Esercizi di Geometria per Ingegneria Medica Prof. F. Bracci — A.A. 2012-13

- 1. Sia $GL(n) := \{A \in \mathsf{Mat}(n \times n) : A \text{ è invertibile}\}$. Provare che GL(n) è un gruppo non Abeliano rispetto al prodotto righe per colonne.
- **2.** Sia V il sottoinsieme delle matrici 3×3 tali che $A + ^t A = 0$ (qui 0 indica la matrice nulla). Provare che V è uno spazio vettoriale su \mathbb{R} e trovare la dimensione e una base.
- 3. Sia $L_\alpha:\mathbb{R}^3\to\mathbb{R}^3$ l'applicazione lineare definita da $L_\alpha:\underline{x}\to A_\alpha\underline{x}$ dove

$$A_{\alpha} := \begin{pmatrix} 2\alpha + 2 & 4\alpha & 10\alpha + 7 \\ -\alpha & -2\alpha + 2 & -5\alpha - 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

Determinare al variare di $\alpha \in \mathbb{R}$ autovalori e autovettori di L_{α} e dire quando L_{α} è diagonalizzabile.

- **4.** Nello spazio affine sia fissato un sistema di riferimento ortogonale. Sia π il piano $x+2\beta y+z=3$ al variare di $\beta\in\mathbb{R}$. Sia π' il piano passante per i punti $(1/\alpha,0,1/\alpha)$, (0,1,0) e $(1/\alpha,1/2,0)$ al variare di $\alpha\in\mathbb{R}\setminus\{0\}$. Per quali valori di α e β i due piani sono paralleli? Per quali valori di α e β i due piani sono perpendicolari?
- **5.** Sia $A' = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ una matrice 2×2 tale che det $A' \neq 0$. Siano

$$A = \begin{pmatrix} \alpha & 0 & 0 \\ 1 & a & b \\ -1 & c & d \end{pmatrix}, B = \begin{pmatrix} \beta \\ \beta \\ 1 \end{pmatrix}, X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}.$$

Si discutano al variare di α, β le soluzioni del sistema lineare $A \cdot X = B$.

6. Determinare il rango della seguente matrice al variare dei parametri $\alpha, \beta \in \mathbb{R}$

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ \alpha & \alpha & 0 & 0 \\ \alpha^2 & \alpha^2 & \beta & 0 \\ \alpha^3 & \alpha^3 & \alpha^5 & \alpha^2 + \beta \end{pmatrix}$$

- 7. Sia fissato un riferimento ortogonale nello spazio. Determinare l'equazione parametrica e quella cartesiana del piano che contiene il punto (1,0,1) e la retta passante per (0,0,-1) con vettore direttore $\underline{v}=(0,1,-1)$. Determinare poi l'intersezione di questo piano con la retta r di equazione x-y=1, z=0.
- 8. Nello spazio affine \mathbb{A}^3 sia fissato un sistema di riferimento ortogonale. Siano P=(1,0,-1) e Q=(-2,3,2). Determinare la distanza tra P e Q e l'angolo tra i vettori P-Q e Q-O.

9. Nello spazio vettoriale \mathbb{R}^4 munito del prodotto scalare standard, sia V lo spazio ortog-

onale al vettore
$$v := \begin{pmatrix} 1 \\ -1 \\ 0 \\ 1 \end{pmatrix}$$
. Trovare una base ortonormale di V . Determinare poi la

decomposizione di un qualunque vettore di \mathbb{R}^4 nella somma diretta $\mathbb{R}^4 = V \oplus \operatorname{span}\{v\}$.

10. Studiare il seguente sistema al variare dei parametri $\alpha, \beta \in \mathbb{R}$

$$\begin{cases} \alpha x + z = 1\\ x + \alpha y = 1\\ 2\alpha y + z = \beta \end{cases}$$

11. Sia

$$A_{\alpha} = \begin{pmatrix} \alpha & 1 & -1 \\ 0 & 1 - \alpha & 1 \\ 0 & 1 & 1 + \alpha \end{pmatrix}$$

Determinare per quali $\alpha \in \mathbb{R}$ la matrice A_{α} è invertibile e, per tali α , trovare l'inversa.

