Математический анализ, Коллоквиум 2

Балюк Игорь @lodthe, GitHub

2019 - 2020

Содержание

1	Воп	Вопросы предварительной части коллоквиума			
	1.1	Определение непрерывности функции в точке.			
	1.2	Точки разрыва, их классификация.			
	1.3	Теорема о непрерывности сложной функции.			
	1.4	Формулировки первой и второй теорем Вейерштрасса.			
	1.5	Понятие производной функции в точке.			
	1.6	Геометрический и физический смысл производной.			
	1.7	Уравнение касательной к графику функции в точке.			
	1.8	Понятие дифференцируемости функции в точке.			
	1.9	Правила дифференцирования (производная суммы, произведения, частного).			
	1.10	Формула вычисления производной сложной функции.			
	1.11	Таблица производных основных элементарных функций.			
	1.12	Понятие дифференциала (первого) функции в точке			
	1.13	Геометрический смысл дифференциала.			
	1.14	Определение локального экстремума. Необходимое условие для внутреннего локального			
		экстремума (теорема Ферма).			
	1.15	Формулы Лагранжа и Коши.			
	1.16	Многочлен Тейлора и формула Тейлора для функций одной переменной.			
	1.17	Формулы Маклорена для основных элементарных функций.			
	1.18	Правило Лопиталя			
2	Воп	росы на знание доказательств			
	2.1	Определения непрерывности функции в точке, их эквивалентность. Точки разрыва, их			
		классификация.			
	2.2	Непрерывность основных элементарных функций.			
	2.3	Арифметические свойства непрерывных функций.			
	2.4	Теорема о непрерывности сложной функции.			
	2.5	Свойства функций, непрерывных на отрезке (первая и вторая теоремы Вейерштрасса).			
	2.6	Теорема Коши о прохождении непрерывной функции через промежуточные значения			
	2.7	Понятие производной функции в точке			
	2.8	Геометрический и физический смысл производной.			
	2.9	Уравнение касательной к графику функции в точке			
	2.10	Понятие дифференцируемости функции в точке			
	2.11	Необходимое условие дифференцируемости			
	2.12	Правила дифференцирования			
	2.13	Теорема о дифференцируемости и производной сложной функции			
	2.14	Теорема о дифференцируемости обратной функции.			
	2.15	Таблица производных основных элементарных функций			
	2.16	Производные функций, графики которых заданы параметрически			
	2.17	Понятие дифференциала (первого) функции в точке			
	2.18	Геометрический смысл дифференциала			
	2.19	Инвариантность формы первого дифференциала			
	2.20	Производные и дифференциалы высших порядков функции одной переменной в точке 1			

2.21	Понятие об экстремумах функции одной переменной	11
2.22	Локальный экстремум. Необходимое условие для внутреннего локального экстремума (тео-	
	рема Ферма)	11
2.23	Основные теоремы о дифференцируемых функций на отрезке (теорема Ролля, формулы	
	Лагранжа и Коши)	11
2.24	Многочлен Тейлора и формула Тейлора для функций одной переменной с остаточным	
	членом в форме Пеано и Лагранжа.	11
2.25	Формулы Маклорена для основных элементарных функций.	11
2.26	Правило Лопиталя	12
2.27	Достаточное условие строгого возрастания (убывания) функции на промежутке.	12
2.28	Достаточные условия локального экстремума для функции одной переменной	12
2.29	Выпуклые (вогнутые) функции одной переменной.	12
2.30	Достаточные условия выпуклости (вогнутости).	12
2.31	Точки перегиба	12
2.32	Необходимые и достаточные условия для точки перегиба.	12
2.33	Асимптоты графика функции одной переменной.	12

1 Вопросы предварительной части коллоквиума

Список вопросов предварительной части коллоквиума, ответ на которые необходим для подготовки к основной части.

1. Определение непрерывности функции в точке.

