Objectives

- 1 Plot polar coordinates.
- 2 Convert from polar to rectangular coordinates.
- 3 Convert from rectangular to polar coordinates.
- 4 Convert rectangular equations to polar equations.
- 5 Convert polar equations to rectangular equations

For polar coordinates:

• Start at the origin (pole)

For polar coordinates:

- Start at the origin (pole)
- ullet Go out r units right (r>0) or left (r<0)

For polar coordinates:

- Start at the origin (pole)
- Go out r units right (r > 0) or left (r < 0)
- Rotate by the amount given (**direction**)

For polar coordinates:

- Start at the origin (pole)
- ullet Go out r units right (r>0) or left (r<0)
- Rotate by the amount given (**direction**)

The polar coordinates of a point are (r, θ) .

Objectives

- 1 Plot polar coordinates
- 2 Convert from polar to rectangular coordinates.
- 3 Convert from rectangular to polar coordinates.
- 4 Convert rectangular equations to polar equations.
- 5 Convert polar equations to rectangular equations

Polar to Rectangular Coordinates

Polar to Rectangular Coordinates

$$\cos \theta = \frac{x}{r} \qquad \qquad \sin \theta = \frac{y}{r}$$

Polar to Rectangular Coordinates

$$\cos \theta = \frac{x}{r} \qquad \qquad \sin \theta = \frac{y}{r}$$

$$x = r \cos \theta$$
 $y = r \sin \theta$

(a)
$$(2,240^{\circ})$$

(a)
$$(2,240^{\circ})$$

 $x = 2\cos 240^{\circ}$ $y = 2\sin 240^{\circ}$

(a)
$$(2,240^{\circ})$$

 $x = 2\cos 240^{\circ}$ $y = 2\sin 240^{\circ}$
 $x = 2\left(-\frac{1}{2}\right)$ $y = 2\left(-\frac{\sqrt{3}}{2}\right)$

(a)
$$(2,240^\circ)$$

 $x = 2\cos 240^\circ$ $y = 2\sin 240^\circ$
 $x = 2\left(-\frac{1}{2}\right)$ $y = 2\left(-\frac{\sqrt{3}}{2}\right)$
 $x = -1$ $y = -\sqrt{3}$

(a)
$$(2,240^\circ)$$

$$x = 2\cos 240^\circ \qquad y = 2\sin 240^\circ$$

$$x = 2\left(-\frac{1}{2}\right) \qquad y = 2\left(-\frac{\sqrt{3}}{2}\right)$$

$$x = -1 \quad y = -\sqrt{3}$$

$$(-1, -\sqrt{3})$$

(b)
$$\left(-4, \frac{7\pi}{6}\right)$$

(b)
$$\left(-4, \frac{7\pi}{6}\right)$$

$$x = -4\cos\left(\frac{7\pi}{6}\right) \qquad y = -4\sin\left(\frac{7\pi}{6}\right)$$

(b)
$$\left(-4, \frac{7\pi}{6}\right)$$

$$x = -4\cos\left(\frac{7\pi}{6}\right) \qquad y = -4\sin\left(\frac{7\pi}{6}\right)$$

$$x = -4\left(-\frac{\sqrt{3}}{2}\right) \qquad y = -4\left(-\frac{1}{2}\right)$$

(b)
$$\left(-4, \frac{7\pi}{6}\right)$$

$$x = -4\cos\left(\frac{7\pi}{6}\right) \qquad y = -4\sin\left(\frac{7\pi}{6}\right)$$

$$x = -4\left(-\frac{\sqrt{3}}{2}\right) \qquad y = -4\left(-\frac{1}{2}\right)$$

$$x = 2\sqrt{3} \qquad y = 2$$

(b)
$$\left(-4, \frac{7\pi}{6}\right)$$

$$x = -4\cos\left(\frac{7\pi}{6}\right) \qquad y = -4\sin\left(\frac{7\pi}{6}\right)$$

$$x = -4\left(-\frac{\sqrt{3}}{2}\right) \qquad y = -4\left(-\frac{1}{2}\right)$$

$$x = 2\sqrt{3} \qquad y = 2$$

$$\left(2\sqrt{3}, 2\right)$$

(c)
$$\left(2.5, -\frac{5\pi}{2}\right)$$

(c)
$$\left(2.5, -\frac{5\pi}{2}\right)$$

 $x = 2.5\cos\left(-\frac{5\pi}{2}\right)$ $y = 2.5\sin\left(-\frac{5\pi}{2}\right)$

