Quantum Field Theory I - Prof. Gustavo Burdman

Homework 1

Due 20/03/20

1. Relativity Gymnastics

(a) Show that the invariance of the interval between two events $(t^2 - |\vec{x}|^2)$ under Lorentz transformations is satisfied if we define the position four-vector $x^{\mu} \equiv (t; \vec{x})$ such that

$$x^{\prime\mu} = \Lambda^{\mu}_{\nu} x^{\nu}$$

where we defined the Lorentz transformations as Λ^{μ}_{ν} . The inverse Lorentz transformation is defined by $x^{\nu} = \Lambda^{\nu}_{\mu} x^{\prime \mu}$, and it satisfies

$$\Lambda^{\mu}_{\nu}\,\Lambda^{\nu}_{\rho} = \delta^{\mu}_{\rho}$$

(b) The Minkowski space metric is given by

$$g^{\mu\nu} = g_{\mu\nu} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} ,$$

- i. Show that the interval is given by the position four-vector squared defined by $x.x \equiv x^{\mu}g_{\mu\nu}x^{\nu}$.
- ii. A contra-variant four-vector is denoted as $v^{\mu} = (t; \vec{v})$ Show that if we define a covariant four-vector as $v_{\mu} \equiv (t; -\vec{v})$, we ca write $v.v = v^{\mu}v_{\mu}$.
- iii. Verify that $v_{\mu} = g_{\mu\nu} v^{\nu}$, and $v^{\mu} = g^{\mu\nu} v_{\nu}$.
- (c) Show that the relativistic dispersion relation $E^2 |\vec{p}|^2 = m^2$, where m is the particle's mass, is consistent with defining the momentum four-vector as $P^{\mu} = (E; \vec{p})$.

(d) Define the differential operators

$$\frac{\partial}{\partial x^{\mu}} \equiv \partial_{\mu} \equiv (\frac{\partial}{\partial t}; \vec{\nabla}) \qquad \qquad \frac{\partial}{\partial x_{\mu}} \equiv \partial^{\mu} \equiv (\frac{\partial}{\partial t}; -\vec{\nabla})$$

i. Construct the Klein-Gordon operator using the identifications

$$E \to i \frac{\partial}{\partial t}$$
 $\vec{p} \to -i \vec{\nabla}$

ii. Show that if we define the four-vector current $J^{\mu} \equiv (\rho; \vec{j})$, where ρ and \vec{j} the charge density and current respectively, the continuity equation in electrodynamics can be written as the conservation of the four-current as

$$\partial_{\mu}J^{\mu}=0$$

2. About those Delta Functions

Using the defining property of the Delta function

$$\int_{-\infty}^{+\infty} f(x) \, \delta(x) \, dx = f(0)$$

for some function f(x), and that $\delta(-x) = \delta(x)$

(a) Show that

$$\int_{-\infty}^{+\infty} f(x)\delta(a\,x)\,dx = \frac{1}{|a|}\,f(0)$$

for an arbitrary constant a.

(b) Using all these show that for a function g(x)

$$\int_{-\infty}^{+\infty} f(x) \, \delta(g(x)) \, dx = \sum_{a} \frac{1}{|g'(a)|} \int_{-\infty}^{+\infty} f(x) \, \delta(x-a) \, dx ,$$

where a are the zeroes of g(x) (i.e. $g(a) = 0, \forall a$) while $g'(a) \neq 0$.

(c) Now verify that for $\omega_p = \sqrt{(\vec{p})^2 + m^2} > 0$ we have

$$\int \, d^4 p \, \delta(P^2 - m^2) \, f(P) = \int \, d^3 p \int \, dp_0 \, \delta(p_0^2 - (\vec{p})^2 - m^2) \, f(P) = \frac{1}{2\omega_n} \, \int \, d^3 p \, f(\omega_p, \vec{p}) \, ,$$

where you need to use the fact that since the four-momentum is always timelike, the sign of p_0 is Lorentz invariant. Thus we need only integrate p_0 from 0 to ∞ , which in turn means we only need the positive root.

