TOPOLOGÍA. UAM, 13 de diciembre de 2019

1. Considera el conjunto $C = \{(x,y) \in \mathbb{R}^2 : 1 \le x^2 + y^2 \le 9\} \subset \mathbb{R}^2$ con la topología de subespacio. Definimos en C la siguiente relación de equivalencia:

$$(x_1, y_1) \sim (x_2, y_2) \iff \begin{cases} (x_1, y_1) = (x_2, y_2) \\ (x_2, y_2) = 3(x_1, y_1) & \text{si } x_1^2 + y_1^2 = 1, \\ (x_2, y_2) = \frac{1}{3}(x_1, y_1) & \text{si } x_1^2 + y_1^2 = 9. \end{cases}$$

Considera el espacio cociente $X=C/\sim$.

- 1. Dibuja en C entornos de los puntos $P_1=(1,0)$ y $P_2=(2,0)$ que sean saturados para la aplicación de paso al cociente $p:C\ni (x,y)\mapsto [(x,y)]\in X$.
- 2. ¿A qué subconjunto de \mathbb{R}^3 es homeomorfo X?
- 3. Considera la aplicación $\phi: X \ni [(x,y)] \mapsto [(-x,-y)] \in X$. Demuestra que ϕ está bien definida y es continua. ¿Es ϕ un homeomorfismo?
- **2.** Sea X un espacio topológico, y $A \subset X$ un subconjunto. Demuestra que si C es un subespacio conexo de X que interseca tanto a A como a $X \setminus A$, entonces C interseca a la frontera de A.
- 3. Considera los dos subconjuntos de \mathbb{R}^2 siguientes:

$$A = \{(x,y) \mid x^2 + y^2 \le 1\} \cup \{(x,y) \mid x = 1\},\$$

$$B = \{(x,y) \mid x^2 + y^2 \le 1\} \cup \{(x,y) \mid y = 0\},\$$

ambos con la topología inducida por la usual. Demuestra que $A \ y \ B$ no son homeomorfos.

- 4. Sean τ y τ' dos topologías en un mismo conjunto X.
 - a) Demuestra que si $\tau \subset \tau'$ y (X,τ') es compacto, entonces (X,τ) lo es también.
 - b) Demuestra que si X es un espacio topológico compacto y de Hausdorff con respecto a τ y τ' , entonces o bien τ y τ' coinciden, o bien no son comparables.
- 5. Sea X un espacio topológico conexo y Hausdorff, y sea $U\subset X$ un subespacio no vacío, abierto y compacto. Demuestra que U=X.

TIEMPO: 2 horas.