

**OpenStack Cinder Driver** 

### **Configuration Guide**

Issue 01

Date 2018-08-07



### Copyright © Huawei Technologies Co., Ltd. 2018. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Huawei Technologies Co., Ltd.

### **Trademarks and Permissions**

All other trademarks and trade names mentioned in this document are the property of their respective holders.

### **Notice**

The purchased products, services and features are stipulated by the contract made between Huawei and the customer. All or part of the products, services and features described in this document may not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements, information, and recommendations in this document are provided "AS IS" without warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the preparation of this document to ensure accuracy of the contents, but all statements, information, and recommendations in this document do not constitute a warranty of any kind, express or implied.

### Huawei Technologies Co., Ltd.

Address: Huawei Industrial Base

Bantian, Longgang Shenzhen 518129

People's Republic of China

Website: <a href="http://www.huawei.com">http://www.huawei.com</a>
Email: <a href="mailto:support@huawei.com">support@huawei.com</a>

### **Contents**

| 1 Overview                                                                    | 1  |
|-------------------------------------------------------------------------------|----|
| 2 Version Mappings                                                            | 2  |
| 3 Cinder Driver Installation&deployment                                       | 5  |
| 3.1 Obtain Cinder Driver.                                                     |    |
| 3.2 Ubuntu Environment Deployment                                             | 6  |
| 3.3 RedHat OpenStack Deployment                                               | 6  |
| 4 Cinder Driver Basis Properties Configuration                                | 8  |
| 4.1 Configuring the Cinder Driver for iSCSI Storage                           | 8  |
| 4.1.1 Configuring the Cinder Driver for OceanStor T Series V1 (iSCSI)         | 9  |
| 4.1.2 Configuring the Cinder Driver for OceanStor T Series V2 (iSCSI)         | 10 |
| 4.1.3 Configuring the Cinder Driver for OceanStor V3/V5(iSCSI)                | 11 |
| 4.1.4 Configuring the Cinder Driver for OceanStor 18000 Series(iSCSI)         | 12 |
| 4.1.5 Configuring the Cinder Driver for Dorado Series V3(iSCSI)               | 13 |
| 4.1.6 Parameters in the Configuration File.                                   | 14 |
| 4.1.7 Configuring iSCSI Multipathing.                                         | 16 |
| 4.1.8 Configuring CHAP and ALUA                                               | 17 |
| 4.2 Configuring the Cinder Driver for Fibre Channel Storage.                  | 18 |
| 4.2.1 Configuring the Cinder Driver for OceanStor T Series V1 (Fibre Channel) | 19 |
| 4.2.2 Configuring the Cinder Driver for OceanStor T Series V2 (Fibre Channel) | 20 |
| 4.2.3 Configuring the Cinder Driver for OceanStor V3/V5 (Fibre Channel)       | 21 |
| 4.2.4 Configuring the Cinder Driver of OceanStor 18000 Series (Fibre Channel) | 22 |
| 4.2.5 Configuring the Cinder Driver for Dorado Series V3(Fibre Channel)       | 23 |
| 4.2.6 Configuring the Auto Zoning.                                            | 24 |
| 4.2.7 Parameters in the Configuration File                                    | 25 |
| 4.2.8 Configuring FC Multipathing                                             | 26 |
| 4.2.9 Configuring ALUA                                                        | 27 |
| 4.3 Configuring Multi-Storage Support                                         | 28 |
| 4.4 Using tenant user                                                         | 28 |
| 5 Cinder Driver Advanced Properties Configuration                             | 29 |
| 5.1 Configuring the SmartQoS Property                                         | 30 |
| 5.1.1 Configuring the Front-end QoS.                                          | 30 |
| 5.1.2 Configuring the Maximum Control IOPS                                    | 31 |

| 5.1.3 Configuring the Minimum Control IOPS                                                                                                                            | 32        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 5.1.4 Configuring the Maximum Control Bandwidth                                                                                                                       | 33        |
| 5.1.5 Configuring the Minimum Control Bandwidth                                                                                                                       | 34        |
| 5.1.6 Configuring the Control Latency                                                                                                                                 | .35       |
| 5.1.7 Configuring Multiple Control Policies                                                                                                                           | 36        |
| 5.2 Configuring the SmartPartition Property                                                                                                                           | .38       |
| 5.3 Configuring the Thick Property                                                                                                                                    | .39       |
| 5.4 Configuring the Thin Property                                                                                                                                     | 40        |
| 5.5 Configuring the SmartCache Property                                                                                                                               | 40        |
| 5.6 Configuring the SmartTier Property                                                                                                                                | 41        |
| 5.7 Configuring the HyperMetro Property                                                                                                                               | 42        |
| 5.8 Configuring the Replication V2.1                                                                                                                                  | 44        |
| 5.9 Create a volume on a certain storage pool                                                                                                                         | .46       |
| 5.10 Create a volume with a certain disk type                                                                                                                         | .47       |
| 5.11 Create a volume on a certain volume back end.                                                                                                                    | 48        |
| 5.12 Configuring Consistency Groups                                                                                                                                   | 49        |
| 5.13 Configuring Backup Snapshot.                                                                                                                                     | 49        |
| 5.14 Configuring Certificate Verify                                                                                                                                   | 49        |
| 5.15 Configuring the Owning Controller of a LUN                                                                                                                       | 50        |
| 5.16 Configuring the SmartDedupe Property                                                                                                                             | 50        |
| 5.17 Configuring the SmartCompression Property                                                                                                                        | 51        |
| 6 Best Practices                                                                                                                                                      | <b>53</b> |
| 6.1 Quick Interconnection with Huawei Storage                                                                                                                         | .53       |
| 7 FAQ                                                                                                                                                                 | <b>55</b> |
| 7.1 Need to manually create the mapping associated objects like Host, Host Group or Lun Group on Huawei storage beforehand before attaching volume via Cinder Driver? | 55        |
| 7.2 Nova log prints "Isblk " command execution failed while attaching volume                                                                                          |           |

## $oldsymbol{1}$ Overview

This chapter describes the definition of the Cinder Driver.

Cinder Driver is a plug-in that is deployed on the OpenStack Cinder module. The plug-in can be used to provide functions such as the logical volume and snapshot for virtual machines (VMs) in the OpenStack Cinder Driver that supports iSCSI and Fibre Channel protocols.

## **2** Version Mappings

This chapter describes the version mappings among the Cinder Driver, Huawei storage system, and OpenStack.

**Table 2-1** Version mappings among the Cinder Driver, Huawei storage system and OpenStack.

| OpenStack | Huawei storage system                                              |
|-----------|--------------------------------------------------------------------|
| Liberty   | T V100R005/V200R002                                                |
| Mitaka    | OceanStor V3 V300R001/V300R002/V300R003/V300R006                   |
| Newton    | OceanStor 2200/2600 V3 V300R005                                    |
| Ocata     | OceanStor V5 V500R007                                              |
| Pike      | OceanStor 18500/18800 V100R001/V300R003/V300R006/V500R007          |
| Queens    | OceanStor Dorado V3 V300R001                                       |
|           | OceanStor 6800F/18500F/18800F V3 high-end all-flash storage system |
|           | OceanStor 2600F/5500F/5600F/5800F V3 all-flash storage system      |

**Table 2-2** Version mappings among the Cinder Driver, Features and OpenStack. ( $\sqrt{\ }$ : support, x: unsupport)

| Features        | Liberty  | Mitaka   | Newto<br>n | Ocata    | Pike     | Queens   |
|-----------------|----------|----------|------------|----------|----------|----------|
| Create Volume   | √        | √        | √          | √        | √        | √        |
| Delete Volume   | √        | √        | √          | √        | √        | √        |
| Attach Volume   | √        | <b>√</b> | √          | √        | √        | √        |
| Detach Volume   | √        | <b>√</b> | √          | <b>√</b> | <b>√</b> | √        |
| Extend Volume   | √        | <b>√</b> | √          | √        | √        | √        |
| Create Snapshot | √        | <b>√</b> | √          | √        | √        | √        |
| Delete Snapshot | <b>√</b> | <b>√</b> | <b>√</b>   | √        | √        | <b>√</b> |

| Features                                  | Liberty  | Mitaka   | Newto<br>n | Ocata    | Pike | Queens   |
|-------------------------------------------|----------|----------|------------|----------|------|----------|
| Create Volume from Snapshot               | <b>√</b> | <b>√</b> | <b>√</b>   | <b>√</b> | √    | √        |
| Create Volume from Image                  | √        | √        | <b>√</b>   | <b>√</b> | √    | √        |
| Create Volume from Volume                 | √        | √        | <b>√</b>   | <b>√</b> | √    | √        |
| Create Image from Volume                  | √        | √        | <b>√</b>   | <b>√</b> | √    | √        |
| Volume Migration                          | √        | √        | √          | √        | √    | √        |
| QoS                                       | √        | √        | √          | √        | √    | √        |
| Auto zoning                               | √        | √        | √          | √        | √    | √        |
| SmartTier                                 | √        | √        | √          | √        | √    | √        |
| SmartCache                                | √        | √        | √          | <b>√</b> | √    | √        |
| SmartThin                                 | √        | √        | √          | √        | √    | √        |
| SmartThick                                | √        | √        | √          | <b>√</b> | √    | √        |
| SmartPartition                            | √        | √        | √          | <b>√</b> | √    | √        |
| HyperMetro                                | √        | √        | √          | <b>√</b> | √    | √        |
| Retype                                    | √        | √        | √          | <b>√</b> | √    | √        |
| Manage/Unmanage Volume                    | √        | √        | √          | <b>√</b> | √    | √        |
| Manage/Unmanage Snapshot                  | х        | √        | <b>√</b>   | <b>√</b> | √    | √        |
| Replication V2.1                          | х        | √        | <b>√</b>   | <b>√</b> | √    | √        |
| HyperMetro Consistency Group              | √        | √        | <b>√</b>   | <b>√</b> | √    | √        |
| Create a volume on a certain storage pool | √        | √        | <b>√</b>   | <b>√</b> | √    | √        |
| Create a volume with certain disk type    | <b>√</b> | <b>√</b> | <b>√</b>   | <b>√</b> | √    | <b>√</b> |
| Backup Snapshot                           | Х        | <b>√</b> | <b>√</b>   | <b>√</b> | √    | <b>√</b> |
| Snapshot Consistency Group                | Х        | <b>√</b> | <b>√</b>   | <b>√</b> | √    | <b>√</b> |
| Multipath                                 | <b>√</b> | <b>√</b> | <b>√</b>   | <b>√</b> | √    | <b>√</b> |
| Consistency Group                         | <b>√</b> | <b>√</b> | <b>√</b>   | <b>√</b> | √    | <b>√</b> |



- OceanStor Dorado does not support Thick LUN、SmartTier、SmartCache and SmartPartition features.
- Low-end storage system doesn't support some advanced features, please refer to the specifications of the corresponding storage system.

# 3 Cinder Driver Installation&deployment

- 3.1 Obtain Cinder Driver
- 3.2 Ubuntu Environment Deployment
- 3.3 RedHat OpenStack Deployment

### 3.1 Obtain Cinder Driver

Two ways to obtain OpenStack Driver:

One is through the OpenStack community warehouse. From Kilo, Huawei has contributed Huawei Storage Driver to OpenStack, users can download OpenStack Driver from OpenStack community for free. After installing the specified OpenStack, OpenStack Driver will be placed under the catalog of "../cinder/cinder/volume/drivers/huawei". If you don't find the corresponding installation files, you can download the OpenStack Driver from OpenStack community warehouse at https://github.com/openstack/cinder.

