Lista08 – OS

01)

A -

I) Definição do Cromossomo

1 cavalo anda de 3 em 3 posições. O cromossomo é uma sequência de posições do tabuleiro (a cada movimentação, contamos a partir da posição inicial até a final).

II) Geração da População Inicial

Posições do tabuleiro -> 64. Então, 64 possibilidades de posição inicial.

III) Função de Aptidão

Todas as posições do tabuleiro deverão ser visitadas, sem repetir. Verifica-se as sequências dos cromossomos.

• F(x) {número de posições visitadas = 64};

IV) Método de Seleção

Será utilizado o método roleta.

V) Método de Reprodução

A cada ponto inicial testar todas as possibilidades de ponto final;

VI) Método de Mutação

Trocar a posição final pela inicial;

VII) Condição de Parada

Número de posições visitadas = 64. Número de iterações = 32.

- B A implementação do tipo elitista pode apresentar problemas, escolhendo só os melhores. Pode aconetecer alguma situação em que um dos piores poderia ter uma vantagem. O método roleta garante essa aleatoriedade.
- 02) O problema que agora consideramos é calcular as entradas de voo em uma asa delta, de modo a fornecer um voo máximo de alcance. Nesse caso, o problema será resolvido se o número de equações corresponder ao número de variáveis; isto é, não há graus de liberdade. Pode-se mostrar que um problema está bem posicionado com relação à discretização do ponto médio, se e somente se estiver bem posicionado com relação à discretização trapezoidal. No entanto, como vimos neste exemplo, para problemas de controle, ou seja, problemas onde há graus de liberdade, a discretização do ponto médio às vezes terá menos graus de liberdade do que a discretização trapezoidal. Parece que a discretização do ponto médio tem o número "correto" e que a discretização trapezoidal tem muitos.

MÉTODO DA SEÇÃO ÁUREA

O Método da Seção Áurea utiliza um esquema de redução do intervalo de incerteza baseado na razão áurea. A Razão Áurea $(r = \frac{-1 \pm \sqrt{5}}{2} \cong 0.618)$ era considerada na Antigüidade como a mais estética para os lados de um retângulo.

Dados um intervalo de incerteza I = [a,b], um critério de convergência ε e uma função do tipo $f(\alpha)$, o método da Seção Áurea realiza a redução do intervalo I a uma taxa de redução igual a razão áurea (r) até que o critério de convergência seja satisfeito. Do intervalo restante I' = [a',b'] o valor de α é obtido pela relação $\alpha = \frac{b' + a'}{2}$.

Quando utilizamos um critério de convergência pequeno, como 10^{-6} por exemplo, provavelmente o valor de α obtido pelo método de Seção Áurea será igual (ou próximo) do valor obtido pelo método de Falsa Posição.

RESULTADOS

O Método da Seção Áurea foi testado para as duas funções utilizadas para o Método da Falsa Posição:

1 - **Função 1**:
$$f(x_1, x_2) = x_1^2 + x_2^2$$

2 - Função 2:
$$f(x_1, x_2) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$
 (Função de Rosenbrock)

Os resultados obtidos para a **Função 1** utilizando o Intervalo *I* foram:

Teste	x^{0}	I	ε	α	x^n	$f(x^n)$	Iterações
1	[1 1]	[0 1]	10e-1	0.500000	[0.000000 0.000000]	0	1
2	[1 1]	[0 1]	10e-3	0.497488	[0.005025 0.005025]	0.000051	11
3	[1 1]	[0 1]	10e-6	0.500000	[0.000000 0.000000]	0	25
4	[-1 -1]	[0 1]	10e-6	0.500000	[0.000000 0.000000]	0	25
5	[-0.5 0.5]	[0 1]	10e-6	0.500000	[0.000000 0.000000]	0	25
6	[1 -0.5]	[0 1]	10e-6	0.500000	[0.000000 0.000000]	0	25

No teste nº 1, utilizamos um critério de convergência relativamente grande e por causa disso o intervalo nem chegou a ser reduzido, e, como sabemos que o método utiliza a metade do intervalo como α ($\alpha = \frac{b'+a'}{2}$), o resultado por mero acaso deu que $\alpha = 0.5$, que corresponde ao $\alpha_k := \arg\min_{\alpha>0} f(x^k + \alpha d^k)$ em apenas uma iteração, porém é válido ressaltar que este resultado só foi obtido por mero acaso, pois foi coincidência α estar localizado exatamente na metade do intervalo inicial.

