Tercer Examen Parcial

Primavera 2024

Sube tu archivo resultado a Canvas → Examen Parcial 3 antes de las 11:30 horas.

Aseguráte que tus resultados se despliegan en el archivo que subas.

Al final del script debes incluir las funciones usadas para resolver las preguntas.

Cada pregunta vale 5 puntos.

Si no usas la función indicada se restan 2 puntos en la respuesta.

Los exámenes son trabajos individuales. Está estrictamente prohibido dar o recibir ayuda de cualquier persona.

Recuerda salvar frecuentemente tu archivo.

Puede ser conveniente limpiar periódicamente el espacio de trabajo (comando clear).

En el caso extremo de gráficas que aparecen mal, puedes salir y volver a entrar a la sesión.

Pregunta 1.

Para simular la dinámica de una poblacion se utiliza el modelo logistico:

$$p' = k_{\rm gm} \left(1 - \frac{p}{p_{\rm max}} \right) p$$

donde p es la población, $k_{\rm gm}$ es la tasa máxima de crecimiento en condiciones ilimitadas y $p_{\rm max}$ es la capacidad de carga. El modelo logístico combina dos procesos ecológicos:

- reproducción ($p' = k_{\rm gm}p$)
- competencia ($p' = -k_{\rm gm} \frac{p^2}{p_{\rm max}}$).

Simula la población mundial (resolviendo la ecuación diferencial, usando Euler) entre 1950 y 2024, sabiendo que en 1950 había 2555 millones de personas. Para la simulación utiliza los siguientes valores de parametros: $k_{\rm gm} = 0.026/{\rm año}$ y $p_{\rm max} = 11000$ millones de personas.

```
disp('Problema 1')
```

```
Problema 1
```

```
[t, y] = odeEuler(f, p0, tspan, 1);
```

Grafica de manera adecuada, con etiquetas en los ejes y un grid, la población mundial en función del tiempo.

```
plot(t, y)
title('Población mundial de 1950 a 2024')
xlabel('$t$','interpreter','latex')
ylabel('$poblacion$','interpreter','latex')
grid on
```


¿Cuántos millones de personas hay en 2024 según el modelo?

```
fprintf('En 2024 hay %f millones de personas', y(end))
```

En 2024 hay 7412.518442 millones de personas

Pregunta 2.

Considera el siguiente sistema de dos ecuaciones diferenciales ordinarias con valores iniciales:

$$y' = y + z$$
 $y(0) = 0.1$
 $z' = -y + z$ $z(0) = 0.2$

Resuelve numéricamente, usando RK4, el sistema en el intervalo [0 10].

```
disp('Problema 2')
```

```
f = Q(t, yz) [yz(1) + yz(2); -yz(1) + yz(2)];

yz0 = [0.1; 0.2];

tspan = [0 10];

[t, yz] = odeRK4(f, yz0, tspan, 0.1);
```

Grafica de manera adecuada, usando una etiqueta y una leyenda, los valores dey y de z.

```
plot(t, yz(1, :))
hold on
plot(t, yz(2, :))
title('Sistema de ecuaciones')
xlabel('$t$','Interpreter','latex')
ylabel('$y(t)/z(t)$','Interpreter','latex')
legend('y', 'z', 'location', 'best')
grid on
hold off
```


Muestra que los eigenvalores de la matriz M asociada al sistema (yz)' = M * yz son complejos conjugados.

```
M = [1 1; -1 1];
eigM = eig(M);
disp(eigM)
```

```
1.0000 + 1.0000i
1.0000 - 1.0000i
```

La parte real de los eigenvalores corresponde al exponente de un función exponencial y la parte imaginaria a la frecuencia de un seno y un coseno.

Pregunta 3.

The Lotka-Volterra equations, also known as the predator-prey equations, are a pair of first-order, nonlinear, differential equations frequently used to describe the dynamics of biological systems in which two species interact, one as a predator and the other as prey.

