MC102 – Algoritmos e Programação de Computadores

Instituto de Computação

UNICAMP

Primeiro Semestre de 2015

Roteiro

Força Bruta

2 Backtracking

3 Branch and Bound

Força Bruta

- Força bruta (ou busca exaustiva) é um tipo de algoritmo de uso geral que consiste em enumerar todos os possíveis candidatos à solução e verificar se cada um satisfaz o problema.
- Esse tipo de algoritmo geralmente possui uma implementação simples e sempre encontra uma solução se ela existir. Entretanto, seu custo computacional é proporcional ao número de candidatos à solução que, em muitos problemas reais, tende a crescer exponencialmente.
- A força bruta é tipicamente usada em problemas cujo tamanho é limitado ou quando não se conhece um algoritmo mais eficiente.
- Também pode ser usada quando a simplicidade da implementação é mais importante do que a velocidade de execução, como nos casos de aplicações críticas em que os erros de algoritmo possuem sérias consequências.

Força Bruta - Clique

- Considere um conjunto P de n pessoas e uma matriz M de tamanho $n \times n$, tal que M[i,j] = M[j,i] = 1, se as pessoas i e j se conhecem e M[i,j] = M[j,i] = 0, caso contrário.
- Problema: existe um subconjunto C (Clique), de r pessoas escolhidas de P, tal que qualquer par de pessoas de C se conhecem?
- Solução de força bruta: verificar, para todas as combinações simples (sem repetições) C de r pessoas escolhidas entre as n pessoas do conjunto P, se todos os pares de pessoas de C se conhecem.

Força Bruta - Clique

• Considere um conjunto P de 8 pessoas representado pela matriz abaixo (de tamanho 8×8):

Х	1	2	3	4	5	6	7	8
1	1	0	1	1	1	1	1	0
2	0	1	0	0	1	0	0	1
3	1	0	1	1	0	1	1	1
4	1	0	1	1	1	1	1	1
5	1	1	0	1	1	0	0	0
6	1	0	1	1	0	1	1	1
7	1	0	1	1	0	1	1	0
8	0	1	1	1	0	1	0	1

• Existe um conjunto *C* de 5 pessoas escolhidas de *P* tal que qualquer par de pessoas de *C* se conhecem?

Força Bruta - Clique × Combinação Simples

Existem $C(8,5)=\frac{8!}{5!(8-5)!}=56$ combinações simples de 5 elementos escolhidos dentre um conjunto de 8 elementos. Essas combinações são listadas a seguir:

12345	12468	13578	23568
12346	12478	13678	23578
12347	12567	14567	23678
12348	12568	14568	24567
12356	12578	14578	24568
12357	12678	14678	24578
12358	13456	15678	24678
12367	13457	23456	25678
12368	13458	23457	3 4 5 6 7
12378	13467	23458	3 4 5 6 8
12456	13468	23467	3 4 5 7 8
12457	13478	23468	3 4 6 7 8
12458	13567	23478	35678
12467	13568	23567	45678

Força Bruta - Clique

Note que todos os pares de pessoas do subconjunto $C = \{1, 3, 4, 6, 7\}$ se conhecem:

Х	1	3	4	6	7
1	1	1	1	1	1
3	1	1	1	1	1
4	1	1	1	1	1
6	1	1	1	1	1
7	1	1	1	1	1

Como enumerar todas as combinações simples de r elementos de um conjunto de tamanho n?

Força Bruta - Combinação Simples

```
#include <stdio.h>
#include <stdlib.h>
void combinacao_simples(int n, int r, int temp[],
                        int next, int size);
void imprime_vetor(int vetor[], int n) {
  int i;
  for (i = 0; i < n; i++)
   printf("%d ", vetor[i]);
 printf("\n");
```

Força Bruta - Combinação Simples

```
int main() {
  int n, r, *temp;
  printf("Entre com o valor de n: ");
  scanf("%d", &n);
  printf("Entre com o valor de r: ");
  scanf("%d", &r);
  temp = malloc(r * sizeof(int));
  combinacao_simples(n, r, temp, 1, 0);
  free(temp);
  return 0;
```

Força Bruta - Combinação Simples

```
void combinacao_simples(int n, int r, int temp[],
                        int next, int size) {
  int i;
  if (size == r)
    imprime_vetor(temp, r);
  else
    for (i = next; i <= n; i++) {
      temp[size] = i;
      combinacao_simples(n, r, temp, i + 1, size + 1);
```

