### Resumo Prob.Est.

# Capítulo 1: Calculo de Probabilidade

**Espaço Amostral**  $(\Omega)$ : Enumeração (finita ou infinita) de todos os resultados possíveis.

$$\Omega = A1, A2, A3, \dots$$

**Evento (A):** Resultados ou conjunto de resultados possíveis. Chamamos 'evento' qualquer subconjunto do espaço amostral.

**Evento Impossível (ø)**: Conjunto Vazio, pois ele nunca acontecerá.

Probabilidade (P(A)): Probabilidade de um evento A ocorrer.

$$P(A) = \frac{A}{Q}$$

# União - (A ∪ B)

Pelo menos um ocorre

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

 $P(A \cup B) = P(A) + P(B)$ , Para eventos mutuamente exclusivos.

# Interseção - (A ∩ B)

A **e** B ocorrem

$$P(A \cap B) = P(A) \cdot P(B)$$
 - Eventos Independentes

$$P(A \cap B) = P(A) \cdot P(B|A)$$
 - Eventos Dependentes

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

# Evento Complementar $(A^c)$



$$P(A^c) = 1 - P(A)$$

$$(A \cap B)^c = A^c \cup B^c$$

$$(A \cup B)^c = A^c \cap B^c$$

# Permutação e Combinação

Uma *permutação de k elementos* é quando a ordem de sorteio importa, e a quantidade de possíveis permutações é dado por

$$P_{n,k}=n(n-1)\ldots(n-k+1)=rac{n!}{(n-k)!}$$

Uma combinação de k elementos é quando a ordem não importa, e a quantidade de possíveis combinações é dada por

$$\binom{n}{k} = \frac{P_{n,k}}{k!} = \frac{n!}{k!(n-k)!}$$

### **Axiomas de Probabilidade**

Seja  $\Omega$  um espaço amostral. Uma *probabilidade* é uma função  $\mathbb P$  que atribui a eventos  $A\subseteq\Omega$  um número real  $\mathbb P(A)$  e satisfaz os seguintes axiomas:

- $\bullet \quad 0 \leq \mathbb{P}(A) \leq 1 \text{ ou } \mathbb{P}(A) \in [0,1]$
- $\mathbb{P}(\Omega) = 1$
- Para  $A_1,A_2,\ldots,A_n$  disjuntos e tomados 2 a 2:

$$\mathbb{P}(\cup_{i=1}^{\infty}A_i)=\sum_{n=1}^{\infty}\mathbb{P}(A_n)$$

# Propriedades de Probabilidade

1. 
$$\mathbb{P}(A^c) = 1 - \mathbb{P}(A)$$

2. 
$$A \subset B \to \mathbb{P}(A) \leq \mathbb{P}(B)$$

3. 
$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$

4. Princípio da inclusão-exclusão

$$\mathbb{P}(A \cup B \cup C) = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) - \mathbb{P}(A \cap B) - \mathbb{P}(A \cap C) - \mathbb{P}(B \cap C) + \mathbb{P}(A \cap B \cap C)$$

5. Leis de Morgan

$$\mathbb{P}(\cup_{i=1}^n A_i) = 1 - \mathbb{P}(\cap_{i=1}^n A_i^c)$$

# Capítulo 2: Dependência e condicionamento

#### **Probabilidade Condicional**

Para eventos A e B, a probabilidade condicional de A dado B é definida como

$$\mathbb{P}(A|B) = rac{\mathbb{P}(A\cap B)}{\mathbb{P}(B)}$$

• 
$$P(A|B) = 1 - P(A^c|B)$$

• 
$$P(A_1 \cup A_2|B) = P(A_1|B) + P(A_2|B) - P(A_1 \cap A_2|B)$$

# Independência

Dois eventos A e B são independentes se

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$$

Independência é o oposto de mutuamente exclusivos (disjuntos)!

 $\mathsf{Obs} \colon P(A|B) = P(A)$ 

# **Teorema de Bayes**

Se A e B são eventos com probabilidade positiva, então

$$P(A|B) = \frac{(P(A) \cdot P(B|A))}{P(B)}$$

obs: 
$$P(A \cap B) = P(A) \cdot (B|A)$$
  
 $P(A|B) + P(A|B^c) = 1$ 

# Capítulo 3: Variáveis aleatórias discretas

### Variável Aleatória

Seja  $\Omega$  um espaço amostral. Uma variável aleatória (v.a) é uma função

$$X:w\in\Omega o X(w)\in\mathbb{R}$$

Varáveis aleatórias são características numéricas de um experimento aleatório representado por w.

