Analiza wydolności sportowców na podstawie krzywych kwasu mlekowego

Jakub Nieśmiała^{a,*}, Hubert Król^b and Krzysztof Malisak^c

ARTICLE INFO

Keywords: wydolność sportowcy krzywe kwasu mlekowego uczenie maszynowe Politechnika Opolska

ABSTRACT

W pracy przedstawiono eksperyment badawczy z wieloma testami wydolności sportowców. Dane oraz modele predykcyjne oparto na zestawie cech fizjologicznych i krzywych kwasu mlekowego, co umożliwiło ocenę i personalizację obciążeń treningowych. Zbiór danych poddano analizie pod kątem wykrywania anomalii, wykorzystując algorytm *Isolation Forest* (1). Otrzymane wyniki ukazują potencjał metody w wyłapywaniu nietypowych przypadków, mogących wskazywać na błędy pomiarowe, skrajne wyniki bądź inne nieprawidłowości.

1. Wstęp

Podczas przeprowadzonego eksperymentu badawczego zrealizowano szereg testów wydolnościowych dla różnych sportowców. Po wstępnym przetworzeniu (usunięciu rekordów z brakami danych i wartości odstających) uzyskano zbiór 183 kompletnych raportów pomiarowych. Dodatkowo, przed każdym testem przeprowadzano wywiad z zawodnikiem, aby uzyskać szczegółowe informacje dodatkowe na temat jego kondycji, aktualnego stanu zdrowia i specyfiki dyscypliny sportowej.

Na podstawie zebranych i zmierzonych danych utworzono zestaw, w którym wyróżniono następujące cechy predykcyjne: wiek, wzrost, waga, V02max, VE, R, HRmax, RF, V02max_1_m. Zbiór danych rozszerzono także o cechy odzwierciedlające poziom kwasu mlekowego oraz tętno przy różnych obciążeniach (6, 8 i 10 km/h), a także charakterystyczne punkty występujące na krzywej kwasu mlekowego:

- la_min najniższy zarejestrowany poziom kwasu mlekowego,
- hr_min_la wartość tętna odpowiadająca najniższemu poziomowi kwasu mlekowego,
- la_max najwyższa zarejestrowana wartość poziomu kwasu mlekowego,
- hr_max_la wartość tętna odpowiadająca najwyższej wartości kwasu mlekowego,
- la_max_speed obciążenie (prędkość), przy którym pojawiła się najwyższa wartość kwasu mlekowego.

W związku z faktem, że poszczególni sportowcy osiągali zróżnicowane maksymalne obciążenia w testach (6–22 km/h) i nie zawsze było możliwe uzyskanie pełnego zakresu pomiarów, dodanie powyższych cech okazało się istotne dla zachowania użyteczności danych. W dalszych etapach

przetwarzania i analizy szczególną uwagę zwracano na kontekst poszczególnych zawodników (m.in. ich stan nawodnienia, porę dnia testu i inne indywidualne uwarunkowania).

Zgodnie z przeglądem literatury w obszarze detekcji anomalii (2; 5), poprawne zdiagnozowanie punktów odstających wymaga dostosowania narzędzi do charakteru analizowanego problemu. Przy zróżnicowanym zbiorze danych – zarówno pod kątem dyscyplin sportowych, jak i poziomu wytrenowania – uzasadnione jest zastosowanie metod odpornych na różne typy wariancji i nieciągłości w danych.

2. Cel i zakres

Głównym celem niniejszej pracy było zastosowanie algorytmu **Isolation Forest** do analizy danych w celu identyfikacji anomalii, mogących wskazywać na nietypowe lub niepożądane zachowania w zbiorze. Istotnym zadaniem była ocena, czy wychwycone obserwacje mogą sygnalizować błędy pomiarowe lub nietypową reakcję organizmu (3; 4).

2.1. Identyfikacja anomalii

Pierwszym etapem było zidentyfikowanie odstających obserwacji z wykorzystaniem algorytmu Isolation Forest. Poprzez analizę wskaźników takich jak liczba wykrytych anomalii i ich rozkład w przestrzeni cech, można było określić, które dane odbiegały od dominującego trendu.

