Basepoint Free Theorem on Positive Characteristic

This section refers to [Kee99]. For site and algebraic space, we refer to [Knu71], [Art70], [Stacks] and [FGA05]. Throughout this section, all schemes (or algebraic space) are of finite type over a base scheme S with S noetherian.

1 Preliminaries

Theorem 1 (Serre vanishing in relative setting, ref. [Laz04, Theorem 1.7.6]). Let $f: X \to S$ be a proper morphism of schemes, \mathcal{L} a line bundle and \mathcal{F} a coherent sheaf on X. Suppose that \mathcal{L} is relatively ample. Then there exists $n_0 \in \mathbb{m}$ such that for all $n \geq n_0$, the higher direct image sheaves $R^i f_* \mathcal{F} \otimes \mathcal{L}^{\otimes n}$ are zero for all i > 0.

Theorem 2 (ref. [Laz04, Proposition 1.4.37]). Let X be a projective scheme over a field \mathbb{k} . Then there exists a scheme T of finite type over \mathbb{k} and a line bundle \mathcal{L} on $X \times T$ such that every numerically trivial line bundle on X arises as the restriction $\mathcal{L}|_{X \times \{t\}}$ for some $t \in T$.

Theorem 3 (Theorem on Formal Functions, ref. [Har77, Chapter III, Theorem 11.1]). Let $f: X \to Y$ be a projective morphism of noetherian schemes, let \mathcal{F} be a coherent sheaf on X, and let $y \in Y$. Then the natural map

$$(R^if_*\mathcal{F})^{\wedge}_y\to \varprojlim H^i(X_n,\mathcal{F}_n)$$

is an isomorphism for all $i \geq 0$, where $X_n = X \times_Y \operatorname{Spec} \mathcal{O}_{Y,y}/\mathfrak{m}_y^n$ and $\mathcal{F}_n = \mathcal{F}|_{X_n}$.

Definition 4. Let X be a proper variety and \mathcal{L} a nef line bundle on X. A closed subvariety $Z \subseteq X$ is called the *exceptional* for \mathcal{L} if $\mathcal{L}^{\dim Z} \cdot Z = 0$. The *exceptional locus* of \mathcal{L} , denoted by $\operatorname{Exc} \mathcal{L}$, is defined as the closure of the union of all exceptional subvarieties of \mathcal{L} .

If \mathcal{L} is semiample, then $\operatorname{Exc} \mathcal{L} = \operatorname{Exc} \varphi$ for the fibration $\varphi : X \to Y$ induced by \mathcal{L} .

Definition 5. Let X be a proper scheme and \mathcal{L} a nef line bundle on X. We say that \mathcal{L} is *endowed* with a map (EWM) if there is a proper morphism $\varphi: X \to Y$ to a proper algebraic space such that $\dim Z > \dim f(Z)$ if and only if Z is an exceptional subvariety of \mathcal{L} . If such a morphism is a fibration, then it is unique, called the *fibration associated to* \mathcal{L} .

Proposition 6. Let X be a proper variety and \mathcal{L} a nef line bundle on X endowed with a map. Let $\varphi: X \to Y$ be the associated fibration. Then TFAE:

- (a) \mathcal{L} is semiample;
- (b) $\mathcal{L}^{\otimes m}$ is pulled back from an ample line bundle on Y for some $m \in \mathbb{Z}_{>0}$;

Date: August 8, 2025, Author: Tianle Yang, My Homepage

(c) $\mathcal{L}^{\otimes m}$ is pulled back from a line bundle on Y for some $m \in \mathbb{Z}_{>0}$;

Proof. (a) \Leftrightarrow (b) \Rightarrow (c) is clear. Replacing \mathcal{L} by $\mathcal{L}^{\otimes m}$ for some $m \in \mathbb{Z}_{>0}$, suppose that $\mathcal{L} = \varphi^* \mathcal{L}_Y$ for some line bundle \mathcal{L}_Y on Y. We show that \mathcal{L}_Y is ample. Indeed, for all closed subvarieties $Z \subset Y$, we can find $Z' \subset X$ such that $Z' \Rightarrow Z$ and dim $Z' = \dim Z$. Then

$$\mathcal{L}_v^{\dim Z} \cdot Z = d\mathcal{L}^{\dim Z'} \cdot Z' > 0$$

where $d = \deg(Z' \to Z)$. Hence \mathcal{L}_Y is ample.

Definition 7. A morphism $f: X \to Y$ of schemes is called a *universal homeomorphism* if for every Y-scheme Y', the base change $X \times_Y Y' \to Y'$ is a homeomorphism between the underlying topological spaces.

Example 8. Let X be a scheme of finite type over \mathbb{k} . Then the natural morphism $X_{\text{red}} \to X$ is a universal homeomorphism.

Let X be a scheme over S of characteristic p. Then the absolute and relative Frobenius morphisms are universal homeomorphisms. Yang: To be completed.

The morphism $\operatorname{Spec} \mathfrak{C} \to \operatorname{Spec} \mathfrak{r}$ is not a universal homeomorphism.

