von Neumann-Morgenstern and Savage Theorems for Causal Decision Making

Mauricio Gonzalez-Soto and Luis E. Sucar and Hugo J. Escalante

Instituto Nacional de Astrofísica Óptica y Electrónica, Mexico.

LatinX in AI, {Dis}Ability in AI

mauricio@inaoep.mx

December 8, 2019

Introduction

Our premises

- We live in a causally structured world.
- Our actions cause changes in the environment.
- We learn from these changes in order to plan our actions when facing similar situations.
- Causal reasoning can, and should, be incorporated into interactive learning frameworks.

Decision Making and Human use of Causal Relations

Human beings:

- Are constantly asking why?
- Consider actions as interventions upon the world (Hagmayer and Sloman (2009)).
- Use and modify causal information in sequential decision making processes (Hagmayer and Meder (2013)).

Why is Decision Making important?

In terms of AI:

- Making decisions under uncertain conditions is very important to intelligent reasoning (Lake et al. (2017)).
- Several algorithms and procedures rely on this framework.
- For example, optimal policies in Reinforcement Learning satisfy the Maximum Expected Utility criterion (Sutton and Barto (1998); Webb (2007); Shoham and Leyton-Brown (2008)).
- Even though the original motivation for RL has to do with interactive learning, it is based only on associative information.

Causation in Machine Learning

- "All the impressive achievements of deep learning amount to just curve fitting," J. Pearl (Almeida (2018))
- Data can tell that people who took a medicine recovered faster than those who did not, but it can't tell why.
- Can it be explained from data why a certain decision, or parameter, was taken?
- Interpretability and transparency.

Pearl's ladder of Causal Reasoning

According to Pearl and Mackenzie (2018) there are three levels of Causal Reasoning:

- Level 1: Association: What if I see....
- Level 2: Intervention What would Y be if I do X.
- Level 3: Counterfactual reasoning:What if I had instead done...

Practically all of Al's algorithms work at the Associative level.

Main Idea

Main idea

How to make good choices (interventions) in an uncertain but causally structured world?

Some questions

Several questions arise:

- What is a good choice?
- What is uncertainty?
- What is causation?

Classical Decision Theory

A Classical Decision Problem

A classical decision problem consists of:

- A set A of available actions
- ullet An algebra of events ${\mathcal E}$, the uncertain events.
- ullet A set ${\mathcal C}$ of consequences.
- A preference relation \succeq defined over actions \mathcal{A} .

Classical Decision Theory: von Neumann-Morgenstern Theorem

The Von Neumann and Morgenstern (1944) Theorem:

Theorem

Rationally choosing in an uncertain environment with **known** probabilities is equivalent to maximizing expected utility.

Classical Decision Theory: Savage's Theorem

Savage (1954) relaxes the assumption of knowing the probabilities of events.

Theorem

Rationally choosing in an uncertain environment with **unknown** probabilities is equivalent to maximizing expected utility with respect to a subjective probability measure.

The subjective probability measure is the degree of certainty the decision maker has on the ocurrence of an uncertain event.

Causation

The manipulationist notion of Causation

If correlation is not causation, then what is causation?

- We consider probabilistic theories of Causation.
- In particular, the manipulationist notion.
- We say that A causes B if manipulating A results in a change in B.
- Further details in Woodward (2003); Pearl (2009).

Spirtes' definition of Causation

We use Spirtes et al. (2000) definition of Causation as binary relation defined over *events* in a probability space which satisfy:

- An event A does not cause itself.
- If an event A causes an event B, then B can not cause A.
- If A causes B and B causes C, then A causes C.

We can represent the list of causal relations in a Directed Acyclic Graph (DAG).

An example of a Causal Graphical Model

Interventions

- An intervention upon a variable consists of forcing a value upon such variable.
- On Causal Graphical Models we have the *do*() operator described in Pearl (2009).

A basic fact

$$P(Y|X) \neq P(Y|do(X = x)).$$

It is not the same asking the probability of rain last night given the floor is wet, than given that I manually wet the floor with a hose.

