1. Método recursivo que recibe la raíz de un árbol binario y entonces muestra todas sus hojas y devuelve la cantidad de ellas que tienen contenido PAR.

Para este árbol el método Mostraría 12 – 14 – 37-18

Además, **Devolvería 3** pues tres de las cuatro hojas son de contenido PAR

MET(R)

Si R es nulo entonces	Si el método recibe un enlace R nulo debe devolver 0
Devuelve 0	(pues un Nodo que no existe no tiene hojas)
En caso contrario	Pero si recibe un enlace R que apunta a un Nodo
N = 0	Inicia en 0 el indicador de hoja con contenido PAR
Si R.izq es nulo y R.der es nulo entonces	Si este nodo no tiene hijos para ningún lado es hoja
Muestra R.info	Por lo tanto, MUESTRA su contenido
Si R.info es PAR entonces	Además, si su contenido es PAR entonces
N = 1	y Cambia el indicador a N = 1
Fin Si	
Fin Si	Devuelve N más lo recibido al aplicar este mismo
Devuelve N + MET(R.izq) + MET(R.der)	método a la izquierda y derecha del nodo actual
Fin Si	

La primera parte mostrada arriba la tiene todo método recursivo. Es el CASO BASE, la situación en la que ya no se realizará un nuevo llamado al método. Pero lo que se escribe allí depende de si el método devuelve algo (por ejemplo, cantidad de nodos) o si el método solo realiza acciones (por ejemplo, mostrar el valor de cada nodo)

En aquellos métodos **que devuelven algo** se usa **Si R es nulo** para devolver el valor que sea lógico devolver cuando el enlace recibido apunta a **nada**.

En aquellos métodos **que NO devuelven algo, que solo realizan acciones** se usa **Si R no es nulo**, pues dichas acciones se pueden realizar solo si **R** apunta a un nodo que existe

2. Método recursivo que recibe la raíz de un árbol binario y entonces devuelve verdadero si tiene más hojas para un lado de la raíz

Para logra lo solicitado se usa siguiente método, QUE NO ES RECURSIVO

- and 10814 10 constitute to and c.8416110 metado, 20 110 10 metado		
Si R es nulo entonces	Si recibe un R nulo entonces el árbol está vacío y	
Devuelve Falso	obviamente NO tiene más hojas para un lado	
En caso contrario	Pero si recibe un enlace R que apunta a un Nodo	
HI = Hojas(R.izq)	Calcula cuántas hojas hay hacia la izquierda	
HD = Hojas(R.der)	Calcula cuántas hojas hay hacia la derecha	
Si HI <> HD entonces	Si esas cantidades son distintas devuelve FALSO	
Devuelve Verdadero		
Si No	Si esas cantidades son distintas devuelve VERDADERO	
Devuelve Falso		
Fin Si		
Fin Si	método a la izquierda y derecha del nodo actual	

Pero ese método anterior hace llamados a este método Hojas(), el cual ES RECURSIVO

	• 0,
Si R es nulo entonces	Si recibe un R nulo entonces el árbol está vacío y
Devuelve 0	obviamente NO tiene hojas
En caso contrario	Pero si el enlace R apunta a un Nodo que existe
Si R.izq es nulo y R.der es nulo entonces	Entonces, si este nodo es hoja
Devuelve 1	Devuelve 1 (una hoja más)
Si No	Pero si este nodo no es hoja
Devuelve Hojas(R.izq) + Hojas(R.der)	Devuelve la suma de las hojas que existen a
Fin Si	lado y lado de él
Fin Si	

3. Método recursivo que recibe la raíz de un árbol binario y entonces devuelve verdadero si ese árbol tiene solo dos ramas

Una rama es el recorrido desde el nodo raíz hasta una hoja. Entonces un árbol con dos ramas será como el mostrado en la imagen.

¿Cómo reconocerlo?

Porque, después del nodo raíz, cada nodo tiene un solo hijo (sin considerar las hojas, que no tiene hijos)

Si R es nulo entonces	Si R nulo árbol vacío, sin nada para lado y
Devuelve Verdadero	lado, es decir solo dos ramas nulas
En caso contrario	Pero si R apunta a un Nodo que existe
Si R.izq NO es nulo y R.der NO es nulo entonces	Si ese nodo tiene dos hijos entonces
Devuelve Falso	Devuelve Falso (nodo con dos ramas)
Si No	Pero si no tiene dos hijos
Devuelve Met(R.izq) y Met(R.der)	Devuelve el resultado de la operación
Fin Si	Lógica Y entre resultado a lado y lado
Fin Si	

Es importante explicar la línea → Devuelve Met(R.izq) y Met(R.der)

Si el nodo actual NO tiene dos hijos entonces podría tener NINGUNO o UNO.

SI tiene NINGUNO devolverá verdadero Y verdadero, que es verdadero

Si tiene solo UNO, con solo dos ramas, devolverá verdadero Y verdadero, que es verdadero

Si tiene solo UNO, pero con varias ramas, devolverá falso Y verdadero, que es falso

Este ejercicio resultó algo difícil de resolver en clase pues nos tomó tiempo darnos cuenta de que en un árbol vacío es **VERDADERO** que tiene solo dos ramas, aunque no existan. Para entender esto supongamos lo contrario, que es **FALSO** que un árbol vacío tiene solo dos ramas inexistentes, estaríamos diciendo que para un lado DE ESE NODO INEXISTENTE hay más nodos inexistentes que para el otro lado inexistente (esto si que sería absurdo)

4. Método recursivo que recibe la raíz de un árbol binario y entonces muestra todos los nodos con un solo hijo (es decir que este método NO DEVUELVE algo SOLO REALIZA ALGO)

Met(R)

Si R NO es nulo entonces	Solo puede mostrar el nodo si el enlace R recibido apunta a un nodo que existe
CIRC NO L D L	
Si R.izq NO es nulo y R.der es nulo entonces	Si el Nodo solo tiene hijo izquierdo
Muestra R.info	Entonces muestra este nodo
Fin Si	
Si R.izq es nulo <mark>y</mark> R.der NO es nulo entonces	Si el Nodo solo tiene hijo derecho
Muestra R.info	Entonces muestra este nodo
Fin Si	
Met(R.izq)	Aplica el método a la izquierda
Met(R.der)	Aplica el método a la derecha
Fin Si	

SUGERENCIAS

- 1. **Inventa como estos**, aunque parezcan ociosos (como, por ejemplo, tan ocioso como el siguiente: método que cuente los nodos de un árbol que son mayores que el nodo raíz)
- Intenta resolverlo, sin importar cuanto te demores
 Esa será la mejor preparación para el primer ejercicio de la segunda prueba, que se realizará de este viernes 2 de junio (Ilega temprano, se realizará al inicio de la clase)
- 3. Dale el planteamiento del ejercicio a charGPT y compara su respuesta con tu solución