

УЧЕБЕН ПРОЕКТ

ПО

Диференциални уравнения и приложения

спец. Софтуерно инженерство, 2 курс, летен семестър, учебна година 2019/20

Тема № СИ20-П-48

Ф. No. 62306 Група 3

26.06.2020

Изготвил: Иванка Паунова

СЪДЪРЖАНИЕ

1. Тема (задача) на проекта	.3
2. Решение на Задачата	.4
2.1. MatLab код и получени в командния прозорец резултати при изпълнението му	4
2.2. Графики (включително от анимация)	5
2.3. Коментари към получените с MatLab резултати	6

1. Тема (задание) на проекта

Учебен проект по ДУПрил спец. СИ, 2 курс, летен семесътр, уч. год. 2019/20

 ${
m M_{Me}}.$ Иванка Паунова ${
m \Phi.No}$ 62306 ${
m \, rpyna}$ 3

Тема СИ20-П-48. Дадена е задачата на Коши за уравнението на хармоничния осцилатор

$$\begin{vmatrix} y'' + y = a(\sin(\omega_0 t) + \cos(\omega_0 t)) \\ y(0) = -1, \ y'(0) = -1. \end{vmatrix}$$

- 1. Решете символно дадената задача при a = 0. Начертайте графиката на намереното решение в интервала [0, 30].
- 2. При a=5 изберете подходяща стойност на честота ω_0 на външната сила, така че да демонстрирате явлението биене/резонанс. Решете символно получената задача и начертайте графиката на решението и́ в същия интеравл, както в подточка (1). Разположете графиките от двете подточки една под друга.

2. Решение на задачата

2.1 MatLab код и получени в командния прозорец резултати при изпълнението му

```
function oscillator 48
clear
clf
t0=0;
tmax=30;
%symbolic solution at a=0
y=simplify(dsolve('D2y+y=0','y(0)=-1','Dy(0)=-1'));
%resonance at a=5 and w0=1
p=simplify(dsolve('D2y+y=5*(sin(1*t)+cos(1*t))','y(0)=-
1', 'Dy(0) = -1'));
%beats at a=5 and w0=1.4
q=simplify(dsolve('D2y+y=5*(sin(1.4*t)+cos(1.4*t))','y(0)=-
1', 'Dy(0) = -1'));
t=t0:0.10:tmax;
Y=eval(y);
P=eval(p);
Q=eval(q);
for k=1:length(t)
    %periodic movement
    subplot(3,1,1);
    plot(t(1:k),Y(1:k), 'r', 'LineWidth', 2)
    axis([t0, tmax, -2, 2])
    grid on;
    grid minor;
    title('Periodic movement', 'Color', 'b');
    xlabel('t', 'Color', 'b');
    ylabel('y(t)', 'Color', 'b');
    %resonance
    subplot(3,1,2);
    plot(t(1:k),P(1:k), 'r', 'LineWidth', 2)
    axis([t0, tmax, -100, 100])
    grid on;
    grid minor;
    title('Resonance', 'Color', 'b');
    xlabel('t', 'Color', 'b');
    ylabel('y(t)', 'Color', 'b');
```

```
%beats
subplot(3,1,3);
plot(t(1:k),Q(1:k), 'r', 'LineWidth', 2)
axis([t0, tmax, -20, 20])
grid on;
grid minor;
title('Beats', 'Color', 'b');
xlabel('t', 'Color', 'b');
ylabel('y(t)', 'Color', 'b');
M(k)=getframe;
```

2.2 Графики (включително от анимация)

2.3 Коментари към получените с MatLab резултати

На първата графика е изобразено символното решение при a=0 в зададения интервал [0,30]. На втората графика е изобразено явлението резонанс при a=5 и $w_0=1$ и символното решение на задачата отново в интервала [0,30], а на третата — явлението биене при a=5 и w0=1.4 в интервала [0,30].