Matematica

Massimiliano Ferrulli

04.03.2022

Analisi 1

Teoremi e Definizioni di analisi 1

Indice

1	Funz	zioni Reali	4
	1.1	Funzione reale di variabile reale	4
	1.2	Dominio	4
	1.3	Insieme delle immagini	4
	1.4	Funzione iniettiva	4
	1.5	Funzione Suriettiva	4
	1.6	Funzione periodica	4
	1.7	Funzioni pari	4
	1.8	Funzione dispari	4
	1.9	Funzione inversa	5
			5 5
	1.10	Funzione composta	9
2	Limi	iti	5
	2.1	Definizione di funzione continua in un punto	5
	2.2	punti di discontinuità	5
	2.3	Limite finito per $x \to x_0$	5
	2.4	Limite non finito per $x \to x_0$	5
	2.5	Limite finito per $x \to \infty$	6
	2.6	limite non finito per $x \to_{-}^{+} \infty$	6
	$\frac{2.0}{2.7}$	Asintoti	
	-		6
	2.8	Teorema dell'unicità del limite	7
	2.9	Teorema della permanenza del segno	7
		Teorema del confronto	8
		Teoremi sulle operazioni con le funzioni continue	9
		Algebra dei limiti finiti, forme simboliche e di indecisione	9
		Teorema di Weierstrass	9
	2.14	Teorema dell'esistenza degli zeri (Bolzano)	10
	2.15	Teorema dei valori intermedi	10
	2.16	Metodo di Bisezione	10
_	~ .		
3			10
		Definizione rapporto incrementale	
			10
	3.3		10
		3.3.1 Enunciato	10
		3.3.2 Dimostrazione	10
	3.4	Teorema di Rolle	11
		3.4.1 Enunciato	11
		3.4.2 dimostrazione	11
	3.5	Teorema di Lagrange	11
			11
			12
	3.6		12
	5.0		12
			12
	3.7		$\frac{12}{12}$
	J. 1	0 0	
			12
		3.7.2 dimostrazione	13

3.8	Criteri	rio di derivabilità					13
	3.8.1	enunciato					13
	3.8.2	$dimostrazione \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $					13
3.9	Teoren	ema di Cauchy					14
	3.9.1	Enunciato					14
	3.9.2	Dimostrazione					14
3.10	Teoren	ema di De l'Hôpital					14
		1 Enunciato					
	3.10.2	2 Dimostrazione					14
3.11	Teoren	ema di Fermat					15
	3.11.1	1 Enunciato					15
	3.11.2	2 Dimostrazione					15

1 Funzioni Reali

1.1 Funzione reale di variabile reale

Definizione:

Dati due sottoinsiemi A e B (non vuoti) di \mathbb{R} , una funzione f da A a B associa a ogni numero reale di A uno e uno solo di B

1.2 Dominio

Definizione:

Il dominio naturale di una funzione f è l'insieme più ampio dei valori reale che si possono assegnare alla variabile indipendente x, nel caso y = f(x), affinché esista il corrispondente valore reale $y \in B \subset \mathbb{R}$

1.3 Insieme delle immagini

È l'insieme di valori assunti da una funzione f sul proprio dominio ed è contenuta nel codominio della funzione, con il quale al più può coincidere.

1.4 Funzione iniettiva

$$x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2)$$

Una funtione da A a B è iniettiva se ogni elemento di B è immagine di al più un elemento di B

1.5 Funzione Suriettiva

$$\forall y \in Cod_f \exists x \in D_f : y = f(x)$$

se non specificato il codominio è \mathbb{R}

1.6 Funzione periodica

y=f(x) è una funzione periodica di periodo T, con T > 0

$$K \in \mathbb{Z} : f(x) = f(x + KT)$$

1.7 Funzioni pari

$$f(x)=f(-x)$$

1.8 Funzione dispari

$$f(-x) = -f(x)$$

1.9 Funzione inversa

una funzione ammette la funzione inversa f^{-1} se e solo se è biunivoca

$$a = f^{-1}b = f(a)$$

1.10 Funzione composta

Date le funzioni f e g, la funzione composta $g \circ f$ associa ad ogni x del dominio di f che ha immagine f(x) nel dominio di g il valore y = g(f(x)).

