Algorithm 1: Social multi-agent multi-armed bandits S-MAMAB

```
Input: Task settings \mathcal{K}(\overrightarrow{\mu}, \overrightarrow{\sigma}^2, \overrightarrow{\rho}(t)), Social settings \mathcal{S}, Number of trials T
       Param : Parameters \Theta = \{\Theta^{(0)}, \Theta^{(AcS)}, \Theta^{(BeU)}, \Theta^{(AcL)}, \Theta^{(SoS)}, \Theta^{(SoL)}\}
                                                     \Theta^{(0)} = \{\mu_0, \sigma_0^2 \dots\}
\Theta^{(AcL)} = \{\beta_u \dots\}
                                                                                                                                                   \Theta^{(AcS)} = \{ \tau_s, \epsilon_g \dots \}
\Theta^{(SoS)} = \{ \beta_h, \dots \}
                                                                                                                                                                                                                                                                \Theta^{(\mathrm{BeU})} = \{ \overrightarrow{\sigma}^2 \text{ or } \sigma_{\epsilon}^2 \dots \} 
\Theta^{(\mathrm{SoL})} = \{ \eta_{\mathrm{s}}, \alpha_{\mathrm{s}}, \dots \} 
                                                                                                                                                                                                                                      // Have not considered drift noise \xi
       \textbf{Output:} \ \ \mathcal{Z}_t \leftarrow \left\{ \mathbf{Q}_t, \mathbf{A}_t, \mathbf{Y}_t, \mathbf{Y}_t^C, \mathbf{M}_t, \mathbf{V}_t, \left[ \mathbf{P}_t, \mathbf{G}_t, \mathbf{W}_t, \mathbf{C}_t, \mathbf{Q}_t^{(\mathrm{AcL})}, \mathbf{Q}_t^{(\mathrm{SoL})} \right] \right\}
  1 Initialization
                  Initialize: \Theta^{(0)} \longmapsto (\mathbf{M}_0, \mathbf{V}_0, \mathbf{P}_0)
                          \hookrightarrow Initialize \in {InitEqualProb, InitNormUnifProb}
  4 for t=1 \rightarrow T do
                  ActionSampling (AcS)
  5
                           \begin{aligned} (\mathbf{A}_t, [\mathbf{P}_t]) \leftarrow \begin{cases} & \text{WeightedChoice}\left(\mathbf{P}_0 \odot \overrightarrow{\rho}(t)\right) & \text{if } t = 1 \text{ (or } t < T_{AcS}) \\ & \text{SampleAction}\left(\mathbf{Q}_{t-1}, \overrightarrow{\rho}(t), \Theta^{(\mathrm{AcS})}\right) & \text{otherwise} \end{cases} \\ & \hookrightarrow \text{SampleAction} \in \{ \text{Softmax}(\tau_{\mathrm{s}}), \texttt{Argmax}, \texttt{Greedy}(\epsilon_{\mathrm{g}}), \texttt{Thompson} \} \end{aligned} 
  6
  7
                  RewardSampling (ReS)
  8
                          SampleReward: (\mathbf{A}_t, \mathcal{K}) \longmapsto \mathbf{Y}_t
  9
                  BeliefUpdating (BeU)
10
                          \texttt{UpdateBelief:} \ \left(\mathbf{M}_{t-1}, \mathbf{V}_{t-1}, \mathbf{A}_t, \mathbf{Y}_t, \Theta^{(\mathrm{BeU})}\right) \longmapsto \left(\mathbf{M}_t, \mathbf{V}_t, [\mathbf{G}_t]\right)
11
                                    \hookrightarrow \mathtt{UpdateBelief} \in \{\mathtt{BMT} (\overrightarrow{\sigma}^2 \text{ or } \sigma_{\epsilon}^2)\}
12
                   Utility Updating
13
                           ActionLearning (AcL)
14
                                    LearnAction: (\mathbf{M}_t, \mathbf{V}_t, \Theta^{(\mathrm{AcL})}) \longmapsto \mathbf{Q}_t^{(\mathrm{AcL})}
15
                                              \hookrightarrow LearnAction \in \{ \text{UCB}(\beta_{11}), \text{MGE}, \text{VGE} \}
16
                           SocialLearning (SoL) & SocialSetting (SoS)
17
                                    if t = 1 (or t < T_{SoL}) then
                                        \mathbf{Q}_t^{	ext{(SoL)}} \leftarrow \mathbf{0}
19
                                    else
20
                                        \begin{array}{l} \mathtt{SetSocial:} \; \left( \mathcal{Z}_{t-1}, \mathcal{S}, \overrightarrow{\rho}(t-1), \Theta^{(\mathrm{SoS})} \right) \longmapsto \left( \mathbf{C}_t, \mathbf{W}_t \right) \\ \mathtt{LearnSocial:} \; \left( \mathbf{C}_t, \mathbf{W}_t, \Theta^{(\mathrm{SoL})} \right) \longmapsto \mathbf{Q}_t^{(\mathrm{SoL})} \end{array}
 21
 22
                         \texttt{UpdateUtility:} \left(\mathbf{Q}_t^{(\text{AcL})}, \mathbf{Q}_t^{(\text{SoL})}\right) \longmapsto \mathbf{Q}_t
23
                 Update cumulative rewards \mathbf{Y}_{t}^{C} \leftarrow \mathbf{Y}_{t} + \mathbf{Y}_{t-1}^{C}
24
                 Save \mathcal{Z}_t \leftarrow \left\{ \mathbf{Q}_t, \mathbf{A}_t, \mathbf{Y}_t, \mathbf{Y}_t^C, \mathbf{M}_t, \mathbf{V}_t, \left[ \mathbf{P}_t, \mathbf{G}_t, \mathbf{W}_t, \mathbf{C}_t, \mathbf{Q}_t^{(\mathrm{AcL})}, \mathbf{Q}_t^{(\mathrm{SoL})} \right] \right\}
25
```

