Detecting Cancer Metastases on Gigapixel Pathology Images

Final Project of Applied Deep Learning

Rui Bai (rb3454) Yichi Liu (yl4327)

Project Introduction

- Motivation
- Flow of the Project

Motivation

- Metastasis detection :
 - Detect whether the breast cancer has spread to nearby cells
 - Early diagnosis will help doctors to give treatment
- However, manually labelling the cell will be time-consuming.
- We designed an automatically Metastasis detection model on the Pathology image with CNN models

Flow of the Project

- Project Flow Introduction: introduce the overall steps as below
- Data Processing
 - Training & Validation & Testing
 - Patch extraction for training & validation data
- Model Architectures
 - Different transferred models
 - Different Scales
- Heatmap Construction
- Model Comparison
- Comparison of Results
- Final Prediction for 3 testing data

Data Processing

- Training & Validation & Testing
- Patch Extraction for Training& Validation data

Training & Validation & Testing

- Some slides have little cancer cell.
 We don't take them into consideration
- Training and Validation Image:Patches from 8 slides:
 - slide 016, 031, 064, 075, 078, 084, 094, 101
 - o Training: 80% of patches
 - Validation: 20% of patches
- Testing Image:
 - Patches from 3 slides:
 - Slide 091, 096, 110
- Observation: Imbalanced dataset

Slide 035: Almost no cancer cell. Drop it.

Positive Patch Extraction for Training & Validation data

Randomly Get 200 Positive 299*229 patches:

- If the center point of the patches is not cancer: Drop 150
 it
- If the center point of the patches is cancer:
 Save the patch and label as Positive

Negative Patch Extraction for Training & Validation data

Randomly Get 200 Negative 299*229 patches:

- If the center point is not tissue (intensity > 0.8): Drop 150
 it
- If the center point is tissue:
 - If the center region (128*128) contains cancer:

Drop it

 If the center region doesn't contain cancer:
 Save the patch and label as Negative

Condition a:

No tissues at the center point.

Solution:

Drop it

Condition b:

The center region (128*128) contains cancer. **Solution:**

Drop it

Condition c:

The center region (128*128) has no cancer.

Solution:

Label is **NEG**

Avoiding Memory Issues

- Don't Read the whole slide image
- Extract the mask and the slide image only with size 229*229
- Save the patches into folders

We could run our script with even level 0 without crashing in Colab (without update to Colab Pro)

Negative Extraction for Training & Validation data

- Randomly Get 200 Positive patches:
 - Conditions:
 - If
- Negative patches:
 - Get tissue pixels
 - Randomly select a tissue pixels to capture a patch
 - Check if tumor in center region
 - If yes: drop it
 - If no: extract this patch

Conditio n a:

Multi Scale Patch Extraction

Data Augmentation

- Augmentations from the paper:
 - Rotate the patch by 0°, 90°, 180°, 270°
 - Apply a left-right flip and repeat rotations
 - Perturb color
 - Small offset of some pixels
- Additional augmentations we did:
 - Apply an up-down flip, since pathology slides do not have canonical orientations

Model Architectures

Model Architecture

Heatmap Construction

Heatmap Construction Methodology

For each testing slide:

- Sliding a window of size 299*299 through the entire image to extract patches
- Using stride = 128 to match the center region's size, so that the prediction do not overlap
- Predict only If the patch contains tissue in its center 128*128 region

Prediction of Patch

For each patch, we calculate prediction result in two ways:

Method 1:

Do a single Prediction on the patch

Method 2:

Apply the rotations and left-right flip to obtain predictions for each of the 8 orientations, and average the 8 predictions.

8 Orientations:

Average the 8 predictions

Model Comparison

Single-Scale Models Comparison

Scale Level	Model	Parameters	Validation Accuracy	Best:
Level 1	InceptionV3	Transferred	0.9594	Fine Tuned InceptionV3
		Fine Tuned	0.9891	
Level 2		Transferred	0.9297	
		Fine Tuned	0.9812	Worst: ResNet50
Level 3		Transferred	0.9484	
		Fine Tuned	0.9703	
Level 1	ResNet50	Transferred	0.80	Thus, we used InceptionV3 model for the following analysis
		Fine Tuned	0.82	

Multi-Scale Models Comparison

Scale Level	Model	Parameters	Validation Accuracy	Best:
Level 1 & 2	InceptionV3	Transferred	0.9869	Worst: Transferred InceptionV3 Using Scale Levels 1 & 2 Worst: Transferred InceptionV3 Using Levels 1 & 3 We used fined tuned InceptionV3 model for the following analysis
		Fine Tuned	0.9906	
Level 2 & 3		Transferred	0.9731	
		Fine Tuned	0.9859	
Level 3 & 4		Transferred	0.9650	
		Fine Tuned	0.9859	
Level 1 & 3		Transferred	0.9516	
		Fine Tuned	0.9641	

Model Training Process -- For the best model

- Fine-tuned Interception based model
- Take level 1 and level 2 as input. Level 1 is the reference level that we label the patch.
- We used early stopping to prevent overfitting
- Learning rate was set to 0.0001

Comparison of Results

This section uses one of the test data, Slide 091, for comparison.

