# Lecture 4a: Robust Analog Circuit Sizing Under Process Variations

. pull-left[

# @luk036

2022-10-12

] .pull-right[



Figure 1: image

# Keywords

- Analog circuit
- Design for robustness
- Worst-case scenarios
- Affine arithmetic
- Convex programming
- Geometric programming
- Posynomial (Positive + polynomial)
- Ellipsoid method

Overview

- Challenges of 20nm Analog Design
- Design for variability
- Design for robustness
- Analog circuit sizing problem formulation
- Robust geometric programming
- Affine arithmetic for worst case scenarios
- Design examples

\_\_\_\_

#### Introduction

Table 1: Fab, process, mask, and design costs are much higher at  $20\mathrm{nm}$  (IBS, May 2011)

| Costs        | 28nm                            | 20nm        |
|--------------|---------------------------------|-------------|
| Fab Costs    | 3B                              | 4B - 7B     |
| Process R&D  | 1.2B                            | 2.1B - 3B   |
| Mask Costs   | 2M - 3M                         | 5M - 8M     |
| Design Costs | $50\mathrm{M}$ - $90\mathrm{M}$ | 120M - 500M |

# Challenges at 20 nm

- Double-patterning aware
- Layout-dependent effects

- New local interconnect layers
- >5,000 design rules
- Device variation and sensitivity

# **Double Patterning**



Figure 2: img

# Overlay Error (Mask Shift)

• Parasitic matching becomes very challenging



Figure 3: img

# **Layout-Dependent Effects**

| Layout-Dependent Effects      | > 40nm | At 40nm | >= 28nm |
|-------------------------------|--------|---------|---------|
| Well Proximity Effect (WPE)   | X      | X       | X       |
| Poly Spacing Effect (PSE)     |        | X       | X       |
| Length of Diffusion (LOD)     | X      | x       | x       |
| OD to OD Spacing Effect (OSE) |        | X       | X       |

# New Local Interconnect Layers



Figure 4: img

New Transistor Type: FinFET

\_\_\_\_\_

# Design for Robustness

 $\bullet\,$  Process variations must be included in the specification.

# Basic Design Flow

```
.pull-left70[
```



Figure 5: Width is discrete. You can add 2 fins or 3 fins, but not 2.75 fins.



Figure 6: img

# Top-down Design Phases



Figure 7: img

#### Basic Flow of Analog Synthesis

# Analog Circuit Sizing Problem

- Problem definition:
  - Given a circuit topology, a set of specification requirements and technology, find the values of design variables that meet the specifications and optimize the circuit performance.
- Difficulties:
  - High degrees of freedom
  - Performance is sensitive to variations

# Main Approaches in CAD

- Knowledge-based
  - Rely on circuit understanding, design heuristics



Figure 8: img

- Optimization based
  - Equation based
    - \* Establish circuit equations and use numerical solvers
  - Simulation based
    - \* Rely on circuit simulation

In practice, you mix and match of them whenever appropriate.

# Geometric Programming

- In recent years, techniques of using geometric programming (GP) are emerging.
- In this lecture, we present a new idea of solving robust GP problems using ellipsoid method and affine arithmetic.

# Lecture 04b - Robust Geometric Programming

.pull-left[

## @luk036

2022-10-12 ] .pull-right[



Figure 9: image

#### Outline

- Problem Definition for Robust Analog Circuit Sizing
- Robust Geometric Programming
- Affine Arithmetic
- Example: CMOS Two-stage Op-Amp
- Numerical Result
- Conclusions

# Robust Analog Circuit Sizing Problem

• Given a circuit topology and a set of specification requirements:

.font-sm.mb-xs[

| Constraint     | Spec.      | Units             |
|----------------|------------|-------------------|
| Device Width   | $\geq 2.0$ | $\mu \mathrm{m}$  |
| Device Length  | $\geq 1.0$ | $\mu\mathrm{m}$   |
| Estimated Area | minimize   | $\mu\mathrm{m}^2$ |
| :              | :          | ÷                 |
| CMRR           | $\geq 75$  | dB                |
| Neg. PSRR      | $\geq 80$  | dB                |
| Power          | $\leq 3$   | mW                |
|                |            |                   |

1

• Find the worst-case design variable values that meet the specification requirements and optimize circuit performance.