3. Electromagnetism:

The covariant form of the Lagrangian density for the electromagnetic field in the absence of sources is

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \ ,$$

where $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$ is the field strength tensor defined in terms of the potential 4-vector A_{μ} .

- (a) Derive the equations of motion for $A_{\mu}(x)$ assuming it is the dynamical field, using Euler-Lagrange. Show that these are equivalent to Maxwell's equations in the vacuum. (It is useful to remember that $E^{i} = -F^{0i}$ and $\epsilon^{ijk}B^{k} = -F^{ij}$.)
- (b) If we now consider sources in the form of a current j_{μ} , what is the form of the interaction term between A_{μ} and j_{μ} we must add to \mathcal{L} in order to obtain Maxwell's equations in the presence of the source $j_{\mu} = (\rho, \vec{j})$?
- (c) The Lagrangian in the absence of sources is invariant under the gauge transformation

$$A_{\mu}(x) \to A_{\mu}(x) + \partial_{\mu}\alpha(x)$$
,

with $\alpha(x)$ an arbitrary function. What is the condition that j_{μ} must fulfill for the Lagrangian to remain gauge invariant in the presence of sources?

QFTI - Homework 1

Victor Muñoz

9

P11 (a) the invariance of the interval is proved by showing that $5^{12} = \chi^{12} = \chi^2$.

 $\chi^{12} = \chi^{\prime M} \chi^{\prime}_{M} = \Lambda^{M}_{\nu} \chi^{\nu} g_{M\lambda} \Lambda^{\lambda}_{3} \chi^{3}$

(3)

= Now god Nas XVX3

but 1 my gua 12 = gus (*)

=) $X^{12} = 9 v n X^{\nu} X^{n} = X^{2}$ so that $S^{12} = S^{2}$.

let us verify [v] in the simplest case: V=B=0, then it should be true that

Mogna Não = 1

As the only non well component of gan are gaz with 2=0,1,2,3 we have:

 $\Lambda^{\circ}_{\circ} g_{\circ \circ} \Lambda^{\circ}_{\circ} + \cdots + \Lambda^{3}_{\circ} g_{33} \Lambda^{3}_{\circ} = (\Lambda^{\circ}_{\circ})^{2} - (\Lambda^{1}_{\circ})^{2} - (\Lambda^{2}_{\circ})^{2} - (\Lambda^{3}_{\circ})^{2}$

with $\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$ and $\beta = \frac{v}{c}$

50 we have:
$$(\Lambda^{\circ})^{2} - (\Lambda^{1})^{2} = \mu^{2} - B^{2}\mu^{2}$$

$$= \mu^{2} (1 - B^{2})$$

$$= \frac{(1 - B^{2})}{(1 - B^{2})}$$

$$= 1. \text{ As expected.}$$

The other terms are calculated in similar way.

(b) i.
$$X \cdot X = X^{M} \mathcal{J}_{MV} X^{V}$$

$$= X^{0} \mathcal{J}_{OV} X^{V} + X^{1} \mathcal{J}_{AV} X^{V} + X^{2} \mathcal{J}_{ZV} X^{V} + X^{3} \mathcal{J}_{3V} X^{V}$$

$$= X^{0} \mathcal{J}_{OO} X^{0} + X^{1} \mathcal{J}_{MV} X^{V} + X^{2} \mathcal{J}_{ZV} X^{2} + X^{3} \mathcal{J}_{33} X^{3}$$

$$= X^{02} - X^{12} - X^{22} - X^{32}$$
Which is precisely S^{2} V

ii.
$$V^{m}V_{m} = V^{o}V_{o} + V^{1}V_{1} + V^{2}V_{2} + V^{3}V_{3}$$

$$= t^{2} + (v_{x})(-v_{x}) + (v_{y})(-v_{y}) + (v_{z})(-v_{z})$$

$$= t^{2} - \vec{v}^{2}$$

$$= v \cdot v$$

1.
$$V_{M} = g_{M} V^{V} , \quad So \quad V_{0} = g_{0} V^{V} = t$$

$$V_{1} = g_{1} V^{V} = -V_{x}$$

$$V_{2} = g_{2} V^{V} = -V_{y}$$

$$V_{3} = g_{3} V^{V} = -V_{2}$$

Similarly
$$V'' = g^{\mu\nu} V_{\nu}$$
: So $V'' = g^{\mu\nu} V_{\nu} = t_{\chi}$ $V^{2} = g^{2\nu} V_{\nu} = -V_{\chi}$

- on the other hand the 4-momentum is defined by $P^{m} = m U^{m}$ where U^{m} is the 4-velocity such that $U^{2} = 1$.

