ЛЕКЦИЯ 1

Понятие функции комплексного переменного. Предел и непрерывность функций комплексного переменного. Ряды с комплексными членами. Элементарные функции комплексного переменного и их приложения.

1. ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ ФУНКЦИЙ КОМПЛЕКСНОГО ПЕРЕМЕННОГО 1.1. КОМПЛЕКСНЫЕ ЧИСЛА, ДЕЙСТВИЯ НАД НИМИ

Комплексным числом z называется упорядоченная пара действительных чисел (a;b). Геометрической интерпретацией комплексного числа называется точка плоскости z, где (a;b) – ее декартовы координаты (рис. 1.1). Такая плоскость называется комплексной плоскостью, ось абсцисс — dействительной, а ось ординат — mнимой осью комплексной плоскости. Другая удобная геометрическая форма представления комплексного числа — padиус—gem0 т.е. вектор, проведенный из начала координат в точку z, тогда a, b, — координаты этого радиус—gem1.

Рис. 1.1

Если точка z лежит на действительной оси, т.е. соответствующее комплексное число имеет вид (a;0), то такое число отождествляется с *действительным числом* a. Таким образом (a;0)=a. Если точка z лежит на мнимой оси, не совпадая с началом координат, т.е. комплексное число имеет вид (0;b), $b\neq 0$, то она называется *мнимым числом*. Если точка z совпадает с началом координат, то такое комплексное число называется нулем: (0;0)=0.

Единичный вектор действительной оси называется действительной единицей и обозначается 1, т.е. (1; 0) = 1. Единичный вектор мнимой оси называется мнимой единицей и обозначается i, т.е. (0; 1) = i. Тогда радиус—вектор комплексного числа z = (a; b) в

ортонормированном базисе векторов 1 и i можно написать $z = a \cdot 1 + b \cdot i$. При этом действительную единицу принято не писать:

$$z = a + bi \tag{1.1}$$

Запись комплексного числа по формуле (1.1) называется алгебраической формой комплексного числа. При этом a называется deйcmвительной частью комплексного числа <math>z и обозначается $Re\ z$, число b — $mhumoй\ частью\ z$ и обозначается $Im\ z$.

Два комплексных числа $z_1=a_1+b_1i$; $z_2=a_2+b_2i$ равны тогда и только тогда, когда равен между собой их действительные и мнимые части: $z_1=z_2 \iff a_1=a_2; \ b_1=b_2$.

Действиям сложения и вычитания комплексных чисел z_1 и z_2 соответствует сложение и вычитание их радиус-векторов:

$$z_1 + z_2 = (a_1 + b_1 i) + (a_2 + b_2 i) = (a_1 + a_2) + (b_1 + b_2) \cdot i,$$

$$z_1 - z_2 = (a_1 + b_1 i) - (a_2 + b_2 i) = (a_1 - a_2) - (b_1 - b_2) \cdot i.$$
(1.2)

Разность комплексных чисел z_1-z_2 можно рассматривать как вектор, проведенный из точки z_2 в точку z_1 комплексной плоскости. Тогда модуль этого вектора равен расстоянию между точками z_2 и z_1 .

Умножение комплексного числа z = a + bi на действительное число $\lambda = \lambda + 0i$ определяется по аналогии с умножением вектора на действительное число:

$$\lambda z = \lambda (a + bi) = \lambda a + \lambda bi. \tag{1.3}$$

Определим теперь действия умножения и деления комплексных чисел. По определению

$$(i)^2 = -1 \tag{1.4}$$

и умножение комплексных чисел проводится по правилу умножения алгебраических многочленов:

$$z_1 \cdot z_2 = (a_1 + b_1 i)(a_2 + b_2 i) = a_1 a_2 + a_1 b_2 i + a_2 b_1 i + b_1 b_2 (i)^2 = (a_1 a_2 - b_1 b_2) + (a_1 b_2 + a_2 b_1) i.$$
 (1.5)

