	EXAMINATION QUESTIONS/SOLUTIONS 2011-2012	Course Comp245
Question		Marks &
1.		seen/unseen
Parts		seen ↓
	(e). (b) 1.0417.	
	$\frac{(b)}{(a)}$ 1.0417.	
(iv)		unseen ↓
(v)	(f) The probability that they are each of a different colour is $1 \times \frac{6}{8} \times \frac{3}{7} = \frac{9}{28}$.	Each 4 marks
	Setter's initials NH	Page number 1 of 4

	EXAMINATION QUESTIONS/SOLUTIONS 2011-2012	Comp245
Question		Marks &
2.		seen/unseen
Parts (i)	If $f(x \mu,\sigma)$ is the density of $N(\mu,\sigma^2)$ evaluated at x ,	seen ↓
(1)		
	$\ell(\mu, \sigma) = \sum_{i=1}^{n} \log f(x_i \mu, \sigma) = -\frac{n}{2} \log(2\pi) - n \log(\sigma) - \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2\sigma^2}.$	
		3 marks
(ii)		
	$0 = \frac{\partial}{\partial \mu} \ell(\mu, \sigma) = \frac{\sum_{i=1}^{n} (x_i - \mu)}{\sigma^2} = \frac{\sum_{i=1}^{n} x_i - n\mu}{\sigma^2} \implies \hat{\mu} = \frac{\sum_{i=1}^{n} x_i}{n} = \bar{x}.$	
	, a ²	4 marks
	$rac{\partial^2}{\partial \mu^2}\ell(\mu,\sigma) = -rac{n}{\sigma^2},$	
	which is negative everywhere, so $\hat{\mu}$ is the MLE.	2 marks
(iii)		unseen ↓
	$0 = \frac{\partial}{\partial \sigma} \ell(\hat{\mu}, \sigma) = \frac{\partial}{\partial \sigma} \left\{ -\frac{n}{2} \log(2\pi) - n \log(\sigma) - \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{2\sigma^2} \right\}$	
	$= -\frac{n}{\sigma} + \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{\sigma^3} \implies \hat{\sigma^2} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2.$	
	σ σ^3 $n = 1$	6 marks
(iv)	Since $E(s_{n-1}^2) = \sigma^2$, by linearity of expectation	
	$E(\hat{\sigma^2}) = \frac{n-1}{n} E(s_{n-1}^2) = \frac{n-1}{n} \sigma^2$	
	$\Rightarrow \operatorname{bias}(\hat{\sigma^2}) = \frac{n-1}{n}\sigma^2 - \sigma^2 = \frac{-\sigma^2}{n}.$	
	$\Longrightarrow \operatorname{bias}(v^{2}) = \frac{1}{n}v^{2} - v^{2} = \frac{1}{n}.$	1
	No, $\hat{\sigma}^2$ is a biased estimator (although clearly it is asymptotically unbiased).	4 marks 1 mark

	EXAMINATION QUESTIONS/SOLUTIONS 2011-2012	Course Comp245
Question 3. Parts (ii)	(a) $X \sim \text{Bin}(25, 0.2)$. $E(X) = 25 \times 0.2 = 5$. $Var(X) = 25 \times 0.2 \times (1 - 0.2) = 4$. (b) $P(X = 5) = 0.196$. (c) $P(X \ge 6) = 1 - \sum_{x=0}^{5} P(X = x) = 0.383$. (a) The test should be one-sided, since the change in hard disks is expected to lead to decreased reliability. Let p be the probability that a randomly chosen faulty computer has a hard disk failure. Then $H_0: p = 0.2; H_1: p > 0.2.$ The rejection region $R = \{x P(X \ge x) < \alpha\} = \{9,10,11,\ldots,25\}$, since $P(X \ge 8) = 0.109$ and $P(X \ge 9) = 0.047$. (b) $6 \notin R$. So there is no significant evidence to reject the null hypothesis. (c) The p-value is equal to $P(X \ge 6) = 0.109$ from 3(i)c.	Marks & seen/unseen seen ↓ 5 marks 2 mark 3 marks 2 marks 3 marks 2 marks 3 marks
	Setter's initials NH	Page numbe

	EXAMINATION QUESTIONS/SOLUTIONS 2011-2012	Course Comp245
Question		NA 1 0
4.		Marks & seen/unseen
Parts		unseen ↓
(1)	When $m_X = m_Y = 2$,	
	$1 = p_{XY}(1,1) + p_{XY}(1,2) + p_{XY}(2,1) + p_{XY}(2,2) = 2c + 3c + 3c + 4c = 12c$ $\implies c = \frac{1}{12}.$	
	12	2 marks
(ii)		
	$1 = \sum_{x} \sum_{y} p_{XY}(x, y) = c \sum_{x=1}^{m_X} \sum_{y=1}^{m_Y} (x + y) = c \sum_{x=1}^{m_X} \{ m_Y x + m_Y (m_Y + 1)/2 \}$	
	$= c\{m_Y m_X (m_X + 1)/2 + m_X m_Y (m_Y + 1)/2\} = c m_X m_Y (m_X + m_Y + 2)/2$ $\implies c = 2/\{m_X m_Y (m_X + m_Y + 2)\}.$	
		3 marks
(iii)		
	$p_X(x) = \sum_{y} p_{XY}(x, y) = c\{m_Y x + m_Y(m_Y + 1)/2\} = \frac{2m_Y x + m_Y(m_Y + 1)}{m_X m_Y(m_X + m_Y + 2)}$	
	$= \frac{2x + m_Y + 1}{m_X(m_X + m_Y + 2)}.$	
	By symmetry,	4 marks
	$p_Y(y) = rac{2y + m_X + 1}{m_Y(m_X + m_Y + 2)}.$	
	If $m = m + 2$, $m = (m) + (2m + 2)/12$, similarly, $m = (m) + (2m + 2)/12$	1 mark
(iv)	If $m_X = m_Y = 2$, $p_X(x) = (2x+3)/12$; similarly $p_Y(y) = (2y+3)/12$.	2 marks
()	$E(Y) = E(X) = \sum_{x} x p_X(x) = 1.\frac{5}{12} + 2.\frac{7}{12} = \frac{19}{12} \approx 1.583.$	
	x 12 12 12	4 marks
(v)		
	$E(XY) = \sum_{x} \sum_{y} xy \ p_{X,Y}(x,y) = \frac{2}{12}.1 + \frac{6}{12}.2 + \frac{4}{12}.4 = \frac{30}{12} = 2.5.$	
	$Cov(X,Y) = E(XY) - E(X)E(Y) = 2.5 - \left(\frac{19}{12}\right)^2$	
	$\approx -0.0069.$	
		4 marks
	Setter's initials NH Checker's initials	Page number 4 of 4