第2章 信息的表示和处理 I: 位、整数

教师: 吴锐

计算机科学与技术学院

哈尔滨工业大学

主要内容:位、字节和整型数

- 信息的位表示
- 位级运算
- 整型数
 - 表示: 无符号数和有符号数
 - 无符号数和有符号数的转换
 - ■扩展、截断
 - 整数运算:加、非、乘、移位
 - 总结
- 内存、指针、字符串表示

为什么用二进制?

- 十进制——适合人类使用
 - 有10个手指的人类
 - 1000年前源自印度、12世纪发展于阿拉伯、13世纪到西方
- 二进制――更适合机器使用
 - 容易表示、存储
 - 打孔纸带上是/否有空
 - 磁场的顺时针/逆时针
 - 容易传输
 - 导线上的电压高/低
 - 可以在有噪声、不精确的电路上可靠传输

位、字节

- 计算机存储、处理的信息: 二值信号
- "位"或"比特"
 - 最底层的二进制数字(数码)称为位(bit, 比特), 值为 0或1
 - 数字革命的基础
- ■位组合
 - 把位组合到一起,采用某种规则进行解读
 - 每个位组合都有含义
- 字节: 8-bit块
 - 人物: Dr. Werner Buchholz, 1956年7月
 - 事件: IBM Stretch computer的早期设计阶段

维纳•布赫霍尔兹

进制

■数的通用表示

10进制:

$$3721 = 3 \times 10^{3} + 7 \times 10^{2} + 2 \times 10^{1} + 1 \times 10^{0}$$

 $N = \pm a_{n}a_{n-1}...a_{1}a_{0}.b_{1}b_{2}...b_{m}$

k进制:

$$N=\pm a_n \times k^n + a_{n-1} \times k^{n-1} + ... + a_1 \times k^1 + a_0 \times k^0 + b_1 \times k^{-1} + b_2 \times k^{-2} + ... + b_m \times k^{-m}$$

其中 a_i , b_j 是 $0 \sim k-1$ 中的一个数码

二进制数

- 特点: 逢二进一,由0和1两个数码组成,基数为2, 各个位权以2ⁱ表示
- 二进制数:

$$a_n a_{n-1} ... a_1 a_0 .b_1 b_2 ... b_m =$$
 $a_n \times 2^n + a_{n-1} \times 2^{n-1} + ... + a_1 \times 2^1 + a_0 \times 2^0$
 $+ b_1 \times 2^{-1} + b_2 \times 2^{-2} + ... + b_m \times 2^{-m}$
其中 a_i , b_i 非0即1

便于计算机存储、算术运算简单、支持逻辑运算

二进制数

- MSB: 最高有效位(Most Significant Bit)
- LSB: 最低有效位(Least Significant Bit)

数字串长、书写和阅读不便

十六进制数

■ 基数16, 逢16进位, 位权为16ⁱ, 16个数码:

■ 十六进制数:

$$a_n a_{n-1} ... a_1 a_0 .b_1 b_2 ... b_m =$$

$$a_n \times 16^n + a_{n-1} \times 16^{n-1} + ... + a_1 \times 16^1 + a_0 \times 16^0 + b_1 \times 16^{-1} + b_2 \times 16^{-2} + ... + b_m \times 16^{-m}$$
其中 a_i , b_i 是 $0 \sim F$ 中的一个数码

十六进制数的加减运算

- 十六进制数的加减运算类似十进制
 - 逢16进位1,借1当16

23D9H+94BEH=B897H

A59FH - 62B8H = 42E7H

■ 二进制和十六进制数之间具有对应关系:

每4个二进制位对应1个十六进制位

00111010B = 3AH, F2H = 11110010B

与二进制数相互转换简单、阅读书写方便

进制转换

■ 十进制整数转换为k(2、8或16)进制数

整数转换:用除法一除基取余法

- 十进制数整数部分不断除以基数k(2、8或16),并记下余数,直到商为0为止
- 由最后一个余数起,逆向取各个余数,则为转换 成的二进制和十六进制数

126=01111110B 二进制数用后缀字母B

126=7EH 十六进制数用后缀字母H

进制转换

■ 十进制小数转换为k(2、8或16)进制数...