Lemma 9. Let $f: X \to Y$ and $g: Y \to Z$ be two morphisms of schemes with g finite. Let \mathcal{F} be a coherent sheaf on X. Then the we have

$$R^i(g\circ f)_*\mathcal{F}=g_*(R^if_*\mathcal{F}).$$

Proof. Yang: This is a simple application of the Grothendieck spectral sequence. However, I do not know anything about it. \Box

2 Algebraic space

Definition 10. Let \mathbf{C} be a category. A *Grothendieck topology* on \mathbf{C} is a collection of sets of arrows $\{U_i \to U\}_{i \in I}$, called *covering*, for each object U in \mathbf{C} such that:

- (a) if $V \to U$ is an isomorphism, then $\{V \to U\}$ is a covering;
- (b) if $\{U_i \to U\}_{i \in I}$ is a covering and $V \to U$ is a arrow, then the fiber product $U_i \times_U V \to V$ exists and $\{U_i \times_U V \to V\}$ is a covering of V;
- (c) if $\{U_i \to U\}_{i \in I}$ and $\{U_{ij} \to U_i\}_{j \in J_i}$ are coverings, then the collection of composition $\{U_{ij} \to U_i \to U\}_{i \in I, j \in J_i}$ is a covering.

A site is a pair (C, j) where C is a category and j is a Grothendieck topology on C.

Note that sheaf is indeed defined on a site.

Definition 11. Let (\mathbf{C}, j) be a site. A *sheaf* on (\mathbf{C}, j) is a functor $\mathcal{F}: \mathbf{C}^{op} \to \mathbf{Set}$ satisfying the following condition: for every object U in \mathbf{C} and every covering $\{U_i \to U\}_{i \in I}$ of U, if we have a collection of elements $s_i \in \mathcal{F}(U_i)$ such that for every i, j, the pullback $s_i|_{U_i \times_U U_j}$ and $s_j|_{U_i \times_U U_j}$ are equal, then there exists a unique element $s \in \mathcal{F}(U)$ such that for every i, the pullback $s|_{U_i} = s_i$.

Definition 12. Let X be a scheme. The *big étale site* of X, denoted by $(\mathbf{Sch}/X)_{\text{\'et}}$, is the category of schemes over X with the Grothendieck topology generated by étale morphisms, that is, a collection of morphisms $\{U_i \to U\}_{i \in I}$ is a covering if and only if each U_i is étale over U and the union of their images is the whole U.

Let X be a scheme over S. By Yoneda's Lemma, it is equivalent to give a functor $h_X : \mathbf{Sch}_S^{op} \to \mathbf{Set}$ such that for any S-scheme T, $h_X(T) = \mathrm{Hom}_{\mathbf{Sch}_S}(T,X)$. Yang: Easy to check that h_X is a sheaf on the big étale site $(\mathbf{Sch}/S)_{\mathrm{\acute{e}t}}$.

Definition 13. Let U be a scheme over a base scheme S. An étale equivalence relation on U is a morphism $R \to U \times_S U$ between schemes over S such that:

- (a) the projections in two factors $R \to U$ are étale and surjective;
- (b) for every S-scheme T, $h_R(T) \to h_U(T) \times h_U(T)$ gives an equivalence relation on $h_U(T)$ settheoretically.

Definition 14. An algebraic space X over a base scheme S is an S-scheme U together with an étale equivalence relation $R \to U \times_S U$.

Let X = (U, R) be an algebraic space over S. We explain X as a sheaf on the big étale site $(\mathbf{Sch}/S)_{\text{\'et}}$. For any scheme T over S, $h_R(T)$ is an equivalence relation on $h_U(T)$. The rule sending T to the set of equivalence classes of $h_R(T)$ gives a presheaf on the site $(\mathbf{Sch}/S)_{\text{\'et}}$. The sheafification of this presheaf is the sheaf associated to the algebraic space X. Explicitly, we have

$$X(T) := \left\{ f = (f_i) \middle| \begin{array}{l} \{T_i \to T\} \text{ a covering, } f_i \in h_U(T_i) \text{ such} \\ \text{that } (f_i|_{T_i \times_T T_i}, f_j|_{T_i \times_T T_i}) \in h_R(T_i \times_T T_j) \end{array} \right\} / \sim,$$

where

$$\alpha \sim \beta \quad \text{ if } \exists \{S_i \to T\} \text{ such that } (\alpha|_{S_i}, \beta|_{S_i}) \in h_R(S_i).$$

Definition 15. An algebraic space over a base scheme S is a sheaf F on the big étale site $(Sch/S)_{\text{\'et}}$ such that

- (a) the diagonal morphism $F \to F \times_S F$ is representable;
- (b) there exists a scheme U over S and a map $h_U \to F$ which is surjective and étale.

The morphism between algebraic spaces F_1, F_2 is defined as a natural transformation of functors F_1, F_2 .

Remark 16. By Yoneda's Lemma, given a morphism $h_U \to F$ between sheaves is the same as giving an element of F(U). We may abuse the notation.

Definition 17. Let p be a property of morphisms of schemes satisfying the following conditions:

- (a) is preserved under any base change;
- (b) is étale local on the base. Yang: In [Stacks], this requires that "fppf local".

