1983 FI5.1

若
$$a(x+1) \equiv x^3 + 3x^2 + 3x + 1$$
,以 x 表示 a 。

If
$$a(x+1) \equiv x^3 + 3x^2 + 3x + 1$$
, find a in terms of x.

1986 FI1.3

If
$$2(2x-5) + x + 3 \equiv 5x - c$$
, find the value of c .

1991 HI9

$$\frac{7-8x}{(1-x)(2-x)} = \frac{A}{1-x} + \frac{B}{2-x}$$
, 其中 x 為實數, 且 $x \neq 1$ 及 $x \neq 2$, 求 $A+B$ 的值。

If
$$\frac{7-8x}{(1-x)(2-x)} = \frac{A}{1-x} + \frac{B}{2-x}$$
 for all real numbers x where $x \ne 1$ and $x \ne 2$, find

the value of A + B.

1991 FI3.3

若
$$(x-85)(x-c) \equiv x^2-125x+85c$$
,求 c 的值。

If
$$(x-85)(x-c) \equiv x^2 - 125x + 85c$$
, find the value of c.

1996 FI2.4

若
$$f(x)$$
 是一二次多項式, $f(f(x)) = x^4 - 2x^2$ 及 $d = f(4)$, 求 d 的值。

If f(x) is a polynomial of degree two, $f(f(x)) = x^4 - 2x^2$ and d = f(4), find the value of d.

1997 FG4.2

已知
$$1+x+x^2+x^3+x^4=0$$
。若 $b=2+x+x^2+x^3+x^4+\cdots+x^{1989}$,求 b 的值。

It is given that $1 + x + x^2 + x^3 + x^4 = 0$.

If
$$b = 2 + x + x^2 + x^3 + x^4 + \dots + x^{1989}$$
, find the value of b.

1997 FG5.2

若
$$x^3 + 6x^2 + 12x + 17 \equiv (x+2)^3 + b$$
 , 求 b 的 值 。

If
$$x^3 + 6x^2 + 12x + 17 \equiv (x+2)^3 + b$$
, find the value of b.

1998 FG1.4

若
$$x^3 + px^2 + qx + 17 \equiv (x+2)^3 + a$$
, 求 a 的值。

If
$$x^3 + px^2 + qx + 17 = (x + 2)^3 + a$$
, find the value of a.

1998 FG2.3

若參數方程
$$\begin{cases} x = \sqrt{3-t^2} \\ y = t-3 \end{cases}$$
 可轉換為 $x^2 + y^2 + cx + dy + 6 = 0$, 求 c 及 d 的值。

If the parametric equation $\begin{cases} x = \sqrt{3 - t^2} \\ y = t - 3 \end{cases}$ can be transformed into

$$x^2 + y^2 + cx + dy + 6 = 0$$
, find the values of c and d.

2000 FI4.1

假設
$$a + \frac{1}{a+1} = b + \frac{1}{b-1} - 2$$
,其中 $a \neq -1$, $b \neq 1$ 和 $a - b + 2 \neq 0$ 。

已知
$$ab-a+b=P$$
, 求 P 的值。

Suppose
$$a + \frac{1}{a+1} = b + \frac{1}{b-1} - 2$$
, where $a \neq -1$, $b \neq 1$, and $a - b + 2 \neq 0$.

Given that ab - a + b = P, find the value of P.

2001 HI9

設 a、b、c 為三個相異常數。已知

$$\frac{a^2}{(a-b)(a-c)(a+x)} + \frac{b^2}{(b-c)(b-a)(b+x)} + \frac{c^2}{(c-a)(c-b)(c+x)} = \frac{p+qx+rx^2}{(a+x)(b+x)(c+x)}$$

其中 $p \cdot q \cdot r$ 為常數,且 $s = 7p + 8q + 9r$,求 s 的值。

Let a, b, c be three distinct constants. It is given that

$$\frac{a^2}{(a-b)(a-c)(a+x)} + \frac{b^2}{(b-c)(b-a)(b+x)} + \frac{c^2}{(c-a)(c-b)(c+x)} = \frac{p+qx+rx^2}{(a+x)(b+x)(c+x)}$$

where p, q r are constants, and s = 7p + 8q + 9r, find the value of s.