Another is through Huawei OpenStack Driver warehouse. By visiting https://github.com/huaweistorage/OpenStack\_Driver, you can download OpenStack Driver that corresponds to OpenStack community version.

Steps to get Cinder Driver are as follows:

#### MOTE

- A community version cannot be integrated with new features once being released and has security risks because its debug process is time-consuming.
- However, OpenStack Driver obtained from OpenStack Driver repository can be integrated with newly launched features and debugged in a timely manner, when a supportive framework is used.
- The community only maintains two stable versions. However, Huawei OpenStack Driver library maintains six stable versions, ensuring long-term stable running of historical versions.
- You are strongly recommended to use Huawei OpenStack Driver library versions, instead of community versions.
- $\textbf{Step 1} \quad \text{Enter the above warehouse address in the browser, for example Huawei warehouse address:} \\$

https://github.com/huaweistorage/OpenStack Driver.

Step 2 Click the "Download ZIP" bottom to download Driver, and unzip it.

**Step 3** Find "Cinder" catalog in which the Diver is extracted, there are multiple OpenStack Driver for different OpenStack version, choose the corresponding Driver.

----End

### 3.2 Ubuntu Environment Deployment

The OpenStack standard deployment steps are as follows:

**Step 1** Before installation, delete all the installation files of Huawei OpenStack Drver, the default path is /usr/lib/python2.7/dist-packages/cinder/volume/drivers/huawei.



### **CAUTION**

On my host, the version of Python is 2.7, if other version is used, make corresponding changes to the Driver path. You can also get the Cinder Driver installation directory by the following method:

root@ubuntu:~# find / -name huawei\_driver.py

/usr/lib/python2.7/dist-packages/cinder/volume/drivers/huawei/huawei\_driver.py

- **Step 2** Copy OpenStack Cinder Driver to Cinder Driver installation directory, the default directory refer to step 1.
- **Step 3** Refer to chapter 4 and 5 to do the configuration.
- **Step 4** After configuration, restart Cinder-Volume service:

service cinder-volume restart

**Step 5** Check the status of services by inputting cinder service-list, if the "State" status of Cinder-Volume is up, that means Cinder-Volume is OK.

----End

### 3.3 RedHat OpenStack Deployment

RedHat OpenStack deployment steps are as follows:

**Step 1** Before installation, delete all the installation files of Huawei OpenStack Drver, the default path is /usr/lib/python2.7/disk-packages/cinder/volume/drivers/huawei.



### **CAUTION**

On my host, the version of Python is 2.7, if other version is used, make corresponding changes to the Driver path. You can also get the Cinder Driver installation directory by the following method:

root@redhatL004:~# find / -name huawei\_driver.py

/usr/lib/python2.7/dist-packages/cinder/volume/drivers/huawei/huawei driver.py

- **Step 2** Copy OpenStack Cinder Driver to Cinder Driver installation directory, the default directory refer to step 1.
- **Step 3** Refer to chapter 4 and 5 to do the configuration.
- **Step 4** After configuration, restart Cinder-Volume service:

  systemctl restart openstack-cinder-volume.service
- **Step 5** Check the status of services by inputting cinder service-list, if the "State" status of Cinder-Volume is up, that means Cinder-Volume is OK.

----End

# 4 Cinder Driver Basis Properties Configuration

This chapter describes how to configure the Huawei Cinder Driver for iSCSI storage and FC storage.



The storage pool that driver will use, must make sure that it already exists in Huawei storage, otherwise please create it manually, and the usage of this storage pool must be "Block Storage Service".

- 4.1 Configuring the Cinder Driver for iSCSI Storage
- 4.2 Configuring the Cinder Driver for Fibre Channel Storage
- 4.3 Configuring Multi-Storage Support
- 4.4 Using tenant user

### 4.1 Configuring the Cinder Driver for iSCSI Storage

This section describes how to configure the Cinder Driver for different products for iSCSI storage products.

### **Prerequisites**

When create a volume from image, the multipath tool must be installed, and add the following configuration keys in the target back end configuration group of the /etc/cinder/cinder.conf file in Cinder Volume node:

```
use_multipath_for_image_xfer = True
enforce_multipath_for_image_xfer = True
```

### 4.1.1 Configuring the Cinder Driver for OceanStor T Series V1 (iSCSI)

#### **Procedure**

- **Step 1** In /etc/cinder, create a Huawei-customized driver configuration file. The file format is XML. Change the name of the driver configuration file based on site requirements, for example, cinder\_huawei\_conf.xml.
- **Step 2** Configure parameters in the driver configuration file, including mandatory and optional parameters.

#### Mandatory parameters:

```
<?xml version='1.0' encoding='UTF-8'?>
 <config>
       <Storage>
         <Product>T</Product>
          <Protocol>iSCSI</Protocol>
         <ControllerIP0>x.x.x.x</ControllerIP0>
         <ControllerIP1>x.x.x.x</ControllerIP1>
          <UserName>xxx</UserName>
          <UserPassword>xxx</UserPassword>
       </Storage>
       <T.UN>
          <StoragePool Name="xxx" />
         <StoragePool Name="xxx" />
       </IJIN>
       <iscst>
         <DefaultTargetIP>x.x.x.x/DefaultTargetIP>
       </iSCSI>
       <Host OSType="Linux" HostIP="x.x.x.x, x.x.x.x" />
```

Optional parameters(Pick and add the optional parameter in the above XML file):

### MOTE

Make sure the owner and group of "/etc/cinder/cinder\_huawei\_conf.xml" file are the same as "/etc/cinder/cinder.conf" file's owner and group.

```
-rw-r--r-- 1 cinder cinder 2662 Jul 29 02:13 cinder.conf
-rw-r--r-- 1 cinder cinder 778 Jul 30 02:56 cinder_huawei_conf.xml
```

For details about the parameters in the configuration file, see section "4.1.6".

### **Step 3** Configure the **cinder.conf** file.

Add a [TV1\_iSCSI] section at the end of "/etc/cinder/cinder.conf" file, configure the TV1\_iSCSI back end with the Huawei driver. The **volume\_driver** indicates the loaded driver file, and **cinder\_huawei\_conf\_file** indicates the specified Huawei-customized configuration file.

```
[TV1_iSCSI]
volume_driver = cinder.volume.drivers.huawei.huawei_t.HuaweiTISCSIDriver
```

```
cinder_huawei_conf_file = /etc/cinder/cinder_huawei_conf.xml
volume_backend_name = TV1_iSCSI
```

In the [DEFAULT] section, enable the TV1\_iSCSI back end:

```
[DEFAULT]
...
enabled_backends=TV1_iSCSI
```

**Step 4** Restart the Cinder service.

----End

### 4.1.2 Configuring the Cinder Driver for OceanStor T Series V2 (iSCSI)

### **Procedure**

- **Step 1** In /etc/cinder, create a Huawei-customized driver configuration file. The file format is XML. Change the name of the driver configuration file based on site requirements, for example, cinder huawei conf.xml.
- **Step 2** Configure parameters in the driver configuration file, including mandatory and optional parameters.

Mandatory parameters:

```
<?xml version='1.0' encoding='UTF-8'?>
 <config>
      <Storage>
        <Product>TV2</Product>
        <Protocol>iSCSI</Protocol>
      <RestURL>https://x.x.x.x:8088/deviceManager/rest/</RestURL>
        <UserName>xxx</UserName>
         <UserPassword>xxx</UserPassword>
      </Storage>
      <LUN>
        <StoragePool>xxx</StoragePool>
      </TiUN>
      <iSCSI>
        <DefaultTargetIP>x.x.x.x/DefaultTargetIP>
      </iscsi>
 </config>
```

Optional parameters(Pick and add the optional parameter in the above XML file):

### NOTE

Make sure the owner and group of "/etc/cinder/cinder\_huawei\_conf.xml" file are the same as "/etc/cinder/cinder.conf" file's owner and group.

```
-rw-r--r-- 1 cinder cinder 2662 Jul 29 02:13 cinder.conf
-rw-r--r-- 1 cinder cinder 778 Jul 30 02:56 cinder_huawei_conf.xml
```

For details about the parameters in the configuration file, see section "4.1.6".

### **Step 3** Configure the **cinder.conf** file.

Add a [TV2\_iSCSI] section at the end of "/etc/cinder/cinder.conf" file, configure the TV2\_iSCSI back end with the Huawei driver. The **volume\_driver** indicates the loaded driver file, and **cinder\_huawei\_conf\_file** indicates the specified Huawei-customized configuration file.

```
[TV2_iSCSI]

volume_driver = cinder.volume.drivers.huawei.huawei_driver.HuaweiISCSIDriver

cinder_huawei_conf_file = /etc/cinder/cinder_huawei_conf.xml

volume_backend_name = TV2_iSCSI
```

In the [DEFAULT] section, enable the TV2\_iSCSI back end:

```
[DEFAULT]
...
enabled_backends=TV2_iSCSI
```

**Step 4** Restart the Cinder service.

----End

### 4.1.3 Configuring the Cinder Driver for OceanStor V3/V5(iSCSI)

### **Procedure**

- **Step 1** In /etc/cinder, create a Huawei-customized driver configuration file. The file format is XML. Change the name of the driver configuration file based on site requirements, for example, cinder\_huawei\_conf.xml.
- **Step 2** Configure parameters in the driver configuration file, including mandatory and optional parameters.

Mandatory parameters:

```
<?xml version='1.0' encoding='UTF-8'?>
 <config>
      <Storage>
         <Product>V3</Product>
         <Protocol>iSCSI</Protocol>
         <RestURL>https://x.x.x.x:8088/deviceManager/rest/</RestURL>
         <UserName>xxx</UserName>
         <UserPassword>xxx</UserPassword>
      </Storage>
      <LUN>
         <LUNType>Thin</LUNType>
         <StoragePool>xxx</StoragePool>
      </LUN>
         <DefaultTargetIP>x.x.x.x/DefaultTargetIP>
      </iscsi>
 </config>
```

Optional parameters(Pick and add the optional parameter in the above XML file):

### NOTE

Make sure the owner and group of "/etc/cinder/cinder\_huawei\_conf.xml" file are the same as "/etc/cinder/cinder.conf" file's owner and group.

```
-rw-r--r- 1 cinder cinder 2662 Jul 29 02:13 cinder.conf
-rw-r--r- 1 cinder cinder 778 Jul 30 02:56 cinder_huawei_conf.xml
```

For details about the parameters in the configuration file, see section "4.1.6".

### **Step 3** Configure the **cinder.conf** file.

Add a [V3\_iSCSI] section at the end of "/etc/cinder/cinder.conf" file, configure the V3\_iSCSI back end with the Huawei driver. The **volume\_driver** indicates the loaded driver file, and **cinder\_huawei\_conf\_file** indicates the specified Huawei-customized configuration file.

```
[V3_iSCSI]
volume_driver = cinder.volume.drivers.huawei.huawei_driver.HuaweiISCSIDriver
cinder_huawei_conf_file = /etc/cinder/cinder_huawei_conf.xml
volume_backend_name = V3_iSCSI
```

In the [DEFAULT] section, enable the V3\_iSCSI back end:

```
[DEFAULT]
...
enabled_backends=V3_iSCSI
```

**Step 4** Restart the Cinder service.

----End

### 4.1.4 Configuring the Cinder Driver for OceanStor 18000 Series(iSCSI)

This section describes how to configure the Cinder Driver for 18000 series for iSCSI storage products.