Causal Decision Making

We are now going to consider a decision maker in a *causal environment*; this is, actions and consequences will be defined as causally connected.

Causal Decision Problems

A Causal Decision Problem is composed of:

- ullet A set of available actions \mathcal{A} .
- ullet A set of uncertain events \mathcal{E} .
- A set of possible consequences C.
- A preference relation <u>></u>.
- ullet A Causal Graphical Model ${\cal G}$

 $\mathcal G$ must satisfy some conditions: there exists one variable, with no parents, whose possible values correspond to the elements of $\mathcal A$; one variable for $\mathcal C$ and one variable for each uncertain event $E\in\mathcal E$.

von Neumann-Morgenstern Theorem for Causal Decision Making

Consider a known Causal Model G and its associated distribution P_G and let C the set of consequences of interest for a decision maker. Then,

Theorem

(Pearl (2009)) If a rational decision maker faces a Causal Environment and if the causal model is known, then the preference relation \succeq is rational if and only if there exists a function u such that:

$$a \succeq b \text{ if and only if } \sum_{c \in C} P(c|do(a))u(c) \ge \sum_{cinC} P(c|do(b))u(c).$$
 (1)

Equivalently, the action that must be chosen is

$$a^* = \operatorname{argmax}_{a \in \mathcal{A}} \sum_{c \in C} P(c|do(a)) u(c).$$

- ◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q @

When the causal model is not known

Basic idea:

- We want to choose the action that causes a desired consequence with high probability.
- If the causal model is not known, the decision maker will use probabilistic beliefs about causal structures.

Savage Theorem for Causal Decision Making

Theorem

In a Causal Decision Problem $(A, \mathcal{G}, \mathcal{E}, \mathcal{C}, \succeq)$, the preferences \succeq of a decision maker are rational if and only if there exists a probability distribution P_C over a family \mathcal{F} of causal structures such that

$$\sum_{c \in \mathcal{C}} u(c) \left(\sum_{g \in \mathcal{F}} P_g(c|do(a)) P_C(g) \right) \geq \sum_{c \in \mathcal{C}} u(c) \left(\sum_{g \in \mathcal{F}} P_g(c|do(b)) P_C(g) \right)$$

where P_g a the probability distribution associated with the causal structure g.

Proof.

Proof in https://arxiv.org/abs/1907.11752

25 / 40

Interpretation

The previous result tells us that a decision maker who does not know the causal model which controls her environment must use a subjective probability distribution over causal structures and then use Pearl's result within each structure as if it were the true one.

Applications

Applications

- Optimal action learning in causal contexts.
- Causal Games and Causal Nash Equilibrium.

Optimal action learning in causal contexts

Consider the problem of finding the optimal action a^* when actions cause consequences. This problem is considered by:

- Ortega and Braun (2014) who use Thompson Sampling for Causal Inference
- Lattimore et al. (2016) who require to know the conditionals probabilities of causal model; this work minimizes regret which is equivalent to maximizing expected utility.
- Sen et al. (2017) allows partially known causal model.
- Gonzalez-Soto et al. (2018) considers as given the structure of causal model; i.e., P_C assigns probability mass only to models with a given structure.

Theorem 4 provides a unified framework in which the previous works fit.

Our learning procedure

- In our work, an agent draws a probability vector from a Dirichlet distribution.
- Uses such vector to form a CGM with given structure.
- Uses it *as if* it was the true one, as in our Theorem, and selects best action.
- Updates probabilities.

Experimental Results

We achieved similar performance to the classical, non-causal, Q-Learning:

Causal Games and Causal Nash Equilibrium

Causal Games and Causal Nash Equilibrium

Consider a *strategic game* in which every player is located at a causal environment.

- Using the notion of a Bayesian Game in Gonzalez-Soto et al. (2019) we defined a probability updating for a player who doesn't know the causal model the controls her environment.
- In a Bayesian Game, players do not know neither the actions made by other players nor the *information* that made them take an action.
- We consider an unknown causal model to be such information.
- Using such probability updating, we were able to define a Causal Nash Equilibrium for one-shot games in causal environments.

