Bharathkumar Radhakrishnan

+41765702285 — r.bharathkumar@outlook.com — Geneva, Switzerland — LinkedIn — GitHub

EDUCATION

University of Geneva 2021 - 2025

Doctor of Philosophy in Theoretical Physics

- Performed research in computational and theoretical physics, with a focus on applying convex optimisation and Monte Carlo techniques to problems in string theory and quantum gravity
- Organised weekly seminars and group meetings, and managed visits by researchers from other universities
- Presented technical findings to both scientific and non-technical audiences

Relevant courses: Physics Applications of AI

Extracurriculars: Vice President of PhD Association of University of Geneva (2023-2024)

California Institute of Technology (Caltech)

Oct 2024 - Mar 2025

Visiting PhD Student in Physics

- Collaborated with the Quantum Fields and Strings research group to improve existing convex optimisation methods for better applicability to the PhD project

Indian Institute of Science Education and Research (IISER) Mohali

2016 - 2021

Bachelor of Science, Master of Science in Physics

GPA: 9.8/10 Ranked: 2/55

Relevant courses: Quantum Mechanics, Quantum Information Theory, Linear Algebra and Group Theory, Real Analysis, Differential Equations, Probability and Statistics, Complex Analysis, Differential Geometry, Riemannian Geometry, Fluid Dynamics, Representation Theory

Extracurriculars: Founded Coding Club of IISERM, Convener of Physics Club at IISERM, Main Organiser of Annual

Open Day 2019

HONORS & ACHIEVEMENTS

Published three papers in highly respected peer-reviewed journals, with two more in preparation

- Link to Google Scholar

CNR Rao Foundation Prize and Academic Excellence Prize

- Awarded for best performance in Physics major in Spring 2017 and Spring 2019.

Awarded full scholarship for bachelors and masters by the Government of India

Awarded a research grant to conduct independent research for 6 months at Caltech

PhD RESEARCH EXPERIENCE

Wormholes From Approximate CFTs

Ongoing

- Conducted research on the statistical emergence of wormholes by analyzing density fluctuations in Conformal Field Theory using random matrix theory.
- Developed parallelised C++ code to generate samples from high (100+) dimensional probability distributions using Markov Chain Monte Carlo methods on a HPC.
- Optimised handling of large numbers using multi-precision libraries without compromising speed, enabling the generation of approximately 500 million samples per hour.
- Designed an efficient data storage and analysis pipeline using Apache Arrow, processing over 2 million time-series records; increased disk efficiency by 3x and analysis efficiency by 5x compared to traditional CSV files

Constraints on String Theories with Boundaries

Ongoing

- Created a mathematical framework utilising convex optimization and semidefinite programming to determine validity of boundaries in string theory-related models.
- Developed highly optimized code to integrate Mathematica, Python, and C++ for automating the conversion of complex mathematical functions into well-defined optimization problems, interfacing with a semidefinite program solver tailored for high-energy physics applications.

SKILLS