		Note	
		I	II
Name Vorname			
	1		
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach)	$\frac{1}{2}$		
Unterschrift der Kandidatin/des Kandidaten	3		
TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik	4		
Semestrale	5		
HÖHERE MATHEMATIK II Analysis 1 für Physiker	6		
11. Februar 2008, 10:30 – 12:00 Uhr			
Prof. Dr. H. Spohn, PD Dr. W. Aschbacher	7		
Hörsaal: Reihe: Platz:	8		
Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 10 Aufgaben Bearbeitungszeit: 90 min	9		
Erlaubte Hilfsmittel: ein selbsterstelltes DIN A4 Blatt	10		
Bei Multiple-Choice-Aufgaben sind immer alle zutreffenden Aussagen anzukreuzen. Bei Aufgaben mit Kästchen werden nur die Resultate in diesen Kästchen berücksichtigt.			
Nur von der Aufsicht auszufüllen:	J		
Hörsaal verlassen von bis	\sum		
Vorzeitig abgegeben um			
Besondere Bemerkungen: Musterlösung	Ι	 Erstkorrek	ctur

Zweitkorrektur

(a) Aus welchen Aussagen folgt, dass die reellwertige Folge (a_n) für $n \to \infty$ gegen $a \in \mathbb{R}$ konvergiert?

$$\Box$$
 $a \neq 0 \text{ und } \forall \delta > 0 \exists N \in \mathbb{N} \ \forall n > N : \left| \frac{a_n}{a} \right| \leq \delta$

$$\square \quad \forall N \in \mathbb{N} \ \exists \varepsilon > 0 \ \forall n > N : |a_n - a| < \varepsilon$$

$$X \quad |a_n - a| \to 0 \text{ für } n \to \infty$$

$$\boxtimes$$
 $\forall n \in \mathbb{N} : a_{n+1} \ge a_n \text{ und } \sup \{a_n | n \in \mathbb{N}\} = a$

(b) Sei $f \in C([0,1],\mathbb{R})$. Welche Aussagen gelten für $g(x) = \int_0^x f(t) dt$ mit $x \in [0,1]$?

$$X g: [0,1] \to \mathbb{R}$$
 ist stetig.

$$\boxtimes$$
 $g:[0,1] \to \mathbb{R}$ ist differenzierbar.

(c) Sei $f:[0,1]\to\mathbb{R}$ eine differenzierbare Funktion mit f(0)=f(1)=0. Welche Aussagen treffen zu?

- X f ist beschränkt.
- \Box f' ist beschränkt.
- \square Es existiert ein $x_0 \in (0,1)$ mit $f(x_0) = 0$.
- \boxtimes Es existiert ein $x_0 \in (0,1)$ mit $f'(x_0) = 0$.

LÖSUNG

(a) Beh Genau die Aussagen 3 und 4 sind richtig.

Bew Die Aussagen 1 und 2 sind falsch. Die Aussage 3 besagt gerade die Konvergenz von (a_n) gegen a. Die Aussage 4 besagt, dass eine monoton wachsende beschränkte Folge gegen ihr Supremum konvergiert, was richtig ist.

[1 Punkt]

(b) Beh Genau die Aussagen 1, 3 und 4 sind richtig.

Bew Da f stetig ist, impliziert der Fundamentalsatz aus der Vorlesung die Aussagen 3 und 4. Dann ist auch Aussage 1 richtig. Die Aussage 2 ist falsch.

[1 Punkt]

(c) Beh Genau die Aussagen 1 und 4 sind richtig.

 $\underline{\text{Bew}}$ Da f stetig ist, impliziert der Satz vom Maximum die Aussage 1. Die Aussage 2 ist falsch. Wir betrachten dazu z.Bsp. die Funktion

$$f(x) := \begin{cases} x^{3/2} \sin(1 - 1/x), & \text{falls} \quad x > 0 \\ 0, & \text{falls} \quad x = 0 \end{cases}.$$

Die Ableitung f'(x) für x > 0 divergiert für $x \to 0^+$, denn

$$f'(x) = \frac{3}{2}x^{1/2}\sin(1 - 1/x) + x^{-1/2}\cos(1 - 1/x).$$

Bemerkung:

Die Ableitung am Ursprung lautet $f'(0) = \lim_{x\to 0^+} x^{1/2} \sin(1-1/x) = 0$.

