Rational points on curves and tropical geometry.

David Zureick-Brown (Emory University) Eric Katz (Waterloo University)

Slides available at http://www.mathcs.emory.edu/~dzb/slides/

Specialization of Linear Series for Algebraic and Tropical Curves BIRS

April 3, 2014

Faltings' theorem

Theorem (Faltings)

Let X be a smooth curve over $\mathbb Q$ with genus at least 2. Then $X(\mathbb Q)$ is finite.

Example

For $g \geq 2$, $y^2 = x^{2g+1} + 1$ has only finitely many solutions with $x, y \in \mathbb{Q}$.

Uniformity

Problem

- **1** Given X, compute $X(\mathbb{Q})$ exactly.
- **2** Compute bounds on $\#X(\mathbb{Q})$.

Conjecture (Uniformity)

There exists a constant N(g) such that every smooth curve of genus g over \mathbb{Q} has at most N(g) rational points.

Theorem (Caporaso, Harris, Mazur)

Lang's conjecture \Rightarrow uniformity.

Coleman's bound

Theorem (Coleman)

Let X be a curve of genus g and let $r=\operatorname{rank}_{\mathbb{Z}}\operatorname{Jac}_X(\mathbb{Q}).$ Suppose p>2g is a prime of good reduction. Suppose r< g. Then

$$\#X(\mathbb{Q}) \leq \#X(\mathbb{F}_p) + 2g - 2.$$

Remark

- **1** A modified statement holds for $p \leq 2g$ or for $K \neq \mathbb{Q}$.
- 2 Note: this does not prove uniformity (since the first good *p* might be large).

Stoll's bound

Theorem (Stoll)

Let X be a curve of genus g and let $r = \operatorname{rank}_{\mathbb{Z}} \operatorname{Jac}_X(\mathbb{Q})$. Suppose p > 2g is a prime of good reduction. Suppose r < g. Then

$$\#X(\mathbb{Q}) \leq \#X(\mathbb{F}_p) + \frac{2r}{r}$$
.

Bad reduction bound

Theorem (Lorenzini-Tucker, McCallum-Poonen)

Let X be a curve of genus g and let $r = \operatorname{rank}_{\mathbb{Z}}\operatorname{Jac}_X(\mathbb{Q})$. Suppose p > 2g is a prime. Suppose r < g.

Let \mathscr{X} be a regular proper model of X. Then

$$\#X(\mathbb{Q}) \leq \#\mathscr{X}^{\mathsf{sm}}(\mathbb{F}_p) + 2g - 2.$$

Remark

A recent improvement due to Stoll gives a uniform bound if $r \leq g-3$ and X is hyperelliptic.

Main Theorem

Theorem (Katz-ZB)

Let X be a curve of genus g and let $r = \operatorname{rank}_{\mathbb{Z}} \operatorname{Jac}_X(\mathbb{Q})$. Suppose p > 2g is a prime. Let \mathscr{X} be a regular proper model of X. Suppose r < g. Then

$$\#X(\mathbb{Q}) \leq \#\mathscr{X}^{\mathsf{sm}}(\mathbb{F}_p) + \frac{2r}{r}$$
.

Example (hyperelliptic curve with cuspidal reduction)

$$-2 \cdot 11 \cdot 19 \cdot 173 \cdot y^2 = (x - 50)(x - 9)(x - 3)(x + 13)(x^3 + 2x^2 + 3x + 4)$$
$$= x(x + 1)(x + 2)(x + 3)(x + 4)^3 \mod 5.$$

Analysis

 $X(\mathbb{Q})$ contains

$$\{\infty, (50,0), (9,0), (3,0), (-13,0), (25,20247920), (25,-20247920)\}$$

- **3** $7 \leq \#X(\mathbb{Q}) \leq \#\mathscr{X}_5^{sm}(\mathbb{F}_5) + 2 \cdot 1 = 7$

This determines $X(\mathbb{Q})$.

