Differential Equations in Geophysical Fluid Dynamics

III. Forced inertial oscillation and resonance

Jang-Geun Choi

Center for Ocean Engineering University of New Hampshire

Apr, 2025

This seminar is supported by mathematics community EM (maintained by Prof. Gunhee Cho) and oceanography community COKOAA.

Recap

Inertial oscillation problem:

First order linear homogeneous ordinary differential equation

Governing equation:

$$\frac{d\vec{u}}{\partial t} + if\vec{u} = 0 \tag{1a}$$

$$\vec{u}|_{t=0} = \vec{U}_0 \tag{1b}$$

$$\vec{u}|_{t=0} = U_0 \tag{1b}$$

Solution:

$$\vec{u} = \vec{U}_0 \frac{e^{-ift}}{\text{Oscillation with frequency } f}$$
 (2)

that yields circle trajectory of which radius is $|\vec{U_0}|/f$.

Recap

Linear homogeneous differential equation

$$= L[\vec{u}] \text{ where } L = \frac{\partial}{\partial t} + if$$

$$\frac{\partial \vec{u}}{\partial t} + if \vec{u} = 0$$
 No forcing term (homogeneous)
$$: F(t) = 0$$

Superposition principle of linear homogeneous differential equation

- 1. Once $L[u_1] = 0$, $L[Cu_1] = 0$.
- 2. Once $L[u_1] = 0$ and $L[u_2] = 0$, $L[u_1 + u_2] = 0$
- 3. Therefore, once $L[u_1] = 0, ..., L[u_n] = 0,$ $L[C_1u_2 + \cdots + C_nu_n] = 0$

Assignment

Inertial oscillation problem with bottom friction:

First order linear homogeneous ordinary differential equation

$$\frac{\partial \vec{u}}{\partial t} + if\vec{u} = -\frac{\gamma}{h}\vec{u}$$
 (3a)
 $\vec{u}|_{t=0} = \vec{U}_0$ (3b)

$$\vec{l}|_{t=0} = \vec{U}_0 \tag{3b}$$

Solution to the problem is

oscillation ($\sin(ft)$ and $\cos(ft)$)

$$\vec{u} = \vec{U}_0 e^{-(\gamma/h)t} e^{-ift}. \tag{4}$$

Exponential decay

Assignment

Inertial oscillation problem with bottom friction:

" h/γ ": frictional adjustment time (Csanady, 1981)

Linear momentum equation of shallow water equation

$$\frac{\partial \bar{u}}{\partial t} - f\bar{v} = -g\frac{\partial \eta}{\partial x} + A_h \left(\frac{\partial^2 \bar{u}}{\partial x^2} + \frac{\partial^2 \bar{u}}{\partial y^2}\right) + \frac{\tau_x^s}{\rho_0 h} - \frac{\gamma}{h}\bar{u}$$
 (5a)

$$\frac{\partial \bar{v}}{\partial t} - f\bar{u} = -g\frac{\partial \eta}{\partial y} + A_h \left(\frac{\partial^2 \bar{v}}{\partial x^2} + \frac{\partial^2 \bar{v}}{\partial y^2}\right) + \frac{\tau_y^s}{\rho_0 h} - \frac{\gamma}{h}\bar{v}$$
 (5b)

Writing (5) in complex coordinate ((5a)+ $i\times$ (5b)) yields

$$\frac{\partial \vec{u}}{\partial t} + i f \vec{u} = -g \frac{\partial \eta}{\partial \vec{n}} + \frac{\vec{\tau}^s}{\rho_0 h} - \frac{\gamma}{h} \vec{u}$$

Forcing terms

where $\vec{u} = u + iv$, $\partial \eta / \partial \vec{n} = (\partial \eta / \partial x) + i(\partial \eta / \partial y)$, and $\vec{\tau}^s = \tau^s_x + i\tau^s_y$.

Inertial oscillation with wind force

When η is arbitrary given function, we can still stay on the ordinary differential equation problem!

For simplicity, let us consider no sea surface height gradient $(\partial \eta/\partial \vec{n}=0)$ and sinusoidal wind stress $\vec{\tau}^s=\hat{\tau}_0e^{-iw_0t}$:

$$\left[\frac{\partial \vec{u}}{\partial t} + if\vec{u} = \frac{\hat{\tau}_0}{\rho_0 h} e^{-iw_0 t} - \frac{\gamma}{h} \vec{u} \right]$$
 (6)

where $\vec{\tau}_0$ and w_0 are constants representing amplitude and frequency of the wind forcing, respectively.

Inertial oscillation with wind force

So, we have first order non-homogeneous ordinary differential equation problem:

$$\frac{\partial \vec{u}}{\partial t} + if\vec{u} = \frac{\hat{\tau}_0}{\rho_0 h} e^{-iw_0 t} - \frac{\gamma}{h} \vec{u}. \tag{7a}$$

$$\vec{u}|_{t=0} = \vec{U}_0 \tag{7b}$$

$$\vec{u} = \frac{\hat{\tau}_0 e^{-iw_0 t}}{\rho_0 h(i(f - w_0) + \gamma/h)} \equiv \vec{u}_p$$
 (8)

This indicates...

Inertial oscillation with wind force

If the solution is too complicated to get some wisdom, try simplifying it by **taking limits** (or by **thinking specific cases**).

- 1. $(\gamma/h, w_0) \ll f$
- 2. $(\gamma/h, f) \ll w_0$
- 3. $(w_0 \text{ and } f) \ll \gamma/h$
- 4. $\gamma/h \ll w_0 \approx f$

Summary

Solution to the problem considering initial condition is given by

Component associated with initial condition

$$\vec{u} = \left(\vec{U}_0 - \frac{\hat{\tau}_0}{\rho_0(f - w_0) + \gamma/h}\right) e^{-(if + \gamma/h)t} + \frac{\hat{\tau}_0 e^{-iw_0 t}}{\rho_0 h(i(f - w_0) + \gamma/h)}$$
Component associated with forcing

What is time scale during which the influence of the initial condition exists?

Summary

- 1. Frictionless assumption cannot be global, valid for finite time $(t \ll h/\gamma)$.
- 2. For $w_0 \ll f$ (low frequency forcing), Ekman transport, wind stress balanced by Coriolis force, becomes predominant.
- 3. For $f \ll w_0$ (high frequency forcing), currents are accelerated in the direction of wind stress balanced by inertia.
- 4. For $w_0 \approx f$, resonance appears and current response to wind stress is maximized.
- 5. In this forced problem, period of forcing represents the time scale of phenomenon.

Assignment

$$\frac{\partial \vec{u}}{\partial t} + if\vec{u} = -g\frac{\partial \eta}{\partial \vec{n}} - \frac{\gamma}{h}\vec{u}$$
 (10a)

$$\vec{u}|_{t=0} = \vec{U}_0$$
 (10b)

$$\frac{d\vec{X}}{dt} = \vec{u} \tag{11}$$

where $-g\partial\eta/\partial\vec{n}$ is arbitrary constants and $\vec{X}=X+iY.$ X and Y represent x- and y-position of an object, respectively.

- 1. Solve differential equation (23) for \vec{u} . What is physical meaning of particular solution component?
- 2. Solve (24) using \vec{u} from (23) and constant f assumption.

References I

Csanady, G. T. (1981). "Circulation in the coastal ocean". In: Advances in geophysics. Vol. 23. Elsevier, pp. 101–183.