o Dérivées : polynômes et fractions rationnellles

Pour les fonctions qui suivent, on déterminera leur dérivée et leur tableau de variation :

$$f(x) = 5x^3 - 5x^2 - 5x + 1$$

$$g_1(x) = \frac{3x - 3}{2x + 4}$$

$$g_2(x) = \frac{3x + 3}{2x - 4}$$

$$h(x) = \frac{3x + 5}{2x^2 + 3}$$

$$i(x) = \frac{3x^2 + 5}{3x + 1}$$

Correction:

$$f'(x) = 15x^2 - 10x - 5$$
$$\Delta = 400 > 0$$

Il y a deux solutions réelles distinctes qui sont :

$$f(x_1) \approx -4.0$$

 $f(x_2) \approx 1.9259259259259$

$$g_1'(x) = \frac{18}{(2x+4)^2}$$
$$g_2'(x) = \frac{-18}{(2x-4)^2}$$

x	-∞	$-\frac{4}{2}$		
$g_1'(x)$	+			
$g_1(x)$	-∞	+∞	+∞	

x	-∞	$\frac{4}{2}$ $+\infty$
$g_2'(x)$	-	-
$g_2(x)$	+∞	+∞

$$h'(x) = \frac{-6x^2 - 20x + 9}{(2x^2 + 3)^2}$$
$$\Delta = 616 > 0$$

On a donc deux solutions réelles distinctes :

$$x_1 = \frac{20 - \sqrt{616}}{-12} \approx 0.40161227433181$$

$$x_2 = \frac{20 + \sqrt{616}}{-12} \approx -3.7349456076651$$

$$x_2 < x_1$$

$$i'(x) = \frac{9x^2 + 6x - 15}{(3x+1)^2}$$
$$\Delta = 576 > 0$$

On a donc deux solutions réelles distinctes :

$$x_1 = \frac{-6 - \sqrt{576}}{18} \approx -1.66666666666667$$
$$x_2 = \frac{-6 + \sqrt{576}}{18} \approx 1.0$$
$$x_1 < x_2$$

x	$-\infty$	x_1	_	$\frac{1}{3}$	x_2	+∞
f'(x)	+	- 0	-	_	0	+
f(x)	-∞	$f(x_1)$	-∞	+∞	$f(x_2)$	+∞