Let $\alpha: F \to G$ be a representable morphism of sheaves on the big étale site $(\mathbf{Sch}/S)_{\mathrm{\acute{e}t}}$. We say that α has property p if for every $h_T \to G$, the base change $h_T \times_G F \to F$ has property p.

Remark 18. The fiber product $F_1 \times_F F_2$ is just defined as $F_1 \times_F F_2(T) := F_1(T) \times_{F(T)} F_2(T)$ for any object $T \in \text{Obj}(\mathbf{Sch}_S)$. We say that a morphism $f: F_1 \to F_2$ of sheaves is representable if for every $T \in \text{Obj}(\mathbf{Sch}/S)$ and every $\xi \in F_2(T)$, the sheaf $F_1 \times_{F_2} h_T$ is representable as a functor. Here $h_T \to F_2$ is given by

$$h_T(U) \to F_2(U), \quad f \in \operatorname{Hom}(U,T) \mapsto F_2(f)(\xi) \in F_2(U).$$

In our case, given an arbitrary $h_U \to F \times F$ is equivalent to giving morphisms $h_{U_i} \to F$ for i=1,2. And the fiber product $F \times_{F \times F} (h_{U_1} \times h_{U_2})$ is just the fiber product $h_{U_1} \times_F h_{U_2}$. Hence the first condition in Definition 15 is equivalent to that $h_{U_1} \times_F h_{U_2}$ is representable for any U_1, U_2 over F. This implies that $h_U \to F$ is representable, whence the second condition in Definition 15 makes sense.

Definition 19. Let X be an algebraic space over a base scheme S. Two two morphisms form field $\operatorname{Spec} k_i \to X$ is called equivalent if there is a common extension $K \supset k_1, k_2$ such that we have $\operatorname{Spec} K \to \operatorname{Spec} k_i \to X$ are the same for i=1,2. The underlying point set of X, denote by |X|, is defined as the set of equivalence classes of morphisms $\operatorname{Spec} k \to X$ for all field k over the base field k.

This definition coincides with the underlying set of a scheme. Let $\alpha: X \to Y$ be a morphism of algebraic spaces. It induces a map $|\alpha|:|X|\to |Y|$ by $x\mapsto \alpha\circ x$ (vertical composition).

Proposition 20 (ref. [Stacks, Lemma 66.4.6]). There is a unique topology on |X| such that

- (a) if X is a scheme, then the topology coincides with the usual topology.
- (b) every morphism of algebraic spaces $f: X \to Y$ induces a continuous map $|f|: |X| \to |Y|$.
- (c) if U is a scheme and $U \to X$ is étale, then the induced map $|U| \to |X|$ is open.

This topology is called the *Zariski topology* on |X|.

Definition 21. Let X be an algebraic space over a base scheme S. All étale morphisms $U \to X$ with U scheme form a small site $X_{\text{\'et}}$. All étale morphisms $U \to X$ with U algebraic space form a small

site $X_{\rm sp, \, \acute{e}t}$. The structure sheaf \mathcal{O}_X of X is given by $U \mapsto \Gamma(U,\mathcal{O}_U)$ for every étale morphism $U \to X$ from a scheme. It extends to a sheaf on the site $X_{\rm sp, \, \acute{e}t}$ uniquely.

Example 22. Let $U = \mathbb{a}^1_{\mathbb{C}}$ and $R \subset U \times U$ given by $y = x + n, n \in \mathbb{Z}$. Then R is a disjoint union of lines in $U \times U$. Write $R = \coprod_{n \in \mathbb{Z}} R_n$ with $R_n = \{(x, x + n) : x \in \mathbb{C}\}$. Then the projection is given by

$$\pi_1|_{R_n}: R_n \to U, \quad (x, x+n) \mapsto x,$$

$$\pi_2|_{R_n}: R_n \to U, \quad (x, x+n) \mapsto x+n.$$

Easily see that the projection $\pi_i: R \to U$ is étale and surjective for i=1,2. Let $r_{ij}: R \times U \to U \times U \times U$ be the morphism which maps ((x,y),u) to (a_1,a_2,a_3) where $a_i=x$, $a_j=y$ and $a_k=u$ for $k \neq i,j$. Since $\Delta_U \to U \times U$ factors through R, $(\pi_1,\pi_2)=(\pi_2,\pi_1)$ and $r_{12}\times_{(U\times U\times U)}r_{23}$ factors through r_{13} , we have that $h_R(T)$ is an equivalence relation on $h_U(T)$ for all T over S. Then X:=(U,R) is an algebraic space.

We do not check the representability here but give an example. Let $U \to X$ be the natural morphism given by $\mathrm{id}_U \in X(U)$. For any scheme T over \mathfrak{C} , we have

$$(U \times_X U)(T) = \{(f,g) \in h_{U \times U}(T) : \exists \{T_i \to T\} \text{ s.t. } (f_i,g_i) \in h_R(T_i)\} = h_R(T).$$

Hence the fiber product $h_U \times_X h_U$ is represented by R.

