2014年全国统一高考数学试卷(理科)(大纲版)

	2017 丁玉月)(A)/W)					
一、选择题(本大题共 12 小题,每小题 5 分)									
1. (5 分)设 $z=\frac{10i}{3+i}$,则 z 的共轭复数为()									
	A 1+3i	B 1- 3i	C. 1+3i	D. 1- 3i					
2.	(5分) 设集合 N	$I = \{x \mid x^2 - 3x - 4 < 0\}$	$N=\{x \mid 0 \leqslant x \leqslant 5\}, J$	则 M∩N= ()					
	A. (0, 4]	B. [0, 4)	C. [- 1, 0)	D. (- 1, 0]					
3.	.(5 分)设 a=sin33°,b=cos55°,c=tan35°,则()								
	A. a>b>c	B. b>c>a	C. c>b>a	D. c>a>b					
4.	(5 分) 若向量 a、		$(\overrightarrow{a} + \overrightarrow{b}) \perp \overrightarrow{a}, (2\overrightarrow{a} + \overrightarrow{b})$	b) 」b, 则 b =(
)								
	A. 2	B. $\sqrt{2}$	C. 1	D. $\frac{\sqrt{2}}{2}$					
5.	(5分)有6名男[医生、5 名女医生,	从中选出 2 名男医生	三、1 名女医生组成					
	一个医疗小组,则不同的选法共有()								
		B. 70 种							
6.	(5分)已知椭圆	C: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a>k	o>0)的左、右焦点	〔为 F ₁ 、F ₂ ,离心率					
	为 $\frac{\sqrt{3}}{3}$,过 F_2 的直线 I 交 C 于 A、B 两点,若 \triangle A F_1 B 的周长为 $4\sqrt{3}$,则 C 的方								
	程为()								
	A. $\frac{x^2}{3} + \frac{y^2}{2} = 1$	B. $\frac{x^2}{3} + y^2 = 1$	C. $\frac{x^2}{12} + \frac{y^2}{8} = 1$	D. $\frac{x^2}{12} + \frac{y^2}{4} = 1$					
7.	(5 分)曲线 y=x €	e ^{x-1} 在点(1,1)处	切线的斜率等于()					
	A. 2e	В. е	C. 2	D. 1					
8.	(5分)正四棱锥	的顶点都在同一球面	上,若该棱锥的高之	为 4,底面边长为 2					
	,则该球的表面积为 ()								
	A. $\frac{81 \pi}{4}$	Β. 16π	C. 9π	D. $\frac{27 \pi}{4}$					
9.	(5分)已知双	曲线 C 的离心率为 2	2, 焦点为 F ₁ 、F ₂ ,	点A在C上,若					

		$ \cos \angle AF_2F_1 = ($						
Α	$\frac{1}{4}$	B. $\frac{1}{3}$	c. $\frac{\sqrt{2}}{4}$	D. $\frac{\sqrt{2}}{3}$				
10. (5分)等比数列{a _n }中, a ₄ =2, a ₅ =5, 则数列{lga _n }的前 8 项和等于()								
Α. (6	B. 5	C. 4	D. 3				
11. (5分)已知二	面角 α- Ι- β 为 60	o°, AB⊂α, AB⊥	l,A 为垂足,CD⊂β,C	:∈			
I, ∠ACD=135°,则异面直线 AB 与 CD 所成角的余弦值为()								
Α	$\frac{1}{4}$	B. $\frac{\sqrt{2}}{4}$	c. $\frac{\sqrt{3}}{4}$	D. $\frac{1}{2}$				
12. (- 5 分)函数 y =	- =f(x)的图象与函	数 y=g(x)的图	。 象关于直线 x+y=0 对称	΄,			
则 y	=f(x)的反函	函数是()						
А. у	/=g (χ)	B. y=g (- x)	C. y=- g (x)	D. y=- g (- x)				
二、填空题(本大题共 4 小题,每小题 5 分)								
13. (5分)(x -	<u>y</u>) 8 √x) 的展开式中 ›	‹²y² 的系数为	(用数字作答)				
14. (5 分)设 x、y	x- / 满足约束条件	-y≥0 -2y≤3,则 z=x+4 -2y≤1	4y 的最大值为				
15. (5 分) 直线 I ₁	和 I ₂ 是圆 x ²⁺ y ² =2 自	的两条切线,若 I	1与 l ₂ 的交点为(1,3)	,			
则 I_1 与 I_2 的夹角的正切值等于								
16. (5分)若函数	(f(x) =cos2x+asir	\mathbf{x} 在区间($\frac{\pi}{6}$,	$\frac{\pi}{2}$)是减函数,则 a	的			
取值	[范围是	<u>_</u> .						
三、解答题								
17. (10 分)△ABC	的内角A、B、C的	对边分别为 a、b	、c,已知 3acosC=2ccos	sA			
, ta	nA= $\frac{1}{3}$,求 B.							

18. (12 分)等差数列 $\{a_n\}$ 的前 n 项和为 S_n ,已知 a_1 =13, a_2 为整数,且 S_n ≤ S_4

.

- (1) 求 {a_n}的通项公式;
- (2) 设 $b_n = \frac{1}{a_n a_{n+1}}$, 求数列 $\{b_n\}$ 的前 n 项和 T_n .

- 19. (12 分)如图,三棱柱 ABC- A₁B₁C₁中,点 A₁在平面 ABC 内的射影 D 在 AC 上,∠ACB=90°,BC=1,AC=CC₁=2.
- (I)证明: AC₁ \(_A_1 B;
- (Ⅱ)设直线 AA_1 与平面 BCC_1B_1 的距离为 $\sqrt{3}$,求二面角 A_1 AB C 的大小.

