

Pauta Ayudantía 11 Álgebra Lineal

Profesor: Michael Karkulik

Ayudante: Sebastián Fuentes

9 de junio de 2022

Problema 1. Sea V espacio vectorial de dimensión finita y $T: V \to W$ una aplicación lineal sobreyectiva. Demuestre que existe un subespacio $\mathbf{U} \subseteq \mathbf{V}$ tal que la restricción $T|_{\mathbf{U}} : \mathbf{U} \to \mathbf{W}, \mathbf{u} \mapsto T(\mathbf{u})$ es un isomorfismo.

Demostración. Sea $\{\mathbf{w}_1, \dots, \mathbf{w}_n\}$ base de W. Como T es sobreyectivo, existen $\mathbf{v}_1, \dots, \mathbf{v}_n \in \mathbf{V}$ tales que $T(\mathbf{v}_i) = \mathbf{w}_i$ para todo $i=1,\ldots,n$. Vemos entonces que $\mathbf{v}_1,\ldots,\mathbf{v}_n$ son linealmente independientes pues si $\alpha_1\mathbf{v}_1+\ldots+\alpha_n\mathbf{v}_n=\mathbf{0}$ aplicando T

$$T(\alpha_1 \mathbf{v}_1 + \ldots + \alpha_n \mathbf{v}_n) = \alpha_1 T(\mathbf{v}_1) + \ldots + \alpha_n T(\mathbf{v}_n) = \alpha_1 \mathbf{w}_1 + \ldots + \alpha_n \mathbf{w}_n = \mathbf{0}$$

y por independencia lineal de **W** deducimos que $\alpha_1 = \ldots = \alpha_n = 0$. Definimos entonces $U := \operatorname{span}\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ y notamos que la restricción $T|_{\mathbf{U}}: \mathbf{U} \to \mathbf{W}$ es un isomorfismo pues mapea una base de \mathbf{U} en una base de \mathbf{W} .

Problema 2. Sea $\mathbf{v}_1, \dots, \mathbf{v}_n$ base del espacio vectorial \mathbf{V} y $\varphi_1, \dots, \varphi_n$ su base dual. Probar que si $\psi \in \mathbf{V}$ entonces

$$\psi = \psi(\mathbf{v}_1)\varphi_1 + \ldots + \psi(\mathbf{v}_n)\varphi_n$$

Demostración. Como $\varphi_1, \ldots, \varphi_n$ es base de \mathbf{V}^* , para todo $\varphi \in \mathbf{V}^*$ existen $\alpha_1, \ldots, \alpha_n$ tales que

$$\varphi = \alpha_1 \varphi_1 + \ldots + \alpha_n \varphi_n$$

Podemos evaluar la identidad anterior en \mathbf{v}_1 para observar que

$$\varphi(\mathbf{v}_1) = \alpha_1 \underbrace{\varphi_1(\mathbf{v}_1)}_{=1} + \ldots + \alpha_n \underbrace{\varphi_n(\mathbf{v}_n)}_{=0} = \alpha_1$$

en donde hemos utilizado la definición de base dual. Repitiendo el mismo proceso para \mathbf{v}_i vemos que

$$\varphi(\mathbf{v}_i) = \alpha_1 \varphi_1(\mathbf{v}_i) + \ldots + \alpha_n \varphi_n(\mathbf{v}_i) = \alpha_i$$

Problema 3. Considere las bases canónicas $\mathcal{B} = (\mathbf{e}_1, \mathbf{e}_2), \mathcal{C} = (\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3)$ de $\mathbb{R}^2, \mathbb{R}^3$ y $\mathcal{B}^* = \{\varphi_1, \varphi_2\}$, $\mathcal{C}^* = \{\varphi_1, \varphi_2\}$ $\{\psi_1, \psi_2, \psi_3\}$ sus bases duales respectivas. Definimos la aplicación lineal

$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
, $(x, y, z) \mapsto (4x + 5y + 6z, 7x + 8y + 9z)$

Con respecto a esta aplicación

- 1. Encuentre las bases duales mencionadas.
- 2. Calcule $T^*(\varphi_1), T^*(\varphi_2)$. Escríbalos como combinación lineal de ψ_1, ψ_2, ψ_3 . Escriba la matriz de T^* en las bases canónicas duales.
- 3. Obtenga la matriz de T^* a partir de la matriz de T.
- 4. Considere la base $\mathcal{D} = (\mathbf{e}_1 + 5\mathbf{e}_2, \mathbf{e}_1 + 2\mathbf{e}_2)$ y encuentre la matriz de cambio de base entre las bases duales \mathcal{B}^* $v \mathcal{D}^*$
- 5. Defina la base $\mathcal{E} = (\mathbf{f}_1 \mathbf{f}_2, \mathbf{f}_1 + \mathbf{f}_2, \mathbf{f}_3)$. Encuentre la matriz de cambio de base entre \mathcal{C}^* y \mathcal{E}^* .
- 6. Encuentre la matriz de T^* en las bases \mathcal{D}^* y \mathcal{E}^* .

