

مبانی بینایی کامپیوتر

مدرس: محمدرضا محمدی

تشكيل تصوير

Image Formation

معادلات لنز نازک

- تنها اشعههای نوری نقاطی که در فاصله u از لنز باشند در صفحهای به فاصله v از لنز همگرا (متمرکز) می شوند
 - نقاط با فاصلههای دیگر دچار تاری خواهند شد

$$\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$$

عمق میدان (DOF)

• محدودهای از عمق (فاصله تا دوربین) که اشیاء تقریبا با وضوح مناسب دیده میشوند

عمق میدان (DOF)

• در دوربینها معمولا هم از لنز استفاده میشود و هم از دریچه استفاده میشود و میتوان عمق میدان را کنترل کرد

	Aperture Size	Exposure	Depth of Field
f/1.4	Very large	Lets in a lot of light	Very thin
f/2.0	Large	Half as much light as f/1.4	Thin
f/2.8	Large	Half as much light as f/2	Thin
f/4.0	Moderate	Half as much light as f/2.8	Moderately thin
f/5.6	Moderate	Half as much light as f/4	Moderate
f/8.0	Moderate	Half as much light as f/5.6	Moderately large
f/11.0	Small	Half as much light as f/8	Large
f/16.0	Small	Half as much light as f/11	Large
f/22.0	Very small	Half as much light as f/16	Very large

میدان دید (FOV)

• میدان دید برابر با زاویه میدان قابل مشاهده بدون حرکت دوربین است

میدان دید (FOV)

• میدان دید برابر با زاویه میدان قابل مشاهده بدون حرکت دوربین است

میدان دید (FOV)

طيف الكترومغناطيسي

پردازش تصویر در حوزه مکان

Image Processing in Spatial Domain

ارتقاء تصوير

- ارتقاء تصویر پردازشی است که در آن تصویر تولید شده برای پردازشهای بعدی یا برای دیدن مناسبتر از تصویر اصلی باشد
 - پردازشهای حوزه مکان در حالت کلی با نماد زیر نشان داده میشوند

$$g(x,y) = T[f(x,y)]$$

پردازش نقطهای

- پردازش نقطهای ساده ترین شکل همسایگی است که اندازه قاب ۱×۱ است
 - در این حالت، g(x,y)تنها به مقدار f در نقطه g(x,y) وابسته است ullet
 - نیز تابع تبدیل شدت روشنایی یا تابع نگاشت نامیده می شود T

$$s = T(r)$$

پردازش نقطهای

• مثال

تبدیل گاما

هیستوگرام

• هیستوگرام برای یک تصویر دیجیتال با سطوح روشنایی در محدوده $[0\ L-1]$ تابعی است گسسته که به صورت زیر تعریف می شود:

$$h(r_k) = n_k$$

که r_k یک سطح روشنایی در محدوده مورد نظر است و n_k تعداد پیکسلهایی است که دارای آن سطح روشنایی هستند

• هیستوگرام نرمالیزه

$$p(r_k) = \frac{n_k}{n}$$

هیستوگرام

- هیستوگرام اساس بسیاری از روشهای پردازش تصویر در حوزه مکان را تشکیل میدهد
 - محاسبه نرمافزاری هیستوگرام تصویر و تحقق سختافزاری آن ساده و ارزان است
- مولفههای هیستوگرام در تصویر با کنتراست بالا محدوده وسیعتری از محور سطوح روشنایی را پوشش میدهد

كشش هيستوگرام

• ساده ترین راه برای استفاده از تمام سطوح روشنایی، کشش هیستوگرام است

$$g(x,y) = stretch[f(x,y)] = \left(\frac{f(x,y) - f_{min}}{f_{max} - f_{min}}\right)(MAX - MIN) + MIN$$

كشش هيستوگرام

Histogram Stretching

كشش هيستوگرام

برش هیستوگرام

- در برش هیستوگرام، بخشی از مولفههای پائین و بالا در نمودار هیستوگرام را قطع می کنیم
 - به طور مثال اگر ۱ درصد از مولفههای بالا و پائین را قطع کنیم:

$$g(x,y) = clip[f(x,y)] = \left(\frac{f(x,y) - f_1}{f_{99} - f_1}\right)(MAX - MIN) + MIN$$

$$g(x,y) = stretch[f(x,y)] = \left(\frac{f(x,y) - f_{min}}{f_{max} - f_{min}}\right)(MAX - MIN) + MIN$$

Histogram Clipping

كشش هيستوگرام