7

7.1

We prove $M \wedge N \leq M \times N$. Notice for $M \wedge N$ if $\Sigma_m \neq \Sigma_n$ then $M \wedge N = \emptyset$ which is always a subset of any set. Therefore, we assume from now on $\Sigma_m = \Sigma_n$. Also checkout these definitions:

$$(q_m, q_n)(\delta_m \wedge \delta_n)_a = (q_m \delta_a^m, q_n \delta_a^n) \tag{1}$$

$$(q_m, q_n)(\delta_m \times \delta_n)_{(a_m, a_n)} = (q_m \delta_{a_m}^m, q_n \delta_{a_n}^n)$$
(2)

We choose for the covering (η, ξ) $id_{(q_m, q_n)}$ as η and define $\xi : \Sigma_n \to \Sigma_m \times \Sigma_n; a_m \mapsto (a_m, a_m)$, which is well-defined due the assumption $\Sigma_n = \Sigma_m$.

Now we show $\eta((q_m, q_n))(\delta^m \wedge \delta^n)_{a_m} \subseteq \eta((q_m, q_n)(\delta^m \times \delta^n)_{\xi(a_m)})$:

$$\eta((q_m, q_n))(\delta^m \wedge \delta^n)_{a_m} = (q_m, q_n)(\delta^m \wedge \delta^n)_{a_m}$$
 (def. η , 1)

$$= (q_m \delta_{a_m}^m, q_n \delta_{a_m}^n) \tag{2}$$

$$= (q_m, q_n)(\delta_m \times \delta_n)_{(a_m, a_m)}$$
 (def. ξ)

$$= (q_m, q_n)(\delta_m \times \delta_n)_{\xi(a_m)}$$
 (def. η)

$$= \eta((q_m, q_n)(\delta^m \times \delta^n)_{\xi(a_m)})$$

7.2

7.3

We prove $P \leq N\omega R$ under the assumption $M \leq N$ and $P \leq M\omega R$. Let $\eta_1: Q_n \to Q_m$ and $\eta_2: Q_m \times Q_r \to Q_p$ be the η -functions of $M \leq N$ and $P \leq M\omega R$. Furthermore let $\xi_1: \Sigma_p \to \Sigma_r$ be the ξ -function of $P \leq M\omega R$.

We define $\eta: Q_n \times Q_r \to Q_p; (q_n, q_r) \mapsto \eta_2(\eta_1(q_n), q_r)$. Moreover we choose ξ_1 as ξ .

Finally, we show $\eta((q_n, q_r))\delta_{a_p}^p \subseteq \eta((q_n, q_r)\delta_{\xi(a_p)}^\omega)$.

$$\eta((q_n, q_r))\delta_{a_p}^p = \eta_2((\eta_1(q_n), q_r))\delta_{a_p}^p \qquad (\text{def. } \eta, \eta_1)$$

$$= \eta_2(q_m, q_r))\delta_{a_p}^p \qquad (\text{def. } \eta_2)$$

$$= q_p\delta_{a_p}^p \qquad (P \leq M\omega R)$$

$$\subseteq \eta_2((q_m, q_r)\delta_{\xi(a_p)}^\omega) \qquad (\text{def. } \xi)$$

$$= \eta_2((q_m, q_r)\delta_{a_r}^\omega) \qquad (\text{def. } \delta^\omega)$$

$$= \eta_2((q_m\delta_{a_m}^m, q_r\delta_{a_r}^r)) \qquad (\text{def. } \omega)$$

$$= \eta_2((q_m\delta_{a_n}^m, q_r\delta_{a_r}^r)) \qquad (\text{def. } \omega)$$

$$= \eta_2((\eta_1(q_n\delta_{a_n}^n), q_r\delta_{a_r}^r)) \qquad (\text{def. } \eta)$$

$$= \eta((q_n\delta_{a_n}^n, q_r\delta_{a_r}^r)) \qquad (\text{def. } \omega)$$

$$= \eta((q_n\delta_{a_n}^n, q_r\delta_{a_r}^r)) \qquad (\text{def. } \omega)$$

$$= \eta((q_n\delta_{a_r}^n, q_r\delta_{a_r}^r)) \qquad (\text{def. } \delta^\omega)$$

$$= \eta((q_n, q_r)\delta_{a_r}^\omega) \qquad (\text{def. } \xi)$$

$$= \eta((q_n, q_r)\delta_{a_r}^\omega) \qquad (\text{def. } \xi)$$

This gets boring...

7.4