小数转换: 用乘法-乘基取整法

乘以基数k,记录整数部分,直到小数部分为0为 止

- 0.8125 = 0.1101B0.8125 = 0.DH
- 小数转换会发生总是无法乘到为0的情况
- 可选取一定位数(精度)
- 将产生无法避免的转换误差

进制转换

- k进制数转换为十进制数
 - 方法: 按权展开
 - 二进制数转换为十进制数

0011.1010B

$$=1\times2^{1}+1\times2^{0}+1\times2^{-1}+0\times2^{-2}+1\times2^{-3}=3.625$$

■ 十六进制数转换为十进制数

$$1.2H = 1 \times 16^{\circ} + 2 \times 16^{-1} = 1.125$$

■ 2、8、16进制间的转换

4个2进制位对应1个16进制位

3个2进制位对应1个8进制位

计算机内的数值表示——编码

- 需要考虑的问题
- ① 编码的长度
- ② 数的符号
- ③ 数的运算

1

字节值编码

- **■** Byte = 8 bits
 - 2进制(Binary) 00000000₂ 11111111₂
 - 10进制(Decimal): 0₁₀ 255₁₀
 - 16进制(Hexadecimal): 00₁₆ FF₁₆

	4	ina, any
He	b Dec	Eiman Binary
0	0	0000
1 2	1	0001
2	2 3	0010
3		0011
4	4	0100
5	5	0101
6	6 7	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

C数据类型的宽度

C 数据类型	32 位	64 位	x86-64
char	1	1	1
short	2	2	2
int	4	4	4
long	4	8	8
float	4	4	4
double	8	8	8
long double	-	-	10/16
pointer	4	8	8

主要内容: 位、字节和 整型数

- 信息的位表示
- 位级运算
- 整型数
 - 表示: 无符号数和有符号数
 - 无符号数和有符号数的转换
 - ■扩展、截断
 - 整数运算: 加、非、乘、移位
 - 总结
- 内存、指针、字符串表示

布尔代数(Boolean Algebra)

- George Boole(1815-1864)提出 逻辑的代数表示
 - 逻辑值 "True(真)" 编码为 1
 - 逻辑值 "False(假)" 编码为 0
- Claude Shannon(1916-2001)创立信息论
 - 将布尔代数与数字逻辑关联起来
- 是数字系统设计与分析的重要工具

布尔代数(Boolean Algebra)

与(And)

■当A=1 并且 B=1时, A&B = 1

&	0	1
0	0	0
1	0	1

或(Or)

■当A=1 或 B=1时, A|B=1

ı	0	1
0	0	1
1	1	1

非(Not)

■当A=0时, ~A=1

异或(Exclusive-Or,Xor)

■当A=1 或 B=1且两者不同时为1, A^B = 1

٨	0	1
0	0	1
1	1	0

一般的布尔代数

- 位向量操作(Operate on Bit Vectors)
 - 按位运算

```
01101001 01101001 01101001

& 01010101 | 01010101 ~ 01010101 ^ 01010101

01000001 01111101 10101010 00111100
```

■ 布尔代数的全部性质均适用

示例:集合的表示与运算

■ 表示: 位向量表示有限集合

- 宽度 w 个比特的位向量[a_{w-1},... a_{1,} a₀]表示集合 {0, ..., w-1} 的子集A
- a_j = 1当且仅当j ∈ A
 - 01101001 { 0, 3, 5, 6 } 76543210
 - 01010101 { 0, 2, 4, 6 } 76543210

■运算

- & 交集(Intersection) 01000001 { 0, 6 }
- | 并集(Union) 01111101 { 0, 2, 3, 4, 5, 6 }
- ^ 对称差集(Symmetric difference) 00111100 { 2, 3, 4, 5 }
- Bryant and O'Hallaron, Computer systems: (Complement)

 Bryant and O'Hallaron, Computer systems: (Complement)

RGB Color Model

RGB Color Model

RGB Color Model

- 颜色中的每一种都可以用一个长度为3的位向量表示,从而进行布尔运算
 - 一种颜色的补通过关掉打开的电源同时打开关闭的电源 形成
- 描述下列颜色的布尔运算的结果:

```
Blue | Green =
Yellow & Cyan =
Red ^ Magenta =
```

2.1.7 C语言中的位级运算

- C语言中的位运算: &, |, ~, ^
 - 适用于任何整型数据类型: long, int, short, char, unsigned
 - 将操作数视为位向量
 - 将参数按位运算

■ 例子(char 类型)

- $\sim 0x41 \rightarrow 0xBE$
 - $\sim 01000001_2 \rightarrow 101111110_2$
- $\sim 0x00 \rightarrow 0xFF$
 - $\sim 0000000002 \rightarrow 11111111112$
- $0x69 & 0x55 \rightarrow 0x41$
 - $01101001_2 & 01010101_2 \rightarrow 01000001_2$
- $0x69 \mid 0x55 \rightarrow 0x7D$
 - $01101001_2 \mid 01010101_2 \rightarrow 011111101_2$

巧用异或

■ 按位异或是一种加的形式

```
int inplace_swap(int *x, int *y)
{
    *x = *x ^ *y;    /* #1 */
    *y = *x ^ *y;    /* #2 */
    *x = *x ^ *y;    /* #3 */
}
```