Non-example

$$y^2 = x^6 + 5$$
$$= x^6 \mod 5.$$

Analysis

- $\mathscr{X}^{\mathsf{sm}}(\mathbb{F}_5) = \{\infty^+, \infty^-, \pm (1, \pm 1), \pm (2, \pm 2^3), \pm (3, \pm 3^3), \pm (4, \pm 4^3)\}$
- **3** $2 \le \#X(\mathbb{Q}) \le \#\mathscr{X}_5^{sm}(\mathbb{F}_5) + 2 \cdot 1 = 20$

Models $(\mathscr{X}/\mathbb{Z}_p)$

$$y^2 = x^6 + 5$$
$$= x^6 \mod 5.$$

Note: no \mathbb{Z}_p -point can reduce to (0,0).

Models – not regular

$$y^2 = x^6 + 5^2$$
$$= x^6 \mod 5$$

Now: (0,5) reduces to (0,0).

Models – not regular (blow up)

$$y^2 = x^6 + 5^2$$
$$= x^6 \mod 5$$

Blow up.

Models – semistable example

$$y^2 = (x(x-1)(x-2))^3 + 5$$

= $x^6 \mod 5$.

Note: no point can reduce to (0,0). Local equation looks like xy = 5

Models – semistable example (not regular)

$$y^2 = (x(x-1)(x-2))^3 + 5^4$$

= $x^6 \mod 5$

Now: $(0,5^2)$ reduces to (0,0). Local equation looks like $xy=5^4$

Models - semistable example

$$y^2 = (x(x-1)(x-2))^3 + 5^4$$

= $x^6 \mod 5$

Blow up. Local equation looks like $xy = 5^3$

Models – semistable example (regular at (0,0))

$$y^2 = (x(x-1)(x-2))^3 + 5^4$$

= $x^6 \mod 5$

Blow up. Local equation looks like xy = 5

Main Theorem

Theorem (Katz-ZB)

Let X be a curve of genus g and let $r = \operatorname{rank}_{\mathbb{Z}} \operatorname{Jac}_X(\mathbb{Q})$. Suppose p > 2g is a prime. Let \mathscr{X} be a regular proper model of X. Suppose r < g. Then

$$\#X(\mathbb{Q}) \leq \#\mathscr{X}^{\mathsf{sm}}(\mathbb{F}_p) + 2r.$$

Chabauty's method

(*p*-adic integration) There exists $V \subset H^0(X_{\mathbb{Q}_p}, \Omega^1_X)$ with $\dim_{\mathbb{Q}_p} V \geq \underline{g} - \underline{r}$ such that,

$$\int_{P}^{Q} \omega = 0 \qquad \forall P, Q \in X(\mathbb{Q}), \omega \in V$$

(**Coleman, via Newton Polygons**) Number of zeroes in a residue disc D_P is $\leq 1 + n_P$, where $n_P = \#(\text{div }\omega \cap D_P)$

(Riemann-Roch)
$$\sum n_P = 2g - 2$$
.

(Coleman's bound)
$$\sum_{P \in X(\mathbb{F}_p)} (1 + n_P) = \#X(\mathbb{F}_p) + 2g - 2$$
.

Example (from McCallum-Poonen's survey paper)

Example

$$X: y^2 = x^6 + 8x^5 + 22x^4 + 22x^3 + 5x^2 + 6x + 1$$

1 Points reducing to $\widetilde{Q} = (0,1)$ are given by

$$x = p \cdot t$$
, where $t \in \mathbb{Z}_p$
$$y = \sqrt{x^6 + 8x^5 + 22x^4 + 22x^3 + 5x^2 + 6x + 1} = 1 + x^2 + \cdots$$

Stoll's idea: use multiple ω

(**Coleman, via Newton Polygons**) Number of zeroes of $\int \omega$ in a residue class D_P is $\leq 1 + n_P$, where $n_P = \# (\text{div } \omega \cap D_P)$

Let
$$\widetilde{n_P} = \min_{\omega \in V} \# (\operatorname{div} \omega \cap D_P)$$

(2 examples) $r < g - 2, \, \omega_1, \, \omega_2 \in V$

(Stoll's bound) $\sum \widetilde{n_P} \leq 2r$. (Recall dim_{Q_p} $V \geq g - r$)

