	TP1 Aerotherm - Blanchon Feyrit	Pt		АВС	D Note
ı	Préparation du travail				
1	Compléter le schéma TI avec l'instrumentation et les liaisons nécessaires à la conception de la boucle de régulation.	2	Α		2
2	Quel est le nom de la grandeur réglée ?	1	С		0,175
3	Quel est le principe utilisé pour mesurer la grandeur réglée ?	1	С		0,175
4	Quelle est la grandeur réglante ?	1	D		0,025
5	Donner une grandeur perturbatrice.	1	Α		0,5
6	Etablir le schéma de câblage complet en tenant compte de la nature des signaux utilisés. Prévoir les convertisseurs,	1	Α		1
U	alimentations, générateurs nécessaires. Faire apparaître les polarités.	_			
II.	Etude du procédé		_		
1	Paramétrer les entrées-sorties de votre régulateur en fonction de la nature des signaux utilisés.	1	Α		1
2	Tracer la caractéristique statique de votre procédé. On prendra au moins 6 mesures (3 pour les régulations de	1	Α		1
_	température et niveau).	_			_
3	En déduire le gain statique du procédé autour du point de fonctionnement.	1	Α		1
4	En déduire le sens d'action à régler sur le régulateur.	1	Α		1
5	Déterminer le modèle de Broïda du procédé, en faisant un échelon de 10% autour du point de fonctionnement.	3	D		0,15
III.	Etude du régulateur				
1	Déterminer la structure interne (parallèle, série ou mixte) du correcteur PID utilisé par Lintools.	2	В		1,125
2	En déduire le réglage du régulateur en utilisant le tableau de réglage fourni dans le cours.	2	D		0,075
IV.	Performances et optimisation				
1	Programmer votre régulateur pour assurer le fonctionnement de la régulation.	1	D		0,05
2	Mesurer les performances de votre régulation en réponse à un échelon de consigne de 10%. On mesurera le temps de	2	_		0.075
2	réponse à 10%, la valeur du premier dépassement et la précision relative.	2	D		0,075
3	Améliorer votre réglage pour réduire au maximum la valeur du temps de réponse. On donnera le nom et la valeur des	1	D		0.05
3	paramètres modifiés.	1	U		0,05
4	Mesurer à nouveau les performances de votre régulation, comparer les avec celles obtenues à la question précédente.	2	D		0,075
			Note	e sur : 2	0 9,5

I. Préparation du travail

1-

- 2° La grandeur réglée est la température de l'eau qui chauffe dans l'aérotherme
- 3°Le principe utilise est qu'il y a une sonde qui mesure les différentes températures selon les matériaux.
- 4°La grandeur réglante est la puissance du ventilateur.
- 5° L'ouverture qui laisse passer l'air en haut de l'aérotherme et du procédé,

6°

II. Étude du procédé

1°

3° Quand Y=0%, X=26,4°C Quand Y=100%, X=70°C Donc gain statique = Delta S/Delta E=26,4-70/0-100=0,43

4°

Lorsqu'on augmente la commande , la mesure augmente donc le procédé est direct donc le régulateur inverse ,

5°Je sais pas

III. Étude du régulateur

C'est une structure mixte

2° Je sais pas

IV. Performances et optimisation

- 1-Je sais pas
- 2-Je sais pas
- 3-Je sais pas
- 4-Je sais pas