i

OPTIMASI LEACH PROTOCOL DENGAN METODE K-MEANS++ CLUSTERING PADA WIRELESS SENSOR NETWORK (WSN)

SKRIPSI

PUTU MAS ANGGITA PUTRA NIM. 1708561007

PROGRAM STUDI INFORMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS UDAYANA JIMBARAN 2021

SURAT PERNYATAAN KEASLIAN KARYA ILMIAH

Yang bertanda tangan di bawah ini menyatakan bahwa naskah Skripsi dengan judul:

OPTIMASI LEACH *PROTOCOL* DENGAN METODE *K-MEANS++ CLUSTERING* PADA *WIRELESS SENSOR NETWORK* (WSN)

Nama : Putu Mas Anggita Putra

NIM : 1708561007

Program Studi : Teknik Informatika

E-mail : anggitaputra13@gmail.com

Nomor telp/HP : 0895370008969

Alamat : Jl. RY Sesetan Gang VI No 9.B, Br.Ambengan, Pedungan,

Denpasar Selatan, Bali

Belum pernah dipublikasikan dalam dokumen skripsi, jurnal nasional maupun internasional atau dalam prosiding manapun, dan tidak sedang atau akan diajukan untuk publikasi di jurnal atau prosiding manapun. Apabila di kemudian hari terbukti terdapat pelanggaran kaidah – kaidah akademik pada karya ilmiah saya, maka saya bersedia menanggung sanksi-sanksi yang dijatuhkan karena kesalahan tersebut, sebagaimana diatur oleh Peraturan Menteri Pendidikan Nasional Nomor 17 Tahun 2010 tentang Pencegahan dan Penanggulangan Plagiat di Perguruan Tinggi.

Demikian Surat Pernyataan ini saya buat dengan sesungguhnya untuk dapat dipergunakan bilamana diperlukan.

Denpasar, 23 Februari 2021 Yang membuat pernyataan,

Putu Mas Anggita Putra NIM. 1708561007

LEMBAR PENGESAHAN TUGAS AKHIR

Judul : Optimasi LEACH *Protocol* Dengan Metode *K-Means++*

Clustering Pada Wireless Sensor Network (WSN)

Nama : Putu Mas Anggita Putra

NIM : 1708561007

Tanggal Disetujui

Disetujui Oleh:

Pembimbing I,	Pembimbing II,
I Gusti Agung Godo Agus Vodnyanan	Dr. Maurch Agus Canjava ED
I Gusti Agung Gede Arya Kadnyanan,	<u>Dr. Ngurah Agus Sanjaya ER,</u>
S.Kom., M.Kom	S.Kom., M.Kom
<u>5.10111., 141.10111</u>	<u>B.Rom., W.Rom</u>
NIP.198503152010121007	NIP.197803212005011001
1(11.17000010121007	1,11,7,002212003011001

Mengetahui,

Komisi Seminar dan Tugas Akhir Program Studi Informatika FMIPA Universitas Udayana

I Gusti Ngurah Anom Cahyadi Putra, S.T., M.Cs.
NIP.198403172019031005

Judul : Optimasi Leach *Protocol* Dengan Metode *K-Means++ Clustering*

Pada Wireless Sensor Network (WSN)

Nama : Putu Mas Anggita Putra

Pembimbing: 1. I Gusti Agung Gede Arya Kadnyanan, S.Kom., M.Kom

2. Dr. Ngurah Agus Sanjaya ER, S.Kom., M.Kom

ABSTRAK

Wireless Sensor Network merupakan sekumpulan node yang dapat memiliki kemampuan sensing, processing data dan wireless communication. Masing-masing node menggunakan baterai sebagai sumber energinya, sehingga penggunaan energi menjadi salah satu point penting dalam membangun WSN. Routing protokol LEACH merupakan salah satu solusi untuk mengatasi permasalahan energi pada WSN, namun LEACH memiliki beberapa kekurangan yaitu tidak mempertimbangkan sisa energi jarak cluster head pada base station.

Berdasarkan permasalahan tersebut pada penelitian ini menggunakan algoritma pengembangan *K-Means* yaitu *K-Means*++ untuk memodifikasi LEACH menjadi KM-LEACH untuk lebih mengoptimalkan pemilihan *cluster head* yang akan dipilih berdasarkan energi yang tersisa. Algoritma ini akan memodifikasi fase *setup phase* pada protokol LEACH dan membandingkan dengan penelitian sebelumnya yang menggunakan algoritma *K-Means*.

Tahap pengujian dalam penelitian ini dilakukan dengan membandingkan 3 parameter uji yaitu total konsumsi energi (joule), jumlah *dead node* dan *node alive* yang dibandingkan dengan penelitian sebelumnya dengan menggunakan algoritma *K-Means*. Hasil yang didapat menunjukan bahwa KM-LEACH lebih hemat energi yaitu dengan total konsumsi energi 40.86 joule berbanding 48.40 joule dan jumlah *dead node* yang dihasilkan lebih sedikit yaitu 63 node berbanding 81 *node* dengan LEACH dengan algoritma *K-Means*.

Kata Kunci: *Wireless Sensor Network, K-Means++ clustering*, LEACH Protokol, Efisiensi Energi, Routing Protokol

Title : Optimasi Leach *Protocol* Dengan Metode *K-Means++ Clustering*

Pada Wireless Sensor Network (WSN)

Name : Putu Mas Anggita Putra

Supervisor : 1. I Gusti Agung Gede Arya Kadnyanan, S.Kom., M.Kom

2. Dr. Ngurah Agus Sanjaya ER, S.Kom., M.Kom

ABSTRACT

Wireless Sensor Network is a group of nodes that can have sensing, data processing and wireless communication capabilities. Each node uses a battery as its energy source, so energy use is an important point in building a WSN. LEACH protocol routing is one solution to overcome energy problems in WSN, but LEACH has several disadvantages, namely it does not consider the remaining energy distance of the cluster head at the base station.

Based on these problems, this study uses the *K-Means* development algorithm, namely *K-Means* ++, to modify LEACH to KM-LEACH to further optimize the selection of the cluster head to be selected based on the remaining energy. This algorithm will modify the setup phase of the LEACH protocol and compare it with previous studies using the *K-Means* algorithm.

The testing phase in this study was carried out by comparing 3 test parameters, namely the total energy consumption (joules), the number of dead nodes and nodes alive which were compared with previous studies using the *K-Means* algorithm. The results obtained show that KM-LEACH is more energy efficient, with a total energy consumption of 40.86 joules versus 48.40 joules and the resulting number of dead nodes is less, namely 63 nodes compared to 81 nodes with LEACH with the *K-Means* algorithm.

Keywords: Wireless Sensor Network, K-Means++ Clustering, LEACH Protocol, Energy Efficiency, Routing Protocol

KATA PENGANTAR

Proposal penelitian ini dengan judul Optimasi Leach Protokol dengan Metode *K-Means++ Clustering* Pada *Wireless Sensor Network* (WSN) ini disusun dalam rangkaian kegiatan pelaksanaan Tugas Akhir di Program Studi Informatika FMIPA UNUD. Proposal ini disusun dengan harapan dapat menjadi pedoman dan arahan dalam melaksanakan penelitian di atas.

Sehubungan dengan telah terselesaikannya proposal ini, maka diucapkan terima kasih dan penghargaan kepada berbagai pihak yang telah membantu pengusul, antara lain:

- 1. Bapak I Gusti Agung Gede Arya Kadyanan, S.Kom., M.Kom sebagai Pembimbing I yang telah banyak membantu menyempurnakan proposal ini.
- 2. Bapak Dr. Ngurah Agus Sanjaya ER, S.Kom., M.Kom sebagai Pembimbing II yang telah banyak membantu menyempurnakan proposal ini.
- 3. Bapak I Komang Ari Mogi, S.Kom., M.Kom. sebagai pembimbing di penjurusan jaringan sensor nirkabel yang telah banyak membantu menyempurnakan proposal ini,
- 4. Bapak-bapak dan ibu-ibu dosen di Program Studi Informatika, yang telah meluangkan waktu turut memberikan saran dan masukan dalam penyempurnaan proposal ini;
- 5. Kawan-kawan di Program Studi Informatika yang telah memberikan dukungan moral dalam penyelesaian proposal ini.

Disadari pula bahwa sudah tentu proposal ini masih mengandung kelemahan dan kekurangan. Memperhatikan hal ini, maka masukan dan saran-saran penyempurnaan sangat diharapkan.

Jimbaran, 23 Februari 2021

Penyusun

DAFTAR ISI

LEMBAR	PENGESAHANi
SURAT PI	ERNYATAAN KEASLIAN KARYA ILMIAHii
LEMBAR	PENGESAHAN TUGAS AKHIRiii
ABSTRA	ζiv
KATA PE	NGANTAR vi
DAFTAR	ISIvii
DAFTAR '	TABELix
DAFTAR	GAMBARx
DAFTAR	LAMPIRANxi
BAB I PE	NDAHULUAN1
1.1 L	atar Belakang1
1.2 R	umusan Masalah
1.3 B	atasan Masalah2
1.4 T	ujuan Penelitian3
1.5 M	Ianfaat Penelitian
1.6 N	Ietodelogi Penelitian4
1.6.1	Analisis Sistem4
1.6.2	Pengumpulan Data
1.6.3	Desain Penelitian
BAB II TI	NJAUAN PUSTAKA7
2.1 T	injauan Empiris7
2.2 T	injauan Teoritis
2.2.1	Wireless Sensor Network
2.2.2	Node Sensor11
2.2.3	Routing Protokol
2.2.4	LEACH Protokol
2.2.5	Fitur-Fitur LEACH Protokol
2.2.6	Algoritma LEACH

	2.2.	7 K-Means Clustering 1	6
	2.2.	8 K-Means++ Clustering2	20
	2.2.	9 Energy Dissipation Model2	21
	2.2.	10 Matlab 2015 A	22
BAB	B III .	ANALISIS DAN PERANCANGAN SISTEM2	24
3.	1	Pengumpulan Data	24
3.2	2	Desain Penelitian	24
3.3	3	Metode Yang Digunakan	26
3.4	4	LEACH Dengan K-Means	27
3.5	5	LEACH Dengan K-Means++	30
3.0	6	Implementasi	32
3.	7	Skenario Pengujian	33
3.8	8	Pengukuran dan Hasil Simulasi	34
BAB	B IV	HASIL DAN PEMBAHASAN3	36
4.	1.	Implementasi Sistem	36
	4.1.	Deklarasi Variabel & Membentuk Topologi WSN	36
	4.1.	2 Setup Phase K-Means	38
	4.1.	3 Setup Phase K-Means++	14
	4.1.	4 Steady State Phase5	50
4.2	2.	Hasil dan Pengujian Sistem	54
	4.2.	1 Hasil Clustering Metode K-Means	54
	4.2.	2 Hasil Clustering Metode K-Means++ 5	57
	4.2.	3 Pengujian Hasil Total Konsumsi Energi	50
	4.2.	4 Pengujian Hasil Jumlah $Dead\ Node$ ϵ	51
	4.2.	5 Pengujian Hasil Jumlah <i>Node Alive</i>	52
BAB	8 V F	PENUTUP6	54
5.	1	Kesimpulan ϵ	54
5.2	2	Saran6	54
DAF	TAI	R PUSTAKA6	56
LAN	1PIR	AN6	58

DAFTAR TABEL

Table 2.1 Contoh Data Posisi Node	18
Table 2.2 Perhitungan Centroid Terdekat Antar Node	19
Table 2.3 Perhitungan Centroid Terdekat Antar Node Final	20
Table 2.4 Parameter Simulasi	33
Table 2.5 Parameter Uji Protokol	35
Table 4.1 Deklarasi Variabel	36
Table 4.2 Pembentukan Topologi WSN	37
Table 4.3 Proses Penentuan Titik Pusat Klaster Algoritma K-Means	39
Table 4.4 Proses Pengelompokan Klaster Algoritma K-Means	40
Table 4.5 Pengecekan Titik Pusat Klaster Algoritma K-Means	42
Table 4.6 Pemilihan CH Algoritma K-Means	43
Table 4.7 Penentuan Titik Pusat Klaster Algoritma K-Means++	45
Table 4.8 Proses Pengelompokan Klaster Algoritma K-Means++	46
Table 4.9 Pengecekan Titik Pusat Klaster Algoritma K-Means++	48
Table 4.10 Pemilihan CH algoritma K-Means++	49
Table 4.11 Perhitungan Energi Pada Node Biasa	51
Table 4.12 Perhitungan Energi Node Sebagai CH	53
Table 4.13 Perhitungan Total Energi, Dead Node & Node Alive	54
Table 4. 14 Data Titik Pusat Klaster Algoritma K-Means	55
Table 4.15 Ploting Hasil Clustering Algoritma K-Means	56
Table 4.16 Data Titik Pusat Klaster Algoritma K-Means++	58
Table 4.17 Ploting Hasil Clustering Algoritma <i>K-Means++</i>	

DAFTAR GAMBAR

Gambar 2.1 Skema WSN	11
Gambar 2.2 Struktur Pada <i>Node</i>	11
Gambar 2.3 Routing Protokol	13
Gambar 2.4 Skema LEACH Protokol	14
Gambar 2.5 Fase Pada LEACH	16
Gambar 2.6 Algoritma <i>K-Means</i>	17
Gambar 2.7 Energy Dissipation Model	22
Gambar 2.8 Software MATLAB	22
Gambar 3.1 Desain Alur Sistem	25
Gambar 3.2 Flowchart Rancangan Program	27
Gambar 3.3 Flowchart Setup Phase LEACH Dengan K-Means	28
Gambar 3.4 Flowchart Steady State LEACH	29
Gambar 3.5 Flowchart Setup Phase KM-LEACH	31
Gambar 4.1 Topologi WSN	38
Gambar 4.2 Plotting Titik Pusat Klaster Algoritma K-Means	56
Gambar 4.3 Plotting Hasil Clustering Dengan Algoritma K-Means	57
Gambar 4.4 Titik Pusat Klaster Algoritma K-Means++	59
Gambar 4.5 Plotting Hasil Clustering Dengan Algoritma K-Means++	60
Gambar 4.6 Hasil Perbandingan Total Konsumsi Energi	61
Gambar 4.7 Hasil Perbandingan Jumlah Dead Node	62
Gambar 4.8 Perbandingan Jumlah Node Alive	63

DAFTAR LAMPIRAN

Lampiran 1. Titik Kordinat Node	68
Lampiran 2. Data Bilangan Acak	
Lampiran 3. Data Total Konsumsi Energi	86
Lampiran 4. Data Jumlah Dead Node	100
Lampiran 5. Data Jumlah <i>Node Alive</i>	114

BABI

PENDAHULUAN

1.1 Latar Belakang

Perkembangan teknologi di bidang komunikasi dewasa ini sangatlah pesat. Salah satu teknologi yang banyak diterapkan saat ini adalah *Wireless Sensor Network* (WSN). *Wireless Sensor Network* dapat terdiri atas ratusan hingga ribuan *node*, dimana setiap *node* memiliki kemampuan untuk *sensing*, *processing data* dan *wireless communication*. Masing-masing *node* menggunakan baterai sebagai *supply node sensor* yang menyebabkan penggunaan energi menjadi salah satu point penting dalam membangun WSN. Penggantian baterai pada *node sensor* menjadi sulit untuk dilakukan mengingat *node sensor* diletakkan secara acak dalam jaringan dan dalam kondisi tertentu sulit untuk diketahui posisi dari semua *node sensor* yang ada pada WSN. Tentunya hal tersebutnya menyebabkan terganggunya stabilitas jaringan pada WSN dan mempengerahui kinerja jaringan dalam melakukan *sensing* atau *processing data* (Tonapo & Ratna W, 2016). Oleh sebab itu, diperlukan solusi lain untuk mengatasi keterbatasan energi pada WSN, yaitu dengan memilih *routing protocol* yang hemat energi.

Routing protocol adalah metode untuk menentukan jalur terdekat dalam proses transfer data dari node menuju base station. Banyak penelitian dilakukan untuk menganalisis penggunaan routing protocol yang tepat dalam mengoptimalkan penggunaan energi pada WSN. Algoritma pertama yang dikembangkan adalah routing protocol Low-Energy Adaptive Clustering Hierarchy (LEACH). Namun Algoritma LEACH memiliki beberapa kekurangan diantaranya seperti sisa energi node tidak dipertimbangkan dalam proses pemilihan Cluster head (CH). Oleh karena itu, kegagalan CH karena energi sisa yang rendah tidak dapat dihindari. Kemudian dalam pemilihan CH juga tidak mempertimbangkan jarak antara CH dengan Base Station. Sehingga konsumsi daya pada CH yang terletak jauh dari Base Station lebih tinggi dibandingkan yang di dekat Base Station (Ridwan dkk, 2020).

Pada penelitian sebelumnya oleh (Saheb & Sharma, 2017) menggunakan algoritma *K-Means Clustering* untuk mengoptimalisasi pemilihan *cluster head* dalam sebuah klaster untuk membuat klaster yang seragam dan dapat mengurangi jarak antara *cluster head* dengan *node* lainnya. Hasil Penelitian ini menunjukan klaster yang dihasilkan simetris dan secara signifikan mengurangi jarak antara *node* dan *cluster head* yang mana memiliki konsumsi energi *node* yang seimbang dengan peningkatan masa hidup jaringan.

Oleh sebab itu, pada penelitian ini bertujuan untuk mengoptimasi protokol LEACH dengan menggunakan algoritma pengembangan dari *K-Means*, yaitu dengan menggunakan algoritma *K-Means*++ untuk menjadi algoritma LEACH yang baru yaitu KM-LEACH. KM-LEACH merupakan optimasi dari protokol LEACH dimana mengoptimalkan algoritma *K-Means*++ *Clustering* untuk lebih mengoptimalkan pemilihan *cluster head* yang akan dipilih berdasarkan energi yang tersisa. Sehingga diharapkan dengan pengoptimalan pemilihan *cluster head*, dapat mengurangi masalah tidak meratanya distribusi *cluster head*, konsumsi energi yang tidak merata dan meningkatkan stabilitas energi dalam *Wireless Sensor Network* (WSN).

1.2 Rumusan Masalah

Rumusan masalah yang akan dijadikan acuan dalam penelitian ini yaitu:

- a) Bagaimana pengaruh penerapan KM-LEACH terhadap efisiensi penggunaan energi (total konsumsi energi/Joule) pada WSN
- b) Bagaimana kinerja perbandingan dari protokol LEACH optimasi dengan *K-Means* dan KM-LEACH dioptimasi dengan *K-Means*++ yang sudah dioptimasi dalam segi total konsumsi energi, jumlah *node* yang mati dan jumlah *node* hidup per *round* pada WSN.

1.3 Batasan Masalah

Agar penelitian tidak keluar dari topik penelitian, maka penelitian akan dibatasi sebagai berikut:

- a) Simulasi dilakukan terbatas hanya dengan protokol *routing* LEACH untuk optimalisasi serta hanya menggunakan algoritma *K-Means++ Clustering*
- b) Penelitian akan dilakukan secara simulasi menggunakan program Matlab 2015a.
- c) Parameter kinerja yang diukur dan diamati adalah penggunaan total konsumsi energi (Joule), jumlah *node* yang mati dan jumlah *node* hidup per *round*.
- d) Perancangan WSN hanya menggunakan 100 *node* sensor + 1 *base station* yang disimulasikan.
- e) Pengujian dilakukan selama 400 round.

1.4 Tujuan Penelitian

Adapun tujuan dari dilakukannya penelitian ini yaitu:

- a) Menerapkan algoritma *K-Means++ Clustering* sebagai optimalisasi dari Protokol LEACH serta mengetahui pengaruhnya terhadap efisiensi penggunaan energi (total konsumsi energi/Joule) pada WSN
- b) Membandingkan kinerja protokol LEACH dioptimasi dengan *K-Means* dengan KM-LEACH dioptimasi dengan *K-Means*++ dalam segi total konsumsi energi, jumlah *node* yang mati dan jumlah mode hidup per *round* pada WSN.

1.5 Manfaat Penelitian

Manfaat yang diperoleh dari penelitian ini yaitu:

- a) Bagi penulis
 - Hasil penelitian ini nantinya diharapkan dapat memberikan gambaran tentang kinerja dari protokol LEACH dioptimasi dengan *K-Means* dan protokol LEACH dioptimasi dengan *K-Means*++ (KM-LEACH) pada *wireless sensor network*.
- b) Bagi pihak lain

Hasil penelitian ini nantinya diharapkan dapat bermanfaat, menjadi referensi untuk menambah wawasan tentang *Wireless Sensor Network* khususnya mengenai penggunaan protokol LEACH terhadap serta bagaimana protokol ini bekerja.

1.6 Metodelogi Penelitian

Pada metodologi penelitian akan dijelaskan langkah-langkah dalam penyusunan penelitian yang akan dibuat mengenai Optimasi LEACH *Protocol* Dengan Metode *K-Means++ Clustering* Pada *Wireless Sensor Network* (WSN). Sub bab bahasan yang akan dijelaskan meliputi pengumpulan data, desain penelitian, dan metode yang digunakan.

1.6.1 Analisis Sistem

Pada tahap ini dilakukan identifikasi perkiraan terkait kebutuhan yang diperlukan terkait penelitian yang akan dilakukan. Kebutuhan yang dimaksudkan terkait materi penunjang penelitian terkait penerapan routing protokol LEACH, penggunaan algoritma *K-Means* dan *K-Means*++ serta perancangan proses simulasi yang akan dilakukan dalam penelitian ini.

1.6.2 Pengumpulan Data

Data yang akan digunakan dalam penelitian ini diperoleh dari hasil perbandingan simulasi pada aplikasi MATLAB 2015a dengan beberapa parameter uji untuk mendapatkan data:

- a. Total konsumsi energi (Joule)
- b. Jumlah *node* hidup selama 400 round
- c. Jumlah dead node selama 400 round

Dimana data yang didapat menggunakan skenario uji berdasarkan parameter dari penelitian sebelumnya oleh (Saheb & Sharma, 2017). Dimana nantinya parameter simulasi tersebut akan digunakan untuk menjadi skenario simulasi untuk mendapatkan data primer pada penelitian ini. Dimana skenario yang dirancang akan menggunakan $100 \ node$ yang disebar pada titik kordinat x dan y dengan luas daerah $100 \ x \ 100 \ m^2$ untuk membuat skema topologi jaringan WSN.

1.6.3 Desain Penelitian

Pada penelitian ini menggunakan proses simulasi yang merupakan suatu Teknik untuk meniru suatu proses-proses yang terjadi pada suatu sistem dengan bantuan perangkat komputer serta dilandasi dengan beberapa asumsi-asumsi tertentu sehingga sistem tersebut dapat dipelajari secara ilmiah (Kelton, 1991). Proses simulasi yang akan dilakukan dalam penelitian ini akan terdiri dari 2 proses utama yaitu proses *Setup Phase* atau pembentukan klaster dan proses *Steady State* atau transmisi data. Pada fase *Setup Phase* akan dimodifikasi dengan menggunakan algoritma yang ditentukan dalam penelitian itu yaitu algoritma *K-Means* dan *K-Means*++.

Kemudian setelah dilakukan proses simulasi akan didapatkan hasil dari penggunaan kedua metode yang nantinya akan dibandingkan hasilnya dengan menggunakan beberapa parameter uji untuk mengetahui metode mana yang lebih efisien dalam penggunaan energi diantara kedua metode LEACH yang dimodifikasi dengan algoritma *K-Means* dan *K-Means*++ tersebut.

1.6.4 Metode Yang Digunakan

Metode yang digunakan dalam penelitian ini adalah algoritma *K-Means* dan algoritma *K-Means*++ dalam memodifikasi protokol LEACH. Kedua algoritma tersebut diterapkan pada proses *setup phase* dalam protokol LEACH. Dalam proses setup phase atau pembentukan klaster, algoritma *K-Means* dan *K-Means*++ memiliki perbedaan yaitu dalam algoritma *K-Means* dalam penentuan klaster diawal dilakukan secara acak sedangkan pada algoritma *K-Means*++ dimana penentuan klaster pertama dipilih berdasarkan jarak terjauh dengan *Base Station*, kemudian klaster lainnya akan dipilih berdasarkan jarak terjauh dengan klaster sebelumnya dengan menggunakan rumus *ecludien distance*. Hasil klaster yang akan didapatkan antara 2 algoritma tentunya berbeda sehingga akan berdampak juga dalam proses transmisi energi pada proses steady state.

1.6.5 Skenario Pengujian

Skenario pengujian merupakan salah satu hal yang penting dalam pelaksanaan sebuah penelitian. Dengan adanya skenario pengujian, penelitian dapat berjalan sesuai dengan apa yang direncanakan dan diharapkan akan mendapatkan

hasil yang sesuai. Dalam penelitian ini seteleh dilakukan proses simulasi akan didapatkan hasil penelitian yaitu:

- Total Konsumsi Energi (Joule)
- Jumlah *Node* Hidup selama 400 *round*
- Jumlah Node Mati selama 400 round

Kemudian hasil tersebut akan dibandingkan antara keduan metode yaitu LEACH dengan algoritma *K-Means* dan LEACH dengan algoritma *K-Means*++ untuk diketahui protokol LEACH mana yang lebih efisien dan hemat energi pada *Wireless Sensor Network* (WSN).

BAB II

TINJAUAN PUSTAKA

Pada bagian ini, akan dipaparkan sejumlah tinjauan empiris dan tinjauan teoritis yang dijadikan sebagai acuan dalam penelitian mengenai optimasi LEACH *Protocol* dengan metode *K-Means Clustering* pada *wireless sensor network* (WSN) yang dilakukan ini.

2.1 Tinjauan Empiris

Pada penelitian ini digunakan beberapa acuan yang bersumber dari penelitian terdahulu baik dari segi metode ataupun jenis penelitian yang dilakukan. Beberapa penelitian terkait yang penulis jadikan acuan antara lain:

2.1.1 Improved LEACH Protocol Based on K-Means Clustering Algorithm for Wireless Sensor Network (Saheb & Sharma, 2017)

Pada penelitian ini menggunakan algoritma K-Means Clustering untuk mengoptimalisasi pemilihan cluster head dalam sebuah klaster untuk membuat klaster yang seragam dan dapat mengurangi jarak antara cluster head dengan node lainnya. Penelitian ini juga menambahkan parameter residual energi dalam penentuan cluster head. Penelitian ini menggunakan 100 node yang disimulasikan pada software MATLAB dimana node disebar pada titik kordinat dengan luas area $100 \times 100 m^2$. Dimana simulasi berdasarkan 2 parameter uji yaitu jumlah node yang hidup dan total konsumsi energi untuk membandingkan kinerja protokol LEACH dengan LEACH yang dioptimasi dengan algoritma K-Means.

Hasil Penelitian ini menunjukan klaster yang dihasilkan simetris dan secara signifikan mengurangi jarak antara *node* dan *cluster head* yang mana meliki konsumsi energi *node* yang seimbang dengan peningkatan masa hidup jaringan. Persamaan dengan penelitian yang akan dilakukan adalah sama-sama menggunakan algoritma *K-Means* untuk mengatasi masalah penentuan *cluster head* yang optimal. Perbedaannya terletak pada pada penelitian yang akan dilakukan menggunakan algoritma pengembangan dari *K-Means* yaitu algoritma *K-Means*++.

2.1.2 Optimasi Protokol LEACH Untuk Meningkatkan Stabilitas Pada Wireless Sensor Network (Ridwan dkk, 2020)

Pada penelitian ini mencoba mengatasi kekurangan dari protokol LEACH yaitu pemilihan *cluster head* yang tidak mempertimbangkan energi sisa di setiap *node*, sehingga dapat menyebabkan kegagalan dalam proses pemilihan kepala klaster dan akan sangat mempengaruhi stabilitas pada jaringan. Solusi yang ditawarkan penulis yaitu metode *Optimization*-LEACH (O-LEACH) dimana proses pemilihan *cluster head* dikembangkan berdasarkan energi awal setiap *node* dan tingkat energi awal yang baru dihitung dari setiap *node* untuk setiap putaran.

Hasil penelitian menunjukan bahwa protokol LEACH biasa hanya mampu mempertahankan 2 % dan metode O-LEACH 40 % dari 200 *node* yang disimulasikan sehingga metode O-LEACH lebih optimal. Persamaan dengan penelitian yang akan dilakukan adalah sama-sama ingin mengoptimalisasi protokol LEACH dalam penentuan *cluster head* untuk meningkatkan masa hidup jaringan. Perbedaannya terletak pada metode yang digunakan, dimana dalam penelitian ini dalam pemilihan *cluster head* berdasarkan energi awal setiap *node* setiap putaran.

