Modeling and Analysis of Dynamic Systems

Modeling & Analysis of Dynamic Systems

Note: We will cover material very quickly. Important to carefully review material yourself (**FPE** Chapters 2 and 3)

Dynamic System Modeling

PARAMETER LUMPED

- Probably the most important step in design MODEL
- Control approach is a strong function of system characteristics – reflected in modeling
- In this class, will spend little to no time on modeling
- Please review background when necessary (e.g. ME 340)

Fluid / thermal systems

Modeling & Analysis of Dynamic Systems

- Topic Overview -

- Dynamic System Modeling 2.1-2.4
- Dynamic Systems Differential Equations 3.1-3.6
- Laplace Transform and Linear Differential 3.1
 Equations
- Transfer Functions 3.1.2
- Block Diagram Modeling 3.2.1-3.2.2
- Linear System Response Characteristics 3.3
- Time Domain Specifications 3.4
- Effects of System Poles and Zeros 3.5

We use lumped parameter modeling

Mechanical	Electrical	Fluid	Thermal
$\sim \sim \sim F = kx$	$ \begin{array}{c c} C & i = C \frac{dv}{dt} \\ \hline $	С	С
	$\sim N$ $\sim V = iR$	R	R
$F = m \frac{d^2x}{dt^2}$ $M = I \frac{d^2\theta}{dt^2}$		L	Not applicable

- These models are described by differential equations
- For linear systems, their dynamics are governed by linear (constant coefficient) differential equations

Example: Develop a model and the associated equations of motion for the mechanical system shown below

Equation of motion:

$$f_{k} \uparrow \uparrow f_{c}$$

$$f_{k} = K(y-x)$$

$$f_c = c(\dot{s} - \dot{x})$$

$$\begin{cases} f_{\kappa} + f_{c} = m\dot{x} \\ m\ddot{x} + f_{\kappa} + c\dot{x} = f_{\kappa} + c\dot{y} \end{cases}$$

LIN. CONG. COUFF. ORD. DIFF. EQ.

Example: continued

Mechanical Dynamics Lumped Parameter Model:

Newton's 2nd Law:

$$\sum F = m\ddot{x}$$

Spring force on mass:

$$f_k = k(y - x)$$

Damper force on mass:

$$f_b = b(\dot{y} - \dot{x})$$

Kinetic

Diagram:

$$f_k + f_h = m\ddot{x}$$

$$k(y-x)+b(\dot{y}-\dot{x})=m\ddot{x}$$

Equation of motion:
$$m\ddot{x} + b\dot{x} + kx = b\dot{y} + ky$$

Linear, constant coefficient differential equation (for a linear, time invariant system)

Example: Develop a model and the associated equations of motion for the mechanical system shown below

K'P: COMPLIANCE,

10

Example: continued

Mechanical Dynamics Lumped Parameter Model:

Equations of motion:

$$I_1\ddot{\theta}_1 + b\dot{\theta}_1 - b\dot{\theta}_2 + k\theta_1 - k\theta_2 = \tau_m$$
$$I_2\ddot{\theta}_2 - b\dot{\theta}_1 + b\dot{\theta}_2 - k\theta_1 + k\theta_2 = 0$$

Note: number of equations = number of degrees of freedom

Equations of motion: System of linear (constant coefficient) differential equations

- Dependent variables on left-side
- Independent (input) variables on right-side

Modeling & Analysis of Dynamic Systems

- Topic Overview -

- Dynamic System Modeling 2.1-2.4
- Dynamic Systems Differential Equations 3.1-3.6
- Laplace Transform and Linear Differential 3.1
 Equations
- Transfer Functions 3.1.2
- Block Diagram Modeling 3.2.1-3.2.2
- Linear System Response Characteristics 3.3
- Time Domain Specifications 3.4
- Effects of System Poles and Zeros 3.5

Why Laplace transform?
$$\mathscr{L}[f(t)] = \int_{-\infty}^{+\infty} f(t)e^{-st}dt$$

- To find the solution of initial value problems of linear differential equations
- Mathematical basis for majority of control system analysis and design techniques (e.g. root locus, frequency domain analysis)

Laplace Transform: Definition

Definition:
$$\mathscr{L}[f(t)] = \int_{-\infty}^{+\infty} f(t)e^{-st}dt$$

One-sided (or unilateral) Laplace transform

$$\mathscr{L}_{-}[f(t)] = F(s) = \int_{0-}^{\infty} f(t)e^{-st}dt$$

$$\mathscr{L}[f(t)] \begin{cases} \bullet & \text{Function of } s \\ \bullet & \text{Not all functions have Laplace transform.} \\ & \text{Integral must converge (e.g. } f(t) \neq e^{t^2} \text{)} \end{cases}$$

Example: Evaluate the Laplace transform of f(t) = 1(t) for $t \ge 0$

$$F(s) = \int_{0-}^{\infty} f(t)e^{-st}dt$$

Example: Evaluate the Laplace transform of f(t) = 1(t) for $t \ge 0$

$$F(s) = \int_{0^{-}}^{\infty} f(t)e^{-st}dt$$

$$F(s) = \int_{0^{-}}^{\infty} 1(t)e^{-st}dt = \int_{0^{-}}^{\infty} e^{-st}dt$$

$$F(s) = -\frac{1}{s}e^{-st}\Big|_{t=0^{-}}^{t=\infty}$$

$$F(s) = -\frac{1}{s}\Big[e^{-\infty} - e^{0}\Big] = -\frac{1}{s}\Big[0 - 1\Big]$$

$$F(s) = \frac{1}{s} \xrightarrow{\text{Laplace transform pair}} f(t) = 1(t)$$

Example: Evaluate the Laplace transform of $f(t) = e^{-at}$ for $t \ge 0$ $F(s) = \int_{0}^{\infty} f(t)e^{-st}dt$

$$F(s) = \frac{1}{(s+a)} \xrightarrow{\text{Laplace transform pair}} f(t) = e^{-at}$$

example: Evaluate the Laplace transform of $f(t) = e^{-at}$ for $t \ge 0$

$$F(s) = \int_{0-}^{\infty} f(t)e^{-st}dt$$

$$= \int_{0-}^{+\infty} e^{-at}e^{-st}dt$$

$$= \int_{0-}^{\infty} e^{-(s+a)t}dt$$

$$= -\frac{1}{(s+a)}e^{-(s+a)t}\Big|_{t=0-}^{t=\infty}$$

$$= -\frac{1}{(s+a)}\Big[e^{-(s+a)\infty} - e^{-(s+a)0}\Big]\Big|$$

$$F(s) = \frac{1}{(s+a)} \xrightarrow{\text{Laplace transform pair}} f(t) = e^{-at}$$

Laplace Transform Table (FPE 7 Ed.)

Number	F(s)	$f(t), t \ge 0$
1	1	$\delta(t)$ unit <i>impulse</i>
2	1/s	1(t) unit step
3	$1/s^2$	t ← unit <i>ramp</i>
4	$2!/s^3$	t^2 unit acceleration
5	$2!/s^3$ $3!/s^4$ $m!/s^{m+1}$	t^3
6	$m!/s^{m+1}$	t ^m
7	$\frac{1}{s+a}$	e^{-at} exponential
8	$\frac{1}{(s+a)^2}$	te ^{-at}
9	$\frac{1}{(s+a)^3}$	$\frac{1}{2!}t^2e^{-at}$
10	$\frac{1}{(s+a)^m}$	$\frac{1}{(m-1)!}t^{m-1}e^{-at}$ $1-e^{-at}$
11	$\frac{a}{s(s+a)}$	$1-e^{-at}$

Laplace Transform Table (FPE 7 Ed.)

Number	F(s)	$f(t), t \geq 0$
12	$\frac{a}{s^2(s+a)}$	$\frac{1}{a}(at-1+e^{-at})$
13	$\frac{b-a}{(s+a)(s+b)}$	$e^{-at}-e^{-bt}$
14	$\frac{s}{(s+a)^2}$	$(1-at)e^{-at}$
15	$\frac{a^2}{s(s+a)^2}$	$1 - e^{-at}(1 + at)$
16	$\frac{(b-a)s}{(s+a)(s+b)}$	$be^{-bt} - ae^{-at}$
17	$\frac{a}{s^2 + a^2}$	sin at ← sinusoidal
18	$\overline{s^2 + a^2}$	cos at • terms
19	$\frac{s+a}{(s+a)^2+b^2}$	e ^{−at} cos bt ← exponentially modulated
20	$\frac{b}{(s+a)^2+b^2}$	$e^{-at} \sin bt$ sinusoidal terms
21	$\frac{a^2+b^2}{s[(s+a)^2+b^2]}$	$1 - e^{-at} \left(\cos bt + \frac{a}{b} \sin bt \right)$

Laplace transform definition
$$\mathscr{L}[f(t)] = \int_{-\infty}^{+\infty} f(t)e^{-st}dt$$

$$\mathscr{L}[f(t)]$$
 or $F(s)$ function of s

- We will use the Laplace transform to find the solution to *linear constant* coefficient differential equations (e.g. dynamic system equations of motion))
- Mathematical basis for majority of control system analysis and design techniques (e.g. root locus, frequency domain)

Function of time	Laplace transform
f(t)	F(s)
$\delta(t)$	1
$\overline{1(t)}$	1/ <i>s</i>
t	$1/s^2$
$oldsymbol{ ho}^{-at}$	_1
C	s+a

Solution of ODE using Laplace Transform

mix +
$$c\dot{x}$$
 + $kx = F(t)$ initial conditions $\begin{cases} x(0) = x_0 \\ \dot{x}(0) = \dot{x}_0 \end{cases}$

What is the Laplace transform of the ODE?
$$\mathscr{L}[m\ddot{x} + c\dot{x} + kx] = \mathscr{L}[F(t)] = F(s)$$

- What is the Laplace transform of a <u>derivative</u> (w.r.t. to time)
- What is the Laplace transform of linear combination of terms

Solution of ODE using Laplace Transform

e.g.
$$m$$

$$m\ddot{x} + c\dot{x} + kx = F(t)$$
initial conditions
$$\begin{cases} x(0) = x_0 \\ \dot{x}(0) = \dot{x}_0 \end{cases}$$

What is the Laplace transform of the ODE?
$$\mathcal{L}[m\ddot{x} + c\dot{x} + kx] = \mathcal{L}[F(t)] = F(s)$$

We'll show that

$$\mathscr{L}[m\ddot{x} + c\dot{x} + kx] = (ms^2 + cs + k)X(s) + g(s)$$

$$\mathscr{L}[m\ddot{x} + c\dot{x} + kx] = (ms^2 + cs + k)X(s) + g(s)$$

Leading to ...
$$\left(ms^2 + cs + k\right)X(s) = F(s) - g(s)$$

$$X(s) = \frac{F(s) - g(s)}{ms^2 + cs + k + \cdots}$$

$$\mathcal{L}^{-1}\left[X(s)\right] = \mathcal{L}^{-1}\left[\frac{F(s)-g(s)}{ms^2+cs+k+\cdots}\right]$$

Laplace Transform Properties

 The Laplace transform has specific properties that make it useful in the solution of linear differential equations

Linearity property:

$$\mathscr{L}[a\cdot f(t)+b\cdot g(t)]=a\cdot \mathscr{L}[f(t)]+b\cdot \mathscr{L}[g(t)]$$

