

Statystyczna analiza danych SAD-2021-2022

Wykład 3 i 4

Rozkład prawdopodobieństwa dyskretnej zmiennej losowej

Podstawowe pojęcia:

Zmienna losowa

- rozkład prawdopodobieństwa dyskretnej zmiennej losowej (skrót: d.z.l.)
- dystrybuanta d.z.l.
- parametry (charakterystyki) liczbowe d.z.l.
 - wartość oczekiwana (średnia) d.z.l.
 - wariancja i odchylenie standardowe d.z.l.

Rozkład prawdopodobieństwa ciągłej zmiennej losowej

Ciągła zmienna losowa (c.z.l.)

- gęstość prawdopodobieństwa i dystrybuanta c.z.l.
- parametry c.z.l. wartość oczekiwana, wariancja, odchylenie standardowe

Własności wartości oczekiwanej i wariancji

Przykłady dyskretnych i ciągłych rozkładów prawdopodobieństwa

- dwupunktowy (Bernoulli'ego), dwumianowy, Poissona, jednostajny
- jednostajny, wykładniczy, normalny

Zmienna losowa X

$$X: S \to (-\infty, \infty)$$

Przykłady.

rzut parą kostek sześciennych:

$$S = \{(i, j) : i, j \in \{1, 2, ..., 6\}\}$$

$$X(s): s = (i,j) \rightarrow i + j$$

rzut monetą: $S = \{0,1\}$, gdzie 0 = orzeł, 1 = reszka

$$X: s \to X(s) = 1 - s$$
 (=liczba orłów)

n - krotne powtórzenie doświadczenia Bernoulli'ego z prawdopodobieństwem sukcesu *p*, (sukces = 1, porażka = 0):

$$S = \{s = (x_1, x_2, ..., x_n) : x_i \in \{0,1\}\}$$

$$X: s = (x_1, x_2, ..., x_n) \to X(s) = \sum_{i=1}^{n} x_i$$
 (liczba sukcesów).

czas obsługi klienta, $S = \{x : 0 \le x \le T\}$

$$|X:x\to X(x)=x|$$
.

Definicja. Zmienną Iosową nazywamy funkcję rzeczywistą, określoną na przestrzeni zdarzeń elementarnych S, taką że dla dowolnego $x \in (-\infty, \infty)$ $\{s \in S : X(s) \le x\}$ jest zdarzeniem.

- Zmienna losowa jest **dyskretna**, jeśli jej zbiór wartości jest przeliczalny (dyskretny): np. { 0, 1, 2,...}, {0, 1, 2, 3 }.
- Zmienna losowa jest **ciągła**, jeśli zakres (zbiór) jej wartości jest nieskończony i nieprzeliczalny ("ciągły"), np. $(-\infty,\infty)$, $[0,\infty)$, [-2,2].

Dyskretne zmienne losowe

Przykład. Niech zmienna losowa X będzie liczbą orłów w trzykrotnym rzucie monetą. Wówczas:

$$S = \{000, 00R, 0R0, R00, RR0, RRR, RRR\}$$

X = 3 2 2 2 1 1 1 0

- Zdarzenia elementarne są **jednakowo prawdopodobne**: moneta symetryczna i rzuty niezależne
- Możemy wyznaczyć prawdopodobieństwa tego, że zmienna losowa przyjmie wartości: 0, 1, 2, 3:

Dyskretne zmienne losowe

X	0	1	2	3
P(X=x)	1/8	$\frac{3}{8}$	3/8	1/8

Notacja: $P(\{s \in S : X(s) = x\}) = P(X = x)$

Dyskretne zmienne losowe

<u>Definicja.</u>

Rozkładem prawdopodobieństwa dyskretnej zmiennej losowej X nazywamy zbiór par uporządkowanych

$$(x, P(X = x))$$
, gdzie x przebiega zakres wartości X

Funkcją prawdopodobieństwa (rozkładu) dyskretnej zmiennej losowej X nazywamy funkcję:

$$p(x) = P(X = x)$$
, gdzie x przebiega zakres wartości X.

Rozkład prawdopodobieństwa d.z.l.

