

Deep Learning

A partir del 2006 (aprox.) aparece el Deep Learning (aprendizaje profundo), que no es más que una extensión de las redes neuronales feed-forward agregándole el concepto de capas convolucionales.

Capas convolucionales y de pooling en primera instancia permiten filtrar la imagen de modo de generar un descriptor que puede ser "aprendido". Al final suele haber una Red Neuronal Feed-Forward (tradicional) para clasificar.

Deep Learning – Capa Densa

Deep Learning – Capa de Convolución

- Es el segundo (o primer?) tipo de capa más importante junto con la Lineal
- Ideal para imágenes/audio
- Menos parámetros que las lineales, menos cómputo
- Implementan una convolución con un filtro aprendido

0	0	0	0	0	0	0
0	60	113	56	139	85	0
0	73	121	54	84	128	0
0	131	99	70	129	127	0
0	80	57	115	69	134	0
0	104	126	123	95	130	0
0	0	0	0	0	0	0

114		

Capas Pooling

Las capas Pooling ayudan a reducir la dimensionalidad espacial del *feature map* de una convolución. Básicamente son convoluciones con un stride igual al tamaño del kernel y donde se calcula alguna función sobre todos los píxeles. Lo más usual es calcular el máximo, el mínimo o el promedio.

No solo reducen la dimensionalidad, sino que generalmente ayudan en la clasificación.

Capas Pooling

Generalmente se grafican los *Feature maps*, no los *kernels*. *Ya que esto se da como entrada a la próxima capa.*

Capa convolucional en MNIST

Una capa convolucional no es más que muchos filtros convolucionales de tamaño **K*K*C** (**K** se debe definir y **C** = canales de la imagen).

Capa convolucional en MNIST

Veamos cómo sería aplicar una simple capa convolucional en el dataset MNIST.

Accuracy alimentando a la red Feed-Forward con la imagen cruda.

```
Train
Accuracy: 0.93 soporte: 60000

Test
Accuracy: 0.93 soporte: 10000
```

```
Accuracy al agregar una capa
              convolucional de 64 filtros.
            Train
                               soporte: 60000
               Accuracy: 1.00
             Test
               Accuracy: 0.98
                                soporte: 10000
model = Sequential()
model.add(Conv2D( 64, kernel size=3,
                activation='relu',
                input shape= INPUT SHAPE))
model.add(Flatten())
model.add(Dense(n clases, activation= 'softmax'))
```

Capa convolucional

Capa Convolucional sobre CIFAR10


```
model = Sequential()
model.add(Conv2D( 64, kernel_size=3,activation='relu',input_shape= INPUT_SHAPE))

model.add(Flatten())
model.add(Dense(32, activation= 'relu'))
model.add(Dense(n_clases, activation= 'softmax'))
iPor la (200)
```

¿Por qué la imagen resultante tiene 30x30?

Layer (type)	Output Shape	Param #
conv2d_1 (Conv2D)	(None, 30, 30, 64)	1792
flatten_1 (Flatten)	(None, 57600)	0
dense_1 (Dense)	(None, 32)	1843232
dense_2 (Dense)	(None, 10)	330

¿Por la capa convolucional tiene 1792 parámetros (pesos)?

Total params: 1,845,354 Trainable params: 1,845,354 Non-trainable params: 0 Notar que el vector de entrada a la Feed-Forward es de 30x30x64= 57600.

Esto hace que haya casi 2 millones de parámetros! solo para 32 neuronas ocultas.

Capa Convolucional+Pooling sobre CIFAR10

```
model = Sequential()
model.add(Conv2D( 64, kernel_size=3,activation='relu',input_shape= INPUT_SHAPE))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Flatten())
model.add(Dense(32, activation= 'relu'))
model.add(Dense(n_clases, activation= 'softmax'))
```

Layer (type)	Output Shape	Param #
conv2d_1 (Conv2D)	(None, 30, 30, 64)	1792
max_pooling2d_1 (MaxPooling2	(None, 15, 15, 64)	0
flatten_1 (Flatten)	(None, 14400)	0
dense_1 (Dense)	(None, 32)	460832
dense_2 (Dense)	(None, 10)	330
Total params: 462,954 Trainable params: 462,954 Non-trainable params: 0		

Agregando la capa Pooling la cantidad de parámetros se redujo a un cuarto

Capa Convolucional+Pooling sobre CIFAR10

Train
Accuracy: 0.78 soporte: 50000

Test
Accuracy: 0.65 soporte: 10000

Filtros convolucionales sobre CIFAR10

Imágenes filtradas con los 64 filtros convolucionales (activation map) 64 filtros de 3x3x3

Capas convolucionales

A medida que las capas se apilan, los filtros convolucionales se aplican sobre los feature maps de las capas anteriores.

