Transformers

With slides from LP Morency and Paul Liang

Contextualized Sequence Representations

Sequence Encoding - Contextualization

How to encode this sequence while modeling the interaction between elements (e.g., words)?

Option 1: Bi-directional LSTM: (e.g., ELMO)

Sequential Computation

But harder to parallelize...

Sequence Encoding - Contextualization

Option 2: Convolutions

Can be parallelized!

But modeling long-range dependencies requires multiple layers.

And convolutional kernels are static.

Sequence Encoding - Contextualization

Option 3: Self-attention

Can be parallelized!
Long-range dependencies
Dynamic attention weights

Self-Attention

Self-Attention

Self-Attention

What if we want to attend simultaneously to multiple subspaces of x?

Transformer Multi-Head Self-Attention

Transformer Multi-Head Self-Attention

Transformer Multi-Head Self-Attention

What happens if the words are shuffled?

Position embeddings

☐ Position information is not encoded in a self-attention module

How can we encode position information?

Simple approach: one-hot encoding

Position embeddings

☐ Position information is not encoded in a self-attention module

How can we encode position information?

Simple approach: one-hot encoding + linear embeddings + Sum concat

Transformer – Layers

Multi-head attention is basically linear

=> need MLPs, and many layers (12 in BERT, 96 in GPT-3)

Residual connections allow each layer to update only a small subspace of the hidden space => more than just contextualized word vectors

Transformer Key Ideas

- 1. Learn to route information, then apply local computation to compose it.
- 2. Attention is input-dependent similarity
- 3. Compose multiple simple learned operations
- 4. Highly parallelizable; allows data to trump inductive biases

For more intuition: https://transformer-circuits.pub/2021/framework/index.html