Question1: What is the correlation between features in the dataset. and what two features have very strong correlation with the independent variable? Justify with reason

When two sets of data are strongly linked together we say they have a High Correlation .The word correlation (Co means together hence it is together relation) is Positive when the values increase together and correlation is Negative when one value decreases as the other increase. example: Set of Icecream sales vs Set of ice cream temperature.

Pandas(loc and iloc) and Numpy are the 2 features have very strong correlation with independent variable.

df

	Naveen K	Manoj	BV
0	50		60
1	40		50
2	30		30
3	20		25

	Naveen K	Manoj	BV
English	50		60
Maths	40		50

cart.iloc[[1,2,3]]

	Naveen K	Manoj BV
Maths	40	50
Kannada	30	30
Science	20	25

cart.loc[['Kannada','Maths']]

	Naveen K	Manoj BV
Kannada	30	30
Maths	40	50

Question 2: Which feature has more outliers. Explain with a visualization.

Pandas/Data frames and some more are the features which have more outliers.

```
plt.scatter(x,y,c='g')
plt.xlabel('month')
plt.ylabel('sales')
plt.title('sales in month')
plt.savefig('Test.png')
plt.plot(x,y)
```

[<matplotlib.lines.Line2D at 0x7f864da34250>]

plt.bar(x, y, color = 'r')
plt.title('Bar graph')

Text(0.5, 1.0, 'Bar graph')

data = 'Mango', 'Banana', 'orange', 'Apple'
sizes = [150, 100, 50, 20]
plt.pie(sizes, labels=data)


```
data = np.array([1,2,3,4,5,6,7,8])
plt.boxplot(data,vert=False,patch_artist=True)
```


Question3: In which Age group Majority of people have diabetes? Make a visualization to validate your finding.

Link: https://raw.githubusercontent.com/plotly/datasets/master/diabetes.csv

```
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/diabetes.csv')

df.head(3)

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFu
0	6	148	72	35	0	33.6	
1	1	85	66	29	0	26.6	
2	8	183	64	0	0	23.3	

df.tail()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigree
763	10	101	76	48	180	32.9	
764	2	122	70	27	0	36.8	
765	5	121	72	23	112	26.2	
766	1	126	60	0	0	30.1	
767	1	93	70	31	0	30.4	

df.ndim

2

df.shape

(768, 9)

df.columns

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):
```

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64

dtypes: float64(2), int64(7)
memory usage: 54.1 KB

df.isnull().sum().sum()

0

df.describe()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	Dia
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	

sns.heatmap(df.isnull())

<matplotlib.axes._subplots.AxesSubplot at 0x7f4a126ab850>

sns.countplot('Outcome',data=df)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the FutureWarning

sns.pairplot(df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f4a1030a3d0>

sns.countplot(x="Pregnancies",data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f4a1007e850>

df['Glucose'].value_counts()

```
100
        17
99
        17
129
        14
125
        14
111
        14
177
         1
172
         1
169
         1
160
         1
199
         1
```

Name: Glucose, Length: 136, dtype: int64

```
base_color = sns.color_palette()[1]
gen_order = df['Glucose'].value_counts().index
sns.countplot(data = df. x = 'Glucose'. color = base color.
```

order = gen_order)

<matplotlib.axes._subplots.AxesSubplot at 0x7f4a0fec8450>

