SINGULAR VALUE DECOMPOSITION IN PRINCIPAL COMPONENT ANALYSIS

Aidan Olson

MOTIVATION BEHIND PCA

- I. Extract important information from data set
 - Variance
 - 2. Primary Components
- Compress dataset size while retaining essential features
- Simplify data by reducing dimensions
- 4. Identify correlations between variables
 - Covariance

- 1. Center data around mean
- 2. Compute <u>Covariance Matrix</u>
- 3. Eigen system of Covariance matrix
 - I. $CV = V \wedge$
 - 2. Eigenvalues represent variances along principal axes
 - 3. Eigenvectors represent directions of principal axes
- 4. Extract Principal Components and Interpret Results
 - 1. T = BV are projections of data onto principal axes
 - 2. Diagonal matrix Λ stores variance explained by each PC

- I. Center data around mean
- 2. Compute <u>Covariance Matrix</u>
- 3. Eigen system of Covariance matrix
 - I. $CV = V \land$
 - 2. Eigenvalues represent variances along principal axes
 - 3. Eigenvectors represent directions of principal axes
- 4. Extract Principal Components and Interpret Results
 - I. T = BV are projections of data onto principal axes
 - 2. Diagonal matrix \wedge stores variance explained by each PC

 $A \in \mathbb{R}^{2 \times m}$ is a collection of m, 2-D observations:

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,m} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,m} \end{bmatrix}.$$

$$\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \quad \mu_1 = \frac{1}{m} \sum_{j=1}^m a_{1,j}, \quad \mu_2 = \frac{1}{m} \sum_{j=1}^m a_{2,j}.$$

The Centered Data matrix B is computed as

$$B = A - \mu[1, \dots, 1],$$

and has mean [0,0]

- I. Center data around mean
- 2. Compute <u>Covariance Matrix</u>
- 3. Eigen system of Covariance matrix
 - I. $CV = V \land$
 - 2. Eigenvalues represent variances along principal axes
 - 3. Eigenvectors represent directions of principal axes
- 4. Extract Principal Components and Interpret Results
 - I. T = BV are projections of data onto principal axes
 - 2. Diagonal matrix Λ stores variance explained by each PC

- Center data around mean
- 2. Compute Covariance Matrix
- 3. Eigen system of Covariance matrix
 - I. $CV = V \land$
 - 2. Eigenvalues represent variances along principal axes
 - 3. Eigenvectors represent directions of principal axes
- 4. Extract Principal Components and Interpret Results
 - I. T = BV are projections of data onto principal axes
 - 2. Diagonal matrix Λ stores variance explained by each PC

Covariance

Let $B \in \mathbb{R}^{n \times m}$ be a mean centered data matrix. The covariance matrix is given by:

$$C = \frac{1}{n}B^TB,$$

The covariance matrix of a dataset reveals the relationships between variables in a dataset, showing whether they tend to move in the same direction or in opposite directions.

Each item in C describes the pairwise covariance between two variables. C is symmetric.

- High magnitude implies a strong correlation, while low magnitude implies a weak correlation.
- Positive covariance implies direct correlation.
- The main diagonal is the variance of each row.

In our 2 dimensional example, $C \in \mathbb{R}^{2 \times 2}$.

- . Center data around mean
- 2. Compute Covariance Matrix
- 3. Eigen system of Covariance matrix
 - I. $CV = V \wedge$
 - 2. Eigenvalues represent variances along principal axes
 - 3. Eigenvectors represent directions of principal axes
- 4. Extract Principal Components and Interpret Results
 - I. T = BV are projections of data onto principal axes
 - 2. Diagonal matrix \wedge stores variance explained by each PC
 - 3. Econ reduced V to $n \times m$ for m < n

Eigen System

The eigensystem of our covariance matrix reveals the principal components (dimensions of the highest variance) and the magnitudes of variance in each dimension.

$$C = VDV^T$$
,

where:

$$V = \begin{bmatrix} v_{1,1} & v_{1,2} & \cdots & v_{1,n} \\ v_{2,1} & v_{2,2} & \cdots & v_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ v_{n,1} & v_{n,2} & \cdots & v_{n,n} \end{bmatrix}, \quad D = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}.$$

- The decomposition $C = VDV^T$ separates the variability of the data into orthogonal directions (eigenvectors) and quantifies their significance (eigenvalues).
- The elements of *D* are ordered in descending magnitude.
- The vector v_1 always points in the direction of largest variance. All the following v_i for $1 < i \le n$ are computed to point in the next largest direction of variance, but must also be orthogonal to v_j , $1 \le j < i$.