Derivative property:

$$\mathcal{L}\left[\frac{d^n f}{dt^n}\right] = s^n F(s) + \text{initial condition terms}$$

 Good – can use Laplace transform of simple functions to build Laplace transforms of complex functions

Laplace Transform: Linearity Property

Linearity: If given two functions of time, f(t) and g(t)

$$\mathscr{L}[f(t)] = F(s)$$
 and $\mathscr{L}[g(t)] = G(s)$

• The Laplace $\mathcal{L}[a \cdot f(t) + b \cdot g(t)]$ transform of

$$\mathcal{L}\left[a\cdot f(t) + b\cdot g(t)\right] = \int_{0-}^{\infty} \left(a\cdot f(t) + b\cdot g(t)\right) e^{-st} dt$$

$$= a \int_{0-}^{\infty} f(t) e^{-st} dt + b \int_{0-}^{\infty} g(t) e^{-st} dt$$

$$= a \cdot F(s) + g \cdot G(s)$$

The linearity property

$$\mathscr{L}\left[a\cdot f(t)+b\cdot g(t)\right]=a\cdot \mathscr{L}\left[f(t)\right]+b\cdot \mathscr{L}\left[g(t)\right]$$

Laplace Transform: Derivative Property

Derivative: The Laplace transform of f(t)

$$F(s) = \int_{0-}^{\infty} f(t)e^{-st}dt$$

$$\mathcal{L}[\dot{f}(t)] = \int_{0-}^{\infty} \frac{df}{dt} e^{-st} dt$$
Integration
$$\int u dv = uv - \int v du \text{ where } \begin{cases} u = e^{-st} \text{ and } du = -se^{-st} \\ dv = \frac{df}{dt} \text{ and } v = f(t) \end{cases}$$

$$\mathcal{L}[\dot{f}(t)] = f(t)e^{-st} \Big|_{0-}^{\infty} - \int_{0}^{\infty} f(t)(-se^{-st}) dt$$

$$= -f(0) + s \int_{0-}^{\infty} f(t)e^{-st}dt$$

$$\mathscr{L}\left[\dot{f}(t)\right] = sF(s) - f(0) \qquad F(s)$$

Laplace Transform: Derivative Property

First derivative:

$$\mathscr{L}[\dot{f}(t)] = sF(s) - f(0)$$

Second derivative:

from initial conditions

$$\mathscr{L}\left[\ddot{f}(t)\right] = s^2 F(s) - s f(0) - \dot{f}(0)$$

from initial conditions

Third derivative:

$$\mathscr{L}\left[\ddot{f}(t)\right] = \underline{s^3}F(s) - s^2f(0) - s\dot{f}(0) - \ddot{f}(0)$$

from initial conditions

nth derivative:

$$\mathscr{L}\left[\frac{d^n f}{dt^n}\right] = s^n F(s)$$

Laplace transform of an equation with derivatives (i.e. differential equation) has X(s), assorted terms of s, and constants

condition terms

Laplace Transform: Derivative Property

integration:

$$\mathscr{L}\left[\int f(t)dt\right] = \frac{F(s)}{s}$$
 + initial condition terms

$$\mathscr{L}\left[\int\int \cdots \int f(t)dt\right] = \frac{F(s)}{s^n} + \text{initial condition terms}$$

Laplace Transform - Summary

Laplace transform:
$$\mathcal{L}[f(t)] = \int_{-\infty}^{+\infty} f(t)e^{-st}dt \begin{cases} \frac{f(t) | F(s)|}{\delta(t) | 1|} \\ \frac{1}{1(t) | 1/s|} \end{cases}$$

Derivative property:

$$\mathcal{L}\left[\dot{f}(t)\right] = sF(s) - f(0)$$

$$\mathcal{L}\left[\ddot{f}(t)\right] = s^{2}F(s) - sf(0) - \dot{f}(0)$$

$$\mathcal{L}\left[\ddot{f}(t)\right] = s^{3}F(s) - s^{2}f(0) - s\dot{f}(0) - \ddot{f}(0)$$

$$\mathcal{L}\left[\frac{d^{n}f}{dt^{n}}\right] = s^{n}F(s) + \text{initial condition terms}$$

Linearity property:

$$\mathscr{L}[a\cdot f(t)+b\cdot g(t)]=a\cdot \mathscr{L}[f(t)]+b\cdot \mathscr{L}[g(t)]$$

Example: Evaluate the Laplace transform of the output, x(t), of the following initial value problem

$$3\ddot{x} + 2\dot{x} + x = 4t \text{ with initial conditions: } x(0) = 3 \text{ and } \dot{x}(0) = 2$$

$$\int_{\text{TARCE LAPLACE}} \int_{\text{Laplace}} \int_{$$

$$\Rightarrow \chi(s) = \frac{9s^3 + 12s^2 + 4}{5^2(3s^2 + 2s + 1)}$$
 THIS IS THE CAPLACE AFORM

example: Evaluate the Laplace transform of the output, x(t), of the following initial value problem

$$3\ddot{x} + 2\dot{x} + x = 4t \text{ with initial conditions: } X(0) = 3 \text{ and } \dot{x}(0) = 2$$

$$\mathcal{L}[4t] = 4(1/s^2)$$

$$\mathcal{L}[x(t)] = X(s)$$

$$\mathcal{L}[2\dot{x}(t)] = 2(sX(s) - x(0))$$

$$\mathcal{L}[3\ddot{x}(t)] = 3(s^2X(s) - sx(0) - \dot{x}(0))$$

Assemble terms
$$3(s^2X(s)-3s-2)+2(sX(s)-3)+X(s)=4/s^2$$

example: continued

Assemble terms

$$3(s^2X(s)-3s-2)+2(sX(s)-3)+X(s)=4/s^2$$

Group terms and isolate X(s)

$$(3s^{2} + 2s + 1)X(s) - 9s - 12 = 4/s^{2}$$
$$(3s^{2} + 2s + 1)X(s) = \frac{9s^{3} + 12s^{2} + 4}{s^{2}}$$

$$X(s) = \frac{9s^3 + 12s^2 + 4}{s^2(3s^2 + 2s + 1)}$$

If I could find x(t) where $\mathcal{L}[x(t)] = X(s)$ then I have found the solution to:

$$3\ddot{x} + 2\dot{x} + x = 4t$$
 $x(0) = 3$ and $\dot{x}(0) = 2$

Example: Evaluate the Laplace transform of the output, x(t), of the following initial value problem

$$\ddot{x} + 2\dot{x} - 3x = 6\dot{f} + 2f \qquad x(0) = \dot{x}(0) = 1, f(0) = 0, \text{ and } f(t) = 2\delta(t)$$

$$\Rightarrow \qquad \dot{\xi} = \left(\delta^{2} + 2s + 3\right) \times \left(5\right) = \left(6s + 2\right) F(s)$$

$$\Rightarrow \qquad \chi(s) = \frac{(2s + 4)}{s^{2} + 2s - 3}$$

$$\Rightarrow \qquad \chi(s) = \frac{(2s + 4)}{s^{2} + 2s - 3}$$

$$= \chi(s) = \frac{(2s + 4)}{s^{2} + 2s - 3} \qquad (\Delta(s))$$

$$PARTIAL FRACERP. x(S) = $\frac{12574}{57425-3}$ >7 roots ([1 2 -3])$$

$$x(s) = \frac{12s+4}{s^2+2s-3} = \frac{c_1}{s+3} + \frac{c_2}{s-1} = \frac{(c_1+(c_2)s+(3c_2-c_1))}{(s-1)(s+3)}$$

$$c_1+c_2=12 \qquad c_1=8$$

$$c_1=3c_2-c_1 \qquad c_2=9$$

$$c_2=9$$

$$c_3=\frac{8}{s+3} + \frac{c_1}{s-1}$$

$$c_4=\frac{8}{s+3} + \frac{c_1}{s-1}$$

$$c_5=\frac{8}{s+3} + \frac{c_1}{s-1}$$

$$c_7=\frac{8}{s+3} + \frac{c_1}{s-1}$$

$$c_8=\frac{s+3}{s+3} + \frac{c_1}{s-1}$$

$$c_8=\frac{s+3}{s+4} + \frac{c_1}{s+4}$$

$$c_8=\frac{s+3}{s+4} + \frac{c_1}{s+4}$$

$$c_8=\frac{s+3}{s+4} + \frac{c_1}{s+4}$$

$$c_8=\frac{s+3}{s+4} + \frac{c_1}{s+4}$$

EXPONENTS (ORRESPONT) TO ROOTS

Laplace Transform: Linear Diff EQs

Example: Evaluate the Laplace transform of the output, x(t), of the following initial value problem

$$\ddot{x} + 2\dot{x} - 3x = 6\dot{f} + 2f \qquad x(0) = \dot{x}(0) = 1, \ f(0) = 0, \ \text{and} \ f(t) = 2\delta(t)$$

$$\mathcal{L}[2f] = 2F(s)$$

$$\mathcal{L}[6\dot{f}] = 6(sF(s) - f(0)) = 6sF(s)$$

$$\mathcal{L}[3x] = 3X(s)$$

$$\mathcal{L}[2\dot{x}] = 2(sX(s) - x(0)) = 2sX(s) - 2$$

$$\mathcal{L}[\ddot{x}(t)] = s^2X(s) - sx(0) - \dot{x}(0) = s^2X(s) - s - 1$$

Assemble terms

$$(s^2X(s)-s-1)+(2sX(s)-2)+3X(s)=6sF(s)+2F(s)$$

Laplace Transform: Linear Diff EQs

example: continued

Forcing term:
$$f(t) = 2\delta(t) \rightarrow \mathcal{L}[2\delta(t)] = 2$$

 $(s^2X(s)-s-1)+(2sX(s)-2)+3X(s)=6sF(s)+2F(s)$
 $(s^2X(s)-s-1)+(2sX(s)-2)+3X(s)=12s+4$

Group terms and isolate X(s)

$$(s^{2} + 2s + 3)X(s) - s - 3 = 12s + 4$$
$$(s^{2} + 2s + 3)X(s) = 13s + 7$$
$$X(s) = \frac{13s + 7}{s^{2} + 2s + 3}$$

If I could find x(t) where $\mathcal{L}[x(t)] = X(s)$ then I have found the solution to:

$$\ddot{x} + 2\dot{x} - 3x = 6\dot{f} + 2f$$
 $x(0) = \dot{x}(0) = 1$, $f(0) = 0$, and $f(t) = 2\delta(t)$

 Take Laplace transform of differential equation including initial conditions and forcing terms

$$\mathscr{L}[\ddot{x} + a\dot{x} + bx = c]$$

2. Solve for dependent variable $X(s) = \frac{N(s)}{D(s)}$

Laplace transform useful because

- Transforms ODE to algebraic equation in s where we can isolate X(s)
- 2. Includes the initial condition in algebraic equation
- Apply inverse Laplace transform (using table entries to find x(t)) –
- If necessary, use partial fraction expansion to split into separate terms for each root

Partial Fraction Expansion

Least Common Denominator Method:

For real, distinct roots only. (For complex and repeating roots, see FPE Appendix A)

$$X(s) = \frac{N(s)}{D(s)} = \frac{N(s)}{(s+r_1)(s+r_2)\cdots(s+r_n)} = \frac{C_1}{(s+r_1)} + \cdots + \frac{C_n}{(s+r_n)}$$
e.g.

