HOW MANY VERTICES ARE THERE IN A SIMPLICIAL BALL OF RADIUS / (IN A BRIHAT-TITS BUILDING)?

Xu Gao

May 9, 2022

University of California, Santa Cruz

$$SV(r) \sim c(n) \cdot r^{\epsilon(n)} q^{\pi(n)r}$$

where c(n) is a rational function¹ of q, and $\epsilon(n)$ and $\pi(n)$ are in the following tabluar.

X _n	$\epsilon(n)$	$\pi(n)$
A_n (n is odd)	0	$(\frac{n+1}{2})^2$
A_n (n is even)	1	$\frac{n}{2}(\frac{n}{2}+1)$
$B_n (n = 3)$	0	5
$B_n (n \geqslant 4)$	0	$\frac{n^2}{2}$
$C_n (n \ge 2)$	0	$\frac{n(n+1)}{2}$
$D_n (n = 4)$	2	6
$D_n (n \geqslant 5)$	1	$\frac{n(n-1)}{2}$

¹not really

Buildings are geometric and combinatorial objects first introduced by Jacques Tits to study the structure theory and representation theory of reductive groups.

Buildings are geometric and combinatorial objects first introduced by Jacques Tits to study the structure theory and representation theory of reductive groups.

Bruhat-Tits buildings are buildings associated with reductive groups over local fields.

Definition

A (Euclidean) building is a set \mathcal{B} equipped with a polysimplicial complex \mathcal{F} of facets and a family \mathcal{A} of apartments, such that:

- **EBO.** each apartment is isomorphic to an abstract one \mathscr{A} ;
- **EB1.** any two facets *F, F'* are contained in the same apartment;
- **EB2.** any two apartment *A*, *A'* containing *F*, *F'* are isomorphic through an isomorphism fixing *F* and *F'* pointwise.

What is a (Bruhat-Tits) building?

Definition

A *(Euclidean) apartment* is a Euclidean affine space A equipped with a reflection group *W*. The reflection group *W* divides the space A into *facets*, forming a polysimplicial complex.

Definition

A *(Euclidean) apartment* is a Euclidean affine space A equipped with a reflection group W. The reflection group W divides the space A into *facets*, forming a polysimplicial complex.

G: a reductive group over a local field K

WHAT ARE SIMPLICIAL VOLUMES?

What is a Simplicial ball?

WHAT ARE SIMPLICIAL VOLUMES?

path = sequence of adjacent vertices;
simplicial distance = minimal length of pathes;

WHAT ARE SIMPLICIAL VOLUMES?

Definition

The *simplicial ball with center x and radius r* is the set of all vertices with simplicial distance no larger than *r* from *x*:

$$B_{S}(x,r):=\big\{y\in \mathcal{B}^{\,0}\,\big|\,d_{S}(x,y)\leqslant r\big\}.$$

What are simplicial volumes?

Definition

The *simplicial ball with center x and radius r* is the set of all vertices with simplicial distance no larger than *r* from *x*:

$$B_{S}(x,r):=\big\{y\in\mathcal{B}^{\,0}\,\big|\,d_{S}(x,y)\leqslant r\big\}.$$

We may focus on x = o, the origin of an apartment \mathcal{A} and denote $B_s(o, r)$ by $B_s(r)$ for short. Special vertex

Its cardinality is called the **simplicial volume** SV(r).

l'act: Any vertex is adjacent to a special one.

NOTATIONS

Notations

Before moving on, let's fix the following notations:

```
K is a non-Archimedean local field;

val is the valuation on K;

K^{\circ} is the ring of integers \{x \in K \mid \text{val}(x) \geq 0\};

K^{\circ\circ} is the maximal ideal \{x \in K \mid \text{val}(x) > 0\};

\varpi is a uniformizer, namely K^{\circ\circ} = \varpi K^{\circ};

\kappa is the residue field K^{\circ}/K^{\circ\circ}, with cardinality q. \checkmark \sim
```

Let V be a vector space over K of dimension n. Then the Bruhat-Tits building $\mathcal{B}(GL(V))$ can be interpreted as follows:

Let V be a vector space over K of dimension n. Then the Bruhat-Tits building $\mathcal{B}(GL(V))$ can be interpreted as follows:

the underlying set $\mathcal{X}(V)$ is **homothety classes of norms** on V;

Let V be a vector space over K of dimension n. Then the Bruhat-Tits building $\mathcal{B}(GL(V))$ can be interpreted as follows:

the underlying set $\mathcal{X}(V)$ is **homothety classes of norms** on V;

Definition

A **norm** on V is a map $\alpha: V \to \mathbb{R} \cup \{\infty\}$ such that for any $x, y \in V$ and any $t \in K$,

- (a) $\alpha(tx) = \text{val}(t) + \alpha(x)$;
- (b) $\alpha(x + y) \ge \inf{\{\alpha(x), \alpha(y)\}};$
- (c) $\alpha(x) = \infty$ if and only if x = 0.

