BUNDESREPUBLIK DEUTSCHLAND

Docket No. Q80493 Inventor: Yoshinobu YAMAZAKI, et al Title: METHOD OF TREATING HYPERACTIVE BLADDER USING PHENOXYACETIC ACID DERIVATIVES Filing Date: March 26, 2004

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

103 20 084.3

Anmeldetag:

5. Mai 2003

Anmelder/Inhaber:

Kissei Pharmaceutical Co., Ltd.,

Matsumoto, Nagano/JP

Bezeichnung:

Verwendung von Phenoxyessigsäurederivaten

zur Behandlung der hyperaktiven Blase

IPC:

A 61 K, A 61 P

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 6. Februar 2004

Deutsches Patent- und Markenamt

Der Präsident
Im Auftrag

Dzierzon

10

Verwendung von Phenoxyessigsäurederivaten zur Behandlung der hyperaktiven Blase

Die vorliegende Erfindung betrifft ein neues Indikationsgebiet für Phenoxyessigsäurederivate, gemäß der europäischen Patentanmeldung EP 1095932. Es wurde jetzt gefunden, dass sich die dort beschriebenen Verbindungen zur Herstellung eines Medikaments zur Behandlung der Hyperaktiven Blase (englisch: Overactive Bladder: OAB) eignen. Dementsprechend steht mit diesen Wirkstoffen eine Methode zur Behandlung dieses urologischen Krankheitsbildes zur Verfügung.

Stand der Technik

verwechselt werden.

Die Blasenfunktionsstörung OAB ist eine chronische, weit verbreitete Erkrankung, die in den Industrieländern schätzungsweise mehr als 50 Millionen Menschen betrifft. Entsprechend der in 2002 publizierten neuen Terminologie der International Continence Society wird die OAB symptomatisch diagnostiziert. Als Symptome der OAB gelten imperativer Harndrang mit oder ohne Dranginkontinenz, in der Regel, aber nicht zwingend verbunden mit Pollakisurie und Nykturie. Die OAB ist auch durch unwillkürliche Detrusorkontraktionen gekennzeichnet, die entweder durch Provokation ausgelöst werden oder spontan auftreten. Man kann zwei Arten von Detrusorhyperaktivität unterscheiden: Liegen beobachteten Detrusorhyperaktivität der neurologische Ursachen zugrunde (z.B. M. Parkinson, Apoplex, einige Formen der Muliplen Sklerose oder des Rückenmark-Querschnitts) spricht man von neurogene Detrusorhyperaktivität. 25 Kann keine klare Ursache erkannt werden spricht man idiopathischen Detrusorhyperaktivität. Die OAB hat ein eigenständiges, von anderen Krankheiten mit ähnlicher Symptomatik unterscheidbares Krankheitsbild und darf mit solchen Krankheiten, wie z.B. Infektionen der unteren Harnwege, Urothelcarcinome, Harnabflussstörungen etc. nicht

30

20

Zu den wenigen etablierten Behandlungsformen gehören Medikamente mit Antimuskarinika als aktiven Wirkstoff. Vertreter dieser Wirkstoffklasse können aufgrund schlechter Selektivität für die Harnblase zu geringer Verträglichkeit oder zu Mundtrockenheit führen. Derartige Nebenwirkungen können therapielimitierend sein.

25 V

- Die EP 1095932 offenbart eine Reihe von Phenoxyessigsäurederivaten aus der Reihe der Katecholamine. Diese Verbindungen besitzen eine dem Noradrenalin nachempfundene Seitenkette, wobei jedoch nicht nur die benzylische Hydroxygruppe, sondern auch die homobenzylische Aminogruppe an ein asymmetrisches Kohlenstoffatom gebunden ist. Den dort beschriebenen Verbindungen wird eine positive Wirkung bei der Behandlung der
 Harninkontinenz zugeschrieben. Die Schrift schweigt sich über die Wirkung dieser Substanzen bin Bezug auf die Behandlung der hyperaktiven Blase aus.
 - Es wurde nun gefunden, dass sich diese Verbindungen auch zur Behandlung des urologischen Phänomens der hyperaktiven Blase eignen.

Beschreibung der Erfindung

Es ist ein Anliegen der vorliegenden Erfindung, Medikamente für die Indikation hyperaktive Blase bereit zu stellen.

