Metoda CPM/PERT

dr inż. Mariusz Makuchowski

CPM - wstęp

CPM

- nazwa metody pochodzi od angielskiego Critical Path Method,
- jest techniką bazującą na grafowej reprezentacji projektu,
- używana jest dla deterministycznych danych.

CPM - modele grafowe projektu

Stosowane są dwa typy modeli grafowych:

- model AON (ang. activity on node)
 - wierzchołki reprezentują operacje (zadania) do wykonania,
 - łuki reprezentują zależności kolejnościowe pomiędzy danymi operacjami;
- model AOA (ang. activity on arrow)
 - wierzchołki reprezentują stany wykonania projektu,
 - łuki reprezentują operacje do wykonania.

CPM - cele stosowania CPM

Główne cele stosowania CPM to:

- wyliczenie czasu zakończenia projektu,
- wyznaczenie operacji niekrytycznych, dla których wyznacza się dopuszczalne opóźnienie, które nie będzie skutkowało opóźnieniem całego projektu,
- wyznaczenie operacji krytycznych, których każde nawet minimalne opóźnienie spowoduje opóźnienie projektu.

CPM - obliczenia w przód i wstecz

CPM dokonuje obliczeń w dwóch fazach:

- obliczenia w przód,
 - najwcześniejsze momenty rozpoczęcia operacji, ES (ang. Early Start),
 - najwcześniejsze momenty zakończenia operacji, EF (ang. Early Finish).
- obliczenia wstecz.
 - LS (ang. Late Start)
 najpóźniejsze momenty rozpoczęcia operacji,
 - LF (ang. Late Finish)
 najpóźniejsze momenty zakończenia operacji.

CPM - ES, EF, LS, LF

- ES jest najwcześniejszym możliwym momentem rozpoczęcia wykonywania operacji,
- EF jest najwcześniejszym możliwym momentem zakończenia wykonywania operacji,
- LS jest najpóźniejszym możliwym momentem rozpoczęcia wykonywania operacji, bez opóźnienia całego projektu,
- LF jest najpóźniejszym możliwym momentem zakończenia wykonywania operacji, bez opóźnienia całego projektu.

CMP - przykład: dane

czynność	poprzednik	czas trwania
Α	-	2
В	-	5
C	A,B	1
D	В	6
Е	C,D	4
F	D	2

- ES = najpóźniejszy z EF wszystkich poprzedników
- EF = ES + czas trwania operacji.

- ES = najpóźniejszy z EF wszystkich poprzedników
- EF = ES + czas trwania operacji.

- ES = najpóźniejszy z EF wszystkich poprzedników
- EF = ES + czas trwania operacji.

- ES = najpóźniejszy z EF wszystkich poprzedników
- EF = ES + czas trwania operacji.

- ES = najpóźniejszy z EF wszystkich poprzedników
- EF = ES + czas trwania operacji.

- ES = najpóźniejszy z EF wszystkich poprzedników
- EF = ES + czas trwania operacji.

- ES = najpóźniejszy z EF wszystkich poprzedników
- EF = ES + czas trwania operacji.

- ES = najpóźniejszy z EF wszystkich poprzedników
- EF = ES + czas trwania operacji.

- ES = najpóźniejszy z EF wszystkich poprzedników
- EF = ES + czas trwania operacji.

- ES = najpóźniejszy z EF wszystkich poprzedników
- EF = ES + czas trwania operacji.

- ES = najpóźniejszy z EF wszystkich poprzedników
- EF = ES + czas trwania operacji.

- LF = najwcześniejszy z LS wszystkich następników
- LS = LF czas trwania operacji.

- LF = najwcześniejszy z LS wszystkich następników
- LS = LF czas trwania operacji.

- LF = najwcześniejszy z LS wszystkich następników
- LS = LF czas trwania operacji.

- LF = najwcześniejszy z LS wszystkich następników
- LS = LF czas trwania operacji.

- LF = najwcześniejszy z LS wszystkich następników
- LS = LF czas trwania operacji.

- LF = najwcześniejszy z LS wszystkich następników
- LS = LF czas trwania operacji.

- LF = najwcześniejszy z LS wszystkich następników
- LS = LF czas trwania operacji.

- LF = najwcześniejszy z LS wszystkich następników
- LS = LF czas trwania operacji.

- LF = najwcześniejszy z LS wszystkich następników
- LS = LF czas trwania operacji.

CPM - luz operacji

- Co to jest całkowity luz, TF (ang.Total Float).
 Luz jest wartością o jaką można opóźnić rozpoczęcie wykonywania operacji albo wydłużyć jej czas trwania, przy jednoczesnym zachowaniu terminu zakończenia projektu.
- Jak wyznaczyć TF?
 TF = LS-ES = LF-EF
- Co można powiedzieć o operacji dla której TF=0?
 Operacja taka jest operacją krytyczną, jakiekolwiek opóźnienie tej operacji spowoduje wydłużenie całego projektu.

