Worksheet: Easy ODE problems by calculus

For ordinary differential equation initial value problems (ODE IVPs) like

$$(*) y' = f(t, y), y(t_0) = y_0$$

our *major themes* are that:

- *i)* problem (*) describes a simulation using a law for how things behave (the ODE) and a starting point of the object (the IVP), and
- ii) most simulations require approximations by computers (numerical methods).

However, in easy cases we may not need approximations. We can be precise!

In these easy cases one can either solve problem (*) for y(t) or check (verify) that a stated function y(t) is a solution to (*). One only needs calculus, as on this worksheet.

On this worksheet, and on the final exam, it is important to read the question; are you asked to *verify* or *solve*?

A. Verify that $y(t) = 3e^{-t^2}$ solves the ODE IVP

$$y' = -2ty, \quad y(0) = 3$$

B. Solve the ODE IVP:

$$y' = t^2 + \cos t$$
, $y(1) = -2$

Then find y(3).

C. Solve the ODE IVP:

$$u' = u^{1/2}, \quad u(0) = 1$$

Sketch the solution in the t, u plane, clearly indicating the initial value.

- **D.** Using a different color, add the direction field for the ODE $u' = u^{1/2}$ to the above sketch.
- **E.** Verify that both y(t) = 0 and $y(t) = t^{4/3}$ solve the ODE IVP

$$y' = \frac{4}{3}y^{1/4}, \quad y(0) = 0$$

Sketch both solutions in the t, y plane, clearly indicating the initial value. Again add the direction field in a different color.