Review of the Greenhouse Effect

EES 3310/5310
Global Climate Change
Jonathan Gilligan

Class #7: Wednesday, Sept. 5 2018

Notes on Labs

- Check frequently whether you can knit your document.
 - If you have trouble, ask for help
 - Office hours or Email both me and Kelsea
 - Remember to put "EES 3310" or "EES 5310" in the subject line
- Remember that either PDF or Word documents are acceptable for turning in your work, so if you have trouble knitting to PDF, knit to a Word document.
 - It should only take a one-time set-up to be able to knit smoothly to PDF. Kelsea and I are happy to help you set up your computer to knit to PDF.

Vertical Structure of the Atmosphere

Terminology

Environmental Lapse

- Measured temperature of actual atmosphere at a single time
- Compares one bit of air at one height with another bit at another height.
- Environmental lapse is different from one time or place to another.

Adiabatic Lapse

Change in a single parcel of air as it moves up or down

Moist Convection

Moist Convection

- Latent heat warms air
- Reduces adiabatic cooling
- Moist adiabatic lapse < Dry adiabatic lapse
- Smaller lapse = less stable
- Humid air is less stable than dry air

Perspective

- Stable:
 - Environmental lapse ≤ adiabatic lapse
- Unstable:
 - Environmental lapse > adiabatic lapse
- Adiabatic lapse:
 - Dry: 10 K/km
 - Moist: 4-8 K/km (depends on humidity)
- Pure radiative equilibrium:
 - Would produce lapse of 16 K/km: unstable
- Radiative-Convective equilibrium:
 - Convection modifies environmental lapse
 - Normal environmental lapse is roughly 6 K/km
 (typical moist adiabatic lapse rate)

Greenhouse effect

Greenhouse effect

Greenhouse effect

- 1. $T_{\text{skin}} = 254 \text{ K}$
- 2. $T_{\text{ground}} = T_{\text{skin}} + \text{lapse rate} \times h_{\text{skin}}$
- 3. Increase greenhouse gases
- 4. Skin height rises by Δh_{skin}
- 5. τ_{ground} rises by lapse rate $\times \Delta h_{\text{skin}}$

Vertical Structure and Saturation

Set up MODTRAN:

Go to MODTRAN (http://climatemodels.uchicago.edu/modtran/)

- Set altitude to 70 km and location to "1976 Standard U.S. Atmosphere".
- Set CO₂ to 1 ppm, all other gases to zero.
- Now increase by factors of 10 (10, 100, 1000, ...)

10,000 ppm CO₂

Question

Why do we see the spike in the middle of the CO₂ absorption feature?

Question

- Water vapor absorption is completely saturated.
 - Why does water vapor emit at warmer temperatures than CO₂?

Review Perspective

Review Perspective

1. Start with bare-rock temperature

This becomes skin temperature

2. Add simple atmosphere:

- Completely absorbs longwave radiation
- Top of atmosphere: skin temperature (same as bare-rock)
- More layers ⇒ bigger greenhouse effect

3. Realistic longwave absorption:

Atmosphere is not a black body

4. Radiative-Convective equilibrium:

- Pure radiative equilibrium would have huge lapse
- Big lapse is unstable ⇒ convection
 - Convection mixes hot & cold air ⇒
 modifies environmental lapse
 - Reduces greenhouse effect

Around the planet

Cloud blocks sunlight

Exercise 3-3

Temperature drops

Volcanoes and Temperature

