Physique Statistique : Petite classe n°4 Gaz de Bose et de Fermi

1 Le gaz de bosons bidimensionnel

On considère un gaz de bosons confinés dans une boîte bidimensionnelle de taille $S = L_x \times L_y$. Ces bosons ont un spin nul et une masse m, et sont sans interaction entre eux. On suppose par ailleurs que ce gaz de bosons est à une température T fixée.

- 1. Calculer la densité d'états d'énergie pour des particules quantiques de masse m confinées dans cette boîte. Quel est l'espacement typique entre niveaux d'énergie? À quelle condition sur la température peut-on considérer que l'on a affaire à une densité d'états continue? (On prendra comme masse celle d'un atome d'hélium 4).
- 2. Dans la réalité, ce gaz n'est pas absolument bidimensionnel, mais est confiné dans une très faible épaisseur ε dans la troisième dimension. À quelle condition liant la température et l'épaisseur ε peut-on considérer qu'il s'agit d'un gaz bidimensionnel?
- 3. On conserve l'hypothèse bidimensionnelle. Exprimer la relation entre le potentiel chimique μ et le nombre de bosons N dans le système. On introduira notamment $\Lambda_{\rm th} = (\hbar^2 \beta/2m)^{1/2}$. Que représente cette quantité?
- 4. Comment évolue le potentiel chimique lorsque la température tend vers 0? Le nombre de bosons, vu comme une fonction de μ , est-il borné supérieurement? Comparer avec le cas tridimensionnel vu en cours.
- 5. Peut-on observer une condensation de Bose-Einstein dans un gaz bidimensionnel de bosons?

2 Semiconducteur à impuretés

On modélise un semiconducteur à impuretés de la manière suivante :

- Les seuls électrons « libres » sont fournis par les impuretés (appelées « donneurs »). Le cristal pur est isolant.
- Un électron peut toutefois être piégé par une impureté et donc ne plus contribuer à la conduction. Au zéro absolu, **tous les électrons sont piégés**.
- Le zéro des énergies est celui des énergies cinétiques des électrons libres. Avec cette convention, l'énergie individuelle d'un électron piégé est **négative** et vaut $-E_d$ avec $E_d > 0$.

- Le nombre total d'électrons N se décompose en N_p électrons piégés et $N_\ell = N N_p$ électrons libres. On suppose $E_d \gg k_B T$ à température ordinaire; on a donc $N_\ell \ll N$. On désigne par μ le potentiel chimique des électrons; l'un des buts de l'exercice est de calculer μ qui **n'a pas** ici la valeur donnée dans le cours pour un système d'électrons tous libres.
- 1. Donner le nombre moyen N_p d'électrons piégés, en fonction de N, E_d , μ et T. Comment se traduit sur les 3 dernières variables la condition $N_\ell \ll N$?
- 2. Donner la probabilité d'occupation d'un état « libre » (donc d'énergie E > 0) en fonction de E, μ et T. On admettra dans la suite que μ est négatif et satisfait $\exp(-\mu/(k_BT)) \gg 1$, sous réserve de vérification ultérieure.
- 3. Si V est le volume du cristal, on rappelle que le nombre d'états 1 « libres » d'énergie comprise entre E et E+dE vaut :

$$g(E) dE = \frac{V}{\pi^2 \hbar^3} \sqrt{2m_e^3} \sqrt{E} dE ,$$

 m_e étant la masse de l'électron. Dans l'approximation $\exp(-\mu/(k_BT)) \gg 1$, montrer que le nombre moyen N_ℓ d'électrons libres vaut :

$$N_{\ell} = N \left(\frac{k_B T}{E_0}\right)^{3/2} \exp\left(\frac{\mu}{k_B T}\right)$$
 avec $E_0 = \frac{\pi \hbar^2}{2m_e} \left(\frac{4N}{V}\right)^{2/3}$.

On donne l'intégrale définie : $\int_0^{+\infty} \sqrt{x} e^{-x} dx = \sqrt{\pi}/2.$

4. Donner une autre expression de N_{ℓ} à partir de la valeur de N_p calculée en (1). En déduire que :

$$\mu = -\frac{E_d}{2} + \frac{3}{4}k_BT \ln\left(\frac{E_0}{k_BT}\right)$$

et justifier a posteriori l'hypothèse sur μ faite en (2).

5. Calculer N_{ℓ} en fonction de N, E_d , E_0 et T.

 $^{1. \ \, \}text{Il s'agit \'evidemment d'\'etats lin\'eairement ind\'ependants au sens de la m\'ecanique quantique}.$