Для получения максимальной оценки в 10 баллов достаточно полностью решить любые 5 задач. В случае решения бо́льшего количества задач дополнительные баллы также будут учтены.

На экзамене разрешается пользоваться любыми своими записями. Не разрешается общаться, пользоваться книгами, интернетом и пр.

В решениях можно ссылаться на утверждения, доказанные в лекциях, и на сданные Вами задачи из листков.

- **1.** Пусть X векторное пространство всех числовых последовательностей $x=(x_n)_{n\in\mathbb{N}},$ для каждого r>0 удовлетворяющих условию $\sum_n |x_n| n^r < \infty.$ Введем на X топологию, порожденную семейством полунорм $\{\|\cdot\|_r: r>0\}$, где $\|x\|_r = \sum_n |x_n| n^r.$
- 1) Метризуемо ли X?
- 2) Нормируемо ли X?
- 3) Для каждого r>0 и $x\in X$ положим $\|x\|_r^\infty=\sup_n|x_n|n^r$. Совпадает ли топология, порожденная семейством полунорм $\{\|\cdot\|_r^\infty:r>0\}$, с исходной?
- **2.** Для $a \in \mathbb{R}$ рассмотрим оператор $T_a : C_0(\mathbb{R}) \to C_0(\mathbb{R})$,

$$(T_a f)(x) = f(x - a).$$

Исследуйте семейство T_a на сходимость при $a \to 0$ 1) по операторной норме; 2) в сильной операторной топологии.

- **3.** Пусть S и T ограниченные самосопряженные операторы в гильбертовом пространстве H, причем ST = TS. Рассмотрим гильбертово пространство $H^2 = H \oplus H$ со скалярным произведением $\langle (x_1, y_1), (x_2, y_2) \rangle = \langle x_1, x_2 \rangle + \langle y_1, y_2 \rangle$, и определим оператор R в H^2 формулой R(x, y) = (Sy, Tx). Докажите, что $r(R) = \sqrt{\|ST\|}$ (где r спектральный радиус).
- **4.** Верно ли, что всякое секвенциально слабо замкнутое подмножество гильбертова пространства слабо замкнуто?
- **5.** Пусть T ограниченный самосопряженный оператор в гильбертовом пространстве, и пусть E его спектральная мера. Предположим, что на $\mathbb R$ существует такая положительная регулярная борелевская мера μ , что для каждого борелевского множества $B\subseteq \mathbb R$ условия E(B)=0 и $\mu(B)=0$ эквивалентны.
- 1) Докажите, что для любой ограниченной борелевской функции $f: \mathbb{R} \to \mathbb{C}$ спектр оператора f(T) совпадает с множеством существеных значений f относительно μ .
- 2) Найдите меру μ в случае, когда T это оператор умножения на функцию $\varphi(x) = x + |x|$ в пространстве $L^2[-1,1]$.
- 6. Найдите s-числа и разложение Шмидта для оператора $V\colon L^2[0,1]\to L^2[0,1],$

$$(Vf)(x) = \int_0^x f(t) dt.$$

Указание. Если T — компактный оператор и $T^*T=\sum_n \lambda_n \langle \cdot\,, e_n \rangle e_n$ — разложение Гильберта— Шмидта оператора T^*T , то $T=\sum_n s_n \langle \cdot\,, e_n \rangle f_n$, где $s_n=\sqrt{\lambda_n}$ и $f_n=s_n^{-1}Te_n$.