1. W3114-01

CYCLIC AMINE DERIVATIVE

Patent number:

JP1079151

Publication date:

1989-03-24

Inventor:

SUGIMOTO HACHIRO; TSUCHIYA YUTAKA; HIGURE KUNIZO: KARIBE NORIO: IIMURA YOICHI; SASAKI ATSUSHI; YAMANISHI YOSHIHARU; OGURA HIROO; ARAKI SHIN; OZASA TAKASHI; KUBOTA ATSUHIKO;

OZASA MICHIKO; YAMATSU KIYOMI

Applicants

EISAI CO LTD

Classifications

- international:

A61K31/40; A61K31/445; A61K31/495; A61K31/50; A61K31/505; A61K31/55; C07D207/09; C07D211/18; C07D211/32; C07D211/94; C07D295/10; C07D401/06; C07D401/12; C07D405/06; C07D405/12; A61K31/40; A81K31/445; A61K31/495; A61K31/50; A61K31/505; A61K31/55; C07D207/00; C07D211/00; C07D295/00; C87D401/00; C87D405/00; (IPC1-7): A61K31/40; A61K31/445; A61K31/495; A61K31/50; A61K31/505; A61K31/55; C07D207/09; C07D211/18; C07D211/32; C07D211/94; C07D295/10; C07D401/06; C07D401/12;

C07D405/06; C07D405/12

- european:

Application number: JP19880153852 19880622

Priority number(s): JP19880153852 19880622; JP19870155058 19870622

Report a data error here

Abstract of JP1079151

NEW MATERIAL:The compound of formula LIJ is phenylpyridyl, pyrazyl, indanyl, indanonyl, univalent group derived from cyclic amide or alkyl; B is group of formula II-IV (n is 0-10; R<2> is H or methyl; R<3> is H, alkyl, acylphenyl, etc.; R<4> is H, alkyl or phenyl), etc.; T is N or C; Q is T or N O; K is H, phenyl, aryleikyl, eikyl, pyridylmethyl, etc.; q is 1-3] and its salt. EXAMPLE:1-Benzyl-4-((5,6-dimethoxy-1-indanon)-2-yl) methylpiperidine. USE:lt has strong and highly selective anti-accitylcholine esterase activity and is useful as a preventive and remedy for senile dementia. PREPARATION:A compound of formula I wherein 8 is group of formula IV can be produced e.g., by reacting an acid halide of formula V (Hal is halogen) with a cyclic amine derivative of formula VI in the presence of a sait-removing agent.

Data supplied from the esp@cenet database - Worldwide

⑩ 日本 国特 許 庁 (IP)

印特許出題公開

@ 公開特許公報(A)

FE64 - 79151

Mint Cl.

識別記号

广内黎理番号

多公開 昭和64年(1989) 3 月 24日

G 07 D 211/32 207/09 211/18

6761-4C 7242−4Č 6761−4C<u>Ж</u>

審査請求 未請求 請求項の数 22 (全57頁)

の発明の名称 環状アミン誘導体

> (2) 神 FE 5E 63-153852

爾 昭63(1988)6月22日

毎昭62(1987) 5月22日毎日本(JP)の特額 昭62-155058 優先權主張

(R) \$ F 3.X

憗 Ž 八郎 茨城県牛久市柏田町3073-13

(P) 38 2

25 سينت 33.

**

灰城県牛久市栄町2-35-16

@**`** 333 2 鄠

(P) 3% 8,8 442. 453 33 #8 80 夫 茨城県つくば市春日4-19-13 エーザイ禁山祭 茨城県つくば市春日4-19-13 エーザイ禁山寮

漤 *** **沙菜** 83 ** -88 耋 춦 27 木 蓬

8

茨城県つくば市天久保2-23-5 メソン学圏103

(D) 334 833 **** 33 32 1

茨城県つくば市春日4-19-13 エーザイ紫山窟

OH: エーザイ株式会社 **35** À

茨城県竜ケ崎市松業3-2-4 東京都文京区小石川4丁目6番10号

69代 理 人 分理士 古谷

最終質に統く

88 100

発明の名称

環状アミン鎮導体

- 特許請求の範囲
- 夜の一般式

(或)中。

Jは倒覆接着しくは無置換の次に示す器;① フェニル器、②ビリジル器、③ビラジル器、④ キノリル器、@シクロヘキシル器、@キノギサ リル蕃又はのフリル蕃、

出フュニル基が置換されていてもよい次の群 から選択された一個又は二個の基(①インダニ ル、@インダノニル、◎インデニル、@インデ ノニル、悩インダンジオエル、⑪チトラロニル。 ②ペンズスペロエル、@インダメリル。@式

(2)環状アミド化合物から誘導される一部の基。 伽藍級アルキル器。又は

侧式 B'-CH=CH-(式中、B' 法水器原子又は低 級アルコキシカルボニル基を意味する) で示される器を意味する。

で示される祭、武 -\$-((3)。- (式中、2)は永毅

原子、無機アルキル基、アシル器。低級アルキ ルスルホニル藩、置後されてもよいフェニル系 又はベンジル器を意味する)で示される器、式

ル蒸又はフェニル基を意味する) で示される薬、

で示される蒸、式-8-C-38-(CB)。-で示される基。 3,

武-88-5-(CB)。- で示される基、式-CB--CB-88-(CB)。-

で来される蒸、金-(CHs)3-CD-88-(CH)。-で示さ

ps れる器、式-CH-(CH),-で示される器(以上の式

中、 nは 0 又は 1 ~10の整数を数味する。 P*は 式 ~(CH)。- で示されるアルキレン器が置接器を 3*

特たないか、又は (つ又は)つ以上のメチル基を省しているような形で水器原子又はメチル基を意味する。)、式 = (CH-CH-CH)。- (式中、 bは) ~ 3の整数を意味する)で示される基、式 = (CH-(CH))。- (式中、 cは 0 又は 1 ~ 9 の整数を整味する)で示される基、式 e(th-CH))。 (式中、 dは 0 又は 1 ~ 5 の整数を整味する)で示され

味する。

9は1~3の整数を繁味する。

で表される環状でミン誘導体及びその薬理学的に許容できる塩。

- ② 」が整数密しくは無置数の①フェニル基、② どりジル基、③ビラジル基、④キノリル基、⑤ シクロヘキシル基、⑥キノキサリル基又は⑦フ りル基から選択された一つの基である請求項目 記載の議状でくン誘導体又はその薬理学的に許 空できる塩。
- 3 Jが環状でミド化合物から誘導される一個の 基である請求項目記載の選択でミン誘導体又は その薬理学的に許容できる塩。

《 一般式

(武学。

で示される基、式 -CH=CH-C-NH-(CH₀), で示される基、式 -NH- で示される基、式 -N-で示される基、式 -N-で示される基、ジアルキルアミノアルキルカルボニル無又は低級アルコキシカルボニル級を意味する。

では窓塞原子又は幾塞原子を意味する。

日は密条原子、炭素原子又は玄 ○8→0 で ボされる基を意味する。

Kは水素原子、羅検若しくは無置換のフェニル基、フェニル基が置換されてもよいアリールアルキル基、フェニル基が置換されてもよいシンナミル基、低級アルキル基、ビリグルメテル基、シクロアルキルアルキル系、アグマンタンメチル基、フリルメテル基、シクロアルキル系、低級アルコキシカルボニル蒸又はアシル基を意

がはフェニル基が変換されていてもよい次の 群から選択された一個又は二級の基:①インダ ニル、②インダノニル、③インデニル、⑥イン デノニル、⑤インダンジオニル、⑥テトラロニ ル、⑦ベンズスペロニル、⑥インダノリル、⑤

で示される器、式 -8-(EH)。- (式中、8°は水業 8°

順子、低級アルキル基、アシル基、低級アルキ ルスルホニル基、魔機されてもよいフェニル基 又はペンジル基を意味する)で示される基、式

ル基又はフェニル器を意味する)で示される基。

★-CH-CH-(CH),-で赤される裏、式-O-C-O-(CH),-8²

で示される器、式-9-C-98-(CH)。-で示される器。 。。

式-NH-C-(CH),-で示される器、式-CH2-CO-NH-(CH)。-は2

で示される墓、式-(CH,),-CO-NH-(CH),-で示さ

中、 aは 3 又は 1 ~10の整数を放映する。 R*は 式 ~(CH)。- で示されるアルキレン器が顕換器を R*

特たないか、又は1つ又は1つ以上のメテル基を有しているような形で水素原子又はメテル基を意味する。)、式 *(CH-CH-CH)、(式中、 bは1~3の整数を意味する)で示される基、式=CH-(CH₂)。(式中、 cは0又は1~9の整数を

メチル基、フリルメチル基、シタコアルキル基、 仮級アルコキシカルポニル基又はアシル基を置 味する。

まは1~3の整数を意味する。

で表される選択でくン誘導体及びその裏理学的に許容できる出。

5 8が式 -(CF),- (式中、 nは B 又は 1 ~10の

整数を意味する。8°は式 -(CH)。-で示されるア

ルキレン器が製液基を持たないか、又は1つ又は1つ以上のメチル器を有しているような形で水素原子又はメチル器を意味する。)で示される器、式=(CH-CH-CH-)-(式中、cは0又は1~9の整数を意味する)で示される器又は式=(CH-CH)-(式中、dは0又は1~5の整数を意味する)で示される器で

数味する)で示される器、式=(CH-CH)_x=(式中、
dは0又は1~5の整数を意味する)で示され

で示される器、式 -CH-CH-E-NH-(CN。)、で示される器、式 -NH- で示される器、式 -0-で示される器、式 -0-で示される器、以 アルキルアミノアルキルカルボニル器又は低級アルコキシカルボニル器を意味する。

では放棄原子又は炭素原子を放映する。

※は水素原子、魔検若しくは無魔検のフェニル薬、フェニル基が魔検されてもよいアリールアルキル薬、フェニル基が魔検されてもよいシンナミル薬、低級アルキル薬、ビリジルメテル 紙、シクロアルキルアルキル薬、アグマンタン

ある請求項 4 記載の選択で:ン誘導体又はその 変理学的に許容できる塩。

5 - \$3 FX

(武帝。

がはフェニル基が覆換されていてもよい次の 群から選択された一番又は二倍の基:①インダ ニル、②インダノニル、②インデニル、③イン デノニル、⑤インダンジオニル、⑥テトラロニ ル、①ベンズスベロニル、⑥インダノリル、⑤

8 位式 - (C8) - (文中、 s は 0 又は 1 ~ 10の 8*

製数を意味する。8°は式 -(CH)。-で示されるア

ルキレン器が置換器を持たないか、又は1つ又 は1つ以上のメチル器を寄しているような形で 水素原子又はメチル基を意味する。)で示される基、式=(CH-CH=CH)。- (式中、bは 1 ~ 3 の整数を意味する)で示される基、式=CH-(CH,)。- (式中、cは 0 又は 1 ~ 9 の整数を意味する)で示される基又は式=(CH-CH)。= (式中、 dは 0 又は 1 ~ 5 の参数を意味する)で示される基、

*は水素原子、置換若しくは無置換のフェニル基、フェニル基が置換されてもよいアリールアルキル基、フェニル基が置換されてもよいシンナミル基、仮級アルキル基、ピリジルメテル基、シクロアルキルアルキル基、アダマンタンメチル基、フリルメチル基、シクロアルキル基、低級アルコキシカルボニル基又はアシル基を激味する。〕

で表される選択でミン語事体又はその薬理学的に許容できる返。

- ? Kが置換若しくは無置換のアリールアルキル 基又はフェニル基である請求項 6 記載の環状ア まン誘導体又はその業理学的に許容できる迄。
- 8 デがインダノニルから誘導される一個又は二
- 18 化合物が1ーベンジルー4ー((f.fーメチレンジオキシー1ーインダノン)ー2ーイル)メチルビベリジンである請求項1記録の環状でミン誘導体又はその養理学的に許容できる塩。
- 14 化合物が1ー (mーニトロベンジル)ー4ー ((5,6ージメトキシー1ーインダノン)ー2ー イル)メチルビベリジンである請求項1起載の 選載するン誘導体又はその薬理学的に許容できる塩。
- 15 化合物が1ーシクロへキシルメチルー4ー ((5,8ージメトキシー1ーインダノン)ー2ー イル)メチルビベリジンである請求項1記載の 議款アミン誘導体又はその薬理学的に許容できる返。
- 18 化合物が1- (ローフルオロペンジル)-4 - ((5.8-ジメトキシー1-イングノン)-2 -イル)メテルビペリジンである請求項1記載 の選択てい誘導体又はその薬理学的に許容できる塩。
- 17 化合物が1ーペンジルー4ー ((5,8-ジメト

価の蓋、インデニル又はインダンジオニルから 選択された一つの蓋である請求項8又は『記載 の環状アミン誘導体又はその薬理学的に許容で きる塩。

- 9 化会物が1ーベンジルー4ー((5.6ージメト キシー1ーインダノン)ー2ーイル)メテルピ ベリジンである請求項1配数の選択アミン誘導 体又はその業理学的に許容できる案。
- 10 化合物が1ーペンジルー4ー((5,5ージメト キシー1ーイングノン)ー2ーイリデニル)メ チルピペリジンである請求項1記数の選状でも ン誘導体又はその薬理学的に許容できる塩。
- 11 化合物が1ーベンジルー4ー ((5ーメトキンー1ーインダノン)ー2ーイル)メチルビベリジンである請求項1記載の選択すると誘導体又はその薬理学的に許容できる塩。
- 12 化合物が1ーベンジルー4ー ((5,6ージメト キシー1ーインダノン)ー2ーイル)メテルビ ペリジンである請求項1犯数の選択アミン誘導 体又はその変理学的に許容できる塩。

キシー1ーインダノン)ー2ーイル)プロビル ピペリジンである鏡求項] 組数の環状でミン誘 導体又はその薬理学的に許容できる塩。

- 18 化合物が1ーベンジルー4ー((5ーイソブロボキシー8ーメトキシー1ーインダノン)ー2ーイル)メテルビベリジンである請求項[記載の環状アミン誘導体又はその薬理学的に許容できる塩。
- 18 化合物が1ーペンジルー4ー ((5.6ージメト キャー1ーオキソインダノン)ー2ーイル)ブ ロペニルピペリジンである請求項1紀数の遂状 アミン誘導体又はその薬理学的に許容できる塩。
- 20 次の一般式

(武学、

Jは(8) 置換若しくは無置換の次に示す器:①
フェニル器、②ビリジル器、③ビラジル器、④
キノリル器、③シクロヘキシル器、③キノキサ

リル基又はのフリル基。

おフェニル基が置換されていてもよい次の群から選択された一倍又は二倍の器;①インダニル、②インデニル、③インデニル、③インデニル、③インデニル、

のインダンジオニル、

のインズスペロニル、

のインダノリル、

のズ

(の最大アミド化合物から誘導される一個の基、 個低級アルキル基、又は

(0)式 81-CH=CH-(出中、81は水参原子又は低級アルコキシカルポニル基を意味する)で示される器を意味する。

で示される※、全一8-((別)。- (式中、8°は水業)

原子、低級アルキル器、アシル器、低級アルキ

特たないか、又は1つ又は1つ以上のメチル基を有しているような形で水素原子又はメチル基を意味する。)、式 =(CH-CH-CH)。-(式中。 bは1~3の整数を意味する)で示される基、式=CH-(CH₂)。-(式中、 cは8又は1~9の整数を 意味する)で示される基、式=(CH-CH)。-(式中、 dは8又は1~5の整数を

で示される器、式 -CH=CH-C-NH-(CH₀)₃-で示される器、式 -NH- で示される器、式 -N-で示される器、 ジアルキルアミ れる器、式 -N-で示される器、ジアルキルアミ ノアルキルカルボニル器又は低級アルコキシカ ルボニル器を意味する。

Tは窒素原子又は炭素原子を意味する。

6は需要原子、従業原子又は式 → 8→0 で 所される基を意味する。 ルスルホエル基、置換されてもよいフェニル基 又はベンジル基を意味する)で示される基、式

ル基又はフェニル基を意味する)で示される無、

で示される器、式-G-C-88-(CH)。-で示される器、 **

で示される基。式-(CNs)s-CO-NH-(CN)s-で示さ R*

中、のは () 又は () ~(()の整数を意味する。() () 式 ~(CH) ×~で示されるアルキレン基が置換器を ***

《は水素原子、置換若しくは無置換のフェニル基、フェニル基が置換されてもよいアリールアルキル基、フェニル基が置換されてもよいシンナミル基、低級アルキル基、ビリジルメテル基、シクロアルキルアルキル基、アグマンタンメテル基、フリルメテル基、シクロアルキル基、低級アルコキシカルボニル基又はアシル基を登録する。

qは1~3の整数を意味する。

で表される環状アミン誘導体及びその素度学的 に許容できる塩を有効成分とするアセチルコリ ンエステラーが阻害剤。

- 21 次の一般式

(黑坤、

Jは国置換若しくは無置換の次に示す器:①

フェニル器、②ビリジル器、③ビラジル器、④ キノリル器、⑤シクロヘキシル器、⑥キノキサ リル器又は⑦フリル器。

⊗フェニル器が墜後されていてもよい次の群から選択された一無又は二倍の器;①インダニル、のインダノニル、のインチニル、例インデノニル、のインダンジオニル、のテトラロニル、のベンズスベロニル、のインダノリル、の式

(c)強伏アミド化合物から誘導される一個の基。 幼低級アルキル器、又は

例式 81-C8-C8- (式中、81は水業原子又は版 級アルコキンカルポニル基を意味する) で示される基を意味する。

で示される器。式 -N-(CH)。- (式中、R*は水業

式 -{Cii},-で示されるアルキレン器が置後基を g:

特たないか、又は1つ又は1つ以上のメテル基を有しているような形で水楽原子又はメテル基を意味する。)、式 = (CR-CH=CR)。- (式中、 bは1~3の姿数を意味する)で示される基、式 = (CR-(CR))。- (式中、 cは0又は1~9の変数を意味する)で示される基、式 = (CR-CR)。- (式中、 fix 0 又は1~5の整数を意味する)で示され

る案、女 -C-CH=CH-CH,-で示される器、式 CH: -C-CH;-CH-CH;-で示される器、式-CH-C-NH-CH:-

で示される器、式 -CH=CH-C-NH-(CHs) s-で示される器、式 -NH- で示される器、式 -N-で示される器、式 -N-で示される器、ジアルキルアミノアルキルカルボニル器又は低級アルコキシカルボニル器を意味する。

『は靈霧原子又は炭素原子を意味する。

原子、低級アルキル基、アンル基、低級アルキ ルスルホニル基、置接されてもよいフェニル基 又はベンジル器を意味する)で示される器、式

ル茶又はフェニル茶を煮味する)で示される器。

で示される裏、式-8-C-88-(CB)。-で示される基、

で添きれる墓、式-((33))-(0-88-((8))-で示き

38

れる器、式-cs-(cs),-で示される器 (以上のま

中、 nは①又は1~10の整数を意味する。形は

Kは水素原子、置換若しくは無置換のフェニル基、フェニル基が置換されてもよいアリールアルキル基、フェニル基が置換されてもよいシンナミル基、低級アルキル基、ビリジルメデル基、シクロアルキルインタンメテル基、フリルメテル基、シクロアルキル基、任級アルコキシカルポニル基又はアシル基を意味する。

□は1~3の整数を放映する。

で表される選択でもン議事体及びその薬理学的 に許容できる塩を有効政分とする各種老人性類 異症治療・予防制。

- 22 各種老人性痴呆症がアルフハイマー型差年痴 呆である酵素項21記載の治療・予防剤。
- 3. 発明の詳細な誤明

(産業上の利用分野)

本務明は、医薬として優れた作用を育する新 援選状でミン誘導体に関する。

(発明に至る背景及び世来技術)

差年人口が急激に増大する中で、アルツハイ マー型主年商品などの老年商品の治療法を確立 することが高望されている。

しかしながら、現在のところ、老年痴呆を薬 物で治療するほみは覆々なされているが、これ らの疾患に根本的に有効とされる薬剤は今のと ころ存在しない。

これらの疾患の治療薬の開発は覆々の方向か る研究されているが、有力な方向としてアルツ ハイマー型差年商業は、脳のコリン作動性機能 返下を伴うことから、アセチルコリン前駆物質。 アセチルコリンニステラーを観客期の方向から 開発することが登案され、実際にも試みられて いる。代表的なものとして、抗コリンエステラ - ゼ阻害剤として、フィゾスチグミン、テトラ ヒアロアミノアクリジンなどがあるが、これら の異額は効果が十分でない、好ましくない劉作

