Математический анализ, 1-й семестр, ИУ, РЛ, БМТ (кроме ИУ9) (2019-20 уч.г.) Рубежный контроль 2 Вопросы для подготовки

Teopemuческие вопросы $(onpedeneuus)^1$

- **1.** Сформулируйте определение наклонной асимптоты [10].
- 2. Сформулируйте определение производной функции в точке [11].
- 3. Сформулируйте определение односторонней производной функции [11].
- **4.** Сформулируйте определение производной n-го порядка [12].
- 5. Сформулируйте определение дифференцируемой функции в точке [11].
- 6. Сформулируйте определение дифференциала первого порядка [12].
- 7. Сформулируйте определение дифференциала n-го порядка [12].
- 8. Сформулируйте определение возрастающей функции [15].
- 9. Сформулируйте определение невозрастающей функции [15].
- 10. Сформулируйте определение убывающей функции [15].
- 11. Сформулируйте определение неубывающей функции [15].
- 12. Сформулируйте определение монотонной функции [15].
- **13.** Сформулируйте определение строго монотонной функции [15].
- 14. Сформулируйте определение локального минимума [15].
- 15. Сформулируйте определение строгого локального минимума [15].
- **16.** Сформулируйте определение локального максимума [15].
- 17. Сформулируйте определение строгого локального максимума [15].
- 18. Сформулируйте определение экстремума [15].
- 19. Сформулируйте определение строгого экстремума [15].
- **20.** Сформулируйте определение стационарной точки [15].
- **21.** Сформулируйте определение критической точки [15].
- **22.** Сформулируйте определение выпуклости функции на промежутке [16].
- **23.** Сформулируйте определение точки перегиба графика функции [16].

Теоретические вопросы (формулировки теорем)

- 1. Сформулируйте необходимое и достаточное условие наличия наклонной асимптоты [10].
- **2.** Сформулируйте необходимое и достаточное условие дифференцируемости функции в точке [11].
 - **3.** Сформулируйте теорему о связи дифференцируемости и непрерывности функции [11].
 - **4.** Сформулируйте теорему о производной произведения [11].
 - **5.** Сформулируйте теорему о производной частного [11].
- 6. Сформулируйте свойство инвариантности формы записи дифференциала первого порядка [12].
 - **7.** Сформулируйте теорему Ферма [13].
 - **8.** Сформулируйте теорему Ролля [13].
 - **9.** Сформулируйте теорему Лагранжа [13].
 - **10.** Сформулируйте теорему Коши [13].

 $^{^{1}}$ В квадратных скобках указаны номера лекций по календарному плану, см. также Иванков П.Л. Математический анализ. Конспект лекций. Электронный ресурс. Режим доступа: http://mathmod.bmstu.ru/Docs/Eduwork/ma/MAall.pdf (дата обращения 01.09.2019).

Задачи для подготовки

- 1. Исследуйте функцию и постройте ее график:
- 1.1. $\frac{x}{x^2+1}$. 1.2. $\ln \frac{x^2}{x+1} 1$. 1.3. $\frac{e^x}{x}$.
- 2. Постройте график функции по заданному графику производной:

2.1.

3. Для следующих функций запишите формулу Маклорена с остаточным членом в форме Пеано:

3.1.
$$f(x) = \sqrt{4 - 2x}$$
.

3.2.
$$f(x) = \frac{x}{4 - x^2}$$
.

3.1.
$$f(x) = \sqrt{4-2x}$$
. **3.2.** $f(x) = \frac{x}{4-x^2}$. **3.3.** $f(x) = \log_2\left(\frac{4+x}{1-x}\right)$.

3.4.
$$f(x) = \frac{1}{(1+x)^2}$$
.

3.4.
$$f(x) = \frac{1}{(1+x)^2}$$
. 3.5. $f(x) = \sin\left(x + \frac{\pi}{6}\right)$. 3.6. $f(x) = \cosh(x+1)$.

3.6.
$$f(x) = \operatorname{ch}(x+1)$$

3.7.
$$f(x) = 2^{x^2}$$

3.7.
$$f(x) = 2^{x^2}$$
. **3.8.** $f(x) = x \cos |3x|$. **3.9.** $f(x) = x \sin 2x$. **3.10.** $f(x) = \cos^2 x$. **3.11.** $f(x) = \sin^2 x$. **3.12.** $f(x) = \sinh^2 x$.

3.9.
$$f(x) = x \operatorname{sh} 2x$$
.

3.10.
$$f(x) = \cos^2 x$$

3.11.
$$f(x) = \sin^2 x$$

3.12.
$$f(x) = \sin^2 x$$

4. Вычислите предел:

4.1.
$$\lim_{x\to 0} \frac{\cos x + \cosh x - 2}{x^4}$$

4.1.
$$\lim_{x\to 0} \frac{\cos x + \operatorname{ch} x - 2}{x^4}$$
. **4.2.** $\lim_{x\to 0+0} \frac{\ln \operatorname{tg} 2x}{\ln (1-\cos x)}$. **4.3.** $\lim_{x\to 0} x^{\sin x}$.

4.3.
$$\lim_{x\to 0} x^{\sin x}$$

4.4.
$$\lim_{x\to 0} \left(\cos x + \sin \frac{x^2}{2}\right)^{1/x^4}$$
. **4.5.** $\lim_{x\to +\infty} (x+2^x)^{1/x}$. **4.6.** $\lim_{x\to 0+0} xe^{1/x}$.

4.5.
$$\lim_{x \to +\infty} (x+2^x)^{1/x}$$

4.6.
$$\lim_{x\to 0+0} xe^{1/x}$$
.

4.7.
$$\lim_{x\to 0} \left(\frac{1}{\sin^2 x} - \frac{1}{x^2}\right)$$
.

4.8.
$$\lim_{x \to +\infty} \frac{\left(1 + \frac{1}{x}\right)^{x^2}}{e^x}$$

4.7.
$$\lim_{x \to 0} \left(\frac{1}{\sin^2 x} - \frac{1}{x^2} \right)$$
. **4.8.** $\lim_{x \to +\infty} \frac{\left(1 + \frac{1}{x} \right)^{x^2}}{e^x}$. **4.9.** $\lim_{x \to 0} \frac{\sqrt{\frac{1+x}{1-x}} - e^x}{x^3}$.

Типовой вариант билета по теории

- 1. Сформулируйте определение строгого локального минимума. (1 балл)
- 2. Сформулируйте определение односторонней производной функции. (1 балл)
- 3. Сформулируйте теорему о связи дифференцируемости и непрерывности функции. (1 балл)

Типовой вариант билета по задачам

- 1. Исследуйте функцию $y = \frac{e^{-x}}{x+1}$ и постройте ее график. (5 баллов)
- 2. Постройте график функции по следующему графику производной (З балла):

- **3.** Для функции $f(x) = \frac{x^2}{2+x}$ запишите формулу Маклорена с остаточным членом в форме Пеано (привести пять первых ненулевых членов). (4 балла)
 - **4.** Вычислите предел $\lim_{x \to +\infty} (1+x)^{1/x}$. (4 балла)