Als weitere Aufgabe soll durch die vorliegende Erfindung eine neue Therapiemöglichkeit zur Behandlung der hyperaktiven Blase geschaffen werden.

Eine weitere Aufgabe der Erfindung besteht darin, neue medizinisch-pharmazeutische Einsatzmöglichkeiten für Phenoxyessigsäurederivate aus der Reihe der Katecholamine zu finden.

- Eine weitere Aufgabe der Erfindung besteht darin, mit Phenoxyessigsäurederivate aus der Reihe der Katecholamine die Lebensqualität von Menschen mit urologischen Beschwerden, Fehl- oder Überfunktionen, insbesondere von Menschen mit hyperaktiver Blase, zu verbessern.
- Dabei ist es ein Anliegen der vorliegenden Erfindung, Medikamente bereit zu stellen, die gezielt die entsprechende physiologische Fehlfunktion behandeln, ohne dabei inakzeptable Nebenwirkungen aufzuweisen, welche die Lebensqualität der betroffenen Menschen vermindern.

5 Beschreibung der Erfindung im Detail

Die vorliegende Erfindung betrifft die Verwendung von Phenoxyessigsäurederivaten gemäß der EP 1095932 zur Herstellung eines Medikaments zur Behandlung der hyperaktiven Blase. Gemäß der EP 1095932 handelt es sich bei den der erfindungsgemäßen Verwendung zugrunde liegenden Verbindungen um beta-3-Adrenoceptor-Agonisten. Insbesondere können die Substanzen eingesetzt werden zur Behandlung von neurogener Blasenhyperaktivität, neurogene Detrusorhyperaktivität, aber auch zur Behandlung der idiopathischen Blasenhyperaktivität und idiopathischen Detrusorhyperaktivität.

Die der erfindungsgemäßen Verwendung zugrund liegenden Verbindungen werden durch die folgende allgemeine Formel I repräsentiert:

Formel I:

20

10

wobei

X ein chirales Kohlenstoffatom mit R- oder S-, bevorzugt S-Konfigurie ist,

Y ein chirales Kohlenstoffatom mit R- oder S-, bevorzugt R-Konfigurie ist, wobei die beiden Stereozentren X und Y bevorzugt inverse Konfigurien aufweisen, d.h. (R;S) oder (S; R) aufweisen;

10.

30

35

R1 eine Hydroxygruppe, C₁-C₆-Alkoxygruppe, eine Aryl- C₁-C₆-alkoxygruppe, eine primäre Aminogruppe oder eine mono oder di (C₁-C₆-Alkyl)aminogruppe ist;

eine der Gruppen R2 und R3 ein Wasserstoffatom, bevorzugt R2, der andere Rest ein Wasserstoffatom, eine C₁-C₆-Alkylgruppe, eine Trifluormethylgruppe oder eine C₁-C₆-Alkoxygruppe ist;

R4 ein Halogenatom, eine C₁-C₆-Alkylgruppe, eine Halo(C₁-C₆-Alkyl)- Gruppe, eine Hydroxygruppe, eine C₁-C₆-Alkoxygruppe, Aryl- C₁-C₆-alkoxygruppe, eine C₁-C₆-Alkoxygruppe, eine Cyanogruppe, eine Nitrogruppe, eine Aminogruppe, eine mono oder di(C₁-C₆-Alkyl)aminogruppe, eine Carbamoylgruppe, eine mono oder di(C₁-C₆-Alkyl)carbamoylgruppe ist oder R4 entspricht der Gruppe –NHCOR5, wobei R5 ein Wasserstoffatom oder eine C₁-C₆-Alkylgruppe ist; oder ein pharmazeutisch akzeptables Salz davon.