#### **Robust Optimization Formulation**

• Consider

$$\label{eq:sup_q} \begin{split} & \text{minimize} & & \sup_{q \in \mathbb{Q}} f_0(x,q), \\ & \text{subject to} & & f_j(x,q) \leq 0 \\ & & \forall q \in \mathbb{Q} \text{ and } j = 1,2,\cdots,m, \end{split}$$

where

- $-x \in \mathbb{R}^n$  represents a set of design variables (such as L, W),
- $-\ q$  represents a set of varying parameters (such as  $T_{OX})$
- $-f_j \leq 0$  represents the jth specification requirement (such as phase margin  $\geq 60^{\circ}$ ).

# Geometric Programming in Standard Form

- We further assume that  $f_i(x,q)$ 's are convex for all  $q \in \mathbb{Q}$ .
- Geometric programming is an optimization problem that takes the following standard form:

$$\begin{array}{ll} \text{minimize} & p_0(y) \\ \text{subject to} & p_i(y) \leq 1, \quad i=1,\ldots,l \\ & g_j(y)=1, \quad j=1,\ldots,m \\ & y_k>0, \qquad k=1,\ldots,n, \end{array}$$

where

-  $p_i$ 's are posynomial functions and  $g_i$ 's are monomial functions.

## Posynomial and Monomial Functions

• A monomial function is simply:

$$g(y_1,\ldots,y_n)=cy_1^{\alpha_1}y_2^{\alpha_2}\cdots y_n^{\alpha_n},\quad y_k>0.$$

where

-c is non-negative and  $\alpha_k \in \mathbb{R}$ .

• A posynomial function is a sum of monomial functions:

$$p(y_1,\dots,y_n) = \sum_{s=1}^T c_s y_1^{\alpha_{1,s}} y_2^{\alpha_{2,s}} \cdots y_n^{\alpha_{n,s}}, \quad y_k > 0,$$

• A monomial can also be viewed as a special case of posynomial where there is only one term of the sum.

# Geometric Programming in Convex Form

- Many engineering problems can be formulated as a GP.
- On Boyd's website there is a Matlab package "GGPLAB" and an excellent tutorial material.
- GP can be converted into a convex form by changing the variables  $x_k = \log(y_k)$  and replacing  $p_i$  with  $\log p_i$ :

$$\begin{array}{ll} \text{minimize} & \log p_0(\exp(x)) \\ \text{subject to} & \log p_i(\exp(x)) \leq 0, \quad i=1,\dots,l \\ & a_j^\mathsf{T} x + b_j = 0, \qquad \quad j=1,\dots,m \end{array}$$

where

$$\begin{aligned} &-\exp(x) = (e^{x_1}, e^{x_2}, \cdots, e^{x_n}) \\ &-a_j = (\alpha_{1,j}, \cdots, \alpha_{n,j}) \\ &-b_j = \log(c_j) \end{aligned}$$

Robust GP

- GP in the convex form can be solved efficiently by interior-point methods.
- In robust version, coefficients  $c_s$  are functions of q.
- The robust problem is still convex. Moreover, there is an infinite number of constraints.
- Alternative approach: Ellipsoid Method.

**Example - Profit Maximization Problem** 

This example is taken from [@Aliabadi2013Robust].

$$\begin{array}{ll} \text{maximize} & p(Ax_1^{\alpha}x_2^{\beta}) - v_1x_1 - v_2x_2 \\ \text{subject to} & x_1 \leq k. \end{array}$$

- $p(Ax_1^{\alpha}x_2^{\beta})$ : Cobb-Douglas production function
- p: the market price per unit
- A: the scale of production
- $\alpha, \beta$ : the output elasticities
- x: input quantity
- v: output price
- k: a given constant that restricts the quantity of  $x_1$

Example - Profit maximization (cont'd)

- The formulation is not in the convex form.
- Rewrite the problem in the following form:

$$\begin{array}{ll} \text{maximize} & t \\ \text{subject to} & t + v_1 x_1 + v_2 x_2 \leq p A x_1^\alpha x_2^\beta \\ & x_1 \leq k. \end{array}$$

