

Matemática Discreta 2

Aulas 07 e 08 Aritmética Modular

Cristiane Loesch

Brasília 2025

RELEMBRANDO

DIV e **MOD**

- → Operações associadas ao processo de divisão
- \rightarrow Dados $a,b\in\mathbb{Z}$ com $b\neq 0$ e $q,r\in\mathbb{Z}$ tem-se que:

$$a = qb + r$$

$$0 \le r < |b|$$

com,

$$a$$
 div $b=q$

$$a \mod b = r$$

→ Aritmética dos Restos

→ números inteiros e racionais

→ operações básicas com significados ligeiramente diferentes

→ aritmética finita

Seja o conjunto Z_n no qual $n \in \mathbb{Z}$, positivo dado por:

$$Z_n = \{0,1,2,\ldots,n-1\}$$

Tal conjunto é denominado conjunto dos números inteiros *mod n*.

Seja o conjunto Z_n no qual $n \in \mathbb{Z}$, positivo dado por:

$$Z_n = \{0,1,2,\ldots,n-1\}$$

Tal conjunto é denominado conjunto dos números inteiros *mod n*.

As operações definidas neste conjunto são:

 \oplus \rightarrow adição mod n

⊗ → multiplicação mod n

⊖→ subtração *mod n*

⊘→ divisão *mod n*

ADIÇÃO E MULTIPLICAÇÃO MODULARES

Seja n um inteiro positivo e $a,b \in Z_n$. Definimos:

$$a \oplus b = (a+b) \mod n$$

 $a \otimes b = (a\dot{b}) \mod n$

ADIÇÃO E MULTIPLICAÇÃO MODULARES

ATENÇÃO AO CONTEXTO!

$$Z_{10} \longrightarrow 5 \oplus 5 = 0$$

$$Z_9 \longrightarrow 5 \oplus 5 = 1$$

Observe que o resultado
da operação de
da operação mod n
adição mod em
adição mod lente
será diferente em
cada conjunto!!!
yamos relembrar
o por que?!

ADIÇÃO E MULTIPLICAÇÃO MODULARES

ATENÇÃO AO CONTEXTO!

ADIÇÃO E MULTIPLICAÇÃO MODULARES

ATENÇÃO AO CONTEXTO!

ADIÇÃO E MULTIPLICAÇÃO MODULARES

Propriedades:

→ ambas as operações gozam das propriedades algébricas usuais.

ADIÇÃO E MULTIPLICAÇÃO MODULARES

Propriedades:

→ ambas as operações gozam das propriedades algébricas usuais.

Proposições:

I) Sejam $a, b \in Z_n \Rightarrow a \oplus b$ e $a \otimes b \in Z_n$ (ppdde do fechamento).

ADIÇÃO E MULTIPLICAÇÃO MODULARES

Propriedades:

→ ambas as operações gozam das propriedades algébricas usuais.

- I) Sejam $a, b \in \mathbb{Z}_n \Rightarrow a \oplus b$ e $a \otimes b \in \mathbb{Z}_n$ (ppdde do fechamento).
- II) Seja $n \in \mathbb{Z}$ e $n \ge \alpha$

ADIÇÃO E MULTIPLICAÇÃO MODULARES

Propriedades:

→ ambas as operações gozam das propriedades algébricas usuais.

- I) Sejam $a, b \in \mathbb{Z}_n \Rightarrow a \oplus b$ e $a \otimes b \in \mathbb{Z}_n$ (ppdde do fechamento).
- II) Seja $n \in \mathbb{Z}$ e $n \ge \alpha$
- * comutativa: $\forall a, b \in Z_n \longrightarrow a \oplus b = b \oplus a$ e $a \otimes b = b \otimes a$

ADIÇÃO E MULTIPLICAÇÃO MODULARES

Propriedades:

→ ambas as operações gozam das propriedades algébricas usuais.

- I) Sejam $a, b \in Z_n \Rightarrow a \oplus b$ e $a \otimes b \in Z_n$ (ppdde do fechamento).
- II) Seja $n \in \mathbb{Z}$ e $n \ge \alpha$
- * comutativa: $\forall a, b \in \mathbb{Z}_n \longrightarrow a \oplus b = b \oplus a$ e $a \otimes b = b \otimes a$
- * associativa: $\forall a,b,c \in \mathbb{Z}_n \longrightarrow a \oplus (b \oplus c) = (a \oplus b) \oplus c \ e \ a \otimes (b \otimes c) = (a \otimes b) \otimes c$

ADIÇÃO E MULTIPLICAÇÃO MODULARES

Propriedades:

→ ambas as operações gozam das propriedades algébricas usuais.

