

Slot-A1 (ODD)

DEPARTMENT OF MATHEMATICS SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2021-2022

Test: CLAT-1

Course Code & Title: 18MAB204T / Probability ang Queueing Theory

Date: 07/04/2022 Duration: 50 min

Year & Sem: II & IV

Course Articulation Matrix:

Max. Marks: 25

At the	e end of this course, learners will be able to:	Program Outcomes (PO)													
Cours	e Outcomes (CO)	Learning Bloom's Level	1	2	3	4	5	6	7	8	9	10	11	12	
COI	Apply the concepts of probability and random variables in engineering problems.	4	3	3				\vdash							
CO2	Identify random variables and model them using various distributions.	4	3	3											
CO3	Infer results by using hypothesis testing on large and small samples	4	3	3											
CO4	Examine F test, Chi Square test in sampling techniques and a nalyse the performance measures of queuing models.	4	3	3											
CO5	Determine the transition probabilities and classify the states of Markov chain.	4	3	3											
CO6	Apply probability techniques and implement them in the study on sampling distributions, queueing models and Markov chain	4	3	3											

					4 = 12 Marks) the questions					
Q. No.		77	Quest		4200110110	Marks	BL	CO	PO	PI Code
1	Let X be a $f(x) = \begin{cases} X \\ \text{hence find} \end{cases}$	4	1	1	1	1.2.2				
2			nes $-1,0,1$ wind the mean a		pabilities $\frac{1}{3}$, find the	4	3	1	1	1.2.2
3	1	e^{-x} , $0 < x$	ntial distributi < ∞ wise Find			4	2	1	1	1.2.2
					13= 13 Marks) the questions					
4 (a)	The distrib	ution functio	on of a discrete	e RV is given	below.	7	3	1	1	1.2.2
	x	1	22	3	4					
	p(x)	15k	10k	30k	6k					
	Find (i) k	(ii) <i>E(X</i>) (ii	i) $P(X > 2/2)$	X < 4) (iv)	F(x)					
(b)			times. Use To bability of ge		nequality to find a	6	3	1	2	2.5.1

Slot-A1 (EVEN)

DEPARTMENT OF MATHEMATICS

SRM Nagar, Kattankulathur - 603203, Chengalpattu District, Tamilnadu

Academic Year: 2021-2022

Test: CLAT-1

Course Code & Title: 18MAB204T / Probability ang Queueing Theory

Date: 07/04/2022 Duration: 50 min

Year & Sem: II & IV

Course Articulation Matrix:

Max. Marks: 25

At the	end of this course, learners will be able to:						Pro	gram	Outo	omes	(PO)			
Course	· Outcomes (CO)	Learning Bloom's Level	1	2	3	4	5	6	7	8	9	10	11	12
COI	Apply the concepts of probability and random variables in engineering problems.	4	3	3										
CO2	Identify random variables and model them using various distributions.	4	3	3										
CO3	Infer results by using hypothesis testing on large and small samples	4	3	3										
C04	Examine F test, Chi Square test in sampling techniques and analyse the performance measures of queuing models.	4	3	3										L
CO5	Determine the transition probabilities and classify the states of Markov chain.	4	3	3									(4)	_
Ç06	Apply probability techniques and implement them in the study on sampling distributions, queueing models and Markov chain	4	3	3					-		*			

	Part – A (3 x 4 = 12 Marks) Answer all the questions					
Q.No	Ouestion	Marks	BL	CO	PO	PI Code
1	A random variable X has the pdf $f(x) = \begin{cases} Kx^2, & 1 \le x \le 2 \\ 0, & otherwise \end{cases}$. Find (i) $K(ii) \mu_r'$ and hence find the mean.	4	1	1	1	1.2.2
2	If a random variable X has the MGF $M_X(t) = \frac{3}{3-k}$, obtain the mean, variance and μ_3 .	4	3	1	1	1.2.2
	The pdf of a random variable X is given by	4	2	1	1	1.2.2
3	$f(x) = \begin{cases} 2x, & 0 < x < 1 \\ 0, & elsewhere \end{cases}$ Find the pdf of $Y = 2X^3$					
	Part-B (1 x 13= 13 Marks) Answer all the questions		1			J
4 (a)	If the CDF of a random variable X is given by $F(x) = \begin{cases} 0, & x < 0 \\ \frac{x^2}{16}, & 0 < x < 4 \end{cases}$ Find (i) the density function $f(x)$ (ii) $E(X)$ (iii) $P(X > 1/X < 3)$ iv) $P(X \le 2)$	7	3	1	1	1.2.2
(b)	If X is the number obtained in a throw of a fair die, find $P\{ X - \mu > 2.5\}$ using Tchebycheff's inequality.	6	3	1	2	2.5.1

Slot-A2 (ODD)

DEPARTMENT OF MATHEMATICS SRM Nagar, Kuttankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2021-2022

