

4.4.5 Test Results (Mode 2)

802.11a

Channel	Channel Frequency (MHz)	Occupied Bandwidth (MHz)		1Hz)
Channel		Chain 0	Chain 2	Chain 3
36	5180	17.04	17.16	17.04
40	5200	17.04	17.16	17.28
48	5240	17.16	17.28	17.52
149	5745	21.24	19.48	24.84
157	5785	19.80	18.96	23.16
165	5825	18.96	18.36	21.60

802.11ax (HE20)

Ohamal	Channel Frequency (MHz)	Occupied Bandwidth (MHz)		
Channel		Chain 0	Chain 2	Chain 3
36	5180	19.20	19.20	19.20
40	5200	19.20	19.20	19.44
48	5240	19.20	19.20	19.32
149	5745	21.96	19.92	26.40
157	5785	20.76	19.80	24.72
165	5825	19.92	19.56	23.28

802.11ax (HE40)

Channel	Channel Frequency (MHz)	Occupied Bandwidth (MHz)		
Chamer		Chain 0	Chain 2	Chain 3
38	5190	37.68	37.92	37.92
46	5230	37.92	37.92	38.16
151	5755	38.64	38.40	42.96
159	5795	38.64	38.64	44.40

802.11ax (HE80)

Channal	Channel Frequency	Occ	cupied Bandwidth (M	IHz)
Channel	(MHz)	Chain 0	Chain 2	Chain 3
42	5210	77.28	77.76	77.28
155	5775	77.28	77.28	77.57

4.4.6 Test Results (Mode 3)

802.11a

Channal	Channel Frequency	Occupied Bandwidth (MHz)	
Channel	(MHz)	Chain 0	Chain 1
36	5180	17.04	17.16
40	5200	18.12	18.00
48	5240	17.88	17.76
149	5745	22.20	19.68
157	5785	21.00	19.08
165	5825	19.08	18.48

802.11ax (HE20)

Channal	Channel Frequency (MHz)	Occupied Bandwidth (MHz)	
Channel		Chain 0	Chain 1
36	5180	19.20	19.20
40	5200	19.44	19.44
48	5240	19.44	19.44
149	5745	22.92	19.92
157	5785	20.64	19.68
165	5825	19.92	19.56

802.11ax (HE40)

Channel	Channel Frequency	Occupied Ban	dwidth (MHz)
Channel	(MHz)	Chain 0	Chain 1
38	5190	37.68	37.74
46	5230	37.92	38.40
151	5755	41.04	40.56
159	5795	38.88	38.88

802.11ax (HE80)

Channel Channel Frequency	Occupied Bandwidth (MHz)		
Channel	(MHz)	Chain 0	Chain 1
42	5210	77.28	77.28
155	5775	77.76	77.28

4.4.7 Test Results (Mode 4)

802.11a

Channel	Channel Frequency (MHz)	Occupied Bandwidth (MHz)
36	5180	17.16
40	5200	18.12
48	5240	18.12
149	5745	22.68
157	5785	21.96
165	5825	18.78

802.11ax (HE20)

Channel	Channel Frequency (MHz)	Occupied Bandwidth (MHz)
36	5180	19.20
40	5200	19.44
48	5240	19.20
149	5745	23.40
157	5785	20.52
165	5825	21.72

802.11ax (HE40)

Channel	Channel Frequency (MHz)	Occupied Bandwidth (MHz)
38	5190	37.92
46	5230	38.40
151	5755	42.72
159	5795	39.84

802.11ax (HE80)

Channel	Channel Frequency (MHz)	Occupied Bandwidth (MHz)
42	5210	77.76
155	5775	77.76

4.4.8 Test Results (Mode 5)

802.11a

Channel	Channel Frequency (MHz)	Occupied Bandwidth (MHz)
36	5180	18.00
40	5200	24.60
48	5240	17.64
149	5745	25.04
157	5785	25.20
165	5825	24.12

802.11ax (HE20)

Channel	Channel Frequency (MHz)	Occupied Bandwidth (MHz)
36	5180	19.56
40	5200	26.76
48	5240	19.32
149	5745	26.64
157	5785	26.52
165	5825	26.28

802.11ax (HE40)

Channel	Channel Frequency (MHz)	Occupied Bandwidth (MHz)
38	5190	37.92
46	5230	38.40
151	5755	46.56
159	5795	67.44

802.11ax (HE80)

Channel	Channel Frequency (MHz)	Occupied Bandwidth (MHz)
42	5210	77.76
155	5775	78.24

4.5 Peak Power Spectral Density Measurement

4.5.1 Limits of Peak Power Spectral Density Measurement

Operation Band		EUT Category	Limit
U-NII-1		Outdoor Access Point	
		Fixed point-to-point Access Point	17dBm/ MHz
	$\sqrt{}$	Indoor Access Point	
		Client device	11dBm/ MHz
U-NII-2A			11dBm/ MHz
U-NII-2C			11dBm/ MHz
U-NII-3			30dBm/ 500kHz

4.5.2 Test Setup

4.5.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.5.4 Test Procedure

For 802.11a:

For U-NII-1:

Using method SA-1

- 1. Set span to encompass the entire emission bandwidth (EBW) of the signal.
- 2. Set RBW = 1 MHz, Set VBW ≥ 3 MHz, Detector = RMS
- 3. Sweep time = auto, trigger set to "free run".
- 4. Trace average at least 100 traces in power averaging mode.
- 5. Record the max value

For U-NII-3:

- 1. Set span to encompass the entire emission bandwidth (EBW) of the signal.
- 2. Set RBW = 300 kHz, Set VBW ≥ 1 MHz, Detector = RMS
- Use the peak marker function to determine the maximum power level in any 300 kHz band segment within the fundamental EBW.
- 4. Scale the observed power level to an equivalent value in 500 kHz by adjusting (reducing) the measured power by a bandwidth correction factor (BWCF) where BWCF = 10log(500 kHz/300kHz)
- 5. Sweep time = auto, trigger set to "free run".
- 6. Trace average at least 100 traces in power averaging mode.
- 7. Record the max value

