

人类赖以生存的空气

日期:	时间:	姓名:	
Date:	Time:	Name:	

初露锋芒

1	7	福	空	二	仂	4H	ボ
1.	J	ЖΉ	- II.	L.	IJ	坦	IJĸ

2. 掌握空气中氧气体积分数测定的实验(拉瓦锡的实验、红磷燃烧的实验)

学习目标

&

重难点

- 3. 掌握氮气的性质和用途
- 4. 了解稀有气体及其性质和用途
- 5. 认识到我们需要洁净的空气
- 1. 空气的组成
- 2. 空气中氧气体积分数的测定

根深蒂固

、空气的组成

		-		11	
1	大	= 4	17/1	100	
	Λ.		ımı	T/A	\mathbf{T}

对流层:	形成各	和天气	和兔
か」/川/広:	川ク 川入 台	个 八	儿儿多

平流层: 臭氧层(能吸收紫外线)

中间层、电离层、外层

【练一练】

- 1. 雷雨天气主要出现在大气圈的 ()
- A. 中间层 B. 对流层 C. 平流层 D. 外层

其他气体和杂质——0.03%

【答案】B

2. 空气的成份

按	分数计算: 氮	貳气、	氧气、	稀有气体
	二氧化碳	其他气气	体和杂质——0	0.03%
答案: 体积	只、氮气——78%、氧	瓦气——2	1%、稀有气体-	0.94%
二氧化碳·	0.03%			

【练一练】

- 1. 大气中含有多种气体,按体积计算,含量最多的气体是 ()

- A. 氧 B. 氮气 C. 二氧化碳 D. 稀有气体

【答案】B

- 2. 下列关于空气的说法中正确的是()
- A. 按质量计算,空气中含有氮气约有78%,氧气21%
- B. 空气中的 CO₂、CH₄等气体浓度增大,可造成气温升高
- C. 空气中只有氧气、氮气与人类的生存发展密切相关
- D. 空气质量报告中所列的空气质量级别数目越大,空气质量越好

二、空气中氧气含量测定的实验

1. 拉瓦锡的曲颈甑实验

200 多年前法国科学家拉瓦锡用<mark>定量</mark>试验的方法测定了空气成分。

他把少量汞放在密闭容器中加热 12 天,发现部分汞变成 红色粉末,同时,空气体积减少了 1/5 左右。通过对剩 余气体的研究,他发现这部分气体不能供给呼吸,也不 助燃,他误认为这全部是氮气。

拉瓦锡又把加热生成的红色粉末收集起来,放在另一个较小的容器中再加热,得到汞和氧气, 且氧气体积恰好等于密闭容器中减少的空气体积。他把得到的氧气导入前一个容器,所得气体 和空气性质完全相同。

讨论: 拉瓦锡实验的原理是什么?

答案: 汞+氧气—^{点燃}→氧化汞

通过实验,	拉瓦锡得出	了空气是由		组成,	氧气占			在测知	定中,
装置中剩	余的气体约	占空气体积的	4/5,	该实验从	另一方	面说明该	气体具	有的性	质是

【答案】氧气和氮气组成,氧气占其中的1/5。不能燃烧或不能支持燃烧。

19 世纪前,人们认为空气中仅有氮气与氧气。后来陆续发现了一些稀有气体。目前,人们已能 精确测量空气成分。

【练一练】

1. 二百多年前,	法国化学家拉	並瓦锡通过实验往	得出了空气是由	和	
组成的,其中	丝	占空气总体积的	J 1/5,	约占空气总体	积的 4/5。
【答案】氮气	氧气 氧气	气 氮气			
2. 人类对空气是-	一种怎样的物	质进行了长期和	艰难的探索,许多的	探索者都提出过	他们的观点。
较早通过实验研究	克得出"空气是	由氧气和氮气组	成的"这一结论的科	学家是()
A. 普利斯特	f 里	B. 舍勒	C. 侯德榜	D.	拉瓦锡