- 20. (12 分)设每个工作日甲、乙、丙、丁 4 人需使用某种设备的概率分别为 0.6、0.5、0.5、0.4,各人是否需使用设备相互独立.
 - (I) 求同一工作日至少3人需使用设备的概率;
 - (Ⅱ) X表示同一工作日需使用设备的人数,求X的数学期望.

第3页(共24页)

- 21. (12 分)已知抛物线 C: $y^2=2px$ (p>0)的焦点为 F,直线 y=4 与 y 轴的交点为 P,与 C 的交点为 Q,且 $|QF|=\frac{5}{4}|PQ|$.
 - (I) 求 C的方程;
 - (Ⅱ)过F的直线 I 与 C 相交于 A、B 两点,若 AB 的垂直平分线 I'与 C 相交于 M、N 两点,且 A、M、B、N 四点在同一圆上,求 I 的方程.

- 22. (12 分) 函数 f (x) = $\ln (x+1) \frac{ax}{x+a}$ (a>1).
 - (I) 讨论 f (x) 的单调性;
 - (且)设 a₁=1, a_{n+1} =In(a_n +1),证明: $\frac{2}{n+2}$ < a_n < $\frac{3}{n+2}$ ($n\in N^*$).

2014 年全国统一高考数学试卷(理科)(大纲版)

参考答案与试题解析

一、选择题(本大题共12小题,每小题5分)

- 1. (5 分) 设 $z=\frac{10i}{3+i}$,则 z 的共轭复数为(

 - A. 1+3i B. 1- 3i C. 1+3i
- D. 1- 3i

【考点】A1:虚数单位 i、复数; A5:复数的运算.

【专题】5N: 数系的扩充和复数.

【分析】直接由复数代数形式的除法运算化简,则 z 的共轭可求.

【解答】解:
$$z=\frac{10i}{3+i}=\frac{10i(3-i)}{(3+i)(3-i)}=\frac{10+30i}{10}=1+3i$$

∴ z=1-3i.

故选: D.

【点评】本题考查复数代数形式的除法运算,考查了复数的基本概念,是基础 题.

- 2. (5 分) 设集合 $M=\{x \mid x^2-3x-4<0\}$, $N=\{x \mid 0 \le x \le 5\}$,则 $M \cap N=($

- A. (0, 4] B. [0, 4) C. [-1, 0] D. (-1, 0]

【考点】1E: 交集及其运算.

【专题】5J:集合.

【分析】求解一元二次不等式化简集合 M, 然后直接利用交集运算求解.

【解答】解: 由 x²- 3x- 4<0, 得- 1<x<4.

 \therefore M={x|x^2-3x-4<0}={x|-1<x<4},

 $\nabla N = \{x \mid 0 \leq x \leq 5\},$

 $M \cap N = \{x \mid -1 < x < 4\} \cap \{x \mid 0 \le x \le 5\} = [0, 4)$. 第5页(共24页)

故选: B.

【点评】本题考查了交集及其运算,考查了一元二次不等式的解法,是基础题.

- 3. (5分) 设 a=sin33°, b=cos55°, c=tan35°, 则 ()

- A. a > b > c B. b > c > a C. c > b > a D. c > a > b

【考点】HF: 正切函数的单调性和周期性.

【专题】56: 三角函数的求值.

【分析】可得 b=sin35°,易得 b>a,c=tan35°= $\frac{\sin 35^\circ}{\cos 35^\circ}$ >sin35°,综合可得.

【解答】解: 由诱导公式可得 b=cos55°=cos (90°- 35°) =sin35°,

由正弦函数的单调性可知 b>a,

 $\overline{\text{m}} \text{ c=tan35}^{\circ} = \frac{\sin 35^{\circ}}{\cos 35^{\circ}} > \sin 35^{\circ} = b$

∴c>b>a

故选: C.

【点评】本题考查三角函数值大小的比较,涉及诱导公式和三角函数的单调性, 属基础题.

- 4. (5分)若向量a、b满足: |a|=1, (a+b) ⊥a, (2a+b) ⊥b, 则|b|=()

 - A. 2 B. $\sqrt{2}$ C. 1
- D. $\frac{\sqrt{2}}{2}$

【考点】90:平面向量数量积的性质及其运算.

【专题】5A: 平面向量及应用.

【分析】由条件利用两个向量垂直的性质,可得($\overrightarrow{a+b}$)• $\overrightarrow{a=0}$,($\overrightarrow{2a+b}$)• $\overrightarrow{b=0}$, 由此求得 16.

第6页(共24页)

【解答】解: 由题意可得, $(a+b) \cdot a=a^{+2}+a \cdot b=1+a \cdot b=0$,∴ $a \cdot b=-1$; $(\overrightarrow{a} + \overrightarrow{b}) \cdot \overrightarrow{b} = 2 \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b}^2 = -2 + \overrightarrow{b}^2 = 0, : b^2 = 2,$

则 $|\vec{b}| = \sqrt{2}$,

故选: B.

【点评】本题主要考查两个向量垂直的性质,两个向量垂直,则它们的数量积 等干零,属干基础题.

- 5. (5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成 一个医疗小组,则不同的选法共有()

- A. 60 种 B. 70 种 C. 75 种 D. 150 种

【考点】D9:排列、组合及简单计数问题.

