

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ
КАФЕДРА	СИСТЕМЫ ОБРАБОТКИ ИНФОРМАЦИИ И УПРАВЛЕНИЯ (ИУ5)

ОТЧЕТ

по лабораторной работе

по	дисциплине:	Технологии	машинного	обучения	
на т	гему: <u>Разведоч</u>	ный анализ дан	нных. Исследо	ование и визу	ализация данных
Сту,	дент <u>ИУ5-62Б</u> (Группа)	_	(I	Іодпись, дата)	<u>Шушпанов В.О.</u> (И.О.Фамилия)
Руко	оводитель		(I	Тодпись, дата)	Ю.Е. Гапанюк (килимеФ.О.И)

Лабораторная работа №1

1) Текстовое описание набора данных

В качестве набора данных мы будем использовать набор данных Diabets dataset https://scikit-learn.org/stable/datasets/index.html#toy-datasets Для каждого из n = 442 больных сахарным диабетом были получены десять исходных переменных, возраст, пол, индекс массы тела, среднее артериальное давление и шесть измерений сыворотки крови, а также интересующая нас реакция - количественная мера прогрессирования заболевания через год после исходного уровня.

```
In [7]: import numpy as np
  import pandas as pd
  import seaborn as sns
  import matplotlib.pyplot as plt
  %matplotlib inline
  sns.set(style="ticks")

data = pd.read_csv('data/diabetes.tab.txt', sep="\t")
```

2) Основные характеристики датасета

```
In [9]:
            # Первые 5 строк датасета
            data.head()
 Out[9]:
                AGE SEX BMI
                                    BP
                                         S1
                                                S2
                                                      S3 S4
                                                                  S5 S6
                                                                             Υ
             0
                  59
                            32.1
                                  101.0
                                        157
                                               93.2 38.0
                                                          4.0 4.8598
                                                                       87
                                                                           151
             1
                  48
                         1 21.6
                                        183 103.2 70.0
                                                                            75
                                   87.0
                                                         3.0
                                                              3.8918
                                                                      69
                  72
                            30.5
                                   93.0
                                        156
                                               93.6
                                                   41.0
                                                          4.0
                                                               4.6728
                                                                       85
                                                                           141
             3
                  24
                         1 25.3
                                   84.0 198
                                              131.4 40.0
                                                          5.0
                                                              4.8903
                                                                       89
                                                                           206
                  50
                         1 23.0
                                  101.0
                                        192
                                              125.4
                                                    52.0
                                                          4.0
                                                              4.2905
                                                                           135
In [10]:
            #Размер датасета - 442 строки, 11 колонок
            data.shape
Out[10]: (442, 11)
In [11]:
            total count = data.shape[0]
            print('Всего строк: {}'.format(total count))
            Всего строк: 442
In [12]:
            # Список колонок
            data.columns
Out [12]: Index(['AGE', 'SEX', 'BMI', 'BP', 'S1', 'S2', 'S3', 'S4', 'S5', 'S6', 'Y'], dtype='object')
```

```
In [13]:
            # Список колонок с типами данных
            data.dtypes
Out[13]: AGE
                    int64
            SEX
                    int64
            BMI float64
            BP float64
            S1
                  int64
            S2
                 float64
            S3
                 float64
            S4
                 float64
            S5
                 float64
            S6
                  int64
            Y
                  int64
            dtype: object
In [14]:
            #Проверим наличие пустых значений
            # Цикл по колонкам датасета
            for col in data.columns:
               #Количество пустых значений - все значения заполнены
              temp null count = data[data[col].isnull()].shape[0]
              print('{} - {}'.format(col, temp null count))
            AGE - 0
            SEX - 0
            BMI - 0
            BP - 0
            S1 - 0
            S2 - 0
            S3 - 0
            S4 - 0
            S5 - 0
            S6 - 0
            Y - 0
In [15]:
            # Основные статистические характеристки набора данных
            data.describe()
Out[15]:
```