Report No.: RF190912E02A-1 Page No. 357 / 445 Report Format Version:6.1.3

Reference No.: 190926E04

For other modulation:

For U-NII-1:

Using method SA-2

- 1. Set span to encompass the entire emission bandwidth (EBW) of the signal.
- 2. Set RBW = 1 MHz, Set VBW ≥ 3 MHz, Detector = RMS
- 3. Sweep time = auto, trigger set to "free run".
- 4. Trace average at least 100 traces in power averaging mode.
- 5. Record the max value and add 10 log (1/duty cycle)

For U-NII-3:

- 1. Set span to encompass the entire emission bandwidth (EBW) of the signal.
- 2. Set RBW = 300 kHz, Set VBW ≥ 1 MHz, Detector = RMS
- 3. Use the peak marker function to determine the maximum power level in any 300 kHz band segment within the fundamental EBW.
- 4. Scale the observed power level to an equivalent value in 500 kHz by adjusting (reducing) the measured power by a bandwidth correction factor (BWCF) where BWCF = 10log(500 kHz/300kHz)
- Sweep time = auto, trigger set to "free run".
- 6. Trace average at least 100 traces in power averaging mode.
- 7. Record the max value and add 10 log (1/duty cycle)

4.5.5 Deviation from Test Standard

No deviation.

4.5.6 EUT Operating Condition

Same as Item 4.3.6.

Report No.: RF190912E02A-1 Page No. 358 / 445 Report Format Version:6.1.3

Reference No.: 190926E04

4.5.7 Test Results (Mode 1)

For U-NII-1:

802.11a

	Chan.	Chan. Freq.		PSD (dE	Bm/MHz)		Total Power	MAX. Limit	
		(MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Density (dBm/MHz)	(dBm/MHz)	Pass / Fail
	36	5180	4.80	4.59	3.79	3.91	10.31	10.98	Pass
	40	5200	4.63	4.78	3.71	3.80	10.28	10.98	Pass
	48	5240	5.03	4.75	3.92	3.77	10.42	10.98	Pass

Note: 1. Method a) of power density measurement of KDB 662911 is using for calculating total power density. Total power density is summing entire spectra across corresponding frequency bins on the various outputs by computer.

2. Directional gain = 6dBi + 10log(4) = 12.02dBi > 6dBi, so the Power Density limit shall be reduced to 17-(12.02-6) = 10.98dBm

802.11ax (HE20)

	Chan. Freq. (MHz)	PSD \	N/O Duty F	actor (dBm	/MHz)	Duty	Total PSD With Duty	Max. Limit	Pass /
Chan.		Chain 0	Chain 1	Chain 2	Chain 3	Factor (dB)	Factor (dBm/MHz)	(dBm/MHz)	Fail
36	5180	4.40	4.35	3.79	3.51	0.1	10.15	10.98	Pass
40	5200	4.49	4.39	3.38	3.41	0.1	10.07	10.98	Pass
48	5240	4.56	4.56	3.38	3.31	0.1	10.12	10.98	Pass

Note: 1. Method a) of power density measurement of KDB 662911 is using for calculating total power density. Total power density is summing entire spectra across corresponding frequency bins on the various outputs by computer.

- 2. Directional gain = 6dBi + 10log(4) = 12.02dBi > 6dBi, so the Power Density limit shall be reduced to 17-(12.02-6) = 10.98dBm
- 3. Refer to section 3.3 for duty cycle spectrum plot.

802.11ax (HE40)

Chan.	Chan. Freq. (MHz)	PSD \	N/O Duty F	actor (dBm	/MHz)	Duty	Total PSD With Duty	Max. Limit	Pass /
		Chain 0	Chain 1	Chain 2	Chain 3	Factor (dB)	Factor (dBm/MHz)	(dBm/MHz)	Fail
38	5190	-0.20	-0.07	-1.23	-1.32	0.22	5.57	10.98	Pass
46	5230	4.34	4.45	4.23	3.64	0.22	10.42	10.98	Pass

Note: 1. Method a) of power density measurement of KDB 662911 is using for calculating total power density. Total power density is summing entire spectra across corresponding frequency bins on the various outputs by computer.

- 2. Directional gain = 6dBi + 10log(4) = 12.02dBi > 6dBi, so the Power Density limit shall be reduced to 17-(12.02-6) = 10.98dBm
- 3. Refer to section 3.3 for duty cycle spectrum plot.

Report No.: RF190912E02A-1 Reference No.: 190926E04

Page No. 359 / 445

Chan.	Chan. Freq. (MHz)	PSD \	N/O Duty F	actor (dBm	/MHz)	Duty	Total PSD With Duty	Max. Limit	Pass /
		Chain 0	Chain 1	Chain 2	Chain 3	Factor (dB)	Factor (dBm/MHz)	(dBm/MHz)	Fail
42	5210	-3.94	-3.78	-4.75	-5.23	0.36	2.00	10.98	Pass

Note: 1. Method a) of power density measurement of KDB 662911 is using for calculating total power density. Total power density is summing entire spectra across corresponding frequency bins on the various outputs by computer.

- 2. Directional gain = 6dBi + 10log(4) = 12.02dBi > 6dBi, so the Power Density limit shall be reduced to 17-(12.02-6) = 10.98dBm
- 3. Refer to section 3.3 for duty cycle spectrum plot.

For U-NII-3:

802.11a

Chan.	Freq. (MHz)		PSD (dBr	n/300kHz)		Total	PSD	Total PSD	Limit	Pass
		Chain 0	Chain 1	Chain 2	Chain 3	mW/ 300kHz	dBm/ 300kHz	(dBm/500kHz)	(dBm/ 500kHz)	/Fail
149	5745	0.61	-0.92	-0.11	-0.57	3.8119	5.81	8.03	23.98	Pass
157	5785	0.42	-0.89	-0.39	-0.09	3.8098	5.81	8.03	23.98	Pass
165	5825	-0.02	-1.39	-0.83	-0.18	3.5069	5.45	7.67	23.98	Pass

Note: 1. Method b) Measure and sum spectral maxima across the outputs of KDB 662911 is using for calculating total power density.

