

Modellistica e Simulazione Identificazione ARX

Prof. C. Carnevale, Ing. L. Sangiorgi

Esercitazione 7

Il file es7_dati contiene le variabili y e u che contengono rispettivamente i valori dell'ingresso e dell'uscita di un sistema sconosciuto.

Si chiede di identificare e valutare le prestazioni dei modelli seguenti, considerati sia in previsione:

1.
$$y(t) = \alpha_1 y(t-1) + \beta_0 u(t)$$
 (ARX(1,1,0))

2.
$$y(t) = \alpha_1 y(t-1) + \beta_0 u(t-1)$$
 (ARX(1,1,1))

3.
$$y(t) = \alpha_1 y(t-1) + \alpha_2 y(t-2) + \beta_0 u(t)$$
 (ARX(2,1,0))

4.
$$y(t) = \alpha_1 y(t-1) + \beta_0 u(t) + \beta_1 u(t-1)$$
 (ARX(1,2,0))

Esercitazione 8

 \bar{y} serie vera

 \hat{y} output modello

Indice	Formula	Note
Residui	$e = \hat{y} - \bar{y}$	Indicazione dell'errore nel tempo
Errore Medio (ME)	i=1	Sovrastima (>0) o sottostima (<0) del modello. Unità di misura della serie
Errore Medio Assoluto (MAE)		Indice più "robusto" di errore medio del modello (nessuna compensazione di segno). Unità di misura della serie.
Errore Medio Normalizzato (NME)	$NME = \frac{\sum_{i=1}^{N} e_i}{\sum_{i=1}^{N} \bar{y}}$	Come ME, ma normalizzato rispetto alla media
Errore Medio Assoluto Normalizzato (NMAE)	$NMAE = \frac{\sum_{i=1}^{N} e_i }{\sum_{i=1}^{N} \bar{y}}$	Come MAE, ma normalizzato rispetto alla media
Correlazione	$NMAE = \frac{\sum_{i=1}^{N} (y_i - \mu_y)(\hat{y}_i - \mu_{\hat{y}})}{\sqrt{\sum_{i=1}^{N} (y_i - \mu_y)^2} \sqrt{\sum_{i=1}^{N} (\hat{y}_i - \mu_{\hat{y}})^2}}$	Indica la capacità del modello di avere un andamento simile a quello della serie. NON considera eventuali traslazioni. (tra -1 e 1)

