Juegos bayesianos

Teoría de Juegos

Facultad de Ciencias Sociales

Objetivos

- 1. Definir juegos bayesianos
- 2. Presentar el equilibrio de Nash bayesiano
- 3. Dar ejemplos de juegos bayesianos
- 4. Presentar el principio de revelación

ATENCIÓN

- Esta etapa del curso contiene material que tienen como objetivo ilustrar (y ¿dramatizar?) hechos de la realidad con el objetivo de explicar los conceptos.
- NO representan mi opinión personal ni pretenden juzgan sobre estas situaciones.

Índice

Juegos bayesianos (%)

Ejemplos (😍)

Una variante de BoT

Entrada al mercado (+ complicado)

El amigo del fiscal (un poco + complicado...)

Principio de revelación (3)

Presentación

- Los juegos bayesianos son juegos estrategicos que permiten analizar situaciones donde cada jugador tiene información incompleta sobre algún aspecto de su entorno que es relevante para elegir una acción.
- Información incompleta: al menos un jugador no está seguro de la función de utilidad de otro jugador, es decir algún jugador tiene información privada.

Ejemplos "motivadores"

1. Desarrollo

- Política de apoyo empresarial ⇒ las empresas ¿son emprendedoras o rentistas?
- Con el tratado transpacífico ⇒ ¿Uruguay crece o se estanca?

2. Ciencia política

- Milei, ¿es o se hace?
- Mujica, ¿se va a la chacra si gana Orsi o se queda?

3. La vida misma

- El profe, ¿es simpático o tenaza?
- Bielsa, ¿es un genio o un loco?

Problema

- Los jugadores tienen alguna idea sobre las características (tipos) de sus adversarios, pero no están seguros sobre ellas.
- Los jugadores tienen que formarse conjeturas sobre los tipos (estados de la naturaleza) que enfrentan.
- Para representar los juegos hay que hacer el "truco" de Harsanyi:
 - Hay un conjunto de jugadores I que tienen un mismo conjunto de acciones posibles A_i,
 - algún/as jugadores tiene distintos tipos (ej. genio, loco; simpático, tenaza; emprendedor, rentista),
 - asocio un pago a cada tipo de jugador.

Desarrollo del juego (¡gracias Harsanyi!)

- Harsanyi (1967) supone que un juego bayesiano tiene la siguiente estructura:
- 1. Antes de empezar el juego, el azar (o la naturaleza) determina de forma aleatoria un vector posible de tipos $t = (t_1, ..., t_n)$, para cada jugador,
- 2. el azar revela t_i al jugador i pero **no** a los demás jugadores,
- los jugadores toman sus decisiones en forma simultánea (por ahora): i elije a_i ∈ A_i,
- 4. se realizan los pagos que dependen de: i) mi acción, ii) la del otro, iii) el tipo que soy.

Harsanyi

- Harsanyi (1967) ⇒ con 1. y 2. se transforma un juego con información incompleta en un juego con información imperfecta.
- En alguna ronda del juego el jugador que tiene que decidir no sabe la historia completa del juego, en particular que jugó "el azar" o "la naturaleza".

Problema

se supone que la distribución de probabilidades sobre los tipos es de conocimiento común.

Juego bayesiano es...

- un conjunto de jugadores $(I = \{1, 2, ..., n\})$,
- un conjunto de estados/tipos (t_i ∈ T_i, los distintos juegos posibles),
- para cada jugador:
 - un conjunto de acciones A_i,
 - una creencia $p_i(t_{-i}|t_i)$ del jugador i —que es de tipo t_i —sobre los tipos de los demás jugadores,
 - una función de pagos de Bernoulli (\mathbb{Q}) sobre el par (acciones, tipos); $u_i(a_i, a_{-i}; t_i)$.