Two norms are *homothetic* if they are different by a constant.

$$A(x) - A'(x) = C$$
(onetout

Let V be a vector space over K of dimension n. Then the Bruhat-Tits building $\mathcal{B}(GL(V))$ can be interpreted as follows:

the underlying set $\mathfrak{X}(V)$ is **homothety classes of norms** on V; a k-simplex is a **lattice chain** of rank k+1.

Let V be a vector space over K of dimension n. Then the Bruhat-Tits building $\mathscr{B}(GL(V))$ can be interpreted as follows:

the underlying set $\mathcal{X}(V)$ is **homothety classes of norms** on V; a k-simplex is a **lattice chain** of rank k+1.

Definition

A *lattice* in *V* is a finitely generated *K*°-submodule spanning *V*.

A *lattice chain* is a decreasing sequence of lattices which is invariant (as a set) under homotheties. The number of homothety classes of lattices in a lattice chain is called its *rank*.

Let V be a vector space over K of dimension n. Then the Bruhat-Tits building $\mathcal{B}(GL(V))$ can be interpreted as follows:

the underlying set $\mathcal{X}(V)$ is **homothety classes of norms** on V; a k-simplex is a **lattice chain** of rank k+1.

Proposition

Any norm gives rise to a lattice chain. Conversely, any lattice chain gives rise to a k-simplex of norms.

$\mathsf{Example:} \ \mathscr{B}(\mathsf{GL}(V))$

Proposition 7.1.1.

Let x and y be two vertices in $\mathcal{B}(GL(V))$ and $r \ge 0$ an integer. Then $d_s(x,y) \le r$ if and only if there exist lattices L and L' such that

$$x = [L], \quad y = [L'], \quad and \quad L \supseteq L' \supseteq \varpi^r L.$$

EXAMPLE: $\mathscr{B}(\mathsf{GL}(V))$

Proposition

Let x and y be two vertices in $\mathscr{B}(GL(V))$ and $r \ge 0$ an integer. Then $d_s(x,y) \le r$ if and only if there exist lattices L and L' such that

$$x = [L], y = [L'], and $L \supseteq L' \supseteq \varpi^r L.$$$

Fix a lattice *L* and choose *o* to be the point [*L*].

Q: How many lattices L' are there (up to homotheties) satisfying

$$L\supseteq L'\supseteq \varpi^rL.$$

Theorem 2.1.2 in Junecue Suh, "Stable Lattices in p-adic representations II. Irregularity and entropy", Journal of Algebra, vol.591, 2022, pp.379-409.

The strategy is to employ a **strongly transitive** and **type-preserving** automorphism group *G*. Then we have

$$SV(r) = \sum_{x} [P_o: P_{o,x}],$$

where

 \mathcal{P}_o is the stabilizer of o in G,

 $P_{o,x}$ is the stabilizer of x in P_o , and

the summation is taking over the intersection of $B_s(r)$ with a fundamental domain of the action of P_o .

The group *G* comes from the Bruhat-Tits theory on reductive groups over local fields.

The group *G* comes from the Bruhat-Tits theory on reductive groups over local fields.

vertex has dim O

We may focus on **reduced** Bruhat-Tits building and assume G is a **simply-connected** (**semi-**)**simple** group.

rædustie >> buildly -> seduced buildigs ræt datum -> ræt system

The group *G* comes from the Bruhat-Tits theory on reductive groups over local fields.

We may focus on **reduced** Bruhat-Tits building and assume G is a **simply-connected** (**semi-)simple** group. Then G = G(K) is a strongly transitive and type-preserving automorphism group of $\mathcal{B}(G)$.

50

Under our assumption, the stabilizer P_o is the *parahoric subgroup* attached to the point o. By Bruhat-Tits theory, there is a smooth model \mathfrak{G}_o of G such that $\mathfrak{G}_o(K^\circ) = P_o$.

K°-gup scheme

Under our assumption, the stabilizer P_o is the **parahoric subgroup** attached to the point o. By Bruhat-Tits theory, there is a smooth model \mathfrak{G}_o of G such that $\mathfrak{G}_o(K^\circ) = P_o$.

