logikai műveletek igazságtáblája

Α	В	$\neg A$	$A \wedge B$	$A \lor B$	$A \Rightarrow B$	$A \Leftrightarrow B$
Π	П	Н	I	I	I	I
I	Н	Н	Н		Н	Н
Н	П	Ι	Н	I	I	Н
Н	Н		Н	Н		

• a logikai műveletek tulajdonságai, ítéletlogikai tételek

2
$$A \lor (B \lor C) \Leftrightarrow (A \lor B) \lor C, A \land (B \land C) \Leftrightarrow (A \land B) \land C$$
 (asszociativitás)

3
$$A \lor B \Leftrightarrow B \lor A, A \land B \Leftrightarrow B \land A$$
 (kommutativitás)

$$(A \lor B) \land A \Leftrightarrow A, (A \land B) \lor A \Leftrightarrow A$$
 (abszorpció, azaz elnyelési tulajdonság)

(
$$A \Rightarrow B$$
) $\Leftrightarrow (\neg B \Rightarrow \neg A)$ (kontrapozíció tétele)

kvantorok

üreshalmaz

Azt a halmazt, melynek nincs eleme, üres halmaznak nevezzük. Jele: ∅ vagy {}.

Figyelem! $\emptyset \neq \{\emptyset\}$.

Definíciók listája 1. oldal

részhalmaz

Az A halmaz részhalmaza a B halmaznak: $A \subseteq B$, ha A minden eleme B-nek is eleme, azaz

$$\forall x (x \in A \Rightarrow x \in B).$$

Ha $A \subseteq B$ -nek, de $A \neq B$, akkor A valódi részhalmaza B-nek: $A \subseteq B$.

- részhalmaz reláció tulajdonságai
 - \bullet $\forall A \ (A \subseteq A) \ (reflexivitás).$
 - ② $\forall A, B, C \ ((A \subseteq B \land B \subseteq C) \Rightarrow A \subseteq C) \ (tranzitivitás).$
- halmazok uniója

Az A és B halmazok uniója: $A \cup B$ az a halmaz, mely pontosan A és B összes elemét tartalmazza: $A \cup B = \{x \mid x \in A \lor x \in B\}$.

Általában: Legyen \mathscr{A} egy olyan halmaz, melynek az elemei is halmazok (halmazrendszer). Ekkor $\bigcup \mathscr{A} = \bigcup \{A : A \in \mathscr{A}\} = \bigcup_{A \in \mathscr{A}} A$ az a halmaz, mely \mathscr{A} összes elemének elemeit tartalmazza:

$$\cup \mathscr{A} = \{x \mid \exists A \in \mathscr{A} : x \in A\}.$$

Speciálisan: $A \cup B = \cup \{A, B\}$.

az unió tulajdonságai

Minden A, B, C halmazra:

- \bigcirc $A \cup B = B \cup A$ (kommutativitás)
- \bigcirc $A \cup A = A$ (idempotencia)
- $\bullet A \subseteq B \Leftrightarrow A \cup B = B$

Definíciók listája 2. oldal

halmazok metszete

Az A és B halmazok metszete: $A \cap B$ az a halmaz, mely pontosan az A és B közös elemeit tartalmazza: $A \cap B = \{x \mid x \in A \land x \in B\}$. Általában: Legyen $\mathscr A$ egy olyan halmaz, melynek az elemei is halmazok

Altalaban: Legyen $\mathscr A$ egy olyan halmaz, melynek az elemei is halmazok (halmazrendszer). Ekkor $\cap\mathscr A=\cap\{A:A\in\mathscr A\}=\cap_{A\in\mathscr A}A$ a következő halmaz:

$$\cap \mathscr{A} = \{ x \mid \forall A \in \mathscr{A} : x \in A \}.$$

Speciálisan: $A \cap B = \cap \{A, B\}$.

• a metszet tulajdonságai

Minden A, B, C halmazra:

- \bigcirc $A \cap B = B \cap A$ (kommutativitás)
- \bigcirc $A \cap A = A$ (idempotencia)
- (páronként) diszjunkt halmazrendszer

Ha $A \cap B = \emptyset$, akkor A és B diszjunktak.