### **Procedure**

- **Step 1** In /etc/cinder, create a Huawei-customized driver configuration file. The file format is XML. Change the name of the driver configuration file based on site requirements, for example, cinder\_huawei\_conf.xml.
- **Step 2** Configure parameters in the driver configuration file, including mandatory and optional parameters.

Mandatory parameters:

Optional parameters(Pick and add the optional parameter in the above XML file):

### NOTE

Make sure the owner and group of "/etc/cinder/cinder\_huawei\_conf.xml" file are the same as "/etc/cinder/cinder.conf" file's owner and group.

```
-rw-r--r-- 1 cinder cinder 2662 Jul 29 02:13 cinder.conf
-rw-r--r-- 1 cinder cinder 778 Jul 30 02:56 cinder_huawei_conf.xml
```

For details about the parameters in the configuration file, see section "4.1.6".

### **Step 3** Configure the **cinder.conf** file.

Add a [18000\_iSCSI] section at the end of "/etc/cinder/cinder.conf" file, configure the 18000\_iSCSI back end with the Huawei driver. The **volume\_driver** indicates the loaded driver file, and **cinder\_huawei\_conf\_file** indicates the specified Huawei-customized configuration file.

```
[18000_iSCSI]

volume_driver = cinder.volume.drivers.huawei.huawei_driver.HuaweiISCSIDriver

cinder_huawei_conf_file = /etc/cinder/cinder_huawei_conf.xml

volume_backend_name = 18000_iSCSI
```

In the [DEFAULT] section, enable the 18000 iSCSI back end:

```
[DEFAULT]
...
enabled_backends=18000_iSCSI
```

**Step 4** Restart the Cinder service.

----End

### 4.1.5 Configuring the Cinder Driver for Dorado Series V3(iSCSI)

### **Procedure**

- **Step 1** In /etc/cinder, create a Huawei-customized driver configuration file. The file format is XML. Change the name of the driver configuration file based on site requirements, for example, cinder\_huawei\_conf.xml.
- **Step 2** Configure parameters in the driver configuration file, including mandatory and optional parameters.

Mandatory parameters:

Optional parameters(Pick and add the optional parameter in the above XML file):

#### MOTE

Make sure the owner and group of "/etc/cinder/cinder\_huawei\_conf.xml" file are the same as "/etc/cinder/cinder.conf" file's owner and group.

```
-rw-r--r- 1 cinder cinder 2662 Jul 29 02:13 cinder.conf
-rw-r--r- 1 cinder cinder 778 Jul 30 02:56 cinder huawei conf.xml
```

For details about the parameters in the configuration file, see section "4.1.6".

### **Step 3** Configure the **cinder.conf** file.

Add a [Dorado\_iSCSI] section at the end of "/etc/cinder/cinder.conf" file, configure the Dorado\_iSCSI back end with the Huawei driver. The **volume\_driver** indicates the loaded driver file, and **cinder\_huawei\_conf\_file** indicates the specified Huawei-customized configuration file.

```
[Dorado_iSCSI]

volume_driver = cinder.volume.drivers.huawei.huawei_driver.HuaweiISCSIDriver

cinder_huawei_conf_file = /etc/cinder/cinder_huawei_conf.xml

volume_backend_name = Dorado_iSCSI
```

In the [DEFAULT] section, enable the Dorado iSCSI back end:

```
[DEFAULT]
...
enabled_backends=Dorado_iSCSI
```

**Step 4** Restart the Cinder service.

----End

### 4.1.6 Parameters in the Configuration File

Table 4-1 Mandatory parameters

| Parameter | Description                                                                      | Applicable<br>To |
|-----------|----------------------------------------------------------------------------------|------------------|
| Product   | Type of a storage product. Possible values are T, TV2, 18000, V3, V5 and Dorado. | All              |
| Protocol  | Type of a connection protocol. The possible value is <b>iSCSI</b> .              | All              |

| Parameter           | Description                                                                                                                                                                                                           | Applicable<br>To                           |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| ControllerIP0       | IP address of the primary controller on an OceanStor T series V100R005 storage device.                                                                                                                                | T series V1                                |
| ControllerIP1       | IP address of the secondary controller on an OceanStor T series V100R005 storage device.                                                                                                                              | T series V1                                |
| RestURL             | Access address of the REST interface, for example, https://x.x.x.x:8088/devicemanager/rest/. x.x.x.x indicates the management IP address. If you need to configure multiple RestURL, separate them by semicolons (;). | T series V2<br>V3<br>V5<br>18000<br>Dorado |
| UserName            | User name of a storage administrator.                                                                                                                                                                                 | All                                        |
| UserPassword        | Password of a storage administrator.                                                                                                                                                                                  | All                                        |
| StoragePool         | Name of a storage pool to be used. If you need to configure multiple storage pools, separate them by semicolons (;). Refer to 4.1.1 to configure TV1 series.                                                          | All                                        |
| DefaultTarget<br>IP | Default IP address of the iSCSI target port that is provided for computing nodes.                                                                                                                                     | All                                        |

Table 4-2 Optional parameters

| Parameter      | Default Value                           | Description                                                                                                                                                     | Applicable<br>To |
|----------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| LUNType        | Thick(except<br>Dorado)<br>Thin(Dorado) | Type of the LUNs to be created. The value can be <b>Thick</b> or <b>Thin</b> . Dorado only support Thin LUNs.                                                   | All              |
| StripUnitSize  | 64                                      | Stripe depth of a LUN to be created, optional values: 4, 8,16, 32, 64, 128, 256, 512. The unit is KB.  This parameter is invalid when a thin LUN is created.    | T series V1      |
| WriteType      | 1                                       | Cache write type. Possible values are: 1 (write back), 2 (write through).                                                                                       | All              |
| Prefetch Type  | 3                                       | Cache prefetch policy. Possible values are: <b>0</b> (no prefetch), <b>1</b> (fixed prefetch), <b>2</b> (variable prefetch) or <b>3</b> (intelligent prefetch). | All              |
| Prefetch Value | 0                                       | Cache prefetch value.                                                                                                                                           | All              |

| Parameter                        | Default Value | Description                                                                                                                     | Applicable<br>To                           |
|----------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| LUNcopyWaitI<br>nterval          | 5             | After LUN copy is enabled, the plug-in frequently queries the copy progress. You can set a value to specify the query interval. | T series V2<br>V3<br>V5<br>18000<br>Dorado |
| Timeout                          | 432000        | Timeout interval for waiting LUN copy of a storage device to complete. The unit is second.                                      | T series V2<br>V3<br>V5<br>18000<br>Dorado |
| Initiator Name                   | -             | Name of a computing node initiator.                                                                                             | All                                        |
| Initiator Target<br>IP           | -             | IP address of the iSCSI target port that is provided for computing nodes.                                                       | All                                        |
| Initiator<br>TargetPortGro<br>up | -             | IP address of the iSCSI target port that is provided for computing nodes.                                                       | T series V2<br>V3<br>V5<br>18000<br>Dorado |
| HostIP                           | -             | IP address of the Nova compute node's host.                                                                                     | T series V1                                |
| OSType                           | Linux         | Operating system of the Nova compute node's host.                                                                               | T series V1                                |



### CAUTION

- The value of **StoragePool** cannot contain Chinese characters
- All of the parameter values cannot include XML special character <> & ' "

### 4.1.7 Configuring iSCSI Multipathing

If you need to configure the multipathing for iSCSI, configure it as follows:

### **Procedure**

**Step 1** Create a port group on the storage device using the DeviceManager, add service links that require multipathing into the port group.

**Step 2** Add the port group settings in the Huawei-customized driver configuration file, and configure the port group name needed by an initiator.

```
<iSCSI>
    <Initiator Name="xxxxxx" TargetPortGroup="xxxx"/>
    <Initiator Name="xxxxxx" TargetPortGroup="xxxx"/>
</iSCSI>
```

Step 3 If the version of OpenStack is Juno, Kilo, Liberty or Mitaka, add iscsi\_use\_multipath = True in [libvirt] of /etc/nova/nova.conf.

If the version of OpenStack is Newton or Ocata, add **volume\_use\_multipath** = **True** in **[libvirt]** of /etc/nova/nova.conf.

Enable the multipathing switch of the OpenStack Nova module.

**Step 4** Restart the nova-compute service.

----End

### 4.1.8 Configuring CHAP and ALUA

On a public network, any application server whose IP address resides on the same network segment as that of the storage system's iSCSI host port can access the storage system and perform read and write operations in it. This poses risks to the data security of the storage system. To ensure the storage system access security, you can configure CHAP authentication to control application servers' access to the storage system.

### **Procedure**

Configure CHAP and ALUA.

Configure the driver configuration file as follows:

```
<iSCSI>
     <Initiator Name="xxx" ALUA="xxx" FAILOVERMODE="XXX" PATHTYPE="xxx"
CHAPinfo="xxx"/>
     <Initiator Name="xxx" ALUA="xxx" FAILOVERMODE="XXX" PATHTYPE="xxx"
CHAPinfo="xxx"/>
</iSCSI>
```

Table 4-3 Parameters description

| Parameter       | Defaul<br>t | Description                                                                                                                 |
|-----------------|-------------|-----------------------------------------------------------------------------------------------------------------------------|
| Name            | -           | ISCSI initiator name                                                                                                        |
| ALUA            | 0           | 0: default(Huawei Ultrapath) 1: uses third-party multipathing software                                                      |
| FAILOVERMODE    | -           | Initiator switchover mode, this parameter needs to be delivered only when uses third-party multipathing software is enabled |
| SPECIALMODETYPE | -           | Initiator special mode type, this parameter needs to be delivered only when initiator switchover mode is special ALUA       |

| Parameter | Defaul<br>t | Description                                                                                                                                                                          |
|-----------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PATHTYPE  | -           | Initiator path type, this parameter needs to be delivered only when uses third-party multipathing software is enabled                                                                |
| CHAPinfo  | -           | The user name and password authenticated by CHAP.                                                                                                                                    |
|           |             | The format is <b>mm-user;mm-user@storage1</b> . The user name and password are separated by semicolons (;)                                                                           |
|           |             | CHAP name must contain 4 to 223 characters                                                                                                                                           |
|           |             | The password must contain 12 to 16 characters                                                                                                                                        |
|           |             | The password must contain any three types of uppercase letters, lowercase letters, digits, and special characters including $\sim ! @ \# \% ^* () - = +   [ \{ \} ]; / ? and spaces$ |
|           |             | The password cannot be the same as the account or mirror writing of the account                                                                                                      |

### **NOTE**

Due to the valid value ranges of parameter FAILOVERMODE. SPECIALMODETYPE and PATHTYPE are varied for different Huawei storage system, please refer to the API document of corresponding Huawei storage in use to get the valid parameter values.

### **4.2** Configuring the Cinder Driver for Fibre Channel Storage

This section describes how to configure Cinder Driver for different products for the Fibre Channel products.

### **Prerequisites**

For a Fibre Channel network, the **sg** tool must be installed so that storage resources can be used.

When create a volume from image, the multipath tool must be installed, and add the following configuration keys in the target back end configuration group of the /etc/cinder/cinder.conf file in Cinder volume node:

```
use_multipath_for_image_xfer = True
enforce_multipath_for_image_xfer = True
```

### 4.2.1 Configuring the Cinder Driver for OceanStor T Series V1 (Fibre Channel)

### **Procedure**

Step 1 In /etc/cinder, create a Huawei-customized diver configuration file. The file format is XML.

