

Attention Please!

Patrick Michl www.frootlab.org

Attention Mechanisms in Neural Networks

PyData Heidelberg #4 2019-11-21

Milestones in Attention Research

Visual Attention in Human Perception

Visual attention in human perception is based on the dynamics between **Recognition** and **Selection**

Image source: John Henderson and Taylor Hayes, UC Davis

PyData Heidelberg #4 2019-11-21 Patrick Michl www.frootlab.org

Visual Attention in Image Captioning

Encoder: CNN

Decoder: RNN

Visual Attention in Image Captioning

Encoder: CNN

Convolutional features entangle spatial with semantic information

Decoder: RNN

Visual Attention in Image Captioning

Encoder: CNN

Convolutional features entangle spatial with semantic information

Decoder: RNN

Visual Attention

allows to recover spatial relations of current outputs

Decoder

Visual Attention in **Image Captioning**

Encoder: CNN

Convolutional features entangle spatial with semantic information

Decoder: RNN

Visual Attention allows to recover spatial relations of current outputs

2019-11-21

PyData Heidelberg #4 2019-11-21

Patrick Michl www.frootlab.org Slide 9

Encoder: RNN

Decoder: RNN

Encoder: RNN

Sequence of hidden states encodes the context building stack

Decoder: RNN

Encoder

Encoder: RNN

Sequence of hidden states encodes the context building stack

Decoder: RNN

Global Attention

allows to recover the context

of current outputs

Decoder

Encoder: RNN

Sequence of hidden states encodes the context building stack

Decoder: RNN

Global Attention

allows to recover the context

of current outputs

PyData Heidelberg #4
2019-11-21

Patrick Michl www.frootlab.org

Multi-Step Attention in Natural Language Processing

Encoder: CNN

Decoder: CNN

Multi-Step Attention in Natural Language Processing

Encoder: CNN

Sequence of convolutional features encodes the context building stack

Decoder: CNN

Multi-Step Attention in Natural Language Processing

Encoder: CNN

Sequence of convolutional features encodes the context building stack

Decoder: CNN

Multi-Step Attention allows to recover the current context of current deconvolutional steps

PyData Heidelberg #4 2019-11-21 Patrick Michl www.frootlab.org

Self-Attention in Natural Language Processing

Encoder: Stacked ANN

Decoder: Stacked ANN

Self-Attention in Natural Language Processing

Encoder: Stacked ANN

Sequence of hidden features captures the encoder context building stack

ballallig Stack

Decoder: Stacked ANN

Self-Attention in Natural Language Processing

Encoder: Stacked ANN

Sequence of hidden features captures the encoder context building stack

Decoder: Stacked ANN

Multi-Step Attention unrolls

the context stack to the

decoder

Self-Attention in

Natural Language Processing

Encoder: Stacked ANN

Sequence of hidden features captures the encoder context building stack

Decoder: Stacked ANN

Multi-Step Attention unrolls the context stack to the decoder

Self-attention aggregates context dependencies within the inputs

Self-Attention

#1

Human Perception is based on the dynamics between *selection* and *recognition*

#2

Attention machanisms immitate this behaviour by using intermediate states, that entangle *context* with *semantic* information

#3

The incorporation of context provides dynamic features that are context specific and therefore improve the model perfomance

#4

After all - attention mechanisms can also help to understand the decisions of deep networks

#1

Human Perception is based on the dynamics between *selection* and *recognition*

#2

Attention machanisms immitate this behaviour by using intermediate states, that entangle *context* with *semantic* information

#3

The incorporation of context provides dynamic features that are context specific and therefore improve the model perfomance

#4

After all - attention mechanisms can also help to understand the decisions of deep networks

Slide 24

#1

Human Perception is based on the dynamics between *selection* and *recognition*

#2

Attention machanisms immitate this behaviour by using intermediate states, that entangle context with semantic information #3

The incorporation of context provides dynamic features that are context specific and therefore improve the model perfomance

#4

After all - attention mechanisms can also help to understand the decisions of deep networks

Slide 25

#1

Human Perception is based on the dynamics between *selection* and *recognition*

#2

Attention machanisms immitate this behaviour by using intermediate states, that entangle *context* with *semantic* information

#3

The incorporation of context provides **dynamic features** that are context specific and therefore improve the model perfomance

#4

After all - attention mechanisms can also help to **understand the decisions** of deep networks

Thank you for your attention!

