GEOMETRÍA DE CURVAS Y SUPERFICIES.

Curso 2016-17.

Universidad Autónoma de Madrid. Departamento de Matemáticas.

Hoja 3

Decimos curva espacial para referirnos a cualquier curva en \mathbb{R}^3 .

Una curva espacial α es birregular si su vector curvatura \mathbf{k} es distinto de $\mathbf{0}$ en cada punto de α . Esto permite definir la normal $\mathbf{n} = \mathbf{k}/\|\mathbf{k}\|$ y la binormal $\mathbf{b} = \mathbf{t} \times \mathbf{n}$.

Si $\alpha(t)$ es cualquier parametrización regular (no necesariamente por longitud de arco) entonces la curva es birregular si y sólo si $\alpha'(y)$ y $\alpha''(t)$ son linealmente independientes para todo t.

- $^{\circ}$ 1. Sea $\alpha(t)$ un camino regular (no necesariamente birregular) en el espacio. Demuestra que α está contenido en una esfera de centro el punto \mathbf{p}_0 si y sólo si los planos normales afines de α pasan todos por \mathbf{p}_0 .
- c^2 2. Sean a, b, c constantes con $c^2 = a^2 + b^2$ y c > 0. Consideramos la hélice circular:

$$\alpha(s) \; \equiv \; \left(\, a \cos \frac{s}{c} \; , \; a \sin \frac{s}{c} \; , \; b \frac{s}{c} \, \right) \; . \label{eq:alpha}$$

- (a) Demuestra que $\alpha(s)$ es parametrización por longitud de arco.
- (b) Halla el plano osculador, la curvatura y la torsión de α .
- (c) Comprueba que las tangentes de α forman un ángulo constante con el eje z.
- (d) Comprueba que las normales de α forman ángulo recto con el eje z.
- •3. Se dice que una curva en \mathbb{R}^3 es una hélice generalizada si es regular y forma un ángulo constante, no nulo, con una dirección fija (llamada *eje de hélice*). Demuestra que las hélices generalizadas con eje de hélice vertical admiten parametrizaciones de la forma:

$$\gamma(t) \equiv (x(t), y(t), c_0 + c_1 t),$$

siendo $\gamma_0(t) \equiv (x(t), y(t))$ una curva plana parametrizada por longitud de arco y c_0, c_1 constantes. Demuestra que γ es birregular si y sólo si lo es γ_0 .

'4. Sea $\alpha(s)$ curva birregular parametrizada por longitud de arco, con curvatura k y torsión τ . Definimos una nueva curva paramétrica β mediante $\beta(s) \equiv \mathbf{t}_{\alpha}(s)$. Comprueba que β es parametrización regular ¿es una parametrización por longitud de arco?

Demuestra que $\mathbf{k}_{\beta} = \frac{\tau}{k} \mathbf{b}_{\alpha} - \mathbf{t}_{\alpha}$. (Indicación: calcula $\beta'(s)$ y $\beta''(s)/||\beta'(s)||$).

- '5. Sea $\alpha(s)$ una curva birregular parametrizada por longitud de arco. Definimos una nueva parametrización $\beta(\tilde{s}) \equiv \alpha(-\tilde{s})$. Halla el triedro de Frenet, curvatura y torsión de β a partir de los de α .
 - 6. Sea α curva birregular en el espacio. Demuestra que si todos los planos osculadores afines de α pasan por un mismo punto entonces α es plana.
- $\frak{7}$. Sea lpha una curva espacial birregular cuyas normales afines pasan todas por un mismo punto. Demuestra que lpha está contenida en una circunferencia.
- 28. Dada una curva espacial birregular ¿pueden pasar todas sus binormales afines por un mismo punto?

- 6 9. Demuestra que, dadas constantes cualesquiera k_0, τ_0 con $k_0 > 0$, hay una hélice circular (ejercicio 2) que las realiza como curvatura y torsión. Deduce que una curva birregular está contenida en una hélice circular si y sólo si su curvatura y su torsión son constantes.
- 10. Sea α curva espacial birregular y supongamos que es, además, una hélice generalizada (ver ejercicio 3). Demuestra que las normales de α son perpendiculares al eje de hélice.
- $\mathfrak t$ 11. (Teorema de Lancret). Sea α una curva birregular con curvatura k y torsión τ . Demuestra que las condiciones siguientes son equivalentes:
 - (a) α es una hélice generalizada (ver ejercicio 3).
 - (b) El vector \mathbf{t}_{α} traza una circunferencia en el espacio.
 - (c) El cociente τ/k es constante.

Indicación: el eje de hélice coincidirá con el de la circunferencia trazada por \mathbf{t}_{α} .

12. Sean $\alpha(t), \beta(t): J \to \mathbb{R}^3$ dos curvas birregulares que utilizan el mismo parámetro (no necesariamente la longitud de arco). Suponiendo que cumplen las identidades:

$$k_{\alpha}(t) \equiv k_{\beta}(t)$$
 , $\tau_{\alpha}(t) \equiv \tau_{\beta}(t)$, $\|\alpha'(t)\| \equiv \|\beta'(t)\|$,

demuestra que existe un movimiento directo $\varphi : \mathbb{R}^3 \to \mathbb{R}^3$ tal que $\beta(t) \equiv \varphi \circ \alpha(t)$.

$$K_{\alpha}(s) = \| H_{\alpha}(s) \| = \frac{|\alpha|}{c^2}$$

$$T_{\alpha}(s) = -\langle b_{\alpha}(s), \Pi_{\alpha}(s) \rangle = -\langle \varepsilon(a) (\frac{b}{c^2} \cos \frac{b}{c^2}, \frac{b}{c^2} \sin \frac{b}{c}, 0), \varepsilon(a) (-\cos \frac{b}{c}, -\sin \frac{b}{c}, 0) \rangle$$

$$= + \frac{b}{c^2}$$

c)
$$\cos(\langle(4x, e_3)\rangle) = \langle(4x, e_3\rangle) = \frac{1}{6} = constante$$

d)
$$\cos\left(\langle (M\alpha, \ell_3)\rangle = \langle m\alpha, \ell_3\rangle = 0 \Longrightarrow \langle 4 = \frac{\pi}{2}\rangle$$

3.] $\exists u \in \mathbb{R}^3 / \Delta \left(\alpha'(t), u \right) = constante \neq 0$ Demuestra que si u=e3 entonces 8 se puede parametrizar como: $\gamma(t) = (\chi(t), \gamma(t), C_0 + C_1 t)$ siendo $\gamma_0(t) = (\chi(t), \gamma(t))$ curva plana parametrizada por arco, Co, Cs E IR. See entonces Y(t) = (x(t), y(t), Z(t)) una parametrización de una hélice generalizada con eje vertical, e.d., & (8'(+), (3) = constante Podemos considerar su proyección sobre el plano XY $V_0(t) = (x(t), y(t))$ que define una curva plana. Podemos suponer que to esta parametrizada por arco si V_0 es regular (V_0 regular $\Leftrightarrow V_0'(t) \neq 0 \forall t$) $V_0' = (x'(t), y'(t))$ Vo regular $\iff x'(t)^2 + y'(t)^2 \neq 0 \ \forall t$ Si $\chi'(b) = \chi'(b) = 0 \implies \chi'(b) = (0,0, Z'(b))$, pero entonces 4(7'(6), 93) = 0 contradiciendo la def. de hélice generalizada, por tanto % es regular \implies % podemos suponerla param. por arco. Sabemos que $(%'(4), e_3) = C$, y entonces Z'(4) = C $\implies Z(4) = ct + c'$, $c' \in \mathbb{R}$. (x', y', z'), (0,0,1) = Z' $\implies Z(4) = ct + c'$, p integrando p integr $\delta' = (x', y', C_1)$ sou linealmente independientes (ESTO ES LO QUE TENEMOS QUE VER) Si C1=0 es claro que 8' y 7" son lin. indep. si y solo si la

Son To' y To".

Si C1 \(\delta \), ambos son linealmente independientes siempre.

Si C1 \(\delta \), ambos son linealmente independientes siempre.

To' y To" lin. dep. \(\delta \) \(\

OTRA FORMA: Usar $K_{\alpha} = \frac{\|x^{1} \times x^{11}\|}{\|x^{1}\|^{3}} \neq 0 \Longrightarrow x$ birregular

M. Demostrar: x hélice \Rightarrow tox traza \Rightarrow \equiv constante generalizada \Rightarrow circunferencia \Rightarrow \equiv constante Supongamos que \Rightarrow está parametrizada por arco $\leq (\ell_{\alpha}, u) = c$ para un $u \in \mathbb{R}^3$ $||u|| = 1 \iff \langle \ell_{\alpha}, u \rangle = c$ \mathbb{H}_{α} : $I \longrightarrow IR^3$ curva $\mathbb{H}_{\alpha}(\mathfrak{t}) \in \mathbb{S}^2 = \{(x_1y_1) \in \mathbb{R}^3 : \|(x_1y_1)\| = 1\}$ => $< \forall \alpha, u > = c$ Sea TT el plano $\langle x,u \rangle = C \Longrightarrow \mathcal{K}_{\alpha}(s) \in TT \cap S^2$ circumferenci Supongamos que lex tiene una circunferencia. Entonces como lex(s) € ∈ S² Vs∈I, se tiene que Ex(s) ∈ S² ∩ TT para un cierto plano TT. Si <x,u>= c es la ecuación de TT entonces <\Ex(s),u>= c VSEI, por lo que es hélice generalizada. (tx, u> = c para cierto ue $|R^3|$, ||u|| = 1 y cierto $c \in |R|$. Derivando: $\langle K_{\alpha} \Pi_{\alpha}, u \rangle = 0 \stackrel{\checkmark}{=} \langle \Pi_{\alpha}, u \rangle = 0$ [1] $= D \left(-K_{\alpha}K_{\alpha} + T_{\alpha}b_{\alpha}, u\right) = 0$ $-K_{\alpha}C + T_{\alpha} < b_{\alpha}, u > = 0$ Tenemos que ver que < bx, u> es constante. Derivamos: (bx, u>' = <- Talna, u> \$\forall 0 => <ba, u> = € $\Rightarrow 0 = -K_{\infty}C + T_{\infty}C' \Rightarrow \frac{T_{\infty}}{K_{\infty}} = \frac{C}{C} = \text{constante} (la llamos abajo <math>\lambda$) Como ||u||=1, $|C^2 + \tilde{C}^2 = 1$ = $C = \frac{\lambda}{\sqrt{1+\lambda^2}}$ De la implicación $C = \frac{\lambda}{\sqrt{1+\lambda^2}}$ De la implicación $C = \frac{\lambda}{\sqrt{1+\lambda^2}}$ $C = \frac{1}{\sqrt{1+\lambda^2}}$ cado esta información por ingeniería inversa. Consideramos ahora $u(s) = \frac{1}{\sqrt{1+\lambda^2}} k_{\alpha}(s) + \frac{1}{\sqrt{1+\lambda^2}} b_{\alpha}(s)$ $u'(s) = \frac{1}{\sqrt{1+\lambda^2}} k_{\alpha} \prod_{\alpha \neq 1} \frac{1}{\sqrt{1+\lambda^2}} k_{\alpha}(s) + \frac{1}{\sqrt{1+\lambda^2}} b_{\alpha}(s)$ $u'(s) = \frac{\lambda}{\sqrt{1+\lambda^2}} K_{\alpha} \Pi_{\alpha} + \frac{1}{\sqrt{1+\lambda^2}} (-T_{\alpha} \Pi_{\alpha}) = \frac{\lambda K_{\alpha} - T_{\alpha}}{\sqrt{1+\lambda^2}} \Pi_{\alpha} = 0 \rightarrow u \text{ constante}$ $y \text{ entonces } (K_{\alpha}, u) = \frac{\lambda}{\sqrt{1+\lambda^2}} = \text{constante} \rightarrow x \text{ es hélice general. con eje dirección de } u$

