

A Game of Tiers: Exploring the Formal Properties of TSL Languages

Aniello De Santo

Computational Phonology Workshop Dec 12, 2016

The Talk in a Nutshell

Subregular Hypothesis for Phonology

- Phonotactic patterns can be described by classes in the subregular hierarchy;
- Pin-pointing the right class will be useful for typology, learnability, cognitive predictions ...

Current Hypothesis

- ► Tier-based Strictly Local seems to be the right fit;
- ▶ But ... several problematic patterns have been reported!

Idea

We can explore (minimal) extensions to TSI

The Talk in a Nutshell

Subregular Hypothesis for Phonology

- Phonotactic patterns can be described by classes in the subregular hierarchy;
- Pin-pointing the right class will be useful for typology, learnability, cognitive predictions ...

Current Hypothesis

- Tier-based Strictly Local seems to be the right fit;
- ▶ But ... several problematic patterns have been reported!

Idea

We can explore (minimal) extensions to TSL

The Talk in a Nutshell

Subregular Hypothesis for Phonology

- Phonotactic patterns can be described by classes in the subregular hierarchy;
- Pin-pointing the right class will be useful for typology, learnability, cognitive predictions ...

Current Hypothesis

- Tier-based Strictly Local seems to be the right fit;
- But ... several problematic patterns have been reported!

Idea

We can explore (minimal) extensions to TSL

Outline

- 1 Preliminaries
- 2 TSL Limits
- 3 Extending the TSL Class
- 4 Conclusions

Subregular Hypothesis

- Phonology is subregular;
- Local phonotactic dependencies are Strictly Local.

SL: Example

Word-final devoicing: $*[+voice] \times$

$$\times$$
 rad \times

× rat ×

Subregular Hypothesis

- ► Phonology is subregular;
- Local phonotactic dependencies are Strictly Local.

SL: Example

Word-final devoicing: *[+voice] ×

 \times rad \times

urat N

Subregular Hypothesis

- Phonology is subregular;
- Local phonotactic dependencies are Strictly Local.

SL: Example

Word-final devoicing: $*[+voice] \ltimes$

 \times rad \times

w rat w

Subregular Hypothesis

- Phonology is subregular;
- Local phonotactic dependencies are Strictly Local.

SL: Example

Word-final devoicing: $*[+voice] \times$

× rat ×

Subregular Hypothesis

- Phonology is subregular;
- Local phonotactic dependencies are Strictly Local.

SL: Example

Word-final devoicing: $*[+voice] \times$

$$ok \times r \text{ a t } |$$

Long Distance Dependencies as Tier-based Strictly Local

- ► Problem: Unbounded processes cannot be captured by Strictly Local Grammars
- Solution: Select a subset of segments and enforce constraints only over it.

Tier-based Strictly Local (TSL) Grammars

- ▶ a projection function $E: \Sigma \to T$ with $T \subseteq \Sigma$ \Rightarrow projection on a tier is determined just by the "shape" of the segment (no structural or "proximity" information);
- strictly local constraints over T;

Grammar

$$T = \{s, z, g, f\} S = \{*gs, *gg, *gf, *f\} \}$$

* a: e r s e

 ok аа: е г \int е

Grammar

$$T = \{s, z, g, f\} S = \{*gs, *sg, *sf, *fs\}$$

3

- T: sibilant harmony
- *a: erse

Grammar

$$T = \{s, z, g, f\} S = \{*gs, *sg, *sf, *fs\}$$

3

T: sibilant harmony

Grammar

$$T = \{s, z, g, f\} S = \{*gs, *sg, *sf, *fs\}$$

3

T: sibilant harmony

a: e r s e

Grammar

$$T = \{s, z, g, f\} S = \{*gs, *sg, *sf, *fs\}$$

3

T: sibilant harmony

a: e r

Grammar

$$T = \{s, z, g, f\} S = \{*gs, *sg, *sf, *fs\}$$

S

3

T: sibilant harmony

a: e r s e

Grammar

$$T = \{s, z, g, f\} S = \{*gs, *sg, *sf, *fs\}$$

3 S

T: sibilant harmony

3 a: e r

Grammar

$$T = \{s, z, g, f\} S = \{*gs, *sg, *sf, *fs\}$$

 ok ʒ a: e r \int e

Grammar

$$\mathsf{T} = \{\mathsf{s},\,\mathsf{z},\,\mathsf{g},\,\mathsf{f}\}\;\mathsf{S} = \{\mathsf{*gs},\,\mathsf{*sg},\,\mathsf{*sf},\,\mathsf{*fs}\;\}$$

```
T: sibilant harmony
 a: e r s e
```

T: sibilant harmony a: e r∫e

Grammar

$$T = \{s, z, g, f\} S = \{*gs, *sg, *sf, *f\} \}$$

```
T: sibilant harmony
```

a: e r s e

3

T: sibilant harmony

Grammar

$$T = \{s, z, g, f\} S = \{*gs, *sg, *sf, *f\} \}$$

```
T: sibilant harmony
```

a: e r s e

3

T: sibilant harmony

Grammar

$$T = \{s, z, g, f\} S = \{*gs, *sg, *sf, *f\} \}$$

- T: sibilant harmony
- a: e r s e

3

T: sibilant harmony

Grammar

$$T = \{s, z, g, f\} S = \{*gs, *sg, *sf, *fs \}$$

```
* S S
```

T: sibilant harmony

*₃a:erse

3

T: sibilant harmony

^{οκ} ₃ :

е

r

Grammar

$$T = \{s, z, g, f\} S = \{*gs, *sg, *sf, *fs \}$$

```
T: sibilant harmony
```

а a: е

T: sibilant harmony а a: е

Grammar

$$T = \{s, z, g, f\} S = \{*gs, *sg, *sf, *fs\}$$

```
T: sibilant harmony
 a: e r s e
```

T: sibilant harmony а a: е r

Grammar

$$T = \{s, z, g, f\} S = \{*gs, *sg, *sf, *fs \}$$

Sibilant Harmony in IMDLAWN TASHLHIYT (McMullin2016)

```
1) Underlying causative prefix /s(:)-/
    Base
           Causative
                     "be evacuated"
   uga sː-uga
a.
   as:twa s-as:twa "settle, be levelled"
b.
```

Sibilant Harmony in IMDLAWN TASHLHIYT (McMullin2016)

```
1) Underlying causative prefix /s(:)-/
           Causative
    Base
                     "be evacuated"
   uga S:-uga
a.
   as:twa s-as:twa "settle, be levelled"
b.
2) Sibilant harmony
    Base Causative
   fia[r [- fia[r
                      "be full of straw, of discord"
a.
                      "be sold"
b.
    nza
           zː-nza
```

Sibilant Harmony in IMDLAWN TASHLHIYT (McMullin2016)

```
1) Underlying causative prefix /s(:)-/
           Causative
    Base
                     "be evacuated"
   uga sı-uga
a.
   as:twa s-as:twa "settle, be levelled"
b.
2) Sibilant harmony
    Base Causative
a. fia[r [- fia[r
                      "be full of straw, of discord"
                      "be sold"
b.
   nza
           zː-nza
3) Sibilant voicing harmony blocked
    Base Causative
```

```
a. ukz s:-ukz "recognize"
```

b. quasi J- quasi "be dislocated, broken"

Sibilant Harmony in IMDLAWN TASHLHIYT (McMullin2016)

```
1) Underlying causative prefix /s(:)-/
            Causative
    Base
                     "be evacuated"
   uga sı-uga
a.
b.
   as:twa s-as:twa "settle, be levelled"
2) Sibilant harmony
    Base Causative
   fia[r [- fia[r
                      "be full of straw, of discord"
a.
                      "be sold"
b.
   nza
           z:-nza
```

3) Sibilant voicing harmony blocked

```
Base
        Causative
   ukz sı-ukz "recognize"
a.
   q:u3:i [- qu3:i "be dislocated, broken"
b.
```

Can we write a TSL grammar to capture this pattern?

