Difference-in-Differences with Panel Data Slides 6: Nonlinear Difference-in-Differences

ESTIMATE: The Reduced Form December 14-15, 2021

Jeff Wooldridge Department of Economics Michigan State University

- 1. Why Nonlinear Difference-in-Differences?
- 2. Nonlinear Models with T = 2
- 3. General Common Timing Case
- 4. Adding Covariates
- 5. Staggered Interventions
- 6. Some Simulations

1. Why Nonlinear Difference-in-Differences?

- Economic outcomes often are limited in some important way.
- At disaggregated levels, the response variable Y_{it} is often binary.
- At all levels of aggregation, Y_{it} might be a fractional response:

$$0 \le Y_{it} \le 1$$
.

- Nonnegative outcomes are also important: $Y_{it} \ge 0$.
 - ► Could be a count variable, continuous, or mixed.
 - ► Zero is often an important value.

- Standard argument for using nonlinear models for limited dependent variables:
 - ► They provide a better "fit" than linear models.
 - ► Marginal effects are sometimes more plausible.
- In DID settings, using nonlinear mean functions can make the parallel (common) trends assumption more plausible.
- The PT assumption is not generally invariant to transformations.
 - ▶ If PT holds in logs, say, it is unlikely it holds in levels.

- Roth and Sant'Anna (2020, WP) on PT invariance to transformations.
- Athey and Imbens (2006, Econometrica): "Changes-in-Changes" formulations.
- ► With discrete outcomes, only get bounds on the average treatment effect on the treated (ATT).
- With functional form assumptions, can identified ATTs.
- Current work: Extension of linear case in Wooldridge (2021, WP).

2. Nonlinear Models with T=2

- Binary treatment indicator, D.
 - ► Treatment in second period.
- Potential outcomes are $Y_t(0), Y_t(1), t \in \{1, 2\}$.
- We want the ATT in t = 2:

$$\tau_2 = E[Y_2(1) - Y_2(0)|D = 1]$$

• Impose a no anticipation assumption:

$$Y_1 = Y_1(1) = Y_1(0)$$

• Linear parallel trends (in untreated state):

$$E[Y_1(0)|D] = \alpha + \beta D$$

$$E[Y_2(0)|D] = \alpha + \beta D + \gamma_2$$

$$E[Y_2(0)|D] - E[Y_1(0)|D] = (\alpha + \beta D + \gamma_2) - (\alpha + \beta D) = \gamma_2$$

- \blacktriangleright Trend in mean does not depend on D.
- Especially for discrete outcomes, linear parallel trends might be unrealistic.

• For a strictly increasing, continuously differentiable function $G(\cdot)$,

$$E[Y_1(0)|D] = G(\alpha + \beta D)$$

- ▶ Treatment can be systematically related to $Y_1(0)$.
- In the second period,

$$E[Y_2(0)|D] = G(\alpha + \beta D + \gamma_2)$$

• A nonlinear transformation of the means satisfies PT:

$$G^{-1}(E[Y_2(0)|D]) - G^{-1}(E[Y_1(0)|D]) = \gamma_2$$

• Suppose $Y_t(0)$ is binary:

$$Y_t(0) = 1[Y_t^*(0) > 0]$$

$$Y_t^*(0) = \alpha + \beta D + \gamma f 2_t + U_{it}$$

 U_{it} continuous, independent of D, t = 1, 2

 U_{i1} , U_{i2} identically distributed (may be correlated) with CDF $F(\cdot)$

• Then

$$E[Y_t(0)|D] = P[Y_t(0) = 1|D] = P[\alpha + \beta D + \gamma_t + U_t > 0|D]$$

= 1 - F[-(\alpha + \beta D + \gamma_t)] \equiv G(\alpha + \beta D + \gamma_t)

• PT assumption for a linear model holds for the latent variable $Y_t^*(0)$:

$$E[Y_t^*(0)|D] = \alpha + \beta D + \gamma_t, t = 1,2$$

▶ PT fails for $E[Y_t(0)|D]$.

• Exponential example:

$$E[Y_t(0)|D] = \exp(\alpha + \beta D + \gamma_t), t = 1, 2 \ (\gamma_1 \equiv 0)$$

$$\frac{E[Y_2(0)|D]}{E[Y_1(0)|D]} = \exp(\gamma_2)$$

- ▶ Does not depend on *D*.
- Equivalently, the growth in the mean does not depend on *D*:

$$\log\{E[Y_2(0)|D]\} - \log\{E[Y_1(0)|D]\} = \gamma_2$$

• General case with $G(\cdot)$ continuously differentialy, strictly increasing:

$$E[Y_1(0)|D] = G(\alpha + \beta D)$$

• By no anticipation,

$$E(Y_1|D) = E[Y_1(0)|D] = G(\alpha + \beta D)$$

▶ So α and β are identified using t = 1 data.

• What about identifying the parameter of interest,

$$\tau_2 = E[Y_2(1)|D=1] - E[Y_2(0)|D=1]$$
?

• We observe $D, Y_1 = Y_1(0) = Y_1(1)$, and

$$Y_2 = (1 - D)Y_2(0) + DY_2(1)$$

• First term in τ_2 is easy:

$$E(Y_2|D=1) = E[Y_2(1)|D=1]$$

• Given a random sample of size N, number of treated units is

$$N_1 = \sum_{i=1}^N D_i$$

• As usual, a consistent estimator of $E[Y_2(1)|D=1]$ is

$$\overline{Y}_{12} = N_1^{-1} \sum_{i=1}^{N} D_i Y_{i2} = \left(\frac{N_1}{N}\right)^{-1} \left(N^{-1} \sum_{i=1}^{N} D_i Y_{i2}\right)$$

▶ Average of treated units in t = 2.

• As usual, the second part is harder.

$$E[Y_2(0)|D] = G(\alpha + \beta D + \gamma_2)$$

$$E[Y_2(0)|D=1] = G(\alpha + \beta + \gamma_2)$$

- Need to estimate α , β , and γ_2 .
- α and β are identified using t = 1 and $D \in \{0, 1\}$:

$$E(Y_1|D) = E[Y_1(0)|D] = G(\alpha + \beta D)$$

• γ_2 is then identified using t = 2 and D = 0.

$$E(Y_2|D=0) = E[Y_2(0)|D=0] = G(\alpha + \gamma_2)$$

- Can estimate all parameters at once.
- Define $f2_t = 1$ if t = 2, zero otherwise.
- Time-varying treatment indicator:

$$W_t = D \cdot f2_t, t = 1, 2$$

- $ightharpoonup W_t = 1$ for treated units in period two.
- Use the $W_t = 0$ ("untreated") observations to estimate α, β, γ_2 .
 - $\triangleright D = 0$ in both periods, t = 1 for D = 1.

