CS189–Fall 2016 — Homework 2 Solutions

Yide Shentu, SID 25745510

1. Visualizing Eigenvectors of Gaussian Covariance Matrix

Figure 1: Output of problem1

a)

From figure 1, mean of X1 is 4.01 and mean of X2 is 5.13

b)

From figure 1,

c)

From figure 1, those eigenvalue, eigenvector pairs is:

$$\lambda_1 = 3.47 - > [-0.97, 0.23]^T$$

 $\lambda_2 = 9.43 - > [-0.23, 0.97]^T$

d)

Indicate by red dots and two black vector arrows

e)

Indicate by blue dots

Figure 2: for part d and e

C). ### (1/8 ###/M/ Sample from	
Convert X Back to Friends Adependent Z = (10.1)	
$\overline{Z} = VV$ $X = VZ + b$ $b = 0$ $V(0.1)$	
5-1=V7-1V-1 =VZ	
XZTX=XVT-VTX H=VZ+le. X, Z are Samples from X, Z	
$= Z^{T}V^{T}V^{T}V^{\dagger}V Z = Z^{T}Z = ^{2}$	
# change Sample space.	
	1
	<u> </u>
	λ
N 11 Av112- VTS+, - VT11 A 11TV 11T diago - 10	
107. 1/Ax/b2= XTS+X = XTULUTX. UT drange there base	
Max= Maximum of 1	
My = Har entry Minimum entry of 1	1
entries of Δ are eigenvalues of Z^{-1}	
entries of 21 are eigenvalue of 2	
if Xi II Xi then Z diagonal Matrix outries correspond	+0
Variance of Xi	
Maximum of $1/8x/5^2 = \alpha$ $\alpha = u_{uinum}$ variance amo	112 X.
Muimum of $1/8x/b^2 = \frac{1}{b}$ b= Maximum variance an	JA Rhon
	9 (1
doose X: makes 1/1/0x/2= 5 b Max Variance	
Xi is the normalized eigenteen variable with	The state of the s
Largesc Milliarrance	

3.

Figure 4: b

Figure 6: d

Figure 7: e

#4. az oode and use form solution from HWI いこりとかかかかか b7. Wng = Wn - 2 (2xxTun - 2xTT + 22wn) J. WAN = Wt - 2(2xiXiTWx - 27iyi +271/4) in order to help the iterative algorithm Converge. a Should decrease generally. can use exp or (1- #iteration) --a7. gradient descent: 2= defautt value reg: 0.1 Ldefaute). Sto diastic graidant descent: $Q = \frac{1}{2} \frac{1}{4} \frac{1}{1} \frac{$ From the Graph We can see that the proor rate of graduent descens is always decreasing and the airre is very mooth. Be ause the sompte the Real demative and with a proper 2 the Update direction is always advect. The graph of stochastic graident docent is a little different. Although it trands to decrease, we can see a lot of noise during the process because we randomly choose vector to conjute the expected " value of derivative, some times the ugdate direction in is not sowect. e) My Score is 0,94460

Figure 8: SGD with liear learning rate

Figure 9: SGD with linear annealing learning rate

#5. and invertible E both positive $(AA^T+UI)^T+(AA^T+U$ (AAT +MI) = A (ATA +MI) + from Hw1 we have $U*=U=(\Omega I+XTX)^{T}X^{T}y$ from part a we write $\alpha S=X^{T}(XX^{T}+UI)^{-1}Y$ b7. From K=(XX(7)(I)/14 $=\frac{2}{5}aihi$ (XXT+UI) TY] is unique since Ux= (RI+YTX)+XTY and (RI+XTX) wrentiable then W* uniquely defined. W= Wx+W1 Wx= 2 aixi and W1 from Nall (X) XWI = 0. XIWI = 0. 1 Z low (WTXi, yi) + U||W||2 CB

takes parameter WTXi and yi $W^TXY = (W*+WL^T)XY = W*TXY$ therefore WTX: Is value nock depends on WI the value of part A not depends on WI

7 dos (INTXI, Yi) + INTXIII)2	
of Min N Z gos (Mxx. fi) + Mtalle	
Loss function convex for 4 ki xk2 2 Loss (ki, yh) + (ha) Loss (k2, yi) > Loss (2h+ (ha) k2, yi)	
The same of the sa	
For Part B = M/W/2 = M(Wxtul) (Wx+w+)	
For $1000000000000000000000000000000000000$	
if fix W*, har minimum Value When WI =0	
therefore to ensure $1 = \frac{1}{2} lor(WXi, Yi) + ullw1/2^2$	har
minimum Value, WI Should be z W* = Z Xiai	ero
121	
We never use the condition 'Loss function is convex	n
therefore the proof above is a general proof.	2
Loss not convex, optimal solution still has the for $U \neq = 2ai \chii$	m
P1 200 10	

