## Unimodality of Differences

By H. Vogt, Würzburg<sup>1</sup>)

Summary: The convolution of two unimodal densities is not in general unimodal. In [1953] Chung [see also his translation of Gnedenko/Kolmogorov] gave an example of i.i.d. random variables X, Y, both with an unimodal density f, where X + Y has no unimodal density. Wintner [1938] had shown that the convolution of two symmetrical unimodal densities is again symmetrical unimodal. Ibragimov [1956] proved the strong unimodality for the convolution of strongly unimodal densities.

For the difference X - Y of two i.i.d. random variables with arbitrary density f it is known and easily proved that it has a density which is symmetrical and maximal at 0. It seems to be not yet known and is proved in this paper that this density of X - Y is unimodal if f is unimodal.

Definition: A density function f is called unimodal, iff there is a real m with

$$f(x_1) \leq f(x_2) \leq f(m)$$
 for  $x_1 \leq x_2 \leq m$ 

and

$$f(m) \ge f(x_1) \ge f(x_2)$$
 for  $m \le x_1 \le x_2$ .

We call every such m a modular value.

f is not supposed to be continuous and m is in general not unique; there may be an interval of modular values and then we take

$$m^* = \sup \{m \mid m \text{ is modular value}\}\$$

and call  $m^*$  the mode of f. For each modular value m, f(m) is the absolute maximum a of f. If  $f(m^*) < a$  (which might happen if f is discontinuous at  $m^*$ ) we define  $f(m^*) = a$ , thus altering, if necessary, the function in one point which doesn't affect any of the integrals in the following (s. Fig. 1).

Now let X, Y be independent random variables, both with a density f. Then

$$g(z) = \int_{-\infty}^{\infty} f(x) f(x+z) dz$$

<sup>1)</sup> Dr. rer. nat. habil. H. Vogt, Inst. f. Angew. Math. u. Statistik der Universität Würzburg, Sanderring 2, D-8700 Würzburg.

<sup>0026-1335/83/030165-170\$2.50 @ 1983</sup> Physica-Verlag, Vienna.

166 H. Vogt



is a density for X - Y. By the substitution u = x + z in the integral we see the symmetry of g relative to 0:

$$g(z) = g(-z) \tag{1}$$

and by the Cauchy-Schwarz-inequality:

$$g(z) \leq g(0)$$
 for all  $z$  (2)

since

$$\int_{-\infty}^{\infty} f(x)f(x+z) dx \le \sqrt{\int_{-\infty}^{\infty} (f(x))^2 dx} \sqrt{\int_{-\infty}^{\infty} (f(x+z))^2 dx} =$$

$$= \int_{-\infty}^{\infty} (f(x))^2 dx = g(0).$$

(1) and (2) hold for any density f.

*Lemma*: If f is unimodal, then  $g(-z_2) \le g(-z_1)$  for  $0 \le z_1 \le z_2$ . The unimodality of g follows then immediately from (1) and (2).

**Proof**:  $g(-z_1) \le g(-z_1)$  is equivalent to

$$\int_{-\infty}^{\infty} f(x) \left[ f(x - z_1) - f(x - z_2) \right] dx \ge 0.$$
 (3)

This inequality is trivial if an equality sign holds in  $0 \le z_1 \le z_2$ . For  $0 < z_1 < z_2$  let  $\mu = \inf \{x \mid f(x-z_1) < f(x-z_2)\}$ ; from the definition of unimodality it follows that

$$\mu \geqslant m^* + z_1$$
, since  $f(x - z_1) \geqslant f(x - z_2)$  for all  $x \leqslant m^* + z_1$ ,

and

$$\mu \le m^* + z_2$$
, since  $f(x - z_1) < f(x - z_2)$  for  $x = m^* + z_2$ ,  
because  $f(m^*) = a > f(x)$  for  $x > m^*$ .

By the definition of  $\mu$  it is clear that  $f(x-z_1) \ge f(x-z_2)$  for  $x < \mu$ . A little proof is needed for the fact that we have

$$f(x-z_1) \le f(x-z_2) \quad \text{for all } x > \mu. \tag{4}$$

If  $x > \mu$ , there is a x',  $\mu < x' < x$ , with  $f(x' - z_1) < f(x' - z_2)$  by the definition of

168 H. Vogt

 $\mu$ . Since  $m^* < x' - z_1 < x - z_1$  we have  $f(x - z_1) \le f(x' - z_1)$  and if  $x - z_2 \le m^*$  it follows that  $f(x' - z_2) \le f(x - z_2)$  and thus

$$f(x-z_1) \le f(x'-z_1) < f(x'-z_2) \le f(x-z_2)$$
.

