RWorksheet_Ceniza#6

Zydrick Ceniza

2023-12-06

Worksheet-6 in R (Individual Activity)

RWorksheet_Ceniza#6

Basic Statistics

- 1. Create a data frame for the table below. Show your solution.
- a. Compute the descriptive statistics using different packages (Hmisc and pastecs). Write the codes and its result.

```
num1 <- data.frame(</pre>
  ID = c(1, 2, 3, 4, 5,6,7,8,9,10),
  Age = c(55,54,47,57,51,61,57,54,63,58),
  Salary = c(61,60,56,63,56,63,59,56,62,61)
num1
##
      ID Age Salary
                 61
## 1
         55
       1
## 2
       2
          54
                 60
## 3
       3 47
                 56
## 4
       4 57
                 63
       5 51
                 56
## 5
## 6
      6 61
                 63
## 7
      7 57
                 59
## 8
       8 54
                 56
## 9
       9
          63
                 62
## 10 10 58
                 61
  install.packages("Hmisc")
## Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.3'
## (as 'lib' is unspecified)
  install.packages("pastecs")
## Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.3'
## (as 'lib' is unspecified)
library(Hmisc)
## Attaching package: 'Hmisc'
```

```
## The following objects are masked from 'package:base':
##
##
     format.pval, units
library(pastecs)
summary_hmisc <- Hmisc::describe(num1)</pre>
summary hmisc
## num1
##
 3 Variables 10 Observations
## -----
## ID
                                            .05
##
       n missing distinct Info Mean
                                     Gmd
                                                   .10
                       1
##
      10
         0 10
                              5.5
                                     3.667
                                           1.45
                                                   1.90
##
     .25
            .50
                  .75
                         .90
                               .95
     3.25
           5.50
               7.75
                      9.10
                               9.55
##
##
          1 2 3 4 5 6 7 8 9 10
## Value
## Frequency 1 1 1 1 1 1 1 1 1 1
##
\#\# For the frequency table, variable is rounded to the nearest 0
## -----
## Age
##
      n missing distinct
                       Info
                               Mean
##
            0
                       0.988
                               55.7 5.444
      10
                   8
##
          47 51 54 55 57 58 61 63
## Value
## Frequency 1 1 2 1 2 1 1
## Proportion 0.1 0.1 0.2 0.1 0.2 0.1 0.1 0.1
\mbox{\tt \#\#} For the frequency table, variable is rounded to the nearest 0
## Salary
##
      n missing distinct Info Mean
                                      Gmd
##
      10
                      0.964
                              59.7
             0
                6
                                     3.311
##
          56 59 60 61 62 63
## Value
## Frequency
           3 1 1 2 1
## Proportion 0.3 0.1 0.1 0.2 0.1 0.2
## For the frequency table, variable is rounded to the nearest 0
## -----
summary_pastecs <- pastecs::stat.desc(num1)</pre>
summary_pastecs
##
                 ID
                          Age
                                 Salary
## nbr.val 10.0000000 10.00000000 10.00000000
          0.0000000 0.00000000 0.00000000
## nbr.null
           0.0000000
                    0.0000000 0.0000000
## nbr.na
```

1.0000000 47.00000000 56.00000000

min

```
10.0000000 63.00000000 63.00000000
## max
## range
                9.0000000 16.00000000 7.00000000
## sum
               55.0000000 557.00000000 597.00000000
                5.5000000 56.00000000 60.50000000
## median
## mean
                5.5000000 55.70000000 59.70000000
## SE.mean
                0.9574271
                          1.46855938
                                       0.89504811
## CI.mean.0.95 2.1658506 3.32211213
                                        2.02473948
## var
                9.1666667 21.56666667
                                        8.01111111
## std.dev
                3.0276504
                            4.64399254
                                        2.83039063
## coef.var
                0.5504819
                            0.08337509
                                        0.04741023
```

2. The Department of Agriculture was studying the effects of several levels of a fertilizer on the growth of a plant. For some analyses, it might be useful to convert the fertilizer levels to an ordered factor.

```
data <- c(10, 10, 10, 20, 20, 50, 10, 20, 10, 50, 20, 50, 20, 10)

ordered_factor <- factor(data, levels = c(10, 20, 50), ordered = TRUE)
summary(ordered_factor)

## 10 20 50
## 6 5 3
ordered_factor

## [1] 10 10 10 20 20 50 10 20 10 50 20 50 20 10
## Levels: 10 < 20 < 50</pre>
```

