Cálculo de Probabilidades I

Tema 8 Grado en Matemáticas

Tutor Online: Angel Joval Roquet. CA La Seu d'Urgell

Tema 8: Variables aleatorias

8.1 El concepto de variable aleatoria

Una variable aleatoria X es una función que asocia a cada uno de los resultados posibles de un fenómeno aleatorio un valor numérico real.

En un espacio de probabilidad discreto (Ω, P) , se denomina variable aleatoria, a cualquier función

$$X:\Omega\to R$$

Ejemplo 1:

Sea el experimento aleatorio "lanzar dos dados". Definamos el espacio espacio de probabilidad, (Ω,P) :

$$\Omega = \{(1,1),(1,2),...(1,6),...,(5,6),(6,6)\}, P(\{(I, j)\})=1/36, para I, j=1,2,3,4,5,6.$$

La variable aleatoria discreta X_1 =suma de las puntuaciones obtenidas, viene dada por

$$X_1: \Omega \to R$$

$$(i, j) \to i + j$$

es decir, $X_1(i, j) = i + j$.

Ejemplo 2:

Se lanza una moneda, con probabilidad de cara igual a p, hasta que aparece la primera cara. El experimento puede describirse mediante el espacio de probabilidad, (Ω,P) , :

$$\Omega = N$$
, $P(\{n\}) = p(1-p)^{n-1}$

La variable aleatoria X_2 =n'umero de lanzamientos hasta que aparezca la primera cara, viene definida por

$$X_2: N \to R$$
 $n \to n$

es decir, $X_2(n) = n$.

Para cada número real $a \in R$, el suceso X toma el valor a se simboliza por $\{X=a\}$ y significa

$$\{\omega \in \Omega / X(\omega) = a\} = X^{-1}(\{a\})$$

Dado un intervalo (a,b] de R, X toma un valor en (a,b] se expresa $\{a < X \le b\} = \{\omega \in \Omega / a < X(\omega) \le b\} = X^{-1}(a,b]$

Analogamente,

$$\{X < a\} = \{\omega \in \Omega / X(\omega) < a\} = X^{-1}(-\infty, a]$$

En general, para cualquier subconjunto *B* de *R*, *el suceso X* toma un valor en *B* significa

$$\{X \in B\} = \{\omega \in \Omega / X(\omega) \in B\} = X^{-1}(B)$$

Ejemplo 3:

En el ejemplo 1, tenemos los sucesos $\{X_1 = 2\} = \{(1,1)\}$ $\{X_1 = 3\} = \{(1,2),(2,1)\}$ ${X_1=4}={(1,3),(2,2),(3,1)}$ ${X_1=5}={(1,4),(2,3),(3,2),(4,1)}$ ${X_1=6}={(1,5),(2,4),(3,3),(4,2),(5,1)}$ ${X_1=7}={(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)}$ ${X_1=8}={(2,6),(3,5),(4,4),(5,3),(6,2)}$ ${X_1=9}={(3,6),(4,5),(5,4),(6,3)}$ ${X_1=10}={(4,6),(5,5),(6,4)}$ ${X_1=11}={(5,6),(6,5)}$ $\{X_1 = 12\} = \{(6,6)\}$

También

$$\{X_1 \le 5\} = \{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1)\}$$

$$\{X_1 > 9\} = \{(4,6),(5,5),(6,4),(5,6),(6,5),(6,6)\}$$

$$\{3 < X_1 \le 5\} = \{(1,3),(1,4),(2,2),(2,3),(3,1),(3,2),(4,1)\}$$

8.2 Distribución de una variable aleatoria

Una variable aleatoria X, es discreta, si toma a lo sumo un número numerable de valores:

$$X(\Omega) = \{x_1, x_2, x_3, ..., x_n, ...\}$$

La función que asigna a cada x_k el valor

$$p_{k} = P\{X = x_{k}\}$$

se denomina función de probabilidad de X.

Obviamente debe ser

$$\sum_{k=1}^{\infty} p_k = 1$$

• Ejemplo 4:

La variable aleatoria X_1 toma valores en

$$X_1(\Omega) = \{2,3,4,5,6,7,8,9,10,11,12\}$$

y su función de probabilidad corresponde a los valores:

La función $F:R \rightarrow R$ definida por

$$F(x) = P\{X \le x\} = \sum_{\{k/x_k \le x\}} p_k$$

se denomina función de distribución de la variable aleatoria X.

