RF TESTREPORT

ISSUED BY Shenzhen BALUN Technology Co., Ltd.

FOR

Bluetooth Speaker

ISSUED TO Voxx Accessories Corp.

3502 Woodview Trace, Suite 220, Indianapolis, IN. 46268

Report No.: BL-13C007-601

EUT Type: Bluetooth Speaker

Model Name: AWSBT4

Brand Name:

AR/808

FCC ID:

VIX-AWSBT4

Test Standard:

47 CFR Part 15, Subpart C

Test conclusion: PASS

Test Date: Dec 13, 2013 - Dec 24, 2013

Date of Issue:

Jan 15, 2014

NOTE: This test report can be duplicated completely for the legal use with the approval of the applicant; it shall not be reproduced except in full, without the written approval of Shenzhen BALUN Technology Co., Ltd. BALUN Laboratory. Any objections should be raised within thirty days from the date of issue. To validate the report, please visit BALUN website.

Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi Road, Nanshan District, Shenzhen, Guangdong, P. R. China 518055

TEL: +86-755-66850100 FAX: +86-755-61824271 www.baluntek.com

Revision History

VersionIssue DateRevisionsRev. 01Jan 15, 2014Initial Issue

TABLE OF CONTENTS

1	GE	NERAL INFORMATION	4
	1.1	Identification of the Testing Laboratory	4
	1.2	Identification of the Responsible Testing Location	4
	1.3	Test Environment Condition	4
	1.4	Announce	4
2	PR	ODUCT INFORMATION	5
	2.1	Applicant	5
	2.2	Manufacturer	5
	2.3	General Description for Equipment under Test (EUT)	5
	2.4	Technical Information	5
	2.5	Ancillary Equipment	6
3	SU	MMARY OF TEST RESULTS	7
			_
	3.1	Test Standards	/
	3.1 3.2	Test Standards Verdict	
	3.2		7
4	3.2	Verdict	7 8
4	3.2 GE	Verdict	7 8 8
4	3.2 GE 4.1	Verdict NERAL TEST CONFIGURATIONS Test Environments	7 8 8
4	3.2 GE 4.1 4.2	Verdict NERAL TEST CONFIGURATIONS Test Environments Test Equipment List	7 8 8 8
4	3.2 GE 4.1 4.2 4.3	Verdict NERAL TEST CONFIGURATIONS Test Environments Test Equipment List Test Configurations	7 8 8 8 8
4	3.2 GE 4.1 4.2 4.3 4.4 4.5	Verdict NERAL TEST CONFIGURATIONS Test Environments Test Equipment List Test Configurations Test Setups	7 8 8 8 9 12
4 5	3.2 GE 4.1 4.2 4.3 4.4 4.5	Verdict NERAL TEST CONFIGURATIONS Test Environments Test Equipment List Test Configurations Test Setups Test Conditions	7 8 8 8 9 12 13
5	3.2 GE 4.1 4.2 4.3 4.4 4.5	Verdict INERAL TEST CONFIGURATIONS Test Environments Test Equipment List Test Configurations Test Setups Test Conditions ST ITEMS	7 8 8 8 9 12 13
5	3.2 GE 4.1 4.2 4.3 4.4 4.5 TE: 5.1	Verdict INERAL TEST CONFIGURATIONS Test Environments Test Equipment List Test Configurations Test Setups Test Conditions ST ITEMS Number of Hopping Frequency	7 8 8 8 9 12 13 13
5	3.2 GE 4.1 4.2 4.3 4.4 4.5 TE: 5.1	Verdict	7 8 8 9 12 13 13 14 15

5.6	Conducted Spurious Emission	18
5.7	Conducted Emission	19
5.8	Radiated Spurious Emission	20
5.9	Band Edge	21
ANNEX	(A TEST RESULTS	22
A.1	Number of Hopping Frequency	22
A.2	Peak Output Power	24
A.3	Occupied Bandwidth	27
A.4	Carrier Frequency Separation	30
A.5	Time of Occupancy (Dwell time)	32
A.6	Conducted Spurious Emission	34
A.7	Conducted Emission	38
A.8	Radiated Spurious Emissions	40
A.9	Band Edge	49
ANNEX	(B TEST SETUP PHOTOS	61
B.1	Conducted Test Photo	61
B.2	Radiated Test Photo	61
B.3	Conducted Emission Test Setup	62
ANNEX	C EUT PHOTOS	63
C.1	Appearance of the EUT	63
C^{2}	Incide of the ELIT	67

1 GENERAL INFORMATION

1.1 Identification of the Testing Laboratory

Company Name	Shenzhen BALUN Technology Co., Ltd.
Address	Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi Road,
Address	Nanshan District, Shenzhen, Guangdong Province, P. R. China
Phone Number	+86 755 6683 3402
Fax Number	+86 755 6182 4271