We show that $X \ncong \mathbb{C}^{\times}$ by computing the the global sections. Consider the covering $U \to X$, a section $s \in \mathcal{O}_X(X)$ is given by a section $s \in \Gamma(U,\mathcal{O}_U) = \mathbb{C}[t]$ such that $\pi_1^*s = \pi_2^*s$ in $\Gamma(R,\mathcal{O}_R)$. This means that s(x+n) = s(x) for all $n \in \mathbb{Z}$. Hence s is a constant function. In particular, $\mathcal{O}_X(X) = \mathbb{C} \neq \mathbb{C}[t,t^{-1}]$.

The underlying set |X| is union of the quotient set \mathbb{C}/\mathbb{Z} and a generic point. The Zariski topology on |X| is the trivial topology.

In following, we will use the technique of *local construction* to construct many scheme-like objects on algebraic spaces. For local construction, see [Knu71]. Roughly speaking, for every étale morphism $U \to X$ with U a scheme, we construct a scheme-theoretic object on U which is compatible under base change. Then we glue these objects together to get a global object on X.

Definition 23. Let X be an algebraic space over a base scheme S. A coherent sheaf on X is a sheaf \mathcal{F} on $X_{\text{\'et}}$ such that for every covering $\{U_i \to X\}$ with U_i schemes, the sheaf $\mathcal{F}|_{U_i}$ is coherent for every i. It extends to a sheaf on the site $X_{\text{Sp. \'et}}$ uniquely.

An *ideal sheaf* on X is a coherent sheaf $\mathcal{I} \subset \mathcal{O}_X$. It defines a closed subspace $V(\mathcal{I}) \subset X$ by Yang: to be completed. And every closed subspace $Y \subset X$ is defined by an ideal sheaf \mathcal{I}_Y such that $V(\mathcal{I}_Y) = Y$.

Definition 24. Let X be an algebraic space over a base scheme S. A line bundle on X is a coherent sheaf \mathcal{L} on X such that for every covering $\{U_i \to X\}$ with U_i schemes, the sheaf $\mathcal{L}|_{U_i}$ is a line bundle on U_i . It extends to a sheaf on the site $X_{\rm sp, \ \acute{e}t}$ uniquely.

Theorem 25 (ref. [Stacks, Theorem 76.36.4]). Let $f: X \to Y$ be a proper morphism of algebraic spaces over a base scheme S. Then there exists a factorization

$$X \xrightarrow{f_1} Z \xrightarrow{f_2} Y$$

where f_1 has geometrically connected fibers and $(f_1)_*\mathcal{O}_X = \mathcal{O}_Z$ and f_2 is finite.

Definition 26. Let X be an algebraic space over a base scheme S and Y a closed subset of |X|. The formal completion of X along Y, denoted by \mathfrak{X} , is

Its structure sheaf $\mathcal{O}_{\mathfrak{X}}$ is defined as $\varprojlim_n \mathcal{O}_X/\mathcal{I}^n$ where \mathcal{I} is the ideal sheaf of Y in \mathcal{O}_X . Yang: to be completed.

Definition 27. Let X be an algebraic space and Y a closed subset of X. A modification of X along Y is a proper morphism $f: X' \to X$ and a closed subset $Y' \subset X'$ such that $X' \setminus Y' \to X \setminus Y$ is an isomorphism and $f^{-1}(Y) = Y'$.

Theorem 28 (ref. [Art70, Theorem 3.1]). Let Y' be a closed subset of an algebraic space X' of finite type over \mathbb{k} . Let \mathfrak{X}' be the formal completion of X' along Y'. Suppose that there is a formal modification $\mathfrak{f}: \mathfrak{X}' \to \mathfrak{X}$. Then there is a unique modification

$$f: X' \to X, \quad Y \subset X$$

such that the formal completion of X along Y is isomorphic to \mathfrak{X} and the induced morphism $\mathfrak{X}' \to \mathfrak{X}$ is isomorphic to \mathfrak{f} .

Theorem 29 (ref. [Art70, Theorem 6.2]). Let \mathfrak{X}' be a formal algebraic space and $Y' = V(\mathcal{I}')$ with \mathcal{I}' the defining ideal sheaf of \mathfrak{X}' . Let $f: Y' \to Y$ be a proper morphism. Suppose that

(a) for every coherent sheaf \mathcal{F} on \mathfrak{X}' , we have

$$R^1f_*\mathcal{I}'^n\mathcal{F}/\mathcal{I}'^{n+1}\mathcal{F}=0,\quad \forall n\gg 0;$$

(b) for every n, the homomorphism

$$f_*(\mathcal{O}_{\mathfrak{X}'}/\mathcal{I}'^n) \bigotimes_{f_*\mathcal{O}_{Y'}} \mathcal{O}_Y \to \mathcal{O}_Y$$

is surjective.

Then there exists a modification $f: \mathfrak{X}' \to \mathfrak{X}$ and a defining ideal sheaf \mathcal{I} of \mathfrak{X} such that $V(\mathcal{I}) = Y$ and f induces f on Y.

Theorem 30 (ref. [Art70, Theorem 6.1]). Let Y' be a closed algebraic subspace of an algebraic space X' and $f_0: Y' \to Y$ a finite morphism. Then there exists a modification $f: X' \to X$ whose

restriction to Y' is f_0 . It is the amalgamated sum $X = X' \coprod_{Y'} Y$ in the category of algebraic spaces \mathbf{AlgSp} .

