

Technical Report: NAVTRAEQUIPCEN IH-242

ANALYSIS OF ACOUSTIC SYNTHESIZERS FOR PASSIVE SONAR SIMULATION

Electronics and Acoustics Laboratory Naval Training Equipment Center Orlando, Florida 32813

September 1976

Final Report for Period July 1973 - September 1974

DoD Distribution Statement

Approved for public release; distribution unlimited.

Prepared for Naval Sea Systems Command Sonar Technology Office (NAVSEA06H13) Washington, D. C. 20360

NAVAL TRAINING EQUIPMENT CENTER ORLANDO, FLORIDA 32813 Me Member repender.

Decument should seman in statement A per me arest.

NATRAFFUIRCEN.

10/13/75

Technical Report: NAVTRAFOUIPCEN IH-242

ANALYSIS OF ACOUSTIC SYNTHESIZERS FOR PASSIVE SONAR SIMULATION

Herbert Berke

September 1976

GOVERNMENT RIGHTS IN DATA STATEMENT

Reproduction of this publication in whole or in part is permitted for any purpose of the United States Government.

Approved:

M. ARONSON Head, Electronics and Acoustics Laboratory

J. F. HARVEY
Director, Research and Technology Department

NAVAL TRAINING EQUIPMENT CENTER ORLANDO, FLORIDA

32813

	REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS
		BEFORE COMPLETING FORM CCESSION NO. 3. REC.PIENT'S CATALOG NUMBER
		SEESSION NO. OF NEED PER SECONDEN
	IH-242	
	TITLE THIN BUSINES	9 Fina! Kapa.
//	Analysis of Acoustic Synthesizers /	Jula 273 - September 474
2/	for Passive Sonar Simulation	PERFORMING ORG. REPORT NUMBER
r	TOT PASSIVE SONAL SIMULACIONS	
	7. AUTHOR(s)	3. CONTRACT OR GRANT NUMBER
1		
M	Herbert/Berke	
9		
	9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
	Electronics and Acoustics Laboratory (N-2	12)
	Naval Training Equipment Center	NAVTDATOUTDOTAL TACK NO 270
	Orlando, Florida 32813	NAVTRAEQUIPCEN TASK NO. 372
	Naval Sea Systems Command	(1) Sept 276 (12)
	Sonar Technology Office (NAVSEA 06H13)	13. NUMBER OF PAGES
	Washington, D. C. 20360	48 /32
	14. MONITORING AGENCY NAME & ADDRESS(II dillerent from Contro	1 '
-4		
1//	NAVTKAEOUIPC-IH-	- 14 A Unclassified
4/	Mill mink of the I	154. DECLASSIFICATION DOWNGRADING
i	16. DISTRIBUTION STATEMENT (of this Report)	
	Approved for public release; distribution	unlimited
	, , , , , , , , , , , , , , , , , , , ,	
	17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20,	AND THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.
16	NATTHER INCELL	-3721 /
	18. SUPPLEMENTARY NOTES	
1		
1	19. KEY WORDS (Continue on reverse side if necessary and identify by	block number)
	Noise Simulators, Passive Sonar Simulation	•
1	NOTSE Simulators, Passive Sonar Simulation	П
11		
7	O. ABSTRACT (Continue on reverse side if necessary and identify by	block number)
	This report provides a summary of acoustic	synthesizers that are either
	integral parts of ASW training devices, or	r function as research tools to
	create target spectra information. Quest	ionnaires were submitted to users
	and designers of passive sonar acoustic sy	
	returned to the Naval Training Equipment (
	form of a Device Comparison Chart, Table	
	information in the way of specification de	ata so that comparisons and
	DD 1 JAN 75 1473 EDITION OF 1 NOV 65 IS OBSOLETE	Unclassified
	E/M 0102-014-4401	ECURITY CLASSIFICATION OF THIS PAGE (When Date But

390462

1/3

LUIRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

evaluations of these synthesizers may be made in related studies.

The results showed many basic similarities for the acoustic synthesizers, e.g., multiple target presentation, variable target types, ocean modeling and spectrum control.

A recommendation is made to investigate the possibility of developing an acoustic synthesizer that would be adaptable for all passive sonar training.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered

NAVTRAEQUIPCEN IH-242 TABLE OF CONTENTS

Section		Page
I	INTRODUCTION	3
	Acoustic Simulation	3
	Sound Classification	3
II	STATEMENT OF THE PROBLEM	5
III	PROCEDURF	6
	Description of Survey	6
IV	RESULTS/DISCUSSION	7
	Input/Output Control	7
	Target Information: Weapons	7
	Target Spectra	7
	Oceans Represented .	10
٧	CONCLUSIONS	10
VI	RECOMMENDATIONS	10
VII	REFERENCES	12
Appendix A	HISTORICAL DEVELOPMENT OF SYNTHESIZEP TECHNIQUES	13
Appendix B	ACOUSTIC SYNTHESIZER STUDY, SAMPLE SHEET	22
Appendix C	ACOUSTIC SYNTHESIZER STUDY, DETAILS	24

NAVTRAEOUIPCEN IH-242 LIST OF ILLUSTRATIONS

<u>Figure</u>		Page
1	Typical Synthesizer Block Diagram	4
	LIST OF TABLES	
Table		
1	Device Comparison Chart	8
2	Summary of Devices	17
3	Survey of Acoustic Simulation	18

MAVTPAEOUIPCEN IH-242

SECTION I

INTRODUCTION

ACOUSTIC SIMULATION

No systematic study has been performed recently to summarize the different acoustic synthesizers that are being used for passive sonar operator training in the skills of target detection, tracking, classification, and identification. The performance characteristics requirements for these target acoustic synthesizers vary with:

- a. The sonar to be simulated
- h. The ocean area that is to be used
- c. The technical background of the individual designing the synthesizer.

Many of the acoustic synthesizers are an integral part of trainers that are being used for team tactical training and represent a small part of the complete trainer. The cost of this portion of the trainer is difficult to assess, but a well rounded guess would be about 50,000 to 100,000 dollars. The acoustic target synthesizer provides the sonar operator trainee with a spectrum of the target signature characteristics. Figure 1 is a block diagram of a typical synthesizer that shows the various noises that would make up a final target signature. This stimuli is processed in the sonar unit and activates the various displays and indicators, both aural and visual. Analog and/or digital stimulation control have been used depending on whether:

- a. The signal is fed into the sonar processors, which would analyze the analog signal and then display it, or
- b. The processor is hypassed and the digitally controlled input signal now fed directly into the displays.

Poth methods are presently being used, and it was found that there are arguments, pro and con, for both techniques.

Though it is not the purpose of this report to analyze the acoustical data used in target synthesis, a brief synonsis of the components that make up the target characteristics is presented.

SOUND CLASSIFICATION

Sounds making up the acoustic environment are classified by their sources as follows:

Figure 1. Typical Synthesizer Block Diagram

No. of the last

MAVTRAFQUIPCEN IH-242

a. Radiated Ship-Noise

1

- (1) Hydrodynamic flow noise
- (2) Propellor cavitation noise
- (3) Various distinct line spectra produced by propulsion and auxiliary machinery

Target radiated noise and echoes are a function of target type, motion, depth, and ocean effects.

- b. Ships Self-Noise
 - (1) The same general features as radiated ship noise
 - (?) Peverberation of the transmitted sonar pulse

Own-ship noise is a function of own-ship motion and depth. When the own-ship is actively echo ranging, reverberations are a function of pulse width, thermal layer depth, and own-ship depth.

- c. Marine Ambient Noise
 - (1) Non-directional: background noise generated by wave action
- (2) Directional; various sound characteristics caused by marine life.

Marine life noise is introduced as either omni-directional or directional signals. Directional marine life noise is attenuated as a function or range and thermal layer depth.

Sea state noise can be introduced by the sonar program operator who has the capability of entering sea states ranging from a calm sea to a rough sea, or may be a computer controlled input.

SECTION II

STATEMENT OF THE PROPLEM

Many acoustic synthesizers presently exist and are being used as integral parts of sonar trainers and research tools. It is the purpose of this report to list the various characteristics of the passive sonar acoustic synthesizers. This data may result in savings of time, money, and improved training technology, in future designs of acoustic synthesizers.

