Ser	Authors &	Dataset/s	Contribution	Observation
ial	Titles			
no				
1.	Muhammad Hammad Waseem et al. & On the Feature Selection Methods and Reject Option Classifiers for Robust Cancer Prediction	Leukemia dataset comprises of 72 patients from which 47 patients with acute lymphoblastic leukemia (ALL) and 25 patients with acute myeloid leukemia (AML).	The classifiers implemented are linear discriminant analysis (LDA), support vector machine (SVM), and k-nearest neighbors (kNN).	
2.	Lokman Faivdullah, Farid Azahar, Zaw Zaw Htike, and Wei Yan Nyein Naing. & Leukemia Detection from Blood Smears	100 blood images corresponding to each of the four leukemia classes (acute lymphoblastic leukemia, acute myeloid leukemia, chronic lymphocytic leukemia, and chronic myeloid leukemia).	Support vector machine classifier (SVM).	An overall accuracy of 79.38% using SVM in classifying leukemia from blood images.
3.	Rana Zeeshan Haider, Ikram Uddin Ujjan and Tahir S. Shamsi.	A total of 1067 patients with 44 APML (PML- RARA), 181 AML (excluded APML), 89 chronic myeloid leukemia (CML), 51	Artificial neural network (ANN) with Principal Component Analysis (PCA).	An accuracy of 95.7% and 97.7% for training and testing data sets, respectively from ANN.

	0	manual and the C		
	&	myelodysplastic		
	Cell	syndrome (MDS),		
	Population	71		
	DataeDriven	myeloproliferativ		
	Acute	e disorders (MPN)		
		except CML, 10		
	Promyelocyt	MDS/MPN, 136		
	ic Leukemia	acute		
	Flagging	lymphocytic		
	Through	leukemia (ALL), 9		
	Artificial	Hodgkin's		
	Neural	lymphoma (HL),		
	Network	95 non-Hodgkin's		
	Predictive	lymphoma (NHL),		
	Modeling	32 multiple		
	iviodeillig	myeloma, and		
		349 normal		
		control were		
		prospectively		
		enrolled at the		
		National Institute		
		of Blood Disease		
		and Bone Marrow		
		Transplantation		
		(NIBD & BMT)		
		Karachi, Pakistan.		
4.	Liyan Pan et	A dataset of 661	Random Forest	RF exhibited better
	al.	children aged <16	(RF) and Decision	prediction than DT in 4 of
	&	years, who were	Tree (DT).	6 measurements with
	α	newly diagnosed		accuracy as 0.831,
	Machine	with ALL.		specificity as 0.895, PPV
	learning			as 0.880 and AUC as
	applications			0.902.
	for			
	prediction of			
	relapse in			
	childhood			
	acute			
	lymphoblasti			
	c leukemia			
5.	Jyoti Rawat,	In a dataset of	Auto support	Classification accuracies
	Annapurna	130 ALL infected	vector machine	of 86.7% and 72.4% for
	Singh, H S	images, first 65	(SVM) binary	cytoplasm and nucleus
	Bhadauria,Ji	images is used for	classifier with Gray	respectively for texture
	tendra	training and rest	level co-	based feature while
		for testing of the	occurrence	classification accuracies
	Virmani.	proposed system.	matrices (GLCM).	of 56.1% and 72.4%
	l	1	2011000 (0-011).	

	& Computer Aided Diagnostic System for			respectively for shape based features was obtained but classification accuracy of combined texture-shape feature is
	Detection of Leukemia using Microscopic Images			89.8%.
6.	Ahmed S.Negm,Osa ma A.Hassan,A hmed H.Kandil. & A decision support system for Acute Leukaemia classificatio n based on digital microscopic images	The total dataset consisted of 757 images.	Panel selection, segmentation using K-means clustering to identify the leukemia cells and features extraction, and image refinement.	The algorithm testing using this dataset demonstrated an overall accuracy of 99.517%, the sensitivity of 99.348%, and specificity of 99.529%.
7.	Jakkrich Laosai,Kosi n Chamnongth ai. & Classificatio n of acute leukemia using medical- knowledge- based morphology	Experiments with 200 and 300 acute-leukemia samples for training and testing respectively.	The cluster of differentiation (CD) marker.	99.67% accuracy is obtained in this.

