Report page ExoTIC-ISM

W17 G102 lc 8394.txt - 190

Input parameters:

Number of systematic models: 50 Wavelength mid point = 8411.83135611564 Wavelength half width = 71.32389609755319

Planet parameters:

Rp/R* = 0.12169232Epoch (MJD) = 58021.48064883803Inclination (deg) = 87.34635Eccentricity = 0.0Omega (deg) = 0.0Period (days) = 3.73548535a/R* = 7.0780354

Stellar parameters:

FeH (dex) = -0.25Teff(K) = 6550.0log(g) (cgs) = 4.2

Output parameters:

Limb-darkening coefficients:

C1 = 0.8825484035605554C2 = -0.7853976795273401C3 = 0.7813120411011455C4 = -0.2851612725996021

Top five systematic models by their weight

Check the chi-squared values and the AIC evidence for reasonable fits.

If the chi-squared values far exceed the DOF then it is likely that the input data contains additional noise, double check the spectral extraction.

Model numbers = [43 48 44 49 31]DOF = [39. 38. 38. 37. 43.]

Chi-squared = [53.8315681 52.94867511 53.46094499 53.01380537 59.7151675]

AIC evidence = [295.32613728 295.26758377 295.01144883 294.73501865 294.38433758]

Weights = [0.14813250734678485 0.13970788238234183 0.10813914192566501

0.08202208681480991 0.05776063546898262]

 $SDNR = [373.52481427\ 370.33400056\ 372.24782007\ 370.57629074\ 392.97326824]$

Top model Noise Statistics:

White noise = 0.0005270603480209704 Red noise = 3.684489176073445e-05

Beta = 1.0287757328957676

If the red-noise is significant it means the data is poorly fit by any of the systematic models. It is recommended that the input lightcurves are checked for additional noise sources.

Marginalised parameters:

If None, parameter was not fit for.

Rp/R* = 0.1222454357066404 +/- 0.0006249895929699243 Epoch (MJD) = 58021.48075193315 +/- 0.0006621588237826181 Inclination (rad) = None +/- None Inclination (deg) = None +/- None System density (Ms+Mp/R^3) = None +/- None a/R* = None +/- None

Systematics

Marginalisation results

Top: Evidence-based weight associated with each systematic model when fit with the data. *Middle:* Standard deviation of the residuals after correcting for each systematic model. *Bottom:* Radius ratio

measured from the transit depth when the light curve has been corrected using each systematic model. *If present, grey crosses mark discarded systematic models (poor AIC evidence)*.

Lightcurves

First vs. best model

Top: Input lightcurve with no systematic model correction applied. *Middle:* Lightcurve corrected by highest weight systematic model plotted with the smooth planetary transit model centred on the mid-transit time. *Bottom:* Residuals and uncertainties associated with the middle panel lightcurve. The upper and lower standard deviation bounds are shown in dotted lines relative to zero.