DAFTAR ISI

DAFTAR	LISI	i
BAB I. PI	ENDAHULUAN	. i
1.1. I	Latar Belakang	. 1
1.2. I	Rumusan masalah	. 2
1.3.	Tujuan	. 2
1.4. I	Luaran yang diharapkan	. 2
1.5. I	Kegunaan	. 2
BAB 2. T	INJAUAN PUSTAKA	. 2
2.1. I	Pati	. 2
2.2. I	Pati Canna edulis	. 3
2.3. I	Kapsul & kapsul cangkang keras	. 3
2.4. I	Evaluasi cangkang kapsul	. 4
2.5. I	Penelitian terdahulu	. 5
BAB 3. M	METODE	. 6
3.1. I	Desain Penelitian dan Tahapan Penelitian	. 6
3.2. I	Prosedur Penelitian	. 6
3.3. I	Indikator Capaian	. 8
3.4. I	Pengolahan Analisis Data dan Penyimpulan Hasil Penelitian	. 8
BAB 4. B	iaya dan Jadwal Kegiatan	. 9
4.1. An	ggaran Biaya	. 9
4.2. Jad	lwal Kegiatan	. 9
DAFTAR	PUSTAKA	. 9
LAMDID	AN	11

DAFTAR TABEL

Tabel 2.1. Spesifikasi Berat Cangkang Kapsul Keras (Fauzi, 2021)	5
Tabel 2.2. Rekam Jejak Penelitian	6
Tabel 3.1. Formulasi Larutan Gel	3
Tabel 4.1. Anggaran Biaya	7
Tabel 4.2. Jadwal Kegiatan	9

BAB I. PENDAHULUAN

1.1. Latar Belakang

Kapsul merupakan salah satu bentuk sediaan yang digemari masyarakat karena mudah dikonsumsi, menutupi rasa obat yang pahit, dan fleksibel untuk kombinasi berbagai obat dan dosis (Poeloengasih, 2017). Hingga saat ini, cangkang kapsul yang ada di pasaran terbuat dari bahan gelatin. Gelatin merupakan kolagen yang berasal dari hewan dan yang paling umum adalah kolagen mamalia karena pertimbangan stabilitas yang dimiliki (Prakash, 2017). Gelatin sampai sekarang masih digunakan karena keuntungan fisikokimia yang mendukung pembentukan film. Namun, penggunaan gelatin menimbulkan kekhawatiran bagi masyarakat vegetarian atau agama tertentu hingga *The Central Drugs Standard Control Organization* menerima pengajuan untuk mengganti seluruh kapsul non vegetarian menjadi vegetarian (Prakash, 2017). Selain itu, penggunaan gelatin menimbulkan ketidakstabilan pada temperatur rendah dan kelembaban (Q, Chen, 2020).

Saat ini, perkembangan *edible film* menjadi marak dengan memanfaatkan berbagai bahan alam. *Edible film* merupakan lapisan yang terbuat dari bahan yang dapat dimakan dan berfungsi sebagai barrier dan pembawa bahan makanan. Komponen dari edible film ini bisa berasal dari hidrokoloid, lipid, dan komposit (Wattimena, 2015). *Edible film* sudah mulai berhasil digunakan dalam berbagai produk komersial seperti kapsul atau *coating* (Bae, 2008). Berdasarkan Farmakope Indonesia V, selain gelatin cangkang kapsul juga dapat dibuat dari bahan alam seperti pati (FI V).

Pati menjadi salah satu bahan yang disukai dalam pembuatan edible film karena sifatnya yang mudah dicetak, memiliki daya pembentukan film yang baik, resisten terhadap oksigen, memiliki kekuatan mekanik yang baik (Bae, 2008), struktur yang kompak (Wattimena, 2015), ketersediaan nya yang luas, dan harga relatif murah (Q, Chen, 2020). Pati yang mengandung kadar amilosa tinggi (>30%) memberikan hasil yang lebih baik pada pembentukan edible film dibandingkan pati dengan kadar amilosa rendah dan amilopektin yang tinggi. Kapsul berbahan dasar pati kacang hijau dengan kadar amilosa 30% menunjukan resistensi oksigen dan uap air yang lebih baik dibandingkan kapsul berbahan dasar gelatin dan HPMC, tetapi memiliki kelarutan yang tidak sempurna (Bae, 2008).

Canna edulis atau achira (sagu) tanaman dari famili Cannaceae yang berasal dari Amerika Selatan. Canna edulis merupakan salah satu sumber pati tradisional yang umum ditemukan di Indonesia (Aprianti, 2013). Rhizoma dari Canna edulis menjadi salah satu sumber pati yang mudah dicerna dan dapat dijadikan sebagai roti, biscuit, dan mie (Longas, 2020) dengan kandungan amilosa 35,0% (Aprianita, 2013). Karakteristik dan kandungan pati yang dimiliki Canna edulis memungkinkan untuk membentuk gel yang kompak dan dapat dipotong (Longas, 2020). Canna edulis memiliki kadar amilosa dan viskositas yang mendekati pati kacang hijau tetapi dengan daya larut yang lebih tinggi (Mabood, 2014). Adanya potensi pemanfaatan tepung pati Canna edulis sebagai bahan dasar cangkang

kapsul keras serta adanya urgensi untuk menyediakan kapsul biodegradable dan non gelatin, pati *Canna Edulis* dapat dimanfaatkan sebagai alternatif pengganti cangkang kapsul keras berbahan dasar gelatin.

