Центр. Централізатор. Нормалізатор

Євгенія Кочубінська

Київський національний університет імені Тараса Шевченка

2 листопада 2022

FACULTY OF MECHANICS AND MATHEMATICS

Центр

Означення

Центром групи *G* називається множина

$$Z(G) = \{ a \in G \mid ag = ga \ \forall g \in G \}.$$

Елементи центру називають центральними елементами групи.

Твердження

Група G абелевою $\Leftrightarrow Z(G) = G$.

Центр

Твердження

Елемент $\alpha \in G$ є центральним, тоді і лише тоді, коли $|C_G(\alpha)| = 1$.

Доведення.

$$a \in Z(G) \Leftrightarrow ag = ga \ \forall g \in G \Leftrightarrow g^{-1}ag = a \ \forall g \in G \Leftrightarrow C_G(a) = \{a\} \iff |C_G(a)| = 1.$$

Наслідок

Центр є об'єднанням одноелементних класів спряженості.

Приклад

- $2(Q_8) = \{1, -1\}.$

Центр

Теорема

Центр групи ϵ її абелевою нормальною підгрупою.

Доведення.

Якщо $a, b \in Z(G)$, то для всіх $g \in G$:

$$(ab)g = a(bg) = a(gb) = (ag)b = (ga)b = g(ab) \Rightarrow ab \in Z(G),$$

$$\Rightarrow Z(G) < G.$$

$$ag = ga \Rightarrow ga^{-1} = a^{-1}g \Rightarrow a^{-1} \in Z(G),$$

$$Z(G)$$
 — об'єднання класів спряженості \Rightarrow $Z(G) \triangleleft G$.

Теорема

Якщо G — неабелева група, то G/Z(G) — не циклічна.

Доведення.

Припустимо, що G/Z(G) — циклічна: $G/Z(G) = \langle gZ(G) \rangle$.

Довільний елемент з G/Z(G) має вигляд $g^kZ(G)$, тому довільний елемент з G можна записати так: g^kh , де $h \in Z(G)$.

Для довільних $a = g^k h_1$, $b = g^l h_2$ з G:

$$ab = g^k h_1 g^l h_2 = g^k g^l h_1 h_2 = g^l g^k h_2 h_1 = g^l h_2 g^k h_1 = ba.$$

Отже, *G* — абелева 444

Централізатор

Нехай *A* — довільна підмножина групи *G*.

$$Z_G(A) = Z(A) = \{g \in G \mid ag = ga \ \forall a \in A\}.$$

Зокрема, централізатор групи — це її центр.

Нормалізатор

Нехай A — довільна підмножина групи G.

Hopmanisatopom множини A у групі G називається множина

$$N_G(A) = N(A) = \{g \in G \mid g^{-1}Ag = A\}.$$

Якщо $A = \{a\}$, то Z(A) = N(A), бо $ga = ag \Leftrightarrow g^{-1}ag = a$.

Приклади

- \bullet $g \in Z_G(A)$: ga = ag для всіх $a \in A$;
- $\bullet g \in N_G(A)$: $g^{-1}ag \in A$ для всіх $a \in A$, тобто існує $b \in A$: $g^{-1}ag = b \Leftrightarrow ag = gb$.

Приклад

$$G = \mathcal{S}_3$$
, $A = \mathcal{A}_3$. Тоді

$$Z_G(\mathcal{A}_3) = \mathcal{A}_3,$$

 $N_G(\mathcal{A}_3) = \mathcal{S}_3.$

Вправа

Доведіть, що для довільної підмножини *А* групи *G*:

- \circ Z(A) < G;
- ② N(A) < G;
- \circ $Z(A) \triangleleft N(A)$.

Теорема

Для довільного елемента α групи G

$$|C_G(\alpha)| = |G:N_G(\alpha)|.$$

Доведення.

Покажемо, що існує взаємнооднозначна відповідність між елементами класу спряженості $C_G(\alpha)$ та правими класами суміжності за нормалізатором $N_G(\alpha)$.

Кількість таких класів — $|G:N_G(\alpha)|$.

Для $g, h \in G$:

$$g^{-1}ag = h^{-1}ah \Leftrightarrow hg^{-1}agh^{-1} = a \Leftrightarrow gh^{-1} \in N_G(a) \Leftrightarrow g \in N_G(a)h.$$

Наслідок

Якщо G — скінченна група, то $|C_G(x)|$ ділить |G|.

Формула класів

Теорема

Нехай C_1, \ldots, C_k — всі неодноелементні класи спряженості скінченної групи G. Виберемо у кожному класі C_i представник a_i . Тоді

$$|G| = |Z(G)| + \sum_{i=1}^{k} |G: N_G(a_i)|.$$

Формула класів

Доведення.

Класи спряженості утворюють розбиття групи G, Z(G) — об'єднання одноелементних класів спряженості. Тому

$$G = Z(G) \bigsqcup \left(\bigsqcup_{i=1}^k C(\alpha_i)\right).$$

Звідси

$$|G| = |Z(G)| + \sum_{i=1}^{k} |C(\alpha_i)| = |Z(G)| + \sum_{i=1}^{k} |G:N_G(\alpha_i)|.$$

Задача

Знайти ймовірність того, що два навмання обраних елементи скінченної групи комутують.

Розв'язання.

|G| = n, Pr(G) — ймовірність того, що два навмання обраних елементи комутують.

$$K = \{(x, y) | xy = yx\} \Rightarrow Pr(G) = \frac{|K|}{n^2}.$$

 $(x, y) \in K \Leftrightarrow x \in Z_G(y) \Rightarrow$

$$|K| = \sum_{x \in G} |Z_G(x)|.$$

Якщо x та y належать одному класу спряженості, то $|Z_G(x)| = |Z_G(y)|$. Якщо $C(x) = \{x_1, x_2, \dots, x_t\}$, то

$$|Z_G(x_1)| + |Z_G(x_2)| + \cdots + |Z_G(x_t)| = t \cdot |Z_G(x)| = |G : Z_G(x)| \cdot |Z_G(x)| = |G| = n.$$

Обравши по одному елементу у кожному з класів спряженості, одержимо

$$|K| = \sum_{x \in G} |Z_G(x)| = \sum_{i=1}^m |G: Z_G(x_i)| \cdot |Z_G(x_i)| = m \cdot n.$$

Отже,

$$Pr(G) = \frac{mn}{n^2} = \frac{m}{n},$$

де m — це кількість класів спряженості, а n — це порядок групи G.

Алгебра Центр 2 листопада 2022 14/16

Твердження

Нехай G — неабелева скінченна група, Pr(G) — ймовірність того, що два навмання обраних елементи комутують. Тоді $Pr(G) \leq \frac{5}{8}$.

Доведення.

G — неабелева \Rightarrow $Z(G) \neq G$.

G — неабелева \Rightarrow G/Z(G) не циклічна \Rightarrow $|G/Z(G)| \ge 4 \Rightarrow |Z(G)| \le \frac{|G|}{4}$.

Екстремальний випадок: $|Z(G)| = \frac{|G|}{4}$.

Решта $\frac{3}{4}|G|$ елементів можуть бути розподілені по 2-елементним класам спряженості.

Отже, в неабелевій групи кількість класів суміжності $\leq \frac{1}{4} |G| + \frac{1}{2} \cdot \frac{3}{4} |G| = \frac{5}{8} |G| \Rightarrow$

$$Pr(G) \leq \frac{\frac{5}{8}|G|}{|G|} = \frac{5}{8}.$$

Чи досягається межа $\frac{5}{8}$?

Так.

Наприклад, у групі 🗗 4. Переконайтеся 😊