

RX24T Group

Vector Control of a Two-Phase Stepping Motor Incorporating a Resolver Sensor

Introduction

This application note describes the sample software for driving a two-phase stepping motor incorporating a resolver sensor.

Verified Operation Environment

- MCU: RX24T (R5F524TAADFM)
- Renesas Solution Starter Kit (RSSK): Evaluation System for Stepping Motor with Resolver (RTK0EMX270S01020BJ)
- Motor: Two-phase stepping motor (R17PMK440CNVA4438 manufactured by MinebeaMitsumi Inc.)
- · Position sensor: Resolver
- Resolver-to-digital converter (RDC): RAA3064002GFP and RAA3064003GFP
- Motor control development support tool: Renesas Motor Workbench (RMW) 2.0

Target Sample Program

- RX24T_MRSSK_STM_RSLV_FOC_CSP_RVxxx
- RX24T_MRSSK_STM_RSLV_FOC_E2S_RVxxx

Reference Documents

- RX24T Group User's Manual: Hardware (R01UH0576EJ0200)
- Renesas CMOS ICs Resolver-to-Digital Converters User's Manual: Hardware (R03UZ0002EJ0100)
- Application Note: Using the Driver for Resolver-to-Digital Converter Control (R03AN0013EJ0010)
- Renesas Motor Workbench 2.0 User's manual (r21uz0004ej0201-motor.pdf)

Contents

1.	Overview	4
1.1	Development Environment	4
2.	Overview of the System	5
2.1	Hardware Configuration	5
2.2	Hardware Specifications	6
2.2.1	User Interface	6
2.2.2	Peripheral Functions for Motor Control	7
2.2.3		
2.3	Software Configuration	9
2.3.1	Folder and File Configuration	9
2.3.2	Module Configuration	11
2.4	Software Specifications	12
2.4.1	Motor Control	12
2.4.2	RDC and Resolver Sensor Control	13
2.4.3	Interrupt Processing	14
3.	Details of the Software	15
3.1	Detecting Inverter Bus Voltage and Motor Phase Currents (A/D Conversion)	15
3.2	Controlling the Operating State of the Motor	
3.3	Detecting Rotor Position	18
3.3.1	Angle Correction at the Time of Current Detection	20
3.3.2	Angle Correction at the Time of Output Voltage Updating	21
3.4	Removing Offset of Sensor Position against Magnetic Pole Position	22
3.5	Creating a Position Reference Value	
	(Moving Average-Type Acceleration and Deceleration Method)	23
3.6	Vector Control Algorithm	24
3.6.1	Analysis Model of Two-Phase Stepping Motor	24
3.6.2	d-q-Axis Model of Two-Phase Motor	25
3.6.3	Torque Generated in a Motor	26
3.7	Vector Control System and Controllers	27
3.7.1	Designing a Current Control Loop	28
3.7.2	Designing a Speed Control Loop	30
3.7.3	Designing a Position Control Loop	33
3.7.4	Speed Observer	34
3.7.5	IPD Controller	35
3.7.6	Voltage Error Compensation	35
3.7.7	Flux-Weakening Control	36
3.7.8	Bandpass Filter Delay Compensation	37
3.7.9	Iron Loss Compensation	40
3.8	System Protection Functions	42

3.9 Calibration to Compensate for Errors	42
3.10 Specifications of Software Functions	43
3.10.1 Current Control Processing (R_MTR_SR_Foc_INT_CrntCtrl())	45
3.10.2 250-μs Cycle Interrupt Processing (R_MTR_SR_Foc_INT_PosSpdCtrl())	64
3.10.3 Acquiring Angle at the Time of Current Detection (mtu3_tciv4_interrupt())	76
3.10.4 Overcurrent Detection Interrupt Processing (R_MTR_SR_Foc_INT_OverCur())	78
3.10.5 Main Function Processing	79
3.11 List of Structures	82
3.11.1 "r_mtr_spm_rslv_foc_rx" Folder	82
3.11.2 "r_mtr_spm_rslv_foc_rx/src/controller" Folder	84
3.11.3 "r_mtr_spm_rslv_foc_rx/src/functions" Folder	89
3.11.4 "r_mtr_spm_rslv_foc_rx/src/mode" Folder	92
3.12 Software Macro Definitions	93
3.12.1 "r_mtr_spm_rslv_foc_rx" Folder	93
3.12.2 "r_mtr_spm_rslv_foc_rx/ref" Folder	93
3.12.3 "r_mtr_spm_rslv_foc_rx/src/controller" Folder	96
3.12.4 "r_mtr_spm_rslv_foc_rx/src/functions" Folder	101
3.12.5 "r_mtr_spm_rslv_foc_rx/src/mode" Folder	103
3.13 List of Variables for Analyzer Functions	104
4. Basic Operating Procedure	106
4.1 Motor Control Development Support Tool "Renesas Motor Workbench"	106
4.2 Example of Motor Driving Operation Using Analyzer Functions	107
Website and Support	111
Revision History	112

1. Overview

This application note describes how to install the software for vector control of a two-phase stepping motor incorporating a resolver sensor using the RX24T microcontroller and how to use the motor control development support tool "Renesas Motor Workbench".

1.1 Development Environment

The following shows the development environment used in this application note.

Table 1.1 Hardware Development Environment

Microcontroller	Evaluation Board	Motor
RX24T	Evaluation System for Stepping Motor with Resolver	R17PMK440CNVA4438
(R5F524TAADFM)	(RTK0EMX270S01020BJ)	(incorporating a
		resolver sensor)

Table 1.2 Software Development Environment

CS+ Version	e ² studio Version	Toolchain Version
V8.05.00	2021-01	CC-RX V3.03.00

2. Overview of the System

This section gives an overview of this system.

2.1 Hardware Configuration

Figure 2.1 illustrates the hardware configuration.

Figure 2.1 Hardware Configuration

2.2 Hardware Specifications

2.2.1 User Interface

Table 2.1 lists the user interfaces of this system.

Table 2.1 User Interfaces

Item	Interface Component	Function
LED1	Orange LED (User LED)	Not used
LED2	Orange LED	Not used
SW1	Toggle switch	Turning the motor on and off
SW2	N2 Push switch Release from the syst applying automatic cato errors	
VR1	Variable resistor	Changing the speed reference value

Table 2.2 shows the pin interfaces of this system.

Table 2.2 Pin Interfaces

DE	F52	4T	ΛΛ		ı
RO	raz	4 I I	ΑА	IJ	ı

Pin Name	Function		
P55/AN211	Inverter bus voltage measurement		
P81	User LED1 ON/OFF control		
P80	User LED2 ON/OFF control		
P61/IRQ2	Toggle switch SW1		
P62	Push switch SW2		
P01/POE12#	RDC alarm signal (overheat detection)		
P44/AN100	Phase α current measurement		
P45/AN101	Phase β current measurement		
P47/AN103	RDC signal to be monitored		
P60/AN200	Variable resistor VR1		
P71/MTIOC3B	PWM output (A+ high side)		
P74/MTIOC3D	PWM output (A+ low side)		
P95/MTIOC6B	PWM output (A- high side)		
P92/MTIOC6D	PWM output (A- low side)		
P72/MTIOC4A	PWM output (B+ high side)		
P75/MTIOC4C	PWM output (B+ low side)		
P94/MTIOC7A	PWM output (B- high side)		
P91/MTIOC7C	PWM output (B- low side)		
P21/MTIOC9A	Excitation signal output 1 to RDC		
PE0/MTIOC9B	Excitation signal output 2 to RDC		
PB0/TMO0	Resolver phase A adjustment signal output to RDC		
P82/TMO4	Resolver phase B adjustment signal output to RDC		
PA3/MTIOC2A	Angle signal input from RDC		
P31/MTIOC0A	Carrier correction signal output to RDC		
P11/TMO3	Reference clock signal output to RDC		
P22/MISOA	SPI transmit data to RDC		
P23/MOSIA	SPI receive data from RDC		
PA4/RSPCKA	SPI communications clock for RDC		
PD6/SSLA0	SPI communications enable signal for RDC		
P70/POE0#	PWM emergency stop input when an overcurrent is detected		

2.2.2 Peripheral Functions for Motor Control

Table 2.3 lists the peripheral functions used in this system.

Table 2.3 Peripheral Functions

Function Name	Description
S12ADF	 Phase α and phase β current detection (AN100 and AN101)
	Inverter bus voltage detection (AN211)
CMT	 250-μs interval timer (CMT0)
MTU3	 Complementary PWM output (channels 3, 4, 6 and 7 of MTU3)
POE3	Drives the PWM output pins to high impedance to stop PWM output (POE0#).

(1) 12-bit A/D converter (S12ADF)

This function measures phase α current (I_{α}), phase β current (I_{β}), and inverter bus voltage (V_{dc}) in single-scan mode (using hardware triggers). The sample-and-hold function is used to detect phase α current (I_{α}) and phase β current (I_{β}).

(2) Compare match timer (CMT)

Channel 0 of the compare match timer is used as a 250-µs interval timer.

(3) Multifunctional timer pulse unit 3 (MTU3)

Channels 3, 4, 6, and 7 of MTU3 are used in the complementary PWM mode to output PWM signals (active high) with dead time for motor control.

(4) Port output enable 3 (POE3)

When an overcurrent is detected (a falling edge on the POE0# pin is detected) or when a PWM output short-circuit is detected, the PWM output pin is driven to high impedance.

2.2.3 Peripheral Functions for RDC and Resolver Sensor Control

This sample program uses resolver control driver software (hereafter called the RDC driver) to control the RDC. The RDC driver uses the peripheral functions of the MCU to control the RDC.

Table 2.4 RDC Driver Functions

Function Name	Description
S12ADF	Detects the RDC monitor output signal (AN103).
CMT	 Updates the PWM duty cycle of the carrier correction signal (CMT1).
MTU3	 Detects the angle signal (MTU3_2).
	 Outputs the excitation signal (MTU3_9).
	 Outputs the carrier correction signal (MTU3_0).
TMR	 Outputs the clock for communications between the RDC and SPI module (TMR3).
	 Outputs the RDC phase adjustment signals (TMR0 and TMR4).
IRQ	Detects RDC alarms (POE12#).
RSPI	 Handles communications between the RDC and SPI module (RSPCKA, MISOA, MISIA, and SSLA0).

(1) 12-bit A/D converter (S12ADF)

- Measures the analog value of the angle signal from the RDC. This function is used for RDC adjustment.
- (2) Compare match timer (CMT)
 - Updates the duty cycle of the PWM signal used as the carrier correction signal.
- (3) Multifunctional timer pulse unit 3 (MTU3)
 - Angle signal detection
 - Detects the angle signal output from the RDC using the input capture function of the MTU.
 - Excitation signal output
 - Outputs the excitation signal (rectangular wave) to the RDC.
 - Carrier correction signal output
 - Outputs a signal for correcting analog errors (first-order distortion) on the resolver signals.

(4) 8-bit timer (TMR)

- RDC reference clock output
 - Outputs the reference clock to the RDC.
- RDC phase adjustment signal output
 Outputs a signal for adjusting the phase difference between two-phase resolver signals input to the RDC.
- (5) External interrupt requests (IRQ)
 - Detects the alarm signal output from the RDC.
- (6) Serial peripheral interface (RSPI)
 - Handles SPI communications with the RDC.

2.3 Software Configuration

2.3.1 Folder and File Configuration

The following table shows the configuration of folders and files of the software.

Table 2.5 Folder and File Configuration (1/2)

Folder Hierarchy				File	Description
application	main			main.h, main.c	Main function
	mcu			r_mtr_interrupt.c	Interrupt function definitions
	user_	interface	ics	r_mtr_ics.c, r_mtr_ics.h	RMW-related function definitions
				ICS_RX24T.obj	Communications library for RMW
			flash	r_mtr_flash.c, r_mtr_flash.h	Flash memory data processing function definitions
r_mtr_spm_rslv	•			r_mtr_stm_rslv_foc_rx_if.h	Header file for the motor control module
_foc_rx	src			r_mtr_stm_rslv_foc_rx.c	User access function definitions
		mode		r_mtr_foc_action.c	Action function definitions
				r_mtr_statemachine.h,	State machine function definitions
				r_mtr_statemachine.c	
		controller		r_mtr_common.h	Common definitions
				r_mtr_foc_stm_rslv_control.h, r_mtr_foc_stm_rslv_control.c	FOC function definitions
				r_mtr_parameter.h	Parameter definitions
				r_mtr_ctrl_gain_calc.obj r mtr ctrl gain calc.h	Control gain calculation function definitions
				r_mtr_foc_current.h, r_mtr_foc_current.c	Current control function definitions
				r_mtr_foc_position.h, r_mtr_foc_position.c	Position control function definitions
				r_mtr_foc_speed.h, r_mtr_foc_speed.c	Speed control function definitions
				r_mtr_pi_control.h, r mtr pi control.c	PI control function definitions
				r_mtr_position_profiling.h, r_mtr_position_profiling.c	Position reference value creation function definitions
		functions		r_mtr_transform.h, r_mtr_transform.c	Coordinate transformation function definitions
				r_mtr_variables.h, r_mtr_variables.c	Motor control value setting function definitions
				r_mtr_volt_err_comp.h, r_mtr_volt_err_comp.obj	Voltage error compensation function definitions
				r_mtr_speed_observer.h, r_mtr_speed_observer.obj	Speed observer function definitions
				r_mtr_mod.h, r_mtr_mod.c	Modulation function definitions
				r_mtr_filter.h, r_mtr_filter.c	General filter function definitions
				r_mtr_fluxwkn.h	Flux-weakening control
				r_mtr_fluxwkn.obj	-
				r_mtr_ipd.h, r_mtr_ipd.obj	I-PD control function definitions
				r_rslv_compensation.h,	Resolver angle correction function definitions
				r_rslv_compensation.obj	
		targets			
	ref	ref		r_mtr_config.h	Common configuration definitions
				r_mtr_control_parameter.h	Control parameter configuration definitions
				r_mtr_inverter_parameter.h	Inverter parameter configuration definitions
		lib		r_mtr_motor_parameter	Motor parameter configuration definitions
				r_resolver_rdc_command.h	Initial values of the RDC registers
	lib				

Table 2.5 Folder and File Configuration (2/2)

Folder Hierarchy			File	Description
driver	inverter		r_mtr_ctrl_inverter.h, r_mtr_ctrl_inverter.c	Inverter board-dependent function definitions
	mcu		r_mtr_ctrl_rx24t.h, r_mtr_ctrl_rx24t.c	MCU-specific function definitions
			r_mtr_ctrl_mcu.h	Common MCU-related definitions
		auto_generation	(Omitted)	Folder for automatically generated files
	senso	r		
		rdc_driver_RX	(Omitted)	RDC driver

2.3.2 Module Configuration

Figure 2.2 shows the configuration of modules of the software.

Figure 2.2 Configuration of the Motor Control Software Modules

2.4 Software Specifications

2.4.1 Motor Control

Table 2.6 lists the basic software specifications of this system.

Table 2.6 Basic Specifications of the Vector Control Software

Item	Description				
Control method	Vector control				
Motor position control start and stop	Input from the Renesas Motor Workbench (RMW)				
Rotor's magnetic pole position detection	Resolver sensor (50 poles)				
Input voltage	24 VDC				
Main clock frequency	80 MHz				
Carrier frequency (PWM)	20 kHz (Carrier cycle: 50 μs)				
Dead time	0.5 μs				
Control cycle (current)	50 μs (Carrier cycle)				
Control cycle (speed and position)	250 µs				
Resolver excitation signal frequency	20 kHz				
Resolver angle resolution	200000 PPR (0.0018 degrees)				
	(Main clock frequency) / (excitation frequency) * (number of poles of resolver sensor)				
Position reference value	Creation of position reference value: Position profiling using the trapezoidal speed wave method				
management	Input range:				
	-32768° to 32767°				
	Speed limit:				
	Clockwise (CW) and counterclockwise (CCW): 0 to 1500 rpm				
Speed reference value management	CW: 0 rpm to 2000 rpm				
	CCW: 0 rpm to 2000 rpm				
Dead band of position*	±1 count				
Natural frequency of each control	Current control loop: 400 Hz				
loop	Speed control loop: 40 Hz				
	Position control loop: 10 Hz				
Compiler optimization settings	Optimization level 2 (-optimize = 2) (Default setting)				
	Optimizing method Optimization with the code size precedence (-size) (Default setting)				
ROM and RAM size	ROM: 66 Kbytes				
	RAM: 6 Kbytes				
Protection stop processing	The six motor control signal outputs are disabled when any of the following conditions is met.				
	1. The current of a phase exceeds 5 A. (Monitored at intervals of 50 μ s)				
	2. The inverter bus voltage exceeds 40 V. (Monitored at intervals of 50 μs)				
	3. The inverter bus voltage is lower than 20 V. (Monitored at intervals of 50 μ s)				
	4. The rotational speed exceeds 4000 rpm. (Monitored at intervals of 50 μs)				
	5. An interrupt of the alarm signal detection is issued from the RDC.				
	When the overcurrent detection signal (detection of a falling edge on the POE0# pin) from the external circuit or a short circuit of an output is detected, the PWM output pin is driven to high impedance.				

Note: * A dead band is provided to prevent hunting at the time of positioning.

2.4.2 RDC and Resolver Sensor Control

Table 2.7 lists the settings of the RDC driver. For details, see the application note "Using the Driver for Resolver-to-Digital Converter Control".

Table 2.7 Settings of the RDC Driver

Item	Description
Excitation signal output	Output frequency: 20 kHz
Carrier correction signal output	Output frequency: 200 kHz
Phase adjustment signal output	Output frequency: 400 kHz
	Duty cycle: Set by the adjustment function (Initial value: 50% for both phase A and phase B)
Angle signal input	Captured at an input capture interrupt generated on only rising edges or both rising and falling edges of the angle signal)
RDC clock output	Output frequency: 4 MHz
Interrupt for updating the duty cycle of the carrier correction signal	Update cycle: 40 kHz

2.4.3 Interrupt Processing

Table 2.8 lists interrupts used in this program.

Table 2.8 List of Interrupts

Interrupt	Purpose of Use	Interrupt Level
ICU: IRQ5	RDC alarm detection	15
POE: OEI1	Overcurrent detection by an external circuit	15
CMT1: CMI1	Update of the duty cycle for carrier correction PWM signal	14
MTU2: TGIA2	Angle signal detection (input capture)	13
MTU4: TCIV4	Acquisition of angle information at the time of current detection	12
MTU9: TGIC9	Synchronization of the excitation signal and carrier correction	11
	signal	
S12AD: S12ADI	Current control	10
CMT0: CMI0	Speed and position control	9
RSPI0: XXXX *	RDC communications processing	8
SCI5: RXI5	RMW communications processing	6

Note: * Although multiple interrupts are used for communications with the RDC (including transmission end, reception end, and error interrupts), a single interrupt level is assigned to all of them.

3. Details of the Software

This section describes the software covered by this application note.

3.1 Detecting Inverter Bus Voltage and Motor Phase Currents (A/D Conversion)

(1) Inverter bus voltage

The A/D conversion ratio of the inverter bus voltage is shown in the following table. The converted value is used to calculate the rate of PWM signal modulation and detect a low-voltage and an overvoltage. (The PWM output stops when an error is detected.)