• Linear case: Obtain $\hat{\alpha}$, $\hat{\beta}$, $\hat{\gamma}_2$ from the OLS regression

$$Y_{it}$$
 on $1, D_i, f_{2t}, t = 1, 2; i = 1, ..., N if $W_{it} = 0$$

• Then ATT for t = 2 is estimated as

$$\hat{\tau}_2 = \bar{Y}_{12} - \left(\hat{\alpha} + \hat{\beta} + \hat{\gamma}_2\right)$$

- This is the previous imputation estimator in the simplest case.
- It produces usual DID estimator:

$$\hat{\tau}_2 = (\bar{Y}_{12} - \bar{Y}_{11}) - (\bar{Y}_{02} - \bar{Y}_{01})$$

- With nonlinear $G(\cdot)$, for robust use quasi-MLE in the linear exponential family (LEF).
 - ▶ But can use other methods to estimate

$$E(Y_{it}|D_i,W_{it}=0)=G(\alpha+\beta D_i+\gamma_2f2_t)$$

- Benefits if we use the canonical link function in the chosen LEF.
- Then, can show that $\hat{\tau}_2$ is equivalent to the average partial effect of W_t evaluated at $D=1, f2_t=1$.

• Specifically, let $\hat{\alpha}$, $\hat{\beta}$, $\hat{\gamma}_2$, and $\hat{\delta}_2$ be the QMLEs from using all of the data and estimating the mean function

$$E(Y_{it}|D_i, W_{it}) = G(\alpha + \beta D_i + \gamma_2 f 2_t + \delta_2 W_{it}), t = 1, 2$$

- ▶ Only needs to be the mean function for $W_t = 0$.
- Then

$$\hat{\tau}_2 = G(\hat{\alpha} + \hat{\beta} + \hat{\gamma}_2 + \hat{\delta}_2) - G(\hat{\alpha} + \hat{\beta} + \hat{\gamma}_2) = \bar{Y}_{12} - G(\hat{\alpha} + \hat{\beta} + \hat{\gamma}_2)$$

▶ Convenient for obtaining standard error of $\hat{\tau}_2$.

- Canonical link pairs (mean + LLF):
 - ► Linear + Normal (leads to OLS)
 - ► Logistic + Bernoulli (binary and fractional)
 - ► Logistic + Binomial (nonnegative, known upper bound)
 - ► Exponential + Poisson (nonnegative, no natural upper bound)

3. General Common Timing Case

- Allow any T > 2. Intervention occurs at $1 < q \le T$.
- Treatment indicator is D. Potential outcomes are $Y_t(0)$, $Y_t(1)$.
- No anticipation:

$$Y_t = Y_t(0) = Y_t(1), 1 \le t < q$$

• ATTs for each treated period:

$$\tau_r = E[Y_r(1) - Y_r(0)|D = 1], r = q, q + 1, ..., T$$

• Common or Parallel Trends Assumption: For a known, strictly increasing, continuously differentiable function $G(\cdot)$ and parameters α , β , and $\gamma_2, ..., \gamma_T$,

$$E[Y_t(0)|D] = G(\alpha + \beta D + \gamma_t), t = 1, 2, ..., T \ (\gamma_1 \equiv 0)$$

• Equivalently,

$$G^{-1}(E[Y_t(0)|D]) - G^{-1}(E[Y_{t-1}(0)|D]) = \gamma_t - \gamma_{t-1}, t = 2, ..., T$$

▶ Transformation of mean does not depend on *D*.

• ATTs still have the form

$$\tau_r = E(Y_r|D=1) - G(\alpha + \beta + \gamma_r), r = q, \dots, T$$

• Time-varying treatment indicator:

$$W_{it} = D_i(fq_t + \dots + fT_t) \equiv D_i p_t$$

- $ightharpoonup W_{it} = 1$ for a treated unit in an intervention period.
- α , β , γ_2 , ..., γ_T estimated by pooling $W_{it} = 0$ observations.

$$\hat{\tau}_r = \bar{Y}_{1r} - G(\hat{\alpha} + \hat{\beta} + \hat{\gamma}_r), r = q, \dots, T$$

$$\bar{Y}_{1r} = N_1^{-1} \sum_{i=1}^{N} D_i Y_{ir}$$

• When $G(\cdot)$ is the canonical link, $\hat{\tau}_r$ can be obtained as estimated APEs with respect to W_{it} in the mean function

$$E(Y_{it}|D_i) = G[\alpha + \beta D_i + \gamma_2 f 2_t + \dots + \gamma_T f T_t + \delta_q(W_{it} \cdot f q_t) + \dots + \delta_T(W_{it} \cdot f T_t)]$$

Pooled estimation using all data.

$$\hat{\tau}_r = G(\hat{\alpha} + \hat{\beta} + \hat{\gamma}_r + \hat{\delta}_r) - G(\hat{\alpha} + \hat{\beta} + \hat{\gamma}_r), r = q, \dots, T$$

- ▶ Because of algebraic equivalence, $G(\alpha + \beta + \gamma_t)$ only has to be the mean function when $W_t = 0$.
 - $\blacktriangleright W_{it} \cdot fr_t = W_{it} \cdot D_i \cdot fr_t$ and APE calculations are the same.

4. Adding Covariates

- Still assume no anticipation.
- Parallel trends conditional on X:

$$E[Y_t(0)|D,\mathbf{X}] = G[\alpha + \beta D + \mathbf{X}\mathbf{\kappa} + (D \cdot \mathbf{X})\boldsymbol{\xi} + \gamma_2 f 2_t + \dots + \gamma_T f T_t + (f 2_t \cdot \mathbf{X})\boldsymbol{\pi}_2 + \dots + (f T_t \cdot \mathbf{X})\boldsymbol{\pi}_T]$$

- ▶ No interactions between D and the fs_t .
- ▶ No triple interactions $D \cdot fs_t \cdot \mathbf{X}$.

