Huffman Encoding for JPEG

Summary:

Given a picture as a 2-D Matrix consists of many pixels (numbers). Divide it into Blocks each of 8x8 pixels, each of these pixels will be converted to be DCT coefficients using the **Discrete Cosine**Transform as it puts the most important values to our eyes in the upper left corner of the matrix.

Then the matrix will be read in **Zig-Zag order** as the **DC coefficient** and lower-frequency **AC coefficients**, both horizontal and vertical, are scanned first, then a **differential encoding (DPCM)** is applied on all **DC coefficients**.

The DC coefficients are coded separately from the AC ones. Run Length Encoding (RLE) followed by Entropy Coding is applied on the AC coefficients.

In **RLE**, AC coefficients are divided into pairs; each pair is made up of (skip, value) where skip is the number of zeros in the run and value is the next Non-Zero Value.

{#-zeros-to-skip, next non-zero value}

The project is built using Java, Intellij.

Note:	MSB of -ive "Additional Bits" is "0" MSB of +ive "additional Bits" is "1"	-ive +ive -7 -6 -5 -4 4 5 6 7
Category	AC coefficient values	Additional Bits
1	-1,1	0,1
2	-3,-2,2,3	00,01,10,11
3	-74,47	000,001,010,011,100,101,110,111
4	158,815	0000,0001,0010, 0011,
5	-3116,1631	
6	-6332,3263	
7	-12733,33127	
8	-255128,128255	
9	-511256,256511	
10	-1023512,5121023	
	1	

RLE Categories Table

