Об инерционных свойствах электромагнитной массы

А.Ю.Дроздов Jan 30, 2020

1 Постановка задачи

Пусть частица с заданным распределением объёмной плотности электрического заряда $\rho(r)$ приобретает ускорение \overrightarrow{a} . Найти силу, действующую на распределённый в объёме электрический заряд этой частицы со стороны электрического поля самоиндукции.

Для решения этой задачи электрическое поле самоиндукции $\overrightarrow{E} = -\frac{1}{c} \frac{\partial \overrightarrow{A}}{\partial t}$ выразим исходя из выражения векторного потенциала Лиенара-Вихерта [1] $\overrightarrow{A} = \frac{\overrightarrow{v}}{c} \frac{q}{R-\frac{\overrightarrow{v}}{c} \overrightarrow{R}} = \frac{\overrightarrow{v}}{c} \frac{q}{R^*}$ дифференцирование которого приводит к выра-

$$\overrightarrow{E} = \frac{dq}{R^{*2}} \left\{ \frac{\overrightarrow{v}}{c} \left(\frac{R}{R^*} \left(\frac{v^2}{c^2} - \frac{\overrightarrow{a} \cdot \overrightarrow{R}}{c^2} - 1 \right) + 1 \right) - \frac{\overrightarrow{a}R}{c^2} \right\}$$

В системе СИ перед этим выражением появляется множитель $\frac{1}{4\pi\varepsilon_0}$ =

 $\frac{\mu_0 c^2}{4\pi} = \frac{c^2}{10^7}$ Направляя в сферической системе координат вектор ускорения вдоль

$$R^* = R - \frac{v}{c} (z_a - z_q) = R - \frac{v}{c} (r_a \cos(\theta_a) - r_q \cos(\theta_q))$$

$$\overrightarrow{a} \cdot \overrightarrow{R} = a (z_a - z_q) = a (r_a \cos(\theta_a) - r_q \cos(\theta_q))$$

Где следуя Тамму [3], индексом q обозначены координаты заряда, а индексом а обозначены координаты точки наблюдения

$$\overrightarrow{E} = \int\limits_{V_{c}} \left\{ \frac{\overrightarrow{v}}{c} \left(\frac{R}{R^{*}} \left(\frac{v^{2}}{c^{2}} - \frac{\overrightarrow{\alpha} \cdot \overrightarrow{R}}{c^{2}} - 1 \right) + 1 \right) - \frac{\overrightarrow{\alpha}R}{c^{2}} \right\} \frac{\rho \left(r_{q} \right)}{R^{*2}} \ dV_{q}$$

Действующая на заряд со стороны электрического поля самоиндукции

инерционная сила равна
$$\overrightarrow{F_z} = \int\limits_{r_a} \int\limits_{\varphi_a} \int\limits_{\theta_a} \overrightarrow{E_z} \rho \left(r_a \right) r_a^2 \sin \left(\theta_a \right) \, d\theta_a d\varphi_a dr_a$$

Из приведенных формул видно, что сила инерции электромагнитной массы зависит от вида функции распределения плотности заряда в пространстве, а также от скорости и ускорения заряда.

2 Приближение малых скоростей без учёта запаздывания

В приближении малых скоростей $^{v}/_{c}\ll 1$ и малых ускорений $ar_{0}\ll c^{2}$ и при игнорировании запаздывания

$$\overrightarrow{E} = \int_{r_q} \int_{\varphi_q} \int_{\theta_q} \left\{ -\frac{\overrightarrow{\alpha} R_0}{c^2} \right\} \frac{\rho(r_q) r_q^2 \sin(\theta_q)}{R_0^2} d\theta_q d\varphi_q dr_q$$

где R_0 расстояние от точки источника заряда к точке наблюдения без учёта

Откуда $F_z=-rac{\overrightarrow{d}}{c^2}\int\limits_{V_a}\int\limits_{V_q}rac{
ho(r_q)
ho(r_a)}{R_0}\ dV_q dV_a$ Сопоставляя с законами Ньюто-

на для электромагнитной массы получаем выражение $m=rac{1}{c^2}\int\limits_{V_a}\int\limits_{V_a}\frac{
ho(r_q)\rho(r_a)}{R_0}\,dV_qdV_a$

(в системе сгс) и соответственно $m=\frac{\mu_0}{4\pi}\int\limits_{V_a}\int\limits_{V_q}\frac{\rho(r_q)\rho(r_a)}{R_0}~dV_qdV_a$ в системе СИ