Example 31. Let $X = \mathbb{a}^2 = \operatorname{Spec} \mathbb{k}[x,y]$ and Y = V(y) be the x-axis. Let $f_0 : Y' = \mathbb{a}^1 \to Y, x \mapsto x^2$. Then there exists a modification $f : X' \to X$ such that the restriction $f|_{Y'} : Y' \to Y$ is f_0 . Yang: To be completed.

3 A sufficient and necessary condition for EWM

In this and next subsection, we assume that all schemes (algebraic spaces) are of finite type over a field \mathbb{k} with characteristic p > 0.

Lemma 32. Let $f: X \to Y$ be a finite morphism of algebraic space which is of finite type over \mathbb{k} . Suppose that f is a universal homeomorphism. Then there exists $q = p^n$ such that the relative Frobinius morphism $\operatorname{Frob}_{X/\mathbb{k}}^n$ factors as

$$\operatorname{Frob}_{X/\mathbb{k}}^n: X \xrightarrow{f} Y \to X^{(q)}.$$

Proof. Yang: I can only prove this for schemes. Suppose that X, Y are affine. Factor it as $A \twoheadrightarrow B \hookrightarrow C$ with A, B, C k-algebras.

For $A \to B$, let I be the kernel of the surjection. Since $\operatorname{Spec} B \to \operatorname{Spec} A$ is finite universal homeomorphism, we have that I is a nilpotent ideal. Hence there exists q such that $I^q = 0$. Let $a, a' \in A$ with the same image b in B. Then we have $a^q - a'^q \in I^q = 0$. Hence $a^q = a'^q$ in A. This gives a map $B^q \to A, b^q \mapsto a^q$.

For $B \hookrightarrow C$, we induct on the dimension. If C is artinian, then $0 = C^q \subset B \subset C$. In general case, this shows that $B \cdot C^{q_1} \subset C$ is an isomorphism at generic points. Let $I := \operatorname{Ann}(B \cdot C^q/B) \subset B$. This is the conductor of extension $B \cdot C^{q_1} \subset C$, whence also an ideal of $B \cdot C^{q_1}$. To see this, for every $x \in B \cdot C^{q_1}$, $b \in I$, we have $xbB \cdot C^{q_1} = bB \cdot C^{q_1} \subset B$. By induction hypothesis, we have $(BC^{q_1}/I)^{q_2} \subset B/I$. For $x \in BC^{q_1}$, there exists $b \in B$ and $\delta \in I \subset B$ such that $x^{q_2} = b + \delta \in B$. Hence we have $(BC^{q_1})^{q_2} \subset B$. In particular, we have $C^{q_1q_2} \subset (B \cdot C^{q_1})^{q_2} \subset B$.

In general case, we have

$$C^{q_1q_2} \longrightarrow A' \longrightarrow C^{q_1} \downarrow \qquad ,$$

$$A \longrightarrow B \hookrightarrow C$$

where A' is the preimage of C^{q_1} in A. One we have $C^q \to A \to C$, note that $A \to C$ is over \mathbb{K} , then it gives

$$C^q \to C^{(q)} \to A \to C$$
.

Corollary 33. Let $Z \to X$ be a finite universal homeomorphism of algebraic spaces and $Z \to Y$ any finite morphism of algebraic spaces. Suppose that X,Y,Z are all of finite type over \Bbbk . Then the amalgamated sum $X \coprod_Z Y$ exists in the category of algebraic spaces. Moreover, $Y \to X \coprod_Z Y$ is a finite universal homeomorphism.

Proof. By Lemma 32, we have a diagram

Denote $X \to Y^{(q)}$ by f. Let

$$\mathcal{A} := \operatorname{Ker}(\mathcal{O}_X \times \mathcal{O}_Y \to \mathcal{O}_Z, \quad (s,t) \mapsto f^*s - g^*t).$$

Then \mathcal{A} is an $\mathcal{O}_{Y^{(q)}}$ -algebra. Set $W := \operatorname{Spec}_{Y^{(q)}} \mathcal{A}$. Then $W = X \coprod_Z Y$ is the amalgamated sum in the category of algebraic spaces. Yang: The most important point is that $Z \to W$ is finite. Yang: At least in the cat of schemes.

Proposition 34. Let $g: X' \to X$ be a proper, finite universal homeomorphism between algebraic spaces. Then a line bundle \mathcal{L} on X is endowed with a map if and only if $g^*\mathcal{L}$ is endowed with a map.

Proof. Let $f: X' \to Z$ be the map endowed on $g^*\mathcal{L}$. By Lemma 32, we have a commutative diagram

$$X' \xrightarrow{g} X$$

$$\downarrow f \qquad \qquad \downarrow \chi'^{(q)} .$$

$$\downarrow Z \longrightarrow Z^{(q)}$$

Easy to check that $X \to Z^{(q)}$ is a map associated to \mathcal{L} .

