கிයලු ම හිමිකම් ඇවිරිණි / முழுப் பதிப்புரிமையுடையது / All Rights Reserved

இ ஒரை சிலம் දෙපාර්තමේන්තුව ල් ලංකා විභාග දෙපාර්තමේන්තුව ලේ ලංකා විභාග දෙපාර්තමේන්තුව ල් ල්කා විභාග දෙපාර්තමේන්තුව ලේකා විභාග දෙපාර්තමේන්තුව ල්කා විභාග දෙපාර්තමේන්තුව ලේකා විභාග දෙපාර්තමේන්තුව ල්කා විභාග විභාග දෙපාර්තමේන්තුව ල්කා විභාග දෙපාර්තමේන්තුව ල්කා විභාග විභාග දෙපාර

අධනයන පොදු සහනික පතු (උසස් පෙළ) විභාගය, 2016 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2016 ஓகள்ற General Certificate of Education (Adv. Level) Examination, August 2016

് Cadd തൽമർ I உயர் கணிதம் I Higher Mathematics I

[44]	W -
B.A.	.M.

்சுக முலகீ மூன்று மணித்தியாலம் Three hours

විභාග අංකය				
presidente is			i de constant	

උපදෙස් :

- * මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ;
 - A කොටස (පුශ්න 1 10) සහ B කොටස (පුශ්න 11 17).
- * A කොටස:

සියලු ම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා ඓ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

- * B කොටස:
 - පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.
- * නියම්ත කාලය අවසන් වූ පසු A කොටසෙහි පිළිතුරු පතුය B කොටසෙහි පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- * පුශ්න පතුයෙහි B කොටස පමණක් විභාග ශාලාවෙන් පිටකට ගෙනයාමට ඔබට අවසර ඇත.

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

කොටස	පුශ්න අංකය	ලකුණු
	1	
	2	
	- 3	
	4	
	5	
A	6	600
	7	1/10
	8	
	9	
	10	
	11	
	12	
	13	
В	14	
	15	
	16	
	17	
	එකතුව	
	පුතිශතය	

I පනුය	20
II පනුය	
එකතුව	
අවසාන ලකුණු	

අවසාන ලකුණු

ඉලක්කමෙන්	PROF. J.
අකුරින්	

සංකේත අංක

උත්තර පතු පරීක්ෂ		
mento mandi	1	
පරීක්ෂා කළේ:	2	
අධීක්ෂණය කළේ:		

	~
A	කොටස

1.	සාධකවලට වෙන් කරන්න: $(x+y)^3(x-y)+(y+z)^3(y-z)+(z+x)^3(z-x)$.	
	(x + y) (x - y) + (y + z) (y - z) + (z + x) (z - x).	
2.	${\mathbb R}$ මත R සම්බන්ධයක්, $x^2-y^2-x+y=0$ නම් xRy මගින් අර්ථ දක්වනු ලැබේ. R යන්න ${\mathbb R}$ මත තුලඍ	
And a		
	සම්බන්ධයක් බව පෙන්වන්න.	203
	සම්බන්ධයක් බව පෙන්වන්න.	200
	සම්බන්ධයක් බව පෙන්වන්න.	ນນ
	සම්බන්ධයක් බව පෙන්වන්න.))J
	සම්බන්ධයක් බව පෙන්වන්න.	<i>3</i> 13
	සම්බන්ධයක් බව පෙන්වන්න.	ມວ
	සම්බන්ධයක් බව පෙන්වන්න.	<i>x</i> 2
	සම්බන්ධයක් බව පෙන්වන්න.)
	සම්බන්ධයක් බව පෙන්වන්න.	20
	සම්බන්ධයක් බව පෙන්වන්න.	2
	සම්බන්ධයක් බව පෙන්වන්න.	
	සම්බන්ධයක් බව පෙන්වන්න.	2)
	සම්බන්ධයක් බව පෙන්වන්න.)
	සම්බන්ධයක් බව පෙන්වන්න.	2)
	සම්බන්ධයක් බව පෙන්වන්න.	
	සම්බන්ධයක් බව පෙන්වන්න.	
	සම්බන්ධයක් බව පෙන්වන්න.	23.23.23.23.23.23.23.23.23.23.23.23.23.2

3.	$x\in\mathbb{R}$ සඳහා $f(x)=(ax+1)^{\frac{1}{3}}$ හා $g(x)=3x+4$ යන ඒවා $(f\circ g)(1)=2$ වන පරිදි වේ යැයි ගනිමු; මෙහි ර තාත්ත්වික නියතයකි. a හි අගය සොයන්න.
	$h(x) = (f \circ f)(x)$ යැයි ගනිමු. $h^{-1}(x)$ සොයන්න.

4.	$\left egin{array}{cccc} b+c&c&b\\ c&a+c&a\\ b&a&a+b \end{array} ight =4abc$ බව පෙන්වන්න.

-	
***************************************	***************************************

5.	$y^2=4ax$ පරාවලයට $(at^2,2at)$ ලක්ෂායෙහි දී වූ අහි	ාලම්බයේ සමීකරණය $y+tx=2at+at^3$ බව පෙන්වන්න
	$y^2 = 4ax$ පරාවලයෙහි නාභිය ඔස්සේ මෙම අභිලම්බ	ය යයි නම්, t හි අගය සොයන්න.
		$\int x \tan^{-1}\left(\frac{1}{x}\right), x < 0 \text{so},$
6.	a ∈ R යැයි ද $b \ge 1$ යැයි ද f : R → R යනු $f(x) = \{$	a, $x=0$ නම්,
	a \in \mathbb{R} යැයි ද b ≥ 1 යැයි ද f : \mathbb{R} → \mathbb{R} යනු $f(x)$ = $\{$	$\sqrt{b-1+x}$, $x > 0$ නම්,
	මගින් දෙනු ලබන ශිුතය යැයි ද ගනිමු. $x=0$ හි දී f සන්	තතික වෙයි නම්, a හා b හි අගයන් සොයන්න.

f(x)	x,	x < 1	නම්,	
යනු, $J(x) = x$	$\int x^2 - 2x + 2,$	$x \ge 1$	නම්,	
$ \neq 1$ සඳහා $f'(x)$	() ලියා දක්වන්ෂ).		

