3 Structure d'un réseau trophique

Problème

On veut analyser la structure d'un réseau d'interactions asymétriques entre espèces, plus précisément de relations trophiques. On considère pour cela n espèces et, pour chaque couple $1 \le i, j \le n$, on note

$$Y_{ij} = \left\{ \begin{array}{ll} 1 & \text{si l'espèce i est prédatrice de l'espèce j,} \\ 0 & \text{sinon.} \end{array} \right.$$

(On supposera ici qu'une espèce n'est pas prédatrice d'elle même, ce qui n'est souvent pas vrai.)

Kéfi et al. [2016] ont recueilli un tel réseau dans la zone intertidale (alternativement couverte et découverte par la marée) de la côte rocheuse du Chili. Le réseau porte sur n=106 espèces et est disponible dans le fichier chilean_TI. csv (accessible sur le moodle du cours)

Objectif. On cherche à distinguer des catégories d'espèces jouant des rôles différents dans le réseau, correspondants à différent niveaux trophiques.

3.1 Modèle à blocs stochastiques asymétrique

On se propose d'utiliser le modèle à blocs stochastiques à K groupes suivant

$$Z = \{Z_t\}_{1 \le t \le n} \sim \mathcal{M}_K(\pi),$$

$$\{Y_{ij}\}_{1 \le i,j \le n} \text{ indépendants } | Z: \qquad (Y_{ij} | Z_i = k, Z_j = \ell) \sim \mathcal{B}(\gamma_{k\ell})$$

$$(6)$$

où π désigne le vecteur des probabilités d'appartenance à chaque groupe et $\gamma_{k\ell}$ la probabilité qu'une espèce du groupe k interagisse avec une espèce du groupe ℓ . Les paramètres du modèle à K états sont donc

$$\theta = (\pi = (\pi_k)_{1 \le k \le K}, \gamma = (\gamma_{k\ell})_{1 \le k, \ell \le K}).$$

Dans le cas d'un réseau trophique, "interagir" signifie "être un prédateur de". La matrice $Y = [Y_{ij}]_{1 \le i,j \le n}$ (le "réseau") est donc carrée, mais pas symétrique.

Estimation des paramètres.

- 1. Écrire la vraisemblance complète de ce modèle.
- 2. En déduire son espérance conditionnelle aux données observées pour une valeur courante du paramètre notée $\theta^{(h)}$. On notera $\tau^{(h)}_{ik} = \mathbb{P}_{\theta^{(h)}}\{Z_i = k \mid Y\}$ et $\eta^{(h)}_{ijk\ell} = \mathbb{P}_{\theta^{(h)}}\{Z_i = k, Z_j = \ell \mid Y\}$.
- 3. En supposant les quantités $\tau_{ik}^{(h)}$ et $\eta_{ijk\ell}^{(h)}$ connues, en déduire la valeur $\theta^{(h+1)}$ qui maximise $\mathbb{E}_{\theta^{(h)}}(\log p_{\theta}(Z,Y) \mid Y)$ en θ

Approximation variationnelle.

La loi conditionnelle $p_{\theta}(Z \mid Y)$ n'étant pas calculable, on choisit de l'approcher par un loi factorisable, c'est à dire par la loi $\widetilde{q}(Z)$ appartenant à la classe

$$Q = \left\{ q : q(Z) = \prod_{i=1}^{n} q_i(Z_i) \right\}$$

et qui minimise la distance de Küllback-Leibler $KL(q(Z)||p_{\theta}(Z\mid Y))$. Dans la suite on marque par un "tilde" $(\widetilde{\cdot})$ les probabilités calculées sous cette loi, notamment :

$$\widetilde{\tau}_{ik} = \mathbb{P}_{\widetilde{q}}\{Z_i = k\}, \qquad \qquad \widetilde{\eta}_{ijk\ell} = \mathbb{P}_{\widetilde{q}}\{Z_i = k, Z_j = \ell\} = \widetilde{\tau}_{ik}\widetilde{\tau}_{j\ell}.$$

Il s'agit dès lors d'estimer le paramètre θ en maximisant la borne inférieure de la log-vraisemblance (ELBO)

$$ELBO(Y, \theta, q) = \log p_{\theta}(Y) - KL(q(Z) || p_{\theta}(Z | Y)) = \mathbb{E}_q[\log p_{\theta}(Y, Z)] + \mathcal{H}(q(Z))$$

où \mathcal{H} désigne l'entropie : $\mathcal{H}(q(Z)) = -\mathbb{E}_q[\log q(Z)]$.

