

Using AI to discover new antibiotics

Tommaso Biancalani

Senior Director
March 20th 2024

This is the BRAID team!

Heads

Tommaso Biancalani Hector Corrada-Bravo

DELTA

Gabriele Scalia Nate Diamant Ziqing Lu Alex Tseng Ehsan Hajiramezanali

ReLU

Gokcen Eraslan Avantika Lal Laura Gunsalus

Post-docs

Hejin Huang Sepideh Maleki Masatoshi Uehara

Admin

Vilma Bermudez

SCimilarity

Graham Heimberg Jenna Collier Max Gold Tony Kuo

MAGIC

Aicha BenTaieb Max Gold Alma Andersson Shreya Gaddam Kam Hon Hoi

Perturbations Dave Richmond

Jan-Christian Huetter
Jacob Levine
Rahul Mohan
Alex Wu
Heming Yao
Phil Hanslovsky
Burkhard Hoeckendorf
Lin Oin

CTGi

Bo Li Yiming Yang Joshua Gould Jose SL Lonzano

Corrada-Bravo lab

Alsu Missarova Changlin Wan

Rough sketch of a drug discovery pipeline

This work focuses on finding more "hits" (molecules exhibiting properties of interest)

Our goal: To use AI to find more candidate molecules

There are too many (possible) small molecules...

Pharma companies typically screen millions of compounds, but possible ones are estimated $>> 10^{23}$

 Solutions: Using computer algorithms to predict what molecules do

However...

We've been working on virtual screening for decades, with a level of success that can be characterized as quite variable but (to be honest) often underwhelming.

-- Derek Lowe, Science (2020)

We are searching for drugs that are *different* than those we know

How can Al discover different molecules?

Let's reformulate the problem using a simplified analogy

Universe of known dogs

What we train our models with

Unexplored animal space

Where discoveries are made

Shepards

Terriers

AI/ML

Bulldogs

Not-a-dog

Cat (but looks like a bulldog)

How can Al discover different molecules?

We leverage the diversity of the training set to "learn how to learn" (meta-learning)

GNEprop: our computational strategy for virtual screens

GNEprop stands for Graph Neural Encoder of chemical properties

Our goal is antibiotic discovery in Gram-negative bacteria

We screened 2M molecules to identify those that kill the bacterium *E. coli* (2017)

Non-active (growth rate inhibition < 20%)

How to assess if the model is generalizing on novel scaffolds

We evaluate the model by predicting activity cliffs on unseen scaffolds

TASK 1 Learn chemistry

TASK 2 Characterize activity cliffs

TASK 3
Structural
explainability

How to assess if the model is generalizing on novel scaffolds

We evaluate the model by predicting activity cliffs on unseen scaffolds

TASK 1: Learning chemistry via a self-supervised representation

Visualization obtained via RAPIDS cuGraph

Train: ~500M unlabeled public compounds (ZINC15). Test (showing): ~1M holdout compounds

TASK 2: Predicting activity cliffs on unseen scaffolds from our annotated data

TASK 3: Explainability underlies structural parts responsible for activity cliffs

Enabling antibiotic discovery via Al-enhanced lab-in-the-loop

GNEprop achieves significantly increased hit rate in prospective screens

We virtually screen Enamine for activity against the *E. coli* ∆tolC mutant

Library	#	
Enamine library (2020)	0) 1.4B	
GNEprop hits	44,437	
GNEprop purchased	345	
Confirmed hits	82	

	Hit rate (2017)	GNEprop (2021)	Fold Enrichment
E. coli ∆tolC mutant	0.4%	24%	60X
E. coli wild type			

GNEprop on HTS data leads to discovery of novel molecular scaffolds active against E. coli ∆tolC

UMAP from Tanimoto distances of Morgan fingerprints of compounds

Newly discovered active

How structurally similar is the newly discovered active vs our internal library?

Top 5 structurally similar gRED compounds

GNEprop 2.0 now runs MUCH faster, due to NVIDIA and Genentech collaboration

Total pre-training time is down <u>from weeks to hours</u> from both hardware parallelization and software optimizations.

DevTech

Solution Architects

Future direction: Expanding libraries combining active learning and lab-in-the-loop

Uncertainty-guided active learning allows choosing the next batch of compounds to maximize model performance (90% performance are achieved with 15% training data)

Acknowledgements

Gabriele Scalia Ziqing Lu Jerome Luescher Kangway Chuang

Steven Rutherford Kerry Buchholz Anh Miu Man-Wah Tan

Nicholas Skelton Leo Gendelev Jeff Blaney

Nia Dickson Greg Zynda Alex Sabatier

Michał Koziarski Yoshua Bengio