11

QE/K 67-83

25 August 1967

IDENTIFICATION OF PLASTICS USED IN NAVAL ORDNANCE

19960402 027

QUALITY EVALUATION LABORATORY

NAVAL TORPEDO STATION KEYPORT, WASHINGTON 98345

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

DTIC QUALITY INSPECTED 1

PICATINNY ARSENAL DOVER, N. J.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

QE/K 67-83

25 August 1967

IDENTIFICATION OF PLASTICS USED IN NAVAL ORDNANCE

ABSTRACT

- l. The Naval Torpedo Station, Keyport, Washington, was assigned responsibility for conducting a continuing program of plastics identification by BUWEPS Instruction 5450.4 of 24 March 1960.
- 2. Tests are described for identifying plastics commonly found in Naval ordnance weapons. The tests require relatively simple test procedures and equipment. Identification tests described are sensory, burning, chemical, and infrared spectroscopic tests. Typical spectrograms are included.

C. M. THORNE

By direction

Prepared by:

S. B. Knapp J. A. Arne

- Chemical Engineer

Chemist

Coordinated by:

J. G. Turbitt

- Head, Physical Sciences Division

Prepared under the direction of:

C. M. Thorne

- Technical Director

TABLE OF CONTENTS

	PA	GE
INTRODUCTION SENSORY TEST BURNING TEST CHEMICAL TEST INFRARED SEBIBLIOGRAPE	ON	1 2 3 4 6
APPENDICES		
A B C ENCLOSURE	List of Plastic Samples Sent as Enclosure (1) A-Burning Chart B-List of Recommended Reading C-UNDER SEPARATE COVER	. т
(1)	Set of Plastic Samples	
FIGURES		
1	nyrolyzer	L1
2	Polyurethane foam (flexible) pyrolyzate	12
3	Wrethane polymer (elastomer) pyrolyzate	12
4	Polyurethane foam (soft) pyrolyzate	12
5	Nylon 6/6 pyrolyzate	13
6	Polyamide film ("Capran") pyrolyzate	13
7	ARC purolyzate	14
8	Phenolic pyrolyzate	14
9	Polycarbonate pyrolyzate	14
10	Cellulose acetate pyrolyzate	15
11	Silicone sealant pyrolyzate	15
12	Silicone rubber pyrolyzate	15
13	Methacrylate ("Lucite") pyrolyzate	16
14	Methacrylate ("Transoptic") pyrolyzate	16
15	Polyester nyrolyzate	16
16	acerone	17
17	"Viron A" DVIDIVZALE	17
18	Polyvinyl alcohol pyrolyzate	17
19	PVC welding rod pyrolyzate	18
20	Cellulose acetate ("Lumarith") film -	10
- -	from acetone ····································	19
21	Cellulose acetate-butyrate ("Kodapak II")	1.0
- -	film - from acetone ····································	19
22	Methacrylate ("Lucite") film - from ethylene dichloride	19

TABLE OF CONTENTS, continued

		PAGE
FIGURES		
23	Methacrylate ("Transoptic") film - from ethylene dichloride	20
24	Nitrocellulose film - from acetone	20
25	PVC film - from tetrahydrofuran	
26	Fluorohalocarbon ("Aclar") - 1-mil film	
27	Polyamide ("Capran") - 1-mil film	
28	Cellulose ("Cellophane") - 1-1/2-mil film	
29	Polyester ("Mylar") - 1/4-mil film	22
30	Cellulose acetate (upper) and its pyrolyzate	
	(lower)	23
31	Lucite (upper) and its pyrolyzate (lower)	24
32	Polyvinyl chloride (upper) and its pyrolyzate	
	(lower)	25
33	Capran (upper) and its pyrolyzate (lower)	26

QUALITY EVALUATION LABORATORY Keyport, Washington

IDENTIFICATION OF PLASTICS USED IN NAVAL ORDNANCE

INTRODUCTION

Identification of plastics is essential in the evaluation and quality control of Naval ordnance weapons primarily to assure that a particular plastic required by a specification has been used by the manufacturer. The identification problem has been compounded in recent years by the sharp rise in the number and varieties of plastics used in ordnance. The problem is further increased because many of these plastics closely resemble each other, at least superficially; and for certain applications, may be used more or less interchangeably.

These developments have made it necessary to find plastic identification methods that are rapid, simple, and reliable, and that require a minimum of laboratory test equipment. While there are a variety of techniques available for identifying plastics, no single method has proven entirely satisfactory for furnishing positive proof of the identity of a plastic. A general rule is that the findings derived from one identification test should always be confirmed by additional tests.

A comparative study was made of methods for identifying plastics frequently found in Naval ordnance items to determine the simplest and most effective of these for meeting specific problems of plastics identification. This study was made by the Quality Evaluation Laboratory of the Naval Torpedo Station, Keyport, Washington, under responsibilities delegated to it by the Naval Ordnance Systems Command to conduct a continuing program of plastics identification and evaluation.

It is an assumption in this report that the reader already has a general understanding and familiarity with plastics, chemistry, and laboratory test procedures. In the final analysis, the proof of a plastic's identity rests on the skill, knowledge, and ingenuity of a trained and experienced examiner.

The findings presented in this report are intended primarily for Naval chemical laboratories having comparatively limited test facilities, and the identification tests recommended are those that require relatively simple test procedures and equipment. It is stressed that this report is designed to serve as a general guide to plastics identification and not as a complete and comprehensive review of the field. For this reason specific and detailed supplementary information is cited from a number of other sources, but is not incorporated.

The identification tests described in this report are presented in the order of their increasing complexity. The sequence in which they are discussed is as follows: (1) sensory tests, (2) burning tests, (3) chemical tests, and (4) infrared spectroscopic tests. An important adjunct to the report is enclosure (1), a collection of plastics samples frequently used in the manufacture of Naval Ordnance which is intended to assist in several of the identification tests.

SENSORY TESTS

The first step in identifying a plastic is a gross, or overall, examination of the sample in which the examiner uses his senses of sight, smell, and touch. While a comparatively simple procedure, this initial examination should not be neglected and is essential in narrowing the number of possible plastics to be considered. Clues such as the appearance, feel, and odor of the sample are all important factors, and may be sufficient for an experienced examiner to tentatively identify the plastic with reasonable certainty. However, it should be remembered that a sensory examination alone is not a basis for making a positive identification and findings should always be verified by further, more extensive testing.

At this point a note of caution is in order. Plastic parts which have been irradiated with gamma rays, electron beams, and other radiation sources may change in appearance and feel which may mislead the examiner.

