PATENT ABSTRACTS OF JAKEN

(11)Publication number:

63-137755

(43)Date of publication of application: 09.06.1988

(51)Int.CI.

B01J 23/94 B01J 38/16

(21)Application number: 61-281922

(71)Applicant: NIPPON SHOKUBAI KAGAKU KOGYO CO

LTD

(22)Date of filing:

28.11.1986

(72)Inventor: UCHIDA SHINICHI

OCHIDA SHINICH

DEGUCHI KOJI

SASAKI MASAMITSU

(54) REACTIVATION OF CATALYST

(57)Abstract:

PURPOSE: To regenerate catalytic activity at low temp. within a short time, in a molybdenum-bismuth type multicomponent catalyst for preparing unsaturated aldehyde, by containing a definite amount or more of oxygen and a small amount of steam in hot gas for treating the catalyst.

CONSTITUTION: A Mo-Bi-Fe type multicomponent oxidizing catalyst is mainly used in the preparation of acrolein or methacrolein through the contact gaseous phase oxidizing reaction of propylene, isobutylene or tertiary-butanol and contains Fe at an atomic ratio of 0.1/12 or more with respect to Mo. In the reactivation of the catalyst used for a long period, said catalyst is heat-treated for several hr at about 350° C in an atmosphere containing 5vol% or more of oxygen and the remainder of inert gas such as nitrogen or carbon dioxide as well as 0.1vol% or more of steam. As a result, Bi2Fe2Mo2O12 is reduced to a large extent and the peak of Fe2(MoO4)3 is regenerated and the quantity of an acid is restored to an unused level.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

⑩日本国特許庁(JP)

⑩特許出願公告

"⑫特 許 公 報(B2)

平5-70503

®Int. Cl.	5	識別記号		庁内整理番号	2969公告	平成5年(1993)10月5日
B 01 J	23/94 38/12 38/16		Z B	8017-4G 7821-4G 7821-4G		
C 07 C	45/35 47/22 61/00	300	A	9049-4H		

60発明の名称 触媒の再活性化法

> ②特 願 昭61-281922

窗公 開 昭63-137755

22出 顧 昭61(1986)11月28日

@昭63(1988)6月9日

発明の数 1 (全8頁)

個発明 者 内 **B**3 伸 兵庫県姫路市網干区興浜字西沖992番地の1 日本触媒化 学工業株式会社触媒研究所内

@発 明 者 出口 冶

兵庫県姫路市網干区興浜字西沖992番地の1 日本触媒化

学工業株式会社触媒研究所内

@発 明 者 佐々木 雅光 兵庫県姫路市耦干区興浜字西冲992番地の1

日本触媒化

学工業株式会社触媒研究所内

の出願人 株式会社日本触媒

大阪府大阪市中央区高麗橋4丁目1番1号

審査官 中田 とし子

1

1 プロピレン、イソプチレンまたはターシャリ

②特許請求の範囲

ープタノールの接触気相酸化反応により主として それぞれに対応する不飽和アルデヒドを製造する 鉄を含有しかつ鉄が原子比でMo=12に対し少な くとも0.1含有せしめてなる触媒酸化物において、 触媒活性が低下した当該触媒を、分子状酸素 5~ 99.9容量%、水蒸気0.1~95容量%および不活性

2 当該熱処理温度が300℃以上380℃未満の範囲 であることを特徴とする特許請求の範囲【記載の 方法。

流通下300℃~500℃の範囲の温度で熱処理するこ

とを特徴とする触媒の再活性化法。

= - == = = = = -

発明の詳細な説明

〔産業上の利用分野〕

本発明は触媒の再生賦活法に関する。群しく述 べると本発明はモリブデン、ピスマスおよび鉄を の不飽和アルデヒド製造用触媒酸化物において、 その触媒活性が低下した触媒を比較的低温で再生

賦活する方法を提供するものであり、とくに長期 間使用されて活性低下をきたした固定床式に充塡 されてなる当該触媒酸化物をそのまま分子状酸素 ならびに水蒸気含有ガス流通下に容易にかつ工業 工程に用いられる、モリブデン、ピスマスおよび 5 的に有利に再生賦活せしめる方法を提供するもの である。

2

〔従来技術〕

プロピレンからアクロレインまたはイソプチレ ンやターシャリープタノールからメタクロレイン ガス残余(合計100容量%)からなる酸化性ガス 10 を製造するためにモリブデン、ピスマスおよび鉄 を含有する多元系触媒酸化物が従来から広く使用 されている(たとえば、特公昭47-42241号、同 47-42242号、同47-27490号、同55-45256号、 同57-61001号、同58-23370号、同58-49535号、 15 特開昭53-73488号、同59-31727号各公報参照)。 しかしながらこれらの触媒な長期間の使用により 徐々にその活性が低下する。また生産性を上げる ため原料ガス濃度を上げたり、空間速度を高くし たりして触媒の負荷を増やしたりすると、活性低 含有してなるアクロレインやメタクロレインなど 20 下がより早まることも知られる。これらの場合、 触媒性能の低下原因が主として触媒に含まれるモ リブデンの飛散によつていることが知られ、従来