Profit maximization in Convex Form

• By taking the logarithm of each variable:

$$-y_1 = \log x_1, y_2 = \log x_2.$$

• We have the problem in a convex form:

```
\max t
                 \log(t + v_1 e^{y_1} + v_2 e^{y_2}) - (\alpha y_1 + \beta y_2) \le \log(pA)
                 y_1 \le \log k.
.font-sm.mb-xs[
class profit_oracle:
    def __init__(self, params, a, v):
        p, A, k = params
        self.log_pA = np.log(p * A)
        self.log_k = np.log(k)
        self.v = v
        self.a = a
    def __call__(self, y, t):
        fj = y[0] - self.log_k # constraint
        if fj > 0.:
            g = np.array([1., 0.])
            return (g, fj), t
        log_Cobb = self.log_pA + self.a @ y
        x = np.exp(y)
        vx = self.v @ x
        te = t + vx
        fj = np.log(te) - log_Cobb
        if fj < 0.:
            te = np.exp(log_Cobb)
            t = te - vx
            fj = 0.
        g = (self.v * x) / te - self.a
        return (g, fj), t
.font-sm.mb-xs[
# Main program
import numpy as np
from ellpy.cutting_plane import cutting_plane_dc
from ellpy.ell import ell
from .profit_oracle import profit_oracle
p, A, k = 20., 40., 30.5
```

```
params = p, A, k
alpha, beta = 0.1, 0.4
v1, v2 = 10., 35.
a = np.array([alpha, beta])
v = np.array([v1, v2])
y0 = np.array([0., 0.]) # initial x0
r = np.array([100., 100.]) # initial ellipsoid (sphere)
E = ell(r, y0)
P = profit_oracle(params, a, v)
yb1, ell_info = cutting_plane_dc(P, E, 0.)
print(ell_info.value, ell_info.feasible)
]
```

## Example - Profit Maximization Problem (convex)

```
\begin{array}{ll} \max & t \\ \mathrm{s.t.} & \log(t+\hat{v}_1e^{y_1}+\hat{v}_2e^{y_2})-(\hat{\alpha}y_1+\hat{\beta}y_2) \leq \log(\hat{p}\,A) \\ & y_1 \leq \log\hat{k}, \end{array}
```

• Now assume that:

-  $\hat{\alpha}$  and  $\hat{\beta}$  vary  $\bar{\alpha} \pm e_1$  and  $\bar{\beta} \pm e_2$  respectively.

 $-\hat{p}, \hat{k}, \hat{v}_1, \text{ and } \hat{v}_2 \text{ all vary } \pm e_3.$ 

## Example - Profit Maximization Problem (oracle)

By detail analysis, the worst case happens when:

```
\begin{array}{ll} \bullet & p = \bar{p} - e_3, \; k = \bar{k} - e_3 \\ \bullet & v_1 = \bar{v}_1 + e_3, \; v_2 = \bar{v}_2 + e_3, \\ \bullet & \text{if } y_1 > 0, \; \alpha = \bar{\alpha} - e_1, \; \text{else } \alpha = \bar{\alpha} + e_1 \\ \bullet & \text{if } y_2 > 0, \; \beta = \bar{\beta} - e_2, \; \text{else } \beta = \bar{\beta} + e_2 \end{array}
```

```
class profit_rb_oracle:
    def __init__(self, params, a, v, vparams):
        e1, e2, e3, e4, e5 = vparams
        self.a = a
        self.e = [e1, e2]
        p, A, k = params
        params_rb = p - e3, A, k - e4
        self.P = profit_oracle(params_rb, a, v + e5)

def __call__(self, y, t):
```

```
a_rb = self.a.copy()
for i in [0, 1]:
    a_rb[i] += self.e[i] if y[i] <= 0 else -self.e[i]
self.P.a = a_rb
return self.P(y, t)</pre>
```

