Budapesti University of Technology and Economics Department of Measurement and Information Systems

Artificial intelligence – VIMIAC10&16-EN

https://www.mit.bme.hu/eng/eng/node/9670/resources 2024 Fall Semester

Dr. Gábor Hullám

Some slides were adapted from Berkeley CS188, from Dan Klein and Pieter Abbeel http://ai.berkeley.edu

Textbook

- Not required, but for students who want to read more we recommend
 - Russell & Norvig, AI: A Modern Approach, 4th Ed.

 Warning: Not a course textbook, so our presentation does not necessarily follow the presentation in the book.

Today

What is artificial intelligence?

What can AI do?

What is this course?

LLM - GPT

Alexa/Siri/Google assistant

ADAS - Advanced driver-assistance systems

https://www.pcmag.com/opinions/sorry-elon-fully-autonomous-tesla-vehicles-will-not-happen-anytime-soon

http://www.care-o-bot.de/en/care-o-bot-3.html Fraunhofer Institute for Manufacturing Engineering and Automation IPA

Computational power: human bain vs supercomputer

https://www.brownst oneresearch.com/ble eding-edge/thepower-of-the-humanbrain/

	Frontier supercomputer (June 2020)	Human brain	
Speed	1.102 exaFLOPS	~1 exaFLOPS (estimate)	
Power requirements	21 MW	10-20 W	
Dimensions	680 m² (7,300 sq ft)	1.3-1.4 kg (2.9-3.1 lb)	
Cost	\$600 million	Not applicable	
Cabling	145 km (90 miles)	850,000 km (528,000 miles) of axons and dendrites	
Memory	75 TB/s read; 35 TB/s write; 15 billion IOPS flash storage system, along with the 700 PB Orion site-wide Lustre file system	2.5 PB (petabyte)	
Storage	58 billion transistors	125 trillion synapses, which can store 4.7 bits of information each	

The Hewlett Packard Enterprise Frontier, or OLCF-5, is the world's first exascale supercomputer, hosted at the Oak Ridge Leadership Computing Facility (OLCF) in Tennessee. It is compared here with the human brain. For sources see (6-11)

https://bgr.com/genera /power-of-the-humanbrain-vs-supercomputer/

Computational power vs "brainpower"

LAW OF ACCELERATING RETURNS

Figure 12: Ray Kurzweil's Law of Accelerating Returns depicts the exponential growth of computer processing power and technology innovations throughout history, and anticipates computers will exceed human intelligence in the future; Source: TIME / Wikipedia

Predicted eras of Al

Note: Al is artificial intelligence, ASI is artificial superintelligence, and AGI is artificial general intelligence. Sources: WaitButWhy.com, Nick Bostrom, Superintelligence: Paths, Dangers, Strategies; A.T. Kearney analysis

What is AI?

The science of making machines that:

Think like people

Act like people

Think rationally

Act rationally

Rational Decisions

We'll use the term **rational** in a very specific, technical way:

- Rational: maximally achieving pre-defined goals
- Rationality only concerns what decisions are made (not the thought process behind them)
- Goals are expressed in terms of the utility of outcomes
- Being rational means maximizing your expected utility

A better title for this course would be:

Computational Rationality

Maximize Your Expected Utility

What About the Brain?

- Brains (human minds) are very good at making rational decisions, but not perfect
- Brains aren't as modular as software, so hard to reverse engineer!
- "Brains are to intelligence as wings are to flight"
- Lessons learned from the brain: memory and simulation are key to decision making

A (Short) History of Al

A (Short) History of Al

- 1940-1950: Early days
 - 1943: McCulloch & Pitts: Boolean circuit model of brain
 - 1950: Turing's "Computing Machinery and Intelligence"
- 1950—70: Excitement: Look, Ma, no hands!
 - 1950s: Early AI programs, including Samuel's checkers program, Newell & Simon's Logic Theorist, Gelernter's Geometry Engine
 - 1956: Dartmouth meeting: "Artificial Intelligence" adopted
 - 1965: Robinson's complete algorithm for logical reasoning
- 1970—90: Knowledge-based approaches
 - 1969—79: Early development of knowledge-based systems
 - 1980—88: Expert systems industry booms
 - 1988—93: Expert systems industry busts: "Al Winter"
- 1990—: Statistical approaches
 - Resurgence of probability, focus on uncertainty
 - General increase in technical depth
 - Agents and learning systems... "AI Spring"?
- 2000—: Where are we now?