The populations change through time according to the pair of equations (p_1 prey, p_2 predator):

$$\frac{\mathrm{d}p_1}{\mathrm{d}t} = \alpha * p_1 - \beta * p_1 * p_2$$

$$\frac{\mathrm{d}p_2}{\mathrm{d}t} = \delta * p_1 * p_2 - \gamma * p_2$$

where t is time, α is the natural growth rate of preys (rabbits), γ is the natural death rate of predators (foxes), β is the death rate of preys per one unit of the predator population, and δ is the growth rate of predators per one unit of the prey population.

For general parameters α , β , γ , δ , there is no closed-form solution to this problem. The only way to solve this problem is using a numerical solver.

Usando los siguientes valores $\alpha = 0.4$, $\beta = 0.018$, $\delta = 0.023$, $\gamma = 0.8$,

y los valores iniciales $p_1(0) = 30$ y $p_2(0) = 4$.

Simula la población de presas y depredadores en el intervalo [0 30], usando el método ABM4 y h=0.1.

```
disp('Problema 3')
```

```
Problema 3
```

```
alfa = 0.4;
beta = 0.018;
delta = 0.023;
gama = 0.8;
h = 0.1;
tspan = [0 30];
p0 = [30; 4];
f = @(t, p) [alfa.*p(1) - beta.*p(1).*p(2);
    delta.*p(1).*p(2) - gama.*p(2)];

[t, y] = ABM4(f, p0, tspan, h);
```

Grafica de manera adecuada los valores de p_1 y p_2 .

```
plot(t, y(1, :))
hold on
plot(t, y(2, :))
```

```
grid on
title('Ecuaciones de Lotka-Volterra')
xlabel('$t$','interpreter','latex')
ylabel('$p_1(t)/p_2(t)$','interpreter','latex')
hold off
```


Grafica de manera adecuada el número de presas contra el número de depredadores (p_1 vs p_2).

```
plot(y(1, :), y(2, :))
title('Numero de Presas vs. depredadores')
grid on
xlabel('$presas$','interpreter','latex')
ylabel('$depredadores$','interpreter','latex')
```


Pregunta 4.

Resuelve de manera numérica, con RK4 y h=0.1, la ecuación diferencial de tercer orden

$$\frac{\mathrm{d}^3}{\mathrm{d}t^3}x + x = 0$$

con las condiciones iniciales x''(0) = 0, x'(0) = 1, x(0) = 0,

en el intervalo [0, 10].

Para resolver la ecuación, introduce las variables

$$x' = y$$

$$y' = z$$

$$xyz = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Problema 4

```
xyz0 = [0; 1; 0];
tspan = [0 10];
h = 0.1;
[t, xyz] = odeRK4(f, xyz0, tspan, h);
```

Grafica, de manera adecuada, x(t).

```
plot(t, xyz(1, :))
grid on
title('Ecuación de tercer orden')
xlabel('$t$','interpreter','latex')
ylabel('$x(t)$','interpreter','latex')
```


Pregunta 5.

Resuelve, de manera numérica usando cualquier método, la siguiente ecuación diferencial de segundo orden:

$$y'' - y' - 2y = 0$$
 $y(0) = 0.1, y'(0) = 0.2$

en el intervalo [0 1].

Para resolver la ecuación, introduce las variables:

$$y' = z$$

$$yz = \begin{bmatrix} y \\ z \end{bmatrix}$$

```
disp('Problema 5')
```

Problema 5

```
f = @(t, yz) [yz(2); yz(2) + 2*yz(1)];
y0 = [0.1; 0.2];
tspan = [0 1];
h = 0.1;
[t, y] = odeRK4(f, y0, tspan, h);
```

Grafica de manera adecuada los valores de y.

```
plot(t, y(1, :))
title('Ecuacion numerica')
xlabel('$t$','interpreter','latex')
ylabel('$y(t)$','interpreter','latex')
grid on
```


