

Outline

- · Device Structure and Physical Operation
 - Current-Voltage Characteristics
- · The BJT as an Amplifier
 - Biasing in BJT Amplifier Circuits
 - Small-Signal Operation and Models
- Single-Stage BJT Amplifiers
- Design Of Single-Stage BJT Amplifiers
 - Simulating BJT Circuits With SPICE
 - CE Amplifier Example
 - Frequency Response Behavior
 - CE Amplifier
 - Summary

© 2012 G. W. Roberts

BJT Circuits, slide 69

Single Stage BJT Amplifiers

BJT Circuits, slide 71

304-330 Introduction To Electronic Circuits

Common-Drain Amp.

Discrete Implementation Of Single-Supply CMOS Amplifiers

© 2012 G. W. Roberts

Common-Gate Amp.

Basic BJT Amplifier Attributes

Amplifier	No-Load Voltage Gain	Current Gain	Input Resistance	Output Resistance
CE	No greater than 300 V/V (-ve)	β	Large (10k – 100k)	High (10k – 100k)
СВ	No greater than 300 V/V (+ve)	α	Small (10 – 10k)	High (10k – 100k)
СС	Near Unity +ve	β+1	Medium (1k – 10k)	Small (10 – 1k)

© 2012 G. W. Roberts

BJT Circuits, slide 73

304-330 Introduction To Electronic Circuits

Design Of A CE Amplifier

The design problem is to select V_E , V_C and I_C .

 V_{B} is not a design variable, as it can be expressed as

$$V_B = V_E + V_T \ln(I_C/I_S) \approx V_E + 0.7 \text{ V}$$

Another design variable is $R_{\rm B1}$. We are free to choose any value for it to set $V_{\rm B}$:

$$V_B = \frac{R_{B2}}{R_{B1} + R_{B2}} V_{CC} \Longrightarrow R_{B2} = \left(\frac{V_B}{V_{CC} - V_B}\right) R_{B1}$$

Design Of A CE Amplifier Biasing Considerations

There are several biasing constraints on BJT amps:

 The input resistance to the amplifier should be set much larger than the source resistance to reduce any signal loss, i.e.,

$$R_{in} = R_{B1} \| R_{B2} \| (\beta + 1) r_e >> R_{sig} \implies R_{B1} \| R_{B2} \| \frac{(\beta + 1) V_T}{I_C} >> R_{sig}$$

Condition is not critical as the gain loss can be corrected using the transistor gain.

(2) Bias current through resistor divider at base termina V_{DD}/(R_{B1}+R_{B2}) must be much greater than the transistor base current I_C/(β+1), i.e.

$$\frac{V_{CC}}{R_{B_1} + R_{B_2}} >> \frac{I_C}{\left(\beta + 1\right)} \implies \frac{\left(V_E + 0.7\right)\left(\beta + 1\right)}{I_C} >> R_{B_1}$$

R_{B1} should be made small enough to ensure voltage divider current is much greater than transistor base current.

BJT Circuits, slide 75

© 2012 G. W. Roberts

304-330 Introduction To Electronic Circuits

Design Of A CE Amplifier Biasing Considerations

(3) The collector current I_C is selected to ensure the gain requirements are met:

Consider the loaded voltage gain of amplifier from base terminal to output terminal:

$$\left|A_{v}\right| = \frac{v_{o}}{v_{b}} = g_{m} \times R_{C} \left\|R_{L}\right\| r_{o} \ge \left|A_{v}^{D}\right|$$

Substituting for known values, we write

$$|A_{\nu}| = \frac{V_T}{I_C} \times \left(\frac{V_{CC} - V_C}{I_C} \left\| R_L \right\| \frac{V_A}{I_C} \right) \ge \left| A_{\nu}^D \right| \Rightarrow \frac{I_C / V_T}{\frac{I_C}{V_{CC} - V_C} + \frac{1}{R_L} + \frac{I_C}{V_A}} \ge \left| A_{\nu}^D \right|$$

After some re-arranging,

$$I_{c} \ge \frac{\left|A_{v}^{D}\right|}{R_{L}} \left[\frac{1}{V_{T}} - \frac{\left|A_{v}^{D}\right|}{V_{cc} - V_{c}} - \frac{\left|A_{v}^{D}\right|}{V_{A}}\right]^{-1}$$

The higher the desired voltage gain, the larger the collector current.