• • • • • • • • • • • • • • • • • • • •		*********		
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*******		
,	,			
•••••				
ා = ln 2 අවශාන			් + x^2e^{-y} විසඳන්න.	
) = ln 2 අවශා				
) = ln 2 අවශාන				
γ = ln 2 අවශාන				
γ = ln 2 අවශාන				
		$\frac{\mathrm{d}y}{\mathrm{d}x} = e^{x-y}$		
	තාවට යටත්ව -	$\frac{\mathrm{d}y}{\mathrm{d}x} = e^{x-y}$		
	තාවට යටත්ව -	$\frac{\mathrm{d}y}{\mathrm{d}x} = e^{x-y}$		
	තාවට යටත්ව -	$\frac{\mathrm{d}y}{\mathrm{d}x} = e^{x-y}$		
	තාවට යටත්ව -	$\frac{\mathrm{d}y}{\mathrm{d}x} = e^{x-y}$		
	තාවට යටත්ව -	$\frac{\mathrm{d}y}{\mathrm{d}x} = e^{x-y}$		
	තාවට යටත්ව -	$\frac{\mathrm{d}y}{\mathrm{d}x} = e^{x-y}$		
	තාවට යටත්ව -	$\frac{\mathrm{d}y}{\mathrm{d}x} = e^{x-y}$		
	තාවට යටත්ව -	$\frac{\mathrm{d}y}{\mathrm{d}x} = e^{x-y}$		
	තාවට යටත්ව -	$\frac{\mathrm{d}y}{\mathrm{d}x} = e^{x-y}$		
	තාවට යටත්ව -	$\frac{\mathrm{d}y}{\mathrm{d}x} = e^{x-y}$		
	දැක්වෙන ශිුත	දැක්වෙන ශිුතය යැයි ගනිමු.		යනු, $f(x) = \begin{cases} x, & x < 1 $

-•	• 7 ගා ද යනු යලැර, 17 සඳහා අගයැති සන්තතික ශුිත යැයි	$0.2xf(x_i) + 3g(x) = 14x$ සමකරණය සපුරාලන $\{0, 1\}$ පුංත්තරය මත තාත්තිවක 0.000
		-
	$\int_{0}^{1} f(x) dx = 1 \text{ and}, \int_{0}^{1} g(x)$	\mathbf{r}) d $x=2$ බව පෙන්වන්න.

		······································

	***************************************	•••••••••••••••••••••••••••••••••••••••
	••••••••••	••••••••••••••••••••••••••••••••
	***************************************	•••••••••••••••••••••••••••••••••••••••
	••••••	•••••••••••••••••••••••••••••••••••••••

	*****************************	•••••••••••••••••••••••••••••••••••••••

0.	. $r=2$ හා $r=2$ $(\cos\theta-\sin\theta)$ ඒවායේ ඡේදන ලක්ෂාවල ධු	(1 heta) ධුැවක සමීකරණ මගින් දෙනු ලබන වකුවල දළ සටහන් එක ම රූපයක ඇඳ ැවක බණ්ඩාංක සොයන්න

	•••••	
	••••	
	••••••	

	***************************************	***************************************

		· · · · · · · · · · · · · · · · · · ·

සියලු ම හිමිකම් ඇවරුම් /மුழுப் பதிப்புரிமையுடையது /All Rights Reserved]

இ ஒடை சியை අදහර්තමේන්තුව இ ஒடை சியை අදහර්තමේන්තුව ලැබ<mark>න විභාග දෙහ</mark>ර්තමේන්තුව ලැබෙන අදහර්තමේන්තුව ලැබෙන්න අදහර්තමේන්තුව ලැබෙන්න අදහර්තමේන්තුව ලැබෙන්න අදහර අදහර අදහර්තමේන්තුව ලැබෙන්න අදහර අදහර්තමේන්තුව ලැබෙන්න අදහර අදහර්තමේන්තුව ලැබෙන්න අදහර්තමේන්තුව ලැබෙන්න අදහර අදහර්තමේන්තුව ලැබෙන්න අදහර්තමේන්තුව ලැබෙන්න අදහර අදහර අදහර්තමේන්තුව ලැබෙන්න අදහර අදහ

අධායන පොදු සහනික පනු (උසස් පෙළ) විභාගය, 2016 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2016 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2016

උසස් ගණිතය I உயர் கணிதம் I Higher Mathematics I

B කොටස

* පුශ්න පහකට පමණක් පිළිතුරු සපයන්න.

- 11. (a) A, B හා C යනු S සර්වනු කුලකයක උපකුලක යැයි ගනිමු. ඔබ භාවිත කරන කුලක වීජයේ නියමයන් පැහැදිලි ව පුකාශ කරමින්
 - (i) $(B-A) \cup (C-A) = (B \cup C) A \otimes 0$
 - (ii) $A \cap (B C) = (A \cap B) (A \cap C)$ බව පෙන්වන්න;

මෙහි A-B කුලකය $A-B=A\cap B'$ මගින් අර්ථ දක්වනු ලැබේ.

- (b) A,B හා C නගර තුතෙන් අඩු තරමින් එක් නගරයකට හෝ ගොස් තිබූ මිනිසුන් 40 දෙනකු සහභාගී කරගත් සමීක්ෂණයක දී මිනිසුන් 22 දෙනකු A නගරයට ද 23 දෙනකු B නගරයට ද 19 දෙනකු C නගරයට ද ගොස් තිබූ බව හෙළි විය. තව ද මිනිසුන් 18 දෙනකු A හා B නගර දෙකට ද 11 දෙනකු A හා C නගර දෙකට ද 13 දෙනකු B හා C නගර දෙකට ද 11 දෙනකු නගර තුනට ම ද ගොස් තිබූ බව හෙළි විය.
 - (i) Aට හෝ Bට ගොස් තිබූ,
 - (ii) B ට හා C ට ගොස් තිබූ එහෙත් A ට ගොස් නොතිබූ,
 - (iii) B ට හෝ C ට ගොස් නොතිබූ,

මිනිසුන් ගණන සොයන්න.