触媒活性の再生賦活法としてこのモリブデン補充 策が主として提案されている。

たとえば、特開昭50-49201号公報によれば、 プロピレンノアンモ酸化反応で使用して活性劣化 した触媒の再活性化法が開示される。すなわち、 流動床反応器内、温度200~600℃で劣化触媒とモ リプデンを含有する不活性担体の流動性粒子とを 接触せしめる方法である。

また、特開昭57-56044号公報には、プロピレ まず200~700℃の温度で水素や低級炭化水素を含 有せしめた還元性ガスで処理し、ついで分子状酸 素含有ガス、すなわち酸化性ガスで500~700℃で 熱処理する触媒の再活性化法が提案されている。 これらの方法は触媒の再活性化用の物質を新たに 15 調製したり、遵元性ガスおよび酸化性ガスの2種 類のガスの調製および熱処理を必要とするなど煩 雑である。

そして、特開昭61-33234号公報にはプロピレ ロレインを製造するモリブデンーピスマス系多元 酸化物触媒の再生法として、実質的に空気からな る雰囲気中で劣化触媒を380~540℃の温度で加熱 処理する方法が提案されている。この方法は反応 開始時の触媒において触媒粒子表面にモリブデン 25 が偏在し、反応の進行とともにこのモリブデンが 飛散して活性劣化を招くという知見を基に380℃ を越える高温で、とくに400℃を越える温度で10 日間程度空気と触媒させると、触媒粒子表面への というものである。しかしながら、このような酸 化性雰囲気の高温下に長時間触媒を曝すことは、 決して得策ではなく、触媒性能の回復は認められ るとしてもその上昇巾は小さくならざるをえな 610

本発明者らはこれらモリブデンーピスマス系多 元酸化触媒においてより低温域での活性賦活を計 るべく検討したところ、むしろ、触媒処理用の熱 ガス中に一定量以上の酸素と少量の水蒸気とを含 有せしめることにより短期間で低温下に有利に触 40 煤活性の再生が可能となることを見出し本発明を 完成するに至つた。

[問題点を解決するための手段]

かくして本発明は以下の如く特定される。

ピロプレン、イソブチレンまたはターシャリー ブタノールの接触気相酸化反応により主としてそ れぞれ対応する不飽和アルデヒドを製造する工程 に用いられる、モリブデン、ピスマスおよび鉄を 含有しかつ鉄が原子比でMo=12に対し少なくと も0.1、好ましくは0.5~10含有せしめられてなる 触媒酸化物において触媒活性が低下した当該触媒 を分子状酸素 5~99.9容量%、好ましくは10~20 容量%含有し、かつ水蒸気0.1~95容量%、好ま ンを酸化してアクロレイン製造用の劣化触媒を、 10 しくは0.2~20容量%を含有するガス流通下300~ 500℃の範囲、好ましくは300℃以上380℃未満の 温度で熱処理することを特徴とする触媒の再活性 化法。

以下本発明をさらに詳しく説明する。

本発明が対照する触媒はモリブデン、ピスマス および鉄を含みかつ鉄成分が原子比でMo=12に 対し少なくとも0.1、好ましくは0.5~10共存せし められてなるものである。触媒表面においてモリ ブデン (Mo) は鉄 (Fe) とモリブデン酸鉄を形 ンやイソプテンを酸化してアクロレインやメタク 20 成して安定化しており、触媒中にFeはMo=12に 対し原子比で0.1以上存在せしめられれば、その 要求を満たすもののより好適には0.5~10共存さ せることの方がこの要件をより満足なものとす

本発明が対象とするMo-Bi-Fe系多元酸化触 媒はプロピレン、イソプチレン或いはターシャリ ープタノールの触媒気相酸化反応により主にアク ロレインまたはメタクロレインを製造する場合に 使用され、FeをMoに対し原子比で0.1/12以上、 モリブデンの粒子内拡散による補給が行なわれる 30 好ましくは0.5~10/12含有する。このような触 媒系に於いては長期使用するにつれて、有効生成 物への選択性の低下よりも、活性(原料化合物転 化率)の低下が大きいことが見出されている。

> そして、この活性低下の原因(性能の劣化)は 35 前にも述べたようなモリブデン成分(例えば MoO₂) の飛散によるものではないことが認めら れたのである。確かに本発明者等もある種の触媒 系においては未使用触媒中にはMoO:の存在が認 められること、長期反応によりその存在量が減少 している現象や、充塡された触媒層においてより 低温側(出口側)にMoO2の含有量が増大してい る現像等から長期反応による触媒劣化と触媒中の Mo量と関係づけられそうな現象は経験した。し かしできるだけMoを単独酸化物として触媒中に

6

存在させないような形、例えばMoをMo以外の 添加元素(例えばFe、Co、Ni、Bi等々)で飽和 状態に配位させた場合でも触媒性能はすぐれた状 態に維持することも可能であることを本発明者等 は認めている。

