

Constant-time Lattice Reduction for SQIsign

O. Hanyecz, A. Karenin, E. Kirshanova, P. Kutas, S. Schaeffler

The Isogeny Club December 17, 2024

- + Post-quantum signature
- → Submitted to NIST in 2023

Eprint 2020/1240 and 2022/234 Logo from sqisign.org

Comparison of sizes of round 2 candidates

Data from https://pqshield.github.io/nist-sigs-zoo/ (13 December 24)

Comparison by speed

Data from https://pqshield.github.io/nist-sigs-zoo/ (13 December 24)

Comparison by speed

Data from https://pqshield.github.io/nist-sigs-zoo/ Eprint 2023/436 and 2024/760 (13 December 24)

SQIsign current status

- + Small
- + Not that slow any more
- + Submitted for standardization

→ Scary: Maybe one day it could be used!

Practical security in cryptography

Mathematical security:

Ensure that given only public information, an adversary cannot break the system

Implementation security:

Ensure observing the computation only gives public information to an adversary

Practical security in cryptography

Mathematical security:

Ensure that given only public information, an adversary cannot break the system

Implementation security:

Ensure observing the computation only gives public information to an adversary

Side channels:

- Runtime
- Power consumption
- Memory accesses
- Faults

Practical security in cryptography

Mathematical security:

Ensure that given only public information, an adversary cannot break the system

Implementation security:

Ensure observing the computation only gives public information to an adversary

Side channels:

- Runtime
- Power consumption
- Memory accesses
- Faults

Outline

- Practical SQIsign
 - Real-world SQIsign?
 - Lattice reduction in SQIsign

- Lattice reduction in constant-time
 - Algorithm
 - Parameters and implementation

Short Quaternion and Isogeny Signature

SQIsign signing (all variants)

Core idea: Compute ϕ_{resp} to prove knowledge of $End(E_1)$ and $End(E_2)$

$$E_1$$
 ϕ_{resp}

Infinitely many $\phi_{resp}: E_1 \to E_2$ exist

Which response?

Required: $\phi_{\text{resp}}: E_1 \to E_2$

- Representable (HD or smooth)
- Independent of secrets
- Short (small degree)

Set S of isogenies $\phi: E_1 \to E_2$ is isomorphic to an ideal in a quaternion algebra

Quaternion ideals

Quaternion algebra:

- 4-dimensional vector space over Q
- + with quadratic form called norm N

Quaternion ideals

Quaternion algebra:

- 4-dimensional vector space over $\mathbb Q$
- + with quadratic form called norm N

Ideal:

- rank 4 lattice
 - ▶ Lattice: set of \mathbb{Z} -linear combinations of a \mathbb{Q} -basis

Quaternion ideals

Quaternion algebra:

- 4-dimensional vector space over $\mathbb Q$
- + with quadratic form called norm N

Ideal:

- rank 4 lattice
 - ▶ Lattice: set of \mathbb{Z} -linear combinations of a \mathbb{Q} -basis
- + integer norm: $N(I) = \gcd_{x \in I} N(x)$

Correspondence with sizes

The signer knows an ideal I corresponding to response set S such that:

- To each $x \in I$ corresponds an isogeny ϕ_x
- ② With $deg(\phi_x) = \frac{N(x)}{N(I)}$
- → Sufficient to find some short element(s) in *lattice I*!

Lattice reduction

Given: A lattice basis *B*

Find: A *reduced* basis B' of the same lattice as B

Reduced: Containing only vectors which are

- of somewhat small norm
- and somewhat orthogonal

Several definitions exist

Lattice reduction in lattice cryptography?

Lattice-crypto:

- Large dimension over Q
- Often smaller integers
- → Optimization for high dimension
- Lattice reduction in cryptanalysis
- → Need fast reduction

SQIsign:

- Dimension 4 over Q
- Large integers
- → Optimization for large coefficients
- Lattice reduction used constructively
- → Need secure reduction

Lattice reduction algorithm: LLL

```
Require: B basis of a lattice L of rank d and c \in ]1/4, 1[
Ensure: B an c-LLL-reduced basis of L
 1: B^* := Gram-Schmidt-Orthogonalize(B)
 2: while B is not reduced do
      Size-reduce B, update B^*
      for i from 1 to d-1 do
 4:
        if not LLLcondition(c, i, B, B^*) then
           Swap b_i, b_{i+1} in B, update B^*, continue
 6:
        end if
      end for
 9: end while
10: return B
```