Generalization (1/2)

Sibilants must agree in anteriority and voicing.

Grammar

$$T = \{ \mathbf{z}, \mathbf{s}, \mathbf{z}, \mathbf{f} \}$$

$$S = \{ *\mathsf{sz}, *\mathsf{sz}, *\mathsf{sf}, *\mathsf{zs}, *\mathsf{fs}, *\mathsf{zs}, *\mathsf{zf}, *\mathsf{zz}, *\mathsf{fz}, *\mathsf{fz}, *\mathsf{zf}, *\mathsf{zf}, *\mathsf{zz} \}$$

ok
 a m: a d a w \mid

Generalization (1/2)

Sibilants must agree in anteriority and voicing.

Grammar

Z

.....

*z m: a d a w l

 ok \mathtt{a} \mathtt{m} : \mathtt{a} \mathtt{d} \mathtt{a} \mathtt{w} \mathtt{I}

Generalization (1/2)

Sibilants must agree in anteriority and voicing.

Grammar

 ok র m: র d a w |

Generalization (1/2)

Sibilants must agree in anteriority and voicing.

Grammar

z 3 * z m: 3 d a w l

 ok \mathtt{z} m : \mathtt{z} d a w l

Generalization (1/2)

Sibilants must agree in anteriority and voicing.

Grammar

```
z 3
.....*
* z m: 3 d a w |
```

 ok \mathtt{a} m : \mathtt{a} d a w l

Generalization (1/2)

Sibilants must agree in anteriority and voicing.

Grammar

z 3 * z m: 3 d a w I

 ok \mathtt{am} : \mathtt{adaw} \mathtt{l}

Generalization (1/2)

Sibilants must agree in anteriority and voicing.

Grammar

z 3 * z m: 3 d a w |

 ok \mathtt{a} m : \mathtt{a} d a w I

Generalization (1/2)

Sibilants must agree in anteriority and voicing.

Grammar

z a T * z m: a d a w |

^{ok} аm:аdaw∣

Generalization (1/2)

Sibilants must agree in anteriority and voicing.

Grammar

 ok \mathtt{z} m : \mathtt{z} d a w l

Generalization (1/2)

Sibilants must agree in anteriority and voicing.

Generalization (1/2)

Sibilants must agree in anteriority and voicing.

Generalization (1/2)

Sibilants must agree in anteriority and voicing.

Generalization (1/2)

Sibilants must agree in anteriority and voicing.

Generalization (1/2)

Sibilants must agree in anteriority and voicing.

Generalization (1/2)

Sibilants must agree in anteriority and voicing.

Grammar

Generalization (1/2)

Sibilants must agree in anteriority and voicing.

$$T = \{ \mathbf{z}, \mathbf{s}, \mathbf{z}, \mathbf{f} \}$$

$$S = \{ *\mathsf{sz}, *\mathsf{sz}, *\mathsf{sf}, *\mathsf{zs}, *\mathsf{fs}, *\mathsf{zs}, *\mathsf{zf}, *\mathsf{zz}, *\mathsf{fz}, *\mathsf{fz}, *\mathsf{zf}, *\mathsf{zf}, *\mathsf{zz} \}$$

Generalization (1/2)

Sibilants must agree in anteriority and voicing.

Generalization (2/2)

Voiceless obstruents block agreement in voicing.

$$\begin{split} T &= \{ \text{ \it{g}, s, z,f, q} \} \\ S &= \{ \text{ *sg, *sz, *sf, *gs, *fs, *zs, *zf, *zg, *fz, *fg, * gf, *gz } \} \end{split}$$

ok
 \int q u \mathbf{g} : \mathbf{i}

Generalization (2/2)

Voiceless obstruents block agreement in voicing.

Grammar

$$T = \{ \text{ \it{g}, \it{s}, \it{z},\it{f}, \it{q}} \\ S = \{ \text{ *sg, *sg, *sf, *gs, *sf, *zs, *zf, *zg, *fz, *fg, * gf, *gz } \}$$

* S a U 7:

Generalization (2/2)

Voiceless obstruents block agreement in voicing.

$$\begin{split} T &= \{ \text{ \it{g}, s, z,f, q} \} \\ S &= \{ \text{ *sg, *sz, *sf, *gs, *fs, *zs, *zf, *zg, *fz, *fg, * gf, *gz } \} \end{split}$$

```
∫ q
;;; * s q u д; ; * s q u д;
```

Generalization (2/2)

Voiceless obstruents block agreement in voicing.

$$\begin{split} T &= \{ \text{ \it{g}, s, z,f, q} \} \\ S &= \{ \text{ *sg, *sz, *sf, *gs, *fs, *zs, *zf, *zg, *fz, *fg, * gf, *gz } \} \end{split}$$

```
∫ q
;;
; ok ∫ q u z; i * s q u z;
```

Generalization (2/2)

Voiceless obstruents block agreement in voicing.

```
\int q \overline{3}:
\stackrel{\text{T}}{ok} \int q u \overline{3}: i * s q u \overline{3}:
```

Generalization (2/2)

Voiceless obstruents block agreement in voicing.

$$\begin{split} T &= \{ \text{ \it{g}, s, z,f, q} \} \\ S &= \{ \text{ *sg, *sz, *sf, *gs, *fs, *zs, *zf, *zg, *fz, *fg, * gf, *gz } \} \end{split}$$

Generalization (2/2)

Voiceless obstruents block agreement in voicing.

Grammar

$$T = \{ \text{ \it{g}, \it{s}, \it{z}, \it{f}, \it{q}} \\ S = \{ \text{ *sg, *sg, *sf, *gs, *sf, *zs, *zf, *zg, *fz, *fg, *gf, *gf, *gz} \}$$

$$\begin{bmatrix} ok & \begin{bmatrix} & & & & & \\ & & & & & \end{bmatrix} & \mathbf{Z} \end{bmatrix}$$

* S Q U 3:

Generalization (2/2)

Voiceless obstruents block agreement in voicing.

Grammar

$$T = \{ \text{ \it{g}, \it{s}, \it{z},\it{f}, \it{q}} \\ S = \{ \text{ *sg, *sg, *sf, *gs, *sf, *zs, *zf, *zg, *fz, *fg, * gf, *gz } \}$$

$$\begin{array}{c|c}
ok & & \\
\downarrow & \downarrow & \downarrow \\
\downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow & \downarrow \\
\hline
ok & \downarrow & \downarrow \\
\hline
o$$

* S a U 7:

Generalization (2/2)

Voiceless obstruents block agreement in voicing.

$$T = \{ \text{ \it{g}, \it{s}, \it{z},\it{f}, \it{q}} \\ S = \{ \text{ *sg, *sg, *sf, *gs, *sf, *zs, *zf, *zg, *fz, *fg, * gf, *gz, *} \}$$

Generalization (2/2)

Voiceless obstruents block agreement in voicing.

$$T = \{ \text{ \it{g}, \it{s}, \it{z},\it{f}, \it{q}} \\ S = \{ \text{ *sg, *sg, *sf, *gs, *sf, *zs, *zf, *zg, *fz, *fg, * gf, *gz, *} \}$$

Generalization (2/2)

Voiceless obstruents block agreement in voicing.

$$T = \{ \text{ \it{g}, \it{s}, \it{z},\it{f}, \it{q}} \\ S = \{ \text{ *sg, *sg, *sf, *gs, *sf, *zs, *zf, *zg, *fz, *fg, * gf, *gz, *} \}$$

Generalization (2/2)

Voiceless obstruents block agreement in voicing.

$$T = \{ \text{ \it{g}, \it{s}, \it{z},\it{f}, \it{q}} \\ S = \{ \text{ *sg, *sg, *sf, *gs, *sf, *zs, *zf, *zg, *fz, *fg, * gf, *gz, *} \}$$

Generalization (2/2)

Voiceless obstruents block agreement in voicing.

