

Verilog Simulation & Debugging Tools

數位電路實驗

Author: Trumen

Outline

- VCS
- nWave
- Verdi

VCS

Introduction to VCS

- The Synopsys VCS® functional verification solution is a Verilog digital logic simulator.
- We can use VCS to
 - Compiles the Verilog source files.
 - Elaborates the design and generates a simulation snapshot.
 - Simulates the snapshot.

Before Using VCS

- Source the environment settings of CAD tools.
 - > source /usr/cad/synopsys/CIC/vcs.cshrc
- If you try entering the command "vcs" but it turns out "command not found," it means there's something wrong with the "*.cshrc" file or the software license is out of date.

Running VCS (1/3)

Run the Verilog simulation:

```
vcs -full64 -R +v2k ./Lab0_alu_tb.v ./Lab0_alu.v -debug_access+all \
-P /usr/cad/synopsys/verdi/cur/share/PLI/VCS/LINUX64/novas.tab \
/usr/cad/synopsys/verdi/cur/share/PLI/VCS/LINUX64/pli.a
```

Another choice of running Verilog simulation:

```
vcs -full64 -R -f Lab0_alu_file.f
```

```
In LabO_alu_file.f

1 +v2k
2 -debug_access+all
3 -P /usr/cad/synopsys/v
4 /usr/cad/synopsys/verd
5
6 LabO_alu_tb.v
7 LabO_alu.v
```


Running VCS (2/3)

- For Verilog-2001 support, add
 - +v2k
- For SystemVerilog support, add
 - -sverilog

Running VCS (3/3)

Waveform dumping example for testbench

```
initial begin
    $fsdbDumpfile("exp2_rsa.fsdb");
    $fsdbDumpvars;
end
initial begin
    $dumpfile("exp2_rsa.vcd");
    $dumpvars;
end
```

- *.fsdb has smaller file size than *.vcd. But \$fsdbDumpfile cannot work without sourcing verdi.cshrc.
 - > source /usr/cad/synopsys/CIC/verdi.cshrc

Simulation Results

 Check the simulation result to see if the Verilog design is finished correctly.

```
*Verdi* : Create FSDB file 'alu.fsdb'

*Verdi* : Begin traversing the scope (test_alu), layer (0).

*Verdi* : Enable +mda and +parameter dumping.

*Verdi* : End of traversing.

Congratulations!! Your Verilog Code is correct!!

$finish called from file "./Lab0_alu_tb.v", line 314.

$finish at simulation time 26214620

VCS Simulation Report

Time: 2621462000 ps

CPU Time: 2.010 seconds; Data structure size: 0.0Mb
Thu Sep 7 14:20:26 2023
```


nWave

Introduction to nWave

- nWave is one of the best waveform (*.vcd or *.fsdb) viewer.
- We can debug easily by checking the waveform file dumped during simulation.

Before Using nWave

- Source the environment settings of CAD tools.
 - > source /usr/cad/synopsys/CIC/license.csh
 - > source /usr/spring_soft/CIC/verdi.cshrc

Start nWave

Type the following command:

nWave &

 Also, the token "&" enable you to use the terminal while Verdi is running in the background.

Open the FSDB File

Choose Signals

Browse the Whole Waveform

Browse the Specified Interval

Search for Specified Signal

Change Sign Representation

Change Radix Representation

Change Signal Position

Signal Aliasing

Reload the Waveform

 Remember to reload the waveform whenever finishing another Verilog simulation.

Reference

- "Cadence NC-Verilog Simulator Tutorial" by Cadence
- 2. "Introduction to Verdi" by Abel Hu
- 3. "Verdi³ datasheet" by Synopsys