Rozkład prawdopodobieństwa d.z.l. wygodnie jest przedstawić w postaci tabeli

X	x_1	x_2	•••	x_n	•••
p(x)	$p(x_1)$	$p(x_2)$		$p(x_n)$	•••

lub oznaczając $p(x_i) = p_i$. i = 1, 2, ..., n, jako

x_i	x_1	x_2	•••	x_n	•••
p_i	p_1	p_2		p_n	•••

Dyskretne zmienne losowe

Stwierdzenie. Niech $X: S \rightarrow \{x_1, x_2, ...\}$. Wówczas

$$\sum_{i=1}^{\infty} p(x_i) = 1.$$

D. Z definicji funkcji prawdopodobieństwa i aksjomatów prawdopodobieństwa:

$$\sum_{i=1}^{\infty} p(x_i) = \sum_{i=1}^{\infty} P(X = x_i) = P(\bigcup_{i=1}^{\infty} \{s \in S : X(s) = x_i\} = P(S) = 1$$

Dystrybuanta

Dystrybuantą zmiennej losowej *X* nazywamy funkcję:

$$F(x) = P(X \le x), \quad x \in (-\infty, \infty).$$

- $F:(-\infty,\infty) \to [0,1]$ (wartością dystrybuanty są prawdopodobieństwami)
- Dla dyskretnej zmiennej losowej

$$F(x) = \sum_{i: x_i \le x} p(x_i)$$

Wyznaczanie dystrybuanty

Przykład. Trzykrotny rzut monetą:

x	0	1	2	3
p(x)	1/8	3/8	$\frac{3}{8}$	1/8

$$P(X \le 0) = P(X = 0) = 1/8$$

 $P(X \le 1) = P(X = 0) + P(X = 1) = 1/8 + 3/8 = 4/8$
 $P(X \le 2) = P(X \le 1) + P(X = 2) = 4/8 + 3/8 = 7/8$

Wyznaczanie dystrybuanty

• Dla
$$x < 0$$
 $F(x) = P(X \le x) = P(\emptyset) = 0$

• Dla
$$0 \le x < 1$$
 $F(x) = p(0) = 1/8$

• Dla
$$1 \le x < 2$$
 $F(x) = p(0) + p(1) = 4/8$

• Dla
$$2 \le x < 3$$
 $F(x) = p(0) + p(1) + p(2) = 7/8$

• Dla
$$x \ge 3$$
 $F(x) = p(0) + p(1) + p(2) + p(3) = 1.$

$$F(x) = \begin{cases} 0 & x < 0 \\ 1/8 & 0 \le x < 1 \\ 4/8 & \text{dla } 1 \le x < 2 \\ 7/8 & 2 \le x < 3 \\ 1 & x \ge 3 \end{cases}$$

Wykres dystrybuanty *F*

Wyznaczanie dystrybuanty d.z.l.

Two Dystrybuanta: $F(x) = P(X \le x), x \in (-\infty, \infty)$

Niech $x_1 < x_2 < x_3 < \cdots < x_{k-1} < x_k$ będą wartościami zmiennej losowej X oraz $P(X = x_j) := p(x_j)$, $p(x_1) + p(x_2) + \cdots + p(x_k) = 1$.

Własności dystrybuanty

$$F(x) = P(X \le x)$$
:

- $0 \le F(x) \le 1$, $x \in (-\infty, \infty)$
- funkcja niemalejąca
- funkcja prawostronnie ciągła

$$F(x) - F(x^{-}) = P(X = x)$$

- $\bullet \quad \lim_{x \to -\infty} F(x) = 0$
- $\bullet \quad \lim_{x \to \infty} F(x) = 1$

Prawdopodobieństwo a dystrybuanta

$$P(a < X \le b) = F(b) - F(a)$$

$$P(a \le X \le b) = F(b) - F(a) + p(a)$$

$$P(a < X < b) = F(b) - F(a) - p(b)$$

$$P(a \le X < b) = F(b) - F(a) + p(a) - p(b)$$

Prawdopodobieństwo a dystrybuanta

$$[a,b] = (a,b] \cup \{a\}$$

$$P(a \le X \le b) = P(a < X \le b) + P(X = a) =$$

$$= F(b) - F(a) + p(a).$$

Wartość oczekiwana (średnia)

<u>Definicja.</u>

Wartością średnią (oczekiwaną) dyskretnej zmiennej losowej X o funkcji prawdopodobieństwa $p(\cdot)$ nazywamy liczbę

$$\mu_X = \sum_{i=1}^{\infty} x_i p(x_i)$$

gdzie $x_1, x_2,...$ oznaczają wszystkie wartości X.

Notacja: μ_X lub E(X).

Obliczanie wartości oczekiwanej

Przykłady.

$$f(x) = ax + b, \quad Y = f(X) = aX + b,$$

$$\mu_{aX+b} = \sum_{i=1}^{\infty} (ax_i + b) p(x_i) = a\mu_X + b.$$

Wykonujemy niezależne rzuty monetą symetryczną aż do momentu wyrzucenia orła. Niech X oznacza liczbę wykonanych rzutów, $Y = 2^{X-1}$.

$$\sum_{i=1}^{\infty} 2^{i-1} P(X=i) = \sum_{i=1}^{\infty} 2^{i-1} \times \left(\frac{1}{2}\right)^i = \sum_{i=1}^{\infty} \frac{1}{2} = \infty.$$

Wartość średnia nie istnieje.

