Getting Started with Spark 2

UNDERSTANDING DIFFERENCES BETWEEN SPARK 2.X AND SPARK 1.X

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Spark 1.x was already a great general purpose computing engine

Spark 2.0 takes it to a new level in several ways

2nd generation Tungsten engine provides 10X performance improvement

Unified APIs for Datasets and DataFrames and Spark SQL

Higher level ML APIs

Unified batch and streaming queries

Prerequisites and Course Outline

Prerequisite Courses

Python: Getting Started

Python Fundamentals

Advanced Python

Related Courses

Beginning Data Exploration and Analysis with Apache Spark

- Programming in Spark 1.x using Python

Handling Fast Data with Apache Spark SQL and Streaming

- Programming in Spark 2 using Scala

Software and Skills

Be very comfortable programming in Python (Python 3)

Be comfortable working with Jupyter notebooks

Understand basics of distributed computing

Course Outline

Spark 1.x vs. Spark 2.x

- Architecture overview, representing structured data as DataFrames
- SparkContext, SQLContext

Exploring and Analyzing Data with DataFrames

- Transformations and actions, built-in aggregations, sampling, grouping, sorting data
- Accumulators and broadcast variables

Querying Data Using Spark SQL

SQL queries on DataFrames, temporary views, windowing operations

Introducing Spark

Hadoop

HDFS

MapReduce

YARN

A file system to manage the storage of data

A framework to define a data processing task

A framework to run the data processing task

Co-ordination Between Hadoop Blocks

MapReduce

User defines map and reduce tasks using the MapReduce API

YARN

HDFS

Co-ordination Between Hadoop Blocks

A job is triggered on the cluster

HDFS

Co-ordination Between Hadoop Blocks

MapReduce

YARN figures out where and how to run the job, and stores the result in HDFS

Cluster manager

Alternatives: Mesos, Spark Standalone

Distributed Storage system

Spark libraries

Real-time as well as batch
Interactive REPL environment
Support for

- Python
- Java
- Scala
- R

RDDs and Spark 1.x

Why is this relevant in Spark 2?

RDDs are still the fundamental building blocks of Spark

Resilient Distributed Datasets

All operations in Spark are performed on in-memory objects

Resilient Distributed Datasets

An RDD is a collection of entities - rows, records

Resilient Distributed Datasets

An RDD in Spark is analogous to a Collection in Java

It can be assigned to a variable and methods can be invoked on it

Methods return values or apply transformations on the RDDs

Characteristics of RDDs

Partitioned

Immutable

Resilient

Split across data nodes in a cluster

RDDs, once created, cannot be changed

Can be reconstructed even if a node crashes

Partitioned

RDDs represent data in-memory

1	Indigo	06:45	Bangalore
2	Jet Air	08:45	New Delhi
3	SpiceJet	09:15	Mumbai
4	Indigo	10:45	New Delhi
4 5	Indigo Air India	10:45 11:15	New Delhi Mumbai

Data is divided into partitions

Distributed to multiple machines

1	Indigo	06:45	Bangalore
2	Jet Air	08:45	New Delhi
3	SpiceJet	09:15	Mumbai
4	Indigo	10:45	New Delhi
5	Air India	11:15	Mumbai

Data is divided into partitions

1	Indigo	06:45	Bangalore
2	Jet Air	08:45	New Delhi
3	SpiceJet	09:15	Mumbai
4	Indigo	10:45	New Delhi
5	Indigo Air India	10:45 11:15	New Delhi Mumbai

Data is divided into partitions

1	Indigo	06:45	Bangalore
2	Jet Air	08:45	New Delhi

3	SpiceJet	09:15	Mumbai
4	Indigo	10:45	New Delhi

5	Air India	11:15	Mumbai
6	Vistara	12:00	New Delhi

Distributed to multiple machines, called nodes

1	Indigo	06:45	Bangalore
2	Jet Air	08:45	New Delhi

3	SpiceJet	09:15	Mumbai
4	Indigo	10:45	New Delhi

5	Air India	11:15	Mumbai
6	Vistara	12:00	New Delhi

Distributed to multiple machines, called nodes

Nodes process data in parallel

Partitioned

Processing occurs on nodes in parallel

Data is stored in memory for each node in the cluster

Immutable

An RDD cannot be mutated

Only two operations are permitted on an RDD

Only Two Types of Operations

Transformation

Action

Transform into another RDD

Request a result

Only Two Types of Operations

Transformation

Action

Transform into another RDD

Request a result

Transformation

1	Indigo	06:45	Bangalore
2	Jet Air	08:45	New Delhi
3	SpiceJet	09:15	Mumbai
4	Indigo	10:45	New Delhi
5	Air India	11:15	Mumbai
6	Vistara	12:00	New Delhi

A data set loaded into an RDD

The user may define a chain of transformations on the dataset

Transformation

1	Indigo	06:45	Bangalore
2	Jet Air	08:45	New Delhi
3	SpiceJet	09:15	Mumbai
4	Indigo	10:45	New Delhi
5	Air India	11:15	Mumbai
6	Vistara	12:00	New Delhi

