Verhaltens neurogenetik

Inhaltsverzeichnis

1	Vorlesung 05.04.2016						
	1.1	Vertebraten:	1				
	1.2	Invertebraten:	1				
	1.3	Nervenzelle:	1				
	1.4	Axon:	2				
	1.5	Dendriten:	2				
	1.6	Synapse:	3				
	1.7	Vesikel:	5				
	1.8	Gliazelle:	5				
	1.9	Myelinisierung:	5				
	1.10	Neurotransmitter:	5				
	1.11	Aktionspotential:	6				
	1.12	Exozytose	8				
	1.13	SNARE	8				
	1.14	Neurotransmitter	9				
	1.15	Exzitatorisches postsynaptisches Potential	10				
	1.16	Inhibitorisches postsynaptisches Potential	11				
	1.17	Membranrezeptoren	11				
	1.18	Summation	12				
	1.19	Bahnung	12				
	1.20	Langzeit-Potenzierung	12				
2	Vor	lesung 13.04.2016	14				
	2.1	Prinzipien der Verschaltung	14				
	2.2	Struktur von Nervensystemen	14				
2.2 Suruktur von Nervensystemen							
3 Vorlesung 20.04.2016		lesung 20.04.2016	16				
	3.1	Mechanorezeptoren von C. elegans	16				
	3.2	Neurogenese in der Entwicklung von Drosophila	16				
4	Vor	lesung 27.04.2016	17				
	4.1	Neurogenese in der Entwicklung von Drosophila	17				
	4.2	Neurogenese in der Entwicklung von Drosophila: Notch	17				
	4.3	Struktur-Funktionsbeziehung	17				
5	Vor	Vorlesung 11.05.2016 18					
•	5.1	Orientierung im Raum	18				
	5.2	Die optomotorische Reaktion	18				
	5.3	Elementarer Bewegungsdetektor	18				
	5.4	Augenentwicklung bei Drosophila melanogaster	18				
	J. 1	Tragement including our propopular includes grown	• •				

6	Vorlesung 18.05.2016					
	6.1	Augenentwicklung bei Drosophila melanogaster	19			
	6.2	Augenentwicklung: Vertebarten - Invetebraten	19			
	6.3	Struktur – Funktion: Axonale Wegfindung in der Entwicklung	19			
7	Vorlesung 25.05.2016					
	7.1	Struktur – Funktion: Axonales Wachstum	20			
		7.1.1 Extrazelluläre Matrixmoleküle (Substrat-Adhäsionsmoleküle				
		- SAM)	20			
		7.1.2 Zelladhäsionsmoleküle - CAMs	21			
		7.1.3 Variablität von Zelladhäsionsmolekülen	22			
8	Vor	Vorlesung 01.06.2016				
	8.1	Struktur – Funktion: Molekulare Ausstattung von Neuronen	23			
	8.2	Ionenkanäle	23			
	8.3	G-Protein-gekoppelte Rezeptoren	23			
	8.4	Synaptische / Vesikelproteine	23			
9	Vorlesung 08.06.2016					
	9.1	Gal4 / UAS-System	24			
	9.2	Was ist Lernen	24			
	9.3	Assoziatives Lernen: Klassisches Konditionieren	24			
	9.4	Molekulares Lernen	24			
10	Vor	Vorlesung 15.06.2016				
	10.1	Gal4 / UAS-System: MARCM	25			
		Gedächtnisbildung: Phasen in Drosophila	25			
	10.3	Klassisches Konditionieren	25			
	10.4	olfaktorisches Lernen bei Drosophila	25			
	10.5	Synaptic Vesicle Proteins	25			
11	Vorlesung 22.06.2016					
		olfaktorisches Lernen bei Drosophila	26			
	11.2	Interaktion multipler Gedächtnis-Systeme	26			
	11.3	Long Term Potentiation	26			
12	Vor	Vorlesung 29.06.2016 2				
13	Vor	Vorlesung 06.07.2016				
	13.1	Aggression	28			

1 Vorlesung 05.04.2016

1.1 Vertebraten:

¹ Wirbeltiere (Vertebrata) sind Tiere, die eine Wirbelsäule besitzen. Zu den Vertebraten gehören fünf klassische Großgruppen: Säugetiere, Vögel, Reptilien, Amphibien sowie Fische (Knochen- und Knorpelfische), als urtümliche Vertreter zudem die Rundmäuler.

1.2 Invertebraten:

² Wirbellose, Invertebrata oder Evertebrata sind vielzellige Tiere ohne Wirbelsäule. Zu dieser informellen Gruppe (Formtaxon) von Lebewesen gehört die Mehrzahl aller bekannten Tierarten.

1.3 Nervenzelle:

³ Eine Nervenzelle oder ein Neuron ist eine auf Erregungsleitung und Erregungsübertragung spezialisierte Zelle, die als Zelltyp in Gewebetieren und damit in nahezu allen vielzelligen Tieren vorkommt. Die Gesamtheit aller Nervenzellen eines Tieres bildet zusammen mit den Gliazellen das Nervensystem.

