Sorting 排序

林劭原老師

Motivation動機

- ·一個檔案(record)通常包含多個欄位(field), Keys是其中可以用來區分 records的欄位,例如:身分證號碼、學號
- ·假設Keys are integers,習慣上若搜尋成功(successful),則回傳key value 是 k 的 a[i] 的 index i(即回傳a[i]=k 的 i);若搜尋失敗(unsuccessful),則回傳0(也因為這原因,資料由a[1]開始儲存)
- · 因此 Sorting 有兩個應用:
- 1. Searching 搜尋
- 2. List verification 表單驗證

Searching

• 方法1:sequential search 循序搜尋

```
int SeqSearcj(int *a, const int n, const int k){
   int i;
   for(i = 1;i <= n && a[i] != k;i++);
   if(i > n) return 0;
   return i;
}
```

• In the worst case, 花 O(n) time

• 註: f(n) = O(g(n)) 的意思是:當 n 足夠大時,g(n) is an asymptotic upper bound for f(n), to within a constant factor.

Searching

· 方法2:binary search 二元搜尋

```
int BinarySearch(int *a, const int n, const int k){
   int left = 1,right = n;
   while(left <= right){
      int middle = (left + right)/2;
      if(x < a[middle]) right = middle - 1;
      else if(x > a[middle]) left = middle + 1;
      else return middle;
   }
  return 0;
}
```

- In the worst case, 花O(Ign)time. 很顯然, better than sequential search.
- ·但是要搜尋的資料必須sorted(已排序),這是為何要有sorting的原因之一

List verification

- List verification:Compare two lists to verify that they are identical 完全相同的.若不 identical,則指出不同處.
- ·例如:國稅局收到 two lists.

from employer : employee 的薪水

from employees:自己的新水

- 這兩個 list L_1, L_2 應該 identical. Let $m=|L_1|$ and $n=|L_2|$
- 不使用 sorting 花 O(mn) time
- 使用 sorting 花 O(sorting+m+n) time,
- 其中 sorting 可以只花O(mlgm)+O(nlgn) time.

Sorting

- •有研究指出,超過25%(甚至50%)的computing time是花在sorting上的,可見sorting之重要。
- · 但是至今沒有任何一個sorting方法是在所有狀況下都最佳的。
- 因此我們將介紹好幾個sorting方法,並指出在什麼情況下,此方 法將優於其他方法。

Sorting problem

- 正式定義:Given a llist of records $R_1, R_2, \cdots, R_n(R_i)$ has key K_i , find a permutation σ such that $R_{\sigma(1)}, R_{\sigma(2)}, \cdots, R_{\sigma(n)}$ has the property that $K_{\sigma(1)} \leq K_{\sigma(2)} \leq \cdots \leq K_{\sigma(n)}$.
- 當 keys 允許 identical,則σ不唯一
- 例如: $K_1 = 10, K_2 = 5, K_3 = 10$ 可排序成 R_2, R_1, R_3 或 R_2, R_3, R_1
- •此時我們稱前面的 σ 為 stable (keys相同時,原本在前面的,排序完依然在前),後面的 σ is not stable.
- · 有些排序方法很難做到 stable, quicksort 即一例。

這次要介紹的排序法

Method	Worst	Average		
氣泡排序法 Bubble Sort	$O(n^2)$	$O(n^2)$		
選擇排序法 Selection Sort	$O(n^2)$	$O(n^2)$		
插入排序法 Insertion Sort	$O(n^2)$	$O(n^2)$		
快速排序法 Quick Sort	$O(n^2)$	O(nlogn)		
合併排序法 Merge Sort	O(nlogn)	O(nlogn)		

氣泡排序法 Bubble Sort

pseudo code :

```
• function bubble_sort (array, length) {
    for(i from 0 to length-1){
        for(j from 0 to length-1-i){
            if (array[j] > array[j+1]){
                swap(array[j], array[j+1])
            }
        }
    }
}
```

• 思考:這樣做為什麼可以進行排序?

實作氣泡排序法 Bubble Sort

- 看著上一頁的pseudo code, 嘗試練習 Bubble Sort
- input:75 89 33 9 6 7 127
- output:6 7 9 33 75 89 127
- · 如果還不會讓陣列進函式,可以直接寫在main裡面

選擇排序法 Selection Sort

```
pseudo code :

    function Selection sort (array, length) {

    for(i from 0 to length-1){
      for(k from i+1 to length-1)
          if (array[k] < array[j]) j=k;</pre>
       swap(a[i], a[j]);
```

• 思考:這樣做為什麼可以進行排序?

