Algorytmy parsingu zależnościowego, metryki i sieci neuronowe

Paweł Rychlikowski

Instytut Informatyki UWr

7 lutego 2019

Universal Deppendencies

- Dane o rozbiorach (i POS-tagach) w ujednoliconym formacie, dla olbrzymiej liczby języków.
- Prosty, czytelny format tekstowy typu tsv (CONLLU)
- Dla każdego języka osobne zbiory train i test
- Informacje o charakterze każdego korpusu: (zob. strona www)
- Spróbujmy odcyfrować fagment jednego rozbioru

Universal Deppendencies. Przykład

	1	Zwierzę	zwierzę	NOUN	subst:sg:nom:n		2	nsubj	-	-
	2	polubiło	polubić	VERB	praet:sg:n:perf		0	root	-	-
	3	piwko	piwko	NOUN	subst:sg:acc:n		2	obj	-	-
	4	i	i	CCONJ	conj	-	8	СС	-	-
	5	bez	bez	ADP	prep:gen:nwok		6	case	-	-
	6	kufla	kufel	NOUN	subst:sg:gen:m3		8	obl	-	-
ĺ	7	nie	nie	PART	qub	-	8	advmod	-	-
	8	daje	dawać	VERB	fin:sg:ter:imperf		2	conj	-	-
	9	się	się	PRON	qub		8	expl:pv	-	-
	10	wydoić	wydoić	VERB	inf:perf		8	xcomp	-	>
	11			PUNCT	interp	-	2	punct	-	-

Usunięta kolumna

Nie zmieściła się kolumna, w której znajdują się umiędzynarodowione parametry gramatyczne słowa:

- zwierzę Case=Nom|Gender=Neut|Number=Sing
- piwko Case=Acc|Gender=Neut|Number=Sing
- **bez** AdpType=Prep|Case=Gen|Variant=Short
- **się** PronType=Prs|Reflex=Yes

W ostatniej kolumnie zamiast x powinno być SpaceAfter=No Przedostatnia kolumna to zależności *siostrzane*

Relacje

Clausal Argument Relations	Description
NSUBJ	Nominal subject
DOBJ	Direct object
IOBJ	Indirect object
CCOMP	Clausal complement
XCOMP	Open clausal complement
Nominal Modifier Relations	Description
NMOD	Nominal modifier
AMOD	Adjectival modifier
NUMMOD	Numeric modifier
APPOS	Appositional modifier
DET	Determiner
CASE	Prepositions, postpositions and other case markers
Other Notable Relations	Description
CONJ	Conjunct
CC	Coordinating conjunction

Selected dependency relations from the Universal Dependency set. (de Marn-**Figure 13.2** effe et al., 2014)

Żródło: Speech and Language Processing (3rd ed. draft), Jurafsky, Martin

Problem z "i"

Problem z 'Jasiem i Małgosią' (jak wyglądać ma rozbiór zdania Jaś i Małgosia zjedli pierniki). Opcje:

- 1. zjedli(i(jaś,małgosia), pierniki)
- 2. zjedli(jaś, małgosia, pierniki)
- 3. zjedli(jaś(i(małgosia)), pierniki)
- 4. zjedli(jaś(i, małgosia)), pierniki)

W pierwszym przypadku mamy niezbyt ciekawe połączenie zjedli(i), w drugim – pomijamy i, a ponadto mamy połączenia: zjedli(jaś) oraz zjedli(małgosia), w trzecim i czwartym pozostaje problen niezgodności liczby, do tego Jaś i Małgosia nie są równo traktowani.

Problem z "i"

Problem z 'Jasiem i Małgosią' (jak wyglądać ma rozbiór zdania Jaś i Małgosia zjedli pierniki). Opcje:

- 1. zjedli(i(jaś,małgosia), pierniki) (stara Składnica)
- 2. zjedli(jaś, małgosia, pierniki)
- 3. zjedli(jaś(i(małgosia)), pierniki)
- 4. zjedli(jaś(i, małgosia)), pierniki) (UD)

W pierwszym przypadku mamy niezbyt ciekawe połączenie zjedli(i), w drugim – pomijamy i, a ponadto mamy połączenia: zjedli(jaś) oraz zjedli(małgosia), w trzecim i czwartym pozostaje problen niezgodności liczby, do tego Jaś i Małgosia nie są równo traktowani.

