KINEMATICS OF MACHINERY

Rehan Siddiqui Department of Mechanical Engineering R.G.I.T

Course Objectives:

- To acquaint with basic principles of kinetics and kinematics of machine elements.
- To familiarise with basics of Mechanisms and their inversions.
- To study functioning of motion and power transmission machine elements

Course Outcomes:

You will be able to...

- Define various components of mechanisms.
- Develop mechanisms to provide specific motion.
- Draw velocity and acceleration diagrams for various mechanisms.
- Choose a cam profile for the specific follower motion
- Predict condition for maximum power transmission in the case of a belt drive
- Illustrate requirements for an interference-free gear pair

Course contents

Theory:

- **Module-I**: Kinetics of Rigid bodies & Kinematics.
- Module II: Special Mechanisms & their Inversions
- Module III: Velocity and accelerations in mechanisms
- **Module IV:** Cam and follower mechanisms
- Module V: Belt & Chain drives. Brakes
- Module VI: Gears & Gear Trains.

<u> Lab : </u>

- 1. Analysis of velocity of mechanisms by ICR method
- 2. Analysis of velocity of mechanisms by Relative method
- 3. Analysis of velocity and acceleration of mechanism by Relative method.
- 4.Motion analysis and plotting of displacement-time, velocity-time, acceleration-time, jerk-time, and layout of cam profile. 5.Mini Project.

Term Work:

The distribution of marks for term work shall be as follows:

- Laboratory work (Experiments): 10 marks
- Assignments (Minimum 3): 5 marks
- Quiz: 5 marks
- Attendance (Theory and Practical): 05 marks

<u>Overview</u>

- Introduction to subject of study
- Motivation and aim of study
- Examples with motion and force requirements

Introduction

Kinematics: study of motion of particles and rigid bodies without

reference to forces

Mechanisms and machines: kinematics of interconnected rigid Bodies

Equilibrating forces: quasi-static analysis

Scope of Study

Mechanisms and Machines: Transmission and transformation of motion and force

Motion: displacement, velocity, acceleration, path

Force transmission: actuator forces

Need to Study Kinematics of Machinery ??

Mechanization and Automation: requirement of specialized mechanical devices (manufacturing, mechanical handling, assembly, painting, packaging)

Health-care: transfer aids and devices, physiotherapy, surgery

Landing gear ..\..\LECTURES\TOM-I\Landing Gear Animation.mp4 Actuator throw and rate, force

• **Kinematic pair**: Connection between two links

Example: hinge,pin,screw etc

Pair variable: quantifies relative motion

Classification: Based upon type of contact

Lower pair or Higher pairLower pair: Area contact

• **Higher pair**: Line contact or Point contact

Kinematic Pairs According to the type of relative motion between the elements.

Lower pair

One pair variable: 1 DOF

Kinematic Pairs According to the type of relative motion between the elements.

Cylindrical Pair

Lower pair

Two pair variables: 2 degree of freedom

Classification of chains: closed, open and hybrid kinematic chains

Closed chain: no singular link

Open chain: at least one singular link; no closed chains Hybrid chain: combination of closed and open chains

Kinematic diagram

- Schematic line diagram showing the arrangement of links and their inter-connection
- Reveals the kinematic chain(s)
- Dimensions are secondary

Ackerman steering Mechanism

4-Bar kinematic chain 4R kinematic chain

Degrees of Freedom DOF

Minimum number of independent coordinates (variables) that need to be specified to fix the configuration of a mechanism

One link of the chain is grounded

DOF Rigid link in a plane

A rigid link in a plane has 3 DOF

Type of Joint	Points	Equivalent Binary Joint
Binary	A,B,C,E,F	5
Ternary	D,	1x2=2
Quaternary		
	Total Binary Joints =7	

$$DOF = 3(l-1) - 2j - h$$

$$DOF = 3(6-1) - 2 \times 7 - 0$$

$$DOF = 1$$

DOF = 3(l-1) - 2j - h
$DOF = 3(7-1) - 2 \times 8 - 0$
DOF = 2

Type of Joint	Points	Equivalent Binary Joint
Binary	A, B,C,D, E, F, G H	8
Ternary		
Quaternary		
	Total Binary Joints =8	

Type of Joint	Points	Equivalent Binary Joint
Binary	B, C	2
Ternary		
Quaternary		
	Total Binary Joints =2	

$$DOF = 3(l-1) - 2j - h$$

$$DOF = 3(3-1) - 2 \times 2 - 1$$

$$DOF = 1$$

■ Inversions of a Mechanism Method of obtaining different mechanisms by fixing different links in a kinematic chain, is known as inversion of the mechanism. ■ 4 Bar Kinematic chain Connecting Rod/Coupler Driver/Crank Follower/ Rocker/ Lever Fixed

