AN INDUCTIVE BIAS FOR DISTANCES: NEURAL NETS THAT RESPECT THE TRIANGLE INEQUALITY

Parviz Karimov

MIPT, 2024

April 8, 2024

- Motivation & Background
- Deep Norm
- Wide Norm
- Application: Modelling Graph Distances
- 5 Computational considerations

Motivation

When defining distances, the triangle inequality has proven to be a useful constraint, both theoretically — to prove convergence and optimality guarantees — and empirically — as an inductive bias.

Deep metric learning architectures that respect the triangle inequality rely, almost exclusively, on Euclidean distance in the latent space. Though effective, this fails to model two broad classes of subadditive distances, common in graphs and reinforcement learning: asymmetric metrics, and metrics that cannot be embedded into Euclidean space.

Example

Norm	MSE
Euclidean, \mathbb{R}^n , $\forall n$	0.057
Deep Norm, \mathbb{R}^2	0.000
Wide Norm, \mathbb{R}^2	0.000

Figure: The nodes in the graph (left) cannot be embedded into any \mathbb{R}^n so that edge distances are represented by the Euclidean metric: points $\phi(A)$ and $\phi(D)$ must lie at the midpoint of the segment from $\phi(B)$ to $\phi(C)$ —but then $\phi(A)$ and $\phi(D)$ coincide, which is incorrect.

Background

Metric

A **metric** is a function $d: \mathcal{X} \times \mathcal{X} \to \mathbb{R}^+$ satisfying $\forall x, y, z \in \mathcal{X}$

M1
$$d(x,y) \ge 0$$
 M3 $d(x,z) \le d(x,y) + d(y,z)$

M2
$$d(x,y) = 0 \iff x = y$$
 M4 $d(x,y) = d(y,x)$

Norm

A **norm** is a function $||\cdot||: \mathcal{X} \to \mathbb{R}^+$ satisfying $\forall x, y \in \mathcal{X}, \alpha \in \mathbb{R}^+$

$$\mathbf{N1} \ ||x|| > 0 \ \text{unless} \ x = 0 \quad \mathbf{N3} \ ||x + y|| \leq ||x|| + ||y||$$

N2
$$\alpha ||x|| = ||\alpha x||$$
 N4 $||x|| = ||-x||$

Convex function

Function $f: \mathcal{X} \to \mathbb{R}$ is called **convex** if

C1
$$\forall x, y \in \mathcal{X}, \alpha \in [0, 1] : f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

Background

Auxilliary

A quasi-metric is M1 and M3.

An assymetric norm is N1-N3.

An (assymetric) semi-norm is nonnegative, N2 and N3 (and N4).

Prop. 0.1

Any assymetric semi-norm induces a quasi-metric. Any induces quasi-metric is translation-inveriant and positive homogeneous.

Prop. 0.2

Any N2 and N3 function is convex — thus, all asymmetric semi-norms are convex.

Deep Norm

Proposition 1

All positive homogeneous convex functions are subadditive; i.e.,

 $C1 \land N2 \implies N3.$

Figure: Deep norm architecture

$$||x|| = h_k$$

 $h_i = g_i(W_i^+ h_{i-1} + U_i x)$
 $h_0 = 0, W_1^+ = 0$
 g_i preserves **C1**, **N2**
 g_k is non-negative
 W_i^+ is a non-negative matrix

Deep Norm

Proposition 2

If $||\cdot|$ is an assymetric semi-norm, then ||x|| = ||x| + ||-x| is a semi-norm

Proposition 3

if $||\cdot||_a$ is an assymetric semi-norm, $||\cdot||_b$ is a norm, $\lambda>0$, then $||x||_{a+\lambda b}=||x||_a+\lambda ||x||_b$ is an assymetric norm.

