

Preventing Data Exfiltration inside Virtual Machines

eBPF-based approach

Supervisor: André Passos Orientador: Prof. Doutora Manuela Pereira Co-Orientador: Prof. Doutor Simão Melo de Sousa

Orientando: Carlos Pinto

O problema abordado nesta tese é o da prevenção de data exfiltration.

O problema abordado nesta tese é o da prevenção de data exfiltration.

Data exfiltration pode ser caracterizado como:

O problema abordado nesta tese é o da prevenção de data exfiltration.

Data exfiltration pode ser caracterizado como:

Transferência não autorizada de dados de um computador ou outro dispostivo.

O problema abordado nesta tese é o da prevenção de data exfiltration.

Data exfiltration pode ser caracterizado como:

Transferência não autorizada de dados de um computador ou outro dispostivo.

Envolve a cópia ilícita de dados, com agência maliciosa.

O problema abordado nesta tese é o da prevenção de data exfiltration.

Data exfiltration pode ser caracterizado como:

Transferência não autorizada de dados de um computador ou outro dispostivo.

Envolve a cópia ilícita de dados, com agência maliciosa.

Pode ser conduzido de forma manual ou de forma automatizada usando malware.

Problema II

A possibilidade de dados poderem ser transferidos sem autorização é particularmente gravosa para empresas, visto poderem incorrer não só em danos monetários, e de roubo de propriedade intelectual, mas também poderem ver a sua credibilidade afetada caso tal aconteça.

Solução Proposta

Desenvolver uma aplicação que faça uso de kernel-based security, com base em eBPF, de modo a prevenir data exfiltration em máquinas virtuais.

Conceitos Base

Conceitos Base

Linux Kernel

O Kernel de Linux é o componente base do sistema operativo Linux, servindo como mediador entre software e hardware.

Conceitos Base

Linux Kernel

O Kernel de Linux é o componente base do sistema operativo Linux, servindo como mediador entre software e hardware.

eBPF

eBPF é uma tecnologia que permite correr programas dentro do kernel sem modificar o mesmo.

Tarefas do Kernel

Gestão de processos.

- Gestão de processos.
- ► Gestão de memória.

- Gestão de processos.
- Gestão de memória.
- Drivers de dispositivos.

- Gestão de processos.
- Gestão de memória.
- Drivers de dispositivos.
- System Calls e Segurança.

Kernel Space

System Calls

% time	seconds	usecs/call	calls	errors	syscall
0.00	0.000000		5		read
0.00	0.000000	Ø			close
0.00	0.000000				mmap
0.00	0.000000				mprotect
0.00	0.000000				munmap
0.00	0.000000				brk
0.00	0.000000				ioctl
0.00	0.000000				pread64
0.00	0.000000				
0.00	0.000000				
0.00	0.000000				statfs
0.00	0.000000				arch_prctl
0.00	0.000000				getdents64
0.00	0.000000				set_tid_address
0.00	0.000000				openat
0.00	0.000000				newfstatat
0.00	0.000000				set_robust_list
0.00	0.000000				prlimit64
0.00	0.000000				getrandom
0.00	0.000000				rseq
100.00	0.000000		77	5	total

eBPF

Kernel VS User Space

Verificação

Mapas eBPF

Estado da Arte

Ferramentas

Estado da Arte

Ferramentas

► Seccomp-bpf

Estado da Arte

Ferramentas

- Seccomp-bpf
- **▶** Tetragon

Seccomp-bpf

A ferramenta seccomp-bpf é uma extensão ao seccomp que permite filtrar as syscalls a partir de um programa BPF.

É mais flexível que o *seccomp* original, que permitia apenas quatro *syscalls*.

Tetragon

Syscall tooling

Várias ferramentas fazem uso de *syscalls* para monitorizar e responder a eventos relevantes de um ponto de vista de segurança.

Syscall tooling

Várias ferramentas fazem uso de *syscalls* para monitorizar e responder a eventos relevantes de um ponto de vista de segurança.

TOCTOU

Estas ferramentas são vulneráveis a ataques de **TOCTOU**, visto estarem normalmente na entrada da função chamada pelo *kernel*.

BPF LSM

Demo

Trabalho futuro

Questões