Лекція 17. Числення предикатів

17.1. Формальна теорія К

У логіці предикатів, на відміну від логіки висловлювань, немає ефективного способу для розпізнавання, чи є формула загальнозначущою. Тому аксіоматичний метод стає істотним при вивченні формул, які містять квантори. Визначення загальнозначущих формул, так само, як і в численні висловлювань, здійснюється введенням деякої сукупності формул, що називаються аксіомами, а також правил виведення, які дають змогу з одних загальнозначущих формул одержувати інші.

<u>Означення 17.1.</u> Числення предикатів К (теорія першого порядку К) — це аксіоматична теорія, символами якої ϵ :

- пропозиційні зв'язки ¬, →;
- квантори загальності ∀ та існування ∃;
- допоміжні символи: кома ",", та дужки "(", ")";
- предметні змінні х₁, х₂,...;
- предметні константи а₁, а₂,...;
- функціональні символи $f_1, f_2, ...;$
- предикатні символи P₁, P₂,...

Означення формули 16.4 поширюється на числення предикатів, з тією різницею, що тут використовуються тільки два символи пропозиційних зв'зок: \neg та \rightarrow .

Аксіоми числення К розбиваються на **логічні** аксіоми та **власні**. Наступні формули ϵ логічними аксіомами числення К.

```
A1. A \rightarrow (B \rightarrow A);
```

$$A2.(A\rightarrow(B\rightarrow C))\rightarrow((A\rightarrow B)\rightarrow(A\rightarrow C));$$

$$A3. (\neg B \rightarrow \neg A) \rightarrow ((\neg B \rightarrow A) \rightarrow B).$$

А4. $\forall x A(x) \to A(y)$, якщо у вільно для x в формулі A(x).

A5. $\forall x(A \rightarrow B(x)) \rightarrow (A \rightarrow \forall xB(x))$, якщо A не містить вільних входжень x.

Власні аксіоми формулюються окремо для кожної конкретної предметної області.

Правилами виведення у численні К є наступні:

- 1) modus ponens (MP): A, $A \rightarrow B \models B$.
- 2) правило **узагальнення** Gen: з $\Gamma \models A(x)$ слідує $\Gamma \models \forall x A(x)$, якщо x не входить вільно в жодну з формул Γ .

Як і в численні висловлювань L, наведені аксіоми числення К ϵ не конкретними аксіомами, а схемами аксіом.

Моделлю теорії першого порядку К називається довільна інтерпретація, в якій істинні всі аксіоми теорії К. Якщо правила виведення MP та Gen застосовуються до істинних в даній інтерпретації формул, то результатом ϵ формули, які також істинні в тій самій інтерпретації.

Множина формул, які виводяться за правилами виведення з аксіом теорії K, ε теоремами теорії K. Аксіоми A1, A2, A3 теорії K та правило MP визначені в теорії K, відповідно, всі теореми теорії K відповідно, всі теореми теорії K.

<u>Теорема 17.1.</u> Формула $\forall x A(x) \to A(y)$, де змінна у вільна для x в формулі A(x), загальнозначуща.

Доведення. Нехай $x, x_1, ..., x_n$ – усі вільні змінні формули A(x). Тоді $y, x_1, ..., x_n$ – перелік вільних змінних формули $\forall x A(x) \to A(y)$. Розглянемо довільну інтерпретацію з областю інтерпретації D.

Нехай [b, $a_1,...,a_n$], де b, $a_i \in D$ $(1 \le i \le n)$ — довільний набір значень вільних змінних формули $\forall x A(x) \to A(y)$. Доведемо, що на цьому наборі формула $\forall x A(x) \to A(y)$ набуває значення істина (T). Справді, для формули A(x) або існує елемент $a_0 \in D$ такий, що в наборі $[a_0, a_1,...,a_n]$ значень вільних змінних $x, x_1,...,x_n$ формула A(x)=F, або для будь-якого елемента $a \in D$ у наборі $[a, a_1,...,a_n]$ значень вільних змінних $x, x_1,...,x_n$ формула A(x)=T.

У першому випадку $\forall x A(x) = F$ і тоді $\forall x A(x) \rightarrow A(y) = T$.

У другому випадку $\forall x A(x) = T$ та A(y) = T на наборі [b, a_1, \dots, a_n] і тоді $\forall x A(x) \to A(y) = T$. \blacktriangleright

<u>Теорема 17.2.</u> Формула $\forall x(A \rightarrow B(x)) \rightarrow (A \rightarrow \forall x B(x))$, де A не містить вільних входжень x, - загальнозначуща.