• Still want ATTs for r = q, q + 1, ..., T:

$$\tau_r = E[Y_r(1) - Y_r(0)|D = 1]$$

$$= E(Y_r|D = 1) - E[G(\alpha + \beta + \gamma_r + \mathbf{X}(\mathbf{\kappa} + \boldsymbol{\xi} + \boldsymbol{\pi}_r))|D = 1]$$

- α , β , κ , ξ , γ_2 , ..., γ_T , π_2 , ..., π_T can be estimated using a quasi-MLE in the LEF restricted to $W_{it} = 0$.
- Imputation estimator:

$$\hat{\tau}_{r} = \bar{Y}_{1r} - N_{1}^{-1} \sum_{i=1}^{N} D_{i} G(\hat{\alpha} + \hat{\beta} + \hat{\gamma}_{r} + \mathbf{X}_{i}(\hat{\mathbf{k}} + \hat{\boldsymbol{\xi}} + \hat{\boldsymbol{\pi}}_{r}))$$

$$\bar{Y}_{1r} = N_{1}^{-1} \sum_{i=1}^{N} D_{i} Y_{ir}, N_{1} = \sum_{i=1}^{N} D_{i}, r = q, ..., T$$

• In the canonical link case, equivalent to pooling all data to estimate

$$E(Y_{it}|D_{i},\mathbf{X}_{i}) = G[\alpha + \beta D_{i} + \mathbf{X}_{i}\mathbf{\kappa} + (D_{i} \cdot \mathbf{X}_{i})\boldsymbol{\xi} + \gamma_{2}f2_{t} + \cdots + \gamma_{T}fT_{t} + (f2_{t} \cdot \mathbf{X}_{i})\boldsymbol{\pi}_{2} + \cdots + (fT_{t} \cdot \mathbf{X}_{i})\boldsymbol{\pi}_{T} + \delta_{q}(W_{it} \cdot fq_{t}) + \cdots + \delta_{T}(W_{it} \cdot fT_{t}) + (W_{it} \cdot fq_{t} \cdot \mathbf{X}_{i})\boldsymbol{\xi}_{q} + (W_{it} \cdot fT_{t} \cdot \mathbf{X}_{i})\boldsymbol{\xi}_{T}$$

- ▶ For $\hat{\tau}_r$, obtain the APE of W_t at D = 1, $fr_t = 1$, $fs_t = 0$ all $s \neq r$, and average across the subsample $D_i = 1$.
 - ▶ Same as using $W_{it} \cdot D_i$ in place of W_{it} .

• For $r = q, \dots, T$,

$$\hat{\boldsymbol{\tau}}_{r} = N_{1}^{-1} \sum_{i=1}^{N} D_{i} \left[G(\hat{\alpha} + \hat{\beta} + \hat{\gamma}_{r} + \hat{\delta}_{t} + \mathbf{X}_{i} (\hat{\mathbf{k}} + \hat{\boldsymbol{\xi}} + \hat{\boldsymbol{\pi}}_{r} + \hat{\boldsymbol{\xi}}_{r})) - G(\hat{\alpha} + \hat{\beta} + \hat{\gamma}_{r} + \mathbf{X}_{i} (\hat{\mathbf{k}} + \hat{\boldsymbol{\xi}} + \hat{\boldsymbol{\pi}}_{r})) \right]$$

$$= \bar{Y}_{1r} - N_{1}^{-1} \sum_{i=1}^{N} D_{i} G(\hat{\alpha} + \hat{\beta} + \hat{\gamma}_{r} + \mathbf{X}_{i} (\hat{\mathbf{k}} + \hat{\boldsymbol{\xi}} + \hat{\boldsymbol{\pi}}_{r}))$$

- In Stata, the margins command is convenient.
 - ▶ Use vce (uncond) to account for sampling error in

$$\{\mathbf{X}_i : i = 1, ..., N\}.$$

```
logit y i.w#c.fq ... i.w#c.fT
i.w#c.fq#c.x1 ... i.w#c.fq#c.xK
... i.w#c.fT#c.x1 ... i.w#c.fT#c.xK
d x1 ...xK c.d#c.x1 ... c.d#c.xK
f2 ... fT c.f2#c.x1 ... c.f2#c.xK
... c.fT#c.x1 ... c.fT#c.xK,
noomitted vce (cluster id)
```

```
margins, dydx(w) at (d = 1 f2 = 0 ... fq min1 = 0
 fq = 1 fq plus1 = 0 ... fT = 0)
 subpop(if d == 1) vce(uncond)
margins, dydx(w) at (d = 1 f2 = 0 ... fq min1 = 0
 fq = 0 fq plus1 = 1 ... fT = 0)
 subpop(if d == 1) vce(uncond)
margins, dydx(w) at (d = 1 f2 = 0 ... fq min1 = 0
 fq = 0 \ fq \ plus1 = 0 ... \ fT = 1)
 subpop(if d == 1) vce(uncond)
```

- . use did_common_6_binary, clear
- . tab year

year	Freq.	Percent	Cum.
2001	1,000	16.67	16.67
2002	1,000	16.67	33.33
2003	1,000	16.67	50.00
2004	1,000	16.67	66.67
2005	1,000	16.67	83.33
2006	1,000	16.67	100.00
Total	6,000	100.00	

. tab d if f06

d	Freq.	Percent	Cum.
0	618	61.80	61.80
1	382	38.20	100.00
Total	1,000	100.00	

. tab y

У	Freq.	Percent	Cum.	
0	3,468	57.80	57.80	
1	2,532	42.20	100.00	
Total	6,000	100.00		

- . * Sample ATTs:
- . sum te_i if d & f04

Variable	Obs	Mean	Std. dev.	Min	Max
te_i	382	.078534	. 6054086	-1	1

. sum te_i if d & f05

Variable	Obs	Mean	Std. dev.	Min	Max
te i		.117801	. 6055278	-1	1

. sum te_i if d & f06

Variable	Obs	Mean	Std. dev.	Min	Max
te_i	382	.1099476	. 6177221	 -1	1

Linear regression	Number of obs	=	6,000
	F (19, 999)	=	73.84
	$\mathtt{Prob} > \mathtt{F}$	=	0.0000
	R-squared	=	0.1458

Root MSE = .45722

(Std. err. adjusted for 1,000 clusters in id)

