# SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

#### **SEMINAR**

# Povezivanje razvojnog sustava ESP32-C3-DevKitM-1 s bazom podataka Firebase putem Wi-Fi veze

Jelena Gavran Voditelj: prof. dr. sc. Hrvoje Džapo

# SADRŽAJ

| Popis slika |                                                     |   |  |
|-------------|-----------------------------------------------------|---|--|
| 1.          | Uvod                                                | 1 |  |
| 2.          | Razvojni sustav ESP32-C3-DevKitM-1                  | 3 |  |
|             | 2.1. Wi-Fi                                          | 4 |  |
|             | 2.2. Aplikacijska programska sučelja                | 5 |  |
| 3.          | Baza podataka Firebase                              | 6 |  |
|             | 3.1. Povezivanje razvojnog sustava s bazom podataka | 6 |  |
| 4.          | Modeliranje stvarnog IoT sustava                    | 7 |  |
| 5.          | 5. Zaključak                                        |   |  |
| 6.          | 6. Literatura                                       |   |  |

# POPIS SLIKA

| 2.1. | Konfiguracija razvojnog sustava ESP32-C3-DevKitM-1 [3] | 3 |
|------|--------------------------------------------------------|---|
| 2.2. | Blok dijagram modula ESP32-C3 [2]                      | 4 |
| 2.3. | Wi-Fi RF standardi [1]                                 | 5 |
| 4.1. | Blok shema demo sustava                                | 7 |

## 1. Uvod

Internet stvari (engl. *Internet of things - IoT*) nova je paradigma koja je tradicionalni način života promijenila u stil života visoke tehnologije. U sklopu IoT pokreta razvio se koncept sveprisutnog računarstva koji označava kompletnu prostornu i vremensku prisutnost pametnih uređaja u svakodnevnom životu. Prema principima koncepta [4], primarna svrha računala je pružiti pomoć na intuitivan način.

Sveprisutni sustavi, kao posljedica okoline i zahtjeva, razlikuju se po svojim svojstvima od klasičnih računalnih sustava. Neka od njih su autonomnost, konkurentnost, svjesnost konteksta te računanje u stvarnom vremenu (engl. *real-time computation*). Sustav koji zadovoljava vremenska ograničenja na odziv mora imati hardver koji podržava rad u stvarnom vremenu, no istovremeno pruža bežičnu povezivost kao dio sveprisutnog sustava. Jedan od takvih uređaja je modul ESP32-C3 tvrtke *Espressif*, koji osim rada u stvarnom vremenu podržava i bežičnu povezivost putem Bluetootha i Wi-Fi veze. Za izradu ovog rada odabran je razvojni sustav ESP32-C3-DevKitM-1. Isto tako, za pohranu podataka u takvim sustavima potrebna je i baza podataka koja podržava rad u stvarnom vremenu. Baze podataka u stvarnom vremenu trenutno osvježavaju podatke nakon promjene, što omogućava da više uređaja spojenih na bazu dohvaćaju i sinkroniziraju podatke u stvarnom vremenu. Baza podataka koja pruža takvu mogućnost je Firebase, baza podataka u oblaku tvrtke *Google*.

Ovaj seminar analizira mogućnosti koje pruža ESP32-C3-DevKitM-1 u razvoju aplikacija koristeći Wi-Fi te kako povezati modul s bazom podataka Firebase. Opisana su programska aplikacijska sučelja (engl. *Application Programming Interface - API*) koje modul podržava za Wi-Fi povezivanje i demo aplikacije uz pripadna sučelja. Dan je osnovni pregled funkcionalnosti koje nudi baza podataka Firebase te su navedene njezine prednosti i ograničenja. Isto tako, opisan je postupak povezivanja modula i baze podataka, koje je popraćeno jednostavnom demo aplikacijom na modulu. Također, napravljena je mobilna aplikacija za simulaciju stvarnog IoT uređaja koji koristi modul i bazu podataka.

Rad je podijeljen u cjeline kako slijedi. Drugo poglavlje "Razvojni sustav ESP32-

C3-DevKitM-1" opisuje osnovne karakteristike korištenog razvojnog sustava kao ciljane hardverske platforme te su opisane najvažnije značajke W-Fi tehnologije, kao i API-ji koji se mogu koristiti uz razvojni sustav. U trećem poglavlju "Baza podataka Firebase" dan je pregled baze podataka i njezinih glavnih značajki te je opisan postupak povezivanja (programsko spajanje?) razvojnog sustava s bazom podataka. U četvrtom poglavlju "Modeliranje stvarnog IoT sustava" opisan je primjer primjene sustava koji koristi opisane tehnologije uz mobilnu aplikaciju.

## 2. Razvojni sustav

## ESP32-C3-DevKitM-1

Razvojni sustav temelji se na modulu ESP32-C3-MINI-1. Modul je jedan u nizu ESP32-C3 serije SoC (engl. *System on Chip*) platformi tvrtke *Espressif*, te sadrži jednojezgreni 32-bitni procesor s RISC-V arhitekturom koji radi na frekvenciji do 160 MHz. Modul sadrži 400 KB memorije tipa SRAM (engl. *Static random-access memory*), od kojih je 16 KB rezervirano za priručnu memoriju (engl. *cache*), 384 MB memorije tipa ROM (engl. *Read-only memory*) te 4 MB memorije tipa *Flash*. Od periferije sadrži 22 programabilna GPIO pina (engl. *General Purpose Input Output*), te digitalna sučelja SPI, UART, I2C i I2S. Također sadrži upravljače za sučelja USB i JTAG koji se mogu koristiti za efikasnije otklanjanje pogrešaka u kodu (engl. *debugging*). [2] Konfiguracija sustava prikazana je na slici 2.1.



