Slovenská technická univerzita v Bratislave Fakulta informatiky a informačných technológií

Evidenčné číslo: FIIT-5212-73688

Matúš Cuper

Optimalizácia konfiguračných parametrov predikčných metód

Bakalárska práca

Vedúci práce: Ing. Marek Lóderer

máj 2017

Slovenská technická univerzita v Bratislave Fakulta informatiky a informačných technológií

Evidenčné číslo: FIIT-5212-73688

Matúš Cuper

Optimalizácia konfiguračných parametrov predikčných metód

Bakalárska práca

Študijný program: Informatika Študijný odbor: 9.2.1 Informatika

Miesto vypracovania: Ústav informatiky a softvérového inžinierstva, FIIT STU Bratislave

Vedúci práce: Ing. Marek Lóderer

Slovenská technická univerzita v Bratislave FAKULTA INFORMATIKY A INFORMAČNÝCH TECHNOLÓGIÍ

Anotácia

Slovenská technická univerzita v Bratislave FAKULTA INFORMATIKY A INFORMAČNÝCH TECHNOLÓGIÍ

Študijný program: Informatika

Autor: Matúš Cuper

Bakalárska práca: Optimalizácia konfiguračných parametrov predikčných metód

Vedúci práce: Ing. Marek Lóderer

máj 2017

V práci sme sa zamerali na problémy vznikajúce pri predikcii časových radov. V súčasnosti existuje veľké množstvo metód, ktoré nám zabezpečujú predpoveď sledovanej veličiny s prijateľ ne malou odchýlkou na krátke obdobie v blízkej budúcnosti. Cieľ om bakalárskej práce bolo vytvoriť systém, ktorý používateľ ovi poskytne jednoduché rozhranie pre porovnanie jednotlivých predikčných algoritmov nad množinou dát, ktorú si sám zvolí. Hľ adanie ich optimálneho nastavenia sa vykonáva pomocou optimalizačných algoritmov založených na správaní sa živočíchov v prírode.

V práci sme analyzovali a opísali množinu predikčných a optimalizačných algoritmov. Navrhli sme systém na hľadanie optimálnych parametrov predikčných metód, čím sme výrazne ovplyvnili ich presnosť. Systém bol implementovaný v programovacom jazyku R a na vytvorenie používateľ ského rozhrania bola použitá knižnica Shiny. Optimalizácie sme vykonávali nad dátovými množinami v doméne energetiky. Výsledný systém umožňuje používateľ ovi využívať silu predikčných algoritmov a nájsť ich optimálne parametre pre zabezpečenie čo najpresnejšej predikcie.

Slovak University of Technology Bratislava

FACULTY OF INFORMATICS AND INFORMATION TECHNOLOGIES

Annotation

Slovak University of Technology Bratislava

FACULTY OF INFORMATICS AND INFORMATION TECHNOLOGIES

Degree Course: Computer Science

Author: Matúš Cuper

Bachelor thesis: Optimizing configuration parameters of prediction methods

Supervisor: Ing. Marek Lóderer

May 2017

In the thesis we focused on problems, which appear in time series prediction. In present there are many methods, which predict observed value with acceptable small deviation for short time period in near future. The aim of this bachelor thesis was creating system, which provides simple user interface to compare chosen prediction algorithms on dataset, which is chosen by user. Looking for their optimal setup is made by optimization algorithm based on nature-inspired behavior.

In the thesis we analyzed and described set of prediction and optimization algorithms. We designed system for searching optimal parameters of prediction methods, which influence their accuracy significantly. System was implemented in programming language R and the user interface was created by Shiny library. Optimization was provided on datasets in energetics domain. The final system provides to user to use force of prediction algorithms and find out their optimal parameters for the most accurate prediction.

ČESTNÉ PREHLÁSENIE
Čestne prehlasujem, že bakalársku prácu som vypracoval samostatne pod vedením vedúceho bakalárskej práce a s použitím odbornej literatúry, ktorá je uvedená v zozname použitej literatúry.
Matúš Cuper

POĎAKOVANIE
Ďakujem vedúcemu bakalárskej práce Ing. Marekovi Lódererovi za odborné vedenie, cenné rady a pripomienky pri spracovaní bakalárskej práce.

Obsah

1	Úvo	d
2	Ana	lýza problému
	2.1	Časové rady
		2.1.1 Analýza časových radov
		2.1.2 Zložky časových radov
	2.2	Analýza predikčných algoritmov
		2.2.1 Lineárna regresná analýza
		2.2.2 Stochastické modely
		2.2.3 Regresia založená na podporných vektoroch
		2.2.4 Rozhodovacie stromy
		2.2.5 Neurónové siete
	2.3	Analýza optimalizačných algoritmov
		2.3.1 Genetický algoritmus
		2.3.2 Optimalizácia svorkou divých vlkov
		2.3.3 Umelá kolónia včiel
	2.4	Meranie presnosti predpovede
		2.4.1 Stredná chyba predpovede
		2.4.2 Stredná absolútna chyba
		2.4.3 Stredná percentuálna chyba
		2.4.4 Stredná absolútna percentuálna chyba
		2.4.5 Stredná štvorcová chyba
	2.5	Zhodnotenie analýzy
3	Špe	cifikácia požiadaviek
4	Náv	rh riešenia
_	4.1	Architektúra aplikácie
	4.2	Vlastnosti vstupných dát
	4.3	Použité predikčné metódy
		4.3.1 Regresia založená na podporných vektoroch
		4.3.2 Autoregresný integrovaný model kĺzavého priemeru
		4.3.3 Náhodné lesy
	4.4	Použité optimalizačné metódy
		4.4.1 Optimalizácia rojom častíc
		4.4.2 Umelá kolónia včiel
5	_	lementácia
	5.1	Úprava vstupných dát
	5.2	Použitie knižnice Shiny
	5.3	Konfigurácia aplikácie
	5.4	Postup pridávania predikčných algoritmov
	5.5	Postup pridávania optimalizačných algoritmov

6	Exp	erimentálne overenie	39
	6.1	Výber vhodného datasetu	39
	6.2	Výber vhodnej veľkosti datasetu	39
	6.3	Vol'ba fitness funkcie	40
	6.4	Optimalizácia parametrov SVR	40
	6.5	Optimalizácia parametrov modelu ARIMA	40
	6.6	Optimalizácia parametrov náhodných lesov	41
7	Závo	er	42
Do	odatol	x A Technická dokumentácia	46
	A. 1	Spustenie aplikácie	46
	A.2	Používateľ ská príručka	46
	A.3	Obsah elektronického média	49
Do	odatol	k B Plán do letného semestra	50

Zoznam obrázkov

1	Príklad trendovej zložky časového radu	3
2	Príklad sezónnej zložky časového radu	4
3	Príklad reziduálnej zložky časového radu	4
4	Príklad multiplikatívneho modelu	5
5	Príklad aditívneho modelu	5
6	Príklad neurónu v neurónovej sieti	10
7	Príklad viacvrstvovej spätne propagovanej neurónovej siete	11
8	Hierarchia vlkov vo svorke	15
9	Príklad možného umiestnenia vlka na základe polohy koristi	16
10	Stavový diagram aplikácie	25
11	Dátum a čas pred transformáciou	28
12	Ukážka transformácií dátumu a času pri predikcii náhodnými lesmi	29
13	Úvodná obrazovka webovej aplikácie	47
14	Výber trénovacej a testovacej množiny	47
15	Výber parametrov optimalizačnej metódy	48
16	Výber parametrov predikčnej metódy	48
17	Zobrazenie vypočítaného výsledku používateľovi	48

Zoznam tabuliek

1	Rozdelenie prírodne inšpirovaných algoritmov	13
2	Proces vytvorenia novej generácie	13
3	Rozbor formátu dátumu a času	26
4	Použité knižnice jazyka R	31
5	Porovnanie datasetou pomocou modelu ARIMA	39
6	Porovnanie datasetou pomocou SVR	39
7	Porovnanie predikcii pre rôzne veľké trénovacie množiny	40
8	Porovnanie fitness funkcií na predikcii náhodných lesoch	40

1 Úvod

V súčasnosti sme obklopení množstvom zariadení, ktoré merajú a zhromažďujú informácie z iných zariadení. Príkladom môžu byť rôzne mobilné aplikácie, meteorologické stanice alebo inteligentné merače merajúce spotrebu elektrickej energie, vody či plynu. Namerané dáta sa môžu meniť v závislosti od napr. hodiny, dňa alebo počasia. Samozrejme existujú aj merania, ktoré sú ovplyvnené ľudským správaním, ktoré sa môže líšiť v závislosti od vyššie uvedených faktorov, ale aj faktorov, ako sú kultúrne tradície, zvyky či náboženstvo. Na základe nameraných dát vieme vytvoriť predpoveď, ktorá opäť môže ovplyvniť ostatné faktory a celé predpovedanie sa tak stáva opäť komplexnejším.

V práci sme sa zamerali na predpovedanie veličín na základe ich historických meraní. Ostatné faktory pri tom neboli brané do úvahy. Tým sa stáva predpovedanie jednoduchšie a menej presné, čím vzniká priestor pre hlavný zámer práce, optimalizovanie predikčných metód na základe ich vstupných parametrov. Získame tým presnejšiu predpoveď ako pri ručnom nastavení a zároveň aj v kratšom čase ako by sme skúšali všetky riešenia.

Optimalizačné algoritmy, tak ako ich názov napovedá, slúžia na nájdenie optimálneho riešenia. Nájdenie najlepšieho riešenia požaduje preskúmanie všetkých možností. Stáva sa tak pomalým a výpočtovo náročným. Optimalizačné algoritmy rýchlo nájdu riešenie, ktoré je pre potreby našej práce postačujúce. Optimalizačné algoritmy môžeme rozdeliť do viacerých skupín, v práci sa však zameriavame prednostne na prírodne inšpirované algoritmy, ktoré sú jednou z najefektívnejších podskupín.

Výsledný systém poskytuje používateľ ovi webové grafické rozhranie, pomocou ktorého môže predpovedať hodnoty vložených časových radov. Má možnosť zvoliť si medzi viacerými predikčnými a optimalizačnými algoritmami. Rozhranie poskytuje používateľ ovi základné informácie o algoritmoch, ako aj vysvetlenie efektov jednotlivých vstupných parametrov metód. Je na zvážení používateľ a, aké parametre zvolí pre optimalizačné algoritmy. Vstupné parametre predikčných metód budú zvolené optimálne na základe výstupných hodnôt optimalizačných algoritmov. Používateľ má k dispozícií vyhodnotenie predpovede, ktoré porovnáva predpovedanú a skutočnú hodnotu rôznymi metrikami.

Celá práca je rozdelená do niekoľ kých kapitol. V kapitole 2 sme sa zamerali na analýzu problému. Definovali sme kľ účové pojmy, použité metódy, opísali sme časové rady, ich vlastnosti, rozdelili sme predikčné a optimalizačné algoritmy do skupín. Kapitola 3 popisuje funkcionalitu, ktorú systém poskytuje používateľ om. V kapitole 4 sa zameriavame na návrh systému a v kapitole 5 už samotnou implementáciou systému v jazyku R. Výsledky práce sú zhodnotené v kapitole 6.

2 Analýza problému

Predpovedanie spotreby elektrickej energie je kľ účovou činnosť ou pre plánovanie a prevádzkovanie rôznych elektronických zariadení. Hľ adaný vzor pre časové rady spotreby elektrickej energie je často komplexný a je zložité ho nájsť aj kvôli faktorom, ako sú napr. zmeny cien elektrickej energie na trhu. Preto sa stáva implementácia vhodného modelu zaručujúceho presnú predpoveď náročnou [17].

Práve preto vznikajú rôzne metódy na predpovedanie časových radov, ktoré sú bližšie popísané v nasledujúcich podkapitolách. Väčšina z nich poskytuje niekoľ ko vstupných parametrov, ako rozhranie pre vnútorné nastavenie algoritmov. Vďaka tomu máme možnosť ovplyvňovať mieru natrénovania modelu, veľkosť chyby predikcie alebo dĺžku obdobia, na ktorom budeme model trénovať. Nastavenie týchto parametrov sa môže pri rôznych datasetoch líšiť a preto neexistuje univerzálne riešenie. Hľadať riešenie pomocou prírodne inšpirovaných algoritmov je efektívne a nájdené riešenie je optimálne. Ďalej sú v tejto kapitole opísané spôsoby merania chýb, ktoré slúžia na vyhodnotenie efektivity a správnosti nájdeného riešenia.

2.1 Časové rady

Časový rad je množina dátových bodov nameraná v čase postupne za sebou. Matematicky je definovaný ako množina vektorov x(t), kde t reprezentuje uplynulý čas. Premenná x(t) je považovaná za náhodnú premennú. Merania v časových radoch sú usporiadané v chronologickom poradí [1].

Časové rady delíme na spojité a diskrétne. Pozorovania pri spojitých časových radoch sú merané v každej jednotke času, zatiaľ čo diskrétne obsahujú iba pozorovania v diskrétnych časových bodoch. Hodnoty toku rieky, teploty či koncentrácie látok pri chemickom procese môžu byť zaznamenané ako spojitý časový rad. Naopak, populácia mesta, produkcia spoločnosti alebo kurzy mien reprezentujú diskrétny časový rad. Vtedy sú pozorovania oddelené rovnakými časovými intervalmi, napr. rokom, mesiacom či dňom [1]. V našom prípade sú namerané dáta dostupné každú celú štvrťhodinu.

2.1.1 Analýza časových radov

V praxi je vhodný model napasovaný do daného časového radu a zodpovedajúce parametre sú predpovedané na základe známych dát. Pri predpovedaní časových radov sú dáta z predchádzajúcich meraní zhromažďované a analyzované za účelom navrhnutia vhodného matematického modelu, ktorý zaznamenáva proces generovania dát pre časové rady. Pomocou tohto modelu sú predpovedané hodnoty budúcich meraní. Takýto prístup je užitočný, keď nemáme veľ a poznatkov o vzore v meraniach idúcich za sebou alebo máme model, ktorý poskytuje nedostatočne uspokojivé výsledky [1].

Cieľ om predikcií časových radov je predpovedať hodnotu premennej v budúcnosti na základe doteraz nameraných dátových vzoriek. Matematicky zapísané ako

$$\hat{x}(t + \Delta_t) = f(x(t - a), x(t - b), x(t - c), ...)$$
(1)

Hodnota \hat{x} vo vzorci 1 je predpovedaná hodnota jednorozmerného diskrétneho časového radu x. Úlohou je nájsť takú funkciu f(x), pre ktorú bude \hat{x} predstavovať predpovedanú hodnotu časového radu. Táto funkcia by mala predpovedať hodnoty v budúcnosti konzistentne a objektívne [20].

Časové rady sú najčastejšie vizualizované ako graf, kde pozorovania sú na osi y a plynúci čas na osi x. Pre lepšie vysvetlenie časových radov, budú nasledujúce odstavce obsahovať aj obrázky zobrazujúce vygenerovanú dátovú množinu.

2.1.2 Zložky časových radov

Pri predpovedaní časových radov ako napr. meraní odberu elektrickej energie vznikajú 2 typy zmien. Prvým typom je trvalá alebo dočasná zmena spôsobená ekonomickými alebo ekologickými faktormi. Druhým typom je sezónna zmena, spôsobená zmenami ročných období a množstvom denného svetla. Môžeme ju pozorovať na úrovni dní, týždňov alebo rokov. Veličina, ktorú sa snažíme predpovedať postupne mení svoje správanie a model sa tak stáva nepresným. Kvôli tomu je nutné v každom modeli rozdeľ ovať tieto typy tendencií, aby sme vedeli model zmenám prispôsobiť [8].

Vo všeobecnosti sú časové rady zložené zo 4 hlavných zložiek. Jedná sa o trendovú, cyklickú, sezónnu a reziduálnu zložku [1].

Trendová zložka predstavuje správanie časového radu v dlhodobom časovom horizonte. Z tohto pohľadu má časový rad tendenciu klesať, rásť alebo stagnovať. Príkladom môže byť nárast populácie či klesajúca úmrtnosť. Dekomponovanú zložku môžeme vidieť na obrázku 1 [1].