Também podemos usar a função  $\mathbb{P}_x:A o [0,1]$  definida por

$$\mathbb{P}_x(A) = \mathbb{P}(X \in A)$$

para calcula probabilidades

 $\mathbb{P}_x$  é chama de distribuição de probabilidade da v.a. X.

### Variável Aleatória Discreta

Uma v.a. X é discreta se o conjunto  $\Omega_X \subset R$  de todos os valores possíveis de X (não confundir com  $\Omega$ !) for enumerável.

A função massa de probabilidade (f.m.p.) de uma v.a. X discreta é a função  $p_X: \Omega o [0,1]$  dada por

$$p_X(x) = P(X = x).$$

Associa a cada valor possível da variável aleatória discreta suas respectiva probabilidade

Tal que,

$$p(x) = egin{cases} P(X=x_i), & i=1,2,3,\dots \ 0, & ext{caso contrário} \end{cases}$$

Satisfazendo,  $p(x) \geq 0$  e  $\sum_{x \in Rx} p(x) = 1$ 

## Modelos de Variáveis Aleatórias Discretas

#### Modelo Bernoulli

Sucesso ou Fracasso

$$X \sim Ber(p) \qquad (0  $\mathbb{p}_X(x) = p^x (1-p)^{1-x} \quad ext{para } x \in \{0,1\}$$$

- E[X] = P
- Var(X) = P(1-P)

#### **Modelo Binomial**

$$X \sim Bin(n,p)$$

Chama-se de experimento binomial ao experimento que

- consiste em n ensaios de Bernoulli
- cujo ensaios são independentes, e
- para qual a probabilidade de sucessos em casa ensaio é sempre igual a p $\,(0$

$$p_X=\mathbb{P}(X=x)=inom{n}{x}$$
 ,  $p^x$  ,  $(1-p)^{n-x},$   $inom{n}{x}=rac{n!}{x!(n-x)!}$   $x\in\{0,1,2,\ldots,n\}$ 

- $\bullet \ E[X] = n \centerdot p$
- $Var(X) = n \cdot p \cdot (1 p)$

### Modelo Hipergeométrico

 $X \sim Hip(m,n,k)$ 

m  $\rightarrow$  Sucessos n  $\rightarrow$  Fracassos (N-m) k  $\rightarrow$  Tamanho da amostra

$$p_X = \mathbb{P}(X=x) = rac{inom{m}{x}\cdotinom{n}{k-x}}{inom{m+n}{k}}$$

- $E[X] = \frac{k \cdot m}{m+n} = k \cdot \frac{m}{N} = kp$
- $Var(X) = \frac{k \cdot m}{m + n} \left[ \frac{(k-1)(m-1)}{m + n 1} + 1 \right] = np(1-p) \frac{N k}{N-1}$

### Modelo Geométrico

 $X \sim Geom(p)$ 

Número de repetições de um ensaio de Bernoulli com probabilidade de sucesso (0até ocorrer o primeiro sucesso

$$\mathbb{P}(X=x)=p\cdot (1-p)^x \qquad , x\in \mathbb{N}$$

- $E[X] = \frac{1}{p}$
- $Var(X) = \frac{1-P}{p^2}$

## **Modelo Binomial Negativo**

Tentativas independentes com mesma probabilidade de sucesso  $p \in [0,1]$ , sejam realizadas até que se acumule um total de  $\emph{r}$  sucessos.

$$\mathbb{P}(X=x) = inom{x-1}{r-1} p^r \cdot (1-p)^{x-r}, \qquad x \in \{r,r+1,\dots\}$$

• 
$$E[X] = \frac{r}{p}$$

$$ullet \ Var(X) = rac{r(1-p)}{p^2}$$

#### **Modelo Poisson**

 $X \sim Poi(\lambda)$ 

Eventos Raros

$$p(x)=e^{-\lambda}$$
 ,  $rac{\lambda^x}{x!}, \quad x=\{0,1,2,\ldots\}$ 

$$E[X] = Var(x) = \lambda$$

# Capítulo 4: Esperança e variância

# Valor Esperado (Esperança, média)

$$\mathbb{E}(X) = \sum_{x \in \Omega_X} x \cdot \mathbb{P}(X = x) = \sum_{x \in \Omega_X} x \cdot p_X(x)$$

Onde,  $x \in \mathcal{A}$  o valor de X, e  $\mathcal{A}(x)$  é a probabilidade de X.