Change the name of the driver configuration file based on site requirements, for example, **cinder huawei conf.xml**.

**Step 2** Configure parameters in the driver configuration file, including mandatory and optional parameters.

Mandatory parameters:

Optional parameters(Pick and add the optional parameter in the above XML file):

```
<LUN>
<LUNType>xxx</LUNType>
<StripUnitSize>xxx</StripUnitSize>
<WriteType>xxx</WriteType>
<Prefetch Type="xxx" Value="xxx" />
</LUN>
```

### NOTE

Make sure the owner and group of "/etc/cinder/cinder\_huawei\_conf.xml" file are the same as "/etc/cinder/cinder.conf" file's owner and group.

```
-rw-r--r- 1 cinder cinder 2662 Jul 29 02:13 cinder.conf
-rw-r--r- 1 cinder cinder 778 Jul 30 02:56 cinder huawei conf.xml
```

For details about the parameters in the configuration file, see section "4.2.7".

#### **Step 3** Configure the **cinder.conf** file.

Add a [TV1\_FC] section at the end of "/etc/cinder/cinder.conf" file, configure the TV1\_FC back end with the Huawei driver. The **volume\_driver** indicates the loaded driver file, and **cinder\_huawei\_conf\_file** indicates the specified Huawei-customized configuration file.

```
[TV1_FC]
volume_driver = cinder.volume.drivers.huawei.huawei_t.HuaweiTFCDriver
cinder_huawei_conf_file = /etc/cinder/cinder_huawei_conf.xml
volume_backend_name = TV1_FC
```

In the [DEFAULT] section, enable the TV1\_FC back end:

```
[DEFAULT]
...
enabled backends=TV1 FC
```

**Step 4** Restart the Cinder service.

----End

### 4.2.2 Configuring the Cinder Driver for OceanStor T Series V2 (Fibre Channel)

### **Procedure**

**Step 1** In /etc/cinder, create a Huawei-customized diver configuration file. The file format is XML.

Change the name of the driver configuration file based on site requirements, for example, **cinder huawei conf.xml**.

**Step 2** Configure parameters in the driver configuration file, including mandatory and optional parameters.

#### Mandatory parameters:

Optional parameters(Pick and add the optional parameter in the above XML file):

### **∭NOTE**

Make sure the owner and group of "/etc/cinder/cinder\_huawei\_conf.xml" file are the same as "/etc/cinder/cinder.conf" file's owner and group.

```
-rw-r--r- 1 cinder cinder 2662 Jul 29 02:13 cinder.conf
-rw-r--r- 1 cinder cinder 778 Jul 30 02:56 cinder_huawei_conf.xml
```

For details about the parameters in the configuration file, see section "4.2.7".

### **Step 3** Configure the **cinder.conf** file.

Add a [TV2\_FC] section at the end of "/etc/cinder/cinder.conf" file, configure the TV2\_FC back end with the Huawei driver. The **volume\_driver** indicates the loaded driver file, and **cinder\_huawei\_conf\_file** indicates the specified Huawei-customized configuration file.

```
[TV2_FC]
volume_driver = cinder.volume.drivers.huawei.huawei_driver.HuaweiFCDriver
cinder_huawei_conf_file = /etc/cinder/cinder_huawei_conf.xml
volume_backend_name = TV2_FC
```

In the [DEFAULT] section, enable the TV2 FC back end:

```
[DEFAULT]
...
enabled_backends=TV2_FC
```

**Step 4** Restart the Cinder service.

----End

### 4.2.3 Configuring the Cinder Driver for OceanStor V3/V5 (Fibre Channel)

### **Procedure**

**Step 1** In /etc/cinder, create a Huawei-customized driver configuration file. The file format is XML.

Change the name of the driver configuration file based on site requirements, for example, **cinder huawei conf.xml**.

**Step 2** Configure parameters in the driver configuration file, including mandatory and optional parameters.

Mandatory parameters:

```
<?xml version='1.0' encoding='UTF-8'?>
<config>
 <Storage>
        <Product>V3</Product>
        <Protocol>FC</Protocol>
        <RestURL>https://x.x.x.x:8088/deviceManager/rest/</RestURL>
        <UserName>xxx</UserName>
      <UserPassword>xxx</UserPassword>
 </Storage>
 <LUN>
        <LUNType>xxx</LUNType>
        <WriteType>xxx</WriteType>
        <LUNcopyWaitInterval>xxx</LUNcopyWaitInterval>
        <Timeout>432000</Timeout>
        <StoragePool>xxx</StoragePool>
</LUN>
```

Optional parameters(Pick and add the optional parameter in the above XML file):

### NOTE

Make sure the owner and group of "/etc/cinder/cinder\_huawei\_conf.xml" file are the same as "/etc/cinder/cinder.conf" file's owner and group.

```
-rw-r--r-- 1 cinder cinder 2662 Jul 29 02:13 cinder.conf
-rw-r--r-- 1 cinder cinder 778 Jul 30 02:56 cinder huawei conf.xml
```

For details about the parameters in the configuration file, see section "4.2.7".

### **Step 3** Configure the **cinder.conf** file.

Add a [V3\_FC] section at the end of "/etc/cinder/cinder.conf" file, configure the V3\_FC back end with the Huawei driver. The **volume\_driver** indicates the loaded driver file, and **cinder huawei conf file** indicates the specified Huawei-customized configuration file.

```
[V3_FC]
volume_driver = cinder.volume.drivers.huawei.huawei_driver.HuaweiFCDriver
cinder_huawei_conf_file = /etc/cinder/cinder_huawei_conf.xml
volume_backend_name = V3_FC
```

In the [DEFAULT] section, enable the V3 FC back end:

```
[DEFAULT]
...
enabled_backends=V3_FC
```

**Step 4** Restart the Cinder service.

----End

### 4.2.4 Configuring the Cinder Driver of OceanStor 18000 Series (Fibre Channel)

This section describes how to configure the Cinder Driver for 18000 series for FC storage products.

### **Procedure**

**Step 1** In /etc/cinder, create a Huawei-customized driver configuration file. The file format is XML.

Change the name of the driver configuration file based on site requirements, for example, **cinder\_huawei\_conf.xml**.

**Step 2** Configure the **cinder.conf** file, including mandatory and optional parameters.

Mandatory parameters:

Optional parameters(Pick and add the optional parameter in the above XML file):

### NOTE

Make sure the owner and group of "/etc/cinder/cinder\_huawei\_conf.xml" file are the same as "/etc/cinder/cinder.conf" file's owner and group.

```
-rw-r--r-- 1 cinder cinder 2662 Jul 29 02:13 cinder.conf
-rw-r--r-- 1 cinder cinder 778 Jul 30 02:56 cinder_huawei_conf.xml
```

For details about the parameters in the configuration file, see section 4.2.7 ".

### **Step 3** Configure the **cinder.conf** file.

Add a [18000\_FC] section at the end of "/etc/cinder/cinder.conf" file, configure the 18000\_FC back end with the Huawei driver. The **volume\_driver** indicates the loaded driver file, and **cinder\_huawei\_conf\_file** indicates the specified Huawei-customized configuration file.

```
[18000_FC]

volume_driver = cinder.volume.drivers.huawei.huawei_driver.HuaweiFCDriver

cinder_huawei_conf_file = /etc/cinder/cinder_huawei_conf.xml

volume_backend_name = 18000_FC
```

In the [DEFAULT] section, enable the 18000V3\_FC back end:

```
[DEFAULT]
...
enabled_backends=18000_FC
```

**Step 4** Restart the Cinder service.

----End

### 4.2.5 Configuring the Cinder Driver for Dorado Series V3(Fibre Channel)

### **Procedure**

- **Step 1** In /etc/cinder, create a Huawei-customized driver configuration file. The file format is XML. Change the name of the driver configuration file based on site requirements, for example, cinder huawei conf.xml.
- **Step 2** Configure parameters in the driver configuration file, including mandatory and optional parameters.

Mandatory parameters:

Optional parameters(Pick and add the optional parameter in the above XML file):

```
<LUN>
    <WriteType>xxx</WriteType>
    <Prefetch Type="xxx" Value="xxx" />
</LUN>
```

#### NOTE

Make sure the owner and group of "/etc/cinder/cinder\_huawei\_conf.xml" file are the same as "/etc/cinder/cinder.conf" file's owner and group.

```
-rw-r--r- 1 cinder cinder 2662 Jul 29 02:13 cinder.conf
-rw-r--r- 1 cinder cinder 778 Jul 30 02:56 cinder_huawei_conf.xml
```

For details about the parameters in the configuration file, see section "4.2.7".

### **Step 3** Configure the **cinder.conf** file.

Add a [Dorado\_FC] section at the end of "/etc/cinder/cinder.conf" file, configure the Dorado\_FC back end with the Huawei driver. The **volume\_driver** indicates the loaded driver file, and **cinder\_huawei\_conf\_file** indicates the specified Huawei-customized configuration file.

```
[Dorado_FC]

volume_driver = cinder.volume.drivers.huawei.huawei_driver.HuaweiFCDriver

cinder_huawei_conf_file = /etc/cinder/cinder_huawei_conf.xml

volume_backend_name = Dorado_FC
```

In the [DEFAULT] section, enable the Dorado FC back end:

```
[DEFAULT]
...
enabled_backends=Dorado_FC
```

**Step 4** Restart the Cinder service.

----End

### 4.2.6 Configuring the Auto Zoning

Auto zoning is not compulsory, When you need to use this function, do the following configuration.

### **Procedure**

### **Step 1** Configure the **cinder.conf** file.

For more details please refer to https://docs.openstack.org/ocata/config-reference/block-storage/fc-zoning.html

For example, configure the Brocade Exchanger:

```
[DEFAULT]
zoning_mode = fabric
[fc-zone-manager]
fc_fabric names = swd77
zoning policy = initiator
brcd sb connector =
cinder.zonemanager.drivers.brocade.brcd fc zone client cli.BrcdFCZoneClientCLI
fc san lookup service =
cinder.zonemanager.drivers.brocade.brcd_fc_san_lookup_service.BrcdFCSanLookupServi
cinder.zonemanager.drivers.brocade.brcd fc zone driver.BrcdFCZoneDriver
fc fabric address = x.x.x.x
fc_fabric_password = xxx
fc_fabric_port = 22
fc fabric user = xxx
principal switch wwn = xxx
zone_activate = True
```

**Step 2** Restart the Cinder service.

----End



• Auto Zoning is not supported for tenant user.