Robust y | Coefficient std. err. t P>|t|[95% conf. interval] .0462206 .0367915 1.26 0.209 -.0259768 c.d#c.f04 .1184181 c.d#c.f05 .0755069 .0375981 2.01 0.045 .0017265 .1492873 c.d#c.f06 .0445457 .0378681 1.18 0.240 -.0297645 .118856 c.d#c.f04#c.x dm -.0185417 .0885739 -0.21 0.834 -.1923539 .1552704 c.d#c.f05#c.x dm.0453048 .085807 0.53 0.598 -.1230779 .2136875 c.d#c.f06#c.x dm | .130662 .0841938 1.55 -.0345549 0.121 .2958789

f02	.0009375	.0509461	0.02	0.985	0990362	.1009113
f 03	0363479	.0531606	-0.68	0.494	1406672	.0679714
f04	.0227675	.0718298	0.32	0.751	118187	.1637221
£05	.0047325	.068471	0.07	0.945	129631	.1390961
f06	.132355	.0694451	1.91	0.057	0039201	.26863
				0.00.	.0000	000
c.f02#c.x	0118991	.0455013	-0.26	0.794	1011881	.0773899
C.IOZ C.A	.0110331	.0455015	0.20	0.734	.1011001	.0773033
c.f03#c.x	.0392213	.0484515	0.81	0.418	0558571	.1342997
C.IOS#C.X	.0392213	.0404313	0.81	0.410	.0336371	.1342991
	.0613781	.0705436	0.87	0.384	0770525	.1998087
c.f04#c.x	.0013761	.0705436	0.67	0.364	0770525	.1996067
CO F	0041001	0.660055	1 40	0 155	0061510	0040014
c.f05#c.x	.0941201	.0663857	1.42	0.157	0361513	.2243914
c.f06#c.x	.0185686	.0705219	0.26	0.792	1198194	.1569567
d	3353013	.0434568	-7.72	0.000	4205783	2500243
x	.1262778	.0447227	2.82	0.005	.0385166	.214039
c.d#c.x	0628457	.0421785	-1.49	0.137	1456143	.019923
cons	.3866191	.0456444	8.47	0.000	.2970492	.4761891
_						

. * Pooled logit:

У	 Coefficient	Robust std. err.	z	P > z	[95 % conf.	interval]
w#c.d#c.f04 1	 .9412159	.5137085	1.83	0.067	0656342	1.948066
w#c.d#c.f05 1	.7852733	. 4969686	1.58	0.114	1887672	1.759314
w#c.d#c.f06 1	.2581332	. 4880446	0.53	0.597	6984167	1.214683
w#c.d#c.f04#c.x 1	 3314925 	. 4347067	-0.76	0.446	-1.183502	. 520517
w#c.d#c.f05#c.x 1	 0874416	. 423375	-0.21	0.836	9172414	.7423582
w#c.d#c.f06#c.x 1	 .2483893	. 4193698	0.59	0.554	5735604	1.070339

f03 1853553	f02	.0159557	.254879	0.06	0.950	4835981	.5155094
f05 0386572	f03	1853553	.2622365	-0.71	0.480	6993293	.3286188
f06 .4795352 .3138648 1.53 0.127 1356284 1.094699 c.f02#c.x 0749433 .2420313 -0.31 0.757 549316 .3994294 c.f03#c.x .2054979 .2502045 0.82 0.411 284894 .6958897 c.f04#c.x .2938375 .3180849 0.92 0.356 3295974 .9172724 c.f05#c.x .4540765 .30813 1.47 0.141 1498472 1.058 c.f06#c.x .1561729 .3322175 0.47 0.638 4949615 .8073073 d -2.185559 .2805608 -7.79 0.000 -2.735448 -1.63567 x .5048528 .2036075 2.48 0.013 .1057896 .9039161 c.d#c.x .0588332 .2287561 0.26 0.797 3895205 .5071869	f04	.0539743	.3137998	0.17	0.863	5610619	.6690106
c.f02#c.x 0749433 .2420313 -0.31 0.757 549316 .3994294 c.f03#c.x .2054979 .2502045 0.82 0.411 284894 .6958897 c.f04#c.x .2938375 .3180849 0.92 0.356 3295974 .9172724 c.f05#c.x .4540765 .30813 1.47 0.141 1498472 1.058 c.f06#c.x .1561729 .3322175 0.47 0.638 4949615 .8073073 d -2.185559 .2805608 -7.79 0.000 -2.735448 -1.63567 x .5048528 .2036075 2.48 0.013 .1057896 .9039161 c.d#c.x .0588332 .2287561 0.26 0.797 3895205 .5071869	f05	0386572	.3041224	-0.13	0.899	6347261	.5574118
c.f03#c.x .2054979 .2502045 0.82 0.411 284894 .6958897 c.f04#c.x .2938375 .3180849 0.92 0.356 3295974 .9172724 c.f05#c.x .4540765 .30813 1.47 0.141 1498472 1.058 c.f06#c.x .1561729 .3322175 0.47 0.638 4949615 .8073073 d -2.185559 .2805608 -7.79 0.000 -2.735448 -1.63567 x .5048528 .2036075 2.48 0.013 .1057896 .9039161 c.d#c.x .0588332 .2287561 0.26 0.797 3895205 .5071869	f06	.4795352 	.3138648	1.53	0.127	1356284	1.094699
c.f04#c.x .2938375 .3180849 0.92 0.356 3295974 .9172724 c.f05#c.x .4540765 .30813 1.47 0.141 1498472 1.058 c.f06#c.x .1561729 .3322175 0.47 0.638 4949615 .8073073 d -2.185559 .2805608 -7.79 0.000 -2.735448 -1.63567 x .5048528 .2036075 2.48 0.013 .1057896 .9039161 c.d#c.x .0588332 .2287561 0.26 0.797 3895205 .5071869	c.f02#c.x	0749433 	.2420313	-0.31	0.757	549316	.3994294
c.f05#c.x .4540765 .30813 1.47 0.141 1498472 1.058 c.f06#c.x .1561729 .3322175 0.47 0.638 4949615 .8073073 d -2.185559 .2805608 -7.79 0.000 -2.735448 -1.63567 x .5048528 .2036075 2.48 0.013 .1057896 .9039161 c.d#c.x .0588332 .2287561 0.26 0.797 3895205 .5071869	c.f03#c.x	.2054979	.2502045	0.82	0.411	284894	. 6958897
c.f06#c.x .1561729 .3322175 0.47 0.638 4949615 .8073073 d -2.185559 .2805608 -7.79 0.000 -2.735448 -1.63567 x .5048528 .2036075 2.48 0.013 .1057896 .9039161 c.d#c.x .0588332 .2287561 0.26 0.797 3895205 .5071869	c.f04#c.x	.2938375	.3180849	0.92	0.356	3295974	.9172724
d -2.185559 .2805608	c.f05#c.x	.4540765	.30813	1.47	0.141	1498472	1.058
x .5048528 .2036075 2.48 0.013 .1057896 .9039161 c.d#c.x .0588332 .2287561 0.26 0.7973895205 .5071869	c.f06#c.x	.1561729	.3322175	0.47	0.638	4949615	.8073073
c.d#c.x .0588332 .2287561 0.26 0.7973895205 .5071869	d	-2.185559	.2805608	-7.79	0.000	-2.735448	-1.63567
i i	x	.5048528	.2036075	2.48	0.013	.1057896	.9039161
_cons 4500012 .2046174 -2.20 0.02885104390489586	c.d#c.x	.0588332	.2287561	0.26	0.797	3895205	.5071869
	_cons	4500012	.2046174	-2.20 	0.028	8510439 	0489586

```
. margins, dydx(w) at (d = 1 f02 = 0 f03 = 0 f04 = 1 f05 = 0 f06 = 0) ///
         subpop(if d == 1) noestimcheck vce(uncond)
>
                         Unconditional
                   dy/dx std. err. z P>|z| [95% conf. interval]
        1.w | .0886639 .0326848 2.71 0.007 .0246029 .1527249
. margins, dydx(w) at (d = 1 \text{ f02} = 0 \text{ f03} = 0 \text{ f04} = 0 \text{ f05} = 1 \text{ f06} = 0) ///
         subpop(if d == 1) noestimcheck vce(uncond)
>
                         Unconditional
                   dy/dx std. err. z P>|z| [95% conf. interval]
        1.w | .1217999 .0355845 3.42 0.001 .0520556
                                                                   .1915441
. margins, dydx(w) at (d = 1 \text{ f02} = 0 \text{ f03} = 0 \text{ f04} = 0 \text{ f05} = 0 \text{ f06} = 1) ///
         subpop(if d == 1) noestimcheck vce(uncond)
                         Unconditional
                   dy/dx std. err. z P>|z| [95% conf. interval]
        1.w | .1073639 .0371242 2.89 0.004 .0346018 .1801261
```

```
. * Callaway and Sant'Anna (2021, Journal of Econometrics)
```