Table 3.1 Conversion Ratio of Inverter Bus Voltage

	Conversion Ratio	
Item	(Inverter bus voltage to A/D-converted value)	Channel
Inverter bus voltage	0 V to 60 V converted to 0000H to 0FFFH	AN206

(2) Phase α and phase β currents

The A/D conversion ratio of the phase α current and phase β current is shown in the following table. The converted values are used for current control (vector control).

Table 3.2 Conversion Ratio of Phase α and Phase β Currents

	Conversion Ratio	
Item	(Phase α or phase β current to A/D-converted value)	Channel
Phase α and phase β	-6.25 A to 6.25 A converted to 0000H to 0FFFH *	la: AN100
currents		lb: AN101

Note: * For details of A/D conversion characteristics, see RX24T Group User's Manual: Hardware.

3.2 Controlling the Operating State of the Motor

Figure 3.1 illustrates the operating state of the motor controlled by this sample software. This sample software controls the operating state of the motor with the system mode, run mode, and loop mode.

Figure 3.1 State Transitions of the Stepping Motor Incorporating a Resolver Sensor Controlled by this Software

(1) System mode

This mode refers to the operating state of the system (motor). A state changes when an event occurs. The state of the system can be INACTIVE (the motor is stopped), ACTIVE (the motor is operating), or ERROR (the motor operation is faulty).

(2) Event

When an event occurs in a state in the system mode, the the operating state of the system changes as shown in Figure 3.1 in accord with the event. The sources of the events are listed in the following table.

Table 3.3 List of Events

Event Name	Description	Source
INACTIVE	The PWM output is disabled.	User operation*
ACTIVE	The PWM output is enabled.	User operation*
ERROR	The motor control is deactivated.	On detection of an error by the system
	The PWM output is stopped (disabled).	
	The error state is reflected.	
RESET	The error state is cleared.	User operation*
	The system is placed in the inactive state and the variables are initialized.	

Note: * This event is generated by modifying the value of the variable com_u1_mode_system.

(3) Run mode

This mode refers to the state of the motor control. When the system is placed in ACTIVE, the motor operates in the specified mode.

Table 3.4 States of the Run Mode

State Name	Description	Source
MTR_MODE_OFFSET_ADJUST	The current and angle offset removal is User operation*	
	handled. Once completed, the system is	
	placed in INACTIVE.	
MTR_MODE_DRIVE	The operation specified by the loop mode is	User operation*
	handled.	

Note: * Transition is triggered by modifying the value of the variable com u2 run mode.

(4) Loop mode

When DRIVE is specified in the run mode, the motor is driven as specified in this mode.

Table 3.5 States of the Loop Mode

State Name	Description	Source
MTR_LOOP_CURRENT_ID	Current of the d axis is manually controlled.	User operation*
MTR_LOOP_CURRENT_IQ	Current of the q axis is manually controlled.	User operation*
MTR_LOOP_SPEED	Speed is manually controlled.	User operation*
MTR_LOOP_POSITION	Position is manually controlled.	User operation*

Note: * Transition is triggered by modifying the value of the variable com u1 ctrl loop mode.

(5) Method mode

When DRIVE and POSITION CONTROL are respectively specified in the run mode and loop mode, the motor is driven as specified in this mode.

Table 3.6 States of the Method Mode

State Name	Description	Source
MTR_CTRL_PID	Position is controlled by the PID controller.	User operation*
MTR_CTRL_IPD	Position is controlled by the IPD controller.	User operation*

Note: * Transition is triggered by modifying the value of the variable com_u1_ctrl_method_mode.

(6) Position input mode

When DRIVE and POSITION CONTROL are respectively specified in the run mode and loop mode, the method for inputting the position reference value can be specified in this mode.

Table 3.7 States of the Position Input Mode

State Name	Description	Source
MTR_POS_ZERO_CONST	Position reference 0	The control of position is not specified in the loop mode.
MTR_POS_STEP	A step response to the input reference value is made.	User operation*
MTR_POS_TRAPEZOID	The position profiling is handled to limit acceleration.	User operation*

Note: * Transition is triggered by modifying the value of the variable com_u1_position_input_mode.

3.3 Detecting Rotor Position

The rotor position is detected using the following algorithm.

- Peripheral functions in use
 Channel 9 of MTU3 (MTU3_9): Resolver excitation signal output (PWM output)
 Channel 2 of MTU3 (MTU3_2): Angle signal detection counter (input capture)
- MTU3_9 starts counting at the excitation frequency (20 kHz) set by the RDC driver in the initialization processing. MTU3_2 starts counting in synchronization with the excitation signal with the same cycle as MTU3_9.
- 2. The value of the MTU3_2 counter is updated on the rising edges (used as input capture triggers) of the angle signal (input to the PA3/MTIOC2A pin for the program covered by this application note) from the RDC.
 - Input capture can also be made on both rising and falling edges of the angle signal.
- 3. An API function of the RDC driver is used to acquire the MTU3_2 counter value as angle information for a single pole of the resolver sensor. At the same time, the difference between this value and the previously captured counter value is calculated. If the result is greater than 1/2 of the maximum MTU3_2 counter value (or has a value below -1/2 of the maximum counter value in the case of counterclockwise rotation), the counter is judged to have wrapped around and the captured counter value is normalized by adding or subtracting the maximum counter value. The angle is calculated from the normalized value. The rotational speed of the rotor can be calculated from the count difference information.

Schematic diagrams are shown below.

Figure 3.2 Schematic Diagram of Detecting Rotor Position (on Rising Edges)

Figure 3.3 Schematic Diagram of Detecting Rotor Position (on Both Rising and Falling Edges)

3.3.1 Angle Correction at the Time of Current Detection

The angle information obtained from the RDC is updated in response to each input capture interrupt. However, obtaining the angle information at the time of current detection is desirable for current control in motor control. Therefore, it is necessary to correct the angle information to include the amount of change in the angle from the angle information being updated in response to an input capture interrupt and until detection of a current.

This sample software uses MTU3 for excitation signal output (MTU3_9), input capture (MTU3_2), and complementary PWM output for motor control (MTU3_3, MTU3_4, MTU3_6, and MTU3_7). All counters for these signals can be started simultaneously by using an API function of the RDC driver.

Current detection proceeds at the troughs of the complementary PWM timer counter for motor control. As the cycle of this timer is the same as that of the input capture timer, the time elapsed until the trough of the counter is obtained from the counted value that is detected at the time of an input capture interrupt. The correction angle used at current detection can be obtained from this elapsed time and the motor driving speed.

A schematic diagram is shown below.

Figure 3.4 Schematic Diagram of Correcting Angle at the Time of Current Detection

3.3.2 Angle Correction at the Time of Output Voltage Updating

There is a delay from the time of current detection until calculation of the corrected angle and reflection of the reference voltage in the PWM signal. Therefore, the angle must be corrected considering this delay. The angle at the time of current detection is used for $\alpha\beta$ -to-dq coordinate transformation and the angle obtained by correcting the delay is used for dq-to- $\alpha\beta$ coordinate transformation.

A schematic diagram is shown below.

Figure 3.5 Schematic Diagram of Correcting Angle at the Time of Output Voltage Updating

3.4 Removing Offset of Sensor Position against Magnetic Pole Position

When using a resolver sensor, the magnetic pole position must be aligned with the reference angle of the sensor. The orientation of the current vector is aligned with the d axis to determine the initial magnetic pole position according to the procedure shown in Figure 3.6. This angle is stored as an offset value and is subtracted from the angles detected during motor control. Figure 3.7 shows the starting sequence at this time.

Figure 3.6 Determination of Permanent Magnet Position

Figure 3.7 Example of Offset Removing Sequence

3.5 Creating a Position Reference Value (Moving Average-Type Acceleration and Deceleration Method)

Position control provides a function for re-calculating the position reference value according to the specified position reference value, acceleration or deceleration time, and maximum speed in every control cycle to control the speed reference value. The following diagram gives an overview of this function

Figure 3.8 Shaping of Position Reference Value and Triangular or Trapezoidal Speed Reference Value

The following values can be specified in the RMW to create a position reference value with the acceleration or deceleration time taken into account.

- Acceleration time (com_f4_accel_time)
- Maximum speed (com_s2_max_speed_rpm)
- Settling wait time (com_u2_ref_pos_interval_time)

If the speed value obtained from the position difference and acceleration time is greater than the maximum accelerating speed, a position reference value is created so that the speed reference value becomes trapezoidal.

3.6 Vector Control Algorithm

3.6.1 Analysis Model of Two-Phase Stepping Motor

The voltage equation of a two-phase stepping motor is shown below.

Figure 3.9 Schematic Diagram of Two-Phase Stepping Motor

$$\begin{bmatrix} v_{\alpha} \\ v_{\beta} \end{bmatrix} = \begin{bmatrix} R_{a} + pL_{\alpha} & pL_{\alpha\beta} \\ pL_{\alpha\beta} & R_{a} + pL_{\beta} \end{bmatrix} \begin{bmatrix} i_{\alpha} \\ i_{\beta} \end{bmatrix} + \omega \psi \begin{bmatrix} -sin\theta \\ cos\theta \end{bmatrix}$$

 v_{α}, v_{β} : α-axis and β-axis armature voltages

 i_{α},i_{β} : α -axis and β -axis armature currents

 R_a : Armature resistance of each phase

 ω : Angular speed

p: Differential operator

 ψ : Maximum value of interlinkage magnetic flux of armature due to permanent magnet

 θ : Lead angle of permanent magnet (rotor) from phase α

 L_{α} , L_{β} , $L_{\alpha\beta}$: Inductances

3.6.2 d-q-Axis Model of Two-Phase Motor

In vector control, an AC two-phase (α, β) coordinate system is represented by a DC two-phase (d, q) coordinate system. Because the two-phase coils of the stator are converted to two-phase coils that rotate in synchronization with the rotor of the permanent magnet, the two-phase coils are stationary relative to the rotor and are handled as two electrically independent DC circuits.

In the two-phase (d, q) coordinate system, the d axis is set in the magnetic flux (north pole) direction of the permanent magnet of the rotor and the q axis is set in the direction 90 degrees advanced in the positive direction of angle θ from the d axis. The following transformation matrix is used to obtain the voltage equation of the permanent magnet synchronous motor seen from the dq coordinate system.

Figure 3.10 Schematic Diagram of Two-Phase DC Motor

$$C = \begin{bmatrix} cos\theta & sin\theta \\ -sin\theta & cos\theta \end{bmatrix} , \begin{bmatrix} v_d \\ v_q \end{bmatrix} = C \begin{bmatrix} v_\alpha \\ v_\beta \end{bmatrix}$$

Based on the above coordinate transformation, the voltage equation in the dq coordinate system is shown below.

$$\begin{bmatrix} v_d \\ v_q \end{bmatrix} = \begin{bmatrix} R_a + pL_d & -\omega L_q \\ \omega L_d & R_a + pL_q \end{bmatrix} \begin{bmatrix} i_d \\ i_q \end{bmatrix} + \begin{bmatrix} 0 \\ \omega \psi_a \end{bmatrix}$$

 v_d , v_q : d-axis and q-axis armature voltages

 i_d , i_a : d-axis and q-axis armature currents

 R_a : Armature resistance of each phase

ω: Angular speed

p: Differential operator

 L_d , L_q : d-axis and q-axis inductances

 ψ_a : Effective value of interlinkage magnetic flux of armature due to permanent magnet

Accordingly, the alternate currents flowing through the stationary two-phase stator can be regarded as direct currents that flow through the two-phase stator rotating in synchronization with the permanent magnet (rotor).

3.6.3 Torque Generated in a Motor

The magnitude of torque generated in a motor is obtained by the following equation using the outer product of the current vector and the armature's interlinkage magnetic flux. The first member of the right side of this equation is called the magnet torque and the second member of the right side is called the reluctance torque.

$$T = P_n \{ \psi_a i_q + (L_d - L_q) i_d i_q \}$$

T: Motor torque P_n : Number of pole pairs

A motor with no difference between the d-axis inductance and the q-axis inductance is called a motor without saliency. In this case, the torque increases in proportion to the q-axis current because of a zero reluctance torque. Therefore, the q-axis current is called the torque current in some cases. On the other hand, the d-axis current is called the excitation current in some cases because varying this current makes the apparent size of the magnetic flux of the permanent magnet change.

3.7 Vector Control System and Controllers

Figure 3.11 shows a block diagram of the overall position control system.

Figure 3.11 Block Diagram of the Vector Control System (Position Control)

As shown in Figure 3.11, the position control system consists of a position control loop, a speed control loop, and a current control loop. The speed control loop and the current control loop are implemented by general PI controllers and the position control loop is implemented by a P controller and a feedforward controller for speed. The gains of respective controllers must be properly designed to achieve desired control characteristics.

In the system block diagram, the decoupling control block feeds forward the inductive voltages v_d^{**} and v_q^{**} (shown in the equations below) generated by motor rotation to the reference voltage of each phase. This achieves high responsiveness in the speed control system and independent control of the d axis and q axis.

$$v_d^{**} = -\omega L_d i_q$$

$$v_q^{**} = \omega (L_d i_d + \psi_a)$$

Table 3.8 Motor Parameter Settings

Parameter		
Symbol	RMW Variable	Setting Method
R	com_f4_mtr_r	Measured parameter of motor (resistance) (ohm)
Ld	com_f4_mtr_ld	Measured parameter of motor (d-axis inductance) (H)
Lq	com_f4_mtr_lq	Measured parameter of motor (q-axis inductance) (H)
		If this value is smaller than L _d , the same value as L _d is set.
Ψa	com_f4_mtr_m	Measured parameter of motor

3.7.1 Designing a Current Control Loop

The current control loop is modeled by using the electrical characteristics of the motor. The stator coil can be represented by a resistance R and an inductance L. So the stator model of the motor is expressed by the transfer function of the typical RL series circuit $\frac{1}{R+LS}$.

Using a PI controller, the current control loop can be represented as the feedback control loop shown in Figure 3.12.

Figure 3.12 Model of the Current Control Loop

Based on this model, the PI gains of the current control loop are designed using the known R and L values of the motor stator.

The closed-loop transfer function of the current control loop is obtained by the following equation.

$$G(s) = \frac{Y(s)}{X(s)} = \frac{\frac{K_a}{K_b} \left(1 + \frac{s}{a}\right)}{s^2 + \frac{1}{K_b} \left(1 + \frac{K_a}{a}\right)s + \frac{K_a}{K_b}}$$

$$K_i = K_p a, \quad K_a = \frac{K_p a}{R}, \quad K_b = \frac{L}{R}$$

The general formula of the second-order delay system with a zero point can be expressed as follows.

$$\frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \cdot \left(1 + \frac{s}{\omega_z}\right)$$

The relations expressed by the following equations can be obtained by comparing the coefficients of the transfer function of the current control loop and the general formula of the second-order delay system with a zero point.

$$\frac{\omega_n^2 \left(1 + \frac{s}{\omega_z}\right)}{s^2 + 2\zeta \omega_n s + \omega_n^2} \Leftrightarrow \frac{\frac{K_a}{K_b} \left(1 + \frac{s}{a}\right)}{s^2 + \frac{1}{K_b} \left(1 + \frac{K_a}{a}\right) s + \frac{K_a}{K_b}}$$

$$\omega_n^2 = \frac{K_a}{K_b}, \qquad 2\zeta \omega_n = \frac{1}{K_b} \left(1 + \frac{K_a}{a}\right), \qquad \omega_z = a$$

Thus, the natural frequency ω_n , attenuation coefficient ζ , and zero-point frequency ω_z can be expressed as follows.

$$\omega_n = \sqrt{\frac{K_a}{K_b}}, \qquad \zeta = \frac{1}{2K_b\sqrt{\frac{K_a}{K_b}}}(1 + \frac{K_a}{a}), \qquad \omega_z = a = \frac{\omega_n^2 L}{2\zeta\omega_n L - R}$$

From these, the current PI control gains $K_{p_current}$ and $K_{i_current}$ are obtained as follows.

$$K_{p_current} = 2\zeta_{CG}\omega_{CG}L - R, \qquad K_{i_current} = K_{p_current}a = \omega_{CG}^2L$$

 $\omega_{\textit{CG}}$: Natural frequency of current control loop

 ζ_{CG} : Attenuation coefficient of current control loop

Accordingly, the PI control gain of the current control loop can be designed using the $\omega_{\it CG}$ and $\zeta_{\it CG}$ values.

Table 3.9 Settings of the Current Control Loop

Parameter Symbol	RMW Variable	Setting Method
ω_{CG}	com_f4_current_omega	This parameter is the natural frequency (Hz) of the current control loop. It can be set at up to approximately 1/10 of the current control frequency and in proportion to how often current control is applied. However, a relatively low parameter value is usually set in consideration of noise in position detection and current detection.
ζ_{CG}	com_f4_current_zeta	This parameter is the attenuation coefficient of the current control loop. It is usually set to 0.7 to 1.0. A value closer to 1 enables a stable and gentle response.

3.7.2 Designing a Speed Control Loop

The speed control loop can be modeled by using the mechanical characteristics of the motor. From the rotational motion equation, the mechanical torque can be expressed by the following equation.

$$T=J\dot{\omega}_{\scriptscriptstyle{mech}}$$
 $extit{J: Rotor inertia} \hspace{0.5cm} \omega_{\scriptscriptstyle{mech}}$: Mechanical angular speed

In consideration of only magnet torque, the electrical system torque equation is written as follows.

$$T = P_n \psi_a i_q$$

From the mechanical torque and electrical torque equations, the mechanical angular speed can be expressed as follows.

$$\omega_{mech} = \frac{P_n \psi_a}{sJ} i_q$$

Because an electrical angle is used to handle the speed in the control software, multiply both sides of the equation by the number of pole pairs P_n .

$$\omega_{elec} = \frac{P_n^2 \psi_a}{sI} i_q$$

 ω_{elec} : Electrical angular speed

This equation is a motor model of the speed control loop. Using a PI controller, the speed control loop can be represented as the feedback control loop shown in Figure 3.13.

Figure 3.13 Model of the Speed Control Loop

Then, specify the PI control gain of the speed control loop assuming that the motor parameters P_n , ψ , and J are known. Obtain the transfer function of the system first.

The closed-loop transfer function of the speed control loop is obtained by the following equation.

$$G(s) = \frac{Y(s)}{X(s)} = \frac{K_b a \left(1 + \frac{s}{a}\right)}{s^2 + K_b s + K_b a}$$
$$K_b = \frac{K_p P_n^2 \psi}{J}, \quad K_i = K_p a$$

The general formula of the second-order delay system with a zero point can be expressed as follows.

$$\frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \cdot \left(1 + \frac{s}{\omega_z}\right)$$

As with the current control loop, the relations expressed by the following equations can be obtained by comparing the coefficients of the transfer function of the speed control loop and the general formula of the second-order delay system with a zero point.

$$\frac{\omega_n^2(1+s/\omega_z)}{s^2+2\zeta\omega_n s+\omega_n^2} \Leftrightarrow \frac{aK_b\left(1+\frac{s}{a}\right)}{s^2+K_b s+aK_b}$$

$$\omega_n^2=aK_b=\frac{K_p a P_n^2 \psi_a}{J}, \qquad 2\zeta\omega_n=K_b=\frac{K_p P_n^2 \psi_a}{J}, \qquad \omega_z=a$$

Thus, the natural frequency ω_n , attenuation coefficient ζ , and zero-point frequency ω_z can be expressed as follows.

$$\omega_n = \sqrt{\frac{K_p a P_n^2 \psi_a}{J}}, \qquad \zeta = \frac{1}{2} \sqrt{\frac{K_p P_n^2 \psi_a}{aJ}}, \qquad \omega_z = a = \frac{\omega_n}{2\zeta}$$

From these, the PI control gains K_{p_speed} and K_{i_speed} are obtained as follows.

$$K_{p_speed} = \frac{2\zeta_{SG}\omega_{SG}J}{P_n^2\psi_a}, \qquad K_{i_speed} = K_{p_speed} * a = \frac{\omega_{SG}^2J}{P_n^2\psi_a}$$

 $\omega_{\textit{SG}}$: Natural frequency of speed control loop

 ζ_{SG} : Attenuation coefficient of speed control loop

Accordingly, the PI control gain of the speed control loop can be designed using the ω_{SG} and ζ_{SG} values.

