# **Computability of Data Word Functions Defined by Transducers**

Léo Exibard<sup>12</sup> Pierre-Alain Reynier<sup>1</sup> Emmanuel Filiot<sup>2</sup>

<sup>1</sup>Laboratoire d'Informatique et des Systèmes Aix-Marseille Université France

Thursday, September 17<sup>th</sup>, 2020

<sup>2</sup>Méthodes Formelles et Vérification Université libre de Bruxelles Belgium

## Last Year at Highlights...



Work by Vrunda Dave, Emmanuel Filiot, S. N. Krishna and Nathan Lhote

HIGHLIGHTS 2019 WARSAW

### **Motivation: Synthesis**

**Input:** A specification  $S \subseteq I^{\omega} \times O^{\omega}$ 

**Output:** A deterministic machine whose behaviours satisfy S

i.e. computing  $f: I^{\omega} \to O^{\omega}$  such that  $f \subseteq S$ 

# Computability

Hypothesis: S is already a function

$$f: I^{\omega} \to O^{\omega}$$

**Input:** A *functional* specification *f* 

**Output:** A deterministic program computing *f* 

# Computability for non-terminating behaviours

f is *computable* if there exists a deterministic Turing machine M with:

- A 1-way read-only input tape
- A 2-way read/write working tape
- A 1-way write-only output tape
- → On reading longer and longer prefixes of the input w
  M produces longer and longer prefixes of the output f(w)

# Computability for non-terminating behaviours

f is computable if there exists a deterministic Turing machine M with:

- A 1-way read-only input tape
- A 2-way read/write working tape
- A 1-way write-only output tape
- → On reading longer and longer prefixes of the input w
  M produces longer and longer prefixes of the output f(w)

### **Examples**

- $u\sigma \#^{\omega} \mapsto \sigma u \#^{\omega}$
- $u \mapsto p_1 p_2 \dots$  where  $p_i = 1$  iff i is prime

### **Counter-examples**

- $d_1d_2\ldots\mapsto\left\{egin{array}{l} d_1^\omega ext{ if } d_1 ext{ repeats} \ d_2^\omega ext{ otherwise} \end{array}
  ight.$
- $u \mapsto h_1 h_2 \dots$ , where  $h_i = 1$  iff the *i*-th Turing machine halts

# Continuity

#### **Definition**

→ The one you know: if two inputs are close, then their outputs should be close as well.

#### **Cantor Distance**

→ Two words are close if they coincide on a long prefix.



5

# Continuity

#### **Definition**

→ The one you know: if two inputs are close, then their outputs should be close as well.

#### **Cantor Distance**

→ Two words are close if they coincide on a long prefix.



### Theorem [Dave et al., 2020]

For *regular functions*, computability and continuity coincide and are decidable in polynomial time.

5

#### Extension to the Realm of Data Words

#### **Data Words**

Infinite words over an infinite alphabet  $\mathcal{D}$ , with some structure, e.g.  $\mathcal{D}$  is  $(\mathbb{N},=)$ ,  $(\mathbb{Q},\leq)$  or  $(\mathbb{N},\leq)$ 

### Nondeterministic Register Transducer

Finite 1-way transducer + finitely many registers

- → Store input data
- → Compare w.r.t. the structure
- → Output data

# **Example of a NRT**



#### Results

#### Main Result

For functions defined by NRT, computability and continuity again coincide and are decidable and PSPACE-complete when  $\mathcal{D}$  is  $(\mathbb{N},=)$  (and  $(\mathbb{Q},\leq)$ )

#### Also:

- · Decidability of functionality for NRT
- Closure under composition
- Polynomial-time subclass: test-free NRT

#### Conclusion

### Take-home Message

- Computability = Continuity for functions defined by nondeterministic register transducers over (N, =)
- Nice proof techniques

### **Ongoing Work**

- $(\mathbb{Q}, \leq)$  (and oligomorphic domains)
- Nondeterministic reassignment
- → Paper, slides, poster and 30mn video: shorturl.at/jxDIJ