【专题】50:排列组合.

【分析】根据题意,分2步分析,先从6名男医生中选2人,再从5名女医生 中选出 1 人,由组合数公式依次求出每一步的情况数目,由分步计数原理计 算可得答案.

【解答】解:根据题意,先从 6 名男医生中选 2 人,有 C_6^2 =15 种选法,

再从5名女医生中选出1人,有C₅1=5种选法,

则不同的选法共有 15×5=75 种:

故选: C.

【点评】本题考查分步计数原理的应用,注意区分排列、组合的不同.

- 6. (5分) 已知椭圆 C: $\frac{x^2}{12} + \frac{y^2}{12} = 1$ (a>b>0) 的左、右焦点为 F_1 、 F_2 ,离心率 为 $\frac{\sqrt{3}}{3}$, 过 F_2 的直线 I 交 C 于 A、B 两点,若 \triangle AF₁B 的周长为 $4\sqrt{3}$,则 C 的方 程为()
 - A. $\frac{x^2}{3} + \frac{y^2}{2} = 1$ B. $\frac{x^2}{3} + y^2 = 1$ C. $\frac{x^2}{12} + \frac{y^2}{8} = 1$ D. $\frac{x^2}{12} + \frac{y^2}{4} = 1$

第7页(共24页)

【考点】K4:椭圆的性质.

【专题】5D: 圆锥曲线的定义、性质与方程.

【分析】利用 $\triangle AF_1B$ 的周长为 $4\sqrt{3}$,求出 $a=\sqrt{3}$,根据离心率为 $\frac{\sqrt{3}}{3}$,可得 c=1,求出 b,即可得出椭圆的方程.

【解答】解: $: \triangle AF_1B$ 的周长为 $4\sqrt{3}$,

- **∵**△AF₁B的周长=|AF₁|+|AF₂|+|BF₁|+|BF₂|=2a+2a=4a,
- \therefore 4a=4 $\sqrt{3}$,
- ∴a= $\sqrt{3}$,
- :离心率为 $\frac{\sqrt{3}}{3}$,
- $\therefore \frac{c}{3} = \frac{\sqrt{3}}{3}, c=1,$
- : $b = \sqrt{a^2 c^2} = \sqrt{2}$
- ∴椭圆 C 的方程为 $\frac{x^2}{3} + \frac{y^2}{2} = 1$.

故选: A.

【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题.

- 7. (5 分) 曲线 y=xe^{x-1}在点(1, 1) 处切线的斜率等于()
 - A. 2e
- В. е
- C. 2
- D. 1

【考点】62: 导数及其几何意义.

【专题】52: 导数的概念及应用.

【分析】求函数的导数,利用导数的几何意义即可求出对应的切线斜率.

【解答】解:函数的导数为 $f'(x) = e^{x-1} + xe^{x-1} = (1+x) e^{x-1}$,

当 x=1 时, f'(1)=2,

即曲线 $y=xe^{x-1}$ 在点(1,1)处切线的斜率 k=f'(1)=2,

第8页(共24页)

故选: C.

【点评】本题主要考查导数的几何意义,直接求函数的导数是解决本题的关键, 比较基础.

- 8. (5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2 ,则该球的表面积为()
 - A. $\frac{81 \, \pi}{4}$ B. 16π C. 9π
- D. $\frac{27\pi}{4}$

【考点】LG: 球的体积和表面积: LR: 球内接多面体.

【专题】11: 计算题: 5F: 空间位置关系与距离.

【分析】正四棱锥 P- ABCD 的外接球的球心在它的高 PO_1 上,记为 O_1 求出 PO_1

, OO₁, 解出球的半径, 求出球的表面积.

【解答】解: 设球的半径为 R,则

∵棱锥的高为 4, 底面边长为 2,

$$\therefore R^2 = (4 - R)^2 + (\sqrt{2})^2$$
,

$$\therefore R = \frac{9}{4},$$

∴球的表面积为 4π • $(\frac{9}{4})^{2} = \frac{81 \pi}{4}$.

故选: A.

【点评】本题考查球的表面积,球的内接几何体问题,考查计算能力,是基础 题.

9. (5分)已知双曲线 C的离心率为 2,焦点为 F₁、F₂,点 A在 C上,若 $|F_1A|=2|F_2A|$, $\emptyset \cos\angle AF_2F_1=$ (

第9页(共24页)

【考点】KC:双曲线的性质.

【专题】5D: 圆锥曲线的定义、性质与方程.

【分析】根据双曲线的定义,以及余弦定理建立方程关系即可得到结论.

【解答】解: : 双曲线 C 的离心率为 2,

∴e=<u>c</u>=2,即 c=2a,

点 A 在双曲线上,

则 | F₁A | - | F₂A | = 2a,

 $\nabla |F_1A| = 2|F_2A|$

∴解得|F₁A|=4a, |F₂A|=2a, ||F₁F₂|=2c,

则 由 余 弦 定 理 得 \cos \angle $AF_2F_1 = \frac{|AF_2|^2 + |F_1F_2|^2 - |AF_1|^2}{2|AF_2| \cdot |F_1F_2|} =$

$$\frac{4a^2+4c^2-16a^2}{2\times 2a\times 2c} = \frac{4c^2-12a^2}{8ac} = \frac{c^2-3a^2}{2ac} = \frac{4a^2-3a^2}{4a^2} = \frac{a^2}{4a^2} = \frac{1}{4}.$$

故选: A.

