(若发现问题,请及时告知)

.....

A1, A2, A4, A5 是选自 Lecture 05 文档中的题目

......

A1. 下面的文法 G[S] 描述由命题变量 p, q ,联结词 \wedge (合取)、 \vee (析取)、 \neg (否定)构成的命题公式集合:

$$S \rightarrow S \lor T \mid T$$

$$T \rightarrow T \land F \mid F$$

$$F \rightarrow \neg F \mid p \mid q$$

试分别指出句型 ¬F ∨ ¬ q ∧ p 和 ¬F ∨ p ∧ ¬F ∨ T 的所有短语,直接短语。如果这些句型同时也是右句型,那么还要给出其句柄 . 请将结果填入下表中:

 句型	短语	直接短语	句柄
$\neg F \lor \neg q \land p$			
$\neg F \lor p \land \neg F \lor T$			

参考解答:

句型	短语			直接短语			句柄	
Ev. gan	$\neg F \lor \neg q \land p$	¬F		q^p	¬F	q	p	¬F
$\neg F \lor \neg q \land p$	¬q	q		p				
Every EVE	$\neg F \lor p \land \neg F \lor $	Г	$\neg F \lor p$	о∧¬F	¬F	p	¬F	无
$\neg F \lor p \land \neg F \lor T$	¬ F p/	¬F	p	$\neg F$				

A2. 已知某文法 G[S] 的 LALR(1)分析表如下:

状态	ACTION	GOTO

	а	t	g	С	#	S
0	s11	s8		s4		1
1				s2	acc	
2			s3			
3	s11	s8		s4		16
4	s5					
5	s6					
6				s7		
7			r1	r1	R1	
8			s9			
9				s10		
10	s11	s8		s4		14
11	s11	s8		s4		12
12			s13	s2		
13	s11	s8		s4		15
14			r4	s2	R4	
15			r2	s2	R2	
16			r3	s2	R3	

并且已知各规则右边语法符号的个数以及左边的非终结符如下:

规则编号	1	2	3	4
右部长度	4	4	4	4
左部符号	S	S	S	S

试写出使用上述 LALR(1)分析器分析下面串的过程(只需写出前 10 步,列出所有可能 的 $\mathbf{r}i$, $\mathbf{s}j$ 序列,注意先后次序):

acaaccgtgccaacgatgccaa ···

参考解答:

s11, s4, s5, s6, s7, r1, s2, s3, s8, s9, ···

A3. 设语言 $L = \{a^nb^m \mid m > n \ge 0\}$,G[S]是该语言的无二义文法

- (1) $S \rightarrow AB$
- (2) $A \rightarrow aAb$
- (3) $A \rightarrow \varepsilon$
- $(4) \quad B \rightarrow Bb$
- $(5) \quad B \rightarrow b$

1. 下图是对应于文法 G[S] 的 LR(0) 有限状态机,请填写状态 I2 与 I3的内容,并给出从状态 I3 转移到 I3 对应的文法符号。

- 2. 实际上,文法 G[S] 不是LR(0) 文法。试指出 G[S] 的 LR(0) 自动机中存在哪些存在冲突的状态?并指出这些状态的冲突类别(即,移进-归约冲突或归约-归约冲突)?
- 3. 文法 G[S] 是 SLR(1) 文法,请尝试解释其原因?
- 4. 下图表示 G[S] 的 LR(0) 分析表和 SLR(1) 分析表中状态 I_3 和 I_4 两行所对应的内容,上半部分是 LR(0) 分析表,下半部分是 SLR(1) 分析表,但表中的ACTION部分没有给出,试补齐之。请依据状态转移图的实际情况填写,每一项的内容可以为空(以下划线 _ 表示),也可以含有多个条目(如 S2,r6)。

	11: 	ACTION			GOTO		
	状态	а	b	#	S	A	В
LR(0) 分	3					6	
析表	4						
SLR(1)	3					6	
析 表 ———	4						

5. 在针对 G[S] 的SLR(1)分析过程的某个时刻,符号栈的栈顶是 A,且栈中包含 a,则此时所期待的句柄有哪些?而在另一个时刻,符号栈的栈顶是 A,但栈中不包含 a,则此时所期待的句柄有哪些?

参考解答

1. 下图是对应于文法 G[S] 的 LR(0) 有限状态机,请填写状态 I2 与 I3的内容,并给出从状态 I3 转移到 I3 对应的文法符号。

2. 实际上,文法 G[S] 不是LR(0) 文法。试指出 G[S] 的 LR(0) 自动机中存在哪些存在冲突的状态?并指出这些状态的冲突类别(即,移进-归约冲突或归约-归约冲突)?

