Problem Set 5

Warren Kim

 $\mathrm{May}\ 11,\ 2023$

Question 3

Let $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} y_n$ be convergent series. Show that:

- (a) $\sum_{n=1}^{\infty} (ax_n)$ converges and $\sum_{n=1}^{\infty} (ax_n) = a \sum_{n=1}^{\infty} x_n$ for any $a \in \mathbb{R}$.
- (b) Show that $\sum_{n=1}^{\infty} (x_n + y_n)$ converges and $\sum_{n=1}^{\infty} (x_n + y_n) = \sum_{n=1}^{\infty} x_n + \sum_{n=1}^{\infty} y_n$.
- (c) Show that the assumption that both series converge is necessary for part (b).
- (d) Is it true that if $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} y_n$ converge then $\sum_{n=1}^{\infty} x_n y_n$ converges?

Response

(a) Proof. Given that $\sum_{n=1}^{\infty} x_n$ converges, let $s_n = \sum_{k=1}^n x_k$ be the sequence of partial sums of (x_n) . Then, since (x_n) converges, we have that $\lim_{n\to\infty} s_n = x$. Let $t_n = \sum_{k=1}^n ax_k$. Then, we have:

$$t_n = \sum_{k=1}^n ax_k$$

$$= (ax_1 + ax_2 + \dots + ax_k)$$

$$= a(x_1 + x_2 + \dots + x_k)$$

$$= a \sum_{k=1}^n x_k$$
definition of summation
$$t_n = as_n$$

$$t_n = as_n$$

$$t_n = \sum_{k=1}^n x_k$$

So $t_n = \sum_{k=1}^n ax_k = a \sum_{k=1}^n x_k$. From above, we have that $\lim_{n\to\infty} s_n = x$ and $\lim_{n\to\infty} a = a$ (since a is constant), so both sequences converge. Then by the Algebraic Limit Theorem, we

$$\lim_{n \to \infty} a \cdot \lim_{n \to \infty} s_n = \lim_{n \to \infty} a \cdot s_n = ax = \lim_{n \to \infty} s_n$$

 $\lim_{n \to \infty} a \cdot \lim_{n \to \infty} s_n = \lim_{n \to \infty} a \cdot s_n = ax = \lim_{n \to \infty} s_n$ Since the sequence of partial sums $t_n = \sum_{k=1}^n ax_k = a \sum_{k=1}^n x_k$ converges, $\sum_{n=1}^\infty ax_n = a \sum_{n=1}^\infty x_n$

(b) Proof. Let $s_n = \sum_{k=1}^n x_k$, $t_n = \sum_{k=1}^n y_k$ be the sequence of partial sums of (x_n) , (y_n) respectively. Then, since (x_n) , (y_n) converge, we have that $\lim_{n\to\infty} s_n = x$, $\lim_{n\to\infty} t_n = y$. Let $r_n = \sum_{k=1}^n (x_k + y_k)$. Then we have:

$$r_n = \sum_{k=1}^n (x_k + y_k)$$

$$= (x_1 + y_1) + (x_2 + y_2) + \dots + (x_n + y_n)$$

$$= (x_1 + x_2 + \dots + x_n) + (y_1 + y_2 + \dots + y_n)$$
definition of summation associativity of \mathbb{R}

$$= \sum_{k=1}^n x_k + \sum_{k=1}^n y_k$$
definition of summation
$$r_n = s_n + t_n$$

$$s_n = \sum_{k=1}^n x_k, \ t_n = \sum_{k=1}^n y_k$$

So $r_n = \sum_{k=1}^n (x_k + y_k) = \sum_{k=1}^n x_k + \sum_{k=1}^n y_k$. From above, we have that $\lim_{n\to\infty} s_n = x$ and $\lim_{n\to\infty} t_n = y$, so both sequences converge. Then, by the Algebraic Limit Theorem, we have

$$\lim_{n \to \infty} s_n + \lim_{n \to \infty} t_n + \lim_{n \to \infty} s_n + t_n = x + y = \lim_{n \to \infty} r_n$$

Since the sequence of partial sums $r_n = \sum_{k=1}^n (x_k + y_k) = \sum_{k=1}^n x_k + \sum_{k=1}^n y_k$ converges, $\sum_{n=1}^{\infty} (x_n + y_n) = \sum_{n=1}^{\infty} x_n + \sum_{n=1}^{\infty} y_n$ converges.

2

- (c) Show that the assumption that both series converge is necessary for part (b).
- (d) Is it true that if $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} y_n$ converge then $\sum_{n=1}^{\infty} x_n y_n$ converges?