Today

- Recap & questions from homework
- Coding the grid search algorithm

Algorithms in data science

- Model algorithm
- Training algorithm
- Inference (reliability) algorithm

Workflow algorithms

How can a model be an algorithm?

Model

$$y_i = \beta_0 + \beta_1 x_i$$

Algorithm (this version is atomic code)

```
> for ( i in 1:n ) {
> y[i] = b_0 + b_1 * x[i]
> }
```

Vectorized R code

$$> y < - b_0 + b_1 * x$$

Data table

i	y	x
1	28.4	10.2
2	47.6	15.7
85	35.1	12.9

Training algorithm

aka model fitting, model calibration

Big idea in data science

Legendre 1805: comet orbits, SSQ.

Least squares training algorithm

Vary model parameters

$$y_i = \beta_0 + \beta_1 x_i + e_i$$

Minimize distance from data

$$ssq = \sum_{i} e_{i}^{2}$$

Optimization algorithms

- Grid search
- Descent
- Monte Carlo
- Analytical or numerical

Grid search algorithm Pseudocode

Read in data

Set up values of β_0 and β_1 to try

Set up storage for ssq, β_0 , β_1

For each value of β_0

For each value of β_1

Calculate sum of squares

Store ssq, β_0 , β_1

Plot sum of squares profiles (ssq vs β_0 , ssq vs β_1)

Report best ssq, β_0 , β_1

Plot fitted model with the data

Initialization phase

Calculation phase

Termination phase

Grid search algorithm Pseudocode

Read in data

Set up values of β_0 and β_1 to try

Set up storage for ssq, β_0 , β_1

For each value of β_0

For each value of β_1

Calculate model predictions

Calculate deviations

Sum squared deviations

Store ssq, β_0 , β_1

Plot sum of squares profiles (ssq vs β_0 , ssq vs β_1)

Report best ssq, β_0 , β_1

Plot fitted model with the data

Top down refinement

Grid search algorithm Pseudocode

Read in data Set up values of β_0 and β_1 to try Set up storage for ssq, β_0 , β_1 For each value of β_0 For each value of β_1 Translate this to R code and use it to train the model with your data

Calculate model predictions
Calculate deviations
Sum squared deviations

Store ssq, β_0 , β_1

Plot sum of squares profiles (ssq vs β_0 , ssq vs β_1)

Report best ssq, β_0 , β_1

Plot fitted model with the data