

By: Sina Sajadmanesh

Advisor: Dr. Hamid Reza Rabiee

Outline

- → *Introduction
 - Problem Formulation
 - Applications
 - Link Prediction in Homogeneous Networks
 - Link Prediction in Heterogeneous Networks
 - Link Prediction in Aligned Networks
 - Future Works

Introduction

Problem

- Based on a snapshot of network, predicting the set of potential links to be formed in the future is formally defined as Link
 Prediction Problem.
- First proposed by Liben-Novel and Klienberg in CIKM 2003

Applications

- Social networks and E-commerce
 - Recommender systems
 - Friend recommendation
- Bioinformatics
 - Prioritization of candidate disease genes
 - Drug discovery
- Security
 - Identify missing links between criminals
 - Controlling computer viruses

Outline

- Introduction
- → **&** Link Prediction in Homogeneous Networks
 - Unsupervised methods
 - Supervised methods
 - Link Prediction in Heterogeneous Networks
 - Link Prediction in Aligned Networks
 - Future Works

Homogeneous Network

$$G = (V, E)$$

 If V contains one single type nodes and E contains one single type of links, then G is a homogeneous network

Unsupervised methods

- Measuring the closeness among nodes
- Assuming that close nodes are more likely to be connected

Unsupervised Link Predicators

- Local neighbor based predicators
- Path based predicators
- Random-Walk based predicators

Local Neighbor based Link Predicators

• Preferential Attachment $PA(u, v) = |\Gamma(u)||\Gamma(v)|$

8

Local Neighbor based Link Predicators

• Common Neighbor $CN(u, v) = |\Gamma(u) \cap \Gamma(v)|$

Local Neighbor based Link Predicators

Jaccard Coefficient

$$JC(u,v) = \frac{|\Gamma(u) \cap \Gamma(v)|}{|\Gamma(u) \cup \Gamma(v)|}$$

Adamic/Adar

$$AA(u,v) = \sum_{w \in (\Gamma(u) \cap \Gamma(v))} \frac{1}{\log(|\Gamma(w)|)}$$

Resource Allocation

$$RA(u,v) = \sum_{w \in (\Gamma(u) \cap \Gamma(v))} \frac{1}{|\Gamma(w)|}$$

Path based Link Predicators

Shortest Path

$$SP(u, v) = \min\{|P_{u \sim v}|\}$$

Katz Score

$$Katz(u,v) = \sum_{l=1}^{\infty} \beta^l |P_{u \sim v}^l|$$

$$= (I - \beta A)^{-1} - I$$

Random-Walk based Link Predicators

Hitting Time

$$HT(u,v) = 1 + \sum_{w \in \Gamma(u)} P_{u,w} HT(w,v)$$

Commute Time

$$CT(u,v) = HT(u,v) + HT(v,u)$$

- Other Unsupervised Methods
 - Matrix Factorization methods
 - Maximum Likelihood Methods
 - Probabilistic Methods

Supervised Link Prediction

- Learning a binary classifier that will predict whether a link exists between a given pair of nodes or not.
- First proposed by Hassan et. al in SDM 2006

Supervised Link Prediction

Dataset

We need two snapshot of the network for training

Positive Samples

Links that are missing in former snapshot,
 but are formed in latter snapshot

Negative Samples

Links that are missing in both snapshots

Supervised Link Prediction

Features

- Topological Features
- Attribute-based Features
- Classifiers
 - SVM
 - Decision Trees
 - Multilayer Perceptron
 - KNN
 - Naïve Bayes

Outline

- Introduction
- Link Prediction in Homogeneous Networks
- → **&** Link Prediction in Heterogeneous Networks
 - Relationship Prediction
 - Collective Link Prediction
 - Link Prediction in Aligned Networks
 - Future Works

Heterogeneous Network

$$G = (V, E)$$

- $V = \bigcup_i V_i$ is the sets of various kinds of nodes and V_i is the i_{th} kind of nodes in G
- $E = \bigcup_j E_j$ is the sets of various types of links and E_j is the j_{th} kind of links in G

Heterogeneous Network Schema

From Link Prediction to Relationship Prediction

- A relationship between two objects could be a composition of two or more links
 - E.g. two authors have a co-author relationship if they have co-written a paper
- Need to redesign topological features in heterogeneous networks

Feature Extraction

- Heterogeneous Features
 - Based on heterogeneous structure of network
- Meta-Path based Features
 - Uses the concepts of meta-paths
 - Different meta paths represent different semantic meanings
 - Number of path instanced of a meta-path Φ

Case Study

Social Link Prediction

Heterogeneous Features

- Social Features
 - Common Neighbor
 - Jaccard Coefficient
 - Adamic/Adar
- Spatial Features
 - Common Locations
 - Jaccard Coefficient of Common Locations
 - Average Geographic distance of locations

• ...

Heterogeneous Features

- Temporal Features
 - Let T(u) be 24 hour activity vector of user u
 - Inner product of T(u) and T(v)
 - Cosine similarity of T(u) and T(v)
- Text Content Features
 - Let w(u) be the bag-of-words vector of user u weighted by TF-IDF
 - Inner product of w(u) and w(v)
 - Cosine similarity of w(u) and w(v)

Meta-Path based Features

- Φ_1 : Follower of Follower
 - U→U→U
- Φ₂: Common Out Neighbor
 - U→U←U
- Φ₃: Common In Neighbor
 - U←U→U
- Φ₄: Common Words
 - U→P→W←P←U
- Φ₅: Common Timestamps
 - U→P→T←P←U
- Φ₆: Common Location Check-ins
 - U→P→L←P←U

Word

Collective Link Prediction

- Conventional link
 prediction approaches
 assume that links are
 independent identically
 distributed (i.i.d).
- But in heterogeneous networks, different type of links are correlated and mutually influential.

