Macroeconomics A; El056

Class 2

Models of short-run fluctuations:

IS-TR(LM), and AS-AD

Cédric Tille

September 26, 2023

What you will get from today class

- Simple model of short-run output determination (the Keynesian framework).
 - Joint equilibrium of goods markets (IS) and money market (TR).
 - Focus on **demand**, holding prices constant.
- Introducing supply and expectations (aggregate supply AS and aggregate demand AD).
 - Contrast horizons: short and long-run.
 - Prices eventually adjust, expectations are key to policy (in)effectiveness.
- Ad-hoc models with no explicit optimization.

A question to start

By stabilizing economic activity, a central bank can limit inflation fluctuations. It should thus lower interest rates when a recession risk emerges.

Do you agree? Why or why not?

IS – TR FRAMEWORK

FOCUS ON SHORT - RUN DEMAND

Main features of the IS-TR model

- Focus on short-run equilibrium, as models designed to think about the long-run cannot account for the Great Depression.
- The Keynesian framework has two main aspects:
 - Expectations are taken as given, prices are preset ("sticky"). Output is driven by demand (i.e. supply is not binding).
 - **General equilibrium** modeling across the market for goods (IS) and the monetary side (TR, or LM in earlier variants).
 - How movements in one market are transmitted to the other.
- Limitation: supply and expectations are ignored, it's only valid as a short-run model.
- We solve for IS, and then for TR.

The market for goods: consumption and investment

- Ad-hoc reasonable rules of behavior (but no explicit optimization).
 - We consider linear relations (or linear approximation around a steady state).
- Consumption C is an increasing function of the income after tax (Y T) and other factors shifting consumption such as $(\Omega$, wealth, confidence):

$$C = c_1 (Y - T) + c_2 \Omega$$

• Investment I is increasing in firms' expectations of profitability (Q) and decreasing in the real interest rate (the interest rate i minus expected inflation π^e):

$$I = -i_1 (i - \pi^e) + i_2 Q$$

Equilibrium: the IS curve

• Total expenditure consists of consumption, investment and exogenous government spending (G). In equilibrium expenditure is equal to GDP:

$$Y = C + I + G$$

• GDP is thus given by an endogenous variable (i) and a set of exogenous variables (π^e, G, T, Ω, Q) :

$$Y = -rac{i_1}{1-c_1}\left(i-\pi^e
ight) + rac{G-c_1T}{1-c_1} + rac{c_2}{1-c_1}\Omega + rac{i_2}{1-c_1}Q$$

- The impact of an exogenous variables, say G, on output is magnified by a factor $1/(1-c_1)$. This is the **multiplier**.
 - Higher government spending directly raises output and income.
 - Higher income then raises consumption, an indirect effect of the higher government spending.

Move along the IS curve vs. shift of the IS curve

- IS curve: a negative relation between output Y and the interest rate i, given exogenous variables (say G).
 - Changes in exogenous variables shift the IS curve in the Y-i space.
- Do not to confuse a move along the IS curve and a shift of the curve itself.
 - Move **along**: different combinations of Y and i given G, T, π^e , Ω , Q.
 - **Shift of**: change in G, T, π^e , Ω , Q affecting Y for a given i (and i for a given Y).
- Effect of a shift (higher G): think horizontally (what happens to Y if we keep i unchanged) and vertically (what happens to i if we keep Y unchanged). ◆ tracing IS shift

Drawing the IS curve

• Negative relation between Y and i.

Juipui, 1

The monetary side

• The central bank sets the nominal interest rate as a function of a target value $\bar{\imath}$, inflation π , and the output gap (the deviation of GDP from a target \bar{Y}):

$$i = \bar{\imath} + a\pi + b\left(Y - \bar{Y}\right)$$

- TR (Taylor rule) curve: positive relation between output and the interest rate. \(\bar{i}\) reflect the stance of monetary policy given output and inflation.
- Do not confuse a move along the TR curve and a shift of the curve itself.
 - Move along: different combinations of Y and i given $\bar{\imath}$.
 - Shift of: change in $\bar{\imath}$ affecting Y for a given i (and i for a given Y).
- Effect of a shift (lower $\bar{\imath}$): think horizontally (what happens to Y if we keep i unchanged) and vertically (what happens to i if we keep Y unchanged). ◆ tracing TR shift
- Earlier representations considered a money demand (LM) instead of TR, but same message. LM line

Drawing the TR curve

• Positive relation between Y and i.