Slika 2.1: Konfiguracija razvojnog sustava ESP32-C3-DevKitM-1 [3]

Budući da modul ima funkciju RF (engl. *radio frequency*) primopredajnika, podržava bežično lokalno umrežavanje odnosno Wi-Fi, koji omogućava propusnost do 20 Mbps protokolom TCP te maksimalnu propusnost od 30 Mbps koristeći protokol UDP. Isto tako, podržava protokol Bluetooth s podrškom za velike udaljenosti.

Modul ESP32-C3-MINI-1 bežični je uređaj niske potrošnje energije (engl. *ultra-low-power*) primarno namijenjen razvoju aplikacija koje koriste Wi-Fi ili *Bluetooth Low Energy* (BLE) protokol. Na slici 2.2 nalazi se blok shema modula sa svim dostupnim značajkama.



Slika 2.2: Blok dijagram modula ESP32-C3 [2]

#### 2.1. Wi-Fi

Podsustav modula za Wi-Fi u skladu je sa standardom IEEE 802.111 te koristi nelicencirani pojas frekvencija na 2,4 GHz. U tom pojasu podržava propusnost od 20 i 40 MHz. Modul također podržava tehniku raznolikosti antena (engl. *antenna diversity*) za poboljšanje prijema i pouzdanosti signala korištenjem RF komutatora (engl. *switch*). Tim komutatorom upravljaju GPIO priključci i koristi se za odabir najbolje antene u kontekstu pouzdanosti i kvalitete signala.

ESP32-C3 u potpunosti implementira 802.11 b/g/n Wi-Fi MAC protokol. Podržava osnovni skup (engl. *Basic Service Set - BSS*) operacija za značajke pristupne točke (engl. *SoftAP*). Upravljanje napajanjem odvija se automatski s minimalnom intervencijom domaćina kako bi se smanjila aktivnost uređaja.

Tvrtka *Espressif* također nudi biblioteke za povezivanje putem protokola TCP i IP te korištenje Wi-Fi *mesh* tehnologije. Pruža i podršku za protokole TLS 1.0, 1.1 i 1.2. Na slici 2.3 prikazani su Wi-Fi RF standardi koje koristi modul.

| Name                               |                         | Description                                |
|------------------------------------|-------------------------|--------------------------------------------|
| Center frequency range of operatir | ng channel <sup>1</sup> | 2412 ~ 2484 MHz                            |
| Wi-Fi wireless standard            |                         | IEEE 802.11b/g/n                           |
| Data rate                          | 20 MHz                  | 11b: 1, 2, 5.5 and 11 Mbps                 |
|                                    |                         | 11g: 6, 9, 12, 18, 24, 36, 48, 54 Mbps     |
| Data rate                          |                         | 11n: MCS0-7, 72.2 Mbps (Max)               |
|                                    | 40 MHz                  | 11n: MCS0-7, 150 Mbps (Max)                |
| Antenna type                       |                         | PCB antenna and external antenna connector |

Slika 2.3: Wi-Fi RF standardi [1]

Wi-Fi MAC automatski primjenjuje sljedeće funkcije protokola niske razine:

četiri virtualna Wi-Fi sučelja,
-

## 2.2. Aplikacijska programska sučelja

## 3. Baza podataka Firebase

Firebase Realtime Database baza je podataka smještena u oblaku.

U nastavku su navedene i opisane ključne mogućnosti baze podataka Firebase:

- Stvarno vrijeme Umjesto HTTP zahtjeva, Firebase koristi sinkronizaciju podataka - pri svakoj promjeni podataka, uređaji spojeni na bazu prime ažuriranje unutar nekoliko milisekundi.
- 2. Offline način rada Aplikacije koje koriste Firebase
- 3. Dostupnost preko klijentskih uređaja
- 4. Skalabilnost

## 3.1. Povezivanje razvojnog sustava s bazom podataka

# 4. Modeliranje stvarnog IoT sustava

Na slici 4.1 nalazi se blok shema pokaznog IoT sustava. Za razvoj mobilne aplikacije korišten je radni okvir *Flutter*, koji omogućava paralelan razvoj aplikacija na Android i iOS uređajima.



Slika 4.1: Blok shema demo sustava

# 5. Zaključak

Integracijom opisanih tehnologija dobiva se potpuni sveprisutni sustav.

## 6. Literatura

- [1] Espressif. ESP32-C3-Mini 1 Datasheet. URL https://www.espressif.com/sites/default/files/documentation/esp32-c3-mini-1\_datasheet\_en.pdf.
- [2] ESP32-C3 Series Datasheet. Espressif Systems, 2023. URL https://www.espressif.com/sites/default/files/documentation/esp32-c3\_datasheet\_en.pdf.
- [3] ESP-IDF Programming Guide. Espressif Systems, 2023. URL https://docs.espressif.com/projects/esp-idf/en/v5.0/esp32c3/index.html.
- [4] FER. Sveprisutno računarstvo. URL https://www.fer.unizg.hr/\_download/repository/SVERAC\_01\_Uvod\_2022-23.pdf.

### Povezivanje razvojnog sustava ESP32-C3-DevKitM-1 s bazom podataka Firebase putem Wi-Fi veze

Sažetak

Ključne riječi: ESP32-C3-DevKitM-1, Wi-Fi, Firebase, IoT