Força Bruta - Ciclo Hamiltoniano

- Considere um conjunto de n cidades e uma matriz M de tamanho $n \times n$ tal que M[i,j] = 1, se existe um caminho direto entre as cidades i e j, e M[i,j] = 0, caso contrário.
- Problema: existe uma forma de, saindo de uma cidade qualquer, visitar todas as demais cidades, sem passar duas vezes por nenhuma cidade e, ao final, retornar para a cidade inicial?
- Note que, se existe uma forma de sair de uma cidade X qualquer, visitar todas as demais cidades (sem repetir nenhuma) e depois retornar para X, então existe uma forma de fazer o mesmo para qualquer outra cidade do conjunto, já que existe um Ciclo Hamiltoniano (uma forma circular de visitar todas as cidades) e qualquer cidade do ciclo pode ser usado como ponto de partida.

Força Bruta - Ciclo Hamiltoniano

- Como vimos, qualquer cidade pode ser escolhida como cidade inicial.
 Sendo assim, vamos escolher, arbitrariamente a cidade n como ponto de partida.
- Solução de força bruta: testar todas as permutações das n 1 primeiras cidades, verificando se existe um caminho direto entre a cidade n e a primeira da permutação, assim como um caminho entre todas as cidades consecutivas da permutação e, por fim, um caminho direto entre a última cidade da permutação e a cidade n.
- Ciclo Hamiltoniano: $n \rightsquigarrow [p_1 \rightsquigarrow p_2 \rightsquigarrow p_3 \rightsquigarrow \cdots \rightsquigarrow p_{n-1}] \rightsquigarrow n$.

Força Bruta - Ciclo Hamiltoniano

• Considere um conjunto de 8 cidades representado pela matriz abaixo (de tamanho 8×8):

Х	1	2	3	4	5	6	7	8
1	0	0	1	0	1	1	1	0
2	0	1	0	0	1	0	0	1
3	1	0	1	1	0	1	1	0
4	0	0	1	1	0	0	1	0
5	1	1	0	1	1	0	0	0
6	0	0	1	1	0	0	1	1
7	1	0	0	1	0	1	1	1
8	0	1	1	1	0	1	0	1

• Existe uma forma de, a partir da cidade 8, visitar todas as demais cidades, sem repetir nenhuma e, ao final, retornar para a cidade 8?

Força Bruta - Ciclo Hamiltoniano × Permutação

Existem P(7) = 7! = 5040 permutações das 7 primeiras cidades da lista original:

1234567		7652341
1234576	3645172	7652413
1234657	3645217	7652431
1234675	3645271	7653124
1234756	3645712	7653142
1234765	3645721	7653214
1235467	3647125	7653241
1235476	3647152	7653412
1235647	3647215	7653421
1235674	3647251	7654123
1235746	3647512	7654132
1235764	3647521	7654213
1236457	3651247	7654231
1236475	3651274	7654312
1236547		7654321

Como enumerar todas as permutações de *n* valores distintos?

Força Bruta - Permutação (versão 1)

```
#include <stdio.h>
#include <stdlib.h>
void permutacao(int n, int temp[], int size);
void imprime_vetor(int vetor[], int n) {
  int i;
  for (i = 0; i < n; i++)
    printf("%d ", vetor[i]);
 printf("\n");
```

Força Bruta - Permutação (versão 1)

```
int main() {
  int n, *temp;
 printf("Entre com o valor de n: ");
  scanf("%d", &n);
  temp = malloc(n * sizeof(int));
  permutacao(n, temp, 0);
  free(temp);
  return 0;
```

Força Bruta - Permutação (versão 1)

```
void permutacao(int n, int temp[], int size) {
  int i, j, used;
  if (size == n)
    imprime_vetor(temp, n);
  else
    for (i = 1; i <= n; i++) {
      used = 0;
      for (j = 0; (j < size) && !used; j++)
        if (temp[j] == i)
          used = 1;
      if (!used) {
        temp[size] = i;
        permutacao(n, temp, size + 1);
```

Força Bruta - Permutação (versão 2)

```
#include <stdio.h>
#include <stdlib.h>
void permutacao(int n, int temp[], int used[], int size);
void imprime_vetor(int vetor[], int n) {
  int i;
  for (i = 0; i < n; i++)
   printf("%d ", vetor[i]);
 printf("\n");
```

