Optimization Theory

Lecture 02

Fudan University

luoluo@fudan.edu.cn

- Matrix Calculus
- 2 Topology
- Convex Set
- Convex Function
- Optimal Condition
- 6 Subgradient and Subdifferential

- Matrix Calculus
- 2 Topology
- Convex Set
- 4 Convex Function
- Optimal Condition
- 6 Subgradient and Subdifferential

Matrix Calculus

Given differentiable $f: \mathbb{R}^{p \times q} \to \mathbb{R}$ and $\mathbf{X} \in \mathbb{R}^{p \times q}$, we define

$$\nabla f(\mathbf{X}) = \begin{bmatrix} \frac{\partial f(\mathbf{X})}{\partial x_{11}} & \cdots & \frac{\partial f(\mathbf{X})}{\partial x_{1q}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f(\mathbf{X})}{\partial x_{p1}} & \cdots & \frac{\partial f(\mathbf{X})}{\partial x_{pq}} \end{bmatrix} \in \mathbb{R}^{p \times q} \text{ and } d\mathbf{X} = \begin{bmatrix} dx_{11} & \cdots & dx_{1q} \\ \vdots & \ddots & \vdots \\ dx_{p1} & \cdots & dx_{pq} \end{bmatrix} \in \mathbb{R}^{p \times q}.$$

We have

$$df(\mathbf{X}) = \sum_{i=1}^{p} \sum_{j=1}^{q} \frac{\partial f(\mathbf{X})}{\partial x_{ij}} \cdot dx_{ij} = \langle \nabla f(\mathbf{X}), d\mathbf{X} \rangle = tr(\nabla f(\mathbf{X})^{\top} d\mathbf{X})$$

and

$$\mathrm{d}(\boldsymbol{\mathsf{XY}}) = (\mathrm{d}\boldsymbol{\mathsf{X}})\boldsymbol{\mathsf{Y}} + \boldsymbol{\mathsf{X}}\mathrm{d}\boldsymbol{\mathsf{Y}}, \quad \mathrm{d}(\boldsymbol{\mathsf{AXB}}) = \boldsymbol{\mathsf{A}}\cdot\mathrm{d}\boldsymbol{\mathsf{X}}\cdot\boldsymbol{\mathsf{B}}$$

The Hessian

Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ is a smooth function that takes as input a matrix $\mathbf{x} \in \mathbb{R}^n$ and returns a real value. Then the Hessian with respect to \mathbf{x} , written as $\nabla^2 f(\mathbf{x})$, which is defined as

$$\nabla^2 f(\mathbf{x}) = \begin{bmatrix} \frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_1} & \cdots & \frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f(\mathbf{x})}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f(\mathbf{x})}{\partial x_n \partial x_n} \end{bmatrix} \in \mathbb{R}^{n \times n}.$$

We write Taylor's expansion for multivariate function $f: \mathbb{R}^n \to \mathbb{R}$ as

$$f(\mathbf{x}) \approx f(\mathbf{a}) + \nabla f(\mathbf{a})^{\top} (\mathbf{x} - \mathbf{a}) + \frac{1}{2} (\mathbf{x} - \mathbf{a})^{\top} \nabla^2 f(\mathbf{a}) (\mathbf{x} - \mathbf{a}).$$

- Matrix Calculus
- 2 Topology
- Convex Set
- 4 Convex Function
- Optimal Condition
- Subgradient and Subdifferential

Topology in Euclidean Space

Open set, closed set, bounded set and compact set:

- ① A subset \mathcal{C} of \mathbb{R}^d is called open, if for every $\mathbf{x} \in \mathcal{C}$ there exists $\delta > 0$ such that the ball $\mathcal{B}_{\delta}(\mathbf{x}) = \{\mathbf{y} \in \mathbb{R}^d : \|\mathbf{y} \mathbf{x}\|_2 \leq \delta\}$ is included in \mathcal{C} .
- ② A subset C of \mathbb{R}^d is called closed, if its complement $C^c = \mathbb{R}^d \backslash C$ is open.
- **③** A subset C of \mathbb{R}^d is called bounded, if there exists r > 0 such that $\|\mathbf{x}\|_2 < r$ for all $\mathbf{x} \in C$.
- **③** A subset C of \mathbb{R}^d is called compact, if it is both bounded and closed.

Is there any subset of \mathbb{R}^d that is both open and closed?

