Problem 3.2 Find derivations in K for the following formulas

3.2.1 $\Box \neg p \rightarrow \Box (p \rightarrow q)$

1. $\neg p \to (p \to q)$	Taut
$2. \Box(\neg p \to (p \to q))$	NEC, 1.
3. $\Box(\neg p \to (p \to q)) \to (\Box \neg p \to \Box(p \to q))$	K, 2.
4. $\Box \neg p \rightarrow \Box (p \rightarrow q)$	MP, 3.

3.2.2 $(\Box p \lor \Box q) \to \Box (p \lor q)$

1.	$p o (p \lor q)$	TAUT
2.	$\Box(p\to (p\vee q))$	NEC, 1.
3.	$\Box(p\to (p\vee q))\to (\Box p\to \Box(p\vee q))$	K, 2.
4.	$\Box p \to \Box (p \vee q)$	MP, 3.
5.	$q \to (p \lor q)$	Taut
6.	$\Box(q\to (p\vee q))$	NEC, 5.
7.	$\Box(q\to (p\vee q))\to (\Box q\to \Box(p\vee q))$	K, 6.
8.	$\Box q \to \Box (p \vee q)$	MP, 7.
9.	$(\Box p \lor \Box q) \to \Box (p \lor q)$	PL, 4., 8.

3.2.3 $\diamond p \rightarrow \diamond (p \lor q)$

$$\begin{array}{lll} 1. & \neg (A \lor B) \to \neg A & \text{TAUT} \\ 2. & \Box \neg (A \lor B) \to \Box \neg A & \text{RK, 1.} \\ 3. & \neg \Box \neg A \to \neg \Box \neg (A \lor B) & \text{PL, 2.} \\ 4. & \diamond A \to \diamond (A \lor B) & \textit{rewriting} \, \diamond \, \textit{for} \, \neg \Box \neg. \end{array}$$

Problem 3.4 Show that the following derivability claims holds:

3.4.1 K
$$\vdash \diamond \neg \bot \rightarrow (\Box A \rightarrow \diamond A)$$

3.4.1 K
$$\vdash \Box (A \lor B) \to (\diamond A \lor \Box B)$$

3.4.1 K
$$\vdash$$
 ($\diamond A \rightarrow \Box B$) $\rightarrow \Box (A \rightarrow B)$

Problem 3.7 Alternative Proof for *Theorem 3.34* with 3 Worlds

Problem 3.8 Single reflexive transitive model s.t. KT4 \nvdash B and KT5 \nvdash B