ところで、一般に触媒活性に寄与する成分とし ては多数の文献で見うけられる様に例えばモリブ デン酸ピスマスや、三酸化モリブデン等々である と云われている。又特公昭56-28180号公報明細 和アルデヒドを製造するための触媒が開示され、 この触媒の調製方法に於いては COs-10Mo12Bio.5-2Feo.5-2O4なる酸化物触媒組成 においてその活性相がBi₂Fe₂Mo₂O₁₂て表わされ 提案している。更にこの活性相が同時に結晶相、 $Bi_2Mo_2Fe_2O_{12}$ 、 $CoMoO_4$ 及 $\mathcal{F}Bi_2(MoO_4)_3$ 、 Fe_2 (MoO₄)₂を含有することをも開示している。ま た、本発明者等が触媒における種々の物性変化、 はX線回折分析等を利用して、活性の低下した触 媒と未使用触媒との物理的、化学的差異を比較し たところ、nープチルアミン法による酸量の変化 及び化学的には3価の鉄とMoの化合物であるモ リブデン酸鉄とMo、Fe、Biの 3 成分からなる酸 化物の生成が触媒性能を経時的変化に関係してい ることがわかつた。以下に具体的一例を示す。す なわち、CosFezBizWzMozzRbos(酸素を除く原 子比)の未使用触媒と同じ組成になる12000時間 にわたりイソプチレンの接触気相酸化反応を継続 30 し性能の低下した触媒(特にイソプチレン転化率 が低下した触媒)について表面積や細孔容積を測 定したところ未使用のものと12000時間反応に供 した触媒とではそれぞれBET法による表面積は 積についても0.40∞/タが0.38∞/タとこれも大 差がなかつた。ところがnーブチルアミン法によ る酸量の測定によれば未使用触媒では2マイクロ モル/8の酸量であるのに比べて、使用済み触媒 かくして活性低下の原因の一つに酸量の変化が関 係していることがわかつた。そしてこれは例えば 高温に於いて水蒸気等により処理すればブレンス テツド酸点の数の回復が期待できることを示唆し

ている。他方X線回折による結晶相の変化を追っ たところ前述で引用した特公昭56-28180号公報 の明細書内容と全く逆の現象を確認した。すなわ ち、活性種結晶相に主に関係しているのはモリブ 5 デン酸鉄 (Fe₂(MoO₄)₂であり、イソプテン酸化 反応が進行するにつれて、くわしくは不明である が、モリブデン酸鉄、モリブデン酸ピスマスが反 応してBi₂Fe₂Mo₂O₁₂(又はBi₃Fe₁Mo₂O₁₂)が生 成し、この生成量に比例して活性が低下し、Fex 書中にはオレフインの酸化により、 α , β -不飽 10 (MoO₄)。が減少することが認められた。この反 応が還元性雰囲気ではとくに進行し易いためであ ろうと思われる。

X線回折線(対陰極Cu-Ka)の測定において メインピークの2θがα-モリブデン酸ビマス29.2 る結晶相を含有することを特徴とせしめることを 15 度、モリブデン酸鉄22.91度、ピスマス、鉄およ びモリブデンの酸化物(Fe2Bi2Mo2O12又は Bi₂Fe₁Mo₂O₁₂) は30.7度、三酸化モリブデン12.6 度、βーモリブデン酸コパルト26.4度とを、目安 としての未使用触媒におけるるαーモリブデン酸 例えば表面積、細孔容積、酸性度等の変化、更に 20 コパルトのピーク高さを100とした時の各ピーク の高さを表に示すと次のように観測される。

		未使用 触媒	12000時間 使用触媒	酸素+水蒸気 処理後触媒
	α-ビスマス モリブデート	40	40	39
25	Bi ₂ Fe ₂ Mo ₂ O ₁₂	0	15	3
	$Fe_2(MoO_4)_3$	8	1	8
	MoO _s	8	8	8
	B-CoMoO4	100	101	99

そして、かかる長期反応による活性の低下した 触媒を高温の酸素及び水蒸気雰囲気で熱処理を行 うとBi₂Fe₂Mo₂O₁₂は減少し、Fe₂(MoO₄)₂のピ ークが再生されることが認められた。

そこで本発明者等は長期間使用した触媒の再活 $3\pi/9$ と $2.8\pi/9$ と大差なかつた。又細孔容 35 性化法について検討したところ炭化水素類を含ま ない酸化性雰囲気ガス、すなわち5容量%以上の 酸素と、残り窒素、炭酸ガスなどの不活性ガス含 有ガス雰囲気中で且つ水蒸気を0.1容量%以上含 有せしめて350℃近辺で数時間熱処理したところ では13マイクロモル/ 8と大巾に低下していた。 40 Bi₂Fe₂Mo₂O₁₂は大巾に減少し、Fe₂(MoO₄)₂の ピークが再生され、且つ酸量が未使用触媒の酸量 のレベルに回復していることが判明した。それに 伴つて、十分に活性を有する性能(有用成分への 選択性や反応温度の回復)へ回復し、且つ長時間

