DATS 6101 Introduction to Data Science Logistic Regression

Omer Yalcin

github.com/omerfyalcin/logisticRegression

May 12, 2021

Motivation

Conservation scientist studying a painting [Photo by Richard McCoy from Wikimedia Commons]

Engineer building a credit card fraud detection system [Photo by Christina Morillo from Pexels.]

Logistic Regression

- a classification algorithm for binary outcome variables
 - 1. A real world problem: diabetes prediction
 - 2. Linear Regression: Solution?
 - 3. Logistic Regression: Extension to $Y \in \{0,1\}$
 - 4. logit & sigmoid functions
 - Maximum Likelihood: Intuition
 - 6. Fitting a logistic regression model in R

Diabetes Detection

- from National Institute of Diabetes and Digestive and Kidney Diseases (provided by the *mlbench* package in R)
- ▶ 768 native American women of the Pima heritage
- ▶ age 21 or older
- outcome variable:
 - positive (1) or negative (0) for diabetes
 - 268 positive, 500 negative
- explanatory variables:
 - ightharpoonup plasma glucose concentration (mg/dL)
 - **b** body mass index (kg/m^2)

Plasma Glucose Concentration and Diabetes

Can we use linear regression?

$$Y_i = \beta_0 + \beta_1 X_{i1} + \dots + \beta_k X_{ik} + \epsilon_i$$

 $i \in \{1, 2, ..., n\}$: observations

k: the number of explanatory variables

 Y_i is in range $(-\infty, \infty)$

Linear Regression

Logistic Regression: Extension to dichotomous Y

Problem: $Y_i \in \{0, 1\}$, and $0 < E[Y_i] < 1$

Solution:

- $p_i = Pr(Y_i = 1)$
- ▶ transform p_i so that p_i is in range $(-\infty, \infty)$

Logit Function

$$\begin{bmatrix}
\mathbf{n} \\
\mathbf{log} \\
\end{bmatrix} = \beta_0 + \beta_1 X_{i1} + \dots + \beta_k X_{ik} \\
\mathbf{odds}$$

- $ightharpoonup eta = {\sf constant} \; {\sf change} \; {\sf in} \; {\sf log-odds}$
- $ightharpoonup \exp(\beta) = \text{odds ratio, i.e. } \frac{\operatorname{odds}(X_j + 1 | X_1, \dots X_k)}{\operatorname{odds}(X_j | X_2, \dots X_k)}$

Logit Function

Sigmoid (Logistic) Function

 \blacktriangleright once we get a predicted log-odds value, plug that back into sigmoid function to get p_i

$$S(x) = \frac{1}{1 + e^{-x}} = \frac{e^x}{e^x + 1}$$
$$p_i = \frac{1}{1 + e^{[-(\beta_0 + \beta_1 X_{i1} + \dots + \beta_k X_{ik})]}}$$

Sigmoid (Logistic) Function

Logistic Regression

Maximum Likelihood: Intuition

$$Pr(Y_i = 1|X_i) = \frac{1}{1 + e^{[-(\beta_0 + \beta_1 X_{i1} + \dots + \beta_k X_{ik})]}}$$

Y_i	$Pr(Y_i = 1 X_i)$	$Pr(Y_i = 0 X_i)$
1	p_1	$1 - p_1$
0	p_2	$1 - p_2$
1	p_3	$1 - p_3$
1	p_4	$1 - p_4$
0	p_5	$1 - p_5$
0	p_6	$1 - p_6$

$$\mathcal{L}(Y, X|\beta) = (p_1)(1 - p_2)(p_3)(p_4)(1 - p_5)(1 - p_6)$$

find $\beta_0, \beta_1, ..., \beta_k$ that maximizes $\mathcal{L}(Y, X|\beta)$

Implementing in R

You can follow along with the **logisticRegresssion.Rmd** file in https://github.com/omerfyalcin/logisticRegression