【答案】D

2. 空气中氧气体积分数的测定: 在集气瓶中用点燃红磷的方法测定

学生活动:观看"空气中氧气含量的测定"视频

- (1) 实验装置图:
- (2) 实验操作
 - ①在集气瓶内要加少量水,并做上记号。
 - ②连接装置:在集气瓶口连接一个双孔胶塞,一孔插燃烧匙,另一孔插导管,并配上弹簧夹。

③检查气密性:	把导管的一端放入水中,	用手紧握集气瓶外壁,	如果在导管口有气	〔泡冒出,
则证明	0			

答案: 气密性良好

- ④点燃燃烧匙内的红磷,立即伸入集气瓶中,并把塞子塞紧。
- ⑤待红磷熄灭并冷却后, 打开弹簧夹。
- (2) 观看视频
- (3) 回答下列问题

d.	实验结论:		
_	<u> 风</u> 四原		
C	反应原理是什么:		
b.	反应的文字表达式:	 	
a.	记录实验现象:	 	

【答案】a. 红磷剧烈燃烧,黄色火焰,放热,有大量白烟产生;待集气瓶冷却后,打开止水夹,集气瓶内液面上升约 1/5 体积。

- b. 磷 (P) +氧气 (O₂) <u>点燃</u> → 五氧化二磷 (P₂O₅)
- c. 在一个密闭的容器中,用一种足量的易燃的物质(如:红磷或白磷)与容器中的氧气反应,生成一种固体,燃烧停止,温度降到室温时,瓶内气压减小,如果将其打开与外界相连且一端伸入盛水烧杯中导管上的止水夹,烧杯中的水在大气压强的作用下,流入密闭容器内,进入的水的体积,填补消耗掉的氧气的体积。
- d. 空气中氧气的体积分数约占空气体积的 1/5。
- (4) 思考与讨论

【思考 1】集气瓶内水位为什么只能上升到一定高度?

【答案】集气瓶内的氧气消耗完后,剩余的气体不可然不助燃,也不易溶于水,瓶内压强不再

减小,所以水位上升到一定程度就不再上升。

【思考 2】集气瓶内剩下的是什么气体?该实验可推出剩余气体具有什么性质?

【答案】集气瓶内剩余的气体主要是氮气,不可燃不助燃,难溶于水。

【思考3】做测定氧气体积分数的实验时选用的固体一般应具备的条件?

【答案】①能在空气中燃烧②不与其它气体反应,只与氧气反应③与氧气反应后生成物是固体

(5) 实验时的注意事项总结

答案: ①点燃红磷前要检查装置的气密性

- ②红磷要过量(或足量)
- ③点燃红磷前要夹紧止水夹
- ④ 当燃烧停止,温度接近室温时再打开止水夹
- ⑤不能用碳、硫、蜡烛来代替红磷,因为它们燃烧后都有气体生成。使瓶内气体的体积几乎没有变化,瓶内外气压差很小,水不能进入或进入的水很少,但如果在瓶内先放入能与生成气体 反应的物质除去该气体,也能用碳、硫、蜡烛等代替红磷
- ⑥不能用镁代替红磷,因镁也能与氮气、二氧化碳反应,使测得的氧气体积比实际偏大
- (5) 对做完实验后水量的分析
- I. 吸入瓶内的水不足 1/5 的原因有哪些?

答案: ①红磷不足,消耗 O2 太少。②气密性不好。③装置没有冷却到室温就打开了止水夹

- Ⅱ. 吸入瓶内的水大于 1/5 的原因分析
- 答案: ①燃的红磷插入集气瓶时赶跑了瓶内的一部分空气
 - ②点燃红磷前未夹紧止水夹, 使瓶内的空气沿导管跑出
 - ③能选用了能与氦气反应的物质,如:镁等。
- (6) 实验结论:

答案:本实验的结论是说明空气不是单一的物质;氧气约占空气总体积的1/5。

(7) 实验结论延伸

该实验除证明空气中 O2的体积量约为空气体积的 1/5 外,还可得到以下结论。

答案:①氮气体积含量约占空气体积的 4/5: 空气主要由 O_2 和 N_2 组成,因为实验测得空气中的 O_2 约占空气体积的 1/5,则剩余气体体积基本为 N_2 。

