Correlation (Usually) Does Not Imply Causation

Probability and Statistics for Data Science

Carlos Fernandez-Granda

Unemployment and temperature in Spain (2015-2022)

Correlation coefficient: -0.21

Would an increase in temperature decrease unemployment?

Causal inference

Key question: Does a treatment \tilde{t} cause a certain outcome?

Potential outcome: \widetilde{po}_t

Observed data:

$$\widetilde{y} := \widetilde{\mathsf{po}}_t \qquad \text{if} \qquad \widetilde{t} = t$$

Potential outcomes

Potential outcomes

Potential outcomes

Observed data

Linear causal effect

For some constant $\beta \in \mathbb{R}$

$$\mathrm{E}\left[\widetilde{\mathsf{po}}_{t}\right] = \beta t$$

Key question: Can we estimate linear causal effects from data?

Idea

Use covariance between observed outcome $ilde{y}$ and the treatment $ilde{t}$

Necessary condition: $\widetilde{\mathsf{po}}_t$ and \widetilde{t} are independent for all t

Iterated expectation

Assuming $E[\tilde{t}] = 0$ and $E[\tilde{t}^2] = 1$

$$\operatorname{Cov}\left[\tilde{y}, \tilde{t}\right] = \operatorname{E}\left[\tilde{y}\tilde{t}\right] = \operatorname{E}\left[\mu_{\tilde{y}\tilde{t}\mid\tilde{t}}(\tilde{t})\right]$$

$$= \operatorname{E}\left[\beta\tilde{t}^{2}\right]$$

$$= \beta \operatorname{E}\left[\tilde{t}^{2}\right] = \beta$$

$$\mu_{\tilde{y}\tilde{t}\mid\tilde{t}}(t) = \int_{y=-\infty}^{\infty} yt \, f_{\tilde{y}\mid\tilde{t}}(y\mid t) \, \mathrm{d}y$$

$$= \int_{y=-\infty}^{\infty} yt \, f_{\widetilde{po}_{t}\mid\tilde{t}}(y\mid t) \, \mathrm{d}y$$

$$= t \int_{y=-\infty}^{\infty} y \, f_{\widetilde{po}_{t}}(y) \, \mathrm{d}y$$

$$= t \operatorname{E}\left[\widetilde{po}_{t}\right]$$

$$= \beta t^{2}$$

Why do we need independence?

Unemployment and temperature in Spain (2015-2022)

Unemployment and temperature in Spain (2015-2022)

Guinea-pig rescue

Goal: Fatten the guinea pigs

Question: Does a nutritional supplement help?

Supplement mixed with food

Covariance = 0.8

Supplement after the food

Covariance = -0.8

Randomized supplement

Covariance = 0

What's going on?

Weight change depends on food intake

Supplement mixed with food

Supplement mixed with food

Supplement after the food

Supplement after the food

Randomized supplement

Randomized supplement

Unobserved confounder

Potential outcome $\widetilde{\mathrm{po}}_{t,c}$ depends on treatment \widetilde{t} and on confounder \widetilde{c}

Observed data:

$$\widetilde{y} := \widetilde{\mathsf{po}}_{t,c} \qquad \text{if} \qquad \widetilde{t} = t, \widetilde{c} = c$$

For some constants $\beta, \gamma \in \mathbb{R}$

$$\mathbf{E}\left[\widetilde{\mathsf{po}}_{t,c}\right] = \beta t + \gamma c$$

Can we still estimate β from covariance between \tilde{t} and \tilde{y} ?

Assumptions

 \tilde{t} and \tilde{c} are standardized

No additional confounders: $\widetilde{\mathrm{po}}_{t,c}$ is independent from (\tilde{t},\tilde{c})

Iterated expectation

$$\operatorname{Cov}\left[\tilde{y},\tilde{t}\right] = \operatorname{E}\left[\tilde{y}\tilde{t}\right] = \operatorname{E}\left[\mu_{\tilde{y}\tilde{t}\mid\tilde{t},\tilde{c}}(\tilde{t},\tilde{c})\right]$$

$$= \operatorname{E}\left[\beta\tilde{t}^{2} + \gamma\tilde{t}\tilde{c}\right]$$

$$= \beta\operatorname{E}\left[\tilde{t}^{2}\right] + \gamma\operatorname{E}\left[\tilde{t}\tilde{c}\right]$$

$$= \beta + \gamma\rho_{\tilde{t},\tilde{c}}$$

$$\mu_{\tilde{y}\tilde{t}\mid\tilde{t},\tilde{c}}(t,c) = \int_{y=-\infty}^{\infty} yt \, f_{\tilde{y}\mid\tilde{t},\tilde{c}}(y\mid t,c) \, \mathrm{d}y$$

$$= \int_{y=-\infty}^{\infty} yt \, f_{\widetilde{po}_{t,c}\mid\tilde{t},\tilde{c}}(y\mid t,c) \, \mathrm{d}y$$

$$= t \int_{y=-\infty}^{\infty} y \, f_{\widetilde{po}_{t,c}}(y) \, \mathrm{d}y$$

$$= t\operatorname{E}\left[\widetilde{po}_{t,c}\right]$$

$$= \beta t^{2} + \gamma ct$$

Guinea pigs

Treatment \tilde{t} : Supplement intake

Confounder \tilde{c} : Food intake

Potential outcome $\widetilde{\mathsf{po}}_{t,c}$: Weight change

$$\mathrm{E}\left[\widetilde{\mathsf{po}}_{t,c}\right] = c$$

Covariance between observed weight change and supplement?

$$\operatorname{Cov}\left[\tilde{\mathbf{y}}, \tilde{\mathbf{t}}\right] = \rho_{\tilde{\mathbf{t}}, \tilde{\mathbf{c}}}$$

Supplement mixed with food: $ho_{ ilde{t}, ilde{c}} := 0.8$

Assuming \tilde{t} and \tilde{c} are jointly Gaussian

Supplement mixed with food: $Cov [\tilde{y}, \tilde{t}] = 0.8$

Assuming $\widetilde{po}_{t,c}$ is Gaussian with mean c and unit variance

Supplement mixed with food: $Cov [\tilde{y}, \tilde{t}] = 0.8$

Assuming $\widetilde{po}_{t,c}$ is Gaussian with mean c and unit variance

Supplement after the food: $ho_{ ilde{t}, ilde{c}} := -0.8$

Assuming \tilde{t} and \tilde{c} are jointly Gaussian

Supplement after the food: $\operatorname{Cov}\left[\tilde{\mathbf{y}},\tilde{\mathbf{t}}\right]=-0.8$

Assuming $\widetilde{po}_{t,c}$ is Gaussian with mean c and unit variance

Supplement after the food: $Cov [\tilde{y}, \tilde{t}] = -0.8$

Assuming $\widetilde{po}_{t,c}$ is Gaussian with mean c and unit variance

Randomized supplement: $ho_{ ilde{t}, ilde{c}}:=0$

Assuming \tilde{t} and \tilde{c} are jointly Gaussian

Randomized supplement: $Cov [\tilde{y}, \tilde{t}] = 0$

Assuming $\widetilde{po}_{t,c}$ is Gaussian with mean c and unit variance

Randomized supplement: $Cov [\tilde{y}, \tilde{t}] = 0$

Assuming $\widetilde{po}_{t,c}$ is Gaussian with mean c and unit variance

Correlation does not imply causation

However, it does if the treatment is randomized

Otherwise, unobserved confounders produce spurious correlation