

Accelerating Nearest-Neighbours via KD-Trees on GPUs

Author:

Sarah Maria Hyatt

zfj900@alumni.ku.dk

Supervisor:

Cosmin Eugen Oancea

cosmin.oancea@di.ku.dk

PROJECT OUTSIDE COURSE SCOPE

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF COPENHAGEN

April 21, 2020

Contents

1	Introduction		
	1.1	Acknowledgement	1
2	Bac	ckground	1
	2.1	Related Work	6
		2.1.1 PatchMatch	6
		2.1.2 Coherency Sensitive Hashing	7
3	Imp	plementation	8
	3.1	The Brute Force Version	8
	3.2	k-d Tree Construction	9
	3.3	Tree Traversal	10
	3.4	Representing the Stack as an Integer	10
	3.5	Validating Whether to Look at the second	11
	3.6	The Full Implementation	13
4	Exp	perimental Evaluation	13
5	Cor	nclusion	13
References			14

1 Introduction

1.1 Acknowledgement

2 Background

Computing KNN is widely applied due to its simplicity and excellent empirical performance, it has no training phase, it can handle binary as well as multiclass data, and while often applied for comparing two images, it faces the challenge of slow performance because both images are of image size.

When comparing two images; image A and image B, the goal of KNN is to find the patches

of image B that are most similar to each query patch of image A, according to a measured distance. The naive approach is using brute force, in which each patch of image B is compared with each patch of image A, if each image has m patches the complexity of the search will be $O(m^2)$. See Brute Force. Although brute force is a simple solution, there exists several alternative techniques for computing KNN. One commonly applied method is using a generalisation of the binary tree; the k-d tree.

The k-d tree consists of a root, nodes and leaves; the root represents all patches, the nodes represent a partitioned segment of the patches, and the leaves collectively contain all patches spread out on 2^{h+1} leaves where h is the height of the tree excluding leaves.

Using a k-d tree has advances w.r.t search performance, thanks to the binary tree structure it yields a complexity of $O(m \lg m)$ (Friedman, Bentley, & Finkel, 1977).

Algorithms 1, 2 and 3 below represent a recursive implementation of the k-d tree construction and the tree traversal as high-level pseudo-code.

Cosmin: should I mention that the pseudo-code is based on the Python code and the authors?

Algorithm 1 is the main function in which dimensionality of images A and B are reduced using PCA¹, a k-d tree is created of image B, and all patches of image A are iterated through, of which a call to Traverse yields the best neighbours for each patch in A.

Algorithm 1 Main

- 1: **procedure** MAIN(k)
- 2: $imA \leftarrow PCA(imageA)$
- 3: $imB \leftarrow PCA(imageB)$
- 4: $tree \leftarrow BuildTree(imB, imB.1, 0, 0, None)$
- 5: $neighbours \leftarrow None$
- 6: **foreach** query **in** imA **do**:
- 7: $neighbours \leftarrow Traverse(tree, query, 0, neighbours, k)$
- 8: **return** neighbours

Algorithm 2 represents the construction of the k-d tree. The tree construction is divided

¹Given a collection of points in two or higher dimensional space a principal component analysis (PCA) can be created by first choosing the line that minimises the average squared distance from a point to the line, resulting in an Eigenvector, second choosing the line perpendicular to the first, resulting in a new Eigenvector, and repeating the process will result in orthogonal basis vectors. These vectors are called principal components, and several related procedures principal component analysis (PCA).

into two statements; working with the nodes (lines 4-9) or working with the leaves (lines 20-21). This condition is measured by computing the height of the tree and checking the current level against the height.

The patches are partitioned by finding the dimension with the widest spread and choosing the median value of that dimension. The nodes, therefore, contain a dimension and a median value. Line 5 uses the function GetSplitDimension to attain the dimension, lines 6-7 sort the indices and patches w.r.t the chosen dimension and lines 9-10 pick out the median index and value. Once done, the median and the dimension are ready to be stored, which essentially creates that particular node of the tree. Lines 13-19 compute the left and right indices for the next iteration and recursively call the BuildTree function again, in order to complete the creation of nodes in the tree.

