10.

More notes on homogeneous affine Springer fibers and (q, t)-Catalan numbers.

10.1.

Let G be a connected, complex semisimple algebraic group with Lie algebra \mathfrak{g} . Let $T \subseteq G$ be a maximal torus, and let $\Phi \subseteq X^*(T)$, resp. $\Phi^{\vee} \subseteq X_*(T)$, be the associated system of roots, resp. coroots. For each root $\alpha \in \Phi$, we fix a generator e_{α} of the corresponding root subspace of \mathfrak{g} .

Let $F = \mathbb{C}((\varpi))$ and $\mathcal{O} = \mathbb{C}[\![\varpi]\!]$. The roots of the loop Lie algebra $\mathfrak{g}(F)$ take the form $\alpha + n$ for $(\alpha, n) \in \Phi \times \mathbb{Z}$. The root subspace corresponding to $\alpha + n$ is generated by $\varpi^n e_{\alpha}$.

We recall the formalism used by Moy–Prasad to study $\mathfrak{g}(F)$. Let $A(T) = X_*(T) \otimes \mathbf{R}$. For any $x \in A(T)$, let

$$\mathfrak{p}_{x} = \mathfrak{t}(\mathcal{O}) \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}(\varpi^{\lceil -\langle \alpha, x \rangle \rceil} \mathcal{O})$$
$$= \mathfrak{t}(\mathcal{O}) \oplus \bigoplus_{\substack{\alpha \in \Phi \\ n \geq -\langle \alpha, x \rangle}} \mathbf{C} \varpi^{n} e_{\alpha},$$

a parahoric subalgebra of $\mathfrak{g}(F)$, and let

$$\mathfrak{l}_{x} = \mathfrak{t}(\mathbf{C}) \oplus \bigoplus_{\substack{\alpha \in \Phi \\ n = -\langle \alpha, x \rangle}} \mathbf{C} \varpi^{n} e_{\alpha},$$

its Levi factor. We write $P_x \subseteq G(F)$ for the parahoric subgroup with Lie algebra \mathfrak{p}_x , and L_x for the Levi factor of P_x .

Recall that the affine hyperplane corresponding to $\alpha + n$ is

$$H_{\alpha+n} = \{x \in A(T) \mid \langle \alpha, x \rangle + n = 0\} \subseteq A(T).$$

The affine hyperplanes $H_{\alpha+n}$ define a polyhedral subdivision of A(T), such that the structure of \mathfrak{p}_x changes precisely when x crosses from the interior of one facet into another facet. We write $t_{\alpha+n}$ for the rigid transformation of A(T) given by reflection across $H_{\alpha+n}$.

Let W and $\Lambda^{\vee} \subseteq A(T)$ be the Weyl group and coweight lattice defined by Φ . The group of rigid transformations of A(T) generated by the reflections $t_{\alpha+0}$, resp. $t_{\alpha+n}$, can be identified with W, resp. the semidirect product $W^{affext} = W \ltimes \Lambda^{\vee}$, acting on A(T) from the right. Explicitly, if ω^{\vee} is the fundamental coweight dual to α , then $t_{\alpha+n} = n\omega^{\vee} \circ t_{\alpha} \circ -n\omega^{\vee}$, where composition is left-to-right and the coweights act by translation.

Example 10.1. Take $G = \operatorname{SL}_2$. Let (α, α^{\vee}) be a root-coroot pair for \mathfrak{g} , and let ω^{\vee} be the fundamental coweight dual to α . Then $H_{\alpha-2} = {\alpha^{\vee}}$, so we know that $t_{\alpha-2}$ fixes α^{\vee} . Indeed, $\alpha^{\vee} = 2\omega^{\vee}$, from which

$$\alpha^{\vee} \cdot t_{\alpha-2} = \alpha^{\vee} \cdot (-2\omega^{\vee} \circ t_{\alpha} \circ 2\omega^{\vee}) = (\alpha^{\vee} - \alpha^{\vee}) \cdot t_{\alpha} + \alpha^{\vee} = \alpha^{\vee},$$

as expected.

Let W_x be the Weyl group of L_x . Then W_x can be identified with the stabilizer of x under W^{affext} : that is, the subgroup of W^{affext} generated by the reflections $t_{\alpha+n}$ such that $x \in H_{\alpha+n}$.