Eine typische Säugetier-Nervenzelle hat einen Zellkörper und Zellfortsätze zweierlei Art: die Dendriten und den Neuriten bzw. das Axon. Die verästelten Dendriten nehmen vornehmlich Erregung von anderen Zellen auf. Der Neurit eines Neurons, von Gliazellen umhüllt sein Axon, kann über einen Meter lang sein und dient zunächst der Fortleitung einer Erregung dieser Zelle in die Nähe anderer Zellen. Dabei wird eine Spannungsänderung über den Fortsatz weitergeleitet, indem kurzzeitige Ionenströme durch besondere Kanäle in der Zellmembran zugelassen werden. Die Axonenden stehen über Synapsen, an denen die Erregung selten unmittelbar elektrisch weitergegeben, sondern meist mittels Botenstoffen (Neurotransmittern) chemisch übertragen wird, in Kontakt zu anderen Nervenzellen, Muskelzellen (neuromuskuläre Endplatte) oder zu Drüsenzellen.

https://de.wikipedia.org/wiki/Wirbeltiere

²https://de.wikipedia.org/wiki/Wirbellose

³https://de.wikipedia.org/wiki/Nervenzelle

1.4 Axon:

⁴ Das Axon, selten der Axon, auch Neuraxon oder Achsenzylinder genannt, ist ein oft langer schlauchartiger Nervenzellfortsatz, ein Neurit, der in einer Hülle von Gliazellen verläuft und zusammen mit dieser Umhüllung als Nervenfaser bezeichnet wird. Seitliche Abzweigungen des Axons werden auch dessen Kollaterale genannt und können sich wie das terminale Axon in mehrere Endästchen aufzweigen. Die meisten Neuronen haben ein einziges Axon. Es gibt aber auch Nervenzellen, die kein Axon besitzen, z. B. verschiedene Amakrinzellen der Netzhaut.

1.5 Dendriten:

⁵ Dendriten heißen in der Biologie Zellfortsätze von Nervenzellen, die aus dem Zellkörper hervorgehen und vorwiegend der Reizaufnahme dienen. Eine Nervenzelle besteht typischerweise aus drei Anteilen: dem Zellkörper, Soma oder Perikaryon genannt, und Zellfortsätzen, die Dendriten einerseits und der Neurit – in Gliahülle das Axon – andererseits. Es gibt auch spezialisierte Neuronen, die kein Axon haben (z. B. die Amakrinzellen der Netzhaut) oder die keine Dendriten besitzen (z. B. die Stäbchen und Zapfen der Netzhaut) oder solche, bei denen der Zellkörper nicht mehr zwischen Dendritenstamm und Axon liegt und die Fortsätze so ineinander übergehen (pseudouniploare wie bei den sensiblen Spinalganglienzellen).

Nervenzellen werden morphologisch nach der Anzahl ihrer Fortsätze unterschieden: 1: unipolare Nervenzelle, 2: bipolare Nervenzelle, 3: multipolare Nervenzelle,

⁴https://de.wikipedia.org/wiki/Axon

⁵https://de.wikipedia.org/wiki/Dendrit_%28Biologie%29

4: pseudounipolare Nervenzelle

1.6 Synapse:

⁶ Synapse bezeichnet die Stelle einer neuronalen Verknüpfung, über die eine Nervenzelle in Kontakt zu einer anderen Zelle steht – einer Sinneszelle, Muskelzelle, Drüsenzelle oder anderen Nervenzellen. Synapsen dienen der Übertragung von Erregung, erlauben aber auch die Modulation der Signalübertragung, und sie vermögen darüber hinaus durch anpassende Veränderungen Information zu speichern. Die Anzahl der Synapsen beträgt im Gehirn eines Erwachsenen etwa 100 Billionen (1014) – bezogen auf ein einzelnes Neuron schwankt sie zwischen 1 und 200.000.

⁶https://de.wikipedia.org/wiki/Synapse

In den

meisten Fällen sind es chemische Synapsen. Bei ihnen wird das Signal, das als elektrisches Aktionspotential ankommt, in ein chemisches Signal umgewandelt, in dieser Form über den zwischen den Zellen bestehenden synaptischen Spalt getragen, und dann wieder in ein elektrisches Signal umgebildet. Dabei schüttet die sendende Zelle (präsynaptisch) Botenstoffe aus, Neurotransmitter, die sich auf der anderen Seite des Spaltes (postsynaptisch) an Membranrezeptoren der empfangenden Zelle binden. Hierdurch ist die Richtung der Signalübertragung (nur vorwärts) anatomisch festgelegt, was für die Verarbeitung von Information in neuronalen Netzen grundlegend ist. Der erregungsübertragende Transmitter wird entweder in der Endigung des Axons des sendenden Neurons gebildet oder in dessen Zellkörper synthetisiert und axonal zu den präsynaptischen Membranregionen transportiert. Dagegen sind elektrische Synapsen als gap junctions Kontaktstellen, bei denen Ionenkanäle zweier Zellen unmittelbar aneinander koppeln und so einen Übergang von Ionen und kleinen Molekülen von einer Zelle zur anderen erlauben. Zuerst wurden solche Synapsen zwischen Neuronen entdeckt, doch kommen ähnliche Kontaktstellen noch in anderen Geweben vor, auch in Pflanzen. In übertragenem Sinn werden als immunologische Synapsen die Stellen vorübergehender zellulärer Kontakte von Zellen des Immunsystems bezeichnet, sowohl untereinander als auch mit Zellen des umgebenden Gewebes. Dabei binden Moleküle auf der Oberfläche der einen Zelle an Rezeptormoleküle und Adhäsionsmoleküle in der Zellmembran der anderen und tauschen darüber Informationen aus.

