DeepPrep: an accelerated, scalable and robust pipeline for neuroimaging preprocessing empowered by deep learning

Jianxun Ren, Ning An, Cong Lin, Youjia Zhang, Zhenyu Sun, Wei Zhang, Shiyi Li, Ning Guo, Weigang Cui, Qingyu Hu, Weiwei Wang, Xuehai Wu, Yinyan Wang, Tao Jiang, Theodore D. Satterthwaite, Danhong Wang & Hesheng Liu (Changping Laboratory, Beijing, China | University of Pennsylvania, Philadelphia, PA, USA)

DOI: https://doi.org/10.1038/s41592-025-02599-1

Nature Methods

Published: February 06 2025

https://github.com/pBFSLab/DeepPrephttps://hub.docker.com/r/pbfslab/deepprephttps://deepprep.readthedocs.io

- Growing amounts of publicly available data from large-scale projects (like UKBB, ENIGMA, OpenNeuro)
- Prevailing preprocessing pipelines too slow (FreeSurfer, fMRIPrep, QSIPrep and ASLPrep)
- Segmentation issues for distorted brains (due to traumas, gliomas or strokes)

⇒ Need of a computationally efficient, scalable and robust preprocessing pipeline

DeepPrep: Deep learning-based neuroimaging preprocessing pipeline

Nextflow: Workflow manager of DeepPrep

Evaluation datasets

Supplementary Table.2 | Characteristics of evaluation datasets

accuracy and reliability assessment

evaluating computational efficiency and scalability

Manual brain segmentation

Three clinical datasets for robustness assessment

No.	Dataset	# used subs	# total subs	age	source	state	scanner
1	CoRR_HNU	30	30	20-30	http://fcon_1000.projects.nitrc.or g/indi/CoRR/html/hnu_1.html	Healthy	GE MR750 3T
2	MSC	10	10	24-36	https://openneuro.org/datasets/ds 000224/versions/1.0.3	Healthy	Siemens TRIO 3T
3	UKB_20252_2.0	49300	49300	44-83	https://biobank.ndph.ox.ac.uk/sh owcase/field.cgi?id=20252	Healthy	Siemens Skyra 3T
4	UKB_20252_3.0	5215	5215	44-83	https://biobank.ndph.ox.ac.uk/sh owcase/field.cgi?id=20252	Healthy	Siemens Skyra
5	Mindboggle-101	97ª	101	19-61	http://mindboggle.info/data	Healthy	Siemens, Philip
6	CRRC-Stroke	19 ^b	218	37-71	Collected in Beijing Bo'ai Hospital	Stroke	Philip Ingenia 3T
7	BTH-Glioma	19 ^b	168	21-62	Collected in Beijing Tiantan Hospital	Glioma	Siemens TrimTrio 3T
8	SHH-DoC	15 ^b	38	31-53	Collected in Shanghai Huashan Hospital	DoC	Siemens MAGNETOM 3T

^a Four cases have been excluded due to either poor data quality or the absence of necessary anatomical annotations.

^b Cases were selected from the clinical datasets if FreeSurfer v6.0 failed to complete processing within 48 CPU hours.

DeepPrep (v24.1.1) VS fMRIPrep (v24.0.0)

two-tailed paired t-test, t(99) = 67.0, $P = 2.6 \times 10^{-84}$

1

DeepPrep (v24.1.1) VS fMRIPrep (v24.0.0)

Mindboggle-101 dataset (manual segmentation)
Comparison of **dice coefficient** for each brain region
fMRI: 52/62 cortical regions better segmented with DeepPrep
sMRI: 31/39 subcortical regions

DeepPrep (v24.1.1) VS fMRIPrep (v24.0.0)

Comparison of both cortical surfaces features with target atlases

Performance of DeepPrep in speed and robustness

• Typical examples of three preprocessing error categories

Error categories	Original images	fMRIPrep v24.0.0	DeepPrep v24.1.1	
Segmentation (skull stripping)				
CSR		Failed to reconstruct surface		
Cortical surface registration		— Central sulcus Precentral Postcentral	— Central sulcus Precentral Postcentral	

Summary and future work

- DeepPrep = High efficiency and robustness in processing large-scale neuroimaging datasets and complex clinical samples
- Future comprehensive platform for processing multimodal neuroimaging
- Will integrate additional modalities, such as arterial spin labeling and diffusion imaging

Dependencies

Software used by DeepPrep		
Processing step	Implementation	Software Version
Input data		
Data in NIfTI format	BIDS format	
Anatomical processing		
brain extraction brain tissue segmentation	FastSufer	v1.1.0
bias correction	SimpleITK's N4	v2.3.0
reconstruct cortical surfaces from T1w structural images	FastCSR	v1.0.0
cortical surface registration	SUGAR	1.0.0
cortical surface parcellation	FreeSurfer	7.2.0
BOLD processing		
BOLD reference image	niworkflows	1.10.0
head motion correction	FSL MCFLIRT	6.0.5.1
slice time correction	AFNI 3dTshift	24.0.00
susceptibility distortion correction	SDCFlow	2.8.1
coregistration	FreeSurfer bbregister	7.2.0
resampling EPI to standard space	SynthMorph	2
confounds estimation	In-house codes	
Workflow		
workflow manager	Nextflow	23.10.4
in-memory database	Redis	6.0.16
lock context manager	python-redis-lock	4.0.0

Packages	Version
fastcsr	1.0.0
sugar	1.0.0
nighres	1.5.0
torch	2.0.1+cu118
torchvision	0.15.2+cu118
templateflow	23.2.0
lapy	1.0.1
voxelmorph	0.2
tensorflow	2.11.1
torch-geometric	2.2.0
fmriprep	23.2.0
mriqc	23.2.0
nnunet	1.7.1
dynaconf	3.2.3
wand	0.6.11
bids	0.0
nipype	1.8.6
niworkflows	1.10.0
SimpleITK	2.3.0
sdcflows	2.8.1
open3d	0.17.0
onnxruntime	1.16.3
pytorch3d	0.7.4
python-redis-lock	4.0.0
neurite	0.2

Reports

000000

0000000

Brain mask and brain tissue segmentation of the T1w.
This panel shows skull-stripped brain and cortical/subcortical segmentation of the T1w image.

Fieldmaps processing

Functional processing

When fieldmaps were found, some mosaics will show the field imhomogeneity with the "magnitude map" as the reference

Co-registration between functional and anatomical MRI data. bbregister was used to generate transformations from EPI-BOLD space to T1w-space.

Summary

Anatomical processing

* * * * 8 8 8 ***

> 4 特的物物物粉 0 6 6 6 6 8

Surface reconstruction. The white surface (blue contours) and pial surface (red contours) were reconstructed with FastCSR and are overlaied on the native T1w image.

Cortical surface anatomical narcellations The cortical parcellations were

surfaces (lower row)

generated based on the cortical surface

registration of SUGAR. Parcellations an

onlinear registration between the T1v

shown on the white (upper row) and pia

If fieldmap information was found, the step is and original ("before"). Contours of the white-

Susceptibility distortion correction. assessed with a dynamic mosaic that transitions between the unwarped ("after") matter boundaries are shown for reference

to the template space. Functional MRI was resampled to the MNI152NLin6Asym template space based on bbregister, SUGAR and SynthMorph.

(WM+CSF), and the rest of the

brain (The rest).

39 60 96 120 150 150 time-points (index) The rest.

BOLD Summary. Summary statistics are plotted, which may reveal trends or artifacts in the BOLD data. Global signals (GS) were calculated within the whole-brain and the white-matter (GSWM) and the cerebro-spinal fluid (GSCSF) were calculated with their corresponding masks. The standardized DVARS, framewise-displacement measures (FD), and relative head motion (RHM) were calculated. A carpet plot shows time series for all voxels within the brain mask, including cortical gray matter (Ctx GM), deep (subcortical) gray matter (dGM), white-matter and CSF

anat what get the file in bids bold withold get bold file in bids anal_wf anat_create_subject_orig_dr (sub-001) anat_wtanat_motoncor (sub-001) and where segment (sub-001) enet whisplit homi naveway may (sub-001) job wall time / memory usage (RAM) are shown for each

Thank you for your attention!