Test: CLAT-1

Course Code & Title: 18MAB204T / Probability ang Queucing Theory

Year & Sem: II & IV

Course Articulation Matrix:

Date: 07/04/2022 Duration: 50 min Max. Marks: 25

At the	end of this course, learners will be able to:						Pre	ogram	Out	come	(PO)			
Course	e Outcomes (CO)	Learning Bloom's Level	1	2	3	4	5	6	7	8	9	10	11	12
coı	Apply the concepts of probability and random variables in engineering problems.	4	3	3										
CO2	Identify random variables and model them using various distributions.	4	3	3										
CO3	Infer results by using hypothesis testing on large and small samples	4	3	3										
C04	Examine F test, Chi Square test in sampling techniques and analyse the performance measures of queuing models.	4	3	3								10 15		
COS	Determine the transition probabilities and classify the states of Markov chain.	4	3	3										
C06	Apply probability techniques and implement them in the study on sampling distributions, queueing models and Markov chain	4	3	3						_				

Q. No.	Questi	Answei on	411 (1	ne que	3110113		Marks	BL	СО	PO	PI Code
1	A continuous random variable X has the density function							1	1	1	1.2.2
2	distribution.	x 1 $p(x)$ 1	/4 2		3		4	3	1	1	1.2.2
3	Let X be a random variable with dens $f_X(x) = \begin{cases} \frac{x}{12}, & 1 < x < 5 \\ 0, & otherwise \end{cases}$ Let Y =	ity function 2X ³ . Fin	on d the	pdf of	Υ.	11 9	4	2	1	1	1.2.2
		Part-B (
4(i)	If the probability distribution of X is given as Find (i) k (ii) $E(X)$ (iii) $P(X > 1 / X < 4)$ (iv) $F(x)$	p(x)	1 4k	2 3k	3 2k	4 k	7	3	1	1	1.2.2
	A fair die is tossed 720 times. Use Tch	1102		mality	to fine	10	6	3	1	2	2.5.1

Slot-A2 (EVEN)

DEPARTMENT OF MATHEMATICS

SRM Nagar, Kattankulathur - 603203, Chengalpattu District, Tamilnadu

Academic Year: 2021-2022

Course Code & Title: 18MAB204T / Probability ang Queueing Theory

Date: 07/04/2022 Duration: 50 min

Year & Sem: II & IV

Course Articulation Matrix:

Max. Marks: 25

At the	end of this course, learners will be able to:		Program Outcomes (PO)												
Course	Outcomes (CO)	Learning Bloom's Level	1	2	3	4	5	6	7	8	9	10	11	12	
CO1	Apply the concepts of probability and random variables in engineering problems.	4	3	3								1			
CO2	Identify random variables and model them using various distributions.	4	3	3											
CO3	Infer results by using hypothesis testing on large and small samples	4	3	3											
CO4	Examine F test, Chi Square test in sampling techniques and analyse the performance measures of queuing models.	4	3	3											
CO5	Determine the transition probabilities and classify the states of Markov chain.	4	3	3											
CO6	Apply probability techniques and implement them in the study on sampling distributions, queueing models and Markov chain	. 4	3	3				1) T	r						

	Part – A (3 x 4 = 12 Marks) Answer all the questions				olf.	
Q.No	Question	Marks	BL	co	PO	PI Code
1	A random variable X has the pdf $f(x) = \begin{cases} Cx^2(1-x), & 0 \le x \le 1 \\ 0, & otherwise \end{cases}$ Find (i) C (ii) μ_r and hence find the mean.	4	1	1	1	1.2.2
2	If the MGF of a random variable X is $M_X(t) = \frac{2}{2-1}$, obtain the mean, variance and μ_3 .	4	3	1	1	1.2.2
3	The pdf of a random variable: X is given by $f(x) = \begin{cases} 3x^2, & 0 < x < 1 \\ 0, & elsewhere \end{cases}$ Find the pdf of $Y = 3X + 1$.	4	2	1	1	1.2.2
	Part-B (1 x 13= 13 Marks) Answer all the questions	le I				
4 (a)	The CDF of a random variable X is given by $F(x) = \begin{cases} 0, & x < 0 \\ x^2, & 0 \le x \le 1 \end{cases}$ Find (i) $f(x)$ (ii) $E(X)$ $\begin{cases} 1, & x > 1 \\ (iii) & P(X) > \frac{1}{4} / X < \frac{3}{4} \end{cases}$ (iv) $P(X) \le \frac{1}{4} / X \le \frac{1}{4} $	7	3	1	1	1.2.2
(b)	A discrete random variable X takes the values 1, 2, 3 with probabilities $1/18, 16/18, 1/18$. Evaluate $P\{ X - \mu \ge 2\sigma\}$ using Tchebycheff's inequality.	6	3	1	2	2.5.1