THIS PAGE IS INSERTED BY OIPE SCANNING AND IS NOT PART OF THE OFFICIAL RECORD

Best Available Images

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

BLACK BORDERS

TEXT CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT

BLURRY OR ILLEGIBLE TEXT

SKEWED/SLANTED IMAGES

COLORED PHOTOS HAVE BEEN RENDERED INTO BLACK AND WHITE

VERY DARK BLACK AND WHITE PHOTOS

UNDECIPHERABLE GRAY SCALE DOCUMENTS

IMAGES ARE THE BEST AVAILABLE COPY. AS RESCANNING WILL NOT CORRECT IMAGES, PLEASE DO NOT REPORT THE IMAGES TO THE PROBLEM IMAGE BOX.

Contactl ss distanc measur ment arrangement using pulse=echo signals - us s neural network to evaluat transition time of transmitted and reflect d signal

Patent Number:

DE4223346

Publication date:

1994-01-20

Inventor(s):

RAFFALT FELIX DIPL ING (DE)

Applicant(s):

VEGA GRIESHABER GMBH & CO (DE)

Requested Patent: DE4223346

Application

Number:

DE19924223346 19920716

Priority Number(s): DE19924223346 19920716

IPC Classification: G01S7/00; G01S7/28; G01S7/52; G01S13/10; G01S15/10; G01S13/88; G01S15/88; G01F25/00;

G06F15/18

EC Classification:

G01F23/296D, G01F25/00B, G01S7/40A, G01S7/52G1, G01S7/41D

Equivalents:

Abstract

The measurement arrangement transmits a pulse signal towards the surface whose distance is to be measured. The reflected pulse echo signal is received and compared with a similar stored signal. The transition time is a measure of the distance between the transmitter and surface and is measured, stored and displayed.

The memory consists of a neural network (14) with input (14a), output (14b) and possibly concealed (14c) layers in which a processing routine is generated by an iterative learning process in which neural connections are modified according to a learning algorithm (18). The pulse-echo signal fed into the input layer is modified by the processing routine to form the output value which represents the signal transition time.

USE/ADVANTAGE - For contactless distance measurement by exactly measuring signal transition time without errors such as those caused by variations in gas composition, temp, or different surface shapes.

Data supplied from the esp@cenet database - I2

BUNDESREPUBLIK DEUTSCHLAND

[®] Off nl gungsschrift

[®] DE 42 23 346 A 1

DEUTSCHES PATENTAMT Aktenzeichen:

P 42 23 346.1

Anmeldetag:

16. 7.92

4 Offenlegungstag:

20. 1.94

(51) Int. CI.5:

G01 S 7/00

G 01 S 7/28 G 01 S 7/52 G 01 S 13/10 G 01 S 15/10

G 01 S 13/88 G 01 S 15/88 G 01 F 25/00

// G06F 15/18

(7) Anmelder:

Vega Grieshaber GmbH & Co, 77709 Wolfach, DE

(74) Vertreter:

Westphal, K., Dipl.-Ing.; Mußgnug, B., Dipl.-Phys. Dr.rer.nat., 78048 Villingen-Schwenningen; Buchner, O., Dr.rer.nat., Pat.-Anwälte, 81245 München

② Erfinder:

Raffalt, Felix, Dipl.-Ing. (FH), 7612 Fischerbach, DE

Prüfungsantrag gem. § 44 PatG ist gestellt

(Anordnung und Verfahren zur berührungslosen Abstandsmessung mit Hilfe von Impuls-Echo-Signalen

Es wird eine Anordnung zur Füllstandsmessung beschrieben, bei welcher das Impuls-Echo-Signal zur exakteren Ermittlung der Signallaufzeiten mit in einem neuronalen Netzwerk abgespeicherten Signalmustern verglichen wird.

Beschreibung

Die Erfindung betrifft eine Anordnung zur berührungslosen Abstandsmessung mit den im Oberbegriff des Anspruchs 1 angegebenen Merkmalen sowie ein Verfahren zur Abstandsmessung mit dieser Anordnung.