2.1.3 Enhanced LEACH Protocol For Increasing a Lifetime Of WSNs (Salem & Shudifat, 2019)

Pada penelitian ini ingin meningkatkan masa hidup jaringan dengan mengoptimalisasi pemilihan *cluster head* dalam protokol LEACH, dimana dalam pemilihan *cluster head* dengan protokol LEACH biasa dilakukan secara random namun dalam penelitian ini pemilihan *cluster head* dimodifikasi dengan mempertimbangkan beberapa parameter seperti jarak *cluster head* dengan *base station* dan energi yang ada pada *node*. Penelitian ini menggunakan software MATLAB untuk simulasi dengan menggunakan 45-85 *node* pada titik kordinat dengan luas area $100 \times 100 \, m^2$.

Hasil penelitian ini menunjukkan bahwa konsumsi daya diminimalkan, masa pakai jaringan dapat ditingkatkan, jumlah putaran dimaksimalkan, dan konsumsi daya yang menurun. Akhirnya, dibandingkan dengan protokol LEACH, pengembangan protokol LEACH ini dapat bekerja lebih baik. Persamaan dengan penelitian yang akan dilakukan terletak pada parameter yang digunakan sebagai

acuan penentuan *cluster head* yaitu energi yang ada pada *node*. Perbedaannya pada penelitian ini tidak memperhitungkan jarak antara *cluster head* dengan *node* yang ada dalam klaster yang sama pada penentuan *cluster head* sedangkan pada penelitian yang akan dilakukan melakukannya dengan metode *K-Means++*.

2.1.4 Perbandingan Pengaruh Nilai Centroid Awal Pada Algoritma K-Means dan K-Means++ Terhadap Hasil Cluster Menggunakan Metode Confusion Matrix (Nasir & Budiman, 2017)

Pada penelitian ini membandingkan tingkat akurasi antara 2 jenis algoritma, yaitu algoritma *K-Means* dan *K-Means*++ pada klaster. Penelitian ini dilakukan untuk mengetahui bagaimana pengaruh dari pemilihan *centroid* awal yang berbeda dari kedua algoritma tersebut terhadap hasil klaster. Evaluasi hasil klaster yang digunakan menggunakan metode confusion matrix untuk menghitung tingkat akurasi.

Dari hasil penelitian didapatkan bahwa kedua algoritma mempunyai hasil akhir klaster dapat berubah-ubah. Hal ini dibuktikan dari percobaan yang dilakukan 100 kali pada kedua algoritma dengan data set iris, algoritma *K-Means* mempunyai 6 hasil klaster yang berbeda dan algoritma *K-Means*++ mempunyai 5 hasil klaster berbeda. Algoritma *K-Means*++ Mempunyai rata-rata akurasi yang lebih tinggi dari pada algoritma *K-Means*. Rata-rata tingkat akurasi algoritma *K-Means* yaitu 80,46 % dan pada algoritma *K-Means*++ yaitu 83,66. Algoritma *K-Means*++ mempunyai peluang lebih besar untuk mendapatkan hasil klaster terbaik, dari percobaan 100 kali, algoritma *K-Means*++ terdapat 48 percobaan sedangkan algoritma *K-Means* terdapat 19 percobaan.

Persamaan dengan penelitian yang akan dilakukan adalah metode yang digunakan yaitu *K-Means*++, dimana hasil penelitian metode *K-Means*++ memiliki peluang lebih baik dalam pembentukan klaster dibandingkan metode *K-Means* biasa. Hal itu yang menjadi acuan dalam penelitian yang akan dilakukan yaitu dengan metode *K-Means*++ untuk mengurangi kekurangan pada protokol LEACH. Perbedaanya terletak pada studi kasus permasalahan yang akan diteliti pada penelitian ini dengan penelitian yang akan dilakukan.

2.2 Tinjauan Teoritis

Pada penelitian ini digunakan beberapa teori yang digunakan serta dijadikan acuan dalam proses penelitian, antara lain:

2.2.1 Wireless Sensor Network

Wireless sensor network merupakan sekumpulan *node* yang dapat berupa sensor yang akan melakukan pengambilan data pada parameter ukur dan kemudian dikirimkan pada sebuah *node* sentral atau sebuah server untuk dilakukan pengolahan data. Setiap *node sensor* memiliki kemampuan untuk mengumpulkan data di sekitarnya dan merutekannya kembali menuju *sink node* melalui transmisi radio secara intensif. Data yang dapat dikumpulkan oleh sensor *node* bisa berupa tekanan suhu, pergerakan suatu benda atau objek, kelembaban tanah dan sebagainya (Ridwan dkk, 2020).

Dimana pada umumnya wireless sensor network (WSN) terdiri dari dua bagian utama yaitu *node sensor* dan *sink* (Tonapa dkk, 2016). *Node sensor* merupakan suatu perangkat yang dapat menghasilkan informasi, biasanya merupakan sebuah sensor atau juga dapat berupa sebuah aktuator yang menghasilkan feedback pada keseluruhan operasi. Secara umum *node sensor* disebar dengan volume dan kerapatan yang tinggi. *Sink* merupakan kesatuan alat yang berfungsi pengumpulan informasi dari *node sensor* sehingga dapat dilakukan pengolahan informasi lebih lanjut sebelim data disimpan ke server/clound. Dengan adanya karakteristik tersebut, perlu adanya metodologi yang mampu melampaui dan mengembangkan karakteristik-karakteristik pada WSN serta tidak membatasi pengiriman informasi, jaringan, manajemen operasional, kerahasiaan, integritas, dan proses di dalam jaringan.

Gambar 2.1 Skema WSN

(Sumber: Mihobi dkk, 2017)

2.2.2 Node Sensor

Node dalam wireless sensor network dikenal dengan istilah "mote". Dimana pada dasarnya node adalah sebuah komputer, walaupun memiliki bentuk dan kemampuannya tidak seperti umumnya komputer yang digunakan saat ini karena kemampuan yang masih terbatas dan ukurannya yang cukup kecil (smart dust), tetapi fungsi node sama seperti komputer pada umumnya dimana sampai saat ini terus mengalami perkembangan untuk meningkat kemampuan dari node (Sohraby dkk, 2011). Node dilengkapi alat pemroses (CPU), memori, sejumlah antarmuka Input/Output yang dapat diprogram ulang (terintegrasi pada mikrokontroler), transceiver untuk komunikasi radio, sumber daya energi yang menggunakan baterai, dan beberapa peralatan tambahan yang dapat disertakan sesuai kebutuhan penggunaan node itu sendiri.

Gambar 2.2 Struktur Pada Node

(Sumber: Sohraby dkk, 2011. Wireless Sensor Network Technology, Protocols, Applications Book. New Jersey: John Wiley & Sons, Inc)

Pada *wireless sensor network*, *node* memiliki fungsi dan kemampuan yang berbeda-beda, berikut beberapa jenis *node* dalam WSN (Sohraby dkk, 2011):

A. Node Sensor

Node Sensor yaitu node yang berfungsi untuk membaca data lingkungan atau objek yang dipantau. Untuk keperluan pembacaan atau penginderaan, node ini dilengkapi dengan satu atau beberapa perangkat sensor. Dari kemampuannya, node ini dapat dibagi menjadi dua jenis. Pertama, Node dengan kemampuan standar dan kedua yaitu Node yang telah dilengkapi fasilitas yang lebih kaya seperti CCD camera, wireless LAN, logger, Web server dan lain-lain. Node jenis kedua ini juga mampu melakukan komputasi yang lebih kompleks dibanding jenis pertama.

B. Router

Router adalah mini komputer/node yang berfungsi untuk meneruskan paket data dari sebuah node ke node lain dan menghubungkan antara 2 jaringan yang berbeda. Node ini berguna untuk keperluan komunikasi multi-hop. Dalam aplikasi nyata, sebuah sensor node dapat deprogram untuk bertindak sebagai router.

C. Sink Node

Sink node adalah node yang berfungsi untuk mengumpulkan data penginderaan dari node xensor, kemudian meneruskannya ke perangkat lain, seperti ke database server untuk penyimpanan. Selain untuk mengumpulkan data dari node sensor, sink juga berfungsi sebagai penyebar paket dari perangkat atau sistem lain ke WSN, misalnya untuk keperluan pemrograman atau konfigurasi ulang node sensor secara remote.

2.2.3 Routing Protokol

Routing protocol merupakan suatu aturan-aturan mengenai routing atau aktifitas penting dalam suatu jaringan untuk memilih antara 2 node atau lebih agar bisa saling berkomunikasi satu sama lain. Aktifitas ini dikerjakan oleh routing

protocol pada router dengan cara memilih jalur terbaik untuk menghubungkan node-node yang ada untuk berkomunikasi dan transfer data.

Gambar 2.3 Routing Protokol

(Sumber: Novid dkk, 2019)

Pada WSN routing protocol dapat dibedakan menjadi 3 jenis yaitu routing protocol berdasarkan node, routing protocol berdasarkan sumber dan routing protocol berdasarkan tujuan (Novid dkk, 2019). Protokol berdasarkan node yang dimaksud adalah dalam penerapan routing protokol node-node yang ada dalam suatu WSN diklasifikasikan menjadi beberapa struktur hirarki node. Dimana setiap node akan terbagi menjadi beberapa cluster-cluster yang ada untuk membantu proses komunikasi antar node yang ada. Salah satu protokol yang menggunakan metode ini adalah LEACH (Low Energy Adaptive Clustering Hierarchy)

Protokol berdasarkan sumber hanya bekerja ketika protokol diminta untuk mengirimkan data. *Routing protocol* akan dibuat oleh *node* sumber hingga data yang dikirim mencapai *node* tujuan. Protokol yang menggunakan *routing protocol* jenis ini adalah SPIN (*Sensor Protocol for Information via Negotiation*). Sedangkan protokol yang menggunakan *routing protocol* berdasarkan tujuan ini adalah suatu protokol yang sudah memilih jalur yang tetap, sehingga tidak perlu mengirimkan sinyal pemberitahuan terlebih dahulu sebelum melakukan pengiriman data. Dengan itu proses pengiriman data akan menjadi lebih efisien dan sumber daya yang digunakan juga akan lebih sedikit. Contoh protokol dengan *routing protocol* berdasarkan tujuan yakni protokol *Direct Diffusion* (DD).

2.2.4 LEACH Protokol

LEACH merupakan salah satu *routing protocol* yang digunakan pada wireless sensor network (WSN). Protokol ini dimulai dengan pemilihan suatu node

sebagai *cluster head* (CH) lalu dengan algoritma *clustering* memilih *node* non-CH sebagai anggota sehingga membentuk klaster. Mekanisme ini menghemat energi karena hanya CH yang transmisi data ke *base station*, sedangkan tiap *node sensor* cukup mengirim data ke CH masing-masing. Akibatnya, konsumsi energi berkurang. sehingga lifetime jaringan sensor menjadi maksimal (Permana dkk, 2015). Seperti yang direpresentasikan pada gambar 2.4.

Gambar 2.4 Skema LEACH Protokol

(Sumber: Ridwan dkk, 2020)

Pada awalnya *node-node* tersebar dalam jumlah besar pada suatu area dan proses pengiriman data masih terpusat pada *base station*. Namun dengan adanya algoritma LEACH, *node-node* tersebut dikelompokkan dalam beberapa klaster pada satu jaringan. Masing-masing klaster memiliki sebuah *cluster head* yang bertugas untuk mengkoordinasi pengiriman data dari *node sensor* ke *base station*.

2.2.5 Fitur-Fitur LEACH Protokol

Leach Protokol memiliki beberapa fitur diantaranya (Salem & Shudifat, 2019):

- A. *Data fusion*, yaitu penggabungan data sehingga mengurangi disipasi energi dan menambah lifetime jaringan.
- B. *Adaptive*, yaitu mudah menyesuaikan diri saat pembentukan formasi klaster.
- C. *Local Compression*, yaitu mengkompres data agar ukuran data yang dikirim ke *base station* lebih kecil.

- D. Randomization Rotation, yaitu perputaran kedudukan cluster head secara acak.
- E. *Self-Organizing*, yaitu tiap *node sensor* memiliki sikap pengambilan keputusan sendiri untuk menjadi *cluster head*.

2.2.6 Algoritma LEACH

LEACH terbagi ke dalam beberapa sesi, tergantung dari jumlah *cluster head* yang diinginkan dan masa observasi. LEACH memastikan setiap *node* akan menjadi *cluster head* untuk satu sesi. Akibatnya, kedudukan *cluster head* menjadi tidak tetap atau bergantian sehingga suatu klaster memiliki formasi yang dinamis atau berubah-ubah setiap sesi. Algoritma LEACH dibagi menjadi 2 fase yaitu fase setup dan fase steady state (Heinzelman dkk, 2002). Proses algoritma LEACH dapat dijelaskan sebagai berikut:

A. Fase Setup

Pada *fase setup* terjadi penentuan *cluster head* dan proses pembentukan klaster atau sering disebut juga dengan algoritma *clustering*. Pada fase ini beberapa *node* secara *independent* akan memilih dirinya sendiri sebagai *cluster head* berdasarkan pada level energi terkininya dan nilai *threshold* T(n) yang dirumuskan dengan:

$$T(n) = \begin{cases} \frac{P}{1 - p * (r \mod \frac{1}{p})}, & \text{if } n \in G \\ 0, & \text{otherwise} \end{cases}$$
(1)

Dimana P adalah presentasi *cluster head* yang diinginkan dan G adalah sekumpulan *node* yang tidak menjadi *cluster head* dan r adalah putaran saat ini dan pada 1/P *round* terakhir (Ibrian dkk, 2020). Dimana dalam pemilihan *cluster head* berdasarkan residual energi yang terbesar pada setiap *node* yang berada pada klaster yang sama. Dalam menghitung residual energi tiap *node* dengan menggunakan persamaan:

$$Er(n) = E - Te \tag{2}$$

Dimana:

Er = Residual energi setiap *node* selama *round*

Ei = Energi setiap *node* selama *round*

 T_e = Total Konsumsi energi *node* selama *round*

Pemilihan *cluster* tersebut meningkatkan jarak transmisi agregat antara *node* dan *cluster head* dan ini membuat lebih banyak energi yang dihabiskan dalam komunikasi *intra-cluster*. Untuk mengatasi masalah ini, mereka harus dipilih sebagai *cluster head* yang dekat dengan pusat *cluster*.

B. Fase Steady State

Pada fase ini terjadi proses transfer data antar *node* yang melibatkan aktivitas transmisi dan observasi. Proses *steady state* memakan waktu yang lebih lama dibandingkan dengan proses *setup phase*, karena proses transfer data terjadi melalui gelombang transmisi radio secara intensif. Sedangkan pada proses setup hanya terjadi proses penentuan *cluster head* dan pembentukan klaster. Pembagian fase terhadap waktu pada LEACH dapat direpresentasikan oleh gambar 6.5:

Gambar 2.5 Fase Pada LEACH

(Sumber: Ridwan dkk, 2020)

2.2.7 *K-Means* Clustering

Algoritma *K-Means Clustering* adalah suatu metode penganalisaan data atau metode data mining yang melakukan proses pemodelan tanpa *supervisi* (*unsupervised*) dan merupakan salah satu metode yang melakukan pengelompokan data dengan sistem partisi (Jiawei dkk, 2011). Terdapat dua jenis data *clustering*

yang sering dipergunakan dalam proses pengelompokan data yaitu hierarchical dan non-hierarchical, dan K-Means merupakan salah satu metode data clustering non-hierarchical atau partitional clustering.

Gambar 2.6 Algoritma K-Means

(Sumber: Jiawei dkk, 2011. Data Mining Concept and Techniques. USA:Elsevier Inc)

Metode *K-Means* berusaha mengelompokkan data yang ada ke dalam beberapa kelompok, dimana data dalam satu kelompok mempunyai karakteristik yang sama satu sama lainnya dan mempunyai karakteristik yang berbeda dengan data yang ada di dalam kelompok yang lain. Dengan kata lain, metode *K-Means* bertujuan untuk meminimalisasikan fungsi objektif yang di set dalam proses *clustering* dengan cara meminimalkan variasi antar data yang ada di dalam suatu klaster dan memaksimalkan variasi dengan data yang ada di klaster lainnya.

Pada kasus ini, data berupa *node* yang dimana masing-masing *node* direpresentasikan sebagai titik kordinat yang berada pada posisi (x,y) sehingga untuk menghitung jarak pada masing-masing *node* harus mengurangi selisih antara nilai jarak x dan jarak y sehingga memodifikasi rumus Euclidean Distance menjadi seperti berikut (Fakhri M. Falahi, 2019):

$$J = \sum_{i=1}^{k} \sum_{j=1}^{n} ||X_j - C_i||^2$$
(3)

Dimana:

J = jarak antara titik data *node* dengan *centroid*

 $X_j^i = node$ ke-j pada klaster ke-i

 $C_i = centroid$ ke-i pada klaster ke-i

Berikut adalah Langkah-langkah algoritma *K-Means* (M. Ni'man Nasir & Irwan Budiman, 2017):

- A. Tentukan jumlah klaster
- B. Tentukan pusat awal K untuk setiap klaster secara random
- C. Hitung jarak antara setiap titik data dari pusat mencakup mereka di titik pusat terdekat.
- D. Ketika semua poin telah ditetapkan, hitung ulang posisi dari pusat K.
- E. Ulangi Langkah C dan D hingga konvergensi. Ini menghasilkan pemisahan titik menjadi kelompok-kelompok yang matriksnya akan dibatasi dapat ditentukan.
- F. Memperbarui pusat dengan rumus berikut

$$Ci = \frac{1}{|ki|} \sum_{X_{j \in k}}^{k} X_j \tag{4}$$

G. Konvergensi diperoleh ketika tidak ada variasi lagi di pusat cluster

Dimana dalam penelitian ini akan menggunakan data sebaran *node* sesuai dengan Table 1 Parameter Simulasi dimana *node* terdiri dari 100 *node* yang disebar pada titik koordinat 100 x 100 m^2 dengan jumlah klaster yang akan dibentuk yaitu 10 klaster. Dan berikut merupakan contoh proses perhitungan menggunakan persamaan (4) dan (5) untuk menghitung jarak antara *node* dan *centroid* serta bagaimana rumus perhitungan untuk memperbarui pusan klaster/*centroid*:

Table 2.1 Contoh Data Posisi Node

Node ke (i)	Posisi <i>node</i> (x,y) meter
1	(4,3)
2	(5,4)
3	(6,7)
4	(7,8)
5	(8,6)

Selanjutnya dari data diatas dipilih *node* ke 2 sebagai c1 dan 5 sebagai c2 sebagai titik *centroid* secara acak sesuai algoritma *K-Means*, kemudian hitung jarak antara masing" *node* dengan *centroid* dengan rumus persamaan (3) seperti berikut:

Jarak node1 dengan c1 =
$$\sqrt{(4-5)^2 + (3-4)^2}$$
 = 1.414 m
Jarak node1 dengan c2 = $\sqrt{(4-8)^2 + (3-6)^2}$ = 5 m
Jarak node2 dengan c1 = $\sqrt{(5-5)^2 + (4-4)^2}$ = 0 m
Jarak node2 dengan c2 = $\sqrt{(5-8)^2 + (4-6)^2}$ = 3.605 m
Jarak node3 dengan c1 = $\sqrt{(6-5)^2 + (7-4)^2}$ = 3.162 m
Jarak node3 dengan c2 = $\sqrt{(6-8)^2 + (7-6)^2}$ = 2.236 m
Jarak node4 dengan c1 = $\sqrt{(7-5)^2 + (8-4)^2}$ = 4.472 m
Jarak node4 dengan c2 = $\sqrt{(7-8)^2 + (8-6)^2}$ = 2.236 m
Jarak node5 dengan c1 = $\sqrt{(8-5)^2 + (6-4)^2}$ = 3.605 m
Jarak node5 dengan c2 = $\sqrt{(8-8)^2 + (6-6)^2}$ = 0 m

Table 2.2 Perhitungan Centroid Terdekat Antar Node

Node ke (i)	Jarak ke c1	Jarak ke c2	Jarak terdekat	Klaster
1	1.414	5	1.414	c1
2	0	3.605	0	c1
3	3.162	2.236	2.236	c2
4	4.472	2.236	2.236	c2
5	3.605	0	0	c2

Setelah *node* dikelompokkan dengan *centroid* terdekat, selanjutnya kita perbaharui pusat masing-masing klaster dengan persamaan (4) kemudian hitung ulang jarak setiap *node* dengan titik *centroid* baru dengan persamaan (3) untuk mengelumpokan *node* dengan klaster terdekat.

c1 untuk nilai
$$x = \frac{(4+5)}{2} = 4.5$$
 c1 untuk nilai $y = \frac{(4+3)}{2} = 3.5$ c2 untuk nilai $x = \frac{(6+7+8)}{3} = 7$ c2 untuk nilai $y = \frac{(7+8+6)}{3} = 7$

Node ke (i)	Jarak ke c1	Jarak ke c2	Jarak terdekat	Klaster
1	0.707	5	0.707	c1
2	0.707	3.605	0.707	c1
3	3.807	1	1	c2
4	5.147	1	1	c2
5	4.301	1.414	1.414	c2

Table 2.3 Perhitungan Centroid Terdekat Antar Node Final

Karena posisi *node* pada klaster tidak mengalami perubahan maka iterasi dihentikan dan data *node* diatas merupakan hasil pengelompokan *node* dengan titik *centroid* atau klaster terdekat pada WSN.

2.2.8 *K-Means++* Clustering

Algoritma *K-Means++ Clustering* adalah salah satu algoritma yang digunakan untuk klasifikasi atau pengelompokan data. Algoritma *K-Means++* merupakan pengembangan dari algoritma *K-Means* yang dikembangkan oleh Arthur dan Vassilvitskii pada tahun 2007 (Arthur & Vassilvitskii, 2007). Pada *K-Means++* nilai *Centroid* awal tidak dilakukan secara acak seperti pada algoritma *K-Means* tetapi melalui tahap perhitungan. Setelah nilai *centroid* awal ditentukan maka tahapan selanjutnya sama persis seperti algoritma *K-Means*.

Algoritma *K-Means* dimulai dengan pemilihan K yang dipilih secara acak, K merupakan jumlah klaster yang ingin dibuat yang nilainya ditentukan secara acak dan nilai tersebut dijadikan sebagai pusat dari klaster atau *centroid*. Selanjutnya rumus *Euclidean Distance* untuk menghitung jarak dari setiap data terhadap masing-masing *centroid* sampai setiap data tersebut ditemukan jarak yang paling dekat dengan *centroid*. Setiap data diklasifikasikan berdasarkan jarak kedekatan dengan *centroid*. Langkah-langkah tersebut dilakukan berulang sampai diperoleh kestabilan dari nilai *centroid* (Falahi, 2019).

Sedangkan *K-Means*++ yaitu pengembangan dari algoritma *K-Means*. Perbedaan dari algoritma *K-Means* yaitu pada pemilihan nilai awal. *K-Means*++

digunakan untuk meminimalisir dampak buruk dari algoritma *K-Means* yang bergantung dari nilai awal. Rumus menentukan nilai awal pada *K-Means++:*

$$K = \frac{D(x)}{\sum_{x \in X} D(x)} \tag{5}$$

D(x) = Jarak euclidean distance

 $\sum_{x \in X} D(x)$ = Jumlah jarak euclidean distance

Adapun langkah-langkah pada algoritma *K-Means*++adalah sebagai berikut (Fox & Emily, 2016):

- A. Tentukan titik *centroid* pertama secara acak dari pada titik data *node*.
- B. Untuk setiap *node* yang diamati, hitung jarak D(x) dengan *centroid* terdekat dengan rumus persamaan **Error! Reference source not found.**
- C. Pilih *centroid* baru dari antara titik *node*. dengan probabilitas x dipilih proporsional dengan rumus persamaan Error! Reference source not found., dimana posisi *node* dengan nilai K terbesar dipilih sebagai *centroid*.
- D. Ulangi langkah B dan C hingga jumlah *centorid* sama dengan jumlah klaster yang ditentukan.
- E. Lanjut ke proses algoritma *K-Means* biasa.

2.2.9 Energy Dissipation Model

Energy dissipation model adalah pemodelan bagaiamana pemancar menghilangkan energi untuk menjalankan elektronik radio dan power amplifier, dan penerima membuang energi untuk menjalankan elektronik radio. Dalam model disipasi energi radio yang efektif, baik ruang bebas (d kehilangan daya) dan model saluran multipath fading (d 24 daya hilang) digunakan, tergantung pada jarak antara pemancar dan penerima. Jika jaraknya kurang dari ambang d 0, ruang model akan digunakan; jika tidak, model multipath digunakan. Oleh karena itu, konsumsi energi untuk mentransmisikan pesan bit lebih jauh dapat diformulasikan seperti gambar 2.7 (Qiang dkk, 2015).

Gambar 2.7 Energy Dissipation Model

(Saheb & Sharma, 2017)

2.2.10 MATLAB 2015 A

MATLAB merupakan singkatan dari (Matrix LABoratory) adalah sebuah lingkungan komputasi numerik dan bahasa pemrograman komputer generasi keempat. Dikembangkan oleh The MathWorks.Inc, MATLAB memungkinkan manipulasi matriks, pemplotan fungsi dan data, implementasi algoritma, pembuatan antarmuka pengguna, dan pengantarmukaan dengan program dalam bahasa lainnya. Meskipun hanya bernuansa numerik, sebuah kotak kakas (toolbox) yang menggunakan mesin simbolik MuPAD, memungkinkan akses terhadap kemampuan aljabar komputer. Sebuah paket tambahan, Simulink, menambahkan simulasi grafis multi ranah dan desain berdasar-model untuk sistem terlekat dan dinamik.

Gambar 2.8 Software MATLAB

(Sumber: ch.mathworks.com)

Matlab memiliki karakteristik yang berbeda dengan bahasa pemrograman lain yang sudah ada lebih dahulu seperti Delphi, Basic maupun C++. Matlab merupakan bahasa pemrograman level tinggi yang dikhususkan untuk kebutuhan komputasi teknis, visualisasi dan pemrograman seperti komputasi matematik,

analisis data, pengembangan algoritma, simulasi dan pemodelan dan grafik-grafik perhitungan.

Matlab hadir dengan membawa warna yang berbeda. Hal ini karena matlab membawa keistimewaan dalam fungsi-fungsi matematika, fisika, statistik, dan visualisasi. Matlab dikembangkan oleh MathWorks, yang pada awalnya dibuat untuk memberikan kemudahan mengakses data matrik pada proyek LINPACK dan EISPACK. Saat ini matlab memiliki ratusan fungsi yang dapat digunakan sebagai problem solver mulai dari simpel sampai masalah-masalah yang kompleks dari berbagai disiplin ilmu.

BAB III

ANALISIS DAN PERANCANGAN SISTEM

3.1 Pengumpulan Data

Data yang akan digunakan dalam penelitian ini diperoleh dari hasil perbandingan simulasi pada aplikasi MATLAB 2015a dengan beberapa parameter uji untuk mendapatkan data:

- a. Total konsumsi energi (Joule)
- b. Jumlah *node* hidup selama 400 round
- c. Jumlah dead node selama 400 round

Dimana data yang didapat menggunakan skenario uji berdasarkan parameter dari penelitian sebelumnya oleh (Saheb & Sharma, 2017). Namun terdapat beberapa penyesuaian dimana dalam penelitian ini jumlah round dibatasi dan satuan nilai proses transmisi energi ditingkatkan untuk mengurangi jumlah round yang dilakukan. Dari proses simulasi yang dilakukan akan didapatkan data primer dari penelitian ini. Dimana skenario yang dirancang akan menggunakan 100 node yang disebar pada titik kordinat x dan y dengan luas daerah $100 \times 100 \text{ m}^2$ untuk membuat skema topologi jaringan WSN.

Kemudian setelah dilakukan proses simulasi, data yang didapatkan direpresentasikan dalam bentuk grafik pada software MATLAB yang menampilkan data total konsumsi energi (joule), jumlah *node* mati dan *node* hidup selama 400 round simulasi, setelah itu hasil dibandingkan dengan hasil penelitian sebelumnya untuk membuktikan apakah kinerja dari protokol KM-LEACH yang dioptimasi dengan algoritma *K-Means++* lebih baik daripada protokol LEACH yang dioptimasi dengan algoritma *K-Means* saja. Selain itu dilakukan juga studi literatur untuk memberikan argumen yang logis, serta memperkuat hasil dari pengujian tersebut.

3.2 Desain Penelitian

Tahapan penelitian pada perancangan simulasi ini melalui beberapa tahapan yang dilakukan seperti flowchart pada gambar 3.1:

Gambar 3.1 Desain Alur Sistem

(Sumber: Kadnyanan, 2018)

Sesuai gambar 3.1, Desain ini merupakan adaptasi dari sekema waterfall model yang diambil berdasarkan penelitian sebelumnya oleh (Kadnyanan, 2018). Dimana sesuai dengan desain metode pada gambar 3.1, pada tahap pertama yang akan dilakukan pada penelitian ini adalah perumusan masalah terkait permasalahan yang akan diangkat dalam penelitian ini. Setelah ditetapkan permasalahan yang akan diteliti, tahap kedua yang dilakukan adalah studi literatur dan pengumpulan data terkait permasalahan yang diangkat dan informasi-informasi atau kajian teori yang menunjang penelitian. Tahap ketiga dilakukan perancangan sistem untuk mengetahui alur dan segala keperluan sistem yang akan dibuat.