- 3. Abdul Hassan, president of Floor Coverings Unlimited, has asked you to study the exercise levels undertaken by 10 subjects were "l", "n", "n", "i", "i", "l"; n=none, l=light, i=intense
- a. What is the best way to represent this in R?

```
exercise_levels <- c("l", "n", "n", "i", "l", "l", "n", "n", "i", "l")
exercise_factor <- factor(exercise_levels, levels = c("n", "l", "i"), ordered = TRUE)
summary(exercise_factor)</pre>
```

```
## n l i
## 4 4 2
```

 ${\tt exercise_factor}$

```
## [1] l n n i l l n n i l
## Levels: n < l < i
```

4. Sample of 30 tax accountants from all the states and territories of Australia and their individual state of origin is specified by a character vector of state mnemonics as:

```
state <- c("tas", "sa", "qld", "nsw", "nsw", "nt", "wa", "wa", "qld", "vic", "nsw", "vic", "qld", "sa", "tas", "sa", "nt", "wa", "vic", "qld", "nsw", "nsw", "wa", "sa", "act", "nsw", "vic", "vic", "act")
```

```
state <- c("tas", "sa", "qld", "nsw", "nsw", "nt", "wa", "qld","vic", "nsw", "vic", "qld", "qld",
statef <- factor(state)
statef</pre>
```

```
## [1] tas sa qld nsw nsw nt wa wa qld vic nsw vic qld qld sa tas sa nt wa
## [20] vic qld nsw nsw wa sa act nsw vic vic act
## Levels: act nsw nt qld sa tas vic wa
```

5. From #4 - continuation: • Suppose we have the incomes of the same tax accountants in another vector (in suitably large units of money)

```
incomes <- c(60, 49, 40, 61, 64, 60, 59, 54, 62, 69, 70, 42, 56, 61, 61, 61, 58, 51, 48, 65, 49, 49, 41, 48, 52, 46, 59, 46, 58, 43)
```

a. Calculate the sample mean income for each state we can now use the special function tapply(): Example: giving a means vector with the components labelled by the levelsing each state of tapply (incomes, statef, mean)

```
incomes <- c(60, 49, 40, 61, 64, 60, 59, 54, 62, 69, 70, 42, 56, 61, 61, 61, 58, 51, 48, 65, 49, 49, 41 levelsincmeans <- tapply(incomes, statef, mean) levelsincmeans
```

```
## act nsw nt qld sa tas vic wa
## 44.50000 57.33333 55.50000 53.60000 55.00000 60.50000 56.00000 52.25000
```

b. Copy the results and interpret.

```
state <- c("tas", "sa", "qld", "nsw", "nsw", "nt", "wa", "qld", "vic", "nsw", "vic", "qld", "qld",
incomes <- c(60, 49, 40, 61, 64, 60, 59, 54, 62, 69, 70, 42, 56, 61, 61, 61, 58, 51, 48, 65, 49, 49, 41
levelsincmeans <- tapply(incomes, statef, mean)
levelsincmeans
## act nsw nt qld sa tas vic wa</pre>
```

act nsw nt qld sa tas vic wa ## 44.50000 57.33333 55.50000 53.60000 55.00000 60.50000 56.00000 52.25000 summary(levelsincmeans)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 44.50 53.26 55.25 54.34 56.33 60.50
```

The "tas" has the highest mean of 60.50 and "act" that has the shortest mean of 44.50

- 6. Calculate the standard errors of the state income means (refer again to number 3) stdError \leftarrow function(x) sqrt(var(x)/length(x)) Note: After this assignment, the standard errors are calculated by: incster \leftarrow tapply(incomes, statef, stdError)
- a. What is the standard error? Write the codes.

```
## act nsw nt qld sa tas vic wa
## 1.500000 4.310195 4.500000 4.106093 2.738613 0.500000 5.244044 2.657536
```

b. Interpret the result.

The functiion compute the desired computaions such as dividing var and length inside the sqr. A larger standard error indicates greater variability in the income means for that state. Lower standard errors suggest more precision in estimating the true population mean for each state.

7. Use the titanic dataset.

a. subset the titatic dataset of those who survived and not survived. Show the codes and its result.