Die bisher bekannten Verfahren zur berührungslosen Abstandsmessung, bei welchen die Laufzeit von elektromagnetischen Wellen im Zentimeter- und Dezimeterbewendet werden, oder von Ultraschallimpulsen bestimmt wird, sind auf eine eindeutige Erkennung des Nutz-Echo-Signales angewiesen. Die Erkennung dieser Nutz-Echo-Signale ist schwierig, wenn diese durch Stör-Echo-Signale überlagert sind. Solche Stör-Echo-Signale treten insbesondere auf, wenn mit den genannten Verfahren der Füllstand von fließ- oder schüttfähigen Medien in Behältern ermittelt werden soll. Behältereinbauten, der beim Befüllen sich bildende Schüttgutkegel sowie Füllgutanhaftungen an der Behälterwandung und/oder 20 am Sender bzw. Empfänger führen zu Störungen des Echoimpulses, so daß die Laufzeit zwischen Sende- und Echoimpuls nicht mehr genau und sicher ermittelt werden kann.

Ferner unterliegt die Laufzeit von Impuls-Echo-Si- 25 gnalen weiteren physikalischen Einflußgrößen, deren Veränderung sich insbesondere bei der Verwendung von Ultraschallwellen als sehr nachteilig in bezug auf die erzielbare Meßgenauigkeit des Füllstandsensors erweisen kann. Die speziellen Eigenschaften des Gases, 30 z. B. seine Zusammensetzung, sein Molekulargewicht, seine Dielektrizitätskonstante sowie sich ändernde Grö-Ben wie Temperatur und Druck wirken sich unter bestimmten Bedingungen auf Präzisionsabstandsmessungen sehr negativ aus.

Die Kompensation dieser Störeinflüsse mit bekannten Einrichtungen, wie z. B. mit Hilfe eines Temperatursensors und/oder eines Referenzbügels führt nur dann zu wesentlichen Verbesserungen, wenn der zu kompensierende physikalische Parameter über die gesamte Be- 40 hälterhöhe konstant ist, was insbesondere bei sehr hohen Behältern aufgrund sich ausbildender Gas- und Temperaturschichtungen selten der Fall ist.

Das vom Sensor empfangene Impuls-Echo-Signal enthält, auch wenn es mit Störechosignalen überlagert 45 ist, immer noch die Information über die Füllguthöhe, die jedoch mit konventionellen Methoden, wie seriell digitaler Signalaufbereitung, nur mit Schwierigkeiten auswertbar ist. So ist beispielsweise aus EP 340 953 B1 ein recht aufwendiges akustisches Entfernungsmeßsy- 50 stem bekannt, bei welchem in einem Speicher ein dem Impuls-Echo-Signal ähnliches Signal abgespeichert wird, mit welchem zur Ermittlung der Signallaufzeit das empfangene und mit Störechos überlagerte Impuls-Echo-Signal verglichen wird.

Der vorliegenden Erfindung liegt gleichfalls die Aufgabe zugrunde, die Signallaufzeit auch dann exakt zu ermitteln, wenn das Impuls-Echo-Signal in starkem Ma-Be mit Stör-Echo-Signalen überlagert ist. Auch soll verhindert werden, daß Wandler-Nachschwingen, Laufzeit- 60 veränderungen infolge von Variationen der Gaszusammensetzung bzw. der Temperatur oder die unterschiedliche Gestaltung der Füllgutoberfläche, die beispielsweise die Form eines Schüttgutkegels annehmen kann, die Messung verfälschen.

Gelöst wird diese Aufgabe durch Verwendung eines neuronalen Netzwerkes, wie dieses im Kennzeichen des Anspruchs 1 im einzelnen angegeben ist.

Mit Hilfe von Parallel-Datenverarbeitungstechniken und des assoziativen Vergleichs des empfangenen Signals mit erlernten und im neuronalen Netzwerk abgespeicherten Mustern ist es weit besser als bisher möglich, die verborgene Information zu regenerieren und damit sehr korrekte Füllstandsdaten zu ermitteln.

Durch Anwendung der neuronal assoziativen Signalverarbeitung ist eine komplexe holistische Auswertung des Impuls-Echo-Profiles möglich. Hierbei kann die reich, welche üblicherweise bei Radarmessungen ver- 10 Meßstrecke selbst als intrinsisches Referenzelement genutzt werden, indem Kompensationsgrößen von vorhandenen Störechos abgeleitet werden.