Bernoulli

- Cuando el juego es de información completa, la utilidad que obtengo en cada resultado es simplemente el pago.
- Cuando el juego es de información incompleta, tengo que tomar una decisión sin saber el tipo ⇒ el bienestar —utilidad— del agente es esperado.
- Ej: supongamos que tiro una moneda: si sale cara me dan \$100, si sale cruz me dan \$0; antes de tirar la moneda, ¿cuánto espero ganar en el juego?
- Fácil: $100 \times 0.5 + 0 \times 0.5 = 50 .
- Esta es la utilidad esperada. (Gracias Bernoulli 🤓)

Estrategia

Definición

En un juego bayesiano una **estrategia** para el jugador i es una función —regla— $s_i(t_i)$ donde, para cada tipo del jugador determina la acción que el tipo t_i elegiría si el azar determinaría que es de ese tipo.

- En un juego bayesiano, los espacios de estrategias se construyen a partir de los espacios de tipos y acciones (ejemplo de estrategia: soy Milei, si soy loco, bajo el gasto a la mitad; si soy racional, me reparto la plata con los sindicalistas).
- S_i el conjunto de las posibles estrategias del jugador i (esto en un rato, hay que tener cuidado).

Tipos de estrategia

Definición

una estrategia de **separación** implica que cada tipo $t_i \in T_i$ elige una acción $a_i \in A_i$ diferente.

Definición

una estrategia de **agrupación** (pooling) implica que cada tipo $t_i \in T_i$ elige la misma acción $a_i \in A_i$

EBN

 Un equilibrio bayesiano de Nash (EBN) es un equilibrio de Nash en un juego bayesiano

Definición

en el juego bayesiano estático las estrategias $s^* = (s_i^*, s_{-i}^*)$ forman un **EBN** si: para cada jugador i + para cada uno de sus tipo t_i + para cada acción a_i :

 $\implies s_i^*(t_i)$ es tal que, dados sus tipos y sus creencias sobre las estrategias de los demás jugadores (s_{-i}^*) , su utilidad esperada es al menos tan grande como ante cualquier acción alternativa $a_i \in A_i$.

EBN (explicación)

- Cada tipo del jugador i es como un jugador diferente que maximiza su utilidad, dada su distribución de probabilidad condicional sobre las elecciones de estrategias de sus rivales.
- En un EBN cada jugador elige la estrategia $s_i^*(.)$ de forma que, para cualquiera de sus tipos $t_i \in T_i$ y sus creencias sobre los otros jugadores $p_i(t_{-i}|t_i)$, su pago esperado por jugar esa estrategia es al menos tan grande a cualquier alternativa $s_i^{'}(.)$
- Implica una elección para todo tipo del jugador i, aún cuando él sepa que tipo es (¿recuerdan?).
- Ello porque, aún cuando él sabe, los demás jugadores no. (Y qué importante que es esto!)

Conjunto de información

Definición

el **conjunto de información** de un jugador es una colección de nodos que satisface:

- 1. al jugador le corresponde jugar en cada nodo del conjunto de información y
- cuando se llega a un nodo del conjunto de información, el jugador que tiene que decidir, no sabe a qué nodo dentro del conjunto de información se ha (o no) llegado
- ⇒ en un conjunto de información el jugador debe tener el mismo conjunto de acciones factibles en cada nodo de decisión

Ej. dilema del prisionero: forma normal

• Dos prisioneros (I = 1, 2), dos acciones posibles (c - confesar; nc - no confesar)

Prisionero 2
$$\frac{c}{c} \frac{nc}{nc}$$

Prisionero 1 $\frac{c}{nc} \begin{bmatrix} -5, -5 & -1, -10 \\ -10, -1 & -2, -2 \end{bmatrix}$

Ej. dilema del prisionero: forma extensiva

Índice

Juegos bayesianos (5)

Ejemplos (😍)

Una variante de BoT

Entrada al mercado (+ complicado)

El amigo del fiscal (un poco + complicado...)

Principio de revelación (😴)

Índice

Juegos bayesianos (5)

Ejemplos (😍)

Una variante de BoT

Entrada al mercado (+ complicado)

El amigo del fiscal (un poco + complicado...)