2. Directional gain = 6dBi + 10log(4) = 12.02dBi > 6dBi, so the Power Density limit shall be reduced to 30-(12.02-6) = 23.98dBm

802.11ax (HE20)

Chan. Freq. (MHz)		PSD W/O Duty Factor				Duty	Total PSD		Total PSD		
		. (dBm/300kHz)					With Du	uty Factor	With Duty	Limit	Pass
	Hz)	Chain 1	Chain 2	Chain 2	Factor (dB)	mW/300	dBm/300kHz	Factor	(dBm/500kHz)	/Fail	
		Chain o Chain	Chain	Chain 2	Chains	(ub)	kHz	UDIII/300KHZ	(dBm/500kHz)		
149	5745	0.03	-0.81	-0.03	-0.41	0.1	3.8228	5.82	8.04	23.98	Pass
157	5785	0.01	-0.89	-0.20	-0.32	0.1	3.783	5.78	8.00	23.98	Pass
165	5825	0.01	-1.07	-0.86	-0.18	0.1	3.6427	5.61	7.83	23.98	Pass

Note: 1. Method b) Measure and sum spectral maxima across the outputs of KDB 662911 is using for calculating total power density.

2. Directional gain = 6dBi + 10log(4) = 12.02dBi > 6dBi, so the Power Density limit shall be reduced to 30-(12.02-6) = 23.98dBm

3. Refer to section 3.3 for duty cycle spectrum plot.

802.11ax (HE40)

Chan.		PSD W/O Duty Factor			Duty	Total PSD		Total PSD			
	Freq.		(dBm/3	300kHz)		Factor	With Duty Factor		With Duty	Limit	Pass
Chan.	(MHz)	Chain 0	Chain 1	Chain 2	Chain 2	(dD)	mW/300	dBm/300kHz	Factor	(dBm/500kHz)	/Fail
		Chain 0	hain 0 Chain 1 Chain 2		Chain 3	(dB)	kHz	abiii/300km2	(dBm/500kHz)		
151	5755	-2.11	-2.89	-2.77	-3.26	0.22	2.2402	3.50	5.72	23.98	Pass
159	5795	-1.96	-3.10	-2.55	-2.79	0.22	2.3231	3.66	5.88	23.98	Pass

Note: 1. Method b) Measure and sum spectral maxima across the outputs of KDB 662911 is using for calculating total power density.

2. Directional gain = 6dBi + 10log(4) = 12.02dBi > 6dBi, so the Power Density limit shall be reduced to 30-(12.02-6) = 23.98dBm

3. Refer to section 3.3 for duty cycle spectrum plot.

		PSD W/O Duty Factor			Duty	Total PSD		Total PSD			
Chan. Freq.		(dBm/300kHz)			Duty Factor	With Duty Factor		With Duty	Limit	Pass	
Chan.	(MHz)	MHz) Chain 0 Chai	Chain 1	Objective 4	01 : 0	(4D)	mW/300	dDm/200kHz	Factor	(dBm/500kHz)	/Fail
		Chain 0	Chain	Chain 2	Chain 3	(dB)	kHz	dBm/300kHz	(dBm/500kHz)		
155	5775	-8.79	-9.59	-9.20	-9.38	0.36	0.5183	-2.85	-0.63	23.98	Pass

Note: 1. Method b) Measure and sum spectral maxima across the outputs of KDB 662911 is using for calculating total power density.

- 2. Directional gain = 6dBi + 10log(4) = 12.02dBi > 6dBi, so the Power Density limit shall be reduced to 30-(12.02-6) = 23.98dBm
- 3. Refer to section 3.3 for duty cycle spectrum plot.

4.5.8 Test Results (Mode 2)

For U-NII-1:

802.11a

-	Freq.	PS	SD (dBm/MH	Hz)	Total Power	MAX. Limit	
Chan.	(MHz)	Chain 0	Chain 2	Chain 3	Density (dBm/MHz)	(dBm/MHz)	Pass / Fail
36	5180	6.70	6.03	6.10	11.06	12.23	Pass
40	5200	7.19	6.48	6.77	11.59	12.23	Pass
48	5240	7.21	6.58	6.78	11.64	12.23	Pass

Note: 1. Method a) of power density measurement of KDB 662911 is using for calculating total power density. Total power density is summing entire spectra across corresponding frequency bins on the various outputs by computer.

2. The directional gain =6dBi + 10log(3) = 10.77dBi > 6dBi so the Power Density limit shall be reduced to 17-(10.77-6) = 12.23dBm

802.11ax (HE20)

Chan.	Freq. (MHz)	PSD W/O Duty Factor (dBm/MHz)			Duty Factor	Total PSD With Duty	MAX. Limit	Pass / Fail
		Chain 0	Chain 2	Chain 3	(dB)	Factor (dBm/MHz)	(dBm/MHz)	1 033 / 1 011
36	5180	4.93	3.98	3.15	0.1	8.95	12.23	Pass
40	5200	6.84	6.28	6.80	0.1	11.52	12.23	Pass
48	5240	6.61	5.98	6.98	0.1	11.41	12.23	Pass

Note: 1. Method a) of power density measurement of KDB 662911 is using for calculating total power density. Total power density is summing entire spectra across corresponding frequency bins on the various outputs by computer.

- 2. The directional gain =6dBi + 10log(3) = 10.77dBi > 6dBi so the Power Density limit shall be reduced to 17-(10.77-6) = 12.23dBm
- 3. Refer to section 3.3 for duty cycle spectrum plot.

802.11ax (HE40)

Chan.	Freq. (MHz)	PSD W/O Duty Factor (dBm/MHz)			Duty Factor	Total PSD With Duty	MAX. Limit	Pass / Fail
		Chain 0	Chain 2	Chain 3	(dB)	Factor (dBm/MHz)	(dBm/MHz)	1 433 / 1 411
38	5190	1.10	0.05	0.42	0.22	5.54	12.23	Pass
46	46 5230		4.38	4.72	0.22	9.71	12.23	Pass

Note: 1. Method a) of power density measurement of KDB 662911 is using for calculating total power density. Total power density is summing entire spectra across corresponding frequency bins on the various outputs by computer.

