

Datenvorverarbeitung von nominalen Daten für Data Mining

Entstanden 2004/2005 bei der T-Systems International GmbH unter Betreuung von Prof. Dr. J. Fürnkranz

Seite 1 Von Oliver Werth

- Datenvorverarbeitung
- Prepared Information Environment
- Vorverarbeitung von nominalen Daten
- Exponieren semantischer Information

Seite 3

Der Zyklus

Seite 4

Datenvorverarbeitung Auf die Daten zugreifen

Seite 5

Daten betrachten

- Attribute verstehen
- Fehler erkennen
- Erste Hypothesen

Umgesetzt mit

- OLAP Tools
- SQL

Datenqualität verbessern

- Behandlung von Ausreißern
- Ungültige Werte
- Falsche Formate
- Dubletten
- Fehlende Werte
- Widersprüchliche Werte

Daten anreichern

Ergänzen um weitere Attribute

- Aggregationen von Werten
- Attribute aus externen Quellen
- Einbeziehen von Expertenwissen

Domäne des menschlichen Experten

Dimension verringern

- Vermeiden von Overfitting
- Reduzieren der Rechenzeit
- Entfernen von Selbstbezügen
- Entfernen von Attributen, die in der Praxis nicht zur Verfügung stehen

Stichprobenverteilung prüfen

Zufällige Verteilung des Targets

Erhaltung der Verteilung des Targets

Gleichmässige Verteilung von Target

Der Zyklus

Seite 11

Prepared Information Environment

Seite 12 Von Oliver Werth

Prepared Information Environment Überblick

- Ein Rahmen für die Vorverarbeitung
- Vereinfacht das erneute Anstoßen des Zyklus
- Sichert die Replizierbarkeit des Modells
- Routine bei periodisch zu erstellenden Modellen
- Spart Zeit

5

Prepared Information Environment PIE mit SQL

- Transformationen lassen sich mit SQL durchführen
- SQL Skripte können automatisiert erneut aufgerufen werden
- Ist bereits ein Nebenprodukt des Datenvorverarbeitungsprozesses

5

Seite 14 Von Oliver Werth

Prepared Information Environment PIE mit SAS

- Prozesse in einem Flussdiagramm.
- SAS 9 ist konzipiert um alle Aufgaben der Datenvorverarbeitung durchzuführen
- Bedingt transportabel

Prepared Information Environment Hybrides PIE

- Zusammenfügen von SQL-Skripten und SAS 8.2
- Output über ID anstelle eines Output-Moduls
- Flexibel
- Geringer Mehraufwand

Normalisieren von Schreibweisen

Seite 17 Von Oliver Werth

Wissen in der Datenvorverarbeitung

- Unstrukturierte Felder enthalten menschenlesbare Informationen
 - Produktnamen, Titel, Kommentare, Namen,...
- Anreichern der Daten ist eine kreative Arbeit
- Erfahrung und Fachwissen wird für viele
 Entscheidungen benötigt

Wissen in der Datenvorverarbeitung Datenbanken

- Expertenwissen zum befüllen notwendig
- Auflistung existenter Nachnamen
 - Befüllung sehr aufwändig
 - Datenbank wird sehr gross
- Angereichert mit Metadaten

Seite 19

Wissen in der Datenvorverarbeitung Heuristiken

- Levenshtein Distanz
- Präfix Matching
- Jaro Ähnlichkeitsmaß

$$Jaro(s;t) = \frac{1}{3} \cdot \left(\frac{|s'|}{|s|} + \frac{|t'|}{|t|} + \frac{|s'| - T_{s',t'}}{|s'|} \right)$$

Jaro-Winkler Maß

Jaro-Winkler(s; t) = Jaro(s; t) +
$$\frac{P'}{10}$$
 • (1 - Jaro(s; t))

Smith-Waterman Algorithmus

Wissen in der Datenvorverarbeitung Semantische Netzwerke

- Knoten beinhalten Begriffe
- Kanten repräsentieren Relationen
- Semantische Distanz zwischen Knoten
- Geeignet um Zusammenhänge und Assoziationen zu verarbeiten
 - Homonyme
 - Synonyme
 - Antonyme
 - Hyperonyme
 - Hyponyme
 - Meronyme

Wissen in der Datenvorverarbeitung Regeldatenbanken

- Regeln können wiederkehrende Fehler beheben
- Regeln können Wortformen normalisieren
- Eine Regeldatenbank enthält Regeln und Referenzen

T-Systems Int.

T-S-I GmbH

TSI GmbH

TSI GmbH

TSI GmbH

5

Normalisieren von Schreibweisen Problemstellung

- Welche Zeichen sind falsch?
- Welche Zeichen fehlen?
- Welche Zeichen sind verdreht?
- Welche Worte sind falsch?
- Welche Worte sind korrekt, gehören aber woanders hin?
- Welche Worte können unterschiedlich geschrieben werden?

Normalisieren von Schreibweisen Lösungskonzept

- Eindeutige Form notwendig
- Anwendung von Regeln
- In unbekannten Fällen werden mit Hilfe des Experten weitere Regeln erstellt
- Datenbank mit korrekten Formen
- Vergleich von Formen über Heuristiken

5

Erkennen von semantischen Fehlern Problemstellung

- Sind automatisiert fast nicht zu erkennen
- Der Computer kann die menschenlesbaren Informationen nicht ohne Hilfe verarbeiten

Seite 25

Erkennen von semantischen Fehlern Lösungskonzept

- Sichtung durch einen Experten
- Erkennen des Fehlers am Ende eines Datenvorverarbeitungszyklus
- Zur Automatisierung ist Wissen erforderlich
- Externe Informationen müssten automatisch herangezogen werden.

Seite 27 Von Oliver Werth

Brainstorming

Verringern der Dimension

Exponieren semantischer Information SCM Tool

Seite 30 Von Oliver Werth

Exponieren semantischer Information Evaluationszenario

- Verwendung der offiziellen MovieLens Datenbank
- Prognose der Bewertung anhand des Kinotitels
- Angereichert um manuell erstellte Genre
- Angereichert um mit SCM erstellte Attribute

Up in Smoke (1978)	
Two Deaths (1995)	// 3
Safe Passage (1994)	
Nine Months (1995)	
Money Train (1995)	7

Evaluationsresultat

Daten	Wahr- positiv	Gesamter Fehler	Normierte Präzision
Genre	0,0%	21,3%	-1,00
SCM 2.0	8,8%	22,3%	-0,82
SCM 2.5	14,7%	22,9%	-0,70
Genre_SCM 2.0	8,8%	23,9%	-0,82
Genre_SCM 2.5	5,8%	21,3%	-0,88

Seite 32 Von Oliver Werth

Vielen Dank für ihre Aufmerksamkeit

Oliver.Werth@Athistaur.de

Seite 33 Von Oliver Werth

