Probability & Statistics

Simone Capodivento

7 maggio 2025

Indice

1	Int	roduction	1
	1.1	Motivation	1
		1.1.1 Applications	1
2	The	eory	1
	2.1	Basic Concepts	2
		2.1.1 Random Variables	2
3	Bay	yes' Theorem	6
4	Rai	ndom Variables	7
	4.1	ex p 37	8
	4.2	Example: Probability Calculations (p. 32)	8
	4.3		8
	4.4		9
	4.5	Exercise 1, Page 36	2
	4.6	Exercise 2, Page 36	.3
	4.7		4
	4.8		.5
	4.9		.5
	4.10		6

1 Introduction

This is the introduction.

- 1.1 Motivation Here we explain the motivation for the study of probability and statistics.
- 1.1.1 Applications Probability and statistics have numerous applications in various fields.

2 Theory

This section contains the theoretical background.

- 2.1 Basic Concepts In this subsection, we introduce some basic concepts.
- 2.1.1 Random Variables A random variable is a key concept in probability theory.

Probability Experiment

Flipping a Coin

Flip a coin:
$$P(H) = ?$$

$$P(H) = \frac{1}{2} = 50\%$$

Rolling a Die

$$P(1) = \frac{1}{6},$$

$$P(1 \text{ or } 6) = \frac{2}{6} = \frac{1}{3},$$

$$P(2 \text{ and } 3) = 0.$$

Probability of Selecting a Yellow Marble

$$P(\text{yellow marble}) = \frac{\text{number satisfying my condition}}{\text{total possibilities}}$$

$$P(\text{yellow}, \text{yellow}) = \frac{3}{8} \cdot \frac{2}{7} = \frac{6}{56} = \frac{3}{28}.$$

Rolling a Die (Again) Sample space: $\{1, 2, 3, 4, 5, 6\}$.

$$P(\text{rolling } \le 2) = \frac{2}{6} = \frac{1}{3},$$

$$P(\text{rolling } \ge 3) = \frac{4}{6} = \frac{2}{3}.$$

Probability Extremes

$$P(\text{rolling 7}) = \frac{0}{6} = 0$$
 (Impossible),
 $P(\text{rolling 1} - 6) = \frac{6}{6} = 1$ (Certain).

P(sunrise)=0.999 P(gofer writes a great novel)

Probability Calculations

Examples

$$P(\text{sunrise}) = 0.99999$$

P(gofer writes a great novel) = 0.000001

Picking Red Balls

$$P(\text{pick red}) = \frac{50}{100} = \frac{1}{2}$$

After 10 experiments: 7,3

After 10,000 experiments: 8000, 2000

Experimental probability: $\frac{8000}{10,000} = 80\%$

Theoretical Probabilities

$$P(H) = \frac{1}{2}$$
 (coin flip: heads or tails)

Dice rolls: 1, 2, 3, 4, 5, 6

$$P(\ge 3) = \frac{4}{6} = \frac{2}{3}$$

Expected value: 2 + 4 + 5 + 3 + 2 = 16

Game 17:
$$P(\text{score } \geq 36) = \frac{5}{16}$$

Data and Histogram Visualization

- Exercise data:
 - 17 turtles
 - 12 coconuts
 - 7 watches
 - 9 tigers

Histogram Data Visualization

Bucket	Count
0-9	6
10-19	3
20-29	5
30-39	1
40-49	2
50-59	2

Histogram for Probability Distribution

Probability and Data Analysis

Ball and Spin Calculations

• Total balls: 32

• Sum of 5 + 8 + 4 + 3 = 20

• Number of piles with size 60 or more: 8 + 4 + 3 = 15

Spin Probabilities

1 spin:
$$P(\text{elephant}) = \frac{4}{7}$$

 $20 \times \frac{4}{7} = 120 \text{ times}$

Line Data Analysis

Time: 4:00 PM

Line Size	Times Observed	Probability
0	24	$\frac{24}{50} = 0.48 = 48\%$
1	18	$\frac{18}{50} = 0.36 = 36\%$
2	8	$\frac{8}{50} = 0.16 = 16\%$

Visits and Probabilities

Visiting 500 times:

$$500 \times \frac{8}{50} = 80$$
 times with size 2

Sample Space: Coin Flip

Sample Space: $\{H, T\}$

Compound Sample Space: Flavors and Sizes

• Flavors: Chocolate, Strawberry, Vanilla

• Sizes: Small (S), Medium (M), Large (L)

Sample Space and Compound Sample Space

Sample Space: Coin Flip

Sample Space: $\{H, T\}$

Flavors and Sizes

• Flavors: Chocolate, Strawberry, Vanilla

• Sizes: Small, Medium, Large

Figura 1: Hierarchical flavor tree with size options

Tree Diagram: Compound Sample Space

Size	S	С	V
S	0.85	$0.72 \\ 0.90$	0.68
${ m M}$	0.78	0.90	0.82
L	0.70	0.85	0.95

Tabella 1: My Table Caption

Compound Sample Space Table

Notation for Sample Space

$${S, M, L}, {C, S, V}$$

3 Bayes' Theorem

Bayes' Theorem provides a mathematical framework for updating the probability of a hypothesis H given new evidence E. It is expressed as:

$$P(H|E) = \frac{P(E|H) \cdot P(H)}{P(E)}$$

Key Concepts

- Prior Probability (P(H)): The initial probability of the hypothesis before considering the evidence.
- Conditional Probability (P(E|H)): The probability of observing the evidence assuming the hypothesis is true.
- Posterior Probability (P(H|E)): The updated probability of the hypothesis after accounting for the evidence.
- Evidence Probability (P(E)): The overall probability of the evidence occurring.

Example Calculation Given:

- P(E|H) = 0.95: Probability of observing E if H is true.
- P(H) = 0.00001: Prior probability of the hypothesis.
- P(E) = 0.01: Total probability of observing the evidence.

Applying Bayes' Theorem:

$$P(H|E) = \frac{P(E|H) \cdot P(H)}{P(E)}$$

$$P(H|E) = \frac{0.95 \cdot 0.00001}{0.01} = 0.000095$$

Insights

The posterior probability P(H|E) is very low (0.00095), despite the high likelihood of E given H. This demonstrates the **base rate fallacy**: a rare prior probability (P(H)) can dominate the posterior, even when P(E|H) is large.

Key Takeaway Conditional probability requires careful consideration of prior probabilities and the likelihood of evidence. Bayes' Theorem emphasizes the importance of balancing these factors to avoid misinterpretation of probabilities.

4 Random Variables

A random variable is a numerical outcome of a random experiment. Below are examples of random variables:

Examples 1. Coin Flip** Let X be a random variable defined as:

$$X = \begin{cases} 1, & \text{if the result is heads,} \\ 0, & \text{if the result is tails.} \end{cases}$$

Rolling 7 Dice Let Y represent the sum of the outcomes of rolling 7 fair dice. We are interested in the following probabilities:

$$P(Y \le 30), \quad P(Y \text{ is even}).$$

System of Equations Given two variables x and y, their relationship can be described by the following equations:

$$x + 5 = 6$$
,

$$y = x + 7$$
.

4.1 ex p 37 Anush is playing a carnival game that involves shooting 2 free-throws. The table below displays the probability distribution of X, the number of shots that Anush makes in a set of 2 attempts, along with some summary statistics.

$$X=\#$$
 of makes $\begin{array}{c|cccc} X & 0 & 1 & 2 \\ \hline P(X) & 0.16 & 0.48 & 0.36 \end{array}$ $\mu_X=1.2 \quad \sigma_X\approx 0.69$

If the game costs Anush \$15 to play and he wins \$10 per shot he makes, what are the mean and standard deviation of his net gain from playing the game, N?

4.2 Example: Probability Calculations (p. 32)

$$P(H) = \frac{1}{2} \quad \text{(Probability of heads)} \tag{1}$$

$$P(T) = \frac{1}{2} \quad \text{(Probability of tails)} \tag{2}$$

(3)

The possible outcomes when flipping a coin twice are:

$$H$$
 H T T H (Total outcomes: 4) T T

For specific probabilities:

$$P(HH) = P(H_1) \cdot P(H_2) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4},\tag{4}$$

$$P(THT) = P(T_1) \cdot P(H_1) \cdot P(T_2) = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{8}.$$
 (5)

4.3 Example from Page 33

$$P(\stackrel{\triangleright}{)} = ?$$

$$P(Y) = \frac{12}{29}$$

$$P(\stackrel{\triangleright}{)} \text{ and } Y) = \frac{5}{29}$$

$$P(Y \text{ or } \stackrel{\triangleright}{)}) = P(Y) + P(\stackrel{\triangleright}{)}) - P(Y \text{ and } \stackrel{\triangleright}{)})$$

$$P(Y \text{ or } \stackrel{\triangleright}{)}) = \frac{12}{29} + \frac{13}{29} - \frac{5}{29} = \frac{20}{29}$$

The general formula for the probability of the union of two events is:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

4.4 Visual Representations

Diagrams of Events

Intersecting Events

Exercise 1, Page 34

Dependent Probability

$$P(M \cap S) = P(M) \cdot P(S|M)$$

$$P(S|M) = \frac{P(M \cap S)}{P(M)}$$

Example:

$$P(1st \text{ given } 2nd) = \frac{5}{6} \cdot \frac{3}{5} = \frac{25}{36}$$

Random Variables

Discrete Example Definition:

$$X = \begin{cases} 1 \text{ Head,} \\ 0 \text{ Tails.} \end{cases}$$

Zoo Example: Random animals selected at Orleans Zoo:

Mass of the animal:

$$5000 \, \mathrm{kg}$$

Continuous Example

Y = mass of random animals (value in intervals, e.g., 123.5)

Game Example A game with 3 gems and a 30% chance of winning:

Win 1 gem: 30% chance.

