Advanced Microeconomics II Problem Set 4

WISE, Xiamen University Spring 2013

1. Prove the following proposition.

Proposition 1. Let w be a strictly enforceable feasible payoff profile of $G = \{N, (A_i), (u_i)\}$. For all $\epsilon > 0$ there exists $\underline{\delta} < 1$ such that if $\delta > \underline{\delta}$ then the δ -discounted infinitely repeated game of G has a Nash equilibrium whose payoff profile w' satisfies $|w' - w| < \epsilon$.

2. Consider the following stage game.

$$\begin{array}{c|ccc}
 A & D \\
A & 2,2 & 0,1 \\
D & 5,4 & 1,0
\end{array}$$

- (a) Construct a pair of strategies that generate the average per-period payoffs of (3.5, 3), and are a Nash equilibrium but are not a subgame perfect equilibrium when players use the limit of means criterion to evaluate payoffs.
- (b) Construct a pair of strategies that generate average per-period payoffs of (3.5, 3), and are a subgame perfect equilibrium when players use the limit of means criterion to evaluate payoffs but not a subgame perfect equilibrium when players use the overtaking criterion to evaluate payoffs.
- (c) Construct a pair of strategies that generate the average per-period payoffs of (3.5, 3), and are a subgame perfect equilibrium when players use overtaking criterion to evaluate payoffs.
- 3. A buyer and a seller are bargaining over an object. The rules of bargaining are that they simultaneously announce prices. If $p_b \geq p_s$, then trade occurs at price $p = \frac{p_b + p_s}{2}$; if $p_b < p_s$, then no trade occurs. The buyer's valuation for the good is v_b , the seller's is v_s . These valuations are private information and are drawn from independent uniform distributions on [0,1]. If there is no trade, both players' utility are 0; if the buyer gets the good for price p, the buyer's utility is $v_b p$ and the seller's utility is $p v_s$.
 - (a) Construct a 'one-price' Bayesian Nash equilibrium of this game: an equilibrium in which trade occurs at a single price if it occurs at all.
 - (b) Compare the efficiency of the equilibrium constructed in (a) and the 'linear' Bayesian Nash equilibrium constructed in class.
 - (c) Use the Revelation Principle to construct a Bayesian game with an incentive-compatible equilibrium with the same outcome as the equilibrium in (a).
- 4. In this question we model differences in players knowledge as a Bayesian game. There are two players and three possible states of the world, i.e. $\Omega = \{\alpha, \beta, \gamma\}$. The prior probability of each state is $p(\alpha) = 1/5$, $p(\beta) = 3/5$, $p(\gamma) = 1/5$. Each player has two types. In any state player 1 either knows the state is α or knows the state is β or γ , while player 2 either knows the state is α or β or knows the state is γ .

The payoffs for each action profile and state are shown in the following three payoff matrices, one for each state.

	L	R		L	R			L	R	
L	2, 2	0,0	ig L	2, 2	0,0		L	2, 2	0,0	
R	3,0	1, 1	R	0,0	1,1		R	0,0	1,1	
	Stat	te α		State β			State γ			

- (a) Write down this problem as a Bayesian game of incomplete information.
- (b) Solve for the set of Nash equilibria.