②氮气不支持红磷燃烧:红磷在瓶内燃烧消耗大部分 O_2 后熄灭,剩下的 N_2 并不能支持红磷继续燃烧。

③氮气本身也不能燃烧: 燃着的红磷伸入瓶中, 若 N_2 也能燃烧,则可能出现瓶内的水上升超过 1/5。

④氮气不易溶于水:实验中红磷开始燃烧时,瓶内压强增大,实验结束后瓶内压强降低,水被吸入瓶内。这中间,N₂都充分与水接触,若N₂易溶于水,则瓶内的水的上升可能超过1/5。

【练一练】

- 1. 用右图的装置来测定空气中氧气的体积分数。
- (1) 盛放在燃烧匙内的物质可用。
- (2)实验中观察到的现象是______,同时水进入广口瓶,水的体积约占广口瓶容积的。

(3)如果实验步骤是:①先用夹子夹紧橡皮管;②点燃燃烧匙内的固体物质;③将燃烧匙插入 广口瓶,并塞紧橡皮塞;④燃烧完毕后,打开橡皮管上的夹子,结果发现测定的氧气体积分数 低于21%。问:这可能是由哪几种原因引起的?

【答案】(1)红磷(2)广口瓶内产生大量白烟、1/5(或21%)(3)①红磷用少了,瓶内氧气没有反应完;②装置漏气,瓶外的空气进入瓶内;③瓶内未冷却到室温使压强变大。

2. 某容器所盛的空气里含有氧气 10 g,则此容器所盛的空气是 50g。这句话是否正确?若不正确 请改正。

【答案】不正确。应改为某容器所盛的空气里含有氧气 10 L,则此容器所盛的空气是 50 L。

3. 下图是实验验证空气中氧气含量的装置。红磷与氧气反应后生成固体五氧化二磷,该固体极易溶于水,而木炭与氧气反应后生成气体二氧化碳,该气体在水中溶解性不大。下图为两个同学设计的测定空气中氧气含量的实验示意图。

(1)图 [实验时,燃烧匙里为什么要盛过量的红磷?

- (2)图 I 实验除了可以得出氧气约占空气体积 1/5 的结论外,还可以得出有关氮气性质的哪些结论?
- (3)图Ⅱ装置燃烧匙中放点燃的木炭,可以得到氧气约占空气体积 1/5 的结论吗?为什么?

【答案】 (1) 红磷过量,才能把氧气消耗完全。(2) 氮气不支持燃烧,也不溶于水。

(3)不可以;因为碳燃烧产生二氧化碳气体或一氧化碳,气体体积没有减少,无法判断氧气的量。

3. 空气中氧气含量测定的其他拓展装置

装置	实验操作	评价
· 英爾夫 大阳光 白磷 · · · · · · · · · · · · · · · · · ·	用凸透镜将太阳光聚焦到白磷, 使白磷燃烧,一段时间后,白磷燃烧。 燃烧完毕,待冷却至室温,打开弹 簧夹,烧杯中的水倒吸进入瓶内。	原方法操作时,燃着的磷伸 入瓶内的一瞬间,瓶内的空气膨
足量白磷 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	闭合电源开关,电阻丝发热,温度达到40℃时白磷燃烧,产生大量白烟。 装置冷却后,由于左侧中氧气被消耗,气体压强减小,水会在左侧中上升,且上升到1刻度处。	胀,总会有一部份空气会排出,那排出的部份的 $4/5$ 的 (N_2) 也当成了 O_2 被"测定"了。
白磷 弹簧夹 注射器 □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	有大量白烟生成,注射器被推向外侧(右侧)。	此法在不透气的情况下进行, 几乎可以完全防止漏气。 用注射器的刻度代替了"水" 的体积,设计思路上的创新。
	在一端封闭的粗玻璃管内放一颗白磷,用胶塞塞住,并推入到玻璃管中部,记下位置。 用酒精灯微微加热白磷,白磷燃烧,有大量白烟生成,胶塞被推向外侧(右侧)。 传装置冷却,胶塞逐渐向内侧(左侧)移动,根据胶塞停止时的位置,确定空气中氧气的体积。	此法在不透气的情况下进行, 几乎可以完全防止漏气。 热量来源新颖。用刻度代替了 "水"的体积,设计思路上的创新。 推入时,须在胶塞上插一根注 射器针头,以便排出气体,待胶塞 推到合适位置时,拔出针头即可。 玻璃管不宜太短,太短,加热 时胶塞会被推出管外。

