Loan Eligibility

Will you get the loan or not ?!

Ehsan Mokhtari Omid Ghorbani Sohrab Seyyedi Parsa

Goals

1

analyze the data and find out which factors has the most effect on the loan eligibility. 2

- 1 understand if gender effect the loan status
- 2 design a model that can predict loan status base on relevant factors

Dataset

We found the "Loan Eligible Dataset" on Kaggle, which consists of 12 columns: "Loan ID", "Gender", "Married", "Dependents", "Education", "Self Employed", "Applicant Income", "Coapplicant Income", "Loan Amount", "Loan Amount Term", "Credit History", "Property Area", and "Loan Status" with a total of 614 rows.

Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Property_Area
Male	No	0	Graduate	No	5849	0.0	NaN	360.0	1.0	Urban
Male	Yes	1	Graduate	No	4583	1508.0	128.0	360.0	1.0	Rural
Male	Yes	0	Graduate	Yes	3000	0.0	66.0	360.0	1.0	Urban
Male	Yes	0	Not Graduate	No	2583	2358.0	120.0	360.0	1.0	Urban
Male	No	0	Graduate	No	6000	0.0	141.0	360.0	1.0	Urban

This dataset was not ready for processing, so we preprocessed it to ensure its suitability for analysis.

PreProcessing

During preprocessing, we addressed missing values by filling NaNs, removed the "Loan_ID" column as it was not needed for analysis, and converted categorical string values (such as "Gender" and "Married") to numerical values to facilitate more effective data processing and analysis.

01.

Dropping "Loan ID" column, because it was useless and does not have any effect on the loan eligibility process.

02.

Filling all NaN values with "fill with mean" and "forward fill" methods.

03.

Converting all string values to numerical values for example all "No" and "Yes" values are replaced with 0 and 1.

Variables

Gender

married

dependents

education

Credit History

Loan Eligibility

Property Area

Loan Amount Term self employed

Applicant Income

Coapplicant Income

Loan Amount

Structure of Dataset

12 colAumns

614 rows

Gender

This columns shows if the gender of the person is male "1" or it is female "0"

Married

This column shows if the person is married "1" or not married "0"

Dependants

Shows the number of the dependents of the person:
"0" for 0 dependent
"1" for 1 dependent
"2" for 2 dependents
"3" for 3 and more dependents

Education

Shows if the person has university graduation "1" or not "0"

Self Employed

Shows if the person is self emploed "1" or not "0"

Structure of Dataset

Applicant Income

Shows the monthly income of the person

CoApplicant Income

Shows the monthly income of perosn's partner if he or she is married

Loan Amount

The amount of loan which the applicant requested

Loan Amount Term

Shows the number of months you will return the loan

Credit History

Does the applicant has a credit history "1" or not"0"

Property Area

Where the applicant lives:

0: Urban

1: Rural

2: SemiUrban

Model

the out put goes into a sigmoid function

$$S(x)=rac{1}{1+e^{-x}}$$

generate result between 0 and 1

Result of Fitting

1 - model is valid2-loss decresse over iteration3-some feature can be deleted

```
log\ likelihood = -381.44553
Iteration 0:
Iteration 1:
               log\ likelihood = -290.94707
Iteration 2:
               log likelihood = -290.20862
               log likelihood = -290.20577
Iteration 3:
               log likelihood = -290.20577
Iteration 4:
                                                          Number of obs =
Logistic regression
                                                                              614
                                                          LR chi2(11)
                                                                         = 182.48
                                                          Prob > chi2
                                                                         = 0.0000
Log likelihood = -290.20577
                                                          Pseudo R2
                                                                         = 0.2392
                    Coefficient Std. err.
                                                       P> z
                                                                  [95% conf. interval]
      loan status
                                                                              .6025539
    property_area
                        .352856
                                  .1273992
                                                       0.006
                                                                   .103158
                                                2.77
                                                                              3.888682
   credit history
                       3.266335
                                  .3175302
                                               10.29
                                                       0.000
                                                                 2.643987
 loan amount term
                                               -0.50
                                                       0.619
                                                                 -.0042654
                       -.000863
                                  .0017359
                                                                              .0025393
       loanamount
                                                       0.225
                      -.0019678
                                  .0016218
                                               -1.21
                                                                 -.0051466
                                                                              .0012109
coapplicantincome
                      -.0000476
                                   .000035
                                                       0.173
                                                                 -.0001161
                                                                              .0000209
                                               -1.36
  applicantincome
                      7.91e-06
                                                0.36
                                                       0.717
                                  .0000218
                                                                -.0000349
                                                                              .0000507
    self employed
                       .1133592
                                                0.36
                                                       0.715
                                                                 -.4954157
                                                                              .7221341
                                  .3106051
        education
                       .4197628
                                                1.65
                                                       0.098
                                                                 -.0781993
                                                                              .9177248
                                  .2540669
       dependents
                       .0375209
                                  .1149171
                                                0.33
                                                       0.744
                                                                -.1877125
                                                                              .2627543
```