12. Sia $\mathcal{R} = \{O; x, y\}$ un sistema di riferimento ortonormale nel piano affine \mathbb{A}^2 . Siano \mathbf{v}, \mathbf{w} due vettori di coordinate $\mathbf{v} = (1, 1)$ e $\mathbf{w} = (1, 0)$ espresse nel sistema di riferimento \mathcal{R} . Sia O' = (1, 1). Infine sia r la retta che passa per O' ed è ortogonale a v. Determinare l'equazione cartesiana di r nel sistema di riferimento \mathcal{R}' .

13. Nello spazio affine \mathbb{A}^3 sia dato un sistema di riferimento affine. Determinare l'equazione cartesiana e parametrica del piano passante per P=(1,2,1) e che contiene la retta y=3x-2, z=0.

14. In un fissato riferimento affine dello spazio si consideri la retta r di equazione parametrica

$$\begin{cases} x = 1 - h, \\ y = h - 1, \\ z = 1 \end{cases}$$

con $h \in \mathbb{R}$. Indicare quali delle seguenti affermazioni sono vere:

- (a) La retta r contiene il punto (0,0,1),
- (b) La retta r contiene il punto (-1, 1, 0),
- (c) La retta r è parallela al piano di equazione x + y = 1,
- (d) La retta r è parallela al piano di equazione z = -1,

15. Sia \mathbb{R}^3 munito del prodotto scalare standard. Sia $L: \mathbb{R}^3 \to \mathbb{R}^3$ una applicazione lineare autoaggiunta con autovalori 1, 2, 3. Sapendo che l'autospazio relativo a 1 è generato

da $v := \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ e l'autospazio relativo a 2 è generato da $u := \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$, determinare

l'equazione cartésiana dell'autospazio relativo all'autovalore 3.

- 16. Nello spazio vettoriale \mathbb{R}^2 munito del prodotto scalare standard, sia fissata una base ortonormale. Sia V lo spazio vettoriale ortogonale allo spazio x-y=0. Determinare una base di V. Trovare poi una base ortonormale di \mathbb{R}^2 , con coordinate $\{x',y'\}$ tale che V sia dato da x'=0. Determinare poi le coordinate del vettore $v:=\begin{pmatrix} 2\\ -1 \end{pmatrix}$ nella nuova base.
- 17. Sia V uno spazio vettoriale metrico con base ortonormale $\mathcal{E} := \{e_1, e_2\}$ e sia W un altro spazio vettoriale metrico con base ortonormale $\mathcal{U} := \{u_1, u_2, u_3\}$. Sia $L: V \to W$ l'applicazione lineare tale che $L(e_1) = u_1 u_2$, $L(e_2) = u_3$. Trovare la matrice associata a L nelle basi \mathcal{E}, \mathcal{U} . Determinare una base del nucleo e dell'immagine di L. Dire se L è una isometria. Trovare l'aggiunto di L. Determinare una base di V e una di W tale che

la matrice associata a L in tali basi sia $\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$. È possibile ottenere lo stesso risultato

scegliendo una base ortonormale di V e una ortonormale di W?

- **18.** Determinare delle equazioni che rappresentino il luogo di punti in \mathbb{A}^3 che distano 1 dal punto (1,0,1). Tale insieme è una sottovarietà affine di \mathbb{A}^3 ?
- 19. Dare un esempio di una matrice 2×2 che non sia diagonalizzabile ma abbia 0 come autovalore di molteplicità algebrica 2. Quanto è la molteplicità geometrica di 0? È possibile costruire tale esempio con una matrice simmetrica?
- **20.** (difficile) Sia V uno spazio vettoriale di dimensione 2. Sia $L:V\to V$ una applicazione lineare tale che $L\circ L=L$. Provare che L è diagonalizzabile. Provare che L può essere solo l'applicazione nulla, oppure l'applicazione identica, oppure esiste un prodotto scalare su V tale che L è la proiezione ortogonale su un sottospazio di dimensione 1 di V.
- **21.** In \mathbb{R}^3 con il prodotto scalare standard siano $v_1 := \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, v_2 := \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, v_3 := \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$
- $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. Provare che $\mathcal{V} := \{v_1, v_2, v_3\}$ è una base di \mathbb{R}^3 . Sia $L : \mathbb{R}^3 \to \mathbb{R}^3$ una applicazione

lineare che ha matrice associata $A := \begin{pmatrix} -1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ nella base \mathcal{V} . Determinare la

matrice associata all'aggiunta di L nella base \mathcal{V} . [Attenzione: NON è la trasposta di A!]