Causal Nash Equilibrium

• For each player $i \in N$ in the strategic game, we define the following probability distribution over consequences:

$$p_i^a(c) = p_i^\omega(c|do(a_i), a_{-i})p_i(\omega) \text{ for } a \in A = A_1 \times \cdots \times A_N.$$
 (2)

• We now define:

$$u_i^{\mathcal{C}}(a) = \sum_{c \in \mathcal{C}} u_i(c) p_i^{a}(c) \text{ for } a \in \mathcal{A} = \mathcal{A}_1 \times \cdots \times \mathcal{A}_N.$$
 (3)

Definition

An an action profile $a^* \in A$ is a Nash equilibrium for this causal strategic game if and only if

$$u_i^{\mathsf{C}}(a^*) \ge u_i^{\mathsf{C}}(a_i, a_{-i}^*) \text{ for any other } a_i \in A_i.$$
 (4)

References I

- Almeida, M. (2018). To build truly intelligent machines, teach them cause and effect: Interview with judea pearl.
- Gonzalez-Soto, M., Sucar, L. E., and Escalante, H. J. (2018). Playing against nature: causal discovery for decision making under uncertainty. In *Machine Learning for Causal Inference, Counterfactual Prediction and Autonomous Action (CausalML) Workshop at ICML 2018*.
- Gonzalez-Soto, M., Sucar, L. E., and Escalante, H. J. (2019). Causal games and causal nash equilibrium. In 1st Causal Reasoning Workshop at the Mexican International Conference on Artificial Intelligence (MICAI).
- Hagmayer, Y. and Meder, B. (2013). Repeated causal decision making. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(1):33.

References II

- Hagmayer, Y. and Sloman, S. A. (2009). Decision makers conceive of their choices as interventions. *Journal of Experimental Psychology: General*, 138(1):22.
- Lake, B. M., Ullman, T. D., Tenenbaum, J. B., and Gershman, S. J. (2017). Building machines that learn and think like people. *Behavioral and Brain Sciences*, 40.
- Lattimore, F., Lattimore, T., and Reid, M. D. (2016). Causal bandits: Learning good interventions via causal inference. In Lee, D. D., Sugiyama, M., Luxburg, U. V., Guyon, I., and Garnett, R., editors, *Advances in Neural Information Processing Systems 29*, pages 1181–1189. Curran Associates, Inc.
- Ortega, P. A. and Braun, D. A. (2014). Generalized thompson sampling for sequential decision-making and causal inference. *Complex Adaptive Systems Modeling*, 2(1):2.

References III

- Pearl, J. (2009). *Causality: Models, Reasoning and Inference*. Cambridge University Press, New York, NY, USA, 2nd edition.
- Pearl, J. and Mackenzie, D. (2018). The Book of Why: The New Science of Cause and Effect. Basic Books.
- Savage, L. (1954). *The Foundations of Statistics*. New York: John Wiley & Sons.
- Sen, R., Shanmugam, K., Dimakis, A. G., and Shakkottai, S. (2017). Identifying best interventions through online importance sampling. In International Conference on Machine Learning, pages 3057–3066.
- Shoham, Y. and Leyton-Brown, K. (2008). *Multiagent systems:* Algorithmic, game-theoretic, and logical foundations. Cambridge University Press.
- Spirtes, P., Glymour, C. N., and Scheines, R. (2000). *Causation, prediction and search*. MIT Press.

References IV

- Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An introduction. MIT Press.
- Von Neumann, J. and Morgenstern, O. (1944). Theory of games and economic behavior. Princeton University Press.
- Webb, J. N. (2007). *Game theory: Decisions, Interaction and Evolution*. Springer Undergraduate Mathematics Series.
- Woodward, J. (2003). *Making things happen: A theory of causal explanation*. Oxford Studies in Philosophy of Science. Oxford University Press.