Step	*x	*y
Begin	А	В
1	A^B	В
2	A^B	$(A^B)^B = A^(B^B) =$
		$A^0 = A$
3	$(A^B)^A = (B^A)^A =$	А
	$B^{\wedge}(A^{\wedge}A) = B^{\wedge}0 = B$	
End	В	А

巧用异或

```
1 void reverse_array(int a[], int cnt) {
2 int first, last;
3 for (first = 0, last = cnt-1;
       first <= last;
       first++,last--)
6
     inplace_swap(&a[first], &a[last]);
7 }
```

2.1.8 对比: C语言的逻辑运算

- C语言的逻辑运算符: &&, ||,!
 - 将0 视作 逻辑"False(假)"
 - 所有非0值视作逻辑 "True(真)"
 - 计算结果总是0 或 1
 - 提前终止(Early termination)、短路求值(short cut)
- 例子(char 数据类型)
 - $!0x41 \rightarrow 0x00$
 - $!0x00 \rightarrow 0x01$
 - $!!0x41 \rightarrow 0x01$
 - $0x69 \&\& 0x55 \rightarrow 0x01$
 - $0x69 \parallel 0x55 \rightarrow 0x01$
- p & & *p (避免空指针访问)
 Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

2.1.9 C语言中的移位运算

- 左移: x << y</p>
 - 将位向量x向左移动 y位
 - 扔掉左边多出(移出)的位
 - 在右边补0
- 右移: x >> y
 - 将位向量x向右移动 y位
 - 扔掉右边多出(移出)的位
 - 逻辑右移: 在左边补0
 - 算术右移: 复制左边的最高位(y次)
- 未明确定义
 - 移位数量y<0或y≥x的字长(位数)</p>

Argument x	01100010
<< 3	00010 <i>000</i>
Log. >> 2	<i>00</i> 011000
Arith. >> 2	<i>00</i> 011000

Argument x	10100010
<< 3	00010 <i>000</i>
Log. >> 2	<i>00</i> 101000
Arith. >> 2	11 101000

主要内容:位、字节和整型数

- 信息的位表示
- 位级运算
- ■整型数
 - 表示: 无符号数和有符号数
 - 无符号数和有符号数的转换
 - ■扩展、截断
 - 整数运算:加、非、乘、移位
 - 总结
- 内存、指针、字符串表示
- ■总结

2.2 整数编码(Encoding Integers)

无符号数

有符号数——补码(Two's Complement)

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

$$B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$
short int $\mathbf{x} = 15213$;
short int $\mathbf{y} = -15213$;

■ C short: 2 字节

	10 进制	16 进制	2 进制
x	15213	3B 6D	00111011 01101101
У	-15213	C4 93	11000100 10010011

■ 符号位

- 对于补码(2's complement), 最高位表示符号
 - 0 表示非负数(!= 正数), 1 表示负数

带符号数的表示及运算

机器数与真值

机器数:最高位0表示正数,1表示负数。

表示真值

1. 原码

例 2-4
$$x = +1010111$$
 $y = -1010111$ $[x]_{\mathbb{F}} = 0 \ 1010111$ $[y]_{\mathbb{F}} = 1 \ 1010111$ 符 绝 号 对 位 值

2. 反码

正数的反码与其原码相同。

负数的反码为:

其原码中符号位不变,其余各位取反。

$$y = -0110100$$

$$[x]_{1} = 00110100$$

$$[y]_{\kappa} = 11001011$$

3. 补码

正数的补码与其原码相同。

(正数的原码、反码、补码均相同)

负数的补码为:其反码的最低位加1。

例 2-6
$$x = + 0110100$$
 $y = -0110100$

$$[x]_{\not \uparrow h} = 00110100$$
 $[y]_{\not \bigtriangledown} = 11001011$

$$[y]_{\lambda \uparrow} = 11001100$$

补码示例

x = 15213: 00111011 01101101y = -15213: 11000100 10010011

权重	1522	15213		213
1	1	1	1	1
2	0	0	1	2
4	1	4	0	0
8	1	8	0	0
16	0	0	1	16
32	1	32	0	0
64	1	64	0	0
128	0	0	1	128
256	1	256	0	0
512	1	512	0	0
1024	0	0	1	1024
2048	1	2048	0	0
4096	1	4096	0	0
8192	1	8192	0	0
16384	0	0	1	16384
-32768	0	0	1	-32768
总计	-	15213		-15213

数值范围

■ 无符号数值

■
$$UMax = 2^w - 1$$
111...1

■补码数值

■
$$TMin = -2^{w-1}$$
100...0

■
$$TMax = 2^{w-1} - 1$$
 011...1

-1

111...1

位数W = 16时的数值

	十进制	16 进制	二进制
UMax	65535	FF FF	11111111 11111111
TMax	32767	7F FF	01111111 11111111
TMin	-32768	80 00	10000000 000000000
-1	-1	FF FF	11111111 11111111
0	0	00 00	00000000 00000000

