11.1 부울식 교과목명 이산수학 분반 담당교수 김 외 현 학부(과) 학번 성명

정의 부울식

정의 부울연산자

집합 {0, 1}에 대한 연산

$$1 + 0 = 1$$

$$0 + 1 = 1$$

$$0 + 0 = 0$$

$$0 \cdot 1 = 0$$

$$0 \cdot 0 = 0$$

(3) 보수
$$\overline{}$$
 : $\overline{0} = 1$, $\overline{1} = 0$

참고 연산 우선순위

참고 부울 연산과 논리 연산의 대응관계

부울	논리	
I	Γ	
•	^	
+	>	
0	F	
1	Т	

예제

- 1. 다음 부울식의 결과값을 구해보자.
- (1) $0 + \overline{1}$
- (2) $0 \cdot 0 + \overline{1} \cdot 0$
- (3) $(1+\overline{0}) \cdot 1$
- (4) $\overline{(1 \cdot 0 + 0 \cdot 1)} + \overline{0} \cdot \overline{0}$

정리 부울식의 법칙 p, q, r을 부울 변수라 한다. 1. $p \cdot p = p$ 멱등 법칙(idempotent law) p + p = p2. p + 0 = p항등 법칙(identity law) $p \cdot 1 = p$ 교환 법칙(commutative law) 3. p + q = q + p $p \cdot q = q \cdot p$ 4. p + (q + r) = (p + q) + r결합 법칙(associative law) $p \cdot (q \cdot r) = (p \cdot q) \cdot r$ 5. $p + (q \cdot r) = (p + q) \cdot (p + r)$ 분배 법책(distributive law) $p \cdot (q + r) = (p \cdot q) + (p \cdot r)$ 흡수 법칙(absorption law) 6 $p + (p \cdot q) = p$ $p \cdot (p+q) = p$ 7. p + p' = 1역 법칙(inverse law) $p \cdot p' = 0$ 8. $(p^1)^1 = p$ 보 법칙(complement law) 9. p + 1 = 1우등 번칙(dominance law) $p \cdot 0 = 0$ 드 모르간의 법칙(De Morgan's law) 10. $(p+q)' = p' \cdot q'$ $(p \cdot q)' = p' + q'$

예제

- 2. p, q, r이 부울 변수일 때 부울식 $\overline{(p+q)} \overline{r} = \overline{pqr}$ 이 성립함을 살펴보자.
- 3. 다음 부울식을 표의 법칙들을 이용하여 간단히 해보자.
- (1) x + xy
- (2) wy + xy + wz + xz

4. 다음 부울식이 성립함을 진리표를 이용하여 살펴보 자.

$$x + yz = (x+y)(x+z)$$

5. 흡수 법칙 x(x+y)=x가 성립함을 표에서 보인 항 등 관계를 이용하여 증명해보자.

	11.2 부울식의 표현							
교과목명	이산수학	분반		담당교수	김 외 현			
학부(과)		학번		성명				

정의 부울 함수

$$A = \{0, 1\}$$

$$A^n = \{(x_1,\,x_2,\,\cdots\,,\,x_n)|\,x_i{\in}A\,,\,1\leq i\leq n\}$$

 : 0과 1로 구성된 n -tuple들의 집합

 x_i : 부울 변수 $(x_i$ 의 값은 0과 1만 가능)

$$\Rightarrow f: A^n \to A$$

$$f(x_1, x_2, \dots, x_n) = \begin{cases} 0 \\ 1 \end{cases}$$
 : n 차 부울 함수

정의 동치

$$f, q: A^n \to A$$

$$a_1, a_2, \cdots, a_n \in A$$

$$\Rightarrow f(a_1, a_2, \dots, a_n) = g(a_1, a_2, \dots, a_n)$$

$$\Leftrightarrow$$
 f 와 g 는 동치

정의 최소항

부울 변수 x_1, x_2, \cdots, x_n 의 최소항

$$= y_1 y_2 \cdots y_n$$

여기서
$$y_i = \begin{cases} x_i & , & x_i = 1 \\ x_i & , & x_i = 0 \end{cases}$$

참고 최소항의 개수

$$(부울 변수)=n개 \Rightarrow (최소항)=2^n 개$$

참고 부울 함수의 표현

- (부울 함수)
 - = (1의 값을 가지는 최소항들의 부울 합)
 - : 곱의 합(논리합) 표준형

•	x	y	f(x, y)	
	1	1	1	
	1	0	1	$\Rightarrow f(x, y) =$
	0	1	0	
	0	0	0	

예제

6. x = 1, y = 0, z = 1일 때 부울 함수 f(x, y, z)의 값을 1이 되고, 다른 경우에는 0의 값을 가진다고 하자. 이때 그 부울 함수에 대한 진리표를 구하고, f(x, y, z) = 1인 최소항을 부울 변수의 곱으로 나타내어보자.