Рассчитаем теперь электромагнитную массу равномерно заряженной сферы радиуса r_0

Поскольку расстояние между координатами заряда и точки наблюдения $R_0=|\overrightarrow{r_q}-\overrightarrow{r_a}|$ находится в знаменателе, то в сферической системе координат можно применить разложение по сферическим гармоникам следующего

вида [4] если
$$(r_q < r_a)$$
 то
$$\frac{1}{|\overrightarrow{r_q} - \overrightarrow{r_a}|} = \frac{1}{r_a} \sum_{l=0}^{\infty} \left(\frac{r_q}{r_a}\right)^l P_l \cos\left(\gamma\right)$$
 и если $(r_a < r_q)$ то
$$\frac{1}{|\overrightarrow{r_q} - \overrightarrow{r_a}|} = \frac{1}{r_q} \sum_{l=0}^{\infty} \left(\frac{r_a}{r_q}\right)^l P_l \cos\left(\gamma\right)$$

В данной формуле $P_l\cos\left(\gamma\right)$ это полиномы Лежандра аргумент которых γ есть угол между векторами r_q и $r_a.$ Применяя формулу, известную как

$$P_{l}\cos\left(\gamma\right) = \frac{4\pi}{2l+1} \sum_{m=-l}^{l} Y_{l,m}^{*}\left(\theta_{a}, \varphi_{a}\right) Y_{l,m}\left(\theta_{q}, \varphi_{q}\right)$$

получаем способ аналитического вычисления интеграла инертной электромагнитной массы.

Пусть заряд представляет собой сферу, равномерно заряженную по всему объёму тогда плотность заряда составит $\rho\left(r\right)=\frac{e}{^{4}/_{3}\pi r_{0}^{3}}$

Производя вычисления для интеграла электромагнитной массы получе-

$$m=rac{1}{c^2}rac{6}{5}rac{e^2}{r_0}$$
 (сгс) и $m=rac{\mu_0}{4\pi}rac{6}{5}rac{e^2}{r_0}$ (СИ)

 $m=rac{1}{c^2}rac{6}{5}rac{e^2}{r_0}$ (сгс) и $m=rac{\mu_0}{4\pi}rac{6}{5}rac{e^2}{r_0}$ (СИ) Пусть заряд представляет собой сферическую поверхность с равномерным поверхностным распределением заряда по поверхности сферы, равным $\sigma=rac{e}{4\pi r_0^2}$) тогда для вычисления инертной электромагнитной массы потребуется формула $m=rac{1}{c^2}\int\limits_{S_a}\int\limits_{S_q}rac{\sigma(r_q)\sigma(r_a)}{R}~dS_qdS_a$

$$m = \frac{1}{c^2} \frac{e^2}{r_0}$$
 (сгс) и $m = \frac{\mu_0}{4\pi} \frac{e^2}{r_0}$ (СИ)

Вычисления по которой дают следующий результат $m=\frac{1}{c^2}\frac{e^2}{r_0}$ (сгс) и $m=\frac{\mu_0}{4\pi}\frac{e^2}{r_0}$ (СИ) В работе [5] приводится способ вычисления инертной электромагнитной массы электрона исходя из коэффициента самоиндукции сферы и производной тока сферы по времени. Результат вычислений электромагнитной массы электрона авторы приводят следующий $m=\frac{\mu_0}{8\pi}\frac{e^2}{r_0}$ (СИ) то есть в два раза меньший, чем полученный в данной работе.

Анализ показывает, что приведенная авторами формула коэффициента самоиндукции сферы $L=\frac{\mu_0 r_0}{2\pi}$ (СИ) в 2 раза занижена. Автором данной работы было произведено вычисление коэффициента самоиндукции сферической поверхности с равномерно распределённым поверхностным зарядом. Получена формула $L = \frac{\mu_0 r_0}{\pi}$ (СИ).

Далее авторы работы [5] пишут, "Отметим тот важный факт, что выведенная из закона самоиндукции масса полностью совпадает с Эйнштейновской массой $m=\frac{U}{c^2}$, если под полной энергией электрона U понимать собственную энергию его электрического поля."

Однако с учётом исправленного значения коэффициента самоиндукции сферы данное утверждение становится неверным.

Русская википедия в статье "Классический радиус электрона"на момент написания данной работы даёт следующее определение:

Классический радиус электрона равен радиусу полой сферы, на которой равномерно распределён заряд, если этот заряд равен заряду электрона, а потенциальная энергия электростатического поля U_0 полностью эквивалентна половине массы электрона (без учета квантовых эффектов):

$$U_0 = \frac{1}{2} \frac{1}{4\pi\varepsilon_0} \cdot \frac{e^2}{r_0} = \frac{1}{2} m_0 c^2.$$

 $U_0=rac{1}{2}rac{1}{4\piarepsilon_0}\cdotrac{e^2}{r_0}=rac{1}{2}m_0c^2.$ Возникает закономерный вопрос: а чему соответствует вторая половина массы электрона?