Table 3.10 Settings of the Speed Control Loop

Parameter Symbol RMW Variable Setting Method This parameter is the natural frequency (Hz) of the speed com f4 speed omega ω_{SG} control loop. As a guideline, it can be set at up to approximately 1/10 of the natural frequency of the current control loop. However, setting a high-frequency value increases speed ripples due to noise in speed detection. This parameter is the attenuation coefficient of the speed com_f4_speed_zeta ζ_{SG} control loop. It is usually set to 0.7 to 1.0. A value closer to 1 enables a stable and gentle response.

3.7.3 Designing a Position Control Loop

The controller of the position control loop uses only a proportional term. For quick response to an excessive input compared with the speed reference value, the feedforward control for speed is combined to the feedback control to improve responsiveness. The following figure illustrates a model of the position control loop.

Figure 3.14 Model of the Position Control Loop

The position control loop uses only P control and the $K_{p_position}$ gain is designed using only the natural frequency ω_{PG} of the position control loop.

$$\omega = K_{p_position}(\theta_{ref} - \theta)$$

$$K_{p_position} = \omega_{PG}$$

To improve speed responsiveness, the feedforward control for speed is provided.

$$\omega_{ff} = \mathrm{K_{speed_ff}} \, \dot{\theta}_{ref}$$

Accordingly, a fixed value is specified as the speed feedforward gain and the position P gain can be designed using the natural frequency ω_{PG}

Table 3.11 Settings of the Position Control Loop

Parameter Symbol	RMW Variable	Setting Method
ω_{PG}	com_f4_position_omega	This parameter is the natural frequency (Hz) of the position control loop. As a guideline, it can be set at up to approximately 1/10 of the natural frequency of the speed control loop.

3.7.4 Speed Observer

In the position and speed control using an encoder with a low resolution, speed ripples are generated in the speed information created from the pulse signal due to quantization errors as the speed becomes lower. When the control gain is increased to improve responsiveness, amplified ripples appear as vibration and sound. This vibration will deteriorate the stability of speed control.

An algorithm to estimate speed using a speed observer is provided to reduce speed ripples by the software.

Figure 3.15 Model of the Speed Control Loop

The speed observer obtains the estimated speed $\widehat{\omega}$ using the q-axis current reference value i_{q_ref} and speed ω as inputs. Using the speed observer reduces speed ripples and less affects the responsiveness than normal filter processing.

Table 3.12 Settings of the Speed Observer

Parameter Symbol	RMW Variable	Setting Method
ω_{SOB}	com_f4_sob_omega	This parameter is the natural frequency (Hz) of the speed observer. Set a value greater than the natural frequency of the speed control loop. However, setting a high-frequency value increases speed ripples due to noise in speed detection.
ζ_{SOB}	com_f4_sob_zeta	This parameter is the attenuation coefficient of the speed observer. It is usually set to 0.7 to 1.0. A value closer to 1 enables a stable and gentle response.

3.7.5 IPD Controller

If the position resolution or speed resolution is low in the position control loop, a problem of continuous vibrations occurs at the time of positioning due to a failure to respond to slight changes in position difference. To reduce vibrations at the time of positioning, an integral term that accumulates slight changes to eliminate differences is required.

The IPD controller has a control method so that the integral term is only effective for differences and the proportional term and derivative term are only effective for the manipulation amount (controller output). This control method can reduce vibrations at the time of positioning with increased responsiveness.

Figure 3.16 Model of the IPD Controller

The IPD control implemented in this software is used together with normal proportional control and feedforward control.

3.7.6 Voltage Error Compensation

Voltage-type PWM converters have dead time to simultaneously turn off the switching elements of the upper and lower arms to prevent a short circuit between them. For this reason, an error is generated between the voltage reference value and the actual voltage applied to the motor, which deteriorates the control accuracy. To reduce this error, a voltage error compensation function is provided.

The dependence of voltage error on current depends on the direction and intensity of the current, dead time, and switching characteristics of the power elements in use. The dependence on current has the characteristic shown below. The voltage error compensation function compensates a voltage reference value with a voltage pattern opposite to the following voltage error according to the current.

Figure 3.17 Example of Current Dependence of Voltage Error

3.7.7 Flux-Weakening Control

When the permanent magnet synchronous motor is actuated, an inductive voltage is generated in proportion to the permanent magnetic flux of the rotor and the rotational speed. When the rotational speed increases and the inductive voltage equals the power supply voltage (saturation of voltage), no larger current can flow in the motor and the rotational speed is saturated. That is, there is a trade-off between the torque and speed of rotation of a permanent magnet synchronous motor. For example, the torque of a motor with a powerful magnet is large. However, its inductive voltage is also large, preventing high-speed rotation. The flux-weakening control is provided as a technique to solve this problem.

In flux-weakening control, a d-axis current in the negative direction is applied to suppress the effect of the saturation of voltage due to a voltage induction, achieving high-speed rotation and improving the output over a range of high rotational velocity.

The d-axis current is determined by the following equation.

$$I_{d} = \frac{-\psi_{a} + \sqrt{\left(\frac{V_{om}}{\omega}\right)^{2} - \left(L_{q}I_{q}\right)^{2}}}{L_{d}}$$
$$\therefore V_{om} = V_{amax} - I_{a}R$$

V_{om}: Inductive voltage limit value (V)

V_{amax}: Maximum value of voltage vector (V)

 I_a : Current vector size (A)

3.7.8 Bandpass Filter Delay Compensation

Phase differences are generated at the time of position detection due to the bandpass filters (BPFs) in the RDC.

Figure 3.18 Phase Differences at the Time of Position Detection Due to Bandpass Filters

As shown in Figure 3.18, the slope of the phase difference with respect to frequency differs between rotation in the clockwise (CW) direction and the counterclockwise (CCW) direction. Therefore, the amount of the compensation is separately determined by linear approximations for the phase difference in each direction of rotation.

The following equation is used to calculate the amount of compensation.

$$\theta_{\mathrm{bpfcomp}} = \begin{cases} \omega C_{base_cw} C_{mult_cw} & (\omega \geq 0) \\ \omega C_{base_ccw} C_{mult_ccw} & (\omega < 0) \end{cases}$$

ω: Electrical angular speed of motor

C_{base_cw}: BPF base compensation coefficient for the CW direction C_{base_ccw}: BPF base compensation coefficient for the CCW direction C_{mult_cw}: BPF compensation coefficient for the CW direction C_{mult_ccw}: BPF compensation coefficient for the CCW direction

Figure 3.19 Obtaining BPF Base Compensation Coefficients

The BPF phase characteristics are determined by the external circuits connected to the RDC. Figure 3.19 shows how to obtain BPF base compensation coefficients.

After the excitation frequency and the maximum operating frequency of the motor are specified, the phase differences y_cw and y_ccw and angular frequency differences x_cw and x_ccw between the two frequencies can be obtained. Use the slopes between the center point and the left and right points (y cw/x cw and y ccw/x ccw) as compensation coefficients.

$$C_{base_cw} = \frac{y_{cw}}{x_{cw}}$$

$$C_{base_cw} = \frac{y_{cw}}{x_{cw}}$$

$$C_{base_ccw} = \frac{y_{ccw}}{x_{ccw}}$$

Specify the obtained base compensation coefficients in the RMW variables shown in Table 3.13.

Table 3.13 Settings of BPF Compensation

Parameter Symbol	RMW Variable	Setting Method
C_{base_cw}	com_f4_bpf_comp_base_cw	BPF base compensation coefficient for the clockwise direction
		This parameter is set according to the characteristics of the external BPF circuit for the RDC.
C_{base_ccw}	com_f4_bpf_comp_base_ccw	BPF base compensation coefficient for the counterclockwise direction
		This parameter is set according to the characteristics of the external BPF circuit for the RDC.
C_{mult_cw}	_	BPF compensation coefficient for the clockwise direction
		Always fixed to 1.
C_{mult_ccw}	_	BPF compensation coefficient for the counterclockwise direction
		Always fixed to 1.

3.7.9 Iron Loss Compensation

As shown in the equivalent circuit of a motor (Figure 3.20), a motor has an iron loss due to the iron loss resistance represented by Ri as an internal magnetic loss in addition to a copper loss due to the coil resistance represented by R. Iron loss will particularly affect a stepping motor in operation in the high-velocity range.

Figure 3.20 Iron Loss in the Equivalent Circuit of a Motor

As the iron loss current I_2 flows due to the iron loss in the high-velocity range, the phase and size of the torque current I_1 , which affects the torque, varies with respect to the torque reference current I as shown in Figure 3.21 and the phase of the torque current I_1 , which should be aligned with the q axis, is delayed with respect to that of the reference current I. Therefore, obtaining the desired torque will not be possible and the performance in control will be degraded unless the torque current includes compensation for the phase delay due to the iron loss.

Figure 3.21 Phase Delay Due to Iron Loss

This control software only compensates for the phase delay due to the iron loss by using the following equation.

$$\theta_{\rm comp} = \omega C_{base}$$

Table 3.14 Setting of Iron Loss Compensation

Parameter Symbol	RMW Variable	Setting Method
C_{base}	com_f4_iron_loss_comp_base	Compensation coefficient for iron loss delay This value is set by tuning according to the motor type. It is set to 0.65×10^{-5} by default.

If the motor's rotational speed does not reach the theoretical maximum value, repeat the adjustment of this compensation parameter in 5% steps (as a rough suggested value) while monitoring the operation of the motor because actually measuring the iron loss itself is difficult.

3.8 System Protection Functions

This control program has functions for detecting the following error states and making an emergency stop. For the settings of each system protection function, see Table 3.15.

Overcurrent error

An overcurrent error is detected by hardware and software.

Overcurrent detection by hardware:

The emergency stop signal (overcurrent detection) from the hardware circuit drives the PWM output pins to high impedance.

Overcurrent detection by software:

If an overcurrent (exceeding the overcurrent limit value) is detected during monitoring of the phase-α and phase-β currents at overcurrent monitoring intervals, emergency stop is activated.

The overcurrent limit value is automatically calculated from the rated current MP_NOMINAL_CURRENT_RMS of the motor.

Overvoltage error

If an overvoltage (exceeding the overvoltage limit value) is detected during monitoring of the inverter bus voltage at overvoltage monitoring intervals, emergency stop is activated. The overvoltage limit value is set considering the error in the resistance value of the detection circuit.

Low-voltage error

If a low voltage (below the low-voltage limit value) is detected during monitoring of the inverter bus voltage at low-voltage monitoring intervals, emergency stop is activated. The low-voltage limit value is set considering the error in the resistance value of the detection circuit.

· Rotation speed error

If a speed limit value is exceeded during monitoring of the speed at rotational speed monitoring intervals, emergency stop is activated.

Disconnection or overheat detection error (RDC alarm detection signal)
 If a low-level signal due to overheat of the RDC is detected, emergency stop is activated.

Table 3.15 Settings of Each System Protection Function

Overcurrent error	Overcurrent limit value (A)	3
	Monitoring interval (µs)	50
Overvoltage error	Overvoltage limit value (V)	40
	Monitoring interval (µs)	50
Low-voltage error	Low-voltage limit value (V)	18
	Monitoring interval (µs)	50
Rotational speed error	Speed limit value (rpm)	4000
	Monitoring interval (µs)	50

3.9 Calibration to Compensate for Errors

This program has functions to implement automatic calibration through calls of the RDC driver functions that run the automatic calibration facilities of the RDC. For details on automatic calibration by the RDC driver, see the application note Using the Driver for Resolver-to-Digital Converter Control (R03AN0013). Pressing push switch 2 (SW2) enables the above automatic calibration to compensate for errors and the elimination of offsets from the actual angle. On the latter point, see section 3.5.

3.10 Specifications of Software Functions

The control processing in this software mainly consists of 50-μs cycle interrupt (carrier interrupt) processing, 250-μs cycle interrupt processing, and external interrupt (error handling and reference pulse input) processing. In the figure below, the yellow region shows 50-μs cycle interrupt processing and the blue region shows 250-μs cycle interrupt processing.

Figure 3.22 Block Diagram of the Vector Control System

Figure 3.23 Interrupt Processing

Table 3.16 Interrupt Functions

File Name	Function	Processing	Interval
driver/mcu/	mtr_get_rdc_alarm_interrupt	RDC error processing	_
r_mtr_interrupt.c	Input: None	 Calls the error processing function 	
	Output: None	mtr_rdc_alarm().	
	mtr_over_current_interrupt	Hardware overcurrent detection (POE) interrupt	_
	Input: None	Calls the overcurrent processing function	
	Output: None	mtr_over_current().	
	mtr_cmt0_interrupt	250-µs cycle processing	4 kHz
	Input: None		
	Output: None		
	mtr_cmt1_interrupt	Updates the carrier correction signal.	40 kHz
	Input: None		
	Output: None		
	rslv_capture_interrupt	Acquires the angle at the time of input capture.	_
	Input: None		
	Output: None		
	rslv_esig_interrupt	Updates the resolver excitation signal.	40 kHz
	Input: None		
	Output: None		
	mtr_mtu3_tciv4_interrupt	Acquires the angle at the time of current detection.	20 kHz
	Input: None		
	Output: None		
	mtr_s12ad_interrupt	This is called each time A/D conversion finishes.	20 kHz
	Input: None	Calls the current control processing function	
	Output: None	mtr_foc_interrupt_carrier().	

3.10.1 Current Control Processing (R_MTR_SR_Foc_INT_CrntCtrl())

Figure 3.24 Current Control Processing Flow

Table 3.17 Current Control Processing Functions (1/3)

File Name	Function	Processing
/driver/inverter/	mtr_get_current_iaib	Acquires the αβ-axis currents.
r_mtr_ctrl_inverter.c	Input: float *f4_ia_ad:	
	Pointer to phase α current variable	
	float *f4_ib_ad:	
	Pointer to phase β current variable	
	uint8_t u1_id:	
	Motor ID	
	Output: None	
	mtr get vdc	Acquires the power-supply voltage value.
	Input: uint8_t u1_id: Motor ID	1 11 11 11 11
	Output: None	
/r_mtr_spm_rslv_foc_rx/src/fun	mtr_mod_SetVdc	Passes the power-supply voltage value to the
ctions/	Input: mod_t *p_mode:	modulation module.
r_mtr_mod.c	Pointer to modulation structure	
	float f4_vdc: Power-supply voltage	
	Output: None	
/r_mtr_spm_rslv_foc_rx/src	mtr_current_offset_adjustment_iaib	Phase α and phase β current offset detection
/controller/	Input: mtr foc control t *st foc:	Thase a and phase pounting onset account
r_mtr_foc_stm_rslv_control.c	Pointer to vector control structure	
	Output: None	
	· · · · · · · · · · · · · · · · · · ·	Checks errors.
	mtr_error_check Input: mtr foc control t *st foc:	CHECKS EHUIS.
	Pointer to vector control structure	
la contra con contra for a contra con	Output: None	A construct the contest to the form of the contest to the contest
/r_mtr_spm_rslv_foc_rx/src /mode/	mtr_statemachine_get_status	Acquires the state transition information.
r mtr statemachine.c	Input:	
1_IIII_Statemachine.c	mtr_statemachine_t *p_state_machine: Pointer to state machine structure	
	Output: uint8_t:	
	State transition information	
	MTR_MODE_INACTIVE	
	MTR_MODE_ACTIVE	
	MTR MODE ERROR	
/r_mtr_spm_rslv_foc_rx/src	mtr_calib_current_offset_iaib	Phase α and phase β current offset detection
/controller/	Input: mtr_foc_control_t *st_foc:	The state of the s
r mtr foc stm rslv control.c	Pointer to vector control structure	
	Output: None	
	mtr_rslv_pos_speed_calc	Calculates angle and speed values from the resolver
	Input: mtr_foc_control_t *st_foc:	signal.
	Pointer to vector control structure	oightai.
	Output: None	Deflects the angle and arred in the central system
	mtr_angle_speed	Reflects the angle and speed in the control system.
	Input: mtr_foc_control_t *st_foc:	
	Pointer to vector control structure	
In material ways make the state of	Output: None	Our control of the form of the form
/r_mtr_spm_rslv_foc_rx/src	mtr_transform_ab_dq	Convers coordinates from αβ-axis to dq-axis system.
/controller/	Input: mtr_rotor_angle_t *p_angle:	
r_mtr_transform.c	Pointer to angle management structure	
	float *f4_ab: Pointer to αβ-axis variable	
	float *f4_dq: Pointer to dq-axis variable	
	Output: None	

Table 3.17 Current Control Processing Functions (2/3)

File Name	Function	Processing
/r_mtr_spm_rslv_foc_rx/src	mtr_foc_current_pi_ctrl	Executes current PI control.
/controller/	Input: mtr_current_control_t *st_cc:	
r_mtr_foc_current.c	Pointer to current control structure	
	Output: None	
	mtr_foc_current_decoupling	Executes decoupling control processing.
	Input: mtr_current_control_t *st_cc:	
	Pointer to current control structure	
	float f4_speed_rad: Speed (rad/s)	
	tr_parameter_t *p_mtr:	
	Pointer to motor parameter structure	
	Output: None	
/r_mtr_spm_rslv_foc_rx/src	mtr_foc_voltage_limit	Limits dq-axis voltages.
/controller/	Input: mtr_foc_control_t *p_foc:	
r_mtr_foc_stm_rslv_control.c	Pointer to vector control structure	
	Output: None	
	mtr_current_ctrl_smpldly_comp	Calculates the correction value for the angle delay
	Input: float f4_angle_rad: Angle (rad)	from current detection to voltage reflection.
	float f4_speed_rad: Speed (rad/s)	
	Output: float: Angle (rad)	
/r_mtr_spm_rslv_foc_rx/src	mtr_rotor_angle_update	Updates the coordinate transformation angle.
/controller/	Input: mtr_rotor_angle_t *p_angle:	
r_mtr_transform.c	Pointer to angle management structure	
	float f4_angle_rad: Angle (rad)	
	Output: None	
	mtr_transform_dq_ab	Converts coordinates from the $\alpha\beta\text{-axis}$ system to
	Input: mtr_rotor_angle_t *p_angle:	the dq-axis system.
	Pointer to angle management structure	
	float *f4_dq: Pointer to dq- axis variable	
	float *f4_ab: Pointer to αβ-axis variable	
	Output: None	
/r_mtr_spm_rslv_foc_rx/src	mtr_volt_err_comp_main_ab	Calculates the voltage error.
/functions/	Input: mtr_volt_comp_t *st_volt_comp:	
r_mtr_volt_err_comp.obj	Pointer to voltage error compensation	
	structure	
	float *p_f4_v_array: Pointer to αβ voltage	
	float *p_f4_i_array: Pointer to αβ current	
	float f4_vdc: Power-supply voltage	
	Output: None	
/r_mtr_spm_rslv_foc_rx/src	mtr_foc_voltage_limit_ab	Limits the phase α and phase β voltage.
/controller/	Input: float *f4_v_ab: Pointer to αβ voltage	
r_mtr_foc_stm_rslv_control.c	float f4 vdc: Power-supply voltage	
	Output: None	

Table 3.17 Current Control Processing Functions (3/3)

File Name	Function	Processing
/r_mtr_spm_rslv_foc_rx/src	mtr_mod2ab_run	Calculates the modulation rate.
/functions/	Input: float f4_va: α-axis voltage	
r_mtr_mod.c	float f4_vb: β-axis voltage	
	float f4_vdc: Power-supply voltage	
	float *f4_moda: α-axis modulation rate	
	float *f4_modb: β-axis modulation rate	
	Output: None	
/driver/mcu/	mtr_inv_set_ab	Sets information in PWM registers.
r_mtr_ctrl_rx24t.c	Input: float f4_duty_a: α-axis modulation rate	
	float f4_duty_b: β-axis modulation rate	
	uint8_t u1_id: Motor ID	
	Output: None	

mtr_get_current_iaib

Phase α and phase β current acquisition

Syntax #include "r_mtr_ctrl_inverter.h"

void mtr_get_current_ iaib (float *f4_ia_ad, float *f4_ib_ad, uint8_t u1_id);

Argument float *f4_ia_ad I Pointer to the phase α current variable

float *f4_ib_ad I Pointer to the phase β current variable

uint8_t I Motor ID

Return value None

Description Converts the values detected by the A/D converter to current values, and then passes

the current values to the phase α and phase β current value variables.