The sensory test, then, will usually greatly lessen the work required in the confirming testing that follows. For example, an observation that the sample is colorless and clear would indicate that the plastic is not a phenolic, melamine, urea-formaldehyde, nylon, Teflon, acetal, polyethylene (unless in very thin film), polypropylene, polyurethane, silicone, acrylonitrile-butadiane-styrene (ABS), neoprene, or Thiokol, and, thus, the field of investigation would be greatly narrowed.

Since many of the factors of importance in the sensory examination are difficult to describe or define, and, in fact, must be experienced first hand, the set of plastics samples (enclosure (1)) will be helpful in familiarizing the examiner with these identifying characteristics.

Several plastics that can be more readily identified through sensory observation are described as follows: Phenolics generally can be identified by their characteristic odor generated by rubbing, heating, or filing. Teflon has a firm very slippery surface and is generally white or milky in appearance. This milky appearance disappears sharply when the sample is heated and reappears just as sharply when it has cooled. Nylon often can be identified by an

experienced examiner without his being able to state the basis for his identification other than characteristic feel and appearance which cannot be accurately described. A number of the newer plastics resemble nylon and for this reason any preliminary identification should be verified by additional tests. Acrylics are frequently marketed in transparent sheet form. This, combined with their characteristic odor developed on heating or rubbing, will identify them. High-pressure polyethylene has a waxy, soft surface which is easily scratched. Generally, this characteristic is sufficient to identify it but, again, confirming tests should be made. Acetal has a visual appearance which, while quite characteristic and difficult to describe, might best be described as flour-like. This appearance, together with its unique burning characteristics (a clear, blue flame like burning alcohol), identifies it. Silicone elastomers have a characteristic soft surface feel. Here again, burning the material serves as a confirming test, yielding a white ash that glows brightly while burning.

Thermoplastics are distinguished from thermosetting plastics by a procedure which, while not strictly a burning test, does involve heating the plastic. A heated soldering iron (heated to below its operating temperature, about 200° to 220° C) is pressed against the sample: if the iron sinks into the sample it is thermoplastic; if the iron does not sink into the sample it is thermosetting.

BURNING TESTS

In the preceding discussion, burning tests are mentioned as an effective means for verifying the results of sensory tests. Although one of the simplest and most useful methods of identifying plastics, burning tests require considerable experience on the part of the examiner. The samples of known plastics (enclosure (1)) should be tested by burning and the effects carefully noted. Appendix A is a table which lists the plastic samples included in enclosure (1).

In many cases, brand names have been used on the sample labels in enclosure (1) because they are simpler and better known. This table gives the label name, the chemical name, and a description of the specimen.

The burning test requires little equipment, usually an alcohol lamp, Bunsen burner, or similar burner giving a nonluminous flame, a pair of tweezers, and a length of copper wire. The copper wire is used to distinguish between those plastics which contain halogens, usually chlorine, and those that do not. The wire is heated to a red heat, touched to a sample of the plastic, and then returned to the flame. A green flame indicates a halogen. This test does not give a positive result with fluorine compounds such as Teflon, but is positive with chlorine, bromine, or iodine compounds.

The chart (Appendix B), originally published in the Modern Plastics Encyclopedia Issue for 1960¹, is a more complete guide for using burning tests, and furnishes specific criteria required in burning tests. Additions have been made to this chart to incorporate some of the newer plastics used in ordnance manufacture.

The following describes the general effects of burning plastics to be observed in making an identification. The chart (Appendix B) should be referred to for specific identification. To perform a burning test, a small sample of the material to be identified is held with tweezers in the flame. The ease of ignition, reaction to the heat of the flame (does the sample melt, swell, etc.), and characteristics of the flame and smoke are noted. The sample is then removed from the flame and subsequent results observed (does the flame extinguish itself, what type of ash is left, etc.). It should be emphasized here that if the sample material is not self-extinguishing, the flame should be blown out and the odor noted with caution. That is, one should be careful when smelling the fumes from a burned plastic because some are either toxic or highly irritating. Many of the odors generated by burning plastics can only be described as "characteristic" and for this reason must be experienced by the examiner while comparing them to the odors of the known samples.

In certain cases, great care must be used in interpreting the burning test. If the plastic contains appreciable amounts of plasticizers or fillers, the burning characteristics of these additives may give misleading indications. For example, any soft, flexible plastic which cannot be readily identified as one of the standard elastomers should be suspected of containing plasticizers. These plastics can be identified by burning tests after the additive has been extracted with a solvent such as petroleum ether. If the sample hardens after extracting the additive, the presence of a plasticizer may be considered as confirmed. The remaining plastic can then be identified by a burning test.

CHEMICAL TESTS

In some cases a burning test alone does not provide positive identification, and may only narrow the search to a few plastics. In this event, the plastic may be more positively identified by chemical tests. For example, it may be difficult to distinguish between cellulose acetate, cellulose acetate butyrate, and cellulose acetate propionate by a burning test. The identification can be extended by placing a sample of the plastic overnight in a 20% solution of sodium hydroxide. When the solution is acidified with sulfuric acid, the characteristic odor of

¹Modern Plastics Encyclopedia Issue for 1960, Volume 37 Number 1A, Bristol, Connecticut, McGraw-Hill, Inc., September 1959

the particular organic acid that results is noted. If necessary, the organic acid can be distilled off and identified by further chemical tests.

Another set of plastics difficult to distinguish by a burning test is urea-formaldehyde and melamine-formaldehyde. While these two plastics are readily differentiated from practically all other known plastics by their burning characteristics (non-melting with a characteristic odor) they are difficult to distinguish from each other. Several tests are available which will identify the two. The first relies on the superior resistance of melamine-formaldehyde to weak acids. The sample is boiled for several minutes in 1% sulfuric acid. After 10 minutes of boiling, melamine-formaldehyde remains unattacked, while the urea-formaldehyde shows signs of attack (a frosted surface). A second test may be made by refluxing some of the ground resin in 100 milliliters of $3\underline{N}$ · hydrochloric acid using a fractionating distilling column as a condenser. If the plastic is melamine-formaldehyde, a white sublimate of melamine-hydrochloride will collect in the lower bulb of the condenser and be washed back into the flask. $^2,^3$

High- and low-density polyethylene and polypropylene can be distinguished from each other by means of a simple density test. The density of an alcohol-water solution is adjusted until one plastic just floats and the other (higher density) sinks. The specific gravity of the solution can be readily measured and the density of the plastic deduced.

