Pulsed perturbations in population dynamics

Ludovic Mailleret

M2P2, UMR ISA, INRAE, CNRS, Université Côte d'Azur Biocore, Inria Sophia Antipolis Méditerranée

w. S. Nundloll, N. Bajeux, B. Ghosh, V. Calcagno, F. Hamelin & F. Grognard

Institut Sophia Agrobiotech

UMR INRAE, CNRS, Université Côte d'Azur

200 pp. working on plant health issues

- interactions b. plants, pests/symbionts
- interactions b. pests and enemies
- population dynamics in time and space
- development of ecological pest management programs

Methods

- comparative and functional genomics
- population and community ecology
- mathematical and computer modelling

Institut Sophia Agrobiotech

UMR INRAE, CNRS, Université Côte d'Azur

200 pp. working on plant health issues

- interactions b. plants, pests/symbionts
- interactions b. pests and enemies
- population dynamics in time and space
- development of ecological pest management programs

Methods

- comparative and functional genomics
- population and community ecology
- mathematical and computer modelling

Population dynamics modelling

Understand how/why population sizes change with time and space

- predict plant pest and disease dynamics and evolution
- design control actions: external perturbations of population sizes

Main applications

- efficient and sustainable use of plant resistance
- optimization of biological control programs

Population dynamics modelling

Understand how/why population sizes change with time and space

- predict plant pest and disease dynamics and evolution
- design control actions: external perturbations of population sizes

Main applications

- efficient and sustainable use of plant resistance
- optimization of biological control programs

External perturbations of population size

Two main types of perturbations

- increase population size (introductions of individuals)
 - $\rightarrow\,$ immigration, reintroduction biology, biological control
- decrease population size (removal of a fraction of the population)
 → emigration, harvesting, culling

External perturbations of population size

Two main types of perturbations

- increase population size (introductions of individuals)
 - ightarrow immigration, reintroduction biology, biological control
- decrease population size (removal of a fraction of the population)
 - → emigration, harvesting, culling

Continuous or pulsed perturbations

Both types of perturbation may occur:

- continuously over time
- as pulses at discrete time instants

- intensity of perturbations significantly influences population dynamics
- role of the temporal pattern of perturbations has been overlooked so far

Continuous or pulsed perturbations

Both types of perturbation may occur:

- continuously over time
- as pulses at discrete time instants

- intensity of perturbations significantly influences population dynamics
- role of the temporal pattern of perturbations has been overlooked so far

Outline

Framework to study the influence of pulsed perturbations on population dynamics

- for a given perturbation effort
- role of temporal pattern (magnitude / frequency)

Investigate the two main perturbation types

- pulsed introductions
- pulsed removals
- if time: pulsed introductions & removals

Pulsed introductions

with special emphasis on augmentation biological control

Framework for studying pulsed introductions

Compare different patterns of introductions for a given introduction effort $\boldsymbol{\mu}$

Continuous introductions¹

$$\{ \dot{x} = f(x) + \mu.$$

1: Kermack, McKendrik (1932), Kostitzin (1937)

Both models account for the same mean rate of introduction

- comparison of different introduction patterns through introduction period
- pulsed model reduces to continuous one as T → 0

Pulsed introductions²

$$\begin{cases} \dot{x} = f(x), \\ x(kT^+) = x(kT) + \mu T \end{cases}$$

2: Mailleret, Grognard (2006), Mailleret, Lemesle (2009)

Framework for studying pulsed introductions

Compare different patterns of introductions for a given introduction effort $\boldsymbol{\mu}$

Continuous introductions¹

$$\{ \dot{x} = f(x) + \mu.$$

1: Kermack, McKendrik (1932), Kostitzin (1937)

Both models account for the same mean rate of introduction

- comparison of different introduction patterns through introduction period
- pulsed model reduces to continuous one as $T \rightarrow 0$

Pulsed introductions²

$$\begin{cases} \dot{x} = f(x), \\ x(kT^+) = x(kT) + \mu T. \end{cases}$$

2: Mailleret, Grognard (2006), Mailleret, Lemesle (2009)

Framework for studying pulsed introductions

Compare different patterns of introductions for a given introduction effort $\boldsymbol{\mu}$