.245844

.2878694

.7521847

2.32

-0.01

-3.13

0.021

0.993

0.002

.087784

-.5667804

-3.825434

1.051475

.5616468

-.8769243

married

gender

_cons

.5696293

-.0025668

-2.351179

Check Correlation

,					16 1		,		,			
	gender	married	depend~s	educat~n	se1t_e~d	applic~e	coapp1~e	Ioanam~t	loan_a~m	credit~y	proper~a	Loan_s~s
gender	1.0000											
married	0.3715	1.0000										
dependents	0.1645	0.3338	1.0000									
education	-0.0495	-0.0141	-0.0549	1.0000								
self_emplo~d	0.0117	-0.0003	0.0445	0.0087	1.0000							
applicanti~e	0.0462	0.0491	0.1150	0.1408	0.1227	1.0000						
coapplican~e	0.0870	0.0778	0.0267	0.0623	-0.0218	-0.1166	1.0000					
loanamount	0.0987	0.1470	0.1588	0.1670	0.1118	0.5656	0.1878	1.0000				
loan_amoun~m	-0.0754	-0.0953	-0.0847	0.0772	-0.0280	-0.0452	-0.0597	0.0388	1.0000			
credit_his~y	-0.0085	0.0074	-0.0703	0.0846	-0.0108	-0.0202	0.0094	-0.0188	-0.0184	1.0000		
property_a~a	-0.0860	-0.0008	0.0085	0.0036	0.0204	-0.0079	-0.0284	0.0138	0.0895	0.0162	1.0000	
loan_status	0.0122	0.0891	-0.0034	0.0859	0.0090	-0.0047	-0.0592	-0.0364	-0.0210	0.5252	0.1033	1.0000

Low Linear correlation - proved what we said logistic regression

checking multi collinearity

mean vif for all variable is low

we don't need regularization, simple Logistic Regression can be enough

. vif		
Variable	VIF	1/VIF
loanamount	1.71	0.586481
applicanti~e	1.63	0.613659
dependents	1.16	0.861350
married	1.15	0.868504
coapplican~e	1.14	0.878360
education	1.06	0.946800
loan_amoun~m	1.05	0.954999
self_emplo~d	1.02	0.979180
credit_his~y	1.01	0.985428
property_a~a	1.01	0.989761
Mean VIF	1.19	

Chi sqare test - insight from data

Loan status

Credit history

. tabulate loan status credit history, chi2

Loan Statu	Credit His	tory	
s	0	1	Total
0	87	105	192
1	14	408	422
Total	101	513	614

Pearson chi2(1) = 169.3315 Pr = 0.000

Chi sqare test - insight from data

Gender

Loanstatus

oan_Statu	Gender		
s	0	1	Total
0	37	155	192
1	77	345	422
Total	114	500	614

result: No gender discrimination

Linear Restriction Test

test gender coapplicantincome self_employed loanamount loan_amount_term dependents education applicantincome

(1) gender = 0
(2) coapplicantincome = 0
(3) self_employed = 0
(4) loanamount = 0
(5) loan_amount_term = 0
(6) dependents = 0
(7) education = 0
(8) applicantincome = 0

F(8, 602) = 0.96
 Prob > F = 0.4638

we can not reject null hypothesis

$$F = rac{(ext{SSR}_{ ext{restricted}} - ext{SSR}_{ ext{unrestricted}})/q}{ ext{SSR}_{ ext{unrestricted}}/(n-k)}$$

This means there is no huge diffrence between SSR of restrict & unrestricted model

Chi sqare test - insight from data

property area

cons

.342592

-2.567037

Although we remove 8 features

R2 is almost the same as previous model

```
    logit loan_status married credit_history property_area

Iteration 0:
               log likelihood = -381.44553
Iteration 1: log likelihood = -294.32994
Iteration 2: log likelihood = -293.75556
Iteration 3: log likelihood = -293.75285
Iteration 4:
               log likelihood = -293.75285
Logistic regression
                                                         Number of obs =
                                                                            614
                                                        LR chi2(3)
                                                                       = 175.39
                                                         Prob > chi2
                                                                       = 0.0000
Log likelihood = -293.75285
                                                        Pseudo R2
                                                                       = 0.2299
                 Coefficient Std. err.
                                                  P> z
                                                             [95% conf. interval]
   loan_status
       married
                   .5294961
                              .2125203
                                           2.49
                                                  0.013
                                                             .1129639
                                                                         .9460282
credit_history
                                          10.38
                                                  0.000
                                                             2.644288
                                                                         3.874703
                   3.259495
                              .3138874
```

.1242201

.361648

2.76

-7.10

0.006

0.000

.5860588

-1.85822

.0991251

-3.275854

Heteroscedasticity

we failed to reject null hypothesis.

```
. hettest
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
    Ho: Constant variance
    Variables: fitted values of loan_status

chi2(1) = 0.91
    Prob > chi2 = 0.3406
```

we can not say the variance of data change when independent variable increase

Conclusion

1-we find out the both model are statisticaly signifact and valid

2-we can make our model simpler using linear restriction test

3- No gender discrimination have been observed'

4- credit history is the most import factor in giving loan

Thank you