Problem

Myhill-Nerode theorem. Refer to Problem 1.51. Let L be a language and let X be a set of strings. Say that X is *pairwise distinguishable by* L if every two distinct strings in X are distinguishable by L. Define the *index of* L to be the maximum number of elements in any set that is pairwise distinguishable by L. The index of L may be finite or infinite.

- ${f a.}$ Show that if L is recognized by a DFA with k states, L has index at most k.
- **b.** Show that if the index of L is a finite number k, it is recognized by a DFA with k states.
- c. Conclude that L is regular iff it has finite index. Moreover, its index is the size of the smallest DFA recognizing it.

Step-by-step solution

Step 1 of 4

The definition of **Myhill-Nerode theorem** is as follows:

Myhill-Nerode theorem: for any language L

- Distinguishable by L: x and y are the strings distinguishable by L, for the string z in generating of the strings xz or yz is a member of L.
- Indistinguishable by L: x and y are indistinguishable by L for the string z we have $xz \in L$ every time $yz \in L$. We can write $x \equiv_L y$.
- Pair-wise distinguishable by L: set of strings contains in S, if every two separate strings are distinguishable in L.

Comment

Step 2 of 4

(a) Language L recognized by DFA (Deterministic Finite Automata) as M with number of states is k. We have to prove that L has an index at most k.

Take a contradiction assumption i.e., $\ \ L$ has an index greater than $\ k$.

If L contains index more than k then k+1 strings are at least in any set S which is **pair wise distinguishable by** L.

Pigeonhole's principle:

We will find two distinct strings x and y from S, such that the state of DFA M after reading input x is the same as the state of DFA M after reading input y.

By applying **Pigeonhole's** principle both xz and yz are not in L. This is not satisfying the definition **Distinguishable by L** in **Myhill-Nerode** theorem

Hence contradiction occurs. Therefore our assumption that L has index greater than k is wrong. So, L has index at most k.

Comment

Step 3 of 4

(b) Index of Language L contains k finite states i.e., set $S = \{s_1, s_2, ... s_k\}$. We have to prove that L recognized by DFA with k states.

- Let $M = (Q, \Sigma, \delta, q_0, F)$ be DFA with k states that recognizes L
- ullet The construction of $\ M$ is as follows:
- o Assume $Q = (q_1, q_2...q_k)$ is the set of states.

$ullet$ We show that if string t and s_j are not distinguishable by L , the state of M will be q_j after reading t as input.
• By the definition of F , M accepts t if and only if t is in L .
• Hence M recognizes L .
Comment
Step 4 of 4
(c) Language L is regular if it contains finite index. Index is size of smallest DFA recognizing it.
(i) if L is regular then L has finite index:
• Let us assume that L is regular.
• $_M$ be DFA that recognizes $_L$.
• Let k be the number of states in M .
• Then from part (a), L has index at most k
(ii) if L has finite index then L is regular:
$oldsymbol{\cdot}$ Let us assume that $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
ullet Then from part (b) we can contract a DFA with k states recognizing L
• We know that "A language is regular if and only if it is recognized by some DFA"
ullet Therefore L is regular language.
Therefore from (i) and (ii) L is regular if and only if it has finite index.
• The index k is size of the smallest DFA M recognizing it, suppose on the opposing that is not true. From part (a) we could terminate that L has indexed fewer than k , which contradicts fact that L has index equal to k .
Comment

o Transition function is given as: $\delta \left(q_i,a\right) = q_j$ if $s_i a$ and s_j are not distinguishable.

o Start state $\ q_0$ be the state such that $\ s_i$ and the empty string $\ \in$ are not distinguishable by $\ L$.

o $F = \{q_i \mid s_i \in L\}$ be the setoff