Obliczanie wartości oczekiwanej

Wygrana na loterii jest zmienną losową X o dystrybuancie:

$$F(x) = \begin{cases} 0 & x < 0, \\ 0,5 & 0 \le x < 100, \\ 0,75 & 100 \le x < 200, \\ 1 & x \ge 200. \end{cases}$$

•
$$P(X = 0) = P(X \le 0) - P(X < 0) = F(0) - F(0^{-}) = 0.5$$

•
$$P(X = 100) = P(X \le 100) - P(X < 100) =$$

 $F(100) - F(100^{-}) = 0.75 - 0.5 = 0.25$

Wartość oczekiwana

•
$$P(X = 200) = P(X \le 200) - P(X < 200) =$$

 $F(200) - F(200^{-}) = 1 - 0.75 = 0.25.$

$$\mu_X = 0 \times 0.5 + 100 \times 0.25 + 200 \times 0.25 = 75.$$

Twierdzenie.

$$\mu_{f(X)} = \sum_{i=1}^{\infty} f(x_i) p(x_i).$$

Wariancja

<u>Definicja.</u> Wariancją dyskretnej zmiennej losowej o funkcji prawdopodobieństwa $p(\cdot)$ nazywamy wielkość

$$\sigma_X^2 = \sum_{i=1}^{\infty} (x_i - \mu_X)^2 p(x_i).$$

Odchylenie standardowe: $\sigma_X = \sqrt{\sigma_X^2}$

Uwaga.
$$\sigma_X^2 = E(X - \mu_X)^2$$

Interpretacja: wariancja - miara rozproszenia wartości zmiennej losowej względem wartości średniej.

Wariancja

Zadanie. Zmienne losowe *X* i *Y* mają rozkłady jednostajne na zbiorach punktów { - 1, 0, 1 } oraz

{- 2, 0, 2 }. Obliczyć wartości średnie i wariancje zmiennych Xi Y.

$$\mu_X = -1 \times \frac{1}{3} + 0 \times \frac{1}{3} + 1 \times \frac{1}{3} = 0, \quad \mu_Y = 0.$$

$$\sigma_X^2 = (-1 - 0)^2 \times \frac{1}{3} + (0 - 0)^2 \times \frac{1}{3} + (1 - 0)^2 \times \frac{1}{3} = \frac{2}{3}$$

$$\sigma_Y^2 = (-2-0)^2 \times \frac{1}{3} + (0-0)^2 \times \frac{1}{3} + (2-0)^2 \times \frac{1}{3} = \frac{8}{3}$$

$$\sigma_Y^2 > \sigma_X^2$$

Własności wariancji i średniej

Twierdzenie.

$$\sigma_X^2 = \mu_{X^2} - (\mu_X)^2$$

$$\sigma_{aX+b}^2 = a^2 \sigma_X^2$$

$$\mu_{aX+b} = a\mu_X + b$$

Przykłady rozkładów dyskretnych

Rozkład dwupunktowy

Zmienna losowa X ma rozkład dwupunktowy, jeśli

$$P(X = x_1) = p$$
, $P(X = x_2) = q$, $q = 1 - p$, $0 .$

Funkcja prawdopodobieństwa:

x	x_1	x_2
p(x)	p	\boldsymbol{q}

Rozkład Bernoulli'ego

Rozkład zero – jedynkowy (rozkład Bernoulli'ego z prawdopodobieństwem sukcesu *p*)

$$P(X = 1) = p$$
, $P(X = 0) = 1 - p = q$

$$\mu_X = 0 \times (1-p) + 1 \times p = p$$

$$\sigma_X^2 = 1^2 \times p + 0^2 \times (1-p) - p^2 = p - p^2 = p \cdot q$$

Dyskretny rozkład jednostajny

Rozkład jednostajny na k punktach: rozkład

zmiennej losowej X o funkcji prawdopodobieństwa:

$$P(X = x_1) = P(X = x_2) = \dots = P(X = x_k) = 1/k$$
.

$$\mu_X = \sum_{i=1}^k x_i \times \frac{1}{k} = \frac{1}{k} \sum_{i=1}^k x_i,$$

$$\sigma_X^2 = \sum_{i=1}^k (x_i - \mu_X)^2 \times \frac{1}{k} = \frac{1}{k} \sum_{i=1}^k (x_i - \mu_X)^2.$$

Przykład: X = liczba oczek w rzucie kostką sześcienną.