> Zur Realisierung dieses Vorschlages ist gemäß Anspruch 1 als Speicher und Signalverarbeitungsstufe ein neuronales Netzwerk vorgesehen, dessen aus vernetzten Neuronen bestehende Schichten über eine Lernalgorithmusstufe das Grundwissen, welches dem zu überprüfenden Behälter entspricht, in Form von Grundparametern eingegeben werden kann. Der Eingangsschicht dieses neuronalen Netzwerkes wird das Impuls-Echo-Signal zugeführt, welches in den verborgenen Schichten mit gelernten Impuls-Echo-Formen verglichen wird. Wie im Anspruch 2 angegeben, sind die Neuronen des neuronalen Netzwerkes derart miteinander verkoppelt, daß sie den Impuls-Echo-Mustern vieler Behälter entsprechen. Das neuronale Netzwerk ist damit in der Lage, durch assoziative Auswertung und Vergleich der empfangenen. Signale mit den hinterlegten Impulsmustern und Merkmalen auch dann eine Übereinstimmung festzustellen, wenn das empfangene Impuls-Echo-Signal von Stör-Echo-Signalen bzw. andersartigen Signalverfälschungen stark überlagert ist. Die neuronale Struktur des neuronalen Netzwerkes kann hierbei durch Software- oder Hardwaremittel realisiert sein.

So können die Neuronen des neuronalen Netzwerkes über ihre Koppelfaktoren bereits von vornherein so miteinander verknüpft sein, daß in sie ein für die zu messenden Behälter charakteristisches Grundwissen eingespeichert ist, so daß sie die für eine möglichst gro-Be Vielzahl von Füllstandsbehältern spezifischen Echosignale wiedererkennen.

Bei Inbetriebnahme einer derartigen Anordnung zur Überprüfung eines bestimmten Behälters kann ein zweiter Lernschritt für das Netzwerk erfolgen, bei welchem die Koppelung der Neuronen entsprechend den spezifischen Eigenschaften von Behälter und Füllgut verändert und damit ein dem besonderen Anwendungsfall spezifisches Muster in dem neuronalen Netzwerkspeicher eingeprägt wird. Diesem Lernschritt dienen Rückkopplungsmaßnahmen, wie sie mit den Ansprüchen 3 und 4 angegeben sind.

Im Betrieb kann sich der Speicher des neuronalen Netzwerkes noch in stärkerem Maße den sich verändernden Umgebungsbedingungen z.B. mittels der Maßnahmen nach den Ansprüchen 7 oder 9 anpassen, soweit diese nicht zu stark von dem eingespeicherten Grundwissen und den bei der Inbetriebnahme gelernten Daten abweichen. Dieses beim Einsatz erworbene Wissen kann darüber hinaus auch auf die Speicher neuer Geräte übertragen werden, die dann für den besonderen Anwendungsfall noch besser geeignet sind.

Die Signalverarbeitung mit neuronalen Netzwerken kann unabhängig von der Art der impulsförmigen Signale erfolgen. Beispielsweise kann der Sender als impulsförmige Signale Ultraschall-Impulse oder, wie in der Radartechnik üblich, elektromagnetische Impulse mit Wellenlängen im Zentimeter- und Dezimeterbereich abstrahlen, wie dies mit den Ansprüchen 10 und 11 angegeben ist.

Weitere vorteilhafte Ausgestaltungen der erfindungsgemäßen Anordnung sind in den Unteransprüchen angegeben. Das mit dieser Anordnung realisierbare Meßverfahren ist Gegenstand der Unteransprüche 12 bis 14.

Die Verwendung eines neuronalen Netzwerkes bei der Füllstandsbestimmung führt zu einer Fülle von Vorteilen, nämlich

- bessere Meßergebnisse, auch bei ungünstig ge- 10 stalteten Behältern,
- Reduzierung der benötigten Sendeleistung, so daß sich günstige Energiewerte für den Betrieb des Füllstandsensors in explosionsgefährdeter Umgebung ergeben,

- Vergrößerung der Reichweiten,

- reduzierter Einfluß von Störsignalen,
- geringerer Parametrierungsaufwand im Einsatzfall, also für den Anwender,
- selbsttätige Adaption der Meßanordnung an 20 sich änderndes Füllgut bzw. bei Behälteränderungen,
- Berücksichtigung sich ändernder Materialanhaftungen an der Behälterwandung,
- Detektion von Füllgütern mit geringem Dielek- 25 trizitätskonstanten-Unterschied gegenüber Luft,

- geringere Sensor-Totzeit,

- bessere Durchdringung von Staub- und Nebelschichten,
- genauere Messungen an Schüttgutkegeln,
- Erkennen von Schaumschichten und damit gegebenenfalls gleichzeitige Ermittlung der Schaumund Mediumhöhe,
- geringere Integrationszeiten bei verrauschten Signalen.

