Khôlles de Mathématiques - Semaine 11

Kylian Boyet, Hugo Vangilluwen, Jérémie Menard

13 décembre 2023

1 Caractérisation séquentielle de la densité.

Soient $(A, B) \in (\mathcal{P}(\mathbb{R}) \setminus \{\emptyset\})^2$. Montrons que :

$$A \text{ est dense dans } B \iff \left\{ \begin{array}{l} A \subset B \\ \forall b \in B, \exists (a_n) \in A^{\mathbb{N}} : (a_n) \text{ converge vers } b \end{array} \right.$$

Démonstration. Sens indirect : supposons $A \subset B$ et $\forall b \in B, \exists (a_n) \in A^{\mathbb{N}} : (a_n)$ converge vers b :

- $\star A \subset B$ par hypothèse.
- * Montrons que $\forall b \in B, \forall \varepsilon \in \mathbb{R}_+^*, \exists a \in A : |b-a| < \varepsilon$ (on utilise la caractérisation de la densité avec les ε)

Soient $b \in B$ et $\varepsilon \in \mathbb{R}_+^*$ fixés que lconques :

Par hypothèse appliquée pour $b \leftarrow b : \exists (a_n) \in A^{\mathbb{N}} : a_n \xrightarrow[n \to +\infty]{} b$

Appliquons la définition de la convergence de (a_n) vers b pour $\varepsilon \leftarrow \frac{\varepsilon}{2}$:

$$\exists N \in \mathbb{N} : \forall n \in \mathbb{N}, n \geqslant N \Rightarrow |a_n - b| \leqslant \frac{\varepsilon}{2}$$

Fixons un tel N:

En particulier, $a_N \in A$ et $|a_N - b| \leq \frac{\varepsilon}{2} \leq \varepsilon$

Donc A est dense dans B.

Sens direct : supposons A dense dans B :

- \star Par définition, $A \subset B$
- \star Soit $b \in B$ fixé quelconque.

Soit $n \in \mathbb{N}$ fixé quelconque :

Appliquons la caractérisation de la densité par les ε pour $\varepsilon \leftarrow \frac{1}{2^n}$ (autorisé car $\frac{1}{2^n} > 0$), et

$$\exists a \in A : |a - b| \leqslant \frac{1}{2^n}$$

Notons a_n un tel élément. Nous venons de construire $(a_n)_{n\in\mathbb{N}}\in A^{\mathbb{N}}$ vérifiant :

$$\forall n \in \mathbb{N}, |a_n - b| \leqslant \frac{1}{2^n}$$
Or:
$$\lim_{n \to +\infty} \frac{1}{2^n} = 0$$

$$Or: \lim_{n \to +\infty} \frac{1}{2^n} = 0$$

Ainsi, d'après le théorème sans nom, $(a_n)_{n\in\mathbb{N}}$ converge vers b.

2 Théorème de la convergence monotone

Soit $u \in \mathbb{R}^{\mathbb{N}}$ une suite monotone :

- 1. Si u est croissante
 - (i) Soit u est majorée, et dans ce cas, $\lim u = \sup\{u_k | k \in \mathbb{N}\}\$
 - (ii) Soit u n'est pas bornée, et dans ce cas, u diverge vers $+\infty$.
- 2. Si u est décroissante :
 - (i) Soit u est minorée, et dans ce cas, $\lim u = \inf\{u_k | k \in \mathbb{N}\}\$
 - (ii) Soit u n'est pas bornée, et dans ce cas, u diverge vers $-\infty$.

Démonstration. Soit $u \in \mathbb{R}^{\mathbb{N}}$ monotone fq.

- 1. Supposons que u est croissante.
 - (i) Supposons que u est majorée.

Alors $\exists M \in \mathbb{R} : \forall n \in \mathbb{N}, u_n \leq M$. Fixons un tel M.

 $\Omega = \{u_k | k \in \mathbb{N}\} \text{ est }$

- une partie de \mathbb{R}
- non vide car u_0 v appartient
- majorée par M

donc elle admet un borne supérieure et notons-la σ .

Soit $\epsilon \in \mathbb{R}_+^*$ fq.

 $\sigma - \epsilon < \sigma$ donc $\sigma - \epsilon$ ne majore pas Ω . Donc $\exists N \in \mathbb{N} : u_N > \sigma - \epsilon$. Fixons un tel N.

Soit $n \in \mathbb{N}$ fq tq $n \geqslant N$.