O valor esperado é uma constante

O valor esperado é uma medida de centralidade. Esse valor depende somente da distribuição da v.a. X, isto é, da f.m.p.  $p_X$ .

#### Linearidade da Esperança

Se X é v.a., então para todos os números reais a e b

$$\mathbb{E}(\alpha X + b) = \alpha \mathbb{E}(X) + b$$
  
 $\mathbb{E}(\alpha X + \beta Y) = \alpha \mathbb{E}(X) + \beta \mathbb{Y}$ 

#### Esperança de Função de v.a.

$$\mathbb{E}(g(x)) = \sum_{x \in \Omega_X} g(X) \cdot \mathbb{P}(X = x)$$

#### Variância e Desvio Padrão

Variância

$$Var(X) = \mathbb{E}((X - \mathbb{E}(X))^2) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$$

Desvio Padrão

$$DP(X) = \sqrt{Var(X)}$$

# Capítulo 5: Distribuições de probabilidades conjuntas

## Distribuição conjunta

Sejam X e Y v.a.s definidas no mesmo espaço amostral. O par (X,Y) é chamado vetor aleatório bidimensional

O vetor aleatório bidimensional (X,Y) é chamado discreto se X e Y são v.a.s discretas A função de massa de probabilidade conjunta do v.a. (X,Y) discreto é a função  $p_{X,Y}(x,y)$  definida por

$$egin{aligned} p_{X,Y}(x,y) &= \mathbb{P}(X=x,Y=y) ext{ para todo } (x,y) \in \Omega_X imes \Omega_Y \ &\sum_{x \in \Omega_X} \sum_{y \in \Omega_Y} p_{X,Y} = 1 \end{aligned}$$

## Distribuição Marginal

$$p_X(x) = \sum_{y \in \Omega_Y} \mathbb{P}(X=x,Y=y) ext{ para todo } x \in \Omega_X$$

$$p_Y(y) = \sum_{x \in \Omega_X} \mathbb{P}(X=x,Y=y)$$
 para todo  $y \in \Omega_Y$ 

### Independência

$$\mathbb{P}(X=x,Y=y) = \mathbb{P}(X=x)\mathbb{P}(Y=y)$$

# Distribuição Condicional

$$p_{X|Y}(x|y) = rac{p_{X,Y}(x,y)}{p_Y(y)} \quad ext{para todo} \quad x \in \Omega_X$$

Note que a f.m.p. condicional  $p_{X\mid Y}$  satisfaz

$$egin{cases} p_{X|Y}(x|y) \geq 0 & ext{para todo} \quad (x,y) \in \Omega_X imes \Omega_Y \ \sum_{x \in \Omega_X} p_{X|Y}(x|y) = 1 & ext{para cada} \quad y \in \Omega_Y \end{cases}$$

### Covariância

$$\mathrm{Cov}(X,Y) = \mathbb{E}[(X-\mathbb{E}(X))(Y-\mathbb{E}(Y))] \ = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y] \quad ext{(Linearidade da esperança)}$$

As seguintes propriedades são imediatas da definição:

- 1. Cov(X, X) = Var(X)
- 2. Cov(X, Y) = Cov(Y, X)
- 3. Cov(X, Z) = 0, se Z é uma variável aleatória constante com probabilidade 1
- 4.  $Cov(aX, Y) = a \cdot Cov(X, Y)$ , para  $a \in \mathbb{R}$
- 5. Para quaisquer números reais a, b, c e d,

# Capítulo 6: Variáveis Aleatórias Contínuas

Uma f(x) definida sobre o espaço amostral  $(\Omega)$  e assumindo valores num intervalo de número reais, é dita uma variável aleatória contínua. Uma v.a. é contínua se existir  $F_x:\mathbb{R}\to\mathbb{R}$ , denominada **função de densidade de probabilidade (f.d.p.)**, satisfazendo:

$$f(x) \geq 0, orall x \in \mathbb{R}$$
  $P(a \leq x \leq b) = \int_a^b f(x) dx$ 

OBS: Satisfazendo  $\int_{-\infty}^{+\infty} f(x) dx = 1$ 

Variável Aleatória Discreta ightarrow Contagem Variável Aleatória Contínua ightarrow Medição

• Função de Distribuição Acumulada (f.d.a.)