【点评】本题主要考查双曲线的定义和运算,利用离心率的定义和余弦定理是 解决本题的关键,考查学生的计算能力.

10. (5 分) 等比数列 $\{a_n\}$ 中, $a_4=2$, $a_5=5$,则数列 $\{Iga_n\}$ 的前 8 项和等于()

A. 6

B. 5

C. 4

D. 3

【考点】89: 等比数列的前 n 项和.

【专题】54: 等差数列与等比数列.

【分析】利用等比数列的性质可得 $a_1a_2=a_2a_7=a_3a_6=a_4a_5=10$. 再利用对数的运算性 质即可得出.

【解答】解: ∵数列{a_n}是等比数列, a₄=2, a₅=5,

 $a_1a_8=a_2a_7=a_3a_6=a_4a_5=10$.

第10页(共24页)

∴lga₁+lga₂+...+lga₈

=
$$\lg (a_1a_2 \bullet ... \bullet a_8)$$

$$= lg(a_4 a_5)^4$$

4lg10

=4.

故选: C.

【点评】本题考查了等比数列的性质、对数的运算性质,属于基础题.

- 11. (5 分) 已知二面角 α- I- β 为 60°, AB⊂α, AB⊥I, A 为垂足, CD⊂β, C∈
 - I, $\angle ACD=135$ °,则异面直线 AB 与 CD 所成角的余弦值为(

 - A. $\frac{1}{4}$ B. $\frac{\sqrt{2}}{4}$ C. $\frac{\sqrt{3}}{4}$ D. $\frac{1}{2}$

【考点】LM:异面直线及其所成的角.

【专题】5G: 空间角.

【分析】首先作出二面角的平面角,然后再构造出异面直线 AB 与 CD 所成角, 利用解直角三角形和余弦定理,求出问题的答案.

- 【解答】解:如图,过 A 点做 AE \perp I,使 BE \perp B,垂足为 E,过点 A 做 AF#CD, 过点 E做 EF_AE, 连接 BF,
- ∵AE⊥I
- ∴∠EAC=90°
- ∵CD//AF

又∠ACD=135°

- ∴∠FAC=45°
- ∴ ∠EAF=45°

在 Rt△BEA 中,设 AE=a,则 AB=2a,BE=√3a,

在 Rt△AEF 中,则 EF=a,AF=√2a,

在 Rt△BEF 中,则 BF=2a,

∴异面直线 AB 与 CD 所成的角即是∠BAF,

第11页(共24页)

$$: \cos \angle BAF = \frac{AB^2 + AF^2 - BF^2}{2AB \cdot AF} = \frac{(2 \ a)^2 + (\sqrt{2}a)^2 - (2a)^2}{2 \times 2a \times \sqrt{2}a} = \frac{\sqrt{2}}{4}.$$

故选: B.

【点评】本题主要考查了二面角和异面直线所成的角,关键是构造二面角的平 面角和异面直线所成的角, 考查了学生的空间想象能力和作图能力, 属于难 题.

12. (5 分) 函数 y=f(x) 的图象与函数 y=g(x) 的图象关于直线 x+y=0 对称, 则 y=f(x)的反函数是()

A. y=g(x) B. y=g(-x) C. y=-g(x) D. y=-g(-x)

【考点】4R: 反函数.

【专题】51: 函数的性质及应用.

【分析】设 P(x,y)为 y=f(x)的反函数图象上的任意一点,则 P 关于 y=x 的 对称点 P'(y, x) 一点在 y=f(x) 的图象上,P'(y, x) 关于直线 x+y=0 的对 称点 P''(-x, -y) 在 y=g(x) 图象上,代入解析式变形可得.

【解答】解:设P(x, y)为y=f(x)的反函数图象上的任意一点,

则 P 关于 y=x 的对称点 P'(y,x) 一点在 y=f(x) 的图象上,

又:函数 y=f(x) 的图象与函数 y=g(x) 的图象关于直线 x+y=0 对称,

∴P'(y, x) 关于直线 x+y=0 的对称点 P"(- x, - y) 在 y=g(x) 图象上,

∴必有- y=g (- x), 即 y=- g (- x)

∴y=f(x)的反函数为: y=- g(- x)

第12页(共24页)

故选: D.

【点评】本题考查反函数的性质和对称性,属中档题.

二、填空题(本大题共4小题,每小题5分)

13. (5分)
$$(\frac{x}{\sqrt{y}} - \frac{y}{\sqrt{x}})^8$$
 的展开式中 x^2y^2 的系数为70. (用数字作答)

【考点】DA: 二项式定理.

【专题】5P: 二项式定理.

【分析】先求出二项式展开式的通项公式,再令x、y 的幂指数都等于2,求得r 的值,即可求得展开式中 x^2y^2 的系数.

【解答】解: $(\frac{x}{\sqrt{y}}, \frac{y}{\sqrt{x}})^8$ 的展开式的通项公式为 $T_{r+1} = C_8^{r_{\bullet}} (-1)^{r_{\bullet}} (\frac{x}{\sqrt{y}})^{8-r}$

$$\left(\frac{y}{\sqrt{x}}\right)^r = C_8^{r \cdot \cdot} \left(-1\right)^{r \cdot \cdot} x^{\frac{3r}{2} \cdot \frac{3r}{2} \cdot \frac{3r}{2} - 4},$$

令 8-
$$\frac{3r}{2}$$
 - $\frac{3r}{2}$ - 4=2,求得 r=4,

故展开式中 x^2y^2 的系数为 $C_8^{4=70}$

故答案为:70.