Topology in Euclidean Space

Interior, closure and boundary:

1 The interior of $C \in \mathbb{R}^n$ is defined as

$$\mathcal{C}^{\circ} = \{ \mathbf{y} \in \mathbb{R}^n : \text{there exist } \delta > 0 \text{ such that } \mathcal{B}_{\delta}(\mathbf{y}) \subseteq \mathcal{C} \}$$

2 The closure of $C \in \mathbb{R}^n$ is defined as

$$\overline{\mathcal{C}} = \mathbb{R}^n \backslash (\mathbb{R}^n \backslash \mathcal{C})^{\circ}.$$

1 The boundary of $C \in \mathbb{R}^n$ is defined as $\overline{C} \setminus C^{\circ}$.

Topology in General Case

In a metric space, an open set is a set that, along with every point \mathbf{x} , contains all points that are sufficiently near to \mathbf{x} .

The other concept also can be generalized in the similar way.

For example, the positive-definite matrices on $\mathbb{R}^{d\times d}$ with distance under spectral norm is open.

Convergence Rates

Assume the sequence $\{x_k\}$ converges to x^* . We define the errors

$$z_k = \|\mathbf{x}_k - \mathbf{x}^*\|$$

and suppose

$$\lim_{k\to +\infty} \frac{z_{k+1}}{z_k^r} = C \quad \text{for some } C\in \mathbb{R}.$$

Q-convergence rates:

- ① linear: r = 1, 0 < C < 1;
- 2 sublinear: r = 1, C = 1;
- superlinear: r = 1, C = 0;
- quadratic: r = 2.

Convergence Rates

Consider the example

$$x_k = 2^{-\lceil k/2 \rceil} + 1,$$

It should converge to $x^* = 0$ linearly, however,

$$\lim_{k\to+\infty}\frac{|x_{k+1}-x^*|}{|x_k-x^*|}$$

does not exist.

Convergence Rates

Suppose that $\{x_k\}$ converges to x^* . The sequence is said to converge R-linearly to x^* if there exists a sequence $\{\epsilon_k\}$ such that

$$\|\mathbf{x}_k - \mathbf{x}^*\| \le \epsilon_k$$

for all k and $\{\epsilon_k\}$ converges Q-linearly to zero.

- Matrix Calculus
- 2 Topology
- 3 Convex Set
- 4 Convex Function
- Optimal Condition
- Subgradient and Subdifferential

Convex Analysis

You can make the decision after the sections of convex analysis.

Convex Set

We say a set $C \subseteq \mathbb{R}^n$ is convex if for all $\mathbf{x}, \mathbf{y} \in C$ and $\alpha \in [0, 1]$, it holds that

$$\alpha \mathbf{x} + (1 - \alpha)\mathbf{y} \in \mathcal{C}.$$

Geometrically, a set $\mathcal C$ is convex means that the line-segment connecting any two points in $\mathcal C$ also belongs to $\mathcal C$.

Given any collection of convex sets (finite, countable or uncountable), their intersection is itself a convex set.

Projection

Given a closed and convex set $\mathcal{C} \subseteq \mathbb{R}^n$ and any point $\mathbf{y} \in \mathbb{R}^d$, we define the projection of \mathbf{y} onto \mathcal{C} in Euclidean norm as the point in \mathcal{C} that is closest to \mathbf{y} as

$$\mathrm{proj}_{\mathcal{C}}(\boldsymbol{y}) = \mathop{\text{arg\,min}}_{\boldsymbol{x} \in \mathcal{C}} \|\boldsymbol{y} - \boldsymbol{x}\|_2^2 \,.$$

Projection

Some properties of the projection:

- **1** The projection $\operatorname{proj}_{\mathcal{C}}(\mathbf{y})$ is uniquely defined.
- ② If $\mathbf{y} \notin \mathcal{C}$, then $\mathbf{z} = \mathrm{proj}_{\mathcal{C}}(\mathbf{y})$ lies on the boundary of \mathcal{C} . The hyperplane

$$\{\mathbf{x}: \langle \mathbf{y} - \mathbf{z}, \mathbf{x} - \mathbf{z} \rangle = 0\}$$

separates \mathbf{y} and \mathcal{C} in that they lie on different sides, that is

$$\langle \textbf{y}-\textbf{z},\textbf{y}-\textbf{z}\rangle>0\quad\text{and}\quad \langle \textbf{y}-\textbf{z},\textbf{x}-\textbf{z}\rangle\leq 0$$

for any $\mathbf{x} \in \mathcal{C}$. It implies

$$\|\mathbf{x} - \mathbf{z}\|_2^2 \le \|\mathbf{x} - \mathbf{y}\|_2^2$$

for any $\mathbf{x} \in \mathcal{C}$.

