

PMU
- Probabilistic Models
-

```
DMU
- Probabilistic Models
- MDPs
- Reinforcement Learning
```

```
DMU
    - Probabilistic Models
- MDPs
- Reinforcement Learning
- POMDPs
- Games
```

1.
$$0 \le P(X \mid Y) \le 1$$

$$\sum_{x \in X} P(x \mid Y) = 1$$

P(A) P(A,B) P(AIB)

1.
$$0 \le P(X \mid Y) \le 1$$

$$\sum_{x \in X} P(x \mid Y) = 1$$

2.
$$P(X) = \sum_{y \in Y} P(X, y)$$

$$1.~0 \leq P(X \mid Y) \leq 1$$
 $\sum_{x \in X} P(x \mid Y) = 1$

2.
$$P(X) = \sum_{y \in Y} P(X, y)$$

3.
$$P(X \mid Y) = \frac{P(X,Y)}{P(Y)}$$

Bayes Rule

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

1.
$$0 \le P(X \mid Y) \le 1$$

$$\sum_{x \in X} P(x \mid Y) = 1$$

2.
$$P(X) = \sum_{y \in Y} P(X, y)$$

3.
$$P(X \mid Y) = \frac{P(X,Y)}{P(Y)}$$

3 Rules

$$1.~0 \leq P(X \mid Y) \leq 1 \ \sum_{x \in X} P(x \mid Y) = 1$$

2.
$$P(X) = \sum_{y \in Y} P(X, y)$$

3.
$$P(X \mid Y) = \frac{P(X,Y)}{P(Y)}$$

Bayes Rule

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

Independence

$$A \bot B \iff P(A,B) = P(A)P(B)$$

$$A \bot B \mid C \iff P(A,B \mid C) = P(A \mid C)P(B \mid C)$$

Chain Rule
$$P(X_{1:n}) = \prod_{i} P(X_{i} \mid Pa(X_{i}))$$

Chain Rule

$$P(X_{1:n}) = \prod_i P(X_i \mid Pa(X_i))$$

Conditional Independence

 $X \perp Y \mid \mathcal{C}$ if all paths between X and Y are d-separated by \mathcal{C}

$$(S, A, R, T, \gamma)$$

$$(S, A, R, T, \gamma)$$

Examples: $S=\{1,2,3\}$ or $S=\mathbb{R}^2$

$$(S, A, R, T, \gamma)$$

Examples:
$$S=\{1,2,3\}$$
 or $S=\mathbb{R}^2$

$$s=(x,\dot{x})\in S=\mathbb{R}^2$$

$$(S, A, R, T, \gamma)$$

Examples:
$$S=\{1,2,3\}$$
 or $S=\mathbb{R}^2$

$$s=(x,\dot{x})\in S=\mathbb{R}^2$$

$$(S, A, R, T, \gamma)$$

Examples:
$$S=\{1,2,3\}$$
 or $S=\mathbb{R}^2$

$$s=(x,\dot{x})\in S=\mathbb{R}^2$$

$$Q^{\pi}(s,a) = E[\sum_{r=0}^{\infty} r^r R(s_{r,a+}) | s=s, a_0=a, a_r=\pi(s_+)]$$

$$(S, A, R, T, \gamma)$$

Examples:
$$S = \{1, 2, 3\}$$
 or $S = \mathbb{R}^2$

$$s = (x, \dot{x}) \in S = \mathbb{R}^2$$

$$\mathcal{O}^{\pi}(s, a) = \mathbb{E}\left[\sum_{r=0}^{\infty} r^r R(s_{r}, a_{r}) \mid s=s, a_{0}=a, a_{1}=\pi(s_{1})\right]$$

$$\nabla^{\pi}(s) = \mathcal{O}^{\pi}(s, \pi(s))$$

$$(S, A, R, T, \gamma)$$

Examples:
$$S=\{1,2,3\}$$
 or $S=\mathbb{R}^2$ $s=(x,\dot{x})\in S=\mathbb{R}^2$

$$Q^{\pi}(s,a) = E[\sum_{r=0}^{\infty} r^{r}R(s_{r},a_{r})]s_{s}^{-s}s_{s}a_{s}^{-a}a_{s}^{-a}a_{s}^{-a}(s_{s})]$$