- 12. (a) a,b හා c යනු ධන තාත්ත්වික සංඛාහ යැයි ගනිමු. $\frac{a+b+c}{3} \ge \sqrt[3]{abc}$ යන අසමානතාව උපකල්පනය කරමින්
 - (i) $(a+b+c)(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}) \ge 9$ බව,
 - (ii) $\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} \ge \frac{9}{2}$ බව හා
 - (iii) $0 < a < 1 (1 a) (1 + a)^2 \le \frac{32}{27}$

බව සාධනය කරන්න.

(b) xy - තලයේ $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ පරිණාමනය (a,2) ලක්ෂාය, (a,b) ලක්ෂායට අනුරූපණය කරයි.

මෙහි a හා b තාත්ත්වික තියත වේ. a හා b හි අගයන් සොයන්න.

මෙම පරිණාමනය x=1 රේඛාව px'+qy'+r=0 රේඛාවට අනුරූපණය කරයි; මෙහි p,q හා r තාත්ත්වික නියත වේ. p,q හා r හි අගයන් සොයන්න.

මෙම පරිණාමනය යටතේ 2x'+y'=1 රේඛාව මතට අනුරූපණය වනු ලබන xy-තලයේ වූ රේඛාවේ සමීකරණය සොයන්න.

More Past Papers at

13. ධන නිඛිලමය දර්ශකයක් සඳහා **ද මුචාවර් පුමේශය** පුකාශ කර සාධනය කරන්න.

$$k=0,1,2,\ldots$$
 සඳහා $\omega_k=\cos\left(\frac{2k\pi}{5}\right)+i\sin\left(\frac{2k\pi}{5}\right)$ යැයි ගනිමු. $k=0,1,2,\ldots$ සඳහා $\omega_k^5=1$ බව පෙන්වා, ඒ නයින්. $z^5-1=0$ සමීකරණයේ පුභින්න මුල පහ ලියා දක්වන්න.

 ω_1 , ω_2 , ω_3 හා ω_4 යනු $z^4+z^3+z^2+z+1=0$ සමීකරණයේ පුහින්න මූල හතර බව **අපෝහනය** කරන්න.

$$z^4 + z^3 + z^2 + z + 1 = \left\{z^2 - 2\cos\left(\frac{2\pi}{5}\right)z + 1\right\}\left\{z^2 - 2\cos\left(\frac{4\pi}{5}\right)z + 1\right\}$$
 බව නවදුරටත් **අපෝහන**ය කරන්න.

මෙම සර්වසාමායේ z^2 හා z^3 හි සංගුණක සැසදීමෙන් $\cos\left(\frac{2\pi}{5}\right)$ හා $\cos\left(\frac{4\pi}{5}\right)$ මූල ලෙස ඇති නිඛිල සංඛ්‍යාමය සංගුණක සහිත වර්ගජ සමීකරණය ලබා ගන්න.

ඒනයින්, $\cos\left(\frac{2\pi}{5}\right)=\frac{\sqrt{5}-1}{4}$ බව පෙන්වන්න.

- 14. (a) C_1 හා C_2 යනු පිළිවෙළින් $x=y^2$ හා $x=2-y^2$ මගින් දෙනු ලබන වකු යැයි ගනිමු. ඒවායේ ඡේදන ලක්ෂාවල බණ්ඩාංක දක්වමින් C_1 හා C_2 හි පුස්තාරවල දළ සටහන් එක ම රූපයක අදින්න. C_1 හා C_2 වකු දෙකෙන් සපර්යන්ත වන S පෙදෙසෙහි වර්ගඵලය සොයන්න. C_3 වේඛාව වටා මෙම S පෙදෙස සෘජු කෝණ හතරකින් භුමණය කිරීමෙන් ජනනය වන ඝනයෙහි පරිමාව ද සොයන්න.
 - (b) වනු කුලයක් $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4x+y}{x-4y}$ අවකල සමීකරණය තෘප්ත කරයි. y = xV ආදේශ කිරීමෙන්, දී ඇති අවකල සමීකරණය $\frac{1-4V}{4(1+V^2)}$ $\mathrm{d}V = \frac{1}{x}\,\mathrm{d}x$ ට පරිණාමනය වනු ලබන බව පෙන්වන්න.

ඒ නයින්, වකු කුලයට $\frac{1}{2} \tan^{-1} \left(\frac{y}{x} \right) - \ln \left(x^2 + y^2 \right) = \lambda$ යන කාටීසීය නිරූපණය ඇති බව පෙන්වන්න; මෙහි $\lambda \in \mathbb{R}$ වේ.

මෙම වකු කුලයේ පුලම්බ පරාවකු මගින් තෘප්ත කරනු ලබන අවකල සමීකරණය ද ලබා ගන්න.

- 15. (a) $n\in\mathbb{Z}^+$ සඳහා $I_n=\int\limits_0^1 (1-x^3)^n \, x \, \mathrm{d} x$ යැයි ගනිමු. $n=2,3,\dots$ සඳහා $(3n+2)I_n=3nI_{n-1}$ බව පෙන්වා, $n\in\mathbb{Z}^+$ සඳහා $I_n=\frac{3^n \, n!}{(3n+2)\,(3n-1)\cdots 8\cdot 5\cdot 2}$ බව **අපෝහන**ය කරන්න.
 - (b) $x \in \mathbb{R}$ සඳහා $y = e^{\cos x}$ යැයි ගනිමු

$$\frac{d^2y}{dx^2} + \sin x \frac{dy}{dx} + (\cos x) y = 0$$
 බව පෙන්වන්න.

 x^4 හි පදය ද ඇතුළු ව ඒ දක්වා y හි මැක්ලෝරින් ශේණි පුසාරණය ලබා ගන්න.

ජ නගින්, $\int\limits_0^1 e^{\cos x} \,\mathrm{d}x$ අනුකලය සඳහා ආසන්න අගයක් සොයන්න.

16. $T \equiv \left(\frac{a}{2}\left(t+\frac{1}{t}\right), \frac{b}{2}\left(t-\frac{1}{t}\right)\right)$ ලක්ෂාය $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ බහුවලය මත පිහිටන බව සතාාපනය කරන්න. මෙහි $t \ (\neq 0)$ යනු පරාමිතියකි.