AI – ML - DL

https://shawnennis.com/the-technology-of-machine-learning-withai

What Can Al Do?

Quiz: Which of the following can be done at present?

- ✓ Play a decent game of table tennis?
- ✓ Play a decent game of Jeopardy?
- ✓ Drive safely along a curving mountain road?
- **P** Drive safely along Telegraph Avenue?
- ✓ Buy a week's worth of groceries on the web?
- **X** Buy a week's worth of groceries at a market?
- **P** Discover and prove a new mathematical theorem?
- X Converse successfully with another person for an hour?
- **P**erform a surgical operation?
- ✓ Put away the dishes and fold the laundry?
- ▼ Translate spoken Chinese into spoken English in real time?
- **X** Write an intentionally funny story?

Natural Language

- Speech technologies (e.g. Siri)
 - Automatic speech recognition (ASR)
 - Text-to-speech synthesis (TTS)
 - Dialog systems

- Language processing technologies
 - Question answering
 - Machine translation

- Web search
- Text classification, spam filtering, etc...

Vision (Perception)

- Object and face recognition
- Scene segmentation
- Image classification

Images from Erik Sudderth (left), wikipedia (right)

Robotics

- Robotics
 - Part mech. eng.
 - Part Al
 - Reality much harder than simulations!
- Technologies
 - Vehicles
 - Rescue
 - Soccer!
 - Lots of automation...
- In this class:
 - We ignore mechanical aspects
 - Methods for planning
 - Methods for control

Images from UC Berkeley, Boston Dynamics, RoboCup, Google

Logic

Logical systems

- Theorem provers
- NASA fault diagnosis
- Question answering

Methods:

- Deduction systems
- Constraint satisfaction
- Satisfiability solvers (huge advances!)

Game Playing

- Classic Moment: May, '97: Deep Blue vs. Kasparov
 - First match won against world champion
 - "Intelligent creative" play
 - 200 million board positions per second
 - Humans understood 99.9 of Deep Blue's moves
 - Can do about the same now with a PC cluster.
- Open question:
 - How does human cognition deal with the search space explosion of chess?
 - Or: how can humans compete with computers at all??
- 1996: Kasparov Beats Deep Blue
 "I could feel --- I could smell --- a new kind of intelligence across the table."
- 1997: Deep Blue Beats Kasparov "Deep Blue hasn't proven anything."
- Huge game-playing advances recently, e.g. in Go!

IBM Watson (2011): Jeopardy

- IBM Grand Challenge
 - 1997: Deep Blue wins
 - 1999-2006<: Blue Gene, protein structure prediction
 - 2011: Watson
 - Speech recognition
 - Inference
 - Gameplaying

Go (2017)

- Google DeepMind
- Monte Carlo tree search
- 2016: 9 dans
- 2017: AlphaGo beats world champion

ARTICLE

doi:10.1038/nature16961

Mastering the game of Go with deep neural networks and tree search

David Silver^{1*}, Aja Huang^{1*}, Chris J. Maddison¹, Arthur Guez¹, Laurent Sifre¹, George van den Driessche¹, Julian Schrittwieser¹, Ioannis Antonoglou¹, Veda Panneershelvam¹, Marc Lanctor¹, Sander Dieleman¹, Dominik Grewe¹, John Nham², Nal Kalchbrenner¹, Ilya Sutskever², Timothy Lillicrap¹, Madeleine Leach¹, Koray Kavukcuoglu¹, Thore Graepel¹ & Demis Hassabis¹