- 2. The directional gain =6dBi + 10log(3) = 10.77dBi > 6dBi so the Power Density limit shall be reduced to 17-(10.77-6) = 12.23dBm
- 3. Refer to section 3.3 for duty cycle spectrum plot.

Chan.	Freq. (MHz)	PSD W/O Duty Factor (dBm/MHz)			Duty Factor	Total PSD With Duty	MAX. Limit	Pass / Fail	
		Chain 0	Chain 2	Chain 3	(dB)	Factor (dBm/MHz)	(dBm/MHz)		
42	5210	-2.85	-4.25	-3.33	0.36	1.69	12.23	Pass	

- **Note:** 1. Method a) of power density measurement of KDB 662911 is using for calculating total power density. Total power density is summing entire spectra across corresponding frequency bins on the various outputs by computer.
 - 2. The directional gain =6dBi + 10log(3) = 10.77dBi > 6dBi so the Power Density limit shall be reduced to 17-(10.77-6) = 12.23dBm
 - 3. Refer to section 3.3 for duty cycle spectrum plot.

For U-NII-3:

802.11a

Freq.		PS	D (dBm/300k	Hz)	Total	PSD	Total PSD	Limit	Pass
Chan. (MHz) Chain	Chain 0	Chain 2	Chain 3	mW/ 300kHz	dBm/ 300kHz	(dBm/500kHz)	(dBm/ 500kHz)	/Fail	
149	5745	2.15	1.44	0.86	4.2527	6.29	8.51	25.23	Pass
157	5785	2.00	1.52	0.72	4.1843	6.22	8.44	25.23	Pass
165	5825	1.75	1.24	0.24	3.8835	5.89	8.11	25.23	Pass

Note: 1. Method b) Measure and sum spectral maxima across the outputs of KDB 662911 is using for calculating total power density.

2. The directional gain =6dBi + 10log(3) = 10.77dBi > 6dBi so the Power Density limit shall be reduced to 30-(10.77-6) = 25.23dBm

802.11ax (HE20)

Chan	Freq.	PSD W/O Duty Factor (dBm/300kHz)			Total PSD With Duty Factor		Duty Factor	Total PSD With Duty	Limit	Pass
Chan. (MHz)	Chain 0	Chain 2	Chain 3	mW/ 300kHz	dBm/ 300kHz	(dB)	Factor (dBm/500kHz)	(dBm/ 500kHz)	/Fail	
149	5745	1.26	0.54	-0.63	3.4079	5.32	0.1	7.54	25.23	Pass
157	5785	1.02	0.51	-0.76	3.3004	5.19	0.1	7.41	25.23	Pass
165	5825	0.88	0.14	-1.06	3.1082	4.93	0.1	7.15	25.23	Pass

Note: 1. Method b) Measure and sum spectral maxima across the outputs of KDB 662911 is using for calculating total power density.

2. The directional gain =6dBi + 10log(3) = 10.77dBi > 6dBi so the Power Density limit shall be reduced to 30-(10.77-6) = 25.23dBm

3. Refer to section 3.3 for duty cycle spectrum plot.

802.11ax (HE40)

Chan	Freq.	PSD W/O Duty Factor (dBm/300kHz)		Total PSD With Duty Factor		Duty Factor	Total PSD With Duty	Limit	Pass	
Chan.	(MHz)	Chain 0	Chain 2	Chain 3	mW/ 300kHz	dBm/ 300kHz	(dB)	Factor (dBm/500kHz)	(dBm/ 500kHz)	/Fail
151	5755	-2.40	-2.93	-3.98	1.5617	1.94	0.22	4.16	25.23	Pass
159	5795	-2.10	-2.51	-3.89	1.6682	2.22	0.22	4.44	25.23	Pass

Note: 1. Method b) Measure and sum spectral maxima across the outputs of KDB 662911 is using for calculating total power density.

2. The directional gain =6dBi + 10log(3) = 10.77dBi > 6dBi so the Power Density limit shall be reduced to 30-(10.77-6) = 25.23dBm

3. Refer to section 3.3 for duty cycle spectrum plot.

Chan.	Freq. (MHz)	PSD W/O Duty Factor (dBm/300kHz)			Total PSD With Duty Factor		Duty Factor	Total PSD With Duty	Limit (dBm/	Pass
		Chain 0	Chain 2	Chain 3	mW/ 300kHz	dBm/ 300kHz	(dB)	Factor (dBm/500kHz)	500kHz)	/Fail
155	5775	-8.77	-9.08	-8.91	0.4177	-3.79	0.36	-1.57	25.23	Pass

Note: 1. Method b) Measure and sum spectral maxima across the outputs of KDB 662911 is using for calculating total power density.

- 2. The directional gain =6dBi + 10log(3) = 10.77dBi > 6dBi so the Power Density limit shall be reduced to 30-(10.77-6) = 25.23dBm
- 3. Refer to section 3.3 for duty cycle spectrum plot.

4.5.9 Test Results (Mode 3)

For U-NII-1:

802.11a

	Chan.	PSD W/O Duty	Total PSD With Duty	Max. Limit	Pass /	
Chan.	Freq. (MHz)	Chain 0	Chain 1	Factor (dBm/MHz)	(dBm/MHz)	Fail
36	5180	6.82	6.58	9.71	13.99	Pass
40	5200	9.91	9.45	12.70	13.99	Pass
48	5240	9.29	8.99	12.15	13.99	Pass

Note: 1. Method a) of power density measurement of KDB 662911 is using for calculating total power density. Total power density is summing entire spectra across corresponding frequency bins on the various outputs by computer.

2. The directional gain =6dBi + 10log(2) = 9.01dBi > 6dBi so the Power Density limit shall be reduced to 17-(9.01-6) = 13.99dBm

802.11ax (HE20)

	Chan.	PSD W/O Duty	- Duty Factor	Total PSD With Duty	Max. Limit	Pass /	
Chan.	Freq. (MHz)	Chain 0	Chain 1	(dB)	•	(dBm/MHz)	
36	5180	5.65	5.24	0.1	8.56	13.99	Pass
40	5200	9.28	8.59	0.1	12.06	13.99	Pass
48	5240	9.04	8.32	0.1	11.81	13.99	Pass

Note: 1. Method a) of power density measurement of KDB 662911 is using for calculating total power density. Total power density is summing entire spectra across corresponding frequency bins on the various outputs by computer.