$G_1[S]$ 的 LR(0) 自动机中存在 3 个冲突的状态: I_0 , I_3 和 I_4 ; 均为移进-归约冲突

3. 文法 G[S] 是 SLR(1) 文法,请尝试解释其原因?

FOLLOW(S)={ #}, FOLLOW(A)={b}。 因为 FOLLOW(A) 中不含 a, 所以 I₀ 和 I₃ 的移进-归约冲突可解决; 又因为, FOLLOW(S) 中不含 b, 所以 I₄ 的移进-归约冲突可解决

4. 下图表示 G[S] 的 LR(0) 分析表和 SLR(1) 分析表中状态 I_3 和 I_4 两行所对应的内容,上半部分是 LR(0) 分析表,下半部分是 SLR(1) 分析表,但表中的ACTION部分没有给出,试补齐之。请依据状态转移图的实际情况填写,每一项的内容可以为空(以下划线 _ 表示),也可以含有多个条目(如 s2,r6)。

412 - Y -			ACTION			OTO	
	状态	а	b	#	S	A	В
LR(0)	3	s3,r3	r3	r3		6	
析 表	4	r1	s7,r1	r1			
SLR(1) 分	3	s3	r3			6	
析 表	4		s7	r1			

- 5. 在针对 G[S] 的SLR(1)分析过程的某个时刻,符号栈的栈顶是 A,且栈中包含
- a,则此时所期待的句柄有哪些?而在另一个时刻,符号栈的栈顶是 A,但栈中不

包含 a, 则此时所期待的句柄有哪些?

在针对 G[S] 的SLR(1)分析过程的某个时刻,符号栈的栈顶是 A,且栈中包含 a,则此时所期待的句柄只有 aAb。而在另一个时刻,符号栈的栈顶是 A,但栈中不包含 a,则此刻所期待的句柄有3个: Bb、 b 和 AB。

A4. 对于下列文法 G(S):

$$S \to Aa \mid cAb \mid Bb \mid cBa$$

$$A \to d$$

$$B \to d$$

试验证: 该文法是一个 LR(1) 文法, 但不是 LALR(1) 文法。

参考解答:

本题考察 LR(1)有限状态机的构造。LR(1) 有限状态机比 SLR(1) 有限状态机有更多的状态,所以,LR(1)分析法比 SLR(1)分析法有着更强的解决冲突的能力。对某些文法的 LR(1) 有限状态机,用合并同心集方法还可以构造出和 SLR(1)状态相同的 LALR(1) 有限状态机。LR(1)解决冲突能力强的原因是用向前搜索符代替了 SLR(1)所用的非终结符的后跟符。

根据 LR(1)有限状态机构造步骤,

(1) 对文法 G(S)增加产生式

$$S' \rightarrow S$$

得到增广文法 G'(S'):

$$S \rightarrow S$$

 $S \rightarrow Aa \mid cAb \mid Bb \mid cBa$
 $A \rightarrow d$
 $B \rightarrow d$

(2) 构造该文法的 LR(1)有限状态机初态 IO 为:

$$I0 = \{ \ S \ ' \rightarrow . \ S \ , \ S \rightarrow . \ Aa \ , \ S \rightarrow . \ cAb \ , \ S \rightarrow . \ Bb \ , \ S \rightarrow . \ cBa, \ A \rightarrow . \ d, \ B \rightarrow . \ d \}$$

(3) 从初态开始,根据状态转移函数计算步骤,逐步构造出完整的 LR(1)有限状态机,如下图所示:

LR(1) 自动机没有冲突的状态,该文法是 LR(1) 文法。但不是 LALR(1) 文法, I_5 , I_{10} 合并后会有冲突。

A5. 给定如下文法 G[S]:

- (1) $S \rightarrow \underline{\text{if}} S \underline{\text{else}} S$
- (2) $S \rightarrow \underline{if} S$
- (3) $S \rightarrow a$

为文法 G[S] 增加产生式 $S' \to S$,得到增广文法 G'[S'],下图是相应的LR(0)自动 机(i 表示 if, e 表示 else):

- 1. 指出LR(0)自动机中的全部冲突状态及其冲突类型,以说明文法G[S]不是LR(0)文法。
- 2. 文法G[S]也不是SLR(1)文法。为什么?
- 3. 下图表示文法G[S]的LR(1)自动机,部分状态所对应的项目集未给出,试补齐之(即分别给出状态 I_2 , I_8 , 和 I_{10} 对应的项目集。

- 4. 指出LR(1)自动机中的全部冲突状态,这说明文法 G[S] 也不是 LR(1) 文法。
- 5. 若规定最近匹配原则,即 else 优先匹配左边靠近它的未匹配的if,则可以解决上述2个自动机中的状态冲突。下图表示文法G[S]在规定这一规则情况下的SLR(1)分析表,状态 4~6 对应的行未给出,试补齐之 。