Barulah pada tahap keempat dilakukan implementasi sistem yang mana implementasi sistem akan dilakukan dalam bentuk simulasi dan kemudian dilakukan pengujian serta analisis sistem untuk mengetahui hasil akhir penelitian yang dilakukan, untuk mengetahui apakah penelitian yang dilakukan berhasil atau

tidak. Dan di tahap akhir adalah kesimpulan & saran yang berisi hasil dari penelitian yang dilakukan dan saran atau arahan untuk pengembangan selanjutnya yang dapat dilakukan terkait penelitian yang diteliti.

Sistem ini dapat diimplementasikan secara nyata pada masing-masing *node* dan *base station* pada WSN. Dimana masing-masing *node* dapat terdiri dari perangkat Arduion uno, Xbee sensor ataupun jenis *node sensor* lainnya, dimana nantinya sistem optimasi protokol LEACH dengan *K-Means++* tersebut ditanamkan atau di program pada perangkat tersebut dalam jaringan WSN dengan menggunakan bahasa pemrograman C/C++.

3.3 Metode Yang Digunakan

Pada penelitian ini akan menggunakan 2 metode yaitu algoritma LEACH dengan *K-Means* dan *K-Means*++. Setelah itu akan dibandingkan kinerja antara protokol LEACH dengan *K-Means* dan protokol LEACH dengan *K-Means*++ untuk mendapatkan hasil penelitian. Berikut adalah gambaran program yang akan dibuat secara umum yang direpresentasikan pada gambar 3.2:

Gambar 3.2 Flowchart Rancangan Program

3.4 LEACH Dengan K-Means

Secara umum algoritma LEACH memiliki 2 proses utama yaitu *Setup Phase* dan *Steady State*. Pada proses *Setup Phase* inilah akan dimodifikasi dengan menggunakan algoritma *K-Means*. Algoritma *K-Means* berperan dalam proses pembentukan klaster dimana dengan bantuan algoritma *K-Means* dapat membantuk membentuk klaster yang lebih baik dibandingkan algoritma *clustering* biasa pada algoritma LEACH. Berikut adalah flowchart protokol LEACH yang sudah dioptimasi dengan *K-Means* pada gambar 3.3:

A. Setup Phase

Gambar 3.3 Flowchart Setup Phase LEACH Dengan K-Means

Penjelasan flowchart:

- 1. Tahap pertama adalah membentuk topologi jaringan berdasarkan beberapa parameter simulasi yang sudah ditentukan
- 2. Kedua masukkan jumlah klaster
- 3. Kemudian lakukan iterasi untuk penentuan *centroid/*titik pusat klaster sebanyak C=Jumlah klaster yang ditentukan
- 4. Letakkan titik pusat klaster/centroid C secara random
- 5. Hitung jarak setiap *node* dengan *centroid* C dengan persamaan (3).
- 6. Kelompokan *node* pada titik pusat klaster/*centroid* C sesuai jarak terdekat
- 7. Kemudian cek apakah ada perubahan pusat klaster/centroid C

- 8. Jika iya maka tentukan titik pusat klaster/*centroid* C baru berdasarkan titik tengah pada k dengan persamaan (4), kemudian ulangi langkah 5-7 hingga tidak ada perubahan pusat klaster/*centroid* C
- 9. Jika tidak maka *node* i = titik pusat klaster/*centroid* C
- 10. Kemudian masuk pada penentuan *cluster head* dimana dalam pemilihan memerhatikan parameter residual energi pada *node* tiap klaster yang dihitung dengan persamaan (2)
- 11. Bandingkan apakah residual energi *node* i > *node* i+1 , jika iya maka pilih *node* i sebagai CH berdasarkan residual energi terbesar
- 12. Jika tidak maka *node* i = *node* i+1 dan ulangi langkah 9 hingga 11
- 13. Jika iya maka *node* i adalah *cluster head* dan lanjut ke proses *steady state*B. Steady State

Gambar 3.4 Flowchart Steady State LEACH

(Sumber: Sohraby dkk, 2011. Wireless Sensor Network Technology, Protocols, Applications Book. New Jersey: John Wiley & Sons, Inc)

Penjelasan *Flowchart*:

- 1. Cek apakah *node* merupakan sebuah *cluster head*
- 2. Apabila merupakan *cluster head* maka, *cluster head* akan menerima data dari semua anggota klaster.
- 3. *Node* yang bukan *cluster head* hanya akan mengirim data sesuai dengan jadwal TDMA yang sudah diterima.
- 4. *Node cluster head* akan mengumpulkan dan melakukan kompresi terhadap data
- 5. Kirim semua data yang sudah dikompresi ke *Base Station*
- 6. Proses steady-state selesai.

3.5 LEACH Dengan K-Means++

Algoritma *K-Means++ Clustering* adalah salah satu algoritma yang digunakan untuk klasifikasi atau pengelompokan data, algoritma ini merupakan pengembangan dari algoritma *K-Means*. Pada protokol LEACH dengan bantuan algoritma *K-Means++* akan memodifikasi *setup phase* dari protokol LEACH dimana dalam *setup phase* pemilihan *cluster head* menggunakan algoritma *KMeans++*.

Namun dalam penelitian ini dalam pemilihan *Centroid* awal tidak dilakukan secara acak seperti algoritma *K-Means++*, namun pemilihan dilakukan berdasarkan 1 parameter tambahan yaitu jarak terjauh antara posisi *node* dengan *base station*. Untuk mencegah penentuan *centroid* awal yang dilakukan secara acak, hal ini dilakukan sesuai prinsip kerja algoritma *K-Means++* dalam penentuan *centroid* yaitu berdasarkan jarak *node* terjauh yang dimana jarak antara *node* dengan basestation dihitung dengan rumus *ecludien distance* pada persamaan (3). Untuk penjelasan lebih lanjut mengenai langkah-langkah yang dilakukan dapat dilihat pada *flowchart setup phase* dengan algoritma *K-Means++* yang direpresentasikan pada gambar 3.5:

A. Setup Phase

Gambar 3.5 Flowchart Setup Phase KM-LEACH

Penjelasan Flowchart:

- 1. Tahap pertama buat bentuk *node* sesuai dengan parameter yang ditentukan
- 2. Input jumlah klaster
- Hitung jarak semua *node* dengan *base station* dengan rumus dari persamaan
 (3)
- 4. Tentukan pusat klaster C1 berdasarkan jarak terjauh antara *node* dengan *base station*.
- 5. Pemilihan Ci selanjutnya hitung jarak semua *node* dengan pusat klaster C1 dengan rumus dari persamaan (3)
- 6. Tentukan Ci dengan probabilitas x dipilih proporsional dengan persamaan (2)
- 7. Ulangi langkah 4 dan 5 hingga semua klaster terbentuk

- 8. Hitung jarak setiap *node* dengan pusat klaster/*centroid* C dengan persamaan (3)
- 9. Kelompokan *node* pada titik pusat klaster/*centroid* C sesuai jarak terdekat
- 10. Kemudian cek apakah ada perubahan pusat klaster/centroid C
- 11. Jika iya maka tentukan titik pusat klaster/*centroid* C baru berdasarkan titik tengah pada k dengan persamaan (4), kemudian ulangi langkah 8-10 hingga tidak ada perubahan pusat klaster/*centroid* C
- 12. Jika tidak maka *node* i = titik pusat klaster/*centroid* C
- 13. Kemudian masuk pada penentuan *cluster head* dimana dalam pemilihan memerhatikan parameter residual energi pada *node* tiap klaster yang dihitung dengan persamaan (2).
- 14. Bandingkan apakah residual energi node i > node i+1
- 15. Jika tidak maka *node* i = *node* i+1 dan ulangi langkah 13 hingga 14
- 16. Jika iya maka *node* i adalah *cluster head* dan lanjut ke proses *steady state*

3.6 Implementasi

Untuk mengimplementasikan penelitian ini, terdapat komponen-komponen pendukung yaitu:

A. Kebutuhan Perangkat Keras (*Hardware*)

Dari segi kebutuhan perangkat keras dibutuhkan perangkat elektronik dengan spesifikasi yaitu:

- Processor intel(R) Core (TM) i7-7700HQ CPU @2.80GHz
- Memory 8192MB RAM
- VGA Card Nvidia Geforce 950M
- Harddisk 1000 GB HDD
- B. Kebutuhan Perangkat Lunak (Software)

Dari segi kebutuhan perangkat lunak (software), sistem ini akan diimplementasikan pada sistem operasi Windows 10. Aplikasi yang digunakan dalam penelitian ini adalah:

- MATLAB 2015 A

Serta aplikasi tambahan yang dibutuhkan seperti berikut:

- Google Chrome
- Nitro Pro

3.7 Skenario Pengujian

Pada penelitian ini Protokol LEACH dengan optimasi *K-Means* dan KM-LEACH dengan optimasi *K-Means*++ disimulasikan dengan software MATLAB 2015a dengan beberapa parameter yang disesuaikan berdasarkan hasil penelitian (Saheb & Sharma, 2017) untuk membuat skenario simulasi yang telah ditetapkan, diantaranya:

Table 2.4 Parameter Simulasi

(Sumber: Saheb & Sharma, 2017)

Parameter	Nilai		
Jumlah node	100		
Luas area simulasi	100 x 100 m ²		
Jumlah <i>round</i> (putaran)	400		
Posisi base station	(50,50)		
Probabilitas cluster head %	10		
Energi awal node	0.5 Joule		
Data Length	4000 bits		
Eelec	50nJ/bit		
εтр	13nJ/bit/m ⁴		
εfs	10nJ/bit/m ²		
Data Aggregation (EDA)	50nJ/bit/signal		

 Means++ dan pada masing-masing skenario, yang dimana nilai hasil simulasi yang dibahas lebih lanjut pada sub bab pengukuran dan hasil simulasi.

3.8 Pengukuran dan Hasil Simulasi

Kualitas kinerja dari protokol KM-LEACH dengan protokol LEACH akan diukur dengan beberapa parameter seperti rata-rata konsumsi energi, banyaknya dead node dan jumlah node yang hidup selama 100 round berlangsung. Dimana untuk menghitung total konsumsi energi yang dikeluarkan per-bit didapat dengan menggunakan konsumsi energi komunikasi radio yang sama yang diperlihatkan sebagai digunakan sebagai protokol LEACH. Model ini terdiri dari dua bagian: model konsumsi energi transmisi dan model konsumsi energi penerima. Sesuai dengan model disipasi energi komunikasi radio, didapatkan rumus untuk menghitung konsumsi energi dengan cara (Saheb & Sharma, 2017:

$$E_{TX}(k,d) = (E_{elec} \times k) + \varepsilon_{fs} + k \times d^2$$
(6)

Dimana penjelas dari variabel rumus diatas yaitu:

d = Threshold Distance,

 E_{elec} = Electronic Energy

 ε_{fs} = Parameter for Free Space Model

 ε_{mp} = Parameter for Multi Path Model

Konsumsi energi untuk menerima pesan *k-bit* dapat dihitung dengan persamaan:

$$E_{RX} = E_{elec} * k \tag{7}$$

Sedangkan untuk mengetahui jumlah *node* mati dan *node* hidup dihitung dengan:

$$Dead \ node = total \ node - node \ hidup \tag{8}$$

Node hidup = total
$$node - node$$
 mati (9)

Dimana setelah data didapatkan dari 2 skenario pada LEACH protokol dengan metode *K-Means* dan KM-LEACH protokol dengan metode *K-Means*++, kemudia data dibantingkan dengan tabel berikut untuk mendapatkan hasil akhir

untuk mengetahui protokol yang lebih optimal diantara kedua protokol tersebut. Berikut adalah tabel parameter pengukuran kedua protokol:

Table 2.5 Parameter Uji Protokol

Protokol	Jumlah <i>Dead</i>	Jumlah <i>Node</i>	Total Konsumsi
	Node/100 Round	Hidup /100	Energi/100 Round
		Round	
LEACH dengan			
metode K-Means			
KM-LEACH			
dengan metode K-			
Means++			

BAB IV

HASIL DAN PEMBAHASAN

4.1. Implementasi Sistem

Terdapat beberapa proses dalam implementasi sistem pada penelitian ini. Proses-proses dalam implementasi sistem ini adalah sebagai berikut.

4.1.1 Deklarasi Variabel & Membentuk Topologi WSN

Pada proses ini dilakukan pendeklarasian sejumlah variabel yang diperlukan dalam membangun simulasi ini. Selain itu pada tahap ini dibangun topologi dasar untuk proses simulasi yang akan dilakukan, dimana topologi ini berdasarkan parameter yang sudah ditentukan sebelumnya. Berikut merupakan *source code* setiap langkahnya terlihat pada Table 4.1 berikut.

Table 4.1 Deklarasi Variabel

```
clc;
clear;
close all;
%%Deklarasi Variabel%%
%Pemetaan Sensor dalam satuan meter%
n=100;
xm = 100;
ym = 100;
sinkx=50;
sinky=50;
dead nodes=0;
operating nodes=n;
total energi=[];
total energi2=0;
total dn=[];
total na=[];
%Deklarasi Energi%
%Inisialisasi energi pada setiap node(Joules)%
Eo=0.5; %Satuan joules
Eelec=50*10^(-8); %Satuan joules/bit
ETx=50*10^(-8); %Satuan joules/bit
ERx=50*10^{(-8)}; %Satuan joules/bit
Eamp=13*10^(-8); %Satuan joules/bit/m^2
EDA=5*10^(-8); %Satuan joules/bit
kk=4000; %unit bits
rnd=1; %penanda iterasi
```

```
round=400; %jumlah putaran/iterasi yang ditentukan
k=10; %jumlah klaster yang ditentukan
%proses membaca titik node pada file
x=xlsread('node','A1:A100');
y=xlsread('node','B1:B100');
```

Pada tabel 4.1 diatas dilakukan beberapa pendeklarasian variabel seperti pemetaan sensor dalam satuan meter, variabel energi, penentuan klaster dan round dan proses pembacaan data titik koordinat *node*, dimana data *node* ini diambil dari file dengan nama *node*.xlsx yang sudah kita siapkan sebelumnya. Kemudian dilakukan proses pembentukan topologi jaringan awal yang *source code*nya dapat dilihat pada tabel berikut.

Table 4.2 Pembentukan Topologi WSN

```
%Membentuk Topologi Awal%
for i=1:n
                 %Sensor Id
   SN(i).id=i;
   SN(i).x=x(i); %Posisi node x
   SN(i).y=y(i); %Posisi node y
   SN(i).E=Eo; %set energi node sama dengan eo"
    SN(i).role=0; %set role node jika node biasa =0 dan jika
                   sebagai CH set =1
   SN(i).cluster=0; %set node berada pada cluster mana,
                      secara default set 0
   SN(i).cond=1; %Set status node jika node masih memiliki
                  energi maka nilai =1 jika node sudah mati
                  maka set =0
   SN(i).rop=0; %untuk mengetahui node berada pada round
                  berapa
   SN(i).dtch=0; %jarak node dengan CH
   SN(i).dts=0; %jarak node dengan Sink/BS
   SN(i).tel=0; %sudah berapa kali node di set sebagai CH
   SN(i).rn=0; %round ke berapa node terpilih sebagai CH
   SN(i).chid=0; %id node terhubung ke CH mana
   SN(i).rleft=0;%rounds left for node to become available for
                  Cluster Head election
   SN(i).re=Eo; %residual energi pada node
   SN(i).jch=0; %mengetahui berapa kali node sebagai CH
   SN(i).status=1; %set nilai jika node hidup status=1 jika
                     mati status=0
   %Ploting Topologi
   figure(1)
   plot(xm,ym,x,y,'ob',sinkx,sinky,'*r');
   title 'Wireless Sensor Network';
   xlabel '(m)';
   ylabel '(m)';
```

```
hold on;
grid on;
end
```

Sesuai pada tabel 4.2 diatas, setelah dilakukan deklarasi variabel dilakukan proses pembentukan topologi, nilai posisi *node* yang sudah dibaca dari file node.xlsx di lakukan proses looping dimana data disimpan pada variabel struk SN beserta memberi nilai dasar pada variabel-variabel di masing-masing node yang ada pada topologi. Setelah itu dilakukan proses ploting untuk menampilkan topologi yang sudah dirancang, dimana untuk posisi node dilambangkan dengan simbol bulat biru yang tersebar pada luas area $100 \times 100 \, m^2$ dan untuk posisi sink dilambangkan dengan symbol plus merah yang dapat dilihat pada Gambar 4.1 berikut.

Gambar 4.1 Topologi WSN

4.1.2 Setup Phase K-Means

Setup phase merupakan proses pembentukan klaster dan proses pemilihan *cluster head* pada LEACH protokol. Pada proses ini berdasarkan data pada topologi WSN dilakukan proses pembentukan klaster dan pemilihan CH dengan algoritma *K-Means Clustering*. Pada proses setup phase ini terdiri dari beberapa tahapan diantaranya:

A. Penentuan Titik Pusat Klaster

Pada proses ini dengan menggunakan algoritma *K-Means* pemilihan titik pusat klaster dilakukan secara acak, untuk itu perlu dilakukan pembangkitan bilangan acak seseuai dengan jumlah klaster dan jumlah round yang ditentukan. Pada penelitian ini bilangan acak sudah kita siapkan sebanyak 10x400 sesuai dengan jumlah klaster x jumlah round yang kita simpan pada file bilacak.xlsx. Alasan data bilangan acak dibaca dari file karena dalam pembangkitan bilangan acak harus bilangan yang unik atau tidak sama untuk mencegah *infinity loop* karena titik *node* yang dipilih sama. Berikut merupakan *source code* tahapannya pada tabel 4.3 berikut.

Table 4.3 Proses Penentuan Titik Pusat Klaster Algoritma K-Means

```
%%% Set Up Phase %%%
%%Proses K-Means%%
CLheads=0;
energy=0;
while rnd<=round
disp('Proses Kmeans')
    rnd %Menampilkan nilai round saat ini
    %Proses memilih cluster secara acak
    startx=[];
    starty=[];
    center=[];
    acak=xlsread('bilacak');
    for i=1:k
        startx(i)=x(acak(i,rnd));
        starty(i)=y(acak(i,rnd));
        center(i,1) = startx(i);
        center(i,2)=starty(i);
    end
  %Ploting sebaran titik pusat klaster pada round terakhir
    if (rnd==round)
        figure(2)
        disp(center);
        plot(center(:,1),center(:,2),'ko','linewidth',3);
        hold on;
        grid on;
        for i=1:n
plot(xm,ym,SN(i).x,SN(i).y,'ob',sinkx,sinky,'*r');
            title 'Wireless Sensor Network';
            xlabel '(m)';
            ylabel '(m)';
        end
     end
```

B. Pengelompokan *Node* Dengan Klaster

Pada proses ini setelah titik pusat klaster ditentukan selanjutnya adalah kita simpan pada variabel center. Kemudian kita siapkan variabel pendukung lainnya untuk proses ini kemudia lakukan perulangan while hingga titik pusat klaster tidak mengalami perubahan atau temp=1. Dalam proses perulangan hitung jarak setiap *node* dengan titik pusat klaster dengan menggunakan rumus *ecludien distance* sesuai dengan persamaan (3) yang kita simpan dalam variabel data diamana nilai data yang terendah kita simpan nilai jarak dan index *node* tersebut.

Kemudian data *node* pada klaster yang sama kita simpan dalam variabel outpux dan outputy. Setelah semua *node* dikelompokkan titik pusat klaster diperbaharui dengan mencari rata-rata tiap klaster sesuai dengan persamaan (4) atau pada matlab menggunakan function *Mean* dimana nilainya kita simpan ke variabel cx dan cy Kembali. Berikut merupakan *source code* tahapannya pada tabel 4.4 berikut.

Table 4.4 Proses Pengelompokan Klaster Algoritma K-Means

```
%Proses pengelompokan node dengan cluster
     cx=center(:,1);
     cy=center(:,2);
    mean_oldx=cx;
    mean newx=cx;
    mean oldy=cy;
    mean newy=cy;
    outputx=cell(k,1);
    outputy=cell(k,1);
    temp=0;
     iter=1;
    %Perulangan pembentukan klaster hingga titik pusat tidak
     mengalami perubahan
    while(temp==0)
           mean_oldx=mean_newx;
           mean oldy=mean newy;
          %perulangan mencari jarak setiap node
           for i=1:n
               data=[];
               %mencari jarak setiap node dengan titik pusat
```

```
for j=1:length(cx)
                   data=[data sqrt((SN(i).x-cx(j))^2+(SN(i).y-
cy(j))^2)];
               end
               %Mencari jarak terendah node dengan titik pusat
               klaster
               [gc index]=min(data);
              %Mengelompokkan data sesuai CH terdekat
               outputx{index}=[outputx{index} SN(i).x];
               outputy{index}=[outputy{index} SN(i).y];
               SN(i).role=0;
               SN(i).cluster=index;
               SN(i).chid=index;
               SN(i).dtch=min(data);
           gmckx=[];
           gmcky=[];
           %Proses memperbarui nilai pusat CH
           for i=1:k
               gmckx=[gmckx mean(outputx{i})];
               gmcky=[gmcky mean(outputy{i})];
           end
          cx=gmckx; %Menyimpan nilai terbaru CH
          cy=gmcky;
          mean newx=cx; %Menyimpan nilai terbaru CH
          mean newy=cy;
```

C. Pengecekan Titik Pusat Klaster

Setelah dicari nilai mean masing-masing klaster, simpan nilai pada variabel cx dan mean_newx untuk titik nilai x dan xy dan mean_newy untuk variabel y. Kemudian untuk melakukan pengecekan apakah iterasi dilanjutkan atau di hentikan disini dengan mengecek nilai mean_newx == mean_oldx dan apakah nilai mean_newy == mean_oldy. Dimana jika keduanya mengalami tidak mengalami perubahan kita set finalx dan finaly =1, kedua variabel ini kita cek kembali untuk memastikan apakah kedua titik pusat klaster x dan y tidak mengalami perubahan atau iya, jika tidak maka kita set nilai temp=1 untuk menghentikan perulangan while.

Apabila iya maka kita simpan kembali nilai titik x dan y ke variabel output dan output dimana variabel ini bertipe cell sesuai jumlah klaster yang ada, dan proses ini dilakukan secara berulang hingga titik pusat klaster tidak

mengalami perubahan. Berikut merupakan *source code* tahapannya pada tabel 4.5 berikut.

Table 4.5 Pengecekan Titik Pusat Klaster Algoritma K-Means

```
finalx=0;
       finaly=0;
       %Mengecek apakah titik pusat klaster mengalami
        perubahan atau tidak
       if (mean newx==mean oldx)
          finalx=1;
       end
       if (mean newy==mean oldy)
          finaly=1;
       Jika tidak mengalami perubahan maka akhiri
       perulangan
       if(finalx==1 && finaly==1) %
          temp=1;
       %Jika tidak sama maka simpan nilai pusat
       klaster baru pada bvariabel outputx dan outputy
          outputx=cell(k,1);
           outputy=cell(k,1);
       end
       iter=iter+1;
end
jml iter(rnd)=iter;
celldisp(outputx);
celldisp(outputy);
```

D. Proses Pemilihan Cluster Head

Setelah klaster sudah terbentuk tahap selanjutnya adalah pemilihan cluster head. Pada pemilihan CH ini dipilih node dengan residual energi tertinggi pada masing-masing klaster. Untuk menghitung residual energi pada masing-masing node menggunakan persamaan (2). Dalam pemilihan CH setiap node akan memiliki kondisi dimana node dapat terpilih kembali menjadi CH untuk memastikan setiap node pernah terpilih sebagai CH pada masing-masing klaster sesuai konsep LEACH protokol.

Apabila sebuah *node* terpilih menjadi CH maka akan di set role= 1 dan menghitung jarak setiap CH dengan *sink/base station* yang disimpan di variabel SN.dts untuk proses perhitungan energi nanti di fase *steady state*. Setelah CH setiap klaster terpilih, selanjutnya kita perbarui kembali jarak

setiap *node* pada CH untuk memperbarui nilai jarak masing-masing *node* dengan CH yang disimpan di variabel SN.dtch. Setelah itu maka proses *setup phase* dengan algorima *K-Means* selesai dilakukan dan lanjut ke fase *steady state*. Berikut adalah *source code* proses pemilihan CH pada tabel 4.6 berikut.

Table 4.6 Pemilihan CH Algoritma K-Means

```
%Pemilihan CH
   CLheads=0;
   energy=0;
   %Pemilihan CH tiap cluster
    for i=1:k
        for j=1:n
            %memastikan node yg dipilih berada pada
            klaster yang sama dan node bukan CH
            if(SN(j).cluster==I && SN(j).role==0)
                %Mengurangi probabilitas node yang sudah
                 pernah terpilih sebagai CH
                if(SN(j).rleft>0)
                   SN(j).rleft=SN(j).rleft-1;
                End
                %Memastikan energi node >0 node berada di
                kodisi dapat dipilih dan node bukan CH
                if(SN(j).E>0 && SN(j).rleft==0 &&
SN(j).role==0)
                    for l=1:n
                        %jika residual energi node lebih
                        besar dari node lain pada klaster
                        yang sama
                        if(SN(j).re>=SN(l).re &&
SN(j).cluster==SN(l).cluster)
                            SN(j).role=1;
                            SN(j).jch=SN(j).jch+1;
                            SN(j).tel=SN(j).tel + 1;
                            SN(j).rleft=k/2;
                            SN(j).dts=sqrt((sinkx-
SN(j).x)^2 + (sinky-SN(j).y)^2;
                            CLheads=CLheads+1;
                            SN(j).cluster=CLheads;
                            CL(CLheads).x=SN(j).x;
                            CL(CLheads).y=SN(j).y;
                            CL(CLheads).id=i;
                            break
                        end
                    end
```

```
%Untuk mengakhiri perulangan dan lanjut
                   ke perulangan k selanjutnya jika sudah
                    didapatkan CH tiap klaster
                    if(SN(j).role==1)
                        break
                    end
                end
            end
        end
    end
    CL=CL(1:CLheads);
%Menghitung jarak node dengan masing" CH
for i=1:n
   if(SN(i).role==0 && SN(i).E>0)
      for j=1:CLheads
          if(SN(i).cluster==j)
            SN(i).dtch=sqrt((CL(j).x-SN(i).x)^2 +
            (CL(j).y-SN(i).y)^2;
          end
      end
   else
      SN(i).dtch=0;
   end
end
```

4.1.3 Setup Phase *K-Means++*

Setup phase merupakan proses pembentukan klaster dan proses pemilihan *cluster head* pada LEACH protokol. Pada proses ini berdasarkan data pada topologi WSN dilakukan proses pembentukan klaster dan pemilihan CH dengan algoritma *K-Means++ Clustering*. Yang membedakan fase setup phase *K-Means* dan *K-Means++* terletak pada bagian penentuan titik pusat klasternya diamana pada algoritma *K-Means++* ini pemilihan titik pusat klaster tidak dilakukan secara acak namun menggunakan proses perhitungan sesuai dengan persamaan (5). Berikut adalah tahapannya.

A. Penentuan Titik Pusat Klaster

Pada proses ini dengan menggunakan algoritma *K-Means++* dimana pemilihan titik pusat klaster dilakukan tidak secara acak, namun berdasarkan rumus perhitungan. Dalam proses penentuan titik pusat klaster pertama berbeda dengan penentuan titik pusan klaster selanjutnya, yaitu pada pemilihan titik pusat pertama *node* yang dipilih sebagai titik pusat

klaster berdasarkan jarak terjauh *node* dengan *sink/base station* menggunakan rumus persamaan *(3)*. Setelah didapatkan jarak terjauh titik pusat klaster pertama atau C1 disimpan di variabel center. Berikut merupakan *source code* tahapannya pada tabel 4.7 berikut.

Table 4.7 Penentuan Titik Pusat Klaster Algoritma K-Means++

```
%%% Set Up Phase %%%
%%Proses K-Means++%%
CLheads=0;
energy=0;
while rnd<=round
      disp('Proses Kmeans++')
      rnd
      %Penentua C1 Awal dengan mencari jarak terjauh
      dengan BS
      startx=[];
      starty=[];
      x=xlsread('node','A1:A100');
      y=xlsread('node', 'B1:B100');
      center=[startx starty];
      d=[];
      for i=1:n
          SN(i).cluster=0;
          SN(i).role=0;
          SN(i).chid=0;
          c=[SN(i).x SN(i).y];
         distance=sqrt((sinkx-c(:,1))^2+(sinky-c(:,2))^2);
          d=[d distance];
      end
      [e s] = max(d);
      center=[center; [x(s) y(s)]];
      x(s) = [];
      y(s) = [];
      d = [];
      %Proses mencari C selanjutnya
      r=1;
      while (r~=k)
           for i=1:n
               g=[SN(i).x SN(i).y];
               ka=dsearchn(center,g);
               nearestx=center(ka,1);
               nearesty=center(ka,2);
               distance=sqrt((nearestx-
g(:,1))^2+(nearesty-g(:,2))^2;
               d=[d distance];
```

```
end
  [e s]=max(d);
  center=[center;[x(s) y(s)]];
  SN(s).tel=SN(s).tel+1;
  x(s)=[];
  y(s)=[];
  [r c]=size(center);
  d=[];
end
```

Kemudian dalam proses pencarian titik pusat klaster atau C selanjutnya, hitung jarak setiap *node* dengan titik pusat klaster yang ada di variabel center, kemudian pilih *node* sebagai titik pusat klaster selanjutnya berdasarkan probabilitas x dipilih proporsional dengan rumus persamaan **Error! Reference source not found.**, yaitu pilih nilai terjauh dari setiap titik pusat klaster sebagai C selanjutnya. Ulangi langkah tersebut hingga jumlah titik pusat klaster sesuai dengan jumlah klaster yang ditentukan maka proses ini selesai.