1.2 Identification of the Responsible Testing Location

Test Location	Shenzhen CTL Testing Technology Co., Ltd
A ddroop	Floor 1-A, Baisha Technology Park, No. 3011, Shahexi Road,
Address	Nanshan, Shenzhen, China
	The laboratory has been listed by US Federal Communications
	Commission to perform electromagnetic emission measurements. The
A care ditation Cartificate	recognition numbers of test site are 970318
Accreditation Certificate	The laboratory has been listed by Industry Canada to perform
	electromagnetic emission measurements. The recognition numbers of
	test site are 9618B
	All measurement facilities used to collect the measurement data are
Description	located at Floor 1-A, Baisha Science and Technology Park, Shahe Xi
Description	Road, Nanshan District, Shenzhen, Guangdong Province, P. R. China
	518055

1.3 Test Environment Condition

Ambient Temperature	19 to 25 ℃
Ambient Relative Humidity	45 to 55 %
Ambient Pressure	N/A (Not applicable)

1.4 Announce

- (1) The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- (2) The test report is invalid if there is any evidence and/or falsification.
- (3) The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- (4) This document may not be altered or revised in any way unless done so by BALUN and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

2 PRODUCT INFORMATION

2.1 Applicant

Applicant	Voxx Accessories Corp.
Address	3502 Woodview Trace, Suite 220, Indianapolis, IN. 46268

2.2 Manufacturer

Manufacturer	Smart Power Industrial Ltd
A ddraga	Building Four, Huaguan Industrial Zone, Zhangqi Road, Qiping Village,
Address	Guanlan Town, Shenzhen City, Guangdong Province, China

2.3 General Description for Equipment under Test (EUT)

EUT Type	Bluetooth Speaker
Model Name	AWSBT4
Hardware Version	N/A
Software Version	N/A
Network/ Wireless connectivity	Bluetooth BR+EDR
Description	The AWSBT4 is an Accoustic Research branded speaker designed to integrate with the American home's exterior design features. This speaker is in the American Craftsman design style that was used by famous architects such as Frank Lloyd Wright and furniture makers such as GustaveStickley and are widely used today in lighting, architecture, outdoor furniture etc. This speaker is designed to stream music from any bluetooth enabled A2DP device as well as being directly connected to a music source via a line in connector. The speaker operates via a supplied power adaptor or 8 AA batteries (not supplied). It will play up to 12 hours on the batteries. The speaker features a 3-way acoustical system with a tweeter, mid-range and passive bass radiator. This speaker brings design, acoustical performance and value to outdoor entertaining.

2.4 Technical Information

The requirement for the following technical information of the EUT was tested in this report:

	2400~2483.5MHz band		
TX/ RX Operating	$f_c = 2402 \text{ MHz} + \text{N*1 MHz}, \text{ where}$		
Range	- f _c = "Operating Frequency" in MHz,		
	- N = "Channel Number" with the range from 0 to 78.		
Modulation Type	Carrier	Frequency Hopping Spread Spectrum	
Modulation Type	Digital	GFSK, π/4-DQPSK, 8DPSK	
Antenna Type Patch Antenna			

Antenna Gain	0dBi

2.5 Ancillary Equipment

	AC Adapter (Charger for Battery)	
	Brand Name	JFEC
Ancillant Fautioment 1	Model No	JF012WR-1200100UH
Ancillary Equipment 1	Serial No	(n.a. marked #1 by test site)
	Rated Input	~ 100-240V, 350mA, 50/60Hz
	Rated Output	=12V

3 SUMMARY OF TEST RESULTS

3.1 Test Standards

No.	Identity	Document Title
	47 CFR Part 15,	
1	Subpart C(12-30-13	Miscellaneous Wireless Communications Services
	Edition)	
	FCC PUBLIC NOTICE	Filling and Measurement Guidelines for Frequency Hopping
2	DA 00-705	Spread Spectrum Systems
	(Mar. 30, 2000)	Spread Spectrum Systems
		American National Standard for Standard for Methods of
3	ANSI C63.4-2003/2009	Measurement of Radio-Noise Emissions from Low-Voltage
3	ANSI C03.4-2003/2009	Electrical and Electronic Equipment in the Range of 9 kHz to 40
		GHz
4	ANSI C63.10-2009	American National Standard for Testing Unlicensed Wireless
4	ANSI 603.10-2009	Devices

3.2 Verdict

No.	Description	FCC Part No.	Test Result	Verdict
1	Antenna Requirement	15.203		Pass Note 1
2	Number of Hopping Frequency	15.247(a)	ANNEX A.1	Pass
3	Peak Output Power	15.247(b)	ANNEX A.2	Pass
4	Occupied Bandwidth	15.247(a)	ANNEX A.3	Pass
5	Carrier Frequency Separation	15.247(a)	ANNEX A.4	Pass
6	Time of Occupancy (Dwell time)	15.247(a)	ANNEX A.5	Pass
7	Conducted Spurious Emission	15.247(d)	ANNEX A.6	Pass
8	Conducted Emission	15.207	ANNEX A.7	Pass
9	Radiated Spurious Emission	15.209	ANNEX A.8	Pass
9	Radiated Spurious Effilssion	15.247(c)	AININEA A.O	F d 5 5
10	Band Edge	15.247(d)	ANNEX A.9	Pass

Note 1: The EUT has a permanently and irreplaceable attached antenna, which complies with the requirement FCC 15.203.

4 GENERAL TEST CONFIGURATIONS

4.1 Test Environments

Environment Deremeter	Selected Values During Tests					
Environment Parameter	Temperature	Voltage	Relative Humidity			
Normal Temperature, Normal Voltage (NTNV)	Ambient	DC 12V	Ambient			

4.2 Test Equipment List

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
Spectrum Analyzer	AGILENT	E4440A	MY45304434	2013.05.10	2014.05.09
Attenuator (20dB)	KMW	ZA-S1-201	110617091		
Attenuator (6dB)	KMW	ZA-S1-61	1305003189		
DC Power Supply	R&S	HMP2020	018141664	2013.07.06	2014.07.07
Test Antenna- Loop	SCHWARZBECK	FMZB 1519	1519-037	2013.07.03	2014.07.02
Test Antenna- Bi-Log	SCHWARZBECK	VULB 9163	9163-624	2013.07.03	2014.07.02
Test Antenna- Horn	SCHWARZBECK	BBHA 9120D	9120D-1148	2013.07.02	2014.07.01
Test Antenna- Horn	R&S	HL050S7	72681	2013.07.02	2014.07.01
Anechoic Chamber	RAINFORD	9m*6m*6m	N/A	2013.10.07	2014.10.06
EMI Test Receiver	R&S	ESRP	101036	2013.06.04	2014.06.03
Artificial Mains Network	SCHWARZBECK	NSLK8127	8127-687	2013.06.04	2014.06.03

4.3 Test Configurations

Test	Description						
Configurations (TC) NO.	Signal Description	Operating Frequency					
Transmitter							
TC01	GFSK modulation, package type DH5, hopping on	-					
TC02	GFSK modulation, package type DH5, hopping off	Ch No. 0/ 2402MHz					
TC03	GFSK modulation, package type DH5, hopping off	Ch No. 39/ 2441MHz					
TC04	GFSK modulation, package type DH5, hopping off	Ch No. 78/ 2480MHz					
TC05	π /4-DQPSK modulation, package type DH5, hopping on						
TC06	π /4-DQPSK modulation, package type DH5, hopping off	Ch No. 0/ 2402MHz					

TC07	$\pi/4$ -DQPSK modulation, package type DH5, hopping off	Ch No. 39/ 2441MHz
TC08	$\pi/4$ -DQPSK modulation, package type DH5, hopping off	Ch No. 78/ 2480MHz
TC09	8DPSK modulation, package type DH5, hopping on	
TC10	8DPSK modulation, package type DH5, hopping off	Ch No. 0/ 2402MHz
TC11	8DPSK modulation, package type DH5, hopping off	Ch No. 39/ 2441MHz
TC12	8DPSK modulation, package type DH5, hopping off	Ch No. 78/ 2480MHz

4.4 Test Setups

Test Setup 1- RF Conducted Test Setup

Test Setup 2 - Conducted Emission Test Setup

Test Setup 3-Radiated Spurious Emission Test Setup_1

Test Setup 4– Radiated Spurious Emission Test Setup_2

Test Setup 5- Radiated Spurious Emission Test Setup_3

4.5 Test Conditions

Took Coop	Test Conditions				
Test Case	Test Env.	Test Setup Note 1	Test Configuration Note 2		
Number of Hopping Frequency	NTNV	Test Setup 1	TC01, TC05, TC09		
Peak Output Power	NTNV	Test Setup 1	TC02, TC03, TC04, TC06, TC07, TC08, TC10, TC11, TC12		
20dB Bandwidth	NTNV	Test Setup 1	TC03, TC07, TC011		
Occupied Bandwidth	NTNV	Test Setup 1	TC03, TC07, TC011		
Carrier Frequency Separation	NTNV	Test Setup 1	TC01, TC05, TC09		
Time of Occupancy (Dwell time)	NTNV	Test Setup 1	TC01, TC05, TC09		
Conducted Spurious Emission	NTNV	Test Setup 1	TC02, TC03, TC04, TC06, TC07, TC08, TC10, TC11, TC12		
Conducted Emission	NTNV	Test Setup 2	TC02, TC03, TC04, TC06, TC07, TC08, TC10, TC11, TC12		
Radiated Emission	NTNV	Test Setup 3 Test Setup 4 Test Setup 5	TC02, TC03, TC04, TC06,TC07,TC08, TC10, TC11, TC12		
Band Edge	NTNV	Test Setup 5	TC02, TC04, TC06, TC08, TC10, TC12		

Note:

- 1. Please refer to section 4.4 for test setup details.
- 2. Please refer to section 4.3 for test setup details.

5 TEST ITEMS

5.1 Number of Hopping Frequency

5.1.1 Limit

FCC §15.247(a)(1)(iii)

Frequency hopping systems operating in the 2400MHz to 2483.5MHz bands shall use at least 15 hopping frequencies.