. gen first treat = 0

. replace first_treat = 2004 if d
(2,292 real changes made)

. csdid y x, ivar(id) time(year) gvar(first treat)

.

Difference-in-difference with Multiple Time Periods

Outcome model : Treatment model:

	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
g2004	 					
t 2001 2002	.0395675	.0423073	0.94	0.350	0433533	.1224884
t 2002 2003	009403	.0413075	-0.23	0.820	0903642	.0715583
t 2003 2004	.0278723	.0461201	0.60	0.546	0625215	.1182661
t 2003 2005	.0610949	.0457254	1.34	0.182	0285252	.150715
t_2003_2006	.0367104	.0448462	0.82	0.413	0511866	.1246074

Control: Never Treated

See Callaway and Sant'Anna (2020) for details

5. Staggered Interventions

- Now we have different treatment cohorts.
- First group (cohort) is g = q, last is g = T.
- No reversibility.
 - ▶ Potential outcome in the never treated state: $Y_t(\infty)$.
 - ▶ Potential outcome if first treatment period is $g: Y_t(g), g = q, ..., T$.
- Assume a never treated group.
 - ► Easy to relax.

• For $g \in \{q, q+1, ..., T\}$ we are interested in the following ATTs:

$$\tau_{gr} = E[Y_r(g) - Y_r(\infty)|D_g = 1]$$

$$= E[Y_r(g)|D_g = 1] - E[Y_r(\infty)|D_g = 1], \ r = g, g + 1, ..., T$$

• Because $Y_r = Y_r(g)$ when $D_g = 1$, $E[Y_r(g)|D_g = 1]$ is always estimable:

$$\bar{Y}_{gr} = N_g^{-1} \sum_{i=1}^{N} D_{ig} \cdot Y_{ir} = N_g^{-1} \sum_{i=1}^{N} D_{ig} \cdot Y_{ir}(g) \stackrel{p}{\to} E[Y_r(g)|D_g = 1]$$

$$N_g = \sum_{i=1}^N D_{ig}$$

- To estimate $E[Y_r(\infty)|D_g=1]$, we assume the following.
- 1. No anticipation: For cohorts g = q, ..., T,

$$Y_t(g) = Y_t(\infty), t = 1, \dots, g-1$$

► Can be relaxed.

2. Conditional common or parallel trends: For a known, strictly increasing function $G(\cdot)$,

$$E[Y_{it}(\infty)|D_{iq},\ldots,D_{iT},\mathbf{X}_{i}] = G\left[\alpha + \sum_{g=q}^{T} \beta_{g}D_{ig} + \mathbf{X}_{i}\mathbf{\kappa} + \sum_{g=q}^{T} (D_{ig} \cdot \mathbf{X}_{i})\boldsymbol{\xi}_{g} + \sum_{s=2}^{T} \gamma_{s}fs_{t} + \sum_{s=2}^{T} (fs_{t} \cdot \mathbf{X}_{i})\boldsymbol{\pi}_{s}\right]$$

- ▶ No anticipation means we observe $Y_{it}(\infty)$ for eventually treated cohorts prior to intervention.
 - ▶ Conditional PT means no interactions allowed among D_{ig} and f_{s_t} .
 - ▶ Linear case from before: $G(z) \equiv z$.

• To estimate τ_{gr} , we need to estimate

$$E[Y_r(\infty)|D_g = 1] = E\left[G(\alpha + \beta_g + \mathbf{X}_i \mathbf{\kappa} + \mathbf{X}_i \mathbf{\xi}_g + \gamma_r + \mathbf{X}_i \mathbf{\pi}_r) \middle| D_g = 1\right]$$

- Use an imputation approach.
- 1. Using $W_{it} = 0$ observations, estimate the parameters

$$(\alpha, \beta_q, \dots, \beta_T, \kappa, \xi_q, \dots, \xi_T, \gamma_2, \dots, \gamma_T, \pi_2, \dots, \pi_T)$$

using pooled quasi-MLE in the linear exponential family (LEF).