 Then $P^{2} = m^{2}$ and matching these two results we have: $E^{2} \vec{P}^{2} = m^{2}$ which gives the correct dispersion relation.
- (L) From the relativistic dispersion relation: $\vec{E}^2 \vec{p}^2 \vec{m}^2 = 0$ And using the identifications: $\vec{E} \rightarrow i \partial_t$ and $\vec{p} \rightarrow -i \vec{\nabla}$ we have: $(i \partial_t)(i \partial_t) - (-i \vec{\nabla})(-i \vec{\nabla}) - \vec{m}^2 = -\partial_t^2 + \vec{\nabla}^2 - \vec{m}^2$ Which is the Klein-Gordon operator.
- P2) (a) Consider of f(x) S(ax) dx, making the change of variable:

 $x = \alpha y$, with a some constant. $dx = \alpha dy$ we have: $\int_{-\infty}^{+\infty} f(x) \, \delta(\alpha x) \, dx = \int_{-\infty}^{+\infty} f(y/\alpha) \, \delta(y) \, dy \cdot \frac{1}{|\alpha|}$

Note: the absolute value over "a" stands because if "a" is minor than zero, then the limits of integration are reversed Providing a global minos sign in the equation.

$$= \frac{1}{101} f(0)$$

$$= \frac{1}{101} \int_{-\infty}^{+\infty} f(y) \delta(y) dy$$

(b) from the previous answer we have:

$$S(\alpha x) = \frac{1}{100} S(x)$$
. We will conclude that this is just a special case from $S(g(x)) = \frac{1}{100} S(x-x_0)$, with $S(x_0) = 0$ $S(x_0) = 0$

For
$$\int f(x) \delta(g(x)) dx$$
, let $y = g(x)$, $dy = g'(x) dx$
 $x = g^{-1}(y)$, $\alpha = f(x \to \infty)$, $b = f(x \to +\infty)$
 $f(x) \delta(g(x)) = \int f(g^{-1}(y)) \delta(y) \frac{dy}{(g^{-1}(y))}$

$$= \int_{-\infty}^{\infty} f(x) \, \delta(g(x)) = \int_{0}^{\infty} f(g^{-1}(y)) \, \delta(y) \, dy$$

$$= \int_{0}^{\infty} f(g^{-1}(y)) \, \delta(y) \, dy$$

$$= \frac{f(g^{-1}(0))}{|g'(g^{-1}(0))|} = \frac{f(x_0)}{|g'(x_0)|}$$

We are assuming that the condition y=0 is satisfied with $x=x_0$ For which g(xo) = 0.

The last result can be obtained from:

$$\int_{-\infty}^{+\infty} f(x) \frac{\delta(x-x_0)}{|g'(x_0)|} dx = \frac{f(x_0)}{|g'(x_0)|}$$

So that by comparison we have:
$$S(g(x)) = \frac{1}{|g'(x_0)|} S(x-x_0)$$
, with $\frac{1}{|g'(x_0)|} S(x-x_0) = 0$

And the obvious generalization when g(x) possess multiple (simple) zeros is:

$$S(g(x)) = \sum_{x_i} \frac{1}{|g'(x_i)|} S(x-x_i) , g(x_i) = 0$$

So that to
$$\int_{-\infty}^{+\infty} f(x) \, \delta(g(x)) \, dx = \sum_{x_i}^{+\infty} \frac{1}{|g'(x_i)|} \int_{-\infty}^{+\infty} f(x) \, \delta(x-x_i) \, dx$$

