

East West University Department of Computer Science and Engineering

Course: CSE345 Digital Logic Design

Expt No.: 5

Title: Decoder and Its Use in Combinational Logic Implementation

Obk8jectives:

1. To implement and test a 2-to-4-lines decoder with active-LOW outputs and active-LOW enable input using discrete gates.

1. To implement and test combinational logic functions using IC 74138 (3-to-8-lines decoder with active-LOW outputs).

Theory:

Design of decoders using discrete gates is discussed in Section 8.3 of textbook. The IC 74138 (3-to-8-line decoder with active-LOW outputs) is introduced in Section 8.3 of textbook. Combinational logic implementation using decoders is also discussed in Section 8.3 of textbook.

Pre-Lab Report Questions:

Implementing and testing a 2-to-4-lines decoder with active-LOW outputs and active-k8LOW enable input using discrete gates:

- 1. Draw the logic diagram for a 2-to-4-lines decoder with active-LOW outputs and active-LOW enable input.
- 2. Write the truth table of the above decoder.

Implementing and testing combinational logic functions using IC 74138 (3-to-8-lines decoder with active-LOW outputs):

3. Draw the schematic diagram for implementing the following two combinational logic functions using IC 74138 (3-to-8-lines decoder with active-LOW outputs).

$$F_1(A, B, C) = \sum (1,2,4,7)$$

 $F_2(A, B, C) = \sum (0,5,6,7)$

ICs Required:

7404 Hex Inverters (NOT gates)
7410 Triple 3-input NAND gates
7420 Dual 4-input NAND gates
74138 3-to-8-line decoder with active-LOW outputs

Pin Diagram of the Required ICs:

1	1 <i>A</i>	V_{CC}	14	_1	1 <i>A</i>	V_{CC}	_ 1	1 <i>A</i>	V_{CC} 14	
_2	1 <i>Y</i>	6A	13	_2	1 <i>B</i>	$\frac{cc}{1C}$ 13	2	1 <i>B</i>	2D 13	
_3	2 <i>A</i>	6 <i>Y</i>	12	_3	2 <i>A</i>	1Y 12	2 3	NC	2C 12	
4	2 <i>Y</i>	5A	11_	_4	2 <i>B</i>	3C 11	4	1 <i>C</i>	NC 11	
5	3 <i>A</i>	5 <i>Y</i>	10	_5	2 <i>C</i>	3B	5	1 <i>D</i>	2B 10	
6	3 <i>Y</i>	4 <i>A</i>	9	_6	2 <i>Y</i>	3A = 9	6	1 <i>Y</i>	2A = 9	
7	GND	4 <i>Y</i>	8	_7_	GND	3 <i>Y</i> 8	7	GND	2Y8	
7404 (6 NOT)				7/1	Λ (2 2 I	n NAND	742	7420 (2.4 In NAND)		

7404 (6 NOT) **7410** (3 3-In NAND) **7420** (2 4-In NAND)

Lab Procedure:

Implementing and testing a 2-to-4-lines decoder with active-LOW outputs and active-LOW enable input using discrete gates:

- 1. Construct the logic diagram for a 2-to-4-lines decoder with active-LOW outputs and active-LOW enable input from your pre-lab report using discrete gates. Connect the three inputs $(A_1, A_0, \text{ and } E)$ of the circuit to three data switches and four outputs to four LED indicators.
- 2. Apply binary 00 to 11 to A_1A_0 address inputs and observe the outputs by changing E enable input.
- 3. Show the outputs of the circuit to your instructor.

Implementing and testing combinational logic functions using IC 74138 (3-to-8-lines decoder with active-LOW outputs):

- 4. Construct the circuits for implementing the given combinational logic functions from your pre-lab report. Connect enable inputs E_1 and E_2 to fixed 0s and E_3 to a data switch. Use E_3 as active-HIGH enable input. Connect the input lines ABC ($A_2A_1A_0$) to three data switches. Connect the two function outputs to two LED indicators.
- 5. Show the outputs of the circuit to your instructor.

Pre-lab report submission:

6. Submit the pre-lab report to your instructor.

Post-Lab Report Questions:

- 1. Write structural Verilog code for the logic diagram for a 2-to-4-lines decoder with active-LOW outputs and active-LOW enable input from your pre-lab report and simulate it using Ouartus II software.
- 2. Write behavioral Verilog code for 3-to-8-lines decoder with active-LOW outputs and simulate it using Quartus II software.