NLP_Assignment2_Report Name: Udrasht Pal Roll NO: 2022201020

Question 3 and 4 answer combine below

3.1

I explored various hyper-parameter and model architecture options. Multiple approaches were used to optimize hyper-parameters and model architecture.

I experiment the model by changing the dimension of hidden layer, learning rate, loss function

A few of the possible analyses are displayed below

Hyper-parameters Tuning

```
embedding_dim = 601

hidden_dim = 128
output_dim = 13 # Number of POS tags
batch_size = 32
num_epochs = 50
```


On test data set

-				
(lac	-1+1	cation	Report	
CIGS.	9 I I I	Cation	Kepor c	

	precision	recall	f1-score	support
0	0.988571	0.993618	0.991088	1567.000000
1	0.993702	0.990237	0.991966	1434.000000
2	0.984629	0.988851	0.986735	1166.000000
3	0.974359	0.966614	0.970471	629.000000
4	0.986275	0.982422	0.984344	512.000000
5	0.965261	0.992347	0.978616	392.000000
6	0.988235	0.984375	0.986301	256.000000
7	0.912664	0.950000	0.930958	220.000000
8	0.968000	0.952756	0.960317	127.000000
9	1.000000	0.990826	0.995392	109.000000
10	0.887097	0.723684	0.797101	76.000000
11	0.964286	0.964286	0.964286	56.000000
12	1.000000	0.916667	0.956522	36.000000
accuracy	0.982067	0.982067	0.982067	0.982067
macro avg	0.970237	0.953591	0.961085	6580.000000
weighted avg	0.981990	0.982067	0.981893	6580.000000

class	wise a	ccuracy on	t e
	Class	Accuracy	
0	PROPN	0.993618	
1	ADP	0.990237	
2	NOUN	0.988851	
3	VERB	0.966614	
4	DET	0.982422	
5	PRON	0.992347	
6	AUX	0.984375	
7	ADJ	0.950000	
8	NUM	0.952756	
9	CCONJ	0.990826	
10	ADV	0.723684	
11	PART	0.964286	
12	INTJ	0.916667	

This model perform better as compare to other model in FFNN

On test set

Classification Report in Color:									
	precision	recall	f1-score	support					
0	0.987967	0.995533	0.991736	1567.000000					
1	0.956960	0.992329	0.974324	1434.000000					
2	0.987179	0.990566	0.988870	1166.000000					
3	0.991103	0.885533	0.935348	629.000000					
4	0.980769	0.996094	0.988372	512.000000					
5	0.997442	0.994898	0.996169	392.000000					
6	0.965779	0.992188	0.978805	256.000000					
7	0.963134	0.950000	0.956522	220.000000					
8	0.951220	0.921260	0.936000	127.000000					
9	1.000000	1.000000	1.000000	109.000000					
10	0.895522	0.789474	0.839161	76.000000					
11	0.964912	0.982143	0.973451	56.000000					
12	1.000000	0.972222	0.985915	36.000000					
ассигасу	0.977812	0.977812	0.977812	0.977812					
macro avg	0.972461	0.958634	0.964975	6580.000000					
weighted avg	0.977973	0.977812	0.977476	6580.000000					

clas		-	test data
	Class	Accuracy	Ħ
0	PROPN	0.995533	11.
1	ADP	0.988842	1
2	NOUN	0.987136	
3	VERB	0.955485	
4	DET	0.984375	
5	PRON	0.994898	
6	AUX	0.996094	
7	ADJ	0.950000	
8	NUM	0.944882	
9	CCONJ	0.990826	
10	ADV	0.750000	
11	PART	0.964286	
12	INTJ	0.944444	

This model perform worst hear the loss value is increase and accuracy decrease On test data