$$D(s) \text{ in factored form}$$
Laplace transform from table

$$X(s) = \frac{As + B}{(s + r_1)(s + r_2)} = \frac{C_1}{(s + r_1)} + \frac{C_2}{(s + r_2)} = \frac{C_1(s + r_2) + C_2(s + r_1)}{(s + r_1)(s + r_2)}$$

Equate terms in N(s) to find coefficients C_i

$$As + B = (C_1 + C_2)s + (C_1r_2 + C_2r_1)$$

$$A = C_1 + C_2 \Rightarrow C_1 = -(B - Ar_1)/(r_1 - r_2)$$

$$B = C_1r_2 + C_2r_1 \Rightarrow C_2 = (B - Ar_2)/(r_1 - r_2)$$

Example: Given the initial value problem:

$$\ddot{x} + 8\dot{x} + 12x = 12$$
 $x(0) = 0$ and $\dot{x}(0) = 4$

Example: Given the initial value problem:

$$\ddot{x} + 8\dot{x} + 12x = 12$$
 $x(0) = 0$ and $\dot{x}(0) = 4$

the resulting Laplace transform:

$$s^2X(s)-4+8sX(s)+12X(s)=\frac{12}{s}$$

group terms

$$\left(s^{2} + 8s + 12\right)X(s) - 4 = \frac{12}{s}$$

$$\Delta(s) \leftarrow \text{Characteristic equation}$$

isolate
$$X(s)$$

$$X(s) = \frac{4s+12}{s(s^2+8s+12)}$$

Evaluate the output, x(t), by taking the inverse Laplace transform of X(s)

$$\Delta(s)$$
 — Characteristic equation

Example: continued

$$X(s) = \frac{4s+12}{s(s^2+8s+12)} = \frac{4s+12}{s(s+2)(s+6)}$$
$$= \frac{C_1}{s} + \frac{C_2}{(s+2)} + \frac{C_3}{(s+6)}$$

Note: you can find the roots using the Matlab command roots. For example: $s^2 + 8s + 12$

$$X(s) = \frac{C_1(s+2)(s+6) + C_2s(s+6) + C_3s(s+2)}{s(s+2)(s+6)}$$

$$X(s) = \frac{(C_1 + C_2 + C_3)s^2 + (8C_1 + 6C_2 + 2C_3)s + 12C_1}{s(s+2)(s+6)} = \frac{4s+12}{s(s+2)(s+6)}$$

Solving for C_1 , C_2 , and C_3

$$12C_{1} = 12 C_{1} = 1$$

$$8C_{1} + 6C_{2} + 2C_{3} = 4 \Rightarrow C_{2} = -0.5$$

$$C_{1} + C_{2} + C_{3} = 0 C_{3} = -0.5$$

Note: can use Matlab:

 $x = A \setminus b$

40

Example: continued

$$X(s) = \frac{4s+12}{s(s^2+8s+12)} = \frac{C_1}{s} + \frac{C_2}{(s+2)} + \frac{C_3}{(s+6)} = \frac{1}{s} - \frac{0.5}{(s+2)} - \frac{0.5}{(s+6)}$$

$$x(t) = \mathcal{L}^{-1}(X(s)) = \mathcal{L}^{-1}\left(\frac{1}{s}\right) - 0.5\mathcal{L}^{-1}\left(\frac{1}{s+6}\right) - 0.5\mathcal{L}^{-1}\left(\frac{1}{s+2}\right)$$

1. Take Laplace transform of differential equation including initial conditions and forcing terms $\mathscr{L}[\ddot{x} + a\dot{x} + bx = c]$

2. Solve for dependent variable
$$X(s) = \frac{N(s)}{D(s)}$$

- 3. Apply inverse Laplace transform (using table entries to find x(t))
- 4. If necessary, use partial fraction expansion to split into separate terms for each root

Example: Given the initial value problem:

$$\ddot{x} + 2\dot{x} - 3x = 6\dot{f} + 2f$$
 $x(0) = 0$, $\dot{x}(0) = 0$, and $y(0) = 0$ and $f(t) = 2\delta(t)$

Example: continued

$$\ddot{x} + 2\dot{x} - 3x = 6\dot{f} + 2f$$
 $x(0) = 0$, $\dot{x}(0) = 0$, and $y(0) = 0$ and $f(t) = 2\delta(t)$

the resulting Laplace transform:

$$(s^2+2s-3)X(s)=(6s+2)F(s)$$

The Laplace transform of $f(t) = 2\delta(t)$

$$\mathcal{L}(2\delta(t)) = 2$$

Substituting in and isolation
$$X(s)$$

$$X(s) = 2(6s+2)$$

$$X(s) = \frac{12s+4}{s^2+2s-3}$$
Characteristic equation

Example: continued

Perform a partial fraction expansion. First evaluate the roots of the denominator

$$X(s) = \frac{12s+4}{s^2+2s-3} \longrightarrow s = \frac{-2\pm\sqrt{2^2-4(-3)}}{2}$$

= +1 and -3

Note: you can find the roots using the Matlab command roots. For example: $s^2 + 2s - 3$

45

Partial fraction expansion:

$$X(s) = \frac{12s+4}{s^2+2s-3} = \frac{C_1}{s+3} + \frac{C_2}{s-1} = \frac{(C_1+C_2)s+(3C_2-C_1)}{(s-1)(s+3)}$$

Equate coefficients and solve for C_1 and C_2

$$C_1 + C_2 = 12$$
 $C_1 = 8$ $C_1 = 8$ $C_2 = 4$ $C_3 = 4$ $C_4 = 8$ $C_5 = \frac{8}{s+3} + \frac{4}{s-1}$

Inverse Laplace transform (via table) $x(t) = 8e^{-3t} + 4e^{t}$

Example: continued

Inverse Laplace transform (via table) $x(t) = 8e^{-3t} + 4e^{t}$

Summary - IVP Solution with Laplace Transforms

1. Take Laplace transform of differential equation including initial conditions and forcing terms

$$\mathscr{L}[\ddot{x} + a\dot{x} + bx = c]$$

Linearity property:

$$\mathscr{L}[af(t)+bg(t)]=aF(s)+bG(s)$$

2. Solve for $X(s) = \frac{N(s)}{D(s)}$

Derivative property:

$$\mathscr{L}\left[\frac{d^n f}{dt^n}\right] = s^n F(s)$$

3. If necessary, use partial fraction expansion

$$X(s) = \frac{N(s)}{D(s)} = \frac{N(s)}{(s+r_1)(s+r_2)\cdots(s+r_n)} = \frac{C_1}{(s+r_1)} + \cdots + \frac{C_n}{(s+r_n)}$$

4. Apply inverse Laplace transform (using table entries)

Characteristic Equation

Characteristic equation determine system dynamic characteristics

Examples:

$$\ddot{x} + 4\dot{x} + 3x = 0$$

 $x(0) = 1$ and $\dot{x}(0) = 2$

Laplace transform

$$\underbrace{\left(s^2+4s+3\right)X(s)-2s-5=0}_{\Delta(s)}$$

isolate X(s)

$$X(s) = \frac{2s+5}{s^2+4s+3}$$

partial fraction expansion-

$$= \underbrace{\frac{C_1}{(s+1)} + \frac{C_2}{(s+3)}}_{\text{From roots of } \Delta(s)}$$

$$\ddot{x} - 4x = 1$$

 $x(0) = 2$ and $\dot{x}(0) = 0$

$$\underbrace{\left(s^2-4\right)X(s)}-2=1/s$$

$$X(s) = \frac{2s+1}{s(s^2-4)}$$

$$= \frac{C_1}{s} + \frac{C_2}{(s+2)} + \frac{C_3}{(s-2)}$$
From roots of A

forcing

From roots of $\Delta(s)$ From

$$2\dot{x} + 6x = 0$$
$$x(0) = 1$$

$$2(s+3)X(s)-2=0$$

$$\Delta(s)$$

$$X(s) = \frac{1}{s+3}$$

$$= \frac{C_1}{s+3}$$
From roots of $\Delta(s)$

Recall derivative
$$\mathscr{L}[\dot{f}(t)] = \int_0^\infty \dot{f}(t)e^{-st}dt = sF(s) - f(0)$$

Take limit of $s \to 0$ $\lim_{s \to 0} \int_0^\infty \dot{f}(t)e^{-st}dt = \lim_{s \to 0} [sF(s) - f(0)]$

both sides: $\int_0^\infty \dot{f}(t)dt = \lim_{s \to 0} [sF(s)] - f(0)$
 $f(\infty) - f(0) = \lim_{s \to 0} [sF(s)] - f(0)$

Final value theorem:

Value of
$$f(t)$$
 as $t \to \infty$ $f(\infty) = \lim_{s \to 0} [sF(s)]$

Valid if:

- degree of numerator (of F(s)) is less than degree of denominator
- Roots of $\Delta(s)$ have negative real parts (i.e. system is stable)

Example: find the steady-state value of x(t) for the IVP shown using the final value theorem

$$\ddot{x} + 5\dot{x} + 2x = 6y + \dot{y}$$
 I.C.s $x(0) = 0$ $\dot{x}(0) = 0$ Input: $y(t) = 2u_s(t)$

Example: find the steady-state value of x(t) for the IVP shown using the final value theorem

$$\ddot{x} + 5\dot{x} + 2x = 6y + \dot{y}$$

1.C.s
$$x(0) = 0$$
 $\dot{x}(0) = 0$

Use final value theorem:

$$x(\infty) = \lim_{s \to 0} \left[sX(s) \right]$$

Input: $y(t) = 2u_s(t)$

Evaluate X(s)

$$\mathcal{L}[\ddot{x}+5\dot{x}+2x] = \mathcal{L}[6y+\dot{y}]$$

$$(s^2+5s+2)X(s) = (s+6)Y(s)$$

$$X(s) = \frac{s+6}{(s^2+5s+2)}Y(s)$$

Example: find the steady-state value of x(t) for the IVP shown using the final value theorem

$$\ddot{x} + 5\dot{x} + 2x = 6y + \dot{y}$$

1.C.s
$$x(0) = 0$$
 $\dot{x}(0) = 0$

Use final value theorem:

$$x(\infty) = \lim_{s \to 0} \left[sX(s) \right]$$

Input: $y(t) = 2u_s(t)$

Evaluate $x(\infty)$

$$X(s) = \frac{s+6}{\left(s^2+5s+2\right)}Y(s) \text{ where } Y(s) = \frac{2}{s} \text{ for } y(t) = 2u_s(t)$$

$$X(s) = \frac{s+6}{(s^2+5s+2)} \frac{2}{s} = \frac{2s+12}{s^3+5s^2+2s}$$
 for $y(t) = 2u_s(t)$

$$x(\infty) = \lim_{s \to 0} \left[s \frac{2s + 12}{s^3 + 5s^2 + 2s} \right] = \lim_{s \to 0} \left[\frac{2s + 12}{s^2 + 5s + 2} \right] = 6$$