Differential thermal analysis (DTA) is another technique which may be useful in identifying polymers. By DTA it is possible to detect

 $^{^2}$ A useful guide to chemical identification tests has been published in Modern Plastics Encyclopedia 1966, Volume 43 Number 1A, Bristol, Conn., McGraw-Hill, Inc., September 1965 (pages 34 through 38). Reprints can be ordered from Modern Plastics, Reprint Department, 1301 Avenue of the Americas, New York, N.Y., 10019. The test procedures described are considerably more elaborate than burning tests, but are more positive. The tests are divided into three series: The first is based on a series of solubility tests; the second is based on sodium fusion followed by tests for sulphur, nitrogen, phosphorus, chlorine, and fluorine; and the third consists of specific tests for individual plastics which may have been indicated by the two previous tests. This latter series can be used to separate similar plastics, such as methacrylate and acrylate, which are difficult to distinguish by burning tests alone. ³Another recommended source for chemical identification tests is The Identification of Plastics and Rubbers, K. J. Saunders, London, England, Chapman and Hall Ltd., 1966.

differences in polyethylene that may be due to molecular weight distribution, thermal history, etc. However, not enough information is available for this to be a positive method for identification.

INFRARED SPECTROSCOPIC TESTS

Infrared spectroscopy is perhaps the most positive method of identifying plastics. Some plastic samples can be tested as received without any preparation if they are already in film form. A thin film can be placed directly into the sample beam of the spectrophotometer and its infrared spectrum recorded. If the sample is a thick film, a sheet, or a coating on a sheet of material, the multiple internal reflection technique can be used.

If the plastic cannot be tested directly, some form of sample preparation is necessary. Films can be prepared by dissolving the plastic in a suitable solvent; or if the sample is thermoplastic a film may be pressed at elevated temperature. Another method of preparation relies on pyrolysis of the plastic, followed by infrared inspection of the pyrolyzate. For some samples it may be necessary to grind the material into small particles and then use the Nujol mull or potassium bromide pellet technique.

Before discussing sample preparation methods in greater detail, it is emphasized that it is highly desirable that a file of infrared spectrophotograms of known plastics be compiled. Once such a file is compiled, many plastics can be easily identified. The Quality Evaluation Laboratory at Keyport has many of these infrared spectra and will prepare and supply copies on request. In general, however, it is believed more satisfactory for each laboratory to prepare its own spectra using known materials. Other sources of infrared spectra of plastics are listed in Appendix C.

Plastic samples for which a solvent can be found can be cast into a film suitable for infrared spectrographic analysis. Finding a solvent is largely a matter of trial and error; however, the solubility data in the Modern Plastics Encyclopedia for 1966 identification method is helpful. The solvent chosen should have only moderate volatility to avoid "blushing" in the film, but it must have sufficient volatility to allow it to be readily removed from the film. Some plastics are excellent film formers and films cast from these can easily be stripped from the surface they are cast on (such as a glass slide) and transferred to a sample carrier for placing in the sample beam of the infrared spectrophotometer.

On the other hand, some plastics form such weak films that the film cannot readily be stripped. For such plastics the simplest procedure is to cast the film directly on a sodium chloride crystal. One precaution

QE/K 67-83

to be observed in this procedure is that the solvent must be completely removed from the film. Another precaution is that certain plastics such as the polycarbonates have a strong tendency to absorb moisture from the air and this must be guarded against. It should be noted that it is often possible to obtain a clear plastic film from a plastic which has been filled with opaque materials, since the fillers often settle out of the solution. A list of plastics solvents and a file of infrared spectra are available from the Dow Chemical Company by Richard A. Nyquist.⁴

A plastic sample may contain one or more additives in addition to the basic resin. Plasticizers, fillers, stabilizers, antistatic additives, etc., all have characteristic absorption patterns which may interfere with the identification of the plastic. However, this can be improved somewhat by extracting a sample of the material with a solvent such as petroleum ether. The residual plastic can then be identified by making a film as described above. A useful variation, especially if the original sample is a film, is to evaporate the solvent which contains the plasticizer and put the residual plasticizer in the reference beam of the spectrometer, while the original sample film is placed in the sample beam. When properly done, only the absorption bands of the materials not soluble in the extractant will appear in the resulting spectrogram. If the extractant is properly chosen the spectrogram will be that of the plastic. A file of infrared spectra for additives and plasticizers is available from the Dow Chemical Company by Russell B. DuVall.

If the sample is thermoplastic it may be possible to press a film from it while it is heated. A useful method is found in the article by Coakley and Berry. The equipment required consists of a hot plate, a laboratory press, and two flat polished hard steel discs. To make the film, the discs are placed on the heated hot plate with the thermoplastic sample on one of the discs. When the plastic has reached its softening point the second disc is placed on top of the sample. The mold containing the sample is transferred to the press and pressed at about 15,000 pounds. The film is allowed to cool under pressure in the mold.

A simpler variation of the above is to use a laboratory press equipped with hot plates that have thermostatic controls. After the

⁴Nyquist, Richard A., <u>Infrared Spectra of Plastics and Resins</u>, Second Edition, The Dow Chemical Co., Midland, Mich., 1961

⁵DuVall, Russell B., <u>Infrared Spectra of Plasticizers and Other Additives</u>, The Dow Chemical Co., Midland, Mich., 1962

⁶Coakley, J. E., and Berry, H. H., "Pressed Film Technique for Obtaining Infrared Spectra of Thermoplastic Materials," <u>Applied Spectroscopy</u>, Volume 20 Number 6, November-December 1966

hot plates have reached the desired temperature the polished steel discs with the sample between them are placed between the hot plates, and then pressed at 12,000 to 15,000 pounds for 2 or 3 minutes. The discs may be removed and allowed to cool. If the film sticks to the discs it may be necessary to pretreat them with a parting agent such as a heat-resistant silicone fluid, which must be subsequently removed. A film of polyvinyl alcohol or some other plastic film may serve as a parting agent.

The above methods apply to plastics which can be easily dissolved or which may be pressed into a film. For other materials the pyrolysis technique may be useful.

The simplest method is to place a sample of the material in a 15 by 85 mm test tube and heat the lower end of the tube strongly in a Bunsen burner. If the tube is held nearly horizontally, the pyrolyzate will collect in the upper end of the tube and can be transferred to a sodium chloride crystal as a "smear". If needed a second crystal can then be placed on top of the pyrolyzate to form a sandwich. The pyrolyzate may be dissolved in carbon tetrachloride or carbon disulfide and then handled as a liquid sample. While this method will give identical spectrograms with identical samples, it will not always give the same spectrogram with different samples of the same generic type of plastic. Thus, pyrolyzates from different polyurethanes, for instance, may have spectrograms with relatively little in common. For this reason this method can be used for positive identification only if the spectrogram compares with a spectrogram from a known material; otherwise, it is difficult to use.

