

<u>Course</u> > <u>Unit 10</u>... > <u>Lec. 25:</u>... > 16. Exe...

## 16. Exercise: Birth and death

None due May 29, 2020 05:29 IST

Exercise: Birth and death

5 points possible (ungraded)

Consider the Markov chain below. Let us refer to a transition that results in a state with a higher (respectively, lower) index as a birth (respectively, death). Calculate the following probabilities, assuming that when we start observing the chain, it is already in steady-state.



1. The steady-state probabilities for each state.

$$\pi_1 =$$
 Answer: 0.2

$$\pi_2 =$$
 Answer: 0.4

$$\pi_3=$$
 Answer: 0.4

2. The probability that the first transition we observe is a birth.



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Answer: 0.2                                                                                              |                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------|
| 3. The probability that the first change of state we observe is a birth.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                          |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Answer: 0.36                                                                                             |                      |
| Solutio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | on:                                                                                                      |                      |
| 1. The local balance equations take the form $0.6\pi_1=0.3\pi_2$ and $0.2\pi_2=0.2\pi_3$ . Together with the normalization equation, we get $\pi_1=1/5$ , $\pi_2=\pi_3=2/5$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                          |                      |
| 2. We observe a birth if (i) we are in state 1 and the next transition is from 1 to 2, or (ii) we are in state 2 and the next transition is from 2 to 3. Hence, the desired probability is $\pi_1 p_{12} + \pi_2 p_{23} = 1/5$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                          |                      |
| 3. Note that a self-transition is not a change of state. If the state is 1, which happens with probability $1/5$ , the first change of state is certain to be a birth. If the state is 2, which happens with probability $2/5$ , the next change of state is to either 1 or 3. The probability that it is to 3 (i.e., a birth) is $p_{23}/\left(p_{21}+p_{23}\right)=0.2/\left(0.3+0.2\right)=2/5$ . Finally, if the state is 3, the probability that the first change of state is a birth is equal to 0 since 3 is the highest state. Thus, the probability that the first change of state that we observe is a birth is equal to $\left(1/5\right)\left(1\right)+\left(2/5\right)\left(2/5\right)=9/25$ . |                                                                                                          |                      |
| Sub                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | You have used 0 of 3 attempts                                                                            |                      |
| Answers are displayed within the problem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                          |                      |
| Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                          | Hide Discussion      |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nit 10: Markov chains:Lec. 25: Steady-state behavior of Markov<br>l 6. Exercise: Birth and death         |                      |
| Show                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | all posts 🕶                                                                                              | by recent activity 🗸 |
| ? (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | an't find my mistake                                                                                     | 9                    |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lint for Q3<br>Change of state" means we need to change state, so 1 transitions back to 1 is not a "Chan | ge of state". T      |

© All Rights Reserved

