

2022 DX Camp

2강 머신러닝 프로세스 1

DX Camp E 52

머신러닝 워크플로우

DX Camp 上令包

1. 문제 정의 및 데이터 수집

- 전체 머신러닝 워크플로우 중 가장 중요한 단계
- 명확한 목적 의식을 가지고 프로세스를 시작
- 모델의 종류 결정 및 탐색할 데이터의 종류를 결정
- 문제 정의 후 모델을 학습할 데이터를 수집(크롤링, 센서 활용, 구글링, 데이터 API 활용 등)

문제 정의

- 비즈니스 목적 정의
- 현재의 솔루션 파악
- 시스템 구성 결정
- 성능 측정 지표 선택
- 가정 검사

DX Camp 上令包

저장 방식에 따른 데이터 종류

- 정형데이터
- 관계형 데이터 베이스(RDBMS), 스프레 드시트, 엑셀
- 반정형데이터
- JSON, HTML, XML, 로그
- 비정형데이터
- 텍스트, 이미지, 음원 데이터, 빅데이터

http://terms.tta.or.kr/dictionary/dictionaryView.do?word_seq=175129-2

형태에 따른 데이터 종류

■ 범주형 데이터

- 정성적 데이터로써 몇 개의 범주로 나누 어진 자료

■ 수치형 데이터

정량적 데이터로써 이산형과 연속형으로 이루어진 자료

णिस्वे प्रविध्य स्थानिक विश्व विष्व विश्व विश्व

수치 데이터 데이터 명목형 데이터

데이터 수집 방법 정의

형태	특징	난이도
정형 데이터	 내부 시스템인 경우가 대부분이라 수집이 쉬움 DBMS에 저장된 정형 데이터가 주를 이름. 파일 형태의 스프레드시트라도 내부에 형식을 가지고 있어 처리가 쉬운 편임 	하
반정형 데이터	 외부 시스템인 경우가 많음 보통 API 형태로 제공, 데이터 처리 기술이 요구 	중
비정형 데이터	• 텍스트 마이닝 혹은 파일일 경우 파일을 데이터 형태로 파싱(parsing) 필요	상

DBMS 수집

- 데이터베이스 관리 시스템으로부터 특정 테이블과 컬럼을 선택하여 정형 데이터 수집 가능.
- DBMS에서 데이터 수집을 하기 위해서는 SQL에 대한 이해 필요
- SQL을 통해 사용하고자 하는 머신러닝 프로젝트에 부합하는 정보를 추출하는 것이 핵심.
- SQL만 잘 다뤄도 데이터 분석가로서 중간 이상은 간다.

공개 데이터(Open API)

- API는 정의 및 프로토콜 집합을 사용하여 두 소프트웨어 구성 요소가 서로 통신할 수 있게 하는 메커니즘
- Open API(Open Application Programming Interface)는 누구나 사용할 수 있도록 공개된 API.
- 개발자에게 사유 응용 소프트웨어나 웹 서비스에 권한 제공.
- 네이버 지도, 구글맵, 오픈스트리트맵 등이 대표적인 예.
- 대한민국 정부에서는 공공데이터포털을 통해 오픈 API 운영 및 제공.

https://www.socialservice.or.kr:444/user/pubdata/open/openapi.do

웹 스크래핑(Web Scraping)

- 뉴스, 블로그, SNS, 웹 페이지 등 웹에서 공개되어 있는 데이 터를 자동으로 수집하여 데이터를 추출하고 저장.
- 일반적으로 HTTP GET 요청을 보낸 다음 웹 서버가 전송하는 모든 정보를 복사하여 저장.
- 수백 또는 수천 개의 웹 페이지가 있는 대규모 사이트의 경
 우에도 몇 초안에 웹 사이트의 모든 콘텐츠를 다운로드 가능.
- 야놀자 vs 여기어때:

'이미 공개된 데이터는 크롤링으로 확보해도 문제가 없다 'vs'영리를 위한 크롤링행위는 지적재산권을 침해하는 행위'라는 주장이 맞서고 있다.

https://www.econovill.com/news/articleView.html?idxno=587292&fbclid=lwAR3BfuRoymHay 85i94MTtf6iKaAhZqzd1PXEsuKS4El6OqNChlxHuGKkqd4

센서 데이터 수집

- IoT 기술의 발달로 수많은 기기로부터 각종 센서 데이터 수집 가능.
- 온도, 습도, 자이로, 압력, 속도/가속도, 가스, 초음파, 자기 센서 등 수 많은 센 서 존재.
- 도시, 차량, 철도, 비행기, CCTV, 스마 트 기기 등에서 센서 데이터 수집.

