	Utech
Name:	
Roll No.:	To Design of Symmetries and Explanat
Invigilator's Signature :	

OPERATION RESEARCH & OPTIMIZATION TECHINIQUE

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following :

 $10\times1=10$

- i) Saddle point is the point of intersection of pure strategies
 - a) True
- b) False.
- ii) A two person game is said to be zero-sum if
 - a) gain of one players is exactly matched by loss of the other, so that their sum is equal to zero
 - b) gain of one player does not match the loss of the other
 - c) both the player must have all equal number of strategies
 - d) diagonal entries of the pay off matches are zero.

4101 (O) [Turn over

- iii) The formula for finding the minimum inventory cost under the purchasing model without shortages is
 - a) $(2RC_1 C_3)^{1/2}$
- b) $(2C_3R/C_3)^{1/}$
- c) $(C_1/2C_3R)^{1/2}$
- d) None of these.
- iv) An LPP having an artificial variable at positive level in the basis, when all $(Z_i C_j \ge 0)$ has
 - a) unbounded solution
 - b) infeasible solution
 - c) basic feaible solution
 - d) alternative optimal solution.
- v) The dual of the dual of a LPP is the
 - a) primal

- b) dual
- c) both primal and dual
- d) none of these.
- vi) Transportation problem is a
 - a) maximization problem b)
- minimization problem.
- vii) In a fair game the value of the game is
 - a) 1

- **b**) 0
- c) unbounded
- d) none of these.
- viii) An assignment problem is a special type of
 - a) transportation problem
 - b) LPP
 - c) inventory problem
 - d) none of these.

- The number of basic variable in a transportation ix) problem is at most
 - a) m + n - 1
- b) m + n

c) mn

- d) mn + 1.
- An assignment problem can be solved by x)
 - Hungarian method a)
 - b) **VAM**
 - c) Matrix minima method
 - None of these. d)
- If there are n workers & n jobs there would be
 - n! solutions a)
- b) (n+1)! solutions
- $(n!)^n$ solutions d) n solutions.
- The set $S = \left\{ \left(x_1, x_2 \right) : 0 \le x_1, x_2 \le 1 \right\}$, is
 - a) a convex set
 - b) concave set
 - c) not a convex set
 - both convex and concave set. d)

Maximize
$$Z = 2x_1 - 3x_2$$

Subject to
$$x_1 + x_2 \le 2$$

$$2x_1 + 2x_2 \ge 8$$

and
$$x_1$$
, $x_2 \ge 0$,

$$x_1 = 2.5, x_2 = 3.5$$

- a) is a feasible solution but not a basic
- b) is a basic feasible solution
- c) is not a solution
- d) is a degenerate basic feasible solution.
- xiv) The maximum number of possible basic feasible solution of the following Linear programming problem :

$$Minimize Z = x_1 - x_2$$

Subject to
$$x_1 + x_2 \le 3$$

and
$$x_1$$
, $x_2 \ge 0$

is

a) 3

b) 2

c) 1

- d) infinitely many.
- xv) In traveling salesman problem, the sales man can visit a city twice until he has visited all the cities
 - a) True

b) False.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

m, e	-		_	-	~
0		_	=	1	_
~	$\overline{}$	^	_	- 1	-
J	_	J	_		J

2. Find the initial basic feasible solution of the following transportation problem by Vogel's Apprimation (VAM) method:

	W_1				Capacity
\boldsymbol{F}_1	10	30 30 8	50	10	7
$\boldsymbol{F_2}$	70	30	40	60	9
$\boldsymbol{F_3}$	40	8	70	20	18
Requirement :	5	8	7	14	34

- Determine EOQ in an inventory control problem having
 - a) constant rate of demand
 - b) instantaneous replenishment and
 - c) finite rate of production.
- 4. Solve the game whose pay-off matrix is given by

Player B

$$A_1$$
 A_2
 A_3
 A_3

Player A

 A_3
 A_3
 A_3

Player B

 A_1
 A_2
 A_3
 A_3
 A_3
 A_3
 A_3
 A_3
 A_3
 A_3
 A_3

5, A TV repairman finds that the time spend on his jobs has an enponential distribution with a mean of 30 minutes. If he repair sets in the order in which they came in and if the arrival of sets follows a poisson distribution approximately with an average rate of 10 per 8 hour day. What is the repair man's expected ideal time each day?

