

- Özelliklerine göre veriler arasındaki benzerliklerin bulunması ve benzer veri nesnelerinin kümeler halinde gruplanması
- Küme: Birbirine benzeyen nesnelerden oluşan grup
 - Aynı kümedeki nesneler birbirine daha çok benzer
 - Farklı kümelerdeki nesneler birbirine daha az benzer

Kümeleme

- Sınıflandırma işleminde sınıflar önceden belirli iken kümelemede sınıflar belli değildir.
- Denetimsiz öğrenme
 - Hangi nesnenin hangi sınıfa ait olduğu ve sınıf sayısı belli değil
- Gruplandırma eldeki verilerin benzerliğine göre yapılır.
- Uygulamaları
 - Veri dağılımına ilişkin bilgi edinmek için bağımsız bir araç olarak
 - Diğer veri madenciliği uygulamaları için bir ön işleme adımı olarak

4

Kümeleme Uygulamaları

- Görüntü işleme
- Ekonomi
- Biyoloji
- Doküman kümeleme
- Kullanıcı kümeleme
- Kullanıcı davranışlarını kümeleme
- Pazarlama
- Şehir planlaması
- Diğer veri madenciliği uygulamaları için bir ön işleme adımı olarak
 - Veri azaltma küme içindeki nesnelerin temsil edilmesi için küme merkezlerinin kullanılması
 - Sıkıştırma

İyi Kümeleme

- İyi bir kümeleme yöntemi yüksek kaliteli kümeler üretir.
 - Küme içi benzerlik fazla
 - Kümeler arası benzerlik düşük
- Bir kümeleme yönteminin kalitesi
 - kullanılan benzerlik ölçütüne
 - bu ölçütün uygulanmasına
 - gizli örüntülerin bir kısmını veya tamamını keşfetme yeteneğine bağlıdır.

Kümeleme Yöntemleri

Bölünmeli yöntemler:

- Veriyi bölerek, her grubu belirlenmiş bir kritere göre değerlendirir.
- k-means, k-medoids, CLARANS

Hiyerarşik yöntemler:

- Veri kümelerini (ya da nesneleri) önceden belirlenmiş bir kritere göre hiyerarşik olarak ayırır.
- Diana, Agnes, BIRCH, CAMELEON

Yoğunluk tabanlı yöntemler:

- Nesnelerin yoğunluğuna göre kümeleri oluşturur.
- DBSCAN, OPTICS, DenClue

Model tabanlı yöntemler:

- Her kümenin bir modele uyduğu varsayılır. Amaç bu modellere uyan verileri gruplamaktır.
- EM, SOM, COBWEB

Bölünmeli Yöntemler

- Amaç: n nesneden oluşan bir veri kümesini (D), k (k≤n) kümeye ayırmak
 - her demette en az bir nesne bulunmalı
 - her nesne sadece bir demette bulunmalı
- Yöntem: Kümeleme kriterini en büyütücek şekilde D veri kümesi k gruba ayırma
 - Global çözüm: Mümkün olan tüm gruplamaları yaparak en iyisini seçme
 - Sezgisel çözüm: k-means ve k-medoids
 - k-means : Her demet kendi merkezi ile temsil edilir.
 - k-medoids veya PAM : Her demet, demette bulunan bir nesne ile temsil edilir.

K-m

K-means kümeleme

- Bilinen bir k değeri için k-means kümeleme algoritmasının 4 aşaması vardır:
 - 1. Veri kümesi k altkümeye ayrılır (her küme bir altküme)
- 2. Her kümenin ortalaması hesaplanır:merkez nokta (kümedeki nesnelerin niteliklerinin ortalaması)
- 3. Her nesne en yakın merkez noktanın olduğu kümeye dahil edilir.
- 4. Nesnelerin kümelenmesinde değişiklik olmayana kadar adım 2'ye geri dönülür.

K-means kümeleme

Veri içerisinden rasgele seçilen K adet noktaya küme merkezi gözüyle bakılır. Tüm veri noktaları bu küme merkezlerine uzaklıklarına göre gruplanır. Her gruplamadan sonra küme merkezleri tekrar hesaplanır.