- Center data around mean
- 2. Compute Covariance Matrix
- 3. Eigen system of Covariance matrix
 - I. $CV = V \land$
 - 2. Eigenvalues represent variances along principal axes
 - 3. Eigenvectors represent directions of principal axes
- 4. Extract Principal Components and Interpret Results
 - I. T = BV are projections of data onto principal axes
 - 2. Diagonal matrix Λ stores variance explained by each PC

Principal Components of X:

$$P_{X_i} = \sigma_i u_i + \mu.$$

Principal Components

The vectors in V are called "loadings", which, when applied to B, yield the principal components:

$$P = BV$$

Notice that since B can be written as its Singular Value Decomposition, we have:

$$B = U\Sigma V^T$$
$$BV = U\Sigma = P.$$

Principal components and loading can be directly extracted from the SVD.

- . Center data around mean
- 2. Compute Covariance Matrix
- 3. Eigen system of Covariance matrix
 - I. $CV = V \wedge$
 - 2. Eigenvalues represent variances along principal axes
 - 3. Eigenvectors represent directions of principal axes
- 4. Extract Principal Components and Interpret Results
 - I. T = BV are projections of data onto principal axes
 - 2. Diagonal matrix Λ stores variance explained by each PC

EMERGENCE OF THE SVD

- I. Expedited approach
- 2. Computationally efficient
- 3. Stable

Note*

SINGULAR VALUE DECOMPOSITION IN PRINCIPAL COMPONENT ANALYSIS

The point of PCA is to reduce dimensions of a data matrix.

The approach is to project data to a smaller dimension k.

When we conduct a PCA from 2D into 2D...

$$\min_{\mathbf{\Phi} \in \mathcal{O}_{d,k}} \sum_{t=1}^{n} \|\mathbf{x}_t - \mathbf{\Phi} y_t\|_2^2$$

GOAL

- 1. Can we predict a patient's susceptibility to ovarian cancer given a set of 4000 numerical gene expressions?
- 2. Perhaps there are some "eigen genomes" that capture variance in patient genomes and relate to a risk of developing ovarian cancer.
- 3. If we can identify some primary genomes, then we can project otherwise high dimensional data into a lower dimension.

 $B \in \mathbb{R}^{216 \times 4000}$ is a mean centered data matrix:

Patient	Gene 1	Gene 2	Gene 3	Gene 4	Gene 5	Gene 6	Gene 7	Gene 8	Gene 9
1	0.06391536	0.03324173	0.01848414	0.00861769	0.0356288	0.03792548	0.02886469	0.06173086	0.06310009
2	0.02540862	0.05108479	0.05630495	0.02173849	0.02740998	0.0149138	0.02245485	0.02395709	0.06052699
3	0.02553625	0.03612279	0.05419524	0.00973498	0.02752051	0.05225475	0.04281249	0.06908704	0.06987317
4	0.01281732	0.02965184	0.07928965	0.05067696	0.03973674	0.05771286	0.04449233	0.03458092	0.04258727
5	0.01984628	-0.0105772	-0.0075045	0.0190416	0.06878639	0.0617643	0.0390362	0.02044466	0.02598819
6	0.03904781	0.03935459	0.00134341	0.02622134	0.04409051	0.04395255	0.03962859	0.04792624	0.0468918
7	0.02319523	0.05382612	0.03695354	0.02155368	0.03882545	0.038917	0.05162363	0.03469103	0.01780947
8	0.02701748	0.01013702	0.01765632	0.01116838	0.03668468	0.01603467	0.00667543	0.02749022	0.02912227