로그 데이터 수집

- 각종 시스템과 서버 그리고 네트워크 장비에서 수 많은 로그 데이터가 축적.
- 시스템 로그, 이벤트 로그, 웹 서버 로그, DB 로그, 트랜잭션 로그, 클릭 로그, 보안 로그 등 다양한 로그 데이터 존재.
- 시스템에서 에이전트를 통해 각종 로그를 수집하여 분석에 활용

데이터 관련 사이트

- 캐글: https://www.Kaggle.com/datasets
- 데이콘: <u>https://dacon.io</u>
- AI팩토리: https://aifactory.space
- 구글: https://datasetsearch.research.google.com/
- 레딧: https://www.reddit.com/r/datasets/
- UCI: https://archive.ics.uci.edu/ml
- 공공데이터포털: https://www.data.go.kr/
- AI허브: <u>https://www.aihub.or.kr</u>

2. 점검 및 탐색

- 데이터를 점검하고 탐색하는 단계
- 데이터의 구조, 노이즈 데이터, 머신 러닝 적용을 위해서 데이터를 어떻게 정제해야 하는지 등을 파악
- 독립 변수, 종속 변수, 변수 유형, 변수의 데이터 타입 등을 점검
- 데이터의 특징과 내재하는 구조적 관계를 알아내는 과정을 의미
- 이 과정에서 시각화와 간단한 통계 테스트를 진행

https://eda-ai-lab.tistory.com/13

탐색적 데이터 분석(EDA)

- 미국의 존 튜키박사에 의해 창안
- 가설검증이나 모형 적용하기 전 데이터에 대한 정보를 사람에게 전달하도록 만드는 방법
- 시각적인 기법을 사용, 5-숫자요약(5-number summary) 등 다양한 방법을 적용
- 기존의 통계학은 정보 추출에서 가설 검정 등에 치우쳐 자료가 가지고 있는 본연의 의미를 찾는데 어려움
- 이를 보완하고자 주어진 자료만 가지고도 충분한 정보를 찾을 수 있도록 여러가지 **탐색적 데이터 분**

석 방법을 개발

데이터 분석 사이클

Data Science Process

https://www.kdnuggets.com/2016/03/data-science-process.html

탐색적 데이터 분석 = 요리 재료 파악

'맛있는 요리'를 만들기 위해서 가장 먼저 해야 할 일은 '맛있는 식재료'를 준비하는 것. 식재료가 맛있으면, 조리방법이 간단해도 맛있는 요리가 나오듯, 데이터 분석에 있어서 '맛있는 식재료'라고 할 수 있는 EDA를 잘 한다면 의미 있는 결과값을 도출하기 조금 더 수월해진다.

0

탐색적 데이터 분석의 필요성

- 데이터의 분포 및 값을 검토함으로써 데이터가 표현하는 현상을 더 잘 이해하고, 데이터에 대한 잠 재적인 문제를 발견.
- 본격적인 분석에 들어가기에 앞서 데이터를 다시 수집하거나 추가로 수집하는 등의 결정을 내릴수 있음.
- 데이터를 다양한 각도에서 살펴보는 과정을 통해 문제 정의 단계에서 미처 발생하지 못했을 다양한 패턴을 발견하고, 이를 바탕으로 기존의 가설을 수정하거나 새로운 가설을 새울 수 있음.
- 데이터에 대한 이런 지식은 이후에 통계적 추론을 시도하거나 예측 모델을 만들 때 유용.