- 2. The directional gain =6dBi + 10log(2) = 9.01dBi > 6dBi so the Power Density limit shall be reduced to 17-(9.01-6) = 13.99dBm
- 3. Refer to section 3.3 for duty cycle spectrum plot.

802.11ax (HE40)

	Chan.	PSD W/O Duty I	Duty Factor	Total PSD With Duty	Max. Limit	Pass /	
Chan.	Freq. (MHz)	Chain 0	Chain 1	(dB)	_	(dBm/MHz)	
38	5190	1.51	1.34	0.22	4.66	13.99	Pass
46	5230	5.15	4.89	0.22	8.25	13.99	Pass

Note: 1. Method a) of power density measurement of KDB 662911 is using for calculating total power density. Total power density is summing entire spectra across corresponding frequency bins on the various outputs by computer.

- 2. The directional gain =6dBi + 10log(2) = 9.01dBi > 6dBi so the Power Density limit shall be reduced to 17-(9.01-6) = 13.99dBm
- 3. Refer to section 3.3 for duty cycle spectrum plot.

Chan.	Chan. Freq. (MHz)	PSD W/O Duty Factor (dBm/MHz)		Duty Factor	Total PSD With Duty	Max. Limit	Pass /
		Chain 0	Chain 1	(dB)	•	(dBm/MHz)	
42	5210	-1.67	-1.73	0.36	1.67	13.99	Pass

Note: 1. Method a) of power density measurement of KDB 662911 is using for calculating total power density. Total power density is summing entire spectra across corresponding frequency bins on the various outputs by computer.

- 2. The directional gain =6dBi + 10log(2) = 9.01dBi > 6dBi so the Power Density limit shall be reduced to 17-(9.01-6) = 13.99dBm
- 3. Refer to section 3.3 for duty cycle spectrum plot.

For U-NII-3:

802.11a

Chan. Freq. (MHz)	PSD (dBm/300kHz)		Tota	Total PSD		Limit	Pass	
	(MHz)	Chain 0	Chain 1	mW/300kHz	dBm/300kHz	(dBm/500kHz)	(dBm/ 500kHz)	/Fail
149	5745	1.66	1.93	3.0251	4.81	7.03	26.99	Pass
157	5785	1.51	1.75	2.912	4.64	6.86	26.99	Pass
165	5825	1.99	1.29	2.9271	4.66	6.88	26.99	Pass

Note: 1. Method b) Measure and sum spectral maxima across the outputs of KDB 662911 is using for calculating total power density.

2. The directional gain =6dBi + 10log(2) = 9.01dBi > 6dBi so the Power Density limit shall be reduced to 30-(9.01-6) = 26.99dBm

802.11ax (HE20)

		PSD W/O	Duty Factor	Total	PSD		Total PSD		
Chan.	Freq.	(dBm/3	00kHz)	With Duty Factor		Duty Factor	With Duty	Limit	Pass
Crian.	(MHz)	Chain 0	Chain 1	m)///2001/Ll=	dBm/300kHz	(dB)	Factor	(dBm/500kHz)	/Fail
		Chain 0	Chain i	IIIVV/300KHZ	abiii/300kHZ		(dBm/500kHz)		
149	5745	1.09	0.69	2.512	4.00	0.1	6.22	26.99	Pass
157	5785	0.51	0.29	2.2423	3.51	0.1	5.73	26.99	Pass
165	5825	0.64	0.33	2.2874	3.59	0.1	5.81	26.99	Pass

Note: 1. Method b) Measure and sum spectral maxima across the outputs of KDB 662911 is using for calculating total power density.

- 2. The directional gain =6dBi + 10log(2) = 9.01dBi > 6dBi so the Power Density limit shall be reduced to 30-(9.01-6) = 26.99dBm
- 3. Refer to section 3.3 for duty cycle spectrum plot.

802.11ax (HE40)

Chan.	Freq.	PSD W/O Du (dBm/300	-	Total PSD With Duty Factor		Duty Factor	Total PSD With Duty Factor	Limit	Pass
0110111	(MHz)	Chain 0	Chain 1	mW/300kHz	dBm/300kHz	(dB)	(dBm/500kHz)	(dBm/500kHz)	/Fail
151	5755	-2.58	-2.35	1.193	0.77	0.22	2.99	26.99	Pass
159	5795	-2.74	-2.41	1.1636	0.66	0.22	2.88	26.99	Pass

Note: 1. Method b) Measure and sum spectral maxima across the outputs of KDB 662911 is using for calculating total power density.

- 2. The directional gain =6dBi + 10log(2) = 9.01dBi > 6dBi so the Power Density limit shall be reduced to 30-(9.01-6) = 26.99dBm
- 3. Refer to section 3.3 for duty cycle spectrum plot.

802.11ax (HE80)

		PSD W/O Duty Factor		Total PSD			Total PSD		
Chan	Chan I		300kHz)	With Duty Factor		Duty Factor	With Duty	Limit	Pass
Chan.	(MHz)	Chain 0	oin O Choin 1	\A//200kl.l=	dD/2001d I=	(dB)	Factor	(dBm/500kHz)	/Fail
,		Chain o	Chain 1	mW/300kHz	dBm/300kHz		(dBm/500kHz)		
155	5775	-8.13	-8.17	0.3323	-4.78	0.36	-2.56	26.99	Pass

- Note: 1. Method b) Measure and sum spectral maxima across the outputs of KDB 662911 is using for calculating total power density.
 - 2. The directional gain =6dBi + 10log(2) = 9.01dBi > 6dBi so the Power Density limit shall be reduced to 30-(9.01-6) = 26.99dBm
 - 3. Refer to section 3.3 for duty cycle spectrum plot.