- 1. Load data
- 2. Pick only the 3rd column
- 3. Sort the values

Transformations are **executed** only when a result is requested

Only Two Types of Operations

Transformation

Action

Transform into another RDD

Request a result

Action

Request a result using an action

- 1. The first 10 rows
- 2. A count
- 3. A sum

Lazy Evaluation

Spark keeps a record of the series of transformations requested by the user

Lazy Evaluation

It groups the transformations in an efficient way when an Action is requested

Immutable

Action: Read data from an RDD

Transformation: Transform the

RDD to create another RDD

Resilient

RDDs can be reconstructed even if the node it lives on crashes

RDDs can be created in 2 ways

Reading a file

Transforming another RDD

Reading a file

Transforming another RDD

Every RDD keeps track of where it came from

It tracks every transformation which led to the current RDD

Lineage

Allows RDDs to be reconstructed when nodes crash

Allows RDDs to be lazily instantiated (materialized) when accessing the results

airlines = sc.textFile(airlinesDataPath)

Create an RDD with Flight Data

Create an RDD from raw data in an input file

```
airlinesFiltered = airlines filter(lambda x:
```

Create a New RDD with Filtered Flight Data

Include the rows referring to Lufthansa from the original RDD

'Lufthansa' in x)

Create a New RDD with Filtered Flight Data

Include the rows referring to Lufthansa from the original RDD

airlinesFiltered.take(5)

View the First 5 Rows in the RDD

The rows will be displayed on screen

Characteristics of RDDs

Partitioned

Immutable

Resilient

Split across data nodes in a cluster

RDD once created cannot be changed

Can be reconstructed even if a node crashes

RDDs, DataFrames, Datasets

DataFrame: Data in Rows and Columns

DataFrame: Data in Rows and Columns

DATE	OPEN		PRICE
2016-12-01	772	•••	779
2016-11-01	758	• • •	747
2006-01-01	302	• • •	309

Each column represents 1 variable (a list or vector)

From File to DataFrame

read

DATE	OPEN	•••	PRICE
2016-12- 01	772	• • •	779
2016-11- 01	758	• • •	747
2006-01 -01	302	• • •	309

File

DataFrame

DataFrames: From R to Spark

Relational databases

Data in rows and columns

Strict schema, constraints

Pandas in Python

Modeled on R DataFrames

Compatible with Numpy, TF...

Datasets in Spark

Added in Spark 1.6

Scala and Java, not Python or R

R DataFrames

Primary abstraction in R

Convenient to read, sort and filter

RDDs in Spark

Similar to Python collections

map, flatMap, reduceByKey...

DataFrames in Spark

Dataset with named columns

Like R or Pandas!

RDDs to Datasets

RDDs

Primary abstraction since initial versions

Immutable and distributed

Strong typing, use of lambda

No optimized execution

Available in all languages

Datasets

Added to Spark in 1.6

Also immutable and distributed

Also support strong typing, lambdas

Leverage optimizers in recent versions

Present in Scala and Java, not Python or R

Datasets to DataFrames

Datasets

Added to Spark in 1.6

Immutable and distributed

No named columns

Extension of DataFrames - type-safe, OOP interface

Compile-time type safety

Present in Scala, Java, not Python, R

DataFrames

Added to Spark in 1.3

Also immutable and distributed

Named columns, like Pandas or R

Conceptually equal to a table in an RDBMS

No type safety at compile time

Available in all languages

Starting Spark 2.0, APIs for Datasets and DataFrames have merged

Datasets to DataFrames

Datasets

Scala and Java*

*Datasets of the Row() object in Scala/ Java often called DataFrames

DataFrames

Python, R, Scala, Java

Equivalent to Dataset<Row> in Java or Dataset[Row] in Scala

DataFrames Built On Top of RDDs

Partitioned

Immutable

Resilient

Split across data nodes in a cluster

Once created, cannot be changed

Can be reconstructed even if a node crashes

Demo

Install standalone Spark on your local machine

Set up the PySpark REPL interface

The Architecture of Spark

Spark 1.x Architecture

Driver

Separate process (JVM)

The master node in a Spark application

Launches tasks

Hosts SparkContext

Driver

Several groups of services run inside the driver

- SparkEnv
- DAGScheduler
- Task Scheduler
- SparkUI

- ...

Spark Application

Uses SparkContext as entry point

Creates RDD <u>Directed Acyclic Graph</u>

Internally, Spark creates *Stages* (physical execution plan)

Each stage is split into operations on RDD partitions called *Tasks*

Execution in Spark 1.x

In Spark 1.x, execution optimization resembled traditional DBMS

"Volcano Iterator Model"

Missed several code/compiler optimizations

Execution in Spark 2.x

Tungsten engine (2nd generation)

Eliminate virtual function calls

Store data in registers, not RAM/cache

Compiler loop unrolling, pipelining

Spark 2.0 uses Tungsten, an engine that speeds up execution 10-20X

SparkContext (Spark 1.x)

Familiar code entry point to Spark

sc = new sparkContext(...)

