Wydział	Imię i nazwisko)	Rok	Grupa	Zespół				
	1. Paweł Szewo	zuk							
WFiIS	2. Ihnatsi Yern	nakovich	II	03	03				
PRACOWNIA	Temat	Temat							
FIZYCZNA									
WFiIS AGH	Mostek Wheats	Mostek Wheatstone'a							
Data wykonania	Data oddania	Zwrot do popr.	Data oddania	Data zaliczenia	OCENA				
28.03.2022	04.04.2022	04.04.2022	11.04.2022						

Mostek Wheatstone'a

Ćwiczenie nr 32

Paweł Szewczuk

Ihnatsi Yermakovich

1	Cel ćwiczenia	2
2	Wstęp teoretyczny	2
3	Przyrządy pomiarowe	3
4	Przebieg ćwiczenia	3
5	Wyniki	4
	$5.1 R_{x_1} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	4
	$5.2 R_{x_2}$	
	$5.3 R_{x_1} + R_{x_2} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	4
	$5.4 R_{x_1} R_{x_2} \ldots \ldots$	4
6	Opracowanie wyników	5
	6.1 R_{x_1}	5
	$6.2 R_{x_2} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	5
	6.3 $R_{x_1} + R_{x_2} \dots \dots$	
	6.4 $R_{x_1} R_{x_2}$	6
7	Wnjoski	7

1 Cel ćwiczenia

Mostek Wheatstone'a jest przykładem zastosowania praw Kirchhoffa do opisu złożonych obwodów elektrycznych. Celem ćwiczenia jest pomiar nieznanych oporów oraz ich połączeń szeregowych i równoległych

2 Wstęp teoretyczny

Mostek Wheatstone'a jest układem służącym do pomiaru oporów, rozpatrywanie obwodów prądu stałego opiera się na następujących prawach:

- Prawo Ohma stosunek napięcia między końcami przewodnika do natężenia prądu jest wielkością stałą, nazywaną oporem elektrycznym.
- I Prawo Kirchhoffa suma natężeń prądów wpływających do węzła jest równa sumie natężeń prądów wypływających z tego węzła.
- II Prawo Kirchhoffa w zamkniętym obwodzie suma spadków napięć równa jest sumie sił elektromotorycznych występujących w tym obwodzie.

Rysunek 1: Układ pomiarowy mostka z drutem oporowym

Przy skorzystaniu z powyższych wzorów i rys.1 otrzymamy:

$$\frac{R_x}{R_2} = \frac{R_{AD}}{R_{DC}} \tag{1}$$

 R_{AD} i R_{DC} są oporami odcinków tego samego jednorodnego drutu, więc ich wartości wynoszą:

$$R_{AD} = \rho \, \frac{a}{S} \tag{2}$$

$$R_{DC} = \rho \, \frac{b}{S} \tag{3}$$

W których S oznacza przekrój drutu, a ρ oporność właściwą materiału drutu. Ponadto b=l-a, gdzie l to długość całkowita drutu, ostatecznie więc otrzymujemy wzór:

$$R_x = R_2 \; \frac{a}{l-a} \tag{4}$$

Ważne są także wzory na wartości oporu zastępczego dla połączenia szeregowego:

$$R_{ab} = R_a + R_b \tag{5}$$

Oraz równoległego:

$$\frac{1}{R_{ab}} = \frac{1}{R_a} + \frac{1}{R_b} \tag{6}$$

Dla dokonywanych przez nas pomiarów przyda się również definicja równości dwóch zmierzonych wartości A i B, obarczonych odpowiednio niepewnością pomiarową $u(y_1)$ i $u(y_2)$:

$$|y_1 - y_2| < U(y_1 - y_2) \tag{7}$$

$$U(y_1 - y_2) = k \cdot \sqrt{[u(y_1)]^2 + [u(y_2)]^2}, \ dla \ k = 2$$
 (8)

3 Przyrządy pomiarowe

- ullet Listwa z drutem oporowym, zaopatrzona w podziałkę milimetrową i kontakt ślizgowy, umożliwiający zmiany długości odcinków a i b.
- Opornica dekadowa R_2
- \bullet Zestaw oporników R_x w
montowanych na płytce.
- \bullet Mikroamperomierz G
- Zasilacz stabilizowany 3A/30V

4 Przebieg ćwiczenia

Na początku podłączyliśmy obwód elektryczny według schematu przedstawionego na rysunku. Na tym obwodzie wykonaliśmy pomiary dla wszystkich nieznanych oporów, za każdym razem zmieniając nastawy na oporniku wzorcowym. Następnie analogicznie wykonaliśmy pomiary dla połączenia równoległego oraz szeregowego wybranych oporników.