Rasgele 3 küme merkezi ata

Y

Her örneği en yakınındaki merkezin kümesine ata

Y

Merkezleri kendi kümelerinin merkezine götür.

4

K-means kümeleme - Örnek

Y

Merkezleri kendi kümelerinin merkezine götür.

Her nesneyi en benzer merkeze ata

Küme ortalamalarını güncelle

K=2
Başlangıç küme merkezi olarak gelişigüzel K nesne seç

Küme ortalamalarını güncelle

K-means kümeleme

- Yaygın olarak kullanılan yöntem hataların karelerinin toplamı (Sum of Squared Error SSE)
 - Nesnelerin bulundukları kümenin merkez noktalarına olan uzaklıklarının karelerinin toplamı

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(m_i, x)$$

 $x: C_i$ demetinde bulunan bir nesne

 m_i : C_i demetinin merkez noktası

- Hataların karelerinin toplamını azaltmak için k demet sayısı artırılabilir.
 - Küçük k ile iyi bir demetleme, büyük k ile kötü bir demetlemeden daha az SSE değerine sahip olabilir.
- Başlangıç için farklı merkez noktaları seçerek farklı demetlemeler oluşturulur.
- En az SSE değerini sahip olan demetleme seçilir.

 Aşağıdaki gözlem değerlerini göz önüne alalım. Bu gözlem değerlerine k-means yöntemini uygulayarak kümelemek istiyoruz.

Gözlemler	Değişken 1	Değişken 2
X_1	4	2
X_2	6	4
X_3	5	1
X_4	10	6
X_5	11	8

4

K-means kümeleme - Örnek

Kümelerin sayısına başlangıçta k=2 biçiminde karar veriyoruz.
 Başlangıçta rasgele olarak aşağıdaki iki kümeyi belirliyoruz.

$$C_1 = \{X_1, X_2, X_4\}$$

 $C_2 = \{X_3, X_5\}$

Gözlemler	Değişken 1	Değişken 2	Küme üyeliği
X_1	4	2	C_1
X_2	6	4	C_1
X_3	5	1	C_2
X_4	10	6	C_1
X ₅	11	8	C_2

İki kümenin merkezleri şu şekilde hesaplanır:

Küme içi değişmeler şu şekilde hesaplanır:

$$M_{1} = \left\{ \frac{4+6+10}{3}, \frac{2+4+6}{3} \right\}$$

$$= \left\{ 6.67, 4.0 \right\}$$

$$M_{2} = \left\{ \frac{5+11}{2}, \frac{1+8}{2} \right\}$$

$$= \left\{ 8.00, 4.50 \right\}$$

$$e_{1}^{2} = \left[(4-6.67)^{2} + (2-4.00)^{2} \right] + \left[(6-6.67)^{2} + (4-4.00)^{2} \right]$$

$$= 26.67$$

$$e_{2}^{2} = \left[(5-8)^{2} + (1-4.50)^{2} \right] + \left[(11-8)^{2} + (8-4.50)^{2} \right]$$

$$= 42.50$$

Toplam karesel hata aşağıdaki gibi hesaplanır:

$$E^{2} = e_{1}^{2} + e_{2}^{2}$$
$$= 26.67 + 42.50$$
$$= 69.17$$

Gözlemlerin M_1 ve M_2 merkezlerinden olan uzaklıkların minimum olması istendiğinden aşağıdaki hesaplamalar yapılır:

$$d(M_1, X_1) = \sqrt{(6.67 - 4)^2 + (4 - 2)^2}$$

$$= 3.33$$

$$d(M_2, X_1) = \sqrt{(8 - 4)^2 + (4.5 - 2)^2}$$

$$= 4.72$$

 $d(M_1, X_1) < d(M_2, X_1)$ olduğundan M_1 merkezinin X_1 gözlem değerine daha yakın olduğu anlaşılır. O halde $X_1 \in C_1$ olarak kabul edilir.

