

Сектор теоретической астрофизики

Излучение чёрных дыр и способы его наблюдения

Лысый Ю.А., Кислицын П.А., Иванчик А.В.

Излучение Хокинга

Квази-чернотельное

greybody factors

$$\frac{d^2 N_i}{dt dE} = \frac{\Gamma(E, m_i, s_i)}{e^{\frac{E}{kT}} \pm 1}$$

Temperature

Температура

$$T = \frac{\hbar c^3}{8\pi k G M_{\rm BH}} \approx 6.2 \times 10^{-8} \frac{M_{\odot}}{M_{\rm BH}} \quad \text{K}$$

Grey-body factors

Излучение Хокинга

Излучение Хокинга

Macca	Радиус Шварцшильда	Температура	Время испарения ¹
$10^9 M_{\odot}$	20 a.e.	$6 \times 10^{-17} \text{ K}$	$\sim 10^{82} t_0$
$4 \times 10^6 M_{\odot}$	0.08 a.e	$1 \times 10^{-14} \text{ K}$	$\sim 10^{75} t_0$
${f M}_{\odot}$	3 км	$6 imes 10^{-8}~{ m K}$	$\sim 10^{55}\mathrm{t_0}$
$M_{\oplus} \approx 6 \times 10^{27} \Gamma$	0.9 см	$0.02~\mathrm{K}$	$\sim 10^{38} t_0$
$4.5 \times 10^{25} \; \Gamma^{\dagger}$	67 мкр	$2.7255 \text{ K } (T_{\text{CMB}}^{0})$	$\sim 10^{32} t_0$
$10^{23} \ \Gamma$	0.1 мкм	$1 \times 10^3 \text{ K}$	$\sim 10^{24} t_0$
$2 \times 10^{16} \mathrm{r}^{\dagger\dagger}$	20 фм	$5 \times 10^9 \text{ K}$	$\sim 10^4 t_0$
$10^{15} \ \Gamma$	1 фм	$1\times 10^{11}\mathrm{K}$	$\sim t_0$
$10^{13} \ \Gamma$	$1 \times 10^{-15} \text{ cm}$	$1~{ m GeV/k}$	$\sim 10^4\mathrm{лет}$
$10^{11} \ \Gamma$	$1 \times 10^{-17} \text{ cm}$	$100~{ m GeV/k}$	$\sim 1\mathrm{нед}$
10^9 г	$1 \times 10^{-19} \text{ cm}$	$10^4~{ m GeV/k}$	~ 1 ceĸ
* $M_{\rm Pl} \sim 10^{-5} \ {\rm \Gamma}$	$*2l_{\rm Pl} \sim 10^{-33} \ {\rm cm}$	$^*T_{ m Pl}/8\pi \sim 10^{19}{ m GeV/k}$	** $[t_{\rm Pl} \div \infty]$

Испарение черных дыр

$$\frac{dM}{dt} = -\frac{1}{M^{\alpha}}, \ \alpha \neq -1$$

$$\frac{M}{M_0}\left(\frac{t}{ au}\right)$$
 — не зависит от M_0

Излучение Хокинга

Эквивалентное условие

$$\lambda_{C} \sim R_{G}$$

kT~mc²

Какие частицы рождаются?

Какие частицы рождаются?

Какие частицы рождаются?

Начинают рождаться нейтрино

M≈10²³ g

Вторичное излучение

$$\frac{d^2 N_i^{\text{pri}}}{dt dE} + \frac{d^2 N_j^{\text{sec}}}{dt dE}$$

адронизация + распад тяжелых лептонов и калибровочных бозонов

Спектры излучения различных частиц

Нейтрино всегда больше

Поток нейтрино с учетом расширения Вселенной

Концентрация первичных черных дыр

Излучение Хокинга (первичное + вторичное)

$$\frac{d\Phi}{dE_{\nu}}(E_{\nu}) = \frac{c}{4\pi} n_{\text{PBH0}} \int_{t_{min}}^{t_{max}} dt (1+z) \frac{d^2N}{dt dE_{\nu}} (t, E_{\nu}(1+z))$$

Учет всего времени испарения черной дыры

Эволюция сигнала

Код Blackhawk¹ позволяет рассчитывать спектры

```
This is the BlackHawk_inst main routine. It executes all intermediate steps
// by calling routines defined in './src'. It returns 1 if the computation was
// completed, 0 otherwise.
int main(int argc,char **argv)
       printf("\n
       printf("
       printf(
       printf(
       printf(
       printf('
       printf('
       printf(
       printf(
       printf(
       printf("
       printf('
       printf(
       printf(
       printf("
       printf("
       printf('
       printf('
       printf('
       printf("
       printf('
       printf(
       printf(
       printf(
       printf(
       printf(
       printf
       printf(
       printf(
       printf(
                                                  sMMh+yys++smy/
       printf(
                                          :o+, `oNd+hMMs
       printf('
                                           -/sdMNy+/+oyhs/s
       printf(
       printf("\t #####################\n");
                      HAWKING SPECTRUM
                     COMPUTATION DEVICE
       printf("\t ##################\n\n");
```

Различные спектры масс

Первичное и вторичное излучения

Эволюция и суммирование спектра

n_{PBH0} constraints

n_{PBH0} constraints

Полный поток нейтрино

Будущие эксперименты

Спасибо за внимание!

*pavel.kislitsyn@gmail.com github.com/fePavel/black_holes

Нерелятивистские нейтрино

Neutrino and photon instantaneous spectra

Potential for escaping

Figure 10. Plots of V as a function of r_* , for $\ell = \{0, 1, 2, 3\}$.

with

$$V(r) = \frac{r-1}{r^3} \left(m^2 r^2 + \ell(\ell+1) + \frac{1}{r} \right). \tag{4.11}$$

Components of the backgound

