Test 2

Sam Grayson

March 30, 2015

Before beginning the my answers, I need to establish the following lemma.

Lemma: $\forall i \in \mathbb{N} (\forall j \in \mathbb{N} (\exists! r \in \mathbb{N} (i \equiv r \pmod{j}) \land 0 \leq r < j)))$

Proof:

Let $i \in \mathbb{N}$ (for universal generalization) (for universal generalization) Let $j \in \mathbb{N}$ $i = qj + r \land 0 \le r < j$ for some unique $q, r \in \mathbb{N}$ Division algorithm i - r = qjAlgebra j|(i-r)Definition of divides $i \equiv r \pmod{j}$ Definition of modulo $i \equiv r \pmod{j} \land 0 \le r < j$ Conjunction $\exists r (i \equiv r \pmod{j}) \land 0 \le r < j)$ Existential generalization $\forall i \in \mathbb{N} (\forall j \in \mathbb{N} (\exists! r \in \mathbb{N} (i \equiv r \pmod{j}) \land 0 \le r < j)))$ Universal generalization •

1. Theorem: $\sqrt[3]{6} \notin \mathbb{Q}$

Proof:

 $\sqrt[3]{6} \neq 1$ Fact $\sqrt[3]{6} \neq 2$ Fact $\sqrt[3]{6} \neq 3$ Fact $\sqrt[3]{6} \neq 4$ Fact $\sqrt[3]{6} \neq 5$ Fact $\sqrt[3]{6} \neq 6$ Fact $\forall x \in \mathbb{N} (1 \le \sqrt[3]{x} \le x)$ Fact $1 \le \sqrt[3]{6} < 6$ Universal instantiation Ugggggh $\sqrt[3]{6} \notin \mathbb{N}$ By exhaustion $\sqrt[3]{6} \notin \mathbb{Q}$ Next test question ■

2. **Theorem:** Let $n, x \in \mathbb{N}$. $\sqrt[n]{x} \in \mathbb{Q} \to \sqrt[n]{x} \in \mathbb{N}$.

Proof:

 $\sqrt[n]{x} \in \mathbb{Q}$ Premise $\sqrt[n]{x} = \frac{j}{k}$ for some $j, k \in \mathbb{Z}$ Definition of rational $xk^n = j^n$ Algebra $xk_0^n k_1^n k_2^n \dots = j_0^n j_1^n j_2^n \dots$ FTA $xk_1^n k_2^n \dots = j_1^n j_2^n \dots$ Theorem 2.8 (with reordering) $xk_2^n \dots = j_2^n \dots$ Theorem 2.8 (with reordering) Repeating this process

Stop when all k are eliminated

Lets call it the ith step

$$x = j_i^n j_{i+1}^n \dots$$
 Theorem 2.8
 $\sqrt[n]{x} = j_i j_{i+1} \dots$ Algebra
 $\sqrt[n]{x} \in \mathbb{N}$ Closure of \mathbb{N} over multiplication

3. **Theorem:** Let $n \equiv 2 \pmod{3}$. Let the prime-factorization of n be written as follows: $n = n_1 n_2 n_3 \dots$ I claim that $\exists i (n_i \equiv 2)$

Proof:

Note: all statements of congruency are taken to be modulo 3.

received and searchines of comprehensive	
Assume $\forall i (n_i \not\equiv 2)$	For contradiction
$\forall i (i \equiv 0 \lor i \equiv 1 \lor i \equiv 2))$	Lemma
$\forall i (i \not\equiv 2 \to (i \equiv 2 \lor i \equiv 0))$	Conditional disjunction
$n_i \not\equiv 2$	Universal instantiation
$n_i \not\equiv 2 \to (n_i \equiv 1 \lor n_i \equiv 0)$	Universal instantiation
$n_i \equiv 1 \lor n_i \equiv 0$	Modus ponens
$\forall i (n_i \equiv 1 \lor n_1 \equiv 0)$	Universal generalization
$n_0 n_1 n_2 \dots \equiv 1^i 0^j$ for some $i, j \in \mathbb{N}$	Theorem 1.14 (repeated use)
If $i = 0 \land j \neq 0$: $n \equiv 0$	Arithmetic
If $i \neq 0 \land j = 0$: $n \equiv 1$	Arithmetic
If $i \neq 0 \land j \neq 0$: $n \equiv 0$	Arithmetic
If $i = 0 \land j = 0$: $n \equiv 1$	Arithmetic
$n \equiv 0 \lor n \equiv 1$	Constructive dilemma
Contradicts $n \equiv 2$	
$\neg(\forall i(n_i \not\equiv 2))$	Contradiction
$\neg(\neg\exists i(n_i\equiv 2))$	Quantifier exchange
$\exists i (n_i \equiv 2)$	Double negation ■

4. (a) Theorem: $(a \in H \land b \in H) \rightarrow ab \in H$.