Tüm gözlem değerleri için hesaplamalar yapılarak aşağıdaki tablo elde edilir:

Gözlemler	M ₁ den uzaklık	M ₂ den uzaklık	Küme üyeliği
X_1	$d(M_1, X_1) = 3.33$	$d(M_2, X_1) = 4.72$	C_1
X_2	$d(M_1, X_2) = 0.67$	$d(M_2, X_2) = 2.06$	C_1
X_3	$d(M_1, X_3) = 3.43$	$d(M_2, X_3) = 4.61$	C_1
X_4	$d(M_1, X_4) = 3.89$	$d(M_2, X_4) = 2.50$	C_2
X_5	$d(M_1, X_5) = 5.90$	$d(M_2, X_5) = 4.61$	C_2

$$C_1 = \{X_1, X_2, X_3\}$$

 $C_2 = \{X_4, X_5\}$

4

K-means kümeleme - Örnek

İki kümenin merkezleri tekrar hesaplanır:

$$M_{1} = \left\{ \frac{4+6+5}{3}, \frac{2+4+1}{3} \right\}$$

$$= \left\{ 5, 2.33 \right\}$$

$$M_{2} = \left\{ \frac{10+11}{2}, \frac{6+8}{2} \right\}$$

$$= \left\{ 10.5, 7 \right\}$$

Küme içi değişmeler tekrar hesaplanır:

$$e_1^2 = \left[(4-5)^2 + (2-2.33)^2 \right] + \left[(6-5)^2 + (4-2.33)^2 \right]$$

$$+ \left[(5-2.33)^2 + (1-2.33)^2 \right]$$

$$= 9.33$$

$$e_2^2 = \left[(10-10.5)^2 + (6-7)^2 \right] + \left[(11-10.5)^2 + (8-7)^2 \right]$$

$$= 2.50$$

Toplam karesel hata aşağıdaki gibi hesaplanır:

$$E^{2} = e_{1}^{2} + e_{2}^{2}$$
$$= 9.33 + 2.5$$
$$= 11.83$$

Bu değerin bir önceki iterasyonda elde edilen E²=69.17 değerinden daha küçük olduğu anlaşılır.

M₁ ve M₂ merkezinden gözlem değerlerine olan uzaklıklar hesaplandığında aşağıdaki tablo elde edilir.

Gözlemler	M ₁ den uzaklık	M ₂ den uzaklık	Küme üyeliği
X_1	$d(M_1, X_1) = 1.05$	$d(M_2, X_1) = 8.20$	C_1
X_2	$d(M_1, X_2) = 1.94$	$d(M_2, X_2) = 5.41$	C_1
X_3	$d(M_1, X_3) = 1.33$	$d(M_2, X_3) = 8.14$	C_1
X_4	$d(M_1, X_4) = 6.20$	$d(M_2, X_4) = 1.12$	C_2
X ₅	$d(M_1, X_5) = 8.25$	$d(M_2, X_5) = 1.12$	C_2

$$C_1 = \{X_1, X_2, X_3\}$$

 $C_2 = \{X_4, X_5\}$

Kümelerde önceki adıma göre herhangi bir değişme olmadığına göre iterasyona burada son verilir. Elde edilen kümeler aşağıdaki şekilde gösterilmiştir.

Şekil-6.18. Sonuç olarak elde edilen kümeler

K-means kümeleme

- Demet sayısının belirlenmesi gerekir.
- Başlangıçta demet merkezleri rasgele belirlenir.
 - Her uygulamada farklı demetler oluşabilir.
- Uzaklık ve benzerlik Öklid uzaklığı, kosinüs benzerliği gibi yöntemlerle ölçülebilir.
- Az sayıda tekrarda demetler oluşur.
 - Yakınsama koşulu çoğunlukla az sayıda nesnenin demet değiştirmesi şekline dönüştürülür.
- Karmaşıklığı:
 - Yer karmaşıklığı O((n+k) d)
 - Zaman karmaşıklığı O(ktnd)

k: demet sayısı, t: tekrar sayısı, n: nesne sayısı, d: nitelik sayısı

K-means kümeleme

- Gerçeklemesi kolay
- Karmaşıklığı diğer demetleme yöntemlerine göre az
- K-means algoritması bazı durumlarda iyi sonuç vermeyebilir
 - Veri grupları farklı boyutlarda ise
 - Veri gruplarının yoğunlukları farklı ise
 - Veri gruplarının şekli küresel değilse
 - Veri içinde aykırılıklar varsa

K-medoids kümeleme

- K-medoids algoritmasının temeli, verinin çeşitli yapısal özelliklerini temsil eden k tane temsilci nesneyi bulma esasına dayanır.
- Bir grup nesneyi k tane kümeye bölerken esas amaç, birbirine çok benzeyen nesnelerin bir arada olduğu ve farklı kümelerdeki nesnelerin mümkün olduğunca birbirinden benzersiz olduğu kümeleri bulmaktır.
- Amacın k tane nesneyi bulmak olmasından dolayı, K-medoids metodu olarak adlandırılmaktadır.

