Data Collection Method

In order to collect the data required for this iteration of the project we used the scientific methods of Conducting an experiment and observing the experiment while taking detailed notes and records. First we chose a set of elevators to be used to conduct our experiment, as a team we decided on the set of three elevators at Envie 1 which is an Apartment building with 29 floors.

After choosing the apartment building, we decided to choose our factors for the experiment we decided on 6 ranges of floors for the elevators to travel through which we felt would properly encapsulate or experiment. We decided for from $1^{st} - 2^{nd}$ floor, from $1^{st} - 7^{th}$ floor, from $1^{st} - 16^{th}$ floor, from $1^{st} - 29^{th}$ floor and from $7^{th} - 16^{th}$ floor.

After this we were ready to begin our timing we decided to use the digital stop watches on our iPhones in order to measure the time to move between floors we decided to start our timers at the moment the elevator doors had completely closes and decided to stop them at the moment the elevator announced we had arrived on the floor as we believe this is the most accurate way to get the time we did this with each elevator for every floor range so we got 3 values for each floor range.

To get the time to load and unload we started our timer the moment the elevator door became completely open and stopped it when the elevator door reached a complete close. We did this for each elevator for every floor range.

We then recorded all our data on an excel spread sheet and used the excel functions to determine the mean time taken to move between floors and its variance.

<u>Filled Table of values.</u>

	Time to	Average time	variance of	Time it takes	average load	Total
	move	to move	time to move	to load and	and unload	Averag
	between	between	between floors	unload(s)	time(s)	e time
	floors(s)	floors(s)				taken
1st floor - 2nd floor	6.76	5.933333333	0.526933333	7.39	7.01	12.943
	5.4			6.53		33333
	5.64			7.11		
1st floor	13.4	12.57	0.7237	6.62	6.97333333	19.543
- 7th floor	12.61			6.48	3	33333
	11.7			7.82	1	
1st floor	21.64	20.61	0.8113	6.57	7.45666666	28.066
- 16th	19.97			7.24	7	66667
floor	20.22			8.56		
1st floor	37.38	37.31666667	0.175233333	6.61	6.7	44.016
- 29th floor	37.7	1		6.62	1	66667
	36.87			6.87		
16th	18.87	19.74333333	0.575633333	7.59	7.49333333	27.236
floor -	20.12	1		7.19	3	66667
29th	20.24	-		7.7	-	
floor						
7th floor	16.59	17.03666667	0.182033333	6.87	7.08	24.116
- 16th	17.08			6.93		66667
floor	17.44			7.44		
Range	32.3		Range	2.08		

This is the formula we used to calculate velocity between floors.

$$\overline{v} = rac{\Delta x}{\Delta t}$$

The height of 1 floor is 10m.

so, we multiplied the number of floors we passed by 10 and divided it by the average time to move between floors.

1st floor - 2nd floor	Time to move betwee n floors(s) 6.76 5.4 5.64	Average time to move between floors(s) 5.9333	variance of time to move between floors 0.52693333	Time it takes to load and unload(s) 7.39 6.53	average load and unload time(s)	Total Average time taken 12.9433333	Average velocity moving between floors(floor/second) 1.685393258
1st floor - 7th floor	13.4 12.61 11.7	12.57	0.7237	6.62 6.48 7.82	6.97333333	19.5433333	5.568814638
1st floor - 16th floor	21.64 19.97 20.22	20.61	0.8113	6.57 7.24 8.56	7.45666666 7	28.0666666 7	7.763221737
1st floor - 29th floor	37.38 37.7 36.87	37.3166 7	0.17523333	6.61 6.62 6.87	6.7	44.0166666 7	7.771326485
16th floor - 29th floor	18.87 20.12 20.24	19.7433 3	0.57563333	7.59 7.19 7.7	7.49333333 3	27.2366666 7	6.584501097
7th floor - 16th floor	16.59 17.08 17.44	17.0366 6	0.18203333	6.87 6.93 7.44	7.08	24.1166666 7	5.282723537

Acceleration & Deceleration

From the data we understand that the elevators do not move at a constant speed but accelerates and decelerates based on the distance it needs to travel and how close it is to its destination.

So, to calculate the acceleration and deceleration we know that the

Assuming it uses half the time to accelerate and the other half to decelerate

The acceleration would be calculated as $\frac{\Delta v}{\Delta t} = \frac{velcity\ from\ 1\ to\ 29th\ floor-velocity\ from\ 1\ to\ 2nd\ floor}{time\ from\ 1\ to\ 29th\ floor-time\ from\ 1\ to\ 29th}$

$$= \frac{7.77 - 1.68}{37.3166 - 5.9333} = 0.1940 \, m/s^2$$

Conclusion

The data shows that the more the distance the elevator has to cover the more the time spent although the elevator reaches the highest floor in less than a minute.

The spread/range for time it takes to load and unload the elevators is 2.08 seconds.

We are 95% confident in our values we believe that there might be only one error in our values which is the 8.56 due to human error.

We believe that we collected sufficient data to ensure an unbiased and variable experiment.