Capas convolucionales

A medida que las capas se apilan, los filtros convolucionales se aplican sobre los feature maps de las capas anteriores.

Kernel sizes

Lo más usual es tener tamaños de kernel de 3x3, 5x5 y 1x1.

Red Convolucional estándar

Modelo más "profundo" para clasificar CIFAR10

```
#create model
model = Sequential()
#add model layers
model.add(Conv2D(64, kernel_size=3, activation='relu',
           input shape= INPUT SHAPE, padding = 'same'))
model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Conv2D(64, kernel_size=3, activation='relu',
           input shape= INPUT SHAPE, padding = 'same'))
model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Flatten())
model.add(Dense(128,input dim=d in, activation= 'relu'))
model.add(Dense(n clases, activation= 'softmax))
```

Salida primer capa convolucional

Param #

524416

1290

Output Shape

max pooling2d 3 (MaxPooling2 (None, 16, 16, 64) 0 conv2d 5 (Conv2D) (None, 16, 16, 64) 36928

max pooling2d 4 (MaxPooling2 (None, 8, 8, 64) 0 flatten 2 (Flatten) (None, 4096) 0

Trainable params: 564,426

Non-trainable params: 0

dense 3 (Dense)

Test

(None, 128)

(None, 10)

Accuracy: 0.70 soporte: 10000

Después de Max Pooling 2x2 Feature Map= 64x16x16

Después de segunda capa convolucional.

Feature Map= 64x16x16

Después de Max Pooling 2x2 Feature Map= 64x8x8

Frameworks/Librerías

FastAI

Modelos actuales - VGG

Modelos actuales - AllConvolutional

- No hay capas lineales (densas), sólo convoluciones.
- Tiene una capa especial llamada "global average pooling".
- Más pequeña que VGG.
- Fue diseñada para Cifar10, que es un dataset mas chico que ImageNet.

Layer (type)	Output Shape	Param #
conv2d_19 (Conv2D) conv2d_20 (Conv2D) conv2d_21 (Conv2D) conv2d_22 (Conv2D) conv2d_23 (Conv2D) conv2d_24 (Conv2D) conv2d_25 (Conv2D) conv2d_26 (Conv2D) conv2d_27 (Conv2D) global_average_pooling2d activation_1 (Activation ====================================	(None, 32, 32, 96) (None, 32, 32, 96) (None, 16, 16, 96) (None, 16, 16, 192) (None, 16, 16, 192) (None, 8, 8, 10) d_1 ((None, 10)	2688 83040 83040 166080 331968 331968 331968 37056 1930 0

Modelos actuales - Inception

Creado por Google

- Ganador del ILSVRC 2014
- Introdujo bloques Inception (en vez de ser más profunda, la red es más ancha).

Modelos actuales

Resumen

Data augmentation

Deep Learning – CPU/GPU

Al tener procesamiento masivo en paralelo, lo usual es utilizar una GPU para llevar a cabo los entrenamientos de las redes.

Nvidia GTX TITAN Z

- 12 Gb Gddr5 interfaz de 384 Bit posee un ancho de banda de 336.5 GB / s
- 3072 procesadores.
- Pci Express 3.0 X16, 7.0 GB/s
- Consumo 250 Watt
- 6,691 gflops

U\$\$ 1.100 en Amazon

Transfer Learning

Un concepto muy usado hoy en día es el de utilizar redes pre-entrenadas en otro dominio. Esto ahorra mucho tiempo de entrenamiento con resultados muy buenos.

Recursos Deep Learning / ML

Libros:

- Libro gratis de Michael Nielsen: https://neuralnetworksanddeeplearning.com/
- Libro gratis de Jason Brownlee: https://machinelearningmastery.com/

Noticias, tendencias, cursos:

- https://deepai.org/
- https://www.deeplearning.ai/ cursos carreras
- https://www.latinxinai.org/
- https://openai.com/
- https://www.xataka.com/
- https://www.kdnuggets.com/

Canales de youtube:

- Dot CSV (español): https://www.youtube.com/channel/UCy5znSnfMsDwaLlROnZ7Qbg
- Henry Al Labs: https://www.youtube.com/channel/UCHB9VepY6kYvZjj0Bgxnpbw
- Two Minute Papers: https://www.youtube.com/user/keeroyz
- Yannic Kilcher: https://www.youtube.com/channel/UCZHmQk67mSJgfCCTn7xBfew
- Zak Jost: https://www.youtube.com/channel/UCxw9 WYmLqlj5PyXu2AWU g/videos