【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.

14. (5 分)设 x、y 满足约束条件
$$\begin{cases} x-y \geq 0 \\ x+2y \leq 3, \quad \text{则 } z=x+4y \text{ 的最大值为} \underline{5} \\ x-2y \leq 1 \end{cases}$$
.

【考点】7C: 简单线性规划.

【专题】31:数形结合.

【分析】由约束条件作出可行域, 化目标函数为直线方程的斜截式, 由图得到最优解, 联立方程组求出最优解的坐标, 代入目标函数得答案.

第13页(共24页)

【解答】解:由约束条件 $\begin{cases} x-y \ge 0 \\ x+2y \le 3$ 作出可行域如图, $x-2y \le 1$

联立
$$\begin{cases} x-y=0 \\ x+2y=3 \end{cases}$$
,解得 C(1,1).

化目标函数 z=x+4y 为直线方程的斜截式,得 $y=\frac{1}{4}x+\frac{z}{4}$.

由图可知,当直线 $y=\frac{1}{4}x+\frac{z}{4}$ 过 C 点时,直线在 y 轴上的截距最大,z 最大.

此时 z_{max}=1+4×1=5.

故答案为:5.

【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

15. (5分) 直线 I_1 和 I_2 是圆 $x^2+y^2=2$ 的两条切线,若 I_1 与 I_2 的交点为(1,3),则 I_1 与 I_2 的夹角的正切值等于 $-\frac{4}{3}$.

【考点】IV: 两直线的夹角与到角问题.

【专题】5B: 直线与圆.

【分析】设 I_1 与 I_2 的夹角为 2θ ,由于 I_1 与 I_2 的交点 A(1,3)在圆的外部,由 直角三角形中的边角关系求得 $\sin\theta = \frac{r}{OA}$ 的值,可得 $\cos\theta$ 、 $\tan\theta$ 的值,再根据 $\tan 2\theta = \frac{2\tan\theta}{1-\tan^2\theta}$,计算求得结果.

【解答】解:设 I_1 与 I_2 的夹角为 2θ ,由于 I_1 与 I_2 的交点 A(1,3)在圆的外部,且点 A与圆心 O 之间的距离为 $OA=\sqrt{1+9}=\sqrt{10}$,

圆的半径为 $r=\sqrt{2}$,

第14页(共24页)

$$\begin{split} & \therefore \sin\theta = \frac{\mathbf{r}}{0\mathrm{A}} = \frac{\sqrt{2}}{\sqrt{10}}, \\ & \therefore \cos\theta = \frac{2\sqrt{2}}{\sqrt{10}}, \quad \tan\theta = \frac{\sin\theta}{\cos\theta} = \frac{1}{2}, \\ & \therefore \tan2\theta = \frac{2\tan\theta}{1-\tan^2\theta} = \frac{1}{1-\frac{1}{4}} = \frac{4}{3}, \end{split}$$

故答案为: $\frac{4}{3}$.

【点评】本题主要考查直线和圆相切的性质,直角三角形中的变角关系,同角 三角函数的基本关系、二倍角的正切公式的应用,属于中档题.

16. (5 分)若函数 f(x)=cos2x+asinx 在区间($\frac{\pi}{6}$, $\frac{\pi}{2}$)是减函数,则 a 的取值范围是<u>(- ∞,2</u>]_.

【考点】HM:复合三角函数的单调性.

【专题】51:函数的性质及应用;57:三角函数的图像与性质.

【分析】利用二倍角的余弦公式化为正弦,然后令 t=sinx 换元,根据给出的 x 的范围求出 t 的范围,结合二次函数的图象的开口方向及对称轴的位置列式求解 a 的范围.

【解答】解: 由f(x)=cos2x+asinx

 $=-2\sin^2x+a\sin x+1$,

今 t=sinx,

则原函数化为 $y=-2t^2+at+1$.

$$x \in (\frac{\pi}{6}, \frac{\pi}{2})$$
 时 f(x) 为减函数,

则 y=- 2t²+at+1 在 t∈ $(\frac{1}{2}, 1)$ 上为减函数,

∵y=- $2t^2$ +at+1 的图象开口向下,且对称轴方程为 $t=\frac{a}{4}$.

$$\therefore \frac{a}{4} \leqslant \frac{1}{2}$$
,解得:a \leqslant 2.

∴a 的取值范围是 (- ∞, 2].

故答案为: (-∞,2].

【点评】本题考查复合函数的单调性,考查了换元法,关键是由换元后函数为减函数求得二次函数的对称轴的位置,是中档题.

三、解答题

17. (10 分) \triangle ABC 的内角 A、B、C 的对边分别为 a、b、c,已知 3acosC=2ccosA, $\tan A = \frac{1}{3}$,求 B.

【考点】GL: 三角函数中的恒等变换应用: HP: 正弦定理.

【专题】58:解三角形.

【分析】由 3acosC=2ccosA,利用正弦定理可得 3sinAcosC=2sinCcosA,再利用同角的三角函数基本关系式可得 tanC,利用 tanB=tan[π- (A+C)]=- tan(A+C))即可得出.

【解答】解: :: 3acosC=2ccosA,

由正弦定理可得 3sinAcosC=2sinCcosA,

- ∴3tanA=2tanC,
- ∴ tanA= $\frac{1}{3}$,
- \therefore 2tanC=3 $\times \frac{1}{3}$ =1,解得 tanC= $\frac{1}{2}$.