Output, Y

IS-TR equilibrium

 Both the goods and asset markets clear. IS and TR give a system of two equations in two endogenous variables (Y and i):

$$Y = -\frac{i_1}{1 - c_1} (i - \pi^e) + \frac{G - c_1 T}{1 - c_1} + \frac{c_2}{1 - c_1} \Omega + \frac{i_2}{1 - c_1} Q$$

$$i = \bar{\imath} + a\pi + b (Y - \bar{Y})$$

• The solution of the system is:

$$Y = -i_1\Gamma_1 + \Gamma_2$$

$$i = (1 - c_1)\Gamma_1 + b\Gamma_2$$

• where Γ_1 and Γ_2 regroup exogenous variables related to TR and IS:

$$\begin{array}{rcl} \Gamma_{1} & = & \dfrac{1}{1-c_{1}+bi_{1}}\left[\overline{\imath}+a\pi-b\bar{Y}\right] \\ \\ \Gamma_{2} & = & \dfrac{1}{1-c_{1}+bi_{1}}\left[i_{1}\pi^{e}+G-c_{1}T+c_{2}\Omega+i_{2}Q\right] \end{array}$$

Cédric Tille Class 2, IS-TR and AS-AD Sept 26, 2023 12 / 46

Graphical representations

• Equilibrium in both the market for good and the money market.

IS-TR equilibrium

LET'S DO SOME POLICY

Fiscal policy expansion

- An increase in G shifts **IS to the right**: given i, Y is higher. TR is unaffected. The result is a higher output and higher interest rate.
 - Direct effect: boost output (shift of IS).
 - Higher output leads to a higher interest rate from the Taylor rule (move up along TR).
 - Higher interest rate reduces investment and dampens the initial increase in output: crowding out effect.
- An increase in consumers' wealth Ω , in firms' expectations Q, or in inflation expectations π^e has the same effect.

Graphical representation of fiscal expansion

• Higher government spending G raises Y and i.

Higher government spending

Monetary policy expansion

- Reduction in the target rate $\bar{\imath}$ shifts **TR** to the right: given i, Y is higher. IS is unaffected. The result is a higher output and lower interest rate.
 - Lower target $\bar{\imath}$ reduces the interest rate for a given output (shift of TR).
 - Lower interest rate raises investment (move down along IS). Output is higher.
 - Higher output leads to an increase in the interest rate through the Taylor rule and dampens the initial reduction in *i*.
- An reduction in inflation π , or a increase in the reference output \bar{Y} has the same effect.

Graphical representation of monetary expansion

• Lower target rate $\bar{\imath}$ raises Y and reduces i.

Lower reference interest rate

When is policy (in)effective?

- The output impact depends on the sensitivity of the demands for goods and money to movements in interest rates.
- If interest rates have a big impact on the demand for goods (IS is flat), monetary policy is very effective (i.e. large effect on output), but fiscal policy is not.
- If interest rates have a big impact on the demand for money (TR is flat), monetary policy is not effective, but fiscal policy is effective.
 - A **flat TR** is referred to as a **liquidity trap**. Policy acting on the demand for goods are most effective.
 - Government stimulus, generating inflation expectations (forward guidance).

INTRODUCING SUPPLY

From IS-TR to aggregate demand

 The output solution in IS-TR gives a negative relation between output and inflation:

$$Y = -rac{ai_1}{1-c_1+bi_1}\pi + ext{other terms}$$

- Intuition: higher inflation shifts the TR curve upwards (a contraction of monetary policy), thereby reducing output.
- This negative relation is the aggregate demand (AD) line. It is shifted by policy.
 - Expansionary fiscal policy (higher G) moves AD to the right.
 - Expansionary monetary policy (lower $\bar{\imath}$) also does that.