用があるなどの欠点を有しており、決定的な治 療薬はないのが現状である。

そこで本義明者らは、作用持続時間が長く、 安全性が高い薬剤を開発すべく、基準にわたっ で確々の化合物について疑惑研究を置ねてきた。

その結果、後で述べる一般式(I)で示され る選択でミン部隊はが、所期の目的を選するこ とが可能であることを見出した。

具体的には下紀の機造式([)で表される本 発明化合物は、強力かつ選択性の高い抗アセチ ルコリンエステラーゼ活性を寄し、脳内のアセ チルコリンを増置すること、記憶障害モデルで 有効であること、及び逆来この分野で汎用され ているフィブスチグミンと比較し、作用持統時 開が盛く、安全性が高いという大きな特徴を有 しており、本発明の価値は概めて高い。

本発明化合物は、アセチルコリンエステラー ゼ盟客作用に基づいて見出されたもので、従っ で中枢独コリン機能、即ち神経伝達物質として のアセチルコリンの生体内の欠乏が原因ときれ

る機々の疾患の治療・予防に有効である。

代差的なものとしては、アルツハイマー型者 年施泉に代表される各種痴呆があるが、そのほ かハンチントン舞踏病、ビック病、軟発性運動 異常用などを挙げることができる。

辞って、本発明の目的は、医薬としてとりわ け中枢神経系の疾患の治療・予防に有効な新規 護状プミン誘導体を提供すること、この新環境 状アミン誘導体の製造方法を提供すること、及 びそれを有効並分とする医薬を提供することで ある。

[発明の構成及び効果]

本発明の目的化合物は、次の一般式(1)で 差される環状アミン誘導体及びその薬理学的に 許容できる地である。

(武学、

Jは図遊後若しくは無**要後の次に示す器**(①

フェニル基、図ビリクル器、図ビラジル器、図 キノリル器、恋シクロヘキシル器、恋キノキサ リル基又は②フリル蒸、

似フェニル基が置後されていてもよい次の群 かる選択された一個又は二個の器; ①インダニ ル、のインダノニル、Oインダニル、@インデ ノニル、⑤インダンジオニル、⑥テトラロニル。 のペンズスペロニル、@インダノリル、@式

出資設でよど化合物から誘導される一個の基。 伽佐級アルキル器。又は

创建 81-CH=CH-(武中、81 は水素原于又は低 綴アルコキシカルボニル器を憲法する) で示される基を放映する。

で示される器。式 - 8-(09)*- (武中、8°は水業

原子、医数アルキル茶、アシル基、医数アルキルスルホニル基、選換されてもよいフェニル基 又はベンタル器を無味する)で示される葉、式

-C-8-(CH)。-(近中、8*は水業原子、低級アルキョ***。

ル蒸又はフェニル器を意味する)で示される器、

式-CH-CH-(CH),-で赤きれる基、式-G-C-G-(CH),g:

で派される器、式-0-C-XB-(CB)。で派される器、 g^2

で示される釜、改-(68,),-68-88-(68),-で示さ

0H れる器、式-CH-(CH)。で示される器 (以上の式

『は窒素原子又は炭素原子を意味する。 『は窒素原子、炭素原子又は玄 _ ¾→0 で 元される基を意味する。

※は水無原子、整独若しくは無置換のフェニル器、フェニル器が置換されてもよいアリールアルキル器、フェニル器が覆換されてもよいシンナミル器、低級アルキル器、ビリジルメテル器、シクロアルキルアルキル器、アグマンタンメチル器、フリルメテル器、シクロアルキル器、低級アルコキシカルボニル器又はアシル基を整定する。

9は1~3の要数を意味する。

本発明化合物(1)における上配の定義において、3,8,8% にみられる低級アルキル基とは、浚業数1~8の直線もしくは分校状のアルキル基、例えばメテル基。エテル基、プロビル基、イソプロビル基、ブテル基、イソブモル基:
sec ープテル基、tectープテル基、ベンチル基

中、 nは0又は1~10の整数を意味する。8°は 式~(CH)。で示されるアルキレン器が置接器を 。。

特たないか、又は1つ又は1つ以上のメチル器を有しているような形で水紫原子又はメチル経を意味する。)、式 *(C8-C6*(C8))。-(式中、 bは1~3の整数を意味する)で示される器、式=C8-(C8))。-(式中、 cは8又は1~9の整数を意味する)で示される器、式=(C8-C8))。-(式中、 dは0又は1~5の整数を意味する)で示される

で示される基、式 -CH=CH-C-NH-(CHs)s-で示される基、式 -NH- で示される基、式 -N-で示される基、式 -N-で示される基、式 -N-で示される基、ヴァルキルアミノアルキルカルボニル基又は低級アルコキシカルボニル基を素味する。

《アミル器》。イソペンチル器、ネオペンチル 蓋、tertーペンチル蒸、1ーメチルブテル蒸、 2ーメチルブチル器。1.2 ージメチルプロビル 蓋、ヘキシル蓋。イソヘキシル蓋。1ーメチル ペンチル器、ミーメチルペンチル器、ミーメチ ルベンチル器、1.1 ージメチルブチル器、1.2 ージメチルブテル器、3,2 ージメチルブテル器。 - 1.3 ージメテルブテル器、2.3 ージメテルブチ ル基、3.3 ージメチルブチル基、 1ーエチルブ チル蓋、2ーエチルブチル器、1.1.2 ーとリメ チルプコピル器、1,2,2 ートリメチルプロビル 蓋。] ーエチルー [ーメチルプロビル蓋。] ー エチルーミーメチルプロビル器などを意味する。 これらのうち好ましい慈としては、メテル基、 エチル器、プロビル器、インプロビル器などを 挙げることができ、最も好きしいものはメテル 悪である。

Jにおける「置換もしくは無置換の次に示す 器:①フェニル基、②ビリジル基、③ビラジル 紙、③キノリル基、⑤シクロヘキシル基、⑥キ

ノキサリル蒸又は②フリル基」という定義にお いて、置後盆としては、メデル器、エチル器。 カープロビル盆、イソプロビル蓋、カープチル 蓄、イソプチル蓋、tertープチル基などの炭素 数~~8の低級アルキル蒸;メトキン蒸、エト キシ基など上記の低級アルキル基に対応する低 級アルコキン器;ニトロ器:塩湯、異素、ファ 業などのハロゲントカルボキシル器;メトキシ カルポニル器、エトキシカルポニル器、イソブ ロボキシカルボニル器、カープロボキシカルボ エル墓、カーブチロキシカルポコル蓋など、上 犯の妊娠アルコキシ基に対応する低級アルコキ シカルポニル蒸くでミノ蒸りモノ低級アルキル アミス蒸くび延級アルキルアミノ蒸しカルバモ イル盤しアセテルアミノ盔。プロピオエルアモ ノ蒸、ブチリルアミノ蓋、イソブチリルアミノ 蓋、バレリルアミノ蓋、ビバロイルアミノ蓋な ど、炭素数1~6の脂肪族飽和モノカルギン酸 から誘導されるアシルアミノ第1シクロペキシ ルオキシカルボニル差などのシクロアルキルオ

キシカルボニル墓;メテルアミノカルボニル墓、 エチルアミノカルボニル墓などの飯様アルキル アミノカルボニル器;メテルカルボニルオキシ 墓、エチルカルボニルオキシ墓。カープロビル カルボニルオキシ墓など前配に定義した篋様ア ルキル裏に対応する巡線アルキルカルボニルオ キシ墓;トリフルオロメテル墓などに伐表され るハロゲン化鑑板アルキル塞;水酸蓋;ホルミ ル塞;エトキシメテル器、メトキシメチル器。 メトキシエチル器などの鑑板アルコキシ循級ア ルキル器などを挙げることができる。上記の置 機器の微弱において、「ਿ級アルキル器」、

「低級アルコキシ基」とは、約記の定義から派 生する基をすべて含むものとする。凝換器は同 一又は異なる1~3個で置換されていてもよい。 更にフェニル器の場合は、次の如き場合も翼 換されたフェニル器に含まれるものとする。即

5. (J-6-⁴) vana**s*******

0 (式中、6 は玄-C- で示される第. **式-O-**C- で

示される基、式-B- で示される基、式-CH₂-NH-Ĉ-で示される基、式-CH₂-O- で示される基、式 -CH₂-SB₂- で示される基、式-CH-で示される基

又は宝-CH。-S- で示される器を意味する。 Bは 炭素原子又は窒素原子を意味する。

これらのうち、フェニル器に好ましい置換器 としては、返認アルキル器、医級アルコキシ基、 エトロ器、ハロゲン化医級アルキル器、医級ア ルコキシカルボニル器、ホルミル器、水製器、 医級アルコキシ医級アルキル器、ハロゲン、ペ ンソイル器、ペンジルスルホニル器などを挙げ ることができ、置換器は同一又は相翼なって2 つ以上でもよい。

どりジル器に好ましい器としては、極級アルキル器、アミノ器、ハロゲン原子などを挙げることができる。

ビラジル器に好ましい基としては、低級アルコキシカルボニル器、カルボキシル器、アシルアミノ器、カルバモイル器、シクロアルキルオキシカルボニル器などを挙げることができる。

また。」としてのビリジル器は、2ービリジル器、3ービリジル器又は4ービリジル器が譲ましく、ビラジル器は2ービラジル器が選ましく、キノリル器は2ーキノリル器が設ましく、キノキサリル器は2ーキノキサリル器又は3ーキノキサリル器は2ーフリル器が築ましい。

Jの定義において、例グループに記載されている①~⑨について、その代表例を示せば以下のとおりである。

値の器の例である。すなわち JBの①のインダ ノニルから誘導される代表的な三倍の器である。

Jの定義において、環状アミド化合物から誘導される一個の基とは、例えばキナゾロン、テトラハイドロイソキノリンーオン、テトラハイドロベングアゼピンーオン、ヘキサハイドロベングアグシーオンなどを挙げることができるが、網藻式中に選択アミドが存在すればよく、これらのみに限定されない。単議もしくは結合ヘテロ議としては、フェニル議との稽合ヘテロ議としては、フェニル議との稽合ヘテロ議としては、フェニル議との稽合ヘテロ議が好ましい。この場合、フェニル議とは従業数1~6の伝級アルキル基、好ましくはメテル系、流業数1~6の伝級アルコキン基、計ましくはメトキン基あるいはハロゲン原子によって置換されていてもよい。

舒ましい例を挙げれば次の通りである。

上記一連の式において、 (は D 又は 1 ー 4 の 整数を意味し、 3 は 同一又は 相異なる 前記した J (A)の定義における 置換器のうち 1 つ又は水素 原子を意味するが、 舒幸しくは水素原子 (無證 (無)、 医級アルキル 蒸又は 医級アルコキン 基を あげることができる。 更に、 フェニル 場の飾り あう提業間でメチレンジオキシ基、 エチレンジ オキン基などのアルキレンジオキシ基で置換き れていてもよい。

これらのうち最も好ましい場合は、無密接着 しくはメトキシ基が1~3個服接されている場 合である。

なお、主総のインダノリデニルは 1銭の定義 におけるフェニル器が置換されていてもよい二

上記の式中で、式(i)、(l) における Yは水素原子又は低級アルキル基を意味し、式(x) における Yは水素原子又は低級アルコキシ基、式(x)、(n) におけるN'、N° は水素原子、低級アルキル基、低級アルコキシ基、N°は水素原子又は低級アルキル基を意味する。

なお、式(j)、(l) において、右側の路は7員 銀であり、式(k) において右側の路は8員後で ある。

Jの上記の定義のうち最も終ましいものは、 フェニル選が服務されてもよいインダノンから 誘導される一個の蒸、適材アミド化合物から誘 導される一個の基である。

Bの定義において、式 - (CH) - で示される基 g2

は、8°か水素原子である場合は全-(EBs)、-で表

※の定義における「置換又は無置換のフェニル基」、「置換もしくは無置換のアリールアルキル基」において、置換基は前記の Jの定義において(3)の①~②において定義されたものと同一のものである。

アリールアルキル基とは、フェニル場が上記 の置換基で整換されるか、無整換のペンジル基。 フェネチル基などを意味する。

ピリジルメテル器とは異体的には、2一ピリ ジルメチル器、3ーピリジルメテル器、4一ピ リジルメチル器などを挙げることができる。

Kについては、フェニル基が置換されてもよ いアリールアルキル基、置換若しくは無置換の フェニル基、フェニル基が置換されてもよいシ ンナミル基が最も好ましい。

好ましいアリールアルキル基は、具体的には

され、更にアルキレン絵のいずれかの炭素原子に1つ又はそれ以上のメテル基が結合していて もよいことを意味する。この場合、好ましくは sは1~3である。

また、5の一連の基において、基内にアミド 基を有する場合も針ましい系の一つである。

更に好ましい基としては、式=(CH-CH=CH)。(式中、もは1~3の整数を意味する)で示される基、式=CH-(CH。)。-(式中、 cは3又は1~
9の整数を意味する)で示される基、式=(CH-CH)。=
(式中、 dは3又は1~5の整数を意味する)
で示される基、式 -##- で示される基、式 -6で示される基又は式 -5-で示される基をあげる
ことができる。

例えばペンジル基、フェネチル基などをいい。 これらはフェニル基が炭素数 1 ~ 6 の仮縁アル コキレ基、炭素数 1 ~ 6 の後級アルキル基、水 酸基などで緩慢されていてもよい。

一一は単結合もしくは二重結合を放除する。 二重結合である場合の例をあげれば、上記で並 べたフェニル器が置換されてもよいインダノン から誘導される二個の器の場合、すなわちイン ダノリデニル器である場合をあげることができ ス

本発明において、要理学的に許容できる塩とは、例えば塩酸塩、硫酸塩、臭化水素酸塩、燥酸塩などの無機酸塩、燃酸塩、酢酸塩、トリフルオロ酸酸、マレイン酸塩、活石酸塩、メタンスルカン酸塩、ベンゼンスルホン酸塩、トルエンスルホン酸塩などの有機酸塩を挙げることができる。

また覆後器の選択によっては、例えばナトリ カム塩、カリウム塩などのアルカリ金属塩、カ ルシウム塩、マグネシウム塩のようなアルカリ 土類金属塩、トリメチルアミン塩、トリエチルアミン塩、ビリジン塩、ピコリン塩、ジシクロヘキシルアミン塩、N.N ージベンジルエチレンジアミン塩などの有級アミン塩、アンモエウム 塩などを形成する場合もある。

なお、本発明化合物は、**変換器の複類によっ** ては不容数素を有し、光学異性体が存在しうる か、これらは本発明の範囲に属することはいう までもない。

これらの定義を総合して特に好ましい化合物 群をあげれば次のとおりである。

(式中、J'はフェニル基が置換されていてもよい次の詳から選択された一個又は二個の基; €

舒ましい場合はメトキシ基が3置換となっている場合である。

(A) 式に含まれる化合物の中で変に好ましい 化合物群としては、次の一般式で表される化合 物(8) をあげることができる。

(式中、3:はフェニル基が服施されていてもよい次の群から選択された一個又は三個の基:①インダニル、②インダノニル、③インデニル、②チンデノニル、②チングンジオニル、②チン

ॐ ₀

B' (4式 -(CB) - (式中、 5 14 8 又 14 1 ~ 15 00

数を旅味する。ヌ゚は式 -(CB)。-で示されるア □ インダニル、②インダノニル、②インデニル、 ②インデノニル、②インダンジオニル、③チト ラロニル、①ベンズスベロニル、③インダリリ

8.

8.7.2.q. K は前記と同様の意味を有する。) で表される異核でくン又は蒸選学的に許容できる塩。

上記のパの定義中、最も好ましい基としては、フェニル基が置換されていてもよいインダノニル基、インダンリデニル基、インダノリデニル基をあげることができる。また、この場合、フェニル基は最後されていないか、同一又は相異なる水酸基、ハロゲン、低級アルコキン基で緩慢されている場合が最も好ましい。低級アルコキン基とは、投業数1~8の例えばメトキシ基、エトキン基、インプロボキン基、カーブトキン基などをいい、1~4 関後をとりうるが、3 関接の場合が好ましい。最も

ルキレン基が凝接器を持たないか、又は1つ又は1つ以上のメチル器を有しているような形で水素原子又はメチル器を意味する。)で示される器、式=(CH-CH=CH)。-(式中、bは1~3の整数を意味する)で示される器、式=CH-(CH。)。-(式中、cは5又は1~9の整数を意味する)で示される器又は式~(CH-CH)。-(式中、dは5又は1~5の整数を意味する)で示される器を意味する。

T. C. c. K は前配と同様の意味を有する。}

(8) 式に含まれる化合物の中で更に好ましい 化合物群としては、次の一般式で表される化合 物(E) をあげることができる。

〈武中、11,81、《は筋配と関係の無味を有する。》

ఉాజాశ్శ్మ

(C) 式に含まれる化合物の中で更に好ましい 化合物群としては、次の一般式で表される化合 物(O) そあげることができる。

(式中、計はフェエル基が覆換されてもよいインダノエル、インダンジオエル、インダンリア エル基から選択された基を意味する。

がは置接若しくは無置換のフェニル基。置換 されてもよいアリールアルキル基、置換されて もよいシンナミル器を意味する。

8'は新記と阿線の意味を有する。)

本発明化合物の製造方法は額々考えられるが、 代表的な方法について述べれば以下の通りであ る。

製造方法 A

ジェキナン、テトラハイドロフラン、ジメチルホルムアミド (DMF) などの有機溶蹊中、氷冷、変数もしくは加熱により反応させ、容易に目的物質の一つである化合物 (V) を得ることができる。

製造方佳里

「がキナゾロン、チトラハイドロイソキノリンーオン、チトラハイドロベンゾジアゼピンーオン、ヘキサハイドロベンツアゾシンーオンから選択された過程でも予念である場合は次のような方法でも製造することができる。

(武中、n, 8³, 8³ は前記の意味を有する)で示される器を意味する場合]

$$\frac{1}{8}$$
, $\frac{1}{8}$,

(式中、J, 8°, 8°, 5, 7, 0, q, 8 は新記の意味を育 し、 Halはハロゲン原子を意味する。)

即ち、一般式(目)で表される酸ハロゲン化物と、一般式(目)で表される環状アミン誘導体を、例えば炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム、水酸化カリウム、水类化ナトリウム、トリエチルアミンなどの蒸塩剤の存在下に、クロロホルム、ベンゼン、トルエン。

(式中、8*.8* は水素原子、低級アルキル蒸、 低級アルコキシ基、ハロゲン原子であり、 pは 1~3の複数であり、 Zは式-C8。- で尽される

即ち、一般式 (V) で表される圏接-1.2.3. (ーチトラハイドロー5H-1ーペンツアゼピン ー 8ーオンを、例えばジメチルホルムアミド溶 集中で、一般式 (V) で表される化合物と、例 えばナトリウムハイドライドの存在下に縮合して、目的物質の一つである (領) を得ることができる。

製造方法の

かつ 8が - (CB) 。- で示される墓である場合は次 87

の製造方法によっても製造できる。

$$\frac{8}{8}$$
, $\frac{8}{6}$, $\frac{8}{6}$, $\frac{(CH^{3})^{4}}{6}$, $\frac{4}{6}$,

即ち、一般式(XI)で表される置換2.3 ージ とドロオキシピロロ(3,4-h) ペンゼンと、一般 式 (VI) で表される化合物とを、例えば水業化 ナトリウム存在下に、例えばジメテルホルムア ミドなどの溶媒中、加熱下に反応せしめて、目 的物質の一つである化合物(XI)を得ることが できる。

製造方法定

即ち、2一ハイドロキシメチルニコテン酸ラクトン(限)と、一般式(区)で表される化合物とを、常性により反応せしめて、部的物質の一つである一般式(区)で表される化合物を係ることができる。反応差変は 200 下前後が評ましい。

製造方法口

であり、 8が全 -((TH) -- 下巻される器である場

会 (8°,8° は前記の8',8° の定義と同様の意味 を有する。n,8°は前記と同様の意味を有する。) は次の製造方法によっても製造できる。

であり、8か全 - (683- (68) 、 で表される器で

ある場合は次の製造方法でも製造することができる。

$$H_{\mathbf{x}}H_{\mathbf{x}} = \left(CH\right)_{\mathbf{x}} = \left(CH\right)_{\mathbf{x}} = \left(CH\right)_{\mathbf{x}} = \left(CH\right)_{\mathbf{x}} = \left(CH\right)_{\mathbf{x}}$$

即ち、2.3 ーピラジルカルボン鞍無水物(XG) を、例えばイソプロピルアルコール中に加え選 流する。アルコールを報表したのち、一般式 (X)で表される化合物と、例えばテトラヒド ロフランなどの容縁中反応させることにより、 目的物質の一つである化合物(X)を得ること ができる。

