becomes

$$\mu^{+} = \max \left\{ -\frac{\overline{c}_{j}}{\gamma_{6}^{j}} \middle| \gamma_{6}^{j} < 0, j \in \{1, 3, 4\} \right\} = \max \left\{ \frac{-5}{2} \right\} = -\frac{5}{2},$$

which implies that $j^+=3$. Hence the new basis is $K^+=(2,5,3)$, and we update the tableau by taking $-\frac{1}{2}$ of Row 3, adding twice the normalized Row 3 to Row 1, and adding three times the normalized Row 3 to Row 2.

6	-2	0	-5	-2	0	0
$u_2 = 4$	1	1	0	-2	0	-1
$u_5 = 7/2$	-2	0	0	-7/2	1	-3/2
$u_3 = 1/2$	0	0	1	-1/2	0	-1/2

It remains to update the objective function and the reduced costs by adding five times the normalized row to the top row.

17/2	-2	0	0	-9/2	0	-5/2
$u_2 = 4$	1	1	0	-2	0	-1
$u_5 = 7/2$	-2	0	0	$-\frac{7}{2}$	1	-3/2
$u_3 = 1/2$	0	0	1	-1/2	0	-1/2

Since u^+ has no negative entries, the dual simplex method terminates and objective function $-4x_1-2x_2-x_3$ is maximized with $-\frac{17}{2}$ at $(0,4,\frac{1}{2})$. See Figure 47.5.

Figure 47.5: The objective function $-4x_1-2x_2-x_3$ is maximized at the intersection between the blue plane $-x_1-x_2+2x_3=-3$ and the pink plane $x_1+x_2-4x_3=2$.