Aggregate supply: the long-run

- AS captures the supply-side, and its properties are dependent on the horizon considered.
- Long-run, capital and labor are set by the structure of the economy (productivity, structure of the labor market).
 - Intersection of labor supply and labor demand determines employment.
 There is no involuntary unemployment (i.e. labor supply does not exceed labor demand at prevailing wages).
 - Prices are fully flexible.
- ullet Output is set at some fixed level \bar{Y} , the **natural rate**, and AS is vertical.
- Inflation is determined by the intersection of AD and AS.

Long run equilibrium

• Supply (LRAS) gives the quantity, demand (AD) gives the inflation.

AD - AS in the long run

Aggregate supply: the short-run

- In the short run AS (SRAS) has a **positive slope**. This reflects inertia in the adjustment of prices.
- Prices (inflation) are the signal for firms to produce more or less (more specifics in the short problems).
 - If inflation is higher than expected, profitability is high and firms increase supply.
 - Related to the Phillips curve (high inflation = low unemployment):

$$Y = \bar{Y} + \eta (\pi - \pi^e) \Rightarrow \pi = \pi^e + (1/\eta) (Y - \bar{Y})$$

- Key role of inflation expectations π^e . Given π^e we have a positive relation between output and inflation (short-run AS).
- Higher π^e shift the curve up (higher π for a given Y). When inflation is as expected $(\pi = \pi^e)$, the output is at the long run level, $Y = \bar{Y}$.

Impact of expectations on SRAS

• Higher inflation expectations move the curve up.

Lower expected inflation

How expectations are formed

 Adaptive expectations: agents look at the past to learn about the future, correcting for mistakes. Ad-hoc rules, for instance:

$$\pi_t^e = \pi_{t-1}$$
 or $\pi_t^e = \pi_{t-1}^e + \varsigma \left(\pi_{t-1} - \pi_{t-1}^e \right)$

- Rational expectations: agents understand the model and work it out.
 They are only surprised by unexpected shocks, not by systematic policy.
- Learning: agents are uncertain about the model and figure it out through regressions. Gives a backward-looking dimension to expectations.
- The environment can matter: in times of hyperinflation it pays to figure out what the central bank is doing, while in normal time a more inertial rule is "good enough".

Overall system

- In the long run all lines cross. LRAS gives quantity, AD gives inflation, and SRAS matches them as inflation matches expectations.
- In the short run, SRAS and AD gives the equilibrium, can be off LRAS.

Overall system in long run

EFFECT OF SUPPLY SHOCK

A permanent AS shock

- We leave the effect of a shock to AD as an exercise.
- A permanent shock to supply leads to equal shifts in both the long-run (LRAS) and short-run (SRAS) supply curves.
- Reduction of long-run output by $\eta \xi$ to a new natural output $\bar{Y}_{\text{new}} = \bar{Y}_{\text{old}} \eta \xi$. The short-run AS becomes

$$\pi = \pi^{e} + \frac{1}{\eta} \left(Y - \bar{Y}_{\mathsf{new}} \right) = \pi^{e} + \frac{1}{\eta} \left(Y - \bar{Y}_{\mathsf{old}} \right) + \xi$$

- The adjustment depends on the reaction of AD. We first consider that policy remains passive.
- Inflation increases and output decreases. The speed of the move depends on the nature of expectations (adaptive or rational).

Graphical representation of supply shock

The shock moves both supply curves.

AS shock

Passive policy: initial adjustment

• Initially output decrease and inflation increase, expectations have not yet moved.

AS shock, no policy reaction

Passive policy: ultimate adjustment

 Ultimately inflation expectations catch up, we get lower output and higher inflation.

AS shock, no policy reaction

Two alternative policy responses

- Accept the new reality: the policy recognizes that the structure of the economy has changed.
 - Output will decrease, so the policy can at least avoid inflation.
 - Contractionary policy moving AD to the left to the new long run output level.
- Rearguard battle: policy fights the shock to delay the decrease in output.
 - Expansionary policy in the short run moving AD to the right.
 - Ultimately this only fuels inflation.

