O TRANSISTOR BIPOLAR NA AMPLIFICAÇÃO DE PEQUENOS SINAIS – DIVISOR DE TENSÃO

Relatório 10 de ELT 315

Wérikson Frederiko de Oliveira Alves - 96708 Universidade Federal de Viçosa (UFV), Viçosa, Brasil e-mails: werikson.alves@ufv.br

18 de novembro de 2020

Introdução:

Este relatório contém uma analise teórica de sobre o transistor bipolar de junção (TBJ) para pequenos sinais, seguidos de dados coletados a partir da simulação realizada pelo Software **Ques**, tendo por objetivo verificar a capacidade de amplificação de um transistor bipolar polarizado por divisor de tensão, além de compreender a utilização do teorema de superposição para a análise de um amplificador transistorizado e a medição do ganho de corrente e dos cálculos.

Materiais Utilizados:

• 01 Resistor de 3,9 k Ω ;

• 01 Resistor de 39 Ω ;

• 01 Resistor de 10 k Ω ;

• 01 Resistor de 1 k Ω ;

• 01 Resistor de 1,8 k Ω ;

• 01 transistor PN2222.

• 01 Capacitor eletrolítico de 470 μ F;

• 02 Capacitores eletrolíticos de 1 μ F;

Parte Teórica:

- 1) Explicar os principais parâmetros na especificação do transistor:
 - Pinagem (desenho): Os pinos são: Emissor, base, coletor respectivamente. O pino central é denominado Base, representado pela letra B. Um dos terminais externos é denominado de Coletor representada pela letra C. Já o outro terminal externo recebe o nome de Emissor representada pela letra E. Cada pino possui uma corrente passando por ele, as quais podem ser relacionadas entre si. Além disto, cada pino possui um potencial diferente, e desta forma pode-se obter a tensão entre os terminais(pinos).
 - hfe (faixa de valores): É o ganho do transistor indicando quantas vezes a corrente de coletor (I_c) é maior que a corrente de base (I_B). Sua faixa varia de 35, para $V_{CE}=10\mathrm{V}$ e $I_C=100\mu\mathrm{A}$, até 300, para $V_{CE}=10\mathrm{V}$ e $I_C=150\mathrm{mA}$.
 - hoe: É a admitância de saída, seu valor é definido como $\left[\frac{I_o}{V_o}\right]_{I_i=0}$, normalmente seus valores se encontram na casa dos μ S
 - Potência máxima: É a potência máxima que o componente suporta sem danifica-lo.
 - $V_{CE_{SAT}}$: É a tensão entre o coletor e o emissor quando o transistor está saturado.

- V_{BE}: É a tensão entre a base-emissor, e ela varia de acordo com o material que o TBJ é feito, como por exemplo: Silício, Arseneto de Gálio ou Germânio.
- I_{CO} (corrente de saturação reversa): É a corrente de fuga que circula entre o emissor e a base quando essa junção está reversamente polarizada, e é da ordem de nano-Amperes (nA).
- 2) Usando o datasheet encontramos os seguinte dados:

Figura 1: Transistor PN2222.

- h_{fe} (faixa de valores): Sua faixa varia de 35 até 300.
- $\mathbf{h_{oe}}$: É a admitância de saída, varia de: $h_{oe_{min}} = 5\mu S$ até $h_{oe_{max}} = 200\mu S$.
- Potência máxima: A potência máxima dissipada é de 625 mW.
- $V_{CE_{sat}}$: A tensão é de no mínimo 0,4 V e no máximo 1 V.
- $V_{BE_{sat}}$: o valor máximo da tensão base-emissor para este TBJ é 1,3 V.
- I_{CO} (corrente de saturação reversa): A corrente poderá ser de $I_{CO_{min}}=10~nA$ até $I_{CO_{max}}=10~\mu A$
- 3) A Figura 2 mostra um circuito polarizado por divisor de tensão. Considerando o valor de β presente no datasheet e que o diodo é de Silício, calcule as tensões e correntes do circuito, e preencha a tabela 1:

Figura 2: Circuito teórico 1.

$$E_{th} = V_{CC} \cdot \frac{R_2}{R_1 + R_2} = 1,83 V \tag{2}$$

$$I_B = \frac{E_{th} - V_{BE}}{R_{th} + (\beta + 1)R_E} = 5,58 \ \mu A \tag{3}$$

$$I_C = \beta \cdot I_B = 1,116mA \tag{4}$$

$$I_E = (\beta + 1) \cdot I_B = 1,122mA$$
 (5)

$$V_B = V_{R2} = V_{BE} + R_E I_E = 1,822V \tag{6}$$

$$V_C = V_{CC} - R_C I_C = 7,646V \tag{7}$$

$$R_{th} = R_1//R_2 = \frac{R_1 \cdot R_2}{R_1 + R_2} = 1,525 \, k\Omega$$
 (1) $V_{CE} = V_C - V_E = 6,524V$ (8)

$$V_{R1} = V_{CC} - V_{R2} = 10,178V$$
 (9) $V_{BC} = V_B - V_C = -5,824V$ (10)

Tabela 1: Polarização CC (Valores calculados para figura 2).