Obr. 1: Príklad trendovej zložky časového radu.

Cyklická zložka je spôsobená zmenami, ktoré sa cyklicky opakujú. Dĺžka periódy je 2 a viac rokov, čo zodpovedá strednodobému časovému horizontu. Táto zložka je zastúpená najmä pri ekonomických časových radoch napríklad podnikateľ ský cyklus pozostávajúci zo 4 fáz, ktoré sa stále opakujú [1].

Obr. 2: Príklad sezónnej zložky časového radu.

Obr. 3: Príklad reziduálnej zložky časového radu.

Sezónna zložka predstavuje kolísanie časových radov počas ročných období. Dôležitými faktormi pri tom sú napr. klimatické podmienky, tradície alebo počasie. Napríklad predaj zmrzliny sa v lete zvyšuje, ale počet predaných lyžiarskych súprav klesá. Príklad dekomponovanej zložky môžeme vidieť na obrázku 2 [1].

Reziduálna zložka predstavuje veličinu, ktorá nemá žiadny opakovateľ ný vzor a ani dlhodobý trend. V časových radoch má nepredvídateľ ný vplyv na pozorovanú veličinu. V štatistike zatiaľ nie je definovaná metóda jej merania. Označuje sa aj ako náhodná zložka alebo biely šum. Je spôsobená nepredvídateľ nými a nepravidelnými udalosť ami. Viď obrázok 3 [1].

Vo všeobecnosti sa pre tieto 4 zložky používajú 2 rôzne modely. Je to multiplikatívny model a aditívny model.

$$Y(t) = T(t) \times S(t) \times C(t) \times I(t)$$

$$Y(t) = T(t) + S(t) + C(t) + I(t)$$
(2)

Vo vzorci 2 predstavuje Y(t) meranie v čase t. Premenné T(t), S(t), C(t) a I(t) sú zložkami trendu, sezónnosti, cyklu a náhodnosti. Multiplikatívny model, zobrazený na obrázku 4 je založený na predpoklade, že časové rady môžu byť na sebe závislé a môžu byť ovplyvňované medzi sebou, zatiaľ čo aditívny model, zobrazený na obrázku 5 predpokladá nezávislosť zložiek [1].

Obr. 4: Príklad multiplikatívneho modelu, index stavebnej produkcie Slovenska, Eurostat.

Obr. 5: Príklad aditívneho modelu.

2.2 Analýza predikčných algoritmov

Na základe množstva výskumov, ktoré analyzovali predikčné algoritmy, bola zvolená reprezentatívna vzorka algoritmov. Našou snahou bude rôzne predikčné metódy optimalizovať pomocou optimalizačných algoritmov. Pred tým je potrebné analyzovať a pochopiť použité predikčné metódy. Taktiež je potrebné identifikovať ich vstupné parametre, keď že ich neskôr budeme optimalizovať.

2.2.1 Lineárna regresná analýza

je štatistická metóda používaná na modelovanie vzťahov, ktoré môžu existovať medzi veličinami. Nachádza súvislosti medzi závislou premennou a potenciálnymi vysvetľujúcimi premennými. Používame pri tom vysvetľujúce premenné, ktoré môžu byť namerané súčasne so závislými premennými alebo aj premenné z úplne iných zdrojov. Regresná analýza môže byť tiež použitá na zlúčenie trendu a sezónnych zložiek do modelu. Keď je raz model vytvorený, môže byť použitý na zásah do spomínaných vzťahov alebo, v prípade dostupnosti vysvetľujúcich premenných, na vytvorenie predikcie [16].

Lineárna regresia Najpoužívanejšia štatistická metóda, ktorá modeluje vzťah závislej premennej a vysvetľujúcej premennej. Závislú premennú predstavuje veličina, ktorú sa snažíme predpovedať, čo je v našom prípade spotreba elektrickej energie. Vysvetľujúca premenná v sebe zahŕňa rôzne faktory, ktoré ovplyvňujú závislú premennú. Môžeme si pod tým predstaviť deň v týždni, počasie, tradície alebo rôzne udalosti, ktoré majú vplyv na predpoveď. [13, 17].

Predpokladajme typický regresný problém. Dáta pozostávajúce z množiny n meraní majú formát $\{(x_1, f(x_1)), ..., (x_n, f(x_n))\}$. Úlohou regresie je odvodiť funkciu \hat{f} z dát, kde

$$\hat{f}: X \to \mathbb{R}, \text{ kde, } \hat{f}(x) = f(x), \forall x \in X,$$
 (3)

Funkcia f vo vzorci 3 reprezentuje reálnu neznámu funkciu. Algoritmus, použitý na odvodenie funkcie \hat{f} , sa nazýva indukčný algoritmus. Funkcia \hat{f} sa nazýva model alebo prediktor. Obvykle je úlohou regresie minimalizovať odchýlku funkcie pre štvorcovú chybu, konkrétne strednú štvorcovú chybu MSE [18].

Keď že časový rad pozostáva z viacerých zložiek, môžeme ho zapísať ako funkciu L(t) definovanú ako

$$L(t) = Ln(t) + \sum a_i x_i(t) + e(t)$$
(4)

Vo vzorci 4 funkcia Ln(t) predstavuje odber elektrickej energie v čase t. Hodnota a_i je odhadovaný pomaly meniaci sa koeficient. Faktory $x_i(t)$ nezávisle vplývajú na spotrebu elektrickej energie. Môže sa jednať napr. o počasie alebo zvyky ľudí. Komponent e(t) je biely šum, ktorý má nulovú strednú hodnotu a pevnú variáciu. Číslo n je počet meraní, obvykle 24 alebo 168, v našom prípade 96 meraní počas jedného dňa [13].

Viacnásobná lineárna regresia sa snaží modelovať vzťah medzi dvoma alebo viacerými vysvetľujúcimi premennými a závislou premennou vhodnou lineárnou rovnicou pre pozorované dáta. Výsledný model je vyjadrený ako funkcia viacerých vysvetľujúcich premenných [8].

Túto funkciu môžeme zapísať ako

$$Y(t) = V_t a_t + e_t \tag{5}$$

Vo vzorci 5 t označuje čas, kedy bolo meranie uskutočnené. Y(t) predstavuje celkový nameraný odber elektrickej energie. Vektor V_t reprezentuje hodnoty vysvetľujúcich premenných v čase merania. Vysvetľujúce premenné môžu predstavovať meteorologické vplyvy, ekonomický nárast, ceny elektrickej energie či kurzy mien. Chybu modelu v čase t zapíšeme ako e_t [13, 17].

2.2.2 Stochastické modely

Tieto metódy časových radov sú založené na predpoklade, že dáta majú vnútornú štruktúru, ako napr. autokoreláciu, trend či sezónnu variáciu. Najprv sa precízne zostaví vzor zodpovedajúci dostupným dátam a potom sa na jeho základe predpovie budúca hodnota veličiny [13].

Autoregresný model predpovedá budúcu hodnotu premennej ako súčet lineárnej kombinácie *p* predchádzajúcich meraní, náhodnej chyby a konštanty. V literatúre sa označuje ako AR (angl. autoregressive model). Matematicky môžeme autoregresný model zapísať ako

$$y_t = c + \sum_{i=1}^p \varphi_i y_{t-i} + \varepsilon_t \tag{6}$$

Vo vzorci 6 hodnota y_t predstavuje predpovedanú hodnotu v čase t. Náhodnú chybu v čase t zapíšeme ako ε_t . Hodnoty φ_i sú parametre modelu a c je konštanta. Konštantou p označujeme rad modelu [1].

Model kĺzavého priemeru na rozdiel od autoregresného modelu používa ako vysvetľ ujúce premenné chyby predchádzajúcich meraní a nie priamo hodnoty. V literatúre sa označuje ako MA (angl. moving average). Matematicky môžeme tento vzť ah zapísať ako

$$y_t = \mu + \sum_{j=1}^{q} \Theta_j \varepsilon_{t-j} + \varepsilon_t \tag{7}$$

Vo vzorci 7 hodnota y_t predstavuje strednú hodnotu postupnosti meraní v čase t. Hodnoty Θ_j sú parametre modelu a konštantou q označujeme rad modelu. Vychádzame z predpokladu, že náhodná zložka ε_t je biely šum, čo je rovnomerne distribuovaná náhodná premenná, ktorá má nulovú strednú hodnotu a konštantnú variáciu σ^2 [1].

Autoregresný model kĺzavého priemeru reprezentuje súčasnú hodnotu časového rádu lineárne na základe jeho hodnôt a hodnôt bieleho šumu v predchádzajúcich periódach. V literatúre sa označuje ako ARMA (angl. autoregressive moving average) [13].

Ide o kombináciu autoregresie (AR) a kĺzavého priemeru (MA), vhodnú pre modelovanie jednorozmerných časových radov. Matematicky môžeme reprezentovať tento model ako súčet predchádzajúcich modelov

$$y_t = c + \varepsilon_t + \sum_{i=1}^p \varphi_i y_{t-i} \sum_{j=1}^q \Theta_j \varepsilon_{t-j}$$
 (8)

Rad modelu určuje p a q [1].

Autoregresný integrovaný model kĺzavého priemeru je generalizáciou modelu ARMA. V literatúre sa označuje ako ARIMA (angl. autoregressive integrated moving average). Modely typu ARMA môžu byť použité iba na statické časové rady. Mnoho časových radov v praxi vykazuje nestatické správanie a napr. tie, ktoré obsahujú komponenty trendu a sezónnosti. Kvôli tomu bol navrhnutý model ARIMA, ktorý zahŕňa v sebe aj prípady nestatických časových radov. Z nestatických časových radov sa vytvárajú statické pomocou konečného počtu derivovaní dátových bodov. Vzniká tak matematický model, ktorý môžeme zapísať ako

$$\left(1 - \sum_{i=1}^{p} \varphi_i L^i\right) (1 - L)^d y_t = \left(1 + \sum_{j=1}^{q} \Theta_j L^j\right) + \varepsilon_t \tag{9}$$

Vzorec 9 môžeme zapísať aj jednoduchšie a to

$$\varphi(L)(1-L)^d y_t = \Theta(L)\varepsilon_t \tag{10}$$

Vo vzorci 9 predstavujú premenné p, d a q rad autoregresného modelu, modelu kĺzavého priemeru a integrovaného modelu. Hodnota d zodpovedá stupňu derivovania, zvyčajne je rovná 1. V prípade, že d=0 dostaneme klasický ARMA model. Rovnakým spôsobom vieme dostať modely AR a MA [1].

2.2.3 Regresia založená na podporných vektoroch

Regresia založená na podporných vektoroch a metóda podporných vektorov je založená na štatistickej teórií učenia, nazývanej aj VC teória, podľa svojich autorov, Vapnik a Chervonenkisa. Táto predikčná metóda poskytuje malý počet voľných parametrov. Garantuje konvergenciu k ideálnemu riešeniu a môže byť výpočtovo efektívna [20].

Metóda podporných vektorov je použitá na množstvo úloh strojového učenia ako je rozoznávanie vzorov, klasifikácia objektov a v prípade predikcií časových radov to je regresná analýza. Regresia založená na podporných vektoroch je postup, ktorého funkcia je predpovedaná pomocou nameraných dát, ktorými je metóda podporných vektorov natrénovaná. Toto je odklon od tradičných predpovedí časových radov v zmysle, že metóda podporných vektorov nepoužíva žiadny model, ale predikciu riadia samotné dáta [20].

Uvažujme množinu trénovacích dát $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n) \subset \chi \times \mathbb{R}$, kde v našom prípade hodnota x_i predstavuje odber elektrickej energie v čase i a množina χ označuje vstupnú množinu dát. Úlohou algoritmu je nájsť funkciu $f(x_i)$, pre ktorú hodnota ε nadobúda pre všetky trénovacie dáta čo najväčšie hodnoty oproti y_i a súčasne nadobúda najmenšie možné hodnoty menšie ako ε [24].

Matematicky môžeme túto lineárnu zapísať ako

$$f(x) = \langle w, x \rangle + b \tag{11}$$

Vo vzorci 11 platí $w \in \chi$ a $b \in \mathbb{R}$. Výsledok skalárneho súčinu $\langle w, x \rangle$ sa nachádza v množine χ . Našou snahou je dosiahnuť čo najmenšiu hodnotu w. Zabezpečiť to môžeme minimalizovaním hodnoty $||w||^2 = \langle w, w \rangle$. Pri cieli minimalizovať hodnotu $\frac{1}{2}||w||^2$, môžeme opisovaný problém zapísať ako

$$\begin{cases} y_i - \langle w, x_i \rangle - b \le \varepsilon \\ \langle w, x_i \rangle + b - y_i \le \varepsilon \end{cases}$$
 (12)

Predpokladom pre vzorec 12 je, že funkcia f existuje pre všetky páry (x_i, y_i) s presnost'ou ε [24]. Na vykonanie regresie založenej na podporných vektoroch je potrebné zmapovať vstupný priestor x(i) do vyššej dimenzie označovanej ako $\varphi(x(i))$, pričom riešenie závisí od skalárneho súčinu vstupného priestoru a kernel funkcie, ktorá vykonáva spomínané mapovanie. Kernel funkcia mapuje nelineárne dáta do vyššej dimenzie a musí pritom spĺňať Mercerovu podmienku, ktorú zapíšeme ako

$$k(x, x') = \langle \phi(x), \phi(x') \rangle \tag{13}$$

Použitie kernelových funkcií je kľúčové pri použití regresii založenej na podporných vektorov. Pri výbere vhodnej funkcie je nevyhnutná empirická analýza. Jednou z najčastejších volieb je Gaussovská kernel funkcia [20].

2.2.4 Rozhodovacie stromy

Rozhodovacie stromy sú jednou z najrozšírenejších učiacich metód. Používajú sa najmä na klasifikáciu, ale v súčasnosti sa využívajú aj na regresiu. Rozhodovací strom je reprezentovaný ako množina uzlov a im prislúchajúcich hrán. Uzly reprezentujú atribúty a výstupné hrany sú vždy označené konkrétnou hodnotou pre atribút, z ktorého vychádzajú. Rozhodovanie začína v koreni stromu a končí po dosiahnutí listového uzla. Pre riešenie jedného problému je možné vytvoriť stromy s rôznym počtom a usporiadaním uzlov. Najlepším riešením je strom s najmenším počtom rozhodovacích uzlov [19].

Hlavnou výhodou rozhodovacích stromov oproti ostatným modelom je, že strom produkuje model, ktorý je reprezentovateľ ný ako pravidlá alebo logické výroky. Taktiež klasifikácia sa môže vykonávať bez komplikovaných výpočtov. Táto technika môže byť použitá ako na kategorické premenné tak aj na spojité. Rozhodovacie stromy neposkytujú také dobré výsledky pre nelineárne dáta ako neurónové siete. Vo všeobecnosti je táto metóda vhodnejšia pre predpovedanie kategorických dát alebo na dáta, ktoré v sebe obsahujú viditeľ ný trend [25].

Regresný rozhodovací strom obsahuje odozvový vektor Y reprezentujúci odozvu hodnôt ku každému meraniu v matici X. Vetvy sú rozdeľ ované na základe štvorcového zostatkového minimalizačného algoritmu. Ten zabezpečuje, že očakávaný súčet variácií dvoch uzlov bude minimalizovaný. Algoritmus tak nájde optimálnu podmienku rozdelenia uzlu na jeho potomkov [3].

Priradením hodnoty 1 pre triedu k a hodnoty 0 pre ostatné triedy, získame variáciu rovnú p(k|t)[1-p(k|t)]. Sčítaním K tried získame funkciu

$$i(t) = 1 - \sum_{k=1}^{K} p^{2}(k|t)$$
(14)

Tým sme vytvorili maximálny strom, čo znamená, že uzly sa rozdeľovali až do posledného merania, ktoré sa nachádzalo v trénovacej množine. Maximálny strom sa tak môže stať veľmi veľkým [3].