SECTION III

PPOCEDURE

DESCRIPTION OF SURVEY

Data for this study was obtained by means of an in-depth literature survey on acoustic synthesizers for passive sonars. All available data sources were used to identify past, current, and near future synthesizers. The data sources are as follows:

a. Source: IR&D Reports, DDC Report Mo. IR 1164
Method of Access: Computer Search, March 1974 (II)
Extent of survey: Twenty-two reports were studied with a large percentage from Hughes and Raytheon. Contacts with their technical people showed that most of their acoustic signatures are obtained from magnetic tapes.

b. Source: Research and Development Planning Summaries, DPC Peport No. PP1041

Method of Access: Computer Search, March 1974 (S)

Extent of Survey: Twenty-three Form 1634's were studied. One contact was made with ONR Undersea Program Office, but the information was identical with the DD 1498 Work Unit Plans.

c. Source: Work Unit Management Information Systems, DDC Report No. T21070

Method of access: Computer Search, March 1974 (C)

Extent of Survey: Thirty-three Form 1498 Work Unit Plans were studied. This information led to several contacts with various government organizations.

- d. Source: Study by TAEG, Naval Training Fquipment Center (reference 7), see Appendix A.
- e. The above data was supplemented for facilities that had an acoustic synthesizer which could relate to this survey by means of a questionnaire. The ouestionnaire form in Appendix P was sent for accomplishment and to be returned to the Naval Training Equipment Center. The form consists of pertinent questions relating to characteristics of acoustic synthesizers used for passive sonar target synthesis.

The questions request the following information:

- a. Items 1, 2, and 3. The name of the device, the year it was built, for whom, and the purpose and description of the device.
- b. Items 4 and 5: The type of control used for the input to the synthesizer, and defines whether the output of the synthesizer is feeding into the sonar processor or goes directly to the aural and visual displays.

- c. Items 6a, 6b, and 6d: Supply answers for target detail, i.e., amount, types, and whether multiple targets can be presented simultaneously
- d. Items 6c and 6e. The number of discrete frequencies available for target signature synthesis and defines characteristics and resolution of these lines
- e. Items 7 and 8: The types of weapons and noises that are simulated for each device.
- f. Items 9 and 10: The type of ocean math model that is used and defines the oceans that are represented for each synthesizer.
- g. Item 11: The sonars that are to be simulated or stimulated by each synthesizer. The associated operational frequencies are readily available and can be found in classified documents relating to these scnars (references 1 through 6).

This information was consolidated into the Pevice Comparison Chart of Table 1. The chart does not attempt to show the worst case or the best, but does attempt to detail the characteristics that are considered to be of importance for passive sonar target synthesis by each designer/user of the device.

SECTION IV

RESULTS/DISCUSSION

The Device Comparison Chart, Table 1, is a digest of the data contained in Appendix C that was orginated for each synthesizer. The synthesizer characteristics represent two basic subsystems; the target generation, and the propagation loss for the respective oceans. The information as shown consists of the following categories with the explanations of these categories described in Section III of this report.

- a. <u>Input/Output Control</u>: The state-of-the-art advances in acoustic simulation technology have led to the development of training devices which use digital and hybrid techniques for the generation of acoustic signals. The output signals are digital if they are energizing simulated sonar displays, or they are analog if they are stimulating operation (actual) sonar components which would be integral parts of the trainer.
- b. Target Information/Weapons Simulated: types, quantity, and multiple: Acoustical data can be obtained from reference 8 on the targets and weapons that are listed below. The number of signatures used in the synthesizers depend on the size and complexity of the trainer.

TABLE 1. DEVICE COMPARISON CHART

			1	ACOUS	TIC S	YNTHE	SIZER	CHARAC	TERIS	TICS	
Synthesizer	Input Analo, /bi _ttal /Habi La	Ontput Analo:/Digital/Hybrid	Amount of Taryets	Multiple Taract Presentation	Amount of Discrete Frequencies (Lines)	Line Amplituale (DB)	Resolution (DB)	Line Width (117)	Resolution (HZ)	Amerit of Weapons	Propabliction Loss Mindel
	,	7 -	r	,	·	_		,		,	*
2F56	D	A	3	Yes	Any v	riall vid:			0.01	•	Computer Math Model
2F69D	Я	н	3	Yes	100	0-130	1	-		2	16 Sound Loss Curves
2592	۵	A	-	-	30	(Conj	uter	controll	i d)	3	Data is provided
14844	Ä	н	4	Yes	300	0-127	1	0.2-3.1	0.2	2	Derived from ASWEPS Data
2F106	a	Α	-	Yes	(Not	or Ta	set C	assific.	tion).	2	ASRAP
2F87 T	н	λ	4	Yes	300	0-63	1	0.2-24	-	3	16 Sound Loss Curves
14E19	D	כ	Team	Train	r wit	Prog	ammab	le Input			
14823	۵	D	••	"		"		"			
14E74	٥	٥	••	"	1 "	"		••			
21A38	H	A	15	6	20	0-75	:	0.15-12	3.35	5	Fixed Net orks
21A29/2	ų	A	9	6	10	(Compl	iter C	ntrolle	3)	-	AMOS
CME	н	A	ló	Opt.	70	9-127	1	0.2-	0.1	Opt.	Specified ty Customer
GNATS	H	λ	•	Opt.	48	-10 to	1	Variable	']	٠	Usec at Sea
DASS	٥	A	•	Opt.	105	13	1.5	Varicol			Usec at Sea
21340	D	A	12	Yes	12	0-75	1	0.15-12	0.05	6	FACT

- 1. U. S. Diesel Sub
- 11. Freighter
- 2. Foreign Diesel Sub
- 12. Cruiser
- 3. U. S. Nuclear Sub
- 13. Destroyer Fscort

16. Countermeasures

- 4. Foreign Nuclear Sub
- 14. Aircraft
- 5. Snorkeling Sub
- 15. Hydrofoil

6. Surfaced Sub

J

7. Merchant Ship

17. Mines

8. Patrol Boats

18. Depth Rombs

9. Destroyer

19. Rockets

10. Fishing Boat

20. Various Torpedoes

More explicit data can be obtained in references 8 and 9. These two references state that an acoustic synthesizer that contains these signatures, and having a capability of multiple presentation, is desirable in training situations.

- c. Target Spectrum Information: resolution, amplitude/frequency control: The noise spectra radiated by targets consists of two basic types:
 - (1) Broadband noise that has a continuous spectra.
- (2) Narrow band noise that consists of sets of line components, where each set contains all lines in a harmonic family. The most important characteristics for classification in a narrow band noise were found to be:
 - (a) Line strength a function of speed and depth
- (b) Line width defines the energy contained in the tonal bandwidth.
- (c) Line stability phase or frequency modulation: The quantity of lines (in this analysis) are important clues for final classification. The width of each line must be incremently variable for further cues, along with its resolution and amplitude. This information is dependent on the target and the sonar processor and at the present time, varies with each acoustic synthesizer (reference 1, 2, 3, 5, and 6). A recent proposal for a sonar operational trainer by the Naval Underwater Systems Center (reference 9) has a total of 50 tonal lines. More detailed information can be obtained in this reference. Further classified information relating to line strength, line width, and line stability can be obtained from reference 8.

d. Oceans Represented and Propagation Loss Math Model: Fach synthesizer simulated oceans dependent upon the geographic location of where the training was to be accomplished. The propagation math model was variable, except for the MUSC synthesizers, GNATS and DASS, which were designed to be used at sea.

SECTION V

CONCLUSIONS

Findings of this survey support the premise that there are basic similarities for the various synthesizers, e.g., multiple target presentation, variable target types, ocean propagation loss modeling, and spectrum control for target signature synthesis. The results of this survey would indicate the following:

- a. Multiple target presentation is desirable.
- b. Ocean modeling should have the flexibility of being programmable for the acoustic synthesizer and would be dependent on the user.
- c. Tonal line control should be capable of meeting spectrum analyzer resolution. The amount of lines for a signature is variable, but the incremental amplitude control, width, and modulation control for an acoustic synthesizer should be as good as the processor. Detailed information on spectra resolution can be obtained in reference 8.

SECTION VI

RECOMMENDATIONS

This survey has shown that there is a wide variation in passive sonar acoustic synthesizer technology.

A recommendation would be that it may be possible to develop an acoustic synthesizer that would be adaptable for all passive sonar training. This would involve the following:

- a. Determine which method of input control, analog or digital, would be more practical. The present state-of-the-art defines digital control as being more predictable than analog control.
- b. Determine the "training versus cost" effectiveness of using government furnished components of operational sonars as an integral part of the acoustic synthesizer or to simulate the sonar processor and the displays.

c. Determine the amount of information in the target spectra that is required for improving training techniques.