Die Erfindung ist nachstehend anhand eines in der Zeichnung dargestellten Ausführungsbeispiels im einzelnen erläutert. In der Zeichnung zeigen

Fig. 1 Blockschaltbild einer erfindungsgemäßen An- 40 ordnung,

Fig. 2a Echoprofil bei Inbetriebnahme des Sensors am leeren Behälter,

Fig. 2b Beispiel eines im späteren Meßbetrieb aufgenommenen Echoprofils,

Fig. 2c durch assoziativen Vergleich der Echoprofile gemäß Fig. 2a und 2b im neuronalen Netzwerk erzeugtes virtuelles Impulsmuster und,

Fig. 2d aus den Impulsmustern gemäß Fig. 2a und, Fig. 2c gewonnenes endgültiges Impulsmuster zur Bestimmung der korrekten Lage des gesuchten Nutzechos.

Die in Fig. 1 schematisch dargestellte Anordnung hat folgenden Aufbau und folgende Arbeitsweise.

Erzeugung, Empfang und Verwertung der vom 55 Wandler 12 abgegebenen Meßsignale werden mittels einer Steuerstufe, nämlich einem digitalen Mikroprozessor 15, gesteuert. Der Mikroprozessor 15, der über die Leitung 23 mit der Sendestufe 11 verbunden ist, erzeugt zyklisch Steuerimpulse, welche bewirken, daß über den Wandler 12 in Richtung auf das zu überwachende Füllgut ein Sendeimpuls-Burst-Paket in Form einer Folge von Schall- oder Radarimpulsen abgestrahlt wird. Derselbe Wandler 12 dient hierbei außerdem als Empfänger und nimmt das reflektierte Impuls-Echo-Signal auf und wandelt dieses in ein elektrisches Signal um. Dieses Signal wird mittels der Empfänger- und Signalaufbereitungsstufe 13 derart weiterverarbeitet, daß

es in die Eingangsschicht 14a eines neuronalen Netzwerkes 14 eingelesen werden kann. Die Signalaufbereitungsstufe 13 kann zu diesem Zweck Schaltungsteile aufweisen, die der Signalverstärkung, Bandbreitenbegrenzung, Hüllkurvenerzeugung, Pegellogarithmierung und Zeitdehnung dienen. Auch kann die Stufe 13 einen FFT-Analysator aufweisen, der das Empfangssignal in spektral zerlegter Form der Eingangsschicht 14a zuführt.

Das neuronale Netzwerk 14 erzeugt durch assoziativen Vergleich des an der Eingangsschicht 14a anstehenden Signalmusters mit dem in Form seiner Neuronen-Koppelkoeffizienten abgespeicherten Wissens über früher erlernte Impuls-Echo-Profile ein an der Ausgangsschicht 14b auftretendes Klassifikationsresultat, welches mit größtmöglicher Wahrscheinlichkeit einen vom tatsächlichen Nutzecho abgeleiteten Entfernungsmeßwert darstellt. Der Assoziationsprozeß findet hierbei im wesentlichen in den von außen nicht zugänglichen verborgenen Schichten 14c des neuronalen Netzwerkes 14 statt.

Über die Leitung 27 wird der Ausgangswert des Netzwerkes 14 dem Prozessor 15 zugeführt, welcher ihn in einen binären Zahlenwert umwandelt und entsprechend den über die Bedienelemente 16 eingegebenen Parametern skaliert und integriert. Das Ergebnis dieses Rechenvorganges wird über die Anzeige 17 ausgegeben und über die Leitung 19 dem Ausgangsport 20 zugeführt.

Außer dem Entfernungsmeßwert kann die Ausgangsschicht 14b des neuronalen Netzwerkes 14 einen Zahlenwert ausgeben, der eine Aussage über die Wahrscheinlichkeit, das richtige Echo erkannt zu haben, beinhaltet. Dieser Zahlenwert wird über die Leitung 27 dem 35 Prozessor 15 zugeführt, welcher unter Auswertung dieses einen Wahrscheinlichkeitswert darstellenden Zahlenwertes die Sendeimpulsrate für den Wandler 12 derart anpaßt, daß bei sinkender Wahrscheinlichkeit die Rate erhöht und auf diese Weise die Informationsmenge für das Netzwerk gesteigert wird. Eine derartige variable Anpassung der Meßrate an die Qualität des Echoprofils ist insbesondere dann wünschenswert, wenn die dem Sender zur Verfügung stehende Energiemenge begrenzt ist, weil dieser seine Stromversorgung zum Beispiel über einen Ex-Daten- bzw. Feld-Bus bezieht, an dem weitere gleichartige Sensoren angeschlossen sind. Die Stromaufnahme dieser Sensoren kann auf diese Weise entsprechend der Schwierigkeit des augenblicklichen Meßproblems angepaßt werden, wodurch eine höhere Zuverlässigkeit des gesamten Systems erreicht wird.