Proof:

$$\begin{array}{ll} a=4c+1 & \text{Definition of Hilbert number} \\ b=4d+1 & \text{Definition of Hilbert number} \\ ab=16cd+4c+4d+1=4(4cd+c+d)+1 & \text{Algebra} \\ ab\equiv 1 \pmod 4 & \text{Definition of modulo} \\ ab\in H & \text{Definition of } H & \blacksquare \end{array}$$

- (b) 5, 9, 13, 17, 21, 29, 33, 37, 41, 49
- (c) Show: for all $a \in H$, a can be factored into elements of H

Some Hilbert numbers a are divisible by some other Hilbert element $b \in H$. In order for a to factor, it has to be written as a = bc for $c \in H$. In other words, $\forall a \in H(\forall b \in H(b|a \to \exists c \in H(bc = a)))$. (These are the Hilbert composites)

Proof:

Note: all statements of congruency are taken to be modulo 4.

```
Let a \in H
                                                     Assume (for universal generalization)
Let b \in H
                                                     Assume (for universal generalization)
Let b|a
                                                     Assume (for conditional)
bc = a for some c \in \mathbb{N}
                                                     Definition of divides
                                                     and existential instantiation (on c)
a = 4k_a + 1 for some k_a
                                                     Definition of Hilbert number
b = 4k_b + 1 for some k_b
                                                     Definition of Hilbert number
a-1=4k_a
                                                     Algebra
b - 1 - 4k_b
                                                     Algebra
4|(a-1)|
                                                     Definition of divides
4|(b-1)
                                                     Definition of divides
a \equiv 1
                                                     Definition of modulo
b \equiv 1
                                                     Definition of modulo
\forall i (i \equiv 0 \lor i \equiv 1 \lor i \equiv 2 \lor i \equiv 3)
                                                     Lemma
Assume c \not\equiv 1
                                                     For contradiction
i \equiv 0 \lor i \equiv 1 \lor i \equiv 2 \lor i \equiv 3
                                                     Universal instantiation
c \not\equiv 1 \rightarrow (c \equiv 0 \lor c \equiv 2 \lor c \equiv 3)
                                                     Universal generalization
i \not\equiv 1 \rightarrow (i \equiv 0 \lor i \equiv 2 \lor i \equiv 3)
                                                     Conditional disjunction
c \equiv 0 \lor c \equiv 2 \lor c \equiv 3
                                                     Modus ponens
If c \equiv 0: bc \equiv 1 \cdot 0 \equiv 0
                                                     Theorem 1.14
If c \equiv 2: bc \equiv 1 \cdot 2 \equiv 2
                                                     Theorem 1.14
If c \equiv 3: bc \equiv 1 \cdot 3 \equiv 3
                                                     Theorem 1.14
bc \equiv 0 \lor bc \equiv 2 \lor bc \equiv 3
                                                     Constructive dilemma
Contradicts bc \equiv 1
c \equiv 1
                                                     Contradiction
c \in H
                                                     Definition of Hilbert number
\exists c \in H(bc = a)
                                                     Existential generalization
b|a \to \exists c \in H(bc = a)
                                                     Conditional proof
\forall b \in H(b|a \to \exists c \in H(bc = a))
                                                     Universal generalization
\forall a \in H \forall b \in H(b|a \to \exists c \in H(bc = a))
                                                     Universal generalization •
```

Every Hilbert number that is not divisible by another Hilbert number can be written a = 1a, since $1 \in H$ and $a \in H$. (These are the Hilbert primes).

Therefore every Hilbert number can be factored into other Hilbert numbers,

(d)
$$693 = 9 \cdot 77$$

 $693 = 21 \cdot 33$

5. (a) Using finite-list notation, the GCD is equivalent to the list-intersection. Since 3 occurs in the prime-factorization of a 3 times and in the prime-factorization of b 2 times, 3 occurs in the prime factorization of the GCD min(3, 2) = 2.

6. **Theorem:** Let $n \in \mathbb{Z} \land n > 0$. Let the smallest prime factor be p. $p > \sqrt[3]{n} \to (\frac{n}{p} = 1 \lor \frac{n}{p} \in \mathbb{P})$ Consider the case where n is composite. $\frac{n}{p} \in \mathbb{P}$. Therefore, the theorem holds.

Proof:

Assume $p > \sqrt[3]{n}$ is the smallest prime factor For conditional Property of inequality Property of inequality Property of inequality $n \neq p$ A prime cannot equal a composite $\frac{n}{p} \neq 1$ Algbera Assume $\frac{n}{p} \notin \mathbb{P}$ For contradiction $\frac{n}{p} \in \mathbb{P} \leftrightarrow \neg \exists p (p \in \mathbb{P} \land 1 <math display="block">\frac{n}{p} \notin \mathbb{P} \leftrightarrow \exists j (j \in \mathbb{P} \land 1 < j \le \sqrt{\frac{n}{p}} \land j \mid \frac{n}{p})$ Theorem 2.3 Negative biconditional $\exists j (j \in \mathbb{P} \land 1 < j \le \sqrt{\frac{n}{p}} \land j \mid \frac{n}{p})$ $j \in \mathbb{P} \land 1 < j \le \sqrt{\frac{n}{p}} \land j \mid \frac{n}{p}$ Modus Ponens (on biconditional) Existential instantiation $j \le \sqrt{\frac{n}{p}}$ $j \le n^{1/3}$ Simplification Algebra $\begin{array}{c|c} j & \frac{n}{p} \\ j & p \frac{n}{p} \end{array}$ Simplification Theorem 1.3 $j \mid n$ Algebra $j \le p \land j \mid n \land j \in \mathbb{P}$ Conjunction Contradicts premise for pSince j is a smaller prime factor $\frac{n}{p} \in \mathbb{P}$ Contradiction •

Consider the case where $n \in \mathbb{P}$. The smallest prime factor p is itself n. $\frac{n}{p} = 1$ (since both

non-zero by premises). Therefore, theorem holds.

