

EVALUASI TENGAH SEMESTER GENAP 2022/2023 DEPARTEMEN MATEMATIKA FSAD ITS PROGRAM SARJANA

Matakuliah : Analisis 2

Hari, Tanggal : Rabu, 29 Maret 2023

Waktu / Sifat : 11:00-12:10 (100 menit) / Closed Book

Kelas, Dosen : A. Dr. Mahmud Yunus, M.Si.

B Dr. Rinurwati, M.Si. & Sunarsini, S.Si, M.Si.

C Drs. Sadjidon, M.Si.

HARAP DIPERHATIKAN !!!

Segala jenis pelanggaran (mencontek, kerjasama, dsb) yang dilakukan pada saat ETS/EAS akan dikenakan sanksi pembatalan matakuliah pada semester yang sedang berjalan.

1. Diketahui $f:[a,b] \to \mathbb{R}$ suatu fungsi monotone pada [a,b]. Apakah f terintegral pada [a,b]? Jika "ya", buktikan; jika "tidak", berikan satu contoh penyangkalnya. **Jawab**:

Jelas Hal ini sesuai teorema di buku:v

Asumsikan f naik pada I=[a,b] (boleh juga diasumsikan f turun). Partisi interval menjadi n subinterval yang panjangnya yaitu $I_k=[x_{k-1},x_k]$ dengan $||I_k||=x_k-x_{k-1}=\frac{b-a}{n}$ untuk k=1,2,...,n. Lalu kontruksikan sebuah partisi \mathcal{P}_n yang dimana

$$\mathcal{P}_n := \{I_1, I_2, ..., I_n\}$$

Ilustrasikan agar mempermudah bayangan kita

Karena f monoton, maka $f(x_k) \leq f(x_{k+1})$ untuk $x_k < x_{k+1}$. Sehingga bisa didefinisikan komponen darbouxnya sebagai berikut

$$m_k = \inf\{f(x) \mid x \in I_k\} = f(x_{k-1})$$

 $M_k = \sup\{f(x) \mid x \in I_k\} = f(x_k)$

Kemudian didapatkan jumlahan atas dan jumlahan bawah

$$L(f; \mathcal{P}_n) = \sum_{k=1}^n m_k (x_k - x_{k-1}) = \sum_{k=1}^n f(x_{k-1}) \frac{b-a}{n}$$

$$U(f; \mathcal{P}_n) = \sum_{k=1}^{n} M_k(x_k - x_{k-1}) = \sum_{k=1}^{n} f(x_k) \frac{b-a}{n}$$

Kurangkan kedua persamaan diatas sehingga menjadi

$$U(f; \mathcal{P}_n) - L(f; \mathcal{P}_n) = \sum_{k=1}^n f(x_k) \frac{b-a}{n} - \sum_{k=1}^n f(x_{k-1}) \frac{b-a}{n}$$

$$= \frac{b-a}{n} \sum_{k=1}^n (f(x_k) - f(x_{k-1}))$$

$$= \frac{b-a}{n} \left((f(x_1) - f(x_0)) + (f(x_2) - f(x_1)) + \cancel{+} + (f(x_n) - f(x_{n-1})) \right)$$

$$= \frac{b-a}{n} (f(x_n) - f(x_0))$$

$$= \frac{b-a}{n} (f(b) - f(a))$$

Sekarang untuk setiap $\varepsilon > 0$, pilih n dimana $n > \frac{(b-a)(f(b)-f(a))}{\varepsilon}$. sehingga didapatkan

$$U(f; \mathcal{P}_n) - L(f; \mathcal{P}_n) < \varepsilon$$

- \therefore Dengan kriteria keintegralan dapat disimpulkan bahwa f terintegral Darboux pada [a, b].
- 2. Diberikan barisan fungsi (f_n) yang didefinisikan dengan $f_n(x) := \frac{x^n}{1+x^n}$ untuk $x \in [1,2]$ dan $n \in \mathbb{N}$. Selidiki konvergensi barisan fungsi (f_n) tersebut pada [1,2], apakah konvergen titik-demi-titik ataukah seragam.

Jawab:

LEMMA. Barisan $(f_n(x))$ di $A \subseteq \mathbb{R}$ dikatakan konvergen ke f(x) pada A jika dan hanya jika untuk setiap $\varepsilon > 0$ dan $x \in A$ terdapat $N(\varepsilon, x) \in \mathbb{N}$ sedemikian sehingga jika $n \geq N(\varepsilon, x)$,

$$|f_n(x) - f(x)| < \varepsilon$$

Perbedaan konvergen titik demi titik dan seragam

N()	N	$N(\varepsilon)$	$N(\varepsilon,x)$
Konvergen T-D-T	√	✓	✓
Konvergen seragam	√	✓	×

AKIBAT. Barisan (f_n) terbatas pada $A \subseteq \mathbb{R}$ konvergen seragam di A, maka (f_n) juga konvergen titik-demi-titik pada A_0 .

Sehingga kita sebaiknya mengecek apakah (f_n) konvergen seragam di [1,2].

LEMMA. Barisan $(f_n(x))$ di $A \subseteq \mathbb{R}$ dikatakan konvergen seragam ke f(x) pada A jika dan hanya jika $\sup_{x \in A} |f_n(x) - f(x)| = 0$.