4.5.10 Test Results (Mode 4)

For U-NII-1:

802.11a

Chan.	Chan. Freq. (MHz)	PSD (dBm/MHz)	MAX. Limit (dBm/MHz)	Pass / Fail
36	5180	8.05	17.00	Pass
40	5200	9.81	17.00	Pass
48	5240	9.76	17.00	Pass

802.11ax (HE20)

Chan.	Chan. Freq. (MHz)	PSD W/O Duty Factor (dBm/MHz)	Duty Factor (dB)	PSD With Duty Factor (dBm/MHz)	MAX. Limit (dBm/MHz)	Pass / Fail
36	5180	6.48	0.1	6.58	17.00	Pass
40	5200	9.49	0.1	9.59	17.00	Pass
48	5240	8.41	0.1	8.51	17.00	Pass

Note: 1. Refer to section 3.3 for duty cycle spectrum plot.

802.11ax (HE40)

Chan.	Chan. Freq. (MHz)	PSD W/O Duty Factor (dBm/MHz)	Duty Factor (dB)	PSD With Duty Factor (dBm/MHz)	MAX. Limit (dBm/MHz)	Pass / Fail
38	5190	2.43	0.22	2.65	17.00	Pass
46	5230	6.53	0.22	6.75	17.00	Pass

Note: 1. Refer to section 3.3 for duty cycle spectrum plot.

802.11ax (HE80)

Chan.	Chan. Freq. (MHz)	PSD W/O Duty Factor (dBm/MHz)	Duty Factor (dB)	PSD With Duty Factor (dBm/MHz)	MAX. Limit (dBm/MHz)	Pass / Fail
42	5210	-1.15	0.36	-0.79	17.00	Pass

For U-NII-3:

802.11a

Chan.	Freq. (MHz)	PSD (dBm/300kHz)	PSD (dBm/500kHz)	Limit (dBm/ 500kHz)	Pass /Fail
149	5745	0.98	3.20	30.00	Pass
157	5785	1.07	3.29	30.00	Pass
165	5825	2.14	4.36	30.00	Pass

802.11ax (HE20)

Chan.	Freq. (MHz)	PSD W/O Duty Factor (dBm/300kHz)	Duty Factor (dB)	PSD With Duty Factor (dBm/300kHz)	PSD (dBm/500kHz)	Limit (dBm/500kHz)	Pass /Fail
149	5745	0.12	0.1	0.22	2.44	30.00	Pass
157	5785	1.33	0.1	1.43	3.65	30.00	Pass
165	5825	0.08	0.1	0.18	2.40	30.00	Pass

Note: 1. Refer to section 3.3 for duty cycle spectrum plot.

802.11ax (HE40)

Chan.	Freq. (MHz)	PSD W/O Duty Factor (dBm/300kHz)	Duty Factor (dB)	PSD With Duty Factor (dBm/300kHz)	PSD (dBm/500kHz)	Limit (dBm/500kHz)	Pass /Fail
151	5755	-3.13	0.22	-2.91	-0.69	30.00	Pass
159	5795	-2.93	0.22	-2.71	-0.49	30.00	Pass

Note: 1. Refer to section 3.3 for duty cycle spectrum plot.

802.11ax (HE80)

Chan.	Freq. (MHz)	PSD W/O Duty Factor (dBm/300kHz)	Duty Factor (dB)	PSD With Duty Factor (dBm/300kHz)	PSD (dBm/500kHz)	Limit (dBm/500kHz)	Pass /Fail
155	5775	-8.34	0.36	-7.99	-5.77	30.00	Pass

4.5.11 Test Results (Mode 5)

For U-NII-1:

802.11a

Chan.	Chan. Freq. (MHz)	PSD (dBm/MHz)	MAX. Limit (dBm/MHz)	Pass / Fail
36	5180	3.45	17.00	Pass
40	5200	5.44	17.00	Pass
48	5240	3.40	17.00	Pass

802.11ax (HE20)

Chan.	Chan. Freq. (MHz)	PSD W/O Duty Factor (dBm/MHz)	Duty Factor (dB)	PSD With Duty Factor (dBm/MHz)	MAX. Limit (dBm/MHz)	Pass / Fail
36	5180	2.91	0.1	3.01	17.00	Pass
40	5200	5.05	0.1	5.15	17.00	Pass
48	5240	2.79	0.1	2.89	17.00	Pass

Note: 1. Refer to section 3.3 for duty cycle spectrum plot.

802.11ax (HE40)

Chan.	Chan. Freq. (MHz)	PSD W/O Duty Factor (dBm/MHz) Duty Factor (dB)		PSD With Duty Factor (dBm/MHz)	MAX. Limit (dBm/MHz)	Pass / Fail
38	5190	-2.05	0.12	-1.93	17.00	Pass
46	5230	0.07	0.12	0.19	17.00	Pass

Note: 1. Refer to section 3.3 for duty cycle spectrum plot.

802.11ax (HE80)

Chan.	Chan. Freq. (MHz)	PSD W/O Duty Factor (dBm/MHz)	Factor Duty Factor (dB)		MAX. Limit (dBm/MHz)	Pass / Fail
42	5210	-5.25	0.37	-4.88	17.00	Pass

For U-NII-3:

802.11a

Chan.	Freq. (MHz)	PSD (dBm/300kHz)	PSD (dBm/500kHz)	Limit (dBm/ 500kHz)	Pass /Fail
149	5745	-3.44	-1.22	30.00	Pass
157	5785	-3.19	-0.97	30.00	Pass
165	5825	-3.60	-1.38	30.00	Pass

802.11ax (HE20)

Chan.	Freq. (MHz)	PSD W/O Duty Factor (dBm/300kHz)	Duty Factor (dB)	PSD With Duty Factor (dBm/300kHz)	PSD (dBm/500kHz)	Limit (dBm/500kHz)	Pass /Fail
149	5745	-4.40	0.1	-4.30	-2.08	30.00	Pass
157	5785	-4.41	0.1	-4.31	-2.09	30.00	Pass
165	5825	-4.49	0.1	-4.39	-2.17	30.00	Pass

Note: 1. Refer to section 3.3 for duty cycle spectrum plot.