Jedným z najpoužívanejších algoritmov na rozdeľ ovanie uzlov sa nazýva index Gini alebo rozhodovacie pravidlo Gini. Tento algoritmus zapíšeme ako

$$i(t) = \sum_{k \neq l} p(k|t)p(l|t) \tag{15}$$

Vo vzorci 15 predstavujú k a l indexy tried o 1 po K a p(k|t) označuje podmienenú pravdepodobnosť triedy k za predpokladu, že aktuálny uzol je uzol t. Aplikovaním Gini algoritmu nájdeme v trénovacej množine najväčšiu triedu, ktorú odizolujeme od ostatných dát [3].

Náhodné lesy sú kombináciou predpovedí stromov. Každý strom závisí od hodnoty náhodného vektora s rovnakým rozdelením. Chyba lesu závisí od sily jednotlivých stromov a koreláciou medzi nimi. Náhodný les môžeme definovať ako klasifikátor pozostávajúci z množiny stromov $\{h(x,\Theta_k), k=1,2,...\}$, kde $\{\Theta_k\}$ sú nezávislé rovnomerne distribuované náhodné vektory a každý strom sa podieľ a hlasom na voľ be triedy vstupu x. S nárastom počtu stromov hodnota $\{\Theta_k\}$ konverguje k určitému bodu. Tým je zabezpečené, že náhodné lesy sa s pridávajúcim počtom stromov nepretrénujú, ale veľ kosť chyby sa postupne ustáli. Pri výbere náhodného vektora sa snažíme pri zachovaní jeho sily minimalizovať koreláciu, čím zvyšujeme presnosť celého výpočtu [4].

Väčšinou sú náhodné lesy používané na klasifikačné problémy, avšak je možné ich aplikovať aj na regresiu. Regresné náhodné lesy sú tvorené rastom stromov závislých na náhodnom vektore $\{\Theta\}$. Prediktor stromu $h(x,\Theta)$ nadobúda číselné hodnoty na rozdiel od štítkov tried ako je to pri klasifikačných problémoch. Predpokladáme trénovaciu množinu, ktorá je nezávislou distribúciou náhodného vektora Y,X. Potom môžeme strednú štvorcovú generalizačnú chybu pre číselný prediktor h matematicky zapísať ako

$$E_{X,Y}(Y - h(X))^2 \tag{16}$$

Prediktor náhodného lesu je tvorený priemerom k stromov, čo zapíšeme ako $h(x, \Theta_k)$ [4].

2.2.5 Neurónové siete

Návrh neurónových sietí je inšpirovaný neurofyziológiou ľudského mozgu. Model je analytická technika modelujúca procesy učenia v kognitívnych systémoch a neurologických funkciách mozgu. Má schopnosť predpovedať budúcu hodnotu merania konkrétnej premennej na základe hodnôt z predchádzajúcich meraní. Tento proces sa inak nazýva aj učenie z existujúcich dát [25]. Tok v neurónovej sieti preteká cez jednotlivé neuróny. Na obrázku 6 môžeme vidieť príklad takéhoto neurónu [25].

Obr. 6: Príklad neurónu v neurónovej sieti [25].

Neurónová sieť predstavuje orientovaný graf uzlov. Uzol neurónovej siete sa nazýva neurón. Každý uzol počíta svoj výstup na základe vstupov od susedných uzlov. Výpočet sa vykonáva aplikovaním funkcie, ktorá sa nazýva aplikačná funkcia na vážený na vážený súčet vstupov [9].

Trénovanie siete je proces nastavovania, čo najlepších váh na vstupy jednotlivých neurónov. Chyba neurónovej siete sa najčastejšie počíta pomocou spätnej propagácie (angl. backpropagation), čím dostaneme rast chyby pre danú neurónovú sieť [25].

Je veľa typov neurónových sietí napríklad viacvrstvové perceptónové siete, samoriadiace siete, siete s viacerými skrytými vrstvami, alebo aj viacvrstvové spätne propagované neurónové siete, pričom príklad takejto siete môžeme vidieť aj na obrázku 7. V každej skrytej vrstve je určité množstvo neurónov. Trénovanie neurónovej siete obvykle zaberá veľa času. Výstupom je lineárna rovnica váh prepojených so vstupom [13].

Obr. 7: Príklad viacvrstvovej spätne propagovanej neurónovej siete [12].

Viacvrstvový perceptón je jednou z najpoužívanejších neurónových sietí. Pozostáva z uzlov a im prislúchajúcim hranám. Uzly sú zoskupované do rôznych vrstiev. Prvá vrstva je vstupná vrstva, kde počet d označuje počet vstupných parametrov vstupujúcich do siete. Táto vrstva je následne prepojená hranami so skrytou vrstvou pozostávajúcou z h uzlov. Tá je potom prepojená s výstupnou vrstvou s c uzlami. Kvôli tomu sa tieto siete zvyknú označovať aj ako dopredné siete [19].

Elementy skrytých a výstupných vrstiev sú neuróny pozostávajúce z uzlov, viacerých vstupujúcich a jednou výstupnou hranou. Funkciou neurónu je transformovať lineárnu kom-

bináciu vstupov pomocou nelineárnej aktivačnej funkcie, čiže každú vstupnú hranu prenásobiť jej váhou a výsledok týchto súčinov sčítať. Tak dostaneme pre neurón j vzorec 17 opisujúci lineárnu kombináciu vstupov a_j

$$a_j = \sum_{i=1}^d w_{ji} x_i \tag{17}$$

Pričom váha w_{ji} označuje váhu medzi neurónom i na vstupnej vrstve a neurónom j na skrytej vrstve [19].

Aktivovanie neurónu j závisí od jeho aktivačnej funkcie $g(a_j)$. Jednu z najpoužívanejších aktivačných funkcií, logistickú sigmoidnú funkciu, môžeme matematicky zapísať ako

$$g(a) \equiv \frac{1}{1 + exp(-a)} \tag{18}$$

Je zrejmé, že funkcia zo vzorca 18 vracia hodnoty v rozmedzí (0, 1) [19].

2.3 Analýza optimalizačných algoritmov

Optimalizačné algoritmy, ktoré majú potenciál nájsť globálne alebo lokálne riešenie problému. Lokálne optimalizácie, nazývané aj vyhľ adávacie algoritmy, sa pokúšajú nájsť lokálne minimum v okolí štartovacieho riešenia. Väčšina týchto algoritmov je deterministická. Pri hľ adaní minima používajú vyhodnocovaciu funkciu, na základe ktorej aktualizujú doterajšie riešene. Z nových možných riešení je najlepšie to s najnižšou hodnotou, čiže to, ktoré je najlacnejšie. Kvôli tejto vlastnosti sa zvyknú tieto algoritmy označovať aj ako nenásytné algoritmy (angl. greedy algorithms). Spravidla tieto algoritmy nenájdu globálne minimum v prípade, že sa nachádza ď alej od štartovacieho riešenia ako nejaké lokálne minimum [22].

Na druhej strane, optimalizačné algoritmy s potenciálom nájdenia globálneho minima nachádzajú riešenie, ktoré postupne konverguje k optimálnemu riešeniu. To ale nie je algoritmami úplne garantované. Algoritmy s globálnym potenciálom majú väčší prehľad o svojom okolí, a preto uviaznutie v lokálnom minime je zriedkavé [22].

Nasledujúca tabuľka 1 zobrazuje rozdelenie algoritmov s potenciálom nájdenia globálneho minima. Algoritmy sú prírodne inšpirované a ich ďalšie delenie vyplýva zo spoločných znakov, na ktorých sú založené. V nasledujúcich kapitolách sa zaoberáme niektorými z nich, konkrétne genetickým algoritmom, optimalizáciou svorkou divých vlkov a umelou kolóniou včiel.

2.3.1 Genetický algoritmus

Genetický algoritmus patrí medzi prírodne inšpirované algoritmy patriace do triedy umelých imunitných systémov [5]. Genetický algoritmus je stochastický optimalizačný algoritmus, ktorého úlohou je nájdenie globálneho riešenia pre zadaný problém, čiže sa nestane, že riešenie spadne do lokálne minima a nenájde sa tak optimálne riešenie. Od tradičných algoritmov sa líšia hlavne v počte riešení, ktoré sú kandidátmi na najlepšie riešenie. Tradičné vyhľadávacie algoritmy prehľadávajú dôkladne iba jedno riešenie, zatiaľ čo genetické algoritmy hlbšie spracujú viacero kandidátov naraz. Každý kandidát na optimálne riešenie problému je reprezentovaný dátovou štruktúrou, ktorú označujeme pojmom jedinec. Súbor jedincov tvorí populáciu. Začiatok procesu začína náhodnými riešeniami populácie, ktorý sa postupne vylepšuje [5].

Tabul'ka 1: Rozdelenie vybraných prírodne inšpirovaných algoritmov [7].

Model ľudskej	Umelé imunitné	Rojová	Ostatné napr.	
mysle	systémy	inteligencia	prírodné úkazy	
Teória fuzzy množín	Canatials algorithms	Optimalizácia	Tektonické dosky	
Teoria ruzzy mnozm	Genetický algoritmus	kolóniu mravcov	Tektonicke dosky	
Teória približných množín	Umelé neurónové siete	Optimalizácia	Veľký kolaps	
Teoria priblizitych hillozhi	rojom častíc		vei ky kolaps	
Granulárne výpočty	Calulárny automat	Inteligentná	Oceánske prúdy	
Granulaine vypocty	ne výpočty Celulárny automat kvapka vody		Oceanske prudy	
Predbežné výpočty	Mambránová výmožtv	Včelí zhlukovací	Prílivové vlny	
1 redbezhe vypoety	bežné výpočty Membránové výpočty		Pillivove villy	
		Vyhľ adávanie	Sopečné erupcie	
		kukučkou	Sopeche erupcie	
			Zemetrasenie	

Vytvorenie novej generácie sa vykonáva pomocou genetických operátorov: a to selekciou, krížením a mutáciou. Proces selekcie vyberie kvalitnejšie chromozómy, ktoré prežijú a vyskytnú sa tak aj v ďalšej generácii [23].

Pri genetických algoritmoch sa zavádzajú pojmy ako chromozóm, fitness funkcia, kríženie, elitárstvo, operátor reprodukcie či mutácie [5].

Chromozóm je pomenovanie pre jedinca. V literatúre sa tiež zvykne používať označenie kandidát [2].

Inicializácia je proces, ktorý po vygenerovaní generácie priradí kandidátom náhodné hodnoty. Pri prehľadávaní dvojrozmerného priestoru to budú náhodné hodnoty oboch súradníc [15].

Fitness funkcia je funkcia určujúca efektívnosť chromozómu. Každý jedinec v množine je ohodnotený pomocou tejto funkcie, ktorá vracia číselnú reprezentáciu riešenia, čiže ako dobre daný kandidát vyriešil zadaný problém. Pri hľadaní optimálneho riešenia sa porovnáva hodnota fitness funkcie aktuálneho riešenie s hodnotou funkcie cieľového riešenia, ale vo všeobecnosti, čím je hodnota väčšia, tým je kandidátovo riešenie lepšie [5, 15, 23].

Operátor reprodukcie je obvykle prvý operátor, ktorý sa uplatní na populáciu. Operátor náhodne vyberie reť azce z dvoch chromozómov na párenie [5].

Kríženie je operátor kombinácie. Kríženie vykonáva výmenu blokov chromozómov. Z druhého chromozómu je vybraný reť azec náhodnej veľ kosti, ktorý sa vymení s rovnako dlhým reť azcom z prvého chromozómu. V tabuľ ke 2 je tento proces znázornený graficky [5].

Tabuľka 2: Proces vytvorenia novej generácie z rodičovských chromozómov.

rodič č. 1	0110	0101 0010	0011
rodič č. 2	1100	1101 1110	1111
potomok č. 1	0110	1101 1110	0011
potomok č. 2	1100	0101 0010	1111

Elitárstvo je proces pridávania chromozómov s najlepšou hodnotou funkcie fitness priamo do d'alšej populácie. Zaist'uje to, že najlepšie riešenie budúcej generácie bude vždy lepšie alebo prinajhoršom rovnaké, ako najlepšie riešenie predchádzajúcej generácie [6].

Operátor mutácie sa vykoná po vykonaní operátora reprodukcie. Mutácia chromozómu väčšinou predstavuje operáciu, ktorá s nízkou pravdepodobnosťou invertuje jednu hodnotu v chromozóme [5].

Princíp genetického algoritmu môžeme znázorniť v nasledujúcom pseudokóde [5]

Algorithm 1 Pseudokód genetického algoritmu.

- 1: Náhodne inicializovanie jedincov
- 2: Vyhodnotenie fitness funkcie pre každého jedinca
- 3: Výber jedincov pre ďalšiu populáciu na základe fitness funkcie
- 4: Kríženie jedincov
- 5: Mutovanie jedincov
- 6: Ak bolo nájdené žiadané optimálne riešenie pokračuj, inak návrat na krok 2
- 7: Vráť optimálne riešenie

Veľkou výhodou genetického algoritmu je, že mutácia predchádza skĺznutiu do lokálnych miním a kombinácia chromozómov vedie k rýchlemu približovaniu sa k optimálnemu riešeniu. Napriek týmto výhodám, majú genetické algoritmy aj niekoľko nevýhod [6].

- Reprezentovanie kandidátov je príliš obmedzujúce
- Mutácia a kríženie sú v súčasnosti aplikovateľ né iba na chromozómy reprezentované bitovým reť azcom alebo číslami
- Definovanie fitness funkcie je často netriviálnou záležitosťou a jej generalizácia je náročná

2.3.2 Optimalizácia svorkou divých vlkov

Algoritmus je založený na správaní vlka sivého, ktorý je na vrchole potravinového reťazca a preferuje život vo svorke. Lov pozostáva zo stopovania, prenasledovania, približovania sa, obkľ účenia koristi a útokom na korisť. Vlkov vo svorke možno rozdeliť do niekoľ kých skupín. V obrázku 8 je znázornená hierarchia týchto skupín [21].

Alfa vlky sú vodcami svorky. Ich úlohou je robiť rozhodnutia ohľadom lovu, miesta na spanie či času zobudenia. Tieto príkazy diktujú svorke, avšak bolo pozorované aj demokratické správanie, kedy alfa vlky nasledovali ostatných členov svorky. Všetky vlky uznávajú postavenie alfy vo svorke. Zaujímavosťou je, že vodcom nemusí byť najsilnejší jedinec, ale môže to byť aj jedinec najlepší v organizovaní svorky [21].

Beta vlky sú druhým stupňom v hierarchii, podriadené alfa vlkom, ktorým pomáhajú v rozhodovaní a organizácií. Sú najlepšími kandidátmi na alfu v prípade úmrtia alebo zostarnutia alfa jedincov. Hrajú rolu radcu a ďalej distribuujú príkazy a vracajú sa s odozvou na ne [21].

Obr. 8: Hierarchia vlkov vo svorke [21].

Delta vlky inak nazývané aj podriadené, zastupujú vo svorke úlohy prieskumníkov, strážcov, starejších, lovcov či opatrovateľ ov. Prieskumníci hliadkujú hranice a varujú svorku pred nebezpečím. Strážcovia sa starajú o bezpečie svorky. Starejší sú skúsenými vlkmi, ktorí boli na pozícii alfa alebo beta. Lovci pomáhajú alfa a beta vlkom pri love. Opatrovatelia sa starajú o slabé, choré alebo zranené jedince [21].

Omega vlky majú najnižšiu hodnosť vo svorke. Hrajú rolu obetných baránkov, ktoré sa podrobia ostatným. K potrave sa dostanú ako úplne posledné. Aj keď sa možno javí ich postavenie zbytočné, boli pozorované prípady, kedy ich strata spôsobila vo svorke nedorozumenia [21].

Spoločenská hierarchia reprezentovaná matematickým modelom, označuje najvhodnejšie riešenie ako alfa, druhé a tretie najvhodnejšie ako beta resp. delta. Riešenia ostatných kandidátov označujeme ako omega. Algoritmus optimalizácie (v prírode lovu) je vedený alfa, beta a delta kandidátmi, ktorí sú nasledovaní kandidátmi omega [21].

