

Universidad Tecnológica Nacional Facultad Regional Villa María

Ingeniería en Sistemas de Información Sintaxis y Semántica del Lenguajes

Doctor Palombarini, Jorge Ingeniero Rinaldi, Mario

Trabajo Práctico N°1 "Expresiones Regulares":

Grupo C

Liberati, Francisco	12543
Ortiz, Lucas	13429
Stoller, Luis	13642

Correo electrónico: stollerluis@gmail.com

Entrega: 09/09/2020

```
1. Teniendo en cuenta la definición de lenguaje, construya tres lenguajes (L1, L2, L3) con los siguientes alfabetos: AL1={a,b,c,d,e}, BL2={A,B,C,D,E,F}, CL3={1,2,3}. Calcular:
```

a) L1 \cup L3 b) L2 \cap L3 c) ~L1 d) L2·L1·L3

```
L1 = \{ab, bc, de\}\ L2 = \{AB, CD, EF\}\ L3 = \{12, 23, 13\}
```

- **a.** L1 \cup L3 = {ab. bc, de, 12, 23, 13}
- **b.** L2 \cap L3 = {} L2 y L3 son disjuntos
- c. $\sim L1 = A^*L1 L1$
- **d.** L2·L1·L3 = {ABab12, ABab23, ABab13, ABbc12, ABbc23, ABbc13, ABde12, ABde23, ABde13, CDab12, CDab23, CDab13, CDbc12, CDbc23, CDbc13, CDde12, CDde23, CDde13, EFab12, EFab23, EFab13, EFbc12, EFbc23, EFbc13, EFde12, EFde23, EFde13}
- 2. Dados los siguientes lenguajes L1 = $\{a, b, c\}$; L2 = $\{\epsilon\}$; L3 = $\{\}$. Calcular:
- a) L1* b) L1+ c) L1+.L2* d) \emptyset + e) \emptyset * f) L1*. \emptyset
- **a.** L1* = $\{\varepsilon, a, b, c, aa, bb, cc, aaa, bbb, ccc, ab, ac, bc...\}$
- **b.** $L1^+ = \{a, b, c, aa, ab, bc, ac, ca, aaa, bbb, ccc, aab, aac, abc, cba...\}$
- c. $L1^+.L2^* = L1^+$
- **d.** $\emptyset^+ = \{ \}$
- **e.** $\emptyset^* = \{\epsilon\}$
- **f.** $L1^*.\emptyset = L1^*$ {}
- 3. Para cada uno de los lenguajes descriptos en las siguientes expresiones regulares, dar tres ejemplos de strings que pertenezcan al mismo y tres que no.
 - a. a* b* = Pertenecen: {aab, aaab, abb}

 No pertenecen: {ba, a, b} Si pertenecen
 - **b.** a(ba)*b = Pertenecen: {abababab, ababab, abab}
 No pertenecen: {a, b, ba}
 - c. a*∪ b* = Pertenecen: {a, aa, bbb}No pertenecen: {ab, aab, abb}
 - **d.** (aaa)* = Pertenecen: {aaa, aaaaaaa, aaaaaaaaaa} No pertenecen: {a, aa, aaaa}
 - **e.** Σ^* a Σ^* b Σ^* a Σ^* = Pertenecen: {aaba, abba, abaa} No pertenecen: {b, bb, bbb}
 - f. aba ∪ bab = Pertenecen: {aba, bab}No pertenecen: {ababab, bababa}
 - **g.** $(\varepsilon \cup a)$ b = Pertenecen: {ab, b} No pertenecen: {a, bb, bbb}
 - **h.** $(a \cup ba \cup bb)\Sigma^* = Pertenecen: \{abb, ba, bb\}$ No pertenecen: $\{aba, ababb, babb\}$ Las tres pertenecen

4. Dados los siguientes lenguajes, obtener las expresiones regulares que los generan. Para todos los casos, el alfabeto es $A = \{0,1\}$

- **a.** L= {w|w comienza con 1 y termina con 0}: $1 \Sigma^* \cap 0 \Sigma^*$ Intersección no puede ser parte de una ER.
- **b.** L= {w|w contiene al menos tres 1}: $\Sigma^*1\Sigma^*1\Sigma^*1\Sigma^*$
- c. L= {w|w contiene el substring 0101}: Σ* 0101 Σ*
- d. \triangle L= {w|w tal que la longitud de w es como máximo 5}: $\Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \Sigma^3 \cup \Sigma^4 \cup \Sigma^5$
- e. L= {w|w tal que en cada posición impar encontramos un 1}: (1Σ)* Considera sólo cadenas de longitud par falta considerar las impares
- f. L= {w|w contiene al menos dos 1 y como máximo un 0}: (1 U 0) 11+

