Training School # 3

Restoration of Biolmage by Digital Filters

February 12th-16th, 2017 Gulbenkian Institute Oeiras, Portugal

Content

- Linear systems
- Convolution
- Noise
- Denoising by linear filters
- Linear filters adapted to geometry
- Denoising by non-linear filters
- Spatially variant filters
- Fourier Transform
- Convolution Theorem
- Linear Deconvolution

Linear acquisition pipeline and image restoration

2D Convolution (stamping kernel)

<u>Convolution</u>: Accumulate a **filter kernel** stamped around every pixel and scaled by its intensity

2D Convolution (sliding window)

<u>Sliding window</u>: Central pixel = weighted sum of input image pixels in window

Weights: Filter kernel coefficients

Noise Sources in Digital Microscopy

Noise Statistics

Simplest denoising filter: Smooth filter

$$F = \begin{bmatrix} 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \end{bmatrix}$$

- Smooth filter (3x3 pixel kernel): local averaging
- Uniform regions: output = input
- Additive noise: negative/positive random variations around uniform value
- Average: reduces mean variation
- Edge: slow response, less steep (blurred)

Gaussian Function

Most of the area below a Gaussian lies in $[-3\sigma, 3\sigma]$

 σ : Gaussian radius since radius of FWHM ring $\approx 1.18 \ \sigma$

 $f(x,y) = f(x)^* f(y)$

- Minimum time-bandwidth product: "slightest edge blur" for given noise rejection
- Smooth frequency cut-off
- Radially symmetric
- Separable

Gaussian Blur and Spatial Resolution

Denoising and Spatial Resolution

Roundish convex objects

Applications: Nuclei, round cells, round embryos,...

Cells seeded on Cytoo chip DAPI stained nuclei (confocal 20x) MIP

Drosophila imaginal disk DAPI stained nuclei (confocal 40x) Color coded MIP

Laplacian of Gaussian (LoG) Filter

→ Plugins/Feature Extraction/FeatureJ/Laplacian

Laplacian filter kernel (2D):
$$\begin{vmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{vmatrix}$$

<u>Laplacian of Gaussian filter</u>(LoG):

Gaussian blur kernel (σ) followed by Laplacian filter

LoG filtered

Intensity profile

Maximum contrast:

$$\sigma = \frac{r}{2}$$

Non-linear Filters

Also implemented as sliding window but operation inside window is **non linear**

Order statistics filters: minimum, maximum and median

Median Filter

Two uniform regions + noise

Median filter attenuates noise while preserving edge transitions

$$M \begin{bmatrix} 65 & 39 & 72 \\ 64 & 82 & 101 \\ 170 & 183 & 177 \end{bmatrix} = 82$$

$$\begin{bmatrix} 39 & 64 & 65 & 72 & 82 & 101 & 170 & 177 & 183 \end{bmatrix}$$
darkest pixels

$$M \begin{bmatrix} 64 & 82 & 101 \\ 170 & 183 & 177 \\ 183 & 176 & 161 \end{bmatrix} = 170$$

$$\text{median}$$

$$[64 & 82 & 101 & 161 & 170 & 176 & 177 & 183 & 183]$$

$$\text{brightest pixels}$$

Grayscale Morphology: Erosion

Erosion (plain)

Opening (plain) and original (transparent)

Opening = Erosion (min) + Dilation (max) Better preserves objects than erosion

Grayscale Morphology: Opening

Opening Filter

→ Morphology/Gray morphology

1: Original

4: Top-hat opening (1-3)

2: Min filter (erosion)

3: Max filter of 2 (dilation)

Top-hat opening is useful for background subtraction

Bilateral Filter

Initial kernel F Gaussian (standard deviation σ_s).

Kernel multiplied by modulation function of intensity difference to central pixel (Intensity range parameter σ_R).

--> Resulting kernel is a function of image data (spatially varying).

Bilateral Filter

1D Fourier Transform

A periodic function can be approximated by a sum of sine waves with proper shifts and scalings.

The Fourier coefficients are complex numbers coding the scaling (magnitude) and shift (phase).

- > The approximation accuracy depends on the number of sines involved and the smoothness of the function.
- The square modulus of the Fourier coefficients are the so-called power spectrum of a signal.

Convolution Theorem

Linear Deconvolution: Inverse Filter Deconvolution

As convolution in the spatial domain can be performed as a multiplication in the frequency domain, inverse filtering can be performed as a division in the frequency domain!

A very simple model for the PSF H (Gaussian std = 1 pixel)

H power spectrum (log display) overlaid with raw values

H-1 power spectrum (log display) overlaid with raw values

Second try: Regularized Inverse

A very simple model for the PSF H (Gaussian std = 1 pixel)

H power spectrum (log display) overlaid with raw values

(H⁻¹)_{reg} (1% clipping) power spectrum (log display) overlaid with raw values

Optimum linear restoration: Wiener filter

$$F(u,v) = \frac{H^*(u,v)|S(u,v)|^2}{|H(u,v)|^2 \cdot |S(u,v)|^2 + |N(u,v)|^2}$$
 Wiener filter

Bands free of noise: $|N(u,v)| = 0 \rightarrow F(u,v) = H(u,v)^{-1}$ (inverse filter)

Strong noise bands: $|N(u,v)| \rightarrow \infty \rightarrow F(u,v) \rightarrow 0$ (cut-off)

Intermediate bands: best trade-off

The solution depends on both N and S (unknown)

Regularized Inverse Filter Deconvolution

Noise std = 10^{-4}

Wiener Deconvolution

Regularized inverse filter result Noise std = 10⁻⁴

Wiener filter result Noise std = 10⁻⁴

Rolling Ball Algorithm ≈ Top-hat opening

→ Process/Subtract Background...

video inverted images

For each pixel the level of the tip of a rolling sphere is subtracted to the image

- Light background: dark objects over bright background
- Create background: returns background
- Sliding paraboloid: approximation (faster)
- Disable smoothing: ensures that results >0

Illumination Correction

- 2. After subtract background (r=256 pix) with:
- -Light background
- -Create background
- -Disable smoothing

1. Original (Z min. proj)

1. divided by 2.