Rozkład dwumianowy

Rozkład dwumianowy

Wykonujemy n niezależnych jednakowych doświadczeń Bernoulli'ego z prawdopodobieństwem sukcesu p (w każdym doświadczeniu możliwy sukces z prawdopodo - bieństwem p lub porażka z prawdopodobieństwem 1-p). Funkcja prawdopodobieństwa zmiennej losowej X będącej liczbą sukcesów:

$$P(X = k) = b(k; n, p) = {n \choose k} p^k (1-p)^{n-k}, k = 0,1,...,n.$$

$$\mu_X = np$$
, $\sigma_X^2 = np(1-p)$.

Rozkład dwumianowy

Üzasadnienie:

$$S = \{s = (x_1, ..., x_n) : x_i \in \{0,1\}\},\$$

$$P(\{s\}) = p^{\sum_{i=1}^{n} x_i} \times (1-p)^{(n-\sum_{i=1}^{n} x_i)},$$

$$P(X = k) = P(\{s \in S : \sum_{i=1}^{n} x_i = k\}) = \binom{n}{k} p^k (1-p)^{n-k}.$$

Notacja: $X \sim Bin(n, p)$.

Przykłady: liczba elementów wadliwych spośród *n* wylosowanych z dużej partii towaru o wadliwości *p*, liczba trafień do celu na zawodach sportowych w *n* próbach

Rozkład dwumianowy

Przykład. Urządzenie składa się z 14 identycznych pracujących niezależnie podzespołów. Ulegnie ono awarii, jeśli co najmniej 3 podzespoły będą niesprawne. Prawdopodobieństwo awarii podzespołu wynosi 0,1. Znaleźć prawdopodobieństwo awarii urządzenia.

$$X \sim \text{Bin(14,0.1)}, \quad P(X \ge 3) = 1 - P(X < 3).$$

$$P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2) = b(0;14,0.1) + b(1;14,0.1) + b(2;14,0.1) = 0,229 + 0,356 + 0,257 = 0,842$$

$$P(X \ge 3) = 1 - 0,842 = 0,178$$

Rozkład Poissona

Rozkład Poissona

<u>Definicja</u>. Zmienna losowa X ma rozkład Poissona z parametrem $\lambda, \lambda > 0$, jeśli

$$P(X = k) = p(k; \lambda) = \frac{e^{-\lambda} \lambda^k}{k!}, k = 0,1,2,...$$

Notacja: $X \sim P(\lambda)$

Przykłady: liczba klientów w systemie masowej obsługi, liczba cząstek emitowanych przez substancję radioaktywną, liczba awarii sieci informatycznej w określonym przedziale czasu,

Rozkład Poissona

Twierdzenie.
$$\mu_X = \lambda$$
, $\sigma_X^2 = \lambda$.

$$\mu_X = \lambda$$

$$\sigma_X^2 = \lambda$$
.

Własności rozkładu Poissona;

Niech $n \to \infty$, $p = p_n \to 0$, $np = \lambda > 0$.

Wówczas dla ustalonego k, przy $n \to \infty$

$$b(k; n, p) \rightarrow p(k, \lambda)$$
.

Ciągłe zmienne losowe

<u>Definicja.</u> Zmienną losową X nazywamy **ciągłą** zmienną losową, jeśli istnieje nieujemna funkcja f, zwana **gęstością**, taka że dla dowolnych a, b, $-\infty \le a \le b \le \infty$,

$$P(a \le X \le b) = \int_{a}^{b} f(x) dx.$$

Gęstość prawdopodobieństwa c.z.l.

$$P(0 < X < 1) = \int_{0}^{1} f(x)dx$$

Dystrybuanta c.z.l.

$$P(a \le X \le b) = \int_{a}^{b} f(t)dt$$

• Przyjmując $a = -\infty$, b = x otrzymujemy

$$P(-\infty \le X \le x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt,$$

czyli dystrybuantę znajdujemy na podstawie gęstości

$$F(x) = \int_{-\infty}^{x} f(t)dt, \ x \in (-\infty, \infty)$$

Dystrybuanta i gęstość c.z.l.

• Przyjmując $a=-\infty$, $b=\infty$ otrzymujemy

$$P(-\infty \le X \le \infty) = P(-\infty < X < \infty) = \int_{-\infty}^{\infty} f(t) dt = 1$$

• Przyjmując a = b = c, c – dowolna stała, otrzymujemy

$$P(X=c) = \int_{c}^{c} f(t) dt = 0$$

• Dowolność $a \le b \implies f(x) \ge 0, x \in (-\infty, \infty)$

Dystrybuanta ciągłej zmiennej losowej

Definicja. Funkcję

$$F(x) := P(X \le x), x \in (-\infty, \infty)$$

nazywamy dystrybuantą zmiennej losowej X.

$$F(x) = \int_{-\infty}^{x} f(t)dt, \ x \in (-\infty, \infty)$$

$$P(-\infty \le X \le \infty) = P(-\infty < X < \infty) = \int_{-\infty}^{\infty} f(t)dt = 1$$

$$ightharpoonup f(x) \ge 0$$
, dla każdego x

$$P(X = c) = 0$$
, dla każdej stałej c

Dystrybuanta

Stwierdzenie. Dla ciągłej zmiennej losowej o dystrybuancie *F* zachodzi

$$P(a < X < b) = P(a < X \le b) = P(a \le X < b) =$$

= $P(a \le X \le b) = F(b) - F(a)$.