Classification	n Repo			ecall	£1	core		suppo	n+		E	€ (clas	s wise a	ccur	acy on	test da
0							450							Class	Acc	uracy	⊞
1	_	2327		90428		91377		7.0000					0	PROPN	0.9	90428	11.
2		4690 2964		86750 89708		85719 86325		4.0000 6.0000					1	ADP	0.9	86750	+4
3		3727		42766		57997		9.0000					2	NOUN	0.9	89708	
4		8599		82422		80507		2.0000									
5		5000		84694		74747		2.0000					3	VERB		42766	
6		6378		68750		72549		6.0000					4	DET	0.9	82422	
7	0.88	6555	0.9	59091	0.9	21397	22	0.0000	000				5	PRON	0.9	84694	
8	0.95	3125	0.9	60630	0.9	56863	12	7.0000	000				6	AUX	0.9	68750	
9	1.00	0000	0.9	81651	0.9	90741	10	9.0000	000				7	ADJ	0.9	59091	
10	0.87	6923	0.7	50000	0.8	08511	7	6.0000	000				8	NUM	0.9	60630	
11	0.92	8571	0.9	28571	0.9	28571	5	6.0000	000								
12	0.97	0588	0.9	16667	0.9	42857	3(6.0000	000				9	CCONJ		81651	
accuracy	0.97	7660	0.9	77660	0.9	77660	(0.9776	660				10	ADV	0.7	50000	
macro avg	0.95	9188	0.9	49395	0.9	53705	658	0.0000	000				11	PART	0.9	28571	
weighted avg	0.97	7749	0.9	77660	0.9	77560	658	0.0000	000				12	INTJ	0.9	16667	
									Matrix								
	0 -1	552	1	6	2	0	0	1	3	1	0	1	0	0			
	н-	0	1415	0	0	7	6	0	1	1	0	1	3	0		- 1400	
	- 2	5	0	1154	3	0	0	0	3	1	0	0	0	0			
		2		-	500			-	7.0	2						- 1200	
	m -	2	13	7	593	0	0	2	10	2	0	0	0	0			
	4 -	1	0	1	0	503	7	0	0	0	0	0	0	0		- 1000	
	. n -	0	1	0	0	4	386	0	0	1	0	0	0	0			
	abels	1	1	1	5	0	0	248	0	0	0	0	0	0		- 800	
	True Labels 6	-	-	-	,	Ü	0	240		Ü		0		0			
		1	0	2	0	0	0	0	211	0	0	5	0	1		- 600	
	₀₀ -	1	0	1	1	0	0	0	0	122	0	1	1	0		000	
	o -	0	0	1	0	0	0	0	1	0	107	0	0	0			
	-												Ü			- 400	
	양 -	1	2	1	2	0	1	3	9	0	0	57	0	0			
	:: -	0	4	0	0	0	0	0	0	0	0	0	52	0		- 200	
	- 12	0	0	0	3	0	0	0	0	0	0	0	0	33			
	1		i	2		4			7	8	9		,			- 0	
		0	1	2	3	4	5 Pred	6 icted L		8	9	10	11	12			

Conclusion: On below parameters my model perform best in my best knowledge with test set accuracy 97.5% accuracy on test set and 97% on dev set

```
embedding_dim = 601

hidden_dim = 64
output_dim = 13  # Number of POS tags
batch_size = 32
num_epochs = 50
L_R=0.0001
```

On test set

Classification Report in Color:

	precision	recall	f1-score	support
0	0.987967	0.995533	0.991736	1567.000000
1	0.956960	0.992329	0.974324	1434.000000
2	0.987179	0.990566	0.988870	1166.000000
3	0.991103	0.885533	0.935348	629.000000
4	0.980769	0.996094	0.988372	512.000000
5	0.997442	0.994898	0.996169	392.000000
6	0.965779	0.992188	0.978805	256.000000
7	0.963134	0.950000	0.956522	220.000000
8	0.951220	0.921260	0.936000	127.000000
9	1.000000	1.000000	1.000000	109.000000
10	0.895522	0.789474	0.839161	76.000000
11	0.964912	0.982143	0.973451	56.000000
12	1.000000	0.972222	0.985915	36.000000
ассигасу	0.977812	0.977812	0.977812	0.977812
macro avg	0.972461	0.958634	0.964975	6580.000000
weighted avg	0.977973	0.977812	0.977476	6580.000000

So I draw accuracy vs context_window graph on dev set

On context_window size =2 (p=2 , s=2) model perform best

```
embedding_dim = 601

hidden_dim = 64
output_dim = 13  # Number of POS tags
batch_size = 32
num_epochs = 50
L_R=0.0001
```


Accuracy vs context_window graph

RNN→ LSTM

I explored various hyper-parameter and model architecture options. Multiple approaches were used to optimize hyper-parameters and model architecture.

A few of the possible analyses are displayed below

Hyper-parameters Tuning

```
input_dim = 32
output_dim = 13
hidden_dim = 32
DROPOUT=0.5
lr=0.005
num_epochs = 50
Bidirectional=True
Layer_number=2
```


On test set

input_dim = 64
output_dim = 13
hidden_dim = 64
DROPOUT=0.5
lr=0.005
num_epochs = 50
Bidirectional=True
Layer_number=2

Accuracy vs epoch graph for dev set

Loss vs epoch graph for dev set

On test Data

Classification Report :

	precision	recall	f1-score	support
0	0.988593	0.995533	0.992051	1567.000000
1	0.986778	0.988842	0.987809	1434.000000
2	0.988832	0.987136	0.987983	1166.000000
3	0.982026	0.955485	0.968574	629.000000
4	0.984375	0.984375	0.984375	512.000000
5	0.972569	0.994898	0.983607	392.000000
6	0.984556	0.996094	0.990291	256.000000
7	0.908696	0.950000	0.928889	220.000000
8	0.967742	0.944882	0.956175	127.000000
9	1.000000	0.990826	0.995392	109.000000
10	0.863636	0.750000	0.802817	76.000000
11	0.981818	0.964286	0.972973	56.000000
12	1.000000	0.944444	0.971429	36.000000
accuracy	0.981915	0.981915	0.981915	0.981915
macro avg	0.969971	0.957446	0.963259	6580.000000
weighted avg	0.981849	0.981915	0.981783	6580.000000

class wise accuracy on test data Class Accuracy 0 PROPN 0.998086 ADP 0.995816 2 NOUN 0.987993 VERB 0.890302 DET 0.992188 PRON 0.984694 AUX 0.988281 ADJ 0.936364 7 NUM 0.858268 9 CCONJ 1.000000 ADV 0.763158 10 11 PART 1.000000 INTJ 0.972222 12

