Assignment 4

1. Materials scientists working for a cement mixing company explored the ingredients in the cement impacted the heat of the cement during hardening. They investigated the impact of 5 composition variables (see below) on the heat during hardening (calories/gram). The data can be found in the file cement.csv on Canvas.

Regressor	Description
\mathbf{x}_1	% tricalcium aluminate
\mathbf{x}_2	% tricalcium silicate
X3	% tetracalcium alumino ferrite
X4	% dicalcium silicate
X5	% sodium oxide

Use only the lm() command in R for this question. Do not use any variable selection functions or downloaded packages in R (e.g., step()).

- a. Use forward selection to identify the "best model". Use a (conditional) t-test with $\alpha_{\rm IN}$ =0.10 as the cutoff to decide whether or not to include a variable in the model. At each step in the forward selection, state the variable that was added. At the end of the procedure, state the final model.
- b. Use backward elimination to identify the "best model". Use a (conditional) t-test with α_{out} =0.10 as the cutoff to decide whether or not to remove a variable from the model. At each step in the procedure, state the variable that was removed from the model. At the end of the procedure, state the final model.
- c. In the first step of the forward procedure in part a, both x_4 and x_5 has small p-values. However, in the second step of the forward selection procedure, when both x_4 and x_5 were considered together in the model, neither of the variables had a p-value less than α_{IN} . Why do you suppose this happened?
- d. Use stepwise regression to identify the "best model" using t-tests with $\alpha_{IN} = \alpha_{out} = 0.10$. At the end of each step, state the variable that was removed or added from the model. At the end of the procedure, state the final model.
- e. What is the AIC for the models in a, b and d?

2. Consider the multiple linear regression model:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5 + \varepsilon.$$

State the appropriate coditional or extra sums of squares (e.g., see section 3.3.2) and F-statistic (with degrees of freedom) for testing the following hypotheses:

- a. H_0 : $\beta_1 = \beta_2 = \beta_3 = \beta_4 = \beta_5 = 0$
- b. H_0 : $\beta_4 = \beta_5 = 0$, given that the first 3 variables are in the model
- 3. A tube flow reactor is a chemical process in which materials in typically a series of tubes create desired chemical products. A experiment was conducted to study the relationship between the concentration of a desired product, NbOCl₃ (y), and the concentration of COCl₂ (x₁), reaction time (x₂), molar desnity (x₃), mole fraction (x₄), tube temperture (x₅), ramp-up time (x₆) and product density (x₇). The data can be found in reactor.csv on Canvas.
 - a. For each p = 2, ..., 5, find the maximum R^2 . Plot the maximum R^2 versus p. Which model would you choose for these data and why?
 - b. For each p = 2, ..., 5, find the minimum MS_{Res} . Plot the minimum MS_{Res} versus p. Which model would you choose for these data and why?
 - c. For each p = 2, ..., 5, find best model using Mallow's C_p . Plot the best C_p versus p. Which model would you choose for these data and why?