		AGE	SEX	BMI	ВР	S1	S2	S3		
count 442.000000 442.00000 442.0000000 442.0000000 442.00000000 442.0000000000										
me	ean	48.518100	1.468326	26.375792	94.647014	189.140271	115.439140	49.788462	4.07	
	std	13.109028	0.499561	4.418122	13.831283	34.608052	30.413081	12.934202	1.29	
r	nin	19.000000	1.000000	18.000000	62.000000	97.000000	41.600000	22.000000	2.00	
2	5%	38.250000	1.000000	23.200000	84.000000	164.250000	96.050000	40.250000	3.00	
5	0%	50.000000	1.000000	25.700000	93.000000	186.000000	113.000000	48.000000	4.00	
7	5%	59.000000	2.000000	29.275000	105.000000	209.750000	134.500000	57.750000	5.00	
n	nax	79.000000	2.000000	42.200000	133.000000	301.000000	242.400000	99.000000	9.09	

```
In [21]: #Определим уникальные значения для целевого признака data['SEX'].unique()
```

3) Визуальное исследование датасета

```
In [38]: fig, ax = plt.subplots(figsize=(10,10)) sns.scatterplot(ax=ax, x='S1', y='S2', data=data)
```

Out [38]: <matplotlib.axes. subplots.AxesSubplot at 0xe70c610>


```
In [42]: fig, ax = plt.subplots(figsize=(10,10))

sns.scatterplot(ax=ax, x='S1', y='S2', data=data, hue='Y')
```

Out [42]: <matplotlib.axes._subplots.AxesSubplot at 0xfd81e70>

Гистограмма

```
In [43]: fig, ax = plt.subplots(figsize=(10,10)) sns.distplot(data['S1'])
```

Out [43]: <matplotlib.axes._subplots.AxesSubplot at 0xfd816b0>

Jointplot

Комбинация гистограмм и диаграмм рассеивания.

```
In [44]: sns.jointplot(x='S1', y='S2', data=data)
```

Out [44]: <seaborn.axisgrid.JointGrid at 0xfd663b0>

In [48]: sns.jointplot(x='S1', y='S2', data=data, kind="hex")

Out [48]: <seaborn.axisgrid.JointGrid at 0x1041bab0>

In [49]: sns.jointplot(x='S1', y='S2', data=data, kind="kde")

Out [49]: <seaborn.axisgrid.JointGrid at 0x1079f450>

"Парные диаграммы"

In [54]: sns.pairplot(data)

Out [54]: <seaborn.axisgrid.PairGrid at 0x207eb810>

In []:

Ящик с усами

Отображает одномерное распределение вероятности.

In [56]: sns.boxplot(x=data['S1'])

Out [56]: <matplotlib.axes._subplots.AxesSubplot at 0x3066f290>

In [57]: #По вертикали sns.boxplot(y=data['S1'])

Out [57]: <matplotlib.axes._subplots.AxesSubplot at 0x3095a350>

In [61]: #Распределение параметра S1 сгруппированные по Y. sns.boxplot(x='SEX', y='Y', data=data)

Out [61]: <matplotlib.axes._subplots.AxesSubplot at 0x301089d0>

Violin plot

```
In [59]: sns.violinplot(x=data['S1'])
```

Out [59]: <matplotlib.axes._subplots.AxesSubplot at 0x313a38d0>


```
In [62]: fig, ax = plt.subplots(2, 1, figsize=(10,10))

sns.violinplot(ax=ax[0], x=data['S1'])

sns.distplot(data['S1'], ax=ax[1])
```

Out [62]: <matplotlib.axes._subplots.AxesSubplot at 0x2e5efe10>

In [65]: # Распределение параметра Humidity сгруппированные по Оссирапсу. sns.violinplot(x='SEX', y='Y', data=data)

Out [65]: <matplotlib.axes._subplots.AxesSubplot at 0x305b53b0>


```
In [79]: sns.catplot(y='Y', x='SEX', data=data, kind="violin", split=True)
```