Principio de revelación (😴)

Presentación

- Versión modificada del "Bachata o Trap" (que puede ser Meshuggah o Lorna Shore, para alegría del Profe).
- "Bachata o Trap": dos personas quieren salir juntas a un concierto y las opciones son bachata o trap.
- Una (Jugadora 1) prefiere la bachata, la otra (Jugador 2) el trap, pero ambas prefieren pasar la noche juntas.
- Este juego se conoce también como "Batalla de los sexos", aunque el conflicto que representa es más uno entre individuos en general.

Presentación

- Versión modificada del "Bachata o Trap" (que puede ser Meshuggah o Lorna Shore, para alegría del Profe).
- "Bachata o Trap": dos personas quieren salir juntas a un concierto y las opciones son bachata o trap.
- Una (Jugadora 1) prefiere la bachata, la otra (Jugador 2) el trap, pero ambas prefieren pasar la noche juntas.
- Este juego se conoce también como "Batalla de los sexos", aunque el conflicto que representa es más uno entre individuos en general.

Pagos

• ¿Cuantos equilibrios de Nash hay en este juego? 2: {BB, TT}.

Pagos

• ¿Cuantos equilibrios de Nash hay en este juego? 2: {BB, TT}.

Versión con información imperfecta

- Supongamos una variante del juego anterior: la jugadora 1 no está segura de que el jugador 2 prefiera salir con ella o evitarla.
- Con probabilidad 1/2 el jugador 2 quiere salir con ella, mientras que con probabilidad 1/2 quiere evitarla (quizá porque estudió comportamientos anteriores de esta persona).
- Es decir, siguiendo la representación siguiente, ella piensa que con igual chance está en un juego como el de la derecha como de la izquierda.

Representación

J. 2
B T

J. 1 B 2, 1 0, 0
T 0, 0 1, 2

Quiere conocer 1/2

J. 2
B T

J. 1 B 2, 0 0, 2
T 0, 1 1, 0

No quiere 1/2

- ¿Qué estrategias tiene la jugadora 1? Jugar B o T.
- ¿Qué estrategia tiene el jugador 2? Jugar {BB, BT, TT, TB}.
- Y ahora, con ustedes, el señor Miyagi.

- ¿Qué estrategias tiene la jugadora 1? Jugar B o T.
- ¿Qué estrategia tiene el jugador 2? Jugar {BB, BT, TT, TB}.
- Y ahora, con ustedes, el señor Miyagi.

- ¿Qué estrategias tiene la jugadora 1? Jugar B o T.
- ¿Qué estrategia tiene el jugador 2? Jugar {BB, BT, TT, TB}.
- Y ahora, con ustedes, el señor Miyagi.

- ¿Qué estrategias tiene la jugadora 1? Jugar B o T.
- ¿Qué estrategia tiene el jugador 2? Jugar {BB, BT, TT, TB}.
- Y ahora, con ustedes, el señor Miyagi.

El señor Miyagi

- Podemos calcular la utilidad esperada de cada jugador en cada posible resultado.
- Recordar que los pagos son ANTES de jugar el juego (es un EN).
- Veamos dos ejemplos:
 - $u_1(B,BB) = \frac{1}{2} \times 2 + \frac{1}{2} \times 2 = 2.$
 - $u_2(B,BB) = \frac{1}{2} \times 1 + \frac{1}{2} \times 0 = 1/2.$
- Aplicando el mismo razonamiento...
 - $u_1(B, TT) = u_1(T, BB) = u_2(B, TB) = u_2(T, BT) = 0$
 - $u_1(T,BT) = u_2(T,BB) = u_1(T,TB) = 1/2$
 - $u_1(B,BT) = u_1(B,TB) = u_1(T,TT) = u_2(B,TT) = u_2(T,TT) = 1$
 - $u_2(B,BT) = u_2(T,TB) = 1,5$

Juego en forma normal

• Transformamos nuestro juego en un juego en forma normal:

		J.2			
		BB	BT	TT	TB
<i>J</i> .1	В	2, 1/2	1, 3/2	0, 1	1, 0
	T	0, 1/2	1/2, 0	1, 1	1/2, 3/2

Solución: EBN

- Si la jugadora 1 juega B, entonces el jugador 2 juega BT; si el jugador 2 juega BT, la jugadora 1 juega B.
- El EBN = {B,BT}, la jugadora 1 propone bachata, y el jugador 2 propone bachata si quiere conocerla y trap si no quiere conocerla.
- ... razonable!

