1 Grammaires hors-contexte

Exercice 1

Montrer que les langages suivants sur $\Sigma = \{a,b\}$ sont algébriques en exhibant une grammaire hors-contexte les engendrant.

- 1. L'ensemble des mots de taille paire.
- 2. Les mots ne contenant pas bba comme facteur.
- $3. \{a^m b^n \mid n \neq m\}$
- 4. Le langage de Dyck, c'est-à-dire l'ensemble des mots correspondant à un parenthésage correct d'une expression arithmétique, en assimilant a à une parenthèse ouvrante et b à une parenthèse fermante (par exemple aabaabbb mais pas baab ou aab).
- 5. $\{a^m b^n \mid m \leqslant n \leqslant 2m\}$
- 6. Les mots qui ne sont pas des palindromes.
- 7. Le complémentaire de $\{a^nb^n \mid n \in \mathbb{N}\}.$

Exercice 2

Décrire en français ou formellement les langages engendrés par les grammaires suivantes :

- 1. $S \rightarrow aSa \mid aSb \mid \varepsilon$;
- 2. $S \rightarrow bSbb \mid A, A \rightarrow Aa \mid \varepsilon$;
- 3. $S \rightarrow XY \mid a \mid b, X \rightarrow YS \mid a \mid b, Y \rightarrow a \mid b.$

Exercice 3

Montrer que les langages suivants sont algébriques.

- 1. $\{a^i b^j c^k \mid i = j + k\}$;
- 2. $\{a^i b^j c^k \mid j = i + k\};$
- 3. $\{u \# v \mid u \in \{a,b\}^*, |u| \neq |v|\};$
- 4. $\{u \# v \mid u \in \{a, b\}^*, u \neq v\}$.

Exercice 4

On pose $L_a = \{uav \mid u, v \in \{a, b\}^*, |u| = |v|\}$ et $L_b = \{ubv \mid u, v \in \{a, b\}^*, |u| = |v|\}$. On pose également $L = \{uv \mid u, v \in \{a, b\}^*, |u| = |v|, u \neq v\}$.

- 1. Montrer que $L = L_a L_b \cup L_b L_a$.
- 2. En déduire que ces trois langages sont algébriques.

Exercice 5

Déterminer une grammaire engendrant le langage $L = \{u \in \{a,b\}^* \mid |u|_a \geqslant |u|_b\}$ et justifier rigoureusement sa correction.

2 Dérivation et ambiguïté

Exercice 6

Construire un arbre de dérivation, ou deux lorsque c'est possible, pour :

1. u = aabbba et G définie par $S \to XS \mid \varepsilon$ et $X \to aa \mid ab \mid ba \mid bb$;

- 2. v=abaabb et G définie par $S \rightarrow aSbS \mid bSaS \mid \varepsilon\,;$
- 3. w = ababa et G définie par $S \to XY \mid a \mid b, X \to YS \mid a \mid b, Y \to a \mid b$.

Exercice 7

Soit G une grammaire hors-contexte sans ε -production (c'est-à-dire sans règle $X \to \varepsilon$). Montrer que si $u \in L(G)$ et $S \Rightarrow^k u$, alors u possède un arbre de dérivation à moins de |u| + k nœuds.

Exercice 8

On considère G définie par $S \to SS \mid aSb \mid \varepsilon$.

- 1. Décrire le langage L(G).
- 2. Montrer que G est ambiguë.
- 3. Déterminer une grammaire G' non ambiguë telle que L(G) = L(G').

Exercice 9

Une grammaire régulière peut-elle être ambiguë? Un langage rationnel peut-il être intrinsèquement ambigu? Justifier.

3 Propriétés de clôture

Exercice 10

Montrer que les langages suivants ne sont pas algébriques en utilisant le lemme de pompage algébrique.

- 1. $\{a^nb^{2n}a^n \mid n \in \mathbb{N}\};$
- 2. $\{uu \mid u \in \Sigma^*\} \text{ si } |\Sigma| > 1;$
- 3. $\{u \# v \mid u, v \in \{a, b\}^*, |u| = |v|, u \neq v\};$
- 4. L'ensemble des mots u sur $\Sigma = \{(,),[,]\}$ tels que les projections de u sur $\{(,)\}$ et sur $\{[,]\}$ sont chacune bien parenthésées (par exemple, u = ([)] est un tel mot);
- 5. $\{a^p \mid p \in \mathbb{P}\};$
- 6. $\{a^n \mid n \notin \mathbb{P}\}$, en admettant le théorème de Dirichlet : si u_0 et r sont deux entiers premiers entre eux, alors la suite $(u_0 + kr)_{k \in \mathbb{N}}$ contient une infinité de nombres premiers.

Exercice 11

Soit L un langage algébrique sur $\Sigma = \{a\}$. On cherche à montrer que L est rationnel. On note n la longueur de pompage de L.

