FYS3150 - Project 2

Vegard Falmår and Sigurd Sørlie Rustad *Universitetet i Oslo** (Dated: September 30, 2020)

I. INTRODUCTION

The harmonic oscillator (HO) potential appears in many areas within quantum physics. This is because many potentials can be approximated, at least in some intervals, with a HO potential. The most famous example of this might be the model for a hydrogen atom, where the electron is bound to the proton by a HO potential. That is why, in this report, we are going to study both one and multiple electrons in a HO potential. We are also going to account for electrical forces between the particles.

When we try to solve Schrodinger's equation for both one and two particles, we end up with a eigenvalue problem (see theory section). This can be represented with a linear set of equations written on matrix-form (a derivation can be found in our project 1¹). Using Jacobi's rotation algorithm, also described in the theory section, we can diagonalize the matrix to find these eigenvalues and eigenvectors. Then plot the results, comparing them to experimental values.

When implementing algorithms it is important to test your code and make sure it performs as expected. Therefore we perform unit-tests to make sure sections of our program works as expected. We also test the code with a test scenario (buckling beam), which have analytical eigenvalues and eigenvectors. The testing is described in the appendix (section VII).

For our studies we have used c++ for heavy computation, python for visualization and bash for automation. All the code along with instructions on how to run it, can be cloned from our GitHub repository here².

II. THEORY

A. Unitary transformation

The transposed of a unitary matrix (U) is its inverse.

$$U^T = U^{-1}$$

From this we can prove that a unitary transformation preserves the orthonormality of vectors. Consider the set of orthonormal vectors $\{\mathbf{v}_i\}_i$ and the unitary transformation $\{U\mathbf{v}_i\}_i = \{\mathbf{w}_i\}_i$.

$$\mathbf{w}_i^T \mathbf{w}_j = (U \mathbf{v}_i)^T U \mathbf{v}_j$$
$$= \mathbf{v}_i^T U^T U \mathbf{v}_j = \mathbf{v}_i^T \mathbf{v}_j$$
$$= \delta_{i,j}$$

We notice that orthonormality is perserved.

B. Jacobi's rotation algorithm

Jacobi's rotation algorithm uses unitary transformations to diagonalize a matrix. A detailed description of the algorithm can be found here [1], however we will describe it briefly. In order to diagonalize a given matrix A, as mentioned over, we perform a series of unitary transformations.

$$B = U_n^T U_{n-1}^T ... U_0^T A U_0 ... U_{n-1} U_n$$

Here U_i are the unitary matrices and B the resulting diagonal matrix. An example of how U_i can look is given under.

$$\begin{bmatrix} 1 & 0 & \dots & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 & \dots & 0 & 0 \\ \dots & 0 & \dots \\ 0 & 0 & \dots & \cos \theta & 0 & \dots & 0 & \sin \theta \\ 0 & 0 & \dots & 0 & 1 & \dots & 0 & 0 \\ \dots & 1 & \dots \\ 0 & 0 & \dots & -\sin \theta & 0 & \dots & 0 & \cos \theta \end{bmatrix}$$

The geometric interpretation is that U_i performs a rotation on T in order to zero out non-diagonal elements. It turns out that the fastest way to do this, is to zero out the largest non-diagonal matrix-element. First We define:

$$\cot(\theta) = \tau = \frac{a_{ll} - a_{kk}}{2a_{kl}},$$

Where a_{kl} is the largest non-diagonal element in A. Now to shorten notation we use $\tan(\theta) = t = s/c$, where $s = \sin(\theta) \wedge c = \cos(\theta)$. By defining θ such that a_{kl} becomes zero we get the quadratic equation

$$t^2 + 2\tau t - 1 = 0 \implies t = -\tau \pm \sqrt{1 + \tau^2},$$

and can also obtain c and s

* vegardfa@uio.no; sigurdsr@gmail.com

$$c = \frac{1}{1 + t^2} \land s = tc.$$

 $^{^{1}\} github.com/sigurdru/FYS3150/blob/master/Project1/tex/Project1.pdf$

² github.com/sigurdru/FYS3150/tree/master/Project2

The actual transformation is defined by the set of equations

$$b_{ik} = a_{ik}c - a_{il}s, i \neq k, i \neq l$$

$$b_{il} = a_{il}c + a_{ik}s, i \neq k, i \neq l$$

$$b_{kk} = a_{kk}c^{2} - 2a_{kl}cs + a_{ll}s^{2}$$

$$b_{ll} = a_{ll}c^{2} + 2a_{kl}cs + a_{kk}s^{2}$$

$$b_{kl} = (a_{kk} - a_{ll})cs + a_{kl}(c^{2} - s^{2})$$
(1)