Continuous introductions¹

$$\{ \dot{x} = f(x) + \mu.$$

1: Kermack, McKendrik (1932), Kostitzin (1937)

Both models account for the same mean rate of introduction

- comparison of different introduction patterns through introduction period
- pulsed model reduces to continuous one as $T \rightarrow 0$

Pulsed introductions²

$$\begin{cases} \dot{x} = f(x), \\ x(kT^+) = x(kT) + \mu T. \end{cases}$$

2: Mailleret, Grognard (2006), Mailleret, Lemesle (2009)

Fight pests through regular introductions of natural enemies

- · parasitoids or predators
- supplied by biofabrics

General predator-prey model

$$\begin{cases} \dot{x} = f(x) - g(.)y, & \text{pest / prey} \\ \dot{y} = h(.)y - m(.)y & \text{BCA / predator} \end{cases}$$

Natural enemy introductions

$$\{y(nT^+)=y(nT)+\mu T, \forall n \in \mathbb{N}\}$$

How different introduction strategies affect pest control?

Fight pests through regular introductions of natural enemies

- parasitoids or predators
- supplied by biofabrics

General predator-prey model

$$\begin{cases} \dot{x} = f(x) - g(.)y, & \text{pest } / \text{ prey} \\ \dot{y} = h(.)y - m(.)y & \text{BCA } / \text{ predator} \end{cases}$$

Natural enemy introductions

$$\{ y(nT^+) = y(nT) + \mu T, \forall n \in \mathbb{N} \}$$

How different introduction strategies affect pest control ?

Null model: no density dependance in BCA population

Pest control is achieved provided^a:

$$\mu > S = \sup_{x \ge 0} \frac{mf(x)}{g(x)}$$

^aMailleret, Grognard (2009)

- pest control always possible
- threshold intro. rate increases w. m et f(.), decreases w. g(.)
- introduction strategy (T) does not impact stability

What about transient dynamics?

• time for pest to fall below some damage threshold \bar{x}

$$\Pi\left(T,x_0,t_0\right) = \int_{t_0}^{t_f} (\tau-t_0)d\tau, \quad x(t_f) \triangleq \bar{x}$$

Null model: no density dependance in BCA population

Pest control is achieved provided^a:

$$\mu > S = \sup_{x \ge 0} \frac{mf(x)}{g(x)}$$

^aMailleret, Grognard (2009)

- pest control always possible
- threshold intro. rate increases w. m et f(.), decreases w. g(.)
- introduction strategy (T) does not impact stability

What about transient dynamics?

• time for pest to fall below some damage threshold \bar{x}

$$\Pi\left(T,x_{0},t_{0}\right)=\int_{t_{0}}^{t_{f}}(\tau-t_{0})d\tau,\quad x(t_{f})\triangleq\bar{x}$$

Null model: no density dependance in BCA population

Pest control is achieved provided^a:

$$\mu > S = \sup_{x \ge 0} \frac{mf(x)}{g(x)}$$

^aMailleret, Grognard (2009)

- pest control always possible
- threshold intro. rate increases w. m et f(.), decreases w. g(.)
- introduction strategy (T) does not impact stability

What about transient dynamics?

ullet time for pest to fall below some damage threshold $ar{x}$

$$\Pi\left(T,x_0,t_0\right)=\int_{t_0}^{t_f}(\tau-t_0)d au,\quad x(t_f)\triangleq ar{x}$$

Null model: no density dependance in BCA population

•
$$\mathbb{E}_{t_0 \in (0,T)} \Big[\Pi(t_0,x_0) \Big] = \min_T \left(\max_{t_0} \Pi(t_0,x_0) \right) (= \mathbf{constant})$$

