Circuits for Benchmarking

Luís Paulo Santos, 28.Feb.2024

Summary

This document describes the classes of quantum circuits and respective data, available at https://github.com/luisps/QCircuits BenchTest.git.

Each circuit class is identified by a number (usually an exact thousand, hundred or dozen. Particular circuits are then identified by the lower digits.

Índice

Summary	. 1
Class 19 - variational EfficientSU2	. 2
Circuit 19 - variational EfficientSU2: 3 qubits, 1 rep	. 2
Circuit 191- variational EfficientSU2: 3 qubits, 2 rep	. 3
Circuit 192- variational EfficientSU2: 4 qubits, 2 layers	. 3
Circuit 193- variational EfficientSU2: 5 qubits, 1 rep	. 4
Circuit 194- variational EfficientSU2: 6 qubits, 1 rep	. 4
Circuit 195- variational EfficientSU2: 6 qubits, 2 rep	. 5
Circuit 196- variational EfficientSU2: 15 qubits, 2 rep	. 5
Class 4100 - Hidden Shift Circuits	. 6
Circuit 4100- Hidden shift: 100 qubits, hidden string = 1023	6
Circuit 4101- Hidden shift: 8 qubits, hidden string = 7	. 7
Circuit 4110- Hidden shift: 10 qubits, hidden string = 1023	. 7
Circuit 4120- Hidden shift: 20 qubits, hidden string = 1023	. 7
Circuit 4130- Hidden shift: 30 qubits, hidden string = 1023	. 7
Circuit 4140- Hidden shift: 40 qubits, hidden string = 1023	. 8
Circuit 4150- Hidden shift: 50 qubits, hidden string = 1023	. 8
Circuit 4160- Hidden shift: 60 qubits, hidden string = 1023	. 8
Circuit 4170- Hidden shift: 70 qubits, hidden string = 1023	. 8
Circuit 4180- Hidden shift: 80 qubits, hidden string = 1023	
Circuit 4190- Hidden shift: 90 qubits, hidden string = 1023	, <u>c</u>
Class 300 - IQP Inversion test	.9

Circuit 305- IQP: 5 qubits	9
Circuit 315- IQP: 15 qubits	9
Circuit 325- IQP: 25 qubits	10
Class 500 - Random Circuits	10
Circuit 508- Random: 8 qubits, nCycles = 6	10
Circuit 516 - Random: 16 qubits, nCycles = 12	11
Circuit 525 - Random: 25 qubits, nCycles = 18	11

Class 19 – variational EfficientSU2

This class of circuits corresponds to the so-called "hardware efficient" ansatz for variational circuits. It is obtained with the Qiskit method:

EfficientSU2(num_qubits, entanglement='linear', reps=reps)

The number of qubits and the number of layer repetitions is varied for the different circuit instances below.

Circuit 19- variational EfficientSU2: 3 qubits, 1 rep

6 layers $32768 \text{ paths} = 2^{\left(3*(6-1)\right)} = 2^{15}$ Non zero paths for $\langle 0|U|0\rangle = 4$ $\langle 0|U|0\rangle = 0.07304992 + 0.01779798$

Available Files	
circuit_19.data	The circuit definition
circuit_19.csv	Exact amplitudes for different transitions
circuit_19-raw-values.csv	Non zero paths for $\langle 0 U 0\rangle$
circuit_19.data_stats_IS_0_0.csv	Amplitudes and variances as a function of the number of samples for Importance Sampling and $\langle 0 U 0\rangle$
circuit_19.data_stats_BD_0_0.csv	Amplitudes and variances as a function of the number of samples for Bidirectional Sampling and $\langle 0 U 0\rangle$
circuit_19.data_stats_BD_MIS_0_0.csv	Amplitudes and variances as a function of the number of samples for Bidirectional Sampling with MIS and $\langle 0 U 0\rangle$