B. Pengelompokan Node Dengan Klaster

Pada proses ini setelah titik pusat klaster ditentukan selanjutnya adalah kita simpan pada variabel center. Kemudian kita siapkan variabel pendukung lainnya untuk proses ini kemudia lakukan perulangan while hingga titik pusat klaster tidak mengalami perubahan atau temp=1. Dalam proses perulangan hitung jarak setiap *node* dengan titik pusat klaster dengan menggunakan rumus ecludien distance sesuai dengan persamaan (3) yang kita simpan dalam variabel data diamana nilai data yang terendah kita simpan nilai jarak dan index *node* tersebut.

Kemudian data *node* pada klaster yang sama kita simpan dalam variabel outpux dan outputy. Setelah semua *node* dikelompokkan titik pusat klaster diperbaharui dengan mencari rata-rata tiap klaster sesuai dengan persamaan (4) atau pada matlab menggunakan function Mean dimana nilainya kita simpan ke variabel cx dan cy Kembali. Berikut merupakan *source code* tahapannya pada tabel 4.8 berikut.

Table 4.8 Proses Pengelompokan Klaster Algoritma K-Means++

```
%Proses pengelompokan node dengan cluster
```

```
cx=center(:,1);
     cy=center(:,2);
     mean_oldx=cx;
     mean_newx=cx;
     mean_oldy=cy;
     mean_newy=cy;
     outputx=cell(k,1);
     outputy=cell(k,1);
     temp=0;
     iter=1;
     %Perulangan pembentukan klaster hingga titik pusat tidak
     mengalami perubahan
     while(temp==0)
           %menyamakan nilai pusat klaster lama dan baru
           mean_oldx=mean_newx;
           mean_oldy=mean_newy;
           %perulangan mencari jarak setiap node
           for i=1:n
               data=[];
               %mencari jarak setiap node dengan titik pusat
                klaster
               for j=1:length(cx)
                   data=[data sqrt((SN(i).x-cx(j))^2+(SN(i).y-
cy(j))^2)];
               end
                %Mencari jarak terendah node dengan titik pusat
                klaster
               [gc index]=min(data);
              %Mengelompokkan data sesuai CH terdekat
               outputx{index}=[outputx{index} SN(i).x];
               outputy{index}=[outputy{index} SN(i).y];
               SN(i).role=0;
               SN(i).cluster=index;
               SN(i).chid=index;
               SN(i).dtch=min(data);
           end
           gmckx=[];
           gmcky=[];
           %Proses memperbarui nilai pusat CH
           for i=1:k
               gmckx=[gmckx mean(outputx{i})];
               gmcky=[gmcky mean(outputy{i})];
           end
           cx=gmckx;
           cy=gmcky;
           mean_newx=cx;
           mean_newy=cy;
```

C. Pengecekan Titik Pusat Klaster

Setelah dicari nilai mean masing-masing klaster, simpan nilai pada variabel cx dan mean_newx untuk titik nilai x dan xy dan mean_newy untuk variabel y. Kemudian untuk melakukan pengecekan apakah iterasi dilanjutkan atau di hentikan disini dengan mengecek nilai mean_newx == mean_oldx dan apakah nilai mean_newy == mean_oldy. Dimana jika keduanya mengalami tidak mengalami perubahan kita set finalx dan finaly =1, kedua variabel ini kita cek kembali untuk memastikan apakah kedua titik pusat klaster x dan y tidak mengalami perubahan atau iya, jika tidak maka kita set nilai temp=1 untuk menghentikan perulangan while.

Apabila iya maka kita simpan kembali nilai titik x dan y ke variabel output dan output dimana variabel ini bertipe cell sesuai jumlah klaster yang ada, dan proses ini dilakukan secara berulang hingga titik pusat klaster tidak mengalami perubahan. Berikut merupakan *source code* tahapannya pada tabel 4.9 berikut.

Table 4.9 Pengecekan Titik Pusat Klaster Algoritma *K-Means++*

```
finalx=0;
       finaly=0;
       %Mengecek apakah titik pusat klaster mengalami
        perubahan atau tidak
       if (mean newx==mean oldx)
          finalx=1;
       end
       if (mean newy==mean oldy)
          finaly=1;
       Jika tidak mengalami perubahan maka akhiri
       perulangan
       if(finalx==1 && finaly==1) %
          temp=1;
       %Jika tidak sama maka simpan nilai pusat
       klaster baru pada bvariabel outputx dan outputy
       else
           outputx=cell(k,1);
           outputy=cell(k,1);
       end
       iter=iter+1;
jml iter(rnd)=iter;
```

```
celldisp(outputx);
celldisp(outputy);
```

D. Proses Pemilihan CH

Setelah klaster sudah terbentuk tahap selanjutnya adalah pemilihan cluster head. Pada pemilihan CH ini dipilih *node* dengan residual energi tertinggi pada masing-masing klaster. Untuk menghitung residual energi pada masing-masing *node* menggunakan persamaan (2). Dalam pemilihan CH setiap *node* akan memiliki kondisi dimana *node* dapat terpilih kembali menjadi CH untuk memastikan setiap *node* pernah terpilih sebagai CH pada masing-masing klaster sesuai konsep LEACH protokol.

Apabila sebuah *node* terpilih menjadi CH maka akan di set role=1 dan menghitung jarak setiap CH dengan *sink/base station* yang disimpan di variabel SN.dts untuk proses perhitungan energi nanti di fase steady state. Setelah CH setiap klaster terpilih, selanjutnya kita perbarui kembali jarak setiap *node* pada CH untuk memperbarui nilai jarak masing-masing *node* dengan CH yang disimpan di variabel SN.dtch. Setelah itu maka proses setup phase dengan algorima *K-Means++* selesai dilakukan dan lanjut ke fase *steady state*. Berikut adalah *source code* proses pemilihan CH pada tabel 4.10 berikut.

Table 4.10 Pemilihan CH algoritma K-Means++

```
if(SN(j).E>0 && SN(j).rleft==0 &&
SN(j).role==0)
                    for l=1:n
                        %jika residual energi node lebih
                        besar dari node lain pada klaster
                        yang sama
                        if(SN(j).re>=SN(l).re &&
SN(j).cluster==SN(l).cluster)
                             SN(j).role=1;
                             SN(j).jch=SN(j).jch+1;
                             SN(j).tel=SN(j).tel + 1;
                            SN(j).rleft=k/2;
                            SN(j).dts=sqrt((sinkx-
SN(j).x)^2 + (sinky-SN(j).y)^2;
                            CLheads=CLheads+1;
                             SN(j).cluster=CLheads;
                            CL(CLheads).x=SN(j).x;
                            CL(CLheads).y=SN(j).y;
                            CL(CLheads).id=i;
                            break
                        end
                    end
                   %Untuk mengakhiri perulangan dan lanjut
                   ke perulangan k selanjutnya jika sudah
                   didapatkan CH tiap klaster
                    if(SN(j).role==1)
                        break
                    end
                end
            end
        end
    end
    CL=CL(1:CLheads);
%Menghitung jarak node dengan masing" CH
for i=1:n
    if(SN(i).role==0 && SN(i).E>0)
      for j=1:CLheads
          if(SN(i).cluster==j)
            SN(i).dtch=sqrt((CL(j).x-SN(i).x)^2 +
            (CL(j).y-SN(i).y)^2;
          end
      end
    else
      SN(i).dtch=0;
    end
    end
```

4.1.4 Steady State Phase

Steady state merupakan proses transmission energi dari *node* menuju *sink/base station*, dimana proses ini terjadi setiap roundnya saat *node* mengirimkan informasi menuju *sink/base station* dalam sebuah topologi WSN. Dalam proses transmission energinya, fase steady state dibagi menjadi 2 tahapan yaitu sebagai berikut.

A. Transmission Energi Pada Node Biasa

Pada proses ini merupakan proses bagaimana perhitungan energi yang dihabiskan setiap *node* yang ada dalam jaringan setiap proses transmission terjadi. Setelah klaster terbentuk dan masuk ke tahap *steady state* setiap *node* akan dihitung total energi yang dikeluarkan dengan menggunakan persamaan (6) yang disimpan di variabel Etx. Nilai dari variabel etx ini akan dikurangi dengan jumlah energi awal yang dimiliki setiap *node*. Variabel energi digunakan untuk menyimpan nilai total konsumsi energi setiap *node* yang ada setiap roundnya.

Kemudian ketika *node* mengirimkan data menuju CH, maka CH yang menerima data juga dihitung energi yang dikeluarkan saat menerima data dengan menggunakan persamaan (7) yang disimpan di variabel Erx. Kemudian energi yang ada pada CH akan dikurangi dengan nilai pada variabel Erx yang dimana proses ini dilakukan secara terus-menerus saat CH menerima data yang dikirimkan oleh *node*.

Kemudian dalam proses ini juga dilakukan pengecekan apakah dalam proses *node* mengirimkan energi dan saat CH menerima data energi yang dimiliki masih tersisa atau sama dengan 0. Jika energi yang dimiliki habis maka variabel status dan cond pada *node* di set 0 untuk menandakan bahwa *node* sudah dalam keadaan mati dan tidak bisa mengikuti proses transmisi energi. Saat *node* dalam keadaan mati maka nilai jumlah dead_*node* ditambahkan 1 dan operating *node* dikurangi 1 setiap ditemukan kondisi *node* mati. Berikut adalah *source code* proses perhitungan energi pada *node* biasa pada tabel 4.11 berikut.

Table 4.11 Perhitungan Energi Pada Node Biasa

```
%%%Steady State Phase%%%
%Perhitungan energi pada node biasa
    for i=1:n
       if (SN(i).cond==1 && SN(i).role==0)
            if (SN(i).E>0)
            ETx= Eelec*k + Eamp * k * SN(i).dtch^2;
            SN(i).E=SN(i).E - ETx;
            SN(i).re=SN(i).E;
            energy=energy+ETx;
        end
        %Perhitungan energi saat CH menerima data yg
         dikirim node
        if SN(SN(i).chid).E>0 && SN(SN(i).chid).cond==1 &&
SN(SN(i).chid).role==1
            ERx=(Eelec+EDA) *k;
            energy=energy+ERx;
            SN(SN(i).chid).E=SN(SN(i).chid).E - ERx;
             %Jika energi CH habis saat menerima data yang
             dikirim node
             if (SN(SN(i).chid).E<=0 &&</pre>
SN(SN(i).chid).status==1)
                SN(SN(i).chid).cond=0;
                SN(SN(i).chid).rop=rnd;
                SN(i).E=0;
                dead nodes=dead nodes +1;
                operating_nodes= operating_nodes - 1;
                SN(i).status=0;
             end
        end
        %Jika energi node habis saat proses transmisi
        if (SN(i).E<=0 && SN(i).status==1)</pre>
            dead nodes=dead nodes +1;
            operating nodes = operating nodes - 1;
            SN(i).cond=0;
            SN(i).chid=0;
            SN(i).rop=rnd;
            SN(i).E=0;
            SN(i).status=0;
        end
    end
```

B. Transmiision Energi Pada Node Sebagai CH

Pada proses ini tidak jauh berbeda dengan proses perhitungan energi pada *node*, yaitu yang membedakan adalah hanya jarak dimana jarak yang digunakan yaitu jarak CH dengan *sink/base station* yang nilainya berada di

variabel SN.dts. Dimana akan dicek apakah SN.role==1 yaitu *node* sebagai CH maka akan masuk ke proses ini.

Dalam proses ini juga dicek kondisi CH apakah energi yang ada pada CH masih tersisa atau tidak, jika energi CH <=0 maka variabel status dan cond di set menjadi 0 untuk menandakan bahwa CH tersebut dalam kondisi mati. Jika CH berada dalam kondisi mati maka variabel *dead_node* ditambahkan 1 dan operating_nodes dikurangi 1. Berikut adalah *source code* proses perhitungan energi pada *node* biasa pada tabel 4.12 berikut.

Table 4.12 Perhitungan Energi Node Sebagai CH

```
%Perhitungan energi pada Cluster Head
   for i=1:n
     if (SN(i).cond==1 && SN(i).role==1)
         if (SN(i).E>0)
            ETx= (Eelec+EDA)*k + Eamp * k * SN(i).dts^2;
            SN(i).E=SN(i).E - ETx;
            SN(i).re=SN(i).E;
            energy=energy+ETx;
         end
         %Jika energi CH habis saat proses transmisi
         if (SN(i).E<=0 && SN(i).status==1)</pre>
             dead nodes=dead nodes +1;
             operating nodes = operating nodes - 1;
             SN(i).cond=0;
             SN(i).rop=rnd;
             SN(i).E=0;
             SN(i).status=0;
         end
     end
   end
```

C. Proses Perhitungan Total Energi, Node Mati & Node Hidup

Pada bagian akhir setelah proses perhitungan energi, *node* mati dan *node* hidup dilakukan pada masing-masing *node* dan CH maka nilai masing-masing disimpan dalam variabel array dengan indeks sesuai rnd atau putaran yang berlangsung. Dimana nantinya aray yang terbentuk sebanyak 400 baris sesuai dengan jumlah putaran yang kita definisikan diawal yaitu 400 round. Kemudian kita tambah nilai dari rnd untuk melanjutkan proses perulangan untuk mencapai 400 round.

Kemudian setelah perulangan round selesai, data disimpan di sebuah file bertipe txt sebagai proses dokumentasi data penelitian yang ingin didapat dalam proses simulasi ini. File yang dibuat terdiri dari 3 file yaitu total_energi.txt yang menyimpan data total konsumsi energi *node* setiap roundnya, total_dn.txt yang menimpan data total *node* mati setiap round dan file total_na.txt yang menyimpan data total *node* hidup setiap round. Dilakukan juga perhitungan rata-rata iterasi yang dicapai dengan menjumlahkan variabel jml_iter setiap *round* dibagi jumlah putaran yang dilakukan, yang disimpan dalam variabel rata. Berikut adalah *source code* proses perhitungan total energi, *Dead node & node Alive* pada tabel 4.13 berikut.

Table 4.13 Perhitungan Total Energi, Dead Node & Node Alive

```
%Kalkulasi total energi, dead node & node alive
   total_energi(rnd)=total_energi2+energy;
   total_energi2=total_energi(rnd);
   total dn(rnd)=dead nodes;
   total_na(rnd)=operating_nodes;
   if(dead nodes>=n)
       break
   end
   % Next Round %
   rnd=rnd+1;
end
% Menghitung rata-rata iterasi yang dilakukan
rata=sum(jml iter)/400;
disp('Rata-rata iterasi yang dilakukan yaitu');disp(rata)
% Save data dalam bentuk file
writematrix(total_energi, 'TE-kmeansplus');
writematrix(total_dn,'TDN-kmeansplus');
writematrix(total na, 'TNA-kmeansplus');
```

4.2. Hasil dan Pengujian Sistem

Pada subbab ini akan dijelaskan mengenai hasil dari pengujian simulasi yang dilakukan dalam penelitian ini. Hasil dalam penelitian ini yaitu plotting data perbandingan total konsumsi energi, jumlah *node* mati dan *node* hidup dari kedua metode yang dilakukan dalam proses simulasi dalam penelitian ini.

4.2.1 Hasil Clustering Metode *K-Means*

Pada subbab ini menampilkan hasil proses *setup phase* yang dilakukan dengan menggunakan algoritma *K-Means Clustering*. Saat proses *ssetup phase* dilangsungkan setiap roundnya akan menghasilkan 2 plotting data yaitu sebagai berikut.

A. Ploting Titik Pusat Klaster Algoritma K-Means

Pada proses ini setelah titik pusat klaster dipilih secara acak dengan membaca data bilangan acak dari file bilacak.xlsx, maka data titik pusat klaster disimpan dalam variabel center. Dalam proses plotting data ini menampilkan salah satu cuplikan data yang ada, dimana disini manampilkan data round terakhir sebagai contoh. Berikut adalah *source code* proses plotting data titik pusat klaster algoritma *K-Means* pada tabel 4.14 berikut.

Table 4. 14 Data Titik Pusat Klaster Algoritma K-Means

```
%Plotting data round terakhir
if(rnd==round)
  figure(2)
  disp(center);
  plot(center(:,1),center(:,2),'ko','linewidth',3);
  hold on;
  grid on;
  for i=1:n
      plot(xm,ym,SN(i).x,SN(i).y,'ob',sinkx,sinky,'*r');
      title 'Wireless Sensor Network';
      xlabel '(m)';
      ylabel '(m)';
  end
end
```

Setelah *source code* diatas dijalankan maka akan menampilkan hasil plotting seperti gambar 4.2 berikut.

Gambar 4.2 Plotting Titik Pusat Klaster Algoritma *K-Means*

B. Ploting Hasil Clustering Algoritma K-Means

Pada proses ini setelah titik pusat klaster dipilih dan masing-masing node dikelompokkan hingga titik pusat klaster tidak mengalami perubahan maka akan didapatkan hasil akhir klaster node yang dibuat sesuai dengan jumlah klaster yang ditentukan. Data node tiap klasternya disimpan dalam variabel outputx dan output. Berikut adalah source code proses plotting data hasil clustering dengan algoritma K-Means pada tabel 4.15 berikut.

Table 4.15 Ploting Hasil *Clustering* Algoritma *K-Means*

```
%Menampilkan plotting data round terakhir
if (rnd==round)
   figure;
   for i=1:k
       xf=outputx{i};
       yf=outputy{i};
       if (i==1)
          plot(xf,yf,'bo','linewidth',3);
       elseif(i==2)
              plot(xf,yf,'go','linewidth',3);
       elseif(i==3)
              plot(xf,yf,'ro','linewidth',3);
       elseif(i==4)
              plot(xf,yf,'co','linewidth',3);
       elseif(i==5)
              plot(xf,yf,'mo','linewidth',3);
       elseif(i==6)
```

```
plot(xf,yf,'yo','linewidth',3);
    elseif(i==7)
           plot(xf,yf,'ko','linewidth',3);
    elseif(i==8)
           plot(xf,yf,'rx','linewidth',3);
    elseif(i==9)
           plot(xf,yf,'bx','linewidth',3);
    else
       plot(xf,yf,'gx','linewidth',3);
    end
    hold on;
    grid on;
end
figure(3)
plot(xm, ym, sinkx, sinky, '*r');
title 'Wireless Sensor Network';
xlabel '(m)';
ylabel '(m)';
hold on;
```

Setelah *source code* diatas dijalankan maka akan menampilkan hasil plotting seperti gambar 4.3 berikut dengan rata-rata iterasi yang didapat selama proses pembentukan klaster setiap roundnya sebanyak 8.35 kali.

Gambar 4.3 Plotting Hasil Clustering Dengan Algoritma K-Means

4.2.2 Hasil Clustering Metode K-Means++

Pada subbab ini menampilkan hasil proses *setup phase* yang dilakukan dengan menggunakan algoritma *K-Means++ Clustering*. Saat proses *ssetup phase*

dilangsungkan setiap roundnya akan menghasilkan 2 plotting data yaitu sebagai berikut.

A. Ploting Titik Pusat Klaster Algoritma *K-Means++*

Pada proses ini setelah titik pusat klaster dipilih, maka data titik pusat klaster disimpan dalam variabel center. Dalam proses plotting data ini menampilkan salah satu cuplikan data yang ada, dimana disini manampilkan data round terakhir sebagai contoh. Berikut adalah *source code* proses plotting data titik pusat klaster algoritma *K-Means++* pada tabel 4.16 berikut

Table 4.16 Data Titik Pusat Klaster Algoritma K-Means++

```
%Plotting data round terakhir
if(rnd==round)
  figure(2)
  disp(center);
  plot(center(:,1),center(:,2),'ko','linewidth',3);
  hold on;
  grid on;
  for i=1:n
      plot(xm,ym,SN(i).x,SN(i).y,'ob',sinkx,sinky,'*r');
      title 'Wireless Sensor Network';
      xlabel '(m)';
      ylabel '(m)';
  end
end
```

Setelah *source code* diatas dijalankan maka akan menampilkan hasil plotting seperti gambar 4.4 berikut

Gambar 4.4 Titik Pusat Klaster Algoritma *K-Means++*

B. Ploting Hasil *Clustering* Algoritma *K-Means++*

Pada proses ini setelah titik pusat klaster dipilih dan masing-masing *node* dikelompokkan hingga titik pusat klaster tidak mengalami perubahan maka akan didapatkan hasil akhir klaster *node* yang dibuat sesuai dengan jumlah klaster yang ditentukan. Data *node* tiap klasternya disimpan dalam variabel outputx dan output. Berikut adalah *source code* proses plotting data hasil *clustering* dengan algoritma *K-Means++* pada tabel 4.17 berikut

Table 4.17 Ploting Hasil *Clustering* Algoritma *K-Means++*

```
%Menampilkan data round terakhir
if (rnd==round)
   figure;
   for i=1:k
       xf=outputx{i};
       yf=outputy{i};
       if (i==1)
          plot(xf,yf,'bo','linewidth',3);
       elseif(i==2)
              plot(xf,yf,'go','linewidth',3);
       elseif(i==3)
              plot(xf,yf,'ro','linewidth',3);
       elseif(i==4)
              plot(xf, yf, 'co', 'linewidth', 3);
       elseif(i==5)
              plot(xf,yf,'mo','linewidth',3);
       elseif(i==6)
```

```
plot(xf,yf,'yo','linewidth',3);
    elseif(i==7)
           plot(xf,yf,'ko','linewidth',3);
    elseif(i==8)
           plot(xf,yf,'rx','linewidth',3);
    elseif(i==9)
           plot(xf,yf,'bx','linewidth',3);
    else
       plot(xf,yf,'gx','linewidth',3);
    end
    hold on;
    grid on;
end
figure(3)
plot(xm,ym,sinkx,sinky,'*r');
title 'Wireless Sensor Network';
xlabel '(m)';
ylabel '(m)';
hold on;
```

Setelah *source code* diatas dijalankan maka akan menampilkan hasil plotting seperti gambar 4.5 berikut dengan rata-rata iterasi yang didapat selama proses pembentukan klaster setiap roundnya sebanyak 14 kali.

Gambar 4.5 Plotting Hasil *Clustering* Dengan Algoritma *K-Means++*

4.2.3 Pengujian Hasil Total Konsumsi Energi

Total konsumsi energi merupakan jumlah energi yang dikeluarkan oleh setiap *node* saat proses pengiriman data yang ada dalam jaringan WSN. Dalam penelitian ini setiap total konsumsi energi yang dikeluarkan oleh 2 protokol jaringan

yaitu LEACH yang dioptimasi dengan algoritma *K-Means* dengan LEACH yang dioptimasi dengan algoritma *K-Means*++ telah disimpan dalam 2 file txt selama proses simulasi berlangsung.

Pada protokol LEACH dengan algoritma *K-Means* disimpan pada file TE-kmeans.txt dan protokol LEACH dengan algoritma *K-Means++*. Berdasarkan penelitian yang dilakukan selama 400 round, didapatkan hasil perbandingan total konsumsi energi seperti gambar 4.6 berikut.

Gambar 4.6 Hasil Perbandingan Total Konsumsi Energi

Berdasarkan gambar 4.6 menunjukan bahwa protokol LEACH yang dimodifikasi dengan algoritma *K-Means*++ atau KM-LEACH lebih hemat energi dibandingkan dengan LEACH yang dioptimasi dengan algoritma *K-Means*, dimana KM-LEACH menghabiskan total konsumsi energi sebesar 40.86 Joule. Lebih hemat dibandingkan LEACH dengan algoritma *K-Means* yang menghabiskan energi sebesar 48.40 Joule.

4.2.4 Pengujian Hasil Jumlah *Dead Node*

Dead node merupakan suatu kondisi dimana jika energi yang dimiliki oleh node kurang dari sama dengan 0 selama proses simulasi dalam topologi WSN. Dalam penelitian ini dilakukan perbandingan antara kedua protokol yang

disimulasikan yaitu LEACH dengan algoritma *K-Means*++ atau KM-LEACH dan LEACH yang dimodifikasi dengan algoritma *K-Mean*, dimana kedua hasil simulasi telah disimpan dalam 2 file txt yaitu TDN-kmeans.txt dan TDN-kmeansplus.txt. Berdasarkan penelitian yang dilakukan selama 400 round, didapatkan hasil perbandingan total *dead node* seperti gambar 4.7 berikut.

Gambar 4.7 Hasil Perbandingan Jumlah *Dead Node*

Berdasarkan gambar 4.7 menunjukan bahwa protokol LEACH yang dimodifikasi dengan algoritma *K-Means++* atau KM-LEACH lebih stabil dibandingkan dengan LEACH yang dioptimasi dengan algoritma *K-Means*, dimana KM-LEACH memiliki jumlah *dead node* sebanyak 63 *node*. Lebih baik dibandingkan LEACH dengan algoritma *K-Means* yang memiliki jumlah *dead node* sebanyak 81 *node*.

4.2.5 Pengujian Hasil Jumlah *Node* Alive

Node alive merupakan jumlah node hidup yang tersisa selama proses transmisi energi pada topologi WSN. Dalam penelitian ini dilakukan perbandingan antara kedua protokol yang disimulasikan yaitu LEACH dengan algoritma *K-Means++* atau KM-LEACH dan LEACH yang dimodifikasi dengan algoritma *K-Mean*, dimana kedua hasil simulasi telah disimpan dalam 2 file txt yaitu TNA-

kmeans.txt dan TNA-kmeansplus.txt. Berdasarkan penelitian yang dilakukan selama 400 round, didapatkan hasil perbandingan total *node alive* seperti gambar 4.8 berikut.

Gambar 4.8 Perbandingan Jumlah Node Alive

Berdasarkan gambar 4.8 menunjukan bahwa protokol LEACH yang dimodifikasi dengan algoritma *K-Means++* atau KM-LEACH memiliki masa hidup lebih baik dibandingkan dengan LEACH yang dioptimasi dengan algoritma *K-Means*, dimana KM-LEACH memiliki jumlah *node alive* sebanyak 37 *node*. Lebih baik dibandingkan LEACH dengan algoritma *K-Means* yang memiliki jumlah *dead node* sebanyak 19 *node*.

BAB V

PENUTUP

5.1 Kesimpulan

Berdasarkan implementasi penelitian yang telah dilakukan dan hasil yang telah didapat, dapat ditarik kesimpulan sebagai berikut:

- Algoritma yang diusulkan yaitu K-Means++ Clustering telah berhasil diimplementasikan pada LEACH protokol dengan menggunakan software Matlab 2015 A untuk mengoptimasi fase setup phase yang ada pada protokol ini.
- 2. Dari hasil yang didapat dan pengujian yang dilakukan dari segi total konsumsi energi yang dihasilkan terbukti KM-LEACH dengan algoritma K-Means++ lebih efisien dan hemat energi dibandingkan dengan LEACH dengan algoritma K-Means yaitu sebesar 40.86 Joule berbanding 48.40 Joule selama proses simulasi berlangsung.
- 3. Dari hasil jumlah *dead node* yang didapat juga menunjukkan bahwa KM-LEACH dengan algoritma *K-Means++* yang memiliki total konsumsi energi yang lebih efisien dapat mengurangi jumlah *dead node* yang dihasilkan dalam jaringan dibandingkan LEACH dengan algoritma *K-Means*, yaitu sebanyak 63 *node* berbanding 81 *node* selama proses simulasi berlangsung.
- 4. Efisiensi energi yang didapat juga berdampak pada jumlah *node alive* yang ada, dimana KM-LEACH dengan algoritma *K-Means++* dapat meningkatkan masa hidup *node* yang lebih baik dibandingkan LEACH dengan algoritma *K-Means*, yaitu sebesar 37 *node* berbanding 19 *node* selama proses simulasi berlangsung.

