Taller preparatorio Examen Final de Cálculo Vectorial MATE 1207 Sección 5

PREGUNTAS DE SELECCIÓN MÚLTIPLE

Mayo 17 de 2019

S. Adarve, A. F. Patiño, N. Ramírez

f 1) A continuación se muestran cuatro ecuaciones correspondientes a superficies en \mathbb{R}^3 :

I.
$$(x-1)^2 + y^2 + z^2 = 1$$
 II. $z^2 = 1 + y^2$

II.
$$z^2 = 1 + y^2$$

III.
$$9x^2 + y^2 + 9z^2 = 9$$
 IV. $x^2 + 9y^2 + z^2 = 9$

IV.
$$x^2 + 9y^2 + z^2 = 9$$

¿Cuál de las siguientes opciones relaciona cada ecuación con su descripción correcta?

A)

- I. Cilindro hiperbólico
- II. Esfera
- III. Elipsoide, más ancho en la dirección y
- IV. Elipsoide, más angosto en la dirección y

B)

- I. Esfera
- II. Cilindro hiperbólico
- III. Elipsoide, más ancho en la dirección y
- IV. Elipsoide, más angosto en la dirección y

C)

- I. Cilindro hiperbólico
- II. Esfera
- III. Elipsoide, más angosto en la dirección y
- IV. Elipsoide, más ancho en la dirección y

D)

- I. Esfera
- II. Cilindro hiperbólico
- III. Elipsoide, más angosto en la dirección y
- IV. Elipsoide, más ancho en la dirección y
- **2)** ¿Cuál de las siguientes afirmaciones es verdadera para cualquier función h(x,y)continua en todo \mathbb{R}^2 tal que $\lim_{(x,y)\to(0,0)} h(x,y) = 1$?

A) Si
$$x \to 0$$
, entonces $\lim_{(x,y)\to(0,0)} h(x,y) = 1$

B) Si
$$x^2 + y^2 \to 0$$
, entonces $\lim_{(x,y)\to(0,0)} h(x,y) = 1$

C) Si
$$x + y \to 0$$
, entonces $\lim_{(x,y)\to(0,0)} h(x,y) = 1$

D) Si
$$x - y \to 0$$
, entonces $\lim_{(x,y)\to(0,0)} h(x,y) = 1$

3) Sean P, Q y R los sólidos cúbicos de 1cm x 1 cm x 1cm, dados por:

$$P = [1,2] \times [0,1] \times [0,1]$$

$$Q = [2,3] \times [1,2] \times [0,1]$$

$$R = [2,3] \times [0,1] \times [0,1]$$

Estos sólidos cúbicos tienen todos la misma función de densidad $\rho(x, y, z) = 2x - 2y$ (en kg/cm^3). La figura muestra las proyecciones de cada uno de estos cubos sobre el plano xy.

Si m(P), m(P) y m(R) denotan las masas de los sólidos P, Q y R, respectivamente, ¿cuál de las siguientes afirmaciones es correcta?

A)
$$m(P) < m(Q) < m(R)$$

B)
$$m(P) < m(Q) = m(R)$$

C)
$$m(P) = m(Q) < m(R)$$

D)
$$m(P) = m(Q) = m(R)$$

4) Sea E el sólido en forma de vasija que resulta de rotar la curva $y = \sin z + 2$, $0 \le z \le 2\pi$, alrededor del eje z. Considere además las siguientes integrales:

(1)
$$\int_0^{2\pi} (\pi(\sin z + 2)^2) dz$$

(2)
$$\int_0^{2\pi} \int_0^{\sin z + 2} \int_0^{2\pi} r \ d\theta \ dr \ dz$$

(3)
$$\int_0^{\frac{\pi}{2}} 4\pi (\sin z + 2)^2 dz$$

¿Cuál o cuáles de estas integrales dan como resultado el volumen del sólido E?

- **5)** Sean F = (P, Q) un campo vectorial diferenciable con continuidad, C una curva cerrada simple orientada en contra de las manecillas del reloj y D la región cuya frontera es C. ¿Cuál de las siguientes afirmaciones **NO** es necesariamente verdadera?
- **A)** Si $\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$, entonces la función $\frac{\partial Q}{\partial x} \frac{\partial P}{\partial y}$ es igual a 0 en todo punto (x, y) en D.
- **B)** Si la función $\frac{\partial Q}{\partial x} \frac{\partial P}{\partial y}$ es igual a 0 en todo punto (x, y) en D, entonces $\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$.
- **C)** Si $\iint_D \left(\frac{\partial P}{\partial y} \frac{\partial Q}{\partial x}\right) dA = 0$, entonces $\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$.
- **D)** Si el campo **F** es idénticamente cero en *C*, entonces $\iint_D \frac{\partial Q}{\partial x} dA = \iint_D \frac{\partial P}{\partial y} dA$.
- **6)** Sea S el cilindro circular recto $x^2 + y^2 = 1$, $1 \le z \le 2$, orientado con la normal exterior. Sean C_1 y C_2 los círculos de intersección de S con los planos z = 1 y z = 2, respectivamente. Suponga que C_1 y C_2 están dotados cada cual con la orientación que es compatible con la orientación de S. ¿Cuál de las igualdades a continuación es verdadera para todo campo vectorial $F: \mathbb{R}^3 \to \mathbb{R}^3$ diferenciable con continuidad?

