DM549 and DS(K)820

Lecture 16: Sequences and Summations

Kevin Aguyar Brix Email: kabrix@imada.sdu.dk

University of Southern Denmark

6+7 November, 2024

Recursive Definitions: They consist of

- base step,
- recursive step.

Recursive Definitions: They consist of

- base step,
- recursive step.

We defined recursively:

the set of all bitstrings,

Recursive Definitions: They consist of

- base step,
- recursive step.

- the set of all bitstrings,
- the set of all palindrome bitstrings,

Recursive Definitions: They consist of

- base step,
- recursive step.

- the set of all bitstrings,
- the set of all palindrome bitstrings,
- the set $\{3n \mid n \in \mathbb{Z}^+\}$,

Recursive Definitions: They consist of

- base step,
- recursive step.

- the set of all bitstrings,
- the set of all palindrome bitstrings,
- the set $\{3n \mid n \in \mathbb{Z}^+\}$,
- the set of full binary trees,

Recursive Definitions: They consist of

- base step,
- recursive step.

- the set of all bitstrings,
- the set of all palindrome bitstrings,
- the set $\{3n \mid n \in \mathbb{Z}^+\}$,
- the set of full binary trees,
- the height of a full binary tree.

Repetition: Structural Induction

We proved statements our recursively defined structures in the following way:

Recipe for Proofs by Structural Induction

To show that $P(S_i)$ holds for all $i \ge 1$, prove:

- Basis step: Prove that $P(S_1)$ holds.
- Inductive step: Prove that

$$\underbrace{P(S_i)}_{\text{inductive hypothesis}} \Rightarrow P(S_{i+1})$$

for all i > 1.

That is: Induction on the number of times the recursive step is applied.

Definition (Definition 2.4.1)

A sequence (følge) is a function from a subset of $\mathbb N$ to some set.

Remarks:

■ The domain of the function may be finite or infinite; it is usually $\{0,1,2,\ldots\}$ or $\{1,2,3,\ldots\}$.

Definition (Definition 2.4.1)

A sequence (følge) is a function from a subset of $\mathbb N$ to some set.

Remarks:

- The domain of the function may be finite or infinite; it is usually $\{0, 1, 2, ...\}$ or $\{1, 2, 3, ...\}$.
- One also denotes by a_n the number that the function maps n to (also called a *term* of the sequence).
 - ► Cf. our notation for Fibonacci sequence!

Definition (Definition 2.4.1)

A sequence (følge) is a function from a subset of $\mathbb N$ to some set.

Remarks:

- The domain of the function may be finite or infinite; it is usually $\{0, 1, 2, ...\}$ or $\{1, 2, 3, ...\}$.
- One also denotes by a_n the number that the function maps n to (also called a *term* of the sequence).
 - Cf. our notation for Fibonacci sequence!
- The sequence is then denoted by $\{a_n\}$.
 - Do not confuse with set notation!

Definition (Definition 2.4.1)

A sequence (følge) is a function from a subset of $\mathbb N$ to some set.

Remarks:

- The domain of the function may be finite or infinite; it is usually $\{0, 1, 2, ...\}$ or $\{1, 2, 3, ...\}$.
- One also denotes by a_n the number that the function maps n to (also called a *term* of the sequence).
 - Cf. our notation for Fibonacci sequence!
- The sequence is then denoted by $\{a_n\}$.
 - Do not confuse with set notation!
- lacksquare One also lists out the terms in order, e.g., for the domain being \mathbb{N} :

$${a_n} = a_0, a_1, a_2, a_3, \dots$$

Definition (Definition 2.4.1)

A sequence (følge) is a function from a subset of $\mathbb N$ to some set.

Remarks:

- The domain of the function may be finite or infinite; it is usually $\{0,1,2,\ldots\}$ or $\{1,2,3,\ldots\}$.
- One also denotes by a_n the number that the function maps n to (also called a *term* of the sequence).
 - Cf. our notation for Fibonacci sequence!
- The sequence is then denoted by $\{a_n\}$.
 - Do not confuse with set notation!
- One also lists out the terms in order, e.g., for the domain being \mathbb{N} :

$${a_n} = a_0, a_1, a_2, a_3, \dots$$

• You can also think of a sequence with domain D as a |D|-tuple.

