PACKAGES AND LIBRARIES

add Codeadd Markdown

#GENERAL

import pandas as pd

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

#PATH PROCESS

import os

import os.path

from pathlib import Path

import glob

#IMAGE PROCESS

from PIL import Image

from keras.preprocessing import image

 $from\ tensorflow. keras. preprocessing. image\ import\ Image Data Generator$

import cv2

from keras.applications.vgg16 import preprocess_input, decode_predictions

#SCALER & TRANSFORMATION

from sklearn.preprocessing import StandardScaler

from sklearn.preprocessing import MinMaxScaler

from keras.utils.np_utils import to_categorical

from sklearn.model_selection import train_test_split

from keras import regularizers

from sklearn.preprocessing import LabelEncoder

#ACCURACY CONTROL

from sklearn.metrics import confusion_matrix, accuracy_score, classification_report, roc_auc_score, roc_curve

from sklearn.model_selection import GridSearchCV, cross_val_score

from sklearn.metrics import mean_squared_error, r2_score

#OPTIMIZER

from keras.optimizers import RMSprop, Adam, Optimizer, Optimizer

#MODEL LAYERS

from tensorflow.keras.models import Sequential

from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D, BatchNormalization, MaxPooling2D, BatchNormalization,

Permute, TimeDistributed, Bidirectional, GRU, SimpleRNN, LSTM, GlobalAveragePooling2D, SeparableConv2D

from keras import models

from keras import layers

import tensorflow as tf

from keras.applications import VGG16,VGG19,inception_v3

from keras import backend as K

from keras.utils import plot_model

#SKLEARN CLASSIFIER

from xgboost import XGBClassifier, XGBRegressor

from lightgbm import LGBMClassifier, LGBMRegressor

 $from\ catboost\ import\ CatBoostClassifier,\ CatBoostRegressor$

from sklearn.linear_model import LogisticRegression

from sklearn.naive_bayes import GaussianNB

from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor

from sklearn.ensemble import GradientBoostingClassifier, GradientBoostingRegressor

from sklearn.ensemble import BaggingRegressor

from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor

 $from \ sklearn.neural_network \ import \ MLPC lassifier, \ MLPR egressor$

from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor

from sklearn.linear_model import LinearRegression

from sklearn.cross_decomposition import PLSRegression

from sklearn.linear_model import Ridge

from sklearn.linear_model import RidgeCV

from sklearn.linear_model import Lasso

from sklearn.linear_model import LassoCV

from sklearn.linear_model import ElasticNet

from sklearn.linear_model import ElasticNetCV

#IGNORING WARNINGS

from warnings import filterwarnings

filterwarnings("ignore",category=DeprecationWarning)

filterwarnings("ignore", category=FutureWarning)

filterwarnings("ignore", category=UserWarning)

add Codeadd Markdown

PATH & LABEL PROCESS

add Codeadd Markdown

MAIN PATH

add Codeadd Markdown

Fire_Dataset_Path = Path("../input/fire-dataset/fire_dataset")

add Codeadd Markdown

PATH PROCESS

add Codeadd Markdown

PNG_Path = list(Fire_Dataset_Path.glob(r"*/*.png"))

add Codeadd Markdown

LABEL PROCESS

add Codeadd Markdown

```
PNG_Labels = list(map(lambda x:
    os.path.split(os.path.split(x)[0])[1],PNG_Path))
add Codeadd Markdown
print("FIRE: ", PNG_Labels.count("fire_images"))
print("NO_FIRE: ", PNG_Labels.count("non_fire_images"))
```