"Le immagini di fsono il dominio di g"

2 Limiti

2.1 Definizione di funzione continua in un punto

una funzione definita in un intervallo [a;b] è continua in $x_0 \in [a;b]$ se e solo se:

$$\lim\nolimits_{x\to x_0^+}f(x)=\lim\nolimits_{x\to x_0^-}f(x)=f(x)$$

2.2 punti di discontinuità

un punto x_o di f(x) è chiamato punto di discontinuità se f(x) non è continua in x_o . esistono tre tipi di punti di discontinuità: un punto $x_0 \in D_f$ è definito come punto di discontinuità di prima specie se il limite destro e quello sinistro di x_0 ($\lim_{x\to x_0^+} f(x) e \lim_{x\to x_0^-} f(x)$) sono finiti ma con valori diversi.

un punto $x_0 \in D_f$ è definito come punto di discontinuità di seconda specie se il limite destro e quello sinistro di x_0 ($\lim_{x\to x_0^+} f(x) e \lim_{x\to x_0^-} f(x)$) sono infiniti oppure non esistono.

un punto $x_0 \in D_f$ è definito come punto di discontinuità di terza specie se il limite destro e quello sinistro di x_0 ($\lim_{x\to x_0^+} f(x) e \lim_{x\to x_0^-} f(x)$) coincidono ma sono diversi da $f(x_0)$

2.3 Limite finito per $x \to x_o$

La funzione f(x) ha per limite il numero reale l, per $x \to x_o$, quando si può determinare un intorno puntato I di x_o tale che

$$|f(x) - l| < \varepsilon$$

$$\lim_{x \to x_0} f(x) = l \operatorname{se} \forall \varepsilon > 0 \,\exists I_{\delta}(x_0) : |f(x) - l| < \varepsilon, \forall x \in I_{\delta}(x_0) \, x \neq x_0$$

2.4 Limite non finito per $x \to x_o$

•
$$\lim_{x \to x_0} f(x) = \infty \operatorname{se} \forall M > 0 \,\exists I_\delta(x_0) : f(x) > M \,\forall x \in I_\delta(x_0) \,x \neq x_0$$

nel caso $-\infty$:

$$\bullet \lim_{x \to x_0} f(x) = -\infty \operatorname{se} \forall M > 0 \,\exists I_{\delta}(x_0) : f(x) < -M \,\forall x \in I_{\delta}(x_0) \,x \neq x_0$$

2.5 Limite finito per $x \to \infty$

•
$$\lim_{x \to \infty} f(x) = l \operatorname{se} \forall \varepsilon > 0 \,\exists c > 0 : |f(x) - l| < \varepsilon, \forall x > c$$

nel caso $-\infty$:

•
$$\lim_{x \to -\infty} f(x) = l \operatorname{se} \forall \varepsilon > 0 \,\exists c > 0 : |f(x) - l| < \varepsilon, \forall x < -c$$

2.6 limite non finito per $x \to_{-}^{+} \infty$

$$\bullet \lim_{x \to \infty} f(x) = \infty \operatorname{se} \forall M > 0 \,\exists c > 0 : f(x) > M, \forall x > c$$

$$\bullet \lim_{x \to -\infty} f(x) = \infty \operatorname{se} \forall M > 0 \,\exists c > 0 : f(x) > M, \forall x < -c$$

$$\bullet \lim_{x \to \infty} f(x) = -\infty \operatorname{se} \forall M > 0 \,\exists c > 0 : f(x) < -M, \forall x > c$$

•
$$\lim_{x \to -\infty} f(x) = -\infty \operatorname{se} \forall M > 0 \,\exists c > 0 : f(x) < -M, \forall x < -c$$

2.7 Asintoti

Un asintoto è una retta alla quale si avvicina indefinitamente una funzione data. Asintoto verticale:

$$\lim_{x\to x_0^-}=\pm\infty\,\mathrm{e/o}\,\lim_{x\to x_0^+}=\pm\infty$$

Asintoto orizzontale:

$$\lim_{x\to\pm\infty}=q$$

Asintoto obliquo:

Funzione che converge verso la retta r

$$\lim_{x \to \pm \infty} = \pm \infty \quad r : y = mx + q \quad m = \lim_{x \to \pm \infty} \frac{f(x)}{x} \quad q = \lim_{x \to \pm \infty} f(x) - mx$$

2.8 Teorema dell'unicità del limite

Enunciato:

se f(x) ha limite finito l
 per $x \to x_0$ allora tale limite è unico

Dimostrazione: supponiamo per assurdo che la tesi sia falsa

$$\lim_{x \to x_o} f(x) = l' e \lim_{x \to x_o} f(x) = l \quad l' \neq l$$

supponiamo l < l' e scegliamo ε tale che

$$\varepsilon < \frac{l'-l}{2}$$

applichiamo la definizione di limite in entrambi i casi, allora avremo due intorni di x_0 :

$$|f(x) - l| < \varepsilon \, \forall x \in I \quad |f(x) - l'| < \varepsilon \, \forall x \in I'$$

inoltre $I \cap I'$ è un intorno di x_0

in $I \cap I'$ devono valere le due disequazioni:

$$\begin{cases} |f(x) - l| < \epsilon \\ |f(x) - l'| < \epsilon \end{cases} \iff \begin{cases} l - \epsilon < f(x) < l + \epsilon \\ l' - \epsilon < f(x) < l' + \epsilon \end{cases}$$

dal confronto delle disuguaglianze ricordando che l < l' risulta che:

$$l'-\varepsilon < f(x) < l+\varepsilon \to l'-\varepsilon < l+\varepsilon$$
ricaviamo
$$-2\varepsilon < l-l' \to 2\varepsilon > l'-l$$

ciò va contro la nostra ipotesi e dunque la negazione della tesi è falsa e se $\lim_{x\to x_0} f(x) = l$, il limite è unico.

2.9 Teorema della permanenza del segno

Se il limite di una funzione per $x \to x_0 = l$ con $l \neq 0$, allora esiste un intorno $\dot{I}_{\delta}(x_0)$ in cui f(x) e l sono entrambi positivi o entrambi negativi.

Il teorema afferma che in un intorno di x_0 la funzione f(x) ha lo stesso segno di l. Il teorema non è però valido nel caso in cui il limite l sia uguale a 0.

Dimostrazione:

Dalla definizione di $\lim_{x\to x_0} f(x) = l$, scelto qualsiasi ϵ positivo, deve essere:

$$|f(x) - l| < \epsilon \mapsto l - \epsilon < f(x) < l + \epsilon$$
. Ponendo $\epsilon = |l|$, si ha: $l - |l| < f(x) < l + |l|$.

Se
$$l > 0$$
, allora $0 < f(x) < 2l \mapsto f(x) > 0$.

Se
$$l < 0$$
, allora $2l < f(x) < 0 \mapsto f(x) < 0$.

Riprendendo il caso precedenete in cui il teorema non è valido, ovvero quando il limite l è uguale a 0. Per esempio, considerando il limite $\lim_{x\to 1}(1-x)=0$, in un qualunque intorno completo del punto 1, i valori assunti dalla funzione y=1-x sono in parte positivi e in parte negativi. La funzione f(x) è positiva in ogni intorno sinistro di 1 e negativa in ogni intorno destro. Quindi il teorema non è applicabile.

Il teorema della permanenza del segno si può opportunamente invertire; ne segue il teorema:

Se una funzione f(x) ammette il limite finito l per $x \to x_0$ e in un intorno $I(x_0)$ di x_0 , escluso al più x_0 è:

- Positiva o nulla, allora $l \ge 0$;
- Negativa o nulla, allora $l \leq 0$.

La dimostrazione è ottenibile facendo il processo inverso

2.10 Teorema del confronto

Siano h(x), f(x) e g(x) tre funzioni definite in uno stesso intorno H di x_0 , escluso al più x_0 . Se in ogni punto di H diverso da x_0 risulta $h(x) \leq f(x) \leq g(x)$ e il limite delle due funzioni h(x) e g(x), per x che tende a x_0 , è uno stesso numero l, allora anche il limite di f(x) per $x \to x_0$ è uguale a l.

