

Status of HIP Track-Based Alignment in the Endcap

Jim Pivarski

Alexei Safonov

Texas A&M University

26 June, 2009

- Status of cosmics-during-collisions trigger
- Updates in endcap disk alignment

Motivation

- Cosmic rays resolve ambiguities in collisions muons by the fact that they don't all point to the same spot
 - "small-scale" track-source biases (within a small region of $\Delta \phi$, $\Delta \theta$) are averaged over by cosmic rays, leaving only "global distortions" (broad pattern across the whole detector)
- Cosmic rays provide an ample source of high-momentum tracks
 - ▶ cosmic spectrum is (energy)^{-2.7}, rather than exponential
 - ▶ allows for $p_T > 100$ GeV alignments, $p_T > 500$ GeV diagnostics
 - Cosmic track-splitting is the only known way to quantify track resolution in all 5 track parameters
- Despite the cosmic rays' "verticalness" disadvantage...

Both tracker and muon alignment would be poorer if we stopped collecting cosmic rays when the LHC turns on

Trigger issues

- Strange as it is to say it, cosmic ray signal is dwarfed by the $pp \to \mu X$ background rate
- ▶ CMS triggers are not optimized for cosmic ray timing, either: $t(\text{bottom leg}) t(\text{top leg}) \approx 3 \text{ bunch crossings}$
- Same problem with hit read-out: even given a trigger decision, it is not clear to me whether top and bottom hits would be put into the same event
 - ▶ I need to ask the DT DAQ experts
- Trigger time is discrete: we can only accept cosmic ray events that overlap bunch crossings, and therefore have pile-up

Trigger status

- ▶ RPC L1 technical trigger has all of the elements needed to select 4-station coincidences on both sides of the barrel (roughly tracker-pointing), with the appropriate timing
- ➤ Such a requirement should strongly discriminate against beam collision products: at most 10's of Hz, more likely 3–7 Hz
- Quality cuts on standAloneMuon can be applied at HLT, though most of the rate reduction should happen at L1
- Currently:
 - high-level logic would need to be programmed in firmware
 - ▶ L1 emulator implemented in 3_1_0_preX, but without the above
 - ► HLT path does not do any selection
 - efficiency (for cosmics) and fake-rate (for InclusiveMu) studies have begun (which will guide development of HLT cuts)
- People responsible:
 - ▶ L1 logic: RPC group (Flavio Loddo has offered)
 - ► Emulator: Andrés Osorio Oliveros (Universidad de Los Andes)
 - ▶ HLT and testing: Yohann Tschudi (Université Claude Bernard)

Endcap alignment

Collected data

Jim Pivarski 7/25

- ▶ Jump to the summary first: comparison of results from different sources
- ▶ Any column might have an overall minus sign (differences in definitions)

			_	
	Segments (strip+wire)	globalