通知实验安排

数字逻辑电路课程有16个学时的实验,初步安排如下:

```
计算机1班 第8,10周 周三上午 1-4 (8:00-11:40)
```

计算机2班 第9,11周 周三上午 1-4 (8:00-11:40)

计算机3班 第9-12周 周二的下午5-6节

计算机4班 第10-13周 周一晚上 9-10 (19:00-20:50)

计算机5班 第9-12周 周三晚上9-10 (19:00-20:50)

物联网1班 第8,10周 周三下午5-8 (14:00-17:40)

物联网2班 第9,11周 周三下午5-8 (14:00-17:40)

计算机1班 第13,14周 周二上午4节(8:00-11:40)

计算机2班 第13,14周 周二下午4节(14:00-17:40)

计算机3班 第13,14周 周二晚上4节 (18:30-22:10)

计算机4班 第13,14周 周四上午4节 (8:00-11:40)

计算机5班 第13,14周 周四下午4节 (14:00-17:40)

物联网1班 第13,14周 周三下午4节 (14:00-17:40)

物联网2班 第13,14周 周三晚上4节(18:30-22:10)

实验设备台套数有限,所以一次只能安排一个班实验。

实验地点:综合实验楼305房间

第四章作业布置

本次(3月21号)作业要求: 每个同学自己从第四章的课后习题中选4题做到作业本中,至于做哪4题,每个同学自己选择。不作硬性规定。我在检查作业时,只看是否做了4题。(从你购买的课本上选题做就可以了。)

数字逻辑

丁贤庆

ahhfdxq@163.com

第四章

组合逻辑电路

4.4 若干典型的组合逻辑电路

- 4.4.1 编码器
- 4.4.2 译码器/数据分配器
- 4.4.3 数据选择器
- 4.4.4 数值比较器
- 4.4.5 算术运算电路

4.4 若干典型的组合逻辑集成电路

4.4.1 编码器

1、编码器 (Encoder)的定义与分类

编码: 赋予二进制代码特定含义的过程称为编码。

如:8421BCD码中,用1000表示数字8

如: ASCII码中,用1000001表示字母A等

编码器:具有编码功能的逻辑电路。

1、编码器 (Encoder)的定义与分类

编码器的逻辑功能:

能将每一个编码输入信号变换为不同的二进制的代码输出。

如BCD编码器:将10个编码输入信号分别编成10个4位码输出。

如8线-3线编码器:将8个输入的信号分别编成8个3位二进制数码输出。

1、编码器 (Encoder)的定义与分类

编码器的分类:普通编码器和优先编码器。

普通编码器: 任何时候只允许输入一个有效编码信号, 否则输出就会发生混乱。

优先编码器:允许同时输入两个以上的有效编码信号。当同时输入几个有效编码信号时,优先编码器能按预先设定的优先级别,只对其中优先权最高的一个进行编码。

2、编码器的工作原理

普通二进制编码器

二进制编码器的结构框图

2、编码器的工作原理

(1) 4线-2线普通二进制编码器(设计)

(a) 逻辑框图

$$Y_1 = I_0 I_1 I_2 I_3 + I_0 I_1 I_2 I_3$$

$$Y_0 = \bar{I}_0 I_1 \bar{I}_2 \bar{I}_3 + \bar{I}_0 \bar{I}_1 \bar{I}_2 I_3$$

(2) 逻辑功能表

I_0	I_1	I_2	I_3	Y_1	Y_0
1	0	0	0	0	0
0		0	0	0	1
0	0	1	0	1	0
0	0	0	1	1	1

编码器的输入为高电平有效。

根据上式可以画出对应的电路图。 该表达式是否可以再简化?

上述是将输入的其它12种组合对应的输出看做0。如果看做无关项,则表达式为

如下逻辑功能表

I_0	I_1	I_2	I_3	Y_1	Y_0
1	0	0	-1	×	×
1	0	1	-1	×	×
1	1	1	1	×	×
				×	×

$$Y_1 = I_2 + I_3$$

 $Y_0 = I_1 + I_3$

若有2个以上的输入为有效信号?

当只有13为1时,

$$Y_1Y_0 = ? Y_1Y_0 = 11$$

$$I_1 = I_2 = 1$$
, $I_0 = I_3 = 0$ by,

$$Y_1Y_0 = ?$$
 $Y_1Y_0 = 11$

无法输出有效编码。

结论: 普通编码器不能同时输入两个以上的有效编码信号

(2.) 键盘输入8421BCD码编码器(分析)

2. 键盘输入8421BCD码编码器功能表

				输		入					箱	ì	出		
\overline{S}_0	\overline{S}_1	\overline{S}_2	$\overline{S_3}$	\overline{S}_4	\overline{S}_5	\overline{S}_6	\overline{S}_7	\overline{S}_8	$\overline{S_9}$	A	В	C	D	GS	
1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	
1	1	1	1	1	1	1	1	1	0	1	0	0	1	1	
1	1	1	1	1	1	1	1	0	1	1	0	0	0	1	
1	1	1	1	1	1	1	0	1	1	0	1	1	1	1	
1	1	1	1	1	1	0	1	1	1	0	1	1	0	1	
1	1	1	1	1	0	1	1	1	1	0	1	0	1	1	
1	1	1	1	0	1	1	1	1	1	0	1	0	0	1	
1	1	1	0	1	1	1	1	1	1	0	0	1	1	1	
1	1	0	1	1	1	1	1	1	1	0	0	1	0	1	
1	0	1	1	1	1	1	1	1	1	0	0	0	1	1	
0	1	1	1	1	1	1	1	1	1	0	0	0	0	1	

该编码器为输入低电平有效,输出高电平有效,GS为标志位。

3. 优先编码器

优先编码器的提出:

实际应用中,经常有两 个或更多输入编码信号 同时有效。

必须根据轻重缓急,规定好这些外设允许操作的先后次 序,即优先级别。

识别多个编码请求信号的优先级别,并进行相应编码的逻辑部件称为优先编码器。

(2)优先编码器线(4-2 线优先编码器)(设计)

输入编码信号高电平有效,输出为二进制代码输入编码信号优先级从高到低为 $I_3 \sim I_0$ 输入为编码信号 $I_3 \sim I_0$ 输出为 $Y_1 Y_0$

(1) 列出功能表

	输	λ		输	出
I_0	I_1	I_3	Y_1	Y_0	
$\left(1\right)$	0	0	0	0	0
X	(1)	0	0	0	1
×	×	(1)	0	1	0
×	×	×		1	1

(2) 写出逻辑表达式

$$\boldsymbol{Y}_1 = \boldsymbol{I}_2 \boldsymbol{I}_3 + \boldsymbol{I}_3$$

$$Y_0 = I_1 I_2 I_3 + I_3$$

(3) 画出逻辑电路(略)

2 典型编码器电路

优先编码器CD4532的示意框图

优先编码器CD4532功能表

			箱)入							输 占	В	
EI	I_7	I_6	I_5	I_4	I_3	I_2	I_1	I_0	Y ₂	Y ₁	Y_0	GS	EO
0	×	×	×	×	×	×	×	×	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	1
1		X	×	×	×	×	×	×	1	1		1	0
1	0	1	X	×	×	×	×	×	1	1	0	1	0
1	0	0		×	×	×	×	×	1	0	1	1	0
1	0	0	0	1	×	×	×	×	1	0	0	1	0
1	0	0	0	0	1	×	×	×	0	1	1	1	0
1	0	0	0	0	0	(1)	X	×	0	1	0	1	0
1	0	0	0	0	0	0	(1)	×	0	0	1	1	0
1	0	0	0	0	0	0	0	(1)	0	0	0	1	0

为什么要设计GS、EO输出信号?

用二片CD4532构成16线-4线优先编码器, 其逻辑图如下

图所示, 试分析其工作原理。

当使能端EI=0时,无编码输出。

哪块芯片的优先级高?

若有效电平输入

4.4.2 译码器/数据分配器

1 译码器的定义与分类

译码: 译码是编码的逆过程,它能将二进制码翻译成代表某

一特定含义的信号.(即电路的某种状态)

译码器: 具有译码功能的逻辑电路称为译码器。

译码器的分类:

唯一地址译码器 将一系列代码转换成与之一一对应的有效信号。

代码变换器

将一种代码转换成另一种代码。

2. 典型译码器电路及应用

(1) 二进制译码器

设输入端的个数为n,输出端的个数为M则有 $M=2^n$

2线 - 4线译码器的逻辑电路(分析)

		切	肥マ	<u>Z</u>		
		λ		输	出	
E	\mathbf{A}_{1}	$\mathbf{A_0}$	\overline{Y}_0	\overline{Y}_1	\overline{Y}_2	\overline{Y}_3
1	X	X	1	1	1	1
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	0

