Programmering av matematikk i PI tir 14.11 og tir 21.11 Høsten 2023

Du skal programmere matematikk i C++. Bruk gjerne en konsolapplikasjon, det duger til de fleste oppgavene.

Du trenger ikke ta oppgavene i rekkefølge, men de to første er nok de enkleste.

OPPGAVE 1

Lag et program som beregn og skriv ut de 20 første leddene i disse følgene

a) $\{2n-1\}_{(n=1)}^{\infty}$

Hva slags følge er dette?

b) $\left\{ (-1)^{n+1} \frac{1}{n} \right\}_{(n=1)}^{\infty}$ Skriv gjerne ut som brøk

c) $\left\{\frac{1}{n!}\right\}_{(n=1)}^{\infty}$ Skriv gjerne ut som brøk

d) $\left\{\frac{(-1)^n}{n(n+1)}\right\}_{(n=1)}^{\infty}$ Skriv gjerne ut som brøk

- e) $\left\{\text{sinus } \left(\frac{n\pi}{2}\right)\right\}_{(n=1)}^{\infty}$
- f) Følgen som er definert ved: $F_1 = 1$, $F_2 = 1$, og $F_n = F_{n-1} + F_{n-2}$ for $n \ge 3$ Hva slags følge er dette? Hva kalles et når følgen er angitt på denne måten?

OPPGAVE 2 Sigma

Lag et program som skriver ut alle leddene OG summen:

- a) $\sum_{i=1}^{20} (i^2 4)$
- b) $\sum_{i=0}^{32} \sin(\frac{i}{10})$
- c) $\sum_{i=0}^{16} \sqrt{4i}$

OPPGAVE 3

Lag ei klasse som kan beregne funksjonsverdi før en del funksjoner. Kall klassa mittLilleMattebibliotek (eller noe annet)

Du skal programmere kjente funksjoner ved å bruke potensrekka for disse funksjonene, med sentrum i 0, dvs. a=0. Da kalles det Maclaurin rekka for de aktuelle funksjonene, disse står på side 351 i boka.

- a) Lag en funksjon for sin(x) med input parametre n og x, som returnerer S_n og $|E_n|$.
- b) Lag en funksjon for cos(x) med input parametre n og x, som returnerer S_n og $|E_n|$.
- c) Lag en funksjon for e^x med input parametre n og x, som returnerer S_n og $|E_n|$.
- d) Lag en funksjon som beregner sin(x) + cos(x) med input parametre n og x, som returnerer S_n og $|E_n|$.

TIPS: Tenk på oppgave c før du programmerer a og b, slik at designet passer for c også.

e) Ekstraoppgave: Potensrekka for en funksjon er mest nøyaktig rundt sentrum for rekka, som her er x=0. For sinus og cosinus er det egentlig nok å beregne verdien i første kvadrant, og deretter bruke det vi vet om at sinus og cosinus er periodiske, samt hvilke kvadrant de er positive og negative i. Bruk denne kunnskapen til å forbedre din beregning av sinx og cosx i a og b slik at de blir ganske nøyaktige for alle verdier av x uten at du har alt for stor n. NB! Isteden for å bruke potensrekka til å beregne sinx og cosx i første kvadrant, kan en beregne for $-\frac{\pi}{4} \le x \le \frac{\pi}{4}$

OPPGAVE 4

Bruk av mittLilleMattebibliotek

- a) Kall din funksjon for sinx og skriv ut: S_n , $|E_n|$, S og S-Sn (der S er sinx beregnet med C++ sitt mattebibliotek) for n=5 hver pi/3 fra x = 5pi/3 til x=5pi/3
 - Legg merke til hvor din S₅ er en god tilnærming og hvor det er store avvik.
- b) Kall din funksjon for cosx og skriv ut: S_n , $|E_n|$, S og S-Sn (der S er cosx beregnet med C++ sitt mattebibliotek) for n=5 hver pi/3 fra x = 5pi/3 til x=5pi/3
 - Legg merke til hvor din S₅ er en god tilnærming og hvor det er store avvik.
- c) Kall din funksjon for e^x og skriv ut: S_n , $|E_n|$, S og S-Sn (der S er e^x beregnet med C++ sitt mattebibliotek) for n=5 hver 0,5 fra x=-4 til x=4
 - Legg merke til hvor din S₅ er en god tilnærming og hvor det er store avvik.
- d) Kall din funksjon for sin(x) + cosx og skriv ut: S_n , $|E_n|$, S og S-Sn (der S er sinx+cosx beregnet med C++ sitt mattebibliotek) for n=5 hver pi/3 fra x=-5pi/3 til x=5pi/3
 - Legg merke til hvor din S₅ er en god tilnærming og hvor det er store avvik.
- e) Ekstraoppgave (ikke nødvendig for forståelsen, men gjør det mer visuelt): Tegn opp kurver med S og S_n for oppavene ovenfor. Du trenger da et grafikkbibliotek for C++, f.eks ImGui og ImPlot (disse hører sammen)

OPPGAVE 5 Numerisk integrasjon; Riemann-sum

Eks. 7.1.4 i boka

Gitt funksjonen
$$f(x) = x^3 - 3x^2 + 2x + 1$$

Vi skal beregne $\int_0^{2.5} f(x) dx$ numerisk, med midtpunktsmetoden. Vi deler intervallet fra 0 til 2.5 i tusen like store deler, og får da formelen:

$$R_{1000} = \sum\nolimits_{i=1}^{1000} f(x_i) \cdot \Delta x$$

$$\det \Delta x = \frac{2.5}{1000}$$

$$og x_i = (i - 0.5) \cdot \Delta x$$

- a) Lag en funksjon som beregner og skriver ut R_{1000}
- b) Lag funksjonen slik at a = x_{fra} og b= x_{til} og antall intervaller n er parametre til funksjonen (det kan deles opp i flere funksjoner)
- c) Programmer f" i en funksjon også, og beregn maksimal størrelse på feilen ut fra a,b og n

7.7.2 SETNING

Forutsatt at den dobbeltderiverte f''(x) er kontinuerlig på intervallet [a, b] og vi har valgt en konstant M_2 som oppfyller $M_2 \ge |f''(x)|$ for $x \in [a, b]$, gjelder følgende ulikhet for feilen ved midtpunktregelen:

$$|E_n| \leq \frac{M_2(b-a)^3}{24n^2}$$

- d) Gjør programmet generelt, slik at det enkelt kan brukes til andre funksjoner
- e) Beregn det ubestemte integralet $F(x) = \int x^3 3x^2 + 2x + 1$, og lag en funksjon som beregner denne for en gitt x-verdi. Skriv ut x, F(x) og Riemann sum så langt for denne x for hver 0.5 x-verdi, dvs. for x=0, x=0.5, x=1 osv.

OPPGAVE 6

Programmer eksempel 7.7.11 og 7.7.13, dvs. Simpsons regel med feilestimering.

OPPGAVE 7 Utfordring

Lag enhetstester for funksjonene.

Dersom en lager enhetstestene på forhånd, kalles det Test-driven development (TDD). Se https://en.wikipedia.org/wiki/Test-driven development

Bruken er omtrent som følger: Du lager testene på forhånd, som en del av designet. Pass på også å lage tester for grensetilfellene, f.eks. minimumsverdi, maksimumsverdi for input-parametrene. Første gang du kjører testene skal alle testene feile. Deretter programmerer du funskjonen slik at alle testene går igjennom.