實作選擇排序法 Selection Sort

- 看著上一頁的pseudo code, 嘗試練習 Selection Sort
- input:75 89 33 9 6 7 127
- output:6 7 9 33 75 89 127
- ·如果還不會讓陣列進函式,可以直接寫在main裡面

插入排序法 Insertion Sort

• Idea:設 R_1, R_2, \cdots, R_i 為已經sort好的records.

Insert R_{i+1} into R_1, R_2, \cdots, R_i 中之適當位置

Initially, R_1 是已經 sort 好的,因此由 R_2 開始做 sort 即可。

插入排序法 Insertion Sort

```
void Insert(int temp,int *a,int i){
        a[0] = temp;//擋土牆
        while(temp < a[i]){</pre>
                a[i+1] = a[i];

    void InsertionSort(int*a,const int n){

        for(int j = 2; j <= n; j++){
                int temp = a[j];
                Insert(temp,a,j-1);
```

- •特別小心:
- data in a[1],a[2],...,a[n] 不是 a[0],a[1],...,a[n-1]

- 傳統:
- while(i>=1 && temp < a[i])
- · 改成用擋土牆,不用每次while 都判斷

Insertion Sort 之結論

- Stable
- Best case:O(n) time
- Worst case: $O(n^2)$ time
- Average case: $O(n^2)$ time
- 有研究指出,它是 $n \leq 30$ 時之 fastest sorting method
- Variations(變型):
- 1. Binary Insertion Sort(insert時改用binary search而非sequential search)
- 2. Linked Insertion Sort(資料儲存在鏈結串列中而非陣列中)

實作 Insertion Sort

- 看著前兩頁的 code,練習 Insertion Sort
- input:75 89 33 9 6 7 127
- output:6 7 9 33 75 89 127

- Idea:
 - 和 insertion sort 不同的是 insertion sort 只是將 R_i insert 到針對 $R_1, R_2, \cdots, R_{i-1}$ 來看正確位置; quick sort 則是將 R_i 放置到針對 the whole list 來看正確位置(*) quick sort 是利用 pivot 以及 partition 來做到 (*)
- 習慣上,稱 R_i 的 key K_i 為 pivot(參考值)。常見的 pivot 有:
 - $(1) K_l$ 最左的 key
 - $(2) K_r$ 最右的 key
 - (3) Median of $\{K_l, K_{l+r}, K_r\}$,文叫做 median of three.

- 書上選用 K_l 為 the pivot.
- 若它應該放在 p 位置上,則 quick sort will partition a[1..n] into:

≤pivot pivot ≥pivot

- ·此時左半邊和右半邊可以 independently 做排序.
- 如果找出 the index p?利用 i,j 雨 indices(指標).
- i 初值為1 ,向右走,一開始就 i++,直到找到≥ pivot 者。
- •j初值為n+1,向左走,一開始就 i-- ,直到找到 \leq pivot 者.

• 例如:pivot是26.

- After partition, array a becomes:
- [11 5 19 1 15] 26 [59 61 48 37]

• 完整的例子

R_1	R_2	R_3	R_4	R_5	R_6	R_7	R_8	R_9	R_{10}	left	right
[26	5	37	1	61	11	59	15	48	19]	1	10
[11	5	19	1	15]	26	[59	61	48	37]	1	5
[1	5]	11	[19	15]	26	[59	61	48	37]	1	2
1	5	11	[19	15]	26	[59	61	48	37]	4	5
1	5	11	15	19	26	[59	61	48	37]	7	10
1	5	11	15	19	26	[48	37]	59	[61]	7	8
1	5	11	15	19	26	37	48	59	[61]	10	10
1	5	11	15	19	26	37	48	59	61		

pseudo code of Quick Sort

```
    void QuickSort(int *a,const int left,const int right){

       if(left <= right){</pre>
              int i = left,j = right +1 ,pivot = a[left]
              do{
                                                  //亦即do {i++;} while(a[i] < pivot)
                      do i++; while(a[i] < pivot)
                      do j--; while(a[j] > pivot) //亦即do {j--;} while(a[j] > pivot)
                      if(i < j) swap(a[i],a[j])
                                            //swap要另外寫
               }while(i < j);
              swap(a[left],a[j]);//the pivot針對the whole list來看的正確位置是at index j
               QuickSort(a,left,j-1);
              QuickSort(a,j+1,right);
```

Quick Sort 之結論

- Not Stable
- Best case:O(nlgn) time
- Worst case: $O(n^2)$ time (例如:list原本就in sorted order)
- Average case:O(nlgn) time
- 有研究指出,它是考慮average computing time時,最快的sorting method
- •因為用到recursion,用到了system stack,因此比insertion sort多花記憶體

實作 Quick Sort

- · 看著前兩頁的 pseudo code,練習 Quick Sort
- input:75 89 33 9 6 7 127
- output:6 7 9 33 75 89 127

合併排序法 Merge Sort

- 對,本來要講,但它的程式碼好複雜,所以我打算跟大家聊一下它的精神就好,有與趣知道細節的自己看課本。
- 假設你要排序一個數列,但一個人排序太累,所以你找了一隻會打字的猴子幫助你(例如隔壁同學)(會打莎士比亞全集的猴子)。你們將數列分成兩半,分別排序完成之後,該怎麼合併成一個排序好的數列呢?