Out [79]: <seaborn.axisgrid.FacetGrid at 0x340379b0>

4) Информация о корреляции признаков

In [68]: data.corr()

Out[68]:

	AGE	SEX	ВМІ	ВР	S1	S2	S 3	S4	
AGE	1.000000	0.173737	0.185085	0.335428	0.260061	0.219243	-0.075181	0.203841	0.2707
SEX	0.173737	1.000000	0.088161	0.241010	0.035277	0.142637	-0.379090	0.332115	0.1499
ВМІ	0.185085	0.088161	1.000000	0.395411	0.249777	0.261170	-0.366811	0.413807	0.4461
ВР	0.335428	0.241010	0.395411	1.000000	0.242464	0.185548	-0.178762	0.257650	0.3934
S 1	0.260061	0.035277	0.249777	0.242464	1.000000	0.896663	0.051519	0.542207	0.5155
S2	0.219243	0.142637	0.261170	0.185548	0.896663	1.000000	-0.196455	0.659817	0.3183
S3	-0.075181	-0.379090	-0.366811	-0.178762	0.051519	-0.196455	1.000000	-0.738493	-0.3985
S4	0.203841	0.332115	0.413807	0.257650	0.542207	0.659817	-0.738493	1.000000	0.6178
S 5	0.270774	0.149916	0.446157	0.393480	0.515503	0.318357	-0.398577	0.617859	1.0000
S6	0.301731	0.208133	0.388680	0.390430	0.325717	0.290600	-0.273697	0.417212	0.4646
Y	0.187889	0.043062	0.586450	0.441482	0.212022	0.174054	-0.394789	0.430453	0.5658

In [69]: data.co

data.corr(method='pearson')

Out[69]:

	AGE	SEX	ВМІ	ВР	S1	S2	S3	S4	
AGE	1.000000	0.173737	0.185085	0.335428	0.260061	0.219243	-0.075181	0.203841	0.2707
SEX	0.173737	1.000000	0.088161	0.241010	0.035277	0.142637	-0.379090	0.332115	0.1499
ВМІ	0.185085	0.088161	1.000000	0.395411	0.249777	0.261170	-0.366811	0.413807	0.4461
ВР	0.335428	0.241010	0.395411	1.000000	0.242464	0.185548	-0.178762	0.257650	0.3934

S1	0.260061	0.035277	0.249777	0.242464	1.000000	0.896663	0.051519	0.542207	0.5155
S2	0.219243	0.142637	0.261170	0.185548	0.896663	1.000000	-0.196455	0.659817	0.3183
S3	-0.075181	-0.379090	-0.366811	-0.178762	0.051519	-0.196455	1.000000	-0.738493	-0.3985
S4	0.203841	0.332115	0.413807	0.257650	0.542207	0.659817	-0.738493	1.000000	0.6178
S5	0.270774	0.149916	0.446157	0.393480	0.515503	0.318357	-0.398577	0.617859	1.0000
S6	0.301731	0.208133	0.388680	0.390430	0.325717	0.290600	-0.273697	0.417212	0.4646
Υ	0.187889	0.043062	0.586450	0.441482	0.212022	0.174054	-0.394789	0.430453	0.5658

In [70]:

data.corr(method='kendall')

Out[70]:

	AGE	SEX	ВМІ	ВР	S1	S2	S3	S 4	
AGE	1.000000	0.146580	0.136535	0.242111	0.182220	0.153612	-0.073846	0.160898	0.1805
SEX	0.146580	1.000000	0.080424	0.215733	0.022809	0.110208	-0.326188	0.297335	0.1431
ВМІ	0.136535	0.080424	1.000000	0.281770	0.194171	0.198583	-0.249831	0.335625	0.3447
ВР	0.242111	0.215733	0.281770	1.000000	0.188067	0.140253	-0.131014	0.205948	0.2688
S1	0.182220	0.022809	0.194171	0.188067	1.000000	0.717229	0.010695	0.393367	0.3562
S2	0.153612	0.110208	0.198583	0.140253	0.717229	1.000000	-0.133332	0.503579	0.2422
S3	-0.073846	-0.326188	-0.249831	-0.131014	0.010695	-0.133332	1.000000	-0.638633	-0.3117
S4	0.160898	0.297335	0.335625	0.205948	0.393367	0.503579	-0.638633	1.000000	0.4854
S5	0.180544	0.143172	0.344720	0.268863	0.356268	0.242250	-0.311775	0.485410	1.0000
S6	0.201784	0.168199	0.266373	0.264566	0.227139	0.194082	-0.200545	0.307397	0.3162
Υ	0.130709	0.030630	0.391195	0.289352	0.154016	0.129665	-0.278884	0.324734	0.4089