	1	2	3	4	5	6	7	8	9	10	
1	-6.0174e-04	-0.0010	5.1654e-04	-6.2815e-04	0.0027	-8.1287e-04	0.0014	0.0060	0.0041	-0.0017	
2	-5.7528e-04	-8.2589e-04	9.1247e-04	-7.2196e-04	0.0031	-0.0016	0.0015	0.0080	0.0048	-9.4733e-04	
3	-5.2042e-04	-0.0010	4.9837e-04	-4.8087e-04	0.0027	-0.0013	0.0018	0.0072	0.0047	-0.0027	
4	-4.9379e-04	-9.9202e-04	6.5023e-04	4.9608e-04	0.0018	-0.0020	0.0016	0.0050	0.0044	-0.0031	
5	-5.1443e-04	-0.0012	9.0853e-04	1.6537e-05	8.1084e-04	-0.0014	0.0015	0.0027	0.0031	-0.0027	
6	-5.3182e-04	-0.0012	0.0012	-4.6326e-04	0.0016	-0.0017	4.3215e-04	0.0042	0.0047	-5.8042e-04	
7	-6.3545e-04	-0.0015	1.0593e-04	-3.5955e-04	0.0021	-7.7052e-04	6.8566e-04	0.0057	0.0035	-0.0020	
8	-8.6523e-04	-0.0023	3.4743e-04	3.4847e-04	0.0035	-4.9156e-04	6.0505e-04	0.0090	0.0046	-0.0048	
9	-8.8558e-04	-0.0024	2.6131e-04	8.5273e-04	0.0030	-9.6942e-04	0.0010	0.0076	0.0040	-0.0066	
10	-7.3392e-04	-0.0017	2.5494e-04	3.3011e-04	0.0025	-0.0010	0.0011	0.0063	0.0044	-0.0037	
11	-5.5360e-04	-0.0012	1.7370e-04	3.4988e-04	0.0025	-0.0010	8.8894e-04	0.0043	0.0031	-0.0031	$= V \in \mathbb{R}^{4000 \times 216}$
12	-5.1235e-04	-0.0011	2.4407e-04	-1.5715e-04	0.0022	-5.7886e-04	5.8352e-05	0.0036	0.0027	-0.0014	, , ,
13	-5.9838e-04	-0.0011	8.4830e-04	-3.5652e-04	0.0026	-0.0014	0.0018	0.0037	0.0054	4.7675e-04	
14	-6.0705e-04	-0.0013	3.2266e-04	-7.9253e-04	0.0028	-0.0016	0.0020	0.0058	0.0034	-0.0021	
15	-6.0930e-04	-0.0016	8.1347e-04	-5.2983e-04	0.0027	-0.0015	1.7814e-04	0.0053	4.9288e-04	-0.0042	
16	-6.0016e-04	-0.0018	0.0010	4.2147e-04	0.0016	-0.0023	-9.4344e-05	0.0059	0.0018	-0.0029	
17	-6.7727e-04	-0.0014	4.6205e-04	8.3861e-04	0.0013	-0.0017	-9.6104e-04	0.0063	0.0040	-0.0026	
18	-9.1597e-04	-0.0017	4.6425e-04	8.4291e-04	0.0032	-0.0020	6.4470e-04	0.0077	0.0056	-0.0034	
19	-0.0011	-0.0024	-1.9841e-04	9.4578e-04	0.0042	-0.0016	7.6211e-05	0.0102	0.0042	-0.0022	
20	-9.4418e-04	-0.0024	-1.8925e-04	8.8883e-05	0.0030	-7.2244e-04	5.9302e-04	0.0076	0.0025	-0.0013	
21	-7.1030e-04	-0.0021	-1.1977e-04	1.0347e-04	0.0015	-0.0010	-4.6040e-04	0.0059	0.0024	-0.0033	
22	-4.9405e-04	-0.0015	2.5002e-04	-1.4336e-05	0.0016	-1.3140e-04	8.9723e-04	0.0024	0.0018	-0.0019	