To finalize, it is recommended that the facility containing the Countermeasures Evaluator (CME) in use at the Naval Coastal Systems Laboratory, Panama City, Florida, should be studied as a comparison for a passive sonar facility for the Naval Training Equipment Center. The CME can use any ocean specified, can introduce multiple targets, and has the capability of varying discrete frequency lines in both amplitude and resolution. The facility does not have the capability for testing and evaluating new synthesizer technology and training effectiveness. An improved facility would allow for:

Investigation of trainee performance measurements.

Testing and verifying technology for new concepts in trainers for better training effectiveness.

Investigation of the amount of spectra information in the acoustic signature that is critical in training.

REFERENCES

- 1. NAVSO P-2098-2, 2 November 1967, Acoustic Simulator Maintenance Handbook, Device 21A39/2, NAVTRADEVCEN (C)
- 2. NAVSO P-2098-5, April 1967, Equipment Maintenance Handbook, Device 21A39/2, NAVTRADEVCEN (C)
- 3. NAVSO P-2097, July 1967, Operators Guide for Sonar Room Tactical Team Trainer, Device 21A39/2, NAVTRADEVCEN (C)
- 4. SSBN Sonar System and SS/SSN Sonar System, Volumes 1 and 2, NAVSHIPS (C)
- 5. NAVO P-3202-1, May 1962, Maintenance Handbook for AN/ROQ-2 Sonar Simulator, Device X21A38/2, NAVTRADEVCEN (C)
- 6. NAVTRADEVCEN P-3726-1, Maintenance Handbook for ATT Sonar Simulation NAVTRADEVCEN
- 7. TAEG-NAVTRAEQUIPCEN, Orlando, Florida, January 1974, Generalized Acoustic Sensor Operator Trainer SS74-1, (pp 28-35)
- 8. NAVSHIPS, 1971, Principles of Lofargram Analysis, Human Factors Research, Inc. (S)
- 9. NUSC, January 1973, Target Modeling Study for the Sonar Operator Trainer (S)

APPENDIX A

Historical Development of Synthesizer Techniques (Reference 7)

Appendix A contains a summary of simulation techniques that have been used over a period of years. It also contains Table 2, Summary of Devices, and Table 3, Survey of Acoustic Simulation. This appendix provides a brief history of acoustic sonar technology to present the progress that has been made throughout the years in attempting to synthesize acoustic signals for passive sonar detection training. The information of the various capabilities and limitations for each technology helped to shape each future technology in target simulation and portrays state-of-the-art progression in the acoustic sensor training equipment design.

Rooftop Transmitters: 1955-1967 (Air ASW Only)

Description

A series of trainers, known as "rooftop trainers" were developed. These trainers used a transmitter and an antenna to send acoustics information to aircraft flying in the vicinity. In many cases, the transmitter and antenna portions of an actual sonobuoy were used. Simulated submarine propeller beats were electronically generated, immersed in noise, and superimposed upon a radio-frequency (RF) carrier to be transmitted to the sonobuoy receiver in the aircraft. This type of trainer is also utilized, by eliminating the RF link, with the operational acoustic recorder in a class-room training situation. The simulated sea noises in which signals were immersed were generally tape recordings of actual sea sounds because artificial generation of such sea noises was judged to be unrealistic.

Capabilities/Limitations (C/L)

- (C) Can be utilized as a maintenance aid in pre-flighting equipment.
- (C) Can be utilized as a team trainer in aircraft situation or as individual trainer in classroom situation.
- (L) FCC regulations prohibit unrestricted operation since bonobuoy transmitter frequencies interfere with standard communication networks.
- (L) Team training in aircraft is expensive.

Tape Recorder/Playback Units: 1958 - 1965

Description

Magnetic tape recording equipment was utilized to record sounds generated under operational situations. That is, actual submarine and surface vessel sounds received by sonar, sonobuoy, or dipped sonar equipment are

recorded on magnetic tape and annotated by the proper government agencies. These recordings are then edited and distributed to trainees utilizing operational acoustic processing equipment in schools and at sea. The tape editing capability includes the provision for recording narrative to improve the instructional capability.

Capabilities/Limitations

- (C) Taped sounds are realistic.
- (L) Generation of tapes is costly as it involves coordinated activities of submarines, surface vessels and aircraft.
- (L) Taped simulation in non-dynamic, i.e., problem progression is not under instructor control.

10

Analog Signal Simulators: 1959 - 1965

Description

A group of tactics/weapon system trainers were developed which used analog simulation techniques to generate underwater sounds. These trainers contained a group of sinusoidal signal generators to represent individual chracteristics of targets, i.e., fundamental frequency of propeller, number of propellers, pumps, etc. These are individually adjustable by instructor control. Signals are summed, immersed in noise and routed to the operational acoustic processor under trainee control. The generation of background noise was generally considered unrealistic unless tape recording of actual sea noise were utilized.

Capabilities/Limitations

- (C) Simulation is dynamic
- (C) Relatively inexpensive as compared to utilization of operational equipment
- (L) Analog hardware is expensive to duplicate as compared to digital software and more difficult to maintain.
- (L) Difficult to modify in response to new or updated operational equipment

Digital/Hybrid Signal Simulators: 1968-1973

Description

Recent state-of-the-art advances in underwater simulation have led to the development of a series of training devices which use digital and hybrid techniques for the generation of acoustic signals. The acoustic spectrum is defined in the frequency domain by digital information (words) representing the relative strength and frequency of each discrete component in the spectrum. By a digital processing techniques known as the Inverse Fast Fourier Transform (IFFT), this digital data is transformed into a composite signal (time domain) characteristic of the acoustic signal. This signal is then directed to the operational equipment for analysis and processing. This simulation technique is the converse of the process performed by the latest operational acoustic processing equipment wherein an acoustic signal (time domain) is received, digitized, analyzed by an FFT processor and outputted as being composed of a sequence of discrete frequency components (frequency domain information). Another method of digital simulation is implemented by having a stored sine table resident in computer memory which is sampled at a rate representing the desired frequency. Generally, some form of analog generated background noise is added to this signal to provide realism.

Capabilities/Limitations

- (C) Simulation is dynamic.
- (C) Digital software inexpensive to duplicate, modify, and maintain.
- (L) Development costs are high due to amount of programming required.

Tables 2 and 3 provide a concise overview of the existing acoustic training devices, the year procured, quantities and a hrief acoustic related description.

NAVTRAEQUIPCEN IH-242

DEVICE TYPE			12		4						
PROCURENCE	THEN NAT	300	SOTING	SINULATION STANDIATION TO STANDIATION TO STANDIATION IS STANDIATION TO STANDIATIO	OUNG	MARY COROUR AND	DINAN	SAN TO TAN TO SECOND TO SE	128.5	**************************************	20 2 4 2 2 2 4 10 K
1973								14E23			
1972					-			14524		-	
1971				263Z							
1970				14844	-						
1969						-		14E19			
1968				2F87(T)			-				
1967	14835										
1966			21812				21812			2	21812
1965			14E7A		_	14E15					
1964			2564			14514					
1963		14210				14E12				27	21A39
1962			2F69								
1961	14822	14815	14E7				,		21855	21A38	38
1960	14821	14812	1732			14E3					
1959	14819		2£66			14E6					
1958	15M13					1751					
1955	15M12B										
		AIR ASW	м		-	SURF	SURFACE ASW		IS	SUB-SURFACE	1 5

TABLE 2. SUMMARY OF DEVICES

17

NAVTRAFQUIPCEN 1H-242

TABLE 3. SURVEY OF ACOUSTIC SIMULATION

DEVICE	YEAR	QUANTI TY	DESCRIPTION - ACOUSTIC RELATED
2F64	1964	2	Dipping sonar of SH-3A helicopter. Analog stimulation of operational equipment.
2F64A	1965	3	Dipping sonar of SH-3(HS) helicopter. Analog stimulation of AQS-13 and AQS-13A sonars.
2F6 6	1958	1	S-2D ASW mission WST. Analog simulation.
2F66A	1964	3	S-2E(VS) ASW mission WST. Analog simulation.
2F66C	1964	1	S-2E(VS) ASW mission WST. Analog simulation.
2F69	1961	1	P-3 (VP) series aircraft. ASW mission WST. Analog simulation.
2F69A	1962	1	P-3 (VP) series aircraft. ASW mission WST. Analog simulation.
2 F69 B	1963	3	P-3 (VP) series aircraft. ASW mission WST. Analog simulation.
2F71(T)	1959	7	SP-2E/H (VP) ASW Tactical Team Trainer. Analog simulation.
2F87(T)	1968	2	P-3C (VP) ASW Tactical Team Trainer. Digitally controlled analog stimulation of operational equipment.
2F9 2	1971	1	S-3A Weapon System Trainer. Digitally generated signals - stimulation of operational equipment.
14B12	1960	30	VP-VS Julie Operator Trainer. Tape playback unit into ASA - 20/26 Julie recorder.
14B15	1960-69	38	VP-VS Jesebel Operator Trainer. Tape playback unit into AQA-4 or AQA-5 recorder via ARR-52 Sonobgoy receiver.
14B19A	1951	191	Airborne Julie Trainer. Julie signal genera- tor fed into Julie recorder via Sonobuoy receiver.
14 B 19B	1961	4	Classroom version of Device 14B19A.
14B21	1960	133	Jezebel Target Simulator. Device provides Codar/ Lofar info and transmits to Sonobuov receiver.