Descriptions of parameters and states

Notations and supporter functions

- If a matrix **X** is of dimension K arms $\times N$ agents, unless specified otherwise:
 - $\triangleright \mathbf{x}_i$ signifies the *column* vector of values for the *i*-th agent,
 - $\triangleright \mathbf{x}'_k$ signifies the row vector of values for the k-th arm
 - \triangleright In other words, $\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2 \dots \mathbf{x}_N] = [\mathbf{x}_1', \mathbf{x}_2' \dots \mathbf{x}_K']^{\top}$
- $x \sim \mathcal{X}$ is a random variable sampled from \mathcal{X} then $\mathbf{X} \stackrel{iid}{\sim} \mathcal{X}^{m \times n}$ represents the matrix \mathbf{X} of size $m \times n$ of random variables sampled from \mathcal{X} independently, i.e. $x_{ij} \sim \mathcal{X}$. Similarly, if \mathcal{X} is parameterized by θ then $\mathbf{X} \stackrel{iid}{\sim} \mathcal{X}(\Theta)$ where $\dim \Theta = (m, n)$ then $x_{ij} \sim \mathcal{X}(\theta_{ij})$ sampled independently.
- \odot is the element-wise multiplication. If dim $\mathbf{A} = \dim \mathbf{B} = (m, n)$, dim $\mathbf{a} = (m, 1)$ and dim $\mathbf{a}' = (1, n)$:

- $\triangleright (\mathbf{A} \odot \mathbf{B})_{ij} = (\mathbf{B} \odot \mathbf{A})_{ij} = a_{ij}b_{ij}$
- $\triangleright (\mathbf{a} \odot \mathbf{B})_{ij} = (\mathbf{B} \odot \mathbf{a})_{ij} = a_i b_{ij}$
- $\triangleright (\mathbf{a}' \odot \mathbf{B})_{ij} = (\mathbf{B} \odot \mathbf{a}')_{ij} = a'_i b_{ij}$
- Special matrices and vectors:
 - ho $\mathbf{e}_i^{(n)}$ is a column unit vector of size n where only $e_i^{(n)}=1$, and $e_j^{(n)}=0$ $\forall j\neq i$.
 - \triangleright Hence the identity matrix of size $n \times n$ is $\mathbf{I}_n = \left[\mathbf{e}_1^{(n)} \dots \mathbf{e}_n^{(n)} \right]$
 - \triangleright The column vector of n ones is $\mathbf{1}_n$ while the matrix of all ones of size $m \times n$ is $\mathbf{1}_{m \times n}$
- L^p Normalization:

 - $||\cdot|| = ||\cdot||_2 \text{ is the } L^2 \text{ norm, while } ||\cdot||_p \text{ is the } L^p \text{ norm: } \mathbf{x} \longmapsto (\sum_{i=1}^n x_i^p)^{1/p} \text{ where } n = \dim \mathbf{x} \text{ and } p \neq 0$ $> \text{ Column } L^p \text{ normalization } \psi_p. \text{ For column vectors: } \mathbf{x} \longmapsto \mathbf{x}/||\mathbf{x}||_p. \text{ For matrix: } \mathbf{X} \longmapsto [\psi_p(\mathbf{x}_1) \dots \psi_p(\mathbf{x}_n)]$
 - $\triangleright \text{ Row } L^p \text{ normalization } \psi'_p \colon \mathbf{X} \longmapsto \psi_p \left(\mathbf{X}^\top\right)^\top$
 - \triangleright For the sake of completion, though not necessary, to use all elements (like Frobenius norm), $\Psi_p: \mathbf{X} \longmapsto \mathbf{X}/\|\mathbf{X}\|_p$ where $\|\mathbf{X}\|_p = \left(\sum_{i,j} x_{ij}^p\right)^{1/p}$
- Min/max normalization.
 - \triangleright Max-normalization per column for non-negative matrix: $\psi_{\max}: \mathbb{R}^{m \times n}_{\geq 0} \to \mathbb{R}^{m \times n}_{\geq 0}: \mathbf{X} \longmapsto \left[\frac{\mathbf{x}_1}{\max \mathbf{x}_1} \dots \frac{\mathbf{x}_n}{\max \mathbf{x}_n}\right]$. Limit to only positive or non-negative matrices (i.e. all elements are either > 0 or ≥ 0 , respectively). For all zeros columns, either turn them all to 1's or 0's, depending on the need.
 - \triangleright Min-max normalization per columns $\psi_{\min \mathbf{max}} : \mathbb{R}^{m \times n} \to \mathbb{R}^{m \times n} : \mathbf{x}_i = [\mathbf{X}]_i \longmapsto \frac{\mathbf{x}_i \min \mathbf{x}_i}{\max \mathbf{x}_i \min \mathbf{x}_i}$ Again, depending on the need, columns where $\min \mathbf{x} = \max \mathbf{x}$ can be turned to all 1's or 0's. Additionally, could also bottom-clip with $\psi_{\min\max}(\mathbf{X}, x_{\star}) \text{ so } \mathbf{x}_{i} \longmapsto \max \left[\psi_{\min\max}(\mathbf{x}_{i}), x_{\star}\right]$
 - \triangleright Similarly, one can define ψ_{\min} for column min normalization
 - \triangleright And for row normalizations: ψ'_{\max} , ψ'_{\min} , $\psi'_{\min\max}$
 - \triangleright For the sake of completion, to use all elements for global min/max $\Psi_{\rm max}$, $\Psi_{\rm min}$, $\Psi_{\rm minmax}$
- Normalized uniform NormUniform: $(m,n) \in \mathbb{N} \times \mathbb{N} \longmapsto \mathbf{X} = \psi_1(\mathbf{U}) \in \mathbb{R}^{m \times n}$, in which $\mathbf{U} \stackrel{iid}{\sim} \mathcal{U}_{0,1}^{m \times n}$
 - Alternative notation: matrix of random variables $\mathbf{X} \sim \widehat{\mathcal{U}}^{m \times n}$
- Index sets, for $\mathbf{x} \in \mathbb{Z}_2^n$ where $\mathbb{Z} = \{0,1\}$
 - \triangleright For (column or row) vectors: $\mathcal{I}(\mathbf{x}) = \{i | x_i = 1\}$
 - \triangleright For matrix, column-wise: $\mathcal{I}(\mathbf{X}) = \{i | x_{ij} = 1\}$
 - \triangleright For matrix, row-wise: $\mathcal{I}'(\mathbf{X}) = \{j | x_{ij} = 1\}$
- Choices
 - ightharpoonup WeightedChoice
 - \circ For column vector $\mathbf{w} \in \mathbb{R}^n_+ \longmapsto \mathbf{e}_i^{(n)} \in \mathbb{Z}^n_2$, where index $i \in [1, n] \subset \mathbb{N}$ is chosen with probability $\mathbf{p} = \psi_1(\mathbf{w})$
 - \circ For matrix $\mathbf{W} \in \mathbb{R}_+^{m imes n} \longmapsto [\mathtt{WeightedChoice}(\mathbf{w}_1) \ldots \mathtt{WeightedChoice}(\mathbf{w}_n)]$
 - ▶ Argmax (to vectorize or matricize argmax)
 - For column vector $\mathbf{x} \in \mathbb{R}^n \longmapsto \mathbf{e}_i^{(n)} \in \mathbb{Z}_2^n$, where index $i = \operatorname{argmax}(\mathbf{x})$,
 - \circ For matrix $\mathbf{X} \in \mathbb{R}^{m \times n} \longmapsto [\operatorname{Argmax}(\mathbf{x}_1) \dots \operatorname{Argmax}(\mathbf{x}_n)]$
- Moving average (TBD):
 - ▷ Cumulative moving average CMA
 - \triangleright Exponential moving average EMA($\alpha_{\rm EMA}$)