D. P(X = b) = P(X = a) = 0. Zatem dołączenie lub usunięcie brzegu przedziału nie wpływa na wartość prawdopodobieństwa, np.

$$[a,b] = (a,b) \cup \{a\} \cup \{b\},\$$

$$P(a \le X \le b) = P(a < X < b) + P(X = a) + P(X = b),\$$

Dystrybuanta a gęstość

$$F(b) - F(a) = P(a < X < b)$$
.

Twierdzenie. Jeśli gęstość zmiennej losowej **X** jest funkcją ciągłą, to dla każdego x zachodzi

$$F'(x) = f(x).$$

$$\underline{\mathbf{D}}. \qquad F'(x) = \frac{d}{dx} \int_{-\infty}^{x} f(s) ds = f(x).$$

Gęstość prawdopodobieństwa

<u>Definicja.</u> Funkcja $f(x), x \in (-\infty, \infty)$, spełniająca warunki:

$$f(x) \ge 0, x \in (-\infty, \infty),$$

$$\int_{-\infty}^{\infty} f(x)dx = 1,$$

nazywana jest gęstością.

Gęstość prawdopodobieństwa

Definicja. Funkcja $f(x), x \in (-\infty, \infty)$, spełniająca warunki:

$$f(x) \ge 0, x \in (-\infty, \infty),$$

$$\int_{-\infty}^{\infty} f(x) dx = 1,$$

nazywana jest gęstością.

$$P(X \in [a,b]) = \int_{a}^{b} f(x) dx$$

Charakterystyki liczbowe c.z.l.

Wskaźniki położenia i rozproszenia dla ciągłych zmiennych losowych

<u>Definicja.</u> Wartością średnią (oczekiwaną) ciągłej zmiennej losowej *X* mającej gęstość *f* nazywamy liczbę

$$\mu_X = \int_{-\infty}^{\infty} x f(x) dx$$

Charakterystyki liczbowe c.z.l.

Wartością oczekiwaną zmiennej losowej g(X) nazywamy liczbę

$$\mu_{g(X)} = E(g(X)) := \int_{-\infty}^{\infty} g(x)f(x)dx$$

Np.

$$\mu_{X^2} = E(X^2) = \int_{-\infty}^{\infty} x^2 f(x) dx$$

Charakterystyki liczbowe c.z.l.

<u>Definicja.</u> Wariancją ciągłej zmiennej losowej X o gęstości f nazywamy liczbę

$$\sigma_X^2 = \int_{-\infty}^{\infty} (s - \mu_X)^2 f(s) ds$$

Odchylenie standardowe:

$$\sigma_X = \sqrt{\sigma_X^2}$$

Uwaga. Z definicji wariancji oraz wartości oczekiwanej funkcji zmiennej losowej

$$\left|\sigma_X^2 = E(X - \mu_X)^2\right|$$

Własności wartości średniej i wariancji

Twierdzenie. Jeśli ciągła zmienna losowa ma wariancję, to dla dowolnych liczb *a*, *b* zachodzą wzory

$$\mu_{aX+b} = a\mu_X + b$$

$$\sigma_{aX+b}^2 = a^2 \sigma_X^2$$

$$\sigma_X^2 = \mu_{X^2} - (\mu_X)^2.$$

Powyższe wzory wynikają z własności (liniowości) całki.

Notacja:
$$\mu_X = E(X)$$
, $\sigma_X^2 = Var(X)$

Kwantyle zmiennej losowej

$\mathbf{Def}_{\mathbf{f}}$ inicja. Niech 0 .

