LARSON—MATH 511—HOMEWORK WORKSHEET 18 Claims from Class

Be verbose. Write definitions, examples, etc, in order to be maximally clear.

- 1. Show that: if (non-zero) vectors $\hat{v}_1, \hat{v}_2, \dots, \hat{v}_n$ are orthogonal then they are linearly independent.
- 2. Find examples Q_1, Q_2 of 3×3 orthogonal matrices. Explain. Show that Q_1Q_2 is orthogonal.
- 3. Show that: if Q_1, Q_2 are square orthogonal matrices, then Q_1Q_2 is orthogonal.
- 4. Let $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}$. Show that: the diagonal elements are eigenvalues of A.
- 5. Let A be any triangular matrix. Show that: the diagonal elements are eigenvalues of A.
- 6. What are *similar* matrices? Give an example. Show that: the matrices in your example have the same eigenvalues.
- 7. Show that: similar matrices have the same eigenvalues.

Gram-Schmidt

Idea: Given linearly independent vectors \hat{a}_1 , \hat{a}_2 ,..., \hat{a}_n , let $\hat{q}_1 = \frac{1}{\|\hat{a}_1\|}\hat{a}_1$, and at each step i (i = 2, ... i = n):

- Let \hat{a}'_i be \hat{a}_i minus the projection of \hat{a}_i on each of the previously found $\hat{q}_1, \dots, \hat{q}_{i-1}$.
- Let $\hat{q}_i = \frac{1}{||\hat{a}_i'||} \hat{a}_i'$.
- 8. Use Gram-Schmidt to find an orthogonal basis, $\hat{q}_1, \hat{q}_2, \hat{q}_3$, of the columns of

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{bmatrix}.$$

9. Let Q be the matrix whose columns are \hat{q}_1 , \hat{q}_2 , and \hat{q}_3 . Write A = QR (for some matrix R).

Improved Gram-Schmidt

Idea: Given linearly independent vectors $\hat{a}_1, \hat{a}_2, \dots, \hat{a}_n$, let $\hat{q}_j = \frac{1}{\|\hat{a}_j\|} \hat{a}_j$, where $\|\hat{a}_i\|$ is a maximum, and at each step i (i = 2, ... i = n):

- For remaining (not-yet-processed) \hat{a}_i 's, let new \hat{a}_i be current \hat{a}_i minus the projection of \hat{a}_i on \hat{q}_{i-1} (update \hat{a}_i 's on each step).
- Find the largest-norm remaining \hat{a}_i .
- Let $\hat{q}_i = \frac{1}{||\hat{a}_i||} \hat{a}_i$.
- 10. Use Gram-Schmidt to find an orthogonal basis, $\hat{q}_1, \hat{q}_2, \hat{q}_3,$ of the columns of

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{bmatrix}.$$