Bottom-Up Parsing, Part II

Announcements

- Programming Assignment 1 due tonight at 11:59PM.
- Programming Assignment 2 (parsing) out, due Friday, July 20th at 11:59PM.
 - Play around with the **bison** parser generator!
 - See how real parsers are written!

Announcements

- C++ review session tonight in Gates B12 from 7:00PM 8:30PM.
 - Covers classes and inheritance.
 - Extremely valuable for the second programming assignment, especially if you have not seen C++ inheritance before.

One View of a Bottom-Up Parse

A Second View of a Bottom-Up Parse

```
\mathbf{E} \to \mathbf{T}
                           int + (int + int + int)
\mathbf{E} \to \mathbf{E} + \mathbf{T}
                       \Rightarrow T + (int + int + int)
T \rightarrow int
                       \Rightarrow E + (int + int + int)
T \rightarrow (E)
                       \Rightarrow E + (T + int + int)
                       \Rightarrow E + (E + int + int)
                       \Rightarrow E + (E + T + int)
                       \Rightarrow E + (E + int)
                       \Rightarrow E + (E + T)
                       \Rightarrow \mathbf{E} + (\mathbf{E})
                       \Rightarrow E + T
                       \Rightarrow F.
```

A Second View of a Bottom-Up Parse

```
\mathbf{E} \to \mathbf{T}
                           int + (int + int + int)
\mathbf{E} \to \mathbf{E} + \mathbf{T}
                       \Rightarrow T + (int + int + int)
T \rightarrow int
                       \Rightarrow E + (int + int + int)
T \rightarrow (E)
                       \Rightarrow E + (T + int + int)
                       \Rightarrow E + (E + int + int)
                       \Rightarrow E + (E + T + int)
                       \Rightarrow E + (E + int)
                       \Rightarrow E + (E + T)
                       \Rightarrow \mathbf{E} + (\mathbf{E})
                       \Rightarrow E + T
                       \Rightarrow F.
```

A left-to-right, bottom-up parse is a rightmost derivation traced in reverse.

```
Ε
  int + (int + int + int)
                                           Ε
\Rightarrow T + (int + int + int)
\Rightarrow E + (int + int + int)
\Rightarrow E + (T + int + int)
\Rightarrow E + (E + int + int)
                                          int
                                                                Е
                                                                           +
\Rightarrow E + (E + T + int)
\Rightarrow E + (E + int)
                                                           Ε
                                                                               int
\Rightarrow E + (E + T)
                                                                    int
\Rightarrow \mathbf{E} + (\mathbf{E})
\Rightarrow E + T
                                                          int
\Rightarrow \mathbf{F}
                                                          int +
                                          int
                                                                    int +
                                                                               int
```

```
Ε
  int + (int + int + int)
                                           Ε
\Rightarrow T + (int + int + int)
\Rightarrow E + (int + int + int)
\Rightarrow E + (T + int + int)
\Rightarrow E + (E + int + int)
                                          int
                                                                Е
                                                                           +
\Rightarrow E + (E + T + int)
\Rightarrow E + (E + int)
                                                           Ε
                                                                               int
\Rightarrow E + (E + T)
                                                                    int
\Rightarrow \mathbf{E} + (\mathbf{E})
\Rightarrow E + T
                                                          int
\Rightarrow \mathbf{F}
                                                          int +
                                          int
                                                                    int +
                                                                               int
```

```
Ε
  int + (int + int + int)
                                           Ε
\Rightarrow T + (int + int + int)
\Rightarrow E + (int + int + int)
\Rightarrow E + (T + int + int)
\Rightarrow E + (E + int + int)
                                          int
                                                                Е
                                                                           +
\Rightarrow E + (E + T + int)
\Rightarrow E + (E + int)
                                                           Ε
                                                                               int
\Rightarrow E + (E + T)
                                                                    int
\Rightarrow \mathbf{E} + (\mathbf{E})
\Rightarrow E + T
                                                          int
\Rightarrow \mathbf{F}
                                                          int +
                                                                    int +
                                          int
                                                                               int
```

```
\Rightarrow T + (int + int + int)
\Rightarrow E + (int + int + int)
\Rightarrow E + (T + int + int)
\Rightarrow E + (E + int + int)
\Rightarrow E + (E + T + int)
\Rightarrow E + (E + int)
\Rightarrow E + (E + T)
\Rightarrow E + (E)
\Rightarrow E + T
\Rightarrow \mathbf{F}
```



```
\Rightarrow T + (int + int + int)
\Rightarrow E + (int + int + int)
\Rightarrow E + (T + int + int)
\Rightarrow E + (E + int + int)
\Rightarrow E + (E + T + int)
\Rightarrow E + (E + int)
\Rightarrow E + (E + T)
\Rightarrow E + (E)
\Rightarrow E + (E)
\Rightarrow E + T
\Rightarrow E
```



```
⇒ E + (int + int + int)

⇒ E + (T + int + int)

⇒ E + (E + int + int)

⇒ E + (E + T + int)

⇒ E + (E + int)

⇒ E + (E + T)

⇒ E + (E)

⇒ E + T

⇒ E
```



```
⇒ E + (int + int + int)

⇒ E + (T + int + int)

⇒ E + (E + int + int)

⇒ E + (E + T + int)

⇒ E + (E + int)

⇒ E + (E + T)

⇒ E + (E)

⇒ E + T

⇒ E
```