#6. P (get those date) T. P(4/X) $= \pi + \frac{1}{\sqrt{n\delta^{2}}} e^{-\frac{(y_{1} - (w_{0} + w_{0} + w_{0}))^{2}}{2\delta^{2}}}$ $= (\frac{1}{\sqrt{n\delta^{2}}}) N + \frac{(y_{1} - (w_{0} + w_{0} + w_{0}))^{2} + (y_{1} - (w_{0} + w_{0} + w_{0})^{2})}{2\delta^{2}}$ $= (\frac{1}{\sqrt{n\delta^{2}}}) N + \frac{(y_{1} - (w_{0} + w_{0} + w_{0}))^{2} + (y_{1} - (w_{0} + w_{0} + w_{0})^{2})}{2\delta^{2}} - \dots$ $= (\frac{1}{\sqrt{n\delta^{2}}}) N + \frac{(y_{1} - (w_{0} + w_{0} + w_{0}))^{2} + (y_{1} - (w_{0} + w_{0} + w_{0})^{2})}{2\delta^{2}} - \dots$ $= (\frac{1}{\sqrt{n\delta^{2}}}) N + \frac{(y_{1} - (w_{0} + w_{0} + w_{0}))^{2} + (y_{1} - (w_{0} + w_{0} + w_{0})^{2})}{2\delta^{2}} - \dots$ $= (\frac{1}{\sqrt{n\delta^{2}}}) N + \frac{(y_{1} - (w_{0} + w_{0} + w_{0}))^{2} + (y_{1} - (w_{0} + w_{0} + w_{0})^{2})}{2\delta^{2}} - \dots$ $= (\frac{1}{\sqrt{n\delta^{2}}}) N + \frac{(y_{1} - (w_{0} + w_{0} + w_{0}))^{2} + (y_{1} - (w_{0} + w_{0} + w_{0})^{2})}{2\delta^{2}} - \dots$ $= (\frac{1}{\sqrt{n\delta^{2}}}) N + \frac{(y_{1} - (w_{0} + w_{0} + w_{0}))^{2} + (y_{1} - (w_{0} + w_{0} + w_{0})^{2})}{2\delta^{2}} - \dots$ $= (\frac{1}{\sqrt{n\delta^{2}}}) N + \frac{(y_{1} - (w_{0} + w_{0} + w_{0}))^{2} + (y_{1} - (w_{0} + w_{0} + w_{0})^{2})}{2\delta^{2}} - \dots$ $= (\frac{1}{\sqrt{n\delta^{2}}}) N + \frac{(y_{1} - (w_{0} + w_{0} + w_{0}))^{2} + (y_{1} - (w_{0} + w_{0} + w_{0})^{2})}{2\delta^{2}} - \dots$ $= (\frac{1}{\sqrt{n\delta^{2}}}) N + \frac{(y_{1} - (w_{0} + w_{0} + w_{0})^{2})^{2} + (y_{1} - (w_{0} + w_{0} + w_{0})^{2}}{2\delta^{2}} - \dots$ $= (\frac{1}{\sqrt{n\delta^{2}}}) N + \frac{(y_{1} - (w_{0} + w_{0} + w_{0})^{2} + (y_{1} - (w_{0} + w_{0} + w_{0})^{2})}{2\delta^{2}} - \dots$ $= (\frac{1}{\sqrt{n\delta^{2}}}) N + \frac{(y_{1} - (w_{0} + w_{0} + w_{0} + w_{0})^{2}}{2\delta^{2}} - \dots$ $= (\frac{1}{\sqrt{n\delta^{2}}}) N + \frac{(y_{1} - (w_{0} + w_{0} + w_{0} + w_{0})^{2}}{2\delta^{2}} - \dots$ $= (\frac{1}{\sqrt{n\delta^{2}}}) N + \frac{(y_{1} - (w_{0} + w_{0} + w_{0} + w_{0} + w_{0})^{2}}{2\delta^{2}} - \dots$ $= (\frac{1}{\sqrt{n\delta^{2}}}) N + \frac{(y_{1} - (w_{0} + w_{0} + w_{0} + w_{0} + w_{0})^{2}}{2\delta^{2}} - \dots$ $= (\frac{1}{\sqrt{n\delta^{2}}}) N + \frac{(y_{1} - (w_{0} + w_{0} + w_{0} + w_{0} + w_{0})^{2}}{2\delta^{2}} - \dots$ $= (\frac{1}{\sqrt{n\delta^{2}}}) N + \frac{(y_{1} - (w_{0} + w_{0} + w_{0} + w_{0} + w_{0})^{2}}{2\delta^{2}} - \dots$ $= (\frac{1}{\sqrt{n\delta^{2}}}) N + \frac{(y_{1} - (w_{0} + w_{0} + w_{0} + w_{0} + w_{0} + w_{0})^{2}}{2\delta^{2}} - \dots$ $= (\frac{1}{\sqrt$ = [N(06+W, pi, o2) (yu 7/wh No. Pu1-0 $= \overline{2} \gamma_i \chi_i + 9 \alpha W_0 \overline{2} \gamma_i + W_1 \overline{2} \chi_i^2 = 0.$ $= \overline{2} \gamma_i \chi_i + \overline{y} \overline{2} \chi_i + \overline$ $W_{1} = \frac{Z_{1}X_{1}Y_{1} - Y_{2}X_{1}}{Z_{1}X_{1}^{2} - X_{2}X_{1}} = \frac{Z_{1}X_{1}Y_{1} - Y_{1}Y_{1}}{Z_{1}X_{1}^{2} - X_{2}X_{1}} = \frac{Z_{1}X_{1}Y_{1} - Y_{1}Y_{1}}{Z_{1}X_{1}^{2} - X_{2}X_{1}} = \frac{Z_{1}X_{1}Y_{1} - Y_{1}Y_{1}}{Z_{1}X_{1}^{2} - X_{2}X_{1}^{2}} = \frac{Z_{1}X_{1}Y_{1} - Y_{1}Y_{1}}{Z_{1}X_{1}^{2}} = \frac{Z_{1}X_{1}Y_{1} - Z_{1}X_{1}^{2}}{Z_{1}X_{1}^{2}} = \frac{Z_{1}X_{1}Y_{1} - Z_{1}X_{1}^{2}}{Z_{1}X_{1}^{2}} = \frac{Z_{1}X_{1}Y_{1} - Z_{1}X_{1}^{2}}{Z_{1}X_{1}^{2}} = \frac{Z_{1}X_{1}Y_{1} - Z_{1}X_{1}^{2}}{Z_{1}X_{1}^{2}} = \frac{Z_{1}X_{1}Y_{1}^{2}}{Z_{1}X_{1}^{2}} = \frac{Z_{1}X_{1}^{2}}{Z_{1}X_{1}^{2}} =$