Input Social Network

Independent Social and Location Link Prediction

Traditional Link Prediction

$$\hat{Y}_{S} = \arg \max_{Y_{S}} P(y(L_{S}) = Y_{S})$$

$$\hat{Y}_{l} = \arg \max_{Y_{l}} P(y(L_{l}) = Y_{l})$$

- L_s and L_l are the sets of potential social and location links
- $P(y(L_s) = Y_s)$ is the probability scores achieved when links in L_s are assigned with Labels Y_s
- \hat{Y}_s and \hat{Y}_l are the sets of optimal labels

Collective Link Prediction

$$\hat{Y}_{S}, \hat{Y}_{l} = arg \max_{Y_{S}, Y_{l}} \begin{bmatrix} P(y(L_{S}) = Y_{S} | y(L_{l}) = Y_{l}) \\ \times P(y(L_{l}) = Y_{l} | y(L_{S}) = Y_{S}) \end{bmatrix}$$

$$\hat{Y}_{S}^{(t)} = \arg \max_{Y_{S}} \frac{P(y(L_{S}) = Y_{S} | P(y(L_{S}) = Y_{S}$$

$$\hat{Y}_{l}^{(t)} = \arg \max_{Y_{l}} \frac{P(y(L_{l}) = Y_{l} \mid P(y(L_{l}) = Y_{l}$$

erative Solutio

Outline

- Introduction
- Link Prediction in Homogeneous Networks
- Link Prediction in Heterogeneous Networks
- → **&** Link Prediction in Aligned Networks
 - Link Transfer
 - Anchor Link Inference
 - Future Works

Multi Aligned Heterogeneous Social Networks

Link Transfer

- Information Sparsity
 - New Network Problem
 - Cold Start Problem
- Need to transfer knowledge from another domain
 - Transfer Learning
 - Use aligned network as a source
- Context
 - Fully aligned networks
 - Partially aligned networks

Link Transfer across Fully Aligned Networks

Prediction using only the target network:

$$P(y(u^t, v^t) = 1|G^t) = P(y(u^t, v^t) = 1|x(u^t, v^t))$$

Prediction using source and target network:

$$P(y(u^t, v^t) = 1|G^t, G^s)$$

$$= P(y(u^t, v^t) = 1 | [x(u^t, v^t)^T, x(u^s, v^s)^T, y(u^s, v^s)]^T)$$

Link Transfer across Partially Aligned Networks

- Solution: Inter-Network Meta-Paths
- Let $\gamma(U^t, U^s)$ be the anchor meta-path
- $\Psi_1: \gamma(U^t, U^s) \Phi(U^s, U^s) \gamma(U^s, U^t)$
- Ψ_2 : $\Phi(U^t, U^t) \gamma(U^t, U^s) \Phi(U^s, U^s) \gamma(U^s, U^t)$
- $\Psi_3: \gamma(U^t, U^s) \Phi(U^s, U^s) \gamma(U^s, U^t) \Phi(U^t, U^t)$
- Ψ_3 : $\Phi(U^t, U^t) \gamma(U^t, U^s) \Phi(U^s, U^s) \gamma(U^s, U^t) \Phi(U^t, U^t)$

Anchor Link Inference

- Supervised Method
 - Social Features
 - Extended Common Neighbors
 - Extended Jaccard Coefficient
 - Extended Adamic/Adar
 - Spatial Features
 - Temporal Features
 - Text Content Features

- Inference w.r.t One-to-One Constraint
 - Predicted Scores

twitter

- Inference w.r.t One-to-One Constraint
 - Conventional Link Prediction

- Inference w.r.t One-to-One Constraint
 - Max sum of scores

- ❖Inference w.r.t One-to-One Constraint
 - Stable Matching

Outline

- Introduction
- Link Prediction in Homogeneous Networks
- Link Prediction in Heterogeneous Networks
- Link Prediction in Aligned Networks
- → ***** Future Works

Future Works

Anchor Link Formation Prediction

- Predicting whether a user in the source network will join the target network in the future
- This depends on the amount of influence he/she receives from the target network
- An influence model can be learned using the training data
- Positive-Unlabeled learning can improve the prediction performance

References

- [1] L. Lü and T. Zhou, "Link prediction in complex networks: A survey," *Physica A: Statistical Mechanics and its Applications,* vol. 390, pp. 1150-1170, 2011.
- [2] M. Al Hasan, V. Chaoji, S. Salem, and M. Zaki, "Link prediction using supervised learning," in *SDM'06: Workshop on Link Analysis, Counter-terrorism and Security*, 2006.
- [3] J. Zhang and S. Y. Philip, "Link Prediction across Heterogeneous Social Networks: A Survey," 2014.
- [4] Y. Sun, R. Barber, M. Gupta, C. C. Aggarwal, and J. Han, "Co-author relationship prediction in heterogeneous bibliographic networks," in *Advances in Social Networks Analysis and Mining (ASONAM), 2011 International Conference on,* 2011, pp. 121-128.
- [5] X. Kong, J. Zhang, and P. S. Yu, "Inferring anchor links across multiple heterogeneous social networks," in *Proceedings of the 22nd ACM international conference on Conference on information & knowledge management*, 2013, pp. 179-188.

