Diskretne strukture UNI Vaje 2

1. Prepričaj se, da so spodnji pari izjavnih izrazov enakovredni. Nalogo reši s pomočjo resničnostne tabele in s poenostavljanjem.

Ò

2.

$$\begin{array}{c} (p\Rightarrow q)\Leftrightarrow (p\Rightarrow \neg q) \; \sim \; (p\Rightarrow g) \; \wedge \; (p\Rightarrow q) \; \wedge \;$$

р	q	r	$p \Rightarrow (q \Rightarrow (r \Rightarrow (p \land q)))$
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1 1
1	0	1	1 1
1	1	0	1 1 1
1	1	1	1 1 1 1 1 1
	-		6. 4.5. 2.3.1.

A I TA ~ 0

- 2. S poenostavljanjem izrazov pokaži, da sta izraza enakovredna:
 - (a) $(p \Rightarrow q) \land (\neg p \Rightarrow r) \Rightarrow (q \lor r)$ in 1,
 - (b) $p \vee (p \wedge q)$ in $\neg (p \Rightarrow q)$,
 - (c) $(p \land q) \lor (\neg p \land r)$ in $(\neg r \lor p) \Rightarrow q \land p$.

$$p \stackrel{\vee}{\smile} (p \wedge q) \sim p \wedge \overline{1(p \wedge q)} \vee \overline{1p \wedge (p \wedge q)} \sim p \wedge \overline{1(p \wedge q)} \sim p \wedge \overline{1($$

$$\begin{array}{c} \Diamond \ (p \wedge q) \veebar (\neg p \wedge r) \sim & (p \wedge q) \wedge \neg (\neg p \wedge n) \vee \neg \neg (p \wedge q) \wedge (\neg p \wedge n) \sim \\ \\ \sim & (p \wedge q) \wedge (p \vee \neg n) \vee (\neg p \vee \neg q) \wedge (\neg p \wedge n) \sim \\ \\ \sim & p \wedge q \wedge p \vee p \wedge q \wedge \neg n \vee \neg \neg p \wedge q \wedge p \wedge q \wedge \neg n \vee \neg p \wedge q \wedge p \wedge q \wedge \neg n \wedge \neg \\ \\ \sim & p \wedge q \vee p \wedge q \wedge p \wedge \neg \neg (\neg n \vee p) \vee q \wedge p \wedge q \wedge \neg (n \wedge \neg p) \vee (p \wedge q) \sim p \wedge q \vee \neg p \wedge n \wedge \neg \\ \\ \end{array}$$

3. Ali obstaja tak izraz I,odvisen le od spremenljivkp in q, da bo

(a) izraz
$$(p \Rightarrow (I \land q)) \Leftrightarrow ((p \lor q) \Rightarrow I)$$
 protislovje?

(b) izraz
$$(p \Rightarrow (I \land q)) \Leftrightarrow ((p \lor q) \Rightarrow I)$$
tavtologija?

Za vsako možno rešitev poišči vsaj en izraz I.

a) I=I(p,2)

P12	р	q	I	$(p \mid$	$\Rightarrow ($	$I \wedge \epsilon$	$q)) \Leftrightarrow (($	$p \vee q$	$) \Rightarrow I)$
	(0)	0	o		1	0	1	0	1
0,0	1	0	1		1	0	4	0	4
0,4		(\neg)	0		1	D	0	1	0
٠,٠	0	1	1		1	1	1	1	1
4,0	∫ <u>1</u>	0	0		٥	0	<u>(1)</u>	1	0
1,0	1	9	1		0	0	0	1	1
1,4	1 [1	1	0		0	0	1	4	D
414	1 1	1	1		1	1	<u>(1)</u>	1	1
					2.	1.	2.	3.	4.

р	q	I
0	0	niti 0 miti 1
0	1	0
1	0	1
1	1	mit 0 mit 1

Tak iznaz I ne obstaja.

Á	р	q	ı	$(p \Rightarrow (I \land q)) \Leftrightarrow ((p \lor q) \Rightarrow I)$
/	0	0	0	<u>(1)</u>
	0	0	1	(1)
	0	1	0	0
	0	\cap	1	①
	1	$\left(egin{array}{c} \right)$	0	①
	1	0	1	0
	1	1	0	①
	1	1	1	<u>(1)</u>

р	q	I	I_4	I2	I_3	Ιų	
0	0	0 ali 1	0	4	0	4	
0	1	1	1	1	1	1	
1	0	0	٥	Ó	٥	Ò	
1	1	0 ali 1	0	0	1	1	

$$I_4 \sim 7(2 \Rightarrow p)$$

$$I_2 \sim 7_P$$

- (a) izraz $(p \Rightarrow (I \land r)) \Leftrightarrow ((q \lor \neg r) \Rightarrow I)$ tavtologija?
- (b) izraz $(p \Rightarrow (I \land r)) \Leftrightarrow ((q \lor \neg r) \Rightarrow I)$ nevtralen?