Obkľúčenie koristi jednotlivými vlkmi α , β a δ môžeme matematicky vyjadriť nasledujúcimi rovnicami

$$\vec{D_{\alpha}} = |\vec{C_1} \cdot \vec{X_{\alpha}} - \vec{X}| \tag{19}$$

$$\vec{X_1} = \vec{X_\alpha} - \vec{A_1} \cdot \vec{D_\alpha} \tag{20}$$

$$\vec{D_{\beta}} = |\vec{C_2} \cdot \vec{X_{\beta}} - \vec{X}| \tag{21}$$

$$\vec{X_2} = \vec{X_\beta} - \vec{A_2} \cdot \vec{D_\beta} \tag{22}$$

$$\vec{D_{\delta}} = |\vec{C_3} \cdot \vec{X_{\delta}} - \vec{X}| \tag{23}$$

$$\vec{X}_3 = \vec{X}_\delta - \vec{A}_3 \cdot \vec{D}_\delta \tag{24}$$

Vo vzorcoch 20, 22 a 24 predstavujú vektory $\vec{X_1}$, $\vec{X_2}$ a $\vec{X_3}$ polohu koristi a vektory $\vec{X_\alpha}$, $\vec{X_\beta}$ a $\vec{X_\delta}$ polohu vlkov α , β a δ . Vektory \vec{A} a \vec{C} sú koeficienty, ktoré zapíšeme ako

$$\vec{A} = 2\vec{a} \cdot \vec{r_1} - \vec{a} \tag{25}$$

$$\vec{C} = 2 \cdot \vec{r_2} \tag{26}$$

Vo vzorci 25 sa premenná \vec{a} počas výpočtu lineárne znižuje od 2 po 0. Vektory $\vec{r_1}$ a $\vec{r_2}$ vo vzorci 26 sú náhodnými vektormi v rozsahu [0, 1]. Vlk môže svoju pozíciu (X,Y) aktualizovať v závislosti od pozície koristi (X^*,Y^*) . Obrázok 9 ilustruje možné aktualizované pozície, ktoré môže najlepší agent dosiahnuť. Tieto pozície získame aplikovaním vzorcov 19 až 24 [21].

Obr. 9: Príklad možného umiestnenia vlka v dvojrozmernom priestore na základe polohy koristi [21].

Hľadanie koristi je zabezpečené vektorom \vec{A} , ktorý mimo intervalu [-1, 1] núti vlky divergovať od seba, čím je zdôraznená potreba prehľadávať okolie a neskĺznuť do lokálneho minima. Náhodný vektor \vec{C} simuluje prekážky v prírode, s ktorými sa vlk stretne pri hľadaní koristi. V závislosti od vygenerovanej hodnoty, môže simulovať aj opačný prípad, ktorý je pre vlka priaznivejší [21].

Lov je vedený alfa vlkmi, beta a delta vlky sa tiež môžu na ňom príležitostne podieľ ať. V prírode disponujú schopnosť ou rozpoznať umiestnenie koristi a obkľ účiť ju, avšak pri simulácií tohto správania, nemáme vedomosť o presnej polohe koristi. Preto na základe prvých

troch najlepších riešení vypočítame predpokladanú polohu koristi, čím vznikne vzorec 27. Kandidáti, vrátane omega vlkov, potom na základe rovníc 20, 22 a 24 aktualizujú svoju polohu [21].

$$\vec{X}(t+1) = \frac{\vec{X}_1 + \vec{X}_2 + \vec{X}_3}{3} \tag{27}$$

Útok na korisť v matematickom modely dosiahneme približovaním sa ku koristi, čiže znížením hodnoty \vec{a} . Tak dosiahneme aj zníženie hodnoty \vec{A} až bude jeho hodnota v intervale [-1, 1]. Potom ďalšia vypočítaná hodnota pozície vlka sa bude nachádzať medzi jeho pôvodnou polohou a polohou koristi. V prípade, že hodnota \vec{A} sa nachádza mimo spomínaného intervalu, vlk diverguje od koristi, čím je reprezentovaná fáza hľadania koristi. Tým je zabezpečené prehľadávanie priestoru agentami [21].

Princíp optimalizácie svorkou divých vlkov môžeme znázorniť v nasledujúcom pseudokóde [21]

Algorithm 2 Pseudokód optimalizácie svorkou divých vlkov.

- 1: Náhodná inicializácia vlkov
- 2: Inicializácia a, A a C
- 3: Vyhodnotenie fitness funkcie pre každého jedinca
- 4: Priradenie do 3 najlepších riešení do X_{α} , X_{β} resp. D_{δ}
- 5: Opakuj kroky 5 až 10 pokiaľ nebude prekročený maximálny počet iterácií
- 6: Aktualizovanie polohy na základe rovníc 20, 22 a 24
- 7: Aktualizovanie a, A a C
- 8: Vyhodnotenie fitness funkcie pre každého jedinca
- 9: Aktualizovanie X_{α} , X_{β} a D_{δ}
- 10: Aktualizovanie počtu iterácií
- 11: Vráť optimálne riešenie X_{α}

2.3.3 Umelá kolónia včiel

V literatúre označovaný ako ABC algoritmus (angl. Artifical bee colony) je pomerne nový medzi rojovými algoritmami. Princíp je založený na biologickom procese správaní medonosných včiel pri hľadaní potravy. Každá včela pracujúca v roji sa spolupodieľa na tvorbe celého systému na globálnej úrovni. Správanie systému je určené lokálnym správaním, kde spolupráca a zladenie jedincov vedie k štruktúrovanému kolaboračnému systému [5].

V algoritme, kolónia umelých včiel pozostáva z 3 typov. Sú to včely robotnice (angl. employed bees), prehľ adávačky (angl. onlookers) a prieskúmníčky (angl. scouts). Informácie o zdrojoch potravy si vymieňajú tancovaním (angl. waggle dance) na tzv. tanečnej ploche. Prehľ adávačky čakajúce na tanečnej ploche sa rozhodujú, ktorý zdroj potravy si vyberú. Robotnice navštevujú zdroje potravy, ktoré v minulosti už navštívili. Úlohou včiel prieskumníčok je vykonávať náhodné prehľ adávanie priestoru. Pri aplikovaní ABC algoritmu, polovica včiel predstavuje robotnice, druhá polovica prehľ adávačky. Počet robotníc zodpovedá počtu zdrojov potravy v okolí úľ u. Robotnica, ktorej zdroj je vyčerpaný inými včelami sa stáva prieskumníčkou [11].

Zväčšovaním množstva nektáru jednotlivých zdrojov potravy sa zvyšuje aj pravdepodobnosť výberu prehľadávačkou. Vďaka tomu je zabezpečené, že tanec robotníc, ktoré navštívili zdroje s najväčším množstvom nektáru, presvedčí najviac prehľadávačok. Tie na základe

informácie o polohe zdroja nájdu v jeho okolí nový zdroj, z ktorého budú zberať nektár. Po vyčerpaní nektáru je tento zdroj opustený a včela sa presunie na zdroj, ktorý našli prieskumníčky [11].

Pozícia zdrojov jedla je reprezentácia možného riešenia daného problému. Množstvo nektáru je úmerné kvalite riešenia, ktoré je určené fitness funkciou. Počet robotníc a prehľadávačok je rovný počtu riešení v danej populácií, pričom každé je reprezentovateľ né ako D-dimenzionálny vektor. Hodnota D môže predstavovať počet optimalizačných parametrov [11].

Včely majú riešenie uložené vo vlastnej pamäti, z ktorého modifikáciou vznikajú nové, ktoré následné vyskúšajú. Ak je nové riešenie lepšie ako predchádzajúce, včely si ho zapamätajú a predchádzajúce zabudnú. Inak si pamätajú staré. Keď všetky robotnice skončia proces hľadania, zdieľajú informácie o zdrojoch s prehľadávačkami. Tie vyhodnotia zhromaždené informácie a vyberú zdroj s najlepším riešením a jeho modifikovaním vytvoria nové, ktoré následne skontrolujú [11].

Prehľ adávačky vyberajú zdroj v závislosti od pravdepodobnosti zdroja p_i , ktorú vypočítame ako

$$p_i = \frac{fit_i}{\sum_{j=1}^n fit_j} \tag{28}$$

Vo vzorci 28 predstavuje fit_i fitness funkciu, ktorá ohodnocuje riešenie i. Týmto spôsobom si vymieňajú medzi sebou informácie robotnice a prehľadávačky [11].

Algoritmus počíta nové riešenie na základe starého, čo matematicky zapíšeme ako

$$v_{ij} = x_{ij} + \phi_{ij}(x_{ij} - x_{kj}) \tag{29}$$

Ak si počet včiel definujeme ako B potom na základe vzorca 29 platí $k \in 1, 2, ..., B$ a $j \in 1, 2, ..., D$. Indexy k a j sú vybrané náhodne, ale k musí byť rôzne od i. Hodnota ϕ_{ij} je z intervalu [-1, 1] vyberaná náhodne. Je zrejmé, že čím bude menší rozdiel medzi $(x_{ij} \text{ a } x_{kj})$, tým bude menší rozdiel aj medzi starým a novým riešením [11].

Algoritmus má 3 konfigurovateľ né parametre a to: počet robotníc alebo prehľ adávačok, ktorý je rovný počtu zdrojov jedla, limit určujúci počet cyklov, po ktorom bude zdroj opustený v prípade nevylepšenia pozície a maximálny počet cyklov, ktorý sa vykoná ak sa skôr nenájde optimálne riešenie [11].

Princíp umelej kolónii včiel znázorňuje nasledujúci pseudokód [11]

Algorithm 3 Pseudokód umelej kolónie včiel.

- 1: Inicializácia včiel na náhodné zdroje potravy
- 2: Opakuj kroky 2 až 7 pokiaľ nebude dosiahnutý cieľ
- 3: Umiestnenie robotníc na zdroje potravy, ktoré boli nájdené
- 4: Vyhodnotenie zdroja na základe množstva nektáru
- 5: Umiestnenie prehľ adávačok na zdroje potravy na základe získaných informácií
- 6: Vyhodnotenie, ktoré včely sa stanú prieskumníčkami
- 7: Vyslanie prieskumníčok do prehľadávanie priestoru za účelom objavenia nových zdrojov potravy
- 8: Vráť optimálne riešenie

2.4 Meranie presnosti predpovede

Pre vyhodnotenie efektívnosti a presnosti modelov je potrebné merať ich vlastnosti tak, aby sme ich vedeli medzi sebou porovnávať. V nasledujúcich spôsoboch merania sú použité pojmy ako aktuálna hodnota y_t , predpovedaná hodnota f_t alebo chyba predpovede e_t definovaná ako $e_t = y_t - f_t$. Veľkosť testovacej množiny budeme označovať ako n [1].

2.4.1 Stredná chyba predpovede

V literatúre označovaná ako MFE (angl. mean forecast error). Matematickú funkciu môžeme zapísať ako

$$MFE = \frac{1}{n} \sum_{t=1}^{n} e_t \tag{30}$$

Týmto spôsobom meriame priemernú odchýlku predpovedanej hodnoty od aktuálnej. Zistíme tak smer chyby. Nevýhodou je, že kladné a záporné chyby sa vynulujú a potom nie je možné zistiť presnú hodnotu chyby. Pri nameraní extrémnych chýb nedochádza k žiadnej špeciálnej penalizácii. Taktiež hodnota chyby závisí od škály meraní a môže byť ovplyvnená aj transformáciami dát. Dobré predpovede majú hodnotu blízku 0 [1].

2.4.2 Stredná absolútna chyba

V literatúre označovaná ako MAE (angl. mean absolute error). Patrí k jedným z najpoužívanejších. Funkciu môžeme zapísať ako

$$MAE = \frac{1}{n} \sum_{t=1}^{n} |e_t|$$
 (31)

Týmto spôsobom meriame priemernú absolútnu odchýlku predpovedanej hodnoty od aktuálnej. Zistíme tak celkový rozsah chyby, ktorá nastala počas predpovede. Na rozdiel od merania chyby pomocou vzorca 30 sa kladné a záporné chyby nevynulujú, no ani napriek tomu nevieme určiť celkový smer chyby. Na druhej strane tiež nenastáva žiadna penalizácia pri extrémnych chybách. Hodnota chyby závisí od škály meraní a transformácií dát. Dobré predpovede majú hodnotu čo najbližšiu 0 [1, 10].

2.4.3 Stredná percentuálna chyba

V literatúre označovaná ako MPE (angl. mean percentage error). Matematicky môžeme túto funkciu zapísať ako

$$MPE = \frac{1}{n} \sum_{t=1}^{n} \frac{e_t}{y_t} \times 100$$
 (32)

Vlastnosti sú veľmi podobné ako pri MAPE v časti 2.4.4. Chyba nám poskytuje prehľad o priemernej chybe, ktorá sa vyskytla počas predpovede. Naviac oproti MAPE získame prehľad o smere chyby, čo má však za následok, že opačné znamienka sa vynulujú. O modeli, ktorého chyba MPE sa blíži k 0, nemôžeme s určitosť ou tvrdiť, že funguje správne [1].

2.4.4 Stredná absolútna percentuálna chyba

V literatúre označovaná ako MAPE (angl. mean absolute percentage error). Vzorec, ktorým ju zapíšeme bude veľ mi podobný vzorcu 32

$$MAPE = \frac{1}{n} \sum_{t=1}^{n} \left| \frac{e_t}{y_t} \right| \times 100 \tag{33}$$

Pomocou tohto merania chyby získavame percentuálny prehľad o priemernej absolútnej chybe, ktorá sa vyskytla počas predpovedi. Veľkosť chyby nezávisí od škály merania, ale je závislá od transformácií dát. Tiež nie je možné zistiť smer chyby a ani nenastáva žiadna penalizácia pri extrémnych chybách [1].

2.4.5 Stredná štvorcová chyba

V literatúre označovaná ako MSE (angl. mean squarred error). Vzorcom ju zapíšeme ako

$$MSE = \frac{1}{n} \sum_{t=1}^{n} e_t^2$$
 (34)

Chyba meria priemernú štvorcovú odchýlku predpovedanej hodnoty. Opačné znamienka sa neovplyvňujú. Neposkytuje nám pohľad na smer chyby. Zabezpečuje penalizáciu extrémnych chýb. Zdôrazňuje fakt, že celková chyba je viac ovplyvnená jednotlivými veľkými chybami ako viacerými malými. Nevýhodou je, že chyba je veľmi citlivá na zmenu škály alebo transformáciu dát [1].

2.5 Zhodnotenie analýzy

S rastúcim množstvom dát z rôznych zdrojov vzniká potreba predpovedať správanie týchto veličín v budúcnosti. Existuje množstvo článkov, ktoré sa zaoberajú týmto problémom. Neustále prinášajú a vylepšujú existujúce matematické modely, ktoré sú schopné predpovedať budúce hodnoty meraných veličín. Výsledky nie sú presné, ale chyba výpočtu je dostatočne nízka na to, aby sme takýto výsledok mohli považovať za relevantný. Zvýšiť presnosť výsledkov je možné viacerými metódami, či už kombináciou viacerých matematických modelov alebo ich optimálnym nastavením. My sme sa v práci zamerali na hľadanie optimálneho nastavenia používaných modelov.

Preskúmané predikčné modely potrebujú pre svoje fungovanie správne hodnoty vstupných parametrov. Pomocou nich vieme ovplyvniť chybu predikcie. Problémom je nájdenie takých parametrov, pre ktoré by bola chyba predikcie čo najmenšia. Hľ adanie najlepšieho riešenia by bolo časovo neprípustné, a preto budeme hľ adať iba optimálne riešenie, ktoré nám poskytne prijateľ nú chybu predikcie. Je dôležité poznamenať, že vstupné parametre, ktoré nájdu optimálnu predikciu závisia aj od samotných dát. Ako bolo spomenuté v sekcii 2.1.1, dáta pozostávajú z viacerých zložiek a ich pomer sa môže líšiť pri rôznych veličinách.

Na hľadanie optimálneho nastavenie predikčných algoritmov sme použili prírodne inšpirované optimalizačné algoritmy. Ako ich názov napovedá, hľadanie optimálneho riešenia sa vykonáva na základe správania sa nejakého živočíšneho druhu alebo prírodného javu. Tieto algoritmy sa osvedčili ako efektívne a rýchle riešenie problémov, ktorých prehľadávaný priestor riešení nie je možné prehľadať celý. Algoritmy sa vyhýbajú spadnutiu do lokálnych miním a tak je nájdené riešenie obvykle optimálne v globálnom rozsahu. A taktiež tieto algoritmy poskytujú niekoľ ko konfiguračných parametrov ovplyvňujúce rýchlosť a presnosť nájdeného riešenia. Avšak cieľ om tejto práce je optimalizovať predikčné a nie optimalizačné algoritmy a poskytnúť tak používateľ ovi univerzálne a jednoduché riešenie predikčných problémov.

