CELL DECOMPOSITION OF RANK 2 QUIVER GRASSMANNIANS

DYLAN RUPEL AND THORSTEN WEIST

ABSTRACT. We prove that all quiver Grassmannians for preprojective and preinjective representations of a generalized Kronecker quiver admit a cell decomposition. We also provide a natural combinatorial labeling for these cells using compatible pairs in a maximal Dyck path.

1. Introduction

-something about cluster algebras -something about categorification and quiver Grassmannians -something about compatible pairs and combinatorial construction of cluster variables -statement of our results -something about torus actions and the universal cover -something about cell decompositions of quiver Grassmannians -acknowledgements?

2. Torus Action on Quiver Grassmannians

Let Q be an acylic quiver with vertices Q_0 and arrows Q_1 which we denote by $\alpha: i \to j$. Moreover, let W_Q be the free (non-abelian) group generated by Q_1 . We denote by Rep(Q) the category of \mathbb{C} -representations of Q.

Definition 0.1. The universal covering quiver \tilde{Q} of Q is given by the vertices $\tilde{Q}_0 = Q_0 \times W_Q$ and the arrow set $\tilde{Q}_1 = Q_1 \times W_Q$ where $(\alpha, w) : (i, w) \to (j, w\alpha)$ for every $\alpha : i \to j$.

We say that a representation $X \in \text{Rep}(Q)$ can be lifted (to \tilde{Q}) if there exists a representation $\tilde{X} \in \text{Rep}(\tilde{Q})$ such that $F_Q\tilde{X} = X$ where $F_Q : \text{Rep}(\tilde{Q}) \to \text{Rep}(Q)$ is the natural functor.

Lemma 0.1. Every preprojective (resp. preinjective) representation of Q can be lifted to a representation of \tilde{Q} .

Proof. This statement is clear for the simple representations S_q , $q \in Q_0$. Now every preprojective representation X can be obtained when applying a sequence of BGP-reflections [2] to a simple representation $S_{q'}$ of a quiver Q' whose underlying graph is the one of Q. Applying BGP-reflections to a source q of Q corresponds to applying BGP-reflections to all vertices (q, w) of \tilde{Q} . This leads the claim. The statement for preinjective representations follows in the same way.

We choose a map $d: \tilde{Q}_0 \to \mathbb{Z}$ and fix a representation $X \in \text{Rep}(Q)$. In any case, we can consider the decomposition $X_q = \bigoplus_{w \in W_Q} X_{(q,w)}$. We define a torus action on each $X_{(q,w)}$ via $t.x_{(q,w)} = t^{d(q,w)}x_{(q,w)}$ which can be extended linearly to each X_q . For a fixed a subspace U_q , we can define the subspace $t.U_q$. In general, this torus action induces no torus action on the Quiver Grassmannians $\text{Gr}_{\mathbf{e}}(X)$ as $t.U = (t.U_q)_{q \in Q_0}$ is no subrepresentation of X for every $U \in \text{Gr}_{\mathbf{e}}(X)$. Actually, for this the action has to satisfy $X_{\alpha}(t.U_i) \in t.U_j$ for every $\alpha: i \to j$ and every $x \in X_i$.

Lemma 0.2. Fix an integer $c_{\alpha} \in \mathbb{Z}$ for every $\alpha \in Q_1$. If $X \in \text{Rep}(Q)$ can be lifted, $d : \tilde{Q}_0 \to \mathbb{Z}$ induces a torus action on $\text{Gr}_{\mathbf{e}}(X)$ if we have $d(j, w\alpha) - d(i, w) = c_{\alpha}$ for all $\alpha : i \to j$ and $w \in W_Q$.

Proof. Since X can be lifted, we can write $X_{\alpha}: X_i \to X_j$ as block matrix consisting of linear maps $X_{(\alpha,w)}: X_{(i,w)} \to X_{(j,w\alpha)}$. Then the condition $X_{\alpha}(t.U_i) \in t.U_j$ translates into ...to be continued.

Lemma 0.3. There exists $d: \tilde{Q}_0 \to \mathbb{Z}$ such that $d(q, w) \neq d(q', w')$ for all q, q', w, w' with dim $X_{q,w} \neq 0$ and dim $X_{q',w'} \neq 0$.