•
^1
/AI
~ 7

р	q	r	ı	$(p \Rightarrow$	$(I \wedge$	$(r)) \Leftrightarrow (($	$q \vee$	$\neg r)$	$\Rightarrow I$)
0	0	0	0	1		0	1	1	0	
0	0	9	1	1		4	0	٥	4	
0	0	1	0	1		0	1	4	0	
0	0	\cap		1		4	0	0	1	
0	1	0	0	1		0	1	4	0	
0	<u> </u> -	9		۲		(1)	1	0	1	
0	1	1	0	1		0	4	1	0	
0	1	\cap	1	1		1	4	ð	1	
1	0	9	0	0	Ò	④	1	1	0	
1	0	0	1	0	٥	0	0	0	1	
$\sqrt{1}$	0	1	0	0	0	1	1	1	0	
1	0	1	1	1	1	1	0	ð	1	
1	<u> </u> -	9	0	0	٥	1	1	1	0	
1	1	0	1	0	0	0	1	0	1	
$\overline{1}$	1	1	0	0	0	1	1	4	٥	
1	1	1)	1	1	1	①	1	Ø	1	
				2.	٦.	•	4.	3.	2,	·

р	q	r	I	T1	I,	$_{m{\epsilon}}\mathcal{I}$	Ιų
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	1
1	0	0	0	٥	0	0	0
1	0	1	0 ali 1	0	1	Ō	1
1	1	0	Ø	0	σ	0	0
1	1	1	0 ali 1	0	٥	4	1

Tar I obstaja. (Obstajajo 4 rozlični (= logično nemaronedni) iznozi, za ratere dobimo tantologijo.)

р	q	r	1	$(p \Rightarrow$	$(I \wedge$	$r)) \Leftrightarrow (($	$q \vee$	$\neg r)$	$\Rightarrow I)$
0	0	0	0	1		0	1	1	0
0	0	0	1	1		1	0	٥	4
0	0	1	0	1		0	1	4	Ō
0	0	1	1	1		4	0	0	1
0	1	0	0	1		0	1	4	0
0	1	0	1	1		1	1	0	1
0	1	1	0	1		0	4	1	0
0	1	1	1	4		1	4	ð	1
1	0	0	0	0	Ò	4	1	1	0
1	0	0	1	0	٥	٥	0	0	1
1	0	1	0	0	0	1	1	1	0
1	0	1	1	1	1	1	0	ð	1
1	1	0	0	0	٥	1	1	1	0
1	1	0	1	0	0	0	1	0	1
1	1	1	0	0	0	1	1	1	0
1	1	1	1	1	1	1	1	Ď	1
				1,	7 .		4.	3.	2,

Protislavja nu moumo dobiti zavadi 🗀.

Tawtologijo dolimo v 4 primerih.

Neutralui iznaz dolimo o 28-4=256-4=252 primuih.

Stevilo vsch možnih tabel

za $I = I(p_1q_1a)$

5. Določi izjavo I tako, da bo izjava

$(p \Rightarrow (q$	$\downarrow r)) \veebar (I \Leftarrow$	$\Rightarrow (q \Leftrightarrow r) \uparrow p)$

р	q	PIZ	 р	q	P⊻£
0	0	4	0	0	0
0	1	1	0	1	4
1	0	4	1	0	1
1	1	0	1	1	0
		NAND			XOR

tavtologija. Dobljeno izjavo čimbolj poenostavi.

р	q	r	I	$(p \Rightarrow$	$(q\downarrow q)$	r)) ⊻ ($I \Leftrightarrow$	$(q \Leftrightarrow$	$r) \uparrow p)$
0	0	0	0	1	1	1	0	4	1
0	0	0	1	1	1	0	4	1	1
0	0	$\lceil \rceil$	0	1	0	(1)	0	0	1
0	0	1	1	1	0	0	1	0	1
0	<u> </u> -	\bigcirc	0	4	0	1	0	0	4
0	1	0	1	1	0	0	1	٥	4
0	<u> </u> -	$\lceil \rceil$	Ō	1	0	1	0	1	1
0	1	1	1	1	0	0	1	1	1
1	0	0	0	4	4	0	1	1	0
$\left(\frac{1}{\epsilon} \right)$	О	(1	1	1	0	1	0
1	0	1	0	٥	0	0	٥	٥	1
	0	$\lceil \rceil$	[-]	0	0	1	4	0	1
1	1	0	0	٥	0	0	0	0	1
1	1	(ð	0	1	1	0	1
1	1	1	0	0	ð	1	1	1	٥
1	1	1	1	0	0	0	0	1	0
<u> </u>				2.	1.	6.	٤.	3.	4.