No teste nº 2 aumentamos o valor de ε e notamos que o valor de α chegou próximo do valor obtido pelo método da falsa posição. "Apertando" um pouco mais o critério de convergência, como no teste nº 3 o método da Seção Áurea obteve o mesmo valor do α obtido pela Falsa Posição. Como a análise gráfica foi realizada antes da implementação, podemos perceber que o método retornou o valor esperado e teve um comportamento adequado.

Os testes seguintes provam que partindo de um mesmo ponto inicial e utilizando um critério de convergência adequado, o Método de Seção Áurea encontra um $\alpha_k := \arg\min_{\alpha>0} f(x^k + \alpha d^k)$ igual ao encontrado pelo Método de Falsa Posição.

Fica claro que para funções quadráticas o Método da Falsa Posição converge mais rápido que o Método da Seção Áurea, pois o número de iterações utilizadas por esta é bem maior que as duas iterações necessárias para a convergência pelo cálculo da derivada direcional.

Os resultados obtidos pela **Função 2** utilizando o Intervalo *I* foram:

Teste	x^{0}	I	8	α	x^{n}	$f(x^n)$	Iterações
1	[0 0]	[0 1]	10e-1	0.500000	[1.000000 0.000000]	100.00000	1
2	[0 0]	[0 1]	10e-3	0.081080	[0.162159 0.0000000]	0.771123	11
3	[0 0]	[0 1]	10e-6	0.080628	[0.161257 0.000000]	0.771110	25
4	[-1 -1]	[0 1]	10e-6	0.001562	[0.256214 -0.375018]	19.971652	25
5	[-0.5 0.5]	[0 1]	10e-6	0.002377	[-0.611733 0.381135]	2.602469	25
6	[1 -0.5]	[0 1]	10e-6	0.001613	[0.032226 -0.016113]	0.966004	25
7	[1 1]	[0 1]	10e-6	0.000005	[1.000000 1.000000]	0.000000	25
8	[0.99 0.99]	[0 1]	10e-3	0.004065	[1.006019 0.981951]	0.090778	11
9	[0.99 0.99]	[0 1]	10e-6	0.001012	[0.993988 0.987996]	0.000036	25
10	[0.99 0.99]	[0 1]	10e-9	0.001013	[0.993991 0.987994]	0.000036	40

Como havíamos analisado graficamente, sabemos que partindo do ponto $x = [0\ 0]$ $\alpha_k := \arg\min_{\alpha>0} f(x^k + \alpha d^k)$ é aproximadamente igual à 0.09 e f(x) é aproximadamente igual à 0.77. No teste nº 1 o resultado obtido foi bastante insatisfatório pois o valor de ε utilizado foi muito inadequado, isso fica claro analisando-se os dois testes subseqüentes em que reduzimos ε e conseguimos obter resultados muito próximos daqueles que prevíamos e que obtivemos pelo método da falsa posição.

Observamos no teste nº 7 que quando partimos do ponto $x^* = [1 \ 1]$ o resultado obtido foi satisfatório, porém o número de iterações utilizadas (i = 25) foi muito além do número utilizado pelo método da Falsa Posição (i = 1). Isso mostra que quando estamos próximo do ponto ótimo o método da Seção Áurea tem um desempenho menor que o método da Falsa Posição se utilizarmos o mesmo critério de convergência. Isso fica claro nos 3 últimos testes, no qual partimos de um ponto próximo do ótimo e aumentamos o valor de ε gradativamente.

Como podemos ver, os dois métodos apresentaram resultados satisfatórios e muito coincidentes com os quais estamos esperando.