Proyecto Final Análisis de Supervivencia

Análisis de Supervivencia para fallas de motor

Víctor Samayoa - 175750 Saúl Caballero - 133930 Delia Del Águila - 167188

Section 1

Introducción

Introducción

Se obtuvo la base de datos usada para la competencia de desafío de pronóstico en la Conferencia Internacional sobre pronóstico y gestión de la salud (PHM08). [1]

- La base consiste en múltiples series de tiempo multivariadas.
- Cada serie es de un motor diferente pero de un mismo tipo.
- Hay tres configuraciones operativas que tienen un efecto sustancial en el rendimiento del motor.
- Se cuentan con medidas de 21 sensores en cada ciclo.

Objetivos

Los objetivos son:

- Estimar la función de supervivencia para los motores donde el evento de falla será cuando el motor no pueda seguir funcionando y tenga que ser mandado a mantenimiento.
- Entender si las configuraciones y las lecturas de sensor ayudan a explicar la falla del motor.
- Construir un modelo predictivo que permita estimar el ciclo previo a la falla.

Section 2

Análisis de Datos

- La base de datos cuenta con 75,738 registros correspondientes a 436 motores
- Cada registro corresponde a un ciclo de un motor en específico e incluye las configuraciones iniciales del ciclo así como las mediciones de los sensores.
- El 50 % de censura por la derecha.

Cada configuración tiene mediciones en la siguiente escala:

- Configuración 1: De 0 a 42.1
- Configuración 2: De 0 a 0.842
- Configuración 3: Valores discretos de 0 a 100 con saltos de 20 puntos

Se decide dejar solamente una variable de aquellos pares que tengan una correlación arriba 0.90:

- sensor 01
- sensor 03
- sensor 08
- sensor 13
- sensor 18

En general cada sensor tiene mediciones en la siguiente escala:

- Sensor 1: De 129.2 a 644.4
- Sensor 3: De 1029 a 1615
- Sensores 8 y 13: De 1915 a 2391
- Sensor 18: Con valores enteros entre 1915 y 2388

Section 3

Análisis inferencial

Estimador Kaplan Meier

- Se procede a obtener el estimador Kaplan Meier para la función de supervivencia.
- La función de supervivencia con el estimador de Kaplan Meier se comporta de la siguiente forma:

Estimador Kaplan Meier

Comparación con el modelo exponencial:

Comparación con el modelo Weibull:

Comparación con el modelo lognormal:

Comparación con el modelo loglogistico:

Modelos de vida acelerada

- Con base en las gráficas anteriores, obsevamos que el estimador de la función de supervivencia se ajusta tanto a un modelo lognormal como loglogistico.
- Se procede a realizar ajustes de regresión utilizando como covariables la información asociada a la configuración inicial.
- Se procede a realizar ajustes de regresión utilizando como covariables la información asociada a la información de los sensores.

Modelo loglogistico

Coeficientes	Valor	Error estandar	Estadístico Z	p-value
Intercepto	-57.363	21.934	-2.615	0.009
Config 3	-0.002	0.001	-2.046	0.041
Sensor 01	0.144	0.048	2.982	0.003
Sensor 03	-0.009	0.002	-4.096	0.000
Sensor 13	0.050	0.018	2.690	0.007
Sensor 18	-0.049	0.020	-2.507	0.012
Log(scale)	-2.127	0.054	-39.451	0.000

Modelo lognormal

Coeficientes	Valor	Error estandar	Estadístico Z	p-value
Intercepto	9.005	0.906	9.938	0.000
Sensor 03	-0.009	0.002	-4.477	0.000
Sensor 08	0.082	0.024	3.451	0.001
Sensor 13	-0.007	0.002	-4.118	0.000
Sensor 18	-0.070	0.023	-3.055	0.002
Log(scale)	-1.582	0.047	-33.582	0.000

Interpretación

- Un aumento de una desviación estándar del sensor 3 resulta en una disminución del 0.89 % del tiempo de vida.
- Un aumento de una desviación estándar del sensor 8 resulta en un aumento del 8.54 % del tiempo de vida.
- Un aumento de una desviación estándar del sensor 13 resulta en una disminución del 0.69 % del tiempo de vida.
- Un aumento de una desviación estándar del sensor 18 resulta en una disminución del 6.76 % del tiempo de vida.

Section 4

Conclusiones

Conclusiones

- Se encontró un buen ajuste de la función de supervivencia con Kaplan-Meier.
- Se encontró que los modelos paramétricos loglogístico o lognormal podían ajustar bien al estimador de Kaplan-Meier.
- Se generaron modelos con ambas distribuciones y se encontró que el mejor ajuste lo tenía el modelo lognormal.
- Se interpretaron los coeficientes y los sensores que mayor impacto tienen sobre la supervivencia son el 8 y el 18.
- Se generó el modelo predictivo con el modelo lognormal.

Section 5

Bibliografía

Bibliografía

[1] https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/