Dimostrazione

Fissiamo $\epsilon > 0$ a piacere, risulta vero che:

$$|h(x)-l|<\epsilon$$
, per ogni $x\in I_1\cap H$, perché $\lim_{x\to x_0}h(x)=l$;

$$|g(x)-l|<\epsilon$$
, per ogni $x\in I_2\cap H$, perché $\lim_{x\to x_0}g(x)=l$.

Le disuguaglianze valgono entrambe per ogni x appartenente all'intorno $I = I_1 \cap I_2$, escluso al più x_0 . Quindi per ogni $x \in I$, abbiamo che:

$$l-\epsilon < h(x) < l+\epsilon \quad , \quad l-\epsilon < g(x) < l+\epsilon. \quad \text{ Poich\'e per ipotesi } h(x) \leqslant f(x) \leqslant g(x), \text{ si scrive: } l-\epsilon < h(x) < l+\epsilon.$$

$$l - \epsilon < f(x) < l + \epsilon \ \forall x \in I$$
, ossia: $|f(x) - l| < \epsilon, \ \forall x \in I$.

Questa ultima relazione significa esattamente che $\lim_{x\to x_0} f(x) = l$.

Esempio:

Sono date le seguenti funzioni:
$$h(x)=-x^2+4x-2$$
, $f(x)=2x-1$, $g(x)=x^2$
$$\lim_{x\to 1}h(x)=1$$

$$\lim_{x\to 1}g(x)=1$$

Per $x \to 1$, h(x) e g(x) tendono a 1. Anche f(x), essendo compreso fra h(x) e g(x), deve tendere a 1.

Calcoliamo $\lim_{x\to 1} f(x)$. Possiamo osservare che per ogni valore x appartenente all'intervallo]0;3[, i rispettivi valori delle tre funzioni $h, f \in g$ sono, nell'ordine, uno minore uguale dell'altro, ossia: $h(x) \leq f(x) \leq g(x)$. Il teorema permette allora di affermare che è anche vero che: $\lim_{x\to 1} f(x) = 1$.

Il teorema vale anche nel caso dei limiti per $x \to \pm \infty$.

2.11 Teoremi sulle operazioni con le funzioni continue

Se due funzioni f(x) e g(x), definite nello stesso insieme \mathcal{D} , sono continue in un prefissato punto $x_0 \in \mathcal{D}$ allora sono pure continue in x_0 .

• Somma: (f+g)(x) = f(x) + g(x)

• Differenza: (f-g)(x) = f(x) - g(x)

• Prodotto: $(f \cdot g)(x) = f(x) \cdot g(x)$

• Quoziente: $(\frac{f}{g})(x) = \frac{f(x)}{g(x)} \Rightarrow \text{Purch\'e } g(x_0) \neq 0$

2.12 Algebra dei limiti finiti, forme simboliche e di indecisione

• $\lim_{x \to x_0} (f(x) \pm g(x)) = \lim_{x \to x_0} f(x) \pm \lim_{x \to x_0} g(x) = l \pm m$

• $\lim_{x \to x_0} (f(x) \cdot g(x)) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x) = l \cdot m$

• $\lim_{x \to x_0} \left(\frac{f(x)}{g(x)} \right) = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)} = \frac{l}{m} \quad m \neq 0$

• $\lim_{x \to x_0} f(g(x)) = f(\lim_{x \to x_0} g(x)) = f(z_0)$

• $\lim_{x \to x_0} f(x)^{g(x)} = l^m \ l, m \neq 0$

• $\lim_{x \to x_0} k \cdot f(x) = k \cdot \lim_{x \to x_0} f(x) = kl$

• $\lim_{x \to x_0} (f(x))^n = (\lim_{x \to x_0} f(x))^n = l^n$

• $\lim_{x \to x_0} \sqrt{f(x)} = \sqrt{\lim_{x \to x_0} f(x)} = \sqrt{l}$

L'algebra non è più applicabile nei seguenti casi: $+\infty-\infty,\,0\cdot\infty,\,\frac{\infty}{\infty},\,\frac{0}{0},\,1^{\infty},\,0^{0},\,\infty^{0}$.