5 Wyniki

Podczas wszystkich eksperymentów długość drutu oporowego wynosiła l=1m

5.1 R_{x_1}

$R_2 [\Omega]$	16	17	23	29	36	46	13	10	9	7
a [mm]	490,0	471,5	400,0	345,0	298,0	249,1	543,0	603,5	635,0	692,1
$R_{x_1} [\Omega]$	15,373	15,167	15,333	15,275	15,282	15,260	15,446	15,221	15,658	15,735
$u\left(R_{x_{1j}}\right)\left[\Omega\right]$	$3,\!6\text{E-}05$	3,5E-05	3,7E-05	3,9E-05	4,2E-05	4,7E-05	$3,\!6\text{E-}05$	3,7E-05	3,9E-05	4,7E-05
$\overline{R_{x_1}} = 15,3748 \Omega$ $u(R_{x_1}) = 4,7 \times 10^{-5} \Omega$										

Tabela 1: Pomiary dla ${\cal R}_{x_1}$

5.2 R_{x_2}

$R_2 [\Omega]$	62	48	38	31	25	21	17	14	12	9
a [mm]	251,4	300,0	353,1	402,1	455,8	499,5	552,5	600,0	638,9	704,1
$R_{x_2} [\Omega]$	20,821	20,571	20,742	20,848	20,939	20,958	20,989	21,000	21,232	21,416
$u\left(R_{x_{2j}}\right)\left[\Omega\right]$	6,4E-05	5,7E-05	5,2E-05	5,0E-05	4,9E-05	4,8E-05	4,9E-05	5,0E-05	5,3E-05	5,9E-05
$\overline{R_{x_2}} = 20,9516\Omega$		$u\left(R_{x_2}\right) =$	$=6,4 \times 10^{-5} \Omega$							

Tabela 2: Pomiary dla ${\cal R}_{x_2}$

5.3
$$R_{x_1} + R_{x_2}$$

$R_2 [\Omega]$	110	84	67	54	44	36	30	25	20	16
a [mm]	248,1	298,4	349,1	401,0	451,5	502,5	548,9	596,4	642,5	698,9
$R_x [\Omega]$	36,296	35,726	35,934	36,150	36,219	36,362	36,504	36,943	35,944	37,138
$u\left(R\right)\left[\Omega\right]$	1,1E-04	9,8E-05	9,1E-05	8,7E-05	8,4E-05	8,4E-05	8,5E-05	8,9E-05	9,0E-05	1,0E-04
$\overline{R} = 36,322\Omega$		$u\left(R\right)=1$	$1.0 \times 10^{-3} \Omega$	$R_o = 3$	$6,326\Omega$	$u\left(R_o\right) =$	$8,0\times10^{-5}\Omega$			

Tabela 3: Pomiary dla połączenia szeregowego ${\cal R}_{x_1} + {\cal R}_{x_2}$

5.4 $R_{x_1}||R_{x_2}|$

$R_2 [\Omega]$	27	21	13	11	9	7	6	5	4	3
a [mm]	247,7	294,8	401,9	443,1	489,9	561,5	598,9	642,6	693,5	751,4
$R_x [\Omega]$	8,8899	8,7788	8,7355	8,7522	8,6436	8,9635	8,9589	8,9899	9,0506	9,0676
$u\left(R\right)\left[\Omega\right]$	2,8E-05	2,4E-05	2,1E-05	2,0E-05	2,0E-05	2,1E-05	2,2E-05	2,3E-05	2,5E-05	2,8E-05
$\overline{R} = 8,8830\Omega$		$u\left(R\right)=2$	$2,8 \times 10^{-5} \Omega$	$R_o = 8$	$,8676\Omega$	$u\left(R_o\right) =$	$2,0\times10^{-5}\Omega$			