Dôležitou súčasť ou predpovedí je vyhodnotenie ich úspešnosti porovnávaním predpovedanej hodnoty s ich skutočnými nameranými hodnotami. Existuje množstvo metód, ktorými vieme zmerať chybu predpovede. Niektoré nám poskytujú informáciu o smere chyby, iné zohľadňujú extrémne chyby. Výsledky niektorých sa viažu na škálu, v ktorej sa nachádzajú naše merania, iné sú nezávislé, merané v percentách. Našim cieľ om bolo poskytnúť používateľ ovi čo najviac informácií o presnosti predpovede, a preto sú použité viaceré metódy merania chýb predikcií.

3 Špecifikácia požiadaviek

Cieľ om práce je navrhnúť systém, ktorý umožní používateľ ovi nájsť optimálne nastavenie vstupných parametrov predikčných metód. Používateľ bude mať k dispozícií niekoľ ko predikčných a optimalizačných algoritmov, bude môcť meniť ich konfiguračné parametre a vykonávať výpočty, vď aka ktorým zistí okrem veľ kosti predikčnej chyby aj optimálne nastavenie parametrov. Tieto výsledky môže použiť vo vlastnej aplikácií alebo výskume. Predmetom optimalizácie budú parametre predikčných metód, konfigurácia optimalizačných algoritmov je ponechaná na používateľ ovi. Množinu dát si sám zvolí, aplikácia je nezávislá na doméne, v ktorej boli dáta namerané. Ku každému z uvedených parametrov bude poskytnuté vysvetlenie a opis zmeny správania na základe ich zmeny. Presnosť predpovede bude určená pomocou používaných metrík na meranie chyby predikcie. Keď že metrík je viacero, používateľ bude mať možnosť si vybrať jednu z nich a tá bude následné použitá optimalizačných algoritmom.

Pri návrhu aplikácie boli použité dáta z inteligentných elektromeračov používaných na Slovensku. Nameraná hodnota bude reprezentovaná reálnym číslom. Našou úlohou bolo optimalizovať parametre predikčných metód na základe reálne nameraných hodnôt a preto aplikácia nepracuje so žiadnymi vysvetľujúcimi premennými. Jej fungovanie je nezávislé na doméne, z ktorej dáta pochádzajú. Používateľ tak môže optimalizovať predikčné parametre aj na základe iných dát ako z elektromeračov. Stačí, ak každé meranie je jednoznačne identifikovateľ né dátumom a časom zhotovenia.

Používateľ si bude môcť vyberať z ponúknutých predikčných a optimalizačných algoritmov. K dispozícii bude mať stochastické modely, regresiu založenú na podporných vektoroch, rozhodovacie stromy a prírodne inšpirované optimalizačné algoritmy ako umelú kolóniu včiel alebo optimalizáciu založenú na správaní roja častíc. Systém bude navrhnutý tak, aby pridanie ďalších algoritmov nespôsobovalo zmeny v pôvodnej aplikácii a pozostávalo tak iba z pridania implementácie algoritmov a prípadne zmeny konfigurácie. Pripadá do úvahy, že samotný systém bude poskytovať rozhranie, ktoré používateľ ovi umožní použiť vlastnú implementáciu iných algoritmov.

Optimalizačné algoritmy potrebujú mať určený definičný obor. Hodnoty z neho používajú na nájdenie optimálneho riešenia, čo je v našom prípade nájdenie kombinácie vstupných parametrov predikčných metód, ktorých výsledná chyba je čo najmenšia. Z tohto dôvodu je dôležité myslieť pri návrhu aplikácie na to, aby výstupom zvolených metód na meranie chyby boli nezáporné čísla. V aplikácií sa budú nachádzať prednastavené definičné obory, ktoré bude môcť používateľ v definovanom rozmedzí upravovať. Predídeme tak dlhým odozvám systému pri zvolení veľkého definičného oboru a zároveň nevzniknú situácie, kedy používateľ zvolí hodnotu, ktorá nebude patriť do definičného oboru predikčnej metódy.

Systém bude implementovaný v jazyku R a webové používateľ ské rozhranie bude vytvorené pomocou knižnice Shiny. Web aplikácie bude navrhnutý tak, aby používateľ ovi poskytoval interaktívne rozhranie s predikčnými metódami. Bude dostatočne robustný a intuitívny, aby s jeho používaním nemali problémy ani tí menej skúsení. Zároveň bude skúsenému používateľ ovi poskytovať modulárnosť, konfigurovateľ nosť, ale hlavne rozhranie pre jednoduché pridávanie ď alších algoritmov, ktoré si môže sám implementovať.

Spomenuté vlastnosti môžeme rozdeliť na funkcionálne a nefunkcionálne nasledujúcimi odrážkami.

Funkcionálne požiadavky:

• webová aplikácia implementovaná pomocou jazyka R a knižnice Shiny

- vkladanie dát používateľ om v predefinovanom formáte
- výber predikčnej metódy z implementovaných metód závisí od používateľ ovej voľ by
- výber optimalizačnej metódy ovplyvňuje rýchlosť a optimálnosť vypočítaného výsledku
- chyba predpovedi je použitá pri optimalizácii ako fitness funkcia
- **vyhodnotenie výpočtu** zobrazením veľkosti chyby, nájdených optimálnych parametrov a vykreslením grafu

Nefunkcionálne požiadavky:

- efektívnosť implementácie je kľúčová pre zabezpečenie rýchleho výpočtu výsledku
- jednoduchosť použitia webovej aplikácie aj napriek množstvu parametrov, ktoré môže používateľ meniť
- modulárnosť dovoľuje používateľovi pridávať vlastné predikčné a optimalizačné algoritmy
- konfigurovateľ nosť aplikácie bude zabezpečená viacerými konfiguračnými súbormi

4 Návrh riešenia

Výsledná webová aplikácia bude používateľ ovi poskytovať možnosť zvoliť si optimalizačný algoritmus, ktorým bude optimalizovať nastavenie predikčného algoritmu. Keď že každý predikčný algoritmus potrebuje pre správnu funkcionalitu iné parametre s rôznymi hodnotami, je najskôr potrebné implementovať rozhranie, ktoré zabezpečí správnu interakciu s optimalizačným algoritmom. Používateľ preto bude vyberať iba z algoritmov, ktoré budú predom implementované alebo tak sám urobí.

V práci sme sa rozhodli zvoliť ako predikčné algoritmy metódu podporných vektorov, autoregresný integrovaný model kĺzavého priemeru a náhodné lesy. Aplikácia je však navrhnutá genericky a pridanie ďalšieho algoritmu vyžaduje minimálne úsilie. Medzi zvolené optimalizačné algoritmy patrí optimalizácia rojom častíc a ABC optimalizácia. Používateľ bude môcť pomocou rozhrania určiť parametre pre tieto algoritmy, ako napr. počet častí alebo cyklov.

4.1 Architektúra aplikácie

Pri vytváraní webovej aplikácie pomocou knižnice Shiny, sa program rozdeľ uje na časť webového rozhrania a serverovú časť. Tie sa pri jednoduchých aplikáciách môžu nachádzať v jednom súbore, ja som ich podľa odporúčaní dokumentácie rozdelil do súborov ui. R a server. R pre webové rozhranie serverovú logiku. Konfiguračné súbory pomocou, ktorých sa do aplikácie jednoducho pridávajú ďalšie algoritmy sa nachádzajú v adresári conf. Zdrojové kódy, ktoré zabezpečujú úpravu dát a výpočet sa nachádzajú v adresári src. Keď sa podrobnejšie pozrieme na obsah tohto adresára zistíme, súbory sú očíslované prefixom, ktorý zodpovedá logickému poradiu ich používania, ale zároveň sú v tomto poradí aj importované pri spustení Shiny servera.

Predikčné algoritmy sú implementované v súboroch s prefixami 01 a 03, za čím nasleduje skrátený názov implementované algoritmu. Rozdeleným implementácie do dvoch súborov sa oddelí príprava dát na výpočet od samotného výpočtu. Názvy funkcií sú potom pomocou konfiguračného súboru namapované na jednotlivé grafické komponenty vo webovom rozhraní. Názov funkcie má vždy ako prefix skrátený názov algoritmu, ktorý ho používa. Podobná konvencia je dodržaná aj pri optimalizačných algoritmoch, s tým že prefix súborov je 04. Volanie optimalizačných algoritmov zväčša pozostáva z jedného volania funkcie, a preto nevzniká potreba delenia na viacero súborov. Načítanie dát zo súboru a rôzne fitness funkcie sa nachádzajú v osobitnom súbore.

Aplikácia je navrhnutá tak, aby pridávanie ďalších algoritmov vyžadovalo, čo najmenšie úsilie. Kvôli tomu sú grafické komponenty vykresľované zo súboru <code>server.Raui.Rako</code> je to pri stránkach so statickým, prípadne jednoducho dynamickým rozložením komponentov. Vykresľované sú na základe obsahu konfiguračného súboru <code>conf/server-config.yml</code>, ktorý v sebe obsahuje mapovanie na použité metódy a na základe vstupov z grafického rozhrania, kde si používateľ volí používané algoritmy. V závislosti od toho sa mení počet zobrazovaných komponentov, ich obsah a význam. Komponenty vykresľované serverom, by sme mohli rozdeliť na parametre optimalizačných metód a rozsahy prehľadávania riešenie pre predikčné algoritmy.

Používateľ ské rozhranie webovej aplikácie je veľ mi jednoduché a intuitívne. Používateľ najskôr vloží vstupné dáta, nad ktorými budú vykonávané predikcie. Dáta by nemali byť veľ ké, aby optimalizácia netrvala príliš dlho, ale zároveň aby vzorka dát bola dostatočne reprezentatívna. Následne môže meniť predikčné a optimalizačné metódy, ich parametre,

fitness funkciu či veľkosti trénovacej a testovacej množín. V momente, keď mu nastavenie vyhovuje môže spustiť výpočet. Jeho výstupom je optimálne nájdená hodnota a zodpovedajúce riešenie. Pre lepšie znázornenie je priložený obrázok 10, na ktorom je diagram opisujúci spomínaný postup.

Obr. 10: Stavový diagram aplikácie.

4.2 Vlastnosti vstupných dát

Vstupné dáta, ktoré vkladá do aplikácie používateľ by mali byť vo formáte CSV, teda súbor s tabuľ kovými dátami, kde hodnoty v stĺpcoch sú oddelené čiarkami. Súbor by mal pri tom

obsahovať aspoň dva pomenované stĺpce, kde stĺpec timestamp obsahuje dátum a čas získania hodnoty, ktorá sa nachádza v stĺpci value. Hodnoty v ostatných stĺpcoch budú ignorované. Zámerom bolo, aby zápis dátumu a času zodpovedal medzinárodnému štandardu ISO 8601. Kvôli zložitosti čítania času v takomto formáte v použitom implementačnom prostredí som zvolil vlastný formát dátumu, ktorý mu je veľmi podobný. Formát dátumu je %Y-%m-%d %H:%M:%S, podrobný rozbor sa nachádza v tabuľke 3. Z pohľadu návrhu aplikácie je potrebné, aby vstupné dáta mali rovnaký počet meraní nameraných v jeden deň v celej vstupnej množine. To znamená, že veľkosť periódy dát by mala byť rovnaká a zároveň sa rovnala veľkosti periódy, ktorú zvolil používateľ vo webovej aplikácii.

Názov	Formátový reťazec	Hodnota
Rok	%Y	2013
Mesiac	%m	07
Deň	%d	10
Hodina	%H	20
Minúta	%M	15
Sekunda	%S	15

Tabul'ka 3: Rozbor formátu dátumu a času.

Stĺpec s hodnotou obsahuje reálne číslo, ktoré reprezentuje veľkosť nameranej veličiny, ktorú sa bude aplikácia snažiť predpovedať. Jednotky, v ktorých budú hodnoty uvedené nie sú podstatné, výpočet je nezávislý na použitej škále. Ako oddeľovač desatinných miest bude použitá bodka. Obmedzenia pre stĺpec s hodnotou sú, aby skutočne obsahoval iba reálne číslo zodpovedajúce nameranej hodnote a aby v rámci jedného súboru bola konzistentne použitá rovnaká škála hodnôt. V stĺpci sa tak nesmie nachádzať názov či skratka jednotky, v ktorej je hodnota nameraná.

V prípade, že pri vkladaní súboru aplikácia nenájde spomínané stĺpce, nedovolí používateľ ovi spustiť výpočet. Pri návrhu aplikácie sa predpokladalo, že vstupné dáta budú vždy pochádzať z jedného zariadenia a budú teda mať rovnakú časovú zónu. Z tohto dôvodu stĺpec timestamp neobsahuje údaj o časovej zóne, v ktorej bola hodnota nameraná. Dáta, ktoré som používal pri návrhu aplikácie preto museli byť orezané tak, aby všetky dni mali rovnaký počet meraní alebo čas musel byť prekonvertovaný do takej časovej zóny, ktorá by nespôsobovala rôznu veľkosť periódy. Keďže množina dát, s ktorými som pracoval bola dostatočne veľká zvolil som prvú možnosť.

Dáta by samozrejme nemali byť náhodné, ale malo by sa jednať o časový rad, ktorý je možné dekomponovať na cyklickú, trendovú a náhodnú zložku. Niektoré predikčné algoritmy priamo používajú dekompozíciu časových radov na predpovedanie hodnôt. Jednotlivé záznamy o meraniach by mali za sebou chronologicky nasledovať. V rámci jedného vstupného súboru musia mať dáta všetky záznamy rovnakú periódu časového radu. Ak používateľ vo webovom rozhraní zvolí, že vložené dáta majú periódu napr. 96 meraní za deň, potom aj aplikácia bude očakávať zvolenú veľkosť periódy. Ak pri overovaní dôjde k zlyhanie aplikácie ohlási chybu.

4.3 Použité predikčné metódy

Z pohľadu návrhu aplikácie nás budú pre každú predikčnú metódu zaujímať najmä vstupné parametre, ktoré budeme optimalizovať a transformácie, ktoré je potrebné nad vstupnými

^{*} Dátum z tabuľky je 2013-07-10 20:15:00

dátami vykonať. Takéto delenie je dôležité aj kvôli organizácií programu pri implementácií, keď že úprava dát sa vykoná iba raz, zatiaľ čo vstupné parametre sa budú meniť neustále. Výstupom výpočtu predpovede bude samotná predpoveď alebo veľkosť chyby dosiahnutá pri nej dosiahnutá.

4.3.1 Regresia založená na podporných vektoroch

Parametre, ktoré budeme optimalizovať budú C a ε , ktoré môžu nadobúdať iba kladné hodnoty. Hodnota parametru C reprezentuje cenu za prekročenie hranice, ktorú sme definovali. Hranicu si označíme ako ε . Pri veľ mi nízkej hodnote sa model nenatrénuje dostatočne, výsledkom čoho je predikcia s veľ kou chybou. Pri veľ mi vysokej hodnote môže dôjsť k pretrénovaniu modelu a zvýšeniu výslednej chyby na množine testovacích dát. Hodnota parametru ε je hodnota použitá v nesenzitívnej stratovej funkcii, ktorá sa používa pre regresiu. Zvyšovaním tejto hodnoty sa funkcia reprezentujúca predpoveď postupne vyhladzuje, až sa bude podobať na konštantú funkciu.

