

Guía para el dimensionamiento de los amortiguadores SA

ET=EK+ED $v = \sqrt{(2g^*h)}$

Para elegir la dimensión corecta del amortiguador son necesarios					
los parametros siguientes:					
- Peso del objeto de impacto	m	(kg)			
- Velocidad de impacto	V	(m/s)			
- Fuerza de empuje	F	(N)			
- N° de ciclos de impacto por hora	С	(/hr)			
Algunas formulas					
1. Energia cinética	Ек =				
2 Energia de accionamiento	Fn = 1	F · S			

Algunas	formul	lae
Aiguilus	TOTTIL	us

- $F = \frac{D^2 \cdot \pi}{4} \cdot P \cdot g/100$ 5. Fuerza de tracción del cilindro
- $F = \frac{(D^2 d^2) \cdot \pi}{4} \cdot P \cdot g/100$ 6. Fuerza de empuje del cilindro
- 7. Fuerza máxima de impacto (aprox.) Fm = 1.2 ET /S
- 8. Consumo energético total por hora Etc = Et · C
- 9. Masa efectiva $Me = 2ET/v^2$

Guía para el dimensionamiento: fórmulas y ejemplo

Símbolos	Unidad	Descripción	Símbolos	Unidad	Descripción
m		coeficiente de fricción	Fm	(N)	máxima fuerza
а	(rad)	ángulo de inclinación	g	(m/s ²)	aceleración de la gravedad (9.81 m/s²)
q	(rad)	ángulo de carga	h	(m)	altura
W	(rad/s)	velocidad angular	m	(kg)	masa a desacelerar
Α	(m)	longitud	Me	(kg)	masa efectiva
В	(m)	espesor	Р	(bar)	presión de trabajo
С	(/hr)	ciclo de impacto por hora	R	(m)	radio
D	(cm)	diámetro del cilindro	Rs	(m)	montaje de amortiguador distancia
d	(cm)	diámetro del vástago			desde el centro de rotación
ED	(Nm)	energía de accionamiento por ciclo	S	(m)	carrera (amortiguable)
Eĸ	(Nm)	energía cinética por ciclo	Т	(Nm)	fuerza de apriete
Eτ	(Nm)	energía total por ciclo	t	(s)	tiempo de deceleración
ETC	(Nm)	energía total por hora	V	(m/s)	velocidad de la masa de impacto
F	(N)	fuerza de empuje	vs	(m/s)	velocidad de impacto del amortiguado

Ejemplo 1: impacto horizontal

Condición de trabajo:

v = 1.0 m/s

3. Energia total

4. Energia de accionamiento

m = 50 kg

S = 0.01 m

C = 1500 ciclos/h

Cálculo:

$$\mathbf{E}\mathbf{\kappa} = \frac{\mathbf{m}\mathbf{v}^2}{2} = \frac{50 \cdot 1^2}{2} = 25 \text{ Nm}$$

 $E_T = E_k = 25 \text{ Nm}$

ETC = Et \cdot C = 25 \cdot 1500 = 37500 Nm/h

$$Me = \frac{2Et}{v^2} = \frac{2 \cdot 25}{1^2} = 50 \text{ kg}$$

El amortiguador más adaptado para utilizarse en este caso es el SA 2015 donde obtenemos ET (max)=59 Nm, ETC (max)=38000 Nm/h y Me(max)=120 kg.

Ejemplo 2: impacto horizontal con fuerza de empuje

Condición de trabajo:

m = 40 kg**P** = 6 bar

S = 0.01 m Primera hipótesis modelo SA 1210

v = 1.2 m/s

D = 50 mm

C = 780 ciclos/h

Para simplificación, no se considera la presión presente en la cámara en descargo del cilindro (condición para la seguridad)

Cálculo:

$$\mathbf{E}\mathbf{\kappa} = \frac{\mathbf{m}\mathbf{v}^2}{2} = \frac{40 \cdot 1, 2^2}{2} = 28,8 \text{ Nm}$$

El amortiguador con ET mas bajo pero mayor de 28.8 Nm: modelo SA15 S=0.015m

$$E_D = F \cdot S = \frac{D^2 \cdot \pi}{4} \cdot P \cdot g/100 \cdot S = \frac{50^2 \cdot \pi}{4} \cdot 6 \cdot 9,81/100 \cdot 0,015 = 17,3 \text{ Nm}$$

 $E_T = E_K + E_D = 28.8 + 17.3 = 46.1 \text{ Nm}$

ETC = ET · C = 46,1 · 780 = 35958 Nm/h

$$Me = \frac{2ET}{v^2} = \frac{2 \cdot 46,1}{1,2^2} = 64,0 \text{ Kg}$$

El amortiguador más adaptado para utilizarse en este caso es el SA 2015 en base al resultado, donde obtenemos Et (max)=59 Nm, ETC (max)=38000 Nm/h e Me(max)=120 kg.

