虚時間グリーン関数に対するスパースモデリング入門(1)

品岡寛 (埼玉大学)

自己紹介 https://shinaoka.github.io

経歴

- 博士 (工学) 2009年3月@東大物工
- ポスドク 2009年3月~2015年9月 (東大、産総研、チューリッヒ連邦工科大)
- 研究室主催@埼玉大 2015年10月~

• 専門

- 量子多体理論、第一原理計算、幾何学的フラストレート磁性・・・
- 計算物理バックエンドの開発に興味 ALPS量子モンテカルロコード、スパースモデリング・・・
- 海外との連携 ウィーン工科大学、ミシガン大、フリブール大、ミュンヘン大、King's College London・・・

宣伝

- 学術変革領域B「量子古典融合アルゴリズムが拓く計算物質科学」(代表: 品岡)
 - 2023~2025年度
 - 計画研究班代表: 品岡、大久保、水上
 - スパースモデリング、テンソルネットワーク、動的平均場理論、密度汎関数理論、 変分波動関数理論、量子情報・・・
- JST創発「2粒子レベルの量子埋め込み理論に基づく新規第一原理計算手法の開発と実証」2024年度から基本7年
 - RA (博士課程学生支援あり)

近日、ポスドク、博士後期課程学生の公募が出る予定!→詳しくはポスターで

前提知識

- 虚時間形式グリーン関数の基礎
- Python or Juliaの基礎知識
 - 。 基本文法
 - 。 多次元配列

o ...

何ができる?

虚時間・松原形式に基づく「数値」計算の高速・省メモリ化

超伝導転移温度の第一原 理計算

T. Wang *et al.*, PRB 102, 134503 (2020), Nb

- メモリの使用量が40分の1に! [松原周波数 4096点→103点]
- 計算速度が20倍に!

他の応用例

PHYSICAL REVIEW LETTERS 125, 117204 (2020)

Formation Mechanism of the Helical Q Structure in Gd-Based Skyrmion Materials

Takuya Nomoto[®], ^{1,*} Takashi Koretsune[®], ² and Ryotaro Arita[®] ^{1,3}

¹Department of Applied Physics, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan

²Department of Physics, Tohoku University, Miyagi 980-8578, Japan

³RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan

Efficient ab initio Migdal-Eliashberg calculation considering the retardation effect in phonon-mediated superconductors 超伝導体

Tianchun Wang ^{1,*} Takuya Nomoto ¹ Yusuke Nomura ² Hiroshi Shinaoka ³ Junya Otsuki, ⁴ Takashi Koretsune ⁵ and Ryotaro Arita ^{1,2}

¹Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan ²RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan ³Department of Physics, Saitama University, Sakura, Saitama 338-8570, Japan ⁴Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan ⁵Department of Physics, Tohoku University, Miyagi 980-8578, Japan

High Energy Physics - Lattice

[Submitted on 26 Oct 2021 (v1), last revised 30 Oct 2021 (this version, v2)]

QCD viscosity by combining the gradient flow and sparse modeling methods $archit{n}$ $archive{n}$ $archive{$

Etsuko Itou, Yuki Nagai

PHYSICAL REVIEW B 103, 205148 (2021)

Efficient fluctuation-exchange approach to low-temperature spin fluctuations and superconductivity: From the Hubbard model to Na₂CoO₂ · yH₂O

Niklas Witt •, 1-2.* Erik G. C. P. van Loon •, 1-2 Takuya Nomoto •, 3 Ryotaro Arita •, 3-4 and Tim O. Wehling • 1-2

1 Institut für Theoretische Physik, Universität Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany

2 Bremen Center for Computational Materials Science, Universität Bremen, Am Fallurm 1a, 28359 Bremen, Germany

3 Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

4 RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

(Received 9 December 2020; revised 23 March 2021; accepted 30 April 2021; published 26 May 2021)

PHYSICAL REVIEW RESEARCH 2, 043144 (2020)

Magnetic exchange coupling in cuprate-analog d^9 nickelates

Yusuke Nomura , 1.* Takuya Nomoto , 2 Motoaki Hirayama , 1 and Ryotaro Arita , 1 RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan , 2 Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656

PHYSICAL REVIEW B 102, 085105 (2020)

Ab initio self-energy embedding for the photoemission spectra of NiO and MnO

Sergei Iskakov , Chia-Nan Yeh, Emanuel Gull , and Dominika Zgid^{2,1}

Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA

Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA

PHYSICAL REVIEW B 106, 085121 (2022)

Relativistic self-consistent GW: Exact two-component formalism with one-electron approximation for solids

Chia-Nan Yeh, Avijit Shee, Ciming Sun, Emanuel Gull, and Dominika Zgid.

Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA

Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA

AxiomQuant Investment Management LLC, Shanghai 200120, China

背後にある技術

- 虚時間グリーン関数のコンパクトな中間表現基底
 - $\circ~G(au) = \sum_{l=0}^{L-1} U_l(au) g_l + \epsilon$
 - $\circ L \propto \log \beta W$ (β : inverse temperature, W: band width)
 - $\epsilon \propto \exp(-aL)$ (ϵ : truncation error, a>0)
- 虚時間・虚周波数におけるスパースメッシュ: # of points $\simeq L$.
- SparselR.jl (Julia), sparse-ir (Python)

参考資料

- 固体物理 2021年6月 温度グリーン関数の情報圧縮に基づく高速量子多体計算法
- ◆ ↑の英語訳・加筆 + 新ライブラリsparse-irに更新
 H. Shinaoka et al., SciPost Phys. Lect. Notes 63 (2022)
- sparse-ir tutorials (大量のサンプルコード)
 https://spm-lab.github.io/sparse-ir-tutorial/index.html
 IR基底の基礎、フーリエ変換、2次摂動、FLEX、DMFTなどなど
 Python, Julia (Jupyter notebook) + Fortran

虚時間以外を圧縮したい!: Quantics tensor trains

- 一般の時空依存性 (実時間、波数依存性など)の圧縮
- 指数的に異なるエネルギー・長さスケール間の低エンタングルメント構造を仮定
- Julia実装 (ITensors.jlベース)

Multi-scale space-time ansatz for correlation functions of quantum systems based on quantics representations

Hiroshi Shinaoka, ^{1, 2} Markus Wallerberger, ³ Yuta Murakami, ⁴ Kosuke Nogaki, ⁵ Rihito Sakurai, ¹ Philipp Werner, ⁶ and Anna Kauch ³

¹ Department of Physics, Saitama University, Saitama 338-8570, Japan

² JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

³ Institute of Solid State Physics, TU Wien, 1040 Vienna, Austria

⁴ Center for Emergent Matter Science, RIKEN, Wako, Saitama 351-0198, Japan

⁵ Department of Physics, Kyoto University, Kyoto 606-8502, Japan

⁶ Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland

arXiv:2210.12984 (to appear in PRX)

概要

- Part I
 - i. 虚時間グリーン関数の性質のまとめ
 - ii. 中間表現基底
 - iii. スパースサンプリング法

Imaginary-time Green's functions

Also known as Matsubara Green's functions:

$$G(au) = -\langle T_{ au}A(au)B(0)
angle,$$

where

- A(au), B(au) are operators in the Heisenberg picture ($A(au) = e^{ au H} A e^{- au H}$).
- ullet $\langle \cdots
 angle = {
 m Tr}(e^{-eta H} \cdots)$, where eta = 1/T ($k_{
 m B} = 1$).

We use the Hamiltonian formalism throughout this lecture.

Imaginary-time Green's functions

$$G(au) = -\langle T_ au A(au) B(0)
angle$$

- ullet A and B are fermionic operators o G(au) = -G(au+eta)
- ullet A and B are bosonic operators o G(au)=G(au+eta)

In general, G(au) has a discontinuity at au=neta ($n\in\mathbb{N}$).

Imaginary-frequency (Matsubara) Green's functions

Matsubara Green's function:

$$G(\mathrm{i}\omega) = \int_0^eta \mathrm{d} au e^{\mathrm{i}\omega au} G(au).$$

From $G(\tau + \beta) = \mp G(\tau)$,

- $\omega = (2n+1)T\pi$ (fermion)
- $\omega=2nT\pi$ (boson)

 $(n \in \mathbb{N})$

These discrete imaginary frequencies are denoted as Matsubara frequencies.

Spectral/Lehmann representation

$$G(z) = \int_{-\infty}^{+\infty} \mathrm{d}\omega' rac{
ho(\omega')}{z-\omega'},$$

where $\rho(\omega)$ is a spectral function.

- $z=\mathrm{i}\omega o \mathsf{Matsubara}$ Green's function
- $z = \omega + \mathrm{i}0^+ \to \mathrm{Retarded}$ Green's function (not used in this lecture)

How Greeen's function look like in τ ?

Example (single pole):
$$ho(\omega)=\delta(\omega-\omega_0)$$
, $\omega_0>0$
$$G(\mathrm{i}\omega)=\frac{1}{\mathrm{i}\omega-\omega_0}$$

$$G(\tau)=-\frac{e^{-\tau\omega_0}}{1+e^{-\beta\omega_0}}\ (0<\tau<\beta)$$

At aupprox 0 , $G(au)\propto e^{- au\omega_0}$.

For $eta\omega_0\gg 1$, coexisting two time scales : $1/\omega_0\ll eta$

How Greeen's function look like in Matsubara frequency space

Example (single pole): $ho(\omega)=\delta(\omega-\omega_0)$, $\omega_0>0$

$$G(\mathrm{i}\omega)=rac{1}{\mathrm{i}\omega-\omega_0}$$

$$G(au) = -rac{e^{- au\omega_0}}{1+e^{-eta\omega_0}} \ (0< au$$

At high frequencies $|\omega|\gg |\omega_0|$, $G(\mathrm{i}\omega)pprox 1/(\mathrm{i}\omega)$.

For $eta\omega_0\gg 1$, coexisting two energy scales: $\omega_0\ll T=1/eta$

Difficulties in numerical simulations

If band width W and temperature T differ by orders of magnitudes as $\beta W\gg 1$:

- Slow power-law decay at high frequencies → Large truncation errors
- Uniform dense mesh in au requires a huge number of points $\propto eta W$.

Example:

• Band width 10 eV, superconducting temperature 1 K pprox 0.1 meV $ightarrow eta W = 10^5$.

We need a compact basis with exponetial convergence.

Compact representations

- Intermediate represenation (sparse-ir)
 - Ab initio calculations (Eliashberg theory, GW, Lichtenstein formula)
 - Diagrammatic calculations (FLEX)
- Discrete Lehmann representation (implemented in sparse-ir as well)
- Minmax method (from Kresse's group)

Mathematical background: singular value decomposition (SVD)

Any complex-valued matrix A of size M imes N can be decomposed as

$$A=U\Sigma V^{\dagger},$$

where

$$egin{aligned} U &= (u_1, u_2, \cdots, u_L) : M imes L, \ V &= (v_1, v_2, \cdots, v_L) : N imes L, \end{aligned}$$

where $u_i^\dagger u_j = \delta_{ij}$, $v_i^\dagger v_j = \delta_{ij}$, $L = \min(M,N)$. Σ is a diagonal matrix with nonnegative diagonal elements $s_1 \geq s_2 \geq \cdots \geq s_L \geq 0$.

- Unique up to a phase if the singular values s_i are non-degenerate.
- ullet If A is a real matrix, U and V are also real orthogonal matrices.

Intermediate representation

Shinaoka et al. Phys. Rev. B 96, 035147 (2017)

Analytic continuation kernel

Fermion & boson:

$$G(\mathrm{i}
u) = \int_{-\infty}^{\infty} \mathrm{d}\omega \underbrace{\frac{1}{\mathrm{i}
u - \omega}}_{\equiv K(\mathrm{i}
u,\omega)} A(\omega)$$

 $K(\mathrm{i}
u,\omega)$ is system independent and $A(\omega)=-\mathrm{i}(G^R(\omega)-G^A(\omega)).$

Analytic continuation kernel

$$G(au) = -\int_{-\infty}^{\infty} \mathrm{d}\omega K(au,\omega) A(\omega), \ K(au,\omega) \equiv -rac{1}{eta} \sum_{\mathrm{i}
u} e^{-\mathrm{i}
u au} K(\mathrm{i}
u,\omega) = egin{cases} rac{e^{- au\omega}}{1+e^{-eta\omega}} & ext{(fermion)} \ rac{e^{- au\omega}}{1-e^{-eta\omega}} & ext{(boson)} \end{cases},$$

where $0 < \tau < \beta$.

For bosons, $|K(\tau,\omega)| \to +\infty$ at $\omega \to 0$. We want to use the same kernel for fermion & boson. How?