製造方法下

一般式(1)において、1が製造されてもよ

いフェニル基であり、 Eが式-C-(CR,),-で示さ

ある場合は、次の方法によっても製造すること ができる。下記の式中、8'3 は前記の「例の定 窓における整治器を登場する。

中で、フェニル基が覆接されてもよいのインダ ニル、②インダノニル、②インダンジオニル、 ③ナトラヒニル、⑦ベンズスベロニル又は②武

あり、かつ 8が - (C8)。- で示される器、式

*(CB-CH=CB)。-(玄中、ちは1~3の整数を意味する)で示される基、式-CB-(CB)。-(式中、口は0又は1~5の整数を意味する)で示される ※、又は式-(CB-CB)。-(玄中、 6は0又は1~5の整数を意味する)で示される基である場合は、例えば次の二つの方法によって製造できる。製造方法。

即ち、例えばテトラヒドロフランなどの溶液中で、ダイソプロピルアミン、ホーブテルリチウム/ヘキサン溶液を加え、約一80 にの温度にて、一般式(XV)で表されるでセトフェノンと、一般式(XII)で表される化合物と総合し、化合物(2III)を得る。これを、例えばロートルエンスルホン酸の存在で、例えばトルエンなどの溶塩中で脱水した後、常法により接触還元すると、目的物質の一つである化合物(2III)が得られる。製造方法。

本難明において、」が砂で定義されるものの

$$y = ch_{*} - 4y = \frac{(ch_{*})}{2} - x$$
 (00.11)

(式中、) は Jが上紀の定義である場合を示し、 8:は上紀の 8の定義において最左端の炭素原子 に始合している基を強いた銭基を意味する。)

即ち、一般式(取)であされるホスホナートに一般式(以)で表されるアルデヒド化合物を反応せしめて(wittig反応)、目的物質の一つである一般式(取)で表される化合物を得、次いでこれを接触量元して目的物質の一つである

化合物 (質量)を得ることができる。

※ittig反応を行う窓の触媒としては、例えば ナトリウムメチラート(McBNs)。ナトリウムエ チラート(EtONs)。 t-8:0N、Nss などを挙げる ことができる。この際熔媒としては、例えばナ トラエドロフラン (THF)、ジメチルホルム アミド (DMF)。エーテル、エトロメタン、 ジメチルスルホキシド (DMSO) などを挙げ ることができる。また、反応器変は窓器から188 で程度が許ましい結果を与える。

接触器元を行う際は、例えばバラジウム機器、 ラニーニッケル、ロジウム機器などを触線とし て用いることが好ましい結果を与える。

基である場合を異体的に示せば、以下のとおり である。

なお、東に 1が式 (g) で示され 2''

る器(式中、811、813 は Sの定義のうち、隔一 又は相異なる水素原子、低級アルキル基、低級 アルコキン器、ペロゲンである場合をいう)で あり、 8が式-(CH₂)。-で示される器(式中、 n は 1 ~6で示される器を意味する)であり、式

《式中、819,814 は、811,818 と問題の定義とする》で示される篆である場合を実体的に示せば次の選りである。

製 差 方 法 2

$$1,-cn^*-s,-\left(\frac{(cn^*)}{s}-s\right)$$

即ち、一般式 (23)で変される置換着しくは 無置換のインダノンなどの化合物と一般式 (23)

物を得ることができる。

あり、8か式-(CBa)。で売される器であり、式

る場合を具体的に示せば以下のとおりである。

で表されるアルデヒド体と、常性によりアルド ール箱合を行い、目的物質の一つである一般式 (図)で表される化合物を得る。

本反応は、例えばテトラヒドロフランなどの 溶媒中でジイソプロビルアミンとホーブチルへ キサン溶液によりリテウムジイソプロビルアミ ドを生成させ、好ましくは約一級での選皮でこれに上記の一般式 (双形)で表される化合物を加 える。次いで一般式 (双) で表されるアルデヒ ド体を加えて常法により反応せしめ、室温まで 昇温させることによって脱水させ、エノン体で ある一般式 (双) で表される化合物を得る。

本反応の別方法として、両者 (《28)と(22))をテトラにドロフランなどの溶媒に溶解し、約0 せにて、例えばナトリウムメチラートなどの 塩基を加えて、窓風にて反応させることによる 方法によっても製造することができる。

上記の製造方法によって得られたエノン体 (面)を前記に示したと関係の方法により毫元 することにより、一般式 (知)で表される化会

製造方法1に記載したと関係に、一具体例を 未せば次の通りである。

LDA

製 器 方 法 任

」がフェニル基の部分が置換されてもよいイ ンダノリル基である場合は、以下の方法によっ て製造することができる。

存在下級水させて、目的物質の一つである化合物 (取りを得ることができる。

製造方法」

「がフェニル器の部分が置換されていてもよ いインデノニル器を示す場合は、以下の方法に よっても緊急することができる。

断ち、化合物(双型) そりて一室器にて、例 えば水素化中の素ナトリウムなどで最元するこ とにより、目的物質の一つである化合物(双例) を得ることができる。この場合の溶媒は、例え ばメタノールなどが経ましい。

製造方法工

」がフェニル基の部分が置換されていてもよ いインデニル基を示す場合は、以下の方法によ っても製造することができる。

即ち、化合物 (四円)を常法により複数などの

即ち、一般式 (以前)で表されるインダノン化合物を、例えば距离化炭素などの溶媒中、 5一プロムコハク酸イミド (NBS) と遊離化ベンソイルとともに加熱避流してブロム化し、次にこのプロム体 (以前を、例えばテトラヒドロフランなどの溶媒中、 1.8ーツアザビシクロ (5.4.0) カンデクー7ーエン (DBU) とともに加熱避流することにより8一般離を行い、インデノン化合物 (以前を得る。なお、上記のブロム体は、他のハロゲンでも反応は可能である。

なお、製造方法の一」において、出発物質と して用いるインダノン類は市販品を用いるか又 は以下の方法により製造される。

一方、アルデヒド体は例えば以下の方法によ り製造することができる。

$$0 = \sqrt{3-x} \qquad (1)$$

エーテル又はテトラヒドロフラン中で生成させる。この中にケトン体又はアルデヒド体を加えてメトキシビエル体とした後、酸処理によってアルデヒドを合成することができる。

特定の場合の異体例を以下に示す。

A 44 89 1

一方、カルミルメテレントリフェエルホスホ ランを用いる場合は、原料となるケトン体又は アルデヒド体のエーテル、テトラヒドロフラン 又はベンゼン溶液中にウィテッヒ級薬を加え、 窓温から加熱退焼することによって合成するこ 艾霉

即ち上記の如く、式(1) 又は式(※) で示される化合物を出発物質とし、これを上記の方法によりアルデヒド体とし、これを下記に示すウィナッヒ反応などを繰り返したり、組み合わせたりすることにより増設反応を行い、目的とする出発物質を得ることができる。

ウィチッと試薬としては、例えば1炭素増長 のときはメトキシメチレントリフェニルホスホ ランを用い、2炭素増長のときはホルミルメチ レントリフェニルホスホランを用いる。

メトキシメチレントリフェニルホスホランは、 メトキシメチレントリフェニルホスホニウムク ロライドとカーブチルリチウムとから、例えば

とができる。

このようにして合成した不飽和アルデヒド体は、必要により接触還元して飽和アルデヒド体とすることができる。この際の触媒としては、パラジウム提案、ラネーニッケル、ロジウム投業などが好ましい。

異 体 例 2

以上のようにして得られる一般式(I)の化 合物及びその酸付加強は各種老人性痴呆症、特 にアルツハイマー型老年痴呆の治療に有用であ る。 一般式(1)で示される化合物及びその酸付加塩の有用性を示すために、**蒸理試験結果を以**下に提明する。

実験例 1

In vitro アセテルコリンエステラーゼ駆査作用 アセテルコリンエステラーゼ駆として、マウス脳ホモジネートを用いて、Bilinan 6の方法? に薄拠してエステラーゼ活性を創定した。マウス脳ホモジネートに、基質としてアセテルテオコリン、複検体及びDTNBを添加し、インキュペーション後、産生したテオコリンがDTNBと反応し、生じる黄色産物を412mm における

後体のアセチルコリンエスチョーゼ服害活性 は50%服务適度(IC。。)で表した。

豪光変変化として測定し、アセチルコリンエス

結果を表しに示す。

チラーゼ活性を求めた。

1) Eliman, S.L., Courtney, K.D., Andres, V. and Featherstone, S. M. (1981) Biochem, Pharmacol., 7, 88 ~95

蒸 1 (線 き)

£ ☆ ₩	ACCEST STOR	化合物	4(2:00 m)
188	98.081	215	6, 6642
189	0.012	218	0, 017
199	0,92	217	6.14
181	0,085	-221	0, 633
192	0,913	322	0.033 0.033 0.034 0.003 0.48 0.003 0.15 0.04 0.15
183	0, 3	223	9, 6054
184	9.989	224	0, 963
195	6,9971	225	0, 48
198	0, 0013	225	0, 8049
197	9, 38	327	n, 81
188	0, 9854	228	0, 802
189	6, 623	229	8, 84
203	9, 682	230	8.18
204	9, 935	531	0.004
205	0.014	232	0, 1
208	9.41	233	0, 046
267	0, 049	234	0,0013
208	0.052	235	0, 22
208	9, 43	238	9, 072
210	9, 95	239	9.18
212	0. 6	240	0, 0089
213	9, 65	241	0, 22
214	0.0084	249	9, 52

3 1 3

化合物	aceen with	a a	ACCOMPANY
1	0, 23	32	8,0
4	0,005\$	35	9,00082
5	Ø. 18	36	9,8015
8	0.017	3.9	8.15
8	0,013	\$ 1	0, 025
9	0,081	43	8, 038
10	0,009	55	9, 35
31	€, 088	58	9.12 9.028 9.26 9.019 9.88 1.9 8.817
12	8, 040	82	S, 83
18	0,025	84	الدا
14	0,838	SS	8, 817
15	0,094	72	8, 9975
17	0, 952	78	8,8015
18	0, 68	77	9, 10
19	0.084	80	0, 28
20	0,54	92	6, 620
21	53	99	6,518
23	9, 978	100	0, 9 3 5
24	1.1	-195	0,085
26	24	111	0, 11
27	9, 41	130	9. 19
30	6, 661	134	2.8
31	0,094	138	0, 004

寒 数 例 2

Ex vivo アセチルコリンエステラーゼ阻害作用 ラットに被検体を経口投与し、その1時間後 に大脳半球を採取し、ホモジナイズ後、アセチ ルコリンエステラーゼ活性を測定した。なお、 生理食塩水投与群を対照とした。

結異を表2に示す。

簽 第

化合物和	/# # (ne/ke)	ACHB難審作用 (%)
Saline		S
	1	5
	8	17 **
4	10	36 **
	30	£7 **
	10	5
15	35	14 **
	100	18 **

突發例 3

スコポラミンの受動回避学習障害に対する作用**

#istar系数性ラットを用い、装置としては
step through型の明時報を使用した。試行の1
時間創に検体を経口投与し、30分前にスコポラ
(ン0.5mg/kg(ip)を処置した。訓練試行では明
室に動物を入れ、暗室に入った直接にギロテン
ドアを認め電気ショックを床のグリットから与
えた。 6 時間後に保持試行として再び動物を明
室に入れ、暗窓に入るまでの時間を測定し評価
した。

効果は生食設与等とスコポラミン投与群の深 方時間の差を 100%とし検体により何所拮抗し たか(ReverseX)で表した。

*1 [80k0] & 3ecky & Jarvik: Int. J. Heuropharmacol 8, 217~222(1967)

無果を表うに示す。

ち、特に、Jがフェニル環が置換されていても よいインダノンから誘導される基である場合の 化合物は、旋来のアセテルコリンエステラーゼ 阻害剤とは構造を着しく異にすること、強力な アセチルコリンエステラーゼ阻害作用を有する ことのほか、主作用一副作用のが大きいこと、 作用持続が長いこと、水溶性が高く、且つ極め で安定な化合物であり、製剤上育利であること、 及び生体利用率が優れ、first pass effect を 受けにくく、且つ協内等行性もよいなどの特徴 を有している。

従って、本発明の目的は、種々の痴呆症、脳 血質障害後遺迹に有効な新規な化合物、及びそ の化合物製造方法、及びその化合物を有効成分 とする新規な医薬を提供するにある。

なお、本発明化合物の代表的化合物(的記表3の化合物版4,13,15,19,73)について、ラットにおける器性試験を行ったところ、いずれも約160mx/kg以上で重要な器性を示さなかった。

本発明化合物は、各種老人性痴呆症;特にア

3

化合物施	/N % (ng/hg)	Keverse%
ě	0,125	85
*	0, 25	86
	0.25	28
13	0.5	27
ŧs	l. Ø	51
10	2. 0	30
1 8	0, 5	87
13	€,3	29
79	0, 5	22
18	1.0	38

上記の義現実験例から強力なアセチルコリン エステラーゼ阻害作用を有していることが明ら かとされた。

本発明化合物 (1) のうち、 3がフェニル議 が置検されていてもよいインダノンから誘導さ れる基である場合の化合物が最も好ましい。即

ルツハイマー型老年商果、脳卒中(脳出血、脳 便塞)、脳助脈硬化症、顕那外傷などに伴う脳 血管障容:脳炎後遺症、脳性麻痺などに伴う注 意力低下、管器障害、素欲低下、情精障害、記 総障害、幻覚一妄怒状態、行動異常などの治療、 予防、緩解、改善などに有効である。

更に、本発明化合物は強力かつ選択性の高い 抗コリンエステラーゼ作用を有するので、これ らの作用に基づく送薬としても有用である。

即ち、アルツハイマー型老年商品のほか、例 えばハンチントン舞踏構、ピック構、熟発性異 常症などにも有用である。

本発明化合物をこれらの医薬として使用する場合は、経口投与若しくは非経口投与により投与されるが、通常は静脈内、皮下、筋肉内など性射剤、坐薬若しくは苦下錠など非経口投与により投与される。投与繋は、症状の程度:患者の年令、性別、体重、感受性差:投与方法:投与の時期、間隔、医薬製剤の性質、翻剤、循環:有効成分の種類などによって異なり、特に限

定されないが、通常成人1日あたり約0.1~300 ss、好ましくは約1~100sg であり、これを通常1日1~4回にわけて投与する。

本発明化合物を製剤化するためには、製剤の 技術分野における通常の方法で注射剤、坐薬、 舌下錐、錠剤、カブセル剤などの剤型とする。

注射剤を調製する場合には、主薬に必要により即調整剤、緩衝剤、懸濁化剤、溶解補助剤、 安定化剤、等強化剤、保存剤はどを添加し、常 法により静脈、皮下、筋肉内注射剤とする。そ の際必要により常法により液純乾燥物とするこ とも可能である。

製造剤としての例を挙げれば、例えばメテルセルロース、ポリソルベート 8 G、ヒドロキシエテルセルロース、アラビアゴム、トラガント窓、カルボキシメテルセルロースナトリウム、ポリオキシエテレンソルビタンモノラウレートなどを挙げることができる。

溶解補助剤としては、例えばポリオキシエチ レン硬化セマシ油、ポリソルペート8 6、エコ

1ーペンジルー4ー(2一((1ーインダノン)-2ーイリデニル))エチルピペリジン
0,37gをメタノール10m1に溶解し、5%ロジウム一炭素 0.1gを加えた。室温常圧にて24時間水素添加した後、触線を適別し、溶液を減圧機縮した。この残渣をシリカゲルカラム(塩化メチレン:メタノール=200 : 1)にて精製し、溶液を減圧液縮した後、残渣を塩化メチレンに溶解し、10%塩酸一酢酸エチル溶液を加え、さらに減圧液縮して齢弱化し、次の物性を有する機類化合物0.33g(収率80%)を得た。

· 独立 (で) :224 ~225

・元素分析数: CasHanNO・HC1 上して

C H N

理論館(96) 74.88 7.83 3.79 実態館(96) 74.86 7.85 3.77 うまでもない。

チン酸アミド、ポリオキシエチレンソルビタシモノラウシート。マグロゴール、ヒマシ油脂肪酸エチルエステルなどを挙げることができる。

また安定化剤としては、例えば亜酸酸ナトリウム、メタ亜硫酸ナトリウム。エーテル等が、保存剤としては、例えばパラオキン安息等酸メテル、パラオキシ安息等酸エテル、ソルビン酸、フェノール、クレゾール、クロロクレゾールはどを挙げることができる。

(寒 糖 粥)

以下に実施例に従って本発明をさらに具体的に説明するが、本発明の技術的範囲がこれらの 実施例の範囲に限定されるものでないことはい うまでもない。

なお、下記の実施例において、888 の値はす ペてフリー体での測定値を示す。

実施例!

<u>1-ペンジルー4-〔2-〔(1-インダノン)</u> -2-イル]] エチルピペリジン・塩酸塩

寒 施 例 2

<u>1-ペンジルー4-[2-[(1-インダノン)</u> <u>-2-イリアニル))エテルピペリンン・塩酸</u> 塩

60%水業化ナトリウム0.32gをヘキサンにて 洗浄後、T8P 10mlを加えた。この中へりでにて ジエチル1ーインダノンー2ーイルホスホナー ト2.12gのT8P 30ml溶液を海下した。 審濫にて 30分機件した後、再びりでに冷却し、1ーペン ジルー4ーピペリジンアセトアルデヒド3.43g のBMF 10ml溶液を加えた。 審選で 2 時間、50℃ で 2 時間さらに 2 時間加熱環液した後、りでに てメタノールと20%硫酸を加えた。10分後絶和 水酸化ナトリウム水溶液にて塩蒸性とし、酢酸 エチルにて抽出した。有機緩を飽和食塩水にて 洗浄した後、硫酸マグネンウムで乾燥し、減圧 機能して得られた残液をシリカゲルカラム(塩 化メチレン:メタノール=500 : 1) にて精製した。溶出液を減圧選縮した後、残渣を塩化メ チレンに溶解し、10%塩酸一酢酸エチル溶液を 加え、減圧器線して模類化合物0.7%s(収率27 %)を容た。なお、ジエチル1ーインダノンー 2 --- イルホスホナートを1.378回収した。

- 3 94 F 20 : C. . N . . NO 4 NCI
- **H NMR (CDC),) # : 1.10 2.18 (7H. m) . 2.26 (2H, t) . 2.88 (2H, bd) . 3.48 (2H, m) . 8.72 -7.07 (2H, m) . 7.30 (5H. m) . 7.10 - 8.00 (5H. m)

实施 别 3

1 ーペンジルー4 ー [(5.6 ージメトキシー1 ーインダノン) ー 2 ーイリデニル》メテルビベリジン・複製法

(a) 1-ペンジルー4-ビペリジンカルボアル デニドの会談

し、旭圧逸路して得られた衰液をシリカゲルカ ラムにて精製し、複数化合物2、77g(収率54%) を抽状物質とした得た。

- ·分子式:C:all:all
- . 'H HNS (COC) , 8 : 1, 40 ~ 2, 40 (78, m) , 2, 78 (28, 4:) , 2, 45 (28, m) , 7, 20 (58, m) ,

この反応はアルゴン雰囲気下行った。

無水でHP []の | 中にジイソプロビルアミン2.65 alを加え、さらに 0 でにて1.68 nープチルリチ ウムヘキサン溶液3.12alを加えた。 0 でにて10 分徴枠した後、一78でまで冷却し、5.6 ージメトキシー1 ーインダノン2.55 g の無水でHP 30al 溶液とヘキサメチルかスホルアミド2.31alを加えた。一78でにて16分機枠した後、(20で得た 1 ーベンジルー 4 ービベリジンカルボアルデヒド 2.70 g の無水でHP 30al 溶液を加えた。 室温まで

メトキシメチレントリフェニルホスホニウム クロライド26.0gを無水エーテル 200mi に移激 させ、1.6% ローブチルリチウムへキサン溶液 を密盤にて満下した。室温にて30分間流沖した 後、0 むに冷却し、1ーペンジルー4ーピペリ ドン 14.35gの無水エーテル30mi 溶液を加えた。 室温にて 3 時間撹拌した後不溶物を被別し、結 液を滅圧激縮した。これをエーテルに溶解し、 18塩酸にで抽出した。さらに水酸化ナトリウム 水溶液にてのH 12 とした後、塩化メチレンにて 輸出し、場合れた残液をシリカゲルカラムにて 輸出し、強材物質5.50g(収率33%)を寄た。

これをメタノール40mlに溶解し、18塩酸40ml を加えた。3時間加熱湿度した後、減圧激精し、 残液を水に溶解後水酸化ナトリウム水溶液にで pH 12 とし、塩化メチレンにで抽出した。飽和 食塩水にて洗浄後、硫酸マグネシウムにて乾燥

係みに異選し、さらに室盤にて3時間複終した 後、1%塩化アンキニウム水溶液を加え、有機 層を分離した。水圏を節酸エチルにて始出し、 さらに合わせた有機圏を飽和食塩水にて洗浄した。硫酸マグネシウムで乾燥後、減圧機箱し、 た。硫酸マグネシウムで乾燥後、減圧機箱し、 といれた残捨をシリカゲルカラム(塩化メチン ン:メタノール=300:1~100:1)にで稀 製した。溶出液を減圧機箱した後、残陰を塩化 メチレンに溶解し、10%塩酸一酢酸エチル溶液 を加え、さらに減圧濃縮して結晶を得た。これ を塩化メチレンーIPB から再結器化し、次の物 性を有する標盤化合物3.40g(収率82%)を得 た。

