
TABLE	67
TABLE 4.2.6.1 - CSU MISSILE_M73_INIT LOCAL DATA DEFINITION	
TABLE	73
TABLE 4.2.7.1 - CSU MISSILE_FLECHETTE_INIT LOCAL DATA	
DEFINITION TABLE	78
TABLE 4.5.1.1 - CSU MISSILE_ADAT_INIT LOCAL DATA DEFINITION	
TABLE	89
TABLE 4.5.2.1 - CSU MISSILE_ATGM_INIT LOCAL DATA DEFINITION	
TABLE	.103
TABLE 4.5.3.1 - CSU MISSILE_KEM_INIT LOCAL DATA DEFINITION	
	.115
TABLE 4.5.4.1 - CSU MISSILE_MAVERICK_INIT LOCAL DATA	
DEFINITION TABLE	.127
TABLE 4.5.5.1 - CSU MISSILE_NLOS_INIT LOCAL DATA DEFINITION	
TABLE	.136
TABLE 5.1 SUMMARY of DATA ARRAYS	
TABLE 5.1.1 AERODYNAMICS DATA ARRAY	
TABLE 5.1.2 AERODYNAMICS INITIALIZATION DATA ARRAY	
TABLE 5.1.3 AERODYNAMICS SIMPLE DATA ARRAY	
TABLE 5.1.4 AERODYNAMICS STEALTH DATA ARRAY	
TABLE 5.1.5 ENGINE DATA ARRAY	
TABLE 5.1.6 ENGINE INITIALIZATION DATA ARRAY	
TABLE 5.1.7 ENGINE STATUS DATA ARRAY	
TABLE 5.1.8 KINEMATICS DATA ARRAY	
TABLE 5.1.9 KINEMATICS INITIALIZATION DATA ARRAY	
TABLE 5.1.10 - HELLFIRE MISSILE CHARACTERISTICS DATA ARRAY	
TABLE 5.1.11 HELLFIRE MISSILE CHARACTERISTICS DATA ARRAT TABLE 5.1.11 HELLFIRE MISSILE POLYNOMIAL DEGREE DATA ARRA	
IADLE J.I.II HELLIME MIJJILE I OLINOMIAL DEGREE DATA ARRA	142 142

LIST OF TABLES

TABLE 5.1.12 HELLFIRE MISSILE TIME-OF-FLIGHT DATA ARRAY	163
TABLE 5.1.13 HELLFIRE MISSILE BURN SPEED DATA ARRAY	164
TABLE 5.1.14 HELLFIRE MISSILE COAST SPEED DATA ARRAY	165
TABLE 5.1.15 MAVERICK MISSILE CHARACTERISTICS DATA ARRAY	Y
	166
TABLE 5.1.16 MAVERICK MISSILE POLYNOMIAL DEGREE DATA	
ARRAY	
TABLE 5.1.17 MAVERICK MISSILE BURN SPEED DATA ARRAY	167
TABLE 5.1.18 MAVERICK MISSILE COAST SPEED DATA ARRAY	
TABLE 5.1.19 STINGER MISSILE CHARACTERISTICS DATA ARRAY	
TABLE 5.1.20 STINGER MISSILE POLYNOMIAL DEGREE DATA ARRA	
	170
TABLE 5.1.21 STINGER MISSILE BURN SPEED DATA ARRAY	
TABLE 5.1.22 STINGER MISSILE COAST SPEED DATA ARRAY	170
TABLE 5.1.23 TOW MISSILE CHARACTERISTICS DATA ARRAY	
TABLE 5.1.24 TOW MISSILE POLYNOMIAL DEGREE DATA ARRAY	
TABLE 5.1.25 TOW MISSILE BURN SPEED DATA ARRAY	
TABLE 5.1.26 TOW MISSILE COAST SPEED DATA ARRAY	
TABLE 5.1.27 TOW MISSILE BURN TURN DATA STRUCTURE	
TABLE 5.1.28 TOW MISSILE COAST TURN DATA STRUCTURE	
TABLE 5.1.29 ADAT MISSILE CHARACTERISTICS DATA ARRAY	
TABLE 5.1.30 ADAT MISSILE POLYNOMIAL DEGREE DATA ARRAY	
TABLE 5.1.31 ADAT MISSILE BURN SPEED DATA ARRAY	
TABLE 5.1.32 ADAT MISSILE COAST SPEED DATA ARRAY	
TABLE 5.1.33 ADAT MISSILE BURN TURN DATA ARRAY	
TABLE 5.1.34 ADAT MISSILE COAST TURN DATA ARRAY	
TABLE 5.1.35 ADAT MISSILE TEMPORAL BIAS DATA ARRAY	180
TABLE 5.1.36 ATGM MISSILE CHARACTERISTICS DATA ARRAY	
TABLE 5.1.37 ATGM MISSILE POLYNOMIAL DEGREE DATA ARRAY.	
TABLE 5.1.38 ATGM MISSILE BURN SPEED DATA ARRAY	
TABLE 5.1.39 ATGM MISSILE COAST SPEED DATA ARRAY	182
TABLE 5.1.40 ATGM MISSILE BURN TURN DATA STRUCTURE	
TABLE 5.1.41 ATGM MISSILE COAST TURN DATA STRUCTURE	184
TABLE 5.1.42 KEM MISSILE CHARACTERISTICS DATA ARRAY	185
TABLE 5.1.43 KEM MISSILE POLYNOMIAL DEGREE DATA ARRAY	185
TABLE 5.1.44 KEM MISSILE BURN SPEED DATA ARRAY	186
TABLE 5.1.45 KEM MISSILE COAST SPEED DATA ARRAY	187
TABLE 5.1.46 KEM MISSILE BURN TURN DATA ARRAY	188
TABLE 5.1.47 KEM MISSILE COAST TURN DATA ARRAY	189
TABLE 5.1.48 NLOS MISSILE CHARACTERISTICS DATA ARRAY	190
TABLE 5.1.49 NLOS MISSILE POLYNOMIAL DEGREE DATA ARRAY	
TABLE 5.1.50 NLOS MISSILE BURN SPEED DATA ARRAY	

LIST OF TABLES

TABLE 5.1.51 NLOS MISSILE COAST SPEED DATA ARRAY	192
TABLE 5.1.52 HYDRA ROCKET CONFIGURATION DATA AR	RAY193
TABLE 5.1.53 HYDRA ROCKET CHARACTERISTICS DATA A	RRAY194
TABLE 5.1.54 SUBMUNITIONS M73 CHARACTERISTICS DA	TA ARRAY
***************************************	194
TABLE 5.1.55 SUBMUNITIONS FLECHETTE CHARACTERIST	ICS DATA
ARRAY	195
TABLE 5.1.56 FLECHETTE SPEED DATA ARRAY	195
TABLE 7.1 AIRNET AEROMODEL AND WEAPONS MODEL	
CONVERSION REQUIREMENTS TRACEABILITY	198

1. Scope.

1.1. Identification.

This SDD applies to document number WDL/TR92-003011 entitled System Specification for the Rotary Wing Aircraft AirNet Aeromodel and Weapons Model Conversion. This SDD also applies to the AirNet CSCI.

1.2. System overview.

The Rotary Wing Aircraft (RWA) system and SIMNET Computer System Configuration Item (CSCI) simulates a manned flight vehicle and associated weapons systems for conducting simulated missions within a controlled database and tactical environment.

1.3. Document overview.

The following paragraphs and subparagraphs identify the purpose, structure, and design of the Computer Software Unit (CSU) modified under the Rotary Wing Aircraft AirNET Aeromodel and Weapons Model Conversion Delivery Order. Computer Software Components (CSC) and CSUs existing in original code are not documented herein. The original function and operation of the software was not modified. Certain CSUs were modified to allow the reading of data values from data files. This additional capability allows for the change of variables without requiring a recompile. In addition, software control was added to the CSCI to allow control of the hardware enabling and disabling simulated radio communications. The modifications to the MCC is covered in a separate volume.

2. Referenced documents.

The following documents are referenced within this document.

WDL/TR--92-003011

SYSTEM SPECIFICATION FOR THE ROTARY WING AIRCRAFT AIRNET AEROMODEL AND WEAPONS MODEL CONVERSION, 6 JUNE 1992.

3. Preliminary design.

The preliminary design of the RWA system and SimNET CSCI was done previously. This delivery order used the original design as the baseline for the modifications made here. The following paragraphs and subparagraphs briefly describe the CSCI design and relationship to the modified CSUs. The CSUs are documented in Paragraph 4. - Detailed design.

3.1. CSCI overview.

The RWA CSCI simulates the rotary wing aircraft and its weapon systems within a defined environment. The function of the CSCI was not altered and is not detailed here.

3.1.1. CSCI architecture.

The RWA CSCI architecture was not altered. Certain CSUs used to initialize parameters for performance and radio communication control were modified. The aeromodel and weapon models were modified for reading initial performance and configuration values from data files. An abbreviated AirNet Call Tree Structure is included in Appendix A for reference.

3.1.2. System states and modes.

The system states and modes for operation and execution were not modified. Software control using a hardware modification was added to control radio communications availability.

3.1.3. Memory and processing time allocation.

The memory and processing time was not computed nor were estimated allocations made. The additional processing time occurs during input from data files during initialization, and does not impact the real-time execution

frame times. The real-time simulation is executed at 15 hertz frame rate for the majority of the functions.

3.2. CSCI design description.

The following subparagraphs indicate the call hierarchy. Design details for original code is not documented herein.

3.2.1. CSC simulation_state_machine.

After system configuration initialization, this CSC controls the initialization, idle state, run state, and stop state of the simulation. This CSC existed in the original code and is not documented herein.

3.2.1.1. Sub-level CSC io-simul.

This CSC controls the state of the input/output function during simulation. This CSC existed in the original code and is not documented herein.

3.2.1.1.1. Sub-level CSC process_a_packet.

The CSC connotes the processing of input/output packets. This CSC existed in the original code and is not documented herein.

3.2.1.1.1.1. Sub-level CSC do_protocol_on_sim_packet.

This CSC existed in the original code and is not documented herein.

3.2.1.1.1.1. Sub-level CSC process_indirect_fire.

This CSC existed in the original code and is not documented herein.

3.2.1.1.1.1.1. Sub-level CSC failure_check_indir_fire_damages.

This CSC existed in the original code and is not documented herein.

3.2.1.1.1.1.1.1. Sub-level CSC fail_vehicle_is_destroyed.

This CSC controls the radio availability. This CSC existed in the original code and is not documented herein.

3.2.1.2. Sub-level CSC veh_spec_idle.

This CSC controls the vehicle simulation during idle state. This CSC existed in the original code and is not documented herein.

3.2.1.2.1. Sub-level CSC io_simul_idle.

This CSC controls the input/output simulation during idle state. This CSC existed in the original code is and not documented herein.

3.2.1.2.1.1. Sub-level CSC process_a_packet.

This CSC existed in the original code is and not documented herein.

3.2.1.2.2. Sub-level CSC keyboard_simul.

This CSC controls the radio availability. During initialization this CSC controls radio initialization. This CSC existed in the original code is and not documented herein.

3.2.1.2.2.1. Sub-level CSC controls_restore_controls.

This CSC existed in the original code is and not documented herein.

3.2.1.2.2.1.1. Sub-level CSC controls_sim_init.

This CSC initializes the radios availability. This CSC existed in the original code is and not documented herein.

3.2.1.2.2.2. Sub-level CSC fail_cat_kill.

This CSC existed in the original code is and not documented herein.

3.2.1.2.2.2.1. Sub-level CSC fail_vehicle_is_destroyed.

This CSC controls radios availability. This CSC existed in the original code is and not documented herein.

3.2.1.2.2.3. Sub-level CSC alt_init.

This CSC existed in the original code is and not documented herein.

3.2.1.2.2.3.1. Sub-level CSC alt_new_height_is.

This CSC existed in the original code is and not documented herein.

3.2.1.2.2.3.1.1. Sub-level CSC fail_cat_kill.

This CSC existed in the original code is and not documented herein.

3.2.1.3. Sub-level CSC veh_spec_init.

This CSC controls the initialization of the vehicle, including communications, aeromodel and weapon models. This CSC existed in the original code is and not documented herein.

3.2.1.3.1. Sub-level CSC controls_sim_init.

This CSC controls the initialization of the vehicle cockpit controls. This CSC existed in the original code is and not documented herein.

3.2.1.3.1.1. Sub-level CSC controls_radios_init.

This CSC initializes the radio controls and availability. This CSC existed in the original code is and not documented herein.

3.2.1.3.2. Sub-level CSC rwa_init.

This CSC initializes the performance characteristics and physical configuration of the vehicle and its weapons. This CSC existed in the original code is and not documented herein.

3.2.1.3.3. Sub-level CSC weapons_init.

This CSC initializes the weapons for the vehicle configuration. This CSC existed in the original code is and not documented herein.

3.2.1.3.3.1. Sub-level CSC hydra_init.

This CSC initializes the hydra rockets. This CSC existed in the original code is and not documented herein.

3.2.1.3.4. Sub-level CSC alt_init.

This CSC initializes the vehicle for the altitude. This CSC existed in the original code is and not documented herein.

3.2.1.4. Sub-level CSC veh_spec_simulate.

This CSC controls the real-time simulation state. This CSC existed in the original code is and not documented herein.

3.2.1.4.1 Sub-level CSC keyboard_simul.

This CSC controls the radio availability. During the real-time simulation this CSC connotes the radio state. This CSC existed in the original code is and not documented herein.

4. Detailed design.

The following paragraphs and subparagraphs describe the detailed design of each CSC and CSU.

4.1. CSC rwa_init.

This CSC, rwa_init, controls the initialization of the rotary wing aircraft models, i.e., aeromodel, kinematics model, and engine model. The structure and function of this CSC was not modified under this delivery order. The following subparagraphs describe the design information for the modified CSUs called by this CSC.

4.1.1. CSU engine_init.

The CSU engine_init reads engine data from data files and initializes the engine operating and performance parameters, limitations, initial dynamic state, and engine status. The following subparagraphs describe the design information for the CSU engine_init.

4.1.1.1. CSU engine_init design specification/constraints.

This subparagraph shall state the design requirements for the CSU. This subparagraph shall identify the requirements allocated to the CSC that are to be satisfied or partially satisfied by the CSU and shall identify any constraints on the design of the CSU.

4.1.1.2. CSU engine_init design.

The CSU engine_init is coded in the ANSI 'C' programming language, standard language for the CSCI. The following paragraphs specify the design of the CSU engine_init. For a complete listing, see Appendix C - Source Code Listing For rwa_engine.c.

- a. <u>Input/output data elements</u>. None used.
- b. <u>Local data elements</u>. TABLE 4.1.1.1 CSU ENGINE_INIT LOCAL DATA DEFINITION TABLE describes the local data elements originating in the CSU engine_init and not used by any other CSU.

TABLE 4.1.1.1 - CSU ENGINE_INIT LOCAL DATA DEFINITION TABLE

Name	j	data_init	data_temp	descript	fp
Description	array index	temporary integer data storage for data read from file	temporary float data storage for data read from file	temporary character string storage read from file	data file pointer
Туре	integer	integer	float	character array	file pointer
Represent- ation	decimal number	decimal number	real number	character string	directory pathname plus 8 character unique filename plus ".d" extension
Size	N/A_	N/A	N/A	64	N/A
Unit of Measure	Non- dimensional	Variable	Variable	None	None
Limit/range	0 - 99	Variable	Variable	N/A	N/A
Precision	single	single	single	N/A	N/A

- c. <u>Interrupts and signals</u>. None used.
- d. <u>Algorithms</u>. The following algorithms are used in the execution of the CSU engine_init.
 - (1) An algorithm to read engine default performance data from the "simnet/data/rwa_engn.d" data file is executed. This data determines the performance characteristics of the engine during real-time execution. Access of the file is "read only".

The "simnet/data/rwa_engn.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the array index is set to zero. Each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed engine_data element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one

and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(2) An algorithm to read engine default initialization data from the "simnet/data/rw_en_in.d" data file is executed. This data determines the initial dynamic state of the engine prior to real-time execution. Access of the file is "read only".

The "simnet/data/rw_en_in.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the array index is set to zero. Each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed engine_init_data element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(3) An algorithm to read engine default status data from the "simnet/data/rw_en_st.d" data file is executed. This data determines the initial state of the engines prior to real-time execution. Access of the file is "read only".

The "simnet/data/rw_en_st.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the array index is set to zero. Each record is scanned and the first field is assigned to a temporary integer data storage. If the value of the temporary integer data is not the end-of-file, the temporary integer data is assigned to the current indexed engine_stat_data element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary integer data is the end-of-file, the file is closed.

- e. <u>Error handling</u>. Errors other than a null data file are not handled. If a null data file is detected, a message is sent to the standard error device reporting that the file could not be opened.
- f. Data conversion. Data conversion is not done in this CSU.
- g. <u>Use of other elements</u>. The following elements are used by CSU engine_init.
 - (1) CSU fopen. This library call opens a designated file. This CSU existed within the original code and is not documented herein.
 - (2) CSU fprintf. This library call CSU prints a designated string to a designated output device. This CSU existed within the original code and is not documented herein.
 - (3) CSU rewind. This library call CSU rewinds a designated file. This CSU existed within the original code and is not documented herein.
 - (4) CSU fscanf. This library call CSU scans a record for a field from a designated file. This CSU existed within the original code and is not documented herein.
 - (5) CSU fgets. This library call CSU gets a field from a designated file. This CSU existed within the original code and is not documented herein.
 - (6) CSU fclose. This library call CSU closes a designated file. This CSU existed within the original code and is not documented herein.
 - (7) CSU fail_init_failure. This CSU initializes a failure of the engine or its subsystems. This CSU existed within the original code and is not documented herein.
 - (8) Shared data elements. The following is a list of global variables initialized within the CSU engine_init. These variables existed in the original code and will not be documented herein.

gov_p_gain gov_i_gain

engine_power
engine_percent_torque
engine_speed
integrator_gain
last_percent_shaft_speed
last_percent_torque
hours_of_flight
minutes_of_flight
old_minutes_of_flight
engine_status
starting_engine
number_of_engines
engine_is_damaged
transmission_is_damaged

h. <u>Logic flow</u>. The CSU engine_init is called by the CSU rwa_init. See Appendix A - RWA AirNet Call Tree Structure. Execution of the CSU engine_init is normally done only once during CSCI initialization and is performed sequentially.

Open engine performance data file.

If file is null, print error message and exit.

Rewind file.

Set index to zero.

While record not end-of-file,
 engine_data[index]=first_field
 descript=second_field
 increment index by one

End while.

Close data file.

Open engine initialization data file.

If file is null, print error message and exit.

Rewind file.

Set index to zero.

While record not end-of-file,
 engine_init_data[index]=first_field
 descript=second_field
 increment index by one

End while.

Close data file.

Open engine status data file. If file is null, print error message and exit.

Rewind file.

Set index=zero.

While record not end-of-file,
 engine_stat_data[index]=first_field
 descript=second_field
 increment index by one
End while.

Close data file.

Set gov_p_gain=engine_data[1] Set gov_i gain=engine_data[2] Set engine_power=engine_init_data[0] Set engine_percent_torque=engine_init_data[1] Set engine_speed=engine_init_data[2] Set integrator_gain=engine_init_data[3] Set last_percent_shaft_speed=engine init_data[4] Set last_percent_torque=engine_init_data[5] Set hours_of_flight=engine_init_data[6] Set minutes_of_flight=engine_stat_data[0] Set old_minutes_of_flight=engine_stat_data[1] Set engine_status=engine stat data[2] Set starting_engine=engine_stat_data[3] Set number_of_engines=engine_stat_data[4] Set engine_is_damaged=engine_stat_data[5] Set transmission_is_damaged=engine_stat_data[6]

If combat_damage=TRUE,

Call fail_init_failure for engine_oil_damage

Call fail_init_failure for break_engine

End if.

If stochastic_failure=TRUE,

Call fail_init_failure for transmis_filter_damage

Call fail_init_failure for break_transmission

End if.

- i. <u>Data structures</u>. The following shared data structures are used by the CSU engine_init.
 - (1) Data structure engine_data. This shared data structure holds the performance data defining the operating limitations of the engines. The data structure is an array of 20 elements. The data structure is given default initialization during compilation. Detailed definition of

each element is described in TABLE 5.1.5. - ENGINE DATA ARRAY.

- (2) Data structure engine_init_data. This shared data structure holds the dynamic initialization of the engines. The data structure is an array of 10 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.6. ENGINE INITIALIZATION DATA ARRAY.
- (3) Data structure engine_stat_data. This shared data structure holds the status data describing the operating state of the engines. The data structure is an array of 10 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.7. ENGINE STATUS DATA ARRAY.
- j. <u>Local data files</u>. The following data files are part of the local data of the CSU engine_init.
 - (1) Data file "simnet/data/rwa_engn.d". This data file includes the performance characteristics of the engine. The data file consists of a maximum of 20 records. Each record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the engine_data global array. These fields have values consistent with the characteristics outlined in TABLE 5.1.5. ENGINE DATA ARRAY. The second field is for documentation purposes only. Access of the file is "read only" and sequential.
 - (2) Data file "simnet/data/rw_en_in.d". This data file includes the initial dynamic state of the engine. The data file consists of a maximum of 10 records. Each record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the engine_init_data global array. These fields have values consistent with the characteristics outlined in TABLE 5.1.6. ENGINE INITIALIZATION DATA

- ARRAY. The second field is for documentation purposes only. Access of the file is "read only" and sequential.
- (3) Data file "simnet/data/rw_en_st.d". This data file includes the initial state of the engines. The data file consists of a maximum of 10 records. Each record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the engine_stat_data global array. These fields have values consistent with the characteristics outlined in TABLE 5.1.7. ENGINE STATUS DATA ARRAY. The second field is for documentation purposes only. Access of the file is "read only" and sequential.
- k. <u>Limitations</u>. There are no additional limitations or unusual features that restrict the performance of the CSU engine_init.

4.1.2. CSU aerodyn_init.

The CSU aerodyn_init reads aerodynamics data from data files and initializes the aerodynamics operating and performance parameters, limitations, initial dynamic state, and aerodynamics status. The following subparagraphs describe the design information for the CSU aerodyn_init.

4.1.2.1. CSU aerodyn_init design specification/constraints.

This subparagraph shall state the design requirements for the CSU. This subparagraph shall identify the requirements allocated to the CSC that are to be satisfied or partially satisfied by the CSU and shall identify any constraints on the design of the CSU.

4.1.2.2. CSU aerodyn_init design.

The CSU aerodyn_init is coded in the ANSI 'C' programming language, standard language for the CSCI. The following paragraphs specify the design of the CSU aerodyn_init. For a complete listing, see Appendix B - Source Code Listing For rwa_aerodyn.c.

- a. <u>Input/output data elements</u>. None used.
- b. <u>Local data elements</u>. TABLE 4.1.2.1 CSU AERODYN_INIT LOCAL DATA DEFINITION TABLE describes the local data elements originating in the CSU aerodyn_init and not used by any other CSU.

TABLE 4.1.2.1 - CSU AERODYN_INIT LOCAL DATA DEFINITION TABLE

Name	i	j	data_tmp	descript	fp
Description	array index	array index	temporary float data storage for data read from file	temporary character string storage read from file	data file pointer
Туре	integer	integer	float	character array	file pointer
Represent- ation	decimal number	decimal number	real number	character string	directory pathname plus 8 character unique filename plus ".d" extension
Size	N/A	N/A	N/A	64	N/A
Unit of Measure	Non- dimensional	Non- dimensional	Variable	None	None
Limit/range	0 - 99	0 - 99	Variable	N/A	N/A
Precision	single	single	single	N/A	N/A

- c. <u>Interrupts and signals</u>. None used.
- d. <u>Algorithms</u>. The following algorithms are used in the execution of the CSU aerodyn_init.
 - (1) An algorithm to read aerodynamics default performance data from the "simnet/data/rwa_aero.d" data file is executed. This data determines the performance characteristics of the aerodynamics during real-time execution. Access of the file is "read only".

The "simnet/data/rwa_aero.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the array index is set to zero. Each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed aero_data element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one

and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(2) An algorithm to read aerodynamics default initialization data from the "simnet/data/rw_ae_in.d" data file is executed. This data determines the initial dynamic state of the aerodynamics prior to real-time execution. Access of the file is "read only".

The "simnet/data/rw_ae_in.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the array index is set to zero. Each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed aero_init element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(3) An algorithm to read aerodynamics default simple data from the "simnet/data/rw_ae_sp.d" data file is executed. This data determines the performance characteristics of the "simple" aerodynamics model during real-time execution. Access of the file is "read only".

The "simnet/data/rw_ae_sp.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the array index is set to zero. Each record is scanned and the first field is assigned to a temporary integer data storage. If the value of the temporary integer data is not the end-of-file, the temporary integer data is assigned to the current indexed aero_simple element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary integer data is the end-of-file, the file is closed.

(4) An algorithm to read aerodynamics default stealth data from the "simnet/data/rw_ae_sl.d" data file is executed. This data determines the performance characteristics of the "stealth" aerodynamics model during real-time execution. Access of the file is "read only".

The "simnet/data/rw_ae_sl.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the array index is set to zero. Each record is scanned and the first field is assigned to a temporary integer data storage. If the value of the temporary integer data is not the end-of-file, the temporary integer data is assigned to the current indexed aero_stealth element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary integer data is the end-of-file, the file is closed.

- e. <u>Error handling</u>. Errors other than a null data file are not handled. If a null data file is detected, a message is sent to the standard error device reporting that the file could not be opened.
- f. <u>Data conversion</u>. Data conversion is not done in this CSU.
- g. <u>Use of other elements</u>. The following elements are used by CSU aerodyn_init.
 - (1) CSU fopen. This library call opens a designated file. This CSU existed within the original code and is not documented herein.
 - (2) CSU fprintf. This library call CSU prints a designated string to a designated output device. This CSU existed within the original code and is not documented herein.
 - (3) CSU rewind. This library call CSU rewinds a designated file. This CSU existed within the original code and is not documented herein.

- (4) CSU fscanf. This library call CSU scans a record for a field from a designated file. This CSU existed within the original code and is not documented herein.
- (5) CSU fgets. This library call CSU gets a field from a designated file. This CSU existed within the original code and is not documented herein.
- (6) CSU fclose. This library call CSU closes a designated file. This CSU existed within the original code and is not documented herein.
- (7) CSU engine_init. This CSU initializes the engine functions and its subsystems. This CSU is documented in subparagragh 4.1.1.
- (8 CSU vect_init. This CSU initializes a vector. This CSU existed within the original code and is not documented herein.
- (9 CSU vehicle_mass_init. This CSU initializes the vehicle mass. This CSU existed within the original code and is not documented herein.
- (10 CSU ground_init. This CSU initializes the ground forces. This CSU existed within the original code and is not documented herein.
- (11) CSU find_cubic_func. This CSU computes the cubic function of the arguments. This CSU existed within the original code and is not documented herein.
- (12) CSU aerodyn_read_simple_constants. This CSU initializes reads "simple" aerodynamic model constants from a designated file identified by the argument. This CSU existed within the original code and is not documented herein.
- (13) CSU get_constants_file. This CSU identifies and opens a constants data file. This CSU existed within the original code and is not documented herein.

- (14) CSU deg_to_rad. This CSU converts a float argument from degrees to radians. This CSU existed within the original code and is not documented herein.
- (15) Shared data elements. The following is a list of global variables initialized within the CSU aerodyn_init. These variables existed in the original code and will not be documented herein.

cyclic_pitch cyclic_roll selected model collective allow_takeoff pedal stab_aug_pitch_integrator stab_aug_roll_integrator stab_aug_yaw_integrator stab_aug_climb_integrator attitude_control_pitch_integrator attitude_control_roll_integrator hover_aug_pitch_integrator hover_aug_roll_integrator hover_aug_pitch_angle hover_aug_roll_angle hover_hold_state hover_hold_turned_on loc_ac_main_rotor_cop[3] loc_ac_tail_rotor_cop[3] loc_ac_virtual_wing_cop[3] loc_ac_vstab_cop[3] loc_ac_cg[3] inertia matrix[3][3] pitch_damping roll_damping yaw_damping MAIN_ROTOR_MAST_TILT_SIN MAIN_ROTOR_MAST_TILT_COS vstab force drag_force ground_force force_ground_effect force_body moment_body

moment_body_torque_coupling force_body_main_rotor force_body_tail_rotor force_body_damping inertia_matrix p_drag_fit_coeff[10]

h. <u>Logic flow</u>. The CSU aerodyn_init is called by the CSU rwa_init. See Appendix A - RWA AirNet Call Tree Structure. Execution of the CSU aerodyn_init is normally done only once during CSCI initialization and is performed sequentially.

End while.

Close data file.

```
Open aerodynamics stealth initialization data file.
If file is null, print error message and exit.
Rewind file.
Set index=zero.
While record not end-of-file.
      aero stealth[index]=first field
      descript=second_field
      increment index by one
End while.
Close data file.
Initialize engine; call engine_init
Set cyclic_pitch = aero_init[0]
Set cyclic_roll = aero_init[1]
If (selected_model NOT EQUAL TO STEALTH_MODEL) then
      set collective = aero init[2]
else
      set collective = 0.5
      set allow takeoff = TRUE
end if
Set pedal = aero_init[3]
Set stab_aug_pitch_integrator = aero_init[4]
Set stab_aug_roll_integrator = aero_init[5]
Set stab_aug_yaw_integrator = aero_init[6]
Set stab_aug_climb_integrator = aero_init[7]
Set attitude_control_pitch_integrator = aero_init[8]
Set attitude_control_roll_integrator = aero_init[9]
Set hover_aug_pitch_integrator = aero_init[10]
Set hover_aug_roll_integrator = aero_init[11]
Set hover_aug_pitch_angle = aero_init[12]
Set hover_aug_roll_angle = aero_init[13]
Set hover_hold_state = OFF
Set hover_hold_turned_on = FALSE
Set loc_ac_main_rotor_cop[X] = aero_data[24]
Set loc_ac_main_rotor_cop[Y] = aero_data[25]
Set loc_ac_main_rotor_cop[Z] = aero_data[26]
Set loc_ac_tail_rotor_cop[X] = aero_data[34]
```

```
Set loc_ac_tail_rotor_cop[Y] = aero_data[35]
Set loc_ac_tail_rotor_cop[Z] = aero_data[36]
Set loc_ac_virtual_wing_cop[X] = aero_data[10]
Set loc_ac_virtual_wing_cop[Y] = aero_data[11]
Set loc_ac_virtual_wing_cop[Z] = aero_data[12]
Set loc_ac_vstab_cop[X] = aero_data[19]
Set loc_ac_vstab_cop[Y] = aero_data[20]
Set loc ac vstab_cop[Z] = aero_data[21]
Set loc_ac_cg[X] = aero_data[6]
Set loc ac cg[Y] = aero_data[7]
Set loc_ac_cg[Z] = aero_data[8]
Set inertia_matrix[1] [1] = aero_data[0]
Set inertia_matrix[2] [2] = aero_data[1]
Set inertia_matrix[3] [3] = aero_data[2]
Set pitch_damping = aero_data[68]
Set roll_damping = aero_data[67]
Set yaw_damping = aero_data[69]
Set MAIN_ROTOR_MAST_TILT_SIN =
      sin(deg_to rad(aero_data[28]));
Set MAIN_ROTOR_MAST_TILT_COS =
      cos(deg_to_rad(aero_data[28]));
Initialize vstab_force vector; call vec_init
Initialize drag_force vector; call vec_init
Initialize ground_force vector; call vec_init
Initialize force_ground_effect vector; call vec_init
Initialize force_body vector; call vec init
Initialize moment_body vector; call vec_init
Initialize moment_body_torque_coupling vector; call vec_init
Initialize force_body_main_rotor vector; call vec_init
Initialize force_body_tail_rotor vector; call vec_init
Initialize force_body_damping vector; call vec_init
Initial vehicle mass init; call vehicle_mass_init
Initialize ground forces; call ground_init
```

Initialize parasite drag profile; set p_drag_fit_coeff = 0.0

If (parasite drag find_cubic_func NOT EQUAL TO 1) then print "AERODYN: Error - unable to fit p_drag function" end if

If (selected_model) then

Set aerodyn_read_simple_constants from

get_constants_file

end if

- i. <u>Data structures</u>. The following shared data structures are used by the CSU aerodyn_init.
 - (1) Data structure aero_data. This shared data structure holds the performance data defining the operating limitations of the aerodynamics model. The data structure is an array of 100 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.1. AERODYNAMICS DATA ARRAY.
 - (2) Data structure aero_init. This shared data structure holds the dynamic initialization of the aerodynamics model state. The data structure is an array of 20 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.2. AERODYNAMICS INITIALIZATION DATA ARRAY.
 - (3) Data structure aero_simple. This shared data structure holds the performance data describing the "simple" aerodynamic model. The data structure is an array of 20 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.3. AERODYNAMICS SIMPLE DATA ARRAY.
 - (4) Data structure aero_stealth. This shared data structure holds the performance data describing the "stealth" aerodynamics model. The data structure is an array of 20 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.4. AERODYNAMICS STEALTH DATA ARRAY.

- j. <u>Local data files</u>. The following data files are part of the local data of the CSU aerodyn_init.
 - (1) Data file "simnet/data/rwa_aero.d". This data file includes the performance characteristics of the aerodynamics model. The data file consists of a maximum of 100 records. Each record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the aero_data global array. These fields have values consistent with the characteristics outlined in TABLE 5.1.1. AERODYNAMICS DATA ARRAY. The second field is for documentation purposes only. Access of the file is "read only" and sequential.
 - (2) Data file "simnet/data/rw_ae_in.d". This data file includes the initial dynamic state of the aerodynamics model. The data file consists of a maximum of 20 records. Each record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the aero_init global array. These fields have values consistent with the characteristics outlined in TABLE 5.1.2. AERODYNAMICS INITIALIZATION DATA ARRAY. The second field is for documentation purposes only. Access of the file is "read only" and sequential.
 - (3) Data file "simnet/data/rw_ae_sp.d". This data file includes the performance characteristics of the "simple" aerodynamics model. The data file consists of a maximum of 20 records. Each record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the aero_simple global array. These fields have values consistent with the characteristics outlined in TABLE 5.1.3. AERODYNAMICS SIMPLE DATA ARRAY. The second field is for documentation purposes only. Access of the file is "read only" and sequential.

- (4) Data file "simnet/data/rw_ae_sl.d". This data file includes the performance characteristics of the "stealth" aerodynamics model. The data file consists of a maximum of 20 records. Each record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the aero_stealth global array. These fields have values consistent with the characteristics outlined in TABLE 5.1.4. AERODYNAMICS STEALTH DATA ARRAY. The second field is for documentation purposes only. Access of the file is "read only" and sequential.
- k. <u>Limitations</u>. There are no additional limitations or unusual features that restrict the performance of the CSU aerodyn_init.

4.1.3. CSU veh_spec_kinematics_init.

The CSU veh_spec_kinematics_init reads kinematics data from data files and initializes the kinematics operating and performance parameters, limitations, initial dynamic state, and kinematics status. The following subparagraphs describe the design information for the CSU veh_spec_kinematics_init.

4.1.3.1. CSU veh_spec_kinematics_init design specification/constraints.

This subparagraph shall state the design requirements for the CSU. This subparagraph shall identify the requirements allocated to the CSC that are to be satisfied or partially satisfied by the CSU and shall identify any constraints on the design of the CSU.

4.1.3.2. CSU veh_spec_kinematics_init design.

The CSU veh_spec_kinematics_init is coded in the ANSI 'C' programming language, standard language for the CSCI. The following paragraphs specify the design of the CSU veh_spec_kinematics_init. For a complete listing, see Appendix D - Source Code Listing For rwa_kinemat.c.

- a. <u>Input/output data elements</u>. None used.
- b. Local data elements. TABLE 4.1.3.1 CSU VEH_SPEC_KINEMATICS_INIT LOCAL DATA DEFINITION TABLE describes the local data elements originating in the CSU veh_spec_kinematics_init and not used by any other CSU.

TABLE 4.1.3.1 - CSU VEH_SPEC_KINEMATICS_INIT LOCAL DATA DEFINITION TABLE

Name	i	data_tmp	descript	fp
Description	array index	temporary float data storage for data read from file	temporary character string storage read from file	data file pointer
Туре	integer	float	character array	file pointer
Represent- ation	decimal number	real number	character string	directory pathname plus 8 character unique filename plus ".d" extension
Size	N/A	N/A	64	N/A
Unit of Measure	Non- dimensional	Variable	None	None
Limit/range	0 - 99	Variable	N/A	N/A
Precision	single	single	N/A	N/A

- c. <u>Interrupts and signals</u>. None used.
- d. <u>Algorithms</u>. The following algorithms are used in the execution of the CSU veh_spec_kinematics_init.
 - (1) An algorithm to read kinematics default performance data from the "simnet/data/rwa_kine.d" data file is executed. This data determines the performance characteristics of the kinematics during real-time execution. Access of the file is "read only".

The "simnet/data/rwa_kine.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the array index is set to zero. Each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed engine_data element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one

and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(2) An algorithm to read kinematics default initialization data from the "simnet/data/rw_ki_in.d" data file is executed. This data determines the initial dynamic state of the kinematics prior to real-time execution. Access of the file is "read only".

The "simnet/data/rw_ki_in.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the array index is set to zero. Each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed engine_init_data element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

- e. <u>Error handling</u>. Errors other than a null data file are not handled. If a null data file is detected, a message is sent to the standard error device reporting that the file could not be opened.
- f. <u>Data conversion</u>. Data conversion is not done in this CSU.
- g. <u>Use of other elements</u>. The following elements are used by CSU veh_spec_kinematics_init.
 - (1) CSU fopen. This library call opens a designated file. This CSU existed within the original code and is not documented herein.
 - (2) CSU fprintf. This library call CSU prints a designated string to a designated output device. This CSU existed within the original code and is not documented herein.
 - (3) CSU rewind. This library call CSU rewinds a designated file. This CSU existed within the original code and is not documented herein.

- (4) CSU fscanf. This library call CSU scans a record for a field from a designated file. This CSU existed within the original code and is not documented herein.
- (5) CSU fgets. This library call CSU gets a field from a designated file. This CSU existed within the original code and is not documented herein.
- (6) CSU fclose. This library call CSU closes a designated file. This CSU existed within the original code and is not documented herein.
- (7) CSU vehicle_angular_velocity. This CSU existed within the original code and is not documented herein.
- (8 CSU vehicle_velocity. This CSU existed within the original code and is not documented herein.
- (9) CSU mat_ident. This CSU initializes a failure of the kinematics or its subsystems. This CSU existed within the original code and is not documented herein.
- (10) Shared data elements. The following is a list of global variables initialized within the CSU veh_spec_kinematics_init. These variables existed in the original code and will not be documented herein.

pos_unit_vel[3] neg_unit_vel[3] sin aoa cos_aoa sin_yaw cos_yaw altitude body_pitch body_pitch_offset velocity_pitch roll heading true airspeed indicated_airspeed g_force vertical_speed

ang_vel velocity_vector gravity[3] norm_vel[3] velocity_to_body

h. <u>Logic flow</u>. The CSU veh_spec_kinematics_init is called by the CSU rwa_init. See Appendix A - RWA AireNet Call Tree Structure. Execution of the CSU veh_spec_kinematics_init is normally done only once during CSCI initialization and is performed sequentially.

Open kinematics performance data file.

If file is null, print error message and exit.

Rewind file.

Set index to zero.

While record not end-of-file,
 kinemat_data[index]=first_field
 descript=second_field
 increment index by one

End while.

Close data file.

Set pos_unit_vel[Y] = kinemat_init_data[1] Set pos_unit_vel[Z] = kinemat_init_data[2] Set neg_unit_vel[X] = kinemat_init_data[3] Set neg_unit_vel[Y] = kinemat_init_data[4] Set neg_unit_vel[Z] = kinemat_init_data[5] Set sin_aoa = kinemat_init_data[6] Set cos_aoa = kinemat_init_data[7] Set sin_yaw = kinemat_init_data[8] Set cos_yaw = kinemat_init_data[9]

Set cos_yaw = kinemat_init_data[9] Set altitude = kinemat_init_data[10]

Set body_pitch = kinemat_init_data[11] Set body_pitch_offset = kinemat_init_data[12] Set velocity_pitch = kinemat_init_data[13] Set roll = kinemat_init_data[14] Set heading = kinemat_init_data[15] Set true_airspeed = kinemat_init_data[16] Set indicated_airspeed = kinemat_init_data[17] Set g_force = kinemat_init_data[18] Set vertical_speed = kinemat_init_data[19] Set ang_vel = vehicle_angular_velocity() Set velocity_vector = vehicle_velocity() Set gravity[X] = kinemat_init_data[20] Set gravity[Y] = kinemat_init_data[21] Set gravity[Z] = kinemat_init_data[22] Set norm vel[X] = kinemat_init_data[23] Set norm_vel[Y] = kinemat_init_data[24] Set norm_vel[Z] = kinemat_init_data[25]

Compute identity matrix; call mat_ident(velocity_to_body)

- i. <u>Data structures</u>. The following shared data structures are used by the CSU veh_spec_kinematics_init.
 - (1) Data structure kinemat_data. This shared data structure holds the performance data defining the operating limitations of the engines. The data structure is an array of 20 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.8. KINEMATICS DATA ARRAY.
 - (2) Data structure kinemat_init_data. This shared data structure holds the dynamic initialization of the engines. The data structure is an array of 30 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.9. KINEMATICS INITIALIZATION DATA ARRAY.
- j. <u>Local data files</u>. The following data files are part of the local data of the CSU veh_spec_kinematics_init.
 - (1) Data file "simnet/data/rwa_kine.d". This data file includes the performance characteristics of the kinematics.

The data file consists of a maximum of 20 records. Each record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the engine_data global array. These fields have values consistent with the characteristics outlined in TABLE 5.1.8. - KINEMATICS DATA ARRAY. The second field is for documentation purposes only. Access of the file is "read only" and sequential.

- (2) Data file "simnet/data/rw_ki_in.d". This data file includes the initial dynamic state of the kinematics. The data file consists of a maximum of 10 records. Each record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the engine_init_data global array. These fields have values consistent with the characteristics outlined in TABLE 5.1.9. KINEMATICS INITIALIZATION DATA ARRAY. The second field is for documentation purposes only. Access of the file is "read only" and sequential.
- k. <u>Limitations</u>. There are no additional limitations or unusual features that restrict the performance of the CSU veh_spec_kinematics_init.

4.2. CSC weapons_init.

This CSC, weapons_init, controls the initialization of the rotary wing aircraft weapon models, i.e., hydra, tow, hellfire. The structure and function of this CSC was not modified under this delivery order. The following subparagraphs describe the design information for the modified CSUs called by this CSC.

4.2.1. CSU missile_tow_init.

The CSU missile_tow_init reads tow missile data from data files and initializes the 1) performance limitations and characteristics data array, 2) the polynomial degree array, 3) the burn speed polynomial coefficients array, 4) the coast speed polynomial coefficients array, 5) the burn speed turn, maximum cosine coefficient structure, and 6) the coast speed turn, maximum cosine coefficient structure. The following subparagraphs describe the design information for the CSU missile_tow_init.

4.2.1.1. CSU missile_tow_init design specification/constraints.

This subparagraph shall state the design requirements for the CSU. This subparagraph shall identify the requirements allocated to the CSC that are to be satisfied or partially satisfied by the CSU and shall identify any constraints on the design of the CSU.

4.2.1.2. CSU missile_tow_init design.

The CSU missile_tow_init is coded in the ANSI 'C' programming language, standard language for the CSCI. The following paragraphs specify the design of the CSU missile_tow_init. For a complete listing, see Appendix L - Source Code Listing For miss_tow.c.

- a. <u>Input/output data elements</u>.
 - (1) tptr This input data element is a pointer to the particular array of missiles to be initialized. This element is declared global.
 - (2) No output data elements are declared.
- b. <u>Local data elements</u>. TABLE 4.2.1.1 CSU MISSILE_TOW_INIT LOCAL DATA DEFINITION TABLE describes the local data elements originating in the CSU missile_tow_init and not used by any other CSU.

TABLE 4.2.1.1 - CSU MISSILE_TOW_INIT LOCAL DATA DEFINITION TABLE

Name	i	data_tmp_ int	data_tmp	descript	fp
Descrip- tion	array index	temporary integer data storage for data read from file	temporary float data storage for data read from file	temporary character string storage read from file	data file pointer
Туре	integer	integer	float	character array	file pointer
Represent- ation	decimal number	decimal number	real number	character string	directory pathname plus 8 character unique filename plus ".d" extension
Size	N/A	N/A	N/A	64	N/A
Unit of Measure	Non- dimension-al	Variable	Variable	None	None
Limit/range	0 - 99	Variable	Variable	N/A	N/A
Precision	single	single	single	N/A	N/A

- c. <u>Interrupts and signals</u>. None used.
- d. <u>Algorithms</u>. The following algorithms are used in the execution of the CSU missile_tow_init.
 - (1) An algorithm to read the performance limitations and characteristics of the tow missile from the "simnet/data/ms_tw_ch.d" data file is executed. This data determines the performance limitations and characteristics of the tow missile during real-time execution. Access of the file is "read only".

The "simnet/data/ms_tw_ch.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the array index is set to zero. Each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed tow_miss_char element. The remainder of the record is assigned to the temporary

character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(2) An algorithm to read polynomial degree data and burn speed coefficients data from the "simnet/data/ms_tw_bs.d" data file is executed. This data determines burn speed polynomial coefficient data used during real-time execution to compute the speed of the tow missile during engine burn for the tow missile flyout. Access of the file is "read only".

The "simnet/data/ms_tw_bs.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the first field. The first field is assigned to a temporary integer data storage and then to the first element of the tow_miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero. Then, each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed tow_burn_speed_coeff element. remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(3) An algorithm to read polynomial degree data and coast speed coefficients data from the "simnet/data/ms_tw_cs.d" data file is executed. This data determines coast speed polynomial coefficient data used during real-time execution to compute the speed of the tow missile after engine burn for the tow missile flyout. Access of the file is "read only".

The "simnet/data/ms_tw_cs.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the

first field. The first field is assigned to a temporary integer data storage and then to the third element of the tow_miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero. Then, each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed tow_coast_speed_coeff element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(4) An algorithm to read polynomial degree data and maximum turn cosine coefficients during engine burn data from the "simnet/data/ms_tw_bt.d" data file is executed. This data defines the maximum cosine coefficients during real-time execution to compute the maximum cosine of a turn in each axis during engine burn of the tow missile flyout. Access of the file is "read only".

The "simnet/data/ms_tw_bt.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the first field. The first field is assigned to a temporary integer data storage and then to the third element of the tow_miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero for the side axis, with the limit set to the degree. Then, each record is scanned and the first field is assigned to a temporary float data storage, and assigned to the current indexed tow_burn_turn_coeff.side_coeff element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned and stored until the degree limit is hit. The process is repeated for the up and down axes. Then, the file is closed.

(5) An algorithm to read polynomial degree data and maximum turn cosine coefficients data after engine burn from the "simnet/data/ms_tw_ct.d" data file is executed. This data defines the maximum cosine coefficients during real-time execution to compute the maximum cosine of a turn in each axis after engine burn of the tow missile flyout. Access of the file is "read only".

The "simnet/data/ms_tw_ct.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the first field. The first field is assigned to a temporary integer data storage and then to the fourth element of the tow_miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero for the side axis, with the limit set to the degree. Then, each record is scanned and the first field is assigned to a temporary float data storage, and assigned to the current indexed tow_coast_turn_coeff.side_coeff_element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned and stored until the degree limit is hit. The process is repeated for the up and down axes. Then, the file is closed.

- e. <u>Error handling</u>. Errors other than a null data file are not handled. If a null data file is detected, a message is sent to the standard error device reporting that the file could not be opened.
- f. <u>Data conversion</u>. Data conversion is not done in this CSU.
- g. <u>Use of other elements</u>. The following elements are used by CSU missile_tow_init.
 - (1) CSU fopen. This library call opens a designated file. This CSU existed within the original code and is not documented herein.
 - (2) CSU fprintf. This library call CSU prints a designated string to a designated output device. This CSU existed within the original code and is not documented herein.

- (3) CSU rewind. This library call CSU rewinds a designated file. This CSU existed within the original code and is not documented herein.
- (4) CSU fscanf. This library call CSU scans a record for a field from a designated file. This CSU existed within the original code and is not documented herein.
- (5) CSU fgets. This library call CSU gets a field from a designated file. This CSU existed within the original code and is not documented herein.
- (6) CSU fclose. This library call CSU closes a designated file. This CSU existed within the original code and is not documented herein.
- (7) Shared data elements. The following is a list of global variables initialized within the CSU missile_tow_init. These variables existed in the original code and will not be documented herein.

tptr mptr.state mptr.max_flight_time mptr.max_turn_directions speed_factor max_range_limit max_range_squared tow_ammo_type munition_US_Tow

h. <u>Logic flow</u>. The CSU missile_tow_init is called by the CSU weapons_init. See Appendix A - RWA AireNet Call Tree Structure. Execution of the CSU missile_tow_init is normally done only once during CSCI initialization and is performed sequentially.

Open tow missile characteristics data file. If file is null, print error message and exit. Rewind file.

Set index to zero.

While record not end-of-file,
tow_miss_char[index]=first_field

descript=second_field increment index by one End while.
Close data file.

Open burn speed data file.

If file is null, print error message and exit.

Rewind file.

Get first field of first record.

Set tow_miss_poly_deg[0]=first_field

Set descript=second_field

Set index to zero.

While record not end-of-file,

tow_burn_speed_coeff[index]=first_field

descript=second_field

increment index by one

End while.

Close data file.

Open coast speed data file.

If file is null, print error message and exit.

Rewind file.

Get first field of first record.

Set tow_miss_poly_deg[1]=first_field

Set descript=second_field

Set index to zero.

While record not end-of-file,

tow_coast_speed_coeff[index]=first_field

descript=second_field

increment index by one

End while.

Close data file.

tow_burn_turn_coeff.up_coeff[index] = first_field
descript=second_field

End for loop.

For index from 0 to tow_miss_poly_deg[2], single step, tow_burn_turn_coeff.down_coeff[index] = first_field descript=second_field

End for loop. Close data file.

Open coast turn data file.

If file is null, print error message and exit.

Rewind file.

Get first field of first record.

Set tow_miss_poly_deg[3]=first_field

Set descript=second_field

For index from 0 to tow_miss_poly_deg[3], single step, tow_coast_turn_coeff.side_coeff[index] = first_field descript=second_field

End for loop.

For index from 0 to tow_miss_poly_deg[3], single step, tow_coast_turn_coeff.up_coeff[index] = first_field descript=second_field

End for loop.

For index from 0 to tow_miss_poly_deg[3], single step, tow_coast_turn_coeff.down_coeff[index] = first_field descript=second_field

End for loop.

Close data file.

Set mptr.state = FALSE

Set mptr.max_flight_time = tow_miss_char[2]

Set mptr.max_turn_directions = 3

Set speed_factor = MISSILE_US_SPEED_FACTOR

Set max_range_limit = MISSILE_US_MAX_RANGE_LIMIT

Set max_range_squared = max_range_limit * max_range_limit

Set tow_ammo_type = munition_US_Tow

- i. <u>Data structures</u>. The following shared data structures are used by the CSU missile_tow_init.
 - (1) Data structure tow_miss_char. This shared data structure holds the performance limitations and characteristics for the tow missile. The data structure is an array of 5 elements. The data structure is given default

initialization during compilation. Detailed definition of each element is described in TABLE 5.1.23. - TOW MISSILE CHARACTERISTICS DATA ARRAY.

- (2) Data structure tow_miss_poly_deg. This shared data structure holds the polynomial degree data defining the size if the polynomial arrays and structures used in this CSU. The data structure is an array of 5 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.24. TOW MISSILE POLYNOMIAL DEGREE DATA ARRAY.
- (3) Data structure tow_burn_speed_coeff. This shared data structure holds the burn speed coefficients for the burn speed polynomial. The data structure is an array of 5 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.25. TOW MISSILE BURN SPEED DATA ARRAY.
- (4) Data structure tow_coast_speed_coeff. This shared data structure holds the coast speed coefficients for the coast speed polynomial. The data structure is an array of 5 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.26. TOW MISSILE COAST SPEED DATA ARRAY.
- (5) Data structure tow_burn_turn_coeff. This shared data structure holds the maximum cosine coefficients for a turn in each axis during engine burn for the burn turn polynomial. The data structure is an array of 2 elements for each axis. There are three axes: side, up, and down. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.27. TOW MISSILE BURN TURN DATA STRUCTURE.
- (6) Data structure tow_coast_turn_coeff. This shared data structure holds the maximum cosine coefficients for a turn in each axis during engine burn for the burn turn polynomial. The data structure is an array of 4 elements for each axis. There are three axes: side, up, and down.

The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.28. - TOW MISSILE COAST TURN DATA STRUCTURE.

- j. <u>Local data files</u>. The following data files are part of the local data of the CSU missile_tow_init.
 - (1) Data file "simnet/data/ms_tw_ch.d". This data file includes the performance limitations and characteristics of the tow missile. The data file consists of a maximum of 5 records. Access of the file is "read only" and sequential.

Each record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global tow_miss_char data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.23. - TOW MISSILE CHARACTERISTICS DATA ARRAY. The second field is for documentation purposes only.

(2) Data file "simnet/data/ms_tw_bs.d". This data file includes the burn speed degree of polynomial and coefficients data for the tow missile. The data file consists of a maximum of 6 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global tow_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.24. - TOW MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global tow_burn_speed_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.25. - TOW MISSILE BURN SPEED DATA

ARRAY. The second field is for documentation purposes only.

(3) Data file "simnet/data/ms_tw_cs.d". This data file includes the coast speed degree of polynomial and coefficients data for the tow missile. The data file consists of a maximum of 6 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global tow_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.24. - TOW MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global tow_coast_speed_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.26. - TOW MISSILE COAST SPEED DATA ARRAY. The second field is for documentation purposes only.

(4) Data file "simnet/data/ms_tw_bt.d". This data file includes the burn turn degree of polynomial and coefficients data for the tow missile. The data file consists of a maximum of 7 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global tow_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.24. - TOW MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global tow_burn_turn_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.27. - TOW MISSILE BURN TURN DATA ARRAY. The second field is for documentation purposes only.

(5) Data file "simnet/data/ms_tw_ct.d". This data file includes the coast turn degree of polynomial and coefficients data for the tow missile. The data file consists of a maximum of 13 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global tow_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.24. - TOW MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global tow_coast_turn_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.28. - TOW MISSILE COAST TURN DATA ARRAY. The second field is for documentation purposes only.

k. <u>Limitations</u>. There are no additional limitations or unusual features that restrict the performance of the CSU missile_tow_init.

4.2.2. CSU missile_hellfire_init.

The CSU missile_hellfire_init reads hellfire missile data from data files and initializes the 1) performance limitations data array, 2) the polynomial degree array, 3) the time-of-flight polynomial coefficients array, 4) the burn speed polynomial coefficients array, and 5) the coast speedpolynomial coefficients

array. The following subparagraphs describe the design information for the CSU missile_hellfire_init.

4.2.2.1. CSU missile_hellfire_init design specification/constraints.

This subparagraph shall state the design requirements for the CSU. This subparagraph shall identify the requirements allocated to the CSC that are to be satisfied or partially satisfied by the CSU and shall identify any constraints on the design of the CSU.

4.2.2.2. CSU missile_hellfire_init design.

The CSU missile_hellfire_init is coded in the ANSI 'C' programming language, standard language for the CSCI. The following paragraphs specify the design of the CSU missile_hellfire_init. For a complete listing, see Appendix G - Source Code Listing For miss_hellfr.c.

- a. <u>Input/output data elements</u>.
 - (1) mptr This input data element is a pointer to the particular array of missiles to be initialized. This element is declared global.
 - (2) No output data elements are declared.
- b. Local data elements. TABLE 4.2.2.1 CSU MISSILE_HELLFIRE_INIT LOCAL DATA DEFINITION TABLE describes the local data elements originating in the CSU missile_hellfire_init and not used by any other CSU.

TABLE 4.2.2.1 - CSU MISSILE_HELLFIRE_INIT LOCAL DATA DEFINITION TABLE

Name	i	data_tmp_ int	data_tmp	descript	fp
Description	array index	temporary integer data storage for data read from file	temporary float data storage for data read from file	temporary character string storage read from file	data file pointer
Type	integer	integer	float	character array	file pointer
Represent- ation	decimal number	decimal number	real number	character string	directory pathname plus 8 character unique filename plus ".d" extension
Size	N/A	N/A	N/A	64	N/A
Unit of Measure	Non- dimension-al	Variable	Variable	None	None
Limit/range	0 - 99	Variable	Variable	N/A	N/A
Precision	single	single	single	N/A	N/A

- c. <u>Interrupts and signals</u>. None used.
- d. <u>Algorithms</u>. The following algorithms are used in the execution of the CSU missile_hellfire_init.
 - (1) An algorithm to read the performance limitations and characteristics of the hellfire missile from the "simnet/data/ms_hf_ch.d" data file is executed. This data determines the performance limitations and characteristics of the hellfire missile during real-time execution. Access of the file is "read only".

The "simnet/data/ms_hf_ch.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the array index is set to zero. Each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed hellfr_miss_char element. The remainder of the record is assigned to the

temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(2) An algorithm to read polynomial degree data and time of flight coefficients data from the "simnet/data/ms_hf_tf.d" data file is executed. This data determines time-of-flight polynomial coefficient data used during real-time execution to compute the estimated time-of-flight for the hellfire missile flyout. Access of the file is "read only".

The "simnet/data/ms_hf_tf.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the first field. The first field is assigned to a temporary integer data storage and then to the first element of the hellfr_miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero. Then, each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed hellfire_tof_coeff element. remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(3) An algorithm to read polynomial degree data and burn speed coefficients data from the "simnet/data/ms_hf_bs.d" data file is executed. This data determines burn speed polynomial coefficient data used during real-time execution to compute the speed of the hellfire missile during engine burn for the hellfire missile flyout. Access of the file is "read only".

The "simnet/data/ms_hf_bs.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not

null, the file is rewound and the first record is read for the first field. The first field is assigned to a temporary integer data storage and then to the second element of the hellfr_miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero. Then, each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed hellfire_burn_speed_coeff element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(4) An algorithm to read polynomial degree data and coast speed coefficients data from the "simnet/data/ms_hf_cs.d" data file is executed. This data determines coast speed polynomial coefficient data used during real-time execution to compute the speed of the hellfire missile after engine burn for the hellfire missile flyout. Access of the file is "read only".

The "simnet/data/ms_hf_cs.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the first field. The first field is assigned to a temporary integer data storage and then to the third element of the hellfr_miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero. Then, each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed hellfire_coast_speed_coeff element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

- e. <u>Error handling</u>. Errors other than a null data file are not handled. If a null data file is detected, a message is sent to the standard error device reporting that the file could not be opened.
- f. <u>Data conversion</u>. Data conversion is not done in this CSU.
- g. <u>Use of other elements</u>. The following elements are used by CSU missile_hellfire_init.
 - (1) CSU fopen. This library call opens a designated file. This CSU existed within the original code and is not documented herein.
 - (2) CSU fprintf. This library call CSU prints a designated string to a designated output device. This CSU existed within the original code and is not documented herein.
 - (3) CSU rewind. This library call CSU rewinds a designated file. This CSU existed within the original code and is not documented herein.
 - (4) CSU fscanf. This library call CSU scans a record for a field from a designated file. This CSU existed within the original code and is not documented herein.
 - (5) CSU fgets. This library call CSU gets a field from a designated file. This CSU existed within the original code and is not documented herein.
 - (6) CSU fclose. This library call CSU closes a designated file. This CSU existed within the original code and is not documented herein.
 - (7) Shared data elements. The following is a list of global variables initialized within the CSU missile_hellfire_init. These variables existed in the original code and will not be documented herein.

mptr state max_flight_time max_turn_directions speed_factor max_range_limit max_range_squared hellfire_ammo_type munition_US_Hellfire

h. <u>Logic flow</u>. The CSU missile_hellfire_init is called by the CSU weapons_init. See Appendix A - RWA AireNet Call Tree Structure. Execution of the CSU missile_hellfire_init is normally done only once during CSCI initialization and is performed sequentially.

Open hellfire missile characteristics data file. If file is null, print error message and exit. Rewind file.

Set index to zero.

While record not end-of-file,
 hellfr_miss_char[index]=first_field
 descript=second_field
 increment index by one

End while.

Close data file.

Open time_of_flight data file.

If file is null, print error message and exit.

Rewind file.

Get first field of first record.

Set hellfr_miss_poly_deg[0]=first_field

Set descript=second_field

Set index to zero.

While record not end-of-file,

hellfire_tof_coeff[index]=first_field

descript=second_field

increment index by one

End while.

Close data file.

Open burn speed data file.

If file is null, print error message and exit.

Rewind file.

Get first field of first record.

Set hellfr_miss_poly_deg[1]=first_field

Set descript=second_field

Set index to zero.

While record not end-of-file,

hellfire_burn_speed_coeff[index]=first_field

descript=second_field increment index by one End while.
Close data file.

Open coast speed data file.

If file is null, print error message and exit.

Rewind file.

Get first field of first record.

Set hellfr_miss_poly_deg[2]=first_field

Set descript=second_field

Set index to zero.

While record not end-of-file,

hellfire_coast_speed_coeff[index]=first_field

descript=second_field

increment index by one

End while.

Close data file.

Set state = FALSE
Set max_flight_time = hellfr_miss_char[2]
Set max_turn_directions = 1
Set speed_factor = MISSILE_US_SPEED_FACTOR
Set max_range_limit = MISSILE_US_MAX_RANGE_LIMIT
Set max_range_squared = max_range_limit * max_range_limit
Set hellfire_ammo_type = munition_US_Hellfire

- i. <u>Data structures</u>. The following shared data structures are used by the CSU missile_hellfire_init.
 - (1) Data structure hellfr_miss_char. This shared data structure holds the performance limitations and characteristics for the hellfire missile. The data structure is an array of 5 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.10. HELLFIRE MISSILE CHARACTERISTICS DATA ARRAY.
 - (2) Data structure hellfr_miss_poly_deg. This shared data structure holds the polynomial degree data defining the size if the polynomial arrays used in this CSU. The data structure is an array of 3 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.11.

HELLFIRE MISSILE POLYNOMIAL DEGREE DATA ARRAY.

- (3) Data structure hellfire_tof_coeff. This shared data structure holds the time_of-flight coefficients for the time-of-flight polynomial. The data structure is an array of 10 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.12. HELLFIRE MISSILE TIME-OF-FLIGHT DATA ARRAY.
- (4) Data structure hellfire_burn_speed_coeff. This shared data structure holds the burn speed coefficients for the burn speed polynomial. The data structure is an array of 10 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.13. HELLFIRE MISSILE BURN SPEED DATA ARRAY.
- (5) Data structure hellfire_coast_speed_coeff. This shared data structure holds the coast speed coefficients for the coast speed polynomial. The data structure is an array of 10 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.14. HELLFIRE MISSILE COAST SPEED DATA ARRAY.
- j. <u>Local data files</u>. The following data files are part of the local data of the CSU missile_hellfire_init.
 - (1) Data file "simnet/data/ms_hf_ch.d". This data file includes the performance limitations and characteristics of the hellfire missile. The data file consists of a maximum of 16 records. Access of the file is "read onlyacteristics for the tow missileconsists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global hellfr_miss_char data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.10. HELLFIRE MISSILE CHARACTERISTICS DATA ARRAY. The second field is for documentation purposes only.

(2) Data file "simnet/data/ms_hf_tf.d". This data file includes the time-of-flight degree of polynomial and coefficients data for the hellfire missile. The data file consists of a maximum of 11 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global hellfr_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.11. - HELLFIRE MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global hellfire_tof_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.12. - HELLFIRE MISSILE TIME-OF-FLIGHT DATA ARRAY. The second field is for documentation purposes only.

(3) Data file "simnet/data/ms_hf_bs.d". This data file includes the burn speed degree of polynomial and coefficients data for the hellfire missile. The data file consists of a maximum of 11 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global hellfr_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.11. - HELLFIRE MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global hellfire_burn_speed_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.13. - HELLFIRE MISSILE BURN SPEED DATA ARRAY. The second field is for documentation purposes only.

(4) Data file "simnet/data/ms_hf_cs.d". This data file includes the coast speed degree of polynomial and coefficients data for the hellfire missile. The data file consists of a maximum of 11 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global hellfr_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.11. - HELLFIRE MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global hellfire_coast_speed_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.14. - HELLFIRE MISSILE COAST SPEED DATA ARRAY. The second field is for documentation purposes only.

k. <u>Limitations</u>. There are no additional limitations or unusual features that restrict the performance of the CSU missile_hellfire_init.

4.2.3. CSU missile_stinger_init.

The CSU missile_stinger_init reads stinger missile data from data files and initializes the 1) performance limitations data array, 2) the polynomial degree array, 3) the burn speed polynomial coefficients array, and 4) the coast speed polynomial coefficients array. The following subparagraphs describe the design information for the CSU missile_stinger_init.

4.2.3.1. CSU missile_stinger_init design specification/constraints.

This subparagraph shall state the design requirements for the CSU. This subparagraph shall identify the requirements allocated to the CSC that are to be satisfied or partially satisfied by the CSU and shall identify any constraints on the design of the CSU.

4.2.3.2. CSU missile_stinger_init design.

The CSU missile_stinger_init is coded in the ANSI 'C' programming language, standard language for the CSCI. The following paragraphs specify the design of the CSU missile_stinger_init. For a complete listing, see Appendix K - Source Code Listing For miss_stinger.c.

- a. <u>Input/output data elements</u>.
 - (1) missile_array This input data structure is a pointer to the particular array of missiles to be initialized. This structure is declared global.
 - (2) num_missiles This input data element is the number of missiles defined in the missile_array. This element is declared global.
 - (3) No output data elements are declared.
- b. Local data elements. TABLE 4.2.3.1 CSU MISSILE_STINGER_INIT LOCAL DATA DEFINITION TABLE describes the local data elements originating in the CSU missile_stinger_init and not used by any other CSU.

TABLE 4.2.3.1 - CSU MISSILE_STINGER_INIT LOCAL DATA DEFINITION TABLE

Name	i	j	data_tmp_ int	data_tmp	descript	fp
Description	array index		temporary integer data storage for data read from file	temporary float data storage for data read from file	temporary character string storage read from file	data file pointer
Туре	integer		integer	float	character array	file pointer
Represent- ation	decimal number		decimal number	real number	character string	directory pathname plus 8 character unique filename plus ".d" extension
Size	N/A		N/A	N/A	64	N/A
Unit of Measure	No dimen		Variable	Variable	None	None
Limit/range	0-	99	Variable	Variable	N/A	N/A
Precision	sin	gle	single	single	N/A	N/A

- c. <u>Interrupts and signals</u>. None used.
- d. <u>Algorithms</u>. The following algorithms are used in the execution of the CSU missile_stinger_init.
 - (1) An algorithm to read the performance limitations and characteristics of the stinger missile from the "simnet/data/ms_st_ch.d" data file is executed. This data determines the performance limitations and characteristics of the stinger missile during real-time execution. Access of the file is "read only".

The "simnet/data/ms_st_ch.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the array index is set to zero. Each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed stinger_miss_char element. The remainder of the record is assigned to the

22 January 1993 Reference # W003036 Rev. 0.0

temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(2) An algorithm to read polynomial degree data and burn speed coefficients data from the "simnet/data/ms_st_bs.d" data file is executed. This data determines burn speed polynomial coefficient data used during real-time execution to compute the speed of the stinger missile during engine burn for the stinger missile flyout. Access of the file is "read only".

The "simnet/data/ms_st_bs.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the first field. The first field is assigned to a temporary integer data storage and then to the first element of the stinger_miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero. Then, each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed stinger_burn_speed_coeff element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(3) An algorithm to read polynomial degree data and coast speed coefficients data from the "simnet/data/ms_st_cs.d" data file is executed. This data determines coast speed polynomial coefficient data used during real-time execution to compute the speed of the stinger missile after engine burn for the stinger missile flyout. Access of the file is "read only".

The "simnet/data/ms_st_cs.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not

null, the file is rewound and the first record is read for the first field. The first field is assigned to a temporary integer data storage and then to the second element of the stinger_miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero. Then, each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed stinger_coast_speed_coeff element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

- e. <u>Error handling</u>. Errors other than a null data file are not handled. If a null data file is detected, a message is sent to the standard error device reporting that the file could not be opened.
- f. Data conversion. Data conversion is not done in this CSU.
- g. <u>Use of other elements</u>. The following elements are used by CSU missile_stinger_init.
 - (1) CSU fopen. This library call opens a designated file. This CSU existed within the original code and is not documented herein.
 - (2) CSU fprintf. This library call CSU prints a designated string to a designated output device. This CSU existed within the original code and is not documented herein.
 - (3) CSU rewind. This library call CSU rewinds a designated file. This CSU existed within the original code and is not documented herein.
 - (4) CSU fscanf. This library call CSU scans a record for a field from a designated file. This CSU existed within the original code and is not documented herein.
 - (5) CSU fgets. This library call CSU gets a field from a designated file. This CSU existed within the original code and is not documented herein.

- (6) CSU fclose. This library call CSU closes a designated file. This CSU existed within the original code and is not documented herein.
- (7) CSU missile_fuze_prox_init. This CSU initializes the proximity fuze for the stinger missile. This CSU existed within the original code and is not documented herein.
- (8) Shared data elements. The following is a list of global variables initialized within the CSU missile_stinger_init. These variables existed in the original code and will not be documented herein.

missile_array
num_missiles
stinger_array
num_stingers
stinger_array[].mptr.state
stinger_array[].mptr.max_flight_time
stinger_array[].mptr.max_turn_directions
speed_factor
max_range_limit
max_range_squared
stinger_ammo_type
munition_US_Stinger

h. <u>Logic flow</u>. The CSU missile_stinger_init is called by the CSU weapons_init. See Appendix A - RWA AireNet Call Tree Structure. Execution of the CSU missile_stinger_init is normally done only once during CSCI initialization and is performed sequentially.

Open burn speed data file.

If file is null, print error message and exit. Rewind file. Get first field of first record. Set stinger_miss_poly_deg[0]=first_field Set descript=second_field Set index to zero. While record not end-of-file, stinger_burn_speed_coeff[index]=first_field descript=second_field increment index by one End while. Close data file. Open coast speed data file. If file is null, print error message and exit. Rewind file. Get first field of first record. Set stinger_miss_poly_deg[1]=first_field Set descript=second field Set index to zero. While record not end-of-file, stinger_coast speed_coeff[index]=first field descript=second_field increment index by one End while. Close data file. Set num_stingers = num_missiles Set stinger array = missile_array For index = 0 to less than num_missiles, single step, Set state = FALSE Set max_flight_time = stinger_miss_char[1] Set max_turn_directions = 1 End for loop Set speed_factor = MISSILE_US_SPEED_FACTOR Set max_range_limit = MISSILE_US_MAX_RANGE_LIMIT Set max_range_squared = max_range_limit * max_range_limit Set stinger_ammo_type = munition_US_Stinger Initial proximity fuze; call missile_fuze_prox_init

i. <u>Data structures</u>. The following shared data structures are used by the CSU missile stinger init.

- (1) Data structure stinger_miss_char. This shared data structure holds the performance limitations and characteristics for the stinger missile. The data structure is an array of 15 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.19. STINGER MISSILE CHARACTERISTICS DATA ARRAY.
- (2) Data structure stinger_miss_poly_deg. This shared data structure holds the polynomial degree data defining the size if the polynomial arrays used in this CSU. The data structure is an array of 2 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.20. STINGER MISSILE POLYNOMIAL DEGREE DATA ARRAY.
- (3) Data structure stinger_burn_speed_coeff. This shared data structure holds the burn speed coefficients for the burn speed polynomial. The data structure is an array of 2 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.21. STINGER MISSILE BURN SPEED DATA ARRAY.
- (4) Data structure stinger_coast_speed_coeff. This shared data structure holds the coast speed coefficients for the coast speed polynomial. The data structure is an array of 4 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.22. STINGER MISSILE COAST SPEED DATA ARRAY.
- j. <u>Local data files</u>. The following data files are part of the local data of the CSU missile_stinger_init.
 - (1) Data file "simnet/data/ms_st_ch.d". This data file includes the performance limitations and characteristics of the stinger missile. The data file consists of a maximum of 15 records. Access of the file is "read only" and sequential. Each record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global

stinger_miss_char data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.19. - STINGER MISSILE CHARACTERISTICS DATA ARRAY. The second field is for documentation purposes only.

(2) Data file "simnet/data/ms_st_bs.d". This data file includes the burn speed degree of polynomial and coefficients data for the stinger missile. The data file consists of a maximum of 3 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global stinger_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.20. - STINGER MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global stinger_burn_speed_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.21. - STINGER MISSILE BURN SPEED DATA ARRAY. The second field is for documentation purposes only.

(3) Data file "simnet/data/ms_st_cs.d". This data file includes the coast speed degree of polynomial and coefficients data for the stinger missile. The data file consists of a maximum of 5 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global stinger_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.20. - STINGER

MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global stinger_coast_speed_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.22. - STINGER MISSILE COAST SPEED DATA ARRAY. The second field is for documentation purposes only.

k. <u>Limitations</u>. There are no additional limitations or unusual features that restrict the performance of the CSU missile_stinger_init.

4.2.4. CSU hydra_init.

The CSU hydra_init reads hydra rocket data from data files and initializes the configuration data array. The following subparagraphs describe the design information for the CSU hydra_init.

4.2.4.1. CSU hydra_init design specification/constraints.

This subparagraph shall state the design requirements for the CSU. This subparagraph shall identify the requirements allocated to the CSC that are to be satisfied or partially satisfied by the CSU and shall identify any constraints on the design of the CSU.

4.2.4.2. CSU hydra_init design.

The CSU hydra_init is coded in the ANSI 'C' programming language, standard language for the CSCI. The following paragraphs specify the design of the CSU hydra_init. For a complete listing, see Appendix N - Source Code Listing For rwa_hydra.c.

- a. <u>Input/output data elements</u>. No input/output data elements are declared.
- b. <u>Local data elements</u>. TABLE 4.2.4.1 CSU HYDRA_INIT LOCAL DATA DEFINITION TABLE describes the local data elements originating in the CSU hydra_init and not used by any other CSU.

TABLE 4.2.4.1 - CSU HYDRA_INIT LOCAL DATA DEFINITION TABLE

Name	i	data_tmp_ int	data_tmp	descript	fp
Descrip- tion	array index	temporary integer data storage for data read from file	temporary float data storage for data read from file	temporary character string storage read from file	data file pointer
Туре	integer	integer	float	character array	file pointer
Represent- ation	decimal number	decimal number	real number	character string	directory pathname plus 8 character unique filename plus ".d" extension
Size	N/A	N/A	N/A	64	N/A
Unit of Measure	Non-dimen- sional	Variable	Variable	None	None
Limit/range	0 - 99	Variable	Variable	N/A	N/A
Precision	single	single	single	N/A	N/A

- c. <u>Interrupts and signals</u>. None used.
- d. <u>Algorithms</u>. The following algorithms are used in the execution of the CSU hydra_init.
 - (1) An algorithm to read the configuration for the hydra rocket from the "simnet/data/rwa_hydr.d" data file is executed. This data determines the configuration for the hydra rocket during real-time execution. Access of the file is "read only".

The "simnet/data/rwa_hydr.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the array index is set to zero. Each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed hydra_rkt_char element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one

nd the next record is scanned. If the value of the mporary float data is the end-of-file, the file is closed.

- e. <u>Error handling</u>. Errors other than a null data file are not handled. If a null data file is detected, a message is sent to the standard error device reporting that the file could not be opened.
- f. <u>Data conversion</u>. Data conversion is not done in this CSU.
- g. <u>Use of other elements</u>. The following elements are used by CSU hydra_init.
 - (1) CSU fopen. This library call opens a designated file. This CSU existed within the original code and is not documented herein.
 - (2) CSU fprintf. This library call CSU prints a designated string to a designated output device. This CSU existed within the original code and is not documented herein.
 - (3) CSU rewind. This library call CSU rewinds a designated file. This CSU existed within the original code and is not documented herein.
 - (4) CSU fscanf. This library call CSU scans a record for a field from a designated file. This CSU existed within the original code and is not documented herein.
 - (5) CSU fgets. This library call CSU gets a field from a designated file. This CSU existed within the original code and is not documented herein.
 - (6) CSU fclose. This library call CSU closes a designated file. This CSU existed within the original code and is not documented herein.
 - (7) CSU rotate_init_element. This CSU existed within the original code and is not documented herein.
 - (8) CSU hull. This CSU existed within the original code and is not documented herein.
 - (9) CSU articulation. This CSU existed within the original code and is not documented herein.

- (10) CSU missile_hydra_init. This CSU is documented in paragraph 4.2.5 CSU missile_hydra_init.
- (11) CSU missile_hydra_set_pylon_position_offsets. This CSU existed within the original code and is not documented herein.
- (12) CSU hydra_config_rockets. This CSU existed within the original code and is not documented herein.
- (13) Shared data elements. The following is a list of global variables initialized within the CSU hydra_init. These variables existed in the original code and will not be documented herein.

left_launcher_pos right_launcher_pos articulation_pos articulation_element pylon_L_element pylon_R_element hydras left_rocket_launch right_rocket_launch pylons_set

h. <u>Logic flow</u>. The CSU hydra_init is called by the CSU weapons_init. See Appendix A - RWA AireNet Call Tree Structure. Execution of the CSU hydra_init is done during CSCI initialization.

Close data file.

Set left_launcher_pos[0] = hydra_rkt_char[0]

Set right_launcher_pos[0] = hydra_rkt_char[0]
Set articulation_pos[1] = hydra_rkt_char[1]
Set articulation_pos[2] = hydra_rkt_char[2]
Rotate articulation_element
If Rotate articulation_element fails, send error message
Rotate pylon_L_element
Rotate pylon_R_element
Call missile_hydra_init
Call missile_hydra_set_pylon_position_offsets
Call hydra_config_rockets
Set left_rocket_launch = FALSE
Set right_rocket_launch = False
Set pylons_set = FALSE

- i. <u>Data structures</u>. The following shared data structures are used by the CSU hydra_init.
 - (1) Data structure hydra_rkt_char. This shared data structure holds the configuration for the hydra rocket. The data structure is an array of 7 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.52. HYDRA ROCKET CONFIGURATION DATA ARRAY.
- j. <u>Local data files</u>. The following data files are part of the local data of the CSU hydra_init.
 - (1) Data file "simnet/data/rwa_hydr.d". This data file includes the configuration and characteristics of the hydra rocket. The data file consists of a maximum of 7 records. Access of the file is "read only" and sequential. Each record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global hydra_rkt_char data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.52. HYDRA ROCKET CONFIGURATION DATA ARRAY. The second field is for documentation purposes only.
- k. <u>Limitations</u>. There are no additional limitations or unusual features that restrict the performance of the CSU hydra_init.
- 4.2.5. CSU missile_hydra_init.

The CSU missile_hydra_init reads hdyra rocket data from data files and initializes the characteristic data array. This CSU copies the paramaters into variables static to the rkt_hydra.c module and initializes the state of all the rockets. The following subparagraphs describe the design information for the CSU missile_hydra_init.

4.2.5.1. CSU missile_hydra_init design specification/constraints.

This subparagraph shall state the design requirements for the CSU. This subparagraph shall identify the requirements allocated to the CSC that are to be satisfied or partially satisfied by the CSU and shall identify any constraints on the design of the CSU.

4.2.5.2. CSU missile_hydra_init design.

The CSU missile_hydra_init is coded in the ANSI 'C' programming language, standard language for the CSCI. The following paragraphs specify the design of the CSU missile_hydra_init. For a complete listing, see Appendix M - Source Code Listing For rkt_hydra.c.

- a. <u>Input/output data elements</u>.
 - (1) rocket_array This input data structure is an array of rocketsof structure type HYDRA_ROCKET. This structure is declared global.
 - (2) num_rockets This input data element is the number of rockets defined in the rocket_array. This element is declared global.
 - (3) No output data elements are declared.
- b. <u>Local data elements</u>. TABLE 4.2.5.1 CSU MISSILE_HYDRA_INIT LOCAL DATA DEFINITION TABLE describes the local data elements originating in the CSU missile_hydra_init and not used by any other CSU.

TABLE 4.2.5.1 - CSU MISSILE_HYDRA_INIT LOCAL DATA DEFINITION TABLE

Name	i	data_tmp_ int	data_tmp	descript	fp
Descrip- tion	array index	temporary integer data storage for data read from file	temporary float data storage for data read from file	temporary character string storage read from file	data file pointer
Type	integer	integer	float	character array	file pointer
Represent- ation	decimal number	decimal number	real number	character string	directory pathname plus 8 character unique filename plus ".d" extension
Size	N/A	N/A	N/A	64	N/A
Unit of Measure	Non-dimen- sional	Variable	Variable	None	None
Limit/range	0 - 99	Variable	Variable	N/A	N/A
Precision	single	single	single	N/A	N/A

- c. <u>Interrupts and signals</u>. None used.
- d. <u>Algorithms</u>. The following algorithms are used in the execution of the CSU missile_hydra_init.
 - (1) An algorithm to read the characteristics for the hdyra rocket from the "simnet/data/rkt_hydr.d" data file is executed. This data determines the characteristics for the hdyra rocket during real-time execution. Access of the file is "read only".

The "simnet/data/rkt_hydr.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the array index is set to zero. Each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed rkt_hydra_char element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one

and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

- e. <u>Error handling</u>. Errors other than a null data file are not handled. If a null data file is detected, a message is sent to the standard error device reporting that the file could not be opened.
- f. <u>Data conversion</u>. Data conversion is not done in this CSU.
- g. <u>Use of other elements</u>. The following elements are used by CSU missile_hydra_init.
 - (1) CSU fopen. This library call opens a designated file. This CSU existed within the original code and is not documented herein.
 - (2) CSU fprintf. This library call CSU prints a designated string to a designated output device. This CSU existed within the original code and is not documented herein.
 - (3) CSU rewind. This library call CSU rewinds a designated file. This CSU existed within the original code and is not documented herein.
 - (4) CSU fscanf. This library call CSU scans a record for a field from a designated file. This CSU existed within the original code and is not documented herein.
 - (5) CSU fgets. This library call CSU gets a field from a designated file. This CSU existed within the original code and is not documented herein.
 - (6) CSU fclose. This library call CSU closes a designated file. This CSU existed within the original code and is not documented herein.
 - (7) CSU missile_util_load_ball_traj_file. This CSU existed within the original code and is not documented herein.
 - (8) CSU rva_create_output_list. This CSU existed within the original code and is not documented herein.
 - (9) CSU missile_fuze_prox_init. This CSU existed within the original code and is not documented herein.

(10) Shared data elements. The following is a list of global variables initialized within the CSU missile_hydra_init. These variables existed in the original code and will not be documented herein.

hydra_array num_hydra rkts_in_flight hydra_fly pylon_x pylon_y pylon_z flight_time speed_factor MISSILE_US_SPEED_FACTOR max_range_limit MISSILE_US_MAX_RANGE_LIMIT ball table loaded table_size HYDRA_TRAJ_FILE ball_table flechette_veh_list flechette is valid veh RVA_ALL_VEHICLES_LIST

h. <u>Logic flow</u>. The CSU missile_hydra_init is called by the CSU hydra_init. See Appendix A - RWA AireNet Call Tree Structure. Execution of the CSU missile_hydra_init is done during hydra rocket initialization.

Open hdyra rocket characteristic data file.

If file is null, print error message and exit.

Rewind file.

Set index to zero.

While record not end-of-file,
 rkt_hydra_char[index]=first_field
 descript=second_field
 increment index by one

End while.

Close data file.

Set hydra_array = rocket_array Set num_hydra = num_rocket For each rocket. Set state = FREE Set missile id = 0Set rkts in_flight = 0 Set $hydra_fly = 0$ Set pylon_x = 0.0Set $pylon_y = 0.0$ Set pylon_z = 0.0Set flight time = 0Set speed_factor = MISSILE_US_SPEED_FACTOR Set max_range_limit = MISSILE_US_MAX_RANGE_LIMIT If ball table_loaded is FALSE, Load ballistics table Set ball table loaded = TRUE Create flechette_veh_list for proximity fuze Initialize the proximity fuze for rockets armed with Flechettes

- i. <u>Data structures</u>. The following shared data structures are used by the CSU missile_hydra_init.
 - (1) Data structure rkt_hydra_char. This shared data structure holds the characteristics for the hdyra rocket. The data structure is an array of 12 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.53. HDYRA ROCKET CHARACTERISTICS DATA ARRAY.
- j. <u>Local data files</u>. The following data files are part of the local data of the CSU missile_hydra_init.
 - (1) Data file "simnet/data/rkt_hydr.d". This data file includes the characteristics of the hdyra rocket. The data file consists of a maximum of 12 records. Access of the file is "read only" and sequential. Each record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global rkt_hydra_char data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.53. HDYRA ROCKET CHARACTERISTICS DATA ARRAY. The second field is for documentation purposes only.

- (2) Data file "simnet/data/hydra70.sd". This data file includes the trajectory data of the hdyra rocket. This data file existed under the original code and has not been modified. It is loaded during execution of the CSU missile_hydra_init.
- (3) Data file "simnet/data/hydra70.sp". This data file includes the trajectory parameters of the hdyra rocket. This data file existed under the original code and has not been modified. It is loaded during execution of the CSU missile_hydra_init.
- k. <u>Limitations</u>. There are no additional limitations or unusual features that restrict the performance of the CSU missile_hydra_init.

4.2.6. CSU missile_m73_init.

The CSU missile_m73_init reads m73 missile data from data files and initializes the performance limitations and characteristics data array. The following subparagraphs describe the design information for the CSU missile_m73_init.

4.2.6.1. CSU missile_m73_init design specification/constraints.

This subparagraph shall state the design requirements for the CSU. This subparagraph shall identify the requirements allocated to the CSC that are to be satisfied or partially satisfied by the CSU and shall identify any constraints on the design of the CSU.

4.2.6.2. CSU missile_m73_init design.

The CSU missile_m73_init is coded in the ANSI 'C' programming language, standard language for the CSCI. The following paragraphs specify the design of the CSU missile_m73_init. For a complete listing, see Appendix P - Source Code Listing For sub_m73.c.

a. <u>Input/output data elements</u>.

(1) bmptr - This input data element is a pointer to BALLASTIC_MISSILE structure that's ammo-type is MPSM, i.e., it releases sub-munitions of type munition_US_M73. This structure is declared global.

- (2) sub_mun This input data element is a pointer to the sub-munition structure associated with bmptr. This structure is declared global.
- (3) speed This input data element is the terminal speed of the rocket at detonation. This strucutre is declared global.
- (4) No output data elements are declared.
- b. <u>Local data elements</u>. TABLE 4.2.6.1 CSU MISSILE_M73_INIT LOCAL DATA DEFINITION TABLE describes the local data elements originating in the CSU missile_m73_init and not used by any other CSU.

TABLE 4.2.6.1 - CSU MISSILE_M73_INIT LOCAL DATA DEFINITION TABLE

Name	i	data_tmp	descript	fp
Description	array index	temporary float data storage for data read from file	temporary character string storage read from file	data file pointer
Туре	integer	float	character array	file pointer
Represent- ation	decimal number	real number	character string	directory pathname plus 8 character unique filename plus ".d" extension
Size	N/A	N/A	64	N/A
Unit of Measure	Non- dimension-al	Variable	None	None
Limit/range	0 - 99	Variable	N/A	N/A
Precision	single	single	N/A	N/A

TABLE 4.2.6.1 - CSU MISSILE_M73_INIT LOCAL DATA DEFINITION TABLE [CONTINUED]

Name	impact_pt	displacement	
Description	impact point for the M73	displacement from the target of the impact point	
Type	VECTOR	VECTOR	
Represent- ation	X, Y, Z coordinates	X, Y, Z coordinates	
Size	N/A	N/A	
Unit of Measure	map coordinates	map coordinates	
Limit/range	N/A	N/A	
Precision	single	single	

- c. <u>Interrupts and signals</u>. None used.
- d. <u>Algorithms</u>. The following algorithms are used in the execution of the CSU missile_m73_init.
 - (1) An algorithm to read the performance limitations and characteristics of the m73 missile from the

"simnet/data/sub_m73.d" data file is executed. This data determines the performance limitations and characteristics of the m73 missile during real-time execution. Access of the file is "read only".

The "simnet/data/sub_m73.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the array index is set to zero. Each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed sub_m73_char element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

- e. <u>Error handling</u>. Errors other than a null data file are not handled. If a null data file is detected, a message is sent to the standard error device reporting that the file could not be opened.
- f. <u>Data conversion</u>. Data conversion is not done in this CSU.
- g. <u>Use of other elements</u>. The following elements are used by CSU missile m73 init.
 - (1) CSU fopen. This library call opens a designated file. This CSU existed within the original code and is not documented herein.
 - (2) CSU fprintf. This library call CSU prints a designated string to a designated output device. This CSU existed within the original code and is not documented herein.
 - (3) CSU rewind. This library call CSU rewinds a designated file. This CSU existed within the original code and is not documented herein.
 - (4) CSU fscanf. This library call CSU scans a record for a field from a designated file. This CSU existed within the original code and is not documented herein.

- (5) CSU fgets. This library call CSU gets a field from a designated file. This CSU existed within the original code and is not documented herein.
- (6) CSU fclose. This library call CSU closes a designated file. This CSU existed within the original code and is not documented herein.
- (7) CSU missile_util_comm_release_sub_munition. This CSU existed within the original code and is not documented herein.
- (8) Shared data elements. The following is a list of global variables initialized within the CSU missile_m73_init. These variables existed in the original code and will not be documented herein.

bmptr sub_mun speed time impact.timer impact.distance impact_pt[3] location[3] MSL_TYPE_BALLISTIC SUB_MUN_IMPACT zero_velocity

h. <u>Logic flow</u>. The CSU missile_m73_init is called by the CSU missile_hydra_fly_rockets. See Appendix A - RWA AireNet Call Tree Structure. Execution of the CSU missile_m73_init is done for each hydra rocket flyout.

Open m73 missile characteristics data file. If file is null, print error message and exit. Rewind file. Set index to zero. While record not end-of-file, sub_m73_char[index]=first_field descript=second_field increment index by one End while.

Close data file.

- i. <u>Data structures</u>. The following shared data structures are used by the CSU missile_m73_init.
 - (1) Data structure sub_m73_char. This shared data structure holds the performance limitations and characteristics for the m73 missile. The data structure is an array of 3 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.54. SUBMUNITIONS M73 CHARACTERISTICS DATA ARRAY.
- j. <u>Local data files</u>. The following data files are part of the local data of the CSU missile_m73_init.
 - (1) Data file "simnet/data/sub_m73.d". This data file includes the performance limitations and characteristics of the m73 missile. The data file consists of a maximum of 3 records. Access of the file is "read only" and sequential. Each record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global sub_m73_char data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.54. SUBMUNITIONS M73 CHARACTERISTICS DATA ARRAY. The second field is for documentation purposes only.
- k. <u>Limitations</u>. There are no additional limitations or unusual features that restrict the performance of the CSU missile_m73_init.

4.2.7. CSU missile_flechette_init.

The CSU missile_flechette_init reads flechette data from data files and initializes the 1) performance limitations data array and 2) the speed after release polynomial coefficients array to behave according to sub_munitions type of munition_US_Flechette_60. The following subparagraphs describe the design information for the CSU missile_flechette_init.

4.2.7.1. CSU missile_flechette_init design specification/constraints.

This subparagraph shall state the design requirements for the CSU. This subparagraph shall identify the requirements allocated to the CSC that are to be satisfied or partially satisfied by the CSU and shall identify any constraints on the design of the CSU.

4.2.7.2. CSU missile_flechette_init design.

The CSU missile_flechette_init is coded in the ANSI 'C' programming language, standard language for the CSCI. The following paragraphs specify the design of the CSU missile_flechette_init. For a complete listing, see Appendix O - Source Code Listing For sub_flech.c.

a. <u>Input/output data elements</u>.

- (1) bmptr This input data element is a pointer to a BALLISTIC_MISSILE structure that's ammo-type is Flechette, i.e., it releases sub-munitions type of munition_US_Flechette_60. This structure is declared global.
- (2) sub_mun This input data element is a pointer to a BALLISTIC_SUB_MUN structure associated with bmptr. This element is declared global.
- (3) init_speed This input data element is the terminal speed of the rocket and assigned as the initial speed of the flechettes. This element is declared global.
- (4) No output data elements are declared.
- b. Local data elements. TABLE 4.2.7.1 CSU MISSILE_FLECHETTE_INIT LOCAL DATA DEFINITION TABLE describes the local data elements originating in the CSU missile_flechette_init and not used by any other CSU.

TABLE 4.2.7.1 - CSU MISSILE_FLECHETTE_INIT LOCAL DATA DEFINITION TABLE

Name	i	data_tmp_ int	data_tmp	descript	fp
Descrip- tion	array index	temporary integer data storage for data read from file	temporary float data storage for data read from file	temporary character string storage read from file	data file pointer
Type	integer	integer	float	character array	file pointer
Represent- ation	decimal number	decimal number	real number	character string	directory pathname plus 8 character unique filename plus ".d" extension
Size	N/A	N/A	N/A	64	N/A
Unit of Measure	Non-dimen- sional	Variable	Variable	None	None
Limit/range	0 - 99	Variable	Variable	N/A	N/A
Precision	single	single	single	N/A	N/A

- c. <u>Interrupts and signals</u>. None used.
- d. <u>Algorithms</u>. The following algorithms are used in the execution of the CSU missile_flechette_init.
 - (1) An algorithm to read the performance limitations and characteristics of the flechette from the "simnet/data/sub_flec.d" data file is executed. This data determines the performance limitations and characteristics of the flechette during real-time execution. Access of the file is "read only".

The "simnet/data/sub_flec.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the array index is set to zero. Each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed sub_flech_char element. The remainder of the record is assigned to the temporary

character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(2) An algorithm to read polynomial degree data and burn speed coefficients data from the "simnet/data/flec_spd.d" data file is executed. This data determines burn speed polynomial coefficient data used during real-time execution to compute the speed of the flechette after release for the flechette flyout. Access of the file is "read only".

The "simnet/data/flec_spd.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the first field. The first field is assigned to a temporary integer data storage and then to the variable sub_flech_poly_deg. The second element of the first record is assigned to the temporary character string. The local array index is set to zero. Then, each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed flechette_speed_coef element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

- e. <u>Error handling</u>. Errors other than a null data file are not handled. If a null data file is detected, a message is sent to the standard error device reporting that the file could not be opened.
- f. <u>Data conversion</u>. Data conversion is not done in this CSU.
- g. <u>Use of other elements</u>. The following elements are used by CSU missile_flechette_init.
 - (1) CSU fopen. This library call opens a designated file. This CSU existed within the original code and is not documented herein.

- (2) CSU fprintf. This library call CSU prints a designated string to a designated output device. This CSU existed within the original code and is not documented herein.
- (3) CSU rewind. This library call CSU rewinds a designated file. This CSU existed within the original code and is not documented herein.
- (4) CSU fscanf. This library call CSU scans a record for a field from a designated file. This CSU existed within the original code and is not documented herein.
- (5) CSU fgets. This library call CSU gets a field from a designated file. This CSU existed within the original code and is not documented herein.
- (6) CSU fclose. This library call CSU closes a designated file. This CSU existed within the original code and is not documented herein.
- (7) CSU vec_scale. This CSU scales the argument vector. This CSU existed within the original code and is not documented herein.
- (8) CSU missile_util_comm_release_sub_munition. This CSU existed within the original code and is not documented herein.
- (9) Shared data elements. The following is a list of global variables initialized within the CSU missile_flechette_init. These variables existed in the original code and will not be documented herein.

bmptr
sub_mun
init_speed
distance
pptr
orientation
velocity
MSL_TYPE_BALLISTIC
SUB_MUN_CANISTER
zero_vector

h. <u>Logic flow</u>. The CSU missile_flechette_init is called by the CSU missile_hydra_fly_rockets. See Appendix A - RWA AireNet Call Tree Structure. Execution of the CSU missile_m73_init is done for each hydra rocket flyout..

Open speed data file.

If file is null, print error message and exit.

Rewind file.

Get first field of first record.

Set sub_flech_poly_deg=first_field

Set descript=second_field

Set index to zero.