- ▶ Bernoulli $(0 \le Y_{it} \le 1)$, Poisson $(Y_{it} \ge 0)$ attractive.
- 2. Impute $Y_{ir}(\infty)$ for $W_{ir} = 1$:

$$\hat{Y}_{igr}(\infty) \equiv G(\hat{\alpha} + \hat{\beta}_g + \mathbf{X}_i\hat{\mathbf{k}} + \mathbf{X}_i\hat{\boldsymbol{\xi}}_g + \hat{\gamma}_r + \mathbf{X}_i\hat{\boldsymbol{\pi}}_r), r = g, \dots, T$$

• Estimate of τ_{gr} : For r = g, ..., T,

$$\hat{\tau}_{gr} = N_g^{-1} \sum_{i=1}^{N} D_{ig} [Y_{ir} - \hat{Y}_{igr}(\infty)]$$

$$= \bar{Y}_{gr} - N_g^{-1} \sum_{i=1}^{N} D_{ig} G(\hat{\alpha} + \hat{\beta}_g + \mathbf{X}_i \hat{\mathbf{k}} + \mathbf{X}_i \hat{\mathbf{\xi}}_g + \hat{\gamma}_r + \mathbf{X}_i \hat{\boldsymbol{\pi}}_r)$$

- ► Extension of linear imputation estimators.
- ► Can obtain an analytical standard error or use bootstrap.
- Can apply to Tobit models, two-part models, and so on.
- ▶ Replace the index $G(\cdot)$ with the conditional mean from the chosen model.

• With a canonical link in the LEF, same as estimating a conditional mean on the full sample with many interactions.

$$E(Y_{it}|D_{iq},...,D_{iT},\mathbf{X}_{i}) = G \left[\alpha + \sum_{g=q}^{T} \beta_{g}D_{ig} + \mathbf{X}_{i}\mathbf{\kappa} + \sum_{g=q}^{T} (D_{ig} \cdot \mathbf{X}_{i})\mathbf{\eta}_{g} \right]$$

$$+ \sum_{s=2}^{T} \gamma_{s}fs_{t} + \sum_{s=2}^{T} (fs_{t} \cdot \mathbf{X}_{i})\mathbf{\pi}_{s}$$

$$+ \sum_{g=q}^{T} \sum_{s=g}^{T} \delta_{gs}(W_{it} \cdot D_{ig} \cdot fs_{t})$$

$$+ \sum_{g=q}^{T} \sum_{s=g}^{T} (W_{it} \cdot D_{ig} \cdot fs_{t} \cdot \mathbf{X}_{i})\lambda_{gs}$$

- Partial effect still taken with respect to W_t .
- Interactions must include the D_{ig} to get the $\hat{\tau}_{gr}$ as average partial effects.
- Average over the different subsamples determined by the D_g and fr_t .
- Centering the covariates can make the parameters more interpretable, but has no effect on properly computed APEs.
 - ▶ In exponential case, useful for estimating percentage effects.
- Correctly done, margins in Stata provides proper standard errors.

. \star Generated data, T = 6, three treated periods.

. * y a corner solution outcome.

. use did_staggered_6_corner, clear

. xtset id year

Panel variable: id (strongly balanced)
Time variable: year, 2001 to 2006

Delta: 1 unit

. sum dinf d4 d5 d6 if year == 2001

Variable	Obs	Mean	Std. dev.	Min	Max
dinf	1,000	. 503	.5002412	0	1
d4	1,000	. 277	.4477404	0	1
d5	1,000	.163	. 3695505	0	1
d6	1,000	.057	.2319586	0	1

. sum y

Variable	Obs	Mean	Std. dev.	Min	Max
У	 6,000	6.356815	30.53533	0	977.2437

. count if y == 0 2,194

. * The sample ATTs:

.

. $gen te_4i = y4 - yinf$

. sum te_4i if d4 & f04

Variable	Obs	Mean	Std. dev	. Min	Max
te_4i	277	2.079871	11.41619	-31.82291	74.87006

. sum te_4i if d4 & f05

Variable	Obs	Mean	Std. dev.	Min	Max
te_4i	277	5.265336	47.0484	-474.6237	402.3652

. sum te_4i if d4 & f06

Variable	Obs	Mean	Std. dev.	Min	Max
te_4i	277	4.622355	19.60196	-37.414	168.5657

. $gen te_5i = y5 - yinf$

. sum te_5i if d5 & f05

Variable	Obs	Mean	Std. dev.	Min	Max
te_5i	163	4.392324	29.06417	-41.48495	273.8863

. sum te_5i if d5 & f06

Variable	Obs	Mean	Std. dev.	Min	Max
te_5i	163	5.179047	32.92998	-200.662 4	179.0408

. gen te_6i = y6 - yinf

. sum te_6i if d6 & f06

Variable	Obs	Mean	Std. dev.	Min	Max
te_6i	57	11.63881	71.78052	-19.07541	529.1949

. * did_staggered_6_poisson.do shows the poisson regression with

. * covariates centered.

Robust y | Coefficient std. err. z P>|z| [95% conf. interval] w#c.d4#c.f04 1 | .4798855 .5537199 0.87 0.386 -.6053856 1.565157 w#c.d4#c.f05 2.48 0.013 .2656328 1 | 1.26722 .5110232 2.268807 w#c.d4#c.f06 | 1 | .6365721 .5979153 1.06 0.287 -.5353202 1.808465 w#c.d5#c.f05 .3369498 1.14253 0.29 0.768 -1.902368 1 2.576267 w#c.d5#c.f06 1 -.0489807 .9182506 -0.05 0.957 -1.8487191.750757 w#c.d6#c.f06 | 2.035604 1.182908 1.72 0.085 -.282853 1 | 4.354062

w#c.d4#c.f04#c.x 1	2052884	. 4326644	-0.47	0.635	-1.053295	. 6427182
w#c.d4#c.f05#c.x 1	1320868	. 4592519	-0.29	0.774	-1.032204	.7680304
w#c.d4#c.f06#c.x 1	. 2263718	. 5356826	0.42	0.673	8235468	1.27629
w#c.d5#c.f05#c.x 1	. 9717867	. 9239081	1.05	0.293	83904	2.782613
w#c.d5#c.f06#c.x 1	1.201889	. 7255394	1.66	0.098	2201419	2.62392
w#c.d6#c.f06#c.x 1	3027545	. 6868041	-0.44	0.659	-1.648866	1.043357

