机器学习导论 (2021 春季学期)

关于本课

主讲教师: 周志华

主讲教师

Zhi-Hua Zhou, 周志华

Contact me:

http://www.lamda.nju.edu.cn/zhouzh/

zhouzh@nju.edu.cn

教学组老师

Han-Jia Ye, 叶翰嘉博士

Contact:

http://www.lamda.nju.edu.cn/yehj/
yehj@nju.edu.cn

授课教材

ISBN: 978-7-302-206853-6

2016年1月第1次印刷

2020年11月第35次印刷

周志华著. 机器学习,

北京:清华大学出版社,

2016年1月.

425页, 62.6万字

16章, 3附录

附录请自行阅读

本学期讲授前 9-10? 章

建议使用方式

1. 初学机器学习的第一本书:

通读、速读;细节不懂处略过 了解机器学习的疆域和基本思想,理解基本概念 "观其大略"

- 2. 阅读其他关于机器学习具体分支的读物(至月、半年?)
- 3. 再读、对"关键点"的理解 理解技术细冗后的本质,升华认识"提纲挈领"
- 4. 对机器学习多个分支有所了解(1-3年?)
- 5. 再读、细思:

不同内容的联系,不同的描述方式、出现位置蕴涵的意义、****** 个别字句的启发,可能自行摸索数年不易得

"疏通经络"

几本参考读物

初入门阶段

1997 Book

第一本机器学习教科书帮助读者建立领域整体知识框架;无学派偏见(最接近本书意图)

"蓝皮书"

具体算法着眼 适合希望快速了解一 • 些著名算法的读者

提高阶段

PRML 贝叶斯学派视角

ESL 统计学派(频 率主义)视角

MLAPP 概率学派视角

UML 适合具有理论 偏好的读者

http://www.lamda.nju.edu.cn/zhouzh/zhouzh.files/publication/MLbook2016.htm

周志华 著. 机器学习, 北京: 清华大

(ISBN 978-7-302-206853-6) 425页, 62.6

[前言&目录][样章]

{出版社网址} {网购网址1} {网购网址2} {网

- 本课程使用的slides 与公开的不同
- 这是本班的红利
- 仅限本班使用,请勿外传!

2016年6月起将为使用本书授课的教师提供PPT (免费; 不提供后续支持) 需要的老师请填写申请表「仅供教师使用」「后续提供部分习题参考答案]

[如何使用本书] [勘误修订]

如何使用本书(写在第十次印刷之际): [PDF]

本书 2016 年 1 月底出版, 首印 5000 册一周内竟告存 榜首. 出乎预料的销量和受欢迎程度, 意味着本书读者 使用本书需注意的一些事项. 因此, 在第 10 次印刷之

对初学者,建议使用方式:

- 先通读, 了解机器学习概貌 (不懂的细节地方跳过去)
- 通过其他书籍材料对感兴趣的若干方面进一步学习
- 再返回阅读本书, 会有新收获

勘误修订 (Latex格式)

[本书因颇受欢迎,出版社提出重印,于是作者借机要求在每次重印时加入新的修订,省却让读者等待第二版的麻烦。为方便读者,所有修订内容都列举在此。其中部分修订是为了更便于读者理解,并非原文有误]

(第一版第35次印刷, 2020年11月):

- p. 59, 倒数第二行: "其第~\$t+1\$~轮"-->"从当前~\$\bm\beta\$~生成下-
- p. 59, 式(3. 29): \$\bm\beta^{t+1}\$ -> \$\bm\beta^{'}\$, \$\bm\beta
- p. 327, 倒数第10至倒数第4行: 两处"[\$P\$]" --> "[P]", 4处"[\$V\$]"
- p. 337, 14. 6节第3段: 5~个~"\$N\$" --> "\$d\$"

- 经常有更新,请自行查阅
- 欢迎各位同学发现问题后邮件告知
- 对一般读者, 非勘误的学习问题恕难回复

课程主页

http://www.lamda.nju.edu.cn/zhouzh/zhouzh.files/course/ml.htm

∅ 机器学习导论

×

Home

机器学习导论

课程代码: 30000150

授课对象: 人工智能学院、匡亚明学院等

学生人数: 160

上课时间: 2021年春季学期,每周一,10:10-12:00

上课地点: 南京大学仙林校区 逸B-101

教学用书: 周志华 著、机器学习,北京:清华大学出版社,2016年1月. {教材勘误

讲义作业: {内部网站} (本班同学校内访问)

主讲老师: 周志华 教授

教学组老师: 叶翰嘉 博士 (关于作业、答疑、考试方面的问题,请联系叶老师)

课程作业

6 次作业,每2-3周一次

Deadline: 每次作业布置后 一般两周截止,请看作业网站的规定

https://cs.nju.edu.cn/zhouzh/zhouzh.files/course/ml.htm

▼ **🖺** 🖒 搜索...