不同字长的数值

		W								
	8	16	32	64						
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615						
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807						
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808						

■观察

- |*TMin* | = *TMax* + 1
 - 非对称
- UMax = 2 * TMax + 1

■ C 语言的常量声明

- #include <limits.h>
 - #define INT_MAX 2147483647
 - #define INT_MIN (-INT_MAX-1)
 - #define UINT_MAX 0xffffffff
- 平台相关
 - #define ULONG_MAX
 - #define LONG_MAX
 - #define LONG_MIN (-LONG_MAX-1)

无符号数与有符号数编码的值

Χ	B2U(<i>X</i>)	B2T(<i>X</i>)
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	- 7
1010	10	-6
1011	11	- 5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	-1

■相同

■ 非负数值的编码相同

■ 单值性

- 每个位模式对应一个唯一 的整数值
- 每个可描述整数有一个唯 一编码

⇒有逆映射

- $U2B(x) = B2U^{-1}(x)$
 - 无符号整数的位模式
- $T2B(x) = B2T^{-1}(x)$
 - 补码的位模式

主要内容:位、字节和整型数

- 信息的位表示
- 位级运算
- ■整型数
 - 表示: 无符号数和有符号数
 - 无符号数和有符号数的转换
 - ■扩展、截断
 - 整数运算:加、非、乘、移位
 - ■总结
- 内存、指针、字符串表示

有符号/无符号数之间的转换

■ 有符号数和无符号数转换规则:

位模式不变、数值可能改变(按不同编码规则重新解读)

有符号↔无符号数的转换

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Signed
0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1

Unsigned
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

有符号↔无符号数的转换

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Signed
0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1

Unsigned	
0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	

有符号数和无符号数的关系

转换的可视化

补码→无符号数 **UMax** 顺序倒置 UMax - 1负数 → 大整数 TMax + 1**TMax TMax** 符号数 补 码 的 的 数 数 值 值 范 范 韦 围 TMin

2.2.5 C语言中的有符号数和无符号数

■常量

- 数字默认是有符号数
- 无符号数用后缀 "U" 0U, 4294967259U

■ 类型转换

■ 显示的强制类型转换

```
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;
```

■ 隐式的类型转换(赋值、函数调用等情况下发生)

```
tx = ux;
uy = ty;
```

类型转换的惊喜!

■ 表达式计算

■表达式中有符号和无符号数混用时:

有符号数隐式转换为无符号数

- ■包括比较运算符 <, >, ==, <=, >=
- ■例如W = 32:

TMIN = -2,147,483,648

TMAX = 2,147,483,647

类型转换的惊喜!

Constant1	Constant2	Relation	Evaluation
0	0U	==	unsigned
-1	0	<	signed
-1	0U	>	unsigned
2147483647	-2147483648	>	signed
2147483647U	-2147483648	<	unsigned
-1	-2	>	signed
(unsigned)-1	-2	>	unsigned
2147483647	2147483648U	<	unsigned
2147483647	(int) 2147483648U	>	signed

有符号数和无符号数转换的基本原则

- 位模式不变
- 重新解读(按目标编码类型的规则解读)
- 会有意外副作用: 数值被 +或- 2^w
- 表达式含无符号数和有符号数时
 - 有符号数被转换成无符号数(如int 转成unsigned int)
 - 当心副作用!!!

主要内容:位、字节和整型数

- 信息的位表示
- 位级运算
- ■整型数
 - 表示: 无符号数和有符号数
 - 无符号数和有符号数的转换
 - ■扩展、截断
 - 整数运算:加、非、乘、移位
 - 总结
- 内存、指针、字符串表示

符号扩展

■ 任务:

- 给定w位的有符号整型数x
- 将其转换为w+k位的相同数值的整型数

■ 规则:

■ 将最高有效位(符号位)x_{w-1}复制 k份:

符号扩展示例

```
short int x = 15213;
int        ix = (int) x;
short int y = -15213;
int        iy = (int) y;
```

	十进制	16进制	二进制						
x	15213	3B 6D	00111011 01101101						
ix	15213	00 00 3B 6D	00000000 00000000 00111011 01101101						
У	-15213	C4 93	11000100 10010011						
iy	-15213	FF FF C4 93	11111111 11111111 11000100 10010011						

■ 从短整数类型向长整数类型转换时,C自动进行符 号扩展

总结:扩展、截断的基本规则

- 扩展 (例如从short int 到int的转换)
 - 无符号数: 填充0
 - 有符号数:符号扩展
 - 结果都是明确的预期值
- 截断 (例如从unsigned 到unsigned short的转换)
 - 无论有/无符号数:多出的位均被截断
 - 结果重新解读
 - 无符号数: 相当于求模运算
 - 有符号数: 与求模运算相似
 - 对于小整数, 结果是明确的预期值