Para este juego

el EBN parece suficiente.

Solución: EBN

- Si la jugadora 1 juega B, entonces el jugador 2 juega BT; si el jugador 2 juega BT, la jugadora 1 juega B.
- El EBN = {B,BT}, la jugadora 1 propone bachata, y el jugador 2 propone bachata si quiere conocerla y trap si no quiere conocerla.
- ... razonable!

Para este juego

el EBN parece suficiente.

Índice

Juegos bayesianos (5)

Ejemplos (😍)

Una variante de BoT

Entrada al mercado (+ complicado)

El amigo del fiscal (un poco + complicado...

Principio de revelación (😴)

Presentación

- Sea un juego de entrada al mercado con información incompleta.
- El entrante E no conoce el tipo del instalado I.
- I puede ser "racional" y preferir no pelear la entrada.
- I puede ser "loco" y disfrutar haciendo la guerra a sus rivales.
- P(I = "racional") = p; P(I = "loco") = 1 p.
- E elige entrar e o no entrar \overline{e} .
- I elige jugar pelear v o acomodarse a la entrada a.

Figura: Entrada al mercado con información incompleta.

Estrategias

- Cada línea punteada representa un conjunto de información.
- El instalado conoce su tipo y tiene dos nodos de decisión.
- $E_I = \{aa, av, va, vv\}.$
- El entrante no conoce el tipo, solo las probabilidades.
- $E_E = \{e, \overline{e}\}.$
- Podemos representar el juego en forma normal.
- A diferencia de los juegos con información completa, cada resultado será estocástico ex ante.

Previo

- Podemos calcular la utilidad esperada de cada jugador en cada posible resultado:
 - $v_E(\overline{e}, aa) = v_E(\overline{e}, av) = v_E(\overline{e}, va) = v_E(\overline{e}, vv) = 0$,
 - $v_I(\overline{e}, aa) = v_I(\overline{e}, av) = v_I(\overline{e}, va) = v_I(\overline{e}, vv) = 2$,
 - $v_E(e, aa) = v_I(e, aa) = p.1 + (1-p).1 = 1$,
 - $v_E(e, va) = v_I(e, va) = p.(-1) + (1-p).1 = 1-2p$,
 - $v_E(e, av) = p.1 + (1-p).(-1) = 2p-1$,
 - $v_I(e, av) = p.1 + (1-p).2 = 2-p$,
 - $v_E(e, vv) = p.(-1) + (1-p).(-1) = -1$,
 - $v_I(e, vv) = p.(-1) + (1-p).2 = 2-3p.$

Juego en forma normal

Los resultados son los siguientes

				1	
		aa	av	va	VV
Ε	\overline{e}	0, 2	0, 2	0, 2	0, 2
	e	1, 1	2p-1, 2-p	$1-2p, \ 1-2p$	-1, 2 – 3 <i>p</i>

• Vamos a escribirla en el pizzarón para ver los posibles EBN.