802.11ax (HE40)

Chan.	Freq. (MHz)	PSD W/O Duty Factor (dBm/300kHz)	Duty Factor (dB)	PSD With Duty Factor (dBm/300kHz)	PSD (dBm/500kHz)	Limit (dBm/500kHz)	Pass /Fail
151	5755	-8.17	0.12	-8.05	-5.83	30.00	Pass
159	5795	-6.60	0.12	-6.48	-4.26	30.00	Pass

Note: 1. Refer to section 3.3 for duty cycle spectrum plot.

802.11ax (HE80)

Chan.	Freq. (MHz)	PSD W/O Duty Factor (dBm/300kHz)	Duty Factor (dB)	PSD With Duty Factor (dBm/300kHz)	PSD (dBm/500kHz)	Limit (dBm/500kHz)	Pass /Fail
155	5775	-12.01	0.37	-11.64	-9.42	30.00	Pass

4.6 Frequency Stability Measurement

4.6.1 Limits of Frequency Stability Measurement

The frequency of the carrier signal shall be maintained within band of operation

4.6.2 Test Setup

4.6.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.6.4 Test Procedure

- a. The EUT was placed inside the environmental test chamber and powered by nominal AC voltage.
- b. Turn the EUT on and couple its output to a spectrum analyzer.
- c. Turn the EUT off and set the chamber to the highest temperature specified.
- d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize, turn the EUT on and measure the operating frequency after 2, 5, and 10 Minutes.
- e. Repeat step (d) with the temperature chamber set to the next desired temperature until measurements down to the lowest specified temperature have been completed.
- f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 Minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.

4.6.5 Deviation from Test Standard

No deviation.

4.6.6 EUT Operating Condition

Set the EUT transmit at un-modulation mode to test frequency stability.

4.6.7 Test Results (Mode 4)

	Frequency Stability Versus Temp.												
	Operating Frequency: 5180 MHz												
	Power 0 Minute 2 Minutes 5 Minutes 10 Minutes												
TEMP. (℃)	Supply (Vac)	Measured Frequency (MHz)	Pass/Fail	Measured Frequency (MHz)	Pass/Fail	Measured Frequency (MHz)	Pass/Fail	Measured Frequency (MHz)	Pass/Fail				
40	120	5180.0059	PASS	5180.0026	PASS	5180.0049	PASS	5180.0037	PASS				
30	120	5180.0138	PASS	5180.0108	PASS	5180.0107	PASS	5180.0125	PASS				
20	120	5180.0165	PASS	5180.0162	PASS	5180.0144	PASS	5180.0136	PASS				
10	120	5180.0053	PASS	5180.0035	PASS	5180.003	PASS	5180.0035	PASS				
0	120	5179.9953	PASS	5179.997	PASS	5179.9975	PASS	5179.9982	PASS				

	Frequency Stability Versus Voltage												
	Operating Frequency: 5180 MHz												
0 Minute 2 Minutes 5 Minutes 10 Minutes													
TEMP. (°C)	Power Supply (Vac)	Measured Frequency (MHz)	Pass/Fail	Measured Frequency (MHz)	Pass/Fail	Measured Frequency (MHz)	Pass/Fail	Measured Frequency (MHz)	Pass/Fail				
	138	5180.0063	PASS	5180.0032	PASS	5180.004	PASS	5180.004	PASS				
20	120	5180.0053	PASS	5180.0035	PASS	5180.003	PASS	5180.0035	PASS				
	102	5180.0053	PASS	5180.003	PASS	5180.0037	PASS	5180.0027	PASS				

4.6.8 Test Results (Mode 5)

	Frequency Stability Versus Temp.												
	Operating Frequency: 5180 MHz												
	O Minute 2 Minutes 5 Minutes 10 Minutes												
TEMP. (°C)	Supply (Vac)	Measured Frequency (MHz)	Pass/Fail	Measured Frequency (MHz)	Pass/Fail	Measured Frequency (MHz)	Pass/Fail	Measured Frequency (MHz)	Pass/Fail				
40	120	5179.976	PASS	5179.9773	PASS	5179.976	PASS	5179.9762	PASS				
30	120	5180.0019	PASS	5180.002	PASS	5180.0038	PASS	5180.002	PASS				
20	120	5180	PASS	5179.9969	PASS	5180.0004	PASS	5179.9978	PASS				
10	120	5180.0206	PASS	5180.0215	PASS	5180.0217	PASS	5180.0197	PASS				
0	120	5180.0181	PASS	5180.0197	PASS	5180.0203	PASS	5180.0218	PASS				

	Frequency Stability Versus Voltage												
	Operating Frequency: 5180 MHz												
	0 Minute 2 Minutes 5 Minutes 10 Minutes												
TEMP. (°C)	Power Supply (Vac)	Measured Frequency (MHz)	Pass/Fail	Measured Frequency (MHz)	Pass/Fail	Measured Frequency (MHz)	Pass/Fail	Measured Frequency (MHz)	Pass/Fail				
	138	5179.999	PASS	5179.9961	PASS	5180.0012	PASS	5179.9969	PASS				
20	120	5180	PASS	5179.9969	PASS	5180.0004	PASS	5179.9978	PASS				
	102	5179.9999	PASS	5179.9966	PASS	5179.9995	PASS	5179.9975	PASS				

4.7 6dB Bandwidth Measurement

4.7.1 Limits of 6dB Bandwidth Measurement

The minimum of 6dB Bandwidth Measurement is 0.5MHz.

4.7.2 Test Setup

4.7.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.7.4 Test Procedure

MEASUREMENT PROCEDURE REF

- a. Set resolution bandwidth (RBW) = 100kHz
- b. Set the video bandwidth (VBW) \geq 3 x RBW, Detector = Peak.
- c. Trace mode = max hold.
- d. Sweep = auto couple.
- e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission

4.7.5 Deviation from Test Standard

No deviation.