BJT Circuits, slide 77

304-330 Introduction To Electronic Circuits

Design Of A CE Amplifier Maximum Voltage Gain

We recognize from the collector current – voltage gain equation, i.e.,

$$I_c \ge \frac{\left|A_v^D\right|}{R_L} \left[\frac{1}{V_T} - \frac{\left|A_v^D\right|}{V_{cc} - V_c} - \frac{\left|A_v^D\right|}{V_A} \right]^{-1}$$

that the denominator goes to zero when

$$\frac{1}{V_T} = \frac{\left| A_v^D \right|}{V_{CC} - V_C} + \frac{\left| A_v^D \right|}{V_A}$$

This in turn sets the upper limit on the desired voltage gain achievable by the CS amplifier as:

$$\left| A_{v,MAX}^{D} \right| = \left(\frac{V_T}{V_{CC} - V_C} + \frac{V_T}{V_A} \right)^{-1}$$

Don't expect to get more gain than above!

BJT Circuits, slide 79

304-330 Introduction To Electronic Circuits

BJT Circuits, slide 81

Bias Levels For CE Amplifier

Ar	nplifier		No	ode Volta	ges		Collector Current			
	Туре	VE	V _E V _B V _{C,MIN,AC}		ıc	$V_{C,MAX,AC}$	I _{C,MIN}		I _{C,Av}	
	Bias Voltage	$V_{\scriptscriptstyle E}$	$V_E + V_T \ln(I_C/I_S)$ $\approx V_E + 0.7 \text{ V}$	$V_E + V_{CE,sat} + A$	$\frac{D_{v}}{2} \left \frac{\Delta v_{sig}}{2} \right $	$V_{CC} - \left A_{\nu}^{D} \right \frac{\Delta v_{sig}}{2}$	$I_s e^{\left(\frac{\Delta v_s}{2}\right)}$	$\left v_T \right $	$\frac{\left A_{v}^{D}\right }{R_{L}}\left[\frac{1}{V_{T}}-\frac{\left A_{v}^{D}\right }{V_{cc}-V_{c}}-\frac{\left A_{v}^{D}\right }{V_{cc}}\right]$	
C E	Res.		$R_{B1} = R_{nom}$	$R_{B1} = R_{nom}$ $R_{B2} =$		$\left(\frac{R}{2}\right)R_{B1}$	$R_E = \frac{V_i}{I_C}$	C	$R_C = \frac{V_{CC} - V_C}{I_C}$	
	Caps.	C_c	$C_{C1} = \frac{1}{\left(R_{sig} + R_{B1} R_{B2}\right) \omega_{p,2}}$			$C_{C2} = \frac{1}{\left(R_C + R_L\right)\alpha}$	υ _{p,3}		$C_E = 1/(R_E r_e) \omega_{p1}$	

Outline

- · Device Structure and Physical Operation
 - Current-Voltage Characteristics
- The BJT as an Amplifier
 - Biasing in BJT Amplifier Circuits
 - Small-Signal Operation and Models
- Single-Stage BJT Amplifiers
- Design Of Single-Stage BJT Amplifiers
 - Simulating BJT Circuits With SPICE
 - CE Amplifier Example
- Frequency Response Behavior
 - CE Amplifier
- Summary

© 2012 G. W. Roberts

BJT Circuits, slide 83

304-330 Introduction To Electronic Circuits

SPICE BJT Statement

SPICE has a built-in model for an npn and pnp BJTs.

BJT SPICE Model

 The following is a partial listing of the SPICE parameters for a static BJT model:

ls	Saturation Current	Amps	1x10 ⁻¹⁶
Bf	Forward Current Gain		100
VAf	Forward Early Voltage	Volts	∞
Rb	Base Ohmic Resistance	Ohms	0
Rc	Collector Ohmic Resistance	Ohms	0
Re	Emitter Ohmic Resistance	Ohms	0
	Bf VAf Rb Rc	Bf Forward Current Gain VAf Forward Early Voltage Rb Base Ohmic Resistance Rc Collector Ohmic Resistance	Bf Forward Current Gain VAf Forward Early Voltage Volts Rb Base Ohmic Resistance Ohms Rc Collector Ohmic Resistance Ohms

© 2012 G. W. Roberts

BJT Circuits, slide 85

304-330 Introduction To Electronic Circuits

SPICE Large Signal NPN BJT Model

Equivalent SPICE Circuit

- Any time an NPN BJT appears in a circuit it is replaced by the circuit model shown here.
 - Static and dynamic behavior is captured by model.