- 雑点(で);237 ~238 (分解)
- ・元集分析値:Co.8::80: 801として

C H N

環論核 (%) 63.64 8.82 3.38

実測量 (%) 69.51 6.78 3.38

実 流 気 4

ユーベングルーキー [(5.6 ージメトキシー)

<u>ーインダノン)… 2ーイル)メチルゼベリジン</u>

· **

1ーペンジルー4ー((5.8 ージチトキシー 1ーインダノン)ー2ーイリデエル)メテルビ ベリジン0、40gをTHF 16mlに溶解し、10%パラ ジウムー炭蒸り、04gを加えた。室器常圧にて8 時間水器添加した後、触媒を適別し、濾液を減 圧濃暗した。この残渣をシリカゲルカラム(塩 化メチレン:メタノール=50:1)にで精製し、 溶出液を減圧濃縮した後、残渣を塩化メテレン に溶解し、10%塩酸一酢酸エチル溶液を加え、 さらに減圧濃縮して結晶を得た。これをエタノ ールー1P8 から再結晶化し、次の物性を有する 標鑑化合物9、36g(収率82%)を得た。

・熟点 (で) : 211 ~212 (分解)

· 元素分析徴: C. alla 80 s NCI として

英语 经 6

2-(8'-(1'-ベンジルピベリジン) エチル) -2.3 -ジヒドロー3.6 -ジメトキシオキシビ ロロ (8,4 - b) ベンゼン・塩酸塩

2.3 ージヒドロー5.8 ージメトキシオキンビロロ (3.4 ー b) ペンゼン 0.5 gを触媒盤のヨウ化カリウムとともにBMF に溶解する。これを冷部下、撹拌しながら水素化ナトリウム (60%)を0.21 g 加える。その後、2.3 ージヒドロー5.8 ージメトキシオキンビロロ (3.4 ー b) ペンゼン1 g を加え、80 ℃でく時間撹拌する。終了後、8.6 を加え、90ロホルム抽出し、タロロホルム圏を水差、乾燥(MgSO))、溶媒を留去してシリカゲル精製すると目的物の抽味物を得る。これを常法により複数値にすることによりクリーム色の結晶を約0.2 g 得た。

· 分子式: C.v.B.s.R.O. · 28Cl

6 8

理論館 (%) 68.30 7.27 3,37

- 実測盤(%) 89.33 7.18 3.22

寒 雑 粥 5

2-(f'-(f'-ベンジルビベリジン) エチル) -2.3 -ジヒドロー) - まキシビロロ [2,4 -b] ビリジン・二塩鉄塩

2ーセドロキシメチルニコチン酸ラクトン12.8 8、4ー (2ーアミノエチル) ペンジルビベラ ジン408をシールドチェーブ中で208 ℃、7時 閲選律する。その後、シリカゲルカラムで搭製 し、常法により複数値にすることにより目的物 の二級酸塩6.37gを得た。

· 数点 (℃) : 148.5 ~145

· 元潔分析館: Co.HaraNoO・2HC1 として

C 8 8

· 'H-SHR(COC1a) & :

1.13-3.4(9H.m). 2.72 -3.00(2H.m).

3.48(2H, s). 3.82(2H, t). 3.98(88.5).

4.28(28, a), 6.90(18, a), 7.28(68, a)

突流 例 ?

4 - (N- (0-7ミノベングル) エチル) - 1 - ペンダルビベリグン

変素気液下2-エトロベンズアルデヒド30 g、
1 ーペンジルー4ーでくノエチルピペリジン21.4
g、メタノール100mlを変温で3時間浅拌する。
反応核を水冷し、水素化ホウ素ナトリウム18 g
の% a CH 30ml 溶液を摘加する。さらに変温にて
1 時間反応させた後、水にあけ、メテルクロライドで抽出し、10 % 複数150ml で 3 間抽出し、
メテレンクロライドで洗浄する。この水溜を炭
数ナトリウムでp810にし、メテレンクロライド
で抽出し、無水硫酸マグネシウムで乾燥後、溶

ニエトロペンジル) エチル) ピペリジン28,48 を得る。

これをメタノール[80ml に熔解し、10%パラ グウムー投業 (含水) 3 gを用い 4 kg/cm。旺 力で水素添加を行い、福麗化合物25.8gを得る。 ·分子式(Caillialla

- 18 - 888 (COCTs) & : 1.0 -2.1(98.m) - 2.64 (28.1), 2.38(28.8), 3.47(28.8), 6.55(28. m) , 7, 32 (28. m), 7, 33 (58. s)

*** * * *** * *

3- (2- (1-422x-4-4492x) エテルー 2 -- (18, 38) - キナゾリンオン

4-(8-(ローアミノベンジル)エチル) -- [-- ペンジルビペリジン25.8g。1.1' ーカル ポニルジイミグソール15g、メダノール100m) を12時間加熱器流を行う。反応後、水をあけ、

ナトリウムハイドライド& 35 まをジメチルホ ルムアミド (DEF) 0.5sl に懸覆させ、水冷下課 稗、これに1、2、3、4 ーチドラハイドロー4ーメ チルー5%ー1.4 ーペンツグブゼピンー 2ーオン 8.52g を6NF 3slに参かして液下し、窒息で30 分間複雑する。ここへ リーベンジルー 4- (2 ークロロエチル) ピペリジン塩酸塩0.81gをCWF 3alに終かして落下し、80~70℃で了時間爆炸 する。氷水にあけ、塩化メチレンで抽出する。 能和食塩水で洗い、硫酸マグネシウムで乾燥さ せる。縁圧下溶媒を盤去し、シリカゲルクロマ トグラフィーで精製後、常法で塩酸塩とする。 被黄色非晶变形 178 老得名(双率13.5%)。

- ·分子文; C., H., N.O · 2HC1
- . 'H-888 (CBC1:) 8:1.25~2.02(9H.m) . 2.52 (3H, s) , 2.79~2.95(2H, bd) , 3.10(2H. s) , 3,48 (28, s) , 3,54 (28, s) , 3,91 (28, bt) _ 7, 14 ~ 7, 45 (9H, n)

<u> 突 路 例 10</u>

1-(4-(1-ベングルビベリグン) エチル)

線を縁圧留去し、1ーペングルーもー(8ー (0 メチレンクロライドで抽出し、無水硫酸マグネ シウムで乾燥し、溶膜を減圧留去する。

> この器権をシリカゲルカラムクロマトグラフ ィーにより精製(5 96WeDH - CH, CI。)し、新級 エチルより、2回再結晶を行い標題化合物3.5 京老得着。

- · 分子式: Casfarla0
- \rightarrow '8 888 (C8C) $_{2}$) $_{3}$; 1, 0 -2, 1 (98, a) $_{4}$ 2. 7 -3.0(24.0) $\sqrt{3.2}$ -3.0(44.0) $\sqrt{4.4}$ (2H, s), $8.5 \sim 7.4(8H, n)$, 7.15(1H, s)

寒 溶 例 9

1 -- (4' -- (1' -- ペンジルピペリジン) エチル -1,2,2,4 -テトラハイドロー4-メテルー1 出一 [1,4] ーベンイカススピハーラーギン・二

複競技

-1,2,3,4 -チトラハイドロー58-1-ベンツ アゼビンー2ーオン・塩酸塩

ナトリウムハイドライド0.27gをジメテルキ ルムアミド (089) 0.5ml に懸覆させ、水冷下機 粋する。これに1.2.3.4 ーチトラハイドロー5月 - 1 - ペンツアゼピンー 2 - オン0.60 まをDBF 4s1に落かして滋下する。80℃で15分類加熱後、 放拾し、 リーペンジルー 4- (2-クロロエデ ル) ビベリジン塩酸塩1.02gを加え、その後、 80℃で3時間30分援許する。放約後、氷水にあ け、塩化メチンンで抽出する。水洗後、硫酸マ グネシウムで乾燥させ、諸圧下溶媒を密出する。 シリカゲルクロマト精製後、常法で塩酸塩とし。 複題化合物1,40gを得る(収率94.8%)。

- · 分子或: C., H., N., B · SCI
- $-19-888(CSCI_6) = (1.20-1.92(118.8) 2.20$

~2. 24(4H, bs) , 2. 60~2. 88(4H, m), 3. 44 (2H, s), 7. 12~7. 24(9H, m)

寒 熟 粥 111

8 - (4 - (1' - ベンジルピペリジル) エチル) -5.6.11.12 - チトラヒドロジペンソ (5.1) ア ブミン-ミーオン・複製薬

5, 6, 11, 12ーテトラヒドロベング (b, f) アグミンー 6 ーキン2, 24gと80%水薬化ナトリウムをジメチルフェルムアミド20mlに入れ、80℃で1時間加熱撹拌後、1ーベンジルー4ークロロエチルピベリジン 9, 7gを加え、さらに3.5 時間反応する。

反応接を水20mlにあけ、酢酸エチルで抽出し、 飽和食塩水で洗浄し、硫酸マグネンウムで乾燥 し、減圧質虫する。

ージベング(5,8) (1,4) ージアゼピンー11ー
ま ン0,58 まを38 5 5 5 1 に溶かして液下する。48
ー50 でで20 分間撹拌し、次いで水冷して、4ー
〈アミノエチル〉ー1ーペンジルピペリジン
3,71 まを加え、45~55 でで 5 時間撹拌する。本
水にあけて塩化メチレンで抽出する。熱和食塩
水で有機器を洗い、硫酸マグネンウムで乾燥させた後、減圧下溶薬を製金する。競技をシリカ
ゲルカラムで搭製し、常法により塩酸塩として 積短化合物 8,78 まを淡黄色非晶質として得る
(収率 65,4%)

·分子式: C:: H:: #:0 · HCl

**H-NNR(CDC1,) & ; 1.20-1.91(11N.m) .

2.60-3.00(2N.bs) . 3.22(3N.m) . 3.41

(2N.s) . 8.87-7.08(3N,m) . 7.08(9N.m) .

7.64(1N.dn)

東 締 例 13

3 - ((() - () - ベンジルビベリジン) プロ ビオイル) アミノ) - 2 - ビラジンカルボン数 イソプロビルエステル・複数塩 機能をシリカゲルカラムクロマトグラフィーにより (5 %%eOB in CH_2Cl_2) 複製分離し、機能化合物0.6 変を得る。

-'H-NNR(CDCl₂) 8 : 1.1 ~2.2(98.8) . 3.7 ~4.1(48.8) . 4.15~4.5(28.8) . 4.45 (28.5) . 5.8 ~7.4(138.8)

W M M 12

18- [4- (1 -- ペンジルビベリジン) エチル)
--10.11 -- ジハイドロー5--メチル-58--ジベ
ンソ (5.8) (1.4) ジアゼピン-11-オン・塩
酸塩

ナトリウムハイドライド0.25gをジメチルか ルムアミド (888)に整義させて永冷下巡岸する。 ここへ、10.11 ージハイドロー 5 ーメチルー58

2.3 ーピラジンカルボン酸無水物18gをイソプロピルアルコール 20001に加え1時間透底する。その後アルコールを留去し、得られる固体を78Pに熔解して4ー(2ー下ミノエテル)ベンジルピペリジン30.6g、1ーハイドロキシベングトリアゾル21gを加える。これを冷却下、慢拌し、0CC 29.7gを加え、窓湿で1時反応をせる。濾過後、78P を留去し、塩化メテレンを加える。これを飽和炭酸ガリウム水溶液、食塩水で洗浄し、乾燥後、溶膜留去する。さらにシリカゲルカラムで頻繁し、場られた結晶をエーテルーへキサンで再結晶すると目的物の白い結路8.81gを得た。これを常法により塩酸塩とした。

· 元素分析額:Caallanda0。 NBC1・17alla0をして

0 8 8

理論数(K) 60.58 7.07 12.29 実践数(K) 60.54 7.00 12.29

実施例14

8 - (f' - ()' - (p-ハイドロキシベンジル)ピベリジン) エチル) - 2 - キノキサリンカルポン酸アミド・塩酸塩

2ーキノキサリンカルボン酸タロライド2gを1ー(pーメトキシベンジル) ー 4ーピペリンンエテルアミン2.52gをトリエテルアミン2g 存在下、室温で3½ 中で反応させた。これを増生により後処理してカラム精製することにより 8ー (4'ー(1'ー(pーメトキシベンジル) ピペリンン) エテル) ー 2ーキノキサリンカルボン酸フミド 2.5gを得た。

これを18単化メテレンに容解し8Bのにより 税メチル化反応を行い、カラム精製することに より生成物0.3 gを得た。これを塩酸塩とする ことによりタリーム色の結晶を0.2 g得た。

· 分子式: C., B., R.O, · HCl

- · 分子式; C., H., N.O., RCI
- 'H NNR (CDC1;) 8 ; 1, 16 -2.20 (9H, m) . 2.76 -3.04(2H, m) . 3.49(2H, s) . 3.48 -3.68 (2H, t) . 7, 13 -7.40 (5H, m) . 7.70 -8.26 (4H, m) . 9.54(1H, s)

! ーペンジルー4 ー (8* - フェニルアミノエチル) ピペリジン

4-(8-ペンジイルピペリジル) 酢酸47gと 塩化チオニル 8m)とペンゼン29m1中 2 時間加熱 遠視後、綾圧製金する。

これをTHF 20mlに溶解し、水冷撹拌下アニリン1,86g、トリエテルアミン10g、THF 30ml内に溶加する。窓裏で約11時間反応した後、水にあけメチレンクロライドで抽出する。飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、採圧器去する。銭液をシリカゲルカラムクロマ

- 'H - HWR (CDC) -) # : 1, 08 - 1, 92 (9H, m) \ 2, 84 -3, 18 (2H, m) \ 3, 24 - 3, 64 (2H, m) \ 3, 52 (2H, m) \ 6, 68 (2H, d) \ 7, 05 (2H, d) \ 7, 17

(28, s), 7, 84 \sim 8, 14(48, s), 8, 53(18, s)

寒 施 網 15

8- [《-()'-ペンジルピペリジル)エテル]-2-キノキサリンカルボン繋アミド

1 ーベンジルー4 ーアミノエチルビベリジン 4.8 g、ビリジン50ml、4 ージメチルアミノビ リジンを窒器、撹拌下、2 ーキノキサロイルク ロライド40g加える。3時間反応後、水にあけ メチレンクロライドで抽出し、飽和食塩水で洗 浄後、無水碗酸マグネンウムで乾燥し、溶媒を 減圧製去する。

この養液をシリカゲルカラムクロマトグラフィーで頻製 (5 %%88%-C%2C)。) し、酢酸エチルより再熟酪し、縲鰀化合物3.5 まを得る。

トグラフィーで精製 (5 %NeON in CN,Cl₀) し 4-(N-ベンゾイルビベリジル) 酢酸アニリド 8.9 gを得る。

この4-(8-ペンゾイルビベリジル) 酢酸ア ニリド 0.9gをTMF 10mlに溶解し、水冷撹拌下、 THF 30ml中リテウムアルミニウムハイドライド 0.38gを溜下し、さらに 1 時間加熱電流する。 反応後、水を加え、洗滌遮去後、酢酸ニテルで 抽出し、飽和食塩水で洗浄し、無水硫酸マグネ シウムで乾燥し、溶炼を減圧齧去し、 1 ーベン リルー4-(8°-フェニルアミノエテル) ビベ リジン0.7gを得る。

- ·分子式; C; 68; 68;
- 'H 8%8 (CGC) 2) 8 ; 1.0 ~2.2(9%, m) . 2.85

 (2H, m) . 3.10(2H, t) . 3.44(2H, m) . 3.7

 (1H, m) . 5.4 ~6.8(3H, m) . 7.0 ~7.4

 (7H, m)

安 施 例 1 7

1-ベンジルー4-(8'-フェニルアミノエ チル) ピベリジン0.7 g、トリエチルアミン2.0 g、TMF 20m1を氷冷下機鉾下、アセチルクロラ イド3.4 gを織下する。

室温で 3 時間反応後、水20m3 を加え、メチレンクロライドで抽出し、終和食塩水で洗浄後、無水碳酸マグネシウムで乾燥し、溶媒を減圧質 去する。残渣をカラムクロマトグラフィーで精製 (5 % 8 e O H in CH, Cl,) し、標題化合物を得る。

- ·分子式; C., H., H, O
- 'H NNR (COC1₆) Ø ; 1, 0 -2, 1(12H, m) , 2, 6 -3, 0(2H, m) , 3, 39(2H, s) , 3, 67(2H, t) , 6, 9 -7, 5(10H, m)

*** * %** 18

8-(3',5'-ジメトキジフェニル)-8- [4'-

6.1 ~8.4(48.n) , 8.8 ~7.4(108.n) ** ** ** 1.9

8- (* -(* -ベングルビベリダン) エチル] -* -フェニルニコチン酸アミド・二塩酸塩

8- (4'(1'-ペンジルピペリジン)エテル) アニリン0.70g、4-(8,8'-ジメテルアミノ) ピリジン触線器をピリジン30mlに溶かし、水冷 下撹拌する。ここに、イソニコテン酸タロライ ド塩酸塩0.85gを加え、3時間30分撹拌する。 施圧下溶線を留去し、シリカゲルカラムで精製 する。常法により二塩酸塩とし、液黄色非晶質 として0.75gを得る(収率73.0%)

- · 分子或 (Craff):8:0 · 28C1
- . 'H HHR (CDC),) & ; 1, 13-2, 01 (9H, m), 2, 51 (2H, bd) , 3, 44 (2H, s), 3, 88 (2H, bt) , 5, 84-7, 26 (12H, m), 8, 31 (2H, d)

([*・ペンジルビベリジル) エチル] - 4-7 ロロけい皮酸でミド・塩酸塩

1 ーペンジルー4 ー (** ー(3*.5* ージメトキ シフェニル) アミノエチル] ピペリジン 1.0 g、 トリエチルアミン2.0 g、THF 20mlを水冷挺押 下、ローフロロけい皮酸クロライド0.51 g 加え る。窒器で2時間反応後水にあけ、酢酸エチル で抽出し、飽和食塩水で洗浄し、無水硫酸マグ ホシウムで乾燥し、溶煤を搬圧鍛去する。

この競技をシリカゲルカラムクロマトグラフィーにより稀製(5 %8e68 in CH₂Cl₂)する。 常法により複数塩として様選化合物6.8 s を得る。

- ·分子式:C:,R:,R:0;F·8C1
- -1H HWR (CDC)₃) A : 1.1 2.1(9H.m) = 2.7-3.0(2H.bd) = 3.51(2H.m) = 3.83(8H.m) =

寒 糖 例 20

<u>4… (1ーペンジルビベリジン) プロバンアニ</u> リリト 複数線

アニリン 0.5g、トリエチルアミン1gをTHF中に溶解する。この中に浅搾下、4~(1~ベンリルビベリジン)プロビオン数クロライドを1g満下し、窒器で5時間反応させる。その後、路底を留去し、塩化メチレンを加え、水洗、MgSG、で乾燥する。これを再び溶媒を留去してシリカゲルカラム精製することにより目的物の油状物を得た。さらにこのものを常法に従い、塩酸塩にすることにより白い結晶0.14gを得た。

- ・融点(で):197.5 -198
- ・元素分析館; C., H., SN.C・HClとして

8 8

理論值(%) 70.28 7.58 7.81

実測数(%) 70.50 7.58 7.83

突 始 例 21

8- (3'-()'-ベンジルビロリジン)メチル)ベンツアミド・複数塩

ベンジルクロライド 0.74 g、3 - (2 - アモノメテル) - ペンジルピロリジン 1 gをトリエテルアミン1.5 g存在下下37中、窒温で複雑し度添させた。これを常法により後処理しカラム特別することにより、目的物を0.32g 得た。これを一般的方法により塩酸塩にした。

- · '8 BWR (CDCl₂) & ;

1, 48-3, 98 (78, m) , 3, 44 (28, d) , 3, 62 (2 H, d) , 7, 94-7, 88 (198, m)

実 施 例 2 2

4 — (4' — (8 — ベンジル) ビベリジル〕 — 3 — ハイドロキシーローメトキンプチロフェノン

4, 1(1H) \(\tilde{a}\), 8, 83(2H, d) \(\tilde{c}\), 7, 17(5H, s) \(\tilde{c}\), 82(2H, d)

実 施 例 2.8

4-(f-8-ベンジル) ビベリジル] - p-メトキシブチロフェノン・塩酸塩

ディーン・スタータ装置を用い、4-(4'ー(4'ー(4'ーン・ベンジル) ピペリジル3-3-ハイドロキショーメトキンプチロフェノン0.54g、ロートルエンスルガン酸0.1g、トルエン30mlで加熱酸液を5時間行う。反応後、炭酸カリウム水溶液にあけ、メチレンクロライドで抽出し、無水酸酸マグネシウムで乾燥し、減圧留去する。残後をカラムクロマトグラフィーで精製(3 光8eOHーCH,Cl。) し、1-ベンジルー4-(4-(ローメトキシフェニル) ー4-オキソプテル) ピペリジン0.45gを得る。これを8eOH26mlに溶解

室業気候下、THF ?si中にジインプロビルアミン2siを加え、0でにて、1.6% sープチルリテウムへキサン溶液7.6si を加え、10分間護律後、一78でまで冷却してローメトキシアセトフェノン1.65 gのTHF 10si 溶液を加え20分間接搾する。さらに1ーペンジルー4ーピペリジンカルボアルデヒド2.4 gのTHF 10si 溶液を加え、18分間護搾する。1% 塩化アンモニウム水溶液を加え、18分間護搾する。1% 塩化アンモニウム水溶液を加え、メチレンクロライドで抽出し、飽和食塩水で洗浄し、無水硫酸マグキンウムで乾燥後、減圧留去する。残渣をシリカゲルカラムクロマトグラフィーにより精製(5% be 6H − CH, Cl。)により精製し、機器化合物2.0 gを得る。

- ·分子式;C::8::80:
- 'H-HMB(COC(4) & 11.0 -2.2(98.m) . 2.8
 -3.4(58.m) . 3.43(28.s) . 3.81(38.s) .