Функция f(x) непрерывна в точке x_0 , если она определена на некоторой окрестности этой точки и $\lim_{x\to x_0} f(x) = f(x_0)$. Другими словами, $A = f(x_0)$ и справедливы следующие определения предела функции в точке x_0 :

• По Kowu:

$$\forall \varepsilon > 0 \; \exists \delta > 0 : \; \forall x, |x - x_0| < \delta \implies |f(x) - A| < \varepsilon$$

• По Гейне:

$$\forall \{x_n\}: x_n \in \overset{\circ}{U}(x_0), \lim_{n \to \infty} x_n = x_0 \implies \lim_{n \to \infty} f(x_n) = A$$

Другое определение:

Пусть f(x) — функция, определенная на промежутке I (I — это её область определения) и пусть c — произвольная точка из I. Предположим, что для любого $\varepsilon > 0$ существует $\delta > 0$:

$$\forall x \in I: |x - c| < \delta \implies |f(x) - f(c)| < \varepsilon$$

Тогда функция f(x) **непрерывна** в точке c.

Заметьте, если c — это левая граница I, то условие имеет вид (функция непрерывна в точке c справа, аналогично для непрерывности слева).

$$\forall x \in I : c < x < c + \delta \implies |f(x) - f(c)| < \varepsilon$$

Теорема. Также, функция f(x) непрерывна в точке a. Тогда найдётся такое $\delta > 0$, что функция f(x) ограничена окрестностью $U_{\delta}(a)$ точки a.

2. Точки разрыва, их классификация.

Пусть f(x) определена в некоторой окрестности $U_{\delta}(a)$ и функция разрывна в a. Тогда этот разрыв является одним из следующих:

• **Устранимый разрыв**: пределы f(x) справа и слева существуют и равны друг другу, но отличаются от значения функции в исследуемой точке:

$$\lim_{x \to a-0} f(x) = \lim_{x \to a+0} f(x) \neq f(a)$$

- **Неустранимый разрыв первого рода**: пределы f(x) справа и слева существуют, но не равны друг другу
- **Неустранимый разрыв второго рода**: хотя бы один из односторонних пределов f(x) не существует или равен бесконечности.

3. Теорема о непрерывности сложной функции.

Теорема. Пусть функция g(x) непрерывна в точке a_0 и функция f(x) непрерывна в точке $b_0 = g(a_0)$. Тогда функция f(g(x)) непрерывна в точке a_0 .

4. Формулировки первой и второй теорем Вейерштрасса.

Теорема (Первая теорема Вейерштрасса). Если функция f(x) непрерывна на отрезке [a,b], то она ограничена на этом отрезке.

Теорема (Вторая теорема Вейерштрасса). Непрерывная на отрезке [a,b] функция f достигает на нем своих нижней и верхней граней. То есть существуют такие точки $x_1, x_2 \in [a,b]$, так что для любого $x \in [a,b]$, выполняются неравенства:

$$f(x_1) \leqslant f(x) \leqslant f(x_2)$$

5. Понятие производной функции в точке.

Рассмотрим функцию, область определения которой содержит точку x_0 . Тогда функция f(x) является дифференцируемой в точке x_0 , и ее производная определяется формулой

$$f'(x_0) = \lim_{\Delta \to 0} \frac{f(x_0 + \Delta) - f(x_0)}{\Delta}$$

если предел существует.

6. Геометрический и физический смысл производной.

Геометрический смысл производной. Производная в точке x_0 равна угловому коэффициенту касательной к графику функции y = f(x) в этой точке.

Физический смысл производной. Если точка движется вдоль оси OX и ее координата изменяется по закону x(t), то мгновенная скорость точки: v(t) = x'(t).

7. Уравнение касательной к графику функции в точке.

Пусть дана функция f, которая в некоторой точке x_0 имеет конечную производную $f(x_0)$. Тогда прямая, проходящая через точку $(x_0; f(x_0))$, имеющая угловой коэффициент $f'(x_0)$, называется касательной.

Итак, пусть дана функция y = f(x), которая имеет производную y = f'(x) на отрезке [a, b]. Тогда в любой точке $x_0 \in (a; b)$ к графику этой функции можно провести касательную, которая задается уравнением:

$$y = f'(x_0) \cdot (x - x_0) + f(x_0)$$

8. Понятие дифференцируемости функции в точке.