- I) Sejam $a, b \in Z_n \Rightarrow a \oplus b$ e $a \otimes b \in Z_n$ (ppdde do fechamento).
- II) Seja $n \in \mathbb{Z}$ e $n \ge \alpha$
- * comutativa: $\forall a, b \in Z_n \longrightarrow a \oplus b = b \oplus a$ e $a \otimes b = b \otimes a$
- * associativa: $\forall a,b,c \in \mathbb{Z}_n \longrightarrow a \oplus (b \oplus c) = (a \oplus b) \oplus c \ e \ a \otimes (b \otimes c) = (a \otimes b) \otimes c$
- * elemento identidade: $\forall a \in \mathbb{Z}_n \longrightarrow a \oplus 0 = 0 \oplus a = a$ e $a \otimes 1 = 1 \otimes a = a$

ADIÇÃO E MULTIPLICAÇÃO MODULARES

Propriedades:

→ ambas as operações gozam das propriedades algébricas usuais.

- I) Sejam $a, b \in Z_n \Rightarrow a \oplus b$ e $a \otimes b \in Z_n$ (ppdde do fechamento).
- II) Seja $n \in \mathbb{Z}$ e $n \ge \alpha$
- * comutativa: $\forall a, b \in Z_n \longrightarrow a \oplus b = b \oplus a$ e $a \otimes b = b \otimes a$
- * associativa: $\forall a,b,c \in \mathbb{Z}_n \longrightarrow a \oplus (b \oplus c) = (a \oplus b) \oplus c \ e \ a \otimes (b \otimes c) = (a \otimes b) \otimes c$
- * elemento identidade: $\forall a \in \mathbb{Z}_n \longrightarrow a \oplus 0 = 0 \oplus a = a$ e $a \otimes 1 = 1 \otimes a = a$
- * distributiva: $\forall a, b, c \in \mathbb{Z}_n \longrightarrow a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$

ADIÇÃO E MULTIPLICAÇÃO MODULARES

EXEMPLO: Mostre as propriedades da adição e multiplicação modulares nos exemplos abaixo:

SUA VEZ! Z₁₀

a) comutativa

$$3 \oplus 7 = 7 \oplus 3$$
$$2 \otimes 6 = 6 \otimes 2$$

b) associativa

$$3\oplus(2\oplus4)=(3\oplus2)\oplus4$$

c) elemento identidade

$$1 \oplus 0 = 0 \oplus 1 = 1$$

 $2 \otimes 1 = 1 \otimes 2 = 2$

d) distributiva

$$3 \otimes (2 \oplus 4) = (3 \otimes 2) \oplus (3 \otimes 4)$$

ADIÇÃO E MULTIPLICAÇÃO MODULARES

Obs:

$$(X*Y) \mod Z = (X \mod Z *Y \mod Z) \mod Z$$

ADIÇÃO E MULTIPLICAÇÃO MODULARES

Obs:

$$(X*Y) \mod Z = (X \mod Z * Y \mod Z) \mod Z$$

$$(11 \mod 10 + 100 \mod 10) \mod 10 =$$

$$(77 \mod 31.31 \mod 31) \mod 31 =$$

ADIÇÃO E MULTIPLICAÇÃO MODULARES

Obs:

$$(X*Y) \mod Z = (X \mod Z * Y \mod Z) \mod Z$$

$$(11 \mod 10 + 100 \mod 10) \mod 10 = (11 + 100) \mod 10 =$$

 $(77 \mod 31 \cdot 31 \mod 31) \mod 31 =$

ADIÇÃO E MULTIPLICAÇÃO MODULARES

Obs:

$$(X*Y) \mod Z = (X \mod Z *Y \mod Z) \mod Z$$

$$(11 \mod 10 + 100 \mod 10) \mod 10 = (11 + 100) \mod 10 = 111 \mod 10$$

 $(77 \mod 31 \cdot 31 \mod 31) \mod 31 =$

ADIÇÃO E MULTIPLICAÇÃO MODULARES

Obs:

$$(X*Y) \mod Z = (X \mod Z *Y \mod Z) \mod Z$$

$$(11 \mod 10 + 100 \mod 10) \mod 10 = (11 + 100) \mod 10 = 111 \mod 10$$

 $(77 \mod 31 \cdot 31 \mod 31) \mod 31 = (77 \cdot 31) \mod 31 =$

ADIÇÃO E MULTIPLICAÇÃO MODULARES

Obs:

$$(X*Y) \mod Z = (X \mod Z *Y \mod Z) \mod Z$$

$$(11 \mod 10 + 100 \mod 10) \mod 10 = (11 + 100) \mod 10 = 111 \mod 10$$

 $(77 \mod 31 \cdot 31 \mod 31) \mod 31 = (77 \cdot 31) \mod 31 = 2387 \mod 31$

CÍRCULO MODULAR

EXEMPLO: 12+9 mod 7

CÍRCULO MODULAR

EXEMPLO: 12+9 mod 7

FONTE:

CÍRCULO MODULAR

EXEMPLO: 12+9 mod 7

→ sequência de passos para a direita

FONTE:

CÍRCULO MODULAR

EXEMPLO: 12+9 mod 7

- → sequência de passos para a direita
- → observe que 7 passos terminarão sempre na mesma posição do círculo

FONTF:

CÍRCULO MODULAR

EXEMPLO: 12+9 mod 7

- → sequência de passos para a direita
- → observe que 7 passos terminarão sempre na mesma posição do círculo
- → voltas completas não contribuem para posição final

FONTF:

CÍRCULO MODULAR

EXEMPLO: 12+9 mod 7

FONTE:

CÍRCULO MODULAR

EXEMPLO: 12+9 mod 7

FONTE:

CÍRCULO MODULAR

EXEMPLO: 12+9 mod 7

FONTE:

CÍRCULO MODULAR

EXEMPLO: 12+9 mod 7

FONTE:

SUBTRAÇÃO MODULAR

DEFINIÇÃO:

Seja $n \in \mathbb{Z}_+$ e $a, b \in \mathbb{Z}_n$ Define-se $a \ominus b$ como o único valor $x \in \mathbb{Z}_n$ tal que $a = b \oplus x$. Assim,

$$a \ominus b = (a - b) \mod n$$

SUBTRAÇÃO MODULAR

<u>DEFINIÇÃO:</u>

Seja $n \in \mathbb{Z}_+$ e $a,b \in Z_n$ Define-se $a \ominus b$ como o único valor $x \in Z_n$ tal que $a = b \oplus x$. Assim, $a \ominus b = (a - b) \mod n$

EXEMPLO:
$$Z_{10}$$

8
$$\ominus$$
 5 =

SUBTRAÇÃO MODULAR

<u>DEFINIÇÃO:</u>

Seja $n \in \mathbb{Z}_+$ e $a,b \in Z_n$ Define-se $a \ominus b$ como o único valor $x \in Z_n$ tal que $a = b \oplus x$. Assim, $a \ominus b = (a - b) \mod n$

EXEMPLO:
$$Z_{10}$$

$$8 \ominus 5 = (8 - 5) \mod 10$$

SUBTRAÇÃO MODULAR

<u>DEFINIÇÃO:</u>

Seja $n \in \mathbb{Z}_+$ e $a,b \in Z_n$ Define-se $a \ominus b$ como o único valor $x \in Z_n$ tal que $a = b \oplus x$. Assim, $a \ominus b = (a - b) \mod n$

EXEMPLO:
$$Z_{10}$$

$$8 \ominus 5 = (8-5) \mod 10 = 3 \mod 10 = 3$$

DIVISÃO MODULAR

→ significativamente diferente de quaisquer outras operações modulares

DIVISÃO MODULAR

- → significativamente diferente de quaisquer outras operações modulares
- → multiplicação e divisão modulares são inversas?

DIVISÃO MODULAR

- → significativamente diferente de quaisquer outras operações modulares
- → multiplicação e divisão modulares são inversas?

EXEMPLO: Dados $a,b \in Z_{10}$ ($b \neq 0$) existe uma solução para $a = b \otimes x$? Tal solução é única'?

a) a=6, b=2

DIVISÃO MODULAR

- → significativamente diferente de quaisquer outras operações modulares
- → multiplicação e divisão modulares são inversas?

a)
$$a=6, b=2 \longrightarrow 6=2 \otimes x$$

<u>DIVISÃO MODULAR</u>

- → significativamente diferente de quaisquer outras operações modulares
- → multiplicação e divisão modulares são inversas?

a)
$$a=6,b=2$$
 \longrightarrow $6=2\otimes x$ \longrightarrow $x=3$ ou $x=8$
Lembre-se: $(2\cdot3) \mod 10=6 \mod 10=6$

DIVISÃO MODULAR

- → significativamente diferente de quaisquer outras operações modulares
- → multiplicação e divisão modulares são inversas?

a)
$$a=6,b=2$$
 $\longrightarrow 6=2 \otimes x$ $\longrightarrow x=3$ ou $x=8$
Lembre-se: $(2\cdot3) \mod 10=6 \mod 10=6$
 $(2\cdot8) \mod 10=16 \mod 10=6$

DIVISÃO MODULAR

- → significativamente diferente de quaisquer outras operações modulares
- → multiplicação e divisão modulares são inversas?

- a) $a=6,b=2 \longrightarrow 6=2 \otimes x \longrightarrow x=3$ ou x=8
- b) a=7,b=2

DIVISÃO MODULAR

- → significativamente diferente de quaisquer outras operações modulares
- → multiplicação e divisão modulares são inversas?

a)
$$a=6,b=2 \longrightarrow 6=2 \otimes x \longrightarrow x=3$$
 ou $x=8$

b)
$$a=7, b=2 \longrightarrow 7=2 \otimes x$$

DIVISÃO MODULAR

- → significativamente diferente de quaisquer outras operações modulares
- → multiplicação e divisão modulares são inversas?

a)
$$a=6,b=2 \longrightarrow 6=2 \otimes x \longrightarrow x=3$$
 ou $x=8$

b)
$$a=7,b=2 \longrightarrow 7=2 \otimes x \longrightarrow \exists x$$

DIVISÃO MODULAR

- → significativamente diferente de quaisquer outras operações modulares
- → multiplicação e divisão modulares são inversas?

a)
$$a=6, b=2 \longrightarrow 6=2 \otimes x \longrightarrow x=3$$
 ou $x=8$

b)
$$a=7,b=2 \longrightarrow 7=2 \otimes x \longrightarrow \exists x$$

c)
$$a=7,b=3$$

DIVISÃO MODULAR

- → significativamente diferente de quaisquer outras operações modulares
- → multiplicação e divisão modulares são inversas?

