Evaluation of multi-agent ethical planning tasks

Axel Ind

Uni-Freiburg

October 11, 2018

Multi-agent Planning Task

$$\Pi = (\Theta, T, u) \tag{1}$$

- $\Theta = (\pi_A, \pi_B, ..., \pi_n)$: The planning tasks of individual agents (with variable and initialization restrictions to ensure consistency).
- T: a scheduling function which determines which agent may act at a given timestep.
- ▶ u: a vector of moral utility functions (one for each agent).

Multi-agent Action Plan

Definition

A multi-agent plan π is a sequence of tuples of the form (o_i, l_x) where $o_i \in O_{l_x}$ and $l_x \in$ agent labels.

Single-agent action plan to Multi-agent Action Plan

- ▶ Given: single-agent action plan π .
- ightharpoonup Create arbitrary label I_x .
- $ightharpoonup \forall o_i \in \pi, (o_i, I_x) \in \pi'.$

T: Scheduling Turn-Taking

- ► Turn taking is a simple case of the scheduling function.
- Each agent is able to act only after all agents preceding it have acted.
- 1. Add *n* new variables $turn_0 = \bot,, turn_n = \bot$.
- 2. Determine which agent (X) acts first (can be seeded). Set $turn_X = \top$.
- 3. For all $o_i \in \pi_X$:
 - ▶ Append $\land turn_X = \top$ to the precondition of o_i .
 - ▶ Append $\land turn_X = \bot \land turn_Y = \top$ to the effect of o_i^{-1} .

¹Where *turn*_Y is a seeded successor agent.

Example 1: Double trolley problem

Example 1: Double trolley problem

$$\Pi = (\Theta, T, u,)$$
 $\Theta = (\pi_A, \pi_B)$
 $\pi_A = (V_A, I_A, O_A, \gamma_A)$
 $\pi_B = (V_B, I_B, O_B, \gamma_B)$
 $V_A = V_B = man, men, tram, leverA, leverB$

$$O_A = \{pullA, advanceA\}$$
 $pullA = (\top, leverA = I \triangleright leverA = r \land leverA = r \triangleright leverA = I)$
 $O_B = \{pullB, advanceB\}$
 $pullB = (\top, leverB = I \triangleright leverB = r \land leverB = r \triangleright leverB = I)$

$$s_0 = (man = alive \land men = alive \land tram = start \land lever A = r, landlever B = r)$$

$$\gamma_{A}=\gamma_{B}=*$$

Example 1 analysis

What constitutes a morally permissible planning task?

- ▶ In single-agent setting: sufficient to show that the action sequence does not lead to or result in the agent performing an action that is morally impermissible.
- ▶ In multi-agent setting: potential for more nuanced evaluation on a per agent basis.

Definition

A single-agent plan π is morally permissible, according to the deontological principle, iff for all a_i , $u(a_i) \ge 0$

- ▶ By this definition, as in the single-agent case, all possible plans are permissible as no action in this example is intrinsically bad.
- ▶ Things change with our second example.

Example 2: Double trolley fat-man problem

Example 2: Double trolley fat-man problem

$$\Pi = (\Theta, T, u,)$$

$$\Theta = (\pi_A, \pi_B)$$

$$\pi_A = (V_A, I_A, O_A, \gamma_A)$$

$$\pi_B = (V_B, I_B, O_B, \gamma_B)$$

$$V_A = V_B = man, men, leverB$$

$$O_A = \{pushA, advanceA\}$$

$$pushA = (man = onBridge \triangleright man = deadOnTrack)$$

$$O_B = \{pullB, advanceB\}$$

$$pullB = (\top, leverB = I \triangleright leverB = r \land leverB = r \triangleright leverB = I)$$

$$s_0 = (man = alive \land men = alive \land tram = start \land, landleverB = r)$$

$$\gamma_A = \gamma_B = *$$

Example 2 analysis

Definition

A plan π is morally permissible, according to the deontological principle, iff for all a_i , $u(a_i) \geq 0$

- By this definition, any plan that involves the action push is will be morally impermissible.
- However, from the perspective of Agent B, any action he takes is not impermissable, and no action he takes could have prevented Agent A from performing the push action.
- Perhaps it is worth distinguishing between overall permissibility of a planning task and permissibility of a planning task wrt. some agent or set of agents within that planning task.

Multi-agent Moral Permissibility (Naive Formulation)

Definition

A multi-agent plan π is morally permissible according to the deontological principle iff, for all agent-action pairs (X, a_i) , $u(a_i) \geq 0$.

$\pi =$	Overall	
(A, push), (B, pull)		
$(A, push), (B, \neg pull)$		
$(A, \neg push), (B, pull)$	Т	
$(A, \neg push), (B, \neg pull)$	Т	

Multi-agent Moral Permissibility (Extended Formulation)

Definition

A multi-agent plan π is morally permissible wrt. an Agent X, according to the deontological principle iff, for all agent-action pairs (X, a_i) , $u(a_i) \geq 0$.