	and CD			
8.	marker Rana Zeeshan Haider,Ikra m Uddin Ujjan, Tahir S.Shamsi. & Cell Population Data—Driven Acute Promyelocyt ic Leukemia Flagging Through Artificial Neural Network Predictive	Diagnosis of 1067 study subjects with hematological neoplasms.	Artificial neural network (ANN) predictive modeling with principal component analysis (PCA).	ANN model were found acceptable with value of 95.7% and 97.7% for training and testing data sets, respectively.
9.	Modeling Ahmed M. Abdeldaim, Ahmed T. Sahlol,Moha med Elhoseny,Ab oul Ella Hassanien. & Computer- Aided Acute Lymphoblast ic Leukemia Diagnosis System Based on Image Analysis	The dataset contains 260 cell images: 130 normal and 130 affected by ALL.(Acute Lymphoblastic Leukemia).	KNN,SVM.	KNN achieved the best classification accuracy as 93.2% while for SVM its 87.4%.
10.	Jaroonrut Prinyakupt,			

	Charnchai Pluempitiwir iyawej. & Segmentatio n of white blood cells and comparison of cell morphology by linear and naïve Bayes classifiers	In dataset 2,555 images with 601 white blood cells.In dataset 2,477 cropped white blood cell images.	Naïve Bayes classifiers were applied for performance comparison.	The overall correction rate in the classification phase is about 94% for naïve Bayes models.
11.	Gonzalez Jesus A, et al. & Leukemia identificatio n from bone marrow cells images using a machine vision and data mining strategy	The training set contains 56 examples and the test set contains 20 examples.	SVM,ANN,RF,k- Means.	95.5% from SVM,ANN is 79.4%,RF is 82.3% and k-Means is 82.6% to distinguish between the acute myeloblastic and lymphoblastic leukemia families.
12.	J. Rodellar et al. & Image processing and machine learning in the morphologic al analysis of blood cells	A set of 9395 images was analyzed, obtained from Blood smears of 218 patients.	Neural networks, decision trees, and support vector machines (SVM).	The overall accuracy is the mean value SVM classifier is 88.3% while for rest of the methods its lesser than that of SVM.

12	O D: 1:	TT1	D :: /	04.20/
13.	Oscar Picchi	The training set	Decision trees	94.2% accuracy of
	Netto et al.	contains 38	using nominal	Decision Trees and for
	&	examples and the	values, SVM.	SVM it is 86.4%.
		test set contains		
	Applying	34 examples.		
	Decision			
	Trees to			
	Gene			
	Expression			
	Data from			
	DNA			
	Microarrays:			
	A Leukemia			
	Case Study			
14.	Amjad	Diagnosis of 126	Classifiers used as	97.78% accuracy using
	Rehman et	study subjects	Naive Bayesian,	SVM and of KNN is
	al.	with Acute	KNN, and SVM.	82.5%, while of Naive
		Lymphoblastic	,	Bayesian it is of 92.3%.
	&	Leukemia and its		24) 651411 10 15 61 5215 7 61
	Classificatio	subtypes.		
	n of acute	subtypes.		
	lymphoblasti			
	c leukemia			
	using deep			
	learning			
15.	Enrique	Clinical data	SVM and KNN.	Precision using KNN is
10.	J.deAndrés-	belongs to a	2 / 1/1 3119 121 (1 ()	54.7% and of SVM is
	Galiana et	retrospective		90.1%
	al.	study of a cohort		70.170
	aı.	=		
	&	of 265 Caucasians		
	A 1 . C	who were		
	Analysis of	diagnosed with		
	Clinical	CLL between		
	Prognostic	1997 and 2007 in		
	Variables for	Hospital		
	Chronic	Cabueñes		
	Lymphocyti	(Asturias, Spain).		
	c Leukemia			
	Decision-			
	Making			
	Problems			
16.	Julián	Initially, a set of	Support Vector	Prediction performance is
	Candia et al.	847 human	Machine (SVM)	99.5% .
	&	microRNAs was		
	(V)			

