КАФЕДРА ФИЗИКИ

Федеральное государственное автономное образовательное учреждение высшего образования «Южный федеральный университет» Инженерно-технологическая академия

Руководство к лабораторной работе №100

ОПРЕДЕЛЕНИЕ УСКОРЕНИЯ СВОБОДНОГО ПАДЕНИЯ С ПОМОЩЬЮ МАТЕМАТИЧЕСКОГО МАЯТНИКА

Для студентов всех технических направлений бакалавриата и специалитета

Таганрог Издательство Южного федерального университета 2016 УДК 530.1(076.5) ББК 22.31Я73

Составители: Г.В. Арзуманян, А.А. Редин

Руководство к лабораторной работе №100 «Определение ускорения свободного падения с помощью математического маятника». – Таганрог: ЮФУ, 2016. – 16 с.

кратко рассмотрены руководстве теоретические положения, необходимые для выполнения лабораторной работы, подробно описан порядок выполнения работы и обработки результатов прямых и косвенных измерений, а также приведены содержание и правила оформления отчета по лабораторной работе. Предназначено для студентов всех форм обучения и всех специальностей, учебные которых В планы включена дисциплина «Физика».

Табл. 4. Ил. 1. Библиогр.: 2 назв.

Рецензент Куповых Г.В., д-р физ.-мат. наук, профессор, заведующий кафедрой высшей математики, ИКТИБ ЮФУ.

1. ЛАБОРАТОРНАЯ РАБОТА №100

ОПРЕДЕЛЕНИЕ УСКОРЕНИЯ СВОБОДНОГО ПАДЕНИЯ С ПОМОЩЬЮ МАТЕМАТИЧЕСКОГО МАЯТНИКА

100.1. Цель работы

Овладение методами оценки погрешности и определение ускорения свободного падения с помощью малых свободных колебаний математического маятника.

100.2. Разделы теории

Основы теории погрешности и обработки экспериментальных данных. [1]

Общие сведения о колебаниях. Гармонические колебания. Физический и математический маятники. [2. С. 181–198].

100.3. Приборы и принадлежности.

Нить, грузик, миллиметровая линейка или измерительная лента (рулетка).

100.4. Задание для предварительной подготовки

- 1. Ознакомится с данным пособием.
- 2. Оформить заготовку письменного (печатного) отчета по лабораторной работе (см. далее разд. 2).
- 3. Используя пособие [1] или другое аналогичное пособие, изучить базовые принципы обработки экспериментальных данных.
 - 4. Прочитать соответствующие разделы теории (см. п.100.2).

100.5. Задание на лабораторную работу

- 1. Провести многократные измерения времени, в течение которого математические маятники с различными длинами нити совершат фиксированное количество полных колебаний.
- 2. Результаты прямых многократных измерений обработать методом Стьюдента.
- 3. Рассчитать средние значения ускорения свободного падения $\langle g \rangle$ и абсолютную погрешность косвенных измерений Δg .
- 4. Сравнить полученные значения $\langle g \rangle$ с его табличным значением.
 - 5. Сделать выводы по результатам выполнения работы.

100.6. Описание экспериментальной установки и вывод расчетной формулы

Для экспериментального определения значения ускорения свободного падения *g* разработано много различных методов. Совокупность методов, при которых наблюдается движение тела под действием силы тяжести, а непосредственно измеряемой величиной является время, необходимое телу для перехода от одного фиксированного положения в другое, получили название динамических методов. Среди них наиболее широкое распространение получил маятниковый метод.

В физике под маятником понимают твердое тело, совершающее под действием силы тяжести колебания вокруг неподвижной точки или оси. Принято различать физический и математический маятники.

Физический маятник представляет собой твердое тело, которое может свободно колебаться под действием силы тяжести вокруг неподвижной горизонтальной оси, не проходящей через центр масс.

Математический маятник — это идеализированная система, состоящая из материальной точки массой m, подвешенной на абсолютно нерастяжимой и невесомой нити длиной L, и колеблющаяся под действием силы тяжести. Хорошим приближением к математическому маятнику является небольшой тяжелый шарик, подвешенный на длинной тонкой нити (рис. 1).

Рассмотрим движение математического маятника в некой инерциальной системе отсчета, относительно которой точка его

подвеса (точка О) находится в покое. Характер движения маятника (зави-симость угла φ , образованного нитью с вертикалью, от времени t, т.е. $\varphi(t)$) зависит от свойств среды, в которой находится маятник, геометрических размеров тела, а также от величины максимального смещения маятника от положения равновесия φ_0 .

