Math 212 Requiz 25A

F 04 Nov / N 06 Nov

Your name:		

Exercise

(5 pt) Consider two spheres of radius 1 in \mathbb{R}^3 , one centered at (0,0,0), the other centered at (0,0,1). We seek to find the volume V(E) of the region E lying inside both spheres.

(a) (1 pt) Sketch the region E.

(b) (2 pt) One way to compute the volume of E is to use triple integrals. State your choice of coordinate system. Write the corresponding differential dV, and give an algebraic description of the region E in these coordinates. *Hint:* Partition E into two subregions, E₁ and E₂, based on where the spheres intersect. One region will have all limits on the variables constant, the other region will not.

(c) (2 pt) Show that $V(E) = \frac{5\pi}{12}$. *Hint:* Evaluate the triple integral over E_1 and E_2 separately. Mind your integration factor.