SPICE Curve Tracer Example

BJT Curve Tracer Setup

Spice As A Curve Tracer: BJT I-V Characteristics

- ** Circuit Description **
 Vce 1 0 DC 0V
 Ib 0 2 DC 10uA
 * device under test
 Q1 1 2 0 npn_transistor
 * transistor model statement
- * transistor model statement .model npn_transistor NPN (Is=1.8104e-15A Bf=100 VAf=35V)
- ** Analysis Requests **
- * vary Vce from 0V to 10V in steps of 100mV .DC Vce 0V +10V 100mV lb 1u 10u 1u
- ** Output Requests **
 .plot DC I(Vce)

SPICE Input Deck

© 2012 G. W. Roberts

BJT Circuits, slide 87

304-330 Introduction To Electronic Circuits

Frequency Response Of A CE Amp

© 2012 G. W. Roberts

BJT Circuits, slide 89

304-330 Introduction To Electronic Circuits

SPICE Deck

Common-Emitter Amplifier Stage

** Circuit Description **

* power supplies
Vcc 1 0 DC +10V
Vee 8 0 DC -10V

* input signal
Vs 6 0 AC 10mV
Rs 5 6 10k

* amplifier

Re 3 8 10k

C1 4 5 1GF Rb 4 0 100k Q1 2 4 3 Q2N3904 Rc 1 2 10k

C2 2 7 1GF C3 3 0 1GF * load + ammeter RI 7 9 10k Vout 9 0 0 | (CCO) OUT | OUT

* transistor model statement for the Q2N3904

.model Q2N3904 NPN (Is=14.34f Xti=3 Eg=1.11 Vaf=74.03 Bf=255.9 Ne=1.307 + Ise=14.34f lkf=.2847 Xtb=1.5 Br=6.092 Nc=2 Isc=0 lkr=0 Rc=1

Cjc=7.306p Mjc=.3416 Vjc=.75 Fc=.5 Cje=22.01p Mje=.377 Vje=.75

Tr=46.91n Tf=411.1p ltf=.6 Vtf=1.7 Xtf=3 Rb=10)

** Analysis Requests **

* calculate DC bias point information

.OP

.AC DEC1 1Hz 10MegHz

** Output Requests **

* voltage gain Av=Vo/Vs
.PRINT AC VdB(7)

304-330 Introduction To Electronic Circuits

Outline

- Device Structure and Physical Operation
 - Current-Voltage Characteristics
- The BJT as an Amplifier
 - Biasing in BJT Amplifier Circuits
 - Small-Signal Operation and Models
- Single-Stage BJT Amplifiers
- Design Of Single-Stage BJT Amplifiers
 - Simulating BJT Circuits With SPICE
 - CE Amplifier Example
- Frequency Response Behavior
 - CE Amplifier
- Summary

Design Of A CE Amplifier Example

Design a DC coupled CE amplifier with a voltage gain having a magnitude of at least 30 V/V driven by a source with resistance of 1000 Ω and loaded by a 15 k Ω / 10 pF load. The input will vary over 20 mV voltage range with a range of signals from 100 Hz to 10 kHz. The power supply is assumed to be +12 V. The BJT can be described by I_s =10-15 A, β =100 and V_Δ =100 V.

Solution:

The design problem is to select V_E, V_C and I_C.

Let us begin with setting the node voltages:

$$V_E = 2.0 \text{ V}, V_C = 6.0 \text{ V}$$

and approximate the base voltage as

$$V_R = V_E + 0.7 = 2.7 \text{ V}$$

The drain voltage is positioned almost in the middle of the power supply – the best possible place for it.

© 2012 G. W. Roberts

BJT Circuits, slide 93

304-330 Introduction To Electronic Circuits

Design Of A CE Amplifier Example

$$|A_{v}| = \frac{I_{c}/V_{T}}{\frac{I_{c}}{V_{cc} - V_{c}} + \frac{1}{R_{L}} + \frac{I_{c}}{V_{A}}}$$

$$V_E = 2.0 \text{ V}, \quad V_B = 2.7 \text{ V}, \quad V_C = 6.0 \text{ V}$$

Design Of A CE Amplifier Example Continued

Next, we compute the desired current level from the desired voltage gain equation, i.e.,

$$I_c \geq \frac{\left|A_v^D\right|}{R_L} \left[\frac{1}{V_T} - \frac{\left|A_v^D\right|}{V_{cc} - V_c} - \frac{\left|A_v^D\right|}{V_A}\right]^{-1}$$