• $Var_{t_0 \in (0,T)} \Big[\Pi(t_0,x_0) \Big]$ increases with T

- mean transients not influenced by intro. strategy
- variance increases with larger/less frequent introductions

anomaly of $\Pi(t_0)$ w.r.t T, $t_0 \in (0, T)$

Negative density dependance in BCA population

Prédation per capita sur 24h de L1 de F. occidentalis par N. cucumeris

Per capita predation decreases with BCA population size

$$\begin{cases} \dot{x} = f(x) - g(x, y)y \\ \dot{y} = h(x, y)y - m(.)y \end{cases}$$

$$g(x,y) = g\left(\frac{x}{\theta y + (1-\theta)}\right)$$

Negative density dependance in BCA population

Prédation *per capita* sur 24h de L1 de *F. occidentalis* par *N. cucumeris*

Per capita predation decreases with BCA population size

$$\begin{cases} \dot{x} = f(x) - g(x, y)y \\ \dot{y} = h(x, y)y - m(.)y \end{cases}$$

$$g(x,y) = g\left(\frac{x}{\theta y + (1-\theta)}\right)$$

$$g(.)$$
 \nearrow ; $\theta \in (0,1]$: $-DD$ index

Negative density dependance in BCA population

Pest control is achieved iff^a:

$$f'(0) < \frac{g'(0)}{\theta} \quad \text{ and } \quad \mu > \frac{1-\theta}{\theta T} \frac{\left(1 - e^{-m\frac{\theta f'(0)}{g'(0)}T}\right) \left(1 - e^{-mT}\right)}{\left(e^{-m\frac{\theta f'(0)}{g'(0)}T} - e^{-mT}\right)}$$

aNundloll et al. 2010

A biological and a strategy condition

- negative DD shall not be too strong
- threshold introduction rate increases with $T \ (\to +\infty)$
- too large T makes pest suppression impossible
- transients: the smaller the T, the faster pests are suppressed

When DD comes into play, introduction pattern has major impacts

Negative density dependance in BCA population

Pest control is achieved iff^a:

$$f'(0) < \frac{g'(0)}{\theta} \quad \text{ and } \quad \mu > \frac{1-\theta}{\theta T} \frac{\left(1 - e^{-m\frac{\theta f'(0)}{g'(0)}T}\right)\left(1 - e^{-mT}\right)}{\left(e^{-m\frac{\theta f'(0)}{g'(0)}T} - e^{-mT}\right)}$$

aNundloll et al. 2010

A biological and a strategy condition

- negative DD shall not be too strong
- threshold introduction rate increases with $T \ (\to +\infty)$
- too large T makes pest suppression impossible
- transients: the smaller the T, the faster pests are suppressed

When DD comes into play, introduction pattern has major impacts

Positive density dependance in BCA population

Taux de croissance de trichogrammes

Réponse fonctionnelle avec DD positive

Per capita predation/natality increases with BCA population size

$$\begin{cases} \dot{x} = f(x) - g(x)q_f(y)y \\ \dot{y} = h(g(x)q_f(y))q_r(y)y - m(.)y \end{cases}$$

Component Allee effects $q_f(.), q_r(.)$ increasing

Positive density dependance in BCA population

Taux de croissance de trichogrammes

Réponse fonctionnelle avec DD positive

Per capita predation/natality increases with BCA population size

$$\begin{cases} \dot{x} = f(x) - g(x)q_f(y)y \\ \dot{y} = h(g(x)q_f(y))q_r(y)y - m(.)y \end{cases}$$

Component Allee effects : $q_f(.), q_r(.)$ increasing

Positive density dependance in BCA population

- reverted results compared to negative DD
- pest control facilitated by T large
- transients: the larger the T, the faster pest suppression
- what positive DD influences matters

Pulsed removals

with special emphasis on vaccination

Framework for studying pulsed removals (1)

Compare different patterns of removals for a given taking effort E

Continuous removals¹

$$\{ \dot{x} = f(x) - Ex.$$

1: Schaefer (1954)

Pulsed removals (first attempt) 2

$$\begin{cases} \dot{x} = f(x), \\ x(kT^+) = x(kT) - \tilde{E}x \end{cases}$$

2: from Lu *et al.* (2003)

Mean taking effort in the continuous model

$$\langle E_c \rangle = \frac{\dot{x}_E}{x} = \frac{Ex}{x} = E$$

Framework for studying pulsed removals (1)

Compare different patterns of removals for a given taking effort E

Continuous removals¹

$$\{ \dot{x} = f(x) - Ex.$$

1: Schaefer (1954)

Pulsed removals (first attempt) 2

$$\begin{cases} \dot{x} = f(x), \\ x(kT^+) = x(kT) - \tilde{E}x. \end{cases}$$

2: from Lu et al. (2003)