1.7 Vesikel:

⁷ Vesikel (lat. vesicula - Bläschen) in der Biologie sind intrazelluläre (in der Zelle gelegene), sehr kleine, rundliche bis ovale Bläschen, die von einer einfachen oder doppelten Membran oder einer netzartigen Hülle aus Proteinen umgeben sind. Die Vesikel bilden eigene Zellkompartimente, in denen unterschiedliche zelluläre Prozesse ablaufen. Ihre Größe beträgt etwa ein Mikrometer. Vesikel sind für den Transport vieler Stoffe in der Zelle verantwortlich.

1.8 Gliazelle:

⁸ Gliazelle ist ein Sammelbegriff für strukturell und funktionell von den Nervenzellen (Neuronen) abgrenzbare Zellen im Nervengewebe. Nach heutigen Erkenntnissen bilden Gliazellen nicht nur ein Stützgerüst für Nervenzellen, sondern sorgen auch durch ihre Umhüllung für deren elektrische Isolation. Weiterhin sind Gliazellen maßgeblich an Stofftransport und Flüssigkeitsaustausch sowie an der Aufrechterhaltung der Homöostase im Gehirn beteiligt. Darüber hinaus wirken sie auch im Prozess der Informationsverarbeitung, -speicherung und -weiterleitung mit. Etwa die Hälfte der Zellen im menschlichen Gehirn sind Gliazellen, ähnlich wie bei anderen Primaten. Gliazellen sind meist kleiner als die Nervenzellen, im Unterschied zu diesen variiert ihre durchschnittliche Zellmasse im Nervengewebe nur gering bei verschiedenen Säugetierspezies. In deren Hirnstrukturen hängt das jeweilige Verhältnis von Glia zu Neuronen nach Anzahl und Volumen hauptsächlich von der durchschnittlichen Neuronengröße ab.

1.9 Myelinisierung:

⁹ Myelinisierung wird die mehrfache Umwicklung des Neuriten einer Nervenzelle durch umhüllende Gliazellen genannt, wodurch das Axon elektrisch derart isoliert wird, dass mit Umbau seiner Internodien eine schnellere Erregungsleitung möglich wird.

1.10 Neurotransmitter:

¹⁰ Neurotransmitter sind Botenstoffe, die an chemischen Synapsen die Erregung von einer Nervenzelle auf andere Zellen übertragen (synaptische Transmission). Die Neurotransmitter werden im Zellkörper oder in der Endigung des Axons vom sendenden Neuron synthetisiert und in Quanten freigesetzt.

⁷https://de.wikipedia.org/wiki/Vesikel_%28Biologie%29

 $^{^{8} \}verb|https://de.wikipedia.org/wiki/Gliazelle|$

⁹https://de.wikipedia.org/wiki/Nervenfaser

 $^{^{10}\}mathrm{https://de.wikipedia.org/wiki/Neurotransmitter}$

1.11 Aktionspotential:

¹¹Aktionspotential oder elektrische Erregung ist eine vorübergehende charakteristische Abweichung des Membranpotentials einer Zelle von ihrem Ruhepotential.

Grundlage

Ein Aktionspotential kann von etwa einer Millisekunde bis zu einigen Minuten dauern. Es gibt keine starken oder schwachen Aktionspotenziale, vielmehr sind es Alles-oder-Nichts-Reaktionen. Sie entstehen typischerweise am Axonhügel einer Nervenzelle und wandern das Axon entlang. Die Signalstärke wird in der Frequenz von Aktionspotenzialen wiedergegeben. Aktionspotentiale breiten sich auch rückwärts über den Zellkörper und die Dendriten aus. Die Funktion dieser Weiterleitung wird noch untersucht. Axonale Ausbreitung vom Zellkörper zum Endknöpfehen wird auch orthodrom (richtig) genannt und die gegenläufige Weiterleitung antidrom.

Die Ursachen für die Ausbildung und die besonderen Eigenschaften eines Aktionspotentials liegen in den Eigenschaften verschiedener Gruppen von Ionenkanälen in der Plasmamembran der Zelle. Ein anfänglicher Reiz aktiviert, sobald er eine bestimmte Schwelle erreicht (ca. -50 mV; sog. Schwellenpotential), und ohne Rücksicht darauf, wie weit er sie übersteigt, eine Kette von Öffnungs- und Schließungsvorgängen der Kanäle, die einen Ionenstrom ermöglichen und damit das Membranpotential verändern. Die Form des Aktionspotentials ist dann, unabhängig von der Stärke des auslösenden überschwelligen Reizes, immer gleichförmig. Diese Änderung des Potentials kann an der nächsten Stelle der Membran wieder eine elektrische Erregung bewirken, was die Grundlage der Erregungsleitung ist.

Potentialverlauf

Ausgehend vom Ruhemembranpotential, das bei Neuronen je nach Zelltyp zwischen -90 und -70 mV liegt, werden vier Phasen des Aktionspotentials unterschieden:

- In der Initiationsphase treibt ein Reiz die negative Spannung in Richtung null (Depolarisation). Dies kann langsam oder schnell geschehen und ist unterhalb des Schwellenpotentials umkehrbar. Solch ein Reiz kann ein sich räumlich näherndes Aktionspotential sein oder ein postsynaptischer Ionenstrom.
- 2. Falls das Schwellenpotenzial überschritten wird, beschleunigt sich die Depolarisation stark (Aufstrich). Das Membranpotenzial wird sogar positiv (Overshoot).
- 3. Auf das Maximum bei +20 bis +30 mV folgt die Rückkehr in Richtung Ruhepotential (Repolarisation).

