Titel

Mladen Ivkovic mladen.ivkovic@uzh.ch

Datum

Inhaltsverzeichnis

1	Kapitel 1	4
	1.1 Unterkapitel 1.1	
	Tabellen 2.1 Einfach	4
3	Zwei Bilder	4

Anmerkung des Autoren

Dieser Abschnitt ist nicht nummeriert und nicht im Inhaltsverzeichnis.

Zweck Dieses Dokument blablabla.

Punkt 2 Punkt 2

Sonstiger text: Bla blablabla blabla bla. Blabla bla. Blablablabal basdiga asdifsdjfh asdfjlsdfn uilsdfyjkzu shflsdf jhksdfui sf df,jhi afuil sdfuinm,j shsdfnm,..

1 Kapitel 1

1.1 Unterkapitel 1.1

1.1.1 Unterunterkapitel 1.1.1

Die gängigste Form der Zahlensysteme sind Stellenwertsysteme. Eine Zahl a wird in Form einer Reihe von Ziffern z_i mit dazugehöriger Potenz der Basis b^i dargestellt. Der Wert der Zahl ergibt sich dann als Summe der Werte aller Einzelstellen: $a = \sum z_i b^i$.

Umrechnung in andere Zahlensysteme: Gegeben sei Zahl Z, umzuwandeln in System mit Basis b. Eine angenehme Vorgehensweise gibt uns das Horner Schema¹: Dividiere Z durch b. Der Rest dieser Division ist die letzte Stelle der Zahl in der Basis b (Einerstelle). Dividiere den Quotienten dieser Division wieder durch b. Der Rest dieser zweiten Division ergibt die zweite Stelle der Zahl in der neuen Basis. Wiederhole Divisionen, bis kein Rest mehr.

Abb. 1: Darstellung des Zahlenbereichs des Zweierkomplements mit acht Stellen

2 Tabellen

2.1 Einfach

Konjunktion			Disjunktion		Negation		NAND			NOR			
UND			ODER										
\overline{a}	b	$a \wedge b$	a	b	$a \lor b$	a	\bar{a}	a	b	$\overline{a \wedge b}$	a	b	$\overline{a \vee b}$
0	0	0	0	0	0	0	1	0	0	1	0	0	1
0	1	0	0	1	1	1	0	0	1	1	0	1	0
1	0	0	1	0	1			1	0	1	1	0	0
1	1	1 1	1	1	1			1	1	0	1	1	0

3 Zwei Bilder

Dabei müssen wir eine Nebenbedingung $R \wedge S = 0$ setzen - R und S dürfen niemals gleichzeitig = 1 sein. In der Realisierung, dargestellt in Abb. 2, führt dies zu oszillationen.

Will man ein taktgesteuertes RS-Flipflop, so braucht man lediglich das Taktsignal mit einem UND-Gatter jeweils mit dem R- und S-Eingang zu verbinden (siehe Abb. 3).

¹ Website mit Umrechnungen und Erklärungen: http://www.arndt-bruenner.de/mathe/scripts/Zahlensysteme.htm

Abb. 2: RS-Flipflop

Abb. 3: getaktetes RS-Flipflop