

Knights Tour Problem

(Report)

Algorithm Analysis
Project

Sarantos Tzortzis Vilnius University, 2021

Contents:

1.	Introduction	.3
2.	Problem formulation	.3
3.	Sample of the solution	.4
	3.1 Backtrack	.4
	3.2 Warnsdoff	.8
4.	Implementation	.9
5.	A description of the experiments performed with the samp	les
	when the size tended to infinity	10
6.	Complexity	11
7.	Instruction on how to use the program	12
8.	Conclusion and observations	12
	References	

1.Introduction

A knight's tour is a sequence of moves of a knight on a chessboard such that the knight visits every square exactly once. If the knight ends on a square that is one knight's move from the beginning square (so that it could tour the board again immediately, following the same path), the tour is closed; otherwise, it is open.

The knight's tour problem is the mathematical problem of finding a knight's tour. Creating a program to find a knight's tour is a common problem given to computer science students. Variations of the knight's tour problem involve chessboards of different sizes than the usual 8×8 .

2. Problem formulation

The famous knight's tour problem asks whether a knight can tour an entire 8×8 chessboard visiting each square exactly once. Here, a knight can move in any of 8 ways, provided that the final destination is within the board. In each of these ways, one coordinate of the knight's position changes by 2 units (positively or negatively), and the other coordinate changes by 1 unit (positively or negatively). If the two directions are labelled up/down and left/right the eight moves are :

- Up two steps, right one step 2
- Up two steps, left one step
- Right two steps, up one step
- Right two steps, down one step
- Down two steps, left one step
- Down two steps, right one step
- Left two steps, up one step
- Left two steps, down one step. From the above listing of moves, it is clear that the knight's move is symmetric, in the sense that if a knight can move from a square A to a square B in one move, it can also move from B to A in one step. There are many variations of this problem:
- Whether a tour is possible with a given initial position.
- Whether a tour is possible with a given initial and a given final position.
- Whether there is a closed tour or re-entrant tour, that is, a tour where the last square is a knight's move away from the first. If there is a closed tour

beginning at some square, there is a closed tour beginning at any square. Essentially, the knight needs to cover as many squares of the chessboard such that after each square, the next square it goes to is a knight's move away. We would like a structure that captures this relationship between squares (of being separated only by a knight's move). Such a structure exists in mathematics – a graph. 1

3. Sample of the solution

3.1 Back-tracking implementation

Here are some examples from my program


```
Enter Starting position X
4
Enter Starting position Y
4

| 24 || 17 || 6 || 11 || 2 |

| 7 || 12 || 3 || 16 || 5 |

| 20 || 23 || 18 || 1 || 10 |

| 13 || 8 || 21 || 4 || 15 |

| 22 || 19 || 14 || 9 || 0 |
```

```
Enter N
Enter Starting position X
Enter Starting position Y
| 35 || 12 || 9 || 22 ||
                           3
                              || 14 | | | | | | |
| 10 || 21 || 4 || 13 ||
                              || 23 |
                           8
| 19 || 34 || 11 || 0 || 15 ||
                                 2 |
| 28 || 31 || 20 || 5 || 24 ||
                                7 |
| 33 || 18 || 29 || 26 ||
                          1
                            || 16 |
| 30 || 27 || 32 || 17 || 6
                             || 25 |
```

```
Enter N
6
Enter Starting position X
1
Enter Starting position Y
1

| 18 || 27 || 34 || 25 || 20 || 5 |
| 35 || 0 || 19 || 6 || 33 || 24 |
| 28 || 17 || 26 || 23 || 4 || 21 |
| 11 || 14 || 1 || 30 || 7 || 32 |
| 16 || 29 || 12 || 9 || 22 || 3 |
| 13 || 10 || 15 || 2 || 31 || 8 |
```

```
Enter N
Enter Starting position X
Enter Starting position Y
| 16 || 27 || 42 || 23 || 8 || 29 ||
| 41 || 24 || 15 || 28 || 1 || 22 ||
                                       9
| 26 || 17 || 40 || 43 || 10 ||
                               7 || 30 |
| 39 || 44 || 25 || 14 || 31 ||
                                2
                                   || 21 |
| 34 || 47 || 18 || 37 || 4 || 11 ||
                                      6
| 45 || 38 || 35 || 32 || 13 || 20 || 3
| 48 || 33 || 46 || 19 || 36 || 5
                                  || 12 |
```

```
Enter Starting position X
0
Enter Starting position Y
0

| 0 || 59 || 38 || 33 || 30 || 17 || 8 || 63 |
| 37 || 34 || 31 || 60 || 9 || 62 || 29 || 16 |
| 58 || 1 || 36 || 39 || 32 || 27 || 18 || 7 |
| 35 || 48 || 41 || 26 || 61 || 10 || 15 || 28 |

| 42 || 57 || 2 || 49 || 40 || 23 || 6 || 19 |

| 47 || 50 || 45 || 54 || 25 || 20 || 11 || 14 |

| 56 || 43 || 52 || 3 || 22 || 13 || 24 || 5 |

| 51 || 46 || 55 || 44 || 53 || 4 || 21 || 12 |
```