$$f(s) = \langle \mathcal{H}_{\alpha}(s), \alpha(s) - \rho_{0} \rangle = 0$$

$$f'(s) = \langle \mathcal{H}_{\alpha}(s), \alpha(s) - \rho_{0} \rangle + \langle \mathcal{H}_{\alpha}(s), \alpha'(s) \rangle = K_{\alpha}(s) \langle \mathcal{H}_{\alpha}(s), \alpha(s) - \rho_{0} \rangle + 1$$

$$= \rangle K_{\alpha}(s) \neq 0 \qquad \qquad \rho_{\alpha}(s) = \frac{1}{K_{\alpha}(s)} \Rightarrow \langle \mathcal{H}_{\alpha}(s), \alpha(s) - \rho_{0} \rangle = -\rho_{\alpha}(s)$$

Si
$$C_{\alpha} \neq 0$$
:
 $\angle \mathbb{B}_{\alpha}(s)$, $\alpha(s) - P_{o} \rangle = \frac{-P_{\alpha}'(s)}{C_{\alpha}(s)}$
 $\alpha(s) - P_{o} = -P_{\alpha}(s) M_{\alpha}(s) - \frac{P_{\alpha}'(s)}{C_{\alpha}(s)} \mathbb{B}_{\alpha}(s)$

Si
$$\mathcal{L}_{\alpha} = 0$$
 en $J \subset I$:
 $\int_{\alpha}^{1} (s) = 0 \implies \int_{\alpha}^{\infty} (s) = 0 \implies \int_{\alpha}^{\infty} (s) = r \quad (que \ es \ constante)$

OTRA FORMA:
$$g_{p}(s) = \frac{1}{2} || \alpha(s) - p||^{2} = \frac{1}{2} r^{2}$$

$$g_{p}^{\dagger}(s) = \langle \{\{(s), \alpha(s) - p\} \rangle$$

$$\beta(s) = \alpha(-s)$$

$$\beta'(s) = -\alpha'(-s) \implies \|\beta'(s)\| = 1 \quad , \quad \text{th}_{\beta}(s) = -\text{th}_{\alpha}(-s)$$

$$\xi'_{\beta}(s) = \xi'_{\alpha}(-s) = K_{\alpha}(-s) \cdot \|\Pi_{\alpha}(-s)\| = 1 \quad , \quad \text{th}_{\beta}(s) = -\text{th}_{\alpha}(-s)$$

$$\xi'_{\beta}(s) = \xi'_{\alpha}(-s) = K_{\alpha}(-s) \cdot \|\Pi_{\alpha}(-s)\| = 1 \quad , \quad \text{th}_{\beta}(s) = -\text{th}_{\alpha}(-s)$$

$$\xi'_{\beta}(s) = \xi'_{\beta}(s) \times \|\Pi_{\beta}(s)\| = -\xi'_{\alpha}(-s) \times \|\Pi_{\alpha}(-s)\| = -\xi'_{\alpha}(-s)$$

$$\Longrightarrow \xi'_{\beta}(s) = \xi'_{\alpha}(-s) = -\xi'_{\alpha}(-s) + \xi'_{\alpha}(-s) = -\xi'_{\alpha}(-s)$$

$$\Longrightarrow \xi'_{\beta}(s) = \xi'_{\alpha}(-s) = -\xi'_{\alpha}(-s) + \xi'_{\alpha}(-s) = -\xi'_{\alpha}(-s)$$

$$\Longrightarrow \xi'_{\beta}(s) = \xi'_{\alpha}(-s) = -\xi'_{\alpha}(-s) + \xi'_{\alpha}(-s) = -\xi'_{\alpha}(-s)$$

$$f(s) = \alpha(s) + \lambda(s) \prod_{\alpha}(s) \quad \text{buscames} \quad \lambda \quad \text{tal que } \quad f(s) \text{ sea const.}$$

$$f'(s) = \alpha'(s) + \lambda'(s) \prod_{\alpha}(s) - \lambda(s) K_{\alpha}(s) \notin_{\alpha}(s) + \lambda(s) T_{\alpha}(s) \iff_{\alpha}(s) = 1$$