$$V^{\pi}(s) = Q^{\pi}(s_{s},\pi(s))$$

$$V^{\pi}(s) = R(s, \mathbf{z}) + \gamma E[V^{\pi}(s')]$$
 Policy evaluation $V^{*}(s) = \max_{a} \left\{ R(s,a) + \gamma E[V^{*}(s')] \right\}$ of optimality $B[V](s) = \max_{a} \left\{ R(s,a) + \gamma E[V(s')] \right\}$ Bellman's operator

$$(S, A, R, T, \gamma)$$

Examples:
$$S=\{1,2,3\}$$
 or $S=\mathbb{R}^2$

$$s=(x,\dot{x})\in S=\mathbb{R}^2$$

$$Q^{\pi}(s,a) = E[\tilde{z}^{r}R(s_{r,a+})|s=s,a_{0}=a,a_{1}=\pi(s_{+})]$$

$$V^{\pi}(5) = Q^{\pi}(5,\pi(5))$$

$$V^\pi(s) = R(s,a) + \gamma E[V^\pi(s')]$$

Policy Evaluation

$$V^{\pi}(s) = R(s,a) + \gamma E[V^{\pi}(s')]$$
 $V^{*}(s) = \max_{a} \left\{ R(s,a) + \gamma E[V^{*}(s')]
ight\}$

Bellman's Equation: Certificate of Optimality

$$B[V](s) = \max_a \left\{ R(s,a) + \gamma E[V(s')]
ight\}$$

Bellman's Operator

Policy Iteration

loop

Evaluate Policy

Improve Policy

Policy Iteration

Value Iteration

loop

Evaluate Policy

Improve Policy

$$\begin{array}{c} \mathsf{loop} \\ V \leftarrow B[V] \end{array} \quad \checkmark$$

Policy Iteration

Value Iteration

loop

Evaluate Policy

Improve Policy

loop $V \leftarrow B[V]$

Converges because policy always improves and there are a finite number of policies

Policy Iteration

Value Iteration

loop

Evaluate Policy

Improve Policy

loop

$$V \leftarrow B[V]$$

Converges because policy always improves and there are a finite number of policies

Converges because B is a contraction mapping

Monte Carlo Tree Search

Monte Carlo Tree Search

Search

Expand

Rollout

Backup

Monte Carlo Tree Search

Sparse Sampling

Search Expand Rollout Backup

Monte Carlo Tree Search

Search Expand Rollout Backup

Sparse Sampling

Online MDP Planning

Monte Carlo Tree Search

Search Expand Rollout Backup

Sparse Sampling

Guarantees *independent* of |S|!!

Challenges:

Challenges:

Challenges:

1. Exploration and Exploitation

Challenges:

- 1. Exploration and Exploitation
- 2. Credit Assignment

Challenges:

- 1. Exploration and Exploitation
- 2. Credit Assignment
- 3. Generalization

Bandits

- ϵ -greedy
- softmax UCB $\hat{Q}(a) + c \sqrt{\frac{\log N}{N(a)}}$
- Thompson Sampling
- Optimal DP Solution (solving a POMDP!)

Bandits

- ϵ -greedy
- softmax
- UCB
- Thompson Sampling
- Optimal DP Solution (solving a POMDP!)

Montezuma's Revenge!

Bandits

- ϵ -greedy
- softmax
- UCB
- Thompson Sampling
- Optimal DP Solution (solving a POMDP!)

Montezuma's Revenge!

Pseudocounts

Bandits

- ϵ -greedy
- softmax
- UCB
- Thompson Sampling
- Optimal DP Solution (solving a POMDP!)

Montezuma's Revenge!

- Pseudocounts
- Curiosity: extra reward for bad prediction

Bandits

- ϵ -greedy
- softmax
- UCB $Q(5,9) + C\sqrt{\log N(5)} + C\sqrt{\log N(5)}$ Thompson Sampling
- Optimal DP Solution (solving a POMDP!)

