Tutorial 3 Green's theorem and surface

1. Line integrals: evaluation by Green's theorem (page 438).

Evaluate $\int_C \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r}$ counterclockwise around the boundary C of the region R by Green's

theorem.

- (1) $\mathbf{F} = \langle y, -x \rangle$, C is the circle $x^2 + y^2 = \frac{1}{4}$.
- (2) $\mathbf{F} = \langle 6y^2, 2x 2y^4 \rangle$, R is the square with vertices $\pm (2, 2), \pm (2, -2)$.
- (3) $\mathbf{F} = \langle x^2 e^y, y^2 e^x \rangle$, *R* is the rectangle with vertices (0,0), (2,0), (2,3), (0,3).
- (4) $\mathbf{F} = \langle x^2 + y^2, x^2 y^2 \rangle$, $R: 1 \le y \le 2 x^2$
- (5) $\mathbf{F} = \langle -e^{-x} \cos y, -e^{-x} \sin y \rangle$, R is the semidisk $x^2 + y^2 \le 16, x \ge 0$.
- 2. Parametric surface representation (page 442). Familiarize yourself with parametric representations of important surfaces by deriving a representation as z = f(x, y) or g(x, y, z) = 0, then find a normal vector $\mathbf{N} = \mathbf{r}_u \times \mathbf{r}_v$ of the surface. Show the details of your work.
 - (1) *xy*-plane r(u, v) = (u, v) = ui + vj.
 - (2) xy-plane in polar coordinates $\mathbf{r}(u, v) = [u \cos v, u \sin v]$ (thus $u = r, v = \theta$).
 - (3) Cone $\mathbf{r}(u, v) = [u \cos v, u \sin v, \operatorname{cu}].$
 - (4) Elliptic cylinder $\mathbf{r}(u, v) = [a \cos v, b \sin v, u]$.
 - (5) Paraboloid of revolution $\mathbf{r}(u, v) = \left[u \cos v, u \sin v, u^2 \right]$.
 - (6) Hyperbolic paraboloid $\mathbf{r}(u, v) = \begin{bmatrix} au \cosh v, bu \sinh v, u^2 \end{bmatrix}$