AUXÍLIO AO DIAGNÓSTICO DE ELA E AVC ATRAVÉS DE EXPRESSÃO FACIAL

Leonardo Silva de Oliveira

Orientadora: Simone das Graças Domingues Prado

Coorientador: Guilherme Camargo

Sumário

- Introdução
- Fundamentação Teórica
- Metodologia
- Discussão e Resultados
- Conclusão
- Trabalhos Futuros
- Referências e créditos

INTRODUÇÃO

E se existisse uma ferramenta que, através de um vídeo da face, poderia identificar alguma doença neurológica?

- Método não invasivo
- Auxiliaria médicos através do mundo todo
- Acesso através de uma aplicação no celular
- Monitorar os pacientes

Sobre doenças neurológicas

- Doenças neurológicas afetam drasticamente a vida dos pacientes
- Alzheimer, Parkinson e Esclerose Lateral Amiotrófica
- DA está entre 60% e 80% de todos os casos de demência, atingindo 24 milhões de pessoas
- DP com 0.3% população geral, 1% com mais de 60 anos e 3% com mais de 80 anos.

Perda de expressão facial ...

- Sintoma comum em diferentes doenças neurológicas
- Pacientes com ELA, apresentam fraqueza e atrofia muscular
- O Acidente Vascular Cerebral, afeta partes do cérebro responsáveis pelos movimentos faciais.
- Doença de Parkinson também causa rigidez nos músculos faciais.

Com o avanço da tecnologia e análise de expressão facial ...

 Utilizam de diferentes técnicas de visão computacional e aprendizado de máquina para auxiliar os médicos no diagnósticos de diversas doenças

 Uma ferramenta que consegue identificar doenças neurológicas através de vídeos gravados auxiliaria no diagnóstico

FACS e Action Unit

- Movimentos faciais transmitem informações
- Paul Eakman e Wallace V. Friesen desenvolveram o FACS
- Hammn J. em 2011 criou um método para estimar FACS.
- AUs tem sido cada vez mais usados na medicina comportamental e agora ...

AUS usados na distinção de DP

Obteve um acerto de 95,6% nas variações de AUs

Embora o resultado tenha sido promissor, o experimento foi feito somente com pacientes com DP

A análise dos AUs, também poderiam ser usadas para o diagnóstico de outras doenças?

Verificar a possibilidade de distinção de doenças neurológicas utilizando os Actions Units.

FUNDAMENTAÇÃO TEÓRICA

- Aprendizado de máquina
- Reconhecimento Facial
- O que são os Actions Units e como extraí-los?

Aprendizado Supervisionado

Regressão Linear

$$= 0 + 1 1 + 2 2 + ... + 3$$

Regressão Logística

Também calcula uma soma ponderada, porém realiza uma logística ao invés de retornar o resultado

Máquina de Vetores de Suporte

Proposto por Cortes e Vapnik (1995)

Árvores de Decisão

Conjunto de perguntas "se/então"

Desvantagens

- Sobreajuste: Muito sensível aos dados
- Inserir um novo animal pode trocar a árvore completamente

Árvores de Decisão

Por exemplo:

O animal possui penas ?

Árvores de Decisão

Por exemplo:

O animal possui penas ?

Árvores de Decisão

Por exemplo:

O animal possui penas ?

O animal voa?

Árvores de Decisão

Árvores de Decisão

Árvores de Decisão

Árvores de Decisão

Árvores de Decisão

Florestas Aleatórias

É um conjunto n de árvores de decisão

?

O que eu aprendi neste trabalho?

?

O que eu aprendi neste trabalho?

Reconhecimento Facial

Problema de reconhecimento de padrões visuais

Imagem/vídeo

Localização do rosto e demarcação

Rosto demarcado

Normalização do rosto

Rosto alinhado

Extração de características

Características do rosto

Similaridade

Identificador do rosto

O que são os *Actions Units* e como extraí-los?

Paul Ekman e Wallace V. Friesen, desenvolveram o FACS (Facial Action Coding System)

Action Unit (AU) representa a contração e relaxamento de determinados músculos na face

Os AUs são usados em vários trabalhos ...

