第 n 問

AC>AB を満たす鋭角三角形 ABC について、内接円を ω とし内心を I とする。また、 ω と AB, BC の接点をそれぞれ D, E とする。さらに、AB, BC の中点をそれぞれ M, N とし、C から AB におろした垂線の足を F とする。AI に対して E と対称な点を G, D から FI, NI に対しておろした垂線の足をそれぞれ H, J とするとき、三角形 HDN の外接円、三角形 FDJ の外接円、MG は一点で交わることを示せ。作問者: $negi_0613_$

参考図

補題 1

次の図において, 4 点 B,K,I,T が同一円周上にある。(補題 1) ただし, ここでの点の取り方は問題文の通りではない。

但し, I は三角形 ABC の内心, K, L, T はそれぞれの接点である。

三角形 ABC の外接円を Γ , 三角形 KLT の外接円を Ω とする。

TK と Γ の交点を X とする。このとき、 Ω と Γ は T を中心とする相似であるから、 Ω の X における接線と Γ の K における接線は平行である。よって、その対応を考えれば、 Ω へ Ω が成り立つ。

補題 2

次に、図において、 以降この円を九点円と呼ぶ。

補題3

内接円と九点円は接する。(フォイエルバッハの定理)

さて, 本題に入る。以降, 点は問題文の通りにとるものとする。