1 2 3 4 5 6 7 8	9 10 11 12 0 0 0 0 0 0
	9 10 11 12 0 0 0 0 0
	0 0 0 0
1 829.2802 0 0 0 0 0	
2 0 103.0249 0 0 0 0	0 0 0 0
3 0 0 49.3769 0 0 0	0 0 0 0
4 0 0 0 39.2474 0 0 0	0 0 0 0
5 0 0 0 0 31.9608 0 0	0 0 0 0
6 0 0 0 0 0 27.3468 0	0 0 0 0
7 0 0 0 0 0 0 23.7796	0 0 0 0
8 0 0 0 0 0 0 0 0 20.0	224 0 0 0 0
9 0 0 0 0 0 0	0 16.6298 0 0 0
10 0 0 0 0 0 0	0 0 14.7454 0 0
11 0 0 0 0 0 0 0	0 0 0 13.3579 0
12 0 0 0 0 0 0 0	0 0 0 11.9953

 $\Sigma =$

```
% obs = genetic data from 216 patients.
% grp = signifier of ovarian cancer. 1 means a patient has cancer.
[U,S,V] = svd(obs, 'econ');
figure(2);
for i=1:size(obs,1)
    x = V(:,1) *obs(i,:)';
    y = V(:,2)'*obs(i,:)';
    z = V(:,3)'*obs(i,:)';
    if(grp{i}=='Cancer')
        plot3(x,y,z,'rx','LineWidth',2); hold on;
    else
        plot3(x,y,z,'bo','LineWidth',2); hold on;
    end
end
```


Dimensional Reduction from 4000 to 3

The loading space V is size 4000 by 216. Each column is an "eigen genome" which expresses the direction of maximum variance. Most genomes can be expressed as a linear combination of a few unique genomes.

This code takes an inner product of the top three eigen genomes with each observation. This process transforms the original data into a more visualizable 3-dimensional space where we can observe clustering patterns

x = Cancero = No Cancer

Takeaway

If we know the inner produce of a patient's genome with our three indicator genomes, then we can reasonably predict susceptibility to ovarian cancer.

Rather than checking 4000 genes expressions, the PCA allows us to check 3 inner products instead.

Singular Values

This rapid decay of our singular values indicates that our dimensional reduction still preserves a large portion of the original data, keeping mostly the important things. Can we quantify how much of the important data we are keeping?

Robustness of PCA Space

$$R = rac{ ext{Total Variance of } W}{ ext{Total Variance}} = rac{\sum_{i=1}^k \lambda_i}{\sum_{i=1}^M \lambda_i}$$

Conclusion

Based on these three figures, we can say that this PCA dimension reduction provides a simple, accurate, and efficient way to represent a large data set.

If a priority of ours was to maximize accuracy at the expense of data visualizability, we could increase k beyond 3.

STUDENT ALCOHOL CONSUMPTION DATA

Question: What factors (if any) relate to a student's "Weekend Alcohol Consumption" quantity (from 1-5)?

Procedure: Convert data to numeric, identify principal components, visualize results.

