Question 1

Suppose $A, B \in \mathbb{R}^{n \times n}$, $i, j \in \{1, ..., n\}$

- $(\alpha)(1) \qquad (AB)_{ij} = \sum_{\kappa=1}^{n} A_{i\kappa} B_{\kappa j} = \sum_{\kappa=1}^{n} B_{j\kappa}^{\mathsf{T}} A_{\kappa i}^{\mathsf{T}} = (B^{\mathsf{T}} A^{\mathsf{T}})_{ji} \qquad \text{Hence } (AB)^{\mathsf{T}} = B^{\mathsf{T}} A^{\mathsf{T}}.$
 - (2) $(A+B)_{ij}^T = (A+B)_{ji} = A_{ji} + B_{ji} = A_{ij}^T + B_{ij}^T$. Hence $(A+B)^T = A^T + B^T$.

 - (4) $tr(AB) = \sum_{i=1}^{n} \sum_{k=1}^{n} A_{ik} B_{ki} = \sum_{k=1}^{n} \sum_{i=1}^{n} B_{ki} A_{ik} = tr(BA)$
 - (5) $f(A+B) = \sum_{i=1}^{n} (A+B)_{ii} = \sum_{i=1}^{n} (A_{ii}+B_{ii}) = \sum_{i=1}^{n} A_{ii} + \sum_{i=1}^{n} B_{ii} = f(A+B)$
 - (6) $(AB)B^{\dagger}A^{-\dagger} = I$ and $B^{\dagger}A^{\dagger}(AB) = I$. Hence $(AB)^{\dagger} = B^{\dagger}A^{-\dagger}$
 - (7) Choose $A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$, Hen $A^{-1} = \frac{1}{3} \begin{bmatrix} 3 & -2 \\ 0 & 1 \end{bmatrix}$, $B^{-1} = \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}$, while $A + B = \begin{bmatrix} 3 & 5 \\ 1 & 5 \end{bmatrix}$, $(A + B)' = \frac{1}{10} \begin{bmatrix} 5 & -5 \\ -1 & 3 \end{bmatrix} \neq A^{-1} + B^{-1}$
- (b) Let $u_1v \in \ker A$, $c \in \mathbb{R}^n$, then A(u+v) = Au+Av = O+O=O, A(cv) = cAv = O, and $O \in \ker A$. Hence, ker A is a subspace of \mathbb{R}^n . Let $u_1v \in ImA$ then $\exists u_1v_1' \in \mathbb{R}^n$ s.t. Au' = u, Av' = v. $A(u'+v') = Au'+Av' = u+v \in ImA$ (closure under addition) and $A(cv') = cAv' = cv \in ImA$ (closure under scalar multiplication). Since $Ao = O \in ImA$ we get that ImA is a subspace of \mathbb{R}^n .
- (c) Suppose $A \in \mathbb{R}^{n \times p}$ with $T \in L(\mathbb{R}^p, \mathbb{R}^n)$ its linear map. Let $v \in \mathbb{R}^n$ and $u \in null T$, then $\langle T^* v, u \rangle = \langle v, Tu \rangle = \langle v, 0 \rangle = 0$.

 This shows that $Im(T^*) \subseteq (null T)^{\perp}$. But $dim(null T)^{\perp} = rank T = dim Im(T^*)$, hence $Im(T^*) = (null T)^{\perp}$.