Ejemplo 3: impacto en caida libre

Condición de trabajo:

h = 0.35 m

m = 5 kg

S = 0.01 m

Primera hipótesis modelo SA 1210

C = 1500 ciclos/h

$$\mathbf{v} = \sqrt{(2g \cdot h)}$$
 $\sqrt{(2 \cdot 9.81 \cdot 0.35)} = 2.6 \text{ m/s}$

$$\mathbf{E}\mathbf{\kappa} = \mathbf{m} \cdot \mathbf{g} \cdot \mathbf{h} = 5 \cdot 9.81 \cdot 0.35 = 17.2 \text{ Nm}$$

El amortiguador con E⊤ mas bajo pero mayor de 17.2 Nm:

modelo SA 1412 S=0.012 m

$$E_D = F \cdot S = m \cdot g \cdot s = 5 \cdot 9,81 \cdot 0,012 = 0,6 \text{ Nm}$$

$$Et = E_K + E_D = 17.2 + 0.6 = 17.8 \text{ Nm}$$

ETC = ET
$$\cdot$$
 C = 17,8 \cdot 1500 = 26700 Nm/h

$$Me = \frac{2ET}{v^2} = \frac{2 \cdot 17,5}{2,6^2} = 5 \text{ Kg}$$

El amortiguador más adaptado para utilizarse en este caso es el SA 1412 en base al resultado, donde obtenemos ET (max)=20 Nm,

ETC (max)=33000 Nm/h y Me(max)=40 kg.

Ejemplo 4: impacto vertical hacia bajo con fuerza de empuje

Condición de trabajo:

m = 50 kg

S = 0.025 m

P = 6 bar

D = 63 mm

 \mathbf{C} = 600 ciclos/h

v = 1,0 m/s

Cálculo:

$$\mathbf{E}_{\mathbf{K}} = \frac{\mathbf{m} \mathbf{v}^2}{2} = \frac{50 \cdot 1^2}{2} = 25 \text{ Nm}$$

$$\textbf{E}_{\textbf{D}} = \textbf{F} \cdot \textbf{S} = (\textbf{m} \cdot \textbf{g} + \frac{\textbf{D}^2 \cdot \boldsymbol{\pi}}{4} \cdot \textbf{P} \cdot \textbf{g}/100 \) \cdot \textbf{S} = (50 \cdot 9,81 + \frac{63 \cdot \boldsymbol{\pi}}{4} \cdot 6 \cdot 9,81/100) \cdot 0,025 = 58,1 \ \textbf{Nm}$$

 $E_T = E_K + E_D = 25 + 58,1 = 83,1 \text{ Nm}$

ETC = ET \cdot C = 83,1 \cdot 600 = 49860 Nm/h

$$Me = \frac{2Et}{v^2} = \frac{2 \cdot 84}{1^2} = 168 \text{ Kg}$$

El amortiguador más adaptado para utilizarse en este caso es el SA 2725

en base al resultado, donde obtenemos ET (max)=147 Nm,

ETC (max)=72000 Nm/h y Me(max)=270 kg

Ejemplo 5: impacto vertical hacia arriba con fuerza de empuje

Condición de trabajo:

m = 50 kg

h = 0.3 m

S = 0.025 mPrimera hipótesis

modelo SA 2525

P = 6 bar =0,6 MPa

D = 63 mm

C = 600 ciclos/h

v = 1,0 m/s

Cálculo:

$$\mathbf{E}_{\mathbf{K}} = \frac{\mathbf{m} \mathbf{v}^2}{2} = \frac{50 \cdot 1^2}{2} = 25 \text{ Nm}$$

El amortiguador con ET mas bajo pero mayor de 25 Nm:

modelo SA 2015 S=0.015 m

$$\textbf{E}_{D} = \textbf{F} \cdot \textbf{S} = (\frac{D^2 \cdot \pi}{4} \cdot \textbf{P} \cdot g/100 - m \cdot g) \cdot \textbf{S} = (\frac{63^2 \cdot \pi}{4} \cdot 6 \cdot 9.81/100 - 50 \cdot 9.81) \cdot 0.015 = 20.1 \ \text{Nm}$$

 $E_T = E_K + E_D = 25 + 20,1 = 45,7 \text{ Nm}$

ETC = ET \cdot C = 45,1 \cdot 600 = 27060 Nm/h

$$Me = \frac{2Et}{v^2} = \frac{2 \cdot 45,7}{1^2} = 91,4 \text{ Kg}$$

El amortiguador más adaptado para utilizarse en este caso es el SA 2015 en base al resultado, donde obtenemos ET (max)=59 Nm, ETC (max)=38000 Nm/h y Me(max)=120 kg.

