Value Function Approximation

Weizi Li

Department of Computer Science University of Memphis

Outline 1

- Introduction
- Incremental and Batch Methods
- Deep Q-Networks

- So far, we use tabular representations, which allow exact solutions.
- Issue: large-scale RL problems (e.g., states, actions) cannot be fit into tables
 - ▶ Discrete state space: Game of Go has 10^{170} states (estimated atoms in the universe 10^{80})
 - ► Continuous state space

- Approach: use function approximation to achieve generalization
 - Assumption: nearby states should be similar (e.g., value functions)
- Goal: scale-up model-free methods for prediction and control

- Problem: difficult to store and compute value functions (V or Q) for large MDPs.
- Solution: parameterized function approximation

$$V^{\pi}(s) \approx \hat{V}(s, \mathbf{w})$$

or

$$Q^{\pi}(s,a) \approx \hat{Q}(s,a,\mathbf{w})$$

- Value function approximation options
 - ► Input: *S*; Output: *V*(*S*)
 - ▶ Input: S and A; Output: Q(S, A)
 - ▶ Input: S; Output: $Q(S, A_1), \dots, Q(S, A_m)$
- Function approximation can also be used to represent a policy, e.g., policy gradient methods

- 1995: Gerald Tesauro solved Backgammon using TD + NN.
- 1996: "Neuro-Dynamic Programming" by Bertsekas and Tsitsiklis.
- 1996–1998: It's proven that function approximator + off-policy control + bootstrapping can fail to converge
- 2015: DeepMind solved Atari, many breakthroughs since then

- Linear models (differentiable)
 - can work well if right features are given
- Neural networks (differentiable)
 - current mainstream
- Decision trees (non-differentiable)
- Deep RL: deep neural networks + RL

Incremental and Batch Methods

- Labeled data: < s, $V^{\pi}(s)$ >, assume that an oracle provides $V^{\pi}(s)$
- Prediction: $\hat{V}(s, \mathbf{w})$
- lacksquare Cost: $J(\mathbf{w}) = \mathbb{E}_{\pi}(V^{\pi}(s) \hat{V}(s, \mathbf{w}))$
- \blacksquare SGD is usually adopted to update w

- Linear model: $V(s, \mathbf{w}) = \mathbf{x}(s)^T \mathbf{w}$, where $\mathbf{x}(s) = (\mathbf{x}_1(s), \dots, \mathbf{x}_n(s))^T$ represents features.
- Lookup table can be represented as a linear model

Using table lookup features

$$\mathbf{x}^{table}(S) = egin{pmatrix} \mathbf{1}(S = s_1) \ dots \ \mathbf{1}(S = s_n) \end{pmatrix}$$

Parameter vector \mathbf{w} gives value of each individual state

$$\hat{v}(S, \mathbf{w}) = \begin{pmatrix} \mathbf{1}(S = s_1) \\ \vdots \\ \mathbf{1}(S = s_n) \end{pmatrix} \cdot \begin{pmatrix} \mathbf{w}_1 \\ \vdots \\ \mathbf{w}_n \end{pmatrix}$$

- We need labeled data < s, $V^{\pi}(s)$ >, but we do not have an oracle to give us $V^{\pi}(s)$
- lacksquare For MC: $V^\pi(s) o G_t$ (return)
- For TD(0): $V^{\pi}(s) \rightarrow R_{t+1} + \gamma \hat{V}(s_{t+1}, \mathbf{w})$ (TD target)
- For TD(λ): $V^{\pi}(s) \rightarrow G_t^{\lambda}$ (λ -return)
- Similar replacements for $Q^{\pi}(s, a)$

- MC Control (after every episode)
 - lacktriangle policy evaluation $Qpprox q_\pi$
 - **Proof** policy improvement: ϵ -greedy
- TD Control (after every time step)
 - **Policy evaluation:** Sarsa $Q \approx q_{\pi}$
 - **policy** improvement: ϵ -greedy
- Control with Function Approximator
 - Policy evaluation: approximated policy evaluation $\hat{Q}(\cdot,\cdot,\mathbf{w})pprox q_{\pi}$
 - **policy** improvement: ϵ -greedy

On/Off-Policy	Algorithm	Table Lookup	Linear	Non-Linear
On-Policy	MC	✓	✓	✓
	TD(0)	✓	✓	×
	$TD(\lambda)$	✓	✓	×
Off-Policy	MC	✓	✓	✓
	TD(0)	✓	X	X
	$TD(\lambda)$	✓	X	Х

■ "SBEED: Convergent Reinforcement Learning with Nonlinear Function Approximation" by Dai et al., 2018

- Incremental methods update w after every episode or time step, which it is not sample efficient, i.e., the episode or sample is discarded after the update
- Batch methods aim to find the best fitting value function by collecting <state, value> pairs from the agent's experience
- The "value" can be return, TD target, λ -return, etc.

