Longitudinal Stability

Fuselage Length

L (f) 2.997

Wing Center of Lift

L_ctr (x/L) <u>0.1</u> m.a.c. (ft) <u>0.792825</u>

Load Summary (fuselage)

Load Type	Magnitude		x/L_end	resultant	M @C_lift	dw
	(lbs)		_	x/L	f-lb (+ cw)	
Fuel	0.1	0.2	0.4	0.3	0.05994	0.02
Payload	<u>0</u>	0.4	0.5	0.45	0	0
Fus.Struct.	<u>2</u>	0	1	0.5	2.6198316	0.1040656
Engine(s)	0.64	0	0.1	0.05	-0.095799	0.2131
Wing Struct.	<u>0.35</u>	0.4	0.6	0.5	0.41958	0.07
Horiz. Tail	0.07	0.85	1	0.925	0.1791806	0.0181172
Vert. Tail	<u>0.17</u>	0.85	1	0.925	0.4139261	0.0418526
Other	<u>-2.02</u>	0	1	0.5	-2.418348	-0.096062
ΣL	<u>1.49725</u>			ΣM	1.1783112	
		-	•			-
Tail Lift (req)	0.4765619	0.85	1	0.925	1.1783112	0.1191405

Center of Gravity

X_cg / L 0.3625905 X_cg (ft) 1.0866836 f

Static Margin

S.M. -0.992632 unstable

Longitudinal Stability Coefficient:

Wing Parameters:

 $\begin{array}{lll} S_w & 6.3843036 \text{ f}^{\circ}2 \\ (C_L_\alpha)_w & 0.0827664 \text{ (deg)}^{\circ}-1 \\ x_w & 0.7869836 \text{ f} \\ \text{cbar} & 0.792825 \text{ f} \end{array}$

Horiz. Tail Paramters:

 $\begin{array}{lll} \text{(C_L$_$\alpha$)$_$ht} & & \text{0.111 (deg)$^-$1} \\ \text{de/d}\alpha & & \text{0.3 Fig. 11.3} \\ \end{array}$

 η_ht 1 1.6855414 f S_ht 0.9733914 f^2

Engine Parameters

```
V 1925.7 f/s d\beta/d\alpha 1
```

Calculations

V_bar_hs 0.3241426

inlet effect 3.283E-05 unstable wing effect 4.7072288 unstable check: $C_M_\alpha = -S_M^*C_L_\alpha$ 4.7072288

h. tail effect 1.4430445 unstable

C_M_α **3.2641514** unstable

Directional Stability Coefficient:

Wing Parameters:

7 A_w 0 deg Λ λ 1 S_w 6.3843036 f^2 b 5.5497748 f -4 f z w C L (cruise) 0.201 Fuselage Parameters: 0.333 f

h 0.333 f w 0.333 f Vol_f 1 f^3

Vertical Tail Parameters:

 $\begin{array}{cccc} (C_L_\alpha)_vs & 0.111 \text{ (deg)^-1} \\ I_vs & 1.6855414 \text{ f} \\ S_vs & 0.5450992 \text{ f^2} \\ \Lambda \text{ vs} & 0 \text{ deg} \end{array}$

Calculations

V bar vs 0.0259314

 $(1+d\sigma/d\beta)q/q$ -3.887172 Eq[11.42]

v. tail effect -0.64107 Eq[11.40] unstable fuse. effect -0.036691 Eq[11.44] unstable wing effect 0.0004593 Eq[11.43] stable

C_n_β -0.677301 unstable

C_Lβ **0.6773012** unstable

Rudder Sizing

Input Parameters

diam_e 0.9 f V_T-O 22.778695 f/s rho_T-O 0.076474 lbm/f^3

Calculations

1.2V_T-O 27.334434 f/s 0.2V_T-O 4.555739 f/s q 0.8872543 lbs/f^2 D_e 0.6773361 lbs

 $C_n \delta R$:

Asy. Power 0.0617248 [rad]^-1 Eq[11.47] Cross Wind 0.3386506 [rad]^-1 Eq[11.50]

 $d\alpha_0L/d\delta_r$ 2.2815903 Eq[11.51]

C_R/C_VS 10 % Fig. 11.9