Gradient Boosted Decision Tree Classifier

Rohitha Ravindra Myla, Dongwon Ha, Stephen Marriott

DATA2060

2024/12/13

github

Motivation

What is Gradient Boosting?

 Ensemble learning – a strong learner constructed from multiple weak learners

• Each successive weak learner **corrects the previous** weak learner's prediction

• Weak learners perform slightly better than random guess: decision trees, linear models, k-NN, etc.

Why use Gradient Boosting?

Advantages	Disadvantages
 Model is intuitive Versatile – works on both classification and regression problems Robust to outliers, due to ensemble approach Incredibly accurate for structured tabular data – tops many of the Kaggle competitions 	 Not the most interpretable Can overfit to training data – improper hyperparameter tuning Computationally costly, particularly with big data

Our Approach and Intuition

General Architecture - Representation

- Weak learner: shallow decision tree
- Final model F(x) is sequence of N decision trees
 - $\bigcirc F_{N}(x) = F_{0}(x) + \eta \Sigma^{N} h_{i}(x)$
 - \circ F₀(x) is the initialized prediction
 - $\circ \eta$ is the learning rate (0 to 1)
 - \circ h_i(x) is the prediction made by decision tree i, trained on residuals from previous trees
- Not directly predicting class labels, but pseudo-residuals
 - Pseudo-residuals = true label probability prediction

General Architecture - Loss

- Binary classification: use the Cross Entropy Loss
 - \circ L(y, p(x)) = -(ylog(p(x)) + (1-y)log(1-p(x)))
 - oy are the true labels, 1 & 0
 - \circ p(x) is the probability predictor for the positive class 1

General Architecture - Optimizer

Gradient descent on the pseudo-residuals

• Pseudo-residuals calculated as the negative gradient of the loss $\circ r = - dL(y,p(x))/dF(x) = y - p(x)$

• Decision trees trained on the previous iteration's residuals, which are then used to update the probability prediction

• $F_{i+1}(x) = F_0(x) + \eta h_i(x)$

Why does this work?

- Principle of gradient descent
 - For a datapoint with true label 1, the smaller p(x) is, the larger the residual becomes, and the larger the correction to the next p(x) prediction becomes
 - The inverse is true for true label 0

How does the model work?

Model Pseudocode

• Inputs:

Training set: $S = (x_1, y_1), ..., (x_m, y_m)$ Weak Learner: Decision tree DT

Number of trees: NLearning rate: η Initialize:

Set initial predictions as log-odds of the positive class: $F_0(x) = \log(p_{y=1}/1-p_{y=1})$ For i = 0, 1, ..., N-1:

Compute the residuals: $\mathbf{r}_i = dL(y,p(x))/dF(x) = y - p(x)$ Train a weak learner with residuals as targets: $h_i(x) = DT(F_i(x), S)$ Update the model: $F_{i+1}(x) = F_i(x) + \eta h_i(x)$

• Outputs:

Predictions: $y = argmax(F_N(x))$

Implementation

Implementation of DTR (Decision Tree Regressor)

- Dataset: y=sin(x)+noisy data
- Hyperparameters: max_depth = 16

Metric	DTR from sklearn	Implemented
MSE	0.0030	0.0029

Implementation of GBC (Gradient Boosting Classification)

- Dataset: sklearn.datasets.make_hastie_10_2
 - Dataset used for binary classification in Hastie et al. 2009, Example 10.2
 - 12000 samples
 - 10 features

• Metric: accuracy / confusion matrix

• **Reference:** T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning Ed. 2", Springer, 2009.

Implementation of GBC (Gradient Boosting Classification)

Hyperparameters:

- N_estimators (number of weak learners) = 4
- Learning rate = 0.1

o Max_depth = 4

Metric	GBC from sklearn	Implemented
Accuracy	0.7042	0.703

Reference

Implemented

3500

- 3000

- 2500

- 2000

- 1500

Previous Work

- •Gradient Boosted Decision Trees for High Dimensional Sparse Output (By Si Si; Huan Zhang; S. Sathiya Keerthi; Dhruv Mahajan; Inderjit S. Dhillon; Cho-Jui Hsieh 2)
- •Stochastic gradient boosted distributed decision trees (By Jerry Ye, Jyh Herng Chow, Jiang Chen, Zhaohui Zheng)
- Efficient Gradient Boosted Decision Tree Training on GPUs (By Zeyi Wen; Bingsheng He; Ramamohanarao Kotagiri; Shengliang Lu; Jiashuai Shi)

Summary

 Implemented Gradient Boosting Classifier using Decision Tree Regressor as a weak learner

Interesting parts:

- Residuals: Use multiple decision tree regressor to fit residuals, improve the accuracy of the model
- Learning rate: Learning rate acts as a regularization mechanism, controlling how aggressively the model fits to the residuals.

Challenges:

- O Decision tree regressor: Find the optimal split for the regression problem
- Computational cost: Should implement efficient algorithm for the scalability

Questions?

Thank you!