р	q	P ↓ 2
0	0	1
0	1	0
1	0	Ò
1	1	0
		NOR

DNO(I) =
$$(p \wedge 72 \wedge 7n) \vee (p \wedge 72 \wedge n) \vee (p \wedge 9 \wedge 7n) \sim$$

$$\sim (p \wedge 72 \wedge 7n) \vee (p \wedge 72 \wedge 7n) \vee (p \wedge 72 \wedge n) \vee (p \wedge 9 \wedge 7n) \sim$$

$$\sim p \wedge 72 \wedge (7n \vee n) \vee p \wedge 7n \wedge (9 \vee 72) \sim$$

$$\sim p \wedge 72 \vee p \wedge 7n \sim p \wedge (72 \vee 7n) \sim p \wedge 7(2 \wedge n) \sim p \wedge (2 \uparrow n)$$

$$\Rightarrow ali pa yanımo: I = p \wedge 7(2 \wedge n) \sim p \wedge (2 \uparrow n)$$

- 6. Poišči izjavni izraz X, ki ima v resničnostni tabeli tak stolpec logičnih vrednosti:
 - (a) 01000111,
 - (b) 01010000.

Dobljena izraza poenostavi.

8 vrstic → 3 sprementjivse

р	q	r	Α
0	0	9	(0)
0	0	<u></u>	1
0	1	9	(0)
0	1	J	(<u>©</u>
1	0	9	9
1	0	<u>[</u>	1
1	1	9	4
1	1		1

$$DNO(A) = (Tp \Lambda Tq \Lambda H) V (p \Lambda Tq \Lambda H) V (p \Lambda q \Lambda TH) V (p \Lambda q \Lambda H) V (p \Lambda q) A (TH VH) ~$$

$$\sim (Tq \Lambda H) V (p \Lambda q)$$

1

1

- 7. Kateri izmed spodaj naštetih naborov izjavnih veznikov so polni?
 - (a) $\{\Rightarrow, \land\}$
 - (b) $\{\Leftrightarrow, \land\}$
 - (c) $\{\Leftrightarrow, \land, 0\}$
 - $(d) \{\uparrow\}$
 - (e) $\{\downarrow\}$
 - (f) $\{A\}$, kjer je $A(p,q,r) \sim p \Leftrightarrow (\neg q \vee \neg r)$
 - (g) $\{A, 1\}$, kjer je $A(p, q, r) \sim p \Leftrightarrow (\neg q \vee \neg r)$

Znani polni nabori: {7,1,1} 27,15 {7, V} {7, ⇒}

Le je P pola mabor in lahto va vezuite iz P izrazimo z vezniti iz N, je N poln.

Veznike iz P iznazimo z vezniki iz N:

- 7p ~ p ⇔ 0/ p ⇔ 0 ~ p ∧ 0 ∨ 7p ∧ 70 ~ 0 ∨ 7p ∧ 1 ~ 0 ∨ 7p ~ 7p
- $p \land 2 \sim p \land 2 \checkmark$ $\Rightarrow \{ \Leftrightarrow, \land, 0 \} \text{ je polm}.$
- N= 11 max mabor

Veznike iz P iznazimo z vezniki iz N:

- · 7p~p1p/ p1p~ 7(p/p)~7p
- pΛ2 ~ 77 (pΛ2) ~ 7 (p↑2) ~ (p↑2)↑ (p↑2) / ⇒ {↑} je poln.

(e)
$$\{\downarrow\}$$
 P 2 P 2 of ohranja 2 onstant, morda je poln.
0 0 1
1 1 0 $P = \{7, V\}$ znan poln nabor
 $N = \{\downarrow\}$ naš nabor

Veznike iz P iznazimo z vezniki iz N:

(f)
$$\{A\}$$
, kjer je $A(p,q,r) \sim p \Leftrightarrow (\neg q \vee \neg r)$

$$A(0,0,0) = 0 \Leftrightarrow (70 \vee 70) \sim 0 \Leftrightarrow 70 \sim 0 \Leftrightarrow 1 \sim 0$$
 Ohnanja miču, zato ni poln.

(g)
$$\{A, 1\}$$
, kjer je $A(p, q, r) \sim p \Leftrightarrow (\neg q \vee \neg r)$

$$A(1,1,1) = 1 \Leftrightarrow (71 \vee 71) \sim 1 \Leftrightarrow 0 \sim 0$$

Veznie A ne obnavja enic, veznie 1 ne obnavja niõel. Torý {A,13 ne obnavja sconstant in je morda poln.

