SDE笔记

WangFangyikang

2023年10月12日

目录

1	Motivation			
	1.1	Approximating SGD	2	
	1.2	Langevin Dynamics	3	

1 Motivation

In this section, we first illustrate the motivation of studying SDE from a machine learning perspective.

1.1 Approximating SGD

First, we look at the SGD process:

$$x^{n+1} = x^n - \eta_k \nabla \mathcal{L}(x^n; \xi^n), \tag{SGD}$$

where the white noise ξ^n characterize the randomness of the surrogate gradient in SGD method. Denote $\Sigma(x) := \mathbb{E}_{\xi} \left[(\nabla \mathcal{L}(x;\xi) - \nabla \mathcal{L}(x)) (\nabla \mathcal{L}(x;\xi) - \nabla \mathcal{L}(x))^T \right]$ and SGD writes:

$$x^{n+1} = x^n - \eta_k \nabla \mathcal{L}(x^n) + \sqrt{\eta \Sigma} \sqrt{\eta} \mathcal{Z}^n, \mathcal{Z}^n \sim N(0, I_d).$$

If we take the limit $\eta \to 0$ and regard $\sqrt{\eta} \mathcal{Z}^n = dW_t$, the SDE form of SGD is:

$$dX(t) = -\nabla \mathcal{L}(X(t))dt + \sqrt{\eta \Sigma} dW_t.$$
 (SDE-1)

Q:

- Is SDE-1 a good approximation of SGD?
- Good in what sense?
- Is there a better one?

A:

- SDE-1 is a first-order weak approximation of SGD.
- Good in sense of testing: $\forall |g(x)| < K(1+|x|)^K, |\mathbb{E}g(X(n\eta)) g(X^n)| < C\eta^{\alpha}$
- There are higher order approximations!

For example, the second-order approximation of SGD writes:

$$dX(t) = -\nabla \left(\mathcal{L}(X(t)) + \frac{\eta}{4} \|\nabla \mathcal{L}(X(t))\|^{2} \right) dt + \sqrt{\eta \Sigma} dW_{t}.$$
 (SDE-2)

And another formulation (1-d Xiang) writes:

$$dX(t) = \frac{\log(1 - \eta \mathcal{L}''(x))}{\eta \mathcal{L}''(x)} \mathcal{L}'(x) dt + \sqrt{\frac{2\Sigma \cdot \log(1 - \mathcal{L}''(x)\eta)}{\mathcal{L}''(x)(\mathcal{L}''(x)\eta - 2)}} dW_t.$$
 (SDE-Xiang-1-dim)

The d-dimensional Xiang-Formulation is still under developing. Another class of questions is follows:

Q:

- How are these more advanced flows derived?
- Why would the SDE approximation be useful?

, which will be answered in the following.

1.2 Langevin Dynamics

Our goal of Langevin Dynamics is sampling from a Gibbs measure $\frac{e^{-\frac{\mathcal{L}(x)}{\sigma}}}{\mathcal{Z}_{\mathcal{L},\sigma}}$, where $\mathcal{Z}_{\mathcal{L},\sigma}$ is the normalizing constant. The Langevin dynamics writes:

$$dX(t) = -\nabla \mathcal{L}(X(t))dt + \sqrt{2\sigma}dW_t.$$
 (LD)

Q:

- Why is this approach correct? I.e. why does LD have the correct equilibrium?
- How fast is the convergence?

The discrete-time version of LD writes:

$$X^{k+1} = X^k - \eta \nabla \mathcal{L}(X^k) + \sqrt{2\sigma} \sqrt{\eta} \mathcal{Z}^k, \mathcal{Z}^n \sim N(0, I_d)$$
(1)