3.2 Warnsdoff Implementation

```
PROBLEMS 16
                 OUTPUT
                           DEBUG CONSOLE
                                            TERMINAL
Enter N
Enter Starting position X
Enter Starting position Y
                                2
0
        13
                8
                        19
                1
                                9
23
        18
                        14
12
        7
                24
                        3
                                20
        22
17
                5
                        10
                                15
        11
                16
                        21
                                4
Sarantoss-MacBook-Pro:KnightsTourWarnsdorff sarantostzortzis$
```

```
Enter N
Enter Starting position X
Enter Starting position Y
5
                 7
                                  3
        22
                         36
                                          20
                                                   17
                                                           34
8
        63
                 4
                                  56
                                          35
                                                   2
                                                            19
                         21
23
        6
                 55
                         60
                                  37
                                          18
                                                   33
                                                           16
        9
                                          59
62
                 52
                         57
                                  54
                                                   38
                                                           1
51
        24
                 61
                         42
                                  47
                                                   15
                                                           32
                                          0
10
                                          41
        27
                 48
                         53
                                  58
                                                   44
                                                           39
25
        50
                 29
                         12
                                  43
                                          46
                                                   31
                                                            14
                         49
                                                           45
28
        11
                 26
                                  30
                                          13
                                                   40
Sarantoss-MacBook-Pro:KnightsTourWarnsdorff sarantostzortzis$
```

Enter	N																	
15																		
Enter Starting position X																		
6																		
Enter Starting position Y																		
10																		
42	13	92	95	44	15	152	97	46	17	156	51	48	19	158				
91	94	43	14	149	96	45	16	151	216	47	18	157	52	49				
12	41	104	93	100	153	150	211	98	155	162	217	50	159	20				
103	90	101	148	131	196	99	154	215	220	213	170	161	164	53				
40	11	132	105	134	147	210	193	212	171	222	163	218	21	160				
89	102	135	130	195	192	197	190	221	214	219	202	169	54	165				
10	39	106	133	146	137	194	209	200	207	172	223	166	203	22				
79	88	129	136	139	198	191	144	189	224	201	206	173	168	55				
38	9	80	107	128	145	138	199	208	183	186	167	204	23	174				
71	78	87	74	81	140	127	182	143	188	205	184	177	56	117				
8	37	72	77	108	123	0	141	126	185	178	187	116	175	24				
65	70	75	86	73	82	109	124	181	142	115	176	179	118	57				
36	7	66	69	76	85	122	1	110	125	180	119	114	25	28				
67	64	5	34	83	62	3	32	121	60	111	30	27	58	113				
6	. 35	68	63	- 4	33	84	61	_ 2	31	120	59	112	29	26				
Saran	toss-Mac	Book-Pro	:Knights	TourWarns	sdorff sa	Sarantoss-MacBook-Pro:KnightsTourWarnsdorff sarantostzortzis\$												

Enter N																		
19																		
Enter Starting position X																		
0	·																	
Enter Starting position Y																		
0	3	40	91	86	5	84	93	98	7	96	201	114	9	222	119	116	11	228
41	88	1	4	83	92	99	6	95	200	113	8	221	202	115	10	227	120	117
2	39	90	87	102	85	94	199	112	97	220	203	240	247	232	223	118	229	12
89	42	103	82	107	194	111	100	219	204	239	250	233	224	241	246	231	226	121
38	59	108	195	110	101	218	205	198	215	234	261	248	251	258	225	242	13	230
43	104	81	106	193	206	197	216	235	262	249	238	259	298	245	252	257	122	243
58	37	60	109	196	217	208	263	214	237	260	359	296	293	256	299	244	253	14
47	44	105	80	207	192	213	236	265	350	285	292	319	354	297	294	255	300	123
36	57	46	61	54	209	264	211	284	291	360	349	358	295	320	335	302	15	254
45	48	55	186	79	212	191	266	351	286	345	318	353	330	355	306	321	124	301
56	35	62	53	190	187	210	283	290	317	352	357	348	343	336	329	334	303	16
49	52	173	78	185	176	267	188	269	346	287	344	331	356	307	338	305	322	125
34	63	50	165	174	189	184	177	282	289	316	347	342	337	326	333	328	17	304
51	164	75	172	77	160	175	268	183	270	341	288	325	332	339	308	323	126	311
64	33	140	161	166	171	178	159	168	281	182	315	340	279	324	327	310	277	18
141	74	163	76	143	156	167	170	179	152	271	280	181	314	309	278	129	312	127
32	65	142	139	162	69	144	155	158	169	180	151	272	149	130	313	276	19	22
73	138	67	30	71	136	157	28	145	134	153	26	147	132	273	24	21	128	275
66	31	72	137	68	29	70	135	_ 154	27	146	133	150	25	148	131	274	23	20
Sarantoss-MacBook-Pro:KnightsTourWarnsdorff sarantostzortzis\$																		

