Содержание

1	Пар	Параметрические критерии						
	1.1	Однов	выборочные критерии Стьюдента	2				
		1.1.1	z-критерий	2				
		1.1.2	t-критерий	2				
	1.2	Двухн	выборочные критерии Стьюдента	3				
		1.2.1	z-критерий	3				
		1.2.2	t-критерий	3				
	1.3	Крите	ерий Стьюдента для связанных выборок	4				
		1.3.1	t-критерий для связанных выборок	4				
	1.4	Норма	альность выборок	4				
		1.4.1	Критерей χ^2	4				
		1.4.2	Критерий Шапиро-Уилка	5				
	1.5	Гипот	езы о долях	6				
		1.5.1	z-критерий для доли	6				
		1.5.2	z-критерий для двух долей, не связанные выборки	6				
		1.5.3	z-критерий для двух долей, связанные выборки	7				
2	Непараметрические критерии							
	2.1	Крите	ерий знаков	8				
		2.1.1	Одновыборочный критерий знаков	8				
		2.1.2	Двухвыборочный критерий знаков	8				
	2.2	Ранго	вые критерии	8				
		2.2.1	Критерий ранговых знаков	8				
		2.2.2	Критерий ранговых знаков, связанные выборки	9				
	2.3	Крите	ерий Манна-Уитни	9				
	2.4			10				
		2.4.1	Одновыборочный критерий	10				
		2.4.2		10				
		2.4.3	Лля независимых выборок	10				

1 Параметрические критерии

1.1 Одновыборочные критерии Стьюдента

1.1.1 z-критерий

выборка: $X^n = (X_1, \dots, X_n)$

 $X \sim N(\mu, \sigma^2), \sigma$ известна

нулевая гипотеза: $H_0: \mu = \mu_0$

альтернатива: $H_1: \mu < \neq > \mu_0$

статистика: $Z(X^n) = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$

нулевое распределение: $Z(X^n) \sim N(0,1)$

$$p = \begin{cases} F_{N(0,1)}(z) & H_1: \mu < \mu_0 \\ 1 - F_{N(0,1)}(z) & H_1: \mu > \mu_0 \\ 2(1 - F_{N(0,1)}(|z|)) & H_1: \mu \neq \mu_0 \end{cases}$$

1.1.2 t-критерий

выборка: $X^n = (X_1, \dots, X_n)$

 $X \sim N(\mu, \sigma^2), \sigma$ неизвестна

нулевая гипотеза: $H_0: \mu = \mu_0$

альтернатива: $H_1: \mu < \neq > \mu_0$

статистика: $T(X^n) = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$

нулевое распределение: $T\left(X^{n}\right) \sim St(n-1)$

$$p = \begin{cases} F_{St(n-1)}(t) & H_1: \mu < \mu_0 \\ 1 - F_{St(n-1)}(t) & H_1: \mu > \mu_0 \\ 2(1 - F_{St(n-1)}(|t|)) & H_1: \mu \neq \mu_0 \end{cases}$$

1.2 Двухвыборочные критерии Стьюдента

1.2.1 **z-**критерий

выборки:
$$X_1^{n_1}=(X_{11},\ldots,X_{1n_1})$$
 $X_2^{n_2}=(X_{21},\ldots,X_{2n_2})$ $X_1\sim N(\mu_1,\sigma_1^2),X_2\sim N(\mu_2,\sigma_2^2),$

$$X_1 \sim N(\mu_1, \sigma_1^2), X_2 \sim N(\mu_2, \sigma_2^2),$$

 σ_1,σ_2 известны

нулевая гипотеза: $H_0: \ \mu_1 = \mu_2$

альтернатива: $H_1: \mu_1 < \neq > \mu_2$ статистика: $Z\left(X_1^{n_1}, X_2^{n_2}\right) = \frac{\overline{X_1} - \overline{X_2}}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$ распределение: $Z\left(X_1^{n_1}, X_2^{n_2}\right) \sim N(0, 1)$

нулевое распределение:

1.2.2t-критерий

выборки:
$$X_1^{n_1}=(X_{11},\ldots,X_{1n_1})$$
 $X_2^{n_2}=(X_{21},\ldots,X_{2n_2})$ $X_1\sim N(\mu_1,\sigma_1^2),X_2\sim N(\mu_2,\sigma_2^2),$

$$X_2^{n_2} = (X_{21}, \dots, X_{2n_2})$$

$$X_1 \sim N(\mu_1, \sigma_1^2), X_2 \sim N(\mu_2, \sigma_2^2)$$

$$\sigma_1, \sigma_2$$
 неизвестны

нулевая гипотеза: $H_0: \mu_1 = \mu_2$

альтернатива:
$$H_1: \mu_1 < \neq > \mu_2$$
 статистика: $T(X_1^{n_1}, X_2^{n_2}) = \frac{\overline{X_1} - \overline{X_2}}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$

нулевое распределение: $T(X_1^{n_1}, X_2^{n_2}) \approx \tilde{St}(\nu)$

$$\nu = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\frac{S_1^4}{n_1^2(n_1 - 1)} + \frac{S_2^4}{n_2^2(n_2 - 1)}}$$

Нулевое распределение приближённое, а не точное. Точного решения не существует! (Проблема Баренца-Фишера). Приближение достаточно при $n_1=n_2$ или при $[n_1 > n_2] = [\sigma_1 > \sigma_2]$

Критерий Стьюдента для связанных выборок 1.3

1.3.1 t-критерий для связанных выборок

выборки:
$$X_1^n = (X_{11}, \dots, X_{1n}), X_1 \sim N(\mu_1, \sigma_1^2)$$

 $X_2^n = (X_{21}, \dots, X_{2n}), X_2 \sim N(\mu_2, \sigma_2^2)$

$$X_2^n = (X_{21}, \dots, X_{2n}), X_2 \sim N(\mu_2, \sigma_2^2)$$

 $H_0: \mu_1 = \mu_2$ нулевая гипотеза:

альтернатива:

ая гипотеза.
$$H_0: \mu_1 - \mu_2$$
 пьтернатива: $H_1: \mu_1 < \neq > \mu_2$ статистика: $T(X_1^n, X_2^n) = \frac{\overline{X_1} - \overline{X_2}}{S/\sqrt{n}}$
$$S^2 = \frac{1}{n-1} \sum_{i=1}^n \left(D_i - \overline{D}\right)^2, D_i = X_{1i} - X_{2i}$$

 $T\left(X_1^n, X_2^n\right) \sim St(n-1)$ нулевое распределение:

1.4 Нормальность выборок

1.4.1 Критерей χ^2

выборка: $X^n = (X_1, \dots, X_n)$

нулевая гипотеза: $H_0: X \sim N(\mu, \sigma^2)$

альтернатива: H_1 : H_0 неверна

статистика: $\chi^2\left(X^n\right) = \sum_{i=1}^K \frac{(n_i - np_i)^2}{np_i}$ спределение: $\chi^2\left(X^n\right) = \begin{cases} \chi_{K-1}^2 \; , \; \mu, \sigma \text{ заданы} \\ \chi_{K-3}^2 \; , \; \mu, \sigma \text{ оцениваются} \end{cases}$ n_i — число элементов выборки в $[a_i, a_{i+1}]$ нулевое распределение:

 $p_i = F_{N(\mu,\sigma^2)}(a_{i+1}) - F_{N(\mu,\sigma^2)}(a_i)$

1.4.2 Критерий Шапиро-Уилка

выборка: $X^n = (X_1, \dots, X_n)$ нулевая гипотеза: $H_0: X \sim N(\mu, \sigma^2)$

альтернатива: H_1 : H_0 неверна

статистика: $W\left(X^{n}\right)=\dfrac{\left(\sum\limits_{i=1}^{n}a_{i}X_{(i)}\right)^{2}}{\sum\limits_{i=1}^{n}n(X_{i}-\overline{X})^{2}}$ спределение: табличи

нулевое распределение: табличное

 a_i основаны на матожиданиях порядковых статистик нормального распределения и также табулированы.

Если нормальность отвергается, чувствительные методы, предполагающие нормальность, использовать нельзя!

