Fixed Length & Signed Magnitude Representation

Textbook Section 2.2

- Previously, binary numbers of unlimited length
- Unrealistic in a computer due to fixed length of memory locations
- Instead use fixed length binary numbers
 - Common sizes are 8, 16, 32, and 64 bits

Diagram: 8-bit Unsigned Binary Number

	Binary	0ctal	Hex	Decimal
Minimum Value	00000000	0008	00 ₁₆	0 ₁₀
Maximum value	11111111	377 ₈	FF ₁₆	255 ₁₀

For an n-bit fixed length number

- Can represent 2ⁿ values
- Range of values represented is 0 to 2ⁿ-1
 - The **-1** is because 0 is included in the range

# of Bits	Range of Values
16	0 to 65,535
32	0 to 4,294,967,295
64	0 to 14,446,744,073,709,551,615

What happens with a fixed length number if we:

- increment the largest value?
- decrement the smallest value?
- add two values whose result exceeds the largest?
- subtract a larger number from a smaller number?
 - The carry out from the MSBit goes to the magic bitbucket
 - A carry in to the MSBit comes from the magic bitbucket
 - Wrap program on INS in 2655/examples

- All bits in a memory location have a value
- Values are 0 or 1
- Therefore no undefined bit values
- Like an odometer:
 - Exceed the highest value causes the results to wrap around

Signed Binary Numbers

- Signed numbers must be representable
 - Two programming courses have shown this
- How could negative (signed) numbers be represented with the same N bits?
- Three main methods were developed for representing signed numbers
- All methods use a known fixed length

- To represent negative arbitrary-length base-10 numbers you just put a negative sign in front of the highest digit
 - o e.g. -10
 - Clear, easy to notate, works with arbitrary length numbers
- On a computer there's no way to represent a negative sign
 - A sign has only two possibilities + or -, only need one bit!
- Usually the Most Significant Bit (MSBit) is sacrificed as the sign bit, where:
 - Zero means a positive number
 - One means a negative number

Conversion - Base-10 to binary of fixed length N

- Convert the absolute value of the original number to binary
- if the binary # is < N bits then store it in a fixed length of N-1
 - o this ensure it fits into N-1 bits
 - add leading zeros if needed to get to N-1 bits
- else can't be represented
- if the original number is negative then set MSBit = 1
- else set MSBit = 0 (number has to be positive)

Convert 12₁₀ to 8-bit signed magnitude binary (SM)

- 1. $Abs(12_{10}) = 12_{10} = 8 + 4 = 1100_2$
- 2. 12_{10} requires 4 bits in binary which is \leq 7, so can be represented
 - Since 4 < 7 need to add 3 leading zeros to get 0001100₂
- 3. The original number is positive so the sign bit (bit 7) is 0
- 4. Combining the sign bit and value (magnitude) the answer = 00001100_2 SM

Convert -12₁₀ to 8-bit signed magnitude binary (SM)

- 1. $Abs(-12_{10}) = 12_{10} = 8 + 4 = 1100_2$
- 2. 12_{10} requires 4 bits in binary which is \leq 7, so can be represented
 - Since 4 < 7 need to add 3 leading zeros to get 0001100₂
- 3. The original number is negative so the sign bit (bit 7) is 1
- 4. Combining the sign bit and value (magnitude) the answer = 10001100_2 SM

Signed-Magnitude - Practice

Convert 36₁₀ to an 8-bit signed magnitude binary number

- 1. $Abs(36_{10}) = 36_{10} = 100100_2$
- 2. 36_{10} requires 6 bits in binary which is \leq 7, so can be represented
 - Since 6 < 7 need to add 1 leading zero to get 0100100₂.
- 3. The original number is positive so the sign bit (bit 7) is 0
- 4. Combining the sign bit and value (magnitude) and answer = 00100100_{2} SM

Signed-Magnitude - Practice

Convert -75 to an 8-bit signed magnitude binary number

- 1. $Abs(-75_{10}) = 75_{10} = 64 + 8 + 2 + 1 = 1001011_2$
- 2. 75_{10} requires 7 bits in binary which is \leq 7, so can be represented
 - 7 bits already used, no leading zeros added
- 3. The original number is negative so the sign bit (bit 7) is 1
- 4. Combining the sign bit and value (magnitude) the answer = 11001011_2 SM

Convert 149 to an 8-bit signed magnitude binary number

1.
$$Abs(149_{10}) = 149 = 128 + 16 + 4 + 1 = 10010101_2$$

- 2. 149_{10} requires 8 bits, 8 > 7
 - 149₁₀ cannot be represented as an 8-bit signed magnitude number

Conversion - signed magnitude binary of fixed length N to Decimal

- 1. Split binary number into MSBit and N-1 bit positive binary number
- 2. answer = N-1 bit number converted to decimal
- 3. if MSBit(number) = 1 then answer = -1 * answer

Convert 10111010₂ SM to decimal

Divide into sign & magnitude \rightarrow 1 0111010₂

Convert the magnitude $0111010_2 = 32 + 16 + 8 + 2 = 58_{10}$

The MSBit is 1 so the number is negative

therefore answer = -58_{10}

Signed-Magnitude - Practice

Convert 11000100₂ SM to Decimal

- 1. Sign-bit = 1, Number = 1000100_2
- 2. $1000100_2 = 64 + 4 = 68_{10}$
- 3. Since sign-bit = 1
 Answer = $-1 * 68_{10} = -68_{10}$

Signed-Magnitude - Practice

Convert 00110100, SM to Decimal

- 1. Sign-bit = 0, Number = 0110100_2
- 2. $0110100_2 = 32 + 16 + 4 = 52_{10}$
- 3. Since sign-bit = 0
 Answer = 52_{10}

A signed fixed-length number using signed-magnitude from

$$-(2^{(N-1)}-1)$$
 to $2^{(N-1)}-1$

- Out of the 2^N values half are positive and half are negative
 - Hence the $2^{(N-1)}$ in the above range $2^{N}/2 = 2^{(N-1)}$
- What do the following 8-bit binary SM values represent
 - \circ 00000000 = +0
 - \circ 10000000 = -0
 - This is the reason the -1 in both parts of the range

Signed-Magnitude - Math

Examples in base-10

When doing the addition do you add the signs? NO

Same is true when doing math on Sign Magnitude values

Signed-Magnitude - Addition Rules

Separate the numbers into sign and magnitude

- IF the signs are equal THEN
 - add the two magnitudes and the sign remains the same
 - if the result is > N-1 bits then an invalid result

ELSE

- subtract the smaller magnitude from the larger magnitude
- the sign of the result is the sign of the larger magnitude
- For Subtraction think through the rules you know and use

Signed Magnitude - Addition Example

Add the following 8-bit SM binary values

```
00000010
+ 10000101
 0 0000010
                note: different signs, subtract smaller value from
  1 0000101
                      larger value (needs comparison)
    0000101
    0000010
    0000011
                result sign is from "larger" value
 10000011, SM
```

Pros:

easy for humans to understand

Cons:

- × arithmetic circuits must handle multiple "sign" cases, so more complex
- × arithmetic circuits must handle both "zero" cases, so more complex
- requires adder, subtractor, comparator