Modeling & Analysis of Dynamic Systems

- Topic Overview -

- Dynamic System Modeling 2.1-2.4
- Dynamic Systems Differential Equations 3.1-3.6
- Laplace Transform and Linear Differential 3.1
 Equations
- Transfer Functions 3.1.2
- Block Diagram Modeling 3.2.1-3.2.2
- Linear System Response Characteristics 3.3
- Time Domain Specifications 3.4
- Effects of System Poles and Zeros 3.5

- Transfer Function: a succinct encapsulation of system dynamics –
 which is equivalent to the system ODE
- Transfer function is defined as the ratio of output to input e.g. X(s)/F(s)

Transfer
$$T(s) = \frac{X(s)}{F(s)}$$

- Derivation of system transfer function an example
 - Given a system: $\ddot{x} + a\dot{x} + bx = c\dot{f} + df$

$$x(0) = 0 \dot{x}(0) = 0$$

Take Laplace transform of both sides

$$(s^2 + as + b)X(s) = (cs + d)F(s)$$

I.C.s are set to zero: only interested in response due to input

characteristic equation

$$T(s) = \frac{X(s)}{F(s)} = \frac{(cs+d)}{(s^2+as+b)}$$
 Characteristic equation $\Delta(s)$

The transfer function can be used to find the response of the system to an arbitrary forcing function, f(t)

For example - given the system transfer function & forcing function

$$T(s) = \frac{X(s)}{F(s)} \qquad f(t) = 3t \longrightarrow F(s) = \frac{3}{s^2}$$

$$X(s) = T(s)F(s) = T(s)\frac{3}{s^{2}}$$
$$x(t) = \mathcal{L}^{-1} \left[T(s)\frac{3}{s^{2}} \right]$$

■ The transfer function representation is equivalent to the system ODE - i.e. you can go back and forth easily

e.g.
$$T(s) = \frac{10s+5}{s^2+4s+5} = \frac{X(s)}{F(s)}$$

Cross-multiply and perform inverse transform $(s^2+4s+5)X(s) = (10s+5)F(s)$

Inverse Laplace transform $\ddot{x}+4\dot{x}+5x=10\dot{f}+5\dot{f}$

Remember that:

$$\dot{X} \longrightarrow SX(S) + I.C.$$
 terms
$$\dot{X} \longrightarrow S^2X(S) + I.C.$$
 terms
$$d^n X \longrightarrow S^n X(S) + I.C.$$
 terms
$$forced response only$$

Example: For the adjacent system, evaluate the transfer function

$$T(s) = \frac{X(s)}{Y(s)}$$

Given its equation of motion:

$$m\ddot{x} + c\dot{x} + kx = c\dot{y} + ky$$

Example: For the adjacent system, evaluate the transfer function

$$T(s) = \frac{X(s)}{Y(s)}$$

Given its equation of motion:

$$m\ddot{x} + c\dot{x} + kx = c\dot{y} + ky$$

Take Laplace transform (with initial conditions set equal to zero)

$$(ms^2 + cs + k)X(s) = (cs + k)Y(s)$$

Form transfer function
$$\frac{X(s)}{Y(s)} = \frac{cs+k}{ms^2 + cs + k}$$
 Characteristic equation $\Delta(s)$

Example: For the adjacent system, evaluate the transfer functions

$$T_1(s) = \frac{X_1(s)}{F(s)}$$
 and $T_2(s) = \frac{X_2(s)}{F(s)}$

(input)

Note: number possible transfer functions equals the (# of inputs) x (# of outputs)

In this case:

$$|T_{1}(s) = \frac{X_{1}(s)}{F(s)} \quad T_{2}(s) = \frac{X_{2}(s)}{F(s)}$$

$$|T_{3}(s) = \frac{X_{1}(s)}{Y(s)} \quad T_{4}(s) = \frac{X_{2}(s)}{Y(s)}$$

Example: continued

Newton's Law (Planar Dynamics)

$$\vec{F} = m\vec{a}$$

 $\tau = I\alpha$

x_1 degree of freedom:

Example: continued

Newton's Law (Planar Dynamics)

$$\vec{F} = m\vec{a}$$

$$\tau = I\alpha$$

x_2 degree of freedom:

$$m\ddot{x}_2 - kx_1 + 2kx_2 = f$$

Example: continued

Evaluate the transfer functions:

$$T_1(s) = \frac{X_1(s)}{F(s)}$$
 and $T_2(s) = \frac{X_2(s)}{F(s)}$

Equations of motion:

$$m\ddot{x}_2 - kx_1 + 2kx_2 = f$$

$$m\ddot{x}_1 + 4kx_1 - kx_2 = ky$$

Example: continued

Equations of motion: Take the LT (setting I.C.s = 0) \downarrow 0 $m\ddot{x}_1 + 4kx_1 - kx_2 = ky \longrightarrow (ms^2 + 4k)X_1(s) - kX_2(s) = kY(s)$ (1) $m\ddot{x}_2 - kx_1 + 2kx_2 = f \longrightarrow (ms^2 + 2k)X_2(s) - kX_1(s) = F(s)$ (2)

We're evaluating $T_1(s) = \frac{X_1(s)}{F(s)}$ so set other inputs equal to zero

Solve for
$$X_1(s)$$
: From (1) $X_2(s) = \left(\frac{ms^2 + 4k}{k}\right)X_1(s)$
Substitute into (2) $\left(ms^2 + 2k\right)\left(\frac{ms^2 + 4k}{k}\right)X_1(s) - kX_1(s) = F(s)$
Isolate $X_1(s)$ $\left(\frac{m^2s^4 + 6mks^2 + 7k^2}{k}\right)X_1(s) = F(s)$

$$\frac{X_1(s)}{F(s)} = \frac{k}{m^2 s^4 + 6mks^2 + 7k^2} - \Delta(s) \leftarrow \text{Characteristic equation } \Delta(s)$$

Example: continued

Equations of motion: Take the LT (setting I.C.s = 0)
$$\bigcirc$$
 0 $m\ddot{x}_1 + 4kx_1 - kx_2 = ky \longrightarrow (ms^2 + 4k)X_1(s) - kX_2(s) = kY(s)$ (1) $m\ddot{x}_2 - kx_1 + 2kx_2 = f \longrightarrow (ms^2 + 2k)X_2(s) - kX_1(s) = F(s)$ (2)

We're evaluating $T_2(s) = \frac{X_2(s)}{F(s)}$ so set Y(s) equal to zero

Solve for
$$X_{2}(s)$$
: From (1) $X_{1}(s) = \left(\frac{k}{ms^{2} + 4k}\right)X_{2}(s)$
Substitute into (2) $\left(ms^{2} + 2k\right)X_{2}(s) - k\left(\frac{k}{ms^{2} + 4k}\right)X_{2}(s) = F(s)$
Isolate $X_{1}(s)$ $\left(\frac{m^{2}s^{4} + 6mks^{2} + 7k^{2}}{ms^{2} + 4k}\right)X_{2}(s) = F(s)$

$$\frac{X_2(s)}{F(s)} = \frac{ms^2 + 4k}{m^2s^4 + 6mks^2 + 7k^2} - \Delta(s) \leftarrow \text{Characteristic equation } \Delta(s)$$

Example: Evaluate the response, $x_1(t)$, when the input force, f(t) is given as:

Unit impulse: $f(t) = \delta(t)$

Unit step: f(t) = 1(t)

Sinusoidal: $f(t) = \sin(t)$

Transfer functions:

$$\frac{X_2(s)}{F(s)} = \frac{ms^2 + 4k}{m^2s^4 + 6mks^2 + 7k^2}$$
$$\frac{X_1(s)}{F(s)} = \frac{k}{m^2s^4 + 6mks^2 + 7k^2}$$


```
Example: continued
                                                    Brief introduction to Matlab
% system parameters
                                                    Dynamic system analysis in Matlab
m = 1; k = 8;
  form transfer function T1
                                                          Define Laplace variable
s = tf('s'); \leftarrow
                                                          Define transfer function
sysT1 = k/(m^2*s^4 + 6*m*k*s^2 + 7*k^2);
% alternatively
                                             Denominator coefficients
num = [k];
den = [m^2 \ 0 \ 6*m*k \ 0 \ 7*k^2]; \leftarrow
                                             Numerator coefficients
sysT1 = tf(num, den); \leftarrow
                                             Define transfer function
                                                              Response to a unit impulse
% simulate and plot the impulse response 0.2
tend = 50;
                                                   0.15
impulse(sysT1, tend);
                                               Amplitude 0.05
title('Response to a unit impulse')
                      Impulse function
                                                   -0.1
```

-0.15

-0.2

0

10

20

Time (seconds)

40

566

Example: continued

```
% simulate and plot the step response
tend = 50;
figure
step(sysT1, tend);
title('Response to a step input')
```


Example: continued

```
% simulate and plot the response to a sinusoidal input
t = linspace(0, tend, 1000)';
u = \sin(t);
                                                    Linear simulation function
[y,t] = lsim(sysT1,u,t); \leftarrow
figure; plot(t, y, 'k')
xlabel('time [sec]');
                                                         Response to a sinusoid
ylabel('y');
                                         0.04
title('Response to a sinusoid')
grid on
                                         0.03
                                         0.02
                                         0.01
                                         -0.01
                                         -0.02
                                         -0.03
                                                    10
                                                            20
                                                                     30
                                                                             40
                                                                                      50
                                            0
                                                              time [sec]
                                                                                     68
```

Modeling & Analysis of Dynamic Systems

- Topic Overview -

- Dynamic System Modeling 2.1-2.4
- Dynamic Systems Differential Equations 3.1-3.6
- Laplace Transform and Linear Differential 3.1
 Equations
- Transfer Functions 3.1.2
- Block Diagram Modeling 3.2.1-3.2.2
- Linear System Response Characteristics 3.3
- Time Domain Specifications 3.4
- Effects of System Poles and Zeros 3.5

Block Diagrams

 Block diagram is a graphical representation of a dynamic system (in the Laplace or s-domain)

- Used to construct complete model of system from separate parts
- Used extensively in control system analysis and design / simulation

Block Diagram Elements

Signal:
$$X(s)$$
 Takeoff point: $X(s)$

Summation: $X(s) + Z(s)$
 $Y(s)$
 $Y(s)$
 $Y(s)$
 $Y(s)$
 $X(s) - Y(s)$

Gain (multiplier): $X(s) - X(s)$
 $X(s) = KF(s)$
 $X(s) - X(s) - X(s)$
 $X(s) = T(s)F(s)$

Integrator:
$$\frac{F(s)}{s}$$
 $x(t) = \int f(t) dt$

Block Diagram Reduction

Blocks in Series:

Blocks in Negative Feedback:

Block Diagram Reduction **Example:** Evaluate the transfer function

Block Diagram Reduction

Example: Evaluate the transfer function $\frac{r_1(s)}{U(s)}$

Block Diagram Reduction

- A system block diagram is not unique
- A useful procedure to construct block diagrams:
 - Find system equations of motion
 - In each equation, solve for highest derivative of dependent variable – and use as input to integrator block
 - Form lower derivatives using integrator blocks

Example: Construct block diagram of system shown with *f* and *y* as inputs and *x* as the output

Example: Construct block diagram of system shown with *f* and *y* as inputs and *x* as the output

Newton's Law (Planar Dynamics)

$$\vec{F} = m\vec{a}$$

 $\tau = I\alpha$

Equation of motion:

$$m\ddot{x} + c\dot{x} + kx = c\dot{y} + ky$$

Block diagram?