## Oracle in Robust Optimization Formulation

```
• The oracle only needs to determine:
```

```
\begin{split} &-\text{If } f_j(x_0,q)>0 \text{ for some } j \text{ and } q=q_0, \text{ then} \\ & * \text{ the cut } (g,\beta)=(\partial f_j(x_0,q_0),f_j(x_0,q_0)) \\ &-\text{If } f_0(x_0,q)\geq t \text{ for some } q=q_0, \text{ then} \\ & * \text{ the cut } (g,\beta)=(\partial f_0(x_0,q_0),f_0(x_0,q_0)-t) \\ &-\text{ Otherwise, } x_0 \text{ is feasible, then} \\ & * \text{ Let } q_{\max}=\operatorname{argmax}_{q\in\mathbb{Q}}f_0(x_0,q). \\ & * t:=f_0(x_0,q_{\max}). \\ & * \text{ The cut } (g,\beta)=(\partial f_0(x_0,q_{\max}),0) \end{split}
```

Remark:

• for more complicated problems, affine arithmetic could be used [@liu2007robust].

# Lecture 04c - Affine Arithmetic

```
.pull-left[
```

#### @luk036

```
2022-10-12
] .pull-right[
]
```

class: center, middle

# A simple example: the area of a triangle



Figure 10: image

# A Simple Area Problem

- Suppose the points p, q and r vary within the region of 3 given rectangles.
- Q: What is the upper and lower bound on the area of  $\triangle pqr$ ?

.pull-right[



Figure 11: triangle

# Method 1: Corner-based

- Calculate all the areas of triangles with different corners.
- Problems:
  - In practical applications, there may be many corners.
  - What's more, in practical applications, the worst-case scenario may not be at the corners at all.

#### Method 2: Monte Carlo

- Monte-Carlo or Quasi Monte-Carlo:
  - Calculate the area of triangles for different sampling points.
- Advantage: more accurate when there are more sampling points.
- Disadvantage: time consuming

class: center, middle

# Interval Arithmetic vs. Affine Arithmetic

#### Method 3: Interval Arithmetic

- Interval arithmetic (IA) estimation:
  - Let px = [2, 3], py = [3, 4]
  - Let qx = [-5, -4], qy = [-6, -5]
  - Let rx = [6, 7], ry = [-5, -4]
- Area of triangle:
  - = ((qx px)(ry py) (qy py)(rx px))/2
  - = [33 ... 61] (actually [36.5 ... 56.5])
- Problem: cannot handle correlation between variables.

## Method 4: Affine Arithmetic

- (Definition to be given shortly)
- More accurate estimation than IA:
  - Area = [35 ... 57] in the previous example.
- Take care of first-order correlation.
- Usually faster than Monte-Carlo, but ....
  - becomes inaccurate if the variations are large.
- libaffa.a/YALAA package is publicly available:
  - Provides functuins like  $+, -, *, /, \sin(), \cos(), pow()$  etc.

## **Analog Circuit Example**

- Unit Gain bandwidth
  - GBW = sqrt(A\*Kp\*Ib\*(W2/L2)/(2\*pi\*Cc) where some parameters are varying

# **Enabling Technologies**

- C++ template and operator overloading features greatly simplify the coding effort:
- E.g., the following code can be applied to both <double> and <AAF>:

 In other words, some existing code can be reused with minimal modification.

#### Applications of AA

- Analog Circuit Sizing
- Worst-Case Timing Analysis
- Statistical Static Timing Analysis
- Parameter Variation Interconnect Model Order Reduction [CMU02]
- Clock Skew Analysis
- Bounded Skew Clock Tree Synthesis

### Limitations of AA

- Something AA can't replace <double>:
  - Iterative methods (no fixed point in AA)
  - No Multiplicative inverse operation (no LU decomposition)
  - Not total ordering, can't sort (???)
- AA can only handle linear correlation, which means you can't expect an accurate approximation of abs(x) near zero.
- Fortunately the ellipsoid method is one of the few algorithms that works with AA.

