

VoIP Voz sobre IP

Equipo docente:

Fernando Lorge (florge@unlu.edu.ar)
Santiago Ricci (sricci@unlu.edu.ar)
Alejandro Iglesias (aaiglesias@unlu.edu.ar)
Mauro Meloni (maurom@unlu.edu.ar)
Patricio Torres (ptorres@unlu.edu.ar)

¿Qué es VOIP?

VoIP es (casi) exactamente lo que su nombre indica: un conjunto de protocolos y tecnologías que permiten utilizar una red basada en el protocolo IP para establecer una comunicación de voz o video.

¿Cómo digitalizamos la multimedia? ¿Cómo los transmitimos en una red? ¿Cómo establecemos los canales de comunicación?¿Hay dispositivos con diferentes capacidades?...

¿Por qué VOIP?

- Menores costos que la telefonía tradicional.
- Simplifica el diseño de la red y reusar dispositivos de intercomunicación.
- Todos los datos pasan por el mismo cable (no se necesita cablear teléfono).
- Hardware dedicado para terminales (teléfonos VoIP) y por software (softphones).
- Facilita la administración y la contabilidad.
- No requiere personal especializado.
- Es más fácil adaptarse a cambios y agregar teléfonos (no hay que recablear)

Administración

Adaptabilidad

¿Cómo funciona VOIP?

¿Cómo funciona VoIP?

¿Cómo funciona VoIP?

¿Cómo funciona VoIP?

¿Cómo funciona VOIP?

SEÑALIZACIÓN

Establecimiento de la comunicación

Arquitectura de un sistema VoIP

Señalización - SIP, H323, etc.

- Localización
- Establecimiento de llamadas (call setup)
- Características de la sesión
- Terminación de llamada

Transmisión de datos - RTP y RCTP.

Encapsulamiento de datos de audio (y video) Secuenciamiento, Marcas de tiempo, Identificación

Soporte - DHCP, NTP, FTP, etc.

- Autoconfiguración, calidad de servicio
- Autenticación, autorización y contabilidad entre dominios

Señalización

Existen diferentes protocolos que se pueden usar para la señalización. Estos a su vez son los que definen cómo funcionará la comunicación y el resto de los protocolos y tecnologías a utilizar.

- SIP (IETF)
- **H323** (ITU-T)
- SCCP o Skinny (Cisco)
- AIX (Digium)

Estos además definen los actores y los papeles que tienen cada uno.

SIP

Session Initiation Protocol, definido en RFC 3261

Similar al protocolo HTTP, en texto plano, petición/respuesta, puerto TCP/UDP 5060.

Componentes:

- User Agent -> Terminal o Teléfono
- Registrar Server -> Servidor de registro de cuentas
- Proxy Server -> Servidor que reenvía mensajes
- Redirect Server -> Servidor que redirige mensajes

Protocolos de señalización:

- SIP -> Establecimiento de la llamada
- SDP -> Negociación de las características de la sesión.

Protocolos de transmisión de medios:

RTP/RTCP -> Transmisión de multimedia

SIP

Estructura de Mensajes:

- Línea inicial (start-line)
- Uno o más campos de encabezados (header fields),
- Una línea en blanco que indica la finalización de los encabezados,
- Opcionalmente un cuerpo de mensaje (message-body)

SIP

Direccionamiento en nomenclatura URI (RFC 3261).