Általánosabban: Ha \mathscr{A} egy halmazrendszer, és $\cap \mathscr{A} = \emptyset$, akkor \mathscr{A} diszjunkt, illetve \mathscr{A} elemei diszjunktak.

Ha $\mathscr A$ egy halmazrendszer, és $\mathscr A$ bármely két eleme diszjunkt, akkor $\mathscr A$ elemei páronként diszjunktak.

• az unió és a metszet disztributivitási tulajdonságai

Definíciók listája 3. oldal

halmazok különbsége, komplementere

Az A és B halmazok különbsége az $A \setminus B = \{x \in A : x \notin B\}$ halmaz. Egy rögzített X alaphalmaz és $A \subseteq X$ részhalmaz esetén az A halmaz komplementere az $\overline{A} = A' = X \setminus A$ halmaz.

• a komplementer tulajdonságai

Legyen X az alaphalmaz. Ekkor minden $A, B \subseteq X$ halmazra:

- $\bullet \ \overline{\overline{A}} = A;$

- $A \cap \overline{A} = \emptyset;$
- $\bullet A \subseteq B \Leftrightarrow \overline{B} \subseteq \overline{A};$

- szimmetrikus differencia

Az A és B halmazok szimmetrikus differenciája az

$$A\triangle B=(A\setminus B)\cup (B\setminus A)$$

halmaz.

$$A\triangle B=(A\cup B)\setminus (B\cap A).$$

hatványhalmaz

Ha A egy halmaz, akkor azt a halmazrendszert, melynek elemei pontosan az A halmaz részhalmazai az A hatványhalmazának mondjuk, és 2^A -val jelöljük. (A $\mathscr{P}(A)$ jelölés is szokásos.)

Tetszőleges A véges halmazra: $|2^A| = 2^{|A|}$.

Definíciók listája 4. oldal

rendezett pár

Az (x, y) rendezett párt a $\{\{x\}, \{x, y\}\}$ halmazzal definiáljuk. Az (x, y) rendezett pár esetén x az első, y a második koordináta.

halmazok Descartes-szorzata

Az X, Y halmazok Descartes-szorzatán (direkt szorzatán) az

$$X \times Y = \{(x, y) : x \in X, y \in Y\}$$

UL6F3E

rendezett párokból álló halmazt értjük.

binér reláció

Ha valamely X, Y halmazokra $R \subseteq X \times Y$, akkor azt mondjuk, hogy R reláció X és Y között. Ha X = Y, akkor azt mondjuk, hogy R X-beli reláció (homogén binér reláció).

• ÉT, ÉK

Az $R \subseteq X \times Y$ reláció értelmezési tartománya:

$$dmn(R) = \{x \in X \mid \exists y \in Y : (x, y) \in R\},\$$

értékkészlete:

$$rng(R) = \{ y \in Y \mid \exists x \in X : (x, y) \in R \}.$$

• reláció kiterjesztése, leszűkítése, inverze

Egy R binér relációt az S binér reláció kiterjesztésének, illetve S-et az R leszűkítésének (megszorításának) nevezzük, ha $S \subseteq R$. Ha A egy halmaz, akkor az R reláció A-ra való leszűkítése (az A-ra való megszorítása) az

$$R|_{A} = \{(x,y) \in R : x \in A\}.$$

Egy R binér reláció inverze az $R^{-1} = \{(y, x) : (x, y) \in R\}$ reláció.