Tලක්ෂායෙහි දී බහුවලයට ඇඳි ස්පර්ශකයේ සමීකරණය ලබා ගන්න.

 $P \equiv (at,bt)$ හා $Q \equiv (at',-bt')$ ලක්ෂා බහුවලයේ ස්පර්ශෝන්මුබ මත පිහිටන බව පෙන්වන්න.

PQ හි මධා ලක්ෂාය වන R, බහුවලය මත පිහිටන බව දී ඇත. $t\,t'=1$ බව ද PQ රේඛාව R හි දී බහුවලය ස්පර්ශ කරන බව ද පෙන්වන්න.

 $OP \cdot OQ = a^2 + b^2$ බව ද පෙන්වන්න. මෙහි O යනු මූලය වේ.

R සිට බහුවලයේ ස්පර්ශෝන්මුඛවලට ඇඳි අභිලම්බ, ස්පර්ශෝන්මුඛවලට හමු වන ලක්ෂා L හා M යැයි ගනිමු.

$$RL \cdot RM = \frac{a^2b^2}{a^2+b^2}$$
 බව තවදුරටත් පෙන්වන්න.

- **17.** (a) $x \in \mathbb{R}$ සඳහා $f(x) = \frac{3 + \sin^2 x}{2 + \cos^2 x}$ යැයි ගනිමු.
 - (i) x∈ \mathbb{R} සඳහා $1 \le f(x) \le 2$ බව පෙන්වන්න.
 - (ii) f(x) = 1 හා f(x) = 2 සමීකරණ විසඳන්න.
 - (iii) $0 \le x \le \pi$ සඳහා y = f(x) හි පුස්තාරයේ දළ සටහනක් අඳින්න.
 - (b) පහත වගුවෙන්, එහි දැක්වෙන x හි අගයන් සඳහා, $f(x) = \ln(1+x^2)$ ශුිතයෙහි අගයන් දශමස්ථාන තුනකට නිවැරදි ව දෙයි.

х	0	0.5	1.0	1.5	2.0
f(x)	0	0.223	0.693	1.179	1.909

ඉහත වගුවෙහි දී ඇති අගයන් සමග සිම්සන් නීතිය භාවිතයෙන්, $y=\ln(1+x^2)$, x=0, x=2 හා y=0වකු මගින් සපර්යන්ත වර්ගඵලය සඳහා ආසන්න අගයක් සොයන්න.

$$\int\limits_{2}^{2}\ln \sqrt{1+x^{2}} \ \mathrm{d}x \ \ සඳහා ආසන්න අගයක් අපෝහනය කරන්න.$$

米米米

More Past Papers at

සියලු ම හිමිකම් ඇව්රිණී (முழுப் பதிப்புநிமையுடையது /All Rights Reserved)

අධායන පොදු සහනික පතු (උසස් පෙළ) විභාගය, 2016 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2016 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2016

උසස් ගනීතය II உயர் கணிதம் **II** Higher Mathematics **II**

சாக භූනයි மூன்று மணித்தியாலம் Three hours

උපදෙස් :

විභාග අංකය

- * මෙම ප්‍රශ්න පත්‍රය කොටස් දෙකකින් සමන්විත වේ;
 - A කොටස (පුශ්න 1 10) සහ B කොටස (පුශ්න 11 17).
- * A කොටස

සියලු ම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

* B කොටස

පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.

- ※ නියමිත කාලය අවසන් වූ පසු A කොටසෙහි පිළිතුරු පකුය B කොටසෙහි පිළිතුරු පකුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- * පුශ්න පතුයෙහි B කොටස පමණක් විභාග ශාලාවෙන් පිටකට ගෙනයාමට ඔබට අවසර ඇක.
- 🔆 සංඛාහන වගු සපයනු ලැබේ.
- 🛠 🙎 මගින් ගුරුත්වජ ත්වරණය දැක්වෙයි.

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

(11) උසස් ඉණිසය II				
කොටස	පුශ්න අංකය	ලකුණු		
	1			
	2			
	3			
	4			
	5			
A	6			
	7			
	8			
	9			
	10			
	11			
	12			
	13			
В	14			
	15			
	16			
	17			
	එකතුව			
ı.	දාහිශතය			

I පතුය	
II පතුය	
එකතුව	
අවසාන ලකුණු	

අවසාන ලකුණු

ඉලක්කමෙන්	
අකුරින්	

සංකේත අංක

උත්තර පතු පරීක්ෂෘ	হ্	
පරීක්ෂා කළේ:	1	
ටටයා <i>මා</i> කාමල.	2	
අධීක්ෂණය කළේ:		

@25\1?\?

1.	. O අවල මූලයක් අනුබද්ධයෙන් P ලක්ෂායක ${f r}$ පිහිටුම් දෛශිකය,
	$\mathbf{r} = \left(\frac{1}{2} a \sin \theta\right) \mathbf{i} + \left(\frac{\sqrt{3}}{2} a \sin \theta\right) \mathbf{j} + (a \cos \theta) \mathbf{k}$ මගින් දෙනු ලැබේ; මෙහි $\theta \ (0 \le \theta \le \pi)$ අදිශ පරාමිතියක් ද
	a ධන නියතයක් ද වේ.
	(i) $\mathbf{r} \cdot \mathbf{r} = a^2$ (ii) $\mathbf{r} \cdot \frac{d\mathbf{r}}{d\theta} = 0$ හා (iii) $\mathbf{r} \times \frac{d\mathbf{r}}{d\theta} = \frac{a^2}{2} \left(-\sqrt{3}\mathbf{i} + \mathbf{j} \right)$ බව ලෙන්වන්න.
	•••••••••••••••••••••••••••••••••••••••
	•••••••••••••••••••••••••••••••••••••••
2.	පිළිවෙළින් a i, b j හා c k පිහිටුම් දෙශික සහිත A , B හා C ලක්ෂා ඔස්සේ $P(b$ j + c k), $P(c$ k + a i) හා $P(a$ i + b j) බල තුන කියාකරයි; මෙහි P ධන නියතයක් හා a , b , c යනු $abc \neq 0$ වන පරිදි වූ නියත වේ. මෙම පද්ධතිය $\mathbf{r} = \lambda(a$ i + b j + c k) කියා රේඛාව සහිත තනි සම්පුයුක්ත බලයකට ඌනනය වන බව පෙන්වන්න; මෙහි λ පරාමිතියකි. සම්පුයුක්ත බලයේ විශාලත්වය සොයන්න.

