Example 1

Given $\triangle ABC, AB = AC, BD \perp AC.$ Prove: $\angle CBD = \frac{1}{2} \angle A.$ Solution: Method 1:

Draw $CE \perp AB$. E is the foot of the perpendicular from C to AB. Points A, E, F, and E are concyclic $(\angle AEF + \angle ADF = 90^{\circ} +$

 $90^\circ=180^\circ$). Connect AF and $ED.\angle EAF=\angle DAF=\alpha.$

 $\angle EDF = \angle EAF = \alpha. \text{ (both angles face the same arc } EF \text{)}.$ Note that ED//BC. Thus $\angle EDB = \angle CBD = \alpha.$ That is, $\angle CBD = \frac{1}{2}\angle A.$

Method 2:

Draw $AE \perp BC$. E is the foot of the perpendicular from A to BC. Points A, B, E, and D are concyclic ($\angle ADB = \angle AEB = 90^{\circ}$). $\angle DAE = \angle DBE = \alpha$ (both angles face the same arc DE).

Note that $\triangle ABC$ is an isosceles triangle, AE is also the angle bisector of $\angle A$. Thus $\angle CBD = \angle DBE = \alpha = \frac{1}{2}\angle A$.