Analiza 2 - definicije, trditve in izreki

Oskar Vavtar 2020/21

Kazalo

1	NEDOLOCENI INTEGRAL IN POJEM		
	DII	FERENCIALNE ENAČBE	3
	1.1	Primitivna funkcija in nedoločeni integral	3
	1.2	Uvedba nove spremenljivke v nedoločeni integral	3
	1.3	Integracija po delih v nedoločenem integralu	3
	1.4	Diferencialne enačbe 1.reda	3
2	DOLOČENI INTEGRAL		5
	2.1	Motivacija za določeni integral	5
	2.2	Riemannova vsota in Riemannov integral	5
	2.3	Integrabilne funkcije	6
	2.4	Osnovni izrek analize	7
	2.5	Pravila za integriranje in Leibnizova formula	8
	2.6	Posplošeni integral na omejenem intervalu	8
	2.7	Posplošeni integral na neomejenem intervalu	8
3	KRIVULJE V RAVNINI		9
	3.1	Podajanje krivulj	9
	3.2	Enačba tangente na krivuljo	9
	3.3	Dolžina loka krivulje	10
	3.4	Ploščina območja, določenega s krivuljo	11
	3.5	Diferencialne enačbe v obliki diferenciala	12

1 NEDOLOČENI INTEGRAL IN POJEM DIFERENCIALNE ENAČBE

1.1 Primitivna funkcija in nedoločeni integral

Definicija 1.1 (Primitivna funkcija). Naj bo f funkcija ene spremenljivke. Če \exists odvedljiva funkcija $F: A \to \mathbb{R}$, za katero velja F' = f, imenujemo F primitivna funkcija funkcije f na A.

Definicija 1.2 (Nedoločeni integral). *Nedoločeni integral* funkcije f je skupek vseh njenih primitivnih funkcij. Označimo ga z $\int f(x)dx$, funkcijo f pa imenujemo integrand.

Posledica. Naj bo F neka primitivna funkcija za f na intervalu J. Potem je za $x \in J$

$$\int f(x)dx = F(x) + C,$$

kjer je $C \in \mathbb{R}$ poljubna konstanta, ki jo imenujemo splošna ali integracijska konstanta.

1.2 Uvedba nove spremenljivke v nedoločeni integral

1.3 Integracija po delih v nedoločenem integralu

1.4 Diferencialne enačbe 1.reda

Definicija 1.3. *Navadna diferencialna enačba* 1.reda je enačba za neznano funkcijo

$$y = g(x),$$

ki vsebuje tudi odvod y' funkcije y.

Splošna oblika diferencialne enačbe 1.reda je

$$F(x, y, y') = 0,$$

kjer je ${\cal F}$ funkcija treh spremenljivk, ki je res odvisna od zadnje spremenljivke.

Splošna rešitev diferencialne enačbe 1.reda je funkcija

$$y = g(x, C)$$

(lahko podana implicitno),
ki je odvisna od splošne konstante C in reši dano diferencialno enačbo za pol
jubno izbiro vrednosti konstante $C \in \mathbb{R}$, poleg tega pa za pol
juben začetni pogoj \exists vrednost konstante C, pri kateri rešitev zadošča izbranemu začetnemu pogoju.

Rešitev, ki ne vsebuje splošnih konstant, imenujemo tudi posebna ali partikularna rešitev.

Definicija 1.4 (LDE 1.reda). *Linearna diferencialna enačba* 1.reda ima obliko

$$r_1(x)y' + r_0(x)y = s(x),$$

kjer so $r_0, r_1, s: J \to \mathbb{R}$ funkcije, definirane na nekem intervalu J. Če je s ničelna funkcija, rečemo, da je enačba homogena. Če sta funkciji r_0, r_1 konstantni, pa rečemo, da ima enačba konstante koeficiente.

Standardna oblika linearne diferencialne enačbe 1.reda je

$$y' + p(x)y = q(x),$$

kjer sta $p, q: J \to \mathbb{R}$ funkciji, definirani na intervalu J.