int

$$\Rightarrow E + (T + int + int)$$

$$\Rightarrow E + (E + int + int)$$

$$\Rightarrow E + (E + T + int)$$

$$\Rightarrow E + (E + int)$$

$$\Rightarrow E + (E + T)$$

$$\Rightarrow E + (E)$$

$$\Rightarrow E + T$$

$$\Rightarrow E$$

int +

int +

int

```
⇒ E + (T + int + int)

⇒ E + (E + int + int)

⇒ E + (E + T + int)

⇒ E + (E + int)

⇒ E + (E + T)

⇒ E + (E)

⇒ E + T

⇒ E
```


int

$$\Rightarrow E + (E + int + int)$$

$$\Rightarrow E + (E + T + int)$$

$$\Rightarrow E + (E + int)$$

$$\Rightarrow E + (E + T)$$

$$\Rightarrow E + (E)$$

$$\Rightarrow E + T$$

$$\Rightarrow E$$

int +

int +

int

$$\Rightarrow E + (E + int + int)$$

$$\Rightarrow E + (E + T + int)$$

$$\Rightarrow E + (E + int)$$

$$\Rightarrow E + (E + T)$$

$$\Rightarrow E + (E)$$

$$\Rightarrow E + T$$

$$\Rightarrow E$$

$$\Rightarrow E + (E + T)$$

$$\Rightarrow E + (E)$$

$$\Rightarrow E + T$$

$$\Rightarrow E$$

$$\Rightarrow \mathbf{E} + (\mathbf{E} + \mathbf{T})$$

$$\Rightarrow \mathbf{E} + (\mathbf{E})$$

$$\Rightarrow \mathbf{E} + \mathbf{T}$$

$$\Rightarrow \mathbf{E}$$

$$\Rightarrow \mathbf{E} + (\mathbf{E})$$

$$\Rightarrow \mathbf{E} + \mathbf{T}$$

$$\Rightarrow \mathbf{E}$$

$$\Rightarrow \mathbf{E} + (\mathbf{E})$$

$$\Rightarrow \mathbf{E} + \mathbf{T}$$

$$\Rightarrow \mathbf{E}$$

$$\Rightarrow \mathbf{E} + \mathbf{T}$$
$$\Rightarrow \mathbf{E}$$

$$\Rightarrow \mathbf{E} + \mathbf{T}$$
$$\Rightarrow \mathbf{E}$$

Ε

```
\Rightarrow \mathbf{F}
```

```
int + ( int + int + int )
```

Handles

- The **handle** of a parse tree *T* is the leftmost complete cluster of leaf nodes.
- A left-to-right, bottom-up parse works by iteratively searching for a handle, then reducing the handle.

Question One:

Where are handles?

```
\mathbf{E} \rightarrow \mathbf{F}
\mathbf{E} \rightarrow \mathbf{E} + \mathbf{F}
\mathbf{F} \rightarrow \mathbf{F} \star \mathbf{T}
\mathbf{F} \rightarrow \mathbf{T}
\mathbf{T} \rightarrow \mathbf{int}
\mathbf{T} \rightarrow (\mathbf{E})
```

$$\mathbf{E}
ightarrow \mathbf{F}$$
 $\mathbf{E}
ightarrow \mathbf{E} + \mathbf{F}$
 $\mathbf{F}
ightarrow \mathbf{F} \star \mathbf{T}$
 $\mathbf{F}
ightarrow \mathbf{T}$
 $\mathbf{T}
ightarrow \mathbf{int}$
 $\mathbf{T}
ightarrow (\mathbf{E})$

$$\mathbf{E} \rightarrow \mathbf{F}$$
 $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{F}$
 $\mathbf{F} \rightarrow \mathbf{F} \star \mathbf{T}$
 $\mathbf{F} \rightarrow \mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{int}$
 $\mathbf{T} \rightarrow (\mathbf{E})$