Where b_{ij} are elements in B, again see [1] for a more detailed description of the algorithm. The last line in 1 effectively sets the element to zero. By doing this manually, we can safely cut the number of FLOPS.

An interesting question is; what happens to the eigenvectors and eigenvalues? Because B is diagonal the eigenvectors are just vectors with a 1 in one element and 0 everywhere else. We consider an arbitrary eigenvector \mathbf{v} and eigenvalue λ that satisfy

$$B\mathbf{v} = \lambda \mathbf{v}.$$

Applying the unitary transforms we get

$$B\mathbf{v} = U_n^T U_{n-1}^T ... U_0^T A U_0 ... U_{n-1} U_n \mathbf{v}$$

We notice that this is true if

$$\mathbf{v}' = U_0 \dots U_{n-1} U_n \mathbf{v} \tag{2}$$

is an eigenvector with eigenvalue λ that satisfy

$$A\mathbf{v}' = \lambda \mathbf{v}'$$

Therefore, if you have the eigenvector \mathbf{v} and matrices U_i you can find \mathbf{v}' with equation (2).

It is clear that the rotation of the matrix will give nonzero values to elements off the three diagonals that were zero to begin with. In order to estimate the number of floating point operations needed for the entire diagonalization process, we need to calculate the number of FLOPS in each iteration, as well as estimate the total number of iterations needed to make the off-diagonal elements as small as we require.

It is rather straightforward to calculate the approximate number of FLOPS for each iteration from equations 1. The two first expressions are evaluated for all i from 0 to n-1 where n denotes the size of the matrix. (We actually skip the two values i=k and i=l, but for large n this is negligible.) In each of these lines there are 3 FLOPS, bringing the total number of FLOPS for these two lines to approximately 6n per iteration. The expressions on the next two lines sum up to around 18 FLOPS. (We skip the last line by manually setting the value to zero). In addition to this, we have around 13 FLOPS for calculating the values c and s as well as 6n FLOPS related to the eigenvectors. In total, we have roughly 12n+31 FLOPS per iteration.

In each iteration, a new element above and below the diagonal is set to zero. In future iterations these values may change to be non-zero again, but for simplicity let us say that it suffices to visit each non-diagonal element once. This would require roughly $n^2/2$ iterations as this is the approximate number of elements above or below the diagonal and we in each iteration set to zero an element below and above the diagonal. The total amount of FLOPS for the diagonalization would then be

$$N_{\text{FLOPS}} = \frac{n^2}{2}(12n + 31) \approx 6n^3 + 15n^2$$

C. Electrons in a harmonic oscillator potential

It turns out that if you try to solve Schrodinger's equation you end up with a eigenvalue problem. We will derive the math here, but everything is taken from here [2]. First we consider the Schrodinger's equation for one electron. Because of spherical symmetry we only need to look at the radial part.

$$-\frac{\hbar^2}{2m} \left(\frac{1}{r^2} \frac{d}{dr} r^2 \frac{d}{dr} - \frac{l(l+1)}{r^2} \right) R(r) + V(r)R(r) = ER(r)$$
(3)

Where R(r) is the radial wave equation, V(r) the potential, l orbital momentum and r distance from the origin. Now because we only have one electron we end up with the HO potential $V(r) = (1/2)kr^2$. Substituting R(r) = (1/r)u(r) and $\rho = (1/\alpha)r$ (where α is a constant with dimension length) we obtain

$$-\frac{\hbar^2}{2m\alpha^2}\frac{d^2}{d\rho^2}u(\rho) + \left(V(\rho) + \frac{l(l+1)}{\rho^2}\frac{\hbar^2}{2m\alpha^2}\right)u(\rho) = Eu(\rho).$$