2 DOLOČENI INTEGRAL

2.1 Motivacija za določeni integral

Definicija 2.1. Naj bo $f:[a,b] \to \mathbb{R}$ nenegativna funkcija, torej $f(x) \geq 0$ za vse $x \in [a,b]$. Rečemo, da graf funkcije f določa območje $A \subset \mathbb{R}^2$ nad intervalom [a,b]. Množica A je navzgor omejena z grafom funkcije f, na levi s premico x=a in na desni s premico x=b.

2.2 Riemannova vsota in Riemannov integral

Definicija 2.2 (Riemannova vsota). *Delitev D* intervala [a, b] na podintervale je dana z izbiro *delilnih točk* x_i :

$$a = x_0 < x_1 < x_2 < \ldots < x_{n-1} < x_n = b,$$

kjer je $n \in \mathbb{N}$. Dolžino *i*-tega podintervala $[x_{i-1}, x_i]$ (za i = 1, 2, ..., n) označimo z $\delta_i := x_i - x_{i-1}$. Velikost delitve D je dolžina najdaljšega podintervala delitve D, torej

$$\delta(D) = \max \{ \delta_i \mid i = 1, 2, ..., n \}.$$

Na vsakem od podintervalov, na katere delitev D razdeli interval [a, b], izberemo $testno točko t_i \in [x_{i-1}, x_i]$ in s $T_D = (t_1, t_2, \dots, t_n)$ označimo nabor teh točk; nabor testnih točk je usklajen z delitvijo D, ker smo na vsakem podintervalu $[x_{i-1}, x_i]$, določenem zD, izbrali natanko eno testno točko t_i .

 $Riemannova\ vsota$ funkcije $f:[a,b]\to\mathbb{R}$, pridružena delitvi D in usklajenemu naboru testnih točk T_D je

$$R(f, D, T_D) := \sum_{i=1}^{n} f(t_i)\delta_i.$$

Definicija 2.3 (Riemannov integral). Riemannov integral ali določeni integral funkcije $f:[a,b] \to \mathbb{R}$ je limita Riemannovih vsot $R(f,D,T_D)$, kjer limito vzamemo po \forall delitvah D intervala [a,b] in usklajenih naborih testnih

točk T_D , ko pošljemo velikost delitev $\delta(D)$ proti 0, če ta limita \exists (torej je končna in neodvisna od izbire delitev in testnih točk). Pišemo

$$\int_{a}^{b} f(x)dx := \lim_{\delta(D) \to 0} R(f, D, T_{D}).$$

Če zgornja limita \exists , rečemo, da je funkcija f integrabilna na [a, b].

Definicija 2.4.

$$\lim_{\delta(D)\to 0} R(f, D, T_D) = I,$$

če za $\forall \epsilon>0$ $\exists \delta>0$, da za poljubno delitev D z $\delta(D)<\delta$ in poljuben usklajen nabor testnih točk T_D velja

$$|R(f, D, T_D) - I| < \epsilon.$$

2.3 Integrabilne funkcije

Definicija 2.5 (Zožitev). Naj bo $f:A\to\mathbb{R}$ funkcija in $B\subset A$. Tedaj $f|_B:B\to\mathbb{R}$ označuje funkcijo z definicijskim območjem B, ki $\forall x\in B$ preslika v f(x). Funkcijo $f|_B$ imenujemo zožitev funkcije f na B.

Definicija 2.6 (Enakomerna zveznost). Naj bo $A \subseteq \mathbb{R}^n$. Funkcija $f: A \to \mathbb{R}$ je enakomerno zvezna na A, če za $\forall \epsilon > 0 \ \exists \delta = \delta_{\epsilon} > 0$, da za poljubna $x, y \in A$, ki zadoščata $|x - y| < \delta$, velja

$$|f(x) - f(y)| < \epsilon.$$

Definicija 2.7 (Odsekoma zvezna funkcija). Funkcija $f: J \to \mathbb{R}$, definirana na omejenem intervalu J, je odsekoma zvezna, če je zvezna v \forall točkah intervala razen morda v končno mnogo točkah, kjer ima skoke.

