Riassunto ASD: 1° Semestre

Algoritmi Ordinamento -1

insertionSort(int[] A)

ordinamento: for e while annidati con scambi e confronti

stabile: si in place: si

 $T(n) = O(n^2)$ $To(n) = \theta(n)$ $Tp(n) = \theta(n^2)$

mergeSort(int[] A, int p, int q)

ordinamento: spezza array in due ricorsivamente fino a che p == q, poi ordina e unisce parti con Merge

stabile: si in place: no $T(n) = \theta(n \log n)$ costante

merge(int[] A, int p, int q, int r) (supporto per MergeSort)

dato un array A e indici p < r < q, array ordinato intervalli [p, r] e [r+1, q]

ordina A da [p, q]: salva il minore tra p e r+1 e ne incrementa indice fino che p == r o r+1 == q

stabile: si in place: no $T(n) = \theta(q - p)$ costante

selectionSort(int[] A)

ordinamento: ricorsione coda (trasformabile ciclo for) cerca il minimo array e lo mette davanti

stabile: no in place: si

 $T(n) = \theta(n^2)$

Strutture Dati -1

<u>Linked List (lista concatenata)</u> (implementa una coda generica)

valori:

lista L: L.first(), L.last() → puntatori a primo e ultimo elemento lista

elemento x: x.key() \rightarrow valore, x.next() \rightarrow puntatore elemento successivo *metodi:*

creaCodaVuota() \rightarrow crea nuova coda vuota \rightarrow T(n) = $\theta(1)$

inserimento(List L, Element x) \rightarrow aggiunge elemento coda \rightarrow T(n) = $\theta(1)$

cancellazione(List L) \rightarrow rimuove elemento in testa coda \rightarrow T(n) = $\theta(1)$

Vettore Sovradimensionato (implementa una coda generica)

Salvati due valori: first, last → indici di primo e ultimo elemento della coda (si lavora modulo n)

<u>Max Heap</u> (implementa una coda con priorità)

Basata su vettore sovradimensionato.

Albero binario quasi completo \rightarrow altezza albero $\theta(\log n)$ dove n numero dei nodi

Ogni nodo: un genitore; due figli, sx e dx; priorità minore o uguale a quella del padre

Heap H: H.length \rightarrow lunghezza vettore (max) \geq H.heapSize = n \rightarrow porzione vettore usata heap (n° nodi)

 $maxKey(Heap H) \rightarrow valore massimo heap (primo elemento) \rightarrow T(n) = \theta(1)$

left(i), **right(i)** \rightarrow figlio sinistro, destro del nodo \rightarrow T(n) = $\theta(1)$

parent(i) \rightarrow genitore del nodo \rightarrow T(n) = $\theta(1)$

extractMaxHeap(Heap h) \rightarrow estrae max (scambia ultimo elemento) risistema heap chiamando heapify $T(n) = O(\log n)$

heapify(Heap h, int i) \rightarrow risistema la max heap (heap ricevuta è una max heap con massimo sbagliato) $T(n) = O(\log n)$

insertMaxHeap(Heap h, node k)

inserisce nodo fine heap, risistema heap portando nodo in alto fino a che è minore del genitore

in place: si $T(n) = O(\log n)$

buildMaxHeap(int[] A)

dato array A di interi genera una MaxHeap. Si chiama heapify n/2 volte

in place: si $T(n) = \theta(n)$

Algoritmi Ordinamento -2

heapSort(int[] A)

Trasforma array in maxHeap. Poi ricorsivamente scambia 1° e ultimo elemento, heapSize--, chiama heapify

stabile: no in place: si

 $T(n) = O(n \log n)$

To(n) = O(n log n)

Tp(n) = O(n log n)

quickSort(int[] A, int p, int q) (si può migliorare Tp cercando mediano di A col Select e usarlo su partition) sfrutta partition: scelto pivot x che pone a destra tutti valori > x e a sinistra i valori \le x.