【练一练】

1. 小丽同学想用如图所示的装置探究空气中氧气的含量。请你参与探究,实验过程:

- (1) 将两只燃烧匙内放入过量的木炭和红磷;
- (2) 分别用酒精灯点燃木炭和红磷,将燃烧匙迅速放入集气瓶内,并塞

紧橡胶塞;红磷燃烧观察到有产生,反应的化学方程
式:
(3) 待完全冷却后打开两侧止水夹. 观察到右侧集气瓶几乎无水进入, 而左侧集气瓶进水量约
为
结论解释:右侧集气瓶中水不能进入的原因是
【答案】(2) 大量白烟生成, $4P+5O_2 \xrightarrow{\text{点燃}} 2P_2O_5$ (3) 集气瓶容积的1/5、消耗氧气的体
积等于产生二氧化碳的体积,使得气体总体积没变,压强不变,水不能进入
三、氨气的性质及用途
1. 氮气的性质和用途
(1) 物理性质:
答案: 无色、无味的气体,不易溶于水,密度比空气略小。
(2) 化类体系
(2) 化学性质:
应,例如: 音成氨、制氮化、生物回氮等。 答案: 不活泼,一般情况下不能支持燃烧,不供给呼吸,较难与其他物质反应,
台来: 有相极, 从目见下有能又特然, 有以知可效, 权准与共同初次及应,
2. 氮气的性质和用途
(1)制硝酸和化肥的重要原料;
(2) 用作保护气,如焊接金属时常用氮气作保护气、灯泡中充氮气以延长使用寿命、食品包装
时充氮气用来防腐;
(3) 医疗上用液氮治疗一些皮肤病和在液氮冷冻麻醉条件下做手术;
(4) 超导材料在液氮的低温环境下能显示超导性能。
【练一练】
1. 空气是人类宝贵的自然资源,下列说法是与但其化学性质有关的是 ()
A. 洁净的空气是纯净物
B. 空气中的氮气可以做灯泡的填充气、粮食瓜果的保护气等
C. 分离液态空气得到氧气和氮气的过程中发生了化学反应
D. 新鲜空气中不含二氧化碳
【答案】B

五、

四、稀有气体的性质及用途

1. 稀有气体的性质和用途		
(1) 稀有气体是	等	气体的总称。
答案: 氦、氖、氩、氪、氙		
(2) 物理性质:稀有气体都是	颜色、气味的气体,	溶于水。
答案: 没有,没有,难		
(3) 化学性质:极不活泼,过去称为情	青性气体,但现在已经发	现有些稀有气体在一定条件下也
能与某些物质发生化学反应, 生成	议 其他物质。	
2. 广泛用途		
(1) 保护气,如焊接金属时用稀有气体	体来隔绝空气, 灯泡中充	入稀有气体以使灯泡耐用;
(2) 电光源,稀有气体在通电时能发出	出不同颜色的光;	
(3) 用于激光技术;		
(4) 氦气可作冷却剂;		
(5) 氙气可作麻醉剂。		
【补充】灯管里充入氩气,通电时发出	蓝紫色的光;充入氦气力	发出粉红色光;充入氖气发出红
光,这种光能穿透浓雾,可作航标灯;	在石英玻璃管里充入氙气	气的氙灯,通电时能发出比荧光
灯强几万倍的强光,因此被叫做"人造么	小太阳"。	
【练一练】		
1. 属于稀有气体的是 ()		
A. 氢气 B. 氦气	C. 氮气	D. 氯气
【答案】B		
2	、等气体总称	为稀有气体。它们一般
其他物质发生化学反应。人们利用这种	性质,在一些工业生产中,	常把它们用作。
稀有气体在通电时会发出,	因此它们在	中有特殊的应用。
【答案】氦 氖 氩 氪 氙 不与	保护气 不同颜色的分	化 灯具制造业
我们需要洁净的空气		
1. 目前计入空气污染指数的项目为: _		-
答案: 二氧化硫、一氧化碳、二氧	任化氮、吸入颗粒物和臭氧	<u> </u>