If  $x-z_2>m^*$ , then  $f(x-z_1) \le f(x-z_2)$  follows by the definition of  $m^*$ . In general there is a  $\nu, -\infty < \nu \le m^*$ ,  $\nu = \inf \{x \mid x \le m^* \text{ and } f(x) > f(\mu); \text{ if } f(\mu) = 0 \text{ and } f(x) > 0 \text{ for all } x \le m^*, \text{ then we put } \nu = -\infty \text{ (see Fig. 1 which gives a qualitative illustration for some types of density functions).}$ 

Hence if x < v, the inequality  $f(x) \le f(\mu)$  is true. We regard now the function

$$\vec{f}(x) = \min(f(x), f(\mu))$$

and put

$$f(x) = \overline{f}(x) + q(x);$$

q(x) = 0 outside of the interval  $[\nu, \mu]$  and clearly  $f(x_1) \le f(x_2)$  implies  $\overline{f}(x_1) \le \overline{f}(x_2)$ . For the integral in (3) we write now

$$\int_{-\infty}^{\infty} (\vec{f}(x) + q(x)) [\vec{f}(x - z_1) + q(x - z_1) - \vec{f}(x - z_2) - q(x - z_2)] dx =$$

$$= I_1 + I_2 + I_3$$

with 
$$I_1 = \int_{-\infty}^{\infty} \vec{f}(x) \left[ \vec{f}(x - z_1) - \vec{f}(x - z_2) \right] dx$$
,  $I_2 = \int_{-\infty}^{\infty} q(x) \left[ f(x - z_1) - f(x - z_2) \right] dx$  and  $I_3 = \int_{-\infty}^{\infty} \vec{f}(x) \left[ q(x - z_1) - q(x - z_2) \right] dx$ .  $I_2$  and  $I_3$  reduce, since  $q(x) = 0$  outside of  $[\nu, \mu]$ , to

$$I_2 = \int_{\nu}^{\mu} q(x) [f(x-z_1)-f(x-z_2)] dx,$$

$$I_3 = \int_{y+z_1}^{\mu+z_2} \vec{f}(x) \left[ q(x-z_1) - q(x-z_2) \right] dx.$$

We show that all three integrals  $I_1$ ,  $I_2$  and  $I_3$  are nonnegative: First we split  $I_1$  up into

$$I_1 = \int_{-\infty}^{\mu} \vec{f}(x) \left[ \vec{f}(x - z_1) - \vec{f}(x - z_2) \right] dx + \int_{\mu}^{\infty} \vec{f}(x) \left[ \vec{f}(x - z_1) - \vec{f}(x - z_2) \right] dx.$$

In the former of the last two integrals we have always  $\overline{f}(x) \ge \overline{f}(x - z_1)$ , because in  $[\nu, \mu]$   $\overline{f}(x) = f(\mu)$  and to the left of  $[\nu, \mu]$   $\overline{f}(x) = f(x)$  is  $\le f(\mu)$  and increasing; the difference in the square brackets is nonnegative.

In the latter integral the difference in the square brackets is always  $\leq 0$  since by (4) this inequality holds for f instead of  $\overline{f}$ ; but now  $\overline{f}(x-z_1) \geq \overline{f}(x)$ , since  $x-z_1 \geq m^*$  for  $x \geq \mu$  and because the same inequality holds then for f instead of  $\overline{f}$ . Hence

$$I_1 \geqslant \int_{-\infty}^{\infty} \overline{f}(x - z_1) \left[ \overline{f}(x - z_1) - \overline{f}(x - z_2) \right] dx =$$

$$= \int_{-\infty}^{\infty} (\overline{f}(x - z_1))^2 dx - \int_{-\infty}^{\infty} \overline{f}(x - z_1) \overline{f}(x - z_2) dx$$

and this is  $\geq 0$  which follows like (1) by means of the Cauchy-Schwarz-inequality.