앤스컴 콰르텟(Anscombe's quartet)

항목	값	정확도
<i>x</i> 평균	9	정확
x 표본분산	11	정확
<i>y</i> 평균	7.50	소수점 2자리
y 표본분산	4.125	정확
<i>x</i> 와 <i>y</i> 의 상관	0.816	소수점 3자리
선형회귀선	y = 3.00 + 0.500x	각 소수점 2자리, 소수점 3자리
선형회귀 결정계수	0.67	소수점 2자리

참고: https://www.autodesk.com/research/publications/same-stats-different-graphs

https://ko.wikipedia.org/wiki/%EC%95%A4%EC%8A%A4%EC%BB%B4_%EC%BD%B0%EB%A5%B4%ED%85%9F

탐색적 데이터 분석 과정

- 문제 정의 단계에서 세웠던 연구 질문과 가설을 바탕으로 분석 계획을 세우는 것.
- 분석 계획에는 어떤 속성 및 속성 간의 관계를 집중적으로 관찰해야 할지, 이를 위한 최적의 방법은 무엇인지가 포함되어야 함.
- 분석의 목적과 변수가 무엇이 있는지 확인하고, 개별 변수의 이름이나 설명을 가지는지 확인.
- 데이터를 전체적으로 살펴보기
- 데이터의 개별 속성값 관찰
- 속성 간의 관계에 초점을 두고, 개별 속성 관찰에서 찾지 못한 패턴 발견(상관관계, 시각화 등)

데이터 탐색

- Data.info()
- Data.describe()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20640 entries, 0 to 20639
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype				
0	longitude	20640 non-null	float64				
1	latitude	20640 non-null	float64				
2	housing_median_age	20640 non-null	float64				
3	total_rooms	20640 non-null	float64				
4	total_bedrooms	20433 non-null	float64				
5	population	20640 non-null	float64				
6	households	20640 non-null	float64				
7	median_income	20640 non-null	float64				
8	median_house_value	20640 non-null	float64				
9 ocean_proximity		20640 non-null	object				
مريا الم	dt_{i} $max = f(a) + G(A(B))$ ab_{i} ab_{i} ab_{i}						

dtypes: float64(9), object(1)

memory usage: 1.6+ MB

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value
count	20640.000000	20640.000000	20640.000000	20640.000000	20433.000000	20640.000000	20640.000000	20640.000000	20640.000000
mean	-119.569704	35.631861	28.639486	2635.763081	537.870553	1425.476744	499.539680	3.870671	206855.816909
std	2.003532	2.135952	12.585558	2181.615252	421.385070	1132.462122	382.329753	1.899822	115395.615874
min	-124.350000	32.540000	1.000000	2.000000	1.000000	3.000000	1.000000	0.499900	14999.000000
25%	-121.800000	33.930000	18.000000	1447.750000	296.000000	787.000000	280.000000	2.563400	119600.000000
50%	-118.490000	34.260000	29.000000	2127.000000	435.000000	1166,000000	409.000000	3.534800	179700.000000
75%	-118.010000	37.710000	37.000000	3148.000000	647.000000	1725.000000	605.000000	4.743250	264725.000000
max	-114.310000	41.950000	52.000000	39320.000000	6445.000000	35682.000000	6082.000000	15.000100	500001.000000

데이터 탐색을 위한 시각화

https://www.techprevue.com/decision-tree-perfect-visualisation-data/

Seaborn 차트 시각화

3강 머신러닝 프로세스 2

DX Camp E39

3. 전처리 및 정제

- 머신 러닝 워크플로우에서 가장 까다로운 작업 중 하나이다
- 빠르고 정확한 데이터 전처리를 하기 위해서는 사용하고 있는 툴에 대한 다양한 라이브러리 지식이 필요
- 데이터의 결측치 및 이상치 확인, 제거, 일관성 있는 데이터의 형태로 전환하는 과정
- 전처리의 종류 : 데이터 클리닝(cleaning), 데이터 통합(integration), 데이터 변환(transformation), 데이터 축소(reduction), 데이터 이산화(discretization) 등

데이터 전처리 단계

1) 데이터 정제

- 누락 데이터나 잡음, 모순된 데이터 등을 정합성이 맞도록 교정하는 작업

2) 데이터 통합

- 여러 개의 데이터베이스, 데이터집합 또는 파일을 통합하는 작업

3) 데이터 축소

- 샘플링, 차원축소, 특징 선택 및 추출을 통해 데이터 크기를 줄이는 작업

4) 데이터 변환

- 데이터를 정규화, 이산화 또는 집계를 통해 변환하는 작업

https://www.analyticsvidhya.com/blog/2021/08/data-preprocessing-in-data-mining-a-hands-on-guide/