第 10 页 共 19 页

2. 臭氧空洞、酸雨和温室效应是人类所面临的三大环境问题

其中造成温室效应是因为人类活动的加剧,从而向环境排放了大量的二氧化碳.温室效应产生的原因是由于空气中二氧化碳(还包括甲烷)含量的增加,使得热量散失能力减弱;臭氧空洞是由于臭氧层被氮的氧化物和氟利昂等破坏造成的。

【练-	一练】
1	- 11 T

【绿一绿】		
1. 下列不会造成空气污染的是 ()	
A. 煤燃烧时产生的烟	B. 汽车排放的尾气	
C. 化工厂排放的废气	D. 人和动物呼出的二氧化碳	į
【答案】D		
2. 随着工业的发展,排放到空气中的	和和	对空气造成了污染,"温
室效应""酸雨""臭氧层空洞"等都是空	至气污染引发的环境问题。	
【答案】有害气体、烟尘		
3. 有五种物质,其中能对空气造成污染	的是 ()	
①汽车排出尾气形成的烟雾 ②石油化	之工厂排出的废气 ③天然水素	蒸发成水蒸气
④植物光合作用放出的气体 ⑤煤燃烧	产生的烟尘	
A. 24 B. 125	C. 85	D. 134
【答案】B		

知

-
知识点 1: 空气的组成
【例1】下列现象与空气中何种成分有关,请写出相关物质的名称:
A. 酥脆的饼干在空气中变软
B. 澄清的石灰水长期敞口在空气中表面有一层白膜
C. 火柴在空气中能够燃烧
D. 空气作为氮肥的原料
【难度】★
【答案】A 水 B 二氧化碳 C 氧气 D 氮气
变式: 小明同学发现铜制的眼镜框表面出现了绿色的物质,通过化学学习知识了该物质为铜绿,主
要成分是 $Cu_2(OH)_2CO_3$
提出问题:铜是在什么条件下锈蚀的? 猜想:根据铜绿的化学式,小明猜想铜生锈可能是铜与空
气中的 , 共同作用的结果。 A B C D
(中的,
设计与实验: 小明通过实验对铜片锈蚀的条件进行了探究,如上图所示。实验进行较长时间后,
发现 试管中光亮的铜片生锈。
思考:其余三支试管中铜片不生锈的原因分别是:
(1)
(2)
(3)
小结:铜片锈蚀的条件是铜与空气中的长期接触。
【难度】★★
【答案】猜想:氧气、二氧化碳、水

知识点 2: 空气中氧气含量的测定

【例1】小军根据燃烧红磷测定空气中氧气含量的实验原理,认为可用木炭替代红磷测定。

应与4.5.5.4.4.6.1.0.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1
空气中氧气的含量,并按图所示装置进行实验。
(1) 依据的实验原理是。
小军检查装置气密性后,将盛有足量红热木炭的燃烧匙迅速伸入广口瓶中,并
把塞子塞紧,待红热的木炭熄灭并冷却至室温后,就打开弹簧夹,并未发现倒
吸现象。经过认真分析,小军发现实验失败的原因是(答一条)
。 (2) 小军反思上述实验的探究过程后认为: 用燃烧法测定空气中氧气含量的实验时, 在药品的
选择和生成物的要求上应考虑是(答一条)。
选择和主成初的安水工应考虑是(各一家)。 【难度】★★
【答案】(1)木炭在空气中燃烧消耗空气中的氧气;木炭在空气中燃烧虽然消耗了空气中的氧气,
但生成了二氧化碳气体,致使广口瓶内气体压强未减小。(2)药品要能在空气中燃烧,燃烧时只消
耗氧气(或生成物不能是气体)
变式: 创新装置 白磷 ^{弹簧夹} 注射器
为测定空气中氧气的含量,小华同学打算设计如下方案:
选用实际容积为40 mL 的试管作反应容器,将过量的白磷放入试管, 40ml 40ml
用橡皮塞塞紧试管口,通过导管与实际容积为60 mL 且润滑性很好的针筒 的试管 活塞在20ml刻度处
注射器组成如右图的实验装置。假设此实验能按照小华的设想正常进行,
且白磷所占体积与导管内的气体体积忽略不计,请回答
下列问题:
(1)实验前,打开弹簧夹,将注射器的活塞前沿从20 mL 刻度处推至15mL 刻度处,然后松手,若活
塞仍能返回至20mL 刻度处,则说明。
(2) 若先夹紧弹簧夹,用酒精灯加热白磷,燃烧结束,等到试管冷却后再松开弹簧夹。可观察到的
现象为。
(3) 若不使用弹簧夹,用酒精灯加热白磷,充分反应直至燃烧结束,试管冷却。可观察到的现象为
(4) 若按小华的设想进行实验,实际可能遇到诸多问题而发生危险,造成实验失败。例如
。 【难度】★★★
【答案】(1)装置的气密性好(2)白磷燃烧,产生白烟,活塞前沿在约12 mL的刻度线上