Let $\overline{P_o}$ denote the reductive quotient of $\mathfrak{G}_o(\kappa)$. Then we have

Under our assumption, the stabilizer P_o is the **parahoric subgroup** attached to the point o. By Bruhat-Tits theory, there is a smooth model \mathfrak{G}_o of G such that $\mathfrak{G}_o(K^\circ) = P_o$.

Let $\overline{P_o}$ denote the reductive quotient of $\mathfrak{G}_o(\kappa)$. Then we have

$$P_{o}^{+} \hookrightarrow P_{o} \longrightarrow \overline{P_{o}}_{i}$$

$$P_{o,x}^{+} \longrightarrow \overline{P_{o}}_{o,x}$$

Note that $P_{o,x} = P_o \cap P_x$. Let $\overline{P_{o,x}}$ denote its image under above reduction. Then we have

$$[P_o:P_{o,x}] = [\overline{P_o}:\overline{P_{o,x}}] \cdot [P_o^+:P_o^+ \cap P_{o,x}].$$

POINCARE POLYNOMIAL

POINCARE POLYNOMIAL

 $\overline{P_o}$ is a reductive group over the finite field κ and $\overline{P_{o,x}}$ is a parabolic subgroup of it with type $I_{o,x} := \{a \in \Delta \mid a(x) = 0\}.$

 $\overline{P_o}$ is a reductive group over the finite field κ and $\overline{P_{o,x}}$ is a parabolic subgroup of it with type $I_{o,x} := \{a \in \Delta \mid a(x) = 0\}.$

Generalized Bruhat Decomposition

If G is a reductive group and P is a parabolic subgroup of it, then the quotient G/P is a disjoint union of affine spaces, called **Schubert cells** and hence

$$|G/P| = \sum q^{\ell(w)},$$

which can be presented by a Poincaré polynomia $\mathcal{P}_{\Phi;l}$ (where Φ is the root system of G and l is the type of P).

POINCARE POLYNOMIAL

Example

The Poincaré polynomial $\mathcal{P}_{D_4;l}$ of the following

is
$$(z^2 + 1)^2(z^2 + z + 1)(z^3 + 1)$$
.

A *concave function* is a function on $\widetilde{\Phi} := \Phi \cup \{0\}$ such that

$$\forall (a_i)_{i \in I} \subseteq \widetilde{\Phi}, \sum_{i \in I} a_i \in \widetilde{\Phi} \implies \sum_{i \in I} f(a_i) \geq f(\sum_{i \in I} a_i).$$

A *concave function* is a function on $\widetilde{\Phi} := \Phi \cup \{0\}$ such that

$$\forall (a_i)_{i \in I} \subseteq \widetilde{\Phi}, \sum_{i \in I} a_i \in \widetilde{\Phi} \implies \sum_{i \in I} f(a_i) \geq f(\sum_{i \in I} a_i).$$

Any concave function f defines a smooth model \mathfrak{G}_f of G such that $\mathfrak{G}_f(K^\circ)$ is a bounded subgroup of G and there is a Bruhat decomposition for schemes:

Tor schemes:
$$\prod_{a \in \Phi_f^+} \mathfrak{U}_{a,f(a)} \underbrace{\mathfrak{T}_{f(0)}}_{f(0)} \cdot \prod_{a \in \Phi_f^-} \mathfrak{U}_{a,f(a)} \longrightarrow \mathfrak{G}_f$$

If f(0) > 0, it induces an isomorphism on special fibers.

The index $[P_o^+: P_o^+ \cap P_{o,x}]$ can be computed using concave functions.

The index $[P_o^+: P_o^+ \cap P_{o,x}]$ can be computed using concave functions. Indeed, there are concave functions

$$f_{0+}: \underline{a \mapsto 0+}, \quad \text{and} \quad f_{0+,x}: a \mapsto \max\{0+, -\underline{a(x)}\},$$

such that

$$\mathfrak{G}_{f_{0+}}(K^{\circ}) = P_{0}^{+} \quad \text{and} \quad \mathfrak{G}_{f_{0+,X}}(K^{\circ}) = P_{0}^{+} \cap P_{0,X}.$$

$$\mathfrak{F}_{0+}(V) = f_{0+,X}(V) = 0 + 0 = 0 + 0 = 0.$$

Using the Schematic Bruhat decomposition, we have

$$\begin{aligned} \left[P_{o}^{+}: P_{o}^{+} \cap P_{o,x}\right] &= \prod_{a \in \widetilde{\Phi}} \left[U_{f_{o+},a}: U_{f_{o+},x,a}\right] \\ &= \prod_{a \in \Phi} \left[U_{a,o+}: U_{a,\max\{0+,-a(x)\}}\right] \\ &= \prod_{a \in \Phi} q^{\lceil \max\{0+,-a(x)\}\rceil - \lceil 0+\rceil} \\ &= \prod_{a(x)<0} q^{\lceil -a(x)\rceil - 1} = \prod_{a(x)>0} q^{\lceil a(x)\rceil - 1}. \end{aligned}$$