\L\;- \ -		ACTION					
状态	i	e	a	#	S		
0	s2		s3		1		
1				acc			
2	s2		s3		4		
3		r3		r3			
4							
5							
6							

下图表示文法G[S] 在规定这一规则情况下的LR(1)分析表,状态 4,7 和 9 对应的行未给出,试补齐之。

\t\ \\		GOTO			
状态	i	e	a	#	S
0	s2		s3		1
1				acc	
2	s8		s7		4
3				r3	
4					
5	s2		s3		6
6				r1	
7					
8	s8		s7		9
9					
10	s8		s7		11
11		r1		r1	

6. 对于文法G[S]中正确的句子,基于上述两个分析表均可以成功进行LR分析。然

而,对于不属于文法G[S]中的句子,两种分析过程发现错误的速度不同,即发现错误时所经过的移进/归约总步数有差异。试给出一个长度不超过10的句子(即所包含的终结符个数不超过10),使得两种分析过程发现错误的速度不同。哪一个更快?对于你给的例子,两种分析过程分别到达哪个状态会发现错误?

参考解答:

- 1. 状态 I4 有冲突, 为移进-归约冲突。
- 2. 因 $Follow(S) = \{e, \#\}, e \in Follow(S), 所以状态I_4的移进-归约冲突不可解决, 所以该文法不是 <math>SLR(1)$ 文法。
- 3. 完整的 LR(1) 自动机如下:

- 4. 状态 I9 有冲突,同样为移进-归约冲突。
- 5. 完整的 SLR(1)分析表

10-4-		GOTO			
状态	i	e	a	#	S
0	s2		s3		1
1				acc	
2	s2		s3		4
3		r3		r3	
4		s5		r2	
5	s2		s3		6
6		r1		r1	
	l				I

完整的 LR(1)分析表

44V		АСТ	TION		GOTO
状态	i	e	a	#	S
0	s2		s3		1
1				acc	
2	s8		s7		4
3				r3	
4		s5		r2	
5	s2		s3		6
6				r1	
7		r3		r3	
8	s8		s7		9
9		s10		r2	
10	s8		s7		11
11		r1		r1	

6. 如对于句子 a else,用LR(1)分析1步后到达状态3发现错误,用SLR(1)分析2步后到达状态1发现错误,所以LR(1)分析更快。

另解: 如对于句子 <u>if a else a else</u> ,用LR(1)分析5步后到达状态3发现错误,用 SLR(1)分析8步后到达状态1发现错误,所以LR(1) 分析更快。

A6. 给定文法 G[S]:

- (1) $S \rightarrow Ab$
- (2) $S \rightarrow ABc$
- (3) $A \rightarrow aA$
- $(4) A \rightarrow a$

1. 设增广文法为 G'[S'],下图是相应于该文法的 LR(0) 有限状态机:

试指出 该LR(0) 有限状态机中存在冲突的状态,以说明该文法不是LR(0)文法。

2. 完善 G[S] 的 SLR (1) 分析表, 并说明 G[S] 是 SLR (1) 文法:

状态		ACTI	ON		GOTO		
八心	a	b	С	#	S	A	В
0	s3				1		
1				acc			
2		s4					5
3							
4							
5							
6							
7		r3					

- 3. 基于上面的 SLR(1) 分析表进行 LR 分析,若分析过程中设有符号栈,则栈中存放的整个符号串(初始栈顶符号# 除外)对应于文法 G[S] 的 ______。
 - A. 某个活前缀 B. 某个可归约串 C. 某个句柄 D. 某个LR(0)项目
- 4. 基于上面的 SLR(1) 分析表进行 LR 分析,若处于某个正常状态(未出错状态)时在栈顶已形成句柄,且当前所面临的输入符号是 b,那么这样的状态可能有________个。

A. 1个 B. 2个 C. 3个 D. 4个

5. 基于上面的 SLR(1) 分析表进行 LR 分析,若处于某个出错状态时所面临的输入符号是 b,那么这样的状态可能有 ______ 个。

A. 1个 B. 2个 C. 3个 D. 4个

参考解答:

1. I3为移进-归约冲突 和 I4为归约-归约冲突。

2

状态	ACTION				GOTO		
	a	b	С	#	S	A	В
0	s3				1	2	
1				acc			
2		s4					5
3	s3	r4				7	
4			r5	r1			
5			s6				
6				r2			
7		r3					

是SLR(1)文法的原因:上表中无多重表项(每个表项最多一个动作),或者说出每个冲突状态的解决方法。

- 3. A
- 4. B
- 5. C