Talent Analytics

Kaz Hayashi Tony Xu Chien Chen Liew Arnav Gupta

Agenda

Part 1

Problem Statement and challenge

Data preprocessing

Modelling

Results

Inference (Threats to validity)

Improvements and Next steps

Part 2

Current landscape of some tools

Potential Concerns

Our proposed Tool

Part 1

- What are the organizational and social factors associated with examiner attrition?
- What is the role of gender, race and ethnicity here in the processes underlying the question above?

Data Preprocessing

- + Gender, Race, Tenure days
- Removed gender NA values
- + Application quantity related variables (new, pending, issued, etc.)
- + Quarter variable from application date
- + Art unit mobility & separation variables
- Aggregated by examiner_id and quarter (Panel Data)
- Aggregate the data by examiner_id
- + Variables like "ration of woman, minority, their own race" in their unit

Why we don't use panel data structure

- because some examiner moved art units multiple times in a quarter.

	examiner_id	quarter	examiner_art_unit		
72673	59012.0	2006/3	1716.00		
72690	59012.0	2006/3	1717.00		
73589	59012.0	2006/3	1792.00		
76494	59012.0	2006/4	1716.00		
76511	59012.0	2006/4	1717.00		

- This caused the dataset to have multiple observations for the same examiner_id and quarter, which is not ideal for panel data structure.

Why we don't use panel data structure

In Fixed Effects model:

$$Y_{it} = \alpha_i + \beta X_{it} + \epsilon_{it}$$

Where:

- Y_{it} is the dependent variable for individual i at time t,
- α_i represents the individual-specific effect (fixed effect) that captures all time-invariant characteristics of the individual,
- X_{it} is a vector of time-varying explanatory variables with coefficients β ,
- ϵ_{it} is the idiosyncratic error term.

So, time-invariant variables' effects like "Gender" and "Race" will be absorbed by $\boldsymbol{\alpha}$

Overview of Data

Selected Variable Name	Explanation				
start_year	The year the examiner started working at the USPTO.				
Separation_indicator (Y)	Sum indicator of whether the examiner has left the USPTO (e.g., 1 for yes, 0 for no).				
AU_move_indicator (mobility)	Sum indicator of the number of times the examiner has changed art units.				
Avg_woman_ratio	Average ratio of women (career wise)				
Avg_minority_ratio	Average ratio of minority individuals in the art unit (career wise)				
Own_race_ratio	Ratio of examiners within the art unit sharing the same racial or ethnic background as the examiner. (career wise)				

Modelling - Logistic Regression

Model 1: Basic Demographics

$$\log\left(rac{P(Y=1)}{1-P(Y=1)}
ight) = eta_0 + eta_{ ext{gender}} + eta_{ ext{race}} + eta_{ ext{tenure}} + eta_{ ext{start}}$$

Model 2: Including Application Metrics

$$\log\left(\frac{P(Y=1)}{1-P(Y=1)}\right) = \text{Model } 1 + eta_{ ext{new_apps}} + eta_{ ext{issued_apps}} + eta_{ ext{abn_apps}} + eta_{ ext{pen_apps}}$$

Model 3: Adding Art Unit Information

$$\log\left(\frac{P(Y=1)}{1-P(Y=1)}\right) = \text{Model } 2 + \beta_{\text{au_move}} + \beta_{\text{avg_unit}} + \beta_{\text{woman_ratio}} + \beta_{\text{minority_ratio}} + \beta_{\text{own_race}}$$

Model 4: Including Interactions

$$\log\left(rac{P(Y=1)}{1-P(Y=1)}
ight) = ext{Model } 3 + eta_{ ext{gender} imes ext{woman_ratio}} + eta_{ ext{gender} imes ext{minority_ratio}}$$

Results and Discussion

<u>Model</u>	AUC		
Model 1	0.75570256556172		
Model 2	0.75570256556172		
Model 3	0.868549343197229		
Model 4	0.866861099255464		