に亘り性能の持続性が保たれることを見い出し、 本発明を完成するに至つたものである。しかも本 発明の様に350℃近辺の比較的低温においても劣 化触媒の再生効果が認められたのはFeの含量が Moに対し原子比でMo原子12に対して0.1以上、5 とくに0.5~10の範囲の関係にある場合はじめて 認められることであるとわかつた。本発明による 再活性化法はまた特に高濃度原料含有ガス(従つ て燃焼範囲との関係で酸素濃度は無理にあげられ 媒の劣化に対しても有効である。本発明に従う処 理法の効果は分子状酸素(5容量%以上)且つ水 蒸気 (0.1容量%以上) 含有雰囲気下で300℃~ 500℃の範囲とくに300℃以上380℃未満で十分に (SV) (ガス風量と触媒量比) で表わせば100hr-1 以上であれば十分で特に500hr 以上であれば処 理時間は5時間近辺で効果が現われることが認め られる。しかしあまり長期(例えば24時間を超え 性化に供される劣化触媒は固定床式にすでに反応 管に充塡されたものが好ましいが、流動状態であ つても処理方法としては有効である。すなわち本 発明の利点は5容量%以上の分子状酸素及び0.1 100hr-1以上の空間速度の量でさらに300℃以上の ガス温度が確保できれば比較的低温で容易に再活 性化が可能であり、特別に活性化用の触媒性便と 接触させたりする必要はなく、且つ反応装置から ゆえに工業的に極めて有利な触媒再活性化法を提

以下実施例によつて本発明の方法を更に詳しく 説明するが、本発明の方法はこれらの実施例に限 定されるものではない。

実施例 1

供するものである。

Co₆Fe₂Bi₂W₂Mo₁₂Si_{1.5}Rb_{0.5}なる組成(酸素を 除いた元素の原子比)で示される触媒酸化物を次 のようにして調製した。すなわち、硝酸コパルト Co(NO₂)₂・6H₂O1050 g を水300∞に、硝酸第二 40 た。その時のイソプチレン転化率は95.1%でメタ 鉄Fe(NO₃)₂・9H₂O486 f を300 cc の水に、また 硝酸ピスマスBi(NOs)。・5H2O584 f を120∞の濃 硝酸を加えた600∞の水に、それぞれ溶解した。 別に水6000∝を加熱撹拌しながら、これにモリブ

8 デン酸アンモニウム (NH4)6Mo7O24・4H2O1274 g およびパラタングステン酸アンモニウム (NH₄)₁₀W₁₂O₄₁・5H₂O324 f を溶かした。この 溶液に上記3つの硝酸塩水溶液の混合物を滴下混 合し、ついで硝酸ルビジウム44.3 € を300 ∞の水 に溶解した水溶液、さらに20%濃度のシリカゾル 2718を順次添加嵌合した。かくしてえられ懸濁 液を加熱撹拌後蒸発乾固せしめ、外径5.5㎜、長 さ5.5㎜の円柱状に成型したものを空気流通下450 ない)を用いるかなり還元気味の反応に於ける触 10 ℃で6時間焼成して触媒をえた。この触媒1400元 をナイター浴付きの内径25.0 ***、外径29.0 ***のス テンレス製反応管に充塡し、その層高が2860元と なる様に充塡し、ナイター浴温度を330℃に保ち イソプチレンの酸化反応を行つた。反応器入口ガ 認められる。流通ガス量としては見掛の空間速度 15 ス組成はイソブチレン 6 容量%、酸素13.2容量 %、窒素65.3容量%、水蒸気15.0容量%、その他 イソプタン、nープタン、プロパン、炭酸ガスな どの不活性ガスよりなる原料ガスを空間速度 1000hr⁻¹(S.T.P.) で導入し反応に供した(これ る) 処理を行つても効果は増大しない。又、再活 20 を正規のイソブチレン酸化反応とする。)。その結 果、イソブチレン転化率99.5%、メタクロレイン 選択率77.0%、メタクリル酸選択率4.3%であつ た。この反応を12000時間連続的に行い、その間 ナイター浴温度を340℃に上昇させたがイソプチ 容量%以上の水蒸気含有ガスを用いてSVにして 25 レン転化率90.6%、メタクロレイン選択率76.8 %、メタクロリル酸選択率4.5%となつた。そこ で反応を一旦停止し、ナイター浴温度を375℃に あげて上配原料ガスからイソブチレンの供給を断 ち、更に水蒸気量および分子状酸素量をそれぞれ 劣化触媒をわざわざ取り出さずに再活性化できる 30 2容量%および16.5容量%(不活性ガス81.5容量 %) になる様に調製し、熱処理を10時間行つた。 この処理跡ナイター浴温度を330℃に下げて上記 の反応ガス組成及びガス量に戻してイソブチレン の酸化反応を行つた。その結果イソプチレン転化 35 率99.6%、メタクロレイン選択率76.9%、メタク リル酸選択率4.6%であった。この間、触媒の物 性変化を測定したところ表1のとおりであつた。 そこでこの反応を更に8000時間続行したところそ