Last, line 21 sorts the leaves w.r.t the indices that were sorted and partitioned throughout the recursive node creation.

Algorithm 2 Building the Tree

```
1: procedure BuildTree(patches, indices, depth, index, tree)
       maxDepth \leftarrow ComputeMaxDepth(patches)
2:
 3:
       if depth < maxDepth-1 then
 4:
           dim \leftarrow \text{GETSPLITDIMENSION}(patches)
 5:
           indices \leftarrow SortByDim(indices, dim)
 6:
           points \leftarrow patches[indices]
 7:
 8:
           medianIdx \leftarrow GetmedianIdx(indices)
9:
           median \leftarrow GETMEDIAN(points)
10:
11:
12:
           tree \leftarrow (median, dim)
           depth \leftarrow depth + 1
13:
14:
           leftIdx \leftarrow Add To Left(Index)
15:
           rightIdx \leftarrow Add ToRight(Index)
16:
17:
           BuildTree (patches[: medianIdx], indices, depth, leftIdx, tree)
18:
           BuildTree(patches[medianIdx:], indices, depth, rightIdx, tree)
19:
       else
20:
           leaves[index] \leftarrow SortLeavesByIndices(patches, indices)
21:
```

The traversal is presented in Algorithm 3 below. It deals with three different stages; reaching a leaf, which is the first and second node to visit and a check to visit the second leaf. The first stage on lines 2-4, reaching a leaf, is straightforward. We reach a leaf; therefore, we perform brute force with the query patch and the patches of image B in that current leaf.

Algorithm 3 The Tree Traversal

```
1: procedure Traverse(tree, query, nodeIndex, neighbours, k)
2:
        if IsLeaf(nodeIndex) then
 3:
           neighbours \leftarrow BruteForce(tree, query, nodeIndex, neighbours, k)
 4:
           return neighbours
 5:
        dimens \leftarrow tree[nodeIndex].1
 6:
        median \leftarrow tree[nodeIndex].0
 7:
        queryV \leftarrow query[dimens]
 8:
9:
       if queryV <= median then
10:
           first \leftarrow \text{GoLeft}(nodeIndex)
11:
           second \leftarrow GoRight(nodeIndex)
12:
        else
13:
           first \leftarrow GORIGHT(nodeIndex)
14:
           second \leftarrow GoLeft(nodeIndex)
15:
16:
        neighbours \leftarrow \text{Traverse}(tree, query, first, neighbours, k)
17:
        worstNeighbour \leftarrow \text{Last of } neighbours
18:
19:
        if (median - queryV) < worstNeighbour then
20:
           neighbours \leftarrow \text{Traverse}(tree, query, second, neighbours, k)
21:
    return neighbours
22:
```

The third stage, lines 18-21, determine whether we should visit the second node by checking if the difference between the median and the query is less than the worst nearest neighbour. If this is the case; the second node will be visited in a recursive call of Traverse on line 21. The check is an estimate to assure that it makes sense to continue the traversal, because if the worst nearest neighbours is a better result in XXXX.

Argument the logic behind this.

The second stage on lines 6-17 determines which following nodes are the first and second,

respectively. The first is always the node that is on the same side of the current node's median as the query. We might think of this as going left first on lines 10-12 and right first on lines 13-15. The dimension and median of the current node is extracted from the tree, lines 6-7, and the query value based on the current dimension of that node, line 8. Line 17 executes a recursive call of Traverse in which the first node is the next node to be visited.

The goal is to implement the solution using Futhark since Futhark is a pure functional data-parallel array language, meaning it is syntactically and conceptually similar to other functional languages; however, Futhark can compile code to run on the CPU, or it can optimise and parallelise the code to run on the GPU. It is a great advantage to write fully parallel code in a high-level functional language. The downside is that Futhark has its limits; such as only supporting regular arrays and not supporting recursion. With this in mind, the pseudo-code, demonstrated above, will need to be rewritten without recursion. See more in the sections k-d Tree Construction and Tree Traversal.

- approximate, PCA
- implement in Futhark, why and what is different

•

2.1 Related Work

2.1.1 PatchMatch

PatchMatch uses a randomised algorithm for quickly finding approximate nearest neighbour fields (ANNF) between image patches.