5.2 Saran

Dari hasil penelitian yang didapatkan, penulis memberikan beberapa saran yang dapat digunakan untuk penelitian selanjutnya dengan menggunakan topik yang sama:

- 1. Algoritma *K-Means*++ dapat menunjukkan hasil efisiensi energi lebih baik dibandingkan dengan algoritma *K-Means*, namun dari segi kompleksitasnya algoritma *K-Means*++ masih kurang karena proses iterasi yang dilakukan dalam pembentukan klaster lebih banyak dibandingkan dengan algoritma *K-Means* biasa yaitu dengan rata-rata 14 iterasi berbanding 8.35 iterasi sehingga jika diimplementasikan secara nyata pada *node* memerlukan spesifikasi memori *node* yg lebih besar. Dalam penelitian selanjutnya dapat menggunakan algoritma lain yang memiliki kompleksitas yg lebih rendah dibandingkan dengan metode yang diterapkan.
- 2. Pada penelitisn ini pembangkitan bilangan acak pada algoritma K-Means masih dilakukan secara manual melalui read file tidak secara otomatis pada program karena pada matlab belum memungkinkan membangkitkan bilangan acak unik berbeda dengan iterasi yang banyak. Sehingga dalam penilitian selanjutnya diharapkan pembangkitan bilangan acak dapat dilakukan secara otomatis melalui program.

DAFTAR PUSTAKA

- Arthur, D., and Sergei Vassilvitskii. (2007). *K-Means++*: The Advantages of Careful Seeding. *Proc. of the annu. ACM-SIAM Symp. on Discrete Algorithm*, *Vol.*8 hal.1027-1035. doi:10.1145/1283383.1283494
- Heinzelman, W. B., Anantha P.Chandrakasan and Hari Balakrishnan. (2002). An Application-Specific Protocol Architecture for Wireless Microsensor Networks. *IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS*, VOL. 1, NO. 4, OCTOBER 2002, hal.660-670.
- Hibrian, M., Wardi and Agussalim. (2020). Peningkatan Network Lifetime Menggunakan Cluster Based Pada Wireless Sensor Network. *JITCE* (Journal of Information Technology and Computer Engineering), Vol. 04 No. 01 (2020), hal.16-21.
- Han, J., Micheline Kamber and Jian Pei (2011). Data Mining Concept and Techniques. USA, Elsevier Inc.
- Novid, I., Delsina Faiza, Thamrin and Winda Agustiarmi. (2019). Analisa Perbandingan Routing Protokol Pada Wireless Sensor Networks (WSNs). *Jurnal Vokasional Teknik Elektronika dan Informatika, Vol. 7, No. 2, Juni* 2019.
- Permana, M. A. (2015). Analisa Algoritma LEACH Pada Jaringan Sensor Nirkabel. *Proceeding Seminar Tugas Akhir Jurusan Teknik Elektro FTI-ITS*.
- Ridwan, A., Rian Ferdian and Rahmadia Kurnia. (2020). Optimasi Protokol LEACH Untuk Meningkatkan Stabilitas Pada Wireless Sensor Network. RESTI (Rekayasa Sistem dan Teknologi Informasi, Vol.4 No.1, hal.193 - 200.
- Saheb, P., and Kanika Sharma. (2017). Improved LEACH Protocol Based on *K-Means* Clustering Algorithm for Wireless Sensor Network. *International Journal of Electronics & Communication Technology*, 8(4).
- Salem, A. O. A., and Noor Shudifat. (2019). Enhanced LEACH protocol for increasing a lifetime of WSNs. *Springer*(23), hal.901–907.

- Sohraby, K., Daniel Minoli and Taieb Znati (2007). Wireless Sensor Networks

 Technology, Protocols, and Applications. New Jersey, John Wiley & Sons,

 Inc.
- Susanto, E. B. (2016). Evaluasi Hasil Klaster Pada Dataset Iris, Soybean-small, Wine Menggunakan Algoritma Fuzzy C-Means dan Kmeans++. *SURYA INFORMATIKA*, Vol. 2 No. 1 Mei 2016.
- Tonapa, J. R., and Indrastanti Ratna W. (2016). Analisis Ketahanan Energi Oleh Low Energy Adaptive Clustering Hierarchy (LEACH) Pada Cluster Head Wireless Sensor Network (WSN). *Semantic Scholar*.

LAMPIRAN

Lampiran 1. Titik Kordinat *Node*

No	Kordinat x	Kordinat y
1	78.287	69.379
2	0.98023	84.321
3	92.233	77.095
4	4.266	37.819
5	70.434	72.951
6	22.428	26.905
7	67.303	47.749
8	62.372	23.644
9	17.712	82.964
10	76.692	93.448
11	10.789	18.223
12	9.9095	48.976
13	19.325	89.589
14	9.909	4.4166
15	55.73	77.25
16	31.194	17.898
17	33.896	21.015
18	55.015	90.636
19	62.892	10.153
20	39.085	5.4617
21	60.128	43.172
22	99.756	81.16
23	48.565	89.445
24	13.755	39
25	92.736	91.749
26	71.357	61.834

27	34.329	93.603
28	12.477	73.059
29	64.648	83.315
30	39.828	74.982
31	83.522	32.246
32	65.226	97.913
33	74.931	33.042
34	61.947	36.064
35	75.651	41.39
36	49.235	69.474
37	97.273	32.775
38	83.78	73.907
39	95.417	3.1923
40	35.687	66.265
41	28.15	23.038
42	71.113	62.457
43	69.061	66.044
44	4.7555	34.878
45	45.134	24.09
46	71.505	85.618
47	28.151	73.105
48	13.776	83.672
49	13.86	8.821
50	36.616	80.676
51	62.378	48.959
52	87.705	35.314
53	44.944	96.353
54	4.2298	97.296
55	18.921	66.712
56	8.644	67.511
57	36.102	62.028

58	81.115	1.9257
59	8.3874	97.48
60	65.135	23.124
61	40.349	12.202
62	26.844	25.785
63	33.167	15.223
64	34.801	12.166
65	88.415	9.4278
66	93.004	39.902
67	4.7401	34.237
68	73.597	79.468
69	4.491	68.622
70	89.363	5.4792
71	30.366	4.6192
72	19.548	72.017
73	72.175	87.78
74	58.243	7.0684
75	92.274	80.037
76	28.595	14.366
77	98.478	71.568
78	83.897	43.326
79	47.062	16.071
80	26.909	74.902
81	75.389	64.681
82	30.775	13.872
83	47.557	36.246
84	78.811	78.03
85	66.851	13.35
86	2.1556	55.984
87	30.082	93.941
88	98.09	28.662

89	80.082	89.611
90	19.753	88.402
91	94.373	14.916
92	72.839	27.676
93	2.5857	44.653
94	64.63	12.12
95	37.231	93.713
96	82.953	84.909
97	37.253	99.318
98	87.255	93.35
99	66.846	20.678
100	65.385	7.2052

Lampiran 2. Data Bilangan Acak

No Dound		Klaster									
No Round	1	2	3	4	5	6	7	8	9	10	
1	99	35	93	54	21	76	73	17	90	87	
2	15	50	29	6	74	2	70	31	7	1	
3	78	10	99	74	80	62	76	36	66	97	
4	89	31	57	65	72	76	82	56	13	64	
5	29	7	73	36	61	24	14	51	11	78	
6	49	51	83	29	78	73	70	8	40	77	
7	52	18	26	86	29	1	32	88	73	19	
8	59	11	41	16	12	99	98	91	85	71	
9	64	23	36	58	69	3	83	22	99	6	
10	52	70	55	58	83	57	51	91	8	95	
11	21	57	41	23	49	98	34	9	39	18	
12	82	51	70	89	45	68	43	38	78	72	
13	83	28	60	54	94	78	37	45	36	39	
14	68	46	10	86	19	74	87	26	79	96	
15	19	99	67	82	96	73	36	65	61	90	
16	95	91	46	17	1	10	84	98	31	11	
17	98	93	29	16	66	98	40	95	6	34	
18	7	46	75	48	37	43	36	42	4	66	
19	44	78	6	95	41	79	20	28	46	53	
20	25	67	66	94	54	92	71	91	48	79	
21	65	81	48	9	88	22	10	37	77	83	
22	7	11	54	15	9	18	3	14	83	84	
23	51	96	24	12	52	54	85	81	58	26	
24	16	88	72	24	73	37	52	81	57	51	
25	56	62	84	66	20	27	19	37	100	16	
26	85	97	46	16	15	48	71	72	20	54	
27	53	100	87	85	39	63	55	37	4	13	

28	72	45	9	85	18	83	28	36	98	68
29	88	10	4	92	24	17	40	32	45	42
30	97	51	21	24	27	54	86	31	9	61
31	5	34	87	43	46	94	88	29	24	81
32	4	74	71	33	64	100	32	45	41	80
33	74	30	19	27	45	63	38	66	71	31
34	78	86	22	75	4	15	76	30	1	59
35	75	62	30	90	42	7	93	19	28	41
36	52	23	84	78	92	15	58	27	96	4
37	1	28	20	21	65	71	64	16	95	49
38	78	100	66	59	25	44	24	31	19	33
39	80	95	96	98	27	14	16	68	51	100
40	82	43	61	97	87	14	92	50	21	98
41	32	11	26	78	53	17	52	62	14	76
42	56	21	61	54	100	37	46	23	17	2
43	99	94	73	70	16	60	84	41	42	65
44	5	78	26	25	1	94	62	58	22	60
45	27	97	19	80	94	85	32	67	5	91
46	69	16	99	44	27	100	39	49	3	88
47	100	61	28	6	88	92	36	73	97	22
48	49	81	79	10	27	82	96	13	94	55
49	55	88	8	16	72	31	40	48	70	86
50	76	22	80	21	20	2	15	81	50	53
51	83	61	50	87	80	90	75	54	37	52
52	99	94	68	35	32	74	92	5	23	93
53	3	60	36	61	12	13	32	29	93	63
54	39	92	87	79	83	7	88	43	23	36
55	34	17	71	8	61	49	29	10	15	23
56	86	32	40	37	56	74	9	5	35	95
57	94	30	25	53	95	79	54	91	67	44
58	56	40	98	5	82	95	88	25	91	50
L				·					·	

59 79 1 85 26 99 91 12 63 25 9 60 15 59 67 86 9 6 25 74 43 56 61 43 47 100 80 90 41 53 23 69 40 62 40 94 92 63 12 96 35 76 55 70 63 33 77 35 4 75 32 76 73 12 38 64 29 24 71 46 96 28 60 33 86 45 65 30 23 60 31 39 8 2 61 68 15 66 15 30 11 18 38 51 89 54 62 69 67 26 60 11 34 14 <											
61 43 47 100 80 90 41 53 23 69 40 62 40 94 92 63 12 96 35 76 55 70 63 33 77 35 4 75 32 76 73 12 38 64 29 24 71 46 96 28 60 33 86 45 65 30 23 60 31 39 8 2 61 68 15 66 15 30 11 18 38 51 89 54 62 69 67 26 60 11 34 14 70 61 52 59 85 68 16 99 57 79 31 32 56 82 54 72 69 46 72 2 18 28	59	79	1	85	26	99	91	12	63	25	9
62 40 94 92 63 12 96 35 76 55 70 63 33 77 35 4 75 32 76 73 12 38 64 29 24 71 46 96 28 60 33 86 45 65 30 23 60 31 39 8 2 61 68 15 66 15 30 11 18 38 51 89 54 62 69 67 26 60 11 34 14 70 61 52 59 85 68 16 99 57 79 31 32 56 82 54 72 69 46 72 2 18 28 44 94 25 80 89 70 3 88 82 98 83 86	60	15	59	67	86	9	6	25	74	43	56
63 33 77 35 4 75 32 76 73 12 38 64 29 24 71 46 96 28 60 33 86 45 65 30 23 60 31 39 8 2 61 68 15 66 15 30 11 18 38 51 89 54 62 69 67 26 60 11 34 14 70 61 52 59 85 68 16 99 57 79 31 32 56 82 54 72 69 46 72 2 18 28 44 94 25 80 89 70 3 88 82 98 83 86 1 94 10 27 71 94 79 2 8 26 <td< td=""><td>61</td><td>43</td><td>47</td><td>100</td><td>80</td><td>90</td><td>41</td><td>53</td><td>23</td><td>69</td><td>40</td></td<>	61	43	47	100	80	90	41	53	23	69	40
64 29 24 71 46 96 28 60 33 86 45 65 30 23 60 31 39 8 2 61 68 15 66 15 30 11 18 38 51 89 54 62 69 67 26 60 11 34 14 70 61 52 59 85 68 16 99 57 79 31 32 56 82 54 72 69 46 72 2 18 28 44 94 25 80 89 70 3 88 82 98 83 86 1 94 10 27 71 94 79 2 8 26 21 81 91 63 28 72 79 29 6 28 90 <td< td=""><td>62</td><td>40</td><td>94</td><td>92</td><td>63</td><td>12</td><td>96</td><td>35</td><td>76</td><td>55</td><td>70</td></td<>	62	40	94	92	63	12	96	35	76	55	70
65 30 23 60 31 39 8 2 61 68 15 66 15 30 11 18 38 51 89 54 62 69 67 26 60 11 34 14 70 61 52 59 85 68 16 99 57 79 31 32 56 82 54 72 69 46 72 2 18 28 44 94 25 80 89 70 3 88 82 98 83 86 1 94 10 27 71 94 79 2 8 26 21 81 91 63 28 72 79 29 6 28 90 13 40 48 89 20 73 2 85 15 11 72	63	33	77	35	4	75	32	76	73	12	38
66 15 30 11 18 38 51 89 54 62 69 67 26 60 11 34 14 70 61 52 59 85 68 16 99 57 79 31 32 56 82 54 72 69 46 72 2 18 28 44 94 25 80 89 70 3 88 82 98 83 86 1 94 10 27 71 94 79 2 8 26 21 81 91 63 28 72 79 29 6 28 90 13 40 48 89 20 73 2 85 15 11 72 37 95 70 74 62 74 100 91 53 31 45 <	64	29	24	71	46	96	28	60	33	86	45
67 26 60 11 34 14 70 61 52 59 85 68 16 99 57 79 31 32 56 82 54 72 69 46 72 2 18 28 44 94 25 80 89 70 3 88 82 98 83 86 1 94 10 27 71 94 79 2 8 26 21 81 91 63 28 72 79 29 6 28 90 13 40 48 89 20 73 2 85 15 11 72 37 95 70 74 62 74 100 91 53 31 45 13 17 82 44 2 75 34 10 89 92 18 <t< td=""><td>65</td><td>30</td><td>23</td><td>60</td><td>31</td><td>39</td><td>8</td><td>2</td><td>61</td><td>68</td><td>15</td></t<>	65	30	23	60	31	39	8	2	61	68	15
68 16 99 57 79 31 32 56 82 54 72 69 46 72 2 18 28 44 94 25 80 89 70 3 88 82 98 83 86 1 94 10 27 71 94 79 2 8 26 21 81 91 63 28 72 79 29 6 28 90 13 40 48 89 20 73 2 85 15 11 72 37 95 70 74 62 74 100 91 53 31 45 13 17 82 44 2 75 34 10 89 92 18 9 9 48 53 3 76 22 11 8 12 27 9<	66	15	30	11	18	38	51	89	54	62	69
69 46 72 2 18 28 44 94 25 80 89 70 3 88 82 98 83 86 1 94 10 27 71 94 79 2 8 26 21 81 91 63 28 72 79 29 6 28 90 13 40 48 89 20 73 2 85 15 11 72 37 95 70 74 62 74 100 91 53 31 45 13 17 82 44 2 75 34 10 89 92 18 9 9 48 53 3 76 22 11 8 12 27 9 23 57 75 47 77 30 6 11 15 75 95 </td <td>67</td> <td>26</td> <td>60</td> <td>11</td> <td>34</td> <td>14</td> <td>70</td> <td>61</td> <td>52</td> <td>59</td> <td>85</td>	67	26	60	11	34	14	70	61	52	59	85
70 3 88 82 98 83 86 1 94 10 27 71 94 79 2 8 26 21 81 91 63 28 72 79 29 6 28 90 13 40 48 89 20 73 2 85 15 11 72 37 95 70 74 62 74 100 91 53 31 45 13 17 82 44 2 75 34 10 89 92 18 9 9 48 53 3 76 22 11 8 12 27 9 23 57 75 47 77 30 6 11 15 75 95 8 42 92 90 78 52 46 77 97 37 16 </td <td>68</td> <td>16</td> <td>99</td> <td>57</td> <td>79</td> <td>31</td> <td>32</td> <td>56</td> <td>82</td> <td>54</td> <td>72</td>	68	16	99	57	79	31	32	56	82	54	72
71 94 79 2 8 26 21 81 91 63 28 72 79 29 6 28 90 13 40 48 89 20 73 2 85 15 11 72 37 95 70 74 62 74 100 91 53 31 45 13 17 82 44 2 75 34 10 89 92 18 9 9 48 53 3 76 22 11 8 12 27 9 23 57 75 47 77 30 6 11 15 75 95 8 42 92 90 78 52 46 77 97 37 16 35 26 61 92 79 23 41 97 24 49 44	69	46	72	2	18	28	44	94	25	80	89
72 79 29 6 28 90 13 40 48 89 20 73 2 85 15 11 72 37 95 70 74 62 74 100 91 53 31 45 13 17 82 44 2 75 34 10 89 92 18 9 9 48 53 3 76 22 11 8 12 27 9 23 57 75 47 77 30 6 11 15 75 95 8 42 92 90 78 52 46 77 97 37 16 35 26 61 92 79 23 41 97 24 49 44 95 100 65 14 80 65 39 31 32 14 <td< td=""><td>70</td><td>3</td><td>88</td><td>82</td><td>98</td><td>83</td><td>86</td><td>1</td><td>94</td><td>10</td><td>27</td></td<>	70	3	88	82	98	83	86	1	94	10	27
73 2 85 15 11 72 37 95 70 74 62 74 100 91 53 31 45 13 17 82 44 2 75 34 10 89 92 18 9 9 48 53 3 76 22 11 8 12 27 9 23 57 75 47 77 30 6 11 15 75 95 8 42 92 90 78 52 46 77 97 37 16 35 26 61 92 79 23 41 97 24 49 44 95 100 65 14 80 65 39 31 32 14 91 70 28 88 7 81 91 13 35 57 15 <td< td=""><td>71</td><td>94</td><td>79</td><td>2</td><td>8</td><td>26</td><td>21</td><td>81</td><td>91</td><td>63</td><td>28</td></td<>	71	94	79	2	8	26	21	81	91	63	28
74 100 91 53 31 45 13 17 82 44 2 75 34 10 89 92 18 9 9 48 53 3 76 22 11 8 12 27 9 23 57 75 47 77 30 6 11 15 75 95 8 42 92 90 78 52 46 77 97 37 16 35 26 61 92 79 23 41 97 24 49 44 95 100 65 14 80 65 39 31 32 14 91 70 28 88 7 81 91 13 35 57 15 11 67 94 49 25 82 50 41 30 10 92 <t< td=""><td>72</td><td>79</td><td>29</td><td>6</td><td>28</td><td>90</td><td>13</td><td>40</td><td>48</td><td>89</td><td>20</td></t<>	72	79	29	6	28	90	13	40	48	89	20
75 34 10 89 92 18 9 9 48 53 3 76 22 11 8 12 27 9 23 57 75 47 77 30 6 11 15 75 95 8 42 92 90 78 52 46 77 97 37 16 35 26 61 92 79 23 41 97 24 49 44 95 100 65 14 80 65 39 31 32 14 91 70 28 88 7 81 91 13 35 57 15 11 67 94 49 25 82 50 41 30 10 92 68 95 52 34 43 83 20 28 3 40 35 <td< td=""><td>73</td><td>2</td><td>85</td><td>15</td><td>11</td><td>72</td><td>37</td><td>95</td><td>70</td><td>74</td><td>62</td></td<>	73	2	85	15	11	72	37	95	70	74	62
76 22 11 8 12 27 9 23 57 75 47 77 30 6 11 15 75 95 8 42 92 90 78 52 46 77 97 37 16 35 26 61 92 79 23 41 97 24 49 44 95 100 65 14 80 65 39 31 32 14 91 70 28 88 7 81 91 13 35 57 15 11 67 94 49 25 82 50 41 30 10 92 68 95 52 34 43 83 20 28 3 40 35 88 95 70 82 94 84 88 78 13 27 89	74	100	91	53	31	45	13	17	82	44	2
77 30 6 11 15 75 95 8 42 92 90 78 52 46 77 97 37 16 35 26 61 92 79 23 41 97 24 49 44 95 100 65 14 80 65 39 31 32 14 91 70 28 88 7 81 91 13 35 57 15 11 67 94 49 25 82 50 41 30 10 92 68 95 52 34 43 83 20 28 3 40 35 88 95 70 82 94 84 88 78 13 27 89 59 68 95 52 21 85 95 65 27 17 83 73 16 98 56 58 86 10 32 73	75	34	10	89	92	18	9	9	48	53	3
78 52 46 77 97 37 16 35 26 61 92 79 23 41 97 24 49 44 95 100 65 14 80 65 39 31 32 14 91 70 28 88 7 81 91 13 35 57 15 11 67 94 49 25 82 50 41 30 10 92 68 95 52 34 43 83 20 28 3 40 35 88 95 70 82 94 84 88 78 13 27 89 59 68 95 52 21 85 95 65 27 17 83 73 16 98 56 58 86 10 32 73 35 40 25 86 61 2 17 87 88 97 38	76	22	11	8	12	27	9	23	57	75	47
79 23 41 97 24 49 44 95 100 65 14 80 65 39 31 32 14 91 70 28 88 7 81 91 13 35 57 15 11 67 94 49 25 82 50 41 30 10 92 68 95 52 34 43 83 20 28 3 40 35 88 95 70 82 94 84 88 78 13 27 89 59 68 95 52 21 85 95 65 27 17 83 73 16 98 56 58 86 10 32 73 35 40 25 86 61 2 17 87 88 97 38 50 49 75 6 71 18 35 88 3 83 29	77	30	6	11	15	75	95	8	42	92	90
80 65 39 31 32 14 91 70 28 88 7 81 91 13 35 57 15 11 67 94 49 25 82 50 41 30 10 92 68 95 52 34 43 83 20 28 3 40 35 88 95 70 82 94 84 88 78 13 27 89 59 68 95 52 21 85 95 65 27 17 83 73 16 98 56 58 86 10 32 73 35 40 25 86 61 2 17 87 88 97 38 50 49 75 6 71 18 35 88 3 83 29 60 75 73 15 86 81 82	78	52	46	77	97	37	16	35	26	61	92
81 91 13 35 57 15 11 67 94 49 25 82 50 41 30 10 92 68 95 52 34 43 83 20 28 3 40 35 88 95 70 82 94 84 88 78 13 27 89 59 68 95 52 21 85 95 65 27 17 83 73 16 98 56 58 86 10 32 73 35 40 25 86 61 2 17 87 88 97 38 50 49 75 6 71 18 35 88 3 83 29 60 75 73 15 86 81 82	79	23	41	97	24	49	44	95	100	65	14
82 50 41 30 10 92 68 95 52 34 43 83 20 28 3 40 35 88 95 70 82 94 84 88 78 13 27 89 59 68 95 52 21 85 95 65 27 17 83 73 16 98 56 58 86 10 32 73 35 40 25 86 61 2 17 87 88 97 38 50 49 75 6 71 18 35 88 3 83 29 60 75 73 15 86 81 82	80	65	39	31	32	14	91	70	28	88	7
83 20 28 3 40 35 88 95 70 82 94 84 88 78 13 27 89 59 68 95 52 21 85 95 65 27 17 83 73 16 98 56 58 86 10 32 73 35 40 25 86 61 2 17 87 88 97 38 50 49 75 6 71 18 35 88 3 83 29 60 75 73 15 86 81 82	81	91	13	35	57	15	11	67	94	49	25
84 88 78 13 27 89 59 68 95 52 21 85 95 65 27 17 83 73 16 98 56 58 86 10 32 73 35 40 25 86 61 2 17 87 88 97 38 50 49 75 6 71 18 35 88 3 83 29 60 75 73 15 86 81 82	82	50	41	30	10	92	68	95	52	34	43
85 95 65 27 17 83 73 16 98 56 58 86 10 32 73 35 40 25 86 61 2 17 87 88 97 38 50 49 75 6 71 18 35 88 3 83 29 60 75 73 15 86 81 82	83	20	28	3	40	35	88	95	70	82	94
86 10 32 73 35 40 25 86 61 2 17 87 88 97 38 50 49 75 6 71 18 35 88 3 83 29 60 75 73 15 86 81 82	84	88	78	13	27	89	59	68	95	52	21
87 88 97 38 50 49 75 6 71 18 35 88 3 83 29 60 75 73 15 86 81 82	85	95	65	27	17	83	73	16	98	56	58
88 3 83 29 60 75 73 15 86 81 82	86	10	32	73	35	40	25	86	61	2	17
	87	88	97	38	50	49	75	6	71	18	35
89 29 23 86 2 88 82 28 19 30 8	88	3	83	29	60	75	73	15	86	81	82
	89	29	23	86	2	88	82	28	19	30	8