NAVTRAFQUIPCEN 1H-242

TABLE 3. SURVEY OF ACOUSTIC SIMULATION (Cont)

DEVICE	YEAR	QUANTITY	DESCRIPTION - ACOUSTIC RELATED
14B22	1961	3	Julie attachment to 15M13 Sonobouy flight trainer (Roof Top).
14B35	1967	2	Julie/Jezebel Operator Trainer - Roof Top - can also be utilized in classroom by tapping off signal before antenna.
14B44	1970	2	Difar Operator Trainer. Multi-station digital generation of acoustic signals.
14E1	1958	1	Sonar tape recorder.
1 4E 3	1960	2	Sonar tape playback unit.
14E6	1958	1	Sonar tape Editor/Duplicator.
14E7	1961	4	AQS-10 Airborne Sonar Classroom Trainer. Sonar signals synthetically generated (SH-3A)(HS)
14E7A	1966	1	Same as Device 14E7 but uses tapes for ambient noises.
14E10	1963-64	11	AQS-10/13 Helo Sonar Type playback series.
14E12	1963	5	Sonar Tape Recorder/Playback for SQS-26 sonar.
14E14	1964	1	Sonar-tape Playback unit with 5 trainee stations.
14E15	1965	1	Sonar-tape Editor/Reproducer Playback unit.
1 4E 19	1969	8	SQS-26 Sonar Operator/Team Trainer. Digital signal simulation feeds operational sonar set.
14E23	1973	1	SQS-35 Sonar Modular Addition to 14A2. Digital simulation of sonar signals.
14E24	1972	1	SQQ-23 (Pair) Sonar Operator Trainer. Digital signal simulation.
15M12B	1955-56	45	Rooftop mounted sonobouys transmit taped noise and beat generator signals to aircraft.
15M13	1958	16	Rooftop sonobouy simulator.
21A38	1961	1	Submarine ASW Training Facility, Analog simulation.
21A39	1963	1	Pleet Ballistic Missile Team Trainer. Analog simulation.

TABLE 3. SURVEY OF ACOUSTIC SIMULATION (Cont)

DEVICE	YEAR	QUANTITY	DESCRIPTION - ACOUSTIC RELATED
21A40	1973	1	Submarine Attack Trainer. Digital generated signals stimulate operational equipment.
21B12	1966	80	ASW Submarine Target (miniaturized).
21855	1961	5	Tape recorder/playback into operational sonar set.

A+

NAVTRAFOUIPCEN IH-242

Appendix B

ACOUSTIC SYNTHESIZER STUDY, SAMPLE SHEET

Description _					
Input Control:	Analog	()		
	Digital	()		
	Both	()		
Output data:	Analog	()		
	Digital	()		
Target Informat	ion:				
a. Number of t	argets				
b. Are multipl	e targets a	vai	labl	.e?	
c. Number of d	iscrete fre	equ e	ncie	s. (Lines)	
d. List types	of targets.				
1.		5.			9
2.		6.			10.
3.		7.			11.
4.		8.			12.
		1		e f freque	ncy resolutio

Appendix R (Cont)

. 1	List weapons simulate	eđ.		
3	1.	4	7	
2	2	5	8	
3	3	6	9. <u></u> _	
. 1	List noises simulated	d.		
3	1	4	7	
2	2	5	8	
	3			
	Oceans represented.			-
1	l	3	5.	
2	Define math model of		6	•
2 . D -	Define math model of	propagation loss.		
2 . D -		propagation loss.		
2 . D -	Define math model of	propagation loss.		
2 . D -	Define math model of	propagation loss.		
2 . D -	Define math model of	propagation loss.		
2 . D -	Define math model of	propagation loss.		
2 . D -	Define math model of	propagation loss.		

1

APPENDIX C

ACOUSTIC SYNTHESIZER STUDY, DETAILS

Appendix C contains the questionnaire replies relating to the individual target synthesizers and also the pertinent data. These forms had been sent to the technical personnel directly involved with the design or the original specifications.

ACOUSTIC SYNTHESIZER STUDY

1.	Device	2F66D		
2.	Year	1973		
3.	Description	S2G Weapon	Systems T	rainer, provides crew and operator
	training for AQA-	7		
4.	Input Control:	Analog	()	
		Digital	(x)	
		Both	()	
5.	Output data:	Analog	(x)	
		Digital	()	
6.	Target Informat	ion:		
				e? Yes (3)
	c. Number of d	liscrete fre	quencie	s. (Lines) 16 Fundamental
	d. List types	of targets.		
	1. Nuclear	Sub	5	9
	2. Convoy		6	10.
	3. Destroyer	<u> </u>	7	11.
	4.			12.
	e. Define line	control (a	mplitud	e & frequency resolution.
	1. Amplitude	- 256 steps o	ver 48 DB	range.
	?. Frequency	- resolution	of 2 micre	oseconds.
	3. Lines may	be pro duce d e	very 0,01	HZ over range.
	4. Lines have	variable tre	quency and	j width.
	S. Line chara	cteristics ma	y be a fu	nction of any set of parameters
	associated with	the target dy	namics.	

List weapons	simulated.		
1. Torpedo	4.	7.	
2. Depth Cha	rges 5.	8	·
3. <u>; </u>	6.	9	
List noises	simulated.		
1. Marine Life	4.	Hydroplane 7.	
2. Torpedo runn	ing 5.	8.	······
3. Convoy	6.	9	
Oceans repre	sent ed .		
1. Mediterrane	an 3.	South of Greenland 5.	
1. Mediterrane 2. Caribbean Define math	4.	6.	Stored in
1. Mediterrane 2. Caribbean Define math	4. model of propaga	6	Stored in
1. Mediterrane 2. Caribbean Define math in Sound loss propried to the soun	4. model of propaga	66	Stored in
1. Mediterrane 2. Caribbean Define math in Sound loss propried to the soun	4. nodel of propaga file from computer ries. Systems and vari	66	Stored in
1. Mediterrane 2. Caribbean Define math r Sound loss pro read-only-memory	4. nodel of propaga file from computer ries. Systems and vari	66	Stored in
1. Mediterrane 2. Caribbean Define math r Sound loss pro read-only-memory List Sonar S SSQ-36	4. model of propaga file from computer ries. Systems and vari	66	Stored in
1. Mediterrane 2. Caribbean Define math r Sound loss pro read-only-memory List Sonar S SSQ-36 SSQ-41	4. model of propaga file from computer ries. Systems and vari	6	Stored in

ACOUSTIC SYNTHESIZER STUDY

1.	Device _	2F69D, P-3Λ	, Weapon	System Trainer
2.	Year _	Started 196		
3.	Description _	P-3 Orion As	W Crew T	rainer
	Flight - Pilot/	Co-Pilot; Ta	ectics -	TACCO/MAD-Radar Navigator/DIFAR
4.	Input Control:	Analog	(X)	Flight
		Digital	(x)	Tactics (DDP-516)
		Both	()	
5.	Output data:	Analog	(x)	Flight
		Digital	(x)	Tactics
6.	Target Informat	ion:		
	a. Number of t	argets	3	
	b. Are multipl	e targets	availab	le? <u>Yes</u>
	c. Number of d	iscrete fr	equenci	es. (Lines) 100 Lines/Target, 300 lines
	d. List types	of targets	i .	possible
	1. Diesel Su		5	9
	2. U.S. Nucl	Soviet) ear Sub	6	10.
	3. Soviet Nu	clear Sub	7	11.
	4. Merchant		8	12.
	e. Define line	control (amplitu	de & frequency resolution.
	1. 50/300/850			DB (1 DB Increments)
	2. Shear Curr	ent (Bandwi	ude: 0+ Uth: 0-	63)
	3. Artifacts	(Amplit (Freq.		7 2400 HZ (1 HZ Increment))
	4. Pinnacle S	ize: Small	Medium,	Large
				-64 DB (1 DB Increments)