$$\mathbf{E} \rightarrow \mathbf{F}$$
 $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{F}$
 $\mathbf{F} \rightarrow \mathbf{F} \star \mathbf{T}$
 $\mathbf{F} \rightarrow \mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{int}$
 $\mathbf{T} \rightarrow (\mathbf{E})$

$$\mathbf{E} \rightarrow \mathbf{F}$$
 $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{F}$
 $\mathbf{F} \rightarrow \mathbf{F} \star \mathbf{T}$
 $\mathbf{F} \rightarrow \mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{int}$
 $\mathbf{T} \rightarrow (\mathbf{E})$

$$\mathbf{E} \rightarrow \mathbf{F}$$
 $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{F}$
 $\mathbf{F} \rightarrow \mathbf{F} \star \mathbf{T}$
 $\mathbf{F} \rightarrow \mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{int}$
 $\mathbf{T} \rightarrow (\mathbf{E})$

int * int + int

$$\mathbf{E} \rightarrow \mathbf{F}$$
 $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{F}$
 $\mathbf{F} \rightarrow \mathbf{F} \star \mathbf{T}$
 $\mathbf{F} \rightarrow \mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{int}$
 $\mathbf{T} \rightarrow (\mathbf{E})$

* int + int

$$\mathbf{E} \rightarrow \mathbf{F}$$
 $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{F}$
 $\mathbf{F} \rightarrow \mathbf{F} \star \mathbf{T}$
 $\mathbf{F} \rightarrow \mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{int}$
 $\mathbf{T} \rightarrow (\mathbf{E})$

* int + int

$$\mathbf{E} \rightarrow \mathbf{F}$$
 $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{F}$
 $\mathbf{F} \rightarrow \mathbf{F} \star \mathbf{T}$
 $\mathbf{F} \rightarrow \mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{int}$
 $\mathbf{T} \rightarrow (\mathbf{E})$

* int + int

$$\mathbf{E} \rightarrow \mathbf{F}$$
 $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{F}$
 $\mathbf{F} \rightarrow \mathbf{F} \star \mathbf{T}$
 $\mathbf{F} \rightarrow \mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{int}$
 $\mathbf{T} \rightarrow (\mathbf{E})$

int + int

$$\mathbf{E} \rightarrow \mathbf{F}$$
 $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{F}$
 $\mathbf{F} \rightarrow \mathbf{F} \star \mathbf{T}$
 $\mathbf{F} \rightarrow \mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{int}$
 $\mathbf{T} \rightarrow (\mathbf{E})$

$$\mathbf{E} \rightarrow \mathbf{F}$$
 $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{F}$
 $\mathbf{F} \rightarrow \mathbf{F} \star \mathbf{T}$
 $\mathbf{F} \rightarrow \mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{int}$
 $\mathbf{T} \rightarrow (\mathbf{E})$

$$\mathbf{E} \rightarrow \mathbf{F}$$
 $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{F}$
 $\mathbf{F} \rightarrow \mathbf{F} \star \mathbf{T}$
 $\mathbf{F} \rightarrow \mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{int}$
 $\mathbf{T} \rightarrow (\mathbf{E})$

int

$$\mathbf{E} \rightarrow \mathbf{F}$$
 $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{F}$
 $\mathbf{F} \rightarrow \mathbf{F} \star \mathbf{T}$
 $\mathbf{F} \rightarrow \mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{int}$
 $\mathbf{T} \rightarrow (\mathbf{E})$

Е

+ int

$$\mathbf{E} \rightarrow \mathbf{F}$$
 $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{F}$
 $\mathbf{F} \rightarrow \mathbf{F} \star \mathbf{T}$
 $\mathbf{F} \rightarrow \mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{int}$
 $\mathbf{T} \rightarrow (\mathbf{E})$

$$\mathbf{E}
ightarrow \mathbf{F}$$
 $\mathbf{E}
ightarrow \mathbf{E} + \mathbf{F}$
 $\mathbf{F}
ightarrow \mathbf{F} \star \mathbf{T}$
 $\mathbf{F}
ightarrow \mathbf{T}$
 $\mathbf{T}
ightarrow \mathbf{int}$
 $\mathbf{T}
ightarrow (\mathbf{E})$

$$\mathbf{E} \rightarrow \mathbf{F}$$
 $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{F}$
 $\mathbf{F} \rightarrow \mathbf{F} \star \mathbf{T}$
 $\mathbf{F} \rightarrow \mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{int}$
 $\mathbf{T} \rightarrow (\mathbf{E})$

$$\mathbf{E} \rightarrow \mathbf{F}$$
 $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{F}$
 $\mathbf{F} \rightarrow \mathbf{F} \star \mathbf{T}$
 $\mathbf{F} \rightarrow \mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{int}$
 $\mathbf{T} \rightarrow (\mathbf{E})$

$$\mathbf{E}
ightarrow \mathbf{F}$$
 $\mathbf{E}
ightarrow \mathbf{E} + \mathbf{F}$
 $\mathbf{F}
ightarrow \mathbf{F} \star \mathbf{T}$
 $\mathbf{F}
ightarrow \mathbf{T}$
 $\mathbf{T}
ightarrow \mathbf{int}$
 $\mathbf{T}
ightarrow (\mathbf{E})$

