Experiment-1

Making Half-Wave and Full-Wave Rectifiers with Simulink

OBJECTIVE:

The goal of this lab is to learn, make, and test half-wave and full-wave rectifiers using MATLAB Simulink.

Tools & Software:

- Computer: A computer that has MATLAB on it.
- > MATLAB Software: Make sure that MATLAB is on the computer.
- MATLAB Simulink: Use Simulink, a MATLAB tool for making, running, and checking different kinds of systems.

THEORY:

Half-Wave Rectifier:

A half-wave rectifier is a simple way to change an AC input into a DC output that goes up and down. It uses one diode to let current go only when the input is positive.

Full-Wave Rectifier:

A full-wave rectifier is a better way to change the whole AC input into a DC output that goes only one way. There are two main kinds of full-wave rectifiers:

Centre-Tapped Full-Wave Rectifier:

- Uses a transformer with a middle point.
- Uses two diodes, each one working for different parts of the input.
- Gives two different output voltages, one for each part of the input.

> Bridge Rectifier:

- Uses four diodes in a bridge shape.
- Does not need a transformer with a middle point.
- o Works for both parts of the input, giving a steady DC output.

CIRCUIT DIAGRAMS:

HALF WAVE RECTIFIERS:

FULL WAVE RECTIFIERS:

Parts of the Circuit:

- AC Voltage Source (Vin): Gives the input AC signal.
- > Diode (D): Lets current go only when the input is positive.
- > Resistor (R): Makes the circuit work.

Part 1: Making a Half-Wave Rectifier with Simulink

> Step 1: Making the Simulink Model

- o Open MATLAB and make a new Simulink model.
- o Take these blocks from the SimPowerSystems library:
 - ❖ Voltage Source (AC) –
 - ❖ Diode
 - Resistor
 - Scope

> Step 2: Setting the Parts

- Voltage Source (AC):
 - Choose how big, how fast, and how shifted the input is.
- Diode:
 - Pick a good diode model.
 - Change how much voltage it drops and how long it takes to recover if needed.
- o Resistor:
 - Choose how much resistance it has.

> Step 3: Connecting Parts

- Connect the AC Voltage Source to the Diode.
- Connect the Diode to the Resistor.
- Connect the Resistor to the Scope.

> Step 4: Running the Model

- o Set the model parameters (start time, stop time, solver options).
- o Run the model and see the output on the Scope.

Part 2: How to Make a Full-Wave Rectifier with Simulink

Step 1: Changing the Simulink Model

- Copy the model for the half-wave rectifier.
- Change the Diode block with a Bridge Rectifier block from the SimPowerSystems library.

> Step 2: Setting the Parts

Bridge Rectifier:

- Set the block parameters (number of diodes, voltage drop, recovery time).
- > Step 3: Running the Model
 - Set the model parameters as in Part 1.
 - o Run the model and see the output on the Scope.

CHECKING AND FINISHING:

- Compare the outputs of the half-wave and full-wave rectifiers.
- > Check how well they work and how smooth they are for each circuit.
- > Talk about the good and bad points of each rectifier.

HALF WAVE RECTIFIER:

• WITH LOAD R:

Output:

• WITH LOAD RL:

OUTPUT:

FULL WAVE RECTIFIER:

• WITH LOAD R:

OUTPUT:

• WITH LOAD RL:

OUTPUT:

CONCLUSION:

- > Make sure to write and label everything clearly in the Simulink model.
- > Keep the Simulink models for later use.
- > Try different values for the parts and see how they affect the rectifiers.