Два комплексных числа a+bi и a-bi, отличающиеся только знаком при мнимой части, называются сопряженными и обозначаются z=a+bi. Произведение сопряженных комплексных чисел является действительным числом. Действительно

$$\overline{z \cdot z} = (a+bi)(a-bi) = a^2 - abi + abi - b^2(i)^2 = a^2 + b^2.$$
 (1.6)

Деление комплексных чисел определяется как действие, обратное умножению. Число z называется частным комплексных чисел z_1 и z_2 $\left(z=\frac{z_1}{z_2}\right)$, если $z_1=zz_2$. Отметим, что при

 $z_2 \neq 0\,$ деление всегда выполнимо. Для того чтобы разделить комплексное число $z_1\,$ на $z_2\,$, числитель и знаменатель дроби умножают на число, сопряженное знаменателю:

$$z = \frac{z_1}{z_2} = \frac{z_1 \cdot \overline{z_2}}{z_2 \cdot \overline{z_2}}.$$
 (1.7)

Тогда деление чисел z_1 на z_2 сводится к умножению чисел z_1 и $\overline{z_2}$ и умножению полученного результата на действительное число $\frac{1}{z_2 \cdot z_2}$.

Весьма важной является также другая форма представления комплексных чисел. Для определения положения точки на плоскости можно воспользоваться полярными координатами (r, φ) , где r – расстояние точки от начала координат, а φ – угол, который составляет радиус– вектор данной точки с положительным направлением оси абсцисс (см. рис. 1.1). Положительным направлением изменения угла φ считается направление против часовой стрелки.

Воспользовавшись связью декартовых и полярных координат

$$x = r \cos \varphi$$
, $y = r \sin \varphi$

можно комплексное число z = a + bi записать в виде

$$z = r(\cos\varphi + i\sin\varphi),\tag{1.8}$$

где $a = r \cos \varphi$, $b = r \sin \varphi$. Эта форма записи называется тригонометрической формой комплексного числа. При этом r называется модулем, а φ – аргументом комплексного числа и обозначается r = |z|, $\varphi = \text{Arg } z$. Легко выразить модуль и аргумент комплексного числа через его действительную и мнимую части:

$$r = \sqrt{a^2 + b^2}, \quad tg\,\varphi = \frac{b}{a} \tag{1.9}$$

Заметим, что аргумент комплексного числа определен не однозначно, а с точностью до слагаемого вида $2\pi k$, где k – любое целое число. Выделим из всех значений аргумента одно, которое удовлетворяет неравенствам $-\pi < \varphi \le \pi$. Это значение называется *главным* и обозначается $\varphi = \arg z$. Тогда $\operatorname{Arg} z = \arg z + 2\pi k \ (k = 0, \pm 1, \pm 2, \ldots)$. Аргумент комплексного числа z = 0 вообще не определен, а его модуль равен нулю.

Два отличительных от нуля комплексных числа равны между собой в том и только в том случае, если равны их модули, а значения аргументов или равны, или отличаются на число, кратное 2π .

Перемножим комплексные числа z_1 и z_2 , заданные в тригонометрической форме. Пусть $z_1 = r_1(\cos \varphi_1 + i \sin \varphi_1)$ и $z_2 = r_2(\cos \varphi_2 + i \sin \varphi_2)$. Тогда, согласно формуле (1.5) $z_1 \cdot z_2 = r_1(\cos \varphi + i \sin \varphi_1) \cdot r_2(\cos \varphi_2 + i \sin \varphi_2) = r_1 r_2((\cos \varphi_1 \cos \varphi_2 - \sin \varphi_1 \sin \varphi_2) + i \sin \varphi_2)$ $+i(\sin \varphi_1\cos \varphi_2-\cos \varphi_1\sin \varphi_2))=r_1r_2(\cos(\varphi_1+\varphi_2)+i\sin(\varphi_1+\varphi_2)).$

(1.10)

Из формулы (1.10) следует, что *при умножении комплексных чисел их модули* nеремножаются, а аргументы складываются. Это правило сохраняется для любого конечного числа n множителей. В частности, когда все n множители одинаковы, получим

$$z^{n} = (r(\cos\varphi + i\sin\varphi))^{n} = r^{n}(\cos n\varphi + i\sin n\varphi). \tag{1.11}$$

Формула (1.11) называется формулой Муавра.

