Тема 4. ЗАЩИТА ОТ ПРОИЗВОДСТВЕННОГО ШУМА, ИНФРА И УЛЬТРАЗВУКА

4.1. Основные понятия и физические характеристики

Вредным фактором при работе на многих рабочих местах является повышенный уровень шума на рабочем месте. Повышенный уровень шума на рабочем месте относится к *группе физических* опасных и вредных производственных факторов (в зависимости от уровня). В производственных и непроизводственных условиях происходит непрерывный рост многочисленных источников шума.

Шум – это хаотическое сочетание различных по частоте и силе звуков.

Звук — это колебание частиц упругой среды, которые воспринимаются органами слуха человека в направлении их распространения.

Шум, в зависимости от уровня, может привести к нарушению речевой связи, органов слуха и центральной нервной системы, может вызвать чувство дискомфорта и раздражительности, привести к снижению работоспособности и повышенной утомляемости.

Органы слуха среднестатистического человека различают звуковые колебания с частотой, как правило, 200 - 12000 Гц, некоторые специалисты, например, музыканты, слышат и различают колебания в диапазоне 20 – 20000 Гц.

Кроме звукового диапазона существуют шумы инфразвукового (ИЗК) и ультразвукового (УЗК) диапазонов.

Инфразвуком (**ИЗК**) называются колебания с частотой менее 20 Гц, передающиеся через воздушную, жидкую или твердую среду.

Источниками инфразвука в промышленности является технологическое оборудование, содержащие двигатели внутреннего сгорания, электродвигатели и другие механизмы с колебательными или вращающимися элементами.

Источником ИЗК может быть неисправное технологическое оборудование, использующие гидро- или воздуховоды: печи, вентиляция и др. Так же источником ИЗК могут быть природные явления: штормы, ураганы, землетрясения, извержения вулканов. Так как расстояния распространения ИСЗ гораздо больше, чем у звуковых волн, то некоторые животные чувствуют ИСЗ задолго до приближения катастрофы.

Природа возникновения инфразвуковых колебаний такая же, как и у слышимого звука. Подчиняется тем же закономерностям. Используется такой же математический аппарат.

Особенности ИЗК: неслышен человеком, может распространяться на значительные расстояния из-за малых потерь в средах распространения.

Диапазон инфразвуковых колебаний совпадает с внутренней частотой отдельных органов человека (6 - 8 Γ ц), следовательно, из-за резонанса могут возникнуть тяжелые последствия для организма человека.

Под действием инфразвука у человека происходит расстройство центральной нервной и сердечно-сосудистой систем (появляется апатия, тошнота, страх, тревога, покачивание, т.д.). Инфразвук вызывает чувство сдавленности внутренних органов, их взаимного перемещения, чувство неосознанного страха и паники, и в конечном счете, человек при этом способен на непредсказуемые поступки.

Увеличение звукового давления ИСЗ до 150 дБА приводит к изменению сердечному ритму пищеварительных функций и. Возможна потеря слуха и зрения.

Ультразвук (Y3K) — это колебание звуковой волны с частотой более 20000 Гц (но он может оказывать вредное воздействие уже с 16 000 Гц и это учитывается при установлении норм). УЗК могут передаваться через воздух, в твердую и жидкую среды.

Ультразвук используется во многих промышленных технологиях, например, в оптике для обезжиривания. Источником ИСЗ могут быть и дефекты оборудования.

УЗК распространяется, преимущественно, в твердой среде. В воздушной и жидкой среде быстро затухают.

Ультразвуковые колебания не слышимы человеком.

Воздействие на человека: влияет на сердечно-сосудистую систему; нервную систему; эндокринную систему; нарушает терморегуляцию организма и обмен веществ в нем. Местное воздействие может привести к онемению. Может вызвать повышение или понижение кровяного давления, повышение внутричерепного давления, повышенную утомляемость, головную боль, снижение остроты зрения, иногда даже приводят к изменению состава крови.

