Student: Arfaz Hossain Instructor: Muhammad Awais Assignment: Practice Questions for Date: 04/20/22 Course: Math 101 A04 Spring 2022 Sections 11.4 & 11.5 [Not f

Find the area of the region inside one leaf of the seven-leaved rose $r = 6 \cos 7\theta$.

Notice that the graph of $r = 6 \cos 7\theta$ has seven leaves and is symmetric about the x-axis. For simplicity, find the area of half of the leaf that lies on the x-axis and then double the result.

Let R be the region bounded by the graph of $r = f(\theta)$, between $\theta = \alpha$ and $\theta = \beta$, where f is continuous and $f(\theta) \ge 0$ on $[\alpha, \beta]$. Then the area of R is given by the formula below.

$$A = \int_{\alpha}^{\beta} \frac{1}{2} r^2 d\theta$$

Apply the formula to the shaded region shown in the graph to the right, that is, the upper half of the leaf that lies on the x-axis. This region is generated as the dashed line shown in the graph sweeps through some interval $[\alpha, \beta]$. Note that α and β are also the limits of integration used in the formula.

The curve bounding the half-leaf starts when the curve intersects the x-axis, that is, when θ = 0. Thus, the lower limit of integration is α = 0.

The curve bounding the half-leaf ends when the curve intersects the origin, that is, when $r = 6 \cos 7\theta = 0$. Since solving for θ results in more than one possible value, use symmetry. Note that the complete rose curve is generated on the interval $0 \le \theta \le \pi$. Since there are seven symmetric leaves, divide π by the number of half-leaves in the entire rose. Thus, the upper

limit of integration is
$$\beta = \frac{\pi}{14}$$

Apply the area formula to the upper half of the leaf that lies on the x-axis. Substitute $\alpha = 0$, $\beta = \frac{\pi}{14}$, and $r = 6 \cos 7\theta$.

$$\int_{0}^{\beta} \frac{1}{2} r^{2} d\theta = \int_{0}^{\pi/14} \frac{1}{2} (6 \cos (7\theta))^{2} d\theta$$

Double this amount to find the area of the entire leaf and simplify.

Area of leaf =
$$2 \cdot \int_{0}^{\pi/14} \frac{1}{2} (6 \cos{(7\theta)})^2 d\theta$$

Area of leaf = $\int_{0}^{\pi/14} 36 \cos^2(7\theta) d\theta$

Cancel common factors and square $f(\theta)$.

Now complete the integration.

Area of leaf =
$$\int_{0}^{\pi/14} 36 \cos^{2}(7\theta) d\theta$$
Area of leaf =
$$36 \int_{0}^{\pi/14} \left(\frac{1}{2} + \frac{\cos(14\theta)}{2} \right) d\theta$$
Area of leaf =
$$36 \left(\frac{\theta}{2} + \frac{\sin(14\theta)}{28} \right) \Big|_{0}^{\pi/14}$$

Use the fact that $\cos^2 u = \frac{1 + \cos 2u}{2}$.

Integrate.

Evaluate the result.

Area of leaf =
$$36\left(\frac{\theta}{2} + \frac{\sin{(14\theta)}}{28}\right)\Big|_0^{\pi/14}$$

Area of leaf = $36\left(\frac{\pi}{\frac{14}{2}} + 0 - \left(\frac{0}{2} + 0\right)\right)$
Area of leaf = $\frac{9\pi}{7}$

Therefore, the area inside one leaf is $\frac{9\pi}{7}$.