How many jobs are ahead of the average set just brought in?

3.

Subject to
$$x_1 + 2x_2 \le 40$$

 $3x_1 + 2x_2 \le 60$

and x_1 , $x_2 \ge 0$.

7. Find the dual of the following LPP Maximize $Z_n = 2x_1 + 3x_2 - 4x_3$ Subject to $3x_1 + x_2 + x_3 \le 2$ $-4x_1 + 3x_3 \ge 4$ $x_1 - 5x_2 + x_3 = 5$ & $x_1 \ge 0$, $x_2 \ge 0$ and $x_3 \ge 0$.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 8. a) The annual requirement of a product is 3000 units. The ordering cost is Rs. 100 per order. The cost per unit is Rs. 10. The caring cost per unit per year is 30% of the unit cost.
 - i) Find EOQ
 - ii) By using better organizational method the ordering cost per order is brought down to Rs. 80 per order; but the same quantity as determined above was ordered. If a new EOQ is found by using the order cost as Rs. 80, what would be the further savings in the cost?
 - b) Interpret the queueing model (M/M/1) : ($\infty/FIFO$) literally.

In a railway marshalling yard, goods trains are arrive at the rate of 30 trains per day. Assuming that the inter arrival time follows a exponential distribution and the service time (the time taken to hump a train) distribution is also exponential with an average 36 minutes. Calculate the following :

i) the average number of train in the queue.

- ii) the probability of the queue size exceeds 10.
- iii) expected waiting time in the queue.

9. The following table shows the jobs of a network along with their time estimates. The time estimates are in days: 15

Jobs	1-2	1-6	2-9	2-4	3-5	4-5	5-8	6-7	7-8
t o	3	2	6	2	5	3	1	3	4
t m	6	5	12	5	11	6	4	9	9
t _b	15	14	30	8	17	15	7	27	28

Draw the project network:

- i) Find the critical path.
- ii) Find the probability that the project is completed in 31 days.

$$P(z \le -2.1667) = .0114$$

10. a) Solve the game using L.P.P. methd of :

10

5

Player A

Player B
$$\begin{pmatrix} 2 & -2 & 3 \\ -3 & 5 & -1 \end{pmatrix}$$

b) Solve the game using rule of dominance :

Player B

Player A

$$\begin{bmatrix}
 5 & -10 & 9 & 0 \\
 6 & 7 & 8 & 1 \\
 8 & 7 & 15 & 1 \\
 3 & 4 & -1 & 4
 \end{bmatrix}$$

4101 (O) 7 [Turn over

$$Maximize z = x_1 + x_2 + 3x_3$$

Subject to
$$3x_1 + 2x_2 + x_3 < = 3$$

 $2x_1 + x_2 + 2x_3 < = 2$
and x_1 , x_2 , $x_3 > = 0$.

b) Find the dual of the following LPP:

5

Minimize
$$z = 23x_1 + 6x_2$$

Subject to $9x_1 + 3x_2 + x_3 \le 5$
 $-8x_1 + 6x_2 > = 20$
 $2x_1 + 7x_2 = 40$
and $x_1, x_2 > = 0$.

- 12. a) Egg contain 6 units of vitamin *A* per gram and 7 units of vitamin *B* per gram and cost 12 paise per gram. Milk contains 8 units of vitamin *A* per gram and 12 units of vitamin *B* per gram and cost 20 paise per gram. The daily minimum requirements for vitamin *A* and vitamin *B* are 100 units and 120 units. Formulate the LPP and find the optimal solution by graphical method.
 - b) Solve by Penalty method (Big M method):

$$Maximize Z = 2X_1 + X_2 - 3X_3$$

Subject to
$$X_1 + X_2 + 2X_3 < = 5$$

$$2X_1 + 3X_2 + 4X_3 = 12$$

$$X_1, X_2, X_3 > = 0.$$
 6