3.	ABC තුිකෝණය ඒකාකාර තිිකෝණාකාර පුිස්මයක සමාන්තර දාර තුනට ලම්බ ගුරුත්ව කේන්දුය හරහා වූ හරස්කඩ
	වේ. A තුළින් වූ දාරය නිදහස් පෘෂ්ඨය මත ද B තුළින් වූ දාරය නිදහස් පෘෂ්ඨයට පහළින් ද C තුළින් වූ දාරය නිදහස්
	පෘෂ්ඨයට ඉහළින් ද ඇතිව සමජාතීය දුවයක පුිස්මය නිදහසේ ඉපිලෙයි. එහි බරෙහි ද උඩුකුරු දුව තෙරපුමෙහි ද
	කුියා රේඛාවන් සැලකීමෙන් පුිස්මයෙහි BC අයත් මුහුණත සිරස් ව පිහිටන බව පෙන්වන්න.

	······································
4.	ස්කන්ධය m වූ අංශුවක, t කාලයේ දී, අචල මූලයක් අනුබද්ධයෙන් ${f r}$ පිහිටුම් ඉෙදශිකය,
	${f r}=aig[(\sin 2\omega t){f i}+(1-\cos 2\omega t){f j}ig]$ මගින් දෙනු ලැබේ; මෙහි a හා ω ධන නියත වේ.
	$({f i})$ එහි පෙත, $a{f j}$ පිහිටුම් දෛශිකය සහිත C කේන්දුය හා අරය a වූ වෘත්තයක් බවත්
	$({ m ii})$ C වටා එහි කෝණික ගමාතාව $2ma^2\omega{f k}$ බවත්
	(iii) $\ddot{\mathbf{r}} + 4\omega^2(\mathbf{r} - a\mathbf{j}) = 0$ බවත්
	පෙන්වන්න.

5.	සුමට තිරස් ගෙබිමක් මත ඒකාකාර ${f u}=u({f i}\coslpha+{f j}\sinlpha)$ පුවේගයකින් චලනය වන ස්කන්ධය m වූ සුම)
	ගෝලයක් ආරම්භයේ දී නිසලව ඇති එම අරය ම හා ස්කන්ධය M වූ ගෝලයක් සමග ගැටෙයි. මෙහි $0හා u යනු ධන නියතයක් වේ. ගැටුමෙන් පසු m සහ Mහි පුවේග පිළිවෙළින් vj හා wi වෙයි නම්,$,
	(i) ඒවායේ අනොහ්නා ආවේගයේ විශාලත්වය $mu\coslpha$ බවත්	
	(ii) පුතාහාගති සංගුණකය $rac{m}{M}$ බවත්	
	පෙන්වන්න.	
		-
		-
		-
		-
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		1
6.	ස්කන්ධය M හා අරය a වූ ඒකාකාර වෘත්තාකාර වළල්ලක් රඑ තිරස් ගෙබිමක් මත ලිස්සීමකින් තොරව පෙරළි යයි. එහි තලය සිරස් ව තිබෙන අතර කේන්දයේ v වේගය නියතු වේ. වළල්ලේ චාලක ශක්තිය සොයන්න.	3
6.	ස්කන්ධය M හා අරය a වූ ඒකාකාර වෘත්තාකාර වළල්ලක් රඑ තිරස් ගෙබිමක් මත ලිස්සීමකින් තොරව පෙරළි යයි. එහි තලය සිරස් ව තිබෙන අතර කේන්දුයේ v වේගය නියත වේ. වළල්ලේ චාලක ශක්තිය සොයන්න.	85
6.	ස්කන්ධය M හා අරය a වූ ඒකාකාර වෘත්තාකාර වළල්ලක් රඑ තිරස් ගෙබිමක් මත ලිස්සීමකින් තොරව පෙරළි යයි. එහි තලය සිරස් ව තිබෙන අතර කේන්දුයේ v වේගය නියත වේ. වළල්ලේ චාලක ශක්තිය සොයන්න.	30
6.	ස්කන්ධය M හා අරය a වූ ඒකාකාර වෘත්තාකාර වළල්ලක් රඑ තිරස් ගෙබිමක් මත ලිස්සීමකින් තොරව පෙරළි යයි. එහි තලය සිරස් ව තිබෙන අතර කේන්දුයේ v වේගය නියත වේ. වළල්ලේ චාලක ශක්තිය සොයන්න.	85
6.	ස්කන්ධය M හා අරය a වූ ඒකාකාර වෘත්තාකාර වළල්ලක් රඑ තිරස් ගෙබිමක් මත ලිස්සීමකින් තොරව පෙරළි යයි. එහි තලය සිරස් ව තිබෙන අතර කේන්දුයේ v වේගය නියත වේ. වළල්ලේ චාලක ශක්තිය සොයන්න.	
6.	ස්කන්ධය M හා අරය a වූ ඒකාකාර වෘත්තාකාර වළල්ලක් රඑ තිරස් ගෙබිමක් මත ලිස්සීමකින් තොරව පෙරළි යයි. එහි තලය සිරස් ව තිබෙන අතර කේන්දුයේ v වේගය නියත වේ. වළල්ලේ චාලක ශක්තිය සොයන්න,	
6.	ස්කන්ධය M හා අරය a වූ ඒකාකාර වෘත්තාකාර වළල්ලක් රඑ තිරස් ගෙබිමක් මත ලිස්සීමකින් තොරව පෙරළි යයි. එහි තලය සිරස් ව තිබෙන අතර කේන්දුයේ v වේගය නියත වේ. වළල්ලේ චාලක ශක්තිය සොයන්න,	000
6.	ස්කන්ධය M හා අරය a වූ ඒකාකාර වෘත්තාකාර වළල්ලක් රඑ තිරස් ගෙබිමක් මත ලිස්සීමකින් තොරව පෙරළි යයි. එහි තලය සිරස් ව තිබෙන අතර කේන්දුයේ v වේගය නියත වේ. වළල්ලේ චාලක ශක්තිය සොයන්න,	
6.	ස්කන්ධය M හා අරය a වූ ඒකාකාර වෘත්තාකාර වළල්ලක් රඑ තිරස් ගෙබිමක් මත ලිස්සීමකින් තොරව පෙරළි යයි. එහි තලය සිරස් ව තිබෙන අතර කේන්දුයේ v වේගය නියන වේ. වළල්ලේ චාලක ශක්තිය සොයන්න.	000
6.	ස්කන්ධය M හා අරය a වූ ඒකාකාර වෘත්තාකාර වළල්ලක් රඑ තිරස් ගෙබිමක් මත ලිස්සීමකින් තොරව පෙරළි යයි. එහි තලය සිරස් ව තිබෙන අතර කේන්දුයේ v වේගය නියත වේ. වළල්ලේ චාලක ශක්තිය සොයන්න.	
6.	ස්කන්ධය M හා අරය a වූ ඒකාකාර වෘත්තාකාර වළල්ලක් රඑ තිරස් ගෙබ්මක් මත ලිස්සීමකින් තොරව පෙරදී යයි. එහි තලය සිරස් ව තිබෙන අතර කේන්දුයේ v වේගය නියත වේ. වළල්ලේ චාලක ශක්තිය සොයන්න.	
6.	ස්කන්ධය M හා අරය a වූ ඒකාකාර වෘත්තාකාර වළල්ලක් රඑ තිරස් ගෙබීමක් මත ලිස්සීමකින් තොරව පෙරදී යයි. එහි තලය සිරස් ව තිබෙන අතර කේන්දුයේ v වේගය නියත වේ. වළල්ලේ චාලක ශක්තිය සොයන්න.	
6.	ස්කන්ධය M හා අරය a වූ ඒකාකාර වෘත්තාකාර වළල්ලක් රඑ තිරස් ගෙබිමක් මත ලිස්සීමකින් තොරව පෙරළි යයි. එහි තලය සිරස් ව තිබෙන අතර කේන්දුයේ v වේගය නියත වේ. වළල්ලේ චාලක ශක්තිය සොයන්න.	C(1)
6.	ස්කන්ධය M හා අරය a වූ ඒකාකාර වෘත්තාකාර වළල්ලක් රඑ නිරස් ගෙබීමක් මත ලිස්සීමකින් තොරව පෙරදී යයි. එහි තලය සිරස් ව තිබෙන අතර කේන්දුයේ v වේගය නියන වේ. වළල්ලේ චාලක ශක්තිය සොයන්න.	
6.	ස්කන්ධය M හා අරය a වූ ඒකාකාර වෘත්තාකාර වළල්ලක් රඑ තිරස් ගෙබීමක් මන ලිස්සීමකින් තොරව පෙරදි යයි. එහි තලය සිරස් ව තිබෙන අතර කේන්දුයේ v වේගය නියත වේ. වළල්ලේ චාලක ශක්තිය සොයන්න.	CC.)
6.	ස්කන්ධය M හා අරය a වූ ඒකාකාර වෘත්තාකාර වළල්ලක් රඑ නිරස් ගෙබිමක් මත ලිස්සීමකින් නොරව පෙරදි යයි. එහි තලය සිරස් ව තිබෙන අතර කේන්දුයේ v වේගය නියත වේ. වළල්ලේ චාලක ශක්තිය සොයන්න.	

