Name: VIP ID:

- Write your birthday in the form M/D where M is the month, and D is the day (for example, if your birthday is today, then M = 3, D = 27)
- I think I forgot two of the integrals in the table below. My bad. Go ahead and fix them (5 points each of them, all or nothing)...
- Choose six of the following 12 integrals. Each of them is worth 5 points (all or nothing).

$$1. \int \frac{x}{Mx + D} \, dx$$

5.
$$\int Dx\sqrt{x-M}\,dx$$

$$9. \int \frac{\ln x}{x^2} \, dx$$

$$2. \int \frac{Dx}{M^2 + x^2} \, dx$$

6.
$$\int Dx \sec^2(Mx) dx$$
 10.
$$\int (\ln x)^2 dx$$

10.
$$\int (\ln x)^2 dx$$

$$3. \int \frac{Mx^2}{D^2 + x^2} dx$$

$$7. \int \sqrt{x^2 + D^2} \, dx$$

11.
$$\int \tan^2 x \, dx$$

4.
$$\int \sqrt{Dx - M} \, dx$$

8.
$$\int \sqrt{D^2 - M^2 x^2} \, dx$$

12.
$$\int \cos(Dx)\sin(Mx)\,dx$$

Rational Functions	Integrals with roots
$\int x^a dx = \frac{x^{a+1}}{a+1} \text{ (for } a \neq -1\text{)}$	$\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1}\left(\frac{x}{a}\right) + C$
$\int \frac{dx}{x} = \ln x + C$	
$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C$	
Exponential Functions	Logarithms
$\int e^x dx = e^x + C$	$\int \ln x dx =$
$\int a^x dx = \frac{a^x}{\ln a} + C \text{ (for } a > 0)$	$\int \log_a x dx =$
Trigonometric Functions	
$\int \sin x dx = -\cos x + C$	$\int \cos x dx = \sin x + C$
$\int \csc x dx = \ln\left \tan\left(\frac{x}{2}\right)\right + C$	$\int \sec x dx = \ln \left \sec x + \tan x \right + C$