2.13 Teorema di Weierstrass

se f(x) è continua in [a,b] allora assume un massimo assoluto e un minimo assoluto cioè esistono $x_m, x_M \in [a,b]$:

$$f(x_m) = m \le f(x), \quad x \in [a, b]$$

 $f(x_M) = M \ge f(x), \quad x \in [a, b]$

 $f:[a,b]\to[m,M]$ se f è continua

$$\forall \eta \in [m, M], \quad \exists \xi \in [a, b] : f(\xi) = \eta$$

 $[\leftarrow]$

2.14 Teorema dell'esistenza degli zeri (Bolzano)

se f(x) è continua in [a,b] e se f(a)*f(b)<0 allora $\exists c\in]a,b[:f(c)=0$

2.15 Teorema dei valori intermedi

se f(x) è continua in [a, b] allora assume almeno una volta tutti i valori intermedi tra il massimo e minimo

2.16 Metodo di Bisezione

3 Calcolo Differenziale

3.1 Definizione rapporto incrementale

data una funzione f(x) definita in un intervallo [a;b], e due numeri reali c , $c + h \in [a;b]$ ($h \neq 0$), il rapporto incrementale di f nel punto c è:

$$\frac{\Delta y}{\Delta x} = \frac{f(c+h) - f(c)}{h}$$

3.2 Definizione derivata

data una funzione f(x) = y definita in un intervallo [a;b], la derivata della funzione nel punto $c \in [a;b]$ che indichiamo con f'(c) è il limite, se esiste ed è finito, per $h \to 0$ del rapporto incrementale di f relativo a c:

$$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}$$

la derivata di una funzione in un punto c è la pendenza della retta tangente al grafico f nel punto c.

3.3 teorema sulla continuità e derivabilità di una funzione

3.3.1 Enunciato

Se una funzione f è derivabile in un punto x, allora essa è anche continua in esso. ipotesi: $f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$ tesi: $\lim_{x \to x_0} f(x) = f(x_0)$

3.3.2 Dimostrazione

$$f(x_0 + h) = f(x_0 + h) - f(x_0) + f(x_0)$$

$$f(x_0 + h) = \frac{f(x_0 + h) - f(x_0)}{h} * h + f(x_0)$$

$$\lim_{h \to 0} f(x_0 + h) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} * \lim_{h \to 0} h + f(x_0)$$

$$\lim_{h \to 0} f(x_0 + h) = f(x_0)$$

3.4 Teorema di Rolle

3.4.1 Enunciato

se f(x) è continua in [a,b] derivabile in]a,b[f(a)=f(b) allora $\exists c\in]a,b[:f'(c)=0$

3.4.2 dimostrazione

per il teorema di Weierstrass la funzione assume un M e un m, quindi esistono $c, d \in [a, b]$

$$m = f(c) \le f(x) \le f(d) = M$$

primo caso:

m = m

$$m = f(c) = f(x) = f(d) = M$$

f è quindi costante quindi $f'(x) = 0 \, \forall x \in [a, b]$

secondo caso:

m < M

f non è costante e quindi $f(c+h) \geq f(c)$ cio
è $f(c+h) - f(c) \geq 0$

$$\frac{f(c+h) - f(c)}{h} \ge 0$$

$$h > 0$$

$$\frac{f(c+h) - f(c)}{h} \le 0$$

teorema della permanenza del segno, se esiste un intorno di xo in cui $f(x) \geq 0$ e se esiste lim $x \to xo$ f(x) = l, allora $l \geq 0$ applicazione

$$\lim_{h \to 0^{+}} \frac{f(c+h) - f(c)}{h} \ge 0 \lim_{h \to 0^{-}} \frac{f(c+h) - f(c)}{h} \le 0$$

due limiti rappresentano derivata destra e sinistra e poiche (f(x)) è derivabile, devono essere finiti e coincidenti

$$f'(c) = \lim h \to 0$$
 $\frac{f(c+h) - f(c)}{h} = 0$

rifare anche per x = d

3.5 Teorema di Lagrange

3.5.1 enunciato

se f(x) è continua in [a,b] derivabile in]a,b[allora $\exists\,c\in]a,b[:f'(c)=\frac{f(b)-f(a)}{b-a}$