7.	R සසම්භාවී විචලායක්, $r=1,2,3,,n$ නිඛිල අගයන් ගන්නා අතර එක එකක සම්භාවිතාව $\frac{1}{n}$ වේ. R හි අපේක්ෂිත අගය වූ $E(R)$ සොයන්න.
	$\sum_{r=1}^n r^2 = rac{n}{6}(n+1)(2n+1)$ සූනුය උපකල්පනය කරමින් R හි විචලතාවක් සොයන්න.
eranionamente de la companionamente de la co	
8.	X විවික්ත සසම්භාවී විචලායක් $-2,0,2$ අගයන් ගන්නා අතර ඒවායේ සම්භාවිතාවන් පිළිවෙළින් $rac{1}{4},rac{1}{2},rac{1}{4}$ වේ.
	$Y=X_1^{}+X_2^{}$ සසම්භාවී විචලායෙහි සම්භාවිතා වාජතිය ලබා ගන්න; මෙහි $X_1^{}$ හා $X_2^{}$ යනු X හි ස්වායත්ත නිරීක්ෂණ දෙකකි. Y හි සම්මත අපගමනය 2 බව පෙන්වන්න.
	More Past Papers at
	tamilguru.lk
1	***************************************

9.	X සන්තතික සසම්භාවී විචලාායක $f(x)$ සම්භාවිතා ඝනත්ව ශුිතය
	$f(x) = \int kx(1-x)$, $0 \le x \le 1$ සඳහා
	$f(x) = \begin{cases} kx(1-x) &, & 0 \le x \le 1 $ සඳහා $0 < x \le 1$ සඳහා $0 < x \le 1$ සඳහා දී.
	මගින් දෙනු ලබයි.
	(i) $k=6$ බව පෙන්වන්න.
	$(ext{ii})$ $E(X)$ හා $E(X^2)$ මසායන්න.
l 0 .	X සසම්භාවී විවලා z යක් $[1,4]$ පුාත්තරය මත ඒකාකාරව ව z ාප්තව ඇත.
	(i) $P(2 \le X \le 3)$ හා $P(X \le 2)$ මසායන්න.
	(ii) $P(X \ge a) = 0.6$ වන පරිදි වූ a හි අගය සොයන්න.

