The Berkson model

Parametrization

This is an implementation of the Berkson error model for a fixed effect. It is best described by an example, let the model be

$$y = \beta x + \epsilon$$

where y is the responce, β the effect of the true covariate x with zero mean Gaussian noise ϵ . The issue is that x is not observed directly, but only through x_{obs} , where

$$x_{\text{obs}} = x + \nu$$

where ν is zero mean Gaussian noise. Even though this setup is possible to implement using basic features ("copy" and multiple likelihoods), we provide the following model which replaces the above,

$$y = u + \epsilon$$

where

$$u \sim \mathcal{N}\left(\beta \frac{\tau_x \mu_x I + \tau_{\text{obs}} x_{\text{obs}}}{\tau_x + \tau_{\text{obs}}}, \frac{\tau_x + \tau_{\text{obs}}}{\beta^2} I\right).$$

Here, x is a priori $\mathcal{N}(\mu_x I, \tau_x I)$, and τ_{obs} is the observation precision for x (ie $\text{Prec}(x_{\text{obs}}|x))$.

Hyperparameters

This model has 4 hyperparameters, $\theta = (\theta_1, \theta_2, \theta_3, \theta_4)$ where θ_2 , θ_3 and θ_4 are default set to be fixed (ie defined to be known). The values of θ_2 , θ_3 and θ_4 are set to mimic a classical fixed effect, so they will always make sense. To achive the Berkson measurement model, please use the appropriate choices for (some of) these parameters!

The hyperparameter spesification is as follows:

$$\theta_1 = \beta$$

and the prior is defined on θ_1 ,

$$\theta_2 = \log(\tau_{\rm obs})p$$

and the prior is defined on θ_2 ,

$$\theta_3 = \mu_x$$

and the prior is defined on θ_3 ,

$$\theta_4 = \log(\tau_{\rm x})$$

and the prior is defined on θ_4 .

Specification

The Berkson is specified inside the f() function as

The x.obs are the observed values of the unknown covariates x, with the assumption, that if two or more elements of x.obs are identical, then they refer to the same element in the true covariate x.

¹Note: The second argument in $\mathcal{N}(,)$ is the precision not the variance.

Hyperparameter specification and default values

hyper theta1 name beta short.name b **prior** gaussian **param** 1 0.001 initial 1 fixed FALSE to.theta from.theta theta2 name prec.obs short.name prec prior loggamma **param** 1 1e-04 initial 9.21034037197618 fixed TRUE to.theta from.theta theta3 name mean.x short.name mu.x **prior** gaussian **param** 0 1e-04 initial 0 fixed TRUE to.theta from.theta theta4 name prec.x short.name prec.x prior loggamma **param** 1 10000 initial -9.21034037197618 fixed FALSE to.theta from.theta constr FALSE nrow.ncol FALSE augmented FALSE

aug.factor 1

aug.constr

n.div.by

 $\mathbf{n.required} \quad \mathrm{FALSE}$

set.default.values FALSE

 \mathbf{pdf} berkson

Example

Notes