Презентация по лаборатольной работе No.1

Операционные системы

Джаллох Ишмаил

02 март 2025

Российский университет дружбы народов, Москва, Россия

Объединённый институт ядерных исследований, Дубна, Россия

Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

Задание

- 1. Создание виртуальной машины
- 2. Установка операционной системы
- 3. Работа с операционной системой после установки
- 4. Установка программного обеспечения для создания документации
- 5. Дополнительные задания

Выполнение лабораторной работы

Virtualbox я устанавливала и настраивала при выполнении лабораторной работы в курсе "Архитектура компьютера и Операционные системы (раздел"Архитектура компьютера")", поэтому сразу открываю окно приложения (рис. (fig:001?)).

Рис. 1: Окно Virtualbox

Нажимая "создать", создаю новую виртуальную машину, указываю ее имя, путь к папке машины по умолчанию меня устраивает, выбираю тип ОС и версию (рис. (fig:002?)).

Указываю объем основной памяти виртуальной машины размером 4096МБ (рис. (fig:003?)).

Выбираю в Virtualbox настройку своей виртуальной машины. Перехожу в "Носители", добавляю новый привод привод оптических дисков и выбираю скачанный образ операционной системы Fedora (рис. (fig:004?)).

Скачанный образ ОС был успешно выбран (рис. (fig:005?)).

Рис. 5: Выбранный образ оптического диска

Установка операционной системы

Чтобы перейти к раскладке окон с табами, нажимаю Win+w. Выбираю язык для использования в процессе установки русски (рис. (fig:006?)).

9/40

Установка операционной системы

Раскладку клавиатуры выбираю и русскую, и английскую (рис. (fig:007?)).

Рис. 7: Выбор раскладки клавиатуры

Установка операционной системы

Далее операционная система устанавливается. После установки нажимаю "завершить установку" (рис. (fig:008?)).

Нажимаю Win+Enter для запуска терминала и переключаюсь на роль супер-пользователя(рис. (fig:028?)).

ijalloh@vbox:~\$ sudo -i

Рис. 9: Запуск терминала

Обновляю все пакеты (рис. (fig:029?)).

root@vbox:~# dnf -y update

Рис. 10: Обновления

Устанавливаю программы для удобства работы в концсоли: tmux для открытия нескольких "вкладок" в одном терминале, mc в качестве файлового менеджера в терминале (рис. (fig:030?)).

Рис. 11: Установка tmux и mc

Устанавливаю программы для автоматического обновления (рис. (fig:031?)).

root@vbox:~# dnf install dnf-automatic Updating and loading repositories:

Рис. 12: Установка программного обеспечения для автоматического обновления

Запускаю таймер (рис. (fig:032?)).

root@vbox:-# systemctl enable --now dnf-automatic.timer

Created symlink '/etc/systemd/system/timers.target.wants/dnf-automatic.timer' + '/usr/lib/systemd/system/dnf-automatic.timer'.

...

Рис. 13: Запуск таймера

Перемещаюсь в директорию /etc/selinux, открываю md, ищу нужный файл (рис. (fig:033?)).

Рис. 14: Поиск файла

Изменяю открытый файл: SELINUX=enforcing меняю на значение SELINUX=permissive (рис. (fig:034?)).

Перезагружаю виртуальную машину (рис. (fig:037?)).

```
ijalloh@vbox:/etc/selinux$ reboot
```

Рис. 16: Перезагрузка виртуальной машины

Снова вхожу в ОС, снова запускаю терминал, запускю терминальный мультиплексор (рис. (fig:038?)).

```
ijalloh@vbox:~$ tmux
```

Рис. 17: Запуск терминального мультиплексора

Переключаюсь на роль супер-пользователя (рис. (fig:039?)).

```
ijalloh@vbox:/$ sudo -i
[sudo] password for ijalloh:
root@vbox:~# []
```