- Pseudocounts
- Curiosity: extra reward for bad prediction
- Random network distillation

Montezuma's Revenge!

$$S = f(s, a)$$

$$f_{\phi}(s,a) = f_{\phi}(s,a)$$

MLMBTRL (learn T,R) V Off Policy

Likelihood ratio trick

$$\nabla_{\theta} p_{\theta}(\tau) = p_{\theta}(\tau) \nabla_{\theta} \log p_{\theta}(\tau)$$

- Likelihood ratio trick
- Causality

$$\nabla_{\theta} p_{\theta}(\tau) = p_{\theta}(\tau) \nabla_{\theta} \log p_{\theta}(\tau)$$

- Likelihood ratio trick
- Causality
- Baseline Subtraction

$$\nabla_{\theta} p_{\theta}(\tau) = p_{\theta}(\tau) \nabla_{\theta} \log p_{\theta}(\tau)$$

• Likelihood ratio trick

 $\nabla_{\theta} p_{\theta}(\tau) = p_{\theta}(\tau) \nabla_{\theta} \log p_{\theta}(\tau)$

- Causality
- Baseline Subtraction

$$\nabla U(\underline{\theta}) = \mathbb{E}_{\tau} \left[\sum_{k=1}^{d} \nabla_{\theta} \log \pi_{\theta}(a^{(k)} \mid s^{(k)}) \gamma^{k-1} \left(r_{\text{to-go}}^{(k)} - r_{\text{base}}(s^{(k)}) \right) \right]$$

• Likelihood ratio trick

 $\nabla_{\theta} p_{\theta}(\tau) = p_{\theta}(\tau) \nabla_{\theta} \log p_{\theta}(\tau)$

- Causality
- Baseline Subtraction

$$\nabla U(\theta) = \mathbb{E}_{\tau} \left[\sum_{k=1}^{d} \nabla_{\theta} \log \pi_{\theta}(a^{(k)} \mid s^{(k)}) \gamma^{k-1} \left(r_{\text{to-go}}^{(k)} - r_{\text{base}}(s^{(k)}) \right) \right]$$

Natural Gradient

- Likelihood ratio trick
- Causality
- Baseline Subtraction

$$\nabla_{\theta} p_{\theta}(\tau) = p_{\theta}(\tau) \nabla_{\theta} \log p_{\theta}(\tau)$$

$$\nabla U(\theta) = \mathbb{E}_{\tau} \left[\sum_{k=1}^{d} \nabla_{\theta} \log \pi_{\theta}(a^{(k)} \mid s^{(k)}) \gamma^{k-1} \left(r_{\text{to-go}}^{(k)} - r_{\text{base}}(s^{(k)}) \right) \right]$$

• Natural Gradient

SARSA

$$Q(s,a) \leftarrow Q(s,a) + \alpha(r_t + \gamma Q(s',a') - Q(s,a))$$

SARSA

$$Q(s,a) \leftarrow Q(s,a) + \alpha(r_t + \gamma Q(s',a') - Q(s,a))$$

Eligibility Traces

SARSA Phosen by current policy
$$Q(s,a) \leftarrow Q(s,a) + lpha(r_t + \gamma Q(s',a') - Q(s,a))$$

Eligibility Traces

Q-learning

$$Q(s,a) \leftarrow Q(s,a) + lpha(r_t + \gamma \max_{a'} Q(s',a') - Q(s,a))$$

SARSA

$$Q(s,a) \leftarrow Q(s,a) + \alpha(r_t + \gamma Q(s',a') - Q(s,a))$$

Eligibility Traces

$$Q -learning \qquad \qquad Q$$

$$Q(s,a) \leftarrow Q(s,a) + \alpha(r_t + \gamma \max_{a'} Q(s',a') - Q(s,a))$$

Double Q Learning

Neural Networks and DQN

Neural Networks and DQN

Neural Networks and DQN

$$f_{ heta}(x) = \sigma(W_2\sigma(W_1x+b_1)+b_2)$$

Neural Networks and DQN

$$f_{ heta}(x) = \sigma(W_2\sigma(W_1x+b_1)+b_2)$$
Backprop

Neural Networks and DQN

• Actor: π_{θ}

• Actor: π_{θ}

• Critic: Q_{ϕ}

• Actor: π_{θ}

• Critic: Q_{ϕ}

Soft Actor Critic

• Actor: π_{θ}

• Critic: Q_{ϕ}

Soft Actor Critic

$$J(\pi) = E\left[\sum_{t=0}^{\infty} \gamma^t \left(r_t + lpha \mathcal{H}(\pi(\cdot \mid s_t))
ight)
ight]$$

