PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICAS

Primer semestre de 2024

MAT1107 – Introducción al Cálculo

Solución Interrogación N° 2

1. Determine el conjunto solución de la siguiente inecuación:

$$0 \leqslant \frac{(x^2 + 4x + 6)(x - 3)}{(x - 4)} .$$

Solución. Notemos que el factor $(x^2 + 4x + 6)$ es siempre positivo, pues

$$x^{2} + 4x + 6 = (x+2)^{2} + 2 \ge 2$$
.

(También se puede justificar lo anterior notando que se trata de una cuadrática con discriminante $\Delta = -8 < 0$ y coeficiente principal $a_2 = 1 > 0$).

Los puntos críticos son x=3 y x=4. El primero pertenece al conjunto solución, mientras que el segundo es una restricción.

El conjunto en el que (x-3) y (x-4) tienen igual signo (y por lo tanto su producto es positivo) es $(-\infty,3) \cup (4,+\infty)$.

Por lo tanto, el conjunto solución de la inecuación es $(-\infty, 3] \cup (4, +\infty)$.

Criterio de Corrección (CC) Pregunta 1.

CC 1. 2 puntos por justificar que $x^2 + 4x + 6 > 0$ para todo $x \in \mathbb{R}$.

CC 2. 1 punto por determinar los puntos críticos x=3, x=4 y la restricción $x\neq 4$.

CC 3. 3 puntos por determinar el conjunto solución de la inecuación.

2. Determine el conjunto solución de la siguiente inecuación:

$$|3x + 2| \le |x + 1| + |2x + 1|$$
.

Solución.

(i) Primera solución.

Por desigualdad triangular, para todo $x \in \mathbb{R}$ se cumple que

$$|3x + 2| = |(x + 1) + (2x + 1)| \le |x + 1| + |2x + 1|$$

(ii) Segunda solución

Los puntos críticos son $x=-\frac{2}{3},\,x=-1$ y $x=-\frac{1}{2}$. Separamos en casos:

• Si $x \le -1$, la inecuación se simplifica a

$$-(3x+2) \le -(x+1) - (2x+1).$$

Note que siempre se cumple la igualdad, por lo que la solución restringida a este caso es $(-\infty, -1]$.

• Si $-1 < x \le -\frac{2}{3}$, la inecuación se simplifica a

$$-(3x+2) \le (x+1) - (2x+1) \iff 0 \le 2x+2.$$

El conjunto solución de la inecuación anterior es $[-1, +\infty)$. Intersecando con el intervalo $(-1, -\frac{2}{3}]$ de este caso, obtenemos $(-1, -\frac{2}{3}]$.

 $\bullet \ {\rm Si} \ -\frac{2}{3} < x \le -\frac{1}{2},$ la inecuación se simplifica a

$$(3x+2) \le (x+1) - (2x+1) \iff 4x+2 \le 0.$$

El conjunto solución de la inecuación anterior es $(-\infty, -\frac{1}{2}]$. Intersecando con el intervalo $(-\frac{2}{3}, -\frac{1}{2}]$ de este caso, obtenemos $(-\frac{2}{3}, -\frac{1}{2}]$.

• Si $-\frac{1}{2} < x$, la inecuación se simplifica a

$$(3x+2) \le (x+1) + (2x+1).$$

Note que siempre se cumple la igualdad, por lo que la solución restringida a este caso es $[-\frac{1}{2}, \infty]$.

Uniendo los cuatro casos obtenemos toda la recta real.

Observación: Cualquier otro método que resuelva correctamente la inecuación es válido. Por ejemplo, elevar al cuadrado o usar las propiedades de los valores absolutos.

Criterio de Corrección (CC) Pregunta 2.

CC 1. 6 puntos por justificar que \mathbb{R} es el conjunto solución de la inecuación.