SPECIFICATION

INFORMATION RECORDING MEDIUM

TECHNICAL FIELD

5 [0001] to This invention relates information an recording medium which is used for optically electrically recording, erasing, overwriting reproducing information.

10 BACKGROUND OF THE INVENTION

15

20

[0002] The inventors developed 4.7GB DVD-RAM (referred as "DVD-RAM" hereinafter) which is a large capacity overwritable phase-change type information recording medium and can be used as a datafile and an image file. Further, a 2x-speed DVD-RAM and a 3x-speed DVD-RAM have been already commercialized.

[0003] One example of materials for a recording layer which is employed in a DVD-RAM is Ge-Sn-Sb-Te (see, for example, Japanese Patent Kokai (Laid-Open) Publication No. 2001-322357(A)). Ge-Sn-Sb-Te has a crystallization speed higher than that of a conventional high-crystallization-speed material such as Ge-Sb-Te (see, for example, Japanese Patent Publication No. 2584741(B)).

[0004] In order to realize the large-capacity information recording medium of 4.7GB, it is necessary to

thin the thickness of the recording layer to reduce a heat capacity and to escape heat absorbed by the recording layer in a direction of film thickness, in the design of the recording layer. Thereby, the heated recording layer is easy to be cooled rapidly and a small recording mark can be formed well (that is, an amorphous phase is easily formed), whereby a higher-density is achieved in the medium. Further, as the recording layer has been thinner, a material with a crystallization speed higher than that of Ge-Sb-Te has been required, and then Ge-Sn-Sb-Te has been developed.

5

10

15

20

25

[00051 Ge-Sn-Sb-Te is a material which is obtained by adding SnTe to a two-component system material GeTe-Sb2Te3. SnTe is a material whose crystallinity is very strong such that it is crystal at a room temperature even in a form of thin film. Further, since SnTe is a telluride and its crystal structure is the same as that of GeTe, that is, a rock-salt structure, SnTe is added to GeTe as substitutes for a part of GeTe. Therefore, Ge-Sn-Sb-Te can reveal high crystallization speed without phase separation due to repeated recording.

[0006] As described above, the 2x-speed and 3x-speed mediums are now commercialized. The 3x-speed medium generally has 2x-speed compatibility. That is, the 3x-speed medium means a medium on or from which information

can be recorded, erased and overwritten at either a double speed or a triple speed and whose reliability is ensured for either speed. A ratio of a linear recording triple speed to linear recording double speed is 1.5. Generally, the speed is changed from the double speed to the triple speed (and vice versa) by changing a rotation number of the Further, in addition to a CLV mode wherein the medium. recording speed is constant, there is currently employed a wherein the rotation number is constant recording (which is referred as a "CAV" (constant angular velocity) mode) as a recording mode. When the CAV mode is employed, the linear velocity at the outermost is 2.4 times that at the innermost in the DVD-RAV with a diameter of 12cm.

5

10

15 [0007] Recently, data is required to be processed at a higher speed using a medium for a datafile and a high-speed dubbing is required to be able to be conducted using a medium for an image file. Considering these requirements, development of a higher-speed DVD, that is, a DVD-RAM on information is recorded at a higher 20 which speed is indispensable. Specifically, a 16x-speed DVD-RAM required to be developed. The 16x speed corresponds to a linear velocity at the outermost of the medium that is rotated at a motor revolution of about 11000rev/min by a 25 drive. When the recording mode is the CAV mode, the linear

velocity at the innermost becomes over 6x speed whereas the linear velocity at the outermost is 16x speed. Therefore, the 16x-speed medium should be a medium on or from which information is recorded, erased and overwritten at either 6x speed or 16x speed and which can ensure its reliability at either speed.

In order to adapt to 16x speed which is several times the linear velocity which has been conventionally, the crystallization speed of the material for the recording layer should be increased dramatically. Therefore, Ge-Sn-Sb-Te-based material а wherein proportion of is increased, or a Ge-Bi-Te-based SnTe material wherein GeTe and Bi₂Te₃ are mixed (see, example, Japanese Patent Publication No. 2574325) proposed as an ultrahigh-crystallization-speed material.

DISCLOSURE OF INVENTION

5

10

15

20

25

PROBLEMS TO BE SOLVED BY INVENTION

[0009] For the phase-change type information recording medium, information is recorded, erased and overwritten using a reversible phase change between an amorphous phase (recording) and a crystalline phase (erasing). Accordingly, the crystallization speed is adjusted by changing the composition of the recording layer so that the information is recorded at a predetermined velocity. When the linear

velocity is fast, the crystallization speed is made faster, and when the linear velocity is slow, the crystallization speed is made slow. In general, as the crystallization speed is faster, information is erased more easily, but the stability of the recorded mark (amorphous phase) tends to be deteriorated and the reliability of the medium tends to On the other hand, as the crystallization be reduced. speed is slower, information is recorded more easily, but the stability of the amorphous phase is too high so that the information is difficult to be erased, which also causes the problem in reliability. Further, the linear velocity is changed within a predetermined range while information is recorded on one medium, the medium required to be constructed so that the information recorded and erased at both of a high linear velocity and a low linear velocity. Therefore, as the range of the linear velocity which is used for recording is wider, problem as to reliability tends to occur.

5

10

15

20

25

used which has been practically used for the 2x-speed medium and the 3x-speed medium, the concentration of SnTe should be higher in order to obtain a 16x-speed medium. In that case, the concentration of Ge is reduced because SnTe substitutes for GeTe. As a result, an optical change of the recording layer becomes small, which contributes to a

problem that signal quality is reduced and a problem that the stability of amorphous phase is not ensured because the crystallization temperature is lowered. Further, the GeBi-Te-based material has a crystallization speed which can sufficiently adapt to 16x speed, but it has a problem that even the stability of signals recorded at 16x speed (that is, the amorphous phase formed at 16x speed) is not ensured. As described above, the Ge-Sn-Sb-Te-based material and the Ge-Bi-Te-based material has not yet given a medium which is adapted to recordation at a high linear velocity and in a wide range of linear velocities.

[0011] The present invention solves the problems as described above, and provides a recording material which has a high crystallization speed and stability of an amorphous phase. Further, the object of the present invention is to provide, by applying this recording material, an information recording medium which has a high erasability and excellent archival characteristic at a high linear velocity and over a wide range of linear velocities irrespective of the recording wavelength.

MEANS TO SOLVE THE PROBLEMS

5

10

15

20

25

[0012] An information recording medium of the present invention is an information recording medium including a recording layer which can generate a reversible phase

change, characterized in that the recording layer contains a Ge-Bi-Te-M-based material which contains Ge, Bi, Te and an element "M" and is expressed with a following formula (1):

GeaBibTedM100-a-b-d (atomic %) (1) wherein "M" represents at least one element selected from Al, Ga and In, and "a", "b" and "d" satisfy $25 \le a \le 60$, $0 < b \le 18$, $35 \le d \le 55$, and $82 \le a + b + d < 100$.

[0013] Herein, "atomic %" means that the formula (1) is a compositional formula of which basis (i.e. 100 %) is the sum of the numbers of "Ge" atoms, "Bi" atoms, "Te" atoms and "M" atoms. In the following formulae, the indication of "atomic %" is used for showing the same meaning. Further, the formula (1) is expressed by counting only the numbers of "Ge" atoms, "Bi" atoms, "Te" atoms and "M" atoms. Therefore, the recording layer may contain another component(s) (such as oxygen, hydrogen, argon, nitrogen and carbon and so on).

invention is a medium on and from which information is recorded and reproduced by irradiation of light or by application of an electric energy. The present invention is applied to various recording mediums such as a medium on which information is repeatedly recorded (that is, an overwritable medium) and a medium on which information is

20

25

recorded only once (that is, a write-once medium). Further, in general, irradiation of light is carried out by irradiation of a laser light (that is, laser beam), and application of an electric energy is carried out by applying a voltage to a recording layer.

5

10

15

20

25

[0015] The information recording medium of the present invention is characterized in that the recording layer includes a material containing, in addition to Ge, Bi and Te, at least one element selected from Al, Ga and In (which indicated by element is "M" in this specification). Because the Ge-Bi-Te-based material contains the at least one element selected from Al, Ga and In at a predetermined proportion, the crystallization temperature of the Ge-Bi-Te-based material can be made higher and a stable signal can be formed.

Each element may exist as any compound in the Ge-Bi-Te-M-based material expressed with the formula (1). reason for identifying the material with this formula is that it is difficult to determine the composition of compounds upon analyzing the composition of a layer formed into а thin film and actually only an elementary composition (that is, a ratio of each element) is often determined. In the material expressed with the formula (1), it is considered that Ge exists together with Te as GeTe, Bi exists together with Te as $\mathrm{Bi}_{2}\mathrm{Te}_{3}$ and M exists together

with Te as M2Te3.

[0017] In the information recording medium of the present invention, the Ge-Bi-Te-M-based material may be a material which is expressed with a following formula (3):

- 5 (GeTe)_x[(M₂Te₃)_y(Bi₂Te₃)_{1-y}]_{100-x} (mol %) (3)
 wherein "M" represents at least one element selected from
 Al, Ga and In, and "x" and "y" satisfy 80≤x<100 and 0<y≤0.9.
 The formula (3) represents preferable proportions of three compounds when the Ge-Bi-Te-M-based material is a mixture
 10 of GeTe, M₂Te₃ and Bi₂Te₃. Herein "mol %" means that the formula (3) is a composition formula of which basis (i.e. 100 %) is the sum of the numbers of compounds. In the following formulae, the indication of "mol %" is used for showing the same meaning.
- 15 [0018] In the formula (3), "x" and "y" are appropriately selected depending on a wavelength of a laser beam used for recording and erasing. For example, the material that is contained in the recording layer of the medium on/from which information is recorded/reproduced with a laser beam 20 having a wavelength of 650nm-670nm (for example, a DVD-RAM) preferably satisfies 80≤x≤91 and y≤0.5. The material that is contained in the recording layer of the medium on/from which information is recorded/reproduced with a laser beam having a wavelength of 395nm-415nm (for example, a Blue-ray Disc) preferably satisfies 85≤x≤98 and y≤0.8.

[0019] In the recording medium of the present invention, the recording layer may further contain Sn and may be one which contains a Ge-Sn-Bi-Te-M-based material which is expressed with a following formula (2):

- 5 $Ge_aSn_fBi_bTe_dM_{100-a-b-d-f}$ (atomic %) wherein "M" represents at least one element selected from Al, Ga and In, "a", "b", "d" and "f" satisfy $25 \le a \le 60$, $0 < b \le 18$, $35 \le d \le 55$, $0 < f \le 15$, $82 \le a + b + d < 100$, and 82 < a + b + d + f < 100. In the formula (2), each element may exist as any compound. 10 The reason for identifying the material with this formula is the same as that for employing the formula (1). In the material expressed with the formula (2), it is considered that Sn exists together with Te as SnTe. Sn is a material which has a very strong cristallinity such that it has a 15 crystallization temperature not higher than temperature in a form of thin film and that it is crystal at the room temperature. Therefore, addition of SnTe makes it possible to fine adjust the crystallization speed of the recording layer containing the Ge-Bi-Te-M-based material.
- [0020] The Ge-Sn-Bi-Te-M-based material may be a material expressed with a following formula (4): $[(SnTe)_{Z}(GeTe)_{1-Z}]_{x}[(M_{2}Te_{3})_{y}(Bi_{2}Te_{3})_{1-y}]_{100-x} \text{ (mol \%)} \qquad (4)$ wherein "M" represents at least one element selected from Al, Ga and In, and x, y and z satisfy $80 \le x < 100$, $0 < y \le 0.9$ and $0 < z \le 0.3$. The formula (4) represents preferable ratios of

four compounds when the Ge-Sn-Bi-Te-M-based material is a mixture of GeTe, SnTe, M_2 Te $_3$ and Bi_2 Te $_3$.

Also in the formula (4), "x" is appropriately selected depending on a wavelength of a laser beam used for recording and reproduction. For example, "x" preferably satisfies 80≤x≤91 in the material contained in the recording layer of the medium on/from which information is recorded/reproduced with a laser beam having a wavelength of 650nm-670nm (for example, a DVD-RAM). "x" preferably satisfies $85 \le x \le 98$ in the material contained in recording layer of the medium on/from which information is recorded/reproduced with a laser beam having a wavelength of 395nm-415nm (for example, a Blue-ray Disc).

5

10

15

20

25

[0022] The information recording medium of the present invention may be provided as an information recording medium which includes two or more information layers, at least one of the information layers containing the Ge-Bi-Te-M-based material expressed with the formula (1). The recording layer containing the Ge-Bi-Te-M-based material may be one containing the Ge-Sn-Bi-Te-M-based material expressed with the formula (2) which is obtained by adding Sn to the Ge-Bi-Te-M-based material. This information recording medium allows the information to be recorded thereon at a high speed because of the recording layer containing the Ge-Bi-Te-M-based material or the Ge-Sn-Bi-

Te-M-based material, and this medium has high reliability (specifically archival characteristic).

Specifically, the information recording medium of the present invention is provided as a medium includes at least a substrate, a first dielectric layer, a 5 recording containing the Ge-Bi-Te-M-based material or the Ge-Sn-Bi-Te-M-based material, a second dielectric layer, an optical compensation layer and a reflective layer, wherein these layers are formed in this order on the substrate. 10 Information is recorded on and reproduced from this medium by applying light. In this specification, the "first dielectric layer" is a dielectric layer which exists at a position closer to an incident light and the "second dielectric layer" is a dielectric layer which exists at a 15 position further from the incident light. In other words, the incident light passes through the first dielectric layer and the recording layer, and then reaches the second dielectric layer. In this specification, information recording medium contains two or more layers 20 having the same function, "first" "second" or "third" ... is given to the beginning of the name of each layer in the order of the layer which is closer to the incident laser beam.

[0024] This information recording medium is one on/from which information is recorded/reproduced by applying a

laser beam having a wavelength of 650nm to 670nm or a laser beam having a wavelength of 395nm to 415nm from the substrate side. Further, in this information recording medium, a thickness of the first dielectric layer is preferably within a range of 100nm to 180nm and a thickness of the second dielectric layer 2 is preferably within a range of 20nm to 60nm.

5

10

15

20

Alternatively, the information recording medium [0025] of the present invention is provided as a medium which includes at least a substrate, a reflective layer, a second dielectric layer, a recording layer containing the Ge-Bi-Te-M-based material and a first dielectric layer, wherein these layers are formed in this order. Information is recorded on and reproduced from also this medium by This medium is, for example, a medium applying light. on/from which information recorded/reproduced is applying a laser beam having a wavelength of 395nm to 415nm or a laser beam having a wavelength of 650nm to 670nm from the side opposite to the substrate. Further, in this information recording medium, a thickness of the first dielectric layer is preferably within a range of 10nm to 100nm and a thickness of the second dielectric layer is preferably within a range of 3nm to 50nm.

[0026] The present invention also provides a method for producing an information recording medium of the present

invention, which includes a step of forming a recording layer containing the Ge-Bi-Te-M-based material by a sputtering method. The sputtering method makes it possible to form the recording layer having a desired composition by adjusting a composition of the sputtering target appropriately. Further, when the sputtering target is a target containing Ge, Bi, Te, M and Sn, a recording layer containing the Ge-Sn-Bi-Te-M-based material-based material can be formed.

5

10 [0027] The present invention further provides apparatus for recording information on and reproducing information from an information recording medium of the present invention which includes a spindle motor which rotates the information recording medium having a recording 15 layer, an optical head provided with a semiconductor laser which emits a laser beam, and an objective lens which focus the laser beam on the recording layer. In the recording and reproducing apparatus for the information recording medium of the present invention, the spindle motor which can rotate, for example, at 10000 rev/min, may be used, 20 whereby information can be recorded on a medium having a 12cm diameter at 16x speed. The optical head in the recording/reproduction apparatus of the present invention may be one which emits a laser beam having a wavelength of 25 650nm to 670nm or one which emits a laser beam having a

wavelength of 395nm to 415nm. Alternatively, both optical heads may be provided.

EFFECT OF INVENTION

5 The information recording medium of the present invention can achieve high erasability and excellent archival characteristic even when information is recorded for example, a DVD-RAM at a high speed which is selected from a wide range of linear velocities ranging 10 from 16x speed to 6x speed. Further, the present invention can provide a large-capacity and high-speed recordable information recording medium which has high erasability at high а linear velocity and excellent archival characteristic of signals recorded at a low linear velocity irrespective of a recording density, a capacity and a 15 recording wavelength of the medium.

BRIEF DESCRIPTION OF THE DRAWINGS

- [0029] Fig. 1 is a fragmentary sectional view which shows an example of an information recording medium of the present invention;
 - Fig. 2 is a fragmentary sectional view which shows another example of an information recording medium of the present invention;
- 25 Fig. 3 is a fragmentary sectional view which

shows further another example of an information recording medium of the present invention;

Fig. 4 show a fragmentary sectional view which shows yet another example of an information recording medium of the present invention and an example of a system wherein the medium is used:

Fig. 5 is a schematic view of a sputtering (film-forming) appartus used in a method for producing an information recording medium of the present invention; and

Fig. 6 is a schematic view of an example of a recording and reproduction apparatus for an information recording medium of the present invention.

EXPLANATION OF LETTERS OR NUMERALS

15 [0030]

5

- 50, 100, 200, 300, 400 information recording medium
- 35, 101, 208, 315, 401 substrate
- 102, 202, 302 first dielectric layer
- 106, 206, 305 second dielectric layer
- 20 307 third dielectric layer
 - 309 fourth dielectric layer
 - 313 fifth dielectric layer
 - 103, 203, 303 first interface layer
 - 105, 205, 310 second interface layer
- 25 312 third interface layer

17

- 104, 204, 403 recording layer
- 304 first recording layer
- 311 second recording layer
- 107 optical compensation layer
- 5 108, 207 reflective layer
 - 306 first reflective layer
 - 314 second reflective layer
 - 109 adhesive layer
 - 110 dummy substrate
- 10 308 intermediate layer
 - 201, 301 cover layer
 - 317 first information layer
 - 316 second information layer
 - 111, 209, 318 laser beam
- 15 402 lower electrode
 - 404 upper electrode
 - 405 pulse producing part
 - 406 resistance measuring device
 - 407, 408 switch
- 20 409 application part
 - 410 judgment part
 - 411 electrically recording/reproducing device
 - 52, 111, 209, 318 laser beam
 - 32 exhaust port
- 25 33 sputtering gas inlet

- 34 substrate holder (anode)
- 36 sputtering target (cathode)
- 37 target electrode
- 38 electric power supply
- 5 39 sputtering chamber
 - 51 spindle motor
 - 53 semiconductor laser
 - 54 optical head
 - 55 objective lens

10

15

20

25

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0031] Hereafter, embodiments of the present invention are described with reference to the accompanying drawings. The following embodiments are illustrative, and the present invention is not limited to the following embodiments.

(Embodiment 1)

[0032] As Embodiment 1 of this invention, an example of an optical information recording medium on and from which information is recorded and reproduced by a laser beam, is described. Fig. 1 shows a partial cross section of the optical information recording medium.

[0033] The information recording medium 100 shown in Fig. 1 has a construction in which a first dielectric layer 102 is formed on one surface of a substrate 101, a first

interface layer 103 is formed on a surface of the first dielectric layer 102, a recording layer 104 is formed on a surface of the first interface layer 103, a second interface layer 105 is formed on a surface of a recording layer 104, a second dielectric layer 106 is formed on a surface of the second interface layer 105, an optical compensation layer 107 is formed on a surface of the second dielectric layer 106, a reflective layer 108 is formed on a surface of the optical compensation layer 107 and a dummy substrate 110 is bonded with an adhesive layer 109.

5

10

15

20

25

[0034] The information recording medium of this construction can be used as a DVD-RAM on and from which information is recorded and reproduced by a laser beam with a wavelength of about 660nm in a red region. A laser beam 111 enters from the substrate 101 side into the information recording medium 100 of this construction, and conducts the record and reproduction of information.

[0035] The information recording medium of the present invention is characterized in that the recording layer is a layer containing a particular material. Therefore, the recording layer 104 is firstly described.

[0036] The recording layer 104 generates reversible phase change and contains a material containing Ge, Bi, Te and an element "M" which material has a composition expressed with a following formula (3)

 $(GeTe)_{x}[(M_{2}Te_{3})_{y}(Bi_{2}Te_{3})_{1-y}]_{100-x} \pmod{\$}$ (3)

5

10

15

20

25

wherein "M" represents at least one element selected from Al, Ga and In, and "x" and "y" satisfy $80 \le x < 100$ and $0 < y \le 0.9$. The recording layer has a high crystallization speed and an excellent stability of an amorphous phase because it contains GeTe, M₂Te₃, and Bi₂Te₃.

GeTe is a material which has a large optical [0037] change. The recording layer with a large optical change can be obtained when it contains GeTe in an amount of 80 mol% or more. As the optical change is larger, a detected amplitude of recorded signal becomes larger. The optical change means a difference between a complex index of refraction of a crystal phase (nc-ikc) and a complex index of refraction of an amorphous phase (na-ika), Δn and Δk . Herein, "nc" is a refractive index of the crystal phase, "kc" is an extinction coefficient of the crystal phase, "na" is a refractive index of the amorphous phase, "ka" is an extinction coefficient of the amorphous phase, $\Delta n=nc-na$ and $\Delta k = kc - ka$. Each of "nc", "kc", "na" and "ka" depends on a wavelength of light. As the wavelength is shorter, particularly Δk becomes smaller. Since much GeTe having a large optical change is contained in the recording layer of the information recording medium of the present invention, excellent signal quality is obtained when information is recorded using a laser beam with a wavelength of 660nm

which is employed for recording on a DVD-RAM and a laser beam with a shorter wavelength of 405nm which is employed for recording on a Blu-ray Disc. When the recording layer, however, is formed from only GeTe, the crystallization speed is reduced and overwrite cycle-ability is deteriorated. For this reason, the proportion of GeTe is required to be less than 100 mol%, and preferably less than 98 mol%.

5

[8800] For example, with respect to a material wherein "M" is In, x=89 and y=0.1, that is, which is expressed with 10 $(GeTe)_{89}[(In_2Te_3)_{0.1}(Bi_2Te_3)_{0.9}]_{11}(mol_8), nc=1.8, na=3.0,$ kc=3.3, and ka=2.4, and Δn =-1.2 and Δk =0.9 at a wavelength of 405nm. With respect to a material wherein "M" is In, x = 96and y=0.1, that is, which is expressed with 15 $(GeTe)_{96}[(In_2Te_3)_{0.1}(Bi_2Te_3)_{0.9}]_4(mol_8), nc=1.9,$ kc=3.6, and ka=2.3, and $\Delta n{=}{-}1.2$ and $\Delta k{=}1.3$ at a wavelength of $405\,\mathrm{nm}$. As shown herein, as the value of "x" is larger, that is, the proportion of GeTe is greater, Δk is larger and the larger optical change is obtained.

20 [0039] Bi₂Te₃ is a material whose crystallinity is very strong such that it has a crystallization temperature below a room temperature in a form of thin film and it is crystal at the room temperature. The GeTe-Bi₂Te₃ system is a stable compound system wherein compounds of stoichiometric composition exist and phase separation does not occur,

similarly to the GeTe-Sb₂Te₃ system. Further it can be said that GeTe-Bi₂Te₃ system is more easily crystallized than the GeTe-Sb₂Te₃ system considering the fact that a Sb₂Te₃ film has a crystallization temperature of about 150° C.