4.0であつた。 実施例 2

硫酸ルビジウムの代わりに硫酸ナトリウムを用

の間ナイター浴温度は徐々にあげて340℃になつ

クロレイン転化率77.2%、メタクリル酸選択率

い、実施例1の方法に準じて触媒を調製した。こ の触媒の組成は酸素を除く原子比で示すと Co₄Fe₅Bi₁W₂Mo₅Na_{6,1}Si_{1,25}で表わされる。この 触媒を実施例 1 の方法に従つて反応器に充填し、 同様にして正規のイソブチレン酸化反応を行つ た。その結果イソブチレン転化率99.6%、メタク ロレイン選択率81.6%、メタクリル酸選択率3.5 %であつた。この反応を12000時間連続反応を行 が、この時イソプチレン転化率89.2%、メタクロ レイン選択率81.4%、メタクリル酸選択率4.0% であつた。そこで反応を一旦停止し、ナイター浴 を370℃にあげて上配原料ガスからイソプチレン となるように調製した分子状酸素20容量%および 水蒸気2.0容量%(不活性ガス78容量%)含有す るガスを触媒層に流し熱処理を10時間行つた。こ の熱処理後ナイター浴温度を340℃に下げて上記 チレン酸化反応を行つた。その結果イソプチレン 転化率99.5%、メタクロレイン選択率81.4、メタ クリル酸選択率3.7%がえられた。この間の触媒 の物性変化測定値は表1のとおりであつた。 さら にこの反応を8000時間続行したところ、この間ナ 25 実施例 4 イター浴温度を徐々にあげて350℃になつた。そ の時のイソブチレン転化率は96.0%でメタクロレ イン選択率81.3%、メタクリル酸選択率3.9%で あつた。

実施例 3

実施例 1 に於いて12000時間イソブチレン酸化 反応後の触媒の熱処理条件に関して、水蒸気量を それぞれ1%、10%、15%、20% (容量) と変え たが(残りの分子状酸素および不活性ガスはそれ び68%、16%および64%(容量))処理効果の程 度には殆んど差が認められず、同様の効果を示し た。すなわち1%水蒸気処理の場合、処理直後反 応を温度330℃にて行ない、当初イソプチレン転 クリル酸選択率4.3%の性能であり、更に8000時 間反応続行したところ、その間ナイター浴温度は 340℃になったがその時点でのイソブチレン転化 率96.2%、メタクロレイン選択率77.0%、メタク

リル酸選択率4.2%であつた。また、水蒸気量10 %での熱処理に於いては熱処理直後反応温度330 ℃にてイソプチンレン転化率99.5%、メタクロレ イン選択率77.3%、メタクリル酸選択率4.2%の ナイター浴温度を340℃にした以外は実施例1と 5 性能であり、更に8000時間反応続行したところ、 その間ナイター浴温度は340℃になつたが、その 時点でイソプチレン転化率96.0%、メタクロレイ ン選択率77.0%、メタクリル酸選択率4.1%であ つた。さらに熱処理時の水蒸気濃度15容量%の場 い、その間ナイター浴温度を350℃に昇温させた 10 合、処理直後、反応温度330℃にてイソブチレン 転化率99.4%、メタクロレイン選択率79.9%、メ タクリル酸選択率4.5%の性能であり、更に8000 時間反応続行したところ、その間ナイター浴温度 は340℃になったが、その時点でのイソプチレン のみの供給を断ち、更に水蒸気含量を2.0容量% 15 転化率95.8%、メタクロレイン選択率79.6%、メ タクリル酸選択率4.4%であつた。そして、熱処 理時の水蒸気濃度20容量%の場合、処理直後反応 温度330℃にてイソブチレン転化率99.8%、メタ クロレイン転化率77.1%、メタクリル酸選択率 の反応ガス組成及びガス量に戻して正規のイソブ 20 4.5%の性能であり、更に8000時間反応を続行し たところ、その間ナイター浴温度は340℃になっ たが、その時点でのイソブテン転化率96.5%、メ タクロレイン選択率77.0%、メタクリル酸選択率 **4.2%であった。**

実施例1に従つたとの反応を12000時間続けて 性能を確認したところ、ナイター浴温度340℃で イソブチレン転化率90.1%、メタクロレイン選択 率79.6%、メタクリル酸選択率4.5%であつた。 30 そこで反応を一旦停止し、ナイター浴温度を430 ℃にあげて反応供給ガスからイソブチレンを抜 き、更に水蒸気濃度2容量%とした分子状酸素 16.5容量%および水蒸気2容量% (不活性ガス 81.5容量%)を含有するガスを触媒層に流し熱処 ぞれ20%および79%、18%および72%、17%およ 35 理を5時間行つた。その熱処理後ナイター浴温度 を330℃に下げて再度正規のイソプチレン酸化反 応を行つたところイソプチレン転化率99.0%、メ タクロレイン選択率77.1%、メタクリル酸選択率 4.3%と性能が回復した。更にこの反応を8000時 化率99.6%、メタクロレイン選択率77.1%、メタ 40 間続けたところ、この間ナイター浴温度は340℃ になり、イソプチレン転化率94.6%、メタクロレ イン77.3%、メタクリル酸選択率4.6%であつた。 実施例 5