- Matrix Calculus
- 2 Topology
- Convex Set
- 4 Convex Function
- Optimal Condition
- 6 Subgradient and Subdifferential

Convex Function

A function $f: \mathcal{C} \to \mathbb{R}$, defined on a convex set \mathcal{C} , is convex if it holds

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y})$$

for all $\mathbf{x}, \mathbf{y} \in \mathcal{C}$ and $\alpha \in [0, 1]$.

Epigraph

The epigraph of a function $f:\mathcal{C}\to\mathbb{R}$ is defined as the set

epi
$$f \triangleq \{(\mathbf{x}, u) \in \mathcal{C} \times \mathbb{R} : f(\mathbf{x}) \leq u\}.$$

We say a function $f(\mathbf{x})$ is closed if its epigraph is closed.

Theorem

A function f(x) is convex if and only if its epigraph is a convex set.

Extended Arithmetic Operations

We shall define convex function with possibly infinite values, which leads to arithmetic calculations involving $+\infty$ and $-\infty$:

- \bullet $-(-\infty) = +\infty$
- $\alpha \pm (+\infty) = (+\infty) \pm \alpha = +\infty$ for $\alpha \in \mathbb{R}$,
- $\alpha \pm (-\infty) = (-\infty) \pm \alpha = -\infty$ for $\alpha \in \mathbb{R}$.
- $\alpha \cdot (\pm \infty) = (\pm \infty) \cdot \alpha = \pm \infty$ for $\alpha \in (0, +\infty)$
- $\alpha \cdot (\pm \infty) = (\pm \infty) \cdot \alpha = \mp \infty$ for $\alpha \in (-\infty, 0)$
- $\alpha/(\pm\infty) = 0$ for $\alpha \in (-\infty, +\infty)$
- $(\pm \infty)/\alpha = \pm \infty$ for $\alpha \in (0, +\infty)$
- $(\pm \infty)/\alpha = \mp \infty$ for $\alpha \in (-\infty, 0)$
- inf $\emptyset = \infty$. sup $\emptyset = -\infty$

The extended real number system $\overline{\mathbb{R}}$, defined as

$$[-\infty, +\infty]$$

$$[-\infty, +\infty]$$
 or $\mathbb{R} \cup \{-\infty, +\infty\}$.

Extended Arithmetic Operations

The expressions

$$(+\infty)-(+\infty)$$
, $(-\infty)+(+\infty)$, $\frac{+\infty}{-\infty}$ and $\frac{-\infty}{+\infty}$.

are undefined and are avoided.

In the context of convex analysis, we also define

$$0 \cdot \infty = \infty \cdot 0 = 0$$
 and $0 \cdot (-\infty) = (-\infty) \cdot 0 = 0$.

Proper Convex Function

One may extend a convex function with domain $\mathcal{C} \subset \mathbb{R}^d$ to a proper convex function

$$f_{\mathcal{C}}(\mathbf{x}) = \begin{cases} f(\mathbf{x}), & \text{if } \mathbf{x} \in \mathcal{C}, \\ +\infty, & \text{if } \mathbf{x} \notin \mathcal{C}. \end{cases}$$

We define

$$\operatorname{dom} f \triangleq \{\mathbf{x} : f(\mathbf{x}) < +\infty\}.$$

We say a convex function is proper if its domain is non-empty and its values are all larger than $-\infty$.

We say a function $f(\mathbf{x})$ on \mathbb{R}^d is concave if $-f(\mathbf{x})$ is convex. Linear functions are both convex and concave.

Convex Function

Some properties of convex function:

- Given any $\mathbf{g}: \mathbb{R}^d \to \mathbb{R}^k$ such that each component $g_j(\mathbf{x})$ is convex, then the set $\mathcal{C} = \{\mathbf{x}: \mathbf{g}(\mathbf{x}) \leq \mathbf{0}\}$ is convex.
- The supremum over a family of convex functions is convex.
- The positively weighted sum of convex functions is convex.
- The partial minimization of a convex function is convex.
- The composition of convex functions may not preserve convexity.