Пусть в начальный момент

времени маятник находится в положении устойчивого равновесия (точка C). Если отклонить маятник на некоторый угол φ_0 от вертикали (например, в точку A) и отпустить без толчка (с нулевой начальной скоростью), то сила тяжести стремится вернуть маятник в положение устойчивого равновесия (см. рис. 1).

Если пренебречь силой сопротивления среды, то уравнение движения груза имеет вид

$$m\vec{g} + \vec{F}_n = m\vec{a}$$
.

Проецируя это уравнение на направление вдоль вектора скорости \vec{v} и на направление вдоль силы натяжения нити \vec{F}_n получаем:

$$-mg\sin\varphi = ma_{\tau}; \qquad (1)$$

$$F_{H} - mg\cos\varphi = ma_{\eta},$$

где ϕ — угол, образованный нитью с вертикалью; a_{τ} — тангенциальное ускорение; a_n — нормальная составляющая ускорения.

Знак «минус» в уравнении (1) обусловлен тем, что касательная составляющая силы тяжести направлена в сторону, противоположную угловому смещению маятника.

По определению $a_{\tau} = \frac{d|\vec{v}|}{dt}$. С учетом этого уравнение (1) можно привести к следующему виду:

$$\frac{d|\vec{v}|}{dt} + g\sin\varphi = 0. (2)$$

По условию нить нерастяжима. Следовательно, $|\vec{v}| = \omega L = \frac{d\varphi}{dt}L$, где ω – мгновенная угловая скорость маятника; L – длина маятника. После несложных преобразований уравнение (2) принимает вид

$$\frac{d^2\varphi}{dt^2} + \frac{g}{L}\sin\varphi = 0. {3}$$

Ограничимся рассмотрением малых колебаний, для которых $\sin \varphi_0 \approx \varphi_0$ (в радианах). Введя, кроме того, обозначение $(\omega_0)^2 = g/L$, получаем следующее дифференциальное уравнение для малых колебаний математического маятника:

$$\frac{d^2\varphi}{dt^2} + \omega_0^2 \varphi = 0. \tag{4}$$

Решение этого уравнения имеет вид

$$\varphi(t) = \varphi_0 \cos(\omega_0 t + \alpha_0)$$
 или $\varphi(t) = \varphi_0 \sin(\omega_0 t + \alpha_0')$,

где t — текущее значение времени; $(\omega_0 t + \alpha_0)$ — фаза колебаний (величина, являющаяся аргументом гармонической функции); ω_0 — круговая (циклическая) частота — величина, равная числу колебаний, совершаемых маятником за 2π секунд (\approx 6,28 c); α_0 (α_0') — начальная фаза, т.е. значение фазы колебаний при t=0, определяющее начальное смещение тела от положения равновесия ($\varphi(t) = \varphi_0 \cos(\alpha_0)$ или $\varphi(t) = \varphi_0 \cos(\alpha_0')$).

Таким образом, при малых колебаниях угловое отклонение математического маятника изменяется со временем по гармоническому закону (описываться функциями синусов или косинусов).

Выражение для периода малых колебаний математического маятника в этом случае имеет вид

$$T = 2\pi \sqrt{\frac{L}{g}} \,. \tag{5}$$

где L – длина маятника; g – ускорение свободного падения.

Формула для периода колебаний маятника, движение которого описывается уравнением (3), имеет вид

$$T = 2\pi \sqrt{\frac{L}{g}} \left\{ 1 + \left(\frac{1}{2}\right)^2 \sin^2\left(\frac{\varphi_0}{2}\right) + \left(\frac{1}{2} \cdot \frac{3}{4}\right)^2 \sin^4\left(\frac{\varphi_0}{2}\right) + \ldots \right\}.$$

Из формулы (5) следует, что период свободных колебаний математического маятника не зависит от его массы m и амплитуды колебаний φ_0 , а определяется лишь длиной маятника L и значением ускорения свободного падения тел g в данном месте пространства. Поэтому эту формулу можно использовать для экспериментального определения численного значения ускорения свободного падения тел в поле тяготения Земли:

$$g = 4\pi^2 \frac{L}{T^2}. (6)$$

Если в течение времени t математический маятник совершил N полных колебаний, то период колебаний может быть вычислен по формуле

$$T = t/N. (7)$$

Из (6) и (7) получаем следующее выражение для ускорения свободного падения:

$$g = 4\pi^2 \frac{LN^2}{t^2}. (8)$$

Таким образом, чтобы определить ускорение свободного падения при помощи математического маятника, надо знать длину маятника и время, за которое он совершит заданное число полных колебаний.

