Лабораторная работа №4.

Ковалёва Елена. 20152.

In [1]:

```
import numpy as np
import pandas as pd
import statsmodels.api as sm
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats
from scipy.stats import norm
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.model_selection import train_test_split
from sklearn import preprocessing
import math
import pandas_profiling as pp
```

In [2]:

```
from sklearn.metrics import mean_absolute_error
```

In [3]:

```
houses = pd.read_csv('data.csv')
##загружаем Dataset и смотрим его значения.
```

In [4]:

```
houses.info()
```

#	Column	Non-Null Count	Dtype
0	date	4600 non-null	object
1	price	4600 non-null	float64
2	bedrooms	4600 non-null	float64
3	bathrooms	4600 non-null	float64
4	sqft_living	4600 non-null	int64
5	sqft_lot	4600 non-null	int64
6	floors	4600 non-null	float64
7	waterfront	4600 non-null	int64
8	view	4600 non-null	int64
9	condition	4600 non-null	int64
10	sqft_above	4600 non-null	int64
11	sqft_basement	4600 non-null	int64
12	yr_built	4600 non-null	int64
13	yr_renovated	4600 non-null	int64
14	street	4600 non-null	object
15	city	4600 non-null	object
16	statezip	4600 non-null	object
17	country	4600 non-null	object
dtype	es: float64(4),	int64(9), object	t(5)

memory usage: 647.0+ KB

In [5]:

houses.shape

Out[5]:

(4600, 18)

В нашем Dataset левая часть показывает количество домов-4600. В правой колонке набор данных-18. Пропущенных значений-0.

In [6]:

houses.head()

Out[6]:

	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	со
0	2014- 05-02 00:00:00	313000.0	3.0	1.50	1340	7912	1.5	0	0	
1	2014- 05-02 00:00:00	2384000.0	5.0	2.50	3650	9050	2.0	0	4	
2	2014- 05-02 00:00:00	342000.0	3.0	2.00	1930	11947	1.0	0	0	
3	2014- 05-02 00:00:00	420000.0	3.0	2.25	2000	8030	1.0	0	0	
4	2014- 05-02 00:00:00	550000.0	4.0	2.50	1940	10500	1.0	0	0	
4										•

In [7]:

```
#Столбцы street, data, country-удалить, т.к. не имеют важного значения для цены на дома. houses=houses.drop(['date'], axis = 1) houses=houses.drop(['country'], axis = 1) houses=houses.drop(['street'], axis = 1) houses.head(5)
```

Out[7]:

	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition	s
0	313000.0	3.0	1.50	1340	7912	1.5	0	0	3	
1	2384000.0	5.0	2.50	3650	9050	2.0	0	4	5	
2	342000.0	3.0	2.00	1930	11947	1.0	0	0	4	
3	420000.0	3.0	2.25	2000	8030	1.0	0	0	4	
4	550000.0	4.0	2.50	1940	10500	1.0	0	0	4	
4										•

```
In [8]:
```

```
print('Длина до обработки:',len(houses))
count, list_drop = 0, []
for i in range(len(houses)):
    if houses['price'][i] == 0:
        houses.drop(i, inplace = True)
        count += 1

print('Пропущенные значения:', count)
print('Длина после обработки:',len(houses))
```

Длина до обработки: 4600 Пропущенные значения: 49 Длина после обработки: 4551

In [9]:

```
##Теперь мы всё загружаем в одну колонку с помощью One-hot-encode. houses_endcode=pd.get_dummies(houses) houses_endcode.head(4)
```

Out[9]:

	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition	s
0	313000.0	3.0	1.50	1340	7912	1.5	0	0	3	_
1	2384000.0	5.0	2.50	3650	9050	2.0	0	4	5	
2	342000.0	3.0	2.00	1930	11947	1.0	0	0	4	
3	420000.0	3.0	2.25	2000	8030	1.0	0	0	4	

4 rows × 134 columns

```
→
```

In [10]:

```
houses.shape
```

Out[10]:

(4551, 15)