Logistic kernel

$$G(au) = -\int_{-\infty}^{\infty} \mathrm{d}\omega K^{\mathrm{L}}(au,\omega)
ho(\omega),$$

where $K^{\mathrm{L}}(au,\omega)$ is the "logistic kernel" defined as

$$K^{
m L}(au,\omega) = rac{e^{- au\omega}}{1+e^{-eta\omega}},$$

and $\rho(\omega)$ is the modified spectral function

$$ho(\omega) \equiv egin{cases} A(\omega) & ext{(fermion)}, \ rac{A(\omega)}{ anh(eta\omega/2)} & ext{(boson)}. \end{cases}$$

This trick has been widely used in the lattice QCD community for a long time. This was introduced into condensed matter physics in J. Kaye et al. (2022).

Singular value expansion

We introduce an ultraviolet $0<\omega_{
m max}<\infty$ and a dimensionless parameter $\Lambda\equiv\omega_{
m max}eta$

Because $K^{\mathrm{L}} \in C^{\infty}$ and $\in L^2$:

$$K^{
m L}(au,\omega) = \sum_{l=0}^{\infty} U_l(au) S_l V_l(\omega),$$

for $-\omega_{\max} \leq \omega \leq \omega_{\max}$ and $0 \leq \tau \leq \beta$.

Singular functions: $\int_{-\omega_{\max}}^{\omega_{\max}} \mathrm{d}\omega V_l(\omega) V_{l'}(\omega) = \delta_{ll'}$ and $\int_0^\beta \mathrm{d}\tau U_l(\tau) U_{l'}(\tau) = \delta_{ll'}$.

→ Indermediate-represetation basis functions

Singular values: $\omega_{\mathrm{max}}=1$

- Exponential decay
- Number of relevant S_l grows as $O(\log \Lambda)$ (only numerical evidence)

Basis functions: $\omega_{ m max}=1$ and eta=100

- ullet Even/odd functions for even/odd l
- l roots
- ullet Converge to Legendre polynomials at $\Lambda o 0$

Basis functions in Matsubara frequency

$$U_l(\mathrm{i}
u) \equiv \int_0^eta \mathrm{d} au e^{\mathrm{i}
u au} U_l(au).$$

Fourier transform can be done numerically.

Expansion in IR

$$G(au) = \sum_{l=0}^{L-1} G_l U_l(au) + \epsilon_L,$$

$$\hat{G}(\mathrm{i}
u) = \sum_{l=0}^{L-1} G_l \hat{U}_l(\mathrm{i}
u) + \hat{\epsilon}_L,$$

where $\epsilon_L,\ \hat{\epsilon}_Lpprox S_L.$ The expansion coefficients G_l can be determined from the spectral function as

$$G_l = -S_l
ho_l,$$

where

$$ho_l = \int_{-\omega_{
m max}}^{\omega_{
m max}} {
m d}\omega
ho(\omega) V_l(\omega).$$

Convergence

 $|G_l|$ converges as fast as S_l .

Example:

$$egin{aligned}
ho(\omega) &= rac{1}{2}(\delta(\omega-1)+\delta(\omega+1)) \
ho_l &= \int_{-\omega_{ ext{max}}}^{\omega_{ ext{max}}} \mathrm{d}\omega
ho(\omega) V_l(\omega) \ &= rac{1}{2}(V_l(1)+V_l(-1)). \end{aligned}$$

$$\beta = 100$$
, $\omega_{\rm max} = 1$.

Sparse sampling

Li, Wallerberger, Chikano, Yeh, Gull, and Shinaoka, Phys. Rev. B 101, 035144 (2000)

Sparse time and frequency meshes

Solving Dyson equation for given $\Sigma(i\omega)$:

$$G(\mathrm{i}\omega) = (G_0^{-1}(\mathrm{i}\omega) + \Sigma(\mathrm{i}\omega))^{-1} \ G_l = \sum_{n=-\infty}^{+\infty} U_l^*(\mathrm{i}\omega_n) G(\mathrm{i}\omega_n)$$

Q. Need to compute $G(\mathrm{i}\omega)$ on ALL Mastubara frequencies to determine L IR coefficients G_l ?

A. No, we need to know $G(\mathrm{i}\omega)$ on appropriately chosen (pprox L) sampling frequencies.

Dense mesh in τ ?

