Az informatika számítástudományi alapjai gyakorlat

4. feladatsor

(beszéljük meg, hogy miként megy a minimalizálás algoritmusa, az előadáson nem szerepelt) **2.55.** For each of the FAs pictured in Fig. 2.45, use the minimization algorithm described in Section 2.6 to find a minimum-state FA recognizing the same language. (It's possible that the given FA may already be minimal.)

Pumpa lási lema

Ha egs veigt automete åltel elfogadott no elegheni, alter en automete heig telen legalable egs ållepatot (i-blorier i ploemi.

 $s = s_1 s_2 s_3 s_4 s_5 s_6 \dots s_n$ $q_1 q_3 q_{20} q_9 q_{17} q_9 q_6 \dots q_{35} q_1$

Azaz:

Ha $L \subseteq 2^*$ yelvet elfogadja $M = (Q, \Sigma, q_o, A, \sigma)$ we's automata is n = |Q|, are unider of an $x \in L$ L-beli szóm, anely $|x| \ge n$, fllightó

X = UVW

alarbon, alral:

1. | UV | < h

2. |V| >0 (araz v # 2)

3. Minder i 20- va, uvix eL

2.22. For each of the languages in Exercise 2.21, use the pumping lemma to show that it cannot be accepted by an FA.

- a. $L = \{a^n b a^{2n} \mid n \ge 0\}$
- b. $L = \{a^i b^j a^k \mid k > i + j\}$
- c. $L = \{a^i b^j \mid j = i \text{ or } j = 2i\}$
- d. $L = \{a^i b^j \mid j \text{ is a multiple of } i\}$
- e. $L = \{x \in \{a, b\}^* \mid n_a(x) < 2n_b(x)\}$
- f. $L = \{x \in \{a, b\}^* \mid \text{no prefix of } x \text{ has more b's than a's} \}$
- g. $L = \{a^{n^3} \mid n \ge 1\}$
- h. $L = \{ww \mid w \in \{a, b\}^*\}$

- **2.29.** For each statement below, decide whether it is true or false. If it is true, prove it. If it is not true, give a counterexample. All parts refer to languages over the alphabet $\{a, b\}$.
 - a. If $L_1 \subseteq L_2$, and L_1 cannot be accepted by an FA, then L_2 cannot.
 - b. If $L_1 \subseteq L_2$, and L_2 cannot be accepted by an FA, then L_1 cannot.
 - c. If neither L_1 nor L_2 can be accepted by an FA, then $L_1 \cup L_2$ cannot
 - e. If L cannot be accepted by an FA, then L' cannot.

(L' az L komplementerét, vagyis az {a,b}*-L nyelvet jelenti.)