Def. (MaxReLU)

$$\mathsf{maxrelu}(x,y) = [\mathsf{max}(x,y), \alpha \mathsf{relu}(x) + \beta \mathsf{relu}(y)], \quad \alpha, \beta \ge 0$$

Wide Norm

Def. (MaxMean)

$$\mathsf{maxmean}(x_1,...,x_n) = \alpha \mathsf{max}(x_1,...,x_n) + (1-\alpha) \mathsf{mean}(x_1,...,x_n)$$

Def. (Wide Norm)

A **Wide Norm** (or k-component mixture of Mahalanobis norms) is defined as

$$||x|| = \max_{i}(||W_ix||_2)$$
, where $W_i \in \mathbb{R}^{m_i \times n}$, $m_i \leq n$

Wide Norm

Monotonic Norm (in the positive orthant)

N5 $||\cdot||$ is monotonic in the positive orthant if $0 \le x \le y \implies ||x|| \le ||y||$

Proposition 4

if $||\cdot||$ is an **N5** (semi-)norm on \mathbf{R}^{2n} , then ||x|| = ||relu(x :: -x)|| is an assymetric (semi-)norm on \mathbb{R}^n .

Proposition 5

Mahalanobis norm with W=DU, with D diagonal and U non-negative, is ${\bf N5}$.

Universal Approximation Theorem

Theorem

The families $\mathcal D$ of Deep Norms (using MaxReLU) and $\mathcal W$ of Wide Norms (using MaxMean) are dense in the family $\mathcal N$ of asymmetric semi-norms.

	N1 (M1-2)	N2 (Homo.)	N3 (M3)	N4 (M4)	UA	Notes
Euclidean	/	/	/	/	Х	
MLP	X	X	X	X	1	
Deep Norm	*	/	1	*	1	
Wide Norm	*	/	/	*	/	works for large minibatches (§§3.5)
Neural Metric	*	*	✓	*	✓	based on Deep Norm or Wide Norm

Figure: Norm (metric) properties of different architectures. As compared to Euclidean architectures, ours are universal asymmetric semi-norm approximators (UA) and can use propositions to optionally satisfy (*) N1 and N4. Neural metrics relax the unnecessary homogeneity constraint on metrics.

Application: Modelling Graph Distances

The task is of modeling shortest path lengths in a weighted graph $\mathcal{G}=(\mathcal{V},\mathcal{E})$. So long as edge weights are positive and the graph is connected, shortest path lengths are discrete quasi-metrics $(n=|\mathcal{V}|)$, and provide an ideal domain for a comparison to the standard Euclidean approach.

	$ \mathcal{V} $	$ \mathcal{E} $	$\max(d)$	σ_d	Sym?		Eucl.	WN	DN_I	DN_N	MLP
to	278K	611K	145.7	24.5	\leftrightarrow	to	12.5	6.6	6.7	6.7	12.3
3d	125K	375K	86.7	13.2	\leftrightarrow	3d	31.2	17.3	15.4	12.9	20.6
taxi	391K	752K	111.2	13.4	\leftrightarrow	taxi	14.4	10.6	11.8	11.4	5.8
push	390K	1498K	113.1	14.3	\rightarrow	push	22.2	14.0	14.7	13.5	11.3
3dr	123K	368K	86.5	13.1	\rightarrow	3dr	22.0	17.5	21.8	18.3	25.5
3dd	125K	375K	97.8	13.4	\rightarrow	3dd	211.8	177.1	199.5	157.7	252.7

(a) Graph statistics

(b) Final test MSE @ |D| = 50000

Figure: Graph experiments. (a) Statistics for different graphs. (b) Test MSE after 1000 epochs at training size |D|=50000 (3 seeds). The best metric (and overall result if different) is bolded.

Computational considerations

32	128	512	2048
0.18	0.27	0.45	1.06
1.59	1.57	1.75	2.36
15.7	13.4	17.7	26.3
0.97	5.73	76.9	293
1.50	11.4	174	MOO
	0.18 1.59 15.7 0.97	0.18 0.27 1.59 1.57 15.7 13.4 0.97 5.73	0.18 0.27 0.45 1.59 1.57 1.75 15.7 13.4 17.7 0.97 5.73 76.9

Figure: Mean computation time (ms) for different mini-batch sizes (250 trials).

Literature

Main article AN INDUCTIVE BIAS FOR DISTANCES: NEURAL NETS THAT RESPECT THE TRIANGLE INEQUALITY.