支持向量机

周志健

1 解决的问题

软间隔支持向量机:

$$\min_{\mathbf{w},b,\xi} = \frac{1}{2} \|\mathbf{w}\|^{2} + C \sum_{i=1}^{L} \xi_{i}$$

$$y_{i}(\mathbf{w}^{T} \phi(\mathbf{x}_{i}) + b) \ge 1 - \xi_{i}, \quad i = 1,...,L$$

$$\xi_{i} \ge 0, \quad i = 1,...,L$$
(1)

令数据样本增加一个固定为1的维度,得到:

$$[\mathbf{x},1] \to \mathbf{x}$$
 $[\mathbf{w},1] \to \mathbf{w}$ (2)

规定线性核,问题1转换为:

$$\min_{\mathbf{w}} = \frac{1}{2} \|\mathbf{w}\|^{2} + C \sum_{i=1}^{L} \xi_{i}$$

$$y_{i} \mathbf{w}^{T} \mathbf{x}_{i} \ge 1 - \xi_{i}, \qquad i = 1, ..., L$$

$$\xi_{i} \ge 0, \qquad i = 1, ..., L$$
(3)

2 SMO

2.1 流程图

图 1.SMO 流程图

2.2 实验结果

表 1: Iris 数据集分类(SMO)

	Accuracy	Recall	Precision	F1
Setosa vs Versicolor	1.0	1.0	1.0	1.0
Setosa vs Virginica	1.0	1.0	1.0	1.0
Versicolor vs Virginica	0.83	1.0	0.74	0.85

表 1 是手动实现的 SVM 在 Iris 数据集上 One vs One 的表现,均使用默认参数。Iris 数据集共 150 个数据,每类 Iris50 个,测试集比例为 0.3。

表 2: Wifi localization 数据集分类

	Accuracy	Recall	Precision	F1
手动实现	0.91	0.82	0.98	0.89
Sklearn 库	0.89	0.76	1.0	0.87

表 2 是手动实现的 SVM 与 Sklearn 库 SVM 在 Wifi localization 数据集上的表现,使用默认参数。Wifi localization 数据集共 2000 个数据,分割数据集时正反例数据个数相等,测试集比例为 0.3。

3 DCDM

3.1 流程图

图 2.DCDM 流程图

3.2 实验结果

表 3: Iris 数据集分类(DCDM)

	Accuracy	Recall	Precision	F1
Setosa vs Versicolor	1.0	1.0	1.0	1.0
Setosa vs Virginica	1.0	1.0	1.0	1.0
Versicolor vs Virginica	0.97	1.0	0.93	0.97

表 4: Wifi localization 数据集分类(DCDM)

	Accuracy	Recall	Precision	F1
手动实现	0.99	1.0	0.99	0.99

可能因为算法终止条件为《是否更新,所以分类器训练效果较好。