Complex Analysis HW1

Neal D. Nesbitt

September 7, 2016

Problem 1. Find the principal argument, arg(z), when

(a)
$$z = \frac{i}{-2-2i}$$

(b)
$$z = (\sqrt{3} - i)^6$$

Solution 1. (a) Since

$$z = \frac{i}{-2 - 2i} = \frac{i(-2 + 2i)}{4 + 4} = \frac{-(1+i)}{4}$$

Then the point has principal argument $\arg(z) = -\pi/3$

Problem 2. Use de Moivere's formula to derive the following trigonometric identities:

(a)
$$\cos(3\theta) = \cos^3(\theta) - 3\cos(\theta)\sin(\theta)$$

(b)
$$\sin(3\theta) = 3\cos^2(\theta)\sin(\theta) - \sin^3(\theta)$$

Problem 3. Find the square roots of

- (a) 2i
- (b) $1 \sqrt{3}i$

and express them in rectangular coordinates.

Problem 4. Find the four zeros of the polynomial $z^4 + 4$, one of them being $z_0 = \sqrt{2}e^{i\pi/4} = 1 + i$. Then use those zeros to factor $z^4 + 4$ into quadratic factors with real coefficients.

Problem 5. Show that if c is any nth root of unit other than unity itself, then

$$1 + c + c^2 + \dots + c^{n-1} = 0$$

Problem 6. Sketch the following sets and determine which are domains:

- (a) Im(z) > 1
- (b) Im(z) = 1

- (c) $0 \le \arg(z) \le \pi/4, (z \ne 0)$
- $(d) |z-4| \ge |z|$

Problem 7. In each case, sketch the closure of the set:

- (a) $|\operatorname{Re}(z)| < |z|$
- (b) $Re(1/z) \le 1/2$
- (c) $Re(z^2) > 0$

Problem 8. Prove that a finite set of points z_1, z_2, \ldots, z_n cannot have any accumulation points.