20 In der vorliegenden Erfindungsbeschreibung bedeuten die Begriffe:

Halogenatom: Fluor (F), Chlor (Cl), Brom (Br) oder Jod (I);

C₁-C₆-Alkyl: ein verzweigter oder unverzweigter Alkyl- Rest mit 1 bis 6 Kohlenstoffatomen, wie 25 Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, sec.Butyl, tert.Butyl, Pentyl, Isopentyl, Hexyl, etc.;

C₁-C₆-Alkoxy: ein verzweigter oder unverzweigter Alkoxy-Rest mit 1 bis 6 Kohlenstoffatomen, Methoxy, Ethoxy, Propoxy, Isopropoxy, Butoxy, Isobutoxy, sec.Butoxy, tert.Butoxy, Pentoxy, Isopentoxy, Hexoxy,etc.;

Aryl: Pheny, Naphthyl;

mono oder di $(C_1-C_6-Alkyl)$ aminogruppe: bedeutet eine Aminogruppe mit einem oder zwei gleichen oder verschiedenen $C_1-C_6-Alkyl$ resten;

5

mono oder di $(C_1-C_6-Alkyl)$ carbamoylgruppe: bedeutet eine Carbamoylgruppe mit einem oder zwei gleichen oder verschiedenen $C_1-C_6-Alkyl$ resten an der N-Funktion.

Herstellungsmethoden für die genanten Verbindungen sind in der EP 1095932 offenbart.

Analoge Herstellungsmethoden können für die Synthese von Trifluormethly-Derivaten angewandt werden.

Bevorzugte Verbindungen sind solche gemäß der allgemeinen Formel I, wobei

X ein chirales Kohlenstoffatom mit S-Konfigurie ist,

Y ein chirales Kohlenstoffatom mit R-Konfigurie ist,

R1 eine Hydroxygruppe, C₁-C₃-Alkoxygruppe, eine Aryl- C₁-C₃-alkoxygruppe ist;

eine der Gruppen R2 und R3 ein Wasserstoffatom ist, bevorzugt R2, der andere Rest ist eine C₁20 C₃-Alkylgruppe ist;

R4 eine C_1 - C_3 -Alkylgruppe ist;

oder ein pharmazeutisch akzeptables Salz davon.

Im Rahmen der vorliegenden Erfindung sind die Verbindungen gemäß der allgemeinen Formel II oder pharmakologisch akzeptable Salze davon, besonders bevorzugt

Formel II:

wobei

5

X ein chirales Kohlenstoffatom mit R- oder S-, bevorzugt S-Konfigurie ist,

Y ein chirales Kohlenstoffatom mit R- oder S-, bevorzugt R-Konfigurie ist,

wobei die beiden Stereozentren bevorzugt inverse Konfigurien aufweisen, d.h. (R;S) oder (S; R); aufweist,

R für eine Hydroxygruppe, eine Methoxy oder Ethoxygruppe, bevorzugt Hydroxygruppe oder Ethoxygruppe steht.

- 15 Am stärksten bevorzugt sind die Verbindungen
 - (-)-Ethyl 2-[4-(2-{[(1S,2R)-2-hydroxy-2-(4-hydroxyphenyl)-1-methylethyl]amino}-2,5-dimethylphenoxy]acetat und

 $\label{lem:condition} $$(-)-2-[4-(2-\{[(1S,2R)-2-hydroxy-2-(4-hydroxyphenyl)-1-methylethyl]amino}-2,5-dimethylphenoxy] acetat.$

20

Die erfindungsgemäße Verwendung kann mit den neutralen Verbindungen als auch mit einem Säureadditionssalz oder einem Solvat durchgeführt werden. Beispiele für solche Salze sind solche mit Mineralsäuren, wie Salzsäure, Brom-Wasserstoff, Schwefelsäure, Phosphorsäure oder organische Säuren wie Essigsäure, Zitronensäure, Weinsäure, Äpfelsäure, Bernsteinsäure,

Fumarsäure, p-Toluolsulfonsäure, Benzolsulfonsäure, Methansulfonsäure, Milchsäure, Ascorbinsäure und andere.

Die Salze können aus den Neutralverbindungen nach bekannten Methoden hergestellt werden.

Als Salzformen ist jeweils das Hydrochlorid bevorzugt. In diesem Zusammenhang wird besonders auf die WO 2003024916 verwiesen, auf die hiermit ausdrücklich Bezug genommen wird. Unter den oben erwähnten Salzen ist die in der WO 2003024916 beschriebene Verbindung (-)-Ethyl 2-[4-(2-{[(1S,2R)-2-hydroxy-2-(4-hydroxyphenyl)-1-methylethyl]amino}-2,5-dimethylphenoxy]acetat hydrochlorid im Rahmen der vorliegenden Erfindung besonders bevorzugt.