Question 2

- (a) Suppose $Pu \in \mathbb{R}^{n\times n}$ is an orthogonal projection matrix, projecting onto the subspace $U \subseteq \mathbb{R}$. Let $u_1,...,u_m$ an orthonormal basis of U and extendit into an orthonormal basis $u_1,...,u_m$, ..., u_n of \mathbb{R}^n . $\forall v \in \mathbb{R}^n$ $\exists ! u \in U = span(\{u_1,...,u_m\})$ $u' \in U' = span(\{u_m,...,u_n\})$ s.t. v = u + u'. Pu(v) = 1u + 0u', implying that 1 and 0 are Pu's only eigenvalues, with dim E(1,Pu) = m = rank Pu, and dim E(0,Pu) = n m = dim null Pu.
- (b) Suppose $X \in \mathbb{R}^{nxp}$ is a full rank matrix, with $T \in L(\mathbb{R}^p, \mathbb{R}^n)$ its hear map. Let $v \in \mathbb{R}^p$, then $T^*Tv = 0 \rightarrow \langle T^*Tv, v \rangle = 0 \rightarrow \langle T^*V, T^*v \rangle = 0 \rightarrow \|Tv\| = 0 \rightarrow v = 0$ and T^*T is injective. Since it is an operator on \mathbb{R}^p it is also invertible. In addition, $(T^*T)^* = T^*T$, meaning T^*T is self-adjoint. Let $P_X = T(T^*T)^{-1}T^*$, then $P_X^2 = T(T^*T)^{-1}T^*T(T^*T)^{-1}T^* = T(T^*T)^{-1}T^* = P_X$ and P_X is idempotent, meaning it is a projection. $P_X^* = (T(T^*T)^{-1}T^*)^* = T(T^*T)^{-1}T^* = P_X$, and P_X is self-adjoint. Let $v \in \mathbb{R}^n$, then $\langle P_X V, V, (I-P_X)V \rangle = \langle P_X V, V \rangle \langle P_X V, V \rangle$
- (c) Px is self-adjoint, hence according the real spectral theorem, it is diagonalizable w.r.t. some orthonormal basis

 $u_{1},...,u_{n}$. Let $U=[u_{1},...,u_{n}]$ then $P_{x}=U\Lambda U^{-1}$ where Λ is an $n\times n$ diagonal matrix with p ones and n-p zeros in its diagonal, corresponding to P_{x} 's eigenvalues. $tr(P_{x})=tr(U\Lambda U^{-1})=tr(U^{-1}U\Lambda)=tr(\Lambda)=p$.

Question 3 part 1

- (a) Suppose $A \in \mathbb{R}^{np}$ and $T \in L(\mathbb{R}^p, \mathbb{R}^n)$ its linear map. Let $v \in \mathbb{R}^n$ s.t. $T^*Tv = \lambda v$ for some $\lambda \in \mathbb{R}$, then $TT^*Tv = \lambda Tv$, meaning that Tv is an eigenvector of TT^* , with λ being its eigenvalue. In fact, $T: E(\lambda, T^*T) \to E(\lambda, TT^*)$. For $\lambda \neq 0$ we get $Tv \neq 0$, meaning that $Tv|_{E(\lambda, T^*T)}$ is injective and dim $E(\lambda, T^*T) \leq \dim E(\lambda, TT^*)$. Similarly, for $\lambda \neq 0$, $T^*: E(\lambda, TT^*) \to E(\lambda, T^*T)$ is injective and dim $E(\lambda, T^*T) \leq \dim E(\lambda, T^*T)$. This implies that $E(\lambda, T^*T) = E(\lambda, T^*T)$. Let $\lambda \in \mathbb{R}$ s.t. $TT^*v = \lambda v$ for some $v \in \mathbb{R}^n$, then $\lambda \langle V, V \rangle = \langle TT^*V, V \rangle = \langle T^*V, T^*V \rangle = \|T^*V\|^2 \geq 0$, implying that $\lambda > 0$. To conclude, T^*T and TT^* share the same non-negative eigenvalues, with the positive eigenvalues having the same geometric multiplicities.

