Combien de répets dans ma manipe?

Club stats iEES-Paris

Jerome Mathieu

16-11-2022

La méthode scientifique

Les différentes étapes

Je te tiens par la barbichette

Plan d'échantillonnage

Définir un Plan expérimental ou d'échantillonnage

- Plan =
 - Facteur(s) manipulé(s) ou gradient(s) échantillonné(s)
 - · Nombre de niveaux des facteurs ou nombre de valeurs du gradient
 - · Valeurs des niveaux de facteur ou du gradient
 - Combinaisons manquantes
 - Hiérarchisation
 - Organisation spatiale
 - · Localisation géographique
 - · Nombre de répétions par modalité unique de facteur
- · Souvent représenté sous forme de tableau

			X1			
		A	В	C	D	nb de répétitions
X2	oui	3	5	•••	n _{ij}	
ΛΔ	non	10	•••	•••	•••	

Designs expérimentaux : Design of Expermients (DoE)

Task dans R

https://cran.r-project.org/web/views/ExperimentalDesign.html

Bouquin en ligne

https://bookdown.org/gerhard_krennrich/doe_and_optimization/

Cours en ligne

https://www.datacamp.com/courses/experimental-design-in-r

Agricolae – a free statistical toolbox for agricultural experiments

- 1) Design of experiments:
 design.crd (Completely
 Randomized Design), rcbd
 (Randomized Complete Block
 Design), lsd (Latin Square
 Design), bib (Balanced
 Incomplete Block Design),
 lattice (Lattice Design), alpha
 (Alpha Design), cyclic (Cyclic
 Design), graeco (Graeco-Latin
 Square Design).
- 2) Comparison of treatments:
 parametric and non-parametric
 methods: LSD.test (Minimum
 Significant Difference),
 HSD.test (Tukey), waller.test
 (Waller-Duncan), kruskal
 (Kruskal-Wallis), friedman
 (Friedman), durbin.test (Test of
 Durbin), PBIB.test (Analysis of
 partially balanced blocks,
 applicable to the designs latices
 and alpha).
- 3) Analysis of genetic designs: Carolina I, II and III with the function carolina() and line by tester with the function lineXtester().
- Stability of genotypes: stability.par(), stability.nonpar() and AMMI().
- 5) Consensus of dendrograms: (e.g. for molecular marker analysis) consensus
- 6) Biodiversity analysis: index.bio
- 7) Optimizing plot size: index.smith
- 8) Descriptive statistics: graph.freq (graphic of frequencies), poligon.freq (polygon), ojiva.freq (point), and table.freq
- Various: AUDPC, helper functions

alpha design (0,1) - Serie I Parameters Alpha design

treatments: 12 Block size: 3 Blocks: 4 Replication: 3

Method: Shannon The index: 3.973060 95 percent confidence interval: 3.841353 ; 4.60517

Plans spatiaux

- Cartographie
- estimer une valeur globale (ex stock C)

Remarque sur la distribution des co variables

Si X numérique

Couvrir les extrêmes de X

Couvrir X de manière homogène

Minimum: 10 mesures

X ne suit pas de loi particulière

si X catégorique

Même nb d'observations par catégories : plan équilibré

Minimun: 10 observations / catégorie

Si possible Pas de trous : pas de catégorie non échantillonnée

Questions qu'on peut se poser sur un test (ou une manipe)

$\mathbf{E}\mathbf{x}$.

- J'ai/ il a une p val >0.05 → pourquoi?
- J'ai une p val $< 0.05 \rightarrow$ est ce que l'effet est fort?
- Combien de repét il me faut pour avoir p<0.05?
- Quelles sont les chances de détecter un effet avec ma manipe? (puissance)

Avant de pouvoir répondre, quelques def (désolé!)

• Risques I et II : α et β

As a result of sampling, the Null Hypothesis is:

Unknown to you, the Null Hypothesis is:	Rejected You believe there has been an environmental impact	Retained You believe there has been no environmental impact
True	Type I error With probability α	Correct decision
False	Correct decision	Type II error With probability β

- α risque de "surdétecter" des effets : rejeter HO alors que H0 vraie
- β risque de "rater" un effet : Ne pas rejeter H0 alors que H0 fausse
- Puissance : capacité de "détecter" un effet : rejeter H0 alors que H0 fausse : 1-β

α vs β

- Un nouveau variant du covid arrive. Quel est son effet?
- Manipe: 2 traitements virus ou pas

si α élevé

- · → risque de "surdétecter" des effets élevé: rejet HO alors que H0 vraie : létalité sur évaluée → trop de précautions
- > COUTS: grosses dépenses de santé publique mais pas de pertes humaine
- si β élevé (puissance (1- β) faible)
 - → risque de "rater" l'effet du virus élevé: on ne rejete pas assez H0 alors que H0 fausse : létalité sous évaluée → pas assez de précautions
 - · → COUTS : peu de dépenses de santé publique mais grosses pertes humaines potentielles
 - \rightarrow vous choisissez quoi entre a et β ? Quelles valeurs??

