

Aula 10

Normalização

Faculdade IMP/CT/

Normalização

Objetivo

Apresentar uma abordagem de projeto de banco de dados,
 denominada Normalização, a qual permite analisar a qualidade das relações, bem como elevá-la.

Principais tópicos

- Anomalias
- Tuplas espúrias
- Abordagens de Projeto de Banco de Dados
- Dependências Funcionais
- Regras de Inferência para DFs

Normalização

- Principais tópicos (Continuação)
 - Formas Normais com base em Chaves Primárias
 - Definição Geral de Formas Normais
 - BCNF (Boyce-Codd Normal Form)
 - Dependências Multivaloradas
 - Quarta Forma Normal (4FN)

Abordagens de Projeto de BD

Top-down

- Iniciar com o agrupamento dos atributos obtidos a partir do projeto conceitual de mapeamento.
- Isso é chamado de projeto por análise.

Bottom-up

- Considerar os relacionamentos entre atributos.
- Construir as relações.
- Isso é chamado de projeto pela síntese.

Nossa abordagem

- Utilizar a abordagem Top-down para obter as relações.
- Utilizar a abordagem Bottom-up para melhorar a qualidade das relações obtidas anteriormente.

Anomalias

• Cuidado com redundância de informação!

EMP_DEP

_					
<u>NSS</u>	NOME	DTANIV	DNUMERO	DNOME	GERENTE
21	AA	-	5	CV	91
22	BB	-	5	CV	91
23	CC	-	6	TS	93
24	DD	-	7	OS	94
25	FF	<u>-</u>	7	OS	94

- Anomalias de Inserção:

- Como inserir novo departamento sem que existam empregados?
- Inserir empregados é difícil quando informações de departamento devem ser inseridas corretamente.

– Anomalias de Remoção:

• O que acontece quando removemos CC? Perdemos o depto. 6!

– Anomalias de Alteração:

• Se mudarmos o gerente do departamento 5, devemos

Tuplas Espúrias

Não quebre uma relação em relações que possam gerar tuplas espúrias.

DNUMERO	NOME	PNOME	PLOCALIZAÇÃO
123	XX	Compras	São Paulo
123	XX	Vendas	Rio de Janeiro
124	YY	Logística	São Paulo

A relação pode ser quebrada em:

DNUMERO	NOME	PNOME	DNUMERO	PLOCALIZAÇÃO
123	XX	Compras	123	São Paulo
123	XX	Vendas	123	Rio de Janeiro
124	YY	Logística	124	São Paulo

Quando fazemos o Join, obtemos NOVAS TUPLAS!

<u>DNUMERO</u>	NOME	PNOME	PLOCALIZAÇÃO
123	XX	Compras	São Paulo
123	XX	Compras	Rio de Janeiro
123	XX	Vendas	São Paulo
123	XX	Vendas	Rio de Janeiro
124	YY	Logística	São Paulo

Tuplas Espúrias

Não quebre uma relação em relações que possam gerar tuplas espúrias

DNUMERO	NOME	PNOME	PLOCALIZAÇÃO
123	XX	Compras	São Paulo
123	XX	Vendas	Rio de Janeiro
124	YY	Logística	São Paulo

A relação pode ser quebrada em:

Após o Join, o resultado não foi a relação original. Assim, houve perda de informações. Conclui-se que houve uma decomposição com perdas.

DNUMERO	NOME	PNOME	DNUMERO	PLOCALIZAÇÃO
123	XX	Compras	123	São Paulo
123	XX	Vendas	123	Rio de Janeiro
124	YY	Logística	124	São Paulo

Quando fazemos o Join, obtemos NOVAS TUPLAS!

<u>DNUMERO</u>	NOME	PNOME	PLOCALIZAÇÃO
123	XX	Compras	São Paulo
123	XX	Compras	Rio de Janeiro
123	XX	Vendas	São Paulo
123	XX	Vendas	Rio de Janeiro
124	YY	Logística	São Paulo

Dependências Funcionais

- Dependências funcionais (DFs) são usadas para medir formalmente a qualidade do projeto relacional.
- As DFs e chaves são usadas para definir formas normais de relações.
- As DFs são restrições que são derivadas do significado dos atributos e do seus inter-relacionamentos.
- Um conjunto de atributos X determina funcionalmente um conjunto de atributos Y se o valor de X determinar um único valor Y.
 - X □ Y

Dependências Funcionais

- X□Y
 - Se duas tuplas tiverem o mesmo valor para X, elas devem ter o mesmo valor para Y.
 Ou seja:
 - Se X□Y, então, para quaisquer tuplas t1 e t2 de r(R):
 - Se t1[X] = t2[X], então t1[Y] = t2[Y]
- Se K é uma chave de R, então K determina funcionalmente todos os atributos de R.
 - Isso porque, nunca teremos duas tuplas distintas com t1[K]=t2[K]
- Importante
 - X□Y especifica uma restrição sobre todas as instâncias de R.
 - As DFs são derivadas das restrições do mundo real e não de uma extensão específica da relação R.

Exemplos de Restrições de DF

- O número do seguro social determina o nome do empregado.
 - − NSS □ ENOME
- O número do projeto determina o nome do projeto e a sua localização.
 - PNUMERO □ { PNOME, PLOCALIZACAO }
- O nss de empregado e o número do projeto determinam as horas semanais que o empregado trabalha no projeto.
 - { NSS, PNUMERO } □ HORAS

Regras de Inferência para DFs

- Regras de inferência de Armstrong:
 - RI1. (Reflexiva) Se Y ⊆ X (é subconjunto de), então X □ Y
 (Isso também é válido quando X=Y)
 - RI2. (Aumentativa) Se X□Y, então XZ□YZ
 Notação: XZ significa X U Z)
 - RI3. (Transitiva) Se X□Y e Y□Z, então X□Z

 RI1, RI2 e RI3 formam um conjunto completo de regras de inferência.

Regras de Inferência para DFs

- Algumas regras de inferência úteis:
 - (Decomposição) Se X□YZ, então X□Y e X□Z
 - (Aditiva) Se X \square Y e X \square Z, então X \square YZ
 - (Pseudotransitiva) Se X□Y e WY□Z, então WX□Z

 As três regras de inferência acima, bem como quaisquer outras regras de inferência, podem ser deduzidas a partir de RI1, RI2 e RI3 (propriedade de ser completa).

Formas Normais com base em Chaves Primárias [IMPLICITA]

- Normalização de Relações
- Uso prático de Formas Normais
- Definições de Chaves e de Atributos que participam de Chaves
- Primeira Forma Normal
- Segunda Forma Normal
- Terceira Forma Normal

Normalização de Relações

Normalização

 Processo de decompor relações "ruins", dividindo seus atributos em relações menores e "melhores".

Forma Normal

Indica o nível de qualidade de uma relação.

• 1FN

Definição de relação. Atributos atômicos (indivisíveis).

2FN, 3FN, BCNF

Baseiam-se em chaves e DFs de uma relação esquema.

4FN e 5FN

Baseiam-se em chaves e dependências multivaloradas.

Uso Prático das Formas Normais

- Na prática, a normalização é realizada para obter projetos de alta qualidade.
- Os projetistas de bancos de dados não precisam normalizar na maior forma normal possível.
- Desnormalização:
 - Processo de armazenar junções de relações de forma normal superior como uma relação base que está numa forma normal inferior.

Atividades extraclasse

 A leitura do arquivo PDF disponibilizado na plataforma