List weapo	ns simulate	đ.		
1. MK-44 To	orpedo	4.	7.	
2. MK-46 To	orpedo	5	8.	
3	`	6	9.	
List noise	s simulated (Back-Ground)	•		
1. Sea-State	(Wash-Over) (Water Garule	4 Hydrophone	(Lowering) (Hung) 7.Po	(1-2 Engine ever Plant(in/out of
2. Diesel/Tu			Intermittent RF) Noisy Battery	(Sync ropeller (Cavitation
3. Biologica	(Porpoise 1 (Whales (Snopping Sh	_ ,		(Singing rpedo & Aircraft
Oceans rep				
1.		3	5	
2.		4.	6.	
		propagation los		
	_		points)	
			oints)	•
			7111107	•
		nd various disp		
	_	.u various uisp	,iaya.	
SSQ-36	B.T.			
SSQ-41	LOFAR			
SSQ-47	RO			
SSQ-53	DIFAR			
<u>:</u>				
				

ACOUSTIC SYNTHESIZER STUDY

Year #1 Delivered March 1974				
Description <u>J</u>	Elight & Tac	tics Simu	lation	
Input Control:	Analog	()		
	Digital	(_X)		
	Both	()		
Output data:	Analog	(x)		
	Digital	()		
Target Informat	ion:			
			e?	
			es. (Lines) 30	
d. List types	of targets	•		
1. Surface S	Ship	5	9	
			10.	
			11.	
			12.	
e. Define line	control (amplitud	e & frequency resolution.	
Not simulated	i. Up to 30	Voltage	audio signals in voltage analog	
	ited to the	coustic	Data Processor (GFP), and hence	
form are presen				
	lavs			
form are present	lays			

List weapons simula	ated.	
1. MK-46 MOD 0	4.	7
2. MK-46 MOD 1	5	8
3. MK-54 Depth Bo	omts 6.	9.
List noises simula	ted.	
1. Torpedo running so	ounds 4. Rain	7. Turbines, Engines
2. Ambient Sca-State	5. Singing props	8. <u>Cavitation</u>
3. Shrimp	6. Distant Shippin	g 9
Oceans represented	•	
1. Any desired - (An	"ocean 3 it" procedure is	suppl fed.
2	4	6.
	tored" tables defining properameters	······································
. List Sonar System	s and various displays.	(Sonobuoys)
SSQ-41 LOFAR	·	
SSO-53 DIFAR		
SSO-53 DIFAR SSQ-47 RO		
S\$0-47 RO		
SSQ-47 RO SSQ-50 CASS		

Multi-Purpose Display and Auxiliary read-out.

ACOUSTIC SYNTHESIZER STUDY

1.	Device	14B44, P3-C	, Aircraf	t ,				
2.	Year	1971, Patuxo	ent River	, Md. (1st of 4 Units)				
3.	Description	Replica of I	IFAR ope	rators stations for P3-C & provides				
	training for AQA	4-7 system						
4.	Input Control:	Analog	()					
		Digital	()					
		Both	(X)					
5.	Output data:	Analog	(_X)					
		Digital	(X)					
6.	Target Informa	tion:						
	a. Number of	targets	4					
				le? yes				
	c. Number of	discrete fr	equenci	es. (Lines) 300				
	d. List types	of targets	·•					
	1. Diesel I	Electric	5	9				
				10.				
				11.				
				12.				
				de & frequency resolution.				
	Discrete fre	equency lines	vary as	a function of target speed, depth				
	7 aspect.							
		l: 0-127 dh	in 1 DB	increments				
	Line Width:	Line Width: 0.2-3.1 HZ in 0.2 HZ increments						

List weapo		
1. Mine	4	7
2. Torpedo	5	8
3. <u>: </u>	•	9
List noise	s simulated.	
1. Biologi	cal sounds 4.	7
2	5	8
3	6	9
Oceans rep	resented. Programmable for an	
	available ocean.	
1.		5
2Define mat	3	6.
2Define mat	34h model of propagation loss	6.
2	34h model of propagation loss	6
2	A. h model of propagation loss of any given acoustic propagation for any given acoustic propagation. r Systems and various displacements and various displacements.	6
Define mat 64 point pl	3. 4. h model of propagation loss of of any given acoustic propagation for any given acoustic propagation. r Systems and various displayed the propagation of any given acoustic propagation.	6. Sation loss curve
Define mat 64 point pl	3. 4. h model of propagation loss of of any given acoustic propagation for any given acoustic propagation. r Systems and various displayed the propagation of any given acoustic propagation.	ation loss curve
Define mat 64 point pl	4. h model of propagation loss of any given acoustic propagation for any given acoustic propagation. r Systems and various displayed the propagation loss of any given acoustic propagation.	6s. gation loss curve
Define mat 64 peint pl List Sona SSQ-53 SSQ-47 SSQ-50	4. h model of propagation loss of any given acoustic propagation for any given acoustic propagation. r Systems and various displayed the propagation loss of any given acoustic propagation.	6s. gation loss curve

ACOUSTIC SYNTHESIZER STUDY

1.	Device	2F106, Train	er NTEC		•		
2.	Year	1975 - NAS, Nortolk					
3.	Description	provides tra	ining for	Light Airbor	ne Multi-Purpose		
	System (LAMPS)	on the SH-2D	Melicopte	r Weapon Sys	tem		
4.	Input Control	: Analog	()				
		Digital	()				
		Both	(x)		· · · · · · · · · · · · · · · · · · ·		
5.	Output data:	Analog	(x)				
		Digital	()		······································		
6.	Target Inform	ation:					
	b. Are multi	ple targets	availabl	e? Yes			
	c. Number of	discrete fr	equencie	s. (Lines)	NA		
	d. List type	s of targets	·•				
	1. Subs		5. Fishi	ng boat	9		
	2. Patro	l Boat	6. Freig	hters	_10		
	3. Destr	oyer	7		_11		
	4. Aircr	af t	8		_12		
					ncy resolution.		
	Target line noise characteristics include a very gross simulation of						
	audio response	s to target pa	arameters.	The ASA-26	B recorder is not use	<u>d f</u> or	
	target classif	ication. All	target da	ta is data-l	inked to own ship CIC		
	Station. This	is not simula	ited.				

7.	List weapons simulated.			
	1. MK-46 Torpedo	4.		7
	2. MK-44 Torpedo	5.		8.
	3.	6.		9.
8.	List noises simulated.			
	1. Marine life	4.	Aircraft noises	7.
	2. Geological noises	5.	Variable Sea-states	8.
	3. <u>SSO-41/47B Sunobuoys</u>	6.		9
9.	Oceans represented.			
	1. Atlantic	3.		.5
	2. Pacific	4.		6
10.	Define math model of pro	pag	ation loss.	
	Stored information ased on	ASR	EP data	
11.	List Sonar Systems and	var	ious displays.	
	AN/ARR 52B Receiver			···
	AN/ASA 26 Recorder			
	÷			

Device	2F87(T), P3	-C, Weap	ons System Trainer (Tactics)
Year	1971 (4 uni	ts)	
Description	Fixed base.	complet	ely computerized replica of P3-C
aircraft with t	rainee posit	ions for	TACCO, NAV/COM, & sensors
Input Control:	Analog	()	
	Digital	()	
	Both	(X)	
Output data:	Analog	(x)	
	Digital	()	
Target Informa	tion:		
a. Number of	targets _	4_	
b. Are multip	le targets	availa	ole? Convoy plus 3 individual targets
c. Number of	discrete f	requenc	ies. (Lines) 300
	of target	•	
	-		9
			10.
3. Merchant			11.
			12.
			ude & frequency resolution.
			n ammlitude and frequency as a function
	•		Level variable 0-63 db in 1 db increment
or target speed	and aspect	angre.	Devel variable 0-03 db in 1 db increment
Line width 0.2-	24 HZ		

···-
for ea

<u>tn</u>	ose encountered	aboard SSN 5	78, SSN	594 and SSBN (516 cla	isses.
Inp	out Control:	Analog	()	Much of the	contro	ol is exercised by th
		Digital	()	facility con	nputers	, with some control
		Both	(X)	under the di	rectio	on of operators from
ut	put data:	Analog	(X)	consol.s.	Stimu	lates processor
		Digital	()			
Car	get Informati	on:				
a .	Number of ta	rgets	15			
b.	Are multiple	targets	availab	le?6		
c.	Number of di	screte fro	equenci	es. (Lines)	2	0
d.	List types o	of targets	. 12 ta:	rgets, 3 own-s	hips	
	1. Snorkeling	Sub	5. Fish	ing vessels	9.	Hydrofoil ASW Craft
				rover		Small ASW Ships
	2. Battery Dri	ven Sub	6. Dest	toyer		January Mon Strips
	 Battery Dri Nuclear Power 			y Combatant St		
	. <u> </u>	ered Sub	7. Heav	y Combatant Sh	ip 11.	Merchant
e.	3. Nuclear Power 4. Surfaced Su	ered Sub	7. Heavy	y Combatant She Auxiliary	12.	Merchant Light Cruiser
е.	3. Nuclear Pow	ered Sub	7. Heavy	y Combatant She Auxiliary de & freque	12. ncy r	Merchant Light Cruiser esolution.

