

Matemática Discreta

Segundo Teste Modelo

- 1. Prove que 9 divide $4^n + 15n 1$, para todo o $n \ge 1$.
- 2. Seja $F_1=1$, $F_2=1$ e $F_n=F_{n-1}+F_{n-2}$, para $n\geq 3$. Mostre que F_{4n} é divisível por 3.
- 3. Seja T uma árvore binária com n vértices e altitude h. Prove que $n \leq 2^{h+1} 1$.
- 4. Seja S o conjunto de pares de inteiros definido indutivamente pelas seguintes regras:

$$\frac{(x,y) \in S}{(1,3) \in S} \quad \frac{(x,y) \in S}{(x-2,y) \in S} \quad \frac{(x,y) \in S}{(x,-y) \in S} \quad \frac{(x,y) \in S}{(y,x) \in S}$$

- (a) Mostre que se $(x,y) \in S$, então x e y são ímpares.
- (b) Mostre que todo o par de inteiros ímpares pertence a S.
- 5. Imagine que tem um tabuleiro de xadrez com 3×3 casas; suponha que há quatro cavalos nos quatro cantos do tabuleiro; os cavalos brancos estão na fila do topo, e os cavalos pretos estão na fila de baixo. Será possível, usando movimentos válidos para o cavalo, coloca-los nos cantos mas de forma a que em nenhuma linha e em nenhuma coluna haja cavalos de cores iguais?
- 6. Imagine que numa festa cada pessoa aperta a mão a algumas outras pessoas. Prove que há pelo menos duas pessoas a apertar a mão ao mesmo número de pessoas.
- 7. Existem árvores binárias eulerianas? E semi-eulerianas?
- 8. Diga se é possível completar esta sequência de forma a que não seja gráfica: (4, k, 2, 1, 1, 1, 1).
- 9. Demonstre algum dos seguintes teoremas:
 - (a) Num grafo simples o número de vértices de grau ímpar é par
 - (b) Prove que toda a árvore com pelo menos dois vértices tem pelo menos dois vértices de grau ímpar.