Функция f(x) является дифференцируемой в точке x_0 своей области определения D[f], если существует такая константа A, что:

$$f(x) = f(x_0) + A(x - x_0) + \bar{o}(x - x_0)$$

И

$$A = f'(x_0) = \lim_{\Delta \to 0} \frac{f(x_0 + \Delta) - f(x_0)}{\Delta}$$

9. Правила дифференцирования (производная суммы, произведения, частного).

Пусть функции f(x) и g(x) имеют производные в точке x_0 . Тогда,

$$(g+f)'(x_0) = g'(x_0) + f'(x_0)$$
$$(g \cdot f)'(x_0) = g'(x_0) \cdot f(x_0) + g(x_0) \cdot f'(x_0)$$

Если $g(x_0) \neq 0$, то

$$\left(\frac{f}{g}\right)'(x_0) = \frac{g'(x_0) \cdot f(x_0) - g(x_0) \cdot f'(x_0)}{g(x_0)^2}$$

10. Формула вычисления производной сложной функции.

Если g(x) дифференцируема в точке x_0 и f(x) дифференцируема в точке $y_0=g(x_0)$, тогда,

$$(f \circ g)'(x_0) = (f(g(x_0)))' = f'(g(x_0)) \cdot g'(x_0)$$

11. Таблица производных основных элементарных функций.

f(x)	f'(x)
const	0
x^a	$a \cdot x^{a-1}$
a^x	$a^x \cdot \ln a$
e^x	e^x
$\ln_a x$	$\frac{1}{\ln a \cdot x}$
$\ln x$	$\frac{1}{x}$
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
tg x	$\frac{1}{\cos^2 x}$
$\operatorname{ctg} x$	$-\frac{1}{\sin^2 x}$

f(x)	f'(x)
$\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$
$\arccos x$	$-\frac{1}{\sqrt{1-x^2}}$
$\operatorname{arctg} x$	$\frac{1}{1+x^2}$
$\operatorname{arcctg} x$	$-\frac{1}{1+x^2}$

12. Понятие дифференциала (первого) функции в точке.

Функция f(x) является дифференцируемой в точке x_0 своей области определения D[f], если существует такая константа A, что:

$$f(x) = f(x_0) + A(x - x_0) + \bar{o}(x - x_0)$$
$$A = f'(x_0) = \lim_{\Delta \to 0} \frac{f(x_0 + \Delta) - f(x_0)}{\Delta}$$

Тогда выражение $f'(x_0)dx$ называют дифференциалом функции f(x) в точке x_0 . Обозначение: $df = df(x_0, dx)$. Обратите внимание, что df зависит и от точки, и от dx.

13. Геометрический смысл дифференциала.

Дифференциал функции численно равен приращению ординаты касательной, проведенной к графику функции y = f(x) в данной точке, когда аргумент x получает приращение Δx .

Подробнее тут

14. Определение локального экстремума. Необходимое условие для внутреннего локального экстремума (теорема Ферма).

Точка x_0 называется точкой локального максимума (минимума) функции f, если существует такая окрестность $U_{\delta}(x_0)$ точки x_0 , что

$$\forall x \in U_{\delta}(x_0) \implies f(x) \leqslant f(x_0)$$
 (для минимума соответственно $f(x) \geqslant f(x_0)$)

 x_0 называется точкой строгого локального максимума (минимума), если

$$\forall x \in \overset{\circ}{U_{\delta}}(x_0) \implies f(x) < f(x_0)$$
 (для минимума соответственно $f(x) > f(x_0)$)

Теорема (Ферма). Если функция имеет в точке локального экстремума производную, то эта производная равна нулю.

5

15. Формулы Лагранжа и Коши.

Теорема (Лагранж: о конечных приращениях).

16. Многочлен Тейлора и формула Тейлора для функций одной переменной.

17. Формулы Маклорена для основных элементарных функций.