し、10%パラジウム一炭素(含水)4008を加える。室器常圧で1.5 時間水素添加する。不容物を減去し、減圧製法する。常法により塩酸塩とし、8e0H-19B より結晶化し、蒸盤化合物0.2 gを得る。

- · 分子式 (Casha, NOa · HC)
- **H -- NNR (COC1.) & : 1.4 -2.3(11H, s) . 2.4 -2.7(2H, s) . 2.95(2H, t) . 3.55(2H, s) .

 3.87(3H, s) . 6.83(2H, d) . 7.1 -7.5(5H, s) . 7.54(2H, d)

実 施 例 24

8- (4 - (1 - ベンジルビベリジン) エテル)- 3-フランカルボン酸アミド・塩酸塩

4 - (2-アミノエチル) - 1 - ベンジルビベリジン1,84g、炭酸カリウム2,87gをクロロカルム40m1、水40m1の混核に加え、米冷下1時

制護洋する。有機關を分離し、飽和食塩水で洗い、硫酸マグネンウムで乾燥させる。減圧下熔 緊を留去し、シリカゲルカラムで精製、常法で 複数塩とし、淡黄色非晶質として複類化合物 1.80gを得る(収率81.1%)

- ·分子式;C,eHe,4%,O, + #C!
- **# NMR (CEC1.) & :1.47 2.10 (9H.m) . 2.81 (2H.bd) . 3.25 - 3.47 (4H.m) . 5.80 (1H. bs) . 8.51 (1H.dd) . 7.15 - 7.19 (6H.m) . 7.82 (1H.dd)

実 独 例 25

8- (む-(じーベンジルピペリジン) エチル) ベンツアミド。

※一(1ーラダマンタンメテル)ー4ー (2ーアミノエチル) ピベリジン1.47g、炭酸カリウム0.73gをクロロカルム15s1と水15s1の展放に

する。ここに 8- [4'-(1'-ベンジルビベリジン) エチル3 ベンツアミド1.45gをT89 5ml に窓かしたものを適下する。室温で1時間提择した後、再び水冷し、ヨカ化メチルG.38mlを加え、一夜室温で複件する。氷水にあけ、塩析下クロロホルム抽出し、差和食塩水で洗い、硫酸マグネンウムで乾燥させる。接圧下熔解を割去し、シリカゲルクロマトで精製する。6.60gの製色油状物が得られる(収率47.0%)。

また、メチル化されていない原料8,22gを函収した(回収率15,2%)。得られた抽状物を常法で複数版として複数化合物6,52gを黄色非晶度として得る(収率37.8%)。

- ·分子式;C::N::N::0·NC1
- · 'H-NEX(CDC(s) # : 0, 92~3, 60 (838, m) (7, 29 (58, m)

寒 路 粥 2.7

8-[4]-(1]-シタロヘキシルメチルピベリジル)エチル)※-メチルペンズアミド・塩酸塩

加え、水冷下激しく撹拌する。ここにベンゾイルクロライド0.90gを液下し、室湿で一夜撹拌する。有機磨を分離し、水と絶和魚塩水で洗い、硫酸マグネシウムで乾燥させ、溶煤を減圧下留去する。シリカゲルカラムで精製し、ベンゼンーホーペキサンから再結器し、淡黄色板状晶として機器化合物に47gを得る(収率72.6%)。

.'H-NNR(COC).) Ø:1.29~2.28(27H.m).

2.72(2H.bs) .3.43(2H.q).8.01(1H.bs).

7.31~7.43(2H.m).7.67(1H.dd)

実施 例 2.6

·分子式:C..H..N.C

8-メチルー8- [4'-(1'-ペンジルピペリジン) エチル) ペンツアミド・複数塩

ナトリウムハイドライド3.18gをテトラバイ ドロフラン (THF) 2α1に懸濁させ、水冷下機幹

8-メチルー8-(4'-ピペリジルエチル) ペンズアミド0.6 g、シクロヘキシルブロマイド
1.2 g、炭酸水素ナトリウム2.0 g、メチルエチルケトン30の1を?時間加熱産液する。反応後、水に加え、酢酸エチルで抽出し、約和食塩水で洗浄し、凝水硫酸マグネシウムで乾燥し、溶凝を繊圧製去する。この残液をシリカゲルカラムクロマトグラフィーにより緩緩(5%%e8%-CH₂Cl₂) し、機態化合物0.3 gを得る。

- · 分子式; C:: #:: 8:0 · 8Cl
- * 'H NNR (CDCl_a) Ø : 0.8 ~1.1(20H, m) . 1.1 ~1.8(4H, m) . 1.8 ~2.8(5H, m) . 7.4 (5H, s)

1-ベングイルー4- ((5,6-ジメトキシー1 -インダノン) -2-イル) -メチルビベリジ - Varieties

5.8ージメトキシー1ーインダノン5.85 8 と
1ーベンゾイルー4ービベリジンーカルボアル
デエド1.38 8 を無水丁HF 20ml に溶解し、6
でにて28 %ナトリウムメテラート1.02 8 を加え
た。窒温にて2 時間撹拌した後、酢酸エテルに
て発釈し、飽和食塩水にて洗浄した。硫酸マグ
ネシウムにて乾燥後、減圧濃縮し、得られた残
液をシリカゲルカラムにて精製し、1ーベンゾ
イルー4ー ((5,6ージメトキシー1ーインダノ
ン) -2ーイリザニル) メチルビベリジン1.23
g (収率31%) を得た。

この化合物1.23gをTHF 20m1 に溶解し、10%パラジウムー提案 0.3gを加えた。室温常任にて1日水業添加した液、極謀を建別し、建液を減圧適縮した。これを塩化メテレンーへキサンから再縮晶化し、次の物性を有する議題化

遊後、落圧激率し、得られた競技を常法により 道数塩とし、メタノールーエーテルから再結路 化し、次の物性を有する機器化合物6,30g(収 率85%)を得た。

・敵点(で):249~250 (分解)

·元素分析値:Ci+H2+NO,+NCIとして

8 8

理論館(%) 62.67 7.42 4.30

突測值 (%) 82.75 7.31 4.52

漢 糖 朔 30

1 - {3 - フルギロベンジル} - 4 - {(5,8-ジメトキシー1 - インダノン} - 2 - イル]メ テルビベリジン・複数値

4- ((5.6-ジメトキシー1-インダノン) -2-イル) メチルピベリジン0,25gをTHF 6 al に溶解し、トリエチルアミン0,29 al と 3 -フルオロベンジルブロミド0,13 al を加えた。2 合物1.10g(収率89%) を築た。

・敵点(で);151~162

·元寿分析: Co. Ho. NO, として

C 8 X

理論並(%) 73.26 8.92 3.58

寒潮壑 (%) 73,30 8,85 3,32

寒 路 例 2.5

4- [(5.6-ジメトキシー1-インダノン) -2-イル] メチルピベリジン・塩製塩

1ーペングイルーなー [(5,6-ジメトキシー 1ーインダノン) ー2ーイル] メチルビベリジン8.00gをジオキサン90×1に溶解し、5%複雑90 *1を加えた。10時間加熱凝液した後、液圧機器 し、水で希釈した後、酢酸エチルにて抽出した。 水器を50%水酸化ナドリウム水溶液にてpN12と した後、塩化メチレンにて抽出し、さらに飽和 食塩水にて洗浄した。硫酸マグネシウムにて乾

時間加熱意定した後、減圧複結し、新酸エチルにて者訳し、19%炭酸ナトリウム水溶液、飽和 食塩水にて洗浄した。硫酸マグネシウムにて乾 緑微、減圧適縮し、得られた残渣をシリカゲル カラムにて精製した。さらに常法により塩酸塩 とし、塩化メチレンー 1 P E から再結晶化し、 次の物性を有する環題化合物3,27g(収率72%) を算た。

・観点(で):230 ~232 (分解)

·元素分析数;CaillaiNO;・HCTとして

C & ×

理論域(光) 68.43 8.74 3.23

寒刺椒(%) 86,18 6,79 3,11

支 施 例 31

2塩酸塩

5.8ージメトキシー1ーインダノン1.80 8、パラホルムアルデヒド9.31 8、1ーベンジルビベラジン0.99s1をエタノール39s1、水2s1に整 高し、繊維酸を加えてpH3とした。3時間加熱 最後した後、放冷し、白色関体を練別した。これを塩化メテレンにて整備させ、10%接触ナトリウム水溶液と認和血塩水にて洗浄した。硫酸マグネシウムにて乾燥後、減圧濃縮し、等られた残渣をシリカゲルカラムにて精製した。55 8に常法により遠離温とし、メタノールから再結 晶化し、次の物性を有する模器化合物9.55 8(収率23%)を得た。

· 数点 (t) : 227 ~228 (分解)

·元素分析性:CzeHeeNeCe・ZHCIとして

E 4)

理論数(%) 60.79 6.88 6.16 実態数(%) 60.31 6.95 6.06

莱 糖 例 3 2

4- ((5.8-ジメトキシー1-インダノン) -2-イル) メテルー1-エトキシカルポニルビ

4- ((5.6-ジメトキシー1-インダノン)
-2-イル]メチルー1-エトキシカルボニル
ビベリジン2.00gを四塩化炭素30元に溶解し、
ドーブロムコハク製イミド0.80gと避難化ベン
ゾイル0.02gを加えた。5時間加熱環施した後、 四塩化炭素で名取し、飽和監察水、飽和食塩水 にて洗浄した。循酸マグネシウムにて乾燥後、 減圧激縮した。

この残骸をTHF 20ml に溶解し、1.8 ージ アザビシタロ (5.4.0] ウンデクートーエン 1.66mlを加えた。30分間加熱暴微した後、減圧 適縮し、酢酸エチルにて希釈し、飽和食塩水に で先珍した。欲酸マグネシウムにて乾燥後、減 圧激縮し、落られた残後をシリカゲルカラムに て糖製し、緩緩化合物1.12 g (収率56%) を油 × 9 12 2

1ーベンジルー4ー ((3.8ージメトキシー1 ーイングノン) ー 2 ーイル) メチルビベリジン 8.58 g をベンゼン 8 ml に溶解し、クロルギ酸エ チル0, 15 ml を加えた。 3 時間加熱蒸液した後、 酢酸エチルにで物釈し、飽和鑑蓄水、飽和食塩 水にで洗浄した。硫酸マグネシウムにて乾燥後、 減圧適増し、毎られた残渣を酢酸エチルーへキ サンから再結晶化し、次の物性を有する傷態化 合物0, 45 g (収率34%) を得た。

・融点(で) :132 ~133

· 元素分析値; C。。N。、NOs として

C 8 8

理論性(%) 68.46 7.53 3.88 実態性(%) 66.75 7.53 4.60

*** * 9** 33

4-((5.8-ジメトキシー)-インデノン)-

税物費として得た。

- ·分子式;C::8::80:
- · 'H-NNR(COCI.) 8:

1.23(3H, t), 1.41~2.90(11H, m), 3.84(3%, s), 3.88(3H, s), 4.10(28, q), 6.80(1H, s), 6.97(1H, s), 7.03(1H, s)

実 滟 粥 3 4

! -- ペンジルー4 -- ((),3-インダンジオン) -- 8 -- 4 リデエル) メチルビベリジン

無水でドド 3mi中にジイソプロビルアミン
0.17mlを加え、さらに0でにて 1.8% ローブテルリテウムへキサン溶液0.75mlを加えた。0でにて10分階機件した後、一78でまで冷却し、1.3 ーインダンジオン0.18gの無水でHF 8ml溶液とヘキサメテルホスホルアミド6.21mlを加えた。一78でにて15分階機件した後、1ーペンジルー4ービベリジンカルボアルデモド0.33gの

無水THF 3m1 溶液を加えた。変温まで徐々に 昇湿し、さらに窓温にて一晩撹拌した後、塩化 メテレンで希釈し、銘和食塩水にて洗浄した。 硫酸マグネシウムにて乾燥後、減圧濃縮し、得 られた残渣を塩化メテレンー1PEから再結晶 化し、次の物性を有する標題化合物0.12g(収 平29%)を得た。

・観点 (で):173 ~174 (分解)

· 元素分析館: C,, H, , 知, として

C 8 N

理論館(光) 79.73 6.39 4.23

突厥性(光) 79.43 6.20 4.31

実 將 例 35

<u>1 ーペンタルーも一((5,6ージメトキシインデン)~2~イル)メチルビベリジン・塩酸塩</u>

1ーベンジルー4ー((5.8ージメドキシー) ーインダンール)-2ーイル)メチルピペリグ

にて10分別後押した後、一78でまで冷却し、5、5 ージメトキシー1ーインダノン0.39gの無水 THF 5ml溶液とヘキヤメチルホスホル丁ミド 0.35mlを加えた。一78でにて15分別後押した後、 3ー(1ーベンジルー4ーピペリジン)プロピオンアルデヒド0.50gの無水THF 5ml溶液を加えた。窓温まで徐々に昇湿し、さらに室温にて3時間後押した後、散験エチルで看釈し、乾和金塩水にて洗浄した。破骸マグネシウムにで乾燥後、減圧減糖し、得られた残渣をシリカゲルカラムにて積製し、増生により塩酸塩とし、機動化合物0.35g(収率81%)を抽状物質として得た。

- · 分子式; C. . H. . NO. · HC1
- 'H-BUR(COCI's) & ;

1.10~3.00(13H.m), 3.45(2H.m), 3.50(2H.m), 3.90(3H.m), 2.95(3H.m), 8.58~7.20(3H.m), 7.27(5H.m)

英 納 例 3 7

1-4764-63-63-668-87846

ン0.24 g を塩化メチレン 5 ml に溶解し、10 %塩酸一酸酸エチル溶液を加え、減圧機器した。等られた残骸を塩化メチレンー [PEから再結晶化し、次の物性を有する標題化合物9.34 g (収率95%) を得た。

・職点(で):216 ~217 (分解)

·元潔分析館:C2.81,880, · NC! として

C 8 8

運輸館 (%) 72.07 7.56 3.50

実質性(%) 71.82 7.83 3.33

寒 維 例 3.5

1-ベンジルー4- (3- ((5,5-ジットキシ -1-インダノン) -2-イリデニル)) ープ ロビルビベリジン・塩酸塩

無水でHP 5mlのにジイソプロビルアミン 8.31mlを加え、さらに 0 ℃にて 1.6% ローブチ ルリチウムへキサン容液1.39mlを加えた。 0 ℃

<u>--1-インダノン)--2-イル)〕プロビルビ</u>ペリジン・塩酸塩

1ーペングルー4ー (3ー ((5,8ージメトキシー1ーインダノン)ー2ーイリデニル)] プロゼルゼペリジン(3,40gをTHF 13m)に溶解し、10%パラジウムー炭素 (3.1gを加えた。室園常圧にて2時間水業添加した後、触媒を適別し、接触を減圧機縮した。得られた残法をシリカゲルカラムにて精製し、常法により塩酸塩とし、標題化合物(3.37g(収率84%)を油状物質として等た。

- ·分子式:CashanNOa·8Cl
- · 'H-NNB(COC!;) Ø :

1.00-2.30(18H.m). 3.38.3.43(total 2H. each s). 3.85(3H.s). 3.90(3H.s). 6.77. 6.83(total 1H.each s). 7.08.7.10(total 1H.each s). 7.18.7.20(total 5H.each s)

実施例1~37と間様にして合成した化合物 を変4~9に示す。

,		* * 6 * 6 *
寒路河	第	数 選 化 準 後 数 (数点、元素分析数、1931 年生)
58	ca,o,	数点 (て) : 247~248 (分解)
		元素分析値(C.s.H.s.NO.s・HC) として)
		数点 (で) :198~197
		元義分析館(Caallan NO・NC) として)
39		
	си _х о Дах — О-си, Дах нег	機点 (t) : 202~204 (分解)
		元素分析値(C.+H.+NG,+NC) として)
40		
45	CH'10 - CH'- CH'- CH'- CH'- CH'- CH'- CH'- CH	'H-XXX (COC) } & ; 1 10—1 40 (14x m)
		(18, 62), 7, 25 (38, 2)
		分子式:Coaffae NOo · HCI
		*#-##(CDC;) & ; 1 05 - 3 (6 CM; s) , 3 45 (2% s) , 3 88 (3% s) , 1 85 (38, s) , 8 75 (38, s) , 7 22 (5% s)
	CH.C	1 15 (38, 5), 'E 75 (31, 74) 1 12 (51, 5)
	Clasons A	
	C#.0	分子式;C,,32,383, - 801

RKK	# # #	物 理 化 学 恒 数 (数点、元素分析後、888 など)
43	сн,0 Д Сн,сн, - О-си, - О - нсг	 数点(で):201~202 (分解) 元素分析版(Coski,NOo、HO として) 元素分析版(Coski,NOo、HO として) 元素を(2) 52 53 7 62 3 25 7 62 3 25 7 62 3 25 7 62 3 25 7 62 3 25 7 62 3 25 7 62 3 25 7 62 3 25 7 62 3 25 7 62 3 2 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6
44	CH.0 1 187 ()-CH. ()	'H-NNE(CDC(), 多; 1.78~3 (\$(118.m), 1.50(28.s), 3.85(38.s), 1.98(38.s), 4.25(38.bs), 8.81(38.s), 7.01 (18.s), 7.22(58.s) 分子意:C _{1.8} 8.189.
45	08,8 1 O-08,-O · 801	機点(で):225~225 (分解) 元素分析値(C,,H,,NO,・KC) として) C
48	0 -01.0 · 101	数点(で):185~175 (分解) 元素分析数(C.,H.,NO・RC) として) C 8 8 変数数(X) 74.87 8.34 3.35 変数数(X) 74.82 8.31 3.76
***	CH.0 - CH. O - HC1	数点(で):120~123 元素分析数(C::8:,80:・8C1 として) C

表 ((統 .金)

実施例	※ 差 式	物 理 化 学 協 数 (独点、元素分析値、898 など)
45	CH.0 CH.CH. O - HC1	'H-MH(CECL)
49	CH*) - Ch* - NCI	'H-RMS(CDC), 8; 140—256(78.5), 238(28.20), 3.58(81.5), 138(38.5), 3.34(38.5), 8.59(18.40), 8.78 (28.489), 7.22(58.6) 分子式:Cookookooko
**************************************	СИ.Я ТОН. ОН-ЕН. ОН-ЕН. ОН НО. ССИ-СНЕВ.И	'H-### (CDCI,) &; 11-### (CDCI,) &; 11-### (CDCI,) &; 11-### (CDCI,) &; 11-### (CDCI,) &; 11-#### (CDCI,) &; 11-###################################
\$1	ca,o	'H-MMM(CDC1.) ま; 2 90(22 bd), 1 52(48 b). 1 15~2 32(25 m), 2 90(22 bd), 1 52(48 b). 1 85(5年 s), 1 33(33 m), 6 71(1年 ti), 6 84 (1年 s), 1 20(1年 s), 7 24(58 s) 分子宏;C.s.H.s.Mbs、HE1
*3	Q-g-cu'cu'cu'-()-cu'-() - #cı	数点(で):189~150 元素分析数(C.A.A.SO - NG として) で

