DLS Lab Seminar

Octavio A. Villarreal Magaña

Istituto Italiano di Tecnologia, Genova, Italy

March 16th, 2017

Outline

1 Control structure

2 Numeric simulations

Outline

1 Control structure

2 Numeric simulations

Motivation

 Provide versatility to the types of gaits that the robot can perform

 Have a unified and systematic way to generate motions of the legs according to the scenario

Can be applied to other legged systems

General picture

General picture

Supervisory controller

Main goal

Provide **geometrical** and **time** gait parameters, based on sensory data, to overcome the scenario that the robot is facing.

Supervisory controller (continue)

Geometrical parameters:

• Step height H_s

• Step length L_s

Oscillator "primitive" shape changes

Supervisory controller (continue)

Time parameters:

• Duty factor D_f

• Step frequency S_f

• Gait parameterization G(e.g., $G_{trot} = \{1, 4\} \prec \{2, 3\}$)

• Time difference vector Δ

Max-plus gait scheduler

Main goal

Using the **time**-related gait parameters provided by the supervisory controller, generate the list of time-instants when each leg has to leave and touch the ground, so that a desired coordination is achieved.

Max-plus gait scheduler (continue)

$$G_{trot} = \{1, 4\} \prec \{2, 3\}$$

 $D_f = 0.58$
 $S_f = 0.42$
 $\Delta = [0.2, 0.2]$

k	$g_1(k)$	$g_2(k)$	g ₃ (k)	g4(k)	$l_1(k)$	l2(k)	13(k)	14(k)
0	0	0	0	0	0	0	0	0
1	2.4	3.6	3.6	2.4,	1.4	2.6	2.6	1.4
2	4.8	6	6	4.8	3.8	5	5	3.8
3	7.2	8.4	8.4	7.2	6.2	7.4	7.4	6.2
4	9.6	10.8	10.8	9.6	8.6	9.8	9.8	8.6
5	12	13.2	13.2	12	11	12.2	12.2	11

Max-plus gait scheduler (continue)

- Systematic gait generation
- No coupling matrix \mathbb{C}_{ij}
- Total cycle time analysis (max-plus eigenvalues of A matrix in $x(k+1) = A \otimes x(k)$)
- Coupling time analysis ("settling time")
- Not computationally expensive
- Possibility to provide "optimal" gait switching

Angular frequency reference generator

Main goal

Making use of the **touchdown** and **lift-off** times of the max-plus gait scheduler, provide a function for the evolution of the angular frequency of the oscillator-based reference generator.

Angular frequency reference generator (continue)

Stance and swing period:

$$Ti_{st} = l_i(k+1) - g_i(k)$$

 $Ti_{sw} = g_i(k+1) - l_i(k+1),$

Average angular frequency:

$$ar{\omega} = egin{cases} rac{\pi}{Ti_{st}} ext{ for } t \in [g_i(k), l_i(k+1)] \ rac{\pi}{Ti_{sw}} ext{ for } t \in (l_i(k+1), g_i(k+1)] \end{cases}$$

Condition for the angular frequency function:

$$\frac{1}{Ti_p} \int^{Ti_p} \omega dt = \bar{\omega} \text{ for } p = st, sw.$$

Angular frequency reference generator (continue)

 $\omega = \bar{\omega}$

Oscillator continuous time reference generator

Main goal

Generate reference trajectories for each of the legs of the robot in such a way that the desired gait is achieved, according to the angular frequency obtained from the angular frequency reference generator.

Oscillator continuous time reference generator (continue)

Oscillator equations:

$$x = \alpha \left(1 - \frac{16x^4}{L_s^4} - \frac{z^4}{H_s^4}\right) x + \frac{1.18\omega L_s}{2H_s^3} z^3$$
$$z = \beta \left(1 - \frac{16x^4}{L_s^4} - \frac{z^4}{H_s^4}\right) z - \frac{9.44\omega H_s}{L_s^3} x^3$$

Outline

1 Control structure

2 Numeric simulations

Parameters used

Switch between four different sets of gait parameters:

	G	D_f	$S_f[\frac{1}{s}]$	$\Delta[s]$
T_1	$\{1,4\} \prec \{2,3\}$	0.6	1/3	[0.2, 0.4]
T_2	$\{1,4\} \prec \{2,3\}$	0.4	1/3	[-0.2, -0.4]
W_1	$\{1\} \prec \{2\} \prec \{3\} \prec \{4\}$	0.6	1/3	[-0.45, -0.45, -0.45, -0.45]
W_2	$\{1\} \prec \{2\} \prec \{3\} \prec \{4\}$	0.4	1/3	[-1.4, -0.7, -1.4, -0.7]

Generated motion references

Duty factor

Animation

^{19 / 21}ln

Outline

1 Control structure

2 Numeric simulations

- Use the proposed strategy in the current framework
- Design angular frequency generator
- Account for disturbances in the max-plus algebra gait scheduler
- Design of supervisory parameters according to sensory information
- Design transition between one set of parameters to another

Thank you. Questions or comments?