Kwantylem rzędu p nazywamy punkt q_p na osi poziomej, taki że pole pod gęstością na lewo od niego wynosi p

Kwartyle zmiennej losowej

- Dolny (pierwszy kwartyl) = kwantyl rzędu 0,25: $P(X \le q_{0.25}) = 0,25$
- Górny kwartyl (trzeci kwartyl) = kwantyl rzędu 0,75: $P(X \le q_{0.75}) = 0,75$

Mediana (drugi kwartyl) = kwantyl rzędu 0,5: $P(X \le q_{0,5}) = 0,5$

Mediana

Mediana

Liczba $q_{0,5}$, taka że pole pod wykresem gęstości na lewo od mediany wynosi 0,5. Zatem

$$\int_{-\infty}^{q_{0,5}} f(x)dx = 0,5 = \int_{q_{0,5}}^{\infty} f(x)dx.$$

Standaryzacja zmiennej losowej

Stwierdzenie. (standaryzacja)

Jeśli zmienna losowa X ma wartość średnią $|\mu_X|$ oraz wariancję $|\sigma_X^2|$, to <u>standaryzowana zmienna losowa</u>

$$Z:=\frac{X-\mu_X}{\sigma_X}$$

ma wartość średnią 0 i wariancję 1.

Standaryzacja zmiennej losowej

$$\underline{\mathbf{D}}_{\cdot} \qquad \mu_{Z} = E(\frac{X - \mu_{X}}{\sigma_{X}}) = E\left(\frac{1}{\sigma_{X}} \cdot X - \frac{\mu_{X}}{\sigma_{X}}\right) =$$

$$= \frac{1}{\sigma_{X}} E(X) - \frac{\mu_{X}}{\sigma_{X}} = 0$$

$$\sigma_Z^2 = E(\frac{X - \mu_X}{\sigma_X})^2 = \left(\frac{1}{\sigma_X}\right)^2 \times E(X - \mu_X)^2 = 1.$$

Ciągłe zmienne losowe - przykłady

Zmienna losowa X ma rozkład jednostajny na przedziale [a,b], jeśli ma gęstość:

$$f(x) = \begin{cases} 1/(b-a) & x \in [a,b] \\ 0 & x \notin [a,b] \end{cases}$$

$$\mu_X = \frac{a+b}{2}, \qquad \sigma_X^2 = \frac{(b-a)^2}{12}$$

Notacja: $X \sim U(a, b)$.

Wykres gęstości rozkładu U(a,b)

Parametry rozkładu jednostajnego

$$E(X) = \int_{-\infty}^{\infty} x \frac{1}{b-a} dx = \int_{-\infty}^{a} 0 dx + \frac{1}{b-a} \int_{a}^{b} x dx + \int_{b}^{\infty} 0 dx =$$

$$= 0 + \frac{1}{b-a} \left| \frac{x^2}{2} \right|_a^b + 0 = \frac{1}{b-a} \left(\frac{b^2}{2} - \frac{a^2}{2} \right) =$$

$$= \frac{1}{2} \frac{(b-a)(b+a)}{b-a} = \frac{a+b}{2}$$

Parametry rozkładu jednostajnego

$$Var(X) = E(X^{2}) - (E(X))^{2} = \int_{a}^{b} x^{2} \frac{1}{b-a} dx - \frac{(a+b)^{2}}{4} =$$

$$= \frac{1}{b-a} \left| \frac{x^3}{3} \right|_a^b - \frac{(a+b)^2}{4} = \frac{1}{b-a} \left(\frac{b^3}{3} - \frac{a^3}{3} \right) - \frac{(a+b)^2}{4} =$$

$$=\frac{(b-a)(b^2+ab+a^2)}{3(b-a)}-\frac{a^2+2ab+b^2}{4}=\frac{(b-a)^2}{12}$$

Dystrybuanta rozkładu U(a,b)

1) Niech x < a.

$$F(x) = \int_{-\infty}^{x} f(t) dt = \int_{-\infty}^{x} 0 dt = 0$$

2) Niech $a \le x \le b$.

$$F(x) = \int_{-\infty}^{x} f(t) dt = \int_{-\infty}^{a} 0 dt + \int_{a}^{x} \frac{1}{b-a} dt =$$

$$= \frac{1}{b-a} [t]_{a}^{x} = \frac{1}{b-a} (x-a) = \frac{1}{b-a} \cdot x - \frac{a}{b-a}$$

3) Niech x > b.

$$F(x) = \int_{-\infty}^{x} f(t) dt = \int_{-\infty}^{a} 0 dt + \int_{a}^{b} \frac{1}{b-a} dt + \int_{b}^{x} 0 dt = 1$$

Dystrybuanta rozkładu U(a,b)

Ostatecznie możemy zapisać dystrybuantę zmiennej losowej o rozkładzie jednostajnym na przedziale [a,b] w postaci

$$F(x) = \begin{cases} 0, & x < a \\ \frac{1}{b-a} \cdot x - \frac{a}{b-a}, & a \le x \le b \\ 1, & x > 1 \end{cases}$$

Jej wykres jest przedstawiony na kolejnym slajdzie.

