Ομοιόμορφη Συνέχεια

Aupieuer Abrinous

Парабејуна са:

- 1. Μια εταθερή συναρτική είναι ομοιδμορφα συνεχής γιατί ΨεγΟ, οποιοσδήποτε δ>Ο ιμανοποιεί του οριστό
- 2. H 600àpager $f(x)=\sqrt{x}$, $x\gg 1$ eiven Lipschitz gracie $|f(x)-f(y)|=|\sqrt{x}-\sqrt{y}|=\frac{|x-y|}{\sqrt{x}+\sqrt{y}}\leq \frac{1}{2}|x-y|$ Sont rexuer $|f(x)-f(y)|\leq M|x-y|$ $(x-y)=\frac{1}{\sqrt{x}+\sqrt{y}}$ $(x-y)=\frac{1}{\sqrt{x}+\sqrt{y}}$ Enopieves eiven oproiopoga Euvexius, Joyn cus Opózaeus 3.1.3.
- 3. H Guuàpeugy $f(x) = x^p$, $x \geqslant 1$, $0 evai Lipschitz

 Tràxfari, au nàpoule <math>x,y \geqslant 1$ le $x \ne y$ tôte and to demonstre Hèbus tipus, unaposet $f(x) = x \ne y$ avalues fra $x = x \ne y$ tecoio wort $\left|\frac{f(x) f(y)}{x y}\right| = |f'(g)| = p_g^{2p-1} \le p$

δη. If(x)-f(y)| ≤ p|x-y|, ∀x,y≥1 Enopieuws u f eivai lipschitz. apa uai opioiófopqa 6υνεχικ

4. H 600apeney $f(x)=x^p$, $x \ge 1$, p > 1 Sev eivai oficiópopqa 600exús π $x_n = n$, $x_n = n$

 $\left(\frac{\prod x}{\prod a} \prod_{p=2}^{n} : f(x_n) - f(y_n) = n^2 - (n + \frac{1}{n})^2 = n^2 - n^2 - 2n \frac{1}{n} - \frac{1}{n^2} = -2 \neq 0$ $= \prod_{n=2}^{n} \prod_{n=2}^{n} : f(x_n) - f(y_n) = n^3 - (n + \frac{1}{n^2})^3 = n^2 - n^2 - 3n^2 + 2n - 3n + 2n - 2n = -3 \neq 0\right)$

Magazuph645:

- (1) Το αδροιόμα μαι η δύνδεση ομοιόμορφα συνεχών συναρτήσεων Είναι ομοιόμορφα συνεχείς. Αυτό προμύητει άμεσα από τον αμορουθιαμό Χαραμτωριστό τως ομοιόμορφως συνέχειας
- (2) Το χινό μου δύο ομοιό μορφα δυνεχών δυναρτί σεων δεν είναι μαχ ανάχη η ομοιό μορφα δυνεχώς δυναρτική Για παράδειχμα: μ $f(x) = x, x \in \mathbb{R}$ είναι ομοιό μορφα δυνεχώς, αλλά μ f^2 όχι
- (3) Opoiws pe co malino. H fex)=x, x>0 qual opoiófopga 60vexis azzà n 4/f ser eival.

Παράδειχμα: Η $f(x) = cos \frac{1}{x}$, x>0 δευ είναι ομοιότορφα ευνεχίας ματί η απολούδία $x_n = \frac{1}{nn}$ είναι Cauchy αλλά η $f(x_n) = (-1)^n$ δεν είναι

Παραδάχξατα: (1) Η $f(x) = e^{-x^2}$, xelR eivar ομοιόξορφα δυνεχίνο χιατί $\lim_{x\to +\infty} f(x) = \lim_{x\to -\infty} f(x) = 0$

(2) Η f(x) = 1/x ενοα ομοιό fορφα fου εχώς fον f

Abunen 1: Even f: (a,b) → R oporópopa ovexis. N. Son f elvar apaxtéry.

Anoseizu:

Δ' τρόπος: And των Πρόταση 3.1.5 εχουξε συ αφού α f equal ορισιόμορφα συνεχώς θα equal μαι συνεχώς μαι αφού είναι συνεχώς θα equal μαι φραγξεύμ

<u>Β'τροπος:</u> Εφειω ότι u f δεν είναι φραγγεύν. Τότε υπαρχει μια αμολουθία $χ_μ ε(a_1b)$ πέτοια ωστε $|f(x_μ)| > μ$, $f(x_μ) = μ$. Η $χ_μ$ είναι φραγγεύνη. Άρα, από το Θ. Βοίζανο - Weierstvass, έχει ευχικίνουσα υπαμολουθία, είναν $χ_{μμ}$. Αφού π $χ_{μμ}$ εύγαι $χ_{μμ}$ είναι $χ_{μμ$