Zur Adaption an stark schwankende Wandlereingangsamplituden ist nach einem weiteren Vorschlag das neuronale Netzwerk 14 an der Ausgangsschicht 14b über eine weitere Ausgangsleitung 25 mit dem Steuereingang 13a der Signalaufbereitungsstufe 13 derart verbunden, daß ein in der Signalaufbereitungsstufe 13 vorgesehener Regelverstärker die Signalamplitude an der Eingangsschicht 14a auf einen für das Netzwerk 14 günstigen Wert ausregelt.

Eine weitere Korrekturgröße wird aus der Mediumsbzw. Wandlertemperatur abgeleitet, welche mit Hilfe des Temperaturfühlers 21 aufgenommen und der Eingangsschicht 14a des neuronalen Netzwerkes 14 zugeführt wird. Eine derartige Korrektur ist insbesondere bei Messungen mit Utraschallimpulsen von Vorteil.

Weitere Eingangsdaten, wie z. B. die Meßrate oder vorgegebene Meßbereichsgrenzen, können aus dem Prozessor 15 über die Verbindungsleitung 24 der Eingangsschicht 14a des neuronalen Netzwerkes 14 zugeführt werden.

Zur Vorprogrammierung des neuronalen Netzwerkes 14 ist ein Parametriereingang 22 vorgesehen, welcher über die Lernalgorithmusstufe 18 und über die Verbindungsleitung 29 mit dem aus einzelnen Schichten bestehenden assoziativen Speicher des neuronalen Netzwerkes 14 verbunden ist. So können über den Parametriereingang 22 und die Lernalgorithmusstufe 18 10 Impulsprofile erläutert. schon bei der Gerätefertigung die Neuronen-Koppelkoeffizienten des neuronalen Netzwerkes 14 in der Weise vorprogrammiert werden, daß der assoziative Speicher des neuronalen Netzwerkes 14 ein anwendungsfallunspezifisches Grundwissen erhält, welches ihn in die 15 Lage versetzt, unter unterschiedlichen Sensoreinsatzbedingungen eine größtmögliche Vielzahl unterschiedlich gestalteter Nutzechos zu erkennen. Dieses Grundwissen kann das Ergebnis einer Vielzahl von Lernvorgängen eines gleichartig aufgebauten neuronalen Netzwerkes darstellen, welches stellvertretend für alle anderen Netzwerke anhand von vielen Impuls-Echo-Profilen trainiert wurde.

Bei Einsatz des mit einem neuronalen Netzwerk ausgestatteten Impuls-Echo-Sensors an seinem Bestim- 25 mungsort kann ein zweiter Lernvorgang durchgeführt werden. Zu diesem Zweck wird die Lernalgorithmusstufe 18 über die Bedieneinheit 16 und den Prozessor 15. der mit der Stufe 18 über die Leitung 28 verbunden ist, ein zweites Mal aktiviert. Hierbei können über die Be- 30 dieneinheit 16 Daten bezüglich des Behälterfüllgrades eingegeben werden, wodurch ein zweiter Lernalgorithmus startet, der das neuronale Netzwerk 14 auf den vorliegenden spezifischen Anwendungsfall hin trainiert. Dieser Vorgang kann bei Bedarf für verschiedene Be- 35 hälterfüllhöhen wiederholt werden. Danach geht der erfindungsgemäße Füllstandssensor in seinen normalen Meßbetrieb über, wobei der Prozessor 15 über die Lernalgorithmusstufe 18 einen dritten Lernalgorithmus startet. Dieser Lernalgorithmus bewirkt, daß sich die 40 Koppelkoeffizienten des neuronalen Netzwerkes 14 weiteren, mit der Zeit auftretenden Veränderungen der Meßstrecke anpassen. Da in diesem Stadium keine externe Überwachung des Lernvorganges erfolgt, dürfen nur solche Modifikationen der Neuronenverkopplung 45 erfolgen, die nicht allzu stark von den Verkopplungen während der ersten beiden Lernschritte abweichen bzw. die über einen längeren Zeitraum als sichere Meßstrekkenveränderung erkannt werden, wie z.B. langsam wachsende Füllgutablagerungen an Behälterwänden 50 und -einbauten. Der an der Ausgangsschicht 14b ausgegebene Wahrscheinlichkeitsklassifikationswert für die Nutzechoerkennung kann hierzu vorteilhafterweise von dem Rechner des Prozessors 15 dazu benutzt werden, bei sicherer Nutzechodetektion die Lernaktivität des 55 neuronalen Netzwerkes 14 für Meßstreckenveränderungen zu erhöhen.