Рис. 18: Переключение на роль супер-пользователя

Устанавливаю пакет dkms (рис. (fig:0340?)).

```
root@vbox:~# dnf install dkms
```

Рис. 19: Установка пакета dkms

В меню виртуальной машины подключаю образ диска гостевой ОС и примонтирую диск с помощью утилиты mount (рис. (fig:041?)).

```
root@vbox:-# mount /dev/sr0 /media
mount: /media: WARNING: source write-protected, mounted read-only.
```

Рис. 20: Примонтирование диска

Устанавливаю драйвера (рис. (fig:042?)).

```
root@vbox:-# /media/VBoxLinuxAdditions.run

Verifying archive integrity... 100% MD5 checksums are OK. All good.

Uncompressing VirtualBox 7.1.0 Guest Additions for Linux 100%

VirtualBox Guest Additions installer

This system appears to have a version of the VirtualBox Guest Additions

already installed. If it is part of the operating system and kept up-to-date,

there is most likely no need to replace it. If it is not up-to-date, you

should get a potification when you start the system. If you wish to replace
```

Рис. 21: Установка драйвера

Перезагружаю виртуальную машину (рис. (fig:043?)).

root@vbox:~# reboot

Рис. 22: Перезагрузка виртуальной машины

Перехожу в директорию /tc/X11/xorg.conf.d, открываю mc для удобства, открываю файл 00-keyboard.conf (рис. (fig:044?)).

```
ijalloh@vbox:~$ sudo -i
[sudo] password for ijalloh:
root@vbox:~# cd /etc/X11/xorg.conf.d/
root@vbox:/etc/X11/xorg.conf.d# mc]
```

Рис. 23: Поиск файла, вход в тс

Редактирую конфигурационный файл (рис. (fig:045?)).

Рис. 24: Редактирование файла

Перезагружаю виртуальную машину (рис. (fig:046?)).

root@vbox:/etc/X11/xorg.conf.d# reboot

Рис. 25: Перезагрузка виртуальной машины

Запускаю терминал. Запускаю терминальный мультиплексор tmux, переключаюсь на роль супер-пользователя (рис. (fig:047?)).

```
ijalloh@vbox:~$ sudo -i
[sudo] password for ijalloh:
```

Рис. 26: Переключение на роль супер-пользователя

Устанавливаю pandoc с помощью утилиты dnf и флага -у, который автоматически на все вопросы системы отчевает "yes" (рис. (fig:048?)).

```
root@vbox:~# dnf -y install pandoc
Updating and loading repositories:
Repositories loaded.
Package
                                     Version
                                                                   Repository
                                                                                       Size
                            Arch
                            x86 64
                                                                   fedora
                                                                                  185.0 MiB
Installing dependencies:
                            noarch 3.1.11.1-31.fc41
                                                                   fedora
                                                                                    1.9 MiB
Transaction Summary:
                     2 packages
Total size of inbound packages is 27 MiB. Need to download 27 MiB.
```

Рис. 27: Установка pandoc

Устанавливаю необходимые расширения для pandoc (рис. (fig:049?)).

root@vbox:~# pip install pandoc-fignos pandoc-eqnos pandoc-tablenos pandoc-secnos --user□

Рис. 28: Установка расширения pandoc

Устанавливаю дистрибутив texlive (рис. (fig:051?)).

```
root@vbox:-# dnf -y install texlive texlive-\*
```

Рис. 29: Установка texlive

Выводы

При выполнении данной лабораторной работы я приобрела практические навыки установки операционной системы на виртуальную машину, а так же сделала настройки минимально необходимых для дальнейшей работы сервисов.