Question.

4. Déterminer l'équation de point fixe satisfaite par les $(\widetilde{\tau}_{ik}^{(h)})_{1 \leq i \leq n, 1 \leq k \leq K}$ pour une valeur $\theta^{(h)}$ du paramètre et en déduire la loi approchée $\widetilde{q}_i^{(h)}$.

3.2 Implémentation de l'algorithme VEM

- 1. Écrire une fonction Mstep prenant en arguments les données Y et la valeur courante des probabilités conditionnelles approchées $\widetilde{\tau}^{(h)} = (\widetilde{\tau}_{ik}^{(h)})_{1 \leq i \leq n, 1 \leq k \leq K}$ et qui retourne les estimations obtenues à la question 3.
- 2. Écrire une fonction VEstep prenant en arguments les données Y et la valeur courante du paramètre $\theta^{(h)}$ et qui retourne, au moyen de l'équation établie à la question 4,
 - la matrice des probabilités conditionnelles conditionnelles approchées $\widetilde{\tau}^{(h)}$ et
 - les log-densités estimées $\log \phi_{ijk\ell}^{(h)} = \left(Y_{ij} \log \gamma_{k\ell}^{(h)} + (1 Y_{ij}) \log(1 \gamma_{k\ell}^{(h)}) \right).$
- 3. Écrire une fonction ELBO prenant en arguments les données Y, la valeur courante du paramètre $\theta^{(h)}$, les probabilités conditionnelles approchées $\widetilde{\tau}_{ik}^{(h)}$ et les log-densités estimées $\log \phi_{ijk\ell}^{(h)}$ et qui retourne la borne inférieur $ELBO(Y, \theta^{(h)}, \widetilde{q}^{(h)})$.
- 4. A partir de méthodes que vous connaissez, proposer une initialisation des probabilités conditionnelles $\tau_{ik}^{(0)}$. Écrire une fonction InitSBM prenant en arguments les données Y et le nombre d'états K et qui retourne ces valeurs.
- 5. Écrire une fonction SBM prenant en arguments les données Y et le nombre d'états K et utilisant l'algorithme VEM et qui retourne
 - l'estimation par maximum de vraisemblance approché $\widehat{\theta}$ de θ ,
 - les probabilités conditionnelles approchées $\hat{\tau}_{ik}$ et
 - la borne inférieur de la log-vraisemblance $ELBO(Y, \widehat{\theta}, \widetilde{q})$.

3.3 Application

- 1. Appliquer la fonction SBM aux données de Kéfi et al. [2016] pour différentes valeurs de K et déterminer un critère ICL pour choisir le K optimal \widehat{K} .
- 2. Interpréter les résultats pour \widehat{K} . Le fichier chilean_metadata.csv (accessible sur le moodle du cours) contient différentes caractéristiques des espèces, notamment le phylum auquel elles appartiennent. Peut-on mettre ces caractéristiques en lien avec les groupes déterminés par le modèle à blocs stochastiques?

Rendu attendu

Vous enverrez à l'adresse stephane.robin@sorbonne-universite.fr un fichier '.R' contenant l'implémentation en R de l'algorithme EM. Ce programme devra :

- prendre en entrée un fichier de la même forme que chilean_TI.csv,
- tracer l'évolution de l'ELBO au cours des itérations de l'algorithme EM,
- afficher la valeur du critère ICL variationnel pour $K = 1 \dots 10$,
- afficher les estimations des paramètres du modèles pour le K optimal.