Universidade de São Paulo Instituto de Matemática e Estatística IME

Relatório do EP1 de MAC0210

Prof. Ernesto G. Birgin

Integrantes do grupo: Luísa Menezes da Costa (nº USP 12676491) Sabrina Araújo da Silva (nº USP 12566182)

Parte 1 - Método do Ponto Fixo (MPF)

1. Breve introdução ao MPF

Precisamos encontrar $x \in \mathbb{R}$ tal que f(x) = 0. Para isso, segundo o MPF, devemos encontrar $x \in \mathbb{R}$ tal que g(x) = x e, a partir de um ponto inicial $x_0 \in \mathbb{R}$, definir $x_{k+1} = g(x_k), k = 0, 1,$

2. Escolha das funções g(x)

Em nossa implementação do ponto fixo, utilizamos três equações g(x) diferentes:

$$g_1(x) = \ln 2x^2$$

$$g_2(x) = \sqrt{\frac{e^x}{2}}$$

$$g_3(x) = -\sqrt{\frac{e^x}{2}}$$

Essas equações foram escolhidas, pois atendem aos seguintes critérios de uma função de iteração para o MPF:

- 1. g(x) e g'(x) são contínuas em um intervalo I;
- 2. $|g'(x)| < 1, \forall x \in I$.

2.1. Manipulação de f(x) para encontrar g(x)

2.1.1. $g_1(x)$

$$e^{x} - 2x^{2} = 0$$
$$e^{x} = 2x^{2}$$
$$x = \ln 2x^{2}$$
$$g_{1}(x) = \ln 2x^{2}$$

Por definição, o polinômio $2x^2$ é sempre contínuo, e a função exponencial $f(x) = e^x$ também é contínua para todo $x \in \mathbb{R}$. Já que a função f(x) = lnx é a inversa da função exponencial, então f(x) = lnx também é contínua em todo seu domínio (\mathbb{R} com $x \neq 0$). Logo, $g_1(x) = ln(2x^2)$ é contínua.

A derivada de $g_1(x)$ é $g_1'(x) = \frac{2}{x}$. Aplicando o segundo critério para a escolha de g(x), temos que:

$$|g'(x)| < 1, \forall x \in I.$$

$$\frac{2}{x} < 1$$

$$\frac{2}{x} - 1 < 0$$

$$\frac{2-x}{x} < 0$$

$$x > 2$$

2.1.2. $g_2(x)$ e $g_3(x)$

$$e^{x} - 2x^{2} = 0$$

$$2x^{2} = e^{x}$$

$$x^{2} = \frac{e^{x}}{2}$$

$$x = \pm \sqrt{\frac{e^{x}}{2}}$$

$$g_{2}(x) = \sqrt{\frac{e^{x}}{2}} e g_{3}(x) = -\sqrt{\frac{e^{x}}{2}}$$

A função exponencial $f(x)=e^x$ é contínua para todo $x\in\mathbb{R}$, e a raiz quadrada é contínua em $x\geq 0$. Logo, as funções $g_2(x)=\sqrt{\frac{e^x}{2}}$ e $g_3(x)=-\sqrt{\frac{e^x}{2}}$ são contínuas.

A derivada de $g_2(x)$ é $g_2'(x) = \frac{e^x}{2\sqrt{2}\sqrt{e^x}}$, que é contínua em $[-\infty,\infty]$. Analogamente, a derivada de $g_3(x)$ é $g_3'(x) = -\frac{e^x}{2\sqrt{2}\sqrt{e^x}}$, que também é contínua em $[-\infty,\infty]$.

2.2. Funções descartadas

Além das funções mencionadas acima, também encontramos a função

$$g_4(x) = \frac{e^x}{2x}$$

Entretanto, essa função não é contínua no intervalo desejado e, portanto, foi descartada.

3. Resultados encontrados

Os resultados abaixo foram computados com um erro de 10^{-3} . k representa o número da iteração e x_k representa o ponto encontrado na iteração k.

3.1. Análise dos resultados de $g_1(x) = ln(2x^2)$

Considerando $x_0 = 2.4$, obtivemos os seguintes resultados:

$ \begin{array}{c cccc} k & x_k \\ \hline 1 & 2.60017 \\ 2 & 2.6043 \\ 3 & 2.60748 \\ 4 & 2.60991 \\ 5 & 2.61178 \\ 6 & 2.61321 \\ 7 & 2.61431 \\ 8 & 2.61515 \\ \hline \end{array} $		
2 2.6043 3 2.60748 4 2.60991 5 2.61178 6 2.61321 7 2.61431	k	x_k
3 2.60748 4 2.60991 5 2.61178 6 2.61321 7 2.61431	1	2.60017
4 2.60991 5 2.61178 6 2.61321 7 2.61431	2	2.6043
5 2.61178 6 2.61321 7 2.61431	3	2.60748
6 2.61321 7 2.61431	4	2.60991
7 2.61431	5	2.61178
	6	2.61321
8 2.61515	7	2.61431
	8	2.61515

A raiz encontrada para $g_1(x)$ foi 2.61515. O gráfico abaixo mostra a convergência da função.

3.2. Análise dos resultados de $g_2(x) = \sqrt{\frac{e^x}{2}}$

Considerando $x_0 = 1.7$, obtivemos os seguintes resultados:

k	x_k
1	1.65438
2	1.61707
3	1.58718
4	1.56364
5	1.54535
6	1.53127
7	1.52054
8	1.5124
9	1.50625
10	1.50163
11	1.49817
12	1.49557
13	1.49364
14	1.49219
15	1.49111
16	1.49031

A raiz encontrada para $g_2(x)$ foi 1.49031. O gráfico abaixo mostra a convergência da função.

3.3. Análise dos resultados de $g_3(x) = -\sqrt{\frac{e^x}{2}}$

Considerando $x_0 = 1.7$, obtivemos os seguintes resultados:

k	x_k
1	-1.65438
2	-0.309201
3	-0.605819
4	-0.522316
5	-0.544585
6	-0.538555
7	-0.540181

A raiz encontrada para $g_3(x)$ foi -0.540181. O gráfico abaixo mostra a convergência da função.

4. Critérios de parada

No código, o usuário deve inserir E1 e E2 (erro 1 e erro 2, respectivamente), os quais irão definir os seguintes critérios de parada:

- 1. $|x_{k+1} x_k| < E1$
- 2. $|f(x_{k+1})| < E2$

Parte 2 - Método de Newton

1. Escolha das funções

Para a implementação do método de Newton, foram escolhidas as seguintes funções:

$$f_1(x) = x^6 - 1$$

$$f_2(x) = x^3 - 1$$

$$f_3(x) = x^3 - 7$$

As derivadas dessas funções são:

$$f_1(x) = 6x^5$$

$$f_2(x) = f_3(x) = 3x^2$$

Já que tanto as funções quanto suas derivadas são polinômios, elas são contínuas, o que facilita sua aplicação para o método de Newton.

2. Fractais gerados

