

Weights and Biases for better machine learning

Make the best outta your ML models

Lots of experiments, some of them are good, not all of them

- Same boilerplate code to
 - Generate plots (TensorBoard but customization is a bit more involved)

- Same boilerplate code to
 - Monitor system metrics like CPU & GPU usage, memory footprint, and so on

(

- Same boilerplate code to
 - Save the best model weights

- Same boilerplate code to
 - Save the best model weights
 - Analyze the prediction dynamics of a model

Experts

What if all of these could be done by ...


```
model.fit(X_train, y_train,
    validation_data=(...),
    epochs=...,
    callbacks=[WandbCallback(validation_data=(...),
        data_type="image", labels=...)]
)
```

And done!

http://bit.ly/wandb_demo

Create astounding reports!

Understand a dashboard scene with semantic segmentation

A self-driving car must functionally understand the road and its environment the way a human would from the driver's seat. One promising computer vision approach is **semantic segmentation**: parse visual scenes from a car dashboard camera into relevant objects (cars, pedestrians, traffic signs), foreground (road, sidewalk), and background (sky, building). Semantic segmentation annotates an image with object types, labeling meaningful subregions as a tree, bus, cyclist, etc. For a given car dashboard photo, this means labeling *every pixel* as belonging to a subregion.

Below you can see examples in two columns: raw images, the model's predictions, and the ground truth (correct labeling). Buildings are orange, cars are pink, road is cobalt blue, and pedestrians are beige. In the left column, the model can't differentiate between a pedestrian and a rider on a bicycle (magenta and cyan in ground truth, beige in prediction). Note how the hazy conditions in the right column make the model predictions blurry around the boundaries between dashboard and road, or vehicle and road).

Example segmentation maps

• Customize the data generated by Weights and Biases.

Get a tabular summary of your experiments.

Name (10 visualized)	State	Notes	User	Tags	Created →	Runtime	Sweep	accuracy	epoch	loss	val_accu	val_loss
• • mini-vgg-wo-data-aug-sgd-lsuv	finished	Add notes	saya		6d ago	3m 10s		0.607	49	1.044	0.4497	1.553
• • mini-vgg-prog-channels-wda-lsuv	finished	Add notes	saya		6d ago	2m 31s	-	0.5504	49	1.181	0.4351	1.532
• • mini-vgg-prog-channels-wo_da	finished	Add notes	saya		6d ago	2m 23s	-	0.5016	49	1.291	0.4407	1.488
• o mini-vgg-prog-channels-2	finished	Add notes	saya		6d ago	7m 52s	-	0.3934	49	1.552	0.4007	1.556
• • mini-vgg-prog-channels	finished	Add notes	saya		6d ago	2m 53s	-	0.3283	17	1.67	0.3362	1.683
• o mini-vgg-net-daug-sgd-clr	finished	Add notes	saya		6d ago	6m 38s	-	0.3129	37	1.791	0.3566	1.655
• • mini-vgg-net-da-sgd	finished	Add notes	saya		6d ago	9m 7s	-	0.5129	49	1.287	0.5572	1.183
• • mini-vgg-net	finished	Add notes	saya		6d ago	1m 26s	-	0.7534	10	0.6755	0.5493	1.479
• • miniinception-net	finished	Add notes	saya		6d ago	8m 45s		0.8818	12	0.3208	0.501	1.79

Seamless hyperparameter tuning!

Experts

Experts

Get your TensorBoard hosted automatically.

Prediction dynamics for different input modalities.

xt Step 18 ₹		
Text ▲	Predicted Label	True Label
"BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding"	["cs.CL: 99.21%","cs.LG: 21.01%"]	"cs.CL"
"MultiFiT: Efficient Multi-lingual Language Model Fine-tuning"	["cs.CL: 99.84%","cs.LG: 4.30%"]	"cs.CL, cs.LG"
"On the Variance of the Adaptive Learning Rate and Beyond"	["cs.LG: 91.80%","stat.ML: 88.42%"]	"cs.LG, stat.ML"

Works with all of these

It's not framework-limited

- Mask R-CNN semantic segmentation
- Visualizing 3D Bounding Boxes

Get started!

- pip install wandb
- https://www.wandb.com/articles