Die durch die Formel I oder II charakterisierten Verbindungen sind erfindungsgemäß Bestandteil einer pharmazeutischen Formulierung oder eines Medikaments.

Erfindungsgemäß soll die Krankheit hyperaktive Blase durch Verabreichung einer der erfindungsgemäßen Verbindungen, pharmazeutischen Formulierungen oder Medikamente behandelt werden.

Die erfindungsgemäße Medikation kann oral, inhalativ, intravenös, transdermal oder als 20 Suppositorium appliziert werden. Bevorzugt ist die orale Applikation.

Um die optimale Dosis des Wirkstoffs für die erfindungsgemäße Verwendung zu bestimmen, müssen verschiedene Rahmenbedingungen berücksichtigt werden, wie beispielsweise Alter und Körpergewicht des Patienten, Natur und Stadium der Erkrankung.

Die für den Menschen bevorzugte Dosis liegt zwischen 0,001 mg und 1 g pro Tag, bevorzugt beträgt sie zwischen 10 mg und 500 mg.

In einigen Fällen kann auch eine geringere Menge genügen, während in anderen Fällen eine größere Gesamtmenge notwendig sein kann.

Die tägliche Gesamtdosis kann in Abhängigkeit des Therapieregiments als Einmalgabe oder portionsweise mehrmals am Tag eingenommen werden. Das Therapieregiment kann auch Abstände zwischen den Einnahmen vorschreiben, die länger als ein Tag sind.

30

25

- Für die orale Applikation stehen verschiedene, phamrazeutische Formulierungen zur Verfügung, wie beispielsweise Feststoffe, Flüssigkeiten, Pulver, Puder, Tabletten, zuckerüberzogene Tabletten, Kapseln, Dragées, Granulate, Suspensionen, Lösungen, Sirup, Sublingualtabletten oder andere Formen.
- Ein Pulver kann beispielsweise hergestellt werden, in dem die Partikel der aktiven Substanz durch Mahlen auf eine geeignete Größe gebracht werden.

 Verdünnte Pulver können dadurch hergestellt werden, dass der pulverförmige aktive Wirkstoff mit einem untoxischen Trägermaterial, wie beispielsweise Laktose fein vermahlen und als Pulver ausgebracht wird. Andere diesbezüglich geeignete Trägermaterialien sind andere Kohlenhydrate, wie Stärke oder Mannitol. Gegebenenfalls können diese Pulver Geschmacksstoffe, Konservierungsstoffe, Dispergierungsagentien, Farbmittel und andere pharmakologische Hilfsstoffe enthalten.
- Kapseln können ausgehend von einem Pulver der oben genannten Art oder anderen Pulvern

 hergestellt werden, die in eine Kapsel, bevorzugt eine Gelatinekapsel, eingebracht werden und die Kapsel danach geschlossen wird.
- Es ist auch möglich, dass aus dem Stand der Technik bekannte Schmierstoffe in die Kapsel eingebracht werden oder für den Verschluss der beiden Kapselteile verwendet werden. Die Wirksamkeit einer Kapsel bei oraler Einnahme kann dadurch verstärkt werden, dass disintegrierende oder solubilisierende Stoffe hinzugegeben werden, wie beispielsweise Carboxymethylzellulose, Carboxymethylzellulosecalcium, niedrig substituierte Hydroxyprophylzellulose, Calciumcarbonat, Natriumcarbonat und andere Stoffe. Der Wirkstoff kann in der Kapsel nicht nur als Feststoff, sondern auch suspendiert vorliegen, beispielsweise in Pflanzenöl, Polyethylenglykol, Glycerol mit Hilfe von oberflächenaktiven Substanzen usw.

Tabletten können hergestellt werden, in dem die pulverförmige Mischung gepresst wird und anschließend z.B. zu Granulaten weiterverarbeitet wird. Die Tabletten können verschiedene Hilfsstoffe beinhalten, wie z.B. Stärken, Milchzucker, Rohrzucker, Glukose (z.B. für

- Vaginaltabletten), Natriumchlorid, Harnstoff für Lösungs- u. Injektionstabletten, Amylose, verschieden Zellulosearten wie oben beschrieben und andere.