Karena $f_n(1)=\frac{1^n}{1+1^n}=\frac{1}{2}$, maka dapat diasumsikan barisan (f_n) akan konvergen ke $f(x)=\frac{1}{2}$ untuk setiap $x\in[1,2]$. Sehingga diperoleh

$$\sup_{x \in [1,2]} \left| \frac{x^n}{1+x^n} - f(x) \right| = \left| \frac{2^n}{1+2^n} - \frac{1}{2} \right| \to \left| 1 - \frac{1}{2} \right| = \frac{1}{2}$$

Karena tidak menuju 0, maka (f_n) tidak konvergen seragam.

Selanjutnya untuk konvergen TDT, step-step pembuktiannya sebagai berikut:

(1) Pada soal sudah diketahui $f_n(x) = \frac{x^n}{1+x^n} = 1 - \frac{1}{1+x^n}$ untuk $x \in [1,2]$, Lalu Asumsikan

$$f(x) = \begin{cases} \frac{1}{2}, & x = 1\\ 1, & x \in (1, 2] \end{cases}$$

(Untuk f(x) bisa dicari dibelakang layar).

(2) Untuk x = 1 jelas konvergen, sekarang tinjau untuk $x \in (1, 2]$.

$$|f_n(x) - f(x)| = \left| 1 - \frac{1}{1 + x^n} - 1 \right|$$

$$= \left| \frac{1}{1 + x^n} \right|$$

$$\le \left| \frac{1}{x^n} \right|$$

$$\le \left| \frac{1}{n} \right|$$

(3) Pilih $N(\varepsilon) = \frac{1}{\varepsilon}$, sehingga untuk $n \geq N(\varepsilon)$ berlaku

$$|f_n(x) - f(x)| \le \frac{1}{n} < \varepsilon$$

- \therefore (f_n) di [1,2] konvergen titik demi titik, namun tidak dengan konvergen seragam.
- 3. Diberikan barisan fungsi (f_n) dengan $f_n(x) := \frac{nx}{1+nx}$ untuk $x \in [0,1]$ dan $n \in \mathbb{N}$. Tunjukkan bahwa barisan (f_n) tersebut konvergen ke suatu fungsi yang terintegral pada [0,1] dan

$$\lim_{n \to \infty} \int_0^1 f_n(x) \, dx = \int_0^1 \lim_{n \to \infty} f_n(x) \, dx$$

Jawab:

TEOREMA. Misalkan (f_n) suatu barisan fungsi di $\mathcal{R}[a,b]$ yang konvergen pada [a,b] ke suatu fungsi $f \in \mathcal{R}[a,b]$. Jika Terdapat B > 0 sehingga $|f_n(x)| \leq B$ untuk semua $x \in [a,b]$ dan $n \in \mathbb{N}$, maka berlaku.

$$\int_{a}^{b} f = \lim_{n \to \infty} \int_{a}^{b} f_{n}$$

Untuk menggunakan teorema diatas, kita perlu membuktikan bahwa $f_n(x) = \frac{nx}{1+nx} = 1 - \frac{1}{1+nx}$ terintegral di [0,1]. Dapat dicek dengan mudah bahwa $f_n(x)$ monoton naik untuk setiap $n \in \mathbb{N}$ dan $x \in [0,1]$, sehingga menurut salah satu teroema mengatakan jika $f_n(x)$

monoton maka $f_n(x)$ terintegral di [0,1].

Selanjutnya diketahui bahwa $f_n(x)$ konvergen ke $f(x) = \begin{cases} 0, & x = 0 \\ 1, & 0 < x \le 1 \end{cases}$ yang dimana jelas bahwa $f \in \mathcal{R}[0,1]$ seperti yang sudah diketahui sebelumnya.

Karena $f_n(x)$ konvergen, maka $f_n(x)$ juga terbatas lebih tepatnya di f(x)=1 yang dapat ditulis $|f_n(x)| \leq 1$ untuk semua $x \in [0,1]$ dan $n \in \mathbb{N}$. Hal tersebut mengindikasikan bahwa terdapat B=1 dimana $|f_n(x)| \leq B$ untuk setiap $x \in [0,1]$ dan $n \in \mathbb{N}$ yang mengimplikasikan bahwa

$$\int_0^1 f = \lim_{n \to \infty} \int_0^1 f_n$$

Karena (f_n) konvergen ke f, maka dapat ditulis $\lim_{n\to\infty} f_n = f$. Oleh karena itu, persamaan sebelumnya bida diubah menjadi

$$\int_0^1 \lim_{n \to \infty} f_n = \lim_{n \to \infty} \int_0^1 f_n$$

4. Tunjukkan bahwa $\lim((\sin \pi x)^{2n})$ ada untuk semua $x \in \mathbb{R}$, dan dapatkan nilai limit tersebut. **Jawab**:

"nilai limit" yang dimaksud di soal adalah sebuah fungsi, sebab barisan diatas merupakan barisan fungsi. Oleh karena itu perlu kita cari konvergen kemana barisan fungsi $(\sin \pi x)^{2n}$.

Misalkan
$$I := \left\{ \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, ..., \frac{2k-1}{2} \middle| k \in \mathbb{N} \right\}$$
, Sehingga untuk $x \in I$ didapatkan

$$\lim((\sin \pi x)^{2n}) = \lim((\pm 1)^{2n}) = \lim(1^n) = 1$$

Sedangkan untuk $x \in \mathbb{R} \setminus I$ didapatkan fakta bahwa $0 \leq \sin^2 \pi x < 1$, Akibatnya

$$\lim((\sin \pi x)^{2n}) = 0$$

Dari dua hasil perhitungan diatas, didapatkan bahwa barisan fungsi tersebut konvergen ke suatu fungsi f(x) yaitu

$$f(x) = \begin{cases} 0, & x \in \mathbb{R} \setminus I \\ 1, & x \in I \end{cases}$$