∅ 机器学习导论

机器学习导论

课程代码: 30000150

授课对象: 人工智能学院、匡亚明学院等

学生人数: 160

上课时间: 2021年春季学期,每周一,10:10-12:00

上课地点: 南京大学仙林校区 逸B-101

教学用书: 周志华 著. 机器学习, 北京:清华大学出版社, 2016年1月. {教材勘误

讲义作业: {内部网站} (本班同学校内访问)

主讲老师: 周志华 教授

教学组老师: 叶翰嘉 博士 (关于作业、答疑、考试方面的问题,请联系叶老师)

□能力测试: 20%

6次作业中,各人自选1次

□平时成绩: 40%

其他5次作业中,各人自选4次之和

□期末考试: 40%

Deadline之后提交的作业,以此次0分计算

叶翰嘉老师带领

博士生助教:

贺一笑、黄宇轩、陆苏、秦天、周大蔚 负责作业、答疑、考试、评分

上述方面的问题请直接联系叶翰嘉老师 yehj@nju.edu.cn 课堂纪律

从不点名

来去自由

保持安静!!

欢迎旁听

前往第一站.....

机器学习导论 (2021 春季学期)

一、结果论

主讲教师: 周志华

"机器学习"与"人工智能"

人工智能从1956年正式成为一个学科

机器学习是人工智能的核心研究领域(之一)

今天的"人工智能热潮"

正是由于机器学习、尤其深度学习技术取得了巨大进展 基于大数据、大算力发挥出巨大威力

人工智能 机器学习 深度学习

人工智能

科幻电影中的"人工智能"

常有人问:"比人类聪明的AI何时出现?"

这是把"人工智能"理解为"人造智能"

"智能"与"人工智能"的关系

一个类比

(人的)智能行为

人工智能

人工智能重要,是因为能造出"智能工具"(类比:飞机)

- 造飞机的人不会关心飞机有没有"意识"、会不会"疼"
- 更不会关心飞机是否"全面达到"鸟的能力(例如:下蛋)

人工智能 + 人造智能

(Artificial Intelligence ≠ Man-made intelligence)

人工智能 = Intelligence-inspired computing

人工智能的诞生

Artificial Intelligence (AI), 1956 -

1956年夏 美国达特茅斯学院

J. McCarthy "人工智能之父" 图灵奖(1971)

M. Minsky 图灵奖(1969)

C. Shannon "信息论之父"

H. A. Simon 图灵奖(1975)

诺贝尔经济学奖(1978)

A. Newell 图灵奖(1975)

达特茅斯会议标志着人工智能这一学科的诞生

第一阶段: 推理期

1956-1960s: Logic Reasoning

- ◆ 出发点: "数学家真聪明!"
- ◆ 主要成就:自动定理证明系统(例如, 西蒙与纽厄尔的"Logic Theorist" 系统)

渐渐地,研究者们意识到,仅有逻辑推理能力是不够的 •••

赫伯特•西蒙 (1916-2001) 1975年图灵奖

阿伦•纽厄尔 (1927-1992) 1975年图灵奖

第二阶段:知识期

1970s -1980s: Knowledge Engineering

- ◆ 出发点: "知识就是力量!"
- ◆ 主要成就: 专家系统(例如, 费根鲍姆等人的"DENDRAL"系统)

渐渐地,研究者们发现,要总结出知识再"教"给系统,实在太难了 •••

爱德华•费根鲍姆 (1936-) 1994年图灵奖

瑞吉•芮迪 (1937-) 1994年图灵奖

第三阶段:学习期

1990s -now: **Machine Learning**

- 出发点: 系统自己学!
- 主要成就:

科学界极为关注

美国两院院士 M. I. Jordan. 工程院院士T. Mitchell共同 指出: "机器学 习是当前发展

最迅速的科学技术领域之一"