我 《统务》

医截束	28	物 題 化 学 復 数 (数点、无寒分析弦、848 など) ⁽³
53	O-caca,ca,ca, O-ca. O · acı	'#-### (CDC1.) 3: 1 88-2 03(13H.a), 2.80(3H.bd), 3.49(3H.a), 1 60(1H.i), 1.28(58.9), 1.30(5H.a)
		分子式 t CashshiD・KC
54	Ç-fc=-cs:cs(>-cs() · sci	'B-NAS COD()
		分子式:Co.85.000 · 8C)
	8	総点(で):176~178
58	x○-la.a.a() - 210	元弟分析線(Ca.Ha.s.NaO - 2HClとして)
	The same of the sa	原数数(3) 82.59 7.18 7.09 東海敦(3) 85.13 7.43 8.83 火水(3) 87.94 7.19 8.39
3 8	√ forteer ∕>-en-O	'8-848(CDC), \$ 1.05-2.15(94.6), 2.85(24.60), 3.02(24.6), \$ 25(12.64), 3.47(24.6), 4.10-2.45(14.6), 7.21(58.6), 7.82(24.66), 8.70(24.66)
		分子或;Cs.HeeNsfls
57	O- ¹ ca-caca, -O-ca, -O · 2001	'N-NNS(CDC1.) & : 1.16~2.10(7H.st. 2.25(2H.bd), 2.85(21.bd), 3.5(2H.bs), H.55 ~1.10(2H.s), 7.20(5H.s), 7.56(2H.dd), B.07(2H.dd)
		分子式;Ca. Na. Na. O · 28C)

. 100 E (200 Se)

実施例	* * *	物 理 化 学 領 数 (酸点、光素分析像、88% など)
58	√ - mgca*ca*-	競点(で): 240~250.7 元素分析数(Co.sh.sh.sh.o・2851として)
59	xQ-mica,-Q-l-Q → ncı	'H-888(CDC), 8; 1,86~7,24(GL-0), 2,96(28,0), 3,64(18,0), 4,66(18,0), 7,20~1,58(58,0), 8,34(28,0), 分子式;C,882(8,0),・8C)
Šű	0,8	78 7 3

		- Marie Contract Cont
ran	· · · · · · · · · · · · · · · · · · ·	物 選 化 学 恒 数 (数点、元素分析值。\$V\$ 442)
83	(数点 (T) :155~140 (分解) 元素分析性(E,,H,,A,E, 25K1として) 単級数(X) 67,16 6.47 16.50 実施数(X) 55,22 6.63 5.14 24,6 (X) 58,66 6.76 9.29
*22	\$-c+.c+.	数点 (で) : 80~82 (分類) 元素分析板(CHH.O. 2HCIとして) 理論数(S) 82.55 8.92 9.95 支援数(S) 60.18 7.313 0.21 1.14,0(3) 50.00 7.83 8.54
-83	\$\frac{1}{2} \cap \cap \cap \cap \cap \cap \cap \cap	'H-MM3 (CDC), 3 ; 1 ~2 209 m)
84	Ду-си,сиСи-сиО • ист	'H-RMR(CCC), 3: 2.7~3.1(48.8), 2.4~3.7 (34.8), 7.0 ~7.8(88.8), 8.88(18.8), 分子宏: C _{5.8} , 48.0 ~ HCI
***	(-0 (-0 (-0	**************************************

数 5 (納 等)

***********		22 20 10 10 10
英裔英	微	物理 化学 抵数 (機点、元券分析数、888 など)
88	('%-888(CDC1.)
	8	分子文:C.sHasNaD·HCl
67	CO-08.68 C8-08 C + 2803	11- mus (CDC)
		分子式;Cp:Han8s,SHCi
S\$	Circus-Cis-cas-Q - nci	'H-SMR(CDC),) & ; 1 10-2 16(38, a), 2 16 -2 50(28, a), 2 87 (24 56), 2 01 -3 45(48, a), 1 45(28, a), 1 27 (54 a)
	* 8	分子式(CroffreffeO:MCI
89	C#* c#* c#* - C#* - C#* - C#* - HC!	'8-NNE CDCI.) & :
7.0	CH.CHCHCHC	/H-MMS (COCL) 8: 1.20—2.84 (218.8), 2.44 (28.8), 1.14 —7.25 1.24.8)
i		69.7-20.; C++8+2+8+8+8+1

実施外	ž <u>&</u>	物 雅 化 学 (E 数 (数点、光素分析数、8NR など)
¥	(#.csCs-csO - #ci	'H-MANE (CDC1.) & ; 144-1 80 (154.a), 1.96(28, ba), 2.56(28.a). 1.08-7,40(38.a)
		分子式;Cashashan · NCI
72	C8.C1(N-01() C1.C1(N-01()	'H-MAR (COC1.)
	8,00	分子文; C, sil, sil, c, · iiCl
?:à	CH.OHCH-CHCHCH.	'8-NAM (CDC1.) る: 1.25〜2.25(158, s) 2.58(28, bt), 2.86(28, bs), 2.86(28, bs), 2.75(38, s), 6.55〜8.58(28, s), 7.08(18, s), 7.2)(58, s) 分子式: C. 3.3.48(8, ***********************************
7.4	CH.CH. A-CH. A	'H-NM (COC1。) 名; 1 38~2 02 (128.m)。2. \$5 (28.d)。5. \$6 (28.s)。 1 36 (48.m)。7. 66~7. 26 (28.m) 39 李太; C., 86.87,0 · NC1
82	Ca.ca○a-ca○ Ca.ca○a-ca○ Sca.	77 X; (233,003,00) (7-888 (CCL))

. 25 (% %)

,		
***	* * *	物理化学短数
		《差点、元素分析法、1935 など》
7.8	CH-0 CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-C	'H-MAR (CCC)
77	CH.5 T. CH.CH. — NCI	'U-NME CCC: ,) が: 1.682.10(()にか. 2.302.85(()にお). 3.61 ()たう: 3.45(2)にお). 3.452.60(()にお). 3.85 (6によ): 6.52(2)にお). 7.10((にお). 7.20(()にお) 分子式: C: **********************************
4:00	CH.0 CH.CH. CH.CH. CH.CH.	'B-NSE(CEC)
79	CH, CH ₂ Ch - CM ₂ - Ch - C	'H-MAR (CDC1,)

.32 S

家港的	发 後 蔡	物 揺 化 学 恒 数 (数点、光素分析数、888 など)
8 8	(1,01,- (3+01,- () (1,01,- (3+01,- () (1,01,- ()+01,- ()	'H-MBS(CCC)
81	OQ-cs/cs/-Ox-cs/-Q · xci	'H-848 (CCC)
**	Ca Lences, Ca-ch. O . nei	18-848 (CRCL) 8; 1.42 (CR, t). 2.76-3.00 (2K, t). 2
83	CL conchichichich	**************************************

数 8 (数 多)

ZBH	22 25 89	他 選 化 学 選 数 (数点、元素分析数、888 など)
es es	CL CONTRACTS - CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-C	78-888 (CSC)
	Сат. Сат. соженься. — См. см. — О — мел	'H-MMCCC: } &: 1.52~1.05(96.0). 1.40(31.0). 2.54~2.01(21. 2.1.12(31.0). 1.13(21.0) 3.1.18(31.0). 1.13(21.0)
86	CATCORECATER - A-CH - ACI	"H-WE COOL 8 ; 172-1 G2 GE 8), 1 10- 1 10-1 16 GE 8), 1 72-1 G2 GE 8), 1 10- 1 12 12 13 , 1 12-7 16 (18 8), 1 2 - 7 18 (18 8), 1 48-7 16 (18 8), 1 8 50 (18 6),
-85	A CORRCHICOCH. (N-CH. () - BC!	'8-N88 CDC 3 \$ 2 36 GE 2 32 44 GE 3 3 3 3 3 3 3 3 3
88	CA CORRESTOR OR-CAT OF RCI	'H-MMS(CCC), 8; C. 95-2: 18(94.0), 2:55-2:00 (24.0), 2:00- 3:40(24.0), 1:44(24.5), 7:20(34.0); 1:02(24. 5)

実務例	海 送	物 程 化 学 恒 数 (数点、元素分析数、888 など)
-89	A COMBINICA (A)	'8-888 (CEC)
ŞŞ	(\$\frac{1}{2}\text{C8+C8+C8+C8+C9+C8+\frac{2}{2}\text{2}\text{C1}}	'4-108 (CCCL) & ; 1 02-2 15 (9. m). 2 76-2 85 (25. m). 3 24- 2 68 (25. m). 3 51 (25. m), 1 15-7 45 (65. m), 2 06-2 18 (14. m). 2 28-2 54 (14. m)
\$3.0		'8-MM8(IBI)
92	\$\$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	'H-NNR(CBC), 3: 1 00-2 05(9H, m), 2.56-3 09(2H, m), 3.05. 3 12(total 3H mach s), 3.30 -3 70(4H, m), 7 18 7.2;(total 5H mach s), 7.33-8.22(9H, m)
93	J. J. O 240.	'H-SMR(CBC)

发 6 (級 多)

×xx	# ½ ¢	物 凝 化 学 恒 数 (数度、完整分析数、例如 42°)
84	(3,800,000,-C) - 2800	触点(t);197,5 ~198.5 元本分析数(C4.,18.5 ・3%C)として) 「 実験性質) (C. T.) (C.) (
95	Chargines - Orch - Hel	触点(T):176~175.5 元素分析数(C.s.8.,8.6.・N)として) 一理論句(C) 65.37 8.63 12.71 - 実施表別 64.86 8.63 12.60 - 2.846 (N) 81.87 8.68 12.83

采路界	* 2 %	物 理 化 学 恒 数 (数点、无类分析值、NM (42)
108		'8-888(CBC[.) 8: 1.38~2.26(200.a), 2.35(20.bd), 3.48(20.s), 2.52(20.bt), 5.98 ~7,40(90.a) 3.72 : C.,3,3,0 -0C)
107	ca 1 - 201, ca (2)-ca (4) - 201, ca (3)-ca (4) - 201, ca (4)-ca (5) - 201, ca (5)-ca (5)-ca (5) - 201, ca (5)-ca (5)-ca (5)-ca (5) - 201, ca (5)-ca	**H-NAM*(COCI.) & ; 0.96—2.10(98. m), 2.66—2.88(24. m), 2.82(38. **) 2.47(28. m), 3.52—1.82(28. m), 1.28(58. m) 7.26—7.43(58. m) \$77.55; 2.5,8,8,29,5.801
188	C8,08,000,08,-C8-08-0 - 401	'Y-886(CC1)
198	CH. SEEL, CM. CH CH.	'H-MM2(CDC) : 8 ; 1 0 - 2 1 (3 K m). 2 1 8 (8 K m). 2 6 - 3 0 (4 K m). 1 38 (2 K m). 3 : - 3 8 (2 K m). 8 9 - 7 8 (10 K m) 分子式 : C., H., N, G · 2 HC1
13	CH.CH.CA.CH()4-CH()	'N-MM (CCC)

96 7 (\$4 de)

実務例	潮 進 ≾	物 理 化 学 性 数 (数点、元素分析性、NNS など)
111	ca,Čaca,ca,-Ca-ca,-C	*#-\$WR(CBCl ₃) / / : 2 C(3K s). 2 B2 ~2 S8(2H in 124~1 \$(3K s). 3 B0 (2K s). 7.18(2H, 3d). 7.35(3K s). 8 70(2H, 3d). 7.35(3K s). 8 70(2H, 3d).
112	CHICACHICHI CHI CHI CHI	'H-8WR(CBC1,) 8; 1.83(3R.s). 1.0 -2.2(9R.s). 2.6-3.1(2R.s). 1.83(2R.s). 8.86(3R.t). 5.8 -7.4(8R.s) 9-Fxt: C., R., N. 9001 - NC1
113	acica.a. (>-a. ()	'H-MMA(CECI_) / 1. (1 16-2 05(3H m), 2 83(2H bd), 3 47(2H m), 1 17(2H m), 2 42(1H dd), 5 50 (1H dd), 6 26 (1H dd), 6 90 -7 40(10H m) 分子类; C.,48.,123、HC1
5 5 6	cafgea*ca*-ca*-<>	18-888 (COC()
1315.	си. сяси, сэ. — Оэ-си. — О Д,	'H-SWR(CDC),

XH M	接 波 文	数 器 代 学 恒 数 (数点、元素分析物、同額 など)
118	»О- ^С иси,-С»-си,-О . _{2иси}	'H-MMR(COC)
	Choca,	分子式; Canthan Nation 28C1
117	O-Gen.co○-co○ . 2xco	'N-MAR (CDC:) 8: 1 1 - 2 1 (SN. m): 2 8 - 1 (SN. m): 1 41 (SN. m): 2 1 (SN. m): 8 1 - 7 (SN. m): 7 (SN. m): 9 8 37 (SN. m): 9
		分子之:CoshashaOF、2NC1
17.00	*	(8-881(COC), 8; 2,6-3,1(28,0), 3,43(28,0), 1,57(61,0), 2,33(28,0), 1,57(61,0),
1.28 1.28	aliana Ora O na	'H-NR (C3C1,)' S: 177 (SL s) 10 ~2 1(SL s), 2 32(SL s), 2.8 ~2 3(ZH s), 2 48(ZH s), 3 88(ZH s), 8.7~ 7.3(GL s) ************************************
125	CH. Q CON.	**************************************

2 7 (**3** 8)

美热河	发 签 %	物 聲 化 学 恒 数 (製点、元素分析能、588 など)
1.8	O-Cicci, Cis ○ #-01 #- ○ 2001	'H-WM (CDC)
122	О-Сиси,сиОи-сиО , дисл	'H-885(CDC1,) \$; 2.39(34.bd), 3.63(34.b), 1.07-2.35(84.b), 2.39(34.bd), 3.63(34.b), 3.31(34.bi), 6.31 - 5.36(34.b), 4.55-7.11 (34.b), 7.25(34.b), 8.31(34.bb)
123	80-cxca.cn04-cn0 . 2xc1	**-****(CDC1.)
124	Ø-801,01○8-01○ 2801	18-182 (CBC(,) & (S ((E s),) 2-1 \$5 (S s). 1 29 ((H s),) 2 (S ((E s),) 2 00 (Z s). 2 20 - \$ 55 (S s) 3 7-2 ; Cashan, - 200

数 8

·	物 選 化 学 短 数 (融点、光数分析整、898 など)
Ça.	**-988(CSCI.) # ; C. \$6~2 (2(2% b), 2.82 ~ 3.64(8% s), 7.06~ 7.52(10% s)
8,8 - 🔷 Č-8-C8,28,- 🔷 8-C8,- 🔷 20C)	'S-NNE(CDC), 0; L08-210(SH.a), 180-292(2H.a), 300(3H. 9), 134-150(4H.a), 3,90(2H.a), 8,60(2H. 0), 7,21-7,25(7H.a) 97-X:(2,4H.a); 2HC1
О-С-я-си,си,-Оя-си,-О - мс г си, си,	'H-sue(CBC),
Q-сн,-Ё-яясн,сн,-(Ох-сн,-(О → яст яв,	'H-MMS(COCI) &; 10 ~2 % Sim, m; 2 7 ~3 ((28, m), 3 29 (28, m), 3 50 (24, m) 3 51 (28, m), 1 8 (18, m), 7 28 (18, m), 7 3 ~1, 7 (38, m), 8 (37 (18, m))
(B)-C-4-CH, CH, -(3-CH, -() + HC1	'H-MM(COCI)
T;	'H-MAS (CDC), \$; 1,26-2,58(GH, a), 2,80-2,82(ZH, d), 3,12(SH, H), 2,66-2,58(4H, m), 5,42(1H, ad), 7,00(1H, d), 7,26-7,45(SH, m) 477-25; Confidential
	(A) - CH,

数 8 (統 8)

ZM (FI	· · · · · · · · · · · · · · · · · · ·	物 卷 化 学 包 数 (融点、元素分析值、835 年2)
131	O-g-4-ca*ca*-	'8-988(CDC), & : 1 02-2 08(98, a), 2 71-2 57(98, a), 5.18- 5 54(98, a), 7 18-7, 55(108, a)
	CN+	分子式:C::8::8::8:0 · 8CT /
132	Q-disses. (S-es. (Q + se	'H-WW (CICLL 8; 1 1 - 2 1(7 m. s) 2 8 - 3 05 (28, s) 3 05 - 3 15 (21, s) 3 49 (21, s) 5 1 (1 m.) 7 3 - 7 5
		分子式:CashinasiGa·NE)
133	O-Ĉ-4-01,01,- (3-01,01) (3-01)	'4-863 (CBC), 8; 1,00~2.08 (208,s), 7,22 (SK,bs), 7,37 (SK,s)
	ė,	分子文:Cs.sh.ss.0:NCl
134	О-синситент — нег	'H-MAR (COC),
	iii	分子式:C., 31, 18,00, · ÀCI
135	0 ○-desca,-○x-ax,-○ + +cı	'9-882(CBC), J; 1 ~ 2 2(9), a). 2 3~2 1(2), a). 3 30(4), a), 7 30(10), a)
	· · · · · · · · · · · · · · · · · · ·	分子文:Essites#5a - NCI
135	Caro Lanca, ca. Caroa, Orran	'H-888 (CDC), / ; (7 / -) 1, 26 ~ 2, 16 (9 H, e), 2, 64 ~ 3, 0 (2 H, bd), 2, 46 (2 H, e), 1, 36 ~ 3, 63 (2 H, e), 3, 30 (5 H, e), 3, 50 (3 H, be), 6, 50 ~ 6, 50 (2 H, d), 1, 16 ~ 7, 40 (5 H, e)
	ICH ₂	分子式;CoaRaoNaDa、RC)

33 8 (\$8 St.)

黑陰例	经 货 祭	物 理 化 学 低 数 (融点、元素分析数、70% など)
137	J	'8-888 (CDC), \$; (7] - (\$) 1, 12 ~ 2, 16 (98, 5), 1, 76 ~ 2, ((28, 50), 3, 48 (28, 5), 3, 12 ~ 1, 50 (28, 5), 1, 32 (38, 5), 0, 32 ~ 7, 40 (\$8, 5), 1, 25 (18, 55), 1, 0 (18, 5) 67 FZ : Co. 8, 6, 6, 6, 60;
138	J. 18. (04.04.04. (04.04. (04.04. (04.04.04. (04.04.04. (04.04.04. (04.04.04. (04.04.04. (04.04.04. (04.04.04.	B-NSR(CDC1.)
:39	Chargagaearchi-Chi-chi-O - aci	'H-MHR(COC() 8; 11 ~2 2(9H, 8) 2 7~2 3(4H, 8), 3 1~3 5 (2H, 8), 3 55(2H, 8), 5 5(1H), 7 30(10H, 8) 37 75; C. 32 38 81 1 HC1
145	Cu-cucurcu.cu. () - cu. () · xcu	'R-888 (CCC1,)
141		分表の(CDCi) を: (フリー体) 1.1 ~2.2(5K.5) 2.6~3.0(2K.5d), 2.44(2K. 3) 1.38~3.5(2K.5d), 2.30(3K.5), 8.3~8.30 (10K.5) 分子式: C2.43.8%(2.180)

表 3 (統 書)

XMM	* * *	物 選 化 学 版 数 (数 点、元素分析数、888 など)
143	Carolysoror Oscar O - HC	'H-885 (CDC)
		分子送
143	св,св,банси,сиОв-сиО У нс	(18-888 (COTL) 8: L17 (38-8)
	•	分子式;C17834830 - HC1
144		'8-888(CDC).) & : 11 -2.0(128 m). 2.5 -3.0(28 m). 3.0-2.3 (28 m). 3.41(28 m). 2.5 -3.4(14 m). 7.23 (108 m).
	- C43	分子式;C.2H2,N2(0·NC)
145	J.C.+C.+C.+-C.+C.+C.+ + RC1	'A-MACCEC')
}	Service All Services	分子文;CrefanBell,NCl
146	Lancar Orax O	'S-MAR CCCCLL &: 1
		分子式:Cs.8ss80s

·		georgian de la composition de
ZMM	% <u>#</u> #	物 選 化 学 恒 数 (拠点、元素分析施、889 など)
147		(H-888(CET),) 8; 0,86-1,90(34,0),2,56-3,(5(48,0),3,38(28, 0),4,56(18,0),4,68(18,0),7,00-7,56(124,0) 0,4,10(28,0)
	8:8	分子式:CasHanNaGa、HCl
148	св. = сисякск. св ⟨х-ся ⟨⟩ • нся	'H-WE(CDC),
		57x: c
149	olia-O-lo	'N-888 (CEC)
		59 F 12 : C, , N, , N, O,
159	4-040. (3-04-040 30)	'N-RNR(CDC1) & ; 1.80-2 (0(95, m), 2.55-3.50(75, m), 3.52(28, 5), 7.38(54 m), 7.80(48, ABq)
	70.000	9) Fot : C, .88 -0, - 8C)
151	J. J	'H-NHR(COCL) & ; 0.86-2.08(3H, m)

(数 8 (数 **3**)