This function acquires the current values of the motor specified by the motor ID

variable.

Note When this function is called, the function that returns the A/D-converted values is

called, and then offset removal and scaling are automatically handled.

mtr_get_vdc

Power-supply voltage acquisition

Syntax #include "r_mtr_ctrl_inverter.h"

void mtr_get_vdc (uint8_t u1_id);

Argument uint8_t I Motor ID

Return value None

Description Passes the value detected by the A/D converter to the power supply voltage value

variable.

This function acquires the voltage value of the motor specified by the motor ID

variable.

mtr_mod_SetVdc

Passing the power-supply voltage value to the modulation module

Syntax #include "r_mtr_mod.h"

void mtr_mod_SetVdc (mod_t *p_mod, float f4_vdc);

Argument mod_t *p_mod I Pointer to the modulation structure

float f4 vdc I Power-supply voltage

Return value None

Description Specifies the power-supply voltage in the modulation module.

Note Specification of the value of 0 or a negative power-supply voltage is ignored because

such a value cannot be specified as the power-supply voltage.

mtr_get_current_offset_adjustment_iaib

Removing phase α and phase β current offset

Syntax #include "r_mtr_foc_stm_rslv_control.h"

void mtr_current_offset_adjustment_iaib (mtr_foc_control_t *st_foc);

Argument mtr_foc_control_t *st_foc I Pointer to the vector control structure

Return value None

Description Removes the detected current offset value from the phase α and phase β current

values.

Note Use this function together with the current offset detection function.

Removing phase α and phase β current offset

Phase α and phase β current offset removal processing

End

mtr_error_check

Error check

Syntax #include "r_mtr_foc_stm_rslv_control.h"

void mtr_error_check (mtr_foc_control_t *st_foc);

Argument mtr_foc_control_t *st_foc I Pointer to the vector control structure

Return value None

Description Checks the current, power-supply voltage, and speed to detect overcurrent,

overvoltage, low-speed, and overspeed errors.

mtr_calib_current_offset_iaib

Phase α and phase β current offset detection processing

Syntax #include "r_mtr_foc_stm_rslv_control.h"

void mtr_calib_current_offset_iaib (mtr_foc_control_t *st_foc);

Return value None

Description Detects the current offset when the output current is zero.

mtr_rslv_pos_speed_calc

Resolver position and speed calculation

Syntax #include " r_mtr_foc_stm_rslv_position.h "

void mtr_rslv_pos_speed_calc (mtr_foc_control_t *st_foc);

Return value None

Description Calculates the position and speed from the angle information sent from the RDC.

Independently manages the mechanical-angle position and the position detected by

the resolver sensor.

Calculates the speed from the mechanical-angle position.

mtr_angle_speed

Angle and speed calculation processing

Syntax #include " r_mtr_foc_stm_rslv_position.h "

void mtr_angle_speed (mtr_foc_control_t *st_foc);

Argument mtr_foc_control_t *st_foc I/O Pointer to the vector control structure

Return value None

Description Calculates the angle and speed in each drive mode.

mtr_transform_ab_dq

 $\alpha\beta\text{-to-dq}$ coordinate system conversion

Syntax #include "r_mtr_transform.h"

void mtr_transform_ab_dq (const mtr_rotor_angle_t *p_angle,

const float *f4_ab, float *f4_dq);

Argument const mtr_rotor_angle_t *p_angle I Pointer to the rotor angle structure

const float *f4_ab I Pointer to the $\alpha\beta$ -axis variable

float *f4_dq O Pointer to the dq-axis variable

Return value None

Description Converts the $\alpha\beta$ coordinate system to the dq coordinate system.

Note The $\alpha\beta$ -axis and dq-axis variables assume that the addresses of α axis and β axis are

consecutive and the addresses of d axis and q axis are consecutive. The start

address of each variable is referenced.

 $\begin{bmatrix} d \\ q \end{bmatrix} = \begin{bmatrix} cos\theta & sin\theta \\ -sin\theta & cos\theta \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$

mtr_foc_voltage_limit

Voltage limit processing

Syntax #include " r_mtr_foc_stm_rslv_control.h"

void mtr_foc_voltage_limit (mtr_foc_control_t *p_foc);

Return value None

Description Handles limit processing for the dq-axis voltage reference value.

mtr_current_ctrl_smpldly_comp

Current control delay correction

Syntax #include "r_mtr_foc_stm_rslv_control.h"

float mtr_current_ctrl_smpldly_comp (float f4_angle_rad, float f4_speed_rad);

Argument float f4_angle_rad I Angle (rad)

float f4_speed_rad I Speed (rad/s)

Return value float Angle (rad)

Description Corrects the delay of angle.

mtr_transform_dq_ab

dq-to- $\alpha\beta$ coordinate system conversion

Syntax #include "r_mtr_transform.h"

void mtr_transform_dq_ab (const mtr_rotor_angle_t *p_angle,

const float *f4_dq, float *f4_ab,);

Argument const mtr_rotor_angle_t *p_angle I Pointer to the rotor angle structure

const float *f4_dq I Pointer to the dq-axis variable

float *f4_ab O Pointer to the αβ-axis variable

Return value None

Description Converts the dq coordinate system to the $\alpha\beta$ coordinate system.

Note The $\alpha\beta$ -axis and dq-axis variables assume that the addresses of α axis and β axis are

consecutive and the addresses of d axis and q axis are consecutive. The start

address of each variable is referenced.

 $\begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} d \\ q \end{bmatrix}$

mtr_foc_voltage_limit_ab

 $\alpha\beta$ -axis voltage limit processing

Syntax #include " r_mtr_foc_stm_rslv_control.h"

void mtr_foc_voltage_limit_ab (float *f4_v_ab, float f4_vdc)

Argument float *f4_v_ab I/O Pointer to the $\alpha\beta$ -axis voltage

float f4 vdc I Power-supply voltage

Return value None

Description Handles limit processing for the $\alpha\beta$ -axis voltage reference value.

mtr_mod2ab_run

Duty value calculation processing

Syntax #include " r_mtr_mod.h"

void mtr_mod2ab_run (float f4_va, float f4_vb, float f4_vdc,

float *f4_moda, float *f4_modb);

Argument float f4_va I α-axis voltage

float f4_vb I β-axis voltage

float f4_vdcIPower-supply voltagefloat *f4_modaOα-axis duty valuefloat *f4_modbOβ-axis duty value

Return value None

Description Calculates duty values of the α axis and β axis.

Duty values are converted so that the range of -Vdc to Vdc can be expressed with a

duty value of 0 to 1.

Note This function processing varies with board specifications.

$$mod_a = \frac{V_a}{V_{dc}} * 0.5 + 0.5$$

$$mod_b = \frac{V_b}{V_{dc}} * 0.5 + 0.5$$

mtr_inv_set_ab

PWM register setting

Syntax #include " r_mtr_ctrl_rx24t.h"

void mtr_inv_set_ab (float f4_moda, float f4_modb, uint8_t u1_id);

Argument float f4_moda I α -axis duty value

float f4_modb I β-axis duty value

uint8_t u1_id I Motor ID

Return value None

Description Sets the $\alpha\beta$ -axis duty values.

This function sets the duty values for the motor specified by the motor ID.

3.10.2 250-µs Cycle Interrupt Processing (R_MTR_SR_Foc_INT_PosSpdCtrl())

Figure 3.25 250-µs Cycle Interrupt Processing Flow

Table 3.18 250-µs Cycle Interrupt Processing Functions

File Name	Function	Processing
r_mtr_spm_rslv_foc_rx/src	mtr_set_ref_state	Sets reference status of each control loop.
/controller/	Input: mtr_foc_control_t *st_foc:	
r_mtr_foc_stm_rslv_control.c	Pointer to vector control structure	
	Output: None	
	mtr_pos_offset_adjust	Removes the position offset.
	Input: mtr_foc_control_t *st_foc:	
	Pointer to vector control structure	
	Output: float: d-axis current reference value (A)	
	mtr_set_id_ref	Creates an id reference value.
	Input: mtr_foc_control_t *st_foc:	
	Pointer to vector control structure	
	Output: float: d-axis current reference value (A)	
	mtr_set_iq_ref	Creates an iq reference value.
	Input: mtr_foc_control_t *st_foc:	
	Pointer to vector control structure	
	Output: float: q-axis current reference value [A]	
	mtr_set_speed_ref	Creates a speed reference value.
	Input: mtr_foc_control_t *st_foc:	
	Pointer to vector control structure	
	Output: float: Speed reference value (rad/s)	
	mtr_set_pos_ref	Creates a position reference value.
	Input: mtr_foc_control_t *st_foc:	
	Pointer to vector control structure	
	Output: float: Position reference value (rad)	
	mtr_flux_weakng	Executes flux-weakening control.
	Input: mtr_foc_control_t *st_foc:	
	Pointer to vector control structure	
	float *f4_idq_ref: Pointer to dq-axis current	
	Output: None	

mtr_set_ref_state

Reference mode setting of each control loop

Syntax #include "r_mtr_foc_stm_rslv_control.h"

void mtr_set_ref_state (mtr_foc_control_t *st_foc);

Argument mtr_foc_control_t *st_foc I/O Pointer to the vector control structure

Return value None

Description Sets the reference mode for position, speed, and dq-axis current reference values.

mtr_pos_offset_adjust

Position offset removal processing

Syntax #include "r_mtr_foc_stm_rslv_control.h"

float mtr_pos_offset_adjust (mtr_foc_control_t *st_foc);

Argument mtr_foc_control_t *st_foc I/O Pointer to the vector control structure

Return value float d-axis current reference value (A)

Description Removes the position offset.

mtr_set_id_ref

id reference value creation

Syntax #include "r_mtr_foc_stm_rslv_control.h"

float mtr_set_id_ref (mtr_foc_control_t *st_foc);

Argument mtr_foc_control_t *st_foc I/O Pointer to the vector control structure

Return value float d-axis current reference value (A)

Description Creates the d-axis current reference value.

mtr_set_iq_ref

iq reference value creation

Syntax #include "r_mtr_foc_stm_rslv_control .h"

float mtr_set_iq_ref (mtr_foc_control_t *st_foc);

Argument mtr_foc_control_t *st_foc I/O Pointer to the vector control structure

Return value q-axis current reference value (A)

Description Creates the q-axis current reference value.

Table 3.19 Speed Control Processing Functions

File Name	Function	Processing
r_mtr_spm_rslv_foc_rx/src	mtr_speed_pi_control	Speed PI control
/controller/	Input: mtr_speed_control_t *st_sc:	
r_mtr_foc_speed.c	Pointer to speed control structure	
	float f4_speed_rad: Speed	
	Output: float: q-axis current reference value (A)	
r_mtr_spm_rslv_foc_rx/src	mtr_ipd_speed_p_ctrl	Speed control block for IPD control
/functions/	Input: mtr_ipd_ctrl_t *st_ipd:	
r_mtr_ipd.obj	Pointer to IPD control structure	
	float f4_ref_speed_rad:	
	Speed reference value	
	float f4_speed_rad: Speed	
	Output: float: q-axis current reference value (A)	

mtr_set_speed_ref

Speed reference value creation

Syntax #include "r_mtr_foc_stm_rslv_control .h"

float mtr_set_speed_ref (mtr_foc_control_t *st_foc);

Argument mtr_foc_control_t *st_foc I/O Pointer to the vector control structure

Return value float Speed reference value (rad/s)

Description Creates the peed reference value.

Table 3.20 Speed Reference Value Creation Processing Functions

File Name	Function	Processing
r_mtr_spm_rslv_foc_rx/src	mtr_position_deadband_set	Returns the difference with a dead band.
/controller/	Input: mtr_foc_control_t *st_foc:	
r_mtr_foc_stm_rslv_control.c	Pointer to vector control structure	
	float f4_pos_err_rad: Position difference	
	Output: float: Dead band processed difference (rad)	
r_mtr_spm_rslv_foc_rx/src	mtr_p_ctrl_pos	Proportional position control
/controller/	Input: mtr_position_control_t *st_pc:	
r_mtr_foc_position.c	Pointer to position control structure	
	mtr_parameter_t *st_motor:	
	Pointer to motor parameter structure	
	float f4_pos_err_rad: Position difference	
	Output: float: Speed reference value (rad/s)	
r_mtr_spm_rslv_foc_rx/src	mtr_ipd_error_calc	Calculates the IPD control position difference.
/functions/	Input: mtr_ipd_ctrl_t *st_ipd:	
r_mtr_ipd.obj	Pointer to IPD control structure	
	float f4_pos_rad: Position	
	float f4_ref_pos_rad_ctrl:	
	Position reference value	
	Output: float: Position difference (rad)	
	mtr_ipd_ctrl	IPD control
	Input: mtr_ipd_ctrl_t *st_ipd:	
	Pointer to IPD control structure	
	mtr_parameter_t *st_motor:	
	Pointer to motor parameter structure	
	float f4_pos_err_rad: Position difference	
	float f4_max_speed_rad:	
	Maximum speed value	
	Output: float: Speed reference value (rad/s)	
r_mtr_spm_rslv_foc_rx/src	mtr_speed_profile_feed_forward	Calculates the speed feedforward value for
/controller/	Input: mtr_position_profiling_t *st_pf:	trapezoidal reference.
r_mtr_position_profiling.c	Pointer to position reference creation	
	structure	
	Output: float: Speed feedforward value in	
	mechanical angle (rad/s])	
r_mtr_spm_rslv_foc_rx/src	mtr_speed_feed_foward_control	Adds the speed feedforward value to the
/controller/	Input: mtr_position_control_t *st_pc:	speed reference.
r_mtr_foc_position.c	Pointer to position control structure	
	float f4_speed_ff_rad:	
	Speed feedforward value in mechanical angle	
	float f4_speed_ref_calc_rad:	
	Speed reference value	
	uint16_t u2_mtr_pp: Number of pole pairs	
	Output: float: Speed reference value (including	
r mtr one roly for mylens	feedforward value) (rad/s)	Acceleration limit processing
r_mtr_spm_rslv_foc_rx/src	mtr_speed_rate_limit	Acceleration limit processing
/controller/	Input: mtr_speed_control_t *st_sc:	
r_mtr_foc_speed.c	Pointer to speed control structure	
	Output: float: Speed reference value (acceleration	
	limit processing) (rad/s)	
r_mtr_spm_rslv_foc_rx/src	mtr_com_LimitifAbs	Output limit processing
/functions/	Input: float f4_value: Variable to be limited	
r_mtr_filter.c	float f4_limit_value: Limit value	
	Output: float: Limited variable value	

mtr_set_pos_ref

Position reference value creation

Syntax #include "r_mtr_foc_stm_rslv_control .h"

float mtr_set_pos_ref (mtr_foc_control_t *st_foc);

Argument mtr_foc_control_t *st_foc I/O Pointer to the vector control structure

Return value float Position reference value (rad)

Description Creates a position reference value.

Note

Table 3.21 Position Reference Value Creation Processing Function

File Name	Function	Processing
r_mtr_spm_rslv_foc_rx/src	mtr_position_profile	Creates a trapezoidal reference value.
/controller/	Input: mtr_position_profiling_t *st_pf:	
r_mtr_position_profiling.c	Pointer to position reference creation	
	structure	
	Output: float: Position reference value (rad)	

mtr_flux_weakng

Flux-weakening control execution

Syntax #include "r_mtr_foc_stm_rslv_control .h"

void mtr_flux_weakng (mtr_foc_control_t *st_foc, float *f4_idq_ref);

Argument mtr_foc_control_t *st_foc I/O Pointer to the vector control structure

float *f4_idq_ref I/O dq-axis current pointer

Return value None

Description Executes flux-weakening control for the dq-axis current reference value.

Note

Table 3.22 Flux-Weakening Control Processing Functions

File Name	Function	Processing
r_mtr_spm_rslv_foc_rx/src	r_fluxwkn_SetVamax	Calculates the maximum value of Va.
/functions/	Input: fluxwkn_t *p_fluxwkn:	
r_mtr_fluxwkn.obj	Pointer to flux-weakening control structure	
	float f4_va_max: Maximum value of Va	
	Output: None	
	mtr_fluxwkn_run	Executes flux-weakening control.
	Input: fluxwkn_t *p_fluxwkn:	
	Pointer to flux-weakening control structure	
	float f4_speed_rad: Speed	
	float *p_f4_idq: dq-axis current pointer	
	float *p_f4_idq_ref:	
	Pointer to dq-axis current reference value	
	Output: uint16_t: Status of the module	
	FLUXWKN_STATE_BYPASSED	
	FLUXWKN_STATE_FLUXWKN	
	FLUXWKN_STATE_IDSAT	
	FLUXWKN_STATE_ERROR	
	FLUXWKN_STATE_INVALID_MOTOR	
	FLUXWKN_STATE_INVALID_IAMAX	
	FLUXWKN_STATE_INVALID_VAMAX	
	FLUXWKN_STATE_INVALID_VFWRATIO	

3.10.3 Acquiring Angle at the Time of Current Detection (mtu3_tciv4_interrupt())

Figure 3.26 Flow of Processing at the Time of Current Detection (in PWM Trough Interrupt)

Table 3.23 Functions for Acquiring Angle at the Time of Current Detection

File Name	Function	Processing
driver/sensor/rdc_driver_	R_RSLV_GetCaptureEdge	Acquires the count value obtained by input capture.
RX/api/	Input: uint8_t *cap_edge	(See the application note "Using the Driver for
r_rslv_driver_api.h	Output: uint8_t: Processing result	Resolver-to-Digital Converter Control".)
	(always RSLV_RESULT_OK)	
	R_RSLV_GetAngleCountHiEdge	Acquires the count value on the rising edge.
	Input: uint16_t *angle_cnt:	(See the application note "Using the Driver for
	Pointer to variable for storing acquired	Resolver-to-Digital Converter Control".)
	count value	
	Output: uint8_t: Processing result	
	(always RSLV_RESULT_OK)	
	R_RSLV_GetAngleCountLoEdge	Acquires the count value on the falling edge.
	Input: uint16_t *angle_cnt:	(See the application note "Using the Driver for
	Pointer to variable for storing acquired	Resolver-to-Digital Converter Control".)
	count value	
	Output: uint8_t: Processing result	
	(always RSLV_RESULT_OK)	
	R_RSLV_GetAngleDifferenceHiEdge	Acquires the count value difference between rising
	Input: uint16_t *angle_cnt:	edges.
	Pointer to variable for storing acquired	(See the application note "Using the Driver for
	count value	Resolver-to-Digital Converter Control".)
	Output: uint8_t: Processing result	
	(always RSLV_RESULT_OK)	
	R_RSLV_GetAngleDifferenceLoEdge	Acquires the count value difference between falling
	Input: uint16_t *angle_cnt:	edges.
	Pointer to variable for storing acquired	(See the application note "Using the Driver for
	count value	Resolver-to-Digital Converter Control".)
	Output: uint8_t: Processing result	
	(always RSLV_RESULT_OK)	

3.10.4 Overcurrent Detection Interrupt Processing (R_MTR_SR_Foc_INT_OverCur())

An overcurrent detection interrupt is generated when a falling edge is detected on the POE0# pin as the high impedance control condition for the PWM output pin in the software covered by this document or when a short-circuit of an output is detected in output level comparison. For this reason, the PWM output pin is already in a high-impedance state at the beginning of this interrupt processing, and the output signal to the motor is stopped.