Theorem 1. $Gr_{\mathbf{e}}^{Q}(X)^{T} \cong \bigsqcup_{\tilde{\mathbf{e}}oftunce} Gr_{\tilde{\mathbf{e}}}^{\tilde{Q}}(\tilde{X})$

Corollary 1.1. affine bundles over $Gr_{\tilde{\mathbf{e}}}^{\tilde{Q}}(\tilde{X})$ if $Gr_{\mathbf{e}}^{Q}(X)$ is smooth

$$\{U \in Gr_{\mathbf{e}}^{Q}(X) : \lim_{t \to 0} t \cdot U \in Gr_{\tilde{\mathbf{e}}}^{\tilde{Q}}(\tilde{X})\}$$

Question 1.1. What are the ranks of these bundles? Poincaré polynomials?

3. Representation Theory of K(n)

Denote by K(n) the n-Kronecker quiver $1 \stackrel{n}{\longleftarrow} 2$ with vertices $K(n)_0 = \{1, 2\}$ and n arrows from vertex 2 to vertex 1.

Define Chebyshev polynomials u_k for $k \in \mathbb{Z}$ by the recursion $u_0 = 0$, $u_1 = 1$, $u_{k+1} = nu_k - u_{k-1}$.

Theorem 2. For each $m \ge 1$, there exist unique (up to isomorphism) indecomposable rigid representations P_m and I_m of K(n) with dimension vectors (u_m, u_{m-1}) and (u_{m-1}, u_m) respectively. Moreover, any rigid representation of K(n) is isomorphic to one of the form $P_m^{a_1}P_{m+1}^{a_2}$ or $I_m^{a_1}I_{m+1}^{a_2}$ for some $m \geq 1$ and some $a_1, a_2 \geq 0$.

The representations P_m are called the *preprojective* representations of K(n) and the representations I_m are called *preinjective*.

Lemma 2.1. For any $m \ge 1$, we have

$$\dim \operatorname{Hom}(P_m, P_m) = 1, \quad \dim \operatorname{Hom}(P_m, P_{m+1}) = n, \quad \dim \operatorname{Hom}(P_{m+1}, P_m) = 0.$$

Moreover, for $1 \le k < n$ and linearly independent functions $f_1, \ldots, f_k \in \text{Hom}(P_m, P_{m+1})$, the map $[f_1 \cdots f_k]$: $P_m^k \to P_{m+1}$ is injective.

Proof. Note that we have a Auslander-Reiten sequence

$$0 \longrightarrow P_{m-1} \longrightarrow P_m^n \stackrel{[f_1 \cdots f_n]}{\longrightarrow} P_{m+1} \longrightarrow 0$$

with irreducible homomorphisms f_i which are also linear independent. Thus they do not factor through a representation $Z \neq P_m$ which already means that they are injective, see for instance [1, Lemma 1.6]. If we pick k < n linear independent homomorphisms f_{i_1}, \ldots, f_{i_k} , this also means that $[f_{i_1} \cdots f_{i_k}] : P_m^k \to P_{m+1}$ is injective. Indeed otherwise, at least one of the homomorphisms were forced to factor through a representation

Write $P_{m+1}^{\{f_1,\dots,f_k\}}$ for the cokernel of the map $[f_1 \cdots f_k]: P_m^k \to P_{m+1}$, i.e. we have a short exact sequence

$$(1) 0 \longrightarrow P_m^k \stackrel{[f_1 \dots f_k]}{\longrightarrow} P_{m+1} \longrightarrow P_{m+1}^{\{f_1, \dots, f_k\}} \longrightarrow 0.$$

Lemma 2.2. For $m \geq 1$ and linearly independent functions $f_1, \ldots, f_k \in \text{Hom}(P_m, P_{m+1})$, the following

- (1) $\operatorname{Hom}(P_m, P_{m+1}^{\{f_1, \dots, f_k\}})$ is naturally isomorphic to $\operatorname{Hom}(P_m, P_{m+1})/\mathbb{k}f_1 \oplus \dots \oplus \mathbb{k}f_k;$ (2) $\operatorname{Ext}(P_{m+1}^{\{f_1, \dots, f_k\}}, P_m)$ is naturally isomorphic to $\mathbb{k}f_1 \oplus \dots \oplus \mathbb{k}f_k;$ (3) $\operatorname{Hom}(P_{m+1}^{\{f_1, \dots, f_k\}}, P_m) = 0.$