While record not end-of-file,

flechette_speed_coef[index]=first_field

descript=second_field

increment index by one

End while.

Close data file.

Set time = 0
Set dart = address of sub_mun
Set distance = 0.0
Set init_speed = init_speed
Set pptr = NULL
Scale the orientation vector; call vec_scale
Call missile_util_comm_release_sub_munition

- i. <u>Data structures</u>. The following shared data structures are used by the CSU missile_flechette_init.
 - (1) Data structure sub_flech_char. This shared data structure holds the performance limitations and characteristics for

the flechette. The data structure is an array of 3 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.55. - SUBMUNITIONS FLECHETTE CHARACTERISTICS DATA ARRAY.

- (2) Data structure flechette_speed_coef. This shared data structure holds the burn speed coefficients for the burn speed polynomial. The data structure is an array of 5 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.56. FLECHETTE SPEED DATA ARRAY.
- j. <u>Local data files</u>. The following data files are part of the local data of the CSU missile flechette init.
 - (1) Data file "simnet/data/sub_flec.d". This data file includes the performance limitations and characteristics of the flechette. The data file consists of a maximum of 3 records. Access of the file is "read only" and sequential. Each record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global sub_flech_char data array. These fields have values consistent with the characteristics outlined in TABLE SUBMUNITIONS FLECHETTE CHARACTERISTICS DATA ARRAY. The second field is for documentation purposes only.
 - (2) Data file "simnet/data/flec_spd.d". This data file includes the burn speed degree of polynomial and coefficients data for the flechette. The data file consists of a maximum of 6 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to the global variable sub_flech_poly_deg. This field has an integer value. The second field is for documentation purposes only.

Each remaining records consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global flechette_speed_coef data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.56. - FLECHETTE SPEED DATA ARRAY. The second field is for documentation purposes only.

k. <u>Limitations</u>. There are no additional limitations or unusual features that restrict the performance of the CSU missile_flechette_init.

4.3. CSC controls_restore_controls.

The following subparagraphs identify and describe the CSU added to this CSC. The CSC controls_restore_controls uses other CSUs that existed in the original code, were not modified, and are not documented herein.

4.3.1. CSU controls_radios_init.

The CSU controls_radios_init sets the pilot and copilot radio kill output to off. This CSU initializes the radio disable output values. The following subparagraphs describe the design information for the CSU controls_radios_init.

4.3.1.1. CSU controls_radios_init design specification/constraints.

This CSU is developed to allow the radios on the RWA devices to be disabled upon ownship death. This CSU sets the two signals output to the associated hardware to the do not disable state (OFF).

4.3.1.2. CSU controls_radios_init design.

The CSU control_radios_init is coded in the ANSI 'C' programming language, standard language for the CSCI. The following paragraphs specify the design of the CSU controls_radios_init. The function depends on two idc positions being connected via hardware and the associated values set in the rwhard.p file which must be prepocessed.

- a. <u>Input/output data elements</u>. None.
- b. <u>Local data elements</u>. None.
- c. <u>Interrupts and signals</u>. None.

- d. Algorithms. None.
- e. Error handling. None.
- f. Data conversion. None.
- g. <u>Use of other elements</u>. The following elements are used by CSU controls_radios_init.
 - (1) CSU idc_output_set. This function call sets the hardware output signals to not disable radios. This CSU existed within the original code is is not documented herin.
 - (2) Shared data elements. The following is a list of global variables initialized within the CSU controls_radios_init.

PIL_RADIO_KILL CPG_RADIO_KILL OUTPUT_OFF

h. <u>Logic flow</u>. The CSU controls_radios_init is called by the CSU controls_restore_controls. See Appendix A - RWA AireNet Call Tree Structure. Execution of the CSU controls_radios_init is normally done only once during CSCI initialization.

Call idc_output_set

Set PIL_RADIO_KILL = OUTPUT_OFF
Set CPG_RADIO_KILL = OUTPUT_OFF
End

- i. <u>Data structures</u>. The following shared data structures are used by the CSU controls_radios_init.
 - (1) Data structure PIL_RADIO_KILL. This data structure already existed and is thus not documeted herin.
 - (2) Data structure CPG_RADIO_KILL. This data structure already existed and is thus not documeted herin.
 - (3) Data structure OUTPUT_SET. This data structure already existed and is thus not documeted herin

- j. <u>Local data files</u>. None.
- k. <u>Limitations</u>. There are no additional limitations or unusual features that restrict the performance of the CSU controls_radios_init.

4.4. CSC fail_vehicle_is_destroyed.

The following subparagraphs identify and describe the CSU added to this CSC. The CSC fail_vehicle_is_destroyed uses other CSUs that existed in the original code, were not modified, and are not documented herein.

4.4.1. CSU controls_kill_radios.

The CSU controls_kill_radios sets the pilot and copilot radio kill output to off. This CSU sets the radio disable output values. The following subparagraphs describe the design information for the CSU controls_kill_radios.

4.4.1.1. CSU controls_kill_radios design specification/constraints.

This CSU is developed to allow the radios on the RWA devices to be disabled upon ownship death. This CSU sets the two signals output to the associated hardware to the disable state (ON).

4.4.1.2. CSU controls_kill_radios design.

The CSU control_radios_init is coded in the ANSI 'C' programming language, standard language for the CSCI. The following paragraphs specify the design of the CSU controls_kill_radios. The function depends on two idc positions being connected via hardware and the associated values set in the rwhard.p file which must be prepocessed.

- a. <u>Input/output data elements</u>. None.
- b. <u>Local data elements</u>. None.
- c. <u>Interrupts and signals</u>. None.
- d. Algorithms. None.
- e. <u>Error handling</u>. None.
- f. <u>Data conversion</u>. None.

- g. <u>Use of other elements</u>. The following elements are used by CSU controls_kill_radios.
 - (1) CSU idc_output_set. This function call sets the hardware output signals to disable radios. This CSU existed within the original code is is not documented herin.
 - (2) Shared data elements. The following is a list of global variables initialized within the CSU controls_kill_radios.

PIL_RADIO_KILL CPG_RADIO_KILL OUTPUT_ON

h. <u>Logic flow</u>. The CSU controls_kill_radios is called by the CSU fall_cat_kill. See Appendix A - RWA AireNet Call Tree Structure. Execution of the CSU controls_kill_radios is normally done only once during CSCI initialization.

Call idc_output_set
Set PIL_RADIO_KILL = OUTPUT_ON
Set CPG_RADIO_KILL = OUTPUT_ON
End

- i. <u>Data structures</u>. The following shared data structures are used by the CSU controls_kill_radios.
 - (1) Data structure PIL_RADIO_KILL. This data structure already existed and is thus not documeted herin.
 - (2) Data structure CPG_RADIO_KILL. This data structure already existed and is thus not documeted herin.
 - (3) Data structure OUTPUT_SET. This data structure already existed and is thus not documeted herin
- j. <u>Local data files</u>. None.
- k. <u>Limitations</u>. There are no additional limitations or unusual features that restrict the performance of the CSU controls_kill_radios.
- 4.5. Additional CSUs.

The following subparagraphs identify and describe additional CSUs that were modified for data reads under this delivery order. These CSUs would usually replace one of the missile CSUs for inclusion within a build having the desired missile system characteristics. The following CSUs are not part of the baseline build, and are documented here for convenience. These CSUs are generally called by CSC weapons_init during initialization of the CSCI.

4.5.1. CSU missile_adat_init.

The CSU missile_adat_init reads adat missile data from data files and initializes the 1) performance limitations and characteristics data array, 2) the polynomial degree array, 3) the burn speed polynomial coefficients array, 4) the coast speed polynomial coefficients array, 5) the burn turn, maximum cosine coefficients array, 6) the coast turn, maximum cosine coefficients array, and 7) the temporal bias coefficients array. This CSU copies the parameters into variables static to the miss_adat.c module and initializes the state of all the missiles. This CSU also initializes the proximity fuze. The following subparagraphs describe the design information for the CSU missile_adat_init.

4.5.1.1. CSU missile_adat_init design specification/constraints.

This subparagraph shall state the design requirements for the CSU. This subparagraph shall identify the requirements allocated to the CSC that are to be satisfied or partially satisfied by the CSU and shall identify any constraints on the design of the CSU.

4.5.1.2. CSU missile_adat_init design.

The CSU missile_adat_init is coded in the ANSI 'C' programming language, standard language for the CSCI. The following paragraphs specify the design of the CSU missile_adat_init. For a complete listing, see Appendix E - Source Code Listing For miss_adat.c.

a. <u>Input/output data elements</u>.

- (1) missile_array This input data structure is a pointer to the array of ADAT missiles defined in vehicle specific code.. This structure is declared global.
- (2) num_missiles This input data element is the number of missiles defined in the missile_array. This element is declared global.
- (3) No output data elements are declared.

22 January 1993 Reference # W003036 Rev. 0.0

b. Local data elements. TABLE 4.5.1.1 - CSU MISSILE_ADAT_INIT LOCAL DATA DEFINITION TABLE describes the local data elements originating in the CSU missile_adat_init and not used by any other CSU.

TABLE 4.5.1.1 - CSU MISSILE_ADAT_INIT LOCAL DATA DEFINITION TABLE

Name	i	data_tmp_ int	data_tmp	descript	fp
Descrip- tior.	array index	temporary integer data storage for data read from file	temporary float data storage for data read from file	temporary character string storage read from file	data file pointer
Type	integer	integer	float	character array	file pointer
Represent- ation	decimal number	decimal number	real number	character string	directory pathname plus 8 character unique filename plus ".d" extension
Size	N/A	N/A	N/A	64	N/A
Unit of Measure	Non- dimension-al	Variable	Variable	None	None
Limit/range	0 - 99	Variable	Variable	N/A	N/A
Precision	single	single	single	N/A	N/A

TABLE 4.5.1.1 - CSU MISSILE_ADAT_INIT LOCAL DATA DEFINITION TABLE [CONTINUED]

Name	mag
Descrip-	scale of
tion	magnetic
	orient-
	ation vector
Type	float
Represent-	real number
ation	
Size	N/A
Unit of	None
Measure	}
Limit/range	N/A
Precision	single

- c. <u>Interrupts and signals</u>. None used.
- d. <u>Algorithms</u>. The following algorithms are used in the execution of the CSU missile_adat_init.

(1) An algorithm to read the performance limitations and characteristics of the adat missile from the "simnet/data/ms_ad_ch.d" data file is executed. This data determines the performance limitations and characteristics of the adat missile during real-time execution. Access of the file is "read only".

The "simnet/data/ms_ad_ch.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the array index is set to zero. Each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed adat_miss_char element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(2) An algorithm to read polynomial degree data and burn speed coefficients data from the "simnet/data/ms_ad_bs.d" data file is executed. This data determines burn speed polynomial coefficient data used during real-time execution to compute the speed of the adat missile during engine burn for the adat missile flyout. Access of the file is "read only".

The "simnet/data/ms_ad_bs.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the first field. The first field is assigned to a temporary integer data storage and then to the first element of the adat_miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero. Then, each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed adat_burn_speed_coeff element. The remainder of the record is assigned to the temporary

character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(3) An algorithm to read polynomial degree data and coast speed coefficients data from the "simnet/data/ms_ad_cs.d" data file is executed. This data determines coast speed polynomial coefficient data used during real-time execution to compute the speed of the adat missile after engine burn for the adat missile flyout. Access of the file is "read only".

The "simnet/data/ms_ad_cs.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the first field. The first field is assigned to a temporary integer data storage and then to the second element of the adat_miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero. Then, each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed adat_coast_speed_coeff element. remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(4) An algorithm to read polynomial degree data and maximum turn cosine coefficients during engine burn data from the "simnet/data/ms_ad_bt.d" data file is executed. This data defines the maximum cosine coefficients during real-time execution to compute the maximum cosine of a turn during engine burn of the adat missile flyout. Access of the file is "read only".

The "simnet/data/ms_ad_bt.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the

first field. The first field is assigned to a temporary integer data storage and then to the third element of the adat_miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero. Then, each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed adat_burn_turn_coeff element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(5) An algorithm to read polynomial degree data and maximum turn cosine coefficients data after engine burn from the "simnet/data/ms_ad_ct.d" data file is executed. This data defines the maximum cosine coefficients during real-time execution to compute the maximum cosine of a turn after engine burn of the adat missile flyout. Access of the file is "read only".

The "simnet/data/ms_ad_ct.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the first field. The first field is assigned to a temporary integer data storage and then to the fourth element of the adat_miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero. Then, each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed adat_coast_turn_coeff element. remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(6) An algorithm to read polynomial degree data and temporal bias coefficients data from the "simnet/data/ms_ad_tb.d" data file is executed. This data

defines the temporal bias coefficients during real-time execution to compute the temporal bias of the adat missile flyout. Access of the file is "read only".

The "sinnet/data/ms_ad_tb.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the first field. The first field is assigned to a temporary integer data storage and then to the fifth element of the adat_miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero. Then, each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed adat_temp_bias_coeff element. remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

- e. <u>Error handling</u>. Errors other than a null data file are not handled. If a null data file is detected, a message is sent to the standard error device reporting that the file could not be opened.
- f. <u>Data conversion</u>. Data conversion is not done in this CSU.
- g. <u>Use of other elements</u>. The following elements are used by CSU missile_adat_init.
 - (1) CSU fopen. This library call opens a designated file. This CSU existed within the original code and is not documented herein.
 - (2) CSU fprintf. This library call CSU prints a designated string to a designated output device. This CSU existed within the original code and is not documented herein.
 - (3) CSU rewind. This library call CSU rewinds a designated file. This CSU existed within the original code and is not documented herein.

- (4) CSU fscanf. This library call CSU scans a record for a field from a designated file. This CSU existed within the original code and is not documented herein.
- (5) CSU fgets. This library call CSU gets a field from a designated file. This CSU existed within the original code and is not documented herein.
- (6) CSU fclose. This library call CSU closes a designated file. This CSU existed within the original code and is not documented herein.
- (7) CSU missile_fuze_prox_init. This CSU initializes the proximity fuze for the adat missile. This CSU existed within the original code and is not documented herein.
- (8) CSU sqrt. This CSU computes the square root of a series of arguments. This CSU existed within the original code and is not documented herein.
- (9) CSU mat_copy. This CSU copies a matrix. This CSU existed within the original code and is not documented herein.
- (10) Shared data elements. The following is a list of global variables initialized within the CSU missile_adat_init. These variables existed in the original code and will not be documented herein.

missile_array num_missiles tube_C_sight_right[][] tube_C_sight_left[][]

h. <u>Logic flow</u>. The CSU missile_adat_init is called by the CSU weapons_init. See Appendix A - RWA AireNet Call Tree Structure. Execution of the CSU missile_adat_init is normally done once during CSCI initialization and is performed sequentially.

Open adat missile characteristics data file. If file is null, print error message and exit. Rewind file.
Set index to zero.

Open burn speed data file.

If file is null, print error message and exit.

Rewind file.

Get first field of first record.

Set adat_miss_poly_deg[0]=first_field

Set descript=second_field

Set index to zero.

While record not end-of-file,

adat_burn_speed_coeff[index]=first_field

descript=second_field

increment index by one

End while.

Close data file.

Open coast speed data file.

If file is null, print error message and exit.

Rewind file.

Get first field of first record.

Set adat_miss_poly_deg[1]=first_field

Set descript=second_field

Set index to zero.

While record not end-of-file,

adat_coast_speed_coeff[index]=first_field

descript=second_field

increment index by one

End while.

Close data file.

Open burn turn data file.

If file is null, print error message and exit.

Rewind file.

Get first field of first record.

Set adat_miss_poly_deg[2]=first_field

Set descript=second_field

Set index to zero.

While record not end-of-file,

adat_burn_turn_coeff[index]=first_field

descript=second_field increment index by one End while.
Close data file.

Open coast turn data file.

If file is null, print error message and exit.

Rewind file.

Get first field of first record.

Set adat_miss_poly_deg[3]=first_field

Set descript=second_field

Set index to zero.

While record not end-of-file,

adat_coast_turn_coeff[index]=first_field

descript=second_field

increment index by one

End while.

Close data file.

Open temporal bias data file.

If file is null, print error message and exit.

Rewind file.

Get first field of first record.

Set adat_miss_poly_deg[4]=first_field

Set descript=second_field

Set index to zero.

While record not end-of-file,

adat_temp_bias_coeff[index]=first_field

descript=second_field

increment index by one

End while.

Close data file.

Set num_adats = num_missiles
Set adat_array = missile_array
Set mptr.state = ADAT_FREE
Set mptr.max_flight_time = ADAT_MAX_FLIGHT_TIME
Set mptr.max_turn_directions = 1

Initialize the proximity fuze Initialize the tube-to-sight transformation matrices

i. <u>Data structures</u>. The following shared data structures are used by the CSU missile_adat_init.

- (1) Data structure adat_miss_char. This shared data structure holds the performance limitations and characteristics for the adat missile. The data structure is an array of 10 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.29. ADAT MISSILE CHARACTERISTICS DATA ARRAY.
- (2) Data structure adat_miss_poly_deg. This shared data structure holds the polynomial degree data defining the size if the polynomial arrays and structures used in this CSU. The data structure is an array of 5 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.30. ADAT MISSILE POLYNOMIAL DEGREE DATA ARRAY.
- (3) Data structure adat_burn_speed_coeff. This shared data structure holds the burn speed coefficients for the burn speed polynomial. The data structure is an array of 10 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.31. ADAT MISSILE BURN SPEED DATA ARRAY.
- (4) Data structure adat_coast_speed_coeff. This shared data structure holds the coast speed coefficients for the coast speed polynomial. The data structure is an array of 10 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.32. ADAT MISSILE COAST SPEED DATA ARRAY.
- (5) Data structure adat_burn_turn_coeff. This shared data structure holds the maximum cosine coefficients for a turn during engine burn for the burn turn polynomial. The data structure is an array of 10 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.33. ADAT MISSILE BURN TURN DATA ARRAY.

- (6) Data structure adat_coast_turn_coeff. This shared data structure holds the maximum cosine coefficients for a turn after engine burn for the coast turn polynomial. The data structure is an array of 10 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.34. ADAT MISSILE BURN TURN DATA ARRAY.
- (7) Data structure adat_temp_bias_coeff. This shared data structure holds the temporal bias coefficients for the temporal bias polynomial. The data structure is an array of 10 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.35. ADAT MISSILE TEMPORAL BIAS DATA ARRAY.
- j. <u>Local data files</u>. The following data files are part of the local data of the CSU missile_adat_init.
 - (1) Data file "simnet/data/ms_ad_ch.d". This data file includes the performance limitations and characteristics of the adat missile. The data file consists of a maximum of 10 records. Access of the file is "read only" and sequential.

Each record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global adat_miss_char data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.29. - ADAT MISSILE CHARACTERISTICS DATA ARRAY. The second field is for documentation purposes only.

(2) Data file "simnet/data/ms_ad_bs.d". This data file includes the burn speed degree of polynomial and coefficients data for the adat missile. The data file consists of a maximum of 11 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to

22 January 1993 Reference # W003036 Rev. 0.0

an element of the global adat_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.30. - ADAT MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global tow_burn_speed_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.31. - ADAT MISSILE BURN SPEED DATA ARRAY. The second field is for documentation purposes only.

(3) Data file "simnet/data/ms_ad_cs.d". This data file includes the coast speed degree of polynomial and coefficients data for the adat missile. The data file consists of a maximum of 11 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global adat_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.30. - ADAT MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global tow_coast_speed_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.32. - ADAT MISSILE COAST SPEED DATA ARRAY. The second field is for documentation purposes only.

(4) Data file "simnet/data/ms_ad_bt.d". This data file includes the burn turn degree of polynomial and coefficients data for the adat missile. The data file consists

of a maximum of 11 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global adat_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.30. - ADAT MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global tow_burn_turn_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.33. - ADAT MISSILE BURN TURN DATA ARRAY. The second field is for documentation purposes only.

(5) Data file "simnet/data/ms_ad_ct.d". This data file includes the coast turn degree of polynomial and coefficients data for the adat missile. The data file consists of a maximum of 11 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global adat_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.30. - ADAT MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global tow_coast_turn_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.34. - ADAT MISSILE COAST TURN DATA

ARRAY. The second field is for documentation purposes only.

(6) Data file "simnet/data/ms_ad_tb.d". This data file includes the coast turn degree of polynomial and coefficients data for the adat missile. The data file consists of a maximum of 11 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global adat_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.30. - ADAT MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global tow_coast_turn_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.35. - ADAT MISSILE TEMPORAL BIAS DATA ARRAY. The second field is for documentation purposes only.

k. <u>Limitations</u>. There are no additional limitations or unusual features that restrict the performance of the CSU missile_adat_init.

4.5.2. CSU missile_atgm_init.

The CSU missile_atgm_init reads tow missile data from data files and initializes the 1) performance limitations and characteristics data array, 2) the polynomial degree array, 3) the burn speed polynomial coefficients array, 4) the coast speed polynomial coefficients array, 5) the burn speed turn, maximum cosine coefficient strucure, and 6) the coast speed turn, maximum cosine coefficient strucure. The following subparagraphs describe the design information for the CSU missile_atgm_init.

This CSU was built using the CSU missile_tow_init and retains the same variable names from that CSU.

4.5.2.1. CSU missile_atgm_init design specification/constraints.

This subparagraph shall state the design requirements for the CSU. This subparagraph shall identify the requirements allocated to the CSC that are to be satisfied or partially satisfied by the CSU and shall identify any constraints on the design of the CSU.

4.5.2.2. CSU missile_atgm_init design.

The CSU missile_atgm_init is coded in the ANSI 'C' programming language, standard language for the CSCI. The following paragraphs specify the design of the CSU missile_atgm_init. For a complete listing, see Appendix F - Source Code Listing For miss_atgm.c.

- a. <u>Input/output data elements</u>.
 - (1) tptr This input data element is a pointer to the array of missiles to be initialized. This element is declared global.
 - (2) No output data elements are declared.
- b. <u>Local data elements</u>. TABLE 4.5.2.1 CSU MISSILE_ATGM_INIT LOCAL DATA DEFINITION TABLE describes the local data elements originating in the CSU missile_atgm_init and not used by any other CSU.

TABLE 4.5.2.1 - CSU MISSILE_ATGM_INIT LOCAL DATA DEFINITION TABLE

Name	i	data_tmp_ int	data_tmp	descript	fp
Descrip- tion	array index	temporary integer data storage for data read from file	temporary float data storage for data read from file	temporary character string storage read from file	data file pointer
Туре	integer	integer	float	character array	file pointer
Represent- ation	decimal number	decimal number	real number	character string	directory pathname plus 8 character unique filename plus ".d" extension
Size	N/A	N/A	N/A	64	N/A
Unit of Measure	Non- dimension-al	Variable	Variable	None	None
Limit/range	0 - 99	Variable	Variable	N/A	N/A
Precision	single	single	single	N/A	N/A

- c. <u>Interrupts and signals</u>. None used.
- d. <u>Algorithms</u>. The following algorithms are used in the execution of the CSU missile_atgm_init.
 - (1) An algorithm to read the performance limitations and characteristics of the tow missile from the "simnet/data/ms_at_ch.d" data file is executed. This data determines the performance limitations and characteristics of the tow missile during real-time execution. Access of the file is "read only".

The "simnet/data/ms_at_ch.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the array index is set to zero. Each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed tow_miss_char element. The remainder of the record is assigned to the temporary

character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(2) An algorithm to read polynomial degree data and burn speed coefficients data from the "simnet/data/ms_at_bs.d" data file is executed. This data determines burn speed polynomial coefficient data used during real-time execution to compute the speed of the tow missile during engine burn for the tow missile flyout. Access of the file is "read only".

The "simnet/data/ms_at_bs.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the first field. The first field is assigned to a temporary integer data storage and then to the first element of the tow_miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero. Then, each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed tow_burn_speed_coeff element. remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(3) An algorithm to read polynomial degree data and coast speed coefficients data from the "simnet/data/ms_at_cs.d" data file is executed. This data determines coast speed polynomial coefficient data used during real-time execution to compute the speed of the tow missile after engine burn for the tow missile flyout. Access of the file is "read only".

The "simnet/data/ms_at_cs.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the

first field. The first field is assigned to a temporary integer data storage and then to the third element of the tow_miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero. Then, each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed tow_coast_speed_coeff element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(4) An algorithm to read polynomial degree data and maximum turn cosine coefficients during engine burn data from the "simnet/data/ms_at_bt.d" data file is executed. This data defines the maximum cosine coefficients during real-time execution to compute the maximum cosine of a turn in each axis during engine burn of the tow missile flyout. Access of the file is "read only".

The "simnet/data/ms_at_bt.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the first field. The first field is assigned to a temporary integer data storage and then to the third element of the tow_miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero for the side axis, with the limit set to the degree. Then, each record is scanned and the first field is assigned to a temporary float data storage, and assigned to the current indexed tow_burn_turn_coeff.side_coeff element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned and stored until the degree limit is hit. The process is repeated for the up and down axes. Then, the file is closed.

(5) An algorithm to read polynomial degree data and maximum turn cosine coefficients data after engine burn from the "simnet/data/ms_at_ct.d" data file is executed. This data defines the maximum cosine coefficients during real-time execution to compute the maximum cosine of a turn in each axis after engine burn of the tow missile flyout. Access of the file is "read only".

The "simnet/data/ms_at_ct.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the first field. The first field is assigned to a temporary integer data storage and then to the fourth element of the tow_miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero for the side axis, with the limit set to the degree. Then, each record is scanned and the first field is assigned to a temporary float data storage, and assigned to the current indexed tow_coast_turn_coeff.side_coeff element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned and stored until the degree limit is hit. The process is repeated for the up and down axes. Then, the file is closed.

- e. <u>Error handling</u>. Errors other than a null data file are not handled. If a null data file is detected, a message is sent to the standard error device reporting that the file could not be opened.
- f. <u>Data conversion</u>. Data conversion is not done in this CSU.
- g. <u>Use of other elements</u>. The following elements are used by CSU missile_atgm_init.
 - (1) CSU fopen. This library call opens a designated file. This CSU existed within the original code and is not documented herein.
 - (2) CSU fprintf. This library call CSU prints a designated string to a designated output device. This CSU existed within the original code and is not documented herein.

- (3) CSU rewind. This library call CSU rewinds a designated file. This CSU existed within the original code and is not documented herein.
- (4) CSU fscanf. This library call CSU scans a record for a field from a designated file. This CSU existed within the original code and is not documented herein.
- (5) CSU fgets. This library call CSU gets a field from a designated file. This CSU existed within the original code and is not documented herein.
- (6) CSU fclose. This library call CSU closes a designated file. This CSU existed within the original code and is not documented herein.
- (7) Shared data elements. The following is a list of global variables initialized within the CSU missile_atgm_init. These variables existed in the original code and will not be documented herein.

tptr mptr.state mptr.max_flight_time mptr.max_turn_directions

h. <u>Logic flow</u>. The CSU missile_atgm_init is called by the CSU weapons_init. See Appendix A - RWA AireNet Call Tree Structure. Execution of the CSU missile_atgm_init is normally done only once during CSCI initialization and is performed sequentially.

Open atgm missile characteristics data file. If file is null, print error message and exit. Rewind file.

Set index to zero.

While record not end-of-file,
tow_miss_char[index]=first_field
descript=second_field
increment index by one

End while.

Close data file.

Open burn speed data file.

If file is null, print error message and exit.

Rewind file.

Get first field of first record.

Set tow_miss_poly_deg[0]=first_field

Set descript=second_field

Set index to zero.

While record not end-of-file,

tow_burn_speed_coeff[index]=first_field

descript=second_field

increment index by one

End while.

Close data file.

Open coast speed data file.

If file is null, print error message and exit.

Rewind file.

Get first field of first record.

Set tow_miss_poly_deg[1]=first_field

Set descript=second_field

Set index to zero.

While record not end-of-file,

tow_coast_speed_coeff[index]=first_field

descript=second_field

increment index by one

End while.

Close data file.

Open burn turn data file.

 descript=second_field End for loop. Close data file.

Open coast turn data file.

If file is null, print error message and exit.

Rewind file.

Get first field of first record.

Set tow_miss_poly_deg[3]=first_field

Set descript=second_field

For index from 0 to tow_miss_poly_deg[3], single step, tow_coast_turn_coeff.side_coeff[index] = first_field descript=second_field

End for loop.

For index from 0 to tow_miss_poly_deg[3], single step, tow_coast_turn_coeff.up_coeff[index] = first_field descript=second_field

End for loop.

For index from 0 to tow_miss_poly_deg[3], single step, tow_coast_turn_coeff.down_coeff[index] = first_field descript=second_field

End for loop. Close data file.

Set mptr.state = FALSE Set mptr.max_flight_time = tow_miss_char[2] Set mptr.max_turn_directions = 3

Set the burn and turn coefficients as adjusted by the atgm turn factor; adjusts the data from tow to atgm missile performance

- i. <u>Data structures</u>. The following shared data structures are used by the CSU missile_atgm_init.
 - (1) Data structure tow_miss_char. This shared data structure holds the performance limitations and characteristics for the tow missile. The data structure is an array of 5 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.36. ATGM MISSILE CHARACTERISTICS DATA ARRAY.

- (2) Data structure tow_miss_poly_deg. This shared data structure holds the polynomial degree data defining the size if the polynomial arrays and structures used in this CSU. The data structure is an array of 5 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.37. ATGM MISSILE POLYNOMIAL DEGREE DATA ARRAY.
- (3) Data structure tow_burn_speed_coeff. This shared data structure holds the burn speed coefficients for the burn speed polynomial. The data structure is an array of 5 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.38. ATGM MISSILE BURN SPEED DATA ARRAY.
- (4) Data structure tow_coast_speed_coeff. This shared data structure holds the coast speed coefficients for the coast speed polynomial. The data structure is an array of 5 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.39. ATGM MISSILE COAST SPEED DATA ARRAY.
- (5) Data structure tow_burn_turn_coeff. This shared data structure holds the maximum cosine coefficients for a turn in each axis during engine burn for the burn turn polynomial. The data structure is an array of 2 elements for each axis. There are three axes: side, up, and down. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.40. ATGM MISSILE BURN TURN DATA STRUCTURE.
- (6) Data structure tow_coast_turn_coeff. This shared data structure holds the maximum cosine coefficients for a turn in each axis during engine burn for the burn turn polynomial. The data structure is an array of 4 elements for each axis. There are three axes: side, up, and down. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.41. ATGM MISSILE COAST TURN DATA STRUCTURE.

- j. <u>Local data files</u>. The following data files are part of the local data of the CSU missile_atgm_init.
 - (1) Data file "simnet/data/ms_at_ch.d". This data file includes the performance limitations and characteristics of the tow missile. The data file consists of a maximum of 5 records. Access of the file is "read only" and sequential.

Each record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global tow_miss_char data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.36. - ATGM MISSILE CHARACTERISTICS DATA ARRAY. The second field is for documentation purposes only.

(2) Data file "simnet/data/ms_at_bs.d". This data file includes the burn speed degree of polynomial and coefficients data for the tow missile. The data file consists of a maximum of 6 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global tow_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.37. - ATGM MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global tow_burn_speed_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.38. - ATGM MISSILE BURN SPEED DATA ARRAY. The second field is for documentation purposes only.

(3) Data file "simnet/data/ms_at_cs.d". This data file includes the coast speed degree of polynomial and coefficients data for the tow missile. The data file consists of a maximum of 6 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global tow_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.37. - ATGM MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global tow_coast_speed_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.39. - ATGM MISSILE COAST SPEED DATA ARRAY. The second field is for documentation purposes only.

(4) Data file "simnet/data/ms_at_bt.d". This data file includes the burn turn degree of polynomial and coefficients data for the tow missile. The data file consists of a maximum of 7 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global tow_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.37. - ATGM MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global

tow_burn_turn_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.40. - ATGM MISSILE BURN TURN DATA ARRAY. The second field is for documentation purposes only.

(5) Data file "simnet/data/ms_at_ct.d". This data file includes the coast turn degree of polynomial and coefficients data for the tow missile. The data file consists of a maximum of 13 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global tow_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.37. - ATGM MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global tow_coast_turn_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.41. - ATGM MISSILE COAST TURN DATA ARRAY. The second field is for documentation purposes only.

k. <u>Limitations</u>. There are no additional limitations or unusual features that restrict the performance of the CSU missile_atgm_init.

4.5.3. CSU missile_kem_init.

The CSU missile_kem_init reads kem missile data from data files and initializes the 1) performance limitations and characteristics data array, 2) the polynomial degree array, 3) the burn speed polynomial coefficients array, 4) the coast speed polynomial coefficients array, 5) the burn turn, maximum cosine coefficients array, 6) the coast turn, maximum cosine coefficients array, and 7) the temporal bias coefficients array. This CSU copies the parameters into variables static to the miss_kem.c module and initializes the state of all

the missiles. The following subparagraphs describe the design information for the CSU missile_kem_init.

4.5.3.1. CSU missile_kem_init design specification/constraints.

This subparagraph shall state the design requirements for the CSU. This subparagraph shall identify the requirements allocated to the CSC that are to be satisfied or partially satisfied by the CSU and shall identify any constraints on the design of the CSU.

4.5.3.2. CSU missile_kem_init design.

The CSU missile_kem_init is coded in the ANSI 'C' programming language, standard language for the CSCI. The following paragraphs specify the design of the CSU missile_kem_init. For a complete listing, see Appendix H - Source Code Listing For miss_kem.c.

- a. <u>Input/output data elements</u>.
 - (1) missile_array This input data structure is a pointer to the array of KEM missiles defined in vehicle specific code..
 This structure is declared global.
 - (2) num_missiles This input data element is the number of missiles defined in the missile_array. This element is declared global.
 - (3) No output data elements are declared.
- b. <u>Local data elements</u>. TABLE 4.5.3.1 CSU MISSILE_KEM_INIT LOCAL DATA DEFINITION TABLE describes the local data elements originating in the CSU missile_kem_init and not used by any other CSU.

TABLE 4.5.3.1 - CSU MISSILE_KEM_INIT LOCAL DATA DEFINITION TABLE

Name	i	data_tmp_ int	data_tmp	descript	fp
Descrip- tion	array index	temporary integer data storage for data read from file	temporary float data storage for data read from file	temporary character string storage read from file	data file pointer
Type	integer	integer	float	character array	file pointer
Represent- ation	decimal number	decimal number	real number	character string	directory pathname plus 8 character unique filename plus ".d" extension
Size	N/A	N/A	N/A	64	N/A
Unit of Measure	Non- dimension-al	Variable	Variable	None	None
Limit/range	0 - 99	Variable	Variable	N/A	N/A
Precision	single	single	single	N/A	N/A

- c. <u>Interrupts and signals</u>. None used.
- d. <u>Algorithms</u>. The following algorithms are used in the execution of the CSU missile_kem_init.
 - (1) An algorithm to read the performance limitations and characteristics of the kem missile from the "simnet/data/ms_km_ch.d" data file is executed. This data determines the performance limitations and characteristics of the kem missile during real-time execution. Access of the file is "read only".

The "simnet/data/ms_km_ch.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the array index is set to zero. Each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed kem_miss_char element. The remainder of the record is assigned to the temporary

character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(2) An algorithm to read polynomial degree data and burn speed coefficients data from the "simnet/data/ms_km_bs.d" data file is executed. This data determines burn speed polynomial coefficient data used during real-time execution to compute the speed of the kem missile during engine burn for the kem missile flyout. Access of the file is "read only".

The "simnet/data/ms_km_bs.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the first field. The first field is assigned to a temporary integer data storage and then to the first element of the kem_miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero. Then, each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed kem_burn_speed_coeff element. remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(3) An algorithm to read polynomial degree data and coast speed coefficients data from the "simnet/data/ms_km_cs.d" data file is executed. This data determines coast speed polynomial coefficient data used during real-time execution to compute the speed of the kem missile after engine burn for the kem missile flyout. Access of the file is "read only".

The "simnet/data/ms_km_cs.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the

first field. The first field is assigned to a temporary integer data storage and then to the second element of the kem_miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero. Then, each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed kem_coast_speed_coeff element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(4) An algorithm to read polynomial degree data and maximum turn cosine coefficients during engine burn data from the "simnet/data/ms_km_bt.d" data file is executed. This data defines the maximum cosine coefficients during real-time execution to compute the maximum cosine of a turn during engine burn of the kem missile flyout. Access of the file is "read only".

The "simnet/data/ms_km_bt.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the first field. The first field is assigned to a temporary integer data storage and then to the third element of the kem_miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero. Then, each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed kem_burn_turn_coeff element. remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(5) An algorithm to read polynomial degree data and maximum turn cosine coefficients data after engine burn from the "simnet/data/ms_km_ct.d" data file is executed.

This data defines the maximum cosine coefficients during real-time execution to compute the maximum cosine of a turn after engine burn of the kem missile flyout. Access of the file is "read only".

The "simnet/data/ms_km_ct.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the first field. The first field is assigned to a temporary integer data storage and then to the fourth element of the kem miss poly deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero. Then, each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed kem_coast_turn_coeff element. remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

- e. <u>Error handling</u>. Errors other than a null data file are not handled. If a null data file is detected, a message is sent to the standard error device reporting that the file could not be opened.
- f. Data conversion. Data conversion is not done in this CSU.
- g. <u>Use of other elements</u>. The following elements are used by CSU missile_kem_init.
 - (1) CSU fopen. This library call opens a designated file. This CSU existed within the original code and is not documented herein.
 - (2) CSU fprintf. This library call CSU prints a designated string to a designated output device. This CSU existed within the original code and is not documented herein.
 - (3) CSU rewind. This library call CSU rewinds a designated file. This CSU existed within the original code and is not documented herein.

- (4) CSU fscanf. This library call CSU scans a record for a field from a designated file. This CSU existed within the original code and is not documented herein.
- (5) CSU fgets. This library call CSU gets a field from a designated file. This CSU existed within the original code and is not documented herein.
- (6) CSU fclose. This library call CSU closes a designated file. This CSU existed within the original code and is not documented herein.
- (7) Shared data elements. The following is a list of global variables initialized within the CSU missile_kem_init. These variables existed in the original code and will not be documented herein.

missile_array
num_missiles
num_kems
kem_array
mptr.state
mptr.max_flight_time
mptr.max_turn_directions

h. <u>Logic flow</u>. The CSU missile_kem_init is called by the CSU weapons_init. See Appendix A - RWA AireNet Call Tree Structure. Execution of the CSU missile_kem_init is during initialization and is performed sequentially.

Open burn speed data file.

If file is null, print error message and exit.

Open coast speed data file.

If file is null, print error message and exit.

Rewind file.

Get first field of first record.

Set kem_miss_poly_deg[1]=first_field

Set descript=second_field

Set index to zero.

While record not end-of-file,

kem_coast_speed_coeff[index]=first_field

descript=second_field

increment index by one

End while.

Close data file.

Open burn turn data file.

If file is null, print error message and exit.

Rewind file.

Get first field of first record.

Set kem_miss_poly_deg[2]=first_field

Set descript=second_field

Set index to zero.

While record not end-of-file,

kem_burn_turn_coeff[index]=first_field

descript=second_field

increment index by one

End while.

Close data file.

Open coast turn data file. If file is null, print error message and exit. Rewind file. Get first field of first record.

Set num_kems = num_missiles

Set kem_array = missile_array

Set mptr.state = KEM_FREE

Set mptr.max_flight_time = KEM_MAX_FLIGHT_TIME

Set mptr.max_turn_directions = 1

- i. <u>Data structures</u>. The following shared data structures are used by the CSU missile_kem_init.
 - (1) Data structure kem_miss_char. This shared data structure holds the performance limitations and characteristics for the kem missile. The data structure is an array of 10 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.42. KEM MISSILE CHARACTERISTICS DATA ARRAY.
 - (2) Data structure kem_miss_poly_deg. This shared data structure holds the polynomial degree data defining the size if the polynomial arrays and structures used in this CSU. The data structure is an array of 5 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.43. KEM MISSILE POLYNOMIAL DEGREE DATA ARRAY.
 - (3) Data structure kem_burn_speed_coeff. This shared data structure holds the burn speed coefficients for the burn speed polynomial. The data structure is an array of 10 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.44. KEM MISSILE BURN SPEED DATA ARRAY.

- (4) Data structure kem_coast_speed_coeff. This shared data structure holds the coast speed coefficients for the coast speed polynomial. The data structure is an array of 10 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.45. KEM MISSILE COAST SPEED DATA ARRAY.
- (5) Data structure kem_burn_turn_coeff. This shared data structure holds the maximum cosine coefficients for a turn during engine burn for the burn turn polynomial. The data structure is an array of 10 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.46. KEM MISSILE BURN TURN DATA ARRAY.
- (6) Data structure kem_coast_turn_coeff. This shared data structure holds the maximum cosine coefficients for a turn after engine burn for the coast turn polynomial. The data structure is an array of 10 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.47. KEM MISSILE COAST TURN DATA ARRAY.
- j. <u>Local data files</u>. The following data files are part of the local data of the CSU missile_kem_init.
 - (1) Data file "simnet/data/ms_km_ch.d". This data file includes the performance limitations and characteristics of the kem missile. The data file consists of a maximum of 10 records. Access of the file is "read only" and sequential.

Each record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global kem_miss_char data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.42. - KEM MISSILE CHARACTERISTICS DATA ARRAY. The second field is for documentation purposes only.

(2) Data file "simnet/data/ms_km_bs.d". This data file includes the burn speed degree of polynomial and coefficients data for the kem missile. The data file consists of a maximum of 11 records. Access of the tile is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global kem_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.43. - KEM MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global tow_burn_speed_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.44. - KEM MISSILE BURN SPEED DATA ARRAY. The second field is for documentation purposes only.

(3) Data file "simnet/data/ms_km_cs.d". This data file includes the coast speed degree of polynomial and coefficients data for the kem missile. The data file consists of a maximum of 11 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global kem_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.43. - KEM MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global

tow_coast_speed_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.45. - KEM MISSILE COAST SPEED DATA ARRAY. The second field is for documentation purposes only.

(4) Data file "simnet/data/ms_km_bt.d". This data file includes the burn turn degree of polynomial and coefficients data for the kem missile. The data file consists of a maximum of 11 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global kem_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.43. - KEM MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global tow_burn_turn_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.46. - KEM MISSILE BURN TURN DATA ARRAY. The second field is for documentation purposes only.

(5) Data file "simnet/data/ms_km_ct.d". This data file includes the coast turn degree of polynomial and coefficients data for the kem missile. The data file consists of a maximum of 11 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global kem_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.43. - KEM MISSILE POLYNOMIAL

DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global tow_coast_turn_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.47. - KEM MISSILE COAST TURN DATA ARRAY. The second field is for documentation purposes only.

k. <u>Limitations</u>. There are no additional limitations or unusual features that restrict the performance of the CSU missile_kem_init.

4.5.4. CSU missile_maverick_init.

The CSU missile_maverick_init reads maverick missile data from data files and initializes the 1) performance limitations data array, 2) the polynomial degree array, 3) the burn speed polynomial coefficients array, and 4) the coast speed polynomial coefficients array. This CSU copies the parameters into variables static to the miss_maverck.c module and initializes the state of all the missiles. The following subparagraphs describe the design information for the CSU missile_maverick_init.

4.5.4.1. CSU missile_maverick_init design specification/constraints.

This subparagraph shall state the design requirements for the CSU. This subparagraph shall identify the requirements allocated to the CSC that are to be satisfied or partially satisfied by the CSU and shall identify any constraints on the design of the CSU.

4.5.4.2. CSU missile_maverick_init design.

The CSU missile_maverick_init is coded in the ANSI 'C' programming language, standard language for the CSCI. The following paragraphs specify the design of the CSU missile_maverick_init. For a complete listing, see Appendix I - Source Code Listing For miss_maverck.c.

a. <u>Input/output data elements</u>.

- (1) missile_array This input data structure is a pointer to the particular array of missiles to be initialized. This structure is declared global.
- (2) num_missiles This input data element is the number of missiles defined in the missile_array. This element is declared global.
- (3) func This input data element is the operational function of the missile. This element is declared global.
- (4) No output data elements are declared.
- b. <u>Local_data_elements</u>. TABLE 4.5.4.1 CSU MISSILE_MAVERICK_INIT LOCAL DATA DEFINITION TABLE describes the local data elements originating in the CSU missile_maverick_init and not used by any other CSU.

TABLE 4.5.4.1 - CSU MISSILE_MAVERICK_INIT LOCAL DATA DEFINITION TABLE

Name	i	j	data_tmp_ int	data_tmp	descript	fp
Description	array index		temporary integer data storage for data read from file	temporary float data storage for data read from file	temporary character string storage read from file	data file pointer
Type	integer		integer	float	character array	file pointer
Represent- ation	decimal number		decimal number	real number	character string	directory pathname plus 8 character unique filename plus ".d" extension
Size	N/	/A	N/A	N/A	64	N/A
Unit of Measure	No dimen		Variable	Variable	None	None
Limit/range	0-	99	Variable	Variable	N/A	N/A
Precision	sin	gle	single	single	N/A	N/A

- c. <u>Interrupts and signals</u>. None used.
- d. <u>Algorithms</u>. The following algorithms are used in the execution of the CSU missile_maverick_init.
 - (1) An algorithm to read the performance limitations and characteristics of the maverick missile from the "simnet/data/ms_mk_ch.d" data file is executed. This data determines the performance limitations and characteristics of the maverick missile during real-time execution. Access of the file is "read only".

The "simnet/data/ms_mk_ch.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the array index is set to zero. Each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed maverick_miss_char element. The remainder of the record is assigned to the

temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(2) An algorithm to read polynomial degree data and burn speed coefficients data from the "simnet/data/ms_mk_bs.d" data file is executed. This data determines burn speed polynomial coefficient data used during real-time execution to compute the speed of the maverick missile during engine burn for the maverick missile flyout. Access of the file is "read only".

The "simnet/data/ms_mk_bs.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the first field. The first field is assigned to a temporary integer data storage and then to the first element of the maverick_miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero. Then, each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to. the current maverick burn speed coeff element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(3) An algorithm to read polynomial degree data and coast speed coefficients data from the "simnet/data/ms_mk_cs.d" data file is executed. This data determines coast speed polynomial coefficient data used during real-time execution to compute the speed of the maverick missile after engine burn for the maverick missile flyout. Access of the file is "read only".

The "simnet/data/ms_mk_cs.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file

cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the first field. The first field is assigned to a temporary integer data storage and then to the second element of the maverick_miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero. Then, each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is current assigned to the indexed maverick_coast_speed_coeff element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

- e. <u>Error handling</u>. Errors other than a null data file are not handled. If a null data file is detected, a message is sent to the standard error device reporting that the file could not be opened.
- f. <u>Data conversion</u>. Data conversion is not done in this CSU.
- g. <u>Use of other elements</u>. The following elements are used by CSU missile_maverick_init.
 - (1) CSU fopen. This library call opens a designated file. This CSU existed within the original code and is not documented herein.
 - (2) CSU fprintf. This library call CSU prints a designated string to a designated output device. This CSU existed within the original code and is not documented herein.
 - (3) CSU rewind. This library call CSU rewinds a designated file. This CSU existed within the original code and is not documented herein.
 - (4) CSU fscanf. This library call CSU scans a record for a field from a designated file. This CSU existed within the original code and is not documented herein.

- (5) CSU fgets. This library call CSU gets a field from a designated file. This CSU existed within the original code and is not documented herein.
- (6) CSU fclose. This library call CSU closes a designated file. This CSU existed within the original code and is not documented herein.
- (7) CSU missile_fuze_prox_init. This CSU initializes the proximity fuze for the maverick missile. This CSU existed within the original code and is not documented herein.
- (8) Shared data elements. The following is a list of global variables initialized within the CSU missile_maverick_init. These variables existed in the original code and will not be documented herein.

missile_array
num_missiles
func
maverick_cone_threshold
maverick array
num_mavericks
maverick_array[].mptr.state
maverick_array[].mptr.max_flight_time
maverick_array[].mptr.max_turn_directions
maverick_array[].object_being_tracked
maverick_array[].sensor_id
pel_callback_func

h. <u>Logic flow</u>. The CSU missile_maverick_init is called by the CSU weapons_init. See Appendix A - RWA AireNet Call Tree Structure. Execution of the CSU missile_maverick_init is done during initialization and is performed sequentially.

Close data file.

Open burn speed data file.

If file is null, print error message and exit.

Rewind file.

Get first field of first record.

Set maverick_miss_poly_deg[0]=first_field

Set descript=second_field

Set index to zero.

While record not end-of-file,

maverick_burn_speed_coeff[index]=first_field

descript=second_field

increment index by one

End while.

Close data file.

Open coast speed data file.

If file is null, print error message and exit.

Rewind file.

Get first field of first record.

Set maverick_miss_poly_deg[1]=first_field

Set descript=second_field

Set index to zero.

While record not end-of-file,

maverick_coast_speed_coeff[index]=first_field

descript=second_field

increment index by one

End while.

Close data file.

i. <u>Data structures</u>. The following shared data structures are used by the CSU missile_maverick_init.

- (1) Data structure maverick_miss_char. This shared data structure holds the performance limitations and characteristics for the maverick missile. The data structure is an array of 15 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.15. MAVERICK MISSILE CHARACTERISTICS DATA ARRAY.
- (2) Data structure maverick_miss_poly_deg. This shared data structure holds the polynomial degree data defining the size if the polynomial arrays used in this CSU. The data structure is an array of 2 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.16. MAVERICK MISSILE POLYNOMIAL DEGREE DATA ARRAY.
- (3) Data structure maverick_burn_speed_coeff. This shared data structure holds the burn speed coefficients for the burn speed polynomial. The data structure is an array of 5 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.17. MAVERICK MISSILE BURN SPEED DATA ARRAY.
- (4) Data structure maverick_coast_speed_coeff. This shared data structure holds the coast speed coefficients for the coast speed polynomial. The data structure is an array of 5 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.18. MAVERICK MISSILE COAST SPEED DATA ARRAY.
- j. <u>Local data files</u>. The following data files are part of the local data of the CSU missile_maverick_init.
 - (1) Data file "simnet/data/ms_mk_ch.d". This data file includes the performance limitations and characteristics of the maverick missile. The data file consists of a maximum of 15 records. Access of the file is "read only" and sequential. Each record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first

field is assigned to sequential elements of the global maverick_miss_char data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.15. - MAVERICK MISSILE CHARACTERISTICS DATA ARRAY. The second field is for documentation purposes only.

(2) Data file "simnet/data/ms_mk_bs.d". This data file includes the burn speed degree of polynomial and coefficients data for the maverick missile. The data file consists of a maximum of 6 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global maverick_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.16. - MAVERICK MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global maverick_burn_speed_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.17. - MAVERICK MISSILE BURN SPEED DATA ARRAY. The second field is for documentation purposes only.

(3) Data file "simnet/data/ms_mk_cs.d". This data file includes the coast speed degree of polynomial and coefficients data for the maverick missile. The data file consists of a maximum of 6 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global maverick_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.16. - MAVERICK

MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global maverick_coast_speed_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.18. - MAVERICK MISSILE COAST SPEED DATA ARRAY. The second field is for documentation purposes only.

k. <u>Limitations</u>. There are no additional limitations or unusual features that restrict the performance of the CSU missile_maverick_init.

4.5.5. CSU missile_nlos_init.

The CSU missile_nlos_init reads nlos missile data from data files and initializes the 1) performance limitations data array, 2) the polynomial degree array, 3) the burn speed polynomial coefficients array, and 4) the coast speed polynomial coefficients array. This CSU initializes the state of the missile to indicate that it is available and sets the values that never change. The following subparagraphs describe the design information for the CSU missile_nlos_init.

4.5.5.1. CSU missile_nlos_init design specification/constraints.

This subparagraph shall state the design requirements for the CSU. This subparagraph shall identify the requirements allocated to the CSC that are to be satisfied or partially satisfied by the CSU and shall identify any constraints on the design of the CSU.

4.5.5.2. CSU missile_nlos_init design.

The CSU missile_nlos_init is coded in the ANSI 'C' programming language, standard language for the CSCI. The following paragraphs specify the design of the CSU missile_nlos_init. For a complete listing, see Appendix J - Source Code Listing For miss_nlos.c.

a. <u>Input/output data elements</u>.

- (1) mptr This input data element is a pointer to the array of nlos missiles to be initialized. This structure is declared global.
- (2) No output data elements are declared.
- b. <u>Local data elements</u>. TABLE 4.5.5.1 CSU MISSILE_NLOS_INIT LOCAL DATA DEFINITION TABLE describes the local data elements originating in the CSU missile_nlos_init and not used by any other CSU.

TABLE 4.5.5.1 - CSU MISSILE_NLOS_INIT LOCAL DATA DEFINITION TABLE

Name	i	data_tmp_ int	data_tmp	descript	fp
Description	array index	temporary integer data storage for data read from file	temporary float data storage for data read from file	temporary character string storage read from file	data file pointer
Type	integer	integer	float	character array	file pointer
Represent- ation	decimal number	decimal number	real number	character string	directory pathname plus 8 character unique filename plus ".d" extension
Size	N/A	N/A	N/A	64	N/A
Unit of Measure	Non- dimension-al	Variable	Variable	None	None
Limit/range	0 - 99	Variable	Variable	N/A	N/A
Precision	single	single	single	N/A	N/A

- c. <u>Interrupts and signals</u>. None used.
- d. <u>Algorithms</u>. The following algorithms are used in the execution of the CSU missile_nlos_init.
 - (1) An algorithm to read the performance limitations and characteristics of the nlos missile from the "simnet/data/ms_nl_ch.d" data file is executed. This data determines the performance limitations and characteristics of the nlos missile during real-time execution. Access of the file is "read only".

The "simnet/data/ms_nl_ch.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the array index is set to zero. Each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed nlos_miss_char element. The remainder of the record is assigned to the temporary

character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

An algorithm to read polynomial degree data and burn speed coefficients data from the "simnet/data/ms_nl_bs.d" data file is executed. This data determines burn speed polynomial coefficient data used during real-time execution to compute the speed of the nlos missile during engine burn for the nlos missile flyout. Access of the file is "read only".

The "simnet/data/ms_nl_bs.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the first field. The first field is assigned to a temporary integer data storage and then to the first element of the nlos_miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero. Then, each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed nlos_burn_speed_coeff element. remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

(3) An algorithm to read polynomial degree data and coast speed coefficients data from the "simnet/data/ms_nl_cs.d" data file is executed. This data determines coast speed polynomial coefficient data used during real-time execution to compute the speed of the nlos missile after engine burn for the nlos missile flyout. Access of the file is "read only".

The "simnet/data/ms_nl_cs.d" data file is opened and tested for records. If it is a null file, an error message is sent to the standard error device reporting that the file cannot be opened, and the CSU is exited. If the file is not null, the file is rewound and the first record is read for the

first field. The first field is assigned to a temporary integer data storage and then to the second element of the nlos_miss_poly_deg array. The second element of the first record is assigned to the temporary character string. The local array index is set to zero. Then, each record is scanned and the first field is assigned to a temporary float data storage. If the value of the temporary float data is not the end-of-file, the temporary float data is assigned to the current indexed nlos_coast_speed_coeff element. The remainder of the record is assigned to the temporary character string. The array index is incremented by one and the next record is scanned. If the value of the temporary float data is the end-of-file, the file is closed.

- e. <u>Error handling</u>. Errors other than a null data file are not handled. If a null data file is detected, a message is sent to the standard error device reporting that the file could not be opened.
- f. <u>Data conversion</u>. Data conversion is not done in this CSU.
- g. <u>Use of other elements</u>. The following elements are used by CSU missile_nlos_init.
 - (1) CSU fopen. This library call opens a designated file. This CSU existed within the original code and is not documented herein.
 - (2) CSU fprintf. This library call CSU prints a designated string to a designated output device. This CSU existed within the original code and is not documented herein.
 - (3) CSU rewind. This library call CSU rewinds a designated file. This CSU existed within the original code and is not documented herein.
 - (4) CSU fscanf. This library call CSU scans a record for a field from a designated file. This CSU existed within the original code and is not documented herein.
 - (5) CSU fgets. This library call CSU gets a field from a designated file. This CSU existed within the original code and is not documented herein.

- (6) CSU fclose. This library call CSU closes a designated file. This CSU existed within the original code and is not documented herein.
- (7) CSU cos. This library call CSU computes the cosine of the radian measure given as the argument. This CSU existed within the original code and is not documented herein.
- (8) Shared data elements. The following is a list of global variables initialized within the CSU missile_nlos_init. These variables existed in the original code and will not be documented herein.

state
max_flight_time
max_turn_directions
speed
cos_max_turn
nlos_req_id
nlos_target_id
nlos_ammo_type
vehicleIDIrrelevant

h. <u>Logic flow</u>. The CSU missile_nlos_init is called by the CSU weapons_init. See Appendix A - RWA AireNet Call Tree Structure. Execution of the CSU missile_nlos_init is normally done only once during CSCI initialization and is performed sequentially.

Open burn speed data file.

If file is null, print error message and exit.

Rewind file.

Get first field of first record.

Set state = FALSE

Set max_flight_time = nlos_miss_char[7]

Set max_turn_directions = 1

Set speed = nlos_miss_char[8]

Set cos_max_turn[0] = cos(nlos_miss_char[1])

Set nlos_req_id = NEAR_NO_REQUEST_PENDING

Set nlos_target_id = vehicleIDIrrelevant

- i. <u>Data structures</u>. The following shared data structures are used by the CSU missile_nlos_init.
 - (1) Data structure nlos_miss_char. This shared data structure holds the performance limitations and characteristics for the nlos missile. The data structure is an array of 20 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.48. NLOS MISSILE CHARACTERISTICS DATA ARRAY.

- (2) Data structure nlos_miss_poly_deg. This shared data structure holds the polynomial degree data defining the size if the polynomial arrays used in this CSU. The data structure is an array of 5 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.49. NLOS MISSILE POLYNOMIAL DEGREE DATA ARRAY.
- (3) Data structure nlos_burn_speed_coeff. This shared data structure holds the burn speed coefficients for the burn speed polynomial. The data structure is an array of 5 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.50. NLOS MISSILE BURN SPEED DATA ARRAY.
- (4) Data structure nlos_coast_speed_coeff. This shared data structure holds the coast speed coefficients for the coast speed polynomial. The data structure is an array of 5 elements. The data structure is given default initialization during compilation. Detailed definition of each element is described in TABLE 5.1.51. NLOS MISSILE COAST SPEED DATA ARRAY.
- j. <u>Local data files</u>. The following data files are part of the local data of the CSU missile nlos init.
 - (1) Data file "simnet/data/ms_nl_ch.d". This data file includes the performance limitations and characteristics of the nlos missile. The data file consists of a maximum of 20 records. Access of the file is "read only" and sequential. Each record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global nlos_miss_char data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.48. NLOS MISSILE CHARACTERISTICS DATA ARRAY. The second field is for documentation purposes only.
 - (2) Data file "simnet/data/ms_nl_bs.d". This data file includes the burn speed degree of polynomial and coefficients data for the nlos missile. The data file consists

of a maximum of 6 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global nlos_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.49. - NLOS MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global nlos_burn_speed_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.50. - NLOS MISSILE BURN SPEED DATA ARRAY. The second field is for documentation purposes only.

(3) Data file "simnet/data/ms_nl_cs.d". This data file includes the coast speed degree of polynomial and coefficients data for the nlos missile. The data file consists of a maximum of 6 records. Access of the file is "read only" and sequential.

The first record consists of two fields. The first field is an integer number, and the second field is a character string of a maximum length of 64. The first field is assigned to an element of the global nlos_miss_poly_deg data array. This field has a value consistent with the characteristics outlined in TABLE 5.1.49. - NLOS MISSILE POLYNOMIAL DEGREE DATA ARRAY. The second field is for documentation purposes only.

Each remaining record consists of two fields. The first field is a float number, and the second field is a character string of a maximum length of 64. The first field is assigned to sequential elements of the global nlos_coast_speed_coeff data array. These fields have values consistent with the characteristics outlined in TABLE 5.1.51. - NLOS MISSILE COAST SPEED DATA

22 January 1993 Reference # W003036 Rev. 0.0

ARRAY. The second field is for documentation purposes only.

k. <u>Limitations</u>. There are no additional limitations or unusual features that restrict the performance of the CSU missile_nlos_init.

5. CSCI data.

This section describes only those global data elements modified or added within the CSCI under this delivery order. For ease in readability and maintenance, the information is provided in tables.

5.1. Data elements internal to the CSCI.

a. For data elements internal to the CSCI, the following tables describe the data arrays and the data.

TABLE 5.1. - SUMMARY of DATA ARRAYS

NAME of DATA ARRAY	DESCRIPTION (NOTE 1)	Size of ARRAY	DATA TYPE (NOTE 2)	FREQUENCY of CALCULATION	DECLARATION/DEFAULT HODULE	DATA SOURCE
easp_ose	This data array consists of characteristics and parameters describing the physical vehicle and its aerodynamic performance and control.	100	REAL	15 Hz	rwa_eerodyn.c	simnet/data/rwa_aero.d
sero_hit	This data array consists of initial values for positions of the control inputs, stabilator augementation integrators, attitude control integrators, and hover aumentation integrators.	20	REAL	15 Hz	rwa_aerodyn.c	sinnet/data/rw_ae_in.d
sero_simple	This data array consists of characteristics and parameters describing the physical vehicle and its aerodynamic performance and control in the "simple" mode.	20	REAL .	15 Hz	rwa_aerodyn.c	simnet/data/rw_ae_sp.d
sero_staalth	This data array consists of characteristics and parameters describing the physical vehicle and its aerodynamic performance and control in the 'steath' mode.	20	REAL	15 Hz	rwa_aerodyn.c	simnet/dala/rw_ae_sl.d
eußine_data	This data array consists of characteristics and parameters describing the engine performance and control.	20	REAL	15 Hz	rwa_engine.c	simnet/data/rwa_engn.d
esegine_init_data	This data array consists of initial values of the current engine state, performance, and control.	10	REAL	15 Hz	rwa_engine.c	simnet/data/rw_en_in.d
ejep"jejs"aujBua	This data array consists of the initial values for fight time, engine status, number of engines, and powertrain damage status.	10	Įųį	15 Hz	rwa_engine.c	simnet/data/rw_en_st.d
kinemat_data	This data array consists of kinematic constants and limits for the vehicle and its control.	20	REAL	15 Hz	rwa_kinemat.c	simnet/data/rwa_kine.d
kinemat_indt_data	This data array consists of initial values for kinematic variables including velocity, angle-of-attack, pitch, altitude, heading, and g-force.	30	REAL	15 Hz	rwa_kinemat.c	simnet/data/rw_ki_in.d
adat_miss_char	This data array consists of characteristics and parameters describing an ADAT missile system and its performance constraints.	10	REAL	15 Hz	miss_atad.c	simnet/data/ms_adchd
edat_miss_poly_deg	This data array consists of values of the degree of each polynomial equation used to compute the burn speed, the coast speed, maximum cosines of turns while powered, maximum cosines of turns while unpowered, and temporal bias for the ADAT missile.	ક	int	15 Hz	miss_atad.c	See DESCRIPTION of individual elements of TABLE
gar paads und isbe	This data array consists of the coefficients for a polynomial aquation defining the ADAT missile burn speed with repect to time in the form using the Newton Rapisson method.	01	REAL	15Hz	mise_atad.c	simnet/data/ms_ad_bs.d
jjaos"paads"seeos"upe	This data array consists of the coefficients for a polynomial equation defining the ADAT missile coast speed with repect to time in the form using the Newton-Raphaon method.	10	REAL	15 Hz	miss_atad.c	simnet/data/ms_ed_cs.d
adal_bum_tum_coeff	This data array consists of the coefficients for a polynomial equation defining the ADAT missile maximum cosine of turn while powered with repect to time in the form using the Newton-Raphaon method.	01	REAL	15 Hz	miss_atad.c	simnet/data/me_ad_bt.d
adat_cosst_turn_coeff	This data array consists of the coefficients for a polynomial equation defining the ADAT missile maximur ordine of turn while unpowered with repect to time in the form using the Newton-Raphson method.	10	REAL	15 Hz	miss_atad.c	simnet/data/ms_ad_ct.d

NAME OF DATA ARRAY	DESCRIPTION PROTE 1	SIZE of ARRAY	DATA TYPE (NOTE 2)	FREQUENCY of	DECLARATION/DEFAULT	DATA SOURCE
adat_temp_bias_coeff	This data array consists of the coefficients for a polynomial equation defining the ADAT missile temporal bias with repect to time in the form using the Newton-Raphson method.	10	REAL	15 Hz	miss_atad.c	simnet/data/ms_ad_tb.d
hellfr_miss_char	This data array consists of characteristics and parameters describing a Helline missile system and its performance constraints.	15	REAL	15 Hz	miss_hellfr.c	sinnet/data/ms_hf_ch.d
hellft_miss_poly_deg	This data array consists of values of the degree of each polynomial equation used to compute the time-of-flight, the burn speed, and the coast speed for the Hellfire missile.	င	int	15 Hz	miss_hellfr.c	See DESCRIPTION of individual elements of TABLE
hellfire_tof_coeff	This data array consists of the coefficients for a polynomial equation defining the Hellfire missie time-of-flight with report to time in the form using the Newton-Raphson method.	10	REAL	15 Hz	miss_hellfr.c	simnet/data/ms_hf_tf.d
helifite_burn_speed_coeff	This data array consists of the coefficients for a polynomial equation defining the Hellfire missile burn speed with repect to range in the form using the Newton-Raphson method.	01	REAL	15 Hz	miss_hellfr.c	simnet/data/ms_hf_bs.d
hellfire_coast_speed_coeff	This data array consists of the coefficients for a polynomial equation defining the Hellitre missile coast speed with repect to time in the form using the Newton-Eapheon method.	10	REAL	15 Hz	miss_hellfr.c	simnet/data/ms_hf_cs.d
kem miss char	This data array consists of characteristics and parameters describing a KEM missile system and its performance constraints.	10	REAL	15 Hz	misskem.c	simnet/data/ms_km_ch.d
kem_miss_poly_deg	This data array consists of values of the degree of each polymornial equation used to compute the burn speed, the coast speed, maximum cosines of turns while powered, and maximum cosines of turns while unpowered for the KEM missile.	ဟ	int .	15 Hz	misskem.c	See DESCRIPTION of Individual elements of TABLE.
kem_burn_speed_coeff	This data array consists of the coefficients for a polynomial equation defining the KEM missile burn speed with repect to time in the form using the Newton-Raphson method.	10	REAL	15 Hz	misskem.c	simnet/data/ms_km_bs.d
kem_coast_speed_coeff	This data array consists of the coefficients for a polynomial equation defining the KEM missile coest speed with repect to time in the form using the Newton Raphson method.	10	REAL	15 Hz	misskem.c	simnet/data/ms_km_cs.d
kem_burn_turn_coeff	This data array consists of the coefficients for a polynomial equation defining the KEM missile maximum cosine of turn while powered with repect to time in the form using the Newton-Raphson method.	10	REAL	15 Hz	misskem.c	simnet/data/ms_km_bt.d
kem_coast_lum_coeff	This data array consists of the coefficients for a polynomial equation defining the KEM misaile maximum coaline of thin while unpowered with repect to time in the form using the Newton-Raptson method.	10	REAL	35 Hz	misskem.c	simnet/dala/ms_km_ct.d
maverick_miss_char	This data array consists of characteristics and parameters describing a Maverick missile system and its performance constraints.	15	REAL	15 Hz	miss_maverck.c	simnet/data/ms_mk_ch.d

NAME OF DATA ARRAY	DESCRIPTION (MOTE 1)	SIZE of ARCAY	DATA TYPE [MOTE 2]	FREQUENCY of CALCULATION	DECLARATION/DEFAULT MODULE	DATA SOURCE
mavenck_miss_poly_deg	Inis data array consists of values of the degree of each polynomial equation used to compute the burn speed and the coast speed for the Maverick missile.	2	ži	15 Hz	miss_maverck.c	See DESCRIPTION of individual elements of TABLE
maverick_burn_speed_coeff_	This data array consists of the coefficients for a polynomial equation defining the Maverick missile burn speed with repect to time in the form using the Newton-Raphson method.	5	REAL	15 Hz	miss_maverck.c	simnet/data/ms_mk_bad
maverick_coast_speed_coeff	This data array consists of the coefficients for a polynomial equation defining the Maverick missile coast speed with repect to time in the form using the Newton-Raphson method.	5	REAL	15 Hz	miss_maverck.c	simnet/data/ms_mk_cs.d
nlos_miss_char	This data array consists of characteristics and parameters describing a NLOS missile system and its performance constraints.	20	REAL	15 Hz	miss-nlos.c	simnet/data/ms_nl_ch.d
nios_miss_poly_deg	This data array consists of values of the degree of each polynomial equation used to compute the time-of-flight, the burn speed, and the cost speed for the NLCS missile.	w	15	15 Hz	miss-nlos.c	See DESCRIPTION of individual elements of TABLE
nlos_burn_speed_coeff	This data array consists of the coefficients for a polynomial equation defining the NLOS missile burn speed with repect to time in the form using the Newton-Raphson method.	S	REAL	15 Hz	miss-nios.c	simnet/data/ms_nl_bs.d
nlos_coast_speed_coeff	This data array consists of the coefficients for a polynomial equation defining the NLOS missile coast speed with repect to time in the form using the Newton-Raphson method.	S	REAL	15 Hz	miss-nlos.c	simnet/data/ms_nl_cs.d
stinger_miss_char	This data array consists of characteristics and parameters describing a Stinger missile system and its performance constraints.	15	REAL	15 Hz	miss_stinger.c	simnet/data/ms_st_ch.d
stinger_miss_poly_deg	This data array consists of values of the degree of each polynomial equation used to compute the burn speed and the coast speed for the Stinger missile.	2	וען	15 Hz	miss_stinger.c	See DESCRIPTION of Individual elements of TABLE
stinger_burn_speed_coeff	This data array consists of the coefficients for a polynomial equation defining the Stinger missile burn speed with repect to time in the form using the Newton-Raphson method.	2	REAL	15 Hz	miss_stinger.c	simnet/data/ms_st_bs.d
stinger_coast_speed_coeff	This data array consists of the coefficients for a polynomial equation defining the Stinger misale coast speed with repect to time in the form using the Newton-Rapison method.	4	REAL	15 Hz	miss_stinger.c	simnet/data/ms_st_cs.d
tow_miss_char	This data array consists of characteristics and parameters describing a TOW missile system and its performance constraints.	ş	REAL	15 Hz	miss_tow.c	simnet/data/ms_tw_ch.d
tow_miss_poly_deg	This data array consists of values of the degree of each polynomial equation used to compute the burn speed, the coast speed, maximum cosines of turns while powered, and maximum cosines of turns while unpowered for the TOW missile.	જ	isi	15 Hz	miss_tow.c	See DESCRIPTION of individual elements of TABLE
tow_burn_speed_coeff	This data array consists of the coefficients for a polynomial equation defining the TOW missile burn speed with repect to time in the form using the Newton-Raphson method.	ဟ	REAL	15 Hz	miss_tow.c	simnet/data/ms_tw_bs.d

DATA SOURCE	simnet/data/ms_lw_cs.d	simnet/data/ms_tw_bt.d	simnet/data/ms_tw_ct.d	simnet/data/ms_at_ch.d	See DESCRIPTION of individual elements of TABLE	simnet/data/ms_at_bs.d	simnet/data/ms_at_cs.d	simnet/data/ms_at_bt.d	simnet/data/ms_at_ct.d	simnet/data/rkt_hydr.d	simnet/data/rwa_hydr.d
DECLARATION/DEFAULT MODULE	miss_tow.c	miss_tow.c	miss_tow.c	miss_atgm.c	miss_atgm.c	miss_atgm.c	miss_atgm.c	miss_algm.c	miss_atgm.c	rkt_hydra.c	rwa_hydra.c
FREQUENCY of CALCULATION	15 Hz	15 Hz	15 Hz	15 Hz	15 Hz	15 Hz	15 Hz	15 Hz	15 Hz	15 Hz	15 Hz
DATA TYPE (NOTE 1)	REAL	MAX_COS_COEFF	MAX_COS_COEFF	REAL	14	REAL	REAL	MAX_COS_COEFF	MAX_COS_COEFF	REAL	REAL
SIZE of ARRAY	s.	3×2	3 x &	S	٠ •	s.	S	3×2	9 x 4	12	7
DESCRIPTION	This data array consists of the coefficients for a polynomial equation defining the TOW missile coast speed with repect to time in the form using the Newton-Raphson method.	This two-dimensional data array consists of the coefficients for three polynomial equations is dewards, upwards, and downwards movement! defining the TOW missile maximum cosine of turn while powered with repect to time in the form using the Newton-Raphson method.	This two-dimensional data array consists of the coefficients for three polynomial equations [sidewards, upwards, and downwards movemen!] defining the TOW missile maximum costie of turn while unpowered with repect to time in the form using the Newton-Rapheon method.	This data array consists of characteristics and parameters describing an ATGM missile system and its performance constraints.	This data array consists of values of the degree of each polynomial equation used to compute the burn speed, the coast speed, maximum cosines of turns while powered, and maximum cosines of turns while unpowered for the ATGM missile.	This data array consists of the coefficients for a polynomial equation defining the ATGM missile burn speed with repect to time in the form using the Newton-Raptson method.	This data array consists of the coefficients for a polynomial equation defining the ATGM missile coast speed with repect to time in the form using the Newton-Raphson method.	This two-dimensional data array consists of the coefficients for three polynomial equations [sidewards, upwards, and downwards movement defining the ATCM missile maximum cosine of turn while powered with repect to time in the form using the Newton-Ranhod.	This two-dimensional data array consists of the coefficients for three polynomial equations [sidewards, upwards, and downwards movement defining the ATCM missile maximum cosine of turn while unpowered with repect to time in the form using the Navina-Raphaon method.	This data array consists of characteristics and parameters describing a Hyra 70 missile burst.	This data array consists of characteristics and parameters describing a missile launcher
NAME of DATA ARRAY	tow_coast_speed_coeff	tow_burn_turn_coeff	tow_coast_turn_coeff	tow_miss_char pons x	tow_miss_poly_deg twom st.	tow_burn_speed_coeff (NOTE)	tow_coast_speed_coefff normy	tow_burn_turn_coeff (sort st	tow_coast_lum_coeff hom y	rkt_hydra_char	hydra_rkt_char

NAME OF DATA ARRAY	DESCRIPTION	SIZE of ARRAY	DATA TYPE [MOTE 1]	FREQUENCY of CALCULATION	DECLARATION/DEFAULT MODULE	DATA SOUNCE
anp [jech_char	This data array consists of characteristics and parameters describing a Rechette flyout.	3	REAL	15 Hz	sup_flech.c	simmet/data/sub_flec.d
flechette_speed_coeff	This data array consists of the coefficients for a polynomial equation defining the flechette flyout speed with repect to time in the form using the Newton-Raphson method.	un	REAL	15 Hz	gne Jectro	simnet/data/flec_spd.d
sup_m/3_char	This data array consists of characteristics and parameters describing M73 bomblettes falling.	3	REAL	15 Hz	ဘင္ညယ [ာ] qne	simnet/data/aub_m73.d

See influtbuil TABLES for description of Influtbuil elements. MOTE 1

ist is a "C" type for integer. REAL is a "C" macro DEFRE for type Reat. MAX_COS_COSEF is a "C" macro DEFRE for a structure of REAL types. The ATOR missile module uses the same data sursy names as the TOW missile.

NOTE 3

TABLE 5.1.1. - AERODYNAMICS DATA ARRAY

MOMENTO PRESTLY. 18mm 20000 1874 default declaration via serolytic lensory joint 1 mm	NAME OF DATA ELEMENT	DESCRIPTION	UNITS of MEASUNE	DEFAULT	DATA TYPE [MOTE 1]	CSU WHERE SET OR	CSU WHERE USED	DATA SOURCE
WANENT_OF_INERTIAL_2 International Control of Contr	sero_data[0]	MOMENT_OF_INERTIA_X;	rad/sec	50000.0	REAL	default declaration rwa_aerodyn.c	[rwa_aerodyn.claerodyn_simul	simnet/data/rwa_aero.d
MONENT_OF_PREFILE_A. 1887-10 1881. International content and produced produced in the second content and analysis are adopted to the second content and analysis are another content and another co	sero_data[1]	MOMENT_OF_INERTIA_Y;	kg-m•2	50000.0	REAL	default declaration rwa_aerodyn.c	[rwa_aerodyn.c]aerodyn_init	simnet/data/rwa_aero.d
MRRAME_MASS Fig. 6810 REAL defail declaration rea_seroins rea_seroins rea_seroins rea_seroins rea_seroins rea_sero	aero_data[2]	MOMENT_OF_INERTIA_Z;	kg-m•2	50000.0	REAL	default declaration rwa_aerodyn.c	[rwa_aerodyn.c]aerodyn_init	simnet/data/rwa_aerc.d
GRUN ANCE LAASS 159 1874	sero_data[3]	AIRFRAME_MASS;	k k	4881.0	REAL	default declaration rwa_serodyn.c	[rwa_aerodyn.claerodyn_simul	simnet/data/rwa_aero.d
C.A.C. X; C.A.	sero_dats[4]	ORDINANCE_MASS;	K8	1591.0	REAL	default declaration rwa_aerodyn.c	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
CG.AC.X;	sero_data[5]	GRAV_CONSTANT;		8.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
CG.AC.Y;	aero_data[6]	cc_Ac_X;		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
VIRTUAL_WING_CREA; M=2 250 REAL defail clear issue receptor. Pres_secolyn_cleredyn_hind P	sero_dats[7]	CG_AC_Y;		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simu]	simnet/data/rwa_aero.d
WIRTUAL_WING_COP_AC_X; REAL Inva_serolyn_linit Inva_serolyn_linit Inva_serolyn_linit WIRTUAL_WING_COP_AC_X; 0.0 REAL Inva_serolyn_linit Inva_serolyn_linit WING_LIFT_COEFFICIBAT_FIT_3; 0.0	sero_data[8]	cc_Ac_2;		-0.1	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
VIRTUAL_WING_COP_AC_X; 0.00 REAL Insu aerodyn_linit Insu_aerodyn_linit Insu_aerodyn	sero_data[9]	VIRTUAL_WING_AREA;	Z.,W	25.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
WIRTUAL_WING_COF_AC_Y; 0.0 REAL default detantion rea_serodync. Irva_serodync.	sero_data[10]	VIRTUAL_WING_COP_AC_X;		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
WING_LIFT_COEFRCIENT_FIT_5: 0.0 REAL default dectaration rwa_serodync. Iwa_serodync.learedyn_lint Iwa_serodync.learedyn_lint WING_LIFT_COEFRCIENT_FIT_5: 0.0 REAL default dectaration rwa_serodync. Iwa_serodync.learedyn_lint Iwa_serodync.learedyn_lint WING_LIFT_COEFRCIENT_FIT_5: 0.0 REAL default dectaration rwa_serodync. Iwa_serodync.learedyn_lint WING_LIFT_COEFRCIENT_FIT_5: 0.0 REAL default dectaration rwa_serodync. Iwa_serodync.learedyn_lint WING_LIFT_COEFRCIENT_FIT_5: 0.0 REAL default dectaration rwa_serodync. Irwa_serodync.learedyn_lint WING_STALL_AOA; degaul dectaration rwa_serodync. Irwa_serodync.learedyn_lint Irwa_serodync.learedyn_lint WING_STALL_AOA; degault dectaration rwa_serodync. Irwa_serodync.learedyn_lint Irwa_serodync.learedyn_lint WSTAB_COP_AC_X; 0.0 REAL default dectaration rwa_serodync. Irwa_serodync.learedyn_lint VSTAB_COP_AC_X; 0.0 REAL default dectaration rwa_serodync. Irwa_serodync.learedyn_lint VSTAB_STALL_SGA; 0.0 REAL default dectaration rwa_serodync. Irwa_serodync.learedyn_lint WAIN_ROTOR_COP_AC_X; 0.0 REAL default dectaration rwa_serodync. <td>sero_data[11]</td> <td>VIRTUAL_WING_COP_AC_Y;</td> <td></td> <td>0.0</td> <td>REAL</td> <td>default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init</td> <td> rwa_aerodyn.claerodyn_init</td> <td>simnet/data/rwa_aero.d</td>	sero_data[11]	VIRTUAL_WING_COP_AC_Y;		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	rwa_aerodyn.claerodyn_init	simnet/data/rwa_aero.d
WING_LIFT_COEFFICIENT_FIT_3; 0.0 REAL default declaration rea_serodyn. [Ivas_serodyn.] into a_serodyn. [Ivas_serodyn.] into a_serodyn.] into a_serodyn. [Ivas_serodyn.] into a_serodyn.] into a_serodyn.] into a_serodyn. [Ivas_serodyn.] into a_serodyn.] into a_serodyn.] into a_serodyn.] into a_serodyn. [Ivas_serodyn.] into a_serodyn.] into a_	aero_data[12]	VIRTUAL_WING_COP_AC_Z;		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_init	simnet/data/rwa_aero.d
WING_LIFT_COEFFICIENT_FIT_2; 0.0 REAL default declaration rwa_serodyn. Inva_serodyn.learodyn_nimul WING_LIFT_COEFFICIENT_FIT_2; 1.0 REAL default declaration rwa_serodyn.learodyn_nimul Inva_serodyn.learodyn_nimul WING_LIFT_COEFFICIENT_FIT_2; 0.0 REAL default declaration rwa_serodyn.learodyn_nimul Inva_serodyn.learodyn_nimul WING_STALL_AOA: deg 30.0 REAL default declaration rwa_serodyn.learodyn_nimul Inva_serodyn.learodyn_nimul VSTAB_COP_AC_X; 0.0 REAL default declaration rwa_serodyn.learodyn_nimul Inva_serodyn.learodyn_simul VSTAB_COP_AC_X; 0.0 REAL default declaration rwa_serodyn.learodyn_nimul Inva_serodyn.learodyn_nimul VSTAB_COP_AC_X; 0.0 REAL default declaration rwa_serodyn.learodyn_nimt Inva_serodyn.learodyn_nimt WAIN_ROTOR_COP_AC_X; 0.0 REAL default declaration rwa_serodyn.learodyn_nimt	sero_data[13]	WING_UIT_COEFFICIENT_FIT_3;		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn_c]aerodyn_init	[rwa_aerodyn.claerodyn_simul	simnet/data/rwa_aero.d
WING_LIFT_COEFICIENT_FIT_1; 1.0 REAL default declaration rwa_serodyn.clerrodyn_simul Irwa_serodyn.clerrodyn_simul WING_LIFT_COEFICIENT_FIT_0; 0.0 REAL default declaration rwa_serodyn.clerrodyn_simul Irwa_serodyn.clerrodyn_simul WING_STALL_AOA: deg 30.0 REAL default declaration rwa_serodyn.clerrodyn_simul Irwa_serodyn.clerrodyn_simul VSTAB_COP_AC_X; 0.0 REAL default declaration rwa_serodyn.clerrodyn_simul Irwa_serodyn.clerrodyn_simul VSTAB_STALL_SSA; deg 60.0 REAL default declaration rwa_serodyn.clerrodyn_simul Irwa_serodyn.clerrodyn_simul MAIN_ROTOR_COP_AC_X; 0.0 REAL default declaration	sero_deta[14]	WING_LIFT_COEFFICIENT_FIT_2;		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	Irwa_aerodyn.claerodyn_simul	simnet/data/rwa_aero.d
WING_LIFT_COEFFICIENT_FILE 0.0 REAL default declaration rwa_aerodyn.clerodyn_lint (Iwa_aerodyn.clerodyn_lint (Iwa_aerodyn.clerodyn_lin	sero_data[15]	WING_LIFT_COEFFICIENT_FIT_1;		1.0	REAL	default declaration rwa_aerodyn.c	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
WING_STALL_AOA; deg 30.0 REAL default declaration range aerodym. Irwa_serodym.claerodym_simul VSTAB_AREA; m*2 30 REAL default declaration range aerodym. Irwa_serodym.claerodym_simul VSTAB_COP_AC_X; 0.0 REAL default declaration range aerodym.claerodym.claerodym.simul Irwa_serodym.claerodym.simul VSTAB_COP_AC_X; 0.0 REAL default declaration range aerodym.claerodym.simul Irwa_serodym.claerodym.simul VSTAB_COP_AC_X; 0.0 REAL default declaration rangerodym.claerodym.lint Irwa_serodym.claerodym.lint VSTAB_LIF_COEFICIENT_I; 5.0 REAL default declaration rangerodym.claerodym.lint Irwa_serodym.claerodym.lint VSTAB_LIF_COEFICIENT_I; 6.0 REAL default declaration rangerodym.claerodym.lint Irwa_serodym.claerodym.lint VSTAB_LIF_COEFICIENT_I; 6.0 REAL default declaration rangerodym.claerodym.lint Irwa_serodym.claerodym.simul MAIN_ROTOR_COP_AC_X; 0.0 REAL Irwa_serodym.claerodym.lint Irwa_serodym.claerodym.simul MAIN_ROTOR_COP_AC_X; 0.0 REAL Irwa_serodym.claerodym.simul Irwa_serodym.claer	sero_data[16]	WING_UIFT_COEFFICIENT_FIT_0;		0.0	REAL	default declaration rwa_aerodyn.c frwa_aerodyn.claerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
VSTAB_AREA; m*2 30 REAL default declaration rwa_serodyn. init Irwa_serodyn.laterodyn_init Irwa_serodyn.claerodyn_init Irwa_serodyn.claerodyn_claerodyn_init Irwa_serodyn.claerody	sero_data[17]	WING_STALL_AOA;	g _{op}	30.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
VSTAB_COP_AC_X; 0.0 REAL default declaration rwa_aerodyn.claerodyn_bit Irwa_aerodyn.claerodyn_bit Irwa_aerodyn.claerodyn_bit VSTAB_COP_AC_Y; -9.1 REAL default declaration rwa_aerodyn.claerodyn_bit Irwa_aerodyn.claerodyn_bit VSTAB_COP_AC_Z; 6.0 REAL Graut default declaration rwa_aerodyn.claerodyn_bit Irwa_aerodyn.claerodyn_bit VSTAB_LIFT_COEFFICIENT_I; 5.0 REAL Graut default declaration rwa_aerodyn.claerodyn_bit Irwa_aerodyn.claerodyn_bit VSTAB_STALL_SSA; 60.0 REAL Graut default declaration rwa_aerodyn.claerodyn_bit Irwa_aerodyn.claerodyn_bit MAIN_ROTOR_COP_AC_X; 0.0 REAL Graut default declaration rwa_aerodyn.claerodyn_lit Irwa_aerodyn.claerodyn_lit MAIN_ROTOR_COP_AC_X; 0.0 REAL Graut declaration rwa_aerodyn.claerodyn_claerodyn_claerodyn_claerodyn.claerodyn_claerodyn_claerodyn_claerodyn_claerodyn_claerodyn_lit Irwa_aerodyn.claerodyn_cl	sero_date[18]	VSTAB_AREA;	m-2	æ	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
VSTAB_COP_AC_Y; -9.1 REAL default declaration rwa_serodyn.c. Irwa_serodyn.claerodyn_init Irwa_serodyn.claerodyn_init VSTAB_LIFT_COEFFICIENT_1; 5.0 REAL default declaration rwa_serodyn.c. Irwa_serodyn.claerodyn_init Irwa_serodyn.claerodyn_init VSTAB_LIFT_COEFFICIENT_1; 6.0 REAL default declaration rwa_serodyn.c. Irwa_serodyn.claerodyn_init Irwa_serodyn.claerodyn_init VSTAB_STALL_SSA; deg 6.0 REAL default declaration rwa_serodyn.c. Irwa_serodyn.claerodyn_simul MAIN_ROTOR_COP_AC_X; 0 REAL default declaration rwa_serodyn.c. Irwa_serodyn.claerodyn_simul MAIN_ROTOR_COP_AC_Y; 0 REAL default declaration rwa_serodyn.c. Irwa_serodyn.claerodyn_simul MAIN_ROTOR_COP_AC_Y; 0 REAL default declaration rwa_serodyn.c. Irwa_serodyn.claerodyn_simul MAIN_ROTOR_COP_AC_Z; 0 REAL default declaration rwa_serodyn.c. Irwa_serodyn.claerodyn_simul MAIN_ROTOR_MAX_THRUST; N 123500.0 REAL default declaration rwa_serodyn.c. Irwa_serodyn.c. Irwa_s	sero_data[19]	VSTAB_COP_AC_X;		0:0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
VSTAB_COP_AC_Z; 0.0 REAL default declaration rwa_aerodyn.claerodyn_lnit Irwa_aerodyn.claerodyn_lnit VSTAB_LIFT_COEFICIENT_I; 5.0 REAL default declaration rwa_aerodyn.claerodyn_lnit Irwa_aerodyn.claerodyn_lnit VSTAB_STALL_SSA; deg 66.0 REAL default declaration rwa_aerodyn.claerodyn_lnit Irwa_aerodyn.claerodyn_lnit MAIN_ROTOR_COP_AC_X; 0.0 REAL default declaration rwa_aerodyn.claerodyn_simul Irwa_aerodyn.claerodyn_simul MAIN_ROTOR_MAX_THRUST; N 123500.0 REAL default declaration rwa_aerodyn.claerodyn_lnit MAIN_ROTOR_MAX_THRUST; N 123500.0 REAL default declaration rwa_aerodyn.claerodyn_lnit	sero_data[20]	VSTAB_COP_AC_Y;		-9.1	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
VSTAB_LIFT_COEFFICIENT_1; 5.0 REAL default declaration rwa_serodyn.c Irwa_serodyn.claerodyn_liit VSTAB_STALL_SSA; deg 60.0 REAL Irwa_serodyn.claerodyn_liit Irwa_serodyn.claerodyn_simul MAIN_ROTOR_COP_AC_X; 0.0 REAL default declaration rwa_serodyn.claerodyn_liit Irwa_serodyn.claerodyn_simul MAIN_ROTOR_COP_AC_X; 0.0 REAL default declaration rwa_serodyn.claerodyn_liit Irwa_serodyn.claerodyn_simul MAIN_ROTOR_COP_AC_X; 0.0 REAL default declaration rwa_serodyn.claerodyn_simul Irwa_serodyn.claerodyn_simul MAIN_ROTOR_COP_AC_Z; 0.0 REAL default declaration rwa_serodyn.claerodyn_simul Irwa_serodyn.claerodyn_simul Irwa_serodyn.claerodyn_liit Irwa_serodyn.claerodyn_liit Irwa_serodyn.claerodyn_simul Irwa_serodyn.claerodyn_simul MAIN_ROTOR_WAX_THRUST; N 123500.0 REAL default declaration rwa_serodyn.claerodyn_simul	sero_data[21]	VSTAB_COP_AC_Z;		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn_c]aerodyn_init	[rwa_aerodyn.c]aerodyn_init	simnet/data/rwa_aero.d
VSTAB_STAIL_SSA; deg 60.0 REAL default declaration rwa_aerodyn.c Irwa_aerodyn.claerodyn_lnit Irwa_aerodyn.claerodyn_simul MAIN_ROTOR_WAX_THRUST; N 123500.0 REAL default declaration rwa_aerodyn.c Irwa_aerodyn.claerodyn_lnit	sero_deta[22]	VSTAB_LIFT_COEFFICIENT_1;		5.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	Irwa_aerodyn.c]aerodyn_init	simnet/data/rwa_aero.d
MAIN_ROTOR_COP_AC_X; 0.0 REAL fiva_aerodyn.claerodyn.claerodyn.claerodyn.lnit Irwa_aerodyn.claerodyn.lnit	sero_deta[23]	VSTAB_STALL_SSA;	Sap	0.09	REAL	default declaration rwa_aerodyn.c frwa_aerodyn.cjaerodyn_init	[rwa_aerodyn.c]aerodyn_simu]	simnet/data/rwa_aero.d
MAIN_ROTOR_COP_AC_Y; 0.0 REAL five aerodyn.claerodyn.	sero_data[24]	MAIN_ROTOR_COP_AC_X;		0.0	REAL	default declaration rwa_aerodyn.c frwa_aerodyn.claerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
MAIN_ROTOR_COP_AC_Z; 2.0 REAL default declaration rwa_aerodyn.c. [rwa_aerodyn.c.] [r	sero_data[25]	MAIN_ROTOR_COP_AC_Y;		0.0	REAL	default declaration rwa_aerodyn.c (rwa_aerodyn.claerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
MAIN_ROTOR_MAX_THRUST; N 123500.0 REAL default declaration rwa_serodyn.c rwa_aerodyn.c rwa	sero_data[26]	MAIN_ROTOR_COP_AC_2;		2.0	REAL	default declaration rwa_aerodyn.c . [rwa_aerodyn.claerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
	sero_data[27]	MAIN_ROTOR_MAX_THRUST;	Z	123500.0	REAL	default declaration rwa_aerodyn.c rwa_aerodyn.claerodyn_init	frwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d

TABLE 5.1.1. - AERODYNAMICS DATA ARRAY [Continued]

