

(KTXFI2EBNF) Physics II. Lecture

Dr. Gábor FACSKÓ, PhD

Assistant Professor / Senior Research Fellow facsko.gabor@uni-obuda.hu

Óbuda University, Faculty of Electrical Engineering, 1084 Budapest, Tavaszmező u. 17.
Wigner Research Centre for Physics, Department of Space Physics and Space Technology, 1121 Budapest, Konkoly-Thege Miklós út 29–33.
https://wigner.hu/facsko.gabor

October 20, 2025

Where are we? I

- Motion of charged particles in electromagnetic fields.
- ► Elements of quantum mechanics. Heisenberg's uncertainty principle. The stationary Schrödinger equation and its applications.
- Limits of the classical conceptual framework. Thermal radiation. Photoelectric effect. Compton effect. The dual nature of electromagnetic radiation. The dual nature of particles.
- Moving reference frames. Inertial forces in accelerating reference frames. Elements of special relativity. Dirac equation, antimatter.
- ► The classical theory of atomic structure (Rutherford, Franck-Hertz experiment, Bohr model, quantum numbers, Pauli exclusion principle).
- Physics of condensed matter. Metallic bonding. Electrical conduction in metals based on the free electron model and the wave model. Hall effect. Band theory of solids.

Where are we? II

- Semiconductors. Elements of Fermi-Dirac statistics. Thermoelectric phenomena. Magnetic properties.
- ► Ferroelectricity. Piezoelectricity and electrostriction. Liquid crystals. Superconductivity.
- ► Luminescence. Lasers. Basic knowledge of nuclear physics. Basic knowledge of particle physics.

Atomic Models, Quantum Numbers, and Pauli Exclusion Principle I

- Plum Pudding Model
 - ▶ J.J. Thomson (1897): The atom's "plum pudding" model.
 - The atom is overall neutral: positive charge distributed uniformly in a sphere.
 - Analogy:
 - ightharpoonup Dough ightarrow positive charge
 - ▶ Raisins → negative electrons

Atomic Models, Quantum Numbers, and Pauli Exclusion Principle II

- Rutherford Atomic Model (1909–1911)
 - University of Manchester: Hans Geiger, Ernest Marsden under the direction of Ernest Rutherford.
 - Gold foil scattering experiment using alpha particles.
 - Expected: Alpha particles pass through with small deflections.
 - Observed: Some alpha particles scattered at large angles.

Atomic Models, Quantum Numbers, and Pauli Exclusion Principle III

- Explanation of the experiment
 - ► If the atom followed the Plum Pudding Model, alpha particles would not scatter strongly.
 - Observation implies the existence of a massive, positively charged, localized scattering center the nucleus.

Atomic Models, Quantum Numbers, and Pauli Exclusion Principle IV

- Rutherford Model Characteristics
 - ▶ The atom's mass is concentrated in the nucleus.
 - ▶ Electrons revolve in circular orbits held by electrostatic (Coulomb) attraction.
 - ► Flaw: Accelerating charges radiate energy → the electron would spiral into the nucleus.
 - Since this does not occur, the model is incomplete.

Atomic Models, Quantum Numbers, and Pauli Exclusion Principle V

Spectral Analysis

Atomic Models, Quantum Numbers, and Pauli Exclusion Principle VI

- Precursors to the Bohr Model
 - ▶ Johann Balmer (1825–1898): Hydrogen shows a line spectrum.

$$\frac{1}{\lambda} = R_H \left(\frac{1}{2^2} - \frac{1}{n^2} \right), \quad n = 3, 4, 5, \dots$$

▶ Johannes Rydberg (1854–1919): Extended formula to other atoms.

$$\frac{1}{\lambda} = R_H \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

Atomic Models, Quantum Numbers, and Pauli Exclusion Principle VII

► Franck-Hertz Experiment: Mercury atoms absorb discrete energies, e.g. $hf = 4.9 \,\mathrm{eV}$.

Atomic Models, Quantum Numbers, and Pauli Exclusion Principle VIII

► Spectra: H, He, and Ne atoms, respectively

Atomic Models, Quantum Numbers, and Pauli Exclusion Principle IX

- Bohr Atomic Model
 - Atoms exist in stationary states with definite energies E_1, E_2, \ldots no radiation occurs.
 - ▶ Electrons orbit the nucleus only on specific paths with discrete energies.