- school student's school (binary: 'GP' Gabriel Pereira or 'MS' Mousinho da Silveira)
- 2. sex student's sex (binary: 'F' female or 'M' male)
- 3. age student's age (numeric: from 15 to 22)
- 4. address student's home address type (binary: 'U' urban or 'R' rural)
- 5. famsize family size (binary: 'LE3' less or equal to 3 or 'GT3' greater than 3)
- 6. Pstatus parent's cohabitation status (binary: 'T' living together or 'A' apart)
- 7. Medu mother's education (numeric: 0 none, 1 primary education (4th grade), 2 5th to 9th grade, 3 secondary education or 4 higher education)
- Fedu father's education (numeric: 0 none, 1 primary education (4th grade), 2 5th to 9th grade, 3 secondary education or 4 higher education)
- 9. Mjob mother's job (nominal: 'teacher', 'health' care related, civil 'services' (e.g. administrative or police), 'at_home' or 'other')
- Fjob father's job (nominal: 'teacher', 'health' care related, civil 'services' (e.g. administrative or police), 'at_home' or 'other')
- 11. reason reason to choose this school (nominal: close to 'home', school 'reputation', 'course' preference or 'other')
- 12. guardian student's guardian (nominal: 'mother', 'father' or 'other')
- 13. traveltime home to school travel time (numeric: 1 <15 min., 2 15 to 30 min., 3 30 min. to 1 hour, or 4 >1 hour)
- 14. studytime weekly study time (numeric: 1 <2 hours, 2 2 to 5 hours, 3 5 to 10 hours, or 4 >10 hours)
- 15. failures number of past class failures (numeric: n if 1<=n<3, else 4)
- schoolsup extra educational support (binary: yes or no)
- 17. famsup family educational support (binary: yes or no)
- 18. paid extra paid classes within the course subject (Math or Portuguese) (binary: yes or no)
- 19. activities extra-curricular activities (binary: yes or no)
- 20. nursery attended nursery school (binary: yes or no)
- 21. higher wants to take higher education (binary: yes or no)
- 22. internet Internet access at home (binary: yes or no)
- 23. romantic with a romantic relationship (binary: yes or no)
- 24. famrel quality of family relationships (numeric: from 1 very bad to 5 excellent)
- 25. freetime free time after school (numeric: from 1 very low to 5 very high)
- 26. goout going out with friends (numeric: from 1 very low to 5 very high)
- 27. Dalc workday alcohol consumption (numeric: from 1 very low to 5 very high)
- 28. Walc weekend alcohol consumption (numeric: from 1 very low to 5 very high)
- 29. health current health status (numeric: from 1 very bad to 5 very good)
- 30. absences number of school absences (numeric: from 0 to 93)

STUDENT ALCOHOL CONSUMPTION PCA, $\kappa = 3$

Weekend Alcohol Consumption (1 to 5):

x > 3

o ≤ 3

DIABETES AND HEALTH DATA

Question: Can a combination of these variables indicate the presence of diabetes?

Procedure: Convert data to numeric, identify principal components, visualize results.

Pregnancies: To express the Number of pregnancies

Glucose: To express the Glucose level in blood

BloodPressure: To express the Blood pressure measurement

SkinThickness: To express the thickness of the skin

Insulin: To express the Insulin level in blood

BMI: To express the Body mass index

DiabetesPedigreeFunction: To express the Diabetes percentage

Age: To express the age

Outcome: To express the final result 1 is Yes and 0 is No

DIABETES DATA PCA, $\kappa = 3$

x = Diabetes= No Diabetes

APPENDING THE SVD

Other approaches include a vector wise update to the covariance matrix. A similar approach can be made directly to the SVD:

Incremental SVD Update

When the $t + 1^{th}$ row $(b_{t+1} \in \mathbb{R}^{1 \times n})$ is added to a data matrix B, we must update the SVD.

$$B_{t+1} = egin{bmatrix} B \ b_{t+1} \end{bmatrix} = U \Sigma V^T + egin{bmatrix} \mathbf{0} \ b_{t+1} \end{bmatrix},$$

where $U\Sigma V^T$ is the current SVD of B, b_{t+1} is the newly added row, and $\mathbf{0}$ is the zero matrix of size $t \times n$.

$$p = b_{t+1}V$$
,

where V is the $n \times t$ matrix of right singular vectors of B.

Calculate the residual r, which is the portion of b_{t+1} orthogonal to the current basis:

$$r = b_{t+1} - pV^T.$$

If r = 0, then b_{t+1} already lies in the span of V and can be discarded. Otherwise, append U:

$$u_{t+1} = \frac{r}{\|r\|}.$$

Adjust the SVD matrices accordingly:

$$\Sigma_{\mathrm{t+1}} = egin{bmatrix} \Sigma & 0 \ 0 & \|r\| \end{bmatrix}, \quad V_{\mathrm{t+1}} = egin{bmatrix} V & 0 \ 0 & 1 \end{bmatrix},$$
 and, $B_{\mathrm{t+1}} = U_{\mathrm{t+1}}\Sigma_{\mathrm{t+1}}V_{\mathrm{t+1}}^T.$