Example: continued

Equation of motion:

$$m\ddot{x} + c\dot{x} + kx = c\dot{y} + ky$$
$$\ddot{x} = \frac{1}{m} \left(-c\dot{x} - kx + c\dot{y} + ky \right)$$

Note: the solution is not unique

FYI: Simulation software (e.g. Matlab/Simulink), doesn't like derivative terms. See following slides in posted lecture notes

Example: continued (optional)

Equation of motion:

$$m\ddot{x} + c\dot{x} + kx = c\dot{y} + ky$$

Alternatively (to avoid use of derivative):

Evaluate the transfer function X(s)/Y(s)

$$(ms^2 + cs + k)X(s) = (cs + k)Y(s)$$

$$\frac{X(s)}{Y(s)} = \left(\frac{1}{ms^2 + cs + k}\right)(cs + k)$$

Define intermediate variable *z*

$$\frac{X(s)}{Z(s)} = (cs + k) \implies x = c\dot{z} + k$$

$$\frac{Z(s)}{Y(s)} = \frac{1}{ms^2 + cs + k} \rightarrow m\ddot{z} + c\dot{z} + kz = y$$

Example: continued (optional)

Example: Construct block diagram of system shown with τ_1 and τ_2 as inputs and θ_1 and θ_2 as the output

Equations of motion:

$$I_1 \ddot{\theta}_1 + k_t \theta_1 - k_t \theta_2 = \tau_1$$

$$I_2\ddot{\theta}_2 - k_t\theta_1 + k_t\theta_2 = \tau_2$$

Example: continued

Equations $I_1\ddot{\theta}_1 + k_t\theta_1 - k_t\theta_2 = \tau_1 \longrightarrow \ddot{\theta}_1 = \frac{1}{I_1} \left(\tau_1 - k_t\theta_1 + k_t\theta_2\right)$ of motion: $I_2\ddot{\theta}_2 - k_t\theta_1 + k_t\theta_2 = \tau_2 \longrightarrow \ddot{\theta}_2 = \frac{1}{I_2} \left(\tau_2 + k_t\theta_1 - k_t\theta_2\right)$

Matlab Block Diagram Construction

$$G(s) = \frac{1}{s+3} \qquad H(s) = \frac{2s}{s^2+3}$$

$$G(s) = \frac{1}{s+3} \qquad H(s) = \frac{2s}{s^2+3} \qquad \text{s = tf('s');} \qquad \begin{cases} \text{num = [1];} \\ \text{den = [1 3];} \\ \text{G = tf(num, den);} \end{cases}$$

Alternatively ...

feedback assumes negative feedback.

For positive feedback use feedback (sys1, sys1, +1)

For complex systems use **Simulink**

Modeling & Analysis of Dynamic Systems

- Topic Overview -

- Dynamic System Modeling 2.1-2.4
- Dynamic Systems Differential Equations 3.1-3.6
- Laplace Transform and Linear Differential 3.1 Equations
- Transfer Functions 3.1.2
- Block Diagram Modeling 3.2.1-3.2.2
- Linear System Response Characteristics 3.3
- Time Domain Specifications 3.4
- Effects of System Poles and Zeros 3.5

Recall, solution of x(t) is expressed as:

$$x(t) = C_1 e^{s_1 t} + C_2 e^{s_2 t} + \cdots + C_n e^{s_n t}$$

where $s_1, s_2, ..., s_n$ are the roots of the denominator of X(s)

Question: where do the roots come from?

Prior example: $\ddot{x} + 8\dot{x} + 12x = 12$ x(0) = 0 and $\dot{x}(0) = 4$

Laplace transform:

$$X(s) = \frac{4s + 12}{s\left(s^2 + 8s + 12\right)} = \frac{1}{s} + \frac{-\frac{1}{2}}{s + 2} + \frac{-\frac{1}{2}}{s + 6}$$
Residues: from I.C.s and input and input Roots of $\Delta(s)$

Characteristic equation, $\Delta(s)$

 $\Delta(s)$: Laplace transform with I.C.s set equal to 0

Inverse Laplace transform (solution):

$$x(t) = 1 - \frac{1}{2}e^{-2t} - \frac{1}{2}e^{-6t}$$
Homogeneous solution

Response controlled by roots of $\Delta(s)$ (and ICs, inputs)

Example #2: Response of θ_2 due to $\tau = \delta(t)$:

Form transfer functions
$$\theta_1(s)/ au(s)$$
 and $\theta_2(s)/ au(s)$

Take the Laplace transform of the equations of motion:

$$(Is^{2} + 2cs + k)\theta_{1}(s) - (cs + k)\theta_{2}(s) = \tau(s)$$
$$(Is^{2} + cs + k)\theta_{2}(s) - (cs + k)\theta_{1}(s) = 0$$

Example #2: Response of θ_2 due to $\tau = \delta(t)$:

Solve for $\theta_1(s)/\tau(s)$ and $\theta_2(s)/\tau(s)$

$$\frac{\theta_{1}(s)}{\tau(s)} = \frac{Is^{2} + cs + k}{\left(I^{2}\right)s^{4} + \left(3Ic\right)s^{3} + \left(c^{2} + 2Ik\right)s^{2} + \left(ck\right)s} \leftarrow \Delta(s)$$

$$\frac{\theta_{2}(s)}{\tau(s)} = \frac{cs + k}{\left(I^{2}\right)s^{4} + \left(3Ic\right)s^{3} + \left(c^{2} + 2Ik\right)s^{2} + \left(ck\right)s} \leftarrow \Delta(s)$$

Let's examine response of θ_2 :

$$\frac{\theta_2(s)}{\tau(s)} = \frac{30s + 50}{4s^4 + 180s^3 + 1100s^2 + 1500s} \leftarrow \Delta(s)$$

Evaluate response of θ_2 due to $\tau = \delta(t)$

valuate response of
$$\theta_2$$
 due to $\tau = \delta(t)$

$$\theta_2(s) = \frac{30s + 50}{4s^4 + 180s^3 + 1100s^2 + 1500s} \tau(s) = 1$$
Roots of $\Delta(s)$: $\tau = \tau = -38.027$

Roots of
$$\Delta(s)$$
: r = roots([4 180 1100 1500]) \longrightarrow r = -38.0278

Partial fraction expansion:
$$\frac{\theta_2(s)}{\tau(s)} = \frac{C_1}{s+1.97} + \frac{C_2}{s+5} + \frac{C_3}{s+38.03}$$

After some algebra ...

$$\frac{\theta_2(s)}{\tau(s)} = -\frac{0.021}{s+1.97} + \frac{0.25}{s+5} - \frac{0.229}{s+38.03}$$

Inverse Laplace transform:

$$\theta_2(t) = -0.021e^{-1.97t} + 0.25e^{-5t} - 0.229e^{-38.03t}$$

Response controlled by roots of $\Delta(s)$

-5.0000

Recall, solution of x(t) is expressed as:

$$x(t) = C_1 e^{s_1 t} + C_2 e^{s_2 t} + \cdots + C_n e^{s_n t}$$

Roots can be real or complex conjugate pairs*

$$\Delta(s) = s^n + a_{n-1}s^{n-1} + \dots + a_0 = 0$$

Response when root is real:
$$x(t) = Ce^{s_i t}$$

$$Due \text{ to I.C.s} \qquad if \begin{cases} s_i < 0: x(t) & Ce^{st} \\ s_i = 0: x(t) & C \end{cases}$$

$$s_i > 0: x(t) \qquad Ce^{st}$$

$$time$$

^{*} **complex conjugate root theorem**: if *P* is a polynomial in one variable with real coefficients, and *a* + *bi* is a root of *P*, then its complex conjugate *a* – *bi* is also a root of *P*.

Recall, solution of x(t) is expressed as:

$$x(t) = C_1 e_1^{s_1 t} + C_2 e_1^{s_2 t} + \cdots + C_n e_1^{s_n t}$$

Roots can be <u>real</u> or <u>complex conjugate pairs</u>

$$\Delta(s) = s^n + a_{n-1}s^{n-1} + \dots + a_0 = 0$$

Response when root is <u>real</u>:

$$x(t) = Ce^{s_i t}$$
Due to I.C.s
$$x(t) = Ce^{-t/\tau_i}$$

time constant: $\tau_i = -\frac{1}{s_i}$

Recall, solution of x(t) is expressed as:

$$x(t) = C_1 e_1^{s_1 t} + C_2 e_1^{s_2 t} + \cdots + C_n e_1^{s_n t}$$

Roots can be real or complex conjugate pairs

$$\Delta(s) = s^n + a_{n-1}s^{n-1} + \dots + a_0 = 0$$

Response when roots are complex conjugates pairs:

$$x(t) = C_1 e^{st} + C_2 e^{s^*t} \quad \text{where} \quad s = \sigma + j\omega \quad \text{where} \quad s = \sigma - j\omega \quad j = \sqrt{-1}$$

Can be expressed in terms of real coefficients as

the inverse Laplace transform has complex exponents and coefficients

$$x(t) = Ce^{\sigma t} \sin(\omega t + \phi) \quad \text{where } \phi = \tan^{-1}\left(-\frac{\text{Re}\{C_1\}}{\text{Im}\{C_1\}}\right)$$
Note: ω and ω , are

Note: ω and ω_d are used interchangeably

Note: C_1 and C_2 are complex conjugates $C = 2\sqrt{\text{Re}\{C_1\}^2 + \text{Im}\{C_1\}^2}$

Complex Conjugate Roots: $x(t) = D_1 e^{st} + D_2 e^{s^*t}$

With complex conjugate roots, the inverse Laplace transform has complex exponents and coefficients

⇒ While mathematically correct complex terms are difficult to interpret

$$x(t) = D_1 e^{st} + D_2 e^{s^*t} \text{ where } s = \sigma + j\omega \text{ where } j = \sqrt{-1}$$

$$= D_1 e^{(\sigma + j\omega)t} + D_2 e^{(\sigma - j\omega)t}$$

$$= D_1 e^{\sigma t} e^{j\omega t} + D_2 e^{\sigma t} e^{-j\omega t}$$

Using Euler's theorem: $e^{j\theta} = \cos\theta + j\sin\theta$ and applying to the terms $e^{j\omega t}$ and $e^{-j\omega t}$

$$x(t) = D_1 e^{\sigma t} \left(\cos \omega t + j \sin \omega t \right) + D_2 e^{\sigma t} \left(\cos \left(-\omega t \right) + j \sin \left(-\omega t \right) \right)$$

$$= e^{\sigma t} \left[\left(D_1 + D_2 \right) \cos \omega t + j \left(D_1 - D_2 \right) \sin \omega t \right]$$
must be real