Generalization (2/2)

Voiceless obstruents block agreement in voicing.

Generalization (2/2)

Voiceless obstruents block agreement in voicing.

$$T = \{ \text{ \it{g}, \it{s}, \it{z}, \it{f}, \it{q}} \\ S = \{ \text{ *sg, *sg, *sf, *gs, *sf, *zs, *zf, *zg, *fz, *fg, *gf, *gf, *gz} \}$$

Generalization (2/2)

Voiceless obstruents block agreement in voicing.

Generalization (2/2)

Voiceless obstruents block agreement in voicing.

Grammar

$$T = \{ \text{ \it{g}, \it{s}, \it{z},\it{f}, \it{q}} \\ S = \{ \text{ *sg, *sg, *sf, *gs, *sf, *zs, *zf, *zg, *fz, *fg, * gf, *gz, *} \}$$

No TSL grammar can block voicing and enforce anteriority!

Sibilant Harmony in SAMALA (McMullin2016)

1) Unbounded sibilant harmony

```
a. /k-su-ʃojin/ kʃuʃojin "I darken it"
```

b. /k-su-k'ili-mekeken-ʃ/ kʃuk'ilimekeketʃ "I straighten up"

```
2) /s/\rightarrow [\int] when preceding (adjacent) [t, n, l]
```

```
a. /s-lok'in/ flok'in he cuts it
```

3) Long-distance agreement overrides local disagreement

```
a. /s-iʃt-tiʃti-jep-us/ sististijepus "they show him"
```

b. /s-net-us/ snetus "he does it to hi

Can we write a TSL grammar to capture this pattern?

Sibilant Harmony in SAMALA (McMullin2016)

1) Unbounded sibilant harmony

```
a. /k-su-ʃojin/ kʃuʃojin "I darken it"
```

- b. /k-su-k'ili-mekeken-ʃ/ kʃuk'ilimekeketʃ "I straighten up"
- 2) $/s/\rightarrow$ [ʃ] when preceding (adjacent) [t, n, l]

```
a. /s-lok'in/ flok'in he cuts it
```

- b. /s-tepu?/ "he gambles"
- Long-distance agreement overrides local disagreement

```
a. /s-iʃt-tiʃti-jep-us/ sististijepus "they show him"
```

b. /s-net-us/ snetus "he does it to him"

Can we write a TSL grammar to capture this pattern?

Sibilant Harmony in SAMALA (McMullin2016)

1) Unbounded sibilant harmony

```
a. /k-su-ʃojin/ kʃuʃojin "I darken it"
```

b. /k-su-k'ili-mekeken-∫/ k∫uk'ilimekeket∫ "I straighten up"

2) $/s/\rightarrow$ [ʃ] when preceding (adjacent) [t, n, l]

```
a. \sqrt{s-lok'in} flok'in he cuts it
```

3) Long-distance agreement overrides local disagreement

```
a. /s-i[t-ti[ti-jep-us/ sististijepus "they show him"
```

b. /s-net-us/ snetus "he does it to him"

Sibilant Harmony in SAMALA (McMullin2016)

1) Unbounded sibilant harmony

```
a. /k-su-ʃojin/ kʃuʃojin "I darken it"
```

b. /k-su-k'ili-mekeken-∫/ k∫uk'ilimekeket∫ "I straighten up"

```
2) /s/\rightarrow [ʃ] when preceding (adjacent) [t, n, l]
```

```
a. /s-lok'in/ flok'in he cuts it
```

3) Long-distance agreement overrides local disagreement

```
a. /s-i[t-ti[ti-jep-us/ sististijepus "they show him"
```

b. /s-net-us/ snetus "he does it to him"

Can we write a TSL grammar to capture this pattern?

Sibilant Harmony in SAMALA (1/2)

Generalization

- Anticipatory Sibilant harmony
- ► Local restriction agains [*sn, *st, *sl]

$$T = \{s, f, n, t, l\} S = \{*sf, *fs, *sn, *st, *sl\}$$

ok
 k \int u \int o j in ok \int \int O k ' in

Sibilant Harmony in SAMALA (1/2)

Generalization

- Anticipatory Sibilant harmony
- ► Local restriction agains [*sn, *st, *sl]

$$T = \{s, f, n, t, l\} S = \{*sf, *fs, *sn, *st, *sl\}$$

$$\overset{\mathsf{o}}{\mathsf{k}}$$
 [u [o j i n $\overset{\mathsf{o}k}{\mathsf{k}}$ [| o k' i n

Sibilant Harmony in SAMALA (1/2)

Generalization

- Anticipatory Sibilant harmony
- ► Local restriction agains [*sn, *st, *sl]

$$T = \{s, f, n, t, l\} S = \{*sf, *fs, *sn, *st, *sl\}$$

Generalization

- Anticipatory Sibilant harmony
- ► Local restriction agains [*sn, *st, *sl]

$$T = \{s, f, n, t, l\} S = \{*sf, *fs, *sn, *st, *sl\}$$

Generalization

- Anticipatory Sibilant harmony
- ► Local restriction agains [*sn, *st, *sl]

$$T = \{s, f, n, t, l\} S = \{*sf, *fs, *sn, *st, *sl\}$$

Generalization

- Anticipatory Sibilant harmony
- ► Local restriction agains [*sn, *st, *sl]

$$T = \{s, f, n, t, l\} S = \{*sf, *fs, *sn, *st, *sl\}$$

Generalization

- Anticipatory Sibilant harmony
- ► Local restriction agains [*sn, *st, *sl]

$$T = \{s, f, n, t, l\} S = \{*sf, *fs, *sn, *st, *sl\}$$

Generalization

- Anticipatory Sibilant harmony
- ► Local restriction agains [*sn, *st, *sl]

$$T = \{s, f, n, t, l\} S = \{*sf, *fs, *sn, *st, *sl\}$$

Generalization

- Anticipatory Sibilant harmony
- ► Local restriction agains [*sn, *st, *sl]

$$T = \{s, f, n, t, l\} S = \{*sf, *fs, *sn, *st, *sl\}$$

Generalization

- Anticipatory Sibilant harmony
- ► Local restriction agains [*sn, *st, *sl]

$$T = \{s, f, n, t, l\} S = \{*sf, *fs, *sn, *st, *sl\}$$

Generalization

- Anticipatory Sibilant harmony
- ► Local restriction agains [*sn, *st, *sl]

$$T = \{s, f, n, t, l\} S = \{*sf, *fs, *sn, *st, *sl\}$$

Generalization

- Anticipatory Sibilant harmony
- ► Local restriction agains [*sn, *st, *sl]

$$T = \{s, f, n, t, l\} S = \{*sf, *fs, *sn, *st, *sl\}$$

$$\begin{pmatrix} ok_{1} - - \frac{ok_{1}}{1} - - \frac{ok_{1}}{1} - \frac{ok_{1}}{1} \\ \frac{1}{1} - \frac{1}{1} - \frac{ok_{1}}{1} - \frac{ok_{1}}{1} \\ \frac{1}{1} - \frac{ok_{1}}{1} - \frac{ok_{1}}{1} - \frac{ok_{1}}{1} \\ \frac{1}{1} - \frac{ok_{1}}{1} - \frac{ok_{1}}{1} - \frac{ok_{1}}{1} - \frac{ok_{1}}{1} \\ \frac{1}{1} - \frac{ok_{1}}{1} - \frac{ok_{1}}{1} - \frac{ok_{1}}{1} - \frac{ok_{1}}{1} \\ \frac{1}{1} - \frac{ok_{1}}{1} - \frac{ok$$