90 49 34 16 97 40 25 96 84 26 48 91 45 48 76 42 59 2 70 75 27 29 92 42 93 32 34 52 43 92 98 87 12 93 16 80 2 28 98 99 20 76 33 73 94 24 10 16 50 18 86 23 27 64 99 95 18 87 49 66 11 59 46 90 76 75 96 18 89 75 98 29 55 43 13 72 42 97 21 81 75 26 50 12 58 73 29 67 98 69 34 28 16 100											
92 42 93 32 34 52 43 92 98 87 12 93 16 80 2 28 98 99 20 76 33 73 94 24 10 16 50 18 86 23 27 64 99 95 18 87 49 66 11 59 46 90 76 75 96 18 89 75 98 29 55 43 13 72 42 97 21 81 75 26 50 12 58 73 29 67 98 69 34 28 16 100 63 76 26 60 57 99 76 26 94 47 89 1 35 55 38 37 100 1 75 53 8 39	90	49	34	16	97	40	25	96	84	26	48
93 16 80 2 28 98 99 20 76 33 73 94 24 10 16 50 18 86 23 27 64 99 95 18 87 49 66 11 59 46 90 76 75 96 18 89 75 98 29 55 43 13 72 42 97 21 81 75 26 50 12 58 73 29 67 98 69 34 28 16 100 63 76 26 60 57 99 76 26 94 47 89 1 35 55 38 37 100 1 75 53 8 39 95 97 4 47 10 101 99 35 93 54 21	91	45	48	76	42	59	2	70	75	27	29
94 24 10 16 50 18 86 23 27 64 99 95 18 87 49 66 11 59 46 90 76 75 96 18 89 75 98 29 55 43 13 72 42 97 21 81 75 26 50 12 58 73 29 67 98 69 34 28 16 100 63 76 26 60 57 99 76 26 94 47 89 1 35 55 38 37 100 1 75 53 8 39 95 97 4 47 10 101 99 35 93 54 21 76 73 17 90 87 102 15 50 29 6 74	92	42	93	32	34	52	43	92	98	87	12
95 18 87 49 66 11 59 46 90 76 75 96 18 89 75 98 29 55 43 13 72 42 97 21 81 75 26 50 12 58 73 29 67 98 69 34 28 16 100 63 76 26 60 57 99 76 26 94 47 89 1 35 55 38 37 100 1 75 53 8 39 95 97 4 47 10 101 99 35 93 54 21 76 73 17 90 87 102 15 50 29 6 74 2 70 31 7 1 103 78 10 99 74 80	93	16	80	2	28	98	99	20	76	33	73
96 18 89 75 98 29 55 43 13 72 42 97 21 81 75 26 50 12 58 73 29 67 98 69 34 28 16 100 63 76 26 60 57 99 76 26 94 47 89 1 35 55 38 37 100 1 75 53 8 39 95 97 4 47 10 101 99 35 93 54 21 76 73 17 90 87 102 15 50 29 6 74 2 70 31 7 1 103 78 10 99 74 80 62 76 36 66 97 104 89 31 57 65 72	94	24	10	16	50	18	86	23	27	64	99
97 21 81 75 26 50 12 58 73 29 67 98 69 34 28 16 100 63 76 26 60 57 99 76 26 94 47 89 1 35 55 38 37 100 1 75 53 8 39 95 97 4 47 10 101 99 35 93 54 21 76 73 17 90 87 102 15 50 29 6 74 2 70 31 7 1 103 78 10 99 74 80 62 76 36 66 97 104 89 31 57 65 72 76 82 56 13 64 105 29 7 73 36 61	95	18	87	49	66	11	59	46	90	76	75
98 69 34 28 16 100 63 76 26 60 57 99 76 26 94 47 89 1 35 55 38 37 100 1 75 53 8 39 95 97 4 47 10 101 99 35 93 54 21 76 73 17 90 87 102 15 50 29 6 74 2 70 31 7 1 103 78 10 99 74 80 62 76 36 66 97 104 89 31 57 65 72 76 82 56 13 64 105 29 7 73 36 61 24 14 51 11 78 106 49 51 83 29 78	96	18	89	75	98	29	55	43	13	72	42
99 76 26 94 47 89 1 35 55 38 37 100 1 75 53 8 39 95 97 4 47 10 101 99 35 93 54 21 76 73 17 90 87 102 15 50 29 6 74 2 70 31 7 1 103 78 10 99 74 80 62 76 36 66 97 104 89 31 57 65 72 76 82 56 13 64 105 29 7 73 36 61 24 14 51 11 78 106 49 51 83 29 78 73 70 8 40 77 107 52 18 26 86 29	97	21	81	75	26	50	12	58	73	29	67
100 1 75 53 8 39 95 97 4 47 10 101 99 35 93 54 21 76 73 17 90 87 102 15 50 29 6 74 2 70 31 7 1 103 78 10 99 74 80 62 76 36 66 97 104 89 31 57 65 72 76 82 56 13 64 105 29 7 73 36 61 24 14 51 11 78 106 49 51 83 29 78 73 70 8 40 77 107 52 18 26 86 29 1 32 88 73 19 108 59 11 41 16 12 99 98 91 85 71 109 64 23 36	98	69	34	28	16	100	63	76	26	60	57
101 99 35 93 54 21 76 73 17 90 87 102 15 50 29 6 74 2 70 31 7 1 103 78 10 99 74 80 62 76 36 66 97 104 89 31 57 65 72 76 82 56 13 64 105 29 7 73 36 61 24 14 51 11 78 106 49 51 83 29 78 73 70 8 40 77 107 52 18 26 86 29 1 32 88 73 19 108 59 11 41 16 12 99 98 91 85 71 109 64 23 36 58 69	99	76	26	94	47	89	1	35	55	38	37
102 15 50 29 6 74 2 70 31 7 1 103 78 10 99 74 80 62 76 36 66 97 104 89 31 57 65 72 76 82 56 13 64 105 29 7 73 36 61 24 14 51 11 78 106 49 51 83 29 78 73 70 8 40 77 107 52 18 26 86 29 1 32 88 73 19 108 59 11 41 16 12 99 98 91 85 71 109 64 23 36 58 69 3 83 22 99 6 110 52 70 55 58 83 57 51 91 8 95 111 21 57 41	100	1	75	53	8	39	95	97	4	47	10
103 78 10 99 74 80 62 76 36 66 97 104 89 31 57 65 72 76 82 56 13 64 105 29 7 73 36 61 24 14 51 11 78 106 49 51 83 29 78 73 70 8 40 77 107 52 18 26 86 29 1 32 88 73 19 108 59 11 41 16 12 99 98 91 85 71 109 64 23 36 58 69 3 83 22 99 6 110 52 70 55 58 83 57 51 91 8 95 111 21 57 41 23 49 98 34 9 39 18 112 82 51 70 <td>101</td> <td>99</td> <td>35</td> <td>93</td> <td>54</td> <td>21</td> <td>76</td> <td>73</td> <td>17</td> <td>90</td> <td>87</td>	101	99	35	93	54	21	76	73	17	90	87
104 89 31 57 65 72 76 82 56 13 64 105 29 7 73 36 61 24 14 51 11 78 106 49 51 83 29 78 73 70 8 40 77 107 52 18 26 86 29 1 32 88 73 19 108 59 11 41 16 12 99 98 91 85 71 109 64 23 36 58 69 3 83 22 99 6 110 52 70 55 58 83 57 51 91 8 95 111 21 57 41 23 49 98 34 9 39 18 112 82 51 70 89 45 68 43 38 78 72 113 83 28 60 <td>102</td> <td>15</td> <td>50</td> <td>29</td> <td>6</td> <td>74</td> <td>2</td> <td>70</td> <td>31</td> <td>7</td> <td>1</td>	102	15	50	29	6	74	2	70	31	7	1
105 29 7 73 36 61 24 14 51 11 78 106 49 51 83 29 78 73 70 8 40 77 107 52 18 26 86 29 1 32 88 73 19 108 59 11 41 16 12 99 98 91 85 71 109 64 23 36 58 69 3 83 22 99 6 110 52 70 55 58 83 57 51 91 8 95 111 21 57 41 23 49 98 34 9 39 18 112 82 51 70 89 45 68 43 38 78 72 113 83 28 60 54 94 78 37 45 36 39 114 68 46 10 <td>103</td> <td>78</td> <td>10</td> <td>99</td> <td>74</td> <td>80</td> <td>62</td> <td>76</td> <td>36</td> <td>66</td> <td>97</td>	103	78	10	99	74	80	62	76	36	66	97
106 49 51 83 29 78 73 70 8 40 77 107 52 18 26 86 29 1 32 88 73 19 108 59 11 41 16 12 99 98 91 85 71 109 64 23 36 58 69 3 83 22 99 6 110 52 70 55 58 83 57 51 91 8 95 111 21 57 41 23 49 98 34 9 39 18 112 82 51 70 89 45 68 43 38 78 72 113 83 28 60 54 94 78 37 45 36 39 114 68 46 10 86 19 74 87 26 79 96 115 19 99 67 </td <td>104</td> <td>89</td> <td>31</td> <td>57</td> <td>65</td> <td>72</td> <td>76</td> <td>82</td> <td>56</td> <td>13</td> <td>64</td>	104	89	31	57	65	72	76	82	56	13	64
107 52 18 26 86 29 1 32 88 73 19 108 59 11 41 16 12 99 98 91 85 71 109 64 23 36 58 69 3 83 22 99 6 110 52 70 55 58 83 57 51 91 8 95 111 21 57 41 23 49 98 34 9 39 18 112 82 51 70 89 45 68 43 38 78 72 113 83 28 60 54 94 78 37 45 36 39 114 68 46 10 86 19 74 87 26 79 96 115 19 99 67 82 96 73 36 65 61 90 116 95 91 46<	105	29	7	73	36	61	24	14	51	11	78
108 59 11 41 16 12 99 98 91 85 71 109 64 23 36 58 69 3 83 22 99 6 110 52 70 55 58 83 57 51 91 8 95 111 21 57 41 23 49 98 34 9 39 18 112 82 51 70 89 45 68 43 38 78 72 113 83 28 60 54 94 78 37 45 36 39 114 68 46 10 86 19 74 87 26 79 96 115 19 99 67 82 96 73 36 65 61 90 116 95 91 46 17 1 10 84 98 31 11 117 68 93 29<	106	49	51	83	29	78	73	70	8	40	77
109 64 23 36 58 69 3 83 22 99 6 110 52 70 55 58 83 57 51 91 8 95 111 21 57 41 23 49 98 34 9 39 18 112 82 51 70 89 45 68 43 38 78 72 113 83 28 60 54 94 78 37 45 36 39 114 68 46 10 86 19 74 87 26 79 96 115 19 99 67 82 96 73 36 65 61 90 116 95 91 46 17 1 10 84 98 31 11 117 68 93 29 16 66 98 40 95 6 34 118 7 46 75 <td>107</td> <td>52</td> <td>18</td> <td>26</td> <td>86</td> <td>29</td> <td>1</td> <td>32</td> <td>88</td> <td>73</td> <td>19</td>	107	52	18	26	86	29	1	32	88	73	19
110 52 70 55 58 83 57 51 91 8 95 111 21 57 41 23 49 98 34 9 39 18 112 82 51 70 89 45 68 43 38 78 72 113 83 28 60 54 94 78 37 45 36 39 114 68 46 10 86 19 74 87 26 79 96 115 19 99 67 82 96 73 36 65 61 90 116 95 91 46 17 1 10 84 98 31 11 117 68 93 29 16 66 98 40 95 6 34 118 7 46 75 48 37 43 36 42 4 66 119 44 78 6 <td>108</td> <td>59</td> <td>11</td> <td>41</td> <td>16</td> <td>12</td> <td>99</td> <td>98</td> <td>91</td> <td>85</td> <td>71</td>	108	59	11	41	16	12	99	98	91	85	71
111 21 57 41 23 49 98 34 9 39 18 112 82 51 70 89 45 68 43 38 78 72 113 83 28 60 54 94 78 37 45 36 39 114 68 46 10 86 19 74 87 26 79 96 115 19 99 67 82 96 73 36 65 61 90 116 95 91 46 17 1 10 84 98 31 11 117 68 93 29 16 66 98 40 95 6 34 118 7 46 75 48 37 43 36 42 4 66 119 44 78 6 95 41 79 20 28 46 53	109	64	23	36	58	69	3	83	22	99	6
112 82 51 70 89 45 68 43 38 78 72 113 83 28 60 54 94 78 37 45 36 39 114 68 46 10 86 19 74 87 26 79 96 115 19 99 67 82 96 73 36 65 61 90 116 95 91 46 17 1 10 84 98 31 11 117 68 93 29 16 66 98 40 95 6 34 118 7 46 75 48 37 43 36 42 4 66 119 44 78 6 95 41 79 20 28 46 53	110	52	70	55	58	83	57	51	91	8	95
113 83 28 60 54 94 78 37 45 36 39 114 68 46 10 86 19 74 87 26 79 96 115 19 99 67 82 96 73 36 65 61 90 116 95 91 46 17 1 10 84 98 31 11 117 68 93 29 16 66 98 40 95 6 34 118 7 46 75 48 37 43 36 42 4 66 119 44 78 6 95 41 79 20 28 46 53	111	21	57	41	23	49	98	34	9	39	18
114 68 46 10 86 19 74 87 26 79 96 115 19 99 67 82 96 73 36 65 61 90 116 95 91 46 17 1 10 84 98 31 11 117 68 93 29 16 66 98 40 95 6 34 118 7 46 75 48 37 43 36 42 4 66 119 44 78 6 95 41 79 20 28 46 53	112	82	51	70	89	45	68	43	38	78	72
115 19 99 67 82 96 73 36 65 61 90 116 95 91 46 17 1 10 84 98 31 11 117 68 93 29 16 66 98 40 95 6 34 118 7 46 75 48 37 43 36 42 4 66 119 44 78 6 95 41 79 20 28 46 53	113	83	28	60	54	94	78	37	45	36	39
116 95 91 46 17 1 10 84 98 31 11 117 68 93 29 16 66 98 40 95 6 34 118 7 46 75 48 37 43 36 42 4 66 119 44 78 6 95 41 79 20 28 46 53	114	68	46	10	86	19	74	87	26	79	96
117 68 93 29 16 66 98 40 95 6 34 118 7 46 75 48 37 43 36 42 4 66 119 44 78 6 95 41 79 20 28 46 53	115	19	99	67	82	96	73	36	65	61	90
118 7 46 75 48 37 43 36 42 4 66 119 44 78 6 95 41 79 20 28 46 53	116	95	91	46	17	1	10	84	98	31	11
119 44 78 6 95 41 79 20 28 46 53	117	68	93	29	16	66	98	40	95	6	34
	118	7	46	75	48	37	43	36	42	4	66
120 25 67 66 94 54 92 71 91 48 79	119	44	78	6	95	41	79	20	28	46	53
	120	25	67	66	94	54	92	71	91	48	79

121	65	81	48	9	88	22	10	37	77	83
122	7	11	54	15	9	18	3	14	83	84
123	51	96	24	12	52	54	85	81	58	26
124	16	88	72	24	73	37	52	81	57	51
125	56	62	84	66	20	27	19	37	100	16
126	85	97	46	16	15	48	71	72	20	54
127	53	100	87	85	39	63	55	37	4	13
128	72	45	9	85	18	83	28	36	98	68
129	88	10	4	92	24	17	40	32	45	42
130	97	51	21	24	27	54	86	31	9	61
131	5	34	87	43	46	94	88	29	24	81
132	4	74	71	33	64	100	32	45	41	80
133	74	30	19	27	45	63	38	66	71	31
134	78	86	22	75	4	15	76	30	1	59
135	75	62	30	90	42	7	93	19	28	41
136	52	23	84	78	92	15	58	27	96	4
137	1	28	20	21	65	71	64	16	95	49
138	78	100	66	59	25	44	24	31	19	33
139	80	95	96	98	27	14	16	68	51	100
140	82	43	61	97	87	14	92	50	21	98
141	32	11	26	78	53	17	52	62	14	76
142	56	21	61	54	100	37	46	23	17	2
143	99	94	73	70	16	60	84	41	42	65
144	5	78	26	25	1	94	62	58	22	60
145	27	97	19	80	94	85	32	67	5	91
146	69	16	99	44	27	100	39	49	3	88
147	100	61	28	6	88	92	36	73	97	22
148	49	81	79	10	27	82	96	13	94	55
149	55	88	8	16	72	31	40	48	70	86
150	76	22	80	21	20	2	15	81	50	53
151	83	61	50	87	80	90	75	54	37	52
l		l	l		l				l	

152	99	94	68	35	32	74	92	5	23	93
153	3	60	36	61	12	13	32	29	93	63
154	39	92	87	79	83	7	88	43	23	36
155	34	17	71	8	61	49	29	10	15	23
156	86	32	40	37	56	74	9	5	35	95
157	94	30	25	53	95	79	54	91	67	44
158	56	40	98	5	82	95	88	25	91	50
159	79	1	85	26	99	91	12	63	25	9
160	15	59	67	86	9	6	25	74	43	56
161	43	47	100	80	90	41	53	23	69	40
162	40	94	92	63	12	96	35	76	55	70
163	33	77	35	4	75	32	76	73	12	38
164	29	24	71	46	96	28	60	33	86	45
165	30	23	60	31	39	8	2	61	68	15
166	15	30	11	18	38	51	89	54	62	69
167	26	60	11	34	14	70	61	52	59	85
168	16	99	57	79	31	32	56	82	54	72
169	46	72	2	18	28	44	94	25	80	89
170	3	88	82	98	83	86	1	94	10	27
171	94	79	2	8	26	21	81	91	63	28
172	79	29	6	28	90	13	40	48	89	20
173	2	85	15	11	72	37	95	70	74	62
174	100	91	53	31	45	13	17	82	44	2
175	34	10	89	92	18	9	9	48	53	3
176	22	11	8	12	27	9	23	57	75	47
177	30	6	11	15	75	95	8	42	92	90
178	52	46	77	97	37	16	35	26	61	92
179	23	41	97	24	49	44	95	100	65	14
180	65	39	31	32	14	91	70	28	88	7
181	91	13	35	57	15	11	67	94	49	25
182	50	41	30	10	92	68	95	52	34	43
l										

183	20	28	3	40	35	88	95	70	82	94
184	88	78	13	27	89	59	68	95	52	21
185	95	65	27	17	83	73	16	98	56	58
186	10	32	73	35	40	25	86	61	2	17
187	88	97	38	50	49	75	6	71	18	35
188	3	83	29	60	75	73	15	86	81	82
189	29	23	86	2	88	82	28	19	30	8
190	49	34	16	97	40	25	96	84	26	48
191	45	48	76	42	59	2	70	75	27	29
192	42	93	32	34	52	43	92	98	87	12
193	16	80	2	28	98	99	20	76	33	73
194	24	10	16	50	18	86	23	27	64	99
195	18	87	49	66	11	59	46	90	76	75
196	18	89	75	98	29	55	43	13	72	42
197	21	81	75	26	50	12	58	73	29	67
198	69	34	28	16	100	63	76	26	60	57
199	76	26	94	47	89	1	35	55	38	37
200	1	75	53	8	39	95	97	4	47	10
201	99	35	93	54	21	76	73	17	90	87
202	15	50	29	6	74	2	70	31	7	1
203	78	10	99	74	80	62	76	36	66	97
204	89	31	57	65	72	76	82	56	13	64
205	29	7	73	36	61	24	14	51	11	78
206	49	51	83	29	78	73	70	8	40	77
207	52	18	26	86	29	1	32	88	73	19
208	59	11	41	16	12	99	98	91	85	71
209	64	23	36	58	69	3	83	22	99	6
210	52	70	55	58	83	57	51	91	8	95
211	21	57	41	23	49	98	34	9	39	18
212	82	51	70	89	45	68	43	38	78	72
213	83	28	60	54	94	78	37	45	36	39
l					l				l	

214	68	46	10	86	19	74	87	26	79	96
215	19	99	67	82	96	73	36	65	61	90
216	95	91	46	17	1	10	84	98	31	11
217	68	93	29	16	66	98	40	95	6	34
218	7	46	75	48	37	43	36	42	4	66
219	44	78	6	95	41	79	20	28	46	53
220	25	67	66	94	54	92	71	91	48	79
221	65	81	48	9	88	22	10	37	77	83
222	7	11	54	15	9	18	3	14	83	84
223	51	96	24	12	52	54	85	81	58	26
224	16	88	72	24	73	37	52	81	57	51
225	56	62	84	66	20	27	19	37	100	16
226	85	97	46	16	15	48	71	72	20	54
227	53	100	87	85	39	63	55	37	4	13
228	72	45	9	85	18	83	28	36	98	68
229	88	10	4	92	24	17	40	32	45	42
230	97	51	21	24	27	54	86	31	9	61
231	5	34	87	43	46	94	88	29	24	81
232	4	74	71	33	64	100	32	45	41	80
233	74	30	19	27	45	63	38	66	71	31
234	78	86	22	75	4	15	76	30	1	59
235	75	62	30	90	42	7	93	19	28	41
236	52	23	84	78	92	15	58	27	96	4
237	1	28	20	21	65	71	64	16	95	49
238	78	100	66	59	25	44	24	31	19	33
239	80	95	96	98	27	14	16	68	51	100
240	82	43	61	97	87	14	92	50	21	98
241	32	11	26	78	53	17	52	62	14	76
242	56	21	61	54	100	37	46	23	17	2
243	99	94	73	70	16	60	84	41	42	65
244	5	78	26	25	1	94	62	58	22	60
L	1	1	·	·	·	·	L	·	1	

245 27 97 19 80 94 85 32 67 246 69 16 99 44 27 100 39 49	
246 69 16 99 44 27 100 39 49	3 88
247 100 61 28 6 88 92 36 73	97 22
248 49 81 79 10 27 82 96 13	94 55
249 55 88 8 16 72 31 40 48	8 70 86
250 76 22 80 21 20 2 15 81	50 53
251 83 61 50 87 80 90 75 54	37 52
252 99 94 68 35 32 74 92 5	23 93
253 3 60 36 61 12 13 32 29	93 63
254 39 92 87 79 83 7 88 43	3 23 36
255 34 17 71 8 61 49 29 10	15 23
256 86 32 40 37 56 74 9 5	35 95
257 94 30 25 53 95 79 54 91	67 44
258 56 40 98 5 82 95 88 25	5 91 50
259 79 1 85 26 99 91 12 63	3 25 9
260 15 59 67 86 9 6 25 74	43 56
261 43 47 100 80 90 41 53 23	69 40
262 40 94 92 63 12 96 35 76	5 5 70
263 33 77 35 4 75 32 76 73	3 12 38
264 29 24 71 46 96 28 60 33	86 45
265 30 23 60 31 39 8 2 61	68 15
266 15 30 11 18 38 51 89 54	62 69
267 26 60 11 34 14 70 61 52	59 85
268 16 99 57 79 31 32 56 82	2 54 72
269 46 72 2 18 28 44 94 25	80 89
270 3 88 82 98 83 86 1 94	10 27
271 94 79 2 8 26 21 81 91	63 28
272 79 29 6 28 90 13 40 48	89 20
273 2 85 15 11 72 37 95 70	74 62
274 100 91 53 31 45 13 17 82	2 44 2
275 34 10 89 92 18 9 9 48	3 53 3

276	22	11	0	10	27	0	22	57	75	47
276	22	11	8	12	27	9	23	57	75	47
277	30	6	11	15	75	95	8	42	92	90
278	52	46	77	97	37	16	35	26	61	92
279	23	41	97	24	49	44	95	100	65	14
280	65	39	31	32	14	91	70	28	88	7
281	91	13	35	57	15	11	67	94	49	25
282	50	41	30	10	92	68	95	52	34	43
283	20	28	3	40	35	88	95	70	82	94
284	88	78	13	27	89	59	68	95	52	21
285	95	65	27	17	83	73	16	98	56	58
286	10	32	73	35	40	25	86	61	2	17
287	88	97	38	50	49	75	6	71	18	35
288	3	83	29	60	75	73	15	86	81	82
289	29	23	86	2	88	82	28	19	30	8
290	49	34	16	97	40	25	96	84	26	48
291	45	48	76	42	59	2	70	75	27	29
292	42	93	32	34	52	43	92	98	87	12
293	16	80	2	28	98	99	20	76	33	73
294	24	10	16	50	18	86	23	27	64	99
295	18	87	49	66	11	59	46	90	76	75
296	18	89	75	98	29	55	43	13	72	42
297	21	81	75	26	50	12	58	73	29	67
298	69	34	28	16	100	63	76	26	60	57
299	76	26	94	47	89	1	35	55	38	37
300	1	75	53	8	39	95	97	4	47	10
301	99	35	93	54	21	76	73	17	90	87
302	15	50	29	6	74	2	70	31	7	1
303	78	10	99	74	80	62	76	36	66	97
304	89	31	57	65	72	76	82	56	13	64
305	29	7	73	36	61	24	14	51	11	78
306	49	51	83	29	78	73	70	8	40	77

207		10	2.5	0.5	20		22	0.0	5 0	10
307	52	18	26	86	29	1	32	88	73	19
308	59	11	41	16	12	99	98	91	85	71
309	64	23	36	58	69	3	83	22	99	6
310	52	70	55	58	83	57	51	91	8	95
311	21	57	41	23	49	98	34	9	39	18
312	82	51	70	89	45	68	43	38	78	72
313	83	28	60	54	94	78	37	45	36	39
314	68	46	10	86	19	74	87	26	79	96
315	19	99	67	82	96	73	36	65	61	90
316	95	91	46	17	1	10	84	98	31	11
317	68	93	29	16	66	98	40	95	6	34
318	7	46	75	48	37	43	36	42	4	66
319	44	78	6	95	41	79	20	28	46	53
320	25	67	66	94	54	92	71	91	48	79
321	65	81	48	9	88	22	10	37	77	83
322	7	11	54	15	9	18	3	14	83	84
323	51	96	24	12	52	54	85	81	58	26
324	16	88	72	24	73	37	52	81	57	51
325	56	62	84	66	20	27	19	37	100	16
326	85	97	46	16	15	48	71	72	20	54
327	53	100	87	85	39	63	55	37	4	13
328	72	45	9	85	18	83	28	36	98	68
329	88	10	4	92	24	17	40	32	45	42
330	97	51	21	24	27	54	86	31	9	61
331	5	34	87	43	46	94	88	29	24	81
332	4	74	71	33	64	100	32	45	41	80
333	74	30	19	27	45	63	38	66	71	31
334	78	86	22	75	4	15	76	30	1	59
335	75	62	30	90	42	7	93	19	28	41
336	52	23	84	78	92	15	58	27	96	4
337	1	28	20	21	65	71	64	16	95	49
										l l

338	78	100	66	59	25	44	24	31	19	33
339	80	95	96	98	27	14	16	68	51	100
340	82	43	61	97	87	14	92	50	21	98
341	32	11	26	78	53	17	52	62	14	76
342	56	21	61	54	100	37	46	23	17	2
343	99	94	73	70	16	60	84	41	42	65
344	5	78	26	25	1	94	62	58	22	60
345	27	97	19	80	94	85	32	67	5	91
346	69	16	99	44	27	100	39	49	3	88
347	100	61	28	6	88	92	36	73	97	22
348	49	81	79	10	27	82	96	13	94	55
349	55	88	8	16	72	31	40	48	70	86
350	76	22	80	21	20	2	15	81	50	53
351	83	61	50	87	80	90	75	54	37	52
352	99	94	68	35	32	74	92	5	23	93
353	3	60	36	61	12	13	32	29	93	63
354	39	92	87	79	83	7	88	43	23	36
355	34	17	71	8	61	49	29	10	15	23
356	86	32	40	37	56	74	9	5	35	95
357	94	30	25	53	95	79	54	91	67	44
358	56	40	98	5	82	95	88	25	91	50
359	79	1	85	26	99	91	12	63	25	9
360	15	59	67	86	9	6	25	74	43	56
361	43	47	100	80	90	41	53	23	69	40
362	40	94	92	63	12	96	35	76	55	70
363	33	77	35	4	75	32	76	73	12	38
364	29	24	71	46	96	28	60	33	86	45
365	30	23	60	31	39	8	2	61	68	15
366	15	30	11	18	38	51	89	54	62	69
367	26	60	11	34	14	70	61	52	59	85
368	16	99	57	79	31	32	56	82	54	72
L	l	l	l	l	l	l				l

369	46	72	2	18	28	44	94	25	80	89
370	3	88	82	98	83	86	1	94	10	27
371	94	79	2	8	26	21	81	91	63	28
372	79	29	6	28	90	13	40	48	89	20
373	2	85	15	11	72	37	95	70	74	62
374	100	91	53	31	45	13	17	82	44	2
375	34	10	89	92	18	9	9	48	53	3
376	22	11	8	12	27	9	23	57	75	47
377	30	6	11	15	75	95	8	42	92	90
378	52	46	77	97	37	16	35	26	61	92
379	23	41	97	24	49	44	95	100	65	14
380	65	39	31	32	14	91	70	28	88	7
381	91	13	35	57	15	11	67	94	49	25
382	50	41	30	10	92	68	95	52	34	43
383	20	28	3	40	35	88	95	70	82	94
384	88	78	13	27	89	59	68	95	52	21
385	95	65	27	17	83	73	16	98	56	58
386	10	32	73	35	40	25	86	61	2	17
387	88	97	38	50	49	75	6	71	18	35
388	3	83	29	60	75	73	15	86	81	82
389	29	23	86	2	88	82	28	19	30	8
390	49	34	16	97	40	25	96	84	26	48
391	45	48	76	42	59	2	70	75	27	29
392	42	93	32	34	52	43	92	98	87	12
393	16	80	2	28	98	99	20	76	33	73
394	24	10	16	50	18	86	23	27	64	99
395	18	87	49	66	11	59	46	90	76	75
396	18	89	75	98	29	55	43	13	72	42
397	21	81	75	26	50	12	58	73	29	67
398	69	34	28	16	100	63	76	26	60	57
399	76	26	94	47	89	1	35	55	38	37
	1								1	

400	1	75	53	8	39	95	97	4	47	10

Lampiran 3. Data Total Konsumsi Energi

	Total Konsumsi Energi		Total Konsumsi Energi
Iterasi	(Joule)	Iterasi	(Joule)
	Algoritma K-Means		Algoritma K-Means++
1	0.0598697133004236	1	0.0776744585062477
2	0.137131060271127	2	0.137595102425465
3	0.20215929796957	3	0.203400539182279
4	0.268546991520651	4	0.274159114920395
5	0.323675029438688	5	0.326052725636506
6	0.388328626974386	6	0.403727184142754
7	0.442359242786202	7	0.93346496937776
8	0.517180166726883	8	0.993385613296978
9	0.576626545597496	9	1.27138561660108
10	0.641150132715089	10	1.3371910533579
11	0.735866422118487	11	1.41486551186414
12	0.79373159235674	12	1.74900950980787
13	0.868141498615963	13	1.81976808554599
14	0.936169206604998	14	1.87968872946521
15	1.15334795145812	15	2.26295835211351
16	1.22234421924249	16	2.34063281061975
17	1.2854873190906	17	2.39252642133586
18	1.34673791820745	18	2.45833185809268
19	1.67947982945695	19	2.66669745221186
20	1.99919774734145	20	2.72661809613107
21	2.18408893795787	21	2.80429255463732
22	2.50505156115539	22	3.33403033987233
23	2.57809211622866	23	3.40478891561044
24	2.74260674869996	24	3.63986282563367
25	2.89341009809755	25	3.70566826239048
26	2.9576782088264	26	3.78334272089673

27	3.12069721363103	27	3.84326336481595
28	3.19638266165039	28	4.12126336812006
29	3.50989248067046	29	4.17315697883617
30	3.58689131171225	30	4.38596135972984
31	3.66932303299555	31	4.46363581823609
32	3.9693534132312	32	4.53439439397421
33	4.03094893998105	33	4.59431503789342
34	4.32994993452154	34	4.66012047465024
35	4.50759243751887	35	4.99426447259397
36	4.74385866225823	36	5.07193893110021
37	4.84965882168958	37	5.60167671633522
38	4.96654561628828	38	5.82578512043689
39	5.0313870329901	39	5.8857057643561
40	5.09349726224153	40	5.93759937507221
41	5.19871527969977	41	6.01527383357846
42	5.40115702447516	42	6.08107927033528
43	5.45510289442919	43	6.15183784607339
44	5.71219076650448	44	6.53510746872169
45	5.973604643341	45	6.59502811264091
46	6.22735626357214	46	6.67270257114716
47	6.2913957386889	47	6.95070257445126
48	6.51971718308348	48	7.02690136696561
49	6.58954267802138	49	7.09270680372242
50	6.97563998128815	50	7.62244458895743
51	7.02618873337126	51	7.70011904746367
52	7.23533619704807	52	7.76003969138289
53	7.34586235518991	53	7.83079826712101
54	7.43006892114629	54	7.88269187783712
55	7.58013540238359	55	8.0910574719563
56	7.87751710904665	56	8.16873193046254
57	8.33908782264201	57	8.23453736721936