$$F(x) = P(X \leq x) = \int_{-\infty}^x f(t) dt, \quad x \subset \mathbb{R} \ \ orall f(x) = F'(x)$$

$$E[X] = \int_{-\infty}^{+\infty} x \cdot f(x) dx$$

$$Var(X) = \int_{\mathbb{R}} (x-E[X])^2$$
 ,  $f(x)dx = E[X^2]$  ,  $E[X]^2$ 

#### **Modelos Probabilísticos**

#### **Modelo Uniforme Contínuo**

 $X \sim Uniforme(a,b)$ 

Dizemos que X é uma variável uniforme no intervalo  $[a,b],(a,b)\in\mathbb{R},a< b$ , se a função de densidade de probabilidade da variável x é constante nesse intervalo e nula fora dele

• Função de densidade de probabilidade

$$f(x) = egin{cases} rac{1}{b-a}, & a \leq x \leq b \ 0, & ext{caso contrário} \end{cases}$$

• Função de distribuição

$$F(x) = egin{cases} 0, & x \leq a \ rac{x-a}{b-a}, & a \leq x \leq b \ 1, & x \geq b \end{cases}$$

Esperança

$$E[X] = \frac{a+b}{2}$$

Variância

$$Var(x) = rac{(a+b)^2}{12}$$

# **Modelo Exponencial**

 $X \sim Exp(\lambda)$ 

Dizemos que X é uma variável exponencial com parâmetro  $\lambda$ ,  $\lambda>0$ , se a função de densidade de X é dada por:

$$f(x) = egin{cases} \lambda \cdot e^{-\lambda x}, & x \geq 0 \ 0, & x < 0 \end{cases}$$

• Função de distribuição

$$F(x) = egin{cases} 0, & x < 0 \ 1 - e^{-\lambda x}, & x \geq 0 \end{cases}$$

Esperança

$$E[X] = rac{1}{\lambda}$$

Variância

$$Var(X) = rac{1}{\lambda^2}$$

#### **Modelo Normal**

$$X \sim N(\mu, \sigma^2)$$

$$f(x)=rac{1}{\sigma { extbf{.}}\sqrt{2\pi}}$$
 ,  $e^{-rac{1}{2}(rac{x-\mu}{\sigma})}, \;\;\; orall x \in \mathbb{R}$ 

## **Propriedades**

• Esperança:  $E[X]=\mu$ 

• Variância:  $Var(x) = \sigma^2$ 

• A f.d.p. de X é simétrica com respeito a  $X=\mu$ , logo,  $f_x(\mu+x)=f_x(\mu-x)$ 

• Em particular,  $\phi(-z)=1-\phi(z)$ , para todo  $z\in R$ 

 $ullet aX+b\sim N(a\mu+b,a^2\sigma^2)$ 

### **Padronização**

Seja X uma v.a. tal que  $E[X]=\mu$  e  $Var(x)=\sigma^2$ , para  $N(\mu,\sigma^2)$  Queremos N(0,1), Então: E[Z]=0 e Var(Z)=1

$$X\:N(\mu,\sigma^2) o Z=rac{X-\mu}{\sigma}\:N(0,1)$$

- $\bullet \ \ P(a \leq X \leq b) = P\Big(\tfrac{a-\mu}{\sigma} \leq Z \leq \tfrac{b-\mu}{\sigma}\Big) = \phi\Big(\tfrac{b-\mu}{\sigma}\Big) \phi\Big(\tfrac{a-\mu}{\sigma}\Big)$
- $P(X \le a) = P\left(Z \le \frac{a-\mu}{\sigma}\right) = \phi\left(\frac{a-\mu}{\sigma}\right)$
- $P(X \ge a) = P\left(Z \ge \frac{a-\mu}{\sigma}\right) = 1 \phi\left(\frac{a-\mu}{\sigma}\right)$

# Capítulo 7: Teorema Central do Limite e Lei dos Grandes Números

### Lei dos Grandes Números

Sejam  $X_1,X_2,\ldots$  v.a. independentes e identicamente distribuídas (i.i.d.) com média  $\mu$  e variância  $\sigma^2$  e  $S_n:=\sum_{i=1}^n X_i$  . Sabemos que

$$E(S_n) = n \mu \qquad {
m Var}(S_n) = n \sigma^2$$

Se considerarmos a média  $M_n:=rac{S_n}{n}$ , temos

$$E(M_n) = \mu$$
  $\operatorname{Var}(M_n) = rac{\sigma^2}{n}$ 

#### Lei dos Grandes Números:

Para todo  $\epsilon>0$ , no limite  $n o \infty$ 

$$P(|M_n - \mu| \ge \epsilon) o 0$$

### Soma de variáveis aleatórias

Dadas n variáveis aleatórias  $X_1, \dots X_n$ , podemos definir uma nova variável aleatória como