a)
$$a=6,b=2 \longrightarrow 6=2 \otimes x \longrightarrow x=3$$
 ou $x=8$

b)
$$a=7,b=2 \longrightarrow 7=2 \otimes x \longrightarrow \exists x$$

c)
$$a=7, b=3 \longrightarrow 7=3 \otimes x$$

DIVISÃO MODULAR

- → significativamente diferente de quaisquer outras operações modulares
- → multiplicação e divisão modulares são inversas?

a)
$$a=6, b=2 \longrightarrow 6=2 \otimes x \longrightarrow x=3$$
 ou $x=8$

b)
$$a=7,b=2 \longrightarrow 7=2 \otimes x \longrightarrow \nexists x$$

c)
$$a=7,b=3 \longrightarrow 7=3 \otimes x \longrightarrow x=9$$

DIVISÃO MODULAR

- → significativamente diferente de quaisquer outras operações modulares
- → multiplicação e divisão modulares são inversas?

a)
$$a=6, b=2 \longrightarrow 6=2 \otimes x \longrightarrow x=3$$
 ou $x=8$

b)
$$a=7,b=2 \longrightarrow 7=2 \otimes x \longrightarrow \exists x$$

c)
$$a=7,b=3 \longrightarrow 7=3 \otimes x \longrightarrow x=9 \longrightarrow 7 \otimes 3=9$$

INVERSO

Seja n um inteiro positivo e $a \in Z_n$. O inverso de a é um elemento $b \in Z_n$, tal que $a \otimes b = 1 \Rightarrow a \cdot b \mod n = 1$.

- \rightarrow um elemento de Z_n que tenha inverso, é chamado invertível
- \rightarrow se a tem inverso em Z_n , então tem apenas um inverso
- → supondo que a seja invertível. Se $b=a^{-1} \Rightarrow b$ é invertível e $a=b^{-1}$ logo,

$$(a^{-1})^{-1} = a$$

INVERSO

DEFINIÇÃO:

Seja n um inteiro positivo e seja b um elemento invertível de Z_n .

Seja $a \otimes b$ arbitrário. Então, $a \otimes b^{-1}$

INVERSO

DEFINIÇÃO:

Seja n um inteiro positivo e seja b um elemento invertível de Z_n .

Seja $a \otimes b$ arbitrário. Então, $a \otimes b^{-1}$

EXEMPLO:

INVERSO

<u>DEFINIÇÃO:</u>

Seja n um inteiro positivo e seja b um elemento invertível de Z_n .

Seja $a \otimes b$ arbitrário. Então, $a \otimes b^{-1}$

EXEMPLO: Calcule $2 \oslash 7$, ou seja 7^{-1} , em Z_{10}

INVERSO

EXEMPLO: Calcule $2 \oslash 7$, ou seja 7^{-1} , em Z_{10}

* usar a tabela de multiplicação:

INVERSO

EXEMPLO: Calcule $2 \oslash 7$, ou seja 7^{-1} , em Z_{10}

* usar a tabela de multiplicação:	\otimes	0	1	2	3	4	5	6	7	8	9
	0										
	1										
	2										
	3										
	4										
	5										
	6										
	7										
	8										
	9										

<u>INVERSO</u>

EXEMPLO: Calcule $2 \oslash 7$, ou seja 7^{-1} , em Z_{10} \otimes * usar a tabela de multiplicação: 0 $(0.0) \mod 10 = 0 \mod 10 = 0$ 3 5 6 8

INVERSO

EXEMPLO: Calcule
$$2 \oslash 7$$
 , ou seja 7^{-1} , em Z_{10}

* usar a tabela	\otimes	0	1	2	3	4	5	6	7	8	9
de multiplicação:	0	0	0	0	0	0	0	0	0	0	0
$(0 \cdot 0) mod 10 = 0 mod 10 = 0$	1	0									
	2	0									
	3	0									
	4	0									
	5	0									
	6	0									
	7	0									
	8	0									
	9	0									

<u>INVERSO</u>

EXEMPLO: Calcule $2 \oslash 7$, ou seja 7^{-1} , em Z_{10} \otimes * usar a tabela de multiplicação: 0 2 3 9 $(0.0) \mod 10 = 0 \mod 10 = 0$ 0 (1.2) mod 10=2 mod 10=23 3 5 6 6 0 8 8 9 9

<u>INVERSO</u>

EXEMPLO: Calcule $2 \oslash 7$, ou seja 7^{-1} , em Z_{10} \otimes * usar a tabela de multiplicação: $(0.0) \mod 10 = 0 \mod 10 = 0$ (1.2) mod 10=2 mod 10=2 $(2\cdot3) \mod 10 = 6 \mod 10 = 6$