#### Circuit Sizing for Op. Amp.

- Geometric Programming formulation for CMOS Op. Amp.
- Min-max convex programming under Parametric variations (PVT)
- Ellipsoid Method

## What is Affine Arithmetic?

• Represents a quantity x with an affine form (AAF):

$$\hat{x} = x_0 + x_1 \epsilon_1 + \ldots + x_n \epsilon_n$$

where

- noise symbols  $\epsilon_i \in [-1, 1]$
- central value  $x_0 \in \mathbb{R}$
- partial deviations  $x_i \in \mathbb{R}$
- -n is not fixed new noise symbols are generated during the computation process.
- IA -> AA :  $[3..4] \rightarrow 3.5 + 0.5\epsilon_1$

# Geometry of AA

. pull-left 70[

- Affine forms that share noise symbols are dependent:
  - $-\ \hat{x} = x_0 + x_1 \epsilon_1 + \ldots + x_n \epsilon_n$
  - $-\hat{y} = y_0 + y_1 \epsilon_1 + \dots + y_m \epsilon_m$
- The region containing (x, y) is:

  - $Z=\{(x,y):\epsilon_i\in[-1,1]\}$  This region is a centrally symmetric convex polygon called "zono-

].pull-right30[



Figure 12: zonotope

#### Affine Arithmetic

How to find  $\sup_{q\in\mathbb{Q}} f_j(x,q)$  efficiently?

- $\sup_{q \in \mathbb{Q}} f_j(x,q)$  is in general difficult to obtain.
- Provided that variations are small or nearly linear, we propose using Affine Arithmetic (AA) to solve this problem.
- Features of AA:
  - Handle correlation of variations by sharing noise symbols.
  - Enabling technology: template and operator overloading features of C++.
  - A C++ package "YALAA" is publicly available.

# Affine Arithmetic for Worst Case Analysis

• An uncertain quantity is represented in an affine form (AAF):

$$\hat{a} = a_0 + a_1 \varepsilon_1 + a_2 \varepsilon_2 + \dots + a_k \varepsilon_k = a_0 + \sum_{i=1}^k a_i \varepsilon_i,$$

where

 $-\varepsilon_i \in [-1,1]$  is called *noise symbol*.

- Exact results for affine operations  $(\hat{a} + \hat{b}, \hat{a} \hat{b} \text{ and } \alpha \cdot \hat{a})$
- Results of non-affine operations (such as  $\hat{a} \cdot \hat{b}$ ,  $\hat{a}/\hat{b}$ ,  $\max(\hat{a}, \hat{b})$ ,  $\log(\hat{a})$ ) are approximated in an affine form.
- AA has been applied to a wide range of applications recently when process variations are considered.

# Affine Arithmetic for Optimization

In our robust GP problem:

- First, represent every elements in q in affine forms.
- For each ellipsoid iteration,  $f(x_c,q)$  is obtained by approximating  $f(x_c,\hat{q})$  in an affine form:

$$\hat{f} = f_0 + f_1 \varepsilon_1 + f_2 \varepsilon_2 + \dots + f_k \varepsilon_k.$$

• Then the maximum of  $\hat{f}$  is determined by:

$$\varepsilon_j = \left\{ \begin{array}{ll} +1 & \quad \text{if } f_j > 0 \\ -1 & \quad \text{if } f_j < 0 \end{array} \right. \quad j = 1, \cdots, k.$$

.pull-left70[



Figure 13: img

# Performance Specification

. column-2. font-sm.mb-xs[

| Constraint       | Spec.        | Units                  |
|------------------|--------------|------------------------|
| Device Width     | $\geq 2.0$   | $\mu \mathrm{m}$       |
| Device Length    | $\geq 1.0$   | $\mu\mathrm{m}$        |
| Estimated Area   | minimize     | $\mu\mathrm{m}^2$      |
| Input CM Voltage | [0.45, 0.55] | $\times V_{DD}$        |
| Output Range     | [0.1, 0.9]   | $\times V_{DD}$        |
| Gain             | $\geq 80$    | dB                     |
| Unity Gain Freq. | $\geq 50$    | MHz                    |
| Phase Margin     | $\geq 60$    | degree                 |
| Slew Rate        | $\geq 50$    | $V/\mu s$              |
| CMRR             | $\geq 75$    | dB                     |
| Neg. PSRR        | $\geq 80$    | dB                     |
| Power            | $\leq 3$     | mW                     |
| Noise, Flicker   | $\leq 800$   | $\mathrm{nV/Hz^{0.5}}$ |

# Open-Loop Gain (Example)

- Open-loop gain  ${\cal A}_v$  can be approximated as a monomial function:

$$A_{v} = \frac{2C_{ox}}{(\lambda_{n} + \lambda_{p})^{2}} \sqrt{\mu_{n}\mu_{p} \frac{W_{1}W_{6}}{L_{1}L_{6}I_{1}I_{6}}}$$

where  $I_1$  and  $I_6$  are monomial functions.