Transistor:	$I_B(\mu A)$	$I_C(mA)$	$I_E (mA)$	$V_B(V)$	$V_C(V)$	$V_{CE}\left(V\right)$
PN2222	5,582	1,116	1,122	1,822	7,646	6,524
β:	$V_{R1}(V)$	$V_{R2}(V)$	$V_{BE}(V)$	$V_{BC}(V)$		
200	10,178	1,822	0,7	-5,824		

4) Considerando o capacitor CE desconectado (figura 3) e que r_o é muito grande, de modo que ele atue como um circuito aberto, temos o seguinte circuito equivalente r_e .

Figura 3: Circuito teórico 2.

Figura 4: Equivalente r_e .

5) Considerando o capacitor CE desconectado (figura 3) e que r_o é muito grande, de modo que ele atue como um circuito aberto, deduza e calcule os parâmetros: Z_i , Z_o , A_v e A_i .

Para determinar Z_i , temos:

$$V_i = I_b \beta r_e + (\beta + 1)I_b R_E \rightarrow Z_b = \frac{V_i}{I_b} = \beta r_e + (\beta + 1)R_E$$

Assim, obtemos:

$$Z_i = R_{th} / Z_b = R1 / R2 / (\beta r_e + (\beta + 1)R_E) = 1,514 \,k\Omega$$
(11)

Para a determinação de Z_o , inicialmente, V_i deve ser ajustado em 0 V, assim $I_b=0$ e βI_b pode ser substituido por um circuito aberto equivalente. Deste modo:

$$Z_o = R_C / / R_L = 3,545 \, k\Omega$$
 (12)

Para se achar o ganho de tensão, sabemos que $I_b = V_i/Z_b$, logo,

$$V_o = -I_o Z_o = -\beta I_b (R_C / / R_L) = -\frac{\beta (V_i) (R_C / / R_L)}{Z_b}$$

Desta forma:

$$A_v = \frac{V_o}{V_i} = -\frac{\beta (R_C//R_L)}{\beta r_e + (\beta + 1)R_E} = -3,448$$
 (13)

E para encontrar A_i , temos que:

$$A_{i} = \frac{I_{o}}{I_{i}} = \frac{-V_{o}}{Z_{o}} \cdot \frac{Z_{i}}{V_{i}} = -A_{v} \frac{Z_{i}}{Z_{o}} = 1,473$$
 (14)

6) Considerando o capacitor CE conectado (figura 5) e que r_o é muito grande, de modo que ele atue como um circuito aberto, temos o seguinte circuito equivalente r_e .

Figura 5: Circuito teórico 3.

Figura 6: Equivalente r_e .

7) Considerando o capacitor CE conectado (figura 5) e que r_o é muito grande, de modo que ele atue como um circuito aberto, deduza e calcule os parâmetros: Z_i , Z_o , A_v e A_i . Para determinar Z_i , temos:

$$V_i = I_b \beta r_e \rightarrow Z_b = \frac{V_i}{I_b} = \beta r_e$$

Assim, obtemos:

$$Z_i = R_{th}//Z_b = R1//R2//(\beta r_e) = 1{,}148 k\Omega$$
 (15)

Para a determinação de Z_o , inicialmente, V_i deve ser ajustado em 0 V, assim $I_b = 0$ e βI_b pode ser substituido por um circuito aberto equivalente. Deste modo:

$$Z_o = R_C = 3.9 \, k\Omega \tag{16}$$

Para se achar o ganho de tensão, sabemos que $I_b = V_i/Z_b$, logo,

$$V_o = -I_o Z_o = -\beta I_b R_C = \frac{\beta(V_i)(R_C)}{Z_b}$$

Desta forma:

$$A_v = \frac{V_o}{V_i} = -\frac{\beta R_C}{\beta r_e} = -\frac{R_C}{r_e} = -168,299 \tag{17}$$

E para encontrar A_i temos que:

$$A_{i} = \frac{I_{o}}{I_{i}} = \frac{-V_{o}}{Z_{o}} \cdot \frac{Z_{i}}{V_{i}} = -A_{v} \cdot \frac{Z_{i}}{Z_{o}} = 49,540$$
(18)

Parte Prática:

a) Montar o circuito sem conectar a fonte de tensão senoidal e os capacitores (Figura 2). Medir os parâmetros relativos ao ponto quiescente e anotar na tabela 2.

Figura 7: Circuito simulado 1.

Tabela 2: Polarização CC (Valores simulados para figura 7).