Comparative Logistic Regression Model Summary				start_year2013	-13.752***	-5.281***	-2.202**	-2.216**			
Dependent variable:					(1.085)	(1.195)	(1.102)	(1.103)			
	S	separation_ir	ndicator_sui		start_year2014	-12.827***	-2.262	1.223	1.223		
	(1)	(2)	(3)	(4)	July Curzo 1	(1.327)	(1.508)	(1.437)	(1.437)		
gendermale	0.130	0.096	0.052	0.637	2015			- M	8		
	(0.080)	(0.086)	(0.096)	(0.403)	start_year2015	-14.473***		1.524	1.542		
raceblack	-0.100 (0.215)	-0.012 (0.228)	-0.114 (0.245)	-0.133 (0.245)		(1.394)	(1.849)	(1.894)	(1.904)		
raceHispanic	0.149	0.180	0.053	0.044	start_year2016	-4.362	5.200	10.219	10.264		
rucernspanie	(0.203)	(0.216)	(0.236)	(0.236)		(378.372)			(303.376)	_	
raceother	0.068	0.084	-0.022	0.002	new_applications_mean		-0.749***	-0.815***	-0.816***	Acro	oss the models, significant predictors are:
200	(1.431)	(1.460)	(1.516)	(1.517)			(0.049)	(0.052)	(0.052)	•	Tenure days
racewhite	0.067	0.176*	0.123	0.121	ISSUED_applications_mean		0.666***	0.689***	0.690***		,
	(0.086)	(0.093)	(0.140)	(0.140)			(0.049)	(0.051)	(0.051)	•	New_applications_mean (per quarter),
tenure_days	-0.003***	-0.002***	-0.001***	-0.001***	abn_applications_mean		0.684***	0.642***	0.647***	•	issued_applications mean (per quarter)
111 11-0-11-000	(0.0002)		(0.0002)	(0.0002)	uon_uppneunono_meun		(0.067)	(0.069)	(0.069)	•	
start_year2001	-1.665***	-1.116***	-0.982***	-0.986***	PEN_applications_mean		(0.001)	(0.00)	(0.007)		abii_appiications mean (per quarter)
	(0.178)	(0.188)	(0.187)	(0.187)	TEN_applications_mean			N1000000000000000000000000000000000000	0 0000000000000000000000000000000000000		
start_year2002	-2.929***	-1.881***	-1.554***	-1.558***	au_move_indicator_sum			-0.024***	-0.024***	Acro	oss models 3 and 4, significant predictors
	(0.236)	(0.246)	(0.238)	(0.238)				(0.002)	(0.002)		
start_year2003	-3.968***	-2.406***		-1.802***	avg_num_in_art_unit			0.028***	0.029***	are:	•
	(0.298)	(0.314)	(0.293)	(0.293)	893/			(0.006)	(0.007)	•	Au_move_indicator_sum
start_year2004	-5.145***			-2.287***	avg_woman_ratio			-0.598	-0.192	•	Avg_num_in_art_unit
	(0.367)	(0.388)	(0.358)	(0.358)				(0.370)	(0.618)		Avg_nam_m_art_arit
start_year2005	-5.926***	-3.171***	-2.198***	-2.205***	avg_minority_ratio			-1.078***	-0.248		
en ve causen	(0.442)	(0.469)	(0.429)	(0.430)	100 C- CONTROL 7 - STEER			(0.352)	(0.571)	Disti	tinguishing between models 3 and 4,
start_year2006	-6.944***				own_race_ratio			-0.237	-0.226		
V200-00	(0.527)	(0.561)	(0.512)	(0.512)	own_race_rado			(0.314)	(0.314)	_	_minority_ratio is significant with a large
start_year2007	-7.569***			-2.171***	gendermale:avg_woman_ratio			,	-0.609	mag	gnitude.
2200	(0.603)	(0.648)	(0.594)	(0.594)	gendermale.u., g_woman_rado				(0.736)		
start_year2008	-8.633***			-2.188***	gendermalerava minority ratio						
	(0.690)	(0.745)	(0.683)	(0.683)	gendermale:avg_minority_ratio	u			-1.137*		
start_year2009	-10.219***			-2.922***	2	***	***	***	(0.615)		
***************************************	(0.774)	(0.828)	(0.757)	(0.758)	Constant				9.029***		
start_year2010	-11.010***					(1.341)	(1.394)	(1.278)	(1.311)		
CONTROL	(0.835)	(0.893)	(0.814)	(0.815)	Observations	3,880	3,880	3,880	3,880		
start_year2011	-11.522***				Log Likelihood	-2,074.028	-1,872.100	-1,776.118	-1,774.400		
2002	(0.906)	(0.982)	(0.897)	(0.898)	Akaike Inf. Crit.	4,194.057	3,796.200	3,614.237	3,614.800		
start_year2012	-12.897***		-2.876	-2.875***	Note:		*p<0.	1; **p<0.05	; ****p<0.01		
	(0.985)	(1.065)	(0.972)	(0.972)							