Die Aussage 3 ist falsch. Die Aussage 4 folgt aus dem Mittelwertsatz.

Aufgabe 2. Konvergenz

[4 Punkte]

(a) Welchen Wert besitzt die folgende Reihe?

$$\sum_{n=1}^{\infty} \frac{1 - (-1)^n}{2^{n+1}} \qquad \qquad \square \quad \frac{1}{4} \qquad \qquad \square \quad \frac{3}{8} \qquad \qquad \boxtimes \quad \frac{2}{3} \qquad \qquad \square \quad \frac{5}{12} \qquad \qquad \square$$

$$\Box$$
 $\frac{1}{4}$

$$\Box \frac{5}{1}$$

$$\Box \quad \frac{5}{6}$$

(b) Wo liegt der Grenzwert der Reihe $\sum_{n=1}^{\infty} \frac{(-1)^n}{(1+\frac{1}{n})^n}$?

$$\square = -\infty \qquad \square \in (-\infty, 0) \qquad \square = 0 \qquad \square \in (0, \infty) \qquad \square = +\infty$$

$$\Box = 0$$

$$\square \in (0, \infty)$$

$$\Box = +\infty$$

X existiert nicht

(c) Wie gross ist der Konvergenzradius der folgenden Potenzreihe?

$$\sum_{n=1}^{\infty} n^{\log(n)/n} x^n$$

$$\square$$
 0 \square 1 \square e \square $\frac{1}{e}$ \square ∞

$$\Box \frac{1}{2}$$

$$\square$$
 ∞

(d) Sei $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ mit $f(x) = \frac{1 - \cos^2 x}{x^2}$. Durch welchen Wert ist f bei x = 0 stetig fortsetzbar?

$$\mathbf{X}$$
 1

$$\Box \frac{1}{2}$$

$$\Box$$
 2

LÖSUNG

(a) Beh $\sum_{n=1}^{\infty} \frac{1 - (-1)^n}{2^{n+1}} = \frac{2}{3}$

Bew Wir berechnen die Reihe unter Anwendung der geometrischen Summenformel,

$$\sum_{n=1}^{\infty} \frac{1 - (-1)^n}{2^{n+1}} = \sum_{n=1}^{\infty} \frac{1 - (-1)^n}{2} \frac{1}{2^n} = \sum_{n=1}^{\infty} \frac{1}{2^{2n-1}} = 2\sum_{n=1}^{\infty} \left(\frac{1}{4}\right)^n = 2\left(\frac{1}{1 - \frac{1}{4}} - 1\right) = \frac{2}{3}.$$

[1 Punkt]

(b) Beh Der Grenzwert existiert nicht.

Die Folge (a_n) mit $a_n:=(-1)^n/(1+1/n)^n$ ist keine Nullfolge, denn die Menge ihrer Häufungswerte $H(a_n)$ lautet

$$H(a_n) = \{-1/e, 1/e\},\$$

da $(1+1/n)^n$ gegen e konvergiert für $n\to\infty$. Ausserdem hat sie ein alternierendes Vorzeichen. \square

[1 Punkt]

(c) Beh Der Konvergenzradius ist R = 1.

Wir benutzen z.Bsp. die Formel von Cauchy-Hadamard zur Berechnung des Konvergenzradius' R, d.h. $R = 1/\limsup \sqrt[n]{|a_n|}$, wobei hier $a_n := n^{\log(n)/n}$, also

$$\sqrt[n]{|a_n|} = \left(e^{\frac{(\log n)^2}{n}}\right)^{\frac{1}{n}} = e^{\left(\frac{\log n}{n}\right)^2}.$$

Da $\log(n)/n \to 0$ für $n \to \infty$, gilt $\limsup \sqrt[n]{|a_n|} = \lim_{n \to \infty} \sqrt[n]{|a_n|} = 1$.

(d) Beh f ist durch den Wert 1 stetig nach x = 0 fortsetzbar.

