

GOA COLLEGE OF ENGIN

Affiliated to Goa University DEPARTMENT OF COMPUTER ENGINEERING

Course: MCSE1.4.1 MACHINE LEARNING (ELECTIVE I)

Date: 22nd Nov. 2021

Year: Oct.-Jan. 2022

Semester: I FIRST TEST Total Marks: 50

Time: 120 minutes

1)	F1 1	~			Illustrate the sequence of design choices made	
1)	Explain the	e final desig	n of the check	kers learnir	g system. Illustrate the sequence of design choices made	
21		progre			Et liestion algorithm. Will d	ie
2)	Define Co	nsistent Hyp	oothesis and V	ersion Spa	ce. Write the Candidate-Elimination algorithm. Will the correct hypothesis if the training data contains error?	
	candidate	Chillination	ing an examp	iverge to ti	e correct hypothesis it is	0
3)	Consider t	he following	data which i	enresents t	he target concept "Smile? "	
-,	Eyes	Nose	FColor	Hair? S	mile?	
	Squar			Yes N	0	
	Roun				25	
	Roun	-			0	
	Squar				0	
	Roun				es	
	Sansi	e Square	Purnle	Yes N	0	
	Calcula	te the numb	er of concepts	s, number of	of syntactically distinct hypothesis, number of	
		andle disting	et les us atlancia	Camanutat	ho vargion chace	0.3
4)	Explain th	ne inductive	biased hypot	hesis space	unbiased learner and the futility of Bias Free Learning.	
	Describe	the three typ	es of learning	g algorithm	s. ning. Differentiate between two types of biases. Why	().5
5)	C C1	4 I I + la	~~~?			-
6)	Construct	the Decision	on tree for the	following	training data using Gain Ratio as the measure of impurity	/: 10
0)	Visitor	Meal	Cost	Vegan	Allergic Reaction	
-	Alice	Dinner	Cheap	No	Yes	
	Alice	Lunch	Expensive	Yes	Yes	
	Bob	Lunch	Cheap	No	No. 1	
	Alice	Lunch	Expensive	No	No "	
	Bob	Dinner	Expensive	Yes	Yes	
	Alice	Dinner	Cheap	No	Yes	
	Alice	Lunch	Expensive	Yes	Yes	
	Bob.	Dinner	Expensive	_ Yes	No **	
-	Alice	Dinner	Cheap	No	Yes	
	Alice	Lunch	Expensive	Yes	Yes-	
	Alice	Lunch	Expensive	Yes.	Yes	
	Bob	Lunch	Cheap	No	No	
	Alice	Lunch	Expensive	No	No	
		Dinner	Expensive	Yes	Yes	
	Bob	Dilline	Colonia Social		Explain briefly how are they overcome?	

Total No. of Printed Pages:3

M.E.(Computer Science and Engineering) Semester-I **EXAMINATION MARCH 2022** Machine Learning

[Duration: Three Hours]

[Total Marks: 100]

Instructions:-

- 1) Attempt any five questions.
- 2) Make suitable assumptions if required
- a) Consider the problem of online shopping of groceries. Explain the steps in designing a program to learn to purchase groceries using Internet. List the available design

T	Training	running nose	coughing	reddened skin	Classification
-	d1	+	+	+	positive(ill)
	d2 · ·	+ 0 9	•+	- 2000	positive(ill)
	d3	+ : 8 8 8 8 8	9	+	Negative(healthy)
	d4		+ 3	+	Negative(healthy)
	*d5	- 0 0 0 0	- 10 (0)	+	Negative(healthy)
	d6 *	- /- /- /-		5 000000	Negative(healthy)

a) Calculate the number of syntactically distinct hypothesis

b) Compute a maximally specific hypothesis using FIND-S algorithm

c) Compute a version space containing all hypotheses consistent with the above examples using candidate elimination algorithm

a) Train the given data using Decision Tree algorithm. Classify the test data instances as

Weather .	Time of week	Time of day	Traffic Jam
Clear	Workday	Morning	Yes
Clear	Workday	Lunch	No
Clear	Workday	Evening	Yes
Clear	Weekend ·	Morning	No
Rainy	Workday	Morning	Yes

Rainy	•Workday	Lunch	Yes

	To inc	Yes
Workday		No
Weekend	Morning	
Waskend	Lunch	No
	Evening	No
Weekend		Yes
Workday	Morning	Yes
Workday	Lunch	
Workday	Evening	Yes
Weekend	Morning	Yes
	Weekend Weekend Workday Workday Workday	Weekend Morning Weekend Lunch Weekend Evening Workday Morning Workday Lunch Workday Evening

Test Data:

Clear	Weekend	Lunch	
Snowy	Weekend	Evening	

	 b) With suitable illustration explain the following solutions to overfitting in decision trees: i) Stop growing the tree ii)Pruning using cross-validation 	(
Q.3	a) List various issues in machine learning.	2
	 b) For each of the following learning problems, identify the class of tasks, performance measures and the source of experience. Suggest an appropriate target function to i) Autonomous Mars Rover ii) Fruit disease prediction iii) Signature recognition 	1.
	c) Will the output of candidate elimination algorithm change if we change the ordering of the training examples? Justify with the help of an example.	
Q.4	a) Illustrate Bayesian Belief Networks with a	6
	system has the probability of 0.05 A Bayesian I	8
	that the mail is actually not-span? is classified as not	7
	c) What is the Naïve assumption in Naïve Bayes Classifier? For the Say	

O.5 a) Write a short note on PAC learnability

- 7
- b) Discuss the Sample Complexity of Finite Hypothesis space. Comment of the minimum number of training samples needed for a PAC learnable consistent learner, given the following set of Boolean literals, error and probability thresholds.
- 7

- 1. n=100, $\delta=\epsilon=0.05$
- 2. n=100, $\delta = \epsilon = 0.03$ 3. n= 100, $\delta = \epsilon = 0.01$
- c) Discuss the Sample Complexity of an Infinite Hypothesis Space.

- 6
- Q.6 a) Give three computer applications for which machine learning approaches seem appropriate and three applications for which they seem inappropriate.
- 6
- b) What is version space? What are the elements of the version space? How are they ordered?
 - they 4
- c) What do you understand by the minimum description length principle? Explain how it deals with the hypothesis space.

d) List the problems under which decision tree learning is best suitable.