По характеру спектра шума выделяют [1]:

- а) *тональный шум*, в спектре которого имеются выраженные тоны. Тональный характер шума для практических целей устанавливается измерением уровней звукового давления в 1/3-октавных полосах частот в диапазоне частот 25 10 000 Гц по превышению уровня в одной из 1/3-октавных полос над соседними не менее чем на 10 дБ или по превышению суммарного уровня двух соседних 1/3-октавных полос, уровни которых отличаются менее чем на 3 дБ, над соседними не менее чем на 12 дБ;
 - б) широкополосный шум, не содержащий выраженных тонов.

По временным характеристикам шума выделяют [1]:

- а) *постоянный шум*, уровень звука которого за 8-часовой рабочий день или за время измерения изменяется не более, чем на 5 дБА при режиме усреднения шумомера;
- б) непостоянный шум, уровень звука которого за 8-часовой рабочий день, рабочую смену или за время измерения изменяется более чем на 5 дБА при измерениях с постоянного времени усреднения шумомера;
- в) *импульсный шум*, состоящий из одного или нескольких звуковых событий, каждый длительностью менее 1 с, при этом уровни звука отличаются не менее чем на 7 дБ.

В зависимости от происхождения шум классифицируется на следующие виды:

- 1) *механический*, который возникает при движении, соударении и трении деталей машин и механизмов (печатающие устройства);
- 2) *аэродинамический*, который возникает при нестационарном движении воздуха, газа и пара (пульсация давления, изменение скорости, вихревые процессы);
- 3) *гидродинамический*, который возникает при нестационарном движении жидкостей (гидравлические удары, турбулентное движение потока);
- 4) *термический*, который возникает при мгновенном изменении плотности газов в процессе горения (взрыв);
- 5) электромагнитный, который возникает при колебании элементов электромеханических устройств под действием электромагнитных полей (сердечник трансформаторов, ротор, статор).

4.2. Нормирование шума

4.2.1. Нормирование шума звукового диапазона

Основными физическими характеристиками звука являются:

- интенсивность звука;
- звуковое давление.

Под *интенсивностью звука* понимают количество энергии, переносимой звуковой волной за 1 секунду через площадку в 1 м^2 , которая расположена перпендикулярно движению звуковой волны. Интенсивность звука измеряется в BT/m^2 .

Под *звуковым давлением* понимают дополнительное давление воздуха, которое возникает при прохождении через него звуковой волны. Звуковое давление измеряется в **паскалях** (**Па**). Паскаль равен давлению, вызываемому силой, равной одному ньютону (**ньютон**/ \mathbf{m}^2 ; \mathbf{H}/\mathbf{m}^2).

Органы слуха воспринимают звуковые колебания в определенном диапазоне частоты и интенсивности

Рисунок 4.1 – Зависимость интенсивности звука от частоты

Под *порогом слышимости* следует понимать наименьшую интенсивность звука, ощущаемую органами слуха человека. Человеческое ухо наиболее восприимчиво к частоте 1 кГц.

Под *болевым порогом* следует понимать наибольшую интенсивность звука, при которой органы слуха перестают слышать, и ощущается только боль.

Для энергетической оценки звуковых колебаний в какой-либо точке производственного помещения используется показатель уровень интенсивности звука (L_y) , который измеряется в децибелах $(\mathbf{д}\mathbf{b})$ и записывается в следующем виде:

$$L_y = 10 \cdot \lg \left(\frac{I}{I_o}\right), [дБ]$$

где I – интенсивность звука в точке измерения, $B T/M^2$;

 $I_{\rm O}$ – интенсивность звука, соответствующая порогу слышимости, $\, {\rm BT/m}^2 \,$ $(I_{\rm O}=10^{\text{-}12}\,\,{\rm BT/m}^2).$

При расчетах и оценке звука используется *уровень звукового давления* (L_P) , который записывается в следующем виде:

$$L_P = 10 \cdot \lg \left(\frac{P}{P_o}\right)$$
, [дБ]

где P — среднеквадратичное значение звукового давления в точке измерения, Па;

 $P_{\rm O}$ — пороговая величина среднеквадратичного значения звукового давления, Па ($P_{\rm O} = 2 \cdot 10^{-5}$ Па при полном безмолвии).

Зависимость уровня звукового давления от частоты носит название спектр шума.

