Leírás

A második házi feladatban egy programot kell készíteni, ami – a tanultakat felhasználva – az alábbiak szerint működik.

A program futásakor meg kell jelennie egy görbének, amely három darab görbe C^1 folytonos csatlakoztatásával áll elő. Az első görbe három pontja és egy érintővektora által meghatározott Hermite-ív legyen, ahol a kezdőpontbeli érintővektor adott. A második görbe egy négy kontrollpontos Bézier-görbe, a harmadik pedig egy öt kontrollpontos Bézier-görbe legyen.

1. Hermite-ív

Az Hermite-ívet a GMT formula segítségével kell megrajzolni. Legyenek a P_1 , P_2 és P_3 pontok a görbénk egymást követő pontjai, amelyekhez rendre tartozzanak a $t_1 = 0$, $t_2 = 0.5$ és $t_3 = 1.0$ paraméterek, míg a P_0 pont jelölje a kezdőpontba rajzolható érintővektor végpontját.

2. Harmadfokú Bézier-görbe

A harmadfokú Bézier-görbét a Bernstein-polinomok felhasználásával kell megrajzolni. Legyenek P_3 , P_4 , P_5 és P_6 a görbe pontjai. A P_4 pont pozíciója – a C^1 folytonos csatlakozás miatt – a program futása alatt folyamatosan kiszámításra kerül.

3. Negyedfokú Bézier-görbe

A harmadik görbe egy negyedfokú Bézier-görbe, melyet a de Casteljau algoritmussal kell megrajzolni. A görbét a P_6 , P_7 , P_8 , P_9 és P_{10} pontok alkotják, ahol a P_7 pont pozícióját a programunk számolja ki automatikusan. Egy tetszőlegesen választott $t \in [0, 1]$ paraméterértékre a programunk rajzolja ki a generáláshoz használt töröttvonalakat, illetve a kiszámított görbepontot. Ez a t paraméterérték egy-egy tetszőlegesen választott billentyű segítségével változtatható.

További jellemzők

Ahogy az alábbi ábrán is látszik, a rajzolási területünk négy virtuális részre osztható. Az 1., a 2., és a 3. területre a fentebb tárgyalt görbéket kell kirajzolni, míg a 4. területre egy éppen választott görbénk súlyfüggvényeit. Az egyes görbékhez tartozó súlyfüggvények kirajzolása az y = f(x) explicit formában megadott függvények kirajzolásának a mintájára történik, ahol f egy súlyfüggvényt jelöl, míg az $x \in [0,1]$. Ezután egy megfelelően megválasztott Window to Viewport transzformáció segítségével a 4. területre rajzolhatóak a súlyfüggvények.

Azt, hogy éppen melyik görbe súlyfüggvényeit rajzoljuk ki, a megfelelő terület hátterének az elszínezésével jelöljük. Aktív területet a jobb egérgomb segítségével tudunk választani.

Általános elvárások

- \bullet A program a fentebb említett három görbét C^1 folytonosan csatlakoztatva jeleníti meg, minden időpillanatban.
- Újrafelhasználható algoritmusok készítése. Az Hermite-ív esetében a GMT formulával számoljunk, míg a Bézier-görbék esetén olyan algoritmusokat készítsünk, melyek tetszőleges számú kontrollpont esetén is működőképesek.
- A kontrollpontok a két zöld pont (P_4, P_7) kivételével egér segítségével mozgathatóak.
- $\bullet\,$ A görbe kontrollpoligonjának a kirajzolása ki- és bekapcsolható.
- Az Hermite-ív kezdő- és végpontbeli érintővektora kirajzolásra kerül.
- A második Bézier-görbe esetén egy tetszőlegesen választott t paraméterértékre a generáló töröttvonalak, illetve a görbepont kirajzolható (lásd videó).
- $\bullet\,$ A t paraméterérték változtatható egy-egy billentyű segítségével.
- A jobb egérgomb segítségével meghatározható, hogy melyik görbe súlyfüggvényeit jeleníti meg az alkalmazás.

Beküldési határidő

2019. április 12. 23:59

Beküldés módja

A forrásfájlokat a **név_neptunkód_HF2.cpp** jelöléssel a toth.akos@inf.unideb.hu e-mail címre kell elküldeni.

Videó

https://youtu.be/UIPeKxKBLz4

Megjegyzés: A videóban a kurzor körül látható piros és kék körvonalak nem a program részei. A bal, illetve a jobb egérgomb kattintásokat jelölik.