Lattice reduction algorithm: Greedy

Require: B basis of a lattice L of rank $d \le 4$, G its Gram matrix **Ensure:** B a Minkowski-reduced basis of L, G its Gram matrix

- 1: done := False
- 2: **while** not done and d > 1 **do**
- 3: Sort $(b_1,...,b_d)$ by norm, adapt B and G;
- 4: $b_1,...,b_{d-1},G':=\mathsf{Greedy}(b_1,...,b_{d-1})$ adapt B and G
- 5: $b_d:=b_d-c$ where c is closest to b_d in the lattice of $b_1,...,b_{d-1}$, adapt B and G;
- 6: done := $(N(b_d) \ge N(b_{d-1}))$
- 7: end while
- 8: **return** B, G

Lattice reduction algorithm: BKZ-2

```
Require: B basis of a lattice L of rank 4, parameter \delta < 1
Ensure: B a reduced basis of L
 1: LLL-reduce(B)
 2: while First tour or B has changed in previous tour do
      for i from 1 to 3 do
        b := \mathsf{SVP}(b_i, b_{i+1})
         if \delta-condition(b, B) then
 5:
           Insert h in B
 6:
         end if
 7:
         LLL-reduce(B)
      end for
 9:
10: end while
11: return B
```

From "Lattice basis reduction: Improved practical algorithms and solving subset sum problems." by C. P. Schnorr and M. Euchner, 1991 (DOI 10.1007/3-540-54458-5_51); Description from Eprint 2011/198

Lattice reduction algorithm: BKZ-2 for analysis

Require: B basis of a lattice L of rank 4, optional T_m max iteration number **Ensure:** B a reduced basis of L if T_m large enough

- 1: **while** B has changed in previous tour and T_m not reached **do**
- 2: **for** *i* from 1 to 3 **do**
- 3: $b_1, b_{i+1} := \mathsf{HKZ}\text{-reduce}(b_i, b_{i+1})$
- 4: Size-reduce(B)
- 5: end for
- 6: end while
- 7: **return** *B*

Constant-time BKZ-2

```
Require: B basis of a lattice L of rank 4, iteration counts T_{Lag\sigma r}, T_{BKZ}
Ensure: B' a reduced basis of L if T_{Lagr}, T_{BKZ} are large enough
 1: B', G, B := B, its Gram matrix, its orthogonalization
 2: for j from 1 to T_{RKZ} do
      for i from 1 to 3 do
         Constant-time size-reduce b'_i, adapt G and B^*;
 4:
         Constant-time Lagrange-reduce (b'_i, b'_{i+1}, T_{Lagr}), adapt B', B^*, G
 5:
         Constant-time size-reduce b'_i then b'_{i\perp 1}, adapt G and B^*
 6:
      end for
 8: end for
 9: return B'
```

Subroutines

Partial size-reduction

- Runtime only depends on indices
- Easily constant-time

Lagrange-reduction

- ► Euclid-like algorithm
- Unclear dependency of runtime on inputs

Lagrange reduction

5: **return** c, d

```
Require: b_1, b_2 basis of a rank-2 lattice L Ensure: c, d basis of L with c minimal in L 1: while First round or N(d) < N(c) do 2: \mu = \lfloor \frac{N(c+d)-N(c)-N(d)}{2N(d)} \rceil; 3: c, d := d, c - \mu d 4: end while
```

Towards a constant-time Lagrange-reduction

- Bound the number of loop iterations
- Ensure "additional" iterations don't harm output
- Optimize: Minimize operations on basis

Constant-time Lagrange reduction

10: CT-CONDITIONAL-SWAP $_{G_1,1 \leq G_0,0}(U_0,U_1)$

Require: $G \in \mathbb{Z}^{2 \times 2}$ Gram matrix of a basis B, T_{Lagr} number of iterations; **Ensure:** $U \in \mathbb{Z}^{2 \times 2}$ an unimodular matrix such that BU is Lagrange reduced; 1: U := dimension 2 identity matrix2: **for** c=1 to T_{Lagr} **do** 3: $\mu := |G_{1,0}/G_{0,0}|$ 4: $G_{1,1} = G_{1,1} - (2\mu G_{1,0} - \mu^2 G_{0,0})$ 5: $G_{1,0} = G_{1,0} - \mu G_{0,0}$ 6: $U_1 = U_1 - \mu U_0$ 7: CT-SWAP $(G_{0,0}, G_{1,1})$ $CT-SWAP(U_{0,0}, U_{1,1})$ 9: end for