Consider the case where n = 1. Actually, don't consider the case where n = 1. There are no prime factors of one, so the antecedant is false. The theorem holds.

The theorem holds when $n \in \mathbb{F}$, $n \in \mathbb{P}$, and n = 1. These are the only three possibilities for positive integers.

7. **Algorithm:** Input $n \in \mathbb{N} \land n > 11$. Output two numbers $a \in \mathbb{F}$, and $b \in \mathbb{F}$ where a + b = n

Proof:

```
If n \equiv 0 \pmod{2}
2 \mid n
                                                            Definition of modulo
                                                            Premise
n > 11
n - 4 > 7
                                                            Property of inequalities
n-4 \neq 2
                                                            Property of inequalities
2|(n-4)|
                                                            Theorem 1.2
(n-4) \in \mathbb{Z}
                                                            Definition of composite
4 = 2 \cdot 2
\exists j (1 < j < 4 \land j | 4)
                                                            Existential generalization
4 \in \mathbb{P}
                                                            Definition of composite
(n-4)+4=n
                                                            Algebra
Output (n-4) and 4
Otherwise n \not\equiv 0 \pmod{2}
\forall i (i \equiv 0 \pmod{2}) \lor i \equiv 1 \pmod{2}
                                                            Lemma
n \equiv 0 \pmod{2} \lor n \equiv 1 \pmod{2}
                                                            Universal instantiation
n \not\equiv 0 \pmod{2} \rightarrow n \equiv 1 \pmod{2} n \equiv 1 \pmod{2}
                                                            Modus ponens
n > 11
                                                            Premise
n - 9 > 9
                                                            Premise
2 \mid (9-1)
9 \equiv 1 \pmod{2}
                                                            Definition of modulo
n - 9 \equiv 1 - 1 \equiv 0 \pmod{2}
                                                            Theorem 1.13
                                                            Definition of modulo
2 | (n-9)
n \neq 11
                                                            Simplification
n-9 \neq 2
                                                            Property of inequality
n-9 \in \mathbb{Z}
                                                            Definition of composite
9 = 3 \cdot 3
\exists j (1 < j < 9 \land j | 9)
                                                            Existential generalization
9 \in \mathbb{Z}
                                                            Definition of composite
(n-9) + 9 = n
                                                            Algebra
Output n-9 and 9
```

8.

9. **Theorem:** Let n be a natural number greater than one. $\exists p \in \mathbb{P} (n \geq p \geq n! + 1)$.

Proof:

Let $m \in \mathbb{N} \land 1 < m < n$ (For universal generalization)

n > 1	Premise
n! > 1	Fact (given $n > 1$)
$\forall n \in \mathbb{N}(\gcd(n, n+1) = 1)$	Theorem 2.32
$\gcd(n!, n! + 1) = 1$	Universal instantiation
Assume $m (n!+1)$	For contradiction
$m \mid n!$	Definition of factorial
·	since $m < n$
$\gcd(n, n+1) \ge m$	Definition of gcd
$\gcd(n, n+1) \ge m > 1$	Restatment
	(Premise for m)
$\gcd(n, n+1) > 1$	Property of inequalities
Therefore $m \nmid n! + 1$	Lemma
$\forall m (1 < m < n \rightarrow m \nmid (n! + 1))$	Universal generalization
$\exists p (p \in \mathbb{P} \land p \mid (n!+1))$	Fundamental Theorem of Arithmetic
Let $p \in \mathbb{P} \land p \mid (n! + 1)$	Existential instantiation
1	Universal instantiation
$p \mid (n! + 1) \rightarrow \neg (1$	Contrapositive
$p \mid (n! + 1)$	Simplification
$\neg (1$	Modus ponens
$\neg (1$	Modus ponens
$\neg (1 < p) \lor \neg (p < n)$	Modus ponens
$\neg (1 < p) \lor p \ge n$	Property of inequality
$\neg\neg(1 < p) \to p \ge n$	Conditional disjunction
1	Double negation
1 < p	p is prime
$p \ge n$	Modus ponens
$ap = (n! + 1)$ for some $a \in \mathbb{N}$	Definition of divides
	and existential instantiation (on a)
$p \le (n! + 1)$	Property of inequality
$n \le p \land p \le (n! + 1)$	Conjunction
$n \le p \le (n! + 1)$	Property of inequalities
$\exists p \in \mathbb{P}(n \le p \le (n! + 1))$	Existential quantification •