В практике измерения уровня звукового давления используют анализаторы шума, которые позволяют спектрограмму частот разделить на *девять октавных полос* со следующими частотными интервалами в Гц: 22,5-45; 45-90; 90-180; 180-355; 355-710; 710-1400; 1400-2800; 2800-5600; 5600-11200. В литературе для упрощения записи используют среднегеометрические частоты 31,5; 63; 125; 250; 500; 1000; 2000; 4000; 8000 Гц.

Под *октавой* следует понимать частотный интервал, отношение крайних частот которого равно двум.

В таблице 4.1 приведены примеры различных уровней звукового давления.

Таблица 4.1 **Уровни звукового давления**

Звуковое давление, дБ	Субъективная оценка	Пример			
	ничего не слышно — порог слышимости для				
0	синусоидальной волны с частотой 1 кГц	безэховая акустическая камера			
5	почти ничего не слышно	безмолвие в горах			
10	почти не слышно	шёпот, тиканье часов, тихий шелест листьев			
20	едва слышно	уровень фона на открытой местност			
30	тихо	настенные часы, мурлыканье кота			
40	хорошо слышно	тихий разговор, учреждение (офис), шум			
		кондиционера, шум телевизора в соседней			
		комнате			

50	отчётливо слышно	разговор средней громкости, тихая улица,			
		стиральная машина			
60	умеренно шумно	громкий разговор			
		разговоры на расстоянии 1 м, шум			
70	шумно	пишущей машинки, шумная улица,			
		пылесос на расстоянии 3 м			
	очень шумно	крик, мотоцикл с глушителем, шум			
80		работающего двигателя грузового			
		автомобиля			
90		громкие крики, пневматический отбойный			
	очень шумно	молоток, тяжёлый дизельный грузовик или			
		грузовой вагон			
100	крайне шумно	громкий автомобильный сигнал на			
		расстоянии, кузнечный цех			
110	крайне шумно	шум работающего трактора на расстоянии			
110		1 м, очень громкая музыка, вертолёт			
120	почти невыносимо	отбойный молоток рядом, шум на			
120	(болевой порог)	стадионе, кислородная горелка			
130	боль	сирена,			
140	травма внутреннего уха	взлёт реактивного самолёта			
160	шок, травмы, возможен	выстрел из ружья близко от уха, взрыв			
	разрыв барабанной				
	перепонки	гранаты			
170-180	травмы, длительное				
	воздействие может привести	взрыв светошумовой гранаты			
	к смерти				
L	<u> </u>				

При нормировании уровня звукового давления учитываются следующие факторы:

- вид трудовой деятельности;
- частотный интервал;
- время действия шума (за основу принято действие шума в течение 8 часов).

Нормируемыми показателями шума на рабочих местах являются:

- а) эквивалентный уровень звука за рабочую смену;
- б) максимальные уровни звука за рабочую смену;
- в) пиковый уровень звука.

Эквивалентный уровень шума — усредненный расчетный показатель уровня шума, который в течении рабочего дня оказывал бы такое же вредное действие, как фактически действовавшие на человека шумы различного уровня и продолжительности в течение того же времени.

Работы в условиях эквивалентного уровня шума более 85 дБ не допускаются.

Превышение любого нормируемого параметра считается превышением ПДУ.

При воздействии эквивалентного уровня шума в границах 80 - 85 дБА работодателю необходимо минимизировать возможные негативные последствия путем выполнения мероприятий по защите от шума:

4.2.2. Нормирование параметров инфразвука на рабочих местах

Общий уровень звукового давления инфразвука (общий уровень инфразвука): уровень звукового давления в диапазоне частот 1,4 – 20 Гц, может быть прямо измерен с помощью соответствующего полосового фильтра или получен энергетическим суммированием уровней звукового давления в октавных полосах частот 2, 4, 8, 16 Гц;

Предельно допустимые уровни инфразвука на рабочих местах, дифференцированные для различных видов работ, приведены в таблице 4.2.

Таблица 4.2. **Предельно допустимые уровни (ПДУ) инфразвука на рабочих местах**

Рабочие места, территория жилой застройки, помещения жилых и общественных зданий	Эквивалентные уровни звукового давления, дБ, в октавных полосах со среднегеометрическими частотами, Гц				Эквивалент- ный общий уровень звукового давления, дБ
	2	4	8	16	давления, дв
Работы с различной степенью тяжести					
и напряженности трудового процесса					
на рабочих местах:					
- в средствах транспорта	110	105	100	95	110
- работы различной степени тяжести	100	95	90	85	100
- работы различной степени					
интеллектуально-эмоциональной	95	90	85	80	95
напряженности					

Измерение инфразвука [1].