Vstupné dáta je potrebné transformovať na 2 matice, jednu trénovaciu maticu a jednu testovaciu maticu. Trénovacia matica obsahuje stĺpec s hodnotami, ktoré boli v daných časoch namerané, testovacia má tento stĺpec prázdny, predpovedané hodnoty doplní algoritmus. Počet ďalších stĺpcov sa môže líšiť v závislosti od veľkosti zvolenej periódy. Ak si označíme počet meraní za deň ako n, potom stĺpce M_1 až M_n budú obsahovať hodnotu 1 práva vtedy, keď poradie merania v dni bude totožné s poradím stĺpca. Rovnakým postupom pridáme ešte ďalších 7 stĺpcov, ktoré budú predstavovať poradie dňa v týždni. Pre iné stĺpce D_1 až D_7 bude potom platiť, že napr. v prvom stĺpci bude priradená hodnota 1 tým záznamom, ktoré boli namerané v pondelok. Zvyšok matice bude doplnení nulami.

4.3.2 Autoregresný integrovaný model kĺzavého priemeru

Parametre stochastického modelu ARIMA sú v literatúre označované ako p, d a q. Z kapitoly 2.2.2 vieme, že model ARIMA je generalizáciou modelu ARMA, ktorý vznikol kombináciou autoregresného modelu a modelu kĺzavých priemerov. Vstupné parametre sú nezáporné celé čísle, kde p a q predstavuje rad modelu a d zodpovedá stupňu derivovania. Pri veľkom počte derivovaní sa funkcia predpovednej hodnoty podobá lineárnej funkcii.

Príprava vstupných dát je veľ mi jednoduchá. Keď že model pracuje priamo s časovými radmi a vstupné dáta sú časový rad, jedinou úpravou je rozdelenie dát na trénovaciu a testovaciu množinu a určenie veľ kosti periódy, ktorú zadáva používateľ.

4.3.3 Náhodné lesy

Vstupné parametre, ktoré sa budeme snažiť v aplikácií optimalizovať bude počet stromov a minimálna veľkosť uzlu v stromoch. Je zrejmé, že číslo definujúce počet stromov bude musieť byť kladné a celé, zatiaľ čo veľkosť uzlu môže byť definovaná ako ľubovoľné nezáporné číslo. Pri zvyšovaní počtu stromov, ktoré budú vytvorené sa funkcia predpovedanej hodnoty javí, akoby každé pridanie stromu poskytovalo funkcii ďalšiu možnosť zmeny smeru. Funkcia tak pri malom počte stromov vyzerá nerovnomerne a náhodne, zväčšovaním počtu sa extrémy vyhladzujú a predpovedané hodnoty postupne konvergujú do funkcie, ktorá je obrysmi podobná funkcii reálnych dát. Zväčšovaním uzlov sa funkcia predikovaných hodnôt postupne vyhladzuje, až nakoniec opisuje konštantnú funkciu.

Rovnako ako model ARIMA tak aj náhodné lesy pracujú priamo s časovými radmi. Je však potrebné pridať k dátam informáciu o tom, kedy boli namerané. Zároveň by táto funkcia

mala byť spojitá. To najjednoduchšie dosiahneme tak, že z dátumu extrahujeme poradie dňa v týždni a z časovej zložky zasa poradie merania v dni. Funkcie zatiaľ nie sú spojité, a preto na ne aplikujeme transformáciu popísanú vo vzorci 35 [14]

$$\frac{sin(2\Pi\frac{\text{poradie merania}}{\text{veľ kosť periódy}}) + 1}{2} \text{ resp. } \frac{cos(2\Pi\frac{\text{poradie merania}}{\text{veľ kosť periódy}}) + 1}{2}$$
(35)

a goniometrické funkcie sínus a kosínus. Výsledné funkcie sú spojité a svojou harmonickosťou opisujú vlastnosti dát skryté v dátume a čase. Na obrázku 11, môžeme vidieť priebehy funkcií pred transformáciou. Kvôli čitateľ nosti je pre hodnoty použitá logaritmická mierka. Priebehy pomocných funkcií po transformácií sú znázornené na obrázku 12. Grafy vychádzajú zo vzorky dát o veľkosti 3 dni a znázorňujú rovnaké dni.

Obr. 11: Dátum a čas pred transformáciou.

4.4 Použité optimalizačné metódy

Aplikácia bude používateľ ovi poskytovať rozhranie na nastavenie vstupných parametrov predikčných metód a taktiež nastavanie rozsahu hodnôt, ktoré majú tieto metódy použiť pri optimalizovaní. Výsledkom výpočtu bude porovnanie reálnych a predpovedaných dát v podobe grafu a veľ kosti výslednej chyby. Taktiež budú používateľ ovi zobrazené optimálne parametre pre zvolenú predikčnú metódu. Každá kombinácia parametrov vystupuje v optimalizačnom algoritme ako agent, ktorého úlohou je dosiahnuť, čo najnižšiu hodnotu fitness funkcie. V závislosti od použitého algoritmu a získaných vedomostí sa v nasledujúcich cykloch menia hodnoty reprezentujúce agenta. Hodnoty parametrov môžu byť ovplyvňované aj voľ bou funkcie na meranie chyby, ktorá plní úlohu fitness funkcie pre optimalizačné algoritmy.

Pri návrhu aplikácie je dôležité najmä správne definovať rozhranie medzi predikčnými a optimalizačné metódami. Je nežiadúce, aby pri pridávaní ďalších algoritmov bolo potrebné

Obr. 12: Ukážka transformácií dátumu a času pri predikcii náhodnými lesmi.

upravovať už používané algoritmy, najmä kvôli množstvu kombinácií, ktoré môže vzniknúť. Našťastie každého agenta definujeme práve hodnotami, ktoré vstupujú do predikčného algoritmu. Na výstupe očakáva optimalizačná metóda hodnotu fitness funkcie, ktorá určuje ďalšie smerovanie agentov. Tento proces sa opakuje až pokiaľ nebude dosiahnutá ukončovacia podmienka. V použitých algoritmoch to je maximálny počet iterácií algoritmu. Túto hodnotu môže používateľ nastaviť v aplikácií v definovanom rozsahu.

4.4.1 Optimalizácia rojom častíc

Používateľ bude mať možnosť v aplikácií zvoliť počet častíc, ktoré budú použité na optimalizovanie problému. Pod každou časticou si môžeme predstaviť agenta, ktorý bude nositeľ om informácie o okolitom prostredí a o hodnotách, ktoré ho viedli k aktuálnemu riešeniu. Väčší počet častíc znamená dôkladnejšie prehľ adanie vstupného priestoru. Na druhú stranu výpočet je náročnejší. Pre každý optimalizovaný parameter je potrebné definovať rozsah hodnôt, ktoré môže používateľ v aplikácií nastaviť. Je dôležité poznamenať, že okrem hraníc rozsahu nás zaujímajú aj samotné hodnoty, ktoré bude algoritmus používať na optimalizáciu. Je zrejmé, že používať desatinné čísla pre parameter označujúci napr. počet stromov nie je logické a aplikácia by mala byť schopná sa s tým vysporiadať.

V prostredí jazyka R sú k dispozícií 2 rôzne knižnice implementujúce optimalizáciu rojom častíc. V aplikácií sa budú pre porovnanie použité obidve implementácie.

4.4.2 Umelá kolónia včiel

Rovnako ako pri optimalizácii rojom častíc tak aj pri tomto algoritme bude mať používateľ možnosť zvoliť rozsah hodnôt, ktoré budú použité na optimalizovanie. Opäť bude dôležité vysporiadať sa s desatinnými číslami. Používateľ bude môcť navyše nastavovať parametre ABC algoritmu ako je počet zdrojov potravy alebo limit pre daný zdroj. Pod limitom môžeme rozumieť počet iterácií cyklu, počas ktorého sa daný zdroj potravy nezlepšil. Týmto

parametrom môžeme výrazne urýchliť nájdenie optimálneho riešenia, na druhej strane môže nastať situácia, kedy by sme rýchlym opustením zdroja potravy mohli stratiť lepšie riešenie. Zvyšovaním počtu zdrojov potravy sa zvyšuje aj čas výpočtu, ale zároveň bude nájdené optimálnejšie riešenie.

5 Implementácia

Webová aplikácia je implementovaná v jazyku R verzie 3.4.0. Pri implementácií som používal vývojové prostredie RStudio verzia 1.0.143. Webové rozhranie je vytvorené pomocou knižnice shiny. Konfigurácia aplikácie je zabezpečená knižnicou config, informácie o ďalších použitých knižniciach a ich verziách sa nachádzajú v tabuľke 4. Nasledujúce podkapitoly obsahujú popis použitých transformáciami nad dátami, popis organizácie zdrojového kódu do funkcií a súborov, úpravu konfigurácie, ale aj postupy na pridanie ďalších predikčných a optimalizačných algoritmov.

Názov	Použitá verzia
ABCoptim	0.14.0
config	0.2
dygraphs	1.1.1.4
forecast	8.0
kernlab	0.9-25
pso	1.0.3
psoptim	1.0
randomForest	4.6-12
shiny	1.0.2
shinyBS	0.61
shinyjs	0.9
xts	0.9-7

Tabuľka 4: Použité knižnice jazyka R.

5.1 Úprava vstupných dát

Počas návrhu aplikácie bolo k dispozícií viacero datasetov, ktoré sme mohli použiť. Keď že je fungovanie aplikácie nezávislé na zvolenej doméne a nevzniká potreba trénovať model na veľ kom množstve dát, jediným kritériom na vstupné dáta je, aby mali vlastnosti časových radov. Použité dáta pochádzajú z inteligentných elektromeračov nachádzajúcich sa na Slovensku. Veličina, ktorú sme predpovedali je odber elektrickej energie. Dáta sú k dispozícií každých 15 minút a celý dataset obsahuje merania z obdobia takmer 2 rokov. Formát dát je nasledovný:

```
DATUM, CAS, Suma_odbery
01/07/2013, -105, 1979.647687
01/07/2013, -90, 1866.069666
01/07/2013, -75, 1657.762122
01/07/2013, -60, 1646.840106
01/07/2013, -45, 1654.063798
01/07/2013, -30, 1719.126487
01/07/2013, -15, 1725.385136
01/07/2013, 0, 1702.126518
01/07/2013, 15, 1653.233316
01/07/2013, 30, 1601.772426
01/07/2013, 45, 1577.106243
```

```
01/07/2013,60,1553.637892
01/07/2013,75,1557.940842
01/07/2013,90,1523.56265
```

Môžeme si všimnúť, že vstupný CSV súbor pozostáva z 3 stĺpcov DATUM, CAS a Suma_odbery. Hodnoty času pritom nezodpovedajú formátu, na ktorý sme bežne zvyknutý, hlavne preto, že sa jedná o jedno celé číslo, ktoré nadobúda aj záporné hodnoty. Je to z dôvodu, že toto číslo označuje poradie merania v dni v minútach v časovej zóne UTC, čiže záporné hodnoty tohto stĺpca označujú prvé hodiny v dni. Pri letnom čase sú to dve hodiny a pri zimnom iba jedna. Ako bolo spomenuté v kapitole 4, aplikácia nebude závislá od domény, časovej zóny alebo pomocných premenných, no zároveň je potrebné zachovať konzistentnú veľkosť periódy naprieč celým datasetom. Z toho dôvodu sa nám naskytujú dva spôsoby, ktorými môžeme upraviť dátum a čas do požadovaného formátu.

Prvým je odstránenie nadbytočnej hodiny pri prechode na zimný čas, pridanie chýbajúcej hodiny pri prechode na letný čas (napr. opakovaním hodnôt z predchádzajúcej hodiny) a následne prekonvertovať stĺpec CAS do formátu %H:%M:%S, s ktorým už ďalej vieme bez problémov pracovať. Druhým jednoduchším spôsobom je obmedziť používanie aplikácie na dáta s veľkosť ou rádovo v týždňoch. Optimalizácia parametrov pri väčších dátach je aj tak veľmi časovo náročná. Potom môžeme záporné hodnoty presunúť do predchádzajúceho dňa a následne ich konvertovať spolu s dátumom do požadovaného formátu. Týmto spôsobom stratíme iba jeden deň na začiatku a na konci časového radu. Cenu za to je posunutie sledovanej veličiny spolu s posunutím času. Na výsledných dátach sa to prejaví tak, že vzory, ktoré si môžeme všimnúť v dátach z letného času, budú v zimnom čase o hodinu posunuté. Vstupná množina dát však nikdy nebude väčšia ako pár mesiacov, a tak nie je problém vyhnúť sa dvom dátumom v roku. Navyše tieto dáta boli použité iba pri návrhu a používateľ bude môcť použiť dáta, ktoré sám uzná za vhodné. Výsledný formát dát je potom nasledovný:

```
timestamp, value
2013-07-01 00:00:00,1702.126518
2013-07-01 00:15:00,1653.233316
2013-07-01 00:30:00,1601.772426
2013-07-01 00:45:00,1577.106243
2013-07-01 01:00:00,1553.637892
2013-07-01 01:15:00,1557.940842
2013-07-01 01:30:00,1523.56265
```

Dáta v takomto formáte sú vhodné na spracovanie, avšak nie je možné ich priamo použiť predikčnými algoritmami. Každý z nich očakáva, že pracuje s dátami v rôznych dátových štruktúrach s rôznymi vysvetľ ujúcimi premennými. Aj keď bolo spomenuté, že aplikácia ich nebude používať v prípade, že vstupné dáta obsahujú viacero stĺpcov, v tomto prípade sa jedná o dekomponovanie zložiek časového radu a transformovanie dátumu a času tak, ako to požaduje konkrétny algoritmus.

Ako už bolo spomenuté SVR požaduje trénovacie aj testovacie dáta v štruktúre matici, ktorá bude až na stĺpec s nameranou alebo predpovedanou hodnotou obsahovať iba hodnoty 0 a 1. Po vytvorení matici, ktorá obsahuje iba 0, sa postupne na ňu aplikujú metódy <code>svr.setOnesForTimestamp</code> a <code>svr.setOnesForDayOfWeek</code>, ktoré priradia hodnotu 1 pre stĺpec reprezentujúci poradie merania v dni a rovnako aj pre stĺpec reprezentujúci poradie dňa v týždni, kedy bolo meranie uskutočnené. Poslednou úpravou je pridanie stĺpca s nameranými hodnotami pre trénovaciu maticu a prázdneho stĺpca pre testovaciu maticu. Implementácia spomínaných funkcií je:

Pri použití modelu ARIMA je transformácia vstupných dát jednoduchá. Model dáta v štruktúre časového radu, v ktorej už samotné dáta sú. Príprava dát potom spočíva iba v rozdelení množiny na časti požadované používateľ om. Implementácia je nasledovná:

V prípade transformácie dát pre náhodné lesy, by sme mohli hovoriť o kombinácii predchádzajúcih dátových štruktúru s miernym vylepšením. Pri SVR vzniká matica s veľ kosť ou desiatkami stĺpcov a stovkami riadkov, ktoré v každom riadku obsahujú práve dve hodnoty 1, zvyšok sú samé 0. Dáta v takomto formáte je zložité graficky znázorniť a pritom sa jedná iba o 2 neklesajúce funkcie. Toto správanie by sme vedeli zachytiť aj dvojicou čísel, ktoré by reprezentovali rovnaké funkcie. Ak by sme však chceli získať spojité funkcie, tak ako to požaduje implementácia náhodných lesov, je potrebné aplikovať na dáta mapovanie znázornené obrázkom 12. Harmonické funkcie potom opisujú pozíciu merania v dni a týždni, čo implementujeme nasledujúcimi funkciami:

5.2 Použitie knižnice Shiny

Webová aplikácia, s ktorou prichádza používateľ do styku je vytvorená pomocou knižnice Shiny v jazyku R. Zdrojový kód býva obvykle organizovaný do súborov ui.R pre grafické komponenty a server.R pre logiku skrytú za nimi. Zároveň je možné vykresľovať jednotlivé komponenty aj zo serverovej časti aplikácie na predefinované miesto v ui.R. Takéto použite má zmysel v prípade, že zobrazované komponenty sa budú dynamicky pridávať a odoberať v závislosti od zvolených možností. Tento príklad presne zodpovedá problému, s ktorým sme sa stretli pri implementácií aplikácie. Zobrazovanie jednotlivých parametrov závisí od predom zvolených metód. Navyše kvôli zachovaniu konfigurovateľ nosti je potrebné vlastnosti komponentov čítať z konfiguračného súboru, čím strácame možnosť sa na ne jednoducho odkazovať. Zobrazovanie komponentov priamo z server.R povolíme volaním funkcie uiOutput ("predictionParameters") v ui.R. Následne je potrebné priradiť komponenty do premennej output\$predictionParameters v serverovej časti. To zabezpečíme nasledujúcim zdrojovým kódom:

```
output$predictionParameters <- renderUI({ $ % TODO remove
  numberOfParameters <- length(server.properties$</pre>
    → predictionAlgorithms[[as.numeric(input$
    → predictionAlgorithms)]]$predictionParameters)
  fluidRow(
    lapply(1:numberOfParameters, function(i) {
      column (5,
       numericInput(server.properties$predictionAlgorithms[[
         → as.numeric(input$predictionAlgorithms)]]$
         → predictionParameters[[i]]$id,
        label = server.properties$predictionAlgorithms[[as.
          → numeric(input$predictionAlgorithms)]]$
          → predictionParameters[[i]]$label,
        value = server.properties$predictionAlgorithms[[as.
          → numeric(input$predictionAlgorithms)]]$
          → predictionParameters[[i]]$value,
       min = server.properties$predictionAlgorithms[[as.
          → numeric(input$predictionAlgorithms)]]$
          → predictionParameters[[i]]$min,
       max = server.properties$predictionAlgorithms[[as.
          → numeric(input$predictionAlgorithms)]]$
          → predictionParameters[[i]]$max,
        step = server.properties$predictionAlgorithms[[as.
          → numeric(input$predictionAlgorithms)]]$
          → predictionParameters[[i]]$step
       )
```

```
)
)
)
) $ % TODO remove
```

- numberOfParameters počet parametrov zvoleného predikčného algoritmu
- as.numeric(input\$predictionAlgorithms) index zvoleného predikčného algoritmu pomocou, ktoré sa pristupuje do pol'a algoritmov v konfiguračnom súbore
- server.properties\$predictionAlgorithms pole predikčných algoritmov v konfiguračnom súbore
- lapply(1:numberOfParameters, function(i) vytvorenie objektov typu column v cykle
- **predictionParameters**[[i]] pristupovanie k jednotlivým parametrom nachádzajúcich sa v konfiguračnom súbore

Po vykreslení komponentov vzniká nový problém, ktorým je získanie hodnôt, ktoré nastavil používateľ. Keď že nikdy nie sú vykreslené všetky komponenty a každý z nich má iný identifikátor, museli by sme sa pri dotazovaní sa najprv uistiť, či daný komponent existuje. To vy nebolo najvhodnejšie riešenie, keď že zároveň by sme dosiahli aj množstvo duplicitných častí kódu a znížila by sa udržateľ nosť a čitateľ nosť. Ak by sme problém riešili rovnakými identifikátormi stále by to neriešilo rôzne počty parametrov. Jediným rozumným riešením je opäť použiť odkazovanie na hodnoty v konfiguračnom súbore, čo je zabezpečené funkciou setOptimizationParameters. Kľúčovými časť ami kódu je cyklus:

- predictParamsCount počet parametrov zvoleného predikčného algoritmu
- predictParams pole parametrov predikčného algoritmu
- value hodnota, ktorá zadal používateľ, vzniká evaluovaním reťazca, ktorý spája používanú syntax a identifikátor komponentu z konfiguračného súboru
- if vzhľadom na to, že pri optimalizácií vždy určujeme rozsah použitých hodnôt, môžeme ich identifikovať prefixom min a max a oddeliť ich od seba

5.3 Konfigurácia aplikácie

Aplikácia je l'ahko konfigurovatel'ná a rozšíritel'ná aj vďaka konfiguračným súborom nachádzajúcich sa v adresári conf, ale aj súboru global. R, ktorý sa automaticky importuje pri spustený Shiny servera. Obsahuje informácie o cestách k súborom, ktoré aplikácia potrebuje pre správne fungovanie. Pri použití aplikácie na inom operačnom systéme ako Linux, prípade s iným rozmiestneným súborov, je možné v tomto súbore jednoducho zmeniť prednastavené cesty.

Spomínaný konfiguračný adresár obsahuje ďalšie 3 súbory. Najdôležitejším je server-config. y a možno ho logicky rozdeliť na 3 časti a to predikčné algoritmy, optimalizačné algoritmy a fitness funkcie. Každý z predikčných algoritmov obsahuje názvy parametrov, ktoré budú optimalizované, názvy funkcií, ktoré na to budú použité a názvy, ktoré budú zobrazované používateľ ovi pri používaní aplikácie. Parametre v sebe zahŕňajú aj informáciu o minimálnych, maximálnych a prednastavených hodnotách.

Ďalším konfiguračným súborom je ui-config.yml, ktorý obsahuje väčšinou texty a názvy jednotlivých komponentov, no nájdu sa tu aj hodnoty argumentov pre komponenty, ktoré sa počas behu aplikácie nemenia. Takto je zmena jazyku aplikácie veľmi jednoduchá a a vykonané zmeny by sa týkali iba týchto dvoch súborov. Posledným konfiguračným súborom je app-config.yml, kde sú umiestnené hodnoty, ktoré sa netýkajú webovej aplikácie, ale samotných algoritmov. Veľa z nich poskytuje väčšiu funkcionalitu ako sme reálne použili. To vieme ovplyvniť pri volaní funkcie napr. nastavením príznaku alebo konkrétnou hodnotou vymenovaného typu. Konkrétnym príkladom je predpovedanie pomocou SVR, ktorý sa bežne používa na klasifikačné problémy ako SVM. V súbore sa potom nachádza vymenovaný typ označujúci použitie regresie a nie klasifikácie.

5.4 Postup pridávania predikčných algoritmov

Najdôležitejšou časť ou pridania ď alšieho algoritmu je implementovanie 3 funkcií, na ktoré sa neskôr budeme odkazovať z webového rozhrania. Prvá funkcia, v konfiguračnom súbore označovaná ako prepareFn, bude na vstupe očakávať výsledok načítania súboru, čiže zoznam s dátami z trénovacej a testovacej množine so stĺpcami timestamp a value a počet meraní za deň. Výstupom funkcie je opäť zoznam, obsahujúci pripravené dátové štruktúry pre trénovacie a testovanie množiny. Ten je uložený do globálnej premennej params. prediction zjednocujúcej parametre predikčnej metódy, ktoré nebudú optimalizované. Ďalšou funkciou je predictFn, ktorá je jadrom celého procesu optimalizácie. Bude používaná v každom cykle každým agentom, a preto je dôležité dbať na efektivitu funkcie. Na vstupe očakáva pole číselných parametrov, ktoré budú optimalizované. Telo funkcie sa vo väčšine prípadov skladá z vytvorenia modelu, vypočítania predpovedi a vypočítania chyby, ktorú predpoveď dosiahla. Pri vytváraní modelu sú používané hodnoty z prepareFn, ale môžeme dodefinovať aj parametre, ktoré sa nebudú optimalizovať a vložiť ich do app-config.yml. Výpočet chyby spočíva vo volaní funkcie podľa jej názvu, ktorý je uložený v params. prediction \$erro Parametrami sú skutočná hodnota z testovacích dát a predpovedaná hodnota. Pri pridávaní ďalších fitness funkcií je dôležité nezabudnúť, aby výsledkom bolo vždy nezáporné číslo, inak by mohla nastať situácia, kedy by optimalizačné algoritmy nachádzali nevhodné riešenia. Posledná funkcia predictDataFn je implementáciou rovnaká, líši sa iba v tom, že namiesto veľkosti chyby vracia predpovedané hodnoty. Tie sú potom použité vo webovom rozhraní na vykreslenie grafu s reálnymi hodnotami a predpovedanými.

Samozrejme, ak by sme teraz spustili aplikáciu, nepribudla by možnosť použitia nového algoritmu. Dôležité je vytvoriť v konfiguračnom súbore <code>server-config.yml</code> nový ele-

ment v poli predikčných algoritmov. Pre správne fungovanie aplikácie je dôležité, aby element obsahoval nasledujúce premenné:

- label názov algoritmu používaný v UI
- parameterLabels názvy optimalizovaných parametrov používaných v UI
- prepareFn funkcia pripravujúca dáta pre predikciu
- predictFn predikčná funkcia vracajúca veľkosť chyby
- predictDataFn predikčná funkcia vracajúca predpoveď
- **predictionParameters** pole predikčných parametrov, pre každý parameter sa tu nachádza minimum a maximum, obsahuje nasledujúce hodnoty:
 - id identifikátor komponentu používaný na odkazovanie sa na serveri
 - label názov parametru používaný v UI
 - value prednastavená hodnota
 - **min** dolná hranica parametru
 - max horná hranica parametru
 - step krok, o ktorý sa minimálne zmení hodnota parametru pri nastavovaní komponentu

Ani teraz by som sa po spustení nevykoná výpočet. Aj keď máme k dispozícií voľ bu nového algoritmu, po spustení výpočtu aplikácia zlyhá, lebo server sa pokúša použiť metódu, ktorá zatiaľ nebola importovaná. Preto je poslednou úpravou pridanie príkazu na importovanie vytvorených súborov do zdrojového súboru server. R.

Pri implementácii funkcií predictFn a predictDataFn je dôležité myslieť na to, pre aké vstupné hodnoty je predikčný algoritmus definovaný. Definičný obor určujeme rozsahom v konfiguračnom súbore, ale problém nastáva v prípade ak je definovaný iba na množine celých čísel. Optimalizačné algoritmy budú volať funkciu aj s desatinnými číslami v rámci určeného rozsahu. Niektoré implementácie predikčných algoritmov sa s týmto problémom vedia vysporiadať a zaokrúhľujú desatinné čísla na celé podľa potreby. Niektoré nemajú ošetrené vstupy a tak sa môže program začať správať nepredvídateľné alebo prestane reagovať úplne. Z toho dôvodu som hodnoty, ktoré majú byť celočíselne vnútri týchto metód zaokrúhľoval. Najlepším riešením by bolo postihovať tie riešenia, ktoré nie sú celočíselné, ale to by mohlo spôsobiť rozsiahle zmeny v implementovaných funkciách.

5.5 Postup pridávania optimalizačných algoritmov

Pridanie d'alšieho optimalizačného algoritmu je jednoduchší proces, no vo svojej podstate pozostáva z rovnakých krokov ako pridanie nového predikčného algoritmu. Implementácia väčšinou pozostáva z jednej funkcie vnútri, v ktorej sa okrem optimalizácie iba pripravia dáta pre predikčný algoritmus a transformujú výstupy optimalizačného algoritmu na jednotný formát. Optimalizácia pozostáva obvykle z jedného volania knižničnej funkcie. Vstupné parametre, ktoré sa nemenia, môžeme umiestniť do konfiguračného súboru. Ostatnými parametrami bývajú hranice, v rámci ktorých má algoritmus hľadať riešenie a parametre špecifické pre použitý algoritmus. Výstupom tejto metódy je zoznam obsahujúci najnižšiu nájdenú chybu a pole parametrov, ktorými bola hodnota získaná.

Pred spustením aplikácie je potrebné vykonať kroky, ktoré boli opísané v predchádzajúcej kapitole. Konkrétne pridať implementovaný algoritmus do konfiguračného súboru, zvýšiť počet dostupných algoritmov a pridanie importovania do súboru server. R. Pridaný záznam v konfiguračnom súbore bude mať nasledovný formát:

- label názov algoritmu používaný v UI
- optimizeFn optimalizačná funkcia vracajúca najlepšie nájdené riešenie
- **optimizationParameters** pole optimalizačných parametrov, pre každý parameter sa tu nachádza minimum a maximum, obsahuje nasledujúce hodnoty:
 - − id identifikátor komponentu používaný na odkazovanie sa na serveri
 - label názov parametru používaný v UI
 - value prednastavená hodnota
 - **min** dolná hranica parametru
 - max horná hranica parametru

6 Experimentálne overenie

Dáta, na ktorých bolo uskutočnené testovanie webovej aplikácie pochádzajú z inteligentných elektromeračov, vďaka ktorým máme merania k dispozícií každú štvrťhodinu. Merania sú združené podľa PSČ do súborov, kde každý z nich obsahuje 96 meraní za deň po dobu približne 1 roka a 11 mesiacov. Počty odberov v rámci jednej agregácie sa líšia, čo spôsobuje, že aj vzory v časových radoch sú rôzne. Preto je potrebné najskôr vybrať reprezentatívne dáta s dĺžkou periódy, ktorá bude zabezpečovať dostatočne rýchly výpočet s uspokojujúcou veľkosť ou chyby. Následne môžeme nad nimi vykonať porovnania optimalizačných algoritmov a primitívnych metód ako je napr. prehľadávanie celého priestoru.

6.1 Výber vhodného datasetu

Predpokladáme, že používateľ má k dispozícií dáta, ktoré sú v požadovanom formáte. V našom prípade sme museli prekonvertovať do požadované formátu pomocou skriptu util/convert.R. Vyberali sme na základe počtu odberov tak, aby bola zastúpená približne každá skupina. Pripravené dáta sa nachádzajú v adresári data. Jednotlivé modely sú trénované na množine 1 týždňa a predpovedajú nasledujúci deň. Výsledky porovnania môžeme vidieť v tabuľkách 5 a 6. Vyberáme datesety s najmenšími nameranými chybami pričom nezáleží na použitej predikčnej metóde. Môžeme predpokladať, že tieto datasety sú najvhodnejšími kandidátmi na testovanie, keď že obsiahnuté dáta presnejšie spĺňajú definíciu časového radu. Vybrali sme datasety 91_NDATA.csv, 99_UDATA.csv a 98_NDATA.csv.

Tabul'ka 5: Porovnanie datasetou pomocou modelu ARIMA.

Názov súboru	Veľkosť chyby MAPE
01_UDATA.csv	11.52
91_NDATA.csv	7.18
94_UDATA.csv	7.95
98_NDATA.csv	9.51
99_UDATA.csv	7.15

Tabul'ka 6: Porovnanie datasetou pomocou SVR.

Názov súboru	Veľkosť chyby MAPE
01_UDATA.csv	17.46
91_NDATA.csv	10.47
94_UDATA.csv	14.96
98_NDATA.csv	13.89
99_UDATA.csv	14.14

6.2 Výber vhodnej veľkosti datasetu

Našou snahou je vybrať na testovanie trénovaciu množinu, ktorej veľkosť nebude priveľká a výpočet nebude zbytočne časovo náročný a zároveň ani príliš malá, aby predikčné algoritmy dokázali indentifikovať opakujúce sa vzory v dátach. Použité dáta sú z datasetov vybraných

v predchádzajúcom testovaní. Stĺpce v tabuľ ke 7 označujú veľ kosť trénovacích dát v týždňov. Predpovedáme nasledujúci deň pomocou náhodných lesov a chyby MAPE, ktorá sa nachádza v jednotlivých bunkách tabuľ ky. Môžeme si všimnúť, že zatiaľ čo pri niektorých datasetoch začne veľ kosť chyby pri zvyšovaní veľ kosti trénovacej množiny v istom bode rásť, pri iných sa môže veľ kosť chyby udržiavať na približne rovnakej úrovni. Pre ďalšie testovanie budeme používať dataset 91_NDATA.csv s veľ kosť ou trénovacej množiny dva týždne a 98_NDATA.csv s veľ kosť ou trénovacej množiny 1 týždeň.

Tabul'ka 7: Porovnanie predikcii náhodných lesoch pre rôzne veľké trénovacie množiny.

Názov súboru	1	2	3	4
91_NDATA.csv	4.58	3.78	4.8	6.14
98_NDATA.csv	6.5	10.32	17.06	20.03
99_UDATA.csv	25.08	12.46	17.48	6.43

6.3 Vol'ba fitness funkcie

Nasledujúcim pokusom sme sa snažili overiť nezávislosť nájdeného riešenia od zvolenej fitness funkcie. Výsledky môžeme vidieť v tabuľke 8. Názov testu je zložený z názvu fitness funkcie a veľkosti trénovacích dát uvedenej v týždňoch. Na testovanie bola použitá optimalizácia umelou kolóniou včiel. Rozsah hodnôt bol pre všetky merania rovnaký, pre počet stromov (Parameter 1) od 40 do 80 a pre veľkosť uzlov (Parameter 2) od 5 do 20. Môžeme si všimnúť, že zatiaľ čo priemery optimálne nájdených hodnôt sú približne rovnaké, veľkosť štandardnej odchýlky sa líši. Rovnako sa líšia odchýlky aj medzi jednotlivými parametrami. Merania potvrdili závislosť nájdeného riešenia od zvolenej fitness funkcie aj keď iba v malom rozsahu. V nasledujúcich kapitolách budú preto porovnávania uskutočňované iba v rámci rovnakej fitness funkcie.