Nach einem weiteren Vorschlag können externe Füllgutgrenzstandsdetektoren vorgesehen sein, welche dem Prozessor 15 diskreten Füllguthöhen entsprechende 60 Daten liefern. Sie bewirken ohne Eingriff des Anlagenbetreibers während des normalen Meßbetriebes die Wiederholung des zweiten Lernvorganges für die diskret gemessene Füllhöhe. Auf diese Weise kann automatisch eine direkte Neuadaption der Neuronen-Koppelkoeffizienten des neuronalen Netzwerkes 14 an die augenblicklich im Behälter bestehenden physikalischen Parameter erreicht werden.

Die Kompensation von Impulslaufzeitveränderungen erfolgt durch Auswertung der Invarianz bestimmter Merkmale des Impuls-Echo-Profils in bezug auf sich ändernde physikalische Parameter der Meßstrecke. Die Meßstrecke wird hierzu als intrinsisches Referenzelement benutzt, um die für die Kompensation erforderlichen Korrekturdaten zu erhalten.

Das Prinzip des erfindungsgemäßen Verfahrens ist nachstehend anhand der in den Fig. 2a bis 2d gezeigten Impulsprofile erläutert.

In Fig. 2a ist der zeitliche Verlauf der Echoimpulse, die von einem leeren Behälter erzeugt werden, das sogenannte Echoprofil, veranschaulicht. Die Echos bei A, B, C und D stellen Störechos dar, während das Nutzecho bei E auftritt. Das neuronale Netzwerk des erfindungsgemäßen Füllstandsensors erlernt dieses Echoprofil.

In Fig. 2b ist ein Echoprofil veranschaulicht, das unter ungünstigen Behälterbedingungen bei veränderten Mediumsparametern im späteren Meßbetrieb auftreten kann. Durch assoziativen Vergleich des Echoprofils gemäß Fig. 2b mit dem gespeicherten Echoprofil gemäß Fig. 2a erzeugt das neuronale Netzwerk das in Fig. 2c gezeigte virtuelle Impulsmuster. Vermittels des assoziativen Speichers im neuronalen Netzwerk 14 werden die ursprünglichen Störechos A, B, C und D sowie ein neues Störecho G und ein Nutzecho F erkannt. Anhand der wiedererkannten ersten vier Störechos A, B, C und D nimmt das neuronale Netzwerk eine nicht-lineare Projektion des Echoprofils in bezug auf das früher gelernte Echoprofil gemäß Bild 2a vor. Durch Zeit- und gegebenenfalls Amplitudentransformation werden beide Echoprofile gemäß Fig. 2c und 2a zur Deckung gebracht, wodurch aus dem Echoprofil gemäß Fig. 2c das transformierte Echoprofil gemäß Fig. 2d erzeugt wird, mit welchem die korrekte Lage des Nutzechos F unter Berücksichtigung der Mediumsverhältnisse, die während der Abgleichphase des Sensors bei der Inbetriebnahme herrschten, ermittelt wird. Bei dem dargestellten Ausführungsbeispiel wird die Lage des Nutzechos in diesem Fall von t = 75 ms auf t = 105 ms korrigiert.

it ... ist felle is ill ... it. in menne

Fehlen bei einem Behälter ausgeprägte Störechos für die erforderliche Kompensation, so können diese auch künstlich durch entsprechende Einbauten erzeugt werden. Auch ist eine begrenzte Korrektur nach diesem Verfahren bereits dadurch möglich, daß sich die Form des Nutzechos unter anderen physikalischen Umgebungsbedingungen verändert.

Für die Entzerrung des laufzeitveränderten Echoprofils stehen dem neuronalen Netzwerk dabei nicht nur der assoziative Vergleich mit dem beim Abgleich vorhandenen Profil sondern auch die in seinem Grundwissen enthaltenen Lernbeispiele für Echoveränderungen bei gezielter Steuerung der Mediumslaufzeit zur Verfügung.