With certain materials, such as melamine, Mylar, ureas, and some others, pyrolyzates are solids or are difficult to obtain. Such pyrolyzates are better obtained using an instrument such as the Barnes Pyrolyzer in which the pyrolyzate is collected directly on the sodium crystal with no need for transfer. Figure 1 is such a spectrogram.

For samples which cannot be made into films or do not form suitable pyrolyzates, it may be necessary to grind the polymer into small particles and then obtain the infrared spectrum by means of the Nujol mull or potassium bromide pellet techniques.

If the plastic is sufficiently brittle it can be filed or scraped. Rubbery polymers may sometimes be ground by first freezing them with dry ice or liquid nitrogen. Sometimes solvents (like hot toluene) can help in breaking up samples into small particles. The small particles can be mixed with potassium bromide (on the order of 1 to 100) before making the pellet, or the particles may instead be mulled with Nujol or Fluorolube.

A group of spectrograms is included with this report to illustrate some of the problems involved. For instance, figures 2, 3, and 4 are spectrograms from three urethanes which demonstrate differences found between similar plastics. The N=C=O band at 4.4 microns and the band at 4.7 microns (figure 3) appear in some but not others. Similar problems with polyamides are illustrated by figures 5 and 6. Both charts were made from pyrolyzate smears but the Nylon 6/6 (figure 5) has fairly broad peaks at 10.1 and 11.0 microns which do not appear in the Capran curve (figure 6). Also the latter chart has several sharp peaks at 8.9, 9.2, 10.2, 10.5, 11.2, 11.5, and 12.2 microns which are not seen in figure 5.

Figures 7 through 19 are typical spectrograms obtained from smears of pyrolyzates of various plastics. Figures 20 through 25 are typical spectrograms of films formed from solutions of various plastics; and figures 26 through 29 are spectrograms of plastic films as manufactured. Figure 26 also demonstrates the formation of prominent interference bands in the 2- to 7-micron region.

The fact that the infrared absorption curve obtained from a pyrolyzate is often quite different from that obtained from the original plastic is demonstrated by figures 30, 31, 32, and 33. The first shows the difference between cellulose acetate and its pyrolyzate. plastic gives two separate peaks at 2.85 and 3.4 microns while the pyrolyzate combines these into a broad peak. Also the cellulose acetate gives three equal peaks at 12.5, 13.3, and 14.1 microns but the pyrolyzate gives only the peak near 13.3 microns. In the case of Lucite (figure 31) the original material gives peaks at 8.0, 8.7, 10.2 and 10.4 microns while the pyrolyzate does not. On the other hand a peak at 3.0 microns is much stronger in the pyrolyzate curve. figure 32 the original polyvinyl chloride has strong absorption bands at 7.0, 7.5, 8.0, 9.1, and 10.5 microns which the pyrolyzate does not have. Figure 33 shows the difference between a polyamide film, Capran, and its pyrolyzate. The pyrolyzate gives peaks at 7.5, 10.2, 10.5, 11.2, 11.5, and 12.2 microns which the film does not have. In some cases the original material has a more complex spectrum but in other cases the reverse is true.

BIBLIOGRAPHY

- Coakley, J.E. and Berry, H.H. "Pressed Film Technique for Obtaining Infrared Spectra of Thermoplastic Materials." Applied Spectroscopy, Volume 20 Number 6, November-December 1966.
- Du Vall, Russell B. <u>Infrared Spectra of Plasticizers and Other Additives</u>. The Dow Chemical Co., Midland, Mich., 1962.
- Modern Plastics Encyclopedia 1966. Volume 43 Number 1A, Bristol, Conn., McGraw-Hill, Inc., September 1965.
- Modern Plastics Encyclopedia Issue for 1960. Volume 37 Number 1A, Bristol, Conn., McGraw-Hill, Inc., September 1959.
- Nyquist, Richard A. <u>Infrared Spectra of Plastics and Resins</u>, Second Edition, The Dow Chemical Co., Midland, Mich., 1961.
- Saunders, K. J., The <u>Identification of Plastics and Rubbers</u>, London, England, Chapman and Hall Ltd., 1966.

Figure 1. Melamine-formaldehyde pyrolyzate - Barnes pyrolyzer

Figure 2. Polyurethane foam (flexible) pyrolyzate

Figure 3. Urethane polymer (elastomer) pyrolyzate

Figure 4. Polyurethane foam (soft) pyrolyzate

Figure 5. Nylon 6/6 pyrolyzate

Figure 6. Polyamide film ("Capran") pyrolyzate

Figure 7. ABS pyrolyzate

Figure 8. Phenolic pyrolyzate

Figure 9. Polycarbonate pyrolyzate

Figure 10. Cellulose acetate pyrolyzate

Figure 11. Silicone sealant pyrolyzate

Figure 12. Silicone rubber pyrolyzate

Figure 13. Methacrylate ("Lucite") pyrolyzate

Figure 14. Methacrylate ("Transoptic") pyrolyzate

Figure 15. Polyester pyrolyzate

Figure 16. PVC pyrolyzate from ("Tygon") tubing extracted with methylethyl ketone and acetone

Figure 17. "Viton A" pyrolyzate

Figure 18. Polyvinyl alcohol pyrolyzate

Figure 19. PVC welding rod pyrolyzate

Figure 20. Cellulose acetate ("Lumarith") film - from acetone

Figure 21. Cellulose acetate-butyrate ("Kodapak II") film - from acetone

Figure 22. Methacrylate ("Lucite") film - from ethylene dichloride

Figure 23. Methacrylate ("Transoptic") film - from ethylene dichloride

Figure 24. Nitrocellulose film - from acetone

Figure 25. PVC film - from tetrahydrofuran

Figure 26. Fluorohalocarbon ("Aclar") - 1-mil film

Figure 27. Polyamide ("Capran") - 1-mil film

Figure 28. Cellulose ("Cellophane") - 1-1/2-mil film

Figure 29. Polyester ('Mylar") - 1/4-mil film

Figure 30. Cellulose acetate (upper) and its pyrolyzate (lower)

Figure 31. Lucite (upper) and its pyrolyzate (lower)

Figure 32. Polyvinyl chloride (upper) and its pyrolyzate (lower)

Figure 33. Capran (upper) and its pyrolyzate (lower)