Força Bruta - Permutação (versão 2)

```
int main() {
  int i, n, *temp, *used;
 printf("Entre com o valor de n: ");
  scanf("%d", &n);
 temp = malloc(n * sizeof(int));
 used = malloc(n * sizeof(int));
 for (i = 0; i < n; i++)
   used[i] = 0; /* Indica que o elemento i + 1 nao foi usado */
 permutacao(n, temp, used, 0);
 free(temp);
 free(used);
 return 0;
```

Força Bruta - Permutação (versão 2)

```
void permutacao(int n, int temp[], int used[], int size) {
  int i;
  if (size == n)
    imprime_vetor(temp, n);
  else
    for (i = 0; i < n; i++)
      if (!used[i]) {
        used[i] = 1;
        temp[size] = i + 1;
        permutacao(n, temp, used, size + 1);
        used[i] = 0;
```

Força Bruta - Exercícios

Exercício

Implemente um programa que resolva o problema da Clique, usando força bruta.

Exercício

Implemente um programa que resolva o problema do Ciclo Hamiltoniano, usando força bruta.

Força Bruta - Exercícios

Exercício

Implemente um programa que enumere todas as combinações com repetições de tamanho r dentre um conjunto de n elementos.

Exercício

Implemente um programa que enumere todos os arranjos simples (sem repetições) de tamanho r dentre um conjunto de n elementos.

Exercício

Implemente um programa que enumere todos os arranjos com repetições de tamanho r dentre um conjunto de n elementos.

Força Bruta - Exercícios

Exercício

Dado um inteiro n, gere todas as possíveis senhas formadas por:

- n dígitos
- n dígitos ou letras minúsculas
- n dígitos ou letras minúsculas ou letras maiúsculas

Backtracking

- Backtracking refere-se a um tipo de algoritmo para encontrar todas (ou algumas) soluções de um problema computacional, que incrementalmente constrói condidatas de soluções e abandona uma candidata parcialmente construída tão logo quanto for possível determinar que ela não pode gerar uma solução válida.
- Backtracking pode ser aplicado para problemas que admitem o conceito de "solução candidata parcial" e que exista um teste relativamente rápido para verificar se uma candidata parcial pode ser expandida para uma solução válida.
- Quando aplicável, backtracking é frequentemente muito mais rápido que algoritmos de enumeração total (força bruta), já que ele pode eliminar um grande número de soluções inválidas com um único teste.

Backtracking

- Enquanto algoritmos de força bruta geram possíveis soluções e só depois verificam se elas são válidas, backtracking só gera soluções válidas.
- Alguns exemplos famosos de uso de backtracking:
 - Problema das Oito Rainhas
 - Passeio do Cavalo
 - Caminho num Labirinto

- O problema consiste em dispor oito rainhas em um tabuleiro de xadrez de dimensões 8 × 8, de forma que nenhuma delas seja atacada por outra. Para tal, é necessário que duas rainhas quaisquer não estejam em uma mesma linha, coluna ou diagonal.
- Podemos representar uma solução candidata como um vetor rainhas de 8 posições, de tal forma que a rainha i é posicionada na linha i e na coluna rainhas[i], já que duas rainhas nunca serão posicionadas na mesma linha.

- Como duas rainhas também nunca serão posicionadas na mesma coluna, o vetor rainhas, quando completo, representará uma permutação dos inteiros de 1 a 8.
- Um algoritmo de força bruta gerará todas as permutações e verificará se as rainhas não possuem conflitos (estão na mesma diagonal).
- Um algoritmo de backtracking apenas gerará as permutações que representam soluções válidas. Assim que um conflito for detectado, o algoritmo dará um passo para trás (backtrack) e tentará reposicionar a última rainha (que gerou o conflito).