Comparison 1: Single-scale v.s. Multi-scale

50 -100 -150 -200 -250 -300 -350 -400 -0 150 250 350 460

Single-scale Level 1
Precision: 0.65, Recall: 0.72
F1 score: 0.69, AUC score:0.96

F1 score: 0.73. AUC score: 0.97

0
50
100
150
200
250
300
Single-scale Level 2
Precision: 0.34, Recall: 0.81
F1 score: 0.48, AUC score: 0.97

Multi Scale

Comparison 2: Low Levels v.s. High Levels Scales

F1 score: 0.66. AUC score: 0.98

Comparison 3:

Large v.s. Small Surrounding Context

F1 score: 0.56. AUC score: 0.98

Metrics

Comparison 4: Single Prediction v.s. Mean of 8 Predictions Per Patch

200 - 200 -

Single-scale Level 1 - Single Prediction Precision: 0.65, Recall: 0.72 F1 score: 0.69, AUC score: 0.96

Single-scale Level 1 - Mean of 8 Predictions Precision: 0.74, Recall: 0.74 F1 score: 0.74, AUC score: 0.97

Multi-scale Levels 1 & 2 - Single Prediction Precision: 0.63, Recall: 0.87 F1 score: 0.73, AUC score: 0.97

Multi-scale Level 1&2 - Mean of 8 Predictions Precision: 0.60, Recall: 0.58 F1 score: 0.59, AUC score: 0.96

Summary of the Result Analysis

- Multi-scale is better than Single-Scale
- Lower Level is better than Higher Level
- Smaller surrounding area is better than larger surrounding area
- Mean prediction of 8 variations is better than a single prediction of a patch

Best Heatmap Predicting Solution:

- Using multi-scale model of level 1&2
- Calculating the mean prediction of 8 variations of each patch

Final Prediction

Predicting the heatmaps for the 3 test slides

Final Predicted Heatmaps on Slide 091

True label

Predicted using Multi-scale model with level 1&2

Precision score: 0.63 Recall score: 0.87 F1 score: 0.73 AUC score: 0.97

Final Predicted Heatmaps on Slide 110

True label

Predicted using Multi-scale model with level 1&2

Precision score: 0.96 Recall score: 0.96 **F1 score: 0.96**

AUC score: 0.99

Final Predicted Heatmaps on Slide 096

True label

Predicted using Multi-scale model with level 1&2

Precision score: 0.38 Recall score: 0.73 F1 score: 0.50 AUC score: 0.94

Thanks for Watching!

Logic

- Project flow introduction: introduce the overall steps as below
- Data Processing
 - Training & Validation & Testing
 - Some slides has only a little tumor, we dropped them
 - 3 for testing 8 for training and validation
 - Patch extraction for training & validation data
- Model Architectures
 - Transferred
 - InceptionV3 unfix (fine tuned)
 - InceptionV3 unfix (fixed)
 - ResNet unfix (fine tuned)
 - Scales
 - Single Scale: level 1,2,3
 - Multi-scale: level 1&2, 2&3, 3&4, 1&3
- Heatmap Construction
 - Sliding window to extract patches that contain tissue in center part
 - Each patch predict 1 time v.s. predict 8 times?
- Model comparison (表格)
 - o Val acc (excel 前两个sheet)
 - Single-scale
 - Multi-scale
 - o 结论: 用inceptionV3, 从这之后不show ResNet
- Model comparison w.r.t. heatmaps of 091 (next page)
- Final heatmaps for 3 testing data (091, 110, 096) using the best model

Model comparison w.r.t. heatmaps of 091

- Single or Multi (3 列点点, 横轴是ref level)
 - o Inception level 1 v.s. Inception level 1&2
 - o Inception level 2 v.s. Inception level 2&3
 - o Inception level 3 v.s. Inception level 3&4 不要了
 - 结论: multi的比single好
- Low or high ref level
 - o Inception level 1&2 v.s. 2&3 v.s. 3&4
 - 结论:low ref level更好
- How large surrounding area to consider
 - o Inception level 1&2 v.s. 1&3
 - 结论:adjacent的更好
- Predict 1 time or 8 times?
 - o Inception level 1: 1 time v.s. 8 times
 - o Inception level 1&2: 1 time v.s. 8 times
 - 结论:八次的更好
- Final model:
 - Inception level 1&2 unfix 8 times