Definition (Definition 2.4.2)

An infinite geometric sequence (geometrisk følge) is a sequence of the form

$$a_n = c \cdot r^n, \quad n \in \mathbb{N},$$

where $a \in \mathbb{R}$ is the *initial term* (begyndelsesled) and $r \in \mathbb{R}$ is the *common ratio* (fælles faktor).

Definition (Definition 2.4.2)

An infinite geometric sequence (geometrisk følge) is a sequence of the form

$$a_n = c \cdot r^n, \quad n \in \mathbb{N},$$

where $a \in \mathbb{R}$ is the *initial term* (begyndelsesled) and $r \in \mathbb{R}$ is the *common ratio* (fælles faktor). We obtain finite geometric sequences by stopping at some point.

Definition (Definition 2.4.2)

An infinite geometric sequence (geometrisk følge) is a sequence of the form

$$a_n = c \cdot r^n, \quad n \in \mathbb{N},$$

where $a \in \mathbb{R}$ is the *initial term* (begyndelsesled) and $r \in \mathbb{R}$ is the *common ratio* (fælles faktor). We obtain finite geometric sequences by stopping at some point.

Definition (Definition 2.4.3)

An infinite arithmetic sequence (aritmetisk følge) is a sequence of the form

$$a_n = b + n \cdot d, \quad n \in \mathbb{N},$$

where $b \in \mathbb{R}$ is the *initial term* (begyndelsesled) and $d \in \mathbb{R}$ is the *common difference* (fælles forskel).

Definition (Definition 2.4.2)

An infinite geometric sequence (geometrisk følge) is a sequence of the form

$$a_n = c \cdot r^n, \quad n \in \mathbb{N},$$

where $a \in \mathbb{R}$ is the *initial term* (begyndelsesled) and $r \in \mathbb{R}$ is the *common ratio* (fælles faktor). We obtain finite geometric sequences by stopping at some point.

Definition (Definition 2.4.3)

An infinite arithmetic sequence (aritmetisk følge) is a sequence of the form

$$a_n = b + n \cdot d, \quad n \in \mathbb{N},$$

where $b \in \mathbb{R}$ is the *initial term* (begyndelsesled) and $d \in \mathbb{R}$ is the *common difference* (fælles forskel). We obtain finite arithmetic sequences by stopping at some point.

Idea:

lacksquare For every $z\in\mathbb{C}$ (\mathbb{C} is the set of complex numbers)

Idea:

- For every $z \in \mathbb{C}$ (\mathbb{C} is the set of complex numbers), define a sequence as follows:
 - $x_0 = 0$,
 - $x_n = x_{n-1}^2 + z \text{ for } n \ge 1.$

Idea:

- For every $z \in \mathbb{C}$ (\mathbb{C} is the set of complex numbers), define a sequence as follows:
 - $x_0 = 0$.
 - $x_n = x_{n-1}^2 + z$ for n > 1.
- If $|x_n|$ does not grow arbitrarily large, z belongs to the *Mandelbrot set*.

Idea:

- For every $z \in \mathbb{C}$ (\mathbb{C} is the set of complex numbers), define a sequence as follows:
 - $x_0 = 0$.
 - $x_n = x_{n-1}^2 + z$ for $n \ge 1$.
- If $|x_n|$ does not grow arbitrarily large, z belongs to the Mandelbrot set.
- The Mandelbrot set in the complex plane is depicted in black:

(Source: Wikipedia)

The colors encode how many iterations it takes for $|x_n|$ to surpass 1000.

Definition

Let

$$a_m, a_{m+1}, \ldots, a_n$$

be a sequence. Then there is an associated *series* (række), the sum of all terms in the sequence. It is denoted by

$$\sum_{i=m}^n a_i \quad \text{or} \quad \sum_{m \le i \le n} a_i.$$

Definition

Let

$$a_m, a_{m+1}, \ldots, a_n$$

be a sequence. Then there is an associated *series* (række), the sum of all terms in the sequence. It is denoted by

$$\sum_{i=m}^n a_i \quad \text{or} \quad \sum_{m \le i \le n} a_i.$$

Remark:

■ If the domain of the sequence is D, we also write $\sum_{i \in D} a_i$.

