Composition of Movement Primitives

May 22, 2025

Contents

L	ProMPs 1.1 Recap 1.2 Coupling between joints 1.3 Hierarchical Bayesian Model 1.4 Via-Points Modulation 1.4.1 Do we actually get the desired mean by applying the conditioning update? 1.5 ProMPs 1.6 Coupling between joints 1.7 Coupling between joints 1.8 Coupling between joints 1.9 Coupling between joints 1.0 Coupling between joints 1.1 Do we actually get the desired mean by applying the conditioning update?	$\begin{array}{c} 2 \\ 2 \\ 2 \end{array}$
2	Composition of MPs 2.1 Blending	
A	Hierarchical Bayesian Model proof	3
В	Via-Points conditioning proof	4
1	\mathbf{ProMPs}	
1.	.1 Recap	
r	rom (Paraschos et al., 2013, 2018):	
	• q_t : joint angle over time	
	• \dot{q}_t : joint velocity over time	
	• $\tau = \{q_t\}_{t=0T}$: trajectory	
	• \boldsymbol{w} : weight vector of a single trajectory $[n \times 1]$	
	• ϕ_t : basis function	
	• n: number of basis functions	
	• $\Phi_t = [\phi_t, \dot{\phi}_t]$: $n \times 2$ dimensional time-dependent basis matrix	
	• $z(t)$: monotonically increasing phase variable	
	• $\epsilon_y \sim \mathcal{N}(0, \mathbf{\Sigma}_y)$: zero-mean i.i.d. Gaussian noise	
	$oldsymbol{\Phi}_t = egin{bmatrix} \phi_1 & \dot{\phi}_1 \ dots & dots \ \phi_n & \dot{\phi}_n \end{bmatrix}$	(1)

$$\mathbf{y}_t = \begin{bmatrix} q_t \\ \dot{q}_t \end{bmatrix} = \mathbf{\Phi}_t^\top \mathbf{w} + \boldsymbol{\epsilon}_y \tag{2}$$

$$p(\boldsymbol{\tau}|\boldsymbol{w}) = \prod_{t} \mathcal{N} \Big(\boldsymbol{y}_{t} | \boldsymbol{\Phi}_{t}^{\top} \boldsymbol{w}, \boldsymbol{\Sigma}_{y} \Big)$$
(3)

$$p(\tau; \theta) = \int p(\tau | \boldsymbol{w}) \cdot p(\boldsymbol{w}; \theta) d\boldsymbol{w}$$
(4)

1.2 Coupling between joints

$$p(\boldsymbol{y}_t|\boldsymbol{w}) = \mathcal{N}\left(\begin{bmatrix} \boldsymbol{y}_{1,t} \\ \vdots \\ \boldsymbol{y}_{d,t} \end{bmatrix} \middle| \begin{bmatrix} \boldsymbol{\Phi}_t^{\top} & \cdots & \boldsymbol{0} \\ \vdots & \ddots & \vdots \\ \boldsymbol{0} & \cdots & \boldsymbol{\Phi}_t^{\top} \end{bmatrix} \boldsymbol{w}, \boldsymbol{\Sigma}_y \right) = \mathcal{N}\left(\boldsymbol{y}_t|\boldsymbol{\Psi}_t\boldsymbol{w}, \boldsymbol{\Sigma}_y\right)$$
(5)

with:

- $\boldsymbol{w} = [\boldsymbol{w}_1^\top, \dots, \boldsymbol{w}_n^\top]^\top$: combined weight vector $[n \times n]$
- Ψ_t : block-diagonal basis matrix containing the basis functions and their derivatives for each dimension
- $\mathbf{y}_{i,t} = [q_{i,t}, \dot{q}_{i,t}]^{\mathsf{T}}$: joint angle and velocity for the i^{th} joint

1.3 Hierarchical Bayesian Model

The Hierarchical Bayesian Model used in ProMPs is illustrated in Fig. 1.

Figure 1: Hierarchical Bayesian Model used in ProMPs.