Ввожу в терминале команду dmesg, чтобы проанализировать последовательность загрузки системы (рис. (fig:053?)).

```
ijalloh@vbox:~$ sudo dmesg
     0.000000] Linux version 6.13.4-200.fc41.x86 64 (mockbuild@leec6c3659654d339658e
9322f9b7a5a) (gcc (GCC) 14.2.1 20250110 (Red Hat 14.2.1-7). GNU ld version 2.43.1-5.
fc41) #1 SMP PREEMPT_DYNAMIC Sat Feb 22 16:09:10 UTC 2025
     0.000000] Command line: BOOT IMAGE=(hd0.gpt2)/ymlinuz-6.13.4-200.fc41.x86 64 ro
ot=UUID=bdba74b3-304a-432f-b6ba-7ffed7265137 ro rootflags=subvol=root rhgb quiet
     0.00000001 BIOS-provided physical RAM map:
     0.0000000] BIOS-e820: [mem 0x00000000000000-0x0000000009fbff] usable
     0.000000] BIOS-e820: [mem 0x00000000009fc00-0x0000000009ffff] reserved
     0.0000001 BIOS-e820: [mem 0x0000000000f0000-0x000000000fffff] reserved
     0.0000000] BIOS-e820: [mem 0x0000000000100000-0x00000000dffeffff] usable
     0.000000] BIOS-e820: [mem 0x0000000dfff0000-0x0000000dfffffff] ACPI data
     0.0000001 BIOS-e820: [mem 0x00000000fec00000-0x00000000fec00fff] reserved
     0.000000] BIOS-e820: [mem 0x00000000fee00000-0x00000000fee00fff] reserved
     0.000000] BIOS-e820: [mem 0x00000000fffc0000-0x00000000ffffffff] reserved
     0.000000] BIOS-e820: [mem 0x0000000100000000-0x000000011ffffffff] usable
     0.0000001 APIC: Static calls initialized
     0.00000001 SMBIOS 2.5 present.
     0.000000] DMI: innotek GmbH VirtualBox/VirtualBox, BIOS VirtualBox 12/01/2006
     0.000000] DMI: Memory slots populated: 0/0
     0.0000001 Hypervisor detected: KVM
     0.0000000] kvm-clock: Using msrs 4b564d01 and 4b564d00
     0.0000004] kym-clock: using sched offset of 13468702786523 cycles
     0.000008] clocksource: kym-clock: mask: 0xfffffffffffff max cycles: 0x1cd42e
4dffb, max idle ns: 881590591483 ns
```

С помощью поиска, осуществляемого командой 'dmesg | grep -i ', ищу версию ядра Linux: 6.1.10-200.fc37.x86_64 (рис. (fig:054?)).

```
ijalloh@vbox:-$ sudo dmesg | grep -i "Linux Version"
[     0.000000] Linux version 6.13.4-200.fc41.x86_64 (mockbuild@leec6c3659654d339658e
9322f9b7a5a) (gcc (GCC) 14.2.1 20250110 (Red Hat 14.2.1-7), GNU ld version 2.43.1-5.
fc41) #1 SMP PREEMPT_DYNAMIC Sat Feb 22 16:09:10 UTC 2025
```

Рис. 31: Поиск версии ядра

К сожалению, если вводить "Detected Mhz processor" там, где нужно указывать, что я ищу, то мне ничего не выведется. Это происходит потому, что запрос не предусматривает дополнительные символы внутри него (я проверяла, будет ли работать он с маской - не будет). В таком случае я оставила одно из ключевых слов (могла оставить два: "Mhz processor") и получила результат: 1992 Mhz (рис. (fig:055?)).

```
ijalloh@vbox:-$ sudo dmesg | grep -i "processor"
[     0.000014] tsc: Detected 1497.604 MHz processor
[     0.417355] smpboot: Total of 4 processors activated (11980.83 BogoMIPS)
[     0.440241] ACPI: Added _OSI(Processor Device)
[     0.440243] ACPI: Added _OSI(Processor Aggregator Device)
```

Рис. 32: Поиск частоты процессора

Аналогично ищу модель процессора (рис. (fig:056?)).

```
ijalloh@vbox:-$ sudo dmesg | grep -i "CPU0"
[ 0.401326] smpboot: CPU0: Intel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz (family: 0x6, model: 0x7e, stepping: 0x5)
```

