## Speech recognition using Kaldi Thesis about implementation Kaldi ASR for Alex SDS

#### Ondřej Plátek

Matematicko-fyzikální fakulta Univerzity Karlovy

14.4.2014

#### Goals of thesis

Improve speech recognition for Alex Spoken Dialogue Systems Particularly public transport information application (800 899 998).

#### Goals of the thesis were:

- to build acoustic models using the Kaldi toolkit,
- to develop new real-time recogniser which supports incremental speech recognition,
- to integrate the recogniser into our Alex SDS.

## Content

- 1 Task
- 2 ASR introduction
- 3 Evaluation in Public Transport Information domain
- 4 On-line recogniser
- 5 Acoustic modelling
- 6 Summary
- 7 Details



## **ASR** components



# Acoustic features, features preprocessing



# Continuous Speech recognition

#### Pattern matching

HMM — speech time series modelling (phones/triphones for words)

We trained several HMM acoustic models.

#### Graph search - decoding

Viterbi algorithm — dynamic programming

- We search for best parameters (beam, max-active-states).
- Normalise its output.
- Change interface.

## Output formats

- 0.5 hi how are you
- 0.2 hi where are you
- 0.1 bey how are you



#### **Evaluation** measures

- Real Time Factor (RTF) of decoding the ratio of the recognition time to the duration of the audio input,
- Latency the delay between utterance end and the availability of the recognition results,
- Word Error Rate (WER).

## On-line vs batch decoding



## Public Transport Information domain - results



## Components for on-line decoding



# (Py)OnlineLatgenRecogniser interface

- AudioIn queueing new audio for pre-processing
- Decode decoding a fixed number of audio frames
- PruneFinal preparing internal data structures for lattice extraction
- GetLattice extracting a word posterior lattice
- GetBestPath extracting a one best word sequence
- Reset preparing the recogniser for a new utterance

## Acoustic modeling



## Acoustic models training



## Vystadial dataset

Collected by UFAL Dialogue system group.

| Concered by OTAL Dialogue system group. |             |             |         |  |  |  |  |  |
|-----------------------------------------|-------------|-------------|---------|--|--|--|--|--|
| dataset                                 | audio[hour] | # sentences | # words |  |  |  |  |  |
| English                                 |             |             |         |  |  |  |  |  |
| training                                | 41:30       | 47,463      | 178,110 |  |  |  |  |  |
| development                             | 01:45       | 2,000       | 7,376   |  |  |  |  |  |
| test                                    | 01:46       | 2,000       | 7,772   |  |  |  |  |  |
| Czech                                   |             |             |         |  |  |  |  |  |
| training                                | 15:25       | 22,567      | 126,333 |  |  |  |  |  |
| development                             | 01:23       | 2,000       | 11,478  |  |  |  |  |  |
| test                                    | 01:22       | 2,000       | 11,204  |  |  |  |  |  |
|                                         |             |             |         |  |  |  |  |  |

# ASR training results

| language/method              | bigram |  |
|------------------------------|--------|--|
| Czech                        |        |  |
| 0_00                         | ГС С   |  |
| tri $\Delta + \Delta \Delta$ | 56.6   |  |
| $tri\;LDA + MLLT$            | 53.9   |  |
| $tri\ LDA + MLLT + MMI$      | 49.5   |  |
| $tri\;LDA + MLLT + bMMI$     | 49.3   |  |
| tri LDA+MLLT+MPE             | 49.2   |  |
|                              |        |  |
| English                      |        |  |
| tri $\Delta + \Delta \Delta$ | 16.2   |  |
| $tri\;LDA + MLLT$            | 15.8   |  |
| $tri\;LDA + MLLT + MMI$      | 10.4   |  |
| $tri\;LDA + MLLT + bMMI$     | 10.2   |  |
| tri LDA+MLLT+MPE             | 11.1   |  |

## HTK and Kaldi acoustic models

| HTK method                   | bigram | Kaldi method                 | bigram |
|------------------------------|--------|------------------------------|--------|
| Czech                        |        | Czech                        |        |
| tri $\Delta + \Delta \Delta$ | 60.4   | tri $\Delta + \Delta \Delta$ | 56.6   |
| English                      |        | English                      |        |
| tri $\Delta + \Delta \Delta$ | 17.5   | tri $\Delta + \Delta \Delta$ | 16.2   |



## Acoustic model accuracy based training data size



# Speech recognition accuracy based on LM training data size



#### **Achievements**

- Working real-time on-line speech recogniser
- Developed acoustic modeling scripts for Czech and English accepted to Kaldi svn trunk
- Integration of ASR into Alex Dialogue Systems Framework
- Improved speech recognition for toll-free line 800 899 998

#### Results

- WER 22, latency under 200 ms on Public Transport Information domain (Czech)
- WER 50 for Czech on Vystadial dataset (Czech complex domain)
- WER 12 for English on Vystadial dataset



## Functional (Py)OnlineLatgenRecogniser demo

```
d = PyOnlineLatgenRecogniser()
d.setup(argv)

while audio_to_process():
    d.audio_in(get_raw_pcm_audio())
    dec_t = d.decode(max_frames=10)
    while dec_t > 0:
        decoded_frames += dec_t
        dec_t = d.decode(max_frames=10)

d.prune_final()
lik, lat = d.get_lattice()
```

## Speed - RTF and Latency

#### Fast enough for 95 % of utterances.



#### **Problem**

Spoken dialogue systems needs speech recognition OpenJulius — crashes, PocketSphinx — no posteriors, RWTH decoder — license

Cloud based services Google and Nuance — no customisation + license issues

# Semiring

| Name     | $\mathcal{K}$      | $\oplus$              | $\otimes$ | Ō        | 1 |
|----------|--------------------|-----------------------|-----------|----------|---|
| Real     | $[0,\infty)$       | +                     | *         | 0        | 1 |
| Log      | $(-\infty,\infty)$ | $-log(e^{-x}+e^{-y})$ | +         | $\infty$ | 0 |
| Tropical | $(-\infty,\infty)$ | min                   | +         | $\infty$ | 0 |

## Beam search - Viterbi



Fig. 1.6 The Viterbi Algorithm for Isolated Word Recognition

## Links and references

Thank you for your attention!

#### Related links

- Thesis and this slides https://github.com/oplatek/kaldi-thesis
- OnlineLatgenRecogniser implementation and AM training scripts https://github.com/UFAL-DSG/pykaldi
- Alex implementation https://github.com/UFAL-DSG/alex
- Contact & CV http://www.linkedin.com/in/ondrejplatek

#### References

Vystadial dataset - Matěj Korvas, Ondřej Plátek, Ondřej Dušek, Lukáš Žilka, and Filip Jurčíček, Free
English and Czech telephone speech corpus shared under the CC-BY-SA 3.0 license, Proceedings of the Eight
International Conference on Language Resources and Evaluation (LREC 2014), 2014, p. To Appear.