5.1.2 Test Procedure

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:

Span = the frequency band of operation

RBW ≥ 1% of the span

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

Allow the trace to stabilize

5.2 Peak Output Power

5.2.1 Test Limit

FCC §15.247(b)

For frequency hopping systems that operates in the 2400MHz to 2483.5MHz band employing at least 75 hopping channels, the maximum peak output power of the intentional radiator shall not exceed 1Watt.

5.2.2 Test Procedure

The Bluetooth Module operates at hopping-off test mode. The lowest, middle and highest channels are selected to perform testing to verify the conducted RF output peak power of the Module. The lowest, middle and highest channel were tested by Power meter.

5.3 Occupied Bandwidth

5.3.1 Limit

FCC §15.247(a)

The 20dB bandwidth is known as the 99% emission bandwidth, or 20dB bandwidth (10*log1%=20dB) taking the total RF output power.

5.3.2 Test Procedure

Use the following spectrum analyzer settings:

Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel

RBW ≥ 1% of the 20 dB bandwidth

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

5.4 Carrier Frequency Separation

5.4.1 Limit

FCC §15.247(a)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

5.4.2 Test Procedure

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:

Span = wide enough to capture the peaks of two adjacent channels Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span

Video (or Average) Bandwidth (VBW) ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

5.5 Time of Occupancy (Dwell time)

5.5.1 Limit

FCC §15.247(a)

Frequency hopping systems in the 2400 - 2483.5MHz band shall use at least 15 non-overlapping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

5.5.2 Test Procedure

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:

Span = zero span, centered on a hopping channel

RBW = 1 MHz

VBW ≥ RBW

Sweep = as necessary to capture the entire dwell time per hopping channel

Detector function = peak

Trace = max hold

The average time of occupancy on any channel within the Period can be calculated with formulas (for DH5 package type):

{Total of Dwell} = {Pulse Time} * (1600 / 6) / {Number of Hopping Frequency} * {Period}

{Period} = 0.4s * {Number of Hopping Frequency}

The lowest, middle and highest channels are selected to perform testing to record the dwell time of each occupation measured in this channel, which is called Pulse Time here.

5.6 Conducted Spurious Emission

5.6.1 Limit

FCC §15.247(d)

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

5.6.2 Test Procedure

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span.

RBW = 100 kHz

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

Allow the trace to stabilize

5.7 Conducted Emission

5.7.1 Limit

FCC §15.207

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a $50\mu\text{H}/50\Omega$ line impedance stabilization network (LISN).

Frequency range	Conducted Limit (dBµV)				
(MHz)	Quai-peak	Average			
0.15 - 0.50	66 to 56	56 to 46			
0.50 - 5	56	46			
0.50 - 30	60	50			

5.7.2 Test Procedure

The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Refer to recorded points and plots below.

5.8 Radiated Spurious Emission

5.8.1 Limit

FCC §15.209&15.247(c)

Radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

Note:

- 1. For Above 1000MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit.
- For above 1000MHz, limit field strength of harmonics: 54dBuV/m@3m (AV) and 74dBuV/m@3m (PK).

5.8.2 Test Procedure

The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The Turn Table is actuated to turn from 0° to 360°, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. Mid channels on all channel bandwidth verified. Only the worst RB size/offset presented.

The power of the EUT transmitting frequency should be ignored.

All Spurious Emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

5.9 Band Edge

5.9.1 Limit

FCC §15.209&15.247(d)

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

5.9.2 Test Procedure

Span = wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation

RBW ≥ 1% of the span

VBW ≥ RBW

Sweep = auto

Detector function = peak /AV

Trace = max hold

Allow the trace to stabilize.

E [dBμV/m] =UR + AT + AFactor [dB]; AT =LCable loss [dB]-Gpreamp [dB]

AT: Total correction Factor except Antenna

UR: Receiver Reading

Gpreamp: Preamplifier Gain

AFactor: Antenna Factor at 3m

ANNEX A TEST RESULTS

A.1 Number of Hopping Frequency

Test Data

Test Mode	Frequency Band (MHz)	Channel Numbers	Limits	Verdict
GFSK	2402-2480	79	≥15	Pass
π/4DQPSK	2402-2480	79	≥15	Pass
8-DPSK	2402-2480	79	≥15	Pass

Test Plots

GFSK Mode

π/4 DQPSK Mode

8-DPSK Mode

A.2 Peak Output Power

Test Data

Test Mode	Chan.	Fre.	Reading	Factor	Output F	Peak Power	Limit	Verdict
rest Mode	Chan.	(MHz)	(dBm)	(dB)	dBm	W	(dBm)	verdict
	0	2402	-0.27	6.48	6.21	0.004246		Pass
GFSK	39	2441	0.31	6.49	6.80	0.004931		Pass
	78	2480	-0.31	6.50	6.19	0.004246		Pass
	0	2402	-3.21	6.48	3.27	0.002177		Pass
π/4DQPSK	39	2441	-2.06	6.49	4.43	0.002831	30 (1W)	Pass
	78	2480	-2.73	6.50	3.77	0.002594		Pass
8-DPSK	0	2402	-3.15	6.48	3.33	0.002213		Pass
	39	2441	-1.98	6.49	4.51	0.002877		Pass
	78	2480	-2.65	6.50	3.85	0.002673		Pass