Solución: EBN

- Si Jugador E juega $\overline{e} \Rightarrow I$ juega cualquier estrategia (gana 2 seguro $\forall p$):
 - 1. Si I juega $aa \Rightarrow E$ nunca juega \overline{e} , le conviene jugar $e \Rightarrow EBN$.
 - 2. Si *I* juega $av \Rightarrow E$ juega $\overline{e} \iff p < 1/2 \Rightarrow EBN(1)$ (no entro si sospecho que es violento).
 - 3. Si I juega $va \Rightarrow E$ juega $\overline{e} \iff p > 1/2 \Rightarrow \text{EBN}(2)$ (¿tiene sentido esta conjetura? ¿no entro si sospecho que **no** es violento?).
 - 4. Si *I* juega $vv \Rightarrow E$ juega $\overline{e} \forall p \Rightarrow EBN(3)$ (no entro para cualquier conjetura).

Solución: EBN (cont.)

- Jugador E juega $e \Rightarrow I$ piensa...
 - 1. I nunca juega $aa \forall p \Rightarrow EBN$ (ej. av da pagos mayores).
 - 2. *I* juega $av \forall p$; pero *E* juega $e \iff p > 1/2 \Rightarrow \mathsf{EBN}(4)$ (entro si pienso que no es violento y actúa en consecuencia).
 - 3. I nunca jugaría va ni $vv \forall p$ si E juega $e \Rightarrow EBN$.

Soluciones

- Existen 4 EBN: EBN = {ē, av; p < 1/2};
 EBN = {e, av; p > 1/2}; EBN = {ē, va; p > 1/2};
 EBN = {ēvv; ∀p};
- De otra forma:

Demasiados equilibrios...

- 4 EBN parecen muchos, además algunos no son razonables!
- Pregunta, ¿podemos usar algún refinamiento? ¡Sí! ¿Que tal algún ENPSj?.
- Volvamos a la figura, ¿podemos usar inducción hacia atrás?, ¿hay subjuegos en el juego?, si hay, ¿cuántos?

Demasiados equilibrios...

- 4 EBN parecen muchos, además algunos no son razonables!
- Pregunta, ¿podemos usar algún refinamiento? ¡Sí! ¿Que tal algún ENPSj?.
- Volvamos a la figura, ¿podemos usar inducción hacia atrás?, ¿hay subjuegos en el juego?, si hay, ¿cuántos?

Demasiados equilibrios...

- 4 EBN parecen muchos, además algunos no son razonables!
- Pregunta, ¿podemos usar algún refinamiento? ¡Sí! ¿Que tal algún ENPSj?.
- Volvamos a la figura, ¿podemos usar inducción hacia atrás?, ¿hay subjuegos en el juego?, si hay, ¿cuántos?

Figura: ENPSJ

Figura: ENPSJ

Ahora si: ENPSJ

• Cualquier estrategia de ENPSJ implica que

$$s_I(t_i) = \begin{cases} a & \text{si } t_I = \text{racional} \\ v & \text{si } t_I = \text{loco} \end{cases}$$

- Por tanto, la mejor respuesta de E es $s_E = \begin{cases} e & si \, p > 1/2 \\ \overline{e} & si \, p < 1/2 \end{cases}$
- Es decir, hay solo dos equilibrios que son perfectos por subjuegos.
- Los otros dos equilibrios no son "razonables".

Comentario económico "aburrido"

- El ENPSJ muestra que se puede disuadir la entrada al mercado con asimetría de información.
- Este no era un resultado posible para Selten (el que inventó el ENPSJ).
- La asimetría de información puede disuadir a E de entrar a mercado.
- Si sospecha (p < 1/2) que el rival es "loco" no entrará al mercado.
- El instalado puede utilizar una estrategia de generar reputación para disuadir a las empresas de entrar al mercado.

Índice

Juegos bayesianos (🥱)

Ejemplos (😍)

Una variante de BoT

Entrada al mercado (+ complicado)

El amigo del fiscal (un poco + complicado...)

Principio de revelación (3)

Presentación

- · Versión modificada del "Dilema del Prisionero".
- El Prisionero 1 es amigo del fiscal: pagos iguales al "Dilema del Prisionero", excepto que si ninguno confiesa el Prisionero 1 sale libre mientras que el Prisionero 2 va preso 2 años.
- Prisionero 2 puede ser de dos tipos:
 - Versión 1: el mismo del dilema del prisionero.
 - Versión 2: odia delatar ⇒ si delata a la pena física se suma una psicológica equivalente a 6 años mas.
- Juego bayesiano: el Prisionero 2 puede ser "normal" (t_1) con $p(t_1) = \mu$ u odiar confesar (t_2) con $p(t_2) = 1 \mu$.