How fast can we sort?

- •雖然有best case, worst case, average case 三種,但是best case不太有代表性,average case 通常很難求出,因此,以worst case最常用,worst case反應出最差的情況所花時間的上界(upper bound)。
- •如果在做sorting之前,就對要sort的東西已有一些了解,例如,知道 $0 \le K_i \le 999 \ \forall i$,則可以用特殊的方法來sort,時間可以用的很少。例如:radix sort,counting sort.

基數排序 Radix Sort

- Each element has d digits, each digit has k possible values, and digit 1 is the least significant digit.
- · 每個數都有d位數字, 每位數字都有k可能值, digit 1是最不重要的digit

- Assume that the data are in array A[1..n]
- Radix sort:sort from LSD(least significant digit) to MSD(most significant digit)
- ·由 LSD 做到 MSD ,每次依照"正在考慮的那個digit"排序

a [5] a [6] 859 (a) 起始輸入 e [9] e[8] 33 859 271 93 984 55 306 179 f[9]55 → 306 -(b) 第一回合的佇列以及結果鏈 859 984 93 55 f[6] \rightarrow 859 \rightarrow 271 \rightarrow 179 \rightarrow 984 \rightarrow 93 (c) 第二回合的佇列以及結果鏈 ■7.9:基數排序的範例(下一頁繼續)

ix Sort

Counting sort

- Each of the n input numbers is an integer in the range 0 to k, for some integer k.
- Hence we can use O(n) time to count the number of times that each integer appears.可以先用O(n) time,數一數O到k中,每個數出現了幾次。

Example of Counting sort

How fast can we sort?

•如果對於要sort的東西,並沒有一些了解,只知道每個東西都有key,只知道keys有a total order,則這時除了用comparisons of keys,別無它法。這樣的sorting methods.

- Assume that input numbers are a_1, a_2, \cdots, a_n and they are distinct.
- Any comparison sort can be described by a decision tree.

How fast can we sort?

- **Theorem.** Any comparison-based sortin method requires $\Omega(nlgn)$ comparisons in the worst case.
- Proof.
 - 任何一個comparison-based sorting method都可以使用decision tree描述,這個decision tree的高度就是worst-case所需的comparisons個數。
 - 令h表示decision tree 的高度,l表示decision tree的樹葉個數
 - (1)如果一個排序方法是正確的,則它必須能夠得到n個data的n!種排列中的任何一種。因此decision troo 系以西方如何特許。因此1~如
 - 的任何一種,因此decision tree至少要有n!個樹葉,因此 $l \geq n$!.
 - (2)由於decision tree是二元樹,當它的高度是h,它最多只有 $l \leq 2^h$ 個樹葉.

由(1)及(2),
$$n! \le 2^h$$
, $n! = n(n-1)(n-2)...(3)(2)(1) \ge \left(\frac{n}{2}\right)^{\frac{1}{2}}$

因此
$$h \ge lg(n!) \ge \left(\frac{n}{2}\right) lg(\frac{n}{2}) = \Omega(nlgn)$$
,得證。

作業1:分數排序

第一次段考結束了,老師想將班上同學的數學成績由高排至低, 方便統計觀察大家考的情況。每次輸入都是先輸入學生總人數, 再輸入每位學生的座號及成績。輸出為依照分數排好的學生座號 及其對應的分數。

測資一(20分)	測資二(30分)	測資三(50分)
輸入:2150270	輸入:515037027045550	輸入:35人,分數隨機在0到100的整數
輸出:70 50	輸出(舉例):70 70 50 50 5	輸出:排序後的分數及對應座號
2 1	2 3 1 5 4	

• 額外加分(20分):學生的座號改為輸入英文名字

作業1:分數排序

- •注意事項:
- 1. 繳交期限為出作業後的隔週三 12:00 以前
- 2. 請將檔案上傳至 共用雲端硬碟\109多元選修_基礎資料結構與 演算法\0. 個人作業\作業1_sorting
- · 3. 檔名格式為 hw1_班級座號
- 4. 請上傳原始檔(.cpp檔), 不要只上傳執行檔
- 5. 同學之間可以互相討論,也可以來問我,但不要複製貼上,抄 襲者以0分計