1.2. Rumusan masalah

Berdasarkan latar belakang tersebut maka rumusan masalah untuk penenlitian ini adalah sebagai berikut:

- 1. Bagaimana formulasi cangkang kapsul keras berbahan dasar pati *Canna edulis*?
- 2. Bagaimana karakteristik cangkang kapsul keras berbahan dasar pati *Canna edulis*?

1.3. Tujuan

Tujuan dilakukan penelitian ini adalah sebagai berikut:

- Mengetahui formulasi cangkang kapsul keras berbahan dasar pati Canna edulis
- 2. Mengetahui karakteristik cangkang kapsul keras berbahan dasar pari Canna edulis

1.4. Luaran yang diharapkan

Luaran yang diharapkan dari riset ini adalah sebagai berikut:

- 1. Laporan kemajuan
- 2. Laporan akhir
- 3. Artikel ilmiah

1.5. Kegunaan

Manfaat yang dapat diperoleh dari penelitian ini adalah sebagai berikut:

- 1. Menjadi referensi bahan dasar pembuatan cangkang kapsul keras bahan nabati sebagai pengganti kapsul berbahan dasar gelatin
- 2. Memberikan informasi dalam pengembangan pembuatan cangkang kapsul keras dengan bahan nabati
- 3. Memberikan solusi kepada masyarakat yang membutuhkan cangkang kapsul non-gelatin

BAB 2. TINJAUAN PUSTAKA

2.1. Pati

Pati merupakan polimer karbohidrat yang terdiri dari glukosa anhidrat yang terhubung oleh ikatan 1,4 glikosida. Pati terdiri atas amilosa dan amilopektin. Amilosa merupakan struktur linear ikatan 1,4 alfa yang memiliki sifat mirip dengan polimer sintetis dengan berat molekul kurang lebih 10. Sedangkan amilopektin adalah struktur yang sangat bercabang dengan cabang pendek yang terhubung oleh ikatan 1,4 alfa dan 1,6 alfa dan memiliki berat molekul 108 kali lebih besar dari amilosa (Congli, 2021).

Pati merupakan salah satu sumber polimer alam yang paling sering digunakan karena harga relatif murah, ketersediaan, dan biodegradable. Karena alasan tersebut, penelitian pembuatan film berbahan dasar pati semakin menarik perhatian (Congli, 2021). Film berbahan dasar pati menunjukan hasil karakteristik fisik yang

baik, tidak berbau, tidak memiliki rasa, dan warna, serta impermeable terhadap oksigen (Molavi, 2018). Karakteristik film berbahan dasar pati bergantung pada rasio amilosa dan amilopektin yang dimiliki. film yang dengan rasio amilosa yang tinggi menunjukan performa mekanik yang lebih baik karena amilosa mampu membentuk film yang lebih kuat sedangkan amilopektin membentuk film yang lebih tipis dan rapuh karena tingkat keterikatan cabang yang besar dengan ukuran rantai lebih pendek pada strukturnya (Congli, 2021).

2.2. Pati Canna edulis

Canna edulis merupakan tanaman yang berasal dari famili Cannaceae dan berasal dari area amerika selatan (Longas, 2020). Canna edulis merupakan tanaman rhizoma yang sering ditemukan di daerah tropis. Rhizome canna edulis biasanya diambil untuk memperoleh pati dengan ukuran granul besar dan kandungan amilosa yang tinggi (Vu, 2019). Karakteristik dari pati Canna edulis adalah memiliki ukuran granul 10-80 mikrometer, memiliki viskositas yang tinggi dibandingkan pati singkong, sifat pasta yang dihasilkan lebih stabil. Pati Canna edulis menunjukan kemampuan pembentukan gel yang baik secara cepat ketika didinginkan (Vu, 2019).

Pati *Canna edulis* mengandung ± 35% kandungan amilosa dan 53% kandungan amilopektin, jika dibandingkan dengan beberapa pati seperti taro, yam, ubi, singkong, *arrowroot*, dan konjac, pati *Canna edulis* merupakan pati dengan amilosa yang paling tinggi (Aprianti, 2013). Kadar amilosa yang tinggi akan membentuk film yang lebih kompak (Bae, 2008; Wijoyo, 2004). Selain itu, pati canna edulis memiliki % digestibility yang rendah yang mencegah terjadinya obesitas atau diabetes jika ditambahkan kedalam makanan (Aprianti, 2013).

Canna edulis memiliki tingkat kelarutan 3% lebih tinggi dari pati jagung, hal ini dikarenakan kandungan amilosa *Canna edulis* yang lebih tinggi (Soni, 1990). Pada penelitian Mabood (2014), dilakukan perbandingan sifat viskositas dan solubilitas dari berbagai jenis pati dan diperoleh hasil pati Canna memiliki persentase kelarutan tertinggi, Adanya perbedaan nilai solubilitas antar pati disebabkan karena adanya variasi kekuatan antar granul pati ataupun intra molecular granul (Maobood 2014).