```
titanic<-as.data.frame(Titanic)
titanic</pre>
```

```
Age Survived Freq
      Class
               Sex
              Male Child
## 1
        1st
                                No
## 2
              Male Child
        2nd
                                No
                                      0
## 3
        3rd
              Male Child
                                No
                                     35
## 4
       Crew
              Male Child
                                No
                                      0
        1st Female Child
## 5
                                No
                                      0
        2nd Female Child
## 6
                                No
                                      0
## 7
        3rd Female Child
                                No
                                     17
## 8
       Crew Female Child
                                No
                                      0
## 9
        1st
              Male Adult
                                No
                                    118
## 10
        2nd
              Male Adult
                                    154
                                No
## 11
        3rd
              Male Adult
                                No
                                    387
              Male Adult
                                    670
## 12 Crew
                                No
## 13
        1st Female Adult
                                No
## 14
        2nd Female Adult
                                No
                                     13
## 15
        3rd Female Adult
                                No
                                     89
## 16 Crew Female Adult
                                No
                                      3
## 17
        1st
              Male Child
                               Yes
                                      5
## 18
              Male Child
        2nd
                               Yes
                                     11
## 19
        3rd
              Male Child
                               Yes
                                     13
## 20
              Male Child
                               Yes
                                      0
       Crew
        1st Female Child
## 21
                               Yes
                                      1
        2nd Female Child
## 22
                               Yes
                                     13
        3rd Female Child
## 23
                               Yes
                                     14
```

```
## 24 Crew Female Child
                              Yes
## 25
        1st
              Male Adult
                              Yes
                                     57
## 26
        2nd
              Male Adult
                               Yes
                                     14
## 27
        3rd Male Adult
                                     75
                               Yes
## 28
       Crew
              Male Adult
                               Yes
                                   192
## 29
        1st Female Adult
                              Yes
                                   140
## 30
        2nd Female Adult
                              Yes
## 31
        3rd Female Adult
                              Yes
                                     76
## 32 Crew Female Adult
                              Yes
survived <- subset(titanic, Survived == 'Yes')</pre>
survived
##
      Class
               Sex Age Survived Freq
              Male Child
## 17
        1st
                               Yes
                                      5
## 18
        2nd
              Male Child
                               Yes
                                     11
## 19
        3rd
              Male Child
                                     13
                               Yes
## 20 Crew
                                     0
              Male Child
                               Yes
        1st Female Child
## 21
                               Yes
                                     1
## 22
        2nd Female Child
                               Yes
                                     13
## 23
        3rd Female Child
                              Yes
                                     14
## 24 Crew Female Child
                               Yes
                                      0
## 25
        1st
              Male Adult
                               Yes
                                     57
## 26
        2nd
              Male Adult
                               Yes
                                     14
## 27
        3rd Male Adult
                              Yes
                                     75
## 28 Crew Male Adult
                              Yes 192
## 29
        1st Female Adult
                              Yes 140
## 30
        2nd Female Adult
                               Yes
                                     80
## 31
        3rd Female Adult
                               Yes
                                     76
## 32 Crew Female Adult
                              Yes
not survived <- subset(titanic, Survived == 'No')</pre>
not_survived
##
                     Age Survived Freq
      Class
               Sex
## 1
        1st
              Male Child
                               No
## 2
              Male Child
        2nd
                               No
                                      0
              Male Child
## 3
        3rd
                               No
                                     35
              Male Child
## 4
       Crew
                               No
                                     0
## 5
      1st Female Child
                               No
                                      0
## 6
        2nd Female Child
                               No
                                     0
## 7
        3rd Female Child
                               No
                                     17
## 8
       Crew Female Child
                               No
                                     0
## 9
        1st
              Male Adult
                               No 118
## 10
        2nd
              Male Adult
                               No 154
## 11
        3rd
              Male Adult
                               No
                                   387
                                   670
## 12 Crew
              Male Adult
                               No
## 13
        1st Female Adult
                               No
                                    4
## 14
        2nd Female Adult
                               No
                                     13
## 15
        3rd Female Adult
                               No
                                     89
## 16 Crew Female Adult
                                     3
                               No
```

8. The data sets are about the breast cancer Wisconsin. The samples arrive periodically as Dr. Wolberg reports his clinical cases. The database therefore reflects this