MAIN_ROTOR_MAST_TILT; deg 25 REAL	ENT	DESCRIPTION	UNITS of MEASURE	DEFAULT	DATA TYPE (NOTE 1)	CSU WHERE SET OR	CSU WHERE USED	DATA SOURCE
MAIN_ROTOR_MAX_LOAD_TORQUE;		AIN_ROTOR_MAST_TILT;	Sup	2.5	REAL	default declaration twa_aerodyn.c	[rwa_aerodyn.claerodyn_simul	simnet/data/rwa_aero.d
MAIN_ROTOR_MAX_FITCH_MOMENT; N-m 100000 REAL		AIN_ROTOR_MAX_LOAD_TORQUE;	ĘŻ	76476.0	REAL	default declaration rwa_aerodyn.c	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
MAUN_ROTOR_TOR_UMONENT; N·m 1000000 REAL		AIN_ROTOR_MAX_PITCH_MOMENT;	F.Y	100000.0	REAL	default declaration rwa_aerodyn.c	[rwa_aerodyn.claerodyn_simu]	simnet/data/rwa_sero.d
MANN_ROTOR_LORQUE_COUPLING_ CAMN_ROTOR_CROUND_EFFECT		AIN_ROTOR_MAX_ROLL_MOMENT;	N-m	0'000001	REAL	default declaration rwa_aerodyn.c	[rwa_aerodyn.c]aerodyn_init	simnet/data/rwa_aero.d
MANN ROTOR_CROUND_EFFECT_		AIN_ROTOR_TORQUE_COUPLING_ AIN;		50	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.claerodyn_init	simnet/data/rwa_aero.d
TAIL_ROTOR_COP_AC_X;		AIN_ROTOR_CROUND_EFFECT_ ACTOR:		7 :0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
TAIL_ROTOR_COP_AC_Y;		NIL_ROTOR_COP_AC_X;		0.0	REAL,	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
TAIL_ROTOR_COP_AC_Z; N=		AIL_ROTOR_COP_AC_Y;		1.6-	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn_t]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
TAIL_ROTOR_MAX_THRUST;		NIL_ROTOR_COP_AC_Z;		0'0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn_t]aerodyn_init	[rwa_aerodyn.c]aerodyn_simu]	simnet/data/rwa_aero.d
P_DRAG_COEFF_CONST;		NIL_ROTOR_MAX_THRUST;	z	1.6069	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	Irwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
P_DRAG_TOSFF_CONST; 0.0 REAL P_DRAG_TAS_BREAK; 50.0 REAL P_DRAG_TAS_MAX; 100.0 REAL P_DRAG_TAS_MAX; 0.06 REAL TOTAL_WETTED_SURFACE_AREA; 6.0 REAL MAX_ATT_CTL_ANGLE_STOP; deg 6.0 REAL HOVER_SLOW_LIMIT; 5.15 REAL HOVER_AUG_PITCH_RESET_VALUE; 0.044 REAL MAX_ATT_CTL_ANGLE_NORM; deg 15.0 REAL MAX_ATT_CTL_ANGLE_NED; deg 15.0 REAL HOVER_MED_LIMIT; 5.15 REAL HOVER_MED_LIMIT; 2.5 REAL ATT_CTL_PRICH_P_GAIN; 0.05 REAL		NIL_ROTOR_MAX_LOAD_TORQUE;	Ę	1684.8	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn_t]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
P_DRAG_TAS_BREAK; 50.0 REAL P_DRAG_COEFF_BREAK; 0.02 REAL P_DRAG_TAS_MAX; 0.06 REAL P_DRAG_TAS_MAX; 0.06 REAL TOTAL_WETTED_SURFACE_AREA; 6.0 REAL MAX_ATT_CTL_ANGLE_STOP; deg 6.0 REAL MAX_ATT_CTL_ANGLE_NORM; deg 15.0 REAL MAX_ATT_CTL_ANGLE_NORM; deg 15.0 REAL MAX_ATT_CTL_ANGLE_NED; deg 10.0 REAL MAX_ATT_CTL_ANGLE_NED; deg 10.0 REAL HOVER_MED_LIMIT; 15.46 REAL HOVER_MED_LIMIT; 15.46 REAL ATT_CTL_PHTCH_P_GAIN; 2.5 REAL ATT_CTL_PHTCH_P_GAIN; 2.5 REAL ATT_CTL_PHTCH_P_GAIN; 2.5 REAL		DRAG_COEFF_CONST;		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.claerodyn_simu]	stmnet/data/rwa_aero.d
P_DRAG_COEFF_BREAK; 0.02 REAL P_DRAG_IAS_MAX; 100.0 REAL P_DRAG_COEFF_MAX; 0.06 REAL TOTAL_WETTED_SURFACE_AREA; 6.0 REAL MAX_ATT_CTL_ANGLE_STOP; deg 6.0 REAL MAX_ATT_DAMPING_FACTOR; 4.5 REAL HOVER_SLOW_LIMIT; 5.15 REAL HOVER_AUG_PITCH_RESET_VALUE; 0.044 REAL MAX_ATT_CTL_ANGLE_MED; deg 15.0 REAL MAX_ATT_CTL_ANGLE_MED; deg 15.0 REAL HOVER_MED_LIMIT; 15.46 REAL 15.46 REAL HOVER_MED_LIMIT; 2.5 REAL 2.5 REAL		DRAG_TAS_BREAK;		50.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
P_DRAG_TAS_MAX; 100.0 REAL P_DRAG_COEFF_MAX; 6.06 REAL TOTAL_WETTED_SURFACE_AREA; 660 REAL MAX_ATT_CTL_ANGLE_STOP; deg 6.0 REAL HOVER_SLOW_LIMIT; 5.15 REAL HOVER_SLOW_LIMIT; 5.15 REAL HOVER_AUG_PITCH_RESET_VALUE; 6.044 REAL MAX_ATT_CTL_ANGLE_MED; deg 15.0 REAL HOVER_MED_LIMIT; 15.46 REAL REAL HOVER_MED_LIMIT; 15.46 REAL REAL ATT_CTL_PITCH_P_GAIN; 2.5 REAL ATT_CTL_PITCH_P_GAIN; 2.5 REAL		DRAG_COEFF_BREAK;		0.02	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn_claerodyn_init	[rwa_aerodyn.c]aerodyn_init	simnet/data/rwa_aero.d
P_DRAG_COEFF_MAX; 0.06 REAL TOTAL_WETTED_SURFACE_AREA; 50.0 REAL MAX_ATT_CTL_ANGLE_STOP; deg 6.0 REAL MAX_ATT_CTL_ANGLE_STOP; 4.5 REAL HOVER_SLOW_LIMIT; 5.15 REAL HOVER_AUG_PITCH_RESET_VALUE; 0.044 REAL MAX_ATT_CTL_ANGLE_NORM; deg 15.0 REAL MAX_ATT_CTL_ANGLE_NED; deg 10.0 REAL HOVER_MED_LIMIT; 15.46 REAL REAL HOVER_MED_LIMIT; 2.5 REAL ATT_CTL_PITCH_P_GAIN; 2.5 REAL ATT_CTL_PITCH_P_GAIN; 2.5 REAL		DRAG_TAS_MAX;		100.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn_c]aerodyn_init	[rwa_aerodyn.c]aerodyn_init	simnet/data/rwa_aero.d
TOTAL_WETTED_SURFACE_AREA;		DRAG_COEFF_MAX;		90:0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
MAX_ATT_CTL_ANGLE_STOP; deg 6.0 REAL MAX_ATT_CALLANT; 4.5 REAL HOVER_SLOW_LIMIT; 5.15 REAL HOVER_AUG_PITCH_RESET_VALUE; 0.044 REAL MAX_ATT_CTL_ANGLE_NORM; deg 15.0 REAL MAX_ATT_CTL_ANGLE_NORM; deg 10.0 REAL MAX_ATT_CTL_ANGLE_SLOW; deg 6.0 REAL HOVER_MED_LIMIT; 15.46 REAL ATT_CTL_PITCH_P_GAIN; 2.5 REAL ATT_CTL_PITCH_P_GAIN; 0.05 REAL		JIAL_WETTED_SURFACE_AREA;		50.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn_c]aerodyn_init	[rwa_aerodyn_samu]	simnet/data/rwa_aero.d
MAX_ATT_DAMPING_FACTOR: 4.5 REAL		AX_ATT_CTL_ANGLE_STOP;	g.p	0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn_c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
HOVER_SLOW_LIMIT: 5.15 REAL HOVER_AUG_PITCH_RESET_VALUE: 0.044 REAL MAX_ATT_CTL_ANGLE_NORM; deg 6.0 REAL MAX_ATT_CTL_ANGLE_SLOW; deg 6.0 REAL HOVER_MED_LIMIT; 15.46 REAL ATT_CTL_PITCH_P_GAIN; 2.5 REAL		AX_ATT_DAMPING_FACTOR:		45	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simu]	simnet/data/rwa_aero.d
HOVER_AUG_PITCH_RESET_VALUE; MAX_ATT_CTL_ANGLE_NORM; MAX_ATT_CTL_ANGLE_NORM; MAX_ATT_CTL_ANGLE_MED; MAX_ATT_CTL_ANGLE_SLOW; HOVER_MED_LIMIT; ATT_CTL_PITCH_P_GAIN; ATT_CTL_PITCH_P_GAIN; ATT_CTL_PITCH_I CAIN; BEAL 15.46 REAL ATT_CTL_PITCH_P_GAIN; 0.05 REAL		OVER_SLOW_LIMIT;		5.15	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn_c]aerodyn_init	[rwa_aerodyn.claerodyn_simul	simnet/data/rwa_aero.d
MAX_ATT_CTL_ANGLE_NORM; deg 15.0 REAL MAX_ATT_CTL_ANGLE_SLOW; deg 6.0 REAL HOVER_MED_LIMIT; 15.46 REAL ATT_CTL_PITCH_P_GAIN; 2.5 REAL		OVER_AUG_PITCH_RESET_VALUE;		0.044	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
MAX_ATT_CTL_ANGLE_MED; deg 10.0 REAL MAX_ATT_CTL_ANGLE_SLOW; deg 6.0 REAL HOVER_MED_LIMIT; 15.46 REAL ATT_CTL_PITCH_P_GAIN; 2.5 REAL ATT_CTL_PITCH_P_GAIN; 0.05 REAL		AX_ATT_CTL_ANGLE_NORM;	Уфр	15.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
MAX_ATT_CTL_ANGLE_SLOW; deg 6.0 REAL HOVER_MED_LIMIT; 15.46 REAL ATT_CTL_PITCH_P_GAIN; 2.5 REAL ATT_CTL_PITCH_T_GAIN; 0.05 REAL AT		AX_ATT_CTL_ANGLE_MED;	Уaр	10.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
HOVER_MED_LIMIT; 15.46 REAL ATT_CTL_PITCH_P_GAIN; 2.5 REAL		AX_ATT_CTL_ANGLE_SLOW;	8ap	6.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_init	simnet/data/rwa_aero.d
ATT_CTL_PITCH_P_GAIN; ATT_CTL_PITCH_P_GAIN; ATT_CTL_PITCH_P_GAIN;		OVER_MED_LIMIT;		15.46	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_init	simnet/data/nva_aero.d
ATT CT BITCH I CAIN:		IT_CTI_PITCH_P_GAIN;		2.5	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	Irwa_aerodyn.cjaerodyn_simul	simnet/data/rwa_aero.d
		ATT_CTL_MTCH_I_GAIN;		0.05	REAL	default declaration rwa_aerodyn.c {rwa_aerodyn.c}aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d

TABLE 5.1.1. - AERODYNAMICS DATA ARRAY [Continued]

		MEASURE	VALLE	(MOTE 1)	CALCH ATEN	CSU WHERE USED	DATA SOURCE
	ATT_CTL_ROLL_P_CAIN;		5.0	REAL	default declaration rwa_aerodyn.c	[rwa_aerodyn.claerodyn_simul	simnet/data/rwa_aero.d
aero_data[56]	ATT_CTL_ROLL_I_GAIN;		90.02	REAL	default declaration rwa_aerodyn.c	[rwa_aerodyn.claerodyn_simul	simnet/data/rwa_aero.d
sero_data[57]	HOVER_AUC_ROLL_P_CAIN;		0.100	REAL	Irwa_aerodyn.cjaerodyn_init default declaration rwa_aerodyn.c	[rwa_aerodyn.c]aerodyn_simu!	simnet/data/rwa_aero.d
Carlotte Company	HOVER ALLO BOY I TOAIN.		100	1.00	Irwa aerodyn.claerodyn init		
	MOVER AUGENOLL LUAIN;		0.001	KEAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
	HOVER_AUG_MTCH_P_GAIN;		0.100	REAL	default declaration rwa_aerodyn.c	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
sero_data[60]	HOVER_AUG_PITCH_I_GAIN;		0.001	REAL	default declaration rwa_aerodyn.c	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
sero_data[61]	HOVER_AUG_YAW_P_GAIN;		10.0	REAL	default declaration twa_aerodyn.c	[rwa_aerodyn.claerodyn_init	simnet/data/rwa_aero.d
sero_data[62]	HOVER_AUG_YAW_I_GAIN;		5.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.claerodyn_init	simnet/data/rwz_aero.d
	HOVER_AUG_CLIMB_P_GAIN;		1.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
aero_data[64]	HOVER_AUC_CLIMB_I_GAIN;		0.5	REAL	default declaration rwa_aerodyn.c	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
sero_data[65]	MAX_STAB_AUG_PITCH_ROLL_CONTROL;		0.20	REAL	default declaration rwa_aerodyn.c	[rwa_aerodyn_c]aerodyn_simul	simnet/data/rwa_aero.d
sero_data[66]	MAX_STAB_AUG_YAW_CLIMB_CONTROL;		97.0	REAL	default declaration rwa_aerodyn.c	[rwa_aerodyn_slaerodyn_simu]	simnet/data/rwa_aero.d
sero_data[67]	ROLL_RATE_DAMPING_CAIN;		100000	REAL	default declaration rwa_aerodyn.c	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
sero_data[68]	PITCH_RATE_DAMPING_GAIN;		100000	REAL	default declaration rwa_aerodyn.c	[rwa_aerodyn.claerodyn_simul	simnet/data/rwa_aero.d
sero_data[69]	YAW_RATE_DAMPING_GAIN;		100000.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn_c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
sero_data[70]	VERTICAL_RATE_DAMPING_GAIN;		2000.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.claerodyn_simul	simnet/data/rwa_aero.d
sero_deta[71]	LATERAL_VELOCITY_DAMPING_CAIN;		1000.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.claerodyn_init	[rwa_aerodyn.claerodyn_init	simnet/data/rwa_aero.d
sero_dats[72]	LIFT_COEFF_VIRTUAL_WING;		9.0	REAL	default declaration rwa_aerodyn.c	[rwa_aerodyn.c]aerodyn_init	simnet/data/rwa_aero.d
sero_data[73]	OSWALD_EFFIC_FACTOR;		6:0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn_c]aerodyn_simul	simnet/data/rwa_aero.d
sero_data[74]	INDUCED_DRAG_COEFF;		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.claerodyn_init	[rwa_aerodyn_claerodyn_simul	simnet/data/rwa_aero.d
sero_deta[75]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
aero_data[76]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c	[rwa_aerodyn.c]eerodyn_simul	simnet/data/rwa_aero.d
sero_data[77]	NOT USED		0.0	REAL	default declaration rwa_serodyn.c	[rwa_aerodyn_laerodyn_simul	simnet/data/rwa_aero.d
sero_deta[78]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c	[rwa_aerodyn.claerodyn_simul	simnet/data/rwa_aero.d
sero_data[79]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.claerodyn_simul	simnet/data/rwa_aero.d
sero_data[60]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn_c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
sero_data[81]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	frwa_aerodyn.c aerodyn_simul	simnet/data/rwa_aero.d

TABLE 5.1.1. - AERODYNAMICS DATA ARRAY [Continued]

	DESCRIPTION	UNITS of MEASURE	DEFAULT VALLE	DATA TYPE [NOTE 1]	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOURCE
sero_data[82]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.claerodyn_simul	simnet/data/rwa_aero.d
sero_data[83]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
sero_data[84]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
sero_data[85]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c	[rwa_aerodyn.claerodyn_simul	simnet/data/rwa_aero.d
sero_data[86]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
sero_data[87]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.claerodyn_simul	simnet/data/rwa_aero.d
sero_dats[88]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.claerodyn_init	[rwa_aerodyn.claerodyn_simul	simnet/data/rwa_aero.d
sero_deta[69]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.claerodyn_init	[rwa_aerodyn.claerodyn_simul	simnet/data/rwa_aero.d
sero_data[90]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
sero_data[91]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
sero_data[92]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
sero_data[93]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
sero_data[94]	Not Used		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aerodyn_init	frwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
sero_data[95]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
sero_data[96]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
sero_data[97]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d
sero_data[98]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c aerodyn_tnit	(rwa_aerodyn.claerodyn_simul	simnet/data/rwa_sero.d
sero_data[99]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c	[rwa_aerodyn.c]aerodyn_simul	simnet/data/rwa_aero.d

MEAL to a 'T' macre DEPAE for type float. HOTE 1

TABLE 5.1.2. - AERODYNAMICS INITIALIZATION DATA ARRAY

NAME of DATA ELEMENT	DESCRIPTION	UNITS of MEASURE	DEFAULT	DATA TYPE (MOTE 1)	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOUNCE
sero_Ink[0]	cyclic pitch		0.0	REAL	default declaration rwa_aerodyn.c	[rwa_aerodyn.claero_simu]	simnet/dats/rw_se_ind
sero_Ink[1]	cyclic roll		0.0	REAL	default declaration rwa_aerodyn.c	[rwa_aerodyn.claero_init	simnet/data/rw_ae_in.d
sero_Ink[2]	collective		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_init	[rwa_aerodyn.c]aero_init	simnet/data/rw_ae_in.d
sero_ink[3]	pedal		0.0	REAL	default declaration rwa_aerodyn.c	[rwa_aerodyn.c]aero_simul	simnet/data/rw_se_in.d
sero_INK[4]	stab aug pitch integrator		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.cjaero_init	[rwa_aerodyn.c]aero_simul	simnet/data/rw_ae_in.d
sero_INR[5]	stab aug roll integrator		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_init	[rwa_aerodyn.c]aero_simul	simnet/data/rw_ae_in.d
sero_ink[6]	stab aug yaw integrator		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_init	[rwa_aerodyn.c]aero_simul	simnet/data/rw_se_in.d
sero_Ink[7]	stab aug climb integrator		0.0	REAL	default declaration rwa_aerodyn.c (rwa_aerodyn.c]aero_init	(rwa_aerodyn.c]aero_simul	simnet/data/rw_ae_in.d
sero_Ink[8]	attitude control pitch integrator		0:0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_init	[rwa_aerodyn.c]aero_simul	simnet/data/rw_se_in.d
sero_Ink[9]	attitude control roll integrator		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_init	[rwa_aerodyn.c]aero_simul	simnet/data/rw_ae_in.d
sero_Init[10]	hover aug pitch integrator		0.0	REAL	default declaration rwa_aerodyn.c	[rwa_aerodyn.c]aero_simul	simnet/data/rw_ae_in.d
sero_hit[11]	hover aug roll integrator		0.0	REAL	default declaration rwa_aerodyn.c	[rwa_aerodyn.c]aero_simul	simnet/data/rw_ae_in.d
aero_Int[12]	hover aug pitch angle		0.0	REAL	default declaration rwa_aerodyn.c frwa_aerodyn.claero_init	[rwa_aerodyn.c]aero_simul	simnet/data/rw_ae_in.d
aero_Init[13]	hover aug roll angle		0.0	REAL	default declaration rwa_aerodyn.c	[rwa_aerodyn.c]aero_stmul	simnet/data/rw_se_in.d
sero_Init[14]	NOTUSED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_init		simnet/data/rw_se_in.d
sero_Init(15)	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_init		simnet/data/rw_se_in.d
sero_int[16]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c		simnet/data/rw_se_in.d
aero_Init[17]	NOT USED	-	0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_init		simnet/data/rw_ae_in.d
sero_brit(18)	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_init		simnet/data/rw_ae_in.d
aero_Ink[19]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c		simnet/data/rw_se_in.d

NOTE 1 NEAL & B TO read DEFINE for type float.

TABLE 5.1.3. - AERODYNAMICS SIMPLE DATA ARRAY

NAME OF DATA	DESCRIPTION	UNITS of MEASURE	DEFAULT	DATA TYPE [NOTE 1]	CSU WHERE SET OR	CSU WHERE USED	DATA SOURCE
sero_simple[0]	MAX_HELICOPTER_POWER;	z	500000.0	REAL	default declaration rwa_aerodyn.c	[rwa_aerodyn.c]aero_simul	simnet/data/rw_ae_sp.d
earo_simple[1]	мах_нн;	rad	0.5	REAL	default declaration rwa_aerodyn.c	[rwa_aerodyn.c]aero_init	simnet/data/rw_ae_sp.d
aero_simple[2]	H_K1; gain on position error		6.0	REAL	default declaration rwa_aerodyn.c	[rwa_aerodyn.c]aero_init	simnet/data/rw_ae_sp.d
sero_simple[3]	H_K2; gain on gravity term of power setting		0.15	REAL	default declaration rwa_serodyn.c	[rwa_aerodyn.c]aero_simul	simnet/data/rw_ae_sp.d
sero_simple[4]	H_K); air drag coefficient		10.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_init	[rwa_aerodyn.c]aero_simul	simnet/data/rw_ae_ap.d
aero_simple[5]	H_KB; air drag coefficient	Вķ	100.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_init	[rwa_aerodyn.c]aero_simul	simnet/data/rw_ae_sp.d
sero_simple[6]	H_KP; power		150000.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_init	[rwa_aerodyn.c]aero_simul	simnet/data/rw_ae_sp.d
sero_simple[7]	H_KPR; pitch/roll constant, approximately pl/3		1.5	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_init	[rwa_aerodyn.c]aero_simul	simnet/data/rw_ae_sp.d
sero_simple[8]	H_KY; yaw constant, approximately pi/2		0.7	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_init	[rwa_aerodyn.c]aero_simul	simnet/data/rw_ae_sp.d
sero_simple[9]	H_KH; hover hold gain on velocity term		0.03	REAL	default declaration rwa_aerodyn.c	[rwa_aerodyn.c]aero_simul	simnet/data/rw_ae_sp.d
sero_simple[10]	H_CHH; collective hover hold gain		400000.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_init	[rwa_aerodyn.c]aero_simul	simnet/data/rw_ae_sp.d
sero_simple[11]	H_CL; coefficient of lift		100.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_init	[rwa_aerodyn.c]aero_simul	simnet/data/rw_se_sp.d
sero_stmple[12]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_init		simnet/data/rw_ae_sp.d
ero_simple[13]	NOT USED		0:0	REAL	default declaration rwa_aerodyn.c {rwa_aerodyn.c}aero_init		simnet/data/rw_ae_sp.d
sero_simple[14]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c		simnet/data/rw_ae_sp.d
sero_simple[15]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_init		simnet/data/rw_ae_sp.d
sero_simple[16]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_init		simnet/data/rw_ae_sp.d
sero_simple[17]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c (rwa_aerodyn.c)aero_init		simnet/data/rw_ae_sp.d
sero_simple[18]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.claero_init		simnet/data/rw_ae_sp.d
sero_simple[19]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c		simnet/data/rw_ae_sp.d

NOTE 1 REAL is a "C" made DEFRE for type float.

TABLE 5.1.4. - AERODYNAMICS STEALTH DATA ARRAY

NAME OF DATA	DESCRIPTION	UNITS OF MEASURE	DEFAULT	DATA TYPE (NOTE 1)	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOUNCE
sero_steakh[0]	H_FWD_MUL:		90.0	REAL	default declaration rwa_serodyn.c irwa_serodyn.claero steaith	[rwa_aerodyn.c]aero_stmul	simnet/data/rw_ae_si.d
sero_steakh[1]	H_SIDE_MUL:		30.0	REAL	default declaration rwa_aerodyn.c	[rwa_aerodyn.c]aero_stealth	simnet/data/rw_ae_sl.d
sero_steath[2]	H_COLL_MUL;		10.0	REAL	default declaration rwa_serodyn.c	[rwa_aerodyn.c]aero_stealth	simnet/data/rw_ae_sl.d
sero_steath[3]	MAX_TORQUE;		100000000000	REAL	default declaration rwa_aerodyn.c	irwa_aerodyn.c aero_simul	simnet/data/rw_ae_sl.d
sero_steath[4]	MAX_FORCE;		100000000000	REAL	default declaration rwa_aerodyn.c Irwa_aerodyn.claero_stealth	[rwa_aerodyn.c]aero_simul	simnet/data/rw_ae_sl.d
sero_steath[5]	MASS;	2 5	\$000.0	REAL	default declaration rwa_aerodyn.c	[rwa_aerodyn.c]aero_simul	simnet/data/rw_ae_sl.d
sero_steath[6]	INERTIA:		25000.0	REAL	default declaration rwa_aerodyn.c	[rwa_aerodyn.c]aero_simul	simnet/data/rw_ae_sl.d
sero_steath[7]	DEAD_ZONE;		0.03	REAL	default declaration rwa_aerodyn.c	[rwa_aerodyn.c]aero_simul	simnet/data/rw_ae_sl.d
sero_steath[8]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c		simnet/data/rw_ae_sl.d
sero_stealth[9]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c		simnet/data/rw_ae_sl.d
sero_staalth[10]	NOT USED		0.0	REAL	default declaration rwa_serodyn.c		simnet/data/rw_ae_sl.d
aero_stealth[11]	NOT USED		0.0	REAL	default declaration twa_aerodyn.c		simnet/data/rw_ae_st.d
sero_staafth[12]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c		simnet/data/rw_ae_sl.d
sero_staafth[13]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c		simnet/data/rw_ae_sl.d
sero_stealth[14]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_stealth		simnet/data/rw_ae_si.d
sero_stealth[15]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_stealth		simnet/data/rw_ae_sl.d
sero_stealth[16]	NOT USED	-	0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_stealth		simnet/data/rw_ae_sl.d
sero_steatth[17]	NOT USED		6.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_stealth		simnet/data/rw_ae_si.d
sero_staalth[18]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c [rwa_aerodyn.c]aero_stealth		simnet/data/rw_ae_si.d
sero_stealth[19]	NOT USED		0.0	REAL	default declaration rwa_aerodyn.c		simnet/data/rw_ae_si.d

HOTE 1 REAL to a "C" macro DEFME for type float.

TABLE 5.1.5. - ENGINE DATA ARRAY

ELENENT engine_data[0]	DESCRIPTION COVERNOR_ENGINE_SPRED_SETTING;	UNITS of MEASURE rad/sec	DEFAULT VALUE 1030,55	DATA TYPE MOTE 1] REAL		CSU WHERE SET OR CALCULATED default declaration twa_engine.c
engine_data[1]	COVERNOR_P_CAIN;		900		REAL	+
angine_data(2)	COVERNOR I CAIN;		0.05	+-	REAL	REAL default declaration rwa_engine.c
engine_data[3]	MAX_ENCINE_TORQUE;	E-Z	1031.6	_	REAL	qet
engine_data[4]	MIN_ENGINE_LOAD_TORQUE;	N-m	25.0		REAL	de de
angina_data[5]	MAX_ENGINE_PERCENT_POWER;	percent	12	_	REAL)
angina_data[6]	ENCINE_TORQUE_INTERCEPT;		1200.0	_	REAL	ge
engine_data(7)	ENCINE_TORQUE_SLOPE;		0.16438	2	REAL	1 1 1 1 1 1 1 1 1 1
engine_data[8]	NOSF_CEARBOX_RATIO;		2.130	RE	REAL	de de
.mgine_data[9]	MAIN_ROTOR_GEAR_RATIO;		34.0	RE	REAL	8
engine_data[10]	TAIL_ROTOR_GEAR_RATIO;		7.0	REAL	ږ	defi
engine_data[11]	POWERTRAIN_INERTIA;		100.0	REAL	ب	de
engine_data[12]	MAX_FUELFLOW;	pts/hr	153,8461539	REAL	ړ	-
angine_data[13]	NOT USED		0.0	REAL	دا	defi
engine_data[14]	NOT USED		0.0	REAL	یا	defi
engine_dats[15]	NOT USED		0.0	REAL	٦	def
engine_data[16]	NOT USED		0.0	REAL		ge
engine_data[17]	NOT USED		0.0	REAL	١	ge
engine_data[18]	NOT USED		0.0	REAL		ğ
engine_dats[19]	NOT USED		0.0	REAL	يا	def

MOTE 1

TABLE 5.1.6. - ENGINE INITIALIZATION DATA ARRAY

NAME OF DATA ELEMENT	DESCRIPTION	UNITS OF MEASURE	DEFAULT	DATA TYPE (NOTE 1)	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOURCE
engine_Init_data[0]	engine power		0.0	REAL	default declaration rwa_engine.c	[rwa_engine.c]engine_simul	simnet/data/rwa_engn.d
engine_Init_data[1]	engine percent torque		0.0	REAL	default declaration rwa_engine.c [rwa_engine_c]engine_init	[rwa_engine.c]engine_init	simnet/data/rwa_engn.d
engine_init_data[2]	engine speed		0.0	REAL	default declaration rwa_engine.c frwa_engine.clengine_init	[rwa_engine_init	simnet/data/rwa_engn.d
engine_Init_data[3]	integrator gain		6.0	REAL	default declaration rwa_engine.c frwa_engine.clengine_init	[rwa_engine.c]engine_simu!	simnet/data/rwa_engn.d
angine_Init_data[4]	lest percent shaft speed		0.0	REAL	default declaration rwa_engine.c [rwa_engine.c]engine_init	Irwa_engine.clengine_simul	simnet/data/rwa_engn.d
engine_Int_data[5]	last percent torque		1.0	REAL	default declaration rwa_engine.c frwa_engine.clengine_init	[rwa_engine.c]engine_simul	simnet/data/rwa_engn.d
engine_init_data[6]	hours of flight	_	0.0	REAL	default declaration rwa_engine.c frwa_engine.clengine_init	Irwa_engine.clengine_simul	simnet/data/rwa_engn.d
engine_Init_data[7]	NOT USED		0:0	REAL	default declaration rwa_engine.c frwa_engine.clengine_init		simnet/data/rwa_engn.d
engine_init_data[B]	NOT USED		0.0	REAL	default declaration rwa_engine.c frwa_engine.clengine_init		simnet/data/rwa_engn.d
engine_init_data[9]	NOT USED		0.0	REAL	default declaration rwa_engine.c [rwa_engine.c]enginc_init		simnet/data/rwa_engn.d

NOTE 1 REAL to a "C" made DEPRE for type float.

TABLE 5.1.7. - ENGINE STATUS DATA ARRAY

NAME OF DATA ELEMENT	DESCRIPTION	UNITS OF MEASURE	DEFAULT	DATA TYPE (NOTE 1)	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOURCE
engine_stat_data[0]	minutes of flight		0	int	default declaration rwa_engine.c (rwa_engine.clengine_init	(rwa_engine_simul	simnet/data/rwa_engn.d
engine_stat_data[1]	old minutes of flight		0	Ē	default declaration rwa_engine.c frwa_engine.clengine_init	[rwa_engine.c]engine_simul	simnet/data/rwa_engn.d
engine_stat_data[2]	engine status		-	int	default declaration rwa_engine.c Irwa_engine.clengine_init	[rwa_engine_lengine_simul	simnet/data/rwa_engn.d
engine_stat_data[3]	starting engine		-	int	default declaration rwa_engine.c (rwa_engine.clengine_init	[rwa_engine.c]engine_simul	simnet/data/rwa_engn.d
engine_stat_data[4]	number of engines		2	int	default declaration rwa_engine.c trwa_engine.clengine_init	rwa_engine_lengine_simul	simnet/data/rwa_engn.d
engine_stat_data[5]	engine is damaged		0	ii	default declaration rwa_engine.c [rwa_engine.clengine_init	[rwa_engine.c]engine_simul	simnet/data/rwa_engn.d
engine_stat_data[6]	transmission is damaged		o	int	default declaration rwa_engine.c irwa_engine.clengine_init	[rwa_engine.c]engine_simul	simnet/data/rwa_engn.d
engine_stat_data(7)	NOT USED		0	· fint	default declaration rwa_engine.c [rwa_engine.clengine_init		simnet/data/rwa_engn.d
engine_stat_data[8]	NOT USED		0	ţĘ	default declaration rwa_engine.c frwa_engine.clengine_init		simnet/data/rwa_engn.d
engine_stat_data[9]	NOT USED		0	tei	default declaration rwa_engine.c [rwa_engine.c]engine_init		simnet/data/rwa_engn.d

TABLE 5.1.8. - KINEMATICS DATA ARRAY

TABLE 5.1.8. - KINEMATICS DATA ARRAY [Continued]

NAME OF DATA	DESCRETION	WEASURE	VALLE	DATA TYPE MOTE 1	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOUNCE
kinemat_date(19)	NOT USED		0:0	REAL	default declaration rwa_kinemat.c		simnet/data/rwa_kine.d
					[rwa_kinemat.c]veh_spec_kinematics_		
			_				

NOTE 1 REAL to a "C" macro DEPAE for type fleat.

TABLE 5.1.9. - KINEMATICS INITIALIZATION DATA ARRAY

NAME OF DATA ELEMENT	DESCRIPTION	UNITS of MEASURE	DEFAULT	DATA TYPE [HOTE 1]	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOURCE
themat_hit_data[0]	positive unit velocity in X axis		0.0	REAL	default declaration twa_kinemat.c [rwa_kinemat.c]veh_spec_kinematica_ init	[rwa_kinemat.c]engine_simul	simnet/data/rw_ki_in.d
Knomst_Int_data[1]	positive unit velocity in Y axis		0.1	REAL	default declaration rwa_kinemat.c [rwa_kinemat.c]veh_spec_kinematics_ init	[rwa_kinemat.c]veh_spec_kinematics_ init	simnet/data/rw_ki_in.d
ithemat_hit_data[2]	positive unit velocity in Zaxis		0.0	REAL	default declaration rwa_kinemat.c [rwa_kinemat.c]veh_spec_kinematics_ init	[wa_kinemat.c]veh_spec_kinematics_ init	simnet/data/rw_ki_in.d
Idnamat_Init_data[3]	negative unit velocity in X axis		0.0	REAL	default declaration rwa_kinemat.c rwa_kinemat.c veh_spec_kinematics_ init	[rwa_kinemai.c]engine_simul	simnet/data/rw_ki_ln.d
ttnemat_Init_data[4]	negative unit velocity in Yaxis	ļ 	-1.0	REAL	default declaration rwa_kinemat.c [rwa_kinemat.c]veh_spec_kinematics_ init	[rwa_kinemat.c]engine_simul	simnet/data/rw_ki_in.d
kinamat_init_data[5]	negative unit velocity in Zaxis		0.0	REAL	default declaration rwa_kinemat.c frwa_kinemat.clveh_spec_kinematics_ init	[rwa_kinemat.c]engine_simul	simnet/data/rw_ki_in.d
kinamat_init_data[6]	sine angle of attack		0.0	REAL	default declaration rwa_kinemat.c [rwa_kinemat.c]veh_spec_kinematics_ init		simnet/data/rw_ki_in.d
kinamat_Init_data[7]	cosine angle of attack		1.0	REAL	default declaration rwa_kinemat.c [:wa_kinemat.c]veh_spec_kinematics_ init		simnet/data/rw_ki_in.d
kinemat_init_data[B]	sine yaw		0.0	REAL	default declaration rwa_kinemat.c frwa_kinemat.c veh_spec_kinematics_ init		simnet/data/rw_ki_in.d
knemat_init_data[9]	cosine yaw		1.0	REAL	default declaration rwa_kinemat.c rwa_kinemat.c]veh_spec_kinematics_ init		simnet/data/rw_ki_in.d
kinemat_init_data[10]	altitude		0.0	REAL	default declaration rwa_kinemat.c frwa_kinemat.c]veh_spec_kinematics_ init		simnet/data/rw_ki_in.d
kinemat_int_data[11]	body pitch		0.0	REAL	default declaration rwa_kinemat.c frwa_kinemat.c?veh_spec_kinematics_ init		simnet/data/rw_ki_in.d
kinemat_int_data[12]	body pitch offset		0.0	REAL	default declaration rwa_kinemat.c rwa_kinemat.c)veh_spec_kinematics_ Init		simnet/data/rw_ki_in.d
kinemat_init_data[13]	velocity pitch		0.0	REAL	default declaration rwa_kinemat.c [rwa_kinemat.c]veh_spec_kinematics_ init		simnet/data/tw_kd_in.d

TABLE 5.1.9. - KINEMATICS INITIALIZATION DATA ARRAY [Continued]

NAME of DATA ELEMENT	DESCRIPTION	UNITS OF HEASUME	DEFAULT	DATA TYPE (NOTE 1)	CSU WHERE SET OR	CSU WHERE USED	DATA SOURCE
itnemat_init_data[14]	roll		0.0	REAL	default declaration rwa_kinemat.c frwa_kinemat.cl/veh_spec_kinematics_ init		simnet/data/rw_ki_in.d
Idnemat_Ink_data[15]	heading		0.0	REAL	default declaration rwa_kinemat.c frwa_kinemat.clveh_spec_kinematics_ init	[rwa_kinemat.c]engine_simul	simnet/data/rw_ki_in.d
Knemat_Ink_data[16]	true airspeed		0.0	REAL	default declaration rwa_kinemat.c [rwa_kinemat.c]veh_spec_kinematics_ init		simnet/data/rw_ki_in.d
knemat_Init_data[17]	indicated alrapsed		0.0	REAL	default declaration rwa_kinematic [rwa_kinemat.c]veh_apec_kinematics_ init		simnet/data/rw_ki_in.d
knemat_Init_data[18]	'g' force		0.1	REAL	default declaration rwa_kinemat.c [rwa_kinemat.c]veh_spec_kinematics_ init	;	simnet/data/rw_ki_in.d
Ithemat_Init_data[19]	vertical speed		0.0	REAL	default declaration rwa_kinemat.c frwa_kinemat.clveh_spec_kinematics_ init		simnet/data/rw_ki_in.d
kinemat_Init_data[20]	gravity component in X axis		0.0	REAL	default declaration rwa_kinemat.c rwa_kinemat.clveh_spec_kinematics_ init		simnet/data/rw_ki_ln.d
kinemat_Init_data[21]	gravity component in Y axis	i	0.0	REAL	default declaration rwa_kinemat.c [rwa_kinemat.c]veh_spec_kinematics_ init		simnet/data/tw_ki_in.d
knamat_Init_data[22]	gravity component in Z axis		0.1-	REAL	default declaration rwa_kinemat.c [rwa_kinemat.c]veh_spec_kinematics_ init		simnet/data/rw_ki_in.d
tinemat_Init_data[23]	normal velocity component in X axis		0.0	REAL	default declaration rwa_kinemat.c rwa_kinemat.c)veh_spec_kinematics_ init		simnet/data/rw_ki_in.d
tinamat_Init_data[24]	normal velocity component in Y axis		1.0	REAL	default declaration rwa_kinemat.c [rwa_kinemat.c]veh_spec_kinematics_ init		simnet/data/rw_ki_ln.d
kinemat_Init_data[25]	normal velocity component in Z axis		0.0	REAL	default declaration rwa_kinemat.c [rwa_kinemat.c]veh_spec_kinematics_ init		simnet/data/rw_ki_in.d
ithemat_ink_data[26]	NOT USED		0.0	REAL	default declaration rwa_kinematic [rwa_kinematic]veh_apec_kinematics_ init		simnet/data/rw_ki_ln.d
knamat_Inft_data[27]	NOT USED		00	REAL	default declaration rwa_kinemat.c rwa_kinemat.clveh_spec_kinematics_ fnit		simnel/data/rw_ki_in.d
themat_int_data[28]	NOT USED		0.0	REAL	default declaration rwa_kinemat.c rwa_kinemat.c]veh_spec_kinematics_ init		simnet/data/rw_ki_in.d
kinemat_Init_data[29]	NOT USED		0.0	REAL	default declaration rwa_kinemat.c [rwa_kinemat.c]veh_spec_kinematics_ inis		simnet/data/rw_ki_in.d

TABLE 5.1.10 - HELLFIRE MISSILE CHARACTERISTICS DATA ARRAY

NAME OF DATA ELEMENT	DESCRIPTION	WITS OF MEASURE (HOTE 1)	DEFAULT	DATA TYPE [NOTE 2]	CSU WHERE SET OR	CSU WHERE USED	DATA SOURCE
helff_miss_char[0]	HELLFIRE_ARM_TIME; helifire missile arm time delay before firing in ticks [1.3 seconds]	ticks	20.0	REAL	default declaration miss_hellfr.c [miss_hellfr.c]missile_hellfire_init	(miss_hellfr.c]engine_simul	simnet/data/ms_hf_ch.d
helff_miss_char[1]	HELLFIRE_BURNOUT_TIME; time of powered flight for hellfire missife in ticks [2.4 seconds]	gc rs	36.0	REAL	default declaration miss_hellfr.c [miss_hellfr.c]missile_hellfire_init	[miss_hellfr.c]missile_hellfire_init	simnet/data/ms_M_ch.d
hefft_mles_char[2]	HELLFRE MAX_FLIGHT_TIME: maximum flight time for the helifire missile assumed in tricis [36,0 seconds]	9	240.0	REAL	default declaration miss_hellfr.c [miss_hellfr.c]missile_hellfire_init	miss_hellfr.c missile_hellfire_init	simnet/dats/ms_M_ch.d
helff_miss_char[3]	SPEED_0;		30,95953043	REAL	default declaration miss_helifr.c [miss_helifr.c]missile_helifire_init	[miss_hellfr.c]engine_simul	simnet/data/ms_M_ch.d
helff_miss_char[4]	THETA_0;		0.046542113	REAL	default declaration miss_hellfr.c [miss_hellfr.c]missile_hellfire_init	[miss_hellfr.c]engine_simul	simnet/data/ms_hf_ch.d
helff_miss_char(5)	SIN_UNCUIDE; sine of the delta pitch angle		0.069756474	REAL	default declaration miss_hellfr.c [miss_hellfr.c]missile_hellfire_init	[miss_hellfr.c]engine_simul	simnet/data/ms_hf_ch.d
helff_miss_char[6]	COS_UNGUIDE; coaine of the delta pirch angle [4.0 degrees] for an unguided hellfire missile		0.997564050	REAL	default declaration miss_hellfr.c [miss_hellfr.c]missile_hellfire_frut	[miss_hellfr.c]engine_simul	simnet/data/ms_hf_ch.d
helffr_miss_char[7]	SIN_CLIMB; sine of the delta pitch angle [3.5] degrees for a climbing helifite missile		0.004072424	REAL	default declaration miss_hellfr.c [miss_hellfr.c]missile_hellfire_init	(miss_hellfr.c}engine_simul	simnet/data/ms_hf_ch.d
helfr_miss_char[8]	COS_CLIMB: cosine of the delta pitch angle (3.5 degrees) for a climbing helifite missile		0.999991708	REAL	default declaration miss hellfr.c [miss_hellfr.c]missile_hellfire_inft	(miss_hellfr.c]engine_simul	simnet/data/ms_hf_ch.d
helff_miss_char[9]	SIN_LOCK; sine of the lock cone angle [9.0 degrees] for a locked-on helifire missile		0.156434465	REAL	default declaration miss_hellfr.c [miss_hellfr.c]missile_hellfire_init	miss_hellfr.clengine_simul	simnet/data/ms_N_ch.d
helffr_miss_char[10]	COS_LOCK; cosine of the lock cone angle [9.0 degrees] for a locked-on helifire missile		0.987688341	REAL	default declaration miss_helifr.c fmiss_helifr.c]missile_helifire_init	[miss_hellfr.c]engine_simul	simnet/data/ms_hl_ch.d
heliff_miss_char[11]	CCS_TERM; cosine of the terminal pitch angle 176.0 degrees for a locked-on helifire missile		9691761170	REAL	default declaration miss_hellfr.c [miss_hellfr.c]missile_hellfire_init	imiss_helifr.cjengine_simul	sumnet/data/ms_N_Cn.d
halffr_miss_char[12]	COS_LOSE; cosine of the pitch angle (200 dermed) for a lose of tork on hell fire missile		0.939692621	REAL	default declaration miss_hellfr.c [miss_hellfr.c]missile_hellfire_init	(miss_hellfr.c]engine_simuf	simnet/data/ms_M_ch.d
heiffr_miss_char[13]	NOT USED		0.0	REAL	default declaration miss_hellfr.c [miss_hellfr.c]missile_hellfire_init	(miss_hellfr.c)engine_simul	simnet/data/ms_M_ch.d
helffr_miss_char[14]	NOT USED		0.0	REAL	default declaration miss, hellfr.c [miss hellfr.c]missile hellfire_init	[miss_hellfr.c]engine_simul	simnet/data/ms_N_ch.d

ane tick is equal to one frame or 1/15th of a second REAL is a 'C' macro DEFFE for type foot. NOTE 1

TABLE 5.1.11. - HELLFIRE MISSILE POLYNOMIAL DEGREE DATA ARRAY

NAME OF DATA ELEMENT	DESCRIPTION	UNITS of MEASURE	DEFAULT	DATA TYPE (NOTE 1)	CSU WHERE SET OR CALCURATED	CSU WHERE USED	DATA SOUNCE
heiffre_miss_poly_deg[0]	HELLFIRE_IOF_DEG; polynomial degree for hellfire missile time-of-flight coefficient data array		default: 4 range: 0 to 9	ž	default declaration miss_hellfr.c; [miss_hellfr.c]missile_hellfire_init	[miss_hellfr.c]missile_hellfire_init; simnet/data/ms_N_tf.d [miss_hellfr.c]missile_hellfire_cak_tof	simnet/data/ms_M_tf.d
heiffre_miss_poly_dag[1]	HELLFIRE_BURN_SPEED_ DEG; polynomial degree for hellfire missile burn speed coefficient data array		default: 3 range: 0 to 9	jt.	default declaration miss_hellfr.c; [miss_hellfr.c]missile_hellfire_init	miss_hellfr.c missile_hellfire_init; [miss_hellfr.c missile_hellfire_fire; [miss_hellfr.c missile_hellfire_fiy	simnet/data/ms_hf_bs.d
heiffre_miss_poly_dag(2)	HELLFIRE_COAST_SPEED_DEG; polynomial degree for helifire missile coast speed coefficient data array		default: 5 range: 0 to 9	ţ	default declaration miss_hellfrc; (miss_hellfr.c]missile_hellfire_init	(miss_hellfr.c]missile_hellfire_init; (miss_hellfr.c]missile_hellfire_fly	simnet/data/ms_hf_cs.d

NOTE 1 Mile of type for Integer.

TABLE 5.1.12. - HELLFIRE MISSILE TIME-OF-FLIGHT COEFFICIENT DATA ARRAY

NAME OF DATA ELEMENT	DESCRIPTION	UNITS OF MEASURE (NOTE 1)	DEFAULT	DATA TYPE INOTE 2)	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOURCE
halfire_tof_coeff[0]	hellfire missile time-of-flight coefficient ag; default to 1.2 seconds	ticks	18.0	REAL	default declaration miss_helifr.c [miss_hellfr.c]missile_hellfire_init	[miss_hellfr.c]missile_hellfire_init; [miss_hellfr.c]missile_hellfire_calc_tof	simnet/data/ms_hf_tf.d
halffra_tof_coeff[1]	hellfire missile time-of-flight coefficient ay	ticks/meter	3.1461816e-2	REAL	default declaration miss_helifr.c [miss_hellfr.c]missile_helifire_init	(miss_hellfr.c]missile_hellfire_init; fmiss_hellfr.c]missile_hellfire_calc_tof	simnet/data/ms_hf_tf.d
halffire_tof_coeff[2]	hellfire missile time-of-flight coefficient as	ticks/m•2	3.19212746-6	REAL	default declaration miss_hellfr.c [miss_hellfr.c]missile_hellfire_init	miss_hellfr.c missile_hellfire_init; miss_hellfr.c missile_hellfire_calc_tof	simnet/data/ms_hf_tf.d
helifire_tof_coeff[3]	hellire missile time-of-flight coefficient as	tcks/m•³	3.5260413e-10	REAL	default declaration miss_hellfr.c [miss_hellfr.c]missile_hellfire_init	[miss_hellfr.c]missile_hellfire_init; [miss_hellfr.c]missile_hellfire_calc_tof	simnet/data/ms_hf_tf.d
helffire_tof_coeff[4]	helifire missile time-of-flight coefficient at	ticks/m**4	-2.8469594e-14	REAL	default declaration miss_hellfr.c [miss_hellfr.c]missile_hellfire_init	[miss_hellfr.c]missile_hellfire_init; [miss_hellfr.c]missile_hellfire_calc_tof	simnet/data/ms_hf_tf.d
helffire_tof_coeff[5]	hellfire missile time-of-flight coefficient as	bcks/m°5	0.0	REAL	default declaration miss_helifr.c [miss_hellfr.c]missile_hellfire_init	[miss_hellfr.c]missile_hellfire_init; [miss_hellfr.c]missile_hellfire_calc_tof	simnet/data/ms_hf_tf.d
halifire_tof_coeff[6]	hellfire missile time-of-flight coefficient ag	bcks/m**6	0.0	REAL	default declaration miss_hellfr.c [miss_hellfr.c]missile_hellfire_init	[miss_hellfr.c]missile_hellfire_init; [miss_hellfr.c]missile_hellfire_cak_tof	simnet/data/ms_hf_tf.d
helffire_tof_coeff[7]	helifire missile time-of-füght coefficient ay	ticks/m*7	0.0	REAL	default declaration miss_hellfr.c [miss_he'fr.c]missile_hellfire_init	[miss_hellfr.c]missile_hellfire_init; [miss_hellfr.c]missile_hellfire_cak_tof]	simnet/data/ms_hf_tf.d
halffire_tof_coeff[8]	helifire missile time-of-flight coefficient ag	ticks/m**8	0.0	REAL	default declaration miss_hellfr.c [miss_hellfr.c]missife_hellfire_init	[miss_hellfr.c]missile_hellfire_init; [miss_hellfr.c]missile_hellfire_calc_tof	simnet/data/ms_hf_tf.d
helifire_tof_coeff[9]	hellfire missile time-of-flight coefficient ag	ticks/m**9	0'0	REAL	default declaration miss_hellfr.c [miss_hellfr.c]missile_hellfire_init	(miss_hellfr.c missile_hellfire_init; fmiss_hellfr.c missile_hellfire_calc_tof	simnet/data/ms_hf_tf.d

NOTE 1 are bit to equal to one frame or 1/15th of a second NOTE 2 REAL as 5°C" made DEFREE for type feet.

TABLE 5.1.13. - HELLFIRE MISSILE BURN SPEED COEFFICIENT DATA ARRAY

NAME OF DATA ELEMENT	DESCRIPTION	UNITS OF MEASURE [MOTE 1]	DEFAULT	DATA TYPE NOTE 2)	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOUNCE
heitire_bur_speed_coeff[0]	hellfire missile burn speed coefficient ag	meters	2.0044395e-2	REAL	default declaration miss_hellfr.c [miss_hellfr.c]missile_hellfire_init	[miss_hellfr.c missile_hellfire_init; [miss_hellfr.c missile_hellfire_fire; [miss_hellfr.c missile_hellfire_fly	simnet/data/ms_hf_bs.d
helifire_burn_speed_coeff[1]	hellitre missile burn speed coefficient ay	m/tick	6.7384206 c- 1	REAL	default declaration miss_hellfr.c [miss_hellfr.c]missile_hellfire_init	[miss_hellr.c]missile_hellfre_hit; {miss_hellr.c]missile_hellfre_fire; [miss_hellfr.c]missile_hellfire_fly	simnet/data/ms_hf_bad
helifire_burn_speed_coeff[2]	hellfire missile burn speed coefficient az	m/tick ^{oo} 2	9.80077016-3	REAL	default declaration miss_hellfr.c [miss_hellfr.c]missile_hellfire_init	[miss_hellfr.c missile_hellfire_fnit; [miss_hellfr.c missile_hellfire_fire; [miss_hellfr.c missile_hellfire_fly	simnet/data/ms_M_bs.d
helffre_burn_speed_coeff[3]	hellfire missile burn speed coefficient as	m/tick*3	-1.678227€-4	REAL	default declaration miss_helifr.c [miss_helifr.c]missile_helifire_fnit	[miss_hellfr.c missile_hellfre_init; [miss_hellfr.c missile_hellfre_fire; [miss_hellfr.c missile_hellfire_fiy	simnet/data/ms_hf_bs.d
heffire_buin_speed_coeff[4]	helifire missile burn speed coefficient ag	m/tick**4	0.0	REAL	default declaration miss_hellfr.c {miss_hellfr.c}missile_hellfire_init	[miss_hellfr.c]missile_hellfre_init; [miss_hellfr.c]missile_hellfre_ftre; [miss_hellfr.c]missile_hellfire_fly	simnet/data/ms_M_bs.d
helffre_bum_speed_coeff[5]	hellfire missile burn speed coefficient as	m/tick**5	0.0	REAL	default declaration miss_hellfr.c {miss_hellfr.c]missile_hellfire_init	[miss_hellfr.c]missile_hellfire_init; [miss_hellfr.c]missile_hellfire_fire; [miss_hellfr.c]missile_hellfire_fly	simnet/data/ms_M_ba.d
helifire_burn_speed_coeff[6]	helifire missile burn speed coefficient ag	m/tick**6	0.0	REAL	default declaration miss_hellfr.c [miss_hellfr.c]missile_hellfire_init	imiss_hellfr.c]missile_hellfire_init; [miss_hellfr.c]missile_hellfire_fire; [miss_hellfr.c]missile_hellfire_fly	simnet/data/ms_M_bs.d
heiffre_burn_speed_coeff[7]	helifire missile burn speed coefficient 47	m/tick**7	0.0	REAL	default declaration miss_hellfr.c [miss_hellfr.c]missile_hellfire_init	[miss_helifr.c]missik=_helifre_init; [miss_helifr.c]missike_helifre_fire; [miss_helifr.c]missike_helifire_fiy	simnet/data/ms_N_bs.d
helffre_burn_speed_coeff[8]	helifire missile burn speed coefficient ag	m/tick**8	0.0	REAL	default declaration miss_hellfr.c [miss_hellfr.c]missile_hellfire_init	[miss_hellfr.c]missik_hellfre_init; [miss_hellfr.c]missike_hellfre_fre; [miss_hellfr.c]missike_hellfire_ffy	simnet/data/ms_M_ba.d
helffre_burn_speed_coeff[9]	hellfire missile burn speed coefficient ag	m/tick**9	0.0	REAL.	default declaration miss_hellfr.c [miss_hellfr.c]missile_hellfire_int	miss hellfr.clmissie hellfire Init; (miss hellfr.clmissie hellfire fire; (miss hellfr.clmissie hellfire fly	simnet/data/ms_M_bs.d

NOTE 1 and tick is equal to one frame or 1/15th of a secon NOTE 2 REAL is a "C" means DEFINE for type float.

TABLE 5.1.14. - HELLFIRE MISSILE COAST SPEED COEFFICIENT DATA ARRAY

NAME of DATA ELEMENT	DESCRIPTION	MEASURE HOTE 1	DEFAULT	DATA	CSU WHERE SET OR	CSU WHERE USED	DATA SOURCE
helifire_coast_speed_coaff[0]	hellfire missile coast speed coefficient ag	meters	42738400+1	REAL	default declaration miss_hellfr.c	(miss_helifr.c]missile_helifire_init;	simnet/data/ms_M_cs.d
helffire_coest_speed_coeff[1]	hellfire missile coast speed coefficient as	m/tick	-4.1048613e-1	REAL	default declaration miss hellfr.	(miss helifr.c/missile helifire hit;	simnet/data/ms_M_cs.d
halffre_coest_speed_coeff[2]	hellfire missile coast speed coefficient ag	m/tick**2	2.6023604€-3	REAL	default declaration miss helifir.	miss helifr.chnissie helifire int; fmiss helifire init; fmiss helifire linit;	simnet/data/ms_M_cs.d
halffre_coest_speed_coeff[3]	helifire missile coast speed coefficient as	m/tick**3	-8.4870417e-6	REAL	default declaration miss helife.c	(miss_helfr.c)missile_helffre_init; fmiss_helfr.c missile_helffre_inv	simnet/data/ms_ld_cs.d
helifire_coast_speed_coaff[4]	helifire missile coast speed coefficient ag	m/tick**4	1.33229326-8	REAL	default declaration miss_hellfr.c [miss_hellfr.c]missile_hellfire_init	(miss_hellfr.c)missile_hellfire_init; imiss_hellfr.c)missile_hellfire_fly	simnet/data/ms_M_cs.d
heffire_coast_speed_coaff[5]	hellfire missile coast speed coefficient as	m/tick**5	m/iick**5 -7.9542005e-12	REAL	default declaration miss hellfr.c Imiss hellfr.c]missile_hellfire_init	[miss_hellfr.c]missile_hellfire_init; [miss_hellfr.c]missile_hellfire_fly	simnet/data/ms_M_cs.d
halfire_coest_speed_coeff[6]	hellfire missile coast speed coefficient ag	m/tick**6	0.0	REAL	default declaration miss_hellfr.c [miss_hellfr.c]missile_hellfire_init	[miss_hellfr.c]missile_hellfire_init; [miss_hellfr.c]missile_hellfire_fly	simnet/data/ms_hf_ca.d
heiffre_coast_speed_coeff[7]	helifire missile coast speed coefficient ay	m/tick**7	0.0	REAL	default declaration miss_helifr.c [miss_helifr.c]missile_helifire_int	(miss_hellfr.clmissile_hellfire_init; fmiss_hellfr.clmissile_hellfire_fly	simnet/data/ms_M_cs.d
halffre_coast_speed_coeff[8]	hellfire missile coast speed coefficient ag	m/tick**8	0.0	REAL	default declaration miss_hellfr.c [miss_hellfr.c]missite_hellfire_tnit	[miss_hellfr.c]missile_hellfire_init; [miss_hellfr.c]missile_hellfire_fly	simnet/data/ms_M_cs.d
hefffre_coast_speed_coeff[9]	hellire missile coast speed coefficient ag	m/tick**9	0.0	REAL	default declaration miss_hellfr.c [miss_hellfr.c]missile_hellfire_tnit	(miss_hellfr.c]missile_hellfire_init; [miss_hellfr.c]missile_hellfire_fly	simnet/data/ms_M_cs.d

HOTE 1 and lick is agual to are frame or 1/15th of a ser HOTE 2 REAL is a "C" macro DEPIE for type float.

TABLE 5.1.15 - MAVERICK MISSILE CHARACTERISTICS DATA ARRAY

maverich_miss_char[0] MAVERICK, arm time del accondal maverich_miss_char[1] MAVERICK powered flig [15.5 seconds] maverich_miss_char[2] MAVERICK maverich_miss_char[3] MAVERICK squared of the maverich_miss_char[3] MAVERICK squared of the maverich_miss_char[3]	MAVERICK_ARM_TIME; maverick missile			MOTE 2			
	arm time delay before firing in ticks [1.3 seconds]	ticks	20.0	REAL	default declaration miss_maverck.c; [mlss_maverck.clmlssile_maverick_ init	[miss_maverck.clmissile_maverick_fly	simnet/data/ms_mk_ch.d
	MAVERICK_BURNOUT_TIME; time of powered flight for maverick missile in ticks [1.5 seconds]	ticks	27.5	REAL	default declaration miss_maverick.; [miss_maverck.clmissile_maverick_ init	Iniss_maverck.clmlseile_maverick_fly	simnet/data/ma_mk_ch.d
	MAVERICK, MAX, FLIGHT, TIME; maximum flight time for the maverick missile assumed in ticks (60.0 seconds)	ticks	0'006	REAL	default declaration miss_maverck.c; [miss_maverck.c]missile_maverick_ init	{miss_maverck.c}missile_maverick_ init	simnet/data/ms_mk_ch.d
	MAVERICK_LOCK_THRESHOLD; cosine squared of the lock threshold angle for the maverick missile [6.0 degrees]		0.989073800	REAL	default declaration miss_maverck.c; fmiss_maverck.clmissile_maverick_ init	[miss_maverck.c]missile_maverick_ init; [miss_maverck.c missile_maverick_ detectibility	simnet/data/ms_mk_ch.d
maverick_miss_char[4] MAVERICI squared of maverick may be a second of the control of the con	MAVERICK, HOLD_THRESHOLD; cosine squared of the hold threshold angle for the maverick missile [10.0 degrees]		0.969846310	REAL	default declaration miss_maverck.c; [miss_maverck.c]missile_maverck_ init	Imiss_maverck.clmissile_maverick_ detectibility	simnet/data/ms_mk_ch.d
maverick_miss_char[5] SPEED_0;			28.3333333	REAL	default declaration miss_maverck.c; [miss_maverck.c]missile_maverick_ init	[miss_maverck.c]missile_maverick_fly	simnet/data/ms_mk_ch.d
maverick_miss_char[6] THETA_0;			0.046542113	REAL	default declaration miss_maverck.c; [miss_maverck.c]missife_maverick_ init	[miss_maverck.c]missile_maverick_fly	simnet/data/ms_mk_ch.d
maverick_miss_char(?) SIN_UNCI degrees plit missile	SIN_UNCUIDE: sine of level flight 10.0 degrees pitch! for an unguided maverick missile		0.0	REAL	default declaration miss_maverck.c; [miss_maverck.c]missile_maverick_ init	[miss_maverck.c missile_maverick_fly	simnet/data/ms_mk_ch.d
maverick_miss_char(8) COS_UNG degrees plit missile	COS_UNCUIDE; costne of level flight (0.0 degrees pitch) for an unguided maverick missile		1.0	REAL	default declaration miss_maverck.c; [miss_maverck.c]missile_maverick_ init	[miss_maverck.c]missile_maverick_fly	simnet/data/ms_mk_ch.d
maverick_miss_char[9] SIN_CLIM degrees] for	SIN_CLIMB: sine of the delta pitch angle [3.5 degrees] for a climbing maverick missile		0.004072424	REAL	default declaration miss_maverck.c; [miss_maverck.c]missile_maverick_ init	{miss_maverck.c}missile_maverick_fly	simnet/data/ms_mk_ch.d
maverick_miss_char[10] COS_CLIM [3.5 degrees	COS_CLIMB; cosine of the delta pitch angle [3.5 deprees] for a climbing maverick missile		0.999991708	REAL	default declaration miss_maverck.c; [miss_maverck.c]missile_maverick_ init	[miss_maverck.c]missile_maverkk_fly	simnet/data/ms_mk_ch.d
maverick_miss_char[11] SIN_LOCK degrees] for	SIN_LOCK; sine of the lock cone angle [5.0 degrees] for a locked-on maverick missile		0.067155743	REAL	default declaration miss_maverck.c; [miss_maverck.c missile_maverick_ Init	imiss_maverck.clmissile_mavertck_fly	simnet/data/ms_mk_ch.d
mavarick_miss_char[12] COS_LOCI degrees] for	COS_LOCK; coaine of the lock cone angle [5.0 degrees] for a locked-on maverick missile		0.996194698	REAL	default declaration miss_maverck.c; [miss_maverck.c missile_maverick_ init	[miss_maverck.c]missile_maverick_fly	simnet/data/ms_mk_ch.d
maverick_miss_char[13] COS_TERN degrees] for	COS_TERM; cosine of the terminal angle [80.0 degrees] for a locked-on maverick missile		0.173648178	REAL	default declaration miss_maverck.c; fmlss_maverck.c missile_maverick_ init	[miss_maverck.c]missile_maverick_fly	simnet/data/ms_mk_ch.d
maverick_miss_char[14] COS_LOSE for a fost-of	COS_LOSE; coaine of the angle [20.0 degrees] for a loss-of-tock-on maverick missile		1292696660	REAL	default declaration miss_maverck.c; [miss_maverck.c]missile_maverick_ [nit	[miss_maverck.c]missile_maverick_fly	simnet/data/ms_mk_ch.d

NOTE 1 and tick is equal to one frame or 1/150 NOTE 2 REAL as I'm macro DEFRE for type An

TABLE 5.1.16. - MAVERICK MISSILE POLYNOMIAL DEGREE DATA ARRAY

NAME of DATA ELEMENT	DESCRIPTION	UNITS of MEASURE	DEFAULT	DATA TYPE INOTE 11	CSU WHERE SET OR CALCURATED	CSU WHERE USED	DATA SOURCE
mavertck_miss_poly_deg[0]	MAVERICK_BURN_SPEED_DEG; polynomial degree for maverick missile burn speed coefficient data array		default 1 range: 0 to 9	š	default declaration miss_maverck.c; fmiss_maverck.c/missile_maverick_ init	default declaration miss_maverck.c; [miss_maverck.c missile_maverick simnet/data/ms_mk_bs.d [miss_maverck.c missile_maverck_ init [iniss_maverck.c missile_maverck_ init [iniss_maverck.c missile_maverck_ init [miss_maverck.c missile_maverck_ init [miss_maverck.c missile_maverck_ init [miss_maverck.c missile_maverck_ init [miss_maverck.c missile_maverck_ init [miss_maverck_c missile_maverck_ init [miss_maverck_c missile_maverck_c m	simnet/dats/ms_mk_bs.d
maverick_miss_poly_deg[1]	MAVERICK_COAST_SPEED_DEG; polynomial degree for maverick missile coast speed coefficient data array		default 3 range: 0 to 9	Ė.	default declaration miss_maverck.c; [miss_maverck.cimissile_maverck.c_ simnet/data/ms_mk_cs.d [miss_maverck.cimissile_maverck.c] [miss_maverck.cimissile_maverck.f]	[miss_maverck.c]missile_maverick_ inlt; [miss_maverck.c]missile_maverick_fly	simnel/data/ms_mk_cs.d

NOTE 1 IN IS ST Type for Mager.

TABLE 5.1.17. - MAVERICK MISSILE BURN SPEED COEFFICIENT DATA ARRAY

NAME of DATA ELEMENT	DESCRIPTION	UNITS of MEASURE POOR 1)	DEFAULT	DATA TYPE INOTE 2)	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOURCE
mavarick_burn_speed_coeff[0]	maverick missile burn speed coefficient ag; default is 67.0 m/sec	m/tick	0.0333333	REAL	default declaration miss_maverck.c [miss_maverck.c]missile_maverick_ init	Imiss_maverck.clmissile_maverick_ ind; fmiss_maverck.clmissile_maverick_ fmiss_maverck.clmissile_maverick_fly	simnet/data/ms_mk_ba.d
maverick_burn_speed_coeff[1]	maverick missile burn speed coefficient a ₁ ; default is 274,9732662 m/sec ^{a-} 2	m/tick**2	1.25 <i>777777</i>	REAL	default declaration miss_maverck.c [miss_maverck.c missile_maverick_ init	[miss_maverck.c missile_maverick_ inlt; [miss_maverck.c missile_maverick_ fire; [miss_maverck.c missile_maverick_fly	simnet/data/ms_mk_bs.d
maverick_burn_speed_coeff[2]	maverick missile burn speed coefficient ag	m/tick**3	0.0	REAL	default declaration miss_maverck.c [miss_maverck.clmissile_maverick_ init	Imiss_maverck.clmissile_maverick_ intt; Imiss_maverck.clmissile_maverick_ fire; Imiss_maverck.clmissile_maverick_fly	simnet/data/ms_mk_bs.d
maverick_burn_speed_coeff[3]	maverick missile burn speed coefficient ag	m/tick**4	0'0	REAL	default declaration miss_maverck.c miss_maverck.clmissile_maverick_ nit	Iniss_maverck.c missile_mavericksimnet/data/ms_mk_bs.d init; Iniss_maverck_linissile_maverick file; Iniss_maverck.c missile_maverick_fly	
maverick_burn_speed_coeff[4]	maverick missile burn speed coefficient ad	m/tkck**5	0.0	REAL	default declaration miss_mavertk.c miss_mavertk.c missile_maverick_ nit	Indss_mavertk_chnissile_maverick_ int; Indss_mavertk_chnissile_maverick_ fire; Indss_mavertk_chnissile_maverick_fly	simnet/data/ms_mk_bs.d

NOTE 1 one but is equal to one frame or 1/15th of a second NOTE 2 REAL is a "C" made DEPAE for type float.

- 167 -

TABLE 5.1.18. - MAVERICK MISSILE COAST SPEED COEFFICIENT DATA ARRAY

NAME OF DATA ELEMENT	DESCRIPTION	UNITS OF MEASURE POINT 1]	DEFAULT	DATA TYPE INOTE 21	CSU WHERE SET OR	CSU WHERE USED	DATA SOUNCE
mavarick_coast_speed_coaff[0]	maverick missile coast speed coefficient a ₀ ; default is 327.2858074 m/sec	m/tick	90.46972849	REAL	default declaration miss_maverck.c [miss_maverck.clmissile_maverick_ init	[miss_maverck.c missile_maverick_ int; [miss_maverck.c missile_maverick_fly	simnet/data/ms_mk_cs.d
mavarick_coast_speed_coaff[1]	maverick missile coast speed coefficient aj; default is -21.4609544 m/sec**2	m/tick**2	-9.7721160e-2	REAL	default declaration miss_maverck.c [miss_maverck.clmissile_maverick_ init	[miss_maverck.c]missile_mavercksimnet/data/ms_mk_cs.d init; [miss_maverck.c]missile_maverck.fly	simnet/data/ms_mk_cs.d
mavarick_coast_speed_coeff[2]	maverick missile coast speed coefficient az: default is 0.8227650 m/sec**3	m/tick**3	1.24339256-4	REAL	default declaration miss_maverck.c [miss_maverck.clmissile_maverick_ init	<pre>{miss_maverck.c missile_maverick_ simnet/data/ms_mk_cs.d init; [miss_maverck.c missile_maverck_fly</pre>	simnet/data/ms_mk_cs.d
mavarich_coast_speed_coeff[3]	maverick missile coast speed coefficient a3; default is -0.0133200 m/sec**4	i 1	m/tick**4 -5.4061501e-8	REAL	default declaration miss_maverck.c [miss_maverck.c]missile_maverick_ init	[miss_maverck.c]missile_maverck_ init; [miss_maverck.c]missile_maverck_fly	simnet/data/ms_mk_cs.d
maverick_coast_speed_coeff[4]	maverick missile coast speed coefficient ag	m/tick**5	0.0	REAL	default declaration miss_maverck.c [miss_maverck.c]missile_maverick_ init	[miss_maverck.c]missile_maverkk_ init; [miss_maverck.c]missile_maverkk_fly	simnet/data/ms_mk_cs.d

MOTE 1

TABLE 5.1.19 - STINGER MISSILE CHARACTERISTICS DATA ARRAY

	DESCRIPTION	UNITS of MEASURE (MOTE 1)	DEFAULT	DATA TYPE [MOTE 2]	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOUNCE
stinger_miss_char[0]	STINGER_BURNOUT_TIME; time of powered flight for stinger missile in ticks [1,275 seconds]	ticks	19.125	REAL	default declaration miss_stinger.c; [miss_stinger.c]missile_stinger_ init	(miss_stinger.c missile_stinger_ Init; [miss_stinger.c]missile_stinger_fly	simnet/data/ms_st_ch.d
stinger_miss_char[1]	STINGER_MAX_FLIGHT_TIME: maximum flight time for the stinger missile assumed in ticks (26.667 seconds)	ticks	000.004	REAL	default declaration miss_stinger.c; [mbs_stinger.c missile_stinger_ Init	miss_stinger.clmissile_stinger_ int	simnet/data/ms_st_ch.d
stinger_miss_char[2]	STINGER_LOCK_THRESHOLD; cosine squared of the lock threshold angle for the stinger missile [12.5 degrees]		0.953153895	REAL	default declaration miss_stinger.c; [miss_stinger.c]missile_stinger_ init	Imise_stinger.clmisele_stinger_ init: [mise_stinger.clmisele_stinger_ pre_launch; [mise_stinger.clmisele_stinger_fly	simnet/data/ma_st_ch.d
stinger_miss_char[3]	SPEED_0; default is 800.0 m/sec	m/tick	53.3333333	REAL	default declaration miss_stinger.c; [miss_stinger.c]missile_stinger_ init	[miss_stinger.c]missile_stinger_ int; [miss_stinger.c]missile_stinger_fly	simnet/data/ms_st_ch.d
stinger_miss_char[4]	THETA_0, default is 15.0 deg/sec	rad/tick	₽∠10′0	REAL	default declaration miss_stinger_c; [miss_stinger.c]missile_stinger_ inft	miss_stinger.c missile_stinger_ nit; miss_stinger.c missile_stinger_fly	simnet/data/ms_st_ch.d
stinger_miss_char[5]	INVEST_DIST_SQ; default distance is 300 m	Z.,E	0:00006	REAL	default declaration miss_stinger.c; [miss_stinger.c]missile_stinger_ init	[miss_stinger.c]missile_stinger_ init; [mbs_stinger.c]missile_stinger_fly	simnet/data/ms_st_ch.d
stinger_miss_char[6]	FUZE_DIST_SQ; default distance is 20 m	Z	0'00*	REAL	default declaration miss_stinger.c; [miss_stinger.c]missile_stinger_ init	[miss_stinger.c]missile_stinger_ init; [miss_stinger.c]missile_stinger_fly	simnel/data/ms_st_ch.d
etinger_miss_char[7]	NOT USED		0.0	REAL	default declaration miss_stinger.c; [miss_stinger.c]missile_stinger_ init		simnet/data/ms_st_ch.d
stinger_miss_char[0]	NOT USED		0.0	REAL	default declaration miss_stinger.c; [miss_stinger.c]missale_stinger_ init		simnet/data/ms_st_ch.d
stinger_miss_char[9]	NOT USED		0.0	REAL	default declaration miss_stinger_c; [miss_stinger.c missile_stinger_ Init		simnet/data/ms_st_ch.d
stinger_miss_char[10]	NOT USED		0.0	REAL	default declaration miss_stinger.c; (miss_stinger.c missle_stinger_ init		simnet/data/ms_st_ch.d
stinger_miss_char[11]	NOT USED		0.0	REAL	default declaration miss_stinger_c; [miss_stinger.clmissile_stinger_ init		simnet/data/ms_st_ch.d
sthger_miss_char[12]	NOT USED		0.0	REAL	default declaration miss_stinger.c; [miss_stinger.c]missile_stinger_ init		simnet/data/ms_st_ch.d
stinger_miss_char[13]	NOT USED		0.0	REAL	default declaration miss_stinger.c; [miss_stinger.c]misstle_stinger_ init		simnet/data/ms_st_ch.d
stinger_miss_char[14]	NOT USED		0.0	REAL	default declaration miss_stinger.c; [miss_stinger.c]missile_stinger_ init		simnet/data/ms_st_ch.d

NOTE 1 one bolt is equal to one frame or 1/13th NOTE 2 REAL is a "C" made DEFME for type float

TABLE 5.1.20. - STINGER MISSILE POLYNOMIAL DEGREE DATA ARRAY

NAME of DATA ELEMENT	NOTERION	INSTEAS.	T HIVE	1110			
		MEASURE	VALIE	17PE 17PE 1. HOS	CALCULATED	CSU WHERE USED	DATA SOUNCE
stinger_miss_poly_deg[0]	polynomial degree for stinger missile burn speed coefficient data array		1	Ē	default declaration miss_stinger.c;	Imiss_stinger.clmissile_stinger_init simnet/data/ms_st_bs.d	simnet/data/ms_st_bs.d
The state of the s					imiss sunger cimissue sunger mit	I	
I loed tod saw salur	polynomial degree for sunger missue coast		r	ş	default declaration miss_stinger.c;	[miss_stinger.c]missile_stinger_init	simnet/data/ms st cs.d
	speed coefficient data array				Imiss stinger.clmissile stinger init		

NOTE 1 Int is a "C" type for integer.

TABLE 5.1.21. - STINGER MISSILE BURN SPEED COEFFICIENT DATA ARRAY

NAME OF DATA ELEMENT	DESCRIPTION	UNITS of MEASURE (MOTE 1)	DEFAULT	DATA TYPE (MOTE 2)	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOUNCE
	stinger missile burn speed coefficient ag	m/tick	6.1	REAL	default declaration miss_stinger.c [miss_stinger.c]missile_stinger_init	[miss_stinger.c]missile_stinger_init; [miss_stinger.c]missile_stinger_fire; [miss_stinger.c]missile_stinger_fly	simnet/data/ms_st_bs.d
stinger_burn_speed_coaff[1]	stinger missile burn speed coefficient al	m/tick*2	6194286897	REAL	default declaration miss_stinger.c [miss_stinger.c]missile_stinger_init	[miss_sting er.c]missile_stinger_init; [miss_stinger.c]missile_stinger_fire; [miss_stinger.c]missile_stinger_fly	simnet/data/ms_st_bs.d

NOTE 1 ene that is equal to one frame or 1/15th of a record NOTE 2 REAL is a "C" macro DEPRE for type frost.

TABLE 5.1.22. - STINGER MISSILE COAST SPEED COEFFICIENT DATA ARRAY

NAME OF DATA ELEMENT	DESCRIPTION	UNITS of MEASURE [HOTE 1]	DEFAULT	DATA TYPE INOTE 21	CSU WHERE SET OR	CSU WHERE USED	DATA SOURCE
stinger_coast_speed_coaff[0]	stinger missile coast speed coefficient an	m/tkk	56.73662833	REAL	default declaration miss_stinger.c {miss_stinger.c]missile_stinger_init	Imiss_stinger.clmissile_stinger_init; Imiss_stinger.clmissile_stinger_fire; Imiss_stinger.clmissile_stinger_fly	simnel/data/ms_st_cs.d
stinger_coast_speed_coeff[1]	stinger missile coast speed coefficient at	m/tick**2	19269281.0-	REAL	default declaration miss_stinger.c [miss_stinger.c]missile_stinger_init	[miss_stinger.c]missile_stinger_init; [miss_stinger.c]missile_stinger_fire; [miss_stinger.c]missile_stinger_fly	simnet/data/ms_st_cs.d
stinger_coast_speed_coeff[2]	stinger missile coast speed coefficient az	m/tick**3	2.33020016-4	REAL	default declaration miss_stinger.c [miss_stinger.c]missile_stinger_mit	(miss_stinger.c missile_stinger_init; fmiss_stinger.c missile_stinger_fire; {miss_stinger.c missile_stinger_fly	simnet/data/ms_st_cs.d
sunger_coast_speed_coaff[3]	stinger missile coast speed coefficient ag	m/tick••∢	m/tick**4 -1.0176282e-7	REAL	default declaration miss_stinger.c [miss_stinger.c]misstle_stinger_init	[miss_stinger.c]missile_stinger_init; [miss_stinger.c]missile_stinger_fire; [miss_stinger.c]missile_stinger_fly	simnet/data/ms_st_cs.d

NOTE 1 ene tick is equal to one frame or 1/15th of a second NOTE 2 REAL as TC* macro DEFRE for type float.

TABLE 5.1.23 - TOW MISSILE CHARACTERISTICS DATA ARRAY

NAME OF DATA ELEMENT	DESCRIPTION	UNITS of MEASURE INDIE: 1]	DEFAULT	DATA TYPE NOTE 21	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOUNCE
tow_miss_char[0]	TOW_BURNOUT_TIME; time of powered flight for tow mistile in ticks [1.6 seconds]	ticks	24.0	REAL	default declaration miss_tow.c; {miss_tow.c!isile_tow_init	[miss_tow.c]missile_tow_init; [miss_tow.c]missile_tow_fly	simnet/data/ms_tw_ch.d
tow_miss_char[1]	TOW_RANGE_LIMIT_TIME; range limit time for the tow missile in this 11:09 accords); at this point the wire is cut, but the missile is allowed to fly to the maximum flight time	ticks	26.35	REAL	default declaration miss low.c; [miss_tow.c]missile_tow_init	[miss_tow.c]missile_tow_init; [miss_tow.c]missile_tow_fly	simnet/data/ms_tw_ch.d
tow_miss_char{ 2}	TOW_MAX_FLIGHT_TIME; maximum flight time for the tow missile in ticks; cosine of the max turn is greater than 1.0 beyond this point	ticks	300.00	REAL	default declaration miss_tow.c; [miss_tow.c]:\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	miss_tow.c]missile_tow_init	simnet/data/ms_tw_ch.d
tow_mlas_char[3]	NOT USED		0.0	REAL	default declaration miss_tow.c; [miss_tow.c]missile_tow_init	[miss_tow.c]missile_tow_init	simnet/data/ms_tw_ch.d
tow_miss_char[4]	NOT USED		0.0	REAL	default declaration miss_tow.c; [miss_tow.c]missile_tow_init	[miss_tow.c]missile_tow_init	simnet/data/ms_tw_ch.d

NOTE 1 eru bick is equal to one frame or 1/15th of a second NOTE 2 REAL is a "C" morre DEPRE for type fleat.

TABLE 5.1.24. - TOW MISSILE POLYNOMIAL DEGREE CATA ARRAY

NAME	NAME OF DATA ELEMENT	DESCRIPTION	UNITS OF MEASURE	DEFAULT	DATA TYPE (MOTE 1)	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOURCE
Lwos	tow_miss_poly_deg[0]	polynomial degree for tow missile burn speed coefficient data array		2	int	default declaration miss_tow.c; [miss_tow.c]missile_tow_int*	[miss_tow.c]missile_tow_init	simnet/data/ms_tw_bs.d
tow	tow_miss_poly_deg[1]	polynomial degree for tow missile coast speed coefficient data array		3	int	default declaration miss_tow.c. [miss_tow.c]missile_tow_inf	[miss_tow.c]missile_tow_init	simnet/data/ms_tw_cs.d
A	tow_miss_poly_deg[2]	polynomial degree for each tow missile burn turn coefficient data sub-array of the tow missile burn turn coefficient data array structure		1	int	default declaration miss_tow.c; [miss_tow.c]missile_tow_init	fmise_fow.c/missile_tow_init	simnet/data/ms_tw_bt.d
A S	tow_mles_poly_deg[3]	polynomial degree for each tow missile coast furn coefficient data sub-array of the tow missile coast turn coefficient data array structure		3	lnt	default declaration miss_tow.c; [miss_tow.c]missile_tow_init	(mise_tow.c/missile_tow_init	simnet/data/ms_tw_ct.d
tow	tow_miss_poly_deg[4]	NOT USED		0	ij	default declaration miss_tow.c; [miss_tow.c]missile_tow_init	[miss_tow.c]missile_tow_init	simnet/data/ms_tw_ct.d

NOTE 1 MIN IN TO Type for Integer.

TABLE 5.1.25. - TOW MISSILE BURN SPEED COEFFICIENT DATA ARRAY

NAME OF DATA ELEMENT	DESCRIPTION	MEASURE (MOTE 1)	DEFAULT	DATA TYPE [NOTE 2]	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOURCE
tow_burn_spaed_coeff[0]	tow missile burn speed coefficient ag; default value is 67.0 m/sec	m/tick	4.4666667	REAL	default declaration miss tow.c [miss_tow.c]missile_tow_init	[miss_tow.clmissile_tow_init; [miss_tow.clmissile_tow_fire; [miss_tow.c]missile_tow_fly	simnet/data/ms_tw_ba.d
tow_burn_spaed_coeff[1]	tow missile burn speed coefficient at; default value is 274.9732662 m/sec*2	m/tick~2		REAL	default declaration miss_tow.c fmiss_tow.clmissile_tow_init	fmiss_tow.clmissile_tow_init; fmiss_tow.clmissile_tow_fire; fmiss_tow.c]missile_tow_fly	simnet/data/ms_tw_bs.d
tow_burn_speed_coeff[2]	tow missile burn speed coefficient az; default value is -82.7057910 m/sec ^{a-3}	m/tick**3	990253720.0-	REAL	default declaration miss_tow.c [miss_tow.c]missile_tow_init	[miss_tow.c]missile_tow_init; [miss_tow.c]missile_tow_fire; [miss_tow.c]missile_tow_fly	simnet/data/ms_tw_bs.d
tow_burn_speed_coeff[3]	tow missile burn speed coefficient ag	m/tick**4	0.0	REAL	default declaration miss_tow.c [miss_tow.c]missile_tow_init	(miss_tow.c)missile_tow_init; fmiss_tow.c)missile_tow_fre; fmiss_tow.c)missile_tow_fly	simnet/data/ms_tw_bs.d
tow_burn_speed_coeff[4]	tow missile burn speed coefficient ag	m/tick**5	0.0	REAL	default declaration miss_tow.c [miss_tow.c]missile_tow_init	(miss_tow.c/missile_tow_fnit; fmiss_tow.c/missile_tow_fre; fmiss_tow.c/missile_tow_fly	simnet/data/ms_tw_bs.d

NOTE 1 ere act to equal to one frame or 1/15th of a second NOTE 2 NEAL to 1°C macro DEFIE for type feat.

TABLE 5.1.26. - TOW MISSILE COAST SPEED COEFFICIENT DATA ARRAY

NAME OF DATA ELEMENT	DESCRIPTION	UNITS of MEASURE (NOTE 1)	DEFAULT	DATA TYPE (MOTE 2)	CSU WHERE SET OR	CSU WHERE USED	DATA SOURCE
taw_coast_speed_coaff[0]	tow missile coast speed coefficient ag; default value is 372 2856074 m/sec	m/tick	21.81905363	REAL	default declaration miss_tow.c [miss_tow.c]missile_tow_init	(miss_tow.c/missile_tow_init; (miss_tow.c/missile_tow_fly	simnet/data/ms_tw_cs.d
tow_coast_speed_coeff[1]	tow missile coast speed coefficient a; default value is -21.4609544 m/sec ² 2	m/tick*2	-9.53820194-2	REAL	default declaration miss_tow.c [miss_tow.c]missile_tow_init	Imiss_tow.c missile_tow_init; Imiss_tow.c missile_tow_fly	simmet/data/ms_tw_cs.d
tow_coast_speed_coaff[2]	tow missile coast speed coefficient az; default value is 0.8227650 m/sec**3	m/tkk*3	2.4378222e-4	REAL	default declaration miss_tow.c [miss_tow.c]missile_tow_init	(miss_tow.c/missile_tow_init; (miss_tow.c/missile_tow_fly	simnet/data/ms_tw_cs.d
tow_coast_speed_coaff[3]	tow missile coast speed coefficient as; default value is -0.0133200 m/sec**4	m/tkk*4	m/tick**4 -2.6311111e-7	REAL	default declaration miss_tow.c [miss_tow.c missile_tow_init	(miss_tow.c)missile_tow_init; (miss_tow.c)missile_tow_fly	simnet/data/ms_tw_cs.d
tow_coast_speed_coeff[4]	tow missile coast speed coefficient ad	m/tick**5	0.0	REAL	default declaration miss_tow.c [miss_tow.c]missile_tow_init	(miss_tow.c)missile_tow_init; (miss_tow.c)missile_tow_fly	simnet/data/ms_tw_cs.d

NOTE 1 are but is equal to are from an 1/15th of a second NOTE 2 REAL as 0.° macro DEFRE for type feat.

TABLE 5.1.27. - TOW MISSILE BURN TURN COEFFICIENT DATA STRUCTURE

NAME OF DATA ELENENT	DESCRIPTION	UNITS of MEASURE (NOTE 1)	DEFAULT	DATA	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOURCE
tow_burn_turn_coeff.deg	polynomial degree for each tow missile burn turn coefficient data sub- array of the tow missile burn turn coefficient data array structure			jų.	default declaration miss_tow.c miss_tow.c missile_tow_init	[mise_tow.c missile_tow_init; [mise_tow.c missile_tow_fly	simnet/data/ms_tw_bi.d
taw_burn_turn_coeff.side_coeff[0]	tow missile cosine of maximum side turn during burn coefficient ag	cos(rad)/tick	0.999976868652	REAL	default declaration miss_tow.c [miss_tow.c]missile_tow_init	(miss_tow.c]missile_tow_init; (miss_tow.c]missile_tow_fly	simnet/data/ms_tw_bt.d
tow_burn_turn_coeff.side_coeff[1]	tow missile cosine of maximum side turn during burn coefficient as	cos(rad)/tick*2	-3.5933955 c- 7	REAL	default declaration miss_tow.c [miss_tow.c]missile_tow_init	Imiss_tow.clmissile_tow_init; [miss_tow.clmissile_tow_fly	simnet/data/ms_tw_bt.d
tow_burn_turn_coeff.up_coeff[0]	tow missile cosine of maximum up turn during burn coefficient ag	cos(rad)/tick*	0.999960667258	REAL	default declaration miss_tow.c [miss_tow.c]missile_tow_init	[miss_tow.c]missile_tow_init; [miss_tow.c]missile_tow_fly	simnet/data/ms_tw_bt.d
tow_burn_turn_coeff.up_coeff[1]	tow missile cosine of maximum up turn during burn coefficient as	cos(rad)/#ck*2	-3.1492328 c-6	REAL	default declaration miss_tow.c [miss_tow.c]missile_tow_init	(miss_tow.c missile_tow_init; (miss_tow.c missile_tow_fly	simnet/deta/ms_tw_bt.d
tow_bwn_tsm_coeff.down_coeff[0]	tow missile cosine of maximum down turn during burn coefficient ag	cos(rad)/tick	0.999978909989	REAL	default declaration miss_tow.c [miss_tow.c]missile_tow_init	(miss_tow.c)missile_tow_init; [miss_tow.c]missile_tow_fly	simnet/data/ms_tw_bt.d
tow_burn_turn_coeff.down_coeff[1]	tow missile cosine of maximum down turn during burn coefficient ay	cos(rad)/lick**2	-7.8194991e-9	REAL	default declaration miss_tow.c [miss_tow.c]missile_tow_init	[miss_tow.c]missile_tow_init; [miss_tow.c]missile_tow_fly	simnet/data/ms_tw_bt.d

HOTE 1 ena that is equal to ena furms or 1/15th of a secon HOTE 2 REAL is a"C" much DEPRE for type feet.

TABLE 5.1.28. - TOW MISSILE COAST TURN COEFFICIENT DATA STRUCTURE

tow_coast_turn_coeff.deg polynomial degree for each tow missile coast turn coefficient data sub array of the tow missile coast coefficient data suray of the tow missile coast coefficient data array structure tow_coast_turn_coeff.side_coeff[0] tow missile cosine of maximum side turn_coast_turn_coeff.side_coeff[2] tow missile cosine of maximum side tow_coast_turn_coeff.side_coeff[3] tow missile cosine of maximum side tow_coast_turn_coeff.up_coeff[0] tow missile cosine of maximum side tow_coast_turn_coeff.up_coeff[0] tow missile cosine of maximum up turn during coast coefficient ago tow_coast_turn_coeff.up_coeff[1] tow missile cosine of maximum up turn during coast coefficient ago tow_coast_turn_coeff.up_coeff[1] tow missile cosine of maximum up turn during coast coefficient ago tow_coast_turn_coeff.up_coeff[1] tow missile cosine of maximum up turn during coast coefficient ago tow_coast_turn_coeff.up_coeff[2] tow missile cosine of maximum up turn during coast coefficient ago turn_coeff.up_coeff[2] tow missile cosine of maximum up turn during coast coefficient ago tow_coast_turn_coeff.up_coeff[2] tow missile cosine of maximum up turn during coast coefficient ago tow_coast_turn_coeff.up_coeff[2] tow missile cosine of maximum up turn during coast coefficient ago tow_coast_turn_coeff.up_coeff[2] tow missile cosine of maximum up turn during coast coefficient ago tow_coast_turn_coeff.up_coeff[2] tow_missile cosine of maximum up turn during coast coefficient ago tow_coeff.up_coeff[2] tow_missile cosine of maximum up turn during coast coefficient ago tow_coeff.up_coeff[2] tow_missile cosine of maximum up turn during coast coefficient ago tow_coeff.up_coeff[2] tow_missile cosine of maximum up turn during coast_turn_coeff.up_coeff[2] tow_coeff_2] tow_missile cosine of maximum up turn during coast_coefficient ago tow_coeff_2] tow_coeff_2] tow_coeff_3] tow_coe	costrad)/6ck costrad)/6ck-7 costrad)/6ck-7 costrad)/6ck-7	3 0.99995112518 8.96333&7 -5.996375&9	REAL REAL			
tow missile cosine of maximum sid turn during coast coefficient ag tow missile cosine of maximum sid turn during coast coefficient ag tow missile cosine of maximum sid turn during coast coefficient ag tow missile cosine of maximum up during coast coefficient ag tow missile cosine of maximum up during coast coefficient ag tow missile cosine of maximum up during coast coefficient ag	cos(rad)/ tick*? cos(rad)/ tick*? cos(rad)/ tick*?	8.96333£7 8.96333£7 -5.995375£9	REAL	default declaration miss_tow.c [miss_tow.c]missile_tow_init	[miss_tow.c]missile_tow_init; [miss_tow.c]missile_tow_fly	simnet/data/ms_tw_ct.d
tow missile costne of maximum sid turn Juring coast coefficient at tow missile cosine of maximum sid turn during coast coefficient ay tow missile cosine of maximum sid tow missile cosine of maximum up during coast coefficient ay tow missile cosine of maximum up during coast coefficient ag tow missile cosine of maximum up during coast coefficient ag tow missile cosine of maximum up		8.96333e-7 -5.995375e-9	REAL	default declaration miss_tow.c [miss_tow.c]missile_tow_init	(miss_tow.c]missile_tow_init; {miss_tow.c]missile_tow_fly	simnet/data/ms_tw_ct.d
tow missile cosine of maximum side turn during coast coefficient by tow missile cosine of maximum side turn during coast coefficient by during coast coefficient and commissile cosine of maximum up during coast coefficient and comissile cosine of maximum up		5.995375-9		default declaration miss_tow.c [miss_tow.c)missile_tow_init	[miss_tow.c]missile_tow_thit; [miss_tow.c]missile_tow_fly	simnet/data/ms_tw_ct.d
tow missile cosine of maximum sid turn during coast coefficient by during coast coefficient and turing coast coefficient and tow missile cosine of maximum up	_		REAL	default declaration miss_tow.c [miss_tow.c]missile_tow_init	[miss_tow.c]missile_tow_init; [miss_tow.c]missile_tow_fly	simnet/data/ms_tw_ct.d
tow missile cosine of maximum up during coast coefficient ag tow missile cosine of maximum up during coast coefficient ai		1.162225+11	REAL	default declaration miss_tow.c [miss_tow.c]missile_tow_init	[miss_tow.c]missile_tow_init; [miss_tow.c]missile_tow_fly	simnet/data/ms_tw_ct.d
tow missile cosine of maximum up during coast coefficient a; tow missile cosine of maximum up	turn cos(rad)/tick	0.9998498495	REAL	default declaration miss_tow.c [miss_tow.c]missile_tow_Init	miss_tow.c]missile_tow_init; [miss_tow.c]missile_tow_fly	simnet/data/ms_tw_ct.d
tow missile cosine of maximum up	urn	1.6577794-6	REAL	default declaration miss_tow.c [mlss_tow.c]missile_tow_init	[miss_tow.c]missile_tow_init; [miss_tow.c]missile_tow_fly	simnet/data/ms_tw_ct.d
during coast coefficient as	turn coe(rad)/tick**3	-8.231861€-9	REAL.	default declaration miss_tow.c [miss_tow.c]missile_tow_init	(miss_tow.c]missile_tow_init; (miss_tow.c]missile_tow_fly	simnet/data/ms_tw_ct.d
tow_cosst_turn_coeff.up_coeff[3] tow missile cosine of maximum up turn during coast coefficient as	tum coe(rad)/6ck**4	1,381832e-11	REAL	default declaration miss_tow.c [miss_tow.c]missile_tow_init	(miss_tow.clmissile_tow_init; (miss_tow.clmissile_tow_fly	simnet/data/ms_tw_ct.d
tow_coast_turn_coeff.down_coeff[0] tow missile rosine of maximum down turn during coast coefficient ap	cos(rad)/tick	0.999714014	REAL	default declaration miss_tow.c [miss_tow.c]missile_tow_init	[miss_tow.c]missile_tow_init; [miss_tow.c]missile_tow_fly	simnet/data/ms_tw_ct.d
tow_cosst_turn_cosff.down_cosff[1] tow missile cosine of maximum down turn during cosst coefficient as	wn costrad)/tick**2	3.382077e-7	REAL	default declaration miss_tow.c [miss_tow.c]missile_tow_init	[miss_tow.c]missile_tow_init; [miss_tow.c]missile_tow_fly	simnet/data/ms_tw_ct.d
tow_coast_turn_coaff.down_coaff[2] tow missile cosine of maximum down turn during coast coefficient as	\vdash	-1.6012594-9	REAL	default declaration miss_tow.c [miss_tow.c]missile_tow_init	[miss_tow.c]missile_tow_init; [miss_tow.c]missile_tow_fly	simnet/data/ms_tw_ct.d
tow_coast_turn_coaff.down_coaff[3] tow missile cosine of maximum down turn during coast coefficient as	cos(rad)/tick**4	2.623014€-12	REAL	default declaration miss_tow.c [miss_tow.c]missile_tow_init	[miss_tow.c]missile_tow_init; {miss_tow.c]missile_tow_fly	simnet/data/ms_tw_ct.d

HOTE 1 one but is equal to ans frame or 1/19th HOTE 2 REAL is a "C" made DEPRE for type float to the second second

TABLE 5.1.29 - ADAT MISSILE CHARACTERISTICS DATA ARRAY

NAME OF DATA ELEMENT	DESCRIPTION	UNITS OF MEASURE [NOTE 1]	DEFAULT	DATA TYPE Profit 2)	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOUNCE
adat_miss_char[0]	ADAT_BURNOUT_TIME: time of powered flight for adat missile in ticks (3.2 seconds)	ticks	0'87	REAL	default declaration miss_adat.c; [miss_adat c]missile_adat_init	(miss_adat.c missile_adat_init; {miss_adat.c missile_adat_fly	simnet/data/ms_ad_ch.d
edat_miss_char[1]	ADAT_MAX_FLICHT_TIME; maximum flight time for the adat missile in ticks [20.0 seconds]	ticks	300:00	REAL	default declaration miss_adat.c; [miss_adat.c]missile_adat_init	Imiss_adat.clmissile_adat_Init; Imiss_adat.clmissile_adat_Ily	simnet/data/ms_ad_ch.d
adat_miss_char[2]	INVEST_DIST_SQ: default value is 300 meters squared	m*2	0.00006	REAL	default declaration miss_adat.c; Imise_adat.c)missile_adat_init	(miss_adat.c]missile_adat_init; (miss_adat.c)missile_adat_fly	simnet/data/ms_ad_ch.d
adat_miss_char[3]	HELO_FUZE_DIST_SQ: default value is 7 meters aquared	m*2	0.64	REAL	default declaration miss_adat.c; [miss_adat.c]misstle_adat_init	[miss_adat.c]missile_adat_init; [miss_adat.c]missile_adat_fire	simnet/data/ms_ad_ch.d
adat_miss_char[4]	AIR_FUZE_DIST_SQ; default value is 14 meters aquared	m*2	0'961	REAL	default declaration miss_adat.c; [miss_adat.c]missile_adat_init	[miss_adat.c]missile_adat_init; [miss_adat.c]missile_adat_fire	simnet/data/ms_ad_chd
adat_miss_char[5]	ADAT_TEMP_BIAS_TIME; time of temporal bias for adat missile in ticks [4.0 seconds]	ticks	0.09	REAL	default declaration miss_adat.c; [miss_adat.c]missile_adat_init	(miss_adat.c)missile_adat_init; (miss_adat.c)missile_adat_fly	simnet/data/ms_ad_ch.d
adat_miss_char[6]	CLOSE_RANGE;	E	0,0022	REAL	default declaration miss_adat.c; [miss_adat.c]missile_adat_init	(miss_adat.c]missile_adat_init; (miss_adat.c]missile_adat_fire	simnet/data/ms_ad_ch.d
edat_miss_char[7]	NOT USED		0.0	REAL	default declaration miss_adat.c; [miss_adat.c]missile_adat_init	[miss_adat.c]missile_adat_mit	simnet/data/ms_ad_ch.d
adet_miss_char[8]	NOT USED		0.0	REAL	default declaration miss_adat.c; [miss_adat.c]missile_adat_init	[miss_adat.c]missile_adat_init	simnet/data/ms_ad_ch.d
adat_miss_char[9]	NOT USED		0.0	REAL	default declaration miss_adat.c; [miss_adat.c]missile_adat_init	[miss_adat.c]missile_adat_init	simnet/data/ms_ad_ch.d

NOTE 1 are tick to equal to one frame or 1/15th of a second NOTE 2 REAL to a "C" macro DEPRE for type frost.

