ResNet-50 Inspired Model

Name: Eslam Hesham Mohamed Abdelazim

ID: 2022170802

Year: 3

Fine-Grained Fruit Quality Assessment Report

This report presents a machine learning approach for automated fruit quality assessment, focusing on tomatoes and bananas at different ripeness stages. Using deep learning and computer vision techniques, we developed a custom ResNet50-based neural network that can accurately classify fruits into 7 distinct quality categories. Our model achieved high accuracy, making it a promising solution for agricultural technology applications where quality control and sorting are essential.

Introduction

The ability to automatically assess fruit quality is increasingly important in modern agriculture and food processing. This project addresses the challenge of implementing a fine-grained fruit quality assessment system using convolutional neural networks (CNNs) to classify fruits based on their ripeness and quality attributes.

Problem Statement

Manually inspecting and grading fruits is labor-intensive, subjective, and often inconsistent. Our goal was to develop an automated system that can:

- 1. Accurately classify fruits into different quality categories
- 2. Handle class imbalance in the dataset
- 3. Generalize well to unseen fruit images

Dataset Description

Dataset Description

The dataset consists of images of tomatoes and bananas in various ripeness stages:

• Tomato categories: fully ripened, green, half ripened

• Banana categories: overripe, ripe, rotten, unripe

Initial data exploration revealed significant class imbalance in the original dataset (7,395 images):

tomato_fully_ripened: 55 images (0.01)

tomato half ripened: 90 images (0.01)

banana_overripe: 1550 images (0.21)

banana_rotten: 2207 images (0.30)

banana unripe: 1522 images (0.21)

banana_ripe: 1600 images (0.22)

tomato_green: 371 images (0.05)

Total images: 7395

Methodology

Data Preprocessing and Augmentation

To address class imbalance and enhance model robustness, we employed an extensive data augmentation strategy:

- 1. **Class-specific augmentation**: Different augmentation factors were applied based on class representation:
 - o tomato_fully_ripened: 30× augmentation (most underrepresented)
 - o tomato_green: 3× augmentation (already well-represented)
 - o tomato half ripened: 12× augmentation (moderately underrepresented)
 - o Banana classes were preserved as-is
- 2. Augmentation techniques included:

- \circ Rotation ($\pm 40^{\circ}$)
- Width and height shifts (±20%)
- \circ Shear transformation ($\pm 20\%$)
- Zoom (±20%)
- Horizontal flipping
- Nearest neighbor fill mode

3. Image standardization:

- o Resizing to 224×224 pixels
- o Pixel normalization (scaling by 1/255)
- o 80/20 training/validation split

After augmentation, the dataset expanded significantly:

banana_overripe: 1550 images tomato_half_ripened: 1170 images

tomato_green: 1484 images banana_ripe: 1600 images

tomato_fully_ripened: 1705 images banana_rotten: 2207 images banana_unripe: 1522 images

Total images: 11238

Model Architecture

We implemented a custom ResNet50-based architecture with the following enhancements:

- 1. **Base architecture**: Modified ResNet50 with bottleneck blocks
- 2. Regularization techniques:
 - o L2 regularization (weight decay of 0.0005)
 - o Dropout layers (20% after global pooling, 10% before final classification)
 - o Batch normalization after convolutional layers
- 3. Additional fully connected layer: 512 neurons with ReLU activation
- 4. Output layer: 7 neurons with softmax activation for multi-class classification
- 5. **Mixed precision training**: Used to improve computational efficiency

Training Strategy

The model was trained with the following parameters:

- Optimizer: Adam with initial learning rate of 5e-4
- Loss function: Sparse categorical cross-entropy
- Batch size: 32
- Maximum epochs: 50
- Class weights: Computed to balance classes during training
- Transfer learning: Initialized with pre-trained ImageNet weights
- Callbacks:
 - Model checkpoint (saved best weights)
 - Early stopping (patience of 17 epochs)
 - o Learning rate reduction on plateau (halved after 5 epochs without improvement)

Results and Analysis

Model Performance

The model demonstrated strong performance across all fruit quality categories:

- **Final validation accuracy**: Approximately 93-94%
- **Training convergence**: The model showed steady improvement in accuracy and reduction in loss, with convergence occurring within 30-40 epochs

Class-wise Performance

The confusion matrix analysis revealed:

- High precision and recall for most classes
- Some minor confusion between adjacent ripeness stages (e.g., half-ripe and ripe)
- Successful handling of the previously imbalanced classes through augmentation

Visualization

Training curves demonstrate the model's learning progression, with validation metrics closely following training metrics, indicating good generalization without significant overfitting.

Discussion

Key Achievements

- 1. **Effective handling of class imbalance**: Through targeted data augmentation, we successfully addressed the severe class imbalance in the original dataset
- 2. **High classification accuracy**: The model achieved excellent performance across all fruit quality categories
- 3. **Efficient architecture**: The custom ResNet50 implementation with regularization techniques provided a good balance between model complexity and performance

Limitations and Future Work

- 1. **Dataset diversity**: The current model could be improved by incorporating more diverse fruit varieties and quality conditions
- 2. **Real-world testing**: Further validation in real-world agricultural settings would be beneficial
- 3. **Model optimization**: Potential for further architecture refinements and hyperparameter tuning
- 4. **Deployment considerations**: Exploring model quantization and optimization for edge deployment in agricultural settings

Conclusion

This project demonstrates the successful application of deep learning techniques to fruit quality assessment. The developed system offers a promising solution for automated fruit grading in agricultural technology applications. With further refinement and real-world validation, such systems could significantly improve efficiency and consistency in fruit quality assessment processes.

Technical Implementation Details

The implementation leveraged the following technologies:

- TensorFlow/Keras for model development and training
- Custom data augmentation pipeline
- Transfer learning from pre-trained ImageNet weights
- Mixed precision training for computational efficiency
- Kaggle environment for development and experimentation