Funkcija f ima skos v točki $c \in J$, če f ni zvezna v c, ima pa (končno) levo in desno limito c (če je c krajišče intervala, zahtevamo le obstoj limite na tisti strani c, ki leži v J).

Posledica. Če je $f:[a,b] \to \mathbb{R}$ odsekoma zvezna, potem je integrabilna. Vrednosti funkcije f v skokih ne vplivajo niti na integrabilnost niti na integral funkcije f na [a,b].

Dogovor. • Integral po izrojenemu intervalu [a, a] je nič:

$$\int_{a}^{a} f(x)dx = 0.$$

• Če je a < b, je $\int_{b}^{a} f(x) dx = - \int_{a}^{b} f(x) dx.$

Definicija 2.8 (Povprečna vrednost). Povprečna vrednost integrabilne funkcije f na intervalu [a,b] je

$$\mu := \frac{1}{b-a} \int_a^b f(x) dx.$$

2.4 Osnovni izrek analize

Definicija 2.9. Naj bo $f:[a,b]\to\mathbb{R}$ integrabilna funkcija. Funkcijo $F:[a,b]\to\mathbb{R}$, definirano s predpisom

$$F(x) = \int_{a}^{x} f(t)dt,$$

imenujemo integral kot funkcija zgornje meje.

2.5 Pravila za integriranje in Leibnizova formula

2.6 Posplošeni integral na omejenem intervalu

Definicija 2.10 (Posplošeni integral). Naj bo $f:(a,b]\to\mathbb{R}$ funkcija, ki je integrabilna na intervalu [t,b] za $\forall t\in(a,b)$. Potem je posplošeni integral funkcije f na intervalu [a,b]

$$\int_{a}^{b} f(x)dx := \lim_{t \searrow a} \int_{t}^{b} f(x)dx,$$

če ta limita \exists .

Če limita \exists , rečemo, da je f posplošeno integrabilna na [a,b] in da je $\int_a^b f(x)dx$ konvergenten, sicer pa rečemo, da je integral divergenten.

2.7 Posplošeni integral na neomejenem intervalu

Definicija 2.11 (Posplošena integrabilnost). • Naj bo $f:[a,\infty) \to \mathbb{R}$ integrabilna na [a,s] za $\forall s>a$. Potem je posplošeni integral funkcije f na $[a,\infty)$

$$\int_{a}^{\infty} f(x)dx := \lim_{s \to \infty} \int_{a}^{s} f(x)dx,$$

če ta limita \exists . Če limita \exists , rečemo, da je posplošeni integral konvergenten, sicer pa, da je divergenten.

• Naj bo $f:(-\infty,b]\to\mathbb{R}$ integrabilna na [t,b] za $\forall t< b$. Potem je posplošeni integral funkcije f na $(-\infty,b]$

$$\int_{-\infty}^b f(x) dx := \lim_{t \to -\infty} \int_t^b f(x) dx,$$

če ta limita \exists . Če limita \exists , rečemo, da je posplošeni integral konvergenten, sicer pa, da je divergenten.

• Funkcija $f:(-\infty,\infty)\to\mathbb{R}$ je posplošeno integrabilna, če sta posplošeno integrabilni zožitvi $f|_{(-\infty,a]}$ in $f|_{[a,\infty)}$ za $\forall a\in\mathbb{R}$.

