ELECTRONICS II NAME: SUMMER-2019 Final 03.08.2019 Number:

P1 For the transistors in the figure, k_p '= $\mu_p c_{ox}$ = $40\mu A/V^2$, k_n '= $\mu_n c_{ox}$ = $100\mu A/V^2$, V_{An} =60V, V_{Ap} =40V, $V_{Th,p}$ =-0.8V, $V_{Th,n}$ =0.6V are given. Vin1=Vin2=0 for DC case

	L(um)	W(um)
M1	0.7	17:5
M2	0.7	17.5
МЗ	0.7	7
M4	0.7	7
M5	0.7	7
M6	0.7	8.75
M7	0.7	17.5
M8	0.7	17.5

a) Find the differential gain of the circuit (vout/(vin1-vin2)).

b) Find the CMMR value.

P2 The circuit, ac case of which is given in the figure has a DC source of 10V. β_F =100, N_{BB} =0.6V and N_A = ∞ are given for the PNP transistor. In DC case V_{BQ} \approx 8V and V_{CQ} \approx 3V. In ac case, R_{BB} = 8k, R_c = 1.5kand g_m = 40mS (V_T=25mV). The circuit has one PNP transistor, four bias-resistors, two capacitors and one load-resistor. Design and sketch the circuit.

P3 β=2mA/V², $|V_{TH}|$ =1V and V_A =50V are given for the all transistors in the Figure. R1=R5=200k, R2=R4=250k, R3=100k.

Find vo in terms of vi1 and vi2.

JOME = FON = FON = FON = FON = 2m (2-1) = /mA NAPI - NAPI = -9mps. /Ampr. 9mps (Cop/16. NO = NANI VENZ = - LINI - FINI PUNI (POP/MON)

No = - 5 K(NIL+Nh)