In [11]:

```
X = houses.iloc[:, 1:]
X.shape
```

Out[11]:

(4551, 14)

In [12]:

```
#После того, как получили нужные нам данные. Нам остается их разбить на контрольную и обуча houses.shape

X =np.array(houses_endcode)[:, 1:]

Y =np.array(houses_endcode)[:,0]

X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=.2,shuffle=False)
```

In [13]:

```
model= sm.OLS(Y_train,X_train)
ols=model.fit()

y_test_ols=ols.predict(X_test)
rmse=0#RMSE-среднеквадратичное отклонение нужно для вывода ошибок предсказаний
for i in range(len(Y_test)):
    rmse+=(Y_test[i]-y_test_ols[i])**2
rmse=math.sqrt(rmse/len(Y_test))
print('Ошибка предсказаний =',rmse)
```

Ошибка предсказаний = 991125.3911514686

2. Исследуем значимость модели и коэффициентов линейной регрессии.

In [14]:

```
houses = sm.OLS(Y_train, X_train)
res = houses.fit()
print(res.summary())
```

#С помощью метода наименьшых квадратов выводим нашу обучающую выборку для оценки параметров ##неизвестной модели линейной регрессии.

			_	sion Res				
====						=======	=====	
Dep. Var	riable:		у	R-squa	red:			
0.808			01.6	4 l · D				
Model: 0.802			OLS	дај. К	-squared:			
Method:		Least Sq	uares	F-stat	istic:		1	
41.2		20030 34	uu. es	· Scac	13010.		_	
Date:	F	ri, 11 Dec	2020	Prob (F-statisti	c):		
0.00								
Time:		15:	56:14	Log-Li	kelihood:		-48	
793.	ervations:		3640	AIC:			9.780	
e+04	ervacions.		3040	AIC.			3.760	
Df Resid	duals:		3534	BIC:			9.845	
e+04								
Df Model			105					
	nce Type:		obust					
		=======	=====		=======	=======	======	
====	coef	std err		+	P> t	[0.025	0.	
975]	2021	Jea en			17101	[0.023	•	
x1	-3.049e+04	4019.714	-7	7.584	0.000	-3.84e+04	-2.26	
e+04 x2	1.938e+04	6389.819	-	3.033	0.002	6852.414	3.19	
e+04	1.9366+04	0303.013	-	0.033	0.002	0032.414	3.19	
x3	140.0420	3.751	37	7.336	0.000	132.688	14	
7.396								
x4	-0.0247	0.081	- 6	0.304	0.761	-0.183		
0.134	4.46604	7007 476			0.000	6 02 .04	2.0	
x5 e+04	-4.466e+04	7997.176	-:	5.585	0.000	-6.03e+04	-2.9	
x6	6.458e+05	3.66e+04	17	7.647	0.000	5.74e+05	7.18	
e+05	0.1300.03	3,000.01			0.000	317 10103	,,10	
x7	5.875e+04	4203.897	13	3.976	0.000	5.05e+04	6.7	
e+04								
x8	2.843e+04	4996.747	-	5.690	0.000	1.86e+04	3.82	
e+04 x9	128.1238	4.149	20	0.882	0.000	119.990	13	
6.258	120.1238	4,149	36	0.002	0.000	117.770	13	
x10	11.9153	5.407	2	2.204	0.028	1.314	2	
2.517								
x11	-217.0348	152.150	-1	1.426	0.154	-515.346	8	
1.277		2 22-			0.0==			
x12 9.843	3.5142	3.228	-	1.089	0.276	-2.815		
x13	1.486e+05	2.03e+05	ú	0. 732	0.464	-2.49e+05	5.47	
e+05	1.4000100	2.050.05	,		J. 707	2,450105	J. T/	
x14	1.724e+05	1.93e+05	(0.892	0.372	-2.06e+05	5.51	

