Aprendizagem Automática

João Paulo Pordeus Gomes

Métodos Estatísticos

Aula Anterior

- Histogramas e distribuições
- Distribuição Gaussiana
- Regra de Bayes

Classificadores Estatísticos

 Observar uma série de características de uma instância e determinar a classe a qual este pertence

 Observar uma série de características de uma instância e determinar a classe a qual este pertence

 Observar uma série de características (x) de uma instância e determinar a classe (c) a qual este pertence

- Observar uma série de características (x) de uma instância e determinar a classe (c) a qual este pertence
- p(c|x)

- Observar uma série de características (x) de uma instância e determinar a classe (c) a qual este pertence

▶ Caso com duas classes (c₁ e c₂)

- Caso com duas classes (c₁ e c₂)
 - $p(c_1|x) = p(x|c_1)p(c_1) / p(x)$
 - $p(c_2|x) = p(x|c_2)p(c_2) / p(x)$

- Caso com duas classes (c₁ e c₂)
 - $p(c_1|x) = p(x|c_1)p(c_1) / p(x)$
 - $p(c_2|x) = p(x|c_2)p(c_2) / p(x)$
- Para classificar, escolhe o mais provável

- Caso com duas classes (c₁ e c₂)
 - $p(c_1|x) = p(x|c_1)p(c_1) / p(x)$
 - $p(c_2|x) = p(x|c_2)p(c_2) / p(x)$

- Caso com duas classes (c₁ e c₂)

- Caso com duas classes (c₁ e c₂)
- ▶ Estimar $p(c_2)$, $p(c_1)$, $p(x|c_2)$ e $p(x|c_1)$ a partir do conjunto de treino

- Caso com duas classes (c₁ e c₂)
- ▶ Estimar $p(c_2)$, $p(c_1)$, $p(x|c_2)$ e $p(x|c_1)$ a partir do conjunto de treino

 $p(c_2) e p(c_1)$

- $p(c_2) e p(c_1)$
 - Classes equiprováveis
 - Proporcional ao número de exemplos
 - Conhecido

 \rightarrow p(x|c₂) e p(x|c₁)

- \rightarrow p(x|c₂) e p(x|c₁)
 - Supõe que os dados são Gaussianos

- $p(x|c_2) e p(x|c_1)$
 - Supõe que os dados são Gaussianos
 - Estima os parâmetros da distribuição

- $p(x|c_2) e p(x|c_1)$
 - Supõe que os dados são Gaussianos
 - Estima os parâmetros da distribuição
 - ► Calcula $p(x|c_2)$ e $p(x|c_1)$

Para cada classe

$$p(c) = n_c / N \text{ ou } p(c) = 0.5$$

Para cada classe

- $p(c) = n_c / N \text{ ou } p(c) = 0.5$
- Calcula

$$\mu_c = \frac{1}{n} \sum_{i=1}^n x_i \in \Sigma_c = \frac{1}{n-1} \sum_{i=1}^n (x_i - \mu) (x_i - \mu)^T$$

Quando se deseja classificar

- Quando se deseja classificar
- Para cada classe

$$p(x|c) = \frac{1}{|\Sigma|^{1/2} (2\pi)^{m/2}} exp\left(-\frac{1}{2}(x - \mu_c)^T \Sigma^{-1}{}_{c}(x - \mu_c)\right)$$

- Quando se deseja classificar
- Para cada classe

$$p(x|c) = \frac{1}{|\Sigma|^{1/2} (2\pi)^{m/2}} exp\left(-\frac{1}{2}(x - \mu_c)^T \Sigma^{-1}{}_c(x - \mu_c)\right)$$

 $p(c|x) \propto p(x|c)p(c)$

- Quando se deseja classificar
- Para cada classe

$$p(x|c) = \frac{1}{|\Sigma|^{1/2} (2\pi)^{m/2}} exp\left(-\frac{1}{2}(x - \mu_c)^T \Sigma^{-1}{}_c(x - \mu_c)\right)$$