K-medoids kümeleme

- Temsilci nesne diğer nesnelere olan ortalama uzaklığı minimum yapan kümenin en merkezi nesnesidir.
- Bu nedenle, bu bölünme metodu her bir nesne ve onun referans noktası arasındaki benzersizliklerin (uzaklıkların) toplamını küçültme mantığı esas alınarak uygulanır.
- k adet temsilci nesne tespit edildikten sonra her bir nesne en yakın olduğu temsilciye atanarak k tane küme oluşturulur.
- Sonraki adımlarda her bir temsilci nesne temsilci olmayan nesne ile değiştirilerek kümelemenin kalitesi yükseltilinceye kadar ötelenir.
- Bu kalite nesne ile ait olduğu kümenin temsilci nesnesi arasındaki ortalama benzersizliğe göre değişir.

K-medoids kümeleme

- PAM (Partitioning Araound Medoids)
 - Başlangıçta k adet nesne kümeleri temsil etmek üzere rasgele seçilir x_{ik}
 - Kalan nesneler en yakın merkez nesnenin bulunduğu kümeye dahil edilir
 - Merkez nesne olmayan rasgele bir nesne seçilir x_{rk}
 - x_{rk} merkez nesne olursa toplam karesel hatanın ne kadar değiştiği bulunur

$$TC_{ik} = \sum_{l=1}^{n_k} (x_{ik} - x_{jk})^2 - \sum_{l=1}^{n_k} (x_{rk} - x_{jk})^2$$

$$n_k$$
: k kümesi içindeki nesne sayısı x_{jk} : k kümesi içindeki j. nesne

- TC_{ik} <0 ise O_{rk} merkez nesne olarak atanır.
- Kümelerde değişiklik oluşmayana kadar 3. adıma geri gidilir.
- Küçük veri kümeleri için iyi sonuç verebilir, ancak büyük veri kümeleri için uygun değil

- Demet sayısının belirlenmesine gerek yok
 - Sonlanma kriteri belirlenmesi gerekiyor

- AGNES (AGglomerative NESting):
 - Birinci adımda her nesne bir küme oluşturur.
 - Aralarında en az uzaklık bulunan kümeler her adımda birleştirilir.
 - Bütün nesneler tek bir küme içinde kalana kadar ya da istenen sayıda küme elde edene kadar birleştirme işlemi devam eder.

- DIANA (DIvisive ANAlysis):
 - AGNES'in yaptığı işlemlerin tersini yapar.
 - En sonunda her nesne bir küme oluşturur.
 - Her nesne ayrı bir küme oluşturana ya da istenilen küme sayısı elde edene kadar ayrılma işlemi devam eder.

4

- Dendogram: Kümeler hiyerarşik olarak ağaç yapısı şeklinde görüntülenebilir.
- Ara düğümler çocuk düğümlerdeki kümelerin birleşmesiyle elde edilir.
 - Kök: bütün nesnelerden oluşan tek küme
 - Yapraklar: bir nesneden oluşan kümeler
- Dendogram istenen seviyede kesilerek kümeler elde edilir.

4

Aşağıdan yukarıya kümeleme

- Algoritma
 - 1. Uzaklık matrisini hesapla
 - 2. Her nesne bir küme
 - 3. Tekrarla
 - 4. En yakın iki kümeyi birleştir
 - 5. Uzaklık matrisini yeniden hesapla
 - 6. Sonlanma: Tek bir küme kalana kadar
- Uzaklık matrisini hesaplarken farklı yöntemler farklı kümeleme sonuçlarına neden olurlar.

