Molecular modelling

José R. Valverde

Contents

- Ab initio modelling
 - Ab initio Quantum Mechanics
 - Ab initio Molecular Mechanics
- Homology modelling
 - Homology
 - Threading
- Structure prediction

Ab initio modelling

- Predict 3D structure from chemical formula
 - Out of purely theoretical models
 - Maximum quality (given state of the art)
 - Maximum cost (nothing is assumed)

Ab initio QM

- The best possible approximation
- Tremendous computational cost
 - N³ N⁸ (on the number of elementary particles)
 - Unfeasible for all but smallest systems
- Modern approaches on the order of N (medium sized systems)
 - Linearly scaling DFT
 - Multipoles and cutoffs
 - MOZYME

Ab initio MM/MD

Classical mechanics treatment

- E_{non-bonded} scales to N²
- Soft charged spheres joined by springs
- Ignore bond-breaking and formation
- From scratch approaches
 - Tractable only for small-medium size systems
- Large systems
 - Workable if we can start close to the solution

Homology modelling

- Conformational search is a combinatorial problem: N!
 - In the best case we know all factors involved
 - But we don't
- We may assume that similar functions share similar structures and sequences
 - Start from similar structure
 - Assume it is close to the solution
 - Apply an energy minimization step.

Know your problem

- The first step in any simulation is knowing your problem
 - What do you want to know
 - What is already known?
 - Is the solution already known?
 - Is there an approximate solution?
 - What are the characteristics, properties and constrains of your system?
 - Bibliography
 - Database searches

Search for the structure

- Is the structure already known?
 - Do we know the sequence?
 - Blast/FastA against PDB
 - Look for <u>exact</u> matches
 - A mutation or polymorphism means we need to build a model
 - If we ignore the sequence
 - Direct PDB searches
 - If we succeed, we can ignore the rest: we do have the structure

Select template

- Start from a sequence
 - New sequence
 - Old sequence mutated
 - Use FASTA format on a text editor
- Select a modeling method
 - General good similarity (>40%): Homology
 - Twilight zone (30-40%): Threading
 - Local similarities: partial models

Build initial model

- Align sequence against templates
- Assign template structure to unknown
- What next?
 - It may be sensible to stop here
 - If similarity is very high (point mutation)
 - After ensuring no steric clashes (try rotamers)
 - It we know there are no major changes
 - If validation shows no major conflicts
 - Perform additional refinements
 - Minimization (to avoid strong conflicts)
 - MD (to allow for conformational changes)

Model optimization

- In general, more stable structures will have lower internal energy
 - Compute energy
 - Use energy to optimize the structure
 - Molecular Mechanics
 - Force field
 - Various minimization algorithms:
 - Quick and dirty
 - Tinker Minimize, optimize, sniffer. AMBER server
 - Slow and accurate
 - Tinker PSS, newton.

Further optimization

- Validate your structure
- Check against prior knowledge
- Optimization might have found a local minimum
- Look for alternate configurations
 - Simulated Annealing
 - Molecular Dynamics
 - Simulation times are too short (ps-ns)
 - Validate and repeat

Validation

- Experimental methods
 - Prior knowledge
 - Model driven
- Theoretical methods
 - Check a battery of commonly respected rules
 - There may be exceptions
 - Run validation with template and your model
 - Look for differences