Indicator Function

Given a closed convex set $C \in \mathbb{R}^d$, we can define a convex function $\mathbb{1}_C(\mathbf{x})$ on \mathbb{R}^d , called the indicator function of C on \mathbb{R}^d , as

$$\mathbb{1}_{\mathcal{C}}(\boldsymbol{x})\triangleq \begin{cases} 0, & \text{if } \boldsymbol{x}\in\mathcal{C},\\ +\infty, & \text{if } \boldsymbol{x}\not\in\mathcal{C}. \end{cases}$$

We may write $f_{\mathcal{C}}(\mathbf{x}) = f(\mathbf{x}) + \mathbb{1}_{\mathcal{C}}(\mathbf{x})$ and the problem

$$\min_{\mathbf{x}\in\mathcal{C}}f(\mathbf{x})$$

is equivalent to

$$\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x}) + \mathbb{1}_{\mathcal{C}}(\mathbf{x}).$$

Closed Convex Function

We shall focus on closed functions in convex optimization.

- All convex functions can be made closed by taking the closure of its epigraph.
- In some pessimistic case, a closed convex function may not be continuous at the boundary of its domain. Consider the function

$$f(x,y) = \begin{cases} \frac{x^2}{y}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

with domain $\{(x, y) : y > 0\} \cup \{(0, 0)\}.$

We will only consider problems where the optimal solution can be achieved at a point that is continuous.

- Matrix Calculus
- 2 Topology
- Convex Set
- 4 Convex Function
- Optimal Condition
- 6 Subgradient and Subdifferential

Convex Optimization

Why do we love convex optimization?

Theorem

Let $f(\mathbf{x})$ be a convex function defined on a convex set \mathcal{C} and \mathbf{x}^* be a local solution of

$$\min_{\mathbf{x} \in \mathcal{C}} f(\mathbf{x}). \tag{1}$$

That is, there exist some $\delta > 0$ such that any $\hat{\mathbf{x}} \in \mathcal{B}_{\delta}(\mathbf{x}^*) \cap \mathcal{C}$ holds

$$f(\mathbf{x}^*) \leq f(\hat{\mathbf{x}}).$$

Then the local solution \mathbf{x}^* is a global solution of problem (1).

First-Order Condition

Theorem

If a function f is differentiable on open set \mathcal{C} , then it is convex on \mathcal{C} if and only if

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle$$

hols for any $\mathbf{x}, \mathbf{y} \in \mathcal{C}$.

However, the gradient may not exist in general case.

- Matrix Calculus
- Topology
- Convex Set
- 4 Convex Function
- Optimal Condition
- 6 Subgradient and Subdifferential

Subgradient and Subdifferential

We say a vector $\mathbf{g} \in \mathbb{R}^d$ is a subgradient of a proper convex function $f : \mathbb{R}^d \to \mathbb{R}$ at $\mathbf{x} \in \text{dom } f$ if

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle$$

holds for any $\mathbf{y} \in \mathbb{R}^d$.

The set of subgradients at $\mathbf{x} \in \text{dom } f$ is called the subdifferential of f at \mathbf{x} , defined as

$$\partial f(\mathbf{x}) \triangleq \{\mathbf{g} : f(\mathbf{y}) \geq f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle \text{ holds for any } \mathbf{y} \in \mathbb{R}^d \}.$$

Examples of Subdifferential

1 The subdifferential of f(x) = |x| at 0 is the set

$$\partial f(x) = [-1, 1].$$

What about the general norm?

② The subdifferential of an indicator function $\mathbb{1}_{\mathcal{C}}(\mathbf{x})$ is

$$\partial \mathbb{1}_{\mathcal{C}}(\mathbf{x}) = \mathcal{N}_{\mathcal{C}}(\mathbf{x}),$$

where

$$\mathcal{N}_{\mathcal{C}}(\mathbf{x}) = \left\{ \mathbf{g} \in \mathbb{R}^d : \left\langle \mathbf{g}, \mathbf{y} - \mathbf{x} \right\rangle \leq 0 \text{ for all } \mathbf{y} \in \mathcal{C} \right\}$$

is called the normal cone of C at \mathbf{x} .

 \odot If a convex function f is differentiable at \mathbf{x} , then

$$\partial f(\mathbf{x}) = \{\nabla f(\mathbf{x})\}.$$