#7. a). (0,1) (0,+) (1,0) (1,0) a) 4	
GV(X,Y) = II(X,Y) = 0 uncorrelated	
But P(x=0,y=0)=0 + P(x0).Pyy=0) not independen	* .
り、 の consider X, Y. P(X=1)= 立 P(Y=0+ 立 P(X=1)=3 本 = P(X=1)・P(Y=1	
for all other cover P(X, y)= P(X, P(y))	ham a t à c
for XZ YZ pain due to symmetricity. Sy	
properity they are all motherly pairwise	Maeponounc
But they are not mutually independent	
P(x=1, x=1) =0 + 1-1-2	

```
from mnist import MNIST
   import sklearn.metrics as metrics
2
   import numpy as np
   import scipy
    import pdb
    import time
6
    from numpy.linalg import inv
    from numpy.linalg import solve
   import matplotlib.pyplot as plt
11
   NUM_CLASSES = 10
12
   d = 1000 # the raisen dimension
13
   G_{transpose} = np.random.normal(scale = 0.1, size = (d, 784)) #the transpose of G, dim matched
14
   b = np.random.random((d,1))*6.2832
   def load_dataset():
        mndata = MNIST('./data/')
16
17
        X_train, labels_train = map(np.array, mndata.load_training())
18
        X_test, labels_test = map(np.array, mndata.load_testing())
19
        X_train = X_train/255.0
20
        X \text{ test} = X \text{ test/255.0}
21
        return (X_train, labels_train), (X_test, labels_test)
23
   def train(X_train, y_train, reg=0):
24
        ''' Build a model from X_train -> y_train ''' #dim of X_train is 5000,600000
26
        a = np.dot(np.matrix.transpose(X_train), X_train) + reg*np.identity(d)
27
        y = np.dot(np.transpose(X_train), y_train)
28
        w = solve(a,y)
29
        return w
30
31
   def train_gd(X_train, y_train, alpha=0.1, reg=0, num_iter=10000):
        ''' Build a model from X_train -> y_train using batch gradient descent '''
32
33
        #initalize a W
34
        alpha = alpha/X_train.shape[0]
        W = np.zeros((d,10))
        help1 = np.dot(np.transpose(X_train), X_train)
37
        help2 = np.dot(np.transpose(X_train), y_train)
        Wlist = []
39
        for i in range(num_iter):
10
            # if (i%100 == 0):
41
                  pdb.set_trace()
12
            l = reg*W + np.dot(help1, W) - help2
            W = W - l*alpha
            if ((i+1) % 100 == 0):
                Wlist.append(W)
46
        return Wlist
47
        return W
48
   def train_sgd(X_train, y_train, alpha=0.1, reg=0, num_iter=10000):
        ''' Build a from X_train -> y_train using stochastic gradient descent '''
49
        W = np.zeros((d,10))
51
        Wlist = []#for plotting data
        for i in range(num_iter):
            index = np.random.randint(low = 0, high = 60000-1)
            vector = X_train[index].T
            yvector = y_train[index]
            derivative = reg*W + np.dot(vector[:, None], (np.dot(vector, W) - yvector)[None,:])
            W = W - derivative*alpha*(1-i/(num_iter)) #linear
            if ((i+1) % 100 == 0):
```