1) 데이터 정제

- 데이터를 활용할 수 있도록 만드는 과정
- 데이터의 누락, 불일치, 오류의 수정
- 컴퓨터가 읽을 수 없는 요소의 제거
- 숫자나 날짜 등의 형식에 대해 일관성 유지
- 적합한 파일 포맷으로 변환

DX Camp

https://www.dataentryoutsourced.com/blog/cxos-guide-to-marketing-and-sales-data-cleansing-and-enrichment/

• 이상치 처리

• 결측치 처리

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_inco
20046	-119.01	36.06	25.0	1505.0	NaN	1392.0	359.0	1.68
3024	-119.46	35.14	30.0	2943.0	NaN	1565.0	584.0	2.5:
15663	-122.44	37.80	52.0	3830.0	NaN	1310.0	963.0	3.48
20484	-118.72	34.28	17.0	3051.0	NaN	1705.0	495.0	5.7:
9814	-121.93	36.62	34.0	2351.0	NaN	1063.0	428.0	3.7

• 문자열 변환

One Hot Encoding

OCEAN_PROXIMITY
INLAND
NEAR OCEAN
NEAR BAY

ISLAND

Label Encoding

ocean_proximity						
INLAND	NEAR OCEAN	NEAR BAY	ISLAND			
1	0	0	0			
0	1	0	0			
0	0	1	0			
0	0	0	1			

ocean_proximity
1
2
3
4

• 단위 일치: 시간 단위, 거리 단위 ,화폐 단위 등

2) 데이터 통합

- 서로 다른 출처의 여러 데이터를 결합
- 서로 다른 데이터 세트가 호환이 가능하도록 통합
- 같은 객체, 같은 단위나 좌표로 데이터를 통합
- 링크드 데이터의 핵심 목표 중 하나는 데이터 통합을 완전히 또는 거의 완전히 자동화하는 것

DX Camp

Data Integration

https://wadic.net/data-integration-importance/

3) 데이터 축소

- 대용량 데이터에 대한 복잡한 데이터 분석은 실행하기 어렵거나 불가능한 경우가 많음
- 데이터를 축소하면 데이터 분석 시 좀 더 효과적이고 원래 데이터와 거의 동일한 분석 결과를 얻어 낼 수 있는 장점이 있음
- 축소된 데이터도 원래 데이터와 같은 분석 결과를 얻을 수 있어야 함
 - * 컴퓨팅 시간 등 고려 위해 데이터 축소가 필요, 방대한 로그 데이터의 경우 일정 시간 단위로 데이터 축소 필요

https://www.cohesity.com/blogs/cohesity-data-reduction-lock-stock-barrel/

데이터 축소 기법

- 점진 선택법: 속성의 공집합에서 시작되며 원본 속성들 중에서 최선의 값이 결정되어 그 집합에 추가된다. 다음 단계에서는 남아 잇는 원본 속성들 중에서 최선의 속성이 집합에 추가된다.
- 후진 제거법: 속성들의 완전집합에서 시작하여 각 단계마다 그 집합에 남아있는 최악의 속성을 제거한다.
- 전진선택법과 후진제거법 결합: 위의 두 방법을 결합하며 각 단계마다 최선의 속성을 선택하고 남아 있는 속성들 중에서 최악의 속성 제거한다.

DX Camp 上令包

000

4) 데이터 변환

- 데이터를 한 형식이나 구조에서 다른 형식이나 구조로 변환
- 원본 데이터와 대상 데이터 간에 필요한 데이터 변경 내용을 기반으로 데이터 변환이 간단하거나 복잡할 수 있음
- 데이터 변환은 일반적으로 수동 및 자동 단계가 혼합되어 수행
- 데이터 변환에 사용되는 도구 및 기술은 변환되는 데이터의 형식,
 구조, 복잡성 및 볼륨에 따라 크게 다를 수 있음
- 정규화, 집합화, 요약, 계층 생성

https://taxexecutive.org/data-transformation-where-to-begin/

스케일링

- 정규화(Min-Max Scaling)
- Normalization(정규화)이라는 용어도 많이 쓰임.
- 아래 식과 같은 변환을 통해 값의 범위를 0~1로 제한 (=좁은 범위로 압축)

$$x_{scaled} = rac{x - x_{min}}{x_{max} - x_{min}}$$

- 표준화(Standardization)
- 우리말로 표준화라고 부르며, Z-score라고도 함.
- 여기서, μ 는 x의 평균이고, σ 는 x의 표준편차

