Devoir surveillé n°7

Barème

Calculs: 15 questions sur 2 points, total sur 30, ramené sur 5 points

Problème: 31 ou 34 questions sur 4 points, total sur 124 (v1) ou 136 (v2), ramené sur 15 points

Soit $\varphi: x \mapsto \frac{1}{10} \lfloor 10x \rfloor$, c le nombre de points obtenus sur la fiche de calculs et p le nombre de points obtenus sur les exercices, la note sur 20 est le réel $n = \min \left\{ \varphi \left(\frac{5c}{28} + \frac{15p}{\alpha} \right), 20 \right\}$ avec $\alpha = 78$ (v1) ou 78 (v2)

Statistiques

	Calculs	Problème (v1)	Problème (v2)	Précision (v1)	Précision (v2)
Minimum	6	9	36	32%	45%
Q1	12	22	42	42%	61%
Médiane	14	26	49	47%	67%
Q3	17	37	56	59%	74%
Maximum	22	63	63	77%	87%
Moyenne	14.1	31.1	49.1	50.5%	67.5%

Répartition des notes

Remarques générales

- Au prochain devoir, les remarques du type « x non déf. » dans la marge seront accompagnées d'une mention « -1 », et feront donc l'objet d'un malus d'un point pour chaque question où une telle remarque apparaît.
- Idem pour les erreurs du type « 🎉 est croissante/continue/dérivable ».

Version 1

Exercice 1

- Question 1. Il s'agit d'un exercice de cours du chapitre 17... Cette question a pourtant été traitée correctement par moins d'un tiers des étudiants. Ce n'est pas normal!
- Question 2c. J'ai pu lire de nombreuses fois : « (u_n) est décroissante et minorée par n, donc converge ». Cela n'a aucun sens! Un minorant est une \mathfrak{Z} CONSTANTE \mathfrak{Z} .

 Dans d'autres copies, j'ai trouvé « $\frac{1}{n} \xrightarrow[n \to +\infty]{} 0$ donc (u_n) est minorée par 0 ». Ce raisonnement est faux! La suite $(w_n) = \left(\frac{-1}{2n}\right)$ vérifie : pour tout $n \in \mathbb{N}^*$, $-\frac{1}{n} \le w_n \le 1$, et $-\frac{1}{n} \xrightarrow[n \to +\infty]{} 0$, pourtant (w_n) n'est pas minorée par 0.

- Question 4b. Dire « la fonction f_k est au dessus de l'axe des abscisses » n'a pas de sens : c'est sa courbe qui l'est (et pas sur \mathbb{R} , juste sur [k, k+1])! Il suffit de dire que f_k est positive sur [k, k+1], l'interprétation géométrique de l'intégrale comme aire n'a aucune importance ici.
- Question 6. Étudier g_1 s'est révélé insurmontable pour certains. Il faut dire que les calculs sont rarement

Pourquoi dériver $x \mapsto -\frac{1}{2x^2}$ comme un inverse, alors qu'il s'agit de $x \mapsto -\frac{x^{-2}}{2}$?

Pourquoi développer $\frac{1}{(x+1)^2}$ en $\frac{1}{x^2+2x+1}$? ou $\frac{1}{x(x+1)}$ en $\frac{1}{x^2+x}$?

Pourquoi factoriser $\frac{1}{(x+1)^2} - \frac{1}{x(x+1)} + \frac{1}{x^3}$ en $\frac{x^4(x+1) - x^3(x+1)^2 + x(x+1)^3}{x^4(x+1)^3}$?

En procédant ainsi, vous mettez toutes les chances de votre côté pour rater le calcul.

- Question 8. Si vous n'avez pas répondu à la question 6, vous ne pouvez pas affirmer que g_1 est négative et que g_2 est positive. Il est facile de voir que c'est équivalent à l'inégalité demandée : une telle affirmation passera immédiatement pour une escroquerie...
- Question 10. Un encadrement d'un terme de la suite (même de « grand indice ») n'est pas un encadrement de la limite.

