Dataset

WISDM: Contains data collected from accelerometer sensors of 6 human daily activities:

Walking: 424400 (38.6%) Jogging: 342177 (31.2%) Upstairs: 122869 (11.2%) Downstairs: 100427 (9.1%) Sitting: 59939 (5.5%) Standing: 48395 (4.4%)

Link: http://www.cis.fordham.edu/wisdm/dataset.php

Method

1. CNN

Model

- ip = Input(SEGMENT_TIME_SIZE, N_FEATURES)
- x = conv1D(32,7, RELU, BatchNormalization)(ip)
- x = conv1D(64,5, RELU)(x)
- x = GlobalAveragePooling1D()(x)
- out = Dense(N_CLASSES, softmax)(x)
- model = Model(ip, out)

Result

Accura	acy: C).96950	386891		Confusion matrix	
	pred	cision	recall f	f1-score	support	[[182 3 0 0 22 5]
0) (0.93	0.86	0.89	212	[1672 0 0 2 1]
1	L (0.99	0.99	0.99	676	[1 0 137 2 0 0]
2	<u>?</u> (0.99	0.98	0.99	140	[0 0 1 76 1 0]
3	3 (0.97	0.97	0.97	78	[9 6 0 0239 4]
4	ļ (0.89	0.93	0.91	258	[3 1 0 0 5 824]]
5	5 (0.99	0.99	0.99	833	
avg / to	otal	0.97	0.97	7 0.97	2197	

2. LSTM

Model

- ip = Input(SEGMENT_TIME_SIZE, N_FEATURES)
- x = LSTM(64)(ip)
- x = LSTM(64)(x)
- out = Dense(N_CLASSES, softmax)(x)
- model = Model(ip, out)

Result

Accura	icy: (0.92808	3375056	89576		Confusion matrix
	pre	cision	recall	f1-score	support	[[151 1 3 0 36 21]
0)	0.83	0.71	0.76	212	[3 659 0 0 5 9]
1		0.98	0.97	0.98	676	[0 1134 4 1 0]
2	<u>.</u>	0.94	0.96	0.95	140	[0 1 1 75 1 0]
3	}	0.95	0.96	0.96	78	[22 8 4 0 205 19]
4	ļ	0.80	0.79	0.80	258	[7 2 0 0 9815]]
5	,	0.94	0.98	0.96	833	
avg / t	otal	0.93	3 0.93	3 0.93	2197	

3. CNN-LSTM

Model

- ip = Input(SEGMENT_TIME_SIZE, N_FEATURES)
- x = conv1D(16,7, RELU, BatchNormalization)(x)
- x = conv1D(32,5, RELU)(x)
- x = LSTM(32)(x)
- x = LSTM(32)(x)
- out = Dense(N_CLASSES, softmax)(x)
- model = Model(ip, out)

Result

Accura	асу:	0.89849	9795175		Confusion matrix	
	pre	ecision	recall	f1-score	support	[[158 7 3 0 33 11]
()	0.60	0.75	0.67	212	[5 669 0 0 0 2]
1	L	0.96	0.99	0.98	676	[0 0 127 10 2 1]
2	2	0.95	0.91	0.93	140	[0 1 0 75 1 1]
3	3	0.88	0.96	0.92	78	[89 16 3 0 131 19]
4	1	0.76	0.51	0.61	258	[11 2 0 0 6814]]
5	5	0.96	0.98	0.97	833	
avg / t	otal	0.90	0.90	0.90	2197	

Implementation

Code: https://github.com/SimonNgj/DL-ung-dung/blob/master/2019July7/simon.py

Using: Keras (Tensorflow backend), Python3.6

Other publication uses the WISDM dataset

1. Andrey Ignatov, "Real-time human activity recognition from accelerometer data using Convolutional Neural Networks" Applied Soft Computing, pp. 915-922, 2018.