5

10

15

20

25

[0040] It is preferable that M_2Te_3 is at least one of Al₂Te₃, Ga₂Te₃, and In₂Te₃. M_2 Te₃ is a telluride whose valence is the same as that of Bi₂Te₃ and has a high melting point. M_2 Te₃ serves to raise the crystallization temperature of the system by being added to the GeTe-Bi₂Te₃ Since the valence of $M_2\mathrm{Te}_3$ is the same as that of Bi_2Te_3 , the addition of M_2Te_3 to the material can be regarded as substitution of M_2Te_3 for a part of Bi_2Te_3 in the GeTe-Bi₂Te₃ system. Therefore, the addition of MoTea to the GeTe-Bi₂Te₃ system can raise the crystallization temperature without causing the phase separation due to repeated recording. Further, since M_2Te_3 may be added without changing the proportion of GeTe, the optical change the GeTe-Bi₂Te₃-M₂Te₃-based material is kept large. M_2 Te $_3$ raises the crystallization temperature, whereby the stability of amorphous phase can be achieved which cannot be achieved in GeTe-Bi₂Te₃-based the material. Specifically, even when the information recording medium with signals recorded is left under a high temperature of 80°C, signals do not deteriorate. When an added amount of

M₂Te₃ is too large, the crystallization speed of GeTe-M₂Te₃-Bi₂Te₃-based material becomes slow. Therefore, it is preferable to optimize the added amount of M_2Te_3 with respect to the value of "x." For this reason, "y" is equal to or less than 0.9 in the formula. Further, when M_2Te_3 is added a very small amount, even in it raises the crystallization temeprature. Therefore, "y" may be, for example, about 0.03.

The material expressed with the formula (3) may 10 be expressed with the following formula (1):

 $Ge_aBi_bTe_dM_{100-a-b-d}$ (atomic %)

5

wherein "M" represents at least one element selected from Al, Ga and In, and "a", "b" and "d" satisfy $25 \le a \le 60$, $0 < b \le 18$, $35 \le d \le 55$, and $82 \le a + b + d < 100$.

- 15 For example, when "M" is In, x=80 and y=0.5, the material may be expressed with Ge30.8Bi7.7Te53.8In7.7 (atomic %). The proportion of Ge and Bi may be increased while the proportion of Te may be reduced by just that much in order to further raise the crystallization temperature 20 without changing the crystallization speed. In that case, the obtained material can be expressed with the formula (1), but it cannot be expressed with the formula (3). formula (1), the ranges of "a", "b" and "d" are determined so that such material can be covered by the formula (1).
- 25 The proportion of Ge is preferably equal to or less than 60

atomic % (that is, $a \le 60$) since when the proportion of Ge is too large, a melting point of the material becomes high to require a high laser power.

5

10

15

20

25

In the case where the medium is used as a DVD-RAM (recording wavelength: about 660nm), "x" and "y" preferably satisfy $80 \le x \le 91$ and "y" is preferably not more than 0.5 when "x" is within this range in the formula (3). where the medium is used as the Blu-ray Disc (recording wavelength: about 405nm), it is preferable that the optical change of the material is made larger by increasing GeTe compared with the case where the medium is used Specifically, "x" preferably as the DVD-RAM. satisfies $85 \le x \le 98$ in the material of the recording layer of the Blu-ray Disc. When the "x" is within this range, "y" is preferably not more than 0.8. The crystallization temperature is 170° C in the case of x=89 and y=0 (without adding $M_2\text{Te}_3$). On the other hand, when In_2Te_3 is added as ${
m M}_{2}{
m Te}_{3}$, the crystallization temperature becomes 180°C in the case of y=0.1, and 190°C in the case of y=0.2. Similarly, when Ga_2Te_3 is added as M_2Te_3 , the crystallization temperature becomes 180°C in the case of y=0.1 and 190°C in the case of y=0.2.

[0044] The recording layer 104 may further contain Sn. In that case, the recording layer 104 preferably contains a material expressed with the following formula (4):

[(SnTe)_z(GeTe)_{1-z}]_x[(M₂Te₃)_y(Bi₂Te₃)_{1-y}]_{100-x} (mol %) (4) wherein "M" represents at least one element selected from Al, Ga and In, and x, y and z satisfy $80 \le x < 100$, $0 < y \le 0.9$, $0 < z \le 0.3$.

5 The recording layer containing SnTe, GeTe, M2Te3, [0045] and Bi₂Te₃ has a high crystallization speed and excellent in stability of amorphous phase. SnTe is a material whose crystallinity is very strong such that it has a crystallization temperature below a room temperature 10 in a form of thin film and it is crystal at the room temperature. Further, SnTe is a telluride whose valence and crystal structure are the same as those of GeTe and has a high melting point. In the system wherein M_2Te_3 substitutes for a part of Bi2Te3 by varying the value of "y" in the formula (3), SnTe serves to fine adjust the 15 crystallization speed so that a desired crystallization speed matching to a predetermined linear velocity is obtained. The material wherein SnTe is added can be regarded as a material wherein a part of GeTe in the GeTe-20 $\mathrm{M}_{2}\mathrm{Te}_{3}\mathrm{-Bi}_{2}\mathrm{Te}_{3}\mathrm{-based}$ material is substituted, since SnTe and GeTe have the same valence and the same crystal structure. Therefore, the addition of SnTe does not generate phase separation due to repeated recording. The amount "z" of SnTe which substitutes for GeTe is preferably not more than 0.3 because, if the added amount of SnTe is too large, the 25

proportion of GeTe is reduced to make the optical change of the material small. When SnTe is contained, more M_2Te_3 may be added. Therefore, in the case where GeTe-SnTe- M_2Te_3 -Bi₂Te₃-based material is used for the recording layer of the DVD-RAM or the Bul-ray Disc, the value of "x" is preferably within the range as described above, a preferable range of "y" is not limited.

5

The thickness of the recording layer [0046] 104 preferably in a range of 5nm to 12nm, and more preferably 10 in a range of 6nm to 9nm. If the thickness of the recording layer is small, an optical reflectance Rc of the information recording medium 100 where the recording layer is a crystal phase is reduced, while an optical 104 reflectance Ra of the information recording medium 100 where the recording layer 104 is an amorphous phase is 15 increased, whereby a reflectance ratio is small in the optical design. On the other hand, when the thickness is large, a heat capacitance is increased whereby recording sensitivity deteriorates.

[0047] Next, elements other than the recording layer is described. The substrate 101 is discal and transparent and its surface is smooth. As material for the substrate, a resin such as a polycarbonate, amorphous polyolefin or polymethylmethacrylate (PMMA), or glass can be employed.

25 Considering moldability, price and mechanical strength, a

polycarbonate resin is preferably used. In the illustrated embodiment, a substrate 101 with a thickness of 0.6mm and a diameter of 120mm is preferably used. A guide groove for guiding a laser beam may be formed in the surface of the substrate 101 where the dielectric layer, the recording layer and so on are formed. In the case where the guide groove is formed in the substrate, the surface which is located closer to the laser beam 111 is referred to as a "groove surface" for convenience, whereas the surface which is located away from the laser beam 111 is referred to as a "land surface" for convenience in this specification. example, when the medium is used as the DVD-RAM, difference in level between the groove surface and the land surface is preferably in a range of 40nm to 60nm. DVD-RAM, a distance between the groove and the land (the distance between the center of the groove surface and the center of the land surface) is about 0.615µm. In the case of DVD-RAM, recording is conducted both on the groove surface and the land surface (that is, a land-groove recording mode is employed for the DVD-RAM).

5

10

15

20

25

[0048] The first dielectric layer 102 and the second dielectric layer 106 serve to adjust an optical path length so as to enhance the optical absorption efficiency of the recording layer, and serve to enlarge the difference between the reflectance of crystal phase and the

reflectance of amorphous phase so as to enlarge a signal amplitude. Further, they also serve to protect the recording layer from moist. The first and the second dielectric layers 102 and 106 may be formed from one material selected from an oxide, a sulfide, a selenide, a nitride, a carbide and a fluoride or a mixture of a plurality of these materials.

5

[0049] More specifically, the oxides include. example, Al_2O_3 , CeO_2 , Cr_2O_3 , Dy_2O_3 , Ga_2O_3 , Gd_2O_3 , HfO_2 , 10 Ho_2O_3 , In_2O_3 , La_2O_3 , Nb_2O_5 , Nd_2O_3 , Sc_2O_3 , SiO_2 , Sm_2O_3 , SnO_2 , Ta_2O_5 , TiO_2 , Y_2O_3 , Yb_2O_3 , ZnO and ZrO_2 . The sulfide is, for example, ZnS, and the selenide is, for example, ZnSe. The nitrides include, for example, AlN, BN, Cr-N, Ge-N, HfN, NbN Si3N4, TaN, TiN, and VN, and ZrN. The carbides 15 include, for example, Al_4C_3 , B_4C , CaC_2 , Cr_3C_2 , HfC, Mo_2C , NbC, SiC, TaC, TiC, VC, W2C, WC, and ZrC. The fluorides include, for example, CeF3, DyF3, ErF3, GdF3, HoF3, LaF3, NdF3, YF3, and YbF3. The mixtures of these compound include, for example, ZnS-SiO₂, ZnS-SiO₂-LaF₃, ZrO₂-SiO₂, 20 ZrO₂-Cr₂O₃, ZrO₂-SiO₂-Cr₂O₃, ZrO₂-Ga₂O₃, ZrO₂-SiO₂-Ga₂O₃, ZrO2-SiO2-Cr2O3-LaF3, ZrO2-SiO2-Ga2O3-LaF3, ZrO2-Cr2O3-LaF3, ZrO₂-Ga₂O₃-LaF₃, ZrO₂-In₂O₃, ZrO₂-SiO₂-In₂O₃, ZrO₂-SiO₂-In2O3-LaF3, ZrO2-In2O3-LaF3, SnO2-Ga2O3, SnO2-In2O3, SnO2-SiC, $SnO_2-Si_3N_4$, $SnO_2-Ga_2O_3-SiC$, $SnO_2-Ga_2O_3-Si_3N_4$, $SnO_2-Ga_2O_3-Si_3N_4$, $SnO_2-Ga_2O_3-Si_3N_4$, $SnO_2-Ga_2O_3-Si_3N_4$ 25 Nb₂O₅, SnO₂-Ta₂O₅, CeO₂-Al₂O₃-SiO₂, ZrO₂-LaF₃, HfO₂-SiO₂,

 $\label{eq:hf02-Cr203} \begin{array}{llll} \text{Hf0}_2-\text{Cr}_2\text{O}_3, & \text{Hf0}_2-\text{Ga}_2\text{O}_3, & \text{Hf0}_2-\text{Si0}_2-\text{Ga}_2\text{O}_3, \\ \text{Hf0}_2-\text{Si0}_2-\text{Cr}_2\text{O}_3-\text{LaF}_3, & \text{Hf0}_2-\text{Si0}_2-\text{Ga}_2\text{O}_3-\text{LaF}_3, & \text{Hf0}_2-\text{Cr}_2\text{O}_3-\text{LaF}_3, \\ \text{Hf0}_2-\text{Ga}_2\text{O}_3-\text{LaF}_3, & \text{Hf0}_2-\text{In}_2\text{O}_3, & \text{Hf0}_2-\text{Si0}_2-\text{In}_2\text{O}_3, & \text{Hf0}_2-\text{Si0}_2-\text{In}_2\text{O}_3, \\ \text{In}_2\text{O}_3-\text{LaF}_3, & \text{Hf0}_2-\text{In}_2\text{O}_3-\text{LaF}_3, & \text{and} & \text{Hf0}_2-\text{Si0}_2-\text{Si0}_2. \\ \end{array}$

5 Of these materials, ZnS-SiO2 is preferably used 100501 since it is amorphous, has a low thermal conductivity, high transparancy and a high refractive index, and exhibits a high film-forming speed during film formation and excellent mechanical characteristics and moisture resistance. SiO_2 more preferably has a composition (ZnS) $_{80}$ (SiO₂) $_{20}$ 10 Alternatively, the dielectric layer may be formed (mol%). from a material which does not contain Zn and/or S. that case, preferable materials constituting the dielectric layer include ZrO₂-SiO₂-Cr₂O₃-LaF₃, ZrO₂-SiO₂-Ga₂O₃-LaF₃, ${\rm HfO_2-SiO_2-Cr_2O_3-LaF_3}$, ${\rm HfO_2-SiO_2-Ga_2O_3-LaF_3}$, ${\rm SnO_2-Ga_2O_3-SiC}$, 15 $\text{ZrO}_2-\text{SiO}_2-\text{In}_2\text{O}_3-\text{LaF}_3$ and $\text{HfO}_2-\text{SiO}_2-\text{In}_2\text{O}_3-\text{LaF}_3$. materials are transparent, and have a high refractive index, а low thermal conductivity, excellent mechanical characteristics and moist resistance. Further, an oxide of "M" which is contained in the recording layer, that is, 20 M_2O_3 may be contained in the dielectric layer.

[0051] By changing each optical path length (that is, the product "nd" of the refractive index n of a dielectric layer and the film thickness d of a dielectric layer), the first dielectric layer 102 and the second dielectric layer

25

106 serve to adjust an optical absorptance Ac (%) of the recording layer 104 in a crystalline state and an optical (%) of the recording layer 104 in absorptance Aa amorphous state, and to adjust the optical reflectance Rc (%) of the information recording medium 100 when the recording layer 104 is in a crystalline state and the optical reflectance Ra (%) of the information recording medium 100 when the recording layer 104 is in an amorphous state, and to adjust the phase difference $\Delta\Phi$ of the light information recording medium 100 between portions where the recording layer 104 is in a crystalline state and an amorphous state. In order to improve signal quality by increasing the reproduced-signal amplitude of a recorded mark, it is desirable that а reflectance difference (|Rc-Ra|) or a reflectance ratio (Rc/Ra) Further, it is desirable that Ac and Aa are also large so that the recording layer 104 may absorb a laser beam. The optical path length of each of the first dielectric layer 102 and the second dielectric layer 106 is determined so as to satisfy these conditions simultaneously. The optical path length which satisfies those conditions can be determined accurately, for example, by calculation based on a matrix method (for example, see "Wave Optics" by Hiroshi Kubota et al., Section 3, Iwanami Shinsho, 1971).

5

10

15

20

25 [0052] When setting the refractive index of a dielectric

layer at n, the film thickness at d (nm), and wavelength of the laser beam 111 at $\lambda(nm)$, the optical path length "nd" is expressed with nd=a\u00e1, wherein "a" is a positive number. In order to improve the signal quality by 5 increasing the reproduced-signal amplitude of the recorded mark of the information recording medium 100, for example, it is preferable that Rc and Ra satisfy 15%≤Rc and Ra≤2%, respectively when the medium is used as the DVD-RAM. Moreover, in order to eliminate the mark distortion by 10 overwriting, or to make it small, it is preferable that Ac and Aa satisfy $1.1 \le Ac/Aa$. The optical path length (a λ) of each of the first dielectric layer 102 and the second dielectric layer 106 can be determined accurately by calculation based on the matrix method so that these preferable conditions are satisfied simultaneously. 15 the obtained optical path length $(a\lambda)$, λ and n, preferable thickness d of each dielectric layer can be determined. In the medium of Embodiment 1, dielectric material with a refractive index of 1.8 to 2.5 is used, the thickness (d1) of the first dielectric layer 20 102 is preferably in a range of 100nm to 180nm, and more preferably in a range of 130nm to 150nm. Further, the thickness (d2) of the second dielectric layer 106 preferably in a range of 20nm to 60nm, and more preferably in a range of 30nm to 50nm.

25

[0053] The first interface layer 103 and the second interface layer 105 are provided in order to prevent the material transfer caused between the first dielectric layer 102 and the recording layer 104 and between the second 5 dielectric layer 106 and the recording layer 104 due to repeated recording. The material transfer here means the phenomenon that when the first and the second dielectric layers 102 and 106 are formed from. for example. $(ZnS)_{80}(SiO_2)_{20}$ (mol%), Zn and/or S in the dielectric layer 10 diffuses into the recording layer 104 while the recording the layer 104 is irradiated with a laser beam 111 and information is repeatedly overwritten. Therefore, it is not preferable that the first and the second interface layers 103 and 105 are formed from a material containing Zn 15 and/or S, and it is more preferable that the two interface layers are formed from a material which contains neither Zn Further, the interface layer is preferably formed from a material which has excellent adhesiveness to the recording layer 104 and high thermal durability such that 20 it does not melt or decompose upon applying the laser beam 111 the recording layer 104. Specifically, interface layer may be formed from one material selected from an oxide, a nitride, a carbide and a fluoride, or a mixture of a plurality of these materials.

25 [0054] More specifically, the oxides include, for

example, Al_2O_3 , CeO_2 , Cr_2O_3 , Dy_2O_3 , Ga_2O_3 , Gd_2O_3 , HfO_2 , Ho_2O_3 , In_2O_3 , La_2O_3 , MgO, Nb_2O_5 , Nd_2O_3 , Sc_2O_3 , SiO_2 , Sm_2O_3 , SnO_2 , Ta_2O_5 , TiO_2 , Y_2O_3 , Yb_2O_3 , and ZrO_2 . The nitrides include, for example, AlN, BN, Ge-N, HfN, Si-N, Ti-N, VN, and ZrN. The carbides include, for example, C, Al_4C_3 , B_4C , 5 ${\tt CaC_2}$, ${\tt Cr_3C_2}$, ${\tt HfC}$, ${\tt Mo_2C}$, ${\tt NbC}$, ${\tt SiC}$, ${\tt TaC}$, ${\tt TiC}$, ${\tt VC}$, ${\tt W_2C}$, ${\tt WC}$, and ZrC. The fluorides include, for example, CeF3, DyF3, ErF₃, GdF₃, HoF₃, LaF₃, NdF₃, YF₃, and YbF₃. The mixtures include, for example, ZrO2-Cr2O3, ZrO2-SiO2-Cr2O3, ZrO2-Ga₂O₃, ZrO₂-SiO₂-Ga₂O₃, ZrO₂-SiO₂-Cr₂O₃-LaF₃, ZrO₂-SiO₂-10 $Ga_2O_3-LaF_3$, $HfO_2-Cr_2O_3$, $HfO_2-SiO_2-Cr_2O_3$, $HfO_2-SiO_2-Cr_2O_3-Cr_2O_3$ LaF_3 , $ZrO_2 - In_2O_3$, $ZrO_2 - SiO_2 - In_2O_3$, $ZrO_2 - SiO_2 - In_2O_3 - LaF_3$, ${\rm HfO_2-Ga_2O_3}, \ {\rm HfO_2-SiO_2-Ga_2O_3}, \ {\rm HfO_2-SiO_2-Ga_2O_3-LaF_3}, \ {\rm HfO_2-SiO_2-G$ SiO_2 -SiC, Ge-Cr-N, and Si-Cr-N.

15 [0055] The thicknesses of the first interface layer 103 and the second interface layer 105 are preferably in a range of 1nm to 10nm and more preferably in a range of 2nm to 7nm. When the interface layer is thick, the recording and erasing performance is affected because of the change of the optical reflectance and the optical absorptance of the multilayered body which consists of the layers from the first dielectric layer 102 to the reflective layer 108 and is formed on the surface of the substrate 101.

[0056] When the first dielectric layer 102 and/or the second dielectric layer 106 is formed from a material

containing neither Zn nor S, the first interface layer 103 and/or the second interface layer 105 may not be provided. Not providing the interface layer reduces the cost of the medium and the productivity is improved because the number of film forming steps can be reduced.

5

10

15

20

The optical compensation layer 107 adjusts the [0057] ratio Ac/Aa wherein Ac is an optical absorptance of the recording layer 104 in a crystalline state, and Aa is an optical absorptance of the recording layer 104 amorphous state, and serves to suppress distortion of marks upon overwriting. It is preferable to form the optical compensation layer 107 of a material which has a high refractive index and absorbs a light moderately. For example, the optical compensation layer 107 may be formed using a material whose refractive index n is in a range of 3 to 6, and whose extinction coefficient k is in a range of Specifically, it is preferable to use material selected from amorphous Ge alloys, such as Ge-Cr and Ge-Mo, alloys, such as Si-Cr, Si-Mo and Si-W, amorphous Si tellurides such as SnTe and PbTe, and crystalline metal, such as Ti, Hf, Nb, Ta, Cr, Mo, and W and so on, semimetals, and semiconductor material. The film thickness of the optical compensation layer 107 is preferably in a range of 20nm to 50nm.

25 [0058] The reflective layer 108 optically serves to

increase the light quantity absorbed by the recording layer 104, and thermally serves to rapidly diffuse the heat generated in the recording layer 104 to cool the recording layer quickly and to facilitate amorphization of the recording layer 104. The reflective layer 108 also serves to protect a multilayered film starting with the first dielectric layer 102 and ending with the reflective layer 108, from the operation environment. It is preferable that the material for the reflective layer 108 has a high thermal conductivity and a low optical absorptance at a wavelength of a laser beam that is employed for the medium. Specifically, the reflective layer 108 is formed from a material containing at least one element selected from Al, Au, Ag and Cu or an alloy thereof.

5

10

[0059] 15 A material may be used which contains, addition to one or more elements selected from Al, Au, Ag and Cu, another one or more elements for the purpose of improving the moisture resistance of the reflective layer 108 and/or the purpose of adjusting a thermal conductivity 20 or optical characteristics (for example, an optical reflectance, an optical absorptance or а transmittance) of the reflective layer 108. Specifically, at least one element selected from Mg, Ca, Sc, Y, La, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Pd, Pt, Zn, 25 Ga, In, C, Si, Ge, Sn, Sb, Bi, Te, Ce, Nd, Sm, Gd, Tb, and

Dy may be added. The concentration of added element is preferably not more than 3 atomic %. Materials wherein one or more elements selected from these elements are added may be, for example, alloy materials, such as Al-Cr, Al-Ti, Al-Ni, Au-Cr, Ag-Pd, Ag-Pd-Cu, Ag-Pd-Ti, Ag-Nd, Ag-Nd-Au, Ag-Nd-Pd, Ag-In, Ag-In-Sn, Ag-In-Ga, Ag-In-Cu, Ag-Ga, Ag-Ga-Cu, Ag-Ga-Sn, Ag-Cu, Ag-Cu-Ni, Ag-Cu-Ca, Ag-Cu-Gd, and Ag-Zn-Al. Any of these materials is an excellent material which has excellent corrosion resistance and quenching function. similar purpose may be accomplished also by forming the reflective layer 108 of two or more layers. The thickness of the reflective layer 108 is adjusted depending on the composition of the recording layer 104, the linear velocity which information is recorded on the medium, preferably is in a range of 40nm to 300nm. thickness is below 40nm, the heat in the recording layer is difficult to diffuse and therefore the recording layer is difficult to become amorphous. When the thickness is over 300nm, the heat in the recording layer overdiffuses whereby the recoding sensitivity is deteriorated.

5

10

15

20

25

[0060] In the illustrated information recording medium 100, the adhesive layer 109 is provided in order to adhere the dummy substrate 110 to the reflective layer 108. The adhesive layer 109 may be formed using a highly heatresistant and highly adhesive material, for example, a

bonding resin such as an ultraviolet-curing resin. Specifically, the adhesive layer 109 may be formed from an acrylic resin-based material, or an epoxy resin-based Moreover, if necessary, before forming the material. adhesive layer 109, a protective layer which consists of an ultraviolet-curing resin and has a thickness of $1\mu m$ to $20\mu m$ may be provided on the surface of the reflective layer 108. The thickness of the adhesive layer 109 is preferably in a range of $15\mu\text{m}$ to $40\mu\text{m}\text{,}$ and more preferably in a range of $20\mu m$ to $35\mu m$.

