ENTERPORTE DE MARIE DE MARIE POR L'ENTERPORT DE L'ARREST DE L'ARRE République Tunisienne Ministère de l'Education et de la Formation

EXAMEN DU BACCALAUREAT

SESSION DE JUIN 2003

SESSION PRINCIPALE

EPREUVE MATHEMATIQUES

DUREE : 4 heures COEFFICIENT

EXERCICE 1: (5 points)

Dans l'ensemble C des nombres complexes on considère l'équation

$$E_d: z^3 + (3-d^2)z + 2i(1+d^2) = 0$$

où d est un nombre complexe donné de module 2 .

- a Vérifier que 2i est une solution de E_d
 - b Résoudre alors l'équation E_d.
- Dans le plan complexe rapporté à un repère orthonormé direct (O, ü, v) on considère les points

Parabatana na manana manana manana manana kaominina manana manana manana manana manana manana manana manana ma

- A, B, M, N d'affixes respectives 2i : -i : -i + d : -i d.
- a Calculer MN et déterminer le milieu de [MN].
- b En déduire que lorsque d varie, les points M et N appartiennent à un cercle fixe que l'on précisera.
- c Dans le cas où AMN est un triangle, montrer que Q est le centre de gravité du triangle AMN.
- d En déduire les valeurs de d pour lesquelles le triangle AMN est isocèle de sommet principal A.

EXERCICE 2: (5 points)

Soit ABC un triangle rectangle en C tel que $(\overrightarrow{CA}, \overrightarrow{CB}) = \frac{\pi}{2} [2\pi]$ et soit r la rotation de centre A et d'angle 3.

Soient D =
$$r(C)$$
 et E = $r^{-1}(B)$.

On désigne par I le milieu du segment [C D].

- 1) a Montrer qu'il existe un unique déplacement f tel que f(A) = D et f (C) = A.
 - b Préciser la nature et les éléments caractéristiques de f.
- 2) Soit g = for
 - a Montrer que g est une translation
 - b soit F = g(E).

Montrer que f(B) = F et en déduire la nature du triangle BIF.

- c Montrer que les points C, A et F sont alignés.
- 3) Soit G = $t_{\overrightarrow{AD}}$ (1) où $t_{\overrightarrow{AD}}$ désigne la translation de vecteur \overrightarrow{AD}
 - a Montrer qu'il existe un unique antidéplacement φ tel que φ (C) = D et φ (I) = G.
 - b Montrer que φ est une symétrie glissante dont on précisera le vecteur et l'axe.

PROBLEME: (10 points)

I – 1) Soit h la fonction définie sur] 0, + ∞{ par :

$$h(x) = x - Log x$$

- a Etudier les variations de h .
- b En déduire que pour tout x de $]0, + \infty[$ on $a:h(x) \ge 1$.
- Soit f la fonction définie sur [0, + ∞[par ;

$$\begin{cases} f(x) = \frac{1}{x - \log x} & \text{si } x > 0 \\ f(0) = 0 & \end{cases}$$

- a Montrer que f est continue sur [0, + ∞[.
- b La fonction f est-elle dérivable à droite en 0 ?