Поделим комплексные числа, заданные в тригонометрической форме. Воспользуемся формулой (1.7):

$$\frac{z_{1}}{z_{2}} = \frac{r_{1}(\cos\varphi_{1} + i\sin\varphi_{2})}{r_{2}(\cos\varphi_{2} + i\sin\varphi_{2})} = \frac{r_{1}}{r_{2}} \frac{(\cos\varphi_{1} + i\sin\varphi_{1})(\cos\varphi_{2} - i\sin\varphi_{2})}{(\cos\varphi_{2} + i\sin\varphi_{2})(\cos\varphi_{2} - i\sin\varphi_{2})} =
= \frac{r_{1}}{r_{2}} \frac{(\cos\varphi_{1}\cos\varphi_{2} + \sin\varphi_{1}\sin\varphi_{2}) + i(\sin\varphi_{1}\cos\varphi_{2} - \cos\varphi_{1}\sin\varphi_{2})}{\cos^{2}\varphi_{2} + \sin^{2}\varphi_{2}} =
= \frac{r_{1}}{r_{2}} (\cos(\varphi_{1} - \varphi_{2}) + i\sin(\varphi_{1} - \varphi_{2})). \tag{1.12}$$

Из формулы (1.12) следует, что *при делении комплексных чисел их модули делятся*, *а аргументы вычитаются*.

Извлечение корня n–й степени из комплексного числа есть действие, обратное возведению комплексного числа в n–ю степень. Следовательно, если $\omega = \sqrt[n]{z}$, то $z = \omega^n$. Пусть

$$z = r(\cos \varphi + i \sin \varphi)$$
 и $\omega = \rho(\cos \theta + i \sin \theta)$.

По формуле Муавра (1.11) получим

$$r(\cos \varphi + i \sin \varphi) = (\rho(\cos \theta + i \sin \theta))^n = \rho^n(\cos n\theta + i \sin n\theta).$$

Отсюда $r = \rho^n$, $n\theta = \varphi + 2\pi k$. Так как r и ρ – положительные числа, то $\rho = \sqrt[n]{r}$, где корень понимается в арифметическом смысле.

Из равенства $n\theta = \varphi + 2\pi k$ получим $\theta = \frac{\varphi + 2\pi k}{n}$. Следовательно

$$\sqrt[n]{z} = \sqrt[n]{r} \left(\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n} \right). \tag{1.13}$$

Придавая κ последовательно значения 0, 1, 2, ..., n-1, получим n различных значений $\sqrt[n]{z}$. Все они имеют одинаковый модуль. Если взять k > n-1, то значения θ будут отличаться от полученных ранее на числа, кратные 2π , т.е. значения $\sqrt[n]{z}$ будут повторятся. Таким образом, корень n-й степени из комплексного числа имеет ровно n разных значений.

Как известно, квадратное уравнение $ax^2+bx+c=0$ в случае, когда его дискриминант $D=b^2-4ac$ отрицателен, не имеет действительных корней. Покажем, что в этом случае уравнение имеет два комплексных сопряженных корня. Действительно, по формуле решения квадратного уравнения

$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a}$$
.

Считая, что D < 0 и полагая $D = -d^2$ (d > 0), получаем

$$\sqrt{-d^2} = \sqrt{d^2(-1)} = \sqrt{d^2} \cdot \sqrt{-1} = \pm di$$
.