First, lets check to see what the maximum achievable gain is and whether our desired gain is achievable:

$$\begin{aligned} \left| A_{v,MAX}^{D} \right| &= \left(\frac{V_T}{V_{CC} - V_C} + \frac{V_T}{V_A} \right)^{-1} \\ &= \left(\frac{0.025}{12 - 6} + \frac{0.025}{100} \right)^{-1} \\ &= \left(0.0042 + 0.00025 \right)^{-1} \\ &\approx \left(0.0042 \right)^{-1} \\ &= 240 \frac{V}{V} \end{aligned}$$

 $R_{B1} \stackrel{+12 \text{ V}}{\swarrow} C_{C2}$ $6 \text{ V} \stackrel{-1}{\searrow} C_{C2}$ $6 \text{ V} \stackrel{-1}{\searrow} C_{C2}$ $15 \text{ k}\Omega \stackrel{-1}{\searrow} 10 \text{ pF}$ $R_{B2} \stackrel{-1}{\searrow} R_{E} \stackrel{-1}{\searrow} C_{E}$

Here we see the maximum gain of 240 V/V far exceeds our gain requirements of 30 V.V.

© 2012 G. W. Roberts

BJT Circuits, slide 95

304-330 Introduction To Electronic Circuits

Design Of A CE Amplifier Example Continued

Returning to the current equation, we solve

$$I_C \ge \frac{\left|A_{\nu}^{D}\right|}{R_L} \left[\frac{1}{V_T} - \frac{\left|A_{\nu}^{D}\right|}{V_{CC} - V_C} - \frac{\left|A_{\nu}^{D}\right|}{V_A} \right]^{-1}$$

$$\ge \frac{30}{15} \left[\frac{1}{25 \times 10^{-3}} - \frac{30}{12 - 6} - \frac{30}{100} \right]^{-1} \text{ mA}$$

$$\ge 0.06 \text{ mA}$$

To provide some design margin, we'll select the collector current as

$$I_{\rm C} = 0.1 \, \text{mA}$$

Now, we can compute the upper limit to R_{B1} according to

$$\frac{(V_E + 0.7)(\beta + 1)}{I_C} >> R_{B1} \Rightarrow \frac{(2.0 + 0.7)(100 + 1)}{0.1 \text{ mA}} >> R_{B1} \Rightarrow 2660 \text{ k}\Omega >> R_{B1}$$

Therefore we select $R_{\rm B1}$ as:

$$R_{\rm R1} = 266 \text{ k}\Omega$$

Design Of A CE Amplifier Example Continued

With R_{B1} now known, we can compute the value for R_{B2} according to

$$R_{B2} = \left(\frac{V_B}{V_{CC} - V_B}\right) R_{B1} \Rightarrow R_{B2} = \left(\frac{2.7}{12 - 2.7}\right) (266 \text{ k}\Omega) = 74.8 \text{ k}\Omega$$

Note, a more accurate value for V_B can be derived but this is seldom necessary, as the component tolerances will mask any improvement.

Next, we compute R_E and R_C according to

$$R_E = \frac{V_E}{I_C} = \frac{2 \text{ V}}{0.1 \text{ mA}} = 20 \text{ k}\Omega$$

$$R_C = \frac{V_{CC} - V_C}{I_C} = \frac{12 - 6 \text{ V}}{0.1 \text{ mA}} = 60 \text{ k}\Omega$$

Final Design

© 2012 G. W. Roberts

BJT Circuits, slide 97

Calculate Circuit Parameters

BJT CE Amplifier Requirements							
Innut Signal					Min. Input Resistance (kOhms)	Power Supply Voltage (V)	
0.020	-30.0	100	10000	1000	15	10	12

ı	BJT Transistor Process Parameters								
	# Parallel	Saturation Current (fA)	Beta	VT (mV)	Early Voltage (V)	Satuation Voltage (V)			
	1	1.0	100	25.0	100	0.2			

Transistor Node Voltages					
Computed Value	Designer Selected				
VB (V)	IC (mA)	VE (V)	VC (V)		
2.633	0.1000	2.00	6.00		

Everything Below This Line Is Calculated

Collector Voltage AC Signal Limits, VC				
VC,MIN (V)	VC,MAX (V)			
2.50	11.7			

Collector Current Limits					
IC,min (mA)	IC,Av (mA)	Av,max (V/V)			
0.0	0.0576	226.4			

