8.17 **Tables**

Notation: $W = \text{load (force)}; w = \text{unit load (force per unit length)}; M_o = \text{applied couple (force-length)}; \theta_o \text{ externally created concentrated angular}$ displacement (radians); $\Delta_o = \text{externally created concentrated lateral displacement; } T_1 \text{ and } T_2 = \text{temperatures on the top and bottom surfaces, respectively}$ (degrees). R_A and R_B are the vertical end reactions at the left and right, respectively, and are positive upward. M_A and M_B are the reaction end moments at the left and right, respectively. All moments are positive when producing compression on the upper portion of the beam cross section. The transverse shear force V is positive when acting upward on the left end of a portion of the beam. All applied loads, couples, and displacements are positive as shown. All deflections are positive upward, and all slopes are positive when up and to the right. E is the modulus of elasticity of the beam material, and I is the area moment of inertia about the centroidal axis of the beam cross section. γ is the temperature coefficient of expansion (unit strain per degree).

1. Concentrated intermediate load

Transverse shear = $V = R_A - W(x - a)^0$ Bending moment = $M = M_A + R_A x - W\langle x - a \rangle$

Slope =
$$\theta = \theta + \frac{M_A x}{EI} + \frac{R_A x^2}{2EI} - \frac{W}{2EI} \langle x - a \rangle^2$$

Deflection = $y = y_A + \theta_A x + \frac{M_A x^2}{2EI} + \frac{R_A x^3}{6EI} - \frac{W}{6EI} \langle x - a \rangle^3$
(*Note:* See page 160 for a definition of the term $\langle x - a \rangle^n$.)

End Restraints, Reference No.	Boundary Values	Selected Maximum Values of Moments and Deformations
1a. Left end free, right end fixed (cantilever)	$R_A = 0 M_A = 0 \theta_A = \frac{W(I-a)^2}{2EI}$ $y_A = \frac{-W}{6EI}(2I^3 - 3I^2a + a^3)$ $R_B = W M_B = -W(I-a)$ $\theta_B = 0 y_B = 0$	Max $M = M_B$; max possible value = $-WI$ when $a = 0$ Max $\theta = \theta_A$; max possible value = $\frac{WI^2}{2EI}$ when $a = 0$ Max $y = y_A$; max possible value = $\frac{-WI^3}{3EI}$ when $a = 0$
1b. Left end guided, right end fixed	$R_{A} = 0 M_{A} = \frac{W(I - a)^{2}}{2I} \theta_{A} = 0$ $y_{A} = \frac{-W}{12EI}(I - a)^{2}(I + 2a)$ $R_{B} = W M_{B} = \frac{-W(I^{2} - a^{2})}{2I}$ $\theta_{B} = 0 y_{B} = 0$	$\begin{aligned} &\operatorname{Max} + M = M_{_{\!A}}; \operatorname{max} \operatorname{possible} \operatorname{value} = \frac{Wl}{2} \operatorname{when} a = 0 \\ &\operatorname{Max} - M = M_{_{\!B}}; \operatorname{max} \operatorname{possible} \operatorname{value} = -\frac{Wl}{2} \operatorname{when} a = 0 \\ &\operatorname{Max} y = y_{_{\!A}}; \operatorname{max} \operatorname{possible} \operatorname{value} = \frac{-Wl^3}{12EI} \operatorname{when} a = 0 \end{aligned}$

End Restraints, Reference No.	Boundary Values	Selected Maximum Values of Moments and Deformations
1f. Left end guided, right end simply supported	$R_A = 0$ $M_A = W(I - a)$ $\theta_A = 0$ $y_A = \frac{-W(I - a)}{6EI}(2I^2 + 2aI - a^2)$	Max $M = M_A$ for $0 < x < a$; max possible value = W when $a = 0$ Max $\theta = \theta_B$; max possible value = $\frac{W^2}{2EI}$ when $a = 0$
Cho Jw	$R_B = W \qquad M_B = 0$ $\theta_B = \frac{W}{2EI}(l^2 - a^2) \qquad y_B = 0$	Max $y = y_A$; max possible value = $\frac{-Wl^3}{3EI}$ when $a = 0$