sip:user@domain:port ej sip:ale@sip.unlu.edu.ar:5060

sip:user@host:port ej sip:mauro@10.100.20.2:5060

sip:phone number@domain ej sip:1590@servmarce.unlu.edu.ar

Peticiones: Method <SP> Request-URI <SP> SIP-Version <CRLF>

REGISTER para registrar información de contacto

INVITE, ACK, and CANCEL para establecimiento de sesiones

BYE para terminar sesiones

OPTIONS para consultar a los servidores por sus capacidades

Respuestas: SIP-Version SP Status-Code SP Reason-Phrase CRLF

1xx: Provisional

• 2xx: Success

• 3xx: Redirection

4xx: Client Error

• 5xx: Server Error

6xx: Global Failure

Register

```
Internet Protocol Version 4. Src: 172.30.1.11 (172.30.1.11). Dst: 172.30.1.1 (172.30.1.1)
User Datagram Protocol, Src Port: sip (5060), Dst Port: sip (5060)
Session Initiation Protocol
■ Request-Line: REGISTER sip:172.30.1.1 SIP/2.0
   Method: REGISTER
                                                                                                     Servidor de
                                                              4751111@172.30.1.1

    ■ Request-URI: sip:172.30.1.1

                                                                                                     Raistro SIP
   [Resent Packet: False]
■ Message Header
 Wia: SIP/2.0/UDP 172.30.1.11:5060; branch=z9hG4bK31e7e1cfa
   Max-Forwards: 70
                                                                     172 30 1 11
                                                                                                     172 30 1 1
   Content-Length: 0

■ To: 4751111 <sip:4751111@172.30.1.1>

                                                                                      SIP: REGISTER
 From: 4751111 <sip:4751111@172.30.1.1>:tag=afec0e2ffae8169
   Call-ID: dd5d67821535446081b1eece5c33e606@172.30.1.11
                                                                                      SIP: 401 UNAUTHORIZED

    ■ CSeq: 87753542 REGISTER

 E Contact: 4751111 <sip:4751111@172.30.1.11:5060>;expires=3600
                                                                                      SIP: REGISTER
   Allow: NOTTEY
   Allow: REFER
   Allow: OPTIONS
                                                                                      SIP: 200 OK
   Allow: INVITE
   Allow: ACK
   Allow: CANCEL
   Allow: BYE
```

User-Agent: Avaya SIP R2.2 Endpoint Brcm Callctrl/1.5.1.0 MxSF/v3.2.6.26

Una llamada completa

Invite

```
Internet Protocol Version 4, Src: 172.30.1.11 (172.30.1.11), Dst: 172.30.1.1 (172.30.1.1)
User Datagram Protocol, Src Port: sip (5060), Dst Port: sip (5060)
Session Initiation Protocol

■ Request-Line: INVITE sip:4752222@172.30.1.1 SIP/2.0

■ Message Header
 Wia: SIP/2.0/UDP 172.30.1.11:5060; branch=z9hG4bK085494974
   Max-Forwards: 70
   Content-Length: 261

    ⊕ To: 4752222 <sip:4752222@172.30.1.1>

 From: 4751111 <sip:4751111@172.30.1.1>;tag=980906697d6b2c9
   Call-ID: c3d97bbb99745cbab4252e993de4f49c@172.30.1.11

■ CSeq: 1324510262 INVITE

   Supported: timer
   Allow: NOTIFY
   Allow: REFER
   Allow: OPTIONS
   Allow: INVITE
   Allow: ACK
   Allow: CANCEL
   Allow: BYE
   Content-Type application/sdp
 Supported: replaces
   User-Agent: Avaya SIP R2.2 Endpoint Brcm Callctrl/1.5.1.0 MxSF/v3.2.6.26
■ Message Body
```

