

Machine Learning Autoencoders, Variational Autoencoder & Conditional Variational Autoencoder

Nikhil Dhiman Computational Molecular Biology (COMB) Lab

Agenda Overview

- 01 Autoencoders
- 02 Why Use Autoencoders?
- 03 Variational Autoencoders (VAE)
- 04 Conditional Variational Autoencoder (CVAE)

Autoencoders

- A type of artificial neural network used to learn efficient codings of input data.
- It is an unsupervised learning model designed to reconstruct its input.
- Composed of two main parts:
 - Encoder
 - Decorder
- The model trains by minimizing reconstruction error using loss functions like Mean Squared Error or Binary Cross-Entropy. These are applied in tasks such as noise removal, error detection and feature extraction where capturing efficient data representations is important.

Architecture of Autoencoder

- Encoder: Learns meaningful features
- Bottleneck: Forces compression
- Decoder: Learns how to reconstruct

Why Use Autoencoders?

- Dimensionality reduction (like PCA, but nonlinear)
- Noise reduction and denoising
- Anomaly detection
- Pretraining deep networks

Types of Autoencoders

- 1. Denoising Autoencoder (DAE) learns to remove noise
- 2. Sparse Autoencoder adds sparsity constraint on the latent space
- 3. Contractive Autoencoder adds robustness to small input changes
- 4. Variational Autoencoder (VAE) probabilistic generative model

Better Alternative

Sampling Distribution

Variational Autoencoders (VAE)

- Gaussian Distribution
 - $\circ~z~\sim~N(\mu,\,\sigma)$
 - μ mean
 - σ standard deviation

What is μ (mu)?

- µ is the mean of the latent distribution.
 - o Think of it as the center point or average of where the VAE believes the latent representation of your input should be.
- If your input is a "7", µ is saying:
 - o "Most of the time, a good representation of this '7' is around here."

What is σ (sigma)?

- σ is the standard deviation it tells us how spread out the values can be around the mean.
- A bigger σ means more randomness (wider spread); a smaller σ means less uncertainty.
- σ is saying:
 - \circ There's some fuzziness around μ here's how much you can vary."

Conditional Variational Autoencoder (CVAE)

- A CVAE is like a VAE, but with extra control.
- It learns to generate data based on a given condition
- VAE can generate new data, but:
 - It has no control over what it generates.
 - Outputs are random and not class-specific.
 - You can't ask it to "generate a 7" or "a happy face".
- What if you want to generate:
 - A digit 3, not any digit?
 - A face with a certain emotion or identity?
 - A sentence with a specific style or topic?

Thank You

Computational Molecular Biology (COMB) Lab