Key Proofs

Bart Snapp and Brad Findell

December 7, 2018

Contents

Ι	Math 1	3
	Parallelogram	3
	The Isosceles Triangle Theorem	5
	Inscribed Angles	8
II	Math 2	10
	Similar Right Triangles	10

Part I

Math 1

Parallelogram

Proof.

Problem 1 Adapted from Ohio's 2017 Geometry released item 13. Two pairs of parallel lines intersect to form a parallelogram as shown.

Complete the following proof that opposite angles of a parallelogram are congruent:

- (a) $\angle 1 \cong \angle 2$ as (opposite angles / alternate interior angles / corresponding angles) for parallel lines (m and n/k and l).
- (b) $\angle 3 \cong \angle 2$ as (opposite angles/ alternate interior angles/ corresponding angles) for parallel lines (m and n/k and l).
- (c) Then $\angle 1 \cong \angle 3$ because they are both congruent to $\angle 2$.

 $\begin{tabular}{ll} \textbf{Problem} & \textbf{2} & Adapted from Ohio's 2018 Geometry released item 21. \end{tabular}$

Given the parallelogram WXYZ, prove that $\overline{WX} \cong \overline{YZ}$.

Complete the proof below:

- (a) $\angle ZWY \cong \angle XYW$ as alternate interior angles for parallel segments \overline{WZ} and \overline{XY}
- (b) $\angle ZYW\cong \angle XWY$ as alternate interior angles for parallel segments \overline{WX} and \overline{YZ} .
- (c) $\overline{WY} \cong \overline{WY}$ because a segment is congruent to itself.
- (d) $\triangle WYZ \cong \triangle YWX$ by the ASA criterion.
- (e) Then $\overline{WX}\cong \overline{YZ}$ as corresponding parts of congruent triangles.

Fixnote: Use drop-down menus. Maybe number the angles.

The Isosceles Triangle Theorem

Proofs.

Problem 3 Prove that the base angles of an isosceles triangle are congruent.

- (a) Beginning with the given figure on the left, Morgan draws \overline{CD} and marks the figure intending that this new segment is a(n) (median/ angle bisector / perpendicular bisector/ altitude).
- (b) Based on the marked figure, Morgan claims that the $\triangle ACD \cong \triangle$? by (SAS/SSS/SSA/ASA/HL).
- (c) Finally, Morgan concludes that $\angle A \cong \angle$?, as they are corresponding parts of congruent triangles.

Problem 4 Prove that the base angles of an isosceles triangle are congruent.

- (a) Beginning with the given figure on the left, Deja draws \overline{CD} and marks the figure intending that this new segment is a(n) (median/ angle bisector/ perpendicular bisector/ altitude).
- (b) Based on the marked figure, Deja claims that the $\triangle ACD \cong \triangle$? by (SAS / SSS / SSA / ASA / HL).
- (c) Finally, Deja concludes that $\angle A\cong \angle$?, as they are corresponding parts of congruent triangles.

Problem 5 Prove that the base angles of an isosceles triangle are congruent.

- (a) Beginning with the given figure on the left, Elle draws \overline{CD} and marks the figure intending that this new segment is a(n) (median/ angle bisector/ perpendicular bisector/ altitude).
- (b) Based on the marked figure, Deja claims that the $\triangle ACD \cong \triangle$? by (SAS / SSS/SSA/ASA/HL).
- (c) Finally, Deja concludes that $\angle A \cong \angle$?, as they are corresponding parts of congruent triangles.

Problem 6 Simon and Taylor are trying to prove that the base angles of an isosceles triangle are congruent.

Beginning with the given figure on the left, Simon draws \overline{CD} and marks the second figure intending that this new segment is a perpendicular bisector of \overline{AB} .

Taylor claims that a perpendicular bisector of a side of a triangle usually misses the opposite vertex. So without using properties of isosceles triangles, the figure must allow for that possibility.

Choose the best response to their argument:

Multiple Choice:

- (a) Simon is correct, and $\triangle ACD \cong \triangle BCD$ by SAS.
- (b) Simon is correct, and $\triangle ACD \cong \triangle BCD$ by SSS
- (c) Taylor is correct, and the perpendicular bisector cannot be used to complete this proof.
- (d) Neither of them are correct.

Problem 7 Prove that the base angles of an isosceles triangle are congruent.

- (a) Examining the given figure on the left, Lissy notices symmetry in the triangle and claims that the triangle is congruent to itself by a (translation / reflection / rotation).
- (b) Based on the marked figure, Lissy claims that the $\triangle ACB \cong \triangle$? by (SAS/SSS/SSA/ASA/HL).
- (c) Finally, Lissy concludes that $\angle A \cong \angle$?, as they are corresponding parts of congruent triangles.

Inscribed Angles

Proofs.

Problem 8 In the figure below, \overline{AB} is a diameter of a circle with center P. Prove that $\angle B$ is a right angle.

(a) Beginning with the diagram on the left, Natalia draws \overline{PB} and marks the diagram to show segments that she knows to be congruent because each one is a $\boxed{?}$ of the circle.

(b) Natalia sees that $\triangle APB$ and $\triangle BPC$ are $\boxed{?}$ triangles, so she marks the figure to show angles that must congruent.

Fixnote: Do we need a statement or citation of the theorem?

- (c) In order to do some algebra with these congruent angles, Natalia labels their measures x and y, as shown in the picture on the right.
- (d) She writes an equation for the sum of the angles of $\triangle ABC$:

 $? = 180^{\circ}$

Fixnote: Need a prompt about dividing the equation by 2.

(e) Since $m \angle B = ?$, she concludes that $m \angle B = 90^{\circ}$.

Fix note: Should call it $\angle ABC$ because of the new segment. Or may be note this earlier.

Problem 9 Fixnote: New problem about relationship between inscribed angle and central angle.

Part II

Math 2

Similar Right Triangles

Proofs.

Problem 10 Adapted from Ohio's 2017 Geometry released item 17.

Complete the following proof that $\triangle DAC$ is similar to $\triangle DBA$:

- (a) $\triangle ABC \sim \triangle$? by AA because they share $\angle B$ and they each have a right angle.
- (b) $\triangle ABC \sim \triangle$? by AA because they share $\angle C$ and they each have a right angle.
- (c) $\triangle DAC \sim \triangle$? because they are both similar to $\triangle ABC$.

Fixnote: Need to prompt for AA in the first two steps. The 2017 EOC item calls AA a postulate, which it is not. Should AA be called a criterion? a theorem? a condition?