Create RDDs, accumulators...

Run jobs

SparkSession (Spark 2.x)

In Spark 2.x, SparkContext is wrapped in SparkSession

Encapsulates SQLContext, HiveContext...

Cluster Manager

Hadoop's YARN

Apache Mesos

Spark Standalone

Orchestrates execution

Workers

Compute nodes in cluster

Runs the Spark application code

When SparkContext created...

...Each worker starts executors

Executor

Distributed agents that execute *tasks*Tasks are basic units of execution

Tasks belong inside *stages*Stages are physical units of execution

The basic architecture is largely the same in Spark 1.x and 2.x

The real difference is in the speed of execution due to Tungsten optimizations

Demo

Working with RDDs and DataFrames

Interoperability between RDD and DataFrames

Introducing the SparkContext and the SQLContext

Spark 2.0 vs. Spark 1.x

Changes Starting Spark 2.0

Easier

Unifying Datasets and DataFrames, SQL support...

Faster

Optimize like a compiler, not a DBMS

Ease of Use

Unified API for DataFrames spark.ml and ML pipelines
Advanced streaming

Unified API for DataFrames

spark.ml and spark.mllib

spark.mllib

spark.ml

Older

Newer

RDDs

DataFrames

For now, more functionality

Functionality catching up

Support for ML pipelines

Continuous Applications

A stream is not a stream, it is simply an unbounded dataset

Unify batch and streaming pipelines

Same queries for both

Streaming and Structured Streaming

Streaming

Structured Streaming

Older

Newer

RDDs

DataFrames

No optimizations

Optimizations on DataFrames

Batch and streaming support not unified

Unified support for batch and streaming

Project Tungsten

Changes Starting Spark 2.0

Easier

Unifying Datasets and DataFrames, SQL support...

Faster

Optimize like a compiler, not a DBMS

Project Tungsten

Umbrella project, launched in April 2015, to make changes to Apache Spark's execution engine that focuses on substantially improving the efficiency of memory and CPU

Backdrop

In early 2015...

- Disks are getting faster: SSDs
- Networks are getting faster: 10
 Gbps links
- CPU is now the bottleneck

Backdrop

But...

- Spark was optimizing for IO or network communication
- Java makes heavy use of virtual functions
- JVM garbage collection costs were heavy

Volcano Iterator Model

Used before Project Tungsten

Classic query evaluation strategy

Each query consisted of operators

Each operator implemented an interface

Volcano Iterator Model

Design Choice

Heavy use of interfaces

Query represented as complex tree of function calls

Interface has single method next()

Implication

Lots of virtual function dispatches

Compiler features such as pipelining, prefetching, loop unrolling become hard

Each tuple placed on call stack (memory, not CPU register)

Project Tungsten

Memory management: Go beyond JVM object model and GC

Cache-aware computation: Refine algorithms and data structures

Code generation: Learn from modern compilers

From Volcano to Tungsten

Volcano in Spark 1.x

Classic DBMS strategy, optimizes IO and network access

Rely on Java objects and JVM garbage collection

Hard to leverage modern compiler optimizations

Lots of virtual function dispatches

Tungsten in Spark 2.x

Focus on CPU optimization; disk and network no longer the bottleneck

Take control of object creation and garbage collection

Heavily leverage loop unrolling, 1 CPU instruction for multiple tuples

Entirely avoid virtual function calls

Advances

Far leaner object serialization than Java or Kryo

Break with Java objects and GC

Efficient algorithms (e.g. sorting without deserialization)

Many more

Results

First generation Tungsten engine default in Spark 1.5

Second generation Tungsten engine powers Spark 2.0

Strong improvements in

- DataFrames
- SparkSQL
- Some RDD APIs

Tungsten in Spark 2.0

Optimize like a compiler, not DBMS

Tungsten engine (2nd generation)

Eliminate virtual function calls

Store data in registers, not RAM/cache

Compiler loop unrolling, pipelining

Performance Improvements

Comparison of time per row, on 1 billion records on single thread

Delegation	Consult 1 C	Consult O O	Cura a drug Falakay
Primitive	Spark 1.6	Spark 2.0	Speedup Factor
filter	15ns	1.1ns	13.6
sum w/o group	14ns	0.9ns	15.6
sum w/ group	79ns	10.7ns	7.4
hash join	115ns	4.Ons	28.8
sort (8-bit)	620ns	5.3ns	117.0
sort (64-bit)	620ns	40ns	15.5
sort-merge-join	750ns	700ns	1.1

Source: https://databricks.com/blog/2016/07/26/introducing-apache-spark-2-0.html

Summary

Spark 1.x was already a great general purpose computing engine

Spark 2.0 takes it to a new level in several ways

2nd generation Tungsten engine provides 10X performance improvement

Unified APIs for Datasets and DataFrames and Spark SQL

Higher level ML APIs

Unified batch and streaming queries