 $\underline{\underline{\text{Bew}}}$ Wir berechnen den Grenzwert indem wir zweimal die Regel von de l'Hospital anwenden (was erlaubt ist),

$$\lim_{x \to 0} \frac{1 - \cos^2 x}{x^2} = \lim_{x \to 0} \frac{\sin(2x)}{2x} = \lim_{x \to 0} \cos(2x) = 1.$$

[1 Punkt]

Aufgabe 3. Integration

[6 Punkte]

Untersuchen Sie die uneigentlichen Integrale auf Konvergenz und bestimmen Sie gegebenenfalls deren Wert.

(a)
$$\int_0^\infty \frac{\mathrm{d}x}{\sqrt{x}(1+x)}$$

$$\Box$$
 1 \boxtimes π \Box $\frac{1}{2}$

$$\Box$$
 $\frac{1}{2}$

(b)
$$\int_0^1 \log x \, \mathrm{d}x$$

$$\square$$
 divergent \square -1 \square -2 \square

$$\text{(c)} \int_0^{\pi/2} \frac{\mathrm{d}x}{\sin^2 x}$$

$$\Box$$
 1 \Box 2π \Box

LÖSUNG

(a) Beh
$$\int_0^\infty \frac{\mathrm{d}x}{\sqrt{x}(1+x)} = \pi$$

<u>Bew</u> Wir führen die Substitution $y = \sqrt{x}$ durch. Dann erhalten wir dx = 2y dy und

$$\int_0^\infty \frac{\mathrm{d}x}{\sqrt{x}(1+x)} = 2 \int_0^\infty \frac{y}{y(1+y^2)} \, \mathrm{d}y = 2 \left[\arctan y\right]_0^\infty = 2 \left(\frac{\pi}{2} - 0\right) = \pi.$$

[2 Punkte]

(b) Beh
$$\int_0^1 \log x \, dx = -1$$

Bew Wir integrieren partiell und erhalten

$$\int_0^1 \log x \, dx = \int_0^1 1 \cdot \log x \, dx = [x \log x]_0^1 - \int_0^1 x \, \frac{1}{x} \, dx = (0 - \underbrace{\lim_{x \to 0^+} x \log x}) - 1 = -1.$$

[2 Punkte]

(c) Beh Das Integral
$$\int_0^{\pi/2} \frac{dx}{\sin^2 x}$$
 ist divergent.

Bew Mit $\sin x \le x$ für $x \in [0, \pi/2]$ folgt

$$\int_0^{\pi/2} \frac{\mathrm{d}x}{\sin^2 x} \ge \int_0^{\pi/2} \frac{\mathrm{d}x}{x^2} = +\infty.$$

[2 Punkte]

Aufgabe 4. Inhomogenes Differentialgleichungssystem

[4 Punkte]

Sei $x \colon \mathbb{R} \to \mathbb{R}^3$ die Lösung des inhomogenen Differentialgleichungssystems

$$\dot{x}(t) = Ax(t) + b(t) \quad \text{mit} \quad A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix} \quad \text{und} \quad b(t) = \begin{bmatrix} e^t \\ 0 \\ 0 \end{bmatrix}.$$

(a) Berechnen Sie den Propagator e^{tA} . Welche Form hat er bei t = 1?

$$\square \begin{bmatrix} e & 0 & e^2 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \square \begin{bmatrix} e^2 & 0 & 2e^2 \\ 0 & e & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \boxtimes \begin{bmatrix} e^2 & 0 & e^2 \\ 0 & 1 & 0 \\ 0 & 0 & e^2 \end{bmatrix} \quad \square \begin{bmatrix} 1 & 0 & 2e^2 \\ e & 0 & 0 \\ 0 & 0 & e^2 \end{bmatrix}$$

Hinweis: Schreiben Sie A=D+N für ein diagonales D und ein nilpotentes N, sodass D und N kommutieren.

(b) Wie lautet die erste Komponente von x(t) bei t = 1 unter der Anfangsbedingung $x(0) = [0, 0, 0]^T$?

$$\square$$
 $e^2 - 1$ \square $e(e+1)$ \square $e^2 + 1$ \square $e(e-1)$

Lösung

(a) Beh
$$e^A = \begin{bmatrix} e^2 & 0 & e^2 \\ 0 & 1 & 0 \\ 0 & 0 & e^2 \end{bmatrix}$$

Bew Wir benutzen den Hinweis, schreiben

$$A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix} = D + N \quad \text{mit} \quad D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}, \quad N = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},$$

und stellen fest, dass [D, N] = 0. Daraus folgt, dass

$$e^{tA} = e^{t(D+N)} = e^{tD}e^{tN} = \begin{bmatrix} e^{2t} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{2t} \end{bmatrix} \begin{bmatrix} 1 & 0 & t \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} e^{2t} & 0 & t e^{2t} \\ 0 & 1 & 0 \\ 0 & 0 & e^{2t} \end{bmatrix},$$

wobei wir im dritten Schritt benutzt haben, dass $e^{tN}=1+tN$. Einsetzen von t=1 liefert die Behauptung.