In [71]:

data.corr(method='spearman')

Out[71]:

	AGE	SEX	BMI	BP	S1	S2	S3	S4	
AGE	1.000000	0.177463	0.200554	0.350859	0.262524	0.221711	-0.106973	0.221017	0.2651
SEX	0.177463	1.000000	0.098079	0.261508	0.027790	0.134695	-0.394584	0.337524	0.1746
ВМІ	0.200554	0.098079	1.000000	0.397985	0.287829	0.295494	-0.371172	0.459068	0.4916
ВР	0.350859	0.261508	0.397985	1.000000	0.275224	0.205638	-0.191033	0.280799	0.3960
S1	0.262524	0.027790	0.287829	0.275224	1.000000	0.878793	0.015308	0.520674	0.5128
S2	0.221711	0.134695	0.295494	0.205638	0.878793	1.000000	-0.197435	0.652283	0.3499
S3	-0.106973	-0.394584	-0.371172	-0.191033	0.015308	-0.197435	1.000000	-0.789694	-0.4504
S4	0.221017	0.337524	0.459068	0.280799	0.520674	0.652283	-0.789694	1.000000	0.6403
S5	0.265176	0.174625	0.491609	0.396071	0.512864	0.349947	-0.450420	0.640390	1.0000
S6	0.296235	0.203277	0.384664	0.381219	0.332173	0.286483	-0.290863	0.413700	0.4530
Υ	0.197822	0.037401	0.561382	0.416241	0.232429	0.195834	-0.410022	0.448931	0.5894

In [72]: sns.heatmap(data.corr())

Out [72]: <matplotlib.axes. subplots.AxesSubplot at 0x31bc55d0>

In [74]: #Вывод значений в ячейках sns.heatmap(data.corr(), annot=**True**, fmt='.3f')

Out [74]: <matplotlib.axes. subplots.AxesSubplot at 0x2ccbdf70>


```
In [75]: #Изменение цветовой гаммы sns.heatmap(data.corr(), cmap='YlGnBu', annot=True, fmt='.3f')
```

Out [75]: <matplotlib.axes. subplots.AxesSubplot at 0x31c7b790>


```
In [76]: #Треугольный вариант матрицы
mask = np.zeros_like(data.corr(), dtype=np.bool)
# чтобы оставить нижнюю часть матрицы
# mask[np.triu_indices_from(mask)] = True
# чтобы оставить верхнюю часть матрицы
mask[np.tril_indices_from(mask)] = True
sns.heatmap(data.corr(), mask=mask, annot=True, fmt='.3f')
```

Out [76]: <matplotlib.axes._subplots.AxesSubplot at 0x31ae5f10>


```
In [77]: fig, ax = plt.subplots(1, 3, sharex='col', sharey='row', figsize=(15,5)) sns.heatmap(data.corr(method='pearson'), ax=ax[0], annot=True, fmt='.2f') sns.heatmap(data.corr(method='kendall'), ax=ax[1], annot=True, fmt='.2f') sns.heatmap(data.corr(method='spearman'), ax=ax[2], annot=True, fmt='.2f') fig.suptitle('Корреляционные матрицы, построенные различными методами') ax[0].title.set_text('Pearson') ax[1].title.set_text('Kendall') ax[2].title.set_text('Spearman')
```

Корреляционные матрицы, построенные различными методами

In []: