Internal Migration and the Microfoundations of Gravity

Greg Howard Hansen Shao

University of Illinois, Urbana-Champaign

Urban Economics Association North American Meetings September 30, 2022

Two facts about internal migration

- 1. Internal migration is rare
- 2. People move to nearby and populous places (gravity)

Two facts about internal migration

- 1. Internal migration is rare
- 2. People move to nearby and populous places (gravity)

How should we understand these two facts?

(a) Moving costs?

(b) Persistent preferences?

Two facts about internal migration

- 1. Internal migration is rare
- 2. People move to nearby and populous places (gravity)

How should we understand these two facts?

(b) Persistent preferences?

Does it matter how we understand these two facts?

3 Facts

- Literature has emphasized moving costs
 - Tractable
 - Easily matches both facts
 - Natural extension of the trade literature

- Literature has emphasized moving costs
 - Tractable
 - Easily matches both facts
 - Natural extension of the trade literature

- Third fact about internal migration:
 - 3. Return migration is extremely common
 - 3'. t-year migration rate is proportional to \sqrt{t}
 - Suggestive of persistent preferences?

3 Facts

Main Question

Main Question

What if we model internal migration based on persistent preferences?

1. Three facts about internal migration

Main Question

- 1. Three facts about internal migration
- 2. New model
 - Multinomial probit
 - Preferences correlated across space and time
 - Model can match all three facts

Main Question

- 1. Three facts about internal migration
- 2. New model
 - Multinomial probit
 - Preferences correlated across space and time
 - Model can match all three facts
- 3. Implications of the model
 - Migration can be used to find population elasticities
 - Population elasticities key for counterfactuals and welfare

3 Facts

Main Question

- 1. Three facts about internal migration
- 2. New model
 - Multinomial probit
 - Preferences correlated across space and time
 - Model can match all three facts
- 3. Implications of the model
 - Migration can be used to find population elasticities
 - Population elasticities key for counterfactuals and welfare
- 4. Compare to a moving cost model
 - Different implications for macro misallocation, long-run population elasticities, speed of adjustment

Contributions to the Literature

Spatial dynamics

- Rise and decline of regional economies Blanchard and Katz (1992): Caliendo, Dyorkin and Parro (2019): Allen and Donaldson (2020): Morris-Levenson and Prato (2022); Glaeser and Gyourko (2005); Liu, Klieman and Redding (2021); Amior and Manning (2018); Davis, Fisher and Veracierto (2021)
- Macro adaptation to external shocks Tombe and Zhu (2019): Hao. Sun. Tombe and Zhu (2020): Eckert and Peters (2018): Giannone (2017); Heise and Porzio (2021); Bryan and Morten (2019); Cruz and Rossi-Hansberg (2021); Oliveira and Pereda (2020)

How to model migration

- Modifications of the dynamic logit Kennan and Walker (2011); Kaplan and Schulhofer-Wohl (2017); Giannone, Li, Paixao and Pang (2020); Porcher (2020); Mangum and Coate (2019); Monras (2018); Coen-Pirani (2010); Davis et al. (2021)
- Persistent preferences Bayer and Juessen (2012)
- Empirical evidence Saks and Wozniak (2011); Farrokhi and Jinkins (2021); Koşar, Ransom and Van der Klaauw (2021): Fujiwara, Morales and Porcher (2022)

Multinomial probits

Butler and Moffitt (1982); Keane (1992); Geweke, Keane and Runkle (1994)

3 Facts about Internal Migration

Data

- Gies Consumer and Small Business Credit Panel (GCCP)
 - Credit data from one of the leading providers of credit reports
 - 1 percent of Americans with credit reports
 - Includes state of residence
 - Panel data, 2004-2018
- IRS Migration Data
 - Based on tax filings
 - Aggregated flows of state-to-state migration

Fact #1

Migration is rare

Comparison of interstate migration rates in IRS and GCCP

Fact #2

3 Facts

Migration follows a gravity pattern

Poisson regression:

$$\log m_{i \to j} = \beta \log \operatorname{distance}_{ij} + \alpha \log p_i + \gamma \log p_j + \epsilon_{ij}$$

	(1)	(2)
	Migration (IRS)	Migration (Credit)
Log Distance	-0.736***	-0.744***
	(0.0572)	(0.0515)
Log Origin Population	0.900***	0.923***
	(0.0832)	(0.0797)
Log Destination Population	0.822***	0.893***
	(0.0976)	(0.0799)
Observations	2550	2550

Standard Errors are two-way clustered by origin and destination states

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Fact #3 (New)

t-year interstate migration rate is proportional to \sqrt{t}

- Implies a high rate of return or onward migration
- Suggestive of persistent preferences