Тамм [3] для собственной электрической энергии заряженного шара радиуса a находит $W=\frac{e^2}{2a}$ если заряд распределён на поверхности шара и $W=\frac{3e^2}{5a}$ если заряд распределён по всему объёму шара. Появление коэффициента $\frac{1}{2}$ в формуле энергии системы зарядов Тамм объясняет тем, что "в сумму энергия каждой пары зарядов входит дважды, так, например, в ней встретится как член e_1e_1/R_{12} так и равный ему член e_2e_1/R_{21} ".

Однако в задаче, рассмотренной в самом начале данной работы при нахождении силы, действующей на распределённый в объёме электрический заряд этой частицы со стороны электрического поля самоиндукции, подобные рассуждения неприменимы. Поскольку хотя и каждая пара зарядов de_1 и de_2 при совместном поступательном движении создаёт две одинаковые как по виду формулы, так и по значинию силы самоиндукции, они обе должны быть включены в общую электромагнитную инерцию, поскольку одна из них - это сила самоиндукции действующая на заряд de_1 со стороны поля заряда de_2 , а вторая это сила самоиндукции действующая на заряд de_2 со стороны поля заряда de_1 .

Таким образом потенциальная энергия электростатического поля модели электрона в виде полой сферы $U_0=\frac{1}{2}\frac{e^2}{r_0}$ (сгс) при том что инертная масса электрона этой модели равна $m=\frac{1}{c^2}\frac{e^2}{r_0}$ (сгс). В любой другой модели потенциальная энергия электростатического поля заряженной частицы равна $U_0=\frac{1}{2}\int\limits_{V_a}\int\limits_{V_q}\frac{\rho(r_q)\rho(r_a)}{R_0}\;dV_qdV_a$ (сгс) тогда как инертная масса $m=\frac{1}{c^2}\int\limits_{V_a}\int\limits_{V_q}\frac{\rho(r_q)\rho(r_a)}{R_0}~dV_qdV_a$ (crc).

Таким образом соотношение потенциальной энергией электростатического поля и энергией массы покоя электрона, приведенное в русской википедии подтверждается, но вопрос чему соответствует вторая половина энергии массы покоя электрона остаётся открытым.

Учёт запаздывания

Чтобы учесть запаздывание следует решить систему уравнений

$$s = v(t - t') + \frac{a}{2}(t - t')^2$$
 и $R = c(t - t')$

$$R^{2} = R_{0}^{2} + s^{2} - 2R_{0}s\cos(\alpha) = R_{0}^{2} + s^{2} - 2R_{0}s\frac{z_{q'} - z_{\alpha}}{R_{0}}$$

ооы учесть запаздывание следует решить систему уравнений $s=v\left(t-t'\right)+\frac{a}{2}(t-t')^2$ и $R=c\left(t-t'\right)$ Учитывая, что по теореме косинусов $R^2=R_0{}^2+s^2-2R_0s\cos\left(\alpha\right)=R_0{}^2+s^2-2R_0s\frac{z_{q'}-z_{a'}}{R_0}$ уравнение для вычисления запаздывающего момента принимает вид $c^2\left(t-t'\right)^2=R_0{}^2+s^2+2s\left(z_{a'}-z_{q'}\right)$

Приближение малых скоростей с учётом запаздывания

Решение этой системы имеет весьма сложный вид, но если мы исследуем вопрос какова будет инертная масса покоя, то при решении этой системы мы можем положить v=0. В этом случае для нахождения запаздывания нужно будет решить уравнение

кио будет решить уравление
$$-\frac{1}{4}\,a^2dt^4+c^2dt^2-adt^2(z_a-z_q)-R_0^2=0$$
 где $(t-t')=dt$

Это уравнение имеет 4 решения, но физически приемлемый смысл при положительном ускорении имеет решение

$$dt = \frac{\sqrt{2c^2 - 2adz - 2\sqrt{-R_0^2a^2 + c^4 - 2ac^2dz + a^2dz^2}}}{a}$$

где
$$dz = z_{a'} - z_{q'}$$

В приближении малых скоростей $^v/_c \ll 1$ но при учете запаздывания

$$\overrightarrow{E} = \int_{r_q} \int_{\varphi_q} \int_{\theta_q} \left\{ -\frac{\overrightarrow{a}R}{c^2} \right\} \frac{\rho(r_q) r_q^2 \sin(\theta_q)}{R^{*2}} d\theta_q d\varphi_q dr_q$$