We have

$$SV(r) = \sum_{x} \left(\frac{\mathscr{P}_{\Phi; l_{o, x}}(q)}{q^{\deg(\mathscr{P}_{\Phi; l_{o, x}})}} \prod_{a(x) > 0} q^{\lceil a(x) \rceil} \right)$$

where x is taking over the intersection of $B_s(r)$ with a fundamental domain of the action of P_o .

FUNDAMENTAL DOMAIN

FUNDAMENTAL DOMAIN

Using the (vectorial) Bruhat decomposition

$$G = BNB'$$
,

one can show that for any Weyl chamber ${}^{v}C$, the convex cone $o + {}^{v}C$ is a fundamental domain for P_o .

FUNDAMENTAL DOMAIN

Using the (vectorial) Bruhat decomposition

$$G = BNB'$$
,

one can show that for any Weyl chamber ${}^{v}C$, the convex cone $\overline{o} + {}^{v}C$ is a fundamental domain for P_{o} .

So the summation is taking over $B_s(r) \cap \overline{o + {}^{\vee}C}$.

$$B_{s}(r, {}^{v}C, I) := \left\{ x \in B_{s}(r) \cap \overline{o + {}^{v}C} \mid I_{o,x} = I \right\}.$$

THE SIMPLICIAL VOLUME FORMULA

The simplicial volume formula

Theorem

Let ${\mathcal B}$ be a Bruhat-Tits building of a split reductive group. Then the simplicial volume in it can be computed by the formula

$$SV(r) = \sum_{I \subseteq \Delta} \frac{\mathscr{P}_{\Phi;I}(q)}{q^{\deg}(\mathscr{P}_{\Phi;I})} \sum_{x \in B_{S}(r, {}^{V}C, I)} \prod_{a(x) > 0} q^{\lceil a(x) \rceil}.$$

Lemma

If \mathscr{B} is of split classical type, then a vertex x in the apartment is within simplicial distance r from the origin if and only if $\lceil a_0(x) \rceil \leq r$.

Lemma

If \mathscr{B} is of split classical type, then a vertex x in the apartment is within simplicial distance r from the origin if and only if $\lceil a_0(x) \rceil \leqslant r$.

- 1. Any edge intersects a wall with a vertex. So $d(0,x) \ge a_0(x)$.
- 2. If x, y are special and $a_i(x) = a_i(y)$ except $i = i_0$, then there is a path of length $|a_{i_0}(x) a_{i_0}(y)|h_{i_0}$ between them.
- 3. If x = is not special, then there is a path from a special vertex x_0 for the to x with expected length.

If \mathscr{B} is of type A_n and $I = \Delta \setminus \{\ell_1, \dots, \ell_t\}$:

$$B_{S}(r, {}^{V}C, I) = \{ O + C_{1}\omega_{\ell_{1}} + \cdots + C_{t}\omega_{\ell_{t}} \mid C_{i} \in \mathbb{Z}_{>0}, C_{1} + \cdots + C_{t} \leqslant r \},$$

where ω_i are the fundamental coweights. $\alpha_i(\omega_i) = \delta_i$

If \mathscr{B} is of type A_n and $I = \Delta \setminus \{\ell_1, \dots, \ell_t\}$:

$$B_{s}(r, {}^{\mathsf{v}}\mathcal{C}, I) = \{ o + c_{1}\omega_{\ell_{1}} + \cdots + c_{t}\omega_{\ell_{t}} \mid c_{i} \in \mathbb{Z}_{>0}, c_{1} + \cdots + c_{t} \leqslant r \},$$

where ω_i are the fundamental coweights.

If \mathscr{B} is of type C_n and $I = \Delta \setminus \{\ell_1, \dots, \ell_t\}$:

$$B_{s}(r, {}^{\mathsf{V}}C, I) = \left\{ 0 + c_{1}\omega_{\ell_{1}}' + \cdots + c_{t}\omega_{\ell_{t}}' \middle| c_{i} \in \mathbb{Z}_{>0}, c_{1} + \cdots + c_{t} \leqslant r \right\},\,$$

where $\omega_i' = h_i^{-1}\omega_i$ with $a_0 = \sum_i h_i a_i$.

