Project 1: Report

Name: Hannah Marques

Date: 03/04/2025

1. Data Preparation

To prepare the data for the analysis and modeling parts, these steps were followed:

- 1. **Data Cleaning:** Data was identified, and duplicate rows were removed to ensure unique observations.
- 2. **Handling Missing Values:** Categorical columns were replaced with the mode, and numerical columns were filled with the median to avoid skewing the data.
- 3. **One-Hot Encoding:** Categorical variables were converted into numerical format using one-hot encoding, ensuring that the models could interpret them properly.
- 4. Class Balancing: The dataset was imbalanced, with more non-recurrence cases than recurrence cases. To address this issue, Synthetic Minority Over-sampling Technique (SMOTE) was applied to generate synthetic data for the minority class after double checking results on ChatGPT.
- 5. **Feature Scaling:** The numerical features were standardized using **StandardScaler** to ensure fair weight distribution across all variables.

2. Insights from Data Preparation

Through exploratory data analysis (EDA), I gained the following insights:

- Class Imbalance: The dataset had significantly more non-recurrence cases than recurrence cases, making it necessary to apply SMOTE to avoid biased model predictions.
- **Feature Importance:** The degree of malignancy showed a strong distribution across three levels, suggesting it plays a crucial role in recurrence prediction.
- **Data Distribution:** Visualizations indicated that some features had distinct clusters, indicating that a non-linear model (such as Decision Trees, Random Forest) might be more effective than a purely linear approach for this analysis.

Figure 1: Class Distribution Histogram

Figure 2: Degree of Malignancy Graph

3. Model Training Procedure

Three classification models were trained to predict cancer recurrence:

- 1. **K-Nearest Neighbors (KNN):** A distance-based model that classifies new instances based on the majority class among the k-nearest neighbors.
- 2. **KNN with GridSearchCV:** A fine-tuned version of KNN where it optimized hyperparameters (e.g., number of neighbors) using grid search.

3. **Logistic Regression:** A linear classification model that predicts the probability of recurrence based on feature relationships.

For training:

- I decided to split the dataset into 80% training and 20% testing, ensuring class proportions remained similar (stratified split).
- I applied **SMOTE** only to the training set to prevent data leakage.
- Lastly, scaled features were used to standardize numerical values before training.

4. Model Performance and Explanation

Each model was evaluated using accuracy, precision, recall, and F1-score. Key observations:

• KNN (k=3):

- o KNN relies on feature similarity, so it struggles when data points from different classes overlap.
- It performed reasonably well but struggled with false positives and false negatives.
- KNN is commonly used when data has clear clusters and is well-distributed in feature space, which was not the case here.

KNN with GridSearchCV:

- o GridSearchCV was applied to optimize hyperparameters, but results were similar to basic KNN.
- This suggests that the model's performance was more dependent on data distribution than the number of neighbors.
- KNN with tuning is often used for pattern recognition and recommendation systems, where class separation is clearer.

• Logistic Regression:

- Since logistic regression assumes linear relationships, it struggled with nonlinearly separable data.
- However, it showed slightly better recall for recurrence cases, making it more useful in medical applications where missing a positive case is critical.
- Logistic regression is widely used in medical diagnoses, credit scoring, and fraud detection due to its interpretability and ability to model probabilities.

5. Model Confidence and Future Improvements

While the models show some predictive capability, their performance is **not highly reliable for real-world medical use** due to:

- Low recall for recurrence cases (Class 1), meaning the model still misclassifies some patients who experience recurrence.
- Potential overfitting in KNN, as performance was similar before and after hyperparameter tuning.
- Class imbalance challenges, despite SMOTE improving recall slightly.

To improve confidence in the model, future work should explore:

- Testing Decision Trees and Random Forest models, which can handle non-linear feature interactions better.
- Applying feature selection techniques to remove less relevant variables and reduce noise.
- Using ensemble methods (such as boosting) to improve predictive performance.

Overall, while this model provides a baseline understanding of recurrence prediction, additional refinement is required before it can be confidently applied in a medical setting.

6. References and Acknowledgment

- ChatGPT was used to assist with a few parts of this project, including:
- Polishing the code to make it more efficient and well structured.
- Adding SMOTE for class balancing Suggested to improve the model's ability to detect recurrence cases.
- Providing tips for better analysis to check class imbalance, evaluating recall, and suggesting alternative models.

Polishing comments, writing, and formatting in order to keep the code and documents in a organized manner.

The core work—coding, testing, and analysis—was done independently, but ChatGPT gave useful suggestions to refine the final version.