

Preparação para exame

12.º Ano de Escolaridade | Turma K-G

TRIGONOMETRIA

Recorda:

Seja $\left[ABC\right]$ um triângulo

Lei dos senos

$$\frac{\sin \hat{A}}{a} = \frac{\sin \hat{B}}{b} = \frac{\sin \hat{C}}{c}$$

•
$$tg(x) = \frac{\sin(x)}{\cos(x)}$$

$$\bullet \sin^2(x) + \cos^2(x) = 1$$

$$\bullet 1 + \tan^2(x) = \frac{1}{\cos^2(x)}$$

(No conjunto onde as expressões têm significado)

Seja [ABC] um triângulo

Lei dos cossenos (Teorema de Carnot)

$$a^2 = b^2 + c^2 - 2bc\cos\hat{A}$$

•
$$-1 \le \sin(x) \le 1, \forall x \in \mathbb{R}$$

•
$$-1 \le \cos(x) \le 1, \forall x \in \mathbb{R}$$

•
$$f$$
 é uma função par se $f(-x) = f(x), \forall -x, x \in D_f$

- fé uma função ímpar se $f(-x) = -f(x), \forall -x, x \in D_f$
- 1. Na figura 1 estão representadas três árvores, identificadas por $A, B \in C$.

Sabe-se que:

•
$$A\hat{C}B = 52^{\circ}$$
:

•
$$B\hat{A}C = 82^{\circ}$$
:

• as árvores
$$A$$
 e B distam de $6.4m$, isto é, $\overline{AB} = 6.4m$;

Figura 1

Qual é a distância entre a árvore A e a árvore C? Numa das opções está o valor dessa distância, arredondado às décimas. Em qual delas?

- (A) 5.9m
- (B) 5.6m
- (C) 5.7m
- (D) 5.8m

2. Na figura 2 está representado um triângulo obtusângulo [ABC].

Sabe-se que:

•
$$B\hat{A}C = 30^{\circ}$$
;

•
$$\overline{AC} = 12m$$

Determina o valor exato do perímetro do triângulo [ABC].

Figura 2

3. Observa a figura 3. Os pontos R , I e M representam três casas.

 $R \to {\rm casa~do~Rodrigo}$

 $I \to {\rm casa~da~In\hat{e}s}$

 $M \to {\rm casa~da~Marta}$

Sabe-se que:

Figura 3

• as casa da Inês e da Marta estão à mesma distância da casa do Rodrigo, e essa distância é de 6km;

•
$$I\hat{R}M = 30^{\circ}$$
.

Determina A distância entre a casa da Inês e da casa da Marta. Apresenta o resultado arredondado às centésimas.

4. Na figura 4 está representado um trapézio [ACDE]e um triângulo [ABC]. Sabe-se que:

•
$$\overline{AC} = b$$
;

•
$$\overline{BC} = a$$
;

•
$$B\hat{A}C = A\hat{B}E = 2\theta$$
;

•
$$A\hat{C}B = D\hat{B}C = \theta$$
;

Mostra que $b = \frac{4\sin(3\theta)}{\sin(\theta)\sin(2\theta)}$.

Figura 4

- 5. Na figura 5 está representado um hexágono regular [ABCDEF], inscrito numa circunferência centrada em O.
 - 5.1. A imagem do ponto B pela rotação de centro O e ângulo generalizado $(-120^{\circ}; -8)$ é:
 - (A) A
 - (B) E
 - (C) F
 - (D) D
 - 5.2. Em qual das opções está o lado do hexágono que é intersetado pela semirreta $\dot{O}P$, sendo P a imagem do ponto E pela rotação de centro O e ângulo de amplitude 1450° ?

Figura 5

- (A) [EF]
- (B) [CD]
- (C) [DE]
- (D) [BC]
- 6. Na figura 6 está representado um octógono regular [ABCDEFGH], inscrito numa circunferência de centro O.

Figura 6

- Sabe-se que:
 - o octógono tem perímetro 40dm.
 - 6.1. Utilizando letras da figura, indica o lado extremidade do ângulo orientado com lado origem $\dot{O}F$ e amplitude -2205° .
 - 6.2. Em qual das opções está a imagem do ponto H pela rotação de centro O e ângulo generalizado $(-135^{\circ};-7)$?
 - (A) E
 - (B) C
 - (C) B
 - (D) A
 - 6.3. Determina a área do triângulo [FGH]. Apresenta o resultado arredondado às centésimas.
 - 6.4. Determina o perímetro do triângulo [CFH]. Apresenta o resultado arredondado às décimas. **Nota:** Nos cálculos intermédios conserva três casas decimais.