Demetler arası uzaklık

	p1	p2	рЗ	p4	p5	<u>.</u>
p1						
p2						
p2 p3						
p4						
p5						

- MIN (Tek bağ)
- MAX (Tam bağ)
- Ortalama
- Merkezler arası uzaklık

Uzaklık Matrisi

Demetler arası uzaklık

	p1	p2	рЗ	p4	p5	<u>.</u>
p1						
p2						
p2 p3						
p4						
p5						

- MIN (Tek bağ)
- MAX (Tam bağ)
- Ortalama
- Merkezler arası uzaklık

Uzaklık Matrisi

Demetler arası uzaklık

	p1	p2	рЗ	p4	p5	<u>L</u>
p1						
p2						
p2 p3						
p4						
p5						

- MIN (Tek bağ)
- MAX (Tam bağ)
- Ortalama
- Merkezler arası uzaklık

Uzaklık Matrisi

Demetler arası uzaklık

	р1	p2	рЗ	p4	p5	<u> </u>
p1						
p2						
p2 p3						
p4						
p4 p5						

- MIN (Tek bağ)
- MAX (Tam bağ)
- Ortalama
- Merkezler arası uzaklık

Uzaklık Matrisi

Demetler arası uzaklık

	p1	p2	рЗ	p4	p5	<u> </u>
p1						
p2						
рЗ						
<u>p4</u>						
р5						

- MIN (Tek bağ)
- MAX (Tam bağ)
- Ortalama
- Merkezler arası uzaklık

Uzaklık Matrisi

Farklı Uzaklık Yöntemlerinin Etkisi

4

Hiyerarşik kümeleme

- Demetleme kriteri yok
- Demet sayılarının belirlenmesine gerek yok
- Aykırılıklardan ve hatalı verilerden etkilenir
- Farklı boyuttaki demetleri oluşturmak problemli olabilir
- Yer karmaşıklığı $O(n^2)$
- Zaman karmaşıklığı $O(n^2 log n)$
 - n: nesne sayısı

Yoğunluk tabanlı yöntemler

- Demetleme nesnelerin yoğunluğuna göre yapılır.
- Başlıca özellikleri:
 - Rasgele şekillerde demetler üretilebilir.
 - Aykırı nesnelerden etkilenmez.
 - Algoritmanın son bulması için yoğunluk parametresinin verilmesi gerekir.

DBSCAN

- İki parametre:
 - Eps: En büyük komşuluk yarıçapı
 - MinPts: Eps yarıçaplı komşuluk bölgesinde bulunan en az nesne sayısı
- $N_{eps}(p)$: {q \in D | d(p,q) \leq Eps}
- Doğrudan erişilebilir nesne: Eps ve MinPts koşulları altında bir q nesnesinin doğrudan erişilebilir bir p nesnesi şu şartlar sağlar:
- $p \in N_{eps}(q)$
- q nesnesinin çekirdek nesne koşulunu sağlaması

DBSCAN

- Erişilebilir nesne:
 - Eps ve MinPts koşulları altında q nesnesinin erişilebilir bir p nesnesi olması için:
 - p1,p2,...,pn nesne zinciri olması,
 - p1=q, pn=p,
 - p_i nesnesinin doğrudan erişilebilir nesnesi: p_{i+1}
- Yoğunluk bağlantılı Nesne:
 - Eps ve MinPts koşulları altında q nesnesinin yoğunluk bağlantılı nesnesi p şu koşulları sağlar:
 - p ve q nesneleri Eps ve MinPts koşulları altında bir o nesnesinin erişilebilir nesnesi

DBSCAN

- Veri tabanındaki her nesnenin Eps yarıçaplı komşuluk bölgesi araştırılır.
- Bu bölgede MinPts'den daha fazla nesne bulunan p nesnesi çekirdek nesne olacak şekilde kümeler oluşturulur.
- Çekirdek nesnelerin doğrudan erişilebilir nesneleri bulunur.
- Yoğunluk bağlantılı kümeler birleştirilir.
- Hiçbir yeni nesne bir kümeye eklenmezse işlem sona erer.
- Yer karmaşıklığı O(n)
- Zaman karmaşıklığı O(nlogn)

n: nesne sayısı

Model tabanlı yöntemler

- Veri kümesi için öngörülen matematiksel model en uygun hale getiriliyor.
- Verinin genel olarak belli olasılık dağılımlarının karışımından geldiği kabul edilir.
- Model tabanlı demetleme yöntemi
 - Modelin yapısının belirlenmesi
 - Modelin parametrelerinin belirlenmesi

