

Microfluidic Stickers

Alexandra Homsy

What is microfluidics?

Definition:

Systems that process or manipulate small (10⁻⁹ to 10⁻¹⁸ liters) amounts of fluids, using channels with dimensions of tens to hundreds of micrometers

G. Whitesides, Nature, 2006, 442

Why microfluidics?

μTAS or Lab-on-a-Chip

- Small volumes
- Short reaction times
- Portability
- Low consumption of power
- Parallel operation
- Integration with other miniaturized devices

Materials for microfluidic systems

- Pyrex glass
 - Wet etching (HF, BHF) from 10 nm to 300 μm
 - Multi-layer process (integration of electrodes, wafer-wafer alignment)
- Silicon
 - Wet and dry etching, surface micromachining
- SU-8 photoepoxy
 - Pattern by photolithography
- PDMS, UV glue
 - Soft lithography (mould in SU-8 or Silicon)
 - Reversible bonding (or irreversible with O2 plasma to oxidize surfaces)
- Thermoplastics
 - Pattern by hot embossing, injection molding

Fabrication

Chronologically, microfabrication techniques evolved to:

- offer more flexibility in design
- require less technology infrastructure
- become cheaper to produce

- Wet etching in Pyrex glass, thermal bonding (also in Silicon)
- Wet/Dry etching in silicon to produce shapes replicated in polymers
- Soft lithography (layout produced in thick photoresist and replicated in polymer)
- Hot embossing (PMMA...) and injection molding

Standard lithography in cleanroom

(1) resist deposition by spin-coating

(2) optical lithography

(3) development

Standard etching in the cleanroom

Chip sealing: Anodic bonding or Fusion bonding in the cleanroom

Chip-to world interface

Leakage if:

bad bonding / or interconnection

Advantages:

- » Highly reproducible fabrication process
- » Known surface chemistry
- » No absorbtion of chemicals
- » Strong bonding

Disadvantages:

- » Time consuming
- » Expensive: only few devices per wafer
- » Needs a cleanroom to fabricate the chips
- » Not really disposable

Fabrication: Soft lithography

Chip microfabrication in any lab

Only need 1-2 days to fabricate a chip + interface

Most popular material: PDMS

 Another emerging material: Norland Optical Adhesives, the « microfludic stickers »

Fabrication: PDMS Soft lithography

Cleanroom: Dry etching of master (or thick photoresist lithography)

Lab: Pre-PDMS poured over the master, polymerization

Lab: PDMS peeled-off from the master

Lab: Bonding (irreversible with O2 plasma treatment)

Fabrication: Mass production

Microfluidic chips are big

expensive microfabrication

Alternative volume production in low cost plastic
 (hot embossing, injection molding)

PDMS vs NOA

	PDMS	NOA
Chemical resistance against organic solvents	No	Yes (most)
Gas permeability	Yes	No
Bonding to glass, itself, etc	Yes	Yes
Curing time	10 min to 2 days	10–20 min
Biocompatibility	Yes	Yes
Duration of surface modification	½ day	2 months and more
Commercialy available	Yes	Yes

Jamlab

Why NOA?

Resistant to organic solvents

Surface modification is stable

- Same microfluidic design can be either:
 - Microfabricated (2-4 months turnaround)
 - Tested by NOA rapid prototyping with only one designed wafer fabricated in the cleanroom (1-2 weeks turnaround)

NOA: Fabrication

Master fabrication in two steps

A: microfabrication in the cleanroom

B: PDMS molding

NOA: Fabrication

Soft lithography on PDMS master

Same basic procedure as PDMS soft lithography

NOA: Nano-Tera Project IrSens

 Microfluidic System for Near- and Mid-Infrared Analysis of Human Saliva

 Goal: build an integrated optofluidic system for cocaine detection by IR-spectroscopy

Microfluidics for liquid handling at the interface between

light excitation and detection

NOA: Chemical resistance

Tested different organic solvents

 Chloroform, ethyl acetate, n-pentane, n-hexane, nheptane, cyclohexane

Bonding area was attacked fast by chloroform

Bonding area attacked after some time (>4h) with ethyl acetate

NOA: Surface properties

Fig. 4: Dynamic wetting behavior analysis on NOA81 surface with 1wt% of APTES in its bulk. The advancing (θ_a) and receding (θ_r) contact angle was measured on the left and right side of the water droplet.