7. 부울 변수에 대한 진리표가 다음과 같을 때 부울 함수 f(x, y, z)를 구해보자.

x	y	z	f(x, y, z)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	I	0

8. 다음 부울 함수를 부울 변수의 곱의 합 표준형으로 나타내어보자.

$$(1) \ f(x,y) = \overline{x} + y$$

(2) $f(x, y, z) = (x+y)\overline{z}$

11.3 부울 함수의 간소화

		I		
교과목명	이산수학	분반	담당교수	김 외 현
학부(과)		학번	성명	

참고 부울 함수의 간소화

부울 함수를 최소화함으로써 보다 적은 수의 게이트로 원하는 회로를 구현해 효율성을 높일 수 있음

참고 간소화 방법

- (1) 부울식의 기본 법칙
- (2) 카노우맵

정의 카노우맵 (K-map)

(1) 2변수 카노우맵 표현 방법

x	y	\overline{y}
x	xy	$x\overline{y}$
\overline{x}	$\overline{x}y$	$\overline{x}\overline{y}$

또는

예제

x	y	f(x,y)
1	1	0
1	0	0
0	1	1
0	0	1

$$\begin{bmatrix} x & 1 & 0 \\ 1 & & & \\ 0 & & & \end{bmatrix}$$

예제

- 9. 다음에 대한 카노우맵을 구하여라.
- (1) $x\overline{y} + xy$

$$(2) \ \overline{xy} + \overline{x}y$$

(3)
$$xy + \overline{x}y$$

(4)
$$\overline{x}\overline{y} + x\overline{y}$$

(5)
$$x\bar{y} + \bar{x}y$$

(6)
$$x\overline{y} + \overline{x}y + \overline{x}\overline{y}$$

참고 카노우맵을 이용한 간소화 방법

- ① 1, 2, 4, 8, 16 개로 그룹을 지어 묶음
- ② 바로 이웃해 있는 항들끼리 묶음
- ③ 반드시 직사각형이나 정사각형의 형태로 묶어야만 함

예제

x	y	f(x,y)
1	1	1
1	0	1
0	1	1
0	0	1

$$f(x,y) = \overline{xy} + \overline{xy} + x\overline{y} + xy$$

예제

10. 예제8에서 보인 곱의 합 표준형들을 최소화하라.

(1)
$$x\overline{y} + xy$$

(2)
$$\overline{xy} + \overline{xy}$$

(3)
$$xy + \overline{x}y$$

$$(4) \ \overline{x}\overline{y} + x\overline{y}$$

$$(5) \ \ x\overline{y} + \overline{x}y$$

(6)
$$x\overline{y} + \overline{x}y + \overline{x}\overline{y}$$

(2) 3변수 카노우맵 표현방법

x^{yz}	11	10	00	01
1				
0				

x^{yz}	yz	$y\overline{z}$	$\overline{y}\overline{z}$	$\overline{y}z$
x	xyz	$xy\overline{z}$	$x\overline{y}\overline{z}$	$x\overline{y}z$
\overline{x}	$\overline{x}yz$	$\overline{x}y\overline{z}$	$\overline{x}\overline{y}\overline{z}$	$\overline{x}\overline{y}z$