Proposition 35. Let X be a projective scheme and \mathcal{L} a nef line bundle on X. Assume that $X = X_1 \cup X_2$ for closed subsets X_1 and X_2 . Suppose that $\mathcal{L}|_{X_i}$ is endowed with a fibration $g_i: X_i \to Z_i$ for i = 1, 2. Then \mathcal{L} is endowed with a map $g: X \to Z$.

Proof. Let $X_{12} := X_1 \cap X_2$. Let $X_{12} \to Z_{12}$ be the Stein factorization of the map $g_1|_{X_{12}}$. Then by Yang: Rigidity Lemma, it is also the Stein factorization of the map $g_2|_{X_{12}}$. Denote Y_i be the image

of Z_{12} in Z_i for i=1,2. Then we have a commutative diagram

Consider the sub-diagram

$$Z_{1}$$

$$h' \uparrow$$

$$Y_{1}$$

$$h \uparrow$$

$$Z_{2} \leftarrow Z_{12}$$

Here f is finite, h is finite universal homeomorphism and h' is a closed immersion. By Corollary 33, we have the amalgamated sum $Z' := Y_1 \coprod_{Z_{12}} Z_2$ exists in the category of algebraic spaces. Since f is finite, so is the induced morphism $Y_1 \to Z'$. Then by Theorem 30, the amalgamated sum $Z := Z' \coprod_{Y_1} Z_1$ exists in the category of algebraic spaces.

Then we have a commutative diagram

Directly check shows that g is a map associated to \mathcal{L} .

Proposition 36. Let X be a projective scheme and D a nef and big divisor on X. Then we can write D = A + E where A is an ample divisor and E is an effective divisor. Then D is endowed with a map iff $D|_{E_{red}}$ is endowed with a map.

Proof. By Proposition 34, we may assume that $D|_E$ is endowed with a map $f: E \to Z$. Let $\mathcal{L} = \mathcal{O}_X(-E)$ be the ideal sheaf of E. note that -E = A - D and D is f-numerically trivial. Hence $\mathcal{L}|_E$ is f-ample. By Serre's vanishing, for every coherent sheaf \mathcal{F} on X, there exists $n_0 \in \mathbb{R}$ such that for all $n \geq n_0$, we have

$$R^i f_* \mathcal{F}|_E \otimes \mathcal{L}|_E^{\otimes n} = 0$$

for all i>0. In particular, let $n\in\mathbb{Z}$ such that $R^if_*\mathcal{O}_X/\mathcal{L}\otimes\mathcal{L}^{\otimes m}=0$ for all $i>0, m\geq n$. Set

 $\mathcal{I} := \mathcal{L}^{\otimes n}$. Then by the exact sequence

$$0 \to \mathcal{L}^{n-1} \bigotimes \mathcal{O}_X/\mathcal{L} \to \mathcal{O}_X/\mathcal{L}^n \to \mathcal{O}_X/\mathcal{L} \to 0,$$

we have that $R^i f_*(\mathcal{O}_X/\mathcal{I} \otimes \mathcal{I}^t) = 0$ for all $i > 0, t \ge 1$. This implies that $f_*\mathcal{O}_X/\mathcal{I}^t \to f_*\mathcal{O}_X/\mathcal{I}$ is surjective for all $t \ge 1$.

Let

$$\begin{split} \mathcal{A} &:= \mathcal{O}_X \oplus \mathcal{I} T \oplus \mathcal{I}^2 T^2 \oplus \cdots, \\ \mathcal{M} &:= \mathcal{F} \oplus \mathcal{I} \mathcal{F} T \oplus \mathcal{I}^2 \mathcal{F} T^2 \oplus \cdots, \end{split}$$

where T is a formal variable to denote the grading. Then \mathcal{A} is a graded \mathcal{O}_X -algebra of finite type and \mathcal{M} is a finite graded \mathcal{A} -module. We have an exact sequence of graded \mathcal{A} -modules

$$0 \to \mathcal{K} \to \mathcal{M} \bigotimes_{\mathcal{A}} \mathcal{I}T \to \mathcal{M} \to 0$$
,

where $\mathcal{K} = \bigoplus \mathcal{K}_r T^r$ is a finite graded \mathcal{A} -module. Hence for $r \gg 1$, we have that $\mathcal{I}T \cdot \mathcal{K}_r T^r = \mathcal{K}_{r+1} T^{r+1}$. It implies that the image of $\mathcal{K}_{r+1} T^{r+1} \to \mathcal{M}_r T^r \otimes_{\mathcal{A}} \mathcal{I}T$ is contained in $\mathcal{I}\mathcal{M}_r$ for all $r \gg 1$. Tensor with $\mathcal{A} \otimes_{\mathcal{O}_X} \mathcal{O}_X/\mathcal{I}$, we have that

$$\mathcal{K}_{r+1} \otimes_{\mathcal{O}_X} \mathcal{O}_X/\mathcal{I} \to 0 \to \mathcal{M}_r \otimes_{\mathcal{O}_X} \mathcal{I} \otimes_{\mathcal{O}_X} \mathcal{O}_X/\mathcal{I} \to \mathcal{M}_{r+1} \otimes_{\mathcal{O}_X} \mathcal{O}_X/\mathcal{I} \to 0.$$

That is, $\mathcal{I}^r\mathcal{F}/\mathcal{I}^{r+1}\mathcal{F}\otimes_{\mathcal{O}_X/\mathcal{I}}\mathcal{I}/\mathcal{I}^2\cong \mathcal{I}^{r+1}\mathcal{F}/\mathcal{I}^{r+2}\mathcal{F}$ for all $r\gg 1$. Hence we have that

$$R^if_*(\mathcal{I}^{r-1}\mathcal{F}/\mathcal{I}^r\mathcal{F})=0$$

for all $i > 0, r \gg 1$.