∴ tanB=tan[
$$\pi$$
- (A+C)]=- tan (A+C) =- $\frac{\tanh + \tan C}{1 - \tanh \tan C}$ =- $\frac{\frac{1}{3} + \frac{1}{2}}{1 - \frac{1}{3} \times \frac{1}{2}}$ =- 1,

 $:B\in (0, \pi)$,

$$\therefore B = \frac{3\pi}{4}$$

【点评】本题考查了正弦定理、同角的三角函数基本关系式、两角和差的正切公式、诱导公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题.

18. (12 分)等差数列 $\{a_n\}$ 的前 n 项和为 S_n ,已知 a_1 =13, a_2 为整数,且 $S_n \leq S_4$ 第16 页 (共 24 页)

(1) 求 {a_n} 的通项公式;

(2) 设
$$b_n = \frac{1}{a_n a_{n+1}}$$
,求数列 $\{b_n\}$ 的前 n 项和 T_n .

【考点】8E:数列的求和.

【专题】55: 点列、递归数列与数学归纳法.

【分析】(1)通过 $S_n \leq S_4$ 得 $a_4 \geq 0$, $a_5 \leq 0$,利用 $a_1 = 13$ 、 a_2 为整数可得 d = -4, 进而可得结论:

(2) 通过 a_n =13-3n,分离分母可得 b_n = $\frac{1}{3}$ ($\frac{1}{13-3n}$ - $\frac{1}{10-3n}$),并项相加即可.

【解答】解: (1) 在等差数列{a_n}中,由 S_n≤S₄得:

 $a_4 \ge 0$, $a_5 \le 0$,

又∵a₁=13,

$$∴ \begin{cases} 13+3 \, \text{d} \ge 0, & \text{midiant} \end{cases} \text{midiant} \end{cases} \text{midiant} \end{cases} \text{midiant} \end{cases} \text{midiant} \end{cases} \frac{13}{3} \le \text{d} \le -\frac{13}{4},$$

∵a₂为整数, ∴d=- 4,

∴ {a_n} 的通项为: a_n=17-4n;

(2) $:a_n=17-4n$,

$$\label{eq:bn} \text{$:$b_n$} = \frac{1}{a_n \, a_{n+1}} = \frac{1}{(17 - 4n) \, (21 - 4n)} = - \, \frac{1}{4} \, \left(\frac{1}{4n - 17} - \, \frac{1}{4n - 21} \right) \; \text{,}$$

于是 $T_n = b_1 + b_2 + \dots + b_n$

$$=\frac{n}{17(17-4n)}$$
.

【点评】本题考查求数列的通项及求和,考查并项相加法,注意解题方法的积累,属于中档题.

19. (12 分)如图,三棱柱 ABC- $A_1B_1C_1$ 中,点 A_1 在平面 ABC 内的射影 D 在 AC

第17页(共24页)

 \perp , \angle ACB=90°, BC=1, AC=CC₁=2.

- (I) 证明: AC₁⊥A₁B;
- (Ⅱ) 设直线 AA_1 与平面 BCC_1B_1 的距离为 $\sqrt{3}$,求二面角 A_1 AB- C 的大小.

【考点】LW: 直线与平面垂直; MJ: 二面角的平面角及求法.

【专题】5F: 空间位置关系与距离.

【分析】(I)由已知数据结合线面垂直的判定和性质可得;

(II) 作辅助线可证 $\angle A_1FD$ 为二面角 A_1 - AB- C 的平面角,解三角形由反三角函数可得.

【解答】解: (Ⅰ):A₁D⊥平面 ABC,A₁D⊂平面 AA₁C₁C,

- ∴平面 AA₁C₁C⊥平面 ABC,又 BC⊥AC
- ∴BC⊥平面 AA₁C₁C, 连结 A₁C,

由侧面 AA_1C_1C 为菱形可得 $AC_1 \perp A_1C$,

 $\mathbb{Z} AC_1 \perp BC$, $A_1C \cap BC=C$,

- ∴AC₁ 上平面 A₁BC, AB₁⊂平面 A₁BC,
- $AC_1 \perp A_1B$;
- (Ⅱ) ∵BC⊥平面 AA₁C₁C, BC⊂平面 BCC₁B₁,
- ∴平面 AA₁C₁C⊥平面 BCC₁B₁,

作 $A_1E \perp CC_1$, E 为垂足,可得 $A_1E \perp$ 平面 BCC_1B_1 ,

又直线 AA₁//平面 BCC₁B₁,

- \therefore A₁E 为直线 AA₁ 与平面 BCC₁B₁ 的距离,即 A₁E= $\sqrt{3}$,
- $:: A_1C$ 为 $\angle ACC_1$ 的平分线, $:: A_1D = A_1E = \sqrt{3}$,

作 DF LAB, F 为垂足, 连结 A₁F,

第18页(共24页)

又可得 AB LA₁D,A₁F ∩ A₁D=A₁,

∴AB⊥平面 A₁DF, ∵A₁F⊂平面 A₁DF

 $A_1F \perp AB$,

∴ ∠A₁FD 为二面角 A₁- AB- C 的平面角,

由 AD= $\sqrt{AA_1^2-A_1D^2}=1$ 可知 D 为 AC 中点,

$$\therefore DF = \frac{1}{2} \times \frac{AC \times BC}{AB} = \frac{\sqrt{5}}{5},$$

$$\therefore \tan \angle A_1 FD = \frac{A_1 D}{DF} = \sqrt{15},$$

∴二面角 A₁- AB- C 的大小为 arctan√15

【点评】本题考查二面角的求解,作出并证明二面角的平面角是解决问题的关键,属中档题.