Откуда

$$F_{z} = -\frac{\overrightarrow{a}}{c^{2}} \int_{V_{a}} \int_{V_{a}} \frac{\rho\left(r_{q}\right)\rho\left(r_{a}\right)}{R} dV_{q} dV_{a}$$

где
$$R=crac{\sqrt{2\,c^2-2\,adz-2\,\sqrt{-R_0^2a^2+c^4-2\,ac^2\,dz+a^2\,dz^2}}}{a}$$

Результат численного интегрирования. Зави-5 симость электромагнитной инертной массы от ускорения

Пусть заряд представляет собой сферу, равномерно заряженную по всему объёму. Для численного интегрирования была использована программа

```
VEGAS RESULT
\mathbf{a}
0
         1.20057324 + -0.00117095
0.0001
         1.20057145 + -0.00117094
         1.20057159 + -0.00117101
0.001
         1.20056853 \, + \text{--} \, 0.00117642
0.01
         1.19887814 + -0.00117946
0.1
0.2
         1.19315830 + -0.00116342
0.3
         1.18205714 + -0.00116337
         1.15008831 + -0.00112842
0.4
         1.09737467 + 0.00108701
0.5
0.6
         1.03839069 + -0.00101328
         0.98022447 + -0.00101643
0.7
         0.92625001 \, + \text{--} \, 0.00104227
0.8
         0.87671199 + -0.00105610
0.9
1.0
         0.83227193 + 0.00107483
2.0
         0.56319872 + -0.00103720
5.0
         0.32020001 \, + \text{--} \, 0.00083749
10.0
         0.20964075 \,\, + \text{--} \,\, 0.00070045
100.0
         0.05666584 + - 0.00038991
1000.0
         0.00130377 + -0.00006038
         0.00081384 \, + \text{--} \, \, 0.00003357
1250.0
         0.00000082 \,\, +\text{--} \,\, 0.00000028
1500.0
1750.0
         0.00000017 + - 0.00000006
2000.0
         0.00000010 + - 0.00000005
                                         9.51624e-08 + 4.99632e-08
         0.00000001 + - 0.00000000
                                         9.04571e-09 + 3.96347e-09
2100.0
```

Cuba-4.2, интегратор VEGAS. Значения радиуса сферы и ее заряда заданы равными единице $r_0 = 1.0$ и q = 1.0. Численное интегрирование этим итегратором для формулы не учитывающей запаздывание дает результат 1.20057324 + -0.00117095 что вполне соответствует аналитическому решению $m=\frac{1}{c^2}\frac{6}{5}\frac{e^2}{r_0}$ (сгс) и $m=\frac{\mu_0}{4\pi}\frac{6}{5}\frac{e^2}{r_0}$ (СИ) При интегрировании с учётом запаздывания скорость света была уста-

новлена равной c = 1.0.

Результаты интегрирования при различных ускорениях сведены в таблицу.

Электромагнитная масса уменьшается с ускорением. При достижении определённого предела электромагнитная масса практически исчезает. Эта закономерность выявляется при учёте запаздывания. Физически это означает что при достижении колосальных ускорений частица ускользает от действия своего поля.

Приближение малых ускорений с учётом за-6 паздывания

В приближении малых ускорений $ar_0 \ll c^2$ при учете запаздывания

$$\overrightarrow{E} = \int\limits_{V_q} \left\{ \frac{\overrightarrow{v}}{c} \left(\frac{R}{R^*} \left(\frac{v^2}{c^2} - 1 \right) + 1 \right) - \frac{\overrightarrow{\alpha}R}{c^2} \right\} \frac{\rho \left(r_q \right)}{R^{*2}} \ dV_q$$

$$F_z = \int\limits_{V_a} \int\limits_{V_a} \left\{ \frac{\overrightarrow{v}}{c} \left(\frac{R}{R^*} \left(\frac{v^2}{c^2} - 1 \right) + 1 \right) - \frac{\overrightarrow{d}R}{c^2} \right\} \frac{\rho(r_q)\rho(r_a)}{R^{*2}} \ dV_q dV_a$$

