The Network of Foreign Direct Investment Flows: Theory and Empirical Analysis¹

John Schoeneman² jbs5686@psu.edu PhD Candidate Boliang Zhu² bxz14@psu.edu Assistant Professor

Bruce Desmarais² bdesmarais@psu.edu Associate Professor

April 8, 2017

¹Acknowledgement: This material is based on work supported by the National Science Foundation under IGERT Grant DGE-1144860, Big Data Social Science.

²Pennsylvania State University

Introduction

- FDI as a Network
 - Clustering
 - Reciprocity
- Motivation
 - Violation of Independence Assumptions
 - Theoretical Importance of Dependence Terms
- Simultaneously test exogenous variables

FDI Network 2008

Color Scheme: Autocracy to Democracy is scaled as Blue to Red

Theory for Network Terms

Reciprocity

- Standard practice to resolve political opposition from competing firms
- Anti-reciprocal relationship in mixed dyads

Transitivity

- MNC expansion and supply-chain fragmentation
- Risk of Expropriation
- PTA networks

FDI Data and Exogenous Covariates

- Bilateral FDI statistics from UNCTAD, 2001-2012
- Dyad-level Covariates
 - Gravity +
 - Contiguity +
 - Common Language +
 - Four Types of Defense Treaties
 - Colonial Relationships +
 - PTA depth¹ +

- Node-level Covariates
 - GDP per capita +/-
 - GDP Growth Rate +
 - Polity IV +
 - Political Violence -
 - Trade Openness +

ERGM Count Model: Base

$$\Pr_{\theta;h;g}(Y=y) = rac{h(y) \exp(\theta \cdot g(y))}{\kappa_{h,g}(\theta)}$$
 $\operatorname{Sum}: g(y) = \sum_{(i,j) \in \mathbb{Y}} y_{i,j}$

Sum, Fractional Moment : $g(y) = \sum_{(i,j) \in \mathbb{Y}} y_{i,j}^{1/2}$

Non-Zero :
$$\mathbf{g}_k = \sum_{(i,j) \in \mathbb{Y}} \mathbb{I}(\mathbf{y}_{i,j} \neq 0)$$

ERGM Count Model: Variables

Reciprocity :
$$g(y) = \sum_{(i,j) \in \mathbb{Y}} min(y_{i,j}, y_{j,i})$$

Transitive Weights :
$$g(y) = \sum_{(i,j) \in \mathbb{Y}} \min \left(y_{i,j}, \max_{k \in N} \left(\min(y_{i,k}, y_{k,j}) \right) \right)$$

Dyadic Covariate :
$$g(y, x) = \sum_{(i,j)} y_{i,j} x_{i,j}$$

Sender Covariate :
$$g(y, x) = \sum_{i} x_i \sum_{j} y_{i,j}$$

Receiver Covariate :
$$g(y, x) = \sum_{j} x_{j} \sum_{i} y_{i,j}$$

Count Model and Network Dependencies

Covariate Results

Model Fit and Bias

BIC Difference between Models

Residuals for Network Statistics

Conclusion and Future Research

- Conclusion
 - Network terms are substantively important
 - Network terms need to be modeled instead of being assumed away
- Future Steps
 - Condition reciprocity on development
 - Assortativity
 - Cyclical Weights
 - Network dynamics

References

Dür, A., Baccini, L., & Elsig, M. (2014). The design of international trade agreements: Introducing a new dataset. The Review of International Organizations, 9(3), 353-375.