Figurenlegende

- 11 Sendestufe
- 12 Wandler als Sender und Empfänger
- o 13 Signalaufbereitungs- und Empfängerstufe
 - 13a Steuereingang
- 14 neuronales Netzwerk
- 14a Eingangsschichten
- 14b Ausgangsschichten
- 14c verborgene Schichten
- 15 Steuerung
- 16 Eingabestufe, Bedienelemente
- 17 Anzeigestufe

- 18 Lernalgorithmusstufe
- 19 Leitung
- 20 Meßwertausgang
- 21 Temperaturfühler
- 22 Parametriereingang

Patentansprüche

- 1. Anordnung zur berührungslosen Abstandsmessung, bei welcher ein impulsförmiges Signal von 10 einem Sender abgestrahlt, von der zu detektierenden Oberfläche in Form eines Impulsechosignales reflektiert und von einem Empfänger aufgenommen wird, wobei in einem Speicher ein dem Impuls-Echo-Signal ähnliches Signal abgespeichert ist, mit 15 welchem das empfangene Impuls-Echo-Signal verglichen wird, und die Zeit zwischen Absendung des impulsförmigen Signales und Empfang des dem abgespeicherten Impuls-Echo-Signales ähnlichen Signals als Signallaufzeit, die ein Maß für den Ab- 20 stand zwischen Sender und zu detektierender Oberfläche ist, gemessen, gespeichert und angezeigt wird, dadurch gekennzeichnet, daß der Speicher aus einem neuronalen Netzwerk (14) mit Eingangs- (14a), Ausgangs- (14b) und gegebenenfalls 25 verborgenen Schichten (14c) besteht, in welchen mittels einer die Lernvorschrift enthaltenden Lernalgorithmusstufe (18) als Ergebnis von iterativen Lernvorgängen durch Modifikation der Neuronenverkopplung eine Verarbeitungsvorschrift erzeugt 30 wird, welche das der Eingangsschicht (14a) zugeführte Impuls-Echo-Signal in einen an der Ausgangsschicht (14b) anstehenden Meßwert umwandelt, welcher der Signallaufzeit entspricht.
- 2. Anordnung nach Anspruch 1, dadurch gekennzeichnet, daß die Neuronen des neuronalen Netzwerkes (14) in der Weise über Koppelfaktoren miteinander verknüpft sind, daß sie den Impuls-Echo-Signal-Mustern einer Vielzahl von Behältern, deren Füllstand zu bestimmen ist, entsprechen.
- 3. Anordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Ausgangsschichten (14b) des neuronalen Netzwerkes (14) über eine Steuerstufe (15) zur Eingangsschicht (14a) rückgekoppelt ist, wobei die Steuerstufe (15) das neuronale Netzwerk (14) über eine Lernalgorithmusstufe (18) ansteuert
- 4. Anordnung nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß der vorzugsweise als Sender und Empfänger arbeitende Wandler (12) über eine 50 Signalaufbereitungs- und Empfängerstufe (13) mit der Eingangsschicht (14a) des neuronalen Netzwerkes (14) verbunden ist, wobei der Steuereingang (13a) der Signalaufbereitungs- und Empfängerstufe (13) mit der Ausgangsschicht (14b) des neuronalen 55 Netzwerkes (14) verbunden ist.
- 5. Anordnung nach Anspruch 4, dadurch gekennzeichnet, daß die Signalaufbereitungs- und Empfängerstufe (13) Schaltungen zur Signalverstärkung und/oder Bandbreitenbegrenzung und/oder Hüllkurvenerzeugung und/oder Pegellogarithmierung und/oder Zeitdehnung und/oder Spektralzerlegung des Eingangssignales aufweist.
- 6. Anordnung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß eine Eingabeeinheit 65 mit Bedienelementen (16) zur Eingabe beliebiger Parameter mit einem Steuereingang (15a) der Steuerstufe (15) und ein Ausgang (15d) der Steuerstufe

- (15) zur Weitergabe von Eingangsdaten, wie z.B. der Meßrate, von Meßbereichsgrenzen, mit der Eingangsschicht (14a) des neuronalen Netzwerkes (14) verbunden sind.
- 7. Anordnung nach Anspruch 6, dadurch gekennzeichnet, daß mit Steuereingängen der Steuerstufe (15) externe Füllgutgrenzstandsdetektoren zur Eingabe von diskreten Füllguthöhen entsprechenden Daten verbunden sind.
- 8. Anordnung nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß mit einem ersten Ausgang (15b) der Steuerstufe (15) eine Anzeige (17) zur numerischen Wiedergabe der über die Bedienelemente (16) eingegebenen und gegebenenfalls in der Steuerstufe (15) verknüpften und umgerechneten Parameter und ein Ausgangsport (20) mit einem zweiten Ausgang (15c) der Steuerstufe (15) zur Meßwertausgabe verbunden sind.
- 9. Anordnung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß mit der Eingangsschicht (14a) des neuronalen Netzwerkes (14) zur selbsttätigen Eingabe von Korrekturgrößen, wie der Temperatur oder des Druckes, entsprechender Mediums- oder Wandlerdaten, Sensoren, z. B. Temperaturfühler (21), verbunden sind.
- 10. Anordnung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß der Sender (12) als impulsförmiges Signal Ultraschallimpulse abstrahlt.

