Introduction to Algorithms 6.046J/18.401J

Lecture 8
Prof. Piotr Indyk

Data structures

- Previous lecture: hash tables
 - Insert, Delete, Search in (expected)
 constant time
 - Works for integers from {0...m^r-1}
- This lecture: Binary Search Trees
 - Insert, Delete, Search (Successor)
 - Works in comparison model

Binary Search Tree

- Each node x has:
 - -key[x]
 - Pointers:
 - left[x]
 - right[x]
 - p[x]

Binary Search Tree (BST)

- Property: for any node x:
 - For all nodes y in the left subtree of x:

$$\text{key}[y] \leq \text{key}[x]$$

 For all nodes y in the right subtree of x:

$$\text{key}[y] \ge \text{key}[x]$$

• Given a set of keys, is BST for those keys unique?

No uniqueness

What can we do given BST?

- Sort !
- Inorder-Walk(x):

If x ≠ NIL then

- Inorder-Walk(left[x])
- print key[x]
- Inorder-Walk(right[x])

Sorting, ctd.

- What is the running time of Inorder-Walk?
- It is **O**(n)
- Because:
 - Each link is traversed twice
 - There are O(n) links

Sorting, ctd.

- Does it mean that we can sort n keys in O(n) time ?
- No
- It just means that building a BST takes $\Omega(n \log n)$ time (in the comparison model)

BST as a data structure

- Operations:
 - -Insert(x)
 - Delete(\mathbf{x})
- \rightarrow Search(\mathbf{k})

Search

Search(x):

- If x\neq NIL then
 - $-\operatorname{If} \operatorname{key}[x] = k \text{ then return } x$
 - If k < key[x] then returnSearch(left[x])
 - If k > key[x] then return Search(right[x])
- Else return NIL

Search(8.5):

Predecessor/Successor

- Can modify Search (into Search') such that, if k is not stored in BST, we get x such that:
 - Either it has the largest key[x]<k, or
 - It has the smallest key[x]>k
- Useful when k prone to errors
- What if we always want a successor of k?
 - -x=Search'(k)
 - If key[x]<k, then return Successor(x)</p>
 - Else return x

Successor

Successor(x):

- If right[x] ≠ NIL then
 return Minimum(right[x])
- Otherwise
 - $-y \leftarrow p[x]$
 - − While y≠NIL and x=right[y] do
 - x ← y
 - $y \leftarrow p[y]$
 - Return y

Minimum

Minimum(x)

- While left[x]≠NIL do
 - $-x \leftarrow left[x]$
- Return x

Nearest Neighbor

- Assuming keys are numbers
- For a key k, can we find x such that |k-key[x]| is minimal?
- Yes:
 - key[x] must be either a predecessor or successor of k
 - y=Search'(k) //y is either succ or pred of k
 - -y' = Successor(y)
 - y''=Predecessor(y)
 - Report the closest of key[y], key[y'], key[y'']

Analysis

- How much time does all of this take?
- Worst case: O(height)
- Height really important
- Tree better be balanced

Constructing BST

Insert(z):

- $y \leftarrow NIL$
- $x \leftarrow root$
- While $x \neq NIL$ do
 - $-y \leftarrow x$
 - If key[z] < key[x]then $x \leftarrow left[x]$ else $x \leftarrow right[x]$
- $p[z] \leftarrow y$
- If key[z] < key[y]then $left[y] \leftarrow z$ else right[y] $\leftarrow z$

Analysis

- After we insert n elements, what is the worst possible BST height?
- Pretty bad: n-1

Average case analysis

- Consider keys 1,2,...,n, in a random order
- Each permutation equally likely
- For each key perform Insert
- What is the likely height of the tree?
- It is O(log n)

Creating a random BST

Observations

- Each edge corresponds to a random partition
- Element x has height h ⇒ x participated in h partitions
- Let h_x be a random variable denoting height of x
- What is $Pr[h_x > t]$, where t=c lg n?

Partitions

- A partition is lucky if the ratio is at least 1:3, i.e., each side has size $\geq 25\%$
- Probability of lucky partition is ½
- After $log_{4/3}$ n lucky partitions the element becomes a leaf
- $h_x>t \Rightarrow in t= c log_{4/3} n$ partitions we had $< log_{4/3} n$ lucky ones
- Toss $t= c \log_{4/3} n$ coins, what is the probability you get $< k = \log_{4/3} n$ heads?

Concentration inequalities

• CLRS, p. 1118: probability of at most k heads

```
in t trials is at most \binom{t}{k}/2^{t-k}

Pr[h_x > t] \le \binom{t}{k}/2^{t-k}
                  \leq (et/k)^k/2^{t-k}
                  = (ce)^{\log_{4/3} n/2(c-1) \log_{4/3} n}
                  = 2 \lg(ce) \log_{4/3} n/2 (c-1) \log_{4/3} n
                  = 7 [lg(ce) - (c-1)] * (lg n)/ lg(4/3)
                  < 2^{-1.1 \lg n} = 1/n^{1.1}, for sufficient c
```


Final Analysis

- We know that for each x, $Pr[h_x > t] \le 1/n^{1.1}$
- We want $Pr[h_1>t \text{ or } h_2>t \text{ or } \dots \text{ or } h_n>t]$
- This is at most

$$Pr[h_1>t]+Pr[h_2>t]+...+Pr[h_n>t]$$

 $\leq n * 1/n^{1.1}$
 $= 1/n^{0.1}$

 As n grows, probability of height >c lgn becomes arbitrarily small

Summing up

- We have seen BSTs
- Support Search, Successor, Nearest Neighbor etc, as well as Insert
- Worst case: O(n)
- But O(log n) on average
- Next week: O(log n) worst case