実施例1の手順により触媒を調製した。ただし

THE RESERVE OF THE STATE OF THE

触媒組成は酸素を除く原子比で示すとCo_sFe_{o.}, Bi₂W₂Mo₁₂Si_{1.5}Rb_{0.5}であった。この触媒1400 nd を実施例 1 の方法に従つて反応器に充塡し、ナイ ター浴温度340℃にてイソプチレンの正規酸化反 %、メタクロレイン選択率75.1%、メタクリル酸 選択率2.9%であった。

この反応を12000時間続けた時点で、ナイター 浴温度350℃に於いて、イソブチレン転化率92.1 選択率3.0%となつた。ここで反応を一旦停止し、 ナイター浴温度375℃にあげて、イソプチレンの 正規酸化反応組成ガスからイソプチレンを抜き、 水蒸気濃度 2容量%とした分子状酸素20容量%お 有するガスにて熱処理を10時間行つた。その後ナ イター浴温度を340℃に戻しイソプチレンの正規 酸化反応を行つたところ、イソプチレン転化率 97.0%、メタクロレイン選択率75.3%、メタクリ レ酸選択率2.9%となつた。更に反応を8000時間 20 %、アクリル酸選択率7.4であつた。 続けたところナイター浴温度350℃にて、イソブ チレン転化率96.4%、メタクロレイン選択率75.1 %、メタクリル酸選択率3.0%であった。

実施例 6

除いた原子比)で示される触媒を次のようにして 調製した。すなわち、水150㎡を加熱撹拌しつつ モリブデン酸アンモニウム106.2g、パラタング ステン酸アンモニウム32.4gを溶解し、別に硝酸 24.3gを20虹の蒸留水に、硝酸ピスマス29.2gを 濃硫酸 6 叫を加えて酸性とした蒸留水30 叫に溶解 させ、この3種の硝酸塩溶液の混合液を滴下す る。引続き、20%シリカゾル24.4 9 および水酸化 カリウム0.202 g を15mlの蒸留水に溶解した液を 35 り、活性の回復は認められなかつた。 加える。かくして生じた懸濁液を加熱撹拌蒸発せ しめたのち、成型し空気流通下450℃で6時間焼 成して目的触媒を得る。この触媒1470叫をナイタ 一浴付きの内径25.0mm、外径29.0mmのステンレス るようにした。ここでナイター浴温度を315℃に 保ちガス組成としてプロピレン10容量%、酸素15 容量%、窒素64.5容量%、水蒸気10容量%、その 他プロパン、炭酸ガスなどの不活性ガスよりなる

原料ガスを空間速度1300hr⁻¹(S.T.P.) で導入し 反応を行つた(これを正規のプロピレン酸化反応 とする。)。その結果、プロピレン転化率97.2%、 アクロレイン選択率85.6%、アクリル酸選択率 応を行つた。その結果イソプチレン転化率99.2 5 7.2%がえられた。この反応を16000時間にわたり 連続させた。16000時間経過時点でのナイター浴 温度325℃でプロピレン転化率93.1%、アクロレ イン選択率85.4%、アクリル酸選択率は7.6%で あつた。次に反応を一旦停止し、ナイター浴温度 %、メタクロレイン選択率75.0%、メタクリル酸 10 を350℃にあげて上記反応用供給ガスから、プロ ピレンの供給を断つて、且つ水蒸気濃度2容量% とした分子状酸素及に水蒸気を含有するガスにて 熱処理を5時間行つた。この熱処理後、ナイター 浴温度を315℃に下げて上記の正規プロピレン酸 よび水蒸気 2容量% (不活性ガス78容量%)を含 15 化反応を行ったところ、プロピレン転化率97.3 %、アクロレイン選択率85.4%、アクリル酸選択 率7.2%であつた。この反応を更に8000時間続行 したところ、ナイター浴温度325℃に於いてプロ ピレン転化率96.1%、アクロレイン選択率85.6

比較例 1

実施例 1 に従つたと同様の反応を12000時間続 けて性能を確認をしたところ、ナイター浴温度 340℃においてイソブチレン転化率91.0%、メタ Co₄Fe₁Bi₁W₂Mo₁₀Si_{1.35}K_{0.06}なる組成(酸素を 25 クロレイン選択率76.9%、メタクリル酸選択率 4.2%であつた。ここで反応を一旦停止し、ナイ ター浴温度290℃に下げて反応用原料ガスからイ ソプチレンを抜き且つ水蒸気量を5容量%とせし めた分子状酸素20容量%と水蒸気5容量%(不活 コパルト70.0 g を20 mlの蒸留水に、硝酸第二鉄 30 性ガス75容量%)とを含有するガスで熱処理を15 時間行つた。この熱処理後ナイター浴温度を330 ℃に戻して正規のイソプチレン酸化反応を行つた が、イソブチレン転化率は88.5%でメタクロレイ ン選択率77.0%、メタクリル酸選択率4.2%であ