[2 Punkte]

(b) Beh
$$(x(t))_1 = e(e-1)$$

Bew Die Lösung des inhomogenen Systems lautet

$$x(t) = e^{tA} x(0) + \int_0^t e^{(t-s)A} b(s) ds,$$

woraus in unserem Fall,

$$x(t) = \underbrace{\mathrm{e}^{tA} x(0)}_{=0} + \int_0^t \begin{bmatrix} \mathrm{e}^{2(t-s)} & 0 & (t-s) \, \mathrm{e}^{2(t-s)} \\ 0 & 1 & 0 \\ 0 & 0 & \mathrm{e}^{2(t-s)} \end{bmatrix} \begin{bmatrix} \mathrm{e}^s \\ 0 \\ 0 \end{bmatrix} \, \mathrm{d}s.$$

Es ergibt sich also für die erste Komponente von x(t),

$$(x(t))_1 = e^{2t} \int_0^t e^{-s} ds = e^{2t} [-e^{-s}]_0^t = e^t (e^t - 1).$$

Einsetzen von t = 1 liefert die Behauptung.

Aufgabe 5. Parameterintegral

[5 Punkte]

Sei die Funktion $f: \mathbb{R} \to \mathbb{R}$ definiert durch

$$f(x) = \int_{1}^{\pi} \frac{\sin(tx)}{t} \, \mathrm{d}t.$$

Benutzen Sie den Satz von der dominierten Konvergenz um zu zeigen, dass $f'(0) = \pi - 1$.

LÖSUNG

Beh
$$f'(0) = \pi - 1$$

Bew Sei (x_n) eine reellwertige Nullfolge. Dann haben wir

$$f'(0) = \lim_{n \to \infty} \frac{f(x_n) - f(0)}{x_n - 0} = \lim_{n \to \infty} \int_1^{\pi} \underbrace{\frac{\sin(tx_n)}{tx_n}}_{=:g_n(t)} dt,$$

wobei wir f(0) = 0 eingesetzt haben. Um den Satz von der dominierten Konvergenz aus der Vorlesung anzuwenden, prüfen wir, ob dessen Voraussetzungen in unserem Fall erfüllt sind:

- (1) (g_n) konvergiert punktweise gegen die Funktion g(t) = 1 für alle $t \in [1, \pi]$. [1 Punkt]
- (2) g_n für alle n und g sind stetig. [1 Punkt]
- (3) g_n besitzt eine in n uniforme, integrable Majorante, z.Bsp. $\varphi(t) = 1$ für alle $t \in [1, \pi]$,

$$|g_n(t)| = \left| \frac{\sin(tx_n)}{tx_n} \right| \le \varphi(t) = 1.$$

[1 Punkt]

Der Satz impliziert nun, dass wir den Limes unter das Integral ziehen dürfen,

[1 Punkt]

$$f'(0) = \int_{1}^{\pi} g(t) dt = \pi - 1.$$

[1 Punkt]

_

Erklärung:

je [1 Punkt] für jede der drei Voraussetzungen,

- [1 Punkt] für die Anwendung des Satzes,
- [1 Punkt] für die Auswertung des Integrals.

Aufgabe 6. Homogenes Differentialgleichungssystem

[6 Punkte]

Sei $x \colon \mathbb{R} \to \mathbb{R}^2$ die Lösung des homogenen Differentialgleichungssystems

$$\dot{x}(t) = Ax(t) \quad \text{mit} \quad A = \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix} \quad \text{und} \quad x(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Bestimmen Sie x(t) zur Anfangsbedingung x(0), indem Sie eine Basis aus Eigenvektoren von A benutzen.

