DONOR GIVING INSIGHTS REPORT

PREDICTING A 3K - 99K JUMP

BY GROUP 4: CAROLINE PIER, XIDAN KOU, CARLI WERNER TROY STEIN, SONGYUAN WU, AND KAT HUSAR

Composition of a Jump

Proportional Compositions by Jump Status

- Notable differences between whether they
 went to three or more events, income level
 greater than \$100,000 per year, first
 donation being greater than \$500, high
 contribution zip-code (Columbus Area), and
 OSU alumni status.
 - These factors were later considered in modeling.
- The ages of the largest donation were similar for both groups.

Composition of a Jump

Composition of a Jump

Top Giving Unit by Constituency and Gender

PEL

Top Giving Unit by Constituency and Gender

PEL

Alumni Feature Selection

THE MOTIVATION

THE PROCEDURE

THE RESULTS

THE INSIGHTS

Alumni Model Motivation

- Alumni may be more likely to give because of their personal experiences at OSU
- Considered subset of only Alumni to investigate the impact of these experiences on 3k to 99k donor transitions
- Goal: Identify demographics that play an important role in classifying 3k to 99k donors

Random Forest Procedure

 Predictor variables: any variable that describes someone's involvement both currently and when he/she was a student

- Start with full predictor list -> eliminate variables with low importance via random forests. Attempted to:
 - o Achieve high f1 score in minority group while minimizing false negatives
 - o Eliminate variables causing high node impurity (low importance)

Model Building Mentality

3k to 99k Donor Status Class Imbalance

Category

3k to 99k
 Not 3k to 99K

Addressing Class Imbalance

- Down-sampled majority class
 - o 3:1 ratio
- Trained on down-sampled data
- o Tested on original data

Final Alumni Random Forest Model

Built using the 6
 variables with the highest importance

Results

- Potentially Identified over 1000 3k to 99k
 Donors
- But, also misclassified
 873 current 3k to
 99k donors
- Final jumper f1 score: 0.25

Alumni Demographic Importance 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00 NumberAssociatedAlumni NumberDegreeLevels OsuParent RelatedToFund ResearchFellow Feature

Insights

- Model performance isn't great but this is still useful
- The model including all alumni demographics was still poor, so let's shift our focus to the few that carried their weight
- Target "OSU Families"
 - Alumni parents + OSU student children + Alumni Friends
- Target research fellows
- Target people related to funds

First Donation vs. Largest Donation Motivation

- Can we predict that a person is ready to make the jump if they donate more now than what they started with?
- o Is the largest amount donated for people who made the jump close to 3k?

First Donation vs. Largest Donation

GIVEN THE FIRST DONATION WAS UNDER \$500, 0.3% DONATED OVER \$2,000

Largest notation vs. First donation for people

GIVEN THE FIRST DONATION WAS UNDER \$500, 23.5% DONATED OVER \$2,000

First Donation vs. Largest Donation

GIVEN THE FIRST DONATION WAS UNDER \$500, 0.3% DONATED OVER \$2,000

Largest notation vs. First donation for people

GIVEN THE FIRST DONATION WAS UNDER \$500, 23.5% DONATED OVER \$2,000

Random Forest Predictive Variables

Scaled by Decrease in Model Accuracy if the Variable was Removed from the Model

- Mean Decrease Gini
 - Model Purity

Logistic Regression Model

1:3 ratio Jump:No Jump

Trained on a 10,000 Jump to 30,000 No Jump Ratio Tested on a 3,000 Jump to 9,000 No Jump Ratio Labeled a Correct Prediction if Scaled Probability was >0.5

Logit Model Confusion Matrix		ACTUAL		
		NO JUMP	3K-99K JUMP	
P R E D	N O J U M P	72.23% 8679	10.56% 1267	
C T I O N	U M P	2.68% 321	14.44% 1733	

Naïve Bayes Model

Given the characteristics of a person

- What is the probability they make a jump?
- What is the probability they do not make a jump?