Versions 1 et 2

Exercice 2

Il était nécessaire de savoir ce qu'était une fonction périodique pour traiter cet exercice. Il s'agit néanmoins d'un attendu tout à fait raisonnable à ce stade de l'année...

- Question 1. Vous démontrez que \mathcal{P}_T est un sous-espace vectoriel de E: il faut l'indiquer explicitement! Si vous vous contentez d'écrire que \mathcal{P}_T contient la fonction nulle et est stable par combinaison linéaire donc est un espace-vectoriel, vous n'aurez pas tous les points!
 - Par ailleurs, lorsque vous démontrez que pour tous $f, g \in \mathcal{P}_T$, pour tout $\lambda \in \mathbb{R}, f + \lambda g \in \mathcal{P}_T$, n'éverivez pas que « \mathcal{P}_T est stable par combinaison linéaire » : ce n'est pas ce que vous avez démontré.
- Question 2. $\{\mathcal{P}_T \mid T \in \mathbb{R}_+^*\}$ est un ensemble d'ensembles, alors que \mathcal{P} est un ensemble de fonctions : ces deux ensembles ne peuvent pas être égaux!
- Question 3. Ayez un peu de jugeotte... Vous devez montrer dans la question 3a qu'une certaine fonction fappartient à $Vect(\mathcal{P})$, puis on vous demande dans la question 3c si f appartient à \mathcal{P} puis si \mathcal{P} a une structure d'espace vectoriel. Si f appartenait à \mathcal{P} , on ne pourrait rien en déduire sur la structure de \mathcal{P} ; vous pouvez donc être quasiment certain que f n'est pas périodique, ce qui permet d'affirmer que $\text{Vect}(\mathcal{P}) \neq \mathcal{P}$, et donc que \mathcal{P} n'a pas une structure d'espace vectoriel.
- Question 3a. Il est inquiétant de lire « $f(x+2\pi) = \cos(x+2\pi) + \cos(2\pi x + 2\pi)$ »... Si $g: x \mapsto \cos(2\pi x)$ alors pour tout réel $x, g(x+2\pi) = \cos(2\pi(x+2\pi))...$ Les parenthèses ne sont pas des objets purement décoratifs! Cette fonction n'est bien évidemment pas 2π -périodique... J'ai rencontré des horreurs du type « $\cos(2\pi T) = \cos(T)$ », ou « comme cos est 2π -périodique, $\cos(2\pi T) =$ $\cos(0)$ »... Vous devez vous efforcer de revenir aux **définitions** (et donc, les connaître). cos est 2π -périodique signifie que $\forall x \in \mathbb{R}$, $\cos(x+2\pi) = \cos(x)$.
- **Question 4a.** Beaucoup de blabla, alors qu'on attend : « soit $f \in \mathcal{P}_n$. Montrons que $f \in \mathcal{P}_m$ ». Pour la deuxième question, on attendait bien entendu un contre-exemple. Sinon, je ne mettais pas de points.

Version 2

Exercice 1

- Question 1. Les tableaux de signes étaient vrais sur J uniquement, pas sur I, et J n'est pas supposé être stable par f. Les hypothèses de récurrence du type « $x_{n+1} < x_n$ » ne fonctionnaient pas si l'on ne rajoute pas $x_n, x_{n+1} \in J$, vous ne pouviez pas affirmer que si $x_0 < a$ alors (x_n) était décroissante.
 - J pouvait ne pas être borné. Relisez l'énoncé, J est juste un intervalle : ce pourrait être \mathbb{R} .
- Question 2. Les théorèmes sur les suites récurrentes sont très (très) mal maîtrisés. Vous oubliez de citer la continuité de f en la limite éventuelle de (x_n) pour obtenir que cette limite est un point fixe; très peu se sont souciés du fait que cette limite pouvait ne pas appartenir à J.
 - Il fallait remarquer que la définition de point fixe stable demandait un intervalle J stable par f.
- Question 5. Il ne suffit pas de dire « tous les cas sont possibles » avec un peu de blabla autour : il faut donner des **exemples**!
- Question 6a. Pour les sous-suites (x_{2n}) et (x_{2n+1}) , on pouvait uniquement dire qu'elles étaient de monotonie opposée, rien d'autre.
- Question 9b. Il ne suffisait pas de résoudre h'(x) = 0 et de trouver comme seule solution b, il fallait vérifier que b était bien défini et dans \mathbb{R}^+ .