- (3) 白磷燃烧,产生白烟,活塞先向右移动,最终稳定在约8 mL 的刻度线上
- (4) 橡胶塞弹出、试管爆裂、注射器活塞弹出等

瓜熟蒂落

1.	空气的成分中	1,体积分数约占 78%	%的是()		
	A. 氮气	B. 氧气	C. 二氧化碳	D. 稀有气体	
	【难度】★				
	【答案】A				
2.	桌子上有一个	空烧杯,烧杯内()		
	A. 是氮气	B. 是氧气	C. 是空气	D. 没有物质	
	【难度】★				
	【答案】C				
3.	空气中各组分	的体积分数如下图,	把它补充完整。		
	约占78%				
	其他成分占				
	【难度】★7				
4	【答案】219	∕₀ ②多且化学性质比较活	染的层体目 (`	
4.		. Э 且化子任灰比权石 В. 氧气			
	A. 氮【 【难度】★	D. 羊((C. 二氧化恢	D. 小杰(
	【答案】B				
5		7.1. 汨穷复的末氏	收一比物质边左窓	闭容器中进行实验,结果发现	贝包沙邦方纳
				用空气",这种"有用空气"是扩	
1/5		. 阿。 当时 化子			H ()
	A. 氧 (C. 二年(化)(X	D. 柳有(P	
	【答案】A				
6		消耗空气中的(,		
0.	22 2	B. 二氧化碳 (与与体	
	A. 氧 (D. 二半(化)数	. 突(D. 种7	1 (KF	
	【答案】B				
	口未ID				

7.	. 下列关于空气的说法中, 错误的是()	
	A. 工业上利用氧气和氮气的沸点不同,从液态空气中分离出氧气的过程属于物理变化	
	B. 空气是一种十分重要的天然资源	
	C. 若大量有害物质进入空气中, 仅靠大自然的自净能力, 大气还能保持洁净	
	D. 按体积分数计,空气中约含有氮气 78%、氧气 21%、其他气体和杂质 1%	
	【难度】★	
	【答案】C	
8.	. 空气的成分按体积分数计算: 氮气占, 氧气占,,占 0.94%,	
占	G 0.03%,其他气体和杂质占。澄清石灰水露置在空气中会逐渐变浑浊,这样说明空气	Ţ
有	百少量的;盛有冰水的杯子,放在常温的空气中,外壁会潮湿,说明空气中有	
	【难度】★	
	【答案】78%, 21%, 稀有气体, 0.03%, 二氧化碳 , 水蒸气	
9.	. 装在某容器中的空气经测定其中氮气的体积在相同条件下是 10L,则该容器的容积为()
	A. 10L B. 15L C. 12.5L D. 18L	
	【难度】★	
	【答案】C	
10	. 最早运用天平研究化学并得出"空气是由 1/5 体积氧气和 4/5 体积的氮气组成"的科学家是	
(
	A. 汤姆生 B. 道尔顿 C. 拉瓦锡 D. 门捷列夫	
	(本度)★	
	【答案】C	
11	. 下列物质的用途中,是利用物质的物理性质的是()	
11.	A. 氧气用于炼钢 B. 稀有气体用作保护气	
	C. 氮气用于制造化肥 D. 稀有气体用于电光源	
	【难度】★	
	【答案】D	
12.	. 下列用途,主要是利用了该物质化学性质的是()	
	A. 用氮气填充灯泡 B. 用稀有气体制作霓虹灯	
	C. 用氦气填充气球 D. 用金属铜做电线	
	【难度】★	
	【答案】A	