2.3. Kapsul & kapsul cangkang keras

Menurut Farmakope Indonesia edisi VI (2020) kapsul merupakan sediaan padat terdiri atas obat yang dimasukan ke dalam cangkang keras maupun lunak yang dapat larut. Umumnya cangkang kapsul terbuat dari bahan gelatin tetapi bahan ini bisa digantikan dengan bahan lain seperti pati. Berdasarkan fungsinya, kapsul dibagi menjadi kapsul cangkang keras dan kapsul cangkang lunak. Sedangkan berdasarkan bahan dasarnya, kapsul dibagi menjadi kapsul gelatin (hewani) dan non gelatin (nabati). Kapsul menjadi sediaan yang umum digunakan karena beberapa alasan yaitu fleksibilitas dalam pelayanan apotek, dapat menutupi rasa atau bau yang tidak enak dari zat aktif, mudah ditelan, membutuhkan sedikit eksipien dibandingkan sediaan tablet, cangkang umumnya bersifat inert, murah, dan bisa

dimodifikasi tingkat keburaman nya sehingga isi kapsul dapat terlindung dari cahaya matahari (B. Srividya, 2014).

Kapsul cangkang keras terdiri dari dua bagian yaitu bagian tutup dan bagian induk, keduanya memiliki lengkung khas pada ujung nya yang berfungsi sebagai pemberi penutupan pada kapsul (Farmakope VI). Pembuatan kapsul cangkang keras dapat dilakukan dengan metode *dipping* (Mohammed, 2020). Metode ini dilakukan dengan mencelupkan pencetak berbahan metal pada larutan gelatin panas yang dilakukan di temperatur ruangan hingga terbentuk lapisan film. Hasil film tersebut kemudian dikeringkan, dipotong, dan dibersihkan. *Post process control* pada kapsul meliputi permeabilitas cangkang, variasi massa cangkang, waktu disintegrasi, kandungan kelembapan, permease kelembapan, dan kandungan mikroba (Muhammed, 2020).

2.4. Evaluasi cangkang kapsul

2.4.1. Viskositas larutan gel

Viskositas larutan gel akan mempengaruhi keberhasilan terbentuknya kapsul. Viskositas yang semakin rendah akan mengakibatkan pencetakan kapsul menjadi kurang efisien. Viskositas larutan gel akan bertambah seiring dengan penambahan gelling agent dan juga penurunan temperature (Chen, 2018). Tetapi viskositas yang terlalu tinggi akan mengakibatkan film yang terbentuk menjadi tidak elastis (Bae, 2008). Analisis viskositas berguna dalam memprediksi kompaktibilitas molekul. Larutan dengan viskositas >600cP akan memberikan formasi cangkang kapsul yang baik Ketika dilakukan pencetakan menggunakan metode dipping (Fauzi, 2021).

2.4.2. Daya Tarik dan Elongasi Film

Kekuatan daya Tarik ini dipengaruhi dari konsentrasi gelling agent (agar) dan gliserol (Arham, 2016). Peningkatan konsentrasi pati akan meningkatkan kekuatan daya tarik karena terbentuknya matriks film yang semakin rapat sehingga memerlukan gaya yang lebih besar untuk menarik film (Wijoyo, 2004).

Elongasi adalah adalah kemampuan suatu film untuk memanjang sesaat sebelum film tersebut rusak. Kemampuan elongasi film berfungsi untuk film mempertahankan ketahanan film ketika diisikan dengan produk. Peningkatan konsentrasi pati menyebabkan ikatan intermolekul antar polimer yang semakin tinggi sehingga membentuk gel yang kuat dan tidak rapuh (wijoyo, 2004). Kekuatan mekanik yang baik memberikan kualitas kapsul yang lebih baik dengan mempengaruhi kemudahan dalam pembuatan kapsul seragam, mencegah oksidasi dan hidrolisis, dan memiliki fleksibilitas yang baik (fauzi, 2021).

2.4.3. Spesifikasi bobot cangkang kapsul

Keseragaman bobot cangkang kapsul keras sangat penting karena akan mempengaruhi keseragaman bobot sediaan. Keseragaman bobot

cangkang kapsul dihitung berdasarkan berat cangkang kapsul dan kemudian dianalisis kesesuaiannya terhadap spesifikasi berat cangkang kapsul keras.

Tabel 2.1. Spesifikasi Berat Cangkang Kapsul Keras (Fauzi, 2021)

1			, ,
Ukuran kapsul		Berat (mg)	
	Minimal	Rata-rata	Maksimal
00	110	120	130
0	87	96	105
1	67	74	81
2	55	61	67
3	46	50	54

2.4.4. Susut Pengeringan Kapsul

Susut pengeringan kapsul bertujuan untuk melakukan penetapan jumlah semua jenis bahan yang mudah menguap dan hilang pada kondisi tertentu (Farmakope Indonesia VI, 2020). Berdasarkan USP, kapsul cangkang keras memiliki kandungan air sebanyak 10-15% (Fauzi, 2021).