e+05 x15	8.672e+04	2.23e+05	0.389	0.697	-3.5e+05	5.24
e+05 x16	3.665e+05	1.71e+05	2.142	0.032	3.1e+04	7.02
e+05 x17	1.771e+05	1.58e+05	1.124	0.261	-1.32e+05	4.86
e+05 x18	2.123e+05	1.72e+05	1.236	0.217	-1.25e+05	5.49
e+05 x19	4.007e+05	2.4e+05	1.667	0.096	-7.05e+04	8.72
e+05 x20	1.826e+05	1.53e+05	1.190	0.234	-1.18e+05	4.83
e+05 x21	3.48e+05	1.79e+05	1.946	0.052	-2580.467	6.99
e+05 x22	1.894e+05	2.06e+05	0.919	0.358	-2.15e+05	5.94
e+05 x23	3.981e+05	2.48e+05	1.605	0.109	-8.83e+04	8.85
e+05 x24	1.651e+05	1.53e+05	1.078	0.281	-1.35e+05	4.65
e+05 x25	1.278e+05	1.54e+05	0.831	0.406	-1.74e+05	4.29
e+05 x26	1.998e+05	1.55e+05	1.291	0.197	-1.04e+05	5.03
e+05 x27	1.059e+05	1.98e+05	0.534	0.593	-2.83e+05	4.94
e+05 x28 e+05	2.495e+05	1.97e+05	1.269	0.205	-1.36e+05	6.35
x29 e+05	3.168e+05	2.16e+05	1.468	0.142	-1.06e+05	7.4
x30 e+05	1.649e+05	1.75e+05	0.945	0.345	-1.77e+05	5.07
x31 e+05	1.598e+05	2.03e+05	0.786	0.432	-2.39e+05	5.58
x32 e+05	2.768e+05	1.57e+05	1.761	0.078	-3.15e+04	5.85
x33 e+05	2.754e+05	2.41e+05	1.141	0.254	-1.98e+05	7.49
x34 e+05	1.343e+05	1.53e+05	0.878	0.380	-1.66e+05	4.34
x35 e+06	8.061e+05	1.55e+05	5.212	0.000	5.03e+05	1.11
x36 e+05	4.007e+05	1.52e+05	2.631	0.009	1.02e+05	6.99
x37 e+05	1.859e+05	1.74e+05	1.071	0.284	-1.55e+05	5.26
x38 e+05	3.079e+05	2.2e+05	1.402	0.161	-1.23e+05	7.38
x39 e+05	5.05e+05	2.47e+05	2.043	0.041	2.04e+04	9.9
x40 e+05	1.658e+05	1.53e+05	1.084	0.278	-1.34e+05	4.66
x41 e+05	1.337e+05	1.57e+05	0.851	0.395	-1.75e+05	4.42
x42 e+05	1.813e+05	1.62e+05	1.122	0.262	-1.35e+05	4.98
x43 e+05	1.49e+05	1.56e+05	0.955	0.340	-1.57e+05	4.55
x44 e+05	2.909e+05	2.21e+05	1.314	0.189	-1.43e+05	7.25