APPENDIX A

LIST OF PLASTIC SAMPLES
SENT AS ENCLOSURE (1) UNDER SEPARATE COVER

No.	Name on Label	Chemical Name	Description	
1.	ACETAL	ACETAL	1/4 in. white rod	
2.	ACRYLIC	ACRYLIC	<pre>1 in. x 3 in. sheet (clear)</pre>	
3.	ABS	ACRYLONITRILE- BUTADIENE-STYRENE COPOLYMER	2 in. sq. green plate	
10.	CELLULOSE-ACETATE	CELLULOSE-ACETATE	.015 in. sheet 3 in. x 5 in.	
11.	CELLULOSE ACETATE-BUTYRATE	CELLULOSE ACETATE-BUTYRATE	.015 in sheet 3 in. x 5 in.	
13.	PYROXYLIN	CELLULOSE NITRATE WITH TRICRESYL PHOSPHATE	3/4 in. rod	
18.	DAP	DIALLYL PHTHALATE	1-1/4 in. blue disc	
20.	EPOXY R	EPOXY, AMINE HARDENED, WITH FIBER GLASS	1/2 in. x 3 in. bar	
C 20.	EPOXY C	EPOXY, CAST	1-1/2 in. x 2-1/2 in. sheet (amber)	
21.	ETHYL CELLULOSE	ETHYL CELLULOSE	white powder in pol y- styrene vial with polyethylene cap	
24.	MELMAC	MELAMINE-FORMALDEHYDE	3/4 in. x 1-1/2 in. plate	
26.	NYLON	POLYAMIDE, NYLON 101, 6/6	5/16 in. rod	
29.	MICARTA GR 221	PHENOLIC, FABRIC BASE	1/4 in. tan rod	

APPENDIX A, continued

No.	Name on Label	Chemical Name	Description
30.	PHENOLIC PAPER REIN.	PHENOLIC, PAPER BASE	2 in. tan squares
32.	PHENOLIC, MIN. FILL.	PHENOLIC, MINERAL FILLED	1-1/4 in. green disc
34.	POLYESTER, CAST	POLYESTER, CAST, UNSATURATED	3 in. x 1-1/2 in. sheet (clear)
.36.	POLYESTER, GLASS REIN.	POLYESTER, FIBERGLASS REINFORCED, UNSATURATED	3 in. x 1-1/2 in. sheet
	MYLAR-A	POLYESTER, SATURATED, FILM	A010 in. sheet, 2 in. x 4 in.
	MYLAR-D	POLYESTER, SATURATED, FILM	D0075 in. sheet (clear) 2 in. x 4 in.
37.	POLYETHYLENE, LOW DENSITY	POLYETHYLENE	1/8 in. white rod
38.	POLYETHYLENE, HIGH DENSITY	POLYETHYLENE, HIGH DENSITY	1/8 in. white rod
40.	POLYPROPYLENE	POLYPROPYLENE	1/8 in. white rod
42.	STYRENE	POLYSTYRENE	clear fragments
43.	TEFLON	POLYTETRAFLUORO- ETHYLENE	3/16 in. white rod
44.	KEL-F	POLYTRIFLUOROCHLORO- ETHYLENE	1/4 in. rod (translucent)
48.	STYRENE ACRYLONITRILE	STYRENE ACRYLONITRILE	$1-1/2 \times 3$ in. sheet
49.	UREA	UREA-FORMALDEHYDE	white granules in polystyrene vial with polyethylene cap
51.	PVA	POLYVINYL ALCOHOL	4 in. x 4 in. sheet

APPENDIX A, continued

No.	Name on Label	Chemical Name	Description
53.	PVC	POLYVINYL CHLORIDE	2 in. x 2 in. gray sheet x 1/8 in. rod
55.	SARAN	POLYVINYLIDENE- CHLORIDE	5 in. x 12 in. film .001 in. (clear)
57.	POLYCARBONATE	POLYCARBONATE	1/2 in. rod
58.	URETHANE	POLYURETHANE	tubing, 1/2 in. I.D.
59.	SILICONE	SILICONE	1/2 in. x $1-1/2$ in. white sheet
60.	POLYSULFONE	POLYSULFONE	amber granules (dark) in glass vial
61.	PHENOXY	PHENOXY	amber granules (light) in glass vial
62.	PPO	POLYPHENYLENE OXIDE	1/4 in. and 3/8 in. rods
63.	NORYL	NORYL	1/4 in. and 3/8 in. rods

	PLASTIC MATERIAL	EASE OF IGNITION	SELF EXTINGUISH- ING	CHARACTER OF FLAM
1.	Acetal	Moderate	No	Clean blue flame; no smoke -
2.	Acrylic	Readily	No	Yellow top, blue around bott edges; some black smoke; spu
3.	Acrylonitrile-butadiene- styrene polymer blend	-Readily	No	Yellow; black smoke
4. 5.	Alkyd (mineral filled)			Yellow, blue edges; black sm
6.		•		Yellow; large spurts; black smoke
7.	rubber	•		Dark yellow; smoky; clumps o carbon in the air
8. 9.	Butyl rubberCasein	Readily	No Yes 	Yellow; black smokeYellow: grey smoke
10.	Cellulose acetate	Readily	№	Dark yellow; some sooty blac smoke
11.	Cellulose acetatebutyrate	Readily tomoderate	No	Dark yellow with slight blue edges; some black smoke (not sooty)
12.	Cellulose acetate propionate	Readily	No	Dark yellow; some black smok
13.		Very readily	No, burns ex tremely fast	Yellows; very hot
14.	Cellulose propionate	Readily		Dark yellow; some black smok
15.	Chlorinated polyether	Difficult	Yes	Sputtering, bottom green, to yellow; dense black smoke; c of carbon in the air
16. 17.	Cold molded (phenolic		Yes	Yellow; may give off black s
18.	or melamine bond) Diallyl phthalate	90 sec. (Mil M-14 E) Yes	Yellow; black smoke

APPENDIX B - BURNING CHART

(REPRINTED FROM MODERN PLASTICS ENCYCLOPEDIA ISSUE FOR 1960, VOLUME 37 NUMBER $\overline{1A}$, BRISTOL, CONNECTICUT, MCGRAWHILL, INC., SEPTEMBER 1959, BY PERMISSION OF MCGRAWHILL, INC.)