Circuit 191- variational EfficientSU2: 3 qubits, 2 rep

10 layers

1.342 * 10⁸ paths =
$$2^{(3*(9-1))} = 2^{24}$$

 $\langle 0|U|0\rangle = -0.29465061 - 0.18699787$

Available Files	
circuit_191.data	The circuit definition
circuit_191.csv	Exact amplitudes for different transitions
	Amplitudes and variances as a function of
circuit_191.data_stats_IS_0_0.csv	the number of samples for Importance
	Sampling and $\langle 0 U 0\rangle$
circuit_191.data_stats_BD_0_0.csv	Amplitudes and variances as a function of
	the number of samples for Bidirectional
	Sampling and $\langle 0 U 0\rangle$
circuit_191.data_stats_BD_MIS_0_0.csv	Amplitudes and variances as a function of
	the number of samples for Bidirectional
	Sampling with MIS and $\langle 0 U 0\rangle$

Circuit 192- variational EfficientSU2: 4 qubits, 2 layers

1.1 *
$$10^{12}$$
 paths = $2^{(4*(10-1))} = 2^{36}$
 $\langle 0|U|0\rangle = 0.06600214 - 0.21540996j$

Available Files	
circuit_192.data	The circuit definition
circuit_192.csv	Exact amplitudes for different transitions
circuit_192.data_stats_IS_0_0.csv	Amplitudes and variances as a function of
	the number of samples for Importance
	Sampling and $\langle 0 U 0\rangle$
circuit_192.data_stats_BD_0_0.csv	Amplitudes and variances as a function of
	the number of samples for Bidirectional
	Sampling and $\langle 0 U 0\rangle$
circuit_192.data_stats_BD_MIS_0_0.csv	Amplitudes and variances as a function of
	the number of samples for Bidirectional
	Sampling with MIS and $\langle 0 U 0 \rangle$

Circuit 193- variational EfficientSU2: 5 qubits, 1 rep

8 layers 3.436e+10 paths = $2^{(5*(8-1))} = 2^{35}$ $\langle 0|U|0 \rangle = -0.00172150+0.00127863j$

Available Files	
circuit_193.data	The circuit definition
circuit_193.csv	Exact amplitudes for different transitions
circuit_193.data_stats_IS_0_0.csv	Amplitudes and variances as a function of
	the number of samples for Importance
	Sampling and $\langle 0 U 0\rangle$
circuit_193.data_stats_BD_0_0.csv	Amplitudes and variances as a function of
	the number of samples for Bidirectional
	Sampling and $\langle 0 U 0\rangle$
circuit_193.data_stats_BD_MIS_0_0.csv	Amplitudes and variances as a function of
	the number of samples for Bidirectional
	Sampling with MIS and $\langle 0 U 0\rangle$

Circuit 194- variational EfficientSU2: 6 qubits, 1 rep

9 layers

2.815e+14 paths =
$$2^{(6*(9-1))} = 2^{48}$$

 $\langle 0|U|0 \rangle = -0.00273768-0.00909492j$

Available Files	
circuit_194.data	The circuit definition
circuit_194.csv	Exact amplitudes for different transitions

Circuit 195- variational EfficientSU2: 6 qubits, 2 rep

4.722e+21 paths =
$$2^{(6*(13-1))} = 2^{72}$$

 $\langle 0|U|0 \rangle = -0.00514611-0.02104634j$

Available Files	
circuit_195.data	The circuit definition
circuit_195.csv	Exact amplitudes for different transitions

Circuit 196- variational EfficientSU2: 15 qubits, 2 rep

22 layers

6.675e+94 paths =
$$2^{(15*(22-1))} = 2^{315}$$

 $\langle 0|U|0 \rangle = 0.00364578+0.00060584j$

Available Files	
circuit_196.data	The circuit definition
circuit_196.jpg	Circuit diagram
circuit_196.csv	Exact amplitudes for different transitions
circuit_196.data_stats_IS_0_0.csv	Amplitudes and variances as a function of
	the number of samples for Importance
	Sampling and $\langle 0 U 0\rangle$
circuit_196.data_stats_BD_0_0.csv	Amplitudes and variances as a function of
	the number of samples for Bidirectional
	Sampling and $\langle 0 U 0\rangle$
circuit_196.data_stats_BD_MIS_0_0.csv	Amplitudes and variances as a function of
	the number of samples for Bidirectional
	Sampling with MIS and $\langle 0 U 0 \rangle$

Class 4100 – Hidden Shift Circuits

Deterministic circuits, in the sense that only one basis state in the output has an amplitude different from 0 (= 1.0).