【答案】C

13.	为了经久耐用, 在	E灯泡中可填充的	气体是()		
	A. 氧气	B. 氮气	C. 二氧化矿	炭	D. 二氧化硫	
	【难度】★★					
	【答案】A					
14.	在生产和科学研究	7中,需要用一些	保护气,当焊	接金属时,	为了隔绝空气,	能作为保护气的一
组是	분()					
	A. H_2 , N_2	B. N_2 , O_2	C. CO_2 , C	O	D. N_2 , Ar	
	【难度】★★					
	【答案】A					
15.	已知氦气是一种比	比氢气密度几乎大	一倍的气体,	在首都东亚	远东会上作升空	区表演的"北京 2000"
遥挖	空飞艇内, 充的就是	是氦气而不是易燃	易爆的氢气,	这是因为使	用氦气()
	A. 不会使飞艇飞	得太高 B. 氦	气发光 C.	更安全	D. 以上都正确	
	【难度】★					
	【答案】C					
16.	下列关于稀有气体	本的叙述中不正确	的是 ()		
	A. 在通电时一般	都能发出有色光	B. 都	是无色无味的	的气体	
	C. 一定不能和其	他物质反应	D. 氙气可	作麻醉剂		
	【难度】★					
	【答案】C					
17.	西藏地区独特的高	 高原风景早就吸引	了小刚,他很	想在国庆期	间前往观光。但	爸爸说初到西藏时
会发	文生不同程度的"高	原反应",这是由于	F ()			
	A. 高原地区的氧	气与平原地区的氧	气气的化学性质	质不同		
	B. 高原地区空气	中氧气含量过高,	让人有压抑愿	戍		
	C. 高原地区,空	气稀薄, 氧气的体	本积分数小于 2	21%		
	D. 高原地区空气	中二氧化碳含量过	世高让人感到到	 意息		
	【难度】★					
	【答案】C					
18.	下列说法中不正确	角的是 (
	A. 纯净物只由一	种物质组成				
	B. 由同种分子构	成的物质是纯净物	IJ			
	C. 含有两种或两	种以上元素的物质	 是混合物			
	D. 由不同种分子	构成的物质是混合	个物			
	【难度】★					

19.	下列物质中属于	一混合物的是()				
	A. 液态氧	B. 石灰水	C. 冰水混合物	D. 四氧4	化三铁		
	【难度】★						
	【答案】B						
20.	下列物质中, 属	属于纯净物的是	()		d complete		
			7				}
	A. 黄酒		B. 矿泉水	C. 2	24K 黄金	D. 铁矿石	
	【难度】★						
	【答案】C						
21.	下列各组物质中	7, 前者是纯净物	物,后者是混合物	勿的是 ()		
	A. 空气,氧气	B. 氯酸钾,	氮气 C. 液	页 氧,食盐水	D. 金属	属镁,氧化汞	
	【难度】★★						
	【答案】C						
22.	用燃烧法除去密	否闭容器中空气质	成分里的氧气, 几	应选择下列物	质中的()	
	A. 细铁丝	B. 红磷	C. 硫粉	D. 5	木炭		
	【难度】★						
	【答案】B						
23.	右图所示装置可	用于测定空气中	氧气的含量,实	验前在集气瓶	瓦内加入少量	水,并做上记号。	下
列说	法中不正确的是	()					
			7				

- A. 该实验证明空气中氧气的含量约占 1/5
- B. 实验时红磷一定要过量
- C. 实验前一定要检验装置的气密性
- D. 红磷燃烧产生大量的白雾,火焰熄灭后立刻打开弹簧夹

【难度】★★

【答案】D

)