主要内容:位、字节和整型数

- 信息的位表示
- 位级运算
- ■整型数
 - 表示: 无符号数和有符号数
 - 无符号数和有符号数的转换
 - ■扩展、截断
 - 整数运算: 加、非、乘、移位
- 内存、指针、字符串表示
- ■总结

无符号数加法

操作数: w 位

真实和: w+1 位

丢弃进位: w 位

■ 标准加法功能

- 忽略进位输出
- 模数加法: 相当于增加一个模运算

$$s = UAdd_w(x, y) = x + y \mod 2^w$$

$$UAdd_{w}(x,y) = \begin{cases} x + y & x + y < 2^{w} \\ x + y - 2^{w} & x + y \ge 2^{w} \end{cases}$$

整数加法可视化示意图

■整数加法

- 4-bit 整型数 *x, y*
- 计算真实值Add₄(x, y)
- ■和随x和 y线性增加
- ■表面为斜面形

无符号数加法可视化示意图

■ 数值面有弯折:

- 当真实和≥ 2"时溢出
- 最多溢出一次

补码加法

操作数: w 位

真实和: w+1 位

丢弃进位: w 位

■ TAdd 和 UAdd 具有完全相同的位级表现

■ C语言中有符号数(补码)与无符号数加法:

$$s = (int) ((unsigned) x + (unsigned) y);$$

$$t = x + y$$

■ 将会有s == t

补码加法(Tadd)

■功能

- 真实和需要w+1位
- 丢弃最高有效位(MSB)
- 将剩余的位视作补码(整数)

$$TAdd(x, y) =$$

$$\begin{cases} x + y - 2^w, & TMax_w < x + y &$$
 正溢出
$$x + y, & TMin_w \le x + y \le TMax_w &$$
 正常
$$x + y + 2^w, & x + y < TMin_w &$$
 负溢出

补码加法(Tadd)的溢出问题

补码加法可视化示意图

■数值

- **4位补码**
- 数值范围-8~+7

■ 弯折——溢出

- $x+y \ge 2^{w-1}$ 时
 - 变成负数
 - 最多一次
- $-x+y < -2^{w-1}$
 - 变成正数
 - 最多一次

乘法

- 目标: 计算w位的两个数x和 y的乘积
 - 有符号数或者无符号数
- 乘积的精确结果可能超过 w 位
 - 乘积的无符号数最多可达 2w 位
 - 结果范围: $0 \le x * y \le (2^w 1)^2 = 2^{2w} 2^{w+1} + 1$
 - 补码的最小值 (负数)最多需要2w-1 位
 - 结果范围: $x * y \ge (-2^{w-1})*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
 - 补码最大值(正数)最多需要2w 位——值为 (TMin_w)²
 - 结果范围: x * y ≤ (-2^{w-1})² = 2^{2w-2}
- 为获得精确结果可扩展乘积的字长
 - 在需要时用软件方法完成,例如: 算术程序包"arbitrary precision"

C语言的无符号数乘法

操作数: w 位		$\boldsymbol{\mathcal{X}}$		\mathcal{X}			• • •]
真实乘积: 2*w位	$x \cdot y$	• • •	*	<i>J</i>				• • •		<u> </u>	<u>၂</u>]
丢弃 w 位·保留低	<u></u> ₩ 1₩	UMult _u	<u>,(x</u>	<i>, y)</i>				• • •			

- ■标准乘法功能
 - 忽略高w 位
- 相当于对乘积执行了模运算

$$UMult_w(x, y) = x \cdot y \mod 2^w$$

C语言的有符号数乘法

操作数: w 位		*	x v		• • •	$\prod_{i=1}^{n}$	\Box
真实乘积: 2*w位	$x \cdot y$	• • •	у П		• • •	卅	世
丢弃 w 位: 保留低i	w 位	TMult _w (x	(x,y)		• • •	П	$\overline{\Box}$

■标准乘法功能

- 忽略高w 位
- 有符号数乘、无符号数乘有不同之处
 - 乘积的符号扩展
- 乘积的低位相同

用移位实现"乘以2的幂"

■ 无论有符号数还是无符号数:

■示例

- u << 3 == u * 8
- u << 5 u << 3 == u * 24
- 绝大多数机器,移位比乘法快
- 编译器自动生成基于移位的乘法代码

用移位实现无符号数"除以2的幂"

- 无符号数"除以2的幂"的商
 - u >> k 得到 [u / 2^k]
 - 使用逻辑右移

	Division	Computed	Hex	Binary
x	15213	15213	3B 6D	00111011 01101101
x >> 1	7606.5	7606	1D B6	00011101 10110110
x >> 4	950.8125	950	03 B6	00000011 10110110
x >> 8	59.4257813	59	00 3B	00000000 00111011