7. Na figura 7 estão representadas três vilas, Arribas de Baixo, Arribas de Cima e Ribeira Brava, identificadas, respetivamente, por A, B e C, e um túnel que vai ser construído para ligar a vila de Arribas de Baixo à vila de Arribas de Cima.

Sabe-se que:

- as vilas de Arribas de Baixo e de Ribeira Brava distam 2km;
- as vilas de Arribas de Cima e de Ribeira Brava distam 3km;
- $B\hat{C}A = 60^{\circ}$;

Determina o comprimento do túnel (\overline{AB}) . Apresenta o resultado arredondado às centésimas.

Figura 7

8. Dois jovens lançaram um drone com uma câmara de filmar sobre a cidade onde residem para fazerem um documentário. Ao fim de algum tempo o drone encontra-se a uma certa distância do solo. No solo estão os dois jovens, que têm exatamente a mesma estatura de 1.6m, afastados 40 metros, um do outro, e que observam o drone segundo ângulos de amplitudes 37° e 52° , tal como se observa na figura 9. Sabe-se que:

Figura 8: Drone

- o drone encontra-se no ponto C e os jovens nos pontos A e B;
- $\overline{AB} = 40m$;
- $\overline{AF} = 1.6m$;
- $A\widehat{B}C = 37^{\circ}$:
- $C\widehat{A}B = 52^{\circ}$.

Determina a distância do drone ao solo e a distância entre o jovem que se encontra no ponto A e o drone, apresentando o resultado com duas casas decimais.

Figura 9

Obs.: O desenho não está feito à escala.

9. Na figura 10 está representado um triângulo retângulo [ABC] inscrito na semicircunferência de raio 6.

Sabe-se que:

• O ponto B move-se no arco AC, nunca coincidindo com A nem com C;

Figura 10

- 9.1. Mostra que a área da região sombreada, é dada, em função de x, por $A(x) = 18\pi 72 \cdot sinx \cdot cosx$, sendo $x \in \left]0; \frac{\pi}{2}\right[$.
- 9.2. Para um determinado valor de x, sabe-se que $tgx=\frac{2}{3}$. Determina o valor exato da área da região sombreada.

10. Considera o triângulo [ABC], retângulo em A, representado na figura 11.

Sabe-se que:

•
$$B\widehat{C}A = \beta$$
;

•
$$\overline{AB} = x$$
;

•
$$\overline{AC} = y$$
;

•
$$\overline{BC} = z$$
;

Prova que
$$\frac{\sin(\frac{\pi}{2} - \alpha) + \cos(\pi + \beta)}{tg(\pi - \beta) \cdot \cos \beta} = \frac{y - x}{x}.$$

Figura 11

11. Mostra que, no domínio em que as expressões têm validade, se tem:

$$11.1. \ \frac{-\cos^2 x}{1+\sin x} = \sin x - 1$$

11.2.
$$\frac{1 - \frac{1}{tg^2x}}{1 + \frac{1}{tg^2x}} - 1 = -2\cos^2 x$$

12. Considera a função f, definida em \mathbb{R} por $f(x) = 2\sin(2x)$.

Pode-se afirmar que a expressão geral dos zeros da função f é?

(A)
$$x = k\pi, k \in \mathbb{Z}$$

(B)
$$x = 2k\pi, k \in \mathbb{Z}$$

(C)
$$x = k\frac{\pi}{2}, k \in \mathbb{Z}$$

(D)
$$x = k \frac{3\pi}{4}, k \in \mathbb{Z}$$

13.
$$\sin(-\pi - x) + \cos\left(\frac{3\pi}{2} - x\right)$$
 é igual a:

(A)
$$\sin x - \cos x$$

(B)
$$2\sin x$$

(C)
$$-2\sin x$$

14. Considera a função f, definida em \mathbb{R} , por $f(x) = \sqrt{2} - 3\sin(\pi - 2x)$.

O contradomínio da função f é?

(A)
$$[-3+\sqrt{2};3+\sqrt{2}]$$

(B)
$$]-3+\sqrt{2};3+\sqrt{2}[$$

(C)
$$[3-\sqrt{2};3+\sqrt{2}]$$

(D)
$$]3 - \sqrt{2}; 3 + \sqrt{2}[$$

15. Considera as funções $f \in g$, definidas em \mathbb{R} , por $f(x) = \sin^2(x)$ e $g(x) = \cos(3x)$.

Pode-se afirmar que:

(A) as funções
$$f$$
 e g são ímpares

(B) a função
$$f$$
 é par e a função g é impar

(C) a função
$$f$$
é ímpar e a função g é par

(D) as funções
$$f$$
 e g são pares