Pour $u \in L$ tel que $|u| \ge n$, on note u = vwxyz une décomposition donnée par le lemme de pompage algébrique (décomposition choisie arbitrairement s'il y en a plusieurs). Pour $q \in [\![1,n]\!]$, on note $L_q = \{u \in L \mid |u| \ge n, |wy| = q\}$, w et y faisant référence à la décomposition précédente. Enfin, on note $M_q = \{a^{p+kq} \mid a^p \in L_q, k \in \mathbb{N}\}$.

- 1. Montrer que pour $q \in [1, n]$, M_q est rationnel.
- 2. En déduire que L est rationnel.

Exercice 12

Soit Σ et Σ' deux alphabets et $\varphi: \Sigma^* \to \Sigma'^*$ un morphisme de mots. Soit $G = (\Sigma, V, P, S)$ une grammaire hors-contexte.

- 1. Montrer que $\varphi(L(G))$ est un langage algébrique.
 - Indication: on rajoutera une variable X_a pour chaque $a \in \Sigma$.
- 2. En déduire que $L_0 = \{uvu \mid u \in \{a,b\}^*, v \in \{c,d\}^*\}$ n'est pas algébrique.
- 3. Soit L un langage tel que $\varphi(L)$ est algébrique. Peut-on conclure que L est algébrique?

Exercice 13

Soit L un langage algébrique et R un langage rationnel sur Σ . On cherche à montrer que $L \cap R$ est algébrique. Pour cela, on considère $G = (\Sigma, V, P, S)$ une grammaire hors-contexte en forme normale de Chomsky et $A = (Q, \Sigma, \delta, q_0, F)$ un AFD tels que L = L(G) et R = L(A).

Montrer qu'il existe $G' = (\Sigma, V', P', S')$ une grammaire hors-contexte en forme normale de Chomsky telle que $V' = Q \times V \times Q$ et $L(G') = L \cap R$.

Exercice 14

Soit L un langage non algébrique et F un langage fini sur Σ . Montrer que $L \cup F$ n'est pas algébrique.

Exercice 15

Prouver la propriété suivante ou exhiber un contre-exemple : « si L^* est algébrique, alors L est algébrique. »

Exercice 16

Pour L un langage sur Σ , on pose $\frac{1}{2}L = \{u \in \Sigma^* \mid \exists v \in \Sigma^*, uv \in L \text{ et } |u| = |v|\}.$

- 1. Montrer que si L est rationnel, alors $\frac{1}{2}L$ est rationnel.
- 2. Sur $\Sigma = \{a, b, c\}$, montrer qu'il existe L un langage algébrique tel que $\frac{1}{2}L$ n'est pas algébrique.

4 Analyse syntaxique

Exercice 17

Définition

On dit qu'une grammaire hors-contexte $G = (\Sigma, V, P, S)$ est en forme normale de Greibach si ses règles sont de l'une des formes suivantes :

- $-S \rightarrow \varepsilon$
- $-X \to aX_1X_2...X_n$, avec $a \in \Sigma, X, X_1, ..., X_n \in V$ et $S \notin \{X_1, ..., X_n\}$.
- 1. Soit G une grammaire hors-contexte et $X \in V$. On suppose que les règles de production de X sont $X \to X\alpha_1 \mid X\alpha_2 \mid \ldots \mid X\alpha_p$ et $X \to \beta_1 \mid \beta_2 \mid \ldots \beta_q$ où les β_j ne commencent pas par X. Montrer qu'on peut modifier ces règles pour que si $X \to \alpha$ est une règle de production, alors α ne commence par par X.
 - Indication: on rajoutera une variable Y et on considèrera $X \to \beta_j \mid \beta_j Y$.
- 2. Montrer que toute grammaire hors-contexte est faiblement équivalente à une grammaire en forme normale de Greibach.

Indication: on partira d'une grammaire en forme normale de Chomsky et on donnera la construction.

- 3. Montrer que si G est en forme normale de Greibach et $u \in L(G) \setminus \{\varepsilon\}$, alors toute dérivation de u est de taille exactement |u|.
- 4. Quel est l'intérêt d'une grammaire en forme normale de Greibach pour une analyse syntaxique top-down?

Exercice 18

On souhaite écrire un analyseur syntaxique pour la grammaire G définie par $S \to (S)S \mid \varepsilon$.

1. Décrire en pseudo-code un analyseur syntaxique récursif descendant (top-down) de G.

On souhaite déterminer l'imbrication des parenthèses de manière arborescente : on utilise pour cela le type OCaml :

```
type arbre_abstrait = Par of arbre_abstrait list;;
```

Avec ce type, on souhaite transformer une chaîne de caractères de la forme (())(()()) en [Par [Par []]; Par [Par []]].

2. Écrire une fonction analyseur_syntaxique : string -> arbre_abstrait list qui fait cette analyse syntaxique. On lèvera une exception le cas échéant.