Accept (unpleasant) reality

Contractionary policy at the time of the shock, stabilizes inflation.

AS shock, inflation stabilization

Denial: initial adjustment

• Expansionary policy at the time of the shock, output stabilization. Expectations have not yet moved.

AS shock, temporary output stabilization

Denial: ultimate adjustment

• Ultimately inflation expectations catch up, we get higher inflation.

AS shock, temporary output stabilization

Expectations and surprises

- Backward looking expectations (π_t^e depends on π_{t-1}): systematic increases in inflation can bring unemployment down, as agents are repetitively surprised.
- Rational expectations: agents cannot be surprised repetitively and realize that the monetary authorities are generating inflation. Include this behavior in expectations $(\pi_t^e = \pi_t)$.
- Random movements in AD give a positive correlation between inflation and output. A policy maker could be tempted to exploit this trade-off.
 - Agents however understand and adjust their expectations (short run AS shifts). In the end we get no extra output and only inflation.
- Lucas critique: expectations cannot be taken as given by the policy maker. Instead include endogenous expectations in the analysis, don't just rely on reduced-form results.

Some empirical evidence

- Is the recent inflation increase due to supply or demand shocks?
 - Identify broad driving sources of inflation in US and Euro area (Eickmeier, Sandra, and Boris Hofmann 2022,. "What drives inflation? Disentangling demand and supply factors", BIS working paper 1047).
- Broad range of inflation and real activity indicators (140 quarterly since 1970), extract supply and demand factors.
 - Sign restrictions: the demand factor raises both inflation and real activity, the supply factor raises activity and reduces inflation.
- During 2008 crisis, both demand and supply went down with offsetting effects on inflation.
- Since Covid, demand was very positive and supply very negative, both driving inflation.
- Recent inflation in the US primarily demand driven (but not only).
 Larger role for supply since 2021 in 4 Euro area countries than in the US.

 Recent inflation in the US primarily demand driven (but not only). Black: demeaned time series estimates. Red: demand driven. Blue: supply driven.

Notes: Quarter-on-quarter, in %. Black: demeaned time series estimates. Red: contributions of the Median Target demand factor. Blue: contributions of the Median Target supply factor. Grey bars: NBER recessions.

Eickmeier, Sandra, and Boris Hofmann (2022). "What drives inflation? Disentangling demand and supply factors", BIS working paper 1047.

Euro area estimates

• Larger role for supply since 2021 than in the US. Black: demeaned time series estimates. Red: demand driven. Blue: supply driven.

Notes: Quarter-on-quarter, in %. Black: de-meaned time series estimates. Red: contribution of the median target demand factor. Blue: contribution of the median target supply factor. Grey bars: CEPR recessions.

Eickmeier, Sandra, and Boris Hofmann (2022). "What drives inflation? Disentangling demand and supply factors", BIS working paper 1047.

ADDITIONAL SLIDES

Shift of IS

• Effect of higher government spending G. Return

Higher G: thinking horizontally H

Higher G: thinking vertically

Shift of TR

• Effect of lower target rate \bar{i} . • Return

Lower i bar: thinking horizontally Lower i bar: thinking vertically

Output, Y

Output, Y

Relation with monetary aggregates

- In earlier versions of the model, the TR line is replaced by the demand for money (the LM relation).
- The demand for **real balances** (money scaled by the price level, M-P), is positively affected by output (more transactions require more cash), and negatively affected by the nominal interest rate (a high interest rate make bonds more attractive than cash):

$$M - P = I_1 Y - I_2 i$$

- LM curve: positive relation between output and the interest rate.
- Given real balances a higher output (which raises money demand) must be offset by a higher interest rate (which reduces it).
- One can infer the money holdings from the TR curve and the money demand (see the BW textbook).

• From IS-TR to AD: two values of inflation. • Return

IS-TR and AD

Fiscal expansion