Alors $u_n \geqslant u_N \geqslant \sigma - \epsilon$ et $u_n \leqslant \sigma$.

par définition de σ

$$\sigma - \epsilon \leqslant u_n \leqslant \sigma \implies -\epsilon \leqslant u_n - \sigma \leqslant 0$$
$$\implies |u_n - \sigma| \leqslant \epsilon$$

Donc $u_n \xrightarrow[n \to +\infty]{} \sigma$.

(ii) Supposons que u n'est pas bornée.

Soit $A \in \mathbb{R}$ fq.

u n'est pas bornée donc $\exists N \in \mathbb{N} : u_N > A$.

Or u est croissante donc $\forall n \in \mathbb{N}, n \geqslant N \implies u_n \geqslant A$.

Donc $u_n \xrightarrow[n \to +\infty]{} +\infty$.

2. Supposons que u est décroissante.

Il suffit dans la preuve ci-dessus de remplacer les inégalités inférieures par des inégalités supérieures et inversement et d'utiliser la notion de borne inférieure plutôt que de borne supérieure.

- $\begin{array}{ll} (i) \ \mbox{Si u est minorée, u_n} & \xrightarrow[n \to +\infty]{} & \inf\{u_k | k \in \mathbb{N}\}. \\ (ii) \ \mbox{Si u n'est pas bornée, u_n} & \xrightarrow[n \to +\infty]{} & -\infty. \end{array}$

3 Théorème de Césarò

Soit $u \in \mathbb{R}^{\mathbb{N}}$ qui converge vers $\ell \in \mathbb{R}$.

Alors la moyenne arithmérique des $n \in \mathbb{N}$ premiers termes (appelée moyenne de Césarò) converge vers ℓ .

Démonstration. Soient u une telle suite, $\varepsilon \in \mathbb{R}_+^*$ et $\ell \in \mathbb{R}$ ladite limite de u. Appliquons la définition de la convergence de u pour $\varepsilon \leftarrow \frac{\varepsilon}{2}$:

$$\exists N \in \mathbb{N} : \forall n \in \mathbb{N}, \ n \ge N \implies |u_n - \ell| \le \frac{\varepsilon}{2}.$$

Fixons un tel N. Posons $\omega = \sum_{k=0}^{N-1} |u_k - \ell| \in \mathbb{R}$. Soit $n \in \mathbb{N}$ tel que $n \ge N$. Calculons :

$$\left|\frac{1}{n}\sum_{k=0}^{n-1}u_k-\ell\right|=\left|\frac{1}{n}\left(\sum_{k=0}^{n-1}u_k-n\ell\right)\right|=\left|\frac{1}{n}\sum_{k=0}^{n-1}(u_k-\ell)\right|\leq \underbrace{\frac{1}{n}\sum_{k=0}^{N-1}|u_k-\ell|}_{=\;\omega\in\mathbb{R}}+\underbrace{\frac{1}{n}\sum_{k=N}^{n}|u_k-\ell|}_{\leq\;\frac{\varepsilon}{2}}\leq \underbrace{\frac{\varepsilon}{2}}$$

Ces majorations sont issues de l'inégalité triangulaire et de la convergence de u. De plus, comme la suite $(v_n)_{n\in\mathbb{N}}=\left(\frac{\omega}{n}\right)_{n\in\mathbb{N}}$ converge vers 0, on écrit sa définition pour $\varepsilon\leftarrow\frac{\varepsilon}{2}$:

$$\exists N' \in \mathbb{N} : \forall n \in \mathbb{N}, \ n \ge N' \implies |v_n| \le \frac{\varepsilon}{2}.$$

On fixe un tel N' et on pose $\Lambda = \max(N, N')$ qui a bien un sens car $\{N, N'\}$ est une partie finie de \mathbb{N} . De la même manière qu'auparavant, pour $n \in \mathbb{N}$ tel que $n \geq \Lambda$, on a :

$$\left| \frac{1}{n} \sum_{k=0}^{n-1} u_k - \ell \right| \le \underbrace{\frac{\omega}{n}}_{\le \frac{\varepsilon}{2}} + \frac{\varepsilon}{2} \le \varepsilon.$$

П

C'est le théorème souhaité.

4 Théorème de passage à la limite dans une inégalité.

Soient $(u, v) \in \mathbb{R}^{\mathbb{N}}$:

$$\begin{array}{c|c} (i) & \mathrm{Si} & \exists N \in \mathbb{N} : \forall n \in \mathbb{N}, n \geqslant N \Rightarrow u_n \geqslant 0 \\ & u \text{ converge} \\ & \mathrm{Alors} \ \mathrm{lim} \ u \geqslant 0 \end{array}$$

(ii) Si
$$\begin{vmatrix} \exists N \in \mathbb{N} : \forall n \in \mathbb{N}, n \geqslant N \Rightarrow u_n \leqslant v_n \\ u \text{ et } v \text{ convergent} \\ \text{Alors } \lim u \leqslant \lim v \end{vmatrix}$$

Démonstration.