LÖSUNG

$$\underline{\mathbf{Beh}} \quad x(t) = \begin{bmatrix} \mathbf{e}^t \\ \mathbf{e}^t \left(2\mathbf{e}^{2t} - 1 \right) \end{bmatrix}$$

Bew Wir berechnen das charakteristische Polynom von A,

$$\chi_A(\lambda) = \det(A - \lambda \mathbf{1}) = (1 - \lambda)(3 - \lambda).$$

A hat also die zwei verschiedenen Eigenwerte $\lambda_1 = 1$ und $\lambda_2 = 3$.

[1 Punkt]

Es gibt also nur Hauptvektoren 1. Stufe, d.h. Eigenvektoren, die wir nun bestimmen.

Zum Eigenwert $\lambda_1 = 1$ finden wir

$$\left(A-\lambda_1\mathbf{1}\right)x_1=\begin{bmatrix}0&0\\2&2\end{bmatrix}x_1=0,\quad\text{also z.Bsp.}\quad x_1=\begin{bmatrix}1\\-1\end{bmatrix},$$

[1 Punkt]

[1 Punkt]

und zum Eigenwert $\lambda_2 = 3$,

$$(A - \lambda_2 \mathbf{1}) x_2 = \begin{bmatrix} -2 & 0 \\ 2 & 0 \end{bmatrix} x_2 = 0, \quad \text{also z.Bsp.} \quad x_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

[1 Punkt]

Die Vektoren $\{x_1, x_2\}$ bilden eine Basis von \mathbb{R}^2 , und deshalb können wir die Anfangsbedingung x(0) bzgl. dieser Basis entwickeln,

$$x(0) = c_1 x_1 + c_2 x_2,$$

[1 Punkt]

wobei $c_1 = 1$ und $c_2 = 2$. Die allgemeine Lösung lautet also

$$x(t) = e^{tA}x(0) = e^{tA}(c_1x_1 + c_2x_2) = c_1e^{tA}x_1 + c_2e^{tA}x_2 = c_1e^{t\lambda_1}x_1 + c_2e^{t\lambda_2}x_2$$
$$= e^t \begin{bmatrix} 1 \\ -1 \end{bmatrix} + 2e^{3t} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} e^t \\ e^t (2e^{2t} - 1) \end{bmatrix}.$$

[1 Punkt]

П

Erklärung:

[1 Punkt] für die Eigenwerte,

[1 Punkt] für die Eigenvektorgleichung,

je [1 Punkt] für die beiden Eigenvektoren,

[1 Punkt] für die Entwicklung der Anfangsbedingung,

[1 Punkt] für das Anwenden des Propagators.

Sei die Funktion $f:(-1,1)\to\mathbb{R}$ definiert durch

$$f(x) = \frac{1}{\sqrt{1-x}},$$

und sei $\sum_{n=0}^{\infty} a_n x^n$ ihre Taylorreihe mit dem Ursprung als Entwicklungspunkt.

(a) Wie lauten die Koeffizienten a_n für $n \ge 1$?

$$\Box \qquad a_n = \frac{\prod_{j=1}^n (2j-1)}{2^n}$$

$$\Box \qquad a_n = \frac{\prod_{j=1}^{n-1} (2j-1)}{2^n}$$

$$\Box \qquad a_n = \frac{\prod_{j=1}^n (2j-1)}{(n-1)! \, 2^n}$$

(b) Wie gross ist der Konvergenzradius der Taylorreihe?

- - $\square \frac{1}{2}$ $\square 1$ $\square e$

(c) Wie lauten die Koeffizienten b_n der Taylorreihe $\sum_{n=0}^{\infty} b_n x^n$ von f'(x) im gleichen Entwicklungspunkt?

$$\Box$$
 $b_n = a_n$

$$\Box$$
 $b_0 = 0, \ b_n = a_{n-1} \text{ für } n \in \mathbb{N}$

$$\Box \quad b_n = n \, a_n \text{ für } n \in \mathbb{N}_0$$

$$\Box \quad b_0 = 0, \ b_n = \frac{a_{n-1}}{n} \text{ für } n \in \mathbb{N}$$

$$\boxtimes b_n = (n+1) a_{n+1}$$
 für $n \in \mathbb{N}_0$

$$\Box \quad b_n = \frac{a_{n+1}}{n+1} \text{ für } n \in \mathbb{N}_0$$

LÖSUNG

Die Koeffizienten a_n für $n \ge 1$ lauten $a_n = \frac{\prod_{j=1}^n (2j-1)}{n! \, 2^n}$.