¹¹https://de.wikipedia.org/wiki/Aktionspotential

4. In vielen Neuronen wird das Ruhepotenzial zunächst unterschritten, bis z.B. -90 mV, und schließlich von negativeren Werten her erreicht. Dies wird als Hyperpolarisation oder hyperpolarisierendes Nachpotential bezeichnet. Während der Hyperpolarisation kann noch kein weiteres Aktionspotential ausgelöst werden, woraus sich die Maximalfrequenz von Aktionspotentialfeuer ergibt (der Begriff Feuern wird auch in wissenschaftlicher Literatur für das Generieren von Aktionspotentialen benutzt).

Ein Aktionspotential dauert etwa 1–2 ms in Neuronen, kann sich aber auch über einige hundert Millisekunden (im Herzen) erstrecken.

Bereits während der Repolarisation befindet sich die Zelle in der Refraktärphase. Während dieser Phase kann zunächst kein (absolute Refraktärzeit, ca. 0,5 ms) und danach nur mit erhöhtem Reiz (erhöhtes Schwellenpotential innerhalb der relativen Refraktärzeit, ca. 3,5 ms) ein weiteres Aktionspotential erzeugt werden.

Urachen

Die Erklärung setzt das Verständnis der im Artikel zum Ruhemembranpotential vorgestellten Entstehung eines Ruhemembranpotentials voraus. Kurz zusammengefasst sind folgende Faktoren für das Ruhemembranpotential verantwortlich:

- chemische- und elektrische Gradienten von Ionen
- Selektive Permeabilität von Ionenkanälen
- Ionenpumpen insbesondere Natrium-Kalium-Pumpen.

1.12 Exozytose

Exozytose ist eine Art des Stofftransports aus der Zelle heraus. Dabei verschmelzen, "fusionieren" im Cytosol liegende Vesikel mit der Zellmembran und geben so die in ihnen gespeicherten Stoffe frei. Die erste Verbindung zwischen dem Lumen des Vesikels und dem Extrazellularraum wird als Fusionspore bezeichnet. Die genaue Beschaffenheit der Fusionspore sowie die biophysikalischen Mechanismen der Membranfusion sind noch ungeklärt. Rein physikalisch wirken bei sehr naher Annäherung zweier Membranen riesige Abstoßungskräfte. Dennoch vollzieht sich z. B. die Exozytose synaptischer Vesikel innerhalb von einer Millisekunde. Man kann die Exozytose in 2 verschiedene Arten aufteilen:

- 1. konstitutive Exozytose
- 2. rezeptorvermittelte Exozytose

1.13 **SNARE**

¹³SNARE-Komplexe (Engl. Abkürzung für: soluble N-ethylmaleimide-sensitive-factor attachment receptor) sind Proteinkomplexe in Vesikeln von eukaryotischen Zellen. Die Untereinheiten dieser Komplexe werden entsprechend SNARE-Proteine genannt. SNARE-Komplexe katalysieren bei der Fusion von biologischen Membranen den Transport von small molecules, beispielsweise bei einer Exozytose in den synaptischen Spalt.

Eigenschaften

SNARE-Komplexe kommen bei Eukaryoten in allen sezernierenden Zellen vor. Nervenzellen beispielsweise bewahren ihre Neurotransmitter fertig synthetisiert in synaptischen Vesikeln gesammelt auf. Sollen die Transmitter außerhalb der Zelle freigesetzt werden, muss das Vesikel mit der Membran fusionieren und eine Pore gebildet werden, durch die die Transmitter-Moleküle nach außen gelangen. Die Fusion und Öffnung des Vesikels wird von SNARE und anderen Proteinen (Myosin II) kontrolliert.

SNAREs als Ziel von Neurotoxinen

Tetanustoxin und Botulinumtoxin (Botox) spielen eine Rolle bei der Blockade von Synapsen. Sie spalten SNARE-Proteine, wodurch die Vesikelfusion und somit die Transmitterfreisetzung verhindert wird. Ein Tetanus-Krampf entsteht, wenn Tetanustoxin hemmende Synapsen blockiert. Es gibt sieben bekannte Botulinumtoxine, eines davon namens Toxin A. Dieses große Protein besteht aus zwei Teilen, wobei der kürzere als Endopeptidase wirkt. Diese spaltet hydrolytisch das SNAP-25-Protein, das in der präsynaptischen Membran sitzt. Botox blockiert z.B. erregende Synapsen.

¹²https://de.wikipedia.org/wiki/Exozytose

¹³https://de.wikipedia.org/wiki/SNARE_(Protein)

1.14 Neurotransmitter

¹⁴ Neurotransmitter sind Botenstoffe, die an chemischen Synapsen die Erregung von einer Nervenzelle auf andere Zellen übertragen (synaptische Transmission). Die Neurotransmitter werden im Zellkörper oder in der Endigung des Axons vom sendenden Neuron synthetisiert und in Quanten freigesetzt.