Setting the orbital momentum l=0, inserting $V(\rho)=(1/2)k\alpha^2\rho^2$ and defining

$$\alpha \equiv \left(\frac{\hbar^2}{mk}\right)^{1/4} \wedge \lambda \equiv \frac{2m\alpha^2}{\hbar} E$$

Schrodinger's equation can then be described by the simple equation (4).

$$-\frac{d^2}{d\rho^2}u(\rho) + \rho^2 u(\rho) = \lambda u(\rho) \tag{4}$$

Now we can expand our model to two particles with Coulomb potential between them. First introducing the relative position ${\bf r}$ and center-of-mass coordinate ${\bf R}$

$$\mathbf{r} = \mathbf{r_1} - \mathbf{r_2} \wedge \mathbf{R} = \frac{1}{2(\mathbf{r_1} + \mathbf{r_2})}.$$

Where $\mathbf{r_1}$ and $\mathbf{r_2}$ are the particles positions. Then the radial Schrodinger's becomes

$$\left(-\frac{\hbar^2}{m}\frac{d^2}{dr^2} - \frac{\hbar^2}{4m}\frac{d^2}{dR^2} + \frac{1}{4}kr^2 + kR^2\right)u(r,R) = E^{(2)}u(r,R).$$

 $E^{(2)}$ denotes the fact that we are looking at the total energy of two particles. From an ansatz for the wave equation, we can perform separation of variable on r and R.

$$u(r,R) = \psi(r)\phi(R) \wedge E^{(2)} = E_r + E_R$$

Adding the Coulomb potential

$$\frac{\beta e^2}{r}$$

between the two electrons we get

$$\left(-\frac{\hbar^2}{m}\frac{d^2}{dr^2} + \frac{1}{4}kr^2 + \frac{\beta e^2}{r}\right)\psi(r) = E_r\psi(r).$$

Again introducing $\rho = r/\alpha$ and defining a few variables

$$\omega_r^2 \equiv \frac{1}{4} \frac{mk}{\hbar^2} \alpha^4 \wedge \alpha \equiv \frac{\hbar^2}{m\beta e^2} \wedge \lambda \equiv \frac{m\alpha^2}{\hbar^2} E$$

We arrive at the Schrodinger's equation (5)

$$-\frac{d^2}{d\rho^2}\psi(\rho) + \omega_r^2 \rho^2 \psi(\rho) + \frac{1}{\rho}\psi(\rho) = \lambda \psi(\rho)$$
 (5)

III. METHOD

As mentioned in the theory section, when you study one or more particles in a HO potential, you get a eigenvalue problem. For one particle this is given by equation (4). From Project 1 (see the theory section in [?]) we know this type of differential equation creates a set of equations, that can be represented as follows.

$$\begin{bmatrix} d_1 & e_1 & 0 & 0 & \dots & 0 & 0 \\ e_1 & d_2 & e_2 & 0 & \dots & 0 & 0 \\ 0 & e_2 & d_3 & e_3 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & e_{N-3} & d_{N-2} & e_{N-2} \\ 0 & \dots & \dots & \dots & \dots & e_{N-2} & d_{N-1} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ \dots \\ u_N \\ u_{N-1} \end{bmatrix} = \lambda \begin{bmatrix} u_1 \\ u_2 \\ \dots \\ u_{N-1} \\ u_{N-1} \end{bmatrix}$$

Where $e_i = -1/h^2$, $d_i = 2/h^2 + \rho_i^2$ and $h = (\rho_N - \rho_0)/N$. ρ_0 and ρ_N are the endpoints that in reality goes from $\rho_0 = 0$ to $\rho_N = \infty$. Of course we cannot do this for $\rho_N = \infty$, so we have to decide on a maximum we want to evaluate. We do this with trial end error. Our other problem is to decide the number of integration points N. As with the endpoint ρ_N we try for different values and interpret the solutions.

We can solve this with Jacobi's rotation algorithm described in the theory section. In order to do this we use the sets of equations (1). To make sure algorithm was implemented properly we performed several tests. First unit-tests to make sure small chunks run as expected, then with a buckling beam problem that has analytical eigenvalues and eigenvectors. Further information on the tests can be found in the appendix (section VII).

