Point Visibility

Arturo González Peñaloza Dulce Julieta Mora Hernández

Universidad Nacional Autónoma de México

May 12, 2024

- 1.1 Entendiendo el problema
- 1.2 Definiciones Fundamentales

2. Calculando la visibilidad de un punto

- 2.1 Algoritmo
- 2.2 Correctez

El *polígono de visibilidad* V(q) de un punto q en un polígono simple P es el conjunto de todos los puntos de P que son visibles desde q.

$$V(q) = \{ p \in P \mid q \operatorname{sees} p \}$$

Polígono de visibilidad

aqui van los ejemplos

Sea ab una arista en el perímetro de V(q) de manera que

- Ningún punto de ab, excepto a y b, pertenecen al perímetro de P
- Los tres puntos q, a y b son colineales
- a o b es un vértice de P

La arista ab se llama constructed edge de V(q)

Constructed edge

aqui van los ejemplos

Revoluciones

Para un polígono simple P y un punto $z \in P$, el *número de revoluciones* de P con respecto a z es el número de revoluciones que el perímetro de P hace alrededor de z.

Si el número de revoluciones de P respecto a z es uno, P es llamado non-winding polygon.

Revoluciones

aqui van los ejemplos

Algoritmo para calcular CH en O(n)

```
1. t \leftarrow -1; b \leftarrow 0; v_1 \leftarrow \text{input}; v_2 \leftarrow \text{input}; v_3 \leftarrow \text{input}; if (v_1, v_2, v_3) > 0 then begin push v_1; push v_2; end
```

else begin push v_2 ; push v_1 ; end

push v_3 ; insert v_3 ;

- 2. $v \leftarrow \text{input};$ until $(v, d_b, d_{b+1}) < 0 \text{ or } (d_{t-1}, d_t, v) < 0$ do $v \leftarrow \text{input end};$
- 3. until $(d_{t-1}, d_t, v) > 0$ do pop d_t end; push v;
- 4. until $(v, d_b, d_{b+1}) > 0$ do remove d_b end; insert v; goto 2

Calculando la visibilidad de un punto

Non-winding polygon: O(n) algorithm El primer paso del algoritmo es determinar si q se encuentra dentro o fuera de P.

Si q se encuentra fuera de P, se construye un polígono simple P' a partir de P de manera que $q \in P$ ' y $V(q) \subseteq P$ '. Luego, el proceso para calcular el polígono de visibilidad a partir de un punto interno puede ser utilizado para calcular $V(q) \in P$ ' como $q \in P$ '.

Existen dos situaciones dependiendo si q se encuentra dentro del cierre convexo de P o no.

- q se encuentra fuera del cierre convexo de P
- q se encuentra fuera de P pero dentro del cierre convexo de P

Si q se encuentra fuera del cierre convexo de P

- 1. Trazamos dos tangentes (digamos, qv_i y qv_j) a partir de q hacia el cierre convexo de P
- 2. Ahora q es un punto interno de P.

Observación

Sea bd(P) el perímetro de P. Notemos que todos los puntos visibles del bd(P) a partir de q se encuentran entre v_i y v_j viendo hacia q.

Calculando la visibilidad de un punto

Si q se encuentra fuera de P pero dentro del cierre convexo de P

- 1. Trazamos una línea a partir de q que pase por cualquier vértice v_k de P (denotado como $\overrightarrow{qv_k}$).
- Sea q' el punto más cercano a q entre todos los puntos de las intersecciones de ave con bd(P).
- A partir de q' recorremos bd(P) en el sentido de las manecillas del reloj(y en sentido contrario) hasta que un vértice v_i del cierre convexo (respectivamente, v_i) se alcanza.
- 4. Ahora, q es un punto dentro de P

El problema es calcular V(q) de P de q.

Sea v_0 el punto más cercano a q entre los puntos de intersección de bd(P) con la línea horizontal trazada desde q a la derecha de q. Asumimos que los vértices de P

están etiquetados de la siguiente forma: $v_1, v_2, v_3, \dots, v_n$ en sentido antihorario con v_1 como el siguiente vértice en sentido antihorario después de v_0 . Asumimos que el

proceso para calcular a V(q) ha recorrido bd(P) en el sentido contrario a las manecillas del reloj desde v_1 hasta v_{i-1} y v_i es nuestro vértice actual.

Observación

Sea $bd(v_i, v_k)$ el límite en sentido antihorario de P desde v_i hasta v_k .

También asumimos que los vértices (y los puntos finales de las constructed edges) en $bd(v_0v_{i-1})$, las cuales se encuentran para ser visibles desde q por el procedimiento, son colocadas en un stack en el orden en que son encontradas, donde v_0 y v_{i-1} están en la parte inferior y superior del stack, respectivamente.