While previous solutions use KD-Trees with dimensionality reduction, PatchMatch instead searches through a 2D space of possible patch offset. The initial step is choosing random patches followed by 4-5 iterations containing two processes: (1) propagation applying a statistic that can be used to examine the relation between two signals or data sets, known as coherence, (2) random search in the concentric neighbourhood to seek better matches by multiple scales of random offsets. The argument is that one random choice when assigning a patch is non-optimal, however applying a large field of random assignments is likely a good choice because it populates a larger domain.

The gains are particularly performance enabling interactive image editing and sparse memory usage, resulting in runtime O(mM log M) and memory usage O(M), where m is the number of pixels and M the number of patches. The downside is that PatchMatch depends on similar images because it searches in nearby regions in few iterations, which in turn also affects its accuracy.

2.1.2 Coherency Sensitive Hashing

Coherency Sensitive Hashing (CSH) is inspired by the techniques of Locality Sensitive Hashing (LSH) and PatchMatch. CSH uses a likewise hashing scheme of LSH and is built on two overall stages, indexing and searching.

The indexing stage applies 2D Walsh-Hadamard kernels in which the projections of each patch in image A and B are initially computed onto the WH kernels. Subsequently the hash tables are created by the following. First, it takes a random line defined by a patch and divides it into bins of a constant width while shifting the division by a random offset. Second, the patch is projected onto the most significant 2D Walsh-Hadamard kernels. Last, a hash value is assigned, being the index of the bin it falls into.

Applying hash tables has the benefit that similar patches are likely to be hashed into the same entry.

The searching stage starts by initialising an arbitrary candidate map of ANNF. This is followed by iterations through each patch in image A where: (1) the nearest neighbour candidates of image B are found using the current ANNF and the current hash table, (2) the current ANNF mapping is updated with approximate distances.

Selecting candidates follows the appearance-based techniques of LSH and as well as the coherence-based techniques of PatchMatch. Choosing among the candidates is done in an approximate manner where the WH kernels rejection scheme for pattern matching is applied beneficially.

CSH has '46%' better performance than PatchMatch and a higher level of accuracy with error rates that are '22%' lower in comparison

3 Implementation

3.1 The Brute Force Version

•

•

•

•

•

•

•

•

```
entry nnk [m] [n] (imA : [m][n]real)
                       (imB : [m][n]real) : [m][k](int,real) =
2
        map (\a_patch ->
            if a_patch[0] == real_inf
            then replicate k (-2i32, real_inf)
5
            else
            let nn = replicate k (-1i32, real_inf)
            in loop nn for q < m do
                let b_patch = imB[q]
9
                let dist = euclidean a_patch b_patch
10
                let b_idx = q in
11
                let (_, _, nn') =
12
                     loop (dist, b_idx, nn) for i < k do</pre>
13
                         let cur_nn = nn[i].1 in
14
                         if dist <= cur_nn then
15
                             let tmp_ind = nn[i].0
16
                             let nn[i] = (b_idx, dist)
                             let b_idx = tmp_ind
18
                             let dist = cur_nn
                             in (dist, b_idx, nn)
20
                                  (dist, b_idx, nn)
                         else
^{21}
                in nn'
22
        ) imA
23
```

Listing 1: Futhark implementation of the Brute Force.

3.2 k-d Tree Construction

- •
- ullet
- •
- •
- •
- •
- •
- •

Listing 2: Futhark implementation of the tree creation.

3.3 Tree Traversal

- using an integer to represent the stack
- the first traversal logic (show figure)
- the continuous traversal logic (show figure)
- checking a median on one dimension
- checking all medians from all dimensions (show equation)
- •
- lacktriangle
- •

As mention in the Background, Futhark does not support recursion, which is why the pseudo-code from Algorithm 3 is rewritten into an imperative version. One such solution is using a stack to traverse the tree incrementally while deciding which nodes to visit next. The figure below demonstrates the traverse down to the first leaf; this example does not need a stack because, at this point, we do not know if we need to visit additional leaves. Figures X-X show the traversal continuing from the first leaf, in which a stack is necessary.

