(součet celkem 1000 bodů)

Jméno a příjmení:

Podpis:

- 1. Množina všech řešení rovnice $x \sqrt{x+2} = 0$ v oboru reálných čísel je
 - a) $\{-1, 2\}$

b) $\{-2,1\}$

(30)- 6

- c) $\{-1\}$ d) {1}

2. Rovnice kružnice se středem S = [1, -1] a poloměrem r = 2 je

e) {2}

b) $x^2 - 2x + y^2 + 2y = 0$

- a) $x^2 + 2x + y^2 2y + 2 = 0$ c) $x^2 + 2x + y^2 - 2y = 0$
- d) $x^2 2x + y^2 + 2y 2 = 0$

- e) $x^2 + 2x + y^2 2y 2 = 0$
- 3. Vyjádřete y z rovnice $x = \frac{2-y}{3y+4}$.

- 6
- 4. Z 80 zaměstnanců firmy jich 32 chodí do kurzu angličtiny a 25 do kurzu němčiny. Do žádného z těchto kurzů nechodí 34 lidí. Kolik zaměstnanců chodí do obou kurzů?
 - a) 10

b) 11

(30)

- 6

c) 12 e) 14

- d) 13
- 5. Množina všech řešení nerovnice $\left|\frac{3x-2}{4}\right| > 1$ je
 - a) $(2,\infty)$

b) $(-\infty, -\frac{2}{3}) \cup (2, \infty)$

(30)

c) $\left(-\frac{2}{3},2\right)$

- 6

- e) $(-\infty, \frac{2}{3}) \cup (2, \infty)$
- 6. Mezi čísly a, b, c, d, e, f platí nerovnosti: a < e, b < d, c > e, d > e, f > a. Který z následujících vztahů může platit?
 - a) b = c

b) c = a

(40)

c) a = d

- d) Může platit kterýkoli z předchozích vztahů.
- 8

- e) Nemůže platit ani jeden z předchozích vztahů.
- 7. Obor hodnot funkce $f: y = 2\sin(x+1) 3, x \in \mathbf{R}$, je
 - a) (-5, -1)

b) $\langle -4, 0 \rangle$

(40)- 8

c) $\langle -3, -1 \rangle$

d) $\langle -1, 1 \rangle$

e) $\langle -1, 2 \rangle$

- 8. V trojúhelníku ABC známe úhly $\gamma = 90^{\circ}$ a $\beta = 25^{\circ}$ a délku strany a = |BC| = 5. Délka strany c = |AB|je
 - a) $5\sin 25^{\circ}$

b) $5\cos 25^{\circ}$

(40)- 8

c) $5/\sin 25^{\circ}$

- d) $5/\cos 25^{\circ}$
- e) žádná z předchozích odpovědí není správná

- 9. Množina všech řešení nerovnice (2x+5)(x-1) > 0 je
 - a) (-1, 5/2)

b) (-5/2,1)

c) $(-\infty, -1) \cup (5/2, \infty)$

d) $(-\infty, -5/2) \cup (1, \infty)$

- e) žádná z předchozích odpovědí není správná
- 10. Množina všech řešení nerovnice $\log_2(3x-1) < 3$ je
 - a) $(-\infty, 4/3)$

b) $(-\infty, 10/3)$

c) (1/3, 10/3)

e) (1/3,3)

d) $(-\infty, 3)$

c) 21,5 e) 22,4

11.	Je dána funkce $f(x) = x^2 - 1$. Pak $f(t+1) + f(t-1) =$		
	a) $4t^2 + 2$	b) $4t^2 - 1$	(50)
	c) $2t^2 + 4t$	d) $2t^2 - 2$	- 10
	e) $2t^2$		
12.	Určete všechny hodnoty parametru a , pro které jsou přímky $p:(1-a)x-y+4=0$ a $q:9x+(a-1)y-3=0$		
	rovnoběžné.		(50)
	a) $a \in \{-4, 2\}$	b) $a = -2$	10
	c) $a \in \{-2, 4\}$	d) $a \in \{-1, 1\}$	- 10
	e) $a=1$		
13.	Odečteme-li totéž číslo od čísel 9, 15, 27, dostaneme první tři členy geometrické posloupnosti. Určete šestý člen této posloupnosti.		
	a) 150	b) 160	(50)
	c) 192	d) 243	- 10
	e) 384		
14.	Ve třídě je 18 chlapců a 4 dívky. Kolika způsoby z nich můžeme vybrat trojici složenou ze dvou chlapců a jedné dívky? (Na pořadí výběru nezáleží.)		
	a) $\binom{18}{2} \cdot 4$	b) $\binom{18}{2} + \binom{4}{1}$	(50)
	$c)\begin{pmatrix} 22\\3 \end{pmatrix}$	b) $\binom{18}{2} + \binom{4}{1}$ d) $18^2 \cdot 4$	- 10
	e) 18 · 17 · 4		
15.	Koule má poloměr R a válec má poloměr podstavy $r=R/3$. Jaká je výška válce, je-li jeho objem roven jedné polovině objemu koule?		
	a) $R/6$	b) R/3	(50)
	c) R/2	d) 2R	- 10
	e) 6R		
16.	Máše je 24 let. Má dvakrát tolik let, jako bylo Dáše, když Máše bylo tolik let, jako je Dáše dnes. Kolik let je Dáše?		
	a) 12	b) 14	(80)
	c) 16	d) 18	- 16
	e) 20		
17.	Řešením rovnice $\cos^2 x + \sin x + 1 = 0$ na intervalu $\langle 0; 2\pi \rangle$ je		
	a) $\frac{\pi}{2}$	b) $\frac{2\pi}{2}$	80
	c) $\frac{3\pi}{2}$	b) $\frac{2\pi}{3}$ d) $\frac{3\pi}{4}$	- 16
	c) $\frac{3\pi}{2}$ e) $\frac{4\pi}{3}$	•	
18.	V krabici jsou předměty různých vlastností. Víme, že všechny krychle jsou bílé a že všechny duté předměty mají tvar krychle. Jaký závěr ohledně předmětů v krabici z těchto informací můžeme vyvodit?		
	a) Všechny duté předměty jsou bílé.	b) Všechny bílé předměty jsou duté.	(80)
	c) Žádný bílý předmět není dutý.	d) Žádný dutý předmět není bílý.	- 16
	e) Žádné z předchozích tvrzení z uvedených předpokladů neplyne.		
19.	Operace \ominus je definována jako $a\ominus b=ab+2a.$ Určete $x,$ víme-li, že $5\ominus(x\ominus(-3))=0.$		
	a) 0	b) 1	(80)
	c) 2	d) 3	- 16
	e) 4		
20.	Máme tři skupiny lidí. Počty lidí v jednotlivýc	ch skupinách tvoří po řadě 20, 45 a 35 procent z	celku.
	Průměrný věk lidí v první skupině je 30 let. Průměrný věk všech je 24,3 let. Průměrný věk ve třetí skupině je o 2 roky vyšší než ve druhé. Jaký je průměrný věk lidí ve druhé skupině?		
	- • • • • • • • • • • • • • • • • • • •	·	(90)
	a) 21 c) 21,5	b) 21,4 d) 22	- 16
	0, 21,0	u, 22	

d) 22