The SPACE Model

I locations indexed by i, continuum of individuals indexed by n, and discrete time indexed by t:

Agents choose location that maximizes utility

$$u_{nt} = \max_{i} u_{int} = \max_{i} v_{it} + \epsilon_{int}$$

I locations indexed by i, continuum of individuals indexed by n, and discrete time indexed by t:

Agents choose location that maximizes utility

$$u_{nt} = \max_{i} u_{int} = \max_{i} v_{it} + \epsilon_{int}$$

Personal utility is persistent

$$\epsilon_{\mathit{int}} =
ho \epsilon_{\mathit{in},t-1} + \left(\sqrt{1-
ho^2}\right) \eta_{\mathit{int}}$$

I locations indexed by i, continuum of individuals indexed by n, and discrete time indexed by t:

Agents choose location that maximizes utility

$$u_{nt} = \max_{i} u_{int} = \max_{i} v_{it} + \epsilon_{int}$$

Personal utility is persistent

$$\epsilon_{\mathit{int}} =
ho \epsilon_{\mathit{in},t-1} + \left(\sqrt{1-
ho^2}\right) \eta_{\mathit{int}}$$

Personal utility is spatially-correlated

$$\vec{\eta}_{nt} \sim N(0, \Sigma), \qquad \Sigma_{ij} = \exp(-A \text{ distance}_{ij})$$

 $\it I$ locations indexed by $\it i$, continuum of individuals indexed by $\it n$, and discrete time indexed by $\it t$:

Agents choose location that maximizes utility

$$u_{nt} = \max_{i} u_{int} = \max_{i} v_{it} + \epsilon_{int}$$

Personal utility is persistent

$$\epsilon_{\mathit{int}} = \rho \epsilon_{\mathit{in},t-1} + \left(\sqrt{1 -
ho^2}\right) \eta_{\mathit{int}}$$

Personal utility is spatially-correlated

$$ec{\eta}_{nt} \sim \mathit{N}(0,\Sigma), \qquad \Sigma_{ij} = \exp(-A \; \mathsf{distance}_{ij})$$

• Spatially and Persistently Auto-Correlated Epsilons (SPACE)

Model can match all three facts

- Migration is rare
 - ullet When ho is high, the migration rate is low

Model can match all three facts

- Migration is rare
 - When ρ is high, the migration rate is low
- Gravity
 - When the correlation between ϵ_{in} and ϵ_{jn} is high, then people who have $u_{int} > u_{jnt}$ and $u_{in,t+1} < u_{jn,t+1}$ are likely to live in i.

Model can match all three facts

- Migration is rare
 - When ρ is high, the migration rate is low
- Gravity
 - When the correlation between ϵ_{in} and ϵ_{jn} is high, then people who have $u_{int} > u_{jnt}$ and $u_{in,t+1} < u_{jn,t+1}$ are likely to live in i.
- Square root fact

Proposition 2

As ho o 1, the t-year migration rate is proportional to \sqrt{t}

Parameterization

- Two parameters: persistence ρ , and spatial correlation A
- Target: migration rate, gravity equation
- Simulate 10 million people for two periods, fifty U.S. states and D.C.
 - *v_i* matches population

Matching the Facts Quantitatively

• Persistence: $\rho = .9996$,

• Spatial correlation: $A = .000299 \text{ km}^{-1}$

• Hits 3.34 percent migration rate

	(1)	(2)	(3)
	Migration (IRS)	Migration (Credit)	Simulated Migration
Log Distance	-0.736***	-0.744***	-0.744***
	(0.0572)	(0.0515)	(0.0396)
Log Origin Population	0.900***	0.923***	0.892***
	(0.0832)	(0.0797)	(0.0486)
Log Destination Population	0.822***	0.893***	0.889***
	(0.0976)	(0.0799)	(0.0501)
Observations	2550	2550	2550

Standard Errors are two-way clustered by origin and destination states

3 Facts

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Gravity

3 Facts

Curvature is untargeted

Square Root Fact

Proposition 2

As $\rho \to 1$, the *t*-year migration rate is proportional to \sqrt{t} .

Frequency of Migration

Return Migration

• Conditional probability of moving after previous move

Implications of the Model

3 Facts

- Population elasticities critical for a variety of questions in the literature
- One reason for skepticism: multinomial probits do not have a closed-form solution for these elasticities as a function of parameters

Is the model useful?