Si analizamos una captura del invite vemos que aparece un protocolo nuevo: SDP

Trying & Ringing

Internet Protocol Version 4, Src: 172.30.1.1 (172.30.1.1), Dst: 172.30.1.11 (172.30.1.11) User Datagram Protocol. Src Port: sip (5060). Dst Port: sip (5060) Session Initiation Protocol ■ Status-Line: SIP/2.0 100 Trving ■ Message Header W Via: SIP/2.0/UDP 172.30.1.11:5060; branch=z9hG4bK085494974; received=172.30.1.11 Trying From: 4751111 <sip:4751111@172.30.1.1>;tag=980906697d6b2c9 ⊕ To: 4752222 <sip:4752222@172.30.1.1> Call-ID: c3d97bbb99745cbab4252e993de4f49c@172.30.1.11 ⊕ CSeq: 1324510262 INVITE Server: FPBX-2.10.0rc1(1.8.11) Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, SUBSCRIBE, NOTIFY, INFO, PUBLISH Supported: replaces, timer Contact: <sip:4752222@172.30.1.1:5060> Content-Length: 0 Internet Protocol Version 4, Src: 172.30.1.1 (172.30.1.1), Dst: 172.30.1.11 (172.30.1.11) User Datagram Protocol, Src Port: sip (5060), Dst Port: sip (5060) Session Initiation Protocol ■ Status-Line: SIP/2.0 180 Ringing ■ Message Header W Via: SIP/2.0/UDP 172.30.1.11:5060:branch=z9hG4bK085494974;received=172.30.1.11 Ringing From: 4751111 <sip:4751111@172.30.1.1>:tag=980906697d6b2c9 ⊕ To: 4752222 <sip:4752222@172.30.1.1>; tag=as13d5d28a Status 100 (provisorio) Call-ID: c3d97bbb99745cbab4252e993de4f49c@172.30.1.11 ⊕ CSeq: 1324510262 INVITE Conserva los headers Server: FPBX-2.10.0rc1(1.8.11) Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, SUBSCRIBE, NOTIFY, INFO, PUBLISH Supported: replaces, timer B Contact: <sip:4752222@172.30.1.1:5060> Content-Length: 0

Status 100 (provisorio) Conserva los headers

200 ok

```
Internet Protocol Version 4, Src: 172.30.1.22 (172.30.1.22), Dst: 172.30.1.1
User Datagram Protocol, Src Port: sip (5060), Dst Port: sip (5060)
Session Initiation Prococol
```

- ⊞ Status-Line: SIP/2 0 200 OK
- Message Header
- Message Body
 - Session Description Protocol

Session Description Protocol Version (v): 0

- B Owner/Creator, Session Id (o): MxSIP 0 612545041 IN IP4 172.30.1.22 Session Name (s): SIP Call
- ⊞ Connection Information (c): IN IP4 172.30.1.22
- ⊞ Time Description, active time (t): 0 0
- Media Description, name and address (m): audio 34008 RTP/AVP 0 8 101
- Media Attribute (a): rtpmap:0 PCMU/8000
- Media Attribute (a): rtpmap:8 PCMA/8000
- Media Attribute (a): rtpmap:101 telephone-event/8000
- Media Attribute (a): ptime:20 Media Attribute (a): sendrecv

Información del canal de audio

Status 200 (exitoso)

SDP

"Session Description Protocol" (RFC 8866) es un protocolo que tiene por objetivo transmitir información acerca de los flujos en sesiones multimedia para permitir a los destinatarios participar en la sesión.

Una descripción de sesión SDP incluye:

- -Nombre de Sesión y propósito (Session Description Descripción de Sesión)
- -Tiempo(s) en que la sesión es activa (Time description Descripción Temporal)
- -Los medios que componen la sesión (Media description Descripción de Medios)
- -Información para recibir esos medios (direcciones, puertos, formatos, etc.)

Media Information:

- -El tipo de contenido (video, audio, etc.)
- -El protocolo de transporte (RTP/UDP/IP, H.320, etc.)
- -El formato del contenido (H.261 video, MPEG video, etc.)

Direcciones y puertos:

-Direcciones unicast o multicast, y números de puertos.

SDP en una captura

Una llamada completa

Un momento... ¿Qué es un CODEC?

Desde que ingresa el sonido al micrófono hasta que termina en un paquete RTP....

Como se digitaliza una señal analógica

Resolución.

Cantidad de "bits" que se utilizar para representar la amplitud.

¿Cual es la frecuencia de muestreo?

¿Cuál es la resolución?

Frecuencia de muestreo La cantidad de mediciones que se toman por segundo

1 segundo

(medida en Hz)

Packet rate.