20.01.2021			lab_4_pre	elinai - Jupyter	Notebook	
x45	1.919e+05	2.18e+05	0.882	0.378	-2.35e+05	6.18
e+05 x46 e+05	3.072e+05	2.09e+05	1.467	0.142	-1.03e+05	7.18
x47	4.063e+05	2.41e+05	1.683	0.092	-6.69e+04	8.8
e+05 x48	4.153e+05	2.36e+05	1.761	0.078	-4.71e+04	8.78
e+05 x49	3.223e+05	2.39e+05	1.351	0.177	-1.45e+05	7.9
e+05 x50	1.232e+05	1.61e+05	0.765	0.444	-1.92e+05	4.39
e+05 x51	1.551e+05	1.53e+05	1.013	0.311	-1.45e+05	4.55
e+05 x52 e+05	2.497e+05	1.73e+05	1.445	0.148	-8.9e+04	5.88
x53	3.816e+05	2.38e+05	1.602	0.109	-8.54e+04	8.49
e+05 x54 e+05	9.49e+04	1.53e+05	0.621	0.535	-2.05e+05	3.94
x55 e+05	2.713e+05	2.04e+05	1.332	0.183	-1.28e+05	6.71
x56 e+06	6.584e+05	1.9e+05	3.468	0.001	2.86e+05	1.03
x57 e+05	8.746e+04	1.2e+05	0.730	0.465	-1.47e+05	3.22
x58 e+05	7.198e+04	1.22e+05	0.592	0.554	-1.67e+05	3.11
x59 e+05	1.345e+05	1.27e+05	1.059	0.290	-1.15e+05	3.83
x60 e+05	7.037e+05	1.37e+05	5.125	0.000	4.34e+05	9.73
x61 e+05	2.323e+05	1.4e+05	1.662	0.097	-4.17e+04	5.06
x62 e+05	1.946e+05	1.39e+05	1.403	0.161	-7.72e+04	4.66
x63 e+05	1.676e+05	1.4e+05	1.197	0.231	-1.07e+05	4.42
x64 e+05	1.614e+05	1.39e+05	1.160	0.246	-1.11e+05	4.34
x65 e+05	1.771e+05	1.58e+05	1.124	0.261	-1.32e+05	4.86
x66 e+05	1.651e+05	1.75e+05	0.942	0.346	-1.79e+05	5.09
x67 e+05	1.826e+05	1.53e+05	1.190	0.234	-1.18e+05	4.83
x68 e+05	1.651e+05	1.53e+05	1.078	0.281	-1.35e+05	4.65
x69 e+05	1.278e+05	1.54e+05	0.831	0.406	-1.74e+05	4.29
x70 e+05	9.281e+04	1.27e+05	0.733	0.463	-1.55e+05	3.41
x71 e+05	1.998e+05	1.55e+05	1.291	0.197	-1.04e+05	5.03
x72 e+05	8.967e+04	1.28e+05	0.701	0.483	-1.61e+05	3.41
x73 e+05	2.121e+05	1.72e+05	1.233	0.218	-1.25e+05	5.49
x74 e+05	1.774e+05	1.28e+05	1.385	0.166	-7.37e+04	4.28
x75	1.01e+05	1.06e+05	0.956	0.339	-1.06e+05	3.08

. 05						
e+05 x76	1.202e+05	1.05e+05	1.150	0.250	-8.48e+04	3.25
e+05 x77	5.607e+04	1.07e+05	0.526	0.599	-1.53e+05	2.65
e+05 x78	3.456e+05	1.59e+05	2.178	0.029	3.45e+04	6.57
e+05 x79	1.807e+05	1.59e+05	1.140	0.254	-1.3e+05	4.92
e+05 x80	1.343e+05	1.53e+05	0.878	0.380	-1.66e+05	4.34
e+05 x81	8.061e+05	1.55e+05	5.212	0.000	5.03e+05	1.11
e+06 x82	4.007e+05	1.52e+05	2.631	0.009	1.02e+05	6.99
e+05 x83	7.19e+04	1.04e+05	0.694	0.488	-1.31e+05	2.75
e+05 x84	1.658e+05	1.53e+05	1.084	0.278	-1.34e+05	4.66
e+05 x85	1.337e+05	1.57e+05	0.851	0.395	-1.75e+05	4.42
e+05 x86	1.813e+05	1.62e+05	1.122	0.262	-1.35e+05	4.98
e+05 x87	1.49e+05	1.56e+05	0.955	0.340	-1.57e+05	4.55
e+05 x88	2.228e+05	1.32e+05	1.694	0.090	-3.51e+04	4.81
e+05					-9.84e+04	4.22
x89 e+05	1.617e+05	1.33e+05	1.219	0.223		
x90 e+05	9.493e+04	9.26e+04	1.025	0.306	-8.67e+04	2.77
x91 e+05	1.288e+05	9e+04	1.431	0.152	-4.76e+04	3.05
x92 e+05	5.168e+04		0.555	0.579	-1.31e+05	2.34
x93 e+05	1.016e+05		1.133	0.257		2.77
x94 e+05	1.228e+05	8.98e+04	1.367	0.172	-5.33e+04	2.99
x95 e+05	1.551e+05	1.53e+05	1.013	0.311	-1.45e+05	4.55
x96 e+05	2.497e+05	1.73e+05	1.445	0.148	-8.9e+04	5.88
x97 e+05	9.49e+04	1.53e+05	0.621	0.535	-2.05e+05	3.94
x98 e+05	1.423e+05	1.03e+05	1.380	0.168	-5.98e+04	3.44
x99 e+05	1.264e+05	1.14e+05	1.107	0.269	-9.76e+04	3.51
x100 e+05	1.369e+05	1.15e+05	1.190	0.234	-8.87e+04	3.63
x101 e+05	1.29e+05	1.03e+05	1.248	0.212	-7.37e+04	3.32
x102 e+05	4.016e+04	1.22e+05	0.328	0.743	-2e+05	2.8
x103 e+05	2.969e+05	7.51e+04	3.950	0.000	1.5e+05	4.44
x104	1.93e+05	6.67e+04	2.893	0.004	6.22e+04	3.24
e+05 x105	3.901e+05	6.92e+04	5.634	0.000	2.54e+05	5.26
e+05						