The five eighty convention

- $\alpha = 0.05$
- $1-\beta = 0.8$

· Mais controversé:

Functional Ecology 2003 17, 707–709

Forum

JULIAN DI STEFANO

How much power is enough? Against the development of an arbitrary convention for statistical power calculations

• Alternative : estimer les couts acceptables de α et β et fixer le ratio α/β

Quizz :qu'est ce qu'un "effet"?

- ex d'un test t:
 - effet =
 - p value?
 - · différence de moyenne?

Effect size

- Effect size is a quantitative measure of the *strength of a phenomenon*.
- Effect size emphasizes the size of the difference or relationship
- Examples:
 - the correlation between two variables (specifically r²)
 - r=.1 weak, r=.5 moderate, r=.7 strong, r=.9 very strong
 - the regression coefficient in a regression (B₀, B₁, B₂)
 - · Relative to model and field
 - the mean differences in t tests (use Cohen's D)
 - d = .2 is small; r = .5 is medium; r = .8 is large
 - The mean differences in ANOVA (use eta)
 - · .01 is small, .06 medium, .14 large
 - · calcul différent selon la comparaison que l'on veut faire

Puissance moyenne des études en éco comportementale (effect size moyen)

Table 2 z scores and power to detect a medium effect for 10 biological journals

	z score		Power (medium)	
Journal	(First test)	(Last test)	(First test)	(Last test)
American Naturalist	2.67 ± 0.19 (33)	$2.33 \pm 1.88 (32)$	$45.0 \pm 5.2 (33)$	$42.0 \pm 4.8 \ (32)$
Animal Behaviour	2.33 ± 0.08 (184)	1.88 ± 0.08 (176)	$46.8 \pm 2.2 \ (187)$	$37.6 \pm 2.0 \ (179)$
Behavioral Ecology	2.13 ± 0.13 (68)	1.66 ± 0.13 (67)	$51.2 \pm 3.6 (68)$	$41.0 \pm 3.3 (67)$
Behavioural Ecology and				
Sociobiology	$2.25 \pm 0.11 \ (99)$	$1.75 \pm 0.11 $ (98)	$52.9 \pm 2.9 (102)$	$42.2 \pm 2.7 (99)$
Behavioural Processes	2.38 ± 0.17 (39)	1.98 ± 0.17 (38)	$40.0 \pm 4.8 (39)$	$33.5 \pm 4.4 (38)$
Behaviour	2.45 ± 0.13 (67)	2.05 ± 0.14 (63)	$44.6 \pm 3.6 (69)$	$40.2 \pm 3.4 (63)$
Ethology, Ecology, and				
Evolution	2.15 ± 0.23 (22)	2.13 ± 0.24 (21)	$58.0 \pm 6.3 (22)$	44.0 ± 5.9 (21)
Ethology	2.24 ± 0.13 (73)	2.03 ± 0.13 (66)	$43.0 \pm 3.5 (73)$	$35.5 \pm 3.3 (69)$
Journal of Animal Ecology	2.28 ± 0.15 (49)	$1.73 \pm 0.16 (45)$	$49.3 \pm 4.2 (50)$	$40.3 \pm 4.0 \ (45)$
Journal of Insect Behaviour	2.23 ± 0.15 (50)	1.85 ± 0.16 (48)	$42.2 \pm 4.0 (54)$	$43.1 \pm 3.8 \ (52)$

Mean ± SE. Sample sizes are in parentheses.

Qu'est ce qui compte? p val ou Effect size?

- Différence de 1°C, p val = 0.001
- Différences de 5°C, pval = 0.1

Différence entre p value et taille d'effet

- p value reflète plutôt l'effort d'échantillonnage
- Effect size reflète plutôt le phénomène observé

En fait tout est lié

Type de test Risque α Risque β Taille d'effet n : Nbre d'échantillons? σ (SD)

Si connait tout les éléments sauf 1, on peut le déduires des autres éléments

n pour une manipe?

Si connait tout les éléments sauf 1, on peut le déduires des autres éléments

Puissance d'une manipe?

Si connait tout les éléments sauf 1, on peut le déduires des autres éléments

Déterminer n le nombre de répétitions

· Dans le cas Y univarié uniquement : analyse de puissance

Analyse de puissance

Risques α et β

Type de test

Analyse de puissance

A décider en 1er

Comment faire?