### 4.2.7 Parameters in the Configuration File

**Table 4-4** Mandatory parameters

| Parameter     | Description                                                                                                                                                                                                           | Applicable<br>To                           |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Product       | Type of a storage product. Possible values are T, TV2, 18000, V3, V5 and Dorado.                                                                                                                                      | All                                        |
| Protocol      | Type of a connection protocol. Possible value is <b>FC</b> .                                                                                                                                                          | All                                        |
| ControllerIP0 | IP address of the primary controller on an OceanStor T series V100R005 storage device.                                                                                                                                | T series V1                                |
| ControllerIP1 | IP address of the secondary controller on an OceanStor T series V100R005 storage device.                                                                                                                              | T series V1                                |
| RestURL       | Access address of the REST interface, for example, https://x.x.x.x:8088/devicemanager/rest/. x.x.x.x indicates the management IP address. If you need to configure multiple RestURL, separate them by semicolons (;). | T series V2<br>V3<br>V5<br>18000<br>Dorado |
| UserName      | User name of an administrator.                                                                                                                                                                                        | All                                        |
| UserPassword  | Password of an administrator.                                                                                                                                                                                         | All                                        |
| StoragePool   | Name of a storage pool to be used. If you need to configure multiple storage pools, separate them by semicolons (;). Refer to 4.1.1 to configure TV1 series.                                                          | All                                        |

Table 4-5 Optional parameters

| Parameter | Default Value                           | Description                                                                                                   | Applicabl<br>e To |
|-----------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------|
| LUNType   | Thick(except<br>Dorado)<br>Thin(Dorado) | Type of the LUNs to be created. The value can be <b>Thick</b> or <b>Thin</b> . Dorado only support Thin LUNs. | All               |

| Parameter               | Default Value | Description                                                                                                                         | Applicabl<br>e To                          |
|-------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| StripUnitSize           | 64            | Stripe depth of a LUN to be created, optional values: 4, 8,16, 32, 64, 128, 256, 512. The unit is KB.                               | T series V1                                |
|                         |               | This parameter is invalid when a thin LUN is created.                                                                               |                                            |
| WriteType               | 1             | Cache write type. Possible values are: 1 (write back), 2 (write through).                                                           | All                                        |
| Prefetch Type           | 3             | Cache prefetch policy. Possible values are: 0 (no prefetch), 1 (fixed prefetch), 2 (variable prefetch) or 3 (intelligent prefetch). | All                                        |
| Prefetch Value          | 0             | Cache prefetch value.                                                                                                               | All                                        |
| LUNcopyWait<br>Interval | 5             | After LUN copy is enabled, the plug-in frequently queries the copy progress. You can set a value to specify the query interval.     | T series V2<br>V3<br>V5<br>18000<br>Dorado |
| Timeout                 | 432000        | Timeout interval for waiting LUN copy of a storage device to complete. The unit is second.                                          | T series V2<br>V3<br>V5<br>18000<br>Dorado |
| HostIP                  | -             | IP address of the Nova compute node's host.                                                                                         | T series V1                                |
| OSType                  | Linux         | Operating system of the Nova compute node's host.                                                                                   | T series V1                                |



### CAUTION

- The value of **StoragePool** cannot contain Chinese characters
- All of the parameter values cannot include XML special character <> & ' "

### 4.2.8 Configuring FC Multipathing

If you need to configure the multipathing for FC, configure it as follows:

### **Procedure**

**Step 1** Enable the multipathing switch of the OpenStack Nova module.

If the version of OpenStack is Liberty or Mitaka, add **iscsi\_use\_multipath** = **True** in [**libvirt**] of /etc/nova/nova.conf.

If the version of OpenStack is Newton or Ocata, add **volume\_use\_multipath** = **True** in **[libvirt]** of /etc/nova/nova.conf.

**Step 2** Restart the nova-compute service.

----End

### 4.2.9 Configuring ALUA

### **Procedure**

Configure ALUA.

Configure the driver configuration file as follows:

Table 4-6 Parameters description

| Parameter       | Defaul<br>t | Description                                                                                                                 |
|-----------------|-------------|-----------------------------------------------------------------------------------------------------------------------------|
| Name            | -           | FC initiator WWN                                                                                                            |
| ALUA            | 0           | 0: default(Huawei Ultrapath) 1: uses third-party multipathing software                                                      |
| FAILOVERMODE    | -           | Initiator switchover mode, this parameter needs to be delivered only when uses third-party multipathing software is enabled |
| SPECIALMODETYPE | -           | Initiator special mode type, this parameter needs to be delivered only when initiator switchover mode is special ALUA       |
| РАТНТҮРЕ        | -           | Initiator path type, this parameter needs to be delivered only when uses third-party multipathing software is enabled       |

### NOTE

Due to the valid value ranges of parameter FAILOVERMODE. SPECIALMODETYPE and PATHTYPE are varied for different Huawei storage system, please refer to the API document of corresponding Huawei storage in use to get the valid parameter values.

### 4.3 Configuring Multi-Storage Support

Example for configuring multiple storage systems in /etc/cinder/cinder.conf:

```
[DEFAULT]
...
enabled_backends = t_fc, 18000_fc
[t_fc]
volume_driver = cinder.volume.drivers.huawei.huawei_t.HuaweiTFCDriver
cinder_huawei_conf_file = /etc/cinder/cinder_huawei_conf_t_fc.xml
volume_backend_name = t_fc
[18000_fc]
volume_driver = cinder.volume.drivers.huawei.huawei_driver.HuaweiFCDriver
cinder_huawei_conf_file = /etc/cinder/cinder_huawei_conf_18000_fc.xml
volume_backend_name = 18000_fc
```

### 4.4 Using tenant user

Configure the tenant user parameters in the driver configuration file, as below:

Table 4-7 Tenant parameters description

| Parameter    | Description          |
|--------------|----------------------|
| UserName     | Tenant user name     |
| UserPassword | Tenant user password |
| vStoreName   | vStore name          |



### NOTICE

- How to configure other parameters, please refer to the chapters above.
- Only can configure using tenant user while integrated with backend storage that supports multi-tenant feature.

# 5 Cinder Driver Advanced Properties Configuration

Huawei storage supports advanced properties, such as Smartx and HyperMetro. By associating with specified volume types in OpenStack, these properties make the combination of OpenStack and storage advanced properties possible.

- 5.1 Configuring the SmartQoS Property
- 5.2 Configuring the SmartPartition Property
- 5.3 Configuring the Thick Property
- 5.4 Configuring the Thin Property
- 5.5 Configuring the SmartCache Property
- 5.6 Configuring the SmartTier Property
- 5.7 Configuring the HyperMetro Property
- 5.8 Configuring the Replication V2.1
- 5.9 Create a volume on a certain storage pool
- 5.10 Create a volume with a certain disk type
- 5.11 Create a volume on a certain volume back end
- 5.12 Configuring Consistency Groups
- 5.13 Configuring Backup Snapshot
- 5.14 Configuring Certificate Verify
- 5.15 Configuring the Owning Controller of a LUN
- 5.16 Configuring the SmartDedupe Property
- 5.17 Configuring the SmartCompression Property

### 5.1 Configuring the SmartQoS Property

### **About This Chapter**

Qos in OpenStack mainly depends on the front-end Hypervisor and the back-end storage. Huawei OpenStack Cinder Driver supports "frontend QoS" and "backend QoS". Front-end QoS options are:

total\_bytes\_sec, read\_bytes\_sec, write\_bytes\_sec, total\_iops\_sec, read\_iops\_sec, write\_iops\_sec

Huawei storage backends support the following QoS properties. One or multiple properties can be associated with one QoS property simultaneously.

Protection policies: latency, minIOPS, minBandWidth

Restriction policies: maxIOPS, maxBandWidth



### **CAUTION**

Protection policies and Restriction policies are mutually exclusive. If they are configured together, volumes will fail to be created.

"IOType" is mandatory. If it isn't configured in qos, volumes will fail to be created.

### 5.1.1 Configuring the Front-end QoS

This section describes how to configure the front-end gos.

### **Procedure**

**Step 1** Run the cinder type-create XXX command to create a volume type. XXX indicates the name of a volume type.

Step 2 Run the cinder qos-create xxx consumer="front-end" read\_iops\_sec=xxx write iops sec=xxx command to create front QoS control property parameters.

read\_iops\_sec=2000 write\_iops\_sec=1000 is used as an example.

```
root@ubuntu:/# cinder qos-create high-iops consumer="front-end"
read_iops_sec=2000 write_iops_sec=1000
+------+
| Property | Value | |
+------+
| consumer | front-end | |
| id | 7dc73b5b-1b19-4371-8dee-8edbc52cf625 | |
| name | high-iops | |
| specs | {'write_iops_sec': '1000', 'read_iops_sec': '2000'} |
| +-------+
```

- **Step 3** Associate the volume type with QoS control properties.
  - 1. Check the usage of the **cinder qos-associate qos** command.

The association command format is **cinder qos-associate** <ID of QoS specifications> <ID of volume type>.

root@ubuntu:/# cinder qos-associate

usage: cinder qos-associate <qos specs> <volume type id>

try 'cinder help qos-associate' for more information.

2. Run the **cinder qos-associate** 7dc73b5b-1b19-4371-8dee-8edbc52cf625 84b189d3-8984-4e92-aab0-fa4a913126bf。

----End

### **Results**

• Run the **cinder qos-list** command to view details about the QoS policy configuration.

#### NOTE

If consumer="front-end" is configured in qos, front-end QoS will be created; if not, back-end QoS will be created

### 5.1.2 Configuring the Maximum Control IOPS

This section describes how to configure the maximum Control IOPS.

### **Procedure**

**Step 1** Run the **cinder type-create XXX** command to create a volume type. XXX indicates the name of a volume type.

- Step 2 Run the cinder type-key maxIOPS set capabilities:QoS\_support='<is> true' command to set a key-value pair for the maxIOPS volume type.
- **Step 3** Run the **cinder qos-create xxx maxIOPS=***xxx* **IOType=***xxx* command to create QoS control property parameters.
  - The first **xxx** indicates the created QoS control properties name.
  - maxIOPS: indicates the maximum IOPS. The value is an integer larger than 0.
  - IOType: indicates the read and write type.0 indicates the control read I/Os, 1 indicates the control write I/Os, 2 indicates the control read and write I/Os.



Dorado storage only supports IOType "2".

### maxIOPS=100 IOType=2 is used as an example.

- **Step 4** Associate the volume type with QoS control properties.
  - 1. Check the usage of the **cinder gos-associate gos** command.

The association command format is **cinder qos-associate** <ID of QoS specifications> <ID of volume type>.

root@ubuntu:/# cinder qos-associate

usage: cinder qos-associate <qos\_specs> <volume\_type\_id>

try 'cinder help qos-associate' for more information.

2. Run the **cinder qos-associate** 1f772258-49f0-47a9-aa9c-d8f32d844bb1 3d9cc52e-069b-4245-b201-945e0ef571cf.

----End

### 5.1.3 Configuring the Minimum Control IOPS

This section describes how to configure the minimum Control IOPS.

### **Procedure**

**Step 1** Run the **cinder type-create XXX** command to create a volume type. XXX indicates the name of a volume type.

- Step 2 Run the cinder type-key minIOPS set capabilities:QoS\_support='<is> true' command to set a key-value pair for the minIOPS volume type.
- Step 3 Run the cinder qos-create xxx minIOPS=xxx IOType=xxx command to create QoS control property parameters.
  - The first **xxx** indicates the created QoS control properties name.
  - minIOPS: indicates the minimum IOPS. The value is an integer larger than 0.
  - IOType: indicates the read and write type.0 indicates the control read I/Os, 1 indicates the control write I/Os, 2 indicates the control read and write I/Os.



Dorado storage only supports IOType "2".

minIOPS=100 IOType=2 is used as an example.

- **Step 4** Associate the volume type with QoS control properties.
  - 1. Check the usage of the **cinder qos-associate qos** command.

The association command format is **cinder qos-associate** <ID of QoS specifications> <ID of volume type>.

root@ubuntu:/# cinder qos-associate

usage: cinder qos-associate <qos specs> <volume type id>

try 'cinder help qos-associate' for more information.

