MA2252 Introduction to Computing

Lecture 14 Interpolation

Sharad Kumar Keshari

School of Computing and Mathematical Sciences
University of Leicester

Learning outcomes

At the end of lecture, students will be able to

- understand interpolation problem
- understand theory of interpolation methods
- implement interpolation methods in MATLAB

Introduction

In mathematics, **interpolation** means to estimate the value of a function f(x) in a given interval $x \in [a, b]$ based on some known values of the function inside and at end points of this interval.

extropoloxion

Introduction (contd.)

Example: The table below shows the average temperatures in Leicester in July. Can we predict temperature on other days between 1st and 15th July?

Day	Average Temperature
1	18
3	19
6	18
7	20
10	22
12	21
15	23

Introduction (contd.)

Interpolation vs Regression

- Both techniques are used to describe the given data set as good as possible.
- Unlike regression, interpolation requires the estimation function to pass through all data points.

Interpolation Problem Statement

Suppose we have a data set containing n data points (x_i, y_i) , $i = 1, 2, \dots, n$.

Goal: To find an estimation function $\hat{y}(x)$ with domain $x \in [x_1, x_n]$ such that $\hat{y}(x_i) = y_i$.

The function $\hat{y}(x)$ is called **interpolation function**.

Note: The choice of interpolation function depends on other factors such as accuracy, underlying physics etc. Depending on this choice, there are different interpolation methods.

Some Interpolation methods

- Linear Interpolation
- Cubic Spline Interpolation
- Lagrange Polynomial Interpolation

Linear interpolation

Here, the interpolation function $\hat{y}(x)$ is defined piecewise by linear polynomials (or straight lines). So,

$$\hat{y}_{i}(x) = y_{i} + \frac{(y_{i+1} - y_{i})(x - x_{i})}{x_{i+1} - x_{i}}, \quad x_{i} \leq x \leq x_{i+1} \quad (i = 1, 2, \dots, n-1)$$

$$(x_{i}, y_{i}) \quad (x_{i}, y_{i}) \quad (x_{i}$$

Linear interpolation (contd.)

Example: Use linear interpolation to find the average temperature in Leicester on 8th July.

	Day	Average Temperature °C
ر د	1	18 🔥
1/2	3	19 42
73	6	18
Ny	7	20 ५५
The	10	22 🗽
	12	21
	15	23

Linear interpolation (contd.)

Demo

Cubic spline interpolation

A cubic spline is a function defined piecewise by cubic polynomials.

In cubic spline interpolation, the interpolating function is a cubic spline defined as

$$S_i(x) = a_i x^3 + b_i x^2 + c_i x + d_i, \quad x_i \le x \le x_{i+1} \quad (i = 1, 2, \dots, n)$$
 (2)

Again, MATLAB's interp1 function can be used by giving 'cubic' as argument.

Example: (from book)

Demo

The unknown parameters a_i, b_i, c_i and d_i are found using these conditions:

Si
$$(x_{i+1}) = y_{i}$$
 $(i = 1, 2, \dots, n-1)$ represent the state of th

Derivation of parameters: Please refer book and lecture recording.

Lagrange Polynomial Interpolation

Here, the interpolation function is a Lagrange polynomial defined as

$$L(x) = \sum_{i=1}^{n} y_i P_i(x) \tag{4}$$

where

$$P_{i}(x) = \prod_{j=i, j \neq i}^{n} \frac{x - x_{j}}{x_{i} - x_{j}}.$$
 (5)

The Lagrange polynomial L(x) of degree n-1 passes through n data points i.e. it satisfies $L(x_i) = y_i$ $(i = 1, 2, \dots, n)$.

Lagrange Polynomial Interpolation (contd.)

Example: (from book)

End of Lecture 14

Please provide your feedback • here