

S Thenmozhi

Department of Computer Applications

OS Structures & Kernel Programming

S Thenmozhi

Department of Computer Applications

Different Types of OS for Different Computing Environments

- Batch Operating System
- Multiprogramming System
- Multiprocessing System
- Multitasking System
- Time sharing system
- Distributed OS
- Network OS
- Real Time OS

Batch System

PES UNIVERSITY CELEBRATING 50 YEARS

- Similar jobs are grouped into batches
- Batches are given to CPU for execution
- Example: Bank transaction updates, payroll system
- Advantages
 - Multiple users can share the same batch
 - Idle time is very less
 - Suitable for repeated large work
- Disadvantages
 - Difficult to estimate the time of completion of job
 - Hard to debug
 - If any of the job fails, the others has to wait for indefinite time

Batch System

Multiprogramming System

PES UNIVERSITY

- More than one program kept in memory
- Always one is kept ready for execution
- Attempt to keep the CPU busy / reduce its idle time
- Advantages
 - Increases throughput and reduces the response time
- Disadvantages
 - Too many programs may degrade the performance
 - No user interaction

Multiprogramming System

Jobs in multiprogramming system

Multiprocessing System

- More than one CPU is used for execution of jobs
- i.e, Multiple processors are there to execute the programs/jobs
- Advantages
 - Increased throughput-more work done in less time
 - Economy of scale-Common bus, peripherals, memory, power etc.,
 - Increased reliability- Failure of one will not affect the functionality of the system
- Disadvantage
 - Complex system

Multiprocessing System

Multiprocessing

Multiprocessing System

Types of Multiprocessing systems

Asymmetric multiprocessing- All processors not treated equally. So each processor is assigned a specific task **Symmetric multiprocessing-** All processors are treated equally in which each processor performs all tasks within the operating system.

Multitasking System

- It is a logical extension of multi programming system
- It can run multiple programs at the same time and complete at the same time

Browser Excel VLC Process Process Operating System

Multitasking System

Types of Multitasking

Multitasking System

Preemptive multitasking involves the use of an interrupt mechanism which suspends the currently executing process and invokes a scheduler to determine which process should execute next

Cooperative multitasking, also known as non-preemptive multitasking, is a style of computer multitasking in which the operating system never initiates a context switch from a running process to another process

Time Sharing System

PES
UNIVERSITY
CELEBRATING 50 YEARS

- Each task is given some time to execute
- All tasks can work smoothly
- The task may come from single user or multiple user
- The time each task gets to execute is called as quantum
- After the time, the OS switches to next task
- Advantages
 - Each task gets equal opportunity
 - CPU idle time is reduced
 - Resource is shared and Productivity is improved
- Disadvantages
 - Data Communication problem
 - High overhead because of scheduling, context switching
 - Security risks

Timesharing System

Timesharing in case of 8 users

Distributed OS

- Various autonomous interconnected computers communicate with each other using a shared communication network.
- Independent systems possess their own memory unit and CPU. i.e loosely coupled systems
- These systems' processors differ in size and function
- remote access is enabled within the devices connected in that network
- i.e, user can access the files or software which are not actually present on his system

Distributed OS

- Advantages
 - Failure of one does not affect the other
 - Since resources are being shared, computation is highly fast and durable.
 - easily scalable
 - Delay in data processing reduces
- Disadvantages
 - Failure of the main network will stop the entire communication
 - Systems are not readily available & very expensive

Distributed OS

Architecture of Distributed OS

Distributed OS

A Typical View of a Distributed System

- These systems run on a server and provide the capability to manage data, users, groups, security, applications, and other networking functions
- Operating systems allow shared access to files, printers, security, applications, and other networking functions over a small private network
- All the users are well aware of the underlying configuration, of all other users within the network, their individual connections
- Tightly coupled systems

- Advantages
 - High stable centralized servers
 - Upgradation of hardware is easily possible
 - Server access from remote location is possible
- Disadvantages
 - Servers are costly
 - User has to depend on central location for most operations
 - Systems are not readily available & very expensive
 - Maintenance and updates should be done of regular basis

Network OS

PES UNIVERSITY CELEBRATING 50 YEARS

Client-Server Computing

- A server is a central node that services many client nodes
- Compute-server provides an interface to client to request services (i.e., database)
- File-server provides interface for clients to store and retrieve files

Network OS

PES UNIVERSITY CELEBRATING 50 YEARS

Peer-Peer Computing

- Does not distinguish clients and servers
- Instead all nodes are considered peers
- May each act as client, server or both
- Node must join P2P network
- Registers its service with central lookup service on network, or
- Broadcast request for service and respond to requests for service via discovery protocol

Real time Operating System

- OS used in real-time systems
- The time interval required to process and respond to inputs is very small
- i.e, the response time is highly reduced.
- This OS is always online and has fixed time constraint
- Example: Missile systems, air traffic control systems, robots, etc
- It is of two types: Hard-real time systems and Softreal time systems
- Hard real time systems are restrictive for timing whereas soft real time systems are less restrictive.
- The utility of soft real time systems is limited in comparison to hard real time systems.

Real time Operating System

- Advantages
 - Maximum consumption of resources
 - Increased utilization of resources
 - Error free
- Disadvantages
 - Limited tasks
 - Use heavy system resources
 - Complex Algorithms

Real time Operating System

THANK YOU

S Thenmozhi

Department of Computer Applications

thenmozhis@pes.edu

+91 80 6666 3333 Extn 393