	Transistor Parameters			Performance Metrics				
Collector Current (mA)	Transconductance gm (mA/V)	Output Resistance (kOhms)	Minimum DC Collector Voltage (V)	Actual Input- Output Voltage Gain (V/V)	Expected Output Signal Swing (V)	Maximum Available Voltage Swing (V)	Actual Input Resistance (kOhms)	
0.100	4.0	1000	2.20	-44.88	0.90	9.800	17.62	

Circuit Components							
	Resistors Capacitors						
RB1	RB2	RE	RC	CC1	CC2	CE	
(kOhms)	(kOhms)	(kOhms)	(kOhms)	(uF)	(uF)	(uF)	
266.0	74.8	20.0	60.0	0.156	2.12	64.46	

BJT Circuits, slide 99

304-330 Introduction To Electronic Circuits

304-330 Introduction To Electronic Circuits

Outline

- · Device Structure and Physical Operation
 - Current-Voltage Characteristics
- · The BJT as an Amplifier
 - Biasing in BJT Amplifier Circuits
 - Small-Signal Operation and Models
- Single-Stage BJT Amplifiers
- Design Of Single-Stage BJT Amplifiers
 - Simulating BJT Circuits With SPICE
 - CE Amplifier Example

Frequency Response Behavior

- CE Amplifier
- Summary

© 2012 G. W. Roberts

McGill McGill

BJT Circuits, slide 101

Hybrid-Pi BJT High-Frequency Model

 The hybrid-pi model is extended to higher ranges of frequencies by including the various junction capacitances and a base-spreading resistor.

© 2012 G. W. Roberts

BJT Circuits, slide 103

304-330 Introduction To Electronic Circuits

Capacitances

Base-Collector Junction:

$$C_{\mu} = \frac{C_{\mu 0}}{\left(1 + \frac{V_{CB}}{V_{0c}}\right)^{m}}$$

where $C_{\mu\sigma}$ is the value of C_{μ} at zero voltage, V_{0c} is the CBJ built-in voltage (typically 0.75 V) and m is its grading coefficient (typically, 0.2 – 0.5).

· Base-Emitter Junction:

$$C_{\pi} = \frac{C_{je0}}{\left(1 - \frac{V_{BE}}{V_{0e}}\right)^{m}} + \tau_{F} \frac{I_{C}}{V_{T}} \approx 2C_{je0} + \tau_{F} \frac{I_{C}}{V_{T}}$$

EBJ is forward biased in the active mode, so the right most approximation is used as it is more accurate. Here C_{je0} is the value of C_{je} at zero voltage, τ_{F} is the forward base-transit time accounting for the base charging diffusion capacitance.

© 2012 G. W. Roberts

BJT Circuits, slide 105

304-330 Introduction To Electronic Circuits

Maximum Cut-Off Frequency Short-Circuit Operation

- Generally the value for the C_π is not given on BJT device data sheets, rather an alternative parameter is listed called the cutoff frequency, f_T.
- The cutoff frequency is derived from the shortcircuit model of device behavior shown above.

Maximum Cut-Off Frequency Frequency Analysis

$$h_{fe} \equiv \frac{I_c}{I_b} \cong \frac{g_m r_\pi}{1 + s(C_\pi + C_\mu) r_\pi} = \frac{\beta_0}{1 + s(C_\pi + C_\mu) r_\pi}$$

According to one-pole model:

$$\omega_{\beta} = \frac{1}{(C_{\pi} + C_{\mu})r_{\pi}}$$

$$\omega_T = \beta_0 \omega_\beta = \frac{g_m}{C_\pi + C_u}$$

 $\omega_{\beta} = \frac{1}{(C_{\pi} + C_{\mu})r_{\pi}}$ C_{π} and r_{π} parameters are dependent on current level!

© 2012 G. W. Roberts

BJT Circuits, slide 107

304-330 Introduction To Electronic Circuits

Deriving Device Capacitance From f_T

$$\therefore f_T = \frac{1}{2\pi} \frac{g_m}{C_{\pi} + C_{\mu}}$$

Given the device f_T, we can state that the sum of the internal capacitance are given by

$$\therefore C_{\pi} + C_{\mu} = \frac{1}{2\pi} \frac{g_m}{f_T}$$

But we also know that

$$C_{\pi} \approx 2C_{je0} + \tau_F \frac{I_C}{V_T}$$

Hence, we can state C_{μ} as

$$\therefore C_{\mu} = \frac{1}{2\pi} \frac{g_{m}}{f_{T}} - C_{\pi} = \frac{1}{2\pi} \frac{g_{m}}{f_{T}} - \left(2C_{je0} + \tau_{F} \frac{I_{C}}{V_{T}}\right)$$

f_T Frequency Dependence

- Parasitic capacitances, r_{π} , as well as β , depend on bias levels, hence f_T varies with bias levels.
- Lumped hybrid-p model is valid only to ~0.2 f_T, above this a distributed model is required.