- $\theta = \{\mu_w, \Sigma_w\}$
- $p(w; \theta) = \mathcal{N}(w|\mu_w, \Sigma_w)$: prior over the weight vector w, with parameters θ , assumed to be Gaussian

$$p(\boldsymbol{y}_t; \boldsymbol{\theta}) = \int \mathcal{N}(\boldsymbol{y}_t | \boldsymbol{\Psi}_t^{\top} \boldsymbol{w}, \boldsymbol{\Sigma}_y) \cdot p(\boldsymbol{w}; \boldsymbol{\theta}) d\boldsymbol{w}$$
 (6)

$$= \int \mathcal{N} \left(\boldsymbol{y}_t | \boldsymbol{\Psi}_t^{\top} \boldsymbol{w}, \boldsymbol{\Sigma}_y \right) \cdot \mathcal{N} \left(\boldsymbol{w} | \boldsymbol{\mu}_{\boldsymbol{w}}, \boldsymbol{\Sigma}_{\boldsymbol{w}} \right) d\boldsymbol{w}$$
 (7)

$$= \mathcal{N} \Big(\boldsymbol{y}_t | \boldsymbol{\Psi}_t^{\top} \boldsymbol{\mu}_{\boldsymbol{w}}, \boldsymbol{\Psi}_t^{\top} \boldsymbol{\Sigma}_{\boldsymbol{w}} \boldsymbol{\Psi}_t + \boldsymbol{\Sigma}_y \Big)$$
 (8)

See Appendix A for the proof.

1.4 Via-Points Modulation

- $\boldsymbol{x}_t^{\star} = [\boldsymbol{y}_t^{\star}, \boldsymbol{\Sigma}_t^{\star}]$: desired observation
- \boldsymbol{y}_t^{\star} : desired position and velocity vector at time t
- Σ_t^{\star} : accuracy of the desired observation

Using Bayes rule:

$$p(\boldsymbol{w}|\boldsymbol{x}_t^{\star}) = \frac{p(\boldsymbol{x}_t^{\star}|\boldsymbol{w}) \cdot p(\boldsymbol{w})}{p(\boldsymbol{x}_t^{\star})}$$
(9)

$$p(\boldsymbol{w}|\boldsymbol{x}_t^{\star}) \propto \mathcal{N}\left(\boldsymbol{y}_t^{\star}|\boldsymbol{\Psi}_t^{\top}\boldsymbol{w}, \boldsymbol{\Sigma}_t^{\star}\right) \cdot \mathcal{N}(\boldsymbol{w}|\boldsymbol{\mu}_w, \boldsymbol{\Sigma}_w)$$
 (10)

$$\boldsymbol{\mu}_{\boldsymbol{w}}^{[new]} = \boldsymbol{\mu}_{\boldsymbol{w}} + \boldsymbol{\Sigma}_{\boldsymbol{w}} \boldsymbol{\Psi}_{t} \left(\boldsymbol{\Sigma}_{y}^{\star} + \boldsymbol{\Psi}_{t}^{\top} \boldsymbol{\Sigma}_{\boldsymbol{w}} \boldsymbol{\Psi}_{t} \right)^{-1} (\boldsymbol{y}_{t}^{\star} - \boldsymbol{\Psi}_{t}^{\top} \boldsymbol{\mu}_{\boldsymbol{w}})$$
(11)

$$\Sigma_{\boldsymbol{w}}^{[new]} = \Sigma_{\boldsymbol{w}} - \Sigma_{\boldsymbol{w}} \Psi_t \left(\Sigma_y^{\star} + \Psi_t^{\top} \Sigma_{\boldsymbol{w}} \Psi_t \right)^{-1} \Psi_t^{\top} \Sigma_{\boldsymbol{w}}$$
(12)

See Appendix B for the proof.

1.4.1 Do we actually get the desired mean by applying the conditioning update?

$$\mu_{\boldsymbol{w}|\boldsymbol{x}_{t}^{\star}} = \mu_{\boldsymbol{w}} + \Sigma_{\boldsymbol{w}} \Psi_{t} \left(\Sigma_{t}^{\star} + \Psi_{t}^{\top} \Sigma_{\boldsymbol{w}} \Psi_{t} \right)^{-1} (\boldsymbol{y}_{t}^{\star} - \Psi_{t}^{\top} \mu_{\boldsymbol{w}})$$
(13)

Let us set the observed covariance Σ_t^{\star} to 0 so as to have perfect accuracy around our observed position.