TH 台L 丰

$$\overline{Y}_{0} = \overline{\overline{E}} \overline{A}_{1} \overline{A}_{0}$$

$$\overline{Y}_{2} = \overline{\overline{E}} A_{1} \overline{A}_{0}$$

$$\overline{Y}_1 = \overline{\overline{E}} \overline{A}_1 A_0$$

$$\overline{\overline{Y}}_3 = \overline{\overline{\overline{E}}} A_1 A_0$$

(a) 2线-4线译码器(74HC139) ----逻辑符号说明

逻辑符号框外部的符号,表示外部输入或输出信号名称,字母上面的"—"号说明该输入或输出是低电平有效。符号框内部的输入、输出变量表示其内部的逻辑关系。在推导表达式的过程中,如果低有效的输入或输出变量(如)上面的"—"号参与运算(如 \overline{E} 变为E),则在画逻辑图或验证真值表时,注意将其还原

1/2 74x139

为低有效符号。

(b) 3线-8线译码器(74HC138)

逻辑符号

3线-8线译码器(74HC138)功能表

	输			入				输			出		
E_3	\overline{E}_2	\overline{E}_1	A_2	A_1	A_0	\overline{Y}_0	\overline{Y}_1	\overline{Y}_2	\overline{Y}_3	\overline{Y}_4	\overline{Y}_5	\overline{Y}_6	\overline{Y}_7
X	1	X	X	×	X	1	1	1	1	1	1	1	1
X	X	1	×	×	×	1	1	1	1	1	1	1	1
0	×	X	×	×	×	1	1	1	1	1	1	1	1
1	0	0	0	0	0	0	1	1	1	1	1	1	1
1	0	0	0	0	1	1	0	1	1	1	1	1	1
1	0	0	0	1	0	1	1	0	1	1	1	1	1
1	0	0	0	1	1	1	1	1	0	1	1	1	1
1	0	0	1	0	0	1	1	1	1	0	1	1	1
1	0	0	1	0	1	1	1	1	1	1	0	1	1
1	0	0	1	1	0	1	1	1	1	1	1	0	1
1	0	0	1	1	1	1	1	1	1	1	1	1	0

$$\overline{Y}_0 = \overline{A_2 \cdot \overline{A_1} \cdot \overline{A_0}} \quad \overline{Y}_1 = \overline{A_2 \cdot \overline{A_1} \cdot \overline{A_0}} \quad \overline{Y}_2 = \overline{A_2 \cdot \overline{A_1} \cdot \overline{A_0}} \quad \overline{Y}_3 = \overline{A_2 \cdot \overline{A_1} \cdot \overline{A_0}}$$

 $\overline{Y}_4 = \overline{A_2 \cdot \overline{A_1} \cdot \overline{A_0}} \quad \overline{Y}_5 = \overline{A_2 \cdot \overline{A_1} \cdot A_0} \quad \overline{Y}_6 = \overline{A_2 \cdot A_1 \cdot \overline{A_0}} \quad \overline{Y}_7 = \overline{A_2 \cdot A_1 \cdot A_0}$

	输			入				输			出		
E_3	\overline{E}_2	\overline{E}_1	A_2	A_1	A_0	\overline{Y}_0	\overline{Y}_1	\overline{Y}_2	\overline{Y}_3	\overline{Y}_4	\overline{Y}_5	\overline{Y}_6	\overline{Y}_7
X	1	X	X	X	X	1	1	1	1	1	1	1	1
X	X	1	×	×	×	1	1	1	1	1	1	1	1
0	×	×	×	×	×	1	1	1	1	1	1	1	1
1	0	0	0	0	0	0	1	1	1	1	1	1	1
1	0	0	0	0	1	1 (0	1	1	1	1	1	1
1	0	0	0	1	0	1	1	0	1	1	1	1	1
1	0	0	0	1	1	1	1	1		1	1	1	1
1	0	0	1	0	0	1	1	1	1 (0	1	1	1
1	0	0	1	0	1	1	1	1	1	1		1	1
1	0	0	1	1	0	1	1	1	1	1	1	0	1
1	0	0	1	1	1	1	1	1	1	1	1	1	

1、译码器的扩展

2、用译码器实现逻辑函数。当 E_3 =1, E_2 = E_1 =0时

3线-8线译码器的 $Y_0 \sim Y_7$ 含三变量函数的全部最小项。

基于这一点用该器件能够方便地实现三变量逻辑函数。

用一片74HC138实现函数 $L = \overline{AC} + AB$

首先将函数式变换为最小项之和的形式

在译码器的输出端加一个与非门,即可实现给定的组合逻辑函数.

