Descriptive statistics and plots

Overview

Plots and statistics of categorical data

Plots and statistics of quantitative data

Announcement: Homework 2

Homework 2 is available

It is due on Gradescope by 11pm on Monday July 14th

 Question 4 involves reading a short article and commented on it, so you can get started on this right away

How did homework 1 go?

Questions/comments about anything?

Review: Vectors

Vectors are ordered sequences of numbers or letters The c() function is used to create vectors

```
> v <- c(5, 232, 5, 543)
> s <- c("statistics", "data", "science", "fun")
```

One can access elements of a vector using square brackets [] > s[2] # what will the answer be?

We can also apply functions to vectors > sum(v)

Review: Data frames

Data frames contain structured data

_	age [‡]	body_type [‡]	diet	drinks [‡]	drugs [‡]	education
1	22	a little extra	strictly anything	socially	never	working on college/university
2	35	average	mostly other	often	sometimes	working on space camp
3	38	thin	anything	socially	NA	graduated from masters program
4	23	thin	vegetarian	socially	NA	working on college/university
5	29	athletic	NA	socially	never	graduated from college/university
6	29	average	mostly anything	socially	NA	graduated from college/university

Review: OK Cupid data

Review: Data frames

Data frames contain structured data

- > library(SDS111)
- > download_data("profiles_revised.csv") # only needs to be run once
- > profiles <- read.csv("profiles_revised.csv")
- > View(profiles) # the View() function only works in R Studio!

•	age 🗦	body_type	diet [‡]	drinks [‡]	drugs [‡]	education
1	22	a little extra	strictly anything	socially	never	working on college/university
2	35	average	mostly other	often	sometimes	working on space camp
3	38	thin	anything	socially	NA	graduated from masters program
4	23	thin	vegetarian	socially	NA	working on college/university
5	29	athletic	NA	socially	never	graduated from college/university
6	29	average	mostly anything	socially	NA	graduated from college/university

Variables

	age	body_type ~	diet	drinks	drugs	education
1	22	a little extra	strictly anything	socially	never	working on college/university
2	35	average	mostly other	often	sometimes	working on space camp
3	38	thin	anything	socially	NA	graduated from masters program
4	23	thin	vegetarian	socially	NA	working on college/university
5	29	athletic	NA	socially	never	graduated from college/university
6	29	average	mostly anything	socially	NA	graduated from college/university

Lases

Review: Data frames

Quantitative Variable

Categorical Variable

Cases (observational units)

^	age	body_type	diet	drinks 🚊	drugs [‡]	education
1	22	22 a little extra	strictly anything	socially	never	working on college/university
2	35	35 average	mostly other	often	sometimes	working on space camp
3	38	38 thin	anything	socially	NA	graduated from masters program
4	23	23 thin	vegetarian	socially	NA	working on college/university
5	29	29 athletic	NA	socially	never	graduated from college/university
6	29	29 average	mostly anything	socially	NA	graduated from college/university
5	29	29 athletic	NA	socially	never	graduated from college/university

Review: Data frames

We can extract the columns of a data frame as vector objects using the \$ symbol

> the_ages <- profiles\$age

Can you get the sum of the ages of users in this data set?

> sum(the_ages)

Questions?

Categorical data

Categorical variables

A categorical variable assigns each observation to one of *k* groups

Which variables in the profiles data frame are categorical?

• Is age a categorical variable?

For categorical variables, we usually want to view:

- Frequency table: How many items are each category
- Relative frequency table: The proportion (or percentage) of items in each category

Proportion in a category = number in that category total number

Frequency table

- # Get information about drinking behavior
- > drinking_vec <- profiles\$drinks
- # Create a frequency table showing how often people drink
- > drinks_table <- table(drinking_vec)
- > drinks_table

Relative frequency table

We can create a relative frequency table using the function:

> prop.table(my_table)

Can you create a relative frequency table for the drinking behavior of the people in the okcupid data set?

- > drinks_table <- table(profiles\$drinks)
- > prop.table(drinks_table)

Bar plots

(pun intended?)

We can plot the number of items in each category using a bar plot

> barplot(my_table)

Can you create a bar plot for the drinking behavior of the people in the okcupid data set?

- > drinks_table <- table(profiles\$drinks)
- > barplot(drinks_table)

Let's try it in RStudio!

Details matter!

Can you figure out how to label the axes?

```
• A: ? barplot
```

A: xlab and ylab!

```
> barplot(drinks_table,
    ylab = "Count",
    xlab = "Type of drinker",
    main = "Counts of different types of drinkers")
```

Pie charts

We can also use the pie() function to create pie charts

> pie(drinks_table)

Questions?

Visualizing Quantitative Data

Visualizing quantitative data: histograms

The first few okcupid users' heights

```
> profiles$height[1:5]
```

To create a histogram we create a set of intervals

60-65, 65-70, 70-75, 75-80

We count the number of points that fall in each interval

We create a bar chart with the counts in each bin

Histograms of heights

Height (inches)	Frequency Count
(0-10]	6
(10-20]	0
(20-30]	1
(30-40]	13
(40-50]	9
(50-60]	1097
(60-70]	40575
(70-80]	18164
(80-90]	50
>90	28

Visualizing heights

We can create histograms in R using the hist() function

Can you create a histogram of heights?

> hist(profiles\$height)

How can you add more bars to the histogram?

