Risk Analytics Correlated default

Graphical model for defaults

Dr. Paul Larsen

November 1, 2017

Table of contents

Introduction

Firm-value models of default

Graphical model for defaults

Implications for CDOs

Introduction to correlated default

Article: [Dolmetsch,]

Firm-value default models

Intuition: Default occurs if firm is assets are below critical threshold at maturity T

- Counterparty i assets at time T: $A_T^{(i)}$
- Default threshold: Ci

Definition

The *default event* in a firm-value model is $D_i = I_{\{A_T^{(j)} < C_i\}}$.

Firm-value default models

Definition

The default event in a firm-value model is $D_i = I_{\{A_T^{(i)} < C_i\}}$.

Classic firm value model: [Merton, 1974] Assumptions:

 Under real-world measure, the firm's value (V_t) and debt B satisfies

$$dV_t = \mu_V V_t dt + \sigma_V V_t dW_t.$$

- Frictionless market with continuous trading.
- Risk-free interest rate deterministic and ≥ 0.
- The process (V_t) is independent of how the firm is financed. In particular, it is independent on *B*.

Less classical asset value model: Frank Hunziker, UBS, 2015 Banking Credit Risk Management Summit (Vienna)

Bernoulli default models

Set
$$p_i = \mathbb{E}_{\mathscr{P}}[D_i]$$
, probability of default at T . Then
$$D_i = \begin{cases} 1 \text{ (default)} & \text{with probability } p_i \\ 0 \text{ (no default)} & \text{with probability } 1 - p_i \end{cases}$$

i.e. $D_i \sim B(1, p_i).^1$

Definition

A Bernoulli credit portfolio is a vector of random variables $\mathbf{D} = (D_1, ..., D_m)$ such that $D_i \sim B(1, p_i)$ for all i. The default count statistic of D is

$$D = \sum_{i=1}^{m} D_i.$$

¹ B(m,p) is the binomial distribution, with $\mathcal{P}(X=n) = {m \choose n} p^n (1-p)^{m-n}$

Bernoulli default models, II

Case: D_i independent, $D_i \sim B(1,p) \implies D \sim B(m,p)$

Example: m = 2, p = 0.1

Table: Default count distribution

0	1	2
0.81	0.18	0.01

Quick task: Derive the default count distribution for m = 2, arbitrary p.

Bernoulli default models, II

Case: D_i independent, $D_i \sim B(1,p) \implies D \sim B(m,p)$

Example: m = 2, p = 0.1

Table: Default count distribution

0	1	2
0.81	0.18	0.01

Quick task: Derive the default count distribution for m = 2, arbitrary p. Solution:

$$\mathcal{P}(D=0) = (1-p)^2$$

$$\mathcal{P}(D=1) = 2p(1-p)$$

$$\mathcal{P}(D=2) = p^2$$

Bernoulli mixture models

Bernoulli credit portfolio as before, but now default probabilities random variables

- **P** = $(P_1, ..., P_m) \sim F$, where
- F a distribution function with support in $[0,1]^m$

Definition

A Bernoulli mixture default model is a portfolio $\mathbf{D} = (D_1, ..., D_m)$ such that

- $D_i|_{P_i=p_i} \sim B(1,p_i)$
- $(D_i|_{\mathbf{P}=\mathbf{p}})$ independent

For $d_i \in \{0, 1\}$, the probability distribution of **D** is

$$\mathscr{P}(D_1 = d_1, ..., D_m = d_m) = \int_{[0,1]^m} \prod_{i=1}^m p_i^{d_i} (1-p_i)^{1-d_i} dF(p_1,...,p_m)$$

Example (Single factor CreditMetrics™, KMV models)

•
$$D_i = I_{\{A_T^{(i)} < C_i\}} \sim B\left(1, \mathscr{P}\left(A_T^{(i)} < C_i\right)\right)$$

- Asset value dependent on underlying factors, e.g. GDP, unemployment, region
- Normalizing log-returns $\log (A_T^{(i)}/A_0^{(i)})$, asset-value is $r_i = \sqrt{\rho}\Phi + \sqrt{1 - \rho}\epsilon_i$
 - Φ: composite systemic factor, Φ ~ N(0,1)²
 - ϵ_i : idiosyncratic factor, $\epsilon_i \sim N(0,1)$
 - All ϵ_i assumed independent of one another and of Φ
 - $\rho = \text{Covar}(A_i, \Phi)$: systemic risk of counterparty i
- \implies Default event is $D_i = I_{\{r_i < c_i\}} \sim B(1, \mathcal{P}(r_i < c_i))$
- \implies (Normalized) default threshold satisfies $c_i = N^{-1}(p_i)$

²In general there are more systemic factors

Bernoulli mixture models, III

Recap

- Default $\iff r_i = \sqrt{\rho}\Phi + \sqrt{1 \rho}\epsilon_i < c_i$, where $r_i, \Phi, \epsilon_i \sim N(0, 1)$, and $c_i = N^{-1}(p_i)$
- Default probabilities P_i depend on ρ , Φ : $\mathscr{P}(P_i = p_i | \Phi = \phi) = N(c_i - \sqrt{\rho}\phi)$
- The conditional default portfolio $\mathbf{D}|_{\Phi=\phi}=(D_1,\ldots,D_m)|_{\Phi=\phi}$ is independent $\Longrightarrow \mathbf{D}$ is a Bernoulli default mixture model

Bernoulli mixture example

Set
$$m = 2$$
, $\rho = 0.5$, $c = (c_1, c_2) = (-1.28, -2.88)$
 $\Rightarrow (p_1, p_2) = (0.1, 0.002)$

Table: Default count distribution

0	1	2
0.8992	0.0995	0.0013

Alternate default dependence structures

Basics of t-distribution: Let $X_i \sim N(0,1)$ be independent.

