

## Banco de Dados II

Indexação

Vanessa Cristina Oliveira de Souza



#### Tipos básicos de Índices



#### Ordenados

□ Baseiam-se na ordenação dos valores.

#### Hash

□ Baseiam-se na distribuição uniforme dos valores determinados por uma função (função de hash).



#### Classificação de Índices Ordenados



- Considerando a quantidade de entradas
  - □ Denso
  - □ Esparso
- Considerando a organização do arquivo
  - □ Primário
  - □ Clustering
  - □ Secundário
- Considerando os níveis de indirecionamento
  - Mononível
  - Multinível



# ÍNDICES ORDENADOS MONONÍVEL X MULTINÍVEL



#### Índice Mononível







- Um índice pode cobrir sozinho muitos blocos (índices muito grandes).
- Se esses blocos não estiverem em algum lugar onde saibamos que é possível encontrá-los, por exemplo em cilindros designados de um disco, então talvez seja necessária outra estrutura de dados para localizá-los.
- Mesmo que isto ocorra, talvez ainda seja preciso executar muitas operações de E/S de disco para alcançar o registro que queremos localizar.
- Inserindo um índice no índice, poderemos tornar o uso do primeiro nível de índices mais eficiente.









- Dá-se o nome de fator de bloco do índice (bfr<sub>i</sub>) para o número de registros lógicos que cabem em um registro físico.
- O valor de bfr<sub>i</sub> é chamado de fan out (fo) do índice multinível.
- Um índice multinível com r entradas de primeiro nível terá aproximadamente t níveis, onde t = rlog fo(r).



### Índices Multinível – t = 2









A família geral de estruturas de dados é chamada árvore B, e a variante utilizada com mais frequência é conhecida como árvore B+.





- Basicamente, a árvore B:
  - Automaticamente mantém os níveis balanceados para a quantidade de dados que está sendo indexada, e,
  - Gerencia o espaço usado por seus blocos para que eles sempre estejam ocupados com pelo menos a metade de sua capacidade.



### ÍNDICES ORDENADOS MULTINÍVEL ÁRVORE B X ÁRVORE B+





- Em uma aplicação comum de uma árvore B, a quantidade de dados é tão grande que provavelmente não caberia na memória principal.
- A árvore B copia blocos específicos para a memória principal quando necessário e os grava no disco se os blocos tiverem sido alterados.





- O nó raiz tem no mínimo 2 sub-árvores e no máximo, n sub-árvores.
  - □ n é a **ordem** da árvore B





Exemplo – ordem 2 (mínimo)







■ Exemplo – ordem 3













- Existe um número máximo e mínimo de filhos em um nó. Este número pode ser descrito em termos de um inteiro fixo t maior ou igual a 2 chamado grau mínimo.
- □ Cada nó, exceto a raiz, precisa ter pelo menos t-1 chaves.
- Cada nó possui no máximo 2t-1 chaves, para que assim cada nó interno tenha no máximo 2t filhos.

5. O número máximo de filhos para cada nó determina a ordem "m" de uma árvore B.



#### Nó de uma árvore B





#### Exemplo - Relação



| Registro | Nome-agência | Numero-conta | Nome-cliente | saldo |
|----------|--------------|--------------|--------------|-------|
| 0        | Perryridge   | 102          | Hayes        | 400   |
| 1        | Round Hill   | 305          | Turner       | 350   |
| 2        | Mianus       | 215          | Smith        | 700   |
| 3        | Downtown     | 101          | Johnson      | 500   |
| 4        | Redwood      | 222          | Lindsay      | 700   |
| 5        | Round Hill   | 201          | Willians     | 900   |
| 6        | Brighton     | 217          | Green        | 750   |
| 7        | Clearview    | 218          | Lyle         | 700   |



#### Exemplo



A árvore B gerencia o espaço usado por seus blocos para que eles sempre estejam ocupados com pelo menos a metade de sua capacidade.



# Exemplo E se a chave se repetir?





#### Buckets





- Na árvore B, uma chave somente é entrada uma vez em algum nível da árvore.
- Já na árvore B+, todos os dados só são armazenados nas folhas.
- Desta maneira, a estrutura conceitual das folhas difere da estrutura dos nós internos.
- As folhas da árvore B+ estão ligadas em sequência, tornando possível o acesso ordenado a seus campos.



#### Nó de uma árvore B



- A chave '5' aparece uma única vez na árvore.
- O nó da árvore B tem um ponteiro para os dados referentes a chave.









#### Nó de uma árvore B+





#### Exemplo - Relação



| Registro | Nome-agência | Numero-conta | Nome-cliente | saldo |
|----------|--------------|--------------|--------------|-------|
| 0        | Perryridge   | 102          | Hayes        | 400   |
| 1        | Round Hill   | 305          | Turner       | 350   |
| 2        | Mianus       | 215          | Smith        | 700   |
| 3        | Downtown     | 101          | Johnson      | 500   |
| 4        | Redwood      | 222          | Lindsay      | 700   |
| 5        | Round Hill   | 201          | Willians     | 900   |
| 6        | Brighton     | 217          | Green        | 750   |
| 7        | Clearview    | 218          | Lyle         | 700   |





#### Vantagens Árvore B+

- Embora a inserção e remoção em árvore B+ sejam complicadas, elas requerem relativamente poucas operações.
- É a velocidade de operações em árvores B+ que as torna uma estrutura de índice usada frequentemente em implementações de bancos de dados.



#### Vantagens Árvore B+



Mecanismo para percorrer sequencialmente o arquivo de registros de dados sem que seja necessário ordenar o arquivo de registro de dados.



#### Vantagens Árvore B sobre a B+



- Possibilidade de encontrar uma chave sem chegar até um nó folha;
  - □ Busca mais rápida



#### Vantagens Árvore B+ sobre a B



- Nó folha e não-folha são do mesmo tamanho
  - Facilita o gerenciamento do armazenamento para o índice;

A remoção é mais simples, pois a entrada a ser removida sempre estará numa folha.



#### Árvore B X Árvore B+



Assim, a simplicidade estrutural de uma árvore B+ é preferida por muitos implementadores de sistemas de banco de dados.



#### Para Casa



- Ler o Capítulo 11 Indexação e Hashing do Siberschatz, Korth e Sudarshan – 6ª Edição
  - Sistema de Banco de Dados