 Als Feuchthaltemitte können beispielsweise Glycerin oder Stärke verwendet werden.
- Als Sprengmittel können beispielsweise Stärke, Alginsäure, Calciumalginat, Pektinsäure, pulverisierter Agar-Agar, Formaldehydgelatine, Calciumcarbonat, Natriumbicarbonat, Magnesiumperoxid, Amylose verwendet werden.
- Als Gegensprengmittel oder Lösungsverzögerer kommen beispielsweise Rohrzucker, Stearin, festes Paraffin, (bevorzugt mit einem Schmelzbereich von 50-52°C); Kakaofett, hydrierte Fette in Betracht.
 - Als Resorptionsbeschleuniger eignen sich unter anderem quaternäre Ammoniumverbindungen, Natriumlaurylsulfat, Saponine.
- Als Bindemittelverteiler kann z.B. Ether verwendet werden und als Hydrophilisierungsmittel beziehungsweise als Zerfallsbeschleuniger Cetylalkohol, Glycerinmonostearat, Stärke, Milchzucker, Netzmittel (z.B. Aerosol OT, Pluronics, Tweens) und andere.
- Pöfizer crystalline sorbitol, Plasdone, Polyethylenglykole, Polyvinylpyrrolidon, Précirol, Rinderklauenöl (hydriert), Schmelztablettengrundmasse, Silicone, Stabiline, Sta-rx 1500, Syloid, Tablettengrundmasse Waldhof, Tablettol, Talcum cetylatum u. stearatum, Tego-Metallseifen, Traubenzucker u. Tylose. Besonders geeignet ist das Tablettierhilfsmittel K (M25), das im übrigen den Anforderungen der nachfolgenden Pharmakopoen entspricht: DAB, Ph, Eur, BP u.
- 35 NF.

Auch andere Hilfsstoffe aus dem Stand der Technik können verwendet werden.

Die Tabletten können beispielsweise durch Direktverpressung hergestellt werden.

Auch andere oral applizierbare Formulierungen wie Lösungen, Sirup, Elixier usw. können hergestellt werden. Gegebenenfalls kann die Verbindung mikroverkapselt werden.

Eine parenterale Verabreichung kann dadurch hergestellt werden, dass die Verbindung in einer Flüssigkeit gelöst wird und subkutan, intramuskulär oder intravenös injiziert wird. Als Lösungsmittel eignet sich beispielsweise Wasser oder ölige Medien.

Zur Herstellung von Suppositorien, z.B. Vaginalzäpfchen, kann die Verbindung mit niedrigschmelzenden und wasserlöslichen oder wasserunlöslichen Materialien wie Polyethylenglykol, Kakaobutter, höheren Estern (beispielsweise Moerysthyl, Palmitat) oder Gemischen daraus formuliert werden.

Zur Herstellung von transdermalen Applikationsformen können Salben, Cremes oder Pflaster verwendet werden.

25 | Beispiele

20

Zur Wirkung von (-)-2-[4-(2-{[(1S,2R)-2-hydroxy-2-(4-hydroxyphenyl)-1-methylethyl]amino}-2,5-dimethylphenoxy]acetat, dem aktiven Metaboliten von (-)-Ethyl 2-[4-(2-{[(1S,2R)-2-hydroxy-2-(4-hydroxyphenyl)-1-methylethyl]amino}-2,5-dimethylphenoxy]acetat, einem neuen beta-3-Agonist auf den isolierte Affen-Detrusor.

30

Die vorliegenden Experimente belegen die Wirkung von (-)-2-[4-(2-{[(1S,2R)-2-hydroxy-2-(4-hydroxyphenyl)-1-methylethyl]amino}-2,5-dimethylphenoxy]acetat auf den isolierte Affen-Detrusor.

5 Methode

10

20

35

Der Detrusor von Cynomolgus Affen (beiderlei Geschlecht) wurde isoliert und präpariert. Auch wurden tracheale, atriale und urethrale Präparationen hergestellt. Dann wurde die Wirkung von (-)-2-[4-(2-{[(1S,2R)-2-hydroxy-2-(4-hydroxyphenyl)-1-methylethyl]amino}-2,5-dimethylphenoxy]acetat auf den Tonus des Detrusor-Präparats getestet. Ebenfalls wurden Carbachol-induzierte tonische Kontraktionen der tracheale Präparate, die Herzrate der atrialen Präparate und Endthelin-1 induzierte tonische Kontraktionen der urethralen Präparate nach der Methode von Magnus untersucht.