These are based on the algorithm (and code) presented in Peres, Filipa 2023 (sec 4.1) https://arxiv.org/pdf/2203.01789.pdf

Circuit 4100- Hidden shift: 100 qubits, hidden string = 1023

```
43 layers paths = 2^{(100*(43-1))} = 2^{4200} \langle 1023|U|0 \rangle = 1.0 + 0.0 \text{j}
```

Available Files	
circuit_4100.data	The circuit definition
circuit_4100.jpg	Circuit diagram

Circuit 4101- Hidden shift: 8 qubits, hidden string = 7

53 layers

1.692e+125 paths =
$$2^{(8*(53-1))} = 2^{416}$$

 $\langle 7|U|0 \rangle = 1.0 + 0.0 \text{j}$

Available Files	
circuit_4101.data	The circuit definition
circuit_4101.jpg	Circuit diagram
circuit_4101.csv	Exact amplitudes for different transitions

Circuit 4110- Hidden shift: 10 qubits, hidden string = 1023

56 layers

$$2^{(10*(56-1))} = 2^{560}$$

 $\langle 1023|U|0 \rangle = 1.0 + 0.0j$

Available Files	
circuit_4110.data	The circuit definition
circuit_4110.jpg	Circuit diagram

Circuit 4120- Hidden shift: 20 qubits, hidden string = 1023

46 layers

$$2^{(20*(46-1))} = 2^{900}$$

 $\langle 1023|U|0\rangle = 1.0 + 0.0j$

Available Files	
circuit_4120.data	The circuit definition
circuit_4120.jpg	Circuit diagram

Circuit 4130- Hidden shift: 30 qubits, hidden string = 1023

$$2^{(30*(43-1))} = 2^{1260}$$

 $\langle 1023|U|0 \rangle = 1.0 + 0.0j$

Available Files	
circuit_4130.data	The circuit definition
circuit_4130.jpg	Circuit diagram

Circuit 4140- Hidden shift: 40 qubits, hidden string = 1023

43 layers $2^{(40*(43-1))} = 2^{1680}$ $\langle 1023|U|0 \rangle = 1.0 + 0.0$

Available Files	
circuit_4140.data	The circuit definition
circuit_4140.jpg	Circuit diagram

Circuit 4150- Hidden shift: 50 qubits, hidden string = 1023

43 layers

$$2^{(50*(43-1))} = 2^{2100}$$

 $\langle 1023|U|0 \rangle = 1.0 + 0.0j$

Available Files	
circuit_4150.data	The circuit definition
circuit_4150.jpg	Circuit diagram

Circuit 4160- Hidden shift: 60 qubits, hidden string = 1023

43 layers

paths =
$$2^{(60*(43-1))} = 2^{2520}$$

 $(1023|U|0) = 1.0 + 0.0j$

Available Files	
circuit_4160.data	The circuit definition
circuit_4160.jpg	Circuit diagram

Circuit 4170- Hidden shift: 70 qubits, hidden string = 1023

43 layers

paths =
$$2^{(70*(43-1))} = 2^{2940}$$

 $(1023|U|0) = 1.0 + 0.0j$

Available Files	
circuit_4170.data	The circuit definition
circuit_4170.jpg	Circuit diagram

Circuit 4180- Hidden shift: 80 qubits, hidden string = 1023

paths =
$$2^{(80*(43-1))} = 2^{3360}$$

 $\langle 1023|U|0 \rangle = 1.0 + 0.0 \dot{j}$

Available Files	
circuit_4180.data	The circuit definition
circuit_4180.jpg	Circuit diagram

Circuit 4190- Hidden shift: 90 qubits, hidden string = 1023

43 layers

paths =
$$2^{(90*(43-1))} = 2^{3780}$$

 $\langle 1023|U|0 \rangle = 1.0 + 0.0j$

Available Files	
circuit_4190.data	The circuit definition
circuit_4190.jpg	Circuit diagram

Class 300 – IQP Inversion test

Inversion test of two random states encoded using IQP. The probability of $P(|0>^n)$ is the overlap between the states.