NAVTRAEOUIPCEN 1H-242

7.	List weapons simulated.	
	1. Steam Torpedo	4. Otto cycle engine (MK-487.
	2. High speed clee. Torpedo	58
	3. Low speed elec. Torpedo	69
8.	List noises simulated.	
	1. Marine Life (Tapes)	4. Carrier of UQC 7.
	2. Sea-States, 0-6	5 8. <u>·</u>
	3. Torpedo Door	69
9.	Oceans represented. No	
	1.	35
	2	4 6
	loss network, a bottom bounce	path propagation loss network, and ? ceviation
11.	list Sonar Systems and	various displays. AN/BQQ-2 System
	(1) SKATE Class	(2) PERMIT Class
	AN/BQG-3	AN/BQS-6B
	AN/BQS-6B	AN/BQA-3
	AN/BQS-6B	AN/BQA-3 AN/BQR-7
	AN/BQS-6B	
	AN/BQS-6B	AN/BQR-7

	Device /Facility			, S.C.
	_			
•	-			tactical team with conditions simulating
	all phases of ope	ration that	may be e	encountered aboard an SSBN 616 Class.
•	Input Control:	Analog	()	
		Digital	()	
		Both	(x)	
•	Output data:	Analog	(x)	Stimulates processor.
		Digital	()	
	Target Informat	ion:		
	a. Number of t	argets	9	
				ole?6
				.es. (Lines) 10
	d. List types		_	
	1. Merchant	-		uiser CA 9. Conventional Sub-Batte
				estroyer DD 10.
			· · ·	
			7 N.	iclear Sub SSN 11.
	3. Trawler			uclear Sub SSN 11.
	3. Trawler 4. Carrier C	v	8. Con	ventional Sub-Diffe:1
	3. Trawler 4. Carrier C e. Define line	control (8. Conv	ventional Sub-Diffel ide & frequency resolution.
	3. Trawler 4. Carrier C e. Define line	control (8. Conv	ventional Sub-Diffe:1
	3. Trawler 4. Carrier C e. Define line Six Target L	v control (ine Generato	8. Conv amplitu	ventional Sub-Diffel ide & frequency resolution.
	3. Trawler 4. Carrier C e. Define line Six Target L produces a line s	v control (ine Generato pectrum that	8. Convamplituers, one	ventional Sub-Diffel ide & frequency resolution. for each target, are used. Each TLG
	3. Trawler 4. Carrier C e. Define line Six Target L produces a line s generated by mach	v control (ine Generato pectrum that incry aboard	8. Convamplitues, one simulate the tar	ventional Sub-Diffel ide & frequency resolution. for each target, are used. Each TLG tes part of the frequency spectrum
	3. Trawler 4. Carrier C e. Define line Six Target L produces a line s generated by mach 10 discrete freq	control (ine Generato pectrum that incry aboard uencies, eac	8. Converse amplituers, one simulate the tar	ventional Sub-Diffel ide & frequency resolution. for each target, are used. Each TLG tes part of the frequency spectrum rget. The line spectrum consists of

List weapons simulated.		
1. Various Torpedoes	4.	7.
2.	5	8
3.	6	9
List noises simulated.		
1. Marine Life	4. Weapor explosions	7.
2. <u>Variable Sea States</u>	5. Own ship noises	8
3. Torpedo Door	6. Reverberation	9
Oceans represented. No	oceans were specified.	
2	4	6.
Define math model of pro	opagation loss.	
Define math model of pro	,	. This math model
-	eanographic study. (AMOS)	. This math model
Acoustic meteorological oce	eanographic study. (AMOS)	
Acoustic meteorological oce	eanographic study. (AMOS)	
Acoustic meteorological occurs set up by NUSC from the	eanographic study. (AMOS)	
Acoustic meteorological occurs set up by NUSC from the List Sonar Systems and AN/BQG-3	eanographic study. (AMOS) AMOS studies. various displays.	
Acoustic meteorological oce was set up by NUSC from the List Sonar Systems and AN/BQG-3 AN/BQS-4	eanographic study. (AMOS) AMOS studies. various displays.	
Acoustic meteorological oce was set up by NUSC from the List Sonar Systems and AN/BQG-3 AN/BQS-4 AN/BQR-2	eanographic study. (AMOS) AMOS studies. various displays.	
Acoustic meteorological oce was set up by NUSC from the List Sonar Systems and AN/BQG-3 AN/BQS-4 AN/BQR-2	eanographic study. (AMOS) AMOS studies. various displays.	
Acoustic meteorological oce was set up by NUSC from the List Sonar Systems and AN/BQG-3 AN/BQS-4 AN/BQR-2	eanographic study. (AMOS) AMOS studies. various displays.	
	1. Various Torpedoes 2. 3. List noises simulated. 1. Marine Life 2. Variable Sea States 3. Torpedo Door Oceans represented. No constant sea states	1. Various Torpedoes 4. 2. 5. 3. 6. List noises simulated. 1. Marine Life 4. Weapor explosions 2. Variable Sea States 5. Own ship noises 3. Torpedo Door 6. Reverberation Oceans represented. No oceans were specified. 1. 3.

Yea	r	Installed 196	8·ith	contin	ucus modi	ficat	ions		
Des	cription	R & D Facili	ty for	studyi	ng effect	s of	counter	measures	on
ac	coustic weapor	ns and acousti	c sems	ors.		<u></u>			
Inp	ut Control:	Analog	() _					
		Digital	() _					
		Both	(x) _			· - · -	·	
Out	put data:	Analog	(x)					
		Digital	()					
Tar	get Informa	ition:							
a.		targets							
b.		le targets							
c.		discrete fr			_				
a.		of targets	_		(′ —			
		measures		lines		9			
		Ships	_						
		nes	7.						
	4. Torpedo		8.						
			_						
е,		e control (_		_	_			
		noise characte							
as a	function of	target speed a	nd asp	ect an	gle. Dis	crete	frequer	cy lines	ar
vari	able in ampli	tude from 0-12	7 db 1	n 1 DB	increment	ts wit	h line	width var	rial

7.	List weapons simulated	. Weapons pr	rocessors are stimulated.
	1.	4	7
	2.	5	8
			9
8.	List noises simulated.		
	1.	4	7
	2.	5	8, <u>·</u>
	3.	6	9
9.	Oceans represented. As	specified by	BT.
	1.	3	5
	2.	4	6
10.	CONGRATS or Model specified b	y sustomer. S	Sound attenuation along acoustic ared and used in real time by
11.			splays.
		· · · · · · · · · · · · · · · · · · ·	
	÷		

Input Control:	Analog		
	Digital		
	Both	(X)	Panel knots & read-only memorics
Output data:	Analog Digital		
Parget Informat	•		
			gle
		_	ole? No
			es. (Lines) 48
		_	ture is programmable.
		_	9
			10.
			11.
4.			12
. Define line	control (a		de & frequency resolution.
	haft B-16, Fi	xed prog	rammable - 16. Amplitude: -10 db
Shaft A-16, S			