CPM - ścieżka krytyczna: przykład

CPM - ścieżka krytyczna: przykład

CPM - ścieżka krytyczna: przykład

CPM - ścieżka krytyczna: własności

Własności ścieżki krytycznej:

- ścieżkę krytyczną tworzą operacje krytyczne (TF=0),
- ścieżka krytyczna jest najdłuższą ścieżką w grafie,
- może istnieć wiele ścieżek krytycznych.

PERT

- nazwa metody PERT pochodzi od angielskiego Program Evaluation and Review Technique,
- jest techniką bazującą na metodzie CPM,
- używana jest dla niedeterministycznych danych;
 - pozwala wyznaczyć prawdopodobieństwo terminowego zakończenia projektu,
 - pozwala wyznaczyć z zadanym prawdopodobieństwem czas trwania projektu.

PERT - dane

Dane projektu:

- dane są operacje wchodzące w skład projektu,
- dane są relacje kolejnościowe pomiędzy operacjami projektu,
- czas operacji podany jest jako trójka:
 - a optymistyczny,
 - m najbardziej prawdopodobny,
 - b pesymistyczny.

PERT - oczekiwany czas trwania operacji

Dla każdej operacji wylicza się oczekiwany czas jej trwania oraz jego wariancję

•
$$t_{oper} = \frac{a_{oper} + 4m_{oper} + b_{oper}}{6}$$
,

•
$$\sigma_{oper}^2 = \left(\frac{b_{oper} - a_{oper}}{6}\right)^2$$
.

PERT - użycie CPM

Dla wyliczonych oczekiwanych czasów trwania operacji stosujemy metodę CPM otrzymując:

- ullet μ oczekiwany czas realizacji projektu,
- σ^2 wariancje czasu projektu, która jest sumą wariancji operacji ze ścieżki krytycznej, $\sigma^2 = \sum_{oper \in CriticalPath} (\sigma^2_{oper})$.

PERT - prawdopodobieństwo zakończenia projektu

- Wartość oczekiwana czasu projektu wynosi μ , a prawdopodobieństwo $p(t < \mu)$ zakończenia projektu w czasie nie większym niż μ wynosi 50%.
- Prawdopodobieństwo p(t < x) zakończenia projektu w terminie nie większym niż x wynosi:

$$p(t < x) = \Phi\left(\frac{x - \mu}{\sigma}\right),\,$$

gdzie Φ jest dystrybuantą standardowego rozkładu normalnego.

PERT - przykład

- Jakie jest prawdopodobieństwo realizacji projektu w czasie nieprzekraczającym 17 dni?
- Jaki czas przeznaczyć na wykonanie projektu aby prawdpodobieństwo realizacji projektu w terminie wynosiło 99%?

PERT - przykład: dane

czynność	poprzednik	czas a	czas m	czas b	czas t	σ^2
Α	-	1	2	3		
В	_	2	3	4		
C	A	1	2	3		
D	A	1	2	3		
E	В	3	4	5		
F	D, E	2	4	6		
G	C	1	3	5		
Н	C	3	5	7		
I	F, H	5	7	9		

PERT - przykład: czas t i σ^2

czynność	poprzednik	czas a	czas m	czas b	czas t	σ^2
Α	-	1	2	3	2	0.11
В	_	2	3	4	3	0.11
С	A	1	2	3	2	0.11
D	A	1	2	3	2	0.11
E	В	3	4	5	4	0.11
F	D, E	2	4	6	4	0.44
G	C	1	3	5	3	0.44
Н	С	3	5	7	5	0.44
I	F, H	5	7	9	7	0.44

Wyniku działania metody CPM otrzymujemy:

- ścieżkę krytyczną, $B \rightarrow E \rightarrow F \rightarrow I$,
- $\mu = t_B + t_E + t_F + t_I = 3 + 4 + 4 + 7 = 18$,
- $\sigma^2 = \sigma_B^2 + \sigma_E^2 + \sigma_F^2 + \sigma_I^2 = 0.11 + 0.11 + 0.44 + 0.44 = 1.10$,
- $\sigma = 1.05$.

PERT - przykład: rozwiązanie

Prawdopodobieństwo zakończenia projektu w ciągu 17 dni:

$$p(t < 17) = \Phi(\frac{17 - \mu}{\sigma}) = \Phi(\frac{-1}{1.05}) = \Phi(-0.95) = 0.1711$$

wynosi 17%.

PERT - przykład: rozwiązanie

Projekt na 99% zakończy się:

$$t = \mu + \sigma \cdot \Phi^{-1}(0.99) = 18 + 1.05 \cdot 2.33 = 20.45$$

nie później niż w połowie 21 dnia.

Dziękuję za uwagę