No considera cadenas válidas como 11011, 1101, etc

- g. L= $\{w|w \text{ no empieza con } 00\}$: $\frac{11\Sigma^*}{N_0}$ No considera cadenas válidas como 0, 1, 001, 010, etc
- **h.** L= {w|w empieza en 1 y termina en 110, existiendo al menos dos 1 entre ambas construcciones}: $(1\Sigma^* 11\Sigma^*)110$ Los 1's no necesitan estar juntos
- L= {w|w contiene al menos dos 0's consecutivos, o termina con 1}: 00Σ* U Σ*1
 No pide que los ceros estén al principio

5. Dados los siguientes lenguajes, obtener la expresión regular que los genera:

- **a**. Δ L(A)= {w|w contiene exactamente dos b consecutivas, pudiendo existir más de dos b en w} Σ = {a,b,c}: (bb Σ *) U Σ *bb Σ * U (bb Σ *) Permite cualquier cantidad de b's consecutivas
- **b.** L(A)= {w|w tiene una longitud que es múltiplo de 2 o múltiplo de 3} $\Sigma = \{a,b\}$: $(\Sigma^2)^* \cup (\Sigma^3)^*$
- **c.** Δ L(A)= {w|w contiene al menos una "b", y toda "b" tiene inmediatamente a su izquierda y a su derecha al menos una "a"} Σ = {a,b}: $\frac{a^+(ba^+)}{a^+(ba^+)}$ Falta * en (ba+)

6. ¿Cuáles de los siguientes lenguajes especificados por las expresiones regulares para el alfabeto A={x,y,z} son infinitos? Describa en una sola frase el contenido de cada uno de estos lenguajes infinitos, y defina por los lenguajes que sean finitos

- **a.** (x . (y . z*)) = Infinito: L= {w|w Comienza con "xy" seguido de n cantidad de "z", pudiendo no tener ninguna "z".}
- **b.** (x*.(y.z)) = Infinito: L= {w|w Comienza con n cantidad de "x", pudiendo no contener ninguna "x", seguido de "yz".}
- c. ((z U y) . x) = Finito: L= {w|w Comienza con "x" o "y" y finaliza con x} Las dos posibilidades de salida son: {zx, yx}

- d. (z ∪ y)* = Infinito: L= {w|w Contenga n cantidad de "z" o "y", o que se trate del conjunto vacio}
- e. (y . y)* = Infinito: L= {w|w Que contenga el par "yy", n veces}
- f. (x* U y*) = Infinito: L= {w|w Que contenga n cantidad de "x" o n cantidad de "y", o es el vacío}
- **g.** $((x \cdot x) \cup z) = \text{Finito: L} = \{w | w \text{ Contiene "x" o "z"} \text{ Las dos posibilidades son: } \{xx, z\}$
- **h.** $((z \cup y) \cup x) = Finito: L = \{w | w Contiene "z" o "y" o "x"\} Las tres posibilidades son: <math>\{z, y, x\}.$
- 7. * Describa el lenguaje representado por cada una de las siguientes expresiones regulares
 - a. $((z \cup \neg y)^* \cdot x) : L = \{w | w \text{ termina con "x"} \} A = \{x, y, z\}$ No establece que hay sólo una x
 - b. ((x . x*) . y . y*) : L= {w|w comienza con una o varias "x" y termina con una o varias "y"} A= {x, y}
 x e y no se mezclan entre sí
 - c. ((x . x*) U (y . y*)): L= {w|w cadena que contenga una o varias "x" o una o varias "y"} A= {x, y}

cadena vacía

- **d. ((x*.y*).z*)**: L= {w|w puede ser el conjunto vacio o comenzar con "x^s", pudiendo no contener ninguna "x" seguido de "y^s" pudiendo no contener ninguna "y", finalizando con "z^s", pudiendo no contener ninguna "z"} A= {x, y, z}
- 8. Para el lenguaje (sobre el alfabeto A= {a, b}) L= {w|w no termina en b o contiene una cantidad de caracteres par} realizar las siguientes actividades:
 - **a.** Escribir 3 palabras que pertenezcan y 3 que no pertenezcan a L. Pertenecen: {aba}, {bababb}, {bb} No pertenecen: {ba}, {baba}, {bbb}. si pertenecen
 - **b.** Escribir una expresión regular que lo genere. $(\Sigma^2)^* \cup (\Sigma^*)a$.
- 9. Considerando que una Expresión Regular (ER) es ambigua cuando existe al menos un string que puede ser construido de dos diferentes maneras a partir de dicha ER ¿Cuáles de las siguientes ERs son ambiguas? Justifique su respuesta.

a((ab)*cd)* ∪ a(ababcb*)* a*: Esta expresión es ambigua ya que el string "a" puede ser formado de ambos lados de la unión.

aab*(ab)* ∪ ab* ∪ a*bba*: Esta expresión es ambigua porque se pude formar el string "ab" en la segunda o tercera expresión. no se puede ab en la tercer expresión

aaba* ∪ aaaba ∪ aabba* ∪ a: Esta expresión no es ambigua.