Chromatic Homotopy Theory -Vitaly Lorman Motwation: X - finite CW complex, what are $\pi_n(x)$? Say $\times = S^{h}$ • eg: $S^{n} \xrightarrow{h} S^{n}$ • $S^{3} \xrightarrow{\eta} S^{2}$ $S^{2} \longrightarrow S^{4}$ Hopf inv 1 S^{IS} -> S^S · Image of J $O(n) \hookrightarrow H(n) \hookrightarrow \Omega^n S^n$ Homotopy equivalences $\pi_i(O(n)) \longrightarrow \pi_i \Omega^n S^n = \pi_{n+i} S^n$ Take limits: $\pi_i(0) \xrightarrow{J} \pi_i^s$ Adams computed the image of J. · Need a way of producing more elements in π_*S^n . Defn: Zx +>x self map. Self maps can be composed: $f^2 = \sum^{2d} \times \stackrel{\text{d}}{\longrightarrow} \sum^{d} \times \stackrel{\text{f}}{\longrightarrow} \times$ f is nilpotent if $f^{t} = 0$ for some t else f is called periodic. (Why periodic?) $s \xrightarrow{\triangleright} s \xrightarrow{s}$ is a periodic map cofiber = $V(0)_K$ mod p Moore space

The Adams - Toda

For $k \gg 0$ $\exists \prec : \geq \sqrt[q]{(0)_k} \longrightarrow \sqrt{(0)_k}$ q=8 for p=29=2p-2 for bodd such that i) L is periodic ii) induces multiplication by "Bott class" in complex K-though (i.e. $K_{*} d = \eta^{i} \wedge - gor some i)$ Note that ii) ⇒ 1) Now consider: $S^{k+qt} \longrightarrow S^{qt}$ $S^{k+qt} \longrightarrow S^{k+1}$ $S^{k+qt} \longrightarrow S^{k+1}$ $S^{k+qt} \longrightarrow S^{k+1}$ (Adams) This map is not rull homotopic and hence gives $x_t ∈ \pi_{qt-1}^s$ Now let V(1)x= cofiber of & Th^{m} (Smith - Toda) $\exists \beta: \sum^{2k^{2}-2} V(1)_{k} \longrightarrow V(1)_{k}$ such that · B is ferrodic - MU detects B (and so does K(2) - Morawa K-theory) Again, $S^{k+2(p^2-1)t} \rightarrow \Sigma^{2(p^2-1)t} \vee (1)_k \xrightarrow{p^4} \vee (1)_k \longrightarrow S^{k+2p}$ bottom cell top cell gives us $\beta_{1} \in \mathbb{T}_{2(\beta^{2}-1)+-2\beta}^{5}$ • Can refeat again $V(2)_{\kappa} = \text{voliber of } B$

 $\gamma: \sum_{k}^{2\beta^{3}-2} V(2)_{k} \longrightarrow V(2)_{k}$ detected by NU_{+} (or K(3)) We get Y_t ∈ S^{K+2(p3-1)t} S^{K+}(p+2)q+3 The (--): $v_{+} \neq \text{null homotopic}$.

Difficult proof · Can continue this forever. -> Need homology theories to detect these -> A way of generating self maps
(But we do not get homotopy groups any more, or valuer
we do not know of the maps we get are null-homotopic) The (Devinatz, Hopkins, Smith) Nilpolence: \exists homology theory MU sl. $f: \Xi \times \longrightarrow \times$ is nilpotent if and only if some iterate of MU_{*}(f) is trueal, for finite CW complex X Cor: Homotopy groups of speces are torsion. Now work p-locally: Thm (Johson-Wilson) There I sequence of wohomology theories K(n) - Morawa K-theory such that · K(0)*(x) = H*(X; Q) · K(1) x is one of the p-1 isomorphic summands of mod p complex K-theory · K(0) = Q K(n) = Z/p [0 ±1] lon1 = 2(pn-1)

Note that K(n) x is a field and so the K(n) x (x) is can vector space, and su

 \cdot K(n)*(x x y) \cong K(n)*(x) \otimes K(n)*(y)

Kunneth Runneth $\overline{K(n_{1})_{*}(x)} = 0 \implies \overline{K(n)_{*}(x)} = 0.$

Def X-finite CW complex X-has type n if K(n), X + 0 but K(n-1), (X)=0 (A non-contractible space has finite height)

Prop: $\Sigma^{d} \times \xrightarrow{f} \times$ If \times has type n, cofiber (f) has type n + 1.

Periodicity this

X - finite (W complex of type n then $\exists v_n: \Sigma^{d+i} \times \longrightarrow \Sigma^i \times$ for some id such that $K(n)_* f$ is an iso and $K(m)_* f = 0$ for m > n.

Periodic self map ---- family of elements in Tix

Need to do more work than before.

X - finik (W bottom cell in dim k, top cell in dim k = e

We this to produce elements in TI,5

i. $S^k \rightarrow X$ $j_6: X \rightarrow S^{k+e}$

Let $f: \Xi^d \times \to X$

Consider

Sk+td

io

Z

X

SK+e

SK+e

This map may be sull. Let K< < < < < < < +e $X_{r}^{s} = cofiber of X^{r-1} \rightarrow X^{s}$ if j.fe= * we get fe-1 and so on This process has to stop as fe is not $x_k^k \xrightarrow{j} x_k^k$ null homotopic, and So some e, j.fe, = * $E \xrightarrow{td} X_k \xrightarrow{i} E \xrightarrow{td} K_{+e} \xrightarrow{K_{+e}} X_{k+e}$ by similar reasoning some bottom cell survives and so this gives in an element of T_*^s . Juns out every stable homotopy group occurs this way.

The Fig. 3 is chromatic filtration on $\Pi_*^{s} \times$