Overview

- Today: this lecture focuses on a comprehensive task set scheduling scenario with real-time periodic and aperiodic tasks together with resource sharing.
- Goal: Test at design time, and off-line if the task set is schedulable!
- Note: some sample questions in preparation for the exam have been posted (with solutions). Notice that Question 3 (Posix Signals) uses a primitive (sigaction) that has not been explained in class. As such, it is not expected that you are able to fully solve that question; however, it is included in the sample questions to show an example of how a code question might look like in the exam.

Exam policy:

 You may use one A4 double-sided handwritten cheat sheet and a scientific calculator. You have exactly 3 hours to complete the exam. You cannot use any book during the exam.

A Sample Problem

Goal: guarantee that no real-time deadline is missed!!!

- According to the sample problem of previous slide, we can identify the following task set:
- ???

- According to the sample problem of previous slide, we can identify the following task set:
 - $SS_{hard} \rightarrow Sporadic Server$ to schedule the hard aperiodic activity
 - SS_{soft} \rightarrow Sporadic Server to schedule the soft aperiodic activity (We have chosen a server with budget C=10 and period P=100; we need to verify if our choice is correct!)
 - T1, T2, T3 \rightarrow hard periodic tasks

	С	P	В	D
SS_{hard}	5	50	?	6
SS_{soft}	10	100	?	100
T_1	20	100	?	100
T_2	40	150	?	150
T_3	100	350	?	350

- $SS_{soft} \rightarrow Sporadic Server to schedule the soft aperiodic activity$
 - we have chosen a server with budget C=10 and period P=100;
 - we need to verify if our choice is correct.
 - Let's check the average response time of soft aperiodic by using M/M/1 queueing theory:

$$W = (1/\mu)/(1 - \rho)$$

- $SS_{soft} \rightarrow Sporadic Server to schedule the soft aperiodic activity$
 - we have chosen a server with budget C=10 and period P=100;
 - we need to verify if our choice is correct.
 - Let's check the average response time of soft aperiodic by using M/M/1 queueing theory:
- Queuing theory using M/M/1 approximation indicates that the average response time is 4 msec.

The server bandwidth: 10/100 = 0.1

• The CPU_workload: 2/40 = 0.05

• Server_workload: 0.05/0.1 = 0.5

The average response time: $W = (1/\mu)/(1 - \rho)$ (Average Execution Time) / (1 – Server_workload) = 2 / (1 – 0.5) = 4 msec

• Let's first identify the blocking times of each task by assuming to use PCP:

	SD1	SD2
SS _{hard}	0	0
SS _{soft}	0	0
T_1	2	10
T_2	20	0
T_3	0	10

$$B_i = \max_{j,k} [D_{j,k} \mid prio_j < prio_i, \quad C(S_k) \ge prio_i]$$

Let's first identify the blocking times of each task by assuming to use PCP:

	SD1	SD2
SS_{hard}	0	0
SS _{soft}	0	0
T_1	2	10
T_2	20	0
T_3	0	10

$$B_{SS\ hard}=0$$

$$B_i = \max_{j,k} [D_{j,k} \mid prio_j < prio_i, \quad C(S_k) \ge prio_i]$$

$$B_{SS_soft} = \max(10,20) = 20$$

$$B_{T1} = \max(10,20) = 20$$

$$B_{T2} = 10$$

$$B_{T3} = 0$$

• We can now check the schedulability of the all task set by using UB & Exact Analysis:

	С	P	В	D
SS_{hard}	5	50	0	6
SS_{soft}	10	100	20	100
T_1	20	100	20	100
T_2	40	150	10	150
T_3	100	350	0	350

We can now check the schedulability of the all task set by using UB & Exact Analysis:

	С	P	В	D
SS_{hard}	5	50	0	6
SS_{soft}	10	100	20	100
T_1	20	100	20	100
T_2	40	150	10	150
T_3	100	350	0	350

$$SS_{hard} = \frac{5+44}{50} < U(1) = 1$$
 OK!

$$SS_{soft}$$
 $\frac{5}{50} + \frac{10}{100} + \frac{20}{100} + \frac{20}{100} = 0.6 < U(3) = 0.779$ OK!

$$\tau_1 = \frac{5}{50} + \frac{10}{100} + \frac{20}{100} + \frac{20}{100} = 0.6 < U(3) = 0.779$$
 OK!

$$\tau_2 = \frac{5}{50} + \frac{10}{100} + \frac{20}{100} + \frac{40}{150} + \frac{10}{150} = 0.734 < U(4) = 0.756$$
 OK!

$$\tau_3 = \frac{5}{50} + \frac{10}{100} + \frac{20}{100} + \frac{40}{150} + \frac{100}{350} = 0.953 > U(5) = 0.756$$
 FAILED! \rightarrow use exact analysis

We can now check the schedulability of the all task set by using UB & Exact Analysis:

	С	P	В	D
SS_{hard}	5	50	0	6
SS_{soft}	10	100	20	100
T_1	20	100	20	100
T_2	40	150	10	150
T_3	100	350	0	350

$$5+10+20+40+100 = 175$$

$$100+\left\lceil \frac{175}{50} \right\rceil 5+\left\lceil \frac{175}{100} \right\rceil 10+\left\lceil \frac{175}{100} \right\rceil 20+\left\lceil \frac{175}{150} \right\rceil 40 = 100+20+20+40+80 = 260$$

$$100+\left\lceil \frac{260}{50} \right\rceil 5+\left\lceil \frac{260}{100} \right\rceil 10+\left\lceil \frac{260}{100} \right\rceil 20+\left\lceil \frac{260}{150} \right\rceil 40 = 100+30+30+60+80 = 300$$

$$100+\left\lceil \frac{300}{50} \right\rceil 5+\left\lceil \frac{300}{100} \right\rceil 10+\left\lceil \frac{300}{100} \right\rceil 20+\left\lceil \frac{300}{150} \right\rceil 40 = 100+30+30+60+80 = 300 < P_3$$

The task set is schedulable!!!