Sparsity-inducing bases for compressive sensing

Nathan van den Berg Martijn Brouwer Robin van der Laag Marcelo Geurts Galdámez Sean Tobin

Supervised by:

Ksenia Abrashitova (ARCNL), Tristan van Leeuwen (UU), Rob Bisseling (UU), Ivan Kryven (UU)

21 April 2023

Experimental set-up

Experimental set-up

$$y = \sum_{j=1}^{n^2} a_j \cdot x_j = \langle a, x \rangle$$
 $y_i = \langle a_i, x \rangle$

Mathematical formulation

$$Ax = \begin{bmatrix} \dots & a_1 & \dots \\ & \vdots & \\ \dots & a_m & \dots \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_{n^2} \end{bmatrix} = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} = y, \text{ where } A \in \mathbb{R}^{m \times n^2}.$$

Mathematical formulation

$$Ax = \begin{bmatrix} \dots & a_1 & \dots \\ & \vdots & \\ \dots & a_m & \dots \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_{n^2} \end{bmatrix} = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} = y, \text{ where } A \in \mathbb{R}^{m \times n^2}.$$

$$\underset{x \in \mathbb{R}^{n^2}}{\operatorname{arg\,min}} \|Ax - y\|_2^2 + \lambda \|x\|_1 \qquad x = \operatorname{GPSR}(A, y, \lambda)$$

$$Ax = \begin{bmatrix} \dots & a_1 & \dots \\ & \vdots & \\ \dots & a_m & \dots \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_{n^2} \end{bmatrix} = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} = y, \text{ where } A \in \mathbb{R}^{m \times n^2}.$$

Goal: GPSR performs better when x is sparse, so we try to find B such that Bx is sparse.

Discrete Cosine Transform

$$x_k^c = \sum_{n=0}^{M-1} x_n \cos(rac{\pi}{M}(n+rac{1}{2})k)$$

$$x^{c} = \begin{bmatrix} 1 & 1 & \dots & 1 \\ \cos(\frac{\pi}{2M}) & \cos(\frac{3\pi}{2M}) & \dots & \cos(\frac{(M-\frac{1}{2})\pi}{M}) \\ \vdots & \vdots & \ddots & \vdots \\ \cos(\frac{(M-1)\pi}{2M}) & \cos(\frac{(M-1)3\pi}{2M}) & \dots & \cos(\frac{(M-1)(M-\frac{1}{2})\pi}{M}) \end{bmatrix} x$$

Discrete Cosine Transform

$$X^c = C(CX^T)^T$$

Row1
$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \end{bmatrix}$$
 Row2 $\begin{bmatrix} a_{21} & a_{22} & a_{23} \end{bmatrix}$ Row3 $\begin{bmatrix} a_{31} & a_{32} & a_{33} \end{bmatrix}$

DAUB4 Wavelet Transform

Traditional Transforms

We want to find an $\hat{x} \in \mathbb{R}^{N^2}$, with $\hat{x} = Bx$ that is a solution to

$$\min_{\hat{x} \in \mathbb{R}^{n^2}} \|AB^{-1}\hat{x} - y\|_2^2 + \lambda \|\hat{x}\|.$$

Traditional Transforms

We want to find an $\hat{x} \in \mathbb{R}^{N^2}$, with $\hat{x} = Bx$ that is a solution to

$$\min_{\hat{x} \in \mathbb{R}^{n^2}} \|AB^{-1}\hat{x} - y\|_2^2 + \lambda \|\hat{x}\|.$$

Using four different transforms B^{-1} :

- \bullet $B^{-1} = I$, no transformation,
- **1** $B^{-1} = C^{-1} \otimes C^{-1}$, with C the discrete cosine transformation matrix,
- $B^{-1} = W^{-1} \otimes W^{-1}$, with W the Daubechies-4 wavelet transformation matrix,
- **№** $B^{-1} = (C \otimes C)(W^{-1} \otimes W^{-1})$, with C and W the same as above.

Recovered Images

Recovered Images

Fourier Transformed Images

Goal: find a basis transformation B such that the sparsity of Bx increases and with which the reconstruction quality using GPSR.

Machine learning approach

Goal: find a basis transformation B such that the sparsity of Bx increases and with which the reconstruction quality using GPSR.

Machine learning approach: train a neural network with sparsity-inducing loss function that preserves orthogonality with flattened training samples *x* as input.

The network

- $loss_{sparse}[Bx] = \sum_{i} \sqrt{(Bx)_{i}^{2} + \epsilon} \approx \|Bx\|_{1}, \quad \epsilon > 0$ (small).
- **1** $loss_{orth}[B] = ||BB^{\top} I_n||_2^2 = MSE(BB^{\top} I_n).$

Let $C = [c_{ij}]_{i,j} \in \mathbb{R}^{n \times n}$ and $D = [d_{ij}]_{i,j} \in \mathbb{R}^{n \times n}$. The Kronecker product of C and D is defined as,

$$B := C \otimes D = \begin{bmatrix} c_{11}D & c_{12}D & \dots & c_{1n}D \\ c_{21}D & c_{22}D & \dots & c_{2n}D \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1}D & c_{n2}D & \dots & c_{nn}D \end{bmatrix} \in \mathbb{R}^{n^2 \times n^2}.$$

Two linked neural networks

Two linked neural networks

$$loss(x; C, D) = loss_{sparse}[(C \otimes D)x] + \alpha (loss_{orth.}[C] + loss_{orth.}[D])$$
$$= \sum_{i} \sqrt{[(C \otimes D)x]_{i}^{2} + \epsilon} + \alpha (\|CC^{\top} - I_{n}\|_{2}^{2} + \|DD^{\top} - I_{n}\|_{2}^{2}).$$

Training

Iteration: 100 Sparsity x: 1 Sparsity Bx: 1993

Results

Quantifying errors

• The GPSR algorithm fails to reproduce the high-frequency behaviour of the original sample.

- The GPSR algorithm fails to reproduce the high-frequency behaviour of the original sample.
- The DCT and wavelet transforms seem to not increase the accuracy of the reconstructed images enough to warrant their use.

- The GPSR algorithm fails to reproduce the high-frequency behaviour of the original sample.
- The DCT and wavelet transforms seem to not increase the accuracy of the reconstructed images enough to warrant their use.
- Training sparsity-inducing networks is time consuming, but yields promising results provided that more improved algorithms are developed.

- The GPSR algorithm fails to reproduce the high-frequency behaviour of the original sample.
- The DCT and wavelet transforms seem to not increase the accuracy of the reconstructed images enough to warrant their use.
- Training sparsity-inducing networks is time consuming, but yields promising results provided that more improved algorithms are developed.

Questions?

BONUS SLIDE

2*Astrocyte	GPSR Output		Recovered Image	
	corr2	ssim	corr2	ssim
Baseline	NA	NA	0.91749	0.25872
DCT	0.94775	0.00716	0.92562	0.27034
DAUB4	-0.03108	-8.2600-05	-0.02966	-1.3560-05
DAUB4 + DCT	0.94489	0.23078	0.90678	0.23078

Table: 2D Correlation and the Structural similarity of the recovered sample/image using the different transformations on the 64×64 Astrocyte sample.

BONUS SLIDE2 (CIFAR10)