15

22

25

35

36

38

43

14 45

50

52

53 54

55

56

58

```
if ((i+1) % 100 == 0):
58
59
                         Wlist.append(W)
60
             return Wlist
61
62
             return W
63
64
65
66
67
      def one_hot(labels_train):
             '''Convert categorical labels 0,1,2,....9 to standard basis vectors in R^{10} ''' #return 60000*784
             return np.array([[1 if i == labels_train[k] else 0 for i in range(10)] for k in range(len(labels_train))])
      def predict(model, X):
    ''' From model and data points, output prediction vectors '''
    rearrange (X));
68
70
71
72
73
74
             result = np.dot(np.matrix.transpose(model), np.transpose(X)) #get a vector
             return [np.argmax(i) for i in np.matrix.transpose(result)]
      def phi(X):
    ''' Featurize the inputs using random Fourier features '''
             X = np.cos(np.dot(G_transpose, np.transpose(X)) + b) #dim of X is 5000,60000
             return np.transpose(X) #60000,5000
76
77
78
79
80
81
82
83
                          = "__main__":
       if __name_
            __name__ == __main__":
print("The data has been raisen to dimension {0}".format(d))
(X_train, labels_train), (X_test, labels_test) = load_dataset()
y_train = one_hot(labels_train)
             y_test = one_hot(labels_test)
X_train, X_test = phi(X_train), phi(X_test)
84
85
             start_time = time.time()
             model = train(X_train, y_train, reg=0.1)
print("Training through closed form solution takes :{0}".format(time.time() - start_time))
86
87
             pred_labels_train = predict(model, X_train)
88
89
90
             pred_labels_test = predict(model, X_test)
            print("Closed form solution")
print("Train accuracy: {0}".format(metrics.accuracy_score(labels_train, pred_labels_train)))
print("Test accuracy: {0}".format(metrics.accuracy_score(labels_test, pred_labels_test)))
91
92
93
94
95
             start_time = time.time()
            model = train_gd(X_train, y_train, alpha=1e-3, reg=0.1, num_iter=20000)[-1]
print("Training though batch gradient descent takes :{0}".format(time.time() - start_time))
96
97
             pred_labels_train = predict(model, X_train)
98
99
00
             pred_labels_test = predict(model, X_test)
            print("Batch gradient descent")
print("Train accuracy: {0}".format(metrics.accuracy_score(labels_train, pred_labels_train)))
print("Test accuracy: {0}".format(metrics.accuracy_score(labels_test, pred_labels_test)))
01
02
03
04
            model = train_sgd(X_train, y_train, alpha=1e-3, reg=0.1, num_iter=500000)[-1]
print("Training though stochastic gradient descent takes :{0}".format(time.time() - start_time))
05
06
             pred_labels_train = predict(model, X_train)
07
            pred_tabels_test = predict(model, X_test)
print("Stochastic gradient descent")
print("Train accuracy: {0}".format(metrics.accuracy_score(labels_train, pred_labels_train)))
print("Test accuracy: {0}".format(metrics.accuracy_score(labels_test, pred_labels_test)))
08
09
10
11
```

```
#plot the error against the num_iter
WgdList = train_gd(X_train, y_train, alpha=1e-3, reg=0, num_iter=40000)
WsdList = train_sgd(X_train, y_train, alpha=1e-3, reg=0, num_iter=40000)
WgdErrorList = [1-metrics.accuracy_score(labels_train, predict(model, X_train)) for model in WgdList]
WsdErrorList = [1-metrics.accuracy_score(labels_train, predict(model, X_train)) for model in WsdList]
plt.figure()
x = np.arange(100,40000 + 1, 100)
print(x)
print(WgdErrorList)
plt.plot(x, WgdErrorList, "r")
plt.plot(x, WgdErrorList, "b")
plt.axis([100,40000,0,0.3])
plt.title("red: gd error against Num_iter blue: sgd error against Num_iter")
plt.show()
```