Доведення. Доведення аналогічно попередній теоремі.

Таким чином, ми показали, що схеми аксіом A4 та A5 ε загальнозначущими в теорії К. Загальнозначущість схем A1 — A3 була розглянута раніше (див. лекцію 15) при розгляді числення висловлювань L.

<u>Теорема 17.3.</u> Формула, яка отримується із загальнозначущої формули за допомогою правил виведення MP та Gen, ϵ загальнозначущою.

Доведення. Для правила MP це автоматично випливає з того, що воно зберігає логічне слідування (див. теорему 14.3).

Розглянемо правило Gen. Нехай, множина Γ містить одну формулу B (доведення досить легко узагальнити на довільну кількість формул з Γ). Припустимо, що ми обрали область інтерпретації D та провели заміну в формулі A всіх вільних змінних на елементи з D, наприклад, x=b, $b\in D$. З $B \models A(b)$ отримуємо $B\to A(b)=T$ за теоремою 14.1. Це виконується для всіх x, тобто $\forall x(B\to A(x))=T$. Змінна x не входить вільно у формулу B, отже формула $\forall x(B\to A(x))\to (B\to \forall xA(x))-$ загальнозначуща (за теоремою 17.2). Таким чином, з формул $\forall x(B\to A(x))$ та $\forall x(B\to A(x))\to (B\to \forall xA(x))$ за правилом MP отримуємо $B\to \forall xA(x)=T$, тобто $B \models \forall xA(x)$.

Розглянемо приклади виведень у численні К.

 $\models \forall x \forall y A(x,y) \rightarrow \forall y \forall x A(x,y)$

- 1. $\forall y A(x,y) \rightarrow A(x,y)$ аксіома A4
- 2. $\forall x \forall y A(x,y) \rightarrow \forall y A(x,y)$ akcioma A4
- 3. $\forall x \forall y A(x,y) \rightarrow A(x,y)$ наслідок 1 з теореми дедукції числення L
- 4. $\forall x (\forall x \forall y A(x,y) \rightarrow A(x,y)) \rightarrow (\forall x \forall y A(x,y) \rightarrow \forall x A(x,y))$ akcioma A5
- 5. $\forall x (\forall x \forall y A(x,y) \rightarrow A(x,y))$ за правилом Gen з 3
- 6. $\forall x \forall y A(x,y) \rightarrow \forall x A(x,y)$ за правилом MP з 4 та 5
- 7. $\forall y (\forall x \forall y A(x,y) \rightarrow \forall x A(x,y)) \rightarrow (\forall x \forall y A(x,y) \rightarrow \forall y \forall x A(x,y))$ akcioma A5
- 8. $\forall y (\forall x \forall y A(x,y) \rightarrow \forall x A(x,y))$ за правилом Gen з 6
- 9. $\forall x \forall y A(x,y) \rightarrow \forall y \forall x A(x,y)$ за правилом MP з 7 та 8

Розглянемо виведення правила екзистенціонального узагальнення: $A(y) \models \neg \forall x \neg A(x)$, де x вільно для y в A(x).

- 1. A(y) гіпотеза
- 2. $(\neg\neg\forall x\neg A(x)\rightarrow\neg A(y))\rightarrow (A(y)\rightarrow\neg\forall x\neg A(x))$ теорема L7
- 3. $\forall x \neg A(x) \rightarrow \neg A(y)$ akcioma A4
- 4. $\neg\neg \forall x \neg A(x) \rightarrow \forall x \neg A(x)$ теорема L4
- 5. $\neg \neg \forall x \neg A(x) \to \neg A(y)$ наслідок 1 з теореми дедукції числення L
- 6. $A(y) \to \neg \forall x \neg A(x)$ за правилом MP з 2 та 5
- 7. $\neg \forall x \neg A(x)$ за правилом MP з 1 та 6

17.2. Теорема дедукції

Теорема дедукції в численні К відрізняється від теореми дедукції для числення L. Для формулювання цієї теореми нам потрібні будуть деякі додаткові означення та результати.

<u>Означення 17.2.</u> Нехай $A, B_1, ..., B_n$ – формули числення предикатів. Нехай $B_1, ..., B_n$ – це виведення в численні предикатів. Будемо говорити, що формула B_i залежить у виведенні від формули A, якщо виконується одна з умов:

- а) В_і є сама формула А і включена у вивід на цій підставі;
- б) B_i отримана за одним із правил виведення із попередніх формул, з яких хоча б одна залежить від формули A.

