

EDiT: Interpreting Ensemble Models via Compact Soft Decision Trees

Jaemin Yoo Seoul National University Seoul, South Korea

Lee Sael
Ajou University
Suwon, South Korea

ICDM 2019

- **→** Introduction
 - Proposed Method
 - Experiments
 - Conclusion

Black Box Models

- Most ML models are black boxes
 - Learned structures are random and complex
 - Their decisions are not explainable

Image from https://www.investopedia.com/terms/b/blackbox.asp

Interpretable ML

- Research to interpret a model's decisions
 - Important when each decision is irreversible
- Two types of interpretable models:
 - Linear models
 - Decision trees
- However, their accuracy is not good

Ensemble Models

- Ensemble models
 - Combine the predictions of weak models
 - Produce robust and accurate predictions
- However, they have low interpretability
 - Decisions are made by hundreds of learners

Image from https://dsc-spidal.github.io/harp/docs/examples/rf/

Problem Definition

- Given a trained ensemble model M
- Train an interpretable classifier S
- Such that
 - S achieves similar accuracy to M
 - □ S contains fewer parameters than M

- Introduction
- Proposed Method
 - Experiments
 - Conclusion

Proposed Method

- Ensemble to Distilled Tree (EDiT)
 - Given an ensemble model
 - Trains a compact soft decision tree
 - Interpretable & more efficient than SDTs
- EDiT is based on three main ideas
 - Idea 1: Knowledge distillation
 - Idea 2: Weight sparsification
 - Idea 3: Tree pruning

Preliminary: SDTs

- SDTs are interpretable tree-based models
 - Each internal node is a linear classifier
 - Each leaf node learns a probability distribution

Image from "Rule-Extraction from Soft Decision Trees" (L. Huang, M. Hsieh, and M. Rajati, BDAI 2019)

Idea 1: Distillation

- Knowledge distillation
 - Transfers the knowledge of a teacher to a student
- lacktriangle Replace the labels lacktriangle in training data $\mathcal D$ as

$$\mathbf{y}_i \leftarrow \frac{M(\mathbf{x}_i) + \mathbf{y}_i}{2}$$
 for each $(\mathbf{x}_i, \mathbf{y}_i)$ in \mathcal{D}

 \mathbf{x}_i is a feature vector that corresponds to y_i

Idea 2: Sparse Weights (1)

- Weight sparsification
 - Improves the efficiency by sparse weights
- Propose three different approaches
 - 1) L1 regularization
 - Adds an L1 regularizer to the loss function
 - 2) Weight masking
 - Inactivates randomly some of the weights
 - 3) Weight pruning
 - Prunes weights whose learned values are small

Idea 2: Sparse Weights (2)

Weight masking: 2 steps

Weight pruning: 3 steps

Idea 3: Tree Pruning

- Tree pruning
 - Removes nodes of small arrival probabilities
 - Enables a large depth to be adopted
- Tree pruning vs. weight pruning
 - Weight pruning removes redundant weights
 - Tree pruning removes redundant tree nodes

Summary

Result of applying our ideas to an SDT

- Sparse weights from sparsification
- Narrow tree structure from tree pruning

- Introduction
- Proposed Method
- **Experiments**
 - Conclusion

Accuracy & Complexity

- Does EDiT outperform the baselines?
- EDiT shows the best balance in all cases
 - High accuracy with only a few parameters

Sparsification Methods

- Which is the best sparsification method?
- Weight pruning works generally the best
 - \blacksquare L1 regularization fails even with large λ

- Introduction
- Proposed Method
- Experiments
- **▶** Conclusion

Conclusion

- Ensemble to Distilled Tree (EDiT)
 - Our approach to interpret ensemble models
 - Idea 1: Knowledge distillation
 - Idea 2: Weight sparsification
 - Idea 3: Tree pruning
- EDiT gives the most efficient predictions
 - □ Accuracy: DT << RF ≈ SDT ≈ EDiT</p>
 - □ Parameters: DT ≈ EDiT ≪ SDT < RF</p>

Thank you!

GitHub: https://github.com/leesael/EDiT