

Genetic Algorithms

66

Procedimentos computacionais **adaptativos** que exploram simultaneamente **diversos pontos** do espaço de busca a partir de conceitos da **genética** e da teoria de **seleção natural** das espécies .

Introdução

- Desenvolvidos por HOLLAND (1975; 1992), da Universidade de Michigan;
- Utiliza princípios da genéticos e da seleção natural de Darwin, para:
 - Abstrair e rigorosamente explicar os processos adaptativos em sistemas naturais;
 - Desenvolver simulações em computador que retenham os mecanismos originais encontrados em sistemas naturais.

Caracterização

- 2 espaços de trabalho: espaço genotípico e espaço fenotípico;
- População de pontos e não um único ponto;
- Descrições genéricas do que se quer ver presente na solução, através de funções de fitness;
- Regras de transição probabilísticas, e não regras determinísticas;
- Mudanças de estado são produzidas por operadores especializados.

Comparação

Mundo Real	Algoritmo Genético	
Indivíduo	Solução	
Cromossoma	Representação	
Reprodução sexual	Operador de cruzamento	
Mutação	Operador de mutação	
População	Conjunto de soluções	
Gerações	Ciclos	
Meio ambiente	Problema	

Operações básicas

- Seleção: privilegia os indivíduos mais aptos;
- Reprodução: indivíduos (ex: palavras binárias) são reproduzidos com base na aptidão;
- Crossover: troca de genes (pedaços de palavras).
- Mutação: troca aleatória de um gene (bit da palavra).

Fluxo do algoritmo

Representação

- Representação é fundamental na modelagem de um GA e deve:
 - Descrever o espaço de busca relevante ao problema;
 - Codificar geneticamente a "essência" do problema: evolução do "código" evolução da solução;
 - Ser compatível com os operadores (crossover e mutação) representação adequada evolução, otimização.

Representação

Tipo de Problema \leftrightarrow

Representação

- Numérico
- Ordem
- Grupo
- Inteiro
- Misto

- Binário, Real
- Lista
- Vetor
- Inteiro
- Mista

Operadores Genéticos Mecanismos de definição da busca

Os operadores de cruzamento e mutação são diretamente dependentes da representação de solução, isto é, da codificação adotada.

Operador de seleção parental

Torneio

Escolhem-se dois indivíduos ao acaso e retorna o melhor deles;

Roleta viciada;

 Probabilidade de seleção de um indivíduo está relacionada com seu fitness em relação a aptidão de toda população.

Probabilidade de escolha

Cromossoma	Palavra	х	Aptidão (x²)
А	100100	38	1296
В	010010	18	324
С	010110	22	484
D	000001	1	1

Operador de Cruzamento (Crossover)

- Combina dois indivíduos intercambiando suas informações genéticas;
- A probabilidade do cruzamento se denomina taxa de cruzamento define o percentual da população que passará pelo procedimento;
- Produz um busca local atenuada;
- O Potencialmente, destrói blocos construtivos (*Building blocks*);
- Muitas variações.

Operador de Mutação

- Introduz novas informações genéticas nos indivíduos;
- A probabilidade de mutação é denominada taxa de mutação e usualmente são valores pequenos;
- Altas taxas de mutação aproximam o AG de um procedimento aleatório;

Exemplos:

Cruzamento (*one point*) e mutação (*bit flip*) em representação binária

Como tratar soluções infactíveis

- Descarta
 - Ignora o indivíduo
 - Dependendo do espaço pode ser impraticável;
 - Pode gerar alto desperdício de informações promissoras.
- Repara
 - Altera o indivíduo até que este satisfaça as restrições;
 - Atentar para o custo e complexidade.
- Penaliza
 - Deteriora-se o fitness proporcionalmente ao nível de infactibilidade do indivíduo;
 - Útil para preservação de material genético promissor;

Seleção para próxima geração

- O Roleta;
- Ranking (Alitista);
- O Diversidade;
- Bi-classista;
- Aleatória:
 - Salvacionista;
 - Não-salvacionista.
- Torneio;
- Steady state.

Outros operadores

- O Elitismo;
 - Evita, explicitamente, o descarte de material genético já evoluído;
 - Garante n melhores indivíduos na geração seguinte;
- Reinicialização;
 - Superar um estagnação da população;
- Niching
 - Evitar áreas indesejáveis do espaço de soluções.

Critérios de parada

- Qualidade de solução;
- Estagnação / convergência;
- Quantidade de avaliações (indivíduos * gerações);
- Tempo;

Parametrização

- Método de inicialização;
 - Analisar tendências;
- Tamanho da população (fixo ou variável);
 - Bastante sensível ao problema;
- Quantidade de ciclos (Gerações);
- Taxa de cruzamento (tipicamente, 60% a 90%);
- Taxa de mutação (tipicamente, 0,5% a 5%);

Exemplo de gráfico de convergência

(Release Planning Problem)


```
public int MAX_GENERATIONS = 1000;
public int POPULATION_SIZE = 100;
public float CROSSOVER_RATE = 0.95f;
public float MUTATION_RATE = 0.1f;
```

Exemplo de gráfico de convergência

(Release Planning Problem)

Gerações

```
public int MAX GENERATIONS = 5000;
public int POPULATION_SIZE = 100;
public float CROSSOVER RATE = 0.95f;
public float MUTATION_RATE = 0.1f;
```

Obrigado!

Perguntas?

altinoneto@inf.ufg.br