특징 공학(Feature Engineering)

- 머신러닝 알고리즘을 작동하기 위해 데이터에 대한 도메인 지식을 활용하여 특징을 만들어내는 과정
- 머신러닝 모델을 위한 데이터 테이블의 컬럼(특징)을 생성하거나 선택하는 작업을 의미
- 모델의 성능을 높이기 위해 모델에 입력할 데이터를 만들기 위해 주어진 초기 데이터로부터 특징을 가공하고 생성하는 전체 과정을 의미
- Feature Engineering은 모델 성능에 미치는 영향이 크기 때문에 머신러닝 응용에 있어서 굉장히 중요한 단계이며, 전문성과 시간, 비용이 많이 드는 작업

차원의 저주

- 차원이 증가하면서 학습데이터 수가 차원 수보다 적어져서 성능이 저하되는 현상
- 차원이 증가할수록 변수가 증가하고, 개별 차원 내에서 학습할 데이터 수가 적어짐
- 변수가 증가한다고 반드시 차원의 저주가 발생하는 것은 아님
- 해결 방안: **특징 선택, 특징 추출**

특징 선택(Feature Selection)

- 특징 랭킹(Feature Ranking) 또는 특징 중요도(Feature Importance)라고도 불림.
- 분류 모델 중 Decision Tree 같은 경우는 트리의 상단에 있을 수록 중요도가 높으므로 이를 반영하여 특징 별로 중요도를 매길 수 있음.
- 회귀 모델의 경우 forward selection과 backward elimination 같은 알고리즘을 통해 특징을 선택.

특징 추출(Feature Extraction)

- 특징 추출은 단순히 데이터의 압축이나 잡음을 제거하는 것이 아님
- 특징 추출을 통해 데이터의 압축이나 잡음을 제거하는 효과도 있지만, 이것의 가장 중요한 의의는 관측데이터를 잘 설명할 수 있는 잠재 공간(latent space)을 찾는 것.
- 가장 대표적인 알고리즘으로 PCA(Principle Component Analysis)가 있음.
- PCA를 간단히 설명하면 각 변수(Feature)를 하나의 축으로 투영시켰을 때 분산이 가장 큰 축을 첫번째 주성분으로 선택하고 그 다음 큰 축을 두번째 주성분으로 선택하고 데이터를 선형 변환하여 다차원을 축소하는 방법.

주성분 분석(Principal Component Analysis)

특징 생성(Feature Generation)

- 특징 구축(Feature Construction)이라고도 하며, 이 방법을 많은 사람들이 Feature Engineering이라고 생각함
- 초기에 주어진 데이터로부터 모델링 성능을 높이는 새로운 특성을 만드는 과정
- 데이터에 대한 도메인(분야) 전문성을 바탕으로 데이터를 합치거나 쪼개는 등의 작업을 거쳐 새로 운 Feature를 만들게 됨
- 간단한 예로 시간 데이터를 AM / PM 으로 나누는 것이 있음
- 이 작업은 한번해서 끝나는 것이 아니라 끊임없이 모델링 성능을 높이는 목적으로 반복해서 작업 할 수 있는 부분이기 때문에 전문성과 경험에 따라 비용과 시간을 줄일 수 있는 부분

EDA vs 전처리

탐색적 데이터 분석(EDA, Exploratory Data Analysis)

• 데이터 모델링에 들어가기 전에, 수집된 데이터의 분포, 관계를 **파악**하는 과정(히스토그램, 산포도, 기초통계량 등으로 분포 파악)하고 모델링, 알고리즘에 사용될 수 있는 Data Set인지 파악함) 모델링 입력 데이터에 사용하기 부족하다면 다시 정제(Cleaning)

데이터 전처리(Data Preprocessing)

• 수집된 데이터에는 이상한(?), 극단적인(?), 공란의(?), 잡음(?)의 데이터가 섞여 있을 수 있음. 데이터의 가 공 없이 데이터 분석 및 모델링을 하면 결과가 이상하게 나올 수 있음. 데이터를 분석에 사용할 수 있도 록 **정제**(Cleaning)하고 가공하고 **변환**(Transformation)등을 거쳐서 모델링에 필요한 변수로 만드는 과정.

