Reg No.:	Name:	
<u> </u>		

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FOURTH SEMESTER B.TECH DEGREE EXAMINATION(S), DECEMBER 2019

Course Code: CS204

		Course Name: OPERATING SYSTEMS	
Ma	ax. N	Marks: 100 Duration: 3 H	ours
		PART A	
1		Answer all questions. Each carries 3 marks. Why does an Operating System require dual mode operations?	3
2		Write short notes on clustered systems	3
3		With the help of a suitable example, explain process creation.	3
4		Differentiate between Short term, Medium term and Long term schedulers	3
		PART B Answer any two questions. Each carries 9 marks.	
5	a)	Discuss any two Kernel Data structures	4
	b)	Explain briefly any five services provided by an OS.	5
5	a)	Explain the process of booting.	5
	b)	What is context switch? Why context switch is considered to be an overhead to the system?	1
7	a)	List out the List out the advantage of process cooperation	3
		How IPC using shared memory is implemented using Bounded buffer	6
		PART C	U
		Answer all questions. Each carries 3 marks.	
3		What are the requirements to be satisfied by the solution to the critical section problem?	3
)		Explain Dining Philosophers problem.	3
0		Write any three criteria to be considered for comparing CPU scheduling algorithms?	3
1		What is the limitation of multilevel queue scheduling? How it is overcome in	3
		multilevel feedback queue scheduling	
		PART D	
2		Answer any two questions. Each carries 9 marks. Define semaphore with its operations. What are the two types of Semaphores?	9
3	a)	How indefinite blocking can be solved in priority scheduling	3
	b)	Find the average waiting time for pre-emptive and non pre-emptive SJF scheduling	
		for the following set of processes	
		COLLEGE OF ENGINFERING	

14

15 a)

16 a)

18 a)

b)

Process	Arrival time	Burst time					
P1	0	8					
P2	2	4					
P3	4	9					
P4	5	5	6				
Consider the	e following snapshot o	f a system					
Process	Allocation	Max Available					
	ABCD	ABCD ABCD					
P0	0 0 1 2	0 0 1 2 1 5 2 0					
P1	1 0 0 0	1 7 5 0					
P2	1 3 5 4	2 3 5 6					
P3	0 6 3 2	0 6 5 2					
P4	0 0 1 4	0 6 5 6					
Answer the	Answer the following questions using Bankers algorithm						
a. What is th	a. What is the content of "Need" matrix?						
b. Is the syst	b. Is the system in a safe state? Justify your answer.						
c. If a request from P1 arrive for (0 4 2 0), can the request be granted immediately							
PART E							
Answer any four questions. Each carries 10 marks.							
Explain the concept of paging.							
With the help of a diagram, explain logical address to physical address translation							
in paging. Illustrate with an example.							
Describe con	Describe contiguous memory allocation.						
Given six memory partitions of 300 KB, 600 KB, 350 KB, 200 KB, 750 KB, and 125 KB (in order), how would the first-fit, best-fit, and worst-fit algorithms place processes of size 115 KB, 500 KB, 358 KB, 200 KB, and 375 KB (in order)? Rank the algorithms in terms of how efficiently they use memory.							
Explain Optimal page replacement and LRU algorithms for page replacement							
Find the number of page faults for the following page reference string with 3 page							
frames for Optimal page replacement and LRU algorithms.							
2 3 4 2 1 3 7 5 4 3							
Explain "Elevator" algorithm for disk scheduling with example.							
Total cylinde	Total cylinders in a disk is 5000 [0-4999]. Header is at position 143; previous						

request is for 125, request queue is 86,1470, 913, 1774, 948, 1509, 1022, 1780, 130