Répartition des points

Version 1

Version 2

	0	Non	Non	0	1		<u> </u>	4		0	Non	Non	0	1		9	4
	Question	traité	encadré	0	1	2	3	4		Question	traité	encadré	0	1	2	3	4
	1	9	0	12	1	1	1	7		1	1	0	8	1	1	0	0
	2a	0	0	0	3	1	0	27		2	3	0	4	3	1	0	0
	2b	5	0	0	10	4	0	12		3	9	0	2	0	0	0	0
	2c	1	0	18	2	3	1	6		4	10	0	0	1	0	0	0
	3	2	0	1	2	1	2	23		5	10	0	0	0	$\frac{0}{6}$	0	0
	4a 4b	8 21	0	17 3	1 2	0 3	3	2		6a 6b	$\begin{array}{c c} 0 \\ 2 \end{array}$	0	$\begin{vmatrix} 0 \\ 0 \end{vmatrix}$	1 0	0	2	8
	46 4c	$\frac{21}{27}$	0	3	0	0		1		7a	8	0	1	2	0	0	0
	40 5a	10	0	0	0	3	0	17	ex1	7a 7b	7	0	1	$\frac{2}{2}$	0	1	0
ex1	5a 5b	22	0	5	1	0	1	2		7 b 8a	0	0	0	0	0	0	11
	6	$\frac{22}{2}$	0	8	16	3	0	$\begin{bmatrix} 2 \\ 2 \end{bmatrix}$		8b	0	0	0	1	0	1	9
	7	8	0	1	0	1	1	20		8c	1	0	0	1	1	2	6
	8	14	0	3	3	7	1	3		8d	6	0	$\begin{vmatrix} 0 \\ 2 \end{vmatrix}$	1	0	0	2
	9a	21	0	4	6	0	0	0		9a	$\frac{3}{4}$	0	3	0	1	0	3
	9b	30	0	0	1	0	0	0		9b	7	0	0	0	0	4	0
	9c	27	0	1	0	3	0	0		9c	9	0	$\begin{vmatrix} 0 \\ 2 \end{vmatrix}$	0	0	0	0
	9d	31	0	0	0	0	0	0		10	8	0	0	0	2	1	0
	10	22	0	6	2	1	0	0		11	11	0	0	0	0	0	0
	1	6	1	0	2	3	3	16		12a	11	0	0	0	0	0	0
	2	9	0	13	1	3	0	5		12b	11	0	0	0	0	0	0
	3a	8	0	12	3	1	3	4		12c	11	0	0	0	0	0	0
	3b-i	21	0	5	5	0	0	0	ex2	1	0	0	0	0	0	0	11
	3b-ii	23	0	2	4	2	0	0		2	0	0	0	0	1	0	10
	3b-iii	18	0	6	2	1	3	1		3a	0	0	1	0	0	0	10
ex2	3c	22	0	3	2	0	0	4		3b-i	5	0	3	1	0	0	2
	4a	19	0	1	1	8	1	1		3b-ii	5	0	1	2	1	1	1
	4b	27	0	0	0	0	0	4		3b-iii	4	0	0	0	1	3	3
	4c	28	0	0	1	0	1	1		3c	3	0	0	1	1	0	6
	5a	20	0	0	8	0	3	0		4a	2	0	1	0	4	1	3
	5b-i	17	0	0	0	0	4	10		4b	3	1	3	0	0	0	4
	5b-ii	18	0	2	4	5	1	1		4c	4	0	1	0	0	3	3
										5a	3	0	0	2	3	1	2
										5b-i	5	0	0	1	0	0	5
										5b-ii	9	0	0	0	0	1	1