	T			
	Uncovering	measured for each	with a linear	
	low-	sample; however,	kernel.	
	dimensional,	here and		
	miR-based	throughout, we		
	signatures of	focus on a subset		
	acute	of 370		
	myeloid and	microRNAs		
	lymphoblasti			
	c leukemias	obtained after		
	with a	filtering out		
	machine-	microRNAs with		
	learning-	consistently low		
	driven	or absent		
	network	expression.		
	approach	_		
17.	Wanmao Ni	120 samples of	Support vector	High specificity and
	et al.	Malignant	machine method.	sensitivity ≤95.80% and
		neutrophils of		≤95.30%, respectively.
	&	chronic		_55.5670, respectively.
	Discriminati			
	on of	myelogenous		
	Malignant	leukemia (CML).		
	Neutrophils			
	of Chronic			
	Myelogenou			
	s Leukemia			
	From			
	Normal			
	Neutrophils			
	by Support Vector			
	Machine			
10	Identificatio	Data viva	Convolutional	Even anima anta als avvad that
18.	n of	Data was		Experiments showed that the CNN model
	Leukemia	collected from	Neural Network	performance is 88.25%
	Subtypes	two sources:	model was used.	and 81.74% accuracy, in
	from	ALL-IDB and	They performed	leukemia versus healthy
	Microscopic	ASH Image bank.	automatic feature	and multi-class
	Images	Data	extraction from the	classification of all
	Using	augmentation was	images. Model was	subtypes, respectively.
	Convolution	also used to	trained with 25	
	al	increase dataset	epochs and 32	CNN model has a better
	Neural	size and avoid	batch size. Image	performance than other
	Network	memorization.	transformations	well-known machine
		memorization.		learning algorithms.
	Nizar		were used to	rearining angoritamis.
	Ahmed,			
	Altug Yigit,			

	Zerrin Isik, Adil Alpkocak		increase the dataset size.	
19.	Acute Lymphoblast ic Leukemia Detection and Classificatio n of Its Subtypes Using Pretrained Deep Convolution al Neural Networks Sarmad Shafique, Samabia Tehsin	ALL-Image DataBase (IDB) data set was used., 50 more microscopic blood images were collected from Google which were then validated by the expert oncologist.	AlexNet, a pretrained Convolutional Neural Networks, for detection of ALL and classification of its subtypes. Transfer learning was used for deep neural network architecture.	By performing data augmentation, 99.50% accuracy for leukemia detection and 96.06% accuracy for its subtype's classification was achieved. Researchers should deploy different deep learning architectures to get the most efficient architecture for classification.
20.	Detection and Classificatio n of Blood Cancer from Microscopic Cell Images Using SVM KNN and NN Classifier Sachin Paswan, Yogesh Kumar Rathore	100 microscopic blood cell images were acquired. Images were preprocessed using image color threshold.	Threshold technique is used for segmentation. Features considered for calculation were Hausdorff dimension, Shape features, Texture features and GLCM. KNN and modified SVM were used to do the classification.	KNN gave accuracy of 61.11%. SVM gave accuracy of 83.33%. Improvements were made to the SVM algorithm, including an initialization step to find 12-neighbor connected component
21.	Leukemia Blood Cell Image Classificatio n Using Convolution al Neural Network	ALL-IDB1 image database was used. To increase the dataset size, various image transformations were used. Total	Convolutional neural network of 7 layers was used. First 5 layers perform feature extraction, other 2 layers classify extracted features.	30% of total images were used for testing. Accuracy of 96.60% was obtained. It is concluded that CNN can be very reliable for early detection of blood cancer.