When we introduce another particle we end up with equation (5). This will also have the same shape as equation (6), the only difference being the value of diagonal elements

$$d_i = \frac{2}{h^2} + \omega_r^2 \rho_i^2 + \frac{1}{\rho_i}.$$

We can then implement Jacobi's rotation algorithm the same way we did for one particle.

IV. RESULTS

To test our algorithm we used two unit tests, one to test that we find expected indexes and one to test right eigenvalues and eigenvectors. All the tests passed and the results can be found in the appendix VII.

Confident in our algorithm we went fourth with the quantum mechanical systems. For one particle the resulting eigenvector can be seen in figure 1. We notice that the eigenstate has a maximum at around $\rho=1$ and goes towards zero at the ends. In order to produce this plot we tested for different integration points n and endpoints ρ_N . We found $\rho_N=5$ and n=200 to be reasonable, however all the plots, except those with very low ρ_N and n, are almost indistinguishable.

Figure 1. In this figure you see the eigenvector/eigenstate for one particle in a HO potential corresponding to the smallest eigenvalue λ_1 , i.e the lowest energy value. Along the x-axis we have dimensionless length ρ and along the y-axis we have the elements of the eigenvector scaled to unit length. In the label we have the corresponding eigenvalue $\lambda_1 = 3.000$. The number of integration points is n = 200.

Figure 2. The radial wave function $\psi(\rho)$ for a system of two electrons interacting through the Coulomb potential in a harmonic oscillator well. This is the function corresponding to the smallest eigenvalue λ_1 , i.e the lowest energy value. The number of integration points is n=200. The eigenvector is normalized to length 1.

	N	BB	QM1	QM2
ľ	10	173	161	178
Γ	50	6241	6059	6137
ľ	100	25789	25285	25344
	200	104882	102937	103182

Table I.

V. DISCUSSION

VI. CONCLUSION

VII. APPENDIX

A. Buckling beam

The simplest use case for our algorithm is a second order differential equation like 4 and 5, but without the potential. One such example is equation 7 for the vertical displacement $u(\rho)$ of a horisontal beam of length L when a force is applied in the x-direction towards the origin. $\rho = x/L \in [0,1]$, where L is the length of the beam, is a dimensionless length. The constant λ can be expressed as $\lambda = FL^2/\gamma$, where F is the applied force and γ is a constant defined by properties like the rigidity of the beam.

$$-\frac{d^2}{d\rho^2}u(\rho) = \lambda u(\rho) \tag{7}$$

Discretizing this equation gives a matrix equation on

the form of equation 6 with $e_i = e = -1/h^2$ and $d_i = d = 2/h^2$, where h again is the step size. This is a tridiagonal Toeplitz matrix which has analytical eigenvalues described by 8 and analytical eigenvectors described by 9, both for j = 1, 2, ..., N-1. Figure 3 shows the eigenvector corresponding to the smallest eigenvalue, both computed and analytic, for n = 200 integration points.

$$\lambda_{j} = d + 2e \cos\left(\frac{j\pi}{N}\right)$$

$$\mathbf{u}_{j} = \left[\sin\left(\frac{j\pi}{N}\right), \sin\left(\frac{2j\pi}{N}\right), ..., \sin\left(\frac{(N-1)j\pi}{N}\right)\right]^{T}$$
(9)

Figure 3. The displacement $u(\rho)$ of a buckling beam corresponding to the smallest eigenvalue λ_1 . The number of integration points is n=200. The eigenvector is normalized to length 1.

B. Unit-tests

There are several sections in this code that can be tested independently. We have developed tests for a general tridiagonal Toeplitz matrix that checks that the program finds the correct indices k and l for the largest off-diagonal element in the matrix and that the computed eigenvalues and eigenvectors match the analytic results in equations 8 and 9. For n=10, the tests pass with a tolerance of 10^{-3} for the eigenvalues and 10^{-2} for each element in the eigenvector corresponding to the smallest eigenvalue. Figure 3 displaying the results of the algorithm does indeed show a very good correspondence between computed and analytic results.

[2] OPPGAVETEKST REF