

بسم الله الرحمن الرحيم

Project Title: Transistor-Level XOR Gate Design

• Author: Ahmed Assem Mohamed

1446 فو القعدة، 1446 MAY 14, 2025

1. Abstraction

This report presents the design and implementation of a XOR gate at the transistor level, leveraging 130nm MOSFET technology. The circuit was meticulously developed and simulated using Cadence Virtuoso.

2. Logic Function and Truth Table

$$Y = (IN0 ^IN1)$$

IN0	IN1	Y (IN0 XOR IN1)
0	0	0
0	1	1
1	0	1
1	1	0

3. Circuit Design

3.1. Schematic

1446 فو القعدة، 1446 MAY 14, 2025

3.2. Design Approach

• 130nm CMOS process

• 1.2V VDD

• INPUTS: IN0, IN1

OUTPUT: OUT

Input Parameter: WN_XOR

It is designed using TGL and CMOS INV

• Sizes: INV: 5*WN_XOR, TGL: WN_XOR

 why? the INV should be stronger than the XOR, why exactly 5? to be stronger and not to be too large, but this is only by intuition(not a simulation result)

3.3. Symbol

1446 في القعدة، 1446 MAY 14, 2025

4. Simulation and Results

Note: the simulation result is performed with an input f = 333.3MHZ for IN1, while for IN2 1/3 * f

1446 فو القعدة، 1446 MAY 14, 2025