Definition

Let

$$a_m, a_{m+1}, \ldots, a_n$$

be a sequence. Then there is an associated *series* (række), the sum of all terms in the sequence. It is denoted by

$$\sum_{i=m}^n a_i \quad \text{or} \quad \sum_{m \le i \le n} a_i.$$

Remark:

- If the domain of the sequence is D, we also write $\sum_{i \in D} a_i$.
- One could also talk about series that are the sum of the infinitely many terms of an infinite sequence.

Definition

Let

$$a_m, a_{m+1}, \ldots, a_n$$

be a sequence. Then there is an associated *series* (række), the sum of all terms in the sequence. It is denoted by

$$\sum_{i=m}^n a_i \quad \text{or} \quad \sum_{m \le i \le n} a_i.$$

Remark:

- If the domain of the sequence is D, we also write $\sum_{i \in D} a_i$.
- One could also talk about series that are the sum of the infinitely many terms of an infinite sequence.
- Here, we focus on finite sequences.

Definition

Let

$$a_m, a_{m+1}, \ldots, a_n$$

be a sequence. Then there is an associated *series* (række), the sum of all terms in the sequence. It is denoted by

$$\sum_{i=m}^n a_i \quad \text{or} \quad \sum_{m \le i \le n} a_i.$$

Remark:

- If the domain of the sequence is D, we also write $\sum_{i \in D} a_i$.
- One could also talk about series that are the sum of the infinitely many terms of an infinite sequence.
- Here, we focus on finite sequences.
- Otherwise, to be completely formal, we would need to talk about a concept from calculus called convergence.

Theorem (Theorem 2.4.1)

For finite geometric series (with c=1), the series corresponding to finite geometric sequences, it holds that

$$\sum_{i=0}^{n} r^{i} =$$

Theorem (Theorem 2.4.1)

For finite geometric series (with c=1), the series corresponding to finite geometric sequences, it holds that

$$\sum_{i=0}^n r^i = \left\{ rac{r^{n+1}-1}{r-1} \quad ext{if } r \in \mathbb{R} \setminus \{1\},
ight.$$

Theorem (Theorem 2.4.1)

For finite geometric series (with c=1), the series corresponding to finite geometric sequences, it holds that

$$\sum_{i=0}^{n} r^{i} = \begin{cases} \frac{r^{n+1}-1}{r-1} & \text{if } r \in \mathbb{R} \setminus \{1\}, \\ n+1 & \text{if } r = 1. \end{cases}$$

Theorem (Theorem 2.4.1)

For finite geometric series (with c=1), the series corresponding to finite geometric sequences, it holds that

$$\sum_{i=0}^{n} r^{i} = \begin{cases} \frac{r^{n+1}-1}{r-1} & \text{if } r \in \mathbb{R} \setminus \{1\}, \\ n+1 & \text{if } r = 1. \end{cases}$$

Note: If |r| < 1 and we consider the *infinite* geometric series

Theorem (Theorem 2.4.1)

For finite geometric series (with c=1), the series corresponding to finite geometric sequences, it holds that

$$\sum_{i=0}^{n} r^{i} = \begin{cases} \frac{r^{n+1}-1}{r-1} & \text{if } r \in \mathbb{R} \setminus \{1\}, \\ n+1 & \text{if } r = 1. \end{cases}$$

Note: If |r| < 1 and we consider the *infinite* geometric series, the term r^{n+1} vanishes as n grows to ∞ , so

$$\sum_{i=0}^{\infty} r^i = \frac{1}{1-r}.$$

Arithmetic Series

Theorem

For finite *arithmetic series*, the series corresponding to finite arithmetic sequences, it holds that

$$\sum_{i=0}^{n}(b+i\cdot d)=$$

Arithmetic Series

Theorem

For finite *arithmetic series*, the series corresponding to finite arithmetic sequences, it holds that

$$\sum_{i=0}^{n}(b+i\cdot d)=b\cdot (n+1)+d\cdot \frac{n\cdot (n+1)}{2}$$

Arithmetic Series

Theorem

For finite *arithmetic series*, the series corresponding to finite arithmetic sequences, it holds that

$$\sum_{i=0}^{n}(b+i\cdot d)=b\cdot (n+1)+d\cdot \frac{n\cdot (n+1)}{2}$$

Additional formulae: Table 2.4.2.

A Quiz

Go to pollev.com/kevs