24. 小明用右图装置来测定空气中氧气的含量,对该实验认识正确的是(

- A. 使用红磷的量多或少,都不会影响实验结果
- B. 燃烧足够的红磷可使进入容器的水占容器的 4/5
- C. 红磷燃烧消耗空气中的氧气, 使容器内压强下降, 水面上升
- D. 红磷一燃烧完, 就要立即观察, 并记录水进入容器的刻度

【难度】★

【答案】C

- 25. 某同学测定空气中氧气的含量,红磷燃烧后恢复到室温,打开弹簧夹发现进入广口瓶的液体液 面高度超过广口瓶容积的 1/5。造成这一现象的原因可能是(
 - A. 实验前没有将弹簧夹夹紧 B. 实验装置可能漏气
 - C. 实验中所取的红磷过量 D. 实验中所取的红磷不足

【难度】★

【答案】A

- 26. 拉瓦锡通过实验得出的结论是氧气约占空气总体积的 1/5, 而我们在实验中为什么气体减少的体 积小于 1/5? 下列分析的原因正确的是(只有一个正确答案)(

 - A. 有残余氧气 B. 未完全冷却就打开止水夹

 - C. 生成物溶于水 D. 空气中的某种成分溶于水

【难度】★★

【答案】B

27. 某校化学兴趣小组就空气中氧气的含量进行实验探究:

【集体讨论】:

(1) 为了充分消耗容器中的氧气,药品的用量应保证

(2)	小组同学共同证	サイフ加下	图的西春壮累	1/2 31 3	4人理的
(/.)	小组回字共同	717 411	ME 装直	. 121VIA	万合理 HI

是(填编号) 。为了保实验的成功,在装药品之前应

【分组实验】在讨论的基础上,他们分组进行了实验。

【数据分析】实验结束后,整理数据如下:(注:集气瓶容积为100mL)

组别	1	2	3	4	5	6
进入集气瓶中水的体积(mL)	20	21	19	21	21	22

(3) 通过对实验结果的交流,大多数同学都验证出氧气约占空气体积的 实验还可以推断集气瓶中剩余气体的性质是

【难度】★★

【答案】过量、A、检查气密性、21%、化学性质不活泼、而且不溶于水也不与水反应

28. 如下图所示,有三种不同的实验装置,集气瓶中均充满空气,燃烧匙内所盛有的物质(装置一中物质为红磷:装置二中物质为木炭;装置三中分别装有红磷和木炭)均为过量,大烧杯内盛有水.当充分燃烧后,冷却至室温,打开弹簧夹:

打开止水夹,请依次描述打开止水夹后三种装置所出现的现象及其原因:

- (1) 装置一中所出现的现象为______,原因是_____;
- (3) 装置三中所出现的现象为 .

【难度】★★

【答案】(1) 打开止水夹后,集气瓶中进入水大约为原气体体积的五分之一,红磷燃烧,消耗 五分之一体积的气体生成固体,使瓶内压强低于大气压(2) 无现象,碳燃烧生成的气体与原氧 气一样多,无压强差进入(3) 左右两边瓶子的水各大约为十分之一

29. 为测定空气中氧气的含量,小华同学打算设计如下方案:选用实际容积为 40mL的试管作反应容器,将过量的白磷放入试管,用橡皮塞塞紧试管,通过导管与实际容积为 60mL且润滑性很好的针筒注射器组成如下图的实验装置。假设此实验能够按照小华的设想正常进行,且白磷所占体积与导管内的气体体积忽略不计,请回答下列问题:

- (2) 若先夹紧弹簧夹,用酒精灯加热白磷,燃烧结束,等到试管冷却后再松开弹簧夹。可观察到的现象为
- (3) 若不使用弹簧夹,用酒精灯加热白磷,充分反应直至燃烧结束,试管冷却。可观察到的现象为
- (4) 若按小华的设想进行实验,实际可能遇到诸多问题而发生危险,造成实验失败。例如:

【难度】★★★

【答案】(1)装置的气密性良好(2)白磷燃烧,产生白烟,活塞前沿约在12ml的刻度线上,磷燃烧产生白烟(3)活塞先向右移动,最终8ml的刻度线上,橡皮塞弹出(4)试管爆裂,注射器活塞弹出等