Koniunkcje i przyimki w UD

1	Α	CCONJ	conj	3	сс
2	со	PRON	subst:sg:nom:n	3	nsubj
3	ma	VERB	fin:sg:ter:imperf	0	root
4	być	AUX	inf:imperf	6	сор
5	jej	PRON	ppron3:sg:gen:f:ter:akc:npraep	6	nmod:p
6	spoiwem	NOUN	subst:sg:inst:n	3	xcomp
7	i	CCONJ	conj	8	сс
8	siłą	NOUN	subst:sg:inst:f	6	conj
9	napędową	ADJ	adj:sg:inst:f:pos	8	amod
10	?	PUNCT	interp	3	punct

Narysujmy fragment z koniunkcją.

Koniunkcje i przyimki w UD

1	-	PUNCT	interp	5	punct
2	Α	CCONJ	conj	5	сс
3	jeszcze	PART	qub	4	advmod
4	niedawno	ADV	adv:pos	5	advmod
5	mówił	VERB	praet:sg:m1:imperf	0	root
6	eś	AUX	aglt:sg:sec:imperf:wok	5	aux:aglt
7	0	ADP	prep:loc	8	case
8	pani	NOUN	subst:sg:loc:f	5	obl
9	Gronkiewicz	PROPN	subst:sg:loc:f	8	flat
10	tak	ADV	adv	11	advmod
11	ciepło	ADV	adv:pos	5	advmod
12		PUNCT	interp	5	punct

Narysujmy fragment z przyimkiem (mówiłeś o pani Gronkiewicz)

Korzyści z wielojęzykowości

Korpus słowacki

Czy rozumiemy zdanie:

Radikálnou inováciou je hláskoslovie a tvaroslovie.

A czy umiemy je sparsować?

Transfer learning

Są możliwości łączenia korpusów – możemy czegoś się dowiedzieć o parsingu po polsku patrząc na słowacki (szczególnie istotne, gdy mamy język z małym korpusem (polski) podobny do innego z dużym (czeski).

Można pokazać, że uczenie wielojęzykowe parserów daje rzeczywistą, mierzalną poprawę!

Generowanie przy użyciu DG. Kilka idei

- Wyrazy będące liśćmi (z klas otwartych) można zamieniać bez obawy o poprawność gramatyczną zdania.
- Wyrazy mają typy (popatrzmy na plik z typami).
- Wyrazy o tym samym typie można zamieniać ze sobą (ewentualnie pilnując, aby się zbytnio nie zmieniła semantyka).

Uwaga

Losujemy dzieci dla zadanego rodzica (zarówno rodzic, jak i dzieci mają tagi). Losowanie przypomina losowanie bigramowe.

Deppendency parsing. Algorytm dynamiczny, wersja projekcyjna

- W przypadku parsingu projekcyjnego też tworzą się frazy, odpowiadające poddrzewom rozbioru.
- To są specyficzne poddrzewa, w których możemy pominąć pewne "zewnętrzne" gałęzie na najwyższym poziomie.
 Przykładowo dla

```
miała(babuleńka, *, koziołki(dwa,rogate,*))

poddrzewami są

miała(babuleńka, *)

miała(*, koziołki(dwa,rogate,*))
```

• Parsing polega na łączeniu takich fraz (poddrzew) ze sobą.

koziołki(rogate,*)

Zadanie parsingu

Mamy znaleźć graf, taki że:

- a) Jest drzewem, z korzeniem w root, z węzłami w wyrazach w zdaniu.
- b) Strzałki mają określone etykiety.
- c) Minimalizujemy jakąś funkcję kosztu:
 - Wariant 0/1 pewne połączenia niemożliwe (1), pewne dozwolone (0)
 - Można też: dozwolone == obserwowane w korpusie
 - Można też szacować wartość prawdopodobieństwa połączenia (koszt = log. prawdopodobieństwa)
 - Preferujemy bliskie połączenia (składowa odległościowa w prawdopodobieństwie), być może zależna od typu słowa (przyimki łączą się blisko, czasownik ma odległe dzieci, itd).
- d) Być może dodatkowe właściwości: jest projekcyjny, albo spełnia dodatkowe więzy, typu czasownik ma jeden podmiot, albo: dwa rzeczowniki połączone **conj** implikują obecność spójnika.

