Уравнения мелкой воды

Поляченко Юрий 726

11 апреля 2020 г.

Содержание

1	Ана	алитический анализ
2	Чис	сленное решение на А-сетке
	2.1	Анализ апроксимации и устойчивости
	2.2	Численные эксперименты
	2.3	Дополнительные моменты
3	Чис	сленное решение на С-сетке
	3.1	Анализ апроксимации и устойчивости
	3.2	Численные эксперименты
		3.2.1 Центральная разность

1 Аналитический анализ

Решается система уравнений

$$\frac{\partial \vec{V}}{\partial t} = -g\nabla h
\frac{\partial h}{\partial t} + \bar{H}(\nabla \cdot \vec{V}) = 0$$
(1)

Работаем в 2D, что физически соответствует например воде в бассейне $\Omega = [0; L_x] \times [0; L_y]$. Покомпонентно система запишется как

$$\frac{\partial u}{\partial t} = -g \frac{\partial h}{\partial x}
\frac{\partial v}{\partial t} = -g \frac{\partial h}{\partial y}
\cdot
\frac{\partial h}{\partial t} + H \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) = 0$$
(2)

Для простоты численных оценок в реальных расчетах будем считать g=H=1, если не оговорено иного.

Для получения аналитических решений удобно избавиться от «не наблюдаемых» переменных u и v. (1) приводится к волновому уравнению.

$$\ddot{h}(t, \vec{x}) = qH \cdot \Delta h(t, \vec{x}). \tag{3}$$

Граничные условия непротекания

$$u(x = 0) = u(x = L_x) = 0$$

$$v(y = 0) = v(y = L_y) = 0$$
(4)

естественные для задачи воды в бассейне, приводят к условиям на h:

$$h'_x(x=0) = h'_x(x=L_x) = 0 h'_y(y=0) = h'_y(y=L_y) = 0$$
(5)

Или, короче и общее

$$\left. \frac{dh}{d\vec{n}} \right|_{\partial\Omega} = 0 \tag{6}$$

Все вышесказанное позволяет нам выписать общее решение задачи:

$$\begin{cases}
\frac{\partial u}{\partial t} = -g \frac{\partial h}{\partial x} \\
\frac{\partial v}{\partial t} = -g \frac{\partial h}{\partial y} \\
\frac{\partial h}{\partial t} + H \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) = 0 \\
h'_x(x=0) = h'_x(x=L_x) = 0 \\
h'_y(y=0) = h'_y(y=L_y) = 0 \\
h(t=0, x, y) = f(x, y) \\
u(t=0, x, y) = u_0(x, y) \\
v(t=0, x, y) = v_0(x, y)
\end{cases}$$
(7)

приводит к

$$k_{xn} = \frac{\pi}{L_x} \left(n + \frac{1}{2} \right), \quad k_{ym} = \frac{\pi}{L_y} \left(m + \frac{1}{2} \right), \quad n, m \in \mathbb{N}$$

$$e_{nm}(x, y) = \cos(x k_{xn}) \cos(y k_{ym}) \sqrt{\frac{2}{L_x}} \sqrt{\frac{2}{L_y}}$$

$$\omega_{nm}^2 = gH(k_{xn}^2 + k_{ym}^2)$$

$$w(x, y) = -H\left(\frac{\partial u_0}{\partial x} + \frac{\partial v_0}{\partial y}\right)$$

$$w_{nm} = (w, e_{nm}), \quad f_{nm} = (f, e_{nm})$$

$$g_{nm}(t) = \frac{w_{nm}}{\omega_{nm}} \sin(\omega_{nm} t) + f_{nm} \cos(\omega_{nm} t)$$

$$h(t, x, y) = \sum_{n, m} g_{nm}(t) e_{nm}(x, y).$$
(8)

Где введено

$$(f,g) = \int_{0}^{L_y} \int_{0}^{L_x} f(x,y)g(x,y)dxdy.$$
 (9)

Для ПГУ решения выглядят аналогично, только базисные функции немного отличаются

$$e_{nm}(x,y) = e_n(x)e_m(y)$$

$$e_n(x) = \begin{cases} \cos\left(x\frac{\pi n}{L_x}\right)\sqrt{\frac{2}{L_x}}, & n : 2\\ \sin\left(x\frac{\pi(n+1)}{L_x}\right)\sqrt{\frac{2}{L_x}}, & n \not = 2 \end{cases}$$

$$(10)$$

Например если взять начальные уловия

$$h(t=0,x,y) = \cos\left(x\frac{2\pi}{L_x}\right) + \cos\left(2y\frac{2\pi}{L_y}\right)$$

$$u(t=0) = 0, \quad v(t=0) = 0,$$
(11)

то решение как для ПГУ так и для непротекания будет

$$h(t,x,y) = \cos\left(x\frac{2\pi}{L_x}\right)\cos\left(t\frac{2\pi v_0}{L_x}\right) + \cos\left(2y\frac{2\pi}{L_y}\right)\cos\left(2t\frac{2\pi v_0}{L_y}\right), \quad (12)$$
 где $v_0^2 = gH$.

2 Численное решение на А-сетке

2.1 Анализ апроксимации и устойчивости

... - надо ли?

2.2 Численные эксперименты

Для первых тестов были реализованы симметричные схемы 2 порядка по времени и пространству. 1-ый шаг по времени делался обычным Эйлером. Проведена проверка порядка схемы - при изменении шага dx по пространству и выборе $dt = dx/3v_0$ для устойчивости MSD отклонения от точного решения. Ожидаемый результат $(sup_{\tau < t}[\delta^2(\tau)])(t) < (\mathcal{O}(dt^3) * T/dt)^2 = \mathcal{O}(dt^4T^2) \sim dt^4$

Рис. 1: Зависимость среднего (по пространству) квадрата отклонения численного решения от точного при $dt=dx/3v_0$ и $T=T_{period}\cdot 7/8$. При этом физическом времени расчета проходится максимум ошибки, поэтому на нем корректно сравнивать схему при разных шагах интегрирования. Шаги уменьшились на 1 порядок, а δ^2 уменьшилась на 4 порядка, т.е. δ линейно уменьшилаь на 2 - все сходится.

По графику роста ошибки от времени виден порядок роста $(sup_{\tau < t}[\delta^2(\tau)])(t) < \mathcal{O}(dt^4T^2) \sim T^2$

Рис. 2: Зависимость среднего квадрата отклонения численного решения от точного. Устанавливается рост $\sim t^2$, что и ожидалось.

2.3 Дополнительные моменты

• В процессе отладки была встречена проблема 2h - грамоники, являющейся следствием применения центральной расности для 1-ой производной. Если взять волну с $\lambda=2\delta x$, то в узлах сетки будут значения $h_{nm}=(-1)^{m+n}$, откуда

$$\dot{u} = \frac{-1 - (-1)}{2\delta x} = 0$$

$$\dot{v} = \frac{-1 - (-1)}{2\delta y} = 0$$
(13)

3 Численное решение на С-сетке

3.1 Анализ апроксимации и устойчивости

... - надо ли?

3.2 Численные эксперименты

3.2.1 Центральная разность

В А-сетках значения всех определяемых функций известны на одном наборе точек $(t,x,y)_{ijk}$. На С-сетках для уравнений мелкой воды наборы точек по пространству для u,v и h отличаются. Для начала была реализована симметричная расность 2 порядка точности, для которой ошибка схемы ведет себя ожидаемо

Рис. 3: Зависимость среднего (по пространству) квадрата отклонения численного решения от точного при $dt=dx/3v_0$ и $T=T_{period}\cdot 7/8$. При этом физическом времени расчета проходится максимум ошибки, поэтому на нем корректно сравнивать схему при разных шагах интегрирования. Шаги уменьшились на 1 порядок, а δ линейно уменьшилась на 2 все сходится.