Components of learning

Formalization:

- Input: **x** (customer application)
- Output: y (good/bad customer?)
- Target function: $f: \mathcal{X} \to \mathcal{Y}$ (ideal credit approval formula)
- Data: $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \cdots, (\mathbf{x}_N, y_N)$ (historical records)
 - \downarrow \downarrow \downarrow
- Hypothesis: $g: \mathcal{X} \to \mathcal{Y}$ (formula to be used)

$$f: X \rightarrow \mathcal{Y}$$

(ideal credit approval function)

TRAINING EXAMPLES $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)$

(historical records of credit customers)

(set of candidate formulas)

Learning From Data - Lecture 1

Solution components

The 2 solution components of the learning problem:

• The Hypothesis Set

$$\mathcal{H} = \{h\} \qquad g \in \mathcal{H}$$

The Learning Algorithm

Together, they are referred to as the *learning* model.

Learning From Data - Lecture 1 9/19

Error measures

What does " $h \approx f$ " mean?

Error measure: E(h, f)

Almost always pointwise definition: $e(h(\mathbf{x}), f(\mathbf{x}))$

Examples:

Squared error: $e(h(\mathbf{x}), f(\mathbf{x})) = (h(\mathbf{x}) - f(\mathbf{x}))^2$

Binary error: $e(h(\mathbf{x}), f(\mathbf{x})) = [h(\mathbf{x}) \neq f(\mathbf{x})]$

From pointwise to overall

Overall error E(h, f) = average of pointwise errors $e(h(\mathbf{x}), f(\mathbf{x}))$.

In-sample error:

$$E_{\text{in}}(h) = \frac{1}{N} \sum_{n=1}^{N} e\left(h(\mathbf{x}_n), f(\mathbf{x}_n)\right)$$

Out-of-sample error:

$$E_{\mathrm{out}}(h) = \mathbb{E}_{\mathbf{x}} \big[e \left(h(\mathbf{x}), f(\mathbf{x}) \right) \big]$$

A simple hypothesis set - the 'perceptron'

For input $\mathbf{x} = (x_1, \cdots, x_d)$ 'attributes of a customer'

Approve credit if
$$\sum_{i=1}^d w_i x_i > \text{threshold},$$

Deny credit if
$$\sum_{i=1}^d w_i x_i < \text{threshold.}$$

This linear formula $h \in \mathcal{H}$ can be written as

$$h(\mathbf{x}) = \operatorname{sign}\left(\left(\sum_{i=1}^{d} \mathbf{w_i} x_i\right) - \operatorname{threshold}\right)$$

10/19

$$h(\mathbf{x}) = \operatorname{sign}\left(\left(\sum_{i=1}^{d} \mathbf{w_i} \ x_i\right) + \mathbf{w_0}\right)$$

Introduce an artificial coordinate $x_0 = 1$:

$$h(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=0}^{d} \mathbf{w_i} \ x_i\right)$$

In vector form, the perceptron implements

$$h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$

'linearly separable' data

2. Transform the data $\mathbf{z}_n = \Phi(\mathbf{x}_n) \in \mathcal{Z}$

4. Classify in \mathcal{X} -space $g(\mathbf{x}) = \tilde{g}(\Phi(\mathbf{x})) = \operatorname{sign}(\tilde{\mathbf{w}}^\mathsf{T}\Phi(\mathbf{x}))$

3. Separate data in \mathcal{Z} -space $\tilde{g}(\mathbf{z}) = \operatorname{sign}(\tilde{\mathbf{w}}^\mathsf{T}\mathbf{z})$

What transforms to what

$$\mathbf{x} = (x_0, x_1, \cdots, x_d) \xrightarrow{\Phi} \mathbf{z} = (z_0, z_1, \cdots, z_{\tilde{d}})$$

$$\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_N \quad \stackrel{\Phi}{\longrightarrow} \quad \mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_N$$

$$y_1, y_2, \cdots, y_N \xrightarrow{\Phi} y_1, y_2, \cdots, y_N$$

No weights in \mathcal{X} $\tilde{\mathbf{w}} = (w_0, w_1, \cdots, w_{\tilde{d}})$

$$g(\mathbf{x}) = \operatorname{sign}(\tilde{\mathbf{w}}^{\mathsf{T}}\Phi(\mathbf{x}))$$

Basic premise of learning

"using a set of observations to uncover an underlying process"

broad premise \implies many variations

- Supervised Learning
- Unsupervised Learning
- Reinforcement Learning

Learning From Data - Lecture 1 15/19

Supervised learning

Example from vending machines - coin recognition

Learning From Data - Lecture 1 16/19

Unsupervised learning

Instead of (input,correct output), we get (input,?)

Learning From Data - Lecture 1