Sets

What is a set?

- * A set is a unordered collection of "objects"
 - People in a class: {Alice, Bob, Chris }
 - States in the US: {Alabama, Alaska, Virginia, ... }
 - Sets can contain non-related elements: {3, a, Virginia}
 - All positive numbers less than or equal to 5: {1, 2, 3, 4, 5}

Properties

- Order does not matter
 - {1, 2, 3, 4, 5} is equivalent to {3, 5, 2, 4, 1}
- Sets do not have duplicate elements
 - Consider the list of students in this class
 - It does not make sense to list somebody twice

Specifying a set

- * A set "contains" the various "members" or "elements" that make up the set
 - If an element a is a member of (or an element of) a set S, we use then notation a ∈ S

```
0 4 \in \{1, 2, 3, 4\}
```

If not, we use the notation $a \notin S$

```
0.7 \notin \{1, 2, 3, 4\}
```

Often used sets

- $\mathbf{N} = \{0, 1, 2, 3, ...\}$ is the set of natural numbers
- * **Z** = {..., -2, -1, 0, 1, 2, ...} is the set of integers
- $Z^+ = \{1, 2, 3, ...\}$ is the set of positive integers (a.k.a whole numbers)
 - Note that people disagree on the exact definitions of whole numbers and natural numbers
- * $\mathbf{Q} = \{p/q \mid p \in \mathbf{Z}, q \in \mathbf{Z}, q \neq 0\}$ is the set of rational numbers
 - Any number that can be expressed as a fraction of two integers (where the bottom one is not zero)
- * R is the set of real numbers

The universal set

- * U is the universal set the set of all of elements (or the "universe") from which given any set is drawn
 - For the set {-2, 0.4, 2}, U would be the real numbers
 - For the set {0, 1, 2}, *U* could be the **N**, **Z**, **Q**, **R** depending on the context
 - For the set of the vowels of the alphabet, U would be all the letters of the alphabet

Venn diagrams

- * Represents sets graphically
 - The box represents the universal set
 - Circles represent the set(s)
- Consider set S, which is the set of all vowels in the alphabet
- The individual elements are usually not written in a Venn diagram

Sets of sets

Sets can contain other sets

```
S = { {1}, {2}, {3} }
T = { {1}, {{2}}, {{3}}} }
V = { {{1}, {{2}}}, {{3}}}, { {1}, {{2}}}, {{3}}} }
{{3}}} }
V has only 3 elements!
```

- * Note that $1 \neq \{1\} \neq \{\{1\}\} \neq \{\{\{1\}\}\}$
 - They are all different

The Empty Set

- * If a set has zero elements, it is called the empty (or null) set
 - Written using the symbol Ø

 - ▶ Thus, $\emptyset = \{ \}$ ← VERY IMPORTANT
- * It can be a element of other sets
 - \triangleright { \emptyset , 1, 2, 3, x } is a valid set
- $* \varnothing \neq \{ \varnothing \}$
 - The first is a set of zero elements
 - The second is a set of 1 element
- * Replace \emptyset by $\{ \}$, and you get: $\{ \} \neq \{ \{ \} \}$
 - It's easier to see that they are not equal that way

Set Equality, Subsets

- * Two sets are equal if they have the same elements
 - **1** {1, 2, 3, 4, 5} = {5, 4, 3, 2, 1}
 - **1** {1, 2, 3, 2, 4, 3, 2, 1} = {4, 3, 2, 1}
 - Two sets are not equal if they do not have the same elements $[1, 2, 3, 4, 5] \neq \{1, 2, 3, 4\}$
- If all the elements of a set S are also elements of a set T, then S is a subset of T
 - If $S = \{2, 4, 6\}, T = \{1, 2, 3, 4, 5, 6, 7\}, S$ is a subset of T
 - ▶ This is specified by $S \subseteq T$ meaning that $\forall x (x \in S \rightarrow x \in T)$
 - For any set S, $S \subseteq S$ ($\forall S \subseteq S$)
 - For any set S, $\emptyset \subseteq S$ ($\forall S \emptyset \subseteq S$)

Proper Subsets

- If S is a subset of T, and S is not equal to T, then S is a proper subset of T
 - ▶ Can be written as: $R \subseteq T$ and $R \not\subset T$
 - Let $T = \{0, 1, 2, 3, 4, 5\}$
 - If $S = \{1, 2, 3\}$, S is not equal to T, and S is a subset of T
 - ▶ A proper subset is written as $S \subset T$
 - Let Q = {4, 5, 6}. Q is neither a subset or T nor a proper subset of T

Set cardinality

The cardinality of a set is the number of elements in a set, written as |A|

Examples

- Let $R = \{1, 2, 3, 4, 5\}$. Then |R| = 5
- $|\emptyset| = 0$
- ▶ Let $S = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$. Then |S| = 4

Power Sets

- \ast Given S = {0, 1}. All the possible subsets of S?
 - \triangleright \varnothing (as it is a subset of all sets), $\{0\}$, $\{1\}$, and $\{0, 1\}$
 - ▶ The power set of S (written as P(S)) is the set of all the subsets of S
 - ▶ $P(S) = { \emptyset, {0}, {1}, {0,1} }$ Note that |S| = 2 and |P(S)| = 4
- Let $T = \{0, 1, 2\}$. The $P(T) = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0,1\}, \{0,2\}, \{1,2\}, \{0,1,2\} \}$
 - □ Note that |T| = 3 and |P(T)| = 8
- $P(\emptyset) = \{\emptyset\}$
 - Note that $|\varnothing| = 0$ and $|P(\varnothing)| = 1$
- If a set has n elements, then the power set will have 2^n elements

Set Operations

Set operations: Union

* Formal definition for the union of two sets:

$$A \cup B = \{ x \mid x \in A \text{ or } x \in B \}$$

- Further examples
 - ▶ {1, 2, 3} U {3, 4, 5} = {1, 2, 3, 4, 5}
 - ▶ {a, b} U {3, 4} = {a, b, 3, 4}
 - $\{1, 2\} \cup \emptyset = \{1, 2\}$
- * Properties of the union operation
 - \triangleright A U \varnothing = A
 - \blacktriangleright A U U = U
 - $A \cup A = A$
 - \triangleright A U B = B U A
 - ▶ A U (B U C) = (A U B) U C

Identity law

Domination law

Idempotent law

Commutative law

Associative law

Set operations: Intersection

* Formal definition for the intersection of two sets:

$$A \cap B = \{ x \mid x \in A \text{ and } x \in B \}$$

- Examples
 - ightharpoonup {1, 2, 3} \cap {3, 4, 5} = {3}
 - $\{a, b\} \cap \{3, 4\} = \emptyset$
 - $ightharpoonup \{1, 2\} \cap \varnothing = \varnothing$
- * Properties of the intersection operation
 - \bullet A \cap U = A
 - \triangleright A $\cap \emptyset = \emptyset$
 - $A \cap A = A$
 - \triangleright A \cap B = B \cap A
 - \blacktriangleright A n (B n C) = (A n B) n C

Identity law

Domination law

Idempotent law

Commutative law

Associative law

Disjoint sets

- Formal definition for disjoint sets: two sets are disjoint if their intersection is the empty set
- Further examples
 - ▶ {1, 2, 3} and {3, 4, 5} are not disjoint
 - ▶ {a, b} and {3, 4} are disjoint
 - \triangleright {1, 2} and \varnothing are disjoint
 - Their intersection is the empty set
 - ▶ Ø and Ø are disjoint!
 - Their intersection is the empty set

Set operations: Difference

Formal definition for the difference of two sets:

$$A - B = \{ x \mid x \in A \text{ and } x \notin B \}$$

Further examples

- ightharpoonup {1, 2, 3} {3, 4, 5} = {1, 2}
- ightharpoonup {a, b} {3, 4} = {a, b}
- \blacktriangleright {1, 2} \emptyset = {1, 2}
 - The difference of any set S with the empty set will be the set S

Complement sets

- * Formal definition for the complement of a set: $A = \{ x \mid x \notin A \} = A^c$
 - \blacktriangleright Or U A, where U is the universal set
- * Further examples (assuming U = Z)
 - $\{1, 2, 3\}^c = \{ ..., -2, -1, 0, 4, 5, 6, ... \}$
 - $\{a, b\}^c = Z$
- Properties of complement sets
 - $(A_c)_c = A$
 - $A \cup A^{c} = U$
 - $A \cap A^c = \emptyset$

- Complementation law
- Complement law
- Complement law

Set identities

$A \cup \emptyset = A$ $A \cap U = A$	Identity Law	$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination law
$A \cup A = A$ $A \cap A = A$	Idempotent Law	$(A^c)^c = A$	Complement Law
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative Law	$(A \cup B)^c = A^c \cap B^c$ $(A \cap B)^c = A^c \cup B^c$	De Morgan's Law
$A \cup (B \cup C)$ $= (A \cup B) \cup C$ $A \cap (B \cap C)$ $= (A \cap B) \cap C$	Associative Law	$A \cap (B \cup C) =$ $(A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) =$ $(A \cup B) \cap (A \cup C)$	Distributive Law
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption Law	$A \cup A^{c} = U$ $A \cap A^{c} = \emptyset$	Complement Law

How to prove a set identity

- For example: AnB=B-(B-A)
- * Four methods:
 - Use the basic set identities
 - Use membership tables
 - Prove each set is a subset of each other
 - Use set builder notation and logical equivalences

Proof by Set Identities

Showing each is a subset of the others

```
(A \cap B)^c = A^c \cup B^c
Proof) Want to prove that
    (A \cap B)^c \subseteq A^c \cup B^c \text{ and } (A \cap B)^c \supset A^c \cup B^c
x \in (A \cap B)^c
\Rightarrow x \in (A \cap B)
 \Rightarrow \neg (x \in A \cap B)
 \Rightarrow \neg (x \in A \land x \in B)
 \Rightarrow \neg (x \in A) \lor \neg (x \in B)
 \Rightarrow x \in A \lor x \in B
 \Rightarrow x \in A^c \lor x \in B^c
 \Rightarrow x \in A^c \cup B^c
```

Examples

- * Let A, B, and C be sets. Show that:
- a) $(AUB) \subseteq (AUBUC)$
- b) $(A \cap B \cap C) \subseteq (A \cap B)$
- c) $(A-B)-C \subseteq A-C$
- d) $(A-C) \cap (C-B) = \emptyset$

Functions

Definition of a function

* A function takes an element from a set and maps it to a UNIQUE element in another set

More functions

A class grade function

A string length function

Even more functions

Some function...

Not a valid function!
Also not a valid function!

Function arithmetic

- \star Let $f_1(x) = 2x$
- $* Let f_2(x) = x^2$

$$f_1+f_2=(f_1+f_2)(x)=f_1(x)+f_2(x)=2x+x^2$$

$$f_1 * f_2 = (f_1 * f_2)(x) = f_1(x) * f_2(x) = 2x * x^2 = 2x^3$$

One-to-one functions

* A function is one-to-one if each element in the co-domain has a unique pre-image

A one-to-one function

A function that is not one-to-one

More on one-to-one

- * Injective is synonymous with one-to-one
- * "A function is injective"
- * A function is an injection if it is one-to-one
- Note that there can be un-used elements in the co-domain

A one-to-one function

Onto functions

* A function is onto if each element in the codomain is an image of some pre-image

An onto function

A function that is not onto

More on onto

- Surjective is synonymous with onto
 - "A function is surjective"
- * A function is an surjection if it is onto
- Note that there can be multiply used elements in the co-domain

An onto function

Onto vs. one-to-one

* Are the following functions onto, one-toone, both, or neither?

1-to-1, not onto

Both 1-to-1 and onto

Neither 1-to-1 nor onto

Not a valid function

Bijections

Consider a function that is both one-to-one and onto:

Such a function is a one-to-one correspondence, or a bijection

Identity functions

* A function such that the image and the preimage are ALWAYS equal

$$*f(x) = 1*x$$

$$*f(x) = x + 0$$

* The domain and the co-domain must be the same set

Inverse functions

More on inverse functions

* Can we define the inverse of the following functions?

What is $f^{-1}(2)$? Not 1-to-1!

* An inverse function can ONLY be done defined on a bijection

Few Examples

- ***** f: **Z** → **Z**
 - f(x) = x
 - f(x) = 2x
 - f(x) = x+1
- * f: $\mathbf{R} \to \mathbf{R}$
 - f(x) = 2x
 - $f(x) = x^2$
 - $f(x) = x^3$
- \ast f: $\mathbf{R} \rightarrow \mathbf{R}^+ \cup \{0\}$
 - $f(x) = x^2$

Definition of a function

* A function takes an element from a set and maps it to a UNIQUE element in another set

Compositions of functions

$$(f \circ g)(x) = f(g(x))$$

Compositions of functions

$$f(g(x)) = 2(3x+2)+3 = 6x+7$$

Compositions of functions

Does
$$f(g(x)) = g(f(x))$$
?

Let
$$f(x) = 2x+3$$

Let
$$g(x) = 3x+2$$

$$f(g(x)) = 2(3x+2)+3 = 6x+7$$

 $g(f(x)) = 3(2x+3)+2 = 6x+11$

Not equal!

Function composition is not commutative!

f(x)=3Graphs of functions 0 0 0 **0** Ö. Ö. 0 0 0 0 0 0 Let f(x)=2x+1OO O OPlot (x, f(x))0 0 0 0 Ö. Ö. 0 0 0 0 0 0 O O Oф. О. О. 0. Ö. о. о. ф. This is a plot 0 0 0 of f(x)O. O. O. 0. 0. 0. 0. 0.

Useful functions

* Floor: \[\text{x} \] means take the greatest integer less than or equal to the number

* Ceiling: [x] means take the lowest integer greater than or equal to the number

* round(x) = $\lfloor x+0.5 \rfloor$

Floor, Ceiling Examples

Find these values

*	$\lfloor 1.1 floor$
*	$\lceil 1.1 ceil$
*	L-0.1J
*	「-0.1 ॊ

Ceiling and floor properties

```
Let n be an integer
                  \lfloor x \rfloor = n if and only if n \le x < n+1
(1a)
                  |x| = n if and only if n-1 < x \le n
(1b)
(1c) \lfloor x \rfloor = n if and only if x-1 < n \le x
                  \lceil x \rceil = n if and only if x \le n < x+1
(1d)
                  x-1 < |x| \le x \le \lceil x \rceil < x+1
(2)
                  |-x| = - \lceil x \rceil
(3a)
          \lceil -x \rceil = - |x|
(3b)
        \lfloor x+n \rfloor = \lfloor x \rfloor + n
(4a)
                  [x+n] = [x]+n
(4b)
```

Ceiling property proof

- * Prove rule $4a: \lfloor x+n \rfloor = \lfloor x \rfloor + n$
 - Where n is an integer
 - Will use rule $1a: \lfloor x \rfloor = n$ if and only if $n \le x < n+1$

Direct proof!

- Let $m = \lfloor x \rfloor$
- Thus, $m \le x < m+1$ (by rule 1a)
- Add n to both sides: $m+n \le x+n < m+n+1$
- ▶ By rule 4a, $m+n = \lfloor x+n \rfloor$
- Since $m = \lfloor x \rfloor$, m+n also equals $\lfloor x \rfloor + n$
- Thus, $\lfloor x \rfloor + n = m + n = \lfloor x + n \rfloor$

Factorial

* Factorial is denoted by n!

* Thus, 6! = 6 * 5 * 4 * 3 * 2 * 1 = 720

* Note that 0! is defined to equal 1

Proving Function problems

- * Let f be an invertible function from Y to Z
- * Let g be an invertible function from X to Y
- Show that the inverse of f

 g is:
 - $f(f \circ g)^{-1} = g^{-1} \circ f^{-1}$

```
(Pf) Thus, we want to show, for all z \in \mathbb{Z} and x \in \mathbb{X} ((f ° g) ° (g<sup>-1</sup> ° f<sup>-1</sup>)) (x) = x and ((f<sup>-1</sup> ° g<sup>-1</sup>) ° (g ° f)) (z) = z
```

$$((f \circ g) \circ (g^{-1} \circ f^{-1})) (x) = (f \circ g) ((g^{-1} \circ f^{-1})) (x))$$

$$= (f \circ g) (g^{-1} (f^{-1}(x)))$$

$$= (f (g (g^{-1} (f^{-1}(x))))$$

$$= (f (f^{-1}(x)))$$

$$= x$$

The second equality is similar