Contamos con los siguientes casos

- 1. El vértice v_i se encuentra a la izquierda de $\overrightarrow{qv_{i-1}}$
- 2. El vértice v_i se encuentra a la derecha de $\overrightarrow{qv_{i-1}}$
 - 2.1 El vértice v_i se encuentra a la derecha de $\overrightarrow{v_{i-2}v_{i-1}}$
 - 2.2 El vértice v_i se encuentra a la izquierda de $\overrightarrow{v_{i-2}v_{i-1}}$

El vértice v_i se encuentra a la izquierda de $\overrightarrow{qv_{i-1}}$

Como v_i y los vértices y puntos en el stack se encuentran ordenados por el ordenamiento angular respecto a q, v_i es ingresado al stack.

El vértice v_i se encuentra a la derecha de $\overrightarrow{qv_{i-1}}$

Puede observarse que v_{i-1} y v_i no pueden ser visibles por q ya que qv_i es intersectado por $bd(v_0, v_{i-1})$ o qv_{i-1} es intersectado por $bd(v_{i+1}, v_n)$

Caso 2a

El vértice v_i se encuentra a la derecha de $\overrightarrow{v_{i-2}v_{i-1}}$

El vértice v_i y algunos de los vértices subsecuentes de v_i (que serán revisados) no son visibles desde q.

Sea $v_{k-1}v_k$ la primer arista desde v_{i+1} en $bd(v_{i+1}, v_n)$, en sentido antihorario de manera que $v_{k+1}v_k$ intersecta $\overrightarrow{av_{i-1}}$.

Sea z el punto de intersección.

Caso 2a

Veamos que v_k se encuentra a la izquierda de $\overrightarrow{qv_{v_{i-1}}}$ ya que bd(P) does not wind around q. Entonces, ningún vértice de $bd(v_i, v_{v_{k-1}})$ es visible desde q y por consiguiente, z es el siguiente punto de v_{i-1} en $bd(v_{i-1}, v_n)$ visible desde q. Así que, v_iz es un constructed edge de V(q), donde q, v_{i-1} y z son puntos colineales.

Ingresamos z y v_k al stack y v_{k+1} se convierte en el nuevo v_i

Caso 2b

El vértice v_i se encuentra a la izquierda de $\overrightarrow{v_{i-2}v_{i-1}}$

El vértice v_{i-1} y algunos de los vértices anteriores de v_i (quien está actualmente en el stack) no son visibles desde q. Sacamos a v_i del stack.

Sea u vértice que se encuentra en la parte superior del stack. La arista $v_{i-1}v_i$ es conocida como forward edge. Mientras $v_{i-1}v_i$ intersecta uq y u es un vértice de P, realizamos pop al stack.

Notemos que los vértices que sacamos del stack no son visibles desde q ya que su visibilidad está bloqueada por $v_{i-1}v_i$.

Calculando la visibilidad de un punto

Después de ejecutar el backtracking, pueden suceder dos situaciones

- i. $v_{i-1}v_i$ no intersecta uq
- ii. $v_{i-1}v_i$ intersecta uq

$v_{i-1}v_i$ no intersecta uq

- Si v_{i+1} se encuentra a la derecha de $\overrightarrow{qv_i}$, el backtracking continua con v_iv_{i+1} como la forward edge actual.
- De otra forma, v_{i+1} se encuentra a la izquierda de $\overrightarrow{qv_i}$.

$v_{i-1}v_i$ no intersecta uq

Sea m el punto de intersección de $\overrightarrow{qv_i}$ con la arista del polígono que contiene u.

- Si v_{i+1} se encuentra a la derecha de $\overrightarrow{v_{i-1}v_i}$, entonces termina el backtracking. Ingresamos m y v_{i+1} al stack y v_{i+1} se convierte en el nuevo v_i .
- Si v_{i+1} se encuentra a la izquierda de $\overrightarrow{v_{i-1}v_i}$, revisamos $bd(v_{i+1},v_n)$ desde v_{i+1} hasta que un vértice v_k es encontrado de manera que la arista $v_{k-1}v_k$ intersecta mv_i . El backtracking continua con $v_{k-1}v_k$ como la forward edge actual.

Calculando la visi-

Calculando la visibilidad de un punto

Caso 2b.i

$v_{i-1}v_i$ no intersecta uq

Calculando la visibilidad de un punto

• *u* no es un vértice de *P*. Sea *w* el vértice que se encuentra justo debajo de *u* en el stack. Por lo que, *uw* es un *constructed edge* que fue calculado anteriormente por el Caso 2a.

