Noname manuscript No.

(will be inserted by the editor)

SIPLIB 2.0

Stochastic Integer Programming Library version 2.0

Yongkyu Cho \cdot Kibaek Kim \cdot Cong Han Lim \cdot James Luedtke \cdot Jeffrey Linderoth

Received: date / Accepted: date

Abstract We present a collection of stochastic integer programming problem instances.

Keywords Stochastic Integer Programming · Problem Instances

1 Introduction

- What SIP is?

Stochastic integer programming (SIP) is ... The main difficulty in solving stochastic integer programs is that the second-stage value function is not necessarily convex, but only lower semicontinuous (l.s.c.). Thus, the standard decomposition approaches that work nicely for stochastic *linear* programs, break down when second stage integer variables are present (Ahmed and Garcia, 2004). In this research study, we focus our emphasis on 2-stage SIP.

- SIPLIB?
 - MIPLIBv5 (last modified 2017): http://miplib.zib.de/
 - Shabbir's SIPLIB (last modified 2015): https://www2.isye.gatech.edu/sahmed/siplib/
 - Felt et al's SLPlib (last modified 2001): https://www4.uwsp.edu/math/afelt/slpinput/download.html
 - Holmes's POSTS (the most recent reference 1994): http://users.iems.northwestern.edu/jr-birge/html/dholmes/post.html

Yongkyu Cho, Kibaek Kim

Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL 60439, USA

E-mail: choy@anl.gov; kimk@anl.gov

Cong Han Lim \cdot James Luedtke \cdot Jeffrey Linderoth

Department of Industrial and Systems Engineering, University of Wisconsin-Madison Madison, WI 53706, USA

E-mail: clim 9@wisc.edu; jim.luedtke@wisc.edu; linderoth@wisc.edu

- Motivation for SIPLIBv2
 We need more..
- Power of Julia language for large-scale optimization problems
- Contribution

By SIPLIB 2.0, we mainly provide 1) richer collection of test problems for computational and algorithmic research in 2-stage SIP with benchmark experimental results, 2) not only SMPS files but also *Julia* files formatted in *StructJuMP* that are easily readable/modifiable.

2 Stochastic Integer Programming

The form of SIP is varying

- 2.1 Formulation
- 2.1.1 $2 ext{-}Stage$ Recourse Programs
- 2.2 Algorithms
- 2.2.1 Stage-wise Decomposition Algorithm
- $\it 2.2.2 \ Scenario-wise \ Decomposition \ Algorithm$

Benders, dual, ...

- 2.3 Software Libraries
- 2.3.1 Modeling Languages
- $2.3.2\ Solvers$

3 Test Sets Description

We introduce the set of problem instances. The instances are available in SMPS and Julia (StructJuMP) file format. characteristics, categorization

SIPLIB 2.0 3

$3.1~\mathrm{Mutli-Path}$ Traveling Salesman Problem with Stochastic Travel Times (MPTSPS)

3.1.1 Problem Class

	1^{st} stage	2^{nd} stage
Variables	Bin	Bin
Constraints		

3.1.2 Notation

Table 1 Notations corresponding to problem

```
 \begin{array}{lll} \textbf{Index sets} \\ T & & \text{index set of time slots } (t=1,\ldots,|T|) \\ A & & \text{index set of applications } (i=1,\ldots,|A|) \\ S & & \text{index set of servers } (j=1,\ldots,|S|) \\ F_j & & \text{index set of frequency options of server } j \in S \; (f=0,\ldots,|F_j|) \\ \textbf{Parameters} \\ \lambda_{it} & & \text{average workload of application } i \in A \; \text{that arrives in time interval } t \in T \\ U_j & & \text{maximum number of applications installable to server } j \in S \\ C_{jf} & & \text{processing capacity of server } j \in S \; \text{under frequency } f \in F_j \\ \beta_{jft} & & \text{cost incurred when server } j \in S \; \text{under frequency } f \in F_j \\ \text{ot incurred when server } j \in S \; \text{runs at frequency } f \in F_j \; \text{in time interval } t \in T \\ \alpha_{jf} & & \text{target load for all servers (surrogate for quality of service)} \\ \textbf{Decision variables} \\ a_{ij} \; (\text{virtualization}) & 1 \; \text{if application } i \in A \; \text{is installed to server } j \in S, \; 0 \; \text{otherwise} \\ \alpha_{jft} \; (\text{sorver provisioning}) & 1 \; \text{if server } j \in S \; \text{runs at frequency } f \in F_j \; \text{during time interval } t \in T, \; 0 \; \text{otherwise} \\ \alpha_{ij} \; (\text{routing}) & \text{fraction of workloads of application } i \in A \; \text{assigned to server } j \in S \; \text{in time interval } t \in T. \\ \textbf{Output} \; \text{otherwise} \; \text{fraction of workloads of application } i \in A \; \text{assigned to server } j \in S \; \text{in time interval } t \in T. \\ \textbf{Output} \; \text{for maximum number of application } i \in A \; \text{assigned to server } j \in S \; \text{in time interval } t \in T. \\ \textbf{Output} \; \text{for maximum number of application } i \in A \; \text{assigned to server } j \in S \; \text{in time interval } t \in T. \\ \textbf{Output} \; \text{for maximum number of application } i \in A \; \text{assigned to server } j \in S \; \text{in time interval } t \in T. \\ \textbf{Output} \; \text{for maximum number of application } i \in A \; \text{assigned to server } j \in S \; \text{in time interval } t \in T. \\ \textbf{Output} \; \text{for maximum number of application } i \in A \; \text{assigned to server } j \in S \; \text{in time interval } t \in T. \\ \textbf{Output} \; \text{for maximum number of application } i \in A \; \text{assigned to server } j \in S \; \text{in time interval } t \in T. \\ \textbf
```

3.1.3 Formulation

(MIP_O): minimize
$$\sum_{j \in S} \sum_{f \in F_j} \sum_{t \in T} \beta_{jft} x_{jft}, \tag{1}$$

subject to

$$\sum_{i \in A} a_{ij} \le U_j, \quad \forall j \in S, \tag{2}$$

$$\sum_{i \in S} r_{ijt} = 1, \quad \forall i \in A, \forall t \in T, \tag{3}$$

$$r_{iit} \le a_{ii}, \quad \forall i \in A, \forall j \in S, \forall t \in T,$$
 (4)

$$\sum_{i \in A} \lambda_{it} r_{ijt} \le \rho \sum_{f \in F_j} C_{jf} x_{jft}, \quad \forall j \in S, \forall t \in T,$$

$$\sum_{f \in F_j} x_{jft} = 1, \quad \forall j \in S, \forall t \in T,$$

$$(6)$$

$$\sum_{f \in F_i} x_{jft} = 1, \quad \forall j \in S, \forall t \in T, \tag{6}$$

$$\sum_{i \in S} r_{ijt} \le U_j (1 - x_{j0t}), \quad \forall j \in S, \forall t \in T,$$
 (7)

$$a_{ij}, x_{jft} \in \{0, 1\}, \quad \forall j \in S, \forall f \in F_j, \forall t \in T$$
 (8)

$$0 \le r_{ijt} \le 1, \quad \forall j \in S, \forall t \in T \tag{9}$$

4 Implementation of SMPS Writer

We describe our Julia implementation, how to model SIP and generate SMPS

5 Solution Report

6 Concluding Remarks

References

1. Author1 and Author2, paper paper paper paper, Journal Title 68 (2011), 1207-1221.