Definition

A multi-agent plan π is morally permissible, according to the deontological principle iff, for all Agents X, the partial plan for agent X is morally permissible.

$\pi =$	wrt. A	wrt. B	Overall
(A, push), (B, pull)		Т	
$(A, push), (B, \neg pull)$		Т	
$(A, \neg push), (B, pull)$	Т	Т	T
$(A, \neg push), (B, \neg pull)$	Т	Т	Т

Theorem

Multi-agent action plans are order-independent in the deontic case of ethical evaluation.

Proof.

Given a deontically valid multi-agent action plan π , by definition:

$$\nexists_{a_i\in\pi}u(a_i)\leq 0.$$

By contradiction:

Assume the above holds for π but not for π' , which is a permutation of π .

Then $\exists_{a \in \pi'} u(a_i) < 0$.

But $\forall_{x_i \in \pi'} x_i \in \pi$ (by definition of permutation).

Therefore, $\exists_{a_i \in \pi} u(a_i) < 0$.

A contradiction.

Theorem

The multi-agent extended case of the deontic principle is equivalent to the multi-agent naive case of the deontic principle.

Proof.

```
For a multi-agent action plan \pi: f(\pi,X) = \forall_{(a_i,X) \in \pi} u(a_i) \geq 0. (extended case definition wrt. Agent X) g(\pi) = \forall_{a_i \in \pi} u(a_i) \geq 0. (naive case definition) We show g(\pi) = \forall_{X \in L} f(\pi, L). By previous proof it is sufficient to show: \bigcup_{X \in L} \mathrm{subset}(\pi,X) \cup \{\} = \mathrm{set}(\pi) Specifically we show: \bigcup_{X \in L} \mathrm{subset}(\pi,X) \cup \{\} \subseteq \mathrm{set}(\pi) and \mathrm{set}(\pi) \subseteq \bigcup_{X \in L} \mathrm{subset}(\pi,X) \cup \{\}.
```

Theorem

$$\cup_{X \in L} \mathit{subset}(\pi, X) \cup \{\} \subseteq \mathit{set}(\pi)$$

Proof.

Would be invalid iff:

► There is an agent, operator pair in $\cup_{X \in L} \text{subset}(\pi, X) \cup \{\}$ not in $\text{set}(\pi)$.

By contradiction:

Assume $\exists_{(a_i,X) \in \text{subset}(\pi,X)} X \notin \text{set}(\pi)$.

But subset(π , X) is simply a subset of π .

A contradiction.

Theorem

$$set(\pi) \subseteq \cup_{X \in L} subset(\pi, X) \cup \{\}$$

Proof.

Would be invalid iff:

▶ There is an agent, operator pair in $set(\pi)$ not in $\bigcup_{X \in I} \operatorname{subset}(\pi, X) \cup \{\}.$

However $\bigcup_{X \in L} \text{subset}(\pi, X) \cup \{\}$ is a true partition of π (by definition).

Do-no-harm in multi-agent planning

Definition

A single agent plan π is morally permissible according to the do-no-harm principle iff, for all v=d, if $s_n \models (v=d)$ and u(v=d) < 0, then for all plans obtained by deleting a subset of the actions in π , v=d still holds in the final state.

- In a multi-agent plan, open to the same considerations as the deontological approach.
- What is another agent performs an action with a harmful effect, should that invalidate this agent's adherence to that principle?

Do-no-harm in multi-agent planning

Definition

A multi-agent plan π is morally permissible wrt. Agent X, according to the do-no-harm principle, iff, for all v=d, if $s_n \models (v=d)$ and u(v=d) < 0, then for all plans obtained by deleting a subset of the actions performed by X in π , v=d still holds in the final state.

Definition

A multi-agent plan π is morally permissible, according to the do-no-harm principle iff, for all v=d, if $s_n\models (v=d)$ and u(v=d)<0, then for all plans obtained by deleting a subset of the actions in π , v=d still holds in the final state.

$\pi =$	wrt. A	wrt. B	Overall
(A, push), (B, pull)		Т	Т
$(A, push), (B, \neg pull)$	上	Т	
$(A, \neg push), (B, pull)$	Т	Т	Т
$(A, \neg push), (B, \neg pull)$	Т		

Utalitarianism in multi-agent planning

- Significantly harder.
- ▶ If other agents actions are deterministic, then a reduction from the multi-agent to the single agent case can be done in polynomial time.
- ► If other agents are random, then average or worst case estimates may suffice.
- ▶ If however, the other agent has actions dependent on the current agent, an intuitive way of distinguishing individual agent contributions to overall moral utility of the final state becomes difficult.
- Evaluation of ethical contributions of subplans (as in do-no-harm and deontic cases) would only provide a heurisic-like estimate.
- ► How would non-determinism be handled in the single-agent case?