5

10

15

20

25

strength of the information recording medium 100 and protects the multilayered body which starts with the first dielectric layer 102 and ends with the reflective layer 108. The preferable material for the dummy substrate 110 is the same as that for the substrate 101. In the information recording medium 100 with the dummy substrate 110 bonded, it is preferable that the dummy substrate 110 and the substrate 101 are formed from substantially the same material and have the same thickness so as not to cause mechanical curvature and distortion.

[0062] The information recording medium 100 of Embodiment 1 is a single-sided structure disc which has one recording layer. The information recording medium of this invention may have two recording layers. For example, an

information recording medium of a double-sided structure is obtained by bonding two laminated pieces in which the layers up to the reflective layer 108 are stacked Embodiment 1 through the adhesive layer 109 with reflective layers 108 facing each other. In this case, the bonding of two laminated pieces are carried out by forming adhesive layer 109 from a slow-acting resin applying heat and pressure. In the case where protective layer is provided on the reflective layer 108, information recording medium of the double-sided structure is obtained by bonding two layered pieces in which the layers up to the protective layer are formed, with the protective layers facing each other.

5

10

15

20

25

[0063] Next, the method for producing the information recording medium 100 of Embodiment 1 is described. The information recording medium 100 is produced by carrying out a process in which the substrate 101 where the guide groove (the groove surface and the land surface) is formed is set in a film-forming device, and then the first dielectric layer 102 is formed on the surface of the substrate 101 where the guide groove is formed (Process a), a process in which the first interface layer 103 is formed (Process b), a process in which the recording layer 104 is formed (Process c), a process in which the second interface layer 105 is formed (Process d), a process in which the

second dielectric layer 106 is formed (Process e), a process in which the optical compensation layer 7 is formed (Process f), and a process in which the reflective layer 8 is formed (Process g) in this order, and further carrying out a process in which the adhesive layer 109 is formed on the surface of the reflective layer 108, and a process in which the dummy substrate 110 is bonded. In this specification including the following description, unless otherwise indicated, the "surface" of each layer means the surface (vertical to the thickness direction) which is exposed when each layer is formed.

5

10

15

20

25

[0064] First, Process a in which the first dielectric layer 102 is formed on the surface of the substrate 101 in which the guide groove is formed is carried out. Process a is carried out by sputtering. An apparatus shown in Fig. 5 is an example of a diode glow discharge-type sputtering The inside of a sputtering chamber 39 is maintained at high vacuum. The vacuum is maintained with a vacuum pump (not shown) which is connected to an exhaust port 32. A sputtering gas (such as an Ar gas) introduced at a constant flow rate from a sputtering gas inlet 33. A substrate 35 is attached to a substrate holder (anode) 34, a sputtering target (cathode) 36 is fixed to a target electrode 37, and the electrode 37 is connected to an electric power supply 38. The application of a high

voltage between two electrodes generates glow discharge and accelerates, for example, Ar cations and collides the cations against the sputtering target 36 so that particles are emitted from the target. The emitted particles are deposited on the substrate 35 and a thin film is formed. The apparatus is classified into a direct current type and a high frequency type depending on a type of electric power supply which applies voltage to the cathode. In the case where the medium of Embodiment 1 is produced, the substrate 101 is attached as the substrate 35. This apparatus may be used for forming not only the dielectric layer, but also other layers including the recording layer, and may be used for producing a medium of another embodiment which is described below.

5

10

15 [0065] The sputtering for forming the dielectric layer may be carried out in a noble gas atmosphere or in a mixed gas atmosphere of a noble gas and an oxygen gas and/or a nitrogen gas, using a high-frequency electric power. Α direct-current electric power supply may be used, if possible. The noble gas may be any one of an Ar gas, a Kr 20 gas, and a Xe gas. A sputtering target used in a Process a may be one consisting of a material selected from an oxide, a sulfide, a selenide, a nitride, a carbide and a fluoride, or a mixture of a plurality of these materials. 25 material and composition of the sputtering target

selected so that the first dielectric layer 102 of a desired composition can be formed. The composition of the sputtering target and the composition of the obtained dielectric layer are not the same with some film forming devices. In that case, the composition of the sputtering target is optionally adjusted. Further, when the dielectric layer containing an oxide is formed, since oxygen defect may occur during the sputtering, a sputtering target wherein the oxygen defect is suppressed may be used, or the sputtering may be carried out in an atmosphere in which a small amount, such as 5vol% or less, of oxygen gas is mixed with the noble gas.

[0066] For example, when a layer of $(ZnS)_{80}(SiO_2)_{20}$ (mol%) is formed as the first dielectric layer 102, a sputtering target of $(ZnS)_{80}(SiO_2)_{20}$ (mol%) may be used in Process a, and the sputtering may be carried out in an atmosphere in which 3vol% oxygen gas is mixed with an Ar gas.

[0067] Next, Process b is carried out to form the first interface layer 103 on a surface of the first dielectric layer 102. Also Process b is carried out by sputtering. The sputtering may be carried out in a noble gas atmosphere or in a mixed gas atmosphere of a noble gas and an oxygen gas and/or a nitrogen gas, using a high-frequency electric power. A direct-current electric power supply may be used,

if possible. The noble gas may be any one of an Ar gas, a Kr gas, and a Xe gas. A sputtering target used in Process b may be one consisting of a material selected from an oxide, a sulfide, a selenide, a nitride, a carbide and a fluoride, or a mixture of a plurality of these materials. The material and composition of the sputtering target is selected so that the first interface layer 103 of a desired composition can be formed. The composition of sputtering target and the composition of the obtained interface layer are not the same with some film forming In that case, the composition of the sputtering target is optionally adjusted. Further, when the interface layer containing an oxide is formed, since oxygen defect may occur during the sputtering, a sputtering target wherein the oxygen defect is suppressed may be used, or the sputtering may be carried out in an atmosphere in which a small amount, such as 5vol% or less, of oxygen gas is mixed with the noble gas. Alternatively, the interface layer containing oxygen may be formed by a reactive sputtering using a sputtering target of a metal, a semi-metal, or a semiconductor material in an atmosphere in which a little more, such as 10% or more oxygen gas and/or nitrogen gas is mixed with the noble gas.

5

10

15

20

[0068] For example, when a layer of Ge-Cr-N is formed as the first interface layer 103, a reactive sputtering may be

carried out in Process b using a sputtering target consisting of Ge-Cr in an atmosphere wherein 40% of nitrogen gas is mixed with an Ar gas. A layer of $ZrO_2-SiO_2-Cr_2O_3$ is formed as the first interface layer 103, the sputtering may be carried out in an atmosphere of an Ar gas using a sputtering target consisting of $ZrO_2-SiO_2-Cr_2O_3$ wherein oxygen deficiency is suppressed.

[0069] Next, Process c is carried out, wherein the recording layer 104 is formed on a surface of the first interface layer 103. Also Process c is carried out by sputtering. The sputtering may be carried out using a direct-current electric power supply in an atmosphere of noble gas, or a mixed gas atmosphere of a noble gas and an oxygen gas and/or a nitrogen gas. The noble gas may be any one of an Ar gas, a Kr gas, and a Xe gas. More specifically, the sputtering in Process c may be carried out in an Ar gas atmosphere or an atmosphere in which a 5% or less nitrogen gas is mixed with the an Ar gas.

[0070] The sputtering target used in Process c is produced by selecting appropriately the porportions of Ge, Bi, Te, M and the proportion of Sn if any so that a film of a desired composition is formed. The composition of the sputtering target and the composition of the obtained dielectric layer are not the same with some film forming devices. In that case, the composition of the sputtering

target is optionally adjusted so that the recording layer 104 of a desired composition is obtained. There is a tendency that the proportions (that is, concentrations) of Ge, Bi, M and Sn in the formed recording layer is a little more than the proportions (that is, concentrations) of those elements in the sputtering target and the proportion of Te in the recording layer is a little smaller than the proportion of Te in the target. Therefore, composition of the target which is actually used, proportions of Ge, Bi, M and Sn may be a little smaller and the proportion of Te may be a little more compared to those in the desired composition of the recording layer. By preparing the sputtering target in this manner and carrying out the sputtering, the recording layer 104 of the desired composition, that is the recording layer 104 containing a material expressed with the formula (1) or (2), or with the formula (3) or (4), can be obtained.

5

10

15

20

25

[0071] For example, when "M" is In, x=89 and y=0.1 in the formula (1), the composition of the recording layer 104 may be expressed with $Ge_{38.2}In_{0.9}Bi_{8.5}Te_{52.4}$ (atomic %). The composition of the sputtering target consisting of $Ge_{10-Bi-Te-based}$ material is determined so as to obtain this composition. Further, when "M" is Ga_{10} $x=89_{10}$, $y=0.1_{10}$ and z=0.1, the composition of the recording layer 104 may be expressed with $Ge_{34.4}Sn_{3.8}Ga_{0.9}Bi_{8.5}Te_{52.4}$ (atomic%). The

composition of the sputtering target consisting of Ge-Sn-Ga-Bi-Te-based material is determined so as to obtain this composition. In any case, a process for crystallizing the recording layer 104 (initialization process) may be optionally carried out after the medium has been produced since the recording layer 104 tends to be in an amorphous state after film formation.

5

10

15

20

25

[0072] The recording layer 104 mav be formed by sputtering using a plurality of sputtering targets. example, three types of sputtering targets which consist of GeTe, M_2Te_3 and Bi_2Te_3 respectively are attached in one sputtering chamber of the film-forming device, and they may be sputtered at the same time. In that case, a sputtering power provided to each sputtering target is adjusted so that the recording layer 104 is obtained which contains a material expressed with the formula (1). Alternatively. four types of sputtering targets which consist of GeTe, SnTe, $M_2\text{Te}_3$ and Bi_2Te_3 respectively may be employed to form the recording layer 104 containing a material expressed with the formula (2). Alternatively, a combination of sputtering targets which consist of Ge, Bi, Al and Te respectively, a combination of sputtering targets which consist of Ge, Bi, Te, and In₂Te₃ respectively, or combination of Ge, Bi, Te and Ga₂Te₃ respectively may be used. When a combination of two or more sputtering targets

is used and the recording layer containing In and/or Ga is formed, a target of tellurides of In and/or Ga is preferable used since In and Ga have low melting points. The target may not necessarily consist of compounds of stoichiometric composition. For example, a target consisting of a Ge-Te-based, a Sn-Te-based, a Bi-Te-based, an In-Te-based, a Ga-Te-based, or an Al-Te-based material may be used.

5

10

15

20

25

[0073] Next, Process d is carried out, wherein the second interface layer 105 is formed on a surface of the recording layer 104. Process d is carried out in the same manner as Process b. The second interface layer 105 may be formed using the sputtering target which consists of the same material as that of the first interface layer 103, or may be formed using the sputtering target which consists of a material different from that of the first interface layer 103.

Next, Process e is carried out, wherein the second dielectric layer 106 is formed on a surface of the second interface layer 105. Process e is carried out in the same manner as Process a. The second dielectric layer formed using the sputtering target which 106 may be the same consists of material as that of the first dielectric layer 102, or may be formed using the sputtering target which consists of a material different from that of

the first dielectric layer 102.

5

10

15

20

25

Next, Process f is carried out, wherein the [0075] optical compensation layer 107 is formed on a surface of the second dielectric layer 106. In Process f, a directcurrent electric power supply or a high-frequency electric power supply is used for the sputtering. Specifically, the sputtering is preferably carried out using a target consisting of a material selected from an amorphous Ge alloy, such as Ge-Cr and Ge-Mo, an amorphous Si alloy, such as Si-Cr, Si-Mo and Si-W, a telluride such as SnTe and PbTe, and a crystalline metal such as Ti, Hf, Nb, Ta, Cr, Mo and W, semimetal, and a semiconductor material. The sputtering may be carried out in a noble gas atmosphere, or may be carried out in an Ar gas atmosphere. composition of the sputtering target and the composition of the obtained optical compensation layer are not the same with some film forming devices. In that case, the composition of the sputtering target is optionally adjusted so that the optical compensation layer 107 of a desired composition is obtained.

[0076] Next, Process g is carried out, wherein the reflective layer 108 is formed on a surface of the optical compensation layer 107. Process g is carried out by sputtering. The sputtering is carried out using a direct-current electric power supply or a high-frequency electric

power supply in an atmosphere of an Ar gas. A sputtering target which consists of Al, an Al alloy, Au, an Au alloy, Ag, an Ag alloy, Cu, or a Cu alloy may be used. For example, when a layer of an Ag-Pd-Cu alloy is formed as the reflective layer 108, a sputtering target of Ag-Pd-Cu may be used. The composition of the sputtering target and the composition of the obtained reflective layer are not the same with some film forming devices. In that case, the composition of the sputtering target is optionally adjusted so that the reflective layer 108 of a desired composition is obtained.

[0077] As described above, Processes a to g are all sputtering processes. Therefore, Processes a-g may be conducted successively by changing the target in order in one sputtering device. Alternatively, each of Processes a-g may be conducted using an independent sputtering device.

[0078] After forming the reflective layer 108, the substrate 101 on which the layers starting with the first dielectric layer 102 and ending with the reflective layer 108 are formed in order is taken out from the sputtering device. Then, an ultraviolet-curing resin is applied to the surface of the reflective layer 108, for example, by a spin coat method. The dummy substrate 110 is stuck to the applied ultraviolet-curing resin. An ultraviolet ray is applied from the dummy substrate 110 side to cure the resin,

whereby the bonding process is finished.

[0079] After finishing the bonding process, an initialization process is carried out if necessary. The initialization process is а process in which the temperature of the recording layer 104 which is in an amorphous state is raised to a temperature equal to higher than the crystallization temperature so crystallize the layer, for example, by application of a semiconductor laser. The initialization process may be carried out before the bonding process. In this manner. the information recording medium 100 of Embodiment 1 can be produced by implementing Processes a-e, the process of forming the adhesive layer, and the bonding process of the dummy substrate in order.

15

20

25

10

5

(Embodiment 2)

[0080] As Embodiment 2 of the present invention, an example of the optical information recording medium on and from which information is recorded and reproduced by using a laser beam, is described. Fig. 2 shows a partial cross section of the optical information recording medium.

[0081] The information recording medium 200 shown in Fig. 2 has a construction wherein a reflective layer 207 is formed on one surface of a substrate 208, a second dielectric layer 206 is formed on a surface of the

reflective layer 207, a second interface layer 205 is formed on a surface of the second dielectric layer 206, a recording layer 204 is formed on a surface of the second interface layer 205, a first interface layer 203 is formed on a surface of the recording layer 204, a first dielectric layer 202 is formed on a surface of the first interface layer 203 and a cover layer 201 is formed. The information recording medium of this construction can be used as a 25GB Blu-ray Disc on and from which information is recorded and reproduced by a laser beam with a wavelength of about 405nm in a bluish-violet region. The laser beam 209 is applied from the cover layer 201 side to the information recording medium 200 of this construction, whereby information is recorded and reproduced. Hereinafter, the recording layer 204 is firstly described and then the other elements are described.

5

10

15

20

25

The recording layer 204 has the same function as that of the recording layer 104 in Embodiment 1. Further, it is preferable that the material contained in the recording layer 204 is the material expressed with the formula (3) or (4) similarly to the recording layer 104 in Embodiment 1. The materials expressed with the formulae (3) and (4) can be expressed with the formulae (1) and (2) respectively, as described in connection with Embodiment 1.

[0083] As described above, this medium can be used as

the Blu-ray Disc. Therefore, as described in connection with Embodiment 1, "x" in the formula (1) preferably satisfies $85 \le x \le 98$, and more preferably $91 < x \le 98$, and "y" is preferably less than 0.5 when "x" is within this range. Also in the formula (2), "x" preferably satisfies $85 \le x \le 98$, and more preferably $91 < x \le 98$.

5

10

15

20

25

[0084] The thickness of the recording layer 204 is preferably within a range of 5nm to 15nm, and more preferably within a range of 8nm to 12nm. The problems which occur when the thickness of the recording layer 204 is too thin or too thick are as described in connection with Embodiment 1.

[0085] Next, the elements other than the recording layer are described. The substrate 208 is formed from the material which is the same as that described in connection with Embodiment 1, and it is preferably formed polycarbonate. In the illustrated embodiment, the substrate 208 having a thickness of about 1.1mm and a diameter of 120mm is preferably employed. A guide groove for guiding a laser beam may be formed on a surface where the reflective layer and the recording layer and so on are In the case where the guide groove is formed, a surface which is closer to the laser beam 209 is referred to as the "groove surface" and a surface which is located far from the laser beam 209 is referred to as the "land surface" also in this embodiment. When the medium of this embodiment is used as the Blu-ray Disc, a difference in level between the groove surface and the land surface is preferably in a range of 10nm to 30nm. In the Blu-ray Disc, a distance between the groves (a distance between a center of the groove surface and a center of the groove surface) is about 0.32µm. In the case of Blu-ray Disc, recording is conducted on only the groove surface. In other words, a groove recording mode is employed for the Blu-ray Disc.

5

- 10 [0086] The reflective layer 207 has the same function as that of the reflective layer 108 in Embodiment 1. The material suitable for the reflective layer 207 and the thickness of the reflective layer 207 are as described in connection with the reflective layer 108 in Embodiment 1.
- 15 The first dielectric layer 202 and the second [0087] dielectric layer 206 may be formed from the materials which are the same as those constituting the first dielectric layer 102 and the second dielectric layer 106 in Embodiment In other words, the layers 202 and 206 may be formed 20 from an oxide, a sulfide, a selenide, a nitride or a fluoride or a mixture thereof. The dielectric layer, however, is more preferably formed from a material which ensures high transparency with respect to a light in a short wavelength region since the information recording 25 medium 200 is used for recording and reproducing

information with a laser beam having a short wavelength of 405nm. For this reason, the material constituting the dielectric layer preferably contains at least oxide.

[0088] The oxides constituting the first dielectric 5 layer 202 and the second dielectric layer 206 include, for example, Al_2O_3 , CeO_2 , Cr_2O_3 , Ga_2O_3 , HfO_2 , In_2O_3 , La_2O_3 , MgO_3 SiO_2 , SnO_2 , $\mathrm{Ta}_2\mathrm{O}_5$, TiO_2 , $\mathrm{Y}_2\mathrm{O}_3$, ZnO and ZrO_2 . The sulfide is, for example, ZnS, and the selenide is, for example, As the nitrides, for example, AlN, BN, Ge-N, and 10 Si₃N₄ are preferably employed. The fluorides include, for example, CeF_3 , DyF_3 , ErF_3 , GdF_3 , HoF_3 , LaF_3 , NdF_3 , YF_3 and YbF3. The mixtures include, for example, ZnS-SiO2, ZnS-SiO₂-LaF₃, ZrO₂-SiO₂, ZrO₂-Cr₂O₃, ZrO₂-SiO₂-Cr₂O₃, ZrO₂ -Ga₂O₃, ZrO₂-SiO₂-Ga₂O₃, ZrO₂-SiO₂-Cr₂O₃-LaF₃, ZrO₂-SiO₂- $Ga_2O_3-LaF_3$, $SnO_2-Ga_2O_3$, $SnO_2-In_2O_3$, SnO_2-SiC , $SnO_2-Si_3N_4$, 15 $SnO_2-Ga_2O_3-SiC$, $SnO_2-Ga_2O_3-Si_3N_4$, $CeO_2-Al_2O_3-SiO_2$, LaF_3 , HfO_2-SiO_2 , $HfO_2-Cr_2O_3$, $HfO_2-SiO_2-Cr_2O_3$, HfO_2-SiO_2-SiC , ZrO₂-Cr₂O₃-LaF₃, ZrO₂-Ga₂O₃-LaF₃, ZrO₂-In₂O₃, ZrO₂-SiO₂- In_2O_3 , $ZrO_2-SiO_2-In_2O_3-LaF_3$, $ZrO_2-In_2O_3-LaF_3$, $HfO_2-Ga_2O_3$, 20 HfO₂-SiO₂-Ga₂O₃, HfO₂-SiO₂-Cr₂O₃-LaF₃, HfO₂-SiO₂-Ga₂O₃-LaF₃, ${\rm HfO_2-Cr_2O_3-LaF_3}$, ${\rm HfO_2-Ga_2O_3-LaF_3}$, ${\rm HfO_2-In_2O_3}$, ${\rm HfO_2-SiO_2-In_2O_3}$ In_2O_3 , $HfO_2-SiO_2-In_2O_3-LaF_3$ and $HfO_2-In_2O_3-LaF_3$.

[0089] Of these materials, $ZnS-SiO_2$ is preferably used since it is amorphous and has low thermal conductivity, high transparency and a high refractive index, and shows a

25

high film-forming speed upon forming a film, and excellent mechanical characteristics and moisture resistance. preferable that ZnS-SiO2 has a composition $(ZnS)_{80}(SiO_2)_{20}$ (mol%). Further, the first and the second 5 dielectric layers 202 and 206 may be formed from a material which does not contain In and/or S. In that case, the preferable materials for these dielectric layers include, ZrO₂-SiO₂-Cr₂O₃-LaF₃, ZrO₂-SiO₂-Ga₂O₃-LaF₃, ZrO2-SiO2-In₂O₃-LaF₃, HfO₂-SiO₂-Cr₂O₃-LaF₃, HfO₂-SiO₂-Ga₂O₃-LaF₃, HfO₂-SiO₂-In₂O₃-LaF₃, ZrO₂-SiO₂-Cr₂O₃, 10 $ZrO_2-SiO_2-Ga_2O_3$, ${\tt ZrO_2-SiO_2-In_2O_3}$, ${\tt HfO_2-SiO_2-Cr_2O_3}$, ${\tt HfO_2-SiO_2-Ga_2O_3}$, ${\tt HfO_2-SiO_2-Ga_2O_3}$ $SiO_2-In_2O_3$ and $SnO_2-Ga_2O_3-SiC.$ These materials are transparent, and have a high refractive index and low thermal conductivity, and shows excellent mechanical characteristics and moisture resistance. 15 Also in this embodiment, the dielectric layer may contain an oxide of "M" that is contained in the recording layer, that is, M_2O_3 . [0090] When the reflective layer 207 contains Ag or an Ag alloy, the second dielectric layer 206 is preferably 20 formed from a material which dose not contain S, in order not to generate Ag₂S. When a material containing the sulfide is used for the second dielectric layer 206, a layer which does not contain the sulfide may be provided between the reflective layer 207 and the second dielectric 25 layer 206.

[0091] The thicknesses of the first and the second dielectric layers 202 and 206 are determined from a preferred optical path length in the case of $\lambda = 405 \, \text{nm}$. order to improve the signal quality by increasing reproduced-signal amplitude of the recorded mark on the information recording medium 200, the optical path length "nd" of each of the first and the second dielectric layers 202 and 206 can be accurately determined by calculation based on the matrix method so that, for example, Rc and Ra satisfy 15% \leq Rc and Ra \leq 5%, respectively. In the medium of Embodiment 2, when a dielectric material with a refractive index of 1.8 to 2.5 is used for the first and the second dielectric layers 202 and 206, the thickness of the first dielectric layer 202 is preferably within a range of 10nm to 100nm, and more preferably within a range of 30nm to The thickness of the second dielectric layer 206 is preferably within a rage of 3nm to 50nm, preferably within a range of 5nm to 40nm.

