Рассмотрим такой ряд:

$$1 - 1 + \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \frac{1}{4} + \frac{1}{4} - \frac{1}{2} + \frac{1}{4} + \frac{1}{4} - \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{16} + \frac{1}{16} + \dots$$

Сходится ли этот ряд? Да, потому что можно разбить на скобки из 3х слагаемых (кроме 1), каждая из которых =0.

Рассмотрим похожий ряд:

$$-1 + 1 - \frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1}{4} - \frac{1}{4} + \frac{1}{2} - \frac{1}{4} - \frac{1}{4} + \frac{1}{4} - \frac{1}{8} - \frac{1}{8} + \underbrace{\frac{1}{8} - \frac{1}{16} - \frac{1}{16}}_{8 \text{ pas}} + \dots = -1$$

Произошла магия — сумма ряда =-1, т.к. $b_n=-a_n$, где b_n — слагаемое этого ряда, a_n — прошлого ряда. Но мы просто переставили слагаемые предыдущего ряда \Rightarrow перестановка бесконечного числа слагаемых меняет результат.

Определение. $\sum a_k, w: \mathbb{N} \to \mathbb{N}$ — биекция $b_k:=a_{w(k)}, \sum b_k$ называется перестановкой ряда $\sum a_k$

Теорема 1. Ряд A абсолютно сходится, тогда его перестановка B тоже абсолютно сходится и имеет ту же сумму.

Доказательство. 1. $a_k \ge 0$

$$S_n^{(b)} = b_1 + \ldots + b_n = a_{w(1)} + \ldots + a_{w(n)} \le S_N^{(a)}, N = \max(w(1) \ldots w(n))$$

Предельный переход: $S^{(b)} \leq S^{(a)}$

Т.к. A — перестановка B, то $S^{(a)} \leq S^{(b)} \Rightarrow S^{(a)} = S^{(b)}$

2. Общий случай

$$a_k^+ = \max(a_k, 0), a_k^- = \max(-a_k, 0)$$

$$\sum b_k^+$$
 — перестановка $\sum a_k^+; \sum b_k^-$ — перестановка $\sum a_k^-$

Срезки сходятся по пункту 1., в силу абсолютной сходимости $\sum a_k^+$ и $\sum a_k^-$ конечны \Rightarrow $S^{(a)} = S^{(b)}$

Теорема 2. Римана.

 $\sum a_k$ — сходится неабсолютно. Тогда:

- 1. \exists перестановка ряда A, которая не имеет предела частичной суммы
- 2. $\forall S \in \overline{\mathbb{R}} \; \exists$ перестанвка ряда A с суммой S

Доказательство. 2. Т.к. $\sum a_k$ сходится неабсолютно, существует две кучи - одна из положительных a_k , другая из отрицательных. Обе кучи бесконечные и имеют бесконечную сумму. Тогда будем брать элементы из положительной кучи, пока частичная сумма < S, потом берем элементы из отрицательной кучи, пока сумма > S. Получаем ряд, осциллирующий вокруг S. Если есть нулевые элементы, то будем их добавлять в сумму, когда меняем направление.

1. Будем осциллировать не вокруг S, а между T и S.

М3137у2019 Лекция 13

Пример.

$$\sum_{n=1}^{+\infty} \frac{1}{n(2n-1)} = \sum_{n=1}^{+\infty} \left(\frac{2}{2n-1} - \frac{1}{n} \right) = 2 \left(1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \dots \right) - 1 - \frac{1}{2} - \frac{1}{3} - \frac{1}{4} - \dots =$$

$$= 2 - 1 - \frac{1}{2} + \frac{2}{3} - \frac{1}{3} - \frac{1}{4} + \frac{2}{5} - \frac{1}{5} + \dots =$$

$$= 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots$$

Разложим $f(x) = \ln(1+x)$ по Тейлору:

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + \frac{1}{(n+1)!} f^{(n+1)}(c) x^n$$
$$f^{(n+1)}(c) = \frac{(-1)^n n!}{(1+c)^{n+1}}$$
$$R_n \le \frac{1}{n+1} \frac{1}{(1+c)^{n+1}} \le \frac{1}{n+1}$$
$$\ln 2 = 1 - \frac{1}{2} + \frac{1}{3} - \dots$$

Проблема: сумма этого ряда должна быть > 1, но мы получили обратное. Это произошло, потому что мы переставили слагаемые неабсолютно сходящегося ряда.