- O problema das oito rainhas possui 92 soluções distintas, as quais podem ser obtidas a partir de um conjunto de 12 soluções únicas por meio de operações de simetria (reflexão e rotação).
- O problema pode ser generalizado de tal forma que o objetivo seja posicionar n rainhas num tabuleiro de dimensões $n \times n$, de tal forma que nenhuma delas seja atacada pela outra.


```
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
void nRainhas(int rainhas[], int n, int size);
int valida(int rainhas[], int k);
void imprime_vetor(int vetor[], int n) {
  int i;
  for (i = 0; i < n - 1; i++)
    printf("%d ", vetor[i]);
  printf("\n");
```

```
int main() {
  int n, *rainhas;
  printf("Numero de rainhas: ");
  scanf("%d", &n);
  rainhas = malloc(n * sizeof(int));
  /* Inicialmente nenhuma das n rainhas esta posicionada */
  nRainhas(rainhas, n, 0);
  free(rainhas);
  return 0;
```

```
void nRainhas(int rainhas[], int n, int size) {
  int i;
  if (size == n)
    imprime_vetor(rainhas, n);
  else
    for (i = 1; i \le n; i++) {
      rainhas[size] = i;
      if (valida(rainhas, size))
        nRainhas(rainhas, n, size + 1);
```

```
int valida(int rainhas[], int k) {
  int i:
  for (i = 0: i < k: i++)
    /* Se duas rainhas estao na mesma coluna... */
    if ((rainhas[i] == rainhas[k]) ||
        /* ... ou estao na mesma diagonal ... */
        (abs(rainhas[i] - rainhas[k]) == (k - i)))
      /* ... entao a solucao eh invalida */
      return 0;
  /* Solucao valida */
  return 1;
```

Backtracking - Passeio do Cavalo

- Dado um tabuleiro de n × n posições, o cavalo se movimenta segundo as regras do xadrez. A partir de uma posição inicial (x, y), o problema consiste em encontrar, se existir, um passeio do cavalo com n² – 1 movimentos tal que todas as posições do tabuleiro sejam visitadas uma única vez.
- O tabuleiro pode ser representado por uma matriz M de tamanho $n \times n$. A situação de cada posição do tabuleiro pode ser representada por um inteiro para registrar a evolução das posições visitadas pelo cavalo:

$$M[x,y] = \begin{cases} 0, \text{ se posição } (x,y) \text{ não foi visitada} \\ 1 \leq i \leq n^2, \text{ se } (x,y) \text{ foi visitada no i-ésimo passo} \end{cases}$$

Backtracking - Passeio do Cavalo

• A figura abaixo mostra uma solução para um tabuleiro de dimensões 8×8 , cuja posição inicial do passeio é (1,1):

1	60	39	34	31	18	9	64
38	35	32	61	10	63	30	17
59	2	37	40	33	28	19	8
36	49	l	l	62	11	16	29
43	58	3	50	41	24	7	20
48	51	46	55	26	21	12	15
57	44	53	4	23	14	25	6
52	47	56	45	54	5	22	13

```
#include <stdio.h>
#define MAX 10
typedef struct {
  int x, y;
} Move;
int passeio(int n, int x, int y, int M[MAX][MAX], Move move[]);
void imprime_matriz(int M[MAX][MAX], int n) {
  int x, y;
  for (x = 0; x < n; x++) {
    for (y = 0; y < n; y++)
      printf(" %3d ", M[x][y]);
    printf("\n");
```

```
int main() {
                int M[MAX][MAX], x, y, n, startX, startY;
              /* Define os movimentos do cavalo */
              Move move [8] = \{\{2, 1\}, \{1, 2\}, \{-1, 2\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2, 1\}, \{-2,
                                                                                                                                      \{-2,-1\}, \{-1,-2\}, \{1,-2\}, \{2,-1\}};
              printf("Entre com o valor de n: ");
                scanf("%d", &n);
                printf("Entre com a linha inicial do cavalo: ");
                scanf("%d", &startX);
                printf("Entre com a coluna inicial do cavalo: ");
                scanf("%d", &startY);
                  . . .
```

```
. . .
/* Inicializacao do tabuleiro */
for (x = 0; x < n; x++)
  for (y = 0; y < n; y++)
   M[x][y] = 0;
/* Define a posicao inicial do cavalo */
M[startX - 1][startY - 1] = 1:
/* Verifica se ha uma solucao valida */
if (passeio(n, startX - 1, startY - 1, M, move))
  imprime_matriz(M, n);
else
  printf("Nao existe solucao.\n");
return 0;
```

```
int passeio(int n, int x, int y, int M[MAX][MAX], Move move[]) {
  int k, nextX, nextY;
  if (M[x][y] == n * n) return 1;
  /* Testa todos os movimentos a partir da posicao atual do cavalo (x,y) */
  for (k = 0: k < 8: k++) {
    nextX = x + move[k].x;
    nextY = y + move[k].y;
    /* Verifica se o movimento eh valido e gera uma solucao factivel */
    if ((\text{next}X \ge 0)) && (\text{next}X < n) && (\text{next}Y \ge 0) && (\text{next}Y < n) &&
        (M[nextX][nextY] == 0)) {
      M[nextX][nextY] = M[x][y] + 1;
      if (passeio(n, nextX, nextY, M, move))
        return 1:
      else
        M[nextX][nextY] = 0; /* Libera a posicao do tabuleiro */
  return 0:
}
```