(c)
$$\left(2.5, -\frac{5\pi}{2}\right)$$

 $x = 2.5\cos\left(-\frac{5\pi}{2}\right)$ $y = 2.5\sin\left(-\frac{5\pi}{2}\right)$
 $x = 2.5(0)$ $y = 2.5(-1)$

(c)
$$\left(2.5, -\frac{5\pi}{2}\right)$$

 $x = 2.5 \cos\left(-\frac{5\pi}{2}\right)$ $y = 2.5 \sin\left(-\frac{5\pi}{2}\right)$
 $x = 2.5(0)$ $y = 2.5(-1)$
 $x = 0$ $y = -2.5$

(c)
$$\left(2.5, -\frac{5\pi}{2}\right)$$

$$x = 2.5 \cos\left(-\frac{5\pi}{2}\right) \qquad y = 2.5 \sin\left(-\frac{5\pi}{2}\right)$$

$$x = 2.5 (0) \qquad y = 2.5 (-1)$$

$$x = 0 \qquad y = -2.5$$

$$(0, -2.5)$$

(d)
$$\left(-3, -\frac{\pi}{4}\right)$$

(d)
$$\left(-3, -\frac{\pi}{4}\right)$$

 $x = -3\cos\left(-\frac{\pi}{4}\right)$ $y = -3\sin\left(-\frac{\pi}{4}\right)$

(d)
$$\left(-3, -\frac{\pi}{4}\right)$$

$$x = -3\cos\left(-\frac{\pi}{4}\right) \qquad y = -3\sin\left(-\frac{\pi}{4}\right)$$

$$x = -3\left(\frac{\sqrt{2}}{2}\right) \qquad y = -3\left(-\frac{\sqrt{2}}{2}\right)$$

(d)
$$\left(-3, -\frac{\pi}{4}\right)$$

$$x = -3\cos\left(-\frac{\pi}{4}\right) \qquad y = -3\sin\left(-\frac{\pi}{4}\right)$$

$$x = -3\left(\frac{\sqrt{2}}{2}\right) \qquad y = -3\left(-\frac{\sqrt{2}}{2}\right)$$

$$x = -\frac{3\sqrt{2}}{2} \qquad y = \frac{3\sqrt{2}}{2}$$

(d)
$$\left(-3, -\frac{\pi}{4}\right)$$

 $x = -3\cos\left(-\frac{\pi}{4}\right)$ $y = -3\sin\left(-\frac{\pi}{4}\right)$
 $x = -3\left(\frac{\sqrt{2}}{2}\right)$ $y = -3\left(-\frac{\sqrt{2}}{2}\right)$
 $x = -\frac{3\sqrt{2}}{2}$ $y = \frac{3\sqrt{2}}{2}$
 $\left(-\frac{3\sqrt{2}}{2}, \frac{3\sqrt{2}}{2}\right)$

Objectives

- 1 Plot polar coordinates.
- 2 Convert from polar to rectangular coordinates.
- 3 Convert from rectangular to polar coordinates.
- 4 Convert rectangular equations to polar equations.
- 5 Convert polar equations to rectangular equations

where θ^\prime is the $\underline{\text{reference angle}}$ used to find the total angle

rotated, θ .

(a)
$$(2, -2\sqrt{3})$$

(a)
$$\left(2,-2\sqrt{3}\right)$$

(a)
$$(2, -2\sqrt{3})$$

$$r = \sqrt{2^2 + (2\sqrt{3})^2} = \sqrt{16} = 4$$

(a)
$$(2, -2\sqrt{3})$$

$$r = \sqrt{2^2 + (2\sqrt{3})^2} = \sqrt{16} = 4$$

(a)
$$(2, -2\sqrt{3})$$

$$r = \sqrt{2^2 + (2\sqrt{3})^2} = \sqrt{16} = 4$$

$$r = \sqrt{2^2 + (2\sqrt{3})^2} = \sqrt{16} = 4$$
 $\theta' = \tan^{-1} \left| \frac{-2\sqrt{3}}{2} \right| = 60^\circ$

(a)
$$(2, -2\sqrt{3})$$

$$r = \sqrt{2^2 + (2\sqrt{3})^2} = \sqrt{16} = 4$$

$$r = \sqrt{2^2 + (2\sqrt{3})^2} = \sqrt{16} = 4$$
 $\theta' = \tan^{-1} \left| \frac{-2\sqrt{3}}{2} \right| = 60^\circ$