Atomic Models, Quantum Numbers, and Pauli Exclusion Principle X

- ► Bohr Model: Energy Transitions
 - ► Transition between levels involves photon emission or absorption:

$$W_n - W_k = hf$$

▶ The photon energy equals the energy difference between levels.

Atomic Models, Quantum Numbers, and Pauli Exclusion Principle XI

▶ Bohr Model: Quantization of Angular Momentum

$$mrv = n\frac{h}{2\pi} = n\hbar$$

- ightharpoonup Only orbits where the electron's angular momentum is an integer multiple of \hbar are allowed.
- Principal quantum number: n

Atomic Models, Quantum Numbers, and Pauli Exclusion Principle XII

- Bohr–Sommerfeld Model
 - Fine structure of spectral lines observed.
 - Sommerfeld introduced elliptical orbits:

$$L=I\frac{h}{2\pi}$$

▶ Azimuthal (orbital) quantum number: l = 0, 1, 2, ..., n-1

Atomic Models, Quantum Numbers, and Pauli Exclusion Principle XIII

- Zeeman Effect
 - ▶ Pieter Zeeman (1865–1943):
 - In a strong magnetic field, spectral lines split into components the normal Zeeman effect.

Atomic Models, Quantum Numbers, and Pauli Exclusion Principle XIV

- Magnetic Quantum Number
 - ▶ Bohr magneton: $M_B = \frac{eh}{4\pi m_e}$
 - Magnetic dipole moment: $M = M_B I$
 - ightharpoonup z-component: $M_z = M_B I \cos \alpha$
 - Magnetic quantum number: $m = -1, \dots, 0, \dots, +1$
- ► Spin
 - Spin angular momentum: $L_S = \pm \frac{1}{2} \frac{h}{2\pi}$
 - **Spin quantum number:** $s = \pm \frac{1}{2}$

Atomic Models, Quantum Numbers, and Pauli Exclusion Principle XV

- ► Pauli Exclusion Principle
 - No two electrons in an atom can share the same set of four quantum numbers.
 - Only one electron can occupy a given quantum state.

Atomic Models, Quantum Numbers, and Pauli Exclusion Principle XVI

Electron structure

Atomic Models, Quantum Numbers, and Pauli Exclusion Principle XVII

Principal QN	Orbital QN	Magnetic QN	Subshell	Spin QN	Max No of electrons
1	0	0	1s	$\frac{1}{2} + \frac{1}{2}$	2
2	0	0	2s	$\frac{1}{2} + \frac{1}{2}$	2 } 8
	1	1,0,+1	2p	$\frac{1}{2} + \frac{1}{2}$	6
3	0	0	3s	$\frac{1}{2} + \frac{1}{2}$	2]
	1	1,0,+1	3р	$\frac{1}{2} + \frac{1}{2}$	6 18
	2	2, 1, 0, +1, +2	3d	$\frac{1}{2} + \frac{1}{2}$	10
4	0	0	4s	$\frac{1}{2} + \frac{1}{2}$	2]
	1	1,0,+1	4p	$\frac{1}{2} + \frac{1}{2}$	6 32
	2	2, 1, 0, +1, +2	4d	$\frac{1}{2} + \frac{1}{2}$	10 32
	3	3, 2, 1, 0, +1, +2, +3	4f	$\frac{1}{2} + \frac{1}{2}$	14

Atomic Models, Quantum Numbers, and Pauli Exclusion Principle XVIII

© 2015 Todd Hebrenatine ariancesotes.org

Atomic Models, Quantum Numbers, and Pauli Exclusion Principle XIX

Atom	Atomic Orbits	Electron Formula
,H	Is ¹	H·
2He	1s ²	Hel
3Li	(1s2) 2s1	Li-
4Be	(1s2) 2s2	Bei
5B	(1s2) 2s2, 2p1	IB.
ьC	(1s2) 2s2, 2p2	ıċ.
7N	(1s2) 2s2, 2p3	nN-
,0	(1s2) 2s2, 2p4	ıō.
οF	(1s2) 2s2, 2p5	1Ē.
10Ne	(1s2) 2s2, 2p6	1Ne1

Wave-Particle Duality I

- Light and matter exhibit both particle and wave properties.
- ▶ De Broglie Matter-Wave Theory
 - Louis de Broglie (1892–1987):
 - ▶ Based on light's dual nature, proposed that particles have wavelength:

$$\lambda = \frac{h}{p} = \frac{h}{mv}$$

- ▶ De Broglie wavelength: $\lambda = h/p$
- ▶ Verified by the Davisson–Germer experiment (electron diffraction).