- Dado um labirinto representado por uma matriz de tamanho $n \times m$, uma posição inicial $p_i = (x_i, y_i)$ e uma posição final $p_f = (x_f, y_f)$, tal que $p_i \neq p_f$, determinar se existe um caminho entre p_i e p_f .
- Podemos representar o labirinto como uma matriz M tal que:

$$M[x,y] = \begin{cases} -2 \text{, se a posição } (x,y) \text{ representa uma parede} \\ -1 \text{, se a posição } (x,y) \text{ não pertence ao caminho} \\ i \geq 0 \text{, se a posição } (x,y) \text{ pertence ao caminho} \end{cases}$$

 Neste caso, vamos supor que o labirinto seja cercado por paredes, eventualmente apenas com exceção do local designado como saída.

• A figura abaixo mostra um labirinto de tamanho 8×8 :

Χ	Χ	Χ	Х	Χ	Χ	Χ	Χ
Χ	•						Χ
Χ	Χ		Х				Χ
Χ			Х	Χ	Χ		Х
Χ		Χ	Х				Х
Χ		Χ				Χ	Х
Χ				Χ			Х
Χ	Χ	Χ	Х	Χ	Χ	0	Χ

Legenda:

- X: parede/obstáculo
- •: posição inicial
- o: posição final (saída do labirinto)

- Caminho encontrado usando a seguinte ordem de busca:
 - para esquerda
 - para baixo
 - para direita
 - para cima

X	Х	Х	Х	Х	Х	Χ	Х
X	00	01					Х
X	Χ	02	Χ				Х
X	04	03	Χ	Χ	Χ		Χ
X	05	l	Χ				Χ
X	06	Х	10	11	12	Х	Х
X	07	08	09	Χ	13	14	Χ
X	Χ	Χ	Χ	Χ	Χ	15	Х

- Caminho encontrado usando a seguinte ordem de busca:
 - para direita
 - para baixo
 - para esquerda
 - para cima

Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х
Χ	00	01	02	03	04	05	Χ
Χ	Χ		Χ			06	Χ
Χ			Χ	Χ	Χ	07	Χ
Χ		Χ	Χ		09	08	Χ
Χ		Χ			10	Χ	Χ
Χ				Х	11	12	Χ
Χ	Χ	Χ	Χ	Χ	Χ	13	Χ

```
#include <stdio.h>
#define MAX 10
typedef struct {
 int linha, coluna:
} Move;
int labirinto(int M[MAX][MAX], Move move[], int Li, int Ci, int Lf, int Cf);
void imprimeLabirinto(int M[MAX][MAX], int n, int m, int passos) {
 int i, j;
 printf("Existe uma solucao em %d passos:\n", passos);
  for (i = 0; i < n; i++) {
   for (j = 0; j < m; j++) {
      if (M[i][j] == -2) printf(" XX");
      if (M[i][j] == -1) printf(" ");
      if (M[i][j] >= 0) printf(" %02d", M[i][j]);
   printf("\n");
```

```
void obtemLabirinto(int M[MAX][MAX]. int *n. int *m.
                    int *Li, int *Ci, int *Lf, int *Cf) {
 int i, j, d;
 scanf("%d %d", n, m); /* Dimensoes do labirinto */
  scanf("%d %d", Li, Ci); /* Coordenadas da posicao inicial */
  scanf("%d %d", Lf, Cf); /* Coordenadas da posicao final (saida) */
  /* Labirinto: 1 = parede ou obstaculo
                0 = posicao livre */
 for (i = 0; i < *n; i++)
   for (j = 0; j < *m; j++) {
      scanf("%d", &d);
      if (d == 1)
       M[i][j] = -2;
      else
       M[i][j] = -1;
```

```
int main() {
  int M[MAX][MAX], resposta, n, m, Li, Ci, Lf, Cf;
  /* Define os movimentos validos no labirinto */
  Move move [4] = \{\{0, +1\}, \{+1, 0\}, \{0, -1\}, \{-1, 0\}\};
  /* Obtem as informações do labirinto */
  obtemLabirinto(M, &n, &m, &Li, &Ci, &Lf, &Cf);
  M[Li - 1][Ci - 1] = 0; /* Define a posicao inicial no tabuleiro */
  /* Tenta encontrar um caminho no labirinto */
  resposta = labirinto(M, move, Li - 1, Ci - 1, Lf - 1, Cf - 1);
  if (resposta)
    imprimeLabirinto(M, n, m, resposta);
  else
    printf("Nao existe solucao.\n");
  return 0:
```