Let $W^{\mathit{aff}} = W \ltimes X_*(T) \subseteq W^{\mathit{affext}}$. The isomorphisms $W \simeq N_G(T)/T$ and $X_*(T) \simeq \varpi^{X_*(T)}$ extend to an isomorphism

$$W^{aff} \simeq N_{G(F)}(T(F))/T(\mathcal{O}).$$

(See Remark 10 of Haines's appendix to [PR08].) Just as the $N_G(T)$ -action on the set of parabolic subgroups of G containing T factors through W, the $N_{G(F)}(T(F))$ -action on the set of parahoric subgroups of G(F) containing $T(\mathcal{O})$ factors through W^{aff} . Explicitly, if $\dot{w} \in N_{G(F)}(T(F))$ maps to $w \in W^{aff}$, then

$$\dot{w} \cdot_{\text{Ad}} P_x = P_{x \cdot w^{-1}}.$$

The example below shows why the switch between left and right actions is necessary:

Example 10.2. Again take $G = \operatorname{SL}_2$. Let T be the diagonal torus, and let the coroot $\alpha^{\vee} : \mathbf{G}_m \to T$ be given by $c^{\alpha^{\vee}} = \begin{pmatrix} c & c \end{pmatrix}$. We have $\mathfrak{p}_0 = \mathfrak{g}(\mathcal{O})$, from which

$$\mathfrak{p}_{-\alpha^{\vee}} = \varpi^{\alpha^{\vee}} \cdot_{\operatorname{Ad}} \mathfrak{p}_{0} = \begin{pmatrix} \varpi & \\ & \varpi^{-1} \end{pmatrix} \cdot_{\operatorname{Ad}} \mathfrak{g}(\mathcal{O}) = \mathfrak{g}(F) \cap \begin{pmatrix} \mathcal{O} & \varpi^{2} \mathcal{O} \\ \varpi^{-2} \mathcal{O} & \mathcal{O} \end{pmatrix}.$$

This matches the defining formula

$$\mathfrak{p}_{-\alpha^{\vee}} = \mathfrak{t}(\mathcal{O}) \oplus \mathfrak{g}_{\alpha}(\varpi^2 \mathcal{O}) \oplus \mathfrak{g}_{-\alpha}(\varpi^{-2} \mathcal{O}),$$

as expected.

10.2.

Fix a rational coweight $\lambda^{\vee} \in \mathbf{Q}\Phi^{\vee}$. We can write $\lambda^{\vee} = \frac{1}{m}\lambda_0^{\vee}$, where m is a positive integer and λ_0^{\vee} is an *integral* coweight. Using m and λ_0^{\vee} , we can define an action of \mathbf{G}_m on G(F) by algebraic-group automorphisms:

$$c \cdot_{m,\lambda_0^{\vee}} g(\varpi) = c^{2\lambda_0^{\vee}} \cdot_{\operatorname{Ad}} g(c^{2m}\varpi).$$

This induces an action on the Lie algebra $\mathfrak{g}(F)$. We write $\mathfrak{g}(F)_{k/m}$ to denote the weight-2k eigenspace of $\mathfrak{g}(F)$ under \mathbf{G}_m . With this convention, the grading only depends on λ^{\vee} , even though the \mathbf{G}_m -action itself depends on m and λ_0^{\vee} . In particular,

(10.2)
$$\varpi^n e_{\alpha} \in \mathfrak{g}(F)_{(\alpha,\lambda^{\vee})+n}$$

 $\text{via the calculation } c \cdot_{m,\lambda_0^\vee} \varpi^n e_\alpha = c^{2(\langle \alpha,\lambda_0^\vee \rangle + mn)} \varpi^n e_\alpha.$

We observe that the parahoric subalgebra $\mathfrak{p}_{\lambda^{\vee}}$, *resp.* Levi factor $\mathfrak{l}_{\lambda^{\vee}}$, is precisely the nonnegative, *resp.* degree-zero, part of this eigengrading:

$$\begin{split} \mathfrak{p}_{\lambda^{\vee}} &= \mathfrak{t}(\mathcal{O}) \oplus \bigoplus_{\substack{\alpha \in \Phi \\ \langle \alpha, \lambda^{\vee} \rangle + n \geq 0}} \mathbf{C} \varpi^n e_{\alpha} = \mathfrak{g}(F)_{\geq 0}, \\ \mathfrak{l}_{\lambda^{\vee}} &= \mathfrak{t}(\varpi \mathcal{O}) \oplus \bigoplus_{\substack{\alpha \in \Phi \\ \langle \alpha, \lambda^{\vee} \rangle + n = 0}} \mathbf{C} \varpi^n e_{\alpha} = \mathfrak{g}(F)_0. \end{split}$$

In particular, the Levi factor $L_{\lambda^{\vee}}$ is precisely the connected component at the identity of $G^{\mathbf{G}_m}$, the subgroup of G of \mathbf{G}_m -invariants.

