

ENCRYPTION ASYMÉTRIQUE

YANNICK CHARRON

PLAN DE LA SÉANCE

- → Concept général
- → Clé privée et clé publique
- → RSA
- → Signature
- → Applications

CONCEPT GÉNÉRAL

DIFFIE-HELLEMAN

Échange d'une clé

UN PEU DE MATHÉMATIQUES

Possibilités

- → Chiffrer le message à envoyer
- → S'assurer de l'authenticité de l'expéditeur

LES CLÉS

CLÉ PRIVÉE ET CLÉ PUBLIQUE

- → Les deux clés sont liée mathématiquement
 - Nombres premiers
 - Elliptic Curve
- → La clé publique est une fonction à un sens
- → La clé privée est une brèche connu de cette fonction (Trap Door Function)
- → Génération de la pair de clés

Récupération de la clé publique du destinataire

Clé publique de Garfield

Clé privée de Garfield

Chiffrement du message avec la clé publique du destinataire

Lasagne aux kiwis

0xAk9uiVZ3

0xAk9uiVZ3

FORMATS DES CLÉS

FORMATS DES CLÉS - PEM

----BEGIN PUBLIC KEY-----

MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA3gDIecx2M2FGHQ1zXj3W0DxctyX+MINP7hkGJyI2lR4aZhnWNEocPqqb4C8v1cdlEXjC1cWTgxF1bcZxHAePCobTbvHZJdK/Sg83sbVh3sQbiPIbpggnH838qlMSYuHgnU/Hpntjem1TeH/4MIDbcf4WS4rZ+id3vMzvXt0czMwvp0yBOFdANnKnOVWpwD114tPrjSoVSQ/uTyjHWnsdhqqIFNULtYuIwgLc6ZHi6/7cER4L4vEcx4ADEuj0Bi1BOSgo3k235VDYAGG+Al4/FDWEYIE3ne6rj/00NMjFrS5qQyJSIi8t1pp/3nQQXOlOmYKQvM+m2aW7amIZHaHiqwIDAQAB

---END PUBLIC KEY-----

FORMATS DES CLÉS - JWK

```
{
    "kty": "EC",
    "x": "jmqDxG1XjfzEJYPulwWCycdxqRGnz4x0tzytutTHUyc",
    "y": "GGpZUhS4q8rZCQpB0DAjIDB9U4Yj4Xwbk9i1mUfOud8",
    "crv": "P-256"
}
```


RSA

Ron Rivest

Adi Shamir

Leonard Adleman

RSA

- → L'algorithme le plus populaire
- → Le principe est
 - La multiplication est rapide
 - La factorisation est lente
- → Utilisation du modulo pour ne pas que les nombre deviennent trop gros

RSA

- → Choix de deux nombres premiers aléatoires
- → Max = le produit des deux nombres premiers
- → Les clés privée et publique de nombres choisis tels qu'elles sont comprises entre 0 et max
- → Voilà pourquoi la factorisation pourrait venir brisé RSA
 - Factoriser le max pour retrouver les deux nombres premiers permet de trouver la clé privée à partir de la clé publique

EXEMPLE

- → Nombres premiers: 13 et 7
- → Max \rightarrow 13 x 7 = 91
- → Clé publique choix de 5 (0 < 5 < 91)
- → Il faut trouver la brèche soit la clé privé pour ce faire : Extended Euclidean algorithm
 - → Pour notre exemple : 29

EXEMPLE

- → RSA(max: 91, pub: 5; priv: 29)
- → Notre mot : CLOUD

Α	В	С	D	Е	F	G	Н	-1	J	K	L	Μ
65	66	67	68	69	70	71	72	73	74	75	76	77
Ν	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z

- \rightarrow 67, 76, 79, 85, 68
- → Dans Excel

INCONVÉNIENTS ET LIMITES

- → Pas la *TrapDoor* parfaite
 - Factorisation est étudié depuis l'antiquité
 - Recherches en cours et informatique quantique
- → Moins performants que leurs équivalents symétrique
 - Temps de chiffrement plus longs
 - Pour un niveau sécurité équivalent la clé doit être plus beaucoup plus longues
- → La NSA serait en mesure de lire les messages

ELLIPTIC CURVE

À la rescousse

ELLIPTIC CURVE

$$y^2 = x^3 + ax + b$$

DIFFÉRENCES

RSA

- → La brèche devient de moins en moins difficile
- → La taille de la clé devient de plus en plus longue
 - Briser 2048-bit clé, faire bouillir 1 cuillère d'eau

EC

- → La brèche est un problème plus difficile
 - 30 ans de recherches aucun raccourci apparent
- → Possible d'utiliser des clé plus courte
 - Briser 228-bit clé, faire bouillir toute l'eau de la Terre (2380 bits RSA)

PROBLÈME D'AUTHENTICITÉ

À suivre