2. Partial distributed load

Transverse shear =
$$V = R_A - w_a \langle x - a \rangle - \frac{w_i - w_a}{2(l-a)} \langle x - a \rangle^2$$

Bending moment = $M = M_A + R_A x - \frac{w_a}{2} \langle x - a \rangle^2 - \frac{w_i - w_a}{6(l-a)} \langle x - a \rangle^3$
Slope = $\theta = \theta_A + \frac{M_A x}{EI} + \frac{R_A x^2}{2EI} - \frac{w_a}{6EI} \langle x - a \rangle^3 - \frac{w_i - w_a}{24EI(l-a)} \langle x - a \rangle^4$
Deflection = $y = y_A + \theta_A + \theta_A x + \frac{M_A x^2}{2EI} + \frac{R_A x^3}{6EI} - \frac{w_a}{24EI} \langle x - a \rangle^4 - \frac{(w_i - w_a)}{120EI(l-a)} \langle x - a \rangle^5$

Deflection =
$$y = y_A + \theta_A + \theta_A x + \frac{M_A x^2}{2EI} + \frac{R_A x^3}{6EI} - \frac{w_a}{2AEI} (x - a)^4 - \frac{(w_1 - w_a)}{120EI(I - a)} (x - a)^5$$

End Restraints, Reference No.	Boundary Values	Selected Maximum Values of Moments and Deformations
2a. Left end free, right end fixed (cantilever)	$R_{A} = 0 M_{A} = 0$ $\theta_{A} = \frac{W_{a}}{6EI} (I-a)^{3} + \frac{W_{I} - W_{a}}{24EI} (I-a)^{3}$ $Y_{A} = \frac{-W_{a}}{24EI} (I-a)^{3} (3I+a) - \frac{W_{I} - W_{a}}{120EI} (I-a)^{3} (4I+a)$ $R_{B} = \frac{W_{a} - W_{I}}{2} (I-a)$ $M_{B} = \frac{-W_{a}}{2} (I-a)^{2} - \frac{W_{I} - W_{a}}{6} (I-a)^{2}$ $\theta_{B} = 0 Y_{B} = 0$	If $a=0$ and $w_i=w_a$ (uniform load on entire span), then

apter Eigh	I_{B}/I_{A}													
	Load Location	Multiplier	0	25	0.5	50	2.0	0		4.0				
case No. in	all	Listed for		.525	1	636	1	579		0.321	8.0		Case No	. in
Table 8.1	-	y _A		.262	-	.545	1	.614	1	0.359	0.171	1	Table 8.	1_
	0	θ_{A}	1:	2.663	1	682	1	0.563	\	0.303	0.20	1	2d. Unit	orr d
	0.25	θ_A		2.498	-	1.631	-	0.578		0.317	0.15	90	100	<u> </u>
	0.2	y _A		2.898		1.755		0.543		0.284	10.	148		
1a	0.5			2.811	-	1.731	1	0.52	_	0.289	- 10	149	2e. U	Inif
		У	A	3.289	1	1.858 1.853		0.52		0.26	, /0	0.135	26. 0	oa
	0.	75 \ e		3.261		1.02		0.9		0.94	1	0.135		
			R _A	1.05		1.02		0.7			10	0.928		
	\ c	0.25	θ_{A}	1.49		1.0			936	-		0.330	28	. U
1c		0	RA	1.14		1.3			682	1	435	0.852		i
		0.50	θ_{A})26	10	.96		.932	0.261		
		0.25	R _A)46 137	ALC:	077	0	90.0		.797	0.89 ₅ 0.68 ₆		
		0.25	MA		163	1	.085	. (0.9	15 (0.837	0.771		
1d		0.50	R _A	The second second	.326		.172		8.0	329	0.674	0.542		
		0.00		IVIA				1.220		0.760 0.531		1		
		0.25	y ₁		1.56		1.30	1.301		0.703 0.45	2 0.268		1	
1e			θ		1.5	24	1.2	82	0	.718	0.47	76 0.293	3	1
100		0.50		A /1/2		665	1.3	849	10	0.674	0.4		1 100	1
			-	y _A	2:	711	1.	695	1	0.561	0.3	302 0.1	.58	1
2a.	Uniform load	0		θ_{A}		2.525		1.636		0.579 0.			171	
	luau		1	y _A	2	.864	1	.742	\	0.547	0	.289 0	.149	
		0.25		θ_{A}	12	2.745	1:	1.708		0.556	\ c	0.296	0.154	
				y _A		3.091		1.806		0.532	1	0.275	0.140	
		0.50		θ_{A}		3.029		1.790)	0.535	5	0.278	0.142	
		0.7	5	y _A	1	3.435	1	1.890		0.51	1	0.262	0.132	
		0.75		θ_{A}		3.415	5	1.886		0.51	.6	0.263	0.133	
	2c. Uniform	niform 0		R _A		1.074		1.03		0.90		0.941	0.922	
	load	0		θ_{A}		1.66		3 1.32		6 0.710		0.473	0.296	
		0.5		$R_A = \frac{R_A}{\theta_A}$		1.2		4 1.10			917	0.858	0.818	
						1.94		42 \ 1.43		38 0.653		0.403	0.201	