Optional derivation

Complex Conjugate Roots: $x(t) = D_1 e^{st} + D_2 e^{s^*t}$

$$x(t) = e^{\sigma t} \left((D_1 + D_2) \cos \omega t + j(D_1 - D_2) \sin \omega t \right)$$
must be real

$$\operatorname{Im} \left\{ D_1 + D_2 \right\} = 0 \longrightarrow \operatorname{Im} \left\{ D_1 \right\} = -\operatorname{Im} \left\{ D_2 \right\}$$
 are complex
$$\operatorname{Im} \left\{ j \left(D_1 - D_2 \right) \right\} = 0 \longrightarrow \operatorname{Re} \left\{ D_1 \right\} = \operatorname{Re} \left\{ D_2 \right\}$$
 conjugates

letting
$$D_1 = D$$
 and $D_2 = D^*$

$$x(t) = e^{\sigma t} \left(\left(D + D^* \right) \cos \omega t + j \left(D - D^* \right) \sin \omega t \right)$$

$$= e^{\sigma t} \left(2 \operatorname{Re} \{D\} \cos \omega t - 2 \operatorname{Im} \{D\} \sin \omega t \right) \quad \text{Coefficients}$$
are now real

Optional derivation

Complex Conjugate Roots: $x(t) = D_1 e^{st} + D_2 e^{s^2t}$

$$x(t) = e^{\sigma t} \left(2 \operatorname{Re} \{D\} \cos \omega t - 2 \operatorname{Im} \{D\} \sin \omega t \right)$$
 Coefficients are now real

We want to get this into the form

$$x(t) = Ce^{\sigma t} \sin(\omega t + \phi)$$

$$= e^{\sigma t} \left(C \cdot \sin \phi \cdot \cos \omega t + C \cdot \cos \phi \cdot \sin \omega t \right)$$

$$= 2\text{Re}\{D\}$$

$$-2\text{Im}\{D\}$$

$$\sin \phi = 2\operatorname{Re}\left\{D\right\}/C \qquad \tan \phi = \frac{\sin \phi}{\cos \phi} = -\operatorname{Re}\left\{D\right\}/\operatorname{Im}\left\{D\right\}$$

$$\cos \phi = -2\operatorname{Im}\left\{D\right\}/C \qquad \phi = \tan^{-1}\left(-\operatorname{Re}\left\{D\right\}/\operatorname{Im}\left\{D\right\}\right)$$

$$\sin^2 \phi + \cos^2 \phi = 4 \operatorname{Re} \{D\}^2 / C^2 + 4 \operatorname{Im} \{D\}^2 / C^2 = 1$$

$$C = 2\sqrt{\text{Re}\{D\}^2 + \text{Im}\{D\}^2}$$
 Optional derivation

Complex Conjugate Roots: $x(t) = D_1 e^{st} + D_2 e^{s^*t}$

With complex conjugate roots, the inverse Laplace transform has complex exponents and coefficients

$$X(t) = De^{st} + D^*e^{s^*t}$$
 where $s = \sigma + j\omega$ where $s = \sigma - j\omega$ $j = \sqrt{-1}$

Can be expressed in terms of real coefficients as

$$x(t) = Ce^{\sigma t} \sin(\omega t + \phi)$$
 where $\phi = \tan^{-1}\left(-\frac{\mathrm{Re}\{D\}}{\mathrm{Im}\{D\}}\right)$ $C = 2\sqrt{\mathrm{Re}\{D\}^2 + \mathrm{Im}\{D\}^2}$

Recall, solution of x(t) is expressed as:

$$x(t) = C_1 e_1^{s_1 t} + C_2 e_1^{s_2 t} + \cdots + C_n e_1^{s_n t}$$

Roots can be <u>real</u> or <u>complex conjugate pairs</u>

$$\Delta(s) = s^n + a_{n-1}s^{n-1} + \cdots + a_0 = 0$$

Response when roots are <u>complex</u>:

$$x(t) = C_1 e^{st} + C_2 e^{s^*t}$$

$$\vdots \qquad \text{From I.C.s} \qquad \text{if} \qquad \text{Re}\{s\} < 0: x(t)$$

$$x(t) = C e^{\sigma t} \sin(\omega_d t + \phi)$$

$$\text{where } s = \sigma \pm j\omega_d$$

$$\text{Re}\{s\} > 0: x(t)$$

$$\text{Re}\{s\} > 0: x(t)$$

$$\text{Re}\{s\} > 0: x(t)$$

$$x(t) = Ce^{\sigma t} \sin(\omega_d t + \phi)$$
where $s = \sigma \pm j\omega_d$

Very useful to visualize roots on the complex plane (or *s*-plane)

Change real part, σ (decrease τ):

$$\tau = \begin{cases} 5 \sec \\ 1 \sec \end{cases} \quad \omega_d = 6 \text{ r/s}$$

Change imaginary part, ω_d :

$$\omega_d = \begin{cases} 4 \text{ r/s} \\ 10 \text{ r/s} \end{cases} \mathcal{T} = 1 \text{ sec}$$

frequency:

$$x(t) = Ce^{\sigma t} \sin(\omega_d t + \phi)$$
 where $s = \sigma \pm j\omega_d$

• While describing response with σ and ω_d is useful, developing a normalized description is also desired

Start by evaluating (portion of) characteristic equation attributable to $s = \sigma \pm j\omega_{A}$

$$(s - \sigma - j\omega_d)(s - \sigma + j\omega_d) = 0$$

$$s^2 - 2\sigma s + (\sigma^2 + \omega_d^2) = 0$$
fine
Define

Define damping ratio:

$$\zeta \triangleq -\frac{\sigma}{\omega_n} \rightarrow \sigma = -\zeta \omega_n$$

 $s^2 + 2\zeta\omega_n s + \omega_n^2 = 0$

Evaluate roots as function of ω_n and ζ to equate to complex roots $s = \sigma \pm i\omega_{d}$

$$\begin{cases}
\omega_d = \omega_n \sqrt{1 - \zeta^2} \\
\sigma = -\zeta\omega
\end{cases}$$

100

$$x(t) = Ce^{\sigma t} \sin(\omega_d t + \phi)$$
 where $s = \sigma \pm j\omega_d$

normalized form: $s^2 + 2\zeta\omega_n s + \omega_n^2 = 0$

when $\underline{\zeta} = 0$ (undamped):

$$s^2 + \omega_n^2 = 0 \Rightarrow s = \pm j\omega_n$$

$$x(t) = C \sin(\omega_n t + \phi)$$

when $0 < \zeta < 1$ (underdamped):

$$s^2 + 2\zeta\omega_n s + \omega_n^2 = 0$$

$$\Rightarrow$$
 $s = -\zeta \omega_n \pm j\omega_n \sqrt{1-\zeta^2}$

$$x(t) = Ce^{\sigma t} \sin(\omega_d t + \phi)$$

when $\underline{\zeta} = \underline{1}$ (critically damped):

$$s^2 + 2\omega_n s + \omega_n^2 = 0$$

$$\Rightarrow$$
 $S = -\omega_n$ (repeated)

$$x(t) = (C_1 + C_2 t)e^{st}$$

x(t)

101

 Damping ratio is a measure of system damping normalized to the natural frequency

Time constant:
$$\tau = \frac{1}{\zeta \omega_n}$$
 $\tau = \frac{1}{\zeta \omega_n}$ $\tau = \frac{1}{T}$ Undamped system period: $\tau = \frac{2\pi}{\omega_n}$ $\tau = \frac{1}{T}$ $\tau = \frac{1}{2\pi \zeta}$ $\tau = \frac{1}{T}$ $\tau =$

Example:

Stability and Response Characteristics

Imag

- Roots along real axis
 - exponential behavior no oscillations
 - magnitude or root is proportional to speed of response
- Roots along imaginary axis
 - pure oscillation, no decay
 - Frequency is proportional to magnitude
- Complex conjugate pairs – oscillatory
 - $\omega = |Im\{s\}|$
 - $\tau = 1/|Re\{s\}|$

ability: $e^{s_i t}$

- System is <u>stable</u> if and only if e^{s_it} → 0 for all s_i
 Necessary condition:
- Necessary condition: for all s_i Re $\{s_i\} < 0$

Stability and Response Characteristics

Dominant Root Approximation

- Systems of order >2: combination of roots that are:
 - Distinct real numbers (i.e. 1st order)
 - Distinct complex conjugate pairs (i.e. 2nd order w/ oscillations)
 - Repeated, either real or complex

Dominant root approximation

- Use the roots having the largest time constant (smallest real part) to estimate the response
- Approximation is very sound as long as dominant root[s] is indeed very dominant → far from all other roots of the system

System Transfer Function

$$\frac{X(s)}{F(s)} = T(s) = k \frac{(s+z_1)(s+z_2)\cdots(s+z_m)}{(s+p_1)(s+p_2)\cdots(s+p_n)}$$
 (factored into individual roots)

Response to step input, $u_s(t) \longrightarrow F(s) = \frac{1}{s}$

$$X(s) = k \frac{(s + z_1) \cdots (s + z_m)}{(s + p_1) \cdots (s + p_n)} F(s) = k \frac{(s + z_1) \cdots (s + z_m)}{(s + p_1) \cdots (s + p_n)} \left(\frac{1}{s}\right)$$

partial fraction expansion

$$X(s) = \frac{C_0}{s} + \frac{C_1}{(s + p_1)} + \dots + \frac{C_n}{(s + p_n)}$$

take inverse Laplace transform of each term to evaluate the time domain response

partial fraction expansion

$$X(s) = \frac{C_0}{s} + \frac{C_1}{(s + p_1)} + \dots + \frac{C_n}{(s + p_n)}$$
constant (x_{ss})

Time domain response

Approximate system model:

$$x(t) \cong x_{ss} + \bigvee \longrightarrow \frac{X(s)}{F(s)} \cong \frac{K}{(s+p)(s+p^*)} \text{ or } \frac{K}{s+p}$$

Example:
$$\frac{d^4y}{dt^4} + 15\frac{d^3y}{dt^3} + 75\frac{d^2y}{dt^2} + 145\frac{dy}{dt} + 84y = F$$

Find the dominant root approximation

Example:
$$\frac{d^4y}{dt^4} + 15\frac{d^3y}{dt^3} + 75\frac{d^2y}{dt^2} + 145\frac{dy}{dt} + 84y = F$$

Find the dominant root approximation

Form transfer function
$$\frac{Y(s)}{F(s)} = \frac{1}{s^4 + 15s^3 + 75s^2 + 145s + 84}$$

Factored characteristic equation

$$\Delta(s) = (s+1)(s+3)(s+4)(s+7)$$

roots: solves for roots of polynomial

Identify slowest (dominant root(s))
$$\frac{Y(s)}{F(s)} \approx \frac{C}{s+1}$$

Example:
$$\frac{d^4y}{dt^4} + 15\frac{d^3y}{dt^3} + 75\frac{d^2y}{dt^2} + 145\frac{dy}{dt} + 84y = F$$

Find the dominant root approximation

Steady-state response of approximation should be the same a actual system

$$y(\infty) = \lim_{s \to 0} \left[s \frac{Y(s)}{F(s)} F(s) \right] = s \left(\frac{1}{s^4 + 15s^3 + 75s^2 + 145s + 84} \right) \frac{1}{s}$$

$$y(\infty) = \frac{1}{84}$$
 set equal step

Approx.
$$y(\infty) = \lim_{s \to 0} \left[s \frac{Y(s)}{F(s)} F(s) \right] = s \left(\frac{C}{s+1} \right) \frac{1}{s} = C \longrightarrow C = \frac{1}{84}$$
system:

$$\frac{Y(s)}{F(s)} \approx \frac{C}{s+1} = \frac{\frac{1}{84}}{s+1} \text{ or } \dot{y} + y = \left(\frac{1}{84}\right)F$$