$$\boldsymbol{\mu}_{\boldsymbol{w}|\boldsymbol{x}_{t}^{\star}} = \boldsymbol{\mu}_{\boldsymbol{w}} + \boldsymbol{\Sigma}_{\boldsymbol{w}} \boldsymbol{\Psi}_{t} \left(\boldsymbol{\Psi}_{t}^{\top} \boldsymbol{\Sigma}_{\boldsymbol{w}} \boldsymbol{\Psi}_{t} \right)^{-1} (\boldsymbol{y}_{t}^{\star} - \boldsymbol{\Psi}_{t}^{\top} \boldsymbol{\mu}_{\boldsymbol{w}})$$
(14)

$$= \boldsymbol{\mu}_{\boldsymbol{w}} + \boldsymbol{\Sigma}_{\boldsymbol{w}} \boldsymbol{\Psi}_{t} \left(\boldsymbol{\Psi}_{t}^{\top} \boldsymbol{\Sigma}_{\boldsymbol{w}} \boldsymbol{\Psi}_{t} \right)^{-1} (\boldsymbol{y}_{t}^{\star} - \boldsymbol{\mu}_{\boldsymbol{y}_{t}}) \quad \text{(which does not simplify further)}$$
(15)

$$\neq y_t^{\star}$$
 (16)

2 Composition of MPs

2.1 Blending

2.2 Stitching

References

- A. Paraschos, C. Daniel, J. R. Peters, and G. Neumann, "Probabilistic Movement Primitives," in *Advances in Neural Information Processing Systems*, vol. 26. Curran Associates, Inc., 2013. [Online]. Available: https://proceedings.neurips.cc/paper/2013/hash/e53a0a2978c28872a4505bdb51db06dc-Abstract.html
- A. Paraschos, C. Daniel, J. Peters, and G. Neumann, "Using probabilistic movement primitives in robotics," *Autonomous Robots*, vol. 42, no. 3, pp. 529–551, Mar. 2018. [Online]. Available: https://doi.org/10.1007/s10514-017-9648-7
- M. P. Deisenroth, A. A. Faisal, and C. S. Ong, *Mathematics for machine learning*. Cambridge University Press, 2020.
- C. M. Bishop and H. Bishop, *Deep Learning: Foundations and Concepts.* Springer International Publishing, 2024. [Online]. Available: https://doi.org/10.1007/978-3-031-45468-4

A Hierarchical Bayesian Model proof

Proof of Eq. (8). From (Deisenroth et al., 2020), we have the joint distribution:

$$p(\mathbf{x}_a, \mathbf{x}_b) = \mathcal{N}\left(\begin{bmatrix} \boldsymbol{\mu}_a \\ \boldsymbol{\mu}_b \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{aa} & \boldsymbol{\Sigma}_{ab} \\ \boldsymbol{\Sigma}_{ba} & \boldsymbol{\Sigma}_{bb} \end{bmatrix}\right)$$
(17)

and the marginal distribution $p(\mathbf{x}_a)$ of a joint Gaussian distribution $p(\mathbf{x}_a, \mathbf{x}_b)$:

$$p(\mathbf{x}_a) = \int p(\mathbf{x}_a, \mathbf{x}_b) d\mathbf{x}_b = \mathcal{N}(\mathbf{x}_a | \boldsymbol{\mu}_a, \boldsymbol{\Sigma}_{aa})$$
(18)

Since y_t and w are jointly Gaussian, we have:

$$\begin{bmatrix} \boldsymbol{y}_t \\ \boldsymbol{w} \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \boldsymbol{\mu}_{\boldsymbol{y}_t} \\ \boldsymbol{\mu}_{\boldsymbol{w}} \end{bmatrix}, \begin{bmatrix} \operatorname{Cov}[\boldsymbol{y}_t, \boldsymbol{y}_t] & \operatorname{Cov}[\boldsymbol{y}_t, \boldsymbol{w}] \\ \operatorname{Cov}[\boldsymbol{w}, \boldsymbol{y}_t] & \operatorname{Cov}[\boldsymbol{w}, \boldsymbol{w}] \end{bmatrix} \right)$$
(19)

$$\boldsymbol{\mu}_{\boldsymbol{y}_t} = \mathbb{E}[\boldsymbol{y}_t] \tag{20}$$

$$= \mathbb{E}[\boldsymbol{\Psi}_t^{\top} \boldsymbol{w} + \boldsymbol{\epsilon}_y] \tag{21}$$