A)
$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \oint_{C_{1}} \mathbf{F} \cdot d\mathbf{r} + \oint_{C_{2}} \mathbf{F} \cdot d\mathbf{r}$$

B)
$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \oint_{C_{1}} \mathbf{F} \cdot d\mathbf{r}$$

C)
$$\iint_{S} (\nabla \times F) \cdot dS = \oint_{C_1} F \cdot dr + \oint_{C_2} F \cdot dr$$

D)
$$\iint_{S} (\nabla \times F) \cdot dS = \oint_{C_{1}} F \cdot dr$$

7) Sea k una constante positiva y suponga que la intensidad de luz en cada punto (x, y) de una pantalla plana está dada por la función

$$f(x,y) = k(1 + x^2 - y^2),$$

donde $-1 \le x \le 1$, $-1 \le y \le 1$. Es correcto afirmar que:

- A) La intensidad de luz no alcanza ni un máximo ni un mínimo local en el punto (0,0).
- **B)** La intensidad de luz no alcanza un extremo absoluto, pero sí local, en el punto (0,0).
- **C)** La intensidad de luz alcanza un máximo absoluto en el punto (0,0).
- **D)** La intensidad de luz alcanza un mínimo absoluto en el punto (0,0).

8) Sean $F(x, y, z) = (x^3 + y, 3z^2y + x, zy)$ y S la superficie en \mathbb{R}^3 que es frontera del sólido descrito por las siguientes tres restricciones: $z \ge 0$, $x^2 + z^2 \le 4$, $0 \le y \le 2$. ¿Cuál de las siguientes integrales es igual a la integral $\iint_S \mathbf{F} \cdot d\mathbf{S}$?

A)
$$\int_0^{\pi} \int_0^2 \int_0^2 (3r^2 + y) \, dy \, dr \, d\theta$$

B)
$$\int_0^{\pi} \int_0^2 \int_0^2 (3r^3 + yr) \, dy \, dr \, d\theta$$

C)
$$\int_0^{2\pi} \int_0^2 \int_0^2 (3r^3 + yr) \, dy \, dr \, d\theta$$

D)
$$\int_0^{2\pi} \int_0^2 \int_0^2 (3r^2 + y) \, dy \, dr \, d\theta$$

9) ¿Cuál de las siguientes gráficas representa correctamente al campo vectorial en \mathbb{R}^2 definido por F(x,y)=(y+1,-2)?

10) Las figuras muestran un cono y un cilindro circular, ambos con densidad constante. Sea $(\bar{x_1}, \bar{y_1}, \bar{z_1})$ el centroide del cono y sea $(\bar{x_2}, \bar{y_2}, \bar{z_2})$ el centroide del cilindro circular.

Figura 1: Cono

Figura 2: Cilindro circular

¿Cuál de las siguientes afirmaciones es verdadera?

A)
$$\bar{y}_1 = 4$$
 y $\bar{y}_2 = 6$. **B)** $\bar{y}_1 = 5$ y $\bar{y}_2 = 6$.

C)
$$\bar{y}_1 = 6$$
 y $\bar{y}_2 = 6$. **D)** $\bar{y}_1 = 8$ y $\bar{y}_2 = 8$.

11) Sean C_1 , C_2 y C_3 las curvas en \mathbb{R}^2 descritas por las siguientes funciones vectoriales:

$$C_1$$
: $\alpha_2(t) = (t, t)$, donde $0 \le t \le 1$

$$C_2$$
: $\alpha_3(t) = (1 - 2t, 1 - 2t)$, donde $0 \le t \le \frac{1}{2}$

$$C_3$$
: $\alpha_1(t) = (\operatorname{sen} t, 1 - \cos t)$, donde $0 \le t \le \frac{\pi}{2}$

Si $\emph{\textbf{F}}$ es un campo vectorial continuo sobre \mathbb{R}^2 , sean

$$I_1 = \int_{C_1} \mathbf{F} \cdot d\mathbf{s}$$

$$I_2 = \int_{C_2} \mathbf{F} \cdot d\mathbf{s}$$

$$I_3 = \int_{C_3} \mathbf{F} \cdot d\mathbf{s}.$$

¿Cuál de las siguientes afirmaciones es verdadera para todo campo vectorial \mathbfilde{F} que sea continuo y conservativo?

A)
$$I_1 = I_2 = I_3$$

B)
$$I_1 = -I_2 = -I_3$$

C)
$$I_1 = -I_2 = I_3$$

D)
$$I_1 = I_2 = -I_3$$

Respuestas

1) B 2) B 3) C 4) D 5) A 6) C 7) A 8) B 9) D 10) A 11) C