part 2

- $\omega = \sum_{i=1}^{p} \langle \omega, u_{i} \rangle u_{i} \text{ and } \mathcal{T}^{*} \mathcal{T}_{\omega} = \sum_{i=1}^{p} \lambda_{i} \langle \omega, u_{i} \rangle u_{i}. \text{ Hence, } \langle \mathcal{T}_{\omega}, \mathcal{T}_{\omega} \rangle = \langle \omega, \mathcal{T}^{*} \mathcal{T}_{\omega} \rangle = \sum_{i=1}^{p} \lambda_{i} \langle \omega, u_{i} \rangle^{2}. \text{ In addition,}$ $\|\omega\|^{2} = 1 \rightarrow \langle \sum_{i=1}^{p} \langle \omega, u_{i} \rangle u_{i}, \sum_{i=1}^{p} \langle \omega, u_{i} \rangle u_{i} \rangle = \sum_{i=1}^{p} \langle \omega, u_{i} \rangle^{2} = 1. \text{ Therefore } \sum_{i=1}^{p} \lambda_{i} \langle \omega, u_{i} \rangle^{2} \leq \sum_{i=1}^{p} \lambda_{i} \langle \omega, u_{i} \rangle^{2} = \lambda_{1} \text{ and this happens}$ $\text{when } \langle \omega, \lambda_{i} \rangle = 1 \rightarrow \omega = u_{1}. \text{ Furthermore, } \sum_{i=1}^{p} \lambda_{i} \langle \omega, u_{i} \rangle^{2} = \sum_{i=1}^{p} \lambda_{1} \langle \omega, u_{i} \rangle^{2} \rightarrow \sum_{i=1}^{p} (\lambda_{i} \lambda_{1}) \langle \omega_{i} u_{i} \rangle^{2} = 0 \text{ which is true only }$ $\text{if } \langle \omega, u_{i} \rangle = 0 \quad \forall_{i=2,\ldots,p}.$
- (b) $\sum_{i=1}^{n} dist(X_{i}, \omega)^{2} = \sum_{i=1}^{n} \langle X_{i} \langle W, X_{i} \rangle W, X_{i} \langle W, X_{i} \rangle W \rangle = \sum_{i=1}^{n} \langle X_{i}, X_{i} \rangle 2 \langle W, X_{i} \rangle^{2} + \langle W, X_{i} \rangle^{2} = \sum_{i=1}^{n} \|X_{i}\|^{2} \langle W, X_{i} \rangle^{2} = \|X\|_{F}^{2} \sum_{i=1}^{n} \|W^{T}X_{i}\|^{2}$ Therefore $W = U_{i}$ that maximizes $\sum_{i=1}^{n} |W^{T}X_{i}|^{2}$ also minimizes $\sum_{i=1}^{n} dist(X_{i}, \omega)^{2}$ and $PC_{1}^{var} = PC_{1}^{US}$.

Question 4

- (a) Suppose Y is a random variable with finite expectation and variance. Let $\alpha \in \mathbb{R}$ and define $M(\alpha) = E[(Y-\alpha)^2]$. Then $M(\alpha) = E[Y^2] 2\alpha E[Y] + \alpha^2 \frac{d}{d\alpha}M(\alpha) = -2E[Y] + 2\alpha = 0 \rightarrow \alpha = E[Y]$. Afternatively, we can treat Y and $\alpha = 1$ as vectors in a Hilbert space L^2 with some (Ω, F, P) with the inner product defined as (A, B) = E[AB]. Thus, we're seeking to minimize Y- $\alpha = 1$ by finding the projection of Y onto span(1). Such a projection $\alpha = 1$ satisfies $(Y-\hat{\alpha}, 1) = 0$ $(Y, 1) = \alpha(1, 1) \rightarrow \alpha = E[Y]$.
- (b) Suppose X, Y are random variables with finite expectation and variance. Define $MSE = E[(Y f(x))^2]$ for some function $f:R \to R$. According to the law of total expectation $MSE = E[E[(Y f(x))^2 | X]]$. Based on (a), for all x in the support of X $E[(Y f(x))^2 | X = X]$ is minimized when $\widehat{f(x)} = E(Y | X = X)$, hence, defining $\widehat{f(x)} = E(Y | X = X)$ would minimize the MSE.