© 2012 G. W. Roberts

BJT Circuits, slide 109

304-330 Introduction To Electronic Circuits

Outline

- Device Structure and Physical Operation
 - Current-Voltage Characteristics
- The BJT as an Amplifier
 - Biasing in BJT Amplifier Circuits
 - Small-Signal Operation and Models
- Single-Stage BJT Amplifiers
- Design Of Single-Stage BJT Amplifiers
 - Simulating BJT Circuits With SPICE
 - CE Amplifier Example
- Frequency Response Behavior
 - 两 CE Amplifier
- Summary

CE Amplifier Low Frequency Response

- The low-frequency frequency behavior is computed by ignoring the internal transistor capacitances)open circuit) and computing the transfer function of the circuit.
- Complicated transfer function analysis, instead make use of the method of **Short-Circuit** Time-Constant Method.

© 2012 G. W. Roberts

BJT Circuits, slide 111

304-330 Introduction To Electronic Circuits

Individual Time Constants Associated With C_{C1}, C_{C2} and C_E

By inspection:

$$\begin{split} R_{1,eq} &= R_{sig} + R_{B} \big\| r_{\pi} \\ \tau_{1} &= R_{1,eq} C_{C1} = \Big(R_{sig} + R_{B} \big\| \big| r_{\pi} \Big) C_{C1} \end{split}$$

$$\begin{split} R_{2,eq} &= R_C + R_L \\ \tau_2 &= R_{2,eq} C_{C2} = \left(R_C + R_L\right) C_{C2} \end{split}$$

$$\begin{aligned} R_{3,eq} &= r_e + \frac{R_B || R_{sig}}{\beta + 1} \\ \tau_3 &= R_{3,eq} C_E = \left(r_e + \frac{R_B || R_{sig}}{\beta + 1} \right) C_E \end{aligned}$$

f_L estimation:

$$\tau_{3} = R_{3,eq} C_{E} = \left(r_{e} + \frac{R_{B} \|R_{sig}}{\beta + 1}\right) C_{E} \qquad \omega_{L} \cong \sum_{i} \frac{1}{\tau_{i}} = \frac{1}{\left(R_{sig} + R_{B} \|r_{\pi}\right) C_{C1}} + \frac{1}{\left(R_{C} + R_{L}\right) C_{C2}} + \frac{1}{\left(r_{e} + \frac{R_{B} \|R_{sig}}{\beta + 1}\right) C_{E}}$$

CE Amplifier High-Frequency Response

High-Frequency Equivalent Circuit (by-pass capacitors act as shorts)

- The most direct method is to derive the transfer function of the circuit.
 - Typically a very complicated process and leads to complicated expression.
 - Make use of the method of open-circuit time constants.

© 2012 G. W. Roberts

BJT Circuits, slide 113

304-330 Introduction To Electronic Circuits

CE Amplifier High-Frequency Response

A simplified high-frequency analysis leads to the 3-dB frequency estimate

$$f_{H} \approx \frac{1}{2\pi C_{in} R'_{sig}} = \frac{1}{2\pi \left[C_{\pi} + C_{\mu} \left(1 + g_{m} R'_{L} \right) \right] \left[r_{\pi} \left\| \left(r_{x} + R_{B} \right\| R_{sig} \right) \right]}$$

Summary

- The BJT is a versatile device that has been around since the late forties.
- Amplification is one of the main applications of this technology; digital logic is another.
- We learned about the nonlinear i-v characteristics of the BJT, how to analyze them in circuits.
- Due to the non-linear behavior, circuit analysis is very complicated and usually needs numerical methods to solve.
- A graphical method was introduced to aid visualization of solution space.
- An approximation method based on Taylor series approximation was introduced:
 - linear small-signal equivalent transistor model
- Linear circuit behavior such as low, mid-band and highfrequency response, was described.

© 2012 G. W. Roberts BJT Circuits, slide 115