$$S_n := \sum_{i=1}^n X_i$$

### Distribuições da soma de variáveis aleatórias independentes

$$egin{aligned} X_i \sim Ber(p) & 
ightarrow & \sum_{i=1}^n X_i \sim Bin(n,p) \ X_i \sim Bin(m_i,p) & 
ightarrow & \sum_{i=1}^n X_i \sim Bin\Big(\sum_{i=1}^n m_i,p\Big) \ X_i \sim Poi(\lambda_i) & 
ightarrow & \sum_{i=1}^n X_i \sim Poi\Big(\sum_{i=1}^n \lambda_i\Big) \ X_i \sim N(\mu_i,\sigma_i^2) & 
ightarrow & \sum_{i=1}^n X_i \sim N\Big(\sum_{i=1}^n \mu_i,\sum_{i=1}^n \sigma_i^2\Big) \end{aligned}$$

#### **Teorema Central do Limite**

Sejam  $X_1, X_2, \ldots$  v.a. independentes e identicamente distribuídas (i.i.d) com média  $\mu$  e variância  $\sigma^2$  e  $S_n \coloneqq \sum_{i=1}^n X_i$ .

Consideramos uma nova variável aleatória

$$Z_n = rac{S_n - E(S_n)}{\sqrt{\mathrm{Var}(S_n)}} = rac{S_n - n\mu}{\sigma\sqrt{n}}$$

Temos que  $E(Z_n)=0$  e  ${\sf Var}(Z_n)=1$ . Isso significa que  $Z_n$  tem uma distribuição que não se concentra ao redor do valor médio (a variância não vai para zero com n)

O TCL permite conhecer a distribuição limite de  $Z_n$  (quando n  $ightarrow \infty$ )

**Teorema Central do Limite**: A distribuição  $Z_n$  se aproxima de uma normal padrão  $Z \sim N(0,1)$ , ou seja, para todos  $x \in R$ ,

$$Pigg(rac{S_n-n\mu}{\sigma\sqrt{n}}\geq xigg) o P(Z\geq x)=1-\phi(x)$$

 $X_1, X_2, \ldots$  i.i.d com média  $\mu$  e variância  $\sigma^2, S_n = \sum_{i=1}^n X_i$ 

$$P(S_n \leq c) = P\Bigg(rac{S_n - n\mu}{\sqrt{n}\sigma} \leq rac{c - n\mu}{\sqrt{n}\sigma}\Bigg) pprox_{TCL} \phi\Bigg(rac{c - \mu}{\sqrt{n}\sigma}\Bigg)$$

Onde  $Z \sim N(0,1)$  e a aproximação melhora a medida que n cresce.

# Capítulo 8: Gráficos e Estatística Descritiva (Estatística)

Estatística é um conjunto de conceitos e métodos para coletar, organizar, analisar e interpretar dados

Estatística descritiva: se preocupa com a organização e apresentação dos dados observados (tabelas, gráficos, medidas descritivas como média e variância...)

Inferência estatística: se preocupa de como dar informação sobre um universo (população) a partir de um conjunto de dados observados (amostra)

#### **Estatística Descritiva**

População (N): conjuntos de todos os elementos sob investigação

Amostra (n): subconjuntos finitos da população

Parâmetro: característica numérica de uma população

Exemplo: Pesquisa eleitoral no estado do Rio de Janeiro

população  $\rightarrow$  todos os eleitores amostra  $\rightarrow$  1000 eleitores entrevistados

parâmetro ightarrow idade média da população

## Tipologia de Variáveis

Dada uma população ou amostra, podemos estar interessados em várias características dos elementos constituintes; essas características são chamadas variáveis

Quantitativa: assume um valor numérico

o discreta: número finito ou enumerável

o contínua: número não enumerável

• Qualitativa: classificada em categorias

o nominal: categorias não-ordenadas

ordinal: categorias ordenadas

## Distribuições de Frequências

Distribuições de Frequências: tabelas e gráficos

Frequência absoluta: número de vezes que cada valor é observado

Frequência relativa: número de vezes que cada valor é observado dividido pelo tamanho da amostra Frequência acumulada: soma das frequências absolutas dos valores inferiores ou iguais ao valor

dado

### Gráficos para variáveis qualitativas/quantitativas

- Gráfico de Barra (Barras, Histograma)
- Gráfico de Setores (de Pizza)
- Diagrama de Disperssão
- Boxplot