1.
$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \bar{o}(x^n), x \to 0$$

2.
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n+1} \cdot \frac{x^n}{n} + \bar{o}(x^n), x \to 0$$

3.
$$(1+x)^{\alpha} = 1 + \sum_{k=1}^{n} {\alpha \choose k} x^k + \bar{o}(x^n)$$

Например
$$(1+x)^{\frac{1}{3}}-1=\binom{\frac{1}{3}}{1}x+\binom{\frac{1}{3}}{2}x^2+\bar{\bar{o}}(x^2)=\frac{1}{3}x+\frac{\frac{1}{3}(\frac{1}{3}-1)}{2}x^2+\bar{\bar{o}}(x^2)$$

4.
$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^{2n-1} \cdot \frac{x^{2n-1}}{(2n-1)!} + \bar{\bar{o}}(x^{2n-1})$$

5.
$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^{2n-2} \frac{x^{2n-2}}{(2n-2)!} + \bar{o}(x^{2n-2})$$

6.
$$\operatorname{tg}(x) = x + \frac{x^3}{3} + \frac{2}{15}x^5 + \dots + \frac{B_{2n}(-4)^n(1-4^n)}{(2n)!} \cdot x^{2n-1} + \bar{o}(x^{2n-1}),$$
 где B_{2n} — числа Бернулли

Но достаточно помнить, что $\operatorname{tg}(x) = x + \frac{x^3}{3} + \frac{2}{15}x^5 + \bar{o}(x^5)$, т.е. общая формула для семинаров <u>не</u> нужна

7.
$$\arcsin(x) = x + \frac{x^3}{6} + \frac{3}{40}x^5 + \dots + \frac{(2n)!}{4^n(n!)^2(2n+1)} \cdot x^{2n+1} + \bar{o}(x^{2n+1})$$

Достаточно знать $\arcsin(x) = x + \frac{x^3}{6} + \frac{3}{40}x^5 + \bar{\bar{o}}(x^5)$

8.
$$\arccos(x) = \frac{\pi}{2} - \arcsin(x)$$

9.
$$\operatorname{arctg}(x) = x - \frac{x^3}{3} + \frac{x^5}{5} + \dots + (-1)^{n+1} \frac{x^{2n-1}}{2n-1} + \bar{o}(x^{2n-1})$$

18. Правило Лопиталя.

2 Вопросы на знание доказательств

1. Определения непрерывности функции в точке, их эквивалентность. Точки разрыва, их классификация.

Функция f(x) непрерывна в точке x_0 , если она определена на некоторой окрестности этой точки $\lim_{x\to x_0} f(x) = f(x_0)$. Другими словами, $A = f(x_0)$ и справедливы следующие определения предела функции в точке x_0 :

• По Koшu:

$$\forall \varepsilon > 0 \ \exists \delta > 0: \ \forall x, |x - x_0| < \delta \implies |f(x) - A| < \varepsilon$$

По Гейне:

$$\forall \{x_n\}: x_n \in \overset{\circ}{U}(x_0), \lim_{n \to \infty} x_n = x_0 \implies \lim_{n \to \infty} f(x_n) = A$$

Теорема. Определения предела функции в точке по Коши и Гейне эквивалентны

Доказательство. Пусть f определена на множестве X и число A является пределом функции f в точке x_0 в смысле Коши. Выберем произвольную подходящую последовательность $x_n, n \in \mathbb{N}$, т.е. такую, для которой $\forall n \in \mathbb{N}: x_n \in X$ и $\lim_{n \to \infty} x_n = x_0$. Покажем, что A является пределом в смысле Гейне.

Зададим произвольное число $\varepsilon>0$ и укажем для него такое $\delta>0$, что $\forall x\in X$ из условия $|x-x_0|<\delta$ следует неравенство $|f(x)-A|<\varepsilon$. В силу того, что $\lim_{n\to\infty}x_n=x_0$, для $\delta>0$ найдется такой номер $N\in\mathbb{N}$, что для всех $n\geqslant N$ будет выполняться неравенство $|f(x_n)-A|<\varepsilon$, т.е. $\lim_{n\to\infty}f(x_n)=A$.