Figure 3.27 Overcurrent Detection Interrupt Processing Flowchart

Table 3.24 Overcurrent Detection Interrupt Processing Functions

File Name	Function	Processing
r_mtr_spm_rslv_foc_rx/src/	mtr_foc_error	Generates an error event upon receiving the input error
controller/	Input: mtr_foc_control_t *st_foc:	flag.
r_mtr_foc_stm_rslv_control.c	Pointer to FOC structure	
	uint16_t u2_error_flag:	
	Error flag	
	Output: None	
driver/mcu/	mtr_clear_oc_flag	Clears the POE flag.
r_mtr_ctrl_rx24t.c	Input: None	
	Output: None	

3.10.5 Main Function Processing

Figure 3.28 Main Processing Flowchart

Table 3.25 Main Processing Functions (1/2)

File Name	Function	Processing	
driver/mcu/	R_MTR_InitHardware	Sets up initialization for peripheral functions of the	
r_mtr_ctrl_rx24t.c	Input: None	MCU.	
	Output: None		
driver/sensor/	RESOLVER_peripheral_init	Initializes resolver-related variables.	
r_ctrl_rdc_driver_adapter.c	Input: None		
	Output: None		
	RDC_peripheral_init	Sets up initialization for RDC-related peripheral	
	Input: None	functions.	
	Output: None		
driver/sensor/rdc_driver_RX/	R_RSLV_Rdc_VariableInit	Initializes RDC-related variables.	
api/r_rslv_driver_api.h	Input: unsigned char *u1_init_dat:	(See the application note "Using the Driver for	
	RDC register initialization data	Resolver-to-Digital Converter Control".)	
	Output: uint8_t: Processing result		
	RSLV_RESULT_OK		
	RSLV_RESULT_NG		
application/user_interface/ics/	ics2_init	Sets up initialization for RMW communications.	
ICS_RX24T.obj	Input: void * addr: Address pointer		
	uint8_t port:		
	Serial communications port		
	uint8_t level: Interrupt level		
	uint8_t brr:		
	Communications baud rate		
	uint8_t mode:		
	Communications mode		
	Output: None		
driver/mcu/	R_MTR_Start_s12ad	Starts A/D conversion.	
r_mtr_ctrl_rx24t.c	Input: None		
	Output: None		
	R_MTR_Start_cmt0	Starts the CMT0 timer.	
	Input: None		
	Output: None		
	R_POE3_C8_Start	Starts POE3.	
	Input: None		
	Output: None		
application/main/	variables_init	Initializes global variables.	
main.c	Input: None		
	Output: None		
r_mtr_spm_rslv_foc_rx/src/	R_MTR_SR_Foc_Open	Initializes vector control.	
r_mtr_stm_rslv_foc_rx.c	Input: uint8_t u1_id: Motor ID		
	Output: r_mtr_rslv_ret_t: Processing result		
	MTR_SUCCESS		
	MTR_ERR_BAD_ID		
	R_MTR_SR_Foc_InitVariables	Initializes variables for controlling the motor	
	Input: uint8_t u1_id: Motor ID	•	
	Output: r_mtr_rslv_ret_t: Processing result		
	MTR_SUCCESS		
	MTR_ERR_BAD_ID		
application/user interface/	mtr_read_flashdt	Acquires data from the flash memory.	
application/user_interrace/ flash/		noquires data from the hasti memory.	
	Input: None		
r_flash_access.c	Output: None		

Table 3.25 Main Processing Functions (2/2)

File Name	Function	Processing		
r_mtr_spm_rslv_foc_rx/src/	R_MTR_SR_Foc_SetFlash2Ctrl	Reflects information read from the flash memory in the		
r_mtr_stm_rslv_foc_rx.c	Input: uint8_t u1_id: Motor ID	controller side.		
	mtr_flash_val *pst_val:			
	Pointer to structure for storing data to			
	be reflected			
	Output: r_mtr_rslv_ret_t: Processing result			
	MTR_SUCCESS			
	MTR_ERR_BAD_ID			
	R_MTR_SR_Foc_ExecEvent	Generates an event.		
	Input: uint8_t u1_id: Motor ID			
	uint8_t u1_event: Event name			
	Output: r_mtr_rslv_ret_t: Processing result			
	MTR_SUCCESS			
	MTR_ERR_BAD_ID			
driver/sensor/rdc_driver_RX/	R_RSLV_ESig_Start	Starts outputting the excitation signal.		
api/r rslv driver api.h	Input: None	(See the application note "Using the Driver for		
	Output: uint8 t: Processing result	Resolver-to-Digital Converter Control".)		
	(always RSLV_RESULT_OK)	,		
	R_RSLV_CSig_Start	Starts outputting the carrier correction signal.		
	Input: None	(See the application note "Using the Driver for		
	Output: uint8_t: Processing result	Resolver-to-Digital Converter Control".)		
	(always RSLV_RESULT_OK)	Tracer of to Eighan commencer control of		
	R_RSLV_CSig_Stop	Stops outputting the carrier correction signal.		
	Input: None	(See the application note "Using the Driver for		
		Resolver-to-Digital Converter Control".)		
	Output: uint8_t: Processing result (always RSLV_RESULT_OK)	Resolver-to-bightar Goriverter Control .)		
application/main/	ui main	Handles user interface processing.		
main.c	Input: None	Trandies user interface processing.		
main.c	•			
application/year interface/	Output: None	Writes central variable values to the flesh memory		
application/user_interface/	memory_write	Writes control variable values to the flash memory.		
flash/	Input: None			
r_flash_access.c	Output: None	0() () () () () () () () () ()		
driver/mcu/	R_ICU_Start_irq5	Starts external interrupts (RDC alarm signal).		
r_mtr_ctrl_rx24t.c	Input: None			
	Output: None			
driver/sensor/rdc_driver_RX	R_RSLV_Rdc_Init_Sequence	RDC initialization processing		
/api/	Input: uint16_t *init_status:	(See the application note "Using the Driver for		
r_rslv_driver_api.c	Address of variable for acquiring the	Resolver-to-Digital Converter Control".)		
	initialization result			
	Output: uint8_t: Processing result			
	(always RSLV_RESULT_OK)			
	R_RSLV_Rdc_Communication	RDC communications processing		
	Input: None	(See the application note "Using the Driver for		
	Output: uint8_t: Processing result	Resolver-to-Digital Converter Control".)		
	(always RSLV_RESULT_OK)			
	R_RSLV_Phase_AdjUpdate	Sets the duty cycles of phase adjustment PWM		
	Input: None	signals.		
	Output: uint8_t: Processing result	(See the application note "Using the Driver for		
	(always RSLV_RESULT_OK)	Resolver-to-Digital Converter Control".)		
driver/mcu/	R_MTR_ClearWdt	Clears the watchdog timer.		
r_mtr_ctrl_rx24t.c	Input: None			
	Output: None			

3.11 List of Structures

3.11.1 "r_mtr_spm_rslv_foc_rx" Folder

Table 3.26 Structure Definitions in "r_mtr_stm_rslv_foc_rx_if.h" (1/2)

Structure Name	Type	Variable Name	Remark
mtr_flash_val	float	f4_rslv_angle_offset_rad	
	float	f4_offset_ia	a-phase current offset value (A)
	float	f4_offset_ib	b-phase current offset value (A)
mtr_ctrl_input_t	uint8_t	u1_flag_angle_spl_comp_use	Flag indicating whether to enable the resolver position error compensation function
	uint8_t	u1_flag_cc_spl_comp_use	Flag indicating whether to enable the current control sampling delay compensation function
	uint8_t	u1_flag_bpf_delay_comp_use	Flag indicating whether to enable the BPF delay compensation function
	uint8_t	u1_flag_sob_use	Flag indicating whether to enable the speed observer
	uint8_t	u1_flag_volt_err_comp_use	Flag indicating whether to enable the voltage error compensation function
	uint8_t	u1_flag_flux_weakening_use	Flag indicating whether to enable the flux-weakening function
	uint8_t	u1_ctrl_loop_mode_buff	Control loop selection
	uint8_t	u1_ctrl_method_mode	Control method selection
	uint8_t	u1_state_pos_ref_buff	Position reference value management
	uint8_t	u1_offset_adjust_mode_buff	Offset adjustment mode
	uint8_t	u1_direction	Reference rotation direction
	int16_t	f4_ref_position_deg	Reference position (degree)
	int16_t	s2_ref_speed_rpm	Reference speed in mechanical angle (rpm)
	uint16_t	u2_min_speed_rpm	Minimum speed in mechanical angle (rpm)
	uint16_t	u2_max_speed_rpm	Maximum speed in mechanical angle (rpm)
	uint16_t	u2_speed_limit_rpm	Overspeed limit in mechanical angle (rpm)
	uint16_t	u2_pos_dead_band	Position dead band
	uint16_t	u2_pos_band_limit	Positioning band limit
	uint16_t	u2_encd_cpr_mech	Encoder count per revolution in mechanical angle
	uint16_t	u2_pos_interval_time	Interval time for reference position update
	uint16_t	u2_offset_calc_time	Calculation time for current offset / 100 (µs)
	uint16_t	u2_offset_calc_wait	Counter for current offset detection start timing
	uint16_t	u2_run_mode	Run mode
	float	f4_ipd_pos_kp_ratio	Proportional position control gain ratio for IPD control
	float	f4_ipd_speed_k_ratio	Speed gain ratio for IPD control
	float	f4_ipd_err_limit_1	Position error limit 1
	float	f4_ipd_err_limit_2	Position error limit 2
	float	f4_accel_time	Acceleration time
	float	f4_speed_rate_limit	Speed rate limit (rpm/ms)
	float	f4_ref_id	Motor d-axis current reference (A)
	float	f4_ref_iq	Motor q-axis current reference (A)
	float	f4_current_rate_limit	q-axis current rate limit (A/ms)
	float	f4_bpf_comp_gain_cw	Gain of BPF delay compensation for CW
	float	f4_bpf_comp_gain_ccw	Gain of BPF delay compensation for CCW
	float	f4_bpf_comp_base_cw	Base coefficient of BPF delay
			compensation for CW
	float	f4_bpf_comp_base_ccw	Base coefficient of BPF delay compensation for CCW

Table 3.26 Structure Definitions in "r_mtr_stm_rslv_foc_rx_if.h" (2/2)

Structure Name	Туре	Variable Name	Remark
mtr_ctrl_input_t	mtr_parameter_t	st_motor	Motor parameters
	mtr_design_parameter_t	st_design_params	Design parameters
	mtr_ctrl_gain_t	st_ctrl_gain	Control gain
r_stm_rslv_ctrl_option_t	uint8_t	u1_opt_rslv_spltm_comp	
	uint8_t	u1_opt_cc_spldly_comp	
	uint8_t	u1_opt_bpf_delay_comp	
	uint8_t	u1_opt_sob	
	uint8_t	u1_opt_volt_err_comp	
	uint8_t	u1_opt_flux_weakning	

3.11.2 "r_mtr_spm_rslv_foc_rx/src/controller" Folder

Table 3.27 Structure Definitions in "r_mtr_foc_stm_rslv_control.h" (1/3)

Structure Name	Type	Variable Name	Remark
mtr_foc_control_t	uint8_t	u1_id	Motor ID
	uint8_t	u1_state_id_ref	d-axis current reference value state
			0: Zero reference
			1: Flux-weakening control
			2: Manual reference setting
	uint8_t	u1_state_iq_ref	q-axis current reference value state
			0: Zero reference
			1: Speed PI output
	<u></u>		2: Manual reference setting
	uint8_t	u1_state_speed_ref	Speed reference value state
			0: Zero reference
			1: Position control output
	<u></u>		2: Manual reference setting
	uint8_t	u1_state_pos_ref	Position reference value state
			0: Zero reference
			1: Step reference
	<u> </u>		2: Trapezoidal reference
	_uint8_t	u1_state_pos_ref_buff	Position state variable buffer
	_uint8_t	u1_state_angle_adj	Resolver angle offset detection state
	uint8_t	u1_direction	Direction of rotation
	uint8_t	u1_ctrl_loop_mode	Control loop mode
			0: d-axis current control
			1: q-axis current control
			2: Speed control
	<u> </u>		3: Position control
	uint8_t	u1_ctrl_method_mode	Control method mode
			0: PID control (only proportion control is used in position
			control)
	<u></u>		1: IPD control
	uint8_t	u1_offset_adjust_mode	Offset removal mode
			0: Current offset
			1: Position offset
			2: Completed
	_uint8_t	u1_offset_adjust_mode_buff	Offset removal mode buffer
	_uint8_t	u1_flag_offset_calc	Offset calculation flag
	uint8_t	u1_flag_charge_cap	Power-supply voltage stable flag
	uint8_t	u1_flag_rdc_state_ready	RDC preparation completed flag
	uint8_t	u1_flag_angle_spl_comp_use	Magnetic pole position sampling delay compensation
			enable flag
	_uint8_t	u1_flag_pos_delay_comp_use	Position sampling delay compensation enable flag
	_uint8_t	u1_flag_cc_spl_comp_use	Voltage reflection timing angle correction enable flag
	uint8_t	u1_flag_bpf_delay_comp_use	RDC bandpass filter delay compensation enable flag
	uint8_t	u1_flag_sob_use	Speed observer enable flag
	uint8_t	u1_flag_volt_err_comp_use	Voltage error compensation enable flag
	uint8_t	u1_flag_volt_err_comp_use u1_flag_flux_weakening_use	Voltage error compensation enable flag Flux-weakening control enable flag

Table 3.27 Structure Definitions in "r_mtr_foc_stm_rslv_control.h" (2/3)

Structure Name	Туре	Variable Name	Remark
mtr_foc_control_t	uint16_t	u2_error_status	Error state (descriptions of individual values are omitted)
	uint16_t	u2_run_mode	Motor drive mode
			0: Offset removal
			1: Motor drive
	uint16_t	u2_offset_calc_time	Offset calculation time
	uint16_t	u2_offset_calc_wait	Offset calculation wait time
	uint16_t	u2_cnt_adjust	Offset calculation time counter
	uint16_t	u2_angle_adj_time	Position offset calculation time
	uint16_t	u2_angle_adj_cnt	Position offset calculation time counter
	uint16_t	u2_rslv_angle_cnt	Resolver electrical angle counter
	uint16_t	u2_rslv_pre_angle_cnt	Resolver electrical angle counter
	uint16_t	u2_rslv_timer_cnt	Resolver excitation timer count value
	uint16_t	u2_rslv_angle_offset_cnt	Resolver offset count value
	int32_t	s4_rslv_cycle_cnt	Resolver one-cycle counter
	int16_t	s2_angle_err_cnt	Resolver cycle lead angle count value
	float	f4_vdc_ad	Power-supply voltage
	float	f4_offset_ia	α-axis current offset (A)
	float	f4_offset_ib	β-axis current offset (A)
	float	f4_sum_ia_ad	Value to be added for calculating α-axis current offset
	float	f4_sum_ib_ad	Value to be added for calculating β-axis current offset
	float	f4_ia_ad	α-axis current (A)
	float	f4_ib_ad	β-axis current (A)
	float	f4_ref_va	α-axis reference voltage (V)
	float	f4_ref_vb	β-axis reference voltage (V)
	float	f4_moda	α-axis modulation rate
	float	f4_modb	β-axis modulation rate
	float	f4_overcurrent_limit	Overcurrent limit value (A)
	float	f4_overvoltage_limit	Overvoltage limit value (V)
	float	f4_undervoltage_limit	Low-voltage limit value (V)
	float	f4_overspeed_limit_rad	Overspeed limit value (rad)
	float	f4_spl_comp_angle_rad	Sampling compensation angle (rad)
	float	f4_spl_delay_time	Position sampling delay time
	float	f4_spl_delay_comp_pos_rad	Amount of advanced position due to position sampling
			delay (rad)
	float	f4_rslv_pos_rad	Resolver sensor position (rad) in mechanical angle
	float	f4_rslv_angle_rad	Resolver sensor angle (rad) in electrical angle
	float	f4_rslv_angle_offset_rad	Offset from the magnetic pole position of the resolver sensor (rad)
	float	f4_rslv_angle_offset_sum _rad	Total offset value
	float	f4_rslv_speed_rad	Resolver sensor speed (rad/s) in electrical angle
	float	f4_rslv_speed_rad_lpf	Resolver sensor speed after passing through the low-pass filter (rad/s) in electrical angle
	float	f4_open_loop_pos_rad	Open-loop angle (rad)

Table 3.27 Structure Definitions in "r_mtr_foc_stm_rslv_control.h" (3/3)

Structure Name	Туре	Variable Name	Remark
mtr_foc_control_t	mod_t	st_mod	Definition of the modulation module structure
	mtr_rotor_angle_t	st_rotor_angle	Definition of the motor angle management module
			structure
	mtr_statemachine_t	st_stm	Definition of the state machine module structure
	mtr_parameter_t	st_motor	Definition of the motor parameter module structure
	mtr_current_control_t	st_cc	Definition of the current control module structure
	mtr_speed_control_t	st_sc	Definition of the speed control module structure
	mtr_position_control_t	st_pc	Definition of the position control module structure
	mtr_encoder_t	st_ec	Definition of the encoder module structure
	mtr_position_profiling_t	st_ppf	Definition of the position profiling module structure
	mtr_ipd_ctrl_t	st_ipd	Definition of the IPD controller module structure
	mtr_speed_observer_t	st_sob	Definition of the speed observer module structure
	mtr_volt_comp_t	st_volt_comp_p	Definition of the voltage error compensation module
			structure
	fluxwkn_t	st_fluxwkn	Definition of the flux-weakening module structure
	mtr_1st_order_lpf_t	st_slpf	Definition of the first-order low-pass filter module
			structure
	rslv_compensation_t	st_rcomp	Definition of the resolver angle correction structure