Произведение рядов

$$(a_1 + \ldots + a_k)(b_1 + \ldots + b_l) = \sum \sum a_i b_j$$

Определение. $\sum a_k, \sum b_k$

$$\gamma: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$$
 — биекция, $\gamma(k) = (\varphi(k), \psi(k))$

Произведение рядов A и B — ряд $\sum_{k=1}^{+\infty} a_{\varphi(k)} b_{\psi(k)}$

Теорема 3. Коши.

Пусть ряды $\sum a_k, \sum b_k$ абсолютно сходятся. Тогда \forall биекции $\gamma: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ произведение рядов абсолютно сходится и его сумма = AB

Доказательство. $\sum |a_k| = A^*, \sum |b_k| = B^*, 0 \le A^*, B^* < +\infty$

$$\sum_{k=1}^{N} |a_{\varphi(x)}b_{\psi(x)}| \le \sum_{i=1}^{M} |a_i| \sum_{j=1}^{L} |b_j| \le A^*B^*$$

$$M := \max(\varphi(1) \dots \varphi(N)) \quad N := \max(\psi(1) \dots \psi(N))$$

Итого произведение сходится абсолютно.

Произведение для $\overline{\gamma} \neq \gamma$ есть перестановка произведения для $\gamma \Rightarrow \forall \gamma$ произведение рядов имеет одинаковую сумму.

Возьмём γ такое, что оно обходит точки $\mathbb{N} \times \mathbb{N}$ "по квадратам", т.е. не заходит в следующий квадрат, пока не обошло предыдущий. Тогда:

$$\sum_{k=1}^{n^2} a_{\varphi(k)} b_{\psi(k)} = \sum_{i=1}^n a_i \sum_{j=1}^n b_j \xrightarrow[n \to +\infty]{} AB$$

M3137y2019

Пример. $x \in \mathbb{R}, x$ — фиксированный

$$\sum_{k=0}^{+\infty} a_k x^k \sum_{j=0}^{+\infty} b_j x^j = \sum_{n=0}^{+\infty} c_n x^n$$

$$c_n = a_0 b_n + a_1 b_{n-1} + \ldots + a_n b_0$$

Это называется произведение степенных рядов.

Функции нескольких переменных

Лемма 1. О дифференциируемости отображения и его координатных функций.

$$F:E\subset\mathbb{R}^m o\mathbb{R}^n$$
 $a\in IntE$ $F(x)=(f_1(x),f_2(x)\dots f_n(x)).$ Тогда:

- 1. $F \partial u \phi \phi$. в $a \Leftrightarrow в ce f_i \partial u \phi \phi e p e н ц u u p y e мы в <math>a$
- 2. $\forall i=1\dots n$ i-я строка матрицы Якоби F есть матрица Якоби f_i

Доказательство.

$$F(x) = F(a) + L(x - a) + \varphi(x)|x - a|$$

$$\forall i \quad f_i(x) = f_i(a) + (L_{1i}, L_{2i}, \dots L_{mi}) \cdot (x - a) + \varphi_i(x)|x - a|$$

Очевидно оба выражения эквивалентны.

Пример. 1. $F = \text{const} : \mathbb{R}^m \to \mathbb{R}^l$

 $\forall x \in \mathbb{R}^m \ F$ дифф. в x, $F'(x) = \mathbf{0}$

$$F(x) = F(a) + \underbrace{L}_{\mathbf{0}}(x-a) + \underbrace{\varphi(x)}_{\mathbf{0}}|x-a|$$