Запаздывающий момент рассчитывается с помощью выражения

$$dt = \frac{dzv - \sqrt{R_0^2 c^2 - (R_0^2 - dz^2)v^2}}{c^2 - v^2}$$

 $dt = \frac{dzv - \sqrt{R_0^2c^2 - \left(R_0^2 - dz^2\right)v^2}}{c^2 - v^2}$ Следовательно $R = c\frac{v(r_a\cos(\theta_a) - r_q\cos(\theta_q)) - \sqrt{R_0^2c^2 - \left(R_0^2 - \left(r_a\cos(\theta_a) - r_q\cos(\theta_q)\right)^2\right)v^2}}{c^2 - v^2}$ и радиус Лиенара-Вихерта $R^* = R - \frac{v}{c}\left(r_a\cos(\theta_a) - r_q\cos(\theta_q)\right)$

$$R^* = R - \frac{v}{c} \left(r_a \cos \left(\theta_a \right) - r_q \cos \left(\theta_q \right) \right)$$

Расчёт инертной электромагнитной массы протона и нейтрона

Представляет интерес расчёт инертной электромагнитной массы протона и нейтрона на основании предложенных в данной работе формул.

Плотности распределения заряда для протона

$$ho_p=rac{e^{\left(-rac{r_q^2}{r_0^2}
ight)}}{\pi^{rac{3}{2}}r_0^3}$$
 , где $r_0=\sqrt{rac{2}{3}}\left\langle r_p
ight
angle_{rms}$ и $\left\langle r_p
ight
angle_{rms}=0.8~fm$

$$\rho_n = \frac{{}^2 \langle r_n^2 \rangle r_q^2 \left({}^2 \frac{r_q^2}{r_1^2} - 5 \right) e^{\left(-\frac{r_q^2}{r_1^2} \right)}}{{}^{15 \, \pi^{\frac{3}{2}} r_1^7}} \; , \; \text{где} \; \left\langle r_n^2 \right\rangle = - \; 0.113 \; fm^2 \; \text{и} \; r_1 = 0.71 \sqrt{\frac{2}{5}} \; fm$$

были взяты из работы [6].

Аналитический результат расчёта интеграла $\int\limits_{V_a}\int\limits_{V_q} \frac{\rho(r_q)\rho(r_a)}{R} \ dV_q dV_a$ с по-

мощью разложения по сферическим функциям для протона составил $\frac{1.875\sqrt{2}}{\sqrt{\pi}}$ что равно 1.49603355150537

Для контроля этот же интеграл был взят численно с помощью функции integrate.quad математического пакета scipy

(1.4960348943817992, 0.0026474827067254846)

Кроме того для численного интегрирования была опробована программа Cuba-4.2 двумя методами

VEGAS RESULT: 1.49695439 + 0.00345851 p = 0.006SUAVE RESULT: 1.49424975 + 0.00149158 p = 1.000

Коэффициент преобразования полученного результата в сиситему СИ $k=\frac{\mu_0}{4\pi}\frac{e^2}{10^{-15}}$, при умножении на который вычисленная электромагнитная инертная масса протона составила $3.84027312853036\times 10^{-30}$ кг что в 4.21573319817234 раза больше массы электрона.

Аналитический результат расчёта того же интеграла для нейтрона (4.48918680252563×10^{-28}) $\sqrt{5}\sqrt{2}$ (1824320471 $\sqrt{10}\sqrt{5}$ +14369256122481640385175552 $\sqrt{2}$)

что соответствует 0.0162757880193542

Результат численного интегрирования в программе Cuba-4.2

VEGAS RESULT: 0.00183803 +- 0.00000179 p = 0.000 SUAVE RESULT: 0.00183606 +- 0.00000183 p = 1.000

В системе СИ электромагнитная инертная масса нейтрона $4.17794582972344 \times 10^{-32}$ кг что составляет 0.0458641985739987 от массы электрона.

Список литературы

- [1] Ландау Л.Д. Лившиц Е.М. Теория поля. М. 1973
- [2] Re: Как запаздывающий Лиенар-Вихерт становится "незапаздывающим". Визуализация http://www.sciteclibrary.ru/cgi-bin/yabb2/YaBB.pl?num=1528093569/330#330
- [3] И.Е.Тамм. Основы теории электричества. М. 1957
- [4] З.Флюгге Задачи по квантовой механике т.2 М. "Мир" 1974. стр. 296
- [5] В. Ганкин, Ю. Ганкин, О. Куприянова, И. Мисюченко. История электромагнитной массы
- [6] S. Haddad and S. Suleiman NEUTRON CHARGE DISTRIBUTION AND CHARGE DENSITY DISTRIBUTIONS IN LEAD ISOTOPES ACTA PHYSICA POLONICA B, Vol. 30 (1999) No 1 http://www.actaphys.uj.edu.pl/fulltext?series=Reg&vol=30&page=119