- How can we figure out how to add more bars to a histogram?
- > hist(profiles\$height, breaks = 50)

Common shapes for distributions

Can you think of a distribution that is right skewed?

Can you think of a distribution that is symmetric and bell-shaped?

Can you think of a distribution that is symmetric but not bell-shaped?

Statistics for quantitative data

Measure of central tendency: The mean

Mean =
$$x_1 + x_2 + x_3 + ... + x_n$$
 = $\sum_{i=1}^n \frac{x_i}{n}$ = $\frac{1}{n} \sum_{i=1}^n x_i$

R: mean(x)

R: mean(x, na.rm = TRUE)

The median

The **median** is the value that splits the data in half

 i.e., half the values are less than the median and half are greater than the median

The median of a data set of size n is:

- If n is odd: The middle value of the sorted data
- If n is even: The average of the middle two values of the sorted data

MEDIAN

R: median(v)
 median(v, na.rm = TRUE)

Resistance

We say that a statistics is **resistant** if it is relatively unaffected by extreme values (outliers)

The median is resistant when the mean is not

Example:

Mean US salary = \$72,641

Median US salary = \$51,939

Movies gross domestic revenue

Measures of spread

Measure of spread 1: The standard deviation

The standard deviation can be computed using the following formula:

$$s = \sqrt{\frac{1}{(n-1)} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$

Example: computing the standard deviation

Suppose we had a sample with n = 4 points:

$$x_1 = 8$$
, $x_2 = 2$, $x_3 = 6$, $x_4 = 4$,

We can compute the mean using the formula:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{4} \cdot (x_1 + x_2 + x_3 + x_4) = \frac{1}{4} \cdot (8 + 2 + 6 + 4) = 5$$

The standard deviation can be computed using the formula:

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$
 (remember order of operations!)

Average monthly temperature: Des Moines vs. San Francisco

Data measured on April 14th from 1997 to 2010:

Mean temperature (°F): Des Moines = 54.49

Standard deviation (°F): Des Moines = 11.73

San Francisco = 54.01

San Francisco = 3.38

Percentiles

The **P**th **percentile** is the value of a quantitative variable which is greater than P percent of the data

For the US income distribution what are the 20th and 80th percentiles?

20th percentile = \$21,430 80th percentile = \$112, 254 Percent of Households

R: quantile (v, .95)

Five Number Summary

A **five-number summary** is a set of five descriptive statistics that provides a concise overview of a dataset's distribution.

Five Number Summary = (minimum, Q_1 , median, Q_3 , maximum)

 $Q_1 = 25^{th}$ percentile (also called 1st quartile)

 $Q_3 = 75^{th}$ percentile (also called 3^{rd} quartile)

Roughly divides the data into fourths

Measure of spread 2: Interquartile range (IQR) = $Q_3 - Q_1$

Box plots can also visualize quantitative data

R: boxplot(v)

Side-by-side boxplots

Boxplots are particularly useful for comparing distributions!

What does the figure above show?

Side-By-Side (Comparative) Boxplots

Age of Best Actor/Actress Oscar Winners (1970-2001)

Outliers

Outliers on boxplots are values that are more than 1.5 * IQR

What should we do if we have outliers?

Investigate!

• If there are due to an error, remove them

OkCupid users' heights

Outliers

Outliers on boxplots are values that are more than 1.5 * IQR

What should we do if we have outliers?

Investigate:

- If there are due to an error, remove them
- If not, need to account for them

Questions?

Let's try it in RStudio!

Visualizing two quantitative variables

CitiBike data

Let's look at the bike share data from NYC

> load('daily_bike_totals.rda')

CitiBike analysis

What does each case correspond to?

We can use the dim() function to get how many cases and variables there are

How many are there?

Scatterplot

A **scatterplot** graphs the relationship between two variables

- Each axis represents the value of one variables
- Each point the plot shows the value for the two variables for a single data case

If there is an explanatory and response variable, then the explanatory variable is put on the x-axis and the response variable is put on the y-axis.

Relationship between cigarettes sold and cancer deaths

Scatter plots

We can use the plot(x, y) function to create scatter plots

Can you create a scatter plot of the relationship between the minimum and maximum temperatures?

Plotting time series

We can use the plot(x, y) function to plot time series

The correlation coefficient

The **correlation** is measure of the strength and direction of a <u>linear</u> <u>association</u> between two variables

$$r = \frac{1}{(n-1)} \sum_{i=1}^{n} \left(\frac{x_i - \overline{x}}{s_x} \right) \left(\frac{y_i - \overline{y}}{s_y} \right)$$

R: cor(x, y)

Properties of the correlation

Correlation as always between -1 and 1: $-1 \le r \le 1$

The sign of r indicates the direction of the association

Values close to \pm 1 show strong linear relationships, values close to 0 show no linear relationship

Correlation is symmetric: r = cor(x, y) = cor(y, x) $r = \frac{1}{(n-1)} \sum_{i=1}^{n} \left(\frac{x_i - \overline{x}}{s_x}\right) \left(\frac{y_i - \overline{y}}{s_y}\right)$

Florida lakes

Correlation game

Correlation caution #1

A strong positive or negative correlation does not (necessarily) imply a cause and effect relationship between two variables

Anscombe's quartet (r = 0.81)

Next class: data transformations with dplyr