$$= (1 - \lambda(s) K_{\alpha}(s)) \notin_{\alpha}(s) + \lambda'(s) \prod_{\alpha}(s) + \lambda(s) T_{\alpha}(s) \iff_{\alpha}(s) \notin_{\alpha}(s) = 0$$

$$\Rightarrow \begin{cases} 1 - \lambda(s) K_{\alpha}(s) = 0 & \Rightarrow \lambda(s) \neq 0 \quad \forall s \quad K_{\alpha}(s) \neq 0 \quad \forall s \\ \lambda'(s) = 0 & \Rightarrow \lambda(s) = \lambda \quad \text{constante} \end{cases}$$

$$\Rightarrow \lambda \neq 0 \quad K_{\alpha}(s) = \frac{1}{\lambda} \text{ (constante)} \quad \Leftrightarrow \text{ circumferencise}$$

$$8.$$

8.)
$$g(s) = \alpha(s) + \mu(s) b_{\alpha}(s)$$

 $g'(s) = \alpha'(s) + \mu'(s)b_{\alpha}(s) + \mu(s) C_{\alpha}(s) | D_{\alpha}(s) | =$
 $= H_{\alpha}(s) - \mu(s) C_{\alpha}(s) | D_{\alpha}(s) + \mu'(s) b_{\alpha}(s) = 0 \implies$
 $\Delta = 0 \text{ imposible}$
 $A = 0 \text{ imposible}$

[4]
$$\alpha(s)$$
 birregular param. por arco
$$\beta(s) = k_{\alpha}(s) = \alpha'(s)$$
Demostrar que $k_{\beta} = \frac{c}{k} k_{\alpha} - k_{\alpha}$

$$\beta'(s) = k_{\alpha}'(s) = k_{\alpha}(s) | \Pi_{\alpha}(s)$$
Con $K_{\alpha}(s) > 0 \implies V_{\beta}(s) = K_{\alpha}(s) | K_{\beta}(s) = | \Pi_{\alpha}(s) |$

$$k_{\alpha}(s) = -K_{\alpha}(s), k_{\alpha}(s) + T_{\alpha}(s) k_{\alpha}(s) = K_{\alpha}(s), V_{\alpha}(s)$$

$$H_{\beta}'(s) = -K_{\alpha}(s).H_{\alpha}(s) + T_{\alpha}(s)H_{\alpha}(s) = K_{\beta}(s).V_{\beta}(s).\Pi_{\beta}(s)$$

$$\frac{\partial S^{2}}{\partial t} \| \mathcal{H}_{\alpha}^{1}(s) \|^{2} = \left(K_{\alpha}(s)^{2} + C_{\alpha}(s)^{2} \right) = K_{\alpha}(s)^{2} \left(1 + q_{\alpha}(s)^{2} \right) \quad \text{con } q_{\alpha} = \frac{C_{\alpha}}{K_{\alpha}}$$

$$= \sum \| \mathcal{H}_{\alpha}^{1}(s) \| = K_{\alpha}(s) \sqrt{1 + q_{\alpha}(s)} = K_{\beta}(s) \cdot V_{\beta}(s) = K_{\beta}(s) \cdot K_{\alpha}(s)$$

$$= \sum K_{\beta}(s) = \frac{1}{\sqrt{1 + q_{\alpha}(s)^{2}}}$$

=>
$$\frac{\mathcal{L}_{\beta}(s)}{\|\mathcal{L}_{\beta}^{l}(s)\|} = -\frac{1}{\sqrt{1+4_{\alpha}(s)^{2}}} \mathcal{L}_{\alpha}(s) + \frac{4_{\alpha}(s)}{\sqrt{1+4_{\alpha}(s)^{2}}} \mathcal{L}_{\alpha}(s) = \Pi_{\beta}(s)$$

$$\frac{|9|}{\alpha} = 0 \quad b \in \mathbb{R} \qquad r^{2} = a^{2} + b^{2}$$

$$\alpha'(s) = \left(a \cos \frac{s}{r}, a \sin \frac{s}{r}, b \frac{s}{r}\right)$$