58	8.70983144478783	58	8.29445801113858
59	9.00298543260603	59	8.6286020090823
60	9.13462953448214	60	8.70977844346484
61	9.63899819510826	61	8.78745290197109
62	9.90712989529353	62	8.8582114777092
63	10.184422975173	63	9.13621148101331
64	10.2549513369432	64	9.19613212493253
65	10.6340058195878	65	9.26193756168934
66	10.706919945127	66	9.33961202019559
67	10.8723535078713	67	9.3915056309117
68	11.2138079852279	68	9.92124341614671
69	11.6797278260842	69	10.1563173261699
70	11.8613138480383	70	10.2162379700891
71	12.3904276102571	71	10.2939124285954
72	12.4543451013282	72	10.3646710043335
73	12.5354730493851	73	10.4304764410903
74	12.6192921520948	74	10.8137460637386
75	12.8363781877171	75	10.8645505829005
76	12.9229381559026	76	10.9422250414067
77	13.0773401520405	77	11.0021456853259
78	13.3692704426633	78	11.054039296042
79	13.6019337083029	79	11.3881832939858
80	13.888368863783	80	11.4539887307426
81	13.9992065271618	81	11.5316631892488
82	14.1460684371958	82	11.602421764987
83	14.2740464065388	83	11.6623424089062
84	14.5646625688395	84	12.1920801941412
85	14.6997850868991	85	12.4700801974453
86	14.7637951213181	86	12.5477546559515
87	14.821402032386	87	12.7605590368452
88	14.9210827331781	88	12.826364473602

89	14.9806832778572	89	12.8862851175212
90	15.1686260826173	90	12.9381787282374
91	15.2343915552468	91	13.0158531867436
92	15.5269281656456	92	13.0866117624817
93	15.77763656073	93	13.2949773566009
94	15.8316908989359	94	13.386487515029
95	15.9997115307767	95	13.4464081589482
96	16.3980835779043	96	13.5240826174544
97	16.5312912221452	97	13.5898880542112
98	16.681746701436	98	14.1196258394463
99	16.9505406210983	99	14.5028954620946
100	17.0191016315102	100	14.5736540378327
101	17.3578549403357	101	14.6513284963389
102	17.8235398580112	102	14.7112491402581
103	17.8772293734815	103	14.7631427509742
104	18.2488783357456	104	14.8289481877311
105	18.4018233911568	105	15.1069481910352
106	18.6405126842018	106	15.1846226495414
107	18.7705976579948	107	15.5187666474851
108	18.8509937119911	108	15.5786872914044
109	19.1962556595445	109	15.802795695506
110	19.6279949719027	110	15.8735542712441
111	19.6830175238493	111	15.9512287297504
112	19.8189872850872	112	16.0170341665072
113	20.1263993794376	113	16.5467719517422
114	20.3677495877154	114	16.6066925956614
115	20.7015281494853	115	16.6585862063775
116	21.1693932816293	116	16.7362606648838
117	21.2303782666925	117	16.971334574907
118	21.287364934998	118	17.0475092642861
119	21.4092249955038	119	17.1133147010429

120	21.7676675206079	120	17 1722252440622
120	21.7676675396078	120	17.1732353449622
121	21.8701504420991	121	17.2509098034684
122	22.0414268838631	122	17.3216683792065
123	22.1079457368127	123	17.5996683825106
124	22.2673718853579	124	17.796038438113
125	22.4732761991034	125	17.8477469532281
126	22.825017593019	126	17.9242225698483
127	22.934671870189	127	17.9832195187665
128	22.9919901101517	128	18.5277498487795
129	23.3195461869013	129	18.5887656693552
130	23.5571629465436	130	19.1380764958593
131	23.6340152455018	131	19.2145521124794
132	23.7841617401838	132	19.5383549747129
133	23.9912288153016	133	19.5973519236311
134	24.0650555844926	134	19.9742222348526
135	24.1198799559854	135	20.0404422325498
136	24.1909951327269	136	20.1169178491699
137	24.3565567225032	137	20.2738186182675
138	24.4238769466392	138	20.7811946178557
139	24.6554056537035	139	20.8401915667738
140	24.7140489829383	140	21.3895023932779
141	24.7910806546673	141	21.4659780098981
142	25.2945104292732	142	21.7363336404517
143	25.3607653604478	143	22.2685531417578
144	25.4897892535251	144	22.3294591084073
145	25.551985336923	145	22.3883086143698
146	25.7361667386824	146	22.4642089969606
147	25.8424276091086	147	22.648493959746
148	26.3809552522386	148	22.7257305202693
149	26.5547475610971	149	23.2658105676403
150	26.7960096393214	150	23.3313228419482
	<u> </u>		<u>l</u>

151	26.8462539207113	151	23.8151616481374
152	27.2125922252148	152	23.8732199722772
153	27.2711664210898	153	24.3489978930447
154	27.3992653099649	154	24.6416616945928
155	27.473107558202	155	24.8170865021437
156	27.5276418656067	156	25.267436870111
157	27.8461966044484	157	25.7166242616846
158	28.3158367383619	158	26.1506757713713
159	28.7266805906962	159	26.603289161196
160	28.8395789229025	160	27.0467867151742
161	29.2391992216289	161	27.4432145344413
162	29.6852466614417	162	27.630152112103
163	29.8628812932926	163	28.0205050533827
164	30.4081426511018	164	28.4078266227899
165	30.7302087302324	165	28.5530280392686
166	31.1545111082076	166	28.9078109712398
167	31.2595029630489	167	29.0764598862369
168	31.6523105333144	168	29.1785118984206
169	31.9112018371682	169	29.5396314223002
170	31.9725583964969	170	29.8717416093335
171	32.4356865886082	171	30.0471805990577
172	32.6827838405316	172	30.0965338971616
173	32.7341243797258	173	30.4222054377009
174	32.9245849813172	174	30.7120448155123
175	33.2113072554083	175	30.8654416108308
176	33.2777098019366	176	31.0224272744579
177	33.3818002552757	177	31.1916746477543
178	33.6321722144179	178	31.4018592518599
179	33.7989474559372	179	31.6904102698686
180	34.0268748005878	180	31.8724248680123
181	34.3359762126407	181	32.023481068786
	<u> </u>		

100	24 512420722112	100	22 1505060440006
182	34.513428732113	182	32.1505868440006
183	34.6338717187007	183	32.3970179432611
184	34.9325038867679	184	32.4734956465896
185	35.0374238304603	185	32.5171674643877
186	35.0896087250312	186	32.7746460925895
187	35.3449765661295	187	32.907382497696
188	35.6336763014352	188	33.1780118300349
189	35.7088329263134	189	33.3256544817653
190	35.9060681547237	190	33.4272358135155
191	36.1647770403337	191	33.6320074032143
192	36.3196092587967	192	33.8376169778125
193	36.370131924959	193	33.9195748923237
194	36.4096429025663	194	34.0163853518102
195	36.7628290750501	195	34.1307422838599
196	36.9924519174457	196	34.254345823484
197	37.3014025395705	197	34.4191938744787
198	37.3859953743831	198	34.5041720618067
199	37.6164332947734	199	34.7023854178178
200	37.8066812695596	200	34.8089412875796
201	37.9352390900027	201	34.9196809725123
202	38.2559454789496	202	35.0005261809302
203	38.4699996480979	203	35.103365628259
204	38.5966733626147	204	35.1971095264953
205	38.6438429417696	205	35.2705020041623
206	38.7152797244389	206	35.4105191196444
207	38.8655649484913	207	35.5324528359688
208	39.0243289758112	208	35.6634150782393
209	39.2428486975696	209	35.7657184792737
210	39.5669005405967	210	35.8256242652728
211	39.9426138507598	211	35.9311744038559
212	40.1051984747419	212	35.9684778367236

213	40.4474485970684	213	36.0350611788179
214	40.6629055172138	214	36.1644403871498
215	40.7696892997564	215	36.1757146955832
216	40.935906802313	216	36.3345721619699
217	41.0476723275364	217	36.4631135639609
218	41.1615802797149	218	36.599398828448
219	41.3210783976633	219	36.7056002462248
220	41.3732990353842	220	36.8085780497984
221	41.488208676589	221	36.9320260151219
222	41.6069835745209	222	37.0226355370392
223	41.8737508320825	223	37.0747099351846
224	42.0133021671181	224	37.184144774287
225	42.1468074109381	225	37.2429730462499
226	42.3932967893669	226	37.31294791354
227	42.4883349999111	227	37.4025959094127
228	42.5591314499215	228	37.4666070574742
229	42.6662766402265	229	37.5272097289117
230	42.7156477722787	230	37.5641071794066
231	42.8867638094586	231	37.6586313367139
232	42.9275652814628	232	37.6717303249824
233	42.994756744755	233	37.7473493302083
234	43.1074336994031	234	37.7967737792352
235	43.1690608255855	235	37.8533994598107
236	43.2843828294264	236	37.9002458408428
237	43.3173302543937	237	37.9486550553922
238	43.4524904897245	238	38.0055992738541
239	43.522578927283	239	38.0373143543528
240	43.5588486215353	240	38.1221362866435
241	43.5843285146051	241	38.1733121042909
242	43.6689645392235	242	38.1942065253452
243	43.721298823597	243	38.2091784422713
			1

244	43.748454416059	244	38.22993129201
245	43.8275132652613	245	38.2903669138692
246	43.9256269684656	246	38.3167568064688
247	43.9632049736821	247	38.3353957106592
248	44.1030940642861	248	38.3504990971747
249	44.1616502163374	249	38.3726861725745
250	44.2624407532841	250	38.4451304190845
251	44.295758575456	251	38.4933106802632
252	44.3479120978738	252	38.5547393849984
253	44.4006651975078	253	38.5717500826493
254	44.4602197827603	254	38.5876644875801
255	44.5062371697619	255	38.6255531573799
256	44.585952182964	256	38.6519430499794
257	44.6741784959299	257	38.6969235678287
258	44.7451163899939	258	38.7440257629379
259	44.8035602575894	259	38.7591702872054
260	44.8707675907697	260	38.8056094826341
261	44.9844083160898	261	38.841817705379
262	45.0875964566329	262	38.8582244189633
263	45.1316232709036	263	38.8724934585382
264	45.1717268045888	264	38.8942279641838
265	45.20284657854	265	38.9354396679439
266	45.2371424162066	266	38.9717815997435
267	45.2832537960374	267	38.9876640496082
268	45.418033247699	268	38.9999472234613
269	45.4329935220794	269	39.0112056001161
270	45.451864978416	270	39.0704699459604
271	45.5145126933095	271	39.094514224443
272	45.5344936329331	272	39.1126976437449
273	45.6021529902805	273	39.1495745161195
274	45.6568677340166	274	39.1639160652571

275	45.7027898110095	275	39.1996479518354
276	45.7643867884369	276	39.221760306762
277	45.7869692952583	277	39.2373228112843
278	45.8287412593528	277	39.2538436201205
279	45.8446208990245	279	39.2659265295902
280	45.9093106801201	280	39.3180175079686
281	45.961154285461	281	39.3377775686352
282	46.0282601818532	282	39.3589765524204
283	46.0658816532152	283	39.3750815702564
284	46.1040647498739	284	39.3863434241478
285	46.1942070549528	285	39.4072612884286
286	46.2382538773542	286	39.4270213490952
287	46.3104401002932	287	39.4418704693458
288	46.3361268597699	288	39.4535047326403
289	46.3509014566663	289	39.4744165352325
290	46.3964402362764	290	39.4916965410059
291	46.4117037467892	291	39.5114566016726
292	46.4359773533058	292	39.5271381241743
293	46.4795718311086	293	39.5427351334466
294	46.5227354227707	294	39.5624221816019
295	46.5351798202351	295	39.5827051243155
296	46.5670463708566	296	39.6024651849822
297	46.620351548184	297	39.622344679465
298	46.6431186767279	298	39.635580929611
299	46.6604762197316	299	39.6461001904693
300	46.6870946200464	300	39.6689270046354
301	46.7170217170828	301	39.6864445645964
302	46.7467419991638	302	39.698512920539
303	46.7966016897674	303	39.7086364838842
304	46.8234139192791	304	39.7191168681467
305	46.8550791087609	305	39.7323378271006

306	46.885514926083	306	39.7498553870616
307	46.898345983916	307	39.7602853887091
308	46.9100931574542	308	39.7736034506451
309	46.9314462745944	309	39.7845901472249
310	46.9427846277073	310	39.7972864826791
311	46.9608795035353	311	39.8109189695172
312	47.0008624916722	312	39.8260541550621
313	47.0130956412232	313	39.838869017855
314	47.0282980635615	314	39.8507741346886
315	47.0589741863341	315	39.8596308613873
316	47.0733362407301	316	39.8732633482254
317	47.0834494008695	317	39.8853048237113
318	47.102365054511	318	39.8939097268933
319	47.1163749329371	319	39.9064380576025
320	47.1370426181996	320	39.9202292704643
321	47.1756407009163	321	39.9338617573024
322	47.1839017898057	322	39.947126794935
323	47.2214792184186	323	39.9568277645577
324	47.2549657918181	324	39.9660261419174
325	47.2807216835909	325	39.978796649428
326	47.3036912191509	326	39.9924291362661
327	47.3473376596571	327	40.0044905501531
328	47.3773323946991	328	40.0194694386446
329	47.3860788899623	329	40.0305297016171
330	47.4248143294237	330	40.0395582039548
331	47.4701300164758	331	40.0531906907928
332	47.4799522811248	332	40.0660055535858
333	47.503735385367	333	40.0793236155217
334	47.5123996540767	334	40.0913320051053
335	47.5207120074667	335	40.1050878009805
336	47.5544083624328	336	40.1187202878186

337	47.5612736059034	337	40.1262761730871
338	47.5723040597976	338	40.1367061747346
339	47.5811346612276	339	40.1487830672072
340	47.5971932893083	340	40.159597988148
341	47.6205525159647	341	40.1732304749861
342	47.6371163136215	342	40.1873392860123
343	47.6568664712232	343	40.200008662162
344	47.6687331374075	344	40.2127791696727
345	47.6776803169268	345	40.2260972316086
346	47.6969453450891	346	40.2397297184467
347	47.7245685438289	347	40.2485864451454
348	47.7511797455424	348	40.2612827805996
349	47.7669653953159	349	40.2712640834213
350	47.7726037508081	350	40.2842352432676
351	47.804129407496	351	40.2978677301057
352	47.822019837363	352	40.310895248833
353	47.8313662433392	353	40.3193246266626
354	47.8412817706994	354	40.3286418743613
355	47.8494673183686	355	40.3394553849992
356	47.85747184552	356	40.3533355610122
357	47.8793070959423	357	40.3676293522928
358	47.9133791346325	358	40.3810213646451
359	47.9322911000602	359	40.3926615108903
360	47.941313509258	360	40.4008861137304
361	47.9469645086347	361	40.4147662897434
362	47.9529021944788	362	40.4232392945182
363	47.9791278590804	363	40.4306196544343
364	47.9901086189334	364	40.4436471731616
365	47.999025428686	365	40.4546169808528
366	48.0231258439002	366	40.4684971568659
367	48.0290456324025	367	40.4797564365729

368	48.0457441186891	368	40.490614302493
369	48.0631689896426	369	40.4992590829068
370	48.069467656893	370	40.5139077433081
371	48.0753975093762	371	40.5277879193211
372	48.0850739080339	372	40.5392562899273
373	48.1084510000757	373	40.5529813790295
374	48.1134593694733	374	40.5639511867208
375	48.1215281962915	375	40.5743823857376
376	48.1373591881859	376	40.5882625617507
377	48.1545565829881	377	40.6014982770496
377	48.1800582837698	377	40.6101430574633
379	48.1897770602778	379	40.6198019558229
380	48.1960625107107	380	40.6269741191674
381	48.2031778629665	381	
			40.6408542951805
382	48.2063868855439	382	40.65247896284
383	48.2132347639358	383	40.6671276232413
384	48.2326149819072	384	40.6779411338792
385	48.238503109886	385	40.6872583815779
386	48.2675146760599	386	40.701138557591
387	48.274765375333	387	40.7095679354206
388	48.2844339078177	388	40.7226205572378
389	48.2885069093355	389	40.7360125695901
390	48.2936755605228	390	40.7468704355102
391	48.312199295777	391	40.7607506115233
392	48.3183710728409	392	40.7720098912303
393	48.3368357793049	393	40.780482896005
394	48.3414354017487	394	40.7927093517453
395	48.3493578326883	395	40.8057368704726
396	48.3602188637481	396	40.8196170464857
397	48.3735330980707	397	40.8312417141452
398	48.384975080755	398	40.8415117623279

399	48.3930003293349	399	40.8521147369837
400	48.4016440535444	400	40.8599348698424

Lampiran 4. Data Jumlah *Dead Node*

	Jumlah Dead Node		Jumlah Dead Node
Iterasi	Algoritma K-Means	Iterasi	Algoritma K-Means++
1	0	1	0
2	0	2	0
3	0	3	0
4	0	4	0
5	0	5	0
6	0	6	0
7	0	7	0
8	0	8	0
9	0	9	0
10	0	10	0
11	0	11	0
12	0	12	0
13	0	13	0
14	0	14	0
15	0	15	0
16	0	16	0
17	0	17	0
18	0	18	0
19	0	19	0
20	0	20	0
21	0	21	0
22	0	22	0
23	0	23	0
24	0	24	0
25	0	25	0
26	0	26	0
27	0	27	0

28	0	28	0
29	0	29	0
30	0	30	0
31	0	31	0
32	0	32	0
33	0	33	0
34	0	34	0
35	0	35	0
36	0	36	0
37	0	37	0
38	0	38	0
39	0	39	0
40	0	40	0
41	0	41	0
42	0	42	0
43	0	43	0
44	0	44	0
45	0	45	0
46	0	46	0
47	0	47	0
48	0	48	0
49	0	49	0
50	0	50	0
51	0	51	0
52	0	52	0
53	0	53	0
54	0	54	0
55	0	55	0
56	0	56	0
57	0	57	0
58	0	58	0

59	0	59	0
60	0	60	0
61	0	61	0
62	0	62	0
63	0	63	0
64	0	64	0
65	0	65	0
66	0	66	0
67	0	67	0
68	0	68	0
69	0	69	0
70	0	70	0
71	0	71	0
72	0	72	0
73	0	73	0
74	0	74	0
75	0	75	0
76	0	76	0
77	0	77	0
78	0	78	0
79	0	79	0
80	0	80	0
81	0	81	0
82	0	82	0
83	0	83	0
84	0	84	0
85	0	85	0
86	0	86	0
87	0	87	0
88	0	88	0
89	0	89	0

90	0	90	0
91	0	91	0
92	0	92	0
93	0	93	0
94	0	94	0
95	0	95	0
96	0	96	0
97	0	97	0
98	0	98	0
99	0	99	0
100	0	100	0
101	0	101	0
102	0	102	0
103	0	103	0
104	0	104	0
105	0	105	0
106	0	106	0
107	0	107	0
108	0	108	0
109	0	109	0
110	0	110	0
111	0	111	0
112	0	112	0
113	0	113	0
114	0	114	0
115	0	115	0
116	0	116	0
117	0	117	0
118	0	118	0
119	0	119	0
120	0	120	0

121	0	121	0
122	0	122	0
123	0	123	0
124	0	124	0
125	0	125	0
126	0	126	0
127	0	127	1
128	0	128	1
129	0	129	1
130	0	130	1
131	0	131	1
132	0	132	1
133	0	133	1
134	0	134	1
135	0	135	1
136	0	136	1
137	0	137	1
138	0	138	1
139	0	139	1
140	0	140	1
141	0	141	1
142	0	142	1
143	0	143	1
144	0	144	1
145	0	145	1
146	1	146	2
147	1	147	2
148	2	148	2
149	2	149	2
150	2	150	2
151	2	151	2

152	2	152	2
153	2	153	3
154	2	154	3
155	2	155	4
156	2	156	4
157	2	157	5
158	2	158	5
159	2	159	6
160	2	160	8
161	2	161	8
162	2	162	8
163	2	163	8
164	2	164	10
165	4	165	11
166	4	166	12
167	5	167	12
168	5	168	13
169	6	169	14
170	6	170	15
171	6	171	15
172	6	172	15
173	6	173	16
174	7	174	19
175	7	175	19
176	7	176	19
177	7	177	19
178	7	178	20
179	7	179	22
180	8	180	22
181	8	181	23
182	8	182	23

183	8	183	23
184	9	184	23
185	9	185	24
186	9	186	24
187	11	187	24
188	11	188	24
189	11	189	24
190	12	190	25
191	12	191	26
192	13	192	26
193	14	193	27
194	15	194	29
195	16	195	29
196	16	196	29
197	18	197	29
198	18	198	30
199	18	199	30
200	18	200	30
201	18	201	31
202	18	202	32
203	20	203	33
204	20	204	34
205	20	205	34
206	20	206	34
207	20	207	34
208	20	208	34
209	20	209	34
210	21	210	34
211	21	211	35
212	22	212	35
213	22	213	36

21.4	25	21.4	26
214	25	214	36
215	25	215	36
216	26	216	36
217	26	217	38
218	26	218	39
219	28	219	39
220	28	220	41
221	30	221	42
222	30	222	42
223	30	223	42
224	31	224	42
225	31	225	42
226	32	226	43
227	33	227	43
228	33	228	44
229	33	229	45
230	33	230	45
231	37	231	46
232	39	232	46
233	40	233	47
234	42	234	47
235	42	235	48
236	43	236	48
237	43	237	48
238	44	238	48
239	47	239	48
240	47	240	50
241	47	241	50
242	48	242	50
243	48	243	50
244	48	244	51

245	48	245	52
246	49	246	53
247	49	247	53
248	49	248	53
249	49	249	53
250	50	250	53
251	50	251	53
252	51	252	53
253	51	253	53
254	51	254	53
255	51	255	53
256	52	256	53
257	52	257	53
258	52	258	53
259	52	259	53
260	52	260	53
261	53	261	55
262	54	262	55
263	55	263	55
264	55	264	55
265	57	265	55
266	58	266	55
267	58	267	55
268	58	268	55
269	58	269	55
270	58	270	55
271	58	271	56
272	58	272	56
273	59	273	56
274	59	274	56
275	59	275	56

276	59	276	56
277	61	277	57
278	62	278	57
279	62	279	57
280	62	280	58
281	62	281	58
282	62	282	58
283	62	283	58
284	62	284	58
285	62	285	58
286	62	286	58
287	62	287	58
288	62	288	58
289	62	289	58
290	62	290	58
291	62	291	58
292	63	292	58
293	63	293	58
294	63	294	58
295	63	295	58
296	64	296	59
297	65	297	59
298	65	298	59
299	66	299	60
300	66	300	60
301	66	301	60
302	66	302	60
303	67	303	60
304	67	304	60
305	67	305	60
306	67	306	61

307	67	307	61
308	67	308	61
309	67	309	61
310	67	310	61
311	67	311	61
312	67	312	61
313	67	313	61
314	67	314	61
315	67	315	61
316	68	316	61
317	68	317	61
318	68	318	61
319	68	319	61
320	68	320	61
321	68	321	61
322	68	322	61
323	69	323	61
324	69	324	61
325	69	325	61
326	71	326	61
327	72	327	61
328	72	328	61
329	72	329	61
330	72	330	61
331	73	331	61
332	73	332	61
333	73	333	61
334	73	334	61
335	73	335	61
336	73	336	61
337	73	337	61

220	72	229	61
338	73	338	61
339	73	339	61
340	73	340	61
341	73	341	61
342	74	342	61
343	74	343	61
344	74	344	61
345	74	345	61
346	74	346	61
347	74	347	61
348	74	348	61
349	75	349	61
350	75	350	61
351	75	351	62
352	75	352	62
353	75	353	62
354	75	354	62
355	75	355	62
356	75	356	62
357	75	357	62
358	76	358	62
359	77	359	62
360	77	360	62
361	77	361	62
362	77	362	62
363	77	363	62
364	77	364	62
365	77	365	62
366	77	366	62
367	77	367	62
368	77	368	62

369	77	369	62
370	77	370	62
371	77	371	62
372	77	372	62
373	77	373	62
374	77	374	62
375	77	375	62
376	77	376	62
377	78	377	62
378	79	378	62
379	79	379	62
380	79	380	62
381	79	381	62
382	80	382	62
383	80	383	62
384	80	384	62
385	80	385	62
386	80	386	62
387	80	387	62
388	80	388	62
389	80	389	62
390	80	390	62
391	80	391	62
392	80	392	62
393	80	393	62
394	80	394	62
395	80	395	62
396	80	396	62
397	81	397	62
398	81	398	62
399	81	399	63

400	81	400	63

Lampiran 5. Data Jumlah *Node* Alive

	Jumlah <i>Node Alive</i>		Jumlah <i>Node Alive</i>
Iterasi	Algoritma <i>K-Means</i>	Iterasi	Algoritma K-Means++
1	100	1	100
2	100	2	100
3	100	3	100
4	100	4	100
5	100	5	100
6	100	6	100
7	100	7	100
8	100	8	100
9	100	9	100
10	100	10	100
11	100	11	100
12	100	12	100
13	100	13	100
14	100	14	100
15	100	15	100
16	100	16	100
17	100	17	100
18	100	18	100
19	100	19	100
20	100	20	100
21	100	21	100
22	100	22	100
23	100	23	100
24	100	24	100
25	100	25	100
26	100	26	100
27	100	27	100

28	100	28	100
29	100	29	100
30	100	30	100
31	100	31	100
32	100	32	100
33	100	33	100
34	100	34	100
35	100	35	100
36	100	36	100
37	100	37	100
38	100	38	100
39	100	39	100
40	100	40	100
41	100	41	100
42	100	42	100
43	100	43	100
44	100	44	100
45	100	45	100
46	100	46	100
47	100	47	100
48	100	48	100
49	100	49	100
50	100	50	100
51	100	51	100
52	100	52	100
53	100	53	100
54	100	54	100
55	100	55	100
56	100	56	100
57	100	57	100
58	100	58	100

59	100	59	100
60	100	60	100
61	100	61	100
62	100	62	100
63	100	63	100
64	100	64	100
65	100	65	100
66	100	66	100
67	100	67	100
68	100	68	100
69	100	69	100
70	100	70	100
71	100	71	100
72	100	72	100
73	100	73	100
74	100	74	100
75	100	75	100
76	100	76	100
77	100	77	100
78	100	78	100
79	100	79	100
80	100	80	100
81	100	81	100
82	100	82	100
83	100	83	100
84	100	84	100
85	100	85	100
86	100	86	100
87	100	87	100
88	100	88	100
89	100	89	100

90	100	90	100
91	100	91	100
92	100	92	100
93	100	93	100
94	100	94	100
95	100	95	100
96	100	96	100
97	100	97	100
98	100	98	100
99	100	99	100
100	100	100	100
101	100	101	100
102	100	102	100
103	100	103	100
104	100	104	100
105	100	105	100
106	100	106	100
107	100	107	100
108	100	108	100
109	100	109	100
110	100	110	100
111	100	111	100
112	100	112	100
113	100	113	100
114	100	114	100
115	100	115	100
116	100	116	100
117	100	117	100
118	100	118	100
119	100	119	100
120	100	120	100

121	100	121	100
122	100	122	100
123	100	123	99
124	100	124	99
125	100	125	99
126	100	126	99
127	100	127	99
128	100	128	99
129	100	129	99
130	100	130	99
131	100	131	99
132	100	132	99
133	100	133	99
134	100	134	99
135	100	135	99
136	100	136	99
137	100	137	99
138	100	138	99
139	100	139	99
140	100	140	99
141	100	141	99
142	100	142	98
143	100	143	98
144	100	144	98
145	100	145	98
146	99	146	98
147	99	147	98
148	98	148	98
149	98	149	97
150	98	150	97
151	98	151	96

152	98	152	96
153	98	153	95
154	98	154	95
155	98	155	94
156	98	156	92
157	98	157	92
158	98	158	92
159	98	159	92
160	98	160	90
161	98	161	89
162	98	162	88
163	98	163	88
164	98	164	87
165	96	165	86
166	96	166	85
167	95	167	85
168	95	168	85
169	94	169	84
170	94	170	81
171	94	171	81
172	94	172	81
173	94	173	81
174	93	174	80
175	93	175	78
176	93	176	78
177	93	177	77
178	93	178	77
179	93	179	77
180	92	180	77
181	92	181	76
182	92	182	76