• Corresponding C++ code fragment:

// Open Loop Gain

monomial<aaf> OLG = 2\*COX/square(LAMBDAN+LAMBDAP)\*
 sqrt(KP\*KN\*W[1]/L[1]\*W[6]/L[6]/I1/I6);

# Results of Design Variables

.column-2.font-sm.mb-xs[

| Variable         | Units           | GGPLAB | Our  | Robust |
|------------------|-----------------|--------|------|--------|
| $\overline{W_1}$ | $\mu\mathrm{m}$ | 44.8   | 44.9 | 45.4   |
| $W_8$            | $\mu\mathrm{m}$ | 3.94   | 3.98 | 3.8    |
| $W_{10}$         | $\mu\mathrm{m}$ | 2.0    | 2.0  | 2.0    |
| $W_{13}$         | $\mu\mathrm{m}$ | 2.0    | 2.0  | 2.1    |
| $L_1$            | $\mu\mathrm{m}$ | 1.0    | 1.0  | 1.0    |
| $L_8$            | $\mu\mathrm{m}$ | 1.0    | 1.0  | 1.0    |
| $L_{10}$         | $\mu\mathrm{m}$ | 1.0    | 1.0  | 1.0    |
| $L_{13}$         | $\mu\mathrm{m}$ | 1.0    | 1.0  | 1.0    |
| A                | N/A             | 10.4   | 10.3 | 12.0   |
| B                | N/A             | 61.9   | 61.3 | 69.1   |
| $C_c$            | pF              | 1.0    | 1.0  | 1.0    |
| $I_{bias}$       | $\mu A$         | 6.12   | 6.19 | 5.54   |

#### Performances

.font-sm.mb-xs[

| Performance (units)                     | Spec.        | Std.         | Robust       |
|-----------------------------------------|--------------|--------------|--------------|
| Estimated Area ( $\mu$ m <sup>2</sup> ) | minimize     | 5678.4       | 6119.2       |
| Output Range (x $V_{DD}$ )              | [0.1, 0.9]   | [0.07, 0.92] | [0.07, 0.92] |
| Comm Inp Range (x $V_{DD}$ )            | [0.45, 0.55] | [0.41, 0.59] | [0.39, 0.61] |
| Gain (dB)                               | $\geq 80$    | 80           | [80.0, 81.1] |
| Unity Gain Freq. (MHz)                  | $\geq 50$    | 50           | [50.0, 53.1] |
| Phase Margin (degree)                   | $\geq 60$    | 86.5         | [86.1, 86.6] |
| Slew Rate $(V/\mu s)$                   | $\geq 50$    | 64           | [66.7, 66.7] |
| CMRR (dB)                               | $\geq 75$    | 77.5         | [77.5, 78.6] |
| Neg. PSRR (dB)                          | $\geq 80$    | 83.5         | [83.5, 84.6] |
| Power (mW)                              | $\leq 3$     | 1.5          | [1.5, 1.5]   |
| Noise, Flicker (nV/Hz <sup>0.5</sup> )  | $\leq 800$   | 600          | [578, 616]   |

]

#### Conclusions

- Our ellipsoid method is fast enough for practical analog circuit sizing (take < 1 sec. running on a 3GHz Intel CPU for our example).
- Our method is reliable, in the sense that the solution, once produced, always satisfies the specification requirement in the worst case.

#### Comments

- The marriage of AA (algebra) and Zonotope (geometry) has the potential to provide us with a powerful tool for algorithm design.
- AA does not solve all problems. E.g. Iterative method does not apply to AA because AA is not in the Banach space (the fixed-point theorem does not hold).
- AA \* and + do not obey the laws of distribution (c.f. floating-point arithmetic)
- AA can only perform first-order approximations. In other words, it can only be applied to nearly linear variations.
- In practice, we still need to combine AA with other methods, such as statistical method or the (quasi-) Monte Carlo method.