	scription			coustic signature of a submarine
(or	other vessel) including (1	l) radiated	d noise, (2) reflection of sonar pings.
Inp	out Control	: Analog	()	
		Digital	(x)	Acoustic control program in computer me
		Both	()	
Out	put data:	Analog	(X)	
		Digital	()	
Tar	get Inform	ation: "PAS	SS" is pass	sive portion of dual active/passive DASS
				ature Generator
20	NIIMPET OF			
a.				
a. b.	Are multi	ple targets	availab	le? No
	Are multi	ple targets discrete f	availab requenci	le? No DASS(105), PASS(103)
b.	Are multi	ple targets discrete f	availab requenci s. Could	es. (Lines) DASS(105), PASS(103) be programmed for any signature.
b. c.	Are multi Number of List type	ple targets discrete f	availab requenci s. Could	le? No es. (Lines) DASS(105), PASS(103)
b. c.	Are multi Number of List type 1.	ple targets discrete for targets	availab requenci s. Could	le? No es. (Lines) DASS(105), PASS(103) be programmed for any signature.
b. c.	Are multi Number of List type 1 2.	ple targets discrete for targets	availab requenci s. Could 5	le? No es. (Lines) DASS(105), PASS(103) be programmed for any signature. 9.
b. c.	Are multi Number of List type 1 2.	ple targets discrete for targets	availab requenci s. Could 5 6	le? No es. (Lines) DASS(105), PASS(103) be programmed for any signature. 9. 10. 11.
b. c. d.	Are multi Number of List type 1 2 3 4	ple targets discrete for targets	availab requenci s. Could 5 6 7 8	le? No es. (Lines) DASS(105), PASS(103) be programmed for any signature. 9. 10. 11.
b. c.	Are multi Number of List type 1. 2. 3. 4. Define list	ple targets discrete for targets s of targets ne control	availab requenci s. Could 5 6 7 8 (amplitude	le? No es. (Lines) DASS(105), PASS(103) be programmed for any signature. 9. 10. 11. 12. de & frequency resolution.
b. c. d.	Are multi Number of List type 1. 2. 3. 4. Define list PASS -64 Ty	ple targets discrete for sof targets sof targets ne control spe A: Propuls	availab requenci s. Could 5. 6. 7. 8. (amplitue	le? No es. (Lines) DASS(105), PASS(103) be programmed for any signature. 9. 10. 11. 12. de & frequency resolution.
b. c. d.	Are multi Number of List type 1. 2. 3. 4. Define list PASS -64 Ty	ple targets discrete for targets s of targets ne control	availab requenci s. Could 5. 6. 7. 8. (amplitue	le? No es. (Lines) DASS(105), PASS(103) be programmed for any signature. 9. 10. 11. 12. de & frequency resolution.

2. Year 1974 - San Diego 3. Description Provides the sonar room tactical team with conditions that simulate all phases of operation on SSN585 and SSN635 classes. 4. Input Control: Analog () Digital (x) Both () Output data: Analog (x) Stimulates processor Digital () Target Information: a. Number of targets 12 b. Are multiple targets available? Yes (6) c. Number of discrete frequencies.(Lines) 20 d. List types of targets. 1. Diesel Electric Sub. 5. Lt. Cruiser 9. Trawler 2. NUC Sub SSN & SSBN 6. Patrol Craft 10. Hydrofoil 3. Destroyer 7. Naval Auxiliary 11. Aircraft 4. Destroyer Escort 8. Merchant 12 e. Define line control (amplitude & frequency resolution). Target line noise characteristics include the effects of main engines, machinery, and props. They vary as a function of target speed and aspect. The discrete frequency lines are variable in amplitude from 0-75 db in one		Device 21A40 Trainer	Naval Ir	aining Equip	ment cente	<u>r</u>	
simulate all phases of operation on SSN585 and SSN635 classes. Input Control: Analog () Digital (x) Both () Output data: Analog (x) Stimulates processor Digital () Target Information: a. Number of targets 12 b. Are multiple targets available? Yes (6) c. Number of discrete frequencies.(Lines) 20 d. List types of targets. 1. Diesel Electric Sub. 5. Lt. Cruiser 9. Trawler 2. NUC Sub SSN & SSBN 6. Patrol Craft 10. Hydrofoil 3. Destroyer 7. Naval Auxiliary 11. Aircraft 4. Destroyer Escort 8. Merchant 12 e. Define line control (amplitude & frequency resolution). Target line noise characteristics include the effects of main engines, machinery, and props. They vary as a function of target speed and aspect.	•	Year 1974 - San Di	•go				
Digital (x) Both () Output data: Analog (x) Stimulates processor Digital () Target Information: a. Number of targets 12 b. Are multiple targets available? Yes (6) c. Number of discrete frequencies. (Lines) 20 d. List types of targets. 1. Diesel Electric Sub. 5. it. Cruiser 9. Trawler 2. NUC Sub SSN & SSBN 6. Patrol Craft 10. Hydrofoil 3. Destroyer 7. Naval Auxiliary 11. Aircraft 4. Destroyer Escort 8. Merchant 12 e. Define line control (amplitude & frequency resolution). Target line noise characteristics include the effects of main engines, machinery, and props. They vary as a function of target speed and aspect.		Description Provides t	ne sonar r	coom tactical	team with	condi	tions that
Digital (x) Both () Output data: Analog (x) Stimulates processor Digital () Target Information: a. Number of targets 12 b. Are multiple targets available? Yes (6) c. Number of discrete frequencies.(Lines) 20 d. List types of targets. 1. Diesel Electric Sub. 5. Lt. Cruiser 9. Trawler 2. NUC Sub SSN & SSBN 6. Patrol Craft 10. Hydrofoil 3. Destroyer 7. Naval Auxiliary 11. Aircraft 4. Destroyer Escort 8. Merchant 12 e. Define line control (amplitude & frequency resolution). Target line noise characteristics include the effects of main engines, machinery, and props. They vary as a function of target speed and aspect.		simulate all phases of ope	ration on	SSN585 and S	SN635 clas	s es.	
Both () Output data: Analog (x) Stimulates processor Digital () Target Information: a. Number of targets 12 b. Are multiple targets available? Yes (6) c. Number of discrete frequencies.(Lines) 20 d. List types of targets. 1. Diesel Electric Sub. 5. Lt. Cruiser 9. Trawler 2. NUC Sub SSN & SSBN 6. Patrol Craft 10. Hydrofoil 3. Destroyer 7. Naval Auxiliary 11. Aircraft 4. Destroyer Escort 8. Merchant 12 e. Define line control (amplitude & frequency resolution). Target line noise characteristics include the effects of main engines, machinery, and props. They vary as a function of target speed and aspect.		Input Control: Analo	g ()			
Output data: Analog (x) Stimulates processor Digital () Target Information: a. Number of targets 12 b. Are multiple targets available? Yes (6) c. Number of discrete frequencies. (Lines) 20 d. List types of targets. 1. Diesel Electric Sub. 5. Lt. Cruiser 9. Trawler 2. NUC Sub SSN & SSBN 6. Patrol Craft 10. Hydrofoil 3. Destroyer 7. Naval Auxiliary 11. Aircraft 4. Destroyer Escort 8. Merchant 12 e. Define line control (amplitude & frequency resolution). Target line noise characteristics include the effects of main engines, machinery, and props. They vary as a function of target speed and aspect.		Digit	al (x)			
Output data: Analog (x) Stimulates processor Digital () Target Information: a. Number of targets 12 b. Are multiple targets available? Yes (6) c. Number of discrete frequencies.(Lines) 20 d. List types of targets. 1. Diesel Electric Sub. 5. Lt. Cruiser 9. Trawler 2. NUC Sub SSN & SSBN 6. Patrol Craft 10. Hydrofoil 3. Destroyer 7. Naval Auxiliary 11. Aircraft 4. Destroyer Escort 8. Merchant 12 e. Define line control (amplitude & frequency resolution). Target line noise characteristics include the effects of main engines, machinery, and props. They vary as a function of target speed and aspect.		Both	()			
a. Number of targets 12 b. Are multiple targets available? Yes (6) c. Number of discrete frequencies.(Lines) 20 d. List types of targets. 1. Diesel Electric Sub. 5. Lt. Cruiser 9. Trawler 2. NUC Sub SSN & SSBN 6. Patrol Craft 10. Hydrofoil 3. Destroyer 7. Naval Auxiliary 11. Aircraft 4. Destroyer Escort 8. Merchant 12 e. Define line control (amplitude & frequency resolution). Target line noise characteristics include the effects of main engines, machinery, and props. They vary as a function of target speed and aspect.		Output data: Analo	g (
a. Number of targets 12 b. Are multiple targets available? Yes (6) c. Number of discrete frequencies.(Lines) 20 d. List types of targets. 1. Diesel Electric Sub. 5. Lt. Cruiser 9. Trawler 2. NUC Sub SSN & SSBN 6. Patrol Craft 10. Hydrofoil 3. Destroyer 7. Naval Auxiliary 11. Aircraft 4. Destroyer Escort 8. Merchant 12 e. Define line control (amplitude & frequency resolution). Target line noise characteristics include the effects of main engines, machinery, and props. They vary as a function of target speed and aspect.		Digit	al ()			
a. Number of targets 12 b. Are multiple targets available? Yes (6) c. Number of discrete frequencies.(Lines) 20 d. List types of targets. 1. Diesel Electric Sub. 5. Lt. Cruiser 9. Trawler 2. NUC Sub SSN & SSBN 6. Patrol Craft 10. Hydrofoil 3. Destroyer 7. Naval Auxiliary 11. Aircraft 4. Destroyer Escort 8. Merchant 12 e. Define line control (amplitude & frequency resolution). Target line noise characteristics include the effects of main engines, machinery, and props. They vary as a function of target speed and aspect.		Target Information:					
b. Are multiple targets available? Yes (6) c. Number of discrete frequencies.(Lines) 20 d. List types of targets. 1. Diesel Electric Sub. 5. Lt. Cruiser 9. Trawler 2. NUC Sub SSN & SSBN 6. Patrol Craft 10. Hydrofoil 3. Destroyer 7. Naval Auxiliary 11. Aircraft 4. Destroyer Escort 8. Merchant 12 e. Define line control (amplitude & frequency resolution). Target line noise characteristics include the effects of main engines, machinery, and props. They vary as a function of target speed and aspect.		a. Number of targets					
c. Number of discrete frequencies.(Lines) 20 d. List types of targets. 1. Diesel Electric Sub. 5. Lt. Cruiser 9. Trawler 2. NUC Sub SSN & SSBN 6. Patrol Craft 10. Hydrofoil 3. Destroyer 7. Naval Auxiliary 11. Aircraft 4. Destroyer Escort 8. Merchant 12 e. Define line control (amplitude & frequency resolution). Target line noise characteristics include the effects of main engines, machinery, and props. They vary as a function of target speed and aspect.		b. Are multiple targe	ts avail				
d. List types of targets. 1. Diesel Electric Sub. 5. Lt. Cruiser 9. Trawler 2. NUC Sub SSN & SSBN 6. Patrol Craft 10. Hydrofoil 3. Destroyer 7. Naval Auxiliary 11. Aircraft 4. Destroyer Escort 8. Merchant 12 e. Define line control (amplitude & frequency resolution). Target line noise characteristics include the effects of main engines, machinery, and props. They vary as a function of target speed and aspect.							
1. Diesel Electric Sub. 5. Lt. Cruiser 9. Trawler 2. NUC Sub SSN & SSBN 6. Patrol Craft 10. Hydrofoil 3. Destroyer 7. Naval Auxiliary 11. Aircraft 4. Destroyer Escort 8. Merchant 12 e. Define line control (amplitude & frequency resolution). Target line noise characteristics include the effects of main engines, machinery, and props. They vary as a function of target speed and aspect.				·			
2. NUC Sub SSN & SSBN 6. Patrol Craft 10. Hydrofoil 3. Destroyer 7. Naval Auxiliary 11. Aircraft 4. Destroyer Escort 8. Merchant 12 e. Define line control (amplitude & frequency resolution). Target line noise characteristics include the effects of main engines, machinery, and props. They vary as a function of target speed and aspect.				it. Cruise	r	9.	Trawler
3. Destroyer 7. Naval Auxiliary 11. Aircraft 4. Destroyer Escort 8. Merchant 12 e. Define line control (amplitude & frequency resolution). Target line noise characteristics include the effects of main engines, machinery, and props. They vary as a function of target speed and aspect.							
4. Destroyer Escort 8. Merchant 12 e. Define line control (amplitude & frequency resolution). Target line noise characteristics include the effects of main engines, machinery, and props. They vary as a function of target speed and aspect.						-	
e. Define line control (amplitude & frequency resolution). Target line noise characteristics include the effects of main engines, machinery, and props. They vary as a function of target speed and aspect.							
Target line noise characteristics include the effects of main engines, machinery, and props. They vary as a function of target speed and aspect.							tion).
machinery, and props. They vary as a function of target speed and aspect.			_				
							