Mean taking effort in the continuous model

$$\langle E_c \rangle = \frac{\dot{x}_E}{x} = \frac{Ex}{x} = E$$

Framework for studying pulsed removals (2)

Compare different patterns of removals for a given taking effort \boldsymbol{E}

• Mean taking effort in the pulsed model:

$$\langle E_p \rangle = \frac{1}{T} \int_{kT}^{(k+1)T} \frac{\dot{x}_E}{x} d\tau = \frac{1}{T} \int_{kT}^{kT^+} \frac{\dot{x}_E}{x} d\tau = \frac{1}{T} \int_{x(kT)}^{x(kT^+)} \frac{dx_E}{x},$$

$$\langle E_{p} \rangle = \frac{1}{T} \ln \left(\frac{1}{1 - \tilde{E}} \right) \neq E$$

In Lu et al. (2003) framework, the mean taking effort varies with T

so that:

Framework for studying pulsed removals (3)

Desired property: mean taking effort constant to allow comparisons

Solve:

$$\langle \, E_p \,
angle = E = rac{1}{T} \ln \left(rac{1}{1 - ilde{E}}
ight) \; \Rightarrow \; ilde{E} = 1 - e^{-E7}$$

⇒ more frequent removals shall be smaller..

A well-posed pulsed taking model reads:

$$\begin{cases} \dot{x} = f(x), \\ x(kT^+) = e^{-ET} x(kT). \end{cases}$$

Framework for studying pulsed removals (3)

Desired property: mean taking effort constant to allow comparisons

Solve:

$$\langle E_p \rangle = E = \frac{1}{T} \ln \left(\frac{1}{1 - \tilde{E}} \right) \Rightarrow \tilde{E} = 1 - e^{-ET}$$

⇒ more frequent removals shall be smaller...

A well-posed pulsed taking model reads:

$$\begin{cases} \dot{x} = f(x), \\ x(kT^+) = e^{-ET} x(kT). \end{cases}$$

Framework for studying pulsed removals (3)

Desired property: mean taking effort constant to allow comparisons

Solve:

$$\langle E_{
ho}
angle = E = rac{1}{T} \ln \left(rac{1}{1 - ilde{E}}
ight) \; \Rightarrow \; ilde{E} = 1 - e^{-ET}$$

⇒ more frequent removals shall be smaller...

A well-posed pulsed taking model reads:

$$\begin{cases} \dot{x} = f(x), \\ x(kT^+) = e^{-ET} x(kT). \end{cases}$$

Pulsed vaccination

Pulsed vaccination (1)

Vaccination of individuals is also a form of removal of S individuals

Continuous vaccination at rate Ψ in the susceptible population¹

$$\begin{cases} \dot{S} = b - \mu S - \beta SI - \Psi S \\ \dot{I} = \beta SI - \mu I - \alpha I \end{cases}$$

In such a model

$$\mathcal{R}_0 = \frac{\beta S_c^*}{\alpha + \mu} = \frac{\beta}{(\alpha + \mu)} \frac{b}{(\Psi + \mu)}$$

Vaccination prevents disease spread when

$$\Psi > \frac{b\beta}{\alpha + \mu} - \mu$$

¹model adapted from Onyango & Müller, 2014

Pulsed vaccination (1)

Vaccination of individuals is also a form of removal of S individuals

Continuous vaccination at rate Ψ in the susceptible population¹

$$\begin{cases} \dot{S} = b - \mu S - \beta SI - \Psi S \\ \dot{I} = \beta SI - \mu I - \alpha I \end{cases}$$

In such a model

$$\mathcal{R}_0 = \frac{\beta S_c^*}{\alpha + \mu} = \frac{\beta}{(\alpha + \mu)} \frac{b}{(\Psi + \mu)}$$

Vaccination prevents disease spread when

$$\Psi > \frac{b\beta}{\alpha + \mu} - \mu$$

¹model adapted from Onyango & Müller, 2014

Pulsed vaccination (2)

A comparable pulsed vaccination model reads²

$$\begin{cases} \dot{S} = b - \mu S - \beta SI \\ \dot{I} = \beta SI - \mu I - \alpha I \\ S(kT^{+}) = e^{-\Psi T} S(kT) \end{cases}$$

T-periodic infection free solution $S^*(t, \Psi)$, so that:

$$\mathcal{R}_0 = rac{eta}{(lpha + \mu)} rac{1}{T} \int_0^T S^*(au, \Psi) d au$$

²pulsed vaccination has originally been introduced by Agur *et al.*, 1993. Advocated as a more efficient vaccination strategy, a statement which is still debated today.