3 Facts

- Population elasticities critical for a variety of questions in the literature
- One reason for skepticism: multinomial probits do not have a closed-form solution for these elasticities as a function of parameters

Proposition 3

As $\rho \to 1$, the semi-elasticity of the population in i with respect to u_i is

$$\frac{\partial \log p_i}{\partial v_j} = -\lim_{\rho \to 1} \frac{m_{i \to j}}{p_i} \frac{1}{\sqrt{1 - \Sigma_{ij}}} \sqrt{\frac{\pi}{1 - \rho^2}}$$

 If you know migration, distance, and the parameters, sufficient to calculate these elasticities

Why do we care about Population Elasticities?

Counterfactuals:

- How much adjustment is there to the China shock? (Caliendo et al., 2019)
- Where will people move in response to global warming? (Cruz. and Rossi-Hansberg, 2021)
- Answers from these elasticities:

$$\begin{split} \frac{\partial \log p_i}{\partial v_j} &= -\lim_{\rho \to 1} \frac{m_{i \to j}}{p_i} \frac{1}{\sqrt{1 - \Sigma_{ij}}} \sqrt{\frac{\pi}{1 - \rho^2}} \\ \frac{\partial \log p_i}{\partial v_i} &= \lim_{\rho \to 1} \sum_{i \neq i} \left[\frac{m_{i \to j}}{p_i} \frac{1}{\sqrt{1 - \Sigma_{ij}}} \sqrt{\frac{\pi}{1 - \rho^2}} \right] \end{split}$$

- More gross migration = more elastic population
- Higher migration rate i to i = higher cross-elasticity

Why do we care about Population Elasticities?

- 2. Speed of adjustment
 - How fast does the economy react? (Liu et al., 2021)
- Population reacts immediately; short-run and long-run elasticities are the same

Why do we care about Population Elasticities?

- 3. Welfare:
- To second order:

$$d\mathbb{E}u \approx \underbrace{p \cdot dv}_{\text{Direct effect}} + \underbrace{\frac{1}{2}dv^T \frac{\partial p}{\partial v}dv}_{\text{Migratory insurance}}$$

- High gross migration of shocked places = more insurance
- Higher migration between shocked places = less insurance

 Quantitative analysis in paper: spatial correlation of utility changes 1980-2018 meant there was only 50 percent of the insurance as if the utility changes had been randomly spatially located

Comparison to the Standard Model

2 types of comparison

- Comparison based on simplicity
 - Fewer state variables
 - Naturally hits dynamics
 - Naturally matches short-run migration elasticities
 - Argument for model being more feasible to compute
 - Argument for the truth of the model only from Occam's Razor
- Comparison of implications
 - Misallocation
 - Dynamics
 - Long-run population elasticities
 - Could be used to falsify one model or the other
 - If these were easy to measure, would not need spatial dynamic models

- Persistent preferences help to match dynamic moments of migration and gravity
- SPACE model has important implications for counterfactuals and welfare
- SPACE model has several advantages over dynamic logit and different implications

Square Root Rule, 5-year calibration

Proposition 2

As $\rho \to 1$, the *t*-year migration rate is proportional to \sqrt{t} .

Frequency of Migration, 5-year calibration

Return Migration, 5-year calibration

Conditional probability of moving after previous move

Frequency of Moves, Dynamic Logit Model

Return Migration, Dynamic Logit Model

Conditional probability of moving after previous move

Bibliography

- **Allen, Treb and Dave Donaldson**, "Persistence and path dependence in the spatial economy," 2020. National Bureau of Economic Research Working Paper.
- Amior, Michael and Alan Manning, "The persistence of local joblessness," American Economic Review, 2018, 108 (7), 1942–70.
- Bayer, Christian and Falko Juessen, "On the dynamics of interstate migration: Migration costs and self-selection," *Review of Economic Dynamics*, 2012, *15* (3), 377–401.
- Blanchard, Olivier Jean and Lawrence F Katz, "Regional evolutions," Brookings Papers on Economic Activity, 1992, 1992 (1), 1–75.
- **Bryan, Gharad and Melanie Morten**, "The aggregate productivity effects of internal migration: Evidence from Indonesia," *Journal of Political Economy*, 2019, 127 (5), 2229–2268.
- **Butler, John S and Robert Moffitt**, "A computationally efficient quadrature procedure for the one-factor multinomial probit model," *Econometrica: Journal of the Econometric Society*, 1982, pp. 761–764.
- Caliendo, Lorenzo, Maximiliano Dvorkin, and Fernando Parro, "Trade and labor market dynamics: General equilibrium analysis of the china trade shock," *Econometrica*, 2019, *87* (3), 741–835.
- Coen-Pirani, Daniele, "Understanding gross worker flows across US states,"
 Howard and Journal of Monetany-Economics ը 2010 (1657-1/184) 10769-784y