

Mécanique des Systèmes - Interrogation écrite n°2

Les réponses doivent impérativement être portées sur ce document qui sera rendu en fin de contrôle.

Le joint de Oldham est un mécanisme permettant de transmettre un mouvement de rotation entre deux arbres parallèles lorsque leurs axes de rotation sont légèrement décalés (quasicoaxiaux). Il est par exemple utilisé dans le bras Maxpid, un bras robotisé utilisé pour la cueillette de fruits. Sur ce robot, un moteur à courant continu et un système vis-écrou assurent le mouvement entre le bras et l'avant-bras du robot. Le joint de Oldham est placé entre le moteur et la vis dont les axes ne sont pas forcément alignés.

Figure 1 - A gauche : bras de robot Maxpid, à droite : zoom sur le joint de Oldham dont le schéma cinématique est proposé en figure 2

Figure 2 - Schéma cinématique du joint de Oldham

Le mécanisme est constitué

• D'un arbre d'entrée <u>1</u> en liaison pivot d'axe $(A, \overline{x_{0,1}})$ avec le bâti <u>0</u>

Paramètre de mouvement 1/0 : $\alpha = (\overline{y_0}, \overline{y_0})$

• D'une pièce intermédiaire $\underline{2}$ en liaison glissière de direction $\overrightarrow{y_{1,2}}$ avec l'arbre d'entrée $\underline{1}$

Paramètre de mouvement 2/1: $y = \overrightarrow{AM_2} \cdot \overrightarrow{y_1}$

• D'un arbre de sortie <u>3</u> en liaison pivot d'axe $(B, \overrightarrow{x_{0,3}})$ avec le bâti <u>0</u>

Paramètre de mouvement 3/0 : $\beta = (\overrightarrow{y_0}, \overrightarrow{y_3})$

Par ailleurs, l'arbre de sortie $\underline{3}$ est en liaison glissière de direction $\overrightarrow{z_2}$ avec la pièce intermédiaire $\underline{2}$. Cette liaison n'est pas paramétrée

FIMI 2^{ème} année

Nom	Prénom	Groupe	
-----	--------	--------	--

Questions

1. Dessiner le graphe des liaisons et les figures de changement de base.

2. Ecrire, en les expliquant, la ou les condition(s) de liaison et développer la ou les équation(s) de liaison. Un tableau des conditions des liaisons standard est fourni en annexe page 6.

Liaison non-paramétrée : glissière entre 2 et 3

Les conditions de liaisons sont :

- Axes équipollents : $\overrightarrow{z_2} = \overrightarrow{z_3} \Rightarrow \begin{cases} \overrightarrow{z_2} \cdot \overrightarrow{x_3} = 0 \ (1) \rightarrow \text{ déjà le cas} \\ \overrightarrow{z_2} \cdot \overrightarrow{y_3} = 0 \ (2) \Rightarrow \sin(\beta \alpha) = 0 \Rightarrow \boxed{\beta = \alpha \ [\pi]} \end{cases}$
- N_2 est sur l'axe $(B, \overrightarrow{z_3}) \Rightarrow \begin{cases} \overrightarrow{BN_2}.\overrightarrow{x_3} = 0 \ (3) \\ \overrightarrow{BN_2}.\overrightarrow{y_3} = 0 \ (4) \end{cases}$ Pas de rotation autour de $\overrightarrow{z_3} \Rightarrow \overrightarrow{x_2}.\overrightarrow{x_3} = 1 \ (5) \rightarrow \text{ déjà le cas}$

Avec
$$\overrightarrow{BN_2} = \overrightarrow{BA} + \overrightarrow{AM_2} + \overrightarrow{M_2N_2} = -l\overrightarrow{x_0} - e\overrightarrow{z_0} + y\overrightarrow{y_1} + 2a\overrightarrow{x_2} - b\overrightarrow{y_2} + c\overrightarrow{z_2}$$

= $(2a - l)\overrightarrow{x_{02}} - e\overrightarrow{z_0} + (y - b)\overrightarrow{y_{12}} + c\overrightarrow{z_2}$

Donc (3) $\Rightarrow -l + 2a = 0 \Rightarrow$ condition purement géométrique

Et
$$(4) \Rightarrow -e \sin \beta + (y - b) \cos(\beta - \alpha) + c \sin(\beta - \alpha) = 0$$

Qui devient, lorsque l'équation (2) est vérifiée : (4) \Rightarrow $y = e \sin \beta + b$

	nocinétique* ? Coch	er la bonne réponse et justifier dans le
cadre ci-dessous.	√oui	□ non
En effet, si l'on dérive la relation	•	tenue en question 1) , on obtient
* Un joint est homocinétique si la	vitesse de rotation (en sortie est identique à celle en entrée.
4. Que vaut la mobilité du systè	me ? Justifier.	
On a 3 paramètres de mouvement l	iés par 2 équations so $m=3-2$	
Afin de connaître le rendement d frottement dans le joint. Ces pert liaisons glissières.	•	n doit caractériser les pertes par nelles à la vitesse de glissement dans les
5. Donner l'expression de $\frac{dy}{dt}$, la En déduire les facteurs qui au		nt dans la liaison glissière entre <u>1</u> et <u>2</u> . es par frottement.
Les dissipations sont d'autant plus é - Le mécanisme tourne vite - Le défaut de co-axialité est	·	À cos à

FIMI 2^{ème} année

Nom	Préno	m	Groupe	
-----	-------	---	--------	--

6. Calculer le vecteur instantané de rotation $\overrightarrow{\Omega_{2/0}}$ ainsi que le vecteur vitesse $\overrightarrow{V}(\mathrm{M}_2/0)$.