$$\alpha'(s) = \left(-\frac{a}{r} \sec \frac{s}{r}, \frac{a}{r} \cos \frac{s}{r}, \frac{b}{r}\right) \quad \|\alpha'(s)\| = \frac{a^{2} + b^{2}}{r^{2}} = 1$$

$$\alpha''(s) = \left(-\frac{a}{r^{2}} \cos \frac{s}{r}, -\frac{a}{r^{2}} \sec \frac{s}{r}, 0\right) = \frac{a}{r^{2}} \left(-\cos \frac{s}{r}, -\sec \frac{s}{r}, 0\right)$$

$$\frac{1}{1} \left(\frac{a}{r}\right) = \left(-\frac{a}{r^{2}} \sec \frac{s}{r}, -\frac{a}{r^{2}} \sec \frac{s}{r}, 0\right) = \frac{a}{r^{2}} \left(-\cos \frac{s}{r}, -\sec \frac{s}{r}, 0\right)$$

$$\frac{1}{1} \left(\frac{a}{r}\right) = \left(-\cos \frac{s}{r}, -\sec \frac{s}{r}, 0\right) = \frac{a}{r^{2}} \left(-\cos \frac{s}{r}, -\sec \frac{s}{r}, 0\right)$$

$$\frac{1}{1} \left(\frac{a}{r}\right) = \left(-\cos \frac{s}{r}, -\sec \frac{s}{r}, 0\right) = \frac{a}{r^{2}} = 1$$

$$\frac{1}{1} \left(\frac{a}{r}\right) = \left(-\cos \frac{s}{r}, -\frac{b}{r}\cos \frac{s}{r}, \frac{a}{r}\right)$$

$$\frac{1}{1} \left(\frac{a}{r}\right) = \frac{a}{r^{2}} + \frac{b}{r^{2}} = \frac{a}{r^{2}}$$

$$\frac{1}{1} \left(\frac{a}{r}\right) = \frac{a}{r^{2}}$$

$$\frac{1}{1} \left(\frac{a}{r}\right) = \frac{a}{r^{2}}$$

$$\frac{1}{1} \left(\frac{a}{r}\right) = \frac{a}{r^{2}}$$

$$\frac{1}{1} \left(\frac{a}{r}\right) = \frac{a^{2} + b^{2}}{r^{2}}$$

$$\frac{1}{1} \left(\frac{a}{r}\right) = \frac{a^{2}$$

$$b_{\alpha}(s) = \left(\frac{b}{r^{2}}\cos\frac{s}{r}, \frac{b}{r^{2}}\sin\frac{s}{r}, 0\right) = \frac{-b}{r^{2}} \ln_{\alpha}(s) \implies C_{\alpha}(s) = \frac{b}{r^{2}} = C_{0}$$

$$K_{0}^{2} + C_{0}^{2} = \frac{a^{2}}{r^{u}} + \frac{b^{2}}{r^{u}} = \frac{1}{r^{2}}$$

$$K_0 = a(k_0^2 + C_0^2) \implies a = \frac{k_0}{k_0^2 + C_0^2}$$
 $C_0 = b(k_0^2 + C_0^2) \implies b = \frac{C_0}{k_0^2 + C_0^2}$

$$\alpha(s+c) = \begin{pmatrix} a\cos\frac{s+c}{r}, & a\sec\frac{s+c}{r}, & b\frac{s+c}{r} \end{pmatrix} =$$

$$= \begin{pmatrix} 0 \\ b\frac{c}{r} \end{pmatrix} + \begin{pmatrix} \cos\frac{c}{r} & -\sin\frac{c}{r} \\ sen\frac{c}{r} & \cos\frac{c}{r} \end{pmatrix} \begin{pmatrix} a\cos\frac{c}{r} \\ a\sec\frac{c}{r} \\ b\frac{c}{r} \end{pmatrix}$$

movimiento helicoidal " tuerca con el tornillo"