Tabela 4: Pomiary dla połączenia szeregowego $R_{x_1} || R_{x_2}$

6 Opracowanie wyników

Przy obliczeniu niepewności powyższych pomiarów musimy pamiętać, że wartości $R_{x_{ij}}$ nie są zebrane bezpośrednio, więc musimy się dostosować do faktu przenoszenia niepewności, ale niepewność opornicy jest zaniedbywalna mała, więc przy obliczeniach będziemy stosowali poniższy wzór:

$$u\left(R_{x_{ij}}\right) = \left|\frac{dR_{x_{ij}}}{da}u\left(a\right)\right| = R_2 \frac{a}{\left(l-a\right)^2}u\left(a\right) \tag{9}$$

Ze względu na ilość pomiarów przyjmiemy:

$$u\left(R_{x_i}\right) = \max\left(u\left(R_{x_{ij}}\right)\right) \tag{10}$$

Wartość niepewności u(a) obliczymy następująco:

$$u(a) = \frac{0,001 \, m}{\sqrt{3}} = 5,77 \times 10^{-4} \, (m) \tag{11}$$

6.1 R_{x_1}

Najpierw przedstawimy sposób obliczania $R_{x_{1j}}$ na przykładzie j=1 i zauważmy, że wzór ten można uogólnić dla każdej wartości j:

$$R_{x_{11}} = R_2 \frac{a}{l-a} = 16 \frac{490}{1000 - 490} = 15,373(\Omega)$$
(12)

Policzymy wartość średnią $\overline{R_{x_1}}$:

$$\overline{R_{x_1}} = \frac{\sum_{j=1}^{n} R_{x_{1j}}}{n} = 15,3748 \ (\Omega)$$
 (13)

I niepewność pomiaru biorąc pod uwagę powyższe rozważania:

$$u(R_{x_{1j}}) = \max\left(\left|\frac{dR_{x_{1j}}}{da}u(a)\right|\right) = \max\left(R_2 \frac{l}{(l-a)^2}u(a)\right) = 4,7 \times 10^{-5} (\Omega)$$
 (14)

Wyniki poszczególnych obliczeń niepewności są umieszczone w tabeli (1).

6.2 R_{x_2}

Najpierw przedstawimy sposób obliczania $R_{x_{2j}}$ na przykładzie j=1 i zauważmy, że wzór ten można uogólnić dla każdej wartości j:

$$R_{x_{21}} = R_2 \frac{a}{l-a} = 62 \frac{251, 4}{1000 - 251, 4} = 20,821 \,(\Omega) \tag{15}$$

Policzymy wartość średnią $\overline{R_{x_2}}$:

$$\overline{R_{x_2}} = \frac{\sum_{j=1}^{n} R_{x_{2j}}}{n} = 20,9516 \ (\Omega)$$
 (16)

I niepewność pomiaru biorąc pod uwagę powyższe rozważania:

$$u(R_{x_{2j}}) = \max\left(\left|\frac{dR_{x_{2j}}}{da}u(a)\right|\right) = \max\left(R_2 \frac{l}{(l-a)^2}u(a)\right) = 6,4 \times 10^{-5} (\Omega)$$
 (17)

Wyniki poszczególnych obliczeń niepewności są umieszczone w tabeli (2).

6.3 $R_{x_1} + R_{x_2}$

Najpierw przedstawimy sposób obliczania R_{x_j} na przykładzie j=1 i zauważmy, że wzór ten można uogólnić dla każdej wartości j:

$$R_{x_1} = R_2 \frac{a}{l-a} = 110 \frac{248,1}{1000 - 248,1} = 36,296 \,(\Omega) \tag{18}$$

Policzymy wartość średnią $\overline{R_x}$:

$$\overline{R_x} = \frac{\sum_{j=1}^{n} R_{x_j}}{n} = 36,3217 \ (\Omega)$$
 (19)

I niepewność pomiaru biorąc pod uwagę powyższe rozważania:

$$u(R) = \max\left(\left|\frac{dR_{x_j}}{da}u(a)\right|\right) = \max\left(R_2\frac{l}{(l-a)^2}u(a)\right) = 1, 0 \times 10^{-3} (\Omega)$$
(20)

Wyniki poszczególnych obliczeń niepewności są umieszczone w tabeli (3).