(a)
$$(2, -2\sqrt{3})$$

$$r = \sqrt{2^2 + (2\sqrt{3})^2} = \sqrt{16} = 4$$

$$\theta' = \tan^{-1} \left| \frac{-2\sqrt{3}}{2} \right| = 60^{\circ}$$

$$\theta = 300^{\circ}$$

(a)
$$(2, -2\sqrt{3})$$

$$r = \sqrt{2^2 + (2\sqrt{3})^2} = \sqrt{16} = 4$$

$$\theta' = \tan^{-1} \left| \frac{-2\sqrt{3}}{2} \right| = 60^{\circ}$$

$$\theta = 300^{\circ}$$

$$\left(4,\frac{5\pi}{3}\right)$$

(b)
$$(-3, -3)$$

(b)
$$(-3, -3)$$

(b)
$$(-3, -3)$$

$$r = \sqrt{3^2 + 3^2} = 3\sqrt{2}$$

(b)
$$(-3, -3)$$

$$r = \sqrt{3^2 + 3^2} = 3\sqrt{2}$$

(b)
$$(-3, -3)$$

$$r = \sqrt{3^2 + 3^2} = 3\sqrt{2}$$

$$\theta' = \tan^{-1} \left| \frac{-3}{-3} \right| = 45^{\circ}$$

(b)
$$(-3, -3)$$

$$r = \sqrt{3^2 + 3^2} = 3\sqrt{2}$$

$$\theta' = \tan^{-1} \left| \frac{-3}{-3} \right| = 45^{\circ}$$

(b)
$$(-3, -3)$$

$$r = \sqrt{3^2 + 3^2} = 3\sqrt{2}$$

$$\theta' = \tan^{-1} \left| \frac{-3}{-3} \right| = 45^{\circ}$$

$$\theta = 225^{\circ}$$

(b)
$$(-3, -3)$$

$$r = \sqrt{3^2 + 3^2} = 3\sqrt{2}$$

$$\theta' = \tan^{-1} \left| \frac{-3}{-3} \right| = 45^{\circ}$$

$$\theta = 225^{\circ}$$

$$\left(3\sqrt{2},\frac{5\pi}{4}\right)$$

$$r = 3$$

$$r = 3$$

$$r = 3$$

$$\theta = \frac{3\pi}{2}$$

$$r = 3$$

$$\theta = \frac{3\pi}{2}$$

$$\left(3, \frac{3\pi}{2}\right)$$

(d) (-3,4)

(d)
$$(-3,4)$$

(d)
$$(-3,4)$$

$$r = \sqrt{3^2 + 4^2} = 5$$

(d)
$$(-3,4)$$

$$r = \sqrt{3^2 + 4^2} = 5$$

(d)
$$(-3,4)$$

$$r = \sqrt{3^2 + 4^2} = 5$$

$$\theta' = \tan^{-1} \left| \frac{4}{-3} \right| \approx 53.13^{\circ}$$

(d)
$$(-3,4)$$

$$r = \sqrt{3^2 + 4^2} = 5$$

$$heta' = an^{-1} \left| rac{4}{-3}
ight| pprox 53.13^{\circ}$$

(d)
$$(-3,4)$$

$$r = \sqrt{3^2 + 4^2} = 5$$

$$\theta' = \tan^{-1} \left| \frac{4}{-3} \right| \approx 53.13^{\circ}$$

$$\theta \approx 126.87^{\circ}$$

(d)
$$(-3,4)$$

$$r = \sqrt{3^2 + 4^2} = 5$$

$$\theta' = \tan^{-1} \left| \frac{4}{-3} \right| \approx 53.13^{\circ}$$

$$\theta \approx 126.87^{\circ}$$

$$\left(5, \pi - \tan^{-1}\left(\frac{4}{3}\right)\right)$$

Objectives

- 1 Plot polar coordinates.
- 2 Convert from polar to rectangular coordinates.
- 3 Convert from rectangular to polar coordinates.
- 4 Convert rectangular equations to polar equations.
- 5 Convert polar equations to rectangular equations

Rectangular and Polar Equations

We can use the relationship between rectangular and polar coordinates to convert equations of one form to the other.

Rectangular and Polar Equations

We can use the relationship between rectangular and polar coordinates to convert equations of one form to the other.

$$x = r \cos \theta$$

$$y = r \sin \theta$$

Rectangular and Polar Equations

We can use the relationship between rectangular and polar coordinates to convert equations of one form to the other.