f02 f03 f04 f05 f06	1661607 .9632906 .543864 .4526241 .4978902	.5602147 .4634932 .4113719 .3643914 .3614676	-0.30 2.08 1.32 1.24 1.38	0.767 0.038 0.186 0.214 0.168	-1.264161 .0548607 26241 26157 2105733	.93184 1.871721 1.350138 1.166818 1.206354
c.f02#c.x	.7084648	. 5577776	1.27	0.204	3847592	1.801689
c.f03#c.x	 361231	. 4055552	-0.89	0.373	-1.156105	. 4336426
c.f04#c.x	.2070722	.3604028	0.57	0.566	4993044	.9134488
c.f05#c.x	.1624938	. 3205892	0.51	0.612	4658495	.7908371
c.f06#c.x	.2472584	.313374	0.79	0.430	3669434	.8614602
d4	4357018	. 4858549	-0.90	0.370	-1.38796	.5165563
d5	3063094	. 6184987	-0.50	0.620	-1.518545	.9059257
d6	9770025	.5265438	-1.86	0.064	-2.009009	.0550044
х	.3293786	.1887492	1.75	0.081	0405631	. 6993202
c.d4#c.x	6559586	. 4395996	-1.49	0.136	-1.517558	.2056407
c.d5#c.x	 9547599	.5199871	-1.84	0.066	-1.973916	.0643961
c.d6#c.x	 2140135	. 4812769	-0.44	0.657	-1.157299	.7292719
_cons	1.202868	.229064	5.25	0.000	.7539108	1.651825

```
. margins, dydx(w) at (d4 = 1 d5 = 0 d6 = 0 f02 = 0 f03 = 0 f04 = 1 f05 = 0 f06 = 0) ///
>
         subpop(if d4 == 1) noestimcheck vce(uncond)
                       Unconditional
                 dy/dx std. err. z P>|z| [95% conf. interval]
        1.w | 1.017501 1.033521 0.98 0.325 -1.008164
. margins, dydx(w) at (d4 = 1 d5 = 0 d6 = 0 f02 = 0 f03 = 0 f04 = 0 f05 = 1 f06 = 0) ///
        subpop(if d4 == 1) noestimcheck vce(uncond)
>
                       Unconditional
                 dy/dx std. err. z P>|z| [95% conf. interval]
        1.w | 6.00713 2.162626 2.78 0.005 1.76846
                                                               10.2458
. margins, dydx(w) at (d4 = 1 d5 = 0 d6 = 0 f02 = 0 f03 = 0 f04 = 0 f05 = 0 f06 = 1) ///
        subpop(if d4 == 1) noestimcheck vce(uncond)
                       Unconditional
                 dy/dx std. err. z P>|z| [95% conf. interval]
        1.w | 4.569667 1.369919 3.34 0.001 1.884675 7.254658
```

```
. margins, dydx(w) at (d4 = 0 d5 = 1 d6 = 0 f02 = 0 f03 = 0 f04 = 0 f05 = 1 f06 = 0) ///
>
         subpop(if d5 == 1) noestimcheck vce(uncond)
                       Unconditional
                 dy/dx std. err. z P>|z| [95% conf. interval]
                         3.355386 2.14 0.033 .5936913 13.74656
        1.w \mid 7.170127
. margins, dydx(w) at (d4 = 0 d5 = 1 d6 = 0 f02 = 0 f03 = 0 f04 = 0 f05 = 0 f06 = 1) ///
>
         subpop(if d5 == 1) noestimcheck vce(uncond)
                       Unconditional
                 dy/dx std. err. z P>|z| [95% conf. interval]
        1.w | 7.185492 2.781751 2.58 0.010 1.73336
                                                             12.63762
. margins, dydx(w) at (d4 = 0 d5 = 0 d6 = 1 f02 = 0 f03 = 0 f04 = 0 f05 = 0 f06 = 1) ///
         subpop(if d6 == 1) noestimcheck vce(uncond)
                       Unconditional
                 dy/dx std. err. z P>|z| [95% conf. interval]
                         10.32555 1.33 0.184 -6.504777 33.97065
        1.w | 13.73294
```

v	 Coefficient	Std err	z	P> z	 [95% conf.	interval
y 						
f02	1661604	.0602748	-2.76	0.006	2842969	0480239
f 03	. 9632911	. 0596965	16.14	0.000	.846288	1.080294
f04	.5438644	.0602786	9.02	0.000	. 4257205	.6620082
f 05	. 4526244	.0628473	7.20	0.000	.329446	.5758028
f 06	. 4978898	.0619736	8.03	0.000	.3764238	. 6193557
c.f02#c.x	.7084644	. 0556699	12.73	0.000	. 5993535	.8175753
c.f03#c.x	3612316	.0586636	-6.16	0.000	4762102	2462529
c.f04#c.x	.2070717	.0574569	3.60	0.000	.0944582	.3196852
c.f05#c.x	.1624933	.0600223	2.71	0.007	.0448518	.2801349
c.f06#c.x	. 247259	.0592517	4.17	0.000	.1311277	.3633902

d4	4357019	.0682781	-6.38	0.000	5695245	3018793
d 5	3063131	.0773811	-3.96	0.000	4579772	154649
d6 ∣	9770024	.1088114	-8.98	0.000	-1.190269	7637361
x	.329379	.0475337	6.93	0.000	.2362146	. 4225435
c.d4#c.x	6559584	.0624641	-10.50	0.000	7783858	5335309
c.d5#c.x	954755	.0718444	-13.29	0.000	-1.095567	8139425
c.d6#c.x	2140135	.0791491	-2.70	0.007	3691428	0588841
_cons	1.202868	.0492831	24.41	0.000	1.106275	1.299461

. predict double yh
(option n assumed; predicted number of events)

- . gen teyh = y yh
- . sum teyh if d4 & f04

Variable	Obs	Mean	Std. dev.	Min	Max
teyh	⊦ ∣ 277	1.017501	12.06767	-3.52766 4	81.15445