Ejemplo 6: impacto oblicuo

Condizioni di lavoro:

m = 10 kg

h = 0.3 m

S = 0.015 m

∝ = 30°

C = 600 ciclos/h

Cálculo:

$$\mathbf{v} = \sqrt{(2g \cdot h)}$$
 $\sqrt{(2 \cdot 9.81 \cdot 0.3)} = 2.43 \text{ m/s}$

$$\mathbf{E}_{\mathbf{K}} = \mathbf{m} \cdot \mathbf{g} \cdot \mathbf{h}$$
 $10 \cdot 9.81 \cdot 0.3 = 29.4 \text{ Nm}$

ED = F · S = m · g ·
$$\sin \alpha$$
 · s = 10 · 9,81 · $\sin 30^{\circ}$ · 0,015 = 10 · 9,81 · 0,5 · 0,015 = 0,7 Nm

$$E_T = E_K + E_D = 29,4 + 0,7 = 30,1 \text{ Nm}$$

$$Me = \frac{2Et}{v^2} = \frac{2 \cdot 30,1}{2,43^{2a}} = 10,2 \text{ Kg}$$

El amortiguador más adaptado para utilizarse en este caso es el SA 2015 en base al resultado, donde obtenemos ET (max)=59 Nm, ETC (max)=38000 Nm/h y Me(max)=120 kg.

Ejemplo 7: Masa horizontal transportada

Condición de trabajo:

m = 5 kg

v = 0.5 m/s

 $\mu = 0.25$

S = 0.006 m

C = 3000 ciclos/h

Cálculo:

$$\mathbf{E}\mathbf{\kappa} = \frac{\mathbf{m}\mathbf{v}^2}{2} = \frac{5 \cdot 0.5^2}{2} = 0.63 \text{ Nm}$$

ED = F . S = m · g ·
$$\mu$$
 · s = 5 · 9,81 · 0,25 · 0,006 = 0,07 Nm

$$E_T = E_K + E_D = 0.63 + 0.07 = 0.7 \text{ Nm}$$

ETC = ET · C =
$$0.7 \cdot 3000 = 2100 \text{ Nm/h}$$

Me =
$$\frac{2ET}{v^2} = \frac{2 \cdot 07}{0.5^2} = 5.6 \text{ Kg}$$

El amortiguador más adaptado para utilizarse en este caso es el SA 0806 en base al resultado, donde obtenemos ET (max)=3 Nm, ETC (max)=7000 Nm/h y Me(max)=6 kg.

Ejemplo 8: Puerta giratoria horizontal

Condición de trabajo:

m = 20 kg

 ω = 2,0 rad/s

Cálculo:

$$I = \frac{m(4A^2 + B^2)}{12} = \frac{20(4 \cdot 1,0^2 + 0,05^2)}{12} = 6,67 \text{ Kg} \cdot \text{m}^2$$

$$\mathbf{E}\mathbf{\kappa} = \frac{\log^2}{2} = \frac{6.67 \cdot 2.0^2}{2} = 13.34 \text{ Nm}$$

$$\theta = \frac{S}{Rs} = \frac{0.015}{0.8} = 0.019 \text{ rad}$$

 $E_D = T \cdot \theta = 20 \cdot 0,018 = 0,36 \text{ Nm}$

 $E_T = E_K + E_D = 13,34 + 0,36 = 13,7 \text{ Nm}$

ETC = ET \cdot C = 13,7 \cdot 600 = 8220 Nm/h

 $\mathbf{v} = \omega \cdot \text{Rs} = 2.0 \cdot 0.8 = 1.6 \text{ m/s}$

$$Me = \frac{2 ET}{v^2} = \frac{2 \cdot 13.7}{1.6^2} = 10.7 Kg$$

El amortiguador más adaptado para utilizarse en este caso es el SA 1412 en base al resultado, donde obtenemos ET (max)=20 Nm, ETC (max)=33000 Nm/h y Me (max)=40 kg

Ejemplo 9: Mesa rotativa motorizada

Condición de trabajo:

m = 200 kg

 $\omega = 1.0 \text{ rad/s}$

T = 100 Nm

R = 0.5 m

Rs=0,4 m

S = 0.015 m

C = 100 ciclos/h

$$I = \frac{mR^2}{2} = \frac{200 \cdot 0.5^2}{2} = 25 \text{ Kg} \cdot \text{m}^2$$

$$\mathbf{E}_{\mathbf{K}} = \frac{\mathbf{I}\omega^2}{2} = \frac{25 \cdot 1,0^2}{2} = 12,5 \text{ Nm}$$

$$\theta = \frac{S}{Rs} = \frac{0.015}{0.4} = 0.0375 \text{ rad}$$

 $E_D = T \cdot \theta = 100 \cdot 0,0375 = 3,75 \text{ Nm}$

 $E_T = E_K + E_D = 12.5 + 3.75 = 16.25 \text{ Nm}$

ETC = ET \cdot C = 16,25 \cdot 100 = 1625 Nm/h

 $\mathbf{v} = \omega \cdot \text{Rs} = 1.0 \cdot 0.4 = 0.4 \text{ m/s}$

Me =
$$\frac{2 \text{ ET}}{v^2}$$
 = $\frac{2 \cdot 16,25}{0,4^2}$ = 203 Kg

El amortiguador más adaptado para utilizarse en este caso es el SA 2015 en base al resultado, donde obtenemos ET (max)= 59 Nm, ETC (max)= 38000 Nm/h y Me (max)= 720 kg.

Perpendicularidad de la carga

Para garantizar una mayor vida del amortiguador, el movimiento de cargo debe ser perpendicular al eje central del mismo.

NOTA: desplazamiento máximo del eje $\theta \le 2.5^{\circ}$ (0,044 rad).