Proof. Applying the functor $Hom(P_m, -)$ to the sequence (1) gives the exact sequence

$$0 \longrightarrow \operatorname{Hom}(P_m, P_m^k) \stackrel{[f_1 \dots f_k] \circ}{\longrightarrow} \operatorname{Hom}(P_m, P_{m+1}) \longrightarrow \operatorname{Hom}(P_m, P_{m+1}^{\{f_1, \dots, f_k\}}) \longrightarrow 0,$$

To see (2), we apply the functor $\operatorname{Hom}(-, P_m)$ to the sequence (1) to get an isomorphism $\operatorname{Hom}(P_m^k, P_m) \cong$ $\operatorname{Ext}(P_{m+1}^{\{f_1,\ldots,f_k\}},P_m)$. Observe that $\operatorname{Hom}(P_m^k,P_m)$ is spanned by the coordinate projections $\pi_i:P_m^k\to P_m$

for $1 \le i \le k$ and each of these gives rise to a commutative diagram

The bottom row of this diagram is the extension in $\operatorname{Ext}(P_{m+1}^{\{f_1,\dots,f_k\}},P_m)$ naturally identified with the generator f_i of $kf_1 \oplus \dots \oplus kf_k$.

Part (3) follows immediately from (2) and the observation that

$$\langle P_{m+1}^{\{f_1,\dots,f_k\}}, P_m \rangle = \langle P_{m+1}, P_m \rangle - k \langle P_m, P_m \rangle = -k.$$

For any nonempty subset $I \subset [1, k]$, say with $|I| = \ell$, we get an exact sequence

$$0 \longrightarrow P_m^{\ell} \overset{[f_i]_{i \in I}}{\longrightarrow} P_{m+1}^{\{f_j\}_{j \in [1,k] \backslash I}} \longrightarrow P_{m+1}^{\{f_1, \dots, f_k\}} \longrightarrow 0.$$

Each such sequence has the following almost-split property for subrepresentations of $P_{m+1}^{\{f_1,\ldots,f_k\}}$.

Lemma 2.3. For $m \ge 1$ and linearly independent functions $f_1, \ldots, f_k \in \text{Hom}(P_m, P_{m+1})$, given any proper subrepresentation $V \subseteq P_{m+1}^{\{f_1, \ldots, f_k\}}$, the upper pullback sequence

splits for every $I \subset [1, k]$.

Proof. When $I = \emptyset$ there is nothing to show, so assume I is a nontrivial subset of [1, k]. We proceed by induction on k. For any nonzero $f \in \text{Hom}(P_m, P_{m+1})$ the exact sequence

$$0 \longrightarrow P_m \xrightarrow{f} P_{m+1} \longrightarrow P_{m+1}^{\{f\}} \longrightarrow 0$$

is almost split, giving the claim in the case k=1. For k>1 and a nontrivial subset $I\subset [1,k]$, we have the following commutative diagram

$$0 \longrightarrow P_{m}^{k-\ell} = P_{m}^{k-\ell} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow \qquad$$

A proper subrepresentation $V \subset P_{m+1}^{\{f_1,\ldots,f_k\}}$ gives rise, via pullbacks, to the following commutative diagram

in which the middle vertical sequence and the middle horizontal sequence split by induction. But then the lower horizontal sequence splits, establishing the claim for all $I \subset [1, k]$.

4. Quiver Grassmannians of
$$\widetilde{K(n)}$$

Let \tilde{P}_m be a fixed lift of P_m to the universal cover K(n).

Lemma 2.4. There exist lifts $\tilde{P}_{m-1,i}$ for $1 \le i \le n$ of P_{m-1} to K(n) so that:

- (1) $\operatorname{Hom}_{Q}(P_{m-1}, P_{m}) \cong \bigoplus_{i=1}^{n} \operatorname{Hom}_{\tilde{Q}}(\tilde{P}_{m-1,i}, \tilde{P}_{m});$ (2) For any proper subset $\{i_{1}, \ldots, i_{k}\} \subset \{1, \ldots, n\}$, there exists a short exact sequence

$$0 \longrightarrow \tilde{P}_{m-1,i_1} \oplus \cdots \oplus \tilde{P}_{m-1,i_k} \longrightarrow \tilde{P}_m \longrightarrow \tilde{P}_m^{i_1,\dots,i_k} \longrightarrow 0;$$

- (3) The lifts $\tilde{P}_{m-1,i}$ are pairwise orthogonal.
- (4) All nontrivial proper subrepresentations of $\tilde{P}_m^{(k)}$ are preprojective.

We will always choose the subset $\{1, \ldots, k\}$ when using Lemma 2.4.2 and thus we denote the cokernal simply by $\tilde{P}_m^{(k)}$.

Lemma 2.5. If each $Gr_{\tilde{\mathbf{e}}}^{\tilde{Q}}(\tilde{P}_{m-1,i})$ has a cell decomposition, then $Gr_{\tilde{\mathbf{e}}}^{\tilde{Q}}(\bigoplus \tilde{P}_{m-1,i_j})$ has a cell decomposition.

Lemma 2.6. (1)
$$\tilde{P}_m^{(n-1)} \cong \tilde{P}_{m-1}^{(1)}$$

(2) The subrepresentation $\bigoplus_{i=1}^{k-1} \tilde{P}_{m-1,i} \oplus \bigoplus_{i=1}^{k} \tilde{P}_{m-2,i} \subset \bigoplus i = 1^k \tilde{P}_{m-1,i}$ is in $(\tilde{P}_m^{(k)})^{\perp}$ and

$$\operatorname{Ext}(\bigoplus_{i=1}^{k} \tilde{P}_{m-1,i}, \tilde{P}_{m}^{(k)}) \cong \operatorname{Ext}(\tilde{P}_{m-1}^{(k)}, \tilde{P}_{m}^{(k)})$$

where $\tilde{P}_{m-1}^{(k)}$ above denotes the cokernel of the inclusion.

Lemma 2.7. Consider $0 \to \tilde{P}_m \to \tilde{P}_{m+1}^{(k)} \to \tilde{P}_{m+1}^{(k-1)} \to 0$ There exists a short exact sequence

$$0 \to \tilde{P}_{m-1}^{n-1} \oplus \tilde{P}_{m-2}^{n-k} \to \tilde{P}_m \to \tau \tilde{P}_{m+1}^{(k-1)} \to 0$$

where τ denotes the Auslander-Reiten translate. Moreover, we have $\operatorname{Ext}(\tilde{P}_{m+1}^{(k-1)}, \tilde{P}_m) \cong \operatorname{Ext}(\tilde{P}_{m+1}^{(k-1)}, \tau \tilde{P}_{m+1}^{(k-1)}) = \operatorname{Ext}(\tilde{P}_{m+1}^{(k-1)}, \tilde{P}_m)$ $k \ and \ {\rm Hom}(\tilde{P}_{m+1}^{(k-1)}, \tau \tilde{P}_{m+1}^{(k-1)}) = 0.$

Proof. Idea: Check this for m = 1 or m = 2 and apply BGP-reflections.

Lemma 2.8. Consider $0 \to \tilde{P}_m \to \tilde{P}_{m+1}^{(k)} \to \tilde{P}_{m+1}^{(k-1)} \to 0$. If $U \subset \tilde{P}_m$ such that $\operatorname{Ext}(\tilde{P}_{m+1}^{(k-1)}, U) \neq 0$, then we have $\operatorname{Ext}(\tilde{P}_{m+1}^{(k-1)}, \tilde{P}_m/U) = 0.$

Proof. Idea: Every $U \subset \tilde{P}_m$ gives rise to a diagram

$$0 \longrightarrow \tilde{P}_{m-1}^{n-1} \oplus \tilde{P}_{m-2}^{n-k} \longrightarrow \tilde{P}_m \longrightarrow \tau \tilde{P}_{m+1}^{(k-1)} \longrightarrow 0$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$0 \longrightarrow V \longrightarrow U \longrightarrow W \longrightarrow 0$$