5

10

15

20

25

[0092] The materials suitable for the first interface layer 203 and the second interface layer 205 are as described in connection with the first interface layer 103 and the second interface layer 205 in the medium of Embodiment 1. Similarly, the thickness is preferably within a range of 1nm to 10nm, and more preferably within a range of 2nm to 7nm. When the first dielectric layer 202

and/or the second dielectric layer 206 is formed from the material which contain neither Zn nor S, the first interface layer 203 and/or the second interface layer 205 may not be provided.

5 [0093] Next, the cover layer 201 is described. As a method increasing for a recording density of information recording medium, there is a technique increasing the numerical aperture NA of an objective lens so that the laser beam is narrowed using a laser beam 10 having a short wavelength. In this case, since the focal position becomes shallow, the cover layer 201 which is positioned on the side to which the laser beam enters is designed to be thinner than the substrate 101 in Embodiment This construction makes it possible to obtain a high-15 density recordable and large-capacity information recording medium 200.

[0094] The cover layer 201 is a smooth-surfaced plate or a smooth-surfaced sheet which is discal and transparent, similarly to the substrate 208. The thickness of the cover layer 201 is preferably within a range of 50µm to 120µm, and more preferably within a range of 80µm to 110µm. The cover layer 201 may consist of a disc-shaped sheet and an adhesive layer, or may consist of a single layer of an ultraviolet-curing resin such as an acrylic resin or an epoxy resin. Alternatively, the cover layer 201 may be

20

25

provided on a protective layer that is formed on a surface of the first dielectric layer 202. Although the cover layer 201 may take any construction, the cover layer is preferably designed such that a total thickness (for example, a thickness of the sheet + a thickness of the adhesive layer + a thickness of the protective layer, or a thickness of the single layer of the ultraviolet-curing resin) is within a range of 50µm to 120µm. It is preferable that the sheet constituting the cover layer is formed from a resin such as a polycarbonate, an amorphous polyolefin, or PMMA, and particularly the polycarbonate. Further, it is preferable that the cover layer 201 optically has a small birefringence with respect to a light in a short wavelength region since the layer is positioned on the side of incident laser beam 209.

[0095] Next, a method for producing the information recording medium 200 of Embodiment 2 is described. Since the substrate 208 which is a support for forming each layer is positioned the opposite side of the incident laser beam, the information recording medium 200 is produced by forming the reflective layer 207 firstly on the substrate 208 and then the other layers in order reversely to the information recording medium 100. The information recording medium 200 is produced by carrying out a process in which the substrate 208 where the guide groove (the groove surface

and the land surface) is formed is set in a film-forming device, and then the reflective layer 207 is formed on the surface of the substrate 208 where the guide groove is formed (Process h), a process in which the second dielectric layer 206 is formed (Process i), a process in which the second interface layer 205 is formed (Process j), a process in which the second interface layer 205 is formed (Process j), a process in which the recording layer 204 is formed (Process k), a process in which the first interface layer 203 is formed (Process l), a process in which the first dielectric layer 202 is formed (Process m) in this order, and further carrying out a process in which the cover layer 201 is formed on a surface of the dielectric layer 202.

10

15

20

25

[0096] Firstly, Process h is carried out, wherein the reflective layer 207 is formed on the surface of the substrate 208 where the guide groove is formed. Process h is carried out in the same manner as Process g in Embodiment 1.

[0097] Next, Process i is carried out, wherein the second dielectric layer 206 is formed on the surface of the reflective layer 207. Process i is carried out in the same manner as Process a in Embodiment 1.

[0098] Next, Process j is carried out, wherein the second interface layer 205 is formed on the surface of the second dielectric layer 206. Process j is carried out in the same manner as Process b in Embodiment 1.

[0099] Next, Process k is carried out, wherein the recording layer 204 is formed on the surface of the second interface layer 205. Process k is carried out in the same manner as Process c in Embodiment 1. For example, when "M" 5 and x=96 and y=0.3 in the formula (1), the is In composition of the Ge-Bi-Te-In-based material contained in the recording layer 204 can be expressed $Ge_{45.3}Bi_{2.6}Te_{51.0}In_{1.1}$ (atomic %). The composition of a Ge-In-Bi-Te sputtering target is selected so that this 10 composition is obtained. Further, when "M" is In, x=96, y=0.3 and z=0.1 in the formula (2), the composition of the Ge-Sn-Bi-Te-In-based material contained in the recording layer 204 can be expressed with Ge40.8Sn4.5Bi2.6Te51.0In1.1 (atomic %). The composition of a Ge-Sn-Bi-Te-In sputtering 15 target is selected so that this composition is obtained.

[0100] Next, Process 1 is carried out, wherein the first interface layer 203 is formed on the surface of the recording layer 204. Process 1 is carried out in the same manner as Process b in Embodiment 1.

20 [0101] Next, Process m is carried out, wherein the first dielectric layer 202 is formed on the surface of the first interface layer 203. Process m is carried out in the same manner as Process a in Embodiment 1.

[0102] As described above, Processes h to m are all sputtering processes. Therefore, Processes h-m may be

conducted successively by changing the target in order in one sputtering device. Alternatively, each of Processes m-h may be conducted using an independent sputtering device.

5

10

15

20

Next, the process of forming the cover layer 201 is described. After forming the first dielectric layer 202, the substrate 208 on which the layers starting with the reflective layer 207 and ending with the first dielectric layer 202 are formed in order is taken out from the sputtering device. Then, an ultraviolet-curing resin is applied on the surface of the first dielectric layer 202, for example, by a spin coat method. A disc-shaped sheet is stuck to the applied ultraviolet-curing resin and ultraviolet ray is applied from the sheet side to cure the resin, whereby the cover layer 201 is formed. For example, the ultraviolet-curing resin is applied thickness of $10\,\mu\text{m}$ and a sheet having a thickness of $90\,\mu\text{m}$ is used, the cover layer 201 having a thickness of $100\mu m$ is Alternatively, the cover layer 201 may be formed formed. by applying an ultraviolet-curing resin into a thickness of $100\mu\text{m}$ on the surface of the first dielectric layer 202through a spin coat method, and then applying ultraviolet rays to cure the resin. In this manner, the process of forming the cover layer is completed.

[0104] After finishing the process of forming the cover layer, an initialization process is carried out if

necessary. The initialization process is carried out in the same manner as that in Embodiment 1. In this manner, the information recording medium 200 of Embodiment 2 can be produced by carrying out Processes h-m and the process of forming the cover layer in order.

(Embodiment 3)

5

10

15

20

25

[0105] As Embodiment 3, an example of an optical information recording medium on and from which information is recorded and reproduced using a laser beam is described. Fig. 3 shows the partial cross section of the optical information recording medium.

[0106] The information recording medium 300 shown in Fig. 3 has a constitution in which a substrate 315, a second information layer 316, an intermediate layer 308, a first information layer 317 and a cover layer 301 are disposed in this order. In detail, the second information layer 316 is formed by stacking a second reflective layer 314, a fifth dielectric layer 313, a third interface layer 312, a second recording layer 311, a second interface layer 310 and a fourth dielectric layer 309 on one surface of the substrate 315 in this order. The intermediate layer 308 is formed on a surface of the fourth dielectric layer 309. The first information layer 317 is formed by stacking a third dielectric layer 307, a first reflective layer 306, a

second dielectric layer 305, a first recording layer 304, a first interface layer 303 and a first dielectric layer 302 on a surface of the intermediate layer 308 in this order. Also in this embodiment, a laser beam 318 is applied from the cover layer 301 side. In the second information layer 5 316, information is recorded and reproduced with the laser beam 318 which passes through the first information layer In the information recording medium 300, information can be recorded in each of the two recording 10 Therefore, by employing this constitution, the medium which has about double the capacity of Embodiment 2, can be obtained. Specifically, by employing this constitution, it is possible to obtain a 50GB information recording medium on and from which information is recorded and reproduced by a laser beam with a wavelength of about 405 nm in a bluish-15 violet region.

[0107] Firstly, two recording layers are described. The second recording layer 311 has the same function as that of the recording layer 204 in Embodiment 2, and the material and the preferable thickness of the recording layer 311 are the same as those of the recording layer 204.

20

25

[0108] The first recording layer 304 has the same function as that of the recording layer 204 in Embodiment 2, and it is formed from the material similar to that of the recording layer 204. The thickness of the first recording

layer 304 is preferably smaller than that of the second recording layer 311. This is because the first information layer 317 should be designed to have a high transmittance such that the laser beam can reach the 318 5 information layer 316. Specifically, Ta and Tc preferably satisfy 45%≤(Ta+Tc)/2, wherein Tc (왕) is light transmittance of the first information layer 317 when the first recording layer 314 is in a crystal phase, and Ta (%) is a light transmittance of the first information layer 317 10 when the first recording layer 304 is in an amorphous phase. Specifically, the thickness of the recording layer 304 is preferably in a range of 3nm to 9nm, and more preferably in a range of 5nm to 7nm, in order to achieve such a light transmittance.

15 [0109] Next, elements other than the recording layer are described. The substrate 315 is similar to the substrate 208 in Embodiment 2. Therefore, the detailed description about the substrate 315 is omitted heer.

[0110] The reflective layer 314 is similar to the reflective layer 108 in Embodiment 1. Therefore, the detailed description about the reflective layer 314 is omitted here.

20

25

[0111] The fifth dielectric layer 313 and the fourth dielectric layer 309 may be formed from the material similar to that of the second dielectric layer 206 and the

first dielectric layer 202 in Embodiment 2. The signals recorded in the second information layer 316 is reproduced by reading a laser beam which passes through the first information layer 317 and is reflected by the second reflective layer 2. Therefore, a reflectance Rc of the second information layer preferably satisfies 18% SRc. In order to satisfy this, the thickness of the fourth dielectric layer 309 is preferably within a range of 20nm to 100nm, and more preferably within a range of 30nm to 70nm. The thickness of the fifth dielectric layer 313 is preferably within a range of 3nm to 40nm, and more preferably within a range of 5nm to 30nm.

[0112] The second interface layer 310 and the third interface layer 312 are similar to the first interface layer 103 and the second interface layer 105. Therefore, the detailed description about the second and the third interface layers are omitted here. When the fifth dielectric layer 313 and/or the fourth dielectric layer 309 is formed from a material which contains neither Zn nor S, the third interface layer 312 and/or the second interface layer 310 may not be provided.

[0113] The intermediate layer 308 is provided in order to make the focal position of the laser beam 318 in the first information layer 317 significantly separate from the focal position in the second information layer 316. In the

intermediate layer 308, the guide groove is optionally formed for the first information layer 317. intermediate layer 308 can be formed from an ultravioletcuring resin. It is desirable that the intermediate layer 5 is transparent with respect to the light having a wavelength \(\lambda \) which is used for recording and reproducing information, so that the laser beam 318 can reach the second information layer 316 efficiently. The thickness of the intermediate layer 308 is preferably selected so that 10 i) it is equal to or more than the focal depth determined by the numerical aperture of an objective lens and the laser beam wavelength; ii) a distance between the first recording layer 304 and the second recording layer 311 is within a range where the objective lens can concentrate light; and iii) the total thickness of the intermediate 15 layer and the cover layer 301 is preferably set within a tolerance of substrate thickness acceptable to objective lens to be used. Therefore, the thickness of the intermediate layer 308 is preferably in the range of $10\mu m$ to $40\mu m$. If necessary, the intermediate layer 308 may be constituted by stacking a plurality of resin Specifically, the intermediate layer 308 may have a twolayer structure consisting of a layer which protects the dielectric layer 309, and a layer which has a guide groove. The third dielectric layer 307 serves to enhance [0114]

20

25

the light transmittance of the first information layer 317. Therefore, the material for the third dielectric layer 307 is preferably transparent and has a high refractive index. For example, TiO₂ may be used as such a material. Alternatively, a material containing 90mol% or more TiO₂ may be used. These material forms a layer having a large refractive index of about 2.7. The thickness of the third dielectric layer 307 is preferably within a range of 10nm to 40nm.

5

10 [0115] The first reflective layer 306 serves to diffuse the heat of the first recording layer 304 quickly. Further, as described above, since the first information layer 317 should have a high light transmittance, it is desirable that the optical absorption by the first reflective layer 306 is small. Therefore, the first reflective layer 306 is 15 more limited in the material and the thickness, compared with the second reflective layer 314. The first reflective layer 306 is designed to be thinner, and the optical design therefor is preferably made so that the layer has a low extinction coefficient, and the thermal design therefor is 20 preferably made so that the layer has a high thermal Specifically, it is preferable that the conductivity. first reflective layer 306 is made from Ag or an Ag alloy and is formed into a film whose thickness is in a range of 25 5nm to 15nm. When the film thickness is less than 5nm, the

function of diffusing the heat deteriorates, which makes it difficult to form marks in the first recording layer 304. When the film thickness is greater than 15nm, the light transmittance of the first information layer 317 is below 45%.

5

10

15

20

25

[0116] The first dielectric layer 302 and the second dielectric layer 305 serve to adjust an optical path length "nd" so as to adjust Rc, Ra, Tc and Ta of the first information layer 317. For example, the optical path length "nd" of each of the first dielectric layer 302 and dielectric layer 305 second may be determined by calculation based on the matrix method so that Rc, Ra, Tc and Ta satisfy $45\% \le (Ta+Tc)/2$, $5\% \le Rc$ and $Ra \le 1\%$ are satisfied. For example, when the first and the second dielectric layers 302 and 305 are formed from a dielectric material having a refractive index of 1.8 to 2.5, the first dielectric layer thickness of preferably within a range of 10nm to 80nm, and more preferably within a range of 20nm to 60nm. The thickness of the second dielectric layer 305 is preferably within a range of 3nm to 40nm, and more preferably within a range of 5nm to 30nm. The materials for these dielectric layers may be similar to those for the second and the first dielectric layers 206 and 202 in Embodiment 2. When the first dielectric layer 306 is, however, formed from Ag or an Ag

alloy, the second dielectric layer 305 preferably does not contain S. The first and the second dielectric layers 302 and 305 preferably contain at least an oxide. The materials for the first and the second dielectric layers 302 and 305 include ZrO2-SiO2-Cr2O3-LaF3, ZrO2-SiO2-Ga2O3-LaF3, HfO2-SiO2-Cr2O3-LaF3, HfO2-SiO2-Cr2O3-LaF3, ZrO2-SiO2-Cr2O3, ZrO2-SiO2-Ga2O3, HfO2-SiO2-Cr2O3, HfO2-SiO2-Ga2O3, HfO2-SiO2-Cr2O3, HfO2-SiO2-Ga2O3, ZrO2-Ga2O3, Ga2O3-SiC and SnO2-SiC. The first dielectric layer 302 may be formed using ZnS-SiO2.

5

10

15

20

25

The first interface layer 303 is similar to the interface layer 103 in Embodiment 1. Therefore, detailed description thereof is omitted here. When the first dielectric layer is formed from a material which contains neither Zn nor S, the first interface layer 303 not be provided. Further, in the illustrated embodiment, an interface layer is not provided between the second dielectric layer 305 and the first recording layer 304. This is because the second dielectric layer 305 is preferably formed from a material which contains neither Zn nor S.

[0118] The cover layer 301 has the same function as that of the cover layer 201 in Embodiment 2 and is formed from the same material as that of the cover layer 201. The preferable film thickness of the cover layer 301 is within

a range of $40\mu m$ to $100\mu m$. The thickness of the cover layer 301 is set to that the distance from the surface of the cover layer 301 to the second recording layer 311 is within a range of $50\mu m$ to $120\mu m$. For example, when the thickness of the intermediate layer 308 is $15\mu m$, the thickness of the cover layer 301 may be $85\mu m$. When the thickness of the intermediate layer 308 is $25\mu m$, the thickness of the cover layer 301 may be $75\mu m$. When the thickness of the intermediate layer 308 is $35\mu m$, the thickness of the cover layer 301 may be $65\mu m$.

5

10

15

20

25

[0119] The information recording medium of constitution having two information layers each of which has a recording layer is described above. The information recording medium which has a plurality of recording layers is not limited to this constitution. The medium can also have a constitution including three or more information Further, in a variation of the illustrated embodiment, for example, one of the two information layers may have one recording layer containing the Ge-Bi-Te-Mbased material or the Ge-Sn-Bi-Te-M-based material which generates a reversible phase change, and the other may have one recording layer in which an irreversible phase change is generated. Moreover, in an information recording medium which has three information layers, one is made into the read-only information layer, another has a recording layer

containing the Ge-Bi-Te-M-based material or the Ge-Sn-Bi-Te-M-based material which generates a reversible phase change, and the other has a recording layer in which an irreversible phase change is generated. As described above, there are many variation of the information recording mediums having two or more information layers. Also in any form, the recording layer can be obtained which has a high crystallization speed and shows excellent stability of an amorphous phase when a layer containing the material expressed with the formula (1) or (2), or the formula (3) (4) is formed as recording layer wherein reversible phase change is generated. In other words, the information recording medium wherein at least one recording layer contains the particular material as described above shows high erasability and excellent archival characteristic when information is recorded at high linear velocity and at any speed selected from a wide range of velocities.

5

10

15

20

[0120] Next, a method for producing the information recording medium 300 of Embodiment 3 is described. The information recording medium 300 is produced by forming the second information layer 316, the intermediate layer 308, the first information layer 317 and the cover layer 301 on the substrate 315 as a support in this order.

25 [0121] Specifically, the information recording medium

300 is produced by carrying out a process in which the substrate 315 where a guide groove (the groove surface and the land surface) is formed is set in a film-forming device, and then the second reflective layer 314 is formed (Process n), a process in which the fifth dielectric layer 313 is formed (Process o), a process in which the third interface layer 312 is formed (Process p), a process in which the second recording layer 311 is formed (Process q), a process in which the second interface layer 310 is formed (Process 10 r), and a process in which the fourth dielectric layer 309 is formed (Process s) in this order, and then carrying out a process in which the intermediate layer 308 is formed on the surface of the fourth dielectric layer 309, and further carrying out a process in which the third dielectric layer 307 is formed on the surface of the intermediate layer 308 15 (Process t), a process in which the first reflective layer 306 is formed (Process u), a process in which the second dielectric layer 305 is formed (Process v), a process in which the first recording layer 304 is formed (Process w), 20 a process in which the first interface layer 303 is formed (Process x), and a process in which the first dielectric 302 is formed (Process y) in this order, and furthermore carrying out the process in which the cover layer 301 is formed on the surface of the first dielectric 25 layer 302.

First, Process n is carried out for, wherein the second reflective layer 314 is formed on the surface of the substrate 315 where the guide groove is formed. Process n carried out in the same manner as Process is Embodiment 1. Next, Process o is carried out, wherein the fifth dielectric layer 313 is formed on the surface of the second reflective layer 314. Process o is carried out in same manner as Process a in Embodiment 1. Process p is carried out, wherein the third interface layer 312 is formed on the surface of the fifth dielectric layer Process p is carried out in the same manner as Process b in Embodiment 1. Next, Process q is carried out, wherein the second recording layer 311 is formed on the surface of the third interface layer 312. Process q is carried out in the same manner as Process k in Embodiment 2 (that is, Process c in Embodiment 1). Next, Process r is carried out, wherein the second interface layer 301 is formed on the surface of the second recording layer 311. Process r is carried out in the same manner as Process b in Embodiment 1. Next, Process s is carried out, wherein the fourth dielectric layer 309 is formed on the surface of the second interface layer 310. Process s is carried out in the same manner as Process a in Embodiment 1.

10

15

20

[0123] The substrate 315 on which the second information layer 316 is formed according to Processes n to s is taken

out from the sputtering device, and then the intermediate layer 308 is formed. The intermediate layer 308 is formed according to the following procedures. Firstly. ultraviolet-curing resin is applied to the surface of the dielectric layer 309 by, for example, a spin coat method. Next, a polycarbonate substrate which has concavities and convexities which are complementary to the guide groove to formed in the intermediate layer is stuck to the ultraviolet-curing resin with the concavo-convex surface in contact with the resin. After applying ultraviolet rays and curing the resin, the polycarbonate substrate with concavities and convexities is peeled. Thereby, the guide groove which is complementary to the concavities and convexities is formed in the ultraviolet-curing resin, and the intermediate layer 308 which has the guide groove to be The shape of the guide groove formed in formed is formed. the substrate 315 may be the same as or different from that formed in the intermediate layer 308. Alternatively, the intermediate layer 308 may be formed by forming a layer from an ultraviolet-curing resin which protects the dielectric layer 309, and then forming a layer having a groove thereon. In this case, the resultant intermediate laver has a two-layer structure. Alternatively, the intermediate layer is formed by stacking three or more layers.

5

10

15

20

25

[0124] The substrate 315 on which the layers up to the intermediate layer 308 are formed is again placed in a sputtering device, and then the first information layer 317 is formed on the surface of the intermediate layer 308. The processes for forming the first information layer 317 correspond to Processes t to y.

5

10

15

20

[0125] Process t is a process in which the third dielectric layer 307 is formed on the surface of the intermediate layer 308 where the guide groove is formed. In process t, the sputtering is conducted in a noble gas atmosphere or a mixed-gas atmosphere of noble gas and 0_2 gas, using a high frequency electric power supply and a sputtering target containing a TiO2-based material. Alternatively, when a TiO2 sputtering target of oxygen deficiency type is employed, the sputtering may be carried out using a pulse-generating direct current electric power supply.

[0126] Next, Process u is carried out for, wherein the first reflective layer 306 is formed on the surface of the third dielectric layer 307. In Process u, the sputtering is carried out in a noble gas atmosphere, using, for example, a direct current electric power supply and a sputtering target of an alloy containing Ag.

[0127] Next, Process v is carried out, wherein the second dielectric layer 305 is formed on the surface of the

first reflective layer 306. Process v is carried out in same manner as Process a in Embodiment 1. Process w is carried out, wherein the first recording layer 304 is formed on the surface of the second dielectric layer 305. Process w is carried out in the same manner as Process k in Embodiment 2. Next, Process x is carried out, wherein the first interface layer 303 is formed on the surface of the first recording layer 304. Process x is carried out in the same manner as Process b in Embodiment 1. Process y is carried out, wherein the dielectric layer 302 is formed on the surface of the first interface layer 303. Process y is carried out in the same manner as Process a in Embodiment 1. Thus, the first information layer 317 is formed by carrying out Processes t to y in this order.

5

10

15

20

25

[0128] The substrate 315 on which the layers up to the first information layer 317 are formed is taken out from the sputtering device. Then, the cover layer 301 is formed on the surface of the first dielectric layer 302 by the same technique as that described in connection with Embodiment 2. For example, an ultraviolet-curing resin which becomes an adhesive is formed into a thickness of 10µm and a sheet having a thickness of 65µm is stacked thereon, whereby the cover layer 301 having a thickness of 75µm may be formed. Alternatively, the ultraviolet-curing

resin of a 75µm thickness is applied to the surface of the dielectric layer 302 by a spin coat method and then the resin is cured by applying ultraviolet rays, whereby the cover layer 301 is obtained. In this manner, the cover layer-forming process is finished.

[0129] After finishing the cover layer-forming process, the initialization processes of the second information layer 316 and the first information layer 317 are carried out, if necessary. The Initialization process for the second information layer 316 may be carried out before or after forming the intermediate layer 308, and initialization process for the first information layer 317 may be carried out before or after forming the cover layer Alternatively, the initialization process of the first and the second information layers 317 and 316 may be carried out before or after forming the cover layer 301. Thus, the information recording medium 300 of Embodiment 3can be produced by carrying out Processes n to s, the intermediate layer-forming process, Processes t to y and the cover layer-forming process successively, and the initialization process if necessary.