Test Plots

GFSK Mode

Low Channel

High Channel

Middle Channel

π/4 DQPSK Mode

Low Channel

High Channel

Middle Channel

8-DPSK Mode

Low Channel

High Channel

A.3 Occupied Bandwidth

Test Data

Test Mode	Channel	Frequency (MHz)	99% Bandwidth (MHz)	20 dB Bandwidth (MHz)	Verdict
	0	2402	0.982	1.206	Pass
GFSK	39	2441	0.974	1.227	Pass
	78	2480	0.994	1.214	Pass
	0	2402	1.114	1.342	Pass
π/4DQPSK	39	2441	1.163	1.402	Pass
	78	2480	1.169	1.414	Pass
	0	2402	1.192	1.393	Pass
8-DPSK	39	2441	1.190	1.395	Pass
	78	2480	1.191	1.409	Pass

Test Plots

GFSK Mode

Low Channel

Agilent Ch Freq 2.48 GHz Trig Free Occupied Bandwidth Center 2.480000000 GHz Atten 20 dB Center 2.480 000 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 1 ms (601 pts) Occupied Bandwidth Occ BW % Pwr 99.00 % x dB -20.00 dB 994.0147 kHz Transmit Freq Error x dB Bandwidth -5.425 kHz 1.214 MHz File Operation Status, C:/TMPIMAGE.GIF file saved

High Channel

Middle Channel

π/4 DQPSK Mode

Low Channel

High Channel

Middle Channel

8-DPSK Mode

Low Channel

High Channel

A.4 Carrier Frequency Separation

Test Data

Test Mode	Fre. Separation (MHz)	Limits	Limits (≥two-thirds 20 dB bandwidth)	Verdict
GFSK	0.996	≥25KHz	0.822MHz	Pass
π/4 DQPSK	1.004	≥25KHz	0.939MHz	Pass
8-DPSK	0.983	≥25KHz	0.934MHz	Pass

Test Plots

GFSK Mode

π/4 DQPSK Mode

8-DPSK Mode

A.5 Time of Occupancy (Dwell time)

Test Data

Test Mode	Pulse Time (ms)	Total of Dwell Time (ms)	Limits (ms)	Verdict
GFSK	2.890	308.276	400	Pass
π/4 DQPSK	2.900	309.343	400	Pass
8-DPSK	2.900	309.343	400	Pass

Test Plots

GFSK Mode

π/4 DQPSK Mode

8-DPSK Mode

A.6 Conducted Spurious Emission

Test Data

GFSK Mode							
No.	Frequency (GHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Verdict	
Tx: 2402MHz							
1	2.40	-0.39	6.5	6.11	N/A	PASS	
2	7.19	-58.56	7.2	-51.36	-13.89	PASS	
3	9.60	-58.11	7.6	-50.51	-13.89	PASS	
Tx: 2441MHz							
1	2.44	0.22	6.5	6.72	N/A	PASS	
2	7.31	-50.87	7.2	-43.67	-13.28	PASS	
3	9.60	-59.87	7.6	-52.27	-13.28	PASS	
4	12.22	-57.20	8.2	-49	-13.28	PASS	
Tx: 2480MHz							
1	2.49	-0.66	6.5	5.84	N/A	PASS	
2	7.44	-52.90	7.2	-45.7	-14.16	PASS	
3	9.60	-59.81	7.6	-52.21	-14.16	PASS	
4	12.39	-54.15	8.2	-45.95	-14.16	PASS	
		∏/4-	-DQPSK Mode				
No.	Frequency (GHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Verdict	
Tx: 2402MHz							
1	2.40	-4.46	6.5	2.04	N/A	PASS	
2	9.60	-58.71	7.6	-51.11	-17.96	PASS	
3	14.43	-67.89	8.2	-59.69	-17.96	PASS	
Tx: 2441MHz						•	
1	2.44	-3.21	6.5	3.29	N/A	PASS	
2	7.31	-57.40	7.2	-50.2	-16.71	PASS	
3	9.60	-59.61	7.6	-52.01	-16.71	PASS	
4	12.22	-64.53	8.2	-56.33	-16.71	PASS	
Tx: 2480MHz						•	
1	2.49	-3.97	6.5	2.53	N/A	PASS	
2	7.44	-58.34	7.2	-51.14	-17.47	PASS	
3	9.60	-61.57	7.6	-53.97	-17.47	PASS	
8-DPSK Mode							
No.	Frequency (GHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Verdict	
Tx: 2402MHz							
1	2.40	-0.93	6.5	5.57	N/A	PASS	
2	9.60	-52.06	7.6	-44.46	-14.43	PASS	
3	14.43	-61.05	8.2	-52.85	-14.43	PASS	
Tx: 2441MHz							

1	0.90	-52.10	6.0	-46.1	-17.68	PASS	
2	2.44	-4.18	6.5	2.32	N/A	PASS	
3	7.31	-58.89	7.2	-51.69	-17.68	PASS	
4	9.77	-59.71	7.6	-52.11	-17.68	PASS	
Tx: 2480MHz							
1	2.49	-5.28	6.5	1.22	N/A	PASS	
2	7.44	-59.71	7.2	-52.51	-18.78	PASS	
3	9.60	-59.33	7.6	-51.73	-18.78	PASS	

Test Plots

GFSK Mode

Low Channel Middle Channel

High Channel

∏/4-DQPSK Mode

Low Channel

Middle Channel

High Channel

8-DPSK Mode

Low Channel

Middle Channel

High Channel

A.7 Conducted Emission

Note: Only the worst test results were recorded in this report.