MAT210 UTFSM

Solución.

1. De manera general, si consideramos $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ base canónica de \mathbb{R}^n , entonces podemos definir la aplicación lineal

$$\varphi_i: \mathbb{R}^n \to \mathbb{R}, \qquad \varphi_i(x_1, \dots, x_n) = x_i$$

la cual claramente verifica $\varphi_i(\mathbf{e}_i) = \delta_{ij}$, deduciendo que corresponde a la base dual.

2. Notando que $T^*:(\mathbb{R}^2)^*\to(\mathbb{R}^3)^*$ y utilizando lo anterior, vemos que

$$T^*(\varphi_1)(x, y, z) = (\varphi_1 \circ T)(x, y, z) = \varphi_1(4x + 5y + 6z, 7x + 8y + 9z) = 4x + 5y + 6z$$
$$T^*(\varphi_2)(x, y, z) = (\varphi_2 \circ T)(x, y, z) = \varphi_1((4x + 5y + 6z, 7x + 8y + 9z) = 7x + 8y + 9z$$

Utilizando el Problema 2 escribimos:

$$T^*(\varphi_1) = T^*(\varphi_1)(1,0,0)\psi_1 + T^*(\varphi_1)(0,1,0)\psi_2 + T^*(\varphi_1)(0,0,1)\psi_3 = 4\psi_1 + 5\psi_2 + 6\psi_3$$

$$T^*(\varphi_2) = T^*(\varphi_2)(1,0,0)\psi_1 + T^*(\varphi_2)(0,1,0)\psi_2 + T^*(\varphi_2)(0,0,1)\psi_3 = 7\psi_1 + 8\psi_2 + 9\psi_3$$

Encontramos entonces la matriz

$$\Phi_{\mathcal{B}^*,\mathcal{C}^*}(T^*) = \begin{pmatrix} 4 & 7\\ 5 & 8\\ 6 & 9 \end{pmatrix}$$

3. Evaluando la base canónica en forma sencilla se observa que

$$\Phi_{\mathcal{C},\mathcal{B}}(T) = \begin{pmatrix} 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

y el **Teorema 126** afirma que $\Phi_{\mathcal{B}^*,\mathcal{C}^*}(T^*) = \Phi_{\mathcal{C},\mathcal{B}}(T)^{\top}$.

4. De manera directa se deduce que

$$\Phi_{\mathcal{D},\mathcal{B}}(\mathrm{id}_{\mathbb{R}^2}) = \begin{pmatrix} 1 & 1 \\ 5 & 2 \end{pmatrix}$$

Notando que $(id_{\mathbb{R}^2})^* = id_{(\mathbb{R}^2)^*}$ obtenemos

$$\Phi_{\mathcal{B}^*,\mathcal{D}^*}(\mathrm{id}_{(\mathbb{R}^2)^*}) = \Phi_{\mathcal{D},\mathcal{B}}(\mathrm{id}_{\mathbb{R}^2})^\top = \begin{pmatrix} 1 & 5 \\ 1 & 2 \end{pmatrix}$$

5. De manera directa vemos que

$$\Phi_{\mathcal{E},\mathcal{C}}(\mathrm{id}_{\mathbb{R}^2}) = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

y utilizando nuevamente el Teorema 126

$$\Phi_{\mathcal{C}^*,\mathcal{E}^*}(\mathrm{id}_{(\mathbb{R}^2)^*}) = \Phi_{\mathcal{E},\mathcal{C}}(\mathrm{id}_{\mathbb{R}^2})^\top = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

