SF1626 Flervariabelanalys

Föreläsning 17

Henrik Shahgholian

Vid Institutionen för matematik, KTH

VT 2018, Period 3

Dagens Lektion: Avsnitt 16.3-16.4

1. Greens formel för D i planet med randkurvan γ , och $\mathbf{F} = (P, Q)$

$$\int_{\gamma} \mathbf{F} \cdot d\mathbf{r} = \int_{\gamma} P \, dx + Q \, dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dx dy$$

Dagens Lektion: Avsnitt 16.3-16.4

1. Greens formel för D i planet med randkurvan γ , och $\mathbf{F} = (P, Q)$

$$\int_{\gamma} \mathbf{F} \cdot d\mathbf{r} = \int_{\gamma} P \, dx + Q \, dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dx dy$$

2. Gauss sats (divergenssatsen) i \mathbb{R}^2 : $\mathbf{F} = (P, Q)$

$$\int_{\gamma} \mathbf{F} \cdot \hat{\mathbf{N}} \, ds = \iint_{D} \operatorname{div} \mathbf{F} \, dA$$

Dagens Lektion: Avsnitt 16.3-16.4

1. Greens formel för *D* i planet med randkurvan γ , och $\mathbf{F} = (P, Q)$

$$\int_{\gamma} \mathbf{F} \cdot d\mathbf{r} = \int_{\gamma} P \, dx + Q \, dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dx dy$$

2. Gauss sats (divergenssatsen) i \mathbb{R}^2 : $\mathbf{F} = (P, Q)$

$$\int_{\gamma} \mathbf{F} \cdot \hat{\mathbf{N}} \, d\mathbf{s} = \iint_{D} \operatorname{div} \mathbf{F} \, dA$$

3. Gauss sats (divergenssatsen) i \mathbb{R}^3 : K i rummet med randytan Y

$$\iint_{Y} \mathbf{F} \cdot \hat{\mathbf{N}} \, dS = \iiint_{K} \operatorname{div} \mathbf{F} \, dV$$

Viktig: En del villkor ska vara uppfyllda för dessa påståenden

Ett problematiskt problemet!

Beräkna¹

$$\int_{\gamma} \frac{-ydx + xdy}{x^2 + y^2}$$

där γ är ellipsen $x^2/4 + y^2/9 = 1$ genomlöpt ett varv i positiv led.

¹Se boken sidan 923, Ex. 4. Vad kan ni säga om $\int_{\gamma} \frac{xdx+ydy}{x^2+y^2}$

Ett problematiskt problemet!

Beräkna¹

$$\int_{\gamma} \frac{-ydx + xdy}{x^2 + y^2}$$

där γ är ellipsen $x^2/4 + y^2/9 = 1$ genomlöpt ett varv i positiv led.

Greens sats: Fungerar den?

¹Se boken sidan 923, Ex. 4. Vad kan ni säga om $\int_{\gamma} \frac{xdx+ydy}{x^2+y^2} = 0$

Ett problematiskt problemet!

Beräkna¹

$$\int_{\gamma} \frac{-ydx + xdy}{x^2 + y^2}$$

där γ är ellipsen $x^2/4 + y^2/9 = 1$ genomlöpt ett varv i positiv led.

Greens sats: Fungerar den?

Parametrisering: Går det att räkna integralen då?

¹Se boken sidan 923, Ex. 4. Vad kan ni säga om $\int_{\gamma} \frac{xdx+ydy}{x^2+y^2} dx = 0$

Ett problematiskt problemet!

Beräkna¹

$$\int_{\gamma} \frac{-ydx + xdy}{x^2 + y^2}$$

där γ är ellipsen $x^2/4 + y^2/9 = 1$ genomlöpt ett varv i positiv led.

Greens sats: Fungerar den?

Parametrisering: Går det att räkna integralen då?

Har funktionen en potentialfunktion? Går det att använda den?

¹Se boken sidan 923, Ex. 4. Vad kan ni säga om $\int_{\gamma} \frac{xdx+ydy}{x^2+y^2}$

Ett problematiskt problemet!