冯·诺依曼奖章得 称: "大数据分 析建模推动了自 然与计算科学的 蓬勃发展,而机

器学习是未来研究的关键领域*

各国政府高度重视

国务院2015年8 月印发的《促 进大数据发展 行动纲要》明 确指出, 机器 学习是提升大

数据分析处理能力的关键

美国政府2016 年5月公布的 《联邦大数据 研发战略计 划》中,将机 器学习作为支

撑大数据研发战略的核心技术

工业界大力投入

Google

Microsoft^{*}

amazon

IBM、亚马逊等 投入巨资研发机器 学习平台, 以满足 公司对机器学习技

Google、微软、

术的迫切需求

美国军工重镇洛 克希德 马丁公司 将机器学习作为 新一代电子战致 胜的关键技术讲 行研究与应用

图灵奖在近十年中三次授予在该领域取得突出成就的学者

Leslie Valiant "计算学习理论"奠基

2010 年度

Judea Pearl "图模型学习方法"先驱

Geoff Hinton

Yann LeCun Yoshua Bengio

"深度学习" 三架马车

2018

机器学习

经典定义: 利用经验改善系统自身的性能 [T. Mitchell 教科书, 1997]

经验 → 数据

随着该领域的发展,目前主要研究<mark>智能数据分析</mark>的理论和方法,并已成为智能数据分析技术的源泉之一

大数据时代

大数据 🗲 大价值

机器学习 (Machine Learning)

究竟是什么东东?

看两个例子二〉

医学文献筛选

在"循证医学" (evidence-based medicine) 中,针对特定的临床问题,先要对相关研究报告进行详尽评估

医学文献筛选

在一项关于婴儿和儿童残疾的研究中,美国Tufts医学中心筛选了约 33,000 篇摘要

尽管Tufts医学中心的专家效率很高,对每篇摘要只需 30 秒钟,但该工作仍花费了 250 小时

a portion of the 33,000 abstracts

每项新的研究都要重复这个麻烦的过程!

需筛选的文章数在不断显著增长!

医学文献筛选

为了降低昂贵的成本, Tufts医学中心引入了机器学习技术

人类专家只需阅读 50 篇摘要,系统的自动筛选精度就达到 93%人类专家阅读 1,000 篇摘要,则系统的自动筛选敏感度达到 95%(人类专家以前需阅读 33,000 篇摘要才能获得此效果)

[C. Brodley et al., 2012]

画作鉴别

画作鉴别(painting authentication): 确定作品的真伪

勃鲁盖尔 (1525-1569) 的作品?

梵高 (1853-1890) 的作品?

该工作对专业知识要求极高

- 具有较高的绘画艺术修养
- 掌握画家的特定绘画习惯

只有少数专家花费很大精力才能完成分析工作!

很难同时掌握不同时期、不同流派多位画家的绘画风格!

画作鉴别

为了降低分析成本,机器学习技术被引入

Kröller Müller美术馆与Cornell等大学的学者对82幅梵高真迹和6幅赝品进行分析,自动鉴别精度达 95% [C. Johnson et al., 2008]

Dartmouth学院、巴黎高师的学者对8幅勃鲁盖尔真迹和5幅赝品进行分析, 自动鉴别精度达 **100%** [J. Hughes et al., 2009][J. Mairal et al., 2012]

(对用户要求低、准确高效、适用范围广)

典型的机器学习过程

机器学习已经"无处不在"

生物特征识别

汽车自动驾驶

互联网搜索

火星机器人

美国总统选举

军事决策助手 (DARPA)

数据挖掘

数据分析技术

机器学习

数据管理技术

数据库

机器学习"无所不能"吗? NO!

并非"一切皆可学",例如:

- ◆特征信息不充分
 - 例如,重要特征信息没有获得
- ◆样本信息不充分
 - 例如,仅有很少的数据样本

机器学习有坚实的理论基础

计算学习理论

Computational learning theory

最重要的理论模型:

PAC (Probably Approximately Correct,

概率近似正确) learning model [Valiant, 1984]

$$P(|f(\boldsymbol{x}) - y| \le \epsilon) \ge 1 - \delta$$

Leslie Valiant (莱斯利•维利昂特) (1949-) 2010年图灵奖

基本术语

特征向量(feature vector)

标记空间,输出空间。

未知"分布"

独立同分布(i.i.d.)

