# Welcome to instats

The Session Will Begin Shortly

(At the top of the hour, Eastern USA time)

1

### **START**

## Nonlinear Time Series Analysis, Part I: Detecting Nonlinearity

Barney Ricca Lyda Hill Institute for Human Resilience University of Colorado Colorado Springs

3

#### Seminar Overview

- Day 1
  - Session 1: Introduction to Nonlinear Time Series (NTLS)
  - Session 2: Behaviors and State Spaces
- Day 2
  - Session 3: State Spaces (continued)
  - Session 4: Recurrences
- Dav 3
  - Session 5: Tests
  - Session 6: Singular Spectrum Analysis and Noise
- Day 4
  - Session 7: Surrogate Data
  - Session 8: Convergent Cross Mapping

#### Linear and Nonlinear

- Detecting Changes
  - Linear: Changepoint detection
  - Nonlinear: Singular spectrum transformation
- Multivariate Connections
  - · Linear: Correlation
  - Nonlinear: Mutual Information
- Model Selection
  - · Linear: AIC
- (Pseudo-) Causality
  - · Linear: Granger
  - Nonlinear: Causality without correlation (and nonlinear Granger)
- Convergent Cross Mapping
  - Not separable: Multivariate connections, model selection, and (pseudo-)causal intertwined

5

#### **Changepoint Detection (Linear)**

- Changepoints
  - Classically, mean, variance (skew, kurtosis, etc.)
  - · As the metric changes, the change has occurred
- Can combine with linear modeling
  - · Segmented regression
- Changepoints in R

#### Singular Spectrum Transformation

- For each data point
  - · Left (previous) and right (future) windows
  - SSA on previous and future, separately
  - Get eigenvectors from k largest eigenvalues on left; these define a (hyper)plane
  - Project the largest eigenvector on the right onto the hyperplane, and find the distance from hyperplane to eigenvector
  - · Large distance indicates a break in dynamics
- Ugh
- SST in R

7

#### Multivariable Connections (Linear)

- Correlations
  - Pick your favorite flavor: Pearson, Spearman, Kendall, etc.
- Correlation is not causality
  - Tyler Vigen's Spurious Correlations
- But (lagged) correlation is a necessary condition for causality
  - · Cause must occur before effect
- Partial correlations
- Cross-lagged panel models
  - Must be stationary

#### Correlations (Nonlinear Type 1)

- Causation without (linear) correlation
  - E.g., Pumping a swing; cor(pumping force, swing position) = 0
- Distance correlation
  - energy::dcor()
- Partial distance correlation
  - Take away the linear first
  - ndstools::pdcor\_ci()

9

#### Mutual Information (Nonlinear Type 2)

- What is correlation?
  - Answer: How much information about variable y is contained in variable x.
- In nonlinear systems, mutual information does this
  - · Recall our constant delay embedding procedure; AMI and delay

#### Model Selection (Linear)

- More variables (almost) always make for better R<sup>2</sup>
  - Never, ever use R2 to choose which model is "better"
- Balance the desire for higher R<sup>2</sup> against the danger of overfitting
  - Information Criteria
- Many flavors
  - Akaike (AIC), AIC with small sample correction (AICc), Bayesian IC (BIC), Deviance IC, Focused IC, Hannan-Quinn IC, and many, many others
- IC in R

11

#### **Linear Causality**

- Significant correlation: Necessary
  - · Not sufficient
- Granger causality
  - Well, really Granger precedence or Granger predictive causality
  - Requires separability (i.e., linearity)
  - · Two conditions
    - Cause occurs before the effect
    - · Cause has unique information about effect

#### Nonlinear Granger

- Circular, not linear
- Vector AutoRegression Neural Network (VARNN)
  - Details: Hmamouche (2020)
  - Uses machine learning to see if there is precedence
- Transfer entropy
  - Entropy, but with delays
  - Do earlier data contain information about later data?
- Granger in R

13

#### Nonlinear Intertwining

- Nonlinear systems lose separability
- Intertwined Metrics
  - Correlations
  - Causality
  - Model Selection
- Convergent cross mapping

#### Reconstructed State Space

- Assume there is a state space, attractor, and trajectory, A
- Reconstruct delay state space, attractor, and trajectory, B, from variable v
- Reconstruct delay state space, attractor, and trajectory, C, from variable w
- v is "causal" on w iff
  - One-to-one mapping of the points of trajectory A onto B onto C (which implies vice versa)
  - Delay of C is larger than the delay of B (i.e., v changes first)

15

#### Convergent Cross Mapping (CCM)

- CCM
  - Constructs shadow state spaces
  - 2. Checks for the one-to-one mapping
    - · Both directions!
  - 3. Checks for a delay (cause precedes effect)
- If the data fulfill those conditions, then the two variables are "causally" linked
  - · Causality and correlation and model selection intertwined
- Note: correlation should improve as more points are used
  - Hence, do with varying number of data points







Forum

- Remember, the online Forum at Instats.org is available to you for the next 30 days
- I'll be checking it
  - I may be a little slow 5 April-12 April

Questions 21

**STOP**