Clustering & Expectation-Maximization

STAT261: Introduction to Machine Learning

Prof. Allie Fletcher

Outline

- Mixture Distributions
- Expectation Maximization Algorithm
- Convergence of EM
- Numerical Methods

K-means

- A simple iterative algorithm to determine:
 - μ_k = mean of each cluster (hence, the name K-means)
 - $C_n \in \{1, ... K\}$ = cluster that data point x_n belongs to
- Step 0: Start with guess at cluster centroids: μ_k
 - Random fine, but often "smart" heuristics: distance, etc
- Step 2: Update cluster membership:

$$C_n = \arg\min_{k} ||x_n - \mu_k||^2$$

- Step 1: Update mean of each cluster: μ_k = average of x_n s.t. xn such $C_n = i$
- Step 2: Update cluster membership:

$$\sigma_n = \arg\min_i \|x_n - \mu_i\|^2$$

- Selects cluster with closest mean
- Return to step 1

Outline

- Factor Analysis
- Mixture Distributions
- Expectation Maximization Algorithm
- Convergence of EM

Probabilistic Mixture Model for Clusters

- Random variable $z \in \{1, ..., K\}$
 - Discrete event with PMF: P(z = i)
 - Latent variable: often not directly observed
- Observed variable x, can be continuous
 - Probability depends on z, p(x|z=i)
 - One PDF, or component per state z = i
- Distribution of x: computed via total probability
 - PDF $p(x) = \sum p(x|z=i)P(z=i)$
 - CDF $F(x_0) = \sum P(x \le x_0 | z = i) P(z = i)$
- Example: Mixture of two Gaussians

Mixture Models: Examples

- Many data occurs from underlying discrete states
- Example 1: Size of a webpage
 - z = content of the webpage, e.g. number of images
- Example 2: Speech
 - z = phoneme the speaker is saying
- Example 3: Image
 - x = RGB values of a pixel or region of pixels
 - z = one a small number of objects the pixel is part of

Gaussian Mixture Models

- Each p(x|z=i) is a Gaussian
- Parametrized by:
 - $q_i = P(z = i)$ = Probability of each component
 - $\mu_i = E(x|z=i)$, $P_i = var(x|z=i)$ mean and variance in each component
- Can be vector valued

Visualizing GMMs

• 1d model with K = 3 components

• PDF for 2d GMM with K = 2 components

• Random points from a GMM with K = 3 components

Expectation and Variance

- Can compute expectation and variance by total probability
 - Expectation: $\mu = E(x) = \sum q_i \mu_i$
 - Variance:

$$var(x) = \sum_{i} q_{i} P_{i} + q_{i} (\mu_{i} - \mu)(\mu_{i} - \mu)^{T}$$

$$Variance within component components$$

Proof on board

Estimating the Latent Variable

- Given x, can we estimate z if we knew parameters:
- Use Bayes' rule:

$$P(z = i|x) = \frac{P(x|z = i)q_i}{\sum_k P(x|z = k)q_k}$$

- Example: Scalar Gaussian
 - Illustration on board

Fitting a Mixture Model

- Given data $x = (x_1, ..., x_N)$
- Find GMM parameters
 - Mean and variance in each component
 - Probability of each component
- Can be interpreted as "clustering"
- Parametric probabilistic model versus K-means

Maximum Likelihood Estimation

Unknown parameters in GMM:

$$\theta = (q_1, \dots, q_K, \mu_1, \dots, \mu_K, P_1, \dots, P_K)$$

- Data $x = (x_1, ..., x_N)$
- Likelihood of x_n :

$$p(x_n|\theta) = \sum_{k=1}^{K} p(x_n|z_n = k, \theta) P(z_n = k|\theta) = \sum_{k=1}^{K} q_k N(x_n|\mu_k, P_k)$$

Negative log likelihood of all data

$$L(\theta) = -\ln p(x|\theta) = -\sum_{n=1}^{N} \ln \left| \sum_{i=1}^{K} q_i N(x_n|\mu_i, P_i) \right|$$

• ML estimation:

$$\hat{\theta} = \arg\min_{\theta} L(\theta)$$

• Type equation here.