	T. T. P. Thanh, Caleb Vununu, Sukhrob Atoev, Suk-Hwan Lee, Ki-Ryong Kwon	1188 images were obtained.		
22.	Classificatio n of Leukemia Blood Samples Using Neural Networks Malek ADJOUADI , Melvin Mayala, Mercedes CABRERIZ O, Nuannuan Zong, G LIZARRAG A, and MARK ROSSMAN	Samples were collected from various hospitals of both normal and infected cells. Data analysis was further done to extract only the cells that met criterion of interest.	Feature extraction for only 5 features was done before classification. ANN was used for classification of ALL and AML samples.	For ALL classification, 3 cycles of testing and training was conducted. For the highest amount of samples, testing accuracy was 98.46. For AML classification, only one test was conducted. It gave accuracy of 97.27%. By using a reduced amount of parameters, ANNs can be trained to classify AML or ALL.
23.	A Hybrid Deep Learning Architecture for Leukemic B- lymphoblast Classificatio n (Sara Hosseinzade h Kassani,Pey man Hosseinzade h	Dataset is based on classification of normal versus malignant Cells in B-ALL White Blood Cancer microscopic images,provided by SBILab. Dataset contains 76 individual subjects, containing a total cells images of	Hybrid CNN model is proposed, that combines low-level features from intermediate layers. CNN architectures MobileNet and VGG16 were used. Two output neurons associating with normal and malignant cases with softmax nonlinearity activation function are used at the classifier layer.	Results were derived from 967 test images. Accuracy of 96.17% was obtained by the proposed model. Obtained results suggest that combining features learned by deep models improves the performance and yield more accurate result.

24.	Kassani,Mic hal J. Wesolowski, Kevin A. Schneider,R alph Deters) Recognition of Acute Lymphoblast ic Leukemia Cells in Microscopic Images Using K- Means Clustering and Support Vector Machine Classifier Morteza Moradi Amin, Saeed Kermani,	7272 ALL and 3389 normal cells. Data was preprocessed to increase number of images. 21 peripheral blood smear and bone marrow slides of 14 patients with ALL and 7 normal persons are used. These were collected at Isfahan Al-Zahra and Omid hospital pathology. Preprocessing and nucleus segmentation was performed.	K-means was used for segmentation. Feature extraction was done after generation and selection. Traditional SVM was used in 1st step. Multiclass SVM classifier was used in 2nd step, because of existence of 6 classes.	K-fold cross validation method with k=10 was applied for evaluation. Binary SVM classifier gave 98%, 95%, and 97%, sensitivity, specificity, and accuracy, respectively. For multi-class SVM classifier, those values 84.3%, 97.3% and 95.6% respectively.
25.	Ardeshir Talebi, Mostafa Ghelich Oghli Automated AML Detection from Complete Blood Smear Image Using KNN Classifier	American Society of Hematology online image bank was used. Colour Correlation, image segmentation was	After feature extraction for some selected features, K nearest neighbours algorithm was used for classification.	Hausdorff Dimension for healthy and cancerous cells were 1.5501 and 1.7828. It was found that KNN is as better as SVM classifier in case of specificity and precision.
26.	Nayana B. Sen, Mercy Mathew Automated Detection of Acute Leukemia	performed to improve quality and get important regions of images. Samples for the proposed work were obtained from Dr RML	After feature extraction for some selected features, proposed algorithm	The accuracy achieved was 92.8%. Both kNN and Naïve Bayes achieved nearly same senstivity, but