Докажем теперь обратное утверждение: предположим, что $A = \lim_{x \to x_0} f(x)$ в смысле Гейне, и покажем, что число A является пределом функции f в точке x_0 в смысле Коши. Предположим, что это неверно, т.е.

$$\exists \varepsilon_0 > 0 \ \forall \delta > 0 \ \exists x_\delta \in X : \ 0 < |x_\delta - x_0| < \delta : \ |f(x_\delta) - A| \geqslant \varepsilon$$

В качестве δ рассмотрим $\delta = \frac{1}{n}$, а соответствующие значения x_{δ} будем обозначать x_n . Тогда при любом $n \in \mathbb{N}$ выполняются условия $x_n \neq x_0, |x_n - x_0| < \frac{1}{n}$ и $|f(x_n) - A| \geqslant \varepsilon$. Отсюда следует, что последовательность $\{x_n\}$ является подходящей, но число A не является пределом функции f в точке x_0 . Получили противоречие.

Классицифкация разрывов:

Пусть f(x) определена в некоторой окрестности $U_{\delta}(a)$ и функция разрывна в a. Тогда говорят, что функция имеет

• **Устранимый разрыв**: пределы f(x) справа и слева существуют и равны друг другу, но отличаются от значения функции в исследуемой точке:

$$\lim_{x \to a \to 0} f(x) = \lim_{x \to a \to 0} f(x) \neq f(a)$$

- **Неустранимый разрыв первого рода**: пределы f(x) справа и слева существуют, но не равны друг другу
- **Неустранимый разрыв второго рода**: хотя бы один из односторонних пределов f(x) не существует или равен бесконечности.
- 2. Непрерывность основных элементарных функций.

ТООО(): Спросить, что тут требуется.

3. Арифметические свойства непрерывных функций.

Пусть функции f(x) и g(x) непрерывны в точке x_0 .

Тогда функции $f(x) \pm g(x)$, $f(x) \cdot g(x)$ непрерывны в точке x_0 .

Если функция $g(x_0) \neq 0$, то и $\frac{f(x)}{g(x)}$ непрерывна в точке x_0 .

Доказать можно расписав пределы.

4. Теорема о непрерывности сложной функции.

Теорема. Если функция g(t) непрерывна в точке t_0 и функция f(x) непрерывна в точке $x_0 = g(t_0)$, то f(g(t)) непрерывна в t_0 .

Доказательство. Для доказательства этой теоремы воспользуемся формальным преобразованием двух выражений с кванторами кванторов.

f(x) непрерывна в x_0 :

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \ \forall x : \ |x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon$$

g(t) непрерывна в t_0 :

$$\forall \delta > 0 \; \exists \mu > 0 : \; \forall t : \; |t - t_0| < \mu \implies |q(t) - q(t_0)| < \delta$$

Получается, f(g(t)) непрерывна в t_0 :

$$\forall \varepsilon > 0 \ \exists \mu > 0: \ \forall t: \ |t - t_0| < \mu \implies |f(g(t)) - f(g(t_0))| < \varepsilon$$

5. Свойства функций, непрерывных на отрезке (первая и вторая теоремы Вейерштрасса).

Теорема (Первая теорема Вейерштрасса). Если функция f(x) непрерывна на отрезке [a,b], то есть $\exists A: \forall x \in [a,b] \Longrightarrow |f(x)| \leqslant A$

Доказательство. Докажем от противного.

Пусть f не ограничена на отрезке [a,b], тогда:

$$\forall A > 0 \ \exists x_A \in [a,b]: \ |f(x_A)| > A$$

$$A = 1 \implies \exists x_1 \in [a,b]: \ |f(x_1)| > 1$$

$$A = 2 \implies \exists x_2 \in [a,b]: \ |f(x_2)| > 2$$

$$\vdots$$

$$A = n \implies \exists x_n \in [a,b]: \ |f(x_n)| > n$$

Получим последовательность $\{x_n\} \subset [a,b]$, то есть последовательность $\{x_n\}$ ограничена.

По теореме Больцано-Вейерштрасса из неё можно выделить подпоследовательность, которая сходится к точке c, то есть

$$\lim_{k \to \infty} x_{n_k} = c$$

Тогда $c \in [a,b]$. Но по условию функция непрерывна в точке c и тогда по определению непрерывности в точке по Гейне $\lim_{k \to \infty} f(x_{n_k}) = f(c)$.

С другой стороны

$$|f(x_{n_k})| > n_k, n_k \geqslant k \implies \lim_{k \to \infty} f(x_{n_k}) = \infty$$

А это противоречит единственности предела.

