

Ikhlaq Sidhu Chief Scientist & Founding Director, Sutardja Center for Entrepreneurship & Technology IEOR Emerging Area Professor Award, UC Berkeley

Agenda

- Introduction to Scoring and Linear Prediction (45 min)
- Review of Graphing techniques with Matplotlib (45 min)
- Team Selection and Project Work (remaining time)
 - Prepare for your low tech demo
 - Can be slide/picture of the interface
 - Explain any validation of user, summary of conversation on why they would use it and/or what they want from it.
- HW for next week will be sent via bcourses in Notebook format:
 - HW includes project low tech demo: turn in (any form, slides, etc)
 - Review Ref Ref M01: Covariance and Correlation
 - Ref M05: Regression Analysis
 - Notebook versions available at data-x.blog in module-03

Introduction to Prediction

Prediction

Data We Might Have (In Sample)

Our Goal: Working with out of sample data

Prediction

Data We Might Have (In Sample)

One way to make a prediction:

Choose a line that best fits the sample data

Then y(x) = mx + c is a predictor for a new out of sample x

Of Course, we can not assume that all data can be predicted by a linear model

- Model might be a poor fit (wrong model)
- Model might be too good of a fit or over-fit (only works well on the in sample data)

Image: Laerd Statistics, 2014

Best Linear Predictor (if you just have 2 Variables)

This turns out to be the best linear predictor:

$$L(Y \mid X) = \mathbb{E}(Y) + \frac{\text{cov}(X, Y)}{\text{var}(X)} [X - \mathbb{E}(X)]$$

It's a line:

Runs though point: (E[X], E[Y])

slope:
$$m = \frac{COV(X,Y)}{VAR(X)}$$

y-intercept =
$$E[Y] - mE[X]$$

$$= E[Y] - COV(X,Y) * \frac{E[X]}{VAR(X)}$$

What makes this the best linear predictor? How much error does this predictor have?

The distribution regression line

Remember:

 $COV(X,Y) = E[(X-\mu_x)(Y-\mu_y)]$ COV(X,Y) = E[X Y] - E[X] E[Y]

COV(X,X) = VAR(X)COV(AX,Y) = ACOV(X,Y)

Simple Example: Calculate best linear predictor

Data Set in a Table, two variables

X	Y
2	10
4	5
3	9
5	4
6	3

$$E[X] = 4$$
, $E[Y] = 6.2$

$$Cov(X, Y) = E[XY] - E[X]E[Y]$$

= 21 - 4 * 6.2 = -3.8

$$Var(X) = 18-16 = 2$$

y-int =
$$E[Y] - \frac{cov(X,Y)}{Var(X)} * E[X]$$

= $6.2 - \left(\frac{-3.8}{2} * 4\right) = 13.8$

$$m = \frac{Cov(X,Y)}{Var(X)} = \frac{-3.8}{2} = -1.9$$

$$y(x) = -1.9x + 13.8$$

$$E[y(x) - y_{actual})^2] = ?$$

Example: Data Set in a Table 2 variables

X	Υ	X*Y	X^2	y(x)
2	10	20	4	6.96
4	5	20	16	3.92
3	9	27	9	5.44
5	4	20	25	2.4
6	3	18	36	0.88

E[X]	E[Y]	E[XY]	E[X^2]
4	6.2	21	18

Code Sample

```
import numpy as np
x = np.array([2, 4, 3, 5, 6])
y = np.array([10, 5, 9, 4, 3])
E_x = np.mean(x)
E_y = np.mean(y)
cov_xy = np.mean(x*y)-E_x*E_y
y_0 = E_y - cov_xy/np.var(x)*E_x
m = cov_xy/np.var(x)
y_pred=m*x+y_0
print "E[(y_pred-y_actual)^2] =", np.mean(np.square(y_pred-y))
```

 $E[(y_pred-y_actual)^2] = 0.54$

Prediction: Multiple Inputs and Outputs

Prediction: Multiple Inputs and Outputs

In this case, for linear prediction, we use a matrix format:

$$\begin{array}{c} X \\ \text{(Nxd)} \\ \text{13462} \end{array} \quad . \quad \begin{bmatrix} W \\ \text{(dx1)} \end{bmatrix} \quad = \quad \begin{bmatrix} Y \\ \text{(Nx1)} \end{bmatrix} \qquad \begin{array}{c} x_{1,1}w_1 + x_{1,2}w_2 + x_{1,3}w_3 = y_1 \\ x_{2,1}w_1 + x_{2,2}w_2 + x_{2,3}w_3 = y_2 \\ \dots \\ \dots \\ \end{array}$$

 X_i

X is the in-sample data. We only need to figure out **W**. With **W**, we can estimate **y** for new **x**, i.e. out of sample data

An ML Framework

- d features
- N samples

Use for training

Features: (d columns) Age, income, zip code, ...

Results in Y

(which we know for N samples)

Sometimes measured Y includes error or noise

Y = f(X) + e()

We don't know:

P(X), the distribution of X

Function f: f: X->Y

N rows:

- each row has customer information
- d features
- Y has a value of interest
 - Credit score: a number
 - Classification: "good customer" vs "poor customer"

An ML Framework

- · We try different functions g until
- g(x) is close to f(x)
- For any out of sample **x**, we can predict a **y** or classify it

An ML Framework

Example: Prediction with Regression

This time, Y is the actual value we want to estimate

Notice: we added an extra column of 1s?

Example: Prediction with Regression

Then predict (or classify) with W

The Math: Linear Regression

Predictor:

g(x) = XW

OK, but better to measure squared error

$$E_{in}(w) = E[Xw - Y]$$

$$E_{in}(w) = \frac{1}{N} \sum_{i=1}^{N} (w^{T} x_{i} - y_{i})^{2}$$

$$E_{\scriptscriptstyle in}(w) = \frac{1}{N} \big\| X w - y \big\|^2$$

$$\nabla E_{\scriptscriptstyle in}(w) = \frac{2}{N} X^{\scriptscriptstyle T} (Xw - y) = 0.$$

$$X^{T}Xw = (X^{T}X)^{-1}Y$$

$$X^{^T}XW = X^{^T}Y$$

$$W = (X^T X)^{-1} X^T Y$$

$$Y_{estimated} = X_{out of sample} W$$

$$X^{T} = dxN$$
 $X = Nxd$

$$(X^TX)^{=}$$
 dxd $(X^TX)^{-1}$ dxd

$$W = (X^{T}X)^{-1} X^{T} Y =$$

$$= dxd \cdot dxN \cdot Y =$$

$$= [dxN] x [Nxm] = dxm$$

Example 2: Prediction with Regression

Then predict (or classify) with W

Code Sample

Dat	a:	x(i,1)	x(i,2)	x(i,3)	y(i,1)
ID	Name	Age	years w employer	Income	Credit Score
1	John	25	3	50	660
2	Alice	23	2	60	580
3	Bill	28	1	80	425
4	Rahul	25	.5	59	320

In the **ML framework**, there is no limit to the predictors or classifiers that can be used.

g can be chosen from, Linear estimators:

- Any weighted sum
- The best fit line or plane

Non-linear functions:

- Neural Networks
- MLE
- Any function

- We try different functions g until
- g(x) is close to f(x)
- For any out of sample **x**, we can predict **Y** or classify it

End of Section