Definition

The random variable $X = X_1^2 + ... + X_n^2$ is χ^2 -distributed with n degrees of freedom

Let
$$\mathbf{Y} = (Y_1, ..., Y_m) \sim N(0, \Gamma)$$
, and let $\Theta = \sqrt{(n/X)}$, where $X \sim \chi^2(n)$, and \mathbf{Y}, Θ independent

Definition

The random variable $Z = \Theta Y$ is a multivariate t-distribution with n degrees of freedom and correlation matrix Γ .

Bernoulli mixture model with t-copula, m = 2,125

Table: Default count distribution, m=2

	0	1	2
Gaussian copula	0.8992	0.0995	0.0013
t-copula	0.8994	0.0991	0.0015

Stress testing Bernoulli mixture models

Goal: Quantify change in credit loss distribution in adverse economic situation

- Increase PDs
- Increase λ (loss-given-default)
- Truncate systemic factors Φ

Graphical default models

Single-factor, m = 2:

- $D_1, D_2 \in \{0, 1\}$ as before
- Systemic factor Φ replaced with $S \in \{0, 1\}$, where $S = 0 \implies$ healthy, $S = 1 \implies$ distress
- Model parameters η_i, η_F (nodes), $\eta_{i,S}$ (edges)

Graphical default models, II

Definition

A graphical default model is called *homogeneous single-factor* if $\eta_{i,S} = \eta_{D,S}$, and $\eta_i = \eta_D$ for all $i \in \{1,...,m\}$

If homogeneous, single-factor

$$\implies$$
 total distribution function, $(\mathbf{d}, s) = (d_1, \dots, d_m, s) \in \{0, 1\}^{m+1}$:

$$\mathscr{P}(\mathbf{D} = \mathbf{d}, S = s) = \frac{1}{Z} \exp\left(\eta_D \sum_{i=1}^m d_i + \eta_S s + \eta_{D,S} s \sum_{i=1}^m d_i\right),$$

where Z is partition function to ensure total probability = 1:

$$Z = (1 + e^{\eta_D})^m + e^{\eta_S} (1 + e^{\eta_D + \eta_{D,S}})^m$$

Dr. Paul Larsen Risk Analytics November 1, 2017

15

Graphical default models, III

Assume homogenous, single-factor. Then Counterparty marginal distribution:

$$\mathscr{P}(\mathbf{D} = \mathbf{d}) = \sum_{\mathbf{S} \in \{0,1\}} \mathscr{P}(\mathbf{D} = \mathbf{d}, \mathbf{S} = \mathbf{s})$$

$$= 1/Z \left(\exp \left(\eta_D \sum_{i=1}^m d_i \right) + \exp \left(\eta_S + (\eta_D + \eta_{D,S}) \sum_{i=1}^m d_i \right) \right)$$

And the default count distribution is

$$\mathscr{P}(D=n) = \mathscr{P}\left(\sum_{i=1}^{m} D_{i} = n\right)$$
$$= \frac{1}{Z}\binom{m}{n}\left(\exp(\eta_{D}n) + \exp\left(\eta_{S} + (\eta_{D} + \eta_{D,S})n\right)\right)$$

Graphical default models, example

Set
$$m = 15$$
, $\eta_D = -0.7$, $\eta_D S = -2.1$, $\eta_S = 5.5$

Figure: Graphical Model Default Count Distribution

Dr. Paul Larsen Risk Analytics November 1, 2017

17

Collateralized debt obligations and default models

- CDO investor payments separated into tranches: highest tranch (senior) gets payments first, lowest tranch (equity) gets remainder payments after defaults
- Spread per tranch
 ⇔ default risk per tranch
 ⇔ correlated default risk
- Gaussian copulas used to price CDOs leading up to 2007-8 crisis [Li, 2000]

Main sources

- [Bluhm et al., 2016], Chapter 2
- [McNeil et al., 2015], Chapter 8
- [Rutkowski and Tarca, 2015]
- [Kalkbrener and Packham, 2015]
- [Filiz et al., 2012]

Bibliography I

Bluhm, C., Overbeck, L., and Wagner, C. (2016). *Introduction to credit risk modeling*. CRC Press.

Dolmetsch, C.

Filiz, I. O., Guo, X., Morton, J., and Sturmfels, B. (2012). Graphical models for correlated defaults. *Mathematical Finance*, 22(4):621–644.

Kalkbrener, M. and Packham, N. (2015). Correlation under stress in normal variance mixture models. *Mathematical Finance*, 25(2):426–456.

Li, D. X. (2000). On default correlation: A copula function approach. *The Journal of Fixed Income*, 9(4):43–54.

McNeil, A. J., Frey, R., and Embrechts, P. (2015). *Quantitative risk management: Concepts, techniques and tools.* Princeton university press.

Merton, R. C. (1974). On the pricing of corporate debt: The risk structure of interest rates. *The Journal of finance*, 29(2):449–470.

Bibliography II

Rutkowski, M. and Tarca, S. (2015). Regulatory capital modeling for credit risk. *International Journal of Theoretical and Applied Finance*, 18(05):1550034.