CHARACTER OF FLAME	BEHAVIOR OF MATERIAL	ODOR
, blue around bottom	to burn Softens; usually no drip; very little char left after flame is	
ack smoke	blown out Softens and chars	Characteristic
	Chars, cracks	
rge spurts; black	Swells; softens	Characteristic, formaldehyde
w; smoky; clumps of	Softens	Characteristic
ack smoke	Softens; cracks	Characteristic (medicinal) Burning protein materials, e.g. wool, milk curds, silk, etc.
**, some sooty black	Melts; drips; drippingscontinue to burn	Characteristic (burnt sugar)
w with slight blue e black smoke (not	Melts; drips; drippings	Characteristic; butyric acid; (rancid butter)
v; some black smoke	Melts; drips; drippingscontinue to burn	Characteristic; propionic acid
ery hot	Material burns completely	Burns too fast to detect
v; some black smoke	Melts; drips; drippingscontinue to burn	Characteristic; propionic acid
, bottom green, top ise black smoke; clumps in the air	Softens, no drip	Characteristic
	Chars	Bituminous; waxy odor
ack smoke	Softens	Characteristic

	PLASTIC MATERIAL	EASE OF IGNITION	SELF EXTINGUISH- ING	CHARACTER OF FLAM
19.	Epoxy, phthalicanhydride hardened	-		
20.	Epoxy, amine hardened	Readily	No	Yellow, spurts heavy blac
21.	Ethyl cellulose	Readily	No	Yellow, blue edges
22.	Lignin, laminated paper -			purple edge on flame
23.		difficult		Yellow; purplish blue aro bottom; spurts
24.	Melamine-formaldehyde	Difficult	Yes	Light yellow
25.	-	-		Orange-yellow; black smok green section around bott
26.	Nylon	Moderate	Yes	Blue with yellow top
27.		Moderate		Yellow; sparks
28.	Phenolic - impregnated wood	Moderate	Yes, but continues to burn for a few minutes after re- moval from flame	-Yellow
29.	Phenolic, laminated, fabric base	Moderate		Yellow; a little black sm
30.		Moderate	No	Yellow; a little black sm
31.	Phenolic, laminated,	Difficult	Yes	Yellow
32.	Phenolic, molded, filler-	Difficult	Yes	Yellow
33.	Phenolic, molded, no filler			
34.	Polyester, cast	Readily	No	Yellow; black
35.	Polyester, standard unfilled	Moderate	No	Yellow; black smoke, burn steadily
36.	Polyester-glass mat laminate	Difficult	No	Yellow; some soot
37.				Bottom blue, top yellow -
38.	Polyethylene (high density)	Moderate		white smoke
39.	Polyethylene (filled)	Difficult	Yes	Yellow with slight smoke

APPENDIX B - BURNING CHART (Cont)

CTER OF FLAME	BEHAVIOR OF MATERIAL	ODOR
s black smoke	Melts at edge; chars	Characteristic
-	Chars	Characteristic Characteristic; resembles cellulose acetates, except LT composition which resembles burning oil and wax
n flame	Swells; cracks between laminae; - softens	Resembles burning wood
:s	Swells, cracks	slightly sweet
	Swells, cracks; turns white at edges of burned section	Characteristic penetrating odor; resembles urea; ammonia and formalde- hyde present
ı around bottom		Characteristic, slight resemblance to natural rubber, sharp component present
	Melts, drips, and froths Cracks badly and deeply	
	Swells; cracks	Wood; phenolic
:tle black smoke	Swells; cracks between laminae; cloth continues to glow	Fabric; phenolic
:tle black smoke	Swells; cracks between laminae	Paper; phenolic
	Surface cracks (blisters)and oxidizes	Phenolic; formaldehyde
	Swells, cracks; (wood-filledblisters and has afterglow and white ash)	temporarily marked by odor from decomposing organic fillers such as woodflour, e.g. burnt wood
s less than cast	Cracks	Phenolic
	Melts at edges No drip or falling particles; softens; burns steadily	Characteristic, polyester Characteristic (slightly bituminous)
soot	Chars	Characteristic
	Melts and drips Melts and drips	
light smoke	Softens, char remains	Burning paraffin

	PLASTIC MATERIAL	EASE OF IGNITION	SELF EXTINGUISH-	CHARACTER OF FLAM
	PLASTIC FIATERIAL	EASE OF IGNITION	ING	OIMMOTH OF THE
40.	Polypropylene	Readily to Moderate (depending on thick -ness)		Bottom blue; top yellow; white smoke
41.		Readily		Similar to polystyrene
42.	Polystyrene	Readily	No	Orange-yellow; black dens smoke; large clumps of carbon in the air
43.		_	Yes	Yellow, green near base -
44.	ethylene Polytrifluorochloro ethylene	Bunsen flame Does not ignite		
45.		Readily	No	Orange-yellow; black smok spurts or shoots of light yellow flame
46.				Dark yellow; black smoke
47.	Shellac	Easily	No -	Orange-yellow; blue aroun bottom edges; black smoke a few blue-light yellow s
48.	Styrene-acrylonitrile copolymer	Readily	No	Yellow; heavy black smoke
49.		Difficult	Yes	Pale yellow with light - greenish-blue edge
50.		•		Dark yellow flame; spurts smoke; clumps of carbon so than that from polystyren
51.	Vinyl alcohol compound	Readily	No	
52.	Vinyl butyral	Readily	No	Bottom blue, top yellow -
53.	Vinyl chloride	Difficult	Yes	Yellow, green on bottom e spurts green and yellow; smoke
54.	Vinyl chloride-acetate	Difficult to moderate	Yes	
55.	Vinylidene chloride		Yes	Yellow, green on edges; s
56.	Vulcanized fibre	Moderate	No	Light yellow; purple edge
57.				Yellow; some black smoke
58.				Yellow; spurts black smok
59.	Silicone	Moderate	No	Small yellow, white smoke
60.				Yellow, black sooty smoke
61.				Yellow-orange black smoke
62.				Yellow, black sooty smoke
63.	Nory1A - 8060 tested; PRDA - 81			Yellow, black sooty smoke

APPENDIX B - BURNING CHART (Cont)

FER OF FLAME	BEHAVIOR OF MATERIAL	ODOR
op yellow; some	Melts and drips	Burning paraffin
black dense	Softens, bubbles	Characteristic, methylstyrene monomer Characteristic, styrene monomer
air near base	Melts, bubbles, slightcharring	Very little odor
	Softens	Characteristic
black smoke; ts of light	Swells, material does notsoften, but liquid comes to surface	Characteristic
	Softens	
blue around plack smoke; it yellow spurts	Softens	Characteristic (sealing wax)
	Melts; bubbles; chars more than polystyrene	Characteristic, polyacrylonitrile
edge	Swells; cracks; turns white at edges of burned section	Characteristic; urea; strong with formaldehyde; (strong pancake odor) Characteristic; resembles other vinyls except for absence of chlorine; resembles polystyrene
	Softens; spatters; blisters	
	Melts and drips; drippingsusually do not continue to burn Softens	
•	Softens; chars; bubbles	Characteristic; hydrochloric acid detectable
on edges; spurts	Softens; chars; leaves ash	Characteristic; chlorine
purple edges	Swells at edges; splits onlaminae; smolders	Burning hay or grass
lack smoke	Melts, bubbles and chars	Weak, characteristic
	Melts and drips, turns dark brown- Swells, cracks, turns white, ash glows	
sooty smoke	Melts, drips, black ash	Characteristic
black smoke sparks -	Melts sharply and drips	Characteristic
	Non-dripping, black ash	
	Non-dripping, black ash	Characteristic
nanufacturer		