Stoll's bound – proof $(D = \sum \widetilde{n_P} P)$

(Wanted)

$$\dim H^0(X_{\mathbb{F}_p}, K-D) \ge g-r \Rightarrow \deg D \le 2r$$

(Clifford)

$$H^0(X_{\mathbb{F}_p},K-D')
eq 0 \Rightarrow \dim H^0(X_{\mathbb{F}_p},D') \leq \frac{1}{2} \deg D' + 1$$

$$(D' = K - D)$$

$$\dim H^0(X_{\mathbb{F}_p},K-D) \leq \frac{1}{2}\deg(K-D)+1$$

(Assumption)

$$g-r \leq \dim H^0(X_{\mathbb{F}_p}, K-D)$$

(Recall $\dim_{\mathbb{O}_n} V \geq g - r$)

Complications when $X_{\mathbb{F}_p}$ is singular

- **1** $\omega \in H^0(X,\Omega)$ may vanish along components of $X_{\mathbb{F}_p}$;
- ② i.e. $H^0(X_{\mathbb{F}_n}, K D) \neq 0 \not\Rightarrow D$ is special;

Summary

The relationship between dim $H^0(X_{\mathbb{F}_p}, K - D)$ and deg D is less transparent and does not follow from geometric techniques.

Rank of a divisor

Definition (Rank of a divisor is)

- 2 $r(D) \ge 0$ if |D| is nonempty
- (0) $r(D) \ge k$ if |D E| is nonempty for any effective E with deg E = k.

Remark

- If X is smooth, then $r(D) = \dim H^0(X, D) 1$.
- ② If X is has multiple components, then $r(D) \neq \dim H^0(X, D) 1$.

Remark

Ingredients of Stoll's proof only use formal properties of r(D).

Formal ingredients of Stoll's proof

Need:

(Clifford)
$$r(K-D) \leq \frac{1}{2} \deg(K-D)$$

(Large rank) $r(K-D) \geq g-r-1$

(Recall,
$$V \subset H^0(X_{\mathbb{Q}_p}, \Omega^1_X)$$
, $\dim_{\mathbb{Q}_p} V \geq g - r$)

Semistable case

Idea: any section $s \in H^0(X, D)$ can be scaled to not vanish on a component (but may now have zeroes or poles at other components.)

Divisors on graphs:

Semistable case

Idea: any section $s \in H^0(X, D)$ can be scaled to not vanish on a component (but may now have zeroes or poles at other components.)

Divisors on graphs:

Semistable case

Idea: any section $s \in H^0(X, D)$ can be scaled to not vanish on a component (but may now have zeroes or poles at other components.)

Divisors on graphs:

Divisors on graphs

Definition (Rank of a divisor is)

- (0) $r(D) \ge 0$ if |D| is nonempty
- **3** $r(D) \ge k$ if |D E| is nonempty for any effective E with deg E = k.

Remark

 $r(D) \geq 0$

Divisors on graphs

Definition (Rank of a divisor is)

- (2) $r(D) \ge 0$ if |D| is nonempty
- **3** $r(D) \ge k$ if |D E| is nonempty for any effective E with deg E = k.

Remark

 $r(D) \geq 1$

Let $\mathscr X$ be a curve over $\mathbb Z_p$ with semistable special fiber $\mathscr X_{\mathbb F_p}=\bigcup X_i.$

Definition (Divisor associated to a line bundle)

Given $\mathcal{L} \in \operatorname{Pic} \mathscr{X}$, define a divisor on Γ by

$$\sum_{v \in V(\Gamma)} (\deg \mathcal{L}_{X_i}) v_{X_i}.$$

Let \mathscr{X} be a curve over \mathbb{Z}_p with semistable special fiber $\mathscr{X}_{\mathbb{F}_p} = \bigcup X_i$.

Definition (Divisor associated to a line bundle)

Given $\mathcal{L} \in \operatorname{Pic} \mathscr{X}$, define a divisor on Γ by

$$\sum_{v \in V(\Gamma)} (\deg \mathcal{L}_{X_i}) v_{X_i}.$$

Example: $\mathcal{L} = \omega_{\mathscr{X}}$, $\mathscr{X}_{\mathbb{F}_p}$ totally degenerate $(g(X_i) = 0)$

Let \mathscr{X} be a curve over \mathbb{Z}_p with semistable special fiber $\mathscr{X}_{\mathbb{F}_p} = \bigcup X_i$.

