

Estado de desarrollo actual de la tecnología fotovoltaica

Jornada UPM-UNEF-AS Solar Cambio energético y autoconsumo solar en España – los retos para la nueva legislatura

José María Román

Laboratory Director

e-mail: jm.roman@yingli.com

Madrid, 16 diciembre 2015

R&D, Aftersales Service Center

Pol. Ind. Sur - Ctra. N-I km 32,1 E-28750 San Agustín del Guadalix (Madrid) Spain

Contenidos

YINGUI SOLAR

Power Your Life

- Eficiencia de células
 - Silicio tipo-n
 - Mejores contactos
 - Mayor captación
 - Tendencias de eficiencia
- Mejoras de módulos Yingli
- Sistemas con ganancias de captación
- Sistemas a 1500 Vdc
- Autoconsumo
- Integración arquitectónica
- Ideas

Eficiencia de células

Best Research-Cell Efficiencies

Presentación nº: 15-0002-DEV-02

16/12/2015

Eficiencia de células: silicio tipo-n

Uso de materiales tipo-n: la movilidad de los electrones es mejor que la de los huecos.

Power Your Life

Electrones dominan el transporte en materiales tipo-n. Son más ligeros en el Silicio.

$$m_e = 0.33 m_0$$

La curvatura de la banda de conducción es mayor

Huecos dominan el transporte en materiales tipo-p. Son más pesados en el Silicio.

$$m_h = 0.50 \, m_0$$

Indirect Bandgap Semiconductor

Tampere University of Technology (khamousk)

Eficiencia de células: mejores contactos

- Mejora de los contactos para reducir las pérdidas resistivas internas de la célula.
- Power Your Life
- PERC: Passivated Emitter Rear Cell (Célula con Emisor Posterior Pasivado): 20,5%
- IBC: Inter-digitated Back Contact (Contactos Posteriores Alternados): 21-22%

Screen-printed Ag-paste ARC n+ emitter Screen-printed Al-paste Back Surface Field PERC solar cell local BSF Passivation layer SiN_x capping layer

Institute for Solar Energy Research Hamelin (ISFH)

Presentación nº: 15-0002-DEV-02

Eficiencia de células: mayor captación

Mejora de la captación solar reduciendo los contactos frontrales

- Power Your Life
- MWT: Metal-Wrap Thorugh: todos los contactos se realizan en la parte posterior
- Células bifaciales

NPG Asia Materials (2010) 2, 96–102; doi:10.1038/asiamat.2010.82

Advances in crystalline silicon solar cell technology for industrial mass production

Tatsuo Saga (saga.tatsuo@sharp.co.jp)

Sharp Corporation, 282-1 Hajikami, Katsuragi-shi, Nara 639-2198, Japan

16/12/2015

ISE-Fraunhofer

WWW.YINGLISOLAR.COM | NYSE:YGE

Presentación nº: 15-0002-DEV-02

© 2013 Yinglisolar - 6

Eficiencia de células: Tendencias de eficiencia YINGLI SOLAR

YINGLI SOLAR

ITRPV: International Technology Roadmap for Photovoltaics

Power Your Life

Hoja de Ruta para la mejora de los módulos fotovoltaicos

Mejoras de módulos Yingli Solar

Ideas para el incremento de eficiencia de las células de Silicio cristalino

Power Your Life

- Panda 2.0
 - Células tipo-n
 - MWT
- Panda
 - Células tipo-n
 - Células bifaciales

CARACTERÍSTICAS ELÉCTRICAS

Parámetros eléctricos en condiciones de prueba estándar (STC)							
Tipo de módulo			YLxxxC-30b (xxx=P _{max})				
Potencia de salida	P _{max}	W	280	275	270	265	260
Tolerancias de potencia de salida	ΔP_{max}	W	0/+5				
Eficiencia del módulo	η"	%	17.2	16.9	16.6	16.3	16.0
Tensión en P _{max}	V _{mpp}	V	31.3	30.9	30.5	30.1	29.7
Intensidad en P _{max}	Impp	Α	8.96	8.91	8.85	8.79	8.74
Tensión en circuito abierto	V _∞	V	39.1	38.8	38.6	38.3	38.1
Intensidad en cortocircuito	l _{sc}	Α	9.50	9.47	9.43	9.37	9.35

STC: 1000 W/m2 de irradiación, 25°C de temperatura de célula, espectro AM 1.5g conforme a la EN 60904-3. Reducción media de la eficiencia relativa de 1,9% a 200 W/m2 según la EN 60904-1.

