EXERCISE 8

• Write Matlab functions of the form [x,res,its] = Jacobi(A,b,tol,maxit,x0) that implement the Jacobi method. Do the same for the and Gauss-Seidel method. Here res is the vector of residual norms for each iteration. Take the following algorithm as reference (as stopping criteria, use $||r_k|| / ||r_0|| <$ tol and $||x^{(k)} - x^{(k-1)}|| / ||x^{(k-1)}|| <$ tol. Stop in any case if its > maxits).

Chosen M and N (as in A=M-N) and x_0 , compute r_0 . For $k=1,2,\ldots$, until convergence: $x_k=x_{k-1}+M^{-1}r_{k-1}$ (do not compute the matrix M^{-1} , just solve the system) $r_k=b-Ax_k$

• Test the two methods on the problem Ax = b, where

$$A = \begin{bmatrix} 7 & 6 & 3 \\ 2 & 5 & -4 \\ -4 & -3 & 8 \end{bmatrix}, \qquad b = \begin{bmatrix} 16 \\ 3 \\ 1 \end{bmatrix},$$

using tol= 10^{-6} , maxits= 1000, x0 = $(0, \dots, 0)^T$. Compare the history of convergence of the two methods, i.e. plot the iteration number vs. the norm of the residual. What is the value of max_i $|\lambda_i(B)|$, where B is the iteration matrix?

Useful Matlab commands: M = diag(diag(A)), M = tril(A), plot(), eig()

EXERCISE 9

Consider the system

$$Ax = b$$

with A = gallery('poisson',n) and $b = (1, \dots, 1)^T$.

- For n = 40 solve the system using the Jacobi, Gauss-Seidel and CG (as implemented by the pcg function) methods. Compare the history of convergence of the three methods.
- For $n=10,20,\ldots,100$ solve the system using CG. Check how the number of iterations varies, by plotting the number of iterations vs. n. Check also how the condition number $\lambda_{\max}(A)/\lambda_{\min}(A)$ varies (use the function eigs), and try to relate it with the number of iterations.