An Important Corollary

- Since reductions are always at the right side of the left area, we never need to shift from the left to the right.
- No need to "uncover" something to do a reduction.
- Consequently, shift/reduce parsing means
 - **Shift**: Move a terminal from the right to the left area.
 - **Reduce**: Replace some number of symbols at the right side of the left area.

Finding Handles

- Where do we look for handles?
 - At the top of the stack.
- How do we search for handles?
 - What algorithm do we use to try to discover a handle?
- How do we recognize handles?
 - Once we've found a possible handle, how do we confirm that it's correct?

Question Two:

How do we search for handles?

Searching for Handles

- When using a shift/reduce parser, we must decide whether to shift or reduce at each point.
- We only want to reduce when we know we have a handle.
- **Question:** How can we tell that we might be looking at a handle?

Exploring the Left Side

- The handle will always appear at the end of string in the left side of the parser.
- Can *any* string appear on the left side of the parser, or are there restrictions on what sorts of strings can appear there?
- If we can find a pattern to the strings that can appear on the left side, we might be able to exploit it to detect handles.

F

int

Another Look at Handles

$$\mathbf{E}
ightarrow \mathbf{F}$$
 $\mathbf{E}
ightarrow \mathbf{E} + \mathbf{F}$
 $\mathbf{F}
ightarrow \mathbf{F} \star \mathbf{T}$
 $\mathbf{F}
ightarrow \mathbf{T}$
 $\mathbf{T}
ightarrow \mathbf{int}$
 $\mathbf{T}
ightarrow (\mathbf{E})$

Another Look at Handles

Ε

$$\mathbf{E} \rightarrow \mathbf{F}$$
 $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{F}$
 $\mathbf{F} \rightarrow \mathbf{F} \star \mathbf{T}$
 $\mathbf{F} \rightarrow \mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{int}$
 $\mathbf{T} \rightarrow (\mathbf{E})$

```
\mathbf{E} \rightarrow \mathbf{F}
\mathbf{E} \rightarrow \mathbf{E} + \mathbf{F}
\mathbf{F} \rightarrow \mathbf{F} \star \mathbf{T}
\mathbf{F} \rightarrow \mathbf{T}
\mathbf{T} \rightarrow \mathbf{int}
\mathbf{T} \rightarrow (\mathbf{E})
```

```
S \rightarrow E
E \rightarrow F
E \rightarrow E + F
F \rightarrow F * T
F \rightarrow T
T \rightarrow int
T \rightarrow (E)
```

```
int + int * int + int
```

```
S \rightarrow E
E \rightarrow F
E \rightarrow E + F
F \rightarrow F * T
F \rightarrow T
T \rightarrow int
T \rightarrow (E)
```

$$S \rightarrow \cdot E$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow \cdot E + F$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow \cdot F$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow \cdot F$$

$$F \rightarrow \cdot T$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$
 $E \rightarrow \cdot E + F$
 $E \rightarrow \cdot E + F$
 $E \rightarrow \cdot F$
 $F \rightarrow \cdot T$
 $T \rightarrow \cdot int$

```
S \rightarrow E
E \rightarrow F
E \rightarrow E + F
F \rightarrow F * T
F \rightarrow T
T \rightarrow int
T \rightarrow (E)
```

$$S \rightarrow \cdot E$$
 $E \rightarrow \cdot E + F$
 $E \rightarrow \cdot E + F$
 $E \rightarrow \cdot F$
 $F \rightarrow \cdot T$
 $T \rightarrow int \cdot$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow \cdot F$$

$$F \rightarrow \cdot T$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow \cdot F$$

$$F \rightarrow T \cdot$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow \cdot F$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow F \cdot$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow \cdot E + F$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow E \cdot + F$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow E + \cdot F$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow E + \cdot F$$

$$F \rightarrow \cdot F * T$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow E + \cdot F$$