2.4.5. Uji Waktu Hancur

Uji waktu hancur penting dilakukan untuk memastikan bahwa sistem yang digunakan dapat menghantarkan obat dan melepaskan obat pada waktu yang diinginkan (Fauzi, 2021). Sediaan dikatakan dapat larut sempurna jika sisa sediaan yang tertinggal pada kasa alat uji merupakan massa lunak tanpa inti jelas. Untuk pengujian kapsul gelatin keras digunakan prosedur yang sama dengan prosedur tablet tidak bersalut tanpa menggunakan cakram dan sebagai pengganti digunakan kasa berukuran 10 mesh yang ditempatkan pada permukaan lempengan atas dari keranjang (Farmakope Indonesia VI,2020). Kapsul yang baik memiliki kelarutan dalam air dalam waktu kurang dari 15 menit (Kapsulindo Nusantara, 2007).

2.5. Penelitian terdahulu

Tabel 2.2. Rekam Jejak Penelitian

Penelitian	Judul	Hasil
Bae, et. al., 2008	Film and pharmaceutical hard capsule formation properties of mungbean, water chestnut, and sweet potato starches	Kadar amilosa 30% memberikan hasil terbaik; Hasil kelarutan kapsul pati rendah
Aprianti, 2013	Physicochemical Properties of Flours and Starches Derived from Traditional Indonesian Tubers and Roots.	Pati <i>Canna edulis</i> memiliki kadar pati tertinggi yaitu 35%

Hafnimardi yanit, 2014	Edible Film Making of Starch Canna Tuber (Canna Edulis Kerr) and Application to Packaging Galamai	Film pati <i>Canna edulis</i> memiliki karakteristik perlindungan yang baik hampir sama dengan film plastik.
Poeloengasi h, 2017	Potential of sago starch/carrageenan mixture as gelatin alternative for hard capsule material	Kombinasi karagenan dan pati menunjukan adanya potensi bahan dasar non gelatin; Kelarutan kapsul pati rendah.

Berdasarkan penelitian tersebut maka disusunlah penelitian ini dengan bertujuan untuk mengetahui potensi pati *Canna edulis* sebagai bahan dasar pembuatan cangkang kapsul dengan karakteristik pati yang potensial. Dengan demikian, hasil penelitian ini diharapkan dapat memberikan alternatif bahan dasar cangkang kapsul non-gelatin yang memenuhi standar karakteristik kapsul.

BAB 3. METODE

3.1. Desain Penelitian dan Tahapan Penelitian

Desain penelitian menggunakan metode eksperimental untuk mengetahui jawaban terhadap rumusan masalah. Penelitian dilakukan dengan tahapan studi literatur, preparasi alat dan bahan, pembuatan cangkang kapsul keras pati dan gelatin, melakukan karakteristik kapsul, serta diakhiri dengan proses pengolahan, analisis, dan penarikkan kesimpulan data.

3.2. Prosedur Penelitian

3.3.1. Persiapan larutan gel (Bae, 2008)

Larutan gel dibuat dengan melarutkan 25% gliserol (terhadap polimer) ke dalam 450 mL air destilasi pada suhu 50°C dan diaduk hingga 30 menit. Sebanyak 1 % K-carrageenan dan I-carrageenan (1:1) (terhadap larutan gel) ditambahkan kemudian diaduk selama 30 menit pada suhu 50°C. Sebanyak 45 gram polimer ditambahkan ke dalam larutan dan diaduk selama 1 jam dan secara bertahap suhu dinaikan hingga 90°C hingga terbentuk larutan gel yang transparan.

Formula Bahan **Fungsi** G1/G3 **G2/G4** F1/F3 F2/F4 Gelatin 10%/5% 10%/5% Polimer Pati Polimer Canna 10%/5% 10%/5% edulis nabati K-carrageenan Gelling 1% 1% 1% 1% K-carrageenan agent

Tabel 3.1. Formulasi Larutan Gel

Gliserol	20%	25%	20%	25%	Plasticiz er
----------	-----	-----	-----	-----	-----------------

3.3.2. Pengukuran viskositas larutan gel (Q, Chen, 2020)

Pengukuran larutan gel kapsul dilakukan dengan menggunakan viskometer Brookfield. Nilai viskositas dicatat dari suhu 70°C hingga 25°C dan nilai dicatat untuk setiap penurunan 5°C suhu. Untuk setiap formula dilakukan lima kali pengukuran viskositas dan dihitung rata-rata nya.

3.3.3. Pembuatan film pati (Q, Chen, 2020)

Larutan film diperoleh dari formula larutan gel. Larutan disonikasi menggunakan ultrasonikasi selama 30 menit untuk memastikan suspensi homogen. Kemudian tuang larutan ke dalam cawan petri dan dikeringkan pada suhu 45°C hingga film terbentuk, kurang lebih ketebalan masing-masing kelompok uji adalah 0,20 mm.

3.3.4. Pengukuran daya tarik dan elongasi

Pengukuran dilakukan menggunakan tensile testing machine. Sampel yang digunakan adalah film berukuran 35 x 50 mm. besar daya Tarik film dihitung menggunakan persamaan berikut:

$$TS = \frac{F}{A}$$

TS: Daya Tarik

F: Tekanan maksimum film mengalami kerusakan

A: Luas area film

Pengukuran elongasi dihitung dengan menggunakan rumus:

EAB (%) =
$$\frac{b}{a} x 100\%$$

EAB (%): persentase elongasi

b: Panjang film sesaat sebelum film rusak

a: Panjang film sebelum diberikan tekanan

Pengukuran dilakukan berdasarkan 8 spesimen sampel.