	using K- mean Clustering Algorithm Sachin Kumar, Sumita Mishra, Pallavi Asthana, Pragya	Awadh hospital, Lucknow. Preprocessing was performed suppress undesired distortions and enhance the quality.	wass tested with kNN and Naïve Bayes Classifier on the dataset of 60 pretested samples.	specificity of Naïve Bayes classifier was very less compared to kNN.
27.	Prediction and Diagnosis of Leukemia Using Classificatio n Algorithms Khaled A.S. Abu Daqqa, Ashraf Y.A. Maghari, Wael F. M. Al Sarraj	Dataset was collected from CBC tests repository of European Gaza Hospital.It contains 4000 instances including 2000 instances with leukemia disease. It contains 18 attributes.	Data preprocessing was done to improve accuracy. 3 classifiers, namely SVM, DT, and KNN were used. These were applied using RapidMiner to get the precision.	DT had the accuracy of 77.30%, which was highest among the 3 algorithms. It also obtained properties regarding outer attributes.
28.	A fuzzy neural approach for leukemia cancer classificatio n Dr BBM Krishna Kanth	Dataset is a collection of expression measurements reported by Golub. Profiles have been constructed from 72 people who have either ALL or AML.	Classification dimensionality reduction methods such as Signal-to- Noise Ratio, Class- Separability, etc., were used to find best genes for classification. Fuzzy HyperSphere Neural Network Classifier was used for classification.	High accuracy was obtained by using only two genes. Average training time and testing time of FHSNN classifier with ALL/AML dataset was much faster than that of traditional methods like KNN and SVM. FHSNN yielded 100% accuracy, while traditional methods were 97.1% accurate.
29.	Classificatio n of white blood cells for blood cancer diagnosis using deep learning neural networks	BCCD dataset, consisting of 12500 images was used. 3000 images of each type(Eosinophil, Lymphocyte, Monocyte, and Neutrophil) were augmented. 410	Deep convolutional neural network to classify images into cell types. Multiple layers of convolution and pooling are added in the beginning to extract all possible features. Image	With increasing number of epochs, the model obtained improved accuracies, because of back-propogation. Validation set accuracy remained near constant after 30 epochs. Value of 83% is obtained for

	Dhvani Kansara, Shaunak Sompura, Saifil Momin, Mitchell D'Silva	images were original, pre-augmented.	transformations were used to create a set of WBC images in different orientations.	precision. Recall and F1 score was 78%.
30.	Classifying White Blood Cells in Blood Smear Images using a Convolution al Neural Network Gulshan Sharma, Rakesh Kumar	Public dataset of 364 colored microscopic images of dyed WBC. 80% data was used as training set. 10% data was used for validation. Rest 10% was used as testset.	Convolutional neural networks of 5 2D convolutional layers are used. The maximum number of epochs set was 10.	High accuracy rates were observed. For binary classification, accuracy was 99.76%. For multi classification, accuracy was 98.14.
31.	Classifying White Blood Cells in Blood Smear Images using a Convolution al Neural Network Gulshan Sharma, Rakesh Kumar	Public dataset of 364 colored microscopic images of dyed WBC. 80% data was used as training set. 10% data was used for validation. Rest 10% was used as testset.	Convolutional neural networks of 5 2D convolutional layers are used. The maximum number of epochs set was 10.	High accuracy rates were observed. For binary classification, accuracy was 99.76%. For multi classification, accuracy was 98.14.
32.	Convolution al Neural Networks for Recognition of	Two datasets were used. 1st dataset had 93 normal white blood cells, obtained were from Labati et al.	A convolutional neural network, named ConVNet is used for classification. It performed	The accuracies obtained for ConVNet, SVM-GA, MLP, and random forest were 81.74%, 81.65%, 76.12 % and 78.43% on average respectively.