Cantidad de paquetes que se envían por unidad de tiempo con "chunks" de datos

Muestreo

Frecuencia de muestreo La cantidad de mediciones que se toman por segundo (medida en Hz)

Cuanto mayor sea el número de muestras, mayor es la fidelidad de la representación de la señal original.

Cuantificación

División en paquetes

Alguna bibliografía lo denomina "framing", otras "packetization".

Lo importante es que la voz codificada se divide en "bloques" de *N* bits o de *N* milisegundos.

Packet rate.

Cantidad de paquetes que se envían con "chunks" de datos.

¿Pocos paquetes de muchos bits?

¿Muchos paquetes de pocos bits?

¿Qué es mejor? ¿En qué impacta?

Aplicando lo aprendido en VoIP

¿Cual sería una frecuencia de muestreo apropiada?

CODECs en VolP

G711 por ejemplo son 8000 hz de muestreo y 8 b de resolución, 50 packet rate.

Otros CODECs

- G.722 (SB-ADPCM) Subband Adaptive Differential PCM
- G.723.1 Dual-Rate Speech Coder for Multimedia Communications
 - -5.3Kbps—Algebraic Code Excited Linear Prediction (ACELP)
 - –6.3 Kbps—Multipulse Maximum Likelihood Quantization (ML-MLQ)
- G.726 Adaptive Differential PCM encoding. (ADPCM)
- G.729 Conjugate Structure ACELP(Algebraic code-excited linear prediction)
- ILBC Internet Low bitratw Codec (block-independent linear predictive coding)
- GSM Linear predictive coding (LPC)
- Opus RFC 6716 / SILK (Skype) + CELT (Contrained Energy Lapped Transform)

¿Qué pasa si ambos user agent no soportan el mismo CODEC?

Transcodificación

Costos para un servidor Asterisk (microsegundos por un segundo de información)

	g723	gsm	ulaw	alaw	g726	adpcm	slin	lpc10	g729	speex	speex16	ilbc	g726aal2	g722
g723		15	15	15	15	15	9	15	15	15	23	15	15	17,25
gsm	15		15	15	15	15	9	15	15	15	23	15	15	17,25
ulaw	15	15		9,15	15	15	9	15	15	15	23	15	15	17,25
alaw	15	15	9,15		15	15	9	15	15	15	23	15	15	17,25
g726	15	15	15	15		15	9	15	15	15	23	15	15	17,25
adpcm	15	15	15	15	15		9	15	15	15	23	15	15	17,25
slin	6	6	6	6	6	6		6	6	6	14	6	6	8,25
lpc10	15	15	15	15	15	15	9		15	15	23	15	15	17,25
g729	15	15	15	15	15	15	9	15		15	23	15	15	17,25
speex	15	15	15	15	15	15	9	15	15		23	15	15	17,25
speex16	23,5	23,5	23,5	23,5	23,5	23,5	17,5	23,5	23,5	23,5		23,5	23,5	15
ilbc	15	15	15	15	15	15	9	15	15	15	23		15	17,25
g726aal2	15	15	15	15	15	15	9	15	15	15	23	15		17,25
g722	15,6	15,6	15,6	15,6	15,6	15,6	9,6	15,6	15,6	15,6	15	15,6	15,6	

Balance entre calidad y bitrate

La siguiente figura ilustra la calidad de varios códecs en función de la tasa de bits. Intenta resumir los resultados de una colección de pruebas de audición y (cuando no existen datos) muestra evidencia anecdótica.

En general, es bastante representativa, pero no se recomienda intentar extraer ningún valor exacto a una tasa de bits particular.

https://opus-codec.org/comparison/

RTP

Proporciona servicio de entrega extremo-a-extremo para datos con características de tiempo real, como audio y video interactivo.