Wartość teoretycna oporu zastępczego dla połączenia szeregowego wynosi:

$$R_{obl} = \overline{R_{x_1}} + \overline{R_{x_2}} = 15,3748 + 20,9516 = 36,3264 \ (\Omega)$$
 (21)

Natomiast niepewność oporu obliczonego obliczymy jako:

$$u\left(R_{obl}\right) = \sqrt{\left(u\left(\overline{R_{x_1}}\right)\right)^2 + \left(u\left(\overline{R_{x_2}}\right)\right)} = 7,931 \times 10^{-5} \,(\Omega) \tag{22}$$

6.4 $R_{x_1}||R_{x_2}||$

Najpierw przedstawimy sposób obliczania R_{x_j} na przykładzie j=1 i zauważmy, że wzór ten można uogólnić dla każdej wartości j:

$$R_{x_1} = R_2 \frac{a}{l-a} = 27 \frac{247,7}{1000 - 247,7} = 8,8899 \,(\Omega) \tag{23}$$

Policzymy wartość średnia $\overline{R_x}$:

$$\overline{R_x} = \frac{\sum_{j=1}^{n} R_{x_j}}{n} = 8,8830 \ (\Omega)$$
 (24)

I niepewność pomiaru biorąc pod uwagę powyższe rozważania:

$$u(R) = \max\left(\left|\frac{dR_{x_j}}{da}u(a)\right|\right) = \max\left(R_2\frac{l}{(l-a)^2}u(a)\right) = 2,8 \times 10^{-5} (\Omega)$$
 (25)

Wyniki poszczególnych obliczeń niepewności są umieszczone w tabeli (4).

Wartość teoretyczna oporu zastępczego dla połączenia równoległego wynosi:

$$R_{obl} = \frac{\overline{R_{x_1}} \cdot \overline{R_{x_2}}}{\overline{R_{x_1}} + \overline{R_{x_2}}} = 8,8676 \ (\Omega)$$
 (26)

Natomiast niepewność oporu obliczonego obliczymy jako:

$$u\left(R_{obl}\right) = \sqrt{\left(\frac{\overline{R_{x_2}}^2}{\left(\overline{R_{x_1}} + \overline{R_{x_2}}\right)^2} \cdot u\left(\overline{R_{x_1}}\right)\right)^2 + \left(\frac{\overline{R_{x_1}}^2}{\left(\overline{R_{x_1}} + \overline{R_{x_2}}\right)^2} \cdot u\left(\overline{R_{x_2}}\right)\right)^2} = 1,939 \times 10^{-5} \,(\Omega) \quad (27)$$

7 Wnioski

Porównując zmierzoną wartość połączenia szeregowego $R_x^{sz}=36,3217~\Omega,~u(R_x^{sz})=1,0\cdot 10^{-3}~\Omega$ oraz wartość obliczoną $R_{obl}^{sz}=36,3264~\Omega,~u(R_{obl}^{sz})=7,931\cdot 10^{-5}~\Omega$ widzimy, że wielkości te są zbieżne w ramach niepewności pomiarowych, co świadczy o poprawnym wykonaniu pomiarów.

Natomiast przy porównaniu zmierzonej wartości połączenia równoległego $R^r_x=8,8830~\Omega,~u(R^r_x)=2,8\cdot 10^{-5}~\Omega$ z wartością obliczoną $R^r_{obl}=8,8676~\Omega,~u(R^r_{obl})=1,939\cdot 10^{-5}~\Omega$ równą można zauważyć, że wartości nie są zbieżne w ramach niepewności pomiarowej. Jednak, gdy zastosujemy niepewność rozszerzoną o współczynniku k = 2, to wartości oporów będą już zbieżne w ramach tej rozszerzonej niepewności pomiarowej.

Powodami rozbieżności tych wyników najprawdopodobniej jest fakt, że niektóre pomiary zostały wykonane w zbyt dużej odległości od środka długości drutu oporowego.