Diploma of Health Sciences Diploma of Science

SLE155 Chemistry for the Professional Sciences

Q8 Oxio	dation and	l red	luctior
---------	------------	-------	---------

[2 + 4 + 4 = 10 marks]

a) i) Assign oxidation numbers to the atoms in the following compounds or ions:

[2 marks]

	Atom	Oxidation number	Atom	Oxidation number
MnO ₄ ²⁻	Mn		0	
H₃O⁺	н		0	

b) From the half equations below, determine the balanced cell reaction and the standard electrode potential:

Hint: Determine which reaction will be oxidation and which reaction will be reduction.

$$Au^{3+}(aq) + 3e^{-} \rightleftharpoons Au(s)$$

$$I_2(s) + 2 e^- \rightleftharpoons 2 \Gamma(aq)$$

Data: $E^{\circ}(Au^{3+}/Au) = +1.42 \text{ V} \text{ and } E^{\circ}(I_2/I^-) = +0.54 \text{ V}$

State the amount (measured in moles) of electrons that will be transferred in the reaction.

 [4 marks]

Diploma of Health Sciences Diploma of Science

SLE155 Chemistry for the Professional Sciences

Q8 (continued	Oxidation	and rec	luction
-------------	-----------	------------------	---------	---------

[2 + 4 + 4 = 10 marks]

c) Using half-reactions and showing your working, balance each half reaction separately for the following equation in acidic solution.

Hint: You do not need to write the overall balanced equation.

$$Cr^{3+}(aq) + BiO_3^{-}(aq) \rightarrow Cr_2O_7^{2-}(aq) + Bi^{3+}(aq)$$

[2 + 2 = 4 marks]

Oxidation reaction		
Reduction reaction		