- ightharpoonup $p(c|x) \propto p(x|c)p(c)$
- Escolhe o mais provável

Análise do Classificador Gaussiano

 $p(c|x) \propto p(x|c)p(c)$

 $ightharpoonup p(c|x) \propto p(x|c)p(c)$

 $ightharpoonup p(c|x) \propto p(x|c)p(c)$

 $p(c|x) \propto p(x|c)p(c)$

Discriminante Quadrático Gaussiano

Discriminante Quadrático Gaussiano

- ightharpoonup p(c|x) \propto p(x|c)p(c)
- Dados distribuídos segundo uma gaussiana
 - $\mu_c = \frac{1}{n} \sum_{i=1}^n x_i$
 - $\sum_{C} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} \mu) (x_{i} \mu)^{T}$

Matriz de Covariância

$$\sum_{C} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu) (x_i - \mu)^{T}$$

Para um vetor de dimensão 2 a matriz é 2x2

$$\Sigma = \begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{bmatrix}$$

Matriz de Covariância

$$\sum_{C} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu) (x_i - \mu)^{T}$$

Para um vetor de dimensão 2 a matriz é 2x2

$$\Sigma = \begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{bmatrix}$$

 \blacktriangleright Valores altos de σ_{12}

$$\sum_{C} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu) (x_i - \mu)^{T}$$

Para um vetor de dimensão 2 a matriz é 2x2

$$\Sigma = \begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{bmatrix}$$

 \blacktriangleright Valores altos de σ_{12}

$$\sum_{C} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu) (x_i - \mu)^{T}$$

Para um vetor de dimensão 2 a matriz é 2x2

$$\Sigma = \begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{bmatrix}$$

ightharpoonup Valores altos de σ_{12}

$$\sum_{C} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu) (x_i - \mu)^{T}$$

Para um vetor de dimensão 2 a matriz é 2x2

$$\Sigma = \begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{bmatrix}$$

Valores de σ₁₂ próximos de 0

$$\sum_{C} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu) (x_i - \mu)^{T}$$

Para um vetor de dimensão 2 a matriz é 2x2

$$\Sigma = \begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{bmatrix}$$

Valores de σ₁₂ próximos de 0

$$\sum_{C} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu) (x_i - \mu)^{T}$$

Para um vetor de dimensão 2 a matriz é 2x2

$$\Sigma = \begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{bmatrix}$$

Valores de σ₁₂ próximos de 0

Naive Bayes Gaussiano

- Considera que as variáveis não tem correlação
- Matriz de covariância diagonal

$$\Sigma = \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix}$$

Naive Bayes Gaussiano

- Considera que as variáveis não tem correlação
- Matriz de covariância diagonal

$$\Sigma = \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix}$$

Naive Bayes Gaussiano

- Considera que as variáveis não tem correlação
- Matriz de covariância diagonal

$$\Sigma = \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix}$$

Naive Bayes – Formulação Geral

- Formulação Geral
 - $p(c|\mathbf{x}) \propto p(\mathbf{x}|c)p(c)$

Formulação Geral

- $p(c|\mathbf{x}) \propto p(\mathbf{x}|c)p(c)$
- $\boldsymbol{x} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}$

- Formulação Geral
 - $p(c|\mathbf{x}) \propto p(\mathbf{x}|c)p(c)$
 - $\boldsymbol{x} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}$
- \blacktriangleright Como $x_1 \perp x_2 \perp ... \perp x_n$. Podemos reescrever
 - $p(c|\mathbf{x}) \propto p(x_1|c)p(x_2|c) \dots p(x_n|c)p(c)$

- Formulação Geral
 - $p(c|\mathbf{x}) \propto p(\mathbf{x}|c)p(c)$
 - $\boldsymbol{x} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}$
- ► Como $x_1 \perp x_2 \perp ... \perp x_n$. Podemos reescrever
 - $p(c|\mathbf{x}) \propto p(x_1|c)p(x_2|c) \dots p(x_n|c)p(c)$
 - $p(c|\mathbf{x}) \propto p(c) \prod_{i=1}^{n} p(x_i|c)$

Dúvidas?