主要内容:位、字节和整型数

- 信息的位表示
- 位级运算
- ■整型数
 - 表示: 无符号数和有符号数
 - 无符号数和有符号数的转换
 - ■扩展、截断
 - 整数运算:加、非、乘、移位
 - ■总结
- 内存、指针、字符串表示

算术运算:基本规则

■ 加法:

- 无/有符号数的加法: 正常加法后再截断,位级的运算相同
- 无符号数:加后对2^w求模
 - 数学加法 + 可能减去 2^w
- 有符号数: 修改的加后对 2^w 求模, 使结果在合适范围
 - 数学加法 + 可能减去或加上 2^w

■ 乘法:

- 无/有符号数的乘法:正常乘法后加截断操作,位级运算相同
- 无符号数:乘后对2w求模
- 有符号数: 修改的乘后对 2^w 求模, 使结果在合适范围内

为何用无符号数?

- 一定要知道隐含的转换规则,否则不要用
 - 常见错误

```
unsigned i;
for (i = cnt-2; i >= 0; i--)
a[i] += a[i+1];
```

■ 不易察觉的问题

```
#define DELTA sizeof(int)
int i;
for (i = CNT; i - DELTA >= 0; i -= DELTA)
```

巧用无符号数: 向下计数

■ 使用无符号类型循环变量的适当方法

```
unsigned i;
for (i = cnt-2; i < cnt; i--)
  a[i] += a[i+1];
```

- 参考Robert Seacord著《Secure Coding in C and C++》
 - C 语言标准确保无符号数加法的行为与模运算类似
 - \bullet 0 1 \rightarrow UMax

■ 好方法

```
size_t i;
for (i = cnt-2; i < cnt; i--)
   a[i] += a[i+1];</pre>
```

- size_t 定义为长度为计算机程序相同字长的无符号数
- 即便cnt = *Umax*也能很好工作
- 若cnt 是有符号数,且值小于0,会如何?

为何用无符号数?

- 需要进行模运算的时候,就用无符号数
 - 多精度的算术运算
- 用二进制位表示集合时,就用无符号数
 - 逻辑右移、无符号扩展

主要内容:位、字节和整型数

- 信息的位表示
- 位级运算
- 整型数
 - 表示: 无符号数和有符号数
 - 无符号数和有符号数的转换
 - ■扩展、截断
 - 整数运算:加、非、乘、移位
 - 总结
- 内存、指针、字符串表示

面向字节的内存组织管理

■ 程序用地址来引用内存中的数据

- 内存可看做巨大的"字节数组"
 - 实际上不是这样,但不妨这样联想
- 地址就像这个"字节数组"的索引
 - 指针变量可保存地址数值

■ 注意:

- 操作系统为每个进程提供私有的地址空间
- 每个进程可访问自己地址空间中的内存数据,彼此不干扰。

机器字

- 任何机器都有一个"字长"
 - 整型值数据的名义长度
 - 地址的名义长度
 - 1985年intel 386 CPU开始,大多数机器使用32位 (4字节) 字长
 - 地址空间最大4GB (2³² bytes)
 - 目前,64位字长的机器是主流
 - 潜在地,可以有18 EB (Exabytes) 的可寻址内存
 - 约18.4 X 10^{18字节}
 - 机器依然支持多种数据格式
 - 字长的一部分或几倍长度
 - 始终是整数个字节

面向字的内存组织管理

- 地址: 指定字节的位置
 - 字中第一个字节的地址
 - 相邻字的地址相差 4 (32-bit) 或 8 (64-bit)

C数据类型的典型大小(字节数)

C 数据类型	32 位	64 位	x86-64
char	1	1	1
short	2	2	2
int	4	4	4
long	4	8	8
float	4	4	4
double	8	8	8
long double	_	_	10/16
pointer	4	8	8

字节序

■ 有多个字节的"字" (word), 其各个字节在内存中的排列

■ 惯例

- 大端序、大尾序(Big Endian): Sun, PPC Mac, Internet
 - 最低有效位字节的地址最高
- 小端序、小尾序(Little Endian): x86、运行Android 的ARM 处理器、iOS和Windows
 - 最低有效位字节的地址最低

■ 双端序(Bi-Endian)

- 机器可以配置成大端序或小端序
- 很多新近的处理器均支持双端序

字节序示例

■示例

- 变量x 有4字节数值0x01234567
- 假定x的地址为 0x100

Big Endian		0x100	0x101	0x102	0x103	
		01	23	45	67	
Little Endia	0x100	0x101	0x102	0x103		
		67	45	23	01	

整型数的表示

十进制: 15213

二进制: 0011 1011 0110 1101

16进制: 3 B 6 D

int A = 15213;

long int C = 15213;

int B = -15213;