Sea p el punto de intersección de uq y $v_{i-1}v_i$. Si $p \in qw$, la visibilidad de ambos, u y w desde q esta bloqueada por $v_{i-1}v_i$. Vaciamos el stack.

El backtracking continua y $v_{i-1}v_i$ permanece como la forward edge.

Calculando la visibilidad de un punto

Caso 2b.ii

$v_{i-1}v_i$ intersecta uq

Calculando la visibilidad de un punto

• De otra forma, $v_{i-1}v_i$ ha intersectado uw como p pertenece a uw.

Checamos $bd(v_{i+1,v_n})$ desde v_{i+1} hasta encontrar un vértice v_k tal que la arista $v_{k-1}v_k$ ha sido intersectada por wp en algún punto (digamos, z). Así que, todo bd(w,z) (a excepción de w y z) no es visible por q. Vaciamos el stack.

Ingresamos a z y a v_k al stack. Por lo que, v_{k+1} se convierten en el nuevo v_i . Notemos que habíamos asumido que uw es una constructed edge calculada por el Caso 2a anteriormente. Puede suceder que la constructed edge que termina en u (digamos, uu') haya sido calculada por el Caso 2b al final de la fase de backtracking. Esto significa que el vértice u' es el último vértice en el stack que va a ser sacado en la fase de backtracking actual. Por lo tanto, q, w y z no son colineales. Los sacamos del stack y se convierte en la primera situación del backtracking actual.

Algoritmo para calcular V(q)

- 1. Ingresamos a v_1 al stack y i := i + 1. Si i = n + 1 Ir al Paso 8.
- 2. Si v_i se encuentra a la izquierda de $\overrightarrow{qv_{i-1}}$ entonces *Ir al Paso 1*
- 3. Si v_i se encuentra a la derecha de $\overrightarrow{qv_{i-1}}$ y $\overrightarrow{v_{i-2}v_{i-1}}$ entonces
 - 3.1 Checar desde v_{i+1} en sentido antihorario hasta encontrar un vértice v_k tal que $v_{k-1}v_k$ intersecta $\overrightarrow{qv_{i-1}}$. Sea z el punto de intersección.
 - 3.2 Ingresamos z al stack. i := k e Ir al Paso 1.
- 4. Si v_i se encuentra a la derecha de $\overrightarrow{qv_{i-1}}$ y a la izquierda de $\overrightarrow{v_{i-2}v_{i-1}}$ entonces
 - 4.1 Sea *u* el elemento que se encuentra en la parte superior del stack. Realizamos *pop* al stack.
 - 4.2 Mientras u sea un vértice y $v_{i-1}v_i$ intersecte uq, realizamos pop al stack.

- 5.1 Si v_{i+1} se encuentra a la derecha de $\overrightarrow{qv_i}$ entonces i := i+1 e *Ir al Paso 4b*.
- 5.2 Sea m el punto de intersección de $\overrightarrow{qv_i}$ y la arista que contiene a u. Si v_{i+1} se encuentra a la derecha de $\overrightarrow{v_{i-1}v_i}$ entonces ingresamos m al stack y vamos al vamos va
- 5.3 Checamos desde v_{i+1} en orden antihorario hasta encontrar un vértice v_k tal que $v_{k-1}v_k$ intersecte mv_i . Asignamos k a i y vamos al Paso 4b.
- 6. Sea w el vértice que se encuentra justo debajo de u en el stack. Sea p el punto de intersección entre $v_{i-1}v_i$ y uq. Si $p \in qw$ o q, w y u no son colineales entonces realizamos pop al stack y vamos al paso 4b.
- 7. Checamos desde v_{i+1} en sentido antihorario hasta encontrar un vértice v_k tal que $v_{k-1}v_k$ intersecte wp. Insertamos el punto de intersección al stack, asignamos k a i y vamos al Paso 1.
- 8. Generamos V(q) sacando todos los vértices y puntos del stack y nos detenemos.

Calculando la visibilidad de un punto

Correctez

Invariante

El algoritmo mantiene una invariante de que los vértices y puntos en la pila en cualquier etapa están ordenados angularmente con respecto a q.

Calculando la visibilidad de un punto

Teorema

Teorema

El polígono de visibilidad V(q) de un punto dado q dentro de un polígono simple de n lados P de puede ser calculado en tiempo O(n).

Calculando la visibilidad de un punto

Referencias I

Gracias por su atención

Arturo González Peñaloza Dulce Julieta Mora Hernández

Universidad Nacional Autónoma de México

May 12, 2024