TABLE 5.1.30. - ADAT MISSILE POLYNOMIAL DEGREE DATA ARRAY

NAME OF DATA ELEMENT	DESCRIPTION	UNITS of MEASURE	DEFAULT	DATA TYPE [MOTE 1]	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOURCE
edat_miss_poly_deg[0]	polynomial degree for adat missile burn speed coefficient data array		2	Int	default declaration miss_adat.c; [miss_adat.c]missile_adat_init	(mise_adat.clmissile_adat_init	simnet/data/ms_ad_bad
adat_miss_poly_deg[1]	polynomial degree for adat missile coast speed coefficient data array		•	juj	default declaration miss_adat.c; [miss_adat.c]missile_adat_init	[mise_adat.c]missile_adat_init	simnet/data/ms_ad_cs.d
adat_miss_poly_deg[2]	polynomial degree for cosine of adat missile maximum turn during burn coefficient data array		3	int	default declaration miss_adat.c; [miss_adat.c]missile_adat_init	(miss_adat.c)missile_adat_init	simnet/data/ms_ad_bt.d
adat_miss_poly_deg[3]	polynomial degree for cosine of adat missile maximum turn during coast coefficient data acray		s	int	default declaration miss_adat.c; [miss_adat.c]missile_adat_init	Imiss_adat.cImissile_adat_init	simnet/data/ms_ad_ct.d
adat_miss_poly_deg[4]	polynomial degree for adat missile temporal blas coefficient data array		1	int	default declaration miss_adat.c; [miss_adat.c]missile_adat_init	(miss_adat.c]missile_adat_init	simnet/data/ms_ad_tb.d

HOTE 1 ht to a "C" type for integer.

TABLE 5.1.31. - ADAT MISSILE BURN SPEED COEFFICIENT DATA ARRAY

MAME of DATA ELEMENT	DESCRIPTION	UNITS of MEASURE INOTE 1)	DEFAULT	DATA TYPE (NOTE 2)	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOURCE
adat_burn_speed_coeff[0]	adat missile burn speed coefficient ag	m/tick	757	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	miss_adat.c missile_adat_init; miss_adat.c missile_adat_fire; fmiss_adat.c missile_adat_fly	simnet/data/ms_ad_bs.d
adat_bum_speed_coeff[1]	adat missile burn speed coefficient ay	m/tick**2	0.72990856	REAL	default declaration miss_adat.c (miss_adat.c]missile_adat_init	Imiss_adat.c missile_adat_init; Imiss_adat.c missile_adat_fire; Imiss_adat.c missile_adat_fire;	simnet/data/ms_ad_bs.d
adat_burn_speed_coeff[2]	adat missile burn speed coefficient a2	m/tick**3	0.013310932	REAL	default declaration miss_adatc (miss_adat.c)missile_adat_init	[miss_adat.c]missile_adat_init; [miss_adat.c]missile_adat_fire; [miss_adat.c]missile_adat_fly	simnet/data/ms_ad_ba.d
adat_bum_speed_coeff[3]	adat missile burn speed coefficient ag	m/tick**4	0.0	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	[miss_adat.c missile_adat_init; miss_adat.c missile_adat_fire; miss_adat.c missile_adat_fire;	simnet/data/ms_ad_bs.d
adat_bum_speed_coeff[4]	adat missile burn speed c. efficient ag	m/tick**5	0.0	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	[mise_adat.c]missile_adat_init; {mise_adat.c]missile_adat_fire; [mise_adat.c]missile_adat_fiy	simnet/data/ms_ad_ba.d
adar_burn_speed_coeff[5]	adat missile burn speed coefficient as	m/tick*6	0.0	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	miss_adat.c missile_adat_init; miss_adat.c missile_adat_fire; miss_adat.c missile_adat_fiy	simnet/data/ms_ad_bs.d
adat_burn_speed_coeff[6]	adat missile burn speed coefficient ag	m/tick**7	0.0	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	Imiss_adat.c)missile_adat_init; Imiss_adat.c)missile_adat_fire; Imiss_adat.c missile_adat_fly	simnet/data/ms_ad_bs.d
ader_burn_speed_coeff[7]	adat missile burn speed coefficient ay	m/tick**8	0.0	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	[miss_adat.c]missile_adat_init; [miss_adat.c]missile_adat_fire; [miss_adat.c]missile_adat_fly	simnet/data/ms_ad_bs.d
adat_bum_speed_coeff[8]	adat missile burn speed coefficient ag	m/tick**9	0.0	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	[miss_adat.c]missile_adat_inlt; {miss_adat.c]missile_adat_fire; [miss_adat.c]missile_adat_fiy	simnet/data/ms_ad_ba.d
adat_bum_speed_coeff[9]	adat missile burn speed coefficient ag	m/tick**10	0.0	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	[miss_adat.c]missile_adat_frit; [miss_adat.c]missile_adat_fire; [miss_adat.c]missile_adat_fly	simnet/data/ms_ad_bs.d

NOTE 1 one tick is equal to one frame or 1/15th of a sec NOTE 2 REAL as "C" mace DEFRE for type float.

TABLE 5.1.32. - ADAT MISSILE COAST SPEED COEFFICIENT DATA ARRAY

NAME OF DATA ELEMENT	DESCRIPTION	UNITS OF MEASURE	DEFAULT	DATA	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOURCE
adat_coast_speed_coeff[0]	adat missile coast speed coefficient ag	m/ttck	105.52162	REAL	default declaration miss_adat.c	(mise_adat.c]missile_adat_init; Imfee_adat_clmissile_adat_flo	simnet/deta/ms_ed_cs.d
adat_coast_speed_coeff[1]	adat missile coast speed coefficient as	m/tick=2	-1.0157285	REAL	default declaration miss adat.c	[miss_adat.c]missile_adat_init; [miss_adat.c]missile_adat_inv	simnet/data/ms_ad_cs.d
adat_toast_speed_coeff[2]	adat missile coast speed coefficient ag	m/tick=3	5.61243304-3	REAL	default declaration miss_adat.c [miss_adet.c]missile_adat_init	(miss_adat.c missile_adat_init; miss_adat.c missile_adat_fly	simnet/data/ms_ad_cs.d
adar_coesr_speed_coeff[3]	adat missile coast speed coefficient as	m/tick**4	-1.6262608 c- 5	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	(miss_adat.c missile_adat_init; (miss_adat.c missile_adat_fly	simnet/data/ms_ad_cs.d
adar_coast_speed_coeff[4]	adat missile coast speed coefficient ad	m/tick**5	1.89919624-8	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	(miss_adat.c)missile_adat_init; (miss_adat.c)missile_adat_fly	simnet/data/ms_ad_cs.d
adat_coast_speed_coeff[5]	adat missile coast speed coefficient as	m/tick**6	0.0	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	(mise_adat.c missile_udat_init; (mise_adat.c missile_adat_fly	simnet/data/ms_ad_cs.d
adat_toast_speed_coeff[6]	adat missile coast speed coefficient ag	m/tick**7	0.0	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	[miss_adat.c]missile_adat_init; [miss_adat.c]missile_adat_ffy	simnet/data/ms_ad_cs.d
adat_coast_speed_coeff(7)	adat missle coast speed coefficient a7	m/tick**8	0.0	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	(miss_adat.c)missife_adat_init; [miss_adat.c)missile_adat_fly	simnet/data/ms_ad_cs.d
adat_coast_speed_coeff[8]	adat missile coast speed coefficient ag	m/tick=9	0.0	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	[miss_adat.c]missile_adat_init; [miss_adat.c]missile_adat_fly	simnet/data/ms_ad_cs.d
sdat_coast_speed_coeff[9]	adat missile coast speed coefficient ag	m/tkk*10	0.0	REAL	default declaration miss_adat.c	(mise_adat.c)missile_adat_init; imise_adat.clmissile_adat_ity	simnet/data/ms_ad_ca.d

NOTE 1 ene but is equal to are frame or 1/19th of a second NOTE 2 REAL as a "C" more DEPRE for type fact.

TABLE 5.1.33. - ADAT MISSILE BURN TURN COEFFICIENT DATA ARRAY

NAME of DATA ELEMENT	DESCRIPTION	UNITS OF MEASURE HOTE 1	DEFAULT	DATA TYPE	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOUNCE
adat_burn_turn_coeff[0]	adat missile cosine of maximum tum during burn coefficient ag	costrad)/ bck	0.999993	REAL	default declaration miss_adat.c	[miss_adat.c]missile_adat_init; [miss_adat.c]missile_adat_flv	simnet/data/ms_ad_bt.d
edar_bum_tum_coeff[1]	adat missile cosine of maximum turn during burn coefficient as	cos(rad)/lick*2	-62386917e-7	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	[miss_adat.c]missile_adat_init; [miss_adat.c]missile_adat_fly	simnet/data/ms_ad_bt.d
adat_bum_tum_coeff[2]	adat missile cosine of masmum tum during burn coefficient az	costrad)/tick**3	1.6146426€-7	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	(miss_adat.c)missile_adat_init; [miss_adat.c]missile_adat_fly	simnet/data/ms_ad_bt.d
adac_bum_tum_cosff[3]	adat missile cotine of maximum tum during burn coefficient as	costrad)/lick**4	-9.720142e-7	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	[miss_adat.c]missile_adat_init; [miss_adat.c]missile_adat_fly	simnet/data/ms_ad_bt.d
edat_bum_tum_coeff[4]	adat missile cosine of maximum tum during burn coefficient ad	coe(rad)/bck**5	0.0	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	[miss_adat.c missile_adat_init; [miss_adat.c missile_adat_fly	simmet/data/ms_ad_bt.d
edat_bum_tum_coeff[5]	adat missile cosine of maximum tum during burn coefficient as	coe(rad)/bck**6	0.0	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	Imiss_adat.c]missile_adat_init; [miss_adat.c]missile_adat_fly	simnet/data/ms_ad_bt.d
adat_bum_tum_coeff[6]	adat missile cosine of maximum tum during burn coefficient as	coa(rad)/tick ^{مو})	0:0	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	[miss_adat.c]missile_adat_init; [miss_adat.c]missile_adat_fly	simnet/data/ms_ad_bt.d
adat_bum_tum_coeff[7]	adat missile cosine of maximum tum during burn coefficient ay	cos(rad)/lick**8	0.0	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	[miss_adat.c]missile_adat_init; [miss_adat.c]missile_adat_fly	simnet/data/ms_ad_bt.d
adat_bum_tum_coeff[8]	adat missile cosine of maximum tum during burn coefficient ag	cos(rad)/tick**9	0.0	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	[miss_adat.c]missile_adat_init; [miss_adat.c]missile_adat_fly	simnet/data/ms_ad_bt.d
adar_bum_tum_coeff[9]	adat missile cosine of maximum tum during burn coefficient as	cos(rad)/tick*10	0.0	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	[miss_adat.c]missile_adat_init; [miss_adat.c]missile_adat_fly	simnet/data/ms_ad_bt.d

MOTE 1 ero tick is equal to one frame or 1/75th of a second MOTE 2 REAL as TC* macro DEPIGE for type final.

TABLE 5.1.34. - ADAT MISSILE COAST TURN COEFFICIENT DATA ARRAY

NAME of DATA ELEMENT	DESCRIPTION	UNITS OF	DEFAULT	DATA TYPE (MOR 2)	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOUNCE
adat_coast_tum_coeff[0]	adat missile cosine of maximum tum during coast coefficient ag	cos(rad)/bck	0.99753111	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	[miss_adat.c]missile_adat_init; [miss_adat.c]missile_adat_flv	simnet/data/ms_ad_ct.d
adat_coast_tum_coeff[1]	adat missile cosine of maximum tum during coast coefficient a 1	coe(rad)/tick*2	5.58179866-5	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	(miss_adat.c)missile_adat_init; (miss_adat.c)missile_adat_iny	simnet/data/ms_ad_ctd
adat_coast_tum_coeff[2]	adat miselle cosine of maximum tum during coest coefficient az	cos(rad)/Bck**3	-5.1 <i>276276</i> - 7	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	[miss_adat.c]missile_adat_init; [miss_adat.c]missile_adat_fly	simnet/data/ms_ad_ctd
edet_coest_tum_coeff[3]	adat missile cosine of maximum turn during cosst coefficient as	cos(rad)/tick**4	2.23885934-9	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	(miss_adat.c missile_adat_init; [miss_adat.c missile_adat_fly	simnet/data/ms_ad_ct.d
adat_coast_tum_coeff[4]	adat missile coeine of maximum tum during coast coefficient a.e.	cos(rad)/8ck**5 -5.1964622e-12	-5.19 646 22 e 12	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	[miss_adat.c]missile_adat_init; [miss_adat.c]missile_adat_fly	simnet/data/ms_ad_ct.d
eder_coast_turn_coeff[5]	adat missile cosine of maximum turn during coast coefficient as	cos(rad)/8ck*6 4.5499104e-15	4.5499104e-15	REAL	default declaration miss_adat.c [mlss_adatc]missile_adat_init	(miss_adat.c)missile_adat_init; (miss_adat.c)missile_adat_illy	simnet/data/ms_ad_ct.d
adat_coast_tum_coeff[6]	adat missile cosine of maximum turn during coast coefficient as	cos(rad)/lick**7	0.0	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	[mise_adat.c]missile_adat_init; [mise_adat.c]missile_adat_fly	simnet/data/ms_ad_ct.d
adat_coast_turn_coeff[7]	adat missile cosine of maximum turn during coast coefficient ay	cos(rad)/tick**8	0.0	REAL	default declaration miss_adat.c [mlss_adat.c]missile_adat_init	[miss_adat.c]missile_adat_init; [miss_adat.c]missile_adat_fly	simnet/data/ms_ad_ct.d
edat_coast_tum_coeff[8]	adat missile cosine of maximum turn during coast coefficient ag	cos(rad)/8ck**9	0.0	REAL	default declaration miss_adat.c [miss_adat.c]missite_adat_init	[miss_adat.c]missile_adat_Init; [miss_adat.c]missile_adat_fly	simnet/data/ms_ad_ct.d
adat_coast_tum_coeff[9]	adat missile cosine of maximum turn during coast coefficient as	coe(rad)/Hck**10	0.0	REAL	default declaration miss_adat.c [mbs_adat.c]missile_adat_init	[miss_adat.c]missile_adat_init; [miss_adat.c]missile_adat_fly	simnet/data/ms_ad_ct.d

NOTE 1 are tick is equal to one frame or 1/15th of NOTE 2 REAL is a "C" means DEPTE for type flast.

TABLE 5.1.35. - ADAT MISSILE TEMPORAL BIAS COEFFICIENT DATA ARRAY

NAME of DATA ELEMENT	DESCRIPTION	UNITS of MEASURE (NOTE 1)	DEFAULT	DATA TYPE (MOTE 2)	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOUNCE
adat_temp_blas_coeff[0]	adat missile temporal bias coefficient ag	cos(rad)/fick	5.3105667e-2	REAL	default declaration miss_adat.c	[miss_adat.c]missile_adat_init; Imiss_adat.c]missile_adat_init;	simnet/data/ms_ad_ct.d
adar_temp_blas_coeff[1]	adat missile temporal bias coefficient ay	cos(rad)/tick*2	7.1795817e-2	REAL	default declaration miss_adat.c	[miss_adat.c]missile_adat_init; [miss_adat.c]missile_adat_fly	simnet/data/ms_ad_ct.d
adat_temp_bias_coeff[2]	adat missile temporal bias coefficient az	cos(rad)/tick**3	1.8084646e-2	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	[miss_adat.c missile_adat_init; [miss_adat.c missile_adat_ily	simnet/data/ms_ad_ct.d
adat_temp_blas_coeff[3]	adat missile temporal bias coefficient ag	cos(rad)/dck**4	-6.0083762€-4	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	[miss_adat.c missile_adat_init; [miss_adat.c missile_adat_fly	simnet/data/ms_ad_ct.d
adat_temp_bias_coeff[4]	adat missile temporal bias coefficient ag	cos(rad)/Bck**5	4.6761091e-6	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	[mise_adat.c]missile_adat_init; [mise_adat.c]missile_adat_fly	simnet/data/ms_ad_ct.d
adat_temp_blas_coeff(5)	adat missile temporal bias coefficient as	cos(rad)/tick**6	0'0	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	(miss_adat.c]missile_adat_init; (miss_adat.c]missile_adat_fly	simnet/data/ms_ad_ct.d
adat_temp_blas_coeff[6]	adat missile temporal blas coefficient ag	cos(rad)/bck*7	0.0	REAL	default declaration miss_adat.c [miss_adat.c]missite_adat_init	[miss_adat.c]missile_adat_init; [miss_adat.c]missile_adat_fly	simnet/data/ms_ad_ct.d
adat_temp_blas_coeff[7] '	adat missile temporal bias coefficient ay	cos(rad)/tick**8	0.0	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	[miss_adat.c}missile_adat_init; [miss_adat.c]missile_adat_fly	simnet/data/ms_ad_ct.d
adat_temp_blas_coeff[8]	adat missile temporal blas coefficient ag	cos(rad)/ück**9	0.0	REAL	default declaration miss_adat.c [miss_adat.c]missile_adat_init	[miss_adat.c]missile_adat_init; [miss_adat.c]missile_adat_fly	simnet/data/ms_ad_ct.d
adat_temp_bias_coeff[9]	adat missile temporal bias coefficient as	cos(rad)/Nck*10	0.0	REAL	default declaration miss_adat.c [miss_adat.c]missite_adat_init	[miss_adat.c]missile_adat_init; [miss_adat.c]missile_adat_fly	simnet/data/ms_ad_ct.d

NOTE 1 one lick is equal to and frame or 1/15th of a sec NOTE 2 REAL as T" macro DEPRE for type float.

TABLE 5.1.36 - ATGM MISSILE CHARACTERISTICS DATA ARRAY

NAME OF DATA ELENENT	DESCRIPTION	UNITS of MEASURE [NOTE 1]	. DEFAULT VALUE	DATA TYPE PROTE 2	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOUNCE
tow_mhs_char[0]	TOW_BURNOUT_TIME; time of powered flekt for tow missile in ticts (1.6 seconds)	ticks	24.0	REAL	default declaration miss_atgm.c; [miss_atgm.c]missile_atgm_init	[miss_atgm.c]missile_atgm_init; [miss_atgm.c]missile_atgm_fly	simnet/data/ms_st_ch.d
tow_miss_char[1]	TOW RANGE LIMIT TIME; range limit time for the tow missile in tichs 1/2/9 seconds]; at this point the wire is cut, but the missile is allowed to fiv to the maximum flight time	tcks	266.35	REAL	default declaration miss_atgm_c; [miss_atgm.c]missile_atgm_init	[miss_atgm.c]missile_atgm_mit; [miss_atgm.c]missile_atgm_fly	simnet/data/ms_at_chd
tow_miss_char[2]	TOW JAAX FLIGHT, TIME: maximum flight time for the tow misalle in ticks; cosine of the max turn is greater than 1.0 beyond this point	#CFS	200:00	REAL	default declaration miss_atgm.c; imiss_atgm.clmissile_atgm_init	iniss_atgm.c/missile_atgm_init	simnet/data/ms_at_ch.d
tow_miss_char[3]	ATGM_TURN_FACTOR: ATGM rum factor for wider turning capability with respect to TOW		60	REAL	default declaration miss_atgm.c; {miss_atgm.clmissile_atgm_init	[miss_atgm.c]missile_atgm_init	simnel/data/ms_at_ch.d
tow_miss_char[4]	NOT USED		0.0	REAL	default declaration miss_atgm.c; [miss_atgm.c]missile_atgm_init	[miss_atgm.c]misstle_atgm_init	simnet/data/ms_at_ch.d

NOTE: 2 and tick is equal to one frame or 1/15th of a necent NOTE: 2 REAL as TC* macro DEPHE for type float.

TABLE 5.1.37. - ATGM MISSILE POLYNOMIAL DEGREE DATA ARRAY

NAME of DATA ELEMENT	DESCRIPTION	UNITS OF MEASURE	DEFAULT	DATA TYPE MOTE 1	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOURCE
tow_miss_poly_deg[0]	polynomial degree for tow missile burn speed		2	į	default declaration miss_atgm.c; [miss_atgm.c]missile_atgm_init	Imiss_atgm.clmissile_atgm_init	simnet/data/ms_at_ba.d
tow_miss_poly_deg[1]	polynomial degree for tow missile coast speed		3	int	default declaration miss_atgm.c; [miss_atgm.c]missile_atgm_init	[miss_atgm.c]missile_atgm_init	simnet/data/ms_at_cs.d
tow_miss_poly_deg[2]	polynomial degree for each tow missile burn turn coefficient data sub-array of the tow missile burn furn coefficient data array		-90×4) I	default declaration miss_atgm.c; [miss_atgm.c]missile_atgm_bilt	[miss_algm.c]missile_algm_init	simnet/data/ms_at_Dt.d
tow_miss_poly_deg[3]	polynomial degree for each tow missile coast fum coefficient data sub-array of the tow missile coast fum coefficient data array		6	š	default declaration miss_atgm.c; (miss_atgm.c missile_atgm_init	(miss_atgm.clmissile_atgm_init	simnet/data/ms_at_ct.d
tow_miss_poly_deg[4]	MOT USED		0	įį	default declaration miss_argm.c; [miss_atgm.c]missile_atgm_bnit	[miss_atgm.c]missile_atgm_init	simnet/data/ms_at_ct.d

NOTE 1 Inches "C" type for integer.

TABLE 5.1.38. - ATGM MISSILE BURN SPEED COEFFICIENT DATA ARRAY

NAME of DATA ELEMENT	DESCRIPTION	UNITS of MEASURE (MOTE 1)	DEFAULT	DATA TYPE [NOTE 2]	CSU WHERE SET OR	CSU WHERE USED	DATA SOUNCE
tow_burn_speed_coeff[0]	tow missie burn speed coefficient ag; default value is 67.0 m/sec	m/tick	4.46666667	REAL	default declaration miss_atgm.c [miss_atgm.c]missile_atgm_init	[miss_atgm.c]missile_atgm_init; [miss_atgm.c]missile_atgm_fire; [miss_atgm.c]missile_atgm_fly	simnet/data/ms_at_ba.d
tow_burn_speed_coeff[1]	tow missile burn speed coefficient at; default value is 274.9732662 m/sec**2	m/tick**2	1222103405	REAL	default declaration miss_atgm.c fmiss_atgm.clmissile_atgm_init	iniss_atgm.cimissie_atgm_init; imiss_atgm.cimissie_atgm_iire; imiss_atgm.cimissie_atgm_ily	simnet/data/ms_at_bs.d
tow_burn_speed_coeff[2]	tow missile burn speed coefficient az; default value is -82.7057910 m/sec**3	m/tick**3	-0.024532086	REAL	default declaration miss_atgm.c [miss_atgm.c]missile_atgm_init	miss_atgm.clmissile_atgm_init; miss_atgm.clmissile_atgm_fire; miss_atgm.clmissile_atgm_fly	simnet/data/ms_at_ba.d
tow_burn_speed_coeff[3]	tow missile burn speed coefficient ag	m/tick**4	0.0	REAL	default declaration miss_atgm.c [miss_atgm.c]missile_atgm_init	imiss_atgm.cimissile_atgm_init; imiss_atgm.cimissile_atgm_iire; imiss_atgm.cimissile_atgm_iiy	simnet/data/ms_at_ba.d
tow_burn_speed_coeff[4]	tow missile burn speed coefficient at	m/tick**5	0:0	REAL	default declaration miss_atgm.c [miss_atgm.c]missile_atgm_init	(miss_atgm.inits; fmiss_atgm.clmisstle_atgm_fire; fmiss_atgm.clmisstle_atgm_fly	simnet/data/ms_at_bs.d

NOTE 1 ene tick is equal to any frame or 1/15th of a second NOTE 2 REAL as 1°C* macro DEPAE for type float.

TABLE 5.1.39. - ATGM MISSILE COAST SPEED COEFFICIENT DATA ARRAY

NAME OF DATA ELEMENT	DESCRIPTION	UNITS of MEASURE (MOTE)	DEFAULT	DATA TYPE INOTE 2]	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOURCE
tow_coast_speed_coeff[0]	tow missile coast speed coefficient ag; default value is 327.2859074 m/sec	m/tick	21.81905383	REAL	default declaration miss_atgm.c [miss_atgm.c]missile_atgm_init	[miss_atgm.c]missile_atgm_init; [miss_atgm.c]missile_atgm_fl;;	simnet/data/ms_at_cs.d
tow_coast_speed_coeff[1]	tow missile coast speed coefficient ay; default value is -21.4609544 m/sec**2	m/tick*2	-9.5382019+2	REAL	default declaration miss_atgm.c [miss_atgm.c]missile_atgm_init	[miss_atgm.c]missile_atgm_init; [miss_atgm.c]missile_atgm_fly	simnet/data/ms_at_cs.d
tow_coast_speed_coeff[2]	tow missile coast speed coefficient az; default value is 0.8227660 m/sec**3	m/tkck**3	m/tkk*3 2.4378222e-4	REAL	default declaration miss_atgm.c (miss_atgm.c]missile_atgm_init	<pre>{miss_atgm.c missile_atgm_init; {miss_atgm.c missile_atgm_fly</pre>	simnet/data/ms_at_cs.d
tow_coast_speed_coeff[3]	tow missile coast speed coefficient ag: default value is -0.0133200 m/sec**4	m/tick**4	m/tick**4 -2.6311111e-7	REAL	default declaration miss_atgm.c [miss_atgm.c]missile_atgm_init	(miss_atgm.c missile_atgm_init; (miss_atgm.c missile_atgm_fly	simnet/data/ms_at_cs.d
tow_coest_speed_coeff[4]	tow missile coast speed coefficient ag	m/tick**5	0.0	REAL	default declaration miss_atgm.c (miss_atgm.clmissile_atgm_init	[miss_atgm.c]missile_atgm_init; [miss_atgm.c]missile_atgm_fly	simnet/data/ms_at_cs.d

NOTE: 1 and that is equal to one frame or 1/15th of a second NOTE: 2 REAL as a "C" made DEFRE for type fort.

TABLE 5.1.40. - ATGM MISSILE BURN TURN COEFFICIENT DATA STRUCTURE

NAME of DATA ELEMENT	DESCRIPTION	UNITS OF MEASURE [NOTE 1]	DEFAULT	DATA TYPE PMOTE 2)	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOUNCE
tow_burn_turn_coeff.deg	polynomial degree for each tow missile bum turn coefficient data sub- array of the tow missile bum turn coefficient data array structure		1	įį	default declaration miss_atgm.c [miss_atgm.c]missite_atgm_init	(miss_atgm.clmissile_atgm_init; (miss_atgm.clmissile_atgm_fly	simnet/data/ms_at_bt.d
tow_burn_turn_coeff.side_coeff[0]	tow missile cosine of maximum side turn during burn coefficient ag	cos(rad)/bck	0.999976868652	REAL	default declaration miss_atgm.c [miss_atgm.c]missile_atgm_init	[miss_atgm.c]missile_atgm_init; [miss_atgm.c]missile_atgm_fly	simnet/data/ms_st_bt.d
tow_burn_turn_coeff.side_coeff[1]	tow missile cosine of maximum side turn during burn coefficient as	cos(rad)/tick**2	-3.593395£-7	REAL	default declaration miss_atgm.c [miss_atgm.c]missile_atgm_init	[miss_atgm.c]missile_atgm_init; [miss_atgm.c]missile_atgm_fly	simnet/data/ms_at_bt.d
tow_burn_turn_coeff.up_coeff[0]	tow missile cosine of maximum up turn during burn coefficient ag	coe(rad)/tick*	0.999960667258	REAL	default declaration miss_atgm.c [miss_atgm.c]missile_atgm_init	(miss_atgm.c]missile_atgm_init; {miss_atgm.c/missile_atgm_fly	simnet/data/ms_at_bt.d
tow_burn_turn_coeff.up_coeff[1]	tow missile cosine of maximum up turn costrad)/bck**2 during burn coefficient a	cos(rad)/bck*2	-3.14923286-6	REAL	default declaration miss_atgm.c fmiss_atgm.clmissile_atgm_init	[miss_atgm.c]missile_atgm_init; [miss_atgm.c]missile_atgm_fly	simnet/data/ms_at_bt.d
tow_burn_turn_coeff.down_coeff[0]	tow missile cosine of maximum down turn during burn coefficient ag	cos(rad)/tick	686606826666	REAL	default declaration miss_atgm.c (miss_atgm.c]missile_atgm_init	[miss_atgm.c]missile_atgm_init; [miss_atgm.c]missile_atgm_fly	simnet/data/ms_st_bt.d
tow_burn_turn_coeff.down_coeff[1]	tow missile cosine of maximum down turn during burn coefficient ay	cos(rad)/bck**2	-7.8194991€-9	REAL	default declaration miss_atgm.c [miss_atgm.c missile_atgm_init	iniss_atgm.cimissile_atgm_init; imiss_atgm.cimissile_atgm_fly	simnet/data/ms_at_bt.d

NOTE 1 eve litt is equal to one frame or 1/7 Sth of a second NOTE 2 REAL is 9 °C" mace DEPAE for type frost. In it is "C" type for Integer.

TABLE 5.1.41. - ATGM MISSILE COAST TURN COEFFICIENT DATA STRUCTURE

NAME OF DATA ELEMENT	DESCRIPTION	UNITS OF MEASURE (MOTE 1)	DEFAULT	DATA TYPE (MOTE 2)	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOURCE
tow_coest_turn_coeff.deg	polynomial degree for each tow missile coast turn coefficient data sub- array of the tow missile coast turn coefficient data array structure		es.	in	default declaration miss_atgm.c [miss_atgm.c missile_atgm_init	{miss_atgm.c missile_atgm_init; [miss_atgm.c missile_atgm_fly	simnet/data/ms_at_ct.d
tow_coast_turn_coeff.side_coeff[0]	tow missile cosine of maximum side turn during coast coefficient ag	cos(rad)/ Bck	0.99995112518	REAL	default declaration miss_atgm.c [miss_atgm.c]missib_atgm_init	[miss_atgm.c]missile_atgm_fnit; [miss_atgm.c]missile_atgm_fly	simnet/data/ms_at_ct.d
tow_coast_turn_coeff.side_coeff[1]	tow missile cosine of maximum side turn during coast coefficient ay	costrad)/ tick*2	8.96333e-7	REAL	default declaration miss_atgm.c [miss_atgm.c]missite_atgm_init	[miss_atgm.c missile_atgm_init; [miss_atgm.c missile_atgm_fly	simnet/data/ms_at_ct.d
tow_coast_turn_coeff.side_coeff[2]	tow missile cosine of maximum side turn during coast coefficient az	cos(rad)/ tick**3	-5.995375e-9	REAL	default declaration miss_atgm.c [miss_atgm.c]missile_atgm_init	(miss_atgm.c/missile_atgm_init; (miss_atgm.c/missile_atgm_fly	simnet/data/ms_at_ct.d
tow_coast_turn_coeff.side_coeff[3]	tow missile cosine of maximum side turn during coast coefficient as	cos(rad)/tick**4	1.162225+11	REAL	default declaration miss_atgm.c [miss_atgm.c]missile_atgm_Init	[miss_atgm.c]missile_atgm_init; [miss_atgm.c]miseile_atgm_fly	simnei/dala/ms_at_ct.d
tow_coss_tum_coeff.up_coeff[0]	tow missile cosine of maximum up turn during coast coefficient ag	cos(rad)/tick	0.9998498495	REAL	default declaration miss_atgm.c [miss_atgm.c]missile_atgm_init	Imiss_atgm.clmissile_atgm_init; Imiss_atgm.clmissile_atgm_fly	simnet/data/ms_at_ct.d
tow_coest_turn_coeff.up_coeff[1]	tow missile cosine of maximum up turn during coast coefficient as	cos(rad)/tick*2	1.657779 c. 6	REAL	default declaration miss_atgm.c [miss_atgm.c]missile_atgm_init	[miss_atgm.c]missile_atgm_init; [miss_atgm.c]missile_atgm_fly	simnet/data/ms_at_ct.d
tow_coast_tum_coaff.up_coaff[2]	tow missile cosine of maximum up turn during coast coefficient az	cos(rad)/tick*3	-8231861e-9	REAL	default declaration miss_atgm.c [miss_atgm.c]missile_atgm_init	[miss_atgm.c]missile_atgm_init; [miss_atgm.c]missile_atgm_fly	simnet/data/ms_at_ct.d
tow_coast_turn_coaff.up_coaff[3]	tow missile cosine of maximum up turn during coast coefficient as	cos(rad)/dck**4	1.381832e-11	REAL	default declaration miss_atgm.c [miss_atgm.c]missile_atgm_init	[miss_atgm.c]missile_atgm_init; [miss_atgm.c]missile_atgm_fly	simnet/data/ms_at_ct.d
tow_coast_turn_coeff.down_coeff[0]	tow missile cosine of maximum down turn during coast coefficient ag	cos(rad)/tick	0.9999714014	REAL	default declaration miss_atgm.c {miss_atgm.c missile_atgm_init	[miss_atgm.c]missile_atgm_init; [miss_atgm.c]missile_atgm_fly	simnet/data/ms_at_ct.d
tow_coast_turn_coaff.down_coaff[1]	tow missile costne of maximum down turn during costs coefficient at	cos(rad)/tick*2	3.382077€7	REAL	default declaration miss_atgm.c [miss_atgm.c]missile_atgm_init	[miss_atgm.c]missile_atgm_init; [miss_atgm.c]missile_atgm_fly	simnet/data/ms_at_ct.d
tow_coast_tum_coeff.down_coeff[2]	tow missile cosine of maximum down turn during coast coefficient az	cos(rad)/tick**3	-1.601259e-9	REAL	default declaration miss_atgm.c [miss_atgm.c]missile_atgm_init	(miss_atgm.c)missile_atgm_init; (miss_atgm.c)missile_atgm_fly	simnet/data/ms_at_ct.d
tow_coast_turn_coeff.down_coeff[3]	tow missile cosine of maximum down turn during coast coefficient as	cos(rad)/tick**4	2.623014e-12	REAL	default declaration miss_aigm.c [miss_aigm.c]missile_aigm_init	[miss_atgm.c]missile_atgm_init; [miss_atgm.c]missile_atgm_fly	simnet/data/ms_at_ct.d

HOTE 1 one tick is equal to one frame or 1/19th of a second HOTE 2 REAL is a TC more DEPRE for type fear. In it is a TC type for integer.

TABLE 5.1.42 - KEM MISSILE CHARACTERISTICS DATA ARRAY

kem_mles_char[0] KEN		MEASURE [MOTE 1]	VALUE	TYPE MOTE 21	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOURCE
	KEM_BURNOUT_TIME; time of powered flight for kem missile in ticks (3.2 seconds)	ticks	48.0	REAL	default declaration miss_kem.c; [miss_kem.c]missile_kem_init	[miss_kem.c]missile_kem_init; [miss_kem.c]missile_kem_fly	simnet/data/ms_km_ch.d
hem_miss_char(1) KEX	KEM_MAX_FLIGHT_TIME; maximum flight time for the kem missile in ticks [20.0 seconds]	ticks	300.00	REAL	default declaration miss_kem.c; [miss_kem.c]missile_kem_init	[miss_kem.c]missile_kem_init; [miss_kem.c]missile_kem_fly	simnet/data/ms_km_ch.d
ten_miss_char{ 2 } KEN miss_char{ 2 } miss_miss_miss_miss_miss_miss_miss_miss	KEM_TO_MACHS_FACTOR; speed factor to raise from ADAT to KEM; just after burnout, the ADAT has a maximum velocity of 230 m/sec, while the KEM has a maximum velocity of 1524 m/sec		6.626	REAL	default declaration miss_kem.c; [miss_kem.c missile_kem_init	[miss_kem.c missile_kem_init; [miss_kem.c missile_kem_fire; [miss_kem.c missile_kem_fly	simnet/data/ms_km_ch.d
kam_mlas_char[3]	NOT USED		0.0	REAL	default declaration miss_kem.c; [miss_kem.c]missile_kem_init	[miss_kem.c]missile_kem_init; [miss_kem.c]missile_kem_fire	simnet/data/ms_km_ch.d
kert_miss_char[4]	NOT USED		0.0	REAL	default declaration miss_kem.c; [miss_kem.c]missile_kem_init	(miss_kem.c)missile_kem_init; (miss_kem.c)missile_kem_fire	simnet/data/ms_km_ch.d
kam_mlss_char[5]	NOT USED		0.0	REAL	default declaration miss_kem.c; [miss_kem.c]missile_kem_init	[miss_kem.c]missile_kem_init; [miss_kem.c]missile_kem_fly	simnet/data/ms_km_ch.d
ken_miss_char[6]	NOT USED		0.0	REAL	default declaration miss_kem.c; {miss_kem.c missile_kem_init	[miss_kem.c]missile_kem_init; [miss_kem.c]missile_kem_fire	simnet/data/ms_km_ch.d
kam_miss_char{ 7}	NOT USED		0.0	REAL	default declaration miss_kem.c; [miss_kem.c]missile_kem_init	[miss_kem.c]missile_kem_init	simnet/data/ms_km_ch.d
kem_mlss_char[8]	NOT USED		0.0	REAL	default declaration miss_kem.c; {miss_kem.cjmissile_kem_init	[miss_kem.c]missile_kem_init	simnet/data/ms_km_ch.d
kem_mks_char[9]	NOT USED		0.0	REAL	default declaration miss_kem.c; [miss_kem.c]missile_kem_init	(miss_kem.c missile_kem_init	simnet/data/ms_km_ch.d

NOTE 1 and lift is equal to one frame or 1/35th of a second NOTE 2 REAL to a "C" macro DEPRE for type float.

TABLE 5.1.43. - KEM MISSILE POLYNOMIAL DEGREE DATA ARRAY

	missile burn speed	AALUE VALUE	APPE (1 appl)	CALCULATED	COUNTRIES COSE	
		2	ž	default declaration miss_kem.c; [miss_kem.c]missile_kem_init	[miss_kem.c]missile_kem_init	simnet/data/ms_km_bs.d
coefficient data array	missile coast speed	•	Įų.	default declaration miss_kem.c; [miss_kem.c]missile_kem_init	[miss_kem.c]missile_kem_init	simnet/data/ms_km_cs.d
kem_miss_poly_deg[2] polynomial degree for cosine of kem missil maximum turn during burn coefficient data array	ne of kem missile n coefficient data	ю	įνι	default declaration miss_kem.c; [miss_kem.c]missile_kem_init	(miss_kem.c]missile_kem_init	simnet/data/ms_km_bt.d
kem_miss_poly_deg[3] polynomial degree for cosine of kem missil maximum turn during coast coefficient data	ne of kem missile st coefficient data	9	int	default declaration miss_kem.c; [miss_kem.c]missile_kem_int	[miss_kem.c]missile_kem_init	simnet/data/ms_km_ct.d
kem_miss_poly_deg[4] NOT USED	ته	0	int	default declaration miss_kem.c		

TABLE 5.1.44. - KEM MISSILE BURN SPEED COEFFICIENT DATA ARRAY

NAME OF DATA ELEMENT	DESCRIPTION	UNITS of MEASURE [MOTE 1]	DEFAULT	DATA TYPE (NOTE 2)	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOURCE
kem_burn_speed_coeff[0]	kem missile bum speed coefficient ag	m/tick	2.2%	REAL	default declaration miss_kem.c [miss_kem.c]missile_kem_init	Imiss_kem.c]missile_kem_init; Imiss_kem.c]missile_kem_fire; Imiss_kem.c]missile_kem_fly	simnet/data/ms_km_bs.d
ham_burn_speed_coeff[1]	kem missile burn speed coefficient ay	m/tick**2	0.72990856	REAL	default declaration miss_kem.c [miss_kem.c]missile_kem_init	Imiss kem.clmissile kem init; Imiss kem.clmissile kem fire; Imiss kem.clmissile kem fly	simnet/data/ms_km_bs.d
kem_burn_speed_coeff[2]	kem missile burn speed coefficient az	m/tick**3	0.013310932	REAL	default declaration miss_kem.c [miss_kem.c]missite_kem_init	Imiss kem.clmissile kem.init; Imiss kem.clmissile kem.fire; Imiss kem.clmissile kem fiv	simnet/data/ms_km_bs.d
[§] jjeos=peeds=unq=weq	kem missile burn speed coefficient ag	m/tick**	0.0	REAL	default declaration miss_kem.c [miss_kem.c]missile_kem_init	(miss_kem.c missile_kem_init; (miss_kem.c missile_kem_fire; (miss_kem.c)missile_kem_fly	simnet/data/ms_km_bs.d
[+]#eo=beeds_mud_mail	kem missile burn speed coefficient ag	m/tick**5	0.0	REAL	default declaration miss_kem.c fmiss_kem.cjmissile_kem_init	[miss_kem.c]missile_kem_init; [miss_kem.c]missile_kem_fite; [miss_kem.c]missile_kem_fly	simnet/data/ms_km_bs.d
[§]jjeos_beeds_mud_mei	kem missile burn speed coefficient as	m/tick**6	0.0	REAL	default declaration miss_kem.c (miss_kem.c)missile_kem_init	(mise_kem.c missile_kem_init; (mise_kem.c missile_kem_fire; [mise_kem.c missile_kem_fly	simnet/data/ms_km_bs.d
pau_beeq_mud_mail	kem missile burn speed coefficient ag	m/tick**7	0.0	REAL	default declaration miss_kem.c [miss_kem.c]missile_kem_init	(miss_kem.c missile_kem_init; (miss_kem.c missile_kem_fire; (miss_kem.c missile_kem_fly	simnet/data/ms_km_bs.d
[/]	kem missile burn speed coefficient a7	m/tick**8	0.0	REAL	default declaration miss_kem.c miss_kem.c]missile_kem_init	(miss_kem.c missile_kem_init; (miss_kem.c missile_kem_fire; [miss_kem.c missile_kem_fly	simnet/data/ms_km_bs.d
[8] Jjeoo"peeds"unq"ueq	kem missile burn speed coefficient ag	m/tick**9	0.0	REAL	default declaration miss_kem.c [miss_kem.c]misstle_kem_init	(miss_kem.c missile_kem_init; (miss_kem.c missile_kem_fire; [miss_kem.c missile_kem_fly	simnel/data/ms_km_bs.d
ham_burn_speed_coeff(9)	kem missile burn speed coefficient ag	m/tick**10	0:0	REAL	default declaration miss_kem.c [miss_kem.c]missile_kem_init	(miss_kem.c missile_kem_init; (miss_kem.c missile_kem_fire; [miss_kem.c missile_kem_fly	simnet/data/ms_km_bs.d

NOTE 1 are tick to equal to one frame or 1/15th of a secon NOTE 2 REAL to a "C" recond DEPAE for type float.

TABLE 5.1.45. - KEM MISSILE COAST SPEED COEFFICIENT DATA ARRAY

NAME OF DATA ELEMENT	DESCRIPTION	UNITS of MEASURE (NOTE 1)	DEFAULT	DATA TYPE (NOTE 2)	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOURCE
kam_coast_speed_coeff[0]	kem missile coast speed coefficient ag	m/tick	105.52162	REAL	default declaration miss_kem.c [miss_kem.c]missile_kem_init	(miss kem.c)missile_kem_init; (miss kem.c)missile kem fly	simnet/data/ms_km_cs.d
kem_coast_speed_coeff[1]	kem missile coast speed coefficient at	m/tick••2	-1.0157285	REAL	default declaration miss_kem.c [miss_kem.c]missile_kem_init	(miss_kem.c]missile_kem_init; (miss_kem.c]missile_kem_fly	simnet/data/ms_km_cs.d
kem_c sest_speed_coeff[2]	kem missile coast speed coefficient az	m/tick**3	5.6124330 c- 3	REAL	default declaration miss_kem.c [miss_kem.c]missile_kem_init	[miss_kem.c]missile_kem_init; [miss_kem.c]missile_kem_fly	simnet/data/ms_km_cs.d
kam_coast_speed_coeff[3]	kem missile coast speed coefficient as	m/tick**4	-1.6262608 c. 5	REAL	default declaration miss_kem.c [miss_kem.c]misstle_kem_intt	[miss_kem.c]missile_kem_init; [miss_kem.c]missile_kem_fly	simnet/data/ms_km_cs.d
kem_coast_speed_coeff[4]	kem missile coast speed coefficient at	m/tick**5	1.8991982e-8	REAL	default declaration miss kem.c Imiss kem.clmissile_kem_init	[miss_kem.c]missile_kem_init; [miss_kem.c]missile_kem_fly	simnet/data/ms_km_cs.d
kem_coast_speed_coeff[5]	kem missile coast speed coefficient as	m/tick**6	0.0	REAL	default declaration miss_kem.c [miss_kem.c]missile_kem_init	[miss_kem.c]missile_kem_init; [miss_kem.c]missile_kem_fly	simnet/data/ms_km_cs.d
kem_coast_speed_coeff[6]	kem missile coast speed coefficient a6	m/tick ^{er7} .	0.0	REAL	default declaration miss_kem.c [miss_kem.c]missile_kem_init	(miss_kem.c]missile_kem_fnit; (miss_kem.c]missile_kem_fly	simnet/data/ms_km_cs.d
ham_coast_speed_coeff[7]	kem missile coast speed coefficient a7	m/tick**8	0.0	REAL	default declaration miss_kem.c [miss_kem.c]missile_kem_init	[miss_kem.c]missile_kem_init; [miss_kem.c]missile_kem_fly	simnet/data/ms_km_cs.d
kam_coast_speed_coeff[8]	kem missile coast speed coefficient ag	m/tick**9	0.0	REAL	default declaration miss_kem.c [miss_kem.c]missite_kem_int	[miss_kem.c]missile_kem_init; [miss_kem.c]missile_kem_fly	simnet/data/ms_km_cs.d
kem_coast_speed_coeff[9]	kem missile coast speed coefficient ag	m/tick**10	0.0	REAL	default declaration miss_kem.c [miss_kem.c]missile_kem_init	(miss_kem.c missile_kem_init; Imiss_kem.c missile_kem_fly	simnet/data/ms_km_cs.d

NOTE 1 ene tick is equal to one frame or 1/15th of a sec NOTE 2 REAL is a "C" meore DEPRE for type float.

TABLE 5.1.46. - KEM MISSILE BURN TURN COEFFICIENT DATA ARRAY

NAME OF DATA ELEMENT	DESCRIPTION	UNITS OF MEASURE [NOTE 1]	DEFAULT	DATA TYPE MOTE 21	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOUNCE
ham_burn_turn_coeff[0]	kem missile cosine of maximum turn during burn coefficient ag	cos(rad)/tick	0.999993	REAL.	default declaration miss_kem.c [miss kem.c]missile kem Init	[miss_kem.c]missile_kem_init; fmiss_kem.c]missile_kem_flv	simnet/data/ms_km_bt.d
hem_burn_turn_coeff[1]	kem missile cosine of maximum turn during burn coefficient as	cos(rad)/tick*2	-62386917e-7	REAL	default declaration miss_kem.c [miss_kem.c]missile_kem_init	[miss_kem.c]missile_kem_init; [miss_kem.c]missile_kem_flv	simnet/data/ms_km_bt.d
kem_burn_tum_coeff[2]	kem missile cosine of maximum turn during burn coefficient az	cos(rad)/tick**3	1.6146426e-7	REAL	default declaration miss_kem.c [miss_kem.c]missile_kem_init	[miss_kem.c]missile_kem_init; [mlss_kem.c]missile_kem_flv	simnet/data/ms_km_bt.d
kem_burn_turn_coeff[3]	kem missile cosine of maximum turn during burn coefficient as	cos(rad)/tick**4	-9.720142e-7	REAL	default declaration miss_kem.c [miss_kem.c]missile_kem_init	[miss_kem.c]missile_kem_init; [miss_kem.c]missile_kem_fly	simnet/data/ms_km_bt.d
kem_burn_turn_coeff[4]	kem missile cosine of maximum turn during burn coefficient a4	cos(rad)/lick**5	0.0	REAL	default declaration miss_kem.c [miss_kem.c]missile_kem_init	[miss_kem.c]missile_kem_inlt; [miss_kem.c]missile_kem_fly	simnet/data/ms_km_bt.d
kem_burn_turn_coeff[5]	kem missile cosine of maximum turn during burn coefficient as	cos(rad)/tick**6	0.0	REAL	default declaration miss_kem.c [miss_kem.c]missile_kem_init	(miss_kem.c]missile_kem_init; (miss_kem.c]missile_kem_fly	simnet/data/ms_km_bt.d
kem_burn_turn_coeff[6]	kem missile cosine of maximum turn during burn coefficient ag	cos(rad)/tick**7	0.0	REAL	default declaration miss_kem.c {miss_kem.c}missile_kem_init	[miss_kem.c]missile_kem_init; [miss_kem.c]missile_kem_fly	simnet/data/ms_km_bt.d
kom_burn_turn_coeff[7]	kem missile cosine of maximum turn during burn coefficient 27	cos(rad)/#ck**8	0.0	REAL	default declaration miss_kem.c [miss_kem.c]missile_kem_init	[miss_kem.c]missile_kem_init; [miss_kem.c]missile_kem_fly	simnet/data/ms_km_bt.d
kem_burn_turn_coeff[8]	kem missile cosine of maximum turn during burn coefficient ag	cos(rad)/tick**9	0.0	REAL	default declaration miss_kem.c [miss_kem.cimissile_kem_init	[miss_kem.c]missile_kem_init; [miss_kem.c]missile_kem_fly	simnet/date/ms_km_bt.d
kam_bur_tur_coeff(9)	kem missile cosine of maximum turn during burn coefficient ag	cos(rad)/Hck**10	0.0	REAL	default declaration miss_kem.c [miss_kem.c]missile_kem_init	[miss_kem.c]missile_kem_init; [miss_kem.c]missile_kem_fly	simnet/data/ms_km_bt.d

NOTE: 1 ene bick is equal to one frame or 1/13th of a second NOTE: 2 REAL is a "C" macre DEPRE for type foot.

TABLE 5.1.47. - KEM MISSILE COAST TURN COEFFICIENT DATA ARRAY

NAME of DATA ELEMENT	DESCRIPTION	UNITS OF MEASURE 1	DEFAULT	DATA TYPE (NOTE 2)	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOURCE
kem_coast_tum_coaff[0]	kem missile cosine of maximum turn during coast coefficient an	cos(rad)/tick	0.99753111	REAL	default declaration miss_kem.c [miss_kem.c]missile_kem_init	[miss_kem.c]missile_kem_init; [miss_kem.c]missile_kem_fly	simnet/data/ms_km_ct.d
kem_coast_turn_coaff[1]	kem missile cosine of maximum turn during coast coefficient a 1	cos(rad)/tick+2	5.5817986 c. 5	REAL	default declaration miss_kem.c [miss_kem.c]missile_kem_init	[miss_kem.c]missile_kem_init; [miss_kem.c]missile_kem_fly	simnet/data/ms_km_ct.d
kem_coast_tum_coeff[2]	kem missile cosine of maximum turn during coast coefficient a 2	cos(rad)/tick*3	-5.1276276€-7	REAL	default declaration miss_kem.c [miss_kem.c]missile_kem_init	[miss_kem.c]missile_kem_init; [miss_kem.c]missile_kem_fly	simnet/data/ms_km_ct.d
kem_coast_tum_coeff[3]	kem missile cosine of maximum turn during coast coefficient as	cos(rad)/tick**4	2.2388593e-9	REAL	default declaration miss_kem.c [miss_kem.c]missile_kem_init	[miss_kem.c]missile_kem_init; [miss_kem.c]missile_kem_fly	simnet/data/ms_km_ct.d
kem_coast_tum_coaff[4]	kem missile cosine of maximum turn during coast coefficient as	cos(rad)/8ck**5 -5.1964622e-12	-5.1964622+12	REAL	default declaration miss_kem.c {miss_kem.c}missile_kem_init	[miss_kem.c]missile_kem_init; [miss_kem.c]missile_kem_fly	simnet/data/ms_km_ct.d
kem_coast_tum_coaff[5]	kem missile cosine of maximum turn during coast coefficient as	cos(rad)/tick**6	454991046-15	REAL	default declaration miss_kem.c [miss_kem.c]missile_kem_init	[miss_kem.c]missile_kem_init; [miss_kem.c]missile_kem_illy	simnet/data/ms_km_ct.d
kem_coast_tum_coeff[6]	kem missile cosine of maximum turn during coast coefficient a ₆	cos(rad)/tick**7	0.0	REAL	default declaration miss_kem.c [miss_kem.c]missile_kem_init	[miss_kem.c]missile_kem_init; [miss_kem.c]missile_kem_fly	simnet/data/ms_km_ct.d
kem_coast_tum_coeff[7]	kem missile cosine of maximum turn during coast coefficient ay	cos(rad)/tick**8	0.0	REAL	default declaration miss_kem.c [miss_kem.c]missile_kem_init	[miss_kem.c]missile_kem_init; [miss_kem.c]missile_kem_fly	simnet/data/ms_km_ct.d
kem_coast_tum_coeff[8]	kem missile cosine of maximum turn during coast coefficient ag	cos(rad)/tick**9	0.0	REAL	default declaration miss_kem.c [miss_kem.c]missile_kem_init	[miss_kem.c]missile_kem_init; [miss_kem.c]missile_kem_fly	simnet/data/ms_km_ct.d
kem_cosst_tum_coeff[9]	kem missile cosine of maximum turn during coast coefficient ag	cos(rad)/tick**10	0.0	REAL	default declaration miss_kem.c (miss_kem.c)missile_kem_init	(miss_kem.c missile_kem_init; [miss_kem.c missile_kem_fly	sinnet/data/ms_km_ct.d

NOTE 1 emb bick is equal to one frame or 1/15th of a second HOTE 2 REAL as a "C" macro DEFRE for type feat.

TABLE 5.1.48. - NLOS MISSILE CHARACTERISTICS DATA ARRAY

NAME OF DATA ELEMENT	DESCRIPTION	UNITS OF MEASURE	DEFAULT VALUE	DATA TYPE	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOURCE
nios_miss_char[0]	NLOS_LOCK_THRESHOLD;		0.953153895	REAL	default declaration miss_nlos.c;	[miss_nlos.c]missile_nlos_fly	simnet/data/ms_nl_ch.d
nlos_miss_char[1]	NLOS_MAX_TURN_ANGLE;	radians/ticks	0.03490659	REAL	default declaration miss_nlos.c;	[miss_nlos.c]missile_nlos_fly	simnet/data/ms_nl_ch.d
nlos_miss_char[2]	NLOS_VERTICAL_FLIGHT_TIME;	ticks	48.0	REAL	default declaration miss_nlos.c; [miss_nlos.c]missile_nlos_init	[miss_nlos.c]missile_nlos_init	simnet/data/ms_nl_ch.d
nlos_miss_char[3]	NLOS_DECLINE_FLIGHT_TIME;	ticks	105.0	REAL	default declaration miss_nlos.c; [miss_nlos.c]missile_nlos_trit	[miss_n/>s.c]missile_nlos_init; [miss_nlos.c]missile_nlos_ detectibility	simnet/data/ms_nl_ch.d
nlos_miss_char[4]	NLOS_LEVEL_FLIGHT_TIME;	ticks	140.0	REAL	default declaration miss_nlos.c; [miss_nlos.c]missile_nlos_init	(miss_nlos.c)missile_nlos_ detectibility	simnet/data/ms_nl_ch.d
nlos_miss_char[5]	NLCS, ARM, TIME, nlos missile arm time delay before firing in ticks [1.3 seconds]	ticks	20.0	REAL	default declaration miss_nlos.c; [miss_nlos.c]	[miss_nlos.c]missile_nlos_fly	simnet/data/ms_nl_ch.d
nlos_miss_char[6]	NLOS_BURNOUT_TIME; time of powered flight for nlos missile in ticks [1.5 seconds]	ticks	22.5	REAL	default declaration miss_nlos.c; [miss_nlos.c]missile_nlos_init	[miss_nlos.c]missile_nlos_fly	simnet/data/ms_n_ch.d
nlos_miss_char[7]	NLOS_MAX_FLIGHT_TIME: maximum flight time for the nlos missile assumed in ticks [120.0 seconds]	ticks	9000.0	REAL	default declaration miss_nlos.c; [miss_nlos.c]missile_nlos_init	Imiss_nios.cimissile_nios_fly	simnet/datz/ms_nl_ch.d
nlos_miss_char[8]	SPEED_0;		11.3333333	REAL	default declaration miss_nlos.c; [miss_nlos.c]miss_nlos.c missile_nlos_init	[miss_nlos.c]missile_nlos_fly	simnet/data/ms_nl_ch.d
nfos_miss_char[9]	SPEED_1;		5.33333333	REAL	default declaration miss_nlos.c; [miss_nlos.c;	(miss_nlos.c missile_nlos_fly	simnet/data/ms_nl_ch.d
nios_miss_char[10]	THETA_0;		0.013962634	REAL	default declaration miss_nlos.c; [miss_nlos.c;	[miss_nlos.c]missile_nlos_fly	simnet/data/ms_nl_ch.d
nlos_miss_char[11]	SIN_UNGUIDE; sine of level flight [4.0 degrees pitch] for an unguided nlos missile		0.069756474	REAL	default declaration miss_nlos.c; (miss_nlos.c)missile_nlos_init	(miss_nlos.c)missile_nlos_fly	simnet/data/ms_nl_ch.d
nlos_miss_char[12]	COS_UNCUIDE; cosine of level flight [4.0 derrees pitch] for an unguided nlos missile		0.997564050	REAL	default declaration miss_nlos.c; [miss_nlos.c]missile nlos.c]missile nlos init	(miss_nlos.c)missile_nlos_fly	simnet/data/ms_nl_ch.d
nios_miss_char[13]	SIN_CLIMB; sine of the delta pitch angle [3.5 degrees] for a climbing nlos missile		0.004072424	REAL	default declaration miss_nlos.c; [miss_nlos.c]missile_nlos_lmit	fmiss_nlos.c]missile_nlos_fly	simnet/data/ms_nl_ch.d
nlos_miss_char[14]	COS_CLIMB: cosine of the delta pitch angle		0.999991708	REAL	default declaration miss_nlos.c; [miss_nlos.c]missile_nlos_init	[miss_nlos.c]missile_nlos_fly	simnet/data/ms_nl_ch.d
nios_miss_char[15]	SIN_LOCK; sine of the lock cone angle [9.0 derree] for a locked-on nlos missile		0.156434465	REAL	default declaration miss_nlos.c; [miss_nlos.c]miss_nlos.c]missile_nlos_init	[miss_nlos.c]missile_nlos_fly	simnet/data/ms_nl_ch.d
nlos_miss_char[16]	COS_LOCK; cosine of the lock cone angle [9.0 degrees] for a locked-on nlos missile		0.987688341	REAL	default declaration miss_nlos.c; fmlss_nlos.c missile_nlos_init	(miss_nlos.c missile_nlos_fly	simnet/data/ms_nl_ch.d
nios_miss_char[17]	COS_TERM; cosine of the terminal angle (0.0 derree) for a locked-on nlos missile		0.984807753	REAL	default declaration miss_nlos.c; [miss_nlos.c]missile_nlos_init	(miss_nlos.c]missile_nlos_fly	simnet/data/ms_nl_ch.d
nios_miss_char[18]	COS_LOSE; cosine of the angle [20.0 degrees] for a loss-of-lock-on nlos missile		0.939692621	REAL	default declaration miss_nlos.c; [miss_nlos.c]missile_nlos_init	[miss_nlos.c]missile_nlos_fly	simnet/data/ms_nl_ch.d
nios_miss_char[19]	NOT USED		0.0	REAL	default declaration miss_nlos.c;	[miss_nlos.c]missile_nlos_fly	simnet/data/ms_nl_ch.d

NOTE 1 are tick is equal to one frame or 1/15th of a second NOTE 2 REAL is a "C" macro DEFRE for type fical.

TABLE 5.1.49. - NLOS MISSILE POLYNOMIAL DEGREE DATA ARRAY

	DESCRIPTION	UNITS of MEASURE	DEFAULT	DATA	CSU WHERE SET OR	CSU WHERE USED	DATA SOURCE
Colored States	Cod Gasas Huila Solik			(NOTE 1)	CALCOLOU ED		
(a)Bea-kod-sem-rom	degree for also missile burn speed coefficient		default: 1 range: 0 to 9	ĮŲ.	default declaration miss_nlos.c; fmiss_nlos.clmissile_nlos	[miss_nlos.c]missile_nlos_ infr-	simnet/data/ms_nl_bs.d
	daba array		- 		init	(miss_nios.c]missile_nios_	
						ine; fmiss nlos.clmissile nlos fly	
nos_miss_poly_deg[1]	NLOS_COAST_SPEED_DEG; polynomial		default: 3	ij	default declaration miss_nlos.c;	[miss_rlos.c]missile_nlos_	simnet/data/ms_nl_cs.d
	data array		range: 0 to 9		[miss_nios.c]missile_nios_ init	init; Inter also cludedle also fin	
nios_miss_poly_deg[2]			0	Ē	default declaration miss nine	An com ancomity com comit	
nios_miss_poly_deg[3]			0	Ę	default declaration miss nlos.c		
nlos_miss_poly_deg[4]			•	Ē	default declaration miss plose		

NOTE 1 bit is a "C" type for integer.

TABLE 5.1.50. - NLOS MISSILE BURN SPEED COEFFICIENT DATA ARRAY

NAME of DATA ELEMENT	DESCRIPTION	UNITS of MEASURE [NOTE 1]	DEFAULT	DATA TYPE (NOTE 2)	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOURCE
0) ukos_burn_speed_coeff(0)	nlos missile bum speed coefficient ag: default is 67.0 m/sec	m/tick	0.03333333	REAL	default declaration miss_nlos.c [miss_nlos.c]missile_nlos_init	Imiss_nlos.c/missile_nlos_init; Imiss_nlos.c/missile_nlos_fire; Imiss_nlos.c/missile_nlos_fly	simnet/data/ms_nl_bs.d
nios_burn_speed_coeff[1]	nlos missile bum speed coefficient a; default is 274.9732662 m/sec*2	m/tick**2	1.25777777	REAL	default declaration miss_nlos.c [miss_nlos.c]misslle_nlos_init	(miss_nlos.c]missile_nlos_fult; (miss_nlos.c]missile_nlos_fire; fmiss_nlos.c missile_nlos_fly	simnet/data/ms_nl_bs.d
nks_burn_speed_coeff[2]	nlos missile bum speed coefficient az	m/tick**3	0.0	REAL	default declaration miss_nlos.c [miss_nlos.c]missile_nlos_init	Imiss_nlos.c missile_nlos_init; [miss_nlos.c missile_nlos_fire; [miss_nlos.c missile_nlos_fiy	simnet/data/ms_nl_bs.d
nlos_bum_speed_coeff[3]	nlos missile bum speed coefficient as	m/tick**4	0.0	REAL	default declaration miss_nlos.c [miss_nlos.c missile_nlos_init	(miss_nlos.c missile_nlos_init; (miss_nlos.c missile_nlos_fire; miss_nlos.c missile_nlos_fly	simnet/data/ms_nl_bs.d
nlos_burn_speed_coeff[4]	nlos missile bum speed coefficient ad	m/tick**5	0.0	REAL	default declaration miss_nlos.c [miss_nlos.c missile_nlos_init	[miss_nlos.c]missile_nlos_init; [miss_nlos.c]missile_nlos_fire; [miss_nlos.c]missile_nlos_fiy	simnet/data/ms_nl_bs.d

NOTE 1 one bick is equal to one frame or 1/15th of a second HOTE 2 REAL as 1°C" macro DEFRE for type fixet.

TABLE 5.1.51. - NLOS MISSILE COAST SPEED COEFFICIENT DATA ARRAY

NAME OF DATA ELEMENT	DESCRIPTION	UNITS of MEASURE (MOTE)	DEFAULT	DATA TYPE INDIE 21	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOURCE
nios_coast_speed_coeff[0]	nios missile coast speed coefficient ag; default is 327_2858074 m/sec	m/tick	30.46972849	REAL	default declaration miss_nlos.c	(miss_nlos.c/missile_nlos_init; fmiss_nlos.c/missile_nlos_flv	simnet/data/ms_nl_cs.d
nlos_cosst_speed_coeff[1]	nlos missile coast speed coefficient a;; default is -21.4609544 m/sec**2	m/tick**2	-9.7721160e-2	REAL	default declaration miss_nlos.c [miss_nlos.c]missile_nlos_init	[miss_nlos.c]missile_nlos_init; [miss_nlos.c]missile_nlos_fly	simnet/data/ms_nl_cs.d
nios_coast_speed_coeff[2]	nlos missile coast speed coefficient az; default is 0.8227650 m/sec**3	m/tick**3	1.2433925 c. 4	REAL	default declaration miss_nlos.c fmiss_nlos.c]missile_nlos_init	[miss_nlos.c]missile_nlos_init; [miss_nlos.c]missile_nlos_fly	simnei/data/ms_nl_cs.d
nios_caert_speed_caeff[3]	nlos missile coast speed coefficient ag; default is -0.0133200 m/sec**4	m/tick**4	-5.4061501e-8	REAL	default declaration miss_nlos.c [miss_nlos.c]missile_nlos_init	[miss_nlos.c]missile_nlos_init; [miss_nlos.c missile_nlos_fly	simnet/data/ms_nl_cs.d
nlos_coast_speed_coeff[4]	nlos missile coast speed coefficient ag	m/tick**5	0:0	REAL	default declaration miss_nlos.c Imiss_nlos.clmissile_nlos_init	(miss_nlos.c]missile_nlos_init; {miss_nlos.c}missile_nlos_fly	simnet/data/ms_nl_cs.d

NOTE 1 one bick is equal to one frame or 1/19th of a second NOTE 2 REAL is 1° mecro DEFRE for type foot.

TABLE 5.1.52 - HYDRA ROCKET CONFIGURATION DATA ARRAY

NAME OF DATA ELEMENT	DESCRIPTION	UNITS of MEASURE [NOTE 1]	DEFAULT	DATA TYPE (NOTE 2)	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOURCE
hydra_rkt_char[0]	hydra launcher postilon, X	£	4.5	REAL	default declaration rwa_hydra.c; frwa_hydra.c hydra_init	(rwa_hydra.c]hydra_init;	/simnet/data/rwa_hydr.d
hydra_rkt_char[1]	hydra launcher positon, Y	£	50	REAL	default declaration rwa_hydra.c; [rwa_hydra.c]hydra_init	[rwa_hydra.c]hydra_init;	/simnet/data/rwa_hydr.d
hydra_rkt_char[2]	hydra launcher postion, Z	E	-2.0	REAL	default declaration rwa_hydra.c; [rwa_hydra.c]hydra_init	[rwa_hydra.c]hydra_init	/simnet/data/rwa_hydr.d
hydra_rkt_char[3]	mils of Soviet articulation	elim	104.0	REAL	default declaration rwa_hydra.c; [rwa_hydra.c]hydra_init	[rwa_hydra.c]hydra_init	/simnet/data/twa_hydr.d
hydra_rkt_char[4]	degrees of hull negative pitch	Sap	-5.0	REAL	default declaration rwa_hydra.c; [rwa_hydra.c]hydra_init	[rwa_hydra.c]hydra_init; [rwa_hydra.c]hydra_set_pylon_ articulation	/simnet/data/rwa_hydr.d
hydra_rkt_char[5]	degress of maximum articulation	deg	19.0	REAL	default declaration rwa_hydra.c; [rwa_hydra.c]hydra_init	[rwa_hydra.c]hydra_init	/simnet/data/rwa_hydr.d
hydra_ftt_char[6]	degrees of minumum anticulation	Sap	-15.0	REAL	default declaration rwa_hydra.c; rwa_hydra.c]hydra_init	[rwa_hydra.c]hydra_init	/simnet/data/rwa_hydr.d

NOTE 1 one tick is equal to one frame or 1/15th of a second NOTE 2 REAL is a "C" macro DEPRE for type float.

TABLE 5.1.53 - HYDRA ROCKET CHARACTERISTICS DATA ARRAY

NAME of DATA ELEMENT	DESCRIPTION	UNITS of MEASURE INOTE 1)	DEFAULT	DATA TYPE (NOTE 2)	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOURCE
rkt_hydra_char[0]	MISI_BURST_SPREAD; twin bursts which are 3 meters apart	æ	5.1	REAL	default declaration rkt. ydra.c; [rkt. hydra.c]missile_hydra_init	irkt_hydra.cimissile_hydra_init; irkt_hydra.cimissile_hydra_set_ pylon_articulation	/simnet/dats/rkt_hydr.d
rkt_hydra_char[1]	M261_BURST_HEIGHT; release submunitions 180 feet	E	198'15	REAL	default declaration rkt_hydra.c; {rkt_hydra.c missile_hydra_init	[rkt_hydra.c]missile_hydra_init; [rkt_hydra.c]missile_hydra_fire	/simnet/data/rkt_hydr.d
rkt_hydra_char[2]	M261_BURST_RANGE; 0 meters in front of target	E	0.0	REAL	default declaration rkt_hydra.c; [rkt_hydra.c]miseile_hydra_init	[rkt_hydra.c]missile_hydra_init	/simnet/data/rkt_hydr.d
rkt_hydra_char[3]	M261_BURST_SPREAD; twin bursts are 13 meters apart	æ	0'9	REAL	default declaration rkt_hydra.c; [rkt_hydra.c]missile_hydra_init	(rkt_hydra.c)missile_hydra_init	/simnet/data/rkt_hydr.d
rkt_hydra_char[4]	M255_BURST_RANGE; release darts 150 meters in front of target	£	150.0	REAL	default declaration rkt_hydra.c; [rkt_hydra.clmissile_hydra_init	[rkt_hydra.c]missile_hydra_init	/simnet/data/rkt_hydr.d
rkt_hydra_char[5]	M255_BURST_SPREAD; twin bursts are 36 meters apart	m	16.0	REAL	default declaration rkt_hydra.c; [rkt_hydra.c]missile_hydra_init	[rkt_hydra.c]missile_hydra_init	/simnet/data/rkt_hydr.d
rkt_hydra_char[6]	FLECH_60_MAX_RANGE; darts fly a total of 750 meters	E	0'054	REAL	default declaration rkt_hydra.c; [rkt_hydra.c]missile_hydra_init	(rkt_hydra.clmissile_hydra_tnit	/simnet/data/rkt_hydr.d
rkt_hydra_char[7]	hydra minimum range	Ħ	20.0	REAL	default declaration rkt_hydra.c; [rkt_hydra.c]missile_hydra_init	[rkt_hydra.c]missile_hydra_init; [rkt_hydra.c]missile_hydra_set_ pylon_articulation	/simnet/data/rkt_nydr.d
rkt_hydra_char[8]	hydra maximum range for Soviet S-5 57mm rocket	Ħ	0'0005	REAL	default declaration rkt_hydra.; [rkt_hydra.clmissile_hydra_init	[rkt_hydra.c]missile_hydra_init;	/simnet/data/rkt_hydr.d
rkt_hydra_char[9]	hydra maximum range for M151	E	0'0002	REAL	default declaration rkt_hydra.c; [rkt_hydra.c missile_hydra_init	(rkt_hydra.c)missike_hydra_init; (rkt_hydra.c)missike_hydra_fire; (rkt_hydra.c)missike_hydra_set_ pyłon_articulation	/simnet/data/rkt_hydr.d
ric_hydra_char[10]	hydra maximum range for M261	£	7000.0	REAL	default declaration rkt_hydra_c; rkt_hydra_c missile_hydra_init	(rkt_hydra.c]missile_hydra_init; [rkt_hydra.c]missile_hydra_fire; [rkt_hydra.c]missile_hydra_set_ pylon_articulation	/simnet/data/rkt_hydr.d
rkc_hydra_char[11]	hydra maximum range for M255	E	3200.0	REAL	default declaration rkt_hydra.c; frkt_hydra.c]missile_hydra_init	irkt_hydra.cimissile_hydra_init; irkt_hydra.cimissile_hydra_fire; irkt_hydra.cimissile_hydra_set_ pylon_articulation	/simnet/data/rkt_hydr.d

NOTE 1 one bids is equal to one frame or 1/15th of a second NOTE 2 REAL is a "C" macro DEFRE for type float.

TABLE 5.1.54. - SUBMUNITIONS M73 CHARACTERISTICS DATA ARRAY

		CMITS of	DEFAULT	DATA	CSU WHERE SET OR	CSU WHERE USED	DATA SOURCE
		MEASURE (NOTE 1)	VALUE	TYPE (MOTE 2)	CALCULATED		
sub_M73_charf 01 75% of gravity - (75%	75% of gravity - (75% * (9.8m/sec*2)/225	m/s°2/tick°2 0.03266667	0.03266667	REAL	default declaration sub_m73 c;	[sub_m73.c]missile_m73_init;	/simnet/data/sub_m73.d
					[sub_m73.c]missile_m73_init	[sub_m73.c]missile_m73_drop	
sub M73_charf 1] bobmlettes fall with +/- 8.8 degrees	h +/- 8.8 degrees	Sap	15.6	REAL	default declaration sub_m73.c;	(sub_m73.c)missile_m73_init;	/simnet/data/sub_m73.d
	ent				[sub_m73.c]missile_m73_init	[sub_m73.c]missile_m73_get_impact	
aub M73 charf 21 bobmlettes fall with +/- 12.35 degrees	h +/- 12.35 degrees	Sap	22.7	REAL	default declaration sub_m73.c;	[sub_m73.c]missile_m73_init;	/simnet/data/sub_m73.d
	ent				[sub_m73.c]missile_m73_init	[sub_m73.c]missile_m73_get_impact	

NOTE 1 one tick is equal to one frame or 1/15th of a second NOTE 2 REAL is a "C" macro DEPRE for type float.

TABLE 5.1.55. - SUBMUNITIONS FLECHETTE CHARACTERISTICS DATA

NAME OF DATA ELEMENT	DESCRIPTION	UNITS OF MEASURE	DEFAULT	DATA	CSU WHERE SET OR CALCULATED	CSU WHERE USED	DATA SOURCE
sub_flech_char[0]	maximum speed < 100	m.2	0'00001	REAL	default declaration sub_flech.c; [sub_flech.c]	[sub_flech.c]missile_flechette_init; [sub_flech.c]missile_flechette_fly	/simnet/data/sub_flec.d
sub_flech_char[1]	flechettes fly in a cylinder with a radius of 17.5 meters and a length of 750 meters	7,E	306.253	REAL	default declaration sub_flech.c; [sub_flech.c]	(sub_flech.c)missile_flechette_init; (sub_flech.c)missile_flechette_fly	/simnet/data/sub_flec.d
sub_flech_char[2]	FLECH_60_MAX_RANGE; darts fly a total of 750 meters	æ	750.0	REAL	default declaration sub_flech.c; [sub_flech.c]missile_flechette_init	[sub_flech.c]missile_flechette_init; [sub_flech.c]missile_flechette_fly	/simnet/data/sub_flec.d

NOTE 1 MINE T' type for integ

TABLE 5.1.56. - FLECHETTE SPEED DATA ARRAY

NAME OF DATA ELEMENT	DESCRIPTION	UNITS OF MEASURE	DEFAULT	DATA TYPE	CSU WHERE SET OR	CSU WHERE USED	DATA SOURCE
flechette_speed_coef[0]	flechette speed coefficient ag	m/tick	41.75	REAL	default declaration sub_flech.c [sub_flech.c]missile_flechette_init	[sub_flech.c]missile_flechette_init; [sub_flech.c]missile_flechette_fly	/simnet/data/flec_spd.d
flechetta_speed_coef[1]	flechette speed coefficient as	m/tick/m	-0.20397254	REAL	default declaration sub_flech.c [sub_flech.c]missile_flechette_init	[sub_flech.c missile_flechette_init; [sub_flech.c missile_flech.ette_fly	/simnet/data/flec_spd.d
flechette_speed_coef[2]	Rechette speed coefficient az	m/tick/m*2	m/thck/m*2 0.00022724278	REAL	default declaration sub_flech.c [sub_flech.c]missile_flechette_fnit	[sub_flech.c]missile_flechette_init; [sub_flech.c]missile_flechette_fly	/simnet/data/flec_spd.d
flechetta_speed_coef[3]	flechette speed coefficient as	m/tick/m*3	m/tlck/m*3 -0.00000008633	REAL	default declaration sub_flech.c [sub_flech.c]missile_flechette_fnit	[sub_flech.c]missile_flechette_init; [sub_flech.c]missile_flechette_fly	/simnet/data/flec_spd.d
flechette_speed_coeff 4)	flechette speed coefficient a.	m/tick/m**4	0.0	REAL	default declaration sub_flech.c [sub_flech.c]missile_flechette_init	<pre>{sub_flech.c missile_flechette_init; sub_flech.c missile_flechette_fly</pre>	/simnet/data/flec_spd.d

NOTE 1 care bit is equal to one frame or 1/15th of a second NOTE 2 REAL as a "C" macro DEHAE for type float.

5.2. Data elements of the CSCI's external interfaces.

Existing data elements of the CSCI's external interfaces were not modified nor were any new external interfaces to the CSCI added.

22 January 1993 Reference # W003036 Rev. 0.0

6. CSCI data files.

Existing CSCI shared data files were not modified nor were any shared data files added.

7. Requirements traceability.

Traceability of the requirements allocated down to the CSU level of each CSC back to the requirements of the SYSTEM SPECIFICATION FOR THE ROTARY WING AIRCRAFT AIRNET AEROMODEL AND WEAPONS MODEL CONVERSION are shown in TABLE 7.1 - AIRNET AEROMODEL AND WEAPONS MODEL CONVERSION REQUIREMENTS TRACEABILITY.

TABLE 7.1. - AIRNET AEROMODEL AND WEAPONS MODEL CONVERSION REQUIREMENTS TRACEABILITY

Requirement	SDD	Title	Description
ID	Traceability Reference		
3.2.1.3.1.	4.1	Flight Model Initialization State.	The Flight Model Segment Initialization State shall be entered during the System Initialization process after system bootup. System state and status variables uniquely identify the RWA AirNet configuration and state.
3.2.1.3.1.1	4.1.3	Flight Controls Initialization.	Initialization of the Flight Controls Model Sub-Segment configuration shall be done during this state upon command from the system.
3.2.1.3.1.1.1	4.1.3.2	Flight Controls Data.	Parameters to be set shall include maximum pitch, roll and yaw rates, turning radius, flight controls input sensitivity and profile, physical constants, conversion factors, integration constants, gains, and limits.
3.2.1.3.1.1.1.1	4.1.3.2	Flight Controls Data File.	Data values shall be read from a flight controls model initialization file.
3.2.1.3.1.1.1.2	4.1.3.2	Flight Controls Data Format.	The format of the data file shall allow modification of the data using a text editor.
3.2.1.3.1.2	4.1.2	Flight Dynamics Initialization	Initialization of the Flight Dynamics Model Sub-Segment configuration shall be done during this state upon command from the system. During this mode, configuration flags and variables are set which point to specific submodules and data files for execution and loading.

Requirement	SDD	Title	Description
ID	Traceability		
	Reference		
3.2.1.3.1.2.1	4.1.2.2	Flight Dynamics	Initialization shall include
		Data.	downloading of coefficient tables for the
1			main rotor, fuselage, and stabilizers.
3.2.1.3.1.2.1.1	4.1.2.2	Flight Dynamics	These values shall be read from a flight
		Data File.	dynamics model initialization file.
3.2.1.3.1.2.1.2	4.1.2.2	Flight Dynamics	The format of the data file shall allow
		Data Format.	modification of the data using a text
			editor.
3.2.1.3.1.3	4.1.1	Engine	Initialization of the Engine Model Sub-
		Initialization.	Segment configuration shall be done
			during this state upon command from the
			system.
3.2.1.3.1.3.1	4.1.1	Engine	Initialization shall include
		Initialization.	downloading of data tables for the gas
			and power turbines, fuel consumption,
			power output, and acceleration
			coefficients.
3.2.1.3.1.3	4.1.1.2	Engine Data.	These values shall be read from an
			engine model initialization file.
3.2.1.3.1.3	4.1.1.2	Engine Data	The format of the data file shall allow
		Format.	modification of the data using a text
			editor.
3.2.1.3.2	3.2.1	Flight Model Run-	In this mode the Flight model Segment
	(Functionality	Time State.	shall be in stand-by awaiting RWA
	unchanged)		AirNet Flight model activity.
3.2.1.3.2.1	3.2.1	Flight Model Idle	During the Flight Model Idle mode, the
	(Functionality	Mode.	execution of the flight model functions
	unchanged)		shall be suspended.
3.2.1.3.2.1.1	3.2.1	Flight Model Idle	Integration computations shall be put in
V-61-V-6-1-1	(Functionality	Mode Integration.	a stable state.
	unchanged)	More Tuebranou.	a sample same.
3.2.1.3.2.1.2	3.2.1	Flight Model Idle	Execution shall be started or resumed
J.C. I .J.C. I.C	(Functionality	Mode Change.	from this mode.
	unchanged)	More Charge.	nom dus mode.
3.2.1.3.2.1.3	3.2.1	Flight Model Idle	This mode shall be controlled by the
3.2.1.3.2.1.3	_	Flight Model Idle	
	(Functionality	Mode Control.	system executive.
201221	unchanged)	M: LA M- J-1 131-	The modifications shall be a set of the second
3.2.1.3.2.1.4	3.2.1	Flight Model Idle	The modifications shall have no adverse
	(Functionality	Mode Functionality.	affects upon the Flight Model Idle mode
	unchanged)		functionality.
3.2.1.3.2.2	3.2.1	Flight Model	During the Flight Model Execution mode,
	(Functionality	Execute Mode.	the flight model shall be executed in
	unchanged)		real-time.

Requirement	SDD	Title	Description
ID	Traceability	1	
	Reference		
3.2.1.3.2.2.1	3.2.1	Flight Model	Execution shall be stopped from this
l	(Functionality	Execute Mode	mode.
	unchanged)	Execution.	
3.2.1.3.2.2.2	3.2.1	Flight Model	The rate of execution shall be controlled
	(Functionality	Execute Mode	by the system executive.
	unchanged)	Execution Rate.	
3.2.1.3.2.2.3	3.2.1	Flight Model Execute Mode Data	The source of coefficient data shall be table look ups.
ļ	(Functionality unchanged)	Sources.	table look ups.
3.2.1.3.2.2.4	3.2.1	Flight Model	The modifications shall have no adverse
3.2.1.3.2.2.4	(Functionality	Execute Mode	affects upon the Flight Model Execute
	unchanged)	Functionality.	mode functionality.
3.2.1.3.2.2.5	3.2.1	Flight Controls	The Flight Controls Model Sub-Segment
	(Functionality	Model	shall simulate the flight controls of the
	unchanged)		aircraft.
3.2.1.3.2.2.5a	3.2.1	Flight Controls	Input shall be used to calculate a
1	(Functionality	Model	resultant movement of a control surface
	unchanged)		and corresponding output to the flight
			dynamics model sub-segment.
3.2.1.3.2.2.6	3.2.1	Flight Dynamics	The Flight Dynamics Model Sub-
	(Functionality	Model	Segment shall provide a simulation of
2212226	unchanged)	Diela Deservice	the flight characteristics of the aircraft.
3.2.1.3.2.2.6b	3.2.1 (Functionality	Flight Dynamics Model	The simulation shall include portions of the flight envelope including cruise,
	unchanged)	Model	ascent, descent, hover, and low-level
	discurrence /		flight with ground effect.
3.2.1.3.2.2.6c	3.2.1	Flight Dynamics	The simulation shall include calculation
	(Functionality	Model	of forces and moments, equations of
	unchanged)		motion, weight and balance, and
			aerodynamics.
3.2.1.3.2.2.7	3.2.1	Engine Model	The Engine Model Sub-Segment shall
	(Functionality	·	provide core engine representation,
	unchanged)		torque generation, engine fuel system
			utilization, and transmission
			representation.
3.2.1.3.2.3	3.2.1	Flight Model Stop	During the Flight Model Stop mode, the
	(Functionality	Mode.	execution of the flight model functions
3.2.1.3.2.3.1	unchanged) 3.2.1	Flight Model Sten	shall be suspended. This mode shall be controlled by the
J.4.1.J.4.J.1	(Functionality	Flight Model Stop Mode Control.	system executive.
	unchanged)	Micae Condon	by bless to be be a ver
3.2.1.3.2.3.2	3.2.1	Flight Model Stop	The modifications shall have no adverse
	(Functionality	Mode Functionality.	_
	unchanged)		functionality.

Requirement	SDD	Title	Description
ID	Traceability	1100	Description
10	Reference		
3.2.1.3.3	3.2.1	Segment Capability	Flight Model Segment capability
3.2.1.3.3		Relationships.	relationships shall not be affected by
	(Functionality	Kelationships.	
	unchanged)		modifications and restructuring of the
	-	0 10 133	flight model functions.
3.2.1.3.3a	3.2.1	Segment Capability	The capability relationships shall
•	(Functionality	Relationships.	remain intact.
	unchanged)		
3.2.1.3.4	3.2.1	Segment External	Flight Model Segment interface
	(Functionality	Interface	requirements shall not be affected by
J	unchanged)	Requirements.	modifications and restructuring of the
	<u> </u>		flight model functions.
3.2.1.3.4a	3.2.1	Segment External	The interface requirements shall remain
	(Functionality	Interface	intact.
L	unchanged)	Requirements.	
3.2.1.5	3.2.1	RWA Weapons	The intent of the RWA Weapons Model
	(Functionality	Model Upgrade	Upgrade is to improve the software by
	unchanged)	Segment	making it table driven.
3.2.1.5.1	4.2.1	Initialize Weapons	The Initialize Weapons Segment state is
	4.2.2	State	entered during the System Initialization
	4.2.3		process after system bootup.
	4.2.4		
	4.2.5		
	4.2.6		
	4.2.7		
3.2.1.5.1.1.1	4.2.1.2	Guided Missile	Trajectory coefficient data associated
	4.2.2.2	Trajectory	with guided missiles shall be loaded at
		Coefficient Data	mission initialization.
3.2.1.5.1.1.2	4.2.1.2	Guided Missile	Trajectory coefficient data files for
	4.2.2.2	Trajectory	Guided Missiles shall be in a format
	-	Coefficient Data	which allow modification through a
		Format	standard text editor.
3.2.1.5.1.1.3	4.2.3.2	Ballistic Missiles	Trajectory coefficient data associated
	4.2.4.2	Trajectory	with ballistic missiles shall be loaded
	4.2.7.2	Coefficient Data	at mission initialization.
3.2.1.5.1.1.4	4.2.3.2	Ballistic Missile	Trajectory coefficient data files for
J	4.2.4.2	Trajectory	Ballistic Missiles shall be in a format
	4.2.5.2	Coefficient Data	which allow modification through a
	4.2.7.2	Format	standard text editor.
3.2.1.5.1.1.5		Ballistic Rounds	Trajectory coefficient data associated
3.2.1.3.1.1.3	4.2.6.2		with Ballistic Rounds shall be loaded at
		Trajectory	
		Coefficient Data	mission initialization.

Requirement	SDD	Title	Description
ID	Traceability	111110	Description
1	Reference		
3.2.1.5.1.1.6	4.2.6.2	Ballistic Rounds	Trajectory coefficient data files for
		Trajectory	Ballistic Rounds shall be in a format
		Coefficient Data	which allow modification through a
1		Format	standard text editor.
3.2.1.5.1.2.1	4.2.1.2	Guided Missiles	Guided missile characteristics shall be
	4.2.2.2	Characterization	initialized via data files.
3.2.1.5.1.2.2	4.2.3.2	Ballistic Missiles	Ballistic missile characteristics shall be
	4.2.4.2	Characterization	initialized via data files.
	4.2.5.2		
	4.2.7.2		
3.2.1.5.1.2.3	4.2.6.2	Ballistic Rounds	Ballistic Rounds characteristics shall be
		Characterization	initialized via data files.
3.2.1.5.2.4.1	4.2.1.2	Guided Missile	Guided Missile Flyout shall utilize new
	4.2.2.2	Flyout	data structures containing trajectory and control data.
3.2.1.5.2.4.2	4110	Use of Data Tables	
3.2.1.3.2.4.2	4.1.1.2 4.1.2.2	Use of Data Tables	Updates required Modification of the source code shall be limited to reference
	4.1.3.2		data tables containing data which is
	4.2.1.2		read in via data files.
	4.2.2.2		read in var dam incs.
	4.2.3.2		
	4.2.4.2		
	4.2.5.2		
	4.2.6.2		
	4.2.7.2		
	4.3.1.2		
	4.3.2.2		
3.2.1.5.2.4.3	4.2.3.2	Ballistic Missile	Ballistic Missile Flyout shall utilize
	4.2.4.2	Flyout	new data structures containing trajectory
	4.2.5.2	-	and control data.
	4.2.7.2		
3.2.1.5.2.4.4	4.2.6.2	Ballistic Round	Ballistic Round Flyout shall utilize new
İ		Flyout	data structures containing trajectory and
			control data.
3.2.1.6.1	4.3.1	Initialization State	
			places the communications system into a
			known state. The Initialization state
			has no modes.
3.2.1.6.1.1	4.3.1.2	COMM On Variable	The Kill COMM Initialization shall set
			the communications "COMM On"
	İ		variable to enable ownship two-way
			communications.

Requirement ID	SDD Traceability Reference	Title	Description
3.2.1.6.2.1	4.3.1.2	Run Time COMM On Mode	The Run Time COMM On mode shall enable two-way communications between the ownship and other AirNet vehicles.
3.2.1.6.2.2	4.3.2.2	Run Time COMM Off Mode	The Run Time COMM Off mode shall disable two-way communications between the ownship and other AirNet vehicles.

8. Notes.

This following section contains general information that aids in understanding this document.

8.1 Acronyms and abbreviations.

The following is a list of acronyms and abbreviations used in this document.

Air Defense Anti-Tank Missile ADAT **ADST** Advanced Distributed Simulation Technology **ASCII** American Standard Code for Information Interchange **ATGM** Anti-Tactical Guided Missile CDRL Contract Data Requirements List CSC Computer Software Component **CSCI** Computer Software Configuration

Item

CSU Computer Software Unit

deg degree gals gallons I/O Input/O

I/O Input/Output
KEM Kinetic Energy Missile

KEM Kinetic Energy Missile kg kilogram

kg-m kilogram-meter Hz hertz

Msec millisecond
N Newton
N-m Newton-met

N-m Newton-meter
NLOS Non-Line-of-Sight Missile

rad radian

SDD Software Design Document

sec second

STRICOM Simulator Training and

TOW Instrumentation Command
Tube-launched, Optically-tracked,

Wire guided Anti-Tank Missile

Appendix A - RWA AirNet Call Tree Structure.

The following appendix contains information for convenience in document maintenance and understanding of the overall CSCI architecture. This call tree is not all inclusive, i.e., it only contains the calls from the top-level down to the CSU of interest in this document. Other CSU have been included in the Call Tree for clarity and reference.

enter_gracefully

5th ## 3rd 2nd 184

sim_state sim_state_idle printf

print_veh_logo clar_screm

project_name print

version_str date_str

select

network_set_exercise_id init_activ

rwa_config_process_vehicle_type_string ammo_set_all_quantity_zero leftwing_stores

ammo_indicators_require_updating

rightwing_stores

turret_stores

strncmp bzero

main_process_pars_arg sprintf

fopen

perror printf

subsys_ded_id ë

pi_db_sys_db_id

subsys_overlay_id fgets .

strcmp strtok

libmsg_pars_file

eye_to_screen_distance

main.c main.c main.c

rwa_main.c

rwa_main.c

makevers.c makevers.c makevers.c

rwa_config.c rwa_main.c

rwa_config.c ammo.c ammo.c ammo.c

read_pars.c

ammo.c

read_pars.c read_pars.c read_pars.c

read_pars.c

read_pars.c

read_pars.c read_pars.c read_pars.c read_pars.c read_pars.c read_pars.c read_pars.c

read_pars.c

read_pars.c

RWA AIRNET CALL TREE STRUCTURE

cig_use_database_override_named ntework_dont_really_open_up_ethernet 돲 cig_set_number_subsystems need_to_fill_initial_munitions ## default_db_name default_db_version ammo_map_file sdamage_file devices_file priority_list_file register_file idle_filter_file sim_filter_file assoc_def_file het_calib_file waypoint_list constants_file asid_map_file set_request_receive_size ded override veh_map_file set_ded_name vconfig_file2 db_override overlay_file vconfig_file1 set_request_send_size subsystems thresh_file calib file set_assymetric_on use_static_debug atoi debug printf atoi 13

read_pars.c read_pars.c read_pars.c

read_pars.c

read_pars.c

read_pars.c

read_pars.c

read_pars.c read_pars.c read_pars.c

rwa_main.c rwa_main.c

Rev. 0.0 Reference # W003036 22 January 19.

RWA AIRNET CALL TREE STRUCTURE

Sth 4th 3rd

2nd

force other

f_velocity

scanf

rwa_main.c rwa_main.c rwa_main.c rwa_main.c rwa_main.c

rwa_main.c

rwa_keybrd.c

rwa_keybrd.c

rwa_main.c

read_pars.c read_pars.c read_pars.c

rwa_main.c

rwa_sound.c

rwa_sound.c

rwa_main.c

rwa_main.c

network_get_network_device default_db_version default_db_name use intervisibility server get_default_db_version head_eye_tracker_enable Intervisibility Init Setup cig_not_using_graphics get_default_db_name het emable laser effects keyboard_really_use' use_keyboard v_pkt_verbose_mode het_set_damage_dir het_set_laser_series initial_activation use print checkb print_overruns guise_override printf guise_to_use print_help set_my_if movedata strcpy ij.