Ergebnisse

Sowohl (-)-2-[4-(2-{[(1S,2R)-2-hydroxy-2-(4-hydroxyphenyl)-1-methylethyl]amino}-2,5-dimethylphenoxy]acetat als auch Isoproterenol erniedrigen den Tonus des isolierten Affen-Detrusor. Der EC50 Wert beider Substanzen lag bei 8.2×10⁻⁷ M, bzw.1.9×10⁻⁷ M. Keine signifikante Entspannung wurde unter den beiden anti-muscarinen Wirkstoffen Propiverin oder Oxybutynin beobachtet. Isoproterenol erniedrigte die Carbachol-induzierte tonische Kontraktion der isolierten Trachea (beta 2-AR-stimulierte Funktion) und erhöhte die Herzrate der isolierten Atria (beta1-AR- stimulierte Funktion), jeweils Konzentrations-abhängig. (-)-2-[4-(2-{[(1S,2R)-2-hydroxy-2-(4-hydroxyphenyl)-1-methylethyl]amino}-2,5-dimethylphenoxy]acetat zeigte geringere Auswirkungen auf die Trachea und Atria. Die Detrusor-Selektivität von (-)-2-[4-(2-{[(1S,2R)-2-hydroxy-2-(4-hydroxyphenyl)-1-methylethyl]amino}-2,5-dimethylphenoxy]acetat lag um das etwa dem 1200 fache (gegenüber Trachea) und das 80 fache (gegenüber Atria) höher. (-)-2-[4-(2-{[(1S,2R)-2-hydroxy-2-(4-hydroxyphenyl)-1-methylethyl]amino}-2,5-dimethylphenoxy]acetat zeigte keine Wirkung auf die Endthelin-1-induzierte tonische Kontraktion der isolierten Urethra.

30 Schlussfolgerung

(-)-2-[4-(2-{[(1S,2R)-2-hydroxy-2-(4-hydroxyphenyl)-1-methylethyl]amino}-2,5-dimethylphenoxy]acetat zeigte Detrusor-Selektivität. Das zeigt, dass (-)-2-[4-(2-{[(1S,2R)-2-hydroxy-2-(4-hydroxyphenyl)-1-methylethyl]amino}-2,5-dimethylphenoxy]acetat, als "Produrg" von (-)-Ethyl 2-[4-(2-{[(1S,2R)-2-hydroxy-2-(4-hydroxyphenyl)-1-methylethyl]amino}-2,5-dimethylphenoxy]acetat als therapeutisches Agens zur Behandlung der überaktiven Blase

5 eingesetzt werden kann und dabei weniger Nebenwirkungen als die aus dem Stand der Technik bekannten Wirkstoffe aufweist.

5 Ansprüche

- 1. Verwendung einer Verbindung der allgemeinen Formel 1 zur Herstellung eines Medikaments zur Behandlung der hyperaktiven Blase,
- 10 Formel I

15 wobei

20

25

X ein chirales Kohlenstoffatom mit R- oder S-, bevorzugt S-Konfigurie ist, Y ein chirales Kohlenstoffatom mit R- oder S-, bevorzugt R-Konfigurie ist, wobei die beiden Stereozentren X und Y bevorzugt inverse Konfigurien aufweisen, d.h. (R;S) oder (S; R) aufweisen;

R1 eine Hydroxygruppe, C₁-C₆-Alkoxygruppe, eine Aryl- C₁-C₆-alkoxygruppe, eine primäre Amino-Gruppe oder eine mono oder di (C₁-C₆-Alkyl)aminogruppe ist;

eine der Gruppen R2 und R3 ein Wasserstoffatom ist, bevorzugt R2, der andere Rest ein Wasserstoffatom ist, ein Halogenatom, eine C_1 - C_6 -Alkylgruppe, eine Trifluormethylgruppe oder eine C_1 - C_6 -Alkoxygruppe;

R4 ein Halogenatom, eine C_1 - C_6 -Alkylgruppe, eine Halo(C_1 - C_6 -Alkyl)- Gruppe, eine Hydroxygruppe, eine C_1 - C_6 -Alkoxygruppe, Aryl- C_1 - C_6 -alkoxygruppe, eine C_1 - C_6 -

