

Figura 1: Un AFD

Figura 2: Otro AFD

- 1. Queremos escribir una expresión regular que denote a todas las palabras sobre el alfabeto $\{a,b\}$ que tienen longitud impar. ¿Cuál de las siguientes expresiones regulares es correcta?
 - a. $(a+b)^+$
 - b. $(a+b)^+(a+b)^*$
 - * c. $(a+b)((a+b)(a+b))^*$
 - d. Ninguna de las anteriores
- 2. ¿Cuántos estados tiene el autómata mínimo equivalente al AFD de la figura 1?
 - * a. Tres
 - b. Dos
 - c. Cuatro
 - d. Ninguna de las anteriores
- 3. Una expresión regular equivalente al AFD de la figura 2 es
 - a. $(0(0+1)^*0)^* + (1(0+1)^*1)^*$
 - * b. (0(0+1)*0+1(0+1)*1)*
 - c. $((0+1)(0+1)^*(0+1))^*$
 - d. Ninguna de las anteriores
- 4. Tenemos el AFND dado por la tabla

	a	b
$\overline{e_0}$	$\{e_0, e_1, e_2\}$	Ø
e_1	$\{e_1\}$	$\{e_2\}$
e_2	$\{e_2\}$	$\{e_1\}$

Modelo 0 Página 1

donde e_0 es el estado inicial y el único estado final es e_2 . Si aplicamos el algoritmo visto en clase para pasar a AFD entonces el autómata resultante

- a. No es equivalente al AFND de partida.
- b. Tiene 3 estados.
- c. Tiene 2 estados.
- * d. Ninguna de las anteriores
- 5. Nos dan el autómata de la figura 3. Si eliminanos los λ -movimientos siguiendo el algoritmo visto en clase, entonces siendo δ' la función de transición del autómata resultante:

Figura 3: Un autómata finito no determinístico con λ -movimientos

- a. $\delta'(3,0) = \delta'(1,0)$
- b. $\delta'(3,0) = \emptyset$
- c. $\delta'(1,0) = \{2\}$
- * d. Ninguna de las anteriores
- 6. Si transformamos la expresión regular $a(a+b)^*b(a+b)^*a$ en un λ -AFND según las reglas de desarrollo vistas en clase, entonces el autómata resultante:
 - a. Tiene 6 estados y 4 λ -movimientos
 - * b. Tiene 8 estados y 4 λ -movimientos
 - c. Tiene 8 estados y 2 λ -movimientos
 - d. Ninguna de las anteriores
- 7. La expresión regular $r = (a+b)^*(a+b)(a+b)^*$ denota al lenguaje:
 - a. $L = \{w \in \{a, b\}^* : w \text{ empieza por el mismo símbolo que termina}\}$
 - * b. $L = \{w \in \{a, b\}^* : w \text{ no es la palabra vacía} \}$
 - c. $L = \{w \in \{a, b\}^* : w \text{ tiene longitud impar}\}$
 - d. Ninguna de las anteriores
- **8.** En el autómata de la figura 3
 - a. $\lambda cl(\{1,3\}) = \{2,3\}$
 - * b. $\lambda cl(\{1,3\}) = \lambda cl(1)$
 - c. $\lambda cl(\{1,3\}) = \lambda cl(3)$
 - d. Ninguna de las anteriores.
- 9. Nos dan el autómata de la figura 3. Si eliminanos los λ -movimientos siguiendo el algoritmo visto en clase, ¿cuántos estados de aceptación tiene el AFND obtenido?

Modelo 0 Página 2

- a. Uno
- b. Dos
- * c. Tres
 - d. Ninguna de las anteriores
- 10. Si tenemos un lenguaje L_1 que es reconocido por un λ -AFND y un lenguaje L_2 reconocido por un AFD

 - a. Nunca hay un AFND que reconoce $L_1 \cup L_2$ b. Algunas veces hay un AFND que reconoce $L_1 \cup L_2$ y algunas veces no * c. Siempre hay un AFND que reconoce $L_1 \cup L_2$

 - d. Ninguna de las anteriores

Página 3 Modelo 0