

Q Zoom Out and Observe: News Environment Perception for Fake News Detection

Qiang Sheng, Juan Cao, Xueyao Zhang, Rundong Li, Danding Wang, Yongchun Zhu

Institute of Computing Technology, Chinese Academy of Sciences & University of Chinese Academy of Sciences

Why NewsEnv? A Motivating Example

> Assumption: A news environment is an important inspiration of the fabrication of contemporary fake news, as fake news has to grab attention from it.

Let's observe the NewsEnv as a fake news creator!

The Syria-China football match seems popular. I can follow it by fabricating some novel (and fake)

Proposal: Perceive Popularity & Novelty from the NewsEnv

- Popularity: Fake news tends to emerge along with a popular event, to obtain great exposure and impacts.
- Novelty: Fake news often provide novel side information for a popular event, to catch audiences' attention and boost the spread.

y = p (Veracity=fake | Content) Conventional Ours (Theoretical) y = p (Veracity=fake | Content, NewsEnv) Ours (In Practice) y = p (Veracity=fake | Content, Popularity/Novelty in NewsEnv)

NewsEnv Perception (NEP) Framework

Step 1: NewsEnv Construction

- MacroEnv: A full dump of recent news items (say, 3d) from selected outlets to reflect the represent distribution of mainstream focuses.
- MicroEnv: Retrieve Top-k similar news items to the target post p, to build a event-constrained environment.

Step 2: NewsEnv Perception

- (1) Representation and Similarity Calculation: Use BERT to obtain vectors and cosine similarity to obtain the post-news item similarity.
- (2) Gaussian Kernel Pooling: Transform the sim list into a fixed-dim vector.
- > Determine the kernel distribution across [-1,1]

> Calculate Gaussian outputs for each kernel. Sum, concat, & norm to obtain the Kernel Output.

$$\mathbf{K}_k^i = \exp\left(-\frac{(s(\mathbf{p}, \mathbf{e}_i) - \mu_k)^2}{2\sigma_k^2}\right) \qquad \mathbf{K}_k(\mathbf{p}, \mathcal{E}^{mac}) = \sum_{i=1}^{|\mathcal{E}^{mac}|} \mathbf{K}_k^i \qquad \mathbf{K}(\mathbf{p}, \mathcal{E}^{mac}) = \operatorname{Norm}\left(\bigoplus_{k=1}^C \mathbf{K}_k(\mathbf{p}, \mathcal{E}^{mac})\right)$$

For Popularity-Oriented MacroEnv Perception: Obtain the Kernel Output for p- \mathbb{E}^{mac} .

- > For Novelty-Oriented MicroENv Perception: Obtain the Kernel Output for p- \mathcal{E}^{mic} & $\mathbf{m}(\mathcal{E}^{mic})$ - \mathcal{E}^{mic} ($\mathbf{m}(\mathcal{E}^{mic})$ is the center vector of MicroEnv).
- (3) Aggregation:
 - $\mathbf{v}^{p,mac} = \text{MLP}(\mathbf{p} \oplus \mathbf{m}(\mathcal{E}^{mac}) \oplus \mathbf{K}(\mathbf{p}, \mathcal{E}^{mac}))$ **≻**MacroEnv
 - **≻**MicroENv $\mathbf{u}^{sem} = \mathrm{MLP}(\mathbf{p} \oplus \mathbf{m}(\mathcal{E}^{mic})),$

$$\mathbf{u}^{sim} = \text{MLP}(\mathbf{g}(\mathbf{K}(\mathbf{p}, \mathcal{E}^{mic}), \mathbf{K}(\mathbf{m}(\mathcal{E}^{mic}), \mathcal{E}^{mic})))$$

$$\mathbf{v}^{p,mic} = \mathrm{MLP}(\mathbf{u}^{sem} \oplus \mathbf{u}^{sim}),$$

where $g(\mathbf{x}, \mathbf{y}) = (\mathbf{x} \odot \mathbf{y}) \oplus (\mathbf{x} - \mathbf{y})$.

Step 3: Prediction under Perceived NewsEnv

- $\mathbf{v}^p = \mathbf{g} \odot \mathbf{v}^{p,mac} + (\mathbf{1} \mathbf{g}) \odot \mathbf{v}^{p,mic}$ **1** Gate Fusion: $\mathbf{g} = \text{sigmoid (Linear } (\mathbf{o} \oplus \mathbf{v}^{p,mic}))$
- ② Final Prediction: $\hat{\mathbf{y}} = \operatorname{softmax}(\operatorname{MLP}(\mathbf{o} \oplus \mathbf{v}^p))$

Experiments on New Datasets

	Chinese			English			News Outle		
Dataset	Train	Val	Test	Train	Val	Test	Chinese People's Da		
#Real #Fake Total	8,992	5,131 4,923 10,054	5,608	1,924	638	661 628 1,289	Xinhua Age Xinhua Net CCTV New The Paper Toutiao New		
#News Items Min/Avg/Max of $ \mathcal{E}^{mac} $ in 3 days		583,208 ′ 505 / 1,		•	,003,64 1,614 /		English Huffington I NPR Daily Mail		

-	Chinese
	People's Daily
-	Xinhua Agency
	Xinhua Net
	CCTV News
	The Paper
	Toutiao News
_	English
	Huffington Post
	NPR

News Outlets Stats of **Datasets** in NewsEnv **Performances**

> All six base models see an improvement in terms of Acc. and macF1.

Model		Chinese				English			
		Acc.	macF1	$F1_{\rm fake}$	$F1_{\rm real}$	Acc.	macF1	$F1_{\rm fake}$	$F1_{\rm real}$
	Bi-LSTM	0.727	0.713	0.652	0.775	0.705	0.704	0.689	0.719
	+NEP	0.776	0.771	0.739	0.803	0.718	0.718	0.720	0.716
	$EANN_{\mathrm{T}}$	0.732	0.718	0.657	0.780	0.700	0.699	0.683	0.714
Doot Only	+NEP	0.776	0.770	0.733	0.807	0.722	0.722	0.722	0.722
Post-Only	BERT	0.792	0.785	0.744	0.825	0.709	0.709	0.701	0.716
	+NEP	0.810	0.805	0.772	0.837	0.718	0.718	0.720	0.715
	BERT-Emo	0.812	0.807	0.776	0.838	0.718	0.718	0.719	0.718
	+NEP	0.831	0.829	0.808	0.850	0.728	0.728	0.728	0.728
	DeClarE	0.764	0.758	0.720	0.795	0.714	0.714	0.709	0.718
"7 I"	+NEP	0.800	0.797	0.773	0.822	0.717	0.716	0.718	0.714
"Zoom-In"	MAC	0.755	0.751	0.717	0.784	0.706	0.705	0.708	0.701
	+NEP	0.764	0.760	0.732	0.789	0.716	0.716	0.716	0.716

Conclusion

- Problem: To the best of our knowledge, we are the first to incorporate news environment perception in fake news detection.
- Method: We propose the NEP framework which exploits the perceived signals from the macro and micro news environments of the given post for fake news detection.
- Data & Experiments: We construct the *first* dataset that includes contemporary main-stream news data for fake news detection. Experiments on offline and online data show the effectiveness of NEP.