The discrete frequency fines are variable in amplitude from 0-75 db in one							
					 -		
db increments with line widths variable from 0.15 Hz-12 Hz in 0.05 Hz increment		db increments with line w	idths vari	able from 0.	15 Hz-12 H	z in O	.05 Hz increments.

List Weapons simul Torpedo MK 14, Sto	eam Torpedo. Mk 45.	
1. Single speed	eam Torpedo, Mk 45, Elec. 1 speed Torpedo, Mk 48	_ 7
2. 1: speed	5. <u>Variable speed</u>	8
Torpedo Mk 37	6. Subroc - Rocket	
		9.
List Noises simula	ited.	
1. <u>Marine life</u>	4. Weapon explosions Anchor chains of	7. Volcano
2. <u>Rain</u>	5. buouy	
3. <u>Surface ship gunf</u>	fire6. <u>Ice Pack (10 mi d</u>	ia)9
Oceans re p resented	3.	
1 Mid Bacific	3. Sea of Japan	5
1. MIU PACITIC		
	4. Southeast Asia	
2. NorthemPacific	4. Southeast Asia	6.
2. Northern Pacific		6.
2. Northern Pacific	4. Southeast Asia of propagation loss.	6.
2. NorthernPacific Define math model	4. Southeast Asia of propagation loss.	6.
2. Northern Pacific Define math model	4. Southeast Asia of propagation loss.	6.
2. <u>Northern Pacific</u> Define math model Coherent Transmission	4. Southeast Asia of propagation loss.	FACT (Fast Asymptotic
2. Northern Pacific Define math model Coherent Transmission List Sonar Systems	4. Southeast Asia of propagation loss. on)	FACT (Fast Asymptotic
2. Northern Pacific Define math model Coherent Transmission List Sonar Systems	4. Southeast Asia of propagation loss.	FACT (Fast Asymptotic
2. NorthernPacific Define math model Coherent Transmission List Sonar Systems Attack Center #1	4. Southeast Asia of propagation loss. on) Atta	FACT (Fast Asymptotic
2. Northern Pacific Define math model Coherent Transmissio List Sonar Systems Attack Center #1 AN/BQS-6	4. Southeast Asia of propagation loss. on) Atta	FACT (Fast Asymptotic
2. Northern Pacific Define math model Coherent Transmission List Sonar Systems Attack Center #1 AN/BQS-6 AN/BQR-7	4. Southeast Asia of propagation loss. on) Atta	FACT (Fast Asymptotic ck Center #2

DISTRIBUTION LIST

Officer in Charge Naval Underwater Systems Center		Naval Sea Systems Command Attn: Code 662C2l
Attn: Mr. Aldrich	/= \$	Washington, D. C. 20360 (1)
New London, Connecticut 06320	(1)	Naval Sea Systems Command
Officer in Charge		Attn: Code 036
Naval Underwater Systems Center		Washington, D. C. 20360 (1)
Attn: Mr. David Kennedy	(0)	Name 1 Case Constants Command
New London, Connecticut 06320	(2)	Naval Sea Systems Command Attn: Code 06H13
Commanding Officer		Washington, D. C. 20360 (1)
Naval Coastal Systems Laboratory		Maria S. B.J., Carabana Canana
Attn: Mr. William Thorpe	/ 0\	Naval Air Systems Command
Panama City, Florida 32401	(2)	Attn: Code AIR 413 Washington, D. C. 20360 (1)
Dr. Joseph Willman		
University of Texas		Officer in Charge
Applied Research Labs		Naval Underwater Systems Center
Post Office Box 8029		Attn: Mr. Dommick Diorio
University Station	(0)	Newport, Rhode Island 02840 (1)
Austin, Texas 78712	(2)	Officer in Charge
Headquarters		Naval Underwater Systems Center
Naval Material Command		Attn: Fred Cancilliere
Attn: Mr. Matthew Borg NSP1513		Newport, Rhode Island 02840 (1)
Building CM3		Officer in Charge
Washington, D. C. 20376	(1)	Naval Underwater Systems Center Attn: Mr. Charles King
Commander		Fleet Readiness Group
Naval Undersea Center		New London, Connecticut 06320 (1)
Attn: Library		
San Diego, California 92132	(1)	Officer in Charge Naval Underwater Systems Center
Commander		Attn: Mr. P. Garrett
Naval Undersea Center		Fleet Readiness Group
Attn: Mr. W. Klement	4-3	New London, Connecticut 06320 (1)
San Diego, California 92132	(1)	Dadamas Basamankakisa Asakas
		Defense Documentation Center
Commender		Cameron Station Alexandria, Virginia 22314 (12)
Naval Undersea Center		Alexandria, Virginia 22314 (12)
Attn: Dr. Larry Gray	/11	Neural Tuesdading Fourtement Conten
San Diego, California 92132	(1)	Naval Training Equipment Center Orlando, Florida 32813 (37)
Commander	•	
Haval Undersea Center		
Attn: Dr. Acks	(1)	