$$= \mathbf{\Psi}_{t}^{\top} \mathbb{E}[\mathbf{w}] + \mathbb{E}[\boldsymbol{\epsilon}_{y}] \tag{22}$$

$$= \mathbf{\Psi}_{t}^{\mathsf{T}} \boldsymbol{\mu}_{w} + 0 \tag{23}$$

$$= \boldsymbol{\Psi}_t^{\top} \boldsymbol{\mu}_{\boldsymbol{w}} \tag{24}$$

$$Cov[\boldsymbol{y}_t, \boldsymbol{y}_t] = Cov[\boldsymbol{\Psi}_t^{\top} \boldsymbol{w} + \boldsymbol{\epsilon}_y]$$
 (25)

$$= \operatorname{Cov}[\boldsymbol{\Psi}_t^{\top} \boldsymbol{w}] + \operatorname{Cov}[\boldsymbol{\epsilon}_y] \tag{26}$$

$$= \mathbf{\Psi}_t^{\mathsf{T}} \mathrm{Cov}[\mathbf{w}] \mathbf{\Psi}_t + \mathbf{\Sigma}_y \tag{27}$$

$$= \boldsymbol{\Psi}_t^{\top} \boldsymbol{\Sigma}_{\boldsymbol{w}} \boldsymbol{\Psi}_t + \boldsymbol{\Sigma}_{\boldsymbol{y}} \tag{28}$$

$$\begin{bmatrix} \boldsymbol{y}_t \\ \boldsymbol{w} \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \boldsymbol{\Psi}_t^{\top} \boldsymbol{\mu}_{\boldsymbol{w}} \\ \boldsymbol{\mu}_{\boldsymbol{w}} \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Psi}_t^{\top} \boldsymbol{\Sigma}_{\boldsymbol{w}} \boldsymbol{\Psi}_t + \boldsymbol{\Sigma}_y & \boldsymbol{\Psi}_t^{\top} \boldsymbol{\Sigma}_{\boldsymbol{w}} \\ \boldsymbol{\Sigma}_{\boldsymbol{w}} \boldsymbol{\Psi}_t & \boldsymbol{\Sigma}_{\boldsymbol{w}} \end{bmatrix} \right)$$
(29)

$$p(\boldsymbol{y}_t; \boldsymbol{\theta}) = \mathcal{N} \Big(\boldsymbol{y}_t | \boldsymbol{\Psi}_t^{\top} \boldsymbol{\mu}_{\boldsymbol{w}}, \boldsymbol{\Psi}_t^{\top} \boldsymbol{\Sigma}_{\boldsymbol{w}} \boldsymbol{\Psi}_t + \boldsymbol{\Sigma}_y \Big)$$
(30)

B Via-Points conditioning proof

Proof of Eq. (11) and Eq. (12). With the joint distribution $p(\mathbf{x}_a, \mathbf{x}_b)$ in Eq. (17), and from (Bishop and Bishop, 2024), the parameters of a conditional multivariate Gaussian $p(\mathbf{x}_a|\mathbf{x}_b) = \mathcal{N}(\boldsymbol{\mu}_{a|b}, \boldsymbol{\Sigma}_{a|b})$ are the following:

$$\boldsymbol{\mu}_{a|b} = \boldsymbol{\mu}_a + \boldsymbol{\Sigma}_{ab} \boldsymbol{\Sigma}_{bb}^{-1} (\mathbf{x}_b - \boldsymbol{\mu}_b)$$
(31)

$$\Sigma_{a|b} = \Sigma_{aa} - \Sigma_{ab} \Sigma_{bb}^{-1} \Sigma_{ba}$$
 (32)

We want the posterior $p(\boldsymbol{w}|\boldsymbol{x}_t^{\star})$, knowing the likelihood $\boldsymbol{x}_t^{\star}|\boldsymbol{w} \sim \mathcal{N}\left(\boldsymbol{y}_t^{\star}|\boldsymbol{\Psi}_t^{\top}\boldsymbol{w},\boldsymbol{\Sigma}_t^{\star}\right)$, and the prior $\boldsymbol{w} \sim \mathcal{N}(\boldsymbol{w}|\boldsymbol{\mu}_w,\boldsymbol{\Sigma}_w)$.