Wir leiten ab und erhalten Bew

$$f^{(n)}(x) = \frac{\prod_{j=1}^{n} (2j-1)}{2^n} (1-x)^{-(2n+1)/2}.$$

Bemerkung:

Wir können auch die Binomialreihe und den Satz über die Identität der Potenzreihe und der Taylorreihe aus der Vorlesung benutzen,

$$(1-x)^{-1/2} = \sum_{n=0}^{\infty} \underbrace{(-1)^n \binom{-1/2}{n}}_{=n} x^n.$$

Der n-te Taylorkoeffizient im Ursprung lautet also

$$a_n = \frac{f^{(n)}(0)}{n!} = \frac{\prod_{j=1}^n (2j-1)}{n! \, 2^n}.$$

[1 Punkt]

(b) Beh Der Konvergenzradius der Taylorreihe ist R = 1.

Bew Wir können die Formel von Euler benutzen,

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \frac{f^{(n)}(0)}{f^{(n+1)}(0)} (n+1) = \lim_{n \to \infty} 2(n+1) \frac{1}{2(n+1)-1} = 1.$$

[1 Punkt]

(c) <u>Beh</u> Die Koeffizienten der Taylorreihe von f'(x) im Ursprung lauten $b_n = (n+1) a_{n+1}$ für alle $n \in \mathbb{N}_0$.

<u>Bew</u> Die Ableitung einer Potenzreihe kann auf ihrem Konvergenzintervall gliedweise durchgeführt werden,

$$f'(x) = \frac{\mathrm{d}}{\mathrm{d}x} \sum_{n=0}^{\infty} a_n x^n = \sum_{n=1}^{\infty} n \, a_n x^{n-1} = \sum_{n=0}^{\infty} \underbrace{(n+1) \, a_{n+1}}_{=b_n} x^n.$$

[1 Punkt]

Aufgabe 8. Stetigkeit

[3 Punkte]

Seien $f,g\in C(\mathbb{R},\mathbb{R})$. Benutzen Sie die $\varepsilon\delta$ -Definition der Stetigkeit um zu zeigen, dass

$$f + g \in C(\mathbb{R}, \mathbb{R}).$$

Lösung

 $\underline{\operatorname{Beh}}\quad \text{Falls } f,g\in C(\mathbb{R},\mathbb{R}) \text{, ist } f+g\in C(\mathbb{R},\mathbb{R}).$

<u>Bew</u> Sei $a \in \mathbb{R}$ und $\varepsilon > 0$. Dann existieren nach Voraussetzung $\delta_1, \delta_2 > 0$, sodass

$$\begin{split} |f(x)-f(a)| &< \frac{\varepsilon}{2} & \text{ für alle } x \text{ mit } & |x-a| < \delta_1, \\ |g(x)-g(a)| &< \frac{\varepsilon}{2} & \text{ für alle } x \text{ mit } & |x-a| < \delta_2. \end{split}$$

[1 Punkt]

Dann existiert aber auch ein $\delta>0$, z.Bsp. $\delta=\min\{\delta_1,\delta_2\}$, sodass für alle x mit $|x-a|<\delta$,

$$\begin{array}{ccc} |f(x)+g(x)-(f(a)+g(a))| &=& |[f(x)-f(a)]+[g(x)-g(a)]|\\ &\stackrel{\textstyle \mathbf{[1\,Punkt]}}{\leq} &\underbrace{|f(x)-f(a)|}_{<\varepsilon/2} +\underbrace{|g(x)-g(a)|}_{<\varepsilon/2}\\ &\stackrel{\textstyle \mathbf{[1\,Punkt]}}{\leq} &\varepsilon. \end{array}$$

Erklärung:

[1 Punkt] für die $\varepsilon\delta$ -Definition der Stetigkeit,

[1 Punkt] für die Dreiecksungleichung,

[1 Punkt] für das Einsetzen der Voraussetzung.

Aufgabe 9. Häufungwerte

[4 Punkte]

Sei (a_n) eine beschränkte reellwertige Folge und $H(a_n)$ die Menge aller ihrer Häufungswerte. Zeigen Sie, dass

$$\sup H(a_n) \in H(a_n)$$
.