$$F \rightarrow \cdot F * T$$

$$F \rightarrow \cdot T$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$
 $E \rightarrow \cdot E + F$
 $E \rightarrow E + \cdot F$
 $F \rightarrow \cdot F * T$
 $F \rightarrow \cdot T$
 $T \rightarrow \cdot int$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$
 $E \rightarrow \cdot E + F$
 $E \rightarrow E + \cdot F$
 $F \rightarrow \cdot F * T$
 $F \rightarrow \cdot T$
 $T \rightarrow int \cdot$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow E + \cdot F$$

$$F \rightarrow \cdot F * T$$

$$F \rightarrow \cdot T$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow E + \cdot F$$

$$F \rightarrow \cdot F * T$$

$$F \rightarrow T \cdot$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow E + \cdot F$$

$$F \rightarrow \cdot F * T$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow E + \cdot F$$

$$F \rightarrow F \cdot \star T$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow E + \cdot F$$

$$F \rightarrow F * \cdot T$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$
 $E \rightarrow \cdot E + F$
 $E \rightarrow E + \cdot F$
 $F \rightarrow F * \cdot T$
 $T \rightarrow \cdot int$

int + int

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$
 $E \rightarrow \cdot E + F$
 $E \rightarrow E + \cdot F$
 $F \rightarrow F * \cdot T$
 $T \rightarrow int \cdot$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow E + \cdot F$$

$$F \rightarrow F * \cdot T$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow E + \cdot F$$

$$F \rightarrow F * T \cdot$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow E + \cdot F$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow E + F \cdot$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

 $E \rightarrow \cdot E + F$

Е

+ int

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow E \cdot + F$$

Е

+ int

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow E + \cdot F$$

E + int

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow E + \cdot F$$

$$F \rightarrow \cdot T$$

E + int

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$
 $E \rightarrow E + \cdot F$
 $F \rightarrow \cdot T$
 $T \rightarrow \cdot int$

E + int

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$
 $E \rightarrow E + \cdot F$
 $F \rightarrow \cdot T$
 $T \rightarrow int \cdot$

E + int

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow E + \cdot F$$

$$F \rightarrow \cdot T$$

E + T

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow E + \cdot F$$

$$F \rightarrow T \cdot$$

E + T

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow E + \cdot F$$

E + F

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow E + F \cdot$$

E + F

 $S \rightarrow E$ $E \rightarrow F$ $E \rightarrow E + F$ $F \rightarrow F * T$ $F \rightarrow T$ $T \rightarrow int$ $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

Ε

 $S \rightarrow E$ $E \rightarrow F$ $E \rightarrow E + F$ $F \rightarrow F * T$ $F \rightarrow T$ $T \rightarrow int$ $T \rightarrow (E)$

$$S \rightarrow E$$
.

Ε

Generating Left-Hand Sides

- At any instant in time, the contents of the left side of the parser can be described using the following process:
 - Trace out, from the start symbol, the series of productions that have not yet been completed and where we are in each production.
 - For each production, in order, output all of the symbols up to the point where we change from one production to the next.

- Given that we have a procedure for *generating* left-hand sides, can we build a procedure for *recognizing* those left-hand sides?
- Idea: At each point, track
 - Which production we are in, and
 - Where we are in that production.
- At each point, we can do one of two things:
 - Match the next symbol of the candidate left-hand side with the next symbol in the current production, or
 - If the next symbol of the candidate left-hand side is a nonterminal, nondeterministically guess which production to try next.

```
S \rightarrow E
E \rightarrow F
E \rightarrow E + F
F \rightarrow F * T
F \rightarrow T
T \rightarrow int
T \rightarrow (E)
```

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

```
S \rightarrow E
E \rightarrow F
E \rightarrow E + F
F \rightarrow F * T
F \rightarrow T
T \rightarrow int
T \rightarrow (E)
```

$$S \rightarrow \cdot E$$


```
S \rightarrow E
E \rightarrow F
E \rightarrow E + F
F \rightarrow F * T
F \rightarrow T
T \rightarrow int
T \rightarrow (E)
```

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$


```
S \rightarrow E
E \rightarrow F
E \rightarrow E + F
F \rightarrow F * T
F \rightarrow T
T \rightarrow int
T \rightarrow (E)
```

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow \cdot E + F$$

```
S \rightarrow E
E \rightarrow F
E \rightarrow E + F
F \rightarrow F * T
F \rightarrow T
T \rightarrow int
T \rightarrow (E)
```

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow E \cdot + F$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow E + \cdot F$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow E + \cdot F$$

$$F \rightarrow \cdot F * T$$

```
S \rightarrow E
E \rightarrow F
E \rightarrow E + F
F \rightarrow F * T
F \rightarrow T
T \rightarrow int
T \rightarrow (E)
```



```
S \rightarrow E
E \rightarrow F
E \rightarrow E + F
F \rightarrow F * T
F \rightarrow T
T \rightarrow int
T \rightarrow (E)
```

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow E + \cdot F$$

$$F \rightarrow F * \cdot T$$

```
S \rightarrow E
E \rightarrow F
E \rightarrow E + F
F \rightarrow F * T
F \rightarrow T
T \rightarrow int
T \rightarrow (E)
```



```
S \rightarrow E
E \rightarrow F
E \rightarrow E + F
F \rightarrow F * T
F \rightarrow T
T \rightarrow int
T \rightarrow (E)
```

$$S \rightarrow \cdot E$$
 $E \rightarrow \cdot E + F$
 $E \rightarrow E + \cdot F$
 $F \rightarrow F * \cdot T$
 $T \rightarrow int \cdot$

An Important Result

- There are only finitely many productions, and within those productions only finitely many positions.
- At any point in time, we only need to track where we are in one production.
- There are only finitely many options we can take at any one point.
- We can use a finite automaton as our recognizer.

An Automaton for Left Areas

Constructing the Automaton

- Create a state for each nonterminal.
- For each production $\mathbf{A} \rightarrow \mathbf{y}$:
 - Construct states $\mathbf{A} \to \boldsymbol{\alpha} \cdot \boldsymbol{\omega}$ for each possible way of splitting $\boldsymbol{\gamma}$ into two substrings $\boldsymbol{\alpha}$ and $\boldsymbol{\omega}$.
 - Add transitions on x between $A \rightarrow \alpha \cdot x\omega$ and $A \rightarrow \alpha x \cdot \omega$.
- For each state $A \rightarrow \alpha \cdot B\omega$ for nonterminal B, add an ϵ -transition from $A \rightarrow \alpha \cdot B\omega$ to B.

Why This Matters

- Our initial goal was to find handles.
- When running this automaton, if we ever end up in a state with a rule of the form

$$\mathbf{A} \rightarrow \boldsymbol{\omega}$$
.

- Then we might be looking at a handle.
- This automaton can be used to discover possible handle locations!

Adding Determinism

- Typically, this handle-finding automaton is implemented deterministically.
- We could construct a deterministic parsing automaton by constructing the nondeterministic automaton and applying the subset construction, but there is a more direct approach.

```
\mathbf{S} \to \mathbf{E}
\mathbf{E} \rightarrow \mathbf{T};
E \rightarrow T + E
\boldsymbol{T} \to \mathtt{int}
T \rightarrow (E)
                                    S \rightarrow \cdot E
                  start
```

```
\mathbf{S} \to \mathbf{E}
\mathbf{E} \rightarrow \mathbf{T};
\mathbf{E} \to \mathbf{T} + \mathbf{E}
T \rightarrow \text{int}
T \rightarrow (E)
                                        S \rightarrow \cdot E
```

```
\mathbf{S} \to \mathbf{E}
\mathbf{E} \rightarrow \mathbf{T};
\mathbf{E} \rightarrow \mathbf{T} + \mathbf{E}
\boldsymbol{T} \to \texttt{int}
T \rightarrow (E)
                                             S \rightarrow \cdot E
                                            \mathsf{T} \to \cdot \, \mathtt{int}
                                            \mathsf{T} \to \cdot (\mathsf{E})
```


Constructing the Automaton II

- Begin in a state containing $S \rightarrow \cdot A$, where S is the augmented start symbol.
- Compute the **closure** of the state:
 - If $\mathbf{A} \to \boldsymbol{\alpha} \cdot \mathbf{B} \boldsymbol{\omega}$ is in the state, add $\mathbf{B} \to \boldsymbol{\gamma}$ to the state for each production $\mathbf{B} \to \boldsymbol{\gamma}$.
 - Yet another fixed-point iteration!
- Repeat until no new states are added:
 - If a state contains a production $A \rightarrow \alpha \lor x \omega$ for symbol x add a transition on x from that state to the state containing the closure of $A \rightarrow \alpha x \cdot \omega$
- This is equivalent to a subset construction on the NFA.

Handle-Finding Automata

- Handling-finding automata can be very large.
- NFA has states proportional to the size of the grammar, so DFA can have size exponential in the size of the grammar.
 - There are grammars that can exhibit this worst-case.
- Automata are almost always generated by tools like bison.

Finding Handles

- Where do we look for handles?
 - At the top of the stack.
- How do we search for handles?
 - Build a handle-finding automaton.
- How do we recognize handles?
 - Once we've found a possible handle, how do we confirm that it's correct?

Question Three:

How do we recognize handles?

Handle Recognition

- Our automaton will tell us all places where a handle might be.
- However, if the automaton says that there might be a handle at a given point, we need a way to confirm this.
- We'll thus use predictive bottom-up parsing:
 - Have a deterministic procedure for guessing where handles are.
- There are many predictive algorithms, each of which recognize different grammars.

Our First Algorithm: LR(0)

- Bottom-up predictive parsing with:
 - L: Left-to-right scan of the input.
 - **R**: **R**ightmost derivation.
 - (0): Zero tokens of lookahead.
- Use the handle-finding automaton, without any lookahead, to predict where handles are.

```
S \rightarrow E
E \rightarrow T;
E \rightarrow T + E
T \rightarrow int
T \rightarrow (E)
```

int	+	(int	+	int	ř)	, ,
-----	---	---	-----	---	-----	---	---	--------

An Optimization

- Rather than restart the automaton on each reduction, remember what state we were in for each symbol.
- When applying a reduction, restart the automaton from the last known good state.

LR(0) Parsing

Representing the Automaton

- LR(0) parsers are usually represented via two tables: an **action** table and a **goto** table.
- The action table maps each state to an action:
 - shift, which shifts the next terminal, and
 - reduce $A \to \omega$, which performs reduction $A \to \omega$.
 - Any state of the form $A \rightarrow \omega$ does that reduction; everything else shifts.
- The goto table maps state/symbol pairs to a next state.
 - This is just the transition table for the automaton.

Building LR(0) Tables

LR(0) Tables

	int	+	;	()	Е	Т	Action
0	9			8		1	3	Shift
1								Accept
2								Reduce $\mathbf{E} \to \mathbf{T} + \mathbf{E}$
3		5	4					Shift
4								Reduce $\mathbf{E} \to \mathbf{T}$;
5	9			8		2	3	Shift
6								Reduce $T \rightarrow (E)$
7					6			Shift
8	9			8		7	3	Shift
9								Reduce $T \rightarrow int$

The LR(0) Algorithm

- Maintain a stack of (symbol, state) pairs, which is initially (?, 1) for some dummy symbol ?.
- While the stack is not empty:
 - Let **state** be the top state.
 - If action[state] is shift:
 - Let **t** be the next symbol in the input.
 - Push (t, goto[state, t]) atop the stack.
 - If action[state] is reduce $A \rightarrow \omega$:
 - Remove $|\omega|$ symbols from the top of the stack.
 - Let **top-state** be the state on top of the stack.
 - Push (A, goto[top-state, A]) atop the stack.
 - Otherwise, report an error.

The Limits of LR(0)

LR Conflicts

- A **shift/reduce conflict** is an error where a shift/reduce parser cannot tell whether to shift a token or perform a reduction.
 - Often happens when two productions overlap.
- A **reduce/reduce conflict** is an error where a shift/reduce parser cannot tell which of many reductions to perform.
 - Often the result of ambiguous grammars.
- A grammar whose handle-finding automaton contains a shift/reduce conflict or a reduce/reduce conflict is not LR(0).
- Can you have a shift/shift conflict?

What error is this?

What error is this?

What about this?

What about this?

And what about this?

And what about this?

What do these conflicts mean?

- Recall: our automaton was constructed by looking for viable prefixes.
- Each accepting state represents a point where the handle might occur.
- A **shift/reduce** conflict is a state where the handle might occur, but we might actually need to keep searching.
- A reduce/reduce conflict is a state where we know we have found the handle, but can't tell which reduction to apply.

Why LR(0) is Weak

- LR(0) only accepts languages where the handle can be found with no **right context**.
- Our shift/reduce parser only looks to the left of the handle, not to the right.
- How do we exploit the tokens after a possible handle to determine what to do?

A Powerful Parser: LR(1)

- Bottom-up predictive parsing with
 - L: Left-to-right scan
 - R: Rightmost derivation
 - (1): One token lookahead
- *Substantially* more powerful than the other methods we've covered so far (more on that later).
- Tries to more intelligently find handles by using a lookahead token at each step.

```
S \rightarrow E
E \rightarrow T
E \rightarrow E + T
T \rightarrow int
T \rightarrow (E)
```


+ (int + int + int) \$

The Intuition behind LR(1)

- Guess which series of productions we are reversing.
- Use this information to maintain information about what lookahead to expect.
- When deciding whether to shift or reduce, use lookahead to disambiguate.