<u>INVERSO</u>

EXEMPLO: Calcule $2 \oslash 7$, ou seja 7^{-1} , em Z_{10}												
* usar a tabela	\otimes	0	1	2	3	4	5	6	7	8	9	
de multiplicação:	0	0	0	0	0	0	0	0	0	0	0	
$\cdot 0) mod 10 = 0 mod 10 = 0$	1	0	1	2	3	4	5	6	7	8	9	
$\cdot 2) mod 10 = 2 mod 10 = 2$	2	0	2	4	6	8	0	2	4	6	8	
	3	0	3	6	9	2	5	8	1	4	7	
$\cdot 3) mod 10 = 6 mod 10 = 6$	4	0	4	8	2	6	0	4	8	2	6	
	5	0	5	0	5	0	5	0	5	0	5	
$\cdot 2) mod 10 = 10 mod 10 = 0$	6	0	6	2	8	4	0					
	7	0	7	4	1	8	5					
	8	0	8	6	4	2	0					
	9	0	9	8	7	6	5					

 \otimes

 $(6 \cdot 2) \mod 10 = 12 \mod 10 = 2$

Aritmética Modular

INVERSO

EXEMPLO: Calcule
$$2 \oslash 7$$
 , ou seja 7^{-1} , em Z_{10}

* usar a tabela

de multiplicação:

 $(0.0) \mod 10 = 0 \mod 10 = 0$

(1.2) mod 10=2 mod 10=2

 $(2\cdot3) \mod 10 = 6 \mod 10 = 6$

 $(5\cdot2) \mod 10 = 10 \mod 10 = 0$

INVERSO

EXEMPLO: Calcule $2 \oslash 7$, ou seja 7^{-1} , em Z_{10}

* usar a tabela

de multiplicação:

 $(0.0) \mod 10 = 0 \mod 10 = 0$

 $(1.2) \mod 10 = 2 \mod 10 = 2$

 $(2\cdot3) \mod 10 = 6 \mod 10 = 6$

 $(5\cdot2) \mod 10 = 10 \mod 10 = 0$

 \otimes

 $(6 \cdot 2) \mod 10 = 12 \mod 10 = 2$

 $(7.4) \mod 10 = 28 \mod 10 = 8$

INVERSO

EXEMPLO: Calcule $2 \oslash 7$, ou seja 7^{-1} , em Z_{10}

* usar a tabela

de multiplicação:

 $(0.0) \mod 10 = 0 \mod 10 = 0$

 $(1.2) \mod 10 = 2 \mod 10 = 2$

 $(2\cdot3) \mod 10 = 6 \mod 10 = 6$

 $(5\cdot2) \mod 10 = 10 \mod 10 = 0$

 \otimes

 $(6 \cdot 2) \mod 10 = 12 \mod 10 = 2$

 $(7.4) \mod 10 = 28 \mod 10 = 8$

 $(8.3) \mod 10 = 24 \mod 10 = 4$

INVERSO

EXEMPLO: Calcule $2 \oslash 7$, ou seja 7^{-1} , em Z_{10} * usar a tabela

de multiplicação:

 $(0.0) \mod 10 = 0 \mod 10 = 0$

 $(1.2) \mod 10 = 2 \mod 10 = 2$

 $(2\cdot3) \mod 10 = 6 \mod 10 = 6$

 $(5\cdot2) \mod 10 = 10 \mod 10 = 0$

 \otimes

 $(6 \cdot 2) \mod 10 = 12 \mod 10 = 2$

 $(7.4) \mod 10 = 28 \mod 10 = 8$

 $(8.3) \mod 10 = 24 \mod 10 = 4$

 $(9.5) \mod 10 = 45 \mod 10 = 5$

INVERSO

EXEMPLO: Calcule $2 \oslash 7$, ou seja 7^{-1} , em Z_{10}

* usar a tabela de multiplicação:	⊗ _	U	<u> 1</u>	2	3	4	5	ь	/	8	9
	0	0	0	0	0	0	0	0	0	0	0
* buscar:	1	0	1	2	3	4	5	6	7	8	9
$a \otimes b = 1$	2	0	2	4	6	8	0	2	4	6	8
→ 1 é resto	3	0	3	6	9	2	5	8	1	4	7
	4	0	4	8	2	6	0	4	8	2	6
	5	0	5	0	5	0	5	0	5	0	5
	6	0	6	2	8	4	0	6	2	8	4
	7	0	7	4	1	8	5	2	9	6	3
	8	0	8	6	4	2	0	8	6	4	2
	9	0	9	8	7	6	5	4	3	2	1

INVERSO

EXEMPLO: Calcule $2 \oslash 7$, ou seja 7^{-1} em Z_{10}

$$\Rightarrow$$
 2.3 mod 10=6

INVERSO

EXEMPLO: Calcule $2 \oslash 7$, ou seja 7^{-1} em Z_{10}

\otimes	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	0	2	4	6	8
3	0	3	6	9	2	5	8	1	4	7
4	0	4	8	2	6	0	4	8	2	6
5	0	5	0	5	0	5	0	5	0	5
6	0	6	2	8	4	0	6	2	8	4
7	0	7	4	1	8	5	2	9	6	3
8	0	8	6	4		0	8	6	4	2
9	0	9	8	7	6	5	4	3	2	1

Obs:

- \rightarrow nem todas as classes tem inverso
- \rightarrow 1, 3, 7, e 9 tem porque são primos
- \rightarrow se fosse Z $_{11}$ como 11 é primo todas as classes possuem inverso

logo,

$$2 \otimes 7 \Rightarrow 2 \otimes 3 \Rightarrow 2 \cdot 3 \mod 10 = 6$$

INVERSO

Teorema:

(Elementos Invertíveis de Z_n)

Seja n um inteiro positivo e seja $a \in \mathbb{Z}_n$. Então, a é invertível se , e somente se, a e n são relativamente primos.

a o ou seja, se a o invertível a o invertível em a o a o a o a o a o invertível em a o a o a o a o a o invertível em a o a o a o a o a o a o invertível em a o a o a o a o a o invertível em a o a o a o a o a o a o a o invertível em a o a o a o a o a o invertível em a o a o a o a o a o a o invertível em a o a o a o a o a o a o invertível em a o a o a o a o a o invertível em a o a o a o a o a o a o invertível em a o

Se $b=x \mod n \Rightarrow b=x+kn$, $\forall k \in \mathbb{Z}$ temos:

INVERSO

Teorema:

(Elementos Invertíveis de Z_n)

Seja n um inteiro positivo e seja $a \in \mathbb{Z}_n$. Então, a é invertível se , e somente se, a e n são relativamente primos.

 \rightarrow ou seja, se a é invertível $\rightarrow \exists b \in Z_n/a \otimes b = 1 \rightarrow \underline{a \cdot b \, mod \, n} = 1 \Rightarrow \underline{a \, b + k \, n} = 1$, $\forall k \in \mathbb{Z}$ com a e a relativamente primos. Logo, $\exists x, y \in \mathbb{Z}$ tais que ax + ny = 1 e a é invertível em Z_n .

Se $b=x \mod n \Rightarrow b=x+kn$, $\forall k \in \mathbb{Z}$ temos:

$$ax+ny=1$$
 \longrightarrow $1=ax+ny$ \longrightarrow $1=a(b-kn)+ny$ \longrightarrow $1=ab+(y-ka)n$ então, $a\otimes b=ab \mod n=1$

e *b* é inverso de $a \rightarrow a$ é invertível em Z_n .

INVERSO

EXEMPLO: Determine 29^{-1} em Z_{431}

INVERSO

EXEMPLO: Determine 29^{-1} em Z_{431}

1°) escrever: 431 x + 29 y = 1

INVERSO

EXEMPLO: Determine 29^{-1} em Z_{431}

1°) escrever:
$$431 x + 29 y = 1$$

Na aula anterior, determinamos o valor de x e y a partir de mdc(431,29)=1

$$x=7$$
 $y=-104$

_ --

INVERSO

EXEMPLO: Determine 29^{-1} em Z_{431}

1°) escrever:
$$431 x + 29 y = 1$$

Na aula anterior, determinamos o valor de x e y a partir de mdc(431,29)=1

$$x=7$$
 $y=-104$

2°) tem-se:

$$ab \mod n=1 \longrightarrow (29\cdot (-104)) \mod 431=1$$

INVERSO

EXEMPLO: Determine 29^{-1} em Z_{431}

1°) escrever:
$$431 x + 29 y = 1$$

Na aula anterior, determinamos o valor de x e y a partir de mdc(431,29)=1

$$x=7$$
 $y=-104$

2°) tem-se:

$$ab \mod n=1 \longrightarrow (29\cdot (-104)) \mod 431=1$$

INVERSO

EXEMPLO: Determine 29^{-1} em Z_{431}

1°) escrever:
$$431 x + 29 y = 1$$

Na aula anterior, determinamos o valor de x e y a partir de mdc(431,29)=1

$$x=7$$
 $y=-104$

2°) tem-se:

$$ab \mod n=1 \longrightarrow (29\cdot (-104)) \mod 431=1$$

$$b = -104 \mod 431 = 327$$

INVERSO

EXEMPLO: Determine 29^{-1} em Z_{431}

1°) escrever:
$$431 x + 29 y = 1$$

Na aula anterior, determinamos o valor de x e y a partir de mdc(431,29)=1

$$x=7$$
 $y=-104$

2°) tem-se:

$$ab \mod n=1 \longrightarrow (29\cdot (-104)) \mod 431=1$$

$$b=-104 \mod 431=327$$

 $29\otimes 327=(29\cdot 327) \mod 431$

INVERSO

EXEMPLO: Determine 29^{-1} em Z_{431}

1°) escrever:
$$431 x + 29 y = 1$$

Na aula anterior, determinamos o valor de x e y a partir de mdc(431,29)=1

$$x=7$$
 $y=-104$

2°) tem-se:

$$ab \mod n=1 \longrightarrow (29\cdot (-104)) \mod 431=1$$

$$b=-104 \mod 431=327$$

 $29\otimes 327=(29\cdot 327) \mod 431=94383 \mod 431=1$

INVERSO

EXEMPLO: Determine 29^{-1} em Z_{431}

1°) escrever:
$$431 x + 29 y = 1$$

Na aula anterior, determinamos o valor de x e y a partir de $\ mdc(431,29)=1$

$$x=7$$
 $y=-104$

2º) tem-se:

$$ab \mod n=1 \longrightarrow (29\cdot (-104)) \mod 431=1$$

$$b=-104 \mod 431=327$$

 $29\otimes 327=(29\cdot 327) \mod 431=94383 \mod 431=1$
 $29^{-1}=327$

INVERSO

INVERSO

$$30 \otimes 29 = 30 \otimes 327$$

INVERSO

$$30 \oslash 29 = 30 \otimes 327$$

= $(30.327) \mod 431$

INVERSO

$$30 \oslash 29 = 30 \otimes 327$$

= $(30 \cdot 327) \mod 431$
= $9810 \mod 431$

INVERSO

$$30 \oslash 29 = 30 \otimes 327$$

= $(30 \cdot 327) \mod 431$
= $9810 \mod 431$
= 328

EXPONENCIAÇÃO MODULAR

$$A^{B} \mod C = (A \mod C)^{B} \mod C$$

OBS: Se B muito grande, então A^B torna-se muito grande

EXPONENCIAÇÃO MODULAR

$$A^{B} \mod C = (A \mod C)^{B} \mod C$$

OBS: Se B muito grande, então A^B torna-se muito grande

EXEMPLO:

$$2^{90} = 1237940039290000000000000000$$

 $2^{90} \mod 13 = ?$

* calculadoras tem dificuldade em representar números tão grandes

EXPONENCIAÇÃO MODULAR $A^{B} \mod C = (A \mod C)^{B} \mod C$

 $\underline{\textit{EXPONENCIAÇÃO MODULAR}} \quad A^{\textit{B}} \quad \textit{mod} \quad C = (A \quad \textit{mod} \quad C)^{\textit{B}} \quad \textit{mod} \quad C$

$$2^{90} = 2^{50} \cdot 2^{40}$$

EXPONENCIAÇÃO MODULAR $A^{B} \mod C = (A \mod C)^{B} \mod C$

$$2^{90} = 2^{50} \cdot 2^{40} \longrightarrow 2^{50} \mod 13 = 4 : 2^{40} \mod 13 = 3$$

$$2^{90} = 2^{50} \cdot 2^{40} \longrightarrow 2^{50} \mod 13 = 4 ; \cdot 2^{40} \mod 13 = 3$$

 $2^{90} \mod 13 = (2^{50} \cdot 2^{40}) \mod 13$

EXPONENCIAÇÃO MODULAR
$$A^{B} \mod C = (A \mod C)^{B} \mod C$$

$$2^{90}=2^{50}\cdot 2^{40} \longrightarrow 2^{50} \mod 13=4$$
; $2^{40} \mod 13=3$
 $2^{90} \mod 13=(2^{50}\cdot 2^{40}) \mod 13$
 $2^{90} \mod 13=(2^{50} \mod 13 \cdot 2^{40} \mod 13) \mod 13$

$$2^{90} = 2^{50} \cdot 2^{40} \longrightarrow 2^{50} \mod 13 = 4 ; 2^{40} \mod 13 = 3$$
 $2^{90} \mod 13 = (2^{50} \cdot 2^{40}) \mod 13$
 $2^{90} \mod 13 = (2^{50} \mod 13 \cdot 2^{40} \mod 13) \mod 13$
 $2^{90} \mod 13 = (4 \cdot 3) \mod 13$

EXEMPLO:
$$2^{90} \mod 13 = ?$$

$$2^{90} = 2^{50} \cdot 2^{40} \longrightarrow 2^{50} \mod 13 = 4 ; \cdot 2^{40} \mod 13 = 3$$

$$2^{90} \mod 13 = (2^{50} \cdot 2^{40}) \mod 13$$

$$2^{90} \mod 13 = (2^{50} \mod 13 \cdot 2^{40} \mod 13) \mod 13$$

$$2^{90} \mod 13 = (4 \cdot 3) \mod 13$$

$$2^{90} \mod 13 = 12 \mod 13$$

EXEMPLO: $2^{90} \mod 13 = ?$

$$2^{90} = 2^{50} \cdot 2^{40} \longrightarrow 2^{50} \mod 13 = 4 ; \cdot 2^{40} \mod 13 = 3$$

 $2^{90} \mod 13 = (2^{50} \cdot 2^{40}) \mod 13$

 $2^{90} \mod 13 = (4.3) \mod 13$

 $2^{90} \mod 13 = (2^{50} \mod 13 \cdot 2^{40} \mod 13) \mod 13$

 $2^{90} \mod 13 = 12 \mod 13$

 $2^{90} \mod 13 = 12$

EXPONENCIAÇÃO MODULAR

EXEMPLO: 7^{256} ?

* nem todo cálculo é simples, como o anterior. Neste caso, por exemplo, o cálculo exige 5 divisões.

Existem outras possibilidades como, por exemplo, o conceito binário.

Para ilustrar tal exemplo verifique o exemplo disponibilizado na *timeline* da disciplina para $5^{117} \mod 19$ (Khan academy).