100.7. Порядок выполнения работы

- 1. Самостоятельно изготовить математический маятник длиной не менее чем 60 см. В качестве груза можно взять гайку, грузило для рыбалки или другое тяжелое тело небольших размеров. Прочно соединить груз с нитью.
- 2. Рассчитать по формуле $N_B = (30 + 2 \cdot B)$, где B номер бригады в преподавательском журнале, число полных колебаний маятника. Результат занести в табл. 1.

ВНИМАНИЕ. В каждом опыте значение числа полных колебаний маятника N_B должно быть одинаковым.

3. Жестко закрепить нить маятника в точке подвеса (край стола, спинка стула, книжная полка и т.д.). Измерить расстояние от точки подвеса до *центра масс* подвешенного груза (длина математического маятника *L*). Результат измерений занести в табл. 1.

Значение абсолютной погрешности при определении L, принять равным $\Delta L=5$ мм.

- 4. Отклонить маятник на небольшой угол (ϕ_0 < 15°) от положения равновесия так, чтобы нить не провисала. Максимально аккуратно отпустить грузик.
- 5. После нескольких колебаний, когда маятник находится в одном из *крайних положений*, включить секундомер и определить время t_i , в течение которого маятник совершит N_B полных колебаний..

Результат измерений времени t_i занести в табл. 1.

- 6. Провести измерения (пп. 4 и 5) не менее 5 раз.
- 7. Уменьшая каждый раз длину нити маятника приблизительно на 10 см, таким же путем (см. пп. 3-6) провести аналогичные измерения еще для двух значений длины маятника. Результаты этих измерений занести в соответствующие таблицы.

Таблица 1 Результаты прямых измерений

№ опыта	N_B	L,	$t_i,$ c
1			
• • •			
K			

100.8. Обработка результатов измерений и расчёт погрешностей

Результаты многократных прямых измерений, приведенные в табл. 1, обработать методом Стьюдента [1]. Для этого необходимо выполнить следующие действия:

1. Найти средние арифметические значения времени $\langle t \rangle$

$$\langle t \rangle = \frac{1}{K} \sum_{i=1}^{N} t_i$$
,

где К – число экспериментов в серии.

2. Вычислить величины случайных отклонений времени

$$\varepsilon_i = |\langle t \rangle - t_i|.$$

- 3. Вычислить квадраты случайных отклонений: ε_i^2 .
- 4. Вычислить среднее квадратичное отклонение среднего ариф-метического:

$$S_K = \sqrt{\frac{1}{K(K-1)} \sum_{i=1}^{N} \varepsilon_i^2} .$$

- 5. Определить коэффициент Стьюдента $k_{\alpha,K}$, зависящий от числа проведённых измерений K и доверительной вероятности α . В прил. 2 приведены значения коэффициентов Стьюдента для различных значений доверительной вероятности.
- 6. Вычислить случайную погрешность среднего арифметического значения времени совершения N_B колебаний (оценочное значение абсолютной погрешности):

$$\Delta t = S_{\rm K} k_{\alpha,\rm K}$$
.

7. Результаты выполнения пп. 1-6 представить в виде табл. 2.

Таблица 2 Обработка результатов прямых измерений

L	№ опыта	t_i	$\langle t \rangle$	\mathcal{E}_i	$arepsilon_i^2$	S_K	$k_{\alpha,K}$	Δt
	1							
	•••							
	K							
	1							
	•••							
	K							
	1							
	•••							
	K							

8. Для каждой серии измерений записать окончательные результаты обработки прямых измерений времени совершения N_B полных колебаний в соответствии с требованиями, предъявляемыми к форме записи результата измерения физической величины (см. [1]):

$$t_1 = \langle t_1 \rangle \pm \Delta t_1, \ t_2 = \langle t_2 \rangle \pm \Delta t_2, \ t_3 = \langle t_3 \rangle \pm \Delta t_3.$$

9. Вычислить для каждой серии измерений относительные погрешности измерения времени:

$$\delta t = \frac{\Delta t}{\langle t \rangle}.$$

10. Используя данные п. 8 и табл. 1, по формуле

$$\langle g \rangle = 4\pi^2 \left(\frac{N_B}{\langle t \rangle} \right)^2 \langle L \rangle$$

вычислить среднее значение величины ускорения свободного падения в каждой серии измерений $\langle g \rangle$.