2.2. Analiza efektywności modelu

Drugim ważnym celem była ocena skuteczności modelu **Isolation Forest** w wykrywaniu anomalii. Ze względu na brak etykiet prawdziwych (ground truth), skupiono się na analizie proporcji wykrytych anomalii, ich rozkładu w przestrzeni wybranych cech oraz na wizualizacji wyników.

2.3. Zastosowania w praktyce

Wyniki analizy anomalii mogą znaleźć zastosowanie w monitorowaniu zdrowia i wydolności sportowców. Wykrycie potencjalnych nieprawidłowości na wczesnym etapie może

^aWydział Elektrotechniki, Automatyki i Informatyki, Politechnika Opolska, Opole, Polska (inżynier)

^bWydział Elektrotechniki, Automatyki i Informatyki, Politechnika Opolska, Opole, Polska (inżynier)

^cWydział Elektrotechniki, Automatyki i Informatyki, Politechnika Opolska, Opole, Polska (inżynier)

^{*}Autor do korespondencji: j.niesmiala@po.edu.pl ORCID(s):

pomóc w zapobieganiu kontuzjom, dostosowywaniu intensywności treningów czy też ulepszaniu procedur pomiarowych.

3. Zbiór danych (Dataset)

Analizowany zbiór danych obejmował łącznie 183 próbki (pomiarów) uzyskane od sportowców trenujących różne dyscypliny. Każdy rekord składał się z następujących elementów:

• Dane osobowe:

- Płeć (male, female),
- Wiek (wartość całkowita).
- Wzrost (w cm),
- Waga (w kg).

• Dyscyplina sportowa:

koszykarz).

• Wyniki testów wydolnościowych:

- AeT (Aerobic Threshold) próg tlenowy.
- AnT (Anaerobic Threshold) próg beztlenowy.
- VO2max maksymalna pojemność tlenowa.
- VO2 at AnT VO2 przy progu beztlenowym.
- ve objętość oddechowa w ciągu minuty.
- hrmax maksymalne tetno.

• Pomiar reakcji organizmu w trakcie wysiłku:

- Tetno (hr) przy różnych intensywnościach (np. 6, 8, 10, 12 minut testu).
- Poziom kwasu mlekowego (la) przy różnej intensywności wysiłku.

Tak zorganizowany zbiór danych okazał się bogatym źródłem informacji, pozwalającym na analizę efektywności treningowej, ocene wydolności w zależności od dyscypliny oraz planowanie optymalnych obciążeń treningowych.

4. Algorytm Isolation Forest

Metoda Isolation Forest, opisana szczegółowo w pracy (1), opiera się na idei izolowania nietypowych punktów poprzez losowe partycjonowanie przestrzeni cech z użyciem drzew decyzyjnych. Każdy punkt danych jest szybko "odcinany" od pozostałych, a miarą anomalii jest łatwość (lub szybkość) izolacji danej obserwacji.

4.1. Parametry modelu

- Liczba estymatorów (n_estimators): 500 drzew decyzyjnych, co sprzyja stabilności wyników.
- Contamination: 10,3% określa przybliżony odsetek anomalii w zbiorze.
- random state: Ustawiony na stała wartość (2137) dla powtarzalności wyników.

Po wytrenowaniu modelu, każdej obserwacji przypisywany jest wskaźnik anomalii, który umożliwia określenie, czy dana próbka jest "odstająca" w stosunku do pozostałych.

5. Zastosowane metryki oceny

Ze względu na brak dostępnych etykiet prawdziwych (ground truth), ocena modelu Isolation Forest została przeprowadzona w sposób przybliżony, z wykorzystaniem następujących metod:

- Rodzaj uprawianej dyscypliny (np. biegacz, triathlonista, Analiza proporcji anomalii: Porównano liczbę wykrytych anomalii z ogólną liczebnością zbioru, uzyskując odsetek odstających próbek.
 - Wizualizacja rozkładu: Zweryfikowano rozkład anomalii i obserwacji normalnych w przestrzeni wybranych cech (np. V02max oraz HRmax), aby sprawdzić, czy anomalie rzeczywiście odbiegają od trendu.