Let $w \mapsto \dot{w}$ be a set-theoretic lift of W^{aff} to $N_{G(F)}(T(F))$. For any $x \in A(T)$, the partial affine flag variety $\mathcal{F}l_x = G(F)/P_x$ admits the Bruhat decomposition

$$\mathcal{F}l_x = \bigsqcup_{[w] \in W_{\lambda} \vee \backslash W^{\mathit{aff}}/W_x} P_{\lambda} \vee \dot{w} P_x / P_x.$$

The action of G_m on G(F) stabilizes P_x setwise, so it descends to an action on $G(F)/P_x$. Since $\dot{w}P_x$ is fixed by G_m and $P_{\lambda^\vee}^{G_m} = L_{\lambda^\vee}$, we deduce that

(10.3)
$$\mathcal{F}l_x^{G_m} = \bigsqcup_{[w] \in W_{\lambda} \vee \backslash W^{aff}/W_x} L_{\lambda} \vee \dot{w} P_x / P_x.$$

Now let $\gamma \in \mathfrak{g}(F)$ be regular semisimple. We can form the affine Springer fiber

$$\mathcal{F}l_x^{\gamma} = \{ g P_x \in \mathcal{F}l_x \mid g^{-1} \cdot_{Ad} \gamma \in \mathfrak{p}_x \}.$$

The G_m -action on $\mathcal{F}l_x$ interacts with affine Springer fibers in the following way:

Lemma 10.3. For any $\lambda^{\vee} = \frac{1}{m} \lambda_0^{\vee}$ and $\gamma \in \mathfrak{g}(F)$ and $g \in G(F)$, we have

$$(10.4) c \cdot_{m,\lambda_0^{\vee}} (g^{-1} \cdot_{\operatorname{Ad}} \gamma) = (c \cdot_{m,\lambda_0^{\vee}} g^{-1}) \cdot_{\operatorname{Ad}} (c \cdot_{m,\lambda_0^{\vee}} \gamma).$$

Proof. Immediate from the definition of $\cdot_{m,\lambda_0^{\vee}}$.

Lemma 10.4. If γ is an eigenvector of the \mathbf{G}_m -action $\cdot_{m,\lambda_0^{\vee}}$, then $\mathcal{F}l_x^{\gamma}$ is stable under the same \mathbf{G}_m -action.

Proof. Suppose that γ belongs to the weight-2k-eigenspace $\mathfrak{g}(F)_{k/m}$. By (10.4),

$$(c \cdot_{m,\lambda_0^{\vee}} g^{-1}) \cdot_{\operatorname{Ad}} \gamma = (c \cdot_{m,\lambda_0^{\vee}} g^{-1}) \cdot_{\operatorname{Ad}} c^{-2k} (c \cdot_{m,\lambda_0^{\vee}} \gamma)$$

$$= c^{-2k} ((c \cdot_{m,\lambda_0^{\vee}} g^{-1}) \cdot_{\operatorname{Ad}} (c \cdot_{m,\lambda_0^{\vee}} \gamma))$$

$$= c^{-2k} (c \cdot_{m,\lambda_0^{\vee}} (g^{-1} \cdot_{\operatorname{Ad}} \gamma)).$$

Now observe that

$$gP_{y} \in \mathcal{F}l_{x}^{\gamma} \iff g^{-1} \cdot_{\operatorname{Ad}} \gamma \in \mathfrak{p}_{x}$$

$$\iff c^{-2k}(c \cdot_{m,\lambda_{0}^{\vee}} (g^{-1} \cdot_{\operatorname{Ad}} \gamma)) \in \mathfrak{p}_{x} \quad \text{because } \mathfrak{p}_{x} \text{ is } (\cdot_{m,\lambda_{0}^{\vee}}) \text{-stable}$$

$$\iff (c \cdot_{m,\lambda_{0}^{\vee}} g^{-1}) \cdot_{\operatorname{Ad}} \gamma \in \mathcal{F}l_{x}^{\gamma},$$

as desired. \Box

10.3.

Let h be the sum of the Coxeter numbers of the irreducible root subsystems of Φ . Let $B_+ \supseteq T$ be a Borel subgroup of G, corresponding to a choice of positive subset $\Phi_{\geq 0} \subseteq \Phi$. We can then write

$$\Phi = \bigsqcup_{0 < |\ell| \le h - 1} \Phi_{\ell},$$

where Φ_{ℓ} is the set of roots of height ℓ with respect to B_+ .

Let $\rho^{\vee} \in \frac{1}{2} \mathbf{Z} \Phi^{\vee}$ be the sum of the fundamental coweights, so that $\langle \rho^{\vee}, \alpha \rangle = \ell$ for all $\alpha \in \Phi_{\ell}$. We are most interested in the case where

(10.5)
$$(m, \lambda_0^{\vee}) = (h, -d\rho^{\vee})$$
 with d coprime to h .

In this case, (10.2) becomes

$$\overline{\omega}^n e_{\alpha} \in \operatorname{gr}_{-\frac{d\ell}{h}+n} \mathfrak{g}(F).$$

Since $d\ell$ is not divisible by h for any integer ℓ such that $0 < |\ell| \le h - 1$, we see that

$$\mathfrak{l}_{-d\rho^{\vee}} = \mathfrak{t},$$

$$W_{-d\rho^{\vee}} = \{\mathrm{id}\}.$$

Therefore, (10.3) becomes

(10.6)
$$\mathcal{F}l_{x}^{G_{m}} = \bigsqcup_{[w] \in W^{aff}/W_{x}} T\dot{w}P_{x}/P_{x}$$
$$= \bigsqcup_{[w] \in W^{aff}/W_{x}} \dot{w}P_{x}/P_{x}.$$

That is, the only G_m -fixed points of $\mathcal{F}l_x$ in this case are the isolated cosets $\dot{w}P_x$.

Assuming (10.5), we can describe the eigenspaces of the $\cdot_{h,-d\rho^{\vee}}$ action on $\mathfrak{g}(F)$ fairly explicitly. Suppose that $\gamma \in \mathfrak{g}(F)_{k/h}$. The key is to observe that if $\varpi^n e_{\alpha} \in \varpi^n \Phi_{\ell}$ appears with nonzero coefficient in γ , then ℓ and n must satisfy $-\frac{d\ell}{h} + n = \langle -\frac{d}{h}\rho^{\vee}, \alpha \rangle + n = \frac{k}{h}$, or equivalently, $-d\ell + hn = k$.

When $k \not\equiv 0 \pmod{h}$, the general form of such γ looks like this. Fix a coefficient vector $\vec{c} = (c_{\alpha})_{\alpha} \in \mathbb{C}^{\Phi}$. Let

$$e_{\vec{c},\ell} = \sum_{\alpha \in \Phi_{\ell}} c_{\alpha} e_{\alpha},$$

$$\gamma_{\vec{c},d,k} = \sum_{\substack{(\ell,n) \in \mathbb{Z}^2 \\ |\ell| \le h-1 \\ -d\ell+hn=k}} \varpi^n e_{\vec{c},\ell}.$$

Then $\gamma_{\vec{c},d,k} \in \mathfrak{g}(F)_{k/h}$, and every element of $\mathfrak{g}(F)_{k/h}$ takes this form.

We claim that above, there are exactly two values of ℓ that can appear in the outer sum. For, by the Chinese Remainder Theorem, we can write k = ih + jd for some integers i, j that are determined uniquely once we require 0 < j < h. So the possible values of ℓ are -j and h-j. The respective values of n are i and i+d. So

(10.7)
$$\gamma_{\vec{c},d,k} = \varpi^{i} e_{\vec{c},-j} + \varpi^{i+d} e_{\vec{c},h-j}.$$

Note that if $c_{\alpha} \neq 0$ for all $\alpha \in \Phi_{-i} \cup \Phi_{h-i}$, then $\gamma_{\vec{c},d,k}$ is regular semisimple.

Example 10.5. If $c_{\alpha} = 1$ for all $\alpha \in \Phi_{-i} \cup \Phi_{h-i}$, then we abbreviate by writing

$$e_{\ell} = e_{\vec{c},\ell},$$

 $\gamma_{d,k} = \gamma_{\vec{c},k}.$

Taking d = 1, we see that $\gamma_{1,k}$ recovers the element of $\mathfrak{g}(F)$ studied in the papers of Lusztig–Smelt, C.-K. Fan, and Sommers.

Proposition 10.6. Let $\gamma_{\bar{c},d,k}$ be defined by (10.7). Assume (10.5), and assume that $c_{\alpha} \neq 0$ for all $\alpha \in \Phi_{-j} \cup \Phi_{h-j}$. Then we have bijections

$$\begin{split} (\mathcal{F}l_x^{\gamma})^{\mathbf{G}_m} &\simeq \{[w] \in W^{\mathit{aff}}/W_x \mid \mathfrak{p}_{x \cdot w^{-1}} \ni \gamma\} \\ &\simeq \left\{ [w] \in W^{\mathit{aff}}/W_x \mid \frac{\langle \alpha, x \cdot w^{-1} \rangle \ge -i \; \textit{for all } \alpha \in \Phi_{-j},}{\langle \alpha, x \cdot w^{-1} \rangle \ge -(i+d) \; \textit{for all } \alpha \in \Phi_{h-j}} \right\}. \end{aligned}$$

Proof. By (10.6) and (10.1),

$$(\mathcal{F}l_{x}^{\gamma})^{\mathbf{G}_{m}} = \{\dot{w} P_{x} \in \mathcal{F}l_{x} \mid \dot{w}^{-1} \cdot_{\mathrm{Ad}} \gamma \in \mathfrak{p}_{x}\}$$

$$= \{\dot{w} P_{x} \in \mathcal{F}l_{x} \mid \gamma \in \dot{w} \cdot_{\mathrm{Ad}} \mathfrak{p}_{x}\}$$

$$= \{\dot{w} P_{x} \in \mathcal{F}l_{x} \mid \gamma \in \mathfrak{p}_{x \cdot w^{-1}}\},$$

proving the first bijection. The second bijection follows from the definition of $\mathfrak{p}_{x \cdot w^{-1}}$.

Example 10.7. Let d = k, so that (i, j) = (0, 1). Then

$$\gamma_{d,d} = e_{-1} + \varpi^d e_{h-1}$$
.

Let x = 0, so that $P_x = G(\mathcal{O})$ and the W^{aff} -orbit of x is the cocharacter lattice $X_*(T)$. Then Proposition 10.6 says that

$$(\mathcal{F}l_0^{\gamma_{d,d}})^{\mathbf{G}_m} \simeq \left\{ y \in \mathbf{X}_*(T) \,\middle|\, \begin{array}{l} \langle \alpha, y \rangle \leq 0 \text{ for all simple } \alpha, \\ \langle \alpha_{high}, y \rangle \geq -d \end{array} \right\},$$

where α_{high} denotes the highest root of Φ . (Above, we have used the fact that $\alpha \in \Phi_1$ iff $-\alpha \in \Phi_{-1}$.) That is, the \mathbf{G}_m -fixed points of $\mathcal{F}l_0^{\gamma_{d,d}}$ are in bijection with the anti-dominant (integral) cocharacters y for which $\langle \alpha_{high}, y \rangle \geq -d$.

If G is simply connected, so that $X_*(T) = \mathbf{Z}\Phi^\vee$, and almost-simple, then it follows from the work of Oblomkov–Yun that the former set is enumerated by the rational Catalan number for (W, d). Nota bene that our \mathbf{G}_m -action actually differs from that of Oblomkov–Yun in that they set $\lambda_0^\vee = d\rho^\vee$, where we instead set $\lambda_0^\vee = -d\rho^\vee$, but this is immaterial for the combinatorics.

10.4.

Here is another way to understand the eigenspace $\mathfrak{g}(F)_{d/h}$, which is closer to the viewpoint of Oblomkov–Yun.

Let $\mathfrak{c} = \mathfrak{g} /\!\!/ G$, the adjoint quotient. Recall that the quotient map $\chi : \mathfrak{g} \to \mathfrak{c}$ transports the scaling action of G_m on \mathfrak{g} to a weighted action on \mathfrak{c} . Suppose that χ admits a section $\sigma : \mathfrak{c} \to \mathfrak{g}$ satisfying the following equivariance condition:

(10.8)
$$\sigma(c^2 \cdot a) = c^2(c^{2\rho^{\vee}} \cdot_{\operatorname{Ad}} \sigma(a)).$$

Then the induced map $\sigma : \mathfrak{c}(F) \to \mathfrak{g}(F)$ satisfies

$$\sigma(c^{-2d} \cdot a(c^{2m}\varpi)) = c^{-2d}(c \cdot_{m,-d\rho^{\vee}} \sigma(a(\varpi))).$$

In particular, setting

$$\mathfrak{c}(F)_{d/m} = \{ a \in \mathfrak{c}(F) \mid a(c^{2m}\varpi) = c^{2d} \cdot a(\varpi) \}$$

gives us the following (for a general denominator m, not just h):

Lemma 10.8. Suppose that $\lambda = \frac{d}{m}\rho^{\vee}$. Then, for any map $\sigma : \mathfrak{c} \to \mathfrak{g}$ that satisfies (10.8) and any element $a \in \mathfrak{c}(F)$, we have

$$a \in \mathfrak{c}(F)_{d/m} \iff \sigma(a) \in \mathfrak{g}(F)_{d/m}.$$

Example 10.9. Let e_{\pm} be the nilpotent entries of a *regular* \mathfrak{sl}_2 triple in \mathfrak{g} . Our notation means e_+ , *resp.* e_- , generates the weight-2, *resp.* weight-(-2) root space. Kostant showed that χ restricts to an isomorphism of affine spaces $e_- + \ker(\operatorname{Ad}(e_+)) \xrightarrow{\sim} \mathfrak{c}$. The inverse isomorphism induces a section

$$\kappa:\mathfrak{c}\to\mathfrak{q}$$

that we will call the Kostant section.

Note that e_+ is contained in a unique Borel subalgebra, so it determines a choice of B_+ and hence ρ^{\vee} . If we take $\sigma = \kappa$, then (10.8) holds.

Remark 10.10. In Oblomkov–Yun, the Kostant section is instead defined in terms of $e_+ + \ker(\operatorname{Ad}(e_-))$. This is related to how they choose $\lambda_0^{\vee} = d\rho^{\vee}$ while we choose $\lambda_0^{\vee} = -d\rho^{\vee}$.

Example 10.11. Take $\mathfrak{g} = \mathfrak{sl}_n$. Then we can choose coordinates $(a_2, \ldots, a_{n-1}, a_n)$: $\mathfrak{c} \xrightarrow{\sim} \mathbf{A}^{n-1}$ for which the weighted \mathbf{G}_m -action is

$$c \cdot a_i = c^i a_i$$
.

Take e_+ , resp. e_- , to be the $n \times n$ matrix with 1's along the superdiagonal, resp. subdiagonal, and 0's elsewhere. With respect to the resulting choice of ρ^{\vee} , the syntrophic or companion-matrix section

$$\sigma(a_2, \dots, a_n) = \begin{pmatrix} & & & -a_n \\ 1 & & & -a_{n-1} \\ & \ddots & & \vdots \\ & & 1 & & -a_2 \\ & & & 1 & 0 \end{pmatrix}$$

satisfies (10.8).

10.5.

We now set $G = \operatorname{SL}_n$, so that h = n, and x = 0, so that $P_x = G(\mathcal{O})$. Let $B_+ \subseteq G$ be the upper-triangular subgroup, and let

$$\gamma = \gamma_{d,d} = \begin{pmatrix} 1 & & \overline{w}^d \\ 1 & & \\ & \ddots & \\ & & 1 \end{pmatrix} \in \mathfrak{g}(F)_{d/n}.$$

Recall that we have an identification:

$$G(F)/G(\mathcal{O}) \simeq \{\mathcal{O}\text{-submodules } L \subseteq F^n \mid L = g\mathcal{O}^n \text{ for some } g \in G(F)\}.$$

Observe that since γ is a companion matrix, we have a γ -equivariant isomorphism of F-vector spaces $F^n \xrightarrow{\sim} F\langle 1, \gamma, \dots, \gamma^{n-1} \rangle = F[\gamma]$ that transports the standard basis vectors to the powers of γ . In particular, the preceding identification induces:

(10.9)
$$\mathcal{F}l_0^{\gamma} \simeq \{\mathcal{O}[\gamma]\text{-submodules } L \subseteq F^n \mid L = g\mathcal{O}^n \text{ for some } g \in G(F)\}$$

$$\simeq \left\{ \mathcal{O}[\gamma]\text{-submodules } M \subseteq F[\gamma] \middle| \begin{array}{l} M = \alpha(\mathcal{O}[\gamma]) \\ \text{for some } \alpha \in \operatorname{Aut}_F(F[\gamma]) \\ \text{such that } \det(\alpha) = 1 \end{array} \right\}.$$

Above, note that we have isomorphisms of algebras:

$$F[\gamma] \simeq F[\gamma]/(\gamma^n - \varpi^d),$$

 $\mathcal{O}[\gamma] \simeq \mathcal{O}[\gamma]/(\gamma^n - \varpi^d).$

There is a G_m -action on $F[\gamma]$ given by

$$(10.10) c \cdot \overline{w} = c^{2n} \overline{w} \text{ and } c \cdot \gamma = c^{2d} \gamma.$$

It preserves $\mathcal{O}[\gamma]$, so it induces a \mathbf{G}_m -action on the set of $\mathcal{O}[\gamma]$ -submodules of $F[\gamma]$.

Proposition 10.12. Suppose that under the γ -equivariant isomorphism $F^n \simeq F[\gamma]$, the action of $g \in G(F)$ on F^n corresponds to the action of $\alpha \in \operatorname{Aut}_F(F[\gamma])$ on $F[\gamma]$. Then, for any $c \in \mathbb{C}^{\times}$, the following $\mathcal{O}[\gamma]$ -submodules correspond to one another:

- (1) $(c \cdot_{h,-do^{\vee}} g) \mathcal{O}^n$.
- (2) $c \cdot \alpha(\mathcal{O}[\gamma])$, where c acts via (10.10).

Proof. For all i, j, let $g_{i,j}$ be the (i, j)th entry of g as an $n \times n$ matrix, where we index starting at 0 rather than 1. Then $g\mathcal{O}^n$ is spanned over \mathcal{O} by the columns of g. We deduce that $\alpha(\mathcal{O}[\gamma])$ is spanned over \mathcal{O} by the elements

$$\delta_j(\varpi) = g_{0,j}(\varpi) + g_{1,j}(\varpi)\gamma + \dots + g_{n-1,j}(\varpi)\gamma^{n-1}$$

for $0 \le j \le n-1$. Therefore, $c \cdot \alpha(\mathcal{O}[\gamma])$ is spanned by the elements

$$c \cdot \delta_j(\varpi) = g_{0,j}(c^{2n}\varpi) + g_{1,j}(c^{2n}\varpi)(c^{2d}\gamma) + \dots + g_{n-1,j}(c^{2n}\varpi)(c^{2d}\gamma)^{n-1}.$$

At the same time, let $g' = c \cdot_{h,-d\rho^{\vee}} g$, and let $g'_{i,j}$ be the (i,j)th entry of g'. Then $g'\mathcal{O}^n$ is spanned over \mathcal{O} by the columns of $c \cdot_{h,-d\rho^{\vee}} g'$, and

$$g'_{i,j}(\varpi) = c^{2(i+j)d} g_{i,j}(c^{2n}\varpi).$$

Let $\alpha' \in \operatorname{Aut}_F(F[\gamma])$ correspond to g'. Then $\alpha'(\mathcal{O}[\gamma])$ is spanned over \mathcal{O} by the elements

$$\delta'_{j}(\varpi) = g'_{0,j}(\varpi) + g'_{1,j}(\varpi)\gamma + \dots + g'_{n-1,j}(\varpi)\gamma^{n-1}$$
$$= c^{2jd}(c \cdot \delta_{j}(\varpi)).$$

Therefore, $\alpha'(\mathcal{O}[\gamma]) = c \cdot \alpha(\mathcal{O}[\gamma])$, as needed.

Corollary 10.13. *Under* (10.9), the following correspond to one another:

- The G_m -action given by $\cdot_{h,-d\rho^{\vee}}$ on $\mathcal{F}l_0^{\gamma}$.
- The G_m -action given by (10.10) on the set of $\mathcal{O}[\gamma]$ -submodules of $F[\gamma]$ of the form $\alpha(\mathcal{O}[\gamma])$.

10.6.

We keep the setup of the preceding subsection. Since $\gamma = \gamma_{d,d}$, Proposition 10.6 says that the G_m -fixed points of $\mathcal{F}l_0^{\gamma}$ are the points $\dot{w}G(\mathcal{O}) \in \mathcal{F}l_0$, as we run over $[w] \in W^{aff}/W$, such that

$$\langle \alpha, 0 \cdot w^{-1} \rangle \le 0 \text{ for all } \alpha \in \Phi_1, \qquad \langle \alpha_{high}, 0 \cdot w^{-1} \rangle \ge -d.$$

As noted in Example 10.7, the points $0 \cdot w^{-1}$ all belong to $X_*(T)$, and since $G = \operatorname{SL}_n$ is simply-connected, $X_*(T)$ is the same as $\mathbb{Z}\Phi^{\vee}$. In particular, we can and will choose the representative \dot{w} to take the form $\dot{w} = \varpi^w \in T(F)$.

Recall that B_+ is the upper-triangular Borel, so T is the diagonal torus. Recall also that we index rows and columns starting at 0. For $1 \le i \le n-1$, let $\alpha_i^{\vee} : \mathbf{G}_m \to T$ be the coroot such that $c^{\alpha_i^{\vee}}$ equals c in the (i-1)th entry and c^{-1} in the ith entry and 1 elsewhere. Below, we use this explicit labeling of the coroot lattice to describe, for each \mathbf{G}_m -fixed point $\dot{w}G(\mathcal{O}) \in \mathcal{F}l_0^{\gamma}$, the corresponding $\mathcal{O}[\gamma]$ -submodule

$$M_{[w]} \subseteq F[\gamma].$$

Then the work of Piontkowski and Gorsky–Mazin describes how to assign certain Q-and T-statistics (resp., "area" and "dinv") to each $M_{[w]}$. In place of the latter, we record the t^2 -statistic given by $t^{2e} = T^{\frac{1}{2}(d-1)(n-1)-e}$.