If \mathscr{B} is of type A_n and $I = \Delta \setminus \{\ell_1, \dots, \ell_t\}$:

$$B_{s}(r, {}^{\mathsf{v}}\mathcal{C}, I) = \{ o + c_{1}\omega_{\ell_{1}} + \cdots + c_{t}\omega_{\ell_{t}} \mid c_{i} \in \mathbb{Z}_{>0}, c_{1} + \cdots + c_{t} \leqslant r \},$$

where ω_i are the fundamental coweights.

If \mathcal{B} is of type C_n and $I = \Delta \setminus \{\ell_1, \dots, \ell_t\}$:

$$B_{s}(r, {}^{\mathsf{V}}C, I) = \left\{ 0 + c_{1}\omega_{\ell_{1}}' + \cdots + c_{t}\omega_{\ell_{t}}' \middle| c_{i} \in \mathbb{Z}_{>0}, c_{1} + \cdots + c_{t} \leqslant r \right\},\,$$

where $\omega_i' = h_i^{-1} \omega_i$ with $a_0 = \sum_i h_i a_i$.

If \mathcal{B} is of type B_n or D_n , then the description is complicated.

EXPLICIT DESCRIPTION OF $B_s(r, {}^{\mathsf{V}}C, l)$

If \mathcal{B} is of type B_n , we consider

$$\partial B_{S}(r, {}^{V}C, I) := B_{S}(r, {}^{V}C, I) - B_{S}(r - 1, {}^{V}C, I).$$

EXPLICIT DESCRIPTION OF $B_s(r, {}^{\mathsf{V}}C, l)$

If \mathcal{B} is of type B_n , we consider

$$\partial B_{S}(r, {}^{V}C, I) := B_{S}(r, {}^{V}C, I) - B_{S}(r - 1, {}^{V}C, I).$$

Then $\partial B_s(r, {}^{v}C, I)$ is contained in the supset $\partial(r, I)^0$ if $\ell_1 > 1$ and in $\partial(r, I)^0 \cup \partial(r, I)^1$ if $\ell_1 = 1$. Here

$$\partial(r, l)^{0} := \left\{ x = 0 + c_{1}\omega'_{\ell_{1}} + \dots + c_{t}\omega'_{\ell_{t}} \middle| c_{i} \in \mathbb{Z}_{>0}, c_{1} + \dots + c_{t} = r \right\},$$

$$\partial(r, l)^{1} := \partial(r, l)^{0} - \frac{1}{2}\omega_{1}.$$

Next, for any $J \subseteq \Delta$, we define $\mathcal{D}(\Delta)_I$ to be the set

$$o + \mathcal{P}^{\vee}(B_n) - \sum_{j \in J} \frac{1}{2} \omega_j.$$

Then we define $\partial(r, l)_l$ to be the intersection of $\mathcal{D}(\Delta)_l$ with the supset.

The complement of $\partial B_s(r, {}^{\mathsf{v}}C, I)$ in the supset is

$$\partial(r,l)_{\{1\}} \sqcup \partial(r,l)_{\{1,2\}} \sqcup \cdots \sqcup \partial(r,l)_{\{n-1,n\}}.$$

ASYMPTOTIC BEHAVIOR

Theorem

Let \mathscr{B} be a Bruhat-Tits building of split type A_n , B_n , C_n , or D_n . Then the simplicial volume SV(r) in it has the following asymptotic dominant relation as $r \to \infty$:

$$\mathsf{SV}(r) \times r^{\epsilon(n)} q^{\pi(n)r}$$

where $\epsilon(n)$ and $\pi(n)$ are in the following tabluar.

ASYMPTOTIC BEHAVIOR II

Theorem

1	X _n	$\epsilon(n)$	$\pi(n)$
	A_n (n is odd)	0	$(\frac{n+1}{2})^2$
	A_n (n is even)	1	$\frac{n}{2}(\frac{n}{2}+1)$
	$B_n (n = 3)$	0	5
	$B_n (n \geqslant 4)$	0	$\frac{n^2}{2}$
	$C_n (n \geqslant 2)$	0	$\frac{n(n+1)}{2}$
	$D_n (n = 4)$	2	6
	$D_n (n \geqslant 5)$	1	$\frac{n(n-1)}{2}$
			_

Theorem

If \mathcal{B} is not of the type B_n $(n \ge 4)$ or D_n $(n \ge 5)$, then we have

$$SV(r) \sim c(n) \cdot r^{\epsilon(n)} q^{\pi(n)r}$$
,

where c(n) is a rational function of q.

