Зад.	1	2	3	4	Овщо
точки					
от макс.	25	25	25	25	100

Зад. 1 Даден е ориентиран граф G = (V, E), за който е известно, че

- всеки връх има полустепен на входа едно (тоест, има точно едно влизащо ребро);
- съществува връх $\mathfrak{u} \in V$, такъв че за всеки друг връх $\mathfrak{v} \in V$ има ориентиран път (тоест, маршрут) от \mathfrak{u} до \mathfrak{v} .

10 т. Предложете ефикасен алгоритъм, който казва дали G е dag или не. "dag" означава ориентиран граф без ориентирани цикли (контури). Точки ще се дават само на решения с оптимална, в асимптотичния смисъл, сложност. Обосновете накратко коректността и сложността по време на алгоритъма.

15 т. Ако G не е dag, предложете ефикасен алгоритъм, който намира множество $E' \subseteq E$, такова че |E'| е минимално и освен това премахването на ребрата от E' води до това, че G става dag. Обосновете накратко коректността и сложността по време на алгоритъма.

Зад. 2 Вие сте на изпит, на който има n въпроса q_1, q_2, \ldots, q_n . За всяко i, въпрос q_i дава p_i точки за вярно решение. Вие не виждате всички въпроси едновременно, а те Ви излизат след друг в реда на номерирането. Когато видите даден въпрос, може да отговорите на него или да го прескочите, но, ако го прескочите, губите възможността да му отговорите и така губите точките за него. Въпросите са такива, че Вие можете да отговорите вярно на всеки от тях.

Това обаче не Ви гарантира автоматично $\sum_{i=1}^n p_i$ точки! Има една уловка: някои от въпросите са дразнещи, и то толкова дразнещи, че ако отговорите на дразнещ въпрос, то задължително ще прескочите няколко следващи въпроса. По-прецизно казано, за всеки въпрос q_i е дадено някакво неотрицателно число t_i , такова че ако отговорите на q_i , то задължително ще прескочите въпроси q_{i+1} , ..., q_{i+t_i} . Стойностите t_i са такива, че $i+t_i$ никога не надхвърля n.

Предложете колкото е възможно по-ефикасен алгоритъм, който за всеки вход $(n, p_1, \ldots, p_n, t_1, \ldots, t_n)$ връща максималния брой точки, който можете да получите. Съвсем накратко обосновете коректността и сложността му по време.

Зад. 3 Нека $f_1: \mathbb{N}^+ \to \mathbb{N}^+, \ f_2: \mathbb{N}^+ \to \mathbb{N}^+$ и $f_3: \mathbb{N}^+ \to \mathbb{N}^+$. Докажете или опровергайте следното твърдение:

$$f_1(n)+f_2(n)\asymp f_1(n)+f_3(n)\quad \rightarrow\quad f_2(n)\asymp f_3(n)\text{ или }f_2(n)\preceq f_3(n)\text{ или }f_2(n)\succeq f_3(n)$$

Зад. 4 Вие сте майстор-готвач, който трябва да приготви ядене, разполагайки с n съставки i_1, i_2, \ldots, i_n . Приготвянето на яденето е изключително просто: избираете някакви съставки, тоест подмножество на $\{i_1, i_2, \ldots, i_n\}$, слагате ги в тенджерата, загрявате ги и готово (тенджерата е достатъчно голяма). Целта Ви е да направите ядене с колкото е възможно повече съставки. Обаче, някои съставки са по двойки несъвместими в някаква степен. По-прецизно казано, за всеки j, k, такива че $1 \leq j < k \leq n$, е дадено реално число $C_{j,k} \in [0,1]$, което изразява несъвместимостта между съставки i_j и i_k : ако $C_{j,k} = 0$, те са максимално съвместими, ако $C_{j,k} = 1$, те са максимално несъвместими, ако $0 < C_{j,k} < 1$, то те имат известна несъвместимост, зададена от това число. Качеството на яденето е **сумата** от взаимните несъвместимости между (ненаредените) двойки участващи съставки в него.

Дадена е триъгълната таблица от взаимните несъвместимости между двойките съставки и освен това е дадено число p. Задачата е да приготвите ядене с поне p съставки, което да има колкото е възможно по-добро качество (с други думи, колкото е възможно по-малка сума от несъвместимости). Докажете, че тази задача е практически нерешима (intractable) при допускането, че $P \neq NP$. За целта покажете, че тази задача—която не е задача за разпознаване—съдържа в себе си подзадача, която е задача за разпознаване и е NP-пълна.