Для оценки инфразвука следует использовать шумомеры

интегрирующие-усредняющие, оснащенные октавными фильтрами 2 Гц - 16 Гц и микрофонами, аттестованными для измерения звукового давления в инфразвуковом диапазоне частот. Для прямого измерения общего уровня инфразвука рекомендуется применять шумомеры, оснащенные полосовым фильтром с граничными частотами от 1,4 до 22 Гц.

Время измерения должно быть не менее 100 с для стационарных процессов (например, таких, как компрессорные установки) и не менее 300 с для нестационарных процессов (например, таких, как транспортные средства при движении).

Максимальный общий уровень инфразвука определяется как энергетическая сумма уровней звукового давления в октавных полосах частот 2 - 16 Гц или прямым измерением максимального уровня звукового давления в диапазоне частот 1,4 - 22 Гц.

При измерении инфразвука следует обратить особое внимание на влияние воздушных потоков. При скорости воздушных потоков более 0,5 м/с измерения необходимо проводить с использованием ветровой защиты. При скорости воздушных потоков более 5 м/с измерения проводить не следует.

4.2.3. Нормирование параметров ультразвука на рабочих местах

Классификация ультразвуковых колебаний по способу действия на человека:

- а) *воздушный* ультразвук, который действует на человека через воздушную среду;
- б) контактный ультразвук, который действует на человека при соприкосновении рук или других частей тела человека с источником обрабатываемыми приспособлениями ультразвука, деталями, ДЛЯ ИХ удержания, жидкостями, которых распространяются ультразвуковые колебания, измерительными головками медицинских диагностических приборов и дефектоскопов промышленного назначения, излучателями

физиотерапевтической и хирургической ультразвуковой аппаратуры и так далее.

[1] Источники ультразвука ЭТО все виды ультразвукового оборудования, ультразвуковые приборы и аппаратура технологического медицинского, бытового назначения, промышленного, генерирующие ультразвуковые колебания в диапазоне частот от 11.2 кГц до 100 МГц и выше. К источникам ультразвука относится также оборудование, при эксплуатации которого ультразвуковые колебания возникают как сопутствующий фактор.

Нормируемыми параметрами воздушного ультразвука являются эквивалентные уровни звукового давления в децибелах в третьоктавных полосах со среднегеометрическими частотами 12,5; 16; 20; 25; 31,5; 40; 50; 63; 80; 100 кГц, измеренные на заданном интервале времени при работе источника ультразвука.

Предельно допустимые уровни звукового давления воздушного УЗ на рабочих местах приведены в таблице 4.3.

Таблица 4.3 Предельно допустимые уровни звукового давления воздушного ультразвука на рабочих местах

Третьоктавные полосы частот, кГц	Уровни звукового давления, дБ			
12,5	80			
16,0	90			
20,0	100			
25,0	105			
31,5 - 100,0	110			

4.3. Мероприятия по защите от шума

4.3.1. Мероприятия по защите от шума в звуковом диапазоне

Мероприятия по защите от шума звукового диапазона можно разделить на следующие группы:

- 1) строительно-планировочные мероприятия;
- 2) снижение шума в источнике возникновения;
- 3) конструктивные мероприятия;
- 4) организационно-административные мероприятия;

5) средства индивидуальной защиты (СИЗ).

Строительно-планировочные мероприятия предусматривают:

- 1) большие источники шума размещают в отдельных помещениях (машинные залы, отделения по напылению металлом, стендовые испытания турбин и двигателей);
- 2) акустическая обработка стен и потолков производственных помещений звукопоглощающими материалами. Основные материалы: волокнисто-пористые поглотители (дерево-стружечные материалы, вата, войлок); мембранные поглотители (полихлорвиниловые пленки); комбинированные поглотители(дерево, пленки, металл).