比較例 2

実施例 1 に従つたと同様の反応を12000時間続 けて性能を確認したところ、ナイター浴温度340 ℃においてイソプチレン転化率90.4%、メタクロ 製単管式反応器に充塡し、その層高が3000㎜にな 40 レイン選択率77.0%、メルタクリル酸選択率4.5 %であつた。そこで反応を一旦停止し、ナイター 浴温度を375℃にあげて上記原料ガスからイソブ チレンと水蒸気の供給を断ち、分子状酸素含有ガ スによる熱処理を10時間行つた。この熱処理後ナ

14

イター浴温度を330℃に戻して正規のイソブチレ ン酸化反応を行つたがイソブチレン転化率は93.6 %、メタクロレイン選択率77.2%、メタクリル酸 選択率4.2%であり、水蒸気共存下の熱処理に於 ける効果が現われず活性の回復は十分でなかつ 5 た。

尚、各実施例及び比較例に於けるオレフイン酸 化反応前の触媒と、12000~16000時間反応後の触 媒、更には熱処理後の触媒のX線回折ピーク高さ 比と全酸量の変化を表-1にまとめて示した。

下記組成(酸素を除いた元素の原子比) W₂Mo₁₂Co₄Fe₁Bi₁Si_{1.35}K_{0.3}の触媒酸化物を次の ようにして調製した。すなわち、硝酸コバルト 水に、また硝酸ピスマス292 g を60∝の濃硝酸を 加えた300∝の水にそれぞれ溶解した。別に、水 3000∝の加熱撹拌しながら、これにモリブデン酸 アンモニウム1274 8 およびパラタングステン酸ア つの硝酸塩水溶液の混合物を滴下、混合し、次い で水酸化カリウム6.72 8 を300 ∞の水に溶解した 水溶液、さらに20%濃度のシリカゾル244 8 を順 次転化し、混合した。かくして得られた懸濁液を 加熱撹拌した後、蒸発乾固した。この固形物を外 25 径5.5mm、長さ5.5mmの円柱形に成型した後、空気 流通下450℃で6時間焼成して触媒を調製した。

この触媒400㎡をナイター浴付き内径25㎜のス チンレス製反応器に充塡し、ターシャリープタノ ール4.0容量%、空気51.0容量%および水蒸気45.0 30 容量%の混合ガスを空間速度1600hr-1(NTP) で 導入し、反応温度315℃でターシャリープタノー ルの酸化反応を行つた。その結果、ターシャリー ブタノール転化率100%、メタクロレイン選択率 77.4%、メタクリル酸選択率4.0%、イソプチレ ン選択率3.1%であつた。この反応を12000時間連 続反応を行い、その間ナイター浴温度を335℃ま で上昇させたがターシャリープタノールの転化率

は100%でも、メタクロレイン選択率77.0%、メ タクリル酸選択率3.2%、イソプチレン選択率 14.5%とイソプチレンからメタクロレイン、メタ クリル酸への転化率が低下した。

そこで、反応を一旦停止して、ナイター浴温度 を370℃に上げて、酸素20容量%、水蒸気5容量 %および窒素75容量%からなる水蒸気含有酸化性 ガスで10時間熱処理を行つた。この熱処理後に、 ナイター浴温度を315℃に下げて上記の反応ガス 10 組成およびガス量に戻して、ターシャリープタノ ールの酸化反応を行つた。その結果、ターシャリ ープタノールの転化率100%、メタクロレイン選 択率77.3%、メタクリル酸選択率4.3%、イソブ チレン選択率2.7%であり、ほぼ元の初期性能に 700 g を200∞の水に、硝酸第二鉄243 g を200∞の 15 回復した。また、この触媒の物性変化を調べたと ころ以下のとおりであつた。

さらに、上記反応を8000時間続行したところ、 その間ナイター浴温度は325℃になつた。そのと きのターシャリープタノールの転化率100%、メ ンモニウム3248を溶解した。この溶液に上記3 20 タクロレイン選択率77.1%、メタクリル酸選択率 4.1%、イソブチレン選択率7.0%であつた。

> X線回折によるピーク比(使 用前 B CoMoO₄ = 100)および 全酸量(µmol/g)

5		反応 前	12000 時間後	処理 後
	αービスマスモリブデ ート	38	33	38
	BiFeMoO化合物	0	14	1
_	モリブデン酸鉄	7	1	7
,	三酸化モリブデン	8	8	8
	βーモリブデン酸コパ ルト	100	100	100
	全酸量	19	13	18

16

表-1 X線回折によるピーク比(使用前 β-CoMoO₄=100)及び全酸量

		実施例 1			実施例 2	
	反応前	12000時間反応後	処理後	反応前	12000時間反応後	処理後
αーピスマスモリブデート P:C N O!! A !!	40	40	39	40	39	40
BiFeMoO化合物	0	15	3	0	13	2
モリブデン酸鉄 三酸化モリブデン	8	1	8	7	2	7
Bーモリブデン酸コパルト	8	8	8	8	8	8
全酸量 μmol/g	100	101	99	100	101	100
TUCHY WINING	20	13	19	19	- 11	18