If \mathcal{B} is of the type B_n $(n \ge 4)$ or D_n $(n \ge 5)$, then we have

$$SV(2r) \sim c_0(n) \cdot r^{\epsilon(n)} q^{2\pi(n)r}$$

$$SV(2r) \sim c_0(n) \cdot r^{\epsilon(n)} q^{2\pi(n)r},$$

$$SV(2r+1) \sim c_1(n) \cdot r^{\epsilon(n)} q^{2\pi(n)r},$$

where $c_0(n)$ and $c_1(n)$ are rational functions of q.

Remark

- 1. Buildings of Exceptional type are not considered since the simplicial distance lemma fails in these cases.
- 2. The results extends to buildings of not necessarily irreducible ones by decomposition.
- 3. The results apply to buildings of split classical types. Note that a non-split reductive group can have a building of split type.

$$\mathbb{B}(GL_n(L)) \cong \mathbb{B}(GL_n(k))^{EU:K7}$$
 L/K

Definition

A q-number is an element of $\mathbb{Q}(q^{1/2})$ having no poles at q > 1. The ring of q-numbers is denoted by $\mathbb{Q}(q^{1/2})_{q>1}$. A q-function f(z) is a function from \mathbb{Z} to $\mathbb{Q}(q^{1/2})_{q>1}$.

Definition

A q-number is an element of $\mathbb{Q}(q^{1/2})$ having no poles at q > 1. The ring of q-numbers is denoted by $\mathbb{Q}(q^{1/2})_{q>1}$. A q-function f(z) is a function from \mathbb{Z} to $\mathbb{Q}(q^{1/2})_{q>1}$.

A q-exponential polynomial is a finite sum of the form

$$f(x) = \sum_{\nu} f_{\nu}(x) q^{\nu x},$$

where $v \in \frac{1}{2}\mathbb{Z}$, and each c_v is a polynomial of x with q-number coefficients.

The *order* ord(f) of f is the largest ν such that $f_{\nu} \neq 0$. The *degree* of f is the degree of the polynomial $f_{\text{ord}(f)}$.

The *order* ord(f) of f is the largest ν such that $f_{\nu} \neq 0$. The *degree* of f is the degree of the polynomial $f_{\text{ord}(f)}$.

For any polynomial f_{ν} , we write it as

$$f_{\nu}(z) = \sum_{n=0}^{\deg(f_{\nu})} c_{\nu,n} \binom{z}{n},$$

where $c_{\nu,n}$ are q-numbers and

The *leading coefficient* lead(f) of f is defined to be $c_{ord(f), deg(c_{\nu})}$.

A q-exponential polynomial can be viewed as a q-function. Then the key asymptotic property of such a q-function f(z) is

$$f(z) \sim \operatorname{lead}(f) \begin{pmatrix} z \\ \deg(f) \end{pmatrix} q^{\operatorname{ord}(f)z}.$$

EXPONENTIAL POLYNOMIALS

A q-exponential polynomial can be viewed as a q-function. Then the key asymptotic property of such a q-function f(z) is

$$f(z) \sim \operatorname{lead}(f) {z \choose \deg(f)} q^{\operatorname{ord}(f)z}.$$

A parity q-exponential polynomial f is said to be **rational** if all the exponential coefficients ν are integers and all the coefficient $c_{\nu,n}$ take values in $\mathbb{Q}(q)_{q>1}$.

The $\mathbb{Q}(q)_{q>1}$ -algebra of (rational) q-exponential polynomials is closed under differences and anti-differences.

Lemma

Given a multi-summation of q-exponentials

$$S(z) = \sum_{\mathbf{c} \in \mathbb{Z}_{>0}^{i} : 1 \cdot \mathbf{c} = z} q^{\boldsymbol{\mu} \cdot \mathbf{c}},$$

and let $\mathbf{i}_{max} = \{i \in \mathbf{i} \mid \mu_i = \mu_{max} := \max \mu\}$. Then S(z) is a q-exponential polynomial and we have

$$S(Z) \sim \prod_{i \notin \mathbf{i}_{\max}} (q^{\mu_{\max} - \mu_i} - 1)^{-1} \cdot {Z \choose |\mathbf{i}_{\max}| - 1} q^{\mu_{\max} Z}.$$

Moreover, if μ takes integral values, then S(z) is rational.