예제 3변수 카노우맵을 이용한 간소화

(1)	x	y	z	f(x, y, z)
	1	1	1	1
	1	1	0	1
	1	0	1	1
	1	0	0	1
	0	1	1	0
	0	1	0	0
	0	0	1	0
	0	0	0	0

x^{yz}	11	10	00	01
1				
0				

$$f(x, y, z) =$$

(2)	x	y	z	F(x,y)
	1	1	1	0
	1	1	0	0
	1	0	1	0
	1	0	0	0
	0	1	1	1
	0	1	0	1
	0	0	1	1
	0	0	0	1

x^{yz}	11	10	00	01
1				
0				

$$f(x, y, z) =$$

$$f(x, y, z) =$$

$$f\left(x,y,z\right) =$$

(5) yz	11	10	00	01
1		1	1	
0		1	1	

$$f(x, y, z) =$$

$$f(x, y, z) =$$

$$f(x, y, z) =$$

$$f(x, y, z) =$$

$$f(x, y, z) =$$

$$f(x, y, z) =$$

$$f(x, y, z) =$$

$$f(x, y, z) =$$

예제

11. 다음 곱의 합 표준형을 카노우맵을 이용하여 최소 화하라.

$$(1) xy\overline{z} + x\overline{y}\overline{z} + \overline{x}yz + \overline{x}\overline{y}\overline{z}$$

x^{yz}	11	10	00	01
1				
0				

(2)
$$x\overline{y}z + x\overline{y}\overline{z} + \overline{x}yz + \overline{x}\overline{y}z + \overline{x}\overline{y}z$$

x^{yz}	11	10	00	01
1				
0				

(3)
$$xyz + xy\overline{z} + x\overline{y}z + x\overline{y}\overline{z} + \overline{x}yz + \overline{x}\overline{y}z + \overline{x}\overline{y}z + \overline{x}\overline{y}\overline{z}$$

x^{yz}	11	10	00	01
1				
0				

$$(4) xy\overline{z} + x\overline{y}\overline{z} + \overline{x}\overline{y}z + \overline{x}\overline{y}z$$

x^{yz}	11	10	00	01
1				
0				

(3) 4변수 카노우맵 표현방법

wx yz wx	11	10	00	01
11				
10				
00				
01				

$\begin{array}{c} yz \\ wx \end{array}$	yz	$y\overline{z}$	$\overline{y}\overline{z}$	$\overline{y}z$
wx	wxyz	$wxy\overline{z}$	$wx\overline{yz}$	$wx\overline{y}z$
$w\overline{x}$	$w\overline{x}yz$	$w\overline{x}y\overline{z}$	$w\overline{x}\overline{y}\overline{z}$	$w\overline{x}\overline{y}z$
$\overline{w}\overline{x}$	$\overline{w}\overline{x}yz$	$\overline{w}\overline{x}y\overline{z}$	$\overline{w}\overline{x}\overline{y}\overline{z}$	$\overline{w}\overline{x}\overline{y}z$
$\overline{w}x$	$\overline{w}xyz$	$\overline{w}xy\overline{z}$	$\overline{w}x\overline{y}\overline{z}$	$\overline{w}x\overline{y}z$

예제 4변수 카노우맵을 이용한 간소화

(1)	yz wx	11	10	00	01
	11	1	1		
	10	1	1		
	00	1	1		
	01	1	1		

$$f(w, x, y, z) =$$

(2)	$\begin{array}{c} yz \\ wx \end{array}$	11	10	00	01
	11			1	1
	10			1	1
	00			1	1
	01			1	1

$$f\left(w,x,y,z\right) =$$

$$f\left(w,x,y,z\right) =$$

$$f(w, x, y, z) =$$

(5)	$\begin{array}{c} yz \\ wx \end{array}$	11	10	00	01
	11				
	10		1	1	
	00		1	1	
	01				

$$f(w, x, y, z) =$$

$$f(w, x, y, z) =$$

$$f\left(w,x,y,z\right) =$$

$$f(w, x, y, z) =$$

$$f\left(w,x,y,z\right) =$$

$$f(w, x, y, z) =$$

(7) yz wx	11	10	00	01
11	1			1
10		1	1	
00		1	1	
01	1			1

$$f\left(w,x,y,z\right) =$$

(8)	yz wx	11	10	00	01
	11	1	1	1	1
	10	1	1	1	1
	00	1	1		
	01	1	1		

$$f(w, x, y, z) =$$

(9)	yz wx	11	10	00	01
	11	1	1	1	
	10		1	1	
	00		1	1	
	01			1	1

$$f\left(w,x,y,z\right) =$$

(10)	$\begin{array}{c} yz \\ wx \end{array}$	11	10	00	01
	11	1	1	1	1
	10	1	1	1	1
	00	1	1	1	1
	01	1	1	1	1

$$f\left(w,x,y,z\right) =$$

예제

12. 카노우맵을 사용하여 다음 부울 함수를 간소화해 보자.