riordina tramite una ricorsione ad albero sui due rami sinistro e destro

stabile: no

in place: si

 $T(n) = O(n^2)$

 $To(n) = Tm(n) = \theta(n \log n)$

 $Tp(n) = O(n^2)$

Algoritmo utili

partition(int[] A, int p, int q) (supporto per QuickSort e QuickSelect)

q è il pivot: termina con valori ≤ a sx di q, > a dx di q. restituisce la posizione in cui finisce q

stabile: no in place: si

 $T(n) = \theta(n)$

MOMSelect(int[] A, int p, int q, int i)

obbiettivo: trovare valore x dell'i-esimo elemento array se fosse ordinato (i-esimo valore più piccolo) p e q: limiti sx e dx, i: i-esimo elemento da cercare procedimento:

- 1) si spezza array in blocchi da 5 elementi (in caso ultimo blocco con meno elementi)
- 2) si ordina ogni blocco
- 3) si prende valore centrale di ogni blocco (mediano)
- 4) si salvano i mediani in un array di supporto B di dimensione n/5
- 5) si procede ricorsivamente al punto 1 fino a che non resta un solo blocco e se ne prende il mediano (ho trovato y := mediano dei mediani)
- 6) chiama partition su A usando perno x → scopro j := posizione di x, array ora è diviso tra ≤ e > di y
- 7) i == j?
 - a. ho trovato x: è y stesso
 - b. ricorsivamente al punto 1 ma solo sulla metà array di interesse fino a che i == j

proprietà di y, mediano dei mediani:

minori = $\{x \in A : x \le y\} \Rightarrow \frac{1}{4}|A| \le |minori| \le \frac{1}{4}|A|$; maggiori = $\{x \in A : x > y\} \Rightarrow \frac{1}{4}|A| \le |maggiori| \le \frac{1}{4}|A|$ ovvero: $y \in A$ over $y \in A$ ovvero: $y \in A$ over $y \in A$ ovvero: $y \in A$ over $y \in A$ over y

 $T(n) = \{ \theta(1) \text{ se } n=1 \}$

 $T(1/5*n) + T(3/4*n) + \theta(n) \text{ se } n>1$

dato che $1/5 + 3/4 < 1 \Rightarrow$ dal lemma segue che:

 $T(n) = \theta(n)$

binarySearch(int[] A, int p, int q, int x)

trova indice i del valore x da un array ordinato in O(log n)

calcola r = p+q / 2. Ricorsivamente con [p, r-1] (se x < r) o [r+1, q] (se x > r) fino a che x == A[r] oppure p == q (ottimizzazione: ricerca esponenziale (j = 2*j mentre a[j]<r), poi binarySearch(A, j/2, j, x), ma utile se i < n/2)

 $T(n) = O(\log n)$

 $To(n) = \theta(1)$

 $Tp(n) = \theta(\log n)$

Algoritmi Ordinamento -3 con T(n) = θ (n)

Basati su assunzioni input

countingSort(int[] A, int[] B, int k)

```
assunzioni:
```

 $0 \le A[i] \le k, k \in O(n)$

procedimento:

genera array supporto C con C[i] = n° volte che i compare in A. (Per stabilità poi: C[i] += C[i-1])

ciclo for da n a i: B[C[A[i]]] = A[i] e C[A[i]] -= 1

(guardo valore di x in a[i], da cui guardo posizione in cui va salvato da C (per la stabilità), su cui scrivo in B)

stabile: si in place: no

T(n) = O(n + k)

To(n) = O(n + k)

Tp(n) = O(n + k)

radixSort(int[] A, int d)

assunzioni:

ogni valore array ha al massimo d cifre. $d \in [0, B-1]$ dove B è la base. $d \in O(n)$ procedimento:

si ordinano i numeri d volte dalla cifra meno significativa alla più significativa.

i numeri vengono ordinati al massimo d volte (se hanno esattamente d cifre).

stabile: si in place: no

T(n) = O(n * d)

bucketSort(int[] A)

assunzioni:

 $0 \le A[i] \le 1$. I valori devono essere distribuiti abbastanza uniformemente procedimento:

si divide [0, 1] in n sottointervalli di lunghezza k (k = 1/n): [i/n, (i+1)/n] con $0 \le i < n$, $i \in \mathbb{N}$, $n \in \mathbb{N}$

si crea B, |B| = n, array di liste concatenate (ogni lista rappresenta il k-esimo intervallo)

si colloca ogni A[i] nel relativo B[i]: insert(B[floor(A[i] * n)], A[i]) → B è una tabella di Hash

si ordina ogni k-esimo intervallo, B[i], con insertion, merge ecc

 $T(n) = \theta(n)$

Strutture Dati -2

Tabelle Hash

- spazio: uso limitato memoria: $\theta(|K|) \Rightarrow$ utilizzare array supporto T con |T| = m
- tempo: Inserimento, Ricerca, Cancellazione (IRC) in circa θ(1)

<u>funzione hash</u> h: $\{0, ..., |U|-1\}$ → $\{0, ..., m-1\}$ essendo $|U| > |T| \Rightarrow$ h non è iniettiva \Rightarrow collisioni gestione delle collisioni:

- **Hash con Chaining** (soluzione poco usata)

si utilizzano liste concatenate: ogni T[i] è puntatore alla lista contenente $x_j \in K : j \in U$, $h(x_j, key) = T[i]$ valori: $n = n^\circ$ elementi presenti tabella, $m = |T| = dimensione tabella <math>\Rightarrow n \le m$ metodi:

insertChaining(int[] T, function h, element x) \rightarrow inserimento elemento relativa lista \rightarrow T(n) = $\theta(1)$ ricerca, cancellazione: O(|T[h(x.key)]|)

 $Tp(n) = \theta(n)$ (tutti x_i in un T[i])

 $Tm(n) = \theta(1+\alpha)$ dove $\alpha = n/m$ è fattore di carico (se h soddisfa hashing uniforme semplice) proprietà di una buona funzione hash:

- <u>suriettività</u>: ∀i ∈ [0, ..., m-1], ∃x ∈ U : h(x.key) = i
- uniformità: h deve riempire T modo uniforme (equiprobabile): ∀x ∈ U : P(h(x.key) == i) = 1/m

possibili funzioni di hash:

- bucketSort → efficiente se vale hashing uniforme semplice x.key ∈ [0, 1), h(x.key) = floor(x.key * m)
- **metodo moltiplicazione** \rightarrow scelgo H, prendo la parte frazionaria di x.key*H e moltiplico per m x.key $\in \mathbb{N}$, scelgo H \in (0, 1) \rightarrow h(x.key) = floor((x.key * H floor(x.key * H)) * m)
- **metodo divisione** \rightarrow prendo modulo della chiave \Rightarrow |T| = m deve essere un numero primo x.key $\in \mathbb{N}$, h(x.key) = (x.key mod m)

Open Addressing

si utilizza una sequenza di scansioni:

m = |T| = dimensione tabella

modicata funzione hash: h: $\{0, \dots, |U|-1\} * \{0, \dots, m-1\} \longrightarrow \{0, \dots, m-1\}$

due input: x.key e i-esimo tentativo

se h(x.key, i) è occupata \rightarrow provo h(x.key, i+1)

< h(x.key, 0), ..., h(x.key, m-1) $> \rightarrow$ data x.key genero permutazione di <0, ..., m-1> (no ripetizioni)

- IRC(int[] T, function h, element x): T(n) = O(m)
 - se vale hashing uniforme semplice \Rightarrow IRC: Tm(n) = $\theta(1)$

inserimento \rightarrow inserisco x alla prima cella libera trovata dopo i tentativi falliti della funzione h(x.key, i) **cancellazione** \rightarrow cerco valore usando h \rightarrow se lo trovo lo sostituisco con DEL (costante \neq NIL) **ricerca** \rightarrow cerco valore: mi fermo se lo trovo oppure se trovo NIL (se trovo DEL continuo a cercare) proprietà di una buona funzione hash:

- suriettività: h(x.key, i) deve essere una permutazione di <0, ..., m-1>
- <u>uniformità</u>: tutte le m! possibili permutazioni hanno stessa probabilità 1/m! possibili sequenze di scansioni:
 - **lineare** \rightarrow h(k, i) = (h'(k) + a*i) mod m \Rightarrow a, m devono essere coprimi problemi:
 - Primary Clustering: in T si formano blocchi celle contigue occupate
 - anche se $x \neq y$, $h(x.key, 0) \neq h(y.key, 0)$ da un certo punto sequenze coincidono
 - si utilizzano solo le m permutazioni ordinate
 - quadratica \rightarrow h(k, i) = (h'(k) + ic₁ + i²c₂) mod m problemi:
 - verificare che c_1 , c_2 , m garantiscano permutazione (es. $c_1 = c_2 = 1/2$, m = 2^x)
 - Secondary Clustering: se h'(x.key) = h'(y.key) \Rightarrow x e y stessa sequenza (dall'inizio)
 - si utilizzano al massimo m sequenze
 - **doppio hashing** \rightarrow h(k, i) = (h'(k) + i h"(k)) mod m \Rightarrow h"(k), m coprimi \Rightarrow m primo problema:
 - se h'(x.key) = h'(y.key) e h"(x.key) = h"(y.key) \Rightarrow x e y stessa sequenza (dall'inizio)
 - si utilizzano al massimo m² sequenze

Alberi Binari

valori nodo x:

x.key, x.left, x.right, x.parent

h altezza albero: $\Omega(\log n)$, se bilanciato $\Rightarrow \theta(\log n)$

metodi:

preOrder(node x) \rightarrow visito nodo, sx, dx \rightarrow T(n) = θ (n)

inOrder(node x) → visito sx, nodo, dx → $T(n) = \theta(n) \Rightarrow$ restituisce array ordinato

postOrder(node x) \rightarrow visito sx, dx, nodo \rightarrow T(n) = θ (n)

Per ricostruire un BT dalle sue stampe sono necessarie la inOrder e una tra postOrder e preOrder

Alberi Binari di Ricerca: BST

Definizione:

- ogni nodo possiede una chiave intera univoca (no ripetizioni)
- se y si trova nel sottoalbero sx (dx) di $x \Rightarrow y$.key < (>) x.key

 $metodi: \rightarrow T(n) = O(h) \Rightarrow Tp(n) = \theta(n)$, se n = h $T(n) = O(\log n) \Rightarrow h = \log n$ (BST bilanciato)

BSTSearchMin(T, x) \rightarrow ricerca minimo: scendo sempre sx (per max a dx) \rightarrow T(n) = O(h)

BSTSearch(T, x, k) \rightarrow cerca chiave k \rightarrow T(n) = O(h)

BSTSuccessor(T, x) \rightarrow trova minor numero maggiore di x \rightarrow T(n) = O(h)

- se x.right ≠ NIL: BSTSearchMin(x.right)
- else: risalgo albero fino a che un nodo y è un figlio sx di un qualche $z \Rightarrow z$ è successore

BSTInsert(T, x) \rightarrow aggiungo come foglia (posizione dipende grandezza chiave) \rightarrow T(n) = O(h)

BSTDelete(T, x) → rimuove nodo da BST

- 1) se: z ha due figli NIL: cancello z
- 2) se: z ha un solo figlio w: aggancio padre y con figlio w, cancello z
- 3) se: z ha due figli non NIL
 - trovo w successore di x con chiave k'
 - cancello w (successore rientra caso 1 o 2) e scrivo k' al posto di z

Per ricostruire un BST è necessaria solo la postOrder o la preOrder

La in inOrder stampa l'array ordinato ⇒ non offre nessuna informazione ⇒ si possono costruire molti BST