Model tabanlı yöntemler

İstatistiksel yaklaşım:

- K nesneden oluşan bir veri kümesi D={x₁,x₂,...,x_K}
- her x_i (i∈[1,...K]) nesnesi Ø parametre kümesiyle tanımlanan bir olasılık dağılımından oluşturulur.
- Olasılık dağılımının, c_j∈ C={c₁, c₂, ...,c_G} şeklinde G adet bileşeni vardır.
- Her O_g, g∈[1, ...,G] parametre kümesi g bileşeninin olasılık dağılımını belirleyen, Ø kümesinin ayrışık bir alt kümesidir.
- Herhangi bir x_i nesnesi öncelikle, p(c_g/Θ) = τ_g, (Σ_G τ_g=1 olacak şekilde) bileşen katsayısına (ya da bileşenin seçilme olasılığına) göre bir bileşene atanır.
- Bu bileşen p(x_i/c_g: Θ_g) olasılık dağılımına göre x_i değişkenini oluşturur.
- Böylece bir x, nesnesinin bu model için olasılığı bütün bileşenlerin olasılıklarının toplamıyla ifade edilebilir:

$$\begin{split} p(x_i \mid \mathbf{\Theta}) &= \sum_{g=1}^{G} p(c_g \mid \mathbf{\Theta}) p(\mathbf{x}_i \mid c_g; \mathbf{\Theta}_g) \\ p(x_i \mid \mathbf{\Theta}) &= \sum_{g=1}^{G} \tau_g p(\mathbf{x}_i \mid c_g; \mathbf{\Theta}_g) \end{split}$$

Model tabanlı yöntemler

- Model parametrelerinin belirlenmesi
 - Maximum Likelihood (ML) yaklaşımı

$$\ell_{ML}(\Theta_1, ..., \Theta_G; \tau_1, ..., \tau_G \mid D) = \prod_{i=1}^K \sum_{g=1}^G \tau_g p(x_i \mid c_g, \Theta_g)$$

Maximum Aposteriori (MAP) yaklaşımı

$$\ell_{MAP}(\Theta_1, ..., \Theta_G; \tau_1, ..., \tau_G \mid D) = \prod_{i=1}^K \sum_{g=1}^G \frac{\tau_g p(x_i \mid c_g, \Theta_g) p(\Theta)}{p(D)}$$

Uygulamada her ikisinin logaritması

$$\begin{split} L(\Theta_{1},...,\Theta_{G};\tau_{1},...,\tau_{G}\mid D) &= \sum_{i=1}^{K}\ln\sum_{g=1}^{G}\left(\tau_{g}p(x_{i}\mid c_{g},\Theta_{g})\right) \\ L(\Theta_{1},...,\Theta_{G};\tau_{1},...,\tau_{G}\mid D) &= \sum_{i=1}^{K}\ln\sum_{g=1}^{G}\left(\tau_{g}p(x_{i}\mid c_{g},\Theta_{g})\right) + \ln p(\Theta) \end{split}$$

EM algoritması

- Veri kümesi: D={x₁,x₂,...,x_K}
- Gizli değişkenler H={z₁,z₂,...,zκ⟩ (her nesnenin hangi demete dahil olduğu bilgisi)
- Verinin eksik olduğu durumda, tam verinin beklenen değeri hesaplanır:

$$Q(\Theta, \Theta') = E[L_c(D, H | \Theta) | D, \Theta')$$

$$= \sum_{i=1}^{K} \sum_{g=1}^{G} p(c_g | x_i) [\ln p(x_i | c_g) + \ln \tau_g]$$

- EM Algoritmasının adımları:
 - Θ' için başlangıç değerleri atama
 - (E) Expectation: Q(Θ| Θ') hesaplanması
 - (M) Maximization: argmax Q(Θ| Θ')