%characteristic equation % and its roots D_s = [1 15 75 145 84]; r = roots(D_s);

%original system

$$\frac{Y(s)}{F(s)} = \frac{1}{s^4 + 15s^3 + 75s^2 + 145s + 84}$$

$$s = tf('s');$$

 $sys = 1/(s^4 + 15*s^3 ... + 75*s^2 + 145*s + 84);$

%approximate system sysA = (1/84)/(s + 1);

$$\frac{Y(s)}{F(s)} \approx \frac{\frac{1}{84}}{s+1}$$

%compare step response step(sys,sysA)

Modeling & Analysis of Dynamic Systems

- Topic Overview -

- Dynamic System Modeling 2.1-2.4
- Dynamic Systems Differential Equations 3.1-3.6
- Laplace Transform and Linear Differential 3.1 Equations
- Transfer Functions 3.1.2
- Block Diagram Modeling 3.2.1-3.2.2
- Linear System Response Characteristics 3.3
- Time Domain Specifications 3.4
- Effects of System Poles and Zeros 3.5

- Rise time t_r : Time for response to reach steady-state, x_{ss}
- Settling time t_s : Time at which response remains within ±1% (or other %) of the steady-state, x_{ss}
- Overshoot M_p : Maximum deviation beyond steady-state, x_{ss}

Input: f(t) = y(t) = 1(t)

$$m\ddot{x} + c\dot{x} + kx = kf \longrightarrow \ddot{x} + \frac{c}{m}\dot{x} + \frac{k}{m}x = \frac{k}{m}f$$

(so that unit step steadystate response = 1.0)

taking the Laplace transform (assume zero I.C.s)

$$\left(s^2 + \frac{c}{m}s + \frac{k}{m}\right)X(s) = \frac{k}{m}F(s)$$

Unit step:

$$f(t)=1(t)\rightarrow F(s)=\frac{1}{s}$$

put into normalized form: $\frac{c}{m} = 2\zeta \omega_n s$, $\frac{k}{m} = \omega_n^2$

$$\left(s^2 + 2\zeta\omega_n s + \omega_n^2\right)X(s) = \omega_n^2 F(s) \rightarrow X(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}F(s)$$

isolate X(s) and evaluate the inverse Laplace transform

$$X(t) = \mathcal{L}^{-1} \begin{bmatrix} \frac{\omega_n^2}{s(s^2 + 2\zeta\omega_n s + \omega_n^2)} \end{bmatrix} \quad \text{we assume underdamped of } 0 \le \zeta \le 1$$

we assume

$$0 \le \zeta \le 1$$

After some algebra, partial fraction expansion, and Laplace table lookups ...

$$x(t) = 1 - \frac{1}{\sqrt{1-\zeta^2}} e^{-\zeta \omega_n t} \sin(\omega_d t + \phi) \text{ assume } 0 \le \zeta \le 1$$

From x(t) we can evaluate time domain specifications

BUT

these are heuristics derived from simple second order system

- JUST AN APPROXIMATION -

Overshoot

• Maximum overshoot - M_p : Maximum deviation beyond steady-state, x_s , expressed as a ratio or percent of x_s

$$M_{p} = rac{X_{peak} - X_{ss}}{X_{ss}} \ dots \ M_{p} = e^{-\pi \zeta/\sqrt{1-\zeta^{2}}}$$

- Maximum overshoot, M_p , is a function of damping ratio, ζ , only
- For $\zeta > 1$, x(t) does not overshoot x_{ss}

$$\zeta = \sqrt{\frac{\left(\ln M_p\right)^2}{\pi^2 + \left(\ln M_p\right)^2}}$$

• An aside: We can estimate ζ from the maximum overshoot

Settling Time

• Settling time – t_s : Time at which response remains within ±1% (or Δ %) of the steady-state, x_{ss} Exponential envelope:

Normalized Settling Time Vs. Damping Ratio $t_s\omega_N$ 0.5%-Normalized Settling Time, $t_s\omega_{\text{n}}$ 5% 10% 0.1 0.2 0.3 0.4 0.5 0.6 0.7 8.0 0.9 Damping Ratio, C

$$\longrightarrow e^{-\zeta \omega_n t_s} = \Delta$$

$$\ln(e^{-\zeta \omega_n t_s}) = \ln(\Delta)$$

$$-\zeta \omega_n t_s = \ln(\Delta)$$

Commonly used specifications

Δ	1%		2%	
+	4.6	4.6	3.9	3.9
5	$\zeta \omega_{n}$	σ	$\zeta \omega_n$	σ

• Settling time increases without bound as ζ approaches zero

Rise Time

• Rise time – t_r : Time for response to reach steady-state, x_{ss}

$$x(t) = 1 - \frac{1}{\sqrt{1 - \zeta^{2}}} e^{-\zeta \omega_{n} t} \sin(\omega_{d} t + \phi)$$

$$\frac{1}{\sqrt{1 - \zeta^{2}}} e^{-\zeta \omega_{n} t} \sin(\omega_{d} t_{r} + \phi) = 0$$

$$\sin(\omega_{d} t_{r} + \phi) = 0$$

$$\omega_{d} t_{r} + \phi = \pi$$

$$t_r = \frac{\pi - \phi}{\omega_d} = \frac{\pi - \phi}{\omega_n \sqrt{1 - \zeta^2}}$$
where $\phi = \cos^{-1}(\zeta)$

rise time
$$t_r \cong 2.4/\omega_n$$

 $(\zeta = 0.5 \text{ and } x(t))$ from 0 to 1)

Example: Given the time domain specifications below, determine the region of acceptable root locations (in the *s*-plane)

Time domain

```
t_s \leq 1.0 (settling time)
Time domain where \Delta = 1\% (definition for steady-state) t_r \leq 0.3 (rise time) M_p \leq 25\% (maximum overshoot)
```

Example: continued

Overshoot:

$$M_{p} \cong e^{-\pi \zeta/\sqrt{1-\zeta^{2}}} \longrightarrow \zeta \cong \sqrt{\frac{(\ln M_{p})^{2}}{\pi^{2} + (\ln M_{p})^{2}}} \longrightarrow \det \zeta \cong \sqrt{\frac{\ln M_{p}}{\pi^{2} + (\ln M_{p})^{2}}}$$

Settling time:

$$t_{s} \cong \frac{\ln \Delta}{\zeta \omega_{n}} = \frac{\ln \Delta}{\sigma} \longrightarrow \sigma \cong \frac{\ln \Delta}{t_{s}} \leftarrow \int_{\text{set } \sigma \leq \text{ to the result}}$$

Rise time:

$$t_r \cong 2.4/\omega_n \longrightarrow \omega_n \cong 2.4/t_r \leftarrow$$
set $\omega_n \ge$ to the result—

Example:

$$t_s \leq 1.0$$
 $\sigma \leq -4.6$
 $\Delta = 1\%$
 $t_r \leq 0.3$ $\omega_n \geq 8.0$
 $M_n \leq 25\%$ $\zeta \geq 0.4$

- Choose root locations to satisfy time domain specifications
- Keep σ , ω_n , and ζ as small as possible

-15

Modeling & Analysis of Dynamic Systems

- Topic Overview -

- Dynamic System Modeling 2.1-2.4
- Dynamic Systems Differential Equations 3.1-3.6
- Laplace Transform and Linear Differential 3.1 Equations
- Transfer Functions 3.1.2
- Block Diagram Modeling 3.2.1-3.2.2
- Linear System Response Characteristics 3.3
- Time Domain Specifications 3.4
- Effects of System Poles and Zeros 3.5

Step response of a 2nd order system with two distinct (real) poles and effect of adding a real zero

- Poles are roots of $\Delta(s)$, denominator: qualitatively determine response (i.e. correspond to terms in partial fraction expansion)
- Zeros are roots of numerator: can affect the transient response by affecting contribution of partial fraction terms in a particular response

122

Step response of a 2nd order system with two distinct (real) poles and effect of adding a real zero

Two real poles:

$$p_1 = -a - \text{Im}(s)$$

$$p_2 = -b - \text{Re}(s)$$

Two real poles + one real zero:

$$p_{1} = -a$$

$$p_{2} = -b$$

$$= -Da$$

$$p_{3} = -a$$

$$p_{4} = -b$$

$$p_{6} = -b$$

$$p_{7} = -b$$

$$p_{8} = -b$$

Transfer function (DC gain = 1):

$$\frac{X(s)}{F(s)} = \frac{ab}{(s+a)(s+b)} \leftarrow \Delta(s)$$

Transfer function (DC gain = 1):

$$\frac{X(s)}{F(s)} = \frac{\left(\frac{b}{D}\right)(s+Da)}{(s+a)(s+b)} - \Delta(s)$$

System differential equation:

$$\ddot{x} + (a+b)\dot{x} + (ab)x = (ab)f$$

System differential equation:

$$\ddot{x} + (a+b)\dot{x} + (ab)x = (ab)f \qquad \ddot{x} + (a+b)\dot{x} + (ab)x = (ab)f + \frac{b}{D}\dot{f}$$

2 nd order system:	2 nd order system with a zero:
$\ddot{x} + (a+b)\dot{x} + (ab)x = (ab)f$	$\ddot{x} + (a+b)\dot{x} + (ab)x = (ab)f + \frac{b}{D}\dot{f}$

Take Laplace transform (f(t)=1(t)) and $x(0)=\dot{x}(0)=0$

$$X(s) = \frac{ab}{s(s+a)(s+b)}$$

$$X(s) = \frac{\frac{b}{D}(s+Da)}{s(s+a)(s+b)}$$
additional zero

Partial fraction expansion

$$= \frac{C_1}{s} + \frac{C_2}{s+a} + \frac{C_3}{s+b}$$

$$= \frac{C_1(s+a)(s+b) + C_2(s)(s+b) + C_3(s)(s+a)}{s(s+a)(s+b)}$$

$$= \frac{(C_1 + C_2 + C_3)s^2 + (C_1(a+b) + C_2b + C_3a)s + (C_1ab)}{s(s+a)(s+b)}$$

2nd order system:

2nd order system with a zero:

$$\ddot{x} + (a+b)\dot{x} + (ab)x = (ab)f$$

$$\ddot{x} + (a+b)\dot{x} + (ab)x = (ab)f \quad \ddot{x} + (a+b)\dot{x} + (ab)x = (ab)f + \frac{b}{D}\dot{f}$$

