Grammar of Data Transformation

K Arnold, based on IntroDS.org

Week 3

- Lab 2 end-of-day today
- Discussion 1 replies by tomorrow
- Hw 2 due Wednesday
 - Check that your .md file is on GitHub
 - What does each row represent?
 - Our How many rows should there be?
- Office Hours: [kca] Mon 8-9am, Fri 3-4pm; [yk] Wed 4:30-5:30pm

Question-answers

- Am I submitting my labs and homework correctly?
- See checklist at end of Lab 1.
- Main point: Check your .md file on GitHub.
 - When will we get feedback?
- General feedback already given in class.
- A bit backed up on specific feedback.
 - Can we make animated plots like in the video/
- Stay tuned for Plotly.

Questions for you

- How is week 3 of Fall 2020?
- What's working well in DATA 202? What's challenging?

Questions for you

- How is week 3 of Fall 2020?
- What's working well in DATA 202? What's challenging?
- How are the readings and prep exercises?
- How long are you spending on labs outside of class?
- How hard are labs compared with homework?

So far

- *R/RStudio/Rmarkdown/Git*: a toolkit for reproducible collaborative analysis and reporting
- ggplot2: a Grammar of Graphics
 - a language for describing, and building, visualizations
 - concepts apply to many other toolkits

This week:

- dplyr: a Grammar of Data Transformation
 - o basic concepts will show up again in Python (Pandas) and SQL.

Data wrangling and summarizing with *dplyr*

A grammar of data wrangling

Functions as verbs that manipulate data frames

- select: pick columns by name
- arrange: reorder rows
- slice: pick rows by index(es)
- slice_sample: randomly sample rows
- filter: pick rows matching criteria
- distinct: filter for unique rows
- mutate: add new variables
- summarize: reduce variables to
 values

Rules of dplyr functions

- First argument is *always* a data frame
- Subsequent arguments say what to do with that data frame
- Always return a data frame
- Don't modify in place

Bike crashes in NC 2007 - 2014

\$ bike_age_group

\$ bike_alcohol

```
ncbikecrash <- read_csv("data/ncbikecrash.csv")</pre>
glimpse(ncbikecrash)
## Rows: 7,467
## Columns: 53
## $ object id
                          <dbl> 1686, 1674, 1673, 1687, 1653, 1665, 1642, 1675, ...
## $ city
                           <chr> "None - Rural Crash", "Henderson", "None - Rural...
## $ county
                          <chr> "Wayne", "Vance", "Lincoln", "Columbus", "New Ha...
## $ region
                           <chr> "Coastal", "Piedmont", "Piedmont", "Coastal", "C...
                          <chr> "Farms, Woods, Pastures", "Residential", "Farms,...
## $ development
                           <chr> "Rural (<30% Developed)", "Mixed (30% To 70% Dev...</pre>
## $ locality
## $ on road
                           <chr> "SR 1915", "NICHOLAS ST", "US 321", "W BURKHEAD ...
                           <chr> "Rural", "Urban", "Rural", "Urban", "Urban", "Ru...
## $ rural urban
## $ speed_limit
                           <chr> "50 - 55 MPH", "30 - 35 MPH", "50 - 55 MPH", ...
## $ traffic_control
                           <chr> "No Control Present", "Stop Sign", "Double Yello..."
                           <chr> "Clear", "Clear", "Rain", "Clear", "Clo...
## $ weather
                           <chr> "No", "No", "No", "No", "No", "No", "No", "No", ...
## $ workzone
                           <chr> "52", "66", "33", "52", "22", "15", "41", "14", ...
## $ bike age
```

<chr> "50-59", "60-69", "30-39", "50-59", "20-24", "11...

<chr> "No", "No",

Variables

View the names of variables via

```
names(ncbikecrash)
```

```
[1] "object_id"
                                 "city"
                                                         "county"
##
##
    [4]
        "region"
                                 "development"
                                                         "locality"
                                                         "speed_limit"
        "on road"
                                 "rural urban"
                                                         "workzone"
## [10] "traffic_control"
                                 "weather"
                                                         "bike_alcohol"
## [13] "bike_age"
                                 "bike_age_group"
  [16] "bike_alcohol_drugs"
                                 "bike_direction"
                                                         "bike_injury"
## [19] "bike_position"
                                 "bike_race"
                                                         "bike_sex"
## [22] "driver age"
                                 "driver_age_group"
                                                         "driver alcohol"
                                                         "driver_injury"
## [25] "driver alcohol drugs"
                                 "driver est speed"
## [28] "driver race"
                                 "driver sex"
                                                         "driver_vehicle_type"
## [31] "crash_alcohol"
                                 "crash_date"
                                                         "crash_day"
## [34]
        "crash_group"
                                 "crash_hour"
                                                         "crash_location"
  [37] "crash_month"
                                                         "crash_time"
                                 "crash_severity"
       "crash_type"
                                 "crash_year"
## [40]
                                                         "ambulance_req"
## [43]
        "hit run"
                                "light condition"
                                                         "road_character"
  [46] "road class"
                                 "road condition"
                                                         "road_configuration"
##
## [49] "road_defects"
                                 "road_feature"
                                                         "road_surface"
```

Select columns

```
select(ncbikecrash, county, bike_age)
```

```
## # A tibble: 7,467 x 2
##
     county
               bike_age
   <chr> <chr>
##
##
   1 Wayne
                52
## 2 Vance
               66
## 3 Lincoln
            33
## 4 Columbus
## 5 New Hanover 22
## 6 Robeson
  7 Richmond
## 8 Wake
               14
  9 Columbus 16
## 10 Craven
                54
## # ... with 7,457 more rows
```

Select columns

```
select(ncbikecrash, county, bike_age)
```

```
## # A tibble: 7,467 x 2
                 bike_age
##
     county
     <chr>
            <chr>
##
   1 Wayne
                 52
   2 Vance
                 66
## 3 Lincoln
## 4 Columbus
  5 New Hanover 22
## 6 Robeson
  7 Richmond
##
  8 Wake
                 14
   9 Columbus
                 16
## 10 Craven
                 54
## # ... with 7,457 more rows
```

What if we wanted to select these columns, and then arrange the data in ascending order of biker age?

Data wrangling, step-by-step

Select:

```
ncbikecrash %>%
  select(county, bike_age)
```

```
## # A tibble: 7,467 x 2
##
     county
                 bike_age
##
     <chr>
                 <chr>
   1 Wayne
                 52
  2 Vance
                 66
##
  3 Lincoln
                 33
  4 Columbus
  5 New Hanover 22
## 6 Robeson
                 15
##
  7 Richmond
                 41
##
  8 Wake
                 14
   9 Columbus
                 16
## 10 Craven
                 54
## # ... with 7,457 more rows
```

Select, then arrange:

```
ncbikecrash %>%
  select(county, bike_age) %>%
  arrange(bike_age)
```

```
## # A tibble: 7,467 x 2
                 bike age
##
     county
     <chr>
                 <chr>
   1 New Hanover 0
##
   2 Carteret
##
   3 Guilford
   4 Pitt
##
                 10
   5 Cumberland
                 10
##
   6 Carteret
                 10
   7 Hoke
                 10
   8 Martin
                 10
   9 New Hanover 10
## 10 Onslow
                 10
## # ... with 7,457 more rows
```

Pipes

In programming, a pipe is a technique for passing information from one process to another.

In programming, a pipe is a technique for passing information from one process to another.

 Start with the data frame ncbikecrash

```
ncbikecrash %>%
  select(county, bike_age) %>%
  arrange(bike_age)
```

```
## # A tibble: 7,467 x 2
                  bike_age
     county
     <chr>
                  <chr>
   1 New Hanover 0
  2 Carteret
   3 Guilford
   4 Pitt
                  10
   5 Cumberland
                  10
   6 Carteret
                  10
   7 Hoke
##
                  10
## 8 Martin
                  10
   9 New Hanover 10
## 10 Onslow
                  10
```

In programming, a pipe is a technique for passing information from one process to another.

- Start with the data frame ncbikecrash,
- then we select the variables county and bike_age,

```
ncbikecrash %>%
  select(county, bike_age) %>%
  arrange(bike_age)
```

```
## # A tibble: 7,467 x 2
                  bike age
      county
      <chr>>
                  <chr>>
   1 New Hanover 0
   2 Carteret
   3 Guilford
   4 Pitt
                  10
    5 Cumberland
                  10
   6 Carteret
                  10
   7 Hoke
                  10
   8 Martin
                  10
   9 New Hanover 10
## 10 Onslow
                  10
```

In programming, a pipe is a technique for passing information from one process to another.

- Start with the data frame ncbikecrash,
- then we select the variables county and bike_age,
- and then we arrange the data frame by bike_age in ascending order.

```
ncbikecrash %>%
  select(county, bike_age) %>%
  arrange(bike_age)
```

```
## # A tibble: 7,467 x 2
                   bike age
      county
      <chr>>
                  <chr>
    1 New Hanover 0
    2 Carteret
   3 Guilford
##
    4 Pitt
                   10
    5 Cumberland
                  10
    6 Carteret
                   10
    7 Hoke
##
                   10
   8 Martin
                   10
    9 New Hanover 10
## 10 Onslow
                  10
```

How does a pipe work?

Conventional (nested functions):

```
arrange(select(ncbikecrash, county, bike_age), bike_age)
```

With pipes:

```
ncbikecrash %>%
  select(county, bike_age) %>%
  arrange(bike_age)
```

What about other arguments?

Use the dot (.) to

- send results to a function argument other than first one or
- use the previous result for multiple arguments

```
starwars %>%
  filter(., species == "Human") %>%
  lm(mass ~ height, data = .)

##
## Call:
## lm(formula = mass ~ height, data = .)
##
## Coefficients:
## (Intercept) height
## -116.58 1.11
```

A note on piping and layering

- The %>% operator in dplyr functions is called the *pipe* operator. This
 means you "pipe" the output of the previous line of code as the first input
 of the next line of code.
- The + operator in **ggplot2** functions is used for "*layering*". This means you create the plot in layers, separated by +.
- Many of the styling principles are consistent across %>% and +:
 - always a space before
 - always a line break after (for pipelines with more than 2 lines)

Data wrangling with dplyr

Exercise: Hotel Wrangling

select to keep variables

```
ncbikecrash %>%
  select(locality, speed_limit)
```

```
## # A tibble: 7,467 x 2
##
     locality
                                 speed_limit
##
   <chr>
                                 <chr>
   1 Rural (<30% Developed)
                                 50 - 55 MPH
   2 Mixed (30% To 70% Developed) 30 - 35 MPH
   3 Rural (<30% Developed)
                             50 - 55 MPH
##
   4 Urban (>70% Developed)
                            30 - 35 MPH
## 5 Urban (>70% Developed)
                              <NA>
## 6 Rural (<30% Developed)
                                 50 - 55 MPH
  7 Mixed (30% To 70% Developed) 30 - 35 MPH
  8 Urban (>70% Developed)
                            30 - 35 MPH
                            30 - 35 MPH
   9 Rural (<30% Developed)
## 10 Urban (>70% Developed)
                                20 - 25 MPH
## # ... with 7,457 more rows
```

select to exclude variables

```
ncbikecrash %>%
  select(-object_id)
```

```
## # A tibble: 7,467 x 52
      city county region development locality on road rural urban speed limit
##
      <chr> <chr> <chr> <chr>
                                        <chr> <chr>
                                                          <chr>
                                                                       <chr>
##
    1 None... Wayne Coast... Farms, Woo... Rural (... SR 1915 Rural
                                                                       50 - 55 M...
    2 Hend... Vance Piedm... Residential Mixed (... NICHOL... Urban
##
                                                                       30 - 35 M...
   3 None... Linco... Piedm... Farms, Woo... Rural (... US 321 Rural
                                                                       50 - 55 M...
##
    4 Whit... Colum... Coast... Commercial Urban (... W BURK... Urban
                                                                       30 - 35 M...
##
    5 Wilm... New H... Coast... Residential Urban (... RACINE... Urban
                                                                       <NA>
##
    6 None... Robes... Coast... Farms, Woo... Rural (... SR 1513 Rural
                                                                       50 - 55 M...
##
   7 None... Richm... Piedm... Residential Mixed (... SR 1903 Rural
                                                                       30 - 35 M...
##
   8 Rale… Wake Piedm… Commercial Urban (… PERSON… Urban
##
                                                                       30 - 35 M...
    9 Whit... Colum... Coast... Residential Rural (... FLOWER... Urban
                                                                       30 - 35 M...
## 10 New ... Craven Coast... Residential Urban (... SUTTON... Urban
                                                                       20 - 25 M...
## # ... with 7,457 more rows, and 44 more variables: traffic control <chr>,
## #
       weather <chr>, workzone <chr>, bike_age <chr>, bike_age_group <chr>,
       bike_alcohol <chr>, bike_alcohol_drugs <chr>, bike_direction <chr>,
## #
       bike_injury <chr>, bike_position <chr>, bike_race <chr>, bike_sex <chr>,
## #
       driver_age <chr>, driver_age_group <chr>, driver_alcohol <chr>,
## #
       driver_alcohol_drugs <chr>, driver_est_speed <chr>, driver_injury <chr>,
## #
       deivon mono cobas, deivon nou cobas, deivon vobiolo tuno cobas,
```

select variables with certain characteristics

```
ncbikecrash %>%
  select(starts_with("bike_"))
```

```
## # A tibble: 7,467 x 9
     bike_age bike_age_group bike_alcohol bike_alcohol_dr... bike_direction
##
##
     <chr>
              <chr>
                             <chr>
                                         <chr>>
                                                          <chr>
                                                          With Traffic
##
  1 52
              50-59
                                         <NA>
                             No
              60-69
                                                          With Traffic
## 2 66
                             No
                                         <NA>
        30-39
## 3 33
                                                          With Traffic
                             Nο
                                         <NA>
## 4 52
              50-59
                                         <NA>
                             Yes
                                                          <NA>
## 5 22
         20-24
                                         <NA>
                                                          Facing Traffic
                             No
                                                          With Traffic
## 6 15
         11-15
                                         <NA>
                             No
                                         <NA>
##
  7 41
         40-49
                             No
                                                          Facing Traffic
              11-15
                                                          <NA>
## 8 14
                             No
                                         <NA>
              16-19
## 9 16
                                         <NA>
                                                          Facing Traffic
                             No
## 10 54
              50-59
                                         <NA>
                                                          With Traffic
                             No
## # ... with 7,457 more rows, and 4 more variables: bike injury <chr>,
      bike_position <chr>, bike_race <chr>, bike_sex <chr>
## #
```

select variables with certain characteristics

```
ncbikecrash %>%
  select(ends_with("age"))
```

```
## # A tibble: 7,467 x 2
    bike_age driver_age
##
  <chr> <chr>
## 1 52 34
## 2 66
       <NA>
## 3 33 37
## 4 52 55
## 5 22 25
## 6 15
           17
## 7 41
       <NA>
       50
## 8 14
## 9 16
           32
## 10 54
## # ... with 7,457 more rows
```

Select helpers

- starts_with(): Starts with a prefix
- ends with(): Ends with a suffix
- contains(): Contains a literal string
- num_range(): Matches a numerical range like x01, x02, x03
- one_of(): Matches variable names in a character vector
- everything(): Matches all variables
- last_col(): Select last variable, possibly with an offset
- matches(): Matches a regular expression (a sequence of symbols/characters expressing a string/pattern to be searched for within text)

See help for any of these functions for more info, e.g. ?everything.

arrange in ascending / descending order

```
ncbikecrash %>%
  select(ends_with("age")) %>%
  arrange(bike_age)
```

```
## # A tibble: 7,467 x 2
##
     bike_age driver_age
   <chr>
             <chr>
##
## 1 0
             47
## 2 1
        70+
## 3 1
             61
## 4 10
             30
## 5 10
             19
## 6 10
## 7 10
             18
## 8 10
             27
## 9 10
             53
## 10 10
         <NA>
## # ... with 7,457 more rows
```

```
ncbikecrash %>%
  select(ends_with("age")) %>%
  arrange(desc(bike_age))
```

```
## # A tibble: 7,467 x 2
     bike_age driver_age
     <chr> <chr>
## 1 9
              23
              35
   3 9 70+
              41
              53
## 6 9
              18
              45
              19
              70+
## 10 9
              59
## # ... with 7,457 more rows
```

slice for certain row numbers

First five

```
ncbikecrash %>%
slice(1:5)
```

```
## # A tibble: 5 x 53
##
     object id city county region development locality on road rural urban
                                                          <chr>
##
         <dbl> <chr> <chr> <chr> <chr>
                                                 <chr>
          1686 None... Wayne Coast... Farms, Woo... Rural (... SR 1915 Rural
## 1
          1674 Hend... Vance Piedm... Residential Mixed (... NICHOL... Urban
## 2
          1673 None... Linco... Piedm... Farms, Woo... Rural (... US 321 Rural
## 3
          1687 Whit... Colum... Coast... Commercial Urban (... W BURK... Urban
## 4
          1653 Wilm... New H... Coast... Residential Urban (... RACINE... Urban
## 5
       with 45 more variables: speed_limit <chr>, traffic_control <chr>,
## #
       weather <chr>, workzone <chr>, bike_age <chr>, bike_age_group <chr>,
       bike_alcohol <chr>, bike_alcohol_drugs <chr>, bike_direction <chr>,
## #
       bike_injury <chr>, bike_position <chr>, bike_race <chr>, bike_sex <chr>,
## #
       driver_age <chr>, driver_age_group <chr>, driver_alcohol <chr>,
## #
       driver_alcohol_drugs <chr>, driver_est_speed <chr>, driver_injury <chr>,
## #
## #
       driver_race <chr>, driver_sex <chr>, driver_vehicle_type <chr>,
## #
       crash_alcohol <chr>, crash_date <chr>, crash_day <chr>, crash_group <chr>,
```

slice for certain row numbers

Last five

```
last_row <- nrow(ncbikecrash)
ncbikecrash %>%
  slice((last_row - 4):last_row)
```

```
## # A tibble: 5 x 53
     object_id city county region development locality on_road rural_urban
##
         <dbl> <chr> <chr> <chr> <chr>
##
                                                 <chr>
                                                          <chr>
                                                                   <chr>
## 1
          6989 High... Guilf... Piedm... Residential Urban (... <NA>
                                                                   Urban
## 2
          6991 Wilm... New H... Coast... Residential Urban (... <NA>
                                                                   Urban
## 3
          6995 Kins... Lenoir Coast... Commercial Urban (... <NA>
                                                                   Urban
                                                                   Urban
## 4
          6998 Faye... Cumbe... Coast... Residential Urban (... <NA>
## 5
          7000 None... Onslow Coast... Farms, Woo... Rural (... <NA>
                                                                   Rural
     ... with 45 more variables: speed_limit <chr>, traffic_control <chr>,
## #
       weather <chr>, workzone <chr>, bike_age <chr>, bike_age_group <chr>,
## #
       bike_alcohol <chr>, bike_alcohol_drugs <chr>, bike_direction <chr>,
## #
       bike_injury <chr>, bike_position <chr>, bike_race <chr>, bike_sex <chr>,
## #
       driver_age <chr>, driver_age_group <chr>, driver_alcohol <chr>,
## #
## #
       driver_alcohol_drugs <chr>, driver_est_speed <chr>, driver_injury <chr>,
       driver_race <chr>, driver_sex <chr>, driver_vehicle_type <chr>,
## #
```

sample_n/sample_frac for a random sample

• slice_sample: randomly sample n = 5 observations

```
ncbikecrash_n5 <- ncbikecrash %>%
   slice_sample(n = 5, replace = FALSE)
dim(ncbikecrash_n5)
```

```
## [1] 5 53
```

sample_n/sample_frac for a random sample

• slice_sample: randomly sample n = 5 observations

```
ncbikecrash_n5 <- ncbikecrash %>%
    slice_sample(n = 5, replace = FALSE)
dim(ncbikecrash_n5)
```

[1] 5 53

• sample_frac: randomly sample prop = 20% of observations

```
ncbikecrash_perc20 <-ncbikecrash %>%
  slice_sample(prop = 0.2, replace = FALSE)
dim(ncbikecrash_perc20)
```

```
## [1] 1493 53
```

filter to select a subset of rows

Crashes in Durham County

```
ncbikecrash %>%
  filter(county == "Durham")
```

```
## # A tibble: 340 x 53
##
      object id city county region development locality on road rural urban
          <dbl> <chr> <chr> <chr> <chr>
                                                   <chr>
                                                             <chr>
                                                                     <chr>
##
## 1
           2452 Durh... Durham Piedm... Residential Urban (... <NA>
                                                                     Urban
## 2
           2441 Durh... Durham Piedm... Commercial Urban (... <NA>
                                                                     Urban
           2466 Durh... Durham Piedm... Commercial Urban (... <NA>
##
                                                                     Urhan
            549 Durh... Durham Piedm... Residential Urban (... PARK A... Urban
## 4
            598 Durh... Durham Piedm... Residential Urban (... BELT S... Urban
## 5
## 6
            603 Durh... Durham Piedm... Residential Urban (... HINSON... Urban
##
           3974 Durh... Durham Piedm... Commercial Urban (... <NA>
                                                                     Urban
## 8
           7134 Durh... Durham Piedm... Commercial Urban (... <NA>
                                                                     Urban
## 9
           1670 Durh... Durham Piedm... Commercial Urban (... INFINI... Urban
           1773 Durh... Durham Piedm... Residential Urban (... <NA>
## 10
                                                                     Urban
     ... with 330 more rows, and 45 more variables: speed limit <chr>,
       traffic_control <chr>, weather <chr>, workzone <chr>, bike_age <chr>,
## #
       bike_age_group <chr>, bike_alcohol <chr>, bike_alcohol_drugs <chr>,
## #
```

filter for many conditions at once

Crashes in Durham County where biker is 0-5 years old

```
ncbikecrash %>%
  filter(
    county == "Durham",
    bike_age_group == "0-5"
)
```

```
## # A tibble: 4 x 53
     object id city county region development locality on road rural urban
##
         <dbl> <chr> <chr> <chr> <chr>
                                                                 <chr>>
##
                                                <chr> <chr>
## 1
          4062 Durh... Durham Piedm... Residential Urban (... <NA>
                                                                 Urban
## 2
         414 Durh... Durham Piedm... Residential Urban (... PVA 90... Urban
## 3
          3016 Durh... Durham Piedm... Residential Urban (... <NA>
                                                                 Urban
## 4
          1383 Durh... Durham Piedm... Residential Urban (... PVA 62... Urban
## #
    ... with 45 more variables: speed limit <chr>, traffic control <chr>,
       weather <chr>, workzone <chr>, bike_age <chr>, bike_age_group <chr>,
## #
       bike_alcohol <chr>, bike_alcohol_drugs <chr>, bike_direction <chr>,
## #
       bike_injury <chr>, bike_position <chr>, bike_race <chr>, bike_sex <chr>,
## #
## #
       driver_age <chr>, driver_age_group <chr>, driver_alcohol <chr>,
       driver_alcohol_drugs <chr>, driver_est_speed <chr>, driver_injury <chr>,
## #
```

Logical operators in R

operator	definition	operator	definition
<	less than	x y	x OR y
<=	less than or equal to	is.na(x)	test if x is NA
>	greater than	!is.na(x)	test if x is not NA
>=	greater than or equal to	x %in% y	test if x is in y
==	exactly equal to	!(x %in% y)	test if x is not in y
! =	not equal to	! x	not x
х & у	x AND y		

Fill in the blanks for filtering for crashes **not** in Durham County where crash year is after 2014 and bike_position is not NA.

```
ncbikecrash %>%
  filter(
    county ____ "Durham",
    crash_year ___ 2014,
    ____
)
```

Fill in the blanks for filtering for crashes **not** in Durham County where crash year is after 2014 and bike_position is not NA.

```
ncbikecrash %>%
  filter(
    county != "Durham",
    crash_year > 2014,
   !is.na(bike_position)
)
```

```
## # A tibble: 0 x 53
## # ... with 53 variables: object id <dbl>, city <chr>, county <chr>, region <chr>,
       development <chr>, locality <chr>, on_road <chr>, rural_urban <chr>,
## #
       speed_limit <chr>, traffic_control <chr>, weather <chr>, workzone <chr>,
## #
## #
       bike_age <chr>, bike_age_group <chr>, bike_alcohol <chr>,
       bike_alcohol_drugs <chr>, bike_direction <chr>, bike_injury <chr>,
## #
       bike_position <chr>, bike_race <chr>, bike_sex <chr>, driver_age <chr>,
## #
       driver_age_group <chr>, driver_alcohol <chr>, driver_alcohol_drugs <chr>,
## #
       driver_est_speed <chr>, driver_injury <chr>, driver_race <chr>,
## #
## #
       driver_sex <chr>, driver_vehicle_type <chr>, crash_alcohol <chr>,
       crash_date <chr>, crash_day <chr>, crash_group <chr>, crash_hour <dbl>,
## #
## #
       crash_location <chr>, crash_month <chr>, crash_severity <chr>,
## #
       crash_time <time>, crash_type <chr>, crash_year <dbl>, ambulance_req <chr>,
## #
       hit_run <chr>, light_condition <chr>, road_character <chr>,
## #
       road_class <chr>, road_condition <chr>, road_configuration <chr>,
       road_defects <chr>, road_feature <chr>, road_surface <chr>,
## #
## #
       num_lanes <chr>, geo_point <chr>
```

distinct to filter for unique rows

... and arrange to order alphabetically

```
ncbikecrash %>%
   distinct(county) %>%
   arrange(county)
## # A tibble: 101 x 1
##
      county
##
      <chr>
    1 Alamance
   2 Alexander
   3 Alleghany
   4 Anson
##
   5 Ashe
##
   6 Avery
   7 Beaufort
   8 Bertie
   9 Bladen
## 10 Brunswick
## # ... with 91 more rows
```

```
ncbikecrash %>%
  select(county, city) %>%
  distinct() %>%
  arrange(county, city)
```

```
## # A tibble: 391 x 2
               city
##
     county
     <chr>
               <chr>>
   1 Alamance Alamance
   2 Alamance Burlington
   3 Alamance
               Elon
##
   4 Alamance
              Elon College
   5 Alamance Gibsonville
   6 Alamance Graham
   7 Alamance Green Level
  8 Alamance Mebane
   9 Alamance None - Rural Crash
  10 Alexander None - Rural Crash
## # ... with 381 more rows
```

Code Style

"Good coding style is like correct punctuation: you can manage without it, butitsuremakesthingseasiertoread."

Hadley Wickham

• Recommended: Tidyverse style guide https://style.tidyverse.org/

Summary

- File names and code chunks: data-wrangling, not Data Wrangling.
- Variable names: hourly_rides, not hourlyRides or hourly.rides or rides_by_hour_with_weather
 - Informative but short. Don't reuse.

Spacing

- Put a space before and after all infix operators (=, +, -, <-, etc.), and when naming arguments in function calls
- Always put a space after a comma, and never before (just like in regular English)

```
# Good
average <- mean(feet / 12 + inches, na.rm = TRUE)
# Bad
average<-mean(feet/12+inches,na.rm=TRUE)</pre>
```

ggplot2

- Always end a line with +
- Always indent the next line

```
# Good
ggplot(diamonds, mapping = aes(x = price)) +
   geom_histogram()

# Bad
ggplot(diamonds, mapping=aes(x=price))+geom_histogram()
```

Happy families are all alike; every unhappy family is unhappy in its own way.

Leo Tolstoy

Happy families are all alike; every unhappy family is unhappy in its own way.

Leo Tolstoy

Characteristics of tidy data:

- Each variable forms a column.
- Each observation forms a row.
- Each type of observational unit forms a table.

Happy families are all alike; every unhappy family is unhappy in its own way.

Leo Tolstoy

Characteristics of tidy data:

- Each variable forms a column.
- Each observation forms a row.
- Each type of observational unit forms a table.

Characteristics of untidy data:

Varies.

What makes this data not tidy?

Airplanes on Hand in the AAF, By Major Type: Jul 1939 to Aug 1945

End of Month	Total	Very Heavy Bombers	Heavy Bombers	Medium Bombers	Light Bombers	Fighters	Recon- naissance	Transports	Trainers	Communi- cations
1939										
Jul	2,402	-	16	400	276	494	356	118	735	
Aug	2,440		18	414	276	492	359	129	745	
				[Germany inv	ades Poland, 1	Sep 1939]				
Sep	2,473	-	22	428	278	489	359	136	754	
Oct	2,507	-	27	446	277	490	365	137	758	
Nov	2,536	_	32	458	275	498	375	136	755	
Dec	2,546	-	39	464	274	492	378	131	761	
1940										
Jan	2,588	-	45	466	271	464	409	128	798	
Feb	2,658		49	470	271	458	415	128	860	
Mar	2,709	-	54	468	267	453	415	125	920	
Apr	2,806	-	54	468	263	451	416	125	1,022	
May	2,906	-	54	470	259	459	410	124	1,123	
Jun	2,966	-	54	478	166	477	414	127	1,243	
			[F		rs to Germany, ain begins, 10.					
Jul	3,102		56	483	161	500	410	128	1,357	
Aug	3,295	_	65 atistica	485	158 + \ \/\/ -	539	407	128	1,506	

Source: Army Air Forces Statistical Digest, WW II

What makes this data not tidy?

	A	AA	AB	AC	AD	AE	AF	AG	АН
	Estimated HIV								
	Prevalence% - (Ages								
1	15-49)	2004	2005	2006	2007	2008	2009	2010	2011
2	Abkhazia								
3	Afghanistan						0.06	0.06	0.06
4	Akrotiri and Dhekelia								
5	Albania								
6	Algeria	0.1	0.1	0.1	0.1	0.1			
7	American Samoa								
8	Andorra								
9	Angola	1.9	1.9	1.9	1.9	2	2.1	2.1	2.1
10	Anguilla								
11	Antigua and Barbuda								
12	Argentina	0.4	0.4	0.4	0.4	0.5	0.4	0.4	0.4
13		0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.2
14	Aruba								
15	Australia	0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.2
16	Austria	0.2	0.2	0.2	0.3	0.3	0.3	0.4	0.4
17	Azerbaijan	0.06	0.06	0.06	0.1	0.1	0.1	0.1	0.1
18	Bahamas	3	3	3	3.1	3.1	2.9	2.8	2.8

Source: Gapminder, Estimated HIV prevalence among 15-49 year olds

What makes this data not tidy?

		United States					
Subject	Estimate	Margin of Error	Percent	Percent Margin of Error			
EMPLOYMENT STATUS							
Population 16 years and over	255,797,692	+/-17,051	255,797,692	(X)			
In labor force	162,184,325	+/-135,158	63.4%	+/-0.1			
Civilian labor force	161,159,470	+/-127,501	63.0%	+/-0.1			
Employed	150,599,165	+/-138,066	58.9%	+/-0.1			
Unemployed	10,560,305	+/-27,385	4.1%	+/-0.1			
Armed Forces	1,024,855	+/-10,363	0.4%	+/-0.1			
Not in labor force	93,613,367	+/-126,007	36.6%	+/-0.1			
Civilian labor force	161,159,470	+/-127,501	161,159,470	(X)			
Unemployment Rate	(X)	(X)	6.6%	+/-0.1			
Females 16 years and over	131,092,196	+/-11,187	131,092,196	(X)			
In labor force	76,493,327	+/-75,824	58.4%	+/-0.1			
Civilian labor force	76,350,498	+/-75,238	58.2%	+/-0.1			
Employed	71,451,559	+/-79,007	54.5%	+/-0.1			
Own children of the householder under 6 years	22,939,897	+/-14,240	22,939,897	(X)			
All parents in family in labor force	14,957,537	+/-36,506	65.2%	+/-0.1			
Own children of the householder 6 to 17 years	47,007,147	+/-19,644	47,007,147	(X)			
All parents in family in labor force	33,238,793	,	70.7%	+/-0.1			

Source: US Census Fact Finder, General Economic Characteristics, ACS 2017