11. Вычислить абсолютные погрешности значения ускорения свободного падения в каждой серии измерений:

$$\Delta g = \langle g \rangle \sqrt{4 \left(\frac{\Delta t}{\langle t \rangle}\right)^2 + \left(\frac{\Delta L}{\langle L \rangle}\right)^2} .$$

12. Записать окончательный результат в соответствии с требованиями, предъявляемыми к форме записи результата

измерения физической величины (см. [1]):

$$g_i = \langle g_i \rangle \pm \Delta g_i$$
.

13. Вычислить относительную погрешность измеренного значения ускорения свободного падения в каждой серии измерений:

$$\delta g_i = \frac{\Delta g_i}{\langle g_i \rangle}.$$

- 14. Сравнить результаты п. 12 с табличным значением ускорения свободного падения.
- 15. Оформить отчет по результатам работы в соответствии с требованиями, предъявляемыми к отчетам по лабораторным работам (см. далее разд. 2).

КОНТРОЛЬНЬЕ ВОПРОСЫ

- 1. Дайте определение гармонических колебаний. Напишите уравнение таких колебаний, поясните физический смысл величин, входящих в него.
- 2. В каких точках траектории тела математического маятника оно имеет максимальную скорость, потенциальную энергию, кинетическую энергию, ускорение, силу натяжения нити.
- 3. Вывести формулу для периода колебаний математического маятника (5).
- 4. Как изменится период математического маятника, если изменить его длину, амплитуду колебаний?
- 5. Как влияет число полных колебаний на точность используемого метода?
- 6. Назовите виды погрешностей, которые возникают при экспериментальном определении физических величин.
 - 7. Дайте определение следующим понятиям:
 - а) среднее арифметическое значение результатов измерений;
 - б) средняя квадратичная погрешность среднего результата.
- 8. Опишите порядок обработки результатов при прямых измерениях.
 - 11. Какие погрешности называются косвенными?
- 12. Изложите порядок обработки экспериментальных результатов при косвенных измерениях.
 - 13. Какая погрешность называется абсолютной? относительной?

2. СОДЕРЖАНИЕ И ПРАВИЛА ОФОРМЛЕНИЯ ОТЧЕТА ПО ЛАБОРАТОРНОЙ РАБОТЕ

Отчёт по лабораторной работе оформляется *индивидуально* каждым студентом, выполнившим необходимые эксперименты (независимо от того, выполнялся ли эксперимент индивидуально или в составе группы студентов). Объём отчёта должен быть оптимальным для понимания того, что и как сделал студент, выполняя работу.

Возможны несколько вариантов оформления отчета:

- на белой бумаге форматом А4 с одной стороны листа, с применением печатающих устройств вывода ЭВМ. *Формулы и схемы* при этом должны быть аккуратно *вписаны от руки* синей или черной пастой;
- на белой бумаге форматом А4 с одной стороны листа, в рукописном виде, с четким и разборчивым почерком;
- на двойных тетрадных листах в клетку, при этом допускается писать на обеих сторонах.

Отчет по лабораторной работе обязательно должен включать следующие пункты.

1. Титульный лист.

Титульный лист является первым листом отчета. Он не нумеруется. Следующая за титульным листом страница нумеруется цифрой 2. Пример оформления титульного листа приводится в конце данного подраздела.

2. Цель работы.

Цель работы отражает тему лабораторной работы, а также конкретные задачи, поставленные студенту на период выполнения работы.

3. Приборы и принадлежности.

В данном пункте необходимо перечислить приборы и оборудование, с помощью которых исследовалось физическое явление и измерялись физические величины. Для всех приборов, с помощью которых производились прямые измерения, необходимо составить по нижеприведённой форме таблицу (табл. 3).

4. Краткие теоретические сведения.

В данном пункте необходимо привести основные понятия и законы изучаемого в работе явления или процесса. Объем этого пункта не должен превышать 1/3 части всего отчета.

No	Название	Диапазон	Число	Цена	Класс	Погрешность
745	Пазванис	измерений	делений	деления	точности	прибора
1						
N						

5. Описание экспериментальной установки и методики эксперимента.

В данном пункте приводится схема экспериментальной установки с кратким описанием её работы, излагается методика проведения эксперимента.

6. Расчетные формулы и формулы для оценки погрешности косвенных измерений.

В данном пункте приводятся только те формулы, которые будут использованы для определения численных значений физических величин, а также формулы для расчета погрешностей измерений. Все промежуточные формулы не приводятся.

7. Выполнение работы.

В этом пункте приводятся непосредственно результаты, полученные в ходе выполнения лабораторной работы: экспериментально определенные значения физических величин и результаты косвенных измерений, таблицы, графики, диаграммы.

8. Выводы по работе.

В этом пункте формулируются выводы по работе, содержание которых зависит от цели работы.