Tabul'ka 8: Porovnanie fitness funkcií na predikcii náhodných lesoch.

Názov testu	Chyba		Parameter 1		Parameter 2	
	priemer	odchýlka	priemer	odchýlka	priemer	odchýlka
MAE 1T	9443.63	466.81	51.48	12.14	7.78	2.1
MAE 2T	2707.9	73.36	52.1	13.11	14.16	4.3
MAPE 1T	7.7	0.43	45.21	5.67	7.88	4.6
MAPE 2T	21.21	1.17	47.58	6.83	14.73	4.5
MSE 1T	105589322	9045238	49.63	7.47	6.9	1.56
MSE 2T	8869152	525878	54.13	7.91	16.2	2.86

6.4 Optimalizácia parametrov SVR

Hľ adanie cez aplikáciu rôznymi metódami porovnanie s hľ adaním v cykle prípadne svr tune

6.5 Optimalizácia parametrov modelu ARIMA

Hľadanie cez aplikáciu rôznymi metódami porovnanie s hľadaním v cykle a autoarimou

6.6 Optimalizácia parametrov náhodných lesov

Hľ adanie cez aplikáciu rôznymi metódami porovnanie s hľ adaním v cykle

7 Záver

Našou úlohou bolo vytvoriť webovú aplikáciu, ktorá bude používateľ ovi poskytovať možnosť výberu predikčných algoritmov, ktorých optimálne vstupné parametre budú nachádzané pomocou optimalizačných algoritmov. Zároveň bolo cieľ om navrhnúť aplikáciu tak, aby pridávanie nových algoritmov nespôsobovalo vážne zmeny v jej implementácii. To sa nám do značnej miery podarilo zabezpečiť pridaním konfiguračných súborov a navrhnutím rozhrania medzi jednotlivý funkciami. Taktiež aplikácia spĺňa opísanú funkcionalitu a poskytuje používateľ ovi výsledky v podobe nájdených optimálnych parametrov.

Počas analýzy problému sme sa zaoberali jednotlivými predikčnými a optimalizačnými metódami, ich výhodami a nevýhodami. Zamerali sme sa najmä na biologicky inšpirované algoritmy, ktoré nám poskytujú v krátkom čase uspokojivé výsledky. Taktiež sme si spomenuli možnosti merania chyby predikcií, ktoré zároveň v našom prípade reprezentujú fitness funkciu optimalizačnej metódy. Testovaní sme zistili, že nie všetky metódy merania chyby sú vhodným kandidátom na fitness funkciu.

Literatúra

- [1] Adhikari, R.: *An Introductory Study on Time Series Modeling and Forecasting*. Saarbrucken: LAP LAMBERT Academic Publishing, 2013, ISBN 9783659335082.
- [2] Arun, K.; Rejimoan, R.: A survey on network path identification using bio inspired algorithms. In 2016 2nd International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB), Feb 2016, s. 387–389, doi:10.1109/AEEICB.2016.7538314.
- [3] Bel, L.; Allard, D.; Laurent, J. M.; aj.: CART Algorithm for Spatial Data: Application to Environmental and Ecological Data. *Comput. Stat. Data Anal.*, ročník 53, č. 8, Jún 2009: s. 3082–3093, ISSN 0167-9473, doi:10.1016/j.csda.2008.09.012. URL http://dx.doi.org/10.1016/j.csda.2008.09.012
- [4] Breiman, L.: Random Forests. *Machine Learning*, ročník 45, č. 1, 2001: s. 5–32, ISSN 1573-0565, doi:10.1023/A:1010933404324.
 URL http://dx.doi.org/10.1023/A:1010933404324
- [5] Chavan, S. D.; Kulkarni, A. V.; Khot, T.; aj.: Bio inspired algorithm for disaster management. In *2015 International Conference on Energy Systems and Applications*, Oct 2015, s. 776–781, doi:10.1109/ICESA.2015.7503455.
- [6] Deolekar, R. V.: Defining parameters for examining effectiveness of genetic algorithm for optimization problems. In 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), March 2016, s. 1061–1064.
- [7] Goel, L.; Gupta, D.; Panchal, V. K.; aj.: Taxonomy of nature inspired computational intelligence: A remote sensing perspective. In 2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC), Nov 2012, s. 200–206, doi:10.1109/NaBIC.2012.6402262.
- [8] Grmanová, G.; Laurinec, P.; Rozinajová, V.; aj.: Incremental Ensemble Learning for Electricity Load Forecasting. *Acta Polytechnica Hungarica*, ročník 13, č. 2, 2016.
- [9] Gruau, F.; Iyon I, L. C. B.; Doctorat, O. A. D. D.; aj.: Neural Network Synthesis Using Cellular Encoding And The Genetic Algorithm. 1994.
- [10] Gutiérrez, P. A.; Pérez-Ortiz, M.; Sánchez-Monedero, J.; aj.: Ordinal Regression Methods: Survey and Experimental Study. *IEEE Transactions on Knowledge and Data Engineering*, ročník 28, č. 1, Jan 2016: s. 127–146, ISSN 1041-4347, doi:10.1109/TKDE. 2015.2457911.
- [11] Karaboga, D.; Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. *Journal of Global Optimization*, ročník 39, č. 3, 2007: s. 459–471, ISSN 1573-2916, doi:10.1007/s10898-007-9149-x. URL http://dx.doi.org/10.1007/s10898-007-9149-x
- [12] Kennedy, J.; Eberhart, R.: Particle swarm optimization. In *Neural Networks*, 1995. Proceedings., IEEE International Conference on, ročník 4, Nov 1995, s. 1942–1948 vol.4, doi:10.1109/ICNN.1995.488968.

- [13] Kumar Singh, A.; Khatoon, S.; Muazzam, M.; aj.: An Overview of Electricity Demand Forecasting Techniques. *Network and Complex Systems*, ročník 3, č. 3, 2013, ISSN 2225-0603.

 URL www.iiste.org
- [14] Laurinec, P.: R <- Slovakia meetup started to build community in Bratislava. https://petolau.github.io/First-R-Slovakia-meetup/, 2017, dostupné 2017-04-26.
- [15] Lazinica, A.: *Particle swarm optimization*. Rijek, Crotia: InTech, 2009, ISBN 978-953-7619-48-0.
- [16] Liu, L.; Hudak, G.: Forecasting and Time Series Analysis Using the SCA Statistical System, ročník zv. 1. Scientific computing Associates Corporation, 1992. URL https://books.google.sk/books?id=8-HrAAAACAAJ
- [17] Mahalakshmi, G.; Sridevi, S.; Rajaram, S.: A survey on forecasting of time series data. In 2016 International Conference on Computing Technologies and Intelligent Data Engineering (ICCTIDE'16), Jan 2016, s. 1–8, doi:10.1109/ICCTIDE.2016.7725358.
- [18] Mendes-Moreira, J. a.; Soares, C.; Jorge, A. M.; aj.: Ensemble Approaches for Regression: A Survey. ACM Comput. Surv., ročník 45, č. 1, December 2012: s. 10:1–10:40, ISSN 0360-0300, doi:10.1145/2379776.2379786.
 URL http://doi.acm.org/10.1145/2379776.2379786
- [19] Merz, C. J.: Classification and Regression by Combining Models. Dizertačná práca, University of California, 1998, aAI9821450.
- [20] Sapankevych, N. I.; Sankar, R.: Time Series Prediction Using Support Vector Machines: A Survey. *IEEE Computational Intelligence Magazine*, ročník 4, č. 2, May 2009: s. 24–38, ISSN 1556-603X, doi:10.1109/MCI.2009.932254.
- [21] Seeley, T. D.; Camazine, S.; Sneyd, J.: Collective decision-making in honey bees: how colonies choose among nectar sources. *Behavioral Ecology and Sociobiology*, ročník 28, č. 4, 1991: s. 277–290, ISSN 1432-0762, doi:10.1007/BF00175101. URL http://dx.doi.org/10.1007/BF00175101
- [22] Sen, M.; Stoffa, P.: Global Optimization Methods in Geophysical Inversion. Advances in Exploration Geophysics, Elsevier Science, 1995, ISBN 9780080532561. URL https://books.google.sk/books?id=PT5MqSIvREMC
- [23] Simonova, S.; Panus, J.: Genetic algorithms for optimization of thematic regional clusters. In *EUROCON 2007 The International Conference on Computer as a Tool*, Sept 2007, s. 2061–2066, doi:10.1109/EURCON.2007.4400359.
- [24] Smola, A. J.; Schölkopf, B.: A tutorial on support vector regression. *Statistics and Computing*, ročník 14, č. 3, 2004: s. 199–222, ISSN 1573-1375, doi:10.1023/B:STCO. 0000035301.49549.88.

 URL http://dx.doi.org/10.1023/B:STCO.0000035301.49549.88
- [25] Tso, G. K.; Yau, K. K.: Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks. *Energy*, ročník 32, č. 9, 2007:

s. 1761-1768, ISSN 0360-5442, doi:http://dx.doi.org/10.1016/j.energy.2006.11.010. URL http://www.sciencedirect.com/science/article/pii/S0360544206003288

A Technická dokumentácia

A.1 Spustenie aplikácie

Jediným potrebným krokom na spustenie aplikácie je otvorenie obsahu elektronického média v RStudio a pri zvolení súbora server. R kliknúť na Run App, čím sa nám otvorí nové okno v prehliadači s aplikáciou. Odporúčaná verzia vývojového prostredia RStudio je 1.0.143.

A.2 Používateľská príručka

Obrazovku webovej aplikácie možno rozdeliť na časti:

- výber algoritmov
- informácie o vstupných dátach
- parametre optimalizačnej metódy
- rozsah parametrov predikčnej metódy
- vypočítaný výsledok

Používateľ môže podľa potreby zvoliť algoritmy, ktoré chce použiť, ich vstupné parametre, rozsahy, prípadne zmeniť fitness funkciu. Na obrázku 13 si môžeme v dolnej časti všimnúť tlačidlo, ktoré je zakázané. Je to spôsobné tým, že zatiaľ nevložil do aplikácie dáta, nad ktorými sa majú vykonávať predpovede. Po pridaní súboru sa objavia na obrazovke nové komponenty, ktoré slúžia na ohraničenie trénovacích a testovacích dát. Môžeme ich vidieť na obrázku 14. V prípade, že sa polia pre výber dátumov nezobrazia, používateľ vložil nevalidné dáta, čiže môžu chýbať hlavička súboru, nemusí sa jednať o CSV alebo názvy stĺpcov nie sú timestamp a value. Po vložení validných dát sa spomínané komponenty vykreslia.

Optimalizácia konfiguračných parametrov predikčných metód

Aplikácia umožňuje používateľovi vybrať si predikčný a optimalizačný algoritmus, pomocou ktorých bude nájdená optimálna hodnota vybranej fitness funkcie. Používateľ má možnosť konfigurovať parametre optimalizačnej a interval jednotlivých paramtrov predikčnej metódy. Nad dátami, ktoré vloží bude vypočítaná najmenšia odchýlka a parametre, ktoré k tomuto výsledku viedli. Dáta musia byť vo formáte CSV, kde prvý stĺpec timestamp označuje čas merania, a stĺpec value hodnotu tohto merania.

Obr. 14: Výber trénovacej a testovacej množiny.

Po vložení dát môže používateľ d'alej upravovať parametre, ktoré má k dispozícií. Pri zmene prednastavených rozsahov pre dátové množiny netreba zabudnúť, že čím bude väčšia testovacia množina dát, tým bude výsledná chyba menšia. Aplikácia môže predpovedať dopredu jednu periódu alebo jej celé násobky. Zmena množiny, z ktorej budú optimalizované parametre predikčnej metódy je priamo úmerná času, ktorý bude zaberať výpočet. Rovnako pri navýšení hodnôt parametrov optimalizačných metód ako je počet jedincov alebo iterácií, dochádza k získaniu presnejšieho výsledku za cenu dlhšej odozvy. Toto samozrejme nemusí platiť vždy a keď že používame algoritmy ako sú napr. náhodné lesy, vypočítaný výsledok môže byť aj horší ako predchádzajúci. Nastavenie parametrov môžeme vidieť na obrázkoch 15 a 16.

Parametre predikčnej metódy Minimum stromov 40 Maximum stromov 80

Minimálna velkosť uzlov

Obr. 15: Výber parametrov optimalizačnej metódy.

Maximum veľkosť uzlov

Parametre optimalizačnej metódy Fitness funkcia Maximum iterácií Maximum zdrojov jedla 20 Maximum iterácií na zabudnutie zdroja

Obr. 16: Výber parametrov predikčnej metódy.

Po kliknutí na tlačidlo *Vypočítaj* sa spustí výpočet a tlačidlo sa zakáže. Povolené je v momente ukončenia výpočtu, kedy sa používateľ ovi zobrazia výsledky. Výsledky pozostávajú z najmenšej chyby, ktorú zvolený algoritmus našiel, tabuľ ku obsahujúcu parametre predikčnej metódy, ktoré viedli k tomuto výsledku a graf zobrazujúci reálne a predpovedané hodnoty. Výstup aplikácie môžeme vidieť na obrázku 17.

Obr. 17: Zobrazenie vypočítaného výsledku používateľovi.

A.3 Obsah elektronického média

- doc dokumentácia, obrázky použité v nej a zdrojové súbory pre LaTeX
- conf adresár obsahujúci konfiguračné súbory aplikácie
- data vzorové vstupné dáta použité pri návrhu webovej aplikácie
- src zdrojové súbory, v ktorých je implementovaná celá funkcionalita
- test zdrojové súbory použité pri validácií riešenia
- web zdrojové súbory pre Shiny

B Plán do letného semestra

Poradie týždňa v letnom semestri	Popis plánovanej činnosti	
1. týždeň	úprava vstupných dát na požadovaný formát, aplikovanie predikčných algoritmov	
2. týždeň	aplikovanie predikčných a optimalizačných algoritmov	
3. týždeň	implementácia optimalizačných algoritmov, ktorým chýba podpora knižníc v jazyku R	
4. týždeň	implementácia optimalizačných algoritmov, tvorba kostry grafického rozhrania aplikácie	
5. týždeň	tvorba jednotného rozhrania medzi aplikáciou a grafickým rozhraním	
6. týždeň	implementácia grafického rozhrania a následne prepojenie s aplikáciou	
7. týždeň	ošetrenie neplatných akcií vykonané používateľ om	
8. týždeň	testovanie aplikácie na rôznych vstupných dátach používa- teľ mi	
9. týždeň	tvorba technickej dokumentácie aplikácie	
10. týždeň	testovanie algoritmov, dokumentácia a porovnanie algorit- mov	
11. týždeň	tvorba prezentácie a príprava na obhajobu projektu	

Iteratívnym vývojom sme sa snažili plniť určený plán do letného semstra. V prvej polovici semestra bola väčšina úsila venovaná návrhu a implmentácií aplikácie tak, aby poskytovala používateľ ovi vysokú mieru konfigurovateľ nosti a modulárnosti. Aj napriek slabej podpore v implementačnom prostredí sa nám to do značnej miery podarilo splniť. Vď aka tomu bolo nasledovné implementovanie nových algoritmov jednoduchým a rýchlym procesom. Zvyšok činnosti počas semestra bol venovaný najmä tvorbe grafického rozhrania, dokumentácií a v neposlednom rade testovaniu. Funkcionalita grafického rozhrania bola v niekoľ kých iteráciách zväčšená. Zároveň s používaním aplikácie vznikala potreba ošetrovania nevalidných vstupov a akcií, čo bolo predmetom činností najmä v závere semestra. Proces dokumentácie a testovania prebiehal nezávisle od vývoja grafického rozhrania, vzhľ adom na to, že jadro aplikácie implementované v prvej polovici semestra už nebolo menené.