Рис. 33: Поиск модели процессора

Объем доступной оперативной памяти ищу аналогично поиску частоты процессора, т. к. возникла та же проблема, что и там (рис. (fig:057?)).

```
alloh@vbox:~$ sudo dmesg | grep -i "memory"
  0.000000] DMI: Memory slots populated: 0/0
  0.003229] ACPI: Reserving FACP table memory at [mem 0xdfff00f0-0xdfff01e3]
  0.003230] ACPI: Reserving DSDT table memory at [mem 0xdfff0620-0xdfff2972]
  0.003231] ACPI: Reserving FACS table memory at [mem 0xdfff0200-0xdfff023f]
  0.003232] ACPI: Reserving FACS table memory at [mem 0xdfff0200-0xdfff023f]
  0.003233] ACPI: Reserving APIC table memory at [mem 0xdfff0240-0xdfff02ab]
  0.003233] ACPI: Reserving SSDT table memory at [mem 0xdfff02b0-0xdfff061b]
  0.005795] Early memory node ranges
  0.015115] PM: hibernation: Registered nosave memory: [mem 0x00000000-0x00000fff
  0.015118] PM: hibernation: Registered nosave memory: [mem 0x0009f000-0x0009ffff
  0.015119] PM: hibernation: Registered nosave memory: [mem 0x000a0000-0x000effff
  0.015119] PM: hibernation: Registered nosave memory: [mem 0x000f0000-0x000fffff
  0.015120] PM: hibernation: Registered nosave memory: [mem 0xdfff0000-0xdfffffff
  0.015121] PM: hibernation: Registered nosave memory: [mem 0xe0000000-0xfebfffff
```

Рис. 34: Поиск объема доступной оперативной памяти

Нахожу тип обнаруженного гипервизора (рис. (fig:058?)).

```
ijalloh@vbox:-$ sudo dmesg | grep -i "Hypervisor"
[ 0.000000] Hypervisor detected: KVM
[ 0.262577] SPRDS: Hoknown: Dependent on hypervisor status
```

Рис. 35: Поиск типа обнаруженного гипервизора

Последовательность монтирования файловых систем можно посмотреть, введя в поиск по результату dmesg слово mount (рис. (fig:060?)).

```
jalloh@vbox:~$ sudo dmesg | grep -i "mount"
     0.301056] Mount-cache hash table entries: 8192 (order: 4, 65536 bytes, linear)
     0.3010661 Mountpoint-cache hash table entries: 8192 (order: 4, 65536 bytes, lin
ear)
     3.821677] BTRFS: device label fedora devid 1 transid 494 /dev/sda3 (8:3) scanne
d by mount (453)
     3.829386] BTRFS info (device sda3): first mount of filesystem bdba74b3-304a-432
 -b6ba-7ffed7265137
     6.692759] systemd[1]: run-credentials-systemd\x2djournald.service.mount: Deacti
vated successfully.
     6.706902] systemd[1]: Set up automount proc-sys-fs-binfmt misc.automount - Arbi
trary Executable File Formats File System Automount Point.
     6.725839] systemd[1]: Listening on systemd-mountfsd.socket - DDI File System
  ter Socket.
     6.748344] systemd[1]: Mounting dev-hugepages.mount - Huge Pages File System...
     6.756638] systemd[1]: Mounting dev-mqueue.mount - POSIX Message Queue File Syst
em...
     6.760263] systemd[1]: Mounting sys-kernel-debug.mount - Kernel Debug File Syste
     6.764210] systemd[1]: Mounting sys-kernel-tracing.mount - Kernel Trace File Sys
     6.874804] systemd[1]: Starting systemd-remount-fs.service - Remount Root and Ke
rnel File Systems...
     6.906630] systemd[1]: Mounted dev-hugepages.mount - Huge Pages File System.
     6.908418] systemd[1]: Mounted dev-maueue.mount - POSIX Message Oueue File Syste
```