泛化(generalization)

假设空间

表 1.1 西瓜数据集

编号	色泽	根蒂	敲声	好瓜
1 2 3 4	青吳黑青吳黑	蜷缩锤挺	独响 独响 清脆 沉闷	是是否否

(色泽=?) Λ(根蒂=?) Λ(敲声=?) ↔好瓜

学习过程 → 在所有假设(hypothesis)组成的空间中进行搜索的过程

目标:找到与训练集"匹配"(fit)的假设

假设空间的大小: (n1+1) x (n2+1) x (n3+1) + 1

版本空间

版本空间(version space):与训练集一致的假设集合

(色泽=*;根蒂=蜷缩;敲声=*)

(色泽=*;根蒂=*;敲声=浊响)

(色泽=*;根蒂=蜷缩;敲声=浊响)

在面临新样本时,会产生不同的输出

例如: (青绿; 蜷缩; 沉闷)

应该采用哪一个 模型(假设)?

归纳偏好 (inductive bias)

机器学习算法在学习过程中对某种类型假设的偏好

任何一个有效的机器学习算法必有其偏好

学习算法的归纳偏好是否与问题本身匹配, 大多数时候直接决定了算法能否取得好的性能!

哪个算法更好?

黑点: 训练样本; 白点: 测试样本

没有免费的午餐!

NFL定理:一个算法 \mathfrak{L}_a 若在某些问题上比另一个算法 \mathfrak{L}_b 好,必存在另一些问题, \mathfrak{L}_b 比 \mathfrak{L}_a 好

NFL定理

简单起见,假设样本空间 \mathcal{X} 和假设空间 \mathcal{H} 离散,令 $P(h|X,\mathfrak{L}_a)$ 代表算法 \mathfrak{L}_a 基于训练数据 X 产生假设 h 的概率,f 代表要学的目标函数, \mathfrak{L}_a 在训练集之外所有样本上的总误差为

$$E_{ote}(\mathfrak{L}_{a}|X,f) = \sum_{h} \sum_{\boldsymbol{x} \in \mathcal{X} - X} P(\boldsymbol{x}) \, \mathbb{I}(h(\boldsymbol{x}) \neq f(\boldsymbol{x})) \, P(h \mid X, \mathfrak{L}_{a})$$

考虑二分类问题,目标函数可以为任何函数 $\mathcal{X} \mapsto \{0,1\}$,函数空间为 $\{0,1\}^{|\mathcal{X}|}$,对所有可能的 f 按均匀分布对误差求和,有

$$\sum_{f} E_{ote}(\mathfrak{L}_a|X, f) = \sum_{f} \sum_{h} \sum_{\boldsymbol{x} \in \mathcal{X} - X} P(\boldsymbol{x}) \ \mathbb{I}(h(\boldsymbol{x}) \neq f(\boldsymbol{x})) \ P(h \mid X, \mathfrak{L}_a)$$

NFL定理

考虑二分类问题,目标函数可以为任何函数 $\mathcal{X} \mapsto \{0,1\}$,函数空间为 $\{0,1\}^{|\mathcal{X}|}$,对所有可能的 f 按均匀分布对误差求和,有

$$\sum_{f} E_{ote}(\mathfrak{L}_{a}|X, f) = \sum_{f} \sum_{h} \sum_{x \in \mathcal{X} - X} P(x) \, \mathbb{I}(h(x) \neq f(x)) \, P(h \mid X, \mathfrak{L}_{a})$$

$$= \sum_{x \in \mathcal{X} - X} P(x) \sum_{h} P(h \mid X, \mathfrak{L}_{a}) \sum_{f} \mathbb{I}(h(x) \neq f(x))$$

$$= \sum_{x \in \mathcal{X} - X} P(x) \sum_{h} P(h \mid X, \mathfrak{L}_{a}) \frac{1}{2} 2^{|\mathcal{X}|}$$

$$= \frac{1}{2} 2^{|\mathcal{X}|} \sum_{x \in \mathcal{X} - X} P(x) \sum_{h} P(h \mid X, \mathfrak{L}_{a})$$

$$= 2^{|\mathcal{X}| - 1} \sum_{x \in \mathcal{X} - X} P(x) \cdot 1$$

总误差与学习算法无关! 二〉所有算法同样好!

NFL定理的寓意

NFL定理的重要前提:

所有"问题"出现的机会相同、或所有问题同等重要

实际情形并非如此;我们通常只关注自己正在试图解决的问题

脱离具体问题,空泛地谈论"什么学习算法更好" 毫无意义!

具体问题,具体分析!

现实机器学习应用中

把机器学习的"十大算法""二十大算法"都弄熟,逐个试一遍,是否就"止于至善"了?

NO!

机器学习并非"十大套路""二十大招数"的简单堆积现实任务千变万化,

以有限的"套路"应对无限的"问题",焉有不败?

最优方案往往来自: 按需设计、度身定制

前往第二站.....