<u>Теорема 17.4.</u> Нехай Γ , $A
ightharpoonup B і при цьому у виводі формула B не залежить від формули A. Тоді <math>\Gamma
ightharpoonup B$.

Доведення. Доведення будемо проводити по індукції за довжиною виводу.

- 1) n = 1. Тоді очевидно, що формула B може бути або аксіомою, або належати Γ і за означення $\Gamma \models B$.
 - 2) Нехай теорема виконується для виводу довжиною n-1.
- 3) Покажемо, що теорема виконується для виводу довжиною п. Якщо вивід має вигляд B_1 , ..., B_n , то B_n може бути отримана як аксіома, як формула із Γ або виведена із попередніх за правилами виводу, де ні одна із попередніх не залежить від A. В перших двох випадках, очевидно, $\Gamma \models B$. В третьому, оскільки B_n отримана за правилами виводу із попередніх формул, то за індуктивним припущенням ні одна з B_1 , ..., B_{n-1} не залежить від A і існує вивід B_1 , ..., B_{n-1} з Γ , і, оскільки застосування правил виводу не виводить нас за рамки множини Γ , то таким чином $\Gamma \models B$. \blacktriangleright

З використання цього результату можна показати, що теорема дедукції виконується, якщо в виводі не зв'язується квантором вільна змінна, яка переноситься вправо.

<u>Теорема 17.5</u> (теорема дедукції Ербрана). Якщо Γ , $A \models B$ і при цьому в виводі при застосуванні правила узагальнення Gen до формул, залежних в виводі від A, не зв'язується квантором ніяка вільна змінна формули A, то $\Gamma \models A \rightarrow B$.

<u>Наслідок 1.</u> Якщо Γ , $A \models B$ і при цьому в виводі не використовується правило узагальнення, то $\Gamma \models A \rightarrow B$.

<u>Наслідок 2.</u> Якщо Γ , $A \models B$ і при цьому A замкнена формула, то $\Gamma \models A \rightarrow B$.

17.3. Прикладні теорії першого порядку

В даному підрозділі будуть представлені дві прикладні теорії першого порядку: теорія рівностей та формальна арифметика.

Розглянемо теорію першого порядку T, у числі предикатних символів якої міститься предикат рівності $A^2(t,s)$, який для скорочення будемо позначати t=s, а замість $\neg A^2(t,s)$ відповідно будемо писати $t\neq s$.

<u>Означення 17.3.</u> Теорія T називається **теорію першого порядку з рівністю**, якщо наступні формули ϵ аксіомами теорії T:

```
A6. \forall x \ (x=x) рефлективність рівності; A7. (x=y) \to (A(x) \to A(x)\{y/x\}) підстановка рівності,
```

де х та у — предметні змінні, A(x) — довільна формула, $A(x)\{y/x\}$ отримується заміною яких-небудь (не обов'язково всіх) вільних входжень х на у, якщо у вільно для тих входжень х, які замінюються.

Доведемо основні теореми теорії К.

<u>Теорема 17.6.</u> | t=t для довільного терму t.

Доведення. З А6: $\models \forall x \ (x=x) \ \text{та A4:} \ \models \forall x \ (x=x) \to (t=t) \ \text{за правилом MP отримуємо t=t.} ▶$ $Теорема 17.7. <math>\models x=y \to y=x$.

Доведення. Нехай A(x) ε x=x, $A(x)\{y/x\}$ ε y=x. Тоді:

- 1) $= (x=y) \rightarrow ((x=x) \rightarrow (y=x))$ arcioma A7;
- 2) = x=x теорема 17.6;
- 3) \models (x=y) \rightarrow (y=x) за наслідком 2 теореми дедукції для числення L. \blacktriangleright

<u>Теорема 17.8.</u> $\models x=y \rightarrow (y=z \rightarrow x=z)$.

Доведення. Нехай $A(y) \in y=z$, $A(y)\{x/y\} \in x=z$. Тоді:

- 1) $\models (y=x) \to ((y=z) \to (x=z))$ аксіома A7;
- 2) $= (x=y) \to (y=x)$ за теоремою 17.7;
- 3) \models x=y \rightarrow (y=z \rightarrow x=z) за наслідком 1 теореми дедукції для числення L. \blacktriangleright

Наведемо тепер означення формальної арифметики A, яка була вперше введена Пеано. Означення 17.4. **Формальна арифметика** A – це числення предикатів, в якому є:

- 1. Предметна константа 0.
- 2. Двомісні функціональні символи + та ×, одномісний функціональний символ '.

