MATH 131 Homework 2 Jesse Cai 304634445

1. Prove that addition is associative.

We need to show $\forall a, b, c \in \mathbb{N} : (a+b)+c=a+(b+c)$. To do this, we fix a, b and do induction on c. when c=0 we get

$$(a + b) + 0 = a + (b + 0) = a + b = a + (b) = a$$

Assume that it is true for 0, then

$$(a+b) + c = a + (b+c)$$
$$(a+b) + S(c) = S((a+b) + c) = S(a+(b+c)) = a + S(b+c) = a + (b+S(c))$$

so it holds by induction

- 2. Prove that multiplication is commutative.
- 3. Show $\sqrt[3]{5-\sqrt{3}}$ is not rational.

Assume that $\sqrt[3]{5-\sqrt{3}} \in \mathbb{Q}$. Then, $\left(\sqrt[3]{5-\sqrt{3}}\right)^3 \in \mathbb{Q}$, since the rationals are closed under multiplication. This means that $5-\sqrt{3} \in \mathbb{Q}$. But since \mathbb{Q} is closed under addition and multiplication $-1(-5+5-\sqrt{3}) \in \mathbb{Q} \implies \sqrt{3} \in \mathbb{Q}$ which is a contradiction. Therefore $\sqrt[3]{5-\sqrt{3}} \notin \mathbb{Q}$.

- 4. Prove (v) 0 < 1 and (vii) $\forall a, b, c \in \mathbb{R} \ 0 < a < b \implies 0 < b^{-1} < a^{-1}$ To prove 0 < 1 we will use (iv). Let a = 1, then by (iv) $0 < 1^2 \implies 0 < 1$ To prove (vii), notice by (vi) we get $0 < b^{-1} \land 0 < a^{-1}$, so we just need to show that $b^{-1} < a^{-1}$.

 By (iii) we get $0 < a^{-1}b^{-1}$ and we can use (i) to get $-a^{-1}b^{-1} < -0$ We can apply (ii) with $c = -a^{-1}b^{-1}$ to ge $b(c) \le ac$ so $-a^{-1} \le -b 1$. But then we can apply (i) again to get $b^{-1} \le a^{-1}$
- 5. Prove $|a+b+c| \le |a|+|b|+|c| \forall a,b,c \in \mathbb{R}$ We showed that $a+b+c=(a+b)+c \implies |a+b+c|=|(a+b)+c|$ By triangle inequality we get $|(a+b)+c| \le |a+b|+|c|$ so

$$|a+b+c| \le |a+b| + |c|$$

Again by triangle inequality, $|a + b| \le |a| + |b|$ so

$$|a+b+c| < |a+b| + |c| < |a| + |b| + |c|$$

TODO: part b

- 6. Prove $\inf S \leq \sup S$ b) S is just one element
- 7. Let $S = \{1\}$ and $T = \{1, 2\}$ then $S \cap T = \{1\} \neq \emptyset$ Let $S = \{r \in \mathbb{Q} : r^2 < 7\}$ and $T = \{r \in \mathbb{Q} : r^2 > 7\}$ then $S \cap T = \emptyset$ and $\sup S = \inf T = \sqrt{7}$.
- 8. First we show $\{r+\sqrt{2}:r\in\mathbb{Q}\}\subset I$ Suppose there exists