验证数的表示

- 打印数据字节表示的程序代码
 - 将指针转换成unsigned char * 类型,从而按字节数组处理

```
typedef unsigned char *pointer;

void show_bytes(pointer start, size_t len){
    size_t i;
    for(i = 0; i < len; i++)
        printf("%p\t0x%.2x\n",start+i, start[i]);
    printf("\n");
}</pre>
```

printf 指令:

%p: 打印指针

%x: 16进制格式打印

show_bytes 的执行实例

```
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

Result (Linux x86-64):

```
int a = 15213;
0x7fffb7f71dbc 6d
0x7fffb7f71dbd 3b
0x7fffb7f71dbe 00
0x7fffb7f71dbf 00
```

指针的表示

```
int B = -15213;
int *P = &B;
```


不同的编译器、机器会有不同的运行结果。 甚至程序的每次运行结果都不同

字符串的表示

■ C字符串

- 用字符数组表示
- 每个字符都是ASCII格式编码
 - 字符集合的标准7位编码
 - 字符'0'的编码是 0x30
 - 数码 i 的编码是 0x30+i
- 字符串以null结尾
 - 最后的字符 = 0
- 兼容性
 - 字节序不是个事!

char S[6] = "18213";

C的整型数习题

Initialization

x & (x-1) != 0

布尔代数的应用

- 香浓应用于数字系统
 - 1937 MIT 硕士论文
 - 延迟开关网络的推理
 - 闭合开关编码为1, 开关打开编码为 0

二进制数性质

断言

$$1 + 1 + 2 + 4 + 8 + \dots + 2^{w-1} = 2^{w}$$

$$1 + \mathop{a}_{i=0}^{w-1} 2^{i} = 2^{w}$$

■ 证明:

- w = 0:
 - $-1 = 2^0$
- 假设w-1时成立,则w时:

代码安全示例

```
/* 库函数 memcpy的声明*/
void *memcpy(void *dest, void *src, size_t n);
```

```
/*内核内存区域保持用户访问数据*/
#define KSIZE 1024
char kbuf[KSIZE];

/* 从内核内存区域最多拷贝maxlen字节到用户缓冲区*/
int copy_from_kernel(void *user_dest, int maxlen) {
    /*字节数len=min(缓冲区大小,maxlen) */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}
```

- 与FreeBSD's的getpeername代码实现相似
- 有很多聪明的人试图在程序中发现漏洞

典型用法

```
/* 库函数 memcpy的声明*/
void *memcpy(void *dest, void *src, size_t n);
```

```
/*内核内存区域保持用户访问数据*/
#define KSIZE 1024
char kbuf[KSIZE];
/* 从内核内存区域最多拷贝maxlen字节到用户缓冲区*/
int copy from kernel(void *user dest, int maxlen) {
   /*字节数len=min(缓冲区大小, maxlen) */
   int len = KSIZE < maxlen ? KSIZE : maxlen;</pre>
   memcpy(user dest, kbuf, len);
   return len:
```

```
#define MSIZE 528
void getstuff() {
    char mybuf[MSIZE];
    copy_from_kernel(mybuf, MSIZE);
    printf("%s\n", mybuf);
}
```

恶意用法

```
/* 库函数 memcpy的声明*/
void *memcpy(void *dest, void *src, size t n);
```

```
/*内核内存区域保持用户访问数据*/
#define KSIZE 1024
char kbuf[KSIZE];
/* 从内核内存区域最多拷贝maxlen字节到用户缓冲区*/
int copy from kernel(void *user dest, int maxlen) {
   /* 字节数len=min (缓冲区大小, maxlen) */
   int len = KSIZE < maxlen ? KSIZE : maxlen;</pre>
   memcpy(user dest, kbuf, len);
   return len;
```

