Supplementary Material

TABLE S-I NOTATIONS

$\hat{\mathbb{O}}_i$ Set of uncovered target points $\hat{\mathbb{O}}_i'$ Set of additional uncovered target points $\hat{\mathbb{O}}_i$ Set of covered target points \mathbb{O}_i Set of target points occupied by obst					
	acles				
O: Set of target points occupied by obst	acles				
Set of target points occupied by obst					
N Upper capacity limit of $\hat{\mathbb{O}}_i$					
n Number of robots					
Υ Set of robots					
Φ_i Position of the <i>i</i> th herd					
Ψ_i^k kth dynamic predator of robot i					
r_i Position of the <i>i</i> th robot					
$\mathring{o_i}$ Start target point					
$\hat{o_i}$ Destination target point					
$\check{o_i}$ Previous target point					
$\bar{o_i}$ Next target point					
o_i' Temporary target point					
C_i Set of candidate target points					
o_j jth candidate target point					
o_{j^*} Candidate target point with maximal r	eward				
$R(o_j)$ Total reward of o_j					
$R^{H}(o_{j})$ Herd attraction reward of o_{j}					
$R^D(o_j)$ Dynamic predator avoidance reward of	of o_j				
$R^{S}(o_{j})$ Smoothness reward of o_{j}					
$R^B(o_j)$ Boundary reward of o_j					
$W(o_j)$ missing reward of o_j					
Ω Reward function parameters					
λ Weighting factor for missing rewa	rd				
ω^D Weighting factor for dynamic					
predator avoidance reward					
ω^S Weighting factor for smoothness rew	vard				
ω^B Weighting factor for boundary rewa	ard				
$H(o_j)$ Distance from o_j to Φ_i					
$D(o_j, \Psi_i^k)$ Distance from o_j to Ψ_i^k					
$S(\hat{o_i}, \Psi_i^k)$ Inverted sigmoid function					
κ Slope					
a Distance from $\hat{o_i}$ to Ψ_i^k					
	Effective range				
$\Theta(o_j)$ Deflection angle $\angle \check{o_i}\hat{o_i}o_j$					
Number of uncovered and					
$B(o_j)$ obstacle-free neighbors of o_j	obstacle-free neighbors of o_j				
η Neighborhood radius					
\hat{t} Maximum time					

 $\mbox{TABLE S-II} \\ \mbox{SIMULATION RESULTS VS. } N_{\tau} \mbox{ IN BOUNDED ENVIRONMENTS} \\$

Scenario	N_r		DH-CPP	DPPCPP	Pac-AUV	BoB
	2	N_t	378	370	412	399
		\bar{T}_r	0.16	0.13	0.02	0.06
	3	N_t	254	254	337	287
4		\bar{T}_r	0.11	0.09	0.01	0.08
	4	N_t	190	186	\	232
	4	\bar{T}_r	0.09	0.07	\	0.09
	5	N_t	153	150	321	172
		\bar{T}_r	0.1	0.07	0.01	0.08
	2	N_t	462	477	\	\
		\bar{T}_r	0.17	0.15	\	\
	3	N_t	315	326	\	\
7		\bar{T}_r	0.13	0.18	\	\
	4	N_t	235	247	\	\
		\bar{T}_r	0.12	0.1	\	\
	5	N_t	196	197	\	\
		\bar{T}_r	0.13	0.12	\	\

 $\mbox{TABLE S-III} \\ \mbox{SIMULATION RESULTS VS. } N_r \mbox{ IN UNBOUNDED ENVIRONMENTS} \\$