Generalization

- Anticipatory Sibilant harmony
- ► Local restriction agains [*sn, *st, *sl]

$$T = \{s, f, n, t, l\} S = \{*sf, *fs, *sn, *st, *sl\}$$

Generalization

- Anticipatory Sibilant harmony
- ► Local restriction agains [*sn, *st, *sl]

$$T = \{s, f, n, t, l\} S = \{*sf, *fs, *sn, *st, *sl\}$$

Generalization

- Anticipatory Sibilant harmony
- ► Local restriction agains [*sn, *st, *sl]

$$T = \{s, f, n, t, l\} S = \{*sf, *fs, *sn, *st, *sl\}$$

Generalization

- Anticipatory Sibilant harmony
- ► Local restriction agains [*sn, *st, *sl]

$$T = \{s, f, n, t, l\} S = \{*sf, *fs, *sn, *st, *sl\}$$

Generalization

- Anticipatory Sibilant harmony
- ► Local restriction agains [*sn, *st, *sl]

$$T = \{s, f, n, t, l\} S = \{*sf, *fs, *sn, *st, *sl\}$$

Generalization

- Anticipatory Sibilant harmony
- ► Local restriction agains [*sn, *st, *sl]

$$T = \{s, f, n, t, l\} S = \{*sf, *fs, *sn, *st, *sl\}$$

$$\stackrel{ok}{\stackrel{\vdash}{\bigcup}} \stackrel{\vdash}{\bigcup} \stackrel{\vdash}{\bigcup} \qquad \mathsf{n}$$

Generalization

- Anticipatory Sibilant harmony
- ► Local restriction agains [*sn, *st, *sl]

$$T = \{s, f, n, t, l\} S = \{*sf, *fs, *sn, *st, *sl\}$$

Generalization (Extended)

- anticipatory sibilant harmony
- palatalization to avoid local restriction
- sibilant harmony overides palatalization

$$T = \{s, f, n, t, l\} S = \{*sf, *sf, *sn, *st, *sl\}$$

ok
 s n e t u s

Generalization (Extended)

- anticipatory sibilant harmony
- palatalization to avoid local restriction
- sibilant harmony overides palatalization

$$T = \{s, f, n, t, l\} S = \{*sf, *sf, *sn, *st, *sl\}$$

$$\overset{\mathsf{T}}{\overset{\mathsf{T}}{ok}}$$
 $\overset{\mathsf{T}}{\mathsf{s}}$ n e t u s

Generalization (Extended)

- anticipatory sibilant harmony
- palatalization to avoid local restriction
- sibilant harmony overides palatalization

$$T = \{s, f, n, t, l\} S = \{*sf, *sf, *sn, *st, *sl\}$$

s n
$$^{\mathsf{T}}$$
 s n e t u s

Generalization (Extended)

- anticipatory sibilant harmony
- palatalization to avoid local restriction
- sibilant harmony overides palatalization

$$T = \{s, f, n, t, l\} S = \{*sf, *sf, *sn, *st, *sl\}$$

s n
$$\overset{\mathsf{T}}{ok} \mathsf{s} \mathsf{n} \; \mathbf{e} \; \mathsf{t} \; \mathsf{u} \; \mathsf{s}$$

Generalization (Extended)

- anticipatory sibilant harmony
- palatalization to avoid local restriction
- sibilant harmony overides palatalization

$$T = \{s, f, n, t, l\} S = \{*sf, *sf, *sn, *st, *sl\}$$

Generalization (Extended)

- anticipatory sibilant harmony
- palatalization to avoid local restriction
- sibilant harmony overides palatalization

$$T = \{s, f, n, t, l\} S = \{*sf, *sf, *sn, *st, *sl\}$$

$$\overset{\mathsf{r}}{\overset{\mathsf{r}}{o^k}}$$
 s n e t u s

Generalization (Extended)

- anticipatory sibilant harmony
- palatalization to avoid local restriction
- sibilant harmony overides palatalization

$$T = \{s, f, n, t, l\} S = \{*sf, *sf, *sn, *st, *sl\}$$

Generalization (Extended)

- anticipatory sibilant harmony
- palatalization to avoid local restriction
- sibilant harmony overides palatalization

$$T = \{s, f, n, t, l\} S = \{*sf, *sf, *sn, *st, *sl\}$$

```
* s n t s

T

ok s n e t u s
```

Generalization (Extended)

- anticipatory sibilant harmony
- palatalization to avoid local restriction
- sibilant harmony overides palatalization

$$T = \{s, f, n, t, l\} S = \{*sf, *sf, *sn, *st, *sl \}$$

Generalization (Extended)

- anticipatory sibilant harmony
- palatalization to avoid local restriction
- sibilant harmony overides palatalization

$$T = \{s, f, n, t, l\} S = \{*sf, *sf, *sn, *st, *sl \}$$

Generalization (Extended)

- anticipatory sibilant harmony
- palatalization to avoid local restriction
- sibilant harmony overides palatalization

$$T = \{s, f, n, t, l\} S = \{*sf, *sf, *sn, *st, *sl\}$$

```
* s n t s
```

Generalization (Extended)

- anticipatory sibilant harmony
- palatalization to avoid local restriction
- sibilant harmony overides palatalization

$$T = \{s, f, n, t, l\} S = \{*sf, *sf, *sn, *st, *sl\}$$

Generalization (Extended)

- anticipatory sibilant harmony
- palatalization to avoid local restriction
- sibilant harmony overides palatalization

Grammar

$$T = \{s, f, n, t, l\} S = \{*sf, *sf, *sn, *st, *sl \}$$

No TSL grammar can capture this patter...

Interim Summary

TSL is a good fit for long distance dependencies:

- projection of a subset of segments on a tier T;
- strictly local constraints enforced on T.

Not every attested pattern can be described this way:

- overlapping constraints cannot work on the same tier.
- not enough information is used when projecting elements.

Generalizing the TSL class

TSL languages are characterized by:

- ▶ a 1-local projection function that projects one tier T;
- strictly k-local constraints applied on T.

Idea

What if ..

- we could apply different projection functions to project multiple tiers?
- the locality of the projection function was higher than 1?

Generalizing the TSL class

TSL languages are characterized by:

- ▶ a 1-local projection function that projects one tier T;
- strictly k-local constraints applied on T.

Idea

What if ...

- we could apply different projection functions to project multiple tiers?
- 2 the locality of the projection function was higher than 1?

Sibilant Harmony in IMDLAWN TASHLHIYT (Revisited)

ok
 \int q u \mathbf{g} : \mathbf{i}

Sibilant Harmony in IMDLAWN TASHLHIYT (Revisited)

Sibilant Harmony in IMDLAWN TASHLHIYT (Revisited)

Sibilant Harmony in IMDLAWN TASHLHIYT (Revisited)

Sibilant Harmony in IMDLAWN TASHLHIYT (Revisited)

Sibilant Harmony in IMDLAWN TASHLHIYT (Revisited)

Sibilant Harmony in IMDLAWN TASHLHIYT (Revisited)

$$ok \begin{bmatrix} - & - & & \\ & & & & \\ & & & \end{bmatrix}$$
 $\mathbf{q} \begin{bmatrix} & & & \\ & & & \end{bmatrix}$ $\mathbf{g} \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix}$

Sibilant Harmony in IMDLAWN TASHLHIYT (Revisited)

$$\begin{array}{c} ok \\ ok \\ - & - & - & - \\ & & &$$

Sibilant Harmony in IMDLAWN TASHLHIYT (Revisited)

Voiceless obstruents block agreement in voicing:

$$T_1 = \{ \mathbf{z}, \; \mathbf{s}, \; \mathbf{z}, \mathbf{f}, \; \mathbf{q} \} \; S_1 = \{ \mathbf{*sz}, \; \mathbf{*sz}, \; \mathbf{*zs}, \; \mathbf{*zs}, \; \mathbf{*fz}, \; \mathbf{*fz}, \; \mathbf{*zf} \}$$

Sibilant Harmony in IMDLAWN TASHLHIYT (Revisited)