(i) L'hypothèse $\exists N \in \mathbb{N} : \forall n \in \mathbb{N}, n \geqslant N \Rightarrow u_n \geqslant 0$ permet d'affirmer que u et |u| coïncident à partir d'un certain rang.

Par ailleurs, la convergence de u et la continuité de $|\cdot|$ sur $\mathbb R$ donc en $\lim u$ donnent |u| converge vers $|\lim u|$.

Le caractère asymptotique de la limite permet de conclure que u et |u| ont la même limite. Donc $\lim u = |\lim u| \ge 0$

(ii) $\exists N \in \mathbb{N} : \forall n \in \mathbb{N}, n \geqslant N \Rightarrow u_n \leqslant v_n \Rightarrow v_n - u_n \geqslant 0$ $u \text{ et } v \text{ convergent } \Rightarrow v - u \text{ converge vers } \lim v - \lim u.$

On applique (i) pour $u \leftarrow v - u$, autorisé car u et v convergent.

On obtient $\lim v - \lim u \ge 0$ d'où $\lim u \le \lim v$.

5 Théorème des suites adjacentes

Soient u et v deux suites réelles adjacentes. Alors u et v convergent et ont la même limite.

 $D\acute{e}monstration$. Soient u et v de telles suites. Quitte à inverser les rôles desdites suites, prenons u croissante et v décroissante.

On a donc:

$$\forall n \in \mathbb{N}, \ (u_n \le v_n \le \underbrace{v_0}_{\in \mathbb{R}}) \land (\underbrace{u_0}_{\in \mathbb{R}} \le u_n \le v_n),$$

car la monotonie des suites induit ces inégalités. D'après le théorème de limite monotone, u étant croissante et majorée elle converge, v étant décroissante et minorée elle converge. Il s'en suit que par définition des suites adjacentes :

$$0 = \lim_{n \to +\infty} (u_n - v_n) = \lim_{u,v \text{ convergent}} \lim_{n \to +\infty} u_n - \lim_{n \to +\infty} v_n.$$

Ainsi, $\lim u = \lim v$.

6 *Facultative* Théorème de Bolzano-Weierstrass

Toute suite bornée réelle admet une sous-suite convergente.

L'ensemble des valeurs d'adhérence d'une suite réelle bornée est non vide.

Démonstration. Soit $u \in \mathbb{R}^{\mathbb{N}}$ fq bornée.

Alors $\exists M \in \mathbb{R}_+ : \forall n \in \mathbb{N}, |u_n| \leq M$.

Construisons une suite de segments dans [-M; M] de plus en plus petits par dichotomie. Posons $a_0 = -M$, $b_0 = M$ et définissons les suites c et I pour tout n dans \mathbb{N} par $c_n = \frac{a_n + b_n}{2}$ et $I_n = [a_n; b_n].$

Soit $n \in \mathbb{N}$ fq. Supposons a_n et b_n construits et $\{k \in \mathbb{N} \mid u_k \in I_n\}$ infini. Construisons les termes

d'indices
$$n+1$$
.
Posons $\begin{vmatrix} I_n^- &= \{k \in \mathbb{N} \mid u_k \in [a_n; c_n]\} \\ I_n^+ &= \{k \in \mathbb{N} \mid u_k \in [c_n; b_n]\} \end{vmatrix}$
Nous avons $I_n^- \cup I_n^+ = \{k \in \mathbb{N} \mid u_k \in I_n\}$ donc I_n^- ou I_n^+ est infini.

- Si I_n^- est infini, posons $\begin{vmatrix} a_{n+1} &= a_n \\ b_{n+1} &= c_n \end{vmatrix}$ Ainsi $\{k \in \mathbb{N} \mid u_k \in I_{n+1}\} = I_n^-$ est infini.
- Si I_n^+ est infini, posons $\begin{vmatrix} a_{n+1} &= c_n \\ b_{n+1} &= b_n \end{vmatrix}$ Ainsi $\{k \in \mathbb{N} \mid u_k \in I_{n+1}\} = I_n^+$ est infini.

Étudions la suite $(I_n)_{n\in\mathbb{N}}$.

- Nous avons toujours $a_n \leq b_n$ donc $\forall n \in \mathbb{N}, I_n \neq \emptyset$
- Par construction, $\forall n \in \mathbb{N}, I_{n+1} \subset I_n$
- $-|I_{n+1}| = |a_{n+1} b_{n+1}| = \frac{1}{2}|a_n b_n| = \frac{1}{2}|I_n|$ donc la suite des cardinaux est une suite géométrique de raison 1/2. Donc $|I_n| \xrightarrow[n \to +\infty]{} 0$.