StarCraft2 – AlphaStar 2019

AlphaFold (2020)

John Jumper, Kathryn Tunyasuvunakool, Pushmeet Kohli, Demis Hassabis, and the AlphaFold Team, "Computational predictions of protein structures associated with COVID-19", Version 3, DeepMind website, 4 August 2020, https://deepmind.com/research/open-source/computational-predictions-of-protein-structures-associated-with-COVID-19

Decision Making

- Applied AI involves many kinds of automation
 - Scheduling, e.g. airline routing, military
 - Route planning, e.g. Google maps
 - Medical diagnosis
 - Web search engines
 - Spam classifiers
 - Automated help desks
 - Fraud detection
 - Product recommendations
 - ... Lots more!

COVID-19 AI applications

find Al-driven development	Detection Detection	Early warning Detecting anomalies and digital "smoke signals", e.g. BlueDot	Diagnosis Pattern recognition using medical imagery and symptom data, e.g. CT scans	
g research ted computing to f drug and vaccine	Prevention	Prediction Calculating a person's probability of infection, e.g. EpiRisk	Surveillance To monitor and track contagion in real time, e.g. contact tracing	Information Personalised news and content moderation to fight misinformation, e.g. via social networks
Accelerating research Open data projects and distributed computing to find Al-driven solutions to the pandemic, e.g. <i>drug and vaccine development</i>	Response	Delivery Drones for materials' transport; robots for high- exposure tasks at hospitals, e.g. <i>CRUZR robot</i>	Service automation Deploying triaging virtual assistants and chatbots, e.g. Canada's COVID-19 chatbot	
	Recovery	Monitor Track economic recovery through satellite, GPS and social media data, e.g. WeBank		

Top Al Startups 2022

Top Al Startups

Healthcare

- Surgical technologies (ACTIV Surgical)
- orphan drug discovery (Healx)

Finance and Insurance category

visual damage assessment of cars (Tractable)

New players

- Whisper develops sound separation technology to improve hearing aid performance
- Canvas Construction focuses on artificial intelligence-driven robotics for drywall construction.
- Agility Robotics is developing humanoid robots for warehouse and logistics use cases

Learning artistic style

 Gatys, L.A., Ecker, A.S. and Bethge, M., 2015. A neural algorithm of artistic style. arXiv preprint arXiv:1508.06576.

"AI won an art contest, and artists are furious"

https://edition.cnn.com/2022/09/03/tech/ai-art-fair-winner-controversy/index.html

Al-art 2023

https://www.craiyon.com/

Al model drawing images from any prompt!

blue fox red sky

Al-art 2024

https://www.craiyon.com/

Al-art 2024

https://www.craiyon.com/

Designing Rational Agents

- An agent is an entity that perceives and acts.
- A rational agent selects actions that maximize its (expected) utility.
- Characteristics of the percepts, environment, and action space dictate techniques for selecting rational actions
- This course is about:
 - General AI techniques for a variety of problem types
 - Learning to recognize when and how a new problem can be solved with an existing technique

Pac-Man as an Agent

Environment

The environment greatly influences the design and expected capabilities of the agent to be used

- Fully/partially observable=> the agent may need memory (internal state record)
- Discrete/continuous => the agent may not be able to distinguish all possible states
- Stochastic/deterministic => the agent may need to develop several possible scenarios
- Single agent/multiple agents => the agent may have to behave randomly or according to a certain strategy

Course Topics

- Part I: Making Decisions
 - Fast search / planning
 - Constraint satisfaction
 - Adversarial and uncertain search
- Part II: Reasoning under Uncertainty
 - Bayesian networks
 - Decision theory
 - Machine learning
- Throughout: Applications
 - Natural language, vision, robotics, games, ...

