Answers to Problem Set 5

Ishan Pranav MATH-UA 120 Discrete Mathematics

due October 27, 2023

These are to be written up in LATEX and turned in to Gradescope.

Assigned Problems

1. Prove the following statement by contrapositive: For all $n \in \mathbb{N}$, if $2^n < n!$, then n > 3.

Answer.

Claim. Let $n \in \mathbb{N}$. If $2^n < n!$, then n > 3.

Proof. Let $n \in \mathbb{N}$. We demonstrate the validity of the contrapositive of the claim. Since $n \in \mathbb{N}$, and $n \leq 3$, we have n = 0, n = 1, n = 2, or n = 3.

Suppose n = 0. Then $2^0 = 1$, and 0! = 1. Since 1 = 1, we have $2^n \ge n!$.

Suppose n = 1. Then $2^1 = 2$, and 1! = 1. Since 2 > 1, we have $2^n \ge n!$.

Suppose n = 2. Then $2^2 = 4$, and 2! = 2. Since 4 > 2, we have $2^n \ge n!$.

Suppose n=3. Then $2^3=8$, and 3!=6. Since 8>6, we have $2^n\geq n!$.

We have for all cases of $n \leq 3$ that $2^n \geq n!$. Hence if $2^n < n!$, then n > 3.

2. Prove the following by contradiction:

Let A, B, C be sets. If $A \subseteq B$ and $B \cap C = \emptyset$, then $A \cap C = \emptyset$.

Answer.

Claim. Let A, B, and C be sets. If $A \subseteq B$, and $B \cap C = \emptyset$, then $A \cap C = \emptyset$.

Proof. Let A, B, and C be sets. Suppose $A \subseteq B$, and $B \cap C = \emptyset$. Assume, for the sake of contradiction, that there exists $x \in A \cap C$. Then $x \in A$, and $x \in C$. Since $A \subseteq B$, we have $x \in B$. However, $B \cap C = \emptyset$, even while $x \in B$ and $x \in C$ —which is absurd. Ergo, our assumption is false. There exists no $x \in A \cap C$. Hence $A \cap C = \emptyset$.

3. Prove the following statement by contradiction: Let $x, y \in \mathbb{Z}$. Then $x^2 - 4y - 3 \neq 0$.

Answer.

Claim. Let $x, y \in \mathbb{Z}$. Then $x^2 - 4y - 3 \neq 0$.

Proof. Let $x, y \in \mathbb{Z}$. Assume, for the sake of contradiction, that $x^2 - 4y - 3 = 0$. Note $x^2 = 4y + 3$. Since $x \in \mathbb{Z}$, we have $x^2 \ge 0$. Thus $4y + 3 \ge 0$. Now $y \ge -\frac{3}{4}$. However, y is an arbitrary integer, so y is not necessarily greater than $-\frac{3}{4}$. We have $y \ge -\frac{3}{4}$, even while y is any integer—which is absurd. Ergo, our assumption is false. Hence $x^2 - 4y - 3 \ne 0$.

4. Prove the following by smallest counterexample: Let $n \in \mathbb{N}$. If $n \geq 1$, then $4 \mid (5^n - 1)$.

Answer.

Claim. Let $n \in \mathbb{N}$. If $n \geq 1$, then $4 \mid (5^n - 1)$.

Proof. Let $n \in \mathbb{N}$. Suppose $n \geq 1$. Assume, for the sake of contradiction, that $4 \nmid (5^n - 1)$. Let $X = \{n \in \mathbb{N} : n \geq 1 \text{ and } 4 \nmid (5^n - 1)\}$. Then $X \neq \emptyset$. By the well-ordering principle, there exists $x \in X$ such that x is the least element of X. Note $(5^1 - 1) = 4$, and $4 \mid 4$, so $x \neq 1$. Then $x - 1 \in \mathbb{N}$, but, $x - 1 \notin X$. Thus $4 \mid (5^{x-1} - 1)$, so there exists $k \in \mathbb{Z}$ such that $(5^{x-1} - 1) = 4k$. Observe

$$(5^{x-1} - 1) = 4k$$

$$5(5^{x-1} - 1) = 5(4k)$$

$$(5^{x} - 5) = 20k$$

$$(5^{x} - 1) = 20k + 4$$

$$(5^{x} - 1) = 4(5k + 1).$$

Note $5k + 1 \in \mathbb{Z}$. So we have $4 \mid (5^x - 1)$, even while $x \in X$ —which is absurd. Ergo, our assumption is false. Hence if $n \ge 1$, then $4 \mid (5^n - 1)$.

5. Let $n \in \mathbb{Z}$. Use induction to prove there are $3 \mid (n^3 + 2n)$.

Answer.

Lemma. Let $n \in \mathbb{N}$. We demonstrate that $3 \mid (n^3 + 2n)$ by induction on n.

Base case: Consider n = 0. Note $0^3 + 2 \cdot 0 = 0$. Note also $0 = 3 \cdot 0$ and $0 \in \mathbb{Z}$, so $3 \mid 0$. Therefore $3 \mid (n^3 + 2n)$ for n = 0.

Inductive hypothesis: Let $k \in \mathbb{N}$. Of course, $k \geq 0$. Consider n = k. Assume the result is true for n = k; that is, assume $3 \mid (k^3 + 2k)$.

Inductive step: Consider n=k+1. By the inductive hypothesis, $3 \mid (k^3+2k)$. Thus there exists $a \in \mathbb{Z}$ such that $(k^3+2k)=3a$. Observe

$$(k^{3} + 2k) = 3a$$
$$(k^{3} + 2k) + (3k^{2} + 3k + 3) = 3a + (3k^{2} + 3k + 3)$$
$$(k^{3} + 3k^{2} + 3k + 1) + 2k + 2 = 3a + (3k^{2} + 3k + 3)$$
$$(k+1)^{3} + 2(k+1) = 3a + (3k^{2} + 3k + 3)$$
$$(k+1)^{3} + 2(k+1) = 3(a+k^{2} + k + 1).$$

Note
$$(a + k^2 + k + 1) \in \mathbb{Z}$$
, so $3 \mid ((k+1)^3 + 2(k+1))$.

Hence, by the principle of mathematical induction, for all $n \in \mathbb{N}$, we have $3 \mid (n^3 + 2n)$.

Claim. Let $x \in \mathbb{Z}$. Then $3 \mid (x^3 + 2x)$.

Proof. Let $x \in \mathbb{Z}$. Now we may demonstrate that $3 \mid (x^3 + 2x)$. Since $x \in \mathbb{Z}$, either x < 0 or $x \ge 0$.

Suppose x < 0. Then $-x \ge 0$, so $-x \in \mathbb{N}$. By the lemma, $3 \mid ((-x)^3 + 2(-x))$. So there exists $b \in \mathbb{Z}$ such that $(-x)^3 + 2(-x) = 3b$. Observe

$$(-x)^{3} + 2(-x) = 3b$$

$$-x^{3} - 2x = 3b$$

$$-(x^{3} + 2x) = 3b$$

$$x^{3} + 2x = 3(-b).$$

Note $(-b) \in \mathbb{Z}$, so $3 \mid (x^3 + 2x)$.

Suppose instead $x \ge 0$. Then $x \in \mathbb{N}$. By the lemma, $3 \mid (x^3 + 2x)$.

We have for all cases of $x \in \mathbb{Z}$ that $3 \mid (x^3 + 2x)$.