Fig. 5: Overview of dynamic wetting behavior of water on differently treated NOA81 surfaces. As additive APTES was mixed in the uncured polymer.

Philip Wägli, Alexandra Homsy, Nico F. de Rooij, Accepted for oral presentation at Eurosensors 2010 conference

NOA: Droplet generation

μ-fluidic Chip & Measurement Setup

Philip Wägli, Alexandra Homsy, Nico F. de Rooij, Accepted for oral presentation at Eurosensors 2010 conference

NOA: Droplet generation

Fig. 6: (A) Oil-in-water droplet generation: Ethylacetate droplets generated in saliva (colored with amarant) in a hydrophilic microfluidic channel. (B) Water-in-oil droplet generation: Saliva (colored with amarant) droplets generated in ethylacetate in a hydrophobic microfluidic channel.

Philip Wägli, Alexandra Homsy, Nico F. de Rooij, Accepted for oral presentation at Eurosensors 2010 conference

NOA: Fluorescent spectra

Figure 1: Comparison of fluorescent emission spectra of different NOAs and PDMS (excitation at λ_{ex} =470nm), 20 days after chip fabrication. The grey region around each plot represents the standard deviation of the measurement.

Figure 2: Comparison of fluorescent emission spectra of different NOAs and PDMS (excitation at λ_{ex} =546nm), 20 days after chip fabrication. The grey region around each plot represents the standard deviation of the measurement.

Philip Wägli, Blaise Guélat, Alexandra Homsy, Nico F. de Rooij, accepted for poster at micro-TAS 2010 conference

NOA: Fluorescent spectra

Figure 3: Evolution of fluorescent emission spectrum of NOA81 (excitation at λ_{ex} =470nm); directly after the UV-curing, 1 day after the fabrication, 2 days later and after a temperature treatment of 60°C for 2h, 8 and 20 days later. The intensity is decreasing and stable 8 days after the fabrication. The grey region around each plot represents the standard deviation of the measurement.

Philip Wägli, Blaise Guélat, Alexandra Homsy, Nico F. de Rooij, accepted for poster at micro-TAS 2010 conference

Applications: Capillary electrophoresis

Figure 5: Capillary electrophoresis injection of a sample of Rhodamine B (141 μ M, λ_{ex} =540 nm, λ_{em} = 625 nm) with 20 mM sodium tetraborate pH 9.0 as running buffer. An electrical field of 220 V/cm was applied along the NOA separation channel (17 mm). a) Intensity measurement of a well defined plug over time, 10 mm away from the channel intersection; b) Intensity picture of a Rhodamine B plug captured by the CCD camera.

Philip Wägli, Blaise Guélat, Alexandra Homsy, Nico F. de Rooij, accepted for poster at micro-TAS 2010 conference

24

Applications: bead generation

- Monodisperse biodegradable polymer (PLGA) microparticles
- Control of size dispersion
- PLGA Diluted in ethyl acetate and sprayed into aqueous phase

Alexandra Homsy, Petr Kloucek, Nico F. de Rooij, accepted for poster at micro-TAS 2010 conference

Applications: bead generation

Droplet size & distribution depends on various parameters

- Flow rate ratios
- Width of nozzle
- etc...

Alexandra Homsy, Petr Kloucek, Nico F. de Rooij, accepted for poster at micro-TAS 2010 conference

26

Summary

Microfluidic stickers well suited for protoyping

Full polymer properties still need to be investigated

Compatible with wide range of liquids, stable surface properties

Easy, fast and cheap to implement

27

Acknowledgements

Prof. Nico F. de Rooij

Mr Luca Ribetto

Mr Blaise Guélat

Mr Philip Wägli

Microfluidics Team @ SAMLAB