Tracking Lookaheads

- How do we know what lookahead to expect at each state?
- Observation:
 - There are only finitely many productions we can be in at any point.
 - There are only finitely many positions we can be in each production.
 - There are only finitely many lookahead sets at each point.
- Construct an automaton to track lookaheads!

```
S \rightarrow E
E \rightarrow T
E \rightarrow E + T
T \rightarrow int
T \rightarrow (E)
```


Constructing LR(1) Automata

- Begin with a state **S** [\$].
- For each state A [t], for each production
 A → y:
 - Construct states $\mathbf{A} \to \boldsymbol{\alpha} \cdot \boldsymbol{\omega}$ [t] for all possible ways of splitting $\boldsymbol{\gamma} = \boldsymbol{\alpha} \boldsymbol{\omega}$.
 - Add an ε-transition from **A** [t] to each of these states.
 - Add transitions on x between $A \rightarrow \alpha \cdot x\omega$ [t] and $A \rightarrow \alpha x \cdot \omega$ [t]
- For each state $A \to \alpha \cdot B\omega$ [t], add an ϵ -transition from $A \to \alpha \cdot B\omega$ [t] to B[r] for each terminal $r \in FIRST^*(\omega t)$.


```
S \rightarrow . E $ $ E \rightarrow . T $ E \rightarrow . E + T $
```

```
S \rightarrow . E $
E \rightarrow . T $
E \rightarrow . E + T $
E \rightarrow . E + T + E \rightarrow . E + T + E \rightarrow . E + T + E \rightarrow . E + E + E \rightarrow . E + E + E \rightarrow . E \rightarrow . E + E \rightarrow . E \rightarrow .
```


Constructing LR(1) Automata II

- Begin in a state containing $S \to \cdot E$ [\$], where S is the start symbol.
- Compute the **closure** of the state:
 - If $A \to \alpha \cdot B\omega$ [t] is in the state, add $B \to \cdot \gamma$ [t] to the state for each production $B \to \gamma$ and for each terminal $t \in FIRST^*(\omega t)$
- Repeat until no new states are added:
 - If a state contains a production $A \to \alpha \cdot x\omega$ [t], add a transition on x from that state to the state containing the closure of $A \to \alpha x \cdot \omega$ [t].

Structure of LR(1) Automata

- Every LR(1) automaton simulates two processes simultaneously:
 - An LR(0) automaton for finding handles.
 - A **lookahead tracker** for determining what the lookahead is.
- Removing the lookaheads from an LR(1) automaton results in a (much larger) LR(0) automaton for the same grammar.

Representing LR(1) Automata

- As with LR(0), use **action** and **goto** tables.
- **goto** table defined as before; encodes transition table as map from (state, token) to states.
- action table maps pairs (state, lookahead) to actions.
- Commonly combined into a single action/goto table.

	int	()	+	\$	T	Ε
1	s5					s4	s2
2				s6	ACCEPT		
3				r3	r3		
4				r2	r2		
5				r5	r5		
6	s5	s7				s3	
7	s10	s14				s10	s8
8			s9	s12			
9				r5	r5		
10			r2	r2			
11			r4	r4			
12	s11					s13	
13			r3	r3			
14	s11		s14			s10	s15
15			s16	s12			
16			r5	r5			

 $\mathbf{S} \to \mathbf{E}$

 $\mathbf{E} \to \mathbf{T}$

 $\mathbf{E} \to \mathbf{E} + \mathbf{T}$

 $\bm{T} \to \texttt{int}$

 $T \rightarrow (E)$

(1)

(2)

(3)

(4)

(5)

The LR(1) Parsing Algorithm

- Begin with an empty stack and the input set to ω \$, where ω is the string to parse. Set **state** to the initial state.
- Repeat the following:
 - Let the next symbol of input be t.
 - If action[state, t] is shift, then shift the input and set state = goto[state, t].
 - If action[state, t] is reduce $A \rightarrow \omega$:
 - Pop $|\omega|$ symbols off the stack; replace them with **A**.
 - Let the state atop the stack be **top-state**.
 - Set state = goto[top-state, A]
 - If action[state, t] is accept, then the parse is done.
 - If action[state, t] is error, report an error.

Constructing LR(1) Parse Tables

- For each state *X*:
 - If there is a production $A \to \omega \cdot [t]$, set action $[X, t] = \text{reduce } A \to \omega$.
 - If there is the special production $S \to E \cdot [\$]$, where S is the start symbol, set action[X, t] = accept.
 - If there is a transition out of s on symbol t, set
 action[X, t] = shift.
- Set all other actions to error.
- If any table entry contains two or more actions, the grammar is not LR(1).

Next Time

SLR(1) Parsing

A smaller, simpler, and weaker variant of LR(1).

LALR(1) Parsing

An excellent tradeoff between SLR(1) and LR(1).

Parsing Ambiguous Grammars

Manually tweaking LR parsers.

Error Recovery

Report all the errors!