Definíciók listája 5. oldal

• halmaz képe, inverz képe

Legyen $R \subseteq X \times Y$ egy binér reláció, A egy halmaz. Az A halmaz (R szerinti) képe az

$$R(A) = \{ y \in Y \mid \exists x \in A : (x, y) \in R \}$$

halmaz. Adott B halmaz inverz képe, vagy ősképe a B halmaz R^{-1} szerinti képe, azaz $R^{-1}(B)$. (Ez nem más, mint:

$$R^{-1}(B) = \{x \in X \mid \exists y \in B : (x, y) \in R\}$$

relációk kompozíciója és tulajdonságai

Legyenek R és S binér relációk. Ekkor az $R \circ S$ kompozíció (összetétel, szorzat) reláció:

$$R \circ S = \{(x, z) \mid \exists y : (x, y) \in S, (y, z) \in R\}.$$

Legyenek R, S, T relációk. Ekkor

- ② $(R \circ S)^{-1} = S^{-1} \circ R^{-1}$ (kompozíció inverze).
- homogén relációk tulajdonságai

Legyen R reláció X-en. Ekkor azt mondjuk, hogy

- 1 R tranzitív, ha $\forall x, y, z \in X : (x R y \land y R z) \Rightarrow x R z; (=, <, \leq, |, \subseteq)$
- 2 R szimmetrikus, ha $\forall x, y \in X : x R y \Rightarrow y R x$; (=, T)
- 3 R antiszimmetrikus, ha $\forall x, y \in X : (x R y \land y R x) \Rightarrow x = y; (=, \leq, \subseteq)$
- **1** R szigorúan antiszimmetrikus, ha $\forall x, y \in X : x R y \Rightarrow \neg y R x$; (<)
- **5** R reflexív, ha $\forall x \in X : x R x$; $(=, \leq, |, \subseteq, T)$
- **1** R irreflexív, ha $\forall x \in X : \neg x \ R \ x$; (<)
- 7 R trichotóm, ha $\forall x, y \in X$ esetén x = y, x R y és y R x közül pontosan egy teljesül; (<)
- 8 R dichotóm, ha $\forall x, y \in X$ esetén x R y vagy y R x (esetleg mindkettő) teljesül. (\leq)

Definíciók listája 6. oldal

ekvivalenciareláció, ekvivalenciaosztály

Legyen X egy halmaz, R reláció X-en. Az R relációt ekvivalenciarelációnak nevezzük, ha reflexív, szimmetrikus és tranzitív. Legyen \sim egy ekvivalenciareláció az X halmazon. Tetszőleges $x \in X$ esetén az

$$\tilde{x} = [x] = \{y \mid y \sim x\}$$

halmazt az x ekvivalenciaosztályának nevezzük.

halmaz osztályozásai

Egy (nemüres) X halmaz részhalmazainak egy \mathcal{O} rendszerét az X osztályozásának nevezzük, ha

- Ø nemüres halmazokból áll,
- Ø páronként diszjunkt halmazrendszer és
- $\bullet \cup \mathscr{O} = X.$

Ekkor az \mathcal{O} elemeit (melyek maguk is halmazok) az X osztályainak nevezzük.

- részbenrendezés, rendezés
 - Az X halmazon értelmezett reflexív, tranzitív és antiszimmetrikus relációt részbenrendezésnek nevezzük. (Jele: ≤, ≼, ...)
 - Ha \leq egy részbenrendezés X-en, akkor az $(X; \leq)$ párt részbenrendezett halmaznak nevezzük.
 - Ha valemely x, y ∈ X-re x ≤ y vagy y ≤ x teljesül, akkor x és y összehasonlítható. (Ha minden elempár összehasonlítható, akkor a reláció dichotóm.)
 - Ha az X halmazon értelmezett részbenrendezés dichotóm (azaz, ha bármely két elem összehasonlítható), akkor rendezésnek nevezzük.

Definíciók listája 7. oldal

függvény

Egy $f \subseteq X \times Y$ relációt függvénynek (leképezésnek, transzformációnak, hozzárendelésnek, operátornak) nevezünk, ha

$$\forall x, y, y' : (x, y) \in f \land (x, y') \in f \Rightarrow y = y'.$$

Az $(x, y) \in f$ jelölés helyett ilyenkor az f(x) = y (vagy $f: x \mapsto y$, $f_x = y$) jelölést használjuk. Az y az f függvény x helyen (argumentumban) felvett értéke.