Asymptotic study for A_n

Asymptotic study for A_n

If *n* is odd, then

$$\mathsf{SV}(r) \sim \left(\sum_{\substack{l \subseteq \Delta \\ \frac{n+1}{2} \notin l}} \frac{q^{(\frac{n+1}{2})^2 - \deg(\mathscr{P}_{A_n;l})} \mathscr{P}_{A_n;l}(q)}{\prod\limits_{\substack{1 \leqslant i \leqslant t+1 \\ i \neq i_0}} \left(q^{\left(\ell_i - \frac{n+1}{2}\right)^2} - 1 \right)} \right) \cdot q^{(\frac{n+1}{2})^2 r}.$$

If *n* is even, then

$$SV(r) \sim \left(\sum_{\substack{l \subseteq \Delta \\ \frac{n}{2}, \frac{n}{2} + 1 \notin l}} \frac{q^{\frac{n}{2}(\frac{n}{2} + 1) - \deg(\mathscr{P}_{A_n;l})} \mathscr{P}_{A_n;l}(q)}{\prod_{\substack{1 \le i \le t + 1 \\ i \ne i_0, i_0 + 1}} \left(q^{(\ell_i - \frac{n}{2})(\ell_i - \frac{n}{2} - 1)} - 1 \right)} \right) \cdot rq^{\frac{n}{2}(\frac{n}{2} + 1)r}.$$

Asymptotic study for A_n

However, for root systems other than A_n , we have to deal with the ceil functions appearing in

$$\sum_{x \in B_s(r, {}^{\mathsf{V}}C, I)} \prod_{a(x) > 0} \left[a(x) \right].$$

In general, the exponents contain ceil functions and may not be integral. But by considering summations related to supsets and subsets, we can show that

$$SV(r) \times \binom{r}{\epsilon(n)} q^{\pi(n)r}.$$

PARITY EXPONENTIAL POLYNOMIALS

allow coefficients to be

purity functions install of constant.

PARITY EXPONENTIAL POLYNOMIALS

Definition

A parity q-exponential polynomial is a finite sum of the form

$$f(x) = \sum_{\nu} f_{\nu}(x) q^{\nu x},$$

where $v \in \frac{1}{2}\mathbb{Z}$, and each c_v is a polynomial of x whose coefficients are parity functions taking q-number values.

The *order*, *degree*, and *leading coefficient* of f are defined similarly as a q-exponential polynomial.

PARITY EXPONENTIAL POLYNOMIALS

A parity q-exponential polynomial can be viewed as a q-function. Then the key asymptotic property of such a q-function f(z) is

$$f(z) \sim \text{lead}(f) \begin{pmatrix} z \\ \deg(f) \end{pmatrix} q^{\operatorname{ord}(f)z}.$$

However, since the leading coefficient lead(f) depends on the parity of z, the asymptotic growth f(z) along even integers and odd integers can be different.

PARITY EXPONENTIAL POLYNOMIALS

A parity q-exponential polynomial can be viewed as a q-function. Then the key asymptotic property of such a q-function f(z) is

$$f(z) \sim \text{lead}(f) \begin{pmatrix} z \\ \deg(f) \end{pmatrix} q^{\operatorname{ord}(f)z}.$$

A parity q-exponential polynomial f is said to be **rational** if all the exponential coefficients ν are integers and all the coefficient $c_{\nu,n}$ take values in $\mathbb{Q}(q)_{q>1}$.

The $\mathbb{Q}(q)_{q>1}$ -algebra of (rational) parity q-exponential polynomials is closed under differences and anti-differences.

Lemma

Given a multi-summation as below

$$\mathsf{S}(z) = \sum_{\mathbf{c} \in \mathbb{Z}_{>0}^{\mathbf{i}} : 1 \cdot \mathbf{c} = z} q^{\boldsymbol{\mu} \cdot \mathbf{c} + \boldsymbol{\epsilon} \cdot (\mathbf{c})},$$

where $\epsilon(\mathbf{c})$ is a multivariable parity function. Let

 $\mathbf{i}_{\max} = \{i \in \mathbf{i} \mid \mu_i = \mu_{\max} := \max \mu\}$. Then S(z) is a parity q-exponential polynomial and we have

$$S(z) \sim \frac{1}{2^{|\mathbf{i}_{\max}|-1}} \prod_{i \notin \mathbf{i}_{\max}} (q^{2(\mu_{\max}-\mu_i)} - 1)^{-1} \cdot E(z) \cdot \binom{z}{|\mathbf{i}_{\max}|-1} q^{\mu_{\max}z},$$

loody coeffint

PARITY EXPONENTIAL POLYNOMIALS II

Lemma

where E(z) is a parity rational q-function and can be obtained as follows. Fix an $i^* \in \mathfrak{i}_{max}$ and let $\mathfrak{i}_{i^*} = \mathfrak{i} \setminus \{i^*\}$. Then

$$E(z) = \sum_{\mathbf{S} \in \mathbb{F}_2^{\mathbf{i}_{j^*}}} q^{\epsilon(\tau_{j^*}\mathbf{S}(z+1\cdot\mathbf{S})) + \mu \star_{j^*}\mathbf{S}},$$

where $\mu \star_{i^*} \mathbf{S} = \sum_{i \in \mathbf{i}} (\mu_{i^*} - \mu_i) \epsilon_0(\mathbf{S}_i)$. Moreover, if μ and ϵ take integral values, then $\mathbf{S}(z)$ is ratioanl.

