### Objective of the Project

Customer churn is a big problem for telecommunications companies. Indeed, their annual churn rates are usually higher than 10%. For that reason, they develop strategies to keep as many clients as possible. This is a classification project since the variable to be predicted is binary (churn or loyal customer). The goal here is to model churn probability, conditioned on the customer features.

#### Dataset

dataset = pd.read\_csv('/content/telecommunications\_churn.csv')
dataset

| ₽  | account_length | voice_mail_plan | voice_mail_messages | day_mins | evening_mins | night_mins | international_mins | <pre>customer_service_calls</pre> | international_plan | day_calls | day_charge | ev |
|----|----------------|-----------------|---------------------|----------|--------------|------------|--------------------|-----------------------------------|--------------------|-----------|------------|----|
|    | 128            | 1               | 25                  | 265.1    | 197.4        | 244.7      | 10.0               | 1                                 | 0                  | 110       | 45.07      |    |
|    | <b>1</b> 107   | 1               | 26                  | 161.6    | 195.5        | 254.4      | 13.7               | 1                                 | 0                  | 123       | 27.47      |    |
|    | 2 137          | 0               | 0                   | 243.4    | 121.2        | 162.6      | 12.2               | 0                                 | 0                  | 114       | 41.38      |    |
|    | 3 84           | (0              | 0                   | 299.4    | 61.9         | 196.9      | 6.6                | 2                                 | 1                  | 71        | 50.90      |    |
|    | <b>4</b> 75    | 0               | 0                   | 166.7    | 148.3        | 186.9      | 10.1               | 3                                 | 1                  | 113       | 28.34      |    |
|    |                |                 |                     |          |              |            |                    |                                   |                    |           |            |    |
| 33 | <b>28</b> 192  | 1               | 36                  | 156.2    | 215.5        | 279.1      | 9.9                | 2                                 | 0                  | 77        | 26.55      |    |
| 33 | <b>29</b> 68   | 0               | 0                   | 231.1    | 153.4        | 191.3      | 9.6                | 3                                 | 0                  | 57        | 39.29      |    |
| 33 | 30 28          | 0               | 0                   | 180.8    | 288.8        | 191.9      | 14.1               | 2                                 | 0                  | 109       | 30.74      |    |
| 33 | <b>31</b> 184  | 0               | 0                   | 213.8    | 159.6        | 139.2      | 5.0                | 2                                 | 1                  | 105       | 36.35      |    |
| 33 | <b>32</b> 74   | 1               | 25                  | 234.4    | 265.9        | 241.4      | 13.7               | 0                                 | 0                  | 113       | 39.85      |    |
|    |                |                 |                     |          |              |            |                    |                                   |                    |           |            |    |

3333 rows × 19 columns



- P

## Summary of the statistical analysis

- The average time customers talk during day, evening, night is 198.88 min/day.
- The average time a customer talks on a international call is 10.24 min /day.
- In the daytime 75% of the customer talk on more than 200 min/day.
- Also we can clearly see that the average and percentile of evening and night minute are almost equal i.e. in both cases 75% of the data falls under 235.30 min/day.
- Average cost per call for day is 3.29/call.
- Average cost per call for evening is 5.86/call.
- Average cost per call for night is 11.03/call.
- From the above we can conclude that average cost/call varies vastly depending on the time of the day.
- Average total charge is 59.45, maximum going up to 96.15

#### Various visualizations







## Correlation analysis



- Voice\_mail\_plan and voice\_mail\_messages are highly correlated.
- All the charges and min for day, evening and night are highly correlated to each other.
- This tells us that both the features moves in positive direction, if min on call increases the charge will also increase.
- Total charge is correlated with day min and charges
- This shows that total charge is mostly effected by the day charge. So if the day min and charge will increase the total charge will also increase.
- Except for these factors no other features are correlated to one another.

## Deciding best algorithm

LR: 0.849197 (0.020277)

KNN: 0.874701 (0.012970)

CART: 0.941474 (0.009883)

NB: 0.869095 (0.018294)

SVM: 0.853702 (0.016692)



#### Deciding best algorithm after standardizing the dataset

ScaledLR: 0.860833 (0.018150)

ScaledKNN: 0.899845 (0.018151)

ScaledCART: 0.943730 (0.007362)

ScaledNB: 0.869095 (0.018294)

ScaledSVM: 0.923098 (0.013483)



# KNN - Algorithm

```
0.872459 (0.013170) with: {'n_neighbors': 1}
0.897211 (0.014353) with: {'n_neighbors': 3}
0.899842 (0.019582) with: {'n_neighbors': 5}
0.902092 (0.018958) with: {'n_neighbors': 7}
0.894969 (0.014834) with: {'n_neighbors': 9}
0.891969 (0.014716) with: {'n_neighbors': 11}
0.892343 (0.016020) with: {'n_neighbors': 13}
0.891217 (0.016463) with: {'n_neighbors': 15}
0.889717 (0.015696) with: {'n_neighbors': 17}
0.888214 (0.014566) with: {'n_neighbors': 19}
0.885212 (0.013412) with: {'n_neighbors': 21}
```

## Ensemble Algorithm Comparison

AB: 0.899844 (0.019103)

GBM: 0.974860 (0.010369)

RF: 0.974860 (0.010368)

ET: 0.945613 (0.014833)



#### Final model – Random Forest

```
# load the model from disk
loaded_model = load(open('filename', 'rb'))
result = loaded_model.score(rescaledValidationX, Y_validation)
print(result)
0.9880059970014993
```

- We finally chose the Random forest algorithm for the model as the highest accuracy shown among all of the algorithms was this
- Accuracy of 98.8%

# Deployed model using Streamlit

#### **User Input parameters**

|   | account_length | voice_mail_plan | voice_mail_messages | day_mins | evening_mins | night_mins | interna |
|---|----------------|-----------------|---------------------|----------|--------------|------------|---------|
| 0 | 380.0000       | 1               | 56.0000             | 824.9900 | 22.0000      | 48.0000    |         |

#### **Predicted Result**

Customer is Loyal

### THANKYOU