- Given value function approximation $\hat{v}(s, \mathbf{w}) \approx v_{\pi}(s)$
- And experience \mathcal{D} consisting of $\langle state, value \rangle$ pairs

$$\mathcal{D} = \{\langle s_1, v_1^\pi \rangle, \langle s_2, v_2^\pi \rangle, ..., \langle s_T, v_T^\pi \rangle\}$$

- Which parameters **w** give the best fitting value fn $\hat{v}(s, \mathbf{w})$?
- Least squares algorithms find parameter vector \mathbf{w} minimising sum-squared error between $\hat{v}(s_t, \mathbf{w})$ and target values v_t^{π} ,

$$egin{aligned} LS(\mathbf{w}) &= \sum_{t=1}^{\mathcal{T}} (v_t^{\pi} - \hat{v}(s_t, \mathbf{w}))^2 \ &= \mathbb{E}_{\mathcal{D}} \left[(v^{\pi} - \hat{v}(s, \mathbf{w}))^2
ight] \end{aligned}$$

Given experience consisting of *(state, value)* pairs

$$\mathcal{D} = \{\langle s_1, v_1^\pi \rangle, \langle s_2, v_2^\pi \rangle, ..., \langle s_T, v_T^\pi \rangle\}$$

Repeat:

Sample state, value from experience

$$\langle s, v^{\pi} \rangle \sim \mathcal{D}$$

2 Apply stochastic gradient descent update

$$\Delta \mathbf{w} = \alpha (\mathbf{v}^{\pi} - \hat{\mathbf{v}}(\mathbf{s}, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(\mathbf{s}, \mathbf{w})$$

Converges to least squares solution

$$\mathbf{w}^{\pi} = \underset{\mathbf{w}}{\operatorname{argmin}} \ LS(\mathbf{w})$$

Deep Q-Networks

 "Human-level control through deep reinforcement learning" by Mnih et al, 2015

Deep Q-Networks (DQN)

- End-to-end learning of values Q(s, a) from pixels s
- Input state s is stack of raw pixels from last 4 frames
- Output is Q(s, a) for 18 joystick/button positions
- Reward is change in score for that step

Network architecture and hyperparameters fixed across all games

- Recall: function approximator + off-policy control + bootstrapping can fail to converge
- Two issues are potentially causing the problem:
 - correlations between samples (solution: concatenate multiple frames as input)
 - non-stationary targets

```
Initialize Q(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from Q (e.g., \varepsilon\text{-}greedy)
Take action A, observe R, S'
Q(S,A) \leftarrow Q(S,A) + \alpha \big[ R + \gamma \max_a Q(S',a) - Q(S,A) \big]
S \leftarrow S';
until S is terminal
```

- DQN uses experience replay (keep memory D) and fixed Q-targets (keep two sets of parameters w^- and w).
- Compared to Q-learning, we replace the "original Q(S, A) update" and do the following
 - ▶ Store transitions (S, A, R, S') in D and sample mini-batch of transitions from D
 - Compute loss using the sampled mini-batch

$$L_i(w_i) = \mathbb{E}_{S,A,R,S' \sim D_i} \left[\left(R + \gamma \max_{a'} Q(S',A';w_i^-) - Q(S,A;w_i) \right)^2 \right]$$

▶ Using $L_i(w_i)$ to adjust w, and after certain steps $w^- \leftarrow w$

DQN on Atari Games

	Replay	Replay	No replay	No replay
	Fixed-Q	Q-learning	Fixed-Q	Q-learning
Breakout	316.81	240.73	10.16	3.17
Enduro	1006.3	831.25	141.89	29.1
River Raid	7446.62	4102.81	2867.66	1453.02
Seaquest	2894.4	822.55	1003	275.81
Space Invaders	1088.94	826.33	373.22	301.99

- Double DQN: "Deep Reinforcement Learning with Double Q-Learning" by Van Hasselt et al., AAAI 2016
- Prioritized Replay: "Prioritized Experience Replay" by Schaul et al., ICLR 2016
- Dueling DQN (best paper ICML 2016): "Dueling Network Architectures for Deep Reinforcement Learning" by Wang et al., ICML 2016

- DQN is more reliable on some Atari games than others.
 Pong is a reliable one: if doesn't achieve good scores,
 something is wrong
- Large replay buffers improve robustness of DQN
- DQN converges slowly: for Atari it's often necessary to wait for 10–40 M frames (couple of hours to a day of training on GPU) to outperform random policy
- Try DQN on small test environment first prior to Atari
- Try Double DQN: significant improvement from small code change
- Try large learning rates in initial exploration period

- DQN does not explore very well
- "Unifying Count-Based Exploration and Intrinsic Motivation" by Bellemare et al., 2016
- "Deep Q-learning from Demonstrations" by Hester et al., 2018. (Demo)
- "First return, then explore" by Ecoffet et al., 2021