- 20. (12分)设每个工作日甲、乙、丙、丁 4人需使用某种设备的概率分别为 0.6、0.5、0.5、0.4,各人是否需使用设备相互独立.
- (I) 求同一工作日至少3人需使用设备的概率;
- (Ⅱ) X表示同一工作日需使用设备的人数, 求 X 的数学期望.

【考点】C8: 相互独立事件和相互独立事件的概率乘法公式; CH: 离散型随机 变量的期望与方差.

【专题】51: 概率与统计.

【分析】记 A_i表示事件:同一工作日乙丙需要使用设备,i=0,1,2,B表示事件:甲需要设备,C表示事件,丁需要设备,D表示事件:同一工作日至少3人需使用设备

第19页(共24页)

- (I)把4个人都需使用设备的概率、4个人中有3个人使用设备的概率相加,即得所求.
- (Ⅱ) X 的可能取值为 0, 1, 2, 3, 4, 分别求出 PX_i, 再利用数学期望公式计算即可.

【解答】解:由题意可得"同一工作日至少3人需使用设备"的概率为

 $0.6 \times 0.5 \times 0.5 \times 0.4 + (1-0.6) \times 0.5 \times 0.5 \times 0.4 + 0.6 \times (1-0.5) \times 0.5 \times 0.4 + 0.6 \times 0.5 \times (1-0.5) \times 0.4 + 0.6 \times 0.5 \times (1-0.4) = 0.31.$

(Ⅱ) X的可能取值为 0, 1, 2, 3, 4

 $P(X=0) = (1-0.6) \times 0.5^2 \times (1-0.4) = 0.06$

P (X=1) =0.6 \times 0.5² \times (1- 0.4) + (1- 0.6) \times 0.5² \times 0.4+ (1- 0.6) \times 2 \times 0.5² \times (1- 0.4) =0.25

 $P (X=4) = P (A_2 \cdot B \cdot C) = 0.5^2 \times 0.6 \times 0.4 = 0.06,$

P(X=3) = P(D) - P(X=4) = 0.25,

P (X=2) =1- P (X=0) - P (X=1) - P (X=3) - P (X=4) =1- 0.06- 0.25- 0.25- 0.06=0.38.

故数学期望 EX=0×0.06+1×0.25+2×0.38+3×0.25+4×0.06=2

【点评】本题主要考查了独立事件的概率和数学期望,关键是找到独立的事件, 计算要有耐心,属于难题.

- 21. (12 分)已知抛物线 C: $y^2=2px$ (p>0)的焦点为 F,直线 y=4 与 y 轴的交点为 P,与 C 的交点为 Q,且 $|QF|=\frac{5}{4}|PQ|$.
- (I) 求 C 的方程:
- (Ⅱ)过F的直线 I 与 C 相交于 A、B 两点,若 AB 的垂直平分线 I'与 C 相交于 M、N 两点,且 A、M、B、N 四点在同一圆上,求 I 的方程.

【考点】KH: 直线与圆锥曲线的综合.

第 20 页 (共 24 页)

【专题】5E: 圆锥曲线中的最值与范围问题.

【分析】(I)设点 Q 的坐标为(x_0 , 4), 把点 Q 的坐标代入抛物线 C 的方程,求得 $x_0 = \frac{8}{p}$, 根据 $|QF| = \frac{5}{4} |PQ|$ 求得 p 的值,可得 C 的方程.

(II) 设 I 的方程为 x=my+1 (m \neq 0),代入抛物线方程化简,利用韦达定理、中点公式、弦长公式求得弦长|AB|. 把直线 I'的方程代入抛物线方程化简,利用韦达定理、弦长公式求得|MN|. 由于 MN 垂直平分线段 AB,故 AMBN 四点共圆等价于|AE|=|BE|= $\frac{1}{2}|$ MN|,由此求得 m 的值,可得直线 I 的方程.

【解答】解: (I)设点 Q 的坐标为 $(x_0, 4)$, 把点 Q 的坐标代入抛物线 C: $y^2=2px(p>0)$,

可得 $x_0 = \frac{8}{p}$, :点 P (0, 4), : $|PQ| = \frac{8}{p}$.

 $\mathbb{Z} | \mathsf{QF} | = \mathsf{x}_0 + \frac{\mathsf{p}}{2} - \frac{\mathsf{g}}{\mathsf{p}} + \frac{\mathsf{p}}{2}, \quad | \mathsf{QF} | = \frac{\mathsf{g}}{4} | \mathsf{PQ} |,$

∴ $\frac{8}{p}$ + $\frac{p-5}{2}$ × $\frac{8}{4}$ × $\frac{8}{p}$, 求得 p=2, 或 p=-2 (舍去).

故 C 的方程为 y²=4x.

(Ⅱ)由题意可得,直线 I 和坐标轴不垂直, y²=4x 的焦点 F(1,0),

设 I 的方程为 x=my+1 (m≠0),

代入抛物线方程可得 y^2 - 4my- 4=0,显然判别式 \triangle =16m²+16>0, y_1 + y_2 =4m,

 $y_1 \bullet y_2 = -4$.

∴ AB 的 中 点 坐 标 为 D ($2m^2+1$, 2m) , 弦 长 $|AB| = \sqrt{m^2+1} |y_1 - y_2| = \sqrt{m^2+1} \sqrt{(y_1 + y_2)^2 - 4y_1 y_2} = 4 \ (m^2+1) \ .$

又直线 l'的斜率为- m,:直线 l'的方程为 $x=-\frac{1}{m}y+2m^2+3$.