Test Data

No.	Fre. (MHz)	Measurement Level (dBuV)	Limit (dBuV)	Margin (dB)	Phase	Detector	Verdict
1	0.262	38.16	62.80	-24.64	L	AV	Pass
2	0.262	25.58	52.80	-27.22	L	QP	Pass
3	0.522	46.71	56.00	-9.29	L	QP	Pass
4	0.538	32.61	46.00	-13.39	L	AV	Pass
5	0.906	38.93	56.00	-17.07	L	QP	Pass
6	0.958	25.25	46.00	-20.75	L	AV	Pass
7	2.186	25.8	46.00	-20.2	L	QP	Pass
8	2.258	37.79	56.00	-18.21	L	AV	Pass
9	9.746	23.32	50.00	-26.68	L	AV	Pass
10	9.798	35.38	60.00	-24.62	L	QP	Pass
11	16.854	29.26	60.00	-30.74	L	AV	Pass
12	16.854	17.08	50.00	-32.92	L	QP	Pass

No.	Fre. (MHz)	Measurement Level (dBuV)	Limit (dBuV)	Margin (dB)	Phase	Detector	Verdict
1	0.274	34.5	64.39	-27.96	N	QP	Pass
2	0.274	26.2	53.86	-26.26	N	AV	Pass
3	0.530	43.34	46.00	-12.66	N	QP	Pass
4	0.530	32.58	56.00	-13.42	N	AV	Pass
5	1.026	34.81	56.00	-21.19	N	QP	Pass
6	2.106	25.6	46.00	-20.4	N	AV	Pass
7	2.170	25.78	46.00	-20.22	N	QP	Pass
8	2.254	33.72	56.00	-22.28	N	AV	Pass
9	5.262	21.46	50.00	-28.54	N	AV	Pass
10	10.574	28.01	60.00	-31.99	N	QP	Pass
11	13.538	14.67	60.00	-35.33	N	AV	Pass
12	16.850	26.71	50.00	-33.29	N	QP	Pass

Test Plots

Date: 20.DEC.2013 10:06:23

(Phase: L)

Date: 20.DEC.2013 09:58:35

(Phase:N)

A.8 Radiated Spurious Emissions

Note: No spurious emissions were detected below 30MHz, so only spurious emissions above 30MHz were recorded in the following test data and plots.

Test Data

<u>ata</u> Fre.	Pk	QP	AV	Limit-PK	Limit-QP	Limit-AV			
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	Antenna	Verdict	
GFSK Mode-Low Channel									
250.862	36.99				46.0		Vertical	Pass	
1005.499	50.81			74.0		54.0	Vertical	Pass	
2007.248	45.43			74.0		54.0	Vertical	Pass	
2402.149	80.32			N/A		N/A	Vertical	N/A	
2514.121	52.55			74.0		54.0	Vertical	Pass	
5918.270	50.50			74.0		54.0	Vertical	Pass	
250.862	36.99				46.0		Horizontal	Pass	
1005.499	50.81			74.0		54.0	Horizontal	Pass	
2007.248	45.43			74.0		54.0	Horizontal	Pass	
2402.149	80.32			N/A		N/A	Horizontal	N/A	
2514.121	52.55			74.0		54.0	Horizontal	Pass	
5918.270	50.50			74.0		54.0	Horizontal	Pass	
			GFSk	K Mode-Mid	Channel				
95.944	31.15				43.5		Vertical	Pass	
251.590	30.52				46.0		Vertical	Pass	
2010.747	47.77			74.0		54.0	Vertical	Pass	
2440.640	86.84			N/A		N/A	Vertical	N/A	
2510.622	48.99			74.0		54.0	Vertical	Pass	
5030.492	51.57			74.0		54.0	Vertical	Pass	
250.862	36.32				46.0		Horizontal	Pass	
1006.998	40.57			74.0		54.0	Horizontal	Pass	
2011.747	45.28			74.0		54.0	Horizontal	Pass	
2441.140	83.37			N/A		N/A	Horizontal	N/A	
2515.621	52.87			74.0		54.0	Horizontal	Pass	
5017.746	51.67			74.0		54.0	Horizontal	Pass	
			GFSK	Mode-High	Channel				
107.581	32.96				43.5		Vertical	Pass	
251.590	30.44				46.0		Vertical	Pass	
2011.747	44.77			74.0		54.0	Vertical	Pass	
2479.630	84.54			N/A		N/A	Vertical	N/A	
5022.244	50.48			74.0		54.0	Vertical	Pass	
5928.018	50.69			74.0		54.0	Vertical	Pass	
89.883	29.99				43.5		Horizontal	Pass	
250.862	35.94				46.0		Horizontal	Pass	
2008.748	45.68			74.0		54.0	Horizontal	Pass	
2479.630	83.19			N/A		N/A	Horizontal	N/A	
5023.744	51.21			74.0		54.0	Horizontal	Pass	
13350.000	49.20			74.0		54.0	Horizontal	Pass	