Probability and Random Variables Notes

Random Variables

Z=# of ants born tomorrow in the universe.

X = Exact winning time (in seconds) for Men's 100m Dash, 2016 Olympics, rounded to the nearest hundredths.

Discrete Random Variable:

X=# of heads after 3 flips of a fair coin.

$$P(X = 0) = \frac{1}{8}, \quad P(X = 1) = \frac{3}{8}, \quad P(X = 2) = \frac{3}{8}, \quad P(X = 3) = \frac{1}{8}.$$

Histogram for Probability Distribution

Probability Distribution (Comb Plot)

At $\frac{3}{8}$ $\frac{3}{8}$ 0 01 2 3

Discrete Probability Distribution

P(X = x) discrete probability distribution function.

Example of a discrete distribution:

Value for
$$x = 0, 1, 2, 3$$

Graph: Probability vs x (bar heights correspond to probabilities).

Probability Table Example

Probabilities: 0.2, 0.5, 0.3 (Total: 100%).

Must satisfy:

$$P(4) = 1 - 0.2 - 0.16 - 0.128 = 0.512$$

Another Example:

$$P(4) = 1 - 0.2 - 0.16 - 0.1 - 0.128 = 0.512.$$

Expected Value Example: Number of Workouts in a Week

x = # of workouts in a week (discrete).

$$\begin{array}{c|cc} x & P(x) \\ \hline 0 & 0.1 \\ 1 & 0.15 \\ 2 & 0.4 \\ 3 & 0.25 \\ 4 & 0.1 \\ \end{array}$$

$$E(X) = \mu_x = (0 \cdot 0.1) + (1 \cdot 0.15) + (2 \cdot 0.4) + (3 \cdot 0.25) + (4 \cdot 0.1) = \boxed{2.1}.$$

4.5 Exercise 1, Page 36

Discrete Functions and Properties:

$$f(x) = 1,$$

$$f(x) = (1.9 < x < 2.1) \cdot f(x),$$

$$p(x-2) = 1,$$

$$p(y) = 2(1-y),$$

$$p'(x) = -2,$$

$$Y = 2.$$

Integrals:

$$\int_{1.9}^{2.1} f(x) dx$$
 (Undefined integral),
$$\int_{0}^{\infty} f(x) dx = 1.$$

Graph:

Binary Variable:

$$x = \begin{cases} 1 & \text{head,} \\ 0 & \text{tail.} \end{cases}$$

4.6 Exercise 2, Page 36

Graphs:

1. Normal Distribution:

2. Rectangular Function:

Rectangular Function

Calculations:

- $0.25 \times 3 = 0.75$
- P(x < 4) = 0.75
- Result: ≈ 0.16

4.7 Exercise 3, Page 36

Equations:

$$Y = X + k,$$

$$Z = kX,$$

$$\mu_Y = \mu_X + k,$$

$$\mu_Z = k\mu_X,$$

$$\sigma_Y^2 = \sigma_X^2,$$

$$\sigma_Z^2 = k^2 \sigma_X^2.$$

Graph:

4.8 Exercise 1, Page 37

Equations:

$$N = 120 - N,$$

$$N = 10x - 15,$$

$$M = 10 - 15 = -3,$$

$$P(N) = 10 - 16 = 6.9.$$

Item	Value
N	10x - 15
M	10 - 15 = -5
P(N)	10 - 16 = 0.48
	0.36
N	1006.9

Tabella 2: Table of Calculations

Table:

4.9 Exercise 2, Page 37

Definitions:

X =Number of dogs, Y =Number of cats.

Expected Values:

$$E(X) = \mu_X = 3,$$

 $E(Y) = \mu_Y = 4.$

Using Properties of Expectation:

$$E(X + Y) = \mu_{X+Y} = 7,$$

 $E(Y - X) = 1.$

4.10 Exercise 3, Page 37

Details:

- X = cereal in box
- Y = weight of cereal in bowl
- E(X) = 1 oz
- E(Y) = 4 oz
- Standard deviation $\sigma_X = 0.8$ oz
- Standard deviation $\sigma_Y = 0.6$ oz
- $15 \le X \le 17$
- $3 \le Y \le 5$
- E(X + Y) = E(X) + E(Y) = 5 oz
- \bullet Assuming X and Y are independent:

$$\sigma_{X+Y} = \sqrt{\sigma_X^2 + \sigma_Y^2} = 1$$
 oz

- Var(X + Y) = Var(X) + Var(Y)
- $\boxed{18} \le X + Y \le \boxed{22}$
- Var(X Y)
- $10 \le X Y \le 14$

$$Var(x + y) = Var(x) + Var(y)$$

Let:

x = number of hours a random person slept yesterday, y = number of hours the same person was awake yesterday.

$$Var(x) = 4 (hrs)^2$$
, $\sigma_x = 2 hrs$.
 $Var(y) = 4 (hrs)^2$, $\sigma_y = 2 hrs$.

