Simplex Solver

April 30, 2024

Problem

Given the following linear system and objective function, find the optimal solution.

$$\max x_1 + x_2 + x_3$$

$$\begin{cases} x_1 + x_2 + x_3 \le 3 \\ x_3 \le 1 \\ x_1 + x_3 \le 2 \\ 2x_1 + 5x_3 \le 8 \\ - - 7x_1 + 8x_2 \le 0 \\ x_1 + 2x_2 - x_3 \le 1 \end{cases}$$

Solution

Add slack variables to turn all inequalities to equalities.

$$\begin{cases} x_1 + x_2 + x_3 + s_1 = 3 \\ x_3 + s_2 = 1 \\ x_1 + x_3 + s_3 = 2 \\ 2x_1 + 5x_3 + s_4 = 8 \\ --7x_1 + 8x_2 + s_5 = 0 \\ x_1 + 2x_2 - x_3 + s_6 = 1 \end{cases}$$

Create the initial tableau of the new linear system.

$\int x_1$	x_2	x_3	s_1	s_2	s_3	s_4	s_5	s_6	b	
1	1	1	1	0	0	0	0	0	3	s_1
0	0	1	0	1	0	0	0	0	1	s_2
1	0	1	0	0	1	0	0	0	2	s_3
2	0	5	0	0	0	1	0	0	8	s_4
-7	8	0	0	0	0	0	1	0	0	s_5
1	2	-1	0	0	0	0	0	1	1	s_6
-1	-1	-1	0	0	0	0	0	0	0	

There are negative elements in the bottom row, so the current solution is not optimal. Thus, pivot to improve the current solution. The entering variable is x_1 and the departing variable is s_6 .

Perform elementary row operations until the pivot element is 1 and all other elements in the entering column are 0.

Γ	x_1	x_2	x_3	s_1	s_2	s_3	s_4	s_5	s_6	b	
	0	-1	2	1	0	0	0	0	-1	2	s_1
	0	0	1	0	1	0	0	0	0	1	s_2
1	0	-2	2	0	0	1	0	0	-1	1	s_3
1	0	-4	7	0	0	0	1	0	-2	6	s_4
1	0	22	-7	0	0	0	0	1	7	7	s_5
	1	2	-1	0	0	0	0	0	1	1	x_1
1	0	1	-2	0	0	0	0	0	1	1	

There are negative elements in the bottom row, so the current solution is not optimal. Thus, pivot to improve the current solution. The entering variable is x_3 and the departing variable is s_3 .

Perform elementary row operations until the pivot element is 1 and all other elements in the entering column are 0.

Γ	x_1	x_2	x_3	s_1	s_2	s_3	s_4	s_5	s_6	b]
l	0	1	0	1	0	-1	0	0	0	1	s_1
İ	0	1	0	0	1	-1/2	0	0	1/2	1/2	s_2
l	0	-1	1	0	0	1/2	0	0	-1/2	1/2	x_3
l	0	3	0	0	0	-7/2	1	0	3/2	5/2	s_4
l	0	15	0	0	0	7/2	0	1	7/2	21/2	s_5
	1	1	0	0	0	1/2	0	0	1/2	3/2	x_1
L	0	-1	0	0	0	1	0	0	0	2	

There are negative elements in the bottom row, so the current solution is not optimal. Thus, pivot to improve the current solution. The entering variable is x_2 and the departing variable is s_2 .

Perform elementary row operations until the pivot element is 1 and all other elements in the entering column are 0.

ſ	x_1	x_2	x_3	s_1	s_2	s_3	s_4	s_5	s_6	b]
l	0	0	0	1	-1	-1/2	0	0	-1/2	1/2	s_1
	0	1	0	0	1	-1/2	0	0	1/2	1/2	x_2
	0	0	1	0	1	0	0	0	0	1	x_3
	0	0	0	0	-3	-2	1	0	0	1	s_4
	0	0	0	0	-15	11	0	1	-4	3	s_5
	1	0	0	0	-1	1	0	0	0	1	x_1
	0	0	0	0	1	1/2	0	0	1/2	5/2	

There are no negative elements in the bottom row, so we know the solution is optimal. Thus, the solution is:

$$s_1 = \frac{1}{2}, s_2 = 0, s_3 = 0, s_4 = 1, s_5 = 3, s_6 = 0, x_1 = 1, x_2 = \frac{1}{2}, x_3 = 1, z = \frac{5}{2}$$