Wave-Particle Duality II

► Wave-Particle Demonstrations

 $1 \; \mathsf{slit} + \mathsf{light} \to \mathsf{particle} \; \mathsf{pattern}$

Wave-Particle Duality III

 $1 \; \mathsf{slit} + \mathsf{light} \to \mathsf{waves}$

Wave-Particle Duality IV

 $2 \text{ slits} + \text{light} \rightarrow \text{interference fringes}$

Wave-Particle Duality V

 $2 \text{ slits} + \text{light} \rightarrow \text{interference fringes}$

Wave-Particle Duality VI

 $1 \ \mathsf{slit} + \mathsf{electron} o \mathsf{particle} \ \mathsf{pattern}$

Wave-Particle Duality VII

 $2 \text{ slits} + \text{electrons} \rightarrow \text{interference pattern}$

Wave-Particle Duality VIII

2 slits + electrons \rightarrow interference pattern **Conclusion:** Electrons have wave properties!

Elements of Quantum Mechanics I

- ► Fundamental principles governing atomic and subatomic systems.
- ► Heisenberg Uncertainty Principle
 - Certain pairs of quantities (e.g. position and momentum) cannot be measured simultaneously with arbitrary precision.
 - ► Relations:

$$\Delta t \Delta E \geq h, \qquad \Delta x \Delta p \geq h$$

Elements of Quantum Mechanics II

► Heisenberg's first uncertainty principle:

$$t = \frac{1}{f} \Rightarrow \Delta t \geq \frac{1}{f}$$

$$W = h \cdot f \Rightarrow \Delta W = h \cdot \Delta f \Rightarrow \frac{1}{\Delta f} = \frac{h}{\Delta W},$$

therefore, $\Delta t \leq \frac{h}{\Delta W}$. So,

$$\Delta t \cdot \Delta W \leq h$$
.

In the physical description of micro-objects, the product of the uncertainties in energy and time cannot be smaller than Planck's constant. Example: The exact energy of a photon could only be determined from measurements carried out over an infinitely long period.

Elements of Quantum Mechanics III

► Heisenberg's second uncertainty principle: $f = \frac{\nu}{\lambda} \Rightarrow$ the finite difference with respect to λ : $\frac{\Delta f}{\Delta \lambda} = -\frac{\nu}{\lambda^2}$. Rearranging:

$$-\frac{\Delta f \cdot \lambda^2}{\Delta \lambda} = \nu$$
$$-\frac{\lambda^2}{\Delta \lambda} = \frac{\nu}{\Delta f}.$$

The de Broglie equation: $p = \frac{h}{\lambda}$. Take the finite difference with respect to λ :

$$\frac{\Delta p}{\Delta \lambda} = -\frac{h}{\lambda^2}.$$

Rearranging:

$$-\frac{\Delta p \cdot \lambda^2}{\Delta \lambda} = h$$

Elements of Quantum Mechanics IV

$$-\frac{\lambda^2}{\Delta\lambda} = \frac{h}{\Delta p}.$$

► Heisenberg's second uncertainty principle:

$$-\frac{\lambda^2}{\Delta\lambda} = \frac{\nu}{\Delta f}$$

and

$$-\frac{\lambda^2}{\Delta\lambda} = \frac{h}{\Delta p}.$$

Therefore

$$rac{
u}{\Delta f} = rac{h}{\Delta p}.$$

So,

Elements of Quantum Mechanics V

$$v\cdot \Delta t \geq \frac{h}{\Delta p}$$
.

However,

$$v \cdot \Delta t = \Delta x$$

, hence:

$$\Delta x \geq \frac{h}{\Delta p'}$$

, or

$$\Delta x \cdot \Delta p \ge h$$
.