}

```
int labirinto(int M[MAX][MAX], Move move[],
              int Li, int Ci, int Lf, int Cf) {
  int L, C, k, passos;
  if ((Li == Lf) && (Ci == Cf)) return M[Li][Ci]:
  /* Testa todos os movimentos a partir da posicao atual */
  for (k = 0; k < 4; k++) {
   L = Li + move[k].linha:
   C = Ci + move[k].coluna:
   /* Verifica se o movimento eh valido e gera uma solucao factivel */
   if (M[L][C] == -1) {
     M[L][C] = M[Li][Ci] + 1;
     passos = labirinto(M, move, L, C, Lf, Cf);
      if (passos > 0) return passos;
 return 0:
}
```

Exemplo de entrada:

```
8 8
2 2
1 1 1 1 1 1 1 1
1 0 1 0 0 0 0 1
  0 0 1 1 0 0 1
1 0 1 1 0 0 0 1
1 0 0 1 1 1 1 1
1 0 0 0 0 0 0 1
1 1 1 1 1 1 0 1
```

```
Existe uma solucao em 13 passos:

XX XX XX XX XX XX XX XX XX

XX 00 XX 04 05 06 07 XX

XX 01 02 03 XX 13 08 XX

XX 04 03 XX XX 12 09 XX

XX 05 XX XX 12 11 10 XX

XX 06 07 XX XX XX XX XX XX

XX 08 09 10 11 12 XX

XX XX XX XX XX XX XX XX
```

Backtracking - Exercícios

Exercício

Implemente um programa que resolva o problema das n Rainhas usando força bruta.

Exercício

Implemente um programa que resolva o problema da Clique usando backtracking.

Exercício

Implemente um programa que resolva o problema do Ciclo Hamiltoniano usando backtracking.

Em todos os casos, compare o desempenho do programa que usa a técnica de força bruta com o programa que usa *backtracking*.

Backtracking - Problemas de Otimização

- Muitas vezes não estamos apenas interessados em encontrar uma solução qualquer, mas em encontrar uma solução ótima (segundo algum critério de otimalidade pré-estabelecido).
- Por exemplo, no problema do labirinto, ao invés de determinar se existe um caminho entre o ponto inicial e o final (saída), podemos estar interessados em encontrar uma solução que use o menor número possível de passos.