过 F 的直线 I 与 C 相交于 A、B 两点,若 AB 的垂直平分线 I'与 C 相交于 M、N 两点,

把线 l'的方程代入抛物线方程可得 $y^2+\frac{4}{m}y^-$ 4(2 m^2+3)=0, $\therefore y_3+y_4=\frac{-4}{m}$, $y_3 \bullet y_4=-$ 4(2 m^2+3).

故线段 MN 的中点 E 的坐标为($\frac{2}{m^2}$ +2m²+3, $\frac{-2}{m}$), \therefore |MN|= $\sqrt{1+\frac{1}{m^2}}$ |y₃- y₄|=

第21页(共24页)

$$\frac{4(m^2+1)\cdot\sqrt{2m^2+1}}{m^2}$$
,

:MN 垂直平分线段 AB,故 AMBN 四点共圆等价于 $|AE|=|BE|=\frac{1}{2}|MN|$,

$$\therefore \frac{1}{4} \cdot AB^{2} + DE^{2} = \frac{1}{4}MN^{2},$$

∴ 4
$$(m^2+1)^2 + (2m+\frac{2}{m})^2 + (\frac{2}{m^2}+2)^2 = \frac{1}{4} \times \frac{16 \cdot (m^2+1)^2 \cdot (2m^2+1)}{m^4}$$
, 化简可得 $m^2-1=0$,

∴m=±1, ∴直线 | 的方程为 x- y- 1=0, 或 x+y- 1=0.

【点评】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理、弦长公式的应用,体现了转化的数学思想,属于难题.

- 22. (12 分) 函数 f (x) = ln (x+1) $\frac{ax}{x+a}$ (a>1).
- (I) 讨论 f (x) 的单调性;

(II)设
$$a_1$$
=1, a_{n+1} =In(a_n +1),证明: $\frac{2}{n+2}$ < a_n < $\frac{3}{n+2}$ (n ∈N*).

【考点】6B: 利用导数研究函数的单调性; RG: 数学归纳法.

【专题】53:导数的综合应用.

【分析】(I)求函数的导数,通过讨论 a 的取值范围,即可得到 f(x)的单调性;

(Ⅱ)利用数学归纳法即可证明不等式.

【解答】解 (I)函数 f(x)的定义域为(-1,+
$$\infty$$
), f'(x)= $\frac{x[x-(a^2-2a)]}{(x+1)(x+a)^2}$

,

①当 1<a<2 时,若 x∈ (-1, a²-2a),则 f′(x)>0,此时函数 f(x)在(-1, a²-2a) 上是增函数,

若 x∈ $(a^{2}$ — 2a, 0) ,则 f'(x) <0,此时函数 f(x) 在 $(a^{2}$ — 2a, 0) 上是减函

第22页(共24页)

数,

若 x∈ $(0, +\infty)$,则 f'(x) >0,此时函数 f(x)在 $(0, +\infty)$ 上是增函数.

- ②当 a=2 时, $f'(x) \ge 0$, 此时函数 f(x) 在 $(-1, +\infty)$ 上是增函数,
- ③当 a>2 时,若 x∈ (-1,0),则 f′(x)>0,此时函数 f(x) 在 (-1,0) 上是增函数,
- 若 x∈ (0, a²- 2a),则 f'(x) <0,此时函数 f(x)在(0, a²- 2a)上是减函数,
- 若 x∈ (a²- 2a, +∞),则 f′(x) >0,此时函数 f (x)在 (a²- 2a, +∞)上是增函数.
- (Ⅱ)由(Ⅰ)知,当 a=2时,此时函数 f(x)在(-1, $+\infty$)上是增函数,

当 x \in (0, + ∞) 时, f(x) > f(0) = 0,

即 In
$$(x+1) > \frac{2x}{x+2}$$
, $(x>0)$,

又由(I)知, 当 a=3 时, f(x)在(0,3)上是减函数,

当 x ∈ (0, 3) 时, f (x) < f (0) = 0, ln (x+1) <
$$\frac{3x}{x+3}$$
,

下面用数学归纳法进行证明 $\frac{2}{n+2}$ < a_n < $\frac{3}{n+2}$ 成立,

①当 n=1 时,由已知

$$\frac{2}{3}$$
 < $a_1 = 1$, 故结论成立.

②假设当 n=k 时结论成立,即
$$\frac{2}{k+2} < a_k < \frac{3}{k+2}$$

则当 n=k+1 时,
$$a_{n+1}$$
=ln(a_n +1) >ln($\frac{2}{k+2}$ +1) > $\frac{2 \times \frac{2}{k+2}}{\frac{2}{k+2}}$ = $\frac{2}{k+3}$,

$$\mathsf{a_{k+1}} = \mathsf{ln} \ (\mathsf{a_k} + \mathsf{1}) \ < \mathsf{ln} \ (\frac{3}{k+2} + \mathsf{1}) \ < \frac{3 \times \frac{3}{k+2}}{\frac{3}{k+2} + 3} = \frac{3}{k+3},$$

即当 n=k+1 时,
$$\frac{2}{k+3} < a_{k+1} \le \frac{3}{k+3}$$
成立,

综上由①②可知,对任何 n∈N•结论都成立.

第23页(共24页)

【点评】本题主要考查函数单调性和导数之间的关系,以及利用数学归纳法证明不等式,综合性较强,难度较大.