가장 시간이 많이 걸리는 작업

4. 모델링 및 훈련

- 데이터에 적합한 머신러닝 모델을 선택 후 모델링
- 전처리가 완료된 데이터를 머신러닝 모델학습
- 학습 후 훈련이 제대로 되었다면 우리가 원하는 태스크(task)를 수행 가능
- 주의해야 할 점: 데이터 훈련하기 전 훈련용, 테스트용 데이터를 나누어 모델 학습 (성능 테스트 필요)

https://artificialnetworkforstarters.readthedocs.io/en/latest/_post/chap6.html

교차 검증

- 집합을 체계적으로 바꿔가면서 모든 데이터에 대해 모형의 성과를 측정하는 검증 방식.
- 교차 검증은 과적합을 피하면서 파라미터를 튜닝하고 일반적인 모델을 만들고 더 신뢰성 있는 모델 평가를 진행하기 위해.
- 교차 검증이란 쉽게 생각하면 본고사를 치르기 전 모의고사를 여러 번 보는 것

https://kr.mathworks.com/discovery/cross-validation.html

모델 최적화 - Grid Search

- 교차 검증을 기반으로 주어진 하이퍼 파라미터의 모든 조합 중 최적의 값을 찾아주는 탐색 방법.
- 모든 하이퍼 파라미터 조합을 순차적으로 적용 및 검증.

https://dacon.io/codeshare/4922

5. 평가

- 학습이 된 모델을 테스트용 데이터로 성능 평가하는 과정
- 기계가 예측한 데이터가 테스트용 데이터의 실제 정답과 얼마나 가까운지를 측정

파이프라인 구축

- 전처리 과정에서 인코딩, 결측치 처리, 훈련, 테스트 집합으로 분할 등 필수로 해야 하는 것을 파이프라인을 이용하여 자동화 할 수 있다.
- 파이프라인은 데이터의 변환을 순차적으로 적용한 다음 학습을 할 수 있다. 파이프라인을 사용 하면 직관적으로 흐름을 읽을 수 있으며 순서가 파이프라인에 의해 정해지고 만들기 간편하다.

범주형 데이터 – 혼동 행렬(Confusion Matrix)

- 100명의 환자와 100 명의 건강한 사람에 대하여 이 검사 키트의 성능을 테스트한다고 가정
- 검사 키트가 COVID-19 환자(양성positive:P)에 대해서 5명을 음성
- COVID-19에 감염되지 않은 건강한 사람(음성negative:N)에 대해서 89명을 음성으로, 11명을 양성으로 판정

	KoKIT22의 예측값 (검사결과)						
	음성			양성			
환자의 실제 상태	N			Р			
음성 (COVID 안걸림)	N	89 TN	T 일치	N 예측	11 FP	F	P예측
양성 (COVID 걸림)	P	5 FN	F	N 예측	95 TP	T 일치	P예측

• 정확도: 전체 데이터(FP+FN+TP+TN)중에서 제대로 판정한 데이터(TP + TN)의 비율

$$Acc = \frac{TP + TN}{FP + FN + TP + TN} = \frac{95 + 89}{11 + 5 + 95 + 89} = 0.92$$

• 민감도: 실재 확진된 사람 중 검사 키트가 확진자로 분류한 비율

$$TPR = Rec = \frac{TP}{P} = \frac{TP}{FN + TP} = \frac{95}{100} = 0.95$$

• 정밀도: 검사 키트가 확진자로 분류한 사람들 중 실제 양성의 비율

$$Pre = \frac{TP}{TP + FP} = \frac{95}{106} = 0.896$$

연속형 데이터 – MSE, MAE

- 어떤 데이터를 추정하는 가설이 얼마나 정확한지를 평가하는 방법은 무엇일까?
- 가설이 훌륭한 모델이라면 데이터는 가설이 나타내는 직선 위에 모두 놓이게 될 것이다.
- 적당히 좋은 가설이라면 데이터가 이 직선들 근처에 있을 것이다.
- 차트를 그려서 확인하는 것은 정확도를 시각적으로 표시할 수 있는 장점은 있지만, 서로 다른 가설을 비교할 때 정확한 척도로 사용하기는 힘들다.
- 우선 다음 그림과 같이 (1, 1.2), (2, 2.4), (3, 2.5), (4, 4.6), (5, 5.4)의 5개의 데이터가 이차원 공간에 분 포하고, 이 데이터의 분포를 설명하는 선형방정식을 1) y = 0.7x라고 추정하도록 하자.