2. $A:\mathbb{R}^m \to \mathbb{R}^l$ — линейный оператор

 $\forall x \in \mathbb{R}^m \ A$ дифф. в x, A'(x) = A

$$A(x) = Aa + A(x - a) + \underbrace{\varphi(x)}_{\mathbf{0}} |x - a|$$

3. $F(x) = v_0 + Ax -$ афинное отображение. F'(x) = A

1. Частные производные

Определение. $f:E\subset\mathbb{R}^m\to\mathbb{R}, a\in IntE$

Фиксируем $k \in \{1 \dots m\}$ $\varphi_k(t) := f(a_1, a_2 \dots t \dots a_m)$

 $\lim_{h o 0} rac{arphi_k(a_k+h)-arphi_k(a_k)}{h} = arphi_k'(a_k)$ называется частной производной функции f в точке a

$$f'_k(a) = \frac{\partial f}{\partial x_k}(a) = D_k f(a)$$

$$\frac{\partial f}{\partial x_k}(a) = \lim_{h \to 0} \frac{f(a_1, a_2 \dots a_k + h \dots a_m) - f(a_1 \dots a_m)}{h}$$

M3137y2019

Пример. 1.

$$f(x,y)=x+(y-\alpha)\arctan\frac{x^2+y^2}{\sqrt{xy}+1}$$

$$\frac{\partial f}{\partial x}(1,1)=1$$

2.

$$f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2} & , (x,y) \neq (0,0) \\ 0 & , (x,y) = (0,0) \end{cases}$$
$$\frac{\partial f}{\partial x}(0,0) = \frac{df}{dx}(x,0) = 0 \quad \frac{\partial f}{\partial y}(0,0) = 0$$

Теорема 4. Необходимое условие дифференциируемости.

 $f:E\subset\mathbb{R}^m o\mathbb{R},a\in IntE,f$ — дифф. a

Тогда $\exists f_1'(a),\ldots,f_m'(a)$ и матрица Якоби f в точке $a=(f_1'(a),\ldots,f_m'(a))$

Доказательство.

$$f(x) = f(a) + (l_1 \dots l_m)(x - a) + \alpha(x)|x - a|$$

$$\lim_{x \to a} \frac{f(x) - f(a) - L(x - a)}{|x - a|} = 0$$

Посчитаем предел по направлению $x = a + te_k, e_k = (0 \dots 0, 1, 0 \dots 0)$

$$f(a+te_k) = f(a) + l_k t + \alpha_k(t)|t| \Rightarrow \exists \frac{\partial f}{\partial x_k}(a) = l_k$$

Следствие. $F:F\subset\mathbb{R}^m o \mathbb{R}^l, a\in IntE, F-$ дифф. в a

Тогда все координатные функции F_i дифференциируемы в a и $F'(a) = \sum_{i=1}^l \sum_{j=1}^m \left(\frac{\partial F_i}{\partial x_i}(a) \right)$

Теорема 5. Достаточное условие дифференциирования.

 $f:E\subset\mathbb{R}^m o\mathbb{R}$ $\exists r>0$ $B(a,r)\subset E$ и в этом шаре $\exists f_1'\dots f_m$ (конечные) и они непрерывны в точке a. Тогда f дифф. в a

Доказательство. $\triangleleft m = 2$

$$f(x_1,x_2)-f(a_1,a_2)=$$

$$=f(x_1,x_2)-f(x_1,a_2)+f(x_1,a_2)-f(a_1,a_2)=$$

$$=f_2'(x_1,\overline{x}_2)(x_2-a_2)+f_1'(\overline{x}_1,a_2)(x_1-a_1)=$$

$$=f_2'(a_1,a_2)(x_2-a_2)+f_1'(a_1,a_2)(x_1-a_2)+(f_2'(x_1,\overline{x}_2)-f_2'(a_1,a_2))\frac{x_2-a_1}{|x-a|}|x-a|+\ \text{аналогично}$$

Лекция 13

M3137y2019

Правила дифференциирования

2. Линейность

 $F,G:E\subset\mathbb{R}^m o\mathbb{R}^l$, дифф. в $a\in IntE$. Тогда $F+G, orall \lambda\in\mathbb{R}$ $\lambda F-$ дифф. в a

$$(F+G)'(a) = F'(a) + G'(a) \quad (\lambda F)'(a) = \lambda F'(a)$$

Доказательство. Сложить определения дифференциирования

$$F(a+h) = F(a) + F'(a)h + \alpha(h)|h|$$

$$F(a+h) = G(a) + G'(a)h + \beta(h)|h|$$

$$(F+G)(a+h) = (F+G)(a) + (F'+G')(a)h + (\alpha+\beta)(h)|h|$$

М3137у2019 Лекция 13