Снижение шума в источнике возникновения предусматривает:

- 1) перевод технологических операций на оборудование и процессы, в которых отсутствуют удары или они незначительны;
- 2) снижение скоростей перемещения деталей механизмов и скоростей воздушных и гидравлических потоков;
- 3) изготовление деталей механизмов из «малозвучных» сплавов и материалов;
 - 4) замена одной из соударяющихся стальных деталей на пластмассовую;
 - 5) применение принудительной смазки трущихся поверхностей;
- 6) подбор рабочего оборудования, обладающего меньшими шумовыми характеристиками.

Конструктивные мероприятия предусматривают:

- 1) установка звукоизолирующих перегородок на пути распространения шума;
- 2) применение различных объемных звукопоглотителей, устанавливаемых над источниками шума; в основу положен принцип поглощения падающей энергии звуковой волны.

Организационно-административные мероприятия предусматривают:

- 1) выбор рационального режима труда и отдыха;
- 2) планирование работы больших источников шума в такое время, когда занято минимальное количество работающих;

- 3) планирование работы больших источников шума в разное время.
- 4) информирование и обучение работающего таким режимам работы с оборудованием, которое обеспечивает минимальные уровни генерируемого шума;
- 5) использование всех необходимых технических средств (защитные экраны, кожухи, звукопоглощающие покрытия, изоляция, амортизация);
- б) ограничение продолжительности и интенсивности воздействия до уровней приемлемого риска;
 - 7) проведение производственного контроля виброакустических факторов;
- 8) ограничение доступа в рабочие зоны с уровнем шума более 80 дБА работающих, не связанных с основным технологическим процессом;
- 9) ежегодное проведение медицинских осмотров для лиц, подвергающихся шуму выше 80 дБ.

Средства индивидуальной защиты органов слуха по конструктивному исполнению подразделяются на три группы:

- 1) вкладыши, перекрывающие слуховой канал (беруши);
- 2) наушники, закрывающие ушную раковину;
- 3) шлемы, закрывающие часть головы и ушную раковину.

4.3.2. Методы и средства защиты от ультразвука

- 1. Запрещается непосредственный контакт человека с рабочей поверхностью источника ультразвука и с контактной средой во время возбуждения в ней ультразвуковых колебаний.
- 2 Увеличение расстояния от источника ультразвука до рабочего места; использование дистанционного управления источниками ультразвука.
- 3. Использование автоблокировки (автоматическое отключение источников ультразвука при выполнении вспомогательных операций.
- 4. Применение приспособлений для удержания источника ультразвука или предметов, которые могут служить в качестве твердой контактной среды.

- 5. Применение нарукавников, рукавиц или перчаток для защиты рук от неблагоприятного воздействия контактного ультразвука в твердых, жидких, газообразных средах.
 - 6. Применение защитных экранов и звукоизолирующих кабин.
- 7. Применение защитных кожухов, облицованных изнутри материалами на основе резины, при этом обязательна установка на кожухе защитных блокировок, отключающих оборудование при снятии кожуха.
 - 8. Ограничение времени пребывания в опасной зоне;
 - 9. Применение средств индивидуальной защиты.

4.3.3. Методы и средства защиты от инфразвука [1]

Снижение интенсивности инфразвука, генерируемого технологическими процессами и оборудованием, необходимо осуществлять за счет применения комплекса мероприятий, включающих:

- 1. Ослабление мощности инфразвука в источнике его образования на стадии проектирования, конструирования, проработки архитектурнопланировочных решений, компоновки помещений и расстановки оборудования;
 - 2. Изоляция источников инфразвука в отдельных помещениях.
- 3. Увеличение расстояния от источника инфразвука до рабочего места; использование дистанционного управления источниками инфразвука.
- 4. Уменьшение интенсивности инфразвука в источнике путем введения в технологические цепочки специальных демпфирующих устройств малых линейных размеров, перераспределяющих спектральный состав инфразвуковых колебаний в область более высоких частот.
- 5. Укрытие оборудования кожухами, имеющими повышенную звукоизоляцию в области инфразвуковых частот.
 - 6. Увеличение массы и жесткости оборудования.
- 7. Увеличение частоты до значения выше 20 Гц, т.е. перевод в слышимую область и применение средств защиты от шума.

Дополнительная литература

1. СанПиН 2.2.4.3359-16 «Санитарно-эпидемиологические требования к физическим факторам на рабочих местах»