Problem a: Block Ciphers

Consider the following definition of a block cipher. This definition is equivalent to the one in the lecture slides.

Definition 1. A function $E: \mathcal{K} \times X \to Y$ is called a block cipher if:

- 1. X = Y and
- 2. for all $K \in \mathcal{K}$, $E_K : X \to X$ is an efficiently computable permutation on the set X.

Here, $E_K(x) = E(K, x)$ for all $x \in X$, which is a common shorthand notation. Let $E: \{0, 1\}^k \times \{0, 1\}^n \to \{0, 1\}^n$ be a block cipher.

(a) Analysis of F_1

Let the function $F_1: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ be defined by:

$$F_1(K,x) = E(K,x) \oplus x.$$

Is F_1 a block cipher? Prove your answer.

(b) Analysis of F_2

Let the function $F_2: (\{0,1\}^k \times \{0,1\}^n) \times \{0,1\}^n \to \{0,1\}^n$ be defined by:

$$F_2((K_1, K_2), x) = E(K_1, K_2 \oplus x).$$

The keyspace of F_2 is $\{0,1\}^k \times \{0,1\}^n$. Show that F_2 is a block cipher and that it is PRP-secure assuming that E is PRP-secure.

Problem b: IND-CPA Security

Suppose SE = (KGen, Enc, Dec) is an IND-CPA secure encryption scheme with key space \mathcal{K} and message space \mathcal{M} , such that $\mathcal{K} = \mathcal{M} = \{0,1\}^n$ for some even integer n. You can assume that messages of the same length have equally-sized ciphertexts (if not stated otherwise). Which of the following encryption algorithms are guaranteed to represent correct encryption schemes with IND-CPA security?

- 1. $\operatorname{Enc}_a(K, m) = \operatorname{Enc}(K, (m, r))$. Here, the message space for Enc_a is $\{0, 1\}^{n/2}$, r is a random n/2-bit string, and (m, r) is the concatenation of m and r.
- 2. $\operatorname{Enc}_b(K, m) = \operatorname{Enc}(K, m) \oplus \operatorname{Enc}(K, 0^n)$.
- 3. $\operatorname{Enc}_{c}(K, m) = (\operatorname{Enc}(K, m), m[1])$. Here, m[1] is the first bit of m.