 11. Anordnung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß der Sender (12) als impulsförmiges Signal elektromagnetische Impulse mit Wellenlängen im Zentimeter- bzw. Dezimeterbereich abstrahlt.
- 12. Verfahren zur berührungslosen Füllstandsmessung mit einer Anordnung nach einem oder mehreren der Ansprüche 1 bis 11, gekennzeichnet durch folgende Verfahrensschritte:
 - a) Über einen Parametriereingang (22) und die Lernalgorithmusstufe (18) werden in einem ersten Lernschritt in das neuronale Netzwerk (14) Koppelfaktoren eingegeben, welche für die Echo-Impuls-Auswertung bei der Füllstandsmessung charakteristisch sind.
 - b) In einem zweiten Lernschritt wird für mindestens eine Füllhöhe die Verkoppelung des neuronalen Netzwerkes (14) mittels der Lernalgorithmusstufe (18) dahingehend modifiziert, daß das für diese Füllhöhe an der Eingangsschicht (14a) des neuronalen Netzwerkes (14) eingelesene Impuls-Echo-Profil in ein an der Ausgangsschicht (14b) auftretendes eindeutiges Ergebnis umgewandelt wird, welches mit dem über die Bedieneinheit (16) eingegebenen Füllhöhenwert übereinstimmt.
 - c) In einem dritten Lernschritt wird während des Sensorbetriebs mittels der Lernalgorithmusstufe (18) die Neuronenverkopplung dahingehend abgeändert, daß an der Ausgangsschicht (14b) des neuronalen Netzwerkes (14) durch Störechos entstehende Signale ständig minimiert werden.
- 13. Verfahren nach Anspruch 12, gekennzeichnet durch folgende Verfahrensschritte:
 - a) Ein Sender (12) erzeugt zyklisch Impulsburst-Pakete, die gegen die zu detektierende Oberfläche eines in einem Behälter befindlichen Füllgutes abgestrahlt werden.
 - b) Ein Empfänger (12) empfängt jeweils ein

von der Oberfläche reflektiertes Impuls-Echo-Signal (Fig. 2b).

c) Das reflektierte Impuls-Echo-Signal (Fig. 2b) wird nach einer Signalaufbereitung mit dem im assoziativen Speicher des neuronalen Netzwerkes (14) gespeicherten Impuls-Echo-Signals des leeren Behälters (Fig. 2a) verglichen, wodurch ein virtuelles Impuls-Muster (Fig. 2c) erzeugt wird.

d) Das virtuelle Impuls-Muster (Fig. 2c) wird 10 mit dem zuvor abgespeicherten Impuls-Echo-Signal des leeren Behälters (Fig. 2a) ggf. nach Zeit- und Amplitudentransformation zur Dekkung gebracht und mit diesem zur Erzeugung eines transformierten Echoprofils (Fig. 2d) 15 verglichen.

e) Aus dem transformierten Echoprofil (Fig. 2d) wird die korrekte Lage des Nutzechos (F) herausgelesen.

14. Verfahren nach Anspruch 12 oder 13, dadurch 20 gekennzeichnet, daß das neuronale Netzwerk (14) an seiner Ausgangsschicht (14b) ein Klassifikationssignal erzeugt, das der Wahrscheinlichkeit, das richtige Impuls-Echo erkannt zu haben, entspricht, und der Steuerstufe (15) zugeführt wird, welche einer- 25 seits die Sendeimpulsrate derart beeinflußt, daß sie bei sinkender Wahrscheinlichkeit erhöht wird, und andererseits die Intensität der Abänderung der Neuronenkopplung durch den dritten Lernschritt bei sinkender Wahrscheinlichkeit verringert.

Hierzu 2 Seite(n) Zeichnungen

35

40

45

50

55

60

Nummer: Int. Cl.⁵: DE 42 23 346 A1 G 01 S 7/00

. the short . It seems and .

The state of the second of the second

Nummer: Int. Cl.⁵:

Int. Cl.⁵: G Off nlegungstag: 26

DE 42 23 346 A1 G 01 S 7/00 20. Januar 1994

