

Bass Database
Conceptual Database Design

Bruce Hussey and Tom Dion February 28, 2024

WNE Anglers' Video Database

Contents

A Introduction				
A.1 Pu		Pur	pose of the Conceptual Database Design3	
B Business			Requirements Overview	
	B.1	Assı	umptions/Constraints3	
	B.2	Syst	em Scope3	
C Logical Data Model			ata Model3	
1	Con	Conceptual Design4		
	1.1	Enti	ties4	
	1.1.	1	Table of Entities4	
	1.2	Rela	ationships4	
	1.2.	1	Table of Relationships4	
	1.2.	2	Preliminary ER Diagram	
	1.3	Attr	ibutes5	
	1.3.	1	Table of Attributes	
	1.4	Attr	ibute Domains5	
	1.4.	1	Table of Attribute Domains5	
	1.5	Key	Attributes	
	1.5.	1	Table of Key Attributes6	
	1.5.	2	Updated ER Diagram – Primary Keys Added6	
	1.6	Enh	anced Modeling6	
	1.7	Che	ck for Model Redundancy7	
	1.7.	1	Updated ER Diagram – Redundant Relationship Removed	
	1.8	Vali	date Model Against User Transactions7	
	1.8.	1	Display Habitat and Regulations by Species	
	1.8.	2	Display Habitat by Species	
	1.8.	3	Display Species by Habitat8	
	19	Revi	iew Concentual Data Model with User	

A Introduction

A.1 Purpose of the Conceptual Database Design

The purpose of this document is to build a conceptual model of the data requirements of the enterprise. The Business requirements overview is included here.

B Business Requirements Overview

Tracking all species of salt and freshwater bass is a difficult task to memorize for anybody. Fish and wildlife services and anglers will be able to access important information about these fish.

B.1 Assumptions/Constraints

WNE Anglers have decided to focus on the most important information of all species of bass. This includes the names of the fish (common name, scientific name, abbreviated name), the description of the fish (length, weight, primary color, secondary color), and their breeding tendencies (where and when in different bodies of water.) They also want to be able to enter this data easily and get their native locations, world record weight/length, and regulations.

B.2 System Scope

The scope of this project is to develop a database for Fish and Wildlife services as well as common anglers to be able to access data about these fish whenever it's needed.

C Logical Data Model

For this project, a relational database will be developed to meet Fish and Wildlife services and Anglers needs for all freshwater and saltwater bass species.

1 Conceptual Design

1.1 Entities

Entities needed for this database are videos, actors and roles.

1.1.1 Table of Entities

Entity Name	Description	Aliases	Occurrence	
Species Stores information about all			Each species represents a unique	
	species of bass		species of bass	
Habitat Information of habitats of each			A specific habitat	
	species			
Regulations	Information about fishing	Rules	Fishing regulations for a specific	
	regulations for each habitat		habitat in a particular region	

1.2 Relationships

1.2.1 Table of Relationships

Entity Name	Multiplicity	Relationship	Multiplicity	Entity Name
Species	1*	Lives in	1*	Habitat
	11	Has	1*	Regulations
Habitat	11	Has	1*	Regulations

1.2.2 Preliminary ER Diagram

1.3 Attributes

1.3.1 Table of Attributes

Entity	Attributes	Description	Data Type &	Nulls	Multi-
Name			Length		Valued
Species	SpeciesID	Unique Id for Species	5 variable char	No	No
	CommonName	Species common name	30 variable char	No	No
	ScientificName	Species scientific name	30 variable char	No	No
	AbbreviatedName	Species abbreviated name	30 variable char	Yes	Yes
	AveLength	Species average length	int	No	No
	AveWeight	Species average weight	int	No	No
	AveLife	Average length of life	Years	No	No
	PrimColor	Species primary color	15 variable char	No	Yes
	SecondColor	Species secondary color	15 variable char	Yes	No
	PrimaryForage	Main forage	30 variable char	No	No
	SpawnStartDate	Date species start spawning	Date	No	No
	SpawnEndDate	Date species end spawning	Date	No	No
	MigrationPattern	How/where they migrate	30 variable char	No	No
	TerritorialBehavior	Level Of Aggression	15 variable char	No	no
Habitat	HabitatID	Unique Id for habitat	5 variable char	No	No
	WaterType	Type of Water	15 variable char	no	no
	HabitatType	Type of habitat	30 variable char	No	No
	Temp	Water temp	int	No	Yes
	Depth	Water depth	int	No	Yes
	Vegetation	Vegetation	30 variable char	No	Yes
Regulations	ConservationID	Unique Id for Conservation	5 variable char	no	no
	State	State Name Abbreviation	5 variable char	no	no
	FishingSeason	Season of the year	6 variable char	no	yes
	CatchLimit	Number Of Fish Allowed to keep	int	yes	no
	MaxLength	Max length allowed to keep	int	yes	no
	MinLength	Min length allowed to keep	int	yes	no

1.4 Attribute Domains

The following attributes will have the indicated domains:

1.4.1 Table of Attribute Domains

Attribute	Domain	Format
SpeciesID	5-value character string	Two lowercase letters followed by three digits
HabitatID	5-value character string	Two lowercase letters followed by three digits
State	2-value character string	Two lowercase letters followed by three digits
ConservationID	5-value character string	Two lowercase letters followed by three digits
AveLife	2-value character string	YY
AveWeight	Int	Pounds
AveLength	Int	Inches
SpawnStartDate	Date	MM/DD/YYYY
SpawnEndDate	Date	MM/DD/YYYY
Temp	Int	Temperature in fahrenheit
Depth	Int	Depth in feet

CatchLimit	Int	NN
MaxLength	Int	FF/II
MinLength	Int	FF/II

1.5 Key Attributes

1.5.1 Table of Key Attributes

The following keys will be used for each entity:

Entity	Candidate Keys	Primary Key	Alternate Key(s)
Species	SpeciesID; ScientificName	SpeciesID;	ScientificName
Habitat	HabitatID;	HabitatID;	
Regulations	RegulationsID;	RegulationsID;	

1.5.2 Updated ER Diagram – Primary Keys Added

1.6 Enhanced Modeling

Enhanced modeling was deemed not to be necessary.

1.7 Check for Model Redundancy

- 1. There are no one-to-one relationships, so no mergers need to be applied.
- 2. There are two paths that lead from Species to Regulations; one directly and the other through Habitat. Remove the direct relationship between Species and Regulations since that information can be obtained through the Habitat entity.
- 3. Considering time dimension does not nullify the previous conclusion to remove the direct relationship.

1.7.1 Updated ER Diagram – Redundant Relationship Removed

1.8 Validate Model Against User Transactions

1.8.1 Display Habitat and Regulations by Species

The steps needed to accomplish this are as follows:

- 1. The user selects a Species. This data comes from the Species relation.
- 2. The system then displays the species, the habitats involved and its regulations. This data comes from the Species, Habitats, and Regulations relations.

1.8.2 Display Habitat by Species

The steps needed to accomplish this are as follows:

- 1. The user selects a species. This data comes from the species relation.
- 2. The system then displays the habitat, the species in which they appear. This data comes from the species and habitat relations.

This structure will allow a user to display the habitat and their roles for a species.

1.8.3 Display Species by Habitat

The steps needed to accomplish this are as follows:

- 1. The user enters a habitat. This data involves the habitat relation.
- 2. The user enters a habitat involved and displays species. This data involves the species and habitat relations.

1.9 Review Conceptual Data Model with User

Here is the current schema for the Bass Database to be used for review:

Species(<u>SpeciesID</u>, CommonName, ScientificName, AbbreviatedName, AveLength, AveWeight, AveLife, PrimColor, SecondColor, PrimaryForage, SpawnStartDate, SpawnEndDate, MigrationPattern, TerritorialBehavior)

Habitat(<u>HabitatID</u>, WaterType, HabitatType, Temp, Depth, Vegetation)

Regulations(ConservationID, State, FishingSeason, CatchLimit, MaxLength, MinLength)