This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

CLAIMS

		02.12.1.20
	1	1. A laser system comprising:
((2)	(a) a laser generating a main beam;
	3	(b) a guard band aser arranged concentric to the main laser and generating a
	4	guard band beam;
	5	(c) a receiver for receiving the guard band beam;
	6	(d) a trigger circuit coupled to the guard band receiver, the trigger circuit
	7	generating a signal upon interruption of the guard band; and
	8	(e) means responsive to the trigger circuit for altering the performance of the mair
	9	beam upon interruption of the guard band beam.
	1	2. The laser system of Claim 1 wherein the guard band laser is an annular
	2	laser.
	1	3. The laser system of Claim 1 wherein the guard band laser is a set of lasers
	2	arranged concentric to the laser.
	7	4. A laser system having improved signal continuity and safety, comprising:
	16/	(a) a laser including an energy source and optical surface in a chamber coupled to
	/3	an energy pump and providing a laser beam;
	4	(b) a guard laser concentric with the laser including an energy source and an
	5	optical surface in a chamber coupled to an energy pump and providing a guard beam
	6	surrounding the laser beam as a protective layer;
	7	(c) a receiver comprising a central lens for receiving the laser beam and coupled
	8	to a main receiver;

(d) an annular, segmented set of mirrors and lenses surrounding the central lens as 9 a set of parallel receivers for receiving the guard laser beam; 10 (e) a trigger circuit connected to the set of parallel receivers for generating a 11 signal upon interruption of the guard beam; and 12 (f) means responsive to the trigger circuit for altering the laser beam upon 13 interruption of the guard beam. 14 5. 1 The laser system of Claim 4 further comprising: sensor means coupled to the trigger circuit for detecting climatic conditions and preventing shutdown of the main laser. The laser system of Claim 4 further comprising: 6. a return signal laser responding to guard band interruptions as sensed by the trigger circuit and generating a return signal to shut down or modify the signal level of the laser beam. The laser system of Claim 4 further comprising: a buffer circuit for storing ar input signal to the laser prior to shutdown. The laser system of Claim 4 wherein the guard beam is coaxially aligned 8. with the laser beam. 9. The laser system of Claim 4 wherein the guard beam is aligned and cone 2 shaped with respect to the laser beam. 1 10. The laser system of Claim 4 wherein the laser is a continuous wave laser. The laser system of Claim 4 wherein the guard laser is a pulsed laser. 1 11.

- A laser system having improved signal continuity and safety, comprising: 12.
- (a) a continuous wave laser including an energy source and optical surface in a chamber coupled to an energy pump and providing a laser beam;
- (b) a pulsed guard laser concentric with the laser including an energy source and an optical surface in a chamber coupled to an energy pump and providing a coaxially aligned guard beam surrounding the laser beam as a protective layer;
- (c) a receiver comprising a central lens for receiving the laser beam and coupled to a main receiver;
- (d) an annular, segmented set of mirrors and lenses surrounding the central lens as a set of parallel receivers for receiving the guard laser beam;
- (e) a trigger circuit connected to the set of parallel receivers for generating a trigger signal upon interruption of the guard beam;
- (f) a return laser circuit means responsive to the trigger circuit for altering the performance of laser beam upon interruption of the guard beam;
- (g) a buffer circuit coupled to the return laser circuit means for storing an input signal to the laser, prior to shutdown;
- (h) means for discharging the buffer circuit to the laser upon termination of the trigger signal; and
- 19 (i) means for sensing climatic conditions affecting the guard beam and preventing shutdown of the laser.

17

18

- main lens and serving as parallel receivers for the guard laser, a method of providing 3 improved signal continuity and safety for the main laser, comprising the steps of: 4 5 (a) transmitting a laser beam from the main laser to the main lens; 6 (b) transmitting and coaxially aligning a guard beam with the main laser beam 7 as a protective layer surrounding the main laser beam; 8 (c) receiving the main laser beam in the main lens; 9 (d) receiving the guard beam in the segmented set of parallel receivers; 10 (e) detecting an interruption in the protective layer by the set of parallel 11 receivers; 12 generating a signal in response to the interruption of the protective layer; (f) 13 and altering the performance of the main laser beam in response to the 14 (g) <u>ا</u> 15 generated signal. The method of Claim 13 further comprising the step of: 1 14.

1

- generating signals indicative of climatic conditions affecting the low
- 3 power beam; and
 - (i) preventing the termination of the main laser beam in response to such
- 5 climatic conditions.
 - 15. The method of Claim 13 further comprising the step of:
- 2 (j) coupling a return laser to the generated signal for altering the performance
- 3 including shutdown of the main laser in response to the generated signal.

The method of Claim 13 further comprising the step of:

(q)

7

1

16.

restoring the laser beam when the laser beam is re-directed into the area.