(Embodiment 4)

5

10

15

20

[0130] As Embodiment 4, an example of the information recorded recording medium on and from which information is recorded

and reproduced by applying an electric energy, is described. Fig. 4 shows the partial cross section of the information recording medium 400 and a system wherein the medium is used. The information recording medium 400 is what is called a memory.

5

10

[0131] In the information recording medium 400, a lower electrode 402, a recording layer 403, and an upper electrode 404 are formed on a surface of a substrate 401 in this order. In this medium, the recording layer 403 is a layer in which the reversible phase change between a crystal phase and an amorphous phase is caused by the Joule heat generated by applying an electric energy, and the layer 403 contains the material expressed with the formula (1) or (2), or the formula (3) or (4).

15 [0132] As the substrate 401, for example, semiconductor substrate, such as Si substrate. polycarbonate substrate, or an insulating substrate such as an SiO_2 substrate and an Al_2O_3 substrate can be used. lower electrode 402 and the upper electrode 404 are formed 20 from a suitable electrically conductive material. The lower electrode 402 and the upper electrode 404 are formed by, for example, sputtering a metal such as Au, Ag, Pt, Al, Cr, or a mixture thereof. This information recording medium 400 is further explained together with a 25 method for operating the same in the below-mentioned

Examples.

(Embodiment 5)

As Embodiment 5, an example of an apparatus for 5 recording information on and reproducing the recorded information from an information recording medium of the present invention is described. Fig. 6 shows an example of the recording and reproduction apparatus. The recording and reproduction apparatus are equipped with a spindle 10 motor 51 which rotates the information recording medium 50, an optical head 54 provided with a semiconductor laser 53 which emits a laser beam 52, and an objective lens 55 which focuses the laser beam 52 on the recording layer of the information recording medium 50. The information recording 15 medium 50 is, for example, the information recording medium 100, 200 or 300 as described above. The laser beam 52 corresponds to the laser beams 111, 209 and 308 shown in Figs. 1 to 3.

20 EXAMPLES

[0134] Next, the present invention is described in detail with reference to the following examples.

(Example 1)

25 [0135] In Example 1, an information recording medium of

DVD-RAM format was produced and subjected to a test. Specifically, an information recording medium 100 shown in Fig. 1 was produced, and recording/reproduction evaluation and reliability evaluation were made. In this example, three kinds of materials each of which is expressed with formula (3) with different "M" were prepared as the materials for the recording layer 104 and three kinds of information recording mediums (medium Nos. 100-1 to 100-3) were produced. Another medium 100 with a recording layer 104 formed from a material that did not contain "M" (that is, M_2Te_3) (Comparative Example; medium No. 100-A) was also prepared for comparison. The recording/reproduction evaluation and the reliability evaluation were carried out 5x speed and 16x speed. A production method and evaluation methods are described in the following.

5

10

15

20

25

[0136] Firstly, the production method of the information recording medium 100 is described. As a substrate 101, a polycarbonate substrate (having a diameter of 120mm and a thickness of 0.6mm) wherein a guide groove (with a depth of 50nm and a distance between a groove and a land of 0.615 μ m) was formed was prepared and attached inside a sputtering device as shown in Fig. 5.

[0137] A first dielectric layer 102 consisting of $(ZnS)_{80}(SiO_2)_{20}$ (mol%) was formed into a thickness of 138nm on the surface of the substrate 101 where the guide groove

was formed, by a sputtering method. The first interface layer 103 of $(ZrO_2)_{25}(SiO_2)_{25}(Cr_2O_3)_{50}$ (mol%) was formed into a thickness of 5nm by a sputtering method.

Next, the recording layer 104 was stacked into a thickness of 7nm by a sputtering method. 5 The recording layer 104 was formed using a target formed from Ge-Bi-Te-M wherein the proportions of Ge, Bi, Te and "M" were adjusted so that the layer consisting essentially of a material expressed with $(GeTe)_{89}[(M_2Te_3)_{0.1}(Bi_2Te_3)_{0.9}]_{11}$ (mol%) was 10 In the medium No. 100-1, "M was Al. In the medium No. 100-2, "M" was Ga. In the medium 100-3, "M" was In. Whether or not the recording film of the above-described composition was formed was judged by whether or not an elementary composition of each of films having a thickness 15 of 500nm which films were formed on ten glass plates under conditions of forming the recording layer, substantially corresponded with an elementary composition calculated from the formula $(GeTe) 89[(M_2Te_3)_{0.1}(Bi_2Te_3)_{0.9}]_{11}$ (mol%) (that is, 20 $Ge_{38.2}Bi_{8.5}Te_{52.4}M_{0.9}$ (atomic 읭)). Further, composition of the sputtering target was experimentally determined by adjusting the proportion of each element until the elementary composition of each of the films formed on ten glass plates as described above substantially 25 corresponded with the elementary composition calculated

from the formula $(GeTe)_{89}[(M_2Te_3)_{0.1}(Bi_2Te_3)_{0.9}]_{11}$ (mol%) (specifically, until a difference became within $\pm 0.5\%$ as to Ge and Te, and a difference became within ±0.2% as to Bi and "M", and a difference became within $\pm 0.2\%$ as to Sn if Sn is contained). The elementary composition of the films formed on the glass plate was determined by dissolving the film in an acid solvent and analyzing the solution by an ICP (Inductively Coupled Plasma) emission spectrometry. the analysis apparatus, CIROS 120 manufactured by Rigaku Corporation was used. In the following examples, the confirmation that the recording layer of а desired composition was formed and the determination of the target composition were carried out according to this procedure.

5

10

15

20

25

[0139] Next, а interface second layer 105 $(ZrO_2)_{25}(SiO_2)_{25}(Cr_2O_3)_{50}$ (mol%) was formed into thickness of 5nm, and then a second dielectric layer 106 of $(ZnS)_{80}(SiO_2)_{20}$ (mol%) was formed into a thickness of 35nm. An optical compensation layer 107 of Si₂Cr was formed into a thickness of 30nm. Further, a reflective layer 108 of Ag-Pd-Cu was formed into a thickness of 80nm.

[0140] The sputtering condition employed for forming each layer is described. The first dielectric layer 102 and the second dielectric layer 106 were formed by sputtering a sputtering target of $(ZnS)_{80}(SiO_2)_{20}$ (mol%) having a diameter of 100mm and a thickness of 6mm at a

pressure of 0.13Pa under an atmosphere of an Ar gas in which $3% O_2$ gas is mixed, using a high frequency electric power supply with a power of 400W. The first interface layer 103 and the second interface layer 105 were formed by sputtering a sputtering target of $(ZrO_2)_{25}(SiO_2)_{25}(Cr_2O_3)_{50}$ 5 (mol%) having a diameter of $100 \, \mathrm{mm}$ and a thickness of $6 \, \mathrm{mm}$ at a pressure of 0.13Pa under an Ar gas atmosphere, using a high frequency electric power supply with a power of 500W. recording layer 104 was formed by sputtering a sputtering target containing Ge, Te, Bi and M having a 10 diameter of 100mm and a thickness of 6mm at a pressure of 0.13Pa under an Ar gas atmosphere, using a direct current electric power supply with a power of 100W. The optical layer 107 compensation was formed by sputtering sputtering target containing Si and Cr having a diameter of 100mm and a thickness of 6mm at a pressure of 0.27Pa under an Ar gas atmosphere, using a high frequency electric power supply with a power of 300W. The reflective layer 108 was formed by sputtering a sputtering target of Ag-Pd-Cu having a diameter of $100 \, \text{mm}$ and a thickness of $6 \, \text{mm}$ at a pressure of 0.4Pa under an Ar gas atmosphere, using a direct current electric power supply with a power of 200W. The recording layer 104 in the medium of No. 100-A was formed sputtering a sputtering target containing Ge, Bi and Te under the same condition.

15

20

25

[0141] As described above, the first dielectric layer 102, the first interface layer 103, the recording layer 104, the second interface layer 105, the second dielectric layer 106, the optical compensation layer 107 and the reflective layer 108 were formed on the substrate 101 in this order, and then an ultraviolet-curing resin was applied to the reflective layer 108 and a disc-shaped polycarbonate substrate, as a dummy substrate 110, having a diameter of 120mm and a thickness of 0.6mm was bonded to the applied ultraviolet-curing resin. The resin was cured by applying ultraviolet rays from the dummy substrate 110 side. an adhesive layer 109 of the cured resin was formed into a thickness of $30\mu\text{m}$, while the dummy substrate 110 was bonded to the multilayered body through the adhesive layer 109.

5

10

15

20

25

[0142] After bonding the dummy substrate 110. initialization process was carried out. the initialization process, a semiconductor laser with wavelength of 810 nm was used and the recording layer 104 of the information recording medium 100 was crystallized in a substantially whole annular area ranging from a radius 22mm to a radius 60mm. In this manner, the initialization process was completed, and thereby the production of information recording mediums 100 of Nos. 100-1 to 100-3and No. 100-A was finished. In all of the mediums, the specular reflectivities Rc and Ra were about 16% and about

2%, respectively.

Next, the recording/reproduction [0143] evaluation method is described. recording and reproduction Α apparatus having a constitution as shown in Fig. 6 which 5 had a spindle motor for rotating the information recording medium 100, an optical head equipped with a semiconductor laser emitting a laser beam 111, an objective lens for focusing the laser beam 111 on the recoding layer 104 of the information recording medium 100, was employed in order 10 to record information on the medium 100. In the evaluation of the information recording medium 100, a semiconductor laser having a wavelength of 660nm and an objective lens having a numerical aperture of 0.65 were used, information which was equivalent to a capacity of 4.7 GB was recorded. 15 The number of revolutions of the information recording 100 were within а range of 9000rev/min 11000rev/min, whereby information was recorded on innermost of the disc at about 20m/sec corresponding to 5x speed and information was recorded on the outermost of the 20 disc at about 65m/sec corresponding to 16x speed. The reproduction evaluation of the recorded signals conducted by applying a 1mW laser beam at about 8m/sec corresponding to 2x speed. The reproduction evaluation may be carried out at a linear velocity higher than 2x speed 25 and the reproduction power may be larger than 1mW.

[0144] The recording/reproduction evaluation conducted based on a jitter value (an indication for statistically evaluating how а recorded mark predetermined length is shifted from a predetermined position) and an erase ratio (an indication for evaluating a crystallization speed of the recording layer).

5

10

15

20

25

[0145] In order to establish a condition for determining the jitter value, a peak power (Pp) and a bias power (Pb) were determined according to the following procedure. The information recording medium 100 was irradiated with the laser beam 111 while modulating its power between a high power level and a low power level to record random signals having mark lengths within 0.42µm (3T) to 1.96µm (14T) ten times on the same groove surface of the recording layer 104 (groove recording). For this recording, a laser beam of non-multiple pulse was applied.

[0146] After recording, a jitter value between front ends and a jitter value between rear ends were measured with a time interval analyzed and a jitter-average value was calculated as the mean values of these jitters. jitter-average value was measured on each recording condition with the bias power being fixed while the peak power was varied. While the peak power was gradually increased, a power that was 1.3 times as large as a peak power at which the jitter-average value for the random

signal became 13% was determined as Pp1 temporarily. Next, a jitter-average value was measured under each recording condition with the peak power being fixed at Ppl while the bias power was varied. The mean value of upper and lower limits of bias powers at which the jitter-average value for the random signal became 13% or less was determined as Pb. Then, the jitter-average value was measured on recording condition with the bias power being fixed at Pb the peak power was varied by being gradually increased. A power that was 1.3 times as large as a peak power at which the jitter-average value for the random signal became 13 % was determined Pp. Pp and Pb were determined for groove recording at 16x speed and 5x speed and land recording at 16x speed and 5x speed (that is, Pp and Pb were determined for four recording conditions). results are shown in Table 1. When the recording was conducted under the condition of thus determined Pp and Pb, the jitter-average value was 8% to 9% for 5x- and 16x-speed recordings after overwriting, for example, ten times. Considering the upper limit of the laser power of the system, it is desirable to satisfy Pp $\leq 30\,\mathrm{mW}$ and Pb $\leq 13\,\mathrm{mW}$ even at 16x speed.

5

10

15

20

25

[0147] Next, a method for determining the erase ratio is described. A single signal of 3T and a single signal of 11T were alternately recorded 10 times in total while

modulating the power between the above-described Pb and Pp. A signal of 3T was recorded as the eleventh signal and the amplitude of the 3T signal (unit: dBm) was measured using a spectrum analyzer. Next, a signal of 11T was recorded as the twelfth signal and a decrement of the 3T signal was This measured decrement was defined as the erase measured. (unit: dB). As the decrement is larger, crystallization speed of the recording layer is higher. The value of the erase ratio is preferably equal to or greater than 25dB. The erase ratio is lower as the linear velocity is increased, and therefore the erase ratio was determined for groove recording and land recording at 16xspeed.

5

10

[0148] Next, the reliability evaluation is described. 15 reliability evaluation was conducted for inspecting whether a recorded signal can be preserved even if it was placed under a high-temperature condition, and whether overwriting can be made after leaving the medium under a high-temperature condition. The evaluation was carried out 20 using the recording and reproduction apparatus similar to one as described above. Specific evaluation procedures are First, random signals were multiple-track recorded on groove and land of each of the three kinds of information recording mediums 100 at 16x speed and 5x speed while modulating the power between the above-described Pp 25

and pb, and a jitter "j"(%) was determined. These mediums were left in a thermostatic chamber with a temperature of 80°C and a relative humidity of 20% for 100 hours and then they were taken out. After taking out the mediums, the 5 recorded signals were reproduced and a jitter value "ja"(%) determined (evaluation of archival characteristic). Further, signals were overwritten once on the recorded signals while modulating the power between Pp and Pb and a jitter value "jo"(%) was determined (evaluation of archival 10 overwrite characteristic). The jitter value before leaving the medium in the thermostatic chamber was compared with jitter value after the leaving the medium the thermostatic chamber, whereby the reliability was evaluated. Δja and Δjo are larger wherein Δja=(ja-j)(%) As 15 $\Delta jo=(jo-j)(%)$, it can be said that the reliability is lower. The archival characteristic (Δja) tends to be low for a signal recorded at a low times speed, and the archival overwrite characteristic (Δ jo) tends to be low for a signal recorded at a high times speed. Therefore, in this example, 20 Δ ja at 5x speed and Δ jo at 16x speed were evaluated by carrying out groove recording and land recording. As both of Δ ja and Δ jo are lower, the medium is more conveniently used in a wider range of linear velocities.

[0149] Table 1 show the erase ratio at 16x speed, the evaluation results for Δja at 5x speed and Δjo at 16x speed

and Pp and Pb at 16x speed and 5x speed as to each of the thee kinds of information recording mediums and the information recording medium of comparative example. All evaluations were conducted for groove recording and land recording.

[0150] In the table, the meanings of "S", "C" and "A" are respectively as follows:

Erase ratio:

- S equal to or greater than 30dB;
- 10 A not less than 25dB and less than 30dB;
 - B not less than 20dB and less than 25dB; and
 - C less than 20dB.

[0151] \triangle ja and \triangle jo:

5

15

- S less than 2%;
- A not less than 2% and less than 3%;
 - B not less than 3% and less than 5%; and
 - C equal to or greater than 5%.

[0152] In any of evaluations, "C" means that it is difficult to use the medium at that linear velocity, and "B" to "S" mean that it is possible to use the medium at that linear velocity. "B" means "preferable" (good), "A" means "more preferable" (very good), and "S" means "still more preferable" (excellent).

Table 1

Medium No.	Composition of recording layer (mol%)	Recording surface	16x	5x ∆ja	16х Δјо	16x		5×	
			Erase ratio			Pp (mW)	Pb (mW)	Pp (mW)	Pb (mW)
100-1	(GeTe) ₈₉ [(Al ₂ Te ₃) _{0.1} (Bi ₂ Te ₃) _{0.9}] ₁₁	Groove	Α	Α	Α	27.0	10.5	15.8	7.6
		Land	Α	Α	Α	27.5	11.0	16.2	8.0
100-2	(GeTe) ₈₉ [(Ga ₂ Te ₃) _{0.1} (Bi ₂ Te ₃) _{0.9}] ₁₁	Groove	A	Α	Α	26.8	10.8	15.8	7.5
		Land	A	Α	Α	27.3	11.3	16.2	7.9
100-3	(GeTe) ₈₉ [(In ₂ Te ₃) _{0.1} (Bi ₂ Te ₃) _{0.9}] ₁₁	Groove	4	Α	Α	27.0	10.8	15.8	7.6
		Land	4	Α	A	27.4	11.3	16.2	8.1
100-A	(GeTe) ₈₉ (Bi ₂ Te ₃) ₁₁	Groove	Ø	С	S	27.2	10.1	16.2	7.5
		Land	S	С	S	27.5	10.6	16.5	7.8

[0153] As shown in Table 1, the mediums of Nos. 100-1 to 100-3 achieved "A" evaluation with respect to the erase ratio at 16x speed, the archival characteristic at 5x speed and the archival overwrite characteristic at 16x speed. Further, the values of Pp and Pb were good. On the other hand, as to the information recording medium of comparative example wherein the recording layer does not contain "M", the evaluation of the erase ratio at 16x speed and the archival overwrite characteristic at 16x speed were "S", but the archival characteristic at 5x speed was "C". In other words, the archival characteristic at low speed could

10

5

not be ensured since the crystallization speed of the recording layer in this medium was too high. As shown in this example, high erasability at a high linear velocity can be ensured and high reliability can be ensured in a wide linear velocity range of 5x speed to 16x speed, by employing a material expressed with (GeTe)89[(M2Te3)0.1(Bi2Te3)0.9]11 (mol%) wherein "M" is Al, Ga or In in the recording layer 104.

10 (Example 2)

5

In Example 2, an information recording medium of DVD-RAM format was produced and subjected to a test. Specifically, an information recording medium 100 shown in Fig. 1 was produced, and recording/reproduction evaluation and reliability evaluation were made. In this example, six 15 kinds of information recording mediums (medium Nos. 100-4100-9) with different compositions of the recording layers 104 in these mediums were produced. Specifically, the recording layers 104 in these mediums were 20 substantially consists of materials expressed with $\label{eq:continuity} $$(GeTe)_{89}[(In_2Te_3)_y(Bi_2Te_3)_{1-y}]_{11}$ (mol%) wherein "y" were$ 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5 respectively. Further, for comparison, an information recording medium 100 having a recording layer 104 consisting of a material expressed with the formula (3) wherein "M" was In and "y" was 1 25

(medium No. 100-B), was prepared. Further, the medium corresponding to the medium No. 100-A which was evaluated in Example 1 was also evaluated. The recording/reproduction evaluation and the reliability evaluation were carried out at 5x speed, 6x speed, 12x speed and 16x speed. A production method and evaluation methods are described in the following.

5

10

15

20

25

[0155] Firstly, the production method of the information recording medium 100 is described. In Example 2, substrate 101 was the same as the substrate 101 employed in Example 1. A first dielectric layer 102, a first interface layer 103, a second interface layer 105, a dielectric layer 106, an optical compensation layer 107 and a reflective layer 108 were formed from the same materials as those for the corresponding layers of the medium in Example 1 into the same thickness as those of the corresponding layers of the medium in Example 1. Further, the sputtering conditions of each layer were the same as those employed in Example 1. The bonding process and the initialization process were carried out in the same manner as in Example 1.

[0156] The recording layer 104 was formed on a surface of the first interface layer 103 into a thickness of 7nm. The recording layer 104 was formed adjusting the composition of a sputtering so that the recording layer of

each medium consists substantially of a material expressed with $(GeTe)_{89}[(In_2Te_3)_y(Bi_2Te_3)_{1-y}]_{11}$ (mol%) with different "y." The sputtering conditions of the recording layer 104 were the same as those employed in Example 1.

5 [0157] In all the produced mediums, the specular reflectivities Rc and Ra were about 16% and about 2% respectively.

10

15

20

25

[0158] Next, the recording/reproduction evaluation method is described. Pp and Pb were determined for groove recording as well as land recording at 5x speed, 6x speed, 12x speed, and 16x speed with the same recording and reproduction apparatus as those employed in Example 1, according to the same procedures as those employed in Example 1. The erase ratio, the archival characteristic, and the archival overwrite characteristic were evaluated at the respective linear velocities based on Pp and Pb.

[0159] The evaluation results for the erase ratio, Δja and Δjo for groove recording at 5x, 6x, 12x and 16x speeds are shown in Table 2 with respect to the six kinds of information recording mediums and two kinds of information recording mediums for comparison.

[0160] The meanings of symbols shown in this table are as described in connection with Example 1. The indication "-", however, means that the erase ratio was poor and Pp and Pb could not be determined, and the archival

characteristic and the archival overwrite characteristic could not be evaluated.

Table 2

$\overline{}$									
οίΔ	16x	٧	∀	В	В	8	ı	ı	S
	12x	٧	A	A	В	8	В	l	S
	×9	S	S	٧	٧	٧	В	1	S
-	2×	S	S	S	٧	٧	¥	1	S
	16x	٧	٧	٧	S	S	I	ı	С
Δja	12x	٧	٧	٧	S	S	S	_	0
۷	6х	8	A	A	S	S	S	-	С
	2x	8	٧	٧	٧	A	S	_	0
	16x	٧	¥	В	В	В	0	0	S
Erase ratio	12x	٧	٧	٧	В	В	В	0	S
	ě	S	S	٧	٧	٧	В	0	S
i.	2×	S	S	S	٧	٧	⋖	0	S
Composition of recording layer	(#low)	$(GeTe)_{89}[(In_2Te_3)_{0.05}(Bi_2Te_3)_{0.95}]_{11}$	$(GeTe)_{89}[(In_2Te_3)_{0.1}(Bi_2Te_3)_{0.9}]_{11}$	$(GeTe)_{89}[(In_2Te_3)_{0.2}(Bi_2Te_3)_{0.8}]_{11}$	$(GeTe)_{89}[(In_2Te_3)_{0.3}(Bi_2Te_3)_{0.7}]_{11}$	$(GeTe)_{89}[(In_2Te_3)_{0.4}(Bi_2Te_3)_{0.6}]_{11}$	$(GeTe)_{89}[(In_2Te_3)_{0.5}(Bi_2Te_3)_{0.5}]_{11}$	$(GeTe)_{89}(In_2Te_3)_{11}$	$(GeTe)_{gg}(Bi_2Te_3)_{11}$
Medium	No.	100-4	100-5	100-6	100-7	100-8	100-9	100-B	100-A

[0161] As shown in Table 2, the mediums of Nos. 100-4 to 8 were able to be used at a speed between 5x speed and 16x For the medium of No. 100-9, although the erase ratio was "C" at 16x speed, "B" or better evaluation was obtained at the other speeds and therefore it was able to be used at a speed between 5x speed and 12x speed. On the contrary, the erase ratios at speeds between 5x speed and 16x speed were "C" for the medium of No. 100-B having the recording layer of the composition wherein y=1. From these facts, it was found that when the ratio of M_2Te_3 was large, the crystallization speed of the recording layer became slow and the medium having such a recording layer could not be used at a speed equal to or faster than 5x speed. Further, as to the composition not containing $M_2 \text{Te}_3$, Δja was "C" evaluation at any speed between 5x speed and 16x It was found that the crystallization speed of the recording layer of such composition was very fast and the medium having such a recording layer could not be used at a speed equal to or slower than 16x speed. The same results were obtained for land recording.

