重庆大学高等数学2(工学类)课程试卷 _{□ B#}

2017-2018 学年 第2学期

开课学院: 数统学院课程号: MATH10023 考试日期: 20180711

考试时间: 120分钟 考试方式: □开卷 □闭卷 □其他

题号	_	=	Ξ	四	五	六	七	八	九	+	总分
得分											

考试提示

1.严禁随身携带通讯工具等电子设备参加考试:

2.考试作弊,留校察看,毕业当年不授学位;请人代考、替他 人考试、两次及以上作弊等,属严重作弊,开除学籍.

- (D) $\frac{4}{3}\pi R^3$ (C) $4\pi R^2$
- 2.曲线 $x = t, y = 4\sqrt{t}, z = t^2$ 在点 (4,8,16) 处的法平面方程为 (B)

(A) x-y-8z=-132 (B) x+y+8z=140 (1. $\frac{2}{\sqrt{t}}$, 2t) (C) x-y+8z=124 (D) x+y-8z=116 (1. 1. 8) 3.设函数 z=f(x,y) 在点 (x_0,y_0) 处沿任何方向有方向导数,则 z=f(x,y) 在点 (x₀, y₀)处(C)

- (A) 偏导数存在
- (C)偏导数不一定存在
- (D)偏导数连续

4.设
$$I_1 = \iint_D \cos \sqrt{x^2 + y^2} d\sigma$$
, $I_2 = \iint_D \cos (x^2 + y^2) d\sigma$, $I_1 = \iint_D \cos (x^2 + y^2)^2 d\sigma$, 其

中 $D = \{(x, y) | x^2 + y^2 \le 1\}$, 则有(()) $y = \frac{x}{C_1} - \frac{\ln(C_1 x - 1)}{C_1^2} + C_2$ (D) $y = -\frac{x}{C_1} - \frac{\ln(C_1 x - 1)}{C_1^2} + C_2$ (D) $y = -\frac{x}{C_1} - \frac{\ln(C_1 x - 1)}{C_1^2} + C_2$ (D) $y = -\frac{x}{C_1} - \frac{\ln(C_1 x - 1)}{C_1^2} + C_2$ (D) (D)かりた 大変 $I=\iint_{\Omega}xdxdydz$ 化为三次积分,则 $I=\int_{0}^{1}dz$ の $I=\int_{0}^{1}$ 6.设空间区域 Ω 是由曲面 $z=a^2-x^2-y^2$ 与平面 z=0 围成,其中 a 为正数,记 Ω 的 表面外侧为S, 则 $\iint_S x^2 yz dy dz - 2xy^2 z dx dz + z(1 + xyz) dx dy = 1/2 \lambda^3$ 三、计算题(每小题6分, 共24分) $\sum_{n=1}^{\infty} \frac{1}{1+a^n} (a > 0)$ 的敛散性。 2xy2 - 4xy2 + 1 + 2xxx

[22do] (cos(r/r*/r*) rdr. = 1/2 (sim (00) + 1

014版试卷标准格式

$$\frac{1}{h \to \infty} \frac{1}{a^n} = 1$$

$$\frac{1}{a} \cdot a \cdot (0 \cdot 1) \cdot \frac{1}{a}$$

$$\frac{1}{a^n} = \int_{h \to \infty} \frac{1}{1 - \frac{1}{a}} \cdot \lambda h \cdot h \cdot \frac{1}{a} \cdot \frac{1}{a} \cdot \frac{1}{a}$$

$$\frac{1}{a^n} = \int_{h \to \infty} \frac{1}{1 - \frac{1}{a}} \cdot \frac{1}{a} \cdot \frac{1}{a} \cdot \frac{1}{a} \cdot \frac{1}{a} \cdot \frac{1}{a} \cdot \frac{1}{a}$$

$$\frac{1}{a^n} = \int_{h \to \infty} \frac{1}{1 - \frac{1}{a}} \cdot \frac{1}{a} \cdot \frac{1}{a} \cdot \frac{1}{a} \cdot \frac{1}{a} \cdot \frac{1}{a} \cdot \frac{1}{a} \cdot \frac{1}{a}$$

$$\frac{1}{a^n} = \int_{h \to \infty} \frac{1}{1 - \frac{1}{a}} \cdot \frac{1}{a} \cdot \frac{1}{a}$$

2.设函数 $\varphi(x)$ 具有连续的二阶导数, $\int_L [3\varphi'(x)-2\varphi(x)]ydx+\varphi'(x)dy$ 路径无关,求

函数 $\varphi(x)$.

34'-24 = 4"

五、证明题(每小题8分,共16分) $e^{x+y} + x + y = \frac{3}{2}$ 1.证明 : 二元方程 $D = \{(x,y) | -1 \le x \le 1, -1 \le y \le 1\}_{\bot}$ 至少有一组解。 至少有一组解。 $\frac{1}{1} = e^{t} + t - \frac{2}{2}$ $\frac{1}{1} = e^{-t} + t - \frac{2}{2}$ $\frac{1}{1} = e^{-t} - \frac{1}{2} = -\frac{1}{2} = 0$ $\frac{1}{1} = e^{-t} - \frac{1}{2} = 0$ $\frac{1}{1} = e^{-t} + t - \frac{2}{2} = 0$

2. 已知
$$a_1 = 1, a_{n+1} = 2a_n + 1$$
, 证明:
$$\sum_{n=1}^{\infty} \frac{1}{1 + a_n}$$
收敛。

重庆大学2014版试卷标准格式

六、应用题(本题8分)

设球在动点 P(x,y,z) 处的密度与该点到球心距离成正比,求质量为m 的非均匀 球体 $x^2+y^2+z^2 \le R^2$ 对于其直径的转动惯量。

$$\begin{aligned}
& \left(x, y, z \right) = kd = k \cdot \sqrt{\chi^2 + y^2 + z^2} \\
& \iint_{\Omega} \rho \, dv = \iint_{\Omega} k \sqrt{x^2 y^2 + z^2} = m \\
& \Rightarrow \int_{0}^{\infty} d\phi \int_{0}^{2Z} d\phi \int_{0}^{R} k r \cdot r^2 \tilde{s}_{ik} \phi \, dr \\
& = 2 \cdot 2Z \cdot k \cdot \frac{1}{4} R^4 \cdot \\
& = k Z R^{\phi} \cdot \\
& \therefore k = \frac{m}{Z R^{\gamma}} \cdot \\
& = \iint_{\Omega} \rho \cdot (x^2 + y^2) \, dV
\end{aligned}$$

$$J = \iint_{\Omega} \rho \cdot (x^{2}+y^{2}) dV$$

$$= \iint_{\Omega} \frac{m}{xR^{y}} \sqrt{x^{2}+y^{2}+2^{2}} \cdot (x^{2}+y^{2}) dV$$

$$= \frac{m}{xR^{y}} \int_{0}^{\infty} dy \int_{0}^{2Z} dx \int_{0}^{R} r \cdot r^{2} \hat{S} n^{2} y \cdot r^{2} \hat{S} n y dr$$

$$= \frac{m \cdot 2N}{\sqrt{R^{y}}} \int_{0}^{Z} \hat{S} n^{2} y dy \int_{0}^{R} r^{2} dr$$

$$= \frac{\lambda m}{p^{x}} \cdot \frac{y}{3} \cdot \frac{R^{x}}{\sqrt{3}} R^{2}$$

$$= \frac{4mR^{2}}{9}$$

重庆大学2014版试卷标准格式