3 KRIVULJE V RAVNINI

3.1 Podajanje krivulj

• EKSPLICITNO: Funkcija $f: j \to \mathbb{R}$ za $J \subseteq \mathbb{R}$ določa krivuljo Γ_f , ki je graf te funkcije, torej

$$\Gamma_f = \{ (x, f(x)) \mid x \in J \}.$$

• IMPLICITNO: Funkcija $g:A\to\mathbb{R}$ za $A\subseteq\mathbb{R}^2$ določa krivuljo K_g , ki je množica rešitev enačbe g(x,y)=0, torej

$$K_q = \{(x, y) \in A \mid g(x, y) = 0\}.$$

• PARAMETRIČNO: Funkciji $\alpha, \beta: J \to \mathbb{R}$ za $J \subseteq \mathbb{R}$ določata krivuljo K_F , ki je množica vseh točk (x, y), določenih z $x = \alpha(t)$ in $y = \beta(t)$, torej

$$K_F = \{ (\alpha(t), \beta(t)) \mid J \}.$$

Preslikavo $F: J \to \mathbb{R}^2$, $F(t) := (\alpha(t), \beta(t))$ imenujemo pot ali parametrizacija krivulje K_F . Krivuljo K_F imenujemo tudi tir poti F.

• POLARNO: Funkcija $h: J \to \mathbb{R}$ za $J \subseteq \mathbb{R}$ določa krivuljo K_h , ki je množica točk v ravnini s polarnima koordinatama (r, θ) , kjer je $r = h(\theta)$, torej

$$K_h = \{(h(\theta)\cos\theta, h(\theta)\sin\theta) \mid \theta \in J\}.$$

3.2 Enačba tangente na krivuljo

Definicija 3.1 (Regularna točka). Naj bo $g:A\to\mathbb{R}$ odvedljiva v točki $(a,b)\in A\subseteq\mathbb{R}^2$. Če je

$$\nabla g(a,b) \neq (0,0),$$

rečemo, da je (a,b) regularna točka za g, sicer pa, da je (a,b) singularna točka za g.

Definicija 3.2. Naj bosta $\alpha, \beta: J \to \mathbb{R}$ odvedljivi, kjer je $J \subseteq \mathbb{R}$ interval, ter $F = (\alpha, \beta)$ pripadajoča odvedljiva pot. Odvod poti F po t je hitrostni vektor $\dot{F}(t) = (\dot{\alpha}(t), \dot{\beta}(t))$. Če je

$$\dot{F}(t) \neq (0,0)$$

za neki $t \in J$, imenujemo t regularna točka parametrizacije F. Če so \forall točke intervala J regularne, imenujemo F regularna parametrizacija.

Naj bo $g: I \to J$ odvedljiva surjektivna funkcija, kjer je $I \subset \mathbb{R}$ interval. Pot

$$G := F \circ g$$

imenujemo reparametrizacija poti F.

3.3 Dolžina loka krivulje

Definicija 3.3. Naj bo dana pot $F:[a,b]\to\mathbb{R}^2,\ F(t)=(\alpha(t),\beta(t)),$ ki določa krivuljo K. Izberimo delitev

$$D = \{a = t_0 < t_1 < \dots < t_n = b\}$$

intervala [a, b]. Pot F(t) na *i*-tem podintervalu $[t_{i-1}, t_i]$ zamenjamo z daljico od $F(t_{i-1})$ do $F(t_i)$.

Dolžina tako nastale lomljene črte, ki aproksimira tir poti F, je

$$\ell(D) = \sum_{i=1}^{n} \sqrt{(\alpha(t_i) - \alpha(t_{i-1}))^2 + (\beta(t_i) - \beta(t_{i-1}))^2}.$$

Če \exists limita dolžin $\ell(D)$, ko pošljemo velikost delitve $\delta(D)$ proti nič (neodvisno od izbire delitev), jo imenujemo dolžina poti F in označimo $\ell(F)$:

$$\ell(F) = \lim_{D,\delta(D)\to 0} \ell(D).$$

Definicija 3.4 (Ločna dolžina). Diferencial dolžina loka krivulje označimo z ds in ga imenujemo ločna dolžina. V vseh opisih krivulje velja

$$ds^2 = dx^2 + dy^2.$$

Uporaba 3.1 (Površina rotacijske ploskve). Naj bo $f : [a,b] \to \mathbb{R}$ nenegativna zvezna funkcija. Ploskev, ki jo dobimo z vrtenjem grafa funkcije f nad intervalom [a,b] okoli osi x, imenujemo rotacijska ploskev.