20.01.2021			10D_¬	_promiai dapytoi	HOLODOOK	
x106	-2.226e+04	7.09e+04	-0.314	0.754	-1.61e+05	1.17
e+05 x107	2.054e+05	6.83e+04	3.008	0.003	7.15e+04	3.39
e+05	2.03 10.03	0.030.01	3,000	0.003	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3.33
x108	-1.326e+04	7.29e+04	-0.182	0.856	-1.56e+05	1.3
e+05						
x109	4.665e+05	7.06e+04	6.603	0.000	3.28e+05	6.05
e+05 x110	4.334e+05	6.76e+04	6.413	0.000	3.01e+05	5.66
e+05	4.3346103	0.700104	0.413	0.000	3.010103	3.00
x111	1.658e+05	6.78e+04	2.445	0.015	3.29e+04	2.99
e+05						
x112	1.58e+05	6.95e+04	2.275	0.023	2.18e+04	2.94
e+05 x113	1.753e+05	6.78e+04	2.586	0.010	4.24e+04	3.08
e+05	1.7556+05	0.786+04	2.380	0.010	4.246+04	3.00
x114	918.1183	6.93e+04	0.013	0.989	-1.35e+05	1.37
e+05						
x115	3.881e+05	6.92e+04	5.611	0.000	2.52e+05	5.24
e+05	2 04205	6 02-104	2 002	0.003	7 05-104	2 20
x116 e+05	2.043e+05	6.83e+04	2.993	0.003	7.05e+04	3.38
x117	1.472e+04	7.06e+04	0.208	0.835	-1.24e+05	1.53
e+05						
x118	4.336e+04	7.03e+04	0.617	0.537	-9.44e+04	1.81
e+05	4 500 04		0.547	0 540		4 05
x119 e+05	4.582e+04	7.08e+04	0.647	0.518	-9.3e+04	1.85
x120	1.047e+05	7.02e+04	1.491	0.136	-3.3e+04	2.42
e+05	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0120		
x121	1.485e+05	6.84e+04	2.171	0.030	1.44e+04	2.83
e+05						
x122 e+05	-3.273e+04	7.07e+04	-0.463	0.643	-1.71e+05	1.06
x123	-6.806e+04	8 95e+04	-0.760	0 447	-2.44e+05	1.07
e+05				•••		_,,,
x124	8.355e+04	7.66e+04	1.091	0.275	-6.66e+04	2.34
e+05						
x125	-1.338e+05	7.85e+04	-1.704	0.089	-2.88e+05	2.02
e+04 x126	-8.87e+04	7.13e+04	-1.245	0.213	-2.28e+05	5.1
e+04	0.070104	7.130104	1.243	0.213	2.200103	J.1
x127	1.491e+05	7.3e+04	2.044	0.041	6052.493	2.92
e+05						
x128	-1.394e+05	7.24e+04	-1.925	0.054	-2.81e+05	261
6.439 x129	-1.42e+05	8 720±04	-1.628	0.104	-3.13e+05	2.91
e+04	-1.426+03	8.72E+04	-1.028	0.104	-3.136+03	2.71
x130	-1.706e+05	1.03e+05	-1.653	0.098	-3.73e+05	3.17
e+04						
x131	2.479e+05	6.98e+04	3.549	0.000	1.11e+05	3.85
e+05 x132	1.232e+05	1 610±05	0.765	0.444	-1.92e+05	4.39
e+05	1.2326703	T.0TC+03	0.705	U.444	1.726+03	4.33
x133	1.859e+05	1.74e+05	1.071	0.284	-1.55e+05	5.26
e+05						
	==========	=======	=======	=======	========	======
====						