Beräkna¹

$$\int_{\gamma} \frac{-ydx + xdy}{x^2 + y^2}$$

där γ är ellipsen $x^2/4 + y^2/9 = 1$ genomlöpt ett varv i positiv led.

Greens sats: Fungerar den?

Parametrisering: Går det att räkna integralen då?

Har funktionen en potentialfunktion? Går det att använda den?

Hur ska vi beräkna integralen?

¹Se boken sidan 923, Ex. 4. Vad kan ni säga om $\int_{\gamma} \frac{xdx+ydy}{x^2+y^2} dx = 0$

Tekniker för kurvintegraler

Vilka villkor ska vara uppfyllda för varje metod:

- 1 Parametrisera kurvan; villkor: Beräkningsbart integral
- 2 Hitta en potential; villkor: Måste vara kontinuerlig, och deriverbar
- Byt väg; villkor: Vektorfältet måste vara deriverbar i området
- 4 Greens formel; villkor: Sluten kurva, samt vektorfältet måste vara deriverbar i området

Gauss sats (divergenssatsen) i \mathbb{R}^3

Gauss sats (divergenssatsen):

$$\iint_{Y} \mathbf{F} \cdot \hat{\mathbf{N}} \, dS = \iiint_{K} \operatorname{div} \mathbf{F} \, dV$$

om K är en en reguljär kropp vars rand Y är en orienterad sluten yta med utåtriktat enhetsnormalfält $\hat{\mathbf{N}}$ och \mathbf{F} är ett glatt vektorfält på K.

Exempel: Flödet ut från enhetskuben K av vektorfältet $\mathbf{F} = (x, y, z)$ är

$$\iint_{Y} \mathbf{F} \cdot \hat{\mathbf{N}} \, dS = \iiint_{K} 3 \, dV = 3$$

(Två andra varianter av satsen finns i bokens sats 9 i kap 16.4)

Gauss sats (divergenssatsen)

Exempel

Beräkna flödet av vektorfältet $\mathbf{F}(x, y, z) = (2, 0, 3)$ ut från enhetskuben som ges av $0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1$.

Svar: 0

Gauss sats (divergenssatsen)

Exempel

Beräkna flödet av vektorfältet

$$\mathbf{v}(x,y,z)=(x+y,\,y,\,z)$$

ut från området som ges av olikheterna $0 \le z \le 1 - x^2 - y^2$. Svar: $3\pi/2$

Exempel

För *g* kontinuerlig funktion i planet samt oberoende av *z*-variabler beräkna flödet av vektorfältet

$$\mathbf{v}(x,y,z)=(z,\,x,\,g(x,y))$$

ut från klotet $x^2 + y^2 + z^2 \le 1$. Svar: 0

Gauss sats (divergenssatsen)

Exempel

Beräkna nettoflödet av vektorfältet $\mathbf{F}(x,y,z)=(x,y,3)$ ut ur området som ges av olikheterna $\sqrt{x^2+y^2}\leq z\leq \sqrt{2-x^2-y^2}$.

Svar:
$$\frac{8\pi}{3}(\sqrt{2}-1)$$

Stokes sats:

$$\int_{\gamma} \mathbf{F} \cdot d\mathbf{r} = \iint_{Y} \mathbf{rot} \, \mathbf{F} \cdot \mathbf{N} \, dS$$

där förstås vissa förutsättningar krävs (se boken), och underförstått att γ är den rätt orienterade randen till ytan Y.

Obs: Om ytan Y ligger i xy-planet så är detta Greens formel.

Stokes sats:

Exempel: Om $\mathbf{F} = (3z, 5x, -2y)$ och γ är skärningen mellan cylindern $x^2 + y^2 = 1$ och planet z = y + 3, orienterad moturs (sett uppifrån) så får vi med Stokes sats

$$\int_{\gamma} \mathbf{F} \cdot d\mathbf{r} = \iint_{Y} (-2, 3, 5) \cdot (0, -1/\sqrt{2}, 1/\sqrt{2}) \, dS = 2\pi$$