EE882 Experimento 1

Alunos:

- Gustavo Nascimento Soares RA: 217530 TURMA C
- Marcos Gabriel Barboza Dure Diaz RA: 221525 TURMA A
 OBS: Somos alunos de turmas diferentes, vamos entregar os relatórios nos prazos
 das duas turmas

Questão 1 - Sinais Periódicos

Inicialmente foi construído o subsistema Spectrum Viewer a partir de um bloco Signal Specification conectado a um Spectrum Analyzer, como indicado no livro.

Diagrama de Bloco do Spectrum Viewer

No

OBS: Na questão 1, para todas as análises no tempo, usamos tempo de simulação de 1e-4s. Para análise de frequência usamos tempo de simulação de 1e-3s, de modo que o analisador de frequência tivesse amostras suficientes. Para as simulações da questão 1, utilizamos um passo fixo do solver de 1e-7 segundos.

Questão 1.1

Geramos uma onda senoidal de frequência 100kHz e amplitude 100mV a partir de um bloco gerador de onda senoidal e observamos o resultado da simulação no tempo pelo bloco osciloscópio e na frequência pelo bloco analisador de frequência.

Diagrama de Bloco do Spectrum Viewer

No tempo, observamos a seguinte forma de onda:

Diagrama de Bloco do Spectrum Viewer, amplitude em Volts e tempo em 10^-4 segundos

A senóide apresenta a forma e a amplitude esperadas. O período é de 10^-5 s, esperado de uma onda de frequência 100kHz

Na frequência, observamos o seguinte espectro:

Diagrama de Bloco do Spectrum Viewer, amplitude em Volts e tempo em 10^-4 segundos

O espectro apresenta dois impulsos nas frequências de 100 kHz e -100 kHz, esperado de um sinal de frequência pura de 100 kHz.

Questão 1.2

Agora como entrada utilizamos um gerador de onda quadrada.

Diagrama de blocos com gerador de onda quadrada

No tempo, observamos a seguinte forma de onda:

Onda quadrada no tempo vista pelo osciloscópio, amplitude em Volts e tempo em 10^-4 segundos

A onda quadrada gerada tem o período (10^-5s) e a amplitude esperados (0,1V). Espectro da onda quadrada gerado pelo Analisador de Frequência

O espectro da onda quadrada ocupa toda a faixa das frequências observadas. Também exibe picos de amplitude nas frequências de 100 kHz e de 300 kHz (e nas negativas correspondentes).

O pico de 100 kHz corresponde à frequência da onda quadrada.

Questão 1.3

Agora como entrada utilizamos um gerador de onda triangular.

Diagrama de blocos com gerador de onda quadrada

No tempo, observamos a seguinte forma de onda:

Onda triangular no tempo vista pelo osciloscópio, amplitude em Volts e tempo em 10^-4 segundos

A onda triangular gerada tem o período (10^-5s) e a amplitude esperados (0,1V). Espectro da onda quadrada gerado pelo Analisador de Frequência

O espectro da onda triangular é limitado, o que é esperado pois o sinal no tempo é ilimitado (periódico). Ele apresenta picos na frequência 0 (nível DC), 100 kHz (frequência da onda) e 300 kHz. O nível DC é resultado da onda não ter amplitude negativa (se a onda tivesse amplitude de -1 a 1, o nível DC seria nulo). Os picos em 100 kHz e 300 kHz são

compatíveis com a representação em série de Fourier da onda, na qual coeficientes ímpares tem amplitude não nula e coeficientes pares tem amplitude nula.

Questão 1.4

Agora como entrada utilizamos um gerador de onda pulsada (PWM). **Diagrama de blocos com gerador de onda quadrada**

No tempo, observamos a seguinte forma de onda:

Onda PWM no tempo vista pelo osciloscópio, amplitude em Volts e tempo em 10^-4 segundos

A onda PWM gerada tem o período (10^-5s) e a amplitude esperados (0,1V) e pulse width aparentemente próximo de 10%.

Espectro da onda PWM gerado pelo Analisador de Frequência

O espectro da onda PWM é composto por picos em frequências espaçadas de 100 kHz, compatível com sua representação em Série de Fourier, um conjunto de harmônicas da frequência fundamental 100 kHz, a frequência da base da onda PWM.

Questão 1.5

Repetimos o item 1.4 com duty cycle 50% e 90% (original era 10%). No tempo, observamos as seguintes formas de onda:

Onda PWM com duty cycle 50% vista pelo osciloscópio

Onda PWM com duty cycle 90% vista pelo osciloscópio

Ambas as ondas tem o Pulse Width esperado.

Espectro da onda PWM com duty cycle 50% gerado pelo Analisador de Frequência

Espectro da onda PWM com duty cycle 90% gerado pelo Analisador de Frequência

Comparando o espectro dos três sinais, observamos que o aumento do duty cycle se reflete no aumento de magnitude da frequência 0, nível DC, o que é coerente pois uma onda PWM com duty cycle de 100% teria somente o componente DC. Além disso, a onda com duty cycle de 50% possui magnitude nula nas harmônicas pares (200 kHz, 400 kHz) como a onda triangular. Outra informação relevante é que as frequências de maior amplitude na onda PWM são sempre o nível DC e a frequência fundamental 100 kHz.

Questão 2 - Sinais Não-Periódicos

Questão 2.1

Gravamos, usando o telefone celular, a leitura de um texto durante cerca de 30s. Usando a função *audioread*, o áudio foi carregado no MATLAB, as amplitudes e o tempo foram extraídos, a matriz desejada foi criada e salva em um arquivo a ser usado no Simulink.

Diagrama da Análise da Gravação de Voz

No tempo, observamos a seguinte forma de onda:

Forma de onda da gravação de voz em leitura de texto

Seu respectivo espectro:

Espectro da onda da gravação de voz em leitura de texto

Observamos que o espectro ocupa uma curta faixa de frequência, em relação à escala de kHz, centrada em 0, caracterizando baixas frequências.

Questão 2.2

Fizemos um processo idêntico ao anterior para a gravação da música.

Diagrama da Análise da Gravação de Música

No tempo, observamos a seguinte forma de onda:

Forma de onda da gravação de música

Seu respectivo espectro:

Espectro da onda da gravação de música

O espectro da gravação de música ocupa uma faixa de frequência até 7,5kHz centrada em 0. É interessante notar que existem frequências com maior amplitude que o nível DC.

Questão 2.3

A partir da análise das formas de onda no tempo é possível distinguir como uma das ondas é mais "cheia" - ocupa mais o espaço de amplitude em cada instante - que a outra, porém as diferenças são mais perceptíveis quando feita a análise no domínio da frequência.

A gravação de voz da leitura é extremamente simples, é composta exclusivamente de frequências bem baixas e próximas entre si. Já a gravação da música apresenta frequências baixas e altas (com relação ao alcance da audição humana), além de percorrer quase todas as frequências entre os níveis extremos.

Esses resultados são coerentes visto que, no momento de leitura, a única fonte de som é a voz humana e que o ato da leitura não apresenta mudanças de tom. Já a música apresenta além da voz, gravações de diversos instrumentos e sons sintetizados. Esses elementos são combinados de forma dinâmica para formar um som agradável aos ouvidos humanos, diferente da leitura que tem como foco principal apenas transmitir informação.