XXX	· 英 · 英 · 英	物 選 化 学 恒 数 (始 点、元素分析象、888 など)
:38	- 101 - Carchich - Cr-chi-Q	'H-RAR(COC), 3 2.30—2.04(38, m), 2.48—2.88(28, m), 2.12— 1.52(48, m), 1.03—1.72(148, m)
153	Jåa.aC+aO-a. · 161	'N-898(CDC)
154	JanaOraO _a .	'H-RMS(CDC).) \$; 1.00~1.98(11H-m). 2.30(2H.m). 3.38(2H.m), 1.02(4A.m). 7.28(5H.m) 分子式: 5.2838830
195	Ja (2+01-)	'H-908 (CDC)
158	J. J	触点 (セ) ; 218~217 (分解) 元素分析値(C,,,H,,+K,E,・KE) として) [

老 3: (統 金)

東線 第	* * *	物 等 化 学 恒 数 (数点、元素分析数、888 など)
157	J	*#-\$88(CDC1.) Ø : 0 88(88.5) 1 02~2.28(98.0), 2.50~3.50(98. a), 1.28(58.5)
		分子文;CosHooNoB (HC)
863	Janes, co., Ora, e < [] · rec	'H-NSR (CDCI.) 5 ; 0 85 (H. s), 1 15 ~2 28 (SK. e), 2 78 (2K. bd), 5 42 (2K. t), 7 38 (3K. e), 7 67 (2K. dd)
		分子式:5、6830868 () ()
159	Доси, си, - () - си О - иси	'H-HMS (CBC) 2: 1,0 -2 2 (9H, m). 1,6-2 1(5H, m). 2:2-2:5 (4H, m). 8,3 -1,7(0A, m)
	. P. 183	分子文;Ca28anRa8·8C1
189	Jan Oran Oran	'H-NNE(CDCL')
	8	18-888 (CBC) 4) 3 ;
	0. Jan. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	18-888 (CGC) 8 2 18 (28, 50) 2 28 (58, 5) 1 10 2 28 (58, 5) 1 10 28 28 28 28 28 28 28 2
		GFC : CraffscagG (NC)

gg 8 (188 fs)

		demonstration
XMN	* * *	物 理 化 学 祭 数 (融資、元素分析額、経経 など)
182	cu, Qcu, ch, - (x,	*H-MM2(CCC1,) & ; 1.00-2.00(98, m), 2.03(3H, s), 2.80(2H, bd), 2.88, 2.5((cotal 9H, each s), 2.00-2.40(2H, m), 3.43(3H, m), 7.20(5H, m)
	CCs	分子式: C., 78, e 8 s 0 · HCi
183	("-14 (C) (C) (A) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C
	s.s. ćs.	分子式;CasHashaOa,HCl
164	4 jaca*ca · O · ca · L · aca	'A-MER(CECL) & . 1 00-2 08 (104 a), 2 71 -1 08 (58 a), 1 33 (28 ba), 6 18 (18 ba), 7 07 (71 ba)
	d's 443	分子文: CroHeeHaDs > NCI
185	J. 1808.043-€88-648-€1	(8-888(CBC1,) 8.6 (15(2M.m), 0.56(CM.m), 0.90—2.23(10M.m), 2.08(3M.m), 2.34(4M.m), 7.40(SA.s)
		分子文:C.allaesin·sCl
166	\$\frac{1}{6}\text{sign.} \text{call.} \text	*#-##7(CW(1) # : 1 01-2 02(95, m) 2 61-7 00 (51, m) 3 51 (65, m) 0) 7 15 (15, m) 7 27 (55, m) 7 50 (16, d) 8 61
		分子式:Ca.HarRio · 2007
Lummun	· · · · · · · · · · · · · · · · · · ·	and the second s

突絡例	泛 翁 彩	物 選 化 学 復 数 (機点、元素分析数、898 など)
187	J. S.	'H-MWR (COCT.) & : 1.04~1.04(110.0), 2.84.—1.00(50.0), 3.58 (20.2), 7.01(14.0), 7.27(60.5), 7.58(20.0), 8.44(10.0)
		分子式;Ca:Na+8,8、2HCl
188	CHYCHHEHICH CHY CHY-CHY-CHY-CHY-CHY-CHY-CHY-CHY-CHY-CHY-	'Y-MMM (CDC1.) & (. 2.83 (28.6d), 1.24 (28.6d). 1.06 - 2.00 (48.6), 2.83 (28.6d), 1.24 (28.6d). 1.46 (28.6), 1.35 (28.6d), 5.85 (48.66), 7.27 58.4), 7.77 (48.43d)
	8.8 × × × × × × × × × × × × × × × × × ×	分子式;Carnanaaa,NCl
169	10.00. Cr.00. 0 . 100	'9-NW (COC) 8; 10 ~ 2 (90.5) 2 6~ 2 2 (50.5) 1 2~ 3 7 (40.5) 1 25 (50.5) 7 3 ~ 6 1 (70.5)
		\$7\$\c2000.08\d0.08\
25.5	ca, C	%-MMCCC(1)
	Δ	Andrew Control of the
****	От ^{Сиси} -си-Фи-си-Фи-си-	'H-RMS (CEC) \$; 1 05 ~1 92 (9H pl. 2 70 ~2 95 (5H pl. 3 44 (2H s), 7 22 (5H d), 7 38 (5H s), 8 50 (3H d)
		分子式: C, , Na - N - O - 2001

& 8 (% è)

突击例	%	物 理 化 学 極 數 (數点、光素分析板、888 など)
172	_*ca.ca.	'H-NHR(CCCL) #: 2 79 (38.5). 1 08 (28.6). 1 12 (28.5). 1 17 (38.5). 1 18 (18.5). 7 18— 7 18 (38.5). 7 78 (38.5)
173	O'N CN*CN*CN*CN*-CN*-CN*-CN*-CN*-CN*-CN*-CN*	'H-MRR(CDC1)
174	800000 - 00000 - 0	'H-NSS (CCC)
175	() (18-50 (18-10). (18 (18-10) . (18.	'n-mag(CGC1,) & ; '0.56-71 18 (201.0), 2.40-72 55 (24.0), 4.35 (21.40), 7.18 (54.0), 8.54 (21.5), 8.58 (24.5)
178	\$40.01.02.00 0 m	'H-89E(CDC1,) & : 1 16-2 1298 a), 2 89(28, bd), 3 47(28, s), 4 35(28, bd), 7 98 -7 74(118, a), 8 08(18, bd), 8 23(18, bd)

32 8 (38 9)

来推河	#	物 理 化 学 恒 数 (触点、元素分析後、888 など)
3.37	J. (24.04.04.04.0	**************************************
	OSD TO THE RESERVE OF THE PERSON OF THE PERS	分子式; C2:N2:N2O; · NC1
178	Ca.	'H-KNR (CKL) & ; 1 10—1.98 (158 m), 2.77 —2.98 (88 m), 3.12— 3.86 (48 m), 7.26 (98 m)
	Car Car	分子式: C., N., N., N. NCI
179	r.c √ (ca. Ca. Ca. Ca. Ca. Ca. Ca. Ca. Ca. Ca. C	'H-MMS(CDC1) & ; 1,00~1,00(9m, m)
180		'H-SNE(CCC);
181	END CH. CH. CH-CH. CH. CH.	'H-NMA(CDC1,) 8; 1,10~1,68(12H,m), 2,86(2H,m), 2,88(3H,m), 1,10~1,68(12H,m), 4,02(2H,m), 6,84(2H,d), 7,28(1H,m) 分子式:Ce.Hu.NaOe、HC1

35 (\$\$ \$)

×87	等 達 英	物 连 化 学 恒 数 (数点、元素分析能、888 など)
182	√ - 01.0	'H-883(CRC1) \$;
183	a⊃-Çaca.ca⊘a-∕> . aca	18-888 (CIX) 3 : 1 04-1 08 (7 K m) 2 20-3 88 (7 K m) 4 60- 1 34 (7 K m) 8 67 (2 K n)
1,89	cs.nl-Q-lacs.csQs-csQ · ses	'8-808 (CCC) 3 6: 0 30-2.28((18.8), 2.60 -2.30(28.8), 2.65 1 03((2013) 36.esch 88), 3.48.3 35((2013) 28 each 85), 3.88(38.5), 7.19.7 21((212) 58 each 8), 7.87(48.889) AFE: C
185	C8.28.0C8, - C8.68.08 C8-08 C 801	'H-NHE(CHC1-)

差 8 (統 金)

支持例	2	物 選 化 学 恒 数 (数点、元素分析数、NG など)
(C)		**************************************
187	CH, CH-B - ← CH, CH, CH, - ←	'R-NRS(COI)

38. 9

RAS	* * *	物 選 化 学 恒 数 《数点、元素分析版、888 年2》
188	08.0 J. G., - Q. G., - Q 853	'8-888(CT),
25 25 25 25 25 25 25 25 25 25 25 25 25 2	Q - C# (O - O - #€1	'H-MMM(CDC) / / / / 2 50-1 (0(5M m) , 1 48 (2M m) , 1 48 (2M m) , 1 48 (2M m) , 1 15-7 32 (2M m) , 7 15-7 32 (2M m) , 7 23 (5M m)
199	CH. → CH. → CH. → CH. → M.CH	 総点(で):198~200 (分析) 元素分析線(C,482,803・8C) として) C ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※
191	CH ₂ 0 ^{CH} 20 CH ₂ -(CH	数点(七):198~199 元金分析数(C.s.H.s.NC.・NC1 として) で
192	CH.0 ^{CH.Q} L-CH O-CH O · HC1	 銀点(T):200~261 元素分析数(C,sH,SD,·NC)として) C S S S S S S S S S S S S S S S S S S S

突然例	8 3 X	物 選 化 等 短 数 (治点、元素分析数、888 など)
133	* LL 01. O-01. O · 101	'H-MAR(CDE)
194	ca A a. O-ca, O · 161	数点 (t):175~177 元素分析数(c,s,-m)・80 として) (
195	\$\tan\\-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	数点 (元):211~213 (分解) 元素分析数(C)2,NO:NC:として) (T)2 (T)2 (T)3
198	08.0 DL C8. O-C8. O	 数点(で);153~154 元業分析数(Ca.44s-NO.として) で
187	01.11 Co. O-Ca. O	数点 (で):170~171 (分解) 元素分析数(CooksonOoとして)

変 9 (統金)

XXX	* * *	物 題 化 学 (後 数 (数点、元素分析性、898 など)
138	CH_CH_H \ \ \ CH_CH_\chi_\chi_\chi_\chi_\chi_\chi_\chi_\chi	数点(t):178~178 元素分析性(C85,:85,・80) として) C 要論整名 15.26 1.46 3.55
199	444.00.0.a	 数点(で);238~237 (分解) 元集分析数(C。H。20、4元 として) 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
200	\$ a. O-a. O · ici	機点 (七) :195~186 元素分析数(C.s.R.s.100・NC) として) C.
201	\$ 01. ()-01. () 101	'8-88(CDC), d: 18-2 8034 a, 250 - 138(S4 a), 241 08 s)
282	C ¹ Cs. O-cs. O · **	'H-8MF(CDEL) &: 117(DR.6), 1.12-2.10(DR.6), 2.30-2.83 (25.86, 2.41(DR.6), 2.51(DR.6), 7.20(DR.6), 7.30-7.92(DR.6) 分子式:C _{2.8} S _{2.7} NG·HC1

类脑药	定 兹 郯	物 理 化 学 (6 数 (搬点、元素分析他、988年22)
203	си. — а Д_си. — — си. — О · нси	製点 (T) ; i26~127 元素分析数(C.e.S.,eNo,・HCl として) 200(X) 10 33
204	cn,0 Tcn,cn,cn, ()-cn, () - ma	'H-MMR(COCI,) &: 1,00~2,40(20H,a), 3,50(3H,a), 3,50(3H,a), 1,97(3H,a), 4,88(1H,a), 7,18(1H,a), 7,31 (5H,a) 分子式:[2,4H,a,8G,a-HCI
205	ся. в — Ся. ся. ся. ся. ся. Ся. Оэ-ся. Оэ-ся. Оэ-ся.	'H-MHP(CDC)
255	CHAO CHI-CH-(O)-CHI-CH (O) - HEI	** MMM (CCCL)
207	СН-О-СИ-О- ИСТ	'R-888(CBC) 8; L50~2.57(17m,a), 3.48,2.70(tutal 2H each a), 3.63.2.85(tuta) 35,each a), 5.57 ~7.35(4La), 7.22(5K,a) 分子之:C _{4.} H ₂ .8NG, HC)

変 9 (統章)

实验例	器 选 女	物 題 化 学 (第 数 (数点、元素分析法、303 など)
298	ca,o _{ca} , } ca-O-ca-O • s ca	'H-MAR (CDC)
209	CH, 10 CH	'H-NNECOC()
21 8	(3,0 C3-1) C3-C3-C3-C3- NC1	*H-888(CR1.) &: 1-888(CR1.) &: 1-888(CR1.) &: 258-2 30(78.0), 2.78-3.03(28.0), 3.48 (258.0), 2.93(28.0), 2.83(38.0), 3.93(38.8), 4.03(38.0), 6.58(18.60), 8.01(18.0), 7.25 (58.0)
213	* C - 0 - 0 - 0 - 0 - 10 - 1	'H-FMM (COCL)
212	CH	'H-WE(CCC)

来解例	#	物 隆 化 学 極 数 (数点、光素分析数、988 など)
83.73		**-HAME (COCT.) 8 1.48-2.60(7H, m), 2.32(2H, m), 2.17-3.02 (3H, m), 3.49(4H, m), 5.69(1H, m), 7.10 - 7.67(3H, m)
	Ġ,	分子変: C.s.RasNO・RC)
214	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	数点 (で) :174~175 元素分析的(C ₂₊ 35, 20, として) C V X 実施的(3) 69 12 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
,	O-01-0 \$\dot\d\-0-01-0	数点 (t):175~176 元素分析板(CooHoo NOo)として) 一種換板(X) 75 ² 44 6.89 3.99 実施板(X) 75 04 6.87 2.11
215	a.a.c D-a-O-a-O - ra	数点(T):189~181 元素分析数(C.,R.,RO,・EC) として) C
817		をは(で): 223~230 (分解) 元素分析板(C,,3,,30,,20) として) では、100 (25 6.05 3.53 25 (20 6.54 6.05 3.53 25 (20 6.05 6.15 3.14

表 3 (聚 含)

		discourant to the second secon
実施網	文	物 選 化 学 悠 数 (融点、光素分析値、※※)など)
218	\$\d\\\-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	'U-NNE(COC),
219	CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-C	数点 (t) : 211~212 (分解) 元素分析数(CR., NG + KC1 として) E
220	Q	(18-888 (COC)) 8; (20-2:58 (14.8), 1:08 (38.6), 2:75-2:37 (28.8), 2:46 (08.8), 5:07 (18.60), 7:21 (54.8), 7:21-7:51 (38.8) DFX; C:28:2:88 - HC1
8.53 25.3 25.3	Ca, > 0 \ Ca, O \ Ca,	数点(t):170~171 元素分析を(5.8.80,として) 理論(2) 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.
322	CH.S CHCH.CH.CH.CH. (CH. CH.) - HCI	**-MAR CBCL.) ま: 110-2 40(158 a), 270 -1 80(28 a), 2 45 28 a), 3 48(28 a), 3 86(38 a), 3 81(38 a), 5 60(38 a), 6 30(38 a), 7 20(68 a)

来海河	養 藏 奚	物 選 化 学 領 数 ; (数点、元素分析後、XBX など)
223	ся, с Д. ф. сиси, си, си, си, - Си Си Си-	14-NAME (CDC1,) 8; 1,10-2 (0(154 m), 1,68 - 2,00 (24 m), 3,46 (24 m), 150 (24 m), 3,88 (34 m), 3,97 (34 m), (34 m), 150 (24 m), 7,18 (14 m), 7,21 (34 m), 20, 40 m), 40 m)
\$24	CH-CH-CH-CH-○-CH-○ - HCI	数点(た):130~135 元素分析数(C,s6,s20,・8C) として) - ((((((((((((((((((((((((((((((((((((
275		'8-883(CEC),
228	08.0 Ages. Of Cas. O	数点 (T) ; 186-188 (分解) *F-NR (CDC), 6: 「
3.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	01,0 1 01, 0 - 01, 3 · 101	数点(t): 520~221 元本分析数(C.,H.,NO,・HC) として) C

3 (46 £)

		物整化学版数
XXX.	发 数 数	(数点、元銀分析物、)※ など)
	2 28	832~818 (ゼ) 3.88
228	CH. D-CH. O-CH. O - HCI	元寿分析被(Cos85,800,・8C) として)
219	Carlo Desir Desir Charles	
	8	(発会) 355~355;(分解)
229	^{69,0} / 1-68, ()-68, ()-68, 861.	元素分析核(0:48:480:480: として)
223	Catal Cara Degra Degra oct	
238	ca*e	'8-888 (CDC).) 8: 1.86-2.58 ((48.8). 3.73 (28.8). 2.86 (38.8). 5.83 (38.5). 6.87 (38.6). 7.12 (18.8). 7.72- 7.80 (48.6)
		分子式;C1.48.4840,41Cl
	NO.	職点(て);210~211
231	cx*e	元義分析被(C2,65,85,850,・1)() として)
હવા -		C 1 8 2823 52 14 53 633 2823 52 14 53 633
232	сн ₄ 0 ДД -сн ₄ - О- сн 4 О- во 4 - нст	毅 点(た);234~236 (分解)
		光素分析物(Cs.8.48.68、**(C) として)

X389	* 2 %	物 理 化 学 祖 数 (後点、光線分析後、光線 など)
222	^{ск,о} Д сп, О-сп, О ^м но	9-NNECDCI.) 8: 1 19-3 43 (14K a), 1 52 (2K s), 1 84 (3K s), 3 81 (3K s), 8 85-7, 88 (7K s)
	©	分子式: Es. H.s. 80 (* 182) 数点 (で) : 148~148
234		元素分析能(C.18,280.・801 として) C
236	01°6 A Q - 01° Q - 100	動点(ヤ):193~184 元素分析核(C::H::N):・HC1 として) C
256	01,0 \$\frac{1}{2} \tan \cap \cap \cap \cap \cap \cap \cap \cap	数点(で);226~228 (分解) 元素分析数(Cooks, PC、・NC: として) C
231	01.0 Than O-ca. O ca. O · 101	'8-M8R(CECL)

28 9 (88 8)

		·
rex	被 	第 現 化 学 版 数 (数点、元素分析像、8% など)
		数点 (で) ; 224~228 (分解)
238	^{ca,0}	元素分析数(C,:8::8:0; - 25C)として)
1.00	English Drong Trans	
	^{сн} •о Д сн() сн. сп() - жо	独点 (t) ;253~256 (分解)
233		元素分析値(C::8::80:-80:-として)
243	ENYO THE STATE OF	7878 8 8 7 8 19
240	ca, p Ca, O-ca, (8) · RCi	数点 (で) ; 225~228 (分解)
		元素分析後(C2、8,480、・80~として)
230		
	04.0 La. O-04. 8 · 80	数点 (它) ; 226~227 (分)#7)
241		元素分析値(C.s.6,180s・80) として)
491		7328 127 27 28
242	ana 1 an - O-an - O - ma	数点(て)(242~245 (55解)
		元素分析数(C,,)8,,100、HC1 として)
276		788 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

XM9	26 26 25	物 環 化 学 領 数 (数点、元素分析値、8% ほど)
27.3 27.3 27.3 27.3	ов. в Ст. — О-си. — С еси, - ист	数点(t):191~192 元素分析数(C,eHa,80a・WCI として) C # # 実施数(X) 85.54 1:39 1:49 実施数(X) 85.54 1:39 1:49
264	са.в ДД-си. О-си, Фаси, чен си.п ДД-си. О-си, Фаси,	 競点(で):218~221 元券分析板(C++8++6E++8E++8E++E+T) ()
248		'H-NN(O.C)'
248		 数点(で);185~(88 元本分析数(C.o4.o8c0、として) 28数数 計算 計算
247	04.0 Sq. O-04.0 +101	触点(で):246~241 (分解) 元素分析性(C.s8.s80,8s・WC) として) に

(数 9 3 3 4 4 5)

RMR	, % & X	物 選 化 学 恒 数 (数点、元素分析数、588 など)
248	CHAT THE O-CH. O - SHC1	数点(C):180~185 (分解) 元素分析額(C,,8,,8,0,・2801として) C
249 249 249	(cn.o) Libber Cn-cn, O - nci	総元(で): 230~232 〈分解〉 元素分析数(Coshs,NCs・NC) として) 第4数(3) 80 35 8 85 2 21 実別数(3) 80 35 8 8 50 2 31