Scenario	N_r		DH-CPP	DPPCPP	Pac-AUV	BoB
	2	D_a	10.87	21.24	18.89	13.13
		N_m	0	0	3	5
		N_c	593	600	569	591
		\bar{T}_r	0.15	0.04	0.17	0.01
		D_a	10.2	20.67	16.96	13.76
		N_m	0	0	7	0
	3	N_c	894	897	861	860
11		\bar{T}_r	0.13	0.08	0.14	0.02
11		D_a	15.13	17.33	15.09	17.59
	4	N_m	0	0	126	0
	4	N_c	1189	1183	1160	1152
		\bar{T}_r	0.15	0.1	0.1	0.02
		D_a	15.64	17.25	15.01	18.87
	5	N_m	0	0	157	0
		N_c	1473	1463	1363	1415
		\bar{T}_r	0.17	0.12	0.09	0.02
	2	D_a	10.85	20.55	\	\
		N_m	0	0	\	\
		N_c	593	600	\	\
		\bar{T}_r	0.1	0.05	\	\
	3	D_a	11.58	18.27	\	\
		N_m	0	4	\	\
		N_c	884	900	\	\
14		\bar{T}_r	0.11	0.08	\	\
14	4	D_a	13.33	19.04	\	\
		N_m	0	4	\	\
		N_c	1174	1189	\	\
		\bar{T}_r	0.14	0.09	\	\
	5	D_a	14.37	16.56	\	\
		N_m	0	4	\	\
		N_c	1463	1455	\	\
		\bar{T}_r	0.16	0.14	\	\

 $\label{thm:constraint} \textbf{TABLE S-IV}$ SIMULATION RESULTS OF DIFFERENT INITIAL MOVABLE AREA SIZES

Scenario	S_m		DH-CPP	DPPCPP	Pac-AUV	ВоВ
	25×25	D_a	9.61	10.41	9.23	10.79
		N_m	0	0	11	3
		N_c	874	843	737	868
		\bar{T}_r	0.12	0.11	0.06	0.01
		D_a	10.2	20.67	16.96	13.76
11	40×40	N_m	0	0	7	0
11	40.40	N_c	894	897	861	860
		\bar{T}_r	0.13	0.08	0.14	0.02
		D_a	10.2	27.91	24.81	16.57
	55×55	N_m	0	0	0	0
	33×33	N_c	894	900	897	878
		\bar{T}_r	0.13	0.07	0.24	0.01
	25×25	D_a	12.19	10.88	\	\
		N_m	0	4	\	\
		N_c	884	844	\	\
		\bar{T}_r	0.11	0.09	\	\
	40×40	D_a	11.58	18.27	\	\
14		N_m	0	4	\	\
14		N_c	884	900	\	\
		\bar{T}_r	0.11	0.08	\	\
	55×55	D_a	11.58	29.75	\	\
		N_m	0	0	\	\
		N_c	884	900	\	\
		\bar{T}_r	0.11	0.07	\	\

 ${\it TABLE~S-V} \\ {\it SIMULATION~RESULTS~OF~DIFFERENT~BOUNDARY~EXPANSION~RATES} \\$

Scenario	R_e		DH-CPP	DPPCPP	Pac-AUV	BoB
	1	D_a	10.2	20.67	16.96	13.76
		N_m	0	0	7	0
	1	N_c	894	897	861	860
		\bar{T}_r	0.13	0.08	0.14	0.02
		D_a	10.2	22.42	19.73	14.06
11	2	N_m	0	0	16	0
11		N_c	894	900	884	862
		\bar{T}_r	0.13	0.09	0.17	0.01
		D_a	10.2	25.08	21.61	15.8
	3	N_m	0	0	0	0
	3	N_c	894	900	883	885
		\bar{T}_r	0.14	0.09	0.21	0.01
	1	D_a	11.58	18.27	\	\
		N_m	0	4	\	\
		N_c	884	900	\	\
		\bar{T}_r	0.11	0.08	\	\
	2	D_a	11.58	22.88	\	\
14		N_m	0	4	\	\
14		N_c	884	900	\	\
		\bar{T}_r	0.11	0.08	\	\
	3	D_a	11.58	25.61	\	\
		N_m	0	0	\	\
		N_c	884	900	\	\
		\bar{T}_r	0.11	0.09	\	\