Создание образа виртуальной машины

Отчёт по лабораторной работе №1

Козомазов Владимир Романович

Содержание

Список литературы		17
5	Выводы	16
4	Выполнение лабораторной работы	10
3	Теоретическое введение	7
2	Задание	6
1	Цель работы	5

Список иллюстраций

4.1	Запуск виртуальной машины	10
4.2	Liveinst	11
4.3	Создание учётной записи	11
4.4	Установка пользователя	12
4.5	Установка обновлений	12
4.6	Установка tmux и mc	13
4.7	Установка автообновлений	13
4.8	Установка драйверов	14
4.9	Изменение имени хоста	14
4.10	Установка pandoc	15
4 11	Установка texlive	15

Список таблиц

1 Цель работы

Целью данной работы являются: - приобретение практических навыков установки операционной системы на виртуальную машину; - настройки минимально необходимых для работы сервисов.

2 Задание

Установить и настроить виртуальную машину для работы

3 Теоретическое введение

Виртуальные машины (ВМ) используются для различных целей, предоставляя гибкость, изоляцию и эффективность в работе с программным обеспечением и системами. Вот основные причины их использования:

1. Изоляция сред

- Виртуальные машины позволяют запускать несколько операционных систем (ОС) на одном физическом сервере. Это полезно для тестирования программного обеспечения в разных средах без необходимости использования отдельных физических устройств.
- Изоляция также повышает безопасность, так как сбои или уязвимости в одной виртуальной машине не влияют на другие.

2. Экономия ресурсов

• ВМ позволяют эффективно использовать ресурсы сервера, так как на одном физическом сервере можно запускать несколько виртуальных машин. Это снижает затраты на оборудование и энергопотребление.

3. Тестирование и разработка

- Разработчики используют виртуальные машины для тестирования приложений в разных операционных системах (например, Windows, Linux, macOS) без необходимости перезагрузки компьютера.
- Это также полезно для тестирования новых версий программного обеспечения или обновлений в изолированной среде.

4. Обучение и эксперименты

• Виртуальные машины позволяют безопасно экспериментировать с новыми технологиями, настройками или операционными системами без риска повредить основную систему.

5. Создание резервных копий и восстановление

• ВМ можно легко копировать, переносить и восстанавливать. Это упрощает процесс создания резервных копий и восстановления систем в случае сбоев.

6. Запуск устаревшего ПО

• Виртуальные машины позволяют запускать устаревшие программы или операционные системы, которые не поддерживаются на современных платформах.

7. Облачные вычисления

 В облачных сервисах виртуальные машины используются для предоставления пользователям вычислительных ресурсов. Это позволяет масштабировать приложения и сервисы в зависимости от потребностей.

8. Создание песочниц (sandbox)

Виртуальные машины могут использоваться для создания изолированных сред (песочниц), где можно безопасно запускать подозрительные программы или анализировать вредоносное ПО.

9. Упрощение развертывания

 ВМ можно легко переносить между физическими серверами, что упрощает развертывание и масштабирование приложений. 10. Поддержка разных платформ - Виртуальные машины позволяют запускать приложения, предназначенные для одной ОС, на другой (например, запуск Windows-программ на Linux через виртуализацию).

Популярные платформы для виртуализации: - VMware, - VirtualBox, - Hyper-V, - KVM, - Xen.

Таким образом, виртуальные машины— это мощный инструмент для повышения гибкости, безопасности и эффективности в ИТ-инфраструктуре.

4 Выполнение лабораторной работы

Первый запуск виртуальной машины(рис. 4.1).

Рис. 4.1: Запуск виртуальной машины

Выполнение команды Liveinst (рис. 4.2)

Рис. 4.2: Liveinst

Создал учётную запись (рис. 4.3)

Рис. 4.3: Создание учётной записи

Проверил установку пользователя (рис. 4.4)

Рис. 4.4: Установка пользователя

Установил обновления командой dnf update (рис. 4.5)

Рис. 4.5: Установка обновлений

Установил tmux и mc (рис. 4.6)

Рис. 4.6: Установка tmux и mc

Установил автообновления (рис. 4.7)

Рис. 4.7: Установка автообновлений

Установил драйверов для виртуальной машины (рис. 4.8)

Рис. 4.8: Установка драйверов

Изменил имя хоста на vkozomazov (рис. 4.9)

Рис. 4.9: Изменение имени хоста

Установил pandoc (рис. 4.10)

Рис. 4.10: Установка pandoc

Установил texlive (рис. 4.11)

Рис. 4.11: Установка texlive

5 Выводы

Лабораторная работа позволила получить ценный опыт работы с виртуальными машинами, что является важным шагом в освоении современных ИТтехнологий. Полученные знания и навыки могут быть применены как в учебных, так и в профессиональных целях.

Список литературы