Теорема (Вторая теорема Вейерштрасса). *Непрерывная на отрезке* [a,b] функция f достигает на нем своих нижней и верхней граней. То есть существуют такие точки $c_1, c_2 \in [a,b]$, так что для любого $x \in [a,b]$, выполняются неравенства:

$$f(2) \leqslant f(x) \leqslant f(1)$$

Доказатель ство. Докажем $\exists c_1 \in [a,b]: \ f(c_1) = \sup_{x \in [a,b]} f(x).$

Пусть $M=\sup_{x\in [a,b]}f(x)$ (существование следует из первой теоремы Вейерштрасса). В силу определения точной верхней грани выполняется условие:

$$\begin{cases} \forall x \in [a,b] \implies f(x) \leqslant M \\ \forall \varepsilon > 0 \ \exists x_\varepsilon \in [a,b] : \ M - \varepsilon < f(x_\varepsilon) \end{cases}$$

Полагая $\varepsilon = 1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}$ получим последовательность $\{x_n\}$ такую, что для всех $n \in \mathbb{N}$ выполняются условия $M - \frac{1}{n} < f(x_n) \leqslant M$, откуда $\exists \lim_{n \to \infty} f(x_n)$. Существует подпоследовательность $\{x_{n_k}\}$ последовательности $\{x_n\}$ и точка c (по теореме Больцано-Вейерштрасса, из последовательности можно выделить подпоследовательность, сходящуюся к точке c), такие что $\lim_{k \to \infty} x_{n_k} = c$, где $c \in [a,b]$.

В силу непрерывности функции f в точке c, получаем $\lim_{k\to\infty} f(x_{n_k}) = f(c)$.

С другой стороны, $\{f(x_{n_k})\}$ — подпоследовательность последовательности $\{f(x_n)\}$, сходящейся к числу M. Поэтому $\lim_{k\to\infty}f(x_{n_k})=M$.

В силу единственности предела последовательности заключаем, что $f(c) = M = \sup_{x \in [a,b]} f(x)$.

Утверждение $\exists c_1 \in [a,b]: f(c_1) = \sup_{x \in [a,b]} f(x)$ доказано.

Аналогично доказывается $\exists c_2 \in [a,b]: \ f(c_2) = \inf_{x \in [a,b]} f(x)$

Функция непрерывна на интервале может не достигать своих точных граней (требовать непрерывности на сегменте существенно).

6. Теорема Коши о прохождении непрерывной функции через промежуточные значения.

Теорема (Первая теорема Больцано-Коши, о нулях непрерывной функции). Если функция f(x) непрерывна на сегменте [a,b] и на своих концах принимает значение разных знаков, то существует такая точка, принадлежащая этому отрезку, в которой функция обращается в нуль.

Алгебраически: разделим отрезок [a,b] точкой x_0 на два равных по длине отрезка, тогда либо $f(x_0)=0$ и, значит, искомая точка x_0 найдена, либо $f(x_0)\neq 0$ и тогда на концах одного из полученных промежутков функция f принимает значения разных знаков, точнее, на левом конце значение меньше нуля, на правом — больше.

Обозначим этот отрезок $[a_1,b_1]$ и разделим его снова на два равных подлине отрезка и т.д. В результате, либо через конечное число шагов придем к искомой точке x, в которой f(x)=0, либо получим последовательность вложенных отрезков $[a_n,b_n]$ по длине стремящихся к нулю и таких, что

$$f(a_n) < 0 < f(b_n)$$

Пусть γ — общая точка всех отрезков $[a_n,b_n]$. Тогда $\gamma=\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n$. Поэтому, в силу непрерывности функции f

$$f(\gamma) = \lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} f(b_n)$$

Но тогда

$$\lim_{n \to \infty} f(a_n) \leqslant 0 \leqslant \lim_{n \to \infty} f(b_n)$$

Откуда следует, что $f(\gamma) = 0$.

Теорема (Вторая теорема Больцано-Коши, о промежуточном значении непрерывных функций). Если функция f непрерывна на отрезке [a,b] и $A=f(a)\neq f(b)=B$, число $\in (A,B)$, тогда существует такая точка $c\in [a,b]$, что f(c)=C.