```
a. describe what is the dataset all about.
The data set is all about is all about the breast cancer diagnosis
library(readr)
breastcancer_wisconsin <- read_csv("breastcancer_wisconsin.csv")</pre>
## Rows: 699 Columns: 11
## -- Column specification -----
## Delimiter: ","
## chr (1): bare_nucleoli
## dbl (10): id, clump_thickness, size_uniformity, shape_uniformity, marginal_a...
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
breastcancer_wisconsin
## # A tibble: 699 x 11
          id clump_thickness size_uniformity shape_uniformity marginal_adhesion
##
        <dbl>
                       <dhl>
                                       <dhl>
                                                         <dh1>
                                                                           <dh1>
##
  1 1000025
                           5
                                                             1
## 2 1002945
                            5
                                            4
                                                             4
                                                                               5
   3 1015425
                            3
##
                                            1
                                                             1
                                                                               1
                            6
                                                             8
## 4 1016277
                                            8
                                                                               1
## 5 1017023
                            4
                                            1
                                                             1
                                                                               3
## 6 1017122
                            8
                                                            10
                                                                               8
                                           10
## 7 1018099
                            1
                                            1
                                                             1
                                                                               1
                            2
                                                             2
## 8 1018561
                                            1
                                                                               1
## 9 1033078
                            2
                                            1
                                                             1
                                                                               1
## 10 1033078
                                                                               1
## # i 689 more rows
## # i 6 more variables: epithelial_size <dbl>, bare_nucleoli <chr>,
      bland_chromatin <dbl>, normal_nucleoli <dbl>, mitoses <dbl>, class <dbl>
str(breastcancer_wisconsin)
## spc_tbl_ [699 x 11] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
                       : num [1:699] 1000025 1002945 1015425 1016277 1017023 ...
## $ id
## $ clump_thickness : num [1:699] 5 5 3 6 4 8 1 2 2 4 ...
## $ size_uniformity : num [1:699] 1 4 1 8 1 10 1 1 1 2 ...
   $ shape_uniformity : num [1:699] 1 4 1 8 1 10 1 2 1 1 ...
##
  $ marginal_adhesion: num [1:699] 1 5 1 1 3 8 1 1 1 1 ...
   $ epithelial_size : num [1:699] 2 7 2 3 2 7 2 2 2 2 ...
```

- attr(*, "spec")=
.. cols(
.. id = col_double(),
.. clump_thickness = col_double(),

\$ bare_nucleoli

\$ mitoses

\$ class

##

##

##

##

##

: chr [1:699] "1" "10" "2" "4" ...

: num [1:699] 1 1 1 1 1 1 1 1 5 1 ... : num [1:699] 2 2 2 2 2 4 2 2 2 2 ...

\$ bland_chromatin : num [1:699] 3 3 3 3 3 9 3 3 1 2 ...
\$ normal nucleoli : num [1:699] 1 2 1 7 1 7 1 1 1 1 ...

```
##
        size_uniformity = col_double(),
     .. shape_uniformity = col_double(),
##
##
     .. marginal_adhesion = col_double(),
##
         epithelial_size = col_double(),
##
        bare_nucleoli = col_character(),
        bland chromatin = col double(),
##
         normal_nucleoli = col_double(),
##
##
          mitoses = col_double(),
          class = col_double()
##
##
     ..)
   - attr(*, "problems")=<externalptr>
  d. Compute the descriptive statistics using different packages. Find the values of: d.1 Standard error of
     the mean for clump thickness.
stdError <- function(x) sqrt(var(x) / length(x))</pre>
er_clump_thickness<-stdError(breastcancer_wisconsin$clump_thickness)
er_clump_thickness
## [1] 0.1065011
d.2 Coefficient of variability for Marginal Adhesion.
coe_marginal_adhesion <- sd(breastcancer_wisconsin$marginal_adhesion) / mean(breastcancer_wisconsin$marginal_adhesion)
coe_marginal_adhesion
## [1] 1.017283
d.3 Number of null values of Bare Nuclei.
null<-sum(is.na(breastcancer_wisconsin$bare_nucleoli))</pre>
null
## [1] 15
d.4 Mean and standard deviation for Bland Chromatin
mean_bland_chromatin <- mean(breastcancer_wisconsin$bland_chromatin)</pre>
sd_bland_chromatin <- sd(breastcancer_wisconsin$bland_chromatin)</pre>
print(paste("Mean:", mean_bland_chromatin, " SD:", sd_bland_chromatin))
## [1] "Mean: 3.43776824034335 SD: 2.43836425232425"
d.5 Confidence interval of the mean for Uniformity of Cell Shape
librarv(stats)
ci_uniformity_cell_shape <- t.test(breastcancer_wisconsin$shape_uniformity)$conf.int
print(ci_uniformity_cell_shape)
## [1] 2.986741 3.428138
## attr(,"conf.level")
## [1] 0.95
d. How many attributes?
ncol(breastcancer_wisconsin)
```

[1] 11

e. Find the percentage of respondents who are malignant. Interpret the results.

```
malignant_percentage <- (sum(breastcancer_wisconsin$class == 4) / nrow(breastcancer_wisconsin)) * 100
# Display the result
malignant_percentage
## [1] 34.47783</pre>
```

9. Export the data abalone to the Microsoft excel file. Copy the codes.

```
\label{localing} install.packages ("AppliedPredictiveModeling") & library ("AppliedPredictiveModeling") & View (abalone) \\ head (abalone) & summary (abalone) \\ save (abalone, file="abalone.csv") \\
```