Wirkweise

In die präsynaptische Membranregion des Neurons fortgeleitete elektrische Impulse, Aktionspotentiale, veranlassen über kurzzeitigen Calciumeinstrom die Ausschüttung der Botenstoffe aus Vorratsspeichern, den synaptischen Vesikeln. Dieser Vorgang ist eine Exozytose: Durch Fusion der Vesikelmembranen mit der präsynaptischen Membran wird das je enthaltene Quantum an Transmittermolekülen in den (extrazellulären) synaptischen Spalt freigesetzt und gelangt per Diffusion zu den Rezeptoren auf der postsynaptischen Membran der nachgeschalteten Zelle. Diese Membranproteine der subsynaptischen Region erkennen den jeweiligen Transmitter spezifisch an seiner molekularen räumlichen Struktur und Ladungsverteilung durch komplementäre Strukturen. Die Bindung eines Transmittermoleküls führt zur Umformung des Rezeptorproteins, wodurch direkt (ionotrop) oder mittelbar (metabotrop) bestimmte Ionenkanäle in dieser Region vorübergehend geöffnet werden.

Abhängig von der Zahl an Rezeptoren mit gebundenem Transmitter entstehen so Ionenströme verschiedener Stärke mit entsprechenden postsynaptischen Potentialdifferenzen (PSP). Entweder sind diese – festgelegt über die Zuordnung von Rezeptoren in der Membran zu Ionenkanälen bestimmter Ionensorte – nun depolarisierend, so dass sie als exzitatorisches postsynaptisches Potential (EPSP) eine Erregung der nachgeschalteten Zelle fördern bzw. zur Bildung eines Aktionspotentials führen, oder aber so, dass sie diese als inhibitorisches postsynaptisches Potential (IPSP) hemmen bzw. eine Erregung verhindern.

Neben dem eigentlichen Neurotransmitter werden nicht selten noch Kotransmitter ausgeschüttet (Kotransmission), welche die Erregungsübertragung auf verschiedene Weise als Neuromodulatoren beeinflussen können. Die Bindung von Transmittern an Rezeptormoleküle ist in der Regel reversibel, nach Ablösung somit erneut möglich. Begrenzt wird ihre Wirkung nicht allein durch Diffusion, sondern durch enzymatische Spaltung (z. B. Cholinesterasen), Aufnahme in Gliazellen, präsynaptische Wiederaufnahme in das Neuron oder auch eine postsynaptische Internalisation samt Rezeptor (als Endozytose). Daneben ist postsynaptisch die prompte Inaktivation von Ionenkanälen (Desensitivierung) möglich. Weiterhin können präsynaptisch gelegene Autorezeptoren für den Transmitter dessen Freisetzung negativ rückgekoppelt beschränken. Darüber hinaus sind zahlreiche weitere präsynaptische Rezeptoren bekannt, überwiegend metabotrop G-Protein-gekoppelte Rezeptoren, womit sich vielfältige Modifikationen synaptischer Übertragung ergeben.

¹⁴https://de.wikipedia.org/wiki/Neurotransmitter

Für die Wirkung einer synaptischen Transmission ist nicht die präsynaptisch als Transmitter ausgeschüttete chemische Substanz entscheidend, sondern die postsynaptisch ausgebildete Empfänglichkeit der nachgeordneten Zelle. Beispielsweise ruft der gleiche Transmitter Acetylcholin im Skelettmuskel – vermittelt über ionotrope nikotinische NM-Cholinozeptoren – eine Depolarisation hervor, jedoch im Herzmuskel – vermittelt über metabotrope muskarinische M2-Cholinozeptoren – eine Hyperpolarisation. Im einen Fall führt dies zu einer Erregung von Skelettmuskelfasern, im anderen Fall zu einer Abnahme der Erregbarkeit von Herzmuskelzellen.

Einteilung

- Biogene Amine: Acetylcholin, Katecholamine, Serotonin, Dimethyltryptamin, Histamin
- Aminosäuren: γ -Aminobuttersäure = GABA = 4-Aminobuttersäure, Glycin, β -Alanin, Taurin, Glutaminsäure, Asparaginsäure, Cystein, Homocystein
- Neuropeptide: Endorphine und Enkephaline, Substanz P, Somatostatin, Insulin, Glucagon, α -Endopsychosin
- Lösliche Gase: Stickstoffmonoxid, Kohlenstoffmonoxid

1.15 Exzitatorisches postsynaptisches Potential

¹⁵ Das Exzitatorische (erregende) postsynaptische Potential (EPSP) (engl. excitatory postsynaptic potential) ist eine lokale, graduelle Änderung des Membranpotentials an der postsynaptischen Membran von Nervenzellen, welche ein Aktionspotential im postsynaptischen Element auslöst oder zu dessen Auslösung beiträgt.

Das Potential wird durch die Freisetzung einer bestimmten Menge eines exzitatorischen Neurotransmitters und die Aktivierung transmittersensitiver Ionenkanäle, die für Natrium- und Kaliumionen meist gleichzeitig durchlässig sind, ausgelöst. Im Allgemeinen depolarisieren diese lokalen und graduierten Potentiale die postsynaptische Membran. Bei intrazellulärer Ableitung des Membranpotentials stellt sich das EPSP als Depolarisation der Somamembran infolge der passiven Ausbreitung und der Summation von Potentialen dar. Die Größe des EPSP ist nicht nur von der Menge des freigesetzten Transmitters, sondern auch von der vorherigen Größe des Membranpotentials abhängig.

Mit zunehmender, z. B. experimentell erzeugter (Vor-)Depolarisation der Membran wird das EPSP kleiner, d. h., ist die Membran von ihrem Ruhepotential aus bereits depolarisiert, so wird die Amplitude des postsynaptischen erregenden

¹⁵https://de.wikipedia.org/wiki/Exzitatorisches_postsynaptisches_Potential

Potentials mit zunehmender Vordepolarisation kleiner und schließlich gleich Null (das Umkehrpotential für die exzitatorischen Potentiale ist erreicht). Bei weiterer Vordepolarisation wird ein Potential mit umgekehrtem Vorzeichen erreicht. Das EPSP ist demnach keinesfalls stets eine Depolarisation, sondern treibt die Membran auf ein bestimmtes Gleichgewichtspotential hin, das zumeist weit unter dem Ruhepotential liegt. Der dabei wirkende Ionenmechanismus ist von komplexer Natur. Neben dem EPSP, bei dem eine gesteigerte Membranleitfähigkeit (Membranpermeabilität) für Natrium- und Kaliumionen beobachtet wird, kommen auch solche mit verringerter Leitfähigkeit vor. Hier wird angenommen, dass der auslösende Mechanismus die Schließung von "undichten" (engl. leakage) Kanälen für Kaliumionen ist.

1.16 Inhibitorisches postsynaptisches Potential

¹⁶ Das inhibitorische (hemmende) postsynaptische Potential (IPSP) (englisch inhibitory postsynaptic potential, von lateinisch inhibere "hemmen") ist eine lokale Änderung des Membranpotentials an der postsynaptischen Membran tierischer und menschlicher Nervenzellen, die dazu führt, dass die Erregung der Zelle durch Hyperpolarisation der Zellmembran an der Synapse gehemmt und das Auslösen von Aktionspotentialen durch exzitatorische postsynaptische Potentiale (EPSP) erschwert wird.

Die Transmitter der hemmenden Synapsen rufen eine Zellantwort hervor, durch die in der postsynaptischen Membran Kanäle geöffnet werden, die spezifisch Kalium- oder Chlorid-Ionen passieren lassen. Durch das Öffnen dieser Ionenkanäle kommt es in der Regel zu einem Kalium-Ionen-Ausstrom aus der Nervenzelle beziehungsweise zu einem Chlorid-Ionen-Einstrom in die Nervenzelle. In beiden Fällen kommt es dadurch zu einer (zunächst lokalen) Hyperpolarisation der postsynaptischen Membran beziehungsweise zu Bedingungen, die eine Bildung von Aktionspotentialen erschweren oder verhindern.

1.17 Membranrezeptoren

¹⁷ Rezeptoren in der Zellmembran werden nach ihrer Wirkungsweise unterteilt in ionotrope und metabotrope Rezeptoren.

- Ionotrope Rezeptoren sind Ionenkanäle, die sich bei Bindung des Liganden mit höherer Wahrscheinlichkeit öffnen und dadurch die Leitfähigkeit der Membran ändern. schnelle Änderung
- Metabotrope Rezeptoren bilden keine Kanäle oder Poren, sondern aktivieren bei Bindung ihres Liganden ein nachgeschaltetes G-Protein oder eine Proteinkinase und modulieren damit intrazelluläre Signalkaskaden durch

 $^{^{16} {}m https://de.wikipedia.org/wiki/Inhibitorisches_postsynaptisches_Potential}$

 $^{^{17} \}mathtt{https://de.wikipedia.org/wiki/Rezeptor_(Biochemie)\#Membranrezeptoren}$

Konzentrationsänderungen von sekundären Botenstoffen. Darüber kann mittelbar aber auch die Membrandurchlässigkeit verändert werden **langsame** Änderung

1.18 Summation

¹⁸ Unter Summation versteht man die Verrechnung (Integration) von in der Nervenzelle eintreffenden Nervenimpulsen, die entweder eine erregende (exzitatorische) oder eine hemmende (inhibitorische) Wirkung auf das Entstehen eines Aktionspotentials haben können. Die eintreffenden erregenden bzw. hemmenden Potentiale (EPSP bzw. IPSP) werden räumlich sowie zeitlich summiert:

- räumliche Summation: Wenn von mehreren Synapsen zur gleichen Zeit erregende bzw. hemmende Potentiale im Neuron eintreffen, so werden diese summiert, wobei es am Axonhügel zur Entstehung eines Aktionspotentials kommt, wenn die Summe der eintreffenden Potentiale einen Schwellenwert übersteigt.
- zeitliche Summation: Wenn von einer einzelnen Synapse in ausreichend kurzen Zeitabständen mehrere erregende oder hemmende Potentiale im Neuron antreffen, so werden diese ebenfalls summiert und bei Übertreffen eines bestimmten Schwellenwertes entsteht am Axonhügel ein Aktionspotential.

Synaptische Potentiale sind also abgestuft. Sie stellen neben den Aktionspotentialen die zweite Form der Erregung im Nervensystem dar

1.19 Bahnung

¹⁹ Die Bahnung ist ein Begriff aus der Neurophysiologie. Er beschreibt das Phänomen, dass eine wiederholte Erregung bestimmter Nervenbahnen den Wirkungsgrad von Reizen gleicher Stärke erhöht oder eine Erregung dieser Nervenbahn schon auf Grund schwächerer Reize ermöglicht wird (siehe auch: Summation und Langzeit-Potenzierung).

Lerntheorie Durch häufige Wiederholung findet eine Bahnung für bestimmte Gedächtnisinhalte statt, d.h. neuronale Korrelate mentaler Repräsentationen werden durch häufige gleichzeitige Aktivierung miteinander verbunden (assoziiert). Bahnungseffekte können als neurophysiologischer Vorläufer etwa eines Gedankens oder einer Erinnerung betrachtet werden.

1.20 Langzeit-Potenzierung

²⁰ Die Langzeit-Potenzierung (eng: long-term potentiation, LTP) ist ein an Synapsen von Nervenzellen beobachtetes Phänomen. Sie stellt eine Form der synapti-

¹⁸https://de.wikipedia.org/wiki/Summation_(Neurophysiologie)

¹⁹https://de.wikipedia.org/wiki/Bahnung

²⁰https://de.wikipedia.org/wiki/Langzeit-Potenzierung

schen Plastizität dar. Unter LTP versteht man eine langandauernde (long-term) Verstärkung (potentiation) der synaptischen Übertragung.

2 Vorlesung 13.04.2016

2.1 Prinzipien der Verschaltung

- Konvergenz redundanter Einganssignale (siehe Bilder Vorlesung)
 - Kein Input- kein Output
 - Idealer Input liefert idealen Output
 - Realistischer Input liefert verzerrten Output

Divergenz/ Konvergenz verschiedener Eingangssignale (siehe Bilder Vorlesung)

- Erlaubt Detektion von Kombinationen
- Erhöht die Anzahl der Dimensionen
- Erhöht das Auflösungsvermögen

Prinzipien der Verschaltung (siehe Bilder Vorlesung)

- Negative Rück-Koppelung: erzeugt Schwingung
- Negative Vor-Koppelung: nimmt erste zeitliche Ableitung
- Laterale Hemmung: verstärkt Unterschiede (Wo ich bin, da kannst du nicht sein!)
- Efferenzkopie: unterscheidet Selbst von Nicht-Selbst

2.2 Struktur von Nervensystemen

Kenntnis der Struktur ermöglicht Untersuchung der Struktur - Funktions-Beziehung

Wie?

- Messung der Erregungsleitung, fMRI
- Untersuchung von Defekten, Ablation von Zellen / Strukturen
- Mutantenanalyse
- Genetische Manipulation

Zentrale Frage der Entwicklungsneurogenetik: Wie ist der Bauplan des NS in den Genen enthalten und wie sieht die Kontrolle dieser Gene aus?

Was ist überhaupt genetisch determiniert?

Antwort durch:

• Vergleich genetisch identischer (isogener) Individuen

• Vergleich in bilateralsymetrischen Individuen

Vorteil: nicht nur genetische Identität, sondern auch weitgehend gleiche entwicklungsrelevante Umwelteinflüsse

Vergleich parthenogenetischer Organismen

Parthenogenese: ist eine Form der eingeschlechtlichen Fortpflanzung. Dabei entstehen die Nachkommen aus unbefruchteten Eizellen.

- 3 Vorlesung 20.04.2016
- 3.1 Mechanorezeptoren von C. elegans
- 3.2 Neurogenese in der Entwicklung von Drosophila

4 Vorlesung 27.04.2016

- 4.1 Neurogenese in der Entwicklung von Drosophila
- 4.2 Neurogenese in der Entwicklung von Drosophila : Notch
- 4.3 Struktur-Funktionsbeziehung

Buridans Paradigma

Buridans Paradigma, modifiziert: Detour-Aufbau

- 5 Vorlesung 11.05.2016
- 5.1 Orientierung im Raum
- 5.2 Die optomotorische Reaktion
- 5.3 Elementarer Bewegungsdetektor
- 5.4 Augenentwicklung bei Drosophila melanogaster

6 Vorlesung 18.05.2016

6.1 Augenentwicklung bei Drosophila melanogaster

Suksessives Modell der Determination

sevenless - boss

- 6.2 Augenentwicklung: Vertebarten Invetebraten
- 6.3 Struktur Funktion: Axonale Wegfindung in der Entwicklung

7 Vorlesung 25.05.2016

7.1 Struktur – Funktion: Axonales Wachstum

- Wachstumskegel bilden ständig sehr bewegliche Filopodien (bis 50 μ m), die auch wieder zurückgebildet werden können
- die Beweglichkeit beruht auf der Polymerisation und Depolymerisation von Actin-Mikrofilamenten, was mit einem Membran-Turn-over (Endo-Exocytose von Membranvesikeln) verbunden ist
- Manipulation: Dynamin-Gen, Störung der Endocytose, ts-Allel (shibire-mutation shi^{ts})

Chemoaffinitätstheorie: Erkennung der Zielzellen durch chem. Markierung

- 4 Mechanismen der Wegfindung:
 - Klassische Chemotaxis = gerichtetes Wachstum nach Stoffgradienten
 - 1. anziehend
 - 2. abstoßend
 - Kontaktführung (contact guidance) = Präferenz für spezielle Substrate (selektive Ahhäsion)
 - 3. anziehend (Polyornithrin)
 - 4. abstoßend (Palladium)

Wachstumsgeschwindigkeit: bis 1mm / Tag

7.1.1 Extrazelluläre Matrixmoleküle (Substrat-Adhäsionsmoleküle - SAM)

- Wachstumsunterlagen in Zellkulturen

Beispiele:

- Fibronectin:
 - Dimer aus nicht identischen, homologen Ketten
 - Dimerbildung erhöht Variabilität
 - Bindungstellen u.a. für Fibrin, Heparin, Collagen
- Laminin
 - Trimer aus umeinandergewundenen, nicht identischen, homologen Ketten

– Bindungstellen u.a. für Heparin, Collagen I + IV, spezif. Lamininrezeptoren auf Zelloberflächen

SAM-Rezeptoren in der Zellmembran – Integrine

- Glycoproteine
- Ligandensequenz: Arg Gly Asp (u.a. für Fibronectin)
- Zwei Untereinheiten, $\alpha + \beta$; α sehr variabel, verantwortlich für die Spezifität der Bindung
- Positionsspezifische Expression

Molekülfamilien:

- Neurotrope Faktoren (NTFs)
- Netrine
- Semaphorine

Ein Wachstumsfaktoren kann in Abhängigkeit vom Rezeptor, auf den er trifft, unterschiedliche, ja entgegengesetzte Wirkungen haben.

Beispiel: NGF \rightarrow Zelltod/Überleben

7.1.2 Zelladhäsionsmoleküle - CAMs

- Angehörige der Immunoglobulin-Superfamilie (Ca2-unabhängige CAMs)
 - neuronale CAM der Vertebraten (NCAM)
 - Down Syndrom Zelladhäsionsmolekül (DSCAM)²¹: Zielfindung gestört
 - Roundabout-Protein (Robo)
 - Zelladhäsionsfunktion wahrscheinlich älter als Funktion bei Immunabwehr
- Ca^2 -abhängige CAMs
 - Cadherine: Die Aktivität des Rezeptors nimmt Einfluß auf die Stabilität der Cadherin-Struktur der Synapse
 - Protocadherine: Die Genstruktur der Protocadherine erinnert mit den konstanten und variablen Sequenzen an die Struktur der Immunglobulingene (Rekombination zum expremierbaren Gen)

²¹https://en.wikipedia.org/wiki/DSCAM

7.1.3 Variablität von Zelladhäsionsmolekülen

- Unterschiedliche zeitl./räumliche Expressionsmuster
- Posttranslationale Modifikation (z.B. Glycolysierung, Polysialsäreketten)
- Dimere / Multimere
- Ggfs. Ca-abhängige Modulation
- RNA-Editing
- Alternatives Splicen
 - NCAM: 192 verschiedene Proteinvarianten, Maus-Gen 80 kb)
 - Dscam: 95 alternativ gespeißte Exons (in Clusteranordnung) theoretisch 38.016 verschiedene mRNAs, bisher einige Hundert verifiziert
 - SynCAM: prä- und postsynaptisch, interagieren über PDZ-Domäne, induziert Synapsenbildung

Ligand-Rezeptorbeziehungen:

Liganden	Rezeptoren	Reaktion des Wachstumkegels					
Netrin	UNC-40/DCC	Anziehung (Abstoßung)					
Netrin	UNC-5	Abstoßung					
Slit	SAX-3/ROBO	Anziehung (Abstoßung)					
Semaphorin	Neuropilin/Plexin	Anziehung (Abstoßung)					
Ephrin	EPH Receptors	Anziehung (Abstoßung)					
Myelinproduzierende Oligodendrocyten sind eine schlechtes Substrat für Zell-							
wachstum:							

- verirrte Axone können sich nicht bereits vorhandenen Faserstraktern anschließen (Kontaktinhibition)
- Verlust der Regenerationsfähigkeit im ZNS der höheren Vertebraten (im PNS und niederen Vertebraten keine Inhibition gute Regenerationsfähigkeit)
- Nogo, Nogo-Rezeptor, p75

8 Vorlesung 01.06.2016

8.1 Struktur – Funktion: Molekulare Ausstattung von Neuronen

ATPasen

8.2 Ionenkanäle

Ligandenabhängige Ionenkanäle (Transmitterrezeptoren)

- NMDA-Rezeptoren
- Nicht-NMDA-Rezeptoren
- 8.3 G-Protein-gekoppelte Rezeptoren
- 8.4 Synaptische / Vesikelproteine

- 9 Vorlesung 08.06.2016
- 9.1 Gal4 / UAS-System
- 9.2 Was ist Lernen
- 9.3 Assoziatives Lernen: Klassisches Konditionieren
- 9.4 Molekulares Lernen

- 10 Vorlesung 15.06.2016
- 10.1 Gal4 / UAS-System: MARCM
- 10.2 Gedächtnisbildung: Phasen in Drosophila
- 10.3 Klassisches Konditionieren
- J.B. Watson's Experiment am kleinen Albert
- 10.4 olfaktorisches Lernen bei Drosophila
- 10.5 Synaptic Vesicle Proteins

Role of Synaptic Vesicle Proteins

11 Vorlesung 22.06.2016

11.1 olfaktorisches Lernen bei Drosophila

11.2 Interaktion multipler Gedächtnis-Systeme

Henry Gustav Molaison

Deklaratives Lernen: Hippocampus

11.3 Long Term Potentiation

- early LTP
- late LTP

the Morris water maze

Das lineare Modell der Gedächtnisbildung

12 Vorlesung 29.06.2016

13 Vorlesung 06.07.2016

13.1 Aggression

- soziale Insekten
- nicht-soziale Insekten
- Krebse