Presentación nº: 15-0002-DEV-02 16/12/2015

Mejoras de módulos Yingli Solar

Evolución en la producción de módulos Panda de 60 células

Power Your Life

Presentación nº: 15-0002-DEV-02 WWW.YINGLISOLAR.COM | NYSE:YGE 16/12/2015

Sistemas con ganacias de captación

Seguidores a 1-eje incrementa la captación 20-25% anual

Power Your Life

Simple operación y mantenimiento

 Módulos bifaciales: 20-40% de iluminación posterior por albedo

Gatton Solar Research Facility

The University of Queensland (Brisbane, Australia)

Presentación nº: 15-0002-DEV-02 WWW.YINGLISOLAR.COM | NYSE:YGE

Sistemas a 1500 Vdc

YINGLI SOLAR

- Reducción de pérdidas resistivas del sistema
 - Aumentar la tensión de funcionamiento a 1500 Vdc (minimiza péridas de transporte en DC, reducela cantidad y sección del cableado)
 - Usar inversores centrales junto a transformadores (minimiza pérdidas de transporte en AC)

Autoconsumo

YINGLI SOLAR

Power Your Life

- El consumo local reduce las pérdidas de transporte
 - Ajuste de la producción al consumo personal o de distrito

Parte de la energía fotovoltaica generada (kWh) se consume en tiempo real. El exceso de energía fotovoltaica que se consume en tiempo de generación se exporta a la red y se compensa (el exceso de energía se vende en el mercado eléctrico).

Presentación nº: 15-0002-DEV-02 16/12/2015

-1000

Integración arquitectónica

- Uso de superficies ociosas de edificios
 - Sustitución de materiales constructivos: reduce el coste de las instalaciones (aumenta la eficiencia económica)

Integración arquitectónica

YINGUI SOLAR

Uso de superficies ociosas de edificios

Power Your Life

Sustitución de materiales constructivos: reduce el coste de las instalaciones (aumenta la eficiencia económica)

Ideas

Aumento de la eficiencia de células y módulos

- Power Your Life
- Mejor eficiencia de células según tecnología (c-Si tipo-n, mayor movilidad de los portadores minoritarios)
- Reducción de pérdidas resistivas y recombinación (5 puntos porcentuales de las pérdidas en las células)
- Mayor superficie de captación (menos contactos frontales, MWT, células bifaciales)
- Módulos adaptados para trabajar a 1500 Vdc
- Sistemas más eficientes
 - Reducción de pérdidas resistivas:
 - Aumentar la tensión de funcionamiento a 1500 Vdc (minimiza péridas de transporte en DC, reducela cantidad y sección del cableado)
 - Usar inversores centrales junto a transformadores (minimiza pérdidas de transporte en AC)
 - Consumo directo por ajuste de generación y consumo.
 - Aumentar la captación de radiación:
 - uso de seguidores a 1-eje (aumento del 20% en la captación)
 - uso de superficies improductivas, ociosas, y sustitución de materiales constructivos: reduce el coste de las instalaciones (aumenta la eficiencia económica).
 - Ejemplo de fachada de Yingli
 - Ejemplo de cubierta de Policía de San Agustín del Guadalix

Estado de desarrollo actual de la tecnología fotovoltaica

Jornada UPM-UNEF-AS Solar Cambio energético y autoconsumo solar en España – los retos para la nueva legislatura

José María Román

Laboratory Director e-mail: <u>im.roman@yingli.com</u>

Madrid, 16 diciembre 2015

R&D, Aftersales Service Center

Pol. Ind. Sur - Ctra. N-I km 32,1 E-28750 San Agustín del Guadalix (Madrid) Spain

¡Gracias!