Exercício

Modifique o programa visto anteriormente, que verifica se existe uma solução para um dado labirinto, de forma que ele encontre uma solução ótima para o problema (menor número possível de passos).

```
#include <stdio.h>
#define MAX 10
typedef struct {
 int linha, coluna;
} Move:
void imprimeLabirinto(int M[MAX][MAX], int n, int m, int passos) {
 int i, j;
 printf("Existe uma solucao em %d passos:\n", passos);
 for (i = 0; i < n; i++) {
   for (j = 0; j < m; j++) {
      if (M[i][j] == -2) printf(" XX");
      if (M[i][j] == -1) printf(" ");
      if (M[i][j] >= 0) printf(" %02d", M[i][j]);
   printf("\n");
```

```
void obtemLabirinto(int M[MAX][MAX]. int *n. int *m.
                    int *Li, int *Ci, int *Lf, int *Cf) {
 int i, j, d;
 scanf("%d %d", n, m); /* Dimensoes do labirinto */
  scanf("%d %d", Li, Ci); /* Coordenadas da posicao inicial */
  scanf("%d %d", Lf, Cf); /* Coordenadas da posicao final (saida) */
  /* Labirinto: 1 = parede ou obstaculo
                0 = posicao livre */
 for (i = 0; i < *n; i++)
   for (j = 0; j < *m; j++) {
      scanf("%d", &d);
      if (d == 1)
       M[i][j] = -2;
      else
       M[i][j] = -1;
```

```
int main() {
  int M[MAX][MAX], min, n, m, Li, Ci, Lf, Cf;
  /* Define os movimentos validos no labirinto */
  Move move [4] = \{\{0, +1\}, \{+1, 0\}, \{0, -1\}, \{-1, 0\}\}:
  /* Obtem as informações do labirinto */
  obtemLabirinto(M. &n. &m. &Li. &Ci. &Lf. &Cf):
  M[Li - 1][Ci - 1] = 0; /* Define a posicao inicial no tabuleiro */
  /* Tenta encontrar um caminho no labirinto */
  min = n * m:
  labirinto(M. move, Li - 1, Ci - 1, Lf - 1, Cf - 1, &min):
  if (min == n * m)
    printf("Nao existe solucao.\n"):
  else
    imprimeLabirinto(M. n. m. min);
  return 0:
}
```

```
void labirinto(int M[MAX][MAX], Move move[],
               int Li, int Ci, int Lf, int Cf, int *min) {
 int L. C. k:
  if ((Li == Lf) && (Ci == Cf))
   if (M[Lf][Cf] < *min)
      *min = M[Li][Ci]:
  else
   /* Testa todos os movimentos a partir da posicao atual */
   for (k = 0: k < 4: k++) {
     L = Li + move[k].linha:
     C = Ci + move[k].coluna;
     /* Verifica se o movimento eh valido e pode gerar uma solucao otima */
      if ((M[L][C] == -1) || (M[L][C] > M[Li][Ci] + 1)) {
        M[L][C] = M[Li][Ci] + 1:
        labirinto(M, move, L, C, Lf, Cf, min);
```

Exemplo de entrada:

```
8 8
2 2
1 1 1 1 1 1 1 1
1 0 1 0 0 0 0 1
  0 0 1 1 0 0 1
1 0 1 1 0 0 0 1
1 0 0 1 1 1 1 1
1 0 0 0 0 0 0 1
1 1 1 1 1 1 0 1
```

```
Existe uma solucao em 11 passos:

XX XX XX XX XX XX XX XX XX

XX 00 XX 04 05 06 07 XX

XX 01 02 03 XX 07 08 XX

XX 02 03 XX XX 08 09 XX

XX 03 XX XX 10 09 10 XX

XX 04 05 XX XX XX XX XX XX

XX 05 06 07 08 09 10 XX

XX XX XX XX XX XX XX XX XX
```

Branch and Bound

- Branch and Bound refere-se a um tipo de algoritmo usado para encontrar soluções ótimas para vários problemas de otimização, especialmente em otimização combinatória.
- Problemas de otimização podem ser tanto de maximização (por exemplo, maximizar o valor de uma solução), quanto de minimização (por exemplo, minimizar o custo de uma solução).
- Branch and Bound consiste em uma enumeração sistemática de todos os candidatos à solução, com eliminação de uma solução parcial quando uma destas duas situações for detectada (considerando um problema de minimização):
 - A solução parcial é incapaz de gerar uma solução válida (teste similar realizado pelo método de backtracking).
 - A solução parcial é incapaz de gerar uma solução ótima, considerando o valor da melhor solução encontrada até então (limitante superior) e o custo ainda necessário para gerar uma solução a partir da solução parcial atual (limitante inferior).

Branch and Bound

- O desempenho de um programa de Branch and Bound está fortemente relacionado à qualidade dos seus limitantes inferiores e superiores: quanto mais precisos forem estes limitantes, menos soluções parciais serão consideradas e mais rápido o programa encontrará a solução ótima.
- O nome Branch and Bound refere-se às duas fases do algoritmo:
 - ▶ Branch: testar todas as ramificações de uma solução candidata parcial.
 - Bound: limitar a busca por soluções sempre que detectar que o atual ramo da busca é infrutífero.