(c)
$$\int d^{4}P \, S(P^{2}-m^{2}) \, f(P) = \int d^{3}P \, \int dP_{0} \, S(P_{0}^{2}-\vec{P}^{2}-m^{2}) \, f(P)$$

here $g(P_0) = P_0^2 - \tilde{P}^2 - m^2 = P_0^2 - wp^2$ here $g(P_0)$ has two zeros At $P_0 = \pm wp$, and $g'(P_0) = 2P_0$. We are interested only in the case where wp > 0, so be have:

$$\int d^{4}P \, S(P^{2} - w^{2}) \, F(P) = \int d^{3}P \, \int dP_{0} \, \frac{S(P_{0} - w_{P})}{2 \, w_{P}} \, F(P_{0}, \vec{p})$$

$$= \int d^{3}P \, \frac{F(w_{P}, \vec{p})}{2 \, w_{P}}$$

Therefore
$$Z = -\frac{1}{2} \partial_{M} A_{\nu} (\partial^{M} A^{\nu} - \partial^{\nu} A^{M})$$

The E-L equations are
$$\frac{\partial \mathcal{L}}{\partial Av} = \frac{\partial \mathcal{L}}{\partial (\partial MAv)}$$

with
$$\frac{\partial Z}{\partial A_{\nu}} = 0$$
 And $\frac{\partial Z}{\partial (\partial_{m}A_{\nu})} = -\frac{1}{2} (\partial_{m}A^{\nu} - \partial_{\nu}A^{m}) - \frac{1}{2} \partial_{m}A_{\nu} \times 0$

we get

hence

As
$$F^{\mu\nu} = \begin{pmatrix} 0 & -E_x & -E_y & -E_z \\ E_x & 0 & B_z & -B_y \\ E_y & -B_z & 0 & B_x \\ E_z & B_y & -B_x & 0 \end{pmatrix}$$
 (we are using $c=1$)

We have For V=0:
$$\vec{\nabla} \cdot \vec{E} = 0$$

For V=1:
$$\partial t E_x = \partial_z B_y - \partial_y B_z$$

For
$$V=2$$
: $\partial_t E_y = \partial_x B_z - \partial_z B_x$

For V=3:
$$\partial_t E_{z} = \partial_x B_y - \partial_y B_x$$

Adding the last three equations, we get:
$$\vec{\nabla} \times \vec{\mathbf{B}} = \partial_{t} \vec{\mathbf{E}}$$

- * Note: The other Maxwell's equations are obtained from the dual tensor: $\tilde{F}^{\mu\nu} = \frac{1}{2} \tilde{E}^{\mu\nu\lambda\sigma} F_{\mu\nu}$ whose divergence is will: $\tilde{J}_{\mu\nu} = 0 \implies \tilde{\nabla} \cdot \vec{B} = 0$ and $\tilde{\nabla} r \hat{E} = \tilde{J}_{\tau} \vec{B}$.
 - (b) It's easy to see that if we add the therm

 ADJ' to the previous lagrangian, then we will have

$$\frac{\partial \mathcal{L}}{\partial Av} = 5^{\text{p}}$$
 and then we will have $\partial n F^{mv} = 5^{\text{p}}$

which are the naxwell's equations in the presence of a source.

(c) The action:
$$S = \int d4x \left(-\frac{1}{4} F^{\mu\nu} F_{\mu\nu} - A_{\nu} J^{\nu} \right)$$
 is gauge invariant if and only if J^{ν} is a conserved correct: $\partial_{\nu} J^{\nu} = 0$.

Because FOR AN -> AN(X) + DNX(X) We have:

14

 $S' = S - \int d^4x \, \partial v \, d(x) \, J^{\nu}(x)$ if $d(x) \to 0$ when $x \to \pm \infty$ then by the Stokes' theorem we have: $\int d^4x \, \partial u \, (dJ^{\nu}) = 0$ $\Rightarrow \int d^4x \, \partial v \, d(x) \, J^{\nu} = -\int d^4x \, \partial v \, J^{\nu} \, d(x)$ so that $S' = S + \int d^4x \, d(x) \, \partial v \, J^{\nu}$ and then $S' = S \iff \partial v J^{\nu} = 0$