Daniel Bruder

University of Michigan Mechanical Engineering 540 Thompson St, Apt 2130 Ann Arbor, MI 48104 bruderd@umich.edu www.danielbruder.com

Phone: +1 (248) 660-6501

Education University of Michigan

Ph.D., Mechanical Engineering, exp 2020

Fields: Robotics and Control

M.S., Mechanical Engineering, 2018

Harvard University

B.S., Engineering Sciences, 2013 Honors: Magna Cum Laude

Research

Mechanical Engineering Dept, University of Michigan

Graduate Student Researcher

Project: Design, modeling, and control of soft robots

School of Engineering and Applied Sciences, Harvard University

Undergraduate Student Researcher

Project: Design of mitral valve repair surgical device

Teaching

Mechanical Engineering Dept, University of Michigan

Graduate Student Instructor, Robot Kinematics and Dynamics, 2017 Graduate Student Instructor, Designs in Nature and Engineering, 2016

School of Engineering and Applied Sciences, Harvard University

Design Specialist, Capstone Design Course, 2012-2013

Physics Dept, Harvard University

Teaching Assistant, Laboratory Electronics: Analog and Digital Circuit Design, 2011

Mathematics Dept, Harvard University

Course Assistant, Calculus, Series, and Differential Equations, 2009-2010 Course Assistant, Functions and Calculus, 2009

Awards and Fellowships

NSF Graduate Research Fellowship National Science Foundation, 2017-2020

Honorable Mention, Ford Foundation Fellowship

National Academies of Sciences, Engineering, and Medicine, 2017

Languages and Skills

English (native), Spanish (basic)

Matlab, LATEX, Solidworks, Python, Mathematica, HTML

Publications Journal Papers

- [J1] D. Bruder, B. Gillespie, C. D. Remy, and R. Vasudevan. Control of soft robots using koopman operator theory. 2019b (In Preparation, IEEE Transactions on Robotics)
- [J2] D. Bruder, A. Sedal, R. Vasudevan, and C. D. Remy. Force generation by parallel combinations of fiber-reinforced fluid-driven actuators. *IEEE Robotics and Automation Letters*, 3(4):3999–4006, Oct 2018. ISSN 2377-3766. doi: 10.1109/LRA.2018.2859441
- [J3] A. Sedal, D. Bruder, J. Bishop-Moser, R. Vasudevan, and S. Kota. A continuum model for fiber-reinforced soft robot actuators. *Journal of Mechanisms and Robotics*, 10(2):024501, 2018

Conference Papers

- [C1] D. Bruder, B. Gillespie, C. D. Remy, and R. Vasudevan. Modeling and control of soft robots using the koopman operator and model predictive control. In *Proceedings of Robotics: Science and Systems*, FreiburgimBreisgau, Germany, June 2019a. doi: 10.15607/RSS.2019.XV.060
- [C2] D. Bruder, C. D. Remy, and R. Vasudevan. Nonlinear system identification of soft robot dynamics using koopman operator theory. In *Robotics* and Automation (ICRA), 2019 IEEE International Conference on. IEEE, 2019c
- [C3] D. Bruder, A. Sedal, J. Bishop-Moser, S. Kota, and R. Vasudevan. Model based control of fiber reinforced elastofluidic enclosures. In *Robotics and Automation (ICRA)*, 2017 IEEE International Conference on, pages 5539–5544. IEEE, 2017

[C4] A. Sedal, D. Bruder, J. Bishop-Moser, R. Vasudevan, and S. Kota. A constitutive model for torsional loads on fluid-driven soft robots. In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pages V05AT08A016–V05AT08A016. American Society of Mechanical Engineers, 2017

Workshop and Meeting Presentations

- [P1] T. Y. Moore, D. Bruder, A. Davis Rabosky, R. Vasudeven. Decoupling Coupled Anti-Predator Signals with a Bio-Inspired Snake Robot. Society for Integrative and Comparative Biology Annual Meeting. 2019
- [P2] D. Bruder, A. Sedal, R. Vasudevan, and C. D. Remy. Model-Based Method for Estimating the Workspace of Soft Manipulators. Workshop on Soft Robot Modeling and Control at IROS. 2018
- [P3] D. Bruder, A. Sedal, R. Vasudevan, and C. D. Remy. Model-Based Control of Parallel Combinations of Soft Actuators. *Midwest Robotics Workshop* (poster). 2018
- [P4] R. B. Gillespie, C. D. Remy, D. Bruder, A. Sedal. Don't Bite the Hand that Feeds You: Soft Robots For Eldercare. Toyota Research Institute Annual Meeting. 2018
- [P5] D. Bruder, A. Sedal, J. Bishop-Moser, S. Kota, and R. Vasudevan. Model Based Control of Fiber Reinforced Elastofluidic Enclosures. *Midwest Robotics Workshop (poster)*. 2017
- [P6] D. Bruderd, R. Vasudevan, C.D. Remy. Design and Modeling of Soft Robotic Arm Modules. Toyota Research Institute Annual Meeting (poster). 2017

References

Ram Vasudevan Mechanical Engineering Dept. University of Michigan ramy@umich.edu,+1 (734) 647-5560

C. David Remy Mechanical Engineering Dept. University of Michigan cdremy@umich.edu,+1 (734) 764-8797 Sridhar Kota Mechanical Engineering Dept. University of Michigan kota@umich.edum.+1 (734) 936-0357

Brent Gillespie Mechanical Engineering Dept. University of Michigan brentg@umich.edu,+1 (734) 647-6907