第1頁の続き		•
@Int,CI,1	識別記号	疗内整理番号
C 07 D 211/94 295/10 401/08	SOND BORDEN WAND OF THE WORLD CO	6761-4C A-6742-4C 6761-4C 6761-4C 6761-4C 6761-4C 6761-4C 6761-4C 6761-4C
401/12	211	6761—4C 6761—4C
405/08 405/12 // A 51 K 31/40	2000 2000 2000 2000 2000 2000 2000 200	6761-4C 6761-4C 7375-4C
// A 51 K 31/48 31/445 31/455 31/56 31/565 31/56	MAA	
砂架 男 者 小	â # #	雄 茨城県土浦市永岡1115-6
70条 男 春 荒	水	伸
の発 男 者 小	笹 黄	史 茨城県つくば市吾婆4-14-5 ヴィラ・エスポワール 200号
の発 明 者 産	田海	彦 茨城県つくば市並木4-15-1 ニユーライフ並木408
O発 明 者 小		子 茨城県つくば市晋菱4-14-5 ヴィラ・エスポワール 206号
の発 男 者 山	津 清 :	黄 神奈川県鎌倉市今泉台7-23-7

【公報種別】特許法第17条の2の規定による補正の掲載 【部門区分】第3部門第2区分 【発行日】平成7年(1995)10月17日

[公開番号]特開平1-7915]

[公開日] 平成1年(1989) 3月24日

【年通号数】公開特許公報1-792

[出願番号] 特願昭63-153852

[国際特許分類第6版]

C070 211/32	9365-4C
207/09	8217-4C
211/18	9165-4C
211/94	9185-4C
295/10	A 8217-4C
401/06	209 760Z-4C
	223 7602-4C
	235 7602-4C
	239 7602-4C
	241 7602-4C
	243 7602-4C
401/12	21.1 7602-4C
	241 7602-4C
405/06	211 7602-4C
405/12	211 7602-4C
// A61K 31/40	9454-4C
31/445	
33/495	AAM
31/50	
31/505	
31/55	

等 杂龙 种的 正正 👑

學就多學 1 月 25 日

特許许養官 数

B

1. 事件の表示

務職総83 -- 1 5 3 8 5 2 号

2. 姿勢の名称

機能アミン数等体

名 额底条字系数

事件との答案 特許出版人

工一学 4 株式 会 註

4 性 雅 人

号(1 套 8 目下 1 海路総数本市区会中都常来 从为属于数本目

(\$389) 弁鞭士

数 (95)3868-7808 (代)

- a neset
- 1 被正の内容 別紙の勤り

3 ~ 以(5.3 ~ ジノトキシー 1 ~ インダノン) ~ 2 ~ イル) メチルビベリフン又はその数項学的に存款できる数の製造法。

- 6 1. ペンジル・オービベリジンカルバルデモドと 5.6・ジメトキシー1ーインダノンを収応させて3・ベンフルーもー ((5.8・ジメトキシー1・インダノン)・2・イリデエル)メチルビベリジンとし、次がて発売し、必要により後度反応を行っことを特殊とする請求項1を製の1・ベンジル・4・ ((5.8・ジメトキシー1・インダノン)・2・イル)メチルビベリジンとはその素度学的に対象できる限の製造法。
- 3. 强势的穿越体器领

(海袋上の利服分野)

本条領は、送案として優れた作用を有する新展署状でくり誘導 体に繋ぎる。

(秦朝に至る背景及び従来技術)

差年人口が微微に増大する中で、マルツハイマー変差年額最な との業年額星の物強性を確立することが震震されている。

しかしながら、現在のところ。選年数級を募集で的報する減み は務々なされているが、これらの機像に概率的に有効とされる薬 剤は今のところ存在しない。

これらの窓窓の治療器の影別は著りの方向から研究されているが、有力な方向としてアルフハイマー超速年報条は、際のロリン作動性機構使下を行うことから、アセチルコリン前部機関。アセチルコリンエステラーが服物機の方向から開発することが接収され、実際にも試みられている。代表的なものとして、第コリンエステラーが服务機として、フィゾステグミン、テトラヒドロアミ

775 888 300

1. 蒸剔必含物

環状アミン経療体

- 2. 特許激素の熟剤
 - 下記化空工工業される1 ペンジルー4 ((5.8-ジメトキ ジー1-インダノン) - 3 - イル) メテルビペリジンXはその 業度学的に許容できる塩。

- 2 数字級「契約の1・ペンジルー6・(5.6・ジメトキシー) ・インダノン3・2・イル) メキルピペリジン又はその施設室 的に許安できる基を有効減分とするアセチルコリンエスアラニ ゼ報等額。
- 3 請求選」を整の1・ペンジル・4・【(5.8・ジストキシー」 - インダノン) - 3・イル) メデルビベリジン又はその業務学 物に内容するを集そ可能成分とする各種を人性病是最終策・子 物類。
- 4. 各種差人性粉系室がマルフハイマー器室生産系である程序表 3. 経載の台座・予防禁。
- 3 ーペンジルー4 ー ((3.3ージメトキジー1ーインダノン)
 2 ーイリデニル)メテルはペリジンを選択し、必然により業 塩炭店を行うことを特徴とする選挙項1型級の1ーペンプルー

ノアクリコンなどがあるが、これらの裏頭は紫葉が子分でない、 好ましくない顔作用があるなどの欠点を有しており、快定的な捨 密塞はないのが駆けである。

そこで本務的者らは、作物等無時限が最く、変色性が高い影響 を開発すべく、基準にわたって限りの代金物について最高研究を 変ねてきた。

その結果。後で述べる式(3)で示される環境でミン粉藻体が、 所郷の目的を選することが可能であることを異出した。

異体的には下記の機器式(1)であまれる本条限化合物は、設力かつ選択性の高い民アセチルコリンエスチラーゼを性を有し、 服内のアヤチルコリンを増離すること、記憶解寄モデルで存物で あること、及び微素この分野で汎用されているフィジエテクミン と比較し、作用物能功能が低く。安全性が高いという大きな特別 を有しており、本発明の複数は振めて高い。

本発明化合物は、アセテルコリンエステラーが設定作用に基づ いて見出されたもので、契って中保性コリン機能、認ら特殊伝達 物質としてのアセテルコリンの生体内の欠差が原因とされる機や の影像の始節・予防に有効である。

代義的なものとしては、アルフハイマー製造年病泉に代象され さ各権病呆があるが、そのほかハンテントン解解物、ビック物、 機器性運動異常症などを挙げることができる。

従って、本類限の目的は、影響としてどりわけ中枢神経系の変 数の治療・予防に有効な新規環状アミン物等体を提供すること。 この新規環状アミン誘導体の製造方法を整備すること。及びそれ を有効成分とする影響を発供することである。

(緊閉の構成及び効果)

本意質の目的化合物は、物の成()) で表される (ーペンジル ー 4 ー ((5,8ージメトキシー (ーインダノン) ー 2 ーイル) メチ ルピペリジン及びその異理学的に許多できる姿である。

本類領において、関盟学的に持ちできる地とは、例えば強強協、 政権権、異化水素機構、構能能などの無機能強、機能権、影散権、 トリフルオの影権権、マレイン機協、関石機械、ノタンスルホン 機構、ペンゼンスルホン機協、トルエンスルホン機構などの有機 機能を挙げることができる。

また、例えばテトリウム版、カリウム版などのアルカリ金属版、 カルシウム版、マグネシウム版のようなアルカリ主義金属版、ト リメチルアミン版、トリエテルアミン版、ピリジン版、ピコリン 版、ジンタロペキシルアミン版、ドギージペンジルエテレンジア ミン版などの有機でミン版、アンモニウム版などを形成する場合 あるる。

なお、本集別化を含は、不方変素を有し、光学異数体が存在し うるが、これらは本異質の報源に数することはいうまでもない。

郷ち、本塾明在台灣は幾何異性体、光学異性体、ジアステレオ マーなどが存在しらるが、何れも本発明の報題に含まれる。

本務務な合物の製造方法は器へ考えられるが、代表的な方法について述べれば最下の過ぎである。

等itita反応を行う際の無線としては、例えばナトリウムメテラート(8:00%)、ナトリウムエテリート(8:00%)、1-588%、MAN などを挙げることができる。この原路線としては、例えばテトラとドロフラン(で記す)、ジメテルホルムでミド(DMSD)、エーテル、エトロメタン、ジメテルスルホモンド(DMSD)などを挙げることができる。また、反応義度は関係から100 で展度が好ましい数率を与える。

接触着点を行う際は、例えばバラジウム機楽、ラネーエッケル、 コンウム機楽などを触媒として思いることが好ましい結果を与え ス

また、出機機器のポスポナート (II) は以下の方数により、減 (V) で巻きれる 5.3ージメトキシー1ーインダノンから製造することができる。

1. 指式施强

即ち、或(目)であされるホスキナートに或(目)で会合れる
1 ーペンジルー4 ーピペリジンカルバルデヒドを反応なしめて
(*ittig対応)、或(目)で奏される) ーペンジルー4 ー (活,6
ージメトネシー)ーイング/ン) ー3ーイリデエル)メテルピペリジンを等、及いてこれを接触器だして質的物質の配合物(目)を得ることができる。目的化合物を第にする場合は、常法により必要により必要反応を行うことにより、容易に必要の要理学的に新客できる客を得ることができる。

整成方法2

脚ち、減(V) で扱きれる 5.6・ジメトキシインタノンと或(iii) で扱きれる:・ペンジル・モービベリシンカルバルデモリ とを、実施によりアルドール接合を呼い、式(ii) で扱きれる:
・ベンジルーモー (i5.8・ジメトキシー)・インタノン) ーまーイリデエル! メテルビベリジンを得る。

本反応は、例えばテトラヒドロブランなどの密接中でタイププ ロビルアミンとエーブテルペキサン密数によりリケウムタイプブ ロドルアミドを生成させ、好ましくは約~80℃の高度でこれに上 然の式(Y)であされる 5.5~ジェトキンインダインを加える。 然いで式(31) で変されるアルデヒド後を加えて常独により役成 せしめ、家品まで昇級させることによって総水させ、エノン体で ある式(!Y) で扱される信含物を得る。

多数なの質質数として、概念((V) と()(!))をデトラとドロフランなどの影響に無限し、約8でにて、例えばナトリウムメチラートなどの最終を加えて、影像にて要認させることによる方法によっても概念することができる。

上記の製造方法によって終られたエノン体((*)) を約割に示したと残機の方法により選売することにより、式(()) で表される
不製剤の目的化合物を得ることができる。

本点、X(()()) で繋るれる) - ペンタルーよっセペリタッカル パルデンドは残えば最下の対象なられるかである。

数も上記の強く、光(V()) であされる化合物を出発機関とし、 これをフィンプテルアルミニウムハワイドを関いて表現すること により、アルデヒド体((())) を得ることができる。

≋ :

	ACBS報客報報 [Car (28)

多数数2

8x vive アセチルフリンエステラーを監察作業

ラットに数数件を級口機なり、その1時間接に大脳や球を構設 し、本モジディズ後、アセテルロリンエステラーを密盤を調定した。なお、生機会基準役与群を対照とした。

糖菓を養まに稼ぎ。

S\$ 2

	# X (#8/83)	ACHERIST M (T)
\$26128		0
	1	8 *
実験例: の化合物	ষ	17 40
化环路板	18	36 **
	30	47 **

3 **38** 88 3

3.2分子3.20受験問題学育施修に対する合用**

第18147条接続ラットを扱い、蒸気としてはates through裂の明 物物を促出した。紹行の1 物質的に物体を提出数率し、20分割に スロボラミン9. 202/82(19)を数度した。数数数行では別窓に動物 設上がようにして得られる式()) の住会物及びその動け象数 は各種老人性痴呆症、物にアルツハイマー影響年痴呆の治療に有 限である。

項(1) でかされる化合物及びその物件知場の有用性を示すた のに、照際総数結果を以下に監察する。

経験例 1

is gitroアセチルロリンエステラーゼ監察存出

アセテルコリンエステラーゼ級として、マウス級ホモジネートを用いて、Ellasoらの方形では外路してエステラーゼ機能を数定した。マウス級ホモジネートに、蒸賞としてアセチルテオコリン、接接体及びDTMBを影加し、インキュペーション後、恋生したテオコリンがDTMBと反応し、失じる気色複数を412ms における微性度変化として研定し、アセチルコリンエステラーゼ活性を含めた。

機像のアセチルコリンエステラーゼ医療療能は30%服務機能 (16,,)で変した。

始聚冬蒸~仁茶字。

 Elinan, C.L., Coortsey, R.D., Agiros, Y. and Featherstone, R.M. (1861) Bioches, Physicaeol., J. 88-25

を入れ、発室に入った返送にギロテンドでを開める気ショックを 体のグリットから与えた、3時間後に保険設行として再び勤物を 研究に入れ、第窓に入るまでの幹額を設定し評価した。

施集は生食数与野とスロボラミン数与野の製定時間の変を(69 暑とし物体により開発機能したか(Reversell)で表した。

*1 7. Bokolanczky & Jarvik : fat. J. Neuropherascof &. 217-222(1867)

結果を終るに示す。

※ 8.

	% % (x3/kg)	Keserzek
深熱的! の化合物	8.125	85
0.00.00.00	0.88	\$8

上記の原理映藝術から、本際所化も物は強力なアセテルコリン エステラーゼ無害作権会害していることが明らかとされた。

本条等の代金物は、常条のアセテルのリンエステラーゼ報客報 とは概念を考しく際にすること、変力なアセチルのリンエステラ 一ゼ服務作用を有することの扱か、主作用一解作用中が大会いこ た、作用特疑が無いこと、水解性が高く、且つ認めて安定な化金 物であり、数例上有到であること。及び生体利用やが優れ、行は20 pass affect を受けにくく、且つ数内容行性もよいなどの物数を 有している。

従って、本発型の自動は、数々の製品能、勤治管案等後遺紀に 有効な解裂は化合物、及びその化合物製造方法、及びその化合物 を有効成分とする新規な概器を整備するにある。

なお、本義明化会物について、ラットにおける高性試験を行ったころ、いずれも約100mg/kg因上で意識な物性を示さなかった。

本義明化合物は、各種名人性病系症:特にアルツハイマー般を 年海県、藤宇中(藤田島、藤嶺家)、藤朝朝護化症、蘇柏外盤な どに伴う羅島管障害:最美慈素症、影情病離などに伴う密重力低 下、菩薩障害、素素低下、情報障害、起興障害、幻覚一変型状態。 行動異常などの治療、予防、振熱、故夢などに有効である。

要は、本発明化会物は強力かつ差別性の違い払コリンエステラーが存用を有するので、これらの存用に基づく選集としても有用である。

脚ち、アルフバイマー製造年務業のほか、例えばハンチントン 脚踏前、ビック病、発発性異常症などにも有用である。

本類似化を敬をこれらの影響として使用する場合は、終日後年若しくは非経日後年により後年されるか、後常は静原内、皮下、 筋肉内など強制用、発薬者しくは苦下級など非経日後年により投 やされる。投与無は、症状の程度:患者の年令、性間、体重、療 受性差;投与方法:指与の特別、関閉、影楽觀彩の性質、調明、 繊維:投与方法:指与の特別、関閉、影楽觀彩の性質、調明、 繊維:有効成分の機関などによって異なり、特に限定されないが、 通常成人1月あたり的 9.1~380mg、好ましくは約1~100mg で あり、これを適宜:日:~4回にわけて投与する。

本発明代表物を契約化するためには、契約の技術分野における 凝密の方法で注射用、完高、苦下較、契約、カブモル料はどの有 数とする。

性財務を襲撃する場合には、主翼に必要により20個整制。機能

2-1955 NO STATES 22 - 388

(8) 1-X224-1-2X22/22A/AF54900

ノテキシステレントリフェニルホスホニウムクロライド28.0 aを飲水エーテル 200a1に経過させ、 1.88 aープチルリチウムペキサン含酸を完成にて海下した。変型にて30分間保护した後、0℃に冷却し、1ーベンフルー4ーピペリドン 14.35gの概率エーテル80a1的数を加えた。高層にて3時間保険した数不物物を適別し、透過を減圧機能した。これをエーテルに発酵し、18強酸にて協議した。そらに水粉化ナトリウム水溶液にて28.18 とした後、液化メテレンにで協助した。碳酸マダネシウムにて能器後、緩圧緩縮し、等られた残液をシリカテルカウムにて散製し、始致物質5.50g(極率88次)を存た。

これをメタノール40mlに海鮮し、18複数40mlを加えた。 2 映 類は熱薬剤した後、確定機能し、複雑を水に溶解液水酸化ナト リウム水溶液にて減 18 とし、磁化メテレンにて減低した。 28 耐液塩水にて洗浄後、複数マグキシウムにて低級し、減圧機能 して得られた物類をシリカゲルカラムにて開発し、原石化合物 2.77g(保存54円)を始状物質として得た。 郊、野類化剤、溶解物質剤、安定化剤、多質化剤、保容剤などを 溶加し、溶液により診断、放下、燃素内性制剤とする。その認必 多により溶液により溶液発物をすることも可能である。

級務級としての務を挙げれば、例えばメチルセルロース、ポリソルベートをも、ヒドロキシエチルセルロース、アラビアゴム、トラガント家、カルボキシメチルセルローステトリウム、ポリオキシエチレンソルビタンモノラフレートなどを挙げることができる。

海解補助剤としては、例えばポリオキシエテレン優化セマシ妹、ポリソルペートもも、エコテン酸アミド、ポリオキシエテレンソ ルピタンモノラウレート、マグロゴール、ヒマシ熱類防衛エテル エヌテルなどを挙げることができる。

また姿変化例としては、例えば至嶷綾ナトリウム、メタ藍藻綾 ナトリウム、エーテル等が、保存剤としては、例えばパラオキシ 妄彩音微メチル、バラオキシ安急音強エチル、ソルビン織、フェ ノール、クレゾール、クロロクレゾールなどを挙げることができる。

(報 施 務)

原下に突縮側に関って本動物をさらに異常的に微物するが、本 発質の技術的構塑がこれらの突縮側の構想に限定されるものでな いことはいうまでもない。

なお、下記の実施器において、 8数の製造すべてフリー体での 数変数を示す。

黎成帝:

1-ベンジルーも…(くち.4 …ジメトキシート・インタノン)-

- · 分子式; 0; 3; 300
- 18 NME(CSC) 5 c
 - 1.40~2.40(78.8), 2.78(28.41) , 3.45(28.6).
 - 7,20(58,0), 9,81(18,6)
- (3) 1-XVV2-8-1(5,8-VX)*V-1-1V8/V)
 - 2-イリデニル)メテルピペリンシ・協盤集む会派

この反応はアルゴン客密気下行った。

鍼水でMR tool中にジイソプロビルアミンな(Man)を加え、さら にもでにてに誤るープチルリチウムヘキサン高級を1281を加え た。0℃にで10分娩控した数、~78でまで冷却し、5.6 ージメ トキシートーインダノン2.55gの繋水TRF 36g(溶液とヘキサメ テルキスポルアミド2 別(a)を放えた。 - 78℃にてほ合後終した 後、(4) で得た!…ペンジルーネーとペリジンカルバルデヒド 2.70gの策水T部 80ml蒸蒸を加えた。常数まで徐々に昇盤し、 さらに家盤にて2時間保持した後、1×塩化アンモニウム水溶 液を加え、有機器を分離した。水器を粉散エチルにて放出し、 さらに合わせた容器器を総称支援水にて洗涤した。跳数マグネ シウムで乾燥後、絨圧機構し、浮られた蒸散をシリカゲルカラ A (複数タテレン)メタノール=800 (1~100 (1))にて輸 蒸した。輸出液を減圧機関した後、微差を操作メテレンに密解 A. 19新型第一份發出于方溶液を施え、含品は銀序凝軟して統 最を得た。これを異化メチレンー198 から異数異化し、数の数 姓曼斯里名挪蘭化合物3.40g(安率52%)を移た。

· 数点 (で) : 237 ~258 (分数)

· 地震分析数: 0stine80a / HOLE して

£ 35 &

終験数 (%) 88.88 8.82 3.38

突翻数(30) 89 81 8.78 9.30

XXX:

3 - ペンタルー (- ((5,8 - ジメトキシー 3 - インダノン) -3 - イル) メチルビベリタン、複数数

1.一ペンジネーなー ((8.8 ージメンキシー)・インダメン) - 8 ー くりデニル)メデルビベリジンのの変を789(8miに胸握し、 10米パラジウムー製薬の対象を加えた。窒息実施にても特徴水棄 類別した後、無線を複数し、機能を成正益等した。この機能をシ リカゲルカラム(塩化メデレン:メタメール=80:1)にて構築 し、溶出液を破正整数した後、機変を塩化メデレンに物解し、10 無機機一動機エテルな設を加え、立るに減距裂能して抽品を寄た。 これをエタメールー198から初級条化し、次の物性を有する構理 化合物の38g(後年38m)を終れ、

· Max (*C) ; 211 ~ 212 (59%)

・元素分析後:0::A::W:: - 10(ほとして

£ 8 8

運輸住(※) 68.30 7.37 3.37

※製物(※) 85.33 7.35 8.22

雅 容性 人塞的人緣思