Orientation:

Introduction to Deep Learning

(WA6614, Fall 2025)

Sudong Lee

- sudonglee@ulsan.ac.kr
- https://dais.ulsan.ac.kr/

Instructor

Sudong Lee

Bio

2020.09.~ Assistant Professor, School of Industrial Engineering,

University of Ulsan

2019.12.~ 2020.08. Senior Researcher, Intelligent Computing Lab.,

Korea Atomic Energy Research Institute

2018.03.~2019.11. Senior Manager, Data Science, *SK Hynix*

Contact

E-mail <u>sudonglee@ulsan.ac.kr</u>

Website https://dais.ulsan.ac.kr/

Course Objective

"We learn the principles, research trends, and use cases of deep learning."

Theory

Programming

Projects

- Background knowledge and research trends for deep learning
- Understanding deep learning fundamentals and theories of deep learning
- Python programming skills for data science
- Hands-on implementation of deep learning using Python
- Solving real-world problems using deep learning
- Scientific reporting skills

Prerequisites

Python programming

- Data types and structures, loops and conditionals, functions and classes
- Data processing using Numpy, Pandas, Matplotlib, etc.

Linear algebra and calculus

- Linear algebra: vectors and matrices, matrix operations
- Calculus: differentiation, integration
- Statistics: probability distributions, statistical inference

Machine learning

• Basic concepts of machine learning

Course Description

- Course name (code): 딥러닝입문, Introduction to Deep Learning (WA6614)
- **Credit:** 3 (3-0)
- **Schedule:** 13:00-16:00 on Monday (18-301)
- Contact: Sudong Lee (Tel. (052)259-2174, <u>sudonglee@ulsan.ac.kr</u>)
- Textbook and References: Lecture notes and reading materials are given every week.

Weekly Plan

Week	LC	Week	LC
1	Orientation	9	Recurrent Neural Networks
2	Al, Machine Learning, and Deep Learning	10	AutoEncoder
3	Introduction to Artificial Neural Networks	11	Transformer
4	Learning Process of Artificial Neural Networks	12	Generative Deep Learning (1)
5	Deep Feedforward Networks	13	Generative Deep Learning (2)
6	Optimization for Training Deep Neural Networks	14	Kolmogorov-Arnold Network
7	Convolutional Neural Networks	15	Term Project
8	Midterm Exam	16	Final Exam

Evaluation Criteria

- Attendance (10%)
- Midterm/Final Exam (30% each)
- Term Project (30%)

Thank you! 🙂

