ATTENTION IS ALL YOU NEED

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.

Presenter: Omar Iken

Natural Language Processing Master 2 Data Science March 2, 2022

Sequence models

Vector to Sequence (e.g. Image captioning)

o Sequence to Vector (e.g. Sentiments analysis)

o Sequence to Sequence (e.g. Language translation)

Outline

- 1 Background
- 2 Transformer architecture
- 3 Attention Mechanism
- 4 Experimental Results
- 5 Paper review

Background

Figure 1: Encoder/Decoder

Drawbacks

- o Slow to train.
- $\circ \ \, \mathsf{Sequential} \ \mathsf{process} \ \Longrightarrow \ \, \mathsf{Precludes} \ \mathsf{parallelism}.$
- \circ Long sequences \implies Vanishing exploding gradients.
- o Long-term dependency problem.
- \circ Unidirectional (Most of them) \implies Process text from left to right.

;

Figure 2: RNNs VS. Transformer

4

Transformer architecture

Overview

Main parts (Encoder / Decoder)

- 1. Input Embedding
- 2. Positional Encoding
- 3. Attention mechanism
- 4. Multi Head Attention

Applications

- o NLP Tasks:
 - o BERT[Devlin et al. 2018]
 - o GPT-2 [Radford et al. 2019]
- o Vision Tasks:
 - o Image classification
 - o Object Detection
 - o Video Instance Segmentation
- 0 ...

Figure 3: Transformer architecture [1].

Embedding / Encoding

Input Embedding.

Words that have the same meaning will be close in terms of Euclidean distance.

Figure 4: Word Embedding example.

[https://easvai.tech/en/ai-definition/word-embedding/]

Positional Encoding.

The position of a word plays a determining role in understanding the sequence \implies add positional information about the word within the sequence in the vector.

$$\begin{aligned} PE(pos, 2i) &= sin\left(\frac{pos}{1000^{2i/d}m_{oodel}}\right) \\ PE(pos, 2i + 1) &= cos\left(\frac{pos}{1000^{2i/d}m_{oodel}}\right) \end{aligned}$$

Figure 5: the wavelength w.r.t dimension.

[http://nlp.seas.harvard.edu/images/
the-annotated-transformer_49_0.png]

Scaled Dot-Product Attention

Figure 6: Scaled dot-product attention [1].

$$Attention(Q, K, V) = softmax\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

- o Q[query]: a vector word.
- \circ K[keys]: all other words in the sentence.
- \circ V[value]: the vector of the word.

Multi Head Attention

Figure 7: Multi-head attention [1].

$$MH(Q, K, V) = concat(h_1, ..., h_h)W^{\circ}$$

 $h_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$

- \circ Projection of Q, K and V in Linear Spaces.
- \circ 8 projections of size 64 (8 * 64 = 512).

7

Encoder

1. Input Embedding: convert a sequence of tokens to a sequence of vectors

Positional Encoding: add position information in each word vector.

3. Apply MultiHead attention.

Figure 8: Encoder

В

Decoder

1. Word Embedding: convert a sequence of tokens to a sequence of vectors

Positional Encoding: add position information in each word vector.

3. Apply MultiHead attention.

Figure 9: Decoder

Decoder, cond't

- 4. Feed Forward
- 5. Multi Head attention with encoder output

- o Feed Forward (again)
- \circ Linear + softmax

Attention Mechanism

Why Self-Attention?

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

Figure 10: Maximum path lengths, per-layer complexity and minimum number of sequential operations for different layer types [1].

Results

Training Data and Batching / Hardware and Schedule

- o WMT 2014 English-German dataset: 4.5 million sentence pairs
- o WMT 2014 English-French dataset: 36M sentences
- o 8 NVIDIA P100 GPUs
- o 12 hours / 3.5 days

Experimental Results

Model	BLEU		Training Cost (FLOPs)		
Model	EN-DE	EN-FR	EN-DE	EN-FR	
ByteNet [18]	23.75				
Deep-Att + PosUnk [39]		39.2		$1.0 \cdot 10^{20}$	
GNMT + RL [38]	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$	
ConvS2S [9]	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5 \cdot 10^{20}$	
MoE [32]	26.03	40.56	$2.0 \cdot 10^{19}$	$1.2 \cdot 10^{20}$	
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0 \cdot 10^{20}$	
GNMT + RL Ensemble [38]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1 \cdot 10^{21}$	
ConvS2S Ensemble [9]	26.36	41.29	$7.7 \cdot 10^{19}$	$1.2 \cdot 10^{21}$	
Transformer (base model)	27.3	38.1	$3.3\cdot 10^{18}$		
Transformer (big)	28.4	41.8	2.3 ·	$2.3 \cdot 10^{19}$	

Paper review

Paper Review

About the paper

- o Attention Is All You Need
- o Ashish Vaswani et al. 2017
- o NIPS 2017

Merits of the paper

- o The paper reads well and is easy to follow!
- o Entirely novel architecture without recurrence or convolutions.
- o New state-of-the-art results on standard WMT datasets.

Weaknesses

- o Architectural details lack mathematical definitions (e.g., multi-head attention).
- o Model contains lots of hyper-parameters, but not/not well discussed.

References

[1] Ashish Vaswani et al. "Attention is all you need". In: Advances in neural information processing systems 30 (2017).