experimentelle Methoden der Bioinformatik

Inhaltsverzeichnis

1	ChIP-Chip und ChIP-Seq	1
	1.1 Ablauf]
	1.1.1 Crosslinking	1
	1.1.2 Sonication	1
	1.1.3 Immunoprezipitation (Selektion mittels Antikörper)]
	1.1.4 Reverse Immunoprezipitation	1
	1.1.5 Reverse Crosslinking	2
	1.1.6 Auswertung	2
	1.2 Probleme/Fehler	2
	1.3 Antikörper	•
2	Peak Calling	4
3	CLIP-Seq	4
	3.1 ICLIP	4
4	PAR-CLIP	4
5	Protein-Protein-Interaction	4
6	Tandem Affinity Purification (TAP)	4
	6.1 Local clique merging algorithm (LCMA)	4
	6.2 Clique Finding Algorithzm (CFA)	4
7	RNA structure probing	4
	7.1 chemical probing	4
8	X-ray crystallography	
9	NMR spectroscopy	6

1 ChIP-Chip und ChIP-Seq

ChIP: Chromatin-ImmunoPrecipitation

ChIP-Chip: Chromatin-Immunoprecipitation Chip

ChIP-Seq: Chromatin-Immunoprecipitation DNA-Sequencing

1.1 Ablauf

1.1.1 Crosslinking

Geschieht reversibel zwischen DNA (Chromatin) und rekombinanten Proteinen

- Formaldehyd (CH2O) vernetzt Base (B) mit Proteinen (P-NH2) quer
- P-NH2+CH2O \rightleftharpoons PN=CH2+NH2-B \rightleftharpoons PNH-CH2-NH-B
- Rekombinant: Biotechnologisch hergestellte Proteine aus genetisch veraenderten Organismen

1.1.2 Sonication

Zerstören und Zerkleinern der Zellen, Zellbestandteile und DNA durch Ultraschall (Vorher: Waschen der Zellen mit Protease Inhibitor, Lyse + homogenisieren)

- zeitkritisch \rightarrow Länge bestimmt Grad der Zerkleinerung
- 200-1000 BP Fragmente im Idealfall

1.1.3 Immunoprezipitation (Selektion mittels Antikörper)

- Antikörper (an Beads, Chip/in Gel) binden an rekombinante Proteine oder Protein-TAG (kurze Aminosäuresequenz, markieren Protein)
- Aufreinigung:
 - \rightarrow Zentrifugation des Prezipitats: Beads+(Protein-DNA) am Boden, Zellfragmente/Rest in Lösung
 - → Abkippen der Lösung
 - \rightarrow Aufnehmen des Beadspellets in Puffer, erneut zentrifugieren (x-Mal) Manchmal noch
 - → DNase Verdau der DNA in Lösung
 - → Aufheben der DNA in Lösung, als total-Chromatin-Probe

1.1.4 Reverse Immunoprezipitation

Durch Aufreinigungsschritte sind Beads/Gel/Chip idealerweise frei von Zellfragmenten/ungebundener DNA.

Umkehren der IP mit Elutionspuffer \to Antikörper von DNA+Proteine trennen \to Salzgehalt und PH-Wert an Rückreaktion angepasst

1.1.5 Reverse Crosslinking

- Thermische Zerstörung der Bindung zw. Protein und DNA
- Proteinase K und RNase
- Extraktion der DNA

1.1.6 Auswertung

Chiphybridisierung

- Hybridisierung der DNA an Microarray
- Färbung der DNA
- Messung der Farbintensität

$ightarrow mit\ dem\ ChIP\ Background\ kann\ ich\ nichts\ anfangen...\leftarrow$ Sequencing

Hochdurchsatzsequenzierung der aufgereinigten DNA.

- \rightarrow DNA extrahieren \rightarrow DNA fragmentieren \rightarrow Primer an Fragmente \rightarrow Sequenzierung
- \rightarrow Herausrechnen der Primer (idealerweise kennt man sie) \rightarrow

Quality control

Phred-score Berechnung (Güte der erkannten

Nukleobase) \rightarrow Cutoff bei zu niedrigem Phred-score \rightarrow Mapping des

sequenzierten Teilstücks auf Genom

1.2 Probleme/Fehler

Sonication

- Größe der Fragmente abhängig von Ultraschalleinsatz zeitkritisch!
- Kürzere und längere Fragmente können Informationen enthalten Cross-

Linking

FN: Protein an DNA gebunden, aber kein Cross-Linking

FP: Proteine, die sehr nahe an der DNA sind, aber ungebunden, werden auch cross linked

Immunoprecipitation

FP: Mangelnde Reinheit der rekombinanten Proteine; Spezifität der heterophilen Antikörper zu gering

Aufreinigung führt zu **FP** und **FN**

Chip

FN: Hybridisierung nicht effektiv genug

1.3 Antikörper

polyclonal

Peptide in Ratte/Maus geimpft

extrahieren der B-Lymphozyten aus Serum

Extrahieren der Antikörper aus den Lymphozyten

↓ Antikörper

monoclonal

Peptide in Ratte/Maus geimpft

extrahieren der B-Lymphozyten aus Milz

Fusionierung der B-Lymphozyten mit Plasmazellen aus Myelom (Krebszelle - 'unsterblich')

 $\begin{tabular}{ll} \hline \textbf{Hybrid erzeugt (unsterblich + Antik\"{o}rper)} \\ \hline \end{tabular}$

Testen der Hybride auf Antigene \downarrow ernten spezifischer Antikörper

- 2 Peak Calling
- 3 CLIP-Seq
- 3.1 ICLIP
- 4 PAR-CLIP
- 5 Protein-Protein-Interaction
- 6 Tandem Affinity Purification (TAP)
- 6.1 Local clique merging algorithm (LCMA)
- 6.2 Clique Finding Algorithzm (CFA)
- 7 RNA structure probing
- 7.1 chemical probing

8 X-ray crystallography

Voraussetzung: regulären Kristall aus dem Protein

Bragg's Law: $n\lambda = 2dsin(\Theta)$

X-ray crytallography diffraction:

X-ray \rightarrow Kristall \rightarrow Ablenkung

durch Atome \to Ablenkung wird durch einen Detektor gemessen feste Wellenlänge λ , Winkel Θ variieren (Kristall rotieren) \to charakteristisches Diffraction pattern \to Amplitude ändert sich über den Winkel $d_{hkl} = \frac{a_0}{\sqrt{h^2 + k^2 + l^2}}$ mit hkl=Laue-Index, $a_0 = Gitterkonstante$

oder:

 Θ fest und λ variiren \rightarrow white x-ray

Kombinierte Information aus allen Messungen für verschiedene $\lambda\&\Theta$

- 1. Backbone des Proteins ($COOH NH_2$)
- 2. Bestimmung der Position der flexiblen Seitenketten der Aminosäuren
- 3. Verbesserung

9 NMR spectroscopy

NMR: nuclear magnetic resonance

Wechsel des Zustands ist messbar

Atome mit magnetischen Eigenschaften: H, Deuterium, N, C, Li, B, O

NMR: Magnet, der ein magnetisches Feld induziert & Radiowellen sendet

- \rightarrow ohne weitere äußere Einflüsse Atom in $\alpha-spin$
- ightarrow über Flips im Magnetfeld Ermittlung der Protein-Struktur

Spektren von H,C,N + Strukturformel der bekannten Aminosäure + Aminosäureketten \to Wechselwirkungen zwischen den Gruppen herleiten \to 3D Koordinaten berechnen