Dystrybuanta rozkładu jednostajnego

Ciągłe zmienne losowe - PRZYKŁADY

Zmienna losowa o rozkładzie wykładniczym

Niech X_t ma rozkład Poissona $P(\lambda t)$ (liczba zdarzeń w przedziale czasu [0,t]). Wówczas **czas oczekiwania** na zdarzenie jest zmienną losową T, taką że

$$P(T > t) = P(X_t = 0) = \frac{e^{-\lambda t} (\lambda t)^0}{0!} = e^{-\lambda t}$$
, dla $t \ge 0$.

Zmienna losowa *T* ma dystrybuantę

$$F(t) = 1 - P(T > t) = \begin{cases} 0 & t < 0 \\ 1 - e^{-\lambda t} & \text{dla} \end{cases}$$

$$t \ge 0$$

Ciągłe zmienne losowe

Zmienna losowa ma rozkład <u>wykładniczy z parametrem</u> λ,

 $\lambda > 0$, jeśli ma gęstość f(t) = F'(t):

$$f(t) = \begin{cases} 0 & t < 0 \\ \lambda e^{-\lambda t} & \text{dla} & t \ge 0 \end{cases}.$$

$$\mu_T = \int_{0}^{\infty} x \lambda e^{-\lambda x} dx = \frac{1}{\lambda}$$

$$\sigma_T^2 = \mu_{T^2} - (\mu_T)^2 = \frac{2}{\lambda^2} - \left(\frac{1}{\lambda}\right)^2 = \frac{1}{\lambda^2}$$

Notacja: $X \sim exp(\lambda)$, zastosowanie – teoria niezawodności, masowej obsługi (czas życia elementu, czas obsługi, oczekiwania na obsługę, etc)

Wykresy gęstości rozkładu wykładniczego

Wykresy gęstości rozkładu wykładniczego

Wykresy dystrybuant r. $Exp(\lambda)$

Dystrybuanta i gęstość r. wykł.

Dystrybuanta rozkładu wykładniczego

Przykład. Czas rozmowy telefonicznej jest zmienną losową o rozkładzie wykładniczym z parametrem $\lambda = 1/7$. Jakie jest prawdopodobieństwo, że telefonująca osoba będzie rozmawiała nie krócej niż 5 i nie dłużej niż 10 minut.

$$P(5 < T < 10) = F(10) - F(5) == \left(1 - e^{-\frac{1}{7} \cdot 10}\right) - \left(1 - e^{-\frac{1}{7} \cdot 5}\right)$$
$$= e^{-\frac{5}{7}} - e^{-\frac{10}{7}} \approx 0,4895 - 0,2965 \approx 0,25$$

Rozkład wykładniczy – brak pamięci

Przykład. Czas oczekiwania na połączenie z pewną siecią teleinformatyczną jest zmienną losową **X** o wartości średniej 0,5 (minut) i mającą rozkład wykładniczy. Znaleźć:

- (a) medianę i dolny kwartyl czasu oczekiwania X.
- (b) prawdopodobieństwo, że czas oczekiwania będzie dłuższy niż 3 minuty, jeśli wiadomo, że po 1 minucie jeszcze nie otrzymano połączenia.

$$F(x) = 1 - e^{-\lambda x}, x > 0, E(X) = 1/\lambda = 0.5.$$

Stand
$$\lambda = 2$$
. $F(q_{0,5}) = 0.5$, $F(q_{0,25}) = 0.25$.

Rozkład wykładniczy

$$-2q_{0,5} = \ln(0,5) \equiv$$

$$q_{0,5} = -\ln(0,5)/2 = \ln 2/2$$

•
$$1 - e^{-2 \times q_{0,25}} = 0,25$$
, $e^{-2 \times q_{0,25}} = 0,75$

$$q_{0.25} = -\ln(0.75)/2 = [\ln(4/3)]/2.$$

Rozkład wykładniczy

(b)
$$P(X > 3 | X \ge 1)$$
 = ?

$$P(X > t + h | X \ge t) = \frac{P(\{X > t + h\} \cap \{X \ge t\})}{P(X \ge t)} =$$

$$\frac{P(X > t + h)}{P(X \ge t)} = \frac{e^{-\lambda(t+h)}}{e^{-\lambda t}} = e^{-\lambda h}, \text{ dla } h > 0.$$

W zadaniu: $\lambda = 2$, t + h = 3, t = 1. Stąd h = 2.

$$P(X > 3|X \ge 1) = e^{-4}$$

Rozkład wykładniczy – brak pamięci

<u>Uwaga:</u> Własność braku pamięci rozkładu wykładniczego:

$$P(X > t + h|X \ge t) = e^{-\lambda h}, \text{ dla } h > 0$$

(c) W jakim zakresie czasu znajduje się 10% najdłużej trwających oczekiwań na połączenie z siecią?