====

Omnibus: 3429.630 Durbin-Watson:

2.019

Prob(Omnibus): 0.000 Jarque-Bera (JB): 69155

```
7.818
Skew: 3.922 Prob(JB):
0.00
Kurtosis: 70.069 Cond. No. 1.20
e+16
=====

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The smallest eigenvalue is 4.19e-20. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.
```

In [15]:

```
#Выводом P>/t/:
print(ols.pvalues)
y=ols.tvalues
x=[]
```

```
[4.24539098e-014 2.43869710e-003 1.75961925e-257 7.60877577e-001
2.51290018e-008 7.36114269e-067 3.02498299e-043 1.37384414e-008
1.31980499e-185 2.76132878e-002 1.53827088e-001 2.76393809e-001
4.64039257e-001 3.72430488e-001 6.97225865e-001 3.22526839e-002
2.61225157e-001 2.16633672e-001 9.55219548e-002 2.34211484e-001
 5.17094497e-002 3.58246709e-001 1.08656882e-001 2.81168665e-001
4.05843708e-001 1.96725644e-001 5.93262296e-001 2.04691791e-001
1.42243521e-001 3.44805714e-001 4.32049542e-001 7.84003929e-002
2.53973252e-001 3.80013612e-001 1.97714388e-007 8.55530726e-003
2.84455360e-001 1.61088405e-001 4.11207945e-002 2.78394246e-001
3.95068764e-001 2.61799692e-001 3.39525880e-001 1.89091039e-001
 3.77828435e-001 1.42459394e-001 9.24070653e-002 7.83417363e-002
1.76768895e-001 4.44292975e-001 3.11219548e-001 1.48461306e-001
1.09221820e-001 5.34538839e-001 1.82851945e-001 5.30891795e-004
4.65418729e-001 5.54175578e-001 2.89741148e-001 3.13100192e-007
9.65345198e-002 1.60557409e-001 2.31282066e-001 2.46185918e-001
 2.61225157e-001 3.46311589e-001 2.34211484e-001 2.81168665e-001
4.05843708e-001 4.63387446e-001 1.96725644e-001 4.83390914e-001
2.17503618e-001 1.66091656e-001 3.38942952e-001 2.50364432e-001
 5.99078905e-001 2.94700654e-002 2.54470248e-001 3.80013612e-001
 1.97714388e-007 8.55530726e-003 4.87975049e-001 2.78394246e-001
 3.95068764e-001 2.61799692e-001 3.39525880e-001 9.04285030e-002
2.22845407e-001 3.05596205e-001 1.52429372e-001 5.78746635e-001
 2.57409053e-001 1.71676829e-001 3.11219548e-001 1.48461306e-001
 5.34538839e-001 1.67595489e-001 2.68573347e-001 2.34110518e-001
 2.12149255e-001 7.42965781e-001 7.95753943e-005 3.83637708e-003
1.90270072e-008 7.53616459e-001 2.64603932e-003 8.55576612e-001
4.61680183e-011 1.61884742e-010 1.45186628e-002 2.29896786e-002
9.75653060e-003 9.89431788e-001 2.16703855e-008 2.78151495e-003
8.34862077e-001 5.37338072e-001 5.17512721e-001 1.35976805e-001
3.00226324e-002 6.43490607e-001 4.47229450e-001 2.75459449e-001
8.85595664e-002 2.13353471e-001 4.10685291e-002 5.43697805e-002
 1.03707961e-001 9.83674851e-002 3.92211252e-004 4.44292975e-001
2.84455360e-001]
```