LÖSUNG

<u>Beh</u> $\sup H(a_n) \in H(a_n)$

<u>Bew</u> Sei $\alpha := \sup H(a_n)$ und $\varepsilon > 0$. Dann existiert aufgrund der Schrankeneigenschaft und der Minimalitätseigenschaft des Supremums ein $a \in H(a_n)$, sodass

$$\alpha - \varepsilon \begin{tabular}{ll} \bf [1 \ Punkt] & a \begin{tabular}{ll} \bf [1 \ Punkt] \\ & \leq \begin{tabular}{ll} \alpha. \end{tabular}$$

Fall 1: $a = \alpha$

Es folgt die Behauptung.

Fall 2: $a < \alpha$

Dann existiert ein $\delta > 0$ (z.Bsp. $\delta = \min{\{\alpha - a, \varepsilon - (\alpha - a)\}/2\}}$, sodass

$$\alpha - \varepsilon < a - \delta < a + \delta < \alpha$$
.

[1 Punkt]

Da $a \in H(a_n)$, gilt definitionsgemäss, dass

$$|a - a_n| < \delta$$
 für unendlich viele n ,

[1 Punkt]

und deshalb

$$|\alpha - a_n| \le |\alpha - a| + \underbrace{|a - a_n|}_{<\delta} < \varepsilon.$$

Es liegen also auch unendlich viele Folgenglieder in jeder Umgebung von α , und deshalb ist α ein Häufungspunkt.

Erklärung:

- [1 Punkt] für die Schrankeneigenschaft,
- [1 Punkt] für die Minimalitätseigenschaft,
- [1 Punkt] für die Definition des Häufungspunktes,
- [1 Punkt] für die Inklusion der Umgebungen.

Aufgabe 10. Satz von Taylor

[2 Punkte]

(a) Sei $f \in C^{n+1}([0,1],\mathbb{R})$ für ein $n \in \mathbb{N}_0$. Wie lautet die Integralform des Restgliedes $R_{n+1}(x)$ in der Taylorformel n-ter Ordnung mit dem Ursprung als Entwicklungspunkt?

$$R_{n+1}(x) = \frac{1}{n!} \int_0^x (x-t)^n f^{(n+1)}(t) dt$$

(b) Welches Abfallverhalten hat $R_{n+1}(x)$ für $x \to 0^+$?

$$\mathbf{X}$$
 $R_{n+1}(x) = o(x^n)$

$$\mathbf{X} \qquad R_{n+1}(x) = O(x^n)$$

$$\square \qquad R_{n+1}(x) = o(x^{n+1})$$

$$\mathbf{X} \qquad R_{n+1}(x) = O(x^{n+1})$$

Lösung

(a) Beh
$$R_{n+1}(x) = \frac{1}{n!} \int_0^x (x-t)^n f^{(n+1)}(t) dt$$

Bew Dies ist die Formel aus der Vorlesung.

[1 Punkt]

(b) <u>Beh</u> Es gilt $R_{n+1}(x) = o(x^n), O(x^n), O(x^{n+1})$ aber $R_{n+1}(x) \neq o(x^{n+1})$.

Bew Aus der Integralformel folgt (siehe auch Vorlesung),

$$\left| \frac{1}{n!} \int_0^x (x - t)^n f^{(n+1)}(t) dt \right| \le \frac{1}{n!} \int_0^x \underbrace{|x - t|^n}_{\le x^n} \underbrace{|f^{(n+1)}(t)|}_{\le \max_{t \in [0,1]} |f^{(n+1)}(t)|} dt$$

$$\le \frac{1}{n!} \max_{t \in [0,1]} |f^{(n+1)}(t)| x^{n+1},$$

wobei das Maximum existiert, da $f \in C^{n+1}([0,1],\mathbb{R})$. Ausserdem ist im allgemeinen $R_{n+1}(x) \neq o(x^{n+1})$, denn (z.Bsp. Lagrangesche Form des Restgliedes)

$$\lim_{x \to 0} \frac{R_{n+1}(x)}{x^{n+1}} = \frac{f^{(n+1)}(0)}{(n+1)!}.$$

[1 Punkt]