Classify them based on higher probability

Naïve Bayes Model

1:3 ratio (oversampling)

Goal: low false negatives (those who made the jump should not be misclassified)

How? Aim for higher recall

Our model results:

- average cross validation recall: 67%
- average cross validation accuracy: 95%

Linear SVM model for Donations by Fiscal Years (Good but not good enough)

- Very low accuracy (18%)
- f1-scores .03 for people who made jump .29 for people who didn't make jump
- 700k have been identified as having potential to move up

False-Positive: 50.1% (Target)

False-Negative: 0.4% True-Positive: 1.2%

True-Negative: 48.3%

Donor's First Donation ways

Questions to answer:

- How are donor's first donation ways affect the jump in the future?
- What suggestions can we make to let more people to jump

Maximal Contribution Variables:

- Gift to Pelotonia
- Annual Giving Appeal Code

Minimal Contribution Variables:

- Event Donor
- Tribute Or Memorial Gift

• ...

Pelotonia began in 2008 as a two-day bike ride in Columbus, Ohio to raise funds for cancer research at the Ohio State University Comprehensive Cancer Center

Analysis

Reasons of JUMP for donate FIRST through pelotonia

Better engagement

Sees their donation matters

Event getting influential – donors donate more

Donors who didn't made the jump

Donors who didn't made the jump

Clustering(Hierarchi cal&K-means)

Variable Name:

- VAL_DONOR_UPORDOWN: count of change from one FY to the next
- N_DONOR_INCREASEDGIVINGYEARS_TIMEPERIOD: Blackjack
 k Score
- -We could trace those factors back to the original variables and then get the centers for each cluster in the plot.
- The center for cluster 1 in the K-means plot would be 0.04053386 and 1.230845 for VAL_DONOR_UPORDOWN and N_DONOR_INCREASEDGIVINGYEARS_TIMEPERIOD:
- The center for cluster 2 in the K-means plot would be 1.50822281 and 4.358621 for VAL_DONOR_UPORDOWN and N_DONOR_INCREASEDGIVINGYEARS_TIMEPERIOD:
- -Do we just use the center to speculate that constituents jump or don't jump?
- -Could we connect our unsupervised learning model's results with supervised learning models?

Cluster-Then-Predict

9736

- Create the dataset with cluster labels. without clustering information and two with only one cluster feature
- Loops through these 4 datasets and runs cross validation on each of them

Base-dataset

VAL DONOR UPORDOWN N DONOR INCREASEDGIVINGYEARS TIMEPERIOD

3805	-0.202942	-0.450563
11367	-0.202942	-0.450563
1540	1.542376	1.116713
684	0.669717	1.639138

VAL_DONOR_	_UPORDOWN	N_DONOR	_INCREASEDGIVINGYEARS	_TIMEPERIOD	clusters

0.669717

	3805	-0.202942	-0.450563	-0.532460
	11367	-0.202942	-0.450563	-0.532460
	1540	1.542376	1.116713	1.878074
	684	0.669717	1.639138	1.878074

Cluster-feature

Cluster-0

0.669717

	VAL_DONOR_UPORDOWN	N_DONOR_INCREASEDGIVINGYEARS_TIMEPERIOD	clusters
3805	-0.202942	-0.450563	-0.53246
11367	-0.202942	-0.450563	-0.53246
9736	0.669717	0.071863	-0.53246
3659	-0.202942	0.071863	-0.53246
1192	0.669717	-0.450563	-0.53246

Cluster-1

rs	L_DONOR_UPORDOWN	N_DONOR_INCREASEDGIVINGYEARS_TIMEPERIOD	clusters
	1.542376	1.116713	1.878074
46	0.669717	1.639138	1.878074
	-0.202942	1.116713	1.878074
46	5.033011	2.683989	1.878074
	3.287693	1.639138	1.878074
46			
46	1.542376	2.683989	1.878074
46	0.669717	0.594288	1.878074
	2.415035	1.639138	1.878074
46	-0.202942	2.161564	1.878074
	-0.202942	2.161564	1.878074

Comparison of Dataset by Classification Metric

Random Forest Model

There is a surge in the overall metric from the base model to models incorporating clustering information

Overall Suggestions

Focus on Targeting...

- Alumni
- Event Frequentists
 - Jump Donors Tend to Make the Jump when they have Attended an Event Recently
- Those with Large First Donations (>\$500)
- Largest Donation is Greater than \$2,000
- High Contribution Zip-Codes
- Six Figure Incomes
- First Donation Experience
- Cluster-then-Predict for Blackjack Scores and Number of Years of Increased Giving

Thank You!

Any Questions?