Partial fraction expansion

$$\frac{ab}{s(s+a)(s+b)} = \frac{\left(C_1 + C_2 + C_3\right)s^2 + \left(C_1(a+b) + C_2b + C_3a\right)s + \left(C_1ab\right)}{s(s+a)(s+b)} = \frac{\frac{b}{D}(s+Da)}{s(s+a)(s+b)}$$

equate numerators and solve for C_i equate numerators and solve for C_i

$$C_1 + C_2 + C_3 = 0$$

$$C_1 =$$

$$C_1 = 1 \mid C_1 + C_2 + C_3 = 0$$
 $C_1 = C_2 + C_3 = 0$

$$C_1 = 1$$

$$C_1(a+b)+C_2b+C_3a=0 \Rightarrow C_2=-\frac{b}{b-a}$$
 $C_1(a+b)+C_2b+C_3a=\frac{b}{D} \Rightarrow C_2=-\frac{b-\frac{b}{D}}{b-a}$

$$C_2 = -\frac{b}{b-a}$$

$$C_1(a+b)+C_2b+C_3a=\frac{b}{D}$$

$$C_2 = -\frac{b - b/c}{b - a}$$

$$C_1ab = ab$$

$$C_3 = \frac{b}{b-a} C_1 ab = ab$$

$$C_1ab = ab$$

$$C_3 = \frac{a - b/D}{b-a}$$

Inverse Laplace transform

$$x(t) = 1 - \left(\frac{b}{b-a}\right)e^{-at} + \left(\frac{a}{b-a}\right)e^{-bt}$$

$$x(t) = 1 - \left(\frac{b}{b-a}\right)e^{-at} + \left(\frac{a}{b-a}\right)e^{-bt} \qquad x(t) = 1 - \left(\frac{b-\frac{b}{b}}{b-a}\right)e^{-at} + \left(\frac{a-\frac{b}{b}}{b-a}\right)e^{-bt}$$

Relative contribution of system roots to transient response is affected by zero at $z = -Da \implies "Numerator dynamics"$

Step response of a 2nd order system with two distinct (real) poles and one real zero

Step response of a 2^{nd} order system with complex conjugate poles and one real zero $p_{1,2} = 0$

Step response of a 2^{nd} order system with complex conjugate poles and one real RHP zero $p_{1,2} = 1$

 $p_{1,2} = \sigma \pm j\omega_d$ /stem) Re(s)

(FYI: this is called a non-minimum phase system)

When the zero is in the RHP:

$$\ddot{x} + (a+b)\dot{x} + (ab)x = (ab)f + \frac{b}{D}\dot{f}$$

$$D \text{ is negative} \longrightarrow \\ \dots = (ab)f - \frac{b}{D}\dot{f}$$

Derivative of a unit step is an impulse at t = 0

$$f(t) = 1(t)$$

$$f(t) = \delta(t)$$

Step response of a 2nd order system with C.C. poles and one additional real pole

8

10

129

Response of system is generally described by its characteristic equation but other factors can effect the specific response

Transfer function:
$$T(s) = \frac{N(s)}{D(s)} = \frac{(s+z_1)(s+z_2)\cdots(s+z_m)}{(s+p_1)(s+p_2)\cdots(s+p_n)} \leftarrow \Delta(s)$$
Response due to forcing $T(s) = \frac{X(s)}{F(s)} \rightarrow X(s) = T(s)F(s)$
Residues (i.e. C_1 , C_2 , etc.)

$$X(s) = \frac{C_1}{(s+p_1)} + \frac{C_2}{(s+p_2)} + \dots + \frac{C_n}{(s+p_n)} + \text{ forcing terms}$$

e.g. dominant 2nd order roots (poles) e.g. higher order roots (poles)

$$x(t) = C_1 e^{-\rho_1 t} + C_2 e^{-\rho_1 t} + \cdots + C_n e^{-\rho_1 t} + \text{forcing terms}$$

determined by:

- Initial conditions
- Forcing terms
- Numerator roots (zeros)

Transient Response is affected by:

- Dominant roots of the characteristic equation (i.e. dominant poles)
- Higher order roots (i.e. poles)
- Numerator roots (i.e. zeros)

Modeling and Analysis of Dynamic Systems

Brief Mathematics Review

Introductory Mathematics

- Mathematical functions commonly found in solution of *Linear Differential Equations*:
 - oexponential function:
 - $\rightarrow e^{at}$ where e = 2.7182 ... (irrational)
 - osine & cosine functions:
 - \implies sin(bt) or cos(bt)
 - oexponentially modulated sine function:
 - $\rightarrow e^{at} \sin(bt)$

Exponential Function

e is defined such that:

$$\frac{d}{dx}e^x = e^x$$
 for all values of x

Natural logarithm

$$y = e^x \longrightarrow \log_e x = y = \ln x$$

Logarithm math

$$\ln xy = \ln x + \ln y \qquad \ln \frac{x}{y} = \ln x - \ln y \\
\ln x^n = n \ln x$$

Sine & Cosine Functions

- Sine function: $y(x) = A \sin x$
- When function of time: $y(t) = A \sin \omega t$

Frequency: ω

Units: radians/sec

Period: P (or T)

$$P = 2\pi/\omega$$

Units: seconds

Sine & Cosine Functions

Sine function with phase (shifted on time axis):

$$y(t) = A \sin(\omega t + \phi)$$

Phase: •

- Units: radians
- Positive phase shifts the waveform to the left

Sine & Cosine Functions

 Sine with phase can be expressed as sum of sine and cosine with no phase

$$A\sin(\omega t + \phi) = B\sin(\omega t) + C\cos(\omega t)$$

where

$$B = A\cos\phi$$

$$C = A \sin \phi$$

to convert back ...

$$A = \pm \sqrt{B^2 + C^2}$$

$$\cos \phi = \frac{B}{A}$$
 and $\sin \phi = \frac{C}{A}$

Exponentially-Modulated Sine

Product of exponential and sine functions

$$Ae^{-t/\tau}\sin(\omega t + \phi)$$

complex number:

$$z = x + jy$$
 where $j^2 = -1$ imaginary part real part

real

Χ

complex conjugate:

$$z = x + jy \longrightarrow z = x - jy$$

complex number:

$$z = x + jy$$

magnitude:

$$|z| = \sqrt{x^2 + y^2}$$

angle (or phase):

$$\theta = \tan^{-1} \left[\frac{y}{x} \right]$$

equivalent rectangular form:

$$z = x + jy \longleftrightarrow z = |z|(\cos\theta + j\sin\theta)$$

Euler Theorem: $\cos \theta + j \sin \theta = e^{j\theta}$

Euler's theorem derivation

Power series expansions:

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \cdots$$

$$\theta^{2} \quad \theta^{4} \quad \theta^{6}$$

$$\cos\theta = 1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \frac{\theta^6}{6!} + \cdots$$

$$\sin \theta = \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \frac{\theta^7}{7!} + \cdots$$

Euler's theorem derivation (continued)

Use series expansions to form sum:

$$\cos\theta + j\sin\theta = 1 + (j\theta) + \frac{(j\theta)^2}{2!} + \frac{(j\theta)^3}{3!} + \cdots$$

Equivalent to e^x where $x = j\theta$

$$e^{(j\theta)} = 1 + (j\theta) + \frac{(j\theta)^2}{2!} + \frac{(j\theta)^3}{3!} + \frac{(j\theta)^4}{4!} + \cdots$$

It follows that ...

$$\cos \theta + j \sin \theta = e^{j\theta}$$
 Euler's theorem

equivalent rectangular form:

$$e^{j\theta} = \cos\theta + j\sin\theta$$

$$z = x + jy \longleftrightarrow z = |z|(\cos\theta + j\sin\theta)$$

 $z = |z|e^{j\theta}$

rectangular form:

$$z = x + jy$$

$$z = |z|(\cos\theta + j\sin\theta)$$
polar form:

$$z = |z|e^{j\theta}$$

Addition / subtraction (easier in rectangular form)

$$z_1 = x_1 + jy_1$$

 $z_2 = x_2 + jy_2$
 $z_1 + z_2 = (x_1 + x_2) + j(y_1 + y_2)$

Multiplication/ division (easier in polar form)

$$z_{1} = |z_{1}|e^{j\theta_{1}}$$

$$z_{2} = |z_{2}|e^{j\theta_{2}}$$

$$z_{1}z_{2} = |z_{1}||z_{2}|e^{j(\theta_{1}+\theta_{2})}$$

Quick derivation of $x(t) = D_1 e^{st} + D_2 e^{s^*t} = Ce^{\sigma t} \sin(\omega t + \phi)$

With complex conjugate roots, the inverse Laplace transform has complex exponents and coefficients

$$x(t) = D_1 e^{st} + D_2 e^{s^*t} \text{ where } s = \sigma + j\omega$$

$$= D_1 e^{(\sigma + j\omega)t} + D_2 e^{(\sigma - j\omega)t}$$

$$= D_1 e^{\sigma t} e^{j\omega t} + D_2 e^{\sigma t} e^{-j\omega t}$$

noting
$$e^{j\theta} = \cos\theta + j\sin\theta$$
 (Euler's theorem)

$$x(t) = D_1 e^{\sigma t} \left(\cos \omega t + j \sin \omega t \right) + D_2 e^{\sigma t} \left(\cos \left(-\omega t \right) + j \sin \left(-\omega t \right) \right)$$

$$= e^{\sigma t} \left[\left(D_1 + D_2 \right) \cos \omega t + j \left(D_1 - D_2 \right) \sin \omega t \right]$$
must be real

Continuing ...

Quick derivation of $x(t) = D_1 e^{st} + D_2 e^{s^*t} = Ce^{\sigma t} \sin(\omega t + \phi)$

$$x(t) = e^{\sigma t} \left(\left(D_1 + D_2 \right) \cos \omega t + j \left(D_1 - D_2 \right) \sin \omega t \right)$$
must be real

$$\operatorname{Im} \left\{ D_1 + D_2 \right\} = 0 \longrightarrow \operatorname{Im} \left\{ D_1 \right\} = -\operatorname{Im} \left\{ D_2 \right\}$$
 are complex
$$\operatorname{Im} \left\{ j \left(D_1 - D_2 \right) \right\} = 0 \longrightarrow \operatorname{Re} \left\{ D_1 \right\} = \operatorname{Re} \left\{ D_2 \right\}$$
 conjugates

letting
$$D = D_1$$

$$x(t) = e^{\sigma t} \left((D + D^*) \cos \omega t + j (D - D^*) \sin \omega t \right)$$

$$= e^{\sigma t} \left(2 \operatorname{Re} \{D\} \cos \omega t - 2 \operatorname{Im} \{D\} \sin \omega t \right)$$
Coefficients are now real

Continuing ...

Quick derivation of $x(t) = D_1 e^{st} + D_2 e^{s^*t} = Ce^{\sigma t} \sin(\omega t + \phi)$

$$x(t) = e^{\sigma t} \left(2 \operatorname{Re} \{D\} \cos \omega t - 2 \operatorname{Im} \{D\} \sin \omega t \right)$$
 Coefficients are now real

We want to get this into the form

$$x(t) = Ce^{\sigma t} \sin(\omega t + \phi)$$

$$= e^{\sigma t} \left(C \cdot \sin \phi \cdot \cos \omega t + C \cdot \cos \phi \cdot \sin \omega t \right)$$

$$2Re\{D\} \qquad -2Im\{D\}$$

$$\sin\phi = 2\operatorname{Re}\{D\}/C \quad \tan\phi = \frac{\sin\phi}{\cos\phi} = -\operatorname{Re}\{D\}/\operatorname{Im}\{D\}$$

$$\cos\phi = -2\operatorname{Im}\{D\}/C \quad \phi = \tan^{-1}\left(-\operatorname{Re}\{D\}/\operatorname{Im}\{D\}\right)$$

$$\sin^2 \phi + \cos^2 \phi = 4 \operatorname{Re} \{D\}^2 / C^2 + 4 \operatorname{Im} \{D\}^2 / C^2 = 1$$

$$C = 2 \sqrt{\operatorname{Re} \{D\}^2 + \operatorname{Im} \{D\}^2}$$