Satuan Acara Perkuliahan Matakuliah Fisika Dasar IA (FI - 1101) Semester I 2022–2023				
Pekan ke-	Topik	Sub-topik	Tujuan Instruksional Khusus	Bab yang relevan *)
1 22/08 – 26/08	Kinematika Benda Titik	Overview Fisika, Review Vektor, Posisi, Kecepatan dan Percepatan.	Setelah mengikuti kuliah, mahasiswa diharapkan memahami dan dapat menggunakan konsep-konsep vektor, dapat memahami posisi, kecepatan dan percepatan baik secara grafis maupun secara rumusan (persamaan) matematik.	Bab 2,3,13
2 29/08 – 02/09	Kinematika Benda Titik	Persamaan Kinematika, Gerak 1, 2, 3 dimensi, dan Kecepatan relatif.	Setelah mengikuti kuliah, mahasiswa diharapkan memahami dan dapat menggunakan konsep kinematika dan melakukan analisa grafik dalam menyelesaikan dan menganalisa gerak 1, 2 dan 3 dimensi.	Bab 4
3 05/09 – 09/09	Dinamika Benda Titik	Inersia, Hukum I, II dan III Newton tentang gerak. Diagram gaya. Aplikasi Hukum Newton pada benda dalam keadaan seimbang dan bergerak	Setelah mengikuti kuliah ini mahasiswa diharapkan memahami hukum-hukum Newton untuk gerak di bidang datar dan mampu menggambarkan diagram gaya dan menerapkan hubungan gaya dan gerak untuk berbagai keadaan.	Bab 5
4 12/09 – 16/09	Dinamika Benda Titik	Gaya gesekan, Gaya normal, Gaya tegangan, Gaya gravitasi Newton. Analisis benda yang tergantung, bertumpuk, benda dalam katrol, gerak melingkar, dan gaya sentripetal	Setelah mengikuti kuliah ini mahasiswa diharapkan mampu menyelesaikan persoalan dinamika sistem benda titik: sistem benda terhubung katrol, benda bertumpuk dan dinamika gerak melingkar.	Bab 5,6,13
5 19/09 – 23/09	Usaha dan Energi	Definisi usaha, Energi kinetik, dan Teorema usaha-energi kinetik. Energi potensial. Gaya konsevatif. Hukum kekekalan energi. Gaya tak konservatif.	Setelah kuliah ini mahasiswa diharapkan: Mampu menyelesaikan persoalan mekanika dengan konsep usaha-energi kinetik. Memahami hubungan gaya konservatif, energi potensial dan hukum kekekalan energi kinetik, serta Memahami penggunaan konsep kekekalan energi mekanik jika gaya tak konservatif ikut terlibat.	Bab 7,8
6 26/09 – 30/09	Momentum Linier	Momentum dan Impuls, Sistem partikel, Hukum kekekalan momentum linear, Peristiwa tumbukan. Gerak titik pusat massa.	Setelah kuliah ini mahasiswa diharapkan: Memahami hubungan impuls, perubahan momentum dan gaya rata-rata. Memahami konsep gerak titik pusat massa. Menggunakan hukum kekekalan momentum linier. Mampu menyelesaikan persoalan tumbukan.	Bab 9
7 03/10 – 07/10	Benda Tegar	Statika dan Dinamika rotasi sistem benda tegar.	Setelah kuliah ini mahasiswa diharapkan: Mampu menyelesaikan persoalan sederhana pada statika sistem benda tegar. Memahami besaran-besaran rotasi dan memahami analogi dinamika rotasi dan dinamika translasi.	Bab 10
8 10/10 – 14/10	Benda Tegar	Dinamika rotasi sistem benda tegar dan Gerak menggelinding.	Setelah kuliah ini mahasiswa diharapkan: Mampu menyelesaikan persoalan dinamika rotasi sistem benda tegar. Mampu menyelesaikan persoalan dinamika gerak menggelinding degan konsep kekekalan energi.	Bab 11,12
			Sabtu, 15 Oktober 2022	
9 17/10 – 21/10	Elastisitas dan Osilasi	Stress, Strain, Modulus Young, Modulus geser dan Modulus benda (bulk), Osilasi harmonik dan osilasi teredam, Resonansi.	Setelah kuliah ini mahasiswa diharapkan: • Mampu menyelesaikan persoalan elastisitas bahan dan Osilasi Harmonik Sederhana (OHS). Memahami osilasi teredam, terpaksa dan peristiwa resonansi.	Bab 12,15
10 24/10 – 28/10	Gelombang Mekanik	Gelombang tali, Gelombang bunyi. Superposisi gelombang, Gelombang berdiri, Resonansi, Efek Doppler.	Setelah kuliah ini mahasiswa diharapkan: Memahami konsep gelombang mekanik dan menerapkan persamaan gelombang mekanik pada masalah sederhana. Memahami dan dapat menyelesaikan persoalan superposisi gelombang termasuk gelombang berdiri dan menerapkan efek Doppler pada persoalan sederhana	Bab 16,17
11 31/10 – 04/11	Fluida Statik dan Dinamik	Tekanan hidrostatik, Gaya Archimedes, Hukum Kontinuitas, Hukum Bernoulli.	Setelah kuliah ini mahasiswa diharapkan: Mampu menerapkan konsep tekanan hidrostatik, dan gaya Archimedes pada persoalan sederhana. Mampu menyelesaikan persoalan dinamika fluida dengan hukum Kontinuitas dan hukum Bernoulli.	Bab 14
12 07/11 – 11/11	Teori Kinetik Gas	Gas ideal, Asas ekipartisi energi, Energi dalam, Kapasitas kalor.	Setelah kuliah ini mahasiswa diharapkan: Memahami konsep gas ideal. Menganalisis dan menyelesaikan persoalan sederhana gas ideal dengan menggunakan konsep asas ekipartisi energi, energidalam, kapasitas kalor.	Bab 18,19
13 14/11 – 18/11	Hukum - 0 dan 1 Termodinamika	Hukum 0 Termodinamika, Hukum I Termodinamika, Proses kuasistatik umum, Proses khusus (isobar, isovolum, isotherm, adiabatic) Diagram (P,V), Usaha.	Setelah kuliah ini mahasiswa diharapkan: • Memahami hukum Termodinamika ke-0. Memahami dan menerapkan hukum Termodinamika ke-1 untuk proses kuasistatik baik yang khusus ataupun umum.	Bab 18,19
14 21/11 – 25/11	Hukum - 2 Termodinamika	Proses siklus,Efisiensi, Hukum II Termodinamika: Clausius, Kelvin, Carnot. Pengenalan entropi.	Setelah kuliah ini mahasiswa diharapkan: Memahami hukum Termodinamika ke-2. Mengerti konsep mesin panas dan mesin pendingin. Dapat meghitung efisiensi dari proses siklus. Mengenal istilah entropi.	Bab 18,20
15 28/11 – 02/12	Pengumpulan/Upload/Presentasi Hasil RBL			
		UJIAN 2 : S	Senin, 5 Desember 2022	
UJIAN 3 : Kamis, 15 Desember 2022 Pustaka Utama:				

Pustaka Utama:
*) Halliday, D., Resnick, R., and Walker, J., *Principle of Physics*, 10th edition, John Wiley & Sons, 2014, International student version.