Следовательно:

$$x_{1,2} = \frac{-b \pm \sqrt{-d^2}}{2a} = \frac{-b \pm di}{2a} = -\frac{b}{2a} \pm \frac{d}{2a}i.$$

В заключение приведем соотношения, называемые формулами Эйлера. Эти формулы будут выведены позже. Для любого действительного числа x справедливы формулы

$$e^{ix} = \cos x + i \sin x, \quad e^{-ix} = \cos x - i \sin x.$$
 (1.14)

1.2. ПОНЯТИЕ О ФУНКЦИИ КОМПЛЕКСНОГО ПЕРЕМЕННОГО. ПРЕДЕЛ. НЕПРЕРЫВНОСТЬ

Выше было введено понятие комплексного числа. Дадим теперь понятие функции комплексной переменной. Рассмотрим множество G комплексных чисел z=x+yi и множество W комплексных чисел w=u+vi. Функцией комплексной переменой называется правило, по которому каждому комплексному числу $z \in G$ соответствует одно или несколько значений $w \in W$.

Множество G называется областью определении функции, z — независимой переменной, w — зависимой переменной, или функцией. Геометрически область определения функции является множеством точек комплексной плоскости. Функция комплексной переменной обозначается так же, как и функция действительной переменной: w = f(z)

В дальнейшем мы будем рассматривать только *однозначные* функции, т.е. такие, для которых каждому значения $z \in G$ соответствует *единственное* значение $w \in W$.

Так как задание комплексного числа z равносильно заданию двух действительных чисел x и y, являющихся соответственно его действительной и мнимой частями (z=x+yi), а числу w точно так же однозначно соответствует пара действительных чисел u и (w=u+vi), то зависимость w=f(z) между комплексный функцией w и комплексной переменной z равносильна двум зависимостям

$$u = u(x; y), v = v(x; y).$$
 (1.15)

определяющим действительные величины u и v как функции действительных переменных x и y.

Например, если $w = z^2$, то, полагая,

$$z = x + yi$$
, $w = u + vi$

получаем

$$u + vi = (x + yi)^2 = x^2 - y^2 + 2xyi$$

и , следовательно , равенство $w=z^2$ равносильно равенствам

$$u = x^2 - y^2, \qquad v = 2xy.$$

На функции комплексной переменной распространяется понятие предела и непрерывности. Введем предварительно понятие окрестности точки комплексной плоскости.

Определение. δ – окрестностью точки z_0 (обозначается $U_{\delta}(z_0)$) называется внутренность круга радиуса δ с центром в точке z_0 .Проколотой δ – окрестностью точки z_0 (обозначается $\mathring{U}_{\delta}(z_0)$) называется δ – окрестность точки z_0 , из которой удалена сама точка z_0 .

Определение. Комплексное число c = a + bi называется *пределом функции* w = f(z) *при* $z \to z_0$, если для любого положительного числа ε существует такая проколотая δ – окрестность точки z_0 , что для всех точек z комплексной плоскости , лежащих в этой окрестности, выполняется равенство $|f(z) - c| < \varepsilon$.

Предел функции обозначается : $\lim_{z \to z_0} f(z) = c$. С помощью кванторов определение предела можно записать

$$\forall \varepsilon > 0 \quad \exists \delta(\varepsilon) > 0: \quad \forall z \in \overset{\circ}{U_{\delta}}(z_0) \implies |f(z) - c| < \varepsilon. \tag{1.16}$$

Введенное определение предела функции ничем не отличается от определения предела функции действительного переменного. Поэтому, все доказанные в курсе математического анализа теоремы о пределах остаются в силе для функции комплексного переменного.

Определение. Функция f(z) называется бесконечно малой в окрестности точки z_0 , если

$$\lim_{z\to z_0} f(z) = 0.$$

Справедливы и все доказанные для функций действительного переменного теоремы о бесконечно малых функциях.

Определение. Если функция w = f(z) определяется в точке z_0 и в некоторой ее окрестности и предел $\lim_{z \to z_0} f(z)$ не только существует, но равен значению функции f(z)в точке z_0 т.е.

$$\lim_{z \to z_0} f(z) = f(z_0),$$

то функция f(z) называется *непрерывной* в точке z_0 . Определение непрерывности можно записать:

$$\forall \varepsilon > 0 \quad \exists \delta(\varepsilon) > 0 \colon \ \forall z \in U_{\delta}^{\circ}(z_0) \implies |f(z) - f(z_0)| < \varepsilon. \tag{1.17}$$

Так как сформулированное определение непрерывности совпадает с определением непрерывности для функций действительного переменного, то доказанные в курсе математического анализа теоремы о непрерывности суммы, разности, произведения и частного

(если делитель не обращается в нуль) непрерывной функции, а также непрерывной функции от непрерывной функции остаются в силе для функции комплексного переменного.

Как указывалось выше, равенство w = f(z), где w = u + iv, z = x + iy, равносильно системе равенств

$$u = u(x; y), v = v(x; y).$$

Если $z_0 = x_0 + iy_0$, то

$$f(z) - f(z_0) = (u(x; y) - u(x_0; y_0)) + i(v(x; y) - v(x_0; y_0))$$

И

$$|f(z) - f(z_0)| = \sqrt{(u(x; y) - u(x_0; y_0))^2 + i(v(x; y) - v(x_0; y_0))^2}.$$
(1.18)

Из определения непрерывности функции f(z) в точке z_0 следует, что для любого положительного ε существует положительное значение δ такое, что для любого z, принадлежащего $\mathring{U}_{\delta}(x_0)$ выполняет неравенство $|f(z)-f(z_0)|<\varepsilon$. И, следовательно, выполняются неравенства

$$|u(x;y) - u(x_0; y_0)| < \varepsilon;$$

$$|v(x;y) - v(x_0; y_0)| < \varepsilon,$$
(1.19)

которые означают, что функции u(x; y) и v(x; y) непрерывны в точке $(x_0; y_0)$. Таким образом, из непрерывности функции комплексного переменного следует непрерывность ее действительной и мнимой частей как функций двух действительных переменных x и y. Справедливо и обратное утверждение. Из неравенств (1.19) и равенства (1.18) непосредственно следует, что непрерывность функций u(x; y) и v(x; y) влечет за собой непрерывность функции f(z).

1.3. РЯДЫ В КОМПЛЕКСНОЙ ОБЛАСТИ

Рассмотрим последовательность, членами которой являются комплексные числа z_1 , z_2 , z_3 , ..., z_n , ..., где $z_n = x_n + iy_n$. Обобщим понятие предела последовательности для этого случая.

Определение. Комплексное число c = a + ib называется *пределом последовательности* $\{z_n\}$, если для любого положительного числа ε найдется такое натуральное число N, что для всех натуральных чисел $n \ge N$ выполняется неравенство $|z_n - c| < \varepsilon$. То есть

$$\forall \ \epsilon > 0 \quad \exists \ N(\epsilon): \quad \forall \ n \ge N \implies |z_n - c| < \epsilon.$$

Записывается $\lim_{n\to\infty} z_n = c$.

Так как
$$z_n-c=(x_n+iy_n)-(a+ib)=(x_n-a)+i(y_n-b),$$
 то
$$|z_n-c|=|(x_n-a)+i(y_n-b)|=\sqrt{(x_n-a)^2+(y_n-b)^2}<\varepsilon.$$

Но выражение $\sqrt{(x_n-a)^2+(y_n-b)^2}$ равно расстоянию между точками $(x_n;y_n)$ и (a;b), т.е. между точками z_n и c. Следовательно, если c есть предел последовательности $\{z_n\}$, то с возрастанием n точки z_n неограниченно приближаются к точке c.

Определение. Пусть дан ряд, членами которого является комплексные числа

$$z_1 + z_2 + z_3 + \dots + z_n + \dots,$$
 (1.20)

где $z_n = x_n + iy_n$. Если существует предел частичной суммы ряда $S_n = z_1 + z_2 + ... + z_n$ при $n \to \infty$, то ряд (1.20) называется *сходящимся*, а предел $S = \lim_{n \to \infty} S_n$ – его *суммой*. Если частичная сумма не имеет конечного предела, то ряд называется *расходящимся*.

Имеет место теорема, которую приведем без доказательства.

Теорема. Пусть дан ряд с комплексными членами $z_1 + z_2 + z_3 + ... + z_n +$ Тогда, если ряд

$$|z_1| + |z_2| + |z_3| + ... + |z_n| + ...,$$

составленный из модулей членов данного ряда, сходится, то и данный ряд также сходится.

Ряд с комплексными членами называется *абсолютно сходящимся*, если сходится ряд, составленный из модулей его членов. Абсолютно сходящиеся ряды с комплексными членами обладают теми же свойствами, что и абсолютно сходящиеся ряды с действительными членами.

Пусть дан степенной ряд

$$c_0 + c_1 z + c_2 z^2 + ... + c_n z^n + ...$$
 (1.21)

где z = x + iy, а коэффициенты c_0 , c_1 , c_2 , ..., c_n ,... – комплексные или действительные числа. Аналогично тому, как это было сделано для степенных рядов в действительной области, можно установить следующие утверждения.

1. Для каждого степенного ряда существует такое число R > 0, что для всех |z| < R ряд (1.21) сходится, а для |z| > R ряд расходится. Точки z = x + iy комплексной плоскости, для которых |z| < R, лежат внутри круга радиусом R с центром в начале координат. Это следует из определения |z|, как расстояния от точки z до начала координат. Такой круг называется *кругом сходимости* степенного ряда, а его радиус R — радиусом сходимости. Вне круга сходимости, т.е. в точках, где |z| > R, степенной ряд расходится. На границе круга сходимости, т.е. в точках, для которых |z| = R, в зависимости от конкретных случаев может иметь место сходимость или расходимость.

Замечание. Если степенной ряд сходится только в точке z=0, то его радиус сходимости полагают равным нулю: R=0. Если степенной ряд сходится при всех значениях z, т.е. во всей плоскости комплексной переменной, то радиус сходимости полагают равным бесконечности: $R=\infty$.

2. Внутри круга сходимости степенной ряд обладает всеми свойствами, которыми обладают степенные ряды с действительными членами, т.е. внутри круга сходимости степенной ряд абсолютно сходится и его сумма S(z) есть непрерывная функция комплексной переменной.

Ряд

Следовательно, по определению

$$c_0 + c_1(z-a) + c_2(z-a)^2 + ... + c_n(z-a)^n + ...,$$
 (1.22)

где a – любое комплексное число, также называется степенным. Этот ряд подстановкой (z-a)=t сводится к ряду (1.21), причем точке t=0 соответствует точка z=a. Следовательно, областью сходимости ряда (1.22) является круг радиусом R (радиус сходимости) с центром в точке z=a.

Круг сходимости можно найти с помощью признака Даламбера.

1.4. ОСНОВНЫЕ ФУНКЦИИ КОМПЛЕКСНОГО ПЕРЕМЕННОГО, ОПРЕДЕЛЯЕМЫЕ С ПОМОЩЬЮ РЯДОВ

С помощью степенных рядов в комплексной области обобщим понятия нескольких основных элементарных функций на случай комплексной переменной.