(2) 二-十进制译码器的真值表

对于BCD代码以外的伪码(1010~1111这6个代码) Y_0 ~ Y_9 均为高电平。

0	0	0	0	0	0	1	1	1	1	1	1	1	1	1
1	0	0	0	1	1	0	1	1	1	1	1	1	1	1
2	0	0	1	0	1	1	0	1	1	1	1	1	1	1
3	0	0	1	1	1	1	1	0	1	1	1	1	1	1
4	0	1	0	0	1	1	1	1	0	1	1	1	1	1
5	0	1	0	1	1	1	1	1	1	0	1	1	1	1
6	0	1	1	0	1	1	1	1	1	1	0	1	1	1
7	0	1	1	1	1	1	1	1	1	1	1	0	1	1
8	1	0	0	0	1	1	1	1	1	1	1	1	0	1
9	1	0	0	1	1	1	1	1	1	1	1	1	1	0

二-十进制译码器

功能:将8421BCD码译成为10个状态输出。

(3) 显示译码器

1. 七段显示译码器

(1) 最常用的显示器有: 半导体发光二极管和液晶显示器。

常用的集成七段显示译码器

-----CMOS七段显示译码器74HC4511

显示译码器与显示器的连接方式

CMOS七段显示译码器74HC4511功能表

十进			斩	介入						有	俞 出				
制或功能	<i>LE</i>	BL	LT	D ₃	D ₂	D ₁	D_0	a	b	c	d	e	f	g	字形
0	0	1	1	0	0	0	0	1	1	1	1	1	1	0	
1	0	1	1	0	0	0	1	0	1	1	0	0	0	0	
2	0	1	1	0	0	1	0	1	1	0	1	1	0	1	2
3	0	1	1	0	0	1	1	1	1	1	1	0	0	1	3
4	0	1	1	0	1	0	0	0	1	1	0	0	1	1	
5	0	1	1	0	1	0	1	1	0	1	1	0	1	1	5
6	0	1	1	0	1	1	0	0	0	1	1	1	1	1	6
7	0	1	1	0	1	1	1	1	1	1	0	0	0	0	
8	0	1	1	1	0	0	0	1	1	1	1	1	1	1	8
9	0	1	1	1	0	0	1	1	1	1	1	0	1	1	9

CMOS七段显示译码器74HC4511功能表(续)

						入				ı	输出			ı	
十进 制或功能	<i>LE</i>	BL.	LT	D_3	D_2	D_1	D_0	а	b	c	d	e	f	g	字形
10	0	1	1	1	0	1	0	0	0	0	0	0	0	0	熄灭
11	0	1	1	1	0	1	1	0	0	0	0	0	0	0	熄灭
12	0	1	1	1	1	0	0	0	0	0	0	0	0	0	熄灭
13	0	1	1	1	1	0	1	0	0	0	0	0	0	0	熄灭
14	0	1	1	1	1	1	0	0	0	0	0	0	0	0	熄灭
15	0	1	1	1	1	1	1	0	0	0	0	0	0	0	熄灭
灯 测 试	×	×	0	×	×	×	×	1	1	1	1	1	1	1	8
灭 灯	×	0	1	×	×	×	×	0	0	0	0	0	0	0	熄灭
锁存	1	1	1	×	×	×	×				*				*

例 由译码器、显示译码及4个七段显示器构成的4位动态显示电路如图所示,试分析工作原理。

位选择信号A1、A0控制 $Y_3 \sim Y_0$ 依次产生低电平,使4个显示器轮流显示。要显示的数据组依次送到 $D_3D_2D_1D_0$ 分别在4个显示器上显示。利用人的视觉暂留时间,可以看到稳定的数字。

例 由译码器、显示译码及4个七段显示器构成的4位动态显示电路如图所示,试分析工作原理。

位选择信号A1、A0控制 $Y_3 \sim Y_0$ 依次产生低电平,使4个显示器轮流显示。要显示的数据组依次送到 $D_3D_2D_1D_0$ 分别在4个显示器上显示。利用人的视觉暂留时间,可以看到稳定的数字。