	T-			
	Lymphoblast Cell Images Tatdow Pansombut, Siripen Wikaisuksak ul, Kittiya Khongkraph an, Aniruth Phon-on	Second collection is composed of ALL subtypes: pre-T and pre-B cells from ASH image bank.	automatic feature extraction. For feature extraction for SVM-GA, MLP, and Random Forest, 46 features were selected. GA based feature selection and parameters optimization was used.	CNN was superior to MLP and random forest in all three classes.
33.	An Automated Leucocyte Classificatio n For Leukemia Detection Gayathri.S, Jyoth i R L	All dataset images are microscopic images from the laboratory through Canon Power Shot G5 camera. Segmentation and cleaning was performed after acquistion.	An ANN was implemented first. It's performance was compared with SVM's performance. Proposed work is also implemented using CNN.	Feature extraction method based recognition system produce an efficiency of 89.47% with SVM and 92.10% with ANN. CNN based feature extraction method produce an efficiency of 93%.
34.	Machine learning applications in the diagnosis of leukemia: Current trends and future directions Haneen T. Salah Ibrahim N. Muhsen Mohamed E. Salama Tarek Owaidah Shahrukh K. Hashmi	The search strategies used Boolean logic with MeSH terminology including terms of leukemia and its subtypes (eg, "Leukemia" and "Leukemia, Myeloid/") and terms pertaining to AHI techniques. The studies were classified according to the type of leukemia into: ALL (13), AML (8), CLL (3), and CML (1). Two studies proposed diagnostic models for both AML and ALL. A widely used digital	Machine learning (ML) and deep learning algorithms like SVM, KNN, RF,LR,RC,CNN are used. The most common segmentation algorithm methodology was pattern recognition—based (eg, fuzzy c-mean and k-means), followed by threshold-based methodologies (eg, watershed).	Accuracy of algorithms used ranged from 74% to 99.5% for ALL. An accuracy of ALL detection of 74% using SVM algorithm. Accuracy of algorithms used has ranged from 82% to 97% in AML. Achieved 99.6% accuracy in flow cytometric diagnosis of CLL after using multiple algorithms, of which Bayesian clustering (BC) was the most accurate.

35.	ACUTE LEUKEMIA CLASSIFIC ATION USING CONVOLU TION NEURAL NETWORK IN CLINICAL DECISION SUPPORT SYSTEM Thanh.TTP, Giao N. Pham, Jin- Hyeok Park, Kwang-Seok Moon, Suk- Hwan Lee, and Ki- Ryong Kwon.	library was ALL-Image DataBase (IDB), which was used in 5 studies (42%).42 ALL-IDB has two data sets, data set (1) cells are not segmented thus allowing for both segmentation and classification exercises, whereas data set (2) cells are segmented. Training set-Normal cell 40 Abnormal cell 40 Total 80 Test Set- Normal cell 9 Total 28	Novel approach to perform acute leukemia classification is based on Convolution Neural Network (CNN). CNN network contains 4 layers. The first 3 layers for detecting features and the other two layers (Fully connected and Softmax) are for classifying the features.	provides an excellent performance in classification process that reaches 96.43% of accuracy to discriminate normal and abnormal cell images from given database.
	processing and machine learning in the morphologic al analysis	images was analyzed. a set of 220 new independent images.	and segmentation techniques, Two main approaches for texture analysis are the granulometry and the gray- level	types of normal leukocytes and only 1 group of abnormal lymphoid cells (CLL) was reported in. Although average accuracy was