Asymptotic study for C_n

Asymptotic study for \mathcal{C}_n

$$SV(r) \sim \left(\sum_{\substack{I \subseteq \Delta \\ n \notin I}} \frac{\mathscr{P}_{C_n;I}(q)}{q^{\deg}(\mathscr{P}_{C_n;I})} \frac{E_I}{\prod_{i=1}^{t-1} (q^{(n+1-\ell_i)(n-\ell_i)} - 1)} \frac{q^{\frac{n(n+1)}{2}}}{q^{\frac{n(n+1)}{2}} - 1} \right) \cdot q^{\frac{n(n+1)}{2}r},$$

where

$$E_{I}(r) = \sum_{\mathbf{s} \in \mathbb{F}_{2}^{t-1}} q^{\epsilon_{I}(s_{1}, \dots, s_{t-1}) + \sum_{i=1}^{t-1} \frac{1}{2}(n+1-\ell_{i})(n-\ell_{i}) \epsilon_{0}(s_{i})},$$

$$\epsilon_{I}(c_{1}, \dots, c_{t-1}) = \sum_{1 \leq i < j \leq t} (\ell_{i} - \ell_{i-1})(\ell_{j} - \ell_{j-1}) \epsilon_{0}(c_{i} + \dots + c_{j-1}).$$

For B_3 :

$$SV(r) \sim \frac{cq^5}{q^5 - 1} \cdot q^{5r},$$

where

$$c = \frac{\mathcal{P}_{C_3;\{a_2,a_3\}}(q)}{q^5} + \frac{\mathcal{P}_{C_3;\{a_3\}}(q)}{q^8} \cdot \frac{1+q^4}{q^2-1} + \frac{\mathcal{P}_{C_3;\{a_2\}}(q)}{q^8} \cdot \frac{1+q+q^2}{q-1} + \frac{\mathcal{P}_{C_3;\emptyset}(q)}{q^9} \cdot \frac{1+q+2q^2+q^4}{(q-1)(q^2-1)}.$$

For
$$B_n$$
 $(n \ge 4)$:

$$SV(2r) \sim \left(\sum_{n \notin I} \frac{\mathscr{P}_{C_n;I}(q)}{q^{\deg}(\mathscr{P}_{C_n;I})} \frac{E_{I,0}q^{n^2} + E_{I,1}}{q^{n^2} - 1} C_I \right) \cdot q^{n^2r},$$

$$SV(2r+1) \sim \left(\sum_{n \notin I} \frac{\mathscr{P}_{C_n;I}(q)}{q^{\deg}(\mathscr{P}_{C_n;I})} \frac{E_{I,0}q^{n^2} + E_{I,1}q^{n^2}}{q^{n^2} - 1} C_I \right) \cdot q^{n^2r}.$$

For D_4 :

$$SV(r) \sim \frac{cq^6}{q^6 - 1} \cdot {r \choose 2} q^{6r},$$

where

$$c = \frac{\mathcal{P}_{D_4;\{a_2\}}(q)}{q^{11}} \cdot (1+q^4) + \frac{\mathcal{P}_{D_4;\emptyset}(q)}{q^{12}} \cdot \frac{q^4}{1-q^4} \left(1+2q^4+q^3\right).$$

For
$$D_n$$
 $(n \ge 5)$:

$$SV(2r) \sim \left(\sum_{n \notin I} \frac{\mathscr{P}_{D_n;I}(q)}{q^{\deg}(\mathscr{P}_{D_n;I})} \frac{E_{I,0}q^{n(n-1)} + E_{I,1}}{q^{n(n-1)} - 1} C_I \right) \cdot rq^{n(n-1)r},$$

$$SV(2r+1) \sim \left(\sum_{n \notin I} \frac{\mathscr{P}_{D_n;I}(q)}{q^{\deg}(\mathscr{P}_{D_n;I})} \frac{E_{I,0}q^{n(n-1)} + E_{I,1}q^{n(n-1)}}{q^{n(n-1)} - 1} C_I \right) \cdot rq^{n(n-1)r}.$$

Thanks!