- Real-time transport protocol (RTP) para transportar datos multimedia.
 - Utiliza UDP como protocolo de transporte (puerto efímeros)
 - Identificación de tipo de carga
 - Numeración de secuencia
 - Marcas de tiempo
 - Monitoreo de entrega
- RTP control protocol (RTCP), para monitorear la calidad del servicio.
 - Permite controlar codificaciones adaptables.
 - Todos los participantes envían paquetes RTCP.
 - La tasa a la que se envían es calculada acorde a la cantidad de participantes. Opcionalmente conducir información mínima de control de sesión.

RTP en un captura

Real-Time Transport Protocol

```
[Stream setup by SDP (frame 6)]
 10.. .... = Version: RFC 1889 Version (2)
  ..0. .... = Padding: False
  ...0 .... = Extension: False
  .... 0000 = Contributing source identifiers count: 0
 0... - Marker: False
 Payload type: ITU-T G.711 PCMU (0)
 Sequence number: 24525
  [Extended sequence number: 90061]
  Timestamp: 11360
 Synchronization Source identifier: 0x53116479 (1393648761)
 Payload: 4e4e5455595f6b7cefe3dddad8d8d9dadbdadbdddfe5e9eb..
```

Calidad de servicio y métricas.

	Codec In	formation		Bandwidth Calculations							
Codec & Bit Rate (Kbps)	Codec Sample Size (Bytes)	Codec Sample Interval (ms)	Mean Opinion Score (MOS)	Voice Payload Size (Bytes)	Voice Payload Size (ms)	Packets Per Second (PPS)	Bandwidth MP or FRF.12 (Kbps)	Bandwidth w/cRTP MP or FRF.12 (Kbps)	Bandwidth Ethernet (Kbps)		
G.711 (64 Kbps)	80 Bytes	10 ms	4.1	160 Bytes	20 ms	50	82.8 Kbps	67.6 Kbps	87.2 Kbps		
G.729 (8 Kbps)	10 Bytes	10 ms	3.92	20 Bytes	20 ms	50	26.8 Kbps	11.6 Kbps	31.2 Kbps		
G.723.1 (6.3 Kbps)	24 Bytes	30 ms	3.9	24 Bytes	30 ms	33.3	18.9 Kbps	8.8 Kbps	21.9 Kbps		

Mean Opinion Score: promedio de calificaciones del 1 (mala) al 5 (muy buena) hechas por personas sobre la calidad de la llamada.

$$MOS = rac{\sum_{n=1}^{N} R_n}{N}$$

Software

Servidores: PBX (centrales telefónicas)

Issabel

Elastix.

Clientes: Ekiga, Linphone, Zoiper.

Hardware

Teléfonos IP con o sin cámara.

Placas con interfaz para telefonia tradicional.

Equipos de VC

Central Telefonica IP

Power over Ethernet (PoE)

La posibilidad de aprovechar el cable de datos para alimentar dispositivos como Access Points y Teléfonos IP

Protocolos auxiliares

DHCP

Asignación dinámica de direcciones

TFTP

Provisión de configuración y de agenda telefónica global

NTP

Hora unificada en dispositivos

DNS

Uso de mnemónicos para apuntar servidores

Bibliografía

- HARTPENCE, B. 2013. Packet Guide to Voice over IP: A system administrator's guide to VoIP technologies. O'Reilly Media
 - Capítulo 1. "Introduction to Voice over the Internet Protocol"
 - Capítulo 3. "Session Initiation Protocol"
 - Capítulo 4. "The Real-Time Transport Protocol and the Real-Time Control Protocol"
 - Capítulo 5. "Codecs" (págs. 121 a 135) sin incluir la sección Video Signals ni siguientes
 - Capítulo 6. "H.323 ITU-T Recommendation for Packet-Based..." (págs. 151 a 156)
- WALLINGFORD, T. 2005. Switching to VolP. Ted Wallingford. O'Reilly
- LANDIVAR, E. 2008. Capítulo 14: "Protocolos SIP y RTP al descubierto" en Comunicaciones Unificadas con Elastix.

https://sourceforge.net/projects/elastix/files/Tutorials_Docs_Manuals/Comunicaciones%20Unificadas%20con%20Elastix