Mid3 15-21

L15 Rotational Kinematics and Moment of Inertia

L16_Parallel Axis Theorem and Torque

L17_Rotational Dynamics

L18&19 Rotational Statics I & II

L18&19 Rotational Statics I & II

L20_Angular Momentum

L21 Angular Momentum Vector and Precession

Formula check

Energy

Rotational energy

$$E_{rot}=rac{1}{2}I\omega^2=rac{L^2}{2I}$$

Total energy

$$E_{total} = rac{1}{2} I \omega^2 + rac{1}{2} m v^2$$

Moment of inertia

- Thin/Slender Rod
 - Axis is the symmetric axis

$$I = rac{1}{12} ML^2$$

Axis is one end

$$I=rac{1}{3}ML^2$$

• Here h is the distance from the axis to the left and L is the length of the rod

$$I=rac{M}{3}(L^2-3Lh+3h^2)$$

Disk/Solid Cylinder/Puck

$$I=rac{1}{2}MR^2$$

Hoop/Block

$$I=mR^2$$

Sphere

$$I=rac{2}{5}mR^2$$

- Shell
 - Cylinderical Shell

$$I = mR^2$$

Spherical Shell

$$I=rac{2}{3}mR^2$$

Torque

$$au = Fr = r imes f = Ilpha$$

Accelaration

1. Tangential component: 切向分量 lpha is the rotational acceleration

$$a_t = r\alpha$$

2. Radial component: 径向分量

$$a_r=r\omega^2$$

Angular Momentum

• We use L to represent angular momentum, which equals to the cross product of the position vector r and the translational momentum p, and p is mv

$$L = r \times p = I\omega$$

Precession

$$\Omega = rac{ au_{external}}{L}$$

$$oldsymbol{Period} = rac{2\pi}{\Omega}$$

Right hand rule

- 1. To tell the direction of ω , curl the fingers as the direction of rotation, the direction of the thumb is the answer
- 2. To tell the direction of the angular accleration α , if the ω is increasing, then α is to the same direction of ω
- 3. To tell the direction of the angular momentum L, same as the ω ,so curl the fingers as the direction of rotation, the direction of the thumb is the answer
- 4. To tell the direction of the torque τ , point the fingers from the axis to the action point, curl the fingers in the direction of the force, the direction of the thumb is the answer
- 5. To tell the direction of the precession, tell by how the angular momentum changes, as shown in the image.

Conclusion Check

Parallel Axis Theorem

$$I_{new} = I_{cm} + Md^2$$

• Note that in a system, the I_{cm} is the respective I when rotating about their own center of mass

F=ma

- Calculating the acceleration of the system The core is $a=\frac{F}{m}$ and m for the pulley is CM where C is the coefficient in I, Note that if there is a sphere, need to consider its translational mass and rotational mass, so its effective mass is $\frac{7}{5}m$
- Note that the pulley makes the tension of both sides of the string different.

Rolling without slipping

- $v=\omega R$ is true only when the object is rolling without slipping
- The equivalent mass of a sphere when it is rolling without slipping is $\frac{7}{5}m$