Determine whether the set \mathcal{B} is a basis for the vector space V.

$$V=M_{22}$$

$$\mathcal{B} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \right\}$$

Page 1 of 9 May 17, 2016

Determine whether the set $\mathcal B$ is a basis for the vector space V.

$$V = \mathcal{P}_2$$

$$\mathcal{B} = \left\{1, 2 - x, 3 - x^2, x + 2x^2\right\}$$

Page 2 of 9 May 17, 2016

Find the coordinate vector of $p(x) = 1 + 2x + 3x^2$ with respect to the basis $\mathcal{B} = \{1 + x, 1 - x, x^2\}$ of \mathcal{P}_2 .

Page 3 of 9 May 17, 2016

Find the dimension of the vector space V and give a basis for V.

 $V = \{A \text{ in } M_{22} \colon A \text{ is skew-symmetric} \}$

Page 4 of 9 May 17, 2016

With

$$p(x) = 1 + x^{2}$$

$$\mathcal{B} = \{1 + x + x^{2}, x + x^{2}, x^{2}\}$$

$$\mathcal{C} = \{1, x, x^{2}\}$$

in \mathscr{P}_2 ,

(a) Find the coordinate vectors $[p(x)]_{\mathcal{B}}$ and $[p(x)]_{\mathcal{C}}$ of p(x) with respect to the bases \mathcal{B} and \mathcal{C} respectively.

(b) Find the change-of-basis matrix $P_{C \leftarrow B}$ from \mathcal{B} to \mathcal{C} .

(c) Use your answer from part (b) to compute $[p(x)]_{\mathcal{C}}$, and compare you answer with the one found in part (a).

(d) Find the change-of-basis matrix $P_{B\leftarrow C}$ from C to B.

(e) Use your answers to parts (c) and (d) to compute $[p(x)]_{\mathcal{B}}$, and compare you answer with the one found in part (a).

Page 6 of 9 May 17, 2016

Express $p(x) = 1 + 2x - 5x^2$ as a Taylor polynomial about a = -2

Page 7 of 9 May 17, 2016

Let $\mathcal{B}, \mathcal{C}, \mathcal{D}$ be bases for a finite-dimensional vector space V. Prove that

$$P_{\mathcal{D} \leftarrow \mathcal{C}} P_{\mathcal{C} \leftarrow \mathcal{B}} = P_{\mathcal{D} \leftarrow \mathcal{B}}$$

Page 8 of 9 May 17, 2016

For each square matrix below, calculate its eigenvalues and eigenvectors. Then verify that PDP^{-1} is equal to the original matrix, where D is a diagonal matrix with your eigenvalues along its diagonal and P is a matrix with your eigenvectors as its columns.

$$(a) \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 0 & -13 & -4 \\ 0 & -3 & 0 \\ 1 & 13 & 0 \end{bmatrix}$$