- <u>si modèle linéaire à effets fixes uniqt</u> \rightarrow formules analytiques \rightarrow analyse de puissance (cf dia suivantes)
- <u>si tests non paramétriques ou modèle mixte, ou GLM(M)</u> \rightarrow simulations
- si approche baysienne -> n'a pas vraiment de sens

modèles simples fixes

• https://cran.r-project.org/web/packages/pwr/vignettes/pwr-vignette.html

1° On fixe les seuils de risque

- α = proba de "surdétecter un effet" : faux positifs
- β = proba de rater un effet significatif : faux négatifs
- Puissance = $1-\beta$

2° On identifie le type de test à faire

- •one-sample proportion test
- •two-sample proportion test
- •two-sample proportion test (unequal sample sizes)
- •two-sample, one-sample and paired t-tests
- •two-sample t-tests (unequal sample sizes)
- •one-way balanced ANOVA (X catégorique)
- •correlation test
- •chi-squared test (goodness of fit and association)
- test for the general linear mode (X continu)

Les fonctions R pour l'analyse de puissance dans R

library(pwr)

- pwr.p.test : one-sample proportion test
- pwr.2p.test: two-sample proportion test
- pwr.2p2n.test: two-sample proportion test (unequal sample sizes)
- pwr.t.test: two-sample, one-sample and paired t-tests
- pwr.t2n.test: two-sample t-tests (unequal sample sizes)
- pwr.anova.test : one-way balanced ANOVA
- pwr.r.test : correlation test
- pwr.chisq.test : chi-squared test (goodness of fit and association)
- pwr.f2.test: test for the general linear mode

3° On Détermine la taille de l'effet recherché

Dépend du test à faire :

Test	small	medium	large
tests for proportions (p)	0.2	0.5	8.0
tests for means (t)	0.2	0.5	8.0
chi-square tests (chisq)	0.1	0.3	0.5
correlation test (r)	0.1	0.3	0.5
anova (anov)	0.1	0.25	0.4
general linear model (f2)	0.02	0.15	0.35

cf fonction dans pwr

4° On identifie le nombre de paramètres du test et on déduit "n"

- Si X qualitatif:
 - on fixe k : le nombre de niveaux
 - > on déduit n : le nombre d'échantillons par niveau

- · Si X continu ou si plusieurs variables :
 - on fixe u = nbre de coefficients = ddl du numérateur = nbre de variables
 - \rightarrow on obtient v et on déduit n par la formule : n = v + u + 1

Exemple avec un effet moyen (.25) pour 1 facteur à 3 niveaux

- > library(pwr) > pwr.anova.test(k = 3, f = 0.25, sig.level = 0.05, power = 0.9)
 - > Balanced one-way analysis of variance power calculation

$$k = 3$$
 $n = 52.3966$
 $f = 0.25$
 $sig.level = 0.05$
 $power = 0.8$

NOTE: n is number in each group

 \rightarrow n = 53 échantillons par niveau (53x3 = 159 en tout)

Exemple d'une régression simple avec un effet large (f2 = 0.5)

```
> library(pwr)
> pwr.f2.test(u = 1, f2 = .5, sig.level = 0.001, power = 0.8)
> Multiple regression power calculation
          u = 1
          v = 37.67315
          f2 = 0.5
          sig.level = 0.001
          power = 0.8
\rightarrow n = v + u+ 1 = 38+1+1: 40 échantillons
```

courbes de puissance

proportion power calculation for binomial distribution (arcsine transformation)

Cas plus complexes

On fait des simuls

Estimating power in (generalized) linear mixed models: An open introduction and tutorial in R

Leah Kumle 1 . Melissa L.-H. Võ 1 . Dejan Draschkow 2 .

Behavior Research Methods (2021) 53:2528-2543 https://doi.org/10.3758/s13428-021-01546-0

Methods in Ecology and Evolution 2015, 6, 133-142

doi: 10.1111/2041-210X.12306

Power analysis for generalized linear mixed models in ecology and evolution

Paul C. D. Johnson^{1,2*}, Sarah J. E. Barry², Heather M. Ferguson¹ and Pie Müller^{3,4}

SIMR: an R package for power analysis of generalized linear mixed models by simulation

Peter Green* and Catriona J. MacLeod

Peut on montrer qu'il n'y a pas d'effet?

TOST

- démarche :
- utiliser effets sizes non intéressants pour prouver que H0 vraie

https://cran.rproject.org/web/packages/TOSTER/index.html

Equivalence Tests: A Practical Primer for t Tests, Correlations, and Meta-Analyses

Daniël Lakens¹

Social Psychological and Personality Science 2017, Vol. 8(4) 355-362