Encuentra los eigenvectores y eigenvalores de la matriz M asociada al sistema $\begin{bmatrix} y \\ z \end{bmatrix}' = M * \begin{bmatrix} y \\ z \end{bmatrix}$

```
% [V, D]= eig(M)
M = [0 1; 1 2];
[V, eigM] = eig(M);
disp(V)
```

```
-0.9239 0.3827
0.3827 0.9239
```

disp(diag(eigM))

-0.4142 2.4142

Como los eigenvalores son reales distintos, la solución general yzG del sistema de ecuaciones es:

$$yzG = K1 * V(:, 1) * exp(D(1, 1) * t) + K2 * V(:, 2) * exp(D(2, 2) * t)$$

Para encontrar la solución particular yzP deseada usamos la condición inicial (t=0)

$$yz(0) = \begin{bmatrix} 0.1\\ 0.2 \end{bmatrix}$$

$$yzP = K1 * V(:, 1) + K2 * V(:, 2) = V * \begin{bmatrix} K1 \\ K2 \end{bmatrix} = \begin{bmatrix} 0.1 \\ 0.2 \end{bmatrix}$$

Resuelve este sistema de ecuaciones, usando \, para encontrar los valores de K1y K2.

```
yz0 = [0.1; 0.2];
k = V\yz0;
```

Calcula K1 * V(:,1) y K2 * V(:,2)

```
k(1)*V(:, 1)
```

ans = 2×1 0.0146 -0.0061

ans = 2×1 0.0854 0.2061

Observa que $y = 0.1 * \exp(2 * t)$.

Finalmente, resuelve de manera simbólica la ecuación diferencial.

```
syms y(t)
y0 = 0.1;
eqn = diff(y) == 0.1*exp(2*t);
cnd = y(0) == y0;
yP = dsolve(eqn, cnd)
```

$$yP = \frac{e^{2t}}{20} + \frac{1}{20}$$

```
fplot(yP, tspan)
title('Ecuacion simbólica')
```

```
xlabel('$t$','interpreter','latex')
ylabel('$y(t)$','interpreter','latex')
grid on
```


Funciones utilizadas

```
function [t, y] = odeEuler(f, y0, tspan, h)
   t0 = tspan(1);
   tn = tspan(2);
   t = t0:h:tn;
    n = length(t);
   y = zeros(length(y0), n);
   y(:, 1) = y0;
    for i = 1:n-1
        phi = f(t(i), y(:, i));
       y(:, i+1) = y(:, i) + phi*h;
    end
end
function [t, y] = odeRK4(f, y0, tspan, h)
   t = tspan(1):h:tspan(2);
    n = length(t);
   y = zeros(length(y0), n);
   y(:, 1) = y0;
```

```
for i = 1:n-1
        ti = t(i);
        yi = y(:, i);
        k1 = f(ti, yi);
        k2 = f(ti + 1/2*h, yi + 1/2*k1*h);
        k3 = f(ti + 1/2*h, yi + 1/2*k2*h);
        k4 = f(ti + h, yi + k3*h);
        y(:, i+1) = yi + 1/6*(k1 + 2*k2 + 2*k3 + k4)*h;
    end
end
function [t, y] = ABM4(f, y0, tspan, h)
   t = tspan(1):h:tspan(2);
    n = length(t);
   m = length(y0);
   y = zeros(m, n);
   y(:, 1) = y0;
    [\sim, y(:, 1:4)] = odeRK4(f, y0, [t(1) t(4)], h);
   fv = bsxfun(f, t(1:4), y(:, 1:4));
   for i = 4:n-1
       yi = y(:, i);
       y(:, i+1) = yi + h/24*(55*fv(4) - 59*fv(3) + 37*fv(2) - 9*fv(1));
       fv(:, 1:3) = fv(:, 2:4);
       fv(:, 4) = f(t(i+1), y(:, i+1));
       y(:, i+1) = yi + h/24*(9*fv(4) + 19*fv(3) - 5*fv(2) + fv(1));
       fv(:, 4) = f(t(i+1), y(:, i+1));
    end
end
```