Izberemo neko delitev

$$D = \{ a = x_0 < x_1 < \dots < x_n = b \}$$

intervala [a,b]. Nad intervalom $[x_{i-1},x_i]$ graf funkcije f aproksimiramo z daljico od točke $(x_{i-1},f(x_{i-1})$ do točke $(x_i,f(x_i))$. Ko daljico zavrtimo okoli x-osi, dobimo plašč prisekanega stožca s polmeroma leve in desne mejne krožnice $f(x_{i-1})$ in $f(x_i)$ ter višino $\delta_i = x_i - x_{i-1}$. To da približek za površino ploskve:

$$\sum_{i=1}^{n} \pi(f(x_{i-1}) + f(x_i)) \sqrt{{\delta_i}^2 + (f(x_{i-1}) - f(x_i))^2}.$$

Če je f zvezno odvedljiva, dobimo za površino v limiti, ko pošljemo velikost delitve $\delta(D)$ proti 0, formulo

$$P = 2\pi \int_{a}^{b} f(x)\sqrt{1 + (f'(x))^{2}} dx = 2\pi \int_{a}^{b} y\sqrt{1 + {y'}^{2}} dx.$$

3.4 Ploščina območja, določenega s krivuljo

Definicija 3.5. Naj bo $F:[a,b]\to\mathbb{R}^2$ regularna parametrizacija krivulje K. Potem F določa usmerjenost K, določeno s smerjo, v kateri potuje točka F(t) po K, ko potuje t od a do b.

Gladka enostavna sklenjena krivulja je krivulja K, ki ima regularno parametrizacijo $F:[a,b]\to\mathbb{R}^2$, za katero velja F(a)=F(b) in $\dot{F}(a)=\dot{F}(b)$, $F|_{[a,b)}$ pa je injektivna.

Naj bo A območje, ki ga omejuje gladka enostavna sklenjena krivulja K. Regularna parametrizacija F krivulje K določa pozitivno usmerjenost krivulje K, če je A na levi strani, ko se pomikamo vzdolž K v smeri usmerjenosti, ki jo določa F.

3.5 Diferencialne enačbe v obliki diferenciala

Definicija 3.6. Diferencialna enačba v obliki diferenciala je enačba oblike

$$P(x,y) dx + Q(x,y) dy = 0,$$

kjer sta $P,Q:A\to\mathbb{R}$ definirani na nekem območju $A\subset\mathbb{R}^2.$

Naj bosta $P,Q:A\to\mathbb{R}$ odvedljivi. Diferencialna enačba P(x,y) dx+Q(x,y) dy=0 je eksaktna na A, če velja

$$\frac{\partial P}{\partial y}(x,y) = \frac{\partial Q}{\partial x}(x,y)$$

za $\forall x \in A$.

Definicija 3.7 (Integral s parametrom). Naj bo $A = [a,b] \times [c,d] \subset \mathbb{R}^2$ pravokotnik in naj bo $f:A \to \mathbb{R}$ zvezna funkcija. Funkcijo $F:[a,b] \to \mathbb{R}$, definirano s predpisom

$$F(x) = \int_{c}^{d} f(x, y) dy,$$

imenujemo integral s parametrom.

Definicija 3.8 (Integrirajoči množitelj). Naj bo dana diferencialna enačba P(x,y) dx+Q(x,y) dy=0, kjer sta $P,Q:A\to\mathbb{R}$ zvezno odvedljivi funkciji. Če je $\mu:A\to\mathbb{R}$ takšna zvezno odvedljiva funkcija, da je enačba

$$\mu(x,y)P(x,y) dx + \mu(x,y)Q(x,y) dy = 0$$

eksaktna, potem funkcijo μ imenujemo integrirajoči množitelj dane enačbe.