课程内容

- 1.数制与码制
- 2.逻辑代数基础
- 4.组合逻辑电路
- 5.半导体存储电路
- 3.集成门电路
- 6.时序逻辑电路
- 7.脉冲产生及整形
- 8.A/D, D/A转换

第二章 逻辑代数基础

综合性组合逻辑电路 分析与设计

编码器,译码器,比较器,选通器

综合性模拟电路 分析与设计

放大器,滤波器,振荡器

第二章 逻辑代数基础

- 2.1 基本逻辑运算和逻辑门
- 2.2 逻辑函数及其描述方法
- 2.3 逻辑代数的运算公式和定理
- ★ 2.4 逻辑函数的标准形式
- ▶ 2.5 逻辑函数的化简方法

2.1 基本逻辑运算和逻辑门

基本逻辑运算

- 1. 与
- 2. 或
- 3. 非
- 4. 与非
- 5. 或非
- 6. 异或
- 7. 同或

1. 与逻辑 (AND)

开关A	开关B	灯Y
断	断	灭
断	合	灭
合	断	灭亮
合	合	亮

逻辑符号:与门

与逻辑真值表

A	\boldsymbol{B}	Y
0	0	0
0	1	0
1	0	0
1	1	1

逻辑表达式

$$Y=A \text{ AND } B$$

$$=A\&B$$

$$=A \bullet B$$

$$=AB$$

与逻辑运算

$$0 \cdot 0 = 0; \quad 0 \cdot 1 = 0; \quad 1 \cdot 0 = 0; \quad 1 \cdot 1 = 1$$

2. 或逻辑(OR)

逻辑符号:或门

或逻辑真值表

\boldsymbol{A}	\boldsymbol{B}	Y
0	0	0
0	1	1
1	0	1
1	1	1

逻辑表达式

$$Y = A \text{ OR } B$$
$$= A + B$$

$$0+0=0;$$
 $0+1=1;$ $1+0=1;$

3. 非逻辑 (NOT)

逻辑符号: 非门

非逻辑真值表

$oxedsymbol{A}$	Y
0	1
1	0

逻辑表达式

$$Y = A'$$

逻辑符号

复合逻辑运算

4. 与非 (NAND)

$$Y = (AB)'$$
 $A = \begin{bmatrix} A & B & Y \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ \hline 1 & 1 & 0 \end{bmatrix}$

5. 或非 (NOR)

$$Y = (A + B)'$$
 $A = B$
 $Y = (A + B)'$
 $A = B$
 $A = C$
 $A = C$

与或非

$$Y = (AB + CD)'$$

_ _ _

7. 异或 (XOR: exclusive OR)

逻辑符号

真值表

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

不同为一

逻辑表达式

$$Y = A \oplus B = AB' + A'B$$

8. **同或** (XNOR)

注意不是NXOR

逻辑符号

真值表

A	В	Y
0	0	1
0	1	0
1	0	0
1	1	1

相同为

逻辑表达式

$$Y = A \odot B = (A \oplus B)'$$
$$= AB + A'B'$$

$F=A0 \oplus A1 \oplus A2 \oplus A3 \oplus \cdots \oplus An$

异或

- 当A0...An中有奇数个1时, F= |
- 当A0...An中有偶数个1时, F= 0
- 当A0...An中有奇数个0时, F= ×
- 当A0...An中有偶数个0时, F= <

$F=A0 \odot A1 \odot A2 \odot A3 \odot \cdots \odot An$

同或

- 当A0...An中有奇数个1时,F= ×
- 当A0...An中有偶数个1时,F= 🗴
- 当A0...An中有奇数个0时, F= 0
- 当A0...An中有偶数个0时,F=_/

$F=A0 \oplus A1 \oplus A2 \oplus A3 \oplus \cdots \oplus An$

异或

- 当A0...An中有奇数个1时, F=1
- 当A0...An中有偶数个1时, F=0
- 当A0...An中有奇数个0时,F=x
- 当A0...An中有偶数个0时,F=x

$F=A0 \odot A1 \odot A2 \odot A3 \odot \cdots \odot An$

同或

- 当A0...An中有奇数个1时,F=x
- 当A0...An中有偶数个1时, F=x
- 当A0...An中有奇数个0时, F=0
- 当A0...An中有偶数个0时, F=1

逻辑符号对照

美国标准

国家标准

$$\begin{array}{c|c}
A - \geqslant 1 \\
B - & = A + B
\end{array}$$

$$A - \boxed{1} \circ -Y = \overline{A}$$

$$\begin{array}{c|c}
A & = 1 \\
B & = 1
\end{array}
- Y = A \oplus B$$

曾用标准

$$+$$
 $-Y$

$$B - Y$$

- •真值表
- •逻辑函数式
- •逻辑电路图
- •波形图

2. 2. 1 逻辑电路图 → 逻辑函数式 → 真值表(功能分析)

例1. 已知电路,问该电路有什么功能?

真值表

ABC	Y
000	0
001	0
010	0
011	0
100	0
101	1
110	1
111	1

分析功能:检测ABC的值,≥5,

就输出指示信号Y=1

2.2.2 逻辑电路图 ←逻辑函数式 → 真值表(功能分析)

例2.已知逻辑函数Y=A(B+C),问功能是什么?画电路图。

真值表

	拥	<u> </u>
ABC	B+C	Y
000	0	0
001	10	0
010	10	0
011	10	0
100	0	0
101	1	1
110	1	1
111	1	1

分析功能:

检测ABC的值,≥5, 就输出指示信号Y=1

2. 2. 3 逻辑电路图 ← 逻辑函数式 ← 真值表(已知功能)

例3.设计一个检测电路,输入为A,B,C,输出为Y。要求当输入端 ABC表示的二进制数大于等于5时,输出指示信号Y=1.

