

MahaManthan ASSIGNMENT

Vector

Assignment-01 By: M.R. Sir

- 1. The magnitude of a vector is always a positive value. True/False
- 2. A scalar quantity has both magnitude and direction.

 True/False
- 3. Two vectors are equal only if they have the same magnitude and the same direction. True/False
- 4. If A and B are two vectors, then A + B has the same magnitude as B + A. True/False
- 5. Adding a vector to a scalar quantity is a valid mathematical operation. True/False
- 6. If a vector is multiplied by a positive scalar, its direction changes. True/False
- 7. If A and B are perpendicular vectors, then their dot product (A . B) is zero. True/False
- 8. The cross product of two parallel vectors is a vector pointing perpendicular to both. True/False
- 9. The magnitude of the cross product of two vectors A and B is given by AB sin θ , where θ is the angle between them.

 True/False
- A unit vector has a magnitude of one and indicates the direction of a vector.

 True/False
- 11. The resultant of two vectors is always greater than or equal to the magnitude of either individual vector.

True/False

- 12. If a vector is resolved into its rectangular components, the sum of the magnitudes of the components is equal to the magnitude of the original vector.

 True/False
- 13. Torque is a scalar quantity because it is the result of a force acting at a distance. True/False

- 14. The area of a parallelogram formed by two vectors A and B is equal to the magnitude of their cross product, $|A \times B|$. True/False
- 15. If the scalar product of two vectors is equal to the magnitude of their vector product, then the angle between them is 45°.

 True/False
- 16. If a vector A makes an angle θ with the positive x-axis, its x component is always $|A| \cos \theta$, regardless of the quadrant. True/False
- 17. Parallel vectors have the same magnitude but not necessarily the same direction. True/False
- **18.** Equivalent vectors have the same magnitude and direction.

 True/False
- 19. Opposite vectors have a negative magnitude.

True/False

- 20. The resultant vector is the vector formed by adding two vectors.

 True/False
- 21. To subtract a vector from a given vector, add the opposite vector to the given vector. True/False
- 22. To multiply two vectors, multiply their magnitudes and add their direction angles. True/False
- **23.** The scalar multiplication of a vector results in another vector having the same direction.

True/False

24. A child pulling a wagon with a force of 100 N at 30° to the horizontal is an example of a vector.

True/False

25. A single vector can be replaced by two vectors in the X and Y directions. These X and Y vectors are called the resultant of the original vector.

True/False

- **26.** Wind velocity can be represented as a vector quantity. **True/False**
- **27.** Is a vector necessarily changed if it is rotated through an angle?
- **28.** Is it possible to add two vectors of unequal magnitudes and get zero? Is it possible to add three vectors of equal magnitudes and get zero?
- **29.** Can you add three unit vectors to get a unit vector? Does your answer change if two unit vectors are along the coordinate axes?
- **30.** Can we have physical quantities having magnitude and direction which are not vectors?
- **31.** Which of the following two statements is more appropriate?
 - (a) Two forces are added using triangle rule because force is a vector quantity.
 - (b) Force is a vector quantity because two forces are added using triangle rule.
- 32. Can you add two vectors representing physical quantities having different dimensions? Can you multiply two vectors representing physical quantities having different dimensions?
- **33.** Can a vector have zero component along a line and still have nonzero magnitude?
- 34. Is the vector sum of the unit vectors \hat{i} and \hat{j} a unit vector? If no, can you multiply this sum by a scalar number to get a unit vector?