General inputs and settings

- T is the number of trials, i.e., discrete time steps $t \in \mathbb{N}$.
- \mathcal{K} describes the K arms (tasks) with
 - \triangleright mean reward (column) vector $\overrightarrow{\mu} \in \mathbb{R}^K$
 - \triangleright uncertainty (variance) vector $\overrightarrow{\sigma}^2 \in \mathbb{R}_+^K$
 - \triangleright and arm dynamic availability vector $\overrightarrow{\rho}(t)$
 - * For now $\overrightarrow{\rho}(t) \in \mathbb{Z}_2^K$ can just be a binary mask as a function of time, but could also be considered as a probability to signify probabilistic availability of the arms.
- The social settings S contains information about the N agents and how to construct
 - \triangleright the content matrix $\mathbf{C}_t = \mathbf{C}(t) \in \mathcal{C}^{K \times N}$, i.e. social "mass" to influence utility, where $\mathcal{C} = \mathbb{Z}_2$ or \mathbb{R}_+
 - \triangleright and the agent social network $\mathbf{W}_t = \mathbf{W}(t) \in \mathcal{W}^{N \times N}$ where $\mathcal{W} = \mathbb{Z}_2$ or \mathbb{R}_+ ; which can be
 - \circ either a predefined $\mathbf{W}^{(0)}$ adjacency network, In other words, static social network $\mathbf{W}_t = \mathbf{W}^{(0)} \ \forall t$

- o or defined with a homophily constructor, defining which content matrix $\mathbf{C}^{(h)}$ to build from, and homophily factor $\beta_h \in \Theta^{(SoS)}$, and how/whether to normalize
- * The content matrices \mathbf{C} or $\mathbf{C}^{(h)}$ do not have to be similar, and can be constructed from the previous arm choice bipartite matrix \mathbf{A}_{t-1} , or from the maximum belief mean \mathbf{M}_{t-1} (or past reward \mathbf{Y}_{t-1}) or cumulative rewards \mathbf{Y}_{t-1}^C)

Hyper/free parameters

- Initial/prior parameters $\Theta^{(0)}$
 - $\triangleright \mu_0$ is the initial belief mean, set to be optimistic
 - $\triangleright \sigma_0^2$ is the initial belief uncertainty
- Action sampling parameters $\Theta^{(AcS)}$
 - $\triangleright \tau_{s}$ sets Softmax's temperature
 - \triangleright $\epsilon_{\rm g}$ is the free parameter for the ϵ -greedy algorithm Greedy
- - \triangleright Usage of either task/arm uncertainty $\overrightarrow{\sigma}^2$ or a scalar error term σ^2 for Bayesian mean tracker (BMT)
 - \star Right now not considering drift noise ξ
- \bullet Action learning parameters for exploitation-exploration learning $\Theta^{(\mathrm{AcL})}$
 - $\triangleright \beta_{\rm u}$ sets the exploration factor for the *Upper-confidence-bound* sampling (UCB)
- Social setting parameters $\Theta^{(SoS)}$
 - $\triangleright \beta_h$ sets the homophily factor
- Social learning parameters $\Theta^{(SoL)}$
 - $\triangleright \eta_s$ is the scaling factor
 - $\triangleright \alpha_{\rm s}$ is the power factor