1.5 Гипотезы о долях

1.5.1 **z-критерий** для доли

выборка:
$$X^n = (X_1, \dots, X_n)$$

$$X \sim Ber(p)$$

нулевая гипотеза:
$$H_0: p = p_0$$

альтернатива:
$$H_1: p < \neq > p_0$$

вътернатива:
$$H_1: p < \neq > p_0$$
 статистика: $Z(X^n) = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}, \hat{p} = \overline{X_n}$ статистика: $Z(X^n) \sim N(0, 1)$

нулевое распределение:

z-критерий для двух долей, не связанные выборки 1.5.2

выборка:
$$X_1^{n_1}=(X_{11},\ldots,X_{1n_1})\,,X_1\sim Ber(p_1)$$
 $X_2^{n_2}=(X_{21},\ldots,X_{2n_2})\,,X_2\sim Ber(p_2)$

$$X_2^{n_2} = (X_{21}, \dots, X_{2n_2}), X_2 \sim Ber(p_2)$$

нулевая гипотеза:
$$H_0: p_1 = p_2$$

альтернатива:
$$H_1: p_1 < \neq > p_2$$

статистика:
$$Z(X_1^{n_1}, X_2^{n_2}) = \frac{\hat{p_1} - \hat{p_2}}{\sqrt{P(1-P)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

$$P = \frac{\hat{p_1}n_1 + \hat{p_2}n_2}{1 + \hat{p_2}n_2}$$

$$P = \frac{\hat{p_1}n_1 + \hat{p_2}n_2}{n_1 + n_2}$$
 нулевое распределение: $Z\left(X_1^{n_1}, X_2^{n_2}\right) \sim N(0, 1)$

При независимых выборках Z-критерий использует только первую строку таблицы:

$$\hat{p_1} = \frac{a}{n_1}, \hat{p_2} = \frac{b}{n_2}$$

6

	X_1	X_2
1	a	b
0	c	d
\sum	n_1	n_2

1.5.3z-критерий для двух долей, связанные выборки

выборка:
$$X_1^n = (X_{11}, \dots, X_{1n}), X_1 \sim Ber(p_1)$$

 $X_2^n = (X_{21}, \dots, X_{2n}), X_2 \sim Ber(p_2)$

$$X_2^n = (X_{21}, \dots, X_{2n}), X_2 \sim Ber(p_2)$$

выборки связанные

 $H_0: p_1 = p_2$ нулевая гипотеза:

альтернатива: $H_1: p_1 < \neq > p_2$

статистика:
$$Z\left(X_1^n,X_2^n\right)=\dfrac{f-g}{\sqrt{f+g-\dfrac{(f-g)^2}{n}}}$$
 спределение: $Z\left(X_1^n,X_2^n\right)\sim N(0,1),$ при $H_0=0$

нулевое распределение:

$\begin{array}{ c c } X_1^n \\ X_2^n \end{array}$	1	0	\sum
1	e	f	e+f
0	g	h	g+h
\sum	e+g	f+h	n

При связанных выборках Z-критерий использует только внедиагональные элементы таблицы.

2 Непараметрические критерии

2.1 Критерий знаков

2.1.1 Одновыборочный критерий знаков

выборка: $X^{n} = (X_{1}, \dots, X_{n}), X_{i} \neq m_{0}$

нулевая гипотеза: $H_0: med\ X = m_0$ альтернатива: $H_1: med\ X < \neq > m_0$

статистика: $T(X^n) = \sum_{i=1}^n [X_i > m_0]$

нулевое распределение: $T(X^n) \sim Bin(n, \frac{1}{2})$

2.1.2 Двухвыборочный критерий знаков

выборка: $X_1^n = (X_{11}, \dots, X_{1n})$

 $X_2^n = (X_{21}, \dots, X_{2n})$

 $X_{1i} \neq X_{2i}$, выборки связанные

нулевая гипотеза: $H_0: P(X_1 > X_2) = \frac{1}{2}$

альтернатива: $H_1: P(X_1 > X_2) < \neq > \frac{1}{2}$

статистика: $T(X_1^n, X_2^n) = \sum_{i=1}^n [X_{1i} > X_{2i}]$

нулевое распределение: $T(X_1^n, X_2^n) \sim Bin(n, \frac{1}{2})$

2.2 Ранговые критерии

2.2.1 Критерий ранговых знаков

выборка: $X^{n} = (X_{1}, \dots, X_{n}), X_{i} \neq m_{0}$

 F_X симметрично относительно медианы

нулевая гипотеза: $H_0: med \ X = m_0$

альтернатива: H_1 : $med X < \neq > m_0$

статистика: $W(X^n) = \sum_{i=1}^n rank(|X_i - m_0|) \cdot sign(X_i - m_0)$

нулевое распределение: табличное

Апроксимация для n > 20:

$$W \approx \sim N\left(0, \frac{n(n+1)(2n+1)}{6}\right)$$

8

2.2.2 Критерий ранговых знаков, связанные выборки

выборка:
$$X_1^n = (X_{11}, \dots, X_{1n})$$

$$X_2^n = (X_{21}, \dots, X_{2n})$$

 $X_{1i} \neq X_{2i}$, выборки связанные

нулевая гипотеза: $H_0: med(X_1 - X_2) = 0$

альтернатива: $H_1: med(X_1 - X_2) < \neq > 0$

статистика: $W(X_1^n, X_2^n) = \sum_{i=1}^n rank(|X_{1i} - X_{2i}|) \cdot sign(X_{1i} - X_{2i})$

нулевое распределение: табличное

2.3 Критерий Манна-Уитни

выборка:
$$X_1^{n_1} = (X_{11}, \dots, X_{1n_1})$$

$$X_2^{n_2} = (X_{21}, \dots, X_{2n_2})$$

нулевая гипотеза: H_0 : $F_{X_1}(x) = F_{X_2}(x)$

альтернатива: $H_1: F_{X_1}(x) = F_{X_2}(x + \Delta), \Delta < \neq > 0$

статистика: $X_{(1)} \leqslant \ldots \leqslant X_{(n_1+n_2)}$ - вариационный ряд

объеденённой выборки

$$X = X_1^{n_1} \cup X_2^{n_2}$$

$$R(X_1^{n_1}, X_2^{n_2}) = \sum_{i=1}^{n_1} rank(X_{1i})$$

нулевое распределение: табличное

Апроксимация для $n_1, n_2 > 10$:

$$R_1 \sim N\left(\frac{n_1(n_1+n_2+1)}{2}, \frac{n_1n_2(n_1+n_2+1)}{12}\right)$$

2.4 Перестановочные критерии

2.4.1Одновыборочный критерий

выборка: $X^n = (X_1, \dots, X_n)$

 F_X симметрично относительно матожидания

 $H_0: EX = m_0$ нулевая гипотеза:

 $H_1: \mathsf{E} X < \neq > m_0$ альтернатива:

 $T(X^n) = \sum_{i=1}^{n} (X_i - m_0)$ статистика:

порождается перебором 2^n знаков нулевое распределение:

перед слагаемыми $X_i - m_0$

Для связанных выборок 2.4.2

выборка: $X_1^n = (X_{11}, \dots, X_{1n})$

 $X_2^n = (X_{21}, \dots, X_{2n})$ выботки связанные

нулевая гипотеза: H_0 : $\mathsf{E}(X_1-X_2)=m_0$

альтернатива: H_1 : $E(X_1 - X_2) < \neq > m_0$

статистика: $D^n = (X_{1i} - X_{2i})$

 $T(X_1^n, X_2^n) = T(D^n) = \sum_{i=1}^n D_i$

порождается перебором 2^n знаков нулевое распределение:

перед слагаемыми D_i

Для независимых выборок 2.4.3

выборка: $X_1^{n_1}=(X_{11},\dots,X_{1n_1})$ $X_2^{n_2}=(X_{21},\dots,X_{2n_2})$ нулевая гипотеза: $H_0:\ F_{X_1}(x)=F_{X_2}(x)$

альтернатива: $H_1: F_{X_1}(x) = F_{X_2}(x+\Delta), \Delta < \neq > 0$ статистика: $T(X_1^{n_1}, X_2^{n_2}) = \frac{1}{n_1} \sum_{i=1}^{n_1} X_{1i} - \frac{1}{n_2} \sum_{i=1}^{n_2} X_{2i}$

порождается перебором $C_{n_1+n_2}^{n_1}$ нулевое распределение:

размещений объеденённой выборки