

Аэроионная Технология

дает старт новому поколению систем охлаждения дата-центров

Информационный бюллетень 09/2017

ОКБ MAK http://okbmak.net

В современных дата-центрах воздушные системы охлаждения занимают доминирующее положение. Такая ситуация объясняется тем, что это техническое решение обладает уникальным комплексом конструктивных и эксплуатационных преимуществ: универсальность, масштабируемость, простота технической реализации и эксплуатации и т.п.

Однако нынешнему поколению систем воздушного охлаждения присущи и существенные недостатки, причем «неустранимого» характера, так как все производители систем технологического кондиционирования для дата-центров разрабатывают свои установки базируясь на единой термодинамической модели теплопереноса, в рамках которой эффективность удаления теплоизбытков ограничена допустимой частотой возникновения электростатических разрядов. Такую ситуацию постулирует стандарт TIA-942 (и директива ASHRAE-2011, как его развитие), который оперирует классическим инструментом борьбы с электростатикой – увлажнением охлаждающего воздуха. Этот подход имеет ограниченную эффективность как в части собственно защиты оборудования (до 25% отказов электронных устройств связаны с электростатическими разрядами, т.к. главный защитный компонент – электропроводящая во-

дяная пленка на горячих и гидрофобных поверхностях не образуется), так и в части энергоэффективности – каждый 4-й киловатт в энергобалансе дата-центра потребляется холодильным оборудованием, т.е. «греет небо».

Кратко резюмируя ситуацию в отрасли можно сказать, что производительность «классического» варианта технологии воздушного охлаждения имеет «термодинамический предел», связанный с комплексным нормированием скорости охлаждающего потока, его температуры и относительной влажности.

По некоторым оценкам такая ситуация приводит к тому, что холодильное оборудование датацентров уже начинает влиять на климат планеты, тат как ежегодно только для собственных нужд непроизводительно сжигает энергоресурсов на 100 млрд. долларов.

ОСНОВА АЭРОИОННОЙ ТЕХНОЛОГИИ – РАСШИРЕННАЯ ТЕРМОДИНАМИЧЕСКАЯ МОДЕЛЬ ТЕПЛОПЕРЕНОСА ПРИ ОХЛАЖДЕНИИ IT-ОБОРУДОВАНИЯ

При разработке Аэроионной Технологии охлаждения дата-центров удалось заместить унаследованный и ограниченно эффективный управления механизм косвенного электростатическими зарядами трибоэлектрической природы техпроцессом прямой управляемой деионизации. Появление в термодинамической модели теплопереноса нового компонента (принудительной контролируемой ионизации охлаждающего воздуха) позволило модифицировать требования к 3-м базовым термодинамическим параметрам охлаждающего воздуха: скорости охлаждающего потока, его относительной влажности и температуре. В рамках новой модели эти параметры стали взаимно независимыми, что позволило существенно расширить требования к их допустимым/рабочим значениям:

- 1. Скорость охлаждающего потока более не лимитируется трибоэлектрическими эффектами, а ограничивается только механической прочностью элементов электронного устройства.
- 2. Относительная влажность охлаждающего воздуха ограничивается только по верхней границе (защита от короткого замыкания через водяную пленку), нижняя граница "снимается".
- 3. Температура охлаждающего воздуха работает как независимый (от относительной влажности) параметр воздушного потока, что позволяет расширить ее (температуры) рабочий диапазон до границ "термопрочности" элементной базы электронной аппаратуры.

ЭНЕРГОЭФФЕКТИВНОСТЬ АЭРОИОННОЙ ТЕХНОЛОГИИ

Как уже было отмечено, при использовании в системе охлаждения ІТ-оборудования Аэроионной Технологии скорость охлаждающего потока может быть кратно увеличена. По той же причине может быть увеличен верхний предел температуры охлаждающего воздуха как на входе в охлаждаемое устройство, так и на выходе из него. Возникающий при этом отрицательный эффект от роста температур - снижение интенсивности теплопереноса из-за уменьшения температурного градиента, может быть полностью компенсирован увеличением расхода хладагента (воздуха). Совместное управление температурой и скоростью охлаждающего потока позволяет реализовать требуемую эффективность теплопереноса внутри серверов. В ходе экспериментов подтверждена возможность охлаждения энергонагруженных компонентов ІТ-оборудования воздушным потоком с температурой до +45°C.

Для демонстрации количественных показателей энергоэффективности новой технологии можно рассмотреть базовое соотношение теплопереноса в системах кондиционирования. Количество отведенного от IT-устройства тепла определяется следующим соотношением:

$$Q = Vt\rho c\Delta T$$

где V— расход охлаждающего воздуха; t— время работы холодильного агрегата; ρ — плотность воздуха; c— теплоемкость воздуха; $\Delta T = (T2-T1)$ — перепад температуры воздуха на выходе и входе в устройство.

При стандартной технологии воздушного охлаждения один киловатт избыточного тепла отводится от устройства потоком воздуха с расходом 300 $\rm m^3$ /час с перепадом температуры 17 °C:

$$Q_{ASHRAE}=300[\text{m}^3/\text{yac}]\text{tpc}(37-20)[^{\circ}C]$$

Аэроионная технологии позволяет троекратно повысить расход воздуха и существенно расширить перепад температур на входе и выходе из охлаждаемого устройства:

$$Q_{ИОНОТРОН}=3*300t\rho c(45-5)*$$

Сопоставляя уравнения теплопереноса для классической и Аэроионной Технологии охлаждения можно сделать однозначный вывод о том феноменальном потенциале, который заложен в предлагаемой инновационной разработке:

 $\frac{Q_{UOHOTPOH}}{Q_{ASHRAE}} = \frac{7}{1}$

т.е. внедрение
Аэроионной технологии охлаждение позволяет достигнуть
7-кратного прироста
производительности
системы охлаждения
дата-центра.

Исполнительным устройством для Аэроионной Технологи является генератор аэроионов — **ИОНОТРОН.** Собственное потребление **ИОНОТРОНа** - не более 0,5 Вт на 1000 Вт тепловыделения серверного оборудования.

КОНКУРЕНТНЫЕ ПРЕИМУЩЕСТВА И ПЕРСПЕКТИВНЫЕ НАПРАВЛЕНИЯ ДЛЯ ВНЕДРЕНИЯ АЭРОИОННОЙ ТЕХНОЛОГИИ

Расширение рабочих диапазонов и независимое управление скоростью и температурой охлаждающего потока обеспечивает прирост в эффективности съема теплоизбытков до 600%.

Механизм прямой управляемой деионизации обеспечивает полную защиту IT-оборудования от электростатических разрядов трибо-электрической природы.

Уникально высокая энергоэффективность систем охлаждения IT-оборудования на базе Аэроионной Технологии позволяет:

размещать ЦОД с установками прямого охлаждения радиоэлектронной аппаратуры практически в любом регионе планеты;

создавать энергонагруженные серверы и суперкомпьютеры без применения сложных и дорогостоящих систем жидкостного охлаждения.

ПРАВОВОЕ ОБЕСПЕЧЕНИЕ РАЗРАБОТКИ

«Способ охлаждения электронного оборудования и система для его осуществления» Патент на изобретение №2498427 Приоритет изобретения 16.05.2012

Декларации о соответствии:

TC № RU Д-RU.AT15.B.00114

TP TC 004/2011 «О безопасности низковольтного оборудования»;

TP TC 020/2011 «Электромагнитная совместимость технических средств»

^{*} Указанные значения являются экспериментально подтвержденными. но не предельно допустимыми.