Как известно, для любого действительного x имеет место разложение:

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + \dots$$

Заменим в этом ряде действительную переменную x на комплексную переменную z, получим ряд (1.22), который сходится во всей плоскости комплексной переменной. Его сумма является функцией, которая при действительных значениях z совпадает с e^x . Аналогичным образом обозначим сумму этого ряда в случае комплексной переменной через e^z .

$$e^{z} = 1 + z + \frac{z^{2}}{2!} + \frac{z^{3}}{3!} + \dots + \frac{z^{n}}{n!} + \dots$$
 (1.23)

Можно показать, что для любых комплексных чисел z_1 и z_2 имеет место равенство

$$e^{z_1+z_2}=e^{z_1}\cdot e^{z_2}$$
.

Аналогично определим тригонометрические функции $\sin z$ и $\cos z$ для комплексных значений z:

$$\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots + (-1)^n \frac{z^{2n+1}}{(2n+1)!} + \dots,$$
(1.24)

$$\cos z = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \dots + (-1)^n \frac{z^{2n}}{(2n)!} + \dots$$
 (1.25)

Эти ряды сходятся абсолютно для всех значений z. При z=x (x– действительная переменная) определенные выше функции совпадают соответственно с функциями $\sin x$ и $\cos x$ действительной переменной.

Из формул (1.24) и (1.25) непосредственно видно, что $\sin(-z) = -\sin z$, $\cos(-z) = \cos z$.

Между показательной функцией e^z и тригонометрическими функциями $\sin x$ и $\cos x$ имеется простая связь. Пусть z = it, где t – комплексное число. Подставим z = it в ряд (1.23):

$$e^{it} = 1 + it + \frac{(it)^2}{2!} + \frac{(it)^3}{3!} + \frac{(it)^4}{4!} + \frac{(it)^5}{5!} + \frac{(it)^6}{6!} + \frac{(it)^7}{7!} + \dots$$

Так как $i^2=-1$, $i^3=i^2i=-i$, $i^4=i^2i^2=(-1)(-1)=1$ и т.д., то получим

$$e^{it} = 1 + it - \frac{t^2}{2!} - i\frac{t^3}{3!} + \frac{t^4}{4!} + i\frac{t^5}{5!} - \frac{t^6}{6!} - \frac{t^7}{7!} + \dots$$

Ряд (1.23) сходится абсолютно для любого значения z, следовательно, сумма ряда не изменится от перестановки слагаемых. Поэтому

$$e^{it} = (1 - \frac{t^2}{2!} + \frac{t^4}{4!} + -\frac{t^6}{6!} + \dots) + i(t - \frac{t^3}{3!} + \frac{t^5}{5!} - \frac{t^7}{7!} + \dots).$$

Но при любом t справедливы соотношения

$$\cos t = 1 - \frac{t^2}{2!} + \frac{t^4}{4!} + -\frac{t^6}{6!} + \dots; \qquad \sin t = t - \frac{t^3}{3!} + \frac{t^5}{5!} - \frac{t^7}{7!} + \dots$$

Следовательно,

$$e^{it} = \cos t + i\sin t, \tag{1.26}$$

где t — любое комплексное число.

Заменяя в равенстве (1.26) t на -t, найдем

$$e^{-it} = \cos(-t) + i\sin(-t) = \cos t - i\sin t$$
.

Итак, для любого комплексного числа z имеем (заменяем в написанных выше формулах t на z для единообразия записи)

$$e^{iz} = \cos z + i\sin z; \qquad e^{-it} = \cos t - i\sin t. \tag{1.27}$$

Формулы (1.27) называется формулами Эйлера.

Как было указано выше, равенство $e^{z_1+z_2}=e^{z_1}\cdot e^{z_2}$ справедливо для любых комплексных z_1 и z_2 . В частности, если z=x+iy, где x и y – действительный числа, то

$$e^z = e^{x+iy} = e^x e^{iy}.$$

Но в силу (1.27)

$$e^{iy} = \cos y + i\sin y$$
,

следовательно:

$$e^z = e^x(\cos y + i\sin y). \tag{1.28}$$

Равенство (1.28) позволяет вычислять значения показательной функции при любых комплексных значениях показателя. Из равенства (1.28) следует, что функция e^z периодична и имеет период $T=2\pi i$. Действительно $e^{z+2\pi i}=e^z(\cos 2\pi+i\sin 2\pi)=e^z$.