1)根据功能要求列真值表

真值表

ABC	Y	2)根据真值表写
000	0	逻辑函数式
001	0	→ Y = ?
010	0	
011	0	
100	0	
101	1	
110	1	
111	1	

写函数式

2. 2 逻辑函数及其描述方法 真值表 → 逻辑式

输入变量取值为1用原变量表示,例如 A 输入变量取值为0用反变量表示,例如 A'

Y₆= ABC' Y₅= AB'C

输入ABC的最小顶

111 Y7=ABC ↓ 真值表			
ABC	Y7		
000	0		
001	0		
010	0		
011	0		
100	0		

101

110

真值表		
ABC	Y5	
000	0	
001	0	
010	0	
011	0	
100	0	
101	1	
110	0	
111	0	

0 0 0 Yo= A'B'C'	
↓ 真值表	

ABC	Yo
000	1
001	0
010	0
011	0
100	0
101	0
110	0
111	0

- 2.2.3 逻辑电路图 逻辑函数式 真值表(已知功能)
- 例3.设计一个检测电路,输入为A,B,C,输出为Y。要求当输入端ABC表示的二进制数大于等于5时,输出指示信号Y=1.
- 1)根据功能要求列真值表

2.2.4 真值表 🛑 波形图

例4.已知一个真值表要求用波形图描述.

真值表

ABC	Y
000	0
001	0
010	0
011	0
100	0
101	1
110	1
111	1

波形图

前提:波形图必须是完备的, 即描述了所有输入组合。

练习3 由真值表写出逻辑函数式 已知一个奇偶判别器的真值表,试写出它的逻辑函数式

A	В	C	Y	
0	0	0	0	Y = A'BC + AB'C + ABC
0	1	0	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	I = A BC + AB C + ABC 011 101 110
0	1	1	1 -	
1	0	U 1	$\begin{vmatrix} 0 \\ 1 \end{vmatrix}$	
1	1	0	1 —	
1	1	1	0	

例5 已知逻辑函数式 Y = A + B'C + A'BC' 求出它对应的真值表

A	В	C	B'C	A'BC'	Y
0	0	0	0	0	0
0	0	1	1	0	1
0	1	0	0	1	1
0	1	1	0	$\overline{0}$	0
1	0	0	0	0	1
1	0	1	1	0	1
1	1	0	0	0	1
1	1	1	0	0	1

例6 已知逻辑函数式 Y = (A + B'C)' + A'BC' + C 画出逻辑图。

练习4 已知逻辑图,求逻辑函数式

例7 已知波形图,求真值表

前提:波形图必须是完备的,即描述了所有输入组合。

波形图

A	В	<i>C</i>	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	$\overline{0}$	$ar{0}$	0
1	0	1	1
1	1	0	1
$\bar{1}$	1	1	$\bar{1}$

函数1 Y1=AB'C+ABC'+ABC

<u>函数2</u> Y2 =A(B+C) □

ABC	Y
000	0
001	0
010	0
011	0
100	0
101	1
110	1
111	1

ABC	Y
000	0
001	0
010	0
011	0
100	0
101	1
110	1
111	1

2.3 逻辑代数的基本公式和常用公式

2.3.1 基本公式

2.3.2 常用公式

A 非

2.3.1 基本公式

教材Page24

证明方法: 推演 真值表

	序号	公 式	序号	公式	
			10	1' = 0; 0' = 1	
	1	0 A = 0	11	1 + A = 1	
	2	1 A = A	12	0 + A = A	
	3	A A = A	13	A + A = A	
	4	AA'=0	14	A + A' = 1	
	5	高性故極所 $AB = BA$	15	A + B = B + A	
	6	A (B C) = (A B) C	16	A + (B + C) = (A + B) + C	
摩根包括	7	A(B+C) = AB + AC	17	A + B C = (A + B)(A + C)	,)+BC
141 ***	8	(A B)' = A' + B'	18	(A+B)'=A'B'	
	9	(A')' = A			

(A+B)' = A'B'

A	В	C	左	右
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	0	0
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

证明公式 17 A+BC=(A+B)(A+C) (真值表法)

ABC	BC	A+BC	A+B	A+C	(A+B)	(A+C)
000				l I		
001						
010						
011						
100						
101						
110						
111				ı		

证明公式 17 (用基本公式和常用公式证明)

$$A + B C = (A + B)(A + C)$$

$$右=(A+B)(A+C)$$

$$=A+AC+AB+BC$$

$$=A(1+B+C)+BC$$

$$=A+BC=$$
左

分配律

证明公式 8: (AB)'=A'+B'

真值表相同,就可以称逻辑函数相等

$$F$$
左 $=$ F右

A+AB+B添不添加作品·样

2.3.2 若干常用公式 AB +A'C +BC = AB + A'C

序号	公式
21	A + A B = A
22	A + A'B = A + B 指加及余项
23	AB + AB' = A 消异存同
24	A(A+B)=A
25	AB + A'C + BC = AB + A'C $AB + A'C + BCD = AB + A'C$ $AB + A'C + BCD = AB + A'C$
	AB+A'C+BCD=AB+A'C
26	A(AB)' = AB'; A'(AB)' = A'

作业

- 2.1 (1)(2)(5)(6),用真值表证明等式
- 2.2 (1)(2)(3), 用基本公式证明等式
- 2.3, 真值表->逻辑函数式
- 2.5, 逻辑函数式->真值表
- 2.7, 电路图->逻辑函数式
- 2.8 波形图->真值表、逻辑函数式