Outputs and States

The state sets $\mathcal{Z}(t)$. (aux) signifies which ones are intermediate and optional to save, also not necessarily appearing in outputs of all function and hyperparameter choices.

- $\mathbf{Q}_t \in \mathbb{R}^{K \times N}$ is the utility matrix of each agent per each task
- $\mathbf{A}_t \in \mathbb{Z}_2^{K \times N}$ is the binary choice matrix at time t. Each agent only chooses 1 arm at each time step. (i.e. $\|\mathbf{a}_i(t)\| = 1$, and cardinality $|\mathcal{I}(\mathbf{a}_i(t))| = 1$)
- $\mathbf{Y}_t, \mathbf{Y}_t^C \in \mathbb{R}^{K \times N}$ are the actual reward at time t, from the reward sampling steps, and the cumulative reward matrix
- $\mathbf{M}_t \in \mathbb{R}^{K \times N}$ and $\mathbf{V}_t \in \mathbb{R}_+^{K \times N}$ are the posterior (belief) mean reward matrix and uncertainty (variance) matrix
- (aux) $\mathbf{P}_t \in \mathbb{R}_+^{K \times N}$ is the probability matrix constructed from \mathbf{Q}_{t-1} , most likely from using Sotfmax, which can then be used to decide \mathbf{A}_t
- (aux) $\mathbf{G}_t \in \mathbb{R}_+^{K \times N}$ is the Kalman gain constructed from the Bayesian mean tracker process
- (aux) $\mathbf{W}_t \in \mathcal{W}^{N \times N}$ and $\mathbf{C}_t \in \mathcal{C}^{K \times N}$ are the social agent network and content bipartite matrix, respectively. See the above section describing social settings \mathcal{K} for more description
- (aux) $\mathbf{Q}_t^{(\mathrm{AcL})}$, $\mathbf{Q}_t^{(\mathrm{SoL})} \in \mathbb{R}^{K \times N}$ are the utility matrices constructed from the action learning (e.g. UCB) and social learning processes, respectively.

Processes and functions

Initialization

- InitBelief: $(\mu_0, \sigma_0^2) \longmapsto (\mathbf{M}_0 = \mu_0 \mathbf{1}_{K \times N}, \mathbf{V}_0 = \sigma_0^2 \mathbf{1}_{K \times N})$
- ullet InitEqualProb: $\left(\mu_0,\sigma_0^2\right)\longmapsto$ InitBelief $\left(\mu_0,\sigma_0^2\right)\cup\left(\mathbf{P}_0=rac{1}{K}\mathbf{1}_{K imes N}
 ight)$
- $\bullet \ \mathtt{InitNormUnifProb:} \ \left(\mu_0,\sigma_0^2\right) \longmapsto \mathtt{InitBelief} \left(\mu_0,\sigma_0^2\right) \cup \left(\mathbf{P}_0 \sim \widehat{\mathcal{U}}^{K \times N}\right)$
- (TBD) maybe somehow allowing an initial exploring phase, e.g. without social learning

Action Sampling (AcS)