APPENDIX C

LIST OF RECOMMENDED READING

- Coakley, J.E., and Berry, H.H., "Pressed Film Technique for Obtaining Infrared Spectra of Thermoplastic Materials," Applied Spectroscopy, Volume 20 Number 6, November-December 1966 Saunders, K.J., The Identification of Plastics and Rubbers, London, England, Chapman and Hall Ltd, 1966.
- DuVall, Russell B., <u>Infrared Spectra of Plasticizers</u> and <u>Other Additives</u>, The Dow Chemical Co., Midland, Mich., 1962.
- Haslam, J., and Willis, H.A., <u>Identification</u> and <u>Analysis</u> of <u>Plastics</u>, Princeton, New Jersey, D. VanNostrand Co., Inc., 1965.
- Harms, Donald L., "Identification of Complex Organic Materials," Analytical Chemistry, Volume 25, August 1953.
- Hausdorff, H.H., <u>Analysis of Polymers by Infrared Spectroscopy</u>, paper presented to Pittsburgh conference on Analytical Chemistry and Applied Spectroscopy in 1951, Perkin-Elmer Corp., Norwalk, Conn., 1951.
- Hausdorff, H.H., "Short Cuts to the Analysis of Plastics by Infrared Spectroscopy," Society for Applied Spectroscopy Bulletin, August 1951 (Available from Beckman Instruments, Fullerton, Calif. as Reprint R-44).
- Hummel, Dieter O., <u>Infrared Spectra of Polymers in the Medium and Long Wavelength Regions</u>, New York, John Wiley and Sons Ltd., 1966.
- Hummel, Dieter O., The Infrared Spectra of Polymers, Resins, and Related Materials in the 700-250 cm⁻¹ Region and Their Analytical Application, Technical Documentary Report ASD-TDR-63-712, Wright-Patterson Sir Force Base, Ohio, April 1964 (Available from Defense Documentation Center, AD 600552).
- Infrared Spectroscopy Its Use as an Analytical Tool in the Field of Paints and Coatings, paper presented by Infrared Spectroscopy Committee of the Chicago Society for Paint Technology at the 38th Annual Meeting of the Federation of Societies for Paint Technology, Chicago, Ill., October 1960.
- Kagarise, R.E., and Weinberger, L.A., <u>Infrared Spectra of Plastics</u>
 and <u>Resins</u>, NRL Report 4369, Naval Research Laboratory, Washington,
 D. C., May 1954 (Available from Defense Documentation Center,
 Alexandria, Va., AD 32635).

- Kendall, David N., Hampton, Robert W., Hausdorff, Harry, and Pristera, Frank, <u>Catalog of Infrared Spectra of Plasticizers</u>, report of the Infrared Subcommittee, Technical Committee, Society for Applied Spectroscopy (no date).
- McGarvey, J.W., <u>Identification of Elastomers by Infrared Spectra of Their Pyrolyzates</u>, Report 58-2159, Rock Island Arsenal, Rock Island, Ill., August 1958.
- Modern Plastics Encyclopedia Issue for 1960, Volume 37 Number 1A, Bristol, Conn., Plastics Catalogue Corp., September 1959.
- Modern Plastics Encyclopedia 1966, Volume 43 Number 1A, Bristol, Conn., McGraw-Hill, Inc., September 1965.
- Nyquist, Richard A., <u>Infrared Spectra of Plastics and Resins</u>, Second Edition, The Dow Chemical Co., Midland, Mich., 1961.
- Steele, Doris V., <u>Infrared Analysis of the Polymerization and Long-Term Stability of Epoxy Resins</u>, NOLTR 65-84, Naval Ordnance Laboratory, White Oak, Md., June 1965 (Available from Defense Documentation Center, AD 466612).
- Stimler, Suzanne S., and Kagarise, R.E., <u>Infrared Spectra of Plastics and Resins Part 2 Materials Developed Since 1954</u>, NRL Report 6392, National Research Laboratory, Washington, D. C., May 1966 (Available from Clearinghouse for Federal Scientific and Technical Information, Department of Commerce, AD 634427).

Naval Torpedo Station, Keyport, Wash. Knapp USED IDENTIFICATION OF PLASTICS IN NAVAL ORDNANCE, by S.B. 26 pp, 33 figures 25 August 1967. and J.A. Arne (QE/K 67-83)

UNCLASSIFIED

Tests are described for identifying plastics commonly found in Naval ordnance weapons.

UNCLASSIFIED

Identification Plastics 2. I.

Title

IDENTIFICATION OF PLASTICS USED IN NAVAL ORDNANCE, by S.B. (QE/K 67-83)

Naval Torpedo Station, Keyport, Wash.

26 pp, 33 figures 25 August 1967. and J.A. Arne

of 24 March

5450.4

1960

BUWEPSINST

Task:

Identi fication Title 1. H. 2.

Knapp

Plastics

of 24 March BUWEPSINST 5450.4 Fask: 1960

UNCLASSIFIED

Tests are described for identifying plastics commonly found in Naval ordnance weapons.

UNCLASSIFIED

Naval Torpedo Station, Keyport, Wash. (QE/K 67-83)

Knapp IDENTIFICATION OF PLASTICS USED IN NAVAL ORDNANCE, by S.B.

25 August 1967. and J.A. Arne

26 pp, 33 figures

UNCLASSIFIED

Tests are described for identifying plastics commonly found in Naval ordnance weapons.

UNCLASSIFIED

Identification Plastics 1.5

Title

of 24 March BUWEPSINST 5450.4 rask: 1960

Naval Torpedo Station, Keyport, Wash. Knapp IDENTIFICATION OF PLASTICS USED IN NAVAL ORDNANCE, by S.B. and J.A. Arne (QE/K 67-83)

Identification

Title

Plastics

25 August 1967. 26 pp, 33 figures

of 24 March

5450.4

1960

Task:

BUWEPSINST

UNCLASSIFIED

Tests are described for identifying plastics commonly found in Naval ordnance weapons.