Voiceless obstruents block agreement in voicing:

$$T_1 = \{ \mathbf{z}, \; \mathbf{s}, \; \mathbf{z}, \mathbf{f}, \; \mathbf{q} \} \; S_1 = \{ \mathbf{s}, \; \mathbf{s}, \; \mathbf{s}, \; \mathbf{z}, \; \mathbf{s}, \; \mathbf{s}, \; \mathbf{f}, \; \mathbf{s}, \; \mathbf{f}, \; \mathbf{s}, \; \mathbf{f}, \; \mathbf{f}$$

Sibilant Harmony in IMDLAWN TASHLHIYT (Revisited)

Voiceless obstruents block agreement in voicing:

$$T_1 = \{ \mathbf{z}, \; \mathbf{s}, \; \mathbf{z}, \mathbf{f}, \; \mathbf{q} \} \; S_1 = \{ \mathbf{*sz}, \; \mathbf{*sz}, \; \mathbf{*zs}, \; \mathbf{*zs}, \; \mathbf{*fz}, \; \mathbf{*fz}, \; \mathbf{*zf} \}$$

Sibilant Harmony in IMDLAWN TASHLHIYT (Revisited)

Voiceless obstruents block agreement in voicing:

$$T_1 = \{ \mathbf{z}, \; \mathbf{s}, \; \mathbf{z}, \mathbf{f}, \; \mathbf{q} \} \; S_1 = \{ \mathbf{*sz}, \; \mathbf{*sz}, \; \mathbf{*zs}, \; \mathbf{*zs}, \; \mathbf{*fz}, \; \mathbf{*fz}, \; \mathbf{*zf} \}$$

Sibilant Harmony in IMDLAWN TASHLHIYT (Revisited)

Voiceless obstruents block agreement in voicing:

$$T_1 = \{ \mathbf{z}, \; \mathbf{s}, \; \mathbf{z}, \mathbf{f}, \; \mathbf{q} \} \; S_1 = \{ \mathbf{*sz}, \; \mathbf{*sz}, \; \mathbf{*zs}, \; \mathbf{*zs}, \; \mathbf{*fz}, \; \mathbf{*fz}, \; \mathbf{*zf} \}$$

Sibilant Harmony in IMDLAWN TASHLHIYT (Revisited)

Voiceless obstruents block agreement in voicing:

$$T_1 = \{ \mathbf{z}, \; \mathbf{s}, \; \mathbf{z}, \mathbf{f}, \; \mathbf{q} \} \; S_1 = \{ \mathbf{*sz}, \; \mathbf{*sz}, \; \mathbf{*zs}, \; \mathbf{*zs}, \; \mathbf{*fz}, \; \mathbf{*fz}, \; \mathbf{*zf} \}$$

Sibilant Harmony in IMDLAWN TASHLHIYT (Revisited)

Voiceless obstruents block agreement in voicing:

$$T_1 = \{ \mathbf{z}, \; \mathbf{s}, \; \mathbf{z}, \mathbf{f}, \; \mathbf{q} \} \; S_1 = \{ \mathbf{*sz}, \; \mathbf{*sz}, \; \mathbf{*zs}, \; \mathbf{*zs}, \; \mathbf{*fz}, \; \mathbf{*fz}, \; \mathbf{*zf} \}$$

Sibilant Harmony in IMDLAWN TASHLHIYT (Revisited)

Voiceless obstruents block agreement in voicing:

$$T_1 = \{ \mathbf{z}, \; \mathbf{s}, \; \mathbf{z}, \mathbf{f}, \; \mathbf{q} \} \; S_1 = \{ \mathbf{*sz}, \; \mathbf{*sz}, \; \mathbf{*zs}, \; \mathbf{*zs}, \; \mathbf{*fz}, \; \mathbf{*fz}, \; \mathbf{*zf} \}$$

Sibilant Harmony in IMDLAWN TASHLHIYT (Revisited)

Voiceless obstruents block agreement in voicing:

$$T_1 = \{ \mathbf{z}, \; \mathbf{s}, \; \mathbf{z}, \!\!\! f, \; \mathbf{q} \} \; S_1 = \{ ^*\mathbf{s}\mathbf{z}, \; ^*\mathbf{z}\mathbf{s}, \;$$

Unbounded agreement in anteriority:

S

T₁: sibilant voicing

*
S Q U 3: j

Sibilant Harmony in IMDLAWN TASHLHIYT (Revisited)

Voiceless obstruents block agreement in voicing:

$$T_1 = \{ \mathbf{z}, \; \mathbf{s}, \; \mathbf{z}, \!\!\! f, \; \mathbf{q} \} \; S_1 = \{ ^*\mathbf{s}\mathbf{z}, \; ^*\mathbf{z}\mathbf{s}, \;$$

Sibilant Harmony in IMDLAWN TASHLHIYT (Revisited)

Voiceless obstruents block agreement in voicing:

$$T_1 = \{ \mathbf{z}, \; \mathbf{s}, \; \mathbf{z}, \!\!\! f, \; \mathbf{q} \} \; S_1 = \{ ^*\mathbf{s}\mathbf{z}, \; ^*\mathbf{z}\mathbf{s}, \;$$

Sibilant Harmony in IMDLAWN TASHLHIYT (Revisited)

Voiceless obstruents block agreement in voicing:

$$T_1 = \{ \mathbf{z}, \; \mathbf{s}, \; \mathbf{z}, \!\!\! f, \; \mathbf{q} \} \; S_1 = \{ ^*\mathbf{s}\mathbf{z}, \; ^*\mathbf{z}\mathbf{s}, \;$$

Sibilant Harmony in IMDLAWN TASHLHIYT (Revisited)

Voiceless obstruents block agreement in voicing:

$$T_1 = \{ \mathbf{z}, \; \mathbf{s}, \; \mathbf{z}, \!\!\! f, \; \mathbf{q} \} \; S_1 = \{ ^*\mathbf{s}\mathbf{z}, \; ^*\mathbf{z}\mathbf{s}, \;$$

Sibilant Harmony in IMDLAWN TASHLHIYT (Revisited)

Voiceless obstruents block agreement in voicing:

$$T_1 = \{ \mathbf{z}, \; \mathbf{s}, \; \mathbf{z}, \mathbf{f}, \; \mathbf{q} \} \; S_1 = \{ \mathbf{*sz}, \; \mathbf{*sz}, \; \mathbf{*zs}, \; \mathbf{*zs}, \; \mathbf{*fz}, \; \mathbf{*fz}, \; \mathbf{*zf} \}$$

Sibilant Harmony in IMDLAWN TASHLHIYT (Revisited)

Voiceless obstruents block agreement in voicing:

$$T_1 = \{ \mathbf{z}, \; \mathbf{s}, \; \mathbf{z}, \mathbf{f}, \; \mathbf{q} \} \; S_1 = \{ \mathbf{*sz}, \; \mathbf{*sz}, \; \mathbf{*zs}, \; \mathbf{*zs}, \; \mathbf{*fz}, \; \mathbf{*fz}, \; \mathbf{*zf} \}$$

Sibilant Harmony in IMDLAWN TASHLHIYT (Revisited)

Voiceless obstruents block agreement in voicing:

Sibilant Harmony in IMDLAWN TASHLHIYT (Revisited)

Voiceless obstruents block agreement in voicing:

$$T_1 = \{ \mathbf{z}, \; \mathbf{s}, \; \mathbf{z}, \mathbf{f}, \; \mathbf{q} \} \; S_1 = \{ \mathbf{*sz}, \; \mathbf{*sz}, \; \mathbf{*zs}, \; \mathbf{*zs}, \; \mathbf{*fz}, \; \mathbf{*fz}, \; \mathbf{*zf} \}$$

Sibilant Harmony in IMDLAWN TASHLHIYT (Revisited)