Fre.	Pk	QP	AV	Limit-PK	Limit-QP	Limit-AV	Α	V P (
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	Antenna	Verdict	
π/4 DQPSK Mode-Low Channel									
251.347	35.86				46.0		Vertical	PASS	
1004.999	45.02			74.0		54.0	Vertical	PASS	
2008.748	46.80			74.0		54.0	Vertical	PASS	
2401.650	84.91			N/A		N/A	Vertical	N/A	
2509.623	52.48			74.0		54.0	Vertical	PASS	
5021.495	51.53			74.0		54.0	Vertical	PASS	
111.945	24.61				43.5		Horizontal	PASS	
251.590	35.50				46.0		Horizontal	PASS	
2011.747	47.31			74.0		54.0	Horizontal	PASS	
2402.149	84.44			N/A		N/A	Horizontal	N/A	
2511.122	52.58			74.0		54.0	Horizontal	PASS	
5020.745	51.62			74.0		54.0	Horizontal	PASS	
			π/4 DQF	PSK Mode-M	id Channel				
104.186	34.45				43.5		Vertical	PASS	
251.347	35.90				46.0		Vertical	PASS	
1855.786	43.85			74.0		54.0	Vertical	PASS	
2441.140	83.75			N/A		N/A	Vertical	N/A	
5946.763	48.91			74.0		54.0	Vertical	PASS	
13350.000	49.20			74.0		54.0	Vertical	PASS	
251.347	36.06				46.0		Horizontal	PASS	
1002.499	50.72			74.0		54.0	Horizontal	PASS	
2012.747	47.92			74.0		54.0	Horizontal	PASS	
2440.640	81.64			N/A		N/A	Horizontal	N/A	
2513.622	52.31			74.0		54.0	Horizontal	PASS	
5838.790	50.52			74.0		54.0	Horizontal	PASS	
			π/4 DQP	SK Mode-Hi	gh Channel				
107.581	30.52				43.5	1	Vertical	PASS	
251.347	30.55				46.0		Vertical	PASS	
2009.748	46.40			74.0		54.0	Vertical	PASS	
2480.130	81.00			N/A		N/A	Vertical	N/A	
5030.492	51.44			74.0		54.0	Vertical	PASS	
5909.273	51.59			74.0		54.0	Vertical	PASS	
251.347	36.12				46.0		Horizontal	PASS	
1003.499	41.23			74.0		54.0	Horizontal	PASS	
2010.747	48.67			74.0		54.0	Horizontal	PASS	
2479.630	79.78			N/A		N/A	Horizontal	N/A	
5028.243	51.33			74.0		54.0	Horizontal	PASS	
13350.000	49.20			74.0		54.0	Horizontal	PASS	

Fre.	Pk	QP	AV	Limit-PK	Limit-QP	Limit-AV	Α	V P (
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	Antenna	Verdict	
8-DPSK Mode-Low Channel									
113.642	34.47				43.5		Vertical	PASS	
334.261	30.60				46.0		Vertical	PASS	
2009.248	46.08			74.0		54.0	Vertical	PASS	
2402.149	86.66			N/A		N/A	Vertical	N/A	
2515.121	49.58			74.0		54.0	Vertical	PASS	
5022.994	51.03			74.0		54.0	Vertical	PASS	
89.883	28.75				43.5		Horizontal	PASS	
250.862	35.99				46.0		Horizontal	PASS	
1005.999	51.05			74.0		54.0	Horizontal	PASS	
2401.650	84.61			N/A		N/A	Horizontal	N/A	
2511.122	52.12			74.0		54.0	Horizontal	PASS	
5018.495	51.37			74.0		54.0	Horizontal	PASS	
			8-DPS	K Mode-Mid	Channel				
107.823	32.02				43.5		Vertical	PASS	
251.347	29.84				46.0		Vertical	PASS	
2009.248	43.97			74.0		54.0	Vertical	PASS	
2440.640	84.18			N/A		N/A	Vertical	N/A	
2510.622	49.24			74.0		54.0	Vertical	PASS	
5027.493	50.77			74.0		54.0	Vertical	PASS	
107.823	32.02				43.5		Horizontal	PASS	
251.347	29.84				46.0		Horizontal	PASS	
2009.248	43.97			74.0		54.0	Horizontal	PASS	
2440.640	84.18			N/A		N/A	Horizontal	N/A	
2510.622	49.24			74.0		54.0	Horizontal	PASS	
5027.493	50.77			74.0		54.0	Horizontal	PASS	
			8-DPS	K Mode-High	Channel				
96.913	37.28				43.5	1	Vertical	PASS	
251.590	29.70				46.0		Vertical	PASS	
1004.499	49.73			74.0		54.0	Vertical	PASS	
2480.130	81.01			N/A		N/A	Vertical	N/A	
5020.745	49.92			74.0		54.0	Vertical	PASS	
13350.000	49.20			74.0		54.0	Vertical	PASS	
251.347	35.77				46.0		Horizontal	PASS	
1003.499	43.51			74.0		54.0	Horizontal	PASS	
2011.247	47.67			74.0		54.0	Horizontal	PASS	
2480.130	79.26			N/A		N/A	Horizontal	N/A	
5016.246	51.59			74.0		54.0	Horizontal	PASS	
5935.516	50.59			74.0		54.0	Horizontal	PASS	