$$f(x, y, z, w) = \overline{x}\overline{y}\overline{z}\overline{w} + \overline{x}\overline{y}z\overline{w} + \overline{x}y\overline{z}w + \overline{x}yzw$$
$$+ xy\overline{z}w + xyzw + x\overline{y}\overline{z}\overline{w} + x\overline{y}z\overline{w}$$

11.4 논리 회로 설계

교과목명	이산수학	분반	담당교수	김 외 현
학부(과)		학번	성명	

정의 논리 회로 (논리 게이트)

부울 대수의 기본 연산인 부울 합, 부울 곱, 보수 등의 연산을 실행하기 위한 회로

참고

(1) 게이트의 종류

(2) *n* 개의 입력을 갖는 게이트

참고 여러 가지 논리 게이트들의 기호와 진리표

게이트	기호	수식	진리	진리표	
AND	A	$x = A \cdot B$	A B 0 0 0 0 1 1 0 1 1	0 0 0 0	
OR	Ax	x = A + B	A B 0 0 0 1 1 0 1 1	0 1 1 1	
NOT(inverter)	A	$x = A^{\bullet}$	A 0 1	1 0	
NAND	A	$x = (A \cdot B)'$	A B 0 0 0 0 1 1 0 1 1	1 1 1 0	
NOR	$A \longrightarrow \infty - x$	$x = (A + B)^{\dagger}$	A B 0 0 0 0 1 1 0 1 1	x 1 0 0 0	
exclusive-OR(XOR)	A B	$x = (A \oplus B)$ $\mathfrak{A} = A \cdot B + AB \cdot AB \cdot AB \cdot AB \cdot AB \cdot AB \cdot A$	A B 0 0 0 1 1 0 1 1	x 0 1 1 0	
exclusive-NOR	A-Do-x	$x = (A \oplus B)'$ $\underline{\mathfrak{C}} \models$ $x = AB + A'B'$	A B 0 0 0 1 1 0 1 1	x 1 0 0	

참고 게이트의 조합

조합 회로는 인버터, OR 게이트, AND 게이트의 조합으로 구성

예제 $xy + \overline{x}y$

하나의 게이트로부터 나온 출력이 또 다른 게이트들의 입력이 될 수도 있음

예제

- 13. 다음 부울식을 논리 회로로 표현해보자.
- (1) yz
- (2) $xyz + \overline{x}yz$

14. 다음 부울 함수를 간소화하고 간소화된 함수의 논 리 회로를 그려보자.

$$f(x\,,\,y\,,\,z) = \overline{x}\overline{y}z + \overline{x}yz + xyz + xy\overline{z}$$

15. 다음 논리 회로에 해당하는 부울 함수를 구해보 자.

11.5 논리 회로의 응용 교과목명 이산수학 분반 담당교수 김 외 현 학부(과) 학번 성명

정의 논리 회로의 응용

- (1) 전자레인지
 - 우리가 가정에서 사용하는 전자레인지에 이용되는 논리 회로를 생각해 봄
 - 전자레인지는 우리가 사용하지 않을 때에는 문이 닫혀 있고(AND), 타이머가 준비되어 있으며(AND), 시작 버튼을 누르면(AND) 전자레인지가 작동됨

(2) 전자투표기

- 3명으로 구성된 어떤 위원회에서 의사결정을 할 때 '찬성' 또는'반대' 중의 하나로 투표를 하는데 2명 이상이'찬성'을 할 경우 안건이 통과되다고 가정함
- 안건이 통과되는지의 여부를 즉석에서 결정 할 수 있는 소규모 전자투표기의 논리 회로는 아래 그림으로 표현됨

(3) 반가산기

: 각각 1 비트인 입력 x, y를 받아서 x+y를 수행한 후, 덧셈 결과(sum) 비트 s 와 올림수(carry) 비트 c를 출력하는 회로

참고 반가산기의 입출력

(1)
$$s = x\overline{y} + \overline{x}y = (x+y)\overline{(xy)}$$
, $c = xy$

(2)
$$s = x\overline{y} + \overline{x}y = x \oplus y$$
, $c = xy$