$$\begin{bmatrix} \boldsymbol{w} \\ \boldsymbol{x}_{t}^{\star} \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \boldsymbol{\mu}_{\boldsymbol{w}} \\ \boldsymbol{\Psi}_{t}^{\top} \boldsymbol{\mu}_{\boldsymbol{w}} \end{bmatrix}, \begin{bmatrix} \operatorname{Cov}[\boldsymbol{w}, \boldsymbol{w}] & \operatorname{Cov}[\boldsymbol{w}, \boldsymbol{x}_{t}^{\star}] \\ \operatorname{Cov}[\boldsymbol{x}_{t}^{\star}, \boldsymbol{w}] & \operatorname{Cov}[\boldsymbol{x}_{t}^{\star}, \boldsymbol{x}_{t}^{\star}] \end{bmatrix} \right)$$
(33)

 $\operatorname{Cov}[\boldsymbol{x}_t^{\star}, \boldsymbol{x}_t^{\star}]$ follows from Eq. (28).

$$Cov[\boldsymbol{w}, \boldsymbol{x}_t^{\star}] = Cov[\boldsymbol{w}, \boldsymbol{\Psi}_t^{\top} \boldsymbol{w} + \boldsymbol{\epsilon}_y]$$
(34)

$$= \operatorname{Cov}[\boldsymbol{w}, \boldsymbol{\Psi}_t^{\top} \boldsymbol{w}] \qquad \qquad (\operatorname{Cov}[\boldsymbol{w}, \boldsymbol{\epsilon_y}] = 0 \text{ since } \boldsymbol{\epsilon_y} \text{ is independent of } \boldsymbol{w}) \quad (35)$$

$$= \mathbb{E}[(\boldsymbol{w} - \boldsymbol{\mu}_{\boldsymbol{w}})(\boldsymbol{\Psi}_{t}^{\top} \boldsymbol{w} - \boldsymbol{\Psi}_{t}^{\top} \boldsymbol{\mu}_{\boldsymbol{w}})^{\top}]$$
(36)

$$= \mathbb{E}[(\boldsymbol{w} - \boldsymbol{\mu}_{\boldsymbol{w}})(\boldsymbol{w} - \boldsymbol{\mu}_{\boldsymbol{w}})^{\top} \boldsymbol{\Psi}_{t}]$$
(37)

$$= \operatorname{Cov}[\boldsymbol{w}, \boldsymbol{w}] \cdot \boldsymbol{\Psi}_t \tag{38}$$

$$= \Sigma_{\boldsymbol{w}} \Psi_t \tag{39}$$

$$\begin{bmatrix} \boldsymbol{w} \\ \boldsymbol{x}_{t}^{\star} \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \boldsymbol{\mu}_{\boldsymbol{w}} \\ \boldsymbol{\Psi}_{t}^{\top} \boldsymbol{\mu}_{\boldsymbol{w}} \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{\boldsymbol{w}} & \boldsymbol{\Sigma}_{\boldsymbol{w}} \boldsymbol{\Psi}_{t} \\ \boldsymbol{\Psi}_{t}^{\top} \boldsymbol{\Sigma}_{\boldsymbol{w}} & \boldsymbol{\Psi}_{t}^{\top} \boldsymbol{\Sigma}_{\boldsymbol{w}} \boldsymbol{\Psi}_{t} + \boldsymbol{\Sigma}_{t}^{\star} \end{bmatrix} \right)$$
(40)

Using Eq. (31) we get:

$$\mu_{\boldsymbol{w}|\boldsymbol{x}_{t}^{\star}} = \mu_{\boldsymbol{w}} + \Sigma_{\boldsymbol{w}} \Psi_{t} \left(\Sigma_{t}^{\star} + \Psi_{t}^{\top} \Sigma_{\boldsymbol{w}} \Psi_{t} \right)^{-1} (\boldsymbol{y}_{t}^{\star} - \Psi_{t}^{\top} \mu_{\boldsymbol{w}})$$
(41)

Using Eq. (32) we get:

$$\Sigma_{w|x_t^{\star}} = \Sigma_w - \Sigma_w \Psi_t \left(\Sigma_t^{\star} + \Psi_t^{\top} \Sigma_w \Psi_t \right)^{-1} \Psi_t^{\top} \Sigma_w$$
(42)