Ασωνόμ 2: Εσω Ι ενα διασταίρα και $f: I \rightarrow IR$ παραγωγίστην με φραγείνη παραγωγο ο Νδο ειναι οφισιόμορφα συνέκις Λύση: Αφού u f είναι φραγείνη, υπαρχει $M>0: |f'(x)| \leq M$, $\forall x$ Ετσι από το θεωρνή $\forall A$ Μέσις Τιβνίς, $\forall x,y$ με $x \neq y$ εχουμε συ υπάρχει $ge(x,y): |\frac{f(x)-f(y)}{x-y}| = |f'(y)| \leq M$ υπάρχει $ge(x,y): |\frac{f(x)-f(y)}{x-y}| = |f'(y)| \leq M$ Αρα $|f(x)-f(y)| \leq M|x-y|$, δ|g(x)-g(y)| = |g(x)-g(y)| είναι $|g(x)-g(y)| \leq M|x-y|$

Ασωνόν 3: Εσω δύο χειτονιμά διαστήματα Ιι, Ι2 με μοινό αυρο το οποίο ανήμει μαι ετα δύο διαετίματα μαι f: I,UI2 → R opoiófopqa Guvexiis 600 I, uau 600 I2 Anostique ou nf cival oporófoppa covexis 610 I, UI2 Nuon: Eenw $I_1 = (a_1b)$, $I_2 = [b,c)$ onou $x \in I_1$, $y \in I_2$ Apoi nf opolopi Guvexis ero I, da 16xuel ₹470, ∃8,>0: ∀xy ∈ (a,b]: |x-y| ∠8, ⇒ |f(x)-f(y)| < €1 Apoù n f o protope 60 vexus 600 Iz da 16xues ∀ε2 >0, Fδ2 >0: trye[b,c): |x-y| 2δ2 => |fix)-fiy1| < ε2. Euro E70. a déhoufe va mocdiopisonte 20 5 avaptiques tou E. Θετουμε ε1= /2, ε2= /2 μαι δ1, δ2 τα παραπαυω. Av 8=min 281,829 TOR

tre(a,b], tye[b,c): |f(x)-f(y)| < |f(x)-f(b)| + |f(b)-f(y)| < \frac{ε}{2} + \frac{ε}{2} = ε.

- a) H f(x)=lux, x>0 Sev eivai opocófopqa 60vexas prais
- B) If f(x) = lnx, $x \ge 1$ eival opioloifoppa Guerius frani and ro D.M.T. Exoufe ou $f(x) \ne 1$, $f(x) \ne 1$, $f(x) \ne 1$, f(x) = f(x)

Apa |fix|-fiy|| \(|x-y| \) \(|xpx u f \) \(|xpx

- χ) + $f(x) = \frac{S(u)x}{x}$, x>0 + v(u) = v(u) =
- 8) H fix 1= sin 5x, x 70 Ewai opioiófopqa 60verás 6x0 600 deby nov opioiófopqa 600 exár 600 ap cifecur sin x mai 5x, x 70
- E) $\# f(x) = 3x + 1 \stackrel{f: R \to R}{\text{Huan openoppa Guvern's years available filts Guverns}}$ # Gradepà 3, Sus. $\# \text{If}(x) - f(y) \text{I = } 3 |x - y| \text{, } \forall x, y \in \mathbb{R}.$

AGUMENS: Even f:R->IR opolofopga GUVERUS @ gpayfirmy

Nim

Apoù u f eivar apazfévy, $\exists M>0$: $(f(x)) \leq M$, $\forall x$ Corw $\epsilon > 0$. Agou u f ervar ofroiófoppa Gwexán, $\exists 5 > 0$: $\forall x,y$ $\mu\epsilon |x-y| < \delta$ va $\epsilon \times 0$ $\epsilon \times 0$

 $|f^2(x)-f^2(y)|=|f_1x|-f_1y)||f_1x|+f_1y||<\frac{\varepsilon}{2M}\left(|f_1x|+|f_1y||\right)|\in\varepsilon$ Apa, $|g|^2$ crual ofuniófopga Gwexius

Av $|g|^2$ crual ofuniófopga Gwexius

Av $|g|^2$ fev eival qpaffery, where to outrepact $|g|^2$ feviria

DEN 16xvin. Fia napaseryua, $|g|^2$ eival ofunófopga Gwexius

QHà $|g|^2$ or $|g|^2$ en eival $|g|^2$

<u>Αωυωω:</u> Η ωνάρτωση $f(x) = x^2 + \frac{1}{x}$ αναι οψοιότορφα ωνεχώς ωνο (0,1) Σ in \mathbb{A} ?

Non

Aυ μία δυθάρεμου $f_{\delta}(0,1) \rightarrow \mathbb{R}$ ειναι ομοιόμορφα δυθεχώς, τότε υπάρχου υ το $\lim_{x\to 0^+} f(x)$ μαι $\lim_{x\to 1^-} f(x)$ (μαι ειναι πραχματιμοί αρίθμοί). Για την $\lim_{x\to 1^-} f(x) = x^2 + \frac{1}{x}$ έχουμε $f(x) \rightarrow +\infty$ όταν $x\to 0^+$

Abunon: Au m (xn) eivar anolovdia Cauchy nas u févas opoiopopça buvexús ero R, tôte m (fixu) eivar anolovdia Cauchy

3 in 1?

Non Sweet and Dewpuler 3.3.2.