Branch and Bound - Caminho num Labirinto

- Podemos alterar o programa visto anteriormente para encontrar um caminho ótimo num labirinto usando a técnica de Branch and Bound.
- Podemos inicialmente notar que se um caminho parcial já usou tantos passos quanto o melhor caminho completo previamente descoberto, então este caminho parcial pode ser descartado.
- Mais do que isso, se o número de passos do caminho parcial mais o número de passos mínimos necessários entre a posição atual e a saída (desconsiderando eventuais obstáculos) for maior ou igual ao número de passos do melhor caminho previamente descoberto, então este caminho parcial também pode ser descartado.

```
void labirinto(int M[MAX][MAX], Move move[],
               int Li, int Ci, int Lf, int Cf, int *min) {
  int L. C. k:
  if ((Li == Lf) && (Ci == Cf)) {
    if (M[Lf][Cf] < *min)
      *min = M[Li][Ci];
  } else {
    /* Testa todos os movimentos a partir da posicao atual */
    for (k = 0; k < 4; k++) {
     L = Li + move[k].linha:
      C = Ci + move[k].coluna;
      /* Verifica se o movimento eh valido e pode gerar uma solucao otima */
      if ((M[L][C] == -1) \mid | (M[L][C] > M[Li][Ci] + 1)) {
        M[L][C] = M[Li][Ci] + 1:
        labirinto(M, move, L, C, Lf, Cf, min);
```

Branch and Bound - Caminho num Labirinto (versão 1)

```
void labirinto(int M[MAX][MAX]. Move move[].
               int Li, int Ci, int Lf, int Cf, int *min) {
 int L. C. k:
  if ((Li == Lf) && (Ci == Cf)) {
   *min = M[Li][Ci]:
 } else {
   /* Testa todos os movimentos a partir da posicao atual */
   for (k = 0: k < 4: k++) {
     L = Li + move[k].linha;
     C = Ci + move[k].coluna;
     /* Verifica se o movimento eh valido e pode gerar uma solucao otima */
      if ((M[L][C] == -1) || (M[L][C] > M[Li][Ci] + 1)) {
        M[L][C] = M[Li][Ci] + 1;
        if (M[L][C] < *min)
         labirinto(M, move, L, C, Lf, Cf, min);
```

Branch and Bound - Caminho num Labirinto (versão 2)

```
void labirinto(int M[MAX][MAX]. Move move[].
               int Li, int Ci, int Lf, int Cf, int *min) {
 int L. C. k:
  if ((Li == Lf) && (Ci == Cf)) {
   *min = M[Li][Ci]:
 } else {
   /* Testa todos os movimentos a partir da posicao atual */
   for (k = 0: k < 4: k++) {
     L = Li + move[k].linha;
     C = Ci + move[k].coluna;
     /* Verifica se o movimento eh valido e pode gerar uma solucao otima */
      if ((M[L][C] == -1) || (M[L][C] > M[Li][Ci] + 1)) {
        M[L][C] = M[Li][Ci] + 1;
        if (M[L][C] + abs(L - Lf) + abs(C - Cf) < *min)
         labirinto(M, move, L, C, Lf, Cf, min);
```

Branch and Bound - Caixeiro Viajante

- Considere um conjunto de n cidades e uma matriz C (não necessariamente simétrica), de tamanho $n \times n$, tal que C[i,j] > 0 indica o custo de, saindo da cidade i, chegar até a cidade j.
- Problema: qual é a forma, de custo mínimo, de, saindo de uma cidade qualquer, visitar todas as demais cidades, sem passar duas vezes por nenhuma cidade e, ao final, retornar para a cidade inicial?

Exercício

Escreva um programa de força bruta para resolver o problema do Caixeiro Viajante.

Exercício

Escreva um programa de branch and bound para resolver o problema do Caixeiro Viajante.

Branch and Bound - Clique Máxima

- Considere um conjunto P de n pessoas e uma matriz M de tamanho $n \times n$, tal que M[i,j] = M[j,i] = 1, se as pessoas i e j se conhecem e M[i,j] = M[j,i] = 0, caso contrário.
- Problema: qual é o maior subconjunto C (Clique Máxima) de pessoas escolhidas de P, tal que qualquer par de pessoas de C se conhecem?

Exercício

Escreva um programa de força bruta para resolver o problema da Clique Máxima.

Exercício

Escreva um programa de backtracking para resolver o problema da Clique Máxima.

Exercício

Escreva um programa de branch and bound para resolver o problema da Clique Máxima.