Arhitectura Sistemelor de Calcul

Octombrie, 2021

Seminar 0x00

Cristian Rusu

1 Scopul seminarului

 $\hat{\text{I}}\text{n}$ acest seminar vom rezolva niște probleme care implică:

- sisteme de reprezentare a numerelor și conversia între ele;
- operații aritmetice cu numere;
- operații logice cu numere.

2 Exerciții

 $1.\ Completați următorul tabel cu reprezentările lipsă ale unor numere naturale:$

Baza: $B = 2$	B = 4	B = 8	B = 10	B = 16
				0xBEEF
			42	
1001 1100 1111 0011				
	22331			
		777		
				0xDEAF
1100 1010 0101 0011				
	3210			
		7235		
			2020	
				0x1111
				0xFFFF
1111 1111 0000 0000				
0000 0000 1111 1111				

2. Completați următorul tabel cu reprezentările lipsă ale unor numere întregi (16 biți):

Baza: $B = 2$	B = 4	B = 8	B = 10	B = 16
				0xFEED
			-42	
0101 1100 1111 0011				
	22331			
		777		
				0xA1F1
1100 1010 0101 0011				
	3210			
		7007		
			-1337	
				0xF111
				0xFFFF
1111 1111 0000 0000				
1111 0000 1111 0000				

3. Realizați următoarele operații aritmetice cu numere pe biți reprezentate în complement față de doi (verificați-vă calculele folosind sistemul zecimal):

În următoarele cazuri, numărul de biți scriși reprezintă dimensiunea totală alocată pentru reprezentarea numerelor (14 și 8 biți în stânga, 12 și 8 biți în dreapta):

4. Realizați următoarele operații logice pe biți:

0101 1100 1111 0011 0101 1100 1111 0011	AND	1101 1100 1111 0011 1101 1100 1111 0011	XOR
0111 1111 1111 1111		0101 1100 1111 0011	I
0000 0000 0000 0001	AND	0111 0000 1111 0000	OR
1101 1001 0110 0001		0101 1100 1111 0011	
1111 1111 0000 0000	AND	0000 0000 1111 1111	OR
		1100 0110 1001 1110	I
0000 0000 1111 1111	AND	1000 0110 1001 1110	XOR
0000 0001 0000 0000	AND	1100 0110 1001 1110	XOR

- 5. Folosind cunostiințele de curs, răspundeți la următoarele întrebări scurte:
 - (a) care este cel mai mare număr zecimal (natural) care se poate reprezenta pe N biți?
 - (b) care este cel mai mare număr întreg care se poate reprezenta (complement față de doi) pe N biti? dar cel mai mic?
 - (c) fie x un număr natural, de câti biti avem nevoie să reprezentăm x în sistemul binar?
 - (d) dacă un număr x este reprezentat cu k cifre în sistemul hexazecimal, de câți biți avem nevoie pentru a reprezenta x în sistemul binar?
 - (e) dacă un număr x este reprezentat cu k biți în sistemul binar, de câte cifre avem nevoie pentru a reprezenta x în sistemul hexazecimal?
 - (f) dacă un număr x este reprezentat cu k cifre în sistemul zecimal, de câți biți avem nevoie pentru a reprezenta x în sistemul binar?
- 6. Am discutat la curs despre reprezentarea binară a unui număr. Putem să extindem reprezentarea la dreapta, cu numere sub-unitare în felul următor (binary fixed-point):

- 1	0.7	26	9 5	24	ე 3	-2	0.1	0.0	10^{-1}	2^{-2}	3-3	10^{-4}	0-5	0-6	0-7	
	 1 2'	20	20	2.	20	2-	1 2 -	1 20 1	12 -	12 -	2 0	2 -	2 0	12 0	2 '	
- 1	 _	_	_	_	_	_	_	_	_	_	_	_	_	. –	_	

- calculați valorile în sistemul zecimal pentru următoarele numere reprezentate în formatul de mai sus (punctul stă între 2^0 și 2^{-1}):
 - (a) 101.101
 - (b) 111.001
 - (c) 1110.00111
 - (d) 1010.0000011
 - (e) 1111.0010011
- calculați valorile în sistemul binar fixed-point pentru următoarele numere reprezentate în formatul zecimal:
 - (a) 3.75
 - (b) 12.3125
 - (c) 3.078125
 - (d) 17.671875
 - (e) $\frac{2}{3}$
- când au numere reprezentate în acest sistem o reprezentare finită (fără repetiția zecimalelor)?
- cum arată un număr negativ reprezentat într-un astfel de sistem de reprezentare? Reprezentați $\frac{5}{8}$ și $-\frac{5}{8}$ în sistemul binary fixed-point (folosiți un singur bit pentru reprezentarea părții întregi, gândiți-vă și cum folosiți un bit de semn și la reprezentarea în complement față de doi).
- 7. Am discutat la curs de modul în care aflăm valoarea unui număr scris în format complement față de 2: inversăm biții și adunăm 1. Demonstrați că această procedură este corectă.
- 8. Am discutat la curs despre modul în care transformăm un număr din baza B în baza B^p , p > 1, p natural. Demonstrați că metoda (asocierea a p termeni consecutivi) este soluția corectă.
- 9. Demonstrați că $\lfloor \log_2 x \rfloor = i_{\max}$ unde x este un număr dat pe N biți iar $i_{\max} = \max \{i \mid b_i = 1, \ \forall \ i = 0, \dots, N-1\}$ unde b_i reprezintă al i-lea bit din reprezentarea binară a numărului x. De exemplu: dacă x = 00101110 (46 zecimal) atunci $\lfloor \log_2 x \rfloor = 5$.
- 10. În 2014, videoclipul melodiei "Gangnam Style" se apropia de 2.147.483.647 de vizualizări. Cei de la Youtube au trebuit să facă niște modificări pentru a acomoda acest număr mare de vizualizări. Explicați ce s-a întâmplat: care este semnificația numărului de mai sus, care era riscul, și care e soluția pentru rezolvarea potențialei probleme.
- 11. În Anexa 1 aveți două implementări ale algoritmului de căutare binară. Care implementare folosiți?

Anexa 1

```
int binarySearch1(int arr[], int start, int end, int x)
{
        if (end >= start)
        {
                int mid = start + (end - start) / 2;
                if (arr[mid] == x)
                        return mid;
                if (arr[mid] > x)
                        return binarySearch1(arr, start, mid - 1, x);
                return binarySearch1(arr, mid + 1, end, x);
        }
        return -1;
}
int binarySearch2(int arr[], int start, int end, int x)
{
        if (end >= start)
        {
                int mid = (start + end) / 2;
                if (arr[mid] == x)
                        return mid;
                if (arr[mid] > x)
                        return binarySearch2(arr, start, mid - 1, x);
                return binarySearch2(arr, mid + 1, end, x);
        }
        return -1;
}
```