Let $E' := V(\mathcal{I})$, we have that $D|_{E'}$ is endowed with a map $f' : E' \to Z'$ by Proposition 34. Moreover, we have a commutative diagram

$$E \xrightarrow{f} Z$$

$$\downarrow \qquad \qquad \downarrow^g$$

$$E' \xrightarrow{f'} Z'$$

with g finite. Then by Grothendieck Spectral Sequence, we have that

$$R^if'_*(\mathcal{I}^{r-1}\mathcal{F}/\mathcal{I}^r\mathcal{F})=0$$

for all $i > 0, r \gg 1$.

Then we can apply Theorems 28 and 29 to get a modification $X \to Y$. Note that $\operatorname{Exc} D \subset \operatorname{Supp} E$. It follows that $X \to Y$ is a map associated to D.

Theorem 37. Let X be a proper variety and \mathcal{L} a nef line bundle on X. Then \mathcal{L} is endowed with a map if and only if $\mathcal{L}|_{\text{Exc}\mathcal{L}}$ is endowed with a map.

Proof. By Proposition 35, we can assume that \mathcal{L} is big. Then the result follows from Proposition 36 and induction on dimension.

4 For semiample

Lemma 38. Let X be a projective scheme over $\mathbb{k} = \overline{\mathbb{F}_p}$. Then \mathcal{L} is numerically trivial if and only if \mathcal{L} is torsion in $\mathrm{Pic}(X)$.

Proof. Let T be the scheme in Theorem 2. Then \mathcal{L} corresponds to a \mathbb{F}_q -point of T. Note that there are only finitely many \mathbb{F}_q -points in T. Hence \mathcal{L} is torsion in Pic(X).

Proposition 39. Let $f: X \to Y$ be a finite universal homeomorphism between algebraic spaces of finite type over \mathbb{K} and \mathcal{L} a line bundle on Y. Then there exists $q = p^n$ such that

- (a) for every section $s \in H^0(X, f^*\mathcal{L})$, we have $s^q \in \operatorname{Im}(H^0(Y, \mathcal{L}^{\otimes q}) \to H^0(X, f^*\mathcal{L}^{\otimes q}))$;
- (b) \mathcal{L} is semiample if and only if $f^*\mathcal{L}$ is semiample;
- (c) the map

$$f^* : \operatorname{Pic}(Y) \otimes \mathbb{Z}[1/q] \to \operatorname{Pic}(X) \otimes \mathbb{Z}[1/q]$$

is an isomorphism;

(d) if $f^*s_1 = f^*s_2$ for two sections $s_1, s_2 \in H^0(Y, \mathcal{L})$, then $s_1^q = s_2^q$ in $H^0(X, \mathcal{L}^{\otimes q})$.

Proof. Note that $\operatorname{Frob}^* \mathcal{L} \cong \mathcal{L}^{\otimes p}$. Then all the properties follows from Lemma 32.

Proposition 40. Let X be a projective scheme and \mathcal{L} a nef line bundle on X. Assume that $X = X_1 \cup X_2$ for closed subsets X_1 and X_2 . Suppose that $\mathcal{L}|_{X_i}$ is semiample for i = 1, 2. Then \mathcal{L} is semiample.

Proof. Yang: To be learned.

Lemma 41. Let $f: X \to Y$ be a proper map between algebraic spaces with $f_*\mathcal{O}_X = \mathcal{O}_Y$ and \mathcal{L} a line bundle on X. Let $D = V(\mathcal{I}) \subset X$ be a closed subspace defined by an ideal sheaf $\mathcal{I}, Z = f(D)$ and $D_k := V(\mathcal{I}^k)$. Suppose that f is a modification with respect to D, Z and $R^1 f_* \mathcal{I}^k / \mathcal{I}^{k+1} = 0$ for all $k \gg 0$. Suppose for every k, there exists r > 0 such that $\mathcal{L}^{\otimes r}|_{D_k}$ is pulled back from $f(D_k)$. Then $\mathcal{L}^{\otimes r}$ is pulled back from Y for some r > 0.