EXERCÍCIOS:

- 1) Calcule em Z_{10}
- a) 3⊕3

c) 3⊗3

e) 5⊖8

b) 6⊕6

- d) 6⊗6
- 2) Faça a tabela para Z_8 e verifique a existência de elementos invertíveis. Eles existem? Quem são eles?
- 3) Calcule Y dados:
- a) $A \mod 11=6$; $B \mod 11=7$ $e (A+B) \mod 11=Y$
- b) $A \mod 12=5$; $B \mod 12=11$ $e (A B) \mod 12=Y$

Lembre-se: $(X*Y) \mod Z = (X \mod Z * Y \mod Z) \mod Z$

EXERCÍCIOS:

4) Quais das opções a seguir são equivalentes a (894-573)mod 7?

a) $(5+1) \mod 7$

d) 6 mod 7

b) 5

e) $(7-5) \mod 7$

c) 2 mod 7

f) $(2+3) \mod 7$

5) Utilizando a técnica do circulo modular determine:

- $8 \bmod 4$
- $7 \mod 2$
- $-5 \mod 3$

EXERCÍCIOS:

6) (Khan Academy)

Quais das seguintes expressões são equivalentes a $111 \bmod 10$?

 $A: (110 \bmod 10 + 1 \bmod 10) \bmod 10$

 $B: (1 \bmod 10 + 1 \bmod 10 + 1 \bmod 10) \bmod 10$

 $C: (100 \bmod 10 + 10 \bmod 10 + 1 \bmod 10) \bmod 10$

 $D: (11 \bmod 10 + 100 \bmod 10) \bmod 10$

- 1) Z_{10}
- a) $3 \oplus 3 = (3 + 3) \mod 10 = 6 \mod 10 = 6$
- b) $6 \oplus 6 = (6 + 6) \mod 10 = 12 \mod 10 = 2$
- c) $3 \otimes 3 = (3 \cdot 3) \mod 10 = 9 \mod 10 = 9$
- d) $6 \otimes 6 = (6 \cdot 6) \mod 10 = 36 \mod 10 = 6$
- e) $5 \ominus 8 = (5-8) \mod 10 = -3 \mod 10 = 7$

0 . 0 mod 8 0 mod 8 0

em Z8

2 divido mod n por 3

 $= 2 \times 3 \mod n$

em Z10

2 divido mod n por 3

 $= 2 \times 7 \mod n$

pq lá a inversa do 3 é o 7

3)

```
A \mod 11 = 6; B \mod 11 = 7 e (A+B) \mod 11 = Y
                  (A+B) \mod 11 = (A \mod 11 + B \mod 11) \mod 11
                  (A+B) \mod 11 = (6+7) \mod 11
                  (A+B) \mod 11 = 13 \mod 11
                  (A+B) \bmod 11 = 2
                  Y = 2
                                                            A \mod 12=5; B \mod 12=11 e(A \cdot B) \mod 12=Y
                                                     b)
                                                                           (A \cdot B) \mod 12 = (A \mod 12 \cdot B \mod 12) \mod 12
                                                                           (A \cdot B) \mod 12 = (5 \cdot 11) \mod 12
                                                                           (A \cdot B) \mod 12 = 55 \mod 12
                                                                           (A \cdot B) \mod 12 = 7
                                                                           Y = 7
```

4)

- 2 mod 7
- 6 mod 7
- $(7-5) \mod 7$
- $(2+3) \mod 7$

 $8 \bmod 4$

 $8 \bmod 4 = \mathbf{0}$

 $7 \bmod 2 = 1$

 $-5 \mod 3$

 $-5 \mod 3 = 1$

6)

```
Lembre-se que:
(X+Y) \bmod Z = (X \bmod Z + Y \bmod Z) \bmod Z
OU mais geralmente:
(u_1 + u_2 + ... + u_n) \bmod Z = (u_1 \bmod Z + u_2 \bmod Z + ... + u_n \bmod Z) \bmod Z
Verifcar a declaração de A:
(110 \bmod 10 + 1 \bmod 10) \bmod 10 = (110 + 1) \bmod 10
(110 \bmod 10 + 1 \bmod 10) \bmod 11 = 111 \bmod 11
Verifcar a declaração de B:
(1 \bmod 10 + 1 \bmod 10 + 1 \bmod 10) \bmod 10 = (1 + 1 + 1) \bmod 10
(1 \bmod 10 + 1 \bmod 10 + 1 \bmod 10) \bmod 10 = 3 \bmod 10
```

```
Verificar a declaração de C:
```

$$C: (100 \bmod 10 + 10 \bmod 10 + 1 \bmod 10) \bmod 10 = (100 + 10 + 1) \bmod 10$$

$$C: (100 \bmod 10 + 10 \bmod 10 + 1 \bmod 10) \bmod 10 = 111 \bmod 10$$

Verificar a declaração de D:

$$D: (11 \bmod 10 + 100 \bmod 10) \bmod 10 = (11 + 100) \bmod 10$$

$$D: (11 \bmod 10 + 100 \bmod 10) \bmod 10 = 111 \bmod 10$$

$$111 \mod 10 = 1$$

$$3 \mod 10 = 3$$

A, C e D são declarações equivalentes a $111 \bmod 10$