Donc, d'après le théorème des segments emboîtés, $\exists ! l\ell \in \mathbb{R} : \bigcap_{n \in \mathbb{N}} I_n = \{\ell\}$. Fixons un tel ℓ .

Construisons maintenant une extractrice φ de u.

Posons $\varphi(n) = 0$.

Soit $n \in \mathbb{N}$ fq. Supposons $\varphi(n)$ construite.

$$\varphi(n+1) = \min\{k \in \mathbb{N} | u_k \in I_{n+1} \land k > \varphi(n)\}\$$

 $\varphi(n+1)$ est bien définie car $\{k \in \mathbb{N} | u_k \in I_{n+1}\}$ est une partie de \mathbb{N} non bornée (car infinie).

Ainsi, nous avons construit $\varphi: \mathbb{N} \to \mathbb{N}$ strictement croissante. Nous pouvons extraire une sous-suite de u. Or $\forall n \in \mathbb{N}, u_{\varphi(n)} \in I_n$ donc

$$\forall n \in \mathbb{N}, \quad \underbrace{a_n}_{n \to +\infty} \notin u_{\varphi(n)} \leqslant \underbrace{b_n}_{n \to +\infty} \ell$$

Donc, d'après le théorème d'existence de limite par encadrement, $u_{\varphi(n)} \xrightarrow[n \to +\infty]{} \ell$. Ainsi $\ell \in L_u$.

Facultative Caractérisation de la convergence par l'unicité d'une valeur d'adhérence pour une suite bornée.

Soit u une suite bornée. u converge si et seulement si il existe $\ell \in \mathbb{K}$ tel que L(u) est le singleton ℓ

 $D\acute{e}monstration$. Traitons le cas réel, celui sur \mathbb{C} est à adapter sans peine.

Supposons que u converge et posons $\lim u = \ell \in \mathbb{R}$. Toutes les sous-suites de u convergent vers ℓ donc $L(u) = \{\ell\}.$

Supposons maintenant qu'il existe un unique $\ell \in \mathbb{R}$ tel que $L(u) = \{\ell\}$. Par l'absurde, supposons que u ne converge pas vers ℓ , c'est-à-dire :

$$\exists \varepsilon \in \mathbb{R}_+^* : \forall N \in \mathbb{N}, \ \exists n \in \mathbb{N} : n \ge N \text{ et } |u_n - \ell| > \varepsilon.$$

Fixons un tel ε .

Posons $\varphi(0) = \min\{k \in \mathbb{N} \mid |u_k - \ell| > \varepsilon\}$, ce qui a du sens car c'est une partie non-vide de \mathbb{N} .

Posons ensuite $\varphi(1) = \min\{k \in \mathbb{N} \mid |u_k - \ell| > \varepsilon, \ \varphi(0) < k\}$, ce qui a du sens pour les mêmes raisons. On construit en itérant ce procédé $\varphi(n)$ tel que :

$$\forall n \in \mathbb{N}, \ \varphi(n+1) = \min\{k \in \mathbb{N} \mid |u_k - \ell| > \varepsilon, \ \varphi(n) < k\}.$$

De cette manière, nous venons de construire une extractrice telle que :

$$\forall n \in \mathbb{N}, \ |u_{\varphi(n)} - \ell| > \varepsilon.$$

Par hypothèse u est bornée, donc il existe $M \in \mathbb{R}_+$ tel que :

$$\forall n \in \mathbb{N}, |u_n| \leq M,$$

donc pour tout n dans \mathbb{N} , $|u_{\varphi(n)}| \leq M$, donc $(u_{\varphi(n)})_{n \in \mathbb{N}}$ est bornée.

Par le théorème de Bolzano-Weierstrass, il existe ψ une extractrice et $\ell' \in \mathbb{R}$, avec $\varphi \circ \psi$ qui est aussi une extractrice par composition d'applications strictement croissantes, donc $(u_{\varphi \circ \psi(n)})_{n \in \mathbb{N}}$ est une sous-suite de u et $\ell' \in L(u) = \{\ell\}$.

Par ailleurs, pour tout n dans \mathbb{N} :

$$\underbrace{|u_{\varphi \circ \psi(n)} - \ell|}_{n \to +\infty} > \varepsilon,$$

donc en passant à la limite dans l'inégalité on a pour tout n dans \mathbb{N} , $|\ell' - \ell| \ge \varepsilon > 0$, ce qui n'est pas possible car ℓ est la seule valeur d'adhérence possible et ici la différence n'est pas nulle.