Из формул Эйлера легко получить

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}; \quad \cos z = \frac{e^{iz} - e^{-iz}}{2i}.$$
 (1.29)

Поскольку показательная функция имеет период $2\pi i$, правые части равенств (1.29) не изменяются при замене z и $z+2\pi$:

$$e^{i(z+2\pi)} = e^{iz+2\pi i} = e^{iz},$$
 $e^{-i(z+2\pi)} = e^{-iz-2\pi i} = e^{-iz},$

следовательно:

$$cos(z+2\pi) = cos z; sin(z+2\pi) = sin z,$$

т.е. определенные с помощью формул (1.29) функции $\cos z$ и $\sin z$ периодичны и имеют, как и в случае действительного аргумента, период 2π .

Легко убедиться в том, что для функций $\cos z$ и $\sin z$ при любых комплексных значениях z сохраняется основное тригонометрическое тождество $\sin^2 z + \cos^2 z = 1$.

Действительно,

$$\sin^2 z + \cos^2 z = \left(\frac{e^{iz} - e^{-iz}}{2i}\right)^2 + \left(\frac{e^{iz} + e^{-iz}}{2}\right)^2 = \frac{e^{2iz} - 2 + e^{-2iz}}{4} + \frac{e^{2iz} + 2 + e^{-2iz}}{2i} = 1.$$

Сохраняются также и другие основные тригонометрические формулы. Например:

$$\sin z_{1} \cos z_{2} + \cos z_{1} \sin z_{2} = \frac{e^{iz_{1}} - e^{-iz_{1}}}{2i} \cdot \frac{e^{iz_{2}} + e^{-iz_{2}}}{2} + \frac{e^{iz_{1}} + e^{-iz_{2}}}{2} \cdot \frac{e^{iz_{2}} + e^{-iz_{2}}}{2i} =$$

$$= \frac{e^{i(z_{1}+z_{2})} - e^{-i(z_{1}+z_{2})}}{2i} = \sin(z_{1}+z_{2}). \tag{1.30}$$

Функции tg z и ctg z определяются по формулам

$$\operatorname{tg} z = \frac{\sin z}{\cos z} = \frac{e^{iz} - e^{-iz}}{i(e^{iz} + e^{-iz})};$$
 (1.31)

$$\operatorname{ctg} z = \frac{\cos z}{\sin z} = \frac{i(e^{iz} + e^{-iz})}{e^{iz} - e^{-iz}}.$$
 (1.32)

Напомним, что гиперболический синус и косинус для действительного аргумента были введены по формулам

$$\sinh x = \frac{e^x - e^{-x}}{2}$$
, $\cosh x = \frac{e^x - e^{-x}}{2}$.

Гиперболические функции для комплексной переменной введем по аналогичным формулам

sh
$$z = \frac{e^z - e^{-z}}{2}$$
, ch $z = \frac{e^z - e^{-z}}{2}$; (1.33)

th
$$z = \frac{\sinh z}{\cosh z}$$
, cth $z = \frac{\cosh z}{\sinh z}$. (1.34)

Заметим, что, используя полученные формулы, легко получить связь между тригонометрическими и гиперболическими функциями. Из формулы (1.28) следует:

$$\sin(iz) = \frac{e^{i^2z} - e^{-i^2z}}{2i} = \frac{e^{-z} - e^z}{2i} = \frac{e^{-z} - e^z}{2i^2} i = \frac{e^{-z} - e^z}{2} i = i \text{ sh } z;$$
(1.35)

$$\cos(iz) = \frac{e^{i^2z} + e^{-i^2z}}{2} = \frac{e^{-z} + e^z}{2} = \text{ch } z .$$
 (1.36)