සියලු ම හිමිකම් ඇව්රිනි / (முழுப் பதிப்புரிமையுடையது /All Rights Reserved)

ම් ලංකා විභාග දෙපාර්පමේන්තුව ලී ලංකා විභාග දෙපාර්පමේන්තුව පොඩා පැවැති පොඩා පැවැති වෙන්නුව ලේ ලංකා විභාග දෙපාර්පමේන්තුව இலங்கைப் பரிடரைத் திணைக்களம் இலங்கைப் பரிடரைத் திணைக்களம் இலங்கைப் பரிடரைத் திணைக்களம் இலங்கைப் பரிடரைத் திணைக்களம் Department of Examinations, Sri Lanka Department of Exa**ளு மூர்கணைப் பாழி இரைக்கு மா**த் இரைகள்கள் Lanka Department of Examinations, Sri Lanka இ ලංකා විභාග දෙපාර්පමේන්තුව ලී ලංකා විභාග දෙපාර්පමේන්තුව ලංකා විභාග දෙපාර්පමේන්තුව இலங்கைப் பரிடரைத் திணைக்களம் இலங்கைப் பரிடனத் திணைக்களம்

අධාපයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2016 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2016 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2016

്ട്രാൻ ഗത്താൻ II ഉഡ്യൻ കത്തികൾ II Higher Mathematics II

B කොටස

* පුශ්න පහකට පමණක් පිළිතුරු සපයන්න.

11. බල පද්ධතියක් පහත දක්වා ඇති රේඛා දිගේ කිුිිිියා කරන බල හයකින් සමන්විත වේ.

රෙතාව	බලය
$\overrightarrow{OA} = \mathbf{j} + \mathbf{k}$	$P(\mathbf{j} + \mathbf{k})$
$\overrightarrow{OB} = \mathbf{k} + \mathbf{i}$	$P(\mathbf{k} + \mathbf{i})$
$\overrightarrow{OC} = \mathbf{i} + \mathbf{j}$	$P(\mathbf{i} + \mathbf{j})$
$\overrightarrow{BC} = \mathbf{j} - \mathbf{k}$	$Q(\mathbf{j} - \mathbf{k})$
$\overrightarrow{CA} = \mathbf{k} - \mathbf{i}$	$Q(\mathbf{k} - \mathbf{i})$
$\overrightarrow{AB} = \mathbf{i} - \mathbf{j}$	$Q(\mathbf{i} - \mathbf{j})$

මෙහි P හා Q නියත වේ. පද්ධතිය O මූලයෙ හි දී ${f R}$ තනි බලයකට හා සූර්ණ දෛශිකය ${f G}$ වූ යුග්මයකට ඌනනය කරන්න. පද්ධතිය,

- (i) තනි සම්පුයුක්ත බලයකට,
- (ii) යුග්මයකට,

තුලා වීම සඳහා අවශාතා ලබා ගන්න.

P හා Q දෙක ම නිශ්-ශූතා බව දී ඇති විට පද්ධතිය, අන්තරාලය $\frac{Q}{2P}$ වූ පුකුංචයකට තුලා බව පෙන්වන්න. පුකුංචයේ කේන්දික අක්ෂයෙහි දෛශික සමීකරණය සොයා, එය OABC චතුස්තලයෙහි කේන්දුකය ඔස්සේ යන බව සතාවපනය කරන්න.

- 12. AB=a වූ සමචතුරසුයක හැඩය ඇති ABCD ආස්තරයක්, සමජාතීය දුවයක, සිරස් ලෙස මුළුමනින් ම ගිල්වා ඇත්තේ AB පාදය දුවයේ නිදහස් පෘෂ්ඨය මත පිහිටන පරිදී ය. CD පාදය මත E ලක්ෂාය ගනු ලබන්නේ CE=x හා ABCE තුපීසියම මත තෙරපුම, ADE තිකෝණය මත තෙරපුමට සමාන වන පරිදි ය. $x=\frac{a}{4}$ බව පෙන්වත්න. අනුකලනය භාවිතයෙන්
 - (i) ABCD සමචතුරසුයෙහි,
 - (ii) ADE තිකෝණයෙහි,

පීඩන කේන්දුයට AB සිට ඇති දුර සොයන්න.

AB වටා සූර්ණ ගැනීමෙන්, AB සිට ABCE තුපීසියමෙහි පීඩන කේන්දුයට දුර සොයන්න.

More Past Papers at

- 13. තිරසට ආනතිය α වූ සුමට තලයක උපරිම බෑවුම් රේඛාවක් දිගේ ඉහළට u ආරම්භක වේගයකින් ස්කන්ධය m වූ අංශුවක් පුක්ෂේප කරනු ලැබේ. එහි චලිතයට වාත පුතිරෝධය mkv වේ; මෙහි k ධන නියතයක් ද v වේගය ද වේ. තලයේ ඉහළට අංශුව ගමන් කරන L උපරිම දුර $L=\frac{u}{k}+\frac{g}{k^2}\ln\left(\frac{g\sin\alpha}{ku+g\sin\alpha}\right)$ මගින් දෙනු ලබන බව පෙන්වා L දුර යාමට අංශුව මගින් ගත් කාලය සොයන්න. උපරිම බෑවුම් රේඛාව දිගේ පහළට චලිතයේ දී ත් එම පුතිරෝධය ම කිුිිිිිිිිි කරන බව දී ඇති වීට, අංශුවේ u ඉහත ආරම්භක වේගයත්, එය ආරම්භක ලක්ෂාය කරා ආපසු පැමිණෙන V වේගයත් සම්බන්ධ කරන සමීකරණයක් ලබා ගන්න.
- 14. සුමට තිරස් මේසයක් මත චලනය වන A සුමට ගෝලයක්, මේසය මත නිශ්චලව තිබෙන B සමාන සුමට ගෝලයක් සමග සට්ටනය වෙයි. ගැටුම සිදු වන මොහොතේ දී A හි පුවේගයේ දිශාව ගෝලවල කේන්දු රේඛාව සමග $\theta(<\frac{\pi}{4})$ කෝණයක් සාදයි. ගෝල දෙක අතර පුතාහාගති සංගුණකය e(0<e<1) වේ. ගෝල දෙක අතර අනොහ්නා අාවේගයෙහි J විශාලක්වය, $J=\frac{1}{2}mu(1+e)\cos\theta$ මගින් දෙනු ලබන බව පෙන්වන්න. මෙහි m යනු එක් එක් ගෝලයෙහි ස්කන්ධය ද u යනු ගැටුමට පෙර A හි වේගය ද වේ.

