Homework 6: Naive Bayes for Sentiment Analysis

Prof: Yannet Interian

Due Oct 8th 2013

1 Introduction

In this homework we consider the problem of classifying a document by the "sentiment." We are going to write a classifier that predicts whether a movie review is positive or negative. We are using the same dataset set of movie reviews used in HW5.

1.1 Naive Bayes for document classification

Given a document d and a class c, one approach to text classification is to assign to a given document the class

$$c^* = argmax_c P(c|d)$$

We can substitute P(c|d), using Baye's rule with $P(c|d) = \frac{P(c)P(d|c)}{P(d)}$, getting the formula $c^* = argmax_c \frac{P(c)P(d|c)}{P(d)}$. Note that for a fixed document d, P(d) is a constant so the following formula is equivalent:

$$c^* = argmax_c P(c) P(d|c)$$

We can represent a document d as a sequence of words $d = (w_1, w_2, \ldots, w_m)$. To estimate P(d|c), Naive Bayes assumes that each word is conditionally independent given the a class.

$$c^* = argmax_c P(c) \prod_{i=1}^{m} P(w_i|c)$$

If M is the number of unique words in d and $n_i(d)$ is the count of word w_i in d, we can write the following equivalent formula.

$$c^* = argmax_c P(c) \prod_{i=1}^{M} P(w_i|c)^{n_i(d)}$$
(1)

1.2 Underflow Prevention: log space

Multiplying lots of probability can result in floating-point underflow. It is better to sum logs of probabilities instead of multiplying probabilities. Using log(xy) = log(x) + log(y), we can write (1) as:

$$c^* = argmax_c \log(P(c) + \sum_{i=1}^{M} n_i(d) \cdot \log(P(w_i|c))$$
 (2)

1.3 Parameter Estimation with add 1 smoothing

The maximum likelihood estimator for P(w|c) is $\frac{count(w,c)}{count(c)} = \frac{\text{counts } w \text{ in class } c}{\text{counts of words in class } c}$. This estimation of P(w|c) could be problematic since it would give us probability 0 for documents with unknown words. A common way of solving this problem is to use Laplace smoothing. Let V be the set of words in the training set, add a new element UNK (for unknown) to the set of words. Define

$$P(w|c) = \frac{count(w,c) + 1}{count(c) + |V| + 1}$$

In particular, any unknown word will have probability $\frac{1}{count(c)+|V|+1}$. What is P(c) for this dataset?

1.4 Evaluation

For each class, randomly divide your reviews into "training" and "testing". Take 2/3 of the reviews for training, these reviews are going to be used for learning the parameters. The rest of the reviews are used for evaluating the algorithm.

1.5 Evaluation Metric

Accuracy of the testing set = $100 \cdot \frac{\text{Number of test docs classified correctly}}{\text{Total number of test documents}}$

2 Naive Bayes for Sentiment Analysis

Make a copy of your *unigram.py* code to use it as a starting code for this homework. Call you new code *naive-bayes.py*. **Implement a Naive Bayes algorithm** for the sentiment analysis project in python using the following steps:

1. For each iteration

- (a) Randomly divide your data in training and testing using 1/3 for testing and 2/3 for training.
- (b) Use the training set to estimate the parameters P(w|c) and P(c) as described in section 1.3.
- (c) For every document in the testing set use equation (2) to compute P(c|d) and predict the class c^* .
- (d) Compute the accuracy of the testing set as described in section 1.5.
- 2. Do at least 3 iterations to compute the average accuracy as your performance metric.
- 3. Give a directory with text files "my_directory". I should be able to run your code using the command line:

python naive-bayes.py -d my_directory

4. Print results for each iteration, output the key metrics as in the example below.

```
iteration 1:
num_pos_test_docs:333
num_post_training_docs:667
num_pos_correct_docs:267
num_neg_test_docs:331
num_neg_training_docs:669
num_neg_correct_docs:261
accuracy:79%
iteration 2:
...
iteration 3:
...
ave_accuracy:80.3%
```