

Sorting(2)

College of Computer Science, CQU

outline

- Shellsort
- Mergesort
- Quicksort

Shellsort (diminishing increment sort)

- Shellsort makes comparisons and swaps between non-adjacent elements
- Shellsort's strategy is to make the list "mostly sorted" so that a final Insertion Sort can finish the job.

Shellsort: Idea

- Shellsort breaks the array of elements into "virtual" sublists.
- Each sublist is sorted using an Insertion Sort.
- Another group of sublists is then chosen and sorted,
- and so on.

希尔排序----举例

Shellsort: Example

Shellsort: Implementation

```
// Modified version of Insertion Sort for varying increments
template <typename E, typename Comp>
void inssort2(E A[], int n, int incr) {
  for (int i=incr; i<n; i+=incr)</pre>
    for (int j=i; (j>=incr) &&
                  (Comp::prior(A[j], A[j-incr])); j-=incr)
      swap(A, j, j-incr);
template <typename E, typename Comp>
void shellsort(E A[], int n) { // Shellsort
  for (int i=n/2; i>2; i/=2) // For each increment
    for (int j=0; j<i; j++) // Sort each sublist
      inssort2<E,Comp>(&A[j], n-j, i);
  inssort2 < E, Comp > (A, n, 1);
```

```
void ShellInsert (EA[], int dk) {
 for (i=dk+1; i <=n; ++i)
   if (A[i]<A[i-dk]) {
    A[0] = A[i]; // 暂存在A[0]
    for (j=i-dk; j>0&&(A[0]<A[j]);
        j-=dk)
     A[i+dk] = A[i]; // 记录后移, 查找插入位置
                           // 插入
    A[j+dk] = A[0];
   } // if
```

void ShellSort (E A[], int dlta[], int t)

{ // 增量为dlta[]的希尔排序

for (k=0; k<t; ++t)

ShellInsert(A, dlta[k]);

//一趟增量为dlta[k]的插入排序

} // ShellSort

Shellsort: Complexity

- The average-case performance of Shellsort (for "divisions by three" increments) is O(n¹.5).
- □ Shellsort is substantially better than Insertion Sort, or any of exchange sorts $\Theta(n^2)$.

Mergesort

Mergesort is one of the simplest sorting algorithms conceptually, and has good performance both in the asymptotic sense and in empirical running time.

Mergesort: Idea

■ Idea: divide and conquer

- **Divide**: If S has at least two elements (nothing needs to be done if S has zero or one elements), remove all the elements from S and put them into two sequences, S_1 and S_2 , each containing about half of the elements of S. (i.e. S_1 contains the first $\lceil n/2 \rceil$ elements and S_2 contains the remaining $\lfloor n/2 \rfloor$ elements.
- **Recur**: Recursive sort sequences S_1 and S_2 .
- Conquer: Put back the elements into S by merging the sorted sequences S₁ and S₂ into a unique sorted sequence.

Mergesort: Pseudocode Sketch

```
List mergesort(List inlist) {
  if (inlist.length() <= 1) return inlist;;
  List L1 = half of the items from inlist;
  List L2 = other half of the items from inlist;
  return merge(mergesort(L1), mergesort(L2));
}</pre>
```

Mergesort: Example

Implementing Mergesort

how to represent the lists?

linked list:

- Implementing merge for linked lists is straightforward, because we need only remove items from the front of the input lists and append items to the output list.
- Breaking the input list into two equal halves presents some difficulty.

array:

- splitting input into two subarrays is easy if we know the array bounds.
- Merging is also easy if we merge the subarrays into a second array.
- a serious disadvantage: requires twice the amount of space as any of the sorting methods presented so far.