5

10

15

20

25

[0162] Further, overwrite cycle-ability was evaluated up to 100,000 cycles at a usable speed for the mediums of Nos. 100-4 to 100-9. As a result, a phase separation due to addition of In_2Te_3 did not occur. Furthermore, the jitter value between front ends and the jitter value between rear

ends were 12% or less. These mediums were at a sufficient level for an image file and at a practicable level for a datafile.

[0163] It was confirmed that the medium having the recording layer containing a material expressed with the formula (3) wherein M=In and x=89 and 0<y≤0.5 could be used at a high linear velocity and in a wide range of linear velocities wherein the highest linear velocity is 2.4 times or more the lowest linear velocity. In other words, an excellent information recording medium with which highspeed recording may be conducted in CAV mode is obtained by using such a material.

(Example 3)

In Example 3, information recording mediums were produced and evaluated in the same manner as in Example 2 except that the recording layers 104 were formed as layers each of which consisted substantially of a material expressed with (GeTe)89[(Ga₂Te₃)_y(Bi₂Te₃)_{1-y}]₁₁ (mol%). As a result, it was found that a favorable medium with which high-speed CAV recording was able to be conducted could be obtained by forming the recording layer from a material expressed with the formula (3) wherein M=Ga and x=89 and 0<y≤0.5, similarly to Example 2.

5

10

(Example 4)

5

10

[0165] In Example 4, an information recording mediums were produced and evaluated in the same manner as in Example 2 except that the recording layers 104 were formed as layers each of which consisted substantially of a material expressed with $(GeTe)_{89}[(Al_2Te_3)_y(Bi_2Te_3)_{1-y}]_{11}$ (mol%). As a result, it was found that a favorable medium with which high-speed CAV recording was able to be conducted could be obtained by forming the recording layer from a material expressed with the formula (3) wherein M=Al and x=89 and $0 < y \le 0.5$.

(Example 5)

In Example 5, an information recording medium of 15 Blu-ray Disc format was produced and subjected to a test. Specifically, an information recording medium 200 shown in Fig. 2 was produced, and recording/reproduction evaluation and reliability evaluation were made. In this example, eight kinds of information recording mediums (medium Nos. to 20 200-1 200-8) with different compositions of the recording lavers were produced. Specifically, the recording layers 204 substantially consisted of materials expressed with $(GeTe)_{97}[(In_2Te_3)_{V}(Bi_2Te_3)_{1-V}]_{3}$ wherein "y" were 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8 25 respectively. Further, for comparison, a medium 200 having a recording layer 204 consisting of a material not containing "M" (that is, M_2Te_3) and a medium 200 having a recording layer 204 consisting of a material not containing Bi (that is, Bi_2Te_3) were prepared (medium Nos. 200-A and 200-B). The recording/reproduction evaluation and the reliability evaluation were carried out at 1x speed, 2x speed, and 4x speed. A production method and evaluation methods are described in the following.

[0167] Firstly, the production method of the information recording medium 200 is described. As a substrate 208, a polycarbonate substrate (having a diameter of 120mm and a thickness of 1.1mm) wherein a guide groove (with a depth of 20nm and a distance between a groove and a groove of 0.32µm) was prepared and attached inside a sputtering device as shown in Fig. 5.

[0168] A reflective layer 207 was formed as a layer of Ag-Pd-Cu having a thickness of 80nm on a surface of the substrate 208 where the guide groove was formed, by a sputtering method. A second dielectric layer 206 was formed as a layer consisting of (ZrO₂)₂₅(SiO₂)₂₅(Ga₂O₃)₅₀ (mol%) having a thickness of 20nm, by a sputtering method. In this example, a recording layer 204 was stacked into a thickness of 11nm on a surface of the second dielectric layer 206 by a sputtering method without forming a second interface layer 205. The recording layer 204 was formed

adjusting the composition of a sputtering target so that recording layers of the respective mediums different ratios of In₂Te₃ (that is, "y" in the formula). Next, a first information layer 203 was formed as a layer of $(ZrO_2)_{25}(SiO_2)_{25}(Cr_2O_3)_{50}$ (mol%) having a thickness of 5nm, and a first dielectric layer 202 was formed as a layer of $(ZnS)_{80}(SiO_2)_{20}$ (mol%) having a thickness of 60nm. mediums of No. 200-A and 200-B were produced so that the 204 recording layers were formed (GeTe) 97 (Bi 2Te 3) 3 (mol%) and (GeTe) 97 (In2Te3) 3 (mol%), respectively.

5

10

15

20

25

[0169] The sputtering conditions employed for forming each layer is described. The sputtering conditions of the reflective layer 207 were the same as those of the reflective layer 108 in Example 1. The second dielectric layer 206 was formed by sputtering a sputtering target of $(ZrO_2)_{25}(SiO_2)_{25}(Ga_2O_3)_{50}$ having a diameter of 100mm and a thickness of 6mm at a pressure of 0.13Pa under an Ar gas atmosphere, using a high frequency electric power supply with a power of 500W.

[0170] The recording layer 204 was formed by sputtering a sputtering target containing Ge, Te, Bi and In having a diameter of 100mm and a thickness of 6mm at a pressure of 0.13Pa under an Ar gas atmosphere, using a direct current electric power supply with a power of 100W.

[0171] The sputtering conditions of the first interface layer 203 were the same as those of the first and the second interface layers 103 and 105 in Example 1. The sputtering conditions of the second dielectric layer 206 were the same as those of the first and the second dielectric layers 102 and 106.

5

10

15

20

25

[0172] The substrate 208 was picked out from the sputtering device, on which substrate the reflective layer 207, the second dielectric layer 206, the recording layer 204, the first interface layer 203 and the first dielectric layer 202 were formed in this order. Next, an acrylic resin which was an ultraviolet-curing resin was applied to a surface of the first dielectric layer 202 by a spin coat method. A disc-shaped sheet of an acrylic resin having a thickness of 90µm was adhered to a surface of the applied resin, and then ultraviolet rays were applied from the sheet side to cure the resin, whereby a cover layer 201 was formed. The total of the thickness of the cover layer 201 was 100μm by applying the ultraviolet-curing resin into a thickness of 10µm by a spin coat method.

[0173] After completing the cover layer forming process, an initialization process was conducted. In the initialization process, a semiconductor laser with a wavelength of 810nm was used and the recording layer 204 in a substantially whole annular area ranging from a radius

22mm to a radius 60mm of the information recording medium 200 was crystallized. In this manner, the initialization process was completed, and thereby the production of the information recording mediums 200 of Nos. 200-1 to 200-8 was finished. In all of the mediums, the specular reflectivities Rc and Ra were about 18% and about 3%, respectively.

5

10

15

20

[0174] Next, the recording/reproduction evaluation methods are described. A recording and reproduction apparatus having a constitution as shown in Fig. 6 which had a spindle motor for rotating the information recording medium 200, an optical head equipped with a semiconductor laser emitting a laser beam 209, and an objective lens for focusing the laser beam 209 on the recoding layer 204 of the information recording medium 200, was employed. evaluation of the information recording medium 200, semiconductor laser having a wavelength of 405nm and an objective lens having a numerical aperture of 0.85 were used, information which was equivalent to a capacity of 25 GB was recorded. Information was recorded while the number of revolutions of the information recording medium 200 were changed so that the linear velocities became 1x speed (4.92m/sec, a data transfer rate: 36Mbps), 2x(9.84 m/sec, 72 Mbps) and 4 x speed (19.68 m/sec,144Mbps). The reproduction evaluation of the recorded signals was

25

conducted by applying a 0.35mW laser beam at 1x speed. The reproduction evaluation may be carried out at a linear velocity higher than 1x speed and the reproduction power may be larger than 0.35mW. Jitter values were measured using a time interval analyzer for determining a jitter-average value (an average of a jitter between front ends and a jitter between rear ends). The jitter value in this example means a limit-equalized jitter value (LEQ value).

5

10

15

[0175] In order to determine a measurement condition for determining the jitter value, a peak power (Pp) and a bias power (Pb) were determined according to the following procedures. The information recording medium 200 was irradiated with the laser beam 209 while modulating its power between a high power-level peak power (mW) and a low power-level bias power (mW) to record random signals having mark lengths within a range of 2T (mark length 0.149µm) to 8T (mark length 0.596µm) ten times on the same groove surface of the recording layer 204. The jitter-average value was determined after recording.

[0176] The jitter-average was measured under each recording condition with the bias power being fixed while the peak power was varied, and the peak power at which the jitter-average value became a minimum value was determined as Ppl. Next, a jitter-average value was measured on each recording condition with the peak power being fixed at Ppl

while the bias power was varied, and the bias power at which the jitter-average value became a minimum value was determined as Pb. The bias power was fixed again at Pb and a jitter-average value was measured on each recording condition while the peak power was varied. The peak power at which the jitter-average value became a minimum value was determined as Pp. For example, Pp was 5mW at 36Mbps, 5.5mW at 72Mbps and 7.4mW at 144Mbps for the medium of No. 200-3, which values achieved system balance sufficiently. Further, the LEQ jitter values for the medium of No. 200-3 was 5.7% at 36Mbps, 5.9% at 72Mbps, and 7.5% at 144Mbps, which achieved system balance sufficiently.

5

10

15

20

25

[0177] Next, a method for determining the erase ratio is described. A single signal of 2T and a single signal of 9T alternately recorded 10 times in total, modulating the power between the above-described Pp and Pb. A signal of 2T was recorded as the eleventh signal and the amplitude of the 2T signal (unit: dBm) was measured using a spectrum analyzer. Next, a signal of 9T was recorded as the twelfth signal and a decrement of the 2T signal was measured. This measured decrement was defined as the erase ratio (unit: dB). As the decrement is increased, the crystallization speed of the recording layer is higher. The value of the erase ratio is preferably equal to or greater than 25dB.

[0178] Next, the reliability evaluation is described. The reliability evaluation was conducted for inspecting whether a recorded signal can be preserved even if it was placed under a high-temperature condition, and whether overwriting can be made after leaving the medium under a 5 high-temperature condition. The evaluation was carried out using the recording and reproduction apparatus similar to one as described above. Specific evaluation procedures are follows. First, random signals were multiple-track 10 recorded on groove of each of the eight kinds information recording mediums 200 at 1x speed, 2x speed and 4x speed while modulating the power between the abovedescribed Pp and pb, and a jitter "j"(%) was determined. These mediums were left in a thermostatic chamber with a 15 temperature of 80°C and a relative humidity of 20% for 100 hours and then they were taken out. After taking out the mediums, the recorded signals were reproduced and a jitter value "ja"(%) was determined (evaluation of archival characteristic). Further, signals were overwritten once on 20 the recorded signals while modulating the power between Pp and Pb and a jitter "jo"(%) was determined (evaluation of archival overwrite characteristic). The jitter value before leaving the medium in the thermostatic chamber was compared with the jitter value after leaving the medium in 25 the thermostatic chamber, whereby the reliability was

evaluated. As Δ ja and Δ jo are larger wherein Δ ja=(ja-j)(%) and Δ jo=(jo-j)(%), the reliability is lower. The archival characteristic (Δ ja) tends to be low for a signal recorded at a low times speed, and the archival overwrite characteristic (Δ jo) tends to be low for a signal recorded at a high times speed. As both of Δ ja and Δ jo are lower, the medium is more conveniently used in a wider range of linear velocities.

[0179] Table 3 show the erase ratio and the evaluation results for Δja and Δjo at 1x speed, 2x speed and 4x speed as to each of the eight kinds of information recording mediums and the information recording medium of comparative example. In the table, the meanings of "S", "C" and "A" are respectively as follows:

15 Erase ratio:

5

- S equal to or greater than 30dB;
- A not less than 25dB and less than 30dB;
- B not less than 20dB and less than 25dB; and
- C less than 20dB.
- 20 [0180] \triangle ja and \triangle jo:
 - S less than 2%:
 - A not less than 2% and less than 3%;
 - B not less than 3% and less than 5%; and
 - C equal to or greater than 5%.
- 25 [0181] In any of evaluations, "C" means that it is

difficult to use the medium at that linear velocity, and "B" to "S" mean that it is possible to use the medium at that linear velocity. "B" means "preferable" (good), "A" means "more preferable" (very good), and "S" means "still more preferable" (excellent).

Table 3

5

Medium	Composition of recording layer	Erase ratio			∆ја			Δjo		
No.	(mol%)		2x	4x	1x	2x	4x	1x	2x	4x
200-1	$(GeTe)_{97}[(In_2Te_3)_{0.1}(Bi_2Te_3)_{0.9}]_3$	s	s	s	В	В	В	s	s	s
200-2	$(GeTe)_{97}[(In_2Te_3)_{0.2}(Bi_2Te_3)_{0.8}]_3$	s	S	s	В	В	Α	s	s	S
200-3	$(GeTe)_{97}[(In_2Te_3)_{0.3}(Bi_2Te_3)_{0.7}]_3$	s	S	Α	В	Α	Α	s	s	Α
200-4	$(GeTe)_{97}[(In_2Te_3)_{0.4}(Bi_2Te_3)_{0.6}]_3$	s	Α	A	Α	A	A	s	Α	Α
200-5	$(GeTe)_{97}[(In_2Te_3)_{0.5}(Bi_2Te_3)_{0.5}]_3$	Α	Α	A	Α	Α	s	Α	Α	Α
200-6	$(GeTe)_{97}[(In_2Te_3)_{0.6}(Bi_2Te_3)_{0.4}]_3$	А	Α	В	Α	S	S	Α	Α	В
200-7	$(GeTe)_{97}[(In_2Te_3)_{0.7}(Bi_2Te_3)_{0.3}]_3$	А	В	В	s	S	S	A	В	В
200-8	$(GeTe)_{97}[(In_2Te_3)_{0.8}(Bi_2Te_3)_{0.2}]_3$	В	В	В	s	s	S	В	В	В
200-A	(GeTe) ₉₇ (In ₂ Te ₃) ₃	С	С	O	-	_	_	_	_	_
200-B	(GeTe) ₉₇ (Bi ₂ Te ₃) ₃	s	s	S	С	С	С	S	s	s

[0182] As shown in Table 3, the mediums of Nos. 200-1 to 200-8 was able to be used at a speed between 1x and 4x, since these mediums achieved "B" or better evaluation at any speed. On the other hand, Δ ja was "C" at a speed of from 1x speed to 4x speed for the medium of No. 200-B. It

was found that the recording layer of this medium had a very high crystallization speed and the medium could not be used at a speed equal to or slower than 4x speed under the Blu-ray Disc specification. On the other hand, the erase ratio was "C" at a speed of from 1x speed to 4x speed for the medium of No. 200-A. In other words, it was found that recording the laver of this medium had а low crystallization speed and the medium could not be used at a speed equal to or higher than 1x speed under the Blu-ray Disc specification.

5

10

15

20

25

[0183] Overwrite cycle-ability was evaluated up to 10,000 cycles at a usable speed for the mediums of Nos. 200-1 to 200-8. As a result, a phase separation due to addition of In_2Te_3 did not occur. Furthermore, the jitter value between front ends and the jitter value between rear ends were 9% or less. These mediums were at a sufficient level for an image file and at a practicable level for a datafile.

[0184] It was confirmed that the medium having the recording layer containing a material expressed with the formula (3) wherein M=In and x=97 and 0<y≤0.8 could be used in a range of linear velocities wherein the highest linear velocity is 2.4 times or more the lowest linear velocity. In other words, an excellent information recording medium with which high-speed CAV recording may be conducted under

the Blu-ray Disc specification is obtained by using such a material.

(Example 6)

5 In Example 6, information recording mediums [0185] (medium Nos. 200-11 to 200-18) were produced and evaluated in the same manner as in Example 5 except that the recording layers 204 were formed as layers each of which consisted substantially of a material expressed with 10 (GeTe) 97 $[(Ga_2Te_3)_V(Bi_2Te_3)_{1-V}]_3$ (mol%). As a result, it was found that a favorable medium with which high-speed CAV recording was able to be conducted could be obtained by forming the recording layer from a material expressed with the formula (3) wherein M=Ga and x=97 and $0 < y \le 0.8$, 15 similarly to Example 5.

(Example 7)

20

25

[0186] In Example 7, information recording mediums (medium Nos. 200-21 to 200-28) were produced and evaluated in the same manner as in Example 5 except that the recording layers 204 were formed as layers each of which consisted substantially of (GeTe)97[(Al₂Te₃)_y(Bi₂Te₃)_{1-y}]₃ (mol%). As a result, it was found that a favorable medium with which high-speed CAV recording was able to be conducted could be obtained by forming the recording layer

from a material expressed with the formula (3) wherein M=Al and x=97 and $0 < y \le 0.8$, similarly to Example 5.

(Example 8)

- 5 In Example 8, an information recording medium 300 of Blu-ray format having two information layers as shown in Fig. 3 was produced, and recording/reproduction evaluation and reliability evaluation were made. In this example, a first recording layer 304 substantially consisted of a 10 material expressed with $(GeTe)_x[(In_2Te_3)_v(Bi_2Te_3)_{1-v}]_{100-x}$ or $[(SnTe)_z(GeTe)_{1-z}]_x[(In_2Te_3)_v(Bi_2Te_3)_{1-v}]_{100-}$ $_{
 m X}$ (mol%), and a second recording layer 311 substantially consisted of а material expressed with $(GeTe)_{x}[(In_{2}Te_{3})_{v}(Bi_{2}Te_{3})_{1-v}]_{100-x}(mol_{8}).$ For comparison, medium wherein the 15 first recording layer substantially consisted of a material expressed with (GeTe) 97 (In_2Te_3) 3 (mol%), and the second recording layer substantially consisted of a material substantially not containing "M" (that is, M_2Te_3) (medium No. 300-A). The recording/reproduction evaluation 20 and the reliability evaluation were carried out at 1x speed, 2x speed and 4xspeed similarly to Example 5. A production method and evaluation methods are described in the following.
- [0188] Firstly, the production method of the information recording medium 300 is described. As a substrate 315, a

substrate whose material and shape were the same as those of the substrate 208 in Example 5 was prepared and attached inside a sputtering device as shown in Fig. 5.

A second reflective layer 314 was formed as a 5 layer of Ag-Pd-Cu having a thickness of 80nm on a surface of the substrate 315 where the guide groove was formed, by a sputtering method. A fifth dielectric layer 313 was formed as a layer of $(ZrO_2)_{25}(SiO_2)_{25}(Ga_2O_3)_{50}$ having a thickness of 17nm by a sputtering method and a 10 second recording layer 311 was stacked into a thickness of 11nm by a sputtering method without forming the third interface layer 312. In the mediums of No. 300-1 to 300-3, the second recording layer 311 was formed as a layer consisting substantially of a material expressed with 15 (GeTe) 97 $[(In_2Te_3)_{0.3}(Bi_2Te_3)_{0.7}]_3$ (mol%). In the medium of 300-A which was a comparative example, the second recording layer was formed as a layer consisting 311 substantially of а material expressed with (GeTe) 97 (Bi₂Te₃) 3 (mol%). Next, a second interface layer 20 310 was formed on the second recording layer 311 by a sputtering method as а layer consisting $(ZrO_2)_{25}(SiO_2)_{25}(Cr_2O_3)_{50}$ (mol%) having a thickness of 5nm. A fourth dielectric layer 309 was formed by a sputtering method as a layer consisting of $(ZnS)_{80}(SiO_2)_{20}$ (mol%) 25 having a thickness of 60nm. By these process, a second

information layer 316 was formed.

5

10

groove was formed into a thickness of 25µm on a surface of the dielectric layer 309. A third dielectric layer 307 was formed by a sputtering method as a layer of TiO₂ having a thickness of 20nm on a surface of the intermediate layer 308 where the guide groove was formed. A first reflective layer 306 was formed as a layer consisting of Ag-Pd-Cu having a thickness of 10nm. A second dielectric layer 305 was formed by a sputtering method as a layer consisting of (ZrO₂)₂₅(SiO₂)₂₅(Ga₂O₃)₅₀ (mol%) having a thickness of 10nm. A first recording layer 304 was formed into a thickness of 6nm by a sputtering method.

[0191] The first recording layer 304 consisted 15 substantially of a material expressed with (GeTe) $97[(In_2Te_3)_{0.3}(Bi_2Te_3)_{0.7}]_3$ (mol%) in the medium of NO. 300-1; а material expressed with $[(SnTe)_{0.1}(GeTe)_{0.9}]_{97}[(In_2Te_3)_{0.5}(Bi_2Te_3)_{0.5}]_{3}(mol_{8})$ in the medium of 300-2; a material expressed No. with 20 $[(SnTe)_{0.3}(GeTe)_{0.7}]_{97}[(In_2Te_3)_{0.9}(Bi_2Te_3)_{0.1}]_{3}(mol_{8})$ in the medium of No. 300-3. In the medium of No. 300-A as a comparative example, the first recording laver 304 consisted substantially of a material expressed with $(GeTe)_{97}(In_{2}Te_{3})_{3} (mol%).$

25 [0192] Next, a first interface layer 303 was formed as a

layer consisiting of $(ZrO_2)_{25}(SiO_2)_{25}(Cr_2O_3)_{50}$ (mol%) having a thickness of 5nm on the first recording layer 304 and a first dielectric layer 302 was formed as a layer consisting of $(ZnS)_{80}(SiO_2)_{20}$ (mol%) having a thickness of 40nm. By these processes, a first information layer 317 was formed.

5

10

15

20

The sputtering and forming conditions of each layer is described. The sputtering conditions of the second reflective layer 314 were the same as those of the reflective layer 108 in Example 1. The sputtering conditions of the fifth dielectric layer 313 were the same as those of the second dielectric layer 206 in Example 5. The second recording layer 311 was formed by sputtering a sputtering target containing Ge, Te, Bi and In of diameter of 100mm and a thickness of 6mm at a pressure of 0.13Pa under an Ar gas atmosphere, using a direct current electric power supply with a power of 100W.

[0194] The sputtering conditions of the second interface layer 310 were the same as those of the first and the second interface layers 103 and 105 in Example 1. The sputtering conditions of the second dielectric layer 309 were the same as those of the first dielectric layer 102 and the second dielectric layer 106 in Example 1.

[0195] The substrate 315 on which the second information layer 316 was formed in this manner was taken out from the

sputtering device.

5

10

15

20

25

Next, the intermediate layer 308 was formed by the following procedures. Firstly, an acrylic resin which was an ultraviolet-curing resin was applied to a surface of the dielectric layer 309. Next, a polycarbonate substrate having on its surface concavities and convexities (a depth 20nm, distance between grooves 0.32µm) which were complementary to a guide groove to be formed in the intermediate layer was placed and stuck on the applied ultraviolet-curing resin with the concavo-convex surface in contact with the resin. Then, ultraviolet rays were applied to cure the resin followed by removal of the polycarbonate substrate having concavities and convexities. Thereby, the intermediate layer 308 of the cured resin was formed, wherein the guide groove similar in shape to that in the substrate 315 was formed in the surface.

[0197] Next, the substrate 315 on which the layers up to the intermediate layer 308 was formed was placed again in the sputtering device and a first information layer 317 was formed on a surface of the intermediate layer 308.