 $I_2 \ge 0$  is trivial because  $f(x-z_1) - f(x-z_2) \ge 0$  and  $q(x) \ge 0$  in  $[\nu, \mu]$ . In order to prove  $I_3 \ge 0$  we remember  $\overline{f}(x) = f(\mu) = \text{const.}$  in  $[\nu, \mu]$  and decompose  $I_3$  into

$$I_{3} = \int_{\nu+z_{1}}^{\mu} f(\mu) \left[ q(x-z_{1}) - q(x-z_{2}) \right] dx +$$

$$+ \int_{\mu}^{\mu+z_{2}} \overline{f}(x) \left[ q(x-z_{1}) - q(x-z_{2}) \right] dx.$$

In the last integral  $q(x-z_1)-q(x-z_2)$  is always  $\leq 0$ , since by (4)  $f(x-z_1) \leq f(x-z_2)$  for  $x > \mu$  i.e.  $\overline{f}(x-z_1) + q(x-z_1) \leq \overline{f}(x-z_2) + q(x-z_2)$  and  $\overline{f}(x-z_1) = f(\mu) \geq \overline{f}(x-z_2)$  wherever  $q(x-z_1) > 0$ . Further we know that  $\overline{f}(x) \leq f(\mu)$ , hence

$$I_{3} \ge f(\mu) \left\{ \int_{\nu+z_{1}}^{\mu} \left[ q(x-z_{1}) - q(x-z_{2}) \right] dx + \right.$$

$$+ \int_{\mu}^{\mu+z_{2}} \left[ q(x-z_{1}) - q(x-z_{2}) \right] dx \right\}$$

$$= f(\mu) \left[ \int_{\nu+z_{1}}^{\mu+z_{2}} q(x-z_{1}) dx - \int_{\nu+z_{1}}^{\mu+z_{2}} q(x-z_{2}) dx \right]$$

and this is 0 because both integrals in the great square brackets are equal to  $\int_{\nu}^{\mu} q(x) dx.$ 

This completes the proof of the Lemma. Our Lemma and the results (1) and (2) imply the following.

**Theorem:** If X, Y are independent random variables each with the unimodal density f, then X - Y has a unimodal density which is symmetrical to the modular value 0. This theorem implies a corollary which might be useful in another context.

170 H. Vogt

Corollary: If f is an unimodal density, then for any real number r the inequality

$$\int_{-\infty}^{r} f(x)f(x-z_1) dx \ge \int_{-\infty}^{r} f(x)f(x-z_2) dx \text{ holds for } 0 \le z_1 \le z_2.$$

*Proof*: The corollary holds trivially if  $z_1 = z_2$  and it follows from the Cauchy-Schwarz-inequality if  $0 = z_1$ . For  $0 < z_1 < z_2$  let  $\mu$  be defined as before; then the inequality holds if  $r < \mu$  because in this case  $f(x - z_1) \ge f(x - z_2)$  for all  $x \in (-\infty, r]$ .

If  $r \ge \mu$  we regard

$$\int_{-\infty}^{\infty} f(x) [f(x-z_1) - f(x-z_2)] dx =$$

$$= \int_{-\infty}^{r} f(x) [f(x-z_1) - f(x-z_2)] dx + \int_{r}^{\infty} f(x) [f(x-z_1) - f(x-z_2)] dx$$

which is  $\geq 0$  by the theorem. Since  $f(x-z_1)-f(x-z_2)\leq 0$  for  $x>\mu$ , the last integral is  $\leq 0$ . So the sum of the last two integrals couldn't be nonnegative if the former were negative. Hence this integral is  $\geq 0$  for any real r and this proves the corollary.

## Acknowledgement

I am indebted to Prof. K.L. Chung (Stanford, Cal.) who told me by a private communication a way to simplify the proof of the above theorem essentially. He uses also the truncation idea but assumes

$$g'(z) = \int_{-\infty}^{\infty} f(x) f'(x+z) dx.$$

This means a stronger assumption about f than differentiability a.e. The latter is given by the monotonicity on both sides of  $m^*$ .

## References

Chung, K.L.: Sur les lois de probabilité unimodales. C.R. Acad. Sci. Paris 236, 1953, 583-584.
Gnedenko, B. W., and A.N. Kolmogorov: Limit Distributions for sums of independent random variables; (translated, annotated and revised by Kai Lai Chung). Reading, Mass., 1954 (1968).
Ibragimov, J.A.: On the composition of unimodal distributions (Russian). Teorija verojatnostej 1, 1956, 283-288.

Wintner, A.: Asymptotic Distributions and Infinite Convolutions, Ann Arbor, Mich. 1938.