2001 FI1.3

已知
$$\frac{1}{a} + \frac{1}{b} = \frac{4}{a+b}$$
 及 $\frac{a}{b} + \frac{b}{a} = R$,求 R 的值。

Given that $\frac{1}{a} + \frac{1}{b} = \frac{4}{a+b}$ and $\frac{a}{b} + \frac{b}{a} = R$, find the value of R.

2002 FG1.2

已知
$$x+y=1$$
 及 $x^2+y^2=2$ 。若 $x^3+y^3=b$,求 b 的值。

It is given that x + y = 1 and $x^2 + y^2 = 2$. If $x^3 + y^3 = b$, find the value of b. **2003 FG4.2**

設
$$P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_8 x^8$$
 為八次多項式,其中 $a_0 \cdot a_1 \cdot \dots \cdot a_8$ 為

實數。若
$$P(k) = \frac{1}{k}$$
當 $k = 1, 2, \dots, 9$, 及 $b = P(10)$,求 b 的值。

Suppose $P(x) = a_0 + a_1x + a_2x^2 + \cdots + a_8x^8$ is a polynomial of degree 8 with real

coefficients a_0, a_1, \dots, a_8 . If $P(k) = \frac{1}{k}$ when $k = 1, 2, \dots, 9$, and b = P(10), find the value of b.

2006 FI3.1

已知
$$\frac{2x-3}{x^2-x} = \frac{A}{x-1} + \frac{B}{x}$$
,其中 A 和 B 是常數。若 $S = A^2 + B^2$,求 S 的值。

Given that $\frac{2x-3}{x^2-x} = \frac{A}{x-1} + \frac{B}{x}$, where A and B are constants.

If $S = A^2 + B^2$, find the value of S.

2011 FI2.2

若
$$x+y=3$$
, $x^2+y^2=Q$ 及 $x^3+y^3=3^2$, 求 Q 的值。

If
$$x + y = 3$$
, $x^2 + y^2 = Q$ and $x^3 + y^3 = 3^2$, find the value of Q.

2014 HI7

求
$$x^{-2014} + x^{-2013} + x^{-2012} + \dots + x^{-1} + 1 + x + x^2 + \dots + x^{2013} + x^{2014}$$
 的值。

If
$$x^3 + x^2 + x + 1 = 0$$
, find the value of

$$x^{-2014} + x^{-2013} + x^{-2012} + \dots + x^{-1} + 1 + x + x^2 + \dots + x^{2013} + x^{2014}$$

2018 HG1

設
$$f(x)$$
 為二次多項式,其中 $f(1) = \frac{1}{2}$, $f(2) = \frac{1}{6}$, $f(3) = \frac{1}{12}$ 。求 $f(6)$ 的值。

Let f(x) be a polynomial of degree 2, where $f(1) = \frac{1}{2}$, $f(2) = \frac{1}{6}$, $f(3) = \frac{1}{12}$.

Find the value of f(6).

Answer

1983 FI5.1	1986 FI1.3	1991 HI9	1991 FI3.3	1996 FI2.4
$x^2 + 2x + 1$	7	8	40	15
1997 FG4.2	1997 FG5.2	1998 FG1.4	1998 FG2.3	2000 FI4.1
1	9	9	c = 0, d = 6	2
2001 HI9 9	2001 FI1.3 2	2002 FG1.2 $\frac{5}{2}$	2003 FG4.2 $\frac{1}{5}$	2006 FI3.1 10
2011 FI2.2 5	2014 HI7 ±1	2018 HG1 $\frac{4}{3}$		