В тех случаях, когда целью работы является изучение какихлибо законов, в выводах необходимо сделать заключение о том, подтверждаются ли экспериментом рассматриваемые законы или нет.

В тех случаях, когда в ходе выполнения лабораторной работы определяются известные константы, в выводах необходимо привести сравнение полученных результатов с табличными значениями констант.

В выводах нужно также указать возможные причины расхождения теоретических и практических результатов.

Образец оформления лицевой стороны титульного листа

Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ

(Полное название института) (Направление подготовки)

Отчет по лабораторной работе №*** по курсу Физика

(НАЗВАНИЕ ЛАБОРАТОРНОЙ РАБОТЫ)

Выполнил: студент группы *ААбо1-11 Иванов И.И. 30 мая* 20** г.

Преподаватель: Сидоров И.И.

Таганрог 20** г.

3. ВЕЛИЧИНЫ КОЭФФИЦИЕНТА СТЬЮДЕНТА $k_{\alpha, {\rm K}}$ ДЛЯ РАЗЛИЧНЫХ ЗНАЧЕНИЙ ДОВЕРИТЕЛЬНОЙ ВЕРОЯТНОСТИ α

При обработке прямых измерений в лабораторном практикуме по физике рекомендуемое значение доверительной вероятности равно $\alpha=0.95~(95~\%)$. Более высокая надежность 0.99~или 0.999~требуется только при очень точных и ответственных экспериментах. В табл. 4 приведены значения коэффициентов Стьюдента для различного числа экспериментов и различных значений доверительной вероятности.

Таблица 4

Число	Доверительная вероятность				
измерений К	$\alpha = 0.90$	$\alpha = 0.975$	$\alpha = 0,995$	$\alpha = 0,9995$	
2	6,314	12,706	63,657	636,619	
3	2,920	4,303	9,925	31,598	
4	2,353	3,182	5,841	12,941	
5	2,132	2,776	4,604	8,610	
6	2,015	2,571	4,032	6,859	
7	1,943	2,447	3,707	5,959	
8	1,895	2,365	3,499	5,405	
9	1,860	2,306	3,355	5,041	
10	1,833	2,262	3,250	4,781	
11	1,812	2,228	3,169	4,587	
12	1,796	2,201	3,106	4,437	
13	1,782	2,179	3,055	4,318	
14	1,771	2,160	3,012	4,221	
15	1,761	2,145	2,977	4,140	
16	1,753	2,131	2,947	4,073	
17	1,746	2,120	2,921	4,015	
18	1,740	2,110	2,898	3,965	
19	1,734	2,101	2,878	3,922	
20	1,729	2,093	2,861	3,883	
30	1,699	2,045	2,756	3,659	

Из таблицы видно, что для определенного числа измерений К увеличение доверительной вероятности сопровождается увеличением $k_{\alpha,K}$, а следовательно, и увеличением абсолютной погрешности Δt , т.е. доверительный интервал становится шире.

Библиографический список

- 1. Волощенко В.Ю., Сапогин В.Г. Оценка погрешностей при физических измерениях. Таганрог: Изд-во ТРТУ, 2004. 31 с.
- 2. Савельев И.В. Курс физики: учебное пособие: в 3т. Т. 1: Механика. Молекулярная физика. 3-е изд., стер. СПб.: Лань, 2007. 352 с.

СОДЕРЖАНИЕ

1. Лабораторная работа №100. Определение ускоре-
ния свободного падения с помощью математического
маятника
2. Содержание и правила оформления отчета по
лабораторной работе 11
3. Величины коэффициента Стьюдента $k_{lpha,\mathrm{K}}$ для
различных значений доверительной вероятности α
Библиографический список

Арзуманян Грайр Вагаршакович Редин Александр Александрович

Руководство к лабораторной работе №100

Определение значения ускорения свободного падения с помощью математического маятника

Ответственный за выпуск Арзуманян Г.В. Редактор Проценко И.А. Корректор Проценко И.А.

Подписано в печать

Заказ № . Тираж 20 экз.

Формат $60 \times 84^{-1}/_{16}$. Усл. печ. л. -1,0. Уч.-изд. л. -1,9.

Издательство Южного федерального университета 344091, г. Ростов-на-Дону, пр. Стачки, 200/1. Тел. (8634)2478051.

Отпечатано в Отделе полиграфической, корпоративной и сувенирной продукции ИПК КИБИ МЕДИА ЦЕНТРА ЮФУ ГСП 17А, Таганрог, 28, Энгельса, 1. Тел. (8634)371717, 371655.