Заметим, что в нашей модели данных существуют (coef, std err, t, P>|t|,[0.025 0.975]). Рассмотрев колонку под P>|t|, то там коэффициент P>|t|=0.00==>эти переменные не влияют на цену дома.

```
In [16]:
```

```
names=[]
params=[]

params=sorted(abs(ols.tvalues.copy()))[len(params)-15:]

for elem in params:
    index=list(abs(ols.tvalues)).index(elem)
    names.append((houses_endcode.columns[1:])[index])

plt.figure(figsize=(10,6))
plt.barh(names,params)
plt.show()
```


Самые важные признаки:sqft_living,sqft_above,waterfront,view,bedrooms.

In [17]:

```
#8ы8odum waterfront, view u bedrooms:
names=[]
params=[]

params=sorted(abs(ols.tvalues.copy()))[len(params)-15:]
a=[params[10],params[11],params[12]]
for elem in a:
    index=list(abs(ols.tvalues)).index(elem)
    names.append((houses_endcode.columns[1:])[index])

plt.figure(figsize=(10,6))
plt.barh(names,a)
plt.show()
```


3. Строим решения методом бустинга. Сравниваем полученные результаты с линейной регрессией.

In [18]:

```
boost=GradientBoostingRegressor(random_state=0,n_estimators=10,max_depth=11)
boost.fit(X_train,Y_train)
y_test_boost=boost.predict(X_test)
```

In [19]:

```
rmse=0
for i in range(len(Y_test)):
    rmse+=(Y_test[i] - y_test_boost[i])**2
rmse=math.sqrt(rmse/len(Y_test))
print("Ошибка=",rmse)
```

Ошибка= 993768.8511497166

Ошибка линейной регрессии=1010994.6465697095 Ошибка бустинга=1003693.5702543714 Вывод:Градиентовый бустинг работает лучше.

4. Строим графики полученных зависимостей для наиболее информативных переменных (отображаем на одном графике линейную регрессию и решение, полученное бустингом).

Строим график для переменной sqft above

In [22]:

```
#plot значение
x_range=X_train[:,8:9].copy()
plt.plot(x_range,Y_train, '.')
#plot_LinearReggression
model=sm.OLS(Y_train,x_range)
ols=model.fit()
ols_y=ols.predict(x_range)
plt.plot(x_range,ols_y)
y_test_ols=ols.predict(X_test[:,8:9])
rmse=0
for i in range(len(Y_test)):
    rmse+=(Y_test[i]-y_test_ols[i])**2
rmse=math.sqrt(rmse/len(Y_test))
print("Ошибка Линейной регрессии=",rmse)
#plot_GradientBossting
boost=GradientBoostingRegressor(random_state=0,n_estimators=10,max_depth=11)
boost.fit(x_range,Y_train)
y_boost=[]
x_arange= np.arange(0, 10000, 10)
for elem in x_arange:
    y_boost.append(boost.predict([[elem]]))
plt.plot(x_arange,y_boost)
y_test_boost=boost.predict(X_test[:,8:9])
rmse=0
for i in range(len(Y_test)):
    rmse+=(Y_test[i] - y_test_boost[i])**2
rmse=math.sqrt(rmse/len(Y_test))
print("Ошибка Градиентового бустинга =",rmse)
```

Ошибка Линейной регрессии= 1015050.8964889284 Ошибка Градиентового бустинга = 1027881.8223831767

Вывод:Если посмотреть график, то можно увидеть, что Линейная регрессия справляется хуже, чем Градиентовый бустинг. Это говорит о том, что Градиентовый бустинг выдает намного лучше точность.

In []:			