11: return U

Constant-time BKZ-2

```
Require: B basis of a lattice L of rank 4, iteration counts T_{Lagr}, T_{BKZ}
Ensure: B' a reduced basis of L if T_{Lagr}, T_{BKZ} are large enough
 1: B', G, B := B, its Gram matrix, its orthogonalization
 2: for j from 1 to T_{RKZ} do
      for i from 1 to 3 do
         Constant-time size-reduce b'_i, adapt G and B^*
 4:
         Constant-time Lagrange-reduce (b'_i, b'_{i+1}, T_{Lagr}), adapt B', B^*, G
 5:
         Constant-time size-reduce b'_i then b'_{i\perp 1}, adapt G and B^*
 6:
      end for
 8: end for
 9: return B'
```

Iteration counts

Ensure:

$$||b_0|| \leqslant 2 \left(\frac{4}{3}\right)^{3/2} D^{1/4}$$

Require:

$$T_{\mathsf{BKZ}} \geq rac{2}{\log_2(8/7)}\log_2\left(\log_2\left(rac{B^*}{D^{1/4}}
ight) + \sqrt{5}(\log(4/3))^{1/2}
ight)$$

$$T_{\mathsf{Lagr}} \geq 2 + 2 \lceil (\log_{\sqrt{3}} 2) \left(9 \log_2 B + 12 \right) \rceil$$

B: Square root of largest diagonal coefficient of Gram matrix of the input

 B^* : Square root of largest norm of a vector in the orthogonalization of the input

D: Lattice volume

For SQIsign inputs: large ideals in HNF

Ensure:

$$\deg(\phi_{b_0})\leqslant \frac{128}{27}\sqrt{p}$$

Require:

$$T_{\text{BKZ}} \geq \tfrac{2}{\log_2(8/7)}\log_2\left(\tfrac{1}{2}\left(\log_2(N(I)) - \tfrac{1}{2}\log_2(p/4)\right) + \sqrt{5}(\log_2(4/3))^{1/2}\right)$$

$$T_{\mathsf{Lagr}} \geq 2 + 2 \left\lceil (\log_{\sqrt{3}} 2) \left(\tfrac{9}{2} \log_2(N(I)) + 12 \right) \right\rceil$$

N(I) ideal norm p prime, parameter of the algebra

SQIsign LLL calls at level 1

Parameter example with SQIsign LLL calls at LVL1

Runtime estimation SQIsign LLL calls (lvl1)

Gap to practice

Example:

bitsize	T_{Lagr}		T_{BKZ}	
N(I)	theory	no failure observed	theory	no failure observed
260	2986	9	64	3

Possible reasons:

- ? LLL analysis not tight
- ? Worst case never met

And if we did less iterations?

- + Guaranteed constant runtime
- + Output is lattice basis
- Output might not be sufficiently reduced
- → Running with reduced tours where risk is acceptable
- → Reasonable runtime
 - \rightarrow Experiments possible

CT-BKZ-2 is constant-time

Algorithm Parameters	old LLL	CT-BKZ-2	$T_{ m BKZ}$	$T_{ m Lagr}$
LVL1	8,72	36,0	5	9
LVL3	17,3	126	6	12
LVL5	26,4	374	10	18

Algorithm	old LLL	CT-BKZ-2
Integers	СТ	СТ
LVL1	8,72 37 words	36,0 37 words
LVL3	17,3 55 words	126 55 words
LVL5	26,4 72 words	374 72 words

Algorithm	old LLL	C	T-BKZ-2
Integers	СТ	СТ	short CT
LVL1	8,72 37 words	36,0 37 words	
LVL3	17,3 55 words	126 55 words	28,8 28 words
LVL5	26,4 72 words	374 72 words	107 37 words

Algorithm	old L	LL	C	T-BKZ-2
Integers	СТ	non-CT	СТ	short CT
LVL1	8,72 37 words	0,0016	36,0 37 words	9,78 20 words
LVL3	17,3 55 words	0,0025	126 55 words	28,8 28 words
LVL5	26,4 72 words	0,0031	374 72 words	107 37 words

Integers and other limitations

- Current bottleneck: constant-time GCD
 - Rationals
 - Constant-time GCD self-implemented
 - Very large numbers
- Other number types?

Future hopes?

- → Use compiler optimization
- → Other number types
- ? Can SQIsign use reduced iterations?

Future hopes?

- → Use compiler optimization
- → Other number types

Questions?

? Can SQIsign use reduced iterations?