6. Utilizando las propiedades conocidas acerca de los cambios de base calculamos:

$$\begin{split} \Phi_{\mathcal{D}^*,\mathcal{E}^*}(T^*) &= \Phi_{\mathcal{C}^*,\mathcal{E}^*}(\mathrm{id}_{(\mathbb{R}^3)^*}) \Phi_{\mathcal{B}^*,\mathcal{C}^*}(T^*) \Phi_{\mathcal{D}^*,\mathcal{B}^*}(\mathrm{id}_{(\mathbb{R}^2)^*}) \\ &= \Phi_{\mathcal{C}^*,\mathcal{E}^*}(\mathrm{id}_{(\mathbb{R}^3)^*}) \Phi_{\mathcal{B}^*,\mathcal{C}^*}(T^*) [\Phi_{\mathcal{B}^*,\mathcal{D}^*}(\mathrm{id}_{(\mathbb{R}^2)^*})]^{-1} \\ &= -\frac{1}{3} \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 4 & 7 \\ 5 & 8 \\ 6 & 9 \end{pmatrix} \begin{pmatrix} 2 & -5 \\ -1 & 1 \end{pmatrix} \\ &= -\frac{1}{3} \begin{pmatrix} -1 & 4 \\ 3 & -30 \\ 3 & -21 \end{pmatrix} \end{split}$$

MAT210 UTFSM

Problema 4. Sea V espacio vectorial de dimensión $\dim(V) = n$ y V^* su espacio dual.

1. Muestre que $\varphi_1, \ldots, \varphi_m \in V^*$ son linealmente independientes si y solo si

$$\dim\left(\bigcap_{i=1}^{m}\ker(\varphi_i)\right) = n - m$$

2. Utilice lo anterior para concluir que toda base \mathcal{C} de V^* posee una **base predual**, es decir, existe una base \mathcal{B} de \mathbf{V} tal que $\mathcal{B}^* = \mathcal{C}$, donde \mathcal{B}^* denota la base dual.

Demostración.

1. Por el teorema del rango, es claro que para todo $\varphi \in \mathbf{V}^* \setminus \{\mathbf{0}\}$ se cumple que dim $(\ker(\varphi)) = n - 1$. Ahora, notamos que para cualquier $\mathbf{U} \leq \mathbf{V}$ subespacio tenemos que

$$\dim(\mathbf{U} \cap \ker(\varphi)) = \dim(\mathbf{U}) + \dim(\ker(\varphi)) - \dim(\mathbf{U} + \ker(\varphi))$$

$$\geq \dim(\mathbf{U}) + (n-1) - n$$

$$= \dim(\mathbf{U}) - 1$$

En base a lo anterior, intersectando de manera sucesiva podemos ver que

$$\dim\left(\bigcap_{i=1}^{m}\ker(\varphi_i)\right) \ge n - m$$

Denotamos $k := \dim(\bigcap_i \ker(\varphi_i))$. Suponiendo que $\varphi_1, \ldots, \varphi_m$ son linealmente independientes podemos extender a una base $\varphi_1, \ldots, \varphi_m, \varphi_{m+1}, \ldots, \varphi_n$ de \mathbf{V}^* . Notemos a continuación que, como $\varphi_1, \ldots, \varphi_n$ es base, se verifica

$$\ker(\varphi_1) \cap \ldots \cap \ker(\varphi_n) = \{\mathbf{0}\}\$$

Por otro lado, por la propiedad demostrada al principio, intersectando en forma sucesiva

$$\dim((\ker(\varphi_1)\cap\ldots\cap\ker(\varphi_m))\cap\ker(\varphi_{m+1}\cap\ldots\cap\ker(\varphi_n)))\geq k-(n-m)$$

Vemos entonces que $k - n + m \le 0$ y así k = n - m.

2. Gracias a la propiedad anterior tenemos que

$$\dim \left(\bigcap_{i=1}^{n} \ker(\varphi_i)\right) = 0, \qquad \dim \left(\bigcap_{i=2}^{n} \ker(\varphi_i)\right) = 1$$

Lo anterior entonces significa que

$$\ker(\varphi_1) \subsetneq \ker(\varphi_2) \cap \ldots \cap \ker(\varphi_n)$$

y luego podemos encontrar $\mathbf{v}_1 \in \mathbf{V}$ de tal forma que $\varphi_1(\mathbf{v}_1) = 1$ y $\varphi_i(\mathbf{v}_1) = 0$ para $2 \le i \le n$. Repitiendo el proceso para cada i encontramos $\mathbf{v}_1, \dots, \mathbf{v}_n$ verificando la condición de base dual.