183 92 183 76 184 91 184 76 185 91 185 76 186 91 186 75 187 89 187 74 188 89 188 74 189 89 189 73 190 88 190 71 191 88 191 71 192 87 192 71 193 86 193 71 194 85 194 70 195 84 195 70 196 84 196 70 197 82 197 69 198 82 199 67 200 82 200 66 201 82 201 66 202 82 201 66 203 80 203 66 204 80 204 66 205 80 205 66 <th></th> <th></th> <th></th> <th></th>				
185 91 185 76 187 89 187 74 188 89 188 74 189 89 189 73 190 88 190 71 191 88 191 71 192 87 192 71 193 86 193 71 194 85 194 70 195 84 195 70 196 84 196 70 197 82 197 69 198 82 199 67 200 82 200 66 201 82 201 66 202 82 202 66 203 80 203 66 204 80 204 66 205 80 205 66 206 80 206 66 207 80 207 65 208 80 208 65 <td>183</td> <td>92</td> <td>183</td> <td>76</td>	183	92	183	76
186 91 186 75 187 89 187 74 188 89 188 74 189 89 189 73 190 88 190 71 191 88 191 71 192 87 192 71 193 86 193 71 194 85 194 70 195 84 195 70 196 84 196 70 197 82 197 69 198 82 198 68 199 82 199 67 200 82 200 66 201 82 201 66 202 82 202 66 203 80 203 66 204 80 204 66 205 80 205 66 206 80 206 66 207 80 207 65 <td>184</td> <td>91</td> <td>184</td> <td>76</td>	184	91	184	76
187 89 187 74 188 89 188 74 189 89 189 73 190 88 190 71 191 88 191 71 192 87 192 71 193 86 193 71 193 86 193 71 194 85 194 70 195 84 195 70 196 84 196 70 197 82 197 69 198 82 199 67 200 82 200 66 201 82 201 66 202 82 202 66 203 80 203 66 204 80 204 66 205 80 205 66 207 80 207 65 208 80 209 64 210 79 210 64 <td>185</td> <td>91</td> <td>185</td> <td>76</td>	185	91	185	76
188 89 188 74 189 89 189 73 190 88 190 71 191 88 191 71 192 87 192 71 193 86 193 71 194 85 194 70 195 84 195 70 196 84 196 70 197 82 197 69 198 82 199 67 200 82 200 66 201 82 201 66 202 82 202 66 203 80 203 66 204 80 204 66 205 80 205 66 207 80 207 65 208 80 208 65 209 80 209 64 210 79 210 64 211 79 211 64 <td>186</td> <td>91</td> <td>186</td> <td>75</td>	186	91	186	75
189 89 189 73 190 88 190 71 191 88 191 71 192 87 192 71 193 86 193 71 193 86 193 71 194 85 194 70 195 84 195 70 196 84 196 70 197 82 197 69 198 82 199 67 200 82 200 66 201 82 201 66 202 82 202 66 203 80 203 66 204 80 204 66 205 80 205 66 206 80 206 66 207 80 207 65 208 80 208 65 209 80 209 64 210 79 210 64 <td>187</td> <td>89</td> <td>187</td> <td>74</td>	187	89	187	74
190 88 190 71 191 88 191 71 192 87 192 71 193 86 193 71 194 85 194 70 195 84 195 70 196 84 196 70 197 82 197 69 198 82 198 68 199 82 199 67 200 82 200 66 201 82 201 66 202 82 202 66 203 80 203 66 204 80 204 66 205 80 205 66 206 80 206 66 207 80 207 65 208 80 208 65 209 80 209 64 210 79 210 64 211 79 210 64 <td>188</td> <td>89</td> <td>188</td> <td>74</td>	188	89	188	74
191 88 191 71 192 87 192 71 193 86 193 71 194 85 194 70 195 84 195 70 196 84 196 70 197 82 197 69 198 82 198 68 199 82 199 67 200 82 200 66 201 82 201 66 202 82 202 66 203 80 203 66 204 80 204 66 205 80 205 66 206 80 206 66 207 80 207 65 208 80 208 65 209 80 209 64 210 79 210 64 211 79 210 64 212 78 212 64 <td>189</td> <td>89</td> <td>189</td> <td>73</td>	189	89	189	73
192 87 192 71 193 86 193 71 194 85 194 70 195 84 195 70 196 84 196 70 197 82 197 69 198 82 198 68 199 82 200 66 201 82 201 66 202 82 202 66 203 80 203 66 204 80 204 66 205 80 205 66 207 80 206 66 207 80 207 65 208 80 208 65 209 80 209 64 210 79 210 64 211 79 211 64 212 78 212 64	190	88	190	71
193 86 193 71 194 85 194 70 195 84 195 70 196 84 196 70 197 82 197 69 198 82 198 68 199 82 200 66 201 82 201 66 202 82 202 66 203 80 203 66 204 80 204 66 205 80 205 66 207 80 207 65 208 80 208 65 209 80 209 64 210 79 210 64 211 79 211 64 212 78 212 64	191	88	191	71
194 85 194 70 195 84 195 70 196 84 196 70 197 82 197 69 198 82 198 68 199 82 199 67 200 82 200 66 201 82 201 66 202 82 202 66 203 66 203 66 204 80 204 66 205 80 205 66 207 80 207 65 208 80 208 65 209 80 209 64 210 79 210 64 211 79 211 64 212 78 212 64	192	87	192	71
195 84 195 70 196 84 196 70 197 82 197 69 198 82 198 68 199 82 200 66 201 82 201 66 202 82 202 66 203 80 203 66 204 80 204 66 205 80 205 66 206 80 206 66 207 80 207 65 208 80 208 65 209 80 209 64 210 79 210 64 211 79 211 64 212 78 212 64	193	86	193	71
196 84 196 70 197 82 197 69 198 82 198 68 199 82 199 67 200 82 200 66 201 82 201 66 202 82 202 66 203 80 203 66 204 80 204 66 205 80 205 66 207 80 207 65 208 80 208 65 209 80 209 64 210 79 210 64 211 79 211 64 212 78 212 64	194	85	194	70
197 82 197 69 198 82 198 68 199 82 199 67 200 82 200 66 201 82 201 66 202 82 202 66 203 66 203 66 204 80 204 66 205 80 205 66 207 80 206 66 208 80 208 65 209 80 209 64 210 79 210 64 211 79 211 64 212 78 212 64	195	84	195	70
198 82 198 68 199 82 199 67 200 82 200 66 201 82 201 66 202 82 202 66 203 86 203 66 204 80 204 66 205 80 205 66 207 80 207 65 208 80 208 65 209 80 209 64 210 79 210 64 211 79 211 64 212 78 212 64	196	84	196	70
199 82 199 67 200 82 200 66 201 82 201 66 202 82 202 66 203 80 203 66 204 80 204 66 205 80 205 66 207 80 207 65 208 80 208 65 209 80 209 64 210 79 210 64 211 79 211 64 212 78 212 64	197	82	197	69
200 82 200 66 201 82 201 66 202 82 202 66 203 80 203 66 204 80 204 66 205 80 205 66 206 80 206 66 207 85 207 65 208 80 208 65 209 80 209 64 210 79 210 64 211 79 211 64 212 78 212 64	198	82	198	68
201 82 201 66 202 82 202 66 203 80 203 66 204 80 204 66 205 80 205 66 206 80 206 66 207 80 207 65 208 80 208 65 209 80 209 64 210 79 210 64 211 79 211 64 212 78 212 64	199	82	199	67
202 82 202 66 203 80 203 66 204 80 204 66 205 80 205 66 206 80 206 66 207 80 207 65 208 80 208 65 209 80 209 64 210 79 210 64 211 79 211 64 212 78 212 64	200	82	200	66
203 80 203 66 204 80 204 66 205 80 205 66 206 80 206 66 207 80 207 65 208 80 208 65 209 80 209 64 210 79 210 64 211 79 211 64 212 78 212 64	201	82	201	66
204 80 204 66 205 80 205 66 206 80 206 66 207 80 207 65 208 80 208 65 209 80 209 64 210 79 210 64 211 79 211 64 212 78 212 64	202	82	202	66
205 80 205 66 206 80 206 66 207 80 207 65 208 80 208 65 209 80 209 64 210 79 210 64 211 79 211 64 212 78 212 64	203	80	203	66
206 80 206 66 207 80 207 65 208 80 208 65 209 80 209 64 210 79 210 64 211 79 211 64 212 78 212 64	204	80	204	66
207 80 207 65 208 80 208 65 209 80 209 64 210 79 210 64 211 79 211 64 212 78 212 64	205	80	205	66
208 80 208 65 209 80 209 64 210 79 210 64 211 79 211 64 212 78 212 64	206	80	206	66
209 80 209 64 210 79 210 64 211 79 211 64 212 78 212 64	207	80	207	65
210 79 211 79 212 78 210 64 211 64 212 64	208	80	208	65
211 79 211 64 212 78 212 64	209	80	209	64
212 78 212 64	210	79	210	64
	211	79	211	64
213 78 213 62	212	78	212	64
	213	78	213	62

214 75 214 61 215 75 215 61 216 74 216 59 217 74 217 58 218 74 218 58 219 72 219 58 220 72 220 58 221 70 221 58 222 70 222 57 223 70 223 57 224 69 224 56 225 69 225 55 226 68 226 55 227 67 227 54 228 67 228 54 229 67 229 53 230 67 230 53 231 63 231 52 233 60 233 52 233 60 233 52 234 58 235 52 235 58 235 52 <th></th> <th></th> <th></th> <th></th>				
216 74 216 59 217 74 217 58 218 74 218 58 219 72 219 58 220 72 220 58 221 70 221 58 222 57 223 57 223 70 223 57 224 69 224 56 225 69 225 55 226 68 226 55 227 67 227 54 228 67 228 54 229 67 229 53 230 67 230 53 231 63 231 52 233 60 233 52 233 60 233 52 234 58 235 52 236 57 236 50 237 57 237 50 238 56 238 50 <td>214</td> <td>75</td> <td>214</td> <td>61</td>	214	75	214	61
217 74 217 58 218 74 218 58 219 72 219 58 220 72 220 58 221 70 221 58 222 57 223 57 223 70 223 57 224 69 224 56 225 69 225 55 226 68 226 55 227 67 228 54 229 67 229 53 230 67 230 53 231 63 231 52 233 60 233 52 233 60 233 52 233 52 234 52 236 57 236 50 237 57 237 50 238 56 238 50 239 53 239 50 240 53 240 49 <td>215</td> <td>75</td> <td>215</td> <td>61</td>	215	75	215	61
218 74 218 58 219 72 219 58 220 72 220 58 221 70 221 58 222 70 222 57 223 70 223 57 224 69 224 56 225 69 225 55 226 68 226 55 227 54 228 54 229 67 229 53 230 67 230 53 231 63 231 52 233 60 233 52 233 60 233 52 234 58 234 52 235 58 235 52 236 57 237 50 237 57 237 50 238 56 238 50 239 53 240 49 241 53 240 49 <td>216</td> <td>74</td> <td>216</td> <td>59</td>	216	74	216	59
219 72 219 58 220 72 220 58 221 70 221 58 222 57 223 57 223 70 223 57 224 69 224 56 225 69 225 55 226 68 226 55 227 54 228 54 229 67 229 53 230 67 230 53 231 63 231 52 233 60 233 52 233 60 233 52 234 58 234 52 235 58 235 52 236 57 237 50 238 56 238 50 239 53 239 50 240 53 240 49 241 53 242 47 243 52 243 47 <td>217</td> <td>74</td> <td>217</td> <td>58</td>	217	74	217	58
220 72 220 58 221 70 221 58 222 57 223 57 223 70 223 57 224 69 224 56 225 69 225 55 226 68 226 55 227 67 227 54 228 67 228 54 229 67 229 53 230 67 230 53 231 63 231 52 233 60 232 52 233 60 233 52 233 52 234 52 234 58 235 52 235 58 235 52 236 57 236 50 237 57 237 50 238 56 238 50 239 53 239 50 240 49 241 <td>218</td> <td>74</td> <td>218</td> <td>58</td>	218	74	218	58
221 70 221 58 222 70 222 57 223 70 223 57 224 69 224 56 225 69 225 55 226 68 226 55 227 54 228 54 229 67 229 53 230 67 230 53 231 63 231 52 233 60 232 52 233 60 233 52 234 58 234 52 235 58 235 52 236 57 236 50 237 57 237 50 238 56 238 50 239 53 239 50 240 53 240 49 241 53 241 48 242 52 243 47 243 52 243 47 <td>219</td> <td>72</td> <td>219</td> <td>58</td>	219	72	219	58
222 70 223 57 224 69 224 56 225 69 225 55 226 68 226 55 227 67 227 54 228 67 228 54 229 67 229 53 230 67 230 53 231 63 231 52 233 60 233 52 234 58 234 52 235 58 235 52 236 57 236 50 237 57 237 50 238 56 238 50 239 53 239 50 240 53 240 49 241 53 241 48 242 52 243 47 243 52 243 47	220	72	220	58
223 70 223 57 224 69 224 56 225 69 225 55 226 68 226 55 227 54 228 54 228 67 228 54 229 67 229 53 230 67 230 53 231 63 231 52 232 61 232 52 233 60 233 52 234 58 234 52 235 58 235 52 236 57 236 50 237 57 237 50 238 56 238 50 239 53 239 50 240 53 240 49 241 53 241 48 242 52 242 47 243 52 243 47	221	70	221	58
224 69 224 56 225 69 225 55 226 68 226 55 227 67 227 54 228 67 228 54 229 67 229 53 230 67 230 53 231 63 231 52 232 61 232 52 233 60 233 52 234 58 234 52 235 58 235 52 236 57 236 50 237 57 237 50 238 56 238 50 239 53 239 50 240 53 240 49 241 53 241 48 242 52 242 47 243 52 243 47	222	70	222	57
225 69 225 55 226 68 226 55 227 67 227 54 228 67 228 54 229 67 229 53 230 67 230 53 231 63 231 52 232 61 232 52 233 60 233 52 234 58 234 52 235 58 235 52 236 57 236 50 237 57 237 50 238 56 238 50 239 53 239 50 240 53 240 49 241 53 241 48 242 52 242 47 243 52 243 47	223	70	223	57
226 68 226 55 227 67 227 54 228 67 228 54 229 67 229 53 230 67 230 53 231 63 231 52 232 52 23 52 233 60 233 52 234 58 234 52 235 58 235 52 236 57 236 50 237 57 237 50 238 56 238 50 239 53 239 50 240 53 240 49 241 53 241 48 242 52 242 47 243 52 243 47	224	69	224	56
227 67 227 54 228 67 228 54 229 67 229 53 230 67 230 53 231 63 231 52 232 61 232 52 233 60 233 52 234 58 234 52 235 58 235 52 236 57 236 50 237 57 237 50 238 56 238 50 239 53 239 50 240 53 240 49 241 53 241 48 242 52 242 47 243 52 243 47	225	69	225	55
228 67 228 54 229 67 229 53 230 67 230 53 231 63 231 52 232 61 232 52 233 60 233 52 234 58 234 52 235 58 235 52 236 57 236 50 237 57 237 50 238 56 238 50 239 53 239 50 240 53 240 49 241 53 241 48 242 52 242 47 243 52 243 47	226	68	226	55
229 67 229 53 230 67 230 53 231 63 231 52 232 61 232 52 233 60 233 52 234 58 234 52 235 58 235 52 236 57 236 50 237 57 237 50 238 56 238 50 239 53 239 50 240 53 240 49 241 53 241 48 242 52 242 47 243 52 243 47	227	67	227	54
230 67 230 53 231 63 231 52 232 61 232 52 233 60 233 52 234 58 234 52 235 58 235 52 236 57 236 50 237 57 237 50 238 56 238 50 239 53 239 50 240 53 240 49 241 53 241 48 242 52 242 47 243 52 243 47	228	67	228	54
231 63 231 52 232 52 232 52 233 60 233 52 234 58 234 52 235 58 235 52 236 57 236 50 237 57 237 50 238 56 238 50 239 53 239 50 240 53 240 49 241 53 241 48 242 52 242 47 243 52 243 47	229	67	229	53
232 61 232 52 233 60 233 52 234 58 234 52 235 58 235 52 236 57 236 50 237 57 237 50 238 56 238 50 239 53 239 50 240 53 240 49 241 53 241 48 242 52 242 47 243 52 243 47	230	67	230	53
233 60 233 52 234 58 234 52 235 58 235 52 236 57 236 50 237 57 237 50 238 56 238 50 239 53 239 50 240 53 240 49 241 53 241 48 242 52 242 47 243 52 243 47	231	63	231	52
234 58 234 52 235 58 235 52 236 57 236 50 237 57 237 50 238 56 238 50 239 53 239 50 240 53 240 49 241 53 241 48 242 52 242 47 243 52 243 47	232	61	232	52
235 58 235 52 236 57 236 50 237 57 237 50 238 56 238 50 239 53 239 50 240 53 240 49 241 53 241 48 242 52 242 47 243 52 243 47	233	60	233	52
236 57 236 50 237 57 237 50 238 56 238 50 239 53 239 50 240 53 240 49 241 53 241 48 242 52 242 47 243 52 243 47	234	58	234	52
237 57 238 56 239 53 240 53 241 53 242 52 243 52 237 50 238 50 239 50 240 49 241 48 242 47 243 47	235	58	235	52
238 56 239 53 240 53 241 53 242 52 243 52 238 50 239 50 240 49 241 48 242 47 243 47	236	57	236	50
239 53 239 50 240 53 240 49 241 53 241 48 242 52 242 47 243 52 243 47	237	57	237	50
240 53 240 49 241 53 241 48 242 52 242 47 243 52 243 47	238	56	238	50
241 53 241 48 242 52 242 47 243 52 243 47	239	53	239	50
242 52 242 47 243 52 243 47	240	53	240	49
243 52 243 47	241	53	241	48
	242	52	242	47
244 52 244 47	243	52	243	47
	244	52	244	47

246 5	52 51 51	245 246	47
		246	47
247 5	51		47
		247	47
248 5	51	248	47
249 5	51	249	47
250 5	50	250	47
251 5	50	251	47
252 4	19	252	47
253 4	19	253	47
254 4	19	254	47
255 4	19	255	47
256 4	18	256	47
257 4	18	257	45
258 4	18	258	45
259 4	18	259	45
260 4	18	260	45
261 4	17	261	45
262 4	46	262	45
263 4	45	263	45
264 4	45	264	45
265 4	13	265	45
266 4	12	266	45
267 4	12	267	44
268 4	12	268	44
269 4	12	269	44
270 4	12	270	44
271 4	12	271	44
272 4	12	272	44
273 4	41	273	43
274 4	41	274	43
275 4	41	275	43

276 41 276 42 277 39 277 42 278 38 279 42 280 38 280 42 281 38 281 42 282 38 282 42 283 38 283 42 283 38 284 42 284 38 284 42 285 38 285 42 287 38 286 42 287 38 287 42 288 38 288 42 289 38 289 42 290 38 290 42 291 38 291 42 292 37 292 42 293 37 293 42 294 37 294 42 295 37 295 42 296 36 296 41 297 35 298 41 <th></th> <th>T</th> <th></th> <th>T</th>		T		T
278 38 279 42 280 38 280 42 281 38 281 42 282 38 282 42 283 38 283 42 284 38 284 42 285 38 285 42 286 38 286 42 287 38 287 42 288 38 289 42 289 38 289 42 290 38 290 42 291 38 291 42 292 37 292 42 293 37 293 42 294 37 294 42 295 37 295 42 295 37 295 42 296 36 296 41 297 35 297 41 298 35 298 41 299 34 300 40 <td>276</td> <td>41</td> <td>276</td> <td>42</td>	276	41	276	42
279 38 279 42 280 38 280 42 281 38 281 42 282 38 282 42 283 38 283 42 284 38 284 42 285 38 285 42 286 38 286 42 287 38 287 42 288 38 289 42 290 38 290 42 291 38 291 42 292 37 292 42 293 37 293 42 294 37 294 42 295 37 295 42 295 37 295 42 295 37 295 42 295 37 296 41 297 35 297 41 298 35 298 41 299 34 300 40 <td>277</td> <td>39</td> <td>277</td> <td>42</td>	277	39	277	42
280 38 280 42 281 38 281 42 282 38 282 42 283 38 283 42 284 38 284 42 285 38 286 42 287 38 287 42 288 38 289 42 289 38 289 42 290 38 290 42 291 38 291 42 292 37 292 42 293 37 293 42 294 37 294 42 295 37 294 42 295 37 295 42 296 36 296 41 297 35 297 41 298 35 298 41 299 34 300 40 301 34 301 40 302 34 302 40 <td>278</td> <td>38</td> <td>278</td> <td>42</td>	278	38	278	42
281 38 281 42 282 38 283 42 283 38 283 42 284 38 284 42 285 38 285 42 286 38 286 42 287 38 287 42 288 38 289 42 290 38 290 42 291 38 291 42 292 37 292 42 293 37 293 42 293 37 294 42 294 37 294 42 295 37 294 42 295 37 295 42 296 36 296 41 297 35 297 41 298 35 298 41 299 34 300 40 301 34 301 40 302 34 302 40 <td>279</td> <td>38</td> <td>279</td> <td>42</td>	279	38	279	42
282 38 282 42 283 38 283 42 284 38 284 42 285 38 285 42 286 38 286 42 287 38 287 42 288 38 288 42 289 38 289 42 290 38 290 42 291 38 291 42 292 37 292 42 293 37 293 42 294 37 294 42 295 37 295 42 295 37 295 42 295 36 296 41 297 35 297 41 298 35 298 41 299 34 300 40 301 34 301 40 302 34 302 40 303 33 303 40 <td>280</td> <td>38</td> <td>280</td> <td>42</td>	280	38	280	42
283 38 284 42 285 38 285 42 286 38 286 42 287 38 287 42 288 38 288 42 289 38 289 42 290 38 290 42 291 38 291 42 292 37 292 42 293 37 293 42 294 37 294 42 295 37 295 42 295 37 295 42 295 36 296 41 297 35 297 41 298 35 298 41 299 34 300 40 301 34 301 40 302 34 302 40 303 33 303 40 305 33 305 40	281	38	281	42
284 38 285 42 286 38 286 42 287 38 287 42 288 38 288 42 289 38 289 42 290 38 290 42 291 38 291 42 291 38 291 42 292 37 292 42 293 37 293 42 294 37 294 42 295 37 295 42 295 37 295 42 296 36 296 41 297 35 297 41 298 35 298 41 299 34 300 40 300 34 301 40 302 34 302 40 303 33 303 40 305 33 304 40	282	38	282	42
285 38 285 42 286 38 286 42 287 38 287 42 288 38 288 42 289 38 289 42 290 38 290 42 291 38 291 42 291 38 291 42 292 37 292 42 293 37 293 42 294 37 294 42 295 37 295 42 295 36 296 41 297 35 297 41 298 35 298 41 299 34 300 40 300 34 300 40 301 34 301 40 302 34 302 40 303 33 303 40 304 33 304 40 305 33 305 40 <td>283</td> <td>38</td> <td>283</td> <td>42</td>	283	38	283	42
286 38 286 42 287 38 287 42 288 38 288 42 289 38 289 42 290 38 290 42 291 38 291 42 291 38 291 42 292 42 292 42 293 37 293 42 294 37 294 42 295 37 295 42 296 36 296 41 297 35 297 41 298 35 298 41 299 34 300 40 300 34 300 40 301 34 301 40 302 34 302 40 303 33 303 304 40 305 33 305 40	284	38	284	42
287 38 287 42 288 38 288 42 289 38 289 42 290 38 290 42 291 38 291 42 292 37 292 42 293 37 293 42 294 37 294 42 295 37 295 42 296 36 296 41 297 35 297 41 298 35 298 41 299 34 300 40 300 34 300 40 301 34 301 40 302 34 302 40 303 33 303 40 304 33 304 40 305 33 305 40	285	38	285	42
288 38 289 42 289 38 289 42 290 38 290 42 291 38 291 42 292 37 292 42 293 37 293 42 294 37 294 42 295 37 295 42 296 36 296 41 297 35 297 41 298 35 298 41 299 34 300 40 300 34 301 40 301 34 301 40 302 34 302 40 303 33 303 40 304 33 304 40 305 33 305 40	286	38	286	42
289 38 289 42 290 38 290 42 291 38 291 42 292 37 292 42 293 37 293 42 294 37 294 42 295 37 295 42 296 36 296 41 297 35 297 41 298 35 298 41 299 34 299 40 300 34 300 40 301 34 301 40 302 34 302 40 303 33 303 40 304 33 304 40 305 33 305 40	287	38	287	42
290 38 290 42 291 38 291 42 292 37 292 42 293 37 293 42 294 37 294 42 295 37 295 42 296 36 296 41 297 35 297 41 298 35 298 41 299 34 299 40 300 34 300 40 301 34 301 40 302 34 302 40 303 33 303 40 304 33 304 40 305 33 305 40	288	38	288	42
291 38 291 42 292 37 292 42 293 37 293 42 294 37 294 42 295 37 295 42 296 36 296 41 297 35 297 41 298 35 298 41 299 34 299 40 300 34 300 40 301 34 301 40 302 34 302 40 303 33 303 40 304 33 304 40 305 33 305 40	289	38	289	42
292 37 292 42 293 37 293 42 294 37 294 42 295 37 295 42 296 36 296 41 297 35 297 41 298 35 298 41 299 34 299 40 300 34 300 40 301 34 301 40 302 34 302 40 303 33 303 40 304 33 304 40 305 33 305 40	290	38	290	42
293 37 293 42 294 37 294 42 295 37 295 42 296 36 296 41 297 35 297 41 298 35 298 41 299 34 299 40 300 34 300 40 301 34 301 40 302 34 302 40 303 33 303 40 304 33 304 40 305 33 305 40	291	38	291	42
294 37 294 42 295 37 295 42 296 36 296 41 297 35 297 41 298 35 298 41 299 34 299 40 300 34 300 40 301 34 301 40 302 34 302 40 303 33 303 40 304 33 304 40 305 33 305 40	292	37	292	42
295 37 295 42 296 36 296 41 297 35 297 41 298 35 298 41 299 34 299 40 300 34 300 40 301 34 301 40 302 34 302 40 303 33 303 40 304 33 304 40 305 33 305 40	293	37	293	42
296 36 296 41 297 35 297 41 298 35 298 41 299 34 299 40 300 34 300 40 301 34 301 40 302 34 302 40 303 33 303 40 304 33 304 40 305 33 305 40	294	37	294	42
297 35 297 41 298 35 298 41 299 34 299 40 300 34 300 40 301 34 301 40 302 34 302 40 303 33 303 40 304 33 304 40 305 33 305 40	295	37	295	42
298 35 298 41 299 34 299 40 300 34 300 40 301 34 301 40 302 34 302 40 303 33 303 40 304 33 304 40 305 33 305 40	296	36	296	41
299 34 299 40 300 34 300 40 301 34 301 40 302 34 302 40 303 33 303 40 304 33 304 40 305 33 305 40	297	35	297	41
300 34 300 40 301 34 301 40 302 34 302 40 303 33 303 40 304 33 304 40 305 33 305 40	298	35	298	41
301 34 301 40 302 34 302 40 303 33 303 40 304 33 304 40 305 33 305 40	299	34	299	40
302 34 302 40 303 33 303 40 304 33 304 40 305 33 305 40	300	34	300	40
303 33 40 304 33 304 40 305 33 305 40	301	34	301	40
304 33 304 40 305 33 305 40	302	34	302	40
305 33 305 40	303	33	303	40
	304	33	304	40
306 33 306 39	305	33	305	40
	306	33	306	39

307	33	307	39
308	33	308	39
309	33	309	39
310	33	310	39
311	33	311	39
312	33	312	39
313	33	313	39
314	33	314	39
315	33	315	39
316	32	316	39
317	32	317	39
318	32	318	39
319	32	319	39
320	32	320	39
321	32	321	39
322	32	322	39
323	31	323	39
324	31	324	39
325	31	325	39
326	29	326	39
327	28	327	39
328	28	328	39
329	28	329	39
330	28	330	39
331	27	331	39
332	27	332	39
333	27	333	39
334	27	334	39
335	27	335	39
336	27	336	39
337	27	337	39

338	27	338	39
339	27	339	39
340	27	340	39
341	27	341	39
342	26	342	39
343	26	343	39
344	26	344	39
345	26	345	39
346	26	346	39
347	26	347	39
348	26	348	39
349	25	349	39
350	25	350	39
351	25	351	38
352	25	352	38
353	25	353	38
354	25	354	38
355	25	355	38
356	25	356	38
357	25	357	38
358	24	358	38
359	23	359	38
360	23	360	38
361	23	361	38
362	23	362	38
363	23	363	38
364	23	364	38
365	23	365	38
366	23	366	38
367	23	367	38
368	23	368	38

369	23	369	38
370	23	370	38
371	23	371	38
372	23	372	38
373	23	373	38
374	23	374	38
375	23	375	38
376	23	376	38
377	22	377	38
378	21	378	38
379	21	379	38
380	21	380	38
381	21	381	38
382	20	382	38
383	20	383	38
384	20	384	38
385	20	385	38
386	20	386	38
387	20	387	38
388	20	388	38
389	20	389	38
390	20	390	38
391	20	391	38
392	20	392	38
393	20	393	38
394	20	394	38
395	20	395	38
396	20	396	38
397	19	397	38
398	19	398	38
399	19	399	37

400	19	400	37