2. Run the **cinder qos-associate** 8deaf13c-bf1c-4a71-94d0-1149805693ce 1a1dcee8-d9ae-4de9-b1c6-2317a4ad7219.

----End

## 5.1.4 Configuring the Maximum Control Bandwidth

This section describes how to configure the maximum control bandwidth.

#### **Procedure**

- Step 2 Run the cinder type-key maxBandWidth set capabilities:QoS\_support='<is> true' command to set a key-value pair for the maxBandWidth volume type.
- **Step 3** Run the **cinder qos-create xxx maxBandWidth=***xxx* **IOType=***xxx* command to create QoS control property parameters.
  - The first xxx indicates the created QoS control properties name.
  - maxBandWidth: indicates the maximum BANDWIDTH. The value is an integer larger than 0 and expressed in MB/s.

• **IOType**: indicates the read and write type.0 indicates the control read I/Os, 1 indicates the control write I/Os, 2 indicates the control read and write I/Os.



Dorado storage only supports IOType "2".

maxBandWidth=100 IOType=2 is used as an example.

```
root@ubuntu:/# cinder qos-create maxbandwidth maxBandWidth=100 IOType=2
+-------+
| property | value | |
+------+
| consumer | back-end | |
| id | 2f51c955-e029-48ca-aa8c-5d7ae462481e | |
| name | maxbandwidth | |
| specs | {u'maxBandWidth': u'100', u'IOType': u'2'} |
```

- **Step 4** Associate the volume type with QoS control properties.
  - 1. Check the usage of the **cinder qos-associate qos** command.

The association command format is **cinder qos-associate** <ID of QoS specifications> <ID of volume type>.

root@ubuntu:/# cinder qos-associate

usage: cinder qos-associate <qos\_specs> <volume\_type\_id>

try 'cinder help qos-associate' for more information.

2. Run the **cinder qos-associate** 2f51c955-e029-48ca-aa8c-5d7ae462481e 24200fbb-c984-4d99-9465-a820464662d6 command.

----End

## 5.1.5 Configuring the Minimum Control Bandwidth

This section describes how to configure the minimum control bandwidth.

#### **Procedure**

- Step 2 Run the cinder type-key minBandWidth set capabilities:QoS\_support='<is> true' command to set a key-value pair for the minBandWidth volume type.
- Step 3 Run the cinder qos-create xxx minBandWidth=xxx IOType=xxx command to create QoS control property parameters.

- The first **xxx** indicates the created QoS control properties name.
- **minBandWidth**: indicates the minimum BANDWIDTH. The value is an integer larger than **0** and expressed in MB/s.
- **IOType**: indicates the read and write type.0 indicates the control read I/Os, 1 indicates the control write I/Os, 2 indicates the control read and write I/Os.



Dorado storage only supports IOType "2".

minBandWidth=100 IOType=2 is used as an example.

```
root@ubuntu:/# cinder qos-create minbandwidth minBandWidth=100 IOType=2
+------+
| property | value |
+-----+
| consumer | back-end |
| id | 59c583d8-69d2-4c39-8c75-c1b21ef85f2e |
| name | minbandwidth |
| specs | {u'IOType': u'2', u'minBandWidth': u'100'} |
+------+
```

- **Step 4** Associate the volume type with QoS control properties.
  - 1. Check the usage of the **cinder qos-associate qos** command.

The association command format is **cinder qos-associate** <ID of QoS specifications> <ID of volume type>.

root@ubuntu:/# cinder qos-associate

usage: cinder qos-associate <qos\_specs> <volume\_type\_id>

try 'cinder help qos-associate' for more information.

2. Run the **cinder qos-associate** 59c583d8-69d2-4c39-8c75-c1b21ef85f2e 271bed0a-1cce-4e8f-a65e-b85ccb3b9a25.

----End

## 5.1.6 Configuring the Control Latency

This section describes how to configure the control latency.

#### **Procedure**

- Step 2 Run the cinder type-key latency set capabilities:QoS\_support='<is> true' command to set a key-value pair for the latency volume type.
- Step 3 Run the cinder qos-create xxx latency=xxx IOType=xxx command to create QoS control property parameters.

- The first **xxx** indicates the created QoS control properties name.
- latency: indicates LATENCY. The value is an integer larger than **0** and expressed in ms.
- **IOType**: indicates the read and write type.**0** indicates the control read I/Os, **1** indicates the control write I/Os, **2** indicates the control read and write I/Os.



Dorado storage only supports IOType "2".

**latency**=100 **IOType**=2 is used as an example.

- **Step 4** Associate the volume type with QoS control properties.
  - 1. Check the usage of the **cinder qos-associate qos** command.

The association command format is **cinder qos-associate** <ID of QoS specifications> <ID of volume type>.

root@ubuntu:/# cinder qos-associate

usage: cinder qos-associate <qos specs> <volume type id>

try 'cinder help qos-associate' for more information.

2. Run the **cinder qos-associate** 6f305e9f-698b-4e9e-aa68-8efb80b43036 ae34870a-21c0-4e50-8148-1e26f6ab6eab command.

----End

## **5.1.7 Configuring Multiple Control Policies**

This section describes how to configure multiple control policies.

#### **Procedure**

```
root@ubuntu:/# cinder type-create multi-strategy
+-------
+------+
| ID | Name | Description |
Is_Public |
+------+
| df53d9d7-b1db-4e6b-847a-7a5150c39489 | multi-strategy | - |
True |
+------+
```

- Step 2 Run the cinder type-key multi-strategy set capabilities:QoS\_support='<is> true' command to set a key-value pair for the multi-strategy volume type.
- **Step 3** Run the **cinder qos-create xxx latency**=*xxx* **minBandWidth**=*xxx* **IOType**=*xxx* command to create QoS control property parameters.
  - The first **xxx** indicates the created QoS control properties name.
  - latency: indicates LATENCY. The value is an integer larger than **0** and expressed in ms.
  - **minBandWidth**: indicates the minimum BANDWIDTH. The value is an integer larger than **0** and expressed in MB/s.
  - **IOType**: indicates the read and write type.0 indicates the control read I/Os, 1 indicates the control write I/Os, 2 indicates the control read and write I/Os.



#### NOTICE

Dorado storage only supports IOType "2".

#### **latency**=100 minBandWidth=100 IOType=2 is used as an example.

```
root@ubuntu:/# cinder qos-create multi-strategy latency=100 minBandWidth=100

IOType=2
+-----+
| Property | Value |
+-----+
| consumer | back-end |
| id | 36f0fc4a-d5f5-4862-ab1f-e7fedeeddc41 |
| name | multi-strategy |
| specs | {'IOType': '2', 'minBandWidth': '100', 'latenct': '100'} |
+------+
```

- **Step 4** Associate the volume type with QoS control properties.
  - 1. Check the usage of the **cinder qos-associate qos** command.

The association command format is **cinder qos-associate** <ID of QoS specifications> <ID of volume type>.

root@ubuntu:/# cinder gos-associate

usage: cinder qos-associate <qos\_specs> <volume\_type\_id>

try 'cinder help gos-associate' for more information.

2. Run the **cinder qos-associate** 36f0fc4a-d5f5-4862-ab1f-e7fedeeddc41 df53d9d7-b1db-4e6b-847a-7a5150c39489.

----End

#### Results

• Run the **cinder gos-list** command to view details about the QoS policy configuration.

```
| {'IOType': '2', 'minIOPS': '50'}
| 3fd0971e-f5fd-48d7-89d9-d2efb6fc44cf | maxbandwidth | back-end
| ('maxBandWidth': '100', 'IOType': '2') |
| 6a4e24af-0e8c-4a64-91ee-859434414400 | latency | back-end
| {'latency': '100', 'IOType': '2'} |
| 9b34fbdf-91b5-473d-a5ff-0b4ea2ed9fd0 | maxiops | back-end
| {'IOType': '2', 'maxIOPS': '100'} |
| f60a3374-cdf3-45cc-86c4-12c06a3db8d4 | minbandwidth | back-end
| {'IOType': '2', 'minBandWidth': '100'} |
```

• Run the **cinder type-list** command to view the volume type.

## 5.2 Configuring the SmartPartition Property

The following example describes how to configure the SmartPartition property.

#### **Procedure**

**Step 1** Run the **cinder type-create XXX** command to create a volume type. XXX indicates the name of a volume type.

```
root@ubuntu-204:~# cinder type-create SmartPartition
+------+
| ID | Name | Description | Is_Public |
+-----+
| a7648f77-fb56-41f2-9d50-3c014534ef66 | SmartPartition | - | True |
+-----+
```

- Step 2 Run the cinder type-key SmartPartition set capabilities:smartpartition='<is> true' command to set a key-value pair for the SmartPartition volume type.
- Step 3 Run the cinder type-key SmartPartition set smartpartition:partitionname ='test\_partition'

**partitionname** indicates the name of a SmartPartition partition that has been configured on the storage system.

|     | 1.1                                                          |                                 |        |  |  |  |  |
|-----|--------------------------------------------------------------|---------------------------------|--------|--|--|--|--|
| rc  | root@ubuntu-204:~# cinder create 1display-name test001volume |                                 |        |  |  |  |  |
| Sm  | SmartPartition                                               |                                 |        |  |  |  |  |
| +   | +                                                            |                                 | +      |  |  |  |  |
| - 1 | property                                                     | value                           |        |  |  |  |  |
| +   | +                                                            |                                 | +      |  |  |  |  |
| - 1 | attachments                                                  | []                              |        |  |  |  |  |
| - 1 | availability_zone                                            | nova                            | 1      |  |  |  |  |
| - 1 | bootable                                                     | false                           | 1      |  |  |  |  |
| - 1 | created_at                                                   | 2015-06-26t13:40:10.483450      |        |  |  |  |  |
| - 1 | display description                                          | none                            |        |  |  |  |  |
| - 1 | display name                                                 | test001                         |        |  |  |  |  |
|     | encrypted                                                    | false                           | 1      |  |  |  |  |
| - 1 | id                                                           | 1b2a87e4-eb8c-46ab-922c-63fcd7c | db8f20 |  |  |  |  |
|     | metadata                                                     | { }                             | 1      |  |  |  |  |
|     | multiattach                                                  | false                           | 1      |  |  |  |  |
| - 1 | size                                                         | 1                               | 1      |  |  |  |  |
|     | snapshot id                                                  | none                            |        |  |  |  |  |
|     | source volid                                                 | none                            |        |  |  |  |  |
| ı   | status                                                       | creating                        | i      |  |  |  |  |
| i   | volume type                                                  | SmartPartition                  | 1      |  |  |  |  |

#### **Step 4** Create a volume that supports **SmartPartition**.

----End

## 5.3 Configuring the Thick Property

The following example describes how to configure the Thick property.



### **CAUTION**

Dorado V3 does't support Thick volume.