Since:

$$x + y = 24 \,\mathrm{hrs},$$

x and y are not independent.

Independent Random Variables If x and y are independent:

$$E(x) = \mu_x, \quad E(y) = \mu_y,$$

$$Var(x) = E[(x - \mu_x)^2] = \sigma_x^2,$$

$$Var(y) = E[(y - \mu_y)^2] = \sigma_y^2.$$

Define z = x + y:

$$E(z) = E(x + y) = E(x) + E(y),$$

 $\mu_z = \mu_x + \mu_y.$

Define a = x - y:

$$E(a) = E(x - y) = E(x) - E(y),$$

 $\mu_a = \mu_x - \mu_y.$

Variance of Sums and Differences

$$\operatorname{Var}(z) = \operatorname{Var}(x+y) = \operatorname{Var}(x) + \operatorname{Var}(y),$$

$$\sigma_z^2 = \sigma_x^2 + \sigma_y^2.$$

$$Var(a) = Var(x - y) = Var(x) + Var(-y),$$

$$\sigma_a^2 = \sigma_x^2 + \sigma_y^2.$$

Note that:

$$Var(-y) = E[(-y - E(-y))^2],$$

and:

$$E(-y) = -E(y).$$

Therefore:

$$Var(-y) = Var(y),$$

$$\sigma_a^2 = \sigma_x^2 + \sigma_y^2.$$

Finally:

$$\mu_{x-y} = \mu_x - \mu_y.$$

Probability and Statistics Notes

Basic Definitions Let x be the number of hours a random person slept yesterday, and Y be the number of hours a random person was awake yesterday.

$$Var(x) = \sigma_x^2 \quad Var(Y) = \sigma_Y^2$$

Given:

$$G = 2$$
 hours $\sigma_Y = 2$ hours

Independence If X and Y are independent random variables:

$$E[X+Y] = E[X] + E[Y]$$

$$Var(X + Y) = Var(X) + Var(Y)$$

Expected Value and Variance

$$E[X] = \mu_X \quad E[Y] = \mu_Y$$

$$Var(X) = E[(X - \mu_X)^2]$$

$$Var(Y) = E[(Y - \mu_Y)^2]$$

Height Distribution The mean height of men is 178 cm with a standard deviation of 8 cm. The mean height of women is 170 cm with a standard deviation of 6 cm. Heights are normally distributed and independent.

Probability Calculation What is the probability that a randomly selected woman is taller than a randomly selected man?

Let H_m be the height of a random man and H_w be the height of a random woman.

$$H_m \sim N(178, 8^2)$$
 $H_w \sim N(170, 6^2)$

We want to find $P(H_w > H_m)$.

Binomial Distribution Consider flipping a coin 5 times. The possible outcomes are:

$$2^5 = 32$$

The probability of getting exactly 2 heads in 5 flips is given by the binomial distribution:

$$P(X = 2) = {5 \choose 2} \left(\frac{1}{2}\right)^2 \left(\frac{1}{2}\right)^3 = \frac{10}{32} = \frac{5}{16}$$

Normal Distribution The normal distribution is characterized by the bell curve:

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Probability of Scoring Given a probability of scoring of 70% and missing of 30%, the probability of exactly 2 scores in 6 attempts is:

$$P(X=2) = {6 \choose 2} (0.7)^2 (0.3)^4$$

Calculating:

$$P(X = 2) = 15 \times 0.49 \times 0.0081 = 0.059535$$

$$E[X] = \mu$$

$$Var(X) = \sigma^{2}$$

$$E[Y] = \mu_{Y}$$

$$E[X + Y] = E[X] + E[Y] = \mu + \mu_{Y}$$

$$Var(X + Y) = Var(X) + Var(Y)$$

$$E[XY] = E[X]E[Y]$$

$$E[X^{2}] = Var(X) + (E[X])^{2}$$

$$Var(X) = E[X^{2}] - (E[X])^{2}$$

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^{2}}}e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}}$$

$$P(X = k) = \binom{n}{k}p^{k}(1-p)^{n-k}$$

$$E[X] = np$$

$$Var(X) = np(1-p)$$

Binomial Distribution