Outline

- Factor Analysis
- LDA multiple vectors
- Clustering
 - K-means
 - Hierarchical Clustering brief description
- Mixture Distributions
- Expectation Maximization Algorithm
 - Convergence of EM

Expectation Maximization Algorithm

- Optimization of $L(\theta)$ is hard
 - No simple way to directly optimize
 - Likelihood is non-convex
- Expectation maximization:
 - Simple iterative procedure:
 - Generates a sequence of estimates $\hat{\theta}^0$, $\hat{\theta}^1$, ...
 - Attempts to approach MLE

$$\widehat{\theta}^k \to \arg\min_{\theta} L(\theta)$$

f

EM Steps

- E-step: Estimate the latent variables
 - Find the posterior of the latent variables given $\hat{\theta}^k$ $P(z|x,\theta=\hat{\theta}^k)$
 - Compute function, Q, auxiliary function

$$Q(\theta, \hat{\theta}^k) := E[\ln p(x, z|\theta)|\hat{\theta}^k]$$
$$= \sum_{z} \ln p(x, z|\theta) P(z|x, \theta = \hat{\theta}^k)$$

• M-step: Update parameters

$$\hat{\theta}^{k+1} = \arg\max_{\theta} Q(\theta, \hat{\theta}^k)$$

E-Step for a GMM: Finding the posterior

- Given parameters q_i , μ_i , P_i
- Find posterior by Bayes rule

$$\gamma_{ni} = P(z_n = i | x) = \frac{P(x_n | z_n = i)q_i}{\sum_k P(x_n | z_n = k)q_k}$$
$$= \frac{N(x_n | \mu_i, P_i)q_i}{\sum_k P(x_n | \mu_k, P_k)q_k}$$

• A "soft" selection

E-Step for a GMM

Auxilliary function separates

$$Q(\theta, \hat{\theta}^k) = E[\ln p(x, z) | \hat{\theta}^k]$$

$$= \sum_{i=1}^K \sum_{n=1}^N \gamma_{ni} \ln P(x_n, z_n = i)$$

$$= \sum_{i=1}^K \sum_{n=1}^N \gamma_{ni} [\ln q_i + \ln N(x_n | \mu_i, P_i)]$$

M-Step for the GMM

- Maximize $Q(\theta, \hat{\theta}^k)$
- Update for q_i (proof on board)

$$q_i = \frac{N_i}{\sum_j N_j}$$
, $N_i = \sum_n \gamma_{ni}$

• Update for μ_i

$$\mu_i = \frac{1}{N_i} \sum_n \gamma_{ni} \, x_n$$

• Update for P_i

$$P_i = \frac{1}{N_i} \sum_{n} \gamma_{ni} (x_n - \mu_i)(x_n - \mu_i)^{\wedge} T$$

Relation to K means

- EM can be seen as a "soft" version
 - In K-Means: $\gamma_{ni} = 1$ or 0
- Variance
 - In K-means: $P_i = I$
 - In EM, this is estimated
- EM provides "scaling" of various dimensions

EM Illustrated

- Simple example with K=2 clusters
- Dimension = 2
- Convergence from a bad initial condition

Outline

- LDA multiple
- Clustering
 - K-means
 - Hierarchical Clustering
- Mixture Distributions
- Expectation Maximization Algorithm

Majorization Minimization

- Suppose we wish to minimize $f(\theta)$
- MM algorithm: find a majorizing function $F(\theta, \theta^k)$:
 - $f(\theta^k) = F(\theta^k, \theta^k)$
 - $f(\theta) \le F(\theta, \theta^k)$ for all θ
- Take $\theta^{k+1} = \arg\min_{\theta} F(\theta, \theta^k)$ (minimize majorization)
- Theorem: $f(\theta^{k+1}) \le f(\theta^k)$
- Proof:

$$f(\theta^{k+1}) \le F(\theta^{k+1}, \theta^k) \le F(\theta^{k+1}, \theta^k) \le f(\theta^k)$$

Gradient Descent as a MM

- Find $\alpha \geq f''(\theta)$
- Define

$$F(\theta, \theta^k) = f(\theta^k) + \nabla f(\theta^k)(\theta - \theta^k) + \frac{\alpha}{2} \|\theta - \theta^k\|^2$$

- By Taylor's theorem, this is a majorizing function
- Gradient descent:

$$\theta^{k+1} = \arg\min_{\theta} F(\theta, \theta^k) = \theta^k - \frac{1}{\alpha} \nabla f(\theta^k)$$

Convergence

- $p(z|x,\theta) = p(x,z|\theta)/p(x|\theta)$
- $J(\theta) = \ln p(x|\theta) = \ln p(x,z|\theta) \ln p(z|x,\theta)$
- $J(\theta) = E[\ln p(x, z|\theta) | \theta^k] E[\ln p(z|x, \theta) | \theta^k]$ = $Q(\theta, \theta^k) + H(\theta, \theta^k)$
- EM algorithm: $J(\theta^{k+1}) \ge J(\theta^k)$
 - Proof on board
- Algorithm may get stuck in local maxima

Outline

Convex sets and functions

- Gradient descent
- Newton's method
- Using MATLAB for optimization
- Other topics

Convex Sets

- Definition: A set X is convex if for any $x, y \in X$, $tx + (1 t)y \in X$ for all $t \in [0,1]$
- Any line between two points remains in the set.
- Examples:
 - Square, circle, ellipse
 - $\{x \mid Ax \leq b\}$ for any matrix A and vector b
 - Not a start
- Will draw pictures on board