_						
Transistor:	$I_B(\mu A)$	$I_C(mA)$	$I_E(mA)$	$V_B(V)$	$V_C(V)$	$V_{CE}\left(V\right)$
PN2222	5,501	1,158	1,164	1,822	7,483	6,320
β:	$V_{R1}(V)$	$V_{R2}(V)$	$V_{BE}(V)$	$V_{BC}(V)$		
200	10,180	1,822	0,659	-5,661		

b) Conectar ao circuito a fonte de sinais senoidal (Vs), os capacitores, exceto CE, e um resistor de carga RL=39 K (entre Vo e terra) (Figura 3). Medir os valores de pico a pico e pico das tensões V_s , V_i , V_c , V_o e preencher a tabela 3. Utilizar $V_s=25 \text{mV}$ e f=3 kHz. Depois esboce as formas de onda de V_s , V_i , V_c , V_E e V_o (Considere a componente continua).

Figura 8: Circuito simulado 2.

Figura 9: Formas de ondas de: V_s , V_i , V_c , V_E e V_o .

Tabela 3: Polarização AC (Valores simulados para figura 8).

$V_{S_{PP}}$	$V_{i_{PP}}$	$V_{C_{PP}}$	$V_{O_{PP}}$
50 mV	49,5 mV	170 mV	171,6 mV

c) Faça o mesmo da letra b, mas considere $V_s=250 {\rm mV}$ e $f=3 {\rm kHz}$. Depois esboce as formas de onda de V_s, V_i, V_c, V_E e V_o (Considere a componente continua).

Figura 10: Formas de ondas de: V_s , V_i , V_c , V_E e V_o .

d) Calcular o ganho de tensão $A_{VNL}=-rac{V_o}{V_i}$ para os sinais obtidos em b).

$$A_{VNL} = -\frac{171,6 \, m}{49,5 \, m} = -3,467$$

- e) Qual a componente contínua presente no coletor? Compare com V_C da tabela 1.
 O valor da componente continua presente no coletor é de 7,48. Este valor se aproxima do valor teórico, pois apresenta um erro pequeno de 2,17%.
- f) Qual a componente contínua presente na base? Compare com V_B da tabela 1.
 O valor da componente continua presente na base é de 1,82. Este valor se aproxima do valor teórico, pois apresenta um erro pequeno de 0,1%.
- g) Os sinais de V_s e V_o estão em fase? Explique. O sinal negativo na equação resultante para A_v revela que há um deslocamento de fase de 180° ocorrendo entre os sinais de entrada e saída. Isto ocorre pelo fato de que βI_b estabelecer uma corrente através de R_C que resultará em uma tensão através R_C , senda esta o oposto da definida por V_o .
- h) Compare o ganho teórico e simulados e conclua.
 Os valores se aproximam muito apresentando um erro de 0,551%.
- i) Conectar o capacitor de desvio CE em paralelo com RE (Figura 5). Esboce as formas de onda de V_s , V_i , V_c , V_E e V_o (Considere a componente continua).

Figura 11: Circuito simulado 3.

Figura 12: Formas de ondas de: V_s , V_i , V_c , V_E e V_o .

REFERÊNCIAS REFERÊNCIAS

j) Explique o que ocorre com a forma de onda do sinal de saída, V_O .

Pela figura 12 podemos perceber que a forma de onda de V_o não é mais senoidal, se assemelhando a uma onda quadrada. Essa mudança se deve a faixa de saturação, ou seja, durante essa faixa de tempo o transistor encontra-se em saturação.

k) O ganho de tensão do amplificador é alterado? Justifique.

O valor do ganho é alterado sim, pois ao adicionar o capacitor CR, a corrente que passa pela resistência R_E torna-se muito pequena, desta forma o ganho passa a ser:

$$A_{VNL} = -\frac{10,81}{470 \ m} = -23$$

Compare com os valores teóricos e práticos. O que aconteceu com o ganho de tensão? Por quê?
 Comparando o valor teórico com o simulado, podemos perceber que o valor se aproxima um pouco, contudo a diferença ocorre devido o transistor estar situado na faixa de saturação, como pôde ser observado na figura 12, ou seja, caso o TBJ estivesse na faixa ativa o ganho estaria mais próximo do teórico.

Conclusão:

Portanto, percebe-se que os valores simulados ficaram bem próximos dos calculados, possuindo erros baixos. Além disso, pudemos ver o efeito do capacitor de derivação e o efeito de pequenos sinais de entrada, além das diferenças de fases. Ademais, pudemos observar o efeito da saturação sobre o ganho de tensão , o qual foi menor em relação ao teórico, e concluímos que este fato se deve a valor da fonte V_{CC} , ou seja, caso a fonte possua um valor maior o ganho se aproximaria do valor teórico ainda mais.

Referências

- [1] R. L. Boylestad and L. Nashelsky, *Dispositivos eletrônicos e teoria de circuitos*, vol. 11. Prentice-Hall do Brasil, 2013.
- [2] O. Semiconductor, "https://www.onsemi.com/pub/collateral/pn2222-d.pdf."
- [3] Alldatasheet, "https://html.alldatasheet.com/html-pdf/150552/central/pn2222/293/1/pn2222.html."