- A-4 -

cig_use_database_override_named

ded_subsys

network_set_network_device

db_subsys

printf

dont_use_sound

roa_turn_debug_on

sound_dont_use

RWA AIRNET CALL TREE STRUCTURE

dont_use_sound sound_error 話 mem_assign_shared_memory how_to_do_intervisibility dont_use_sound fifo_init spunos sound_reset **4**th ser_heartbeat_init simulate_state_machine spunos terrain verbose mode on tads_set_intervisibility 3rd sound init initial bbd sim_state sim_state_startup sim_state dtad_init bbd_init ide imit strcpy printf printf strien set ded name set_cig_dev set_cig_mask fprintf

main.c main.c

main.c

main.c main.c

rwa_tads.c

rwa_tads.c

rwa_sound.c rwa_sound.c rwa_sound.c rwa_mem.c rwa_sound.c rwa_mem.c

rwa_sound.c

rwa_sound.c rwa_status.c rwa_status.c

veh_sound_array

fprintf fflush

rwa_status.c

equipment_status

idc_values

status_preset

5th

45

2nd

1st

status out

timers_init pots_init

rwa_pots.c

rwa_pots.c rwa_pots.c

rwa_pots.c

rwa_pots.c rwa_pots.c

pil_cyc_pitch_d pil_cyc_pitch_c pil_cyc_pitch_r

pots_check_two

cpg_trav_I

cpg_trav_c cpg_trav_r cpg_elev_d cpg_elev_c

cpg_elev_r

pil_pedal_I pil_pedal_c pil_pedal_r pil_coll_d pil_coll_d

pots_check_three

fscanf

strcmp

pil_cyc_roll_l pil_cyc_roll_c pil_cyc_roll_r

print

rwa_pots.c rwa_pots.c

rwa_pots.c

rwa_pots.c

rwa_pots.c rwa_pots.c rwa_pots.c

rwa_pots.c

rwa_pots.c

rwa_pots.c

rwa_pots.c

rwa_pots.c

rwa_pots.c

rwa_pots.c

rwa_pots.c

rwa_pots.c rwa_pots.c

cpo_trav_c cpo_trav_r cpo_elev_d cpo_elev_c cpo_elev_c

obj_create_objects

cig_prepare

felose

network init

rwa_pots.c

- **A-6**-

RWA AIRNET CALL TREE STRUCTURE

4th

1st

network_can_i_really_tse_network cig_synchronize repair_uninit msg_startup buffer_setup hull init

network get_net_handle filter_init

priority_list_file get_priority_list_file

sim_state_idle rva_setup

veh_spec_startup sim state

printf

network_set_simulator_type use_cig_reconfig_startup clg_st~~up func rtc_init_clock

cig_reconfig_start
get_vconfig_file1 vconfig_file1 cig_set_view_config_file get_ammo_map_file

ammo_map_file get_veh_map_file map_file_read

veh_map_file map_ochicle_file_road get_asid_map_file asid_map_file map_read_asid_file

rwa_config_init

init_activ

read_pars.c read_pars.c main.c main.c

rwa_main.c

main.c main.c read_pars.c read_pars.c read_pars.c read_pars.c read_pars.c

read_pars.c

read_pars.c read_pars.c rwa_main.c rwa_config.c rwa_config.c

DWA ATDAIRT CALL TRUE CTRI

1st

RWA AIRNET CALL TREE STRUCTURE	Sth																																								
AIRNET C.	7. E.																													ζ¥Χ						-	**			list_id	
1	4th 5th 6th	init symbol table	printf	ander find file		data_nie	enit	find tag	vehicle name	minitions table	d mmfs.	get_symbol	weapons_info_size	weapons_info	malloc	bzero	init	use_keybrd	input_char_count	entering str	console_desc	keybrd tty init	printf	cait	ij	fail_init	fail_table_init	get_sdamage_file	sdamage_file	MAINT_LEVEL_ARF	sfail_init	startup	printf	air_veh_list_id	stinger_is_air_veh	is_air_vehicle	rva_create_output_list	supply_init	printf	rwa_ammo_resupply_list_id	
	3rd 4		*	. 8	-	Ö	8	Œ	, >			50	\$	\$	E	£,	keyboard init	5	#	ช	8	2	ā	. 8	failure_init	7	. A.	60		2	क	weapons_startup	Ā	ā	8 0		E	ammo_re	A	. E	
	ZUG																																								

rwa_keybrd.c rwa_keybrd.c

rwa_config.c rwa_config.c

rwa_config.c rwa_config.c rwa_keybrd.c

rwa_keybrd.c rwa_keybrd.c sun_wayed.c

read_pars.c read_pars.c

rwa_failure.c

rwa_weapons.c

rwa_failure.c

rwa_weapons.c sun_stubs.c sun_stubs.c rwa_ammo.c

rwa_ammo.c

١.		_
8	క్ల	Ö
5	8	Rev.
nuary	W0030	Ž
E	*	
22 Ja	ည	
7	ā	
	સુ	
	Ž	

rwa_ammo.c sun_wayed.c

2nd

1st

sun_wayed.c

rwa_ammo.c

sun_wayed.c

sun_stubs.c

rwa_config.c rwa_config.c rwa_config.c

rwa_config.c

resupp.c resupp.c rwa_config.c ammo.c

rwa_config.c

rwa_config.c

rwa_ammo.c

rwa_config.c rwa_config.c

rwa_config.c rwa_config.c rwa_config.c rwa_config.c rwa_config.c rwa_config.c resupp.c resupp.c

JRE	
Fon	
STR	
REE	
ALL 1	,
可に	
AIR	
RWA	,

3rd

2nd

1st

8th	ress	rogress		rwa_config_get_was_munition_index	
7th	rwa_resupply_in progress	esupply_in_progress		et_was_r	
eth	esupply.	ldnsau		onfig_g	was
Sth	rwa_n		printf	TWA_C	
4 th					

rwa_config_get_was_position_name

rightwing stores leftwing stores turret_stores Was

mun_set_veh_spec_resupply_started veh_spec_resupply_started

map_get_damage_files

use_intervisibility_server Intervisibility Init Intervisibility Synchronize IV_CLIENT

frame_counter status_simul veh_spec_idle timers_simul

hard_dead idc_values fifo_hard monitor_status

ser_heratbeat fifo_enqueue softo_dead softi_dead ser_dead fifo_softi st_com

net_xmt_failed set_xmt_failed dtad_failed net_dead

Rev. 0.0

rwa_config.c rwa_config.c

rwa_config.c rwa_config.c rwa_config.c rwa_config.c

rwa_config.c resupp.c rwa_config.c rwa_config.c resupp.c

rwa_main.c

rwa_main.c rwa_status.c rwa_status.c rwa_status.c

rwa_status.c rwa_mem.c

rwa_status.c

Zud Zud

1st

rwa_status.c rwa_status.c

rwa_mem.c

rwa_status.c

rwa_status.c

rwa_status.c

RWA AIRNET CALL TREE STRUCTURE																												
CALL TR	5																	_		-		. 75	. E	2P_red	ZN_red	_red		
AIRNE				erature		12	. —	2P		us12	Z , '	pe:	Z Z	į	0			need_to_set_host_red	status	need_to_set_cig_red	need_to_set_nard_red need_to_set_softi_red	need to set softo red	need to set sound red	need_to_set_voltage12P.	need_to_set_voltage12N_red	need_to_set_voltage5_red	need_to_set_net_red	
RWA	dtad_dead sound_dead	Sp	nnd	temperature current temperature	voltage 12P	current plus 12	olusiz dead	LOLIMIT 12P	voltage12N	current minus12	HILIMIT_12N	minus12_dead	LOLIMIT_12N	18e5	Current pruss HILIMIT 5	plus5_dead	LOUMIT_5	_to_set	equipment_status	_to_set		5	to	to_set	to_set	to_set	_to_set	status_out
i i	dtad	spunos	st_sound	נהעול	volta	Curre	Sala	101	volta	Cure	HILL	min.	TOT	voltage5	HILL	plus	707	need	edni	need		Пеес	need	need	need	need	need.	statu
46	į																											
Ş	3																											•

initial_activation need_to_fill_initial_munitions

keyboard_simul io_simul_idle

rwa_status.c rwa_status.c rwa_status.c

rwa_status.c rwa_status.c

rwa_status.c

rwa_status.c rwa_status.c rwa_status.c rwa_status.c rwa_main.c rwa_main.c

RWA AIRNET CALL TREE STRUCTURE

2nd 3rd 4th 5th 6th 7th 8th

printf
rwa_config_initialize_munitions
previous_vehicle_type
data_file
find_tag
printf
get_symbol

1st

fill_vehicle_status fuel_get_current_level fuel_struct

init_activ

rwa_config_get_was_munition_type was

rwa_config_get_was_munition_index was

leftwing_stores ammo_check_availability ammo_index_ok

rightwing_stores
turret_stores
network_get_exercise_id
process_activate_request

init_ballistics_buffer idc_reset

idc_reset veh_spec_init LRF Init Lrf Err String fprintf fflush softp_send_idc_reset sound_reset

status_preset firectl_init firectl_was_init

controls_fsm_init

rwa_main.c rwa_network.c fuelsys.c

rwa_config.c

rwa_config.c

rwa_config.c

fuelsys.c rwa_config.c rwa_config.c rwa_config.c rwa_config.c ammo.c rwa_config.c rwa_config.c

rwa_main.c

2nd

1st

Znd Znd

18

Rev. 0.0	rwa_engine.c	rwa_engine.c	rwa_engine.c	rwa engine.c		rwa_engine.c	rwa_engine.c	rwa_engine.c	rwa_engine.c	rwa_engine.c	rwa_engine.c	rwa_engine.c	rwa_engine.c	•	rwa_engine.c	rwa_engine.c			rwa_engine.c	rwa_engine.c	rwa_engine.c			rwa_engine.c	rwa_engine.c	rwa_engine.c	rwa_engine.c	rwa_engine.c	rwa_engine.c	rwa_engine.c	rwa_engine.c	rwa_engine.c	rwa_engine.c	rwa_engine.c	
RWA AIRNET CALL TREE STRUCTURE 4th 5th 6th 7th 8th	engine_is_damaged	engine_status	number_or_engines engine damage transmission filter	engine_repair_transmission_filter	controls_failure_lamp_off	transmission_is_damaged	engine_break_transmission	engine_break_engine	engine_status	engine_speed	number_of_engines	engine_repair_transmission	engine_repair_transmission_filter	controls_failure_lamp_off	transmission_is_damaged	engine_repair_engine	engine_repair_engine_oil	controls_failure_lamp_off	engine_is_damaged	engine_status	number_of_engines	aerodyn_init	engine_init	engine_power	engine_percent_torque	engine_speed	number_of_engines	engine_status	engine_is_damaged	transmission_is_damaged	starting_engine	integrator_gain	gov_p_gain	gov_i_gain	

3rd

Zud

1st

Rev. 0.0	rwa_engine.c rwa_engine.c rwa_engine.c	rwa_engine.c	rwa_engine.c	rwa_engine.c rwa_engine.c
RWA AIRNET CALL TREE STRUCTURE 5th 6th 7th 8th	minutes_of_flight old_minutes_of_flight engine_damage_engine_oil controls_start_failure_lamp_flashing engine_repair_engine_oil controls_failure_lamp_off engine_is_damaged fail_init_failure engine_status engine_break_engine engine_status engine_status engine_repair_engine engine_repair_engine engine_status engine_status foontrols_failure_lamp_off engine_status engine_status foontrols_failure_lamp_off engine_status number_of_engines engine_status engine_status number_of_engines engine_status engine_status number_of_engine engine_status engine_break_transmission_filter controls_failure_lamp_off transmission_is_damaged engine_break_engine engine_break_engine engine_status engine_status engine_status engine_status engine_status engine_status	engine_repair_transmission_filter controls_fallure_lamp_off	transmission_is_damaged engine repair engine	engine_repair_engine_oil controls_failure_lamp_off engine_is_damaged
4th				

TWA L

rwa_

rwa_

rwa_ rwa_ rwa_

rwa '

rwa_'

rwa. rwa. rwa. rwa. Reference # W003036

22 January 199.

Rev. 0.0

RWA AIRNET CALL TREE STRUCTURE

ŧ

3rd

Zug

1st

engine_status

number_of_engines

vec_init

vehicle_mass_init ground_force

ground_init

find_cubic_func

fprintf

aerodyn_read_simple_constants get_constants_file

printf fopen

fgets

strtok

stremp

sscanf fclose

rwa_config_get_front_support front_support

aero_body_point_set_front_wheels body_point

ground_height printf

rwa_config_get_rear_support

aero_body_point_set_rear_wheel rear_support

body_point

alt init

tads_init

sad_uninit

gunmnt_init

SAD_TTY_PORT

ammo_configuration_menu_init sad_Init

rwa_config.c rwa_aerodyn.c rwa_config.c rwa_ground.h rwa_aerodyn.c

rwa_aerodyn.c rwa_ground.h rwa_config.c rwa_config.c

RWA AIRNET CALL TREE STRUCTURE

6th weapons_init 3rd Zud

181

gunmut_element

rotate_init_element

cig_set_proc_hit_msg

rwa_process_msg_hit_return

f2d_vec_copy

missile_util_comm_intersected_poly map_is_missile

msg_get_veh_id_from_cig_id missile_comm

missile_util_comm_intersected_model missile_comm

proc_hit_debug

print

map_is_bomb

veh kinematics

kinematics_range_squared

map_get_network_type_from_ammo_entry network_ifire_init_burst network_ifire_send_detonation

network_ifire_send_indirect_fire

impacts_queue_effect

rwa_config_get_was_munition_index rounds_interp_rounds

cig_impact_from_round_fired change_process_msg_hit_function

rounds_init_volley volley_list

volley_free

free_ptr

first_volley last_volley

rocket_laser_range gun_firing_state

new_gun_firing_state gun_switch

rwa_weapons.c

rwa_weapons.c

rwa_cig.c rwa_cig.c util_comm.c util_comm.c util_comm.c

rwa_cig.c util_comm.c

sun_stubs.c

sun_stubs.c

rwa_rounds.c rwa_rounds.c rwa_weapons.c rwa_weapons.c rwa_weapons.c rwa_weapons.c rwa_rounds.c rwa_rounds.c fuze_prox.c rwa_rounds.c

Æ

37

2nd

18t

ATGM_launch_from_left stinger_launch_from_left right_stores_position hydra_init.c left_stores_position

articulation_element hull

rotate_init_element printf

pylon_L_element articulation

articulation_element

missile_hydra_init pylon_R_element hydras

num_hydra rkts_in_flight hydra_fly hydra_array

pylon_z pylon_y

pylon_x

speed_factor flight_time

max_range_limit ball_table_loaded printf

table size ball_table

missile_util_load_ball_traj_file

fopen fprintf

ungetc Setc

Rev. 0.0 rwa_weapons.c

rwa_weapons.c rwa_weapons.c rwa_weapons.c rwa_weapons.c rwa_hydra.c rwa_hydra.c

rwa_hydra.c rwa_hydra.c rwa_hydra.c

rwa_hydra.c rwa_hydra.c

rkt_hydra.c rkt_hydra.c

rkt_hydra.c

rkt_hydra.c rkt_hydra.c

rkt_hydra.c rkt_hydra.c

rkt_hydra.c

rkt_hydra.c miss_hellfr.c

miss_hellfr.c rkt_hydra.c

rkt_hydra.c util_ball.c rkt_hydra.c

ball_load.c

RWA AIRNET CALL TREE STRUCTURE	Sth	fscanf	fclose	print	flechette_veh_list	flechette_is_valid_veh
	4th					
	3rd					

Zug

18t

missile_fuze_prox_init

prox_list prox_free free_ptr

rva_create_output_list

missile_tow_init
speed_factor
max_range_limit
max_range_squared
tow_ammo_type
hellfires
missile_hellfire_init
speed_factor
max_range_limit
max_range_limit
max_range_squared
hellfire_ammo_type
stingers
missile_stinger_init

stingers
mum_stingers
stinger_array
speed_factor
max_range_limit
max_range_squared
stinger_ammo_type
missile_fuze_prox_init
prox_free
free_ptr
weapons_config_missile

rwa_config.c rwa_weapons.c miss_hellfr.c miss_hellfr.c miss_stinger.c fuze_prox.c fuze_prox.c fuze_prox.c miss_hellfr.c miss_stinger.c miss_stinger.c miss hellfr.c fuze_prox.c miss_tow.c miss_hellfr.c miss_hellfr.c miss_hellfr.c miss_tow.c rwa_weapons.c miss_hellfr.c miss_hellfr.c miss_hellfr.c miss_hellfr.c rwa_weapons.c miss_stinger.c rkt_hydra.c sub_flech.c sun_stubs.c fuze_prox.c fuze_prox.c fuze_prox.c rwa_weapons.c fuze_prox.c

rwa_config_get_was_munition_info

was

rwa_config.c

miss_hellfr.c

2nd

1st

missile_hellfire_set_ammo_type

missile_hellfire_set_max_range_limit hellfire_ammo_type

max_range_squared max_range_limit

missile_hellfire_set_speed_factor

speed_factor

missile_stinger_set_ammo_type stinger_ammo_type

missile_stinger_set_max_range_limit

max_range_limit

max_range_squared missile_stinger_set_speed_factor speed_factor

missile_tow_set_ammo_type

low_ammo_type

miss_tow.c miss_tow.c miss_hellfr.c miss_hellfr.c miss tow.c

missile_tow_set_max_range_limit

max_range_squared max_range_limit

missile_tow_set_speed_factor speed_factor

printf

missile_util_comm_init missile_util_init

missile_comm network_missiles_init

weapons_repair_gun_major weapons_break_gun_major

fail init failure

weapons_repair_gun weapons_break_gun

controls_start_failure_lamp_flashing weapons_break_hellfire

weapons_repair_hellfire

controls_start_failure_lamp_flashing controls_failure_lamp_off weapons_break_stinger

miss_tow.c miss hellfr.c miss_hellfr.c miss_hellfr.c miss_hellfr.c miss_hellfr.c miss_hellfr.c miss_stinger.c miss_stinger.c miss_stinger.c miss_hellfr.c miss_hellfr.c miss_stinger.c miss hellfr.c

util_comm.c util_init.c util_comm.c

miss_hellfr.c

rwa_weapons.c

rwa_weapons.c

rwa_weapons.c

rwa_weapons.c

RWA AIRNET CALL TREE STRUCTURE

controls_failure_lamp_off weapons_repair_stinger eth 6 4 37

Zud

15

bcs_init

vision_restore_all_blocks

controls_edge_unit app_init

clg_2d_do_init

controls_copil_recallb

sad_show_aircraft

rad_meter_preset

veh_kinematics

kinematics_get_o_to_h

kinematics_get_w_to_h config pos init2

cig_init_ctr

init_clg_ticks
HET_TTY_PORT
get_het_calib_file

head_eye_tracker_send_request het calib file head_eye_tracker_init

view_element view_attacker_in_fov

view

tads_vehicle_in_fov sight

network_get_net_handle network_current_time_in_ms het init

laserdam_init

impacts init turret_init

veh_spec_kinematics_init

imers_init_starttime repair_init

sun_stubs.c sun_stubs.c

rwa_cig.c rwa_cig.c

read_pars.c read_pars.c

rwa_view.c rwa_view.c

rwa_kinemat.c rwa_rotate.c rwa_stubs.c

TREE STRUC	
CALLT	8th
RWA AIRNET	45
RWA /	eth
	Sth
	4
	34
	Zud

ĭ

cig_startup_func_FPTR obj_imit_objects buffer_reset msg_imit roa init

cig_msg_prepend_request_laser_range cig_spec_init

sim_state_simulate sim_state printf fail_imit

RTC_FRAME_GAP RTC_FRAME rtc_start_time

RTC_TIMERS_SIMUL bbd bit out

rtc_stop_time

RTC_VEH_SPEC_SIMUL RTC_FAIL_SIMUL fail_simul

status_simul veh_spec_simulate

frame_counter monitor

waypoint_editor keyboard_simul

sad_simui

sound_error sound_simul

controls_sim_next_state controls_status controls_simul

controls_pil_cyc_roll_check controls_pil_cyc_pitch_check controls_sim_routines controls_failure_val

main.c main.c main.c

rwa_cig.c

main.c

rwa_main.c rwa_status.c rwa_status.c

rwa_ctl_fsm.c rwa_ctl_sim.c rwa_ctl_fsm.c rwa_ctl_fsm.c rwa_sound.c rwa_sound.c rwa_ctl_fsm.c

2nd

<u>1</u>8t

rwa ctl fsn

controls_manual_range_check

controls_failure_edge controls_sim_off

mprintf

view_simul

Reference # W003036 Rev. 0.0 22 January 199.

RWA AIRNET CALL TREE STRUCTURE

ammo_quantity_has_changed eth ammo_simul 33 Zud Zud

1st

ammo_indicators_require_updating rwa_config_get_was_munition_index

ammo_check_availability leftwing_stores

rightwing_stores turret_stores

meter_missile1_set

meter_missile2_set

meter_rocket_set meter_ammo_set

resupply_receive_gating_conditions_ok

rva_lists_off

rwa_ammo_resupply_list_id

roa build list

rwa_fuel_resupply_list_id

rva_get_output_list

rwa_config_determine_ammo_needed mun_set_ammo_resupply_list

mun_set_fuel_resupply_list

roa_dont_build_list resupply_simul

fuel_simul

resupply_simul meter_simul

RTC_RWA_SIMUL bbd bit out

rtc_start_time

get_selected_model aerodyn_simul rwa_simul

get_aircraft_kinematic_state parameters_calc orientation_calc

ammo.c rwa_ammo.c ammo.c

rwa_config.c

rwa_config.c

rwa_config.c

rwa_annmo.c rwa_ammo.c rwa_ammo.c

sun_stubs.c

rwa_meter.c

rwa_simul.c

rwa_aerodyn.c

rwa_aerodyn.c rwa_kinemat.c

kinematics_get_true_airspeed

true_airspeed

rwa_aerodyn.c rwa_aerodyn.c rwa_kinemat.c rwa_aerodyn.c

37

Zud

18t

RWA AIRNET CALL TREE STRUCTURE sth true_airspeed altitude kinematics_get_altitude angular_velocity_vector kinmatics_get_angular_velocity_vector ang_vel normalized_velocity_vector kinematics_get_normalized_velocity_vector true_airspeed norm_vel pos_unit_vel norm_vel pos_unit_vel norm_vel pos_unit_vel norm_vel pos_unit_vel velocity_vector kinematics_get_linear_velocity_vector gravity_dir_vector gravity_dir_vector gravity_dir_vector gravity_dir_vector kinematics_get_gravity_vector gravity_dir_vector gravity_clatack kinematics_get_gravity_vector gravity_clatack kinematics_get_get_aoa side_slip_angle kinematics_get_vew velocity_to_body kinematics_get_velocity_to_body kinematics_get_vertical_speed kinematics_get_vertical_speed vertical_speed kinematics_get_vertical_speed vertical_speed subject_density altitude air_density	ambient_temperature
Control Contro	

rwa_kinemat.c

rwa_kinemat.c

rwa_kinemat.c rwa_aerodyn.c rwa_kinemat.c

rwa_kinemat.c

rwa_kinemat.c

rwa_aerodyn.c

rwa_kinemat.c

rwa_kinemat.c

rwa_aerodyn.c

rwa_aerodyn.c

rwa_aerodyn.c

rwa_aerodyn.c

rwa_aerodyn.c rwa_aerodyn.c

rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c

rwa_aerodyn.c

rwa_kinemat.c

rwa_aerodyn.c

rwa_kinemat.c rwa_aerodyn.c

rwa_aerodyn.c

rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c

rwa_aerodyn.c rwa_aerodyn.c

rwa_aerodyn.c

rwa_aerodyn.c

4th

3rd

2nd

1st

rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c

RWA AIRNET CALL TREE STRUCTURE sir_temperature ambient_pressure air_pressure dynamic_pressure true_airspeed pitch_rate angular_velocity_vector roll_rate yaw_rate roll gravity_dir_vector atan2 pitch	compute_stab_augmentation_gains hover_hold_state hover_hold_turmed_on pitch_damping roll_damping hover_aug_roll_integrator stab_aug_yaw_integrator stab_aug_yaw_integrator stab_aug_yaw_integrator stab_aug_yaw_integrator true_airspeed MAX_ATT_CTL_ANGLE log velocity_vector limiter hover_aug_roll_angle stab_aug_roll set_roll_attitude attitude_control_roll_integrator roll limiter attitude_control_roll_command hover_aug_pitch_angle stab_aug_pitch_angle stab_aug_pitch_angle stab_aug_pitch_angle stab_aug_pitch_angle
--	---

rwa_aerodyn.c

rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c

rwa_aerodyn.c

rwa_aerodyn.c

rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c

rwa_aerodyn.c

rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c

rwa_aerodyn.c

##

3rd

Z

1st

EJ.	k	70				·																		
RWA AIRNET CALL TREE STRUCTURE 5th 6th 7th 8th	attitude_control_pitch_integrator pitch limiter	attitude_control_pitch_command angular velocity vector	stab_aug_yaw stab_aug_climb	controller_cyclic_roll	controller_cyclic_pitch	cyclic_pitch controller_tail_rotor	pedal	controller_collective collective	compute_rotor_loads	main_rotor_load_torque	congolier_collective	controller_tail_rotor	compute_engine_torque main_mtor_load_torque	tail rotor load torque	altitude	engine load torque	engine_power	gov_p_gain	engine status	integrator gain	gov_i_gain_ fuel_level_empty	fuel_struct	engine_drive_torque number_of_engines engine_percent_torque	•

rwa_engine.c

rwa_engine.c

rwa_engine.c

rwa_engine.c rwa_engine.c rwa_engine.c rwa_engine.c fuelsys.c fuelsys.c rwa_engine.c rwa_engine.c

rwa_aerodyn.c

rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c

4th

3rd

2nd

18t

turbine main_re tail_rote powerth tail_rote main_re fuel_flo sound_si starting fuel_use fuel_use fuel_use old_min sfail_ever engine_i transmis engine_i transmis engine_i	KWA AI	5	
peed rwa peed rwa ed rwa en ed set rwa et status et rols failure val et status et rols failure val et rwa et status et rols failure val et rwa et status et rols failure val et rwa et status et rols failure val et rwa en ed set et rwa en ed set et rwa en ed set et rwa en ed set et en rwa en ed set et en rwa en ed set et en rwa en ed set et en rwa en ed set et en rwa en ed set et en en en en en en en en en en en en en	5	/tn 8tn hirhine sneed	
rwa- ed rwa- ed rwa- can gue rwa- que rwa- md rwa- que rwa- wer status rwa- itrols_failure_val rwa- wer status rwa- wer status rwa- wer status rwa- huel_set rwa- huel_s		main mater about meet	rwa_engine.c
transfer speed rwa- t-shaft-speed rwa- que orque rwa- que rwa- que rwa- rwa- wer status rwa- trols_failure_val rwa- wer_status rwa- wer_status rwa- wer_status rwa- wer_status rwa- wer_status rwa- wer_status rwa- rwa- wer_status rwa- rwa- rwa- rwa- rwa- rwa- rwa- rwa-		Indin	rwa_engine.c
t_shaft_speed rwa- gue rwa- que rwa- que rwa- que rwa- que rwa- rud rud rud ruds_status rwa- rud ruds_status rwa- rwa- rwa- rwa- rwa- rwa- rwa- rwa-		tall_roor_snart_speed	rwa_engine.c
que orque rwa orque rwa orque rwa orque rwa orque rwa wa wer status rwa wer status rwa wer status rrwa rrols_status rrwa rrwa rrols_status rrwa rrwa rrols_status rrwa rrwa rrols_status rrwa rrwa rrwa rrols_status rrwa rrwa rrwa rrols_status rrwa rrwa rrwa rrols_status rrwa rrwa rrwa rrwa rrwa rrwa rrwa rrw		powertrain_percent_shart_speed	rwa_engine.c
orque rud rud tors_require_updating tors_status trols_status trols_status val llation rwa val llation rwa rwa rwa rwa rwa rwa rwa rw		tail_rotor_drive_torque	rwa_engine.c
rwa wer status trois failure val o percent trois failure val trois		main_rotor_drive_torque	rwa_engine.c
trols_status trols_failure_val trols_fai		fuel_flow	rwa_engine.c
rwa wer_status trols_status trols_status trols_failure_val o_percent trols_status trols_status trols_status trols_status trols_status trols_failure_val o_percent trols_failure_val trols_failur		sound_stop_cont_sound	•
trols_failure_val o_percent trols_failure_val o_percent trols_failure_val o_percent trols_failure_val o_percent trols_failure_val o_percent trols_failure_val o_percent trols_failure_val o_percent trols_failure_val o_percent trwa_ nel_set trwa_ trwa_ nel_set trwa_ nel_set trwa_ rwa_ rwa_ nel_set trwa_ rwa_ rwa_ rwa_ rwa_ rwa_ rwa_ rwa_		starting_engine	rwa engine.c
wer_status trols_status trols_status trols_status trols_status trols_status trols_status trols_failure_val o_percent wer_status trols_failure_val o_percent trols_failure_val o_percent trols_failure_val in rwa_ trols_failure_val o_percent trwa_ trols_failure_val in rwa_ trwa_ trols_failure_val in rwa_ trwa_ trols_failure_val in rwa_ trwa_		fuel_used_by_engine	fuelsvs.c
wer_status trols_status lure_status co_percent val llation llation wer_status trols_failure_val co_percent trols_status lure_status trols_failure_val co_percent llation rwa_ wer_status lure_status lurea_status lur		fuel_struct	fuelsys.c
wer_status ftrols_status furols_failure_val o_percent wer_status ftrols_failure_val o_percent ftrols_failure_val o_percent ftrols_failure_val o_percent frwa_naged		fuel_indicators_require_updating	fuelsys.c
wer_status itrols_status ilure_status ilure_status illation nel_set itrols_status itrols_failure_val o_percent inel_set nel_set irols_failure_val o_percent inel_set inel_set		meter_torque_set	rwa_meter.c
trols_status llure_status trols_failure_val o_percent ilation nel_set trols_status trols_status trols_failure_val o_percent l nel_set nel_set nel_set		controls_power_status	rwa_ctl_fsm.c
ilure_status trols_failure_val o_percent val llation nel_set trols_status trols_status trols_failure_val o_percent l nel_set nel_set nel_set		controls_status	rwa_ctl_fsm.c
trols_failure_val o_percent val llation nel_set wer_status trols_status trols_failure_val o_percent l nel_set nel_set naged		controls_failure_status	rwa_ctl_fsm.c
o_percent val llation nel_set wer_status trols_status lure_status trols_failure_val o_percent nel_set naged peed		controls_failure_val	rwa_ctl_fsm.c
val Illation nel_set wer_status trols_status lure_status trols_failure_val o_percent I nel_set maged peed		conv_frac_to_percent	rwa_meter.c
llation nel_set nel_set twer_status trols_status turols_failure_val o_percent nel_set maged peed		torque_set_val	rwa_meter.c
nel_set wer_status trols_status lure_status lure_status co_percent l nel_set naged peed		torque_oscillation	rwa_meter.c
wer_status trois_status lure_status trois_failure_val o_percent l nel_set naged peed		softp_ins_panel_set	
wer_status trols_status lure_status trols_failure_val o_percent l nel_set maged peed		meter_rpm_set	rwa_meter.c
trols_status lure_status trols_failure_val o_percent I nel_set ht		controls_power_status	rwa_ctl_fsm.c
lure_status trols_failure_val o_percent 1 nel_set haged		controls_status	rwa_ctl_fsm.c
trols_failure_val o_percent 1 nel_set ht peed		controls_failure_status	rwa_ctl_fsm.c
o_percent I nel_set tht maged		controls_failure_val	rwa_ctl_fsm.c
nel_set ht haged naged		conv_frac_to_percent	rwa_meter.c
nel_set tht maged peed		rpm_set_val	rwa_meter.c
ht naged speed		softp_ins_panel_set	
tht naged speed		hours_of_flight	rwa_engine.c
ht naged peed		minutes_of_flight	rwa_engine.c
naged		old_minutes_of_flight	rwa_engine.c
naged		sfail_event_occurred	•
naged peed		engine_is_damaged	rwa_engine.c
paad		transmission_is_damaged	rwa_engine.c
pead		engine_sound_type	rwa_engine.c
		last_percent_shaft_speed	rwa_engine.c

3rd

2nd

1st

rwa_engine.c rwa_engine.c rwa_engine.c rwa_aerodyn.c rwa_engine.c

rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c

rwa_aerodyn.c

RWA AIRNET CALL TREE STRUCTURE h 5th 6th 7th 8th	sound_make_cont_sound last_percent_torque rotor_oscillation sound_make_arg_sound engine_oscillation powertrain_percent_shaft_speed engine_get_rotor_percent_shaft_speed [pwertrain_percent_shaft_speed compute_rotor_forces_and_moments main_rotor_thrust powertrain_percent_shaft_speed controller_collective	tail_rotor_thrust controller_tail_rotor force_body_main_rotor MAIN_ROTOR_MAST_TILT_SIN MAIN_ROTOR_MAST_TILT_COS force_body_tail_rotor moment_body_main_rotor controller_cyclic_pitch controller_cyclic_roll main_rotor_torque_load compute_lift_drag_coefficients	lift_coefficient_vstab side_slip_angle vstab_lift_coefficient lift_coefficient_virtual_wing true_airspeed p_drag_fit_coeff cubic_func angle_of_attack sin	total_incompressible_drag_coefficient compute_lift_drag_forces lift_virtual_wing dynamic_pressure lift_coefficient_virtual_wing
	sound_make_cont_sound last_percent_torque rotor_oscillation sound_make_arg_sound engine_oscillation powertrain_percent_shaft_speed engine_get_rotor_percent_shaft_spe [pwertrain_percent_shaft_spe [pwertrain_percent_shaft_spe main_rotor_thrust powertrain_percent_shaft_spect controller_collective	tail_rotor_thrust controller_tail_rotor force_body_main_rotor MAIN_ROTOR_MAST_TILT_SIN MAIN_ROTOR_MAST_TILT_COS force_body_tail_rotor moment_body_main_rotor controller_cyclic_pitch controller_cyclic_roll main_rotor_torque_load compute_lift_drag_coefficients	lift_coefficient_vstab side_slip_angle vstab_lift_coefficient lift_coefficient_virtual_wing true_airspeed p_drag_fit_coeff cubic_func angle_of_attack sin	total_incompressible_drag_coefficien compute_lift_drag_forces lift_virtual_wing

rwa_aerodyn.c

rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c

rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c

rwa_aerodyn.c

rwa_aerodyn.c rwa_aerodyn.c

rwa_aerodyn.c

rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c

rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c

rwa_aerodyn.c

rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c

rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c

rwa_aerodyn.c

37

2nd

15t

RWA AIRNET CALL TREE STRUCTURE 1 5th 6th 7th 8th 1ift_vstab 1ift_coefficient_vstab total_drag total incompressible drag coefficient	compute_body_damping_forces_and_moments moment_body_damping pitch_damping ptich_rate roll_damping	yaw_damping yaw_rate yaw_rate force_body_damping velocity_vector transform_lift_drag_forces_to_body_coordinates virtual_wing_force lift_virtual_wing vstab_force lift_vstab	drag_force total_drag true_airspeed pitch sin velocity_to_body lift_body_virtual_wing vec_mat_mul lift_body_vstab	generate_gravity_body_force compute_gross_weight vehicle_mass fuel_get_current_level fuel_struct gross_weight gravity_force_body gravity_dir_vector
4th				

fuelsys.c rwa_aerodyn.c

rwa_aerodyn.c rwa_aerodyn.c

rwa_aerodyn.c

rwa_aerodyn.c

rwa_aerodyn.c

rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_ground.h

rwa_ground.h

rwa_aerodyn.c rwa_aerodyn.c sun_wayed.c

rwa_aerodyn.c

rwa_aerodyn.c

3rd

Zud

18t

rwa_aerodyn.c rwa_aerodyn.c

rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c

rwa_aerodyn.c

rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c

rwa_aerodyn.c

RWA AIRNET CALL TREE STRUCTURE	4th 5th 6th 7th 8th	moment_body_damping	send_to_dynamics_kinematics	vehicle_mass
	3rd			
	2nd			

184

vehicle mass init

inertia_matrix

moment_body

vehicle forces force_body

vehicle_torques

serodyn_simple_simul aerodyn_stealth_simul

bbd bit out

vehicle_update

rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c

rwa_aerodyn.c

rwa_kinemat.c rwa_aerodyn.c rwa_simul.c

rwa_kinemat.c rwa_kinemat.c

rwa_tads.c rwa_tads.c

kinematics_get_body_pitch kinematics_get_heading sound_make_const_sound get_cmd_heading_state tads_element body_pitch meter_adi_set kinematics_get_roll roll rotate_sight_angle current_bank

rwa_cig_2d.c sun_wayed.c rwa_meter.c

cmd_heading_val

get_cmd_heading

meter_dg_set

laser_range

sight

cig_altitude_above_gnd

meter_radar_alt_set

veh_kinematics

kinematics_get_d_pos

world

sun_stubs.c

3rd

2nd

181

rotate get mat

vec mat mul

meter_ball_set

softp_send_end_of_tick

cig_2d_set_dg_heading dg_heading_val

cig_2d_set_alt_sen_bearing

alt_sen_bearing_val

cig_2d_set_laser_range

laser_range_val

azimuth_val cig 2d set azimuth

elevation_val cig_2d_set_elevation

rtc_stop_time

tads_simul

firecti_simul

weapons_simul

automatic_gun_simul

firectl_gun_selected

tads_currently_fixed_forward firectl_gun_selected_by_pilot

pil_weapon_select_state

bcs_turn_computer_off

bcs_set_ballistics_computer super_elevation

bcs_range

ballistics calc se

ballistics_calc_time sqrt fprintf

gun_out_of_contstraints clg_2d_set_status_message

rwa_cig_2d.c rwa_cig_2d.c rwa_cig_2d.c rwa_cig_2d.c rwa_cig_2d.c rwa_cig_2d.c rwa_cig_2d.c rwa_cig_2d.c

rwa_weapons.c rwa_weapons.c rwa_firectl.c

rwa_firectl.c rwa_tads.c rwa_firectl.c rwa_weapons.c

LWa

rwa_hydra.c

rwa_weapons.c

rwa_weapons.c rwa_weapons.c

ball_calc.c bal_calc.c

rwa_cig_2d.c rwa_wapons.c

RWA AIRNET CALL TREE STRUCTUR	8th			
AIRNET	7th	new gun firing state	,	2
RWA.	eth	gun_firi)	rotate set anole
	Sth	new	tads	rotate
	4 th			
	314			

2nd

13

bcs_get_super_elevation super_elevation 218117 128 - 11 bias_vector sight

cpg_weapon_select_state pil_weapon_select_state firectl_rocket_selected gun_limits

ammo_check_availability gun_impacts_per_round tracer round interval weapons_fire_round rightwing_stores leftwing stores shot_counter shot_interval turret_stores ammo_type gun_switch new_shot last_shot

continuous_gun_sounds gun_impacts_per_round sound_make_const_sound kinematics_get_d_pos fire_g_to_w_mat veh_kinematics d2f_vec_copy vec scale

event_get_event projectile_drift bias_vector scaled_rand

rwa_tads.c rwa_weapons.c rwa_tads.c rwa_weapons.c rwa_firectl.c rwa_firectl.c rwa_weapons.c rwa_weapons.c rwa_hydra.c

rwa_firectl.c

rwa_weapons.c rwa_weapons.c rwa_weapons.c rwa_weapons.c rwa_weapons.c rwa_hydra.c rwa_config.c rwa_config.c rwa_config.c rwa_weapons.c rwa_weapons.c rwa_weapons.c rwa_weapons.c rwa_weapons.c rwa_weapons.c

sun_stubs.c

rwa_weapons.c rwa_weapons.c 181

fixed_gun fixed_gun_element rotate_get_mat sight gunmnt_get_sight_to_world bcs_computer_status bcs_computer_status bcs_booted_up bcs_get_super_elevation mat_rot)init2

mat_mat_mul
map_get_tracer_from_annmo_entry
ballistics_fire_a_round
rounds_update_last_volley
last_volley
network_can_i_really_use_network

null_vehicleID network_send_shell_fire_pkt ammo_fired

rounds_get_volley continuous_gun_sounds gun_firing_state make_sound_const_sound

missile_simul

new_reticle_state

current_reticle_state

reticle_on

sound_make_const_sound

cig_2d_set_inner_box

sight

ference # W003036

Rev. 0.0

rwa_tads.c

rwa_firectl.c

rwa_weapons.c

rwa_weapons.c rwa_tads.c rwa_tads.c

rwa_weapons.c

rwa_tads.c rwa_gunmnt.c rwa_weapons.c

rwa_weapons.c

ball_fire.c rwa_rounds.c rwa_rounds.c

rkt_hydra.c

rwa_rounds.c rwa_weapons.c rwa_weapons.c rwa_weapons.c rwa_weapons.c rwa_weapons.c rwa_cig_2d.c rwa_tads.c

134

rotate get mat oec_mat_mul

current_search_state stinger_searching

cig_2d_set_stinger_location

air_veh_list_id

roa_dont_build_list

stinger_ready

roa_build_list

rotate_get_loc world

missile_stinger_pre_launch

near get_preferred_veh_near_vector missile_target_pursuit

sac_copy

printf

tows

missile_tow_fly

kinematics_range_squared max_range_limit veh_kinematics

max_range_squared

tow_burn_speed_coeff speed factor

missile_util_eval_poly toe burn turn coeff

missile_util_eval_poly missile_util_eval_cos_coeff

tow_coast_speed_coeff tow_coast_turn_coeff

missile_target_level_los missile_target_ground

missile_util_flyout

missile_tow_stop

missile_util_comm_stop_missile missile_util_comm_check_intersection missile_util_comm_check_detonate

rwa_weapons.c Rev. 0.0

rwa_cig_2d.c rwa_weapons.c rwa_weapons.c

rwa_weapons.c

miss_stinger.c

targ_pursuit.c

miss_tow.c miss_hellfr.c rwa_weapons.c sun_stubs.c miss_hellfr.c miss_atgm.c util_eval.c miss_atgm.c util_eval.c util_eval.c miss_atgm.c miss_atgm.c targ ground.c miss_hellfr.c

miss_tow.c

targ_lev_los.c

miss_hellfr.c miss_hellfr.c miss_hellfr.c util_eval.c miss_hellfr.c

rwa_weapons.c

3rd

2nd

1st

RWA AIRNET CALL TREE STRUCTURE 5th 6th 7th 8th	helitires laser_point missile_hellfire_fly	speed_ractor hellfire_burn_speed_coeff	missile_util_eval_poly hellfire_coast_speed_coeff	sqrt	max_range_limit	veh_kinematics	Kinematics range squared	max_range_squared missile target eround	missile_target_agm	agm_seek	zbs	oec_scale	מבכ" מקק	ans 340	sec_copy	sqrt vec dot prod	oec_scale	oec_add	missile_util_flyout	per dot emd	Ador 39a	sqrt	oec_scale	ppe 300	missile_util_comm_fly_missile	printf veh kinematics	kinematics_range_squared	messie_comm
4th																												

miss_hellfr.c targ_ground.c targ_agm.c targ_agm.c

miss_hellfr.c sun_stubs.c

util_comm.c

util_flyout.c

sun_stubs.c

util_comm.c

TREE STRUCTURE	
CALL	8th
RWA AIRNET CALL	7th
RWA /	eth
	Sth
	ŧ
	3rd

Zud Zud

1st

map_get_get_tracer_from_ammo_entry missile_util_comm_stop_missile network_send_missile_appearance store_traj_chord print

network_send_non_impact missile_comm

network_stop_missile_flysut

missile_util_comm_stop_missile missile-hellfire_stop

missile_util_comm_check_intersection

missile_util_comm_check_detonate clg_2d_check_tof_countdown firecti_hellfire_selected

pil_weapon_select_state pil_was_position

rwa_config_get_was_munition_info cpg_weapon_select_state

cpg_was_position

cig_2d_check_tof_countdown_msg is_printing_tof

print_tof laser_range

missile_hellfire_calc_tof cig_2d_set_tof

missile_stinger_fly_missiles

num_stingers stinger_array

stinger_burn_speed_coeff missile_util_eval_poly missile_stinger_fly

stinger_coast_speed_coeff

near_get_preferred_veh_near_vector max_range_limit veh_kinematics

util_comm.c

util_comm.c

util_comm.c util_comm.c miss_hellfr.c

rwa_cig_2d.c rwa_firectl.c rwa firectl.c rwa_firectl.c

rwa_firecti.c rwa_firectl.c rwa_config.c

rwa_cig_2d.c rwa_cig_2d.c

miss_stinger.c miss_stinger.c miss_stinger.c miss_stinger.c util_eval.c miss_stinger.c miss_stinger.c

sun_stubs.c miss_hellfr.c

RWA AIRNET CALL TREE STRUCTURE

	kinematics_range_squared
8 th	atics_ran
7 #	kinem
eth	
Sth	
4 t	

33

2nd

18t

Antematics_range_squarea
max_range_squared
missile_target_intercept_pre_burnout
missile_target_intercept
missile_target_unfercept
missile_target_unford
missile_util_flyout
missile_stinger_stop
missile_fuze_prox

missile_fuze_prox missile_util_comm_check_detonate

rounds_check_volleys
first_volley
last_volley
rounds_free_volley
free_ptr
printf
volley_free

free head_eye_tracker_receive_data head_eye_tracker_send_request Lrf Tirk

Lrf Tick Lrf Err String

fprintf RTC_KINEMATICS_SIMUL veh_kinematics

kinematics_simul RTC_TURRET_SIMUL turret_simul rotate_hull_simul

rotate_simul
veh_spec_kinematics_simul
world

hull
rotate_get_loc
altitude
velocity_vector
true_airspeed

miss_hellfr.c targ_ground.c targ_unguide.c

rwa_rounds.c rwa_rounds.c rwa_rounds.c

rwa_rounds.c

fuze_prox.c

rwa_rounds.c

sun_stubs.c

rwa_rotate.c

rwa_kinemat.c

rwa_aerodyn.c rwa_aerodyn.c rwa_aerodyn.c

1st

RE		rwa aemdync		rwa kinemat.c	rwa_kinemat.c	rwa_kinemat.c	rwa_kinemat.c	rwa_kinemat.c	rwa_aerodyn.c	rwa_kinemat.c			rwa_kinemat.c	rwa_aerodyn.c	rwa_aerodyn.c		rwa_kinemat.c		rwa_kinemat.c	rwa_aerodyn.c	rwa_kinemat.c			rwa_hydra.c	rkt_hydra.c	rkt_hydra.c	rkt_hydra.c		rkt_hydra.c				i	sub_m73.c	util_comm.c	
RWA AIRNET CALL TREE STRUCTURE 6th 7th 8th	į	-									ocity														rockets	ight)	ydra_fly		173_init	missile_flechette_init		missile_hydra_fly:missile_hydra_stop	73_drop	missile_util_comm_check_sub_mun	on in the second
RWA 3rd 4th 5th 6th	sqrt	indicated_airspeed	air density	norm_vel	sin_aoa	cos_aoa	sin_yaw	cos_yaw	velocity_to_body	ang vel	vehicle_angular_velocity	rotate_get_mat	gravity	g_force	vertical_speed	vec_dot_prod	velocity_pitch	asin	body_pitch	Iol	heading	ACOS	het_simul	hydra simul	missile_hydra_fly_rockets	rkts_in_flight	hydra fly	missile_hydra_fly	ball_table	missile_m73_init	missile_fl	printf	missile_h	missile_m73_drop	E	
2md																																				

Zud

1st

Rev. 0.0	sun_stubs.c	sun_wayed.c	sub_m73.c sub_m73.c util_comm.c	sun_stubs.c util_comm.c	sun_wayed.c sub_m73.c	sub_m73.c	util_comm.c util_comm.c sun_stubs.c
RWA AIRNET CALL TREE STRUCTURE	veh_kinematics kinematics_range_squared network_ifire_init_burst network_ifire_send_detonation	map_get_ammo_entry_from_network_type impacts_queue_effect network_send_vehicle_impact scaled_rand	sqrt traj_up zero_velocity missile_util_comm_release_sub_munition	veh_kinematics kinematics_range_squared missile_comm store_traj_chord event_get_eventid	d2f_vec_copy map_get_ammo_entry_from_network_type network_send_projectile_fire_pkt impacts_queue_effect missile_m73_get_impact	scates rana sin vec_scale vec_add missile_m73_impact	missile_util_comm_check_sub_mun printf missile_comm veh_kinematics kinematics_range_squared network_ifire_init_burst network_ifire_send_detomation

3rd

2nd

18t

Kev. 0.0	sun_wayed.c	sub_m73.c util_comm.c	util_comm.c sun_stubs.c	rpe sun_wayed.c	sub_m73.c sub_m73.c util_comm.c	sun_stubs.c util_comm.c	rpe sun_wayed.c	sub_m73.c	sub mt3.c
RWA AIRNET CALL TREE STRUCTURE 6th 7th 8th	map_get_ammo_entry_from_network_type impacts_queue_effect	missile_m73_drop missile_util_comm_check_sub_mun	missile_comm veh_kinematics kinematics_range_squared network iffre init hurst	network_ifire_send_detonation map_get_ammo_entry_from_network_type impacts_queue_effect network_send_vehicle_impact scaled_rand	sqrt traj_up zero_velocity missile_util_comm_release_sub_munition	veh_kinematics kinematics_range_squared missile_comm store_traj_chord event_oet_eventid	vec_copy d2f_vec_copy map_get_ammo_entry_from_network_type network_send_projectile_fire_pkt	impacts_queue_effect missile_m73_get_impact scaled_rand sin vec_scale	the add
RWA 5th 6th		misc							706
4									

37

Zud

1st

3rd

2nd

1st

Rev. 0.0		fuze_prox.c	fuze_prox.c	fuze_prox.c			fuze_prox.c	util_comm.c	util_comm.c		util_comm.c		util comm.c	orsome sunger			C Post of the second	Sun_wayeu.c		snp_flech.c	util_comm.c	•	sun_stubs.c		uni_comunc				sun_wayed.c		
	6th 7th 8th	free_ptr	prox_free	f2d_vec_scale	vec_sub	pec add	f2d_mat_transpose	missile_util_comm_fuze_detonate	missile_comm	prinit vec mat mul	missile_util_comm_check_sub_mun	printf	missile_comm	veh_kinematics	kinematics_range_squared	network_ifire_init_burst	network_ifire_send_detonation	map_get_ammo_entry_from_network_type	network send vehicle impact	zero vector	missile_util_comm_release_sub_munition	print	veh_kinematics	kinematics_range_squared	missile_comm	store_traj_chord	event_get_eventid	vec_copy	map_get_ammo_entry_from_network_type	network_send_projectile_fire_pkt immacts_aueue_effect	
	Sth																														
	4																														

fuze_prox.c fuze_prox.c

fuze_prox.c

1st

fuze_prox.c

fuze_prox.c

															ىنە																							
BWA AIRNET CALL TREE STRICTIES	6th 7th 8th	missile_fuze_detonate_prox	apos scale	printf	free_prox	free_ptr	printf	prox_free	free	f2d_vec_scale	qns_zaa	vec_dot_prod.	pec_add	f2d_mat_transpose	missile_util_comm_fuze_detonate	missile_comm	printf	vec mat mul	missile_fuze_prox_stop	free_prox	free_ptr	printf	prox_free	fræ	network_ifire_send_indirect_fire	missile_hydra_purge_free_missiles	rkts_in_flight	hydra_fly			rotate			unch	h_rocket	Jaunch		
	5th																		miss						netw	miss			pylons_set	pylon_R	rotate set no rotate	pylon_L	articulation	left_rocket_launch	hydra_launch_rocket	right_rocket_launch	,	5 6
	4th																												py	pyl	rota	pyl	Į	E.	hyd	righ	Lrf Post	ะห อเทก
	i 3rd																																			,	17	ĽĮ.
	2nd																																					

fuze_prox.c util_comm.c util_comm.c

fuze_prox.c fuze_prox.c fuze_prox.c

fuze_prox.c

rkt_hydra.c rkt_hydra.c rkt_hydra.c rwa_hydra.c

rwa_hydra.c

rwa_hydra.c

2th

##

Zud

1st

fprintf

RTC_RÉPAIR_SIMUL repair_simul

RTC_NET_SIMUL net_simul io_simul

veh_spec_stop

rwa_main.c

rwa_stubs.c

rwa_sound.c rwa_sound.c rwa_mem.c

rwa_sound.c

rwa_sound.c

rwa_vision.c

veh_sound_array vision_break_all_blocks

fprintf ffush

sound_error

fifo_enqueue

sounds

dont_use_sound

sound_reset

clear_view_flags get_cig2_present get_cig2-present

vision_clear_tc_board clear_view_flags set_view_flags

Lr Err String

fprintf

Lrf Un Init

rwa_vision.c

- A-46-

rwa_sound.c rwa_sound.c rwa_mem.c rwa_sound.c

rwa_sound.c

veh_sound_array

cig_uninit dtad_uninit

fprintf ffush

sound_error

fifo_enqueue

sounds

dont_use_sound

sound_reset

hull_uninit

rwa_main.c

RWA AIRNET CALL TREE STRUCTURE

2nd 3rd 4th 5th 6th 7th bbd_uninit veh_spec_exit

1st

keyboard_exit_gracefully
rwa_config_exit_gracefully
vision_break_all_blocks
timers get_current_time
printf

timers get_current_tick
timers_elapsed_milliseconds
network_print_statistics
net_handle
net_close
mem_free_shared_memory
reboot_on_shutdown

main.c

sun_stubs.c

- A-47 -

22 January 1993 Reference # W003036 Rev. 0.0

Appendix B - Source code listing for rwa_aerodyn.c.

The following appendix contains the source code listing for rwa_aerodyn.c for convenience in document maintenance and understanding of the CSU.

```
/* $Header: /a3/adst-cm/RWA/simnet/vehicle/rwa/src/RCS/rwa_aerodyn.c,v 1.1 1992/
10/07 19:00:23 cm-adst Exp $ */
 *$Log: rwa_aerodyn.c,v$
 * Revision 1.1 1992/10/07 19:00:23 cm-adst
 * Initial Version
*/
static char RCS_ID[] = "$Header: /a3/adst-cm/RWA/simnet/vehicle/rwa/src/RCS/rwa
aerodyn.c,v 1.1 1992/10/07 19:00:23 cm-adst Exp $";
* Revisions:
     Version Date Author Title
                                            SP/CR Number
    1.2
          10/09/92 R. Branson Data File Initiali-
                      zation
    1.3 10/16/92 R. Branson Data filenames changed
                      to eight charachters
    1.4
          10/30/92 R. Branson Added pathname to data
                     directory
    SP/CR No.
                  Description of Modification
            Hard coded defines changed to array elements.
            Aerodyn data array added.
            Aerodyn initialization data array added.
            Aerodyn stealth data array added.
            Aerodyn simple data array added.
            Added file read for aerodyn data, aerodyn initiali-
              zation data, aerodyn stealth data, and aerodyn
              simple data to the "aerodyn_init" function.
            Added "/simnet/data/" to each data file pathname.
* FILE: rwa_aerodyn.c
* AUTHOR: James Chung
* MAINTAINER: James Chung
* HISTORY: 4/19/89 james: Creation
```

```
8/02/90 carol: added simplified aero dynamics *
  * Copyright (c) 1989 BBN Systems and Technologies Corporation *
  * All rights reserved.
  * Interim aerodynamics model for a generic rotary-wing aircraft*
  * with flight characteristics similar to that of a McDonnell *
   Douglas AH-64 Apache attack helicopter.
 #include "stdio.h"
 #include "simstdio.h"
 #include "math.h"
 #include "sim_dfns.h"
 #include "sim_types.h"
 #include "sim_macros.h"
 #include "libmatrix.h"
 #include "libmath.h"
 #include "rwa_engine.h"
 #include "vehicle.h"
 #include "aero_param.h"
 #include "std_atm.h"
 #include "ground.h"
 #include "rwa_ground.h"
 #include "parameters.h"
 #include "rwa_kinemat.h"
#include "libmun.h"
#include "libhull.h"
#include "libkin.h"
#include "rwa_aerodyn.h"
#define MOMENT_OF_INERTIA_X
                                            aero data[0]
#define MOMENT_OF_INERTIA_Y
                                            aero_data[1]
#define MOMENT_OF_INERTIA_Z
                                            aero_data[2]
#define AIRFRAME_MASS
                                       aero_data[3]
#define ORDINANCE_MASS
                                        aero_data[4]
#define GRAV_CONSTANT
                                        aero data[5]
#define CG_AC_X
                                  aero_data[6]
#define CG_AC_Y
                                  aero data[7]
#define CG_AC_Z
                                  aero_data[8]
#define VIRTUAL_WING_AREA
                                          aero_data[9]
#define VIRTUAL_WING_COP_AC_X
                                             aero_data[10]
#define VIRTUAL_WING_COP_AC_Y
                                             aero_data[11]
#define VIRTUAL_WING_COP_AC_Z
                                             aero_data[12]
#define WING_LIFT_COEFFICIENT_FIT_3
                                              aero_data[13]
#define WING_LIFT_COEFFICIENT_FIT_2
                                              aero_data[14]
```

#define WING_LIFT_COEFFICIENT_FIT_1 aero_data[15] #define WING_LIFT_COEFFICIENT_FIT_0 aero_data[16] #define WING_STALL_AOA (deg_to_rad(aero_data[17])) #define VSTAB_AREA aero_data[18] aero_data[19] #define VSTAB_COP_AC_X aero_data[20] #define VSTAB_COP_AC_Y aero_data[21] #define VSTAB_COP_AC_Z aero_data[22] #define VSTAB_LIFT_COEFFICIENT_1 (deg to_rad(aero_data[23])) #define VSTAB_STALL_SSA aero_data[24] #define MAIN_ROTOR_COP_AC_X aero_data[25] #define MAIN_ROTOR_COP_AC_Y aero_data[26] #define MAIN_ROTOR_COP_AC_Z aero_data[27] #define MAIN_ROTOR_MAX_THRUST (deg_to_rad(aero_data[28])) #define MAIN_ROTOR_MAST_TILT #define MAIN_ROTOR_MAX_LOAD_TORQUE aero_data[29] #define MAIN_ROTOR_MAX_PITCH_MOMENT aero_data[30] #define MAIN_ROTOR_MAX_ROLL_MOMENT aero_data[31] #define MAIN_ROTOR_TORQUE_COUPLING_GAIN aero_data[32] #define MAIN_ROTOR_GROUND_EFFECT_FACTOR aero_data[33] #define TAIL_ROTOR_COP_AC_X aero data[34] #define TAIL_ROTOR_COP_AC_Y aero_data[35] #define TAIL_ROTOR_COP_AC_Z aero_data[36] #define TAIL_ROTOR_MAX_THRUST aero_data[37] #define TAIL_ROTOR_MAX_LOAD_TORQUE aero_data[38] #define P_DRAG_COEFF_CONST aero_data[39] #define P_DRAG_TAS_BREAK aero_data[40] #define P_DRAG_COEFF_BREAK aero_data[41] #define P_DRAG_TAS_MAX aero data[42] #define P_DRAG_COEFF_MAX aero_data[43] #define TOTAL_WETTED_SURFACE_AREA aero_data[44] #define ATT_DAMPING_MODE_SIMPLE TRUE Hover hold changes: if ATT_DAMPING_MODE_SIMPLE when slow moving (airspeed<10 knots) the max pitch is 5 degrees (10<=airspeed<30) pitch is 10 degrees medium other (30<=airspeed) pitch is 15 degrees else when airspeed >= 10 knots pitch is proportional to log(speed) otherwise pitch is +/- 5 degrees Paul J. Metzger 11-1-89 static REAL MAX_ATT_CTL_ANGLE; #define MAX_ATT_CTL_ANGLE_STOP aero_data[45]

#define MAX_ATT_DAMPING_FACTOR aero_data[46] aero_data[47] #define HOVER_SLOW_LIMIT #define HOVER_AUG_PITCH_RESET_VALUE aero_data[48] /* transition mode, TRUE or FALSE */ static int hover_hold_turned_on; #if ATT_DAMPING_MODE_SIMPLE #define MAX_ATT_CTL_ANGLE_NORM (deg_to_rad (aero_data[49])) (deg_to_rad (aero_data[50])) #define MAX_ATT_CTL_ANGLE_MED (deg_to_rad (aero_data[51])) #define MAX_ATT_CTL_ANGLE_SLOW aero_data[52] #define HOVER_MED_LIMIT #endif #define ATT_CTL_PITCH_P_GAIN aero_data[53] aero_data[54] #define ATT_CTL_PITCH_I_GAIN aero_data[55] #define ATT_CTL_ROLL_P_GAIN aero_data[56] #define ATT_CTL_ROLL_I_GAIN aero_data[57] #define HOVER_AUG_ROLL_P_GAIN #define HOVER_AUG_ROLL_I_GAIN aero data[58] #define HOVER_AUG_PITCH_P_GAIN aero data[59] #define HOVER_AUG_PITCH_I_GAIN aero_data[60] aero_data[61] #define HOVER_AUG_YAW_P_GAIN aero data[62] #define HOVER_AUG_YAW_I_GAIN #define HOVER_AUG_CLIMB_P_GAIN aero_data[63] aero_data[64] #define HOVER_AUG_CLIMB_I_GAIN #define MAX_STAB_AUG_PITCH_ROLL_CONTROL aero_data[65] #define MAX_STAB_AUG_YAW_CLIMB_CONTROL aero_data[66] #define ROLL_RATE_DAMPING_GAIN aero data[67] #define PITCH RATE DAMPING GAIN aero_data[68] #define YAW_RATE_DAMPING_GAIN aero_data[69] aero_data[70] #define VERTICAL_RATE_DAMPING_GAIN aero_data[71] #define LATERAL_VELOCITY_DAMPING_GAIN aero_data[72] #define LIFT COEFF VIRTUAL WING #define OSW ALD_EFFIC_FACTOR aero data[73] aero_data[74] #define INDUCED_DRAG_COEFF static REAL aero data[100] = { 50000.000, 50000.000, 50000.000, 4881.000, 1591.000, 9.8, 0.0, 0.0, -0.100, 25.0, 0.0. 0.0. 0.0. 0.0. 0.0. 3.0, 0.0, 30.0, 0.0, 1.0, 60.0, 0.0. -9.1. 0.0, 5.0, 2.0, 123500.0, 2.5, 76476.0, 0.0. 100000.0, 100000.0, 0.5, 0.4, 0.0. 0.0. -9.1. 0.0, 8909.1, 1684.8, 50.0. 0.02, 100.0, 0.06, 50.0. 6.0, 4.5, 5.15, 0.44, 15.0. 2.5. 0.05, 10.0. 6.0. 15.46.

```
5.0,
               0.05,
                        0.1,
                                0.001,
                                         0.1.
        0.001, 10.0,
                      5.0,
                                1.0,
                                         0.5,
               0.05, 100000.0, 100000.0, 100000.0,
        0.2,
                          0.6,
                                  0.9,
      2000.0.
               1000.0,
                                          0.0,
        0.0.
                       0.0.
                               0.0,
               0.0.
                                       0.0.
        0.0.
               0.0.
                               0.0.
                                       0.0.
                       0.0.
        0.0,
               0.0,
                       0.0,
                               0.0,
                                       0.0,
        0.0.
               0.0,
                       0.0,
                               0.0,
                                       0.0,
        0.0.
                                       0.0
               0.0.
                       0.0.
                               0.0,
       };
 static REAL aero_init[20] = {
                                       0.0,
        0.0.
               0.0.
                       0.0.
                               0.0,
                                       0.0.
        0.0.
               0.0.
                       0.0.
                               0.0.
                                       0.0,
        0.0,
               0.0,
                       0.0,
                               0.0,
        0.0,
               0.0,
                       0.0,
                               0.0,
                                       0.0
      };
 static REAL aero_simple[20] = {
                                          10.0,
     500000.0,
                  0.5,
                         48.0,
                                  0.15,
      100.0, 150000.0,
                          1.5,
                                   0.7,
                                           0.03,
     400000.0, 100.0,
                          0.0,
                                   0.0,
                                           0.0,
       0.0,
               0.0,
                      0.0.
                              0.0,
      );
static REAL aero_stealth[20] = {
       80.0.
               30.0.
                       10.0, 10000000000.0, 10000000000.0,
      5000.0, 25000.0,
                          0.03,
                                   0.0,
                                           0.0,
               0.0,
       0.0.
                      0.0.
                              0.0,
                                       0.0,
       0.0,
               0.0.
                      0.0,
                              0.0,
      };
static int hover_hold_state;
                                        /* OFF or ON */
static REAL MAY IN_ROTOR_MAST_TILT_SIN;
static REAL MAIN_ROTOR_MAST_TILT_COS;
static REAL altitude:
                                     /* m */
static REAL true_airspeed;
                                         /* m/sec */
static REAL last_airspeed = 0;
                                          /* m/sec */
static REAL vertical_speed;
                                         /* m/sec */
static REAL roll;
                                   /* rad */
static REAL pitch;
                                    /* rad */
static REAL roll rate;
                                     /* rad/sec */
static REAL pitch_rate;
                                      /* rad/sec */
static REAL g_force;
static REAL last g force;
static REAL yaw_rate;
                                       /* rad/sec */
static REAL pitch_damping;
static REAL roll_damping;
static REAL yaw_damping;
```

```
/* deg R */
 static REAL ambient_temperature;
 static REAL ambient_pressure;
                                          /* N / m^2 */
                                         /* kg / m^3*/
 static REAL ambient_density;
                                          /* N / m^2 */
 static REAL dynamic_pressure;
                                          /* N */
 static REAL main_rotor_thrust;
                                        /* N */
 static REAL tail_rotor_thrust;
 static REAL lift_virtual_wing;
                                        /* N */
 static REAL lift_vstab;
 static REAL lift_coefficient_virtual_wing;
 static REAL lift_coefficient_vstab;
 static REAL total_drag;
 static REAL total_incompressible_drag_coefficient;
                                       /*N*/
 static REAL gross_weight;
static REAL vehicle_mass;
                                       /* kg */
                                        /* rad */
static REAL angle_of_attack;
                                        /* rad */
static REAL side_slip_angle;
                                             /* N-m */
static REAL main rotor_load_torque;
                                           /* N-m */
static REAL tail_rotor_load_torque;
static REAL powertrain_percent_shaft_speed; /* 0-1 */
static REAL cyclic_pitch;
                                 /* -1 to 1 */ /* Flight controls */
                                /* -1 to 1 */ /* Flight controls */
static REAL cyclic_roll;
                                /* 0 to 1 */
static REAL collective;
static REAL pedal;
                               /* -1 to 1 */
static REAL stab_aug_pitch;
static REAL stab_aug_roll;
static REAL stab_aug_yaw;
static REAL stab_aug_climb;
static REAL stab_aug_pitch_integrator;
static REAL stab_aug_roll_integrator;
static REAL stab_aug_yaw_integrator;
static REAL stab_aug_climb_integrator;
static REAL hover_aug_pitch_angle;
static REAL hover_aug_roll_angle;
static REAL hover_aug_pitch_integrator;
static REAL hover_aug_roll_integrator;
static REAL attitude_control_roll_integrator;
static REAL attitude_control_pitch_integrator;
static REAL attitude_control_roll_command;
static REAL attitude_control_pitch_command;
static REAL controller_cyclic_pitch;
static REAL controller_cyclic_roll;
static REAL controller_collective;
static REAL controller_tail_rotor;
static REAL *angular_velocity_vector; /* kinematic state vectors */
static REAL *normalized_velocity_vector;
static REAL *velocity_vector;
static REAL *gravity_dir_vector;
static REAL p_drag_fit_coeff[9];
                                    /* parasite drag fit coefficients */
```

```
static REAL oswald_efficiency_factor;
 static REAL induced drag coefficient;
 static REAL parasite_drag_coefficient;
 static VECTOR loc_ac_main_rotor_cop;
 static VECTOR loc_ac_tail_rotor_cop;
 static VECTOR loc_ac_virtual_wing_cop;
 static VECTOR loc_ac_vstab_cop;
 static VECTOR loc_ac_cg;
                                           /* body [X Y Z] */
 static VECTOR lift_body_virtual_wing;
 static VECTOR lift_body_vstab;
 static VECTOR force_body_main_rotor;
 static VECTOR force_body_tail_rotor;
static VECTOR force_body_damping;
static VECTOR drag_body;
static VECTOR gravity_force_body;
static VECTOR force_ground_effect;
                                       /* sum of all forces */
static VECTOR force_body;
static VECTOR moment_body_virtual_wing;
                                                /* body [X Y Z] */
static VECTOR moment_body_vstab;
static VECTOR moment_body_main_rotor;
static VECTOR moment_body_torque_coupling;
static VECTOR moment_body_tail_rotor;
static VECTOR moment_body_cg;
static VECTOR moment_body_damping;
static VECTOR moment_body;
static VECTOR virtual_wing_force;
                                          /* velocity [H D L] */
static VECTOR vstab_force;
static VECTOR drag_force;
static T_MAT_PTR velocity_to_body;
                                           /* vel -> body xform */
static T_MATRIX inertia_matrix =
{ {50000.0.0.0},
 \{0,50000.0,0\},
 {0, 0, 50000.0}};
int funny_little_kludge = 1;/* default is logarithmic for complex model */
static int aerodyn_debug = 0;
static int selected_model = COMPLEX_MODEL; /* default: James' model */
static int allow_takeoff = TRUE; /* allow stealth model to take off */
static int level_view = TRUE;
                               /* unset any pitch */
static REAL ground_height = 2.8;
void aero_body_point_set_front_wheels( distance_from_hull )
REAL distance_from_hull;
```

```
body_point[0].position[Z] = distance_from_hull;
  body_point[1].position[Z] = distance_from_hull;
  ground_height = (REAL)(((int)(-distance_from_hull * 10)) / 10.0);
  printf("Front Wheels set %1.4lf m. under Hull.\n",
      distance_from_hull);
void aero_body_point_set_rear_wheel( distance_from_hull )
REAL distance_from_hull;
  body_point[2].position[Z] = distance_from_hull;
  printf( "Rear Wheel set %1.4lf m. under Hull.\n",
      distance_from_hull);
REAL aero_get_ground_height()
  return( ground_height );
void aerodyn_init()
 int i;
/* DEFAULT DATA FOR rwa_aerodyn.c READ FROM FILE
 int j;
  float
          data_tmp;
 char
          descript[64];
 FILE
          *fp;
     fp = fopen("/simnet/data/rwa_aero.d","r");
   if(fp==NULL)(
        fprintf(stderr, "Cannot open /simnet/data/rwa_aero.d\n");
        exit();
   rewind(fp);
         Read array data */
   j=0;
   while(fscanf(fp,"%f", &data_tmp) != EOF){
        aero_data(j) = data_tmp;
        fgets(descript, 64, fp);
        printf("aero_data(%3d) is%11.3f %s", j, aero_data[j],
            descript);
```

```
fclose(fp);
                                                                       */
 /* END DEFAULT DATA FOR rwa_aerodyn.c READ FROM FILE
 /* DEFAULT INITIALIZATION DATA FOR rwa_aerodyn.c READ FROM FILE
                                                                              */
     fp = fopen("/simnet/data/rw_ae_in.d","r");
     if(fp==NULL)(
         fprintf(stderr, "Cannot open /simnet/data/rw_ae_in.d\n");
    rewind(fp);
         Read array data */
    j=0;
    while(fscanf(fp,"%f", &data_tmp) != EOF){
         aero_init(j) = data_tmp;
         fgets(descript, 64, fp);
        printf("aero_init(%3d) is%11.3f %s", j, aero_init[j],
             descript);
         ++į;
    fclose(fp);
/* END DEFAULT INITIALIZATION DATA FOR rwa_aerodyn.c READ FROM FILE */
/* DEFAULT SIMPLE INITIALIZATION DATA FOR rwa_aerodyn.c READ FROM FILE */
    fp = fopen("/simnet/data/rw_ae_sp.d","r");
    if(fp==NULL)(
        fprintf(stderr, "Cannot open /simnet/data/rw_ae_sp.d\n");
        exit():
    rewind(fp);
         Read array data */
    j=0;
    while(fscanf(fp,"%f", &data_tmp) != EOF){
        aero_simple[j] = data_tmp;
        fgets(descript, 64, fp);
        printf("aero_simple(%3d) is%11.3f %s", j, aero_simple[j],
            descript);
        ++i;
    fclose(fp);
/* END DEFAULT SIMPLE INITIALIZATION DATA FOR rwa_aerodyn.c READ FROM FILE*/
/* DEFAULT STEALTH INITIALIZATION DATA FOR rwa_aerodyn.c READ FROM FILE */
    fp = fopen("/simnet/data/rw_ae_sl.d","r");
```

```
if(fp==NULL)(
         fprintf(stderr, "Cannot open /simnet/data/rw_ae_sl.d\n");
         exit();
    1
    rewind(fp);
          Read array data */
    j=0;
    while(fscanf(fp,"%f", &data_tmp) != EOF){
         aero_stealth[j] = data_tmp;
         fgets(descript, 64, fp);
         printf("aero_stealth(%3d) is%11.3f %s", j, aero_stealth[j],
             descript);
         ++j;
    }
    fclose(fp);
/* END DEFAULT STEALTH INITIALIZATION DATA FOR rwa_aerodyn.c READ FROM
FILE*/
  engine_init();
 cyclic_pitch =
                          aero_init[0];
 cyclic roll =
                         aero_init[ 1];
 if (selected_model != STEALTH_MODEL)
    collective =
                         aero_init[ 2];
 else
    collective = 0.5;
    allow_takeoff = TRUE;
 pedal =
                        aero_init[ 3];
 stab_aug_pitch_integrator =
                                 aero_init[4];
 stab_aug_roll_integrator =
                                aero_init[5];
 stab_aug_yaw_integrator =
                                 aero_init[6];
 stab_aug_climb_integrator =
                                  aero_init[7];
 attitude_control_pitch_integrator = aero_init[8];
 attitude_control_roll_integrator = aero_init[9];
 hover_aug_pitch_integrator =
                                  aero_init[10];
 hover_aug_roll_integrator =
                                 aero_init[11];
 hover_aug_pitch_angle =
                                aero_init[12];
 hover_aug_roll_angle =
                                aero_init[13];
 hover_hold_state = OFF;
 hover_hold_turned_on = FALSE;
 loc_ac_main_rotor_cop[X] = MAIN_ROTOR_COP_AC_X;
 loc_ac_main_rotor_cop[Y] = MAIN_ROTOR_COP_AC_Y;
 loc_ac_main_rotor_cop[Z] = MAIN_ROTOR_COP_AC_Z;
```

```
loc_ac_tail_rotor_cop[X] = TAIL_ROTOR_COP_AC_X;
loc_ac_tail_rotor_cop[Y] = TAIL_ROTOR_COP_AC_Y;
loc_ac_tail_rotor_cop[Z] = TAIL_ROTOR_COP_AC_Z;
loc_ac virtual_wing_cop[X] = VIRTUAL_WING_COP_AC_X;
loc_ac_virtual_wing_cop[Y] = VIRTUAL_WING_COP_AC_Y;
loc_ac_virtual_wing_cop[Z] = VIRTUAL_WING_COP_AC_Z;
loc_ac_vstab_cop[X] = VSTAB_COP_AC_X;
loc_ac_vstab_cop[Y] = VSTAB_COP_AC_Y;
loc_ac_vstab_cop[Z] = VSTAB_COP_AC_Z;
loc_ac_cg[X] = CG_AC_X;
loc_ac_cg[Y] = CG_AC_Y;
loc_ac_cg[Z] = CG_AC_Z;
inertia matrix[1] [1] = MOMENT OF INERTIA_X;
inertia_matrix[2] [2] = MOMENT_OF_INERTIA_Y;
inertia_matrix[3] [3] = MOMENT_OF_INERTIA_Z;
pitch_damping = PITCH_RATE_DAMPING_GAIN;
roll_damping = ROLL_RATE_DAMPING_GAIN;
yaw_damping = YAW_RATE_DAMPING_GAIN;
MAIN_ROTOR_MAST_TILT_SIN = sin(MAIN_ROTOR_MAST_TILT);
MAIN_ROTOR_MAST_TILT_COS = cos(MAIN_ROTOR_MAST_TILT);
vec_init (vstab_force);
vec_init (drag_force);
vec_init (ground_force);
vec_init (force_ground_effect);
vec_init (force_body);
vec_init (moment_body);
vec_init (moment_body_torque_coupling);
vec_init (force_body_main_rotor);
vec_init (force_body_tail_rotor);
vec_init (force_body_damping);
vehicle_mass_init (AIRFRAME_MASS + ORDINANCE_MASS, inertia_matrix );
ground_init();
for (i=0; i<9; i++)
                       /* Set parasite drag profile */
  p_drag_fit_coeff[i] = 0.0;
if (find_cubic_func (0.0, P_DRAG_COEFF_CONST,
         P_DRAG_TAS_BREAK, P_DRAG_COEFF_BREAK,
         P_DRAG_TAS_MAX, P_DRAG_COEFF_MAX,
         0.5, p_drag_fit_coeff) != TRUE)
```

```
{
     fprintf (stderr, "AERODYN: Error - unable to fit p_drag function\n");
 /* So one can tweak the constants without recompiling */
   if (selected_model)
     aerodyn_read_simple_constants (get_constants_file ());
static void get_aircraft_kinematic_state()
  orientation_calc();
  parameters_calc();
  true_airspeed = kinematics_get_true_airspeed();
  altitude = kinematics_get_altitude();
  angular_velocity_vector = kinematics_get_angular_velocity_vector();
  normalized_velocity_vector = kinematics_get_normalized_velocity_vector();
  velocity_vector = kinematics_get_linear_velocity_vector();
  gravity_dir_vector = kinematics_get_gravity_vector();
  angle_of_attack = kinematics_get_aoa();
  side_slip_angle = - kinematics_get_yaw();
  velocity_to_body = kinematics_get_velocity_to_body();
  g_force = kinematics_get_g_force();
  vertical_speed = kinematics_get_vertical_speed();
static void deb_mat_print (m)
  T_MATRIX m;
  int i:
  for (i=0; i<=2; i++)
    printf("%0.3lf %0.3lf %0.3lf\n", m[i][0], m[i][1], m[i][2]);
static void compute_flight_parameters()
  ambient_density = air_density(altitude);
  ambient_temperature = air_temperature(altitude);
  ambient_pressure = air_pressure(altitude);
  dynamic_pressure = 0.5 * ambient_density * square (true_airspeed);
  pitch_rate = angular_velocity_vector[X];
  roll_rate = angular_velocity_vector[Y];
  yaw_rate = angular_velocity_vector(Z);
  roll = atan2 (-gravity_dir_vector[X], -gravity_dir_vector[Z]);
  pitch = atan2 (-gravity_dir_vector[Y], -gravity_dir_vector[Z]);
```

```
}
static void interact_with_ground()
  REAL brake_factor;
  brake_factor = normalized_velocity_vector[Y] *
            true_airspeed / (true_airspeed + 5);
  body_point[0].x_force = -6000 * brake_factor;
  body_point[1].x_force = body_point[0].x_force;
  ground_interaction(ground_force,ground_torque,body_point,grnd,
        NUMBER_OF_BODY_POINTS);
  force_ground_effect[Z] = main_rotor_thrust
            * MAIN_ROTOR_GROUND_EFFECT_FACTOR
            / (cig_altitude_above_gnd() + 1.0);
}
/---------/
/* fuel get current level returns gallons
/* gals * (6.5 lbs / gal) * (1kg / 2.2 lbs) */
#define KILOGRAMS_PER_GALLON 2.95454545454
static void compute_gross_weight()
  vehicle_mass = AIRFRAME_MASS + ORDINANCE_MASS +
    fuel_get_current_level() * NTLOGRAMS_PER_GALLON;/* kg */
  gross_weight = vehicle_mass * GRAV_CONSTANT;
void aerodyn_set_lateral_stick (val)
  REAL val;
  cyclic_roll = -val;
void aerodyn_set_longitudinal_stick (val)
  REAL val;
 cyclic_pitch = -val;
void aerodyn_set_pedal (val)
  REAL val;
 pedal = val;
```

```
void aerodyn_set_collective (val)
   REAL val;
   if (funny_little_kludge)
     collective = log 10 (val * 9.0 + 1.0); /* or, how to make linear log */
     collective = val;
 static void compute_lift_drag_forces()
  lift_virtual_wing = dynamic_pressure *
         lift_coefficient_virtual_wing * VIRTUAL_WING_AREA;
  lift_vstab = dynamic_pressure * lift_coefficient_vstab * VSTAB_AREA;
  total_drag = total_incompressible_drag_coefficient * dynamic_pressure *
             TOTAL_WETTED_SURFACE_AREA;
static void compute_body_damping_forces_and_moments()
  moment_body_damping[X] = - pitch_damping * pitch_rate;
  moment_body_damping[Y] = - roll_damping * roll_rate;
  moment_body_damping[Z] = - yaw_damping * yaw_rate;
  force_body_damping[X] = -velocity_vector[X] * LATERAL_VELOCITY_DAMPING_GAIN;
  force_body_damping[Y] = 0.0;
  force_body_damping[Z] = -velocity_vector[Z] * VERTICAL_RATE_DAMPING_GAIN;
static REAL virtual_wing_lift_coefficient (alpha)
  REAL alpha;
  if (alpha > WING_STALL_AOA | | alpha < 0.0)
    return (0.0);
  return (((WING_LIFT_COEFFICIENT_FIT_3 * alpha +
        WING_LIFT_COEFFICIENT_FIT_2) * alpha +
        WING_LIFT_COEFFICIENT_FIT_1) * alpha +
        WING_LIFT_COEFFICIENT_FIT_0);
}
static REAL vstab_lift_coefficient (yaw)
  REAL yaw;
  REAL yawval;
  if (abs(yaw) > VSTAB_STALL_SSA)
    yawval = sign(yawval) * VSTAB_STALL_SSA;
  else
```

```
yawval = yaw;
   return (VSTAB_LIFT_COEFFICIENT_1 * yawval);
}
static void compute_lift_drag_coefficients()
   REAL multiplier;
   lift_coefficient_vstab = vstab_lift_coefficient (side_slip_angle);
 /* Computing virtual wing coefficient as independent of AOA */
   lift_coefficient_virtual_wing = LIFT_COEFF_VIRTUAL_WING;
               virtual_wing_lift_coefficient (angle_of_attack); */
   parasite_drag_coefficient = cubic_func (true_airspeed, p_drag_fit_coeff);
   if (true_airspeed > 0.0 && angle_of_attack > 0.0) /* speed brake */
     multiplier = 5.0 * true_airspeed * sin(angle_of_attack);
     if (multiplier > 1.0)
       parasite_drag_coefficient *= multiplier;
  oswald_efficiency_factor = OSWALD_EFFIC_FACTOR;
  induced_drag_coefficient = INDUCED_DRAG_COEFF;
  total_incompressible_drag_coefficient = parasite_drag_coefficient +
                      induced_drag_coefficient;
)
static void send_to_dynamics_kinematics()
  vehicle_mass_init (vehicle_mass, inertia_matrix);
  vehicle_forces (force_body);
  vehicle_torques (moment_body);
void dump_forces()
  vec_dump ("lift_body_virtual_wing:", lift_body_virtual_wing);
  vec_dump ("lift_body_vstab:", lift_body_vstab);
  vec_dump ("drag_body:", drag_body);
  vec_dump ("gravity_force_body:", gravity_force_body);
  vec_dump ("force_body_main_rotor:", force_body_main_rotor);
  vec_dump ("force_body_tail_rotor:", force_body_tail_rotor);
  vec_dump ("ground_force:", ground_force);
  vec_dump ("force_body:", force_body);
1
static void sum_body_forces_and_moments_about_ac()
```

```
1
   vec_init (force_body);
   vec_add (force_body, force_body_main_rotor, force_body);
 /* vec_add (force_body, force_body_tail_rotor, force_body); */
   vec_add (force_body, lift_body_virtual_wing, force_body);
   vec_add (force_body, lift_body_vstab, force_body);
   vec_add (force_body, drag_body, force_body);
   vec add (force body, force_body_damping, force body);
   vec_add (force_body, gravity_force_body, force_body);
   vec_add (force_body, ground_force,force_body);
   vec_add (force_body, force_ground_effect, force_body);
   vec_cross_prod(loc_ac_tail_rotor_cop, force_body_tail_rotor,
                 moment_body_tail_rotor);
   vec_cross_prod(loc_ac_virtual_wing_cop,lift_body_virtual_wing,
                 moment_body_virtual_wing);
   vec_cross_prod(loc_ac_vstab_cop, lift_body_vstab, moment_body_vstab);
   vec_cross_prod(loc_ac_cg, gravity_force_body, moment_body_cg);
   vec_init (moment_body);
   vec_add (moment_body, moment_body_main_rotor, moment_body);
  vec_add (moment_body, moment_body_tail_rotor, moment_body);
  vec_add (moment_body, moment_body_virtual_wing, moment_body);
  vec_add (moment_body, moment_body_vstab, moment_body);
  vec_add (moment_body, moment_body);
  vec_add (moment_body, ground_torque, moment_body);
  vec_add (moment_body, moment_body_damping, moment_body);
static void transform_lift_drag_forces_to_body_coordinates()
  virtual_wing_force[Z] = lift_virtual_wing; /* [H, D, L] */
  vstab_force[X] = lift_vstab;
  drag_force[Y] = -total_drag;
  if (true_airspeed < P_DRAG_TAS_BREAK)</pre>
                                                   /* iwc 8/90 */
    drag_force[Y] -= sin(pitch) * 50000;
  vec_mat_mul (virtual_wing_force, velocity_to_body, lift_body_virtual_wing);
  vec_mat_mul (vstab_force, velocity_to_body, lift_body_vstab);
  vec_mat_mul (drag_force, velocity_to_body, drag_body);
static void generate_gravity_body_force()
{
 compute_gross_weight();
 gravity_force_body[X] = gravity_dir_vector[X] * gross_weight;
 gravity_force_body[Y] = gravity_dir_vector[Y] * gross_weight;
 gravity_force_body[Z] = gravity_dir_vector[Z] * gross_weight;
```

}

```
static int frame;
  void aerodyn_debug_print()
      REAL roll, pitch, yaw, heading, airspeed_knots, weight_lbs, thrust_lbs;
      REAL *position;
      roll=atan2(-gravity_dir_vector[X],-gravity_dir_vector[Z]) *180.0 / 3.1416;
      pitch=atan2(-gravity_dir_vector[Y],-gravity_dir_vector[Z])*180.0 / 3.1416;
      yaw = side_slip_angle;
      airspeed_knots = true_airspeed * 3.26 / 1.69;
      weight_lbs = gross_weight / 9.8 * 2.2;
      position = vehicle_A_p();
      heading = rad_to_deg (kinematics_get_heading());
     printf ("KTAS = %0.2lf VV = %0.3lf %0.3lf %0.3lf YR = %0.3lf\n",
          airspeed_knots, velocity_vector[X], velocity_vector[Y],
          velocity_vector[Z], angular_velocity_vector[Z]);
     printf ("xyzh = \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.3lf \%0.
          position[X], position[Y], position[Z], heading,
          roll, pitch, yaw);
     if (hover_hold_state == ON)
         printf ("stab_aug[rpyc]: %0.3lf %0.3lf %0.3lf %0.3lf \n",
         stab_aug_roll, stab_aug_pitch, stab_aug_yaw, stab_aug_climb);
static void compute_rotor_loads()
    main_rotor_load_torque = controller_collective *
                                     MAIN_ROTOR_MAX_LOAD_TORQUE;
    tail_rotor_load_torque = abs (controller_tail_rotor) *
                                    TAIL_ROTOR_MAX_LOAD_TORQUE:
}
static void compute_engine_torque()
    engine_simul(main_rotor_load_torque, tail_rotor_load_torque, altitude);
    powertrain_percent_shaft_speed = engine_get_rotor_percent_shaft_speed();
static void compute_rotor_forces_and_moments()
   main_rotor_thrust = powertrain_percent_shaft_speed * controller_collective
                 * MAIN_ROTOR_MAX_THRUST;
   tail_rotor_thrust = powertrain_percent_shaft_speed * controller_tail_rotor
                 *TAIL_ROTOR_MAX_THRUST;
   force_body_main_rotor[Y] = main_rotor_thrust * MAIN_ROTOR_MAST_TILT_SIN;
   force_body_main_rotor[Z] = main_rotor_thrust * MAIN_ROTOR_MAST_TILT_COS;
```

```
force_body_tail_rotor[X] = tail_rotor_thrust;
  moment_body_main_rotor[X] =
        - controller_cyclic_pitch * MAIN_ROTOR_MAX_PITCH_MOMENT;
  moment_body_main_rotor[Y] =
        controller_cyclic_roll * MAIN_ROTOR_MAX_ROLL_MOMENT;
  moment_body_main_rotor[Z] =
        - main_rotor_load_torque * MAIN_ROTOR_TORQUE_COUPLING_GAIN;
static REAL limiter (lower, val, upper)
REAL lower, val, upper;
  if (val > upper) return (upper);
  else if (val < lower) return (lower);
  else return (val);
static REAL set_roll_attitude (angle)
REAL angle;
  attitude control_roll_integrator += ATT_CTL_ROLL_I_GAIN * (roll - angle);
  /*** These used to be attitude_control_pitch_integrator instead of
     attitude_control_roll_integrator.
                                       PJM 11-1-89
  attitude_control_pitch_integrator =
        limiter (-0.1, attitude_control_pitch_integrator, 0.1);
  *****
  attitude_control_roll_integrator =
        limiter (-0.1, attitude_control_roll_integrator, 0.1);
  attitude control roll command = ATT_CTL_ROLL_P_GAIN* (roll - angle);
  attitude_control_roll_command += attitude_control_roll_integrator;
  attitude_control_roll_command = limiter (-MAX_STAB_AUG_PITCH_ROLL_CONTROLa
ttitude control_roll_command,
                     MAX_STAB_AUG_PITCH_ROLL_CONTROL);
  return (attitude control_roll_command);
}
static REAL set_pitch_attitude (angle)
REAL angle;
  attitude_control_pitch_integrator +=
        ATT_CTL_PITCH_I_GAIN * (pitch - angle);
  attitude_control_pitch_integrator =
        limiter (-0.1, attitude_control_pitch_integrator, 0.1);
  attitude_control_pitch_command = ATT_CTL_PITCH_P_GAIN * (pitch - angle);
  attitude_control_pitch_command += attitude_control_pitch_integrator;
  attitude_control_pitch_command = limiter (-MAX_STAB_AUG_PITCH_ROLL_CONTROLa
ttitude_control_pitch_command,
                     MAX_STAB_AUG_PITCH_ROLL_CONTROL);
  return (attitude_control_pitch_command);
1
```

```
static void compute_stab_augmentation_gains()
  if (hover_hold_state == ON)
    if (!hover_hold_turned_on)
        hover_hold_turned_on = TRUE;
        pitch_damping = 2 * PITCH_RATE_DAMPING_GAIN; /* jwc 8/90 */
        roll_damping = 2 * ROLL_RATE_DAMPING_GAIN;
        /* You should already be "hovering" (airspeed < 10 knots)
         for hover hold to show little visible swaying. */
        hover_aug_roll_integrator = 0.0;
        hover_aug_pitch_integrator = HOVER_AUG_PITCH_RESET_VALUE;
        stab_aug_yaw_integrator = 0.0;
        stab_aug_climb_integrator = 0.0;
#if ATT_DAMPING_MODE_SIMPLE
        if (true_airspeed < HOVER_SLOW_LIMIT)
          if (true_airspeed > -HOVER_SLOW_LIMIT)
           MAX_ATT_CTL_ANGLE = MAX_ATT_CTL_ANGLE_SLOW;
         else if (true_airspeed > -HOVER_MED_LIMIT)
           MAX_ATT_CTL_ANGLE = MAX_ATT_CTL_ANGLE_MED;
         else
           MAX_ATT_CTL_ANGLE = MAX_ATT_CTL_ANGLE_NORM;
       else if (true airspeed < HOVER MED LIMIT)
           MAX_ATT_CTL_ANGLE = MAX_ATT_CTL_ANGLE_MED;
       else
           MAX_ATT_CTL_ANGLE = MAX_ATT_CTL_ANGLE_NORM;
#endif
       }
#if ATT_DAMPING_MODE_SIMPLE
    if (true_airspeed > HOVER_SLOW_LIMIT )
       MAX_ATT_CTL_ANGLE =
           log( true_airspeed ) * MAX_ATT_DAMPING_FACTOR ;
    else if (true_airspeed < -HOVER_SLOW_LIMIT )
       MAX_ATT_CTL_ANGLE =
           log( -true_airspeed ) * MAX_ATT_DAMPING_FACTOR;
   eise
       MAX_ATT_CTL_ANGLE = MAX_ATT_CTL_ANGLE_STOP;
   MAX_ATT_CTL_ANGLE = deg_to_rad( MAX_ATT_CTL_ANGLE );
#endif
```

```
hover aug roll_integrator +=
           HOVER_AUG_ROLL_I_GAIN * velocity_vector[X];
   hover_aug_roll_integrator =
           limiter(-0.2,hover_aug_roll_integrator,0.2);
   hover_aug_roll_angle = HOVER_AUG_ROLL_P_GAIN * velocity_vector[X]
           + hover_aug_roll_integrator;
   hover_aug_roll_angle = limiter (-MAX_ATT_CTL_ANGLE,
                   hover_aug_roli_angle,
                   MAX_ATT_CTL_ANGLE);
   stab_aug_roll = set_roll_attitude (hover_aug_roll_angle);
   hover_aug_pitch_integrator +=
           HOVER_AUG_PITCH_I_GAIN * velocity_vector[Y];
  hover_aug_pitch_integrator =
          limiter(-0.2,hover_aug_pitch_integrator,0.2);
  hover_aug_pitch_angle = HOVER_AUG_PITCH_P_GAIN * velocity_vector[Y]
           + hover_aug_pitch_integrator;
  hover_aug_pitch_angle = limiter (-MAX_ATT_CTL_ANGLE,
                   hover_aug_pitch_angle,
                   MAX_ATT_CTL_ANGLE);
  stab_aug_pitch = set_pitch_attitude (hover_aug_pitch_angle);
  stab_aug_yaw_integrator -=
          HOVER_AUG_YAW_I_GAIN * angular_velocity_vector[Z];
  if (stab_aug_yaw_integrator > 0.5) stab_aug_yaw_integrator = 0.5;
  if (stab_aug_yaw_integrator < -0.5) stab_aug_yaw_integrator = -0.5;
  stab_aug_yaw = - HOVER_AUG_YAW_P_GAIN * angular_velocity_vector[Z] +
              stab_aug_yaw_integrator;
  stab_aug_climb_integrator -=
          HOVER_AUG_CLIMB_I_GAIN * velocity_vector[Z];
  if (stab_aug_climb_integrator > 0.2) stab_aug_climb_integrator = 0.2;
  if (stab_aug_climb_integrator < -0.2) stab_aug_climb_integrator = -0.2;
  stab_aug_climb = - HOVER_AUG_CLIMB_P_GAIN * velocity_vector[Z] +
              stab_aug_climb_integrator;
  stab_aug_yaw = limiter (-MAX_STAB_AUG_YAW_CLIMB_CONTROL,
               stab_aug_yaw,
               MAX_STAB_AUG_YAW_CLIMB_CONTROL);
  stab_aug_climb = limiter (-MAX_STAB_AUG_YAW_CLIMB_CONTROL,
               stab_aug_climb,
              MAX_STAB_AUG_YAW_CLIMB_CONTROL);
else
 stab_aug_roll = 0.0;
 stab_aug_pitch = 0.0;
 stab_aug_yaw = 0.0;
 stab_aug_climb = 0.0;
```