4.7.6 EUT Operating Condition

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.7.7 Test Results (Mode 1)

802.11a

	Channel	Frequency		6dB Bandwidth (MHz)				
	Charmer	(MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Limit (MHz)	Pass / Fail
	149	5745	16.38	16.39	16.39	16.43	0.5	Pass
	157	5785	16.42	16.43	16.43	16.43	0.5	Pass
ĺ	165	5825	16.42	16.44	16.44	16.42	0.5	Pass

802.11ax (HE20)

Channal	Frequency		6dB Bandwi		Minimum	Pass / Fail	
Channel	(MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Limit (MHz)	Pa55 / Fall
149	5745	18.99	19.04	18.81	18.93	0.5	Pass
157	5785	19.03	19.05	18.95	18.89	0.5	Pass
165	5825	19.03	19.05	18.96	18.85	0.5	Pass

802.11ax (HE40)

Channel	Frequency		6dB Bandwi	dth (MHz)		Minimum	Doos / Foil
Channel	(MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Limit (MHz)	Pass / Fail
151	5755	37.43	37.08	37.44	37.24	0.5	Pass
159	5795	37.47	37.13	37.43	36.95	0.5	Pass

802.11ax (HE80)

Channel	Frequency		6dB Bandwi	dth (MHz)		Minimum	Doos / Foil
Channel	(MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Limit (MHz)	Pass / Fail
155	5775	76.95	76.88	77.27	76.17	0.5	Pass

4.7.8 Test Results (Mode 2)

802.11a

Channal	Frequency (MHz)		Bandwidth	(MHz)	Minimum Limit (MHz)	Pass / Fail	
Channel		Chain 0	Chain 2	Chain 3			
149	5745	16.41	16.38	16.37	0.5	PASS	
157	5785	16.41	16.41	16.37	0.5	PASS	
165	5825	16.41	16.41	16.38	0.5	PASS	

802.11ax (HE20)

Channal	Frequency (MHz)	6dB	Bandwidth	(MHz)	Minimum Limit	Pass / Fail	
Channel		Chain 0	Chain 2	Chain 3	(MHz)		
149	5745	18.96	18.97	18.82	0.5	PASS	
157	5785	18.97	18.99	18.81	0.5	PASS	
165	5825	18.98	18.98	18.81	0.5	PASS	

802.11ax (HE40)

Channal	Frequency (MHz)	6dB I	Bandwidth	(MHz)	Minimum Limit	Pass / Fail	
Channel		Chain 0	Chain 2	Chain 3	(MHz)		
151	5755	37.44	37.13	37.43	0.5	PASS	
159	5795	37.43	37.11	37.42	0.5	PASS	

802.11ax (HE80)

Channal	Frequency (MHz)	6dB Bandwidth (MHz)			Minimum Limit	Dogo / Foil	
Channel		Chain 0	Chain 2	Chain 3	(MHz)	Pass / Fail	
155	5775	77.44	77.46	75.92	0.5	PASS	

4.7.9 Test Results (Mode 3)

802.11a

Channal	Frequency (MHz)	6dB Bandv	vidth (MHz)	Minimum Limit	Pass / Fail	
Channel		Chain 0	Chain 1	(MHz)		
149	5745	16.39	16.41	0.5	PASS	
157	5785	16.41	16.40	0.5	PASS	
165	5825	16.42	16.42	0.5	PASS	

802.11ax (HE20)

Channal	Frequency (MHz)	6dB Bandv	vidth (MHz)	Minimum Limit	Pass / Fail	
Channel		Chain 0	Chain 1	(MHz)		
149	5745	18.93	18.92	0.5	PASS	
157	5785	18.94	19.03	0.5	PASS	
165	5825	19.02	18.98	0.5	PASS	

802.11ax (HE40)

Channal	Frequency (MHz)	6dB Bandv	vidth (MHz)	Minimum Limit	Pass / Fail	
Channel		Chain 0	Chain 1	(MHz)		
151	5755	37.44	37.47	0.5	PASS	
159	5795	37.63	37.64	0.5	PASS	

802.11ax (HE80)

Channel	Frequency (MHz)	6dB Bandv	vidth (MHz)	Minimum Limit	Doos / Foil
Channel		Chain 0	Chain 1	(MHz)	Pass / Fail
155	5775	76.90	76.78	0.5	PASS

4.7.10 Test Results (Mode 4)

802.11a

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (MHz)	Pass / Fail
149	5745	16.39	0.5	PASS
157	5785	16.39	0.5	PASS
165	5825	16.37	0.5	PASS

802.11ax (HE20)

Cha	annel	Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (MHz)	Pass / Fail
1	49	5745	18.89	0.5	PASS
1	57	5785	18.92	0.5	PASS
1	65	5825	18.95	0.5	PASS

802.11ax (HE40)

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (MHz)	Pass / Fail
151	5755	37.44	0.5	PASS
159	5795	37.42	0.5	PASS

802.11ax (HE80)

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (MHz)	Pass / Fail
155	5775	77.08	0.5	PASS

Report No.: RF190912E02A-1 Reference No.: 190926E04

Page No. 395 / 445

4.7.11 Test Results (Mode 5)

802.11a

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (MHz)	Pass / Fail
149	5745	16.37	0.5	PASS
157	5785	16.40	0.5	PASS
165	5825	16.39	0.5	PASS

802.11ax (HE20)

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (MHz)	Pass / Fail
149	5745	18.94	0.5	PASS
157	5785	18.93	0.5	PASS
165	5825	19.01	0.5	PASS

802.11ax (HE40)

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (MHz)	Pass / Fail
151	5755	37.87	0.5	PASS
159	5795	37.87	0.5	PASS

802.11ax (HE80)

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (MHz)	Pass / Fail
155	5775	76.58	0.5	PASS

5 Pictures of Test Arrangements
Please refer to the attached file (Test Setup Photo).

Annex A- Radiated Out of Band Emission (OOBE) Measurement (For U-NII-3 band)

Mode 1

802.11a

802.11ax (HE20)

802.11ax (HE40)

802.11ax (HE80)

Mode 2

802.11a

802.11ax (HE20)

802.11ax (HE40)

802.11ax (HE80)

Mode 3

802.11a

802.11ax (HE20)

802.11ax (HE40)

802.11ax (HE80)

Mode 4

802.11a

802.11ax (HE20)

802.11ax (HE40)

802.11ax (HE80)

Mode 5

802.11a

802.11ax (HE20)

