EI M5

Матнематік

 $m_t \cdot m_n$

2010-11

Stunde vom 30.11.2010

=-1

In dieser und den nächsten beiden Stunde haben wir uns mit Tangenten und Normalen beschäftigt. Anstelle eines Tafelbildes hier die wichtigsten Punkte in einer Übersicht! Zuerst zur Tangente...

Tangente in einem Punkt aufstellen

Bei gegebener Funktion f(x) und gegebenem Punkt P(a|f(a)) stellt man die Tangente folgendermaßen auf:

- 1) f '(x) bilden, f '(a) ausrechnen
- 2) Tangente mit der Gleichung t: y=mx+c allgemein hinschreiben
- 3) In t: y=mx+c die Steigung m durch f '(a) ersetzen
- 4) c bestimmen mit einer Punktprobe für P auf t über f(a)=f '(a)·a+c
- 5) t: y=mx+c mit den Zahlen m und c hinschreiben. Fertig.

Ein (einfaches) Beispiel

Wir untersuchen $f(x)=x^2$ und bestimmen die Tangente in P(3|9).

- 1) f'(x)=2x und f'(3)=6.
- 2) t: y=mx+c (naja, nicht so aufwendig...)
- 3) t: y=6x+c (auch nicht so schwer...)
- 4) 9=6.3+c und das bedeutet 9=18+c oder c=-9.
- 5) t: y=6x-9

Das ist im Grunde schon alles, was du wissen musst. Allerdings kannst du Aufgaben schnell schwerer machen, wenn zum Beispiel der Punkt P nicht direkt gegeben ist, sondern gesucht wird:

Ein (schweres) Beispiel

Gegeben ist $f(x) = -x^2 + 4$ und Q(0|5). Bestimme P(a|f(a)), auf dessen Tangente auch Q liegt.

Wir leiten f ab und erhalten f'(x) = -2x. Die Tangente hat auf jeden Fall die Steigung im Punkt P, also f'(a). Leider können wir diese Zahl nicht genauer angeben, aber immerhin gilt (und das ist total wichtig): f'(a) = -2a. Also notieren wir für **t:** y = (-2a)x + c.

Nun wissen wir, dass sowohl P alsauch Q auf der Tangenten liegen (müssen). Daher führen wir zwei Punktproben durch. Beginnen wir mit Q. Setzt man x=0, muss y=5 herauskommen. Da wegen x=0 nur noch y=5=c stehen bleibt, haben wir bereits c bestimmt!

Nun muss P auf der Tangenten liegen und es gilt (mit c=5, s.o.): f(a)=(-2a)a+5. Dabei haben wir y=f(a) und x=a gesetzt. Sieht wenig besser aus, ist es aber! f(a) können wir nämlich auch etwas genauer angeben und zwar gilt f(a)= $-a^2+4$. Insgesamt erhalten wir

$$-a^2+4 = -2a^2+5$$
 oder $4 = -a^2+5$ oder $a^2=1$ oder $a=\pm 1$.

Damit haben wir zwei Möglichkeiten für a, also für die x-Koordinate von P gefunden! Der Punkt selbst bestimmt sich dann entweder zu P1(1|-3) oder zu P2(-1|-3).