Circuit 305- IQP: 5 qubits

17 layers

1.209e+24 paths =
$$2^{(5*(17-1))} = 2^{80}$$

 $\langle 0|U|0 \rangle = -0.104462+0.106694j$

Available Files	
circuit_305.data	The circuit definition
circuit_305.jpg	Circuit diagram
circuit_305.csv	Exact amplitudes for different transitions

Circuit 315- IQP: 15 qubits

6.828e+243 paths =
$$2^{(15*(55-1))} = 2^{810}$$

 $\langle 0|U|0 \rangle = -0.00128171-0.00008649j$

Available Files	
circuit_315.data	The circuit definition
circuit_315.jpg	Circuit diagram
circuit_315.csv	Exact amplitudes for different transitions

Circuit 325- IQP: 25 qubits

97 layers paths = $2^{(25*(97-1))} = 2^{2400}$ $\langle 0|U|0 \rangle = -0.00013443-0.00022139j$

Available Files	
circuit_325.data	The circuit definition
circuit_325.jpg	Circuit diagram
circuit_325.csv	Exact amplitudes for different transitions

Class 500 – Random Circuits

Randomly generated circuits. The output state should follow a quasi-uniform distribution.

These are based on the algorithm (and code) presented in Peres, Filipa 2023 (sec 4.2) https://arxiv.org/pdf/2203.01789.pdf

Circuit 508- Random: 8 qubits, nCycles = 6

9 layers

1.845e+19 paths =
$$2^{(8*(9-1))} = 2^{64}$$

 $\langle 0|U|0 \rangle = -0.04419417+0.10669417j$

Available Files	
circuit_508.data	The circuit definition
circuit_508.jpg	Circuit diagram
circuit_508.csv	Exact amplitudes for different transitions
circuit_508.data_stats_BD_MIS_0_0.csv	Amplitudes and variances as a function of
	the number of samples for Bidirectional
	Sampling with MIS and $\langle 0 U 0\rangle$

Circuit 510- Random: 10 qubits, nCycles = 7

paths =
$$2^{(10*(13-1))} = 2^{120}$$

 $\langle 0|U|0 \rangle = -0.02209709+0.05334709$

Available Files		
circuit_510.data	The circuit definition	
circuit_510.jpg	Circuit diagram	
circuit_510.csv	Exact amplitudes for different transitions	

Circuit 512- Random: 12 qubits, nCycles = 8

15 layers

paths =
$$2^{(12*(15-1))} = 2^{168}$$

 $\langle 16|U|0 \rangle = 0.009153-0.022097j$

Available Files	
circuit_512.data	The circuit definition
circuit_512.jpg	Circuit diagram
circuit_512.csv	Exact amplitudes for different transitions

Circuit 516- Random: 16 qubits, nCycles = 12

22 layers

1.400e+101 paths =
$$2^{(16*(22-1))} = 2^{336}$$

 $\langle 0|U|0 \rangle = -0.00040451-0.00138107j$

Available Files		
circuit_516.data	The circuit definition	
circuit_516.jpg	Circuit diagram	
circuit_516.csv	Exact amplitudes for different transitions	

Circuit 525 - Random: 25 qubits, nCycles = 18

5.922e+225 paths =
$$2^{(25*(31-1))} = 2^{750}$$

 $\langle 0|U|0 \rangle = 0.00035204+0.00038255j$

Available Files	
circuit_525.data	The circuit definition
circuit_525.jpg	Circuit diagram
circuit_525.csv	Exact amplitudes for different transitions