	- £1.1 1		Г	1040/ CTT
	of blood		co- occurrence	around 94%, CLL
	cells		matrix (GLCM)	accuracy was 88%.
	T D 1 11		Neural networks,	
	J. Rodellar		decision trees, and	
	S. Alférez		support vector	
	A. Acevedo		machines (SVM)	
	A. Molina		are used.	
	A. Merino		— 1	
37.	Acute	compared the data	To reduce	For acute lymphoblastic
	Lymphoblast	sets with different	overtraining, data	leukemia detection,
	ic Leukemia	color models to	augmentation	achieved a sensitivity of
	Detection	check the	technique was	100%, specificity of
	and	performance over	used. SVM(support	98.11%, and accuracy of
	Classificatio	different color	vector machine),	99.50%; and for acute
	n of Its	images. This data	CNN(convolutional	lymphoblastic leukemia
	Subtypes	set was divided	neural network);	subtype classification the
	Using	into 2 versions.	DCCN(deep	sensitivity was 96.74%,
	Pretrained	Acute	convolutional	specificity was 99.03%,
	Deep	lymphoblastic	neural network)	and accuracy was 96.06%.
	Convolution	leukemia-IDB 1		
	al Neural	consisted of 108		
	Networks	images where 59		
		images were from		
	Sarmad	healthy patients		
	Shafique,	and 49 images		
	MS1 and	were from		
	Samabia	patients affected		
	Tehsin, PhD	with leukemia.		
		Acute		
		lymphoblastic		
		leukemia-IDB 2		
		data set consisted		
		of 260 images		
		having single cell		
		where 130 images		
		were from		
		patients affected		
		by leukemia and		
		130 were normal		
		images.		
38.	Recognition	41 clinical and	Artificial Neural	Performance of learning
	and	laboratory	Network (ANN),	was 0.094. The
	prediction of	parameters of 131	LM algorithm	Relationship between the
	leukemia	patients (63 of		output of trained network
	with	them were		for test data and real
	Artificial	cancerous and		results of test data was
	Neural	others non-		high and the area under
	Network	cancerous) who		ROC curve was 0.967.
	(ANN)	had pathological		Therefore can use
		results were		artificial neural network

	T =: • :			
	Saeid Afshar, Fahimeh Abdolrahma ni, Fereshte Vakili Tanha, Mahin Zohdi Seif, Kobra Taheri	selected from patients' documents		for rapid and reliable leukemia recognition.
39.	White Blood Cells Segmentatio n and Classificatio n to Detect Acute Leukemia Ms. Minal D. Joshil, Prof. Atul H. Karode, Prof. S.R.Suralkar	There are two types of datasets are available. The ALL-IDB1 can be used both for testing segmentation capability of algorithms, as well as the classification systems and image preprocessing methods and ALL-IDB2 has segmented WBCs to test the classification of blast cells.	kNN classifier has been utilized to classify blast cells from normal lymphocyte cells. K-Mean clustering, fuzzy C-Mean clustering are utilised.	Leukemia detection with proposed features were classified using kNN classifier giving overall accuracy of 93%
40.	Intellig ent leukae mia diagnos is with bare- bones PSO based feature optimiz ation Worawut Srisukkham, Li Zhang,	The proposed algorithms is evaluted using a cross-domain sonar data set from the UCI Machine Learning Repository. 140 and 68 instances for training and test, respectively.	Bare-bones Particle Swarm Optimization (BBPSO) algorithms are proposed to identify the most significant discriminative characteristics of healthy and blast cells to enable efficient ALL classification. Both 1-Nearest Neighbour (1NN) and Support Vector Machine (SVM) with Gaussian Radial Basis Function (RBF) kernel are used to classify lymphocytes and lymphoblasts using the identified	proposed algorithms achieve superior geometric mean performances of 94.94% and 96.25%,

	T	T	·	
	Siew Chin Neoh, Stephen Todryk, Chee Peng Lim		optimal feature subsets. SDM-based clustering algorithm.	
41.	Detection of leuke mia in huma n blood samp le based on micro scopi c imag es. Shail esh J. Mish ra, Mrs. A.P. Desh mukh	describes a preliminary study of developing a detection of leukemia types using microscopic blood sample images.	used detection of leukemia cells in normal blood cells using MATLAB	using the MATLAB programming the different operation perform on the images like as enhancement, restoration, segmentation and color image processing using this method obtained the edge of cancerous blood cells. This cancerous blood cells in abnormal in shape and size.
42.	Automatic Recognition of Acute Myelogenou s Leukemia in Blood Microscopic Images Using K- means Clustering and Support Vector Machine	a total number of 1500 data, 750 data for ALL, and 750 data for AML were used. Out of 1500, 1200 was considered as the train data while the rest of the data was considered as the test data.	Images are classified to cancerous and noncancerous images by binary support vector machine (SVM) classifier, k-means clustering, fuzzy C-means clustering applied to separate the foreground and background.	The results have shown that k-NN produced good performance in classifying both AML and ALL with high percentage of accuracy up to 86%.