- 3. Двомісний предикат = (. ¬= позначатимемо через ≠).
- 4. Власні схеми аксіом:

E1.
$$(P(0) \land \forall x (P(x) \rightarrow P(x'))) \rightarrow \forall x P(x)$$

E2. $t_1' = t_2' \rightarrow t_1 = t_2$
E3. $t' \neq 0$
E4. $t_1 = t_2 \rightarrow (t_1 = t_3 \rightarrow t_2 = t_3)$
E5. $t_1 = t_2 \rightarrow t_1' = t_2'$
E6. $t + 0 = t$
E7. $t_1 + t_2' = (t_1 + t_2)'$
E8. $t \times 0 = 0$
E9. $t_1 \times t_2' = t_1 \times t_2 + t_1$

Тут P – довільна формула, а t, t_1 , t_2 – довільні терми теорії A. Схема аксіом E1 виражає принцип математичної індукції.

17.4. Модельні властивості числення К

Розглянемо модельні властивості теорії першого порядку К.

<u>Теорема 17.9.</u> Формальна теорія першого порядку К ϵ несуперечливою.

Доведення. Для всякої формула A з K нехай h(A) означає формулу, яка отримана з формули A шляхом опускання в ній всіх кванторів і термів разом зі всіма відповідними дужками і комами. Наприклад:

$$\begin{aligned} &h(\forall x P(y,x) \to Q(y)) = P \to Q; \\ &h(\neg \forall z P(x,a,z) \to Q(f(y))) = \neg P \to Q. \end{aligned}$$

Із визначення h випливає, що $h(\neg A) = \neg h(A)$ та $h(A \rightarrow B) = h(A) \rightarrow h(B)$. А звідси маємо, що всяка аксіома A1 - A5 перетворюється на тавтологію. Дійсно, це очевидно для A1 та A3, а для A4 маємо:

$$h(\forall x A(x) \rightarrow A(t)) = A \rightarrow A,$$

що теж є тавтологією. Далі

$$h(\forall x(A \to B(x)) \to (A \to \forall xB(x))) = (A \to B) \to (A \to B).$$

Значить, якщо h(A) – тавтологія, то і $h(\forall x)$ – тавтологія, крім того, як ми впевнились, коли h(A) і $h(A \rightarrow B)$ – тавтології, то і h(B) – тавтологія.

Таким чином, якщо $A \in$ теоремою у K, то h(A) - тавтологія. Якби існувала така формула B, що $\models_K B$ і $\models_K \neg B$, то формули B та $\neg B$ одночасно були б тавтологіями, що неможливо в силу того, що числення висловлювань ϵ несуперечливою теорією. \blacktriangleright

На відміну від логіки висловлювань, логіка предикатів ϵ нерозв'язуваною. Наведемо це твердження без доведення.

<u>Теорема 17.10</u> (теорема Черча). Не існує алгоритму, який для будь-якої формули логіки предикатів установлює, чи ε вона загальнозначущою, чи ні.

<u>Теорема 17.11</u> (теорема про повноту – без доведення). Теоремами числення предикатів К ϵ ті й тільки ті формули, які ϵ загальнозначущими.

Теорії першого порядку мають певні обмеження. Ці обмеження встановлюють дві теореми Геделя про неповноту. Доведення цих теорем виходить далеко за межі цього курсу, тож тут вони наводяться тільки у вигляді формулювань

<u>Теорема 17.12</u> (перша теорема Геделя про неповноту). У будь-якій достатньо багатій теорії першого порядку (зокрема, в довільній теорії, яка включає формальну арифметику), існує така істинна формула A, що ні A, ні \neg A не виводяться в цій теорії.

Твердження про теорію першого порядку також могуть бути сформульовані у вигляді формул теорії першого порядку. Так твердження о властивостях формальної арифметики можуть бути сформульовані як арифметичні вирази.

<u>Теорема 17.13</u> (друга теорема Геделя про неповноту). У будь-якій достатньо багатій теорії першого порядку (зокрема, в довільній теорії, яка включає формальну арифметику), формула А, яка стверджує несуперечність цієї теорії, в ній не виводиться.