Voiceless obstruents block agreement in voicing:

$$T_1 = \{ \mathbf{z}, \; \mathbf{s}, \; \mathbf{z}, \mathbf{f}, \; \mathbf{q} \} \; S_1 = \{ \mathbf{*sz}, \; \mathbf{*sz}, \; \mathbf{*zs}, \; \mathbf{*zs}, \; \mathbf{*fz}, \; \mathbf{*fz}, \; \mathbf{*zf} \}$$

$$\blacktriangleright \ T_2 = \{\mathbf{z},\ \mathbf{s},\ \mathbf{z},\!\mathit{f}\}\ S_2 = \{\mathbf{*s}\mathbf{z},\ \mathbf{*s}\mathit{f},\ \mathbf{*z}\mathbf{s},\mathbf{*f},\ \mathbf{*z}\mathbf{s},\ \mathbf{*z}\mathit{f},\ \mathbf{*z}\mathbf{z},\ \mathbf{*f},\ \mathbf{*z}\mathbf{z},\ \mathbf{*z}\mathit{f},\ \mathbf{z}\mathbf{z},\ \mathbf{z},\ \mathbf{z}\mathbf{z},\ \mathbf{z},\ \mathbf{z}\mathbf{z},\ \mathbf{z},\ \mathbf{z}\mathbf{z},\ \mathbf{z},\ \mathbf{z}\mathbf{z},\ \mathbf{z}\mathbf{z},\ \mathbf{z}\mathbf{z},\ \mathbf{z}\mathbf{z},\ \mathbf{z}\mathbf{z},\ \mathbf{z}\mathbf{z},\ \mathbf{z}\mathbf{z},\ \mathbf{z}\mathbf{z},\ \mathbf{z}\mathbf{z},\ \mathbf{z},\ \mathbf{z}\mathbf{z},\ \mathbf{z}\mathbf{z},\ \mathbf{z},\ \mathbf$$

Sibilant Harmony in IMDLAWN TASHLHIYT (Revisited)

Voiceless obstruents block agreement in voicing:

$$T_1 = \{ \mathbf{z}, \; \mathbf{s}, \; \mathbf{z}, \mathbf{f}, \; \mathbf{q} \} \; S_1 = \{ \mathbf{*sz}, \; \mathbf{*sz}, \; \mathbf{*zs}, \; \mathbf{*zs}, \; \mathbf{*fz}, \; \mathbf{*fz}, \; \mathbf{*zf} \}$$

Sibilant Harmony in IMDLAWN TASHLHIYT (Revisited)

Voiceless obstruents block agreement in voicing:

$$T_1 = \{ \mathbf{z}, \; \mathbf{s}, \; \mathbf{z}, \mathbf{f}, \; \mathbf{q} \} \; S_1 = \{ \mathbf{*sz}, \; \mathbf{*sz}, \; \mathbf{*zs}, \; \mathbf{*zs}, \; \mathbf{*fz}, \; \mathbf{*fz}, \; \mathbf{*zf} \}$$

Sibilant Harmony in IMDLAWN TASHLHIYT (Revisited)

Voiceless obstruents block agreement in voicing:

$$T_1 = \{ \mathbf{z}, \; \mathbf{s}, \; \mathbf{z}, \mathbf{f}, \; \mathbf{q} \} \; S_1 = \{ \mathbf{*sz}, \; \mathbf{*sz}, \; \mathbf{*zs}, \; \mathbf{*zs}, \; \mathbf{*fz}, \; \mathbf{*fz}, \; \mathbf{*zf} \}$$

Sibilant Harmony in IMDLAWN TASHLHIYT (Revisited)

Voiceless obstruents block agreement in voicing:

$$T_1 = \{ \mathbf{z}, \; \mathbf{s}, \; \mathbf{z}, \mathbf{f}, \; \mathbf{q} \} \; S_1 = \{ \mathbf{*sz}, \; \mathbf{*sz}, \; \mathbf{*zs}, \; \mathbf{*zs}, \; \mathbf{*fz}, \; \mathbf{*fz}, \; \mathbf{*zf} \}$$

$$\blacktriangleright \ T_2 = \{\mathbf{z},\ \mathbf{s},\ \mathbf{z},\!\mathit{f}\}\ S_2 = \{\mathbf{*s}\mathbf{z},\ \mathbf{*s}\mathit{f},\ \mathbf{*z}\mathbf{s},\mathbf{*f},\ \mathbf{*z}\mathbf{s},\ \mathbf{*z}\mathit{f},\ \mathbf{*z}\mathbf{z},\ \mathbf{*f},\ \mathbf{*z}\mathbf{z},\ \mathbf{*z}\mathit{f},\ \mathbf{z}\mathbf{z},\ \mathbf{z},\ \mathbf{z}\mathbf{z},\ \mathbf{z},\ \mathbf{z}\mathbf{z},\ \mathbf{z},\ \mathbf{z}\mathbf{z},\ \mathbf{z},\ \mathbf{z}\mathbf{z},\ \mathbf{z}\mathbf{z},\ \mathbf{z}\mathbf{z},\ \mathbf{z}\mathbf{z},\ \mathbf{z}\mathbf{z},\ \mathbf{z}\mathbf{z},\ \mathbf{z}\mathbf{z},\ \mathbf{z}\mathbf{z},\ \mathbf{z}\mathbf{z},\ \mathbf{z},\ \mathbf{z}\mathbf{z},\ \mathbf{z}\mathbf{z},\ \mathbf{z},\ \mathbf$$

MTSL: Relations to other Classes

MTSL: Relations to other Classes

MTSL: Relations to other Classes

Generalizing the TSL class (Reprise)

TSL languages are characterized by:

- ▶ a 1-local projection function that projects one tier T;
- strictly k-local constraints applied on T.

Idea

What if ...

- we could apply different projection functions to project multiple tiers?
- 2 the locality of the projection function was higher than 1?

Generalizing the TSL class (Reprise)

TSL languages are characterized by:

- ▶ a 1-local projection function that projects one tier T;
- strictly k-local constraints applied on T.

Idea

What if ...

- we could apply different projection functions to project multiple tiers?
- 2 the locality of the projection function was higher than 1?

SAMALA Sibilant Harmony (Revisited)

- anticipatory sibilant harmony
- palatalization to avoid local restrictions
- sibilant harmony overrides palatalization

s n e t u s

- anticipatory sibilant harmony
- palatalization to avoid local restrictions
- sibilant harmony overrides palatalization

- anticipatory sibilant harmony
- palatalization to avoid local restrictions
- sibilant harmony overrides palatalization

- anticipatory sibilant harmony
- palatalization to avoid local restrictions
- sibilant harmony overrides palatalization

```
s n
.....
⊤
⋊ s n e t u s ⋉
```

- anticipatory sibilant harmony
- palatalization to avoid local restrictions
- sibilant harmony overrides palatalization

```
s n
....
⊤
⋈ s n e t u s ⋉
```

- anticipatory sibilant harmony
- palatalization to avoid local restrictions
- sibilant harmony overrides palatalization

- anticipatory sibilant harmony
- palatalization to avoid local restrictions
- sibilant harmony overrides palatalization

```
s n
...
x s n e t u s ×
```

- anticipatory sibilant harmony
- palatalization to avoid local restrictions
- sibilant harmony overrides palatalization

- anticipatory sibilant harmony
- palatalization to avoid local restrictions
- sibilant harmony overrides palatalization

- anticipatory sibilant harmony
- palatalization to avoid local restrictions
- sibilant harmony overrides palatalization

```
* S n e t II S K
```

- anticipatory sibilant harmony
- palatalization to avoid local restrictions
- sibilant harmony overrides palatalization

- anticipatory sibilant harmony
- palatalization to avoid local restrictions
- sibilant harmony overrides palatalization

SAMALA Sibilant Harmony (Revisited)

- anticipatory sibilant harmony
- palatalization to avoid local restrictions
- sibilant harmony overrides palatalization

Grammar

$$T = \{s, f \land \{n, t, l\} \triangleright s\} \ S = \{*sf, *sf, *sn(\neg s), *st(\neg s), *sl(\neg s)\}$$

SS -TSL: Relations to other Classes

SS -TSL: Relations to other Classes

SS -TSL: Relations to other Classes

Conclusions and Future Work

Tracing Back our Steps

- subregular hypothesis as a strong computational theory of language complexity. Phonology is SL + SP + TSL
- but there are patterns that are unaccounted for!