#### **Procedure**

- Step 2 Run the cinder type-key Thick set capabilities:thick\_provisioning\_support='<is> true' command to set a key-value pair for the Thick volume type.
- **Step 3** Run the **cinder type-key Thick set provisioning:type='thick'** command to set the scheduling mechanism for the Thick volume.
- **Step 4** Create a volume that supports **Thick**.

| ro  | ot@ubuntu-204:~# c: | inder | create 1 | display-name | test001 | volume-type | Thick |
|-----|---------------------|-------|----------|--------------|---------|-------------|-------|
| +   |                     | +     |          |              |         | +           |       |
|     | property            | - 1   |          | value        |         |             |       |
| +   |                     | +-    |          |              |         | +           |       |
| - 1 | attachments         | 1     |          | []           |         |             |       |
| - 1 | availability zone   | e     |          | nova         |         |             |       |
|     | bootable            |       |          | false        |         |             |       |

| created at          | 2015-06-26t13:40:10.483450           | 1  |
|---------------------|--------------------------------------|----|
| display description | none                                 | İ  |
| display name        | test001                              |    |
| encrypted           | false                                | 1  |
| id                  | 1b2a87e4-eb8c-46ab-922c-63fcd7db8f20 |    |
| metadata            | {}                                   |    |
| multiattach         | false                                |    |
| size                | 1                                    |    |
| snapshot_id         | none                                 |    |
| source_volid        | none                                 |    |
| status              | creating                             |    |
| volume_type         | Thick                                |    |
| +                   | -+                                   | -+ |

## 5.4 Configuring the Thin Property

The following example describes how to configure the Thin property.

#### **Procedure**

**Step 1** Run the **cinder type-create XXX** command to create a volume type. XXX indicates the name of a volume type.

- Step 2 Run the cinder type-key Thin set capabilities:thin\_provisioning\_support='<is> true' command to set key-value pairs of the Thin volume type.
- **Step 3** Create a volume that supports **Thin**.

----End

## 5.5 Configuring the SmartCache Property

The following example describes how to configure the SmartCache property.

#### **Procedure**

**Step 1** Run the **cinder type-create XXX** command to create a volume type. XXX indicates the name of a volume type.

- Step 2 Run the cinder type-key SmartCache set capabilities:smartcache='<is> true' command to set a key-value pair for the SmartCache volume type.
- Step 3 Run the cinder type-key SmartCache set smartcache:cachename='test\_cache' command to config smartcache name.

**cachename** is the name of SmartCache partition that has been configured on the storage system.

**Step 4** Create a volume that supports **SmartCache**.

----End

## 5.6 Configuring the SmartTier Property

The following example describes how to configure the SmartTier property.

#### **Procedure**

**Step 1** Run the **cinder type-create XXX** command to create a volume type. XXX indicates the name of a volume type.

Step 2 Run the cinder type-key SmartTier set capabilities:smarttier='<is> true' command to set a key-value pair for the SmartTier volume type.

Step 3 Run the cinder type-key SmartTier set smarttier:policy= 'xx' command to set a key-value pair for the SmartTier volume type.

**Policy**: indicates migration policy. **0** indicates no migration, **1** indicates automatic migration, **2** indicates migration to high performance, **3** indicates migration to low performance.

**Step 4** Create a volume that supports **SmartTier**.

```
root@ubuntu-204:~# cinder create 1 --display-name test001 --volume-type
SmartTier
         property |
                                              value
     attachments | []
availability_zone | nova
false
    avaliability_2000 | false | created_at | 2015-06-26t13:40:10.483450 | display_description | none | display_name | test001 | false |
         encrypted | false
   id | 1b2a87e4-eb8c-46ab-922c-63fcd7db8f20
metadata | {}
         multiattach
                                                  false
                                                  1
             size
         snapshot id
                                                 none
         source_volid |
                                                none
        status | volume_type |
                                               creating
                                             SmartTier
```

----End

## 5.7 Configuring the HyperMetro Property

The following example describes how to configure the HyperMetro property.

#### **Prerequisites**

**Step 1** Add information about remote devices in /etc/cinder/cinder.conf in target back end section.

```
hypermetro_device =
   storage_pool:StoragePool001,
   san_address:https://IP:port/deviceManager/rest/,
   san_user:xxx,
   san_password:xxx,
   vstore_name:xxx,
   iscsi_default_target_ip:x.x.x.x,
   metro_domain:hypermetro-domain
```

Add information about remote devices for iscsi multipath:



Separate the key words by ","; separate the initiator informations in "iscsi\_info" by ";".

 Table 5-1 Parameter specification

| Parameter                 | Description                                                                                                                               |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| san_address               | Access address of the REST interface, for example, https://x.x.x.x:8088/deviceManager/rest/, x.x.x.x indicates the management IP address. |
| san_user                  | User name of a storage administrator or tenant of hypermetro remote device.                                                               |
| san_password              | Password of a storage administrator or tenant of hypermetro remote device.                                                                |
| vstore_name               | vstore name of hypermetro remote device(only needed using tenant user).                                                                   |
| metro_domain              | Hypermetro domain name configured on DeviceManager.                                                                                       |
| storage_pool              | Remote storage pool for hypermetro.                                                                                                       |
| iscsi_default_target_ip   | Remote transaction port IP                                                                                                                |
| Initiator Name            | Name of a computing node initiator.                                                                                                       |
| Initiator Target IP       | IP address of the iSCSI target port that is provided for computing nodes.                                                                 |
| Initiator TargetPortGroup | IP address of the iSCSI target port that is provided for computing nodes.                                                                 |

**Step 2** Restart the Cinder volume service.

----End

#### **Procedure**

- Step 2 Run the cinder type-key HyperMetro set capabilities:hypermetro='<is> true' command to set a key-value pair for the HyperMetro volume type.
- **Step 3** Create a volume that supports **HyperMetro**.

```
root@ubuntu-204:~# cinder create 1 --display-name test001 --volume-type

Hypermetro
+------+
| property | value | |
+-----+
| attachments | [] | |
| availability_zone | nova | |
| bootable | false
```

## 5.8 Configuring the Replication V2.1

The following example describes how to configure the Replication V2.1.

#### **Prerequisites**

**Step 1** Add information about remote devices in /etc/cinder/cinder.conf in target back end section.

```
replication_device =
    backend_id:huawei-replica-1,
    storage_pool:StoragePool001,
    san_address:https://IP:port/deviceManager/rest/,
    san_user:xxx,
    san_password:xxx,
    vstore_name:xxx,
    iscsi_default_target_ip:x.x.x.x
```

#### Add information about remote devices for iscsi multipath:



Separate the key words by ","; separate the initiator informations in "iscsi\_info" by ";".

Table 5-2 Parameter specification

| Parameter    | Description                                                                                                                               |  |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|
| backend_id   | Target device id                                                                                                                          |  |
| storage_pool | Pool name of target backend when failover.                                                                                                |  |
| san_address  | Access address of the REST interface, for example, https://x.x.x.x:8088/deviceManager/rest/, x.x.x.x indicates the management IP address. |  |
| san_user     | User name of a storage administrator of Replication V2. remote device                                                                     |  |

| Parameter                 | Description                                                               |
|---------------------------|---------------------------------------------------------------------------|
| san_password              | Password of a storage administrator of Replication V2.1 remote device.    |
| vstore_name               | vstore name of replication remote device(only needed using tenant user).  |
| iscsi_default_target_ip   | Remote transaction port IP                                                |
| Initiator Name            | Name of a computing node initiator.                                       |
| Initiator Target IP       | IP address of the iSCSI target port that is provided for computing nodes. |
| Initiator TargetPortGroup | IP address of the iSCSI target port that is provided for computing nodes. |

**Step 2** Run the **service cinder-volume restart** command to restart the Cinder service.

----End

#### **Procedure**

**Step 1** Run the **cinder type-create XXX** command to create a volume type. XXX indicates the name of a volume type.

- Step 2 Run the cinder type-key Replication\_V2.1 set capabilities:replication\_enabled='<is>true' command to set a key-value pair for the Replication V2.1 volume type.
- Step 3 (Optional)Run the cinder type-key Replication\_V2.1 set replication\_type='<in> sync' command to set the type of Replication V2.1.

Optional values of "**replication\_type**" are "sync" and "async". "sync" indicates synchronous replication; "async" indicates asynchronous replication when skip this step, asynchronous replication will be applied.

**Step 4** Create a volume that supports **Replication V2.1.** 

| 1 | encrypted    |   | false                                |   |
|---|--------------|---|--------------------------------------|---|
|   | id           |   | 1b2a87e4-eb8c-46ab-922c-63fcd7db8f33 | 1 |
|   | metadata     |   | { }                                  |   |
|   | multiattach  |   | false                                |   |
| 1 | size         |   | 1                                    |   |
| 1 | snapshot_id  |   | none                                 |   |
|   | source_volid |   | none                                 |   |
|   | status       |   | creating                             |   |
|   | volume_type  |   | Replication_V2.1                     |   |
| + |              | + |                                      | + |

## 5.9 Create a volume on a certain storage pool

This section describes how to create a volume on a certain storage pool in a back end that manages multiple pools. A volume type with a extra spec specified storage pool should be created first, then the user can use this volume type to create the volume.

#### **Procedure**

**Step 1** Run the **cinder type-create XXX** command to create a volume type. XXX indicates the name of a volume type.

- **Step 2** Run the following command to configure the storage pool.
  - Configure a single storge pool cinder type-key target-pool set pool\_name=StoragePool001
  - Configure multiple storage pools.
     cinder type-key target-pool set pool\_name="<or>
     StoragePool002"

#### **Step 3** Create a volume on a certain **storage pool**.

```
root@ubuntu-175:~# cinder create --volume-type target-pool 1
          Property
                                            Value
      attachments |
availability_zone |
hootable |
                                             []
                                             nova
                                           false
     consistencygroup_id | None | created_at | 2016-08-12T08:14:21.000000 | None |
                      | False
| 3023e949-ec25-4005-8bbc-6aa2c6860235
         encrypted
             id
          metadata
       migration_status
                                            None
        multiattach
                                         False
    os-vol-host-attr:host
                                           None
                                           None
 os-vol-mig-status-attr:migstat |
                                            None
 os-vol-mig-status-attr:name id |
                                           None
  os-vol-tenant-attr:tenant_id | 53c46df66a084916876a08d7bcc31d87 |
                                          disabled
     replication status
           size
                                             1
| snapshot id |
                                             None
```

|   | source_volid | None                             |   |
|---|--------------|----------------------------------|---|
|   | status       | creating                         |   |
|   | updated_at   | None                             |   |
|   | user_id      | ec5b1bd5fa8646109381755037aacc82 |   |
| 1 | volume_type  | target-pool                      |   |
| + |              | +                                | + |

## 5.10 Create a volume with a certain disk type

This section describes how to create a volume with a certain disk type.

#### **Procedure**

**Step 1** Run the **cinder type-create XXX** command to create a volume type. XXX indicates the name of a volume type.

- **Step 2** Run the following command to configure the certain disk type.
  - Configure one type of disk type.

    root@ubuntu-175:~# cinder type-key disk-type set disk\_type=sas
  - Configure multiple types of disk type.
    root@ubuntu-175:~# cinder type-key disk-type set disk\_type="<or> sas <or> ssd"

optional values of disk type can be "ssd", "sas", "nl\_sas" or "mix", the "mix" is a mixture of two or more of "ssd", "sas", "nl\_sas".

**Step 3** Create a volume with a certain **disk type**.

```
root@ubuntu-175:~# cinder create --volume-type disk-type 1
       attachments
availability_zone | false
bootable | false
consistencygroup_id | None
created_at | 2016-08-12T08:24:09.000000
description | None
concrupted | False
            encrypted | False | id | eca3a81b-0ef0-49b6-9202-d1bf1c16a96f | metadata | {}
          migration_status
                                                               None
            multiattach
                                                             False
                  name
                                                               None
 os-vol-host-attr:host | ubuntu-175@234#StoragePool002
os-vol-mig-status-attr:migstat | None
 os-vol-mig-status-attr:name_id |
                                                               None
   os-vol-tenant-attr:tenant id | 53c46df66a084916876a08d7bcc31d87 |
        replication_status | disabled
            size |
snapshot_id |
source_volid |
                                                                1
                                                               None
                                                               None
     status | creating
updated_at | 2016-08-12T08:24:11.000000
user_id | ec5b1bd5fa8646109381755037aacc82 |
```



### 5.11 Create a volume on a certain volume back end

This section describes how to create a volume on a certain volume back end.