		実施例3		実施例 4		
	反応前	反応前 12000時間反応後 処理後			12000時間反応後	処理後
αーピスマスモリブデート BiFeMoO化合物	40	40	40	39	40	39
モリブデン酸鉄	0	13~15	1~3	0	15	2
三酸化モリブデン	8 8	1	8	9	1	9
βーモリブデン酸コパルト	100	8	8	8	8	8
全酸量 μmol/g		100~101	99	100	100	100
μισι/ β	20	12~13	18~19	21	13	20

		実施例 5		実施例 6			
	反応前	12000時間反応後	処理後	反応前	16000時間反応後	処理後	
αーピスマスモリプデート	39	40	38	38	38	38	
BiFeMoO化合物	0	15	3	0	14	2	
モリブデン酸鉄	8	1	7	9	1	9	
三酸化モリプデン	8	8	8	8	8	8	
βーモリブデン酸コバルト 全酸量 μmol/g	100	100	100	100	100	100	
全酸量 μmol/g	19	13	20	25	15	24	

		比較例 1		比較例 2		
	反応前	12000時間反応後	処理後	反応前	12000時間反応後	処理後
αーピスマスモリブデート	40	40	40	40	40	40
BiFeNoO化合物	0	15	10	0	15	4
モリブデン酸鉄	8	1	3	8	1	7
三酸化モリプデン	8	8	8	8	8	8
βーモリブデン酸コパルト 全酸量 μmol/g	100	101	101	100	100	100
全酸量 μ mol/g	20	13	19	20	13	14

特公平5-70503

【公報種別】特許法(平成6年法律第116号による改正前。)第64条の規定による補正 【部門区分】第2部門第1区分 【発行日】平成10年(1998)6月25日

【公告番号】特公平5-70503

【公告日】平成5年(1993)10月5日

【年通号数】特許公報5-1763

【出願番号】特願昭61-281922

【特許番号】2129905

【国際特許分類第6版】

BO1J 23/94 Ζ

38/12

38/16

C07C 45/35

47/22

// C07B 61/00 300

【手続補正書】

1 「特許請求の範囲」の項を「I ブロビレン、イソ ブチレンまたはターシャリーブタノールの接触気相酸化 反応により主としてそれぞれに対応する不飽和アルデヒ ドを製造する工程に用いられる、モリブデン、ビスマス および鉄を含有しかつ鉄が原子比でMo=12に対し 0.5~10の範囲で含有せしめてなる触媒酸化物にお いて、触媒活性が低下した当該触媒を、分子状酸素5~ 99.8容量%、水蒸気0.2~95容量%および不活 性ガス残余(合計100容量%)からなる酸化性ガス を、空間速度(SV)100h r ⁻¹以上で、流通下30

0 ℃以上380 ℃未満の範囲の温度で熱処理することを 特徴とする触媒再活性化法。」と補正する。

- 2 第10欄25行~42行「実施例4……であっ た。」を削除する。
- 3 第10欄43行「実施例5」を「実施例4」と補正 する。
- 4 第11欄24行「実施例6」を「実施例5」と補正 する。
- 5 第8頁「表-1」を「

-補 1-

i-1 X線回折によるピーク比 (使用前 B-CoMoO, =100)及び全骸量

	₩	商	_	₩	福	2	₩X	施夠	3
	# †	12,000時	An 1386%	ii ii	12,000時	A 159.44	1	12,000時間	20 HE
	KACHIII	間反応後	处理像	SECTION AND ADDRESS OF THE PERSON AND ADDRES	間反応後	多班及	ZXX)	反応後	《阳区
ユリビネマネ	4.0	4 0	6 8	4.0	3 6	4 0	4 0	4 0	4 0
BiPeMoo 化合物	0	1.5	m	0	1 3	2	0	13~15	$1\sim 3$
モリブデン酸鉄	œ		80	-	63	2	80		00
三酸化モリブデン	0 0	∞	80	80	œ	80	æ	80	80
B 一キリブデン酸 ラバルト	100	101	6 6	100	101	101 100 100	100	100~101	6 6
全酸量 umol/g	2 0	13	1.9	1.9	11	8	2.0	12~13	18~19

2	hr 185%	XX 在 XX	4 0	7	7	80	100	14
較例	12,000時	間反応後	4 0	15	1	80	100	13
퐈	田市市部	(X, NC, B)	4 0	0	60	80	100	2 0
-	25/HIZ 144	外田交	0.7	1.0	ო	∞	1 0 1	1.9
校例	12,000時	間反応後	4 0	15	-	80	101	1 3
#	14 tu		4 0	0	80	&	100	2 0
5	%7.802.04	处压饭	38		6	8	100 100 100	2.4
超	16,000時	間反応後	3.8	14	-	80	100	1 5
₩	Ti di	E SYSTEM	8 8	0	6.	80	100	2 5
4	AN DESCRIPTION	外班及	38	6	2	80	100 100 100	2 0
糖网	12,000時	間反応後	4 0	1 5	1	∞	100	1 3
帐	# +t	INDCX3	3.9	0	00	00	100	1.9
			미동주국주	BiFeMoO 化合物	モリブデン酸鉄	三酸化モリブデン	月二年リブデン酸	全酸量 4mol/8
			まして	BiFeMo(モリブ	三酸化毛	角八木	全酸量

」と補正する。