[0198] Firstly, a third dielectric layer 307 was formed on the intermediate layer 308. The third dielectric layer 307 was formed by sputtering a TiO_2 sputtering target having a diameter of 100mm and a thickness of 6mm at a pressure of 0.13Pa under a mixed gas atmosphere containing

an Ar gas and 3% oxygen gas using a high frequency electric power supply with a power of 400W. Next, the first reflective layer 306 was formed under the same conditions those of the second reflective layer 314. 5 sputtering conditions of the second dielectric layer 305 were the same as those of the fifth dielectric layer 313. The first recording layer 304 was formed by sputtering a sputtering target containing Ge, Te, In and Bi of a diameter of 100mm and a thickness of 6mm at a pressure of 0.13Pa under an Ar gas atmosphere, using a direct current 10 electric power supply with a power of 50W. Or the first recording layer 304 was formed by sputtering a sputtering target containing Ge, Sn, Te, In and Bi of a diameter of 100mm and a thickness of 6mm at a pressure of 0.13Pa under an Ar gas atmosphere, using a direct current electric power supply with a power of 50W. Here, since the thickness of the first recording layer 304 was small, the power during the formation thereof was reduced in order to ensure the film thickness accuracy. The sputtering conditions of the first interface layer 303 were the same as those of the first and the second interface layers 103 and Example 1. The sputtering conditions of the dielectric layer 302 were the same as those of the first dielectric layer 102 and the second dielectric layer 106 in Example 1.

15

20

25

[0199] The substrate 315 with the first information layer formed on the intermediate layer 308 was taken out from the sputtering device.

[0200] Next, an ultraviolet-curing resin was applied to a surface of the first dielectric layer 302 by a spin coat method. A disc-shaped sheet was adhered to a surface of the applied ultraviolet-curing resin and ultraviolet rays were applied to the sheet side to cure the resin, and thereby the cover layer 301 was formed. The thickness of the ultraviolet-curing resin was 10µm, the thickness of the sheet was 65µm, and therefore the total thickness of the cover layer 301 was 75µm.

layer, an initialization process was carried out. In the initialization process, a semiconductor laser with a wavelength of 810nm was used and the second recording layer 311 was firstly initialized and then the first recording layer 304 was initialized. In any of the recording layers, a substantially whole annular area ranging from a radius 22mm to a radius 60mm was crystallized. Thereby, the initialization process was completed and the production of the mediums of Nos. 300-1 to 300-3 and 300-A was completed. In all of the mediums, the specular reflectivities Rc and Ra for both of the first information recording layer 317 and the second information layer 316 were about 6% and

about 1%, respectively. It should be noted that the reflectivity of the second information layer 316 was measured with a laser beam which passed through the first information layer 317. Further, the light transmittances Tc and Ta of the first information layer 317 were about 51% and about 52%, respectively. The measurement of light transmittance of each information layer was conducted forming each information layer directly on the substrate 315.

5

10 [0202] Next, the recording/reproduction evaluation described. method is Α recording and reproduction apparatus having a constitution as shown in Fig. 6 was used in order to record information on the information recording medium 300, similarly to Example 5. In the evaluation of 15 the information recording medium 300, a laser beam 318 having a wavelength of 405nm and an objective lens having a numerical aperture of 0.85 were used, and information equivalent to a capacity of 25GB was recorded on each of the first and the second information layers 317 and 316. Information was recorded on the information recording 20 medium 300 at 1x speed, 2x speed and 4x speed similarly to Example 5. The reproduction evaluation of the recorded signals was conducted by applying a 0.7mW laser beam at 1xspeed. The reproduction evaluation may be carried out at a 25 linear velocity higher than 1x speed and the reproduction

power may be larger than 0.7mW. The LEQ jitter value was determined by a time interval analyzer.

A peak power (Pp) and a bias power (Pb) were determined according to the same procedures as those in 5 Example 5, in order to establish conditions for determining the jitter value. For the medium of No. 300-1, Pp of both of the first information layer 317 and the information layer 316 was about 10mW at 1x speed (36Mbps), about 11mW at 2x speed (72Mbps), and about 14mW at 4x speed 10 (144Mbps) and these values achieved system balance sufficiently. Further, for the medium of No. 300-1, the LEQ values obtained at 1x speed (36Mbps) were 7% for the first information layer 317 and 5.7% for the second information layer, and the values at 2x speed (72Mbps) were 7.5% for the first information layer, and 6% for the second 15 information layer, and the values at 4x speed (144Mbps) were 8% for the first information layer, and 6.5% for the second information layer, and these values achieved system balance sufficiently.

[0204] The determinations of erase ratio and the reliability evaluation were carried out in the same manner as in Example 5.

25

[0205] The erase ratios and the evaluation results of Δ ja and Δ jo at 1x, 2x and 4x speeds are shown in Table 4, with respect to three kinds of information recording

mediums and the information recording medium for comparison. The meanings of "S", "C" and "A" in the table are as described in connection with Example 5. The indication "-", however, means that the erase ratio was poor and Pp and Pb could not be determined, and the archival characteristic and the archival overwrite characteristic could not be evaluated.

Table 4

		Composition of second recording layer					:				
Medium	Information	(Mom)	<u>.</u>	Erase ratio	<u></u>		∆ja			δjo	
No.	layer	Composition of first recording layer	×	2×	4x	~	,	γ	-	2	24
		(‰om)	•	 i	\$	<u> </u>	Ś	ř	<u> </u>	š	ž
300-1	First	$(GeTe)_{97}[(In_2Te_3)_{0.3}(Bi_2Te_3)_{0.7}]_3$	S	S	∢	∢	∢	S	S	⋖	∢
-	Second	$(GeTe)_{97}[(In_2Te_3)_{0.3}(Bi_2Te_3)_{0.7}]_3$	S	S	4	∢	∢	S	S	∢	<
300-2	First	$(GeTe)_{g7}[(In_2Te_3)_{0.3}(Bi_2Te_3)_{0.7}]_3$	S	S	<	∢	<	S	S	⋖	4
3	Second	$[(SnTe)_{01}(GeTe)_{0.9}]_{97}[(In_2Te_3)_{0.5}(Bi_2Te_3)_{0.5}]_3$	S	S	<	∢	∢	S	S	4	٧
300-3	First	(GeTe) ₉₇ [(In ₂ Te ₃) _{0.3} (Bi ₂ Te ₃) _{0.7}] ₃	S	S	4	4	<	S	S	⋖	<
	Second	$[(SnTe)_{0.3}(GeTe)_{0.7}]_{97}[(In_2Te_3)_{0.9}(Bi_2Te_3)_{0.1}]_3$	S	S	⋖	<	<	S	S	A	∢
300-A	First	(GeTe) ₉₇ (Bi ₂ Te ₃₎₃	σ	S	S	ပ	ပ	O	S	S	S
	Second	$(GeTe)_{97}(In_2Te_3)_3$	ပ	ပ	O	ı	ı	ı	ı	ı	
				1			1				

[0206] As shown in Table 4, the mediums of Nos. 300-1 to 300-3 can be used at least at a speed between 1x and 4x, since these mediums achieved "S" or "A" evaluation at any speed. The erase ratio, Δ ja and Δ jo for the mediums of Nos. 300-2 and 300-3 wherein the first recording layer 304 contained Sn were made substantially the same as those of the medium of No. 300-1 by adjusting the values of "z" and "y" in the formula (4). From these results, it was found that "z" is preferably equal to or less than 0.3, and "y" is preferably equal to or less than 0.9 when "z" is within this range.

5

10

15

20

25

On the contrary, the erase ratios at 1x to 4xspeeds of the first information layer were "C" and Δja at 1x to 4x speeds of the second information layer were "C", for the medium of No. 300-A (comparative example). because the crystallization speed of (GeTe) 97 (In2Te3) 3 constituting the first recording layer is insufficient and the crystallization speed of (GeTe) 97 (Bi₂Te₃)₃ (mol%) constituting the second recording layer was too high.

[0208] Overwrite cycle-ability was evaluated up to 10,000 cycles for the mediums of Nos. 300-1 to 300-3. As a result, a phase separation due to addition of In_2Te_3 did not occur. Furthermore, the jitter value between front ends and the jitter value between rear ends were 9% or less.

These mediums were at a sufficient level for an image file and at a practicable level for a datafile.

[0209] It was confirmed that the information recording medium 300 having two information layers wherein the recording layers were formed from a material expressed with the formula (3) or (4) could be used in a wide range of linear velocities wherein the highest linear velocity is 2.4 times or more the lowest linear velocity. In other words, the present invention gives an excellent information recording medium with which high-speed CAV recording may be conducted under the two-layer Blu-ray Disc specification.

(Example 9)

5

10

In Example 9, three kinds of mediums (medium Nos. 15 300-4, 5 and 6) were produced using a material containing Ga instead of In as "M", and the recording/reproduction evaluation and the reliability evaluation were carried out in the same manner as in Example 8. In the medium of No. 300-4, the first recording layer 304 and the 20 recording layer 311 both were formed as a layer consisting substantially of а material expressed (GeTe) 97 $[(Ga_2Te_3)_{0.3}(Bi_2Te_3)_{0.7}]_3$ (mol%). In the medium of No. 300-5, the first recording layer 304 was formed as a layer consisting substantially of a material expressed with 25 $[(SnTe)_{0.1}(GeTe)_{0.9}]_{97}[(Ga_2Te_3)_{0.5}(Bi_2Te_3)_{0.5}]_{3}$ (mol%) and

the second recording layer 311 was formed as a layer consisting substantially of a material expressed with $(GeTe)_{97}[(Ga_2Te_3)_{0.3}(Bi_2Te_3)_{0.7}]_3$ (mol%). In the medium of No. 300-6, the first recording layer 304 was formed as a layer consisting substantially of a material expressed with $[(SnTe)_{0.3}(GeTe)_{0.7}]_{97}[(Ga_2Te_3)_{0.9}(Bi_2Te_3)_{0.1}]_3$ (mol%) and the second recording layer 311 was formed as a layer substantially consisting of $(GeTe)_{97}[(Ga_2Te_3)_{0.3}(Bi_2Te_3)_{0.7}]_3$ (mol%).

10 [0211] As a result, it was found that when Ga was used as "M", it was possible to obtain an excellent information recording medium of two-layer Blu-ray Disc form with which CAV recording may be conducted in a range of linear velocities wherein the highest linear velocity is 2.4 times or more the lowest linear velocity, similarly to Example 8.

(Example 10)

5

20

25

[0212] In Example 10, three kinds of mediums (medium Nos. 300-7, 8 and 9) were produced using a material containing Al instead of In as "M", and the recording/reproduction evaluation and the reliability evaluation were carried out in the same manner as in Example 8. In the medium of No. 300-7, the first recording layer 304 and the second recording layer 311 both were formed as a layer consisting substantially of a material expressed with

(GeTe) $97[(Al_2Te_3)_{0.3}(Bi_2Te_3)_{0.7}]_3$ (mol%). In the medium of No. 300-8, the first recording layer 304 was formed as a layer consisting substantially of a material expressed with $[(SnTe)_{0.1}(GeTe)_{0.9}]_{97}[(Al_2Te_3)_{0.5}(Bi_2Te_3)_{0.5}]_3$ (mol%) and

the second recording layer 311 was formed as a layer consisting substantially of (GeTe) 97[(Al2Te3)0.3(Bi2Te3)0.7]3 (mol%). In the medium of No. 300-9, the first recording layer 304 was formed as a layer consisting substantially of

[(SnTe)_{0.3}(GeTe)_{0.7}]₉₇[(Al₂Te₃)_{0.9}(Bi₂Te₃)_{0.1}]₃ (mol%) and the second recording layer 311 was formed as a layer consisting substantially of (GeTe)₉₇[(Al₂Te₃)_{0.3}(Bi₂Te₃)_{0.7}]₃ (mol%).

[0213] As a result, it was found that when Al was used as "M", it was possible to obtain an excellent information recording medium of two-layer Blu-ray Disc form with which CAV recording may be conducted in a wide range of linear velocities wherein the highest linear velocity is 2.4 times or more the lowest linear velocity, similarly to Example 8.

20

25

15

(Example 11)

[0214] In Example 11, a medium of Blu-ray Disc format was produced and subjected to test, in essentially the same manner as in Example 5. Specifically, the information recording medium 200 shown in Fig. 2 was produced, and the

recording and reproduction evaluation and the reliability evaluation were conducted. In this example, five kinds of information recording mediums having different compositions of the recording layer 204 (medium No. 200-31 to 200-35). Specifically, the recording layers 204 in these mediums consisted substantially of materials expressed $\label{eq:GeTe} \mbox{(GeTe)}_x \mbox{(In}_2 \mbox{Te}_3) \mbox{0.3} \mbox{(Bi}_2 \mbox{Te}_3) \mbox{0.7} \mbox{]} \mbox{100-x} \mbox{ (mol%), wherein x were}$ 85, 88, 91, 94 and 98, respectively. Further, for comparison, a medium 200 having a recording layer 204 consisting of a material not containing "M" is, M_2Te_3) and a medium 200 having a recording layer 204 consisting of a material not containing Bi (that is, Bi_2Te_3) were prepared (medium Nos. 200-C and 200-D). The recording/reproduction evaluation and the reliability evaluation were carried out at 1x speed, 2x speed, and 4x speed. The production method and the evaluation method are described in the following.

5

10

15

20

25

recording medium 200 is described. The substrate 208 similar to that used in Example 5 was prepared and attached inside a sputtering device as shown in Fig. 5. A reflective layer 207 was formed as a layer of Ag-Pd-Cu having a thickness of 80nm on a surface of the substrate 208 where the guide groove was formed, by a sputtering method. Next, a second dielectric layer 206 consisting of

 $(ZrO_2)_{25}(SiO_2)_{25}(In_2O_3)_{50}$ (mol%) was formed into thickness of 20nm by a sputtering method. Also in this example, the recording layer 204 was stacked into a thickness of 11nm on a surface of the second dielectric layer 206 by a sputtering method without forming the second interface layer 205. The recording layer 204 was formed adjusting the composition of a sputtering target so that recording layers of the respective mediums different ratios of GeTe (that is, "x" in the formula). The first interface layer 203 and the first dielectric layer 202 were formed into the same thicknesses of those layers of the medium produced in Example 5, using the same material as those used in Example 5. The mediums of No. 200-C and 200-D were produced so that the recording layers 204 were formed materials from expressed (GeTe) 93 (Bi_2Te_3) 7 (mol%) and (GeTe) 93 (In_2Te_3) 7 (mol%), respectively.

5

10

15

20

25

each layer are described. The reflective layer 207 was formed by sputtering a sputtering target of Ag-Ga-Cu of a diameter of 100mm and a thickness of 6mm at a pressure of 0.4Pa under an Ar gas atmosphere, using a direct current electric power supply with a power of 200W. The second dielectric layer 206 was formed by sputtering a sputtering target of (ZrO₂)25(SiO₂)25(In₂O₃)50 having a diameter of

100mm and a thickness of 6mm at a pressure of 0.13Pa under an Ar gas atmosphere, using a high frequency electric power supply with a power of 500W. The recording layer 204 was formed by sputtering a sputtering target containing Ge, Te, Bi and In having a diameter of 100mm and a thickness of 6mm at a pressure of 0.13Pa under an Ar gas atmosphere, using a direct current electric power supply with a power of 100W. The sputtering conditions of the first interface layer 203 and the first dielectric layer 202 were the same as those in Example 5.

5

10

15

20

25

[0217] The substrate 208 was taken out from sputtering device, on which substrate the reflective layer 207, the second dielectric layer 206, the recording layer 204, the first interface layer 203 and the first dielectric layer 202 were formed in this order. Next, an acrylic resin which was an ultraviolet-curing resin was applied to a surface of the first dielectric layer 202 by a spin coat method, and then ultraviolet rays were applied from the resin side to cure the resin, whereby a cover layer 201 having a thickness of 97µm was formed. Further, an acrylic resin which was an ultraviolet-curing resin was applied to the surface of the cover layer 201 by a spin coat method and then ultraviolet rays were applied from the resin side to cure the resin, whereby a hard-coat layer having a thickness of 3µm was formed. The hard-coat layer served to

protect the medium from damage and against fingerprint. In this example, the cover layer 201 and the hard-coat layer were formed to have a thickness of 100µm in total. The cover layer forming process was completed in this manner.

[0218] After finishing the cover layer forming process, the initialization process was conducted under the same conditions as those in Example 5. In this manner, the initialization process was completed, and thereby the production of information recording mediums 200 of Nos. 200-31 to 200-35 and 200-C and 200-D was finished. In all of the mediums, the specular reflectivities Rc and Ra were about 18% and about 3%, respectively.

5

10

15

20

25

[0219] The recording/reproduction evaluation method, the method for determining the erase ratio and the reliability evaluation method were the same as those in Example 5. For the medium of No. 200-33, Pp was 5.1mW at 1x speed (36Mbps), 5.5mW at 2x speed (72Mbps), and 7.5mW at 4x speed (144Mbps), and these values achieved system balance sufficiently. Further, the LEQ jitters were 5.6% at 1x speed, 5.8% at 2x speed (72Mbps) and 6.5% at 4x speed (144Mbps) and these values achieved system balance sufficiently.

[0220] The erase ratios and the evaluation results Δja and Δjo at 1x, 2x, and 4x speeds are shown in Table 5, with respect to five kinds of information recording mediums and the two information recording mediums for comparison. The

meaning of "S", "C" and "A" are as described in connection with Example 5.

Table 5

Medium	Composition of recording layer	Era	se ra	atio		Δja			Δjo	
No.	(mol%)	1x	2x	4x	1x	2x	4x	1x	2x	4x
200-31	(GeTe) ₈₅ [(In ₂ Te ₃) _{0.3} (Bi ₂ Te ₃) _{0.7}] ₁₅	s	s	s	В	В	В	S	s	ß
200-32	$(GeTe)_{88}[(In_2Te_3)_{0.3}(Bi_2Te_3)_{0.7}]_{12}$	S	s	Α	В	В	Α	S	s	Α
200-33	$(GeTe)_{91}[(In_2Te_3)_{0.3}(Bi_2Te_3)_{0.7}]_9$	Α	Α	Α	A	A	A	A	Α	A
200-34	$(GeTe)_{94}[(In_2Te_3)_{0.3}(Bi_2Te_3)_{0.7}]_6$	Α	Α	Α	A	Α	Α	Α	Α	Α
200-35	$(GeTe)_{98}[(In_2Te_3)_{0.3}(Bi_2Te_3)_{0.7}]_2$	Α	Α	В	Α	Α	s	Α	Α	В
200-C	(GeTe) ₉₃ (In ₂ Te ₃) ₇	С	С	С	_	_	_	_	_	_
200-D	(GeTe) ₉₃ (Bi ₂ Te ₃) ₇	s	s	s	С	С	С	S	s	S

5

10

15

[0221] As shown in Table 5, the mediums of Nos. 200-31 to 200-35 can be used at a speed between 1x and 4x, since these mediums achieved "B" or better evaluation at any speed. As described above, it was confirmed that even when the materials for the reflective layer 207 and the dielectric layer 206 were changed, the medium having the recording layer 204 formed from a material expressed with $(GeTe)_x[(In_2Te_3)_y(Bi_2Te_3)_{1-y}]_{100-x}$ (mol%) wherein $85 \le x \le 98$ could be used in a wide range of linear velocities wherein the highest linear velocity is 2.4 times or more the lowest linear velocity.

[0222] Further, overwrite cycle-ability was evaluated up to 10,000 cycles for the mediums of Nos. 200-31 to 200-35. As a result, a phase separation due to addition of In₂Te₃ did not occur in the mediums Nos. 200-31 to 200-35. Furthermore, the jitter value between front ends and the jitter value between rear ends were 9% or less. These mediums were at a sufficient level for an image file and at a practicable level for a datafile.

10 (Example 12)

5

[0223] In Example 12, five kinds of mediums (medium Nos. 200-41 to 200-45) were produced, which had the recording layers 204 consisting substantially of materials expressed with (GeTe)_x[(Ga₂Te₃)_{0.3}(Bi₂Te₃)_{0.7}]_{100-x}(mol%) which contained Ga instead of In as "M", and the evaluations were carried out in the same manner as in Example 11. As a result, it was confirmed that when the recording layer was formed from a material expressed with the above-mentioned formula (3) wherein "M" was Ga and 85≤x≤98, it was possible to obtain a favorable medium with which CAV recording may be conducted, similarly to Example 11.

(Example 13)

[0224] In Example 13, five kinds of mediums (medium Nos. 200-51 to 200-55) were produced, which had the recording

layers 204 consisting substantially of materials expressed with $(GeTe)_x[(Al_2Te_3)_{0.3}(Bi_2Te_3)_{0.7}]_{100-x}(mol_8)$ which contained Al instead of In as "M", and the evaluations were carried out in the same manner as in Example 11. As a result, it was confirmed that when the recording layer was formed from a material expressed with the above-mentioned formula (3) wherein "M was Al and $85 \le x \le 98$, it was possible to obtain a favorable medium with which CAV recording may be conducted, similarly to Example 11.

10

15

20

25

5

(Example 14)

In Example 14, an information recording medium of Blu-ray Disc form was produced and subjected to test in substantially the same manner as in Example Specifically, three kinds of information recording mediums 300 having two information layers as shown in Fig. 3 were produced (medium Nos. 300-11 to 300-13), and recording/reproduction evaluation and reliability evaluation were made. In this example, the first recording layer 304 was formed as a layer consisting substantially of a material expressed with (GeTe) $_{x}$ [(In $_{2}$ Te $_{3}$) $_{y}$ (Bi $_{2}$ Te $_{3}$) $_{1-y}$]100- $_{\rm X}$ (mol%) or [(SnTe) $_{\rm Z}$ (GeTe) $_{1-{\rm Z}}$] $_{\rm X}$ [(In $_{\rm Z}$ Te $_{\rm 3}$) $_{\rm V}$ (Bi $_{\rm Z}$ Te $_{\rm 3}$) $_{1-{\rm V}}$] $_{100-{\rm X}}$ (mol%), and the second recording layer 311 was formed as a layer consisting of material а expressed with $(\text{GeTe})_x [(\text{In}_2\text{Te}_3)_y (\text{Bi}_2\text{Te}_3)_{1-y}]_{100-x} \quad (\text{mol}\%). \qquad \text{Further, for }$

comparison, a medium 300 was prepared wherein the first recording layer 304 was formed as a layer consisting of a material expressed with $(GeTe)_{93}(Bi_2Te_3)_7$ (mol%) and the second recording layer 311 was formed as a layer consisting of a material expressed with $(GeTe)_{93}(In_2Te_3)_7$ (mol%) (medium No. 300-B). The recording/reproduction evaluation and the reliability evaluation were carried out at 1x, 2x, and 4x similarly to Example 8. A production method and evaluation methods are described in the following.

5

10 Firstly, the production method of the information recording medium 300 is described. The substrate 315 similar to that employed in Example 8 was prepared and attached inside the sputtering device. The reflective layer 314 was formed as a layer of Ag-Ga-Cu having a 15 thickness of 80nm by sputtering on a surface of the substrate 315 where a guide groove was formed. Next, the fifth dielectric layer 313 was formed as a layer of $(ZrO_2)_{25}(SiO_2)_{25}(In_2O_3)_{50}$ (mol%) having a thickness of 17nm by a sputtering method. Also in this example, the second 20 recording layer 311 was formed into a thickness of 11nm on the fifth dielectric layer 313 without forming the third interface layer 312. The second recording layer 311 consisting substantially of $(GeTe) 93[(In_2Te_3)_{0.5}(Bi_2Te_3)_{0.5}]_7$ (mol%) was formed. In 25 the medium of No. 300-B as a comparative example,

second recording layer 311 was formed as a layer consisting of a material expressed with $(GeTe)_{93}(In_2Te_3)_7$ (mol%). The second interface layer 310 and the fourth dielectric layer 309 were formed into the same thicknesses of those in the medium produced in Example 8, using the same materials as those used in Example 8. By these processes, a second information layer 316 was formed.