$$t \ge q_{0,9} = 0.5 \times \ln(10)$$
.

$$P(X \le q_{0.9}) = 0.9 \implies P(X > q_{0.9}) = P(X \ge q_{0.9}) = 0.1$$

Ciągłe zmienne losowe

Zmienna losowa \boldsymbol{X} ma rozkład **normalny z parametrami** μ , $\sigma > 0$, jeśli ma gęstość

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(x-\mu)^2/2\sigma^2},$$

$$-\infty < x < \infty,$$

$$\mu_X = \mu, \qquad \sigma_X = \sigma$$

Notacja: $X \sim N(\mu, \sigma)$.

Wykresy gęstości normalnych

F(2) = F(2) = 0.5, bo wykres gęstości symetryczny względem prostej x=2, a pole pod wykresem gęstości po całej prostej wynosi 1.

Wykresy gęstości normalnych

Wykresy dystrybuant rozkładu normalnego

Własności zmiennej losowej o rozkładzie normalnym

Twierdzenie. Niech

$$X \sim N(\mu, \sigma), \qquad Z = \frac{X - \mu}{\sigma}.$$

Wówczas

$$\sim Z \sim N(0,1)$$

$$\bullet \quad \mu_X = \mu, \quad \sigma_X^2 = \sigma^2$$

Wyznaczanie dystrybuanty r. $N(\mu, \sigma)$

Wniosek. Niech $X \sim N(\mu, \sigma)$, niech a < b. Niech $Z \sim N(0,1)$, $\Phi(z) = P(Z \le z), z \in (-\infty, \infty)$ oznacza dystrybuantę standardowego rozkładu normalnego Dystrybuantę zmiennej losowej X znajdujemy przy pomocy dystrybuanty zmiennej losowej Z.

$$P(X \le x) = P\left(\frac{X - \mu}{\sigma} \le \frac{x - \mu}{\sigma}\right) = P\left(Z \le \frac{x - \mu}{\sigma}\right) = \Phi\left(\frac{x - \mu}{\sigma}\right)$$

Stad

$$P(a \le X \le b) = \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)$$

Tablica 1. Dystrybuanta standardowego rozkładu normalnego

$\Phi(u) = 0$	$P(U \leq$	u) dla	$u \ge 0$
---------------	------------	--------	-----------

u	0	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
2,6	0,9953	0,9955	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986
3	0,9987	0,9987	0,9987	0,9988	0,9988	0,9989	0,9989	0,9989	0,9990	0,9990
3,1	0,9990	0,9991	0,9991	0,9991	0,9992	0,9992	0,9992	0,9992	0,9993	0,9993
	0.0000	0.0000	0.0004	0.0004	0.0004	0.0004	0.0004	0.0005	0.0005	0.0000

Rozkład Poissona a rozkład normalny

Jeśli $X \sim P(\lambda)$ dla dużego λ , to rozkład standaryzowanej zmiennej $(X - \lambda)/\sqrt{\lambda}$ jest w przybliżeniu normalny, tzn. $P((X - \lambda)/\sqrt{\lambda} \le z) \approx \Phi(z)$, dla dowolnego z. Zatem **dystrybuanta zmiennej losowej** X jest bliska dystrybuancie zmiennej losowej o rozkładzie

$$N(\lambda,\sqrt{\lambda})$$
,

a funkcje prawdopodobieństwa są bliskie wartościom funkcji gęstości rozkładu normalnego $N(\lambda,\sqrt{\lambda})$, co ilustruje rysunek:

Rozkład Poissona

Rozkład Poissona a rozkład normalny

Przykład. Liczba awarii sprzętu komputerowego supermarketu w ciągu miesiąca jest zmienną losową *X* o rozkładzie Poissona o średniej 36. Jakie jest prawdopodobieństwo, że w ciągu miesiąca będzie co najwyżej 30 awarii ?

$$P(X \le 30) = P(\frac{X - 36}{\sqrt{36}} \le \frac{30 - 36}{\sqrt{36}}) = P(Z \le -1) \cong \Phi(-1) = 0,1587,$$

gdzie $\Phi(z), z \in (-\infty, \infty)$, jest dystrybuantą rozkładu N(0,1).

Wariancja – miara rozrzutu z.l.

Nierówność Czebyszewa

Twierdzenie. Niech zmienna losowa ${\it X}$ ma wartość średnią μ oraz wariancję σ^2 . Wówczas

$$|P(|X-\mu|\geq\varepsilon)\leq\frac{\sigma^2}{\varepsilon^2}|$$

dla dowolnego $\varepsilon > 0$.

Dziękuję za uwagę