It will be convenient to use the isomorphism

$$F[\gamma]/(\gamma^n - \varpi^d) \xrightarrow{\sim} F[\rho^d, \rho^n]$$

that sends $\gamma \mapsto \varrho^d$ and $\varpi \mapsto \varrho^n$. Since \dot{w} is diagonal, we have

$$M_{[w]} = \mathcal{O}\langle \varrho^{d_1}, \dots, \varrho^{d_{n-1}} \rangle$$

where $d_j = \operatorname{val}_{\varrho}(\dot{w}_{j,j}\gamma^j) = \operatorname{val}_{\varpi}(\dot{w}_{j,j})n + jd$.

Example 10.14. Taking (n, d) = (3, 4) gives:

w	d_0	d_1	d_2	Q	t^2
0	0	4	8	3	3
$2\alpha_1^{\vee} + \alpha_2^{\vee}$		1		2	
$\alpha_1^{\vee} + 2\alpha_2^{\vee}$	3	7	2	1	2
$2\alpha_1^{\vee} + 2\alpha_2^{\vee}$	6	4	2	1	1
$lpha_1^ee + lpha_2^ee$	3	4	5	0	0

Example 10.15. Taking (n, d) = (3, 5) gives:

w	d_{0}	d_1	d_2	Q	t^2
0	0	5	10	4	4
$2\alpha_1^{\vee} + 3\alpha_2^{\vee}$	6	8	1	3	3
$3\alpha_1^{\vee} + 2\alpha_2^{\vee}$	9	2	4	2	3
$2\alpha_1^\vee + \alpha_2^\vee$	6	2	7	2	2
$\alpha_1^{\vee} + 2\alpha_2^{\vee}$	3	8	4	1	2
$lpha_1^\vee + lpha_2^\vee$	3	5	7	1	1
$2\alpha_1^{\vee} + 2\alpha_2^{\vee}$	6	5	4	0	0

Example 10.16. Taking (n, d) = (4, 3) gives:

w	d_{0}	d_1	d_2	d_3	Q	t^2
0	0	3	6	9	3	3
$\alpha_1^{\vee} + 2\alpha_2^{\vee} + 2\alpha_3^{\vee}$	4	7	6	1	2	2
$2\alpha_1^{\vee} + 2\alpha_2^{\vee} + \alpha_3^{\vee}$	8	3	2	5	1	2
$\alpha_1^{\vee} + 2\alpha_2^{\vee} + \alpha_3^{\vee}$	4	7	2	5	1	1
$\alpha_1^{\vee} + \alpha_2^{\vee} + \alpha_3^{\vee}$	4	3	6	5	0	0

Example 10.17. Taking (n, d) = (4, 5) gives:

w	d_0	d_1	d_2	d_3	Q	t^2
0	0	5	10	15	6	6
$3\alpha_1^{\vee} + 2\alpha_2^{\vee} + \alpha_3^{\vee}$	12	1	6	11	5	5
$2\alpha_1^{\vee} + 4\alpha_2^{\vee} + 2\alpha_3^{\vee}$	8	13	2	7	4	5
$\alpha_1^{\vee} + 2\alpha_2^{\vee} + 3\alpha_3^{\vee}$	4	9	14	3	3	5
$3\alpha_1^{\vee} + 4\alpha_2^{\vee} + 2\alpha_3^{\vee}$	12	9	2	7	4	4
$2\alpha_1^{\vee} + 4\alpha_2^{\vee} + 3\alpha_3^{\vee}$	8	13	6	3	3	4
$\alpha_1^{\vee} + \alpha_2^{\vee} + \alpha_3^{\vee}$	4	5	10	11	2	4
$2\alpha_1^{\vee} + 3\alpha_2^{\vee} + 3\alpha_3^{\vee}$	8	9	10	3	3	3
$\alpha_1^{\vee} + 2\alpha_2^{\vee} + \alpha_3^{\vee}$	4	9	6	11	2	3
$3\alpha_1^{\vee} + 3\alpha_2^{\vee} + 2\alpha_3^{\vee}$	12	5	6	7	1	3
$\alpha_1^{\vee} + 2\alpha_2^{\vee} + 2\alpha_3^{\vee}$	4	9	10	7	2	2
$2\alpha_1^{\vee} + 2\alpha_2^{\vee} + \alpha_3^{\vee}$	8	5	6	11	1	2
$2\alpha_1^{\vee} + 2\alpha_2^{\vee} + \frac{2\alpha_3^{\vee}}{}$	8	5	10	7	1	1
$2\alpha_1^{\vee} + 3\alpha_2^{\vee} + 2\alpha_3^{\vee}$	8	9	6	7	0	0