### Construção de Boxplot



- 1. Encontre os 3 quartis
  - 1. Quartil 1 (probabilidade 25%): Q1 valor que deixa 1/4 das observações à esquerda
  - 2. Quartil 2, ou mediana (probabilidade 50%): Q2 valor que deixa 2/4 das observações à esquerda
  - 3. Quartil 3 (probabilidade 75%): Q3 valor que deixa 3/4 das observações à esquerda
  - 4. Distância interquartílica: Q3 Q1 medida de dispersão
- 2. Classifica-se como outliers á direita, pontos que se satisfazem o seguinte

1. 
$$X_i > LS$$
 (Limite Superior), para  $LS = Q_3 + 1.5 imes (Q_3 - Q_1)$ 

3. Classifica-se como outliers à esquerda, pontos que se satisfazem o seguinte

1. 
$$X_i < LI$$
 (Limite Inferior), para  $LI = Q_1 - 1.5 imes (Q_3 - Q_1)$ 

4. A linha se estende até os valores mais extremos do conjunto de dados que não sejam outliers

#### Medidas de Centralidade

Dada uma coleção de valores de uma variável quantitativa é útil definir formas de resumir esses dados. Uma maneira de fazer isso é através de *medidas de centralidade*.

• Média aritmética: dados valores  $x_1, \ldots, x_n$ , definimos

$$\overline{x} \coloneqq \frac{\sum_{i=1}^{n} x_i}{n}$$

• Mediana: dados valores  $x_1, \ldots x_n$ , sejam  $x_1, x_2, \ldots, x_n$  os mesmos valores ordenados. Definimos Q2 como

$$Q2 := \begin{cases} x_{(\frac{n+1}{n})} & \text{se n \'e \'impar (valor na posiç\~ao central)} \\ \frac{x_{(\frac{n}{2})} + x_{(\frac{n}{2}+1)}}{2} & \text{se n \'e par (m\'edia dos valores nas posiç\~aes centrais)} \end{cases}$$

• Moda: é aquele valor que ocorre com mais frequência

### Medidas de Dispersão

Para ter uma caracterização melhor outras medidas, chamada *medidas de dispersão* são introduzidas. Essas são indicadores do grau de espalhamento dos valores em torno da média Dados os valores  $x_1, \ldots, x_n$ , definimos

Variância Amostral

$$S^2 := rac{\sum_{i=1}^n (x_i - \overline{x})^2}{n-1} = rac{\sum_{i=1}^n x_i^2 - n \overline{x}^2}{n-1}$$

$$\circ$$
  $E(S^2) = \sigma^2$ 

Desvio Padrão Amostral

$$s \coloneqq \sqrt{rac{\sum_{i=1}^n (x_i - \overline{x})^2}{n-1}}$$

• Coeficiente de variação amostral:

$$cv\coloneqq rac{s}{\overline{x}}$$

# Capítulo 9: Intervalos de Confiança

#### **Estimativa Pontual**

- 1. Uso  $\overline{x}$  para estimar E(x)
- 2. Uso  $S^2=rac{1}{n-1}\sum (x_i-\overline{x})^2$  para estimar  $\mathrm{Var}(x)=\sigma^2$
- 3. Uso  $S=\sqrt{S^2}$  para estimar  $DP=\sqrt{\mathrm{Var}(x)}=\sigma$

#### Caso $\sigma$ conhecido

Se

$$X \sim N(\mu, rac{\sigma^2}{n}) 
ightarrow Z = rac{\overline{X} - \mu}{rac{\sigma}{\sqrt{n}}} \sim N(0, 1)$$



Dado  $\alpha \in (0,1)$ , o valor de  $(1-\alpha=\gamma)$  é o que chamamos de nível de confiança do intervalo  $IC_{\mu}(\gamma)$ . Em geral,  $\gamma$  será um valor próximo de 1, como por exemplo 0.95, 0.98 ou até 0.99.

#### Construindo o intervalo

Digamos que  $\gamma=0.95$  e  $\frac{\alpha}{2}=q$ :

$$\begin{split} \gamma &= 0.95 = P(-q < Z < q) \\ &= P(-q < \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} < q) \\ &= P(-q \frac{\sigma}{\sqrt{n}} < \overline{X} - \mu < q \frac{\sigma}{\sqrt{n}}) \\ &= p(-\overline{X} - q \frac{\sigma}{\sqrt{n}} < \mu < -\overline{X} + q \frac{\sigma}{\sqrt{n}}) \\ &= p(\overline{X} - q \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + q \frac{\sigma}{\sqrt{n}}) \end{split}$$

Logo,

$$IC_{\mu}(\gamma) = \left[ \overline{X} - q rac{\sigma}{\sqrt{n}}; \overline{X} + q rac{\sigma}{\sqrt{n}} 
ight]$$

Com  $\gamma=0.95$  temos, q = 1.96.

(Procurar na tabela normal  $P(Z < q) = rac{\gamma + 1}{2} = 0.975 
ightarrow q$ )

### Caso $\sigma$ desconhecido

Estimamos  $\sigma^2$  usando  $S^2$  e padronizamos  $\overline{X}$  por:

$$T=rac{\overline{X}-\mu}{rac{S}{\sqrt{ar{n}}}}$$

A variável aleatória T é diferente de Z, e sua distribuição deixa de ser normal e passa a ser t-Student:

$$T \sim (n-1)$$

Onde, (n-1) são graus de liberdade, e n é o tamanho da amostra. Portanto,

$$IC_{\mu}(\gamma) = \left[\overline{X} - trac{S}{\sqrt{n}}; \overline{X} + trac{S}{\sqrt{n}}
ight]$$

# Intervalos de Confiança para Proporção

Dada uma amostra  $X_1,\ldots,X_n\sim Bern(p)$ :

$$\overline{X} = rac{X_1 + \dots + X_i}{n} = \hat{p} pprox N(E(\overline{X}), \operatorname{Var}(\overline{X})) \therefore N\Big(p, rac{p(1-p)}{n}\Big)$$

- $E(\overline{X}) = E(X_i) = p$
- $ullet ext{Var}(\overline{X}) = rac{ ext{Var}(X_i)}{n} = rac{p(1-p)}{n}$
- Z =  $\frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}} pprox N(0,1)$

Temos que,

$$IC_p^*(\gamma) = Pigg(\hat{p} - q\sqrt{rac{p(1-p)}{n}}$$

Onde  $q=rac{1+\gamma}{2}$  .

**Abordagem não conservadora**: Substituímos p na equação por  $\hat{p}$ 

 ${\bf Abordagem\ conservadora} \hbox{: Consideramos\ um\ $\gamma$ acima do nível de confiança fixado inicialmente}$ 

$$IC_{\mu}(\gamma) = \left[\hat{p} - qrac{1}{\sqrt{4n}};\hat{p} + qrac{1}{\sqrt{4n}}
ight]$$

# Capítulo 10: Testes de Hipóteses

## Construção de Testes de Hipóteses

Considere  $X_1,\ldots,X_n$  uma amostra aleatória com  $E(X_i)=\mu$  e  ${\rm Var}(X_i)=\sigma^2$  Formulamos duas hipóteses:

$$\left\{egin{aligned} H_0: \mu = x, & ext{Hipótese Nula} \ H_1: \mu 
eq x, & ext{Hipótese Alternativa} \end{aligned}
ight.$$

Calcule a média amostral:  $\overline{X}$ 

### **Tipos de Erro**

- Tipo 1: Rejeitar  $H_0$  dado que  $H_0$  é verdade
- Tipo 2: Não rejeitar  $H_0$  dado que  $H_0$  é falsa (i.e. dado  $H_1$ )

# Realização de Testes de Hipóteses

- 1. Definir  $\alpha$ : nível de significância, como 1%, 5%, ou 10%.
- 2. Formular Hipóteses  $H_0$  e  $H_1$
- 3. Estabelecer a estatística de teste: determina plausibilidade de Ho.
  - 1. t-Student:  $t(n-1,\gamma)$
  - 2. Normal:  $N(\mu, \sigma^2) = N(\mu, \frac{s}{\sqrt{n}})$
- Identificar a região crítica (RC): valores da estatística incompatíveis com H<sub>o</sub>.
   Unilateral:

$$lpha$$
 = P(Rejeitar  $H_0$  |  $H_0$  verdade) =  $Pigg(\left|rac{\overline{X}-\mu}{rac{S}{\sqrt{n}}}
ight| < q|\mu=xigg)$ 

Bilateral:

$$lpha$$
 = P(Rejeitar  $H_0$  |  $H_0$  verdade) =  $Pigg(\left|rac{\overline{X}-\mu}{rac{S}{\sqrt{n}}}
ight|
eq q|\mu=xigg)$ 

- 5. Conclusão:
  - Rejeitar H₀ se a estatística de teste estiver na RC.
  - Não rejeitar H₀ caso contrário.
    - **1** Defina o nível de significância  $\alpha$  (pequeno: 1%, 5%, 10%).
    - Se vale H<sub>1</sub>: μ < 90, então valores muito menores do que 90 para x̄ estarão de acordo com H<sub>1</sub>.
    - **3** Defina quais valores de  $\bar{x}$  são plausíveis dado  $H_0$  e quais não são.



- ① Se  $\bar{x} < q$ , considero  $\bar{x}$  incompatível com  $\mu = 90$  (é muito improvável que  $\bar{x} < q$  se  $\mu = 90$ ).
- **6** Região crítica:  $RC := \{ \bar{x} \in \mathbb{R} : \bar{x} < q \}$
- **6** Rejeita-se  $\mathcal{H}_0$  se observarmos  $\bar{x} \in RC$

# Teste para Proporções

 $X_1, \dots, X_n$ : Amostra aleatória  $X_i \sim Bern(p)$ 

• Seja  $X_1, \ldots, X_n$  uma amostra de tamanho  $n \in \hat{p} = \frac{1}{n} \sum_{i=1}^n X_i$  a proporção amostral (estimador de p)

• TCL 
$$\implies \frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}} \approx N(0,1)$$
, se  $n$  é suficientemente grande  $(np(1-p) \geq 3)$ 

• Temos aqui também três testes de interesse:

$$\begin{cases} \mathcal{H}_0: & p \ge p_0 \\ \mathcal{H}_1: & p < p_0 \end{cases}, \qquad \begin{cases} \mathcal{H}_0: & p \le p_0 \\ \mathcal{H}_1: & p > p_0 \end{cases} \quad e \quad \begin{cases} \mathcal{H}_0: & p = p_0 \\ \mathcal{H}_1: & p \ne p_0 \end{cases}$$

### **Estatística de Teste:**

$$Z = \left( \left| rac{\hat{p} - p}{\sqrt{rac{p(1-p)}{n}}} 
ight| 
eq q | \mu = \overline{x} 
ight)$$

#### **P-Valor**

P-valor é a probabilidade sob  $H_0$  de observarmos um valor mais extremo (de acordo com  $H_1$ ) para estatística de teste do que aquele observado na amostra.

**Regra de Teste**: Rejeitamos  $H_0$  se P-valor  $< \alpha$ 

Quanto menor o p-valor mais evidência temos contrária a  $H_0$ 

Portanto, mais geralmente, calculamos o p-valor das seguintes formas:

• Teste unilateral 
$$\begin{cases} \mathcal{H}_0: & \mu \geq \mu_0 \\ \mathcal{H}_1: & \mu < \mu_0 \end{cases} \implies \tilde{\alpha} = P(\overline{X} < \overline{x} \mid \mu = \mu_0)$$

• Teste unilateral 
$$\begin{cases} \mathcal{H}_0: & \mu \leq \mu_0 \\ \mathcal{H}_1: & \mu > \mu_0 \end{cases} \implies \tilde{\alpha} = P(\overline{X} > \overline{x} \mid \mu = \mu_0)$$

• Teste unilateral 
$$\begin{cases} \mathcal{H}_0: & \mu \geq \mu_0 \\ \mathcal{H}_1: & \mu < \mu_0 \end{cases} \implies \tilde{\alpha} = P(\overline{X} < \overline{x} \mid \mu = \mu_0)$$
• Teste unilateral 
$$\begin{cases} \mathcal{H}_0: & \mu \leq \mu_0 \\ \mathcal{H}_1: & \mu > \mu_0 \end{cases} \implies \tilde{\alpha} = P(\overline{X} > \overline{x} \mid \mu = \mu_0)$$
• Teste bilateral 
$$\begin{cases} \mathcal{H}_0: & \mu = \mu_0 \\ \mathcal{H}_1: & \mu \neq \mu_0 \end{cases} \implies \tilde{\alpha} = P(|\overline{X} - \mu_0| > |\overline{x} - \mu_0| \mid \mu = \mu_0)$$

Define o nível de significância mínimo ( $\alpha$ ) necessário para rejeitar H<sub>o</sub>. Cálculo:

- 1. Estatística de teste (T).
- 2. Probabilidade de observar valores tão extremos quanto o da amostra sob Ho.

Exemplo prático:

• 
$$H_0: \mu = 0,72, H_1: \mu > 0,72.$$

• Estatística: 
$$T=2,00$$

• p-valor = 0,0319: rejeitamos H<sub>o</sub> para  $\alpha > 3,19\%$