In this Talk

- ► TSL is not the right fit, but it seems to be close!
- minor changes lead to interesting new classes: MTSL, SS-TSL

Future Work

- ▶ further study of the TSL neighborhood
- ightharpoonup learnability ightarrow learning algorithms, AGL experiments ...

Conclusions and Future Work

Tracing Back our Steps

- subregular hypothesis as a strong computational theory of language complexity. Phonology is SL + SP + TSL
- but there are patterns that are unaccounted for!

In this Talk

- TSL is not the right fit, but it seems to be close!
- minor changes lead to interesting new classes: MTSL, SS-TSL

Future Work

- ► further study of the TSL neighborhood
- ightharpoonup learning algorithms, AGL experiments ...

Conclusions and Future Work

Tracing Back our Steps

- subregular hypothesis as a strong computational theory of language complexity. Phonology is SL + SP + TSL
- but there are patterns that are unaccounted for!

In this Talk

- TSL is not the right fit, but it seems to be close!
- minor changes lead to interesting new classes: MTSL, SS-TSL

Future Work

- further study of the TSL neighborhood
- ightharpoonup learnability ightarrow learning algorithms, AGL experiments ...

Selected References

- **Chandlee, Jane**. 2014. *Strictly Local Phonological Processes*. Ph.D. thesis, University of Delaware.
- Planta Jeffrey, Chetan Rawal, and Herbert G. Tanner. 2011. Tier-based strictly local constraints in phonology. In Proceedings of ACL 49th, 58–64.
- Heinz, Jeffrey. 2014. Culminativity times harmony equals unbounded stress. In Word Stress: Theoretical and Typological Issues, Chap 8.
- McMullin, Kevin. 2016. Tier-based locality in long-distance phonotactics: learnability and typology. Doctoral dissertation, University of British Columbia.

Appendix

$$T = \{ s, f, tf^h \}, S = \{ * sf, *fs, *stf^h, *tf^h \}$$

$$\int a p \mid t \int^h o \mid u \int w a \int$$

$$T = \{ s, f, tf^h \}, S = \{ * sf, *fs, *stf^h, *tf^h \}$$

```
f_1: anticipatory harmony f_2 a f_3 f_4 f_5 f_6 f_7 f_8 f_8
```

$$T = \{ s, f, tf^h \}, S = \{ sf, sf, stf^h, tf^h \}$$

```
\int_{1: \text{ anticipatory harmony}} \mathsf{T}_1: \mathsf{anticipatory harmony} \int \mathsf{a} \mathsf{P} \; \mathsf{i} \; \mathsf{t} \mathsf{j}^h \; \mathsf{o} \; \mathsf{l} \; \mathsf{u} \; \mathsf{j} \; \mathsf{w} \; \mathsf{a} \; \mathsf{j}
```

$$T = \{ s, f, tf^h \}, S = \{ sf, sf, stf^h, tf^h \}$$

```
egin{array}{lll} f T_1:& {
m anticipatory\ harmony} \ & f a & f P & {
m it} f f^h & {
m old} & {
m ull} & {
m was} & {
m for} \ & {
m old} & {
m vall} & {
m old} & {
m vall} \end{array}
```

$$T = \{ s, f, tf^h \}, S = \{ sf, sf, stf^h, tf^h \}$$

$$T = \{ s, f, tf^h \}, S = \{ sf, sf, stf^h, tf^h \}$$

$$T = \{ s, f, tf^h \}, S = \{ sf, sf, stf^h, tf^h \}$$

```
\int t \int^h t_1: \text{ anticipatory harmony}
\int a p i t \int^h o | u \int w a \int
```

$$T = \{ s, f, tf^h \}, S = \{ sf, sf, stf^h, tf^h \}$$

$$T = \{ s, f, tf^h \}, S = \{ sf, sf, stf^h, tf^h \}$$

```
\int \qquad \mathsf{t} \int^h \mathsf{t}_{1: \text{ anticipatory harmony}} \\ \int \mathsf{a} \; \mathsf{p} \; \mathsf{i} \; \mathsf{t} \int^h \mathsf{o} \; \mathsf{I} \; \mathsf{u} \; \int \mathsf{w} \; \mathsf{a} \; \int
```

$$T = \{ s, f, tf^h \}, S = \{ sf, sf, stf^h, tf^h \}$$

```
\int \qquad \qquad t \int^h \qquad \qquad \int \int a \ p \ i \ t \int^h o \ | \ u \ \int w \ a \ \int
```

$$T = \{ s, f, tf^h \}, S = \{ sf, sf, stf^h, tf^h \}$$

$$T = \{ s, f, tf^h \}, S = \{ sf, sf, stf^h, tf^h \}$$

$$T = \{ s, f, tf^h \}, S = \{ sf, sf, stf^h, tf^h \}$$

$$T = \{ s, f, tf^h \}, S = \{ sf, sf, stf^h, tf^h \}$$

$$T = \{ s, f, tf^h \}, S = \{ sf, sf, stf^h, tf^h \}$$

$$T = \{ s, f, tf^h \}, S = \{ * sf, *fs, *stf^h, *tf^h \}$$

Anticipatory Harmony in SAMALA

$$T = \{ s, f, tf^h \}, S = \{ * sf, *fs, *stf^h, *tf^h \}$$

$$\mathsf{T} = \{\sigma \colon \sigma \in \{\mathsf{s}, \, \mathsf{f}, \, \mathsf{t} \mathsf{f}^h\} \, \, \land (\rtimes \sigma \vee \sigma \ltimes) \} \, \, \mathsf{S} = \{\mbox{*sf, *stf}^h, \, \mbox{*tf}^h \, \, \mathsf{s} \}$$

$$\int a p i t \int^h o | u s w a \int$$

Anticipatory Harmony in SAMALA

$$T = \{ s, f, tf^h \}, S = \{ * sf, *fs, *stf^h, *tf^h \}$$

$$\mathsf{T} = \{\sigma \colon \sigma \in \{\mathsf{s}, \, \mathsf{f}, \, \mathsf{t} \mathsf{f}^h\} \, \, \land (\rtimes \sigma \vee \sigma \ltimes) \} \, \, \mathsf{S} = \{\mbox{*sf, *stf}^h, \, \mbox{*tf}^h \, \, \mathsf{s} \}$$

$$\rtimes \int a P i t \int^h o | u s w a \int \ltimes$$

Anticipatory Harmony in SAMALA

$$T = \{ s, f, tf^h \}, S = \{ * sf, *fs, *stf^h, *tf^h \}$$

$$\mathsf{T} = \{\sigma \colon \sigma \in \{\mathsf{s}, \smallint, \, \mathsf{t} \smallint^h\} \, \wedge (\rtimes \sigma \vee \sigma \ltimes) \} \, \, \mathsf{S} = \{\mbox{*s}, \, \mbox{*f}, \, \mbox{*t} \smallint^h, \, \mbox{*t} \smallint^h \, \mathsf{s} \}$$

Anticipatory Harmony in SAMALA

$$T = \{ s, f, tf^h \}, S = \{ sf, sf, stf^h, tf^h \}$$

$$\mathsf{T} = \{\sigma \colon \sigma \in \{\mathsf{s}, \, \mathsf{f}, \, \mathsf{t} \mathsf{f}^h\} \, \, \land (\rtimes \sigma \vee \sigma \ltimes) \} \, \, \mathsf{S} = \{\mbox{*sf, *stf}^h, \, \mbox{*tf}^h \, \, \mathsf{s} \}$$