3.5.2 dimostrazione

Consideriamo:

$$F(x) = f(x) - kx$$

la funzione F è continua e derivabile essendo f e kx somma di funtioni continue in [a, b] e derivabili in]a, b[determiniamo k : rispettiamo la Terza ipotesi teorema di Rolle

$$f(a) - ka = f(b) - kb$$

$$k = \frac{f(b) - f(a)}{b - a}$$

$$F(x) = f(x) - \frac{f(b) - f(a)}{b - a}x$$

F(x) rispetta le ipotesi di Rolle, allora:

$$\exists c \in]a, b[: F'(c) = 0]$$

$$F'(c) = f'(c) - \frac{f(b) - f(a)}{b - a} = 0$$

$$\frac{f(b) - f(a)}{b - a} = f'(c)$$

3.6 1a Conseguenza del teorema di Lagrange

3.6.1 enunciato

se f(x) è continua in [a,b] derivabile in]a,b[$f'(x)=0 \forall x \in]a,b[$ allora $f(x)=k \forall x \in [a,b]$

3.6.2 dimostrazione

Lagrange in $]a, x[x \in [a; b]x \neq a$ allora $\exists c \in]a; b[$

$$f'c = \frac{f(x) - f(a)}{x - a}$$

$$f'(x) = 0 \forall x \in]a; b[$$

$$f'(c) = 0$$

$$f(x) - f(a) = 0 \rightarrow f(x) = f(a) \forall x \in [a; b]$$

3.7 2a Conseguenza del teorema di Lagrange

3.7.1 enunciato

se f(x) e g(x) sono continue in [a,b] derivabili in [a,b] $f'(x) = g'(x) \forall x \in]a;b[$ allora:

$$f(x) = g(x) + k \tag{1}$$

3.7.2 dimostrazione

$$z(x) = f(x) - g(x)$$

$$z'(x) = f'(x) - g'(x)$$

$$f'(x) = g'(x) \text{ per ipotesi}$$

$$z'(x) = 0 \ \forall x \in]a; b[$$
per il teorema precedente
$$z(x) = k \ \forall x \in [a; b]$$

$$f(x) - g(x) = k$$

3.8 Criterio di derivabilità

3.8.1 enunciato

se f(x) è continua in [a,b] derivabile in]a,b[a eccezione al massimo di un solo punto $xo \in]a;b[$ allora $f'_-(x0) = \lim_{x \to x0_-} f'(x)$ e $f'_+(x0) = \lim_{x \to x0_+} f'(x)$ e se $\lim_{x \to x0_-} f'(x) = \lim_{x \to x0_+} f'(x)$ allora f è derivabile in x_0 $f'(x_0) = l$

3.8.2 dimostrazione

se $x < x_0$

allora applichiamo Lagrange in [x; x0] dato che f è continua e derivabile nei punti interni dunque deve $\exists c \in]x; x0[$:

$$f'c = \frac{f(x) - f(xo)}{x - xo}$$

calcoliamo i limiti dei due mebri $x \to x_0^-$ al primo membro, per definire la derivata sinistra:

$$f'_{-}(c) = \lim_{x \to x_{0}^{-}} \frac{f(x) - f(xo)}{x - xo}$$

se $x \to x_0^-$ allora anche $c \to x_0^-$ quindi per ipotesi si ha:

$$\lim_{c \to x_0^-} f'(c) = l$$

quindi

$$f'_{-}(x_0) = l$$

se si risolve in modo analogo considerando $x < x_0$ ottenendo $f'_+(x_0) = l$ si concldue che:

$$f'(x_0) = l$$

 $[\leftarrow]$

3.9 Teorema di Cauchy

3.9.1 Enunciato

se f(x) e g(x) sono due funzioni continue in [a;b] e derivabili in [a;b[, $g'(x) \neq 0 \, \forall x \in [a;b]$ allora:

$$\exists c \in [a;b] : \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$$

3.9.2 Dimostrazione

$$F(x) = f(x) - kg(x), k \in \mathbb{R}$$

F(x) è una funzione continua in [a;b] e derivabile]a;b[in quanto somma di funzioni continue e derivabili in questi intervalli.