Другими словами, утверждается, что если непрерывная функция, принимает два значения, то она принимает и любое значение между ними.

Доказатель ство. Не нарушая общности будем считать, что A = f(a) < f(b) = B. Рассмотри функцию h(x) = f(x) - C, непрерывность на отрезке [a,b] которой следует из непрерывности функции f. Очевидно что h(a) = A - C < 0 и h(b) = B - C > 0. Применяем к h первую теорему Больцано-Коши и находим точку c, в которой h(c) = f(c) - C = 0, то-есть f(c) = C. Теорема доказана.

7. Понятие производной функции в точке.

Рассмотрим функцию, область определения которой содержит точку x_0 . Тогда функция f(x) является дифференцируемой в точке x_0 , и ее производная определяется формулой

$$f'(x_0) = \lim_{\Delta \to 0} \frac{f(x_0 + \Delta) - f(x_0)}{\Delta}$$

если предел существует.

8. Геометрический и физический смысл производной.

Геометрический смысл производной. Производная в точке x_0 равна угловому коэффициенту касательной к графику функции y = f(x) в этой точке.

Физический смысл производной. Если точка движется вдоль оси OX и ее координата изменяется по закону x(t), то мгновенная скорость точки: v(t) = x'(t).

9. Уравнение касательной к графику функции в точке.

Пусть дана функция f, которая в некоторой точке x_0 имеет конечную производную $f(x_0)$. Тогда прямая, проходящая через точку $(x_0; f(x_0))$, имеющая угловой коэффициент $f'(x_0)$, называется касательной.

Итак, пусть дана функция y = f(x), которая имеет производную y = f'(x) на отрезке [a, b]. Тогда в любой точке $x_0 \in (a; b)$ к графику этой функции можно провести касательную, которая задается уравнением:

$$y = f'(x_0) \cdot (x - x_0) + f(x_0)$$

10. Понятие дифференцируемости функции в точке.

Функция f(x) является дифференцируемой в точке x_0 своей области определения D[f], если существует такая константа A, что:

$$f(x) = f(x_0) + A(x - x_0) + \bar{o}(x - x_0)$$

И

$$A = f'(x_0) = \lim_{\Delta \to 0} \frac{f(x_0 + \Delta) - f(x_0)}{\Delta}$$

11. Необходимое условие дифференцируемости.

Теорема. Если функция f(x) дифференцируема в точке x_0 , то она непрерывна в этой точке.

 \mathcal{L} оказательство. Пусть функция y=f(x) дифференцируема в точке x_0 . Тогда её приращение представимо в виде

$$\Delta y = A\Delta x + \bar{o}(\Delta x)$$

Но тогда при $\Delta x \to 0$ будет $\Delta y \to 0$, а это означает непрерывность функции y = f(x) в точке x_0 .

Обратите внимание, что из непрерывности не следует дифференцируемости (например, f(x) = |x|).

12. Правила дифференцирования.

ТООО(): Спросить, что тут имеется ввиду. Производная суммы/произведения функций?

- 13. Теорема о дифференцируемости и производной сложной функции.
- 14. Теорема о дифференцируемости обратной функции.
- 15. Таблица производных основных элементарных функций.

f(x)	f'(x)
const	0
x^a	$a \cdot x^{a-1}$
a^x	$a^x \cdot \ln a$
e^x	e^x
$\ln_a x$	$\frac{1}{\ln a \cdot x}$
$\ln x$	$\frac{1}{x}$
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
tg x	$\frac{1}{\cos^2 x}$
$\operatorname{ctg} x$	$-\frac{1}{\sin^2 x}$

f(x)	f'(x)
$\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$
$\arccos x$	$-\frac{1}{\sqrt{1-x^2}}$
$\operatorname{arctg} x$	$\frac{1}{1+x^2}$
$\operatorname{arcctg} x$	$-\frac{1}{1+x^2}$

- 16. Производные функций, графики которых заданы параметрически.
- 17. Понятие дифференциала (первого) функции в точке.