Anticipatory Harmony in SAMALA

$$T = \{ s, f, tf^h \}, S = \{ * sf, *fs, *stf^h, *tf^h \}$$

$$\mathsf{T} = \{\sigma \colon \sigma \in \{\mathsf{s}, \smallint, \, \mathsf{t} \smallint^h\} \, \wedge (\rtimes \sigma \vee \sigma \ltimes) \} \, \, \mathsf{S} = \{\mbox{*s}, \, \mbox{*f}, \, \mbox{*t} \smallint^h, \, \mbox{*t} \smallint^h \, \mathsf{s} \}$$

Anticipatory Harmony in SAMALA

$$T = \{ s, j, tj^h \}, S = \{ * sj, *js, *stj^h, *tj^h \}$$

$$\mathsf{T} = \{\sigma \colon \sigma \in \{\mathsf{s}, \smallint, \, \mathsf{t} \smallint^h\} \, \wedge (\rtimes \sigma \vee \sigma \ltimes) \} \, \, \mathsf{S} = \{\mbox{*s}, \, \mbox{*f}, \, \mbox{*t} \smallint^h, \, \mbox{*t} \smallint^h \, \mathsf{s} \}$$

Anticipatory Harmony in SAMALA

$$T = \{ s, f, tf^h \}, S = \{ * sf, *fs, *stf^h, *tf^h \}$$

$$\mathsf{T} = \{\sigma \colon \sigma \in \{\mathsf{s}, \smallint, \, \mathsf{t} \smallint^h\} \, \wedge (\rtimes \sigma \vee \sigma \ltimes) \} \, \, \mathsf{S} = \{\mbox{*s}, \, \mbox{*f}, \, \mbox{*t} \smallint^h, \, \mbox{*t} \smallint^h \, \mathsf{s} \}$$

Anticipatory Harmony in SAMALA

$$T = \{ s, j, tj^h \}, S = \{ * sj, *js, *stj^h, *tj^h \}$$

$$\mathsf{T} = \{\sigma \colon \sigma \in \{\mathsf{s}, \smallint, \, \mathsf{t} \smallint^h\} \, \wedge (\rtimes \sigma \vee \sigma \ltimes) \} \, \, \mathsf{S} = \{\mbox{*s}, \, \mbox{*f}, \, \mbox{*t} \smallint^h, \, \mbox{*t} \smallint^h \, \mathsf{s} \}$$

Anticipatory Harmony in SAMALA

$$T = \{ s, j, tj^h \}, S = \{ * sj, *js, *stj^h, *tj^h \}$$

$$\mathsf{T} = \{\sigma \colon \sigma \in \{\mathsf{s}, \smallint, \, \mathsf{t} \smallint^h\} \, \wedge (\rtimes \sigma \vee \sigma \ltimes) \} \, \, \mathsf{S} = \{\mbox{*s}, \, \mbox{*f}, \, \mbox{*t} \smallint^h, \, \mbox{*t} \smallint^h \, \mathsf{s} \}$$

Anticipatory Harmony in SAMALA

$$T = \{ s, f, tf^h \}, S = \{ sf, sf, stf^h, tf^h \}$$

$$\mathsf{T} = \{\sigma \colon \sigma \in \{\mathsf{s}, \, \mathsf{f}, \, \mathsf{t} \mathsf{f}^h\} \, \wedge (\rtimes \sigma \vee \sigma \ltimes) \} \, \, \mathsf{S} = \{ {}^*\mathsf{s} \mathsf{f}, \, {}^*\mathsf{f} \mathsf{s}, \, {}^*\mathsf{s} \mathsf{t} \mathsf{f}^h, \, {}^*\mathsf{t} \mathsf{f}^h \, \, \mathsf{s} \}$$

Anticipatory Harmony in SAMALA

$$T = \{ s, j, tj^h \}, S = \{ * sj, *js, *stj^h, *tj^h \}$$

$$\mathsf{T} = \{\sigma \colon \sigma \in \{\mathsf{s}, \, \mathsf{f}, \, \mathsf{t} \mathsf{f}^h\} \, \, \land (\rtimes \sigma \vee \sigma \ltimes) \} \, \, \mathsf{S} = \{\mbox{*sf, *stf}^h, \, \mbox{*tf}^h \, \, \mathsf{s} \}$$

Anticipatory Harmony in SAMALA

$$T = \{ s, f, tf^h \}, S = \{ * sf, *fs, *stf^h, *tf^h \}$$

$$\mathsf{T} = \{\sigma \colon \sigma \in \{\mathsf{s}, \, \mathsf{f}, \, \mathsf{t} \mathsf{f}^h\} \, \wedge (\rtimes \sigma \vee \sigma \ltimes) \} \, \, \mathsf{S} = \{ {}^*\mathsf{s} \mathsf{f}, \, {}^*\mathsf{f} \mathsf{s}, \, {}^*\mathsf{s} \mathsf{t} \mathsf{f}^h, \, {}^*\mathsf{t} \mathsf{f}^h \, \, \mathsf{s} \}$$

Anticipatory Harmony in SAMALA

$$T = \{ s, f, tf^h \}, S = \{ sf, sf, stf^h, tf^h \}$$

$$\mathsf{T} = \{\sigma \colon \sigma \in \{\mathsf{s}, \, \mathsf{f}, \, \mathsf{t} \mathsf{f}^h\} \, \wedge (\rtimes \sigma \vee \sigma \ltimes) \} \, \, \mathsf{S} = \{ {}^*\mathsf{s} \mathsf{f}, \, {}^*\mathsf{f} \mathsf{s}, \, {}^*\mathsf{s} \mathsf{t} \mathsf{f}^h, \, {}^*\mathsf{t} \mathsf{f}^h \, \, \mathsf{s} \}$$

Anticipatory Harmony in SAMALA

$$T = \{ s, j, tj^h \}, S = \{ * sj, *js, *stj^h, *tj^h \}$$

$$\mathsf{T} = \{\sigma \colon \sigma \in \{\mathsf{s}, \smallint, \, \mathsf{t} \smallint^h\} \, \wedge (\rtimes \sigma \vee \sigma \ltimes) \} \, \, \mathsf{S} = \{\mbox{*s}, \, \mbox{*f}, \, \mbox{*t} \smallint^h, \, \mbox{*t} \smallint^h \, \mathsf{s} \}$$

Anticipatory Harmony in SAMALA

$$T = \{ s, f, tf^h \}, S = \{ * sf, *fs, *stf^h, *tf^h \}$$

$$\mathsf{T} = \{\sigma \colon \sigma \in \{\mathsf{s}, \, \mathsf{f}, \, \mathsf{t} \mathsf{f}^h\} \, \wedge (\rtimes \sigma \vee \sigma \ltimes) \} \, \, \mathsf{S} = \{ {}^*\mathsf{s} \mathsf{f}, \, {}^*\mathsf{f} \mathsf{s}, \, {}^*\mathsf{s} \mathsf{t} \mathsf{f}^h, \, {}^*\mathsf{t} \mathsf{f}^h \, \, \mathsf{s} \}$$

Anticipatory Harmony in SAMALA

$$T = \{ s, f, tf^h \}, S = \{ * sf, *fs, *stf^h, *tf^h \}$$

$$\mathsf{T} = \{\sigma \colon \sigma \in \{\mathsf{s}, \smallint, \, \mathsf{t} \smallint^h\} \, \wedge (\rtimes \sigma \vee \sigma \ltimes) \} \, \, \mathsf{S} = \{\mbox{*s}, \, \mbox{*f}, \, \mbox{*t} \smallint^h, \, \mbox{*t} \smallint^h \, \mathsf{s} \}$$

Closure Properties of Subregular Classes

	SL	TSL	MTSL	SS-TSL	SF	Reg
\cup	×	×	×	×	\checkmark	\checkmark
\cap	\checkmark	×	\checkmark	×	\checkmark	\checkmark
Relabeling	\times	\times	×	×	\times	\checkmark
Complement	×	\times	×	×	\checkmark	\checkmark