. sum teyh if d4 & f05

Variable	Obs	Mean	Std. dev.	Min	Max
	277	6.00713	37.30788	-3.129414	399.5018
. sum teyh if	d4 & f06				
Variable	Obs				Max
	277				175.1626
. sum teyh if	d5 & f05				
Variable	Obs				Max
	163				411.3746
. sum teyh if	d5 & f06				
Variable	Obs				Max
· ·	163				305.0844
. sum teyh if	d6 & f06				
Variable	Obs	Mean	Std. dev.	Min	Max
	57	13.73293	78.90365	-4.725423	570.4094

. * Linear Model:

Robust y | Coefficient std. err. t P>|t| [95% conf. interval] w#c.d4#c.f04 1 | -.1455549 1.671318 -0.09 0.931 -3.425251 3.134142 w#c.d4#c.f05 1 | 5.288825 2.478633 2.13 0.033 .4249014 10.15275 w#c.d4#c.f06 | 1 2.816552 2.138228 1.32 0.188 -1.379381 7.012485 w#c.d5#c.f05 | 6.697316 3.623153 1.85 1 | 0.065 -.4125477 13.80718 w#c.d5#c.f06 | 1 | 5.562791 3.329713 1.67 0.095 -.971242 12.09682 w#c.d6#c.f06 | 12.0696 10.58551 1.14 0.254 -8.702791 32.842

w#c.d4#c.f04#c.x_dm4 1	 -1.534406 	2.608612	-0.59	0.557	-6.653393	3.584581
w#c.d4#c.f05#c.x_dm4 1	 -2.391267 	3.602391	-0.66	0.507	-9.460388	4.677855
w#c.d4#c.f06#c.x_dm4 1	 3870517	5.016994	-0.08	0.939	-10.23211	9.458004
w#c.d5#c.f05#c.x_dm5 1	6.001162	10.44713	0.57	0.566	-14.49967	26.50199
w#c.d5#c.f06#c.x_dm5 1	8.149612	7.926036	1.03	0.304	-7.403976	23.7032
w#c.d6#c.f06#c.x_dm6 1	 -1.548522 	9.214616	-0.17	0.867	-19.63074	16.5337

f02	-1.432423	3.368666	-0.43	0.671	-8.042895	5.178049
£03	4.808135	2.685276	1.79	0.074	461293	10.07756
f04	2.574639	2.6855	0.96	0.338	-2.695229	7.844507
f05	2.058054	2.334671	0.88	0.378	-2.523368	6.639476
	•					
£06	1.717605	3.16678	0.54	0.588	-4.496699	7.93191
c.f02#c.x	3.707984	3.898847	0.95	0.342	-3.942884	11.35885
c.f03#c.x	-2.24394	2.146963	-1.05	0.296	-6.457014	1.969134
c.f04#c.x	1.070393	2.568546	0.42	0.677	-3.969972	6.110759
c.f05#c.x	.7396578	2.404356	0.31	0.758	-3.97851	5.457825
c.f06#c.x	 2.432101	3.621197	0.67	0.502	-4.673923	9.538126
C.106#C.X	2.432101	3.621197	0.67	0.502	-4.673923	9.556126
d4	6732229	3.071511	-0.22	0.827	-6.700577	5.354131
d5	647893	3.189825	-0.20	0.839	-6.907419	5.611633
d6	-2.281338	2.931903	-0.78	0.437	-8.034733	3.472056
x	3.560941	2.190103	1.63	0.104	736789	7.858671
	3.300941	2.190103	1.03	0.104	730789	7.838071
c.d4#c.x	-4.43147	3.546717	-1.25	0.212	-11.39134	2.528399
313211313		0,010.1	_,	***		_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
c.d5#c.x	-5.120498	3.631408	-1.41	0.159	-12.24656	2.005565
c.d6#c.x	-3.426569	3.452896	-0.99	0.321	-10.20233	3.349192
cons	2.326338	1.7649	1.32	0.188	-1.136999	5.789674

6. Some Simulations

Common Intervention, Logit Mean

- $Y_{it}(0)$ a binary variable, generated to depend on heterogeneity, C_i .
- Logit mean is correctly specified.
- All serial correlation due to C_i .
- $P(D_i = 1) \approx 0.39$.
- $P[Y_{it}(0) = 1] \approx 0.38; P[Y_{it}(1) = 1] \approx 0.46.$
- N = 1,000, T = 6, 1,000 Monte Carlo Replications.

	Sample ATT	Logit (Pooled Bernoulli)		Linear (Pooled OLS)		CS (2021)	
N = 1,000	Mean	Mean	SD	Mean	SD	Mean	SD
τ4	0.082	0.081	0.021	-0.043	0.029	-0.041	0.036
τ5	0.120	0.119	0.025	-0.027	0.032	-0.025	0.039
τ6	0.166	0.165	0.027	0.0005	0.032	0.0026	0.039

Staggered Intervention, Exponential Mean

- $Y_{it}(g)$ a count variable, generated to depend on heterogeneity, C_i .
- Exponential mean is correctly specified.
- Conditional distribution of $Y_{it}(g)$ is mixture of Poisson and lognormal.
- All serial correlation due to C_i .
- N = 500, T = 6, 1,000 Monte Carlo Replications.

	Sample ATT	Exponential (Pooled Poisson)		Linear (Pooled OLS)		CS (2021)	
N = 500	Mean	Mean	SD	Mean	SD	Mean	SD
τ44	5.35	5.34	0.73	3.93	0.94	3.99	0.97
τ45	13.20	13.21	1.61	10.31	1.94	10.37	1.87
τ46	20.07	20.07	2.38	14.72	2.90	15.62	2.78
τ55	12.02	12.03	1.66	9.67	2.01	10.50	1.93
τ56	24.91	24.91	3.30	19.86	3.88	21.75	3.66
τ66	4.72	4.76	1.15	-0.04	2.11	3.05	1.93

7. Extensions

- Without a never treated group, drop terms depending on D_{iT} , which is always unity.
- Under NA, all effects for t < T are still ATTs with respect to $Y_t(\infty)$.
- For t = T, estimate with respect to $Y_t(T)$ under a modified PT assumption.
- Can test/correct for violations of PT by adding

$$D_{ig} \cdot t, ..., D_{iT} \cdot t$$

to any of the nonlinear models.

Might even add

$$D_{ig} \cdot t \cdot \mathbf{X}_i, ..., D_{iT} \cdot t \cdot \mathbf{X}_i$$