Existem várias ferramentas disponíveis no mercado, porém foi utilizado o *py-feat*.

METODOLOGIA

Ferramentas utilizadas

Como foi realizado o trabalho?

Toronto Neuroface Dataset

Base única e pública para o estudo de expressões faciais em pacientes com doenças neurológicas

Tarefa	ELA	GS	AVC	Total
KISS	11	11	14	36
OPEN	11	11	14	36
SPREAD	11	11	14	36
PA	10	11	14	35
PATAKA	10	11	14	35
NORMAL	9	11	14	34
BLOW	6	7	11	24
BROW	4	4	7	15
BIGSMILE	4	3	3	10
				261

Como foi realizado o trabalho?

Teste com o *py-feat* usando o AU04

Como foi realizado o trabalho?

Extraindo os AUs

Frame	Tarefa realizada	Diagnóstico	20 col dos AUs
1	NORMAL	ELA	20 valores de 0 a 1
2	NORMAL	ELA	20 valores de 0 a 1
3	NORMAL	ELA	20 valores de 0 a 1

Agrupamento

AU01	AU02	AU	Rótulo
Média dos AU01	Média dos AU02	Média dos AU	1

Como foi realizado o trabalho?

Tarefa	ELA	GS	AVC	Total
KISS	5552	5819	7886	19257
OPEN	6371	5825	8614	20810
SPREAD	8156	7185	9784	25125
PA	7566	11555	12729	31850
PATAKA	6933	10647	10924	28504
NORMAL	17680	16810	24551	59041
BLOW	3109	4112	6356	13577
BROW	1564	1829	3795	7188
BIGSMILE	1958	1485	1057	4500
				200952

- Regressão Logística
- Florestas Aleatórias
- Máquina de Vetores de Suporte
- Classificação AdaBoost

DISCUSSÃO E RESULTADOS

. 1

GS

BIGSMILE -	0.49	0.38	0.33	0.15	0.59	0.61	0.26	0.63	0.41	0.6	0.48	0.52	0.54	0.19	0.37	0.44	0.48	0.39	0.19	0.26	- 0.6
BLOW -	0.54	0.42	0.38	0.26	0.35	0.51	0.2	0.49	0.38	0.38	0.32	0.53	0.55	0.18	0.32	0.3	0.54	0.43	0.15	0.2	
BROW -	0.59	0.5	0.34	0.28	0.24	0.38	0.11	0.31	0.38	0.22	0.33	0.57	0.62	0.098	0.41	0.55	0.22	0.2	0.32	0.14	- 0.5
KISS -	0.54	0.42	0.35	0.25	0.32	0.44	0.15	0.42	0.39	0.35	0.37	0.55	0.58	0.13	0.37	0.45	0.38	0.32	0.18	0.17	- 0.4
NORMAL -	0.54	0.39	0.37	0.25	0.27	0.42	0.17	0.4	0.38	0.29	0.36	0.53	0.55	0.15	0.34	0.42	0.46	0.37	0.21	0.19	-0.4
OPEN -	0.55	0.41	0.41	0.26	0.41	0.56	0.28	0.63	0.39	0.41	0.32	0.53	0.45	0.23	0.29	0.26	0.64	0.52	0.16	0.26	- 0.3
PA -	0.58	0.46	0.34	0.28	0.32	0.43	0.15	0.42	0.39	0.36	0.36	0.56	0.57	0.15	0.35	0.44	0.4	0.33	0.2	0.18	
PATAKA -	0.56	0.45	0.35	0.25	0.34	0.46	0.17	0.44	0.39	0.38	0.37	0.56	0.56	0.16	0.33	0.39	0.43	0.33	0.18	0.2	- 0.2
SPREAD -	0.5	0.43	0.31	0.19	0.55	0.55	0.26	0.55	0.4	0.59	0.49	0.55	0.6	0.19	0.36	0.52	0.33	0.24	0.28	0.24	-0.1
	AU'01	AU 02	AU04	AU05	AU06	AU 07	AU09	AU10	AU11	AU12	AU14	AU 15	AU 17	AU20	AU23	AU24	AU25	AU26	AU28	AU43	0.1

ELA

																					_
BIGSMILE -	0.38	0.34	0.29	0.14	0.57	0.61	0.23	0.67	0.4	0.64	0.59	0.3	0.43	0.22	0.38	0.4	0.58	0.4	0.35	0.12	- 0.7
BLOW -	0.55	0.41	0.34	0.33	0.23	0.33	0.15	0.33	0.38	0.26	0.27	0.5	0.51	0.14	0.29	0.38	0.45	0.37	0.19	0.18	- 0.6
BROW -	0.5	0.43	0.31	0.39	0.1	0.21	0.047	0.18	0.38	0.11	0.39	0.33	0.53	0.089	0.49	0.74	0.18	0.23	0.51	0.11	0.0
KISS -	0.5	0.37	0.34	0.28	0.22	0.36	0.1	0.35	0.38	0.29	0.36	0.47	0.55	0.11	0.37	0.51	0.39	0.34	0.24	0.1	- 0.5
NORMAL -	0.53	0.39	0.38	0.29	0.19	0.33	0.14	0.33	0.38	0.21	0.34	0.46	0.52	0.15	0.35	0.49	0.44	0.37	0.28	0.16	- 0.4
OPEN -	0.58	0.43	0.38	0.31	0.32	0.47	0.21	0.56	0.38	0.36	0.3	0.48	0.44	0.2	0.29	0.28	0.64	0.54	0.19	0.19	- 0.3
PA -	0.54	0.44	0.34	0.28	0.24	0.37	0.13	0.34	0.38	0.28	0.36	0.49	0.54	0.13	0.38	0.51	0.37	0.32	0.29	0.16	
PATAKA -	0.54	0.42	0.33	0.26	0.28	0.39	0.15	0.4	0.38	0.34	0.38	0.48	0.54	0.14	0.37	0.44	0.43	0.35	0.27	0.17	- 0.2
SPREAD -	0.5	0.43	0.3	0.21	0.43	0.46	0.19	0.48	0.39	0.48	0.51	0.46	0.57	0.17	0.38	0.57	0.33	0.26	0.34	0.14	-0.1
	AU'01	AU 02	AU04	AU05	AU06	AU'07	AU 09	AU10	AU11	AU12	AU 14	AU 15	AU 17	AU20	AU23	AU24	AU 25	AU26	AU28	AU43	_

12.

GS

BIGSMILE -	0.49	0.38	0.33	0.15	0.59	0.61	0.26	0.63	0.41	0.6	0.48	0.52	0.54	0.19	0.37	0.44	0.48	0.39	0.19	0.26	- 0.6
BLOW -	0.54	0.42	0.38	0.26	0.35	0.51	0.2	0.49	0.38	0.38	0.32	0.53	0.55	0.18	0.32	0.3	0.54	0.43	0.15	0.2	
BROW -	0.59	0.5	0.34	0.28	0.24	0.38	0.11	0.31	0.38	0.22	0.33	0.57	0.62	0.098	0.41	0.55	0.22	0.2	0.32	0.14	- 0.5
KISS -	0.54	0.42	0.35	0.25	0.32	0.44	0.15	0.42	0.39	0.35	0.37	0.55	0.58	0.13	0.37	0.45	0.38	0.32	0.18	0.17	-0.4
NORMAL -	0.54	0.39	0.37	0.25	0.27	0.42	0.17	0.4	0.38	0.29	0.36	0.53	0.55	0.15	0.34	0.42	0.46	0.37	0.21	0.19	- 0.4
OPEN -	0.55	0.41	0.41	0.26	0.41	0.56	0.28	0.63	0.39	0.41	0.32	0.53	0.45	0.23	0.29	0.26	0.64	0.52	0.16	0.26	- 0.3
PA -	0.58	0.46	0.34	0.28	0.32	0.43	0.15	0.42	0.39	0.36	0.36	0.56	0.57	0.15	0.35	0.44	0.4	0.33	0.2	0.18	
PATAKA -	0.56	0.45	0.35	0.25	0.34	0.46	0.17	0.44	0.39	0.38	0.37	0.56	0.56	0.16	0.33	0.39	0.43	0.33	0.18	0.2	- 0.2
SPREAD -	0.5	0.43	0.31	0.19	0.55	0.55	0.26	0.55	0.4	0.59	0.49	0.55	0.6	0.19	0.36	0.52	0.33	0.24	0.28	0.24	0.1
	AU01	AU02	AU04	AU05	AU06	AU07	AU09	AU10	AU11	AU12	AU14	AU 15	AU 17	AU20	AU23	AU24	AU 25	AU26	AU28	AU43	-0.1

AVC

BIGSMILE -	0.53	0.49	0.29	0.18	0.64	0.63	0.26	0.64	0.4	0.67	0.55	0.49	0.53	0.21	0.35	0.34	0.54	0.33	0.19	0.23	
BLOW -	0.61	0.47	0.34	0.31	0.3	0.42	0.16	0.5	0.38	0.33	0.31	0.48	0.49	0.17	0.32	0.28	0.65	0.5	0.17	0.24	- 0.6
BROW -	0.52	0.45	0.3	0.3	0.21	0.3	0.079	0.33	0.38	0.26	0.45	0.37	0.5	0.12	0.45	0.67	0.28	0.27	0.45	0.14	- 0.5
KISS -	0.57	0.47	0.32	0.27	0.31	0.42	0.16	0.43	0.39	0.36	0.38	0.49	0.52	0.15	0.36	0.44	0.45	0.34	0.21	0.21	
NORMAL -	0.56	0.44	0.35	0.22	0.32	0.43	0.17	0.42	0.39	0.35	0.38	0.53	0.53	0.15	0.36	0.41	0.44	0.37	0.21	0.3	- 0.4
OPEN -	0.59	0.45	0.39	0.27	0.41	0.55	0.28	0.62	0.39	0.41	0.33	0.5	0.44	0.24	0.28	0.26	0.67	0.53	0.17	0.27	- 0.3
PA -	0.58	0.46	0.33	0.3	0.27	0.38	0.12	0.37	0.39	0.3	0.38	0.51	0.53	0.12	0.39	0.5	0.4	0.35	0.24	0.16	
PATAKA -	0.57	0.47	0.33	0.25	0.33	0.42	0.16	0.44	0.39	0.38	0.39	0.53	0.54	0.15	0.34	0.4	0.45	0.36	0.21	0.22	- 0.2
SPREAD -	0.53	0.46	0.29	0.22	0.51	0.49	0.24	0.54	0.4	0.56	0.5	0.5	0.56	0.19	0.35	0.56	0.36	0.25	0.33	0.23	- 0.1
	AU'01	AU 02	AU04	AU05	AU06	AU'07	AU 09	AU10	AU11	AU12	AU14	AU 15	AU 17	AU20	AU23	AU24	AU 25	AU26	AU28	AU43	

Ao final do agrupamento e separação para rodar no algoritmo:

Ao final do agrupamento e separação para rodar no algoritmo:

Box plot dos dados

Box plot dos dados - Média

Box plot dos dados - Média

Box plot dos dados - Variância

Variância

Box plot dos dados - Variância

Box plot dos dados - Variância

Resultados com a modelagem dos algoritmos AM

Modelagem

- Regressão Logística
- Florestas Aleatórias
- Máquina de Vetores de Suporte
- Classificação AdaBoost

Leave-one-out

Método de validação cruzada

Pontuação dos testes

Pontuação de teste do agrupamento por média

■ ADA ■ RL ■ FA ■ SVM

Pontuação de teste do agrupamento por variância

Pontuação dos testes

Média - AVC

Variância - ELA

Variância - AVC

CONCLUSÃO

Este trabalho:

- Doenças Neurológicas
- Fundamentação teórica de AM
- Análise exploratória e modelagem
- Pontuações de teste

Este é um estudo comparativo de AUs entre ELA, AVC e grupo saudável. Um estudo preliminar.

O que podemos concluir?

A pontuação de cada um dos algoritmos ao calcular a média de todas as situações ficou em torno de:

Porém ao analisar por tarefa e comparação de grupo as pontuações são melhores.

Por exemplo, ao comparar o GS e ELA. Olhando a variância dos AUs, na tarefa OPEN o algoritmo SVM pontuou

82% de acerto.

TRABALHOS FUTUROS

Quais trabalhos vem depois?

- Um algoritmo capaz de realizar a distinção da Doença de Alzheimer, ELA e AVC.
- Expansão do banco de dados com novas coletas.
- Criação de dados sintéticos.

ALI, M. R.; MYERS, T.; WAGNER, E.; RATNU, H.; DORSEY, E.; HOQUE, E. Facial expressions can detect parkinson's disease: preliminary evidence from videos collected online. NPJ digital medicine, Nature Publishing Group, v. 4, n. 1, p. 1-4, 2021. Disponível em: https://www.nature.com/articles/s41746-021-00502-8. Acesso em: 22 de | ulho de 2022.

AMOS, B.; LUDWICZUK, B.; SATYANARAYANAN, M. Open Face. 2016. Disponível em: https://cmusatyalab.github.io/openface/. Acesso em: 15 de J ulho de 2022.

AVOLA, D.; FORESTI, G. L.; CINQUE, L.; PANNONE, D. Automatic deception detection in rgb videos using facial action units. Association for Computing Machinery, 2019. Disponível em: https://dl.acm.org/doi/pdf/10.1145/3349801.3349806. Acesso em: 22 de J ulho de 2022.

BANDINI, A.; GUARÍN, D. L.; KULKARNI, M.; LIM, D.; BOULOS, M. I.; ZINMAN, L.; YUNUSOVA, Y.; TAATI, B. A new dataset for facial motion analysis in individuals with neurological disorders. 2021. Disponível em: https://slp.utoronto.ca/faculty/yana-yunusova/ speech-production-lab/datasets/>. Acesso em: 22 de J ulho de 2022.

BATISTA, K. T. Paralisia facial: análise epidemiológica em hospital de reabilitação. Revista Brasileira de Cirurgia Plástica, 2011. Disponível em: https://www.scielo.br/j/rbcp/a/ yKPjVRpLbc9VvvmL9tjmgNn/?format=pdf&lang=pt>. Acesso em: 19 de Julho de 2022.

CHEONG, J. H.; XIE, T.; BYRNE, S.; CHANG, L. J. Py-feat: Python facial expression analysis toolbox. Computer Vision and Pattern Recognition, 2021. Disponível em: https://arxiv.org/ftp/arxiv/papers/2104/2104.03509.pdf. Acesso em: 15 de J ulho de 2022.

CHEONG, J. H.; XIE, T.; BYRNE, S.; CHANG, L. J. *py-feat website*. 2022. Disponível em: https://py-feat.org/pages/intro.html. Acesso em: 15 de J ulho de 2022.

CLARK, U. S.; CRONIN-GOLOMB, S. N. abd A. Specific impairments in the recognition of emotional facial expressions in parkinson's disease. *Neuropsychologia*, Elsevier, 2008. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0028393208001115. Acesso em: 22 de J ulho de 2022.

CORTES, C.; VAPNIK, V. Support-vector networks. Machine Learning, 1995. Disponível em: https://link.springer.com/article/10.1007/BF00994018. Acesso em: 16 de J ulho de 2022.

COURNAPEAU, D.; BRUCHER, M.; PEDREGOSA, F.; VAROQUAUX, G.; GRAMFORT, A.; MICHEL, V. *Scikit-learn*. 2022. Disponível em: https://scikit-learn.org/stable/index.html. Acesso em: 15 de julho de 2022.

EKMAN, P.; FRIESEN, W. V. Facial action coding system. *Environmental Psychology & Nonverbal Behavior*, 1978.

EKMAN, P.; FRIESEN, W. V.; HAGER, J. C. *Facial Action Coding System The Manual*. [S.I.]: Research Nexus division of Network Information Research Corporation, 2002. ISBN 0-931835-01-1

ERKKINEN, M. G.; KIM, M.-O.; GESCHWIND, M. D. Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harbor Perspectives in Biology, 2017. Disponível em: https://pubmed.ncbi.nlm.nih.gov/28716886/>. Acesso em: 22 de J ulho de 2022.

GéRON, A. Mãos à Obra: Aprendizando de Máquina com Scikit-Learn & TensorFlow. [S.l.]: Alta Books Editora, 2019. ISBN 978-85-508-0381-4.

HAMM, J.; KOHLER, C. G.; GUR, R. C.; VERMA, R. Automated facial action coding system for dynamic analysis of facial expressions in neuropsychiatric disorders. *Journal of neuroscience methods*, Elsevier, v. 200, n. 2, p. 237–256, 2011.

HUNTER, J.; DALE, D.; FIRING, E.; DROETTBOOM, M. *matplotlib*. 2022. Disponível em: https://matplotlib.org/. Acesso em: 15 de julho de 2022.

IZBICKI, R.; SANTOS, T. M. dos. *Aprendizado de máquina: uma abordagem estatística, 1a edição*. [s.n.], 2020. ISBN 978-65-00-02410-4. Disponível em: http://www.rizbicki.ufscar.br/AME.pdf>. Acesso em: 22 de J ulho de 2022.

J ACOBSEN, M.; ANDRADE, D. C. de. *Paralisia facial pode ser revertida. Conheça suas principais causas e seus sintomas*. 2017. Disponível em: https://www.hospitalsiriolibanes.org. br/sua-saude/Paginas/paralisia-facial-pode-ser-revertida.aspx>. Acesso em: 22 de J ulho de 2022.

KALIOUBY, R. el; PICARD, R. *Affectiva*. 2022. Disponível em: https://www.affectiva.com/>. Acesso em: 15 de J ulho de 2022.

KHADEMI, M.; MANZURI-SHALMANI, M. T.; KIAEI, M. H. K. A. A. Recognizing combinations of facial action units with different intensity using a mixture of hidden markov models and neural network. Multiple Classifier Systems, 2010. Disponível em: https://link.springer.com/chapter/10.1007/978-3-642-12127-2_31. Acesso em: 20 de J ulho de 2022.

LI, S. Z.; J AIN, A. K. Handbook of face recognition. In: . Boston, MA: Springer US, 2011. cap. Introduction, p. 18–19. ISBN 978-0-85729-931-4. Disponível em: https://link.springer.com/book/10.1007/978-0-85729-932-1. Acesso em: 10 de J ulho de 2022.

LI, Y.; MAVADATI, S. M.; MAHOOR, M. H.; J I, Q. A unified probabilistic framework for measuring the intensity of spontaneous facial action units. IEEE, 2013. Disponível em: https://ieeexplore.ieee.org/document/6553757>. Acesso em: 21 de J ulho de 2022.

LINTS-MARTINDALE, A. C.; HADJ ISTAVROPOULOS, T.; BARBER, B.; GIBSON, S. J. A psychophysical investigation of the facial action coding system as an index of pain variability among older adults with and without alzheimer's disease. Pain medicine, 2007. Disponível em: https://academic.oup.com/painmedicine/article/8/8/678/1909796?login=false. Acesso em: Acesso em 20 de J ulho de 2022.

LOPES, S. C. de S.; MENDES, V. L. F. *Diretrizes de Atenção à Reabilitação da Pessoa com Acidente Vascular Cerebral*. Ministério da Saúde, 2013. ISBN 978-85-334-2083-0. Disponível em: https://bvsms.saude.gov.br/bvs/publicacoes/diretrizes_atencao_reabilitacao_acidente_vascular_cerebral.pdf>. Acesso em: 16 de J ulho de 2022.

MüHLER, V. face-api.js. 2020. Disponível em: https://justadudewhohacks.github.io/face-api.js/docs/index.html>. Acesso em: 15 de J ulho de 2022.

MüLLER, A. C.; GUIDO, S. *Introduction to Machine Learning with Python. A guide for data scientists*. O'Reilly Media, Inc., 2016. ISBN 978-1-449-36941-5. Disponível em: https://www.oreilly.com/library/view/introduction-to-machine/9781449369880/. Acesso em: 22 de J ulho de 2022.

NOLDUS, L. *Noldus*. 2022. Disponível em: https://www.noldus.com/>. Acesso em: 15 de J ulho de 2022.

ORGANIZATION, W. H. *Neurological Disorders public health challenges*. [s.n.], 2006. ISBN 378929241563369. Disponível em: https://www.who.int/publications/i/item/9789241563369>. Acesso em: 5 de J ulho de 2022.

PANTIC, M.; VALSTAR, M.; RADEMAKER, R.; MAAT, L. *MMI Facial Expression Database*. 2002. Disponível em: https://paperswithcode.com/dataset/mmi. Acesso em: 20 de J ulho de 2022.

PRADI, T.; SILVA, L.; BELLON, O. R. P.; DóRIA, G. M. S. Ferramentas de computação visual para apoio ao treinamento de expressões faciais por autistas: uma revis~ao de literatura. ANAIS DO SEMINÁRIO INTEGRADO DE SOFTWARE E HARDWARE (SEMISH), 2016. Disponível em: https://sol.sbc.org.br/index.php/semish/article/view/9525. Acesso em: 22 de J ulho de 2022. 2022.

SIQUEIRA, S. C.; VITORINO, P. V. de O.; PRUDENTE, C. O. M.; SANTANA, T. S. de; MELO, G. F. de. Qualidade de vida de pacientes com esclerose lateral amiotrófica. 2016. Disponível em: http://periodicos.ufc.br/rene/article/view/19230. Acesso em: 22 de J ulho de 2022.

SOUZA, M. S. G. *VIVENDO COM ESCLEROSE LATERAL AMIOTRÓFICA: RELATO DE CASO*. Monografia (Graduação) — Faculdade Doctum de Serra, Serra, 2019. Disponível em: https://dspace.doctum.edu.br/bitstream/123456789/2678/1/VIVENDO%20COM%20ESCLEROSE%20LATERAL%20AMIOTR%C3%93FICA%20RELATO%20DE%20CASO.pdf. Acesso em: 19 de J ulho de 2022.

TANG, P.; LIU, Q.; METAXAS, D. N. Boosting coded dynamic features for facial action units and facial expression recognition. IEEE, 2007. Disponível em: https://doi.org/10.1109/CVPR.2007.383059>. Acesso em: 20 de J ulho de 2022.

TIAN, Y. Ii; KANADE, T.; COHN, J. F. Recognizing action units for facial expression analysis. IEEE, 2001. Disponível em: https://ieeexplore.ieee.org/abstract/document/908962. Acesso em: 22 de J ulho de 2022.

VALSTAR, M.; PANTIC, M. Fully automatic facial action unit detection and temporal analysis. IEEE, 2006. Disponível em: https://ieeexplore.ieee.org/document/1640595>. Acesso em: 22 de J ulho de 2022.

WASKOM, M. seaborn. 2021. Disponível em: https://seaborn.pydata.org/. Acesso em: 15 de julho de 2022.

WATERS, K. A muscle model for animating three-dimensional facial expression. Computer Graphics, 1987. Disponível em: https://dl.acm.org/doi/abs/10.1145/37402.37405. Acesso em: 10 de J ulho de

Ilustrações e Ícones

- Inspiração apresentação: voutube
- Ícones e Ilustrações: <u>flaticor</u>
- Créditos dos artistas dos ícones e ilustrações: Freepik, paulalee, flowicon, Eucalyp, netscript, juicy_fish, Catalin Fertu, Smashicons, Pixel perfect, DinosoftLabs, Becris

Obrigado!