Algorytm dynamiczny, wersja projekcyjna

- Odpowiedni struktury U (dla CYK) pamięta teraz dla każdego przedziału informację o najlepszych drzewach zakorzenionych we wszystkich słowach.
- Jak łączymy dwie takie struktury, to musimy rozważyć połączenie każdego słowa z lewej z każdym z prawej (w obie strony) i wybrać takie, które maksymalizuje

$$v(w_1) + v(w_2) + \max\{v(w_1 \rightarrow w_2), v(w_1 \leftarrow w_2), \}$$

gdzie w_1 jest z lewej części, a w_2 – z prawej.

Złożoność

Niestety złożoność jesst dość duża: (jaka?) algorytm pracuje w czasie $O(N^5)$.

Da się to poprawić: Algorytmem Elsnera (ale o nim nie powiemy).

Algorytm Chu-Liu Edmonds: idea

CLU działa wg następującego schematu:

- Mażdy wybiera ulubionego tatusia
- 2 Jak nie ma cyklu ok.
- Jak jest cykl, to zamieniamy cykl na jeden sztuczny węzeł, rekurencyjnie rozwiązujemy mniejsze zadanie, potem rozbijamy cykl.

Złożoność

Algorytm działa w czasie $O(N^2)$

Algorytm Chu-Liu Edmonds współcześnie

- Algorytm CLE na początku wybiera optymalnego tatusia.
- Moglibyśmy na tym poprzestać, ale czasami będą cykle.
- Ale z drugiej strony, taki graf z cyklami możemy ocenić (sprawdzamy poprawność strzałek)

Uwaga

Współczesne algorytmy parsujące często nie przejmują się cyklami, bo w niektórych przypadkach usuwanie cykli psuje (wyjaśnienie na tablicy).

Projekcyjne vs nieprojekcyjne

- Szukanie drzew nieprojekcyjnych jest szybsze.
- Wiemy, że algorytm projekcyjny w wielu sytuacjach nie znajdzie poprawnego rozbioru.
- Z drugiej strony wydaje się, że warto preferować rozbiory projekcyjne

Uwaga

Częściowo rozwiązuje ten problem preferowanie połączeń niezbyt odległych.

Deterministyczny parsing

- Motywacja: nasz wewnętrzny parser (raczej) nie wykonuje żadnego dynamicznego algorytmu $O(N^5)$, a mimo to rozumiemy, co do nas mówią (na ogół)
- Wydaje się, że o rozbiorze podejmujemu dezycję lokalnie, czasem – raczej rzadko – wykonując coś w rodzaju płytkiego nawrotu.

Uwaga

Istnieje dużo algorytmów tego typu, przeglądających wejście od lewej do prawej i tworzących przyrastająco rozbiór. Oczywiście są one szybkie i (co ciekawe) wcale niekoniecznie gorsze od wolniejszych optymalizacyjnych.

Garden path sentences

Można "zhakować" nasz wewnętrzny parser za pomocą specjalnych zdań (tzw. garden patsh sentences)

The old man the boat.

Rozbiorem jest:

ale problem z rozbiorem jest taki, że bardzo nas sugeruje pojawienie się ciągu wyrazów the old man

Transition-based Deppendency Parsing

- Zarządzamy następującymi strukturami:
 - 1. Listą nieprzetworzonych słów (sufiksem zdania)
 - 2. Zbiorem strzałek, czyli znalezionych relacji (słowo \rightarrow lab słowo)
 - Stosem słów, na który odkładamy słowa jeszcze nieprzetworzone
- Dysponujemy wyrocznią, która podejmuje decyzję, jaką akcję wybrać (S[i] – wierzchołek stosu, S[i-1] – przedostatni):
 - 1. LeftArc dodaj strzałkę $S[i-1] \leftarrow S[i]$, usuń S[i-1]
 - 2. RightArc dodaj strzałkę $S[i-1] \rightarrow S[i]$, usuń S[i]
 - 3. Shift wrzuć na stos kolejne słowo z wejścia
- Popatrzmy na tablicy na zdanie: młoda kobieta płynie starą łódką wesoło (zwróćmy uwagę na projekcyjność i ją zaburzmy)