Table 3.28 Structure Definitions in "r_mtr_foc_current.h"

Structure Name	Туре	Variable Name	Remark
mtr_current_control_t	float	f4_ctrl_period	Control cycle (s)
	float	f4_ref_vd	d-axis reference voltage
	float	f4_ref_vq	q-axis reference voltage
	float	f4_ref_id	d-axis reference current (reference setting from the application layer)
	float	f4_ref_iq	q-axis reference current (reference setting from the application layer)
	float	f4_ref_id_ctrl	d-axis reference current (input to the control loop)
	float	f4_ref_iq_ctrl	q-axis reference current (input to the control loop)
	float	f4_current_rate_limit	Current increasing speed limit value
	float	f4_id_ad	Detected d-axis current value
	float	f4_iq_ad	Detected q-axis current value
	float	f4_pre_id_ad	Previous value of d-axis current (A)
	float	f4_pre_iq_ad	Previous value of q-axis current (A)
	float	f4_lim_iq	q-axis current limit
	mtr_pi_ctrl_t	st_pi_id	Structure of PI control variables of the d-axis current
			control loop
	mtr_pi_ctrl_t	st_pi_iq	Structure of PI control variables of the q-axis current control loop

Table 3.29 Structure Definitions in "r_mtr_foc_speed.h"

Structure Name	Туре	Variable Name	Remark
mtr_speed_control_t	uint8_t	u1_ref_dir	Direction of rotation
	float	f4_rpm_rad	Coefficient of conversion from rpm to electrical angle (rad)
	float	f4_speed_ctrl_period	Speed control cycle
	float	f4_ref_speed_rad_ctrl	Speed reference value input to the control loop (rad)
	float	f4_ref_speed_rad	Speed reference value from the application layer (rad)
	float	f4_speed_rad	Detected speed received from the sensor (rad)
	float	f4_speed_rad_ctrl	Detected speed after filtering (rad)
	float	f4_max_speed_rad	Maximum speed
	float	f4_speed_rate_limit	Speed limit value
	mtr_pi_ctrl_t	st_pi_speed	Structure of PI control variables of the speed control loop

Table 3.30 Structure Definitions in "r_mtr_foc_position.h"

Structure Name	Type	Variable Name	Remark
mtr_position_control_t	uint16_t	u2_pos_dead_band	Dead band of position (± count)
	uint16_t	u2_pos_band_limit	Positioning completion range (± count)
	float	f4_pos_kp	Proportional gain of position
	float	f4_pos_err_rad	Position difference
	float	f4_pos_rad	Detection position
	float	f4_ref_pos_rad	Position reference value
	float	f4_ref_pos_pre_rad	Previous value of position reference
	float	f4_ref_pos_rad_ctrl	Position reference value input to the control loop
	float	f4_speed_ff_rad	Speed feedforward value (rad/s)
	float	f4_speed_ff_ratio	Coefficient of speed feedforward value

Table 3.31 Structure Definitions in "r_mtr_position_profiling.h"

Structure Name	Type	Variable Name	Remark
mtr_position_profiling_t	uint8_t	u1_state_pos_pf	Position profiling function status
	uint8_t	u1_pos_ref_mode	Position profiling mode
	uint16_t	u2_interval_time	Position reference update interval time
	uint16_t	u2_interval_time_buff	Buffer for position reference update interval time
	uint16_t	u2_interval_time_cnt	Counter of position reference update interval time
	float	f4_accel_time	Acceleration time
	float	f4_accel_time_buff	Acceleration time buffer
	float	f4_accel_time_inv	Reciprocal of acceleration time
	float	f4_max_accel_time	Maximum acceleration time
	float	f4_accel_max_speed	Maximum speed
	float	f4_accel_max_speed_buff	Maximum speed buffer
	float	f4_time_sec	Time management variable (s)
	float	f4_pos_st_rad	Start position of position profiling(rad)
	float	f4_pos_ed_rad	Stop position of position profiling (rad)
	float	f4_pos_dt_rad	Position difference (rad)
	float	f4_pos_dt_time_sec	Position arrival time (s)

Table 3.32 Structure Definitions in "r_mtr_pi_control.h"

Structure Name	Type	Variable Name	Remark	
mtr_pi_ctrl_t	float	f4_err	Difference	
	float	f4_kp	Proportional gain	
	float	f4_ki	Integral gain	
	float	f4_refi	Calculated integral value	_
	float	f4_ilimit	PI output limit value	

Table 3.33 Structure Definitions in "r_mtr_transform.h"

Structure Name	Type	Variable Name	Remark
mtr_rotor_angle_t	float	f4_rotor_angle_rad	Rotor angle (rad) (electrical angle)
	float	f4_sin	Calculated sine value according to rotor angle
	float	f4_cos	Calculated cosine value according to rotor angle

Table 3.34 Structure Definitions in "r_mtr_parameter.h"

Structure Name	Type	Variable Name	Remark
mtr_parameter_t	uint16_t	u2_mtr_pp	Pole pairs
	float	f4_mtr_r	Resistance (ohm)
	float	f4_mtr_ld	Inductance of d-axis (H)
	float	f4_mtr_lq	Inductance of q-axis (H)
	float	f4_mtr_m	Magnetic flux (Wb)
	float	f4_mtr_j	Rotor inertia (kgm^2)
	float	f4_nominal_current_rms	Rated torque (Nm)
mtr_design_parameter_t	float	f4_current_omega	Natural frequency (Hz) for current loop gain design
	float	f4_current_zeta	Damping ratio for current loop gain design
	float	f4_speed_omega	Natural frequency (Hz) for speed loop gain design
	float	f4_speed_zeta	Damping ratio for speed loop gain design
	float	f4_speed_lpf_omega	Natural frequency (Hz) for speed lpf gain design
	float	f4_pos_omega	Natural frequency (Hz) for position loop gain design
	float	f4_sob_omega	Natural frequency (Hz) for speed observer gain
			design
	float	f4_sob_zeta	Damping ratio for speed observer gain design
mtr_ctrl_gain_t	float	f4_id_kp	P gain of d-axis current PI for manual gain setting
	float	f4_id_ki	I gain of d-axis current PI for manual gain setting
	float	f4_iq_kp	P gain of q-axis current PI for manual gain setting
	float	f4_iq_ki	I gain of q-axis current PI for manual gain setting
	float	f4_speed_kp	P gain of speed PI for manual gain setting
	float	f4_speed_ki	I gain of speed PI for manual gain setting
	float	f4_pos_kp	P gain of position P for manual gain setting

3.11.3 "r_mtr_spm_rslv_foc_rx/src/functions" Folder

Table 3.35 Structure Definitions in "r_mtr_filter.h"

Structure Name	Type	Variable Name	Remark	
mtr_2nd_order_lpf_t	float	f4_pre_output	Previous output value	_
	float	f4_pre2_output	Previous output value but one	_
	float	f4_pre_input	Previous input value	_
	float	f4_pre2_input	Previous input value but one	
	float	f4_omega_t	Coefficient ωt	
	float	f4_omega2_t	Coefficient ω^2t	
	float	f4_omega2_t2	Coefficient ω^2t^2	
	float	f4_gain_ka	Gain Ka	
	float	f4_gain_kb	Gain Kb	
	float	f4_gain_kc	Gain Kc	
mtr_1st_order_lpf_t	float	f4_pre_output	Previous output value	
	float	f4_pre_input	Previous input value	
	float	f4_omega_t	Coefficient ωt	
	float	f4_gain_ka	Gain Ka	
	float	f4_gain_kb	Gain Kb	

Table 3.36 Structure Definitions in "r_mtr_mod.h"

Structure Name	Туре	Variable Name	Remark
mod_t	float	f4_vdc	Power-supply voltage (V)
	float	f4_1_div_vdc	Reciprocal of power-supply voltage
	float	f4_voltage_error_ratio	Ratio of dead time to PWM cycle
	float	f4_max_duty	Maximum duty value
	float	f4_min_duty	Minimum duty value
	float	f4_neutral_duty	0-V duty
	uint8_t	u1_sat_flag	Voltage saturation flag

Table 3.37 Structure Definitions in "r_mtr_volt_err_comp.h"

Structure Name	Type	Variable Name	Remark
mtr_volt_comp_t	float	f4_comp_v [ARY_SIZE]	Vertical-axis voltage compensation value in the voltage error compensation table (V)
	float	f4_comp_i [ARY_SIZE]	Horizontal-axis current in the voltage error compensation table (A)
	float	f4_slope [ARY_SIZE +1]	Previous value of calculated torque (N+m)
	float	f4_intcept [ARY_SIZE +1]	Linear approximation intercept of voltage error compensation
	float	f4_volt_comp_array [3]	Voltage compensation value
	float	f4_vdc	DC bus voltage value (V)
	float	f4_volt_comp_limit	Limit of voltage compensation value (V)
	uint8_t	u1_volt_err_comp_enable	Voltage error compensation enable flag

Table 3.38 Structure Definitions in "r_mtr_fluxwkn.h"

Structure Name	Type	Variable Name	Remark
fluxwkn_t	const	*pmotor	Pointer to the motor parameter structure
	_mtr_paramete	r_t	
	float	f4_ia_max	Absolute value of maximum current vector
	float	f4_va_max	Absolute value of maximum voltage vector
	float	f4_vfw_ratio	Use rate of flux-weakening control voltage
	float	f4_id_demag	Magnetic flux divided by d-axis inductance
	float	f4_id_min	Minimum d-axis current limit value
	float	f4_v_fw	Voltage used for flux-weakening control
	uint16_t	u2_fw_status	Flux-weakening control status

Table 3.39 Structure Definitions in "r_rslv_compensation.h"

Structure Name	Туре	Variable Name	Remark
rslv_compensation_t	uint16_t	u2_rslv_timer_cnt_capture	Resolver input capture count value
	uint16_t	u2_rslv_pre_timer_cnt_capture	Previous value of resolver input capture count
	uint16_t	u2_rslv_timer_cnt_capture_offset	Offset value for the resolver input capture counter;
			that is, the counted value indicating the difference
			between the position detected by the resolver and
			the phase of the magnetic pole of the motor when the
			resolver is connected
	int16_t	s2_timer_cnt_err	Resolver delay angle count value
	float	f4_time	Resolver correction time
	float	f4_bpf_comp_rad	Bandpass filter delay correction angle (rad) in
			electrical angle
	float	f4_angle_comp_rad	Resolver correction angle (rad) in electrical angle
	float	f4_pre_angle_rad	Previous angle value (rad) in electrical angle
	float	f4_over_corr_comp_angle_rad	Overcompensated correction angle (rad)
	float	f4_bpf_comp_gain_cw	Compensation adjustment coefficient (CW and
			CCW)
	float	f4_bpf_comp_gain_ccw	Compensation amount = base compensation
			$coefficient \times compensation \ adjustment \ coefficient$
	float	f4_bpf_comp_base_cw	Base compensation coefficient (CW)
	float	f4 bpf comp base ccw	Base compensation coefficient (CCW)

Table 3.40 Structure Definitions in "r_mtr_ipd.h"

Structure Name	Туре	Variable Name	Remark
mtr_ipd_ctrl_t	uint8_t	u1_ipd_lpf_flag	0: LPF disabled (default) 1: LPF enabled
	float	f4_ref_pos_pre_rad_ctrl	Previous position value for control in mechanical angle (rad)
	float	f4_ipd_pos_k	Position control gain for IPD
	float	f4_ipd_pos_1st_fb_rad	Feedback position in mechanical angle (rad)
	float	f4_ipd_pos_1st_fb_pre_rad	Previous value of feedback position in mechanical angle (rad)
	float	f4_ipd_pos_2nd_fb_rad	Feedback position in mechanical angle (rad)
	float	f4_ipd_ref_pos_rad	IPD control reference in mechanical angle (rad)
	float	f4_ipd_err_rad	IPD control error in mechanical angle (rad)
	float	f4_ipd_pos_fb_k	Feedback gain for IPD
	float	f4_ipd_pos_ff_rad	Feedforward position in mechanical angle (rad)
	float	f4_ipd_pos_ff_k	Feedforward position control gain
	float	f4_ipd_pos_p_rad	Proportional control in mechanical angle (rad)
	float	f4_ipd_pos_kp	Position control gain kp
	float	f4_ipd_pos_kp_ratio	Position control gain kp ratio
	float	f4_ipd_pos_ff_ratio	Position feedforward gain ratio
	float	f4_ipd_speed_k	Speed gain for IPD
	float	f4_ipd_speed_k_ratio	Speed gain for IPD gain ratio
	float	f4_ipd_ref_speed_rad	Reference speed in electrical angle (rad/s)
	float	f4_ipd_err_limit_1	Position error limit 1
	float	f4_ipd_err_limit_2	Position error limit 2
	float	f4_ipd_lpf_omega	Natural frequency of position LPF
	float	f4_ipd_lpf_zeta	Damping ratio for position LPF
	mtr_2nd_order_lpf_t	st_pos_lpf	Second-order LPF structure

Table 3.41 Structure Definitions in "r_mtr_speed_observer.h"

Structure Name	Туре	Variable Name	Remark
mtr_speed_observer_t	float	f4_speed_rad	Speed observer output speed in electrical angle
			(rad/s)
	float	f4_ref_torque	Reference torque
	float	f4_ref_pre_torque	Previous value of reference torque
	float	f4_ref_speed_rad	Reference speed for the speed observer (SOB) in
			electrical angle (rad/s)
	float	f4_ref_pre_speed_rad	Previous value of reference speed for SOB in
			electrical angle (rad/s)
	float	f4_hpf_k1	HPF gain 1 for SOB
	float	f4_hpf_k2	HPF gain 2 for SOB
	float	f4_hpf_k3	HPF gain 3 for SOB
	float	f4_k1	K1 gain for SOB
	float	f4_k2	K2 gain for SOB
	float	f4_hpf_ref_speed_rad	HPF output reference speed (rad/s)
	float	f4_hpf_ref_pre_speed_rad	Previous value of HPF output reference speed
			(rad/s)
	float	f4_hpf_omega	Natural frequency of speed observer HPF
	mtr_2nd_order_lpf_t	st_lpf	Second-order LPF structure

3.11.4 "r_mtr_spm_rslv_foc_rx/src/mode" Folder

Table 3.42 Structure Definitions in "r_mtr_statemachine.h"

Structure Name	Type	Variable Name	Remark
mtr_statemachine_t	uint8_t	u1_status	Current system status
	uint8_t	u1_status_next	Next system status to be entered
	uint16_t	u2_error_status	State transition error management
	uint8_t	u1_current_event	Current event

3.12 Software Macro Definitions

3.12.1 "r_mtr_spm_rslv_foc_rx" Folder

Table 3.43 Macro Definitions in "r_mtr_stm_rslv_foc_rx_if.h"

File Name	Macro Name	Defined Value	Remark
r_mtr_motor_parameter.h	r_mtr_motor_parameter.h MTR_SPM_RSLV_FOC_VERSION_MAJOR		
	MTR_SPM_RSLV_FOC_VERSION_MINOR	00	
MTR_GAIN_DESIGN_MODE		0	Using values in design_parameters to
			calculate gains in PI controllers
	MTR_GAIN_DIRECT_MODE	1	Accessing PI controllers directly

3.12.2 "r_mtr_spm_rslv_foc_rx/ref" Folder

Table 3.44 Macro Definitions in "r_mtr_motor_parameter.h"

File Name	Macro Name	Defined Value	Remark
r_mtr_motor_parameter.h	MP_POLE_PAIRS	50	Number of pole pairs
	MP_MAGNETIC_FLUX	0.0043f	Magnetic flux (Wb)
	MP_RESISTANCE	1.2f	Resistance (Ω)
	MP_D_INDUCTANCE	0.0027f	d-axis inductance (H)
	MP_Q_INDUCTANCE	0.0027f	q-axis inductance (H)
	MP_ROTOR_INERTIA	0.0000075f	Inertia (kgm^2)
	MP_NOMINAL_CURRENT_RMS	1.414f	Rated current (Arms)

Table 3.45 Macro Definitions in "r_mtr_control_parameter.h"

File Name	Macro Name	Defined Value	Remark
r_mtr_control_parameter.h	CP_POS_OMEGA	10.0f	Natural frequency of position control loop (Hz)
	CP_SPEED_OMEGA	40.0f	Natural frequency of speed control loop (Hz)
	CP_SPEED_ZETA	1.0f	Attenuation coefficient for speed control loop
	CP_SPEED_LPF_OMEGA	250.0f	Natural frequency of speed LPF
	CP_CURRENT_OMEGA	400.0f	Natural frequency of current control loop (Hz)
	CP_CURRENT_ZETA	1.0f	Attenuation coefficient for current control loop
	CP_SOB_OMEGA	200.0f	Natural frequency of speed observer (Hz)
	CP_SOB_ZETA	1.0f	Attenuation coefficient for speed observer
	CP_MIN_SPEED_RPM	0	Minimum speed in mechanical angle (rpm)
	CP_MAX_SPEED_RPM	3000	Maximum speed in mechanical angle (rpm)
	CP_SPEED_LIMIT_RPM	4000	Speed limit value in mechanical angle (rpm)
	CP_OL_ID_REF	1.8f	d-axis current reference value (A)

Table 3.46 Macro Definitions in "r_mtr_inverter_parameter.h"

File Name	Macro Name	Defined Value	Remark
inverter_parameter.h	IP_DEADTIME	0.5f	Dead time (μs)
	IP_CURRENT_RANGE	10.0f	A/D conversion range for current(A) (p-p value)
	IP_VDC_RANGE	111.383f	A/D conversion range for inverter bus voltage (V)
	IP_INPUT_V	24.0f	Inverter input voltage (V)
	IP_CURRENT_LIMIT	5.0f	Overcurrent limit value (A) *
	IP_OVERVOLTAGE_LIMIT	40.0f	Overvoltage limit value (V)
	IP_UNDERVOLTAGE_LIMIT	18.0f	Low-voltage limit value (V)

Note: This value is calculated from the rated power of the shunt resistor.