If $\operatorname{Ext}(\tilde{P}_{m+1}^{(k-1)}, U) \neq 0$, we have $W \neq 0$. Thus $\tau \tilde{P}_{m+1}^{(k-1)}/W$ is a proper factor. It follows that we have $\operatorname{Ext}(\tilde{P}_{m+1}^{(k-1)}, \tau \tilde{P}_{m+1}^{(k-1)}/W) = 0$ by Auslander-Reiten-theory and because $\operatorname{Ext}(\tilde{P}_{m+1}^{(k-1)}, \tau \tilde{P}_{m+1}^{(k-1)}) = k$. Since we have $\operatorname{Ext}(\tilde{P}_{m+1}^{(k-1)}, \tilde{P}_{m-1}^{n-1} \oplus \tilde{P}_{m-2}^{n-k}) = 0$, it follows $\operatorname{Ext}(\tilde{P}_{m+1}^{(k-1)}, (\tilde{P}_{m-1}^{n-1} \oplus \tilde{P}_{m-2}^{n-k})/V) = 0$. The first

statement should be a consequence of Lemma 2.7. This yields the claim.

Proposition 2.1. Consider $\psi: Gr_{\tilde{\mathbf{e}}}^{\tilde{Q}}(\tilde{P}_m) \to \bigsqcup_{\tilde{\mathbf{f}}+\tilde{\mathbf{g}}=\tilde{\mathbf{e}}} Gr_{\tilde{\mathbf{f}}}^{\tilde{Q}}(\bigoplus_{i=1}^k \tilde{P}_{m-1,i}) \times Gr_{\tilde{\mathbf{g}}}^{\tilde{Q}}(\tilde{P}_m^{(k)})$. Then the following

- (1) For $V \subsetneq \tilde{P}_m^{(k)}$ and $U \subset \bigoplus_{i=1}^k \tilde{P}_{m-1,i}$, we have $\psi^{-1}(U,V) = \mathbb{A}^{\langle V, \bigoplus_{i=1}^k \tilde{P}_{m-1,i}/U \rangle}$. (2) If $V = \tilde{P}_m^{(k)}$, the fibre $\psi^{-1}(U,V)$ is non-empty and of constant dimension if and only if $\operatorname{Ext}(\tilde{P}_m^{(k)}, U) \neq 0$

Proof. (1) V is preprojective but $\bigoplus_{i=1}^k \tilde{P}_{m-1,i}/U$ is not unless U=0

(2) If $\operatorname{Ext}(\tilde{P}_m^{(k)}, U) = 0$, the fibre is empty because the sequence is non-split. If $\operatorname{Ext}(\tilde{P}_m^{(k)}, U) \neq 0$, Lemma 2.8 yields $\operatorname{Ext}(\tilde{P}_{m}^{(k)}, \tilde{P}_{m-1}/U) = 0$. In particular, the dimension is constant if it is not empty and $\operatorname{Ext}(\tilde{P}_{m+1}^{(k-1)}, U) \xrightarrow{\pi} \operatorname{Ext}(\tilde{P}_{m+1}^{(k-1)}, \tilde{P}_{m})$ is surjective. But this already means that the fibre is not empty.

Theorem 3. Every quiver Grassmannian of a preprojective or preinjective representation of K(n) and K(n)has a cell decomposition.

Question 3.1. cells of $Gr_{\tilde{\mathbf{e}}}^{\tilde{Q}}(\tilde{P}_m)$ are in one-to-one correspondence with certain tuples of subgraphs for $smaller \; \tilde{P}^{i_1,...,i_k}_{\boldsymbol{\ell}}$

¹introduce/consider/check indices, we have to mod out the corresponding reps in the covering

5. Compatible Pairs Label Cells in $Gr_{f e}^Q(P_m)$

References

- [1] Assem, I., Simson, D., Skowronski, A.: Elements of the Representation Theory of Associative Algebras. Cambridge University Press, Cambridge 2007.
- [2] Bernstein, I. N., Gelfand, I. M., Ponomarev, V. A.: Coxeter functors, and Gabriel's theorem. Russian Mathematical Surveys 28(2), 17-32 (1973).
- [3] Happel, D., Ringel, C.M.: Tilted Algebras. Transactions of the American Mathematical Society 274, no.2, 399-443 (1982).
- [4] Schofield, A.: General representations of quivers. Proceedings of the London Mathematical Society (3) 65(1), 46-64 (1992).