		Note	
		I	Π
Name Vorname			
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach)	2		
	3		
Unterschrift der Kandidatin/des Kandidaten	4		
TECHNISCHE UNIVERSITÄT MÜNCHEN	5		
Fakultät für Mathematik	6		
Klausur			
Mathematik für Physiker 4	7		
· · · · · · · · · · · · · · · · · · ·	8		
(Analysis 3)			
Prof. Dr. M. Wolf			
15. Februar 2013, 11:30 – 13:00 Uhr	\sum_{i}		
Hörsaal: Platz:	I	 Erstkorrekt	tur
Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 8 Aufgaben	II		
Bearbeitungszeit: 90 min		2 W 0 1 0 1 0 1	
Es sind keine Hilfsmittel erlaubt.			
Bei Multiple-Choice-Aufgaben sind genau die zutreffenden Aussagen anzukreuzen. Bei Aufgaben mit Kästchen werden nur die Resultate in diesen Kästchen berücksichtigt.			
Nur von der Aufsicht auszufüllen: Hörsaal verlassen von bis	_		

Vorzeitig abgegeben um

Besondere Bemerkungen:

1. Volumenberechnung Berechnen Sie das Volumen der Menge $M=\{(x,y,z)\in\mathbb{R}^3 x^2+z^2\leq 1\ \mathrm{und}\ y^2+z^2\leq 1\ \mathrm{Hinweis}$: Integrieren Sie die z-Variable als letztes aus.	[6 Punkte] 1}.

2. Transformationsformel

[12 Punkte]

Sei $M:=\{(x,y)\in(\mathbb{R}^+)^2\,|\,\,\frac{x}{y}\in[1,4], xy\in[1,4]\}$ und $f(x,y)=x^3y$. Gegeben ist die Parametertransformation $(x,y)=g(u,v)=\left(\sqrt{uv},\sqrt{\frac{u}{v}}\right)$.

(a) Geben Sie die Jacobi-Determinante von g auf $(\mathbb{R}^+)^2$ an:

$$\det J_g(u,v) =$$

(b) Wie lautet die Umkehrabbildung von g auf $(\mathbb{R}^+)^2$?

$$g^{-1}(x,y) =$$

(c) Skizzieren Sie die Menge M.

(d) Wie lautet die Menge $B = g^{-1}(M)$.

$$B =$$

(e) Geben Sie den Wert von $\int\limits_M f(x)d^2x$ an.

$$\int\limits_{M}f(x,y)dxdy=$$

3. Oberflächenintegrale

[8 Punkte]

Sei die Fläche $A:=\{(x,y,z)\in\mathbb{R}^3\,|\,x^2+y^2+z=4,\,z\geq 0\}$ so orientiert, dass das Normalenfeld eine positive z-Komponente hat, und $v(x,y,z)=\begin{pmatrix} z^2-y\\x\\x^y\sin z\end{pmatrix}$ ein Vektorfeld.

(a) Wie lautet das auf Eins normierte Normalenvektorfeld n(x, y, z) im Punkt $(x, y, z) \in A$?

n(x,y,z) =

(b) Was besagt allgemein der Satz von Stokes für den Fluss von rotv durch A?

(c) Geben Sie eine Parametrisierung der Randlinie ∂A von A an.

 $\gamma(t) =$

(d) Welchen Wert hat der Fluss von rot v durch A?

 $\int\limits_A \langle \operatorname{rot} v, n \rangle dS =$

4. Residuen	[7 Punkte]
Sei $f(z) = \frac{1}{(z + \frac{1}{z})}$.	
(a) f hat bei $z = 0$	
\Box keine Singularität, \Box eine hebbare Singularität, \Box einen Pol erster Ordnung, \Box eine wesentliche Singu	ılarität.
(b) Bestimmen Sie das Residuum von f bei $z=i$.	
$\mathrm{Res}_i(f) =$	
(c) Welchen Konvergenzradius R hat die Potenzreihenentwicklung von f $z=1?$	im Entwicklungspunkt
R =	
(d) Welchen Wert hat das komplexe Wegintegral $\int_{\gamma} f(z)dz$ entlang der Kurv $\gamma(t)=i+\sqrt{2}e^{-it}?$	$\text{re } \gamma: [0,6\pi] \to \mathbb{C},$

 $\smallint_{\gamma} f(z) dz =$

5. Residuenkalkül [12 Punkte]

Sei
$$f(z) = \frac{e^{\alpha z}}{1+e^z}$$
 mit $0 < \alpha < 1$.

- (a) Berechnen Sie das Residuum von f(z) bei $z=i\pi.$
- (b) Welchen Wert hat $\int\limits_{\partial Q}f(z)dz$ für $Q_R:=\{x+iy\in\mathbb{C}\:|\:x\in[-R,R],\:y\in[0,2\pi]\},\:R>0$?

(c) Zeigen Sie, dass $\int\limits_{-\infty}^{\infty} \frac{e^{\alpha x}}{1+e^x} dx = \frac{\pi}{\sin(\pi a)}.$ Hinweis: Benutzen Sie, dass $|f(x+iy)| \leq \frac{e^{\alpha x}}{|1-e^x|} \to 0$ für $|x| \to \infty$.

C	T	•	_	C	rmation	_
n	- ron	rier	tran	ISTOT	marior	1

[8 Punkte]

(a) Beweisen Sie für $f \in L^1(\mathbb{R})$ und $g(x) := e^{ik_0x} f(x)$ die Identität $\widehat{g}(k) = \widehat{f}(k - k_0)$.

(b) Wie lautet die Fouriertransformierte von $g(x) = e^{-\frac{1}{2}x^2} \cos x, x \in \mathbb{R}$?

(c) Sei nun mit dem g aus (b) die Funktion $h: \mathbb{R} \to \mathbb{R}$ gegeben durch $h(x) = \begin{cases} g(x) & \text{für } x > 0, \\ 0 & \text{sonst.} \end{cases}$

(i) Welche Aussagen gelten für h?

 $\Box h \in \mathcal{S}(\mathbb{R}), \quad \Box h \text{ ist stetig}, \quad \Box h \in L^1(\mathbb{R}), \quad \Box h \in L^2(\mathbb{R}).$

(ii) Welche Aussagen gelten für $\widehat{h}?$

 $\square \ \widehat{h} \in \mathcal{S}(\mathbb{R}), \qquad \square \ \widehat{h} \ \text{ist stetig}, \qquad \square \ \widehat{h} \in L^1(\mathbb{R}), \qquad \square \ \widehat{h} \in L^2(\mathbb{R}).$

7	Distributionen	[4 T	Punktel
١.	Distributionen	T T	unkie

Zeigen Sie, dass die Ableitung der als Distribution aufgefassten Funktion $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) = \begin{cases} (1-x)^2 & \text{für } x \in [0,1], \\ 0 & \text{sonst,} \end{cases}$$

gleich $\delta - 2(1-x)\chi_{[0,1]}$ ist.

8. Hilbertraum [6 Punkte]

- (a) Wie lautet die Definition einer Cauchy-Folge $(x_n)_{n\in\mathbb{N}}$ im Hilbertraum \mathcal{H} ?
- (b) Sei b_n , $n \in \mathbb{N}$, eine orthonormale Folge von Vektoren im Hilbertraum \mathcal{H} und α_n eine quadratsummierbare Folge komplexer Zahlen, d.i., $\sum_{n=1}^{\infty} |\alpha_n|^2 < \infty$.

Man zeige: $x_n := \sum_{k=1}^n \alpha_k b_k$ ist eine Cauchy-Folge in \mathcal{H} .