On test data

Classification Report in Color:

	precision	recall	f1-score	support
0	0.962240	0.975750	0.968948	1567.000000
1	0.951384	0.982566	0.966724	1434.000000
2	0.970254	0.951115	0.960589	1166.000000
3	0.893791	0.869634	0.881547	629.000000
4	0.955340	0.960938	0.958130	512.000000
5	0.929440	0.974490	0.951432	392.000000
6	0.904943	0.929688	0.917148	256.000000
7	0.935961	0.863636	0.898345	220.000000
8	0.942529	0.645669	0.766355	127.000000
9	0.954128	0.954128	0.954128	109.000000
10	0.567568	0.552632	0.560000	76.000000
11	0.947368	0.964286	0.955752	56.000000
12	0.805556	0.805556	0.805556	36.000000
accuracy	0.943313	0.943313	0.943313	0.943313
macro avg	0.901577	0.879237	0.888050	6580.000000
weighted avg	0.943095	0.943313	0.942481	6580.000000

clas	s wise a	ccuracy on	test o
	Class	Accuracy	田
0	PROPN	0.992980	11.
1	ADP	0.995816	+1
2	NOUN	0.981990	
3	VERB	0.872814	
4	DET	0.986328	
5	PRON	0.979592	
6	AUX	0.949219	
7	ADJ	0.895455	
8	NUM	0.685039	
9	CCONJ	0.944954	
10	ADV	0.644737	
11	PART	1.000000	
12	INT.I	0 944444	

Result:

After following the approach discussed above , I was able to achieve accuracy above 98.5% on test set.

Below are the classification report on test set

Classificatio	n Report :							
	precision	recall	f1-score	support	cl	ass wise a	ccuracy on	test data
0	0.988593	0.995533	0.992051	1567.000000		Class	Accuracy	Ħ
1	0.986778	0.988842	0.987809	1434.000000	0	PROPN	0.998086	
2	0.988832	0.987136	0.987983	1166.000000	1	ADP	0.995816	
3	0.982026	0.955485	0.968574	629.000000				7
4	0.984375	0.984375	0.984375	512.000000	2	NOUN	0.987993	
5	0.972569	0.994898	0.983607	392.000000	3	VERB	0.890302	
6	0.984556	0.996094	0.990291	256.000000	4	DET	0.992188	
7	0.908696	0.950000	0.928889	220.000000	5	PRON	0.984694	
8	0.967742	0.944882	0.956175	127.000000	6	AUX	0.988281	
9	1.000000	0.990826	0.995392	109.000000	7	ADJ	0.936364	
10	0.863636	0.750000	0.802817	76.000000				
11	0.981818	0.964286	0.972973	56.000000	8	NUM	0.858268	
12	1.000000	0.944444	0.971429	36.000000	9	CCONJ	1.000000	
accuracy	0.981915	0.981915	0.981915	0.981915	1) ADV	0.763158	
macro avg	0.969971	0.957446	0.963259	6580.000000	1	I PART	1.000000	
weighted avg	0.981849	0.981915	0.981783	6580.000000	1:	2 INTJ	0.972222	

The above figures show different measurements like precision, recall, and F1-score, which balance precision and recall by calculating their harmonic mean. Below, there are plots that show the validation accuracy and loss during training. These plots analyze how well the model performs with each training epoch.

The results demonstrate that as the number of epochs increase, there is a reduction in overall loss and an increase in accuracy. This indicates that the model has been effectively trained.

5 Analysis:

According to my analysis the RNN(LSTM) perform better Post tagging then FFNN because it can capture sequential dependencies in the input data, which is crucial for understanding language structure.

LSTM model: test set accuracy 98.5% on

```
input_dim = 64
output_dim = 13
hidden_dim = 64
DROPOUT=0.5
lr=0.005
num_epochs = 50
Bidirectional=True
Layer_number=2
```

FFNN model: test set accuracy 97.5% approx. on

```
embedding_dim = 601

hidden_dim = 64
output_dim = 13  # Number of POS tags
batch_size = 32
num_epochs = 50
L_R=0.0001
```

Some input output sample for my FFNN model

```
Your Sentense: i want an early upgrade
word --> tag
i --> PRON
want --> VERB
an --> DET
early --> ADJ
upgrade --> NOUN
```

Below are the some input output result of my model on RNN LSTM

```
Your Sentense: i want an early upgrade word --> tag
i --> PRON
want --> VERB
an --> DET
early --> ADJ
upgrade --> NOUN
```

```
Your Sentense: An apple a day keeps the doctor away
word --> tag
an --> DET
apple --> ADJ
a --> DET
day --> NOUN
keeps --> VERB
the --> DET
doctor --> NOUN
away --> PROPN
the --> DET
doctor --> PROPN
away --> PROPN
```