UNCLASSIFIED

Naval Torpedo Station, Keyport, Wash.	(QE/K 67-83) IDENTIFICATION OF PLASTICS USED	IN NAVAL ORDNANCE, by S.B. Knapp	and J.A. Arne	25 August 1967.	26 pp, 33 figures
Nava]	[] [] []	IN	and	25	26

5450.4 of 24 March rask: 1960

Naval Torpedo Station, Keyport, Wash. IN NAVAL ORDNANCE, by S.B. Knapp IDENTIFICATION OF PLASTICS USED and J.A. Arne (QE/K 67-83)

Identi fication

Plastics

Identification

Title

Plastics

of 24 March BUWEPSINST 5450.4 Task: 1960

25 August 1967. 26 pp, 33 figures

BUWEPSINST

UNCLASSIFIED

Tests are described for identifying plastics commonly found in Naval ordnance weapons.

UNCLASSIFIED

UNCLASSIFIED

JNCLASSIFIED

Tests are described for identifying plastics commonly found in Naval ordnance weapons.

Naval Torpedo Station, Keyport, Wash. IN NAVAL ORDNANCE, by S.B. Knapp IDENTIFICATION OF PLASTICS USED and J.A. Arne (QE/K 67-83)

Identification

Title

Plastics

Naval Torpedo Station, Keyport, Wash.

(QE/K 67-83)

IN NAVAL ORDNANCE, by S.B. Knapp IDENTIFICATION OF PLASTICS USED

and J.A. Arne

Identification

Title

Plastics

25 August 1967. 26 pp, 33 figures

5450.4 of 24 March

1960

26 pp, 33 figures 25 August 1967.

BUWEPSINST

Task:

UNCLASSIFIED

of 24 March BUWEPSINST

5450.4

1960

Task:

UNCLASSIFIED

Tests are described for identifying plastics commonly found in Naval ordnance weapons.

UNCLASSIFIED

Tests are described for identifying plastics commonly found in Naval ordnance weapons.

UNCLASSIFIED

Security Classification

DOCUMENT CONTROL DATA - R&D (Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)					
(Security classification of title, body of abstract and index 1. ORIGINATING ACTIVITY (Corporate author)	ing annotation must be sit	2ª. REPOR	T SECURITY C LASSIFICATION		
Naval Torpedo Station		UNCLASSIFIED			
Keyport, Washington		2 b. GROUP			
3. REPORT TITLE					
Identification of Plastics Used i	n Naval Ordnan	ce			
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)					
5. AUTHOR(S) (Last name, first name, initial)					
Knapp, S. B. and Arne, J. A.					
6. REPORT DATE August 1967	74. TOTAL NO. OF P	AGES	7b. NO. OF REFS		
Sa. CONTRACT OR GRANT NO.	9a. ORIGINATOR'S RE	PORT NUM	BER(S)		
	QE/K 6	7-83			
b. PROJECT NO.			,		
c.	9b. OTHER REPORT this report)	NO(S) (Any	other numbers that may be assigned		
d.					
10. A VAIL ABILITY/LIMITATION NOTICES			,		
Distribution of this document is	unlimited.				
11. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY ACTIVITY				
·	NAVORDSYSCOM, Navy Department, Washington, D. C.		Department,		
13. ABSTRACT					
Tests are described for identifyi weapons. The tests require relat Identification tests described ar infrared spectroscopic tests. Ty	cively simple p se sensory, bur	rocedur ning, c	es and equipment.		
	•				

DD 1 FORM 1473

Security Classification	LIN	KA	LINK B		LINKC	
KEY WORDS	ROLE	₩T	ROLE	wT	ROLE	WT
Plastics						
Identification						
Test	į –					
Sensory						
Burning						
Chemical						
Infrared Spectroscopic						
			1			
		}				

INSTRUCTIONS

- 1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.
- 2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.
- 2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
- 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
- DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.
- 5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.
- 6. REPORT DATE: Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.
- 7s. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.
- 7b. NUMBER OF REFERENCES. Enter the total number of references cited in the report.
- 8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.
- 8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.
- 9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
- 9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).
- AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those

imposed by security classification, using standard statements such as:

- "Qualified requesters may obtain copies of this report from DDC."
- (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
- (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
- (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
- (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

- 11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.
- 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.
- 13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS). (S). (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rales, and weights is optional.

DISTRIBUTION OF COPIES

Copy No.	
1	Commander Naval Ordnance Systems Command (044) Navy Department, Washington, D. C. 20360
2	Officer in Charge Naval Mine Engineering Facility Naval Weapons Station (QEL) Yorktown, Virginia 23491
3	Commanding Officer Naval Ammunition Depot (QEL) Crane, Indiana 47522
4	Commanding Officer U. S. Naval Ammunition Depot (QEL) FPO San Francisco, California 96612
5	Commanding Officer Naval Weapons Station (QEL) Concord, California 94520
6	Commanding Officer Naval Ammunition Depot (QEL) St. Juliens Creek Portsmouth, Virginia 23702
7	Commanding Officer Naval Underwater Weapons Research & Engineering Station Newport, Rhode Island 02840
8	Commanding Officer Naval Propellant Plant (QAS) Indian Head, Maryland 20640
9	Commanding Officer Naval Weapons Station (QEL) Seal Beach, California 90740
10	Commanding Officer Naval Air Rework Facility (Mat. Engr. Div. Code 342) Naval Air Station
11	Commanding Officer Naval Air Rework Facility (Mat. Engr. Div. Code 342) Naval Air Station, North Island San Diego, California 92135

DISTRIBUTION OF COPIES, continued

ору	No.	
12		Commanding Officer Naval Air Rework Facility (Mat. Engr. Div. Code 342) Naval Air Station Pensacola, Florida 32508
13		Commanding Officer Naval Air Rework Facility (Mat. Engr. Div. Code 342) Naval Air Station Jacksonville, Florida 32212
14		Commanding Officer Naval Air Rework Facility (Mat. Engr. Div. Code 342) Naval Air Station Norfolk, Virginia 23511
15		Commanding Officer Naval Air Rework Facility (Mat. Engr. Div. Code 342) Naval Air Station Quonset Point, Rhode Island 02872
16		Commanding Officer Naval Air Rework Facility (Mat. Engr. Div. Code 342) Naval Air Station Lakehurst, New Jersey 08733
17	Brown and Market Brown	Commanding Officer Naval Air Rework Facility (Mat. Engr. Div. Code 342) Marine Corps Air Station Cherry Point, North Carolina 28533
18` -	19	Plastics Technical Evaluation Center Picatinny Arsenal Dover, New Jersey 07801
20 -	39 .	Administrator Defense Documentation Center for Scientific and Technical Information Alexandria, Virginia 22314
40 -		Naval Torpedo Station (QEL) Keyport, Washington 98345