$$x = r\cos\theta$$

$$v = r \sin \theta$$

$$x^2 + y^2 = r^2$$

$$\tan\theta = \frac{y}{x}$$

(a)
$$y = -x$$

(a)
$$y = -x$$

$$y = -x$$

(a)
$$y = -x$$

$$y = -x$$

$$r\cos\theta = -r\sin\theta$$

(a)
$$y = -x$$

$$y = -x$$

$$r\cos\theta = -r\sin\theta$$

$$r\cos\theta + r\sin\theta = 0$$

(a)
$$y = -x$$

$$y = -x$$

$$r\cos\theta = -r\sin\theta$$

$$r\cos\theta + r\sin\theta = 0$$

$$r(\cos\theta+\sin\theta)=0$$

$$r(\cos\theta+\sin\theta)=0$$

r = 0

$$r(\cos\theta + \sin\theta) = 0$$
$$\cos\theta + \sin\theta = 0$$

$$r(\cos \theta + \sin \theta) = 0$$
 $r = 0$ $\cos \theta + \sin \theta = 0$ $\cos \theta = -\sin \theta$

$$r(\cos\theta + \sin\theta) = 0$$

$$r = 0$$

$$\cos\theta + \sin\theta = 0$$

$$\cos\theta = -\sin\theta$$

$$\theta = -\frac{\pi}{4}$$

(b)
$$y = x^2$$

(b)
$$y = x^2$$

$$r\sin\theta=(r\cos\theta)^2$$

(b)
$$y = x^2$$

$$r\sin\theta = (r\cos\theta)^2$$

$$r\sin\theta=r^2\cos^2\theta$$

(b)
$$y = x^2$$

$$r \sin \theta = (r \cos \theta)^{2}$$

$$r \sin \theta = r^{2} \cos^{2} \theta$$

$$r \sin \theta - r^{2} \cos^{2} \theta = 0$$

(b)
$$y = x^2$$

$$r \sin \theta = (r \cos \theta)^{2}$$

$$r \sin \theta = r^{2} \cos^{2} \theta$$

$$r \sin \theta - r^{2} \cos^{2} \theta = 0$$

$$r (\sin \theta - r \cos^{2} \theta) = 0$$

(b)
$$y = x^2$$

$$r \sin \theta = (r \cos \theta)^2$$

$$r \sin \theta = r^2 \cos^2 \theta$$

$$r \sin \theta - r^2 \cos^2 \theta = 0$$

$$r (\sin \theta - r \cos^2 \theta) = 0$$

$$r = 0$$

$$\sin \theta - r \cos^2 \theta = 0$$

$$\sin\theta - r\cos^2\theta = 0$$

$$\sin\theta - r\cos^2\theta = 0$$

$$\sin\theta = r\cos^2\theta$$

$$\sin \theta - r \cos^2 \theta = 0$$

$$\sin \theta = r \cos^2 \theta$$

$$r = \frac{\sin \theta}{\cos^2 \theta}$$

$$\sin \theta - r \cos^2 \theta = 0$$

$$\sin \theta = r \cos^2 \theta$$

$$r = \frac{\sin \theta}{\cos^2 \theta}$$

$$r = \left(\frac{\sin \theta}{\cos \theta}\right) \left(\frac{1}{\cos \theta}\right)$$

$$\sin \theta - r \cos^2 \theta = 0$$

$$\sin \theta = r \cos^2 \theta$$

$$r = \frac{\sin \theta}{\cos^2 \theta}$$

$$r = \left(\frac{\sin \theta}{\cos \theta}\right) \left(\frac{1}{\cos \theta}\right)$$

$$r = \tan \theta \cdot \sec \theta$$

(c)
$$(x-3)^2 + y^2 = 9$$

(c)
$$(x-3)^2 + y^2 = 9$$

 $(r\cos\theta - 3)^2 + (r\sin\theta)^2 = 9$

(c)
$$(x-3)^2 + y^2 = 9$$

 $(r\cos\theta - 3)^2 + (r\sin\theta)^2 = 9$
 $r^2\cos^2\theta - 6r\cos\theta + 9 + r^2\sin^2\theta = 9$

(c)
$$(x-3)^2 + y^2 = 9$$

 $(r\cos\theta - 3)^2 + (r\sin\theta)^2 = 9$
 $r^2\cos^2\theta - 6r\cos\theta + 9 + r^2\sin^2\theta = 9$
 $r^2\cos^2\theta + r^2\sin^2\theta - 6r\cos\theta = 0$

(c)
$$(x-3)^2 + y^2 = 9$$

 $(r\cos\theta - 3)^2 + (r\sin\theta)^2 = 9$
 $r^2\cos^2\theta - 6r\cos\theta + 9 + r^2\sin^2\theta = 9$
 $r^2\cos^2\theta + r^2\sin^2\theta - 6r\cos\theta = 0$
 $r^2(\cos^2\theta + \sin^2\theta) - 6r\cos\theta = 0$

