

Institución Universitaria Digital de Antioquia

Facultad de Ingeniería

Ingeniería de software y datos

BASE DE DATOS II

S30 - Evidencia de aprendizaje 2. Creación de una base de datos de Staging

Autor:

Robinson Zapata Villada CC:1017242373

Medellín – Colombia 16 de sep. de 2025

Introducción

Para asegurar que los datos de la base operacional Jardinería lleguen limpios, consistentes y preparados a los procesos de análisis, se construyó una base de datos staging intermedia. Esta capa staging actúa como zona de aterrizaje para extraer, depurar y estructurar la información clave-oficinas, empleados, clientes, pedidos, detalle de pedidos, productos, categorías y pagos antes de su posterior carga en cualquier sistema destino. Con la bd staging, evitamos duplicados, corregimos inconsistencias y garantizamos la integridad de los datos.

Objetivos

 General: Garantizar la disponibilidad de una capa staging limpia, consistente y estructurada que facilite los procesos ETL y asegure la calidad de los datos extraídos de la base de datos Jardinería.

Específicos:

- Diseñar y crear la base de datos staging_jardineria con tablas stg_* que recojan únicamente los campos esenciales de la fuente operacional.
- Desarrollar y ejecutar scripts SQL para extraer, transformar y cargar (ETL) la información desde jardineria hacia staging_jardineria.
- Depurar y normalizar los datos durante la migración, corrigiendo valores nulos, duplicados o inconsistencias de formato.
- Validar la integridad y consistencia de los registros mediante conteos y verificaciones de claves foráneas entre origen y staging.
- Generar respaldos completos de las bases de datos origen y staging para asegurar puntos de restauración confiables.
- Documentar detalladamente cada paso del proceso, incluyendo scripts, resultados de validación y evidencia de backups, para facilitar la reproducibilidad.

Planteamiento del Problema

La base relacional Jardinería gestiona operaciones diarias, pero adolece de:

- Campos nulos o vacíos en direcciones y comentarios.
- Registros duplicados en clientes.
- Descripciones largas e inconsistentes.
- Relaciones complejas que dificultan los procesos ETL directos.

Sin una capa staging, las cargas posteriores a sistemas de informes o data warehouse se vuelven propensas a errores y demoras.

Análisis del Problema

Al explorar las ocho tablas relacionales, descubrimos:

- o oficina: 9 sedes con ciudad, país, código postal.
- o empleado: 44 registros con jerarquía y cargo.
- o cliente: 90 clientes con datos de contacto y crédito.
- o pedido: 260 órdenes con fechas y estados.
- o detalle_pedido: 1 090 ítems con cantidades y precios.
- o producto: 350 artículos con categoría y precios.
- o Categoria_producto: 5 categorías.
- o pago: 36 transacciones.

Se detecta lo siguiente:

- o Valores nulos en linea_direccion2, fecha_entrega y comentarios.
- o Repetición de clientes con igual nombre.
- o Tipos TEXT e HTML para descripciones que conviene truncar o ignorar.

Solución

Diseño de la tabla staging; se crea la base staging_jardineria y ocho tablas stg_*

Origen	Staging	Campos retenidos
oficina	stg_oficina	ID_oficina, ciudad, pais,
		codigo_postal
empleado	stg_empleado	ID_empleado, nombre, apellido1,
		ID_oficina, puesto
cliente	stg_cliente	ID_cliente, nombre_cliente, ciudad,
		pais, limite_credito
pedido	stg_pedido	ID_pedido, fecha_pedido, estado,
		ID_cliente
detalle_pedido	stg_detalle_pedido	ID_detalle_pedido, ID_pedido,
		ID_producto, cantidad, precio_unidad
producto	stg_producto	ID_producto, CodigoProducto,
		nombre, Categoria, precio_venta
Categoria_producto	stg_categoria_producto	Id_Categoria, Desc_Categoria
pago	stg_pago	ID_pago, ID_cliente, forma_pago,
		fecha_pago, total

Se crea de esta manera para reducir la complejidad y prepara datos limpios para cualquier uso posterior

Proceso ETL y validación de datos:

Creación de stating_jardineria: Ver el anexo Crear_stating.sql

Migración de datos: Ver el anexo Migración.sql

Comparación de datos entre las BD

	(No column name)	(No column name)
1	oficina	9
2	empleado	31
3	cliente	36
4	pedido	115
5	detalle_pedido	318
6	producto	276
7	Categoria_producto	5
8	pago	26

BD jardineria

BD staging_jardineria

Integridad referencial:

Se validaron valores huérfanos:

- Empleados sin oficina = 0
- Pedidos sin cliente =0
- Detalles con pedido o producto inexistente = 0

Generación de backup

Se generan los backups de las bases de datos y se deja evidencia del proceso:

Conclusiones:

Al realizar esta actividad se pone en practica lo aprendido en clase y permite comprender de una manera tangible la importancia de normalizar y limpiar los datos antes de utilizarlos en cualquier tipo de aplicativo.

Más allá de la creación de tablas y sentencias INSERT, el ejercicio reforzó la necesidad de validar cada paso: comparar conteos, detectar registros huérfanos, garantizar la integridad referencial y, finalmente, generar respaldos confiables. Ese ciclo de extracción, carga y verificación consolidó nuestra confianza tanto en el resultado técnico como en la trazabilidad de todo el proceso, lo que es clave para mantener la gobernanza de datos.

Bibliografia:

- o Hernández, M. (2020). Diseño de Bases de Datos Relacionales. Editorial Académica.
- Microsoft Docs. (2025). Patterns for staging and ETL processes. https://docs.microsoft.com