- **35.** Let $\vec{A} = 3\hat{i} + 4\hat{j}$. Write vector \vec{B} such that $\vec{A} \neq \vec{B}$ but A = B.
- **36.** Can you have $\vec{A} \times \vec{B} = \vec{A}$. \vec{B} with $A \neq 0$ and $B \neq 0$? What if one of the two vectors is zero?
- 37. If $\vec{A} \times \vec{B} = 0$, can you say that (a) $\vec{A} = \vec{B}$, (b) $\vec{A} \neq \vec{B}$?
- **38.** Let $\vec{A} = 5\hat{i} 4\hat{j}$ and $\vec{B} = -7.5\hat{i} + 6\hat{j}$. Do we have $\vec{B} = k\vec{A}$? Can we say $\frac{\vec{B}}{\vec{A}} = k$?
- **39.** A vector is not changed if
 - (1) it is rotated through an arbitrary angle
 - (2) it is multiplied by an arbitrary scalar
 - (3) it is cross multiplied by a unit vector
 - (4) it is slid parallel to itself.
- **40.** Which of the sets given below may represent the magnitudes of three vectors adding to zero?
 - (1) 2, 4, 8
 - (2) 4, 8, 16
 - (3) 1, 2, 1
 - (4) 0.5, 1, 2
- **41.** The resultant of \vec{A} and \vec{B} makes an angle α with \vec{A} and β with \vec{B} ,
 - (1) $\alpha < \beta$
 - (2) $\alpha < \beta$ if A < B
 - (3) $\alpha < \beta \text{ if } A > B$
 - (4) $\alpha < \beta \text{ if } A = B$
- **42.** The component of a vector is
 - (1) always less than its magnitude
 - (2) always greater than its magnitude
 - (3) always equal to its magnitude
 - (4) none of these

- 43. A vector \vec{A} points vertically upward and \vec{B} points towards north. The vector product $\vec{A} \times \vec{B}$ is
 - (1) along west
 - (2) along east
 - (3) zero
 - (4) vertically downward
- **44.** A situation may be described by using different sets of coordinate axes having different orientations. Which of the following do not depend on the orientation of the axes?
 - (1) the value of a scalar
 - (2) component of a vector
 - (3) a vector
 - (4) the magnitude of a vector
- **45.** Let $\vec{C} = \vec{A} + \vec{B}$.
 - (1) $|\vec{C}|$ is always greater than $|\vec{A}|$
 - (2) It is possible to have $|\vec{C}| < |\vec{A}|$ and $|\vec{C}| < |\vec{B}|$
 - (3) C is always equal to A + B
 - (4) C is never equal to A + B

- **46.** Let the angle between two nonzero vectors \vec{A} and \vec{B} be 120° and its resultant be \vec{C} .
 - (1) C must be equal to |A B|
 - (2) C must be less than |A B|
 - (3) C must be greater than |A B|
 - (4) C may be equal to |A B|
- **47.** The *x*-component of the resultant of several vectors
 - (1) is equal to the sum of the x-components of the vectors
 - (2) may be smaller than the sum of the magnitudes of the vectors
 - (3) may be greater than the sum of the magnitudes of the vectors
 - (4) may be equal to the sum of the magnitudes of the vectors
- 48. The magnitude of the vector product of two vectors $|\vec{A}|$ and $|\vec{B}|$ may be
 - (1) greater than AB (2) equal to AB
 - (3) less than AB (4) equal to zero

ANSWER KEY

- 1. [True]
- 2. [False]
- **3.** [True]
- **4.** [True]
- 5. [False]
- 6. [False]
- 7. [True]
- 8. [False]
- **9.** [True]
- 10. [True]
- 11. [False]
- **12.** [False]
- **13.** [False]
- **14.** [False]
- 15. [True]
- 16. [True]

- 17. [False]
- 18. [True]
- 19. [False]
- 20. [True]
- 21. [True]
- **22.** [False]
- 23. [False]
- 24. [True]
- **25.** [False]
- 26. [True]
- 27. [No]
- 28. [No, Yes]
- 29. [Yes]
- 30. [Yes \rightarrow Yes, Current]
- 31. [b]
- 32. [No, Yes]

- 33. [Yes]
- 34. [No, Yes]
- 35. $[\vec{B} = 4\hat{i} + 3\hat{j}]$
- 36. [No, No]
- 37. [(a) Yes, (b) Yes]
- 38. [Yes, No]
- 39. [4]
- 40. [3]
- 41. [3]
- 42. [4]
- 43. [1]
- 44. [1, 3, 4]
- 45. [2]
- 46. [3]
- 47. [1, 2, 4]
- 48. [2, 3, 4]

