Rotational Motion: Principal Axes (Reading: Chapter 10.4 - 10.5

Help:

i Kinetic energy and the inertia tensor. This problem is a little heavy on vector algebra for my taste, but the result is important and we will rely on it later. So...

10.33 Here is a good exercise in vector identities and matrices, leading to some important general results:

(a) For a rigid body made up of particles of mass m_{α} , spinning about an axis through the origin with angular velocity ω , prove that its total kinetic energy can be written as

$$T = \frac{1}{2} \sum m_{\alpha} \left[(\omega r_{\alpha})^2 - (\vec{\omega} \cdot \vec{r}_{\alpha})^2 \right]$$

Remember that $\vec{v}_{\alpha} = \vec{\omega} \times \vec{r}_{\alpha}$. You may find the following vector identity useful: For any two vectors \vec{a} and \vec{b} ,

$$(\vec{a} \times \vec{b})^2 = a^2 b^2 - (\vec{a} \cdot \vec{b})^2$$

(If you use the identity, please prove it.)

(b) Prove that the angular momentum \vec{L} of the body can be written as

$$\vec{L} = \sum m_{\alpha} \left[\vec{\omega} r_{\alpha}^2 - \vec{r}_{\alpha} (\vec{\omega} \cdot \vec{r}_{\alpha}) \right]$$

For this you will need the so-called BAC-CAB rule, that $\vec{A}\times(\vec{B}\times\vec{C})=\vec{B}(\vec{A}\cdot\vec{C})-\vec{C}(\vec{A}B)$.

(c) Combine the results of parts (a) and (b) to prove that

$$T = \frac{1}{2}\vec{\omega} \cdot \vec{L} = \frac{1}{2}\tilde{\vec{\omega}}\vec{I}\vec{\omega}$$

Prove both equalities. The last expression is a matrix product: $\vec{\omega}$ denotes the 3×1 column of numbers ω_x , ω_y , ω_z , the tilde on $\tilde{\vec{\omega}}$ denotes the matrix transpose (in this case a row), and \vec{l} is the moment of inertia tensor. This result is actually quite important; it corresponds to the much more obvious result that for a particle, $T = \frac{1}{2} \vec{v} \cdot \vec{p}$.

(d) Show that with respect to the principal axes, $T = \frac{1}{2}(\lambda_1\omega_1^2 + \lambda_2\omega_2^2 + \lambda_3\omega_3^2)$, as in Equation (10.68).

- **ii** Properties of eigenvectors and eigenvalues for symmetric, real matrices. This is a problem that you probably already did in linear algebra (feel free to revisit your notes, problem sets, and text from that class). However, it's worth reminding yourself of these results; we will make use of them going forward, and you will use them next semester in Big Quantum (116) all of the time.
- **10.38** Suppose that you have found three independent principal axes (directions $\vec{e}_1, \vec{e}_2, \vec{e}_3$) and corresponding principal moments $\lambda_1, \lambda_2, \lambda_3$ of a rigid body whose moment of inertia tensor \vec{l} (not diagonal) you had calculated. (You may assume, what is actually fairly easy to prove, that all of the quantities concerned are real.)
- (a) Prove that if $\lambda_i \neq \lambda_j$ then it is automatically the case that $\vec{e}_i \cdot \vec{e}_j = 0$. (It may help to introduce a notation that distinguishes between vectors and matrices. For example, you could use an underline to indicate a matrix, so that $\vec{\underline{a}}$ is the 3×1 matrix that represents the vector \vec{a} , and the vector scalar product $\vec{a} \cdot \vec{b}$ is the same as the matrix product $\underline{\widetilde{a}} \cdot \underline{\widetilde{b}}$ or $\underline{\widetilde{b}} \cdot \underline{\widetilde{a}}$. Then consider the number $\underline{\widetilde{e}}_i \cdot \underline{I} \cdot \underline{e}_j$, which can be evaluated in two ways using the fact that both \underline{e}_i and \underline{e}_j are eigenvectors of \underline{I} .)
- (b) Use the result of part (a) to show that if the three principal moments are all different, then the directions of three principal axes are uniquely determined.
- (c) Prove that if two of the principal moments are equal, $\lambda_1 = \lambda_2$ say, then any direction in the plane of \vec{e}_1 and \vec{e}_2 is also a principal axis with the same principal moment. In other words, when $\lambda_1 = \lambda_2$ the corresponding principal axes are not uniquely determined.
- (d) Prove that if all three principal moments are equal, then *any* axis is a principal axis with the same principal moment.