 $(S, A, T, R, O, Z, \gamma)$

 $(S, A, T, R, O, Z, \gamma)$

 $(S, A, T, R, O, Z, \gamma)$

Belief Updates

- Discrete Bayesian Filter
- Particle Filter

 $(S, A, T, R, O, Z, \gamma)$

Belief Updates

- Discrete Bayesian Filter
- Particle Filter

Alpha Vectors

 $(S, A, T, R, O, Z, \gamma)$

• Each alpha vector corresponds to a conditional plan

Belief Updates

- Discrete Bayesian Filter
- Particle Filter

Alpha Vectors

 $(S, A, T, R, O, Z, \gamma)$

- Each alpha vector corresponds to a conditional plan
- You can prune alpha vectors by solving an LP

Belief Updates

- Discrete Bayesian Filter
- Particle Filter

Alpha Vectors

Formulation

Formulation

- Certainty Equivalence
- QMDP

Numerical

Formulation

- Certainty Equivalence
- QMDP

Numerical

Offline

- Point-Based Value Iteration
- SARSOP

Formulation

- Certainty Equivalence
- QMDP

Numerical

Offline

- Point-Based Value Iteration
- SARSOP

Online

- POMCP
- DESPOT

Formulation

- Certainty Equivalence
- QMDP

Numerical

Offline

- Point-Based Value Iteration
- SARSOP

Online

- POMCP
- DESPOT

Optimal Solutions

• Optimal Solutions No.

- Optimal Solutions
 Equilibria (e.g. Nash Equilibria)

- Optimal Solutions
- Equilibria (e.g. Nash Equilibria)

- Optimal Solutions
- Equilibria (e.g. Nash Equilibria)

 Every finite game has at least 1 Nash Equilibrium

- Optimal Solutions No.
- Equilibria (e.g. Nash Equilibria)

- Every finite game has at least 1 Nash Equilibrium
- Might be pure or mixed

- Optimal Solutions
- Equilibria (e.g. Nash Equilibria)

NE: every player plays a best response

- Every finite game has at least 1 Nash Equilibrium
- Might be pure or mixed
- Algorithms like fictitious play converge in special cases

Dominant Strategy Equilibrium

Correlated Equilibrium -> NE is a correlated Eq. where all policies are independent

Value Function Backup

- Value Function Backup
- $\alpha\beta$ Pruning

- Value Function Backup
- $\alpha\beta$ Pruning
- Incomplete Information Extensive Form

- Value Function Backup
- $\alpha\beta$ Pruning
- Incomplete Information Extensive Form

Markov Games

- All players play simultaneously
- Transitions are stochastic
- Best response involves solving an MDP
- Can be reduced to a simple game with policies as actions

Markov Games

- All players play simultaneously
- Transitions are stochastic
- Best response involves solving an MDP
- Can be reduced to a simple game with policies as actions

Markov Games

- All players play simultaneously
- Transitions are stochastic
- Best response involves solving an MDP
- Can be reduced to a simple game with policies as actions

Partially Observable Markov Games

- Each player receives a noisy observation at each step
- Beliefs not practical to compute
- Can be reduced to simple game with policies as actions

Markov Games

- All players play simultaneously
- Transitions are stochastic
- Best response involves solving an MDP
- Can be reduced to a simple game with policies as actions

Partially Observable Markov Games

- Each player receives a noisy observation at each step
- Beliefs not practical to compute
- Can be reduced to simple game with policies as actions

Fictitious Play in Markov Games

```
initialize N(j,a^{j},s) to O
initialize \pi E^{R}
Loop:
     1. Simulate MG with 2BR
    3, π'(ails) α N(j, ai,s) +j
    4. TBR - best response to recoverges to NE for some classes of games of games will TBR (solve an MDP with other player's strategies into it
```

After DMU you have basic tools to deal with 4 Big Problems:

1. Immediate and Future Rewards

- 1. Immediate and Future Rewards
- 2. Unknown Models

- 1. Immediate and Future Rewards
- 2. Unknown Models
- 3. Partial Observability

- 1. Immediate and Future Rewards
- 2. Unknown Models
- 3. Partial Observability
- 4. Other Agents