```
#define MSIZE 528
void getstuff() {
    char mybuf[MSIZE];
    copy from kernel(mybuf, - MSIZE);
          size_t int copy_from_kernel(void *user_dest, size_t maxlen)
```

数学性质

- 模数加法构成阿贝尔群(Modular Addition Forms an Abelian Group
 - 封闭性: $0 \leq UAdd_{w}(u, v) \leq 2^{w}-1$
 - 交換性: $UAdd_w(u, v) = UAdd_w(v, u)$
 - 结合性: $UAdd_w(t, UAdd_w(u, v)) = UAdd_w(UAdd_w(t, u), v)$
 - 单位元: 0

$$UAdd_{w}(u,0) = u$$

- 每个元素都有逆元
 - u的逆元 $UComp_w(u) = 2^w u$ 则: $UAdd_w(u, UComp_w(u)) = 0$

Tadd的数学性质

- 与带Uadd加法的无符号数是同构群
 - $TAdd_w(u, v) = U2T(UAdd_w(T2U(u), T2U(v)))$
 - 因为两者具有相同的位模式
- 补码加法Tadd构成一个群
 - 封闭性、交换性、结合性、0是单位元

Tadd的表征

■功能性

- 真实和需要w+1位
- 舍弃最高有效位 MSB
- 将剩余位看做整数的 补码表示

$$TAdd_{w}(u,v) = \begin{cases} u+v+2^{w} & u+v < TMin_{w}$$
 (负溢出)
$$u+v & TMin_{w} \leq u+v \leq TMax_{w} \\ u+v-2^{w} & TMax_{w} < u+v$$
 (正溢出)

非(negation)

■ 非(negation)

变反加一(Complement & Increment)

■ 断言: 下式对补码成立

$$\sim x + 1 == -x$$

 $\sim x + x == 1111...111 == -1$

示例

$$x = 15213$$

	Decimal	Hex		Binary		
x	15213	3B	6D	00111011	01101101	
~x	-15214	C4	92	11000100	10010010	
~x+1	-15213	C4	93	11000100	10010011	
У	-15213	C4	93	11000100	10010011	

$$x = 0$$

	Decimal	Hex	Binary		
0	0	00 00	00000000 00000000		
~0	-1	FF FF	11111111 11111111		
~0+1	0	00 00	00000000 00000000		

代码范例#2

■ SUN XDR 函数库 广泛用于机器间传输数据

void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size);

malloc(ele_cnt * ele_size)

XDR 代码

```
void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size) {
  /* 为ele_cnt个对象申请缓冲区,每个对象ele_size字节
  *并从ele_src指定的位置拷贝*/
  void *result = malloc(ele_cnt * ele_size);
  if (result == NULL)
        /* malloc failed */
        return NULL;
  void *next = result;
  int i;
  for (i = 0; i < ele_cnt; i++) {
    /* Copy object i to destination */
    memcpy(next, ele_src[i], ele_size);
    /* Move pointer to next memory region */
    next += ele_size;
  return result;
```

XDR 的弱点

malloc(ele_cnt * ele_size)

■ 32位程序,考虑以下情况:

- ele_cnt = 2²⁰ + 1
- ele size = 4096 = 2^{12}
- 申请的字节数 =?
- 赋值元素的个数=?
- •
- 如何能让这个函数安全?

乘法编译生成的代码

C函数

```
long mul12(long x)
{
   return x*12;
}
```

编译得到的算术运算

```
leaq (%rax, %rax, 2), %rax
salq $2, %rax
```

解释

```
t <- x+x*2
return t << 2;
```

■ 对于常数的乘法, C 编译器自动生成移位和加法代码

无符号数除编译生成的代码

C函数

```
unsigned long udiv8
      (unsigned long x)
{
   return x/8;
}
```

编译生成的数学运算

```
shrq$3, %rax
```

解释

```
# Logical shift
return x >> 3;
```

■ 无符号数使用逻辑移位

用移位实现有符号数"除以2的幂"

- 有符号数"除以2的幂"的商
 - x >> k 得到 [x / 2^k]
 - 使用算术右移
 - 当x < 0时, 舍入方向出错 k

	Division	Computed	Hex	Binary		
У	-15213	-15213	C4 93	11000100 10010011		
y >> 1	-7606.5	-7607	E2 49	1 1100010 01001001		
y >> 4	-950.8125	-951	FC 49	1111 1100 01001001		
y >> 8	-59.4257813	-60	FF C4	1111111 11000100		

修正 2的整数幂 除法

- 负数除以2的整数幂的商
 - 欲计算「x / 2^k] (向0舍入)
 - 按 [(x+2^k-1) / 2^k] 计算
 - C表达式: (x + (1<<k)-1) >> k
 - ■被除数偏差趋向0

修正 2的整数幂 除法

情况2: 有舍入

偏差导致最终结果增加了 1

编译生成的有符号数除代码

C函数

```
long idiv8(long x)
{
   return x/8;
}
```

编译生成的结果

```
testq %rax, %rax
  js L4
L3:
  sarq $3, %rax
  ret
L4:
  addq $7, %rax
  jmp L3
```

解释

```
if x < 0
   x += 7;
# Arithmetic shift
return x >> 3;
```

■ 使用了算术右移

算术运算:基本规则

- 无符号整数、补码整数是同构环(isomorphic rings)
 - 同构 = 类型转换 (isomorphism = casting)

■ 左移

■ 无论有/无符号数,都可用逻辑左移实现乘以 2^k

■右移

- 无符号数: 逻辑右移,除以 2k (除法 +向0舍入)
- 有符号数: 算术右移
 - 正整数:除以 2^k (除法 + 向0舍入)
 - 负整数:除以 2^k (除法 + 远离0舍入),使用偏置来修正