- Alkoxygruppe, eine Cyanogruppe, eine Nitrogruppe, eine Aminogruppe, eine mono oder di(C₁-C₆-Alkyl)aminogruppe, eine Carbamoylgruppe, eine mono oder di(C₁-C₆-Alkyl)carbamoylgruppe ist oder der Gruppe –NHCOR5 entspricht, wobei R5 ein Wasserstoffatom oder eine C₁-C₆-Alkylgruppe ist;
- oder ein pharmazeutisch akzeptables Salz davon.
 - 2. Verwendung nach Anspruch 1, dadurch gekennzeichnet, dass die das Stereozentrum X, an dem die Aminogruppe ausgebildet ist, S- Konfigurie aufweist und das Stereozentrum Y, an dem die Hydroxygruppe ausgebildet ist, R- Konfigurie aufweist.
 - 3. Verwendung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass

R1 eine Hydroxygruppe, C₁-C₃-Alkoxygruppe, eine Aryl- C₁-C₃-alkoxygruppe ist;

eine der Gruppen R2 und R3 ein Wasserstoffatom ist, bevorzugt R2, der andere Rest eine C₁-C₃-Alkylgruppe ist;

R4 eine C₁-C₃-Alkylgruppe ist;

oder ein pharmazeutisch akzeptables Salz davon.

4. Verwendung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass

R1 eine Hydroxygruppe, eine Methoxy- oder Ethoxygruppe, bevorzugt Hydroxygruppe oder

Ethoxygruppe ist;

R2 ein Wasserstoff ist;

R3 eine Methylgruppe ist und

5 R4 eine Methylgruppe ist

oder ein pharmazeutisch akzeptables Salz davon.

- 5. Verwendung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Verbindung ein pharmazeutisch akzeptables Salz, mit einer der Säuren ausgewählt aus der Gruppe Salzsäure, Brom-Wasserstoff, Schwefelsäure, Phosphorsäure, Essigsäure, Zitronensäure, Weinsäure, Äpfelsäure, Bernsteinsäure, Fumarsäure, p-Toluolsulfonsäure, Benzolsulfonsäure, Methansulfonsäure, Milchsäure oder Ascorbinsäure ist.
- 6. Verwendung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Verbindung (-)-Ethyl 2-[4-(2-{[(1S,2R)-2-hydroxy-2-(4-hydroxyphenyl)-1-methylethyl]amino}-2,5-dimethylphenoxy]acetat, (-)-Ethyl 2-[4-(2-{[(1S,2R)-2-hydroxy-2-(4-hydroxyphenyl)-1-methylethyl]amino}-2,5-dimethylphenoxy]acetat hydrochlorid oder (-)-2-[4-(2-{[(1S,2R)-2-hydroxy-2-(4-hydroxyphenyl)-1-methylethyl]amino}-2,5-dimethylphenoxy]acetat ist.
 - 7. Verwendung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass Medikament eine orale Applikationsform ist.
- 25 \(\) 8. Verwendung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass Medikament ein Suppositorium ist.
 - 9. Verwendung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass Medikament ein transdermales Pflaster ist.
 - 10. Verwendung nach einem der Ansprüche 1 bis 9 zur Herstellung eines Medikaments zur Behandlung der neurogenen Blasehyperaktivität.
- 11. Verwendung nach einem der Ansprüche 1 bis 9 zur Herstellung eines Medikaments zur
 35 Behandlung der idiopathischen Blasehyperaktivität.

12. Methode zur Behandlung der hyperaktiven Blase, insbesondere der neurogenen oder der idiopathischen Blasehyperaktivität, wobei ein Medikament gemäß einem der Ansprüche 1 bis 9 verwendet wird.

10

5 Zusammenfassung

Die vorliegende Erfindung betrifft ein neues Indikationsgebiet für Phenoxyessigsäurederivate, wie sie in der EP 1095932 beschrieben sind. Es wurde jetzt gefunden, dass sich die dort beschriebenen Verbindungen zur Herstellung eines Medikaments zur Behandlung der hyperaktiven Blase (auf Englisch: overactive bladder) geeignet sind. Dementsprechend steht mit diesen Wirkstoffen eine Methode zur Behandlung dieses urologischen Krankheitsbildes zur Verfügung.