4.A brief description of the implemented algorithms

4.1 Backtracking

In order to solve Knights Tour Problem, I implemented "solveRec()" which is getting six parameters:

- x, y = Position of Knight
- **Chessboard**[][] = Two-dimension array which represents the chessboard
- moveNumber = A counter to help us for the move's number in order to fill the array correctly
- horiMoves, verMoves = horizontal moves and vertical moves that a knight can do. horiMoves[x] and verMoves[x] is knight's valid move.

This method is using all possible combination of moves from horiMoves and verMoves arrays in order to fill the path. In case that the knight reaches in a block that there are not any other possible moves, and this move is not the last one, we use **backtracking**. The knight is going to the previous block and tries next move (combination) of horiMoves, verMoves array. SolveRec() will return either true or false in case there is or not a solution.

Also I implemented run() which is a method to initialize the chessboard and calls solveRec().

4.2 Warnsdoff

In order to solve Knights Tour Problem using Warnsdoff I created "solve()" function which generates all the legal moves using Warnsdoff heuristic, otherwise returns false. This function initializes an array, which represents our chessboard, with all its values equals to -1. Then it declares the starting position and creates a Tile (Tile is an auxiliary object in order to be easier to represent our tiles on the chessboard as we are not using a two-dimension array on this approach). After that, we are running a for loop in order to find next moves. Then, nextMove function, is trying to find the neighbor with the minimum degree (degree = number of adjacent, unvisited tiles). To do so, we are checking each neighbor and if his degree is less than our minimum, we choose him and we update our points.

5. When the Samples tend to infinity

When the samples tend to infinity using **Warnsdoff rule**, this heuristic is controversial. While its very accurate on small dimension arrays, the success rate tends to be low on bigger ones. On the other hand, the time complexity is still very good as I run the program for N=300 and I got results in less than 10 seconds.

^{**}I was not able to test backtracking approach for chessboards bigger than 8x8 as my device is weak. **

6.Complexity

6.1 Backtracking

Lets consider N the lengths of the chessboard. There are N^2 cells and for each cell, we have a maximum of 8 moves to choose from, so the worst running time is $O(8^{N^2})$.

In order to understand how big this complexity is, here is $O(8^{N^2})$ compared to O(N) and $O(N^2)$

6.2 Warnsdoff's Rule

Warnsdoff rule complexity tend to be linear

700 600 500 400 Warnsdorff's rule 300 200 100 0 5x5 6x6 7x7 8x8 9x9 10x1011x1112x1213x1314x1424x24

7.Instructions

When you download and open the program, it will ask you to input "N" which is the dimensions of the chessboard (NxN). After that, you have to input X, Y which are the points on chessboard that you want the knight to start from. Values should be in range [0, N-1].

i.e. N = 5, x=2, y=2

8. Conclusion and observations

After this project I managed to realize how important is to create a fast and optimized algorithm. Knights tour problem can be solved with backtracking using just a two-dimension array, but the complexity is huge. The program, in the worst case, must try every possible move from each tile of the chessboard in order to find a solution. Furthermore, the values on the two arrays that

represent the possible moves of the knight is very important. Think of a case, when a person chooses 6 wrong long paths and finally reaching the goal in the 7th path and another case when the person took the correct path in the first turn. You can try this by running the program for N=8 and X, Y=0. The solution will appear immediately (because the two arrays which represent knights moves are optimized for going to the right side of the chessboard). But if you try to run the program with parameters N=8 and X, Y =3,2 it will take some time in order to print the solution because of this movement table optimization.

9.References

Tools used for charts.

Complexity Chart

https://www.desmos.com

Knights Tour Complexity chart

https://www.meta-chart.com

Knights tour - Wikipedia

https://en.wikipedia.org/wiki/Knight%27s_tour

An efficient algorithm for the Knight's tour problem - Ian Parberry * Department of Computer Sciences, University of North Texas

https://www.mimuw.edu.pl/~rytter/TEACHING/ALCOMB/parberry_algoknight.pdf

A Warnsdoff-Rule algorithm for knights' tour in square chessboards — Douglas Squirrel & Paul Cull

http://sites.science.oregonstate.edu/math_reu/proceedings/REU_Proceedings/Proceedings 1996/1996Squirrel.pdf

Knight's tour algorithm-Hassan Tariq

https://www.slideshare.net/deadman211/knights-tour-algorithm