Az $f \subseteq X \times Y$ függvények halmazát $X \to Y$ jelöli, így használható az $f \in X \to Y$ jelölés. Ha dmn(f) = X, akkor az $f : X \to Y$ jelölést használjuk (ez a jelölés csak akkor használható, ha dmn(f) = X).

• injekció, szürjektivitás, bijekció

Az $f: X \to Y$ függvény

- injektív, ha $\forall x, x', y : (f(x) = y \land f(x') = y) \Rightarrow x = x';$
- szürjektív, ha rng(f) = Y;
- bijektív, ha injektív és szürjektív.

Emlékeztető

Relációk kompozíciója: $R \circ S = \{(x,y) | \exists z : (x,z) \in S \land (z,y) \in R\}$. Függvény: Az f reláció függvény, ha $(x,y) \in f \land (x,y') \in f \Rightarrow y = y'$.

- függvények kompozícióinak tulajdonságai
 - Ha f és g függvény, akkor g o f is függvény.
 - ② Ha f és g függvény, akkor $(g \circ f)(x) = g(f(x))$.
 - Ha f és g injektív, akkor g ∘ f is injektív.
 - Ha $f: X \to Y$, $g: Y \to Z$ szürjektívek, akkor $g \circ f: X \to Z$ is szürjektív.

Definíciók listája 8. oldal

képzetes egység

Legyen i (képzetes egység) megoldása az $x^2 = -1$ egyenletnek.

komplex számok

Az a+bi alakú kifejezéseket, ahol $a,b\in\mathbb{R}$, komplex számoknak (\mathbb{C}) hívjuk, az ilyen formában való felírásukat algebrai alaknak nevezzük.

- összeadás: (a + bi) + (c + di) = a + c + (b + d)i.
- szorzás: (a + bi)(c + di) = ac bd + (ad + bc)i.

formális definíció:

A komplex halmaza \mathbb{C} az $(a, b) \in \mathbb{R} \times \mathbb{R}$ párok halmaza az alábbi műveletekkel:

- összeadás: (a, b) + (c, d) = (a + c, d + b);
- szorzás: $(a,b)\cdot(c,d)=(ac-bd,ad+bc)$.
- komplex számok valós és képzetes része

A $z = a + bi \in \mathbb{C}$ $(a, b \in \mathbb{R})$ komplex szám valós része: $Re(z) = a \in \mathbb{R}$, képzetes része: $Im(z) = b \in \mathbb{R}$.

• algebra alaptétele

Legyen n > 0 és $a_0, \ldots, a_n \in \mathbb{C}$, $a_n \neq 0$. Ekkor az $a_0 + a_1x + a_2x^2 + \ldots + a_nx^n$ polinomnak létezik gyöke \mathbb{C} -ben, azaz létezik olyan z komplex szám, melyre $a_0 + a_1z + a_2z^2 + \ldots + a_nz^n = 0$.

• összeadás és szorzás komplex számokon

Összeadás tulajdonságai

- **4** Asszociativitás: $\forall a, b, c \in \mathbb{C}$: (a+b)+c=a+(b+c).
- **2** Kommutativitás: $\forall a, b \in \mathbb{C}$: a + b = b + a.
- **Semleges elem (nullelem)**: \exists **0**∈ \mathbb{C} (nullelem), hogy \forall a ∈ \mathbb{C} : 0 + a = a + 0 = a.
- **4** Additív inverz (ellentett): $\forall a \in \mathbb{C}$: $\exists -a \in \mathbb{C}$ (a ellentettje), melyre a + (-a) = (-a) + a = 0.

Szorzás tulajdonságai

- **4** Asszociativitás: $\forall a, b, c \in \mathbb{C} : (a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- **2** Kommutativitás: $\forall a, b, c \in \mathbb{C}$: $a \cdot b = b \cdot a$.
- **3** Egységelem: $\exists \mathbf{1} \in \mathbb{C}$ (egységelem), melyre $\forall a \in \mathbb{C} : 1 \cdot a = a \cdot 1 = a$.
- **1** Multiplikatív inverz (reciprok): $\forall a \in \mathbb{C}$ nemnulla számhoz $\exists a^{-1} = \frac{1}{a} \in \mathbb{C}$ (a reciproka), melyre $a \cdot a^{-1} = a^{-1} \cdot a = 1$.