Table 3.47 Macro Definitions in "r_resolver_rdc_command.h"

File Name	Macro Name	Defined Value	Remark
r_resolver_rdc_command.h	RDC_CMD_INITIAL_VALUE_02h	0x01	Initial value of the RDC register at the specified address
	RDC_CMD_INITIAL_VALUE_04h	0xDD	Initial value of the RDC register at the specified address
	RDC_CMD_INITIAL_VALUE_0Ah	0xFF	Initial value of the RDC register at the specified address
	RDC_CMD_INITIAL_VALUE_16h	0x11	Initial value of the RDC register at the specified address
	RDC_CMD_INITIAL_VALUE_2Eh	0x01	Initial value of the RDC register at the specified address
	RDC_CMD_INITIAL_VALUE_42h	0x80	Initial value of the RDC register at the specified address

Table 3.48 Macro Definitions in "r_mtr_config.h"

File Name	Macro Name	Defined Value	Remark
r_mtr_config.h	MP_MINEBEA_R17PMK440CNV A4438	_	Motor selection
	CP_MINEBEA_R17PMK440CNV A4438	_	_
	RISE_EDGE_ONLY	_	Using only rising edges to read input capture value from RDC
	USE_FLASH	_	Enabling read and write access to flash memory
	USE_VOLT_ERR_COMP	1	Voltage error compensation 0: Disable 1: Enable
	USE_FLUX_WEAKENING	1	Flux-weakening control 0: Disable 1: Enable
	USE_RSLV_SPLTM_COMP	1	Sampling delay compensation of resolver position information 0: Disable 1: Enable
	USE_CC_SPLDLY_COMP	1	Correction of angle delay until reflection of voltage of the current control loop 0: Disable 1: Enable
	USE_BPF_DELAY_COMP	1	Delay correction by the bandpass filter of RDC 0: Disable 1: Enable
	USE_SOB	1	Speed observer 0: Disable 1: Enable
	POS_CTRL_MODE	MTR_CTRL_PID	Position control mode selection MTR_CTRL_PID: PID controller MTR_CTRL_IPD: IPD controller
	LOOP_MODE	MTR_LOOP_SPEED	Control loop mode selection MTR_LOOP_CURRENT: Current loop mode MTR_LOOP_SPEED: Speed loop mode MTR_LOOP_POSITION: Position loop mode
	GAIN_MODE	MTR_GAIN_DESIGN_MODE	Gain mode MTR_GAIN_DESIGN_MODE: PI gain design mode MTR_GAIN_DIRECT_MODE: Direct PI gain input mode
	MOD_METHOD	MOD_METHOD_SPWM	Modulation method MOD_METHOD_SPWM: Sine wave modulation MOD_METHOD_SVPWM: Space vector modulation
	OFFSET_ADJUST_MODE	MTR_OFAJ_CURRENT_OFF SET	Offset detection mode MTR_OFAJ_CURRENT_OFFSET: Current MTR_OFAJ_POS_OFFSET: Position MTR_OFAJ_FIN: Offset removal completed
	BPF_COMP_GAIN_BASE_CW	4.75E-5f	Base gain for BPF compensation in clockwise rotation
	BPF_COMP_GAIN_BASE_CCW	3.44E-05	Base gain for BPF compensation in counterclockwise rotation

3.12.3 "r_mtr_spm_rslv_foc_rx/src/controller" Folder

Table 3.49 Macro Definitions in "r_mtr_foc_stm_rslv_control.h" (1/2)

File Name	Macro Name	Defined Value	Remark
r_mtr_foc_stm_rslv_ control.h	MTR_ID_ZERO_CONST	0	d-axis current reference value set to zero
	MTR_ID_FLUXWKN	1	Flux-weakening control
	MTR_ID_MANUAL	2	Manual reference setting
	MTR_IQ_ZERO_CONST	0	q-axis current reference value set to zero
	MTR_IQ_SPEED_PI_OUTPUT	1	Using the speed PI output for reference
	MTR_IQ_MANUAL	2	Manual reference setting
	MTR_SPEED_ZERO_CONST	0	Speed reference value set to zero
	MTR_POS_CONTROL_ OUTPUT	1	Using the position control output for reference
	MTR_SPEED_MANUAL	2	Manual reference setting
	MTR_POS_ZERO_CONST	0	Position reference value set to zero
	MTR_POS_STEP	1	Position step reference
	MTR_POS_TRAPEZOID	2	Position profiling reference
	MTR_LOOP_CURRENT_ID	0	d-axis current control mode
	MTR_LOOP_CURRENT_IQ	1	q-axis current control mode
	MTR_LOOP_SPEED	2	Speed control mode
	MTR_LOOP_POSITION	3	Position control mode
	MTR_CTRL_PID	0	Proportional position control
	MTR_CTRL_IPD	1	IPD control
	MTR_OFAJ_CURRENT_ OFFSET	0	Current offset removal mode
	MTR_OFAJ_POS_OFFSET	1	Position offset removal mode
	MTR_OFAJ_FIN	2	Offset removal completed
	MTR_ANGLE_ADJ_90DEG	0	Position offset removal (alignment at 90 degrees)
	MTR_ANGLE_ADJ_0DEG	1	Position offset removal (alignment at 0 degrees)
	MTR_ANGLE_ADJ_FIN	2	Alignment completed
	MTR_MODE_OFFSET_ ADJUST	0x00	Drive mode: Offset removal
	MTR_MODE_DRIVE	0x01	Drive mode: Normal drive
	MTR_ERROR_NONE	0x0000	No error
	MTR_ERROR_OVER_ CURRENT_HW	0x0001	Hardware overcurrent error
	MTR_ERROR_OVER_ VOLTAGE	0x0002	Overvoltage error
	MTR_ERROR_OVER_SPEED	0x0004	Overspeed error
	MTR_ERROR_UNDER_ VOLTAGE	0x0080	Low-voltage error
	MTR_ERROR_OVER_ CURRENT_SW	0x0100	Software overcurrent error
	MTR_ERROR_OVER_ TEMPERATURE	0x0200	Overheat error
	MTR_ERROR_RESOLVER_ DISCONNECT	0x0400	Resolver sensor disconnection error
	MTR_ERROR_RDC	0x0800	RDC error
	MTR_ERROR_UNKNOWN	0xffff	Unknown error
	MTR_PWM_PERIOD_US	1000.0f/MTR_CARRIER_FREQ	PWM update cycle
	MTR_DUTY_CYCLE_ DEADTIME	MTR_DEADTIME/ MTR_PWM_PERIOD_US	Dead time duty value

Table 3.49 Macro Definitions in "r_mtr_foc_stm_rslv_control.h" (2/2)

File Name	Macro Name	Defined Value	Remark
r_mtr_foc_stm_rslv_control.h	MTR_MAX_DUTY_CYCLE	1.0f-(Maximum duty value
		MTR_DUTY_CYCLE_DEADTIME	
		*0.5f	
		+(MTR_AD_SAMPLING_TIME/	
		MTR_PWM_PERIOD_US))	
	MTR_MIN_DUTY_CYCLE	MTR_DUTY_CYCLE_DEADTIME	Minimum duty value
		*0.5f	

Table 3.50 Macro Definitions in "r_mtr_parameter.h" (1/2)

File Name	Macro Name	Defined Value	Remark
r_mtr_parameter.h	MTR_M	MP_MAGNETIC_FLUX	Magnetic flux (Wb)
	MTR_R	MP_RESISTANCE	Resistance (Ω)
	MTR_LD	MP_D_INDUCTANCE	d-axis inductance (H)
	MTR_LQ	MP_Q_INDUCTANCE	q-axis inductance (H)
	MTR_J	MP_ROTOR_INERTIA	Inertia (kgm^2)
	MTR_NOMINAL_CURRENT_RMS	MP_NOMINAL_CURRENT_RMS	Rated current (Arms)
	MTR_POLE_PAIRS	MP_POLE_PAIRS	Number of pole pairs
	MTR_RPM_RAD	(MTR_POLE_PAIRS * MTR_TWOPI) / 60.0f	Coefficient of conversion from rpm to rad/s
	MTR_TWOPI_INV	1.0f/MTR_TWOPI	Reciprocal of 2π
	MTR_RSLV_TIMER_CLOCK	MTR_PWM_TIMER_FREQ * 1000000	Excitation frequency
	MTR_RSLV_TIMER_PERIOD	(float)(1/MTR_RSLV_TIMER_CLOCK)	Excitation frequency count value
	MTR_RSLV_POLE	RESOLVER_POLE	Number of poles of resolver sensor
	MTR_RSLV_POLE_INV	1.0f/MTR_RSLV_POLE	Reciprocal of number of poles
	MTR_RSLV_ONE_CYCLE_RAD_MEC	MTR_TWOPI/MTR_RSLV_POLE	One-cycle angle of resolver sensor
	MTR_RSLV_EXCITATION_FREQ	EXCITATION_SIGNAL_FREQUENCY	Excitation frequency of resolver sensor
	MTR_RSLV_EXCITATION_CNT	MTR_RSLV_TIMER_CLOCK / MTR_RSLV_EXCITATION_FREQ	Excitation frequency count value of resolver sensor
	MTR_RSLV_EXCITATION_CNT_INV	1.0f/MTR_RSLV_EXCITATION_CNT	Reciprocal of one-cycle count value of resolver sensor
	MTR_RSLV_EXCITATION_HALF_CNT	MTR_RSLV_EXCITATION_CNT/2.0f	1/2-cycle count value of resolver sensor
	MTR_RSLV_ANGLE_DIFF	MTR_RSLV_ONE_CYCLE_RAD_MEC / MTR_RSLV_EXCITATION_CNT	One-count electrical angle of resolver sensor
	MTR_ANGLE_ADJ_TIME	512	Resolver position offset detection time
	MTR_RSLV_ANGLE_1PULSE_RAD	(float)(MTR_TWOPI/ MTR_RSLV_EXCITATION_CNT)	One-count mechanical angle of position signal (rad)
	MTR_PULSE_PER_REV	EP_PULSE_PER_REV	Number of pulses per rotation (PPR)
	MTR_RESO_MULTIPL	EP_RESO_MULTIPL	Multiplication resolution setting
	MTR_CURRENT_OMEGA	CP_CURRENT_OMEGA	Natural frequency of current control loop (Hz)
	MTR_CURRENT_ZETA	CP_CURRENT_ZETA	Attenuation coefficient for current control loop
	MTR_SPEED_OMEGA	CP_SPEED_OMEGA	Natural frequency of speed control loop (Hz)
	MTR_SPEED_ZETA	CP_SPEED_ZETA	Attenuation coefficient for speed control loop
	MTR_SPEED_LPF_OMEGA	CP_SPEED_LPF_OMEGA	Natural frequency of speed LPF (Hz)
	MTR_POS_OMEGA	CP_POS_OMEGA	Natural frequency of position control loop (Hz)
	MTR_FREQ_BAND_LIMIT	3.0f	Band limit between control loops (times)
	MTR_MAX_CURRENT_OMEGA	1500.0f	Maximum natural frequency of current control loop (Hz)
	MTR_MIN_POS_OMEGA	1.0f	Minimum natural frequency of position control loop (Hz)

Table 3.50 Macro Definitions in "r_mtr_parameter.h" (2/2)

File Name	Macro Name	Defined Value	Remark
r_mtr_parameter.h	MTR_DEADTIME	IP_DEADTIME	Dead time (μs)
	MTR_CURRENT_RANGE	IP_CURRENT_RANGE	A/D conversion range for current (A) (p-p value)
	MTR_VDC_RANGE	IP_VDC_RANGE	A/D conversion range for inverter bus voltage (V)
	MTR_OFFSET_CALC_TIME	256.0f	Current offset calculation time
	MTR_OFFSET_CALC_WAIT	(uint16_t)(MTR_LD/MTR_R*1000.0f* 10.0f*1.5f)	Offset calculation wait time
	MTR_PERIOD_MAG_VALUE	1.5f	Control cycle delay time coefficient
	MTR_I_LIMIT_VD	IP_INPUT_V	Current PI output limit value
	MTR_I_LIMIT_VQ	IP_INPUT_V	Current PI output limit value
	MTR_REF_ID	CP_OL_ID_REF	d-axis current reference value
	MTR_I_LIMIT_IQ	MTR_NOMINAL_CURRENT_RMS * MTR_SQRT_2	Speed PI output limit value
	MTR_LIMIT_IQ	MTR_NOMINAL_CURRENT_RMS * MTR_SQRT_2	q-axis current limit value
	MTR_OVERCURRENT_ MARGIN_MULT	1.5f	Overcurrent limit value coefficient
	MTR_OVERCURRENT_LIMIT	MTR_NOMINAL_CURRENT_RMS * MTR_SQRT_2 * MTR_OVERCURRENT_MARGIN_ MULT	Overcurrent limit value
	MTR_OVERVOLTAGE_LIMIT	IP_OVERVOLTAGE_LIMIT	Overvoltage limit value
	MTR_UNDERVOLTAGE_LIMIT	IP_UNDERVOLTAGE_LIMIT	Low-voltage limit value
	MTR_INPUT_V	IP_INPUT_V	Input voltage
	MTR_MCU_ON_V	MTR_INPUT_V * 0.8f	System power ON voltage
	MTR_RATE_LIMIT_CURRENT	0.0005f	Current increase rate limit value
	MTR_SPEED_CTRL_PERIOD	0.00025f	Current control cycle
	MTR_SPEED_FF_RATIO	0.6f	Speed feedforward coefficient
	MTR_MIN_SPEED_RPM	CP_MIN_SPEED_RPM	Minimum speed (rpm)
	MTR_MAX_SPEED_RPM	CP_MAX_SPEED_RPM	Maximum speed (rpm)
	MTR_MAX_SPEED_RAD	MTR_MAX_SPEED_RPM * MTR_TWOPI_60	Maximum speed (rad/s)
	MTR_SPEED_LIMIT_RPM	CP_SPEED_LIMIT_RPM	Speed limit value (rpm)
	MTR_OVERSPEED_LIMIT_ RAD	MTR_SPEED_LIMIT_RPM * MTR_RPM_RAD	Speed limit value (rad/s)
	MTR_RATE_LIMIT_SPEED	0.3f	Acceleration rate limit value
	MTR_POS_DEAD_BAND	1.0f	Position dead band (±count)
	MTR_POS_BAND_LIMIT	3.0f	Positioning completed flag range (±count)
	MTR_POS_INTERVAL_TIME	400	Position reference update interval time
	MTR_POS_LIMIT	(32767.0f * MTR_TWOPI) / 360.0f	Position reference limit value
	MTR_OFFSET_ALGIN_ID_ RATIO	(0.8f)	The coefficient to determine d-axis current command, when removing position sensor offset*

Note: * d-axis current command = Motor norminal current[Arms] * √2 * MTR_OFFSET_ALIGN_ID_RATIO

Table 3.51 Macro Definitions in "r_mtr_common.h"

File Name	Macro Name	Defined Value	Remark
r_mtr_common.h	MTR_TWOPI	2.0f * 3.1415926535f	2π
	MTR_TWOPI_60	MTR_TWOPI / 60.0f	2π / 60
	MTR_DIG_RAD	MTR_TWOPI / 360.0f	2π / 360
	MTR_SQRT_2	1.41421356f	√2
	MTR_SQRT_3	1.7320508f	√3
	MTR_CW	0	Forward rotation
	MTR_CCW	1	Reverse rotation
	MTR_LED_ON	0	LED turned on
	MTR_LED_OFF	1	LED turned off
	MTR_FLG_CLR	0	Flag cleared
	MTR_FLG_SET	1	Flag set
	MTR_ENABLE	1	Enabled
	MTR_DISABLE	0	Disabled
	MTR_ID_A	0	Motor ID A
	MTR_ID_B	1	Motor ID B
	TRUE	1	True
	FALSE	0	False
	ON	1	
	OFF	0	
	HIGH	1	
	LOW	0	
	OK	0x00	
	NG	0xFF	

Table 3.52 Macro Definitions in "r_mtr_position_profiling.h"

File Name	Macro Name	Defined Value	Remark
r_mtr_position_profiling.h	MTR_MAX_ACCEL	(MTR_POLE_PAIRS * MTR_NOMINAL_CURRENT_RMS * MTR_SQRT_2 * MTR_M) / MTR_J	Maximum acceleration
	MTR_ACCEL_TIME	0.06f	Acceleration time of reference speed (s)
	MTR_MAX_ACCEL_TIME	MTR_MAX_SPEED_RAD / MTR_MAX_ACCEL	Maximum acceleration time of reference speed (s)
	MTR_TIME_SEC	MTR_SPEED_CTRL_PERIOD	250 (μs)
	MTR_CTRL_TRIANGLE	0	
	MTR_CTRL_TRAPEZOIDAL	1	
	MTR_POS_STEADY_STATE	0	
	MTR_POS_TRANSITION_STATE	1	

3.12.4 "r_mtr_spm_rslv_foc_rx/src/functions" Folder

Table 3.53 Macro Definitions in "r_mtr_volt_err_comp.h"

File Name	Macro Name	Defined Value	Remark
r_mtr_volt_err_comp.h	MTR_VOLT_COMP_LIMIT	MTR_CARRIER_FREQ *	Coefficient for calculating voltage
		MTR_DEADTIME * 2.0f) / 1000.0f	compensation limit
	ARY_SIZE	5	Number of data items
	TBL_COMP_V0	0.205312148f	Voltage compensation value (V)
	TBL_COMP_V1	0.335981607f	
	TBL_COMP_V2	0.414872766f	•
	TBL_COMP_V3	0.457023382f	•
	TBL_COMP_V4	0.46840322f	•
	TBL_COMP_I0	0.038731616f	Current (A)
	TBL_COMP_I1	0.0816742256f	•
	TBL_COMP_I2	0.140160277f	•
	TBL_COMP_I3	0.193200409f	•
	TBL_COMP_I4	0.217510894f	•
	MTR_VOLT_ERR_COMP_ENABLE	1	Voltage error compensation
			enabled
	REF_VOLTAGE	24.0f	Power-supply voltage (V)

Table 3.54 Macro Definitions in "r_mtr_speed_observer.h"

File Name	Macro Name	Defined Value	Remark
r_mtr_speed_observer.h	SOB_SPEED_CTRL_PERIOD	MTR_CTRL_PERIOD	Control period (speed loop) (s)
	SOB_OMEGA	CP_SOB_OMEGA	Natural frequency of speed observer
	SOB_ZETA	CP_SOB_ZETA	Damping ratio for speed observer
	SOB_HPF_OMEGA	1.0f	Natural frequency of speed observer
			HPF
	SOB_HPF_K2	2.0f /	Speed observer HPF gain
		SOB_SPEED_CTRL_PERIOD	
	SOB_HPF_K3	-(1.0f - SOB_HPF_K2)	Speed observer HPF gain

Table 3.55 Macro Definitions in "r_mtr_mod.h"

File Name	Macro Name	Defined Value	Remark
r_mtr_mod.h	MOD_DEFAULT_MAX_DUTY	1.0f	Default maximum duty cycle
	MOD_METHOD_SPWM	0	Sinusoidal pulse-width-modulation
	MOD_METHOD_SVPWM	1	Space vector pulse-width-modulation
	MOD_SATFLAG_BITU	1 << 0	Saturation flag bit for U phase
	MOD_SATFLAG_BITV	1 << 1	Saturation flag bit for V phase
	MOD_SATFLAG_BITW	1 << 2	Saturation flag bit for W phase
	MOD_VDC_TO_VAMAX_MULT	0.97f	Basic coefficient used to convert Vdc to Vamax
			1:1
	MOD_SVPWM_MULT	1.155f	The usable voltage is multiplied by sqrt (4/3) when using SVPWM.