#### **Procedure**

**Step 1** Run the **cinder type-create XXX** command to create a volume type. XXX indicates the name of a volume type.

**Step 2** Configure the volume back end name.

**Step 3** Create a volume on the volume back end.

```
root@u1404:~# cinder create --volume-type volume-backend 1
            Property
                                    attachments
                                                        []
       availability_zone
                                                       nova
       bootable . None consistencygroup_id | None created_at | 2017-04-17T19:36:11.000000 description | None encrypted | False
          bootable
                                                      false
                                  | 01d1df8c-45f8-4af3-8ef6-62a708233474 |
             metadata
                                                        { }
         migration_status
                                                       None
          multiattach
                                                     False
                                                       None
               name
os-vol-host-attr:host | u1404@240_sh#Cinder-HXL | os-vol-mig-status-attr:migstat | None | os-vol-mig-status-attr:name id |
  os-vol-tenant-attr:tenant_id | 3692e4d8455741a8b0c47a6859f23e1c |
       replication_status
                                                    disabled
              size
                                                     1
           snapshot id
                                                       None
  source_volid
                                                       None
```

|   | status      | 1   | creating                         |  |
|---|-------------|-----|----------------------------------|--|
| 1 | updated_at  | 1   | 2017-04-17T19:36:12.000000       |  |
|   | user_id     | 1   | 3fdf4c2ee2964e23bb09decdeb24caa5 |  |
|   | volume_type | - 1 | volume-backend                   |  |
| + |             | +   |                                  |  |

## 5.12 Configuring Consistency Groups

This section describes how to configure consistency groups and snapshot consistency groups.

Before using consistency groups, you must change policies for the consistency group APIs in the /etc/cinder/policy.json file. For more details please refer to <a href="http://docs.openstack.org/admin-guide/blockstorage-consistency-groups.html">http://docs.openstack.org/admin-guide/blockstorage-consistency-groups.html</a>.

## 5.13 Configuring Backup Snapshot

This section describes how to configure backup snapshot.

#### **Procedure**

Step 1 Configure backup driver.

For more details please refer to https://docs.openstack.org/ocata/config-reference/block-storage/backup-drivers.html, and ensure cinder-backup service is working.

Step 2 Configure the cinder.conffile.

In the [DEFAULT] section add the following configuration.

```
backup_use_same_host = True
```

Add the following configuration in the target back end configuration group

```
backup use temp snapshot = True
```

**Step 3** Run the **service cinder-volume restart** and **service cinder-back restart** command to restart the Cinder service and Backup service.

----End

## **5.14 Configuring Certificate Verify**

This section describes how to enable SSL certificate verify for Huawei storage connection.

#### **Procedure**

**Step 1** Configure Huawei-defined configuration file of Driver.

Add SSLCertVerify and SSLCertPath in <Storage>, as follow:

```
...
</storage>
...
</config>
```

SSLCertVerify denotes whether enable certificate verify, which's valid options are True/False. Default False if not explicitly specified.

SSLCertPath specifies the path to the certificate to use, only works when SSLCertVerify is True

**Step 2** Restart cinder-volume service.

----End

## 5.15 Configuring the Owning Controller of a LUN

This section uses an example to describe how to configure the owning controller of a LUN.

#### **Procedure**

**Step 1** Run the **cinder type-create** *XXX* command to create a volume type. In this command, *XXX* indicates the volume type, which is specified by users.

**Step 2** Run the following command to configure the key-value pair whose **Huawei\_controller** attribute is **true**.

```
root@ubuntu-p-200:~# cinder type-key controller_type_C set capabilities:huawei controller='<is> true'
```

**Step 3** Configure the **huawei\_controller** name that exists on the storage device and associate **controllername** to the volume type.

```
root@ubuntu-p-200:~# cinder type-key controller_type_C set
huawei_controller:controllername='CTE0.C'
```

**Step 4** Create a volume with the owning controller attribute specified volume type.

----End

## 5.16 Configuring the SmartDedupe Property

This section uses an example to describe how to configure the SmartDedupe property of a LUN. Only Thin LUN supports this property.

#### **Enable SmartDedupe Procedure**

**Step 1** Run the **cinder type-create** *XXX* command to create a volume type. In this command, *XXX* indicates the volume type name, which is specified by users.

```
root@ubuntu-p-200:~# cinder type-create Dedup +-----
```

| ++<br>  ID<br>  Is_Public                            | Name  | Description |
|------------------------------------------------------|-------|-------------|
| ++<br>  a6f65c73-ff74-4809-9e63-086052169e42<br>True | Dedup | <br>  -     |
| ++                                                   | +     | +           |

Step 2 For Newton and later versions, run the cinder type-key Dedup set capabilities:thin\_provisioning\_support='<is> true' capabilities:dedup='<is> true' command to add volume type specs.

For Liberty and Mitaka versions, run the **cinder type-key Dedup set capabilities:thin\_provisioning\_support='<is> true' capabilities:dedup='<in> true' command to add volume type specs.** 

**Step 3** Create a SmartDedupe enabled volume by the Dedup volume type.

----End

#### Disable SmartDedupe Procedure

**Step 1** Run the **cinder type-create** *XXX* command to create a volume type. In this command, *XXX* indicates the volume type name, which is specified by users.

Step 2 For Newton and later versions, run the cinder type-key NoDedup set capabilities:thin\_provisioning\_support='<is> true' capabilities:dedup='<is> false' command to add volume type specs.

For Liberty and Mitaka versions, run the **cinder type-key NoDedup set capabilities:thin\_provisioning\_support='<is> true' capabilities:dedup='<in> false'** command to add volume type specs.

**Step 3** Create a SmartDedupe disabled volume by the NoDedup volume type.

----End

NOTE

Dorado series storages only support Thin LUN, the **capabilities:thin\_provisioning\_support** key at Step 2 is optional.

## 5.17 Configuring the SmartCompression Property

This section uses an example to describe how to configure the SmartCompression property of a LUN. Only Thin LUN supports this property.

#### **Enable SmartCompression Procedure**

**Step 1** Run the **cinder type-create** *XXX* command to create a volume type. In this command, *XXX* indicates the volume type name, which is specified by users.

Step 2 For Newton and later versions, run the cinder type-key Compression set capabilities:thin\_provisioning\_support='<is> true' capabilities:compression='<is> true' command to add volume type specs.

For Liberty and Mitaka versions, run the **cinder type-key Compression set capabilities:thin\_provisioning\_support='<is> true' capabilities:compression='<in> true' command to add volume type specs.** 

**Step 3** Create a SmartCompression enabled volume by the Compression volume type.

----End

#### Disable SmartDedupe Procedure

**Step 1** Run the **cinder type-create** *XXX* command to create a volume type. In this command, *XXX* indicates the volume type name, which is specified by users.

Step 2 For Newton and later versions, run the cinder type-key NoCompression set capabilities:thin\_provisioning\_support='<is> true' capabilities:compression='<is> false' command to add volume type specs.

For Liberty and Mitaka versions, run the **cinder type-key NoCompression set capabilities:thin\_provisioning\_support='<is> true' capabilities:compression='<in> false' command to add volume type specs.** 

**Step 3** Create a SmartCompression disabled volume by the NoCompression volume type.

----End

Dorado series storages only support Thin LUN, the **capabilities:thin\_provisioning\_support** key at Step 2 is optional.

52

## 6 Best Practices

6.1 Quick Interconnection with Huawei Storage

## 6.1 Quick Interconnection with Huawei Storage

#### **Configuration Process**

This section demonstrates how to configure OpenStack Huawei Cinder Driver on OpenStack to interconnect with Huawei Storage.

#### Step 1 Obtain Cinder Driver.

OpenStack Kilo and later versions released in the OpenStack community are delivered with Huawei OpenStack Driver. You can obtain the latest codes of Driver through Huawei's OpenStack Driver repository. For details, see 3.

#### MOTE

- A community version cannot be integrated with new features once being released and has security risks because its debug process is time-consuming.
- However, OpenStack Driver obtained from OpenStack Driver repository can be integrated with newly launched features and debugged in a timely manner, when a supportive framework is used.
- The community only maintains two stable versions. However, Huawei OpenStack Driver library maintains six stable versions, ensuring long-term stable running of historical versions.
- You are strongly recommended to use Huawei OpenStack Driver library versions, instead of community versions.
- **Step 2** Create or query the block storage pool which will be used in Huawei storage.
- **Step 3** Configure file **cinder.conf** and Huawei-defined configuration file of Driver. (The following uses Huawei OceanStor V3 series on the iSCSI network as an example. For details, see 4).
  - In /etc/cinder, create a Huawei-defined Driver configuration file in .xml format. In this example, cinder\_huawei\_conf.xml is used as the file name that can be changed based on actual conditions.
  - 2. Set parameters for the created file.

3. Check the owner and owning group of the file.

Ensure that the owner and owning group of file /etc/cinder/cinder\_huawei\_conf.xml is the same as those of file /etc/cinder/cinder.conf.

```
-rw-r--r- 1 cinder cinder 2662 Jul 29 02:13 cinder.conf
-rw-r--r- 1 cinder cinder 778 Jul 30 02:56 cinder_huawei_conf.xml
```

4. Configure file **cinder.conf**.

At the end of file /etc/cinder/cinder.conf, add the following configuration item to add HuaweiDriver for V3\_iSCSI. In this configuration item, volume\_driver indicates the loaded Driver file, and cinder\_huawei\_conf\_file indicates the Huawei-defined configuration file.

```
[V3_iSCSI]
volume_driver = cinder.volume.drivers.huawei.huawei_driver.HuaweiISCSIDriver
cinder_huawei_conf_file = /etc/cinder/cinder_huawei_conf.xml
volume_backend_name = V3_iSCSI
```

In the **[DEFAULT]** area, modify the configuration as follows to enable the V3\_iSCSI back-end:

```
[DEFAULT]
...
enabled backends=V3 iSCSI
```

#### **Step 4** Restart the Cinder service.

#### **Step 5** Check the service status.

In this example, the service status of **u1404@V3\_iSCSI** is **up**, indicating that the service is started correctly.

----End

 $7_{\text{FAQ}}$ 

- 7.1 Need to manually create the mapping associated objects like Host, Host Group or Lun Group on Huawei storage beforehand before attaching volume via Cinder Driver?
- 7.2 Nova log prints "Isblk" command execution failed while attaching volume.

# 7.1 Need to manually create the mapping associated objects like Host, Host Group or Lun Group on Huawei storage beforehand before attaching volume via Cinder Driver?

No, because Cinder Driver will create these mapping associated objects and the Mapping View. On the contrary, if these objects are manually created on Huawei storage, will cause Cinder Driver not properly function, so that please make sure these objects deleted before attaching volume.

## 7.2 Nova log prints "lsblk " command execution failed while attaching volume.

Nova will utilize "lsblk" tool to query the attached volume information, this error generally occurs due to this tool is not installed, please make sure it's installed correctly in Nova system.