	1			<u></u>
	Fatemeh Kazemi, Tooraj Abbasian Najafabadi, and Babak Nadjar Araabi			
43.	Automated Detection of Acute Leukemia using K- mean Clust ering Algorithm	the dataset of 60 samples.	using K-mean Clustering Algorithm, Image processing	The method implemented uses basic enhancement, morphology, filtering and segmenting technique to extract region of interest using k – means clustering algorithm. The proposed algorithm achieved an accuracy of 92.8% and is tested with Nearest Neighbor (kNN) and Naïve Bayes Classifier
	Sachin Kumar, Sumita Mishra, Pallavi Asthana, Pragya			
44.	Application of Support Vector Machine and Genetic Algorithm for Improved Blood Cell Recognition	The available data set was split into two parts: One part that contains two third of the data set has been used in learning, and the remaining part (one third) has been used for testing only. The data from the first set (two third of the data) have	genetic algorithm (GA) and a support vector machine (SVM) to the recognition of blood cells based on the image of the bone marrow.	Applying the GA, were able to increase the accuracy of the blood cell recognition by more than 25% (in relative terms) with respect to the best method of feature selection (linear SVM ranking).
	Stanislaw Osowski, Robert	also been split into two halves. The first half was		

	Siroi´c, Tomasz Markiewicz, and Krzysztof Siwek	used for pure learning of the SVM classifier, and the second half was used for calculating the fitness function (the validation of the SVM model). The remaining one third of data has only been used for the testing of the trained classifiers.		
45.	Classificatio n of Acute Leukaemia Cells using Multilayer Perceptron and Simplified Fuzzy ARTMAP Neural Networks Aimi Abdul Nasir1, Mohd Yusoff Mashor, and Rosline Hassan	a total of 500 images (200 ALL and 300 AML) were captured from acute leukaemia blood samples by using the Leica microscope	used the Multilayer Perceptron (MLP) and Simplified Fuzzy ARTMAP (SFAM) neural networks. Levenberg- Marquardt and Bayesian Regulation algorithms have been employed to train the MLP network.	the MLP network trained by Bayesian Regulation algorithm has produced the best classification performance with testing accuracy of 95.70% for the overall proposed features.
46.	Analysis of blood samples for counting leukemia cells using Support vector machine and nearest neighbour	There are two types of datasets are available. The ALL-IDB1 can be used both for testing segmentation capability of algorithms, as well as the classification systems and image pre-	support vector machine(SVM) and nearest neighbour concept is presented	Leukemia detection with proposed features were classified using kNN classifier giving overall accuracy of 93%.

_				T
	Niranjan Chatap, Sini Shibu	processing methods and ALL-IDB2 has segmented WBCs to test the classification of blast cells.		
47.	Patch-Based White Blood Cell Nucleus Segmentatio n Using Fuzzy Clustering Nipon Theera- Umpon	The data set consists of six classes of white blood cells-myeloblast, promyelocyte, myelocyte, metamyelocyte, band, and PMN. There are 20, 9, 139, 33, 45, and 185 handsegmented images for all six cell classes, respectively.	The segmentation is based on the fuzzy C-means clustering alogrithm and mathematical morphology. Bayes classifier	we achieve a good segmentation and promising classification performances compared to an expert's ground truth. Due to the gray-scale inconsistency in each region of a white blood cell image, the proposed patch-based segmentation technique makes more sense than the pixel-based segmentation techniques.
48.	White blood cell segmentatio n using morphologic al operators and scale-space analysis Leyza Baldo Dorini Rodrigo Minetto Neucimar Jer^onimo Leite	used grayscale images from the CellAtlas.com, carried out tests on over 100 images	use simple morphological operators and explore the scale- space properties of a toggle operator to improve the segmentation accuracy	the accurate nucleus segmentation results encourage future works which include the classification of WBC using shape descriptors extracted from segmented nucleus.