Moments of inertia vary as $(1 + Kx/l)^n$, where n = 1.0

TABLE 8.11(a) Reaction and Deflection Coefficients for Tapered Beams

Case No. in	Load Location a/I	Multiplier	$I_{\scriptscriptstyle B}/I_{\scriptscriptstyle A}$						
Table 8.1	-7.	Listed for	0.25	0.50	2.0				
	0		2.729 2.455	1.667 1.577	0.589	0.341	0.194		
1a	0.25	\mathcal{Y}_{A} Θ_{A}	2.872 2.708	1.713 1.663	0.626	0.386	0.235		
	0.50	\mathcal{Y}_{A} θ_{A}	3.105 3.025	1.783	0.588	0.338	0.190		
	0.75	\mathcal{Y}_{A} θ_{A}	3.460 3.437	1.761	0.555	0.301	0.161		
	0.25	$R_{_A}$	1.052	1.872	0.526	0.273	0.140		
10	0.50	θ_A R_A	1.588	1.278	0.759	0.938 0.559	0.905 0.398		
7 - 1 - 1	0.30	$\theta_{\scriptscriptstyle A}$	1.867	1.070 1.390	0.932 0.695	0.867 0.468	0.807 0.306		
1d	0.25	$R_{_{A}}$ $M_{_{A}}$	1.049 1.155	1.027 1.082	0.969 0.909	0.934 0.813	0.895 0.713		
	0.50	$R_{_{A}}$ $M_{_{A}}$	1.169 1.358	1.086 1.177	0.914 0.833	0.831 0.681	0.753 0.548		
1e	0.25	θ_A $y_{1/2}$	1.509 1.716	1.246 1.334	0.778 0.721	0.586 0.501	0.428 0.334		
	0.50	θ_A $y_{1/2}$	1.668 1.840	1.313 1.385	0.737 0.692	0.525 0.460	0.363		
2a. Uniform load	0	Y_A θ_A	2.916 2.729	1.724 1.667	0.569 0.589	0.318 0.341	0.174 0.194		
	0.25	Y_A θ_A	3.067 2.954	1.770 1.737	0.554 0.563	0.301 0.311	0.161		
	0.50	\mathcal{Y}_A θ_A	3.282 3.226	1.830 1.816	0.537 0.540	0.283 0.287	0.148 0.150		
	0.75	y_A θ_A	3.580 3.564	1.906 1.902	0.518 0.519	0.266 0.267	0.136 0.136		
2c. Uniform load	0	$R_{_A}$ $ heta_{_A}$	1.068 1.774	1.035 1.349	0.965 0.723	0.932 0.510	0.899 0.351		
	0.50	$R_{_A}$ $\theta_{_A}$	1.203 2.076	1.098 1.463	0.910 0.664	0.831 0.430	0.761 0.271		

Moments of inertia vary as $(1 + Kx/l)^n$, where n = 2.0

TABLE 8.11(b) Reaction and Deflection Coefficients for Tapered Beams