5

10

15

20

25

[0227] Next, the intermediate layer 308 with a guide groove was formed into a thickness of $25\mu m$ on a surface of the fourth dielectric layer 309. The third dielectric layer 307 was formed by a sputtering method as a layer of ${
m TiO}_2$ having a thickness of 20nm on a surface of the intermediate layer 308 where the guide groove was formed. The first reflective layer 306 was formed by a sputtering method as a layer consisting of Ag-Ga-Cu having a thickness of 10nm. The second dielectric layer 305 was formed by sputtering as а layer consisting $(ZrO_2)_{25}(SiO_2)_{25}(In_2O_3)_{50}$ (mol%) having a thickness of 10nm. The first recording layer 304 was formed into a thickness of 6nm.

[0228] The first recording layer 304 consisted substantially of а material expressed (GeTe) 93 [$(In_2Te_3)_{0.5}(Bi_2Te_3)_{0.5}]_7$ (mol%) in the medium of No. 300-11: а material expressed with $[(SnTe)_{0.1}(GeTe)_{0.9}]_{93}[(In_2Te_3)_{0.5}(Bi_2Te_3)_{0.5}]_7$ (mol%)

the medium of No. 300-12; a material expressed with $[(SnTe)_{0.3}(GeTe)_{0.7}]_{93}[(In_2Te_3)_{0.9}(Bi_2Te_3)_{0.1}]_7$ (mol%) in the medium of No. 300-13. In the medium of No. 300-B as a comparative example, the first recording layer 304 consisted substantially of a material expressed with $(GeTe)_{93}(Bi_2Te_3)_7$ (mol%).

5

10

[0229] Next, the first interface layer 303 was formed as a layer of $(ZrO_2)_{25}(SiO_2)_{25}(Cr_2O_3)_{50}$ (mol%) having a thickness of 5nm on the first recording layer 304 and the first dielectric layer 302 was formed as a layer consisting of $(ZnS)_{80}(SiO_2)_{20}$ (mol%) having a thickness of 40nm, similarly to Example 8. By these processes, the first information layer 317 was formed.

[0230] The sputtering and forming conditions of each 15 layer are described. The sputtering conditions of the second reflective layer 314 were the same as those of the reflective layer 207 in Example 11. The sputtering conditions of the fifth dielectric layer 313 were the same as those of the second dielectric layer 206 in Example 11. 20 The sputtering conditions of the second recording layer 311 were the same as those of the second recording layer 311 in Example 8. sputtering conditions of the The interface layer 310 were the same as those of the first and the second interface layers 103 and 105 in Example 1. 25 sputtering conditions of the second dielectric layer 309

were the same as those of the first dielectric layer 102 and the second dielectric layer 106 in Example 1.

[0231] The substrate 315 on which the second information layer 316 was formed in this manner was taken out from the sputtering device.

5

10

15

20

25

[0232] Next, the intermediate layer 308 was formed according to the same procedures as those employed in Example 8. The substrate 315 on which the layers up to the intermediate layer 308 was formed was placed again in the sputtering device and a first information layer 317 was formed on a surface of the intermediate layer 308.

Firstly, the third dielectric layer 307 [0233] formed on the intermediate layer 308. The sputtering conditions of the third dielectric layer 307 were the same as those of the third dielectric layer 307 in Example 8. Next, the second reflective layer 306 was formed under the same sputtering conditions as those of the second reflective layer 207 in Example 11. The sputtering conditions of the second dielectric layer 305 were the same as those of the fifth dielectric layer 313 in this example. The first recording layer 304 was formed under the same sputtering conditions as those of the recording layer 304 in Example 8. The first interface layer 303 was formed under the same sputtering conditions as those of the first and the second interface layers 103 and 105 in Example 1.

The first dielectric layer 302 was formed under the same sputtering conditions as those of the first dielectric layer 102 and the second dielectric layer 106 in Example 1. The substrate 315 with the first information [0234] layer on the intermediate layer 308 was taken out from the sputtering device. Next, an acrylic resin which was an ultraviolet-curing resin was applied to a surface of the first dielectric layer 302 by a spin coat method, and then ultraviolet rays were applied from the resin side to cure the resin, whereby a cover layer 301 having a thickness of 72µm was formed. Further, an acrylic resin which was an ultraviolet-curing resin was applied to a surface of the cover layer 301 by a spin coat method and then ultraviolet rays were applied from the resin side to cure the resin, whereby a hard-coat layer having a thickness of 3µm was formed. In this example, the cover layer 301 and the hardcoat layer were formed to have a thickness of 75µm in total. The cover layer forming process was completed in this manner.

5

10

15

[0235] After finishing the cover layer forming process, the initialization process was conducted under the same conditions as those in Example 8. The initialization process was completed, and thereby the production of the information recording mediums 300 of Nos. 300-11 to 300-13 and 300-B was completed. In all of the mediums, the

specular reflectivities Rc and Ra for both of the first information layer 317 and the second information layer 316 were about 6% and about 1%, respectively. It should be noted that the reflectivity of the second information layer 316 was measured with a laser beam which passed through the first information layer 317 similarly to Example Further, the light transmittances Tc and Ta of the first information layer 317 were about 51% and about respectively. The measurement of light transmittance of each information layer was conducted forming information layer directly on the substrate 315, similarly to Example 8.

5

10

15

20

25

method for determining the erase ratio and the reliability evaluation method were the same as those in Example 8. For the medium of No. 300-11, Pp of both of the first information layer 317 and the second information layer 316 was about 10mW at 1x speed (36Mbps), about 11mW at 2x speed (72Mbps), and about 14mW at 4x speed (144Mbps) and these values achieved system balance sufficiently. Further, the LEQ jitters at 1x speed (36Mbps) were 7.1% for the first information layer 317 and 5.8% for the second information layer, and the LEQ jitters at 2x speed (72Mbps) were 7.4% for the first information layer, and 5.9% for the second information layer, and the LEQ jitters at 4x speed

(144Mbps) were 8.0% for the first information layer, and 6.5% for the second information layer, and these values achieved system balance sufficiently.

[0237] The erase ratios and the evaluation results of Δ and Δ of at 1x, 2x, 4x speeds are shown in Table 6, with respect to three kinds of information recording mediums and the information recording medium for comparison. The meanings of "S", "C" and "A" in the table are as described in connection with Example 5. The indication "-", however, means that the erase ratio was poor and Pp and Pb could not be determined, and the archival characteristic and the archival overwrite characteristic could not be evaluated.

5

10

Table 6

		Composition of the second recording layer									
Medium	Medium Information	(%lom)	—— Ега	Erase ratio			Δja			δjo	
No.	layer	Composition of the first recording layer (mol%)	×	2×	4×	*	2×	*	÷	2×	* * * *
300-11	First	$(GeTe)_{93}[(In_2Te_3)_{0.5}(Bi_2Te_3)_{0.5}]_7$	S	S	∢	4	⋖	S	S	⋖	⋖
-	Second	$(GeTe)_{93}[(In_2Te_3)_{0.5}(Bi_2Te_3)_{0.5}]_7$	S	S	4	4	A	S	S	V	⋖
200-13	First	$(GeTe)_{93}[(In_2Te_3)_{0.5}(Bi_2Te_3)_{0.5}]_7$	S	S	∢	∢	∢	S	S	⋖	<
21_000	Second	$[(SnTe)_{0,1}(GeTe)_{0,9}J_{93}[(In_2Te_3)_{0,5}(Bi_2Te_3)_{0,5}J_7$	S	S	4	4	∢	S	S	⋖	4
200-12	First	$(GeTe)_{93}[(In_2Te_3)_{0.5}(Bi_2Te_3)_{0.5}]_7$	S	S	A	4	4	S	S	4	4
2000-13	Second	$[(SnTe)_{0,3}(GeTe)_{0,7}]_{93}[(In_2Te_3)_{0,9}(Bi_2Te_3)_{0,1}]_7$	S	S	S	A	٧	S	S	٧	٧
9000	First	$(GeTe)_{93}(In_2Te_3)_7$	0	C	C	-	ı		l	ı	ı
g_006	Second	$(GeTe)_{\mathfrak{g}\mathfrak{g}}(Bi_{2}Te_{\mathfrak{g}})_{7}$	S	S	S	၁	၁	0	S	S	S

[0238] As shown in Table 6, the mediums of Nos. 300-11 to 300-13 can be used at least at a speed between 1x and 4x, since these mediums achieved "S" or "A" at any speed. The erase ratio, Δ ja and Δ jo for the mediums of Nos. 300-12 and 300-13 wherein the first recording layer 304 contained Sn were made substantially the same as those of the medium of No. 300-11 by adjusting the values of "z" and "y" in the formula (4). From these results, it was found that "z" is preferably equal to or less than 0.3, and "y" is preferably equal to or less than 0.9 when "z" is within this range. On the contrary, the evaluations of the medium of No. 300-B were "C" at any speed similarly to the medium of No. 300-A, and the medium was not practical.

[0239] Overwrite cycle-ability was evaluated up to 10,000 cycles for the mediums of Nos. 300-11 to 300-13. As a result, a phase separation due to addition of In_2Te_3 did not occur. Furthermore, the jitter value between front ends and the jitter value between rear ends were 9% or less. These mediums were at a sufficient level for an image file and at a practicable level for a datafile.

[0240] From this, it was confirmed that when the materials for the second reflective layer 314, the first reflective layer 306, the fifth dielectric layer 313 and the second dielectric layer 305 were changed, the medium wherein the recording layers were formed from a material

expressed with the formula (3) or (4) could be used at least at a speed between 1x and 4x.

(Example 15)

5 [0241] In Example 15, three kinds of mediums (medium Nos. 300-14, 15 and 16) were produced using a material containing Ga instead of In as "M", and the recording/reproduction evaluation reliability and the evaluation were carried out in the same manner as in 10 Example 14. In the medium of No. 300-14, the first recording layer 304 and the second recording layer 311 both were formed as a layer consisting substantially of a material expressed with (GeTe) 93 $[(Ga_2Te_3)_{0.5}(Bi_2Te_3)_{0.5}]$ 7 (mol%). In the medium of 15 No. 300-15, the first recording layer 304 was formed as a layer consisting substantially of a material expressed with $[(SnTe)_{0.1}(GeTe)_{0.9}]_{93}[(Ga_2Te_3)_{0.5}(Bi_2Te_3)_{0.5}]_7$ (mol%) and the second recording layer 311 was formed as a layer consisting substantially of a material expressed with 20 (GeTe) 93 $[(Ga_2Te_3)_{0.5}(Bi_2Te_3)_{0.5}]$ 7 (mol%). In the medium of No. 300-16, the first recording layer 304 was formed as a layer consisting substantially of a material expressed with [(SnTe)_{0.3}(GeTe)_{0.7}]₉₃[(Ga₂Te₃)_{0.9}(Bi₂Te₃)_{0.1}]₇(mol%) the second recording layer 311 was formed as a layer 25 consisting substantially of a material expressed with

 $(GeTe) 93 [(Ga_2Te_3)_{0.5} (Bi_2Te_3)_{0.5}]_7 (mol%).$

[0242] As a result, it was found that when Ga was used as "M", it was possible to obtain an excellent information recording medium of two-layer Blu-ray Disc form with which CAV recording may be conducted in a range of linear velocities wherein the highest linear velocity is 2.4 times or more the lowest linear velocity, similarly to Example 14.

(Example 16)

5

10 In Example 16, three kinds of mediums (medium Nos. 300-17. 18 and 19) were produced using а material containing Al instead of Ιn "M", as and the recording/reproduction evaluation and the reliability evaluation were carried out in the same manner as 15 Example 14. In the medium of No. 300-17, the first recording layer 304 and the second recording layer 311 both were formed as a layer consisting substantially of a material expressed with (GeTe) 93[(Al2Te3)0.5(Bi2Te3)0.5]7 In the medium of No. 300-18, the first recording (mol%). 20 layer 304 was formed as a layer consisting substantially of material expressed with $[(SnTe)_{0.1}(GeTe)_{0.9}]_{93}[(Al_2Te_3)_{0.5}(Bi_2Te_3)_{0.5}]_7$ (mol%) and the second recording layer 311 was formed as a layer consisting substantially of a material expressed with 25 (GeTe) 93 $[(Al_2Te_3)_{0.5}(Bi_2Te_3)_{0.5}]$ 7 (mol_8) . In the medium of

No. 300-19, the first recording layer 304 was formed as a layer consisting substantially of a material expressed with $[(SnTe)_{0.3}(GeTe)_{0.7}]_{93}[(Al_2Te_3)_{0.9}(Bi_2Te_3)_{0.1}]_7$ (mol%) and the second recording layer 311 was formed as a layer consisting substantially of a material expressed with $(GeTe)_{93}[(Al_2Te_3)_{0.5}(Bi_2Te_3)_{0.5}]_7$ (mol%).

[0244] As a result, it was found that when Al was used as "M", it was possible to obtain an excellent information recording medium of two-layer Blu-ray Disc form with which CAV recording may be conducted in a range of linear velocities wherein the highest linear velocity is 2.4 times or more the lowest linear velocity, similarly to Example 14.

(Example 17)

5

10

- 15 In Example 17, a recording film which was judged beina formed from a material expressed Ge_{40.0}Bi_{5.6}Te_{52.0}In_{2.4} (atomic %) by the ICP emission spectrometry which reduced was to (GeTe) 91 $[(In_2Te_3)_{0.3}(Bi_2Te_3)_{0.7}]$ 9 (mol%) by calculation was 20 analyzed by an X-ray microanalysis. The analysis method according to the ICP emission spectrometry was described in connection with Example 1. The composition analysis by the X-ray microanalysis was carried out using JXA8900R manufactured by JEOL. Ltd.
- 25 [0246] Specifically, a film was formed under the same

conditions as those employed for forming a film which was judged as having a composition of Ge40.2Bi5.5Te52.0In2.3 (atomic %) with respect to Ge, Bi, Te and In by the ICP emission spectrometry, and the composition of the film was analyzed by the X-ray microanalysis. As a result, this film judged having a was as composition of Ge40.4Bi5.5Te51.9In2.2 (atomic %) with respect to these four elements. There is not substantial difference between the results obtained by two analysis methods, and it was found that any of these methods may be employed as the method for analyzing the composition of the recording layer information recording medium of the present of the invention.

[0247] Here, the ICP emission spectrometry and the X-ray microanalysis were employed for elemental quantitative analysis. There are other analysis methods such as Auger electron spectroscopy and secondary ion mass spectroscopy. The similar quantitative analysis may be made by any of these methods.

20

25

5

10

15

(Example 18)

[0248] In Example 18, the same measurement as that in Example 17 was made with respect to a film which was judged, by the ICP emission spectrometry, as being formed from a material expressed with $Ge_{32.4}Sn_{13.9}Bi_{1.5}Te_{50.7}Al_{1.5}$

(atomic 읭) which was reduced to [(SnTe)_{0.3}(GeTe)_{0.7}]₉₇[(Al₂Te₃)_{0.5}(Bi₂Te₃)_{0.5}]₃ Specifically, a film was formed under the same conditions as those employed for forming a film which was judged as having a composition Ge32.6Sn14.0Bi1.4Te50.6Al1.4 of (atomic %) with respect to Ge, Sn, Bi, Te and Al by the ICP emission spectrometry, and the composition of the film was analyzed by the X-ray microanalysis. As a result, this film was judged having as а composition of Ge32.4Sn13.8Bi1.5Te50.8Al1.5 (atomic %) with respect these five elements. Therefore, it was found that any of the ICP emission spectrometry and the X-ray microanalysis may also be employed as the method for analyzing the composition of the recording layer containing Sn.

15

20

25

10

5

(Example 19)

In Example 19, an information recording medium 100-2(2) which was substantially the same as the information recording medium 100-2 was produced, and the composition analysis of the recording layer 104 was made. The recording layer 104 was formed using a sputtering target for forming a film consisting of a material expressed with $(GeTe)_{89}[(Ga_2Te_3)_{0.1}(Bi_2Te_3)_{0.9}]_{11}$ (mol%) which was reduced to $Ge_{38.2}Bi_{8.5}Te_{52.4}Ga_{0.9}$ (atomic%), and the film thickness was 7nm. The sample for composition

analysis was prepared according to the following procedures. A test piece was prepared by processing the information recording medium 100-2(2) by means of by focused ion beam (FIB) milling to slice a section. Next, the test piece was observed by a transmission electron microscope, while 5 elements detected by applying an electron beam to the section were analyzed. The analysis was conducted using 4000EX manufactured by JEOL. Ltd. as the transmission electron microscope and HF-2200 manufactured by Hitachi, 10 Ltd. for elemental analysis. As a result, the elemental composition obtained as to the portion of the recording layer was Ge38Bi9Te52Ga1 (atomic%). From this result, it was found that the composition analysis of the recording layer may be carried out by the method wherein the 15 recording layer is analyzed using the transmission electron microscope after the information recording medium has been fabricated. As a method for analyzing the composition of a recording layer in an information recording medium, there is a method wherein a blade of a cutter is inserted into an end section of the information recording medium to peel off 20 a substrate 101 and a dummy substrate 110 to expose the recording layer 104 or another layer followed measurement by Auger electron spectroscopy or secondary ion When this method is used and the mass spectroscopy. 25 recording layer is not exposed, the composition of the

recording layer may be determined from elemental composition of a depth range corresponding to the recording layer by measuring the change of elemental composition along a depth direction from a surface sequentially.

In Fig. 4, an information recording medium on

5

10

15

20

25

(Example 20)

[0250]

which information was recorded by electric means and a system for recording information on the medium are shown. In Example 20, an experiment was conducted wherein information was recorded, by applying an electric energy, on the information recording medium 400 shown in Fig. 4 in which medium the recording layer according to the present invention was used. The information recording medium 400 is what is called a memory.

[0251] The information recording medium 400 of this example was produced as follows. Firstly, a Si substrate 401 having a length of 5mm, a width of 5mm, and a thickness of 1mm of which surface was subjected to a nitriding treatment was prepared. On this substrate 401, a lower electrode 402 of Au with a thickness of 0.1µm was formed in an area of 1mm x 1mm. On the lower electrode 402, a recording layer 403 consisting substantially of a material expressed with (GeTe)89[(In2Te3)0.1(Bi2Te3)0.9]11 (mol%) with a thickness of 0.1µm was formed in an area of 1mm x

1mm, and a upper electrode 404 of Au with a thickness of $0.1 \mu m$ was formed in an area of $0.6 \mu m$ x $0.6 \mu m$.

5

10

15

20

25

Each of the lower electrode 402, the recording layer 403 and the upper electrode 404 was formed by a sputtering method. These sputterings were carried out attaching the substrate 401 to the film-forming device. Firstly, the lower electrode 402 was formed by sputtering with a power of 200W, using an Au sputtering. target (a diameter 100mm, a thickness 6mm), under an Ar gas atmosphere at a pressure of 0.13Pa. Next, the recording layer 403 was formed on the lower electrode 402 by DC sputtering with a power of 100W using a sputtering target containing Ge, In, Bi and Te (a diameter 100mm, a thickness 6mm) under an Ar gas atmosphere at a pressure of 0.13Pa. Next, the upper electrode 404 was formed by DC sputtering with a power of 200W using an Au sputtering target (a diameter 100mm, a thickness 6mm) under an Ar gas atmosphere at a pressure of 0.13Pa.

[0253] It was confirmed that reversible phase change occurred in the recording layer 403 by applying an electric energy to the information recording medium 400 thus produced, using the system shown in Fig. 4. As shown in Fig. 4, two parts 409 for application were bonded to the lower electrode 402 and the upper electrode 404 respectively with a lead wire of Au. Thus, an electrically

recording/reproducing device 411 was connected to information recording medium (memory) 400 through these application parts 409. Between the application parts 409 which were respectively connected to the lower electrode and the upper electrode 404 in the electrically recording/reproducing device 411, a pulse producing part 405 was connected through a switch 408, and a resistance measuring device 406 was also connected through a switch The resistance measuring device 406 was connected to a judgment part 410 which judged whether a resistance value measured by the resistance measuring device 406 was high or low. current pulse was flowed between the upper electrode 404 and the lower electrode 402 via the application parts 409 by means of the pulse producing part 405, while a resistance value between the lower electrode and the upper electrode 404 was measured by the resistance measuring device 406. Thus, the judgment part 410 judged whether the measured resistance value was high or low. Such resistance value changes because of the phase change of the recording layer 403.

5

10

15

20

25

[0254] In the case of this example, the melting point of the recording layer 403 was 600°C, the crystallization temperature thereof was 180° C, and the crystallization time thereof was 50ns. The resistance value between the lower electrode 402 and the upper electrode 404 was $1000 \ \Omega$ when

the recording layer 403 was in the state of amorphous phase, and was 20 Ω when it was in the state of crystalline phase. A current pulse of 20mA and 60ns was applied between the lower electrodes 402 and the upper electrode 404 when the recording layer 403 was in the state of amorphous phase (i.e. in the level of high resistance). As a result, the resistance value between the lower electrode 402 and the upper electrode 404 dropped and the recording layer 403 changed into the crystalline phase from the amorphous phase. Further, a current pulse of 200mA and 20ns was applied between the lower electrode 402 and the upper electrode 404 when the recording layer 403 was in the state of crystalline phase (i.e. in the level of low resistance). As result, the resistance value between the lower electrode 402 and the upper electrode 404 rose and the recording layer 403 changed into the amorphous phase from the crystalline phase. That is, it was confirmed that a reversible phase change occurred. Further, a high-speed transfer in 100ns or shorter time was able to be realized, whereby a high-speed memory was obtained.

5

10

15

20

25

[0255] From these results, it was found that the phase of the film consisting substantially of a material expressed with $(GeTe)_{89}[(In_2Te_3)_{0.1}(Bi_2Te_3)_{0.9}]_{11}(mol_8)$ could be changed by applying electric energy. Therefore, it was confirmed that the iformation recording medium 400

having this film as the recording layer 403 had a function of realizing high-speed recording and erasing of information by application of electric energy.

In this example, the recording layer 403 was formed as а layer consisting substantially (GeTe)89[(In2Te3)0.1(Bi2Te3)0.9]11 (mol%). Ιt was confirmed that when a similar memory was fabricated by forming a layer of (GeTe)89[(Ga2Te3)0.1(Bi2Te3)0.9]11 (mol%) or (GeTe)89[(Al2Te3)0.1(Bi2Te3)0.9]11 (mol%) as the recording layer, a high-speed reversible phase change occurred similarly. Further, it is possible to increase a memory capacity and to improve accessing function and switching function by connecting a plurality of information recording mediums 400.

5

10

15

20

25

demonstrated thereinbefore through various [0257] As examples of information recording mediums of this invention, present invention can be applied to any of information recording medium on which information is recorded with an optical means and an information recording medium on which information is recorded with an electric In other words, it is possible to obtain an means. information recording medium having high erasability and excellent archival characteristic at a high linear velocity and in a wide range of linear velocities which medium has not been realized, by forming the recording layer from a

Ge-Te-Bi-M-based material wherein Me_2Te_3 is added to GeTe-Bi₂Te₃-based material or a Ge-Sn-Te-Bi-M-based material wherein Sn-Te is further added to Ge-Te-Bi-M-based material.

5 INDUSTRIAL APPLICABILITY

[0258] The information recording medium of the present invention has a recording layer which shows excellent characteristics and is useful as a DVD-RAM disc, a DVD-RW disc, a DVD+RW disc, and an rewritable Blu-ray Disc as a large-capacity optical information recording medium. Further, the information recording medium of the present invention is useful as a electric high-speed switching device as an electrical information recording medium.