Adelson, Velski & Landis, AVL trees

Is it height-balanced?

Ex1

Ex2

ЕхЗ

Right Right Case

Unbalanced


```
Node rotateLeft(Node x)
{
   Node y = x.right;
   Node T2 = y.left;

   y.left = x;
   x.right = T2;
   return y;
}
```

Balanced (left rotate x)

Left Left Case

Unbalanced


```
rotateRight (Node x) {
    Node y = x.left;
    Node T2 = y.right;

    y.right = x;
    x.left = T2;

    return y;
}
```

Balanced (right rotate x)

Right Left Case

Unbalanced

Balanced (right rotate y & left rotate x)

right rotate z

left rotate x

Left Right Case

Unbalanced

Balanced (left rotate y & right rotate x)

left rotate y right rotate x

Insert following keys into an initially empty AVL tree. Discuss the cases of balancing that appear. Keys are: 4, 23, 11, 89, 34, 2, 7, 14, 75, 68, 99.

RR case -> rotate to left node

RL case -> rotate to right node

rotate to left node

LL case -> rotate to right node

LR case-> rotate to left node

rotate to right node