Veznike iz P iznazimo z vezniki iz N:

$$\Rightarrow$$
 {A, 1} je poln.

$$A(p_1p_1p) \sim p \Leftrightarrow (7p \vee 7p) \sim p \Leftrightarrow 7p \sim 0$$
 $1 \Leftrightarrow p \sim p$

$$A(1, p_1 p) \sim 1 \Leftrightarrow (7pV7p) \sim 7pV7p \sim 7p$$

- 8. Za tromestni veznik V naj ima V(p,q,r) nasprotno vrednost kot večina od argumentov p,q,r.
 - (a) Sestavi resničnostno tabelo za veznik V.
 - (b) Poenostavi izraze V(p, p, p), V(p, p, q), in $V(p, q, \neg q)$.
 - (c) Pokaži, da samo z veznikoma V in \neg ne moremo izraziti izraza $p \land q$ (torej da $\{V, \neg\}$ ni poln nabor).

a)	р	q	r	V(p,2,n)
•	0	0	0	1
	0	0	1	1
	0	1	0	1
	0	1	1	0
	1	0	0	1
	1	0	1	0
	1	1	0	0
	1	1	1	Ò

р	V(P1P1P)	V(p1p1p)~7p
0	1	•
1	0	

р	q	V(P,P,2)	_	V(P,P,2)~7p
0	0	1	(0,0,0)	1711121 19
0	1	4	(0,0,1)	
1	0	0	(4,4,0)	
1	1	0	(1,1,1)	

	р	q	V(P,2,72)	V(P,2)	79)~
	0	0	1	(0,0,1)	•
	0	1	4	(0,1,0)	
•	1	0	0	(4,0,4)	
	1	1	0	(1,1,0)	

Za pA2 moramo uporabiti vsaj en p in vsaj en 2, labro z 7. Vrvstvi red ni pomemben:

mpr. V (7p,7p,2)

٩ſ

→ Vsi izrazi iz 7, V, p, g errivalentni 7p ali 7g ali p ali g. → Ne moumo doliti pAq.

2. mačin. i_1j_1 i_2 i_3 i_4 i_5 i_4 i_5 i_4 i_5 i_4 i_5 i_5 i_6 i_6

- 9. Veznik A je definiran s predpisom $A(p,q,r) \sim (p \wedge q) \vee (\neg p \wedge \neg r)$.
 - (a) Samo z veznikom A zapiši izraze 1, $p \wedge q$ in $p \Rightarrow q$.
 - (b) Kateri izmed naborov $\{A\}$, $\{A,1\}$, $\{A,0\}$, $\{A,\Rightarrow\}$, $\{A,\veebar\}$ so polni?

$$\frac{A(p_1p_1p) \sim (p \wedge p) \vee (\neg p \wedge \neg p) \sim q \vee \neg p \sim 1}{A(p_1p_1p) \sim (p \wedge p) \vee (\neg p \wedge \neg p) \sim q \sim 1}$$

P12 ~ A(P12, A(P1P1P))

$$A(p_{12}, \kappa) \sim (p \wedge 2) \vee 7(p \vee \kappa) \sim p \vee \kappa \Rightarrow p \wedge 2$$

$$A(p,2,p) \sim p \lor p \Rightarrow p \land q \sim p \Rightarrow p \land q \sim Tp \lor (p \land q) \sim (Tp \lor p) \land (Tp \lor q) \sim Tp \lor q \sim p \Rightarrow q$$

p ⇒ 2 ~ A(p,2,p)

$$\mathcal{N} = \{A,0\} \text{ me obnavja enic (her 0 me obnavja enic)}$$

$$A(0,0,0) = 1 \Rightarrow \mathcal{N} \text{ me obnavja mičel}$$
 morda poln

Veznike iz P iznazimo z vezniki iz N:

•
$$p \Rightarrow q \sim A(p_1 q_1 p)^{\frac{1}{2}}$$
 $\Rightarrow \{A, 0\}$ je poln

$$\mathcal{N} = \{A, \veebar\}$$

$$A(0,0,0) \sim 1 \Rightarrow N$$
 nu ohranja mičel } morda poln

 $1 \times 1 \sim 0 \Rightarrow N$ nu ohranja enic } morda poln

Veznike iz P iznazimo z vezniki iz N:

•
$$\underline{\exists p} \sim A(p, 0, p) \sim A(p, p \vee p, p) \Rightarrow \{A, \vee\} \text{ je poln.}$$