Proof. Replace D by D_k and \mathcal{L} by $\mathcal{L}^{\otimes r}$ for some k,r>0, we can assume that $R^1f_*\mathcal{I}^k/\mathcal{I}^{k+1}=0$ for all k and $\mathcal{L}|_D$ is pulled back from f(D). Then we show that $f_*\mathcal{L}$ is a line bundle and $f^*f_*\mathcal{L}\cong\mathcal{L}$. Both of them are local, so we can assume that $X=\operatorname{Spec} B,Z=\operatorname{Spec} A$ are spectrum of local rings. Hence $\mathcal{L}|_{D_k}$ is trivial for all k. By vanishing of $R^1f_*\mathcal{I}^k/\mathcal{I}^{k+1}$, we have a surjection $H^0(D_{k+1},\mathcal{L}|_{D_{k+1}}) \twoheadrightarrow H^0(D_k,\mathcal{L}|_{D_k})$ for all k. This allow us to choose a section $s_k \in H^0(D_k,\mathcal{L}|_{D_k})$ such that $s_k = s_{k+1}|_{D_k}$ for all k. Then we have a section $s \in H^0(D,\mathcal{L}|_D)$ such that $s_{|_D} = s_k$ for all k. By Nakayama's

Lemma, we can assume that s_k is nowhere vanishing. Yang: To be completed.

Proposition 42. Let X be a projective scheme and D a nef and big divisor on X. Then we can write D = A + E where A is an ample divisor and E is an effective divisor. Then D is semiample iff $D|_{E_{red}}$ is semiample.

Proof. Yang: To be completed.

Theorem 43. Let X be a proper variety and \mathcal{L} a nef line bundle on X. Then \mathcal{L} is semiample if and only if $\mathcal{L}|_{\operatorname{Exc}\mathcal{L}}$ is semiample.

Proof. Yang: To be completed.

5 Basepoint free theorem on positive characteristic

Proposition 44 (ref. Yang:). Let $T \subset X$ be a reduced Weil divisor on a normal variety X. Let $T^{\nu} \to T$ be the normalization, $C \subset T^{\nu}$ the effective Weil divisor defined by the conductor and $p: T^{\nu} \to T \hookrightarrow X$ the composition. Suppose that $K_X + T$ is \mathbb{Q} -Cartier. Then there exists an effective \mathbb{Q} -Weil divisor D on T^{ν} such that

$$K_{T^{\nu}}+C+D=p^*(K_X+T).$$

Theorem 45. Let X be a normal projective \mathbb{Q} -factorial threefold and $B \in (0,1)$ a \mathbb{Q} -divisor. Let \mathcal{L} be a nef and big line bundle on X such that $\mathcal{L} - K_{(X,B)}$ is nef and big. Then \mathcal{L} is endowed with a map. Moreover, if $\mathbb{k} = \overline{\mathbb{F}_p}$, \mathcal{L} is semiample.

Proof. Let $\mathcal{L} = \mathcal{O}_X(A+E)$ with A an ample divisor and E an effective divisor. Write $E = E_0 + E_1 + E_2$ such that the restriction of \mathcal{L} to every irreducible component of E_i is of numerical dimension i. Let $S := \operatorname{Supp} E_1$ and $S = \sum S_i$ with S_i irreducible components. Let $S^{\nu} \to S$ and $S_i^{\nu} \to S_i$ be the normalizations.

Step 1. Reduce to show that $\mathcal{L}|_{\mathcal{S}}$ is endowed with a map (semiample).

Yang: To be completed.

Step 2. Reduce to show that $\mathcal{L}|_{S_i^{\nu}}$ is endowed with a map (semiample).

Yang: To be completed.

Step 3. Show that $\mathcal{L}|_{S_i^{\nu}}$ is endowed with a map (semiample).

Yang: To be completed.

References

[Art70] Michael Artin. "Algebraization of formal moduli: II. Existence of modifications". In: *Annals of Mathematics* 91.1 (1970), pp. 88–135 (cit. on pp. 1, 6).

- [FGA05] Barbara Fantechi et al. Fundamental algebraic geometry. Vol. 123. Mathematical Surveys and Monographs. Grothendieck's FGA explained. American Mathematical Society, Providence, RI, 2005, pp. x+339. ISBN: 0-8218-3541-6. DOI: 10.1090/surv/123. URL: https://doi.org/10.1090/surv/123 (cit. on p. 1).
- [Har77] Robin Hartshorne. Algebraic geometry. Vol. No. 52. Graduate Texts in Mathematics. Springer-Verlag, New York-Heidelberg, 1977, pp. xvi+496. ISBN: 0-387-90244-9 (cit. on p. 1).
- [Kee99] Seán Keel. "Basepoint freeness for nef and big line bundles in positive characteristic". In: Annals of Mathematics (1999), pp. 253–286 (cit. on p. 1).
- [Knu71] Donald Knutson. *Algebraic Spaces*. Vol. 203. Lecture Notes in Mathematics. Berlin, Heidelberg, New York: Springer-Verlag, 1971. ISBN: 978-3-540-05496-2 (cit. on pp. 1, 5).
- [Laz04] Robert Lazarsfeld. Positivity in algebraic geometry. I. Vol. 48. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Classical setting: line bundles and linear series. Springer-Verlag, Berlin, 2004, pp. xviii+387. ISBN: 3-540-22533-1. DOI: 10.1007/978-3-642-18808-4. URL: https://doi.org/10.1007/978-3-642-18808-4 (cit. on p. 1).
- [Stacks] The Stacks Project Authors. Stacks Project. URL: https://stacks.math.columbia.edu/(cit. on pp. 1, 4, 6).