Test Plot

Plot A_GFSK Mode, Low Channel, ANT V

Plot B_GFSK Mode, Low Channel, ANT H

Plot C_GFSK Mode, Mid Channel, ANT V

Plot D_GFSK Mode, Mid Channel, ANT H

Plot E_GFSK Mode, High Channel, ANT V

Plot F_GFSK Mode, High Channel, ANT H

Plot $G_{\pi/4}$ DQPSK Mode, Low Channel, ANT H

Plot $H_{\pi}/4$ DQPSK Mode, Low Channel, ANT H

Plot $I_{\pi}/4$ DQPSK Mode, Mid Channel, ANT V

Plot $J_{\pi}/4$ DQPSK Mode, Mid Channel, ANT H

Plot $K_{\pi}/4$ DQPSK Mode, High Channel, ANT H

Plot $L_{\pi}/4$ DQPSK Mode, High Channel, ANT V

Plot M_8-DPSK Mode, Low Channel, ANT H

Plot N_8-DPSK Mode, Low Channel, ANT H

Plot O_8-DPSK Mode, Mid Channel, ANT V

Plot P_8-DPSK Mode, Mid Channel, ANT H

Plot Q_8-DPSK Mode, High Channel, ANT H

Plot R_8-DPSK Mode, High Channel, ANT V

A.9 Band Edge

Test Data

The lowest and highest channels are tested to verify the band edge emissions. Please refer to the following the plots for emissions values.

Test Plots

(GFSK CH Low, Vertical, Peak)

Date: 23.DEC.2013 10:42:33

(GFSK CH Low, Horizontal, Peak)

Date: 23.DEC.2013 17:46:31

(GFSK CH Low, Vertical, Average)

Date: 23.DEC.2013 17:40:10

(GFSK CH Low, Horizontal, Average)

Date: 24.DEC.2013 08:56:00

(GFSK CH High, Vertical, Peak)

Date: 24.DEC.2013 08:59:36

(GFSK CH High, Horizontal, Peak)

Date: 24.DEC.2013 09:25:55

(GFSK CH High, Vertical, Average)

Date: 24.DEC.2013 09:32:50

(GFSK CH High, Horizontal, Average)

Date: 23.DEC.2013 18:35:00

(π/4 DQPSK CH Low, Vertical, Peak)

(π/4 DQPSK CH Low, Horizontal, Peak)

Date: 23.DEC.2013 17:53:00

(π/4 DQPSK CH Low, Vertical, Average)

Date: 23.DEC.2013 18:00:30

(π/4 DQPSK CH Low, Horizontal, Average)

Date: 24.DEC.2013 09:12:43

(π/4 DQPSK CH High, Vertical, Peak)

Date: 24.DEC.2013 09:05:18

(π/4 DQPSK CH High, Horizontal, Peak)

Date: 24.DEC.2013 09:18:37

(π/4 DQPSK CH High, Vertical, Average)

Date: 24.DEC.2013 09:42:11

(π/4 DQPSK CH High, Horizontal, Average)

Date: 23.DEC.2013 18:20:39

(8-DPSK CH Low, Vertical, Peak)

Date: 23.DEC.2013 18:27:44

(8-DPSK CH Low, Horizontal, Peak)

Date: 23.DEC.2013 18:12:57

(8-DPSK CH Low, Vertical, Average)

Date: 23.DEC.2013 18:06:16

(8-DPSK CH Low, Horizontal, Average)

Date: 24.DEC.2013 09:11:34

(8-DPSK CH High, Vertical, Peak)

Date: 24.DEC.2013 09:09:05

(8-DPSK CH High, Horizontal, Peak)

Date: 24.DEC.2013 09:21:42

(8-DPSK CH High, Vertical, Average)

Date: 24.DEC.2013 09:46:57

(8-DPSK CH High, Horizontal, Average)

ANNEX B TEST SETUP PHOTOS

B.1 Conducted Test Photo

B.2 Radiated Test Photo

B.3 Conducted Emission Test Setup

ANNEX C EUT PHOTOS

C.1 Appearance of the EUT

Front View of Sample

Back View of Sample

Left View of Sample

Right View of Sample

Up View of Sample

Down View of Sample

Photo of Charger

C.2 Inside of the EUT

--END OF REPORT--