Записи о проделанной работе

Е.С. Яковлев

5 мая 2020 г.

1. Найти функицю, которая на $+\infty$ растёт как линейная функиция, а на $-\infty$ ведёт себя как константа

Путём долгих изысканий, я нашёл следующую функцию: $f(x) = \frac{x^3}{x^2 + e^{-x}}$ Проверим её на соответсвие заданным условиям:

• наклонная асимптота на $+\infty$:

$$\begin{split} &\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{x^3}{x(x^2 + e^{-x})} = \lim_{x \to +\infty} \frac{x^2}{x^2 + e^{-x}} = \lim_{x \to +\infty} \frac{1}{1 + \frac{e^{-x}}{x^2}} = \frac{1}{\lim_{x \to +\infty} \left(1 + \frac{e^{-x}}{x^2}\right)} = \\ &= \frac{1}{\lim_{x \to +\infty} \left(1 + \frac{e^{-x}}{x^2}\right)} = \frac{1}{1 + \lim_{x \to +\infty} \left(\frac{1}{x^2 \cdot e^x}\right)} = \frac{1}{1 + \frac{1}{\infty}} = \frac{1}{1 + 0} = 1 \in R \end{split}$$

• поведение константы на $-\infty$:

$$\begin{split} & \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{x^3}{x(x^2 + e^{-x})} = \lim_{x \to -\infty} \frac{x^2}{x^2 + e^{-x}} = \lim_{x \to -\infty} \frac{1}{1 + \frac{e^{-x}}{x^2}} = \frac{1}{\lim_{x \to -\infty} \left(1 + \frac{e^{-x}}{x^2}\right)} = \\ & = \frac{1}{\lim_{x \to -\infty} \left(1 + \frac{e^{-x}}{x^2}\right)} = \frac{1}{1 + \lim_{x \to -\infty} \left(\frac{e^{-x}}{x^2}\right)} = \frac{1}{1 + \infty} = \frac{1}{+\infty} = 0 \in R \end{split}$$

Таким образом, у заданной функции $f(x)=\frac{x^3}{x^2+e^{-x}}$ есть две асимптоты: на $+\infty$ это прямая вида $y=1\cdot x+b$, на $-\infty$ это горизонтальная прямая y=0.

Рис. 1: первый вариант: $f(x) = \frac{x^3}{x^2 + e^{-x}}$

P.S. В работе будем рассматривать функцию $f(x) = ln(e^x + 1)$.

Рис. 2: второй вариант: $f(x) = ln(e^x + 1)$

2. Исследовать случай для общества, состоящего только из эгоистов

Будем исследовать общество эгоистов, для которого гененрируются случайные предложения с номральным распределением N ($\mu=-0.3, \sigma=10$). Приведём некоторые параметры модели:

- колличество человек: 300
- порог приянтия решения варьируем в промежутке [0.4, 0.6] берём 100 значений из диапазона
- колличество гененрируемых предложений: 100
- генерируем начальные значения капиталов как случайные числа с нормальным распределением $N\left(\mu=-0.3,\sigma=10\right)$

Рис. 3: нормальное распределение начальных капиталов эгоистов

Приращение капитала эгоистов будем считать как $d_i = c_i \cdot (\frac{a}{|\mu|} \cdot f(C_i) + 1)$

где
$$f(C_i) = ln(e^{C_i} + 1)$$

Рассмотрены три случая:

- a = 0.1
- a = 0.5
- a = 0.9

Теперь рассмотрим модель, где $\mu=0.3,\,\sigma=10.$ Остальные парметры оставим без изменений.

Рис. 4: нормальное распределение начальных капиталов эгоистов

Рис. 5: нормальное распределение начальных капиталов эгоистов

Рис. 6: нормальное распределение начальных капиталов эгоистов

Прогнал эту программу на своей функции, которая входит в функцию приращения капитала $f(x)=rac{x^3}{x^2+e^{-x}}$ также для трёх значений параметра a:

- a = 0.1
- a = 0.5
- a = 0.9

Графики получились примерно такие же, как и для функции $f(x) = \ln(e^x + 1).$

Что можно заметить:

• график зависимости СПК от 1 достигают своего максимума при одинаковых значениях l=0.515 - программа для случая с функцией $f(x)=ln(e^x+1)$ и $f(x)=\frac{x^3}{x^2+e^{-x}}$ работала на разных начальных данных: на разных предложениях и разных начальных балансах

3. Зависимость оптимального порога принятия решения l от μ

Первая итерация

- $\mu_{min} = -10, \, \mu_{max} = 10$
- колличество перебирвемых значений μ : 10

Рис. 7: график $l_{optimal}(\mu)$

Вторая итерация: увеличенный масштаб в области "горба"

- $\mu_{min} = -6.0, \, \mu_{max} = 2.5$
- колличество перебирвемых значений μ: 10

Рис. 8: график $l_{optimal}(\mu)$

Что можно заметить:

- Мы задаём начальные капиталы эгоистов в обществе как случайные величины с нормальным распределением $N\left(\mu,\sigma\right)$, где $\mu=-0.3,$ а $\sigma=10$
- максимум на графике, как можно видеть, достигается при $\mu = -1.017$ и $l_{optimal} = 0.537$

4. Общество эгоистов с одинаковыми начальными капиталами

Рассмотрим несколько случаев одинаковых начальных капиталов для всех эгоистов:

- начальный капитал каждого эгоиста принимает одно из значений: -100, -5, 0, 5, 100
- случайные числа, которыми заполняются предложения для общества, соответсвуют нормальному распределению $N\left(\mu,\sigma^2\right)$: $\mu=0.3,\,\sigma=10$

 $\mu = 0.3, \sigma = 10$

Рис. 9: распределение капиталов эгоистов: у всех эгоистов одинаковый капитал

Рис. 10: нормальное распределение случайных чисел в предложениях для общества

initial balance = -5; l = 0.5; a = 0.5

конечное распределение капиталов при $balance_{init} = -100$

конечное распределение капиталов при $balance_{init} = -5$

конечное распределение капиталов при $balance_{init} = 0$

initial balance = 5; *I* = 0.5; *a* = 0.5

конечное распределение капиталов при $balance_{init} = 5$

конечное распределение капиталов при $balance_{init}=100$

Снова зададим эгоистам в обществе одинаковые начальные капиталы: пусть $balance_{init}=5$. Рассмотрим зависимость СПК от порогового значения принятия решения l.

plots for a = 0.1

Рис. 11: ABG(l) при $balance_{init}=5$ и a=0.1

plots for a = 0.5

Рис. 12: ABG(l) при $balance_{init}=5$ и a=0.5

Рис. 13: ABG(l) при $balance_{init}=5$ и a=0.9

Рис. 14: Зависимость $l_{optim}(\mu)$ при a=0.5 и при одинаковых значениях $balance_{init}=5$