In the physical description of micro-objects, the product of the uncertainties of momentum and position cannot be smaller than Planck's constant. Example: the orbit of an electron cannot be precisely described. We cannot, for

instance, determine its exact velocity at a given position.

Elements of Quantum Mechanics VI

- ► Bohr's Complementarity Principle
 - ▶ Wave and particle properties are complementary aspects of microscopic objects.
 - ▶ Both are needed for a complete description.

The Dirac Equation and Its Physical Meaning I

▶ Dirac equation (in covariant form):

$$(i\hbar\gamma^{\mu}\partial_{\mu}-mc)\,\psi=0$$

- Explanation of symbols:
 - ψ : Dirac spinor (a four-component wave function describing spin- $\frac{1}{2}$ particles, e.g. electrons)
 - m : rest mass of the particle
 - c : speed of light in vacuum
 - \hbar : reduced Planck constant $(\hbar = \frac{h}{2\pi})$
 - $ightharpoonup \partial_{\mu}$: four-gradient operator

$$\partial_{\mu} = \left(rac{1}{c} rac{\partial}{\partial t}, -
abla
ight)$$

The Dirac Equation and Its Physical Meaning II

 $ightharpoonup \gamma^{\mu}$: Dirac gamma matrices ($\mu=0,1,2,3$), satisfying

$$\{\gamma^{\mu},\gamma^{\nu}\}=2\mathsf{g}^{\mu\nu}\mathsf{I},$$

where $g^{\mu\nu}$ is the Minkowski metric tensor and I is the identity matrix.

Alternative (Hamiltonian) form:

$$i\hbar \frac{\partial \psi}{\partial t} = \left(-i\hbar c \, \boldsymbol{\alpha} \cdot \nabla + \beta \, mc^2\right) \psi,$$

where α and β are 4 × 4 Dirac matrices defined by $\alpha^i = \gamma^0 \gamma^i$ and $\beta = \gamma^0$.

The Dirac Equation and Its Physical Meaning III

- Physical meaning:
 - ▶ The Dirac equation unifies quantum mechanics and special relativity.
 - It correctly describes particles with spin $\frac{1}{2}$ and predicts their intrinsic magnetic moment.
 - ▶ It naturally introduces the concept of **antimatter** particles with the same mass but opposite charge (e.g. the positron).
 - ▶ The equation ensures that the probability density remains positive and conserved under Lorentz transformations.
 - At low velocities ($v \ll c$), it reduces to the Schrödinger equation, ensuring consistency with non-relativistic quantum mechanics.

Consequences of the Dirac Equation I

- Existence of spin:
 - ▶ The Dirac equation naturally describes particles with **intrinsic spin** $\frac{1}{2}$.
 - ▶ The spin is a purely quantum mechanical property with no classical analogue.
 - ▶ The spin arises from the four-component structure of the Dirac spinor.
- Magnetic moment:
 - ▶ The equation predicts the correct magnetic moment of the electron:

$$\mu = g \frac{e\hbar}{2m} \mathbf{S}$$
, with $g = 2$.

► This prediction agrees very closely with experimental data (after quantum electrodynamic corrections).

Consequences of the Dirac Equation II

- ► Negative energy solutions:
 - ▶ The Dirac equation allows both positive and negative energy states:

$$E = \pm \sqrt{p^2 c^2 + m^2 c^4}.$$

Initially a theoretical puzzle, later interpreted as the existence of antiparticles.

► Antimatter:

- ► The negative-energy solutions correspond to particles with the same mass but opposite charge.
- ► This led to the prediction and later experimental discovery of the positron in 1932 (by Carl D. Anderson).

Consequences of the Dirac Equation III

Annihilation

Consequences of the Dirac Equation IV

- ► Relativistic quantum field theory:
 - ▶ The Dirac equation laid the foundation for **Quantum Electrodynamics (QED)**.
 - It describes interactions between charged spin- $\frac{1}{2}$ particles and electromagnetic fields.
 - ► This framework explains atomic structure, scattering, and vacuum fluctuations with exceptional precision.

Summary:

- ► The Dirac equation unifies:
 - Quantum mechanics (wave-particle duality),
 - Special relativity (Lorentz invariance),
 - ▶ and Intrinsic spin (a fundamental property of matter).
- It remains one of the cornerstones of modern physics.

The End

Thank you for your attention!