}

```
pitch_damping = PITCH_RATE_DAMPING_GAIN; /* jwc 8/90 */
     roll_damping = ROLL_RATE_DAMPING_GAIN;
 #ifdef notdef
     hover_aug_roll_integrator = 0.0;
                                        /* added 8/31/89 (jwc) */
     hover_aug_pitch_integrator = 0.0;
 #endif
   controller_cyclic_roll = cyclic_roll + stab_aug_roll;
   controller_cyclic_pitch = cyclic_pitch + stab_aug_pitch;
   controller_tail_rotor = pedal + stab_aug_yaw;
   controller_collective = collective + stab_aug_climb;
 static void send_aero_data_to_displays()
   if (velocity_vector[Y] > 0.0)
     meter_air_speed_set(true_airspeed);
   else
     meter_air_speed_set (0.0);
   meter_altitude_set(altitude);
  meter_vertical_speed_set(vertical_speed);
void aerodyn_simul()
  get_aircraft_kinematic_state();
  compute_flight_parameters();
  compute_stab_augmentation_gains();
  compute_rotor_loads();
  compute_engine_torque();
  compute_rotor_forces_and_moments();
  compute_lift_drag_coefficients();
  compute_lift_drag_forces();
  compute_body_damping_forces_and_moments();
  transform_lift_drag_forces_to_body_coordinates();
  generate_gravity_body_force();
  interact_with_ground();
  sum_body_forces_and_moments_about_ac();
  send_to_dynamics_kinematics();
/* send_aero_data_to_displays(); Must call if not calling orientation_calc */
  vehicle_update();
REAL aerodyn_get_true_airspeed()
  return (true_airspeed);
```

```
void aerodyn_set_hover_hold_on()
  hover_hold_state = ON;
void aerodyn_set_hover_hold_off()
  hover_hold_state = OFF;
  hover_hold_turned_on = FALSE;
  level_view = TRUE;
1
void aerodyn_toggle_hover_hold()
  if (hover_hold_state == OFF)
    hover_hold_state = ON;
  else
    hover_hold_state = OFF;
    hover_hold_turned_on = FALSE;
}
void forces_init ()
  aerodyn_init();
* The following stuff is for the simplified dynamics model. The model is *
* a modification of the aerodynamics model Warren wrote for the SAF.
* Global variables defined for the real aerodynamics are reused here to *
* allow overlap in generic routines for operations such as control inputs,*
* init, etc. - CJC
#define MAX_HELICOPTER_POWER aero_simple[0]
#define MAX_HH
                           aero_simple[1]
/* constants for tweaking */
#define H_K1
                       aero_simple[ 2]
#define H_K2
                       aero_simple[3]
/* as increase drag coefficients, helicopter slows down faster */
#define H_K7
                       aero_simple[4]
                       aero_simple[5]
#define H_K8
                        aero_simple[6]
#define H_KP
#define H_KPR
                        aero_simple[7]
                        aero_simple[8]
#define H_KY
```

```
#define H KH
                        aero_simple[9]
                         aero simple[10]
#define H_CHH
                       aero_simple[11]
#define H_CL
void aerodyn_simple_simul()
  register int i;
  register REAL *vec_ptr;
  register REAL *res_ptr;
  register REAL *cur_ptr;
  register REAL *des_ptr;
  REAL *drag_ptr;
  REAL power;
  REAL coll_factor;
  REAL lift_factor;
  VECTOR orient_vec;
  VECTOR angular_accel;
  VECTOR hover_hold_additions;
  REAL euler[3]; /* euler angles */
  VECTOR gravity_vector; /* in body coordinates */
 T_MAT_PTR C_mat; /* direction cosine matrix */
 get_aircraft_kinematic_state();
 generate_gravity_body_force();
 compute_rotor_loads();
 compute_engine_torque();
 if (hover_hold_state == ON)
   hover_hold_additions[0] = min(velocity_vector[1] * H_KH,MAX_HH);
   hover_hold_additions[0] = max(hover_hold_additions[0],-MAX_HH);
   hover_hold_additions[1] = min(- velocity_vector[0] * H_KH,MAX_HH);
   hover_hold_additions[1] = max(hover_hold_additions[1],-MAX_HH);
   hover_hold_additions[2] = - velocity_vector[2] * H_KH * H_CHH;
 else
   hover_hold_additions[0] = 0;
   hover_hold_additions[1] = 0;
   hover_hold_additions[2] = 0;
 1
 lift_factor = velocity_vector[1] * velocity_vector[1] * H_CL *
           - cyclic_pitch;
 /** original comment from SAF code **/
 /* may want to put in power limit per unit time ... */
 coll_factor = max(0.0,collective - 0.3);
 power = H_KP * coll_factor + hover_hold_additions(2);
 power += gross_weight * collective/(H_K2+collective) * 1.25;
```

```
power = min (MAX_HELICOPTER_POWER, power);
 power = max(0.0, power);
 if (fuel_level_empty ())
   power = 0.0;
 /* Calculate the torque required to achieve the desired orientation */
 /* orientation vector is [pitch element, roll element, yaw element] */
 orient_vec[0] = H_KPR * - cyclic_pitch + hover_hold_additions[0];
 orient_vec[1] = H_KPR * cyclic_roll + hover_hold_additions[1];
 /** yaw element = current_yaw (heading) + rudder (pedals) * K **/
 orient_vec[2] = kinematics_get_yaw () + sign(pedal) * pedal
          * pedal * H_KY;
 res_ptr = moment_body;
 des_ptr = orient_vec;
C_mat = kinematics_get_w_to_h (veh_kinematics);
 euler[0] = atan2 (-gravity_dir_vector[Y], -gravity_dir_vector[Z]);
euler[1] = - atan2 (-gravity_dir_vector[X], -gravity_dir_vector[Z]);
euler(2) = kinematics_get_yaw ();
cur_ptr = euler;
/* First, compute the angular velocity necessary to achieve the */
/* desired orientation in exactly one tick. (delta theta/delta T) */
/* Then get the angular acceleration needed to get to that velocity */
/* In one tick.*/
for (i = X; i \le Z; ++i)
  vec_ptr[i] = ((des_ptr[i] - cur_ptr[i]) / DELTA_T / H_K1);
  angular_accel[i] = (vec_ptr[i] - angular_velocity_vector[i])
               / DELTA_T;
  res_ptr[i] = MOMENT_OF_INERTIA_X * angular_accel[i];
res_ptr[X] += lift_factor; /* this should add some torque for turns */
/* compute force vector */
res_ptr = force_body;
cur_ptr = velocity_vector;
vec_ptr = euler;
drag_ptr = drag_force; /* drag_body or drag_force */
drag_ptr[X] = square(cur_ptr[X]) * H_K8;
drag_ptr[Y] = square(cur_ptr[Y]) * H_K7;
drag_ptr[Z] = square(cur_ptr[Z]) * H_K8;
res_ptr[X] = (sin(vec_ptr[Y]) * power) - (sign(cur_ptr[X]) * drag_ptr[X]);
res_ptr[Y] = -(sin(vec_ptr[X]) * power) - (sign(cur_ptr[Y]) * drag_ptr[Y]);
```

```
res_ptr[Z] = C_mat[2][2] * power;
  res_ptr[Z] -= sign(cur_ptr[Z]) * drag_ptr[Z];
  res_ptr[Z] += lift_factor; /* this should add some force for lift */
  vec_add (force_body, ground_force,force_body);
  vec_add (force_body, gravity_force_body,force_body);
  interact_with_ground();
  vec_add (force_body, force_ground_effect, force_body);
  vec_add (moment_body, ground_torque, moment_body);
  send_to_dynamics_kinematics();
  vehicle_update();
* The following is for the simplified model incorporating the stealth *
 * dynamics. In this model, the cyclic changes the desired velocity
#define H_FWD_MUL aero_stealth[ 0]
#define H_SIDE_MUL aero_stealth[ 1]
#define H_COLL_MUL aero_stealth[2]
#define MAX_TORQUE aero_stealth[ 3]
#define MAX_FORCE
                         aero_stealth[4]
#define MASS
                 aero_stealth[5]
#define INERTIA aero stealth[6]
#define DEAD_ZONE
                         aero_stealth[7]
/* use for gravity frame matrix. eliminate all pitch and roll
* start with identity. substitute cos (yaw) for last term.
static T_MATRIX level = {(1.0, 0.0, 0.0),
             \{0.0, 1.0, 0.0\},\
             {0.0, 0.0, 1.0}};
void aerodyn_stealth_simul()
  VECTOR desired_rot_vel;
  VECTOR desired_lin_vel;
  REAL adj_collective; /* collective value adjusted for dead zone and
               for -1 to 1 range */
 adj_collective = (collective - 0.5) * 2.0; /* change to -1 to 1 */
  if (aerodyn_debug)
   timed_printf ("adj_collective = %.3lf\n", adj_collective);
  if (allow_takeoff)
    if (adj_collective > 0.0)
```

```
allow_takeoff = FALSE;
    }
    else
      adj_collective = 0.0;
  }
  get_aircraft_kinematic_state();
  compute_rotor_loads();
  compute_engine_torque();
/* update desired velocity */
  desired_lin_vel[Z] = adj_collective * adj_collective *
     sign (adj_collective) * H_COLL_MUL;
  if (hover_hold_state == ON)
  { /* no linear velocity in X,Y, only pitch */
    desired_lin_vel[X] = desired_lin_vel[Y] = 0.0;
    desired_rot_vel[X] = -cyclic_pitch * cyclic_pitch * sign(cyclic_pitch);
    desired_rot_vel(Y) = 0.0;
  }
  else
    if (level_view)/* when not in pitch mode, level view */
      vehicle_set_orientation_matrix (level); /* identity matrix */
      vehicle_set_orientation (kinematics_get_heading());
      level_view = FALSE;
    desired lin vel[X] = cyclic_roll * cyclic_roll * sign (cyclic_roll)
       H_SIDE_MUL;
    desired_lin_vel[Y] = cyclic_pitch * cyclic_pitch * sign (cyclic_pitch)
       *H FWD MUL;
    desired_rot_vel[X] = desired_rot_vel[Y] = 0.0;
#ifdef notdef
    desired_lin_vel(X) = cyclic_roll * cyclic_roll * sign (cyclic_roll)
        H_SIDE_MUL;
    desired_lin_vel[Y] = cyclic_pitch * cyclic_pitch * sign (cyclic_pitch)
       *H FWD MUL;
    desired_rot_vel[X] = desired_rot_vel[Y] = 0.0;
  desired_rot_vel(Z) = pedal * pedal * sign(pedal);
  /* controller_forces */
```

```
force body[X] = (desired lin_vel[X] - velocity_vector[X])
           MASS/DELTA_T;
  force_body[Y] = (desired_lin_vel[Y] - velocity_vector[Y])
           * MASS/DELTA_T;
  force_body[Z] = (desired_lin_vel[Z] - velocity_vector[Z])
           MASS/DELTA_T;
  force_body[X] = min (MAX_FORCE, force_body[X]);
  force body[Y] = min (MAX_FORCE, force_body[Y]);
  force body[Z] = min (MAX_FORCE, force_body[Z]);
  force_body[X] = max (-MAX_FORCE, force_body[X]);
  force body[Y] = max (-MAX_FORCE, force_body[Y]);
  force_body[Z] = max (-MAX_FORCE, force_body[Z]);
  /* controller_torques */
  moment_body[X] = (desired_rot_vel[X] - angular_velocity_vector[X])
           INERTIA/DELTA_T;
  moment_body[Y] = (desired_rot_vel[Y] - angular_velocity_vector[Y])
           * INERTIA/DELTA_T;
  moment_body[Z] = (desired_rot_vel[Z] - angular_velocity_vector[Z])
           * INERTIA/DELTA_T;
  moment_body[X] = min (MAX_TORQUE, moment_body[X]);
  moment_body[Y] = min (MAX_TORQUE, moment_body[Y]);
  moment_body[Z] = min (MAX_TORQUE, moment_body[Z]);
  moment_body[X] = max (-MAX_TORQUE, moment_body[X]);
  moment_body[Y] = max (-MAX_TORQUE, moment_body[Y]);
  moment\_body[Z] = max(-MAX\_TORQUE, moment\_body[Z]);
  interact_with_ground();
  vec_add (force_body, ground_force,force_body);
  vec_add (force_body, gravity_force_body);
  vec_add (force_body, force_ground_effect, force_body);
  send_to_dynamics_kinematics();
  vehicle_update();

    for tweaking purposes, use parameter file for constants

aerodyn_read_simple_constants (fn)
char *fn:
 char *strtok ():
 FILE *fp;
 char s[80];
```

```
if ((fp = FOPEN (fn, "r")) == NULL)
  printf ("no tweakable constants file; using defaults\n", fn);
  return (-1);
else
  printf ("Reading tweakable constants file: %s\n", fn);
while (FGETS (s, 80, fp) != NULL)
  char *str:
  switch (s[0]) /* check for comments or blank lines */
   case '#':
   case ' ':
   case '\n':
   case '\t':
    continue;
  str = strtok(s, " \t");
  if (strcmp (str, "H_K1") == 0)
    sscanf (strtok (0, " \t"), "%lf", &H_K1);
    continue;
 if (strcmp (str, "H_K2") == 0)
    sscanf (strtok (0, " \t"), "%lf", &H_K2);
    continue;
 if (strcmp (str, "H_K7") == 0)
    sscanf (strtok (0, " \t"), "%lf", &H_K7);
   continue;
 if (strcmp (str, "H_K8") == 0)
   sscanf (strtok (0, " \t"), "%lf", &H_K8);
   continue;
 if (strcmp (str, "H_KP") == 0)
   sscanf (strtok (0, " \t"), "%lf", &H_KP);
   continue;
```

```
if (strcmp (str, "H_KPR") == 0)
  sscanf (strtok (0, " \t"), "%lf", &H_KPR);
  continue;
if (strcmp (str, "H_KY") == 0)
  sscanf (strtok (0, " \t"), "%lf", &H_KY);
  continue;
if (strcmp (str, "H_KH") == 0)
  sscanf (strtok (0, " \t"), "%lf", &H_KH);
  continue;
if (strcmp (str, "H_FWD_MUL") == 0)
  sscanf (strtok (0, " \t"), "%lf", &H_FWD_MUL);
  continue;
if (strcmp (str, "H_COLL_MUL") == 0)
  sscanf (strtok (0, " \t"), "%lf", &H_COLL_MUL);
  continue:
if (strcmp (str, "H_CHH") == 0)
  sscanf (strtok (0, " \t"), "%lf", &H_CHH);
  continue;
if (strcmp (str, "H_CL") == 0)
  sscanf (strtok (0, " \t"), "%lf", &H_CL);
  continue;
if (strcmp (str, "MAX_FORCE") == 0)
  sscanf (strtok (0, " \t"), "%lf", &MAX_FORCE);
  continue;
if (strcmp (str, "MAX_TORQUE") == 0)
  sscanf (strtok (0, " \t"), "%lf", &MAX_TORQUE);
```

```
continue;
     }
     if (strcmp (str, "MASS") == 0)
       sscanf (strtok (0, " \t"), "%lf", &MASS);
       continue;
     if (strcmp (str, "INERTIA") == 0)
       sscanf (strtok (0, " \t"), "%lf", &INERTIA);
       continue;
     if (strcmp (str, "H_SIDE_MUL") == 0)
       sscanf (strtok (0, " \t"), "%lf", &H_SIDE_MUL);
       continue;
     if (strcmp (str, "DEAD_ZONE") == 0)
       sscanf (strtok (0, " \t"), "%lf", &DEAD_ZONE);
       continue:
     /* if got here -- mistake */
     printf ("ERROR: Unknown constant %s in %s\n", str, fn);
  FCLOSE (fp);
  printf ("done reading constants file\n");
/* aerodyn_dump_simple_constants ();*/
  return (1);
aerodyn_dump_control_inputs()
  printf ("collective = %.2lf\tcyclic_roll = %.2lf\tcyclic_pitch = %.2lf\n",
      collective, cyclic_roll, cyclic_pitch);
  printf ("pedal = %.2lf\n", pedal);
  aerodyn_debug = aerodyn_debug ? 0 : 1;
  printf ("aerodyn_debug is %s\n", aerodyn_debug ? "on" : "off");
aerodyn_dump_simple_constants()
  printf ("Aerodyn simple constants:\n");
  printf ("\tH_K1:\t%.2lf\n", H_K1);
  printf ("\tH_K2:\t%.2lf\n", H_K2);
  printf ("\tH_K7:\t%.2lf\n", H_K7);
```

```
printf ("\tH_K8:\t%.2lf\n", H_K8);
   printf ("\tH_KP:\t%.2lf\n", H_KP);
   printf ("\tH_KPR:\t%.2lf\n", H_KPR);
   printf ("\tH_KY:\t%.2lf\n", H_KY);
   printf ("\tH_KH:\t%.2lf\n", H_KH);
   printf ("\tH_FWD_MUL:\t%.2lf\n", H_FWD_MUL);
   printf ("\tH_SIDE_MUL:\t%.2If\n", H_SIDE_MUL);
   printf ("\tH_COLL_MUL:\t%.2lf\n", H_COLL_MUL);
   printf ("\tH_CHH:\t%.2lf\n", H_CHH);
   printf ("\tH_CL:\t%.2lf\n", H_CL);
   printf ("\tMAX_FORCE:\t%.2lf\n", MAX_FORCE);
   printf ("\tMAX_TORQUE:\t%.2lf\n", MAX_TORQUE);
   printf ("\tMASS:\t%.2lf\n", MASS);
  printf ("\tINERTIA:\t%.2lf\n", INERTIA);
  printf ("\tDEAD_ZONE:\t%.2lf\n", DEAD_ZONE);
set_selected_model (model)
int model;
  switch (model)
   case COMPLEX MODEL:
    printf ("switching to complex model, logarithmic collective\n");
    funny_little_kludge = 1;/* logarithmic collective */
    selected_model = model;
    break:
   case SIMPLE_MODEL:
    printf ("switching to simple model, linear collective\n");
    funny_little_kludge = 0;/* linear collective */
    selected_model = model;
    break;
   case STEALTH_MODEL:
    printf ("switching to stealth model, linear collective\n");
    funny_little_kludge = 0;/* linear collective */
    selected model = model;
    break:
   default:
    printf ("invalid selected model %d\n", model);
    printf ("using default complex model\n");
    selected_model = COMPLEX_MODEL;
    break;
  }
}
get_selected_model()
  return (selected_model);
```

```
indicate_selected_model (model)
int model;
  switch (model)
   case COMPLEX_MODEL:
    printf ("using complex model\n");
    break;
   case SIMPLE_MODEL:
    printf ("using simple model\n");
    break;
   case STEALTH_MODEL:
    printf ("using stealth model\n");
    allow_takeoff = TRUE;
    break;
   default:
    printf ("invalid selected model %d\n", model);
    printf ("using default complex model\n");
    break;
  }
}
set_takeoff_status (status)
int status;
  allow_takeoff = status;
orl1 15>
```

The following appendix contains the source code listing for rwa_engine.c for convenience in document maintenance and understanding of the CSU.

```
/* $Header: /a3/adst-cm/RWA/simnet/vehicle/rwa/src/RCS/rwa_engine.c,v
1,1 1992/1
0/07 19:00:23 cm-adst Exp $ */
 * $Log: rwa engine.c,v $
 * Revision 1.1 1992/10/07 19:00:23 cm-adst
 * Initial Version
*/
static char RCS_ID[] = "$Header: /a3/adst-
cm/RWA/simnet/vehicle/rwa/src/RCS/rwa_
engine.c,v 1.1 1992/10/07 19:00:23 cm-adst Exp $";
/***********************
*****
* Revisions:
                                                    SP/CR
      Version Date Author
                                Title
Number
      1.2
               10/09/92 R. Branson Data File Initiali-
                                  zation
               10/16/92 R. Branson Data filenames changed
      1.3
                                 to eight characters
               10/30/92 R. Branson Added pathname to data
      1.4
                                  directory
****************
/*************************
*****
      SP/CR No.
                  Description of Modification
                   Hard coded defines changed to array elements.
                   Engine data array added.
                   Engine initialization data array added.
                   Engine status data array added.
                   Added file for engine data, engine
initialization
                      data, and engine status data to the
"engine_init"
                      function
                   Added "/simnet/data/" to each data file
pathname.
************
*****/
```

```
* FILE:
                rwa_engine.c
  * AUTHOR:
               James Chung
  * MAINTAINER: James Chung
  * HISTORY:
               4/19/89 james: Creation
  * Copyright (c) 1989 BBN Systems and Technologies Corporation
  * All rights reserved.
  * Interim engine model for the generic rotary-wing aircraft
  * with power characteristics similar to the General
  * T700-GE-701 turboshaft engine. The T700 is rated at a
  * maximum continuous power of 1510 shp at sea-level.
  * Two (2) T700s power the AH-64 Apache attack helicopter.
  **********************
 #include "stdio.h"
#include "math.h"
#include "sim_dfns.h"
#include "sim_macros.h"
#include "sim types.h"
#include "libsound.h"
#include "rwa_soun_dfn.h"
#include "rwa_meter.h"
#include "rwa_cntrl.h"
#include "libmun.h"
#include "failure.h"
#include "libfail.h"
/* Once the engine or transmission has been damaged, there is a chance
   the engine/transmission will seize due to too many particle fragments
   accumulating in the respective oil system. These are "secondary"
events.
                                      12-10-90
                                                      pjm
                                                             */
#define DO CFAIL
                       TRUE
                               /* do combat damage simulation */
#define DO_SFAIL
                       TRUE
                              /* do stochastic failure simulation */
static REAL engine_data[20] = {
       1030.55,
                                        1031.6,
                   0.05,
                               0.05,
                                                      25.0,
                  1200.0,
          1.2,
                              0.16438, 2.130,
                                                      34.0,
                  100.0,
                              153.8461539, 0.0,
          7.0,
                                                      0.0,
          0.0,
                    0.0,
                               0.0,
                                           0.0,
                                                      0.0
          } ;
static REAL engine_init_data[10] = {
          0.0,
                  0.0, 0.0,
                                          0.0,
                                                       0.0.
          1.0,
                     0.0,
                               0.0,
                                          0.0,
                                                       0.0
          } ;
```

```
static int engine_stat_data[10] = {
           0, \overline{0},
                                                         2,
                                             1,
                                  0,
                      0,
           0,
           } ;
#define GOVERNOR_ENGINE SPEED_SETTING engine_data[ 0]
                                         engine_data[ 1]
#define GOVERNOR P GAIN
                                         engine data[2]
#define GOVERNOR I GAIN
#define MAX ENGINE TORQUE
                                        engine data[ 3]
#define MIN ENGINE LOAD TORQUE
                                         engine data[ 4]
#define MAX ENGINE PERCENT_POWER
                                         engine data[ 5]
#define ENGINE TORQUE_INTERCEPT
                                         engine_data[ 6]
#define ENGINE TORQUE_SLOPE
                                         engine_data[ 7]
#define NOSE GEARBOX_RATIO
                                        engine_data[ 8]
#define MAIN_ROTOR_GEAR_RATIO
#define TAIL_ROTOR_GEAR_RATIO
                                       engine_data[ 9]
                                       engine_data[10]
                                        engine_data[11]
#define POWERTRAIN INERTIA
#define MAX_FUELFLOW
                                         engine data[12]
/* (seconds/tick) / (seconds/hour) = (hours/tick) */
#define HOURS PER TICK ( DELTA_T / 3600.0 )
static REAL hours_of_flight;
static int minutes_of_flight, old_minutes_of_flight;
static BOOLEAN engine_is_damaged, transmission_is_damaged;
/***** engine noise stuff *****/
#define ORIGINAL
                  0
#define BOTH DISABLED
#define CHANGE ROTOR
#define CHANGE ENGINE
#define CHANGE BOTH
                        4
static int engine_sound_type = CHANGE_BOTH;
static int engine_oscillation[2], rotor_oscillation[2];
#define MIN ROTOR SOUND
                                 105
#define MAX_ROTOR_SOUND
                                 120
#define ROTOR_SOUND_RANGE
                                 (MAX ROTOR SOUND - MIN ROTOR SOUND)
#define MIN TURBINE SOUND
                                 95
#define MAX TURBINE SOUND
                                126
#define TURBINE SOUND RANGE
                                (MAX TURBINE SOUND - MIN TURBINE SOUND)
static REAL turbine speed;
static REAL engine speed;
                                 /* Nose gearbox output shaft */
static REAL engine_load_torque;
static REAL engine_percent_torque;
static REAL engine drive torque;
static REAL main_rotor_shaft_speed;
static REAL main_rotor_drive_torque;
static REAL tail_rotor_shaft_speed;
static REAL tail_rotor_drive_torque;
static REAL powertrain percent_shaft_speed;
static REAL last percent shaft speed;
static REAL last_percent_torque;
static REAL fuel_flow;
static REAL engine power;
```

```
static REAL integrator_gain;
static REAL gov_p_gain;
static REAL gov_i_gain;
static int number_of_engines;
                               /* Working */
static int engine status;
/* Flag used to determine if the engine is starting. Sounds for the
engine
   and rotors are more "realistic." Starting engine speed is 0 instead
   GOVERNOR_ENGINE_SPEED_SETTING, and since engine power then maxes out
   (causes "torque" to flash) a check is done and temporarily forces the
   torque percentage to be equal to 1.
                                         11-8-89
                                                         Paul J. Metzger
*/
static int starting_engine;
        engine_simul (main_rotor_load, tail_rotor_load, altitude)
void
        main rotor load, tail_rotor_load, altitude;
REAL
    REAL
            tail_rotor_engine_load;
            main_rotor_engine_load;
    REAL
    REAL
            temp percent;
    int
            temp sound;
    main_rotor_engine_load = main_rotor_load / MAIN_ROTOR_GEAR_RATIO;
    tail_rotor_engine_load = tail_rotor_load / TAIL_ROTOR_GEAR_RATIO;
    engine_load_torque = main_rotor_engine_load +
tail_rotor_engine_load;
    if (engine_load_torque < MIN_ENGINE_LOAD_TORQUE)</pre>
        engine load torque = MIN ENGINE LOAD TORQUE;
    engine power = gov p gain *
        (GOVERNOR ENGINE_SPEED SETTING - engine speed):
    if (engine status == WORKING)
        integrator_gain += gov_i_gain *
            (GOVERNOR ENGINE SPEED SETTING - engine speed);
        if (integrator gain > 0.5)
            integrator_gain = 0.5;
        else if (integrator_gain < -0.5)</pre>
            integrator gain = -0.5;
        engine_power += integrator_gain;
    }
                                 /* Damaged */
   else
        integrator_gain = 0.0;
        if (engine power > 0.7)
            engine_power = 0.7;
    }
```

```
if (engine_power > MAX_ENGINE_PERCENT_POWER)
        engine_power = MAX_ENGINE_PERCENT_POWER;
    if (engine_power < 0.0)</pre>
        engine power = 0.0;
                                /* Out of gas */
    if (fuel level empty ())
        engine_power = 0.0;
        engine_speed = 0.0;
    }
    engine_drive_torque = engine_power * number_of_engines *
        (ENGINE TORQUE_INTERCEPT - ENGINE_TORQUE_SLOPE * engine speed);
    engine_percent_torque = engine_drive_torque /
        (MAX_ENGINE_TORQUE * number_of_engines);
    if (engine_status == WORKING)
        engine speed += (engine_drive_torque - engine_load_torque)
            / POWERTRAIN INERTIA;
    if (engine_speed < 0.0)</pre>
        engine speed = 0.0;
    turbine_speed = engine_speed * NOSE_GEARBOX RATIO;
    main_rotor_shaft_speed = engine_speed / MAIN_ROTOR_GEAR_RATIO;
    tail_rotor_shaft_speed = engine_speed / TAIL_ROTOR_GEAR_RATIO;
    powertrain_percent_shaft_speed = engine_speed / GOVERNOR_ENGINE_SPEED_SETTING;
    tail_rotor_drive_torque = tail_rotor_load; /* Always have tail
rotor */
   main rotor drive torque = (engine_drive_torque -
tail_rotor engine load)
        * MAIN ROTOR GEAR RATIO;
    if (main_rotor_drive_torque < 0.0)
        main_rotor_drive_torque = 0.0;
    fuel flow = engine percent_torque * MAX_FUELFLOW;
    if (engine_status == BROKEN) /* crippled condition */
        sound_stop_cont_sound (SOUND_OF_STOP_ENGINE,
SOUND_OF_VARY_ENGINE);
        sound stop cont sound (SOUND OF STOP ROTOR,
SOUND_OF_VARY_ROTOR);
        fuel flow *= 50.0;
                                /* fuel leak */
    if (starting_engine)
                                                          /* within a
        if (engine percent_torque - .01 < .0001)
delta */
            starting_engine = FALSE;
```

```
else
            engine percent torque = .01;
    fuel_used by_engine (fuel_flow / 3600.0 * DELTA T);
    meter_torque_set (engine_percent_torque);
    meter_rpm_set (powertrain_percent_shaft_speed);
    hours of flight += HOURS PER TICK;
    minutes of flight = (int) (hours_of_flight * 60);
#if DO SFAIL
    if (minutes_of_flight > old_minutes_of_flight)
        sfail_event occurred (SFAIL_EVENT MILEAGE);
        if (engine is damaged)
            sfail event occurred (SFAIL_SECONDARY EVENT ENGINE);
        if (transmission is damaged)
            sfail_event_occurred (SFAIL SECONDARY EVENT TRANSMISSION);
        old minutes of flight = minutes_of_flight;
#endif
    if (!fuel level empty ())
        switch (engine_sound_type)
        case CHANGE ENGINE:
            if (abs (powertrain_percent_shaft_speed
                     - last_percent_shaft_speed) > 0.025)
            {
                /* rotor sounds depend on RPMs
                 * (powertrain percent shaft speed) */
                temp_percent = max (0.01,
powertrain_percent_shaft_speed);
                sound_make_cont_sound (SOUND_OF_START_ROTOR,
SOUND_OF_VARY_ROTOR
                                        SOUND OF STOP ROTOR,
temp percent);
                last percent shaft speed =
powertrain_percent_shaft_speed;
            if (abs (engine percent torque - last percent torque) >
0.025)
                /* engine sounds depend on torque
(engine_percent_torque) */
                temp_percent = max (0.01, engine_percent_torque);
                sound_make_cont_sound (SOUND_OF_START_ENGINE,
SOUND OF VARY ENGI
NE,
                                        SOUND OF STOP ENGINE,
temp_percent);
```

```
last percent torque = engine percent_torque;
            }
            break;
        case ORIGINAL:
            if (abs (powertrain_percent_shaft_speed
                     - last percent_shaft_speed) > 0.025)
                /* rotor sounds depend on RPMS
                 * (powertrain_percent_shaft speed) */
                temp percent = \max (0.01,
powertrain percent_shaft speed);
                sound make_cont_sound (SOUND_OF_START_ROTOR,
SOUND OF VARY ROTOR
                                        SOUND OF STOP ROTOR,
temp_percent);
                sound make_cont_sound (SOUND OF START ENGINE,
SOUND OF VARY ENGI
NE,
                                        SOUND OF STOP ENGINE,
temp percent);
                last percent_shaft_speed =
powertrain percent_shaft_speed;
            break;
        case CHANGE BOTH:
            /* Try the following, as per Perc's directions: vary both
the
             * rotor and engine with torque, but have the rotor range be
from
             * 105 to 120, and the turbine range from 95 to 126.
             * The rotor sound range is 15 points (120-105), so the %
torque is
             * multiplied by 15, then added to an offset of 105.
             * The turbine sound range is 31 points (126-95), so the %
torque i
    * multiplied by 31, then added to an offset of 105.
             * 11-17-90
                          PJM
            if (abs (engine_percent_torque - last_percent_torque) >
0.025)
            1
                /* both sounds depend on torque */
                temp sound = (int) (engine_percent_torque *
ROTOR SOUND RANGE)
   MIN ROTOR SOUND;
                if (temp_sound > MAX_ROTOR SOUND)
                    temp_sound = MAX_ROTOR_SOUND;
                /* We check to see if the sounds are oscillating. This
*/
```

```
/* event occurs while at the extreme torque edges of */
                 /* the hover hold mode, when we're trying to break */
                                                 2-15-91 PJM
                 /* hold.
                 if (temp_sound != rotor oscillation[1])
                         sound_make_arg_sound (SOUND OF VARY ROTOR,
temp_sound);
                 rotor_oscillation[1] = rotor_oscillation[0];
                 rotor oscillation[0] = temp_sound;
                 temp sound = (int) (engine percent torque *
                     TURBINE SOUND RANGE) + MIN TURBINE SOUND;
                 if (temp sound > MAX TURBINE SOUND)
                     temp sound = MAX TURBINE SOUND;
                 if (temp_sound != engine_oscillation[1])
                         sound make arg sound (SOUND OF VARY ENGINE,
temp_sound);
                 engine_oscillation[1] = engine_oscillation[0];
                 engine_oscillation[0] = temp sound;
                 last_percent_torque = engine_percent_torque;
            break;
        case CHANGE ROTOR:
             if (abs (engine_percent_torque - last_percent_torque) >
0.025)
                 /* rotor sounds depend on torque */
                temp_sound = (int) (engine percent torque *
ROTOR SOUND RANGE)
   MIN ROTOR SOUND;
                if (temp_sound > MAX ROTOR SOUND)
                     temp_sound = MAX_ROTOR_SOUND;
                sound make arg sound (SOUND OF VARY ROTOR, temp sound);
                sound_stop_cont_sound (SOUND_OF_STOP_ENGINE,
                                        SOUND OF VARY ENGINE);
                last_percent_torque = engine percent torque;
            }
            break;
        case BOTH DISABLED:
            sound_stop_cont_sound (SOUND OF STOP ENGINE,
SOUND OF VARY ENGINE);
            sound_stop_cont_sound (SOUND_OF_STOP_ROTOR,
SOUND OF VARY ROTOR);
            break;
    }
}
REAL
        engine get rotor percent shaft speed ()
```

```
{
    return (powertrain_percent_shaft_speed);
 }
        engine damage_engine_oil ()
void
#if DO CFAIL
    controls start failure_lamp_flashing (MASTER_CAUTION);
    controls_start_failure_lamp_flashing (ENGINE_FAILURE);
#endif
    engine is damaged = TRUE;
}
        engine repair_engine_oil ()
void
#if LO CFAIL
    controls failure lamp off (ENGINE FAILURE);
    engine_is_damaged = FALSE;
#endif
        engine break engine ()
void
    engine status = BROKEN;
    engine speed = 0.0;
    number of engines = 1;
}
void
        engine_repair_engine ()
    engine_repair_engine_oil ();
    engine_status = WORKING;
    number of engines = 2;
}
void
        engine_damage_transmission_filter ()
#if DO_SFAIL
    controls start failure lamp flashing (MASTER CAUTION);
    controls_start_failure_lamp_flashing (TRANSMISSION_FAILURE);
    transmission is damaged = TRUE;
#endif
void
        engine_repair_transmission_filter ()
#if DO SFAIL
    controls failure lamp off (TRANSMISSION FAILURE);
    transmission is damaged = FALSE;
#endif
        engine break transmission ()
void
#if DO SFAIL
```

```
engine_break_engine ();
                                /* engine has seized */
#endif
}
void
        engine repair_transmission ()
#if DO_SFAIL
    engine_repair_transmission_filter ();
    engine_repair_engine ();
#endif
}
        engine_init ()
void
        int
                 i;
                 data init;
        int
        float
                data_tmp;
        char
                descript[64];
        FILE
                 *fp;
/* DEFAULT DATA FOR rwa_engine.c READ FROM FILE
*/
        fp = fopen("/simnet/data/rwa engn.d","r");
        if (fp==NULL) {
                 fprintf(stderr, "Cannot open
/simnet/data/rwa engn.d\n");
                exit();
        }
        rewind(fp);
        /*
                Read array data */
        i=0:
        while (fscanf (fp, "%f", &data_tmp) != EOF) {
                engine_data[i] = data tmp;
                fgets (descript, 64, fp);
/*
                printf("engine_data(%3d) is%11.3f %s", i,
engine_data[i],
                         descript);
*/
                ++i;
        }
        fclose(fp);
/* END DEFAULT DATA FOR rwa engine.c READ FROM FILE
*/
/* DEFAULT INITIALIZATION DATA FOR rwa engine.c READ FROM FILE
*/
        fp = fopen("/simnet/data/rw_en_in.d","r");
        if (fp==NULL) {
                fprintf(stderr, "Cannot open
/simnet/data/rw en in.d\n");
```

```
exit();
        }
        rewind(fp);
                Read array data */
        i=0;
fgets(descript, 64, fp);
/*
                printf("engine_init_data(%3d) is%11.3f %s", i,
                        engine init_data[i], descript);
* /
                ++i;
        }
        fclose(fp);
   END DEFAULT INITIALIZATION DATA FOR rwa engine.c READ FROM FILE
*/
/* DEFAULT STATUS DATA FOR rwa_engine.c READ FROM FILE
        fp = fopen("/simnet/data/rw_en_st.d","r");
        if (fp==NULL) {
                fprintf(stderr, "Cannot open
/simnet/data/rw_en_st.d\n");
               exit();
        ł
        rewind(fp);
               Read array data */
       i=0:
       while (fscanf (fp, "%d", &data_init) != EOF) {
               engine_stat_data[i] = data_init;
               fgets (descript, 64, fp);
/*
               printf("engine stat data(%3d) is%11d %s", i,
                       engine stat data[i], descript);
*/
               ++i;
       }
       fclose(fp);
   END DEFAULT STATUS DATA FOR rwa engine.c READ FROM FILE
                              GOVERNOR_P_GAIN;
   gov_p_gain =
   gov_i_gain =
                              GOVERNOR I GAIN;
                              engine init data[ 0];
   engine power =
   engine percent torque =
                              engine_init_data[ 1];
   engine_speed =
                              engine init data[ 2];
                              engine_init_data[ 3];
   integrator gain =
```

```
last percent_shaft_speed = engine_init_data[ 4];
                               engine_init_data[ 5];
    last_percent_torque =
    hours of flight =
                               engine_init_data[ 6];
                              engine_stat_data[ 0];
    minutes of flight =
                             engine_stat_data[ 1];
    old_minutes_of_flight =
                               engine_stat_data[ 2];
    engine status =
                               engine_stat_data[ 3];
    starting_engine =
                               engine_stat_data[ 4];
    number_of_engines =
    engine_is_damaged =
                               engine_stat_data[ 5];
    transmission is damaged = engine_stat_data[ 6];
#if DO CFAIL
    fail init failure (motiveOilLeak, engine_damage_engine_oil,
                     engine_repair_engine_oil, NO_SELF_REPAIR,
noncritKill);
    fail_init_failure (motiveEngineMajor, engine break engine,
                       engine repair engine, NO SELF REPAIR,
mobilityKill);
#endif
#if DO SFAIL
    fail init failure (motiveTransFluidFilter,
       engine damage transmission filter,
engine repair transmission filter,
                       NO SELF REPAIR, noncritKill);
    fail_init_failure (motiveTransmissionMajor,
engine break transmission,
                  engine_repair_transmission, NO_SELF_REPAIR,
mobilityKill);
#endif
}
void
        engine_debug_print ()
    printf ("rpm = f^n = f^n = f^n = f^n = f^n = f^n = f^n,
            powertrain_percent_shaft_speed, engine_speed,
            engine_power, engine_drive_torque, main_rotor_drive_torque);
}
REAL
        engine_get speed ()
    return (engine_speed);
void
        engine_toggle_sound ()
    if ((engine_sound_type - 1) < ORIGINAL)</pre>
        engine sound type = CHANGE BOTH;
    else
        engine_sound_type--;
    switch (engine_sound_type)
   case ORIGINAL:
                               Engine: RPM\n");
       printf ("Rotor: RPM
```

```
break;
   case CHANGE ROTOR:
       printf ("Rotor: TORQUE Engine: DISABLED\n");
       break;
   case CHANGE ENGINE:
       printf ("Rotor: RPM Engine: TORQUE\n");
       break;
   case CHANGE BOTH:
       printf ("Rotor: TORQUE Engine: TORQUE\n");
       break;
   case BOTH_DISABLED:
       printf ("Rotor: DISABLED Engine: DISABLED\n");
       break;
   }
}
       engine_get_hours_of_flight ()
REAL
   return (hours_of_flight);
}
       engine_get_minutes_of_flight ()
int
{
   return (minutes_of_flight);
```

The following appendix contains the source code listing for rwa_kinemat.c for convenience in document maintenance and understanding of the CSU.

```
/* $Header: /a3/adst-cm/RWA/simnet/vehicle/rwa/src/RCS/rwa_kinemat.c,v
1.1 1992/
10/07 19:00:23 cm-adst Exp $ */
 * $Log: rwa_kinemat.c,v $
 * Revision 1.1 1992/10/07 19:00:23 cm-adst
 * Initial Version
*/
static char RCS ID[] = "$Header: /a3/adst-
cm/RWA/simnet/vehicle/rwa/src/RCS/rwa_
kinemat.c, v 1.1 1992/10/07 19:00:23 cm-adst Exp $";
/*********************
* Revisions:
                                                  SP/CR
      Version Date Author Title
Number
              10/09/92 R. Branson Data File Initiali-
      1.2
                                zation
      1.3
              10/16/92 R. Branson Data filenames changed
                                to eight characters
              10/30/92 R. Branson Added pathname to data
      1.4
                                 directory
***********
/*******************
*****
      SP/CR No.
                  Description of Modification
                  Hard coded defines changed to array element.
                  Kinemat data array added.
                  Kinemat initialization array added.
                  Added file read for kinemat data and kinemat
initiali-
                     zation data to the "veh_spec_kinematics_init"
                     function.
                  Added "/simnet/data/" to each data file
pathname.
***********************
/******************
```

```
* FILE:
                rwa kinemat.c
  * AUTHOR:
                Bryant Collard
  * MAINTAINER: Bryant Collard
  * PURPOSE:
                This file contains routines which process
                information generated in the dynamics and
                kinematics software to generate data needed
                specifically for the rotary wing aircraft.
  * HISTORY:
                03/03/89 bryant: Creation
                05/15/89 james: Modified for RWA
  * Copyright (c) 1989 BBN Systems and Technologies, Inc.
  * All rights reserved.
  ****************
#include "stdio.h"
#include "math.h"
#include "sim types.h"
#include "sim dfns.h"
#include "sim macros.h"
#include "libmatrix.h"
#include "librotate.h"
#include "vehicle.h"
#include "std_atm.h"
#define GRAV CONSTANT
                              kinemat data[ 0]
#define SIN AOA LIMIT
                              kinemat data[ 1]
#define COS AOA LIMIT
                              kinemat_data[ 2]
#define SIN YAW LIMIT
                              kinemat data[ 3]
#define COS_YAW_LIMIT
                              kinemat_data[ 4]
#define DISPLAY_SPEED LIMIT
                            kinemat_data[ 5]
static VECTOR pos unit vel;
static VECTOR neg_unit_vel;
static REAL sin aoa;
static REAL cos_aoa;
static REAL sin yaw;
static REAL cos yaw;
static REAL altitude;
static REAL body pitch;
static REAL body_pitch_offset;
static REAL velocity_pitch;
static REAL roll;
static REAL heading;
static REAL true_airspeed;
static REAL indicated airspeed;
static REAL g_force;
static REAL vertical_speed;
static REAL *ang_vel;
static REAL *velocity_vector;
static VECTOR gravity;
```

```
static VECTOR norm vel;
static T MATRIX velocity_to_body;
static REAL kinemat data[20] = {
        9.81, 0.642787610, 0.766044443, 0.642787610, 0.766044443,
        0.0,
                                       0.0,
                                                  0.0,
                  0.0,
                            0.0,
                  0.0,
                                        0.0,
        0.0,
                            0.0,
                                                   0.0,
        0.0,
                  0.0.
                            0.0,
                                        3.0,
                                                   0.0
        } ;
static REAL kinemat_init_data[30] = {
                         0.0,
        0.0,
                                        0.0,
                                                  -1.0,
                 \overline{1}.0,
        0.0,
                  0.0,
                            1.0,
                                        0.0,
                                                  1.0,
                           0.0,
        0.0,
                                       0.0,
                  0.0,
                                                  0.0,
                           0.0,
                 0.0,
        0.0,
                                       1.0,
                                                  0.0,
                           -1.0,
        0.0,
                  0.0,
                                       0.0,
                                                  1.0,
                  0.0,
                           0.0,
                                        0.0,
                                                   0.0
        0.0,
        } ;
/**********************
               veh_spec_kinematics_init
 * ROUTINE:
 * PARAMETERS: none
 * RETURNS:
               none
 * PURPOSE:
               This routine initializes vehicle specific
               kinematics parameters.
 ******************
void veh spec kinematics init ()
/* DEFAULT DATA FOR rwa_kinemat.c READ FROM FILE
                                                 */
       int
               i;
       float
               data tmp;
       char
               descript[64];
       FILE
               *fp;
       fp = fopen("/simnet/data/rwa kine.d","r");
       if (fp==NULL) {
               fprintf(stderr, "Cannot open
/simnet/data/rwa_kine.d\n");
               exit();
       rewind(fp);
       /*
               Read array data */
       i=0;
       while(fscanf(fp,"%f", &data_tmp) != EOF)(
               kinemat_data[i] = data_tmp;
               fgets(descript, 64, fp);
               printf("kinemat_data(%3d) is%11.3f %s", i,
kinemat_data[i],
```

Appendix D - Source Code Listing for rwa kinemat.c descript); */ **++1**; fclose(fp); /* END DEFAULT DATA FOR rwa kinemat.c READ FROM FILE /* DEFAULT INITIALIZATION DATA FOR rwa kinemat.c READ FROM FILE fp = fopen("/simnet/data/rw_ki_in.d","r"); if(fp==NULL){ fprintf(stderr, "Cannot open /simnet/data/rw_ki_in.d\n"); exit(); rewind(fp); /* Read array data */ i=0; while (fscanf (fp, "%f", &data_tmp) != EOF) { kinemat_init_data[i] = data_tmp; fgets (descript, 64, fp); printf("kinemat init data(%3d) is%11.3f %s", i, kinemat init data[i], descript); *****/ ++1; fclose(fp); END DEFAULT INITIALIZATION DATA FOR rwa kinemat.c READ FROM FILE pos_unit_vel[Y] = kinemat_init_data[1]; pos_unit_vel[Z] = kinemat_init_data[2]; neg_unit_vel[X] = kinemat_init_data[3]; neg unit vel[Y] = kinemat_init_data[4]; neg unit vel[Z] = kinemat init data[5]; sin aoa = kinemat init data[6]; kinemat init data[7]; cos aoa = kinemat_init_data[8]; sin yaw = kinemat_init_data[9]; cos_yaw = kinemat_init_data[10]; altitude = kinemat_init_data[11]; body pitch = body_pitch_offset = kinemat_init_data[12]; kinemat_init_data[13]; velocity pitch = kinemat_init_data[14]; roll = heading = kinemat_init_data[15]; true_airspeed = kinemat_init_data[16]; indicated_airspeed = kinemat_init_data[17]; g_force = kinemat init data[18];

kinemat_init_data[19];

vertical_speed =

```
ang vel = vehicle_angular_velocity ();
    velocity vector = vehicle_velocity();
                   kinemat_init_data[20];
kinemat_init_data[21];
    gravity(X) =
    gravity[Y] =
                       kinemat init_data[22];
    gravity[Z] =
    norm_vel[X] = kinemat_init_data[23];
norm_vel[Y] = kinemat_init_data[24];
norm_vel[Z] = kinemat_init_data[25];
    mat ident (velocity_to_body);
}
/*****************
                veh spec_kinematics_simul
 * ROUTINE:
 * PARAMETERS: none
              none *
This routine finds vehicle specific kinematics *
 * RETURNS:
 * PURPOSE:
               parameters.
 **********
void veh_spec_kinematics_simul ()
    REAL *velocity;
   REAL temp, temp2;
   REAL *position;
    T_MAT_PTR body to world;
   position = rotate_get_loc (world (), hull ());
    altitude = position[Z];
    if (altitude < 0.0)
       altitude = 0.0;
     velocity = vehicle_velocity (); */
    velocity = velocity_vector;
   true airspeed = sqrt (velocity[X] * velocity[X] + velocity[Y] *
velocity[Y]
            + velocity[Z] * velocity[Z]);
    indicated_airspeed = true_airspeed * sqrt (air_density (altitude) /
            air density(0.0));
   if (true airspeed < E MILLI)
    {
       norm vel(X) = 0.0;
       norm vel[Y] = 1.0;
       norm vel[Z] = 0.0;
   }
   else
       norm_vel[X] = velocity[X] / true_airspeed;
       norm_vel[Y] = velocity[Y] / true_airspeed;
       norm_vel[Z] = velocity[Z] / true_airspeed;
   if (norm_vel[Z] - 1.0 > -E_NANO)
       sin aoa = -1.0;
       \cos aoa = 0.0;
       sin yaw = 0.0;
```

```
cos_yaw = 1.0;
     else if (norm vel[Z] + 1.0 < E_NANO)
         sin_aoa = 1.0;
         cos_aoa = 0.0;
         sin_yaw = 0.0;
         cos_yaw = 1.0;
     }
     else
         sin aoa = -norm_vel[Z];
         cos aoa = sqrt (norm_vel[X] * norm_vel[X] + norm_vel[Y] *
norm vel[Y]);
         sin_yaw = norm_vel[X] / cos_aoa;
         cos yaw = norm vel[Y] / cos_aoa;
     }
/ *
     if (sin_aoa > SIN_AOA_LIMIT)
         temp = COS_AOA_LIMIT;
         velocity_to_body[1][2] = -SIN_AOA_LIMIT;
    else if (sin_aoa < -SIN_AOA_LIMIT)</pre>
         temp = COS AOA LIMIT;
         velocity_to_body[1][2] = SIN_AOA_LIMIT;
     }
    else
     1
*/
         temp = cos_aoa;
         velocity_to_body[1][2] = -sin_aoa;
/*
    if (cos_yaw < COS YAW LIMIT)
         velocity_to_body[0][0] = COS_YAW_LIMIT;
         if (\sin yaw > 0)
             velocity_to_body[0][1] = -SIN_YAW_LIMIT;
         else
             velocity to body[0][1] = SIN_YAW_LIMIT;
    }
    else
*/
         velocity to body[0][0] = cos_yaw;
         velocity_to_body[0][1] = -sin_yaw;
/*
    )
*/
    velocity_to_body[0][2] = 0.0;
    velocity_to_body[1][0] = -velocity_to_body[0][1] * temp;
velocity_to_body[1][1] = velocity_to_body[0][0] * temp;
    velocity_to_body[2][0] = velocity_to_body[1][2] *
velocity to body[0][1];
```

```
velocity_to_body[2][1] = -velocity_to_body[1][2] *
 velocity to body[0][0];
     velocity_to_body[2][2] = velocity_to_body[1][1] *
 velocity_to_body[0][0] -
             velocity_to_body[1][0] * velocity_to_body[0][1];
     ang vel = vehicle angular velocity ();
     body to world = rotate get mat (hull (), world ());
     gravity[X] = body to world[0][2];
    gravity(Y) = body_to_world(1)(2);
gravity(Z) = body_to_world(2)(2);
     g_force = gravity[Z] + (true_airspeed * ang_vel[X] / GRAV_CONSTANT);
     vertical_speed = vec_dot_prod (norm_vel, gravity);
     if (true airspeed >= DISPLAY_SPEED_LIMIT)
         velocity pitch = asin (vertical_speed);
    else
         velocity pitch = 0.0;
    vertical speed *= true airspeed;
    body_pitch = asin (body_to_world[1][2]);
    gravity[X] = -gravity[X];
    gravity[Y] = -gravity[Y];
    gravity[2] = -gravity[2];
    temp = sqrt (body_to_world[1][0] * body_to_world[1][0] +
             body_to_world[1][1] * body_to_world[1][1]);
    if (temp < E_NANO)
        roll = 0.0;
        heading = 0.0;
    }
    else
        temp2 = (body_to_world[0][0] * body_to world[1][1] -
                 body_to_world[0][1] * body_to_world[1][0]) / temp;
        if (temp2 > 1.0) temp2 = 1.0;
        roll = acos (temp2);
        if (body_to_world[1][1] * body_to_world[2][0] -
                 body_to world[1][0] * body to world[2][1] < 0.0)
            roll = -roll;
        if (body to world[1][0] >= 0.0)
            heading = acos (body to world[1][1] / temp);
        else
            heading = acos (-body to world[1][1] / temp) + PI;
/* NO METERS FOR NOW
    meter_g_force_set (g_force);
    meter_vertical_speed_set (vertical_speed);
    if (true airspeed >= DISPLAY SPEED LIMIT)
        meter_send_aero_data (rad_to_deg (body_pitch), rad to deg
(roll),
                rad_to_deg (heading), asin (sin_aoa), asin (sin_yaw),
                indicated_airspeed, altitude, g_force);
    else
        meter_send_aero data (0.0, 0.0,
                rad_to_deg (heading), 0.0, 0.0,
                indicated_airspeed, altitude, g_force);
*/
```

```
REAL kinematics_get_aoa ()
    return (asin (-velocity_to_body[1][2]));
REAL kinematics_get_yaw ()
    return (asin (-velocity_to_body[0][1]));
REAL kinematics_get_altitude ()
    return (altitude);
REAL kinematics_get_body_pitch ()
    return (body_pitch + body_pitch_offset);
REAL kinematics_get_velocity_pitch ()
    return (velocity_pitch);
REAL kinematics_get_roll ()
    return (roll);
REAL kinematics_get_heading ()
    return (heading);
REAL kinematics_get true airspeed ()
    return (true_airspeed);
REAL kinematics_get_indicated_airspeed ()
    return (indicated_airspeed);
REAL kinematics_get_g_force ()
    return (g_force);
}
REAL kinematics_get_vertical_speed ()
    return (vertical_speed);
```

```
REAL *kinematics_get_gravity_vector ()
{
    return (gravity);
}

REAL *kinematics_get_linear_velocity_vector()
{
    return (velocity_vector);
}

REAL *kinematics_get_normalized_velocity_vector ()
{
    if (true_airspeed > DISPLAY_SPEED_LIMIT)
        return (norm_vel);
    else if (norm_vel[Y] >= 0.0)
        return (pos_unit_vel);
    else
        return (neg_unit_vel);
}

REAL *kinematics_get_angular_velocity_vector ()
{
    return (ang_vel);
}

T_MAT_PTR kinematics_get_velocity_to_body ()
{
    return (velocity_to_body);
}
```

22 January 1993 Reference # W003036 Rev. 0.0

Appendix E - Source code listing for miss_adat.c.

The following appendix contains the source code listing for miss_adat.c for convenience in document maintenance and understanding of the CSU.

```
/* $Header: /a3/adst-cm/RWA/simnet/vehicle/libsrc/libmissile/RCS/miss_adat.c,v 1
.1 1992/09/30 16:39:52 cm-adst Exp $ */
* $Log: miss_adat.c,v $
* Revision 1.1 1992/09/30 16:39:52 cm-adst
* Initial Version
*/
static char RCS_ID[] = "$Header: /a3/adst-cm/RWA/simnet/vehicle/libsrc/libmissil
e/RCS/miss_adat.c,v 1.1 1992/09/30 16:39:52 cm-adst Exp $";
* Revisions:
    Version Date Author Title
                                           SP/CR Number
    1.2 10/23/92 R. Branson Data File Initiali-
                     zation
    1.3 10/30/92 R. Branson Added pathname to data
                     directory
        11/25/92 R. Branson Changed %i to %d
    SP/CR No.
                 Description of Modification
            Hard coded defines changed to array elements.
            Characteristics/parameter data array added.
            Engine initialization data array added.
            Degree of polynomial data array added.
            Added file reads for ADAT characteristics/
             parameters, burn speed coefficients, coast speed
             coefficients, burn turn coefficients, coast turn
             coefficients, and temporal bias coefficients.
            Added "/simnet/data/" to each data file pathname.
* FILE: miss_adat.c
* AUTHOR: Bryant Collard
* MAINTAINER: Bryant Collard
* PURPOSE: This file contains routines which fly out a
       missile with the characteristics of a ADAT
```

```
missile.
  * HISTORY: 06/28/89 bryant: Creation
         08/06/90 bryant: NTU librva modifications.
  Copyright (c) 1989 BBN Systems and Technologies, Inc.
   All rights reserved.
 #include "stdio.h"
 #include "math.h"
#include "sim_types.h"
#include "sim dfns.h"
#include "basic.h"
#include "mun_type.h"
#include "libmap.h"
#include "libmatrix.h"
#include "miss_adat.h"
#include "libmiss_dfn.h"
#include "libmiss_loc.h"
 * Define missile characteristics.
/*/
#define ADAT_BURNOUT_TIME adat_miss_char[0]
#define ADAT_MAX_FLIGHT_TIME adat_miss_char[ 1]
#define INVEST_DIST_SQ
                            adat_miss_char[2]
#define HELO_FUZE_DIST_SQ adat miss char[3]
#define AIR_FUZE_DIST_SQ adat_miss_char[4]
#define ADAT_TEMP_BIAS_TIME adat_miss_char[5]
#define CLOSE_RANGE
                            adat_miss_char[6]
* Define the states the _ADAT_MISSILE_ can be in.
/*/
#define ADAT_FREE 0 /* No missile assigned. */
#define ADAT_GUIDE 1 /* Missile flying and guided. */
#define ADAT_UNGUIDE 2 /* Missile flying but unguided. */
#define ADAT_CLOSE 3 /* Missile flying against a close target. */
#define ADAT_HOT 4 /* Missile fired without cooling. */
* The following terms set the order of the polynomials used to determine
* the speed or cosine of the maximum allowed turn rate of the missile
* at any point in time.
```

```
/*/
 #define ADAT_BURN_SPEED_DEG adat_miss_poly_deg[ 0]
 #define ADAT_COAST_SPEED_DEG_adat_miss_poly_deg[1]
 #define ADAT_BURN_TURN_DEG adat_miss_poly_deg[ 2]
#define ADAT_COAST_TURN_DEG adat_miss_poly_deg[3]
#define ADAT_TEMP_BIAS_DEG adat_miss_poly_deg[4]
 /*/
 * ADAT missile characteristic parameters initialized to default values.
static REAL adat_miss_char[10] =
  48.0. /* ticks (3.2 sec) */
  300.00, /* ticks (20.0 sec) */
 90000.0, /* (300 m) ** 2 */
  49.0, /* (7 m) ** 2 */
  196.0, /* (14 m) ** 2 */
  60.0, /* ticks (4.0 sec) */
 2200.0, /* close range*/
   0.0.
   0.0,
   0.0
};
/*/
* The following are the default values of the degree of polynomials.
static int adat_miss_poly_deg[5] =
 2,
        /* Speed before motor burnout. */
        /* Speed after motor burnout. */
        /* Cosine of max turn before burnout. */
 3,
        /* Cosine of max turn after burnout. */
 5.
        /* Temporial bias. */
};
* Coefficients for the speed polynomial before motor burnout.
/*/
static REAL adat_burn_speed_coeff[10] =
  2.296,
               /* a_0 - m/tick */
 0.72990856.
                  /* a_1 - m/tick**2 */
 0.013310932.
                  /* a_2 - m/tick**3 */
 0.0.
 0.0,
 0.0,
```

```
0.0,
  0.0,
  0.0,
  0.0
};
 * Coefficients for the speed polynomial after motor burnout.
/*/
static REAL adat_coast_speed_coeff[10] =
                   /* a_0 - m/tick */
 105.52162,
                 /* a_1 - m/tick**2 */
  -1.0157285,
                 /* a_2 - m/tick**3 */
  5.6124330e-3,
                  /* a_3 - m/tick**4 */
  -1.6262608e-5,
                   /* a_4 - m/tick**5 */
  1.8991982e-8,
  0.0,
  0.0,
  0.0,
  0.0.
  0.0
};
 * Coefficients for the cosine of max turn polynomial before motor burnout.
static REAL adat_burn_turn_coeff[10] =
  0.999993,
                 /* a_0 - cos(rad)/tick */
 -6.2386917e-7, /* a_1 - cos(rad)/tick**2 */
  1.6146426e-7, /* a_2 - cos(rad)/tick**3 */
 -9.720142e-7, /* a_3 - cos(rad)/tick**4 */
  0.0,
  0.0.
  0.0,
  0.0,
  0.0.
  0.0
};
* Coefficients for the cosine of max turn polynomial after motor burnout.
static REAL adat_coast_turn_coeff[10] =
                  /* a_0 - cos(rad)/tick */
  0.99753111.
  5.5817986e-5,
                   /* a_1 - cos(rad)/tick**2 */
                  /* a_2 - cos(rad)/tick**3 */
  -5.1276276e-7,
```

```
/* a 3 - cos(rad)/tick**4 */
   2.2388593e-9.
   -5.1964622e-12, /* a_4 - cos(rad)/tick**5 */
                     /* a_5 - cos(rad)/tick**6 */
   4.5499104e-15,
   0.0,
   0.0.
   0.0,
   0.0
 }:
 * Coefficients for the temporial bias polynomial.
 static REAL adat_temp_bias_coeff[10] =
   5.3105657e-2, /* a_0 - m */
  7.1795817e-2, /* a_1 - m/tick */
                  /* a_2 - m/tick**2 */
   1.8084646e-2.
  -6.0083762e-4, /* a_3 - m/tick**3 */
   4.6761091e-6, /* a_4 - m/tick**4 */
   0.0.
  0.0.
  0.0,
  0.0.
  0.0
 * The following arrays are used to give the missile the proper superelevation
 * at launch time. Two are required to deal with launches off either side
 * of the turret.
/*/
static T_MATRIX tube_C_sight_left;
static T_MATRIX tube_C_sight_right;
* Memory for the missiles is declared in vehicle specific code. During
* initialization, a pointer is assigned to this memory then some memory
* issues are dealt with in this module.
/*/
static ADAT_MISSILE *adat_array; /* A pointer to missile memory. */
                             /* The number of defined missiles. */
static int num_adats;
14/
* Declare static functions.
/* static void missile_adat_fly (); ** made external */
static void missile_adat_stop();
```

```
* ROUTINE: missile_adat_init
 * PARAMETERS: missile_array - A pointer to an array of
                  ADAT missiles defined in
                  vehicle specific code.
          num_missiles - The number missiles defined in *
                  _missile_array_.
 * RETURNS: none
 * PURPOSE: This routine copies the parameters into
          variables static to this module and initializes *
         the state of all the missiles. It also
         initializes the proximity fuze.
void missile_adat_init (missile_array, num_missiles)
ADAT_MISSILE missile_array[];
int num_missiles;
    int i; /* A counter. */
    REAL mag: /* Used to generate tube to sight matricies. */
    int data_tmp_int;
    float data_tmp;
    char descript[64];
    FILE *fp;
/* DEFAULT CHARACTERISTICS DATA FOR miss_adat.c READ FROM FILE
    fp = fopen("/simnet/data/ms_ad_ch.d","r");
    if(fp==NULL){
        fprintf(stderr, "Cannot open /simnet/data/ms_ad_ch.d\n");
        exit();
    }
    rewind(fp);
         Read array data */
    i=0;
    while(fscanf(fp, "%f", &data_tmp) != EOF){
        adat_miss_char[i] = data_tmp;
        fgets(descript, 64, fp);
         printf("adat_miss_char(%3d) is%11.3f %s", i,
            adat_miss_char[i], descript);
        ++i;
   }
   fclose(fp);
/* END DEFAULT CHARACTERISTICS DATA FOR miss_adat.c READ FROM FILE */
```

```
/* DEFAULT BURN SPEED DATA FOR miss_adat.c READ FROM FILE
                                                                          */
    fp = fopen("/simnet/data/ms_ad_bs.d","r");
    if(fp==NULL)(
        fprintf(stderr, "Cannot open /simnet/data/ms_ad_bs.d\n");
        exit():
    }
    rewind(fp);
         Read degree of polynomial */
    fscanf(fp,"%d", &data_tmp_int);
    ADAT_BURN_SPEED_DEG = data_tmp_int;
    fgets(descript, 64, fp);
     printf("adat_miss_poly_deg(0) is%3d %s",
        ADAT_BURN_SPEED_DEG, descript);
                                                     */
         Read array data */
    i=0:
    while(fscanf(fp,"%f", &data_tmp) != EOF){
        adat_burn_speed_coeff[i] = data_tmp;
        fgets(descript, 64, fp);
         printf("adat_burn_speed_coeff(%3d) is%11.3f %s", i,
            adat_burn_speed_coeff[i], descript); */
        ++i;
    }
    fclose(fp);
/* END DEFAULT BURN SPEED DATA FOR miss_adat.c READ FROM FILE */
/* DEFAULT COAST SPEED DATA FOR miss_adat.c READ FROM FILE
                                                                          */
    fp = fopen("/simnet/data/ms_ad_cs.d","r");
    if(fp==NULL)(
        fprintf(stderr, "Cannot open /simnet/data/ms_ad_cs.d\n");
        exit();
   }
   rewind(fp);
         Read degree of polynomial */
   fscanf(fp,"%d", &data_tmp_int);
   ADAT_COAST_SPEED_DEG = data_tmp_int;
   fgets(descript, 64, fp);
    printf("adat_miss_poly_deg(1) is%3d %s",
        ADAT_COAST_SPEED_DEG, descript);
                                                         */
        Read array data */
   i=0:
```

```
while(fscanf(fp, "%f", &data_tmp) != EOF){
        adat coast speed coeff[i] = data_tmp;
        fgets(descript, 64, fp);
         printf("adat_coast_speed_coeff(%3d) is%11.3f %s", i,
             adat_coast_speed_coeff[i], descript); */
        ++i;
    1
    fclose(fp);
/* END DEFAULT COAST SPEED DATA FOR miss_adat.c READ FROM FILE */
/* DEFAULT BURN TURN DATA FOR miss_adat.c READ FROM FILE
                                                                          */
    fp = fopen("/simnet/data/ms_ad_bt.d","r");
    if(fp==NULL){
        fprintf(stderr, "Cannot open /simnet/data/ms_ad_bt.d\n");
        exit();
    }
    rewind(fp);
         Read degree of polynomial */
    fscanf(fp,"%d", &data_tmp_int);
    ADAT_BURN_TURN_DEG = data_tmp_int;
    fgets(descript, 64, fp);
    printf("adat_miss_poly_deg(2) is%3d %s",
        ADAT_BURN_TURN_DEG, descript);
         Read array data */
    i=0:
    while(fscanf(fp, "%f", &data_tmp) != EOF){
        adat_burn_turn_coeff[i] = data_tmp;
        fgets(descript, 64, fp);
         printf("adat_burn_turn_coeff(%3d) is%11.3f %s", i,
            adat_burn_turn_coeff[i], descript); */
        ++i;
   }
    fclose(fp);
/* END DEFAULT BURN TURN DATA FOR miss_adat.c READ FROM FILE */
/* DEFAULT COAST TURN DATA FOR miss adat.c READ FROM FILE
    fp = fopen("/simnet/data/ms_ad_ct.d","r");
   if(fp==NULL){
        fprintf(stderr, "Cannot open /simnet/data/ms ad ct.d\n");
        exit():
   rewind(fp);
```

```
Read degree of polynomial */
    fscanf(fp,"%d", &data_tmp_int);
    ADAT_COAST_TURN_DEG = data_tmp_int;
    fgets(descript, 64, fp);
    printf("adat_miss_poly_deg(3) is%3d %s",
        ADAT_COAST_TURN_DEG, descript);
                                                      +/
         Read array data */
    i=0;
    while(fscanf(fp,"%f", &data_tmp) != EOF){
        adat_coast_turn_coeff[i] = data_tmp;
        fgets(descript, 64, fp);
         printf("adat_coast_turn_coeff(%3d) is%11.3f %s", i,
            adat_coast_turn_coeff[i], descript); */
        ++i:
   1
    fclose(fp);
/* END DEFAULT COAST TURN DATA FOR miss_adat.c READ FROM FILE */
/* DEFAULT TEMP BIAS DATA FOR miss_adat.c READ FROM FILE
                                                                         */
   fp = fopen("/simnet/data/ms_ad_tb.d","r");
   if(fp==NULL)(
        fprintf(stderr, "Cannot open /simnet/data/ms_ad_tb.d\n");
        exit():
   }
   rewind(fp);
        Read degree of polynomial */
   fscanf(fp,"%d", &data_tmp_int);
   ADAT_TEMP_BIAS_DEG = data_tmp_int;
   fgets(descript, 64, fp);
    printf("adat_miss_poly_deg(4) is%3d %s",
       ADAT_TEMP_BIAS_DEG, descript);
        Read array data */
   i=0:
   while(fscanf(fp,"%f", &data_tmp) != EOF){
       adat_temp_bias_coeff[i] = data_tmp;
       fgets(descript, 64, fp);
        printf("adat_temp_bias_coeff(%3d) is%11.3f %s", i,
           adat_temp_bias_coeff[i], descript); */
       ++i;
```

```
fclose(fp);
/* END DEFAULT TEMP BIAS DATA FOR miss_adat.c READ FROM FILE */
   num_adats = num_missiles;
  adat_array = missile_array;
  for (i = 0; i < num missiles; i++)
     adat_array[i].mptr.state = ADAT_FREE;
    adat_array[i].mptr.max_flight_time = ADAT_MAX_FLIGHT_TIME;
     adat_array[i].mptr.max_turn_directions = 1;

    Initialize the proximity fuze.

/+/
  missile_fuze_prox_init();
 Initialize the tube to sight transformation matricies.
  mag = sqrt (adat_burn_speed_coeff[0] * adat_burn_speed_coeff[0] +
       2.0 * adat_temp_bias_coeff[0] * adat_temp_bias_coeff[0]);
  tube_C_sight_right[1][0] = adat_temp_bias_coeff[0] / mag;
  tube_C_sight_right[1][1] = adat_burn_speed_coeff[0] / mag:
  tube_C_sight_right[1][2] = adat_temp_bias_coeff[0] / mag;
  mag = sqrt (tube_C_sight_right[1][0] * tube_C_sight_right[1][0] +
       tube_C_sight_right[1][1] * tube_C_sight_right[1][1]);
  tube_C_sight_right[0][0] = tube_C_sight_right[1][1] / mag;
  tube_C_sight_right[0][1] = -tube_C_sight_right[1][0] / mag;
  tube_C_sight_right[0][2] = 0.0;
  tube_C_sight_right[2][0] = tube_C_sight_right[1][2] *
       tube_C_sight_right[0][1];
  tube_C_sight_right[2][1] = -tube_C_sight_right[1][2] *
       tube_C_sight_right[0][0];
  tube_C_sight_right[2][2] = mag;
  mat_copy (tube_C_sight_right, tube_C_sight_left);
  tube_C_sight_left[0][1] = -tube_C_sight_left[0][1];
  tube_C_sight_left[1][0] = -tube_C_sight_left[1][0];
  tube_C_sight_left[2][0] = -tube_C_sight_left[2][0];
}
int missile_adat_is_free( missile )
int missile;
  return( (adat_array[missile].mptr.state == ADAT_FREE ));
}
* ROUTINE: missile_adat_fire
* PARAMETERS: aptr - A pointer to the ADAT missile to be
             fired.
```

```
target_type - The missile can be set for three *
                  types of targets by the launching *
                  vehicle. This variable stores 4
                  the setting.
          launch_point - The location in world
                   coordinates that the missile is *
                   launched from.
          loc_sight_to_world - The sight to world
                      transformation matrix used *
                      only in this routine.
          launch_speed - The speed of the launch
                  platform (assumed to be in the *
                  direction of the missile).
          range_to_intercept - Range to intercept.
          tube - The tube the missile was launched from. *
          target_vehicle_id - The vehicle ID of the
                     target (if any).
 * RETURNS: TRUE if successful, FALSE if not.
 * PURPOSE: This routine performs the functions
          specifically related to the firing of a ADAT
          missile.
int missile_adat_fire (aptr, target_type, launch_point, loc_sight_to_world,
     launch_speed, range_to_intercept, tube, target_vehicle_id)
ADAT_MISSILE *aptr;
int target_type;
VECTOR launch_point;
T_MATRIX loc_sight_to_world;
REAL launch_speed;
REAL range_to_intercept;
int tube;
VehicleID *target_vehicle_id;
                  /* A counter. */
  MISSILE *mptr;
                         /* Pointer to the particular generic missile
                  pointed at by _aptr_. */
  int comm_target_type; /* Indication of whether target is known. */
* Find _mptr_ and _target_id_.
  mptr = &c(aptr->mptr);
  if (target_vehicle_id == 0)
    aptr->target_vehicle_id.vehicle = vehicleIrrelevant;
  else
    aptr->target_vehicle_id = *target_vehicle_id;

    Set the initial time, location, orientation, and speed of the generic

* missile.
1+/
```

```
mptr->time = 0.0;
  vec_copy (launch_point, mptr->location);
  if (range_to_intercept < CLOSE_RANGE)
    mat_copy (loc_sight_to_world, mptr->orientation);
  else
   if (((tube / 2) * 2) == tube)
      mat_mat_mul (tube_C_sight_left, loc_sight_to_world,
          mptr->orientation);
    else
      mat mat mul(tube C sight_right, loc_sight_to_world,
          mptr->orientation);
  mptr->speed = missile_util_eval_poly (ADAT_BURN_SPEED_DEG,
      adat_burn_speed_coeff, 0.0) + launch_speed;
 mptr->init_speed = launch_speed;
Indicate that the proximity fuze has no vehicles it is tracking.
1+/
 aptr->pptr = NULL;
 Set fuze distance and fuze target according to missile target
* setting. Set network variables.
 switch (target_type)
 case ADAT TGT GND:
   aptr->fuze_dist_sq = 0.0;
   aptr->target_flag = PROX_FUZE_ON_NO_VEH;
   break;
 case ADAT_TGT_HELO:
   aptr->fuze_dist_sq = HELO_FUZE_DIST_SQ;
   if (aptr->target_vehicle_id.vehicle == vehicleIrrelevant)
     aptr->target_flag = PROX_FUZE_ON_ALL_VEH;
     aptr->target_flag = PROX_FUZE_ON_ONE_VEH;
   break;
 case ADAT TGT AIR:
   aptr->fuze_dist_sq = AIR_FUZE_DIST_SQ;
   if (aptr->target_vehicle_id.vehicle == vehicleIrrelevant)
     aptr->target_flag = PROX_FUZE_ON_ALL_VEH;
     aptr->target_flag = PROX_FUZE_ON_ONE_VEH;
   break:
 default:
   aptr->fuze_dist_sq = 0.0;
   aptr->target_flag = PROX_FUZE_ON_NO_VEH;
   printf ("MISS_ADAT: Unknown target type %d\n", target_type);
   break:
 if (aptr->target_vehicle_id.vehicle == vehicleIrrelevant)
```

```
comm_target_type = targetUnknown;
  else
     comm_target_type = targetIsVehicle;
 1+1
 * Tell the rest of the world about the firing of the missile. If this
 * cannot be done, return FALSE.
/+/
  if (!missile_util_comm_fire_missile (mptr, MSL_TYPE_MISSILE,
       map_get_ammo_entry_from_network_type (munition_US_ADATS),
       munition_US_ADATS, munition_US_ADATS, &(aptr->target_vehicle_id),
       comm_target_type, objectIrrelevant, tube))
    return (FALSE);
14/
 * If all was successful, put any flying missiles in an unguided state
 * and put this missile in a guided state.
  for (i = 0; i < num\_adats; i++)
    if ((adat_array[i].mptr.state == ADAT_GUIDE) | |
         (adat_array[i].mptr.state == ADAT_CLOSE))
       adat_array[i].mptr.state = ADAT_UNGUIDE;
  if (range_to_intercept < CLOSE_RANGE)
    mptr->state = ADAT_CLOSE;
  else
    mptr->state = ADAT_GUIDE;
  return (TRUE);
* ROUTINE: missile_adat_fly_missiles
* PARAMETERS: sight_location - The location in world
                  coordinates of the gunner's *
                  sight.
         loc_sight_to_world - The sight to world
                    transformation matrix used *
                    only in this routine.
         veh list - Vehicle list ID.
*RETURNS: none
* PURPOSE: This routine flies out all missiles in a
        flying state.
void missile_adat_fly_missiles (sight_location, loc_sight_to_world, veh_list)
VECTOR sight_location;
T_MATRIX loc_sight_to_world;
int veh_list;
  int i;
        /* A counter. */
```

```
/*/
  * Fly out all flying missiles.
   for (i = 0; i < num\_adats; i++)
     if (adat_array[i].mptr.state != ADAT_FREE)
       missile_adat_fly (&(adat_array[i]), sight_location,
            loc_sight_to_world, i, veh_list);
 }
 * ROUTINE: missile_adat_fly
 * PARAMETERS: aptr - A pointer to the ADAT missile that is to *
              be flown out.
          sight_location - The location in world
                   coordinates of the gunner's
         loc_sight_to_world - The sight to world
                     transformation matrix used *
                     only in this routine.
         tube - The tube the missile was launched from. *
         veh list - Vehicle list ID.
 * RETURNS: none
  PURPOSE: This routine performs the functions
         specifically related to the flying a ADAT
         missile.
void missile_adat_fly (aptr, sight_location, loc_sight_to_world, tube,
  veh_list)
ADAT_MISSILE *aptr;
VECTOR sight_location;
T_MATRIX loc_sight_to_world;
int tube;
int veh_list;
  MISSILE *mptr;
                      /* A pointer to the generic aspects of _aptr_. */
                    /* The current time after launch (ticks). */
  REAL time:
  REAL bias:
                   /* The value of the temporal bias. */
  Set _mptr_ and _time_. These values are created mostly for increased
* readablity.
  mptr = &(aptr->mptr);
  time = mptr->time;

    Find the current missile speed and the cosines of the maximum allowed turn
```

```
* angles in each direction. The equations used are different before and

    after motor burnout.

/*/
  if (time < ADAT_BURNOUT_TIME)
    mptr->speed = missile_util_eval_poly (ADAT_BURN_SPEED_DEG,
         adat_burn_speed_coeff, time) + mptr->init_speed;
    mptr->cos_max_turn[0] = missile_util_eval_poly (ADAT_BURN_TURN_DEG,
         adat burn_turn_coeff, time);
  else
    mptr->speed = missile_util_eval_poly (ADAT_COAST_SPEED_DEG,
         adat coast speed_coeff, time) + mptr->init_speed;
    mptr->cos_max_turn[0] = missile_util_eval_poly (ADAT_COAST_TURN_DEG,
        adat_coast_turn_coeff, time);
  }
* Find the target point, etc.
/*/
  if ((mptr->state == ADAT_GUIDE) | | (mptr->state == ADAT_CLOSE))
    if ((time < ADAT_TEMP_BIAS_TIME) && (mptr->state == ADAT_GUIDE))
      bias = missile_util_eval_poly (ADAT_TEMP_BIAS_DEG,
           adat_temp_bias_coeff, time);
      if (((tube / 2) * 2) == tube)
        missile_target_los_bias (mptr, sight_location,
            loc_sight_to_world, -bias, bias);
      else
        missile_target_los_bias (mptr, sight_location,
            loc_sight_to_world, bias, bias);
    }
    else
      missile_target_los (mptr, sight_location, loc_sight_to_world);
 else if (mptr->state == ADAT_UNGUIDE)
    missile_target_unguided (mptr);
 else
    printf ("MISSILE_ADAT: disallowed missile state %d\n", mptr->state);
 Try to actually fly the missile. If this fails stop the missile altogether
* and return.
 if (!missile_util_flyout (mptr))
   missile_adat_stop (aptr);
   return;
 else
```

```
If the missile successfully flew, process the proximity fuze.
     missile_fuze_prox (mptr, MSL_TYPE_MISSILE, aptr->target_flag.
         &(aptr->target_vehicle_id), &(aptr->pptr), veh_list,
         INVEST_DIST_SQ, aptr->fuze_dist_sq);
/*/
     If the missile successfully flew, check for an intersection with the
     ground or a vehicle. If one is found, blow up the missile, stop its
     flyout and return.
 /+/
     if (missile_util_comm_check_detonate (mptr, MSL_TYPE_MISSILE))
       missile_adat_stop (aptr);
       return:
 * If the missile is to continue to fly, return.
  return:
* ROUTINE: missile_adat_reset_missiles
* PARAMETERS: none
* RETURNS: none
 * PURPOSE: This routine puts any flying missile into an *
         unguided state.
void missile_adat_reset_missiles ()
  int i; /* A counter. */

    Reset all flying missiles.

  for (i = 0; i < num_adats; i++)
    if ((adat_array[i].mptr.state == ADAT_GUIDE) | |
         (adat_array[i].mptr.state == ADAT_CLOSE))
      adat_array[i].mptr.state = ADAT_UNGUIDE;
)
* ROUTINE: missile_adat_stop
* PARAMETERS: aptr - A pointer to the ADAT missile that is to *
```

```
be stopped.
* RETURNS: none
* PURPOSE: This routine causes all concerned to forget
         about the missile. It should be called when
         the flyout of any ADAT missile is stopped
         (whether or not it has exploded). Note that *
         this routine can only be called within this *
         module.
static void missile_adat_stop (aptr)
ADAT_MISSILE *aptr;
/*/
* Tell the world to stop worrying about this missile then release the
* memory for use by other missiles.
/*/
  missile_fuze_prox_stop (&(aptr->pptr));
  missile_util_comm_stop_missile (&(aptr->mptr), MSL_TYPE_MISSILE);
  aptr->mptr.state = ADAT_FREE;
orl1 33> logout
Connection closed.
wdl1-4>
```

22 January 1993 Reference # W003036 Rev. 0.0

Appendix F - Source code listing for miss_atgm.c.

The following appendix contains the source code listing for miss_atgm.c for convenience in document maintenance and understanding of the CSU.

```
/* $Header: /a3/adst-cm/RWA/simnet/vehicle/libsrc/libmissile/RCS/miss_atgm.c,v 1
.1 1992/09/30 16:39:52 cm-adst Exp $ */
* $Log: miss_atgm.c,v $
* Revision 1.1 1992/09/30 16:39:52 cm-adst
* Initial Version
static char RCS_ID[] = "$Header: /a3/adst-cm/RWA/simnet/vehicle/libsrc/libmissil
e/RCS/miss_atgm.c,v 1.1 1992/09/30 16:39:52 cm-adst Exp $";
* Revisions:
                                             SP/CR Number
    Version Date Author
                              Title
         10/23/92 R. Branson Data File Initiali-
                      zation
          10/30/92 R. Branson Added pathname to data
                      directory
          11/25/92 R. Branson Changed %i to %d
    SP/CR No. Description of Modification
            Hard coded defines changed to array elements.
            Characteristics/parameter data array added.
            Degree of polynomial data array added.
            Added file reads for ATGM characteristics/
              parameters, burn speed coefficients, coast speed
              coefficients, burn turn coefficients, and coast
              turn coefficients.
            Added "/simnet/data/" to each data file pathname.
* FILE:
          miss_atgm.c
* AUTHOR: Bryant Collard
* MAINTAINER: Bryant Collard
* PURPOSE: This missile is the same as the tow except
        it uses point targeting. It flys to a point
        rather than the view direction
```

```
* HISTORY: 10/31/88 bryant: Creation
         4/26/89 bryant: Added statically allocated mem *
 * Copyright (c) 1988 BBN Systems and Technologies, Inc.
 * All rights reserved.
#include "stdio.h"
#include "sim_types.h"
#include "sim_dfns.h"
#include "basic.h"
#include "mun_type.h"
#include "libmatrix.h"
#include "libmap.h"
#include "librva.h"
#include "miss_atgm.h"
#include "libmiss dfn.h"
#include "libmiss_loc.h"
* Define missile characteristics.
/*/
#define TOW_BURNOUT_TIME
                                 tow_miss_char[0]
#define TOW_RANGE_LIMIT_TIME tow_miss_char[1]
#define TOW_MAX_FLIGHT_TIME tow_miss_char[2]
#define ATGM_TURN_FACTOR tow_miss_char[3]
* The following terms set the order of the polynomials used to determine
* the speed or cosine of the maximum allowed turn rate of the missile
* at any point in time.
/*/
#define TOW_BURN_SPEED_DEG_tow_miss_poly_deg[0]
#define TOW_COAST_SPEED_DEG tow_miss_poly_deg[1]
#define TOW_BURN_TURN_DEG tow_miss_poly_deg[2]
#define TOW_COAST_TURN_DEG tow_miss_poly_deg[3]

    Tow missile characteristic parameters initialized to default values.

static REAL tow_miss_char[5] =
 24.0. /* ticks (1.6 sec) */
```

```
268.35, /* ticks (17.89 sec) */
  200.00, /* ticks - cos of max turn > 1.0 beyond this point */
   0.9, /* ATGM turn factor for wider turning capability */
   0.0
 1;
  * The following terms set the order of the polynomials used to determine
  * the speed and turn of the missile at any point in time.
 /*/
 static int tow_miss_poly_deg[5] =
   2,
        /* Speed before motor burnout. */
        /* Speed after motor burnout. */
        /* Cosine of max turn before burnout. */
  3.
        /* Cosine of max turn after burnout. */
  0
        /* not used. */
 }:
 * Coefficients for the speed polynomial before motor burnout initialized to
 * default values.
 /*/
static REAL tow_burn_speed_coeff[5] =
   4.46666667,
                    /* a_0 - m/tick (67.0 m/sec) */
   1.222103405,
                    /* a_1 - m/tick**2 (274.9732662 m/sec**2) */
  -0.024532086.
                    /* a_2 - m/tick**3 (-82.7057910 m/sec**3) */
   0.0.
  0.0
};
 * Coefficients for the speed polynomial after motor burnout initialized to
 * default values.
/*/
static REAL tow_coast_speed_coeff[5] =
  21.81905383,
                    /* a_0 - m/tick (327.2858074 m/sec) */
  -9.5382019e-2,
                  /* a_1 - m/tick**2 (-21.4609544 m/sec**2) */
   2.4378222e-4,
                  /* a_2 - m/tick**3 ( 0.8227650 m/sec**3) */
                  /* a_3 - m/tick**4 ( -0.0133200 m/sec**4) */
  -2.6311111e-7.
   0.0
};
/*/

    Coefficients for the cosine of max turn polynomials before motor burnout.

* The structure _MAX_COS_COEFF_ is used to store the values for the turn
* sideways, up, and down polynomials along with their order.
```

```
14/
  static MAX_COS_COEFF tow_burn_turn_coeff =
                /* Order of the polynomials. */
    1,
    {
                /* Sidewards turn. */
      0.999976868652, /* a_0 - cos(rad)/tick */
      -3.5933955e-7 /* a_1 - cos(rad)/tick**2 */
    },
                /* Upwards turn. */
      0.999960667258, /* a_0 - cos(rad)/tick */
     -3.1492328e-6 /* a_1 - cos(rad)/tick**2 */
   },
    1
               /* Downwards turn. */
      0.999978909989, /* a_0 - cos(rad)/tick */
     -7.8194991e-9 /* a_1 - cos(rad)/tick**2 */
 };
 * Coefficients for the cosine of max turn polynomials after motor burnout.
 /*/
 static MAX_COS_COEFF tow_coast_turn_coeff =
 {
   3,
               /* Order of the polynomials. */
               /* Sidewards turn. */
     0.99995112518, /* a_0 - cos(rad)/tick */
                  /* a_1 - cos(rad)/tick**2 */
     8.96333e-7,
    -5.995375e-9, /* a_2 - cos(rad)/tick**3 */
     1.162225e-11 /* a_3 - cos(rad)/tick**4 */
  },
              /* Upwards turn. */
    0.9998498495, /* a_0 - cos(rad)/tick */
     1.657779e-6, /* a_1 - cos(rad)/tick**2 */
    -8.231861e-9, /* a_2 - cos(rad)/tick**3 */
    1.381832e-11 /* a_3 - cos(rad)/tick**4 */
  },
              /* Downwards turn. */
    0.9999714014, /* a_0 - cos(rad)/tick */
    3.382077e-7, /* a_1 - cos(rad)/tick**2 */
    -1.601259e-9, /* a_2 - cos(rad)/tick**3 */
    2.623014e-12 /* a_3 - cos(rad)/tick**4 */
};
```

```
* Declare static functions.
 static void missile_atgm_stop ();
 * ROUTINE: missile_atgm_init
 * PARAMETERS: tptr-a pointer to the TOW to be initialized.
 * RETURNS: none *
* PURPOSE: This routine initializes the state of the
         missile to indicate that it is available and *
         sets values that never change.
void missile_atgm_init (tptr)
ATGM_MISSILE *tptr;
    int i;
    int data_tmp_int;
    float data_tmp;
    char descript[64];
    FILE *fp;
/* DEFAULT CHARACTERISTICS DATA FOR miss_atgm.c READ FROM FILE
    fp = fopen("/simnet/data/ms_at_ch.d","r");
    if(fp==NULL)(
        fprintf(stderr, "Cannot open /simnet/data/ms_at_ch.d\n");
    1
    rewind(fp);
         Read array data */
    i=0;
    while(fscanf(fp, "%f", &data_tmp) != EOF){
        tow_miss_char[i] = data_tmp;
        fgets(descript, 64, fp);
         printf("tow_miss_char(%3d) is%11.3f %s", i, tow_miss_char[i],
            descript);
        ++i;
    )
    fclose(fp);
/* END DEFAULT CHARACTERISTICS DATA FOR miss_atgm.c READ FROM FILE */
```

4

```
/* DEFAULT BURN SPEED DATA FOR miss_atgm.c READ FROM FILE
                                                                           */
     fp = fopen("/simnet/data/ms_at_bs.d","r");
     if(fp==NULL){
         fprintf(stderr, "Cannot open /simnet/data/ms_at_bs.d\n");
         exit();
     )
     rewind(fp);
          Read degree of polynomial */
     fscanf(fp,"%d", &data_tmp_int);
     TOW_BURN_SPEED_DEG = data_tmp_int;
     fgets(descript, 64, fp);
     printf("tow_miss_poly_deg(0) is%3d %s", TOW_BURN_SPEED_DEG,
         descript);
         Read array data */
    i=0:
    while(fscanf(fp, "%f", &data_tmp) != EOF){
        tow_burn_speed_coeff[i] = data_tmp;
        fgets(descript, 64, fp);
         printf("tow_burn_speed_coeff(%3d) is%11.3f %s", i,
            tow_burn_speed_coeff[i], descript);
        ++i;
    }
    fclose(fp);
/* END DEFAULT BURN SPEED DATA FOR miss_atgm.c READ FROM FILE */
/* DEFAULT COAST SPEED DATA FOR miss_atgm.c READ FROM FILE
                                                                           */
    fp = fopen("/simnet/data/ms_at_cs.d","r");
    if(fp==NULL)[
        fprintf(stderr, "Cannot open /simnet/data/ms_at_cs.d\n");
        exit():
   rewind(fp);
        Read degree of polynomial */
   fscanf(fp,"%d", &data_tmp_int);
   TOW_COAST_SPEED_DEG = data_tmp_int;
   fgets(descript, 64, fp);
    printf("tow_miss_poly_deg(1) is%3d %s", TOW_COAST_SPEED_DEG,
       descript);
        Read array data */
   i=0:
```

```
while(fscanf(fp,"%f", &data_tmp) != EOF){
         tow_coast_speed_coeff[i] = data_tmp;
         fgets(descript, 64, fp);
          printf("tow_coast_speed_coeff(%3d) is%11.3f %s", i,
             tow_coast_speed_coeff[i], descript);
         ++i:
     }
     fclose(fp);
/* END DEFAULT COAST SPEED DATA FOR miss_atgm.c READ FROM FILE */
/* DEFAULT BURN TURN DATA FOR miss_atgm.c READ FROM FILE
                                                                              +/
     fp = fopen("/simnet/data/ms_at_bt.d","r");
     if(fp==NULL){
         fprintf(stderr, "Cannot open /simnet/data/ms_at_bt.d\n");
    }
    rewind(fp);
          Read degree of polynomial */
    fscanf(fp,"%d", &data_tmp_int);
    TOW_BURN_TURN_DEG = data_tmp_int;
    tow_burn_turn_coeff.deg = data_tmp_int;
    fgets(descript, 64, fp);
     printf("tow_miss_poly_deg(2) is%3d %s", TOW_BURN_TURN_DEG,
        descript);
         Read array data */
    for (i=0; i <= data_tmp_int; i++) {
        fscanf(fp, "%f", &data_tmp);
        tow_burn_turn_coeff.side_coeff[i] = data_tmp;
        fgets(descript, 64, fp);
/*
         printf("tow_burn_turn_coeff.side_coeff(%3d) is%11.3f %s", i.
            tow_burn_turn_coeff.side_coeff[i], descript); */
    for (i=0; i <= data_tmp_int; i++) {
        fscanf(fp,"%f", &data_tmp);
        tow_burn_turn_coeff.up_coeff[i] = data_tmp;
        fgets(descript, 64, fp);
         printf("tow_burn_turn_coeff.up_coeff(%3d) is%11.3f %s", i,
            tow_burn_turn_coeff.up_coeff[i], descript); */
   for (i=0; i <= data_tmp_int; i++) {
        fscanf(fp, "%f", &data_tmp);
        tow_burn_turn_coeff.down_coeff[i] = data_tmp;
```

```
fgets(descript, 64, fp);
         printf("tow_burn_turn_coeff.down_coeff(%3d) is%11.3f %s", i,
/+
            tow_burn_turn_coeff.down_coeff[i], descript); */
   }
   fclose(fp);
/* END DEFAULT BURN TURN DATA FOR miss_atgm.c READ FROM FILE */
/* DEFAULT COAST TURN DATA FOR miss_atgm.c READ FROM FILE
                                                                              */
   fp = fopen("/simnet/data/ms_at_ct.d","r");
   if(fp==NULL)(
        fprintf(stderr, "Cannot open /simnet/data/ms_at_ct.d\n");
   }
   rewind(fp);
         Read degree of polynomial */
   fscanf(fp,"%d", &data_tmp_int);
   TOW_COAST_TURN_DEG = data_tmp_int;
   tow_coast_turn_coeff.deg = data_tmp_int;
   fgets(descript, 64, fp);
    printf("tow_miss_poly_deg(3) is%3d %s", TOW_COAST_TURN_DEG,
       descript);
        Read array data */
   for (i=0; i <= data_tmp_int; i++) {
       fscanf(fp,"%f", &data_tmp);
       tow_coast_turn_coeff.side_coeff[i] = data_tmp;
       fgets(descript, 64, fp);
        printf("tow_coast_turn_coeff.side_coeff(%3d) is%11.3f %s", i,
            tow_coast_turn_coeff.side_coeff[i], descript); */
   }
   for (i=0; i <= data_tmp_int; i++) (
       fscanf(fp,"%f", &data_tmp);
       tow_coast_turn_coeff.up_coeff[i] = data_tmp;
       fgets(descript, 64, fp);
        printf("tow_coast_turn_coeff.up_coeff(%3d) is%11.3f %s", i,
            tow_coast_turn_coeff.up_coeff[i], descript); */
   }
   for (i=0; i <= data_tmp_int; i++) {
       fscanf(fp,"%f", &data_tmp);
       tow_coast_turn_coeff.down_coeff[i] = data_tmp;
       fgets(descript, 64, fp);
        printf("tow_coast_turn_coeff.down_coeff(%3d) is%11.3f %s", i,
           tow_coast_turn_coeff.down_coeff[i], descript); */
  }
```

```
fclose(fp);
 /* END DEFAULT COAST TURN DATA FOR miss_atgm.c READ FROM FILE */
   tptr->mptr.state = FALSE:
   tptr->mptr.max_flight_time = TOW_MAX_FLIGHT_TIME;
   tptr->mptr.max_turn_directions = 3;
   /* change turn polynomial coefficients so missile has larger
   /* max turn angle. Since Ph determines when a vehicle should be */
   /* impacted, turn rates should not effect missile effectiveness */
  for (i=0; i<tow_burn_turn_coeff.deg; i++)
    tow_burn_turn_coeff.side_coeff[i] *= ATGM_TURN_FACTOR;
    tow_burn_turn_coeff.up_coeff[i] *= ATGM_TURN_FACTOR;
    tow_burn_turn_coeff.down_coeff[i] *= ATGM_TURN_FACTOR;
  for (i=0; i<tow_coast_turn_coeff.deg; i++)
    tow_coast_turn_coeff.side_coeff[i] *= ATGM_TURN_FACTOR;
    tow_coast_turn_coeff.up_coeff[i] *= ATGM_TURN_FACTOR;
    tow_coast_turn_coeff.down_coeff[i] *= ATGM_TURN_FACTOR;
}
* ROUTINE: missile_atgm_fire
* PARAMETERS: tptr - A pointer to the TOW missile to be
 PARAMETERS: launch_point - The location in world
                coordinates that the missile is *
                launched from.
        loc_sight_to_world - The sight to world
                   transformation matrix used *
                   only in this routine.
        launch_speed - The speed of the launch
                platform (assumed to be in the *
                direction of the missile).
        tube - The tube the missile was launched from. *
* RETURNS: none
 PURPOSE: This routine performs the functions
        specifically related to the firing of a TOW
        missile.
```

ATGM_MISSILE *missile_atgm_fire (tptr, launch_point, loc_sight_to_world,

```
launch speed, tube, try_to_hit_target, target_id, target_loc)
ATGM_MISSILE *tptr;
VECTOR launch_point;
T_MATRIX loc_sight_to_world;
REAL launch_speed;
int tube:
int try_to_hit_target;
VehicleID target_id;
VECTOR target_loc;
  MISSILE *mptr;
                       /* Pointer to the particular generic missile
                 pointed at by _tptr_. */
/*/
 Find _mptr_.
  mptr = &(tptr->mptr);

    Set the initial time, location, orientation, and speed of the generic

 * missile.
/*/
  mptr->time = 0.0;
  vec_copy (launch_point, mptr->location);
  mat_copy (loc_sight_to_world, mptr->orientation);
  mptr->speed = missile_util_eval_poly (TOW_BURN_SPEED_DEG,
      tow_burn_speed_coeff, 0.0) + launch_speed;
  mptr->init_speed = launch_speed;

    Set the wire as uncut.

/*/
  tptr->wire_is_cut = FALSE;
* if we are trying to hit a target then save the target_id. Otherwise,
* save the target location (some point in space)
  tptr->try_to_hit_target = try_to_hit_target;
  if (try_to_hit_target)
    tptr->target_id = target_id;
  else
    vec_copy(target_loc, tptr->target_location);
* Tell the rest of the world about the firing of the missile. If this
* cannot be done, return.
 if (!missile_util_comm_fire_missile (mptr, MSL_TYPE_MISSILE,
      map_get_ammo_entry_from_network_type (munition_US_TOW),
      munition_US_TOW, munition_US_TOW, NULL, targetUnknown,
      objectIrrelevant, tube))
```

```
return;
 1+/
  * If all was successful, set the missile state to TRUE and return.
   mptr->state = TRUE;
   return;
 * ROUTINE: missile_atgm_fly
 * PARAMETERS: tptr - A pointer to the TOW missile that is to *
              be flown out.
          sight_location - The location in world
                   coordinates of the gunner's
                   sight.
         loc_sight_to_world - The sight to world
                     transformation matrix used *
                     only in this routine.
 * RETURNS: none
 * PURPOSE: This routine performs the functions
         specifically related to the flying a TOW
         missile.
void missile_atgm_fly (tptr, sight_location, loc_sight_to_world)
ATGM_MISSILE *tptr;
VECTOR sight_location;
T_MATRIX loc_sight_to_world;
  MISSILE *mptr;
                      /* A pointer to the generic aspects of _tptr_. */
                    /* The current time after launch (ticks). */
  REAL time:
  VehicleAppearanceVariant *target_vehicle;
              /* pointer to target vehicles appearance packet */
  VECTOR target_plus_offset; /* this vector gives a targets location
                   with an appropriate offset for ground
                   vehs */
  static VECTOR ground_veh_offset = {0.0, 0.0, 1.0};
                  /* offset to aim missile at for ground vehs */
 Set _mptr_ and _time_. These values are created mostly for increased
* readablity.
  mptr = &c(tptr->mptr);
  time = mptr->time;
If the missile has reached its maximum range (not the maximum distance
* its allowed to fly), cut the wire.
1.1
```

```
if ((time > TOW RANGE LIMIT TIME) && !tptr->wire_is_cut)
    tptr->wire_is_cut = TRUE;
* Find the current missile speed and the cosines of the maximum allowed turn

    angles in each direction. The equations used are different before and

    after motor burnout.

/*/
  if (time < TOW_BURNOUT_TIME)
    mptr->speed = missile_util_eval_poly (TOW_BURN_SPEED_DEG,
         tow_burn_speed_coeff, time) + mptr->init_speed;
    missile_util_eval_cos_coeff (mptr, &tow_burn_turn_coeff, time);
  else
    mptr->speed = missile_util_eval_poly (TOW_COAST_SPEED_DEG,
         tow coast_speed_coeff, time) + mptr->init_speed;
    missile_util_eval_cos_coeff (mptr, &tow_coast_turn_coeff, time);
1+/

    If the wire has been cut, set the ground as the target; otherwise,

* find a target point which will fly the missile along the gunner's line of
  sight. This targeting scheme takes into account the errors introduced by

    attempting to guide the missile in a canted position.

 if (tptr->wire_is_cut)
    printf("G"):
    missile_target_ground (mptr);
 else
         if operator has successfully designated a target then
    * try_to_hit_target will be true. Therefore, we search the
    * list of targets for the vehicleID and fly missile to that
    * location.
        if try_to_hit_target is false then target point is passed
    * and we should fly the missile to the target_point.
        if try_to_hit_target is true and we can't find the
    * vehicle id in the rva list then the vehicle has dropped off the
    * net and we fly the missile into the ground.
    */
   if (tptr->try_to_hit_target)
      if ((target_vehicle = rva_get_veh_app_pkt (&(tptr->target_id))) !=
        NULL)
        /* if the target is a ground vehicle we need to guide */
        /* the missile to a point other than the center of mass */
```

```
/* for SIMNET ground vehicles the center of mass is on */
         /* the ground. This causes missiles to fly into the */
         /* ground
         if ((target_vehicle->guises.distinguished &
           (objectDomainMask | vehicleEnvironmentMask)) ==
           (objectDomainVehicle | vehicleEnvironmentGround))
           vec_add (target_vehicle->location, ground_veh_offset,
             target_plus_offset);
         else
           vec_copy (target_vehicle->location, target_plus_offset);
         missile_target_point(mptr, target_plus_offset);
      else
         /* printf("g"); */
        missile_target_unguided (mptr);
    else
       /* printf("p"); */
      /* guide the missile toward a point for 5 ticks, then just */
      /* fly it straight ahead. With the wide turning radius
      /* missile will fly around in circles otherwise
      if (time < 5.0)
        missile_target_point(mptr, tptr->target_location);
        missile_target_unguided (mptr);
 Try to actually fly the missile. If this fails stop the missile altogether
* and return.
 if (!missile_util_flyout (mptr))
   missile_atgm_stop (tptr);
   return;
 else
 1
    If the missile successfully flew, check for an intersection with the
```

```
ground or a vehicle. If one is found, blow up the missile, stop its
     flyout and return.
     if (missile_util_comm_check_intersection (mptr, MSL_TYPE_MISSILE))
       missile_util_comm_check_detonate (mptr, MSL_TYPE_MISSILE);
       missile_atgm_stop (tptr);
       return;
  )
1+1
 * If the missile is to continue to fly, return.
  return;
 * ROUTINE: missile_atgm_stop
 * PARAMETERS: tptr - A pointer to the TOW missile that is to *
            be stopped.
* RETURNS: none
* PURPOSE: This routine causes all concerned to forget *
         about the missile. It should be called when
         the flyout of any TOW missile is stopped
         (whether or not it has exploded). Note that
         this routine can only be called within this
         module.
static void missile_atgm_stop (tptr)
ATGM_MISSILE *tptr;
1
* Tell the world to stop worrying about this missile then release the

    memory for use by other missiles.

 missile_util_comm_stop_missile (&(tptr->mptr), MSL_TYPE_MISSILE);
  tptr->mptr.state = FALSE;
* ROUTINE: missile_atgm_cut_wire
* PARAMETERS: tptr - A pointer to the TOW missile whose wire *
        is to be cut.
* RETURNS: none
* PURPOSE: This routine sets a flag indicating that the *
        guidance wire of this missile is cut.
```

```
void missile_atgm_cut_wire (tptr)
ATGM_MISSILE *tptr;
{
/*/
* If the the wire is not already cut, cut the wire.
/*/
if (!tptr->wire_is_cut)
    tptr->wire_is_cut = TRUE;
}
```

22 January 1993 Reference # W003036 Rev. 0.0

Appendix G - Source code listing for miss_hellfr.c.

