

IN THE CLAIMS

1. (currently amended) A composite anti-friction bearing structure comprising:

a bearing substrate, and

an anti-friction layer formed by sintering onto said bearing substrate a sintering composition comprised of from 5- 2 wt% to the percolation limit of particles of a hardfacing composition, the balance comprising bronze powder, a lead alloy powder, a tin powder or a tin alloy powder.

2. (original) A composite anti-friction bearing structure as in claim 1, wherein said bearing structure is a bushing, a wear plate, or a wear ring.

3. (currently amended) A composite anti-friction bearing structure as in claim 1, wherein said hardfacing composition comprises from 2 5 -15 wt.% of the sintering composition.

4. (original) A composite anti-friction bearing structure as in claim 1, wherein said particles of hardfacing composition have a number average particle size of from 5 to 200 μm .

5. (original) A composite anti-friction bearing structure as in claim 4, wherein said particles of hardfacing composition have a particle size of from 10 to 60 μm with a mean of 25-30 μm .

6. (original) A composite anti-friction bearing structure as

U.S. APPLICATION 09/783,242
AMENDMENT A

Attorney Docket No.: 3654.006

in claim 4, wherein said particles of hardfacing composition have globular shapes.

7. (currently amended) A composite anti-friction bearing structure as in claim 1, wherein said hardfacing composition is an intermetallic hardfacing alloy comprising —50 wt.% cobalt and —25 wt% molybdenum.

8. (original) A composite anti-friction bearing structure as in claim 1, wherein said hardfacing composition is comprised of:

Chromium	8.5 wt.%
Carbon	up to a maximum of 0.08 wt.%
Silicon	2.6 wt.%
Molybdenum	28.5 wt.%
Nickel and Iron	jointly up to a maximum of 3 wt.% with the balance being Cobalt.

9. (original) A composite anti-friction bearing structure as in claim 1, wherein said hardfacing composition is comprised of:

Cobalt	51.0-53.0 wt.%
Cromium	16.5-17.5 wt.%
Silicon	3.0-3.5 wt.%
Nickel and Iron	3.0 wt.% Max
Molybdenum	27-29 wt.%
Sulfur	.03 wt.% Max
Phosphorus	.03 wt.% Max, and
Carbon	.1 wt.% Max.

10. (original) A composite anti-friction bearing structure as

U.S. APPLICATION 09/783,242
AMENDMENT A

Attorney Docket No.: 3654.006

in claim 1, wherein said balance of said sintering composition is comprised of bronze powder.

11. (original) A composite bushing for use in a die set, comprising: a monolithic steel body having a machined internal cylindrical surface; and

a porous bearing layer on said internal cylindrical surface; said bearing layer formed by compacting and then sintered *in situ* on said internal cylindrical surface a sintering composition comprised of from 5 wt% to the percolation limit of particles of a hardfacing composition, the balance comprising bronze, followed by machining, said bearing layer having a thickness of no greater than approximately 0.31 cm.

12. (original) The composite bushing of claim 11, wherein said bronze powder comprises approximately 90% by weight copper and approximately 10% by weight tin.