연속형 데이터 – MSE, MAE

- 이제 데이터의 분포를 파란색 점으로, 선형방정식을 빨간색 직선으로 그려보면 그림과 같이 나타나 서 이 방정식이 데이터의 분포를 잘 설명하지 못한다는 것을 알 수 있을 것이다.
- 이제 2) y=0.9x 로 선형방정식을 사용할 경우 데이터의 분포를 이전보다 더 정확하게 설명하는 직선을 얻을 수 있을 것이며, 3) y=1.05 라는 선형방정식은 더욱 더 나은 결과를 보여주는 것을 눈으로 확인할 수 있을 것이다.

• 오차의 합을 그대로 사용하지 않고 별도의 오차함수를 사용하는 이유는 실제값이 {1, 2, 3}이고 예측 값이 {1, 4, 1}로 나타날 경우 (1-1) + (2-4) + (3-1) = 0이 되는 경우가 발생하기 때문이다.

DX Camp 上令包

평균 절대 오차(Mean Absolute Error)

- 머신러닝에서 사용 가능한 오차함수 중에서 비교적 단순한 오차함수로 예측값 \hat{y} 과 관측값 y의 차이 값의 절대값을 구한 후 이 값들의 평균값을 사용한다.
- 이 오차함수는 오차값을 그대로 보여주는 특징이 있으며 다음과 같이 정의할 수 있다.

$$E_{mae} = \frac{1}{m} \sum_{i=1}^{m} |\hat{y}_i - y_i|$$

- 평균 절대 오차는 직관적이며 계산이 편리한 반면 다음의 문제가 있다.
- 첫째, 축적을 보정하지 않기 때문에 앞의 값의 10배에 해당하는 (10, 12), (20, 24), (30, 25), (40, 46), (50, 54) 값에 대해서 동일한 10%오차가 발생하더라도 10배의 차이가 나는 문제가 있다.
- 둘째, 절대값의 사용으로 인해 미분이 불가능한 지점이 발생한다는 문제가 있다.

평균 제곱 오차(Mean Square Error)

- 머신러닝에서 사용하는 대표적인 오차 척도는 평균 제곱 오차이다.
- 이 방법은 예측치 \hat{y} 와 정답 레이블 y 사이의 차이를 제곱하여 모두 더한 뒤에 전체 데이터의 개수 m으로 나누는 것인데, 다음과 같은 식으로 표현할 수 있다.

$$E_{mse} = \frac{1}{m} \sum_{i=1}^{m} (\hat{y}_i - y_i)^2$$

• 머신러닝의 문제를 해결하는 데 주로 사용되는 오차는 평균 제곱 오차로 우리는 이 오차 측정 방법이 왜 유용한지 집중적으로 살펴볼 것이다.

DX Camp 上令包

000

- 아래 그림을 보면, 파란색 점으로 표시된 레이블과 붉은색 가설 직선의 y 값은 차이가 난다.
- 이를 오차라고 하는데, e1에서 e4까지 전체 에러의 합이 최소가 되는 모델이 가장 바람직한 모델이 될 것이며 우리는 이 직선을 찾는 것이다.

6. 배포

- 평가 단계에서 기계가 성공적으로 훈련이 된 것으로 판단된다면 완성된 모델이 배포
- 다만, 여기서 완성된 모델에 대한 전체적인 피드백으로 인해 모델을 업데이트 해야 하는 상황이 온 다면 수집 단계로 돌아감.

학습된 모델 배포

Server

Client

https://engineering.rappi.com/using-fastapi-to-deploy-machine-learning-models-cd5ed7219ea

캘리포니아 주택 가격 예측 코드 실습

• 머신러닝 프로젝트 처음부터 끝까지 실습하기(어려운 버전)

DX Camp 上令包

2022 DX Camp

DX