Merge (standard)

Mergesort: Standard Implementation

```
template <typename E, typename Comp>
void mergesort(E A[], E temp[], int left, int right) {
 int mid = (left+right)/2;
 mergesort<E,Comp>(A, temp, left, mid);
 mergesort<E,Comp>(A, temp, mid+1, right);
 for (int i=left; i<=right; i++) // Copy subarray to temp
   temp[i] = A[i];
 // Do the merge operation back to A
 int i1 = left; int i2 = mid + 1;
 for (int curr=left; curr<=right; curr++) {
   if (i1 == mid+1)  // Left sublist exhausted
     A[curr] = temp[i2++];
   else if (i2 > right) // Right sublist exhausted
     A[curr] = temp[i1++];
   else if (Comp::prior(temp[i1], temp[i2]))
     A[curr] = temp[i1++];
   else A[curr] = temp[i2++];
```

Merge(optimized)

Mergesort: Optimized Implementation

```
template <typename E, typename Comp>
void mergesort(E A[], E temp[], int left, int right) {
  if ((right-left) <= THRESHOLD) { // Small list</pre>
    inssort<E,Comp>(&A[left], right-left+1);
    return;
  int i, j, k, mid = (left+right)/2;
  mergesort<E,Comp>(A, temp, left, mid);
  mergesort<E,Comp>(A, temp, mid+1, right);
  // Do the merge operation. First, copy 2 halves to temp.
  for (i=mid; i>=left; i--) temp[i] = A[i];
  for (j=1; j \leftarrow mid; j++) temp[right-j+1] = A[j+mid];
  // Merge sublists back to A
  for (i=left, j=right, k=left; k<=right; k++)</pre>
    if (Comp::prior(temp[i], temp[j])) A[k] = temp[i++];
    else A[k] = temp[j--];
```

Mergesort: Complexity

- **□** mergesort 's time complexity is $\Theta(n \log n)$
- it is the conceptually simplest algorithm we will see.
- Space Requirements for Mergesort
 - two sorted linked lists without using any extra space.
 - However, to merge two sorted arrays (or portions of an array), we must use a third array to store the result of the merge.

Quicksort

- Quicksort when properly implemented, is the fastest known general-purpose in-memory sorting algorithm in the average case.
- It does not require the extra array needed by Mergesort, so it is space efficient as well.
- Quicksort is widely used while hampered by exceedingly poor worst-case performance, thus making it inappropriate for certain applications.

Quicksort: Idea

1) Select: pick an pivot

2) Divide: rearrange elements so that x goes to its final position E

3) Recurse and Conquer: recursively sort

Quicksort Implementation

```
template <typename E, typename Comp>
void qsort(E A[], int i, int j) { // Quicksort
  if (j <= i) return; // Don't sort 0 or 1 element
  int pivotindex = findpivot(A, i, j);
  swap(A, pivotindex, j); // Put pivot at end
  // k will be the first position in the right subarray
  int k = partition<E, Comp>(A, i-1, j, A[j]);
  swap(A, k, j); // Put pivot in place
  qsort<E, Comp>(A, i, k-1);
  qsort<E, Comp>(A, k+1, j);
}
```

Findpivot()

```
template <typename E>
inline int findpivot(E A[], int i, int j)
  { return (i+j)/2; }
```

Partition()

Partition: example

Initial I	72	6	57	88	85	42	83	73	48	60 r
Pass 1	72 	6	57	88	85	42	83	73	48 r	60
Swap 1	48 	6	57	88	85	42	83	73	72 r	60
Pass 2	48	6	57	88 I	85	42 r	83	73	72	60
Swap 2	48	6	57	42 I	85	88 r	83	73	72	60
Pass 3	48	6	57	42	85 I,r	88	83	73	72	60

Quicksort: Example

6 42 48 57 60 72 73 83 85 88 Final Sorted Array

Quicksort: Complexity

- Worst case: when each pivot yields a bad partitioning of the array
 - Cost: $\Theta(n^2)$
- Best case: when findpivot always breaks the array into two equal halves
 - **Cost:** $\Theta(n \log n)$
- Average case: $\Theta(n \log n)$

References

- Data Structures and Algorithm Analysis Edition
 3.2 (C++ Version)
 - P.239-248

-End-

