CÁLCULO DIFERENCIAL E INTEGRAL III

6. TEOREMAS DE GAUSS E DE STOKES EXERCÍCIOS

- 1. Seja $W=\{(x,y,z)\in\mathbb{R}^3: x^2+y^2\leq z\leq 1\}$ e \vec{n} a sua normal exterior em cada ponto. Calcule $\iint_{\partial W} \vec{F}\cdot\vec{n}\,dS$ para os seguintes campos de vectores:
 - (a) $\vec{F}(x, y, z) = y \mathbf{i} + z \mathbf{j} + xz \mathbf{k}$.
 - **(b)** $\vec{F}(x, y, z) = (x y)\mathbf{i} + (y z)\mathbf{j} + (z x)\mathbf{k}$.
- **2.** Calcule $\iint_S \vec{F} \cdot \vec{n} \, dS$, onde S é a superfície do cilindro dado por $x^2 + y^2 = 1$, $0 \le z \le 1$, e $\vec{F}(x,y,z) = \mathbf{i} + \mathbf{j} + z \, (x^2 + y^2)^2 \, \mathbf{k}$ (considere a normal exterior).
- 3. Use o teorema da divergência de Gauss para calcular o fluxo do campo

$$\vec{F}(x,y,z) = (x-y)\mathbf{i} + (y-z)\mathbf{j} + (z-x)\mathbf{k}$$

através da esfera de centro na origem e raio 1, no sentido exterior.

- **4.** Designando por W o cubo $[0,1] \times [0,1] \times [0,1]$ e por \vec{n} a sua normal exterior em cada ponto, calcule $\iint_{\partial W} \vec{F} \cdot \vec{n} \, dS$ para os seguintes campos de vectores:
 - (a) $\vec{F}(x, y, z) = \mathbf{i} + \mathbf{j} + \mathbf{k}$.
 - **(b)** $\vec{F}(x, y, z) = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}.$
- 5. Considere a meia superfície esférica superior de centro na origem e raio 1,

$$S = \{(x, y, z) \in \mathbb{R}^3 : z = \sqrt{1 - x^2 - y^2}, \ z > 0\},\$$

orientada segundo a sua normal exterior. Verifique o teorema de Stokes para o campo de vectores $\vec{F}(x, y, z) = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}$.

- 6. Utilize o teorema de Stokes para calcular $\iint_S \operatorname{rot} \vec{F} \cdot \vec{n} \, dS$ nos casos seguintes, considerando a normal exterior:
 - (a) S é a superfície definida por $x^2 + y^2 + 3z^2 = 1$, $z \le 0$, e $\vec{F}(x, y, z) = y \mathbf{i} x \mathbf{j} + zx^3y^2 \mathbf{k}$.
 - (b) S é a meia superfície esférica superior de centro na origem e raio 1 e $\vec{F}(x,y,z) = x^3 \mathbf{i} y^3 \mathbf{j}$.

1

- (c) $\vec{F}(x, y, z) = (xz + yz^2 + x)\mathbf{i} + (yxz^3 + y)\mathbf{j} + (x^2z^4)\mathbf{k} \text{ e } S = S_1 \cup S_2, \text{ onde:}$ $S_1 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1, \ 0 \le z \le 1\}$ $\mathbf{e} \quad S_2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + (z 1)^2 = 1, z \ge 1\}.$
- 7. Para $\vec{F}(x,y,z)=(3y,-xz,-yz^2)$, integre rot \vec{F} na parte da superfície $2z=x^2+y^2$ abaixo do plano z=2, quer directamente, quer através do teorema de Stokes (considere a normal exterior).
- 8. Verifique o teorema de Stokes para o helicóide $\Phi(r,\theta)=(r\cos\theta,r\sin\theta,\theta)$, com $(r,\theta)\in[0,1]\times[0,\pi/2]$, e para o campo de vectores $\vec{F}(x,y,z)=(z,x,y)$ (considere a normal exterior).
- 9. Considere o campo de vectores $\vec{F}(x,y,z) = (0,0,2)$ e a superfície

$$S = \{(x, y, z) \in \mathbb{R}^3 : z^2 + (\sqrt{x^2 + y^2} - 2)^2 = 1, \ z > 0\}$$

orientada segundo a normal com terceira componente positiva.

