

SISTEMAS INTELIGENTES

Prática 3 – Implementação do Perceptron

Ivan Nunes da Silva

TSP

Problema de Aplicação Prática

- ➤ Uma equipe de engenheiros determinou que um tipo de falha, comumente encontrado em motores de indução trifásicos de uma indústria, pode ser pré-identificada (antes que a mesma ocorra) mediante análises de três grandezas físicas {x₁, x₂, x₃}.
- ▶ Desta forma, a partir de tais grandezas, a equipe pretende aplicar um *Perceptron* para classificar a operação do motor em duas classes, ou seja, "Operação Normal (Classe C₁)" ou "Iminência de Falha (Classe C₂)", tendo o intuito de se efetuar manutenção preventiva e minimizar o custo operacional da indústria.
- > O esquema ilustrativo do processo é mostrado a seguir.

TSP

Configuração do Perceptron

- Como existe três grandezas físicas que estão sendo medidas, o neurônio constituinte do *Perceptron* terá então três entradas { x₁, x₂, x₃ }.
- Conseqüentemente, a saída { y } do Perceptron estará então classificando, baseado em suas três entradas, o status da operação do motor em duas classes, ou sejam:
 - * Classe $C_1 \rightarrow$ "Operação Normal" $\rightarrow \{ y = 1 \}$
 - * Classe C_2 → "Iminência de Falha" → { y = -1 }
- > A figura seguinte ilustra o *Perceptron* a ser implementado.

Configuração da Base de Treinamento

➤ A base de dados de treinamento do *Perceptron*, disponibilizada no arquivo {treinamento.txt}, foi levantada por meio de sucessivos ensaios experimentais e contem o seguinte formato.

	<i>X</i> ₁	X ₂	X ₃	d
01	1.4715	0.8996	1.1509	-1
02	4.6315	0.3409	2.4209	-1
03	2.9055	3.1858	3.1770	1
04	3.2563	4.3231	3.8009	1
05	0.2798	4.0843	2.2521	1
06	2.6446	3.4718	3.2715	1
07	1.0620	2.7164	1.7854	-1
80	3.5126	4.7822	4.1947	1
09	2.2227	0.427	1.2697	-1
10	0.2867	3.1473	1.8032	1
	()	()	()	()

5

TSP

Implementação do Treinamento (I)

a) Carregar a matriz de treinamento **M** usando a seguinte instrução: **M** = load('nome do arquivo'); {Mostre **M** para conferência}

	<i>X</i> ₁	x ₂	X ₃	d
M = [1.4715	0.8996	1.1509	-1
	4.6315	0.3409	2.4209	-1
	2.9055	3.1858	3.1770	1
	()	()	()	()

- b) Implementar as seguintes instruções a partir da matriz M:
 - Definir a matriz T, referentes aos sinais de entrada do Perceptron, que seja composta pelas três primeiras colunas de M, inserindo ainda o elemento -1 (relativo ao termo θ) em sua primeira coluna.
 - Definir o vetor d, referente aos sinais de saída do Perceptron, que seja composto pela última coluna de M. {Mostre T e d para conferência}

T = [-1	1.4715	0.8996	1.1509	:	d = [- 1
-1	4.6315	0.3409	2.4209		-1
-1	2.9055	3.1858	3.1770		1
()	()	()	() 1		()

Implementação do Treinamento (II)

- c) Inicializar as seguintes variáveis:
 - Taxa de aprendizagem em 0.01; {η ← 0.01}
 - Contador de épocas em 0: {época ← 0}
 - Vetor de pesos {w} com valores aleatórios
 uniformemente distribuídos entre 0 e 1, sendo que cada
 um de seus elementos estará representando os seguintes parâmetros:

$$\mathbf{w} = [\theta \quad w_1 \quad w_2 \quad w_3]^T; \quad \{Mostre \mathbf{w} \text{ para conferência}\}$$

d) Implementar a instrução que, dada uma linha *k* da matriz *T*, obtenha o potencial de ativação do neurônio, ou seja:

```
\mathbf{x} \leftarrow \mathbf{T}(\mathbf{k}, :)^T {onde \mathbf{x} conterá a \mathbf{k}-ésima linha da matriz \mathbf{T}} \mathbf{u} \leftarrow \mathbf{w}^T . \mathbf{x} {realize eventuais transposicões que sejam necessárias}
```

Teste a sua instrução para k = 2, verificando se o valor de retorno está correto.

7

Implementação do Treinamento (III)

e) Implementar o processo de treinamento do *Perceptron* inspirado no algoritmo apresentado na aula teórica, também conhecida como regra de *Hebb*, ou seja:

{Execute a rede pelo menos três vezes e analise os números de épocas e os valores finais para o vetor ${\bf w}$ imprimir o número de épocas e o valor final do vetor ${\bf w}$ }

Implementação do Treinamento (IV)

f) Após o treinamento do *Perceptron*, aplique-o para efetuar a identificação de falhas para algumas situações coletadas pelos sensores situados na planta industrial. Carregue numa matriz *V* o arquivo {teste.txt} que contêm a relação completa destas situações representadas por medições de x₁, x₂ e x₃.

g) Prepare esta matriz **V**, adicionando os elementos -1 em sua primeira coluna, a fim de ser inserida nas entradas do **Perceptron** já treinado.

9

Implementação do Treinamento (V)

 h) Implemente as instruções que permita a classificação, após a realização do processo de treinamento, usando o algoritmo seguinte. Forneça também os resultados da classificação.

(...)

Para k variando de 1 até a quantidade total de amostras em V, faça: $\begin{cases} \textbf{x} \leftarrow \textbf{V}(k,:)^T; & \{atribua\ a\ amostra\ k\ de\ V\ ao\ vetor\ \textbf{x}\ \} \\ u \leftarrow \textbf{w}^T.\textbf{x}; & \{realize\ as\ transposições\ que\ sejam\ necessárias\} \\ y \leftarrow \text{sinal}(u); \\ \text{Imprima}(y); \\ \text{Fim_Para} \\ (...) \end{cases}$

- * Se $\{y = 1\}$ * "Operação Normal" * Classe C_1
- Se $\{y = -1\}$ \rightarrow "Iminência de Falha" \rightarrow Classe C_2

######

EXERCÍCIO → Fazer o EPC-1 e entregar na próxima aula de laboratório (28/08/2012)