Table 3.56 Macro Definitions in "r_mtr_fluxwkn.h"

File Name	Macro Name	Defined Value	Remark
r_mtr_fluxwkn.h	FLUXWKN_DEF_VFWRATIO	0.95f	Default flux-weakening voltage ratio
	FLUXWKN_DEF_VFWRATIO_MIN	0.5f	Default minimum flux-weakening voltage ratio
	FLUXWKN_STATE_BYPASSED	0x0000	Flux-weakening control is not necessary; the module is bypassed.
	FLUXWKN_STATE_FLUXWKN	0x0001	Normal flux-weakening state
	FLUXWKN_STATE_IDSAT	0x0002	d-axis current has already saturated.
	FLUXWKN_STATE_ERROR	0x8000	Flux-weakening general or runtime error
	FLUXWKN_STATE_INVALID_MOTOR	0x9001	Invalid motor parameter
			(The specified motor pointer is null, or any of
			Ld, Lq, and flux is smaller than 0.)
	FLUXWKN_STATE_INVALID_IAMAX	0x9002	Invalid maximum la value (lamax < 0.0)
	FLUXWKN_STATE_INVALID_VAMAX	0x9003	Invalid maximum Va value (Vamax < 0.0)
	FLUXWKN_STATE_INVALID_VFWRATIO	0x9004	Invalid maximum voltage ratio for
			flux-weakening

Table 3.57 Macro Definitions in "r_mtr_ipd.h"

File Name	Macro Name	Defined Value	Remark
r_mtr_ipd.h	POS_LPF_OMEGA	200.0f	Natural frequency of position HPF
	POS_LPF_ZETA	1.0f	Damping ratio for position HPF
	POS_SPEED_RATIO	2.0f	Speed gain ratio for IPD
	POS_FF_RATIO	0.2f	Position feedforward ratio
	POS_KP_RATIO	0.3f	Position KP ratio
	POS_IPD_ERR_LIMIT_1	10.0f	Position error limit 1 (rad)
	POS_IPD_ERR_LIMIT_2	0.2f	Position error limit 2 (rad/s)
	LPF_FLAG	LPF_ON	Initial set position LPF enabled or disabled
	LPF_OFF	0	Position LPF disabled
	LPF_ON	1	Position LPF enabled

Table 3.58 Macro Definitions in "r_rslv_compensation.h"

File Name	Macro Name	Defined Value	Remark
r_rslv_compensation.h	BPF_COMP_GAIN_MULT_CW	1.00f	Multiplier for BPF compensation in
			clockwise rotation
	BPF_COMP_GAIN_MULT_CCW	1.00f	Multiplier for BPF compensation in
			counterclockwise rotation

3.12.5 "r_mtr_spm_rslv_foc_rx/src/mode" Folder

Table 3.59 Macro Definitions in "r_mtr_statemachine.h"

File Name	Macro Name	Defined Value	Remark
r_mtr_statemachine.h	MTR_MODE_INACTIVE	0x00	
	MTR_MODE_ACTIVE	0x01	
	MTR_MODE_ERROR	0x02	
	MTR_SIZE_STATE	3	Number of states
	MTR_EVENT_INACTIVE	0x00	
	MTR_EVENT_ACTIVE	0x01	
	MTR_EVENT_ERROR	0x02	
	MTR_EVENT_RESET	0x03	
	MTR_SIZE_EVENT	4	Number of events
	MTR_STATEMACHINE_ERROR_NONE	0x00	No error flag
	MTR_STATEMACHINE_ERROR_EVENTOUTBOUND	0x01	The event index is out of
			bound.
	MTR_STATEMACHINE_ERROR_STATEOUTBOUND	0x02	The state index is out of bound.
	MTR_STATEMACHINE_ERROR_ACTIONEXCEPTION	0x03	The action function returns a
			failure.

3.13 List of Variables for Analyzer Functions

Table 3.60 list input variables to be used for the analyzer user interface. The values specified in these variables are reflected in the corresponding variables in the middleware layer to be used for motor control when a value that is the same as the "g_u1_enable_write" value is written to "com_u1_enable_write". However, the variables marked with an asterisk (*) in the tables are independent of "com_u1_enable_write".

Table 3.60 Input Variables for Analyzer Functions (1/2)

Variable Name for Analyzer	Type	Description		
com_u1_mode_system (*)	uint8_t	State management 0: Stop mode 1: Run mode 3: Reset		
com_u1_memory_write (*)	uint8_t	Writing data to flash memory 1: Enabled 0: Disabled		
com_u1_flg_csig (*)	uint8_t	Carrier correction 0: Enabled 1: Disabled (default)		
com_u1_flg_upd_csigparam (*)	uint8_t	Carrier correction value update 0: Stop 1: Start		
com_u2_csig_shiftnum (*)	uint16_t	Carrier correction shift amount		
com_u2_csig_amplvl (*)	uint16_t	Carrier correction gain		
com_u1_flg_rdc_sequence (*)	uint8_t	RDC startup sequence execution flag 0: Stop 1: Start (default)		
com_u1_enable_write	uint8_t	Variable rewriting enable (toggle operation)		
com_u1_flag_angle_spl_comp_use	uint8_t	Sampling delay compensation of resolver position information 0: Disabled, 1: Enabled (default)		
com_u1_flag_cc_spl_comp_use	uint8_t	Angle correction at the time of voltage reflection 0: Disabled, 1: Enabled (default)		
com_u1_flag_bpf_delay_comp_use	uint8_t	Delay correction using bandpass filter of RDC 0: Disabled, 1: Enabled (default)		
com_u1_flag_sob_use	uint8_t	Speed observer enable 0: Disabled, 1: Enabled (default)		
com_u1_flag_volt_err_comp_use	uint8_t	Voltage error compensation enable 0: Disabled, 1: Enabled (default)		
com_u1_flag_flux_weakening_use	uint8_t	Flux-weakening enable 0: Disabled, 1: Enabled (default)		
com_u1_ctrl_loop_mode	uint8_t	Control loop switching		
		0: d-axis current control		
		1: q-axis current control		
		2: Speed control (default)		
	. 10 1	3: Position control		
com_u1_ctrl_method_mode	uint8_t	Control method switching 0: PID control (position P, speed PI, current PI) (default)		
		1: IPD control (position and speed IPD + position FF + speed FF + position P and current PI)		
		FF: Feedforward control		
com_u1_position_input_mode	uint8_t	Position reference value input method switching		
	-	0: Zero reference		
		1: Direct input (stepped input)		
		2: Creating trapezoidal speed reference (default)		
com_u1_offset_adjust_mode	uint8_t	Magnetic pole position detection mode		
		0: Current (default)		
		Position Great removal completed		
com u1 direction	uint8 t	Direction of rotation 0: Clockwise 1: Counterclockwise		
com_f4_ref_position_deg	int16 t	Position reference value in mechanical angle (degree)		
com_s2_ref_speed_rpm	int16_t	Speed reference value in mechanical angle (rpm)		
com_u2_min_speed_rpm	uint16 t	Minimum speed value in mechanical angle (rpm)		
com_u2_max_speed_rpm	uint16 t	Maximum speed value in mechanical angle (rpm)		
com u2 speed limit rpm	uint16_t	Speed limit value in mechanical angle (rpm)		
com u2 pos interval time	uint16_t	Normal wait time for position response		
com_u2_pos_deadband	uint16_t	Dead band		
com_u2_pos_band_limit	uint16_t	Position error zero range		
com u2 encd cpr mech	uint16_t	Number of encoder pulses		
com_u2_offset_calc_time	uint16_t	Current offset value calculation time (ms)		
com_u2_offset_calc_wait	uint16_t	Current offset calculation wait time (ms)		
com u2 run mode	uint16_t	RUN mode 0: Offset removal 1: Normal drive		
com_f4_ipd_speed_k_ratio	float	Magnification of speed gain for IPD control		
com_f4_ipd_pos_kp_ratio	float	Magnification of position P control amount for IPD control		
com_f4_ipd_err_limit_1	float	IPD control difference limit 1		
com_f4_ipd_err_limit_2	float	IPD control difference limit 2		
com f4 accel time	float	Acceleration time (s) for creating a position reference value		
com_f4_speed_rate_limit	float	Acceleration time (s) for creating a position reference value Acceleration rate limit		
	iioat	Accidention rate iiiiii		

Table 3.60 Input Variables for Analyzer Functions (2/2)

Variable Name for Analyzer Functions	Туре	Description	
com_f4_ref_id	float	d-axis current reference value	
com_f4_ref_iq	float	q-axis current reference value	
com_f4_current_rate_limit	float	Current increase rate limit	
com_f4_bpf_comp_gain_cw	float	Adjustment coefficient for resolver BPF compensation (clockwise)	
com_f4_bpf_comp_gain_ccw	float	Adjustment coefficient for resolver BPF compensation (counterclockwise)	
com_f4_bpf_comp_base_cw	float	Base coefficient for resolver BPF compensation (clockwise)	
com_f4_bpf_comp_base_ccw	float	Base coefficient for resolver BPF compensation (counterclockwise)	
com_u2_mtr_pp	uint16_t	Number of pole pairs	
com_f4_mtr_r	float	Resistance (Ω)	
com_f4_mtr_ld	float	d-axis inductance (H)	
com_f4_mtr_lq	float	q-axis inductance (H)	
com_f4_mtr_m	float	Magnetic flux (Wb)	
com_f4_mtr_j	float	Rotor inertia (kgm^2)	
com_f4_nominal_current_rms	float	Rated current (Arms)	
com_f4_current_omega	float	Natural frequency of current control loop	
com_f4_current_zeta	float	Attenuation coefficient for current control loop	
com_f4_speed_omega	float	Natural frequency of speed control loop	
com_f4_speed_zeta	float	Attenuation coefficient for speed control loop	
com_f4_pos_omega	float	Natural frequency of position control loop	
com_f4_sob_omega	float	Natural frequency of speed observer	
com_f4_sob_zeta	float	Attenuation coefficient for speed observer	
com_f4_id_kp	float	Proportional gain for d-axis current PI control	
com_f4_id_ki	float	Integral gain for d-axis current PI control	
com_f4_iq_kp	float	Proportional gain for q-axis current PI control	
com_f4_iq_ki	float	Integral gain for q-axis current PI control	
com_f4_speed_kp	float	Proportional gain for speed PI control	
com_f4_speed_ki	float	Integral gain for speed PI control	
com_f4_pos_kp	float	Proportional gain for position P control (PID control mode)	
		Proportional gain for IPD control + proportional gain for position P control (IPD control mode)	
com_u1_rslv_calibmode	uint8_t	Automatic calibration by the RDC	
		1: Adjustment of the gain and phase of the resolver signals	
		2: Adjustment of the angle error correction signal	

4. Basic Operating Procedure

4.1 Motor Control Development Support Tool "Renesas Motor Workbench"

The software covered by this application note uses the motor control development support tool "Renesas Motor Workbench" as a user interface (rotation and stop reference setting, rotational speed reference setting, etc.). For details about usage of this tool, see *Renesas Motor Workbench 2.0 User's Manual*.

Obtain the motor control development support tool "Renesas Motor Workbench" from the Renesas Electronics website.

Figure 4.1 Windows of Renesas Motor Workbench

How to use the motor control development support tool "Renesas Motor Workbench"

- 1. Click the tool icon Workbench to activate the tool.
- From the menu bar on the Main panel, select [RMTFile] → [Open RMT File(O)].
 Read the RMT file in the "ics" folder in the project folder.
- 3. Select the COM port of the connected kit in the [COM] box under "Connection".
- 4. Click the [Analyzer] button in the "Select Tool" window to display the analyzer function window. When connections have been properly made, a message "Ready CPU: RX24TSerial: SCI5 PORT: COM(X)" appears at the lower left of the window.

Ready CPU: RX24T Serial: SCI5 PORT:COM4

5. Activate the motor according to section 4.2, Example of Motor Driving Operation Using Analyzer Functions.

4.2 Example of Motor Driving Operation Using Analyzer Functions

This section describes how to drive the motor using the analyzer functions of the RMW.

(1) When motor current or resolver position offset has not been removed

The following describes operation when the motor current or resolver position offset has not been removed. When the offset has been removed and the motor current and resolver option offset have been written to the flash memory, this step can be skipped.

Executing offset removal

1. Write 0 to the com_u2_run_mode variable to enter offset removal mode.

Confirm that the checkbox in the [W?] column is selected, and then write 0 to the [Write] column.

2. Rewrite (toggle) the com u1 enable write variable and reflect the variable value.

Write the g_u1_enable_write value (0 or 1) to com_u1_enable_write.

Click the [Write] button.

3. Write 1 to com_u1_mode_system and then click the [Write] button to execute offset removal. Upon completion of offset removal, the com_u1_mode_system value automatically becomes 0.

The measurement result is reflected in each variable as shown below.

g_st_foc.f4_rslv_angle_offset_rad	FLOAT	Q0	✓	0.3600244	0	Resolver angle offset [rad]
g_st_foc.f4_offset_ia	FLOAT	Q0	~	-0.04605473	0	α-axis current offset [A]
g_st_foc.f4_offset_ib	FLOAT	Q0	~	-0.03246146	0	β-axis current offset [A]

Variable values are removed as offset when the motor is driven.

Writing to flash memory

1. Write 1 to com_u1_memory_write and then click the [Write] button. Each offset value is written to the flash memory and the written values are retained even after power is turned on again. Upon completion of writing, the com_u1_memory_write value automatically becomes 0.

(2) Driving in speed control mode

Entering speed control mode

- 1. Write 1 to the com_u2_run_mode variable to enter normal drive mode.
- 2. Write 2 to the com_u1_ctrl_loop_mode variable to enter speed control mode.
- 3. Rewrite (toggle) the com u1 enable write variable and reflect the variable value.

Write the g_u1_enable_write value (0 or 1) to com_u1_enable_write.

Click the [Write] button.

Setting the speed reference value to drive the motor

- 1. Specify the speed reference value (rpm) in com s2 ref speed rpm.
- 2. Rewrite (toggle) the com_u1_enable_write variable and reflect the variable value.

Write the g u1 enable write value (0 or 1) to com u1 enable write.

Click the [Write] button.

3. Write 1 to the com_u1_mode_system variable and then click the [Write] button to enter Run mode. The motor starts rotating.

(3) Driving in position control mode

Entering position control mode

- 1. Write 1 to the com u2 run_mode variable to enter normal drive mode.
- 2. Write 3 to the com_u1_ctrl_loop_mode variable to enter position control mode.
- 3. Rewrite (toggle) the com_u1_enable_write variable and reflect the variable value.

Write the g_u1_enable_write value (0 or 1) to com_u1_enable_write.

Click the [Write] button.

Setting position reference value to drive the motor

- 1. Write 1 to the com_u1_mode_system variable and then click the [Write] button to enter Run mode. The motor starts the positioning control operation.
- 2. Specify the target position (degree) in com_f4_ref_position_deg.
- 3. Rewrite (toggle) the com_u1_enable_write variable and reflect the variable value.

Write the g_u1_enable_write value (0 or 1) to com_u1_enable_write.

Click the [Write] button to execute positioning to follow the target value.

(4) Recovering from an error

Occurrence of an error

When an error occurs, the motor stops working and the error status is reflected in g st foc.u2 error status.

Clearing the error

1. Write 3 to the com_u1_mode_system variable and then click the [Write] button to enter reset mode. The error status is cleared and all variables are reset.

The g_st_foc.u2_error_status variable is cleared to 0.

(5) Open-loop driving without using sensors (with current control)

Entering d-axis current control mode

- 1. Write 1 to the com u2 run mode variable to enter normal drive mode.
- 2. Write 0 to the com_u1_ctrl_loop_mode variable to enter d-axis current control mode.
- 3. Rewrite (toggle) the com_u1_enable_write variable and reflect the variable value.

Write the g u1 enable write value (0 or 1) to com u1 enable write.

Click the [Write] button.

Setting speed and d-axis current reference values to drive the motor

- 1. Specify the speed reference value (rpm) in com_s2_ref_speed_rpm.
- 2. Specify the current reference value in com f4 ref id.
- 3. Rewrite (toggle) the com u1 enable write variable and reflect the variable value.

Write the g_u1_enable_write value (0 or 1) to com_u1_enable_write.

Click the [Write] button.

4. Write 1 to the com_u1_mode_system variable and then click the [Write] button to enter Run mode. The motor starts rotating.

(6) q-axis current control

Entering q-axis current control mode

- 1. Write 1 to the com u2 run mode variable to enable normal drive mode.
- 2. Write 1 to the com_u1_ctrl_loop_mode variable to enable q-axis current control mode.
- 3. Rewrite (toggle) the com_u1_enable_write variable and reflect the variable value.

Write the g u1 enable write value (0 or 1) to com u1 enable write.

Click the [Write] button.

Setting q-axis current reference value to drive the motor

- 1. Specify the current reference value in com f4 ref iq.
- 2. Rewrite (toggle) the com u1 enable write variable and reflect the variable value.

Write the g_u1_enable_write value (0 or 1) to com_u1_enable_write.

Click the [Write] button.

3. Write 1 to the com_u1_mode_system variable and then click the [Write] button to enter Run mode. The motor starts rotating.

(1) Position control using the commander

Activating the commander

1. Click the [Commander] button in the Control window.

2. The Commander window appears. On this window, click the [Send Checker] button to check the data transmission rate.

The minimum transfer time is displayed.

- Click the [Open] button to read the "Position_test.csv" file. Select position control mode, write 1 to the com_u1_mode_system variable, and then click the [Write] button to enter Run mode. The motor starts the positioning control operation.
- 4. Click the [Start] button in the Commander window to start the sequence operation.

Website and Support

Renesas Electronics Website http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

Revision History

		Descripti	on
Rev.	Date	Page	Summary
1.00	Jan.08.20		First edition issued
1.10	Feb.14.20	9	Table 2.5 Folder and File Configuration
			A file name was corrected.
		47	Table 3.17 Current Control Processing Functions (2/3)
			A file name was corrected.
		70	Table 3.19 Speed Control Processing Functions
			A file name was corrected.
		72	Table 3.20 Speed Reference Value Creation Processing
			Functions
			A file name was corrected.
		75	Table 3.22 Flux-Weakening Control Processing Functions
			A file name was corrected.
		82	Table 3.26 Structure Definitions in "r_mtr_stm_rslv_foc_rx_if.h"
			(1/2)
			A variable name was corrected.
		104	Table 3.60 Input Variables for Analyzer Functions (1/2)
			A variable name for analyzer was corrected.
		108	4.2, (3) Driving in position control mode
			A variable name for analyzer was corrected.
1.20	Mar.16.20	5	Figure 2.1 Hardware Configuration: Corrected
		6	Table 2.1 User Interfaces: Corrected
		6 9	Table 2.2 Pin Interfaces: Corrected
		9	Table 2.5 Folder and File Configuration:
			The description for file r_mtr_ipd.h, r_mtr_ipd.obj was
			corrected.
		42	Section 3.9 Calibration of Errors: Added
		94	Table 3.47 Macro Definitions in "r_resolver_rdc_command.h":
			RDC_CMD_INITIAL_VALUE_12h deleted
		105	Table 3.60 Table 3.60 Input Variables for Analyzer Functions
			(2/2): com_u1_rslv_calibmode added
1.30	Mar.29.21	1	Target Sample Program was corrected.
		4	Updated version of CC-RX toolchain to 3.03.00
			Updated version of CS+ to 8.05.00
			Added version of e ² studio
		10	Fixed description for auto_generation folder in
		-	Table 2.5 Folder and File Configuration (2/2)
		12	Table 2.6 Basic Specifications of the Vector Control Software:
			ROM and RAM size was corrected.
		67	Updated flowchart of position offset removing process function
		85	Changed the name of streuture menber s2_rslv_cycle_cnt to
			s4_rslv_cycle_cnt, changed the type from int16_t to int32_t on Table 3.27 Structure Definitions in
			"r_mtr_foc_stm_rslv_control.h" (2/3)
		99	Added the description of new macro
		99	MTR_OFFSET_ALIGN_ID_RATION on Table 3.50 Macro
			Definitions in "r_mtr_parameter.h" (2/2)
1.31	Apr.23.21		Fixed issue of flash memory operation.
	,		Updated version to 1.31
			<u> </u>

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/.