Definition (Divisor associated to a line bundle)

Given $\mathcal{L} \in \text{Pic } \mathscr{X}$, define a divisor on Γ by

$$\sum_{v \in V(\Gamma)} (\deg \mathcal{L}_{X_i}) v_{X_i}.$$

Example: $\mathcal{L} = \mathcal{O}(H)$ (*H* a "horizontal" divisor on \mathscr{X})

Let $\mathscr X$ be a curve over $\mathbb Z_p$ with semistable special fiber $\mathscr X_{\mathbb F_p}=\bigcup X_i$.

Definition (Divisor associated to a line bundle)

Given $\mathcal{L} \in \operatorname{Pic} \mathscr{X}$, define a divisor on Γ by

$$\sum_{v \in V(\Gamma)} (\deg \mathcal{L}_{X_i}) v_{X_i}.$$

Example: $\mathcal{L} = \mathcal{O}(X_i)$,

Divisors on graphs

Definition

For $\overline{D} \in \text{Div }\Gamma$, $r_{\text{num}}(\overline{D}) \geq k$ if $|\overline{D} - \overline{E}|$ is non-empty for every effective \overline{E} of degree k.

Theorem (Baker, Norine)

Riemann-Roch for r_{num}.

Clifford's theorem for r_{num} .

Specialization: $r_{num}(\overline{D}) \ge r(D)$.

Formal corollary: $X(\mathbb{Q}) \leq \# \mathscr{X}^{sm}(\mathbb{F}_p) + 2r$ (for X totally degenerate).

Semistable case – main points

Remark (Main points)

- **①** Chip firing is the same as twising by $\mathcal{O}(X_i)$.
- ② If $\exists s \in H^0(\mathscr{X}, \mathcal{L})$ and div $s = \sum H_i + \sum n_i X_i$, then

$$\mathcal{L} \otimes \mathcal{O}(-n_1X_1) \otimes \cdots \otimes \mathcal{O}(-n_kX_k)$$

specializes to an effective divisor on Γ .

3 The firing sequence (n_1, \ldots, n_n) wins the chip firing game.

Semistable but not totally degenerate – abelian rank

Problems when $g(\Gamma) < g(X)$. (E.g. rank can increase after reduction.)

Definition (Abelian rank r_{ab})

Let $\mathcal{L} \in \mathcal{X}$ have specialization $D \in \text{Div } \Gamma$. Then $r_{ab}(\mathcal{L}) \geq k$ if

- ② for every \mathcal{L}_E specializing to E, there exists some (n_1, \ldots, n_k) such that

$$\mathcal{L}' := \mathcal{L} \otimes \mathcal{L}_E^{-1} \otimes \mathcal{O}(n_1 X_1) \otimes \cdots \otimes \mathcal{O}(n_k X_k)$$

has effective specialization and such that $H^0(X_i, \mathcal{L}'_{X_i}) \neq 0$ for every component X_i .

Main Theorem – abelian rank

Theorem (Katz-ZB)

Clifford's theorem: $r_{ab}(K-D) \leq \frac{1}{2} \deg(K-D)$

Specialization: $r_{ab}(K - D) \ge g - r$.

Formal corollary: $X(\mathbb{Q}) \leq \# \mathscr{X}^{sm}(\mathbb{F}_p) + 2r$ (for semistable curves.)

Final remarks

Remark

Also prove: **semistable case** \Rightarrow **general case**.

Remark (Néron models)

- Suppose $\mathcal{L} \in \mathsf{Pic}_{\mathscr{X}}$ and $\mathsf{deg}\left(\mathcal{L}|_{\mathscr{X}_p}\right) = 0$.

Remark (Toric rank)

- **①** Can also define r_{tor} additionally require that sections agree at nodes
- 2 r_{tor} incorporates the toric part of Néron model