3.3.5. Pembuatan cangkang kapsul pati (Q, Chen, 2020)

Larutan gel diaduk dengan kecepatan 400 rpm pada suhu 70°C selama 120 menit. Kemudian larutan gel didiamkan pada suhu 50°C selama 30 menit. Kemudian kapsul diperoleh dari metode pencelupan cetakan kedalam larutan gel selama 6-8 detik. Ketika cetakan dikeluarkan dari larutan gel, kapsul dikeringkan dan setelah kering dilepaskan dari cetakan dan dipotong.

3.3.6. Uji Spesifikasi Bobot Cangkang Kapsul

Kapsul ditimbang dan dihitung nilai rata-rata keseluruhan bobot kapsul. Hasil perhitungan kemudian dibandingkan dengan spesifikasi berat cangkang kapsul keras sesuai dengan referensi.

3.3.7. Uji Susut Pengeringan (Q, Chen, 2020)

Kapsul sebanyak 1,0 gram di timbang dalam botol kering dan kemudian dikeringkan pada suhu 105°C selama 6 jam. Setelah dikeringkan, kapsul

dikeringkan pada temperatur ruang dan ditimbang kembali dengan akurat. Kemudian besar susut pengeringan yang diperoleh dihitung menggunakan rumus:

Susut pengeringan =
$$\frac{Wa-Wb}{Wb}$$
 x 100%

Wa = total massa sebelum pengeringan

Wb = total massa setelah pengeringan

3.3.8. Uji Waktu Hancur (Farmakope Indonesia VI)

Satu buah kapsul dimasukkan ke masing-masing 6 tabung dari keranjang. Alat dijalankan pada suhu 37±2°C pada media air. Pada akhir waktu 15 menit, keranjang diangkat dan diamati. Jika 1 atau 2 kapsul tidak hancur sempurna maka pengujian diulang dengan 12 kapsul yang akan memenuhi persyaratan jika tidak kurang 16 dari 18 kapsul yang diuji telah larut sempurna.

3.3. Indikator Capaian

3.3.1. Pengukuran viskositas larutan gel kapsul

Capaian diperoleh jika larutan gel pati yang diperoleh memiliki viskositas yang sama atau lebih baik dari larutan gel gelatin

3.3.2. Pengukuran daya Tarik dan elongasi

Capaian diperoleh jika kekuatan daya tarik dan elongasi yang diperoleh memiliki nilai yang sama atau lebih baik dari larutan gel gelatin

3.3.3. Pembuatan kapsul dengan metode dipping (Bae, 2008)

Capaian diperoleh jika kapsul yang terbentuk memiliki bentuk organoleptis yang sama atau lebih baik dari kapsul gelatin

3.3.4. Uji Spesifikasi Bobot Cangkang Kapsul

Capaian diperoleh jika kapsul yang terbentuk memiliki bobot yang sesuai dengan spesifikasi cangkang kapsul keras.

3.3.5. Uji Susut Pengeringan

Capaian diperoleh jika kapsul yang terbentuk memiliki kadar air 10-15%

3.3.6. Uji Waktu Hancur

Capaian diperoleh jika kapsul yang terbentuk memiliki waktu hancur kurang atau sama dari 15 menit

3.4. Pengolahan Analisis Data dan Penyimpulan Hasil Penelitian

Data diolah dengan menggunakan Microsoft excel dan hasil dikategorikan berdasarkan setiap uji yang dilakukan. Data diolah dan dianalisis menggunakan perangkat lunak statistika metode ANOVA dan *post-hoc* untuk menentukan signifikansi antar variasi formula dengan *confidence level* (p<0,05). Kemudian hasil tersebut dibandingkan antar variasi sehingga diketahui variasi terbaik berdasarkan data.

BAB 4. Biaya dan Jadwal Kegiatan

4.1. Anggaran Biaya

Tabel 4.1. Anggaran Biaya

No.	Jenis Pengeluaran	Sumber dana	Besaran dana
1.	Bahan habis pakai	Belmawa	Rp 4.350.000
		Perguruan tinggi	Rp 500.000
2.	Sewa dan Jasa	Belmawa	Rp 1.150.000
		Perguruan tinggi	Rp 150.000
3.	Transportasi lokal	Belmawa	Rp 1.000.000
		Perguruan tinggi	Rp 500.000
4.	Lain-lain	Belmawa	Rp 500.000
		Perguruan tinggi	Rp 600.000
Jumlah			Rp. 8.750.000
Rekap sumber dana		Belmawa	Rp 7.000.000
		Perguruan tinggi	Rp 1.750.000

4.2. Jadwal Kegiatan

Tabel 4.2. Jadwal kegiatan

No	No Kogistan	Bulan				Penanggung
110	Kegiatan		2	3	4	jawab
1.	Persiapan laboratorium, alat, dan					Fiona Natania
	bahan					Kurniadi
2.	Pembuatan kapsul					Cindy Cisilia
						Rante
3.	Pengujian dan karakteristik					Graciella
						Budianto
4.	Analisis data					Fiona Natania
						Kurniadi