Disztributivitás

$$\forall a, b, c \in \mathbb{C}$$
: $a(b+c) = ab + ac$ (és $(a+b)c = ac + bc$)

Definíciók listája 9. oldal

• komplex számok ábrázolása

A komplex számok ábrázolhatók a komplex számsíkon (Gauss-sík):

- $z = a + bi \leftrightarrow (a, b)$
- bijekció (kölcsönösen egyértelmű megfeleltetés) ℂ és a sík pontjai (vagy helyvektorai) között

abszolútérték, konjugált

Egy $z = a + bi \in \mathbb{C}$ algebrai alakban megadott komplex szám abszolút értéke: $|z| = |a + bi| = \sqrt{a^2 + b^2}$.

Egy z = a + bi algebrai alakban megadott komplex szám konjugáltja a $\overline{z} = \overline{a + bi} = a - bi$ szám.

Tetszőleges z komplex szám esetén:

1
$$|z| \geq 0$$
,

$$|z| = 0 \Leftrightarrow z = 0.$$

ellentett

Egy $z \in \mathbb{C}$ szám ellentettje az a \hat{z} szám, melyre $z + \hat{z} = 0$. Egy $z = a + bi \in \mathbb{C}$ algebrai alakban megadott komplex szám ellentettje a -z = -a - bi algebrai alakban megadott komplex szám.

Definíciók listája 10. oldal

hányados kiszámítása algebrai alakban

Legyenek $z, w \in \mathbb{C}$, $w \neq 0$. Ekkor $\frac{z}{w}$ algebrai alakja megkapható a nevező konjugáltjával való bővítéssel: $\frac{z}{w} = \frac{z \cdot \overline{w}}{w \cdot \overline{w}}$.

Legyen z algebrai alakja
$$a + bi$$
. Ekkor $z \cdot \overline{z} = (a + bi)(a - bi) = a^2 + b^2 = |z|^2$.

• egy komplex szám trigonometrikus alakja, argumentuma

Egy $z \in \mathbb{C}$ nemnulla szám trigonometrikus alakja:

$$z = r(\cos\varphi + i\sin\varphi),$$

ahol r = |z|.

Egy nemnulla $z \in \mathbb{C}$ argumentuma az a $\varphi = arg(z) \in [0, 2\pi)$, melyre $z = r(\cos \varphi + i \sin \varphi)$.

Figyelem!

- A 0-nak nem használjuk a trigonometrikus alakját.
- A trigonometrikus alak nem egyértelmű (mert az irányszög nem egyértelmű): $r(\cos \varphi + i \sin \varphi) = r(\cos(\varphi + 2\pi) + i \sin(\varphi + 2\pi))$.
- Moivre-azonosságok

Legyenek $z, w \in \mathbb{C}$ nemnulla komplex számok: $z = |z|(\cos \varphi + i \sin \varphi)$, $w = |w|(\cos \psi + i \sin \psi)$, és legyen $n \in \mathbb{N}^+$. Ekkor

$$z^n = |z|^n (\cos n\varphi + i \sin n\varphi).$$

• komplex szám n-edik gyökei, gyökvonás

Legyen $n \in \mathbb{N}^+$. A z komplex szám n-edik gyökei az olyan w komplex számok, melyekre $w^n = z$.

Legyen $z = |z|(\cos \varphi + i \sin \varphi)$, $n \in \mathbb{N}^+$. Ekkor a z n-edik gyökei:

$$w_k = \sqrt[n]{|z|}(\cos(\frac{\varphi}{n} + \frac{2k\pi}{n}) + i\sin(\frac{\varphi}{n} + \frac{2k\pi}{n}))$$

$$k = 0, 1, \ldots, n - 1.$$

Definíciók listája 11. oldal