Takie podejście pozwoliło na poglądową ocenę skuteczności algorytmu w kontekście dostępnych danych, choć bez precyzyjnej walidacji względem obiektywnych etykiet (2).

6. Zastosowanie i implementacja algorytmu

Isolation Forest zaimplementowano w języku Python z użyciem biblioteki scikit-learn. Proces przygotowania danych obejmował:

- Usunięcie braków danych i anomalii ewidentnych (np. błędnych pomiarów).
- Standaryzację (normalizację) poszczególnych cech.
- Uruchomienie modelu z zadanymi parametrami (n_estimators=500, contamination=0.103, random_state=2137).

Po zastosowaniu modelu, próbki sklasyfikowane jako odstające mogą stanowić przypadki szczególne, wymagające dalszej analizy, np. w celu wyjaśnienia, czy wynikają z nietypowej formy zawodnika, błędu pomiarowego, czy też wyjątkowych warunków zewnętrznych.

7. Wyniki

Po przetworzeniu 183 próbek metodą Isolation Forest otrzymano następujące obserwacje:

• Liczba wykrytych anomalii: 19 próbek (ok. 10,38%).

• Liczba próbek uznanych za normalne: 164 próbek (ok. 89,62%).

Otrzymane wyniki wskazują, że **Isolation Forest** wyłonił niewielką, lecz znaczącą populację obserwacji odstających. Niski procent anomalii potwierdza, że większość danych cechuje się spójnością, a ewentualne odchylenia mogą dotyczyć pojedynczych zawodników lub specyficznych warunków pomiarowych.

8. Podsumowanie i wnioski

W przeprowadzonej analizie z wykorzystaniem metody **Isolation Forest** udało się wyodrębnić około 10% anomalii wśród 183 przebadanych próbek. Choć nie posiadano etykiet prawdziwych (ground truth), procentowy udział anomalii wraz z ich rozkładem w przestrzeni wybranych cech sugeruje, że algorytm skutecznie identyfikuje potencjalnie nietypowe wyniki.

Najważniejsze spostrzeżenia:

- Możliwość wykrycia błędów pomiarowych: Niewielka część obserwacji mogła odbiegać od normy z powodu problemów z aparaturą lub nieprawidłowego zapisu wyników (3).
- Identyfikacja sportowców "odstających": U części zawodników nietypowe wartości VO2max, tętna maksymalnego czy poziomu kwasu mlekowego mogą wynikać z fenotypowych predyspozycji bądź specyfiki treningu.
- Wartość w kontekście zdrowia i prewencji kontuzji: Wczesne wyłapanie nietypowych wskaźników może być pomocne w szybkiej reakcji trenerskiej lub medycznej.

W przyszłości warto rozważyć:

- Rozszerzenie zbioru o dodatkowe pomiary i zmienne kontekstowe (m.in. informacje o nawodnieniu, porze dnia, diecie).
- Porównanie skuteczności wykrywania anomalii przy użyciu innych metod (np. Local Outlier Factor, One-Class SVM), co zostało szerzej opisane w literaturze (2; 5).
- Głębszą analizę biologiczną i zdrowotną wykrytych anomalii, aby trafniej interpretować ich przyczynę.

9. Bibliografia

References

- [1] Liu, F. T., Ting, K. M., & Zhou, Z. H. (2012). Isolation Forest. In Proceedings of the 8th IEEE International Conference on Data Mining (ICDM 2012) (pp. 413–422). IEEE. https://doi.org/10.1109/ ICDM.2012.60
- [2] Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM Computing Surveys (CSUR), 41(3), 1–58. https://doi.org/10.1145/1541880.1541882

- [3] Iglewicz, B., & Hoaglin, D. C. (1993). How to detect and handle outliers. SAGE Publications.
- [4] Aggarwal, C. C. (2017). Outlier Analysis. Springer. https://doi.org/ 10.1007/978-3-319-51656-7
- [5] Boudahri, A., & Dahmani, H. (2021). A Comprehensive Survey on Anomaly Detection Methods in Data Mining. *Procedia Computer Science*, 179, 361–368. https://doi.org/10.1016/j.procs.2021.01. 051