Pulsed vaccination (3)

Pulsed vaccination prevents disease spread when:

$$\frac{1}{T}\int_0^T S^*(\tau,\Psi)d au < \frac{(lpha+\mu)}{eta}$$

unfortunately, isolating Ψ is difficult, and ultimately uninformative

Yet, numerics show vaccination may fail for large

Pulsed vaccination (3)

Pulsed vaccination prevents disease spread when:

$$\frac{1}{T}\int_0^T S^*(\tau,\Psi)d\tau < \frac{(\alpha+\mu)}{\beta}$$

unfortunately, isolating Ψ is difficult, and ultimately uninformative

Yet, numerics show vaccination may fail for large

Pulsed vaccination (3)

Pulsed vaccination prevents disease spread when:

$$\frac{1}{T}\int_0^T S^*(\tau,\Psi)d\tau < \frac{(\alpha+\mu)}{\beta}$$

unfortunately, isolating Ψ is difficult, and ultimately uninformative

Yet, numerics show vaccination may fail for large T

Mixing: pulsed migration

Emigration from a habitat is also a form of removal

- emigration is harmful to populations
- even more in species subjected to Allee effects

Pulsed emigration more harmful than continuous emigration:

Emigration from a habitat is also a form of removal

- emigration is harmful to populations
- even more in species subjected to Allee effects

Pulsed emigration more harmful than continuous emigration:

$$\begin{cases} \dot{x} = rx \left(\frac{x}{K_a} - 1 \right) \left(1 - \frac{x}{K} \right), \\ x(kT^+) = e^{-mT} x(kT). \end{cases}$$

Emigration from a habitat is also a form of removal

- emigration is harmful to populations
- even more in species subjected to Allee effects

Pulsed emigration more harmful than continuous emigration:³

• for any m > 0, large T will always lead to pop. extinction

³Mailleret and Lemesle, 2009

In nature, migration is usually a bi-directional process

emigration & immigration

- emigration harmful, pulsed even more than continuous
- immigration beneficial, pulsed even more than continuous

How do pulsed migration, migration period and Allee effects interact at the metapopulation scale?

In nature, migration is usually a bi-directional process

emigration & immigration

- emigration harmful, pulsed even more than continuous
- immigration beneficial, pulsed even more than continuous

How do pulsed migration, migration period and Allee effects interact at the metapopulation scale?

In nature, migration is usually a bi-directional process

emigration & immigration

- emigration harmful, pulsed even more than continuous
- immigration beneficial, pulsed even more than continuous

How do pulsed migration, migration period and Allee effects interact at the metapopulation scale?

Keitt et al. (2001): populations 'pinned' at intermediate migration

Stepping stone, continuous migration

Keitt et al. (2001): populations 'pinned' at intermediate migration

Stepping stone, continuous migration

The effects of pulsed migration, and migration period T

pulsed migration

continuous migration

same effects as continuous migration: population stable

The effects of pulsed migration, and migration period T

pulsed migration

continuous migration

same effects as continuous migration: population pinned

The effects of pulsed migration, and migration period T

pulsed migration

continuous migration

emerging patterns for larger periods T: invasion succeeds

The effects of pulsed migration, and migration period T

pulsed migration

continuous migration

emerging patterns for larger periods T: pop-up effect

The effects of pulsed migration, and migration period T

pulsed migration

continuous migration

emerging patterns for larger periods T: global extinction

Conclusion

Take home messages

- Many populations are perturbed by pulsed introductions or/and removals, but this
 is rarely taken into account
- Temporal pattern of occurrence of perturbations may have different impacts on population dynamics:
 - none (or almost none)
 - quantitative effects
 - qualitative effects, up to the emergence of new dynamical patterns
- General conclusions: not restricted to population dynamics per se (e.g. therapies against diseases)

Thank You!