determiniamo k soddisfando Terza ipotesi teorema di Rolle cioè F(a) = F(b)

$$f(a) - kg(b) = f(b) - kg(b)$$

$$k = \frac{f(b) - f(a)}{g(b) - g(a)}$$

$$F(x) = f(x) - \frac{f(b) - f(a)}{g(b) - g(a)}g(x)$$

F(x) ora soddisfa la Terza ipotesi teorema di Rolle e quindi

$$\exists c \in]a; b[:F'(c) = 0$$

$$F'(c) = 0 = f'(c) - \frac{f(b) - f(a)}{g(b) - g(a)}g'(c)$$

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$$

3.10 Teorema di De l'Hôpital

3.10.1 Enunciato

date due funzioni f(x) e g(x) definite nell'intorno I di un punto x_0 , se

- f(x) g(x) continue in x_0
- \bullet $f(x_0) = g(x_0) = 0$
- f(x) g(x) derivabili in I eccetto al più in x_0
- $g'(x) \neq 0$ in I/x_0
- esiste $\lim_{x\to x_0} \frac{f'(x)}{g'(x)}$

allora esiste anche $\lim_{x\to x_0} \frac{f(x)}{g(x)}$

e risulta $\lim_{x\to x_0} \frac{f(x)}{g(x)} = \lim_{x\to x_0} \frac{f'(x)}{g'(x)}$

3.10.2 Dimostrazione

consideriamo un punto qualsiasi $x \in I$, $x \neq x_0$ e possiamo applicare il teorema di Cauchy alle due funzioni f(x) e g(x) nell'intervallo $x_0; x$ allora $\exists c \in]x_0; x[$:

$$\frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \frac{f'(c)}{g'(c)}$$

per ipotesi $\frac{f(x)}{g(x)}=\frac{f'(c)}{g'(c)}$ se $x\to x_0$ anche $c\to x_0$ quindi passando al limite:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{c \to x_0} \frac{f'(c)}{g'(c)}$$

ma poiché $\lim_{c\to x_0}\frac{f'(c)}{g'(c)}=\lim_{x\to x_0}\frac{f'(x)}{g'(x)}$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

3.11 Teorema di Fermat

3.11.1 Enunciato

Data una funzione y = f(x), definita in un intervallo [a; b] e derivabile in]a; b[, se f(x) ha un massimo o un minimo relativo nel punto x_0 , interno ad [a; b], la derivata della funzione in quel punto $f'(x_0) = 0$.

3.11.2 Dimostrazione

Per ipotesi f(x) è derivabile in x_0

$$\lim_{x \to x_0^-} f'(x) = \lim_{x \to x_0^+} f'(x)$$

prendiamo il caso x_0 è un massimo

dato un incremento h

$$f(x_0 + h) - f(x_0) \le 0$$

Quindi si ha che:

- $\bullet \ \frac{f(x_0+h)-f(x_0)}{h} \leqslant 0 \qquad (h>0).$
- $\bullet \ \frac{f(x_0+h)-f(x_0)}{h} \geqslant 0 \qquad (h < 0).$

Per l'inverso del teorema della permanenza del segno, risulta che:

$$\lim_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h} \leqslant 0 \quad \text{ e } \quad \lim_{h \to 0^-} \frac{f(x_0 + h) - f(x_0)}{h} \geqslant 0.$$

Poiché f(x) è derivabile in x_0 , entrambi i limiti coincidono con $f'(x_0)$. Quindi si ha che:

$$f'(x_0) \leq 0$$
 e $f'(x_0) \geq 0$. Si conclude quindi che deve essere $f'(x_0) = 0$.

Il teorema afferma che i punti di massimo e di minimo relativo di una funzione derivabile, interni all'intervallo di definizione, sono punti stazionari. Si deduce allora che la tangente in un punto del grafico di massimo o minimo relativo è parallela all'asse x.

In sintesi, il Teorema di Fermat fornisce una condizione necessaria per l'esistenza di un massimo o di un minimo relativo in un punto interno ad [a;b], ma tale condizione non è però sufficiente. Infatti, può accadere che in un punto la retta tangente al grafico della funzione sia parallela

 $[\leftarrow]$

all'asse x, ma che in quel punto non ci sia né un massimo né un minimo. Ci sarà un flesso. Quindi si può concludere che, data una funzione y=f(x) definita in un intervallo [a;b], i possibili punti di massimo e minimo vanno ricercati tra: I punti in cui f'(x)=0, gli estremi dell'intervallo e i punti di non derivabilità.