- (a) Usando o teorema da divergência de Gauss, calcule o fluxo de \vec{F} através de S segundo a normal indicada.
- (b) Determine $\Psi(x,y,z)=(\phi(x,y,z),0,0)$ tal que rot $\Psi=\vec{F}$ e $\phi(x,0,0)=0$. Calcule o fluxo de \vec{F} através de S (segundo a normal indicada) usando o teorema de Stokes.
- 10. Considere o campo de vectores $\vec{F}(x,y,z) = (-y,x,1)$ e a superfície

$$S = \{(x, y, z) \in \mathbb{R}^3 : y = \sqrt{x^2 + z^2}, \ 0 < y < 1\}$$

orientada segundo a normal com segunda componente positiva.

- (a) Usando o teorema da divergência de Gauss, calcule o fluxo de \vec{F} através de S segundo a normal indicada.
- (b) Determine $\Psi(x,y,z)=(0,\phi(x,y,z),-x^2/2)$ tal que rot $\Psi=\vec{F}$ e que $\phi(0,y,0)=0$. Calcule o fluxo de \vec{F} através de S (segundo a normal indicada) usando o teorema de Stokes.
- 11. Considere o campo de vectores $\vec{F}(x,y,z) = (-y,x,1)$ e a superfície

$$S = \{(x, y, z) \in \mathbb{R}^3 : z = x^2 + y^2, \ x^2 + y^2 < 1\}$$

orientada segundo a normal com terceira componente positiva.

- (a) Usando o teorema da divergência de Gauss, calcule o fluxo de \vec{F} através de S segundo a normal indicada.
- (b) Determine um campo de vectores $\Psi(x,y,z)=(0,\psi(x),\phi(x,y))$ tal que rot $\Psi=\vec{F}$ e calcule o fluxo de \vec{F} através de S (segundo a normal indicada) usando o teorema de Stokes.
- (c) Verifique os resultados obtidos calculando o fluxo de \vec{F} através de S (segundo a normal indicada) pela definição.

- 12. A fronteira de uma superfície regular S é constituída por uma linha fechada c. Se f e g forem duas funções de classe C^2 , mostre que:
 - (a) $\int_c f \nabla g \cdot dg = \iint_S (\nabla f \times \nabla g) \cdot \vec{n} \, dS$, quando g e \vec{n} são compatíveis.
 - **(b)** $\int_{C} (f \nabla g + g \nabla f) \cdot dg = 0.$
- 13. Seja S uma superfície regular e \vec{F} um campo de vectores perpendicular à tangente à fronteira (não vazia) de S. Mostre que

$$\iint_S \operatorname{rot} \vec{F} \cdot \vec{n} \, dS = 0$$

para qualquer escolha de normal unitária \vec{n} .

- 14. Seja $\vec{F}: \mathbb{R}^3 \to \mathbb{R}^3$ um campo de vectores de classe C^1 tal que div $\vec{F} = 0$ e rot $\vec{F} = 0$. Mostre que existe uma função $f: \mathbb{R}^3 \to \mathbb{R}$ tal que $\vec{F} = \nabla f$ e Lap f = 0.
- 15. Suponha que $\vec{F}(x,y,z)$ é um campo de vectores tangente à superfície fechada $S = \partial W$ de uma região elementar simétrica W. Prove que

$$\iiint_W (\operatorname{div} \vec{F}) \cdot dx \, dy \, dz = 0.$$

RESPOSTAS

- 1. (a) 0.
 - (b) $\frac{3\pi}{2}$.
- **2.** 0.
- **3.** 4π .
- **4.** (a) 0.
 - **(b)** 3.
- 5. Cada integral na fórmula do teorema de Stokes é nulo.
- 6. (a) 2π .
 - **(b)** 0.
 - (c) 0.
- 7. 20π .
- 8. Cada integral na fórmula do teorema de Stokes tem o valor de $\pi/4$.
- 9. (a) 16π .
 - **(b)** $\Psi = (-2y, 0, 0); 16\pi.$
- **10.** (a) 0.
 - **(b)** $\Psi = (0, x + yz, -x^2/2); 0.$
- 11. (a) π .
 - **(b)** $\Psi = (0, x, -(x^2 + y^2)/2); -\pi.$
 - (c) π .