DAFTAR PUSTAKA

- Aprianita, A, Vasiljevic, T, Bannikova, A, Kasapis, S 2013, Physicochemical Properties of Flours and Starches Derived from Traditional Indonesian Tubers and Roots. *Journal Of Food Science and Technology, Vol. 51, No. 12, 3669–3679.*
- B.Srividya, C, Sowmya, Chappidi, & Suryaprakash 2014, Capsules And It's Technology: An Overview, *International Journal of Pharmaceutics and Drug Analysis*, Vol 2, Issue 9, Page 727-733.
- Bae, HJ, Cha, DS, Whiteside, WS & Park, HJ 2008, Film and pharmaceutical hard capsule formation properties of mungbean, water chestnut, and sweet potato starches, *Food Chemistry*, Vol. 106, Issue 1, Page 96–105, doi: 10.1016/j.foodchem.2007.05.07
- Congli C, Na, J, Yanfei, W, Liu, X & Qingjie, S 2021, Bioactive and intelligent starch-based films: A review. *Trends in Food Science & Technology*, Volume

- 116, Pages 854-869, ISSN 0924-2244, https://doi.org/10.1016/j.tifs.2021.08.024.
- Departemen Kesehatan RI, 2020, Farmakope Indonesia Edisi VI, Kementerian Kesehatan RI, Jakarta
- Fauzi, MARD, Pudjiastuti, P, Wibowo, AC, Hendradi, E 2021, Preparation, Properties and Potential of Carrageenan-Based Hard Capsules for Replacing Gelatine: A Review, *Polymers*, *Vol.* 13, 2666, https://doi.org/10.3390/ polym13162666
- Hafnimardiyanti, et. al, 2014, Edible Film Making of Starch Canna Tuber (Canna Edulis Kerr) and Application to Packaging Galamai, *International Journal on Advanced Science Engineering Information Technology*, Vol 4, No 3, Page 53-56
- Longas, 2020, Accumulation dynamics and physicochemical variability of starch in cultivars of canna edulis ker, *Pesquisa Agropecuária Tropical*, Vol. 50, https://doi.org/10.1590/1983-40632020v5058827
- Mabood Qazi, Ihsan, Rakshit, Sudip, Tran, Thierry, Ullah, Javid, Zafarullah, K, Muhammad 2014, Effect of Blending Selected Tropical Starches on Pasting Properties of Rice Flour. *Sarhad J. Agrid*, Vol 30, No 3, page 357-368.
- Mohammed, Abubakar, L 2020, Capsules: Types, Manufacturing, Formulation, Quality Control Tests and Packaging and Storage A Comprehensive Review, *World Journal of Pharmaceutical and Life Science*, Vol 6, Issue 8, 93-104.
- Molavi, Hooman & Behfar, Somayyeh & Shariati, Mohammad Ali & Kaviani, Mehdi & Atarod, Shirin 2015, *A Review in Biodegradable Starch Based Film*, Vol. 4, No. 5, 10.15414/jmbfs.2015.4.5.456-461.
- Poeloengasih, CD, Pranoto, Y, Anggraheni, FD & Marseno, DW 2017, Potential Of Sago Starch/Carrageenan Mixture as Gelatin Alternative for Hard Capsule Material, *AIP Conference Proceedings*, Vol. 1823, Issue 1, Doi:10.1063/1.4978108
- Q, Chen, Z, Zong, X, Gao, et al 2018, Preparation and characterization of nano starch-based green hard capsules reinforced by cellulose nanocrystals, *International Journal of Biological Macromolecules*, https://doi.org/10.1016/j.ijbiomac.2020.11.078
- Soni, PL, Sharma, H, Srivastava, HC, & Gharia, M M 1990, Physicochemical Properties of Canna edulis Starch Comparison with Maize Starch, *Starch Stärke*, 42(12), 460–464. doi:10.1002/star.19900421203
- Vu, Hien & Ung, Le 2019, A Potential Crop for Vietnam food industry. *International Journal of Botany Studies Edible Canna (Canna edulis Ker)* 4, 58-59.
- Wijoyo, Ari 2004, Karakterisasi Sifat-Sifat Fisik dan Mekanik Edible Film Pati Ganyong (Canna edulis Ker.), *Biota*, Vol IX (3), ISSN: 0853-8670

LAMPIRAN

Lampiran 1. Biodata Ketua, Anggota, dan Dosen Pendamping

1. Biodata Ketua Kelompok

A. Identitas Diri

No.	Nama Lengkap	Fiona Natania Kurniadi
1	Jenis Kelamin	Perempuan
2	Program Studi	Farmasi
3	NIM	1806194145
4	Tempat dan Tanggal	Jakarta, 7 Juni 2000
	Lahir	
5	Alamat E-mail	Nataniafiona0706@gmail.com
6	Nomor Telepon/HP	087775153800

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No.	Jenis Kegiatan	Status Dalam Kegiatan	Waktu dan Tempat
1	PKM-RE 2021	Anggota	Mei 2021 –
			September 2021,
			Jakarta
2	BPM FF UI 2020	Ketua Biro Media dan	Januari 2020-
		Publikasi	Desember 2020,
			Depok
3	KMK FF UI 2020	Koordinator Fakultas	Januari 2020-
			Desember 2020,
			Depok
4	BEM FF UI 2019	Staf Media dan	Januari 2019-
		Publikasi	Desember 2019,
			Depok