Presentación

P. 2

NC C

P. 1 $C = \begin{bmatrix} 0, -2 & -10, -1 \\ -1, -10 & -5, -5 \end{bmatrix}$ $C = \begin{bmatrix} t_1 & \mu \end{bmatrix}$

En forma extensiva

Explicación

- Cada línea punteada representa un conjunto de información.
- El jugador tiene que tomar una decisión sin saber en qué nodo se encuentra.
- Estrategias:
 - Prisionero 1: {*C*, *NC*}.
 - Prisionero 2: {*C*, *C*; *C*, *NC*; *NC*, *C*; *CN*, *NC*}.
- El Prisionero 2 tiene dos nodos de decisión, uno para cada tipo.
- Ex ante no lo conoce; cuando le toca mover sí.

Solución

- ¿Existen subjuegos? No. Por tanto, no podemos hacer inducción hacia atrás.
- Sin embargo, sabemos que para cada tipo del prisionero 2, se cumple que (ver forma normal):
 - Prisionero 2 (t_1): C estrategia dominante.
 - Prisionero 2 (t_2): *NC* estrategia dominante.
- Prisionero 1:
 - $v_1(C, \cdot) = \mu(-5) + (1 \mu) \cdot (-1) = -1 4\mu$
 - $v_1(NC, \cdot) = \mu(-10) + (1 \mu)0 = -10\mu$
 - $\Rightarrow v_1(C, \cdot) > v_1(NC, \cdot) \iff \mu > 1/6 \Rightarrow \text{Prisionero 1 juega } \{C\}$
 - \Rightarrow $v_1(NC, \cdot) > v_1(C, \cdot) \iff \mu < 1/6 \Rightarrow$ Prisionero 1 juega $\{NC\}$

EBN

- Existen dos EBN: $\{C; C, NC; \mu > 1/6\}$ y $\{NC; C, NC; \mu < 1/6\}$
- Otra forma de escribir:

•
$$s_1^*(:) = \begin{cases} C & \text{si } \mu > 1/6 \\ NC & \text{si } \mu < 1/6 \end{cases}$$

•
$$s_2^*(:) = \begin{cases} C & \text{si } t_1 \\ NC & \text{si } t_2 \end{cases}$$

Índice

Juegos bayesianos (5)

Ejemplos (😍)

Una variante de BoT

Entrada al mercado (+ complicado)

El amigo del fiscal (un poco + complicado...

Principio de revelación (😴)

Principio de revelación

- Myerson (1979) propone un mecanismo para diseñar juegos con información privada.
- Procede en tres partes:
 - 1. determinar los mecanismos directos,
 - 2. establecer cuáles permiten decir la verdad; esto es, es incentivo compatible.

Mecanismos directos y honestidad

 En un juego bayesiano existen múltiples mecanismos para llegar a un equilibrio.

Definición

un juego bayesiano en el cuál la única acción del jugador es hacer una declaración sobre su tipo se llama **mecanismo directo.**

 De todos los mecanismos directos, algunos implican que el agente es honesto respecto a sus tipos y en otros no.

Definición

un mecanismo directo en el cual decir la verdad es un EBN es compatible en incentivos.

Principio de revelación

Teorema

Cualquier EBN en un juego bayesiano puede representarse mediante un mecanismo directo de incentivos compatibles.

- Implica que si los agentes cumplen las restricciones de compatibilidad de incentivos ⇒ revelarán su tipo.
- Permite restringir los posibles equilibrios y centrarse sólo en aquellos compatibles de incentivos.

Hasta aquí por ahora

Vamos a pasar a juegos bayesianos dinámicos.