මෙම ආවේගය භාවිතයෙන් හෝ, වෙනත් කුමයකින් හෝ, ගැටුම නිසා සිදු වන මුල් චාලක ශක්තියේ හානි වන භාගය δ යන්න $\delta=rac{1}{2}(1-e^2)\cos^2 heta$ මගින් දෙනු ලබන බව පෙන්වන්න.

ගැටුම නිසා A හි පෙතෙහි උත්තුමණ කෝණයේ ටැංජනය T යන්න $\frac{1+e}{T}=2t+\frac{1-e}{t}$ මගින් දෙනු ලබන බව තවදුරටත් පෙන්වන්න; මෙහි t= an heta වේ.

ඒ නයින්, උත්කුමණය උපරිම අගයක් ගත්තේ $t=\sqrt{\frac{1-e}{2}}$ වන විට දී බව පෙන්වා, එවිට $\delta=\frac{1-e^2}{3-e}$ බව පෙන්වන්න.

15. ස්කන්ධය m හා දිග 2a වූ AB ඒකාකාර දණ්ඩක G මධා ලක්ෂාය ඔස්සේ යන AB ට ලම්බ අක්ෂයක් වටා අවස්ථිති සූර්ණය $\frac{1}{3}ma^2$ බව පෙන්වන්න.

AB දණ්ඩෙහි A කෙළවරට කුඩා සුමට සැහැල්ලු මුදුවක් ඇඳා ඇති අතර, තිරස් ව සවි කර ඇති සුමට සෘජු කම්බියක් දිගේ මුදුවට චලනය වීමට නිදහස ඇත. දණ්ඩ, කම්බිය දිගේ ඊට පහළින් අල්වා තබා එම පිහිටීමේ සිට නිශ්චලතාවයෙන් මුදා හරිනු ලැබේ.

- (i) දණ්ඩේ G මධා ලක්ෂාය L සිරස් සරල රේඛාවක චලනය වන බව හා
- (ii) දණ්ඩ ති්රසට heta කෝණයක් ආනත වූ විට එහි $\dot{ heta}$ කෝණික වේගය, $a\dot{ heta}^2=rac{6g\sin heta}{1+3\cos^2 heta}$ මගින් දෙනු ලබන බව පෙන්වන්න.

දණ්ඩ සිරස් වන විට G හි පුවේගය සොයන්න.

දැන්, දණ්ඩ සිරස් වන මොහොතේ දී මුදූව කැඩී දණ්ඩ ගුරුත්වය යටතේ පමණක් චලනය වීමට පටත් ගනියි.

පසු ව සිදු වන දණ්ඩෙහි චලිතයේ දී G මධා ලක්ෂාය, එම L සිරස් සරල රේඛාව දිගේ ම නියත g ත්වරණයෙන්

චලනය වන බව ද දණ්ඩ $\sqrt{rac{6g}{a}}$ නියත කෝණික ඓගයකින් G වටා භුමණය වන බව ද පෙන්වන්න.

 $oxed{16.} (a)$ එක්තරා කීඩාවක දී කීඩකයෙක් ආනත තලයක් දිගේ පහළට බෝලයක් **දෙවරක්** පෙරළිය යුතු අතර එක් එක් වාරයෙහි දී බෝලය 1,2,4,2,1 වෙන් වෙන් ව ලකුණු කර ඇති සිදුරු පහෙන් එකකට වැටී තැන්පත් වේ. ඕනෑ ම සිදුරක බෝලය වැටී තැන්පත් වීමේ සම්භාවිතාව $rac{1}{5}$ ක් වේ.

X= "බෝලය තැන්පත් වන සිදුරුවලට ලබා දී ඇති ලකුණු දෙකෙහි එකතුව" යැයි ගනිමු. X සඳහා සම්භාවිතා වශාප්ති වගුව පහත දී ඇත.

ſ	х	2	3	4	5	6	8	
l	P(X = x)	4p	q	4 <i>p</i>	4p	4 <i>p</i>		

p හා q හි අගයන් සොයන්න.

E(X) හා $E(X^2)$ සොයා, Var(X)=2.4 බව පෙන්වන්න.

- (b) Y විවික්ත සසම්භාවී වීචලායක් සඳහා සමුච්චිත වාහප්ති ශිුතය F(y) යන්න $F(y) = ky^2$, y = 1, 2, 3 මගින් දෙනු ලැබේ. k හි අගයන් Y හි සම්භාවිතා වාහප්තියක් සොයන්න. E(Y) හා E(3Y-2) හි අගයන් ද සොයන්න.
- 17. (a) X සන්තතික සසම්භාවී විචලාසයකට $f(x) = \left\{ egin{array}{ll} rac{1}{2}(2-x) & , & 0 \leq x \leq 2, \\ 0 & , & \mbox{අනෙක් විට,} \\ & & \mbox{සම්භාවිතා සනත්ව ශිුතය ඇත.} \end{array}
 ight.$
 - (i) P(X > 1) හා $P\left(X > 1 \middle| X > \frac{1}{2}\right)$ මසායන්න.
 - (ii) $E(X) = \frac{2}{3}$ බව පෙන්වා, Var(X) සොයන්න.
 - (b) සීනි පැකට්වල බර, මධානාසය $500\,\mathrm{g}$ හා සම්මත අපගමනය $10\,\mathrm{g}$ සහිත ව පුමත ලෙස වාාප්ත වී ඇත.
 - (i) සසම්භාවී ලෙස තෝරා ගත්නා ලද පැකට් එකක බර 490 g හා 505 g අතර තිබීමේ සම්භාවිතාව සොයන්න.
 - (ii) සියලු ම පැකට්වලින් 95% ක බර, (500-k) g හා (500+k) g අතර තිබෙන පරිදි k හි අගය සොයන්න.
 - (iii) පැකට් පහක් සසම්භාවී ලෙස තෝරා ගනු ලැබේ. මේවායින් වැඩි තරමින් දෙකක බර 495 g ට වඩා අඩුව තිබීමේ සම්භාවිතාව සොයන්න.

* * *

More Past Papers at