설비 모델링 및 엔 진-설비 통합 모델 링 기술개발		- 모사된 고공환경 변수(온도, 압력, 비행속도)의 정상상 태운전 예측오차를 전년도 10%에서 4%로 감소 - 밸브 제어기의 gain 값 조절을 통해 엔진 가감속 특성 을 설비 시험 데이터와 일치하게끔 모사 가능함을 확 인 - 엔진모델링 소프트웨어에서 제공하는 simulink s-function 모델링 기능과 설비모델링 소프트웨어가 제 공하는 Matlab과의 연동기능을 이용한 통합모델링 기 술개발 - 설비 데이터 획득/저장을 위한 데이터 서버(historian server) 확보 완료
------------------------------------	--	---

3. 3차년도 연구목표 달성도

목 표	달성도(%)	내 용
엔진 고공시험설비용 표준측정장치 설계기술 개발	100%	 엔진입구덕트용 경계층 레이크 설계 및 개발 완료 및 공기유량 변화(4~10kg)에 따른 엔진입구덕트 내 경계층 압력분포 평가 및 경계층 레이크 유/무에 따른 공기유량 측정오차 평가 완료 Mn=0.15에서의 엔진 공급공기 표준측정장치 유량시험수행을 통해 표준연의 기준유량계와의 유량 특성 평가완료 유량범위 확장(Mn=0.2)을 위한 유량특성시험 장치 (압력조절밸브, 기준유량계, 압력계 등) 개선 완료 Mn=0.2에서의 엔진 공급공기 표준측정장치 유량특성시험 수행을 통해 표준연의 기준유량계와의 유량 특성 평가 완료
개선된 측정체계 측정불확도 분석 및 평가	100%	 측추력 : 3축 로드셀을 사용한 측추력 평가 결과 측추력은 미미한 것으로 평가됨. (합성 추력(측추력 반영 = 1.0000044 X 주축 추력(측추력 미반영))따라서 실 시험시 합성 추력은 사용하지 않고 주축 추력만 사용하며, 측추력 0.00044%는 불확도로 산입 추가 연료 유량계 : 연료 유량계 추가로 인하여 유량계산은 Wf에서 (W_{f1} + W_{f2})/2로 변경. 따라서 유량계의 감도 계수는 1/√2의 비율로 감소 회복 계수 : 전압력, 전온도 회복 계수를 덕트 Mn의함수로 정의(r_P = f₁(Ma_D), r_T = f₂(Ma_D)). 실 측정값으로부터 회복 계수를 고려한 전압력, 전온도 계산식 정립 Slip joint : slip joint(01 섹션)에서 12개 지점의 압력값