Medidas de grandezas elétricas

Medidas de grandezas elétricas – ddp

Procedimentos para ligação do multímetro/voltímetro

- a) Verificar se a tensão a ser medida está dentro da escala do instrumento.
- b) Ajustar no instrumento para tensão em corrente contínua (DCV) ou tensão em corrente alternada (ACV).
- c) Ligar os conectores no instrumento conforme indicação e as ponteiras sempre conectadas em paralelo ao elemento a ser medido.

Medidas de grandezas elétricas – Corrente elétrica

Procedimentos para ligação do multímetro/amperímetro

- a) Verificar se a corrente a ser medida está dentro da escala do instrumento.
- b) Ajustar no instrumento para corrente contínua (CC) ou corrente alternada (CA).
- c) Conectar o instrumento em série no ramo em que se deseja medir a corrente.

Medidas de grandezas elétricas – resistência elétrica

Procedimentos para ligação do multímetro/ohmímetro

- a) Se o dispositivo a ser medido estiver ligado no circuito, deve-se removê-lo. Se não for possível, o circuito deve estar desligado.
- b) Deve-se cuidar para não tocar com as mãos os terminais de medição.
- b) As ponteiras do instrumento são conectadas em paralelo com o dispositivo a ser medido.

Medidas de grandezas elétricas

Teste do diodo

Nessa configuração, o diodo apresenta "alta" resistência elétrica — polarização reversa. Ele atua como uma chave aberta — não há passagem de corrente elétrica.

Conexões em uma placa protoboard

<u>Dielétricos</u>

• Materiais nos quais os elétrons não estão "livres" para constituírem uma corrente elétrica, são classificados como isolantes (não condutores ou dielétricos). A característica microscópica associada a esse tipo de material é a resistividade elétrica ρ , medida em Ω .m. Materiais cerâmicos, por exemplo, fazem parte dessa categoria.

Condutores

- Existem materiais nos quais os elétrons podem se mover "livremente", de modo que a criação de um fluxo orientado dessas partículas pode ser facilmente obtido. Estes materiais são denominados de *condutores*. São microscopicamente caracterizados por sua *condutividade elétrica* σ medida em $(\Omega.m)^{-1}$. Em geral, os metais são classificados como condutores.
 - A condutividade está relacionada com a resistividade através da equação

$$\sigma = \frac{1}{\rho}$$

Condutores

Material	Condutividade (Ω .m) $^{ ext{-}1}$
Prata	6,17 X 10 ⁷
Cobre	5,92 X 10 ⁷
Ouro	4,25 X 10 ⁷
Alumínio	$3,64 \times 10^7$
Tungstênio	1,9 X 10 ⁷
Ferro	1,03 X 10 ⁷
Platina	0,94 X 10 ⁷

Condutividade elétrica de alguns materiais a 20 °C.

Table 18.4 Typical Room-Temperature Electrical Conductivities for 13 Nonmetallic Materials

Material	Electrical Conductivity $[(\Omega-m)^{-1}]$
Graphite	$3 \times 10^4 - 2 \times 10^5$
Ceran	nics
Concrete (dry)	10^{-9}
Soda-lime glass	$10^{-10} - 10^{-11}$
Porcelain	$10^{-10} - 10^{-12}$
Borosilicate glass	$\sim 10^{-13}$
Aluminum oxide	$< 10^{-13}$
Fused silica	$< 10^{-18}$
Polym	ners
Phenol-formaldehyde	$10^{-9} - 10^{-10}$
Poly(methyl methacrylate)	$< 10^{-12}$
Nylon 6,6	$10^{-12} - 10^{-13}$
Polystyrene	$< 10^{-14}$
Polyethylene	$10^{-15} - 10^{-17}$
Polytetrafluoroethylene	$< 10^{-17}$

63

<u>Semicondutores</u>

• Além dessas duas categorias de materiais, existe outra, intermediária, denominada de <u>semicondutores</u>, com os quais são produzidos muitos dispositivos eletrônicos, que se tornaram a base de toda eletrônica moderna.

<u>Supercondutores</u>

Caracterizam-se por não apresentarem resistência elétrica, mas operam em temperaturas próximas ao zero absoluto, o que impossibilita aplicações fora do laboratório científico.

FIG. 26-15 A resistência do mercúrio desaparece totalmente quando o metal é resfriado abaixo de 4 K.

Fonte: Halliday, 8º Ed. – pg. 157.

Teoria de bandas

Em geral, a Teoria de bandas oferece um modelo teórico para explicar, representar e distinguir os materiais em relação às suas propriedades elétricas.

Considera o fato de que os elétrons de um átomo estão ocupando níveis específicos de energia e que esses níveis podem ser agrupados na forma de *bandas de energia*.

Essas bandas de energia são classificadas como:

<u>Bandas permitidas</u>: são aquelas que possuem níveis de energia que podem ser ocupados pelos elétrons.

Bandas proibidas: são as regiões cujos valores de energia não podem ser assumidos pelos elétrons.

Teoria de bandas

Esquema representativo das bandas de energia.

Nessa representação, os níveis mais baixos de energia se referem aos elétrons mais próximos do núcleo atômico.

A diferença energética entre duas bandas permitidas consecutivas é denominada de *gap* de energia (E_g), ou seja, o *gap* de energia é a energia necessária para um elétron passar de uma banda inferior para outra imediatamente superior e tem a ordem de alguns *elétron-volts* (eV).