Propiedades:

$$\lim_{X \to +\infty} F(x) = \lim_{X \to +\infty} P\{X \le x\} = P(\Omega) = 1$$

$$\lim_{X \to \infty} F(x) = \lim_{X \to \infty} P\{X \le x\} = P(\emptyset) = 0$$

$$P\{x_1 < X \le x_2\} = F(x_2) - F(x_1)$$

F(x) es una función con saltos de magnitud p_k , en cada uno de los valores x_k .

F(X) es creciente de 0 a 1 y continua por la derecha.

• Ejemplo 5:

La función de distribución de la variable aleatoria X_1 es:

$$F(x) = \begin{cases} 0 & si & x < 2 \\ 1/36 & si & 2 \le x < 3 \\ 1/12 & si & 3 \le x < 4 \\ 1/6 & si & 4 \le x < 5 \\ 5/18 & si & 5 \le x < 6 \\ 5/12 & si & 6 \le x < 7 \\ 7/12 & si & 7 \le x < 8 \\ 13/18 & si & 8 \le x < 9 \\ 5/6 & si & 9 \le x < 10 \\ 11/12 & si & 10 \le x < 11 \\ 35/36 & si & 11 \le x < 12 \\ 1 & si & x \ge 12 \end{cases}$$

y su representación gráfica es:

Ejemplo 6:

Consideramos la variable aleatoria X_2 =n'umero de lanzamientos hasta que aparezca la primera cara, del ejemplo 2.

La función de probabilidad de X_2 es

X _n	1	2	3	 n	•••
p_n	p	p(1-p)	$p(1-p)^2$	 $p(1-p)^{n-1}$	

Como que

$$\sum_{n \le x} p(1-p)^{n-1} = 1 - \sum_{n > x} p(1-p)^{n-1} = 1 - (1-p)^{[x]}$$

su función de distribución es:

$$F(x) = \begin{cases} 0 & \text{si } x < 1 \\ 1 - (1 - p)^{[x]} & \text{si } x \ge 1 \end{cases}$$

Consideramos un espacio de probabilidad discreto (Ω, P) , y X e Y dos variables aleatorias definidas sobre él, diremos que *una variable* es función de la otra, Y=f(X), si se cumple

$$Y(\omega) = f(X(\omega))$$
, para cada $\omega \in \Omega$

Tendremos

$$P\{Y=y\} = \sum_{\{x_i/f(x_i)=y\}} P\{X=x_i\}$$

• Ejemplo 6:

En el espacio de probabilidad (Ω ,P), con $\Omega = \{1,2,3,4\}$ y P($\{i\}$) = $\frac{i}{10}$, para i=1,2,3,4, consideramos las variables aleatorias

$$X(\omega) = \omega$$
 $Y = X^2 + 1$ $Z = (2 - X)^2$

Determinar las funciones de probabilidad de X, Y y Z.

La función de probabilidad de la variable X es $P\{X=i\}=\frac{i}{10}$ para i=1,2,3,4, es decir

i	1	2	3	4
p_i	1/10	2/10	3/10	4/10

La variable $Y = X^2 + 1$ tiene por función de probabilidad

j	2	5	10	17
p_i	1/10	2/10	3/10	4/10

Como que Z(1)=Z(3)=1, Z(2)=0 y Z(4)=4, su función de probabilidad es

k	0	1	4
p_k	2/10	4/10	4/10

8.3 Variables aleatorias simultáneas

Si X_1 , X_2 son variables aleatorias discretas definidas en el mismo espacio de probabilidades, **la distribución conjunta** de (X_1, X_2) es la función que asigna a cada subconjunto B de \mathbb{R}^2 la probabilidad

$$\mathsf{P}\big\{(X_1,X_2)\in B\big\}$$

La distribución conjunta de (X_1, X_2) se caracteriza por la función de probabilidad conjunta que hace corresponder

$$P\{X_1 = X_1, X_2 = X_2\}$$

a cada par (x_1, x_2) de posibles valores de (X_1, X_2) .

Las funciones de probabilidad $P\{X_1 = x_1\}$ y $P\{X_2 = x_2\}$ se denominan **funciones de probabilidad marginales** de X_1 y X_2 respectivamente. *Tenemos*

$$P\{X_{1} = X_{1}\} = \sum_{X_{2} \in X_{2}(\Omega)} P\{X_{1} = X_{1}, X_{2} = X_{2}\}$$

$$P\{X_{2} = X_{2}\} = \sum_{X_{1} \in X_{1}(\Omega)} P\{X_{1} = X_{1}, X_{2} = X_{2}\}$$

La función de probabilidad

$$P\{X_{2} = X_{2} \mid X_{1} = X_{1}\} = \frac{P\{X_{1} = X_{1}, X_{2} = X_{2}\}}{P\{X_{1} = X_{1}\}}$$

donde x_1 es fijo y x_2 es variable, corresponde a la distribución de X_2 condicionada por $X_1=x_1$.