Second-order self-energy (Hubbard U):

$$\Sigma(au) \propto U G^2(au) G(eta - au)
onumber \ G_l = \int_0^eta d au U_l(au) G(au)$$

Q: Need to compute $G(\tau)$ on a dense mesh of τ ?

A: No, we need to know G(au) on appropriately chosen (pprox L) sampling points?

Sampling points

Simple rule: extrema (or somewhere in between two adjacent roots) of U_{L}

$$eta=10$$
, $\omega_{
m max}=10$, $L=30$:

Sampling points

Simple rule: extrema (or somewhere in between two adjacent roots) of U_{L}

$$eta=10$$
, $\omega_{
m max}=10$, $L=30$:

Transform from time/frequency to IR

- Well conditioned fitting problem
- Implemented in sparse-ir as stable linear transform

$$egin{aligned} G_l &= rgmin_{G_l} \sum_k \left| G(ar{ au}_k) - \sum_{l=0}^{N_{ ext{smpl}}-1} U_l(ar{ au}_k) G_l
ight|^2 \ &= (\mathbf{F}^+ oldsymbol{G})_l, \end{aligned}$$

where we define $({f F})_{kl}=U_l(ar au_k)$ and ${f F}^+$ is its pseudo inverse.

Condition number

- ullet Small condition number of ${f F}$
- If condition number is 10^p , you may loos p digits in transformation (three out of 16 digits)

©2023 品岡寛 37/48

Numerical demonstration

Two-pole model: $\beta=100$, $\omega_{\max}=1$: Almost 16 significant digits!

Stable and efficient numerical transform

QA sessions

虚時間グリーン関数に対するスパースモデリング入門(1)

How to implement diagrammatic equations

Second-order perturbation theory

- Solving Dyson equation in frequency space
- Evaluating the self-energy in frequency space

Implementation of second-order perturbation theory

Online tutorial

Hubbard model on a square lattice:

$${\cal H} = -t \sum_{\langle i,j
angle} c^\dagger_{i\sigma} c_{j\sigma} + U \sum_i n_{i\uparrow} n_{i\downarrow} - \mu \sum_i (n_{i\uparrow} + n_{i\downarrow}),$$

where t=1 and $\mu=U/2$ (half filling). $c_{i\sigma}^{\dagger}$ ($c_{i\sigma}$) a creation (annihilation) operator for an electron with spin σ at site i.

Non-interacting band dispersion:

$$\epsilon(oldsymbol{k}) = -2(\cos k_x + \cos k_y),$$

where $oldsymbol{k}=(k_x,k_y)$.

Self-consistent equations

Self-consistent equations (sparse sampling)

The whole calculaiton can be performed on sparse meshes.

虚時間グリーン関数に対するスパースモデリング入門(1)

Reconstruction of spectral function

Please read our article in the sparse-ir tutorial!

Q: Can you reconstruct a spectral function from numerical data of $G(\tau)$?

A: Very difficult

$$G(au) = G_{
m exact}(au) + \delta(au),$$

where $\delta(\tau)$ is noise.

$$ho_l = -(S_l)^{-1}((G_l)_{\mathrm{exact}} + \delta_l),$$

where $(G_l)_{\mathrm{exact}} = \int_0^\beta \mathrm{d} au U_l(au) G_{\mathrm{exact}}(au)$ and $\delta_l = \int_0^\beta \mathrm{d} au U_l(au) \delta(au)$.

Reconstruction of spectral function

Q: Can you reconstruct a spectral function from numerical data of $G(\tau)$?

A: Very numerical unstable!

$$G(au) = G_{
m exact}(au) + \delta(au),$$

where $\delta(\tau)$ is noise.

$$ho_l = -(S_l)^{-1}((G_l)_{\mathrm{exact}} + \delta_l),$$

where
$$(G_l)_{\mathrm{exact}} = \int_0^\beta \mathrm{d} au U_l(au) G_{\mathrm{exact}}(au)$$
 and $\delta_l = \int_0^\beta \mathrm{d} au U_l(au) \delta(au)$.

Noise is amplified by small singular values. \rightarrow ill-posed inverse problem. Needed a regularized solver: MaxEnt, SpM, Nevanlinna etc.

"Nevanlinna.jl: A Julia implementation of Nevanlinna analytic continuation", K. Nogaki, J.

Fei, E. Gull, HS, arXiv:2302.10476v1