Convex Set Visualized

Convex

• Not convex

Convex Functions

- A real-valued function f(x) is convex if:
 - Its domain is a convex set, and
 - For all x, y and $t \in [0,1]$: $f(tx + (1-t)y) \le tf(x) + (1-t)f(y)$

Convex Function Examples

- Linear function of a scalar f(x) = ax + b
- Linear function of a vector $f(x) = a^T x + b$
- Quadratic $f(x) = \frac{1}{2}ax^2 + bx + c$ is convex iff $a \ge 0$
- If f''(x) exists everywhere, f(x) is convex iff $f''(x) \ge 0$.
 - When x is a vector $f''(x) \ge 0$ means the Hessian must be positive semidefinite
- $f(x) = e^x$
- If f(x) is convex, so is f(Ax + b)

Properties

- If f(x) is convex, it is continuous
- If f(x) has a derivative, then

$$f(y) \ge f(x) + \nabla f(x) \cdot (y - x)$$

Outline

- Convex sets and functions
- Gradient descent
 - Newton's method
 - Using MATLAB for optimization
 - Other topics

Unconstrained optimization

- Problem: Given f(x) find the minimum: $x^* = \arg\min_{x} f(x)$
 - f(x) is called the objective function
 - $x = (x_1, \dots, x_p)$ is a vector of decision variables or parameters
- Called unconstrained since there are no constraints on x
- Will discuss constrained optimization briefly later

Numerical Optimization

- We saw that we can find minima by setting $\nabla f(x) = 0$
 - ullet p equations and p unknowns.
 - May not have closed-form solution
- Numerical methods: Finds a sequence of estimates x^k $x^k \to x^*$
 - Or converges to some other "good" minima
 - Run on a computer program, like MATLAB

Local vs. Global Minima

• Definitions:

- x^* is a global minima if $f(x) \ge f(x^*)$ for all x
- x^* is a local minima if $f(x) \ge f(x^*)$ for all x in some open neighborhood of x^*
- Most numerical methods only guarantee convergence to local minima

Local Minima and Convex Function

- Theorem: If f(x) is convex and x^* is a local minima, then it is a global minima
- Also, if f(x) is strictly convex, then the global minima is unique
- Implication: If f(x) is convex, a numerical method that converges to a local minima, will converge to a global minima.
- Many methods can find local minima
- For convex objectives, these methods will find global minima

Gradient Descent

- Most simple method for unconstrained optimization
- Recall gradient:

$$\nabla f(x) = \left(\partial f(x)/\partial x_1, \dots, \partial f(x)/\partial x_p\right)^T$$

- Column vector
- Gradient descent algorithm:
 - Start with initial x^0
 - $x^{k+1} = x^k \alpha_k \nabla f(x^k)$
 - Repeat until some stopping criteria
- α_k is called the step size

Gradient Descent Illustrated

•
$$p = 1$$

•
$$p = 2$$

Gradient Descent Analysis

• Using gradient update rule $f(x^{k+1})$

$$= f(x^{k}) + \nabla f(x^{k}) \cdot (x^{k+1} - x^{k}) + O||x^{k+1} - x^{k}||^{2}$$

$$= f(x^{k}) - \alpha \nabla f(x^{k}) \cdot (x^{k+1} - x^{k}) + O(\alpha^{2})$$

- Consequence: If step size α is small, then $f(x^k)$ decreases
- Theorem: If f''(x) is bounded above, f(x) is bounded below, and α is chosen sufficiently small, then gradient descent converges to local minima

Step Size Selection

- Theorem shows we can always converge to a local minima
 - Global minima if f(x) is convex
- But, step size selection is problematic
 - Need to know f''(x) to find maximum step size
 - Practical choice tends to be conservative
- Very slow step size, many steps to convergence

Adaptive Step Size Selection

• Practical algorithms change step size adaptively $x^{k+1} = x^k - \alpha_k \nabla f(x^k)$

- Tradeoff: Selecting large α_k :
 - Larger steps, faster convergence
 - But, may overshoot

Armijo Rule

- Recall that we know if $x^{k+1} = x^k \alpha \nabla f(x^k)$ $f(x^{k+1}) = f(x^k) - \alpha \|\nabla f(x^k)\|^2 + O(\alpha^2)$
- Armijo Rule:
 - Select some $c \in (0,1)$. Usually c = 1/2
 - Select α such that

$$f(x^{k+1}) \le f(x^k) - c\alpha \left\| \nabla f(x^k) \right\|^2$$

- ullet Decreases by at least at fraction c predicted by linear approx.
- Step size α selected by a line search to find largest α satisfying above conditions

Armijo Rule Illustrated

- Armijo rule: $f(x^{k+1}) \le f(x^k)$ $- c\alpha \|\nabla f(x^k)\|^2$
- Guarantees function decrements in each iteration
- No overshoot

Feasible region for x^{k+1}