- General inputs $(\mathbf{Q} \leftarrow \mathbf{Q}_{t-1}, \overrightarrow{\rho} \leftarrow \overrightarrow{\rho}(t))$
- Softmax (τ_s)
 - $\triangleright \mathbf{P} = \psi_1 \left[\exp \left(\mathbf{Q} / \tau_s \right) \odot \overrightarrow{\rho} \right]$ where exp is just element-wise exponential function
 - \triangleright $\mathbf{A} = \mathtt{WeightedChoice}(\mathbf{P})$
- Argmax: $\mathbf{A} = \operatorname{Argmax}(\mathbf{Q} \odot \overrightarrow{\rho})$

ullet Greedy $(\epsilon_{
m g})$

$$hild extbf{I}_{ ext{max}} = extbf{Argmax}(extbf{Q} \odot \overrightarrow{
ho})$$

$$\triangleright \ \mathbf{I}_{\text{other}} = (\mathbf{1}_{K \times N} - \mathbf{I}_{\text{max}}) \odot \overrightarrow{\rho}$$

$$\triangleright \mathbf{P} = (1 - \epsilon_{\rm g})\mathbf{I}_{\rm max} + \epsilon_{\rm g}\psi_1(\mathbf{I}_{\rm other})$$

- \triangleright **A** = WeightedChoice(**P**)
- Thompson (TBD) unclear how to integrate social learning into distribution
 - $\triangleright \text{ Generally } \mathbf{A} = \operatorname{\mathtt{Argmax}} \left[\mathbf{X} \overset{iid}{\sim} \mathcal{N} \left(\mathbf{\Lambda}, \beta_{\mathrm{u}} \mathbf{\Sigma} \right) \right] \text{ where } \mathbf{\Lambda} \leftarrow \mathbf{M}_{t-1} \odot \overrightarrow{\rho}, \mathbf{\Sigma} \leftarrow \mathbf{V}_{t-1} \odot \overrightarrow{\rho}, \text{ and } \beta_{\mathrm{u}} \in \Theta^{\mathrm{AcL}} \text{ is from UCB}$
 - \triangleright But maybe with social learning, the variance (uncertainty) is reduced based on $\mathbf{Q}^{(SoL)}$, e.g with exponential decay

$$\boldsymbol{\Sigma} \leftarrow \psi_{\text{max}} \left[\exp \left(-\mathbf{Q}^{(\text{SoL})} \right) \odot \overrightarrow{\rho} \right] \odot \mathbf{V}_{t-1}$$

This means that the smallest $q_{ij}^{(SoL)}$ will have the same uncertainty as v_{ij} , while higher social utility decays such uncertainty. Note: could also use $\psi_{\min \max}$ instead of ψ_{\max} , and also a decaying factor in the exponential

Reward Sampling (ReS)

$$\mathbf{Y} = \mathbf{A} \odot \mathbf{y}' \text{ where } \mathbb{R}^{1 \times N} \ni \mathbf{y}' \stackrel{iid}{\sim} \mathcal{N} \left(\overrightarrow{\mu}^{\top} \mathbf{A}, \overrightarrow{\sigma}^{2 \top} \mathbf{A} \right)$$

Belief Updating (BeU)

$$\begin{cases} \mathbf{M}_t &= \mathbf{M}_{t-1} + \Delta \mathbf{M}_t \\ \mathbf{V}_t &= \mathbf{V}_{t-1} + \Delta \mathbf{V}_t \end{cases} \text{ where } \begin{cases} \Delta \mathbf{M}_t &= \mathbf{G}_t^A \odot (\mathbf{Y}_t - \mathbf{M}_{t-1}) \\ \Delta \mathbf{V}_t &= -\mathbf{G}_t^A \odot \mathbf{V}_{t-1} \\ \mathbf{G}_t^A &= \mathbf{G}_t \odot \mathbf{A}_t \\ \mathbf{G}_t &= \frac{\mathbf{V}_{t-1}}{\mathbf{V}_{t-1} + \mathbf{\Sigma}} \text{ (element-wise division)} \\ \mathbf{\Sigma} &= \begin{cases} \overrightarrow{\sigma}^2 \mathbf{1}_{1 \times N} & \text{if error is task dependent} \\ \sigma_\epsilon^2 \mathbf{1}_{K \times N} & \text{if use free parameter error} \end{cases}$$

- BMT $(\overrightarrow{\sigma}^2 \text{ or } \sigma_{\epsilon}^2)$
- no consideration of drift noise here ξ