The following appendix contains the source code listing for miss_atgm.c for convenience in document maintenance and understanding of the CSU.

```
/* $Header: /a3/adst-cm/RWA/simnet/vehicle/libsrc/libmissile/RCS/miss_hellfr.c,v
1.1 1992/09/30 16:39:52 cm-adst Exp $ */
* $Log: miss_helifr.c,v $
* Revision 1.1 1992/09/30 16:39:52 cm-adst
* Initial Version
static char RCS_ID[] = "$Header: /a3/adst-cm/RWA/simnet/vehicle/libsrc/libmissil
e/RCS/miss_hellfr.c,v 1.1 1992/09/30 16:39:52 cm-adst Exp $";
* Revisions:
    Version Date Author Title
                                            SP/CR Number
    1.2 10/23/92 R. Branson Data File Initiali-
                      zation
    1.3 10/30/92 R. Branson Added pathname to data
                      directory
    1.4 11/25/92 R. Branson Changed %i to %d
    SP/CR No. Description of Modification
            Hard coded defines changed to array elements.
            Characteristics/parameter data array added.
            Degree of polynomial data array added.
            Added file reads for hellfire characteristics/
              parameters, burn speed coefficients, coast speed
              coefficients, and time-of-flight coefficients.
            Added "/simnet/data/" to each data file pathname.
• FILE:
          miss_hellfr.c
* AUTHOR: Bryant Collard
* MAINTAINER: Bryant Collard
* PURPOSE: This file contains routines which fly out a
        missile with the characteristics of a HELLFIRE *
        missile.
* HISTORY: 11/25/88 bryant: Creation
```

```
4/24/89 bryant: Added static memory allocation *
          08/07/90 bryant: NIU librva modifications.
          08/09/90 kris: corrected flight coefficients *
  * Copyright (c) 1988 BBN Systems and Technologies, Inc.
  * All rights reserved.
 #include "stdio.h"
 #include "math.h"
 #include "sim_types.h"
 #include "sim_dfns.h"
 #include "basic.h"
 #include "mun_type.h"
 #include "libmatrix.h"
 #include "libmap.h"
 /*-- need Range_Squared info --*/
 #include "libhull.h"
 #include "libkin.h"
#include "miss_hellfr.h"
#include "libmissile.h"
#include "libmiss_dfn.h"
#include "libmiss_loc.h"
/*/
 * Define missile characteristics.
#define HELLFIRE_ARM_TIME
                                    hellfr_miss_char[0]
#define HELLFIRE_BURNOUT_TIME hellfr_miss_char[ 1]
#define HELLFIRE_MAX_FLIGHT_TIME hellfr_miss_char[ 2]
#define SPEED_0
                           hellfr_miss_char[3]
#define THETA_0
                           hellfr_miss_char[4]
/*/

    Set parameters which will control flight trajectory behavior.

/*/
#define SIN_UNGUIDE
                               hellfr_miss_char[5]
#define COS_UNGUIDE
                                hellfr_miss_char[6]
#define SIN_CLIMB
                            hellfr_miss_char(7)
#define COS_CLIMB
                             hellfr_miss_char[8]
#define SIN_LOCK
                            hellfr_miss_char[9]
#define COS_LOCK
                             hellfr_miss_char(10)
#define COS_TERM
                             hellfr_miss_char[11]
#define COS_LOSE
                            hellfr_miss_char[12]
1.1
```

```
* The following terms set the order of the polynomials used to determine
 * the speed or cosine of the maximum allowed turn rate of the missile
 * at any point in time.
#define HELLFIRE_TOF_DEG
                                   hellfr_miss_poly_deg[ 0]
#define HELLFIRE_BURN_SPEED_DEG hellfr_miss_poly_deg[ 1]
#define HELLFIRE_COAST_SPEED_DEG hellfr_miss_poly_deg[ 2]
/*/

    Hellfire missile characteristic parameters initialized to default values.

static REAL hellfr_miss_char[15] =
 20.0,
               /* ticks (1.3 sec) */
  36.0.
              /* ticks (2.4 sec) */
              /* ticks (36 sec) */
 540.0,
  30.95953043,
                  /* max_speed
  0.046542113.
                  /* sin 4.0 deg */
  0.069756474,
  0.997564050,
                 /* cos 4.0 deg */
                 /* sin 3.5 deg */
  0.004072424.
                 /* cos 3.5 deg
  0.999991708,
                /* sin 9.0 deg
  0.156434465,
                                 */
  0.987688341,
                 /* cos 9.0 deg */
                 /* cos 76.0 deg */
  0.241921896,
                 /* cos 20.0 deg */
  0.939692621,
  0.0,
  0.0
};
/*/

    Hellfire missile polynomial degree initialized to default values.

static int hellfr_miss_poly_deg[ 3] =
ł
  4, /* tof poly degree
  3, /* burn speed poly degree */
  5 /* coast speed poly degree */
}:
* Coefficients for the TOF polynomial initialized to default values.
static REAL hellfire_tof_coeff[10] =
                              */ /* 1.2 seconds */
               /* a 0 tick
 18.0,
                  /*a_1 tick/meter */
  3.1461816e-2,
                  /* a_2 tick/meter^2 */
  3.1921274e-6,
  3.5260413e-10, /* a_3 tick/meter^3 */
 -2.8469594e-14, /* a_4 tick/meter^4 */
              /* a_5 tick/meter^5 */
  0.0.
```

```
0.0.
               /* a_6 tick/meter^6 */
   0.0.
               /* a_7 tick/meter^7 */
   0.0,
               /* a_8 tick/meter^8 */
               /* a 9 tick/meter^9 */
   0.0
 }:
 * Coefficients for the speed polynomial before motor burnout initialized to
 * default values.
 static REAL hellfire_burn_speed_coeff[10] =
                   /* a 0 - meters */
    2.0044395e-2.
   6.7384206e-1,
                   /* a_1 - m/tick */
   9.8007701e-3,
                  /* a 2 - m/tick^2 */
   -1.6782227e-4,
                  /* a_3 - m/tick^3 */
   0.0.
               /* a 4 - m/tick^4 */
   0.0,
               /* a_5 - m/tick^5 */
   0.0.
               /* a_6 - m/tick^6 */
   0.0.
               /* a_7 - m/tick^7 */
   0.0,
               /* a 8 - m/tick^8 */
               /* a 9 - m/tick^9 */
   0.0
}:
 * Coefficients for the speed polynomial after motor burnout initialized to
 * default values.
/*/
static REAL hellfire_coast_speed_coeff[10] =
   4.2738447e+1.
                   /* a_0 - meters */
  -4.1048613e-1, /* a_1 - m/tick */
   2.6023604e-3.
                   /* a 2-m/tick^2*/
  -8.4870417e-6.
                   /* a_3 - m/tick^3 */
   1.3322932e-8.
                   /* a_4 - m/tick^4 */
  -7.9542005e-12, /* a_5 - m/tick^5 */
   0.0.
              /* a_6 - m/tick^6 */
  0.0,
              /* a_7 - m/tick^7 */
  0.0,
              /* a_8 - m/tick^8 */
  0.0
              /* a_9 - m/tick^9 */
};
static ObjectType hellfire_ammo_type = munition_US_Hellfire;
static REAL
  max_range_limit, /*[MISSILE_US_MAX_RANGE_LIMIT]
  max_range_squared, /* [ MISSILE_US_MAX_RANGE_LIMIT ^ 2 ]
  speed_factor; /* [ MISSILE US SPEED FACTOR ]
/*/

    Declare static functions.

/*/
```

```
static void missile_hellfire_stop ();
  * ROUTINE: missile_hellfire_init
  * PARAMETERS: mptr - a pointer to the HELLFIRE to be
             initialized.
  * RETURNS: none
  * PURPOSE: This routine initializes 'ne state of the
         missile to indicate that it is available and
         sets values that never change.
 void missile_hellfire_init (mptr)
 MISSILE *mptr;
     int i;
     int data_tmp_int;
     float data_tmp;
     char descript[64];
    FILE *fp;
 /* DEFAULT CHARACTERISTIC DATA FOR miss_hellfr.c READ FROM FILE */
     fp = fopen("/simnet/data/ms_hf_ch.d","r");
    if(fp==NULL)[
         fprintf(stderr, "Cannot open /simnet/data/ms_hf_ch.d\n");
         exit();
    rewind(fp);
         Read array data */
    i=0;
    while(fscanf(fp,"%f", &data_tmp) != EOF)
        hellfr_miss_char[i] = data_tmp;
        fgets(descript, 64, fp);
         printf("hellfr_miss_char(%3d) is%11.3f %s", i,
            hellfr_miss_char[i], descript);
        ++i;
    )
    fclose(fp);
/* END DEFAULT CHARACTERISTIC DATA FOR miss_hellfr.c READ FROM FILE **
/* DEFAULT TIME-OF-FLIGHT DATA FOR miss_hellfr.c READ FROM FILE */
    fp = fopen("/simnet/data/ms_hf_tf.d","r");
   if(fp==NULL){
        fprintf(stderr, "Cannot open /simnet/data/ms_hf_tf.d\n");
```

```
exit();
    }
    rewind(fp);
                                       */
         Read degree of polynomial
    fscanf(fp,"%d", &data_tmp_int);
    hellfr_miss_poly_deg[0] = data_tmp_int;
    fgets(descript, 64, fp);
    printf("hellfr_miss_poly_deg(0) is%3d %s",
                                                     •/
             hellfr_miss_poly_deg[0], descript);
         Read array data */
    i=0;
    while(fscanf(fp,"%f", &data_tmp) != EOF)
        hellfire_tof_coeff[i] = data_tmp;
        fgets(descript, 64, fp);
         printf("hellfire_tof_coeff(%3d) is%11.3f %s", i,
             hellfire_tof_coeff[i], descript);
        ++i;
    }
    fclose(fp);
/* END DEFAULT TIME-OF-FLIGHT DATA FOR miss_hellfr.c READ FROM FILE */
/* DEFAULT BURN SPEED DATA FOR miss hellfr.c READ FROM FILE */
    fp = fopen("/simnet/data/ms_hf_bs.d","r");
    if(fp==NULL){
        fprintf(stderr, "Cannot open /simnet/data/ms_hf_bs.d\n");
   }
   rewind(fp);
         Read degree of polynomial
                                       •/
    fscanf(fp,"%d", &data_tmp_int);
    hellfr_miss_poly_deg[1] = data_tmp_int;
    fgets(descript, 64, fp);
    printf("hellfr_miss_poly_deg(1) is%3d %s",
                                                     */
            hellfr_miss_poly_deg[1], descript);
         Read array data */
   i=0:
   while(fscanf(fp,"%f", &data_tmp) != EOF)
```

```
{
         hellfire_burn_speed_coeff[i] = data_tmp;
         fgets(descript, 64, fp);
          printf("hellfire_burn_speed_coeff(%3d) is%11.3f %s", i,
             hellfire_burn_speed_coeff[i], descript);
     }
     fclose(fp);
 /* END DEFAULT BURN SPEED DATA FOR miss_hellfr.c READ FROM FILE
 /* DEFAULT COAST SPEED DATA FOR miss_hellfr.c READ FROM FILE */
     fp = fopen("/simnet/data/ms_hf_cs.d","r");
     if(fp==NULL)(
         fprintf(stderr, "Cannot open /simnet/data/ms_hf_cs.d\n");
         exit();
    rewind(fp);
         Read degree of polynomial
    fscanf(fp,"%d", &data_tmp_int);
    hellfr_miss_poly_deg[2] = data_tmp_int;
    fgets(descript, 64, fp);
     printf("hellfr_miss_poly_deg(2) is%3d %s",
             hellfr_miss_poly_deg[2], descript);
                                                    +/
         Read array data */
    i=0;
    while(fscanf(fp,"%f", &data_tmp) != EOF)
        hellfire_coast_speed_coeff[i] = data_tmp;
        fgets(descript, 64, fp);
         printf("hellfire_coast_speed_coeff(%3d) is%11.3f %s", i,
            hellfire_coast_speed_coeff[i], descript);
        ++i;
   }
    fclose(fp);
/* END DEFAULT COAST SPEED DATA FOR miss_hellfr.c READ FROM FILE
 mptr->state = FALSE;
  mptr->max_flight_time = HELLFIRE_MAX_FLIGHT_TIME;
 mptr->max_turn_directions = 1;
 speed_factor = MISSILE_US_SPEED_FACTOR;
 max_range_limit = MISSILE_US_MAX_RANGE_LIMIT;
 max_range_squared = max_range_limit * max_range_limit;
 hellfire_ammo_type = munition_US_Hellfire;
```

```
}
void missile_hellfire_set_speed_factor( scale_speed )
REAL scale_speed;
  speed_factor = scale_speed;
void missile_hellfire_set_max_range_limit( limit_range )
REAL limit_range;
  max_range_limit = limit_range;
  max_range_squared = max_range_limit * max_range_limit;
}
void missile_hellfire_set_ammo_type(ammo)
ObjectType ammo;
  hellfire_ammo_type = ammo;
* ROUTINE: missile_hellfire_calc_tof
* PARAMETERS: range - Range to target.
* RETURNS: Time Of Flight for _range_ meters to target. *
* PURPOSE: This routine evaluates the TOF poly and returns *
         the time of flight for a Hellfire Missile
         to fly _range_ meters.
REAL missile_hellfire_calc_tof( range )
REAL range;
  REAL time:
    missile_util_eval_poly( HELLFIRE_TOF_DEG, hellfire_tof_coeff, range );
  return( (time / speed_factor) );
* ROUTINE: missile_hellfire_fire
* PARAMETERS: mptr - A pointer to the HELLFIRE missile that *
             is to be launched.
         launch_point - The location in world
                  coordinates that the missile is *
                  launched from.
         launch_to_world - The transformation matrix of *
                   the launch platform to the
                   world.
         launch_speed - The speed of the launch
```

```
platform (assumed to be in the *
                  direction of the missile).
          tube - The tube the missile was launched from. *
 * RETURNS: none
 * PURPOSE: This routine performs the functions
          specifically related to the firing of a
          Hellfire missile.
 void missile_hellfire_fire (mptr, launch_point, launch_to_world, launch_speed,
     tube)
MISSILE *mptr;
 VECTOR launch_point;
 T_MATRIX launch_to_world;
REAL launch_speed;
int tube:
1
 1+1
 * Set the initial time, location, orientation, and speed of the generic
 * missile.
 /*/
#ifdef notdeff
  if( max_range_limit > 0.0 )
     mptr->max_flight_time =
       1.0 + missile_hellfire_calc_tof( max_range_limit );
#endif
  mptr->time = 0.0;
  vec_copy (launch_point, mptr->location);
  mat_copy (launch_to_world, mptr->orientation);
  mptr->speed = launch_speed +
     (speed_factor * (missile_util_eval_poly (HELLFIRE_BURN_SPEED_DEG,
                           hellfire_burn_speed_coeff,
                           0.0)));
  mptr->init speed = launch speed;
 * Tell the rest of the world about the firing of the missile. If this
* cannot be done, return.
/*/
  if (!missile_util_comm_fire_missile (mptr, MSL_TYPE_MISSILE,
       map_get_ammo_entry_from_network_type (hellfire_ammo_type),
      hellfire_ammo_type, hellfire_ammo_type, NULL,
       targetUnknown, objectIrrelevant, tube))
    return;
/*/

    If all was successful, set the missile state to TRUE and return.

  mptr->state = TRUE;
  return;
}
```

```
* ROUTINE: missile_hellfire_fly
 * PARAMETERS: mptr - A pointer to the HELLFIRE missile that *
             is to be flown out.
         target_location - The location in world
                   coordinates of the target.
 * RETURNS: none
 * PURPOSE: This routine performs the functions
         specifically related to the flying a HELLFIRE *
void missile_hellfire_fly (mptr, target_location)
MISSILE *mptr;
VECTOR target_location;
  register REAL time:
                            /* The current time after launch (ticks). */

    Set and _time_. This is created mostly for increased readablity.

  time = mptr->time;
1.1
* Find the current missile speed and the cosines of the maximum allowed turn
 * angles in each direction. The equations used are different before and
* after motor burnout.
  if (time < HELLFIRE_BURNOUT_TIME)
    mptr->speed = mptr->init_speed +
      (speed_factor *
       (missile_util_eval_poly (HELLFIRE_BURN_SPEED_DEG,
                     hellfire_burn_speed_coeff, time) ));
  }
  else
    mptr->speed = mptr->init_speed +
      (speed_factor *
       (missile_util_eval_poly (HELLFIRE_COAST_SPEED_DEG,
                    hellfire_coast_speed_coeff, time) ));
 }
* Note that this is a temporary method of finding the max turn angle.
 mptr->cos_max_turn[0] = cos (sqrt (mptr->speed / SPEED_0) * THETA_0);
* If the missile is not armed, fly in a search trajectory; otherwise, fly
* in a targeted trajectory.
/*/
 if( max_range_limit > 0 &&
```

```
kinematics_range_squared (veh_kinematics, mptr->location) >
   max_range_squared)
    missile_target_ground( mptr );
  else if (time < HELLFIRE_ARM_TIME)
    missile_target_agm (mptr, NULL, SIN_UNGUIDE, COS_UNGUIDE, SIN_CLIMB,
       COS CLIMB, SIN LOCK, COS_LOCK, COS_TERM, COS_LOSE);
  else
    missile_target_agm (mptr, target_location, SIN_UNGUIDE, COS_UNGUIDE,
       SIN_CLIMB, COS_CLIMB, SIN_LOCK, COS_LOCK, COS_TERM, COS_LOSE);
  Try to actually fly the missile. If this fails stop the missile altogether
* and return.
/*/
  if (!missile util_flyout (mptr))
    missile hellfire_stop (mptr);
    return:
  else
    If the missile successfully flew, check for an intersection with the
    ground or a vehicle. If one is found, blow up the missile, stop its
    flyout and return.
    if (missile_util_comm_check_intersection (mptr, MSL_TYPE_MISSILE))
      missile_util_comm_check_detonate (mptr, MSL_TYPE_MISSILE);
      missile_hellfire_stop (mptr);
      return:
 1
* If the missile is to continue to fly, return.
/*/
 return;
* ROUTINE: missile_hellfire_stop
* PARAMETERS: mptr - A pointer to the HELLFIRE missile that *
            is to be stopped.
* RETURNS: none
* PURPOSE: This routine causes all concerned to forget
        about the missile. It should be called when
        the flyout of any HELLFIRE missile is stopped *
        (whether or not it has exploded). Note that
        this routine can only be called within this
        module.
```

```
static void missile_hellfire_stop (mptr)
MISSILE *mptr;
{

/*/

* Tell the world to stop worrying about this missile then release the

* memory for use by other missiles.

/*/

missile_util_comm_stop_missile (mptr, MSL_TYPE_MISSILE);

mptr->state = FALSE;
}
```

The following appendix contains the source code listing for miss_kem.c for convenience in document maintenance and understanding of the CSU.

```
/* $Header: /a3/adst-cm/RWA/simnet/vehicle/libsrc/libmissile/RCS/miss_kem.c,v 1.
1 1992/09/30 16:39:52 cm-adst Exp $ */
* $Log: miss_kem.c,v $
 * Revision 1.1 1992/09/30 16:39:52 cm-adst
* Initial Version
+/
static char RCS_ID[] = "$Header: /a3/adst-cm/RWA/simnet/vehicle/libsrc/libmissil
e/RCS/miss_kem.c,v 1.1 1992/09/30 16:39:52 cm-adst Exp $";
* Revisions:
    Version Date Author Title
                                            SP/CR Number
    1.2 10/23/92 R. Branson Data File Initiali-
                      zation
    1.3 10/30/92 R. Branson Added pathname to data
                      directory
    1.4 11/25/92 R. Branson Changed %i to %d
    SP/CR No. Description of Modification
            Hard coded defines changed to array elements.
            Characteristics/parameter data array added.
            Degree of polynomial data array added.
            Added file reads for KEM characteristics/parameters,
              burn speed coefficients, coast speed coefficients,
              burn turn coefficients, and coast turn coeffi-
              cients.
            Added "/simnet/data/" to each data file pathname.
* FILE:
          miss_kem.c
* AUTHOR: Kris Bartol
* MAINTAINER: Kris Bartol: converted from miss_adat
* PURPOSE: This file contains routines which fly out a *
        missile with the characteristics of a KEM
```

```
missile.
 * HISTORY: 10/23/90 kris: converted from miss_adat
 * Copyright (c) 1989 BBN Systems and Technologies, Inc.
 * All rights reserved.
#include "stdio.h"
#include "math.h"
#include "sim_types.h"
#include "sim_dfns.h"
#include "basic.h"
#include "mun_type.h"
#include "libmap.h"
#include "libmatrix.h"
#include "miss_kem.h"
#include "libmiss_dfn.h"
#include "libmiss_loc.h"
* Define missile characteristics.
/*/
#define KEM_BURNOUT_TIME kem_miss_char[0]
#define KEM_MAX_FLIGHT_TIME kem_miss_char[1]
* just after burnout, max V = ~3418 \text{ m/tick} = ~230 \text{ m/sec}
* so in order to get the KEM missile to fly @ Vmax = 1524 m/2
* must multiply the speed calculated by 6.626 ~= 1524 / 230
•/
#define KEM_TO_MACH5_FACTOR kem_miss_char[2]
* Define the states the _KEM_MISSILE_ can be in.
/*/
#define KEM_FREE 0 /* No missile assigned. */
#define KEM_GUIDE 1 /* Missile flying and guided. */
#define KEM_UNGUIDE 2 /* Missile flying but unguided. */
* The following terms set the order of the polynomials used to determine
* the speed or cosine of the maximum allowed turn rate of the missile
* at any point in time.
1.1
#define KEM_BURN_SPEED_DEG kem_miss_poly_deg[0]
```

```
#define KEM_COAST_SPEED_DEG kem_miss_poly_deg[1]
 #define KEM_BURN_TURN_DEG
                                     kem_miss_poly_deg[2]
 #define KEM_COAST_TURN_DEG
                                      kem_miss_poly_deg[3]
 * ADAT missile characteristic parameters initialized to default values.
 /*/
static REAL kem_miss_char[10] =
   48.0, /* ticks (3.2 sec) */
  300.00, /* ticks (20.0 sec) */
   6.626, /* speed factor to raise from ADAT to KEM */
   0.0,
   0.0.
   0.0,
   0.0,
   0.0,
   0.0
};
* The following are the default values of the degree of polynomials.
/*/
static int kem_miss_poly_deg[5] =
 2,
        /* Speed before motor burnout. */
 4,
        /* Speed after motor burnout. */
        /* Cosine of max turn before burnout. */
 3,
 5,
        /* Cosine of max turn after burnout. */
 0
};
10/

    Coefficients for the speed polynomial before motor burnout initialized

* to default values.
/*/
static REAL kem_burn_speed_coeff[10] =
(
  2.296,
                /* a_0 - m/tick */
  0.72990856,
                 /* a_1 - m/tick**2 */
  0.013310932,
                  /* a_2 - m/tick**3 */
  0.0,
  0.0.
 0.0,
  0.0,
  0.0,
 0.0,
```

```
0.0
};
 /*/
 * Coefficients for the speed polynomial after motor burnout.
static REAL kem_coast_speed_coeff[10] =
                   /* a_0 - m/tick */
 105.52162,
                  /* a_1 - m/tick**2 */
  -1.0157285,
                  /* a_2 - m/tick**3 */
/* a_3 - m/tick**4 */
  5.6124330e-3,
  -1.6262608e-5,
                  /* a_4 - m/tick**5 */
  1.8991982e-8,
  0.0.
  0.0.
  0.0,
  0.0,
  0.0
};
* Coefficients for the cosine of max turn polynomial before motor burnout.
static REAL kem_burn_turn_coeff[10] =
  0.999993,
                 /* a 0 - cos(rad)/tick */
                 /* a_1 - cos(rad)/tick**2 */
 -6.2386917e-7,
  1.6146426e-7, /* a_2 - cos(rad)/tick**3 */
 -9.720142e-7,
                 /* a_3 - cos(rad)/tick**4 */
  0.0,
  0.0,
  0.0.
  0.0.
  0.0.
  0.0
};
* Coefficients for the cosine of max turn polynomial after motor burnout.
/*/
static REAL kem_coast_turn_coeff[10] =
                   /* a_0 - cos(rad)/tick */
  0.99753111,
  5.5817986e-5,
                  /* a_1 - cos(rad)/tick**2 */
                  /* a_2 - cos(rad)/tick**3 */
 -5.1276276e-7,
  2.2388593e-9,
                  /* a_3 - cos(rad)/tick**4 */
                   /* a_4 - cos(rad)/tick**5 */
 -5.1964622e-12,
  4.5499104e-15,
                    /* a_5 - cos(rad)/tick**6 */
```

```
0.0.
  0.0,
  0.0,
  0.0
};
/*/

    Memory for the missiles is declared in vehicle specific code. During

 * initialization, a pointer is assigned to this memory then some memory
 * issues are dealt with in this module.
static KEM_MISSILE *kem_array; /* A pointer to missile memory. */
                            /* The number of defined missiles. */
static int num kems;
/*/
* Declare static functions.
/+/
static void missile_kem_stop ();
* ROUTINE: missile_kem_init
* PARAMETERS: missile_array - A pointer to an array of
                 KEM missiles defined in *
                 vehicle specific code.
         num_missiles - The number missiles defined in *
                 _missile_array_.
*RETURNS: none
* PURPOSE: This routine copies the parameters into
         variables static to this module and initializes *
        the state of all the missiles.
void missile_kem_init (missile_array, num_missiles)
KEM_MISSILE missile_array[];
int num_missiles;
 int i; /* A counter. */
    int data_tmp_int;
    float data_tmp;
    char descript[64];
    FILE *fp;
/* DEFAULT CHARACTERISTICS DATA FOR miss_kem.c READ FROM FILE
                                                                                  +/
    fp = fopen("/simnet/data/ms_km_ch.d","r");
    if(fp==NULL){
        fprintf(stderr, "Cannot open /simnet/data/ms_km_ch.d\n");
        exit();
```

```
1
    rewind(fp);
         Read array data */
    i=0;
    while(fscanf(fp,"%f", &data_tmp) != EOF){
         kem_miss_char[i] = data_tmp;
         fgets(descript, 64, fp);
         printf("kem_miss_char(%3d) is%11.3f %s", i,
            kem_miss_char[i], descript);
    }
    fclose(fp):
/* END DEFAULT CHARACTERISTICS DATA FOR miss_kem.c READ FROM FILE
/* DEFAULT BURN SPEED DATA FOR miss kem.c READ FROM FILE
                                                                          */
    fp = fopen("/simnet/data/ms_km_bs.d","r");
    if(fp==NULL){
        fprintf(stderr, "Cannot open /simnet/data/ms_km bs.d\n");
        exit():
    rewind(fp);
         Read degree of polynomial */
    fscanf(fp,"%d", &data_tmp_int):
    KEM_BURN_SPEED_DEG = data_trap_int;
    fgets(descript, 64, fp);
     printf("kem_miss_poly_deg(0) is%3d %s",
        KEM_BURN_SPEED_DEG, descript);
                                                    +/
         Read array data */
    i=0:
    while(fscanf(fp,"%f", &data_tmp) != EOF){
        kem_burn_speed_coeff[i] = data_tmp;
        fgets(descript, 64, fp);
         printf("kem_burn_speed_coeff(%3d) is%11.3f %s", i,
            kem_burn_speed_coeff[i], descript); */
        ++i;
   }
   fclose(fp);
/* END DEFAULT BURN SPEED DATA FOR miss_kem.c READ FROM FILE */
/* DEFAULT COAST SPEED DATA FOR miss_kem.c READ FROM FILE
                                                                           */
   fp = fopen("/simnet/data/ms_km_cs.d","r");
```

```
if(fp==NULL){
        fprintf(stderr, "Cannot open /simnet/data/ms_km_cs.d\n");
        exit():
    rewind(fp);
         Read degree of polynomial */
    fscanf(fp,"%d", &data_tmp_int);
    KEM COAST SPEED DEG = data_tmp_int;
    fgets(descript, 64, fp);
     printf("kem_miss_poly_deg(1) is%3d %s",
                                                    +/
        KEM COAST SPEED DEG, descript);
         Read array data */
    i=0:
    while(fscanf(fp, "%f", &data_tmp) != EOF){
        kem_coast_speed_coeff[i] = data_tmp;
        fgets(descript, 64, fp);
         printf("kem_coast_speed_coeff(%3d) is%11.3f %s", i,
            kem_coast_speed_coeff[i], descript); */
        ++i;
    }
    fclose(fp);
/* END DEFAULT COAST SPEED DATA FOR miss_kem.c READ FROM FILE */
/* DEFAULT BURN TURN DATA FOR miss_kem.c READ FROM FILE
                                                                          */
    fp = fopen("/simnet/data/ms_km_bt.d","r");
    if(fp==NULL){
        fprintf(stderr, "Cannot open /simnet/data/ms_km_bt.d\n");
   )
   rewind(fp);
         Read degree of polynomial */
   fscanf(fp,"%d", &data_tmp_int);
   KEM_BURN_TURN_DEG = data_tmp_int;
   fgets(descript, 64, fp);
    printf("kem_miss_poly_deg(2) is%3d %s",
       KEM_BURN_TURN_DEG, descript);
                                                    •/
         Read array data */
   i=0:
   while(fscanf(fp,"%f", &data_tmp) != EOF){
       kem_burn_turn_coeff[i] = data_tmp;
```

```
fgets(descript, 64, fp);
          printf("kem_burn_turn_coeff(%3d) is%11.3f %s", i,
             kem_burn_turn_coeff[i], descript); */
     }
     fclose(fp);
 /* END DEFAULT BURN TURN DATA FOR miss_kem.c READ FROM FILE */
 /* DEFAULT COAST TURN DATA FOR miss_kem.c READ FROM FILE
                                                                            */
     fp = fopen("/simnet/data/ms_km_ct.d","r");
     if(fp==NULL)(
         fprintf(stderr, "Cannot open /simnet/data/ms_km_ct.d\n");
         exit():
     rewind(fp);
          Read degree of polynomial */
    fscanf(fp,"%d", &data_tmp_int);
    KEM_COAST_TURN_DEG = data_tmp_int;
    fgets(descript, 64, fp);
     printf("kem_miss_poly_deg(3) is%3d %s",
         KEM_COAST_TURN_DEG, descript);
          Read array data */
    i=0:
    while(fscanf(fp, "%f", &data_tmp) != EOF){
        kem_coast_turn_coeff[i] = data_tmp;
         fgets(descript, 64, fp);
         printf("kem_coast_turn_coeff(%3d) is%11.3f %s", i,
            kem_coast_turn_coeff[i], descript); */
        ++i;
    }
    fclose(fp);
/* END DEFAULT COAST TURN DATA FOR miss_kem.c READ FROM FILE */
  num_kems = num_missiles;
  kem_array = missile_array;
  for (i = 0; i < num\_missiles; i++)
    kem_array[i].mptr.state = KEM_FREE;
    kem_array[i].mptr.max_flight_time = KEM_MAX_FLIGHT_TIME;
    kem_array[i].mptr.max_turn_directions = 1;
int missile_kem_is_free( missile )
```

```
int missile:
   return( (kem_array[missile].mptr.state == KEM_FREE ));
 * ROUTINE: missile_kem_fire
  PARAMETERS: kptr - A pointer to the KEM missile to be
          launch_point - The location in world
                  coordinates that the missile is *
                  launched from.
          loc_sight_to_world - The sight to world
                     transformation matrix used *
                     only in this routine.
         launch_speed - The speed of the launch
                  platform (assumed to be in the *
                  direction of the missile).
          target_id - Target's tracking ID
         target_loc - location of target in World Coord *
         target_vehicle_id - The vehicle ID of the
                    target (if any).
 * RETURNS:
               TRUE if successful, FALSE if not.
  PURPOSE:
               This routine performs the functions
         specifically related to the firing of a KEM
         missile.
int missile_kem_fire (kptr, launch_point, loc_sight_to_world, launch_speed,
            target_id, target_loc, target_vehicle_id)
KEM_MISSILE *kptr;
VECTOR launch_point;
T_MATRIX loc_sight_to_world;
REAL launch_speed;
int target_id;
VECTOR target_loc;
VehicleID *target_vehicle_id;
                  /* A counter. */
 int i;
                        /* Pointer to the particular generic missile
  MISSILE *mptr;
                  pointed at by _kptr_. */
 int comm_target_type; /* Indication of whether target is known. */
 Find _mptr_ and _target_id_.
 mptr = &(kptr->mptr);
 if (target_vehicle_id == 0)
    kptr->target_vehicle_id.vehicle = vehicleIrrelevant;
 else
```

```
kptr->target_vehicle_id = *target_vehicle_id;
  kptr->target_id = target_id;
  vec copy( target loc, kptr->target_pos );
 * Set the initial time, location, orientation, and speed of the generic
 * missile.
  mptr->time = 0.0;
  vec_copy (launch_point, mptr->location);
  mat_copy (loc_sight_to_world, mptr->orientation);
  mptr->speed = (missile_util_eval_poly (KEM_BURN_SPEED_DEG,
      kem burn speed_coeff, 0.0) * KEM_TO_MACH5_FACTOR) + launch_speed;
  mptr->init_speed = launch_speed;
  if (kptr->target_vehicle_id.vehicle == vehicleIrrelevant)
    comm_target_type = targetUnknown;
    comm_target_type = targetIsVehicle;
 * Tell the rest of the world about the firing of the missile. If this
* cannot be done, return FALSE.
  if (!missile_util_comm_fire_missile (mptr, MSL_TYPE_MISSILE,
      map_get_ammo_entry_from_network_type (munition_US_ADATS),
      munition_US_ADATS, munition_US_ADATS, &(kptr->target_vehicle_id),
      comm_target_type, objectirrelevant, 0 /*tube*/))
    return (FALSE);
* If all was successful, fly missile in guided state.
  mptr->state = KEM_GUIDE;
  return (TRUE);
* ROUTINE: missile_kem_update_guidance
* PARAMETERS: missile - An index to the KEM missile that
            is to be updated.
         target_location - The location in world
                  coordinates of the target
* RETURNS: none
 PURPOSE: This routine updates the KEM's target's
         position in world coordinates.
void missile_kem_update_guidance( missile, target_location )
int missile:
```

```
VECTOR target_location;
  if( kem_array[missile].mptr.state == KEM_GUIDE )
    vec_copy( target_location, kem_array[missile].target_pos );
* ROUTINE: missile_kem_fly
* PARAMETERS: missile - An index to the KEM missile that
         is to be flown out.
* RETURNS: none
* PURPOSE: This routine performs the functions
        specifically related to the flying a KEM
        missile.
void missile_kem_fly( missile )
int missile:
 KEM_MISSILE *kptr; /* A pointer to a KEM missile */
 MISSILE *mptr; /* A pointer to the generic aspects of _kptr_. */
                /* The current time after launch (ticks). */
 REAL time;
* Set _kptr_, _mptr_ and _time_. These values are created mostly

    for increased readablity.

 kptr = &kem_array[missile];
 mptr = &(kptr->mptr);
 time = mptr->time;

    Find the current missile speed and the cosines of the maximum allowed turn

* angles in each direction. The equations used are different before and
* after motor burnout.
 if (time < KEM_BURNOUT_TIME)
   mptr->speed = (missile_util_eval_poly (KEM_BURN_SPEED_DEG,
       kem_burn_speed_coeff, time) * KEM_TO_MACH5_FACTOR) +
         mptr->init_speed;
   mptr->cos_max_turn[0] = missile_util_eval_poly (KEM_BURN_TURN_DEG,
       kem_burn_turn_coeff, time);
 }
 else
   mptr->speed = (missile_util_eval_poly (KEM_COAST_SPEED_DEG,
       kem_coast_speed_coeff, time) * KEM_TO_MACH5_FACTOR) +
         mptr->init_speed;
   mptr->cos_max_turn[0] = missile_util_eval_poly (KEM_COAST_TURN_DEG,
       kem_coast_turn_coeff, time);
```

```
}
 * Find the target point = Missile's Target's position regardless of state
  if(mptr->state == KEM_GUIDE | | mptr->state == KEM_UNGUIDE)
    missile_target_point( mptr, kptr->target_pos );
    printf ("MISSILE_KEM: disallowed missile state %d\n", mptr->state);
   Try to actually fly the missile. If this fails stop the missile altogether
 and return.
  if (!missile_util_flyout (mptr)) /* checks for time > max_flight_time */
    missile_kem_stop (kptr);
    return;
  else
    If the missile successfully flew, check for an intersection with the
    ground or a vehicle. If one is found, blow up the missile, stop its
    flyout and return.
    if (missile_util_comm_check_detonate (mptr, MSL_TYPE_MISSILE))
      missile_kem_stop (kptr);
      return;
  }
* If the missile is to continue to fly, return.
/*/
  return;
* ROUTINE: missile_kem_reset_missiles
PARAMETERS: none
* RETURNS: none
* PURPOSE: This routine puts any flying missile into an
         unguided state.
void missile_kem_reset_missiles ()
 int ı,
* Reset all flying missiles.
```

```
*/
  for (i = 0; i < num\_kems; i++)
    if( kem_array[i].mptr.state == KEM_GUIDE )
      kem_array[i].mptr.state = KEM_UNGUIDE;
1
* ROUTINE: missile_kem_stop
* PARAMETERS: kptr - A pointer to the KEM missile that is to *
           be stopped.
* RETURNS: none
* PURPOSE: This routine causes all concerned to forget *
        about the missile. It should be called when
        the flyout of any KEM missile is stopped
        (whether or not it has exploded). Note that *
        this routine can only be called within this *
        module.
static void missile_kem_stop (kptr)
KEM_MISSILE *kptr;
* Tell the world to stop worrying about this missile then release the
* memory for use by other missiles.
  missile_util_comm_stop_missile (&(kptr->mptr), MSL_TYPE_MISSILE);
  kptr->mptr.state = KEM_FREE;
```

The following appendix contains the source code listing for miss_maverck.c for convenience in document maintenance and understanding of the CSU.

```
/* $Header: /a3/adst-cm/RWA/simnet/vehicle/libsrc/libmissile/RCS/miss_maverck.c,
v 1.1 1992/09/30 16:39:52 cm-adst Exp $ */
 * $Log: miss_maverck.c,v $
 * Revision 1.1 1992/09/30 16:39:52 cm-adst
 * Initial Version
static char RCS ID[] = "$Header: /a3/adst-cm/RWA/simnet/vehicle/libsrc/libmissil
e/RCS/miss_maverck.c,v 1.1 1992/09/30 16:39:52 cm-adst Exp $";
* Revisions:
                                            SP/CR Number
    Version Date Author Title
          10/23/92 R. Branson Data File Initiali-
                      zation
    1.3 10/30/92 R. Branson Added pathname to data
                      directory
         11/25/92 R. Branson Changed %i to %d
    SP/CR No. Description of Modification
            Hard coded defines changed to array elements.
            Characteristics/parameter data array added.
            Degree of polynomial data array added.
            Added file reads for maverick characteristics/
              parameters, burn speed coefficients, and coast
              speed coefficients.
            Added "/simnet/data/" to each data file pathname.
* FILE: miss_maverick.c
* AUTHOR: Bryant Collard
* MAINTAINER: Bryant Collard
* PURPOSE: This file contains routines which fly out a *
        missile with the characteristics of a MAVERICK *
        missile.
* HISTORY: 12/8/88 bryant: Creation
```

```
4/24/89 bryant: Added static memory allocation. *
         7/26/91 carol: libtrack/intervis integration *
  * Copyright (c) 1988 BBN Systems and Technologies, Inc.
  All rights reserved.
 #include "stdio.h"
 #include "math.h"
 #include "sim_types.h"
 #include "sim dfns.h"
 #include "basic.h"
 #include "mun_type.h"
 #include "libmap.h"
 #include "libmatrix.h"
 #include "libnear.h"
 #include "libtrack.h"
#include "miss_maverck.h"
#include "libmiss_dfn.h"
#include "libmiss_loc.h"

    Define missile characteristics.

/*/
#define MAVERICK_ARM_TIME
                                    maverick_miss_char[0]
#define MAVERICK_BURNOUT_TIME maverick_miss_char[1]
#define MAVERICK_MAX_FLIGHT_TIME maverick_miss_char[ 2]
#define MAVERICK_LOCK_THRESHOLD maverick_miss_char[3]
#define MAVERICK_HOLD_THRESHOLD maverick_miss_char[4]
#define SPEED_0
                          maverick_miss_char[5]
#define THETA_0
                          maverick miss char[6]
* Set parmeters which will control flight trajectory behavior.
#define SIN_UNGUIDE
                           maverick_miss_char[7]
#define COS_UNGUIDE
                           maverick_miss_char(8)
#define SIN_CLIMB
                        maverick_miss_char[9]
#define COS_CLIMB
                         maverick_miss_char[10]
#define SIN_LOCK
                        mayerick miss char[11]
#define COS_LOCK
                         maverick_miss_char[12]
#define COS_TERM
                         maverick_miss_char[13]
#define COS_LOSE
                        maverick_miss_char[14]
/*/
```

```
* Define the states the _MAVERICK_MISSILE_ can be in.
 /*/
 #define MAVERICK_FREE 0 /* No missile assigned. */
 #define MAVERICK READY 1 /* Missile assigned to ready state. */
#define MAVERICK_FLYING 2 /* Missile assigned to flying state. */
 /*/
 * The following terms set the order of the polynomials used to determine
 * the speed or cosine of the maximum allowed turn rate of the missile
 * at any point in time.
 /*/
#define MAVERICK BURN_SPEED_DEG maverick_miss_poly_deg[0]
#define MAVERICK_COAST_SPEED_DEG maverick_miss_poly_deg[1]

    Maverick missile characteristic parameters initialized to default values.

static REAL maverick_miss_char[15] =
  20.0.
            /* maverick arm time ticks (1.3 sec) */
  22.5,
           /* maverick burnout time ticks (1.5 sec) */
           /* maverick max flight time ticks (60 sec) */
  0.989073800, /* maverick lock threshold cos (6 deg) ** 2 */
  0.969846310, /* maverick hold threshold cos (10 deg) ** 2 */
  28.33333333, /* speed_0 */
  0.046542113, /* theta_0 */
           /* sin level unguided flight. */
           /* cos level unguided flight. */
  0.004072424, /* sin climb 3.5 deg/sec */
  0.999991708, /* cos climb 3.5 deg/sec */
  0.087155743, /* sin lock 5 deg */
  0.996194698, /* cos lock 5 deg */
  0.173648178, /* cos terminal 80 deg */
  0.939692621 /* cos loose lock 20 deg */
};

    The following terms set the order of the polynomials used to determine

* the speed.
static int maverick_miss_poly_deg[2] =
       /* Maverick burn speed degree. */
 1,
 3
       /* Maverick coast speed degree. */
1;

    Coefficients for the speed polynomial before motor burnout.

/*/
```

```
static REAL maverick_burn_speed_coeff[5] =
  0.03333333.
                 /* a 0 - m/tick (67.0 m/sec) */
                 /* a 1 - m/tick**2 (274.9732662 m/sec**2) */
  1.25777777
}:
/*/

    Coefficients for the speed polynomial after motor burnout.

static REAL maverick_coast_speed_coeff[5] =
                   /* a 0 - m/tick (327.2858074 m/sec) */
  30.46972849.
                   /* a_1 - m/tick**2 (-21.4609544 m/sec**2) */
  -9.7721160e-2,
   1.2433925e-4, /* a_2 - m/tick**3 (0.8227650 m/sec**3) */
                   /* a_3 - m/tick**4 (-0.0133200 m/sec**4) */
  -5.4061501e-8
}:
/*/
Memory for the missiles is declared in vehicle specific code. During
* initialization, a pointer is assigned to this memory then all memory
* issues are dealt with in this module.
static MAVERICK_MISSILE *maverick_array; /* A pointer to missile memory. */
                                  /* The number of defined missiles. */
static int num_mavericks;
#define STRING_LEN 20
static char prelaunch_intervis_method [STRING_LEN + 1] = "lrf";
static char in_flight_intervis_method [STRING_LEN + 1] = "omniscient";
static PFI pel_callback_func;
static REAL maverick_cone_threshold;
/*/
* Declare static functions.
1 - 1
static void missile_maverick_fly ();
static MAVERICK_MISSILE *missile_maverick_get_missile_from_sensor_id ();
static void missile_maverick_lock_handler ();
static void missile_maverick_break_lock_handler ();
static REAL missile_maverick_detectibility ();
static void missile_maverick_object_update ();
* ROUTINE: missile_maverick_init
* PARAMETERS: missile_array - A pointer to an array of
                 MAVERICK missiles defined in *
                 vehicle specific code.
```

```
num missiles - The number missiles defined in *
                 _missile_array_.
 * RETURNS: none
 * PURPOSE: This routine copies the parameters into
         variables static to this module and initializes *
         the state of all the missiles.
 void missile_maverick_init (missile_array, num_missiles, func)
 MAVERICK_MISSILE missile_array[];
int num_missiles;
PFI func:
  int i; /* A counter. */
    int data_tmp_int;
    float data_tmp;
    char descript[64];
    FILE *fp;
/* DEFAULT CHARACTERISTICS DATA FOR miss_maverck.c READ FROM FILE
    fp = fopen("/simnet/data/ms_mk_ch.d","r");
    if(fp==NULL){
        fprintf(stderr, "Cannot open /simnet/data/ms_mk_ch.d\n");
    rewind(fp);
         Read array data */
    i=0;
    while(fscanf(fp,"%f", &data_tmp) != EOF){
        maverick_miss_char[i] = data_tmp;
        fgets(descript, 64, fp);
         printf("maverick_miss_char(%3d) is%11.3f %s", i,
            maverick_miss_char(i), descript);
        ++i;
    }
    fclose(fp);
/* END DEFAULT CHARACTERISTICS DATA FOR miss_maverck.c READ FROM FILE */
/* DEFAULT BURN SPEED DATA FOR miss_maverck.c READ FROM FILE
                                                                             •/
    fp = fopen("/simnet/data/ms_mk_bs.d","r");
    if(fp==NULL){}
        fprintf(stderr, "Cannot open /simnet/data/rrs_mk_bs.d\n");
        exit();
```

```
num_missiles - The number missiles defined in *
                 _missile_array_.
 • RETURNS:
              none
               This routine copies the parameters into
 * PURPOSE:
         variables static to this module and initializes *
         the state of all the missiles.
void missile_maverick_init (missile_array, num_missiles, func)
MAVERICK MISSILE missile_array[];
int num missiles;
PFI func:
  int i; /* A counter. */
    int data_tmp_int;
    float data_tmp;
    char descript[64];
    FILE *fp;
/* DEFAULT CHARACTERISTICS DATA FOR miss_maverck.c READ FROM FILE
    fp = fopen("/simnet/data/ms_mk_ch.d","r");
    if(fp==NULL){
        fprintf(stderr, "Cannot open /simnet/data/ms_mk_ch.d\n");
        exit();
    }
    rewind(fp);
         Read array data */
    i=0:
    while(fscarf(fp, "%f", &data_tmp) != EOF){
        maverick_miss_char[i] = data_tmp;
        fgets(descript, 64, fp);
         printf("maverick_miss_char(%3d) is%11.3f %s", i,
            maverick_miss_char[i], descript);
        ++i;
    }
    fclose(fp);
/* END DEFAULT CHARACTERISTICS DATA FOR miss_maverck.c READ FROM FILE */
/* DEFAULT BURN SPEED DATA FOR miss_maverck.c READ FROM FILE
                                                                              */
    fp = fopen("/simnet/data/ms_mk_bs.d","r");
    if(fp==NULL)(
        fprintf(stderr, "Cannot open /simnet/data/ms_mk_bs.d\n");
        exit();
   }
```

```
rewind(fp);
         Read degree of polynomial */
    fscanf(fp, "%d", &data_tmp_int);
    MAVERICK_BURN_SPEED_DEG = data_tmp_int;
    fgets(descript, 64, fp);
    printf("maverick_miss_poly_deg(0) is%3d %s",
                                                            */
        MAVERICK_BURN_SPEED_DEG, descript);
         Read array data */
    i=0:
    while(fscanf(fp,"%f", &data_tmp) != EOF){
        maverick_burn_speed_coeff[i] = data_tmp;
        fgets(descript, 64, fp);
         printf("maverick_burn_speed_coeff(%3d) is%11.3f %s", i,
            maverick_burn_speed_coeff[i], descript);
        ++i;
   }
   fclose(fp);
/* END DEFAULT BURN SPEED DATA FOR miss_maverck.c READ FROM FILE
                                                                                */
/* DEFAULT COAST SPEED DATA FOR miss_maverck.c READ FROM FILE
                                                                             */
   fp = fopen("/simnet/data/ms_mk_cs.d","r");
   if(fp==NULL){
        fprintf(stderr, "Cannot open /simnet/data/ms_mk_cs.d\n");
   }
   rewind(fp);
         Read degree of polynomial */
   fscanf(fp,"%d", &data_tmp_int);
   MAVERICK_COAST_SPEED_DEG = data_tmp_int;
   fgets(descript, 64, fp);
    printf("maverick_miss_poly_deg(1) is%3d %s",
                                                             */
       MAVERICK_COAST_SPEED_DEG, descript);
         Read array data */
   i=0;
   while(fscanf(fp,"%f", &data_tmp) != EOF)[
       maverick_coast_speed_coeff[i] = data_tmp;
       fgets(descript, 64, fp);
        printf("maverick_coast_speed_coeff(%3d) is%11.3f %s", i,
            maverick_coast_speed_coeff[i], descript);
       ++i:
   1
```

```
fclose(fp);
/* END DEFAULT COAST SPEED DATA FOR miss_maverck.c READ FROM FILE
  maverick_cone_threshold = MAVERICK_LOCK_THRESHOLD;
  num_mavericks = num_missiles;
  maverick_array = missile_array;
  for (i = 0; i < num\_missiles; i++)
    maverick_array[i].mptr.state = MAVERICK_FREE;
    maverick_array[i].mptr.max_flight_time = MAVERICK_MAX_FLIGHT_TIME;
    maverick_array[i].mptr.max_turn_directions = 1;
    maverick_array[i].object_being_tracked = NO_OBJECT;
    maverick_array[i].sensor_id = NULL;
  pel_callback_func = func;
* ROUTINE: missile_maverick_sensor_init
* PARAMETERS: none
* RETURNS: none
* PURPOSE: Calls to initialize a libtrack sensor
void missile_maverick_sensor_init (mvptr, iv_method)
MAVERICK_MISSILE *mvptr;
char *iv_method;
 if (TrackSensorInit (missile_maverick_lock_handler,
            missile_maverick_break_lock_handler,
            missile maverick detectibility,
            pel_callback_func,
            missile_maverick_object_update,
            E_NANO,
            &cmvptr -> sensor_id) < 0)
   printf ("missile_maverick_sensor_init: TrackSensorInit: %s\n",
        TrackErrString());
 if (TrackSetIntervisibility (mvptr -> sensor_id, prelaunch_intervis_method)
   printf ("missile_maverick_sensor_init: TrackSetIntervisibility: %s\n",
        TrackErrString());
 if (TrackSetPersistence (mvptr -> sensor_id, 5 /* ticks of persistence */)
   printf ("missile_maverick_sensor_init: TrackSetPersistence: %s\n",
        TrackErrString());
```

```
if (TrackSetMaxResponses (mvptr -> sensor_id, 1) < 0)
     printf ("missile_maverick_sensor_init: TrackSetMaxResponses: %s\n",
         TrackErrString());
  if (TrackSetVehicleID (mvptr -> sensor_id, network_get_vehicle_id ()) < 0)
     printf ("missile_maverick_sensor_init: TrackSetVehicleID: %s\n",
         TrackErrString());
}
 * ROUTINE: missile_maverick_ready
 * PARAMETERS: none
 * RETURNS: A pointer to a missile that is currently
         available.
 * PURPOSE: This routine finds, if possible, a missile that *
         is not being used, puts it in a ready state and *
         returns a pointer to it.
MAVERICK_MISSILE *missile_maverick_ready ()
  int i; /* A counter. */

    Try to find a free missile.

  for (i = 0; i < num_mavericks; i++)
    If a free missile is found, put it in a ready state, clear the target
    ID and return a pointer to it.
    if (maverick_array[i].mptr.state == MAVERICK_FREE)
      maverick_array[i].mptr.state = MAVERICK_READY;
      maverick_array[i].target_vehicle_id.vehicle = vehicleIrrelevant;
      missile_maverick_sensor_init (&maverick_array[i],
                       prelaunch_intervis_method);
      return (&maverick_array[i]);
/*/

    If no free missile is found, return a NULL pointer.

 return (NULL);
```

```
* ROUTINE: missile_maverick_pre_launch
 * PARAMETERS: mvptr - A pointer to the missile that is to be *
             serviced.
         launch point - The location of the missile in *
                 world coordinates.
         launch to world - The transformation matrix of *
                   the missile to the world.
         veh list - Vehicle list ID.
* RETURNS: none
 * PURPOSE: This routine is called after a missile has been *
         readied and before it has been launched. It *
         determines if the seeker head can see a target *
         and, if it can see a target, stores its
         position.
void missile_maverick_pre_launch (mvptr, launch_point, launch_to_world,
  veh_list)
MAVERICK MISSILE *mvptr;
VECTOR launch_point;
T_MATRIX launch_to_world;
int veh_list;
  register TObjectP object;
  VECTOR object_loc;
* tick libtrack to update location and see if any callbacks need to be
* invoked.
/*/
 if (TrackUpdate (mvptr -> sensor_id, veh_list, launch_point,
           launch_{to}world[1]) < 0
    printf ("missile_maverick_pre_launch: TrackUpdate: %s\n",
        TrackErrString());
1+1
* If a target is found, store its location.
 if ((object = mvptr -> object_being_tracked) != NO_OBJECT)
   mvptr->target_vehicle_id = object -> var.vehicleID;
   GetLocationOfTObject (object, object_loc);
/* change pursuit to take a VECTOR rather than VAP for location */
   missile_target_pursuit (&(mvptr->mptr), object_loc);
 else
   mvptr->target_vehicle_id.vehicle = vehicleIrrelevant;
   if (TrackAcquire (mvptr -> sensor_id, veh_list, launch_point,
              launch_to_world[1]) < 0
      printf ("missile_maverick_pre_launch: TrackAcquire: %s\n",
          TrackErrString());
```

```
1
 * ROUTINE: missile_maverick_fire
 * PARAMETERS: mvptr - A pointer to the MAVERICK missile that *
             is to be launched.
         launch_point - The location in world
                 coordinates that the missile is *
                 launched from.
         launch_to_world - The transformation matrix of *
                   the launch platform to the *
                   world.
         launch_speed - The speed of the launch
                 platform (assumed to be in the *
                 direction of the missile).
         tube - The tube the missile was launched from. *
 * RETURNS: TRUE for a successful launch and FALSE for an *
         unsuccessful launch.
 * PURPOSE: This routine performs the functions
         specifically related to the firing of a
         MAVERICK missile.
int missile_maverick_fire (mvptr, launch_point, launch_to_world, launch_speed,
MAVERICK_MISSILE *mvptr;
VECTOR launch_point;
T_MATRIX launch_to_world;
REAL launch_speed;
int tube;
  MISSILE *mptr;
                      /* Pointer to the particular generic missile
                pointed at by _mvptr_. */
* Get a pointer to the generic elements of the MAVERICK missile. This

    improves code readability.

/*/
  mptr = &c(mvptr->mptr);
 Set the initial time, location, orientation, and speed of the generic
• missile.
  mptr->time = 0.0;
  vec_copy (launch_point, mptr->location);
  mat_copy (launch_to_world, mptr->orientation);
  mptr->speed = missile_util_eval_poly (MAVERICK_BURN_SPEED_DEG,
      maverick_burn_speed_coeff, 0.0) + launch_speed;
  mptr->init_speed = launch_speed;
```

```
/*/
 * Tell the rest of the world about the firing of the missile. If this
 * cannot be done, release the missile memory and return FALSE.
  if (!missile_util_comm_fire_missile (mptr, MSL_TYPE_MISSILE,
       map_get_ammo_entry_from_network_type (munition_US_Maverick),
       munition_US_Maverick, munition_US_Maverick,
       &(mvptr->target_vehicle_id), targetIsVehicle, objectIrrelevant,
      tube))
    mptr->state = MAVERICK_FREE;
    return (FALSE);
  }
 * If all was successful, set the missile state to MAVERICK_FLYING and
* return TRUE.
  mptr->state = MAVERICK_FLYING;
  return (TRUE);
* ROUTINE: missile_maverick_fly_missiles
* PARAMETERS: veh_list - Vehicle list ID.
* RETURNS: none
* PURPOSE: This routine flies out all missiles in a
        flying state.
void missile_maverick_fly_missiles (veh_list)
int veh_list;
       /* A counter. */
 int i;

    Fly out all flying missiles.

 for (i = 0; i < num_mavericks; i++)
    if (maverick_array[i].mptr.state == MAVERICK_FLYING)
      missile_maverick_fly (&(maverick_array[i]), veh_list);
 )
* ROUTINE: missile_maverick_fly
* PARAMETERS: mvptr - A pointer to the MAVERICK missile that *
            is to be flown out.
```

```
veh_list - Vehicle list ID.
* RETURNS: none
* PURPOSE: This routine performs the functions
         specifically related to the flying a MAVERICK
         missile.
static void missile_maverick_fly (mvptr, veh_list)
MAVERICK_MISSILE *mvptr;
int veh list;
                             /* A pointer to the generic aspects of
  register MISSILE *mptr;
                    _mvptr_. */
                        /* The current time after launch (ticks). */
  REAL time;
                             /* The location of the target. */
  VECTOR target_location;
* Set _mptr_ and _time_. These values are created mostly for increased
* readablity.
/*/
  mptr = &(mvptr->mptr);
  time = mptr->time;
* Find the current missile speed and the cosine of the maximum allowed turn
* angle. The equations used are different before and after motor burnout.
 if (time < MAVERICK_BURNOUT_TIME)
    mptr->speed = missile_util_eval_poly (MAVERICK_BURN_SPEED_DEG,
        maverick_burn_speed_coeff, time) + mptr->init_speed;
 }
 else
    mptr->speed = missile_util_eval_poly (MAVERICK_COAST_SPEED_DEG,
        maverick_coast_speed_coeff, time) + mp_r->init_speed;
 1
/*/
* Note that this is a temporary method of finding turn angle.
 mptr->cos_max_turn[0] = cos (sqrt (mptr->speed / (SPEED_0 +
      mptr->init_speed)) * THETA_0);
 if (TrackUpdate (mvptr -> sensor_id, veh_list, mptr -> location,
           mptr -> orientation[1]) < 0
    printf ("missile_maverick_fly: TrackUpdate: %s\n", TrackErrString ());
10/
* Find the target point to which the missile is to fly. The missile ignores
* any targets until it is armed.
 if (time < MAVERICK_ARM_TIME)
    missile_target_agm (mptr, NULL, SIN_UNGUIDE, COS_UNGUIDE, SIN_CLIMB,
```

```
COS_CLIMB, SIN_LOCK, COS_LOCK, COS_TERM, COS_LOSE);
  else
    TObjectP object = mvptr -> object_being_tracked;
     Try to find a target. If one is found, fly towards it in the
     proper trajectory, otherwise, fly in a search trajectory.
    if (object != NO_OBJECT)
      VECTOR target_location;
      GetLocationOfTObject (object, target_location);
      mvptr->target_vehicle_id = object -> var.vehicleID;
      missile_target_agm (mptr, target_location, SIN_UNGUIDE,
          COS_UNGUIDE, SIN_CLIMB, COS_CLIMB, SIN_LOCK, COS_LOCK,
          COS_TERM, COS_LOSE);
    }
    else
      mvptr->target_vehicle_id.vehicle = vehicleIrrelevant;
      if (TrackAcquire (mvptr -> sensor_id, veh_list, mptr -> location,
                mptr \rightarrow orientation[1]) < 0
        printf ("missile_maverick_fly: TrackAcquire: %s\n",
            TrackErrString ());
      missile_target_agm (mptr, NULL, SIN_UNGUIDE, COS_UNGUIDE,
          SIN_CLIMB, COS_CLIMB, SIN_LOCK, COS_LOCK, COS_TERM,
          COS_LOSE);
 1
 Try to actually fly the missile. If this fails stop the missile altogether
* and return.
 if (!missile_util_flvout (mptr))
   missile_maverick_stop (mvptr);
   return;
 else
 {
   If the missile successfully flew, check for an intersection with the
   ground or a vehicle. If one is found, blow up the missile, stop its
   flyout and return.
   if (missile_util_comm_check_intersection (mptr, MSL_TYPE_MISSILE))
     missile_util_comm_check_detonate (mptr, MSL_TYPE_MISSILE);
     missile_maverick_stop (mvptr);
     return;
```

```
}
 /*/
 * If the missile is to continue to fly, return.
   return:
 * ROUTINE: missile_maverick_stop
 * PARAMETERS: mvptr - A pointer to the MAVERICK missile that *
            is to be stopped.
 * RETURNS: none
 * PURPOSE: This routine causes all concerned to forget *
         about the missile. It should be called when
         the flyout of any MAVERICK missile is stopped *
         (whether or not it has exploded).
void missile_maverick_stop (mvptr)
MAVERICK_MISSILE *mvptr;
{
/*/
* If the world has been told to worry about this missile, tell it to stop
* then release missile memory for use by other missiles.
/*/
  if (mvptr->mptr.state == MAVERICK_FLYING)
    missile_util_comm_stop_missile (&(mvptr->mptr), MSL_TYPE_MISSILE);
  mvptr->mptr.state = MAVERICK_FREE;
  TrackSensorUnInit (mvptr -> sensor id);
  mvptr -> sensor_id = NULL;
  mvptr -> object_being_tracked = NO_OBJECT; /* perhaps call break lock? */
static MAVERICK_MISSILE *missile_maverick_get_missile_from_sensor_id (sensor_id)
int sensor_id;
  register MAVERICK_MISSILE *mvptr = maverick_array;
  register int i;
  for (i = 0; i < num\_mavericks; i++, mvptr++)
    if (mvptr -> sensor_id == sensor_id)
      return (mvptr);
  return (NULL);
```

```
static void missile_maverick_lock_handler (sensor_id, object)
int sensor_id;
TObjectP object;
  MAVERICK_MISSILE *mvptr;
  if (object == NO_OBJECT)
     if (TrackDontLock (sensor_id, object) < 0)
       printf ("MaverickLockHandler: TrackDontLock: %s\n",
           TrackErrString());
     return;
  if ((mvptr = missile_maverick_get_missile_from_sensor_id (sensor_id))
     != NULL)
/* already tracking an object, but because of the delay from the TrackAqcuire
  call, the lock handler has been invoked again. It does not matter if it is
  the same object or not as before. Just do not lock again */
    if (mvptr -> object_being_tracked != NO_OBJECT)
       if (TrackDontLock (sensor_id, object) < 0)</pre>
         printf ("MaverickLockHandler: TrackDontLock: %s\n",
             TrackErrString());
       return;
    mvptr -> object_being_tracked = object;
    if (TrackLock (sensor_id, object) < 0)</pre>
      printf ("MaverickLockHandler: TrackLock: %s\n", TrackErrString ());
  )
  else
    printf ("LockHandler: No missile for SensorId %d\n", sensor_id);
    if (TrackDontLock (sensor_id, object) < 0)
    printf ("MaverickLockHandler: TrackDontLock: %s\n",
         TrackErrString());
  }
}
static void missile_maverick_break_lock_handler (sensor_id, object)
int sensor_id;
TObjectP object;
  register MAVERICK_MISSILE *mvptr;
  if (object == NO_OBJECT)
  if ((mvptr = missile_maverick_get_missile_from_sensor_id (sensor_id))
    != NULL)
```

```
if (mvptr -> object_being_tracked == NO_OBJECT)
      printf ("MaverickBreakLockHandler: BREAK LOCK BUT NOT LOCKED !!!\n")
      return;
    }
    if (mvptr -> object_being_tracked != object)
      printf ("MaverickBreakLockHandler: BREAK LOCK ON UNKNOWN OBJECT!!!\n
");
       return:
    if (TrackBreakLock (sensor_id, object) < 0)
      printf ("MaverickBreakLockHandler: TrackBreakLock: %s\n",
           TrackErrString());
    mvptr -> object_being_tracbad = NO_OBJECT;
  }
  else
    printf ("BreakLockHandler: No missile for SensorId %d\n", sensor_id);
static REAL missile_maverick_detectibility (sensor_id, object, mav_loc,
                        mav_boresight,
                        flags)
int sensor_id;
TObjectP object;
VECTOR mav_loc;
VECTOR mav_boresight;
int flags;
  REAL detectibility;
  VECTOR target_location;
  VECTOR to_target;
  REAL dotProduct;
  MAVERICK_MISSILE *mvptr;
  /* Get location of object */
 GetLocationOfTObject (object, target_location);
  /* Determine detectibility. This is the cosine squared of the angle
  * between a vector from the sensor to the object and the boresight of
  * the sensor (for now).
  */
  /* Some of these computations may be duplicated in the tracking package.
  * May provide object calls to get them if that is more efficient.
  •/
```

```
vec_sub (target_location, mav_loc, to_target);
   dotProduct = vec_dot_prod (mav_boresight, to_target);
   detectibility = sign (dotProduct) * dotProduct * dotProduct /
           vec_dot_prod (to_target, to_target);
   /* if the object is outside the detection cone of the sensor,
   * return a detectibility of 0.
   •/
   if ((mvptr = missile_maverick_get_missile_from_sensor_id (sensor_id))
     != NULL)
     switch (mvptr -> mptr.state)
      case MAVERICK READY:
       maverick_cone_threshold = MAVERICK_LOCK_THRESHOLD;
       break:
      case MAVERICK_FLYING:
       maverick_cone_threshold = MAVERICK_HOLD_THRESHOLD;
      break;
     case MAVERICK_FREE:
     default:
      printf ("MaverickDetectibility: Maverick not READY or FLYING\n");
      maverick_cone_threshold = MAVERICK_LOCK_THRESHOLD;
      break;
    }
    if (detectibility < maverick_cone_threshold)
      detectibility = 0.0;
  }
  else
    printf ("MaverickDetectibility: no missile for sensorID %d\n",
        sensor_id);
  return (detectibility);
static void missile_maverick_object_update ()
MissileMaverickSetPrelaunchIntervisibility
* Called from command line switch processing code to set the intervisibility
* interface to use and the way to init it.
•/
```

)

{ }

```
void missile maverick_set_prelaunch_intervisibility_mode (mode)
 char *mode;
 {
   if (strlen (mode) > STRING_LEN)
     printf ("missile_maverick_set_prelaunch__intervisibility: type string to
 o long\n");
     return;
   strcpy (prelaunch_intervis_method, mode);
 * MissileMaverickSetLaunchedIntervisibility
 * Called from command line switch processing code to set the intervisibility
 * interface to use and the way to init it.
 */
void missile_maverick_set_launched_intervisibility_mode (mode)
char *mode;
  if (strlen (mode) > STRING_LEN)
     printf ("missile_maverick_set_launched__intervisibility: type string too
 long\n");
    return;
  strcpy (in_flight_intervis_method, mode);
is_maverick_flying (sensor_id)
register int sensor_id;
  register int i;
  for (i = 0; i < num_mavericks; i++)
    if (maverick_array[i].sensor_id == sensor_id)
       if (maverick_array[i].mptr.state == MAVERICK_FLYING)
         return (TRUE);
      else
         return (FALSE);
  return (FALSE);
static void (*sensor_uninit_func) ();
void sensor_uninit_callback (sensor_id)
```

```
int sensor_id;
{
    (*sensor_uninit_func) ();
}

missile_maverick_prepare_to_uninit_seeker (mvptr, uninit_func)
MAVERICK_MISSILE *mvptr;
void (*uninit_func) ();
{
    sensor_uninit_func = uninit_func;
    TrackSensorUnInitPrep (mvptr -> sensor_id, sensor_uninit_callback);
}
```

The following appendix contains the source code listing for miss_nlos.c for convenience in document maintenance and understanding of the CSU.

```
/* $Header: /a3/adst-cm/RWA/simnet/vehicle/libsrc/libmissile/RCS/miss_nlos.c,v 1
.1 1992/09/30 16:39:52 cm-adst Exp $ */
 * $Log: miss_nlos.c,v $
 * Revision 1.1 1992/09/30 16:39:52 cm-adst
 * Initial Version
static char RCS_ID[] = "$Header: /a3/adst-cm/RWA/simnet/vehicle/libsrc/libmissil
e/RCS/miss_nlos.c,v 1.1 1992/09/30 16:39:52 cm-adst Exp $";
* Revisions:
    Version Date Author Title
                                            SP/CR Number
          10/23/92 R. Branson Data File Initiali-
                      zation
    1.3 10/30/92 R. Branson Added pathname to data
                      directory
         11/25/92 R. Branson Changed %i to %d
    SP/CR No. Description of Modification
            Hard coded defines changed to array elements.
            Characteristics/parameter data array added.
            Degree of polynomial data array added.
            Added file reads for NLOS characteristics/
              parameters, burn speed coefficients, and coast
              speed coefficients.
            Added "/simnet/data/" to each data file pathname.
* FILE: miss_nlos.c
* AUTHOR: Bryant Collard
* MAINTAINER: Bryant Collard
* PURPOSE: This file contains routines which fly out a
        missile with the characteristics of a NLOS
        missile.
* HISTORY: 11/25/88 bryant: Creation
```

```
4/24/89 bryant: Added static memory allocation *
         05/17/89 dan: changed hellfire to nlos
 * Copyright (c) 1988 BBN Systems and Technologies, Inc.
 * All rights reserved.
#include "stdio.h"
#include "math.h"
#include "sim_types.h"
#include "sim_dfns.h"
#include "mass_stdc.h"
#include "dgi_stdg.h"
#include "sim_cig_if.h"
#include "protocol/pro_hdr.h"
#include "protocol/ammo.h"
#include "libmatrix.h"
#include "libmath.h"
#include "librva util.h"
#include "libnear.h"
#include "miss_nlos.h"
#include "libmiss_dfn.h"
#include "libmiss_loc.h"

    Define missile characteristics.

/*/
#define NLOS_LOCK_THRESHOLD
                                         nlos_miss_char[0]
#define NLOS_MAX_TURN_ANGLE
                                         nlos miss char[1]
#define NLOS_VERTICAL_FLIGHT_TIME
                                           nlos_miss_char[2]
#define NLOS_DECLINE_FLIGHT_TIME
                                           nlos_miss_char[3]
                                         nlos_miss_char[4]
#define NLOS_LEVEL_FLIGHT_TIME
                                   nlos_miss_char[5]
#define NLOS_ARM_TIME
#define NLOS_BURNOUT_TIME
                                       nlos_miss_char[6]
#define NLOS_MAX_FLIGHT_TIME
                                        nlos_miss_char[7]
                             nlos_miss_char[8]
#define SPEED_0
#define SPEED_1
                             nlos_miss_char[9]
/*#define THETA_0 0.046542113 */
                                       /*0.013962634*/
                             nlos_miss_char[10]
#define THETA_0
/*/

    Set parameters which will control flight trajectory behavior.

#define SIN_UNGUIDE
                                 nlos_miss_char[11]
#define COS_UNGUIDE
                                  nlos_miss_char[12]
```

```
#define SIN CLIMB
                              nlos miss char[13]
 #define COS_CLIMB
                               nlos_miss_char[14]
 #define SIN_LOCK
                              nlos_miss_char[15]
 #define COS_LOCK
                              nlos_miss_char[16]
 #define COS_TERM
                              nlos_miss_char[17]
 #define COS LOSE
                              nlos miss char[18]
 /*/
 * The following terms set the order of the polynomials used to determine
 * the speed or cosine of the maximum allowed turn rate of the missile
 * at any point in time.
 #define NLOS_BURN_SPEED_DEG nlos_miss_poly_deg[0]
 #define NLOS_COAST_SPEED_DEG nlos_miss_poly_deg[1]
 /*/
 * NLOS missile characteristic parameters initialized to default values.
 static REAL nlos_miss_char[20] =
  0.953153895,
                  /* NLOS_LOCK_THRESHOLD */
  0.03490659,
                 /* NLOS_MAX_TURN_ANGLE radians/tick */
              /* NLOS_VERTICAL_FLIGHT_TIME */
  48.0.
 105.0.
               /* NLOS_DECLINE_FLIGHT_TIME */
 140.0.
               /* NLOS_LEVEL_FLIGHT_TIME */
  20.0.
              /* NLOS_ARM_TIME
                                       ticks (1.3 sec) */
  22.5.
              /* NLOS_BURNOUT_TIME
                                          ticks (1.5 sec) */
 ,0.0008
               /* NLOS_MAX_FLIGHT_TIME ticks (120 sec) */
  11.333333333,
                 /* SPEED_0 */
  5.333333333,
                 /* SPEED_1 */
  /* THETA_0 0.046542113 */
                                   /*0.013962634*/
  0.013962634,
               /* THETA_0 */
  0.069756474,
                /* SIN_UNGUIDE
                                         4 deg */
  0.997564050,
                 /* COS_UNGUIDE
                                         4 deg */
  0.004072424,
               /* SIN_CLIMB
                                      3.5 deg/sec */
  0.999991708.
               /* COS_CLIMB
                                       3.5 deg/sec */
               /* SIN_LOCK
                                      9 deg*/
  0.156434465,
  0.987688341,
               /* COS_LOCK
                                      9 deg */
  0.984807753,
               /* COS_TERM
                                      0 deg */
  0.939692621,
                /* COS_LOSE
                                     20 deg */
  0.0
1:
The following terms set the order of the polynomials used to determine
* the speed and turn of the missile at any point in time.
static int nlos_miss_poly_deg[5] =
 1,
      /* Speed before motor burnout. */
```

```
/* Speed after motor burnout. */
  3,
  0,
 0,
 0
};
* Coefficients for the speed polynomial before motor burnout.
/*/
static REAL nlos_burn_speed_coeff[5] =
                   /* a_0 - m/tick (67.0 m/sec)
  0.03333333,
                   /* a_1 - m/tick**2 (274.9732662 m/sec**2) */
  1.25777777,
  0.0,
  0.0,
  0.0
};
/*/
* Coefficients for the speed polynomial after motor burnout.
static REAL nlos_coast_speed_coeff[5] =
                   /* a_0 - m/tick (327.2858074 m/sec) */
  30.46972849,
                  /* a_1 - m/tick**2 (-21.4609544 m/sec**2) */
  -9.7721160e-2.
                 /* a_2 - m/tick**3 ( 0.8227650 m/sec**3) */
  1.2433925e-4,
                   /* a_3 - m/tick**4 (-0.0133200 m/sec**4) */
  -5.4061501e-8,
  0.0
};
static VECTOR nlos_initial_pos;
static VECTOR nlos_final_pos;
static VECTOR peak_target;
static VECTOR decline_target;
static VECTOR level_target;
static int nlos_target_id;
static int nlos_req_id;
/*/

    Declare static functions.

static void missile_nlos_stop ();
* ROUTINE: missile_nlos_init
* PARAMETERS: mptr - a pointer to the NLOS to be
```

```
initialized.
 * RETURNS: none
 * PURPOSE: This routine initializes the state of the
         missile to indicate that it is available and
         sets values that never change.
void missile_nlos_init (mptr)
MISSILE *mptr;
    int i;
    int data_tmp_int;
    float data_tmp;
    char descript[64];
    FILE *fp;
/* DEFAULT CHARACTERISTICS DATA FOR miss_nlos.c READ FROM FILE
                                                                               */
    fp = fopen("/simnet/data/ms_nl_ch.d","r");
    if(fp==NULL){
        fprintf(stderr, "Cannot open /simnet/data/ms_ni_ch.d\n");
    rewind(fp);
         Read array data */
    i=0;
    while(fscanf(fp,"%f", &data_tmp) != EOF){
        nlos_miss_char(i) = data_tmp;
        fgets(descript, 64, fp);
         printf("nlos_miss_char(%3d) is%11.3f %s", i,
        nlos_miss_char[i], descript);
        ++i;
    )
    fclose(fp);
/* END DEFAULT CHARACTERISTICS DATA FOR miss_nlos.c READ FROM FILE */
/* DEFAULT BURN SPEED DATA FOR miss_nlos.c READ FROM FILE
                                                                           */
    fp = fopen("/simnet/data/ms_nl_bs.d","r");
    if(fp==NULL){
        fprintf(stderr, "Cannot open /simnet/data/ms_nl_bs.d\n");
        exit();
   }
   rewind(fp);
        Read degree of polynomial */
```

```
fscanf(fp,"%d", &data_tmp_int);
     NLOS_BURN_SPEED_DEG = data_tmp_int;
     fgets(descript, 64, fp);
     printf("nlos_miss_poly_deg(0) is%3d %s", NLOS_BURN_SPEED_DEG,
         descript);
          Read array data */
    i=0;
     while(fscanf(fp,"%f", &data_tmp) != EOF){
         nlos_burn_speed_coeff[i] = data_tmp;
         fgets(descript, 64, fp);
         printf("nlos_burn_speed_coeff(%3d) is%11.3f %s", i,
             nlos_burn_speed_coeff[i], descript);
    }
    fclose(fp);
/* END DEFAULT BURN SPEED DATA FOR miss_nlos.c READ FROM FILE */
/* DEFAULT COAST SPEED DATA FOR miss_nlos.c READ FROM FILE
    fp = fopen("/simnet/data/ms_nl_cs.d","r");
    if(fp==NULL){
        fprintf(stderr, "Cannot open /simnet/data/ms nl cs.d\n");
        exit();
    }
    rewind(fp);
         Read degree of polynomial */
    fscanf(fp,"%d", &data_tmp_int);
    NLOS_COAST_SPEED_DEG = data_tmp_int;
    fgets(descript, 64, fp);
     printf("nlos_miss_poly_deg(1) is%3d %s", NLOS_COAST_SPEED_DEG,
        descript);
         Read array data */
    i=0;
    while(fscanf(fp,"%f", &data_tmp) != EOF){
        nlos_coast_speed_coeff[i] = data_tmp;
        fgets(descript, 64, fp);
         printf("nlos_coast_speed_coeff(%3d) is%11.3f %s", i,
            nlos_coast_speed_coeff[i], descript);
        ++i;
   1
   fclose(fp);
/* END DEFAULT COAST SPEED DATA FOR miss_nlos.c READ FROM FILE */
```

```
mptr->state = FALSE;
   mptr->max_flight_time = NLOS_MAX_FLIGHT_TIME;
   mptr->max_turn_directions = 1;
   mptr->speed = SPEED_0;
   mptr->cos_max_turn[0] = cos (NLOS_MAX_TURN_ANGLE);
   nlos_req_id = NEAR_NO_REQUEST_PENDING;
   nlos_target_id = vehicleIDIrrelevant;
 * ROUTINE: missile_nlos_fire
 * PARAMETERS: mptr - A pointer to the NLOS missile that
             is to be launched.
         launch_point - The location in world
                 coordinates that the missile is *
                 launched from.
         launch_to_world - The transformation matrix of *
                   the launch platform to the *
                   world.
         launch_speed - The speed of the launch
                 platform (assumed to be in the *
                 direction of the missile).
         tube - The tube the missile was launched from. *
 * RETURNS: none
  PURPOSE: This routine performs the functions
         specifically related to the firing of a
         Hellfire missile.
void missile_nlos_fire (mptr, launch_point, launch_to_world, launch_speed,
    tube)
MISSILE *mptr;
VECTOR launch_point;
T_MATRIX launch_to_world;
REAL launch_speed;
int tube:
  Set the initial time, location, orientation, and speed of the generic
* missile.
  mptr->time = 0.0;
  mptr->speed = SPEED_0;
  vec_copy (launch_point, mptr->location);
  vec_copy (launch_point, nlos_initial_pos);
 mat_copy (launch_to_world, mptr->orientation);
 mptr->init_speed = launch_speed;
```

```
* Tell the rest of the world about the firing of the missile. If this
* cannot be done, return.
/*/
  if (!missile_util_comm_fire_missile (mptr, MSL_TYPE_MISSILE,
                       ammoHellfire, EFF HELLFIRE,
                       vehicleIDIrrelevant, targetUnknown,
                       fuzePointDetonating, tube))
    return;
/+/
* If all was successful, set the missile state to TRUE and return.
  mptr->state = TRUE;
  peak_target[X] = 0.0;
  peak_target[Y] = 1000.0;
  peak_target[Z] = 1000.0;
  vec_mat_mul (peak_target, mptr->orientation, peak_target);
  vec_add (mptr->location, peak_target, peak_target);
  printf("peak_target: x = \%f, y = \%f, z = \%f \n",
    peak_target[X],
    peak_target[Y],
    peak_target[Z]);
  decline_target[X] = 0.0;
  decline_target[Y] = 1800.0;
  decline_target[Z] = 0.0;
  vec_mat_mul (decline_target, mptr->orientation, decline_target);
  vec_add (mptr->location, decline_target, decline_target);
  printf("decline_target: x = %f, y = %f, z = %f \n",
    decline_target[X],
    decline_target(Y),
    decline_target[Z]);
 level_target[X] = 0.0;
 level_target[Y] = 2000.0;
 level_target[Z] = 300.0;
  vec_mat_mul (level_target, mptr->orientation, level_target);
  vec_add (mptr->location, level_target, level_target);
 printf("level_target: x = \%f, y = \%f, z = \%f \n",
   level_target(X),
   level_target[Y],
   level_target(Z]);
 return;
* ROUTINE: missile_nlos_fly
* PARAMETERS: mptr - A pointer to the NLOS missile that
            is to be flown out.
```

```
target_location - The location in world
                   coordinates of the target. "
 * RETURNS: none
               This routine performs the functions
 * PURPOSE:
         specifically related to the flying a NLOS
         missile.
void missile_nlos_fly (mptr, nlos_target_loc, target_scheme)
MISSILE *mptr;
VECTOR nlos_target_loc;
int target_scheme;
                            /* The current time after launch (ticks). */
  register REAL time;
  register REAL temp;
  VehicleAppearancePDU *target; /* A pointer to the target vehicles
                        appearance packet. */
  timed_printf("target_scheme = %d\nloc %f %f %f\n",
    target_scheme,
    nlos_target_loc[0],
    nlos_target_loc[1],
    nlos_target_loc[2]
+/
/*/

    Set and _time_. This is created mostly for increased readablity.

  time = mptr->time;
  if (time > 800.0)
    mptr->speed = SPEED_1;

    choose the correct targettting option depending on flight time

if (time == NLOS_LEVEL_FLIGHT_TIME)
  printf("extra_waypoint: %f %f %f\n",
    mptr->location[0],
    mptr->location[1],
    mptr->location[2]);
 if (time < NLOS_VERTICAL_FLIGHT_TIME)
    missile_nlos_fly_to_point(mptr, peak_target);
  else if (time < NLOS_DECLINE_FLIGHT_TIME)
    missile_nlos_fly_to_point(mptr, decline_target);
  else if (time < NLOS_LEVEL_FLIGHT_TIME)
    level_target(Z) = mptr->location(Z);
```

```
missile_nlos_fly_to_point(mptr, level_target);
   else
     switch (target_scheme)
       case NLOS_FLY_TO_POINT_IN_SPACE:
         missile_nlos_fly_to_point(mptr, nlos_target_loc);
         break;
       case NLOS_FLY_TO_POINT_RELATIVE:
         missile_target_nlos(mptr, nlos_target_loc);
         break:
       case NLOS_FLY_TO_TARGET:
         target = near_get_preferred_veh_near_vector (
                      &nlos_target_id,
                      RVA ALL_VEH,
                      mptr->location,
                      mptr->orientation[1],
                      NLOS_LOCK_THRESHOLD,
                      &nlos_req_id);
         if (target != NULL)
           timed_printf("miss_nlos: target locked on\n");
           missile_target_pursuit (mptr, target);
         else
           missile_target_unguided(mptr);
         break;
      default:
         printf("missile_nlos_fly: bad target_scheme\n");
    }
/*/

    check to see if the missile is "out of gas"

 if (mptr->time > 1500.0)
    mptr->target[Z] = 0.0;
* Try to actually fly the missile. If this fails stop the missile altogether
* and return.
14/
 if (!missile_util_flyout (mptr))
```

```
missile nlos stop (mptr);
     if (target_scheme == NLOS_FLY_TO_TARGET)
       nlos_target_id = vehicleIDIrrelevant;
       nlos_req_id = NEAR_NO_REQUEST_PENDING;
    return:
  else
  {
     If the missile successfully flew, check for an intersection with the
     ground or a vehicle. If one is found, blow up the missile, stop its
     flyout and return.
    if (missile_util_comm_check_intersection (mptr, MSL_TYPE_MISSILE))
      missile_util_comm_check_detonate (mptr, MSL_TYPE_MISSILE);
       missile_nlos_stop (mptr);
       return;
  }

    If the missile is to continue to fly, return.

/*/
  return;
* ROUTINE: missile_nlos_stop
* PARAMETERS: mptr - A pointer to the NLOS missile that
            is to be stopped.
* RETURNS: none
* PURPOSE: This routine causes all concerned to forget
         about the missile. It should be called when
         the flyout of any NLOS missile is stopped
         (whether or not it has exploded). Note that
         this routine can only be called within this
         module.
static void missile_nlos_stop (mptr)
MISSILE *mptr;
  Tell the world to stop worrying about this missile then release the

    memory for use by other missiles.

  printf("initial_pos = %f %f %f\n",
```

```
nlos_initial_pos[0],
    nlos_initial_pos[1],
    nlos_initial_pos[2]);

printf("final_position = %f %f %f\n",
    mptr->location[0],
    mptr->location[1],
    mptr->location[2]);

missile_util_comm_stop_missile (mptr, MSL_TYPE_MISSILE);
    mptr->state = FALSE;
```

22 January 1993 Reference # W003036 Rev. 0.0

Appendix K - Source code listing for miss_stinger.c.