La distribución de X_1 condicionada por $X_2=x_2$ es

$$P\{X_1 = X_1 \mid X_2 = X_2\} = \frac{P\{X_1 = X_1, X_2 = X_2\}}{P\{X_2 = X_2\}}$$

donde x_2 es fijo y x_1 es variable.

Ejemplo 7:

La distribución conjunta de dos variables X_1 y X_2 definidas en el mismo espacio de probabilidades es

$X_1 X_2$	1	2
0	0.05	0.15
1	0.30	0
2	0.05	0.45

Calcular las funciones de probabildad marginales de X_1 y X_2 .

$$P\{X_1=0\} = P\{X_1=0, X_2=1\} + P\{X_1=0, X_2=2\} = 0.05 + 0.15 = 0.20$$

$$P\{X_1=1\} = P\{X_1=1, X_2=1\} + P\{X_1=1, X_2=2\} = 0.30 + 0 = 0.30$$

$$P\{X_1=2\} = P\{X_1=2, X_2=1\} + P\{X_1=2, X_2=2\} = 0.05 + 0.45 = 0.5$$

La función de probabildad marginal de X_1 es

i	0	1	2
p_i	0.20	0.30	0.50

Analogamente, la función de probabildad marginal de X_2 es

<i>j</i>	1	2
p _j	0.40	0.60

b) Calcular la función de probabilidad de la variable X_2 condicionada por $X_1 = 0.$

$$P\{X_{2}=1 \mid X_{1}=0\} = \frac{P\{X_{1}=0, X_{2}=1\}}{P\{X_{1}=0\}} = \frac{0.05}{0.20} = 0.25$$

$$P\{X_{2}=2 \mid X_{1}=0\} = \frac{P\{X_{1}=0, X_{2}=2\}}{P\{X_{1}=0\}} = \frac{0.15}{0.20} = 0.75$$

$$P\{X_2 = 2 \mid X_1 = 0\} = \frac{P\{X_1 = 0, X_2 = 2\}}{P\{X_1 = 0\}} = \frac{0.15}{0.20} = 0.75$$

La función de probabilidad de la variable X_2 condicionada por X_1 =0 es

		_
k	1	2
p_k	0.25	0.75

8.4 Variables aleatorias independients

De acuerdo con las nociones de los capítulos 6 y 7, la ausencia de inflencia entre dos variables aleatorias X_1 y X_2 se detecta en que, para cualquiera valores posibles x_1 y x_2 de las variables, se verifica

$$P\{X_{1} = X_{1} \mid X_{2} = X_{2}\} = P\{X_{1} = X_{1}\}$$

$$P\{X_{2} = X_{2} \mid X_{1} = X_{1}\} = P\{X_{2} = X_{2}\}$$

Ello equivale a que X_1 y X_2 cumplan la siguiente definición:

Dos variables aleatorias discretas X_1 y X_2 , definidas en el mismo espacio de probabilidad, se denominan i**ndependientes** si se verifica

$$P\{X_1 = X_1, X_2 = X_2\} = P\{X_1 = X_1\}P\{X_2 = X_2\}$$

cualquiera que sean x_1 y x_2 entre los posibles valores de las variables.

La generalización del concepto de independencia al caso de un número arbitrario de variables aleatorias discretas es

Las variables aleatorias discretas X_1 , X_2 ,..., X_r , definidas en el mismo espacio de probabilidad, se denominan independientes si

$$P\{X_1 = X_1, X_2 = X_2, ..., X_r = X_r\} = P\{X_1 = X_1\}P\{X_2 = X_2\} \cdots P\{X_r = X_r\}$$

cualquiera que sean x_1 , x_2 ,..., x_r dentro de los conjuntos de valores posibles de X_1 , X_2 ,..., X_r , respectivamente.

• Ejemplo 8:

La distribución conjunta de dos variables X_1 y X_2 definidas en el mismo espacio de probabilidades es

$X_1 X_2$	1	2
0	0.05	0.15
1	0.30	0
2	0.05	0.45

¿Son X_1 y X_2 independientes?

No perque

$$P\{X_1=1, X_2=2\}=0 \neq 0.30 \cdot 0.60 = P\{X_1=1\} \cdot P\{X_2=2\}$$