Utility Updating

• UpdateUtility $\mathbf{Q}_t \leftarrow \mathbf{Q}_t^{(\mathrm{AcL})} + \mathbf{Q}_t^{(\mathrm{SoL})}$ Additionally could also consider weighting them like $\mathbf{Q}_t \leftarrow \gamma \mathbf{Q}_t^{(\mathrm{AcL})} + (1 - \gamma) \mathbf{Q}_t^{(\mathrm{SoL})}$

Action Learning (AcL)

$$\mathbf{Q}_t^{(\mathrm{AcL})} = \mathbf{M}_t + \beta_{\mathrm{u}} \mathbf{V}_t$$

- $UCB(\beta_u)$ (like above)
- MGE: $\mathbf{Q}_t^{(\mathrm{AcL})} = \mathbf{M}_t$ (i.e. $\beta_\mathrm{u} = 0$)
- ullet VGE: $\mathbf{Q}_t^{(\mathrm{AcL})} = \mathbf{V}_t$

Social Learning (SoL)

• SetSocial (SoS) with optional HomophilyConstruct $\equiv \mathcal{H}$

$$\mathbf{C}_{t} = \begin{cases} \mathbf{A}_{t-1} \\ \mathbf{M}_{t-1} \\ \mathbf{Y}_{t-1} \\ \operatorname{Argmax}\left(\overrightarrow{\rho}(t-1)\odot\mathbf{Y}_{t-1}\right) \\ \operatorname{Argmax}\left(\overrightarrow{\rho}(t-1)\odot\mathbf{Y}_{t-1}^{C}\right) \\ \operatorname{Argmax}\left(\overrightarrow{\rho}(t-1)\odot\mathbf{M}_{t-1}\right) \end{cases}$$

 $\mathbf{C}_t^{(h)}$ constructed similarly if using \mathcal{H}

$$\mathbf{W}_t = \begin{cases} \mathbf{W}^{(0)} & \text{if predefined} \\ \mathcal{H}\left(\mathbf{C}_t^{(h)}, \beta_h\right) & \text{if using homophily} \end{cases} \qquad \left[\longrightarrow \begin{cases} \psi_1 \text{ or } \psi_1' \\ \psi_2 \text{ or } \psi_2' \end{cases} \right]$$

$$\mathbf{C}_{t}^{(N)} \text{ constructed similarly if using } \mathcal{H}$$

$$\mathbf{W}_{t} = \begin{cases} \mathbf{W}^{(0)} & \text{if predefined} \\ \mathcal{H}\left(\mathbf{C}_{t}^{(h)}, \beta_{h}\right) & \text{if using homophily} \end{cases}$$

$$\mathcal{H}\left(\mathbf{C}, \beta_{h}\right) \overset{iid}{\sim} \operatorname{Bern}(\mathbf{P}_{h}) \text{ where } \mathbf{P}_{h} = \begin{cases} \psi_{1} \left[\left(\mathbf{C}^{\top}\mathbf{C}\right)^{\beta_{h}}\right] \\ \psi_{1} \left[\left(K - \mathbf{C}^{\top}\mathbf{C}\right)^{-\beta_{h}}\right] \end{cases}$$

$$\mathbf{S}_t = \mathbf{C}_t \mathbf{W}_t \\ \begin{bmatrix} \longrightarrow \begin{cases} \psi_1 \text{ or } \psi_1' \\ \psi_2 \text{ or } \psi_2' \end{cases} \longrightarrow \begin{cases} \mathtt{CMA} \\ \mathtt{EMA} \end{bmatrix}$$

• LearnSocial (SoL)

$$\mathbf{Q}_{t}^{(\text{SoL})} = \eta \mathbf{S}_{t}^{\alpha} \qquad \text{where shorthand } \eta \leftarrow \eta_{s}, \alpha \leftarrow \alpha_{s}$$

$$= \eta \left(\mathbf{C}_{t} \mathbf{W}_{t} \right)^{\alpha} \qquad \text{(without normalization or moving averaging)}$$

$$= \eta \left[\mathbf{A}_{t-1} \text{Bern} \left(\psi_{1} \left[\left(\mathbf{A}_{t-1}^{\top} \mathbf{A}_{t-1} \right)^{\beta_{h}} \right] \right) \right]^{\alpha} \qquad \text{(simplest form)}$$