3.4 Representing the Stack as an Integer

The naive solution of representing a stack is using a boolean list where the leaves and node are set to true once visited. Although this is a simple and correct solution, since the height of the tree never exceeds 32, it can be further optimised as an integer representation instead. The code in listing XX shows the bit arithmetic done to modify the right areas of the stack and the logic behind setVisited is demonstrated in XX.

Fig. 1: Example of stack integer arithmetic.

```
let setVisited (stk: i32) (c: i32) : i32 =
stk | (1 << c)
let resetVisit (stk: i32) (c: i32) : i32 =
stk & !(1 << c)
let isVisited (stk: i32) (c: i32) : bool =
(stk & (1 << c)) > 0i32
```

Listing 3: Snippet of bit arithmetic for stack modifications.

3.5 Validating Whether to Look at the second

The original solution determines whether to visit the second node by XXX.

```
entry traverse [d][n][l] (height:
                                                     i32)
                                                            (median_dims:
                                                                               [n]i32)
                                                  [n]f32)
                               (median_vals:
                                                            (wknn:
                                                                                  f32)
2
                               (query:
                                                  [d]f32)
                                                            (stack:
                                                                                  i32)
                               (last_leaf:
                                                     i32)
                                                            (lower_bounds: [1][d]f32)
                               (upper_bounds: [1][d]f32)
                                                            : (i32, i32) =
5
      let setVisited (stk: i32) (c: i32) : i32 =
          stk | (1 << c)
      let resetVisit (stk: i32) (c: i32) : i32 =
9
          stk & !(1 << c)
10
      let isVisited (stk: i32) (c: i32) : bool =
11
          (stk & (1 << c)) > 0i32
12
13
      let (parent_rec, stack, count, rec_node) =
14
          loop (node_index, stack, count, rec_node) =
15
               (last_leaf, stack, height, -1)
16
                while (node_index != 0) && (rec_node < 0) do
                     let parent = getParent node_index
18
                     let second = node_index + addToSecond node_index in
20
                     if isVisited stack count
21
                     then (parent, stack, count-1, -1)
22
                     else
23
                       let ack =
                         loop ack = 0.0f32
25
                           for i < d do
26
                                let cur_q = query[i]
27
                                let lower = lower_bounds[second,i]
28
                                let upper = upper_bounds[second,i] in
29
30
                                if cur_q <= lower then
31
                                    let res = (cur_q-lower)*(cur_q-lower)
32
                                    in (ack + res)
33
                                else if cur_q >= upper then
34
                                    let res = (cur_q-upper)*(cur_q-upper)
35
                                    in (ack + res)
36
                                else (ack + 0.0)
37
38
                       let to_visit = (f32.sqrt ack) < wknn in</pre>
39
                       let to_visit = f32.abs(median_vals[parent] - query[median_dims[parent]]) < wknn in</pre>
40
                       if !to_visit
41
                       then (parent, stack, count-1, -1)
42
                       else
43
                         let second = node_index + addToSecond node_index
44
                         let stack = setVisited stack count in
45
                         (parent, stack, count, second)
46
47
                                                   12
48
      let (new_leaf, stack, _) =
49
```

if parent_rec == 0 && rec_node == -1

50

3.6 The Full Implementation

At each step you reason about tradeoffs/alternative design choices and justify why you did it in the way you did it (advantages/shortcommings, and why your approach is reasonable). Of course mostly related to performance.

Whenever possible, support your reasoning with (as in point to) experimental evaluation results (next).

4 Experimental Evaluation

• Plot with: partition vs. sorting

• Plot with: traverse vs. traverse all dimensions

• Plot with: sorting leaves vs. not sorting leaves

• Plot with: brute force with the best kd-tree

•

•

•

•

5 Conclusion

References

- Friedman, J. H., Bentley, J. L., & Finkel, R. A. (1977). An algorithm for finding best matches in logarithmic expected time. *ACM Transactions on Mathematical Software*.
- He, K., & Sun, J. (2012). Computing nearest-neighbor fields via propagation-assisted kd-trees. *Microsoft Research Asia*.