(c)
$$(x-3)^2 + y^2 = 9$$

 $(r\cos\theta - 3)^2 + (r\sin\theta)^2 = 9$
 $r^2\cos^2\theta - 6r\cos\theta + 9 + r^2\sin^2\theta = 9$
 $r^2\cos^2\theta + r^2\sin^2\theta - 6r\cos\theta = 0$
 $r^2(\cos^2\theta + \sin^2\theta) - 6r\cos\theta = 0$
 $r^2-6r\cos\theta = 0$

(c)
$$(x-3)^2 + y^2 = 9$$

 $(r\cos\theta - 3)^2 + (r\sin\theta)^2 = 9$
 $r^2\cos^2\theta - 6r\cos\theta + 9 + r^2\sin^2\theta = 9$
 $r^2\cos^2\theta + r^2\sin^2\theta - 6r\cos\theta = 0$
 $r^2(\cos^2\theta + \sin^2\theta) - 6r\cos\theta = 0$
 $r^2-6r\cos\theta = 0$
 $r(r-6\cos\theta) = 0$

(c)
$$(x-3)^2 + y^2 = 9$$

$$(r\cos\theta - 3)^2 + (r\sin\theta)^2 = 9$$

$$r^2\cos^2\theta - 6r\cos\theta + 9 + r^2\sin^2\theta = 9$$

$$r^2\cos^2\theta + r^2\sin^2\theta - 6r\cos\theta = 0$$

$$r^2(\cos^2\theta + \sin^2\theta) - 6r\cos\theta = 0$$

$$r^2 - 6r\cos\theta = 0$$

$$r(r - 6\cos\theta) = 0$$

$$r = 0$$

$$r - 6\cos\theta = 0$$

$$r - 6\cos\theta = 0$$

$$r - 6\cos\theta = 0$$

$$r = 6\cos\theta$$

Objectives

- 1 Plot polar coordinates
- 2 Convert from polar to rectangular coordinates.
- 3 Convert from rectangular to polar coordinates.
- 4 Convert rectangular equations to polar equations.
- 5 Convert polar equations to rectangular equations

(a)
$$r = -3$$

(a)
$$r = -3$$

$$r = -3$$

(a)
$$r = -3$$

$$r = -3$$

$$r^2 = 9$$

(a)
$$r = -3$$

$$r = -3$$

$$r^2 = 9$$

$$x^2 + y^2 = 9$$

(b)
$$\theta = \frac{4\pi}{3}$$

(b)
$$\theta = \frac{4\pi}{3}$$

$$\theta = \frac{4\pi}{3}$$

(b)
$$\theta = \frac{4\pi}{3}$$

$$\theta = \frac{4\pi}{3}$$

$$\tan\theta=\tan\left(\frac{4\pi}{3}\right)$$

(b)
$$\theta = \frac{4\pi}{3}$$

$$heta=rac{4\pi}{3}$$
 $an heta= an\left(rac{4\pi}{3}
ight)$ $rac{y}{x}=\sqrt{3}$

(b)
$$\theta = \frac{4\pi}{3}$$

$$\theta = \frac{4\pi}{3}$$

$$\tan \theta = \tan \left(\frac{4\pi}{3}\right)$$

$$\frac{y}{x} = \sqrt{3}$$

$$y = x\sqrt{3}$$

(c)
$$r = 1 - \cos \theta$$

(c)
$$r = 1 - \cos \theta$$

$$r = 1 - \cos \theta$$

(c)
$$r = 1 - \cos \theta$$

$$r = 1 - \cos \theta$$
$$r \cdot r = r(1 - \cos \theta)$$

(c)
$$r = 1 - \cos \theta$$

$$r = 1 - \cos \theta$$
$$r \cdot r = r(1 - \cos \theta)$$
$$r^{2} = r - r \cos \theta$$

(c)
$$r = 1 - \cos \theta$$

$$r = 1 - \cos \theta$$

$$r \cdot r = r(1 - \cos \theta)$$

$$r^{2} = r - r \cos \theta$$

$$x^{2} + y^{2} = r - x$$

(c)
$$r = 1 - \cos \theta$$
$$r \cdot r = r(1 - \cos \theta)$$
$$r^2 = r - r \cos \theta$$
$$x^2 + y^2 = r - x$$
$$x^2 + y^2 + x = r$$

(c)
$$r = 1 - \cos \theta$$
$$r \cdot r = r(1 - \cos \theta)$$
$$r^2 = r - r \cos \theta$$
$$x^2 + y^2 = r - x$$
$$x^2 + y^2 + x = r$$
$$(x^2 + y^2 + x)^2 = x^2 + y^2$$