IT594: - DEEP NEURAL NLP

Term Paper Presentation MEGA: Moving Average Equipped Gated Attention

Sarvesh Bagwe (202211006) Vedant Dave (202211042) Kashyap Halavadia(202003040) Hiren Thakkar (202211074) Course Instructor: **Prof. Sourish Dasgupt**

Problems/ limitations with Transformers

1) Weak inductive bias:

- a) Almost no prior knowledge of dependency patterns. Trying learn directly from the data at every timestep.
- b) Position information only from absolute/relative positional embeddings.

2) Quadratic complexity:

- a) Time complexity for computing attention matrix as well as space complexity for storing it is quadratic in terms of the length of the input sequence.
- b) O(h.n.n) where h is the no of attention heads and n is the length of the input sequence.

Inductive Bias

• RNN:

- Strong and clear inductive bias.
- Uses hidden states to capture local dependencies.
- Recurrently model dependencies for effective learning.

Transformers' Attention Mechanism:

- Assumes no prior knowledge of dependencies.
- Learns pairwise attention weights for input tokens.
- Challenging for recognizing patterns, especially in long sequences.

• Transformers' Limitations:

It is inefficient for long sequence modeling.

MEGA: Executive Summary

• Effective and efficient drop-in replacement of attention for long sequence modelling.

Exponential Moving Average (EMA)

 Mega-chunk: linear complexity of time and space.

(a) Mega architecture.

MEGA: Architecture Outline

Exponential Moving Average (EMA)

- Local dependencies that decay exponentially over time .
- Incorporates stronger inductive bias into the attention.

Single-headed Gated Attention

- Adding a reset gate to the attention output.
- Theoretically proving that single-head gated attention is as expressive as multihead one.

Mega-Chunk

- Applying attention to local chunks of fixed length.
- Reducing quadratic complexity to linear.

(b) Mega layer.

Exponential Moving Average (EMA)

$$\boldsymbol{X} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\} \in \mathbb{R}^{n \times d}$$

Notations: Assuming 1-dim input sequence

$$\mathbf{y}_t = \boldsymbol{\alpha} \odot \mathbf{x}_t + (1 - \boldsymbol{\alpha}) \odot \mathbf{y}_{t-1}, \quad \boldsymbol{\alpha} \in (0, 1)^d$$

• EMA:

$$\mathbf{y}_t = \boldsymbol{\alpha} \odot \mathbf{x}_t + (1 - \boldsymbol{\alpha} \odot \boldsymbol{\delta}) \odot \mathbf{y}_{t-1}, \ \boldsymbol{\delta} \in (0,1)^d \text{ is the damping factor.}$$

Damped EMA:

Efficient Algorithm for EMA

Efficiently compute EMA outputs of all tokens in parallel.

$$\mathbf{y}_t = \boldsymbol{\alpha} \odot \mathbf{x}_t + (1 - \boldsymbol{\alpha} \odot \boldsymbol{\delta}) \odot \mathbf{y}_{t-1}$$

EMA weights are input independent

We can compute the weights for each input tokens in advance and compute EMAs with FFTs.

Single-headed Gated Attention in Mega

Adding a reset gate to the attention output

Step1:
$$X' = EMA(X)$$
 from the EMA layer:

$$oldsymbol{O} = f\left(rac{oldsymbol{Q}oldsymbol{K}^T}{ au(oldsymbol{X})} + oldsymbol{b}_{ ext{rel}}
ight)oldsymbol{V}$$

Step2: Attention:

Step3: Gated Attention:
$$\gamma = \mathcal{G}(X)$$

$$O_{\text{SMGA}} = O \odot$$

Single-headed gated attention is as expressive as multi-head one.

Mega Architecture: Reset and Update gate

Mega Architecture

Mega-Chunk: Efficient Mega

- Split input sequences into multiple chunks with fixed length.
- Applying attention to each chunk
 - Linear complexity and easy implementation
 - But will we lose contextual information between chunks?
 - Fortunately, EMA preserves the information from previous chunks.

Model Evaluation: Experiments

- Long Range Arena (LRA):
 - 3 tasks on byte-level text classification
 - 3 tasks on pixel-level image classification
- Language Modeling:
 - Enwiki8 (character-level)
 - WikiText-103 (word-level)
- Machine translation:
 - VMT'14 English-German
- Image Classification:
 - ImageNet-1K
- Raw Speech Classification:
 - Speech commands

Experimental Results

	LRA	WMT'14	WikiText-103	ImageNet	Raw-SC
XFM	59.24	27.68	18.66	81.80	31.24
S4	85.86	_	20.95	_	97.50
Mega	88.21	29.01	18.07	82.31	97.30

Analysis on LRA: Accuracy and Efficiency

• A benchmark of 6 sequence tasks for long range sequence modelling. Intentionally designed to be challenging.

Models	ListOps	Text	Retrieval	Image	Pathfinder	Path-X	Avg.	Speed	Mem.
XFM	36.37	64.27	57.46	42.44	71.40	Х	54.39	_	_
XFM‡	37.11	65.21	79.14	42.94	71.83	X	59.24	$1 \times$	$1 \times$
Reformer	37.27	56.10	53.40	38.07	68.50	Х	50.67	0.8×	0.24×
Linformer	35.70	53.94	52.27	38.56	76.34	Х	51.36	$5.5 \times$	$0.10 \times$
BigBird	36.05	64.02	59.29	40.83	74.87	Х	55.01	$1.1 \times$	$0.30 \times$
Performer	18.01	65.40	53.82	42.77	77.05	X	51.41	$5.7 \times$	$0.11 \times$
Luna-256	37.98	65.78	79.56	47.86	78.55	X	61.95	$4.9 \times$	$0.16 \times$
S4-v1	58.35	76.02	87.09	87.26	86.05	88.10	80.48	_	_
S4-v2	59.60	86.82	90.90	88.65	94.20	96.35	86.09	_	_
S4-v2‡	59.10	86.53	90.94	88.48	94.01	96.07	85.86	$4.8 \times$	$0.14 \times$
MEGA	63.14	90.43	91.25	90.44	96.01	97.98	88.21	$2.9 \times$	0.31×
MEGA-chunk	58.76	90.19	90.97	85.80	94.41	93.81	85.66	5.5×	0.13×

Thank you for your time!