Results and Discussion

Feature Importance in Random Forest Model

Significant predictors validated with Random Forest Model's feature importance.

Conclusion and Remarks

- No clear relationship between gender, race/ ethnicity and examiner attrition. But it seems to suggest an increase in minority ratio reduces attrition.
- Significant predictors of attrition is their mean of applications (issued, abandoned, pending etc).
- Seems that average number of examiners in Art Unit plays a part in attrition. Could be possible that the environment in the different art unit affects examiner's desire to leave.

- However, the analysis could be biased by outliers through means to aggregate the data.
- Our model assumes a fixed effect model where other confounding variables might not be captured in the data. Requires a more dedicated experiment to determine the effects of Art Unit/ gender, race/ ethnicity.

Part 2

People Analytics Offerings Landscape

 There's quite a few people analytics offerings each with their own strengths

 One that stands out for our use case is **Crunchr**

Uses AI to identify
 associations and causal
 relationships between the
 workforce and organizational
 objectives

Crunchr Assistant, an
 Al-powered digital co-pilot

https://www.youtube.com/watch?v=ndP7Og910TM&t=4 3s&ab_channel=Crunchr

Applicability to our use case

- Segment and analyze workforce data by demographics, performance, and relevant factors to identify organizational and social causes of attrition, such as workload, job satisfaction, engagement, and leadership styles.
- Utilize predictive analytics to forecast attrition risks based on historical data, enabling proactive interventions and
- Employ benchmarking to compare attrition rates with industry standards, aiding in determining whether trends are specific to the organization or reflective of broader industry patterns.

Potential Concerns

- **Data Quality and Bias:** The accuracy and impartiality of Crunchr's analytics hinge on data quality. Biased or incomplete historical data can perpetuate inequalities and inaccuracies in decision-making.
- Algorithmic Transparency: Concerns arise from the lack of transparency in how Crunchr's Al generates insights.
 Understanding the rationale behind analytics is crucial for justifying workforce decisions.
- Over-reliance on Technology: There's a risk of overlooking human judgment by solely relying on Crunchr for decision-making. Balancing technological insights with human expertise is essential, especially for organizations dealing with complex matters like the USPTO.
- Interpretation and Actionability: The ability to draw meaningful conclusions from the data depends on the context and understanding of the organizational culture. There's a risk of misinterpretation or oversimplification of complex social and organizational dynamics.
- **Privacy and Ethical Considerations:** Implementing Crunchr involves handling sensitive data, prompting privacy and ethical concerns. Complying with privacy laws and ethical standards is crucial for maintaining trust within the organization.

Our proposed Tool - PatentLens

The GenAl tool aims to solve macro to micro evaluations -

- Volume Overload Cognitive overload from the sheer number of applications
- Assessment Variability Inconsistent evaluations and depth over time

Implementation Pillars -

Guard Rail Conditioning

Establishes robust evaluation criteria tailored to patent examination, leveraging legal standards and technological benchmarks

Ensures model remains dynamic and adaptable to current conditions

Dynamic Content Archive

A curated, dynamically updated knowledge base, including recent patents, legal rulings, and technological advancements, to refine the Al's training and insights.

Active Trend Assessment

Integrates a search API to keep abreast of evolving market trends, technology landscapes, and legal precedents, informing the Al's analysis and recommendations.

Our proposed Tool - PatentLens

Similar to our previous hackathon tool

