CS32 Spring 2021

Week 8

TA: Manoj Reddy

LA: Katherine Zhang

Outline

• Trees

Trees

- Very useful in organizing information
- TreeNode can have more than 2 children (array of TreeNode pointers)
- Binary tree has at most 2 child nodes
 - Left child
 - Right child
- Root is represented using TreeNode pointer (TreeNode*)
- Operations: search, insert, delete etc.
- TreeNodes are randomly ordered in memory


```
struct TreeNode{
  int val;
  TreeNode *left;
  TreeNode *right;
};
```

Tree Traversal

- Order of node traversal
 - Preorder
 - Inorder
 - Post-order
- Draw a line around nodes in counter-clockwise direction
- Level-order
 - Implemented using queue
 - Draw a horizontal line from left to right

Problem

- Find the maximum depth of a tree
 - int maxDepth(TreeNode* root){...};
- Return true if 2 trees are exactly the same
 - bool sameTrees(TreeNode* root1, TreeNode* root2){...};

Binary Search Tree

- Special binary tree with following properties:
 - For every node X in the tree:
 - All nodes in X's left subtree must be less than X
 - All nodes in X's right subtree must be greater than X
- Operations (*If balanced*)
 - Search: O(log n)
 - Insert: O(log n)
 - Delete: O(log n) //3 cases involved, see slides
- If tree is unbalanced, above operations: O(n)
- 2-3 Trees, Red-Black Trees, AVL Trees
 - Improved versions of binary search tree that ensures trees are balanced!

Problem

- Get the max value of a BST
 - int maxBST(TreeNode* root){};
- Check if a binary tree is a BST
 - bool isBST(TreeNode* root){};