1	ı	00	hrs
سلب	٠	\sim	1113

25/10/12

EXH

University of the Witwatersrand, Johannesburg

Course or topic numbers	MATH2016	
Course or topic name(s) Paper Number & title	Advanced Analysis	
Taper Namber & dete		
Examination to be		
held during month(s) of	October 2012	
Year of Study		
Degrees/Diplomas for which this course is prescribed		
Faculty/ies presenting candidates		
Internal examiner(s) and	D C M C I MA"H	
telephone numbers	Prof. Manfred Möller – Ext 76220	
Moderator	Prof. Coenraad Labuschagne	
Special materials required		
Time allowance	Course: MATH2016 Hours: 1	
Instructions to candidates	60 marks in 60 minutes.	

Internal Examiners or Heads of Department are requested to sign the declaration overleaf

University of the Witwatersrand School of Mathematics MATH2016–Advanced Analysis Examination 2012

Attempt all questions and write your answers in the answer book provided.					
Question 1	. [8 marks]				
(a) Write down what is meant by a partition P of $[a, b]$.					
(b) Write down what it means that f is Riemann integrable.					
Explain the notation you use.	(6 marks)				
Question 2	[10 marks]				
Show that an increasing function f on an interval $[a,b]$ is Riemann integrable.					
Question 3	. [8 marks]				
$f_{+}(x) = \begin{cases} f(x) & \text{if } f(x) \ge 0, \\ 0 & \text{if } f(x) < 0, \end{cases} x \in [a, b].$					
Show that f_+ is Riemann integrable.					
Question 4	[12 marks]				
(a) Write down the definition of a metric space.	(4 marks)				
(b) Show that if (X, d) is a metric space, then $d(x, y) \ge 0$ for all $x, y \in X$.	(3 marks)				
(c) Let d_1 and d_2 be metrics on X and let $d(x,y) = d_1(x,y) + d_2(x,y)$ for a Show that d is a metric on X .	$ \begin{aligned} &\text{ll } x, y \in X. \\ &\text{(5 marks)} \end{aligned} $				
Question 5	[12 marks]				
Let (X, d) be a metric space and let (x_n) be a sequence in X .					
(a) Define what it means that (x_n) is convergent.	(2 marks)				
(b) Define what it means that (x_n) is a Cauchy sequence.	(2 marks)				
(c) Show that the limit of (x_n) is unique if it exists.	(5 marks)				
(d) Show that if (x_n) converges, then (x_n) is a Cauchy sequence.	(3 marks)				

- (a) Define what is meant by a generalized contraction.

 Explain the notation you use.

 (3 marks)
- (b) Let $T:C[0,1]\to C[0,1]$ be defined by

$$(Tf)(x) = 1 + \int_0^x \frac{f(t)}{4+t^2} dt.$$

Show that T is a (generalized) contraction.

(7 marks)

(c) Find the fixed point of T.

(3 bonus marks)