Лабораторная работа №5.

«Интерполяция функции»

1. Цель лабораторной работы: решить задачу интерполяции, найти значения функции при заданных значениях аргумента, отличных от узловых точек.

Для исследования использовать:

- линейную и квадратичную интерполяцию;
- многочлен Лагранжа;
- многочлен Ньютона.
- 2. Методика проведения исследования:
 - 2.1. С помощью линейной и квадратичной интерполяции найти приближенное значение функции при $x=X_1$ (см. табл. 1 4). **Подробные вычисления привести в отчете**.
 - 2.2. Найти приближенное значение функции при $x = X_1$ (см. табл. 1 4) с помощью многочлена Лагранжа. Подробные вычисления привести в отчете.
 - 2.3. Используя первую или вторую интерполяционную формулу Ньютона, вычислить значения функции при данных значениях аргумента (для значения X_2 и X_3 , см. табл. 5 8). Подробные вычисления привести в отчете.
 - 2.4. Вычислить значения функции, используя интерполяционную формулу Ньютона для неравноотстоящих узлов (для $\mathbf{x} = \mathbf{X_4}$, см. табл. 1 - 4). При вычислениях учитывать только разделенные разности первого и второго порядков. Вычисления произвести дважды, используя различные узлы. Подробные вычисления привести в отчете.
- 3. Программная реализация задачи:
 - 3.1. Предусмотреть ввод исходных данных (исходные таблицы) из файла.
 - 3.2. Предусмотреть ввод значения аргумента, для которого вычисляется приближенное значение функции, с клавиатуры.
 - 3.3. Реализовать численные методы интерполирования (пп. 2.2, 2.3, 2.4.), каждый метод в отдельной функции/классе.
 - 3.4. Предусмотреть вывод результатов на экран.
- 4. Анализ результатов работы: апробация и тестирование.
- 5. Оформить отчет, который должен содержать:
 - Титульный лист.
 - Цель лабораторной работы.
 - Порядок выполнения работы.
 - Рабочие формулы.
 - Вычисление значения функции пп.2.1-2.4
 - Листинг программы.
 - Результаты выполнения программы.
 - Выводы

КОНТРОЛЬНЫЕ ВОПРОСЫ

- Вопрос 1. Когда возникает необходимость в использовании интерполяционных методов?
- Вопрос 2. В чём сущность задачи интерполирования?
- Вопрос 3. Поясните смысл терминов: интерполяция, экстраполяция.
- Вопрос 4. Как найти приближенное значение функции при линейной интерполяции?
- Вопрос 5. Как найти приближенное значение функции при квадратичной интерполяции?

- Вопрос 6. Как строится интерполяционный многочлен Лагранжа?
- Вопрос 7. Дайте определение понятий разделенной разности нулевого и первого порядков.
- Вопрос 8. Объясните принцип построения интерполяционного полинома Ньютона.
- Вопрос 9. Покажите графическую интерпретацию интерполяции.
- **Bonpoc 10**. В каких случаях используют формулу Ньютона для интерполирования вперед и для интерполирования назад?
- Вопрос 11. В чем разница между глобальной и локальной разновидностями интерполяции?
- Вопрос 12. Идея интерполяции кубическими сплайнами.

Задания лабораторной работы

Таблица 1

х	У
0,298	3,2557
0,303	3,1764
0,310	3,1218
0,317	3,0482
0,323	2,9875
0,330	2,9195
0,339	2,8359

№ варианта	X ₁	X ₄
1	0,308	0,335
5	0,314	0,337
9	0,325	0,302
13	0,312	0,304
17	0,321	0,336
21	0,327	0,309
25	0,315	0,32

Таблица 2

Х	У
0,593	0,5320
0,598	0,5356
0,605	0,5406
0,613	0,5462
0,619	0,5504
0,627	0,5559
0,632	0,5594

№ варианта	X ₁	X ₄
2	0,608	0,630
6	0,615	0,594
10	0,622	0,596
14	0,603	0,631
18	0,610	0,628
22	0,611	0,595
26	0,617	0,629

Таблица 3

Х	У
0,698	2,2234
0,706	2,2438
0,714	2,2644
0,727	2,2984
0,736	2,3222
0,747	2,3516
0,760	2,3867

№ варианта	X ₁	X ₄
3	0,702	0,763
7	0,720	0,750
11	0,735	0,745
15	0,742	0,738
19	0,751	0,702
23	0,757	0,711
27	0,761	0,723

Таблица 4

х	У
0,100	1,1213
0,108	1,1316
0,119	1,1459
0,127	1,1565
0,135	1,1571
0,146	1,1819
0,157	1,1969

№ варианта	X ₁	X_4
4	0,115	0,162
8	0,124	0,159
12	0,130	0,158
16	0,133	0,104
20	0,140	0,111
24	0,141	0,122
28	0,150	0,132

Таблица 5

х	У
	,
0,25	1,2557
0,30	2,1764
0,35	3,1218
0,40	4,0482
0,45	5,9875
0,50	6,9195
0,55	7,8359

№ варианта	X ₂	X ₃
1	0,251	0,502
5	0,253	0,512
9	0,255	0,523
13	0,261	0,534
17	0,272	0,545
21	0,283	0,551
25	0,294	0,553

Таблица 6

х	У
0,50	1,5320
0,55	2,5356
0,60	3,5406
0,65	4,5462
0,70	5,5504
0,75	6,5559
0,80	7,5594

№ варианта	X ₂	X ₃
2	0,502	0,745
6	0,512	0,751
10	0,523	0,759
14	0,534	0,761
18	0,545	0,765
22	0,551	0,783
26	0,557	0,795

Таблица 7

х	У	
1,10	0,2234	
1,25	1,2438	
1,40	2,2644	
1,55	3,2984	
1,70	4,3222	
1,85	5,3516	
2,00	6,3867	

№ варианта	X ₂	X ₃
3	1,121	1,782
7	1,153	1,852
11	1,168	1,863
15	1,172	1,875
19	1,189	1,881
23	1,196	1,891
27	1,217	1,973

Таблица 8

Х	У	
1,05	0,1213	
1,15	1,1316	
1,25	2,1459	
1,35	3,1565	
1,45	4,1571	
1,55	5,1819	
1,65	6,1969	

№ варианта	X ₂	X_3
4	1,051	1,557
8	1,059	1,562
12	1,112	1,569
16	1,135	1,573
20	1,146	1,589
24	1,151	1,614
28	1,154	1,628