The following appendix contains the source code listing for miss_stinger.c for convenience in document maintenance and understanding of the CSU.

```
/* $Header: /a3/adst-cm/RWA/simnet/vehicle/libsrc/libmissile/RCS/miss_stinger.c,
v 1.1 1992/09/30 16:39:52 cm-adst Exp $ */
 * $Log: miss_stinger.c,v $
 * Revision 1.1 1992/09/30 16:39:52 cm-adst
 * Initial Version
*/
static char RCS_ID[] = "$Header: /a3/adst-cm/RWA/simnet/vehicle/libsrc/libmissil
e/RCS/miss_stinger.c,v 1.1 1992/09/30 16:39:52 cm-adst Exp $";
* Revisions:
    Version Date Author Title
                                         SP/CR Number
    1.2 10/23/92 R. Branson Data File Initiali-
                     zation
    1.3 10/30/92 R. Branson Added pathname to data
                     directory
    1.4 11/25/92 R. Branson Changed %i to %d
    SP/CR No. Description of Modification
            Hard coded defines changed to array elements.
            Characteristics/parameter data array added.
            Degree Of polynomial data array added.
            Added file reads for stinger characteristics/
             parameters, burn speed coefficients, and coast
             speed coefficients.
            Added "/simnet/data/" to each data file pathname.
    * FILE: miss_stinger.c
* AUTHOR: Bryant Collard
* MAINTAINER: Bryant Collard
* PURPOSE: This file contains routines which fly out a
       missile with the characteristics of a STINGER *
       missile.
* HISTORY: 12/08/88 bryant: Creation
```

```
04/24/89 bryant: Added static memory allocation *
         08/07/90 bryant: NIU librva modifications.
 * Copyright (c) 1988 BBN Systems and Technologies, Inc.

    All rights reserved.

#include "stdio.h"
#include "math.h"
#include "sim_types.h"
#include "sim_dfns.h"
#include "basic.h"
#include "mun_type.h"
#include "libmap.h"
#include "libmatrix.h"
#include "libnear.h"
/*- need Range_Squared info -*/
#include "libhull.h"
#include "libkin.h"
#include "miss_stinger.h"
#include "libmissile.h"
#include "libmiss_dfn.h"
#include "libmiss_loc.h"

    Define missile characteristics.

/*/
#define STINGER_BURNOUT_TIME stinger_miss_char[ 0]
*define STINGER_MAX_FLIGHT_TIME stinger_miss_char[ 1]
#define STINGER_LOCK_THRESHOLD stinger_miss_char[2]
#define SPEED_0
                          stinger_miss_char[3]
#define THETA_0
                           stinger_miss_char[4]
#define INVEST_DIST_SQ
                               stinger_miss_char[5]
#define FUZE_DIST_SQ
                              stinger_miss_char[6]

    Define the states the _STINGER_MISSILE_ can be in.

#define STINGER_FREE 0 /* No missile assigned. */
#define STINGER_READY 1 /* Missile assigned to ready state. */
#define STINGER_FLYING 2 /* Missile assigned to flying state. */

    The following terms set the order of the polynomials used to determine
```

```
* the speed of the missile at any point in time.
 /*/
 static int stinger_miss_poly_deg[2] =
   1, /* burn speed poly degree */
   3 /* coast speed poly degree */
 };
 1+/
 * Stinger missile characteristic parameters initialized to default values.
 static REAL stinger_miss_char[15] =
                 /* ticks (1.275 sec) */
   19.125,
                 /* ticks (26.667 sec) */
  400.000,
   0.953153895, /* cos (12.5 deg) ** 2 */
   53.33333333,
                   /* m/tick (800 m/sec) */
                 /* rad/tick (15.0 deg/sec) */
   0.0174,
 90000.0,
                /* (300 m) ** 2 */
  400.0,
                /* (20 m) ** 2 */
   0.0,
   0.0.
   0.0,
   0.0.
   0.0.
   0.0.
   0.0.
   0.0
};

    Coefficients for the speed polynomial before motor burnout initialized to

* default values.
/*/
static REAL stinger_burn_speed_coeff[STINGER_BURN_SPEED_DEG + 1] =
  1.9,
               /* a_0 - m/tick */
  2.689324619
                /* a_1 - m/tick**2 */
};
* Coefficients for the speed polynomial after motor burnout initialized to
* default values.
1.1
static REAL stinger_coast_speed_coeff[STINGER_COAST_SPEED_DEG + 1] =
                   /* a_0 - m/tick */
  56.73662833,
  -0.182369351,
                 /* a_1 - m/tick**2 */
  2.3302001e-4,
                   /* a_2 - m/tick**3 */
```

```
-1.0176282e-7
                    /* a_3 - m/tick**4 */
}:
/+/
 * Memory for the missiles is declared in vehicle specific code. During
 * initialization, a pointer is assigned to this memory then all memory
 * issues are dealt with in this module.
/*/
static STINGER_MISSILE *stinger_array; /* A pointer to missile memory. */
                               /* The number of defined missiles. */
static int num_stingers;
static ObjectType stinger_ammo_type = munition_US_Stinger;
static REAL
  max_range_limit, /* [ MISSILE_US_MAX_RANGE_LIMIT ]
  max_range_squared, /* [ MISSILE_US_MAX_RANGE_LIMIT ^ 2 ]
  speed_factor; /*[MISSILE_US_SPEED_FACTOR]

    Declare static functions.

/+/
static void missile_stinger_fly ();
* ROUTINE: missile_stinger_init
* PARAMETERS: missile_array - A pointer to an array of
                 STINGER missiles defined in *
                 vehicle specific code.
         num_missiles - The number missiles defined in *
                 _missile_array_.
* RETURNS: none
* PURPOSE: This routine copies the parameters into
         variables static to this module and initializes *
         the state of all the missiles. It also
        initializes the proximity fuze.
void missile_stinger_init (missile_array, num_missiles)
STINGER_MISSILE missile_array[];
int num missiles:
  int i; /* A counter. */
    int j;
    int data_tmp_int;
    float data_tmp;
    char descript[64];
    FILE *fp;
```

```
/* DEFAULT CHARACTERISTIC DATA FOR miss_stinger.c READ FROM FILE
    fp = fopen("/simnet/data/ms_st_ch.d","r");
    if(fp==NULL){
        fprintf(stderr, "Cannot open /simnet/data/ms_st_ch.d\n");
    }
    rewind(fp);
         Read array data */
    i=0;
    while(fscanf(fp,"%f", &data_tmp) != EOF){
        stinger_miss_char[i] = data_tmp;
        fgets(descript, 64, fp);
         printf("stinger_miss_char(%3d) is%11.3f %s", j.
            stinger_miss_char[j],
                                          */
            descript);
        ++i;
    }
    fclose(fp);
/* END DEFAULT CHARACTERISTIC DATA FOR miss_stinger.c READ FROM FILE */
/* DEFAULT BURN SPEED DATA FOR miss_stinger.c READ FROM FILE */
    fp = fopen("/simnet/data/ms_st_bs.d","r");
    if(fp==NULL){
        fprintf(stderr, "Cannot open /simnet/data/ms_st_bs.d\n");
        exit();
    rewind(fp);
         Read degree of polynomial
                                       */
    fscanf(fp,"%d", &data_tmp_int);
    stinger_miss_poly_deg[0] = data_tmp_int;
    fgets(descript, 64, fp);
/* printf("stinger_miss_poly_deg(0) is%3d %s", j.
    stinger_miss_poly_deg[0], descript);
         Read array data */
    j=0;
    while(fscanf(fp, "%f", &data_tmp) != EOF){
        stinger_burn_speed_coeff[j] = data_tmp;
        fgets(descript, 64, fp);
         printf("stinger_burn_speed_coeff(%3d) is%11.3f %s", j,
            stinger_burn_speed_coeff[j],
            descript);
```

```
++į;
    }
    fclose(fp):
/* END DEFAULT BURN SPEED DATA FOR miss_stinger.c READ FROM FILE
/* DEFAULT COAST SPEED DATA FOR miss_stinger.c READ FROM FILE */
    fp = fopen("/simnet/data/ms_st_cs.d","r");
    if(fp==NULL){
        fprintf(stderr, "Cannot open /simnet/data/ms_st_cs.d\n");
    }
    rewind(fp);
         Read degree of polynomial
    fscanf(fp,"%d", &data_tmp_int);
    stinger_miss_poly_deg[1] = data_tmp_int;
    fgets(descript, 64, fp);
     printf("stinger_miss_poly_deg(1) is%3d %s", j.
        stinger_miss_poly_deg[1], descript);
         Read array data */
   i=0;
    while(fscanf(fp, "%f", &data_tmp) != EOF){
        stinger_coast_speed_coeff[i] = data_tmp;
        fgets(descript, 64, fp);
         printf("stinger_coast_speed_coeff(%3d) is%11.3f %s", j,
            stinger_coast_speed_coeff[j],
            descript);
        ++i;
   }
   fclose(fp);
/* END DEFAULT COAST SPEED DATA FOR miss_stinger.c READ FROM FILE
 num_stingers = num_missiles;
 stinger_array = missile_array;
 for (i = 0; i < num\_missiles; i++)
   stinger_array[i].mptr.state = STINGER_FREE;
   stinger_array[i].mptr.max_flight_time = STINGER_MAX_FLIGHT_TIME;
   stinger_array[i].mptr.max_turn_directions = 1;
 speed_factor = MISSILE_US_SPEED_FACTOR;
 max_range_limit = MISSILE_US_MAX_RANGE_LIMIT;
 max_range_squared = max_range_limit * max_range_limit;
 stinger_ammo_type = munition_US_Stinger;
```

```
* Initialize the proximity fuze.
 /*/
  missile_fuze_prox_init();
void missile_stinger_set_speed_factor( scale_speed )
REAL scale_speed;
  speed_factor = scale_speed;
void missile_stinger_set_max_range_limit( limit_range )
REAL limit_range;
  max_range_limit = limit_range;
  max_range_squared = max_range_limit * max_range_limit;
}
void missile_stinger_set_ammo_type( ammo )
ObjectType ammo;
{
  stinger_ammo_type = ammo;
* ROUTINE: missile_stinger_ready
* PARAMETERS: none
* RETURNS: A pointer to a missile that is currently
         available.
* PURPOSE: This routine finds, if possible, a missile that *
         is not being used, puts it in a ready state and *
         returns a pointer to it.
STINGER_MISSILE *missile_stinger_ready ()
  int i; /* A counter. */

    Try to find a free missile.

  for (i = 0; i < num\_stingers; i++)
    If a free missile is found, put it in a ready state, clear the target
    ID and return a pointer to it.
    if (stinger_array[i].mptr.state == STINGER_FREE)
```

```
stinger_array[i].mptr.state = STINGER_READY;
       stinger_array[i].target_vehicle_id.vehicle = vehicleIrrelevant;
       return (&stinger_array[i]);
    }
  }
/*/
 * If no free missile is found, return a NULL pointer.
  return (NULL);
 * ROUTINE: missile_stinger_pre_launch
 * PARAMETERS: sptr - A pointer to the missile that is to be *
            serviced.
         launch_point - The location of the missile in *
                world coordinates.
         launch_to_world - The transformation matrix of *
                  the missile to the world. *
         veh_list - Vehicle list ID.
* RETURNS: none
 * PURPOSE: This routine is called after a missile has been *
         readied and before it has been launched. It *
         determines if the seeker head can see a target *
         and, if it can see a target, stores its
         position.
             void missile_stinger_pre_launch (sptr, launch_point, launch_to_world, veh_list)
STINGER_MISSILE *sptr;
VECTOR launch_point;
T_MATRIX launch_to_world;
int veh_list;
  VehicleAppearanceVariant *target; /* A pointer to the target vehicles
                      appearance packet. */
/*/
* Try to find a target.
  target = near_get_preferred_veh_near_vector (&(sptr->target_vehicle_id),
      veh_list, launch_point, launch_to_world[1],
      STINGER_LOCK_THRESHOLD);

    If a target is found, store its location.

 if (target != NULL)
```

```
sptr->target_vehicle_id = target->vehicleID;
    missile_target_pursuit (&(sptr->mptr), target->location);
  }
  else
    sptr->target_vehicle_id.vehicle = vehicleIrrelevant;
 * ROUTINE: missile_stinger_fire
 * PARAMETERS: sptr - A pointer to the STINGER missile that *
             is to be launched.
         launch_point - The location in world
                 coordinates that the missile is *
                 launched from.
         launch_to_world - The transformation matrix of *
                   the launch platform to the *
         launch_speed - The speed of the launch
                 platform (assumed to be in the *
                 direction of the missile).
         tube - The tube the missile was launched from. *
* RETURNS: TRUE for a successful launch and FALSE for an *
         unsuccessful launch.
 PURPOSE: This routine performs the functions
         specifically related to the firing of a
         STINGER missile.
int missile_stinger_fire (sptr, launch_point, launch_to_world, launch_speed,
    tube)
STINGER_MISSILE *sptr;
VECTOR launch_point;
T_MATRIX launch_to_world;
REAL launch_speed;
int tube;
                /* Counter. */
                   /* Pointer to the particular generic missile
  MISSILE *mptr;
                pointed at by _sptr_. */
* Get a pointer to the generic elements of the STINGER missile. This

    improves code readability.

/*/
 mptr = &(sptr->mptr);

    Set the initial time, location, orientation and speed of the generic

* missile.
/*/
```

```
mptr->time = 0.0;
  vec_copy (launch_point, mptr->location);
  mat_copy (launch_to_world, mptr->orientation);
  mptr->speed = launch_speed +
    (speed_factor *
     missile_util_eval_poly (STINGER_BURN_SPEED_DEG,
                  stinger_burn_speed_coeff, 0.0));
  mptr->init_speed = launch_speed;
* Indicate that the proximity fuze has no vehicles it is tracking.
  sptr->pptr = NULL;
* Determine range equations for intercept targeting.
  sptr->stinger_burn_range_coeff[0] = 0.0;
  for (i = 1; i \le STINGER_BURN_SPEED_DEG + 1; i++);
    sptr->stinger_burn_range_coeff[i] = (1.0 / ((REAL) i)) *
        stinger_burn_speed_coeff[i - 1];
  sptr->stinger_burn_range_coeff[1] += launch_speed;
  missile_target_intercept_find_poly (STINGER_COAST_SPEED_DEG, launch_speed,
      stinger_coast_speed_coeff, sptr->stinger_coast_range_coeff,
      sptr->stinger_coast_range_2_coeff);
/*/
  Tell the rest of the world about the firing of the missile. If this
* cannot be done, release the missile memory and return FALSE.
/+/
  if (!missile_util_comm_fire_missile (mptr, MSL_TYPE_MISSILE.
      map_get_ammo_entry_from_network_type (stinger_ammo_type),
      stinger_ammo_type, stinger_ammo_type,
      &(sptr->target_vehicle_id), targetIsVehicle, objectIrrelevant,
      tube))
   mptr->state = STINGER_FREE;
   return (FALSE);
* If all was successful, set the missile state to STINGER_FLYING and
* return TRUE.
 mptr->state = STINGER_FLYING;
 return (TRUE);
* ROUTINE: missile_stinger_fly_missiles
* PARAMETERS: veh_list - Vehicle list ID.
```

```
* RETURNS: none
  * PURPOSE: This routine flies out all missiles in a
          flying state.
 void missile_stinger_fly_missiles (veh_list)
 int veh_list;
   int i; /* A counter. */

    Fly out all flying missiles.

   for (i = 0; i < num\_stingers; i++)
     if (stinger_array[i].mptr.state == STINGER_FLYING)
       missile_stinger_fly (&(stinger_array[i]), veh_list);
 * ROUTINE: missile_stinger_fly
 * PARAMETERS: sptr - A pointer to the STINGER missile that *
             is to be flown out.
         veh_list - Vehicle list ID.
 * RETURNS: none
 * PURPOSE: This routine performs the functions
         specifically related to the flying a STINGER *
         missile.
static void missile_stinger_fly (sptr, veh_list)
STINGER_MISSILE *sptr;
int veh_list;
  register MISSILE *mptr;
                               /* A pointer to the generic aspects of
                     _sptr_. */
  REAL time:
                          /* The current time after launch (ticks). */
  VehicleAppearanceVariant
    *target;
                     /* A pointer to the targets appearance
                     packet. */
  Set _mptr_ and _time_. These values are created mostly for increased
* readablity.
/*/
  mptr = &(sptr->mptr);
  time = mptr->time;
14/
```

```
* Find the current missile speed and the cosine of the maximum allowed turn
 * angle. The equations used are different before and after motor burnout.
 /*/
   if (time < STINGER_BURNOUT_TIME)
     mptr->speed = missile_util_eval_poly (STINGER_BURN_SPEED_DEG,
         stinger_burn_speed_coeff, time) + mptr->init_speed;
   )
   else
     mptr->speed = missile_util_eval_poly (STINGER_COAST_SPEED_DEG,
         stinger_coast_speed_coeff, time) + mptr->init_speed;
  1
 * Note that this is a temporary method of finding turn angle.
   mptr->cos_max_turn[0] = cos (sqrt (mptr->speed / (SPEED_0 +
       mptr->init_speed)) * THETA_0);
 * Try to find a target. If one is found, fly towards it in the
  proper trajectory, otherwise, fly in a straight line.
  target = near_get_preferred_veh_near_vector (&(sptr->target_vehicle_id),
       veh_list, mptr->location, mptr->orientation[1],
       STINGER_LOCK_THRESHOLD);
  if( max_range_limit > 0 &&
    kinematics_range_squared (veh_kinematics, mptr->location) >
    max_range_squared)
    missile_target_ground( mptr );
  else if (target != NULL)
    sptr->target_vehicle_id = target->vehicleID;
    if (time < STINGER_BURNOUT_TIME)
      missile_target_intercept_pre_burnout (mptr, target,
           sptr->stinger_burn_range_coeff, STINGER_BURNOUT_TIME,
           STINGER BURN SPEED DEG + 1.
           sptr->stinger_coast_range_coeff,
           sptr->stinger_coast_range_2_coeff,
           STINGER COAST SPEED DEG + 1):
      missile_target_intercept (mptr, target,
           sptr->stinger_coast_range_coeff,
           sptr->stinger_coast_range_2_coeff,
          STINGER_COAST_SPEED_DEG + 1);
  }
  else
    sptr->target_vehicle_id.vehicle = vehicleIrrelevant;
    missile_target_unguided (mptr);
1.1
```

```
* Try to actually fly the missile. If this fails, stop the missile
 * altogether and return.
 /*/
   if (!missile_util_flyout (mptr))
     missile_stinger_stop (sptr);
     return;
   else
   {
     If the missile successfully flew, process the proximity fuze.
     if (sptr->target_vehicle_id.vehicle == vehicleIrrelevant)
       missile_fuze_prox (mptr, MSL_TYPE_MISSILE, PROX_FUZE_ON_ALL_VEH,
           &(sptr->target_vehicle_id), &(sptr->pptr),
           veh_list, INVEST_DIST_SQ, FUZE_DIST_SQ);
     else
       missile_fuze_prox (mptr, MSL_TYPE_MISSILE, PROX_FUZE_ON_ONE_VEH,
           &(sptr->target_vehicle_id), &(sptr->pptr),
           veh_list, INVEST_DIST_SQ, FUZE_DIST_SQ);
/+/
     If the missile has intersected of self detonated, blow it up, stop its
     flyout and return.
    if (missile_util_comm_check_detonate (mptr, MSL_TYPE_MISSILE))
       missile_stinger_stop (sptr);
       return;

    If the missile is to continue to fly, return.

  return;
* ROUTINE: missile_sunger_stop
* PARAMETERS: sptr - A pointer to the STINGER missile that *
            is to be stopped.
* RETURNS: none
* PURPOSE: This routine causes all concerned to forget
         about the missile. It should be called when
         the flyout of any STINGER missile is stopped *
         (whether or not it has exploded).
void missile_stinger_stop (sptr)
```

```
STINGER_MISSILE *sptr;
{
   /*/
   * If the missile has been fired, tell the world to stop it and clear the
   * proximity fuze targets. Release missile memory for use by other missiles.
   /*/
   if (sptr->mptr.state == STINGER_FLYING)
   {
      missile_util_comm_stop_missile (&(sptr->mptr), MSL_TYPE_MISSILE);
      missile_fuze_prox_stop (&(sptr->pptr));
   }
   sptr->mptr.state = STINGER_FREE;
}
```

22 January 1993 Reference # W003036 Rev. 0.0

Appendix L - Source code listing for miss_tow.c.

The following appendix contains the source code listing for miss_tow.c for convenience in document maintenance and understanding of the CSU.

```
/* $Header: /a3/adst-cm/RWA/simnet/vehicle/libsrc/libmissile/RCS/miss_tow.c,v 1.
1 1992/09/30 16:39:52 cm-adst Exp $ */
* $Log: miss_tow.c,v $
* Revision 1.1 1992/09/30 16:39:52 cm-adst
* Initial Version
static char RCS_ID[] = "$Header: /a3/adst-cm/RWA/simnet/vehicle/libsrc/libmissil
e/RCS/miss_tow.c,v 1.1 1992/09/30 16:39:52 cm-adst Exp $";
* Revisions:
    Version Date Author Title
                                          SP/CR Number
    1.2 10/23/92 R. Branson Data File Initiali-
                     zation
    1.3 10/30/92 R. Branson Added pathname to data
                    directory
        11/25/92 R. Branson Changed %i to %d
    .
   SP/CR No. Description of Modification
           Hard coded defines changed to array elements.
           Characteristics/parameter data array added.
           Degree of polynomial data array added.
            Added file reads for TOW characteristics/parameters,
             burn speed coefficients, coast speed coefficients,
             burn turn coefficients, and coast turn coeffi-
             coefficients.
           Added "/simnet/data/" to each data file pathname.
• FILE:
         miss_tow.c
* AUTHOR: Bryant Collard
* MAINTAINER: Bryant Collard
* PURPOSE: This file contains routines which fly out a *
       missile with the characteristics of a TOW
       missile.
```

```
* HISTORY: 10/31/88 bryant: Creation
          4/26/89 bryant: Added statically allocated mem *
 * Copyright (c) 1988 BBN Systems and Technologies, Inc.
 * All rights reserved.
#include "stdio.h"
#include "sim_types.h"
#include "sim_dfns.h"
#include "basic.h"
#include "mun_type.h"
#include "libmatrix.h"
#include "libmap.h"
/*- need Range_Squared info --*/
#include "libhull.h"
#include "libkin.h"
#include "miss_tow.h"
#include "libmissile.h"
#include "libmiss_dfn.h"
#include "libmiss_loc.h"

    Define missile characteristics.

/*/
#define TOW_BURNOUT_TIME tow_miss_char[0]
#define TOW_RANGE_LIMIT_TIME tow_miss_char[1]
#define TOW_MAX_FLIGHT_TIME tow_miss_char[2]
* The following terms set the order of the polynomials used to determine
* the speed or cosine of the maximum allowed turn rate of the missile
* at any point in time.
/*/
#define TOW_BURN_SPEED_DEG tow_miss_poly_deg[0]
#define TOW_COAST_SPEED_DEG tow_miss_poly_deg[1]
#define TOW_BURN_TURN_DEG tow_miss_poly_deg[2]
#define TOW_COAST_TURN_DEG tow_miss_poly_deg[3]
* Tow missile characteristic parameters initialized to default values.
static REAL tow_miss_char[5] =
```

```
24.0, /* ticks (1.6 sec) */
  268.35, /* ticks (17.89 sec) */
  300.00, /* ticks - cos of max turn > 1.0 beyond this point */
   0.0
 };
 /*/
 * The following terms set the order of the polynomials used to determine
  * the speed and turn of the missile at any point in time.
 static int tow_miss_poly_deg[5] =
  2,
        /* Speed before motor burnout. */
        /* Speed after motor burnout. */
  3,
        /* Cosine of max turn before burnout. */
  3,
        /* Cosine of max turn after burnout. */
        /* not used. */
 };

    Coefficients for the speed polynomial before motor burnout initialized

    to default values.

static REAL tow_burn_speed_coeff[5] =
                    /* a_0 - m/tick (67.0 m/sec) */
  4.46666667,
  1.222103405,
                   /* a_1 - m/tick**2 (274.9732662 m/sec**2) */
  -0.024532086.
                    /* a_2 - m/tick**3 (-82.7057910 m/sec**3) */
  0.0.
  0.0
};
 * Coefficients for the speed polynomial after motor burnout.
/*/
static REAL tow_coast_speed_coeff[5] =
  21.81905383.
                    /* a_0 - m/tick (327.2858074 m/sec) */
  -9.5382019e-2,
                  /* a_1 - m/tick**2 (-21.4609544 m/sec**2) */
  2.4378222e-4, /* a_2 - m/tick**3 (0.8227650 m/sec**3) */
  -2.6311111e-7,
                  /* a_3 - m/tick**4 (-0.0133200 m/sec**4) */
  0.0
};
* Coefficients for the cosine of max turn polynomials before motor burnout.
* The structure _MAX_COS_COEFF_ is used to store the values for the turn
```

* sideways, up, and down polynomials along with their order.

```
1+1
static MAX_COS_COEFF tow_burn_turn_coeff =
               /* Order of the polynomials. */
   1,
   {
              /* Sidewards turn. */
     0.999976868652, /* a_0 - cos(rad)/tick */
    -3.5933955e-7 /* a_1 - cos(rad)/tick**2 */
   },
   {
              /* Upwards turn. */
     0.999960667258, /* a_0 - cos(rad)/tick */
    -3.1492328e-6 /* a_1 - cos(rad)/tick**2 */
  },
  {
              /* Downwards turn. */
     0.999978909989, /* a_0 - cos(rad)/tick */
    -7.8194991e-9 /* a 1 - cos(rad)/tick**2 */
  }
};

    Coefficients for the cosine of max turn polynomials after motor burnout.

/*/
static MAX_COS_COEFF tow_coast_turn_coeff =
  3,
               /* Order of the polynomials. */
  {
              /* Sidewards turn. */
    0.99995112518, /*a_0 - cos(rad)/tick */
                 /* a_1 - cos(rad)/tick**2 */
    8.96333e-7,
    -5.995375e-9, /* a_2 - cos(rad)/tick**3 */
    1.162225e-11 /* a_3 - cos(rad)/tick**4 */
  1,
              /* Upwards turn. */
    0.9998498495, /* a_0 - cos(rad)/tick */
    1.657779e-6, /* a_1 - cos(rad)/tick**2 */
    -8.231861e-9, /* a_2 - cos(rad)/tick**3 */
    1.381832e-11 /* a_3 - cos(rad)/tick**4 */
  },
  {
              /* Downwards turn. */
    0.9999714014, /* a_0 - cos(rad)/tick */
    3.382077e-7, /* a_1 - cos(rad)/tick**2 */
    -1.601259e-9, /* a_2 - cos(rad)/tick**3 */
    2.623014e-12 /* a_3 - cos(rad)/tick**4 */
};
```

```
static ObjectType tow_ammo_type = munition_US_TOW;
static REAL
  max_range_limit, /*[MISSILE_US_MAX_RANGE_LIMIT]
  max_range_squared, /* [ MISSILE_US_MAX_RANGE_LIMIT ^ 2 ]
  speed_factor; /*[MISSILE_US_SPEED_FACTOR]

    Declare static functions.

static void missile_tow_stop ();
 * ROUTINE: missile_tow_init
 * PARAMETERS: tptr - a pointer to the TOW to be
           initialized.
* RETURNS: none
* PURPOSE: This routine initializes the state of the
        missile to indicate that it is available and
        sets values that never change.
void missile_tow_init (tptr)
TOW_MISSILE *tptr;
    int i;
    int data_tmp_int;
   float data_tmp;
   char descript[64];
   FILE *fp;
/* DEFAULT CHARACTERISTICS DATA FOR miss_tow.c READ FROM FILE
                                                                             +/
   fp = fopen("/simnet/data/ms_tw_ch.d","r");
   if(fp==NULL){
        fprintf(stderr, "Cannot open /simnet/data/ms_tw_ch.d\n");
        exit();
   rewind(fp);
        Read array data */
   i=0:
   while(fscanf(fp,"%f", &data_tmp) != EOF){
       tow_miss_char[i] = data_tmp;
       fgets(descript, 64, fp);
        printf("tow_miss_char(%3d) is%11.3f %s", i, tow_miss_char[i],
           descript);
```

```
++i;
    }
    fclose(fp);
 /* END DEFAULT CHARACTERISTICS DATA FOR miss_tow.c READ FROM FILE
/* DEFAULT BURN SPEED DATA FOR miss_tow.c READ FROM FILE
                                                                         */
    fp = fopen("/simnet/data/ms_tw_bs.d","r");
    if(fp==NULL){
        fprintf(stderr, "Cannot open /simnet/data/ms_tw_bs.d\n");
    rewind(fp);
         Read degree of polynomial */
    fscanf(fp,"%d", &data_tmp_int);
    TOW_BURN_SPEED_DEG = data_tmp_int;
    fgets(descript, 64, fp);
     printf("tow_miss_poly_deg(0) is%3d %s", TOW_BURN_SPEED_DEG,
        descript);
         Read array data */
    i=0;
    while(fscanf(fp, "%f", &data_tmp) != EOF){
        tow_burn_speed_coeff[i] = data_tmp;
        fgets(descript, 64, fp);
         printf("tow_burn_speed_coeff(%3d) is%11.3f %s", i,
            tow_burn_speed_coeff[i], descript);
        ++i;
   }
   fclose(fp);
/* END DEFAULT BURN SPEED DATA FOR miss_tow.c READ FROM FILE */
/* DEFAULT COAST SPEED DATA FOR miss_tow.c READ FROM FILE
   fp = fopen("/simnet/data/ms_tw_cs.d","r");
   if(fp==NULL)(
       fprintf(stderr, "Cannot open /simnet/data/ms_tw_cs.d\n");
       exit();
   }
   rewind(fp);
        Read degree of polynomial */
   fscanf(fp,"%d", &data_tmp_int);
   TOW_COAST_SPEED_DEG = data_tmp_int;
   fgets(descript, 64, fp);
```

```
printf("tow_miss_poly_deg(1) is%3d %s", TOW_COAST_SPEED_DEG,
         descript):
          Read array data */
     i=0;
     while(fscanf(fp,"%f", &data_tmp) != EOF){
         tow_coast_speed_coeff[i] = data_tmp;
         fgets(descript, 64, fp);
          printf("tow_coast_speed_coeff(%3d) is%11.3f %s", i,
             tow_coast_speed_coeff[i], descript);
    }
     fclose(fp);
/* END DEFAULT COAST SPEED DATA FOR miss_tow.c READ FROM FILE */
/* DEFAULT BURN TURN DATA FOR miss_tow.c READ FROM FILE
     fp = fopen("/simnet/data/ms_tw_bt.d","r");
    if(fp==NULL){
         fprintf(stderr, "Cannot open /simnet/data/ms_tw_bt.d\n");
         exit();
    }
    rewind(fp);
          Read degree of polynomial */
    fscanf(fp,"%d", &data_tmp_int);
    TOW_BURN_TURN_DEG = data_tmp_int;
    tow_burn_turn_coeff.deg = data_tmp_int;
    fgets(descript, 64, fp);
     printf("tow_miss_poly_deg(2) is%3d %s", TOW_BURN_TURN_DEG,
        descript);
         Read array data */
    for (i=0; i <= data_tmp_int; i++) {
        fscanf(fp, "%f", &data_tmp);
        tow_burn_turn_coeff.side_coeff[i] = data_tmp;
        fgets(descript, 64, fp);
         printf("tow_burn_turn_coeff.side_coeff(%3d) is%11.3f %s", i,
             tow_burn_turn_coeff.side_coeff[i], descript); */
    for (i=0; i <= data_tmp_int; i++) {
        fscanf(fp, "%f", &data_tmp);
        tow_burn_turn_coeff.up_coeff[i] = data_tmp;
        fgets(descript, 64, fp);
/*
         printf("tow_burn_turn_coeff.up_coeff(%3d) is%11.3f %s", i,
             tow_burn_turn_coeff.up_coeff[i], descript); */
```

```
}
    for (i=0; i <= data_tmp_int; i++) {
        fscanf(fp,"%f", &data_tmp);
        tow_burn_turn_coeff.down_coeff[i] = data_tmp;
        fgets(descript, 64, fp);
         printf("tow_burn_turn_coeff.down_coeff(%3d) is%11.3f %s", i,
            tow burn turn coeff.down_coeff[i], descript); */
   }
    fclose(fp);
/* END DEFAULT BURN TURN DATA FOR miss_tow.c READ FROM FILE */
/* DEFAULT COAST TURN DATA FOR miss_tow.c READ FROM FILE
    fp = fopen("/simnet/data/ms_tw_ct.d","r");
    if(fp==NULL){
        fprintf(stderr, "Cannot open /simnet/data/ms_tw_ct.d\n");
    }
   rewind(fp);
         Read degree of polynomial */
   fscanf(fp,"%d", &data_tmp_int);
   TOW_COAST_TURN_DEG = data_tmp_int;
    tow_coast_turn_coeff.deg = data_tmp_int;
   fgets(descript, 64, fp);
    printf("tow_miss_poly_deg(3) is%3d %s", TOW_COAST_TURN_DEG,
        descript);
         Read array data */
   for (i=0; i <= data_tmp_int; i++) {
        fscanf(fp,"%f", &data_tmp);
        tow coast_turn_coeff.side_coeff[i] = data_tmp;
        fgets(descript, 64, fp);
         printf("tow_coast_turn_coeff.side_coeff(%3d) is%11.3f %s", i,
            tow_coast_turn_coeff.side_coeff[i], descript); */
   for (i=0; i <= data_tmp_int; i++) {
        fscanf(fp,"%f", &data_tmp);
        tow_coast_turn_coeff.up_coeff[i] = data_tmp;
        fgets(descript, 64, fp);
         printf("tow_coast_turn_coeff.up_coeff(%3d) is%11.3f %s", i,
            tow_coast_turn_coeff.up_coeff[i], descript); */
   )
   for (i=0; i <= data_tmp_int; i++) {
        fscanf(fp,"%f", &data_tmp);
```

```
tow_coast_turn_coeff.down_coeff[i] = data_tmp;
        fgets(descript, 64, fp);
         printf("tow_coast_turn_coeff.down_coeff(%3d) is%11.3f %s", i,
/*
            tow_coast_turn_coeff.down_coeff[i], descript); */
    }
    fclose(fp);
/* END DEFAULT COAST TURN DATA FOR miss_tow.c READ FROM FILE */
  tptr->mptr.state = FALSE;
  tptr->mptr.max_flight_time = TOW_MAX_FLIGHT_TIME;
  tptr->mptr.max_turn_directions = 3;
  speed_factor = MISSILE_US_SPEED_FACTOR;
  max_range_limit = MISSILE_US_MAX_RANGE_LIMIT;
  max_range_squared = max_range_limit * max_range_limit;
  tow_ammo_type = munition_US_TOW;
void missile_tow_set_speed_factor( scale_speed )
REAL scale_speed;
  speed_factor = scale_speed;
void missile_tow_set_max_range_limit( limit_range )
REAL limit_range;
  max_range_limit = limit_range;
 max_range_squared = max_range_limit * max_range_limit;
void missile_tow_set_ammo_type( ammo )
ObjectType ammo;
 tow_ammo_type = ammo;
* ROUTINE: missile_tow_fire
* PARAMETERS: tptr - A pointer to the TOW missile to be
            fired.
* PARAMETERS: launch_point - The location in world
                coordinates that the missile is *
                launched from.
        loc_sight_to_world - The sight to world
                   transformation matrix used *
                   only in this routine.
        launch speed - The speed of the launch
                platform (assumed to be in the *
```

```
direction of the missile).
          tube - The tube the missile was launched from. *
 * RETURNS: none
 * PURPOSE:
               This routine performs the functions
         specifically related to the firing of a TOW
         missile.
TOW_MISSILE *missile_tow_fire (tptr, launch_point, loc_sight_to_world,
     launch_speed, tube)
TOW_MISSILE *tptr;
VECTOR launch_point;
T_MATRIX loc_sight_to_world;
REAL launch_speed;
int tube;
  MISSILE *mptr;
                       /* Pointer to the particular generic missile
                pointed at by _tptr_. */
/+/
 Find _mptr_.
/*/
  mptr = &c(tptr->mptr);
 * Set the initial time, location, orientation, and speed of the generic
* missile.
/*/
  mptr->time = 0.0;
  vec_copy (launch_point, mptr->location);
  mat_copy (loc_sight_to_world, mptr->orientation);
  mptr->speed = launch_speed +
    (speed_factor * missile_util_eval_poly (TOW_BURN_SPEED_DEG,
                          tow_burn_speed_coeff, 0.0));
 mptr->init_speed = launch_speed;
 Set the wire as uncut.
/*/
  tptr->wire_is_cut = FALSE;
* Tell the rest of the world about the firing of the missile. If this
* cannot be done, return.
 if (!missile_util_comm_fire_missile (mptr, MSL_TYPE_MISSILE,
      map_get_ammo_entry_from_network_type (tow_ammo_type),
      tow_ammo_type, tow_ammo_type, NULL, targetUnknown,
      objectIrrelevant, tube))
* If all was successful, set the missile state to TRUE and return.
 mptr->state = TRUE;
```

```
return:
 }
 * ROUTINE: missile_tow_fly
  * PARAMETERS: tptr - A pointer to the TOW missile that is to *
              be flown out.
          sight_location - The location in world
                   coordinates of the gunner's
                   sight.
          loc_sight_to_world - The sight to world
                     transformation matrix used *
                     only in this routine.
 * RETURNS: none
 * PURPOSE: This routine performs the functions
          specifically related to the flying a TOW
          missile.
void missile_tow_fly (tptr, sight_location, loc_sight_to_world)
TOW_MISSILE *tptr;
VECTOR sight_location;
T_MATRIX loc_sight_to_world;
  MISSILE *mptr;
                      /* A pointer to the generic aspects of _tptr_. */
  REAL time;
                    /* The current time after launch (ticks). */

    Set _mptr_ and _time_. These values are created mostly for increased

 * readablity.
  mptr = &(tptr->mptr);
  time = mptr->time;

    If the missile has reached its maximum range (not the maximum distance

* its allowed to fly), cut the wire.
/*/
#ifdef notdeff
  if ((time > TOW_RANGE_LIMIT_TIME) && !tptr->wire_is_cut)
    tptr->wire_is_cut = TRUE;
#endif
  if (!tptr->wire_is_cut &&
    ((time > TOW_RANGE_LIMIT_TIME) | |
    (max_range_limit > 0 &&
     kinematics_range_squared (veh_kinematics, mptr->location) >
     max_range_squared) ))
    tptr->wire_is_cut = TRUE;
1./
  Find the current missile speed and the cosines of the maximum allowed turn

    angles in each direction. The equations used are different before and
```

```
* after motor burnout.
 if (time < TOW_BURNOUT_TIME)
    mptr->speed = mptr->init_speed +
      (speed_factor *
      missile_util_eval_poly (TOW_BURN_SPEED_DEG,
                    tow_burn_speed_coeff, time));
   missile_util_eval_cos_coeff (mptr, &tow_burn_turn_coeff, time);
 else
    mptr->speed = mptr->init_speed +
      (speed_factor *
      missile_util_eval_poly (TOW_COAST_SPEED_DEG,
                    tow_coast_speed_coeff, time));
    missile_util_eval_cos_coeff (mptr, &tow_coast_turn_coeff, time);
 1

    If the wire has been cut, set the ground as the target; otherwise,

* find a target point which will fly the missile along the gunner's line of
* sight. This targeting scheme takes into account the errors introduced by

    attempting to guide the missile in a canted position.

 if (tptr->wire_is_cut)
    missile_target_ground (mptr);
    missile_target_level_los (mptr, sight_location, loc_sight_to_world);
  Try to actually fly the missile. If this fails stop the missile altogether
and return.
/*/
  if (!missile_util_flyout (mptr))
    missile_tow_stop (tptr);
    return;
  else
  {
/*/
    If the missile successfully flew, check for an intersection with the
    ground or a vehicle. If one is found, blow up the missile, stop its
    flyout and return.
    if (missile_util_comm_check_intersection (mptr, MSL_TYPE_MISSILE))
      missile\_util\_comm\_check\_detonate\ (mptr, MSL\_TYPE\_MISSILE);
      missile_tow_stop (tptr);
      return;
    }
  }
```

```
/*/
 * If the missile is to continue to fly, return.
/*/
  return;
 * ROUTINE: missile_tow_stop
 * PARAMETERS: tptr - A pointer to the TOW missile that is to *
    be stopped.
 * RETURNS: none
 * PURPOSE: This routine causes all concerned to forget *
        about the missile. It should be called when
        the flyout of any TOW missile is stopped
        (whether or not it has exploded). Note that *
        this routine can only be called within this
        module.
                                  static void missile_tow_stop (tptr)
TOW_MISSILE *tptr;
* Tell the world to stop worrying about this missile then release the
* memory for use by other missiles.
  missile_util_comm_stop_missile (&(tptr->mptr), MSL_TYPE_MISSILE);
  tptr->mptr.state = FALSE;
* ROUTINE: missile_tow_cut_wire
* PARAMETERS: tptr - A pointer to the TOW missile whose wire *
        is to be cut.
* RETURNS: none
* PURPOSE: This routine sets a flag indicating that the *
        guidance wire of this missile is cut.
void missile_tow_cut_wire (tptr)
TOW_MISSILE *tptr;
(
* If the the wire is not already cut, cut the wire.
/*/
 if (!tptr->wire_is_cut)
    tptr->wire_is_cut = TRUE;
```

)

The following appendix contains the source code listing for rkt_hydra.c for convenience in document maintenance and understanding of the CSU.

```
/* $Header: /a3/adst-cm/RWA/simnet/vehicle/libsrc/libmissile/RCS/rkt_hydra.c,v 1
.1 1992/09/30 16:39:52 cm-adst Exp $ */
 * $Log: rkt_hydra.c,v $
* Revision 1.1 1992/09/30 16:39:52 cm-adst
* Initial Version
+/
static char RCS_ID[] = "$Header: /a3/adst-cm/RWA/simnet/vehicle/libsrc/libmissil
e/RCS/rkt_hydra.c,v 1.1 1992/09/30 16:39:52 cm-adst Exp $";
 Revisions:
    Version Date Author Title
                                         SP/CR Number
    1.2 10/23/92 R. Branson Data File Initiali-
                    zation
    1.3 10/30/92 R. Branson Added pathname to data
                    directory
    1.4 11/25/92 R. Branson Changed %i to %d
     SP/CR No.
                 Description of Modification
            Hard coded defines changed to array elements.
            Characteristics/parameter data array added.
            Added file reads for rocket characteristics/
             parameters.
           Added "/simnet/data/" to each data file pathname.
* FILE:
         rkt_hydra.c
* AUTHOR: Kris Bartol
* MAINTAINER: Kris Bartol
* PURPOSE: This file contains routines which govern
       the behavior of an Hydra70 Rocket flown with *
       a ballistic trajectory.
* HISTORY: 10/06/90 kris
```

```
* Copyright (c) 1989 BBN Systems and Technologies, Inc.
 * All rights reserved.
#include "stdio.h"
#include "math.h"
#include "sim_types.h"
#include "sim_dfns.h"
#include "basic.h"
#include "mun_type.h"
#include "librva.h"
#include "libmap.h"
#include "libmatrix.h"
#include "libmiss_dfn.h"
#include "libmiss_loc.h"
#include "libmissile.h"
#include "rkt_hydra.h"
#define DEBUG 0
                         /* debugging is ON */
#define HYDRA_TRAJ_FILE
                              "/simnet/data/hydra70.sd"
#define HYDRA_PARAM_FILE
                                 "/simnet/data/hydra70.sp"
/*- Define rocket performance characteristics -*/
#define HYDRA_MIN_RANGE
                                 rkt_hydra_char[7]
#define HYDRA_MAX_RANGE_S5
                                   rkt_hydra_char[8]
#define HYDRA_MAX_RANGE_M151 rkt_hydra_char[9]
#define HYDRA_MAX_RANGE_M261 rkt_hydra_char[10]
#define HYDRA_MAX_RANGE_M255 rkt_hydra_char[11]
/*- Define the states of an HYDRA70 ROCKET -*/
#define HYDRA_FREE 0
                            /* Rocket available to launch */
#define HYDRA_FLY
                      1
                            /* Rocket flying */
#define HYDRA_DETONATE 2
                                 /* Rocket detonates - release or impact */
#define HYDRA_FALL
                             /* Sub-munitions falling.....
                                /* Sub-munitions released towards impact */
#define HYDRA_RELEASED 4
                                /* Rocket gets killed at end of this tick */
#define HYDRA_REMOVE 10
static REAL rkt_hydra_char[12] =
M151_BURST_SPREAD, /* twin bursts are 3 m apart */
 M261_BURST_HEIGHT, /* release submunitions 180 ft */
 M261_BURST_RANGE, /* 0 m in front of target (49?) */
 M261_BURST_SPREAD, /* twin bursts are 13 m apart */
 M255_BURST_RANGE, /* release darts 150 m front of tgt */
 M255_BURST_SPREAD, /* twin bursts are 35 m apart
 FLECH_60_MAX_RANGE, /* darts fly total of 750 m
```

```
/* hydra minimum range */
   50.0,
  5000.0.
                /* hydra maximum range for Soviet S-5 57mm Rocket */
                /* hydra maximum range for _M151 [actual 9000 m] */
  7000.0,
  7000.0.
                /* hydra maximum range for M261 */
 3200.0
                /* hydra maximum range for M255 */
1:
/*- burst releases 9 bombletts -*/
static int m73_per_m261_burst = M73_PER_M261_BURST;
/*-- pointer_to & number_of HYDRA70_ROCKET array --*/
static HYDRA_ROCKET *hydra_array;
                                         /* A pointer to Hydra70_Rkt memory */
                               /* The number of defined missiles */
static int num_hydra;
/*- array of pointers to Hydra70_Rockets in flight -*/
static HYDRA_ROCKET *hydra_fly[MAX_HYDRA70_ROCKET];
static int rkts_in_flight;
/*-- Ballistics Table ... array of structures _MISSILE_BALLISTIC_OFFSETS_ --*/
static MISSILE_BALLISTIC_OFFSETS ball_table[BALLISTIC_TABLE_SIZE];
static int table_size;
static BOOLEAN ball_table_loaded = FALSE;
static VehicleID null_vehicleID;
static int flight_time; /* Time Of Flight for ballistic traj */
static REAL
  max_range_limit, /*[MISSILE_US_MAX_RANGE_LIMIT]
  speed_factor, /*['MISSILE_US_SPEED_FACTOR]
  pylon_x,
                 /* [0.0] <xyz> position offset of pylon
                 /* [0.0] */
  pylon_y,
                 /* [0.0] */
  pylon_z;
static int flechette_veh_list; /* list ID of flechette target vehicles */
static void missile_hydra_stop ();
static void missile_hydra_purge_free_missiles ();
* ROUTINE: missile_hydra_init
* PARAMETERS: rocket_array - Array of rockets of structure 
             type _HYDRA_ROCKET_
        num_rockets - The number rockets defined in
                 _rockets_array_.
* RETURNS: none
* PURPOSE: This routine copies the parameters into
        variables static to this module and initializes *
        the state of all the rockets.
```

```
void missile_hydra_init( rocket_array, num_rocket )
HYDRA_ROCKET *rocket_array;
int num_rocket;
    int i:
    int data_tmp_int;
    float data_tmp;
    char descript[64];
    FILE *fp;
/* DEFAULT CHARACTERISTICS DATA FOR rkt_hydra.c READ FROM FILE
                                                                             */
    fp = fopen("/simnet/data/rkt_hydr.d","r");
    if(fp==NULL){
        fprintf(stderr, "Cannot open /simnet/data/rkt_hydr.d\n");
        exit();
    1
    rewind(fp);
         Read array data */
    fscanf(fp,"%d", &data_tmp_int);
    m73_per_m261_burst = data_tmp_int;
    fgets(descript, 64, fp);
    printf("m73_per_m261_burst is%3d %s", m73_per_m261_burst,
        descript)
    i=0:
    while(fscanf(fp,"%f", &data_tmp) != EOF){
        rkt_hydra_char[i] = data_tmp;
        fgets(descript, 64, fp);
        printf("rkt_hydra_char(%3d) is%11.3f %s", i,
            rkt_hydra_char[i], descript)
        ++i;
   }
    fclose(fp);
/* END DEFAULT CHARACTERISTICS DATA FOR rkt_hydra.c READ FROM FILE */
 hydra_array = rocket_array;
 num_hydra = num_rocket < MAX_HYDRA70_ROCKET?
   num_rocket: MAX_HYDRA70_ROCKET;
 for (i = 0; i < MAX_HYDRA70_ROCKET; i++)
    hydra_array[i].bmptr.state = HYDRA_FREE;
    hydra_array[i].bmptr.missile_id = 0;
 rkts_in_flight = 0; /* no missiles in flight */
 for(i = 0; i < MAX_HYDRA70_ROCKET; i++)
   hydra_fly[i] = 0;
```

```
pylon_x = 0.0;
  pylon_y = 0.0;
  pyion_z = 0.0;
  flight_time = 0;
  speed_factor = MISSILE_US_SPEED_FACTOR;
  max_range_limit = MISSILE_US_MAX_RANGE_LIMIT;
  if (!ball_table_loaded)
 * load Hydra70 Rocket's ballistic table
  printf( "loading Hydra70 Rocket's ballistic table %s\n",
      HYDRA_TRAJ_FILE);
  table_size =
    missile_util_load_ball_traj_file( HYDRA_TRAJ_FILE, ball_table );
    ball_table_loaded = TRUE;
 * create _flechette_veh_list_ for proximity fuze
  flechette_veh_list = rva_create_output_list( flechette_is_valid_veh );
#ifdef notdef
  flechette_veh_list = RVA_ALL_VEHICLES_LIST;
#endif
* initialize the proximity fuze for rockets armed with Flechette's
  missile_fuze_prox_init();
int missile_hydra_is_free( rocket )
int rocket:
  return( (hydra_array[rocket].bmptr.state == HYDRA_FREE ));
}
* ROUTINE: missile_hydra_set_pylon_position_offsets
* PARAMETERS: x = X offset (in meters ) from center of HULL. *
        y = Y offset.
         z = Z offset.
* RETURNS: none.
* PURPOSE: Sets the X, Y and Z offsets from center of
         HULL for trajectory calculations.
void missile_hydra_set_pylon_position_offsets( x, y, z )
REAL x, y, z;
```

```
pylon_x = x;
  pylon_y = y;
  pylon_z = z;
void missile_hydra_set_speed_factor( speed_scale )
REAL speed_scale;
{
  speed_factor = speed_scale;
void missile_hydra_set_max_range_limit( limit_range )
REAL limit_range;
  max_range_limit = limit_range;
 * ROUTINE: missile_hydra_set_pylon_articulation
 * PARAMETERS: tgt_range - Range to target.
         rkt_type - Type of Rocket to be launched.
         time - Pointer to Time Of Flight
             variable in vehicle-spec code. [int]
         se_angle - Pointer to Super Elevation
             variable in vehicle-spec code. [REAL]
         lead_angle - Pointer to Lead Elevation
             variable in vehicle-spec code. [REAL] *
* RETURNS: none.
* PURPOSE: Sets_laser_range_ of next Hydra70 rocket to *
         be launched and calculates Time Of Flight,
         Super Elevation angle and Lead angle for next *
         rocket launch.
void missile_hydra_set_pylon_articulation( tgt_range, rkt_type, time,
                      se_angle, lead_angle )
REAL tgt_range;
int rkt_type, *time;
REAL *se_angle, *lead_angle;
  REAL range;
                   /* Range to target */
  REAL ball_range; /* Range to look-up in Ballistic Table */
  if( tgt_range < HYDRA_MIN_RANGE )
    range = HYDRA_MIN_RANGE;
  else if(( max_range_limit > 0.0 ) &&
      (tgt_range > max_range_limit))
    range = max_range_limit;
 else
```

```
range = tgt_range;
/* SuperElevation & TOF for each Rocket Type */
  switch(rkt_type)
                                    /* type 10lb WARHEAD */
  case ROCKET HE:
    if( range > HYDRA_MAX_RANGE_M151 )
      range = HYDRA_MAX_RANGE_M151;
    ball_range = range / speed_factor;
    missile_util_ballistics_calc_traj( ball_table, table_size,
                      ball_range, 0.0, 0.0,
                      time, se_angle );
    *lead_angle = atan( (rkt_hydra_char[ 0] - pylon_x) / range );
                  /* Does not have a timed fuze */
    *time = -5:
    break:
  case ROCKET_MPSM:
                                      /* type MPSM */
    if( range > HYDRA_MAX_RANGE_M261)
      range = HYDRA_MAX_RANGE_M261;
    ball_range = range / speed_factor;
    missile_util_ballistics_calc_traj(ball_table, table_size,
                      ball_range, 0.0, rkt_hydra_char[ 1],
                      time, se_angle );
    *lead_angle = atan( (rkt_hydra_char[ 3] - pylon_x) / range );
    break;
  case ROCKET_FLECHETTE:
                                         /* type FLECHETTE */
    if( range > HYDRA_MAX_RANGE_M255 )
      range = HYDRA_MAX_RANGE_M255;
    ball_range = range / speed_factor;
    missile_util_ballistics_calc_traj( ball_table, table_size,
                      ball_range, rkt_hydra_char[4], 0.0,
                      time, se_angle );
    *lead_angle = atan((rkt_hydra_char[ 5] - pylon_x) /
              (range - rkt_hydra_char[4]));
    break;
 default:
    printf("hydra_set_pylon_articul: unknown warhead_type %d\n", rkt_type )
    *time = 0;
    se_angle = 0.0;
    ^{\bullet}lead_angle = 0.0;
   break:
 flight_time = *time;
* ROUTINE: missile_hydra_fire
* PARAMETERS: rkt_type - Type of Rocket warhead.
        ammo - Ammo Type of rocket's warhead.
        launch_pt - The location in world
                coordinates that the rocket is "
```

```
launched from.
         launch_orient - The sight to world
                 transformation matrix used
                 only in this routine.
         launch_speed - Speed of launch platform
                  (assumed to be in the direction *
                  of the Rocket).
               TRUE if successful, FALSE if not.
 * RETURNS:
               This routine performs the functions
 * PURPOSE:
         specifically related to the firing of a HYDRA70 *
         rocket.
int missile_hydra_fire( rkt_type, ammo, launch_pt,
             launch_orient, launch_speed)
int rkt_type;
ObjectType ammo;
VECTOR launch_pt;
T_MAT_PTR launch_orient;
REAL launch_speed;
  T_MATRIX
    launch_lead,
    launch_se;
  REAL
    se_angle,
                 /* munition_specific SuperElevation angle */
    lead_angle; /* munition_specific (+/-)Lead angle */
               /* munition_specific FlightTime */
  HYDRA_ROCKET *rkt;
  BALLISTIC_MISSILE *bmptr;
  ObjectType fuze;
  int i, valid_msl;
/* get next FREE rocket */
  valid_msl = 0;
  rkt = hydra_array;
  for(i = 0; i < MAX_HYDRA70_ROCKET; i++, rkt++)
    if( rkt->bmptr.state == HYDRA_FREE )
      valid_msl = 1;
      hydra_fly[rkts_in_flight] = rkt;
      bmptr = &(rkt->bmptr);
#if DEBUG
      printf( "Launching Rocket %d\n", i );
#endif
      rkts_in_flight++;
                             /* rkts_in_flight == # flying */
      break;
                      /* no available missile to launch */
  if(!valid_msl)
```

```
return(FALSE);
  1
/* set MaxRange for Rocket Type */
  switch( rkt_type )
  case ROCKET_HE:
                              /* High Explosive */
    bmptr->max_range = HYDRA_MAX_RANGE_M151;
    rkt->sub_mun_type = SUB_MUN_NONE;
    rkt->sub_ammo_type = 0;
    fuze = munition_US_M433;
    break:
  case ROCKET_MPSM:
                                /* Multi-Purpose Sub-Munition */
    bmptr->max_range = HYDRA_MAX_RANGE_M261;
    rkt->sub_mun_type = SUB_MUN_IMPACT;
    rkt->sub_ammo_type = munition_US_M73;
    rkt->sub_munition.impact.ammo = munition_US_M73;
    rkt->sub_munition.impact.fuze = munition_US_M433;
    rkt->sub_munition.impact.quantity = m73_per_m261_burst;
    rkt->sub_munition.impact.height = rkt_hydra_char[ 1];
    fuze = munition_US_M439;
    break;
  case ROCKET_FLECHETTE:
                                   /* Flechette discharging warhead */
    bmptr->max_range = HYDRA_MAX_RANGE_M255;
    rkt->sub_mun_type = SUB_MUN_CANISTER;
    rkt->sub_ammo_type = munition_US_Flechette_60;
    rkt->sub_munition.dart.ammo = munition_US_Flechette_60;
    rkt->sub_munition.dart.fuze = 0;
    fuze = munition_US_M439;
   break:
 default:
   printf( "hydra_fire_rkt: unknown rocket_type %d\n", rkt_type );
   rkts_in_flight-;
   bmptr -> state = HYDRA_FLY;
   return(FALSE);
   break:
 mat_copy( launch_orient, bmptr->launcher_C_world );
 mat_copy( launch_orient, bmptr->orientation );
 vec_copy( launch_pt, bmptr->location );
 bmptr->speed = launch_speed;
/* - Tell the rest of the world about the firing of this B-missile. -
* - If this cannot be done, return FALSE. -
+/
 if(!missile_util_comm_fire_missile
   (bmptr, MSL_TYPE_BALLISTIC,
   map_get_ammo_entry_from_network_type( ammo ),
   ammo, ammo, /*guises*/
   &(null_vehicleID), 0/*targ_type*/, fuze, 0/*tube*/))
 (
```

```
rkts_in_flight-;
    bmptr -> state = HYDRA_FLY;
    return(FALSE);
  bmptr -> max_flight_time = flight_time;
  bmptr -> ammo_type = ammo;
                            /* initialize in-flight timer */
  bmptr -> time = 0;
                            /* first point into Ball-table */
  bmptr -> ball_index = 0;
  bmptr -> state = HYDRA_FLY; /* rocket is now flying */
  return(TRUE);
* ROUTINE: missile_hydra_fly_rockets
* PARAMETERS: none
* RETURNS: none
* PURPOSE: This routine flys out all rockets that are in *
        a flying state.
void missile_hydra_fly_rockets()
 register int i;
 int at_least_one_empty_MPSM;
    Fly out all launched & flying rockets.
    - may have to also 'fly out' all released submunitions -
 at_least_one_empty_MPSM = FALSE;
 for(i = 0; i < rkts_in_flight; i++)
   switch( hydra_fly[i]->bmptr.state )
   case HYDRA_FREE:
      hydra_fly[i]->bmptr.state = HYDRA_REMOVE;
      break:
   case HYDRA_FLY:
      missile_hydra_fly( hydra_fly[i] );
   case HYDRA DETONATE:
      switch( hydra_fly[i]->sub_ammo_type )
      case munition_US_M73:
                                     /* MPSM bomblets */
        missile m73_init
          ( &(hydra_fly[i]->bmptr),
          &(hydra_fly[i]->sub_munition),
            ball_table[ hydra_fly[i]->bmptr.ball_index ].speed );
        hydra_fly(i)->bmptr.state = HYDRA_FALL;
        break:
                                       /* FLECHETTE darts */
      case munition_US_Flechette_60:
```

```
missile_flechette_init
      ( &(hydra_fly[i]->bmptr),
       &(hydra_fly[i]->sub_munition),
       ball_table[ hydra_fly[i]->bmptr.ball_index ].speed ):
    hydra_fly[i]->bmptr.state = HYDRA_RELEASED;
    break:
  default:
    printf("Hydra Detonate: R %d unknown ammo-type\n",i);
    missile hydra stop(hydra_fly[i]);
    break:
  ١
  break;
case HYDRA_FALL:
  switch( hydra_fly[i]->sub_ammo_type )
                                 /* type MPSM */
  case munition_US_M73:
    if( missile_m73_drop( &(hydra_fly[i]->bmptr),
               &(hydra_fly[i]->sub_munition)))
      hydra_fly[i]->bmptr.state = HYDRA_RELEASED;
    break:
  default:
    printf("Hydra_Fall(): R_%d bad sub_munition\n",i );
    missile_hydra_stop(hydra_fly[i]);
    break:
  break:
case HYDRA_RELEASED:
  switch(hydra_fly[i]->sub_ammo_type)
 case munition_US_M73:
                                 /* type MPSM */
   if(!missile_m73_impact(&(hydra_fly[i]->bmptr),
                 &(hydra_fly[i]->sub_munition)))
      at_least_one_empty_MPSM = TRUE;
      missile_hydra_stop(hydra_fly[i]);
   break:
 case munition US Flechette 60:
                                   /* type FLECHETTE */
   if(!missile_flechette_fly(&(hydra_fly[i]->bmptr),
                 &(hydra_fly[i]->sub_munition),
                flechette_veh_list ))
      missile_hydra_stop( hydra_fly[i] );
      missile_fuze_prox_stop
        ( &(hydra_fly[i]->sub_munition.dart.pptr) );
   break:
 default:
   printf("Hydra_Release: R_%d bad sub_munition\n",i );
   missile_hydra_stop(hydra_fly[i]);
   break:
```

```
break;
    case HYDRA_REMOVE:
      break;
    default
      printf( "Msl_hydra_fly_rkts(): rkt_%d not flying\n", i );
      missile_hydra_stop( hydra_fly[i] );
      break:
    }
/* Send out remaining (if any) Indirect Fire pkts */
  if( at_least_one_empty_MPSM )
    network ifire_send_indirect_fire();
/* Get rid of DEAD rockets */
  missile_hydra_purge_free_missiles();
* ROUTINE: missile_hydra_fly
 * PARAMETERS: rkt - Pointer to a _HYDRA_ROCKET_ structure *
* RETURNS: none
* PURPOSE: This routine performs the functions
         specifically related to the flying an HYDRA70 *
void missile_hydra_fly( rkt )
HYDRA_ROCKET *rkt;
  BALLISTIC_MISSILE *bmptr;
  int index;
  bmptr = &(rkt->bmptr);
  index = bmptr->ball_index;
* Check for rocket detonation via timed-fuze.
  if( missile_util_comm_check_timer( bmptr, MSL_TYPE_BALLISTIC ))
    bmptr->state = HYDRA_DETONATE;
* Try to actually fly the missile. If this fails stop the missile altogether
* and return.
  else
    if(!missile_util_ball_flyout(bmptr, &(ball_table[index]),
                    table_size, speed_factor ) )
#if DEBUG
      printf( "Hydra_Rkt out of range -- stopping B-missile\n" );
```

```
#endif
       missile_hydra_stop( rkt );
       return;
   if( missile_util_comm_check_detonate( bmptr, MSL_TYPE_BALLISTIC ))
 * IF rocket hit ground or vehicle -> stop its flyout
     if( missile util_comm_check_intersection( bmptr, MSL_TYPE_BALLISTIC ))
       missile_hydra_stop( rkt );
 * Else do nothing -> missile is not dead yet...
           OR rocket timed-fuze detonated
 */
 /* otherwise, let B-missile continue on its merry way.
  return;
 * ROUTINE: missile_hydra_stop
 * PARAMETERS: rkt - Pointer to a _HYDRA_ROCKET_ structure *
         that is to be stopped.
* RETURNS: none
* PURPOSE: Stops the flight a Hydra70_Rocket.
         Stops telling the world about said Rocket
         and frees up the Rocket for another launch.
static void missile_hydra_stop( rkt )
HYDRA_ROCKET *rkt;
  BALLISTIC_MISSILE *bmptr;
  int i:
  bmptr = &c(rkt->bmptr);
* Tell the world to stop worrying about this missile then release the

    memory for use by other missiles.

  missile_util_comm_stop_missile( bmptr, MSL_TYPE_BALLISTIC );
#if DEBUG
  printf( "stop:: T: %d Rkt: %d Pos: %1.2lf %1.2lf \n",
      bmptr->time, bmptr->missile_id, bmptr->location[0],
      bmptr->location[1], bmptr->location[2] );
#endif
```

```
* Mark rocket to be Removed
   bmptr->state = HYDRA_REMOVE;
 static void missile_hydra_purge_free_missiles()
   int i;
   i = 0:
   while( i < rkts_in_flight )
     if( hydra_fly[i]->bmptr.state == HYDRA_REMOVE )
        * Swap -BAD- rocket[i] with -LAST- rocket[rkts_in_flight]
       * Cut-off (now BAD) -LAST- rocket
        * Check (now Good) rocket[i]
       hydra_fly[i]->bmptr.state = HYDRA_FREE;
       rkts_in_flight-;
       hydra_fly[i] = hydra_fly[rkts_in_flight];
       hydra_fly[rkts_in_flight] = 0;
    else
       * Check next rocket[i+1]
       i++;
  }
void mbmat( mat )
T_MAT_PTR mat;
  int i, j;
  for( i=0; i<3; i++ )
    for(j=0; j<3; j++)
      printf( " %1.4lf ", mat[i][j] );
    printf("\n");
}
void mbmat_nan( mat )
T_MAT_PTR mat;
  int i, j;
  union foo
```

```
REAL df;
     long 1[2];
   } x;
   for( i=0; i<3; i++ )
     for(j=0; j<3; j++)
       printf( " %1.4lf ", mat[i][j] );
     printf("->");
     for( j=0; j<3; j++ )
       x.df = mat[i][j];
       printf( " 0x%08x 0x%08x", x.l[0], x.l[1] );
     printf("\n");
}
void mbm( n, msg )
int n;
char msg[];
  printf( "BM: %d -> %s\n", n, msg );
void mbfl(n, msg)
REAL n;
char msg[];
  printf( "BM: %6.4lf -> %s\n", n, msg );
```

22 January 1993 Reference # W003036 Rev. 0.0

Appendix N - Source code listing for rwa_hydra.c.

The following appendix contains the source code listing for rwa_hydra.c for convenience in document maintenance and understanding of the CSU.

*** ***Log: rwa_hydra.c,v \$	/* \$Header: /a3/adst-cm/RWA/simnet/vehicle/rwa/src/RCS/rwa_hydra.c,v 1.1 1992/09/30 17:02:58 cm-adst Exp \$ */
static char RCS_ID[] = "\$Header: /a3/adst-cm/RWA/simnet/vehicle/rwa/src/RCS/rwa_hydra.c,v 1.1 1992/09/30 17:02:58 cm-adst Exp \$"; /	* Revision 1.1 1992/09/30 17:02:58 cm-adst
static char RCS_ID[] = "\$Header: /a3/adst-cm/RWA/simnet/vehicle/rwa/src/RCS/rwa_hydra.c,v 1.1 1992/09/30 17:02:58 cm-adst Exp \$"; /	•/
Revisions: Version Date Author Title SP/CR Number 1.2 10/23/92 R. Branson Data File Initialization 1.3 10/30/92 R. Branson Added pathname to data directory SP/CR No. Description of Modification Hard coded defines changed to array elements. Characteristics/parameter data array added. Added file reads for hydra rocket characteristics/parameters. Added "/simnet/data/" to each data file pathname. SYSTEM NAME: rwa FILE: rwa hydra.c AUTHOR: Kris Bartol SIMNET simulation of Hydra70 Rocket Copyright (c) 1990 BBN Advanced Simulation Division. All rights reserved.	static char RCS_ID[] = "\$Header: /a3/adst-cm/RWA/simnet/vehicle/rwa/src/RCS/rwa_
Version Date Author Title SP/CR Number 1.2 10/23/92 R. Branson Data File Initialization 1.3 10/30/92 R. Branson Added pathname to data directory SP/CR No. Description of Modification Hard coded defines changed to array elements. Characteristics/parameter data array added. Added file reads for hydra rocket characteristics/parameters. Added "/simnet/data/" to each data file pathname. SYSTEM NAME: rwa FILE: rwa_hydra.c AUTHOR: Kris Bartol SIMNET simulation of Hydra70 Rocket Copyright (c) 1990 BBN Advanced Simulation Division. All rights reserved.	/
1.2 10/23/92 R. Branson Data File Initialization 1.3 10/30/92 R. Branson Added pathname to data directory SP/CR No. Description of Modification Hard coded defines changed to array elements. Characteristics/parameter data array added. Added file reads for hydra rocket characteristics/parameters. Added "/simnet/data/" to each data file pathname. SYSTEM NAME: rwa FILE: rwa_hydra.c AUTHOR: Kris Bartol SIMNET simulation of Hydra70 Rocket Copyright (c) 1990 BBN Advanced Simulation Division. All rights reserved.	* Revisions:
zation 1.3 10/30/92 R. Branson Added pathname to data directory SP/CR No. Description of Modification Hard coded defines changed to array elements. Characteristics/parameter data array added. Added file reads for hydra rocket characteristics/parameters. Added "/simnet/data/" to each data file pathname. SYSTEM NAME: rwa FILE: rwa_hydra.c AUTHOR: Kris Bartol SIMNET simulation of Hydra70 Rocket Copyright (c) 1990 BBN Advanced Simulation Division. All rights reserved.	* Version Date Author Title SP/CR Number *
SP/CR No. Description of Modification Hard coded defines changed to array elements. Characteristics/parameter data array added. Added file reads for hydra rocket characteristics/parameters. Added "/simnet/data/" to each data file pathname. SYSTEM NAME: rwa FILE: rwa_hydra.c AUTHOR: Kris Bartol SIMNET simulation of Hydra70 Rocket Copyright (c) 1990 BBN Advanced Simulation Division. All rights reserved.	
SP/CR No. Description of Modification Hard coded defines changed to array elements. Characteristics/parameter data array added. Added file reads for hydra rocket characteristics/ parameters. Added "/simnet/data/" to each data file pathname. SYSTEM NAME: rwa FILE: rwa_hydra.c *AUTHOR: Kris Bartol * **Copyright (c) 1990 BBN Advanced Simulation Division. *All rights reserved.	•
Characteristics/parameter data array added. Added file reads for hydra rocket characteristics/ parameters. Added "/simnet/data/" to each data file pathname. SYSTEM NAME: rwa FILE: rwa_hydra.c AUTHOR: Kris Bartol SIMNET simulation of Hydra70 Rocket Copyright (c) 1990 BBN Advanced Simulation Division. All rights reserved.	/*************************************
SYSTEM NAME: rwa FILE: rwa_hydra.c AUTHOR: Kris Bartol SIMNET simulation of Hydra70 Rocket Copyright (c) 1990 BBN Advanced Simulation Division. All rights reserved.	* Characteristics/parameter data array added. * Added file reads for hydra rocket characteristics/
FILE: rwa_hydra.c AUTHOR: Kris Bartol SIMNET simulation of Hydra70 Rocket Copyright (c) 1990 BBN Advanced Simulation Division. All rights reserved.	Added "/simnet/data/" to each data file pathname.
FILE: rwa_hydra.c AUTHOR: Kris Bartol SIMNET simulation of Hydra70 Rocket Copyright (c) 1990 BBN Advanced Simulation Division. All rights reserved.	/**************************************
AUTHOR: Kris Bartol SIMNET simulation of Hydra70 Rocket Copyright (c) 1990 BBN Advanced Simulation Division. All rights reserved.	* SYSTEM NAME: rwa
SIMNET simulation of Hydra70 Rocket * Copyright (c) 1990 BBN Advanced Simulation Division. * All rights reserved.	
* Copyright (c) 1990 BBN Advanced Simulation Division. * All rights reserved. * *	* *
* All rights reserved.	* SIMNET simulation of Hydra70 Rocket
, ,	* Copyright (c) 1990 BBN Advanced Simulation Division. * All rights reserved.
	#include "simstdio.h"

```
#include "sim_types.h"
#include "sim_dfns.h"
#include "sim_macros.h"
#include "basic.h"
#include "mun_type.h"
#include "veh_type.h"
#include "libmatrix.h"
#include "libmath.h"
#include "librotate.h"
#include "libturret.h"
#include "libhull.h"
#include "libkin.h"
#include "libcig.h"
#include "libimps.h"
#include "libmap.h"
#include "libmissile.h"
#include "libmiss_dfn.h"
#include "rkt_hydra.h"
#include "rwa_kinemat.h"
#include "rwa_weapons.h"
#include "rwa_meter.h"
#include "rwa_config.h"
#define DEBUG 0
                     /* debugging is ON */
#define LEFT 0
#define RIGHT 1
#define NUM_ROCKETS_LAUNCHED_PER_TICK 2
/*/
* Define rocket characteristics.
#define HYDRA_LAUNCHER_POS_X hydra_rkt_char[0]
#define HYDRA LAUNCHER POS_Y hydra rkt_char[1]
#define HYDRA_LAUNCHER_POS_Z hydra_rkt_char[2]
* Articulation Limits are +4 to -15 degrees but are adjusted to
* +19 to -15 degrees for simulation's fixed OTW reticle
#define SOVIET_ARTICULATION (mil_to_rad(hydra_rkt_char[3]))
#define HULL_NEG_5_PITCH
                                ( deg_to_rad(hydra_rkt_char[4]))
                                  ( deg_to_rad(hydra_rkt_char[5]))
#define ARTICULATION_MAX
                                 ( deg to rad(hydra_rkt_char[6]))
#define ARTICULATION_MIN
1.1
```

```
    Hydra rocket characteristic parameters initialized to default values.

  /*/
 static REAL hydra_rkt_char[7] =
   4.5, /* hydra launcher position X */
   0.5, /* hydra launcher position Y */
   -2.0, /* hydra launcher position Z */
  104.0, /* mils of Soviet articulation */
   -5.0, /* degrees of hull negative pitch */
   19.0, /* degrees of maximum articulation */
  -15.0 /* degrees of minimum articulation */
 }:
 ROTATE_ELEMENT_DEF (articulation_element);
 ROTATE_ELEMENT_DEF (pylon_L_element);
 ROTATE_ELEMENT_DEF (pylon_R_element);
 static HYDRA_ROCKET hydras[MAX_HYDRA70_ROCKET + 1] = { 0 };
 static VehicleID null VehicleID;
 static int flight_time;
                         /* Time Of Flight for ballistic traj */
static REAL
   super_elevation,
                         /* Adj angle for ballistic traj */
   target_range;
                        /* Range by which to calculate ballistics */
static ObjectType ammo_type; /* Ammo_Type of rockets to be launched */
static int warhead_class;
                            /* one of [ HE | MPSM | FLECHETTE ] */
static int pylons_set;
                         /* TRUE when pylon articulation is complete */
static int left_rocket_launch; /* TRUE -> launch left rocket */
static int right_rocket_launch; /* TRUE -> launch right rocket */
static VECTOR left_launcher_pos = { 4.5, 0.0, 0.0 };
static VECTOR right_launcher_pos = { 4.5, 0.0, 0.0 };
static VECTOR articulation_pos = { 0.0, 0.5, -2.0 };
extern REAL weapons_get_rocket_range();
extern REAL kinematics_get_true_airspeed();
extern void mbmat();
extern void mbmat_nan();
extern void mbvec();
ROTATE_ELEMENT *articulation()
  return( & articulation_element );
ROTATE_ELEMENT *pylon L()
  return( &pylon_L_element );
```

```
}
ROTATE_ELEMENT *pylon_R()
  return( &pylon_R_element );
void hydra_launch_rocket_left()
  left_rocket_launch = TRUE;
void hydra_launch_rocket_right()
  right_rocket_launch = TRUE;
int hydra_launch_rocket( launch_from_right )
int launch_from_right; /* 0 = left-side (neg) :: 1 = right-side (pos) */
  T_MAT_PTR launch_orient;
  VECTOR launch_velocity;
  REAL
    *launch_point,
    se_angle,
    lead_angle;
/* get launch_point & launch_orient */
  if( launch_from_right ) /* launch from right */
    launch_point = rotate_get_loc( world(), pylon_R() );
    launch_orient = rotate_get_mat( pylon_R(), world() );
  else
    launch_point = rotate_get_loc( world(), pylon_L() );
    launch_orient = rotate_get_mat( pylon_L(), world() );
#if DEBUG
  if( mat_check(launch_orient) == FALSE )
    mbmat_nan( launch_orient );
#endif
  if(!missile_hydra_fire( warhead_class, ammo_type,
               launch_point, launch_orient,
               (kinematics_get_true_airspeed()/15) /*init speed*/))
#if DEBUG
    printf( "No memory in missile_comm for HYDRA\n");
#endif
    printf("Rocket launch failed\n");
```

```
return(FALSE);
  1
  return(TRUE);
int hydra_pylons_are_set()
  return( pylons_set );
void hydra_set_pylon_articulation( WAS_position )
int WAS_position;
  MUNITION DATA *mun_data;
  int flight_time; /* time of flight to fly _range_ meters */
  REAL
               /* range to target */
    super_elev, /* super elevation angle for trajectory */
   dispersion; /* dispersion angle for trajectory */
* Given _range_ & _ammo_type_ ::
    * calculate and return super_elev & dispersion angles
    * calculate and set Time-Of-Flight timer
    * set _ammo_type_ of next rocket(s) to be fired
 mun_data = rwa_config_get_was_munition_info (WAS_position);
 ammo_type = mun_data->munition_type;
 if (mun_data->code != MUNITION_ROCKET)
   /* bombs, for example */
   return;
 switch(mun data->data.rocket.warhead)
 case WARHEAD_HE:
   warhead_class = ROCKET_HE;
   break:
 case WARHEAD_MPSM:
   warhead_class = ROCKET_MPSM;
   break:
 case WARHEAD_FLECHETTE:
   warhead_class = ROCKET_FLECHETTE;
   break:
 default:
   printf("hydra_set_artic: unknown warhead %d for WAS %d\n",
       mun_data->data.rocket.warhead, WAS_position );
   break:
 }
```

```
* Get rocket range & calculate SuperElevation and Dispersion angles
 */
   pylons_set = FALSE;
   if( mun_data->data.rocket.articulation )
     range = weapons_get_rocket_range();
    range = (REAL)(mun_data->data.rocket.flyout_range);
 * Set pylon Super Elevation angle & pylon Dispersion angle
   missile_hydra_set_pylon_articulation( range, warhead_class, &flight_time,
                      &super_elev, &dispersion);
   super_elev += HULL_NEG_5_PITCH;
   rotate_set_angle( articulation(), super_elev );
  rotate_set_angle( pylon_R(), (- dispersion) );
  rotate_set_angle( pylon_L(), dispersion );
}
void hydra_config_rockets()
  MUNITION_DATA *mun_data;
  int i:
  for(i = 0; i < MAX_WAS_POSITIONS; i++)
    if( (mun_data = rwa_config_get_was_munition_info( i )) == NULL )
      continue:
    if( mun_data->code == MUNITION_ROCKET )
      missile_hydra_set_speed_factor
        ((REAL)(mun_data->data.rocket.speed_factor));
      missile_hydra_set_max_range_limit
        ((REAL)(mun_data->data.rocket.flyout_range));
  }
void hydra_init ()
    int i;
    int data_tmp_int;
    float data_tmp;
    char descript(64);
    FILE *fp;
/* DEFAULT CHARACTERISTICS DATA FOR rwa_hydra.c READ FROM FILE
    fp = fopen("/simnet/data/rwa_hydr.d","r");
    if(fp==NULL){
        fprintf(stderr, "Cannot open /simnet/data/rwa_hydr.d\n");
        exit();
```

```
}
     rewind(fp);
         Read array data */
    i=0;
     while(fscanf(fp,"%f", &data_tmp) != EOF){
         hydra_rkt_char[i] = data_tmp;
         fgets(descript, 64, fp);
         printf("hydra_rkt_char(%3d) is%11.3f %s", i,
             hydra_rkt_char[i], descript);
    }
    fclose(fp);
 /* END DEFAULT CHARACTERISTICS DATA FOR rwa_hydra.c READ FROM FILE */
    left_launcher_pos[0] = HYDRA_LAUNCHER_POS_X;
    right_launcher_pos[0] = HYDRA_LAUNCHER_POS_X;
    articulation_pos[1] = HYDRA_LAUNCHER_POS_Y;
    articulation_pos[2] = HYDRA_LAUNCHER_POS_Z;
  if(!rotate_init_element( &articulation_element, hull(),
              1.0, 0.0, 0.0, 0.0,
            ARTICULATION_MIN,ARTICULATION_MAX,/*TWO_*/PI,/*rate*/
            0.0, HYDRA_LAUNCHER_POS_Y, HYDRA_LAUNCHER_POS_Z ))
    printf( "Rotate_Init_Element: articulation_element FAILED\n" );
  rotate_init_element( &pylon_L_element, articulation(), 0.0, 0.0, 1.0, 0.0,
            -TWO_PI, TWO_PI, TWO_PI, /*rate*/
            -HYDRA_LAUNCHER_POS_X, 0.0, 0.0 );
  rotate_init_element( &pylon_R_element, articulation(), 0.0, 0.0, 1.0, 0.0,
            -TWO_PI, TWO_PI, TWO_PI, /*rate*/
            HYDRA_LAUNCHER_POS_X, 0.0, 0.0 );
  missile_hydra_init( hydras, MAX_HYDRA70_ROCKET );
  missile_hydra_set_pylon_position_offsets( HYDRA_LAUNCHER_POS_X,
                       HYDRA_LAUNCHER_POS_Y,
                       HYDRA_LAUNCHER_POS_Z);
  hydra_config_rockets();
  left_rocket_launch = FALSE;
  right_rocket_launch = FALSE;
 pylons_set = FALSE;
void hydra_simul()
 missile_hydra_fly_rockets();
```

}

```
if(!pylons_set)
    pylons_set = TRUE;
    rotate_set_no_rotate( pylon_R() );
    rotate_set_no_rotate( pylon_L() );
    rotate_set_no_rotate( articulation() );
  else
    if( left_rocket_launch )
      if( hydra_launch_rocket( LEFT ) )
         left_rocket_launch = FALSE;
    if( right_rocket_launch )
      if(hydra_launch_rocket(RIGHT))
         right_rocket_launch = FALSE;
  }
}
void mbvec( str, vec )
char *str;
VECTOR vec;
  printf( "%s [ %1.4lf %1.4lf %1.4lf ]\n",
      str, vec[X], vec[Y], vec[Z] );
```

The following appendix contains the source code listing for sub_flech.c for convenience in document maintenance and understanding of the CSU.

```
/* $Header: /a3/adst-cm/RWA/simnet/vehicle/libsrc/libmissile/RCS/sub_flech.c,v 1
.1 1992/09/30 16:39:52 cm-adst Exp $ */
 * $Log: sub_flech.c,v $
* Revision 1.1 1992/09/30 16:39:52 cm-adst
 * Initial Version
*/
static char RCS_ID[] = "$Header: /a3/adst-cm/RWA/simnet/vehicle/libsrc/libmissil
e/RCS/sub_flech.c,v 1.1 1992/09/30 16:39:52 cm-adst Exp $";
* Revisions:
                                            SP/CR Number
    Version Date Author Title
          10/23/92 R. Branson Data File Initiali-
                      zation
    1.3 10/30/92 R. Branson Added pathname to data
                      directory
          11/25/92 R. Branson Changed %i to %d
    SP/CR No.
                  Description of Modification
            Hard coded defines changed to array elements.
            Characteristics/parameter data array added.
             Added file reads for sub_flechette characteristics/
              parameters and flechette speed coefficients.
            Added "/simnet/data/" to each data file pathname.
• FILE:
          sub_flech.c
* AUTHOR: Kris Bartol
* MAINTAINER: Kris Bartol

    PURPOSE: This file contains routines which simulates

        the behavior of sub-munitions of type
        munition_US_Flechette_60.
* HISTORY: 10/06/90 kris
```

```
* Copyright (c) 1989 BBN Systems and Technologies, Inc.
 * All rights reserved.
#include "stdio.h"
#include "math.h"
#include "sim_types.h"
#include "sim_dfns.h"
#include "basic.h"
#include "mun_type.h"
#include "libhull.h"
#include "libimps.h"
#include "libkin.h"
#include "libmath.h"
#include "libmap.h"
#include "libmatrix.h"
#include "libmiss_dfn.h"
#include "libmiss_loc.h"
#include "rkt_hydra.h"
#define DEBUG 0
                           /* debugging is ON */
#define INVEST_DIST_SQ
                                sub_flech_char[0]
#define FUZE_DIST_SQ
                               sub_flech_char[1]
#define FLECHETTE_SPEED_DEG sub_flech_poly_deg
* Sub_flechette characteristic parameters initialized to default values.
static REAL sub_flech_char[3] =
10000.0, /*(100 \text{ m})^2 :: \text{max speed} < 100 */
 306.25, /* (17.5 m)^2 :: flechettes fly
                in a cylinder with a radius
                of 17.5 m and length of 750 m */
FLECH_60_MAX_RANGE /* darts fly total of 750m */
};
* The following term sets the order of the polynomial used to determine
* the speed of the flechettes.
10/
static int sub_flech_poly_deg = 3;

    Coefficients for the speed polynomial for flechettes initialized
```

```
* to default values.
/+/
static REAL flechette_speed_coef[5] =
               /* a 0 - m/tick
  41.75.
                /* a_1 - m/tick/m
  -0.20397254.
   0.00022724278, /* a_2 - m/tick/m^2 */
  -0.00000008633, /* a_3 - m/tick/m^3 */
   0.0
1:
static VECTOR zero vector = { 0.0, 0.0, 0.0 };
static VehicleID null_VehicleID;
/* this routine is invoked by the rva for each vehicle to see if it
 * should be included on the flechette valid vehicle list
flechette_is_valid_veh (veh)
VehicleAppearanceVariant *veh;
  return( /* is_alive_vehicle (veh->appearance) */ TRUE );
* ROUTINE: missile_flechette_init
 * PARAMETERS: bmptr - Pointer to a BALLISTIC_MISSILE_
             structure that's ammo-type is Flechette *
             i.e. it releases sub-munitions of type *
             _munition_US_Flechette_60_.
         sub_mun - Pointer to sub-munition structure
             associated with _bmptr_.
         init_speed - Terminal speed of rocket ==
             initial speed of flechettes.
* RETURNS: none
* PURPOSE: Initialize rocket's _bmptr_ to behave according *
         sub-munitions type of
         munition US Flechette 60.
void missile_flechette_init( bmptr, sub_mun, init_speed )
BALLISTIC_MISSILE
                        *bmptr;
BALLISTIC_SUB_MUN
                           *sub_mun;
REAL
                init_speed;
  BALLISTIC_CANISTER *dart;
  VECTOR velocity;
    int i;
```

```
int data_tmp_int;
     float data_tmp;
     char descript[64];
    FILE *fp;
/* DEFAULT CHARACTERISTICS DATA FOR sub_flech.c READ FROM FILE
                                                                               */
    fp = fopen("/simnet/data/sub_flec.d","r");
    if(fp==NULL)(
         fprintf(stderr, "Cannot open /simnet/data/sub_flec.d\n");
        exit();
    }
    rewind(fp);
         Read array data */
    i=0:
    while(fscanf(fp,"%f", &data_tmp) != EOF){
        sub_flech_char[i] = data_tmp;
        fgets(descript, 64, fp);
         printf("sub_flech_char(%3d) is%11.3f %s", i, sub_flech_char[i],
            descript);
        ++i;
    }
    fclose(fp);
/* END DEFAULT CHARACTERISTICS DATA FOR sub_flech.c READ FROM FILE */
/* DEFAULT FLECHETTE SPEED DATA FOR sub_flech.c READ FROM FILE
                                                                              */
    fp = fopen("/simnet/data/flec_spd.d","\r");
    if(fp==NULL){
        fprintf(stderr, "Cannot open /simnet/data/flec_spd.d\n");
        exit();
   }
   rewind(fp);
       Read degree of polynomial */
   fscanf(fp,"%d", &data_tmp_int);
   FLECHETTE_SPEED_DEG = data_tmp_int;
   fgets(descript, 64, fp);
    printf("sub_flech_poly_deg is%3d %s", FLECHETTE_SPEED_DEG,
        descript);
        Read array data */
   i=0:
   while(fscanf(fp,"%f", &data_tmp) != EOF){
       flechette_speed_coef[i] = data_tmp;
        fgets(descript, 64, fp);
```

```
printf("flechette_speed_coef(%3d) is%11.3f %s", i,
              flechette_speed_coef[i], descript);
         ++i;
     }
     fclose(fp);
 /* END DEFAULT BURN SPEED DATA FOR sub_flech.c READ FROM FILE */
   bmptr->time = 0;
   dart = &(sub_mun->dart);
   dart->distance = 0.0;
   dart->init_speed = init_speed;
   dart->pptr = NULL;
   vec_scale( bmptr->orientation, init_speed, velocity );
   missile_util_comm_release_sub_munition( bmptr, MSL_TYPE_BALLISTIC,
                        sub_mun, SUB_MUN_CANISTER,
                        zero_vector, velocity );
#if DEBUG
  printf( "InitSpeed %1.2lf Dist %1.2lf\n", init_speed, dart->distance );
#endif
 * ROUTINE: missile_flechette_fly
 PARAMETERS: bmptr - Pointer to a _BALLISTIC_MISSILE_
             structure that's ammo-type is Flechette *
             i.e. it releases sub-munitions of type *
              _munition_US_Flechette_60_.
         sub_mun - Pointer to sub-munition structure
             associated with _bmptr_.
         veh_list - Vehicle list ID.
* RETURNS: none.
  PURPOSE: Simulates the flying of munition-type
         _munition_US_Flechette_60_.
         ~1200 2" lead darts are released and fly a
         cylindrical pattern 35 m in diameter ...
         Hence, we simulate the flechettes with ONE
         dart flown down the center of the cylinder
         and give it a 17.5 m proximity fuze. If the
         proximity fuze detonates, we impact the
         recipient vehicle and continue the lone dart's *
         flyout to a distance of 750 m. At this point, *
         the flechette rounds have lost the momentum
         and fall to the ground - the rocket is
         terminated.
int missile_flechette_fly( bmptr, sub_mun, veh_list )
BALLISTIC_MISSILE *bmptr;
```

```
BALLISTIC_SUB_MUN *sub_mun;
 int veh_list;
   BALLISTIC_CANISTER *dart;
   VECTOR
                  velocity;
  dart = &(sub_mun->dart);
 * SPEED */
  bmptr->speed =
     missile_util_eval_poly(FLECHETTE_SPEED_DEG, flechette_speed_coef,
                dart->distance ) + dart->init_speed;
 * DISTANCE */
  dart->distance += bmptr->speed;
  if( dart->distance >= sub_flech_char[2] )
    return(FALSE);
 * VELOCITY */
  vec_scale( bmptr->orientation[Y], bmptr->speed, velocity );
 POSITION */
  vec_add( bmptr->location, velocity, bmptr->location );
* PROX_FUZE */
  if( missile_fuze_all_prox( bmptr,
               MSL_TYPE_BALLISTIC, PROX_FUZE_ON_ALL_VEH,
               &(null_VehicleID), &(dart->pptr),
               veh_list, INVEST_DIST_SQ, FUZE_DIST_SQ))
    do
/* DETONATION ? */
      if( missile_util_comm_check_sub_mun( bmptr, MSL_TYPE_BALLISTIC,
                        sub_mun, SUB_MUN_CANISTER ))
        missile_util_comm_release_sub_munition( bmptr,
                            MSL_TYPE BALLISTIC.
                            sub_mun,
                            SUB_MUN_CANISTER,
                            zero_vector,
                            velocity);
    } while( dart->pptr != NULL &&
        missile_fuze_detonate_prox( bmptr, MSL_TYPE_BALLISTIC,
                      &(dart->pptr), FUZE_DIST_SQ, 0));
  return(TRUE);
}
```

22 January 1993 Reference # W003036 Rev. 0.0

Appendix P - Source code listing for sub_m73.c.

The following appendix contains the source code listing for sub_m73.c for convenience in document maintenance and understanding of the CSU.

[Document control number and date: Volume x of y (if multi-volume)]

Appendix P - Source code listing for sub_m73.c.

The following appendix contains the source code listing for sub_m73.c for convenience in document maintenance and understanding of the CSU.

```
/* $Header: /a3/adst-cm/RWA/simnet/vehicle/libsrc/libmissile/RCS/sub_m73.c,v 1.1
 1992/09/30 16:39:52 cm-adst Exp $ */
 * $Log: sub_m73.c,v $
 * Revision 1.1 1992/09/30 16:39:52 cm-adst
 * Initial Version
*/
static char RCS_ID[] = "$Header: /a3/adst-cm/RWA/simnet/vehicle/libsrc/libmissil
e/RCS/sub_m73.c,v 1.1 1992/09/30 16:39:52 cm-adst Exp $";
* Revisions:
     Version Date Author Title
                                             SP/CR Number
    1.2
          10/23/92 R. Branson Data File Initiali-
                      zation
    1.3
        10/30/92 R. Branson Added pathname to data
                      directory
    SP/CR No.
                  Description of Modification
            Hard coded defines changed to array elements.
            Characteristics/parameter data array added.
            Added file reads for sub_m73 characteristics/
              parameters.
            Added "/simnet/data/" to each data file pathname.
* FILE:
          sub_m73.c
* AUTHOR: Kris Bartol
* MAINTAINER: Kris Bartol
* PURPOSE: This file contains routines which simulates
        the behavior of sub-munitions of type
       munition_US_M73.
* HISTORY: 10/06/90 kris
Copyright (c) 1989 BBN Systems and Technologies, Inc.
```

```
* All rights reserved.
#include "stdio.h"
#include "math.h"
#include "sim_types.h"
#include "sim_dfns.h"
#include "basic.h"
#include "mun_type.h"
#include "libmath.h"
#include "libmap.h"
#include "libmatrix.h"
#include "libmiss_dfn.h"
#include "libmiss_loc.h"
#include "rkt_hydra.h"
#define DEBUG 0
                         /* debugging is ON */
* Sub M73 characteristic parameters initialized to default values.
static REAL sub_m73_char[3] =
 0.03266667,
               /* 75% of gravity - 75% * 9.8m/sec^^2/225 ticks^^2*/
 M73_FOOT_ANGLE_X, /* bomblettes fall w/ +/- 8.8 deg angular displ */
 M73_FOOT_ANGLE_Y /* bomblettes fall w/ +/- 12.35 deg angular displ */
static REAL zero_velocity[3] = \{0.0, 0.0, 0.0\};
static void missile_m73_get_impact ();
* ROUTINE: missile_m73_init
* PARAMETERS: bmptr - Pointer to a _BALLISTIC_MISSILE_
            structure that's ammo-type is MPSM
            i.e. it releases sub-munitions of type *
            munition_US_M73_.
        sub_mun - Pointer to sub-munition structure *
            associated with _bmptr_.
        speed - Terminal speed of Rocket at detonation. *
* RETURNS: none
* PURPOSE: Initialize rocket's _bmptr_ to behave according *
        sub-munitions type of _munition_US_M73_.
void missile_m73_init( bmptr, sub_mun, speed )
```

```
BALLISTIC_MISSILE *bmptr;
 BALLISTIC_SUB_MUN *sub_mun;
 REAL
             speed;
   VECTOR impact_pt;
   VECTOR displacement;
     int i;
     float data_tmp;
     char descript[64];
     FILE *fp;
 /* DEFAULT CHARACTERISTICS DATA FOR sub_m73.c READ FROM FILE
                                                                              */
     fp = fopen("/simnet/data/sub_m73.d","r");
     if(fp==NULL)(
         fprintf(stderr, "Cannot open /simnet/data/sub_m73.d\n");
         exit();
    }
    rewind(fp);
          Read array data */
    i=0:
    while(fscanf(fp, "%f", &data_tmp) != EOF){
        sub_m73_char(i) = data_tmp;
        fgets(descript, 64, fp);
         printf("sub_m73_char(%3d) is%11.3f %s", i, sub_m73_char[i],
             descript);
         ++i:
    }
    fclose(fp);
/* END DEFAULT CHARACTERISTICS DATA FOR sub_m73.c READ FROM FILE
  bmptr->time = 0;
  sub_mun->impact.timer = 0;
  sub_mun->impact.distance = speed; /* distance rocket travelled last
                      frame, i.e. before detonation */
  get point under sub-munition release point
  impact_pt(X) = bmptr->location(X);
  impact_pt[Y] = bmptr->location[Y] - 10;
  impact_pt[Z] = 10.0;
  missile_util_comm_release_sub_munition( bmptr, MSL_TYPE_BALLISTIC,
                      sub_mun, SUB_MUN_IMPACT,
                      impact_pt, zero_velocity );
}
```

```
* ROUTINE: missile_m73_drop
 * PARAMETERS: bmptr - Pointer to a _BALLISTIC_MISSILE_
             structure that's ammo-type is MPSM
             i.e. it releases sub-munitions of type *
             _munition_US_M73_.
         sub_mun - Pointer to sub-munition structure
             associated with _bmptr_.
 * RETURNS: TRUE if time of drop has been long enough to ...
         cause sub-munitions to hit the ground.
         FALSE otherwise.
 * PURPOSE: Simulation of the dropping of munition-type
         _munition_US_M73_ rounds.
static int trai_up = TRUE; /* TRUE: vector UP - FALSE: vector down */
int missile_m73_drop(bmptr, sub_mun)
BALLISTIC_MISSILE *bmptr;
BALLISTIC_SUB_MUN *sub_mun;
  BALLISTIC_IMPACT *impact;
  VECTOR impact_pt;
  impact = &c(sub_mun->impact);
  if(impact->timer == 0)
    if( missile_util_comm_ eck_sub_mun( bmptr, MSL_TYPE_BALLISTIC,
                       sub_mun, SUB_MUN_IMPACT ))
      if(impact->distance > 0.0)
        impact->timer = (int)
          ((8 * scaled_rand()) + 1.0 +
           (sqrt((1.9 * impact->distance) / sub_m73_char[0])));
      else
        impact->timer = -1;
#if DEBIJG
      printf("Height %1.4lf Time %d\n",
          impact->distance, impact->timer);
#endif
    else
      impact_pt(X) = bmptr->location(X);
      impact_pt[Y] = bmptr->location[Y] - 10;
      if(traj up)
        impact_pt[Z] = bmptr->location[Z] + impact->distance;
      else
        impact_pt[Z] = 10;
      trai_up = (! trai_up);
```

```
missile_util_comm_release_sub_munition( bmptr, MSL_TYPE_BALLISTIC,
                          sub_mun, SUB_MUN_IMPACT,
                          impact_pt, zero_velocity );
    }
    return(FALSE);
  else
                                      /* wait until sub_mun's */
    if( bmptr->time < impact->timer )
                         /* hit the ground.... */
                                 /* incr time counter */
      bmptr->time += 1;
      return(FALSE);
                          /* ie. time == timer */
    else
      if(impact->timer > 0)
        missile_m73_get_impact( bmptr->location, impact_pt,
                    bmptr->launcher_C_world,
                    impact->distance);
        missile_util_comm_release_sub_munition
          (bmptr, MSL_TYPE_BALLISTIC, sub_mun,
           SUB_MUN_IMPACT, impact_pt, zero_velocity );
 /* reset time counter */
      bmptr->time = 0;
      return(TRUE);
 }
}
* ROUTINE: missile_m73_impact
* PARAMETERS: bmptr - Pointer to a _BALLISTIC_MISSILE_
            structure that's ammo-type is MPSM
            i.e. it releases sub-munitions of type *
            _munition_US_M73_.
        sub_mun - Pointer to sub-munition structure
            associated with _bmptr_.
* RETURNS: FALSE if all m73 have impacted the ground.
* PURPOSE: Simulation of _munition_US_M73_ impacts.
int missile_m73_impact( bmptr, sub_mun )
BALLISTIC MISSILE *bmptr;
BALLISTIC_SUB_MUN *sub_mun;
 BALLISTIC_IMPACT *impact;
  VECTOR
                 impact_pt;
```

```
impact = &(sub_mun->impact);
  if(impact->timer < 0)
#if DEBUG
    printf( "ignore under ground detonation \n", bmptr->missile_id );
#endif
    return(FALSE);
  if (bmptr->time < 1)
    impact->delay = 0;
                     /* 0 - 0.250 sec delay */
  else
    impact->delay = (int)(250 * scaled_rand());
  bmptr->time += 1;
  if( missile_util_comm_check_sub_mun( bmptr, MSL_TYPE_BALLISTIC,
                    sub_mun, SUB_MUN_IMPACT ))
* send impact to util ball & to world
    missile_util_comm_impact_ball_sub_munition( bmptr, impact );
   impact->quantity -= 1;
 get NEXT M73 _impact_location_ OR stop
   if(impact->quantity > 0)
     missile_m73_get_impact( bmptr->location, impact_pt,
                 bmptr->launcher_C_world,
                 impact->distance);
     missile_util_comm_release_sub_munition( bmptr, MSL_TYPE_BALLISTIC,
                          sub_mun, SUB_MUN_IMPACT,
                          impact_pt, zero_velocity);
     return(TRUE);
   }
   else
     return(FALSE);
 }
 else
         /* Didn't get an impact */
   missile_m73_get_impact( bmptr->location, impact_pt,
               bmptr->launcher_C_world,
               impact->distance);
   missile_util_comm_release_sub_munition( bmptr, MSL_TYPE_BALLISTIC,
                       sub_mun, SUB_MUN_IMPACT,
                       impact_pt, zero_velocity );
   if( bmptr->time > impact->timer ) /* time's up */
     printf("M73_SIMUL timed-out: %d non-impacts\n",
         impact->quantity);
     return(FALSE);
```

```
return(TRUE); /* keep trying */
  }
)
static void missile_m73_get_impact( release_pt, impact_pt, mCw, height )
VECTOR release_pt;
VECTOR impact_pt;
T_MAT_PTR mCw;
REAL height;
  VECTOR detonation;
                            /* Offset Vector in World Coords
                   of detonation point */
  REAL x, y;
  x = height * sin(deg_to_rad(sub_m73_char[1] * (0.50 - scaled_rand())));
 y = height * sin(deg_to_rad( sub_m73_char[2] * (0.50 - scaled_rand())));
  detonation[X] = x * mCw[0][0] - y * mCw[0][1];
 detonation[Y] = y * mCw[0][0] + x * mCw[0][1];
 detonation[Z] = - height;
* Stretch _detonation_ vector to ensure intersection with ground/vehicle
 vec_scale( detonation, 1.5, detonation );
* add to _release_pt_ to get location of _impact_ in World Coords
 vec_add( release_pt, detonation, impact_pt );
```