Функция f(x) является дифференцируемой в точке x_0 своей области определения D[f], если существует такая константа A, что:

$$f(x) = f(x_0) + A(x - x_0) + \bar{o}(x - x_0)$$
$$A = f'(x_0) = \lim_{\Delta \to 0} \frac{f(x_0 + \Delta) - f(x_0)}{\Delta}$$

Тогда выражение $f'(x_0)dx$ называют дифференциалом функции f(x) в точке x_0 . Обозначение: $df = df(x_0, dx)$. Обратите внимание, что df зависит и от точки, и от dx.

18. Геометрический смысл дифференциала.

Дифференциал функции численно равен приращению ординаты касательной, проведенной к графику функции y = f(x) в данной точке, когда аргумент x получает приращение Δx .

Подробнее тут

- 19. Инвариантность формы первого дифференциала.
- 20. Производные и дифференциалы высших порядков функции одной переменной в точке.
- 21. Понятие об экстремумах функции одной переменной.
- 22. Локальный экстремум. Необходимое условие для внутреннего локального экстремума (теорема Ферма).
- 23. Основные теоремы о дифференцируемых функций на отрезке (теорема Ролля, формулы Лагранжа и Коши).
- 24. Многочлен Тейлора и формула Тейлора для функций одной переменной с остаточным членом в форме Пеано и Лагранжа.
- 25. Формулы Маклорена для основных элементарных функций.

1.
$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \bar{o}(x^n), x \to 0$$

2.
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n+1} \cdot \frac{x^n}{n} + \bar{\bar{o}}(x^n), x \to 0$$

3.
$$(1+x)^{\alpha} = 1 + \sum_{k=1}^{n} {\alpha \choose k} x^k + \bar{o}(x^n)$$

Например
$$(1+x)^{\frac{1}{3}}-1=\begin{pmatrix} \frac{1}{3}\\1 \end{pmatrix}x+\begin{pmatrix} \frac{1}{3}\\2 \end{pmatrix}x^2+\bar{\bar{o}}(x^2)=\frac{1}{3}x+\frac{\frac{1}{3}(\frac{1}{3}-1)}{2}x^2+\bar{\bar{o}}(x^2)$$

4.
$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^{2n-1} \cdot \frac{x^{2n-1}}{(2n-1)!} + \bar{\bar{o}}(x^{2n-1})$$

5.
$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^{2n-2} \frac{x^{2n-2}}{(2n-2)!} + \bar{o}(x^{2n-2})$$

6.
$$\operatorname{tg}(x) = x + \frac{x^3}{3} + \frac{2}{15}x^5 + \dots + \frac{B_{2n}(-4)^n(1-4^n)}{(2n)!} \cdot x^{2n-1} + \bar{o}(x^{2n-1}),$$
 где B_{2n} — числа Бернулли

11

Но достаточно помнить, что $\operatorname{tg}(x)=x+\frac{x^3}{3}+\frac{2}{15}x^5+\bar{\bar{o}}(x^5)$, т.е. общая формула для семинаров <u>не</u> нужна

7.
$$\arcsin(x) = x + \frac{x^3}{6} + \frac{3}{40}x^5 + \dots + \frac{(2n)!}{4^n(n!)^2(2n+1)} \cdot x^{2n+1} + \bar{o}(x^{2n+1})$$

Достаточно знать $\arcsin(x) = x + \frac{x^3}{6} + \frac{3}{40}x^5 + \bar{\bar{o}}(x^5)$

8.
$$\arccos(x) = \frac{\pi}{2} - \arcsin(x)$$

9.
$$\operatorname{arctg}(x) = x - \frac{x^3}{3} + \frac{x^5}{5} + \dots + (-1)^{n+1} \frac{x^{2n-1}}{2n-1} + \bar{o}(x^{2n-1})$$

- 26. Правило Лопиталя.
- 27. Достаточное условие строгого возрастания (убывания) функции на промежутке.
- 28. Достаточные условия локального экстремума для функции одной переменной.
- 29. Выпуклые (вогнутые) функции одной переменной.
- 30. Достаточные условия выпуклости (вогнутости).
- 31. Точки перегиба.
- 32. Необходимые и достаточные условия для точки перегиба.
- 33. Асимптоты графика функции одной переменной.