Vecteur instantané de rotation : $\overrightarrow{\Omega_{2/0}} = \dot{\alpha} \ \overrightarrow{x_{1,2,3}}$

Moment:
$$\vec{V}(M_2/0) = \vec{V}(M_2, 2/0) = \left[\frac{d \overrightarrow{AM_2}}{dt}\right]_0 = \dot{y}\overrightarrow{y_{1,2}} + y\dot{\alpha}\overrightarrow{z_{1,2}}$$

$$(\ \mathsf{Ou}\ \vec{V}(M_2,2/0\) = \vec{V}(M_2,2/1\) + \vec{V}(M_2,1/0\) = \vec{V}(M_2,2/1\) + \vec{V}(A,1/0\) + \overrightarrow{M_2A} \wedge \overrightarrow{\Omega_{1/0}}\)$$

7. Calculer l'accélération du point M_2 par rapport à 0.

$$\vec{A}(M_2/0) = \left[\frac{d \vec{V}(M_2, 2/0)}{dt} \right]_0 = (\ddot{y} - y\dot{\alpha}^2) \overrightarrow{y_{1,2}} + (2\dot{y}\dot{\alpha} + y\ddot{\alpha}) \overrightarrow{z_{1,2}}$$

Annexe – Conditions de liaisons pour les liaisons standard

Liaison	Illustration	Condition(s) géométrique(s) associée(s)
Liaison ponctuelle en O_j et de normale $\overrightarrow{x_l}$	X_i X_j	$\overrightarrow{O_jM_i}$. $\overrightarrow{x_i}=0$
Liaison sphérique de centre O	z_i y_j z_j	$\overrightarrow{O_jO_i} = \overrightarrow{0}$
Liaison plane de normale $\overrightarrow{x_{\iota,j}}$	y_j	$ \overline{O_j O_i} \cdot \overrightarrow{x_i} = 0 $ $ \overrightarrow{x_j} = \overrightarrow{x_i} \Rightarrow \begin{cases} \overrightarrow{x_j} \cdot \overrightarrow{y_i} = 0 \\ \overrightarrow{x_j} \cdot \overrightarrow{z_i} = 0 \end{cases} $
Liaison pivot-glissant d'axe $(O_i, \overrightarrow{x_{i,j}})$	x_{ij} y_{i} y_{i} y_{i} y_{i} y_{i}	$ \overrightarrow{O_i O_j} = \lambda \overrightarrow{x_i} \Rightarrow \begin{cases} \overrightarrow{O_i O_j} \cdot \overrightarrow{y_i} = 0 \\ \overrightarrow{O_i O_j} \cdot \overrightarrow{z_i} = 0 \end{cases} $ $ \overrightarrow{x_j} = \overrightarrow{x_i} \qquad \Rightarrow \begin{cases} \overrightarrow{x_j} \cdot \overrightarrow{y_i} = 0 \\ \overrightarrow{x_j} \cdot \overrightarrow{z_i} = 0 \end{cases} $
Liaison pivot d'axe $(O, \overrightarrow{x_{i,j}})$	x_i y_i y_j y_j y_j y_j y_j y_j y_j y_j y_j	$ \overline{O_j O_i} = \overline{O} $ $ \overrightarrow{x_j} = \overrightarrow{x_i} \qquad \Rightarrow \begin{cases} \overrightarrow{x_j} \cdot \overrightarrow{y_i} = 0 \\ \overrightarrow{x_j} \cdot \overrightarrow{z_i} = 0 \end{cases} $
Liaison glissière de direction $\overrightarrow{x_{\iota,j}}$	x _i x _j	$ \overrightarrow{O_i O_j} = k \overrightarrow{x_i} \Rightarrow \begin{cases} \overrightarrow{O_i O_j} \cdot \overrightarrow{y_i} = 0 \\ \overrightarrow{O_i O_j} \cdot \overrightarrow{z_i} = 0 \end{cases} $ $ \overrightarrow{x_j} = \overrightarrow{x_i} \qquad \Rightarrow \begin{cases} \overrightarrow{x_j} \cdot \overrightarrow{y_i} = 0 \\ \overrightarrow{x_j} \cdot \overrightarrow{z_i} = 0 \end{cases} $ $ \overrightarrow{y_j} \cdot \overrightarrow{y_i} = 1 $