C. Penghargaan Yang Pernah Diterima

No.	Jenis Penghargaan	Pihak Pemberi	Tahun
		Penghargaan	
1	Juara II LKIR ke-48	LIPI	2016
	LIPI bidang IPSK		
2	Mahasiswa berprestasi	Fakultas Farmasi	2020
	IPK terbaik Angkatan	UI	
	2018		

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE

Depok, 25 Maret 2022

Ketua Tim

Fiona Natania Kurniadi

2. Biodata Anggota Kelompok 1

A. Identitas Diri

No.	Nama Lengkap	Cindy Cisilia Rante	
1	Jenis Kelamin	Perempuan	
2	Program Studi	S1 Farmasi	
3	NIM	1906404373	
4	Tempat dan Tanggal	Toraja, 11 Agustus 2001	
	Lahir		
5	Alamat E-mail	cindycisilia11@gmail.com	
6	Nomor Telepon/HP	082167346813	

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No.	Jenis Kegiatan	Status Dalam Kegiatan	Waktu dan Tempat
1	PKM-RE	Anggota	Mei 2021 –
			September 2021,
			Jakarta
2	PPAA FF UI	BPH Publikasi dan	Juli 2021 – Oktober
		Humas	2021, Depok
3	IMSS UI	Wa PJ HPDD	2019-2021, Depok
4	Pharmacy Festival	Staff of Publication	Agustus 2020 –
	FF UI	and Website Officer	November 2021,
			Depok
5	UI Goes to	Penanggung Jawab	November 2020 –
	Celebes	PDD	February 2021,
			Depok

C. Penghargaan Yang Pernah Diterima

No.	Jenis Penghargaan	Pihak Pemberi	Tahun
		Penghargaan	

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE

Depok, 25 Maret 2022 Anggota Tim

Cindy Cisilia Rante

3. Biodata Anggota Kelompok 2

A. Identitas Diri

No.	Nama Lengkap	Graciella Budianto
1	Jenis Kelamin	Laki-laki / Perempuan
2	Program Studi	Farmasi
3	NIM	1906347376
4	Tempat dan Tanggal Lahir	Jakarta, 20 Oktober 2001
5	Alamat E-mail	graciella.budianto@gmail.com
6	Nomor Telepon/HP	081807906277

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No.	Jenis Kegiatan	Status Dalam Kegiatan	Waktu dan Tempat
1.	Pharfest UI 2020	Staff Hubungan Masyarakat	Sep-Des 2020
2.	BPM FF UI	Staff Humas	Jan 2021- sekarang

C. Penghargaan Yang Pernah Diterima

No.	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1.	Best Graduate	Smak 2 Penabur Jakarta	2017-2019

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE

Depok, 25 Maret 2022 Anggota tim

Graciella Budinto

4. Biodata Dosen Pembimbing

A. Identitas diri

1	Nama Lengkap	Delly Ramadon, M.Farm., Apt., Ph.D.
2	Jenis Kelamin	Laki-laki
3	Program Studi	Farmasi
4	NIP/NIDN	00111610261400991 / 0016049003
5	Tempat dan Tanggal	Cirebon, 16 April 1990
	lahir	
6	Alamat E-mail	delly.ramadon@farmasi.ui.ac.id
7	No. Telepon/HP	081222684391

B. Riwayat Pendidikan

	Jenjang	Bidang Ilmu	Institusi	Tahun lulus
No.				
1	S1	Ilmu Farmasi	Universitas	2012
			Indonesia	
2	S2	Ilmu Kefarmasian	Universitas	2015
			Indonesia	
3 -	S 3	Pharmacy	Queen's	2020
		(Pharmaceutical	University	
		Technology)		

C. Rekam Jejak Tri Dharma PT

Pendidikan/Pengajaran

No	Nama Mata Kuliah	Wajib/Pilihan	SKS
1	Praktikum Farmasetika I	Wajib	1
2	Praktikum Farmasetika II	Wajib	1
3	Farmasetika	Wajib	2
4	Farmasi Fisika I	Wajib	2
5	Metodologi Penelitian Kesehatan	Wajib	3
6	Praktikum Farmasi Fisika	Wajib	1
7	Teknologi Sediaan Padat	Wajib	4
8	Teknologi Sediaan Setengah Padat dan Cair	Wajib	3
9	Teknologi Sediaan Steril	Wajib	2

10	Praktikum Teknologi Sediaan	Wajib	1
	Setengah Padat dan Cair		
11	Praktikum Teknologi Sediaan	Wajib	1
	Padat		
12	Praktikum Teknologi Sediaan	Wajib	1
	Steril		
13	Rancangan Formula & Analisis	Wajib	3
	Sediaan Farmasi		
14	Teknologi Sediaan Farmasi	Wajib	3
15	Komunikasi Kesehatan	Wajib	2
1.0	G' , D 1 , O1 ,	D'I'I	2
16	Sistem Penghantaran Obat	Pilihan	2
17	Teknologi Nutrasetika	Pilihan	2
	_		

Penelitian

No	Judul Penelitian	Penyandang Dana	Tahun
1	Formulasi Gel Transetosom	Hibah Penelitian	2016
	Ekstrak	Dosen	
	Daun The Hijau (Camellia	Muda Fakultas	
	sinensis	Farmasi	
	L. Kuntze) sebagai Sediaan	Universitas Indonesia	
	Transdermal		
2	Formulasi Ekstrak Tanaman	Hibah Publikasi	2016
	Nanovesikel Lipid dalam	Internasional	
	Sediaan	Terindeks untuk	
	Kosmetik dapat	Tugas Akhir	
	Meningkatkan	Mahasiswa	
	Penetrasi Zat Aktif	Universitas	
		Indonesia	
		(DRPM UI)	
3	Formulasi Sediaan	Hibah Publikasi	2016
	Mikropartikulat	Internasional	
	Herbal untuk Meningkatkan	Terindeks untuk	
	Penetrasi Obat melalui Kulit	Tugas Akhir	
		Mahasiswa	
		Universitas	
		Indonesia	
		(DRPM UI)	

Development, Evaluation, and Pharmacokinetic Assessment of Polymeric Microarray Patches for Transdermal Delivery of	-	2020
Vancomycin Hydrochloride A sensitive HPLC-UV method for quantifying vancomycin in biological matrices: Application to pharmacokinetic and biodistribution studies in rat plasma, skin and lymph nodes	-	2020

Pengabdian Kepada Masyarakat

No	Judul Pengabdian kepada Masyarakat	Penyandang Dana	Tahun
1	-	-	-
2	-	-	-

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari teryata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenar benarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE.

Depok, 23 Maret 2022 Dosen Pendamping

(Delly Ramadon, M.Farm., Apt., Ph.D.)

Lampiran 2. Justifikasi Anggaran Kegiatan

No	Jenis Pengeluaran	Volu	Harga satuan (Rp)	Total (Rp)				
	_	me	_	_				
1.	Belanja bahan							
	Cetakan kapsul	1	Rp 1.000.000	Rp 1.000.000				
	Gelatin	2 kg	250.000 (/500 gr)	Rp 1.000.000				
	Pati Canna edulis	2 kg	50.000(/100 gr)	Rp 1.000.000				
	K-Carrageenan	2 kg	175.000	Rp 350.000				
	I-Carrageenan	2 kg	35.000 (/100 gr)	Rp 700.000				
	Gliserol	10 L	300.000 (/10L)	Rp 600.000				
	Aquades	40 L	100.000 (/20 L)	Rp 200.000				
SUB TOTAL				Rp 4.850.000				
2	Belanja Sewa							
	Sewa Laboratorium	1	Rp 700.000	Rp 1.000.000				
	Sewa Alat Evaluasi	1	Rp 600.000	Rp 600.000				
SUB TOTAL				Rp 1.300.000				
3	Perjalanan lokal							
	Kegiatan penyiapan	5	Rp 100.000	Rp 500.000				
	bahan							
	Kegiatan	5	Rp 100.000	Rp 500.000				
	pendampingan							
	Kegiatan	5	Rp 100.000	Rp 500.000				
	laboratorium							
SUB TOTAL				Rp 1.500.000				
4	Lain-Lain							
	Telekomunikasi	4	Rp 100.000	Rp 400.000				
	Protokol Kesehatan	1	Rp 500.00	Rp 700.000				
SUB TOTAL				Rp 1.100.000				
GRAND TOTAL				Rp 8.750.000				
TERBILANG			Delapan juta tujuh ratus lima puluh					
			ribu rupiah					

Lampiran 3. Susunan Organisasi Tim Peneliti dan Pembagian Tugas

No	Nama/NIM	Program	Bidang	Alokasi Waktu	Uraian tugas
		Studi	Ilmu	(Jam/minggu)	
1	Fiona Natania Kurniadi/180619 4145	Farmasi	Farmasi	20 jam/minggu	Sebagai ketua,
					bertugas untuk
					memastikan
					kinerja tim
					berjalan
					dengan baik
					sesuai timeline
2	Cindy Cisilia Rante/ 1906404373	Farmasi	Farmasi	20 jam/minggu	Sebagai
					penanggung
					jawab untuk
					untuk
					pembuatan
					film dan
					kapsul
3	Graciella Budianto/190634 7376	Farmasi	Farmasi	20 jam/minggu	Sebagai
					penanggung
					jawab uji
					karakteristik
					kapsul

Lampiran 4. Surat Pernyataan Ketua Pelaksana

SURAT PERNYATAAN KETUA TIM PELAKSANA

Yang bertandatangan di bawah ini:

Nama Ketua Tim

: Fiona Natania Kurniadi

Nomor Induk Mahasiswa

1806194145

Program Studi

Farmasi

Nama Dosen Pendamping : Delly Ramadon, M.Farm., Apt., Ph.D.

Perguruan Tinggi

: Universitas Indonesia

Dengan ini menyatakan bahwa proposal PKM-RE saya dengan judul Potensi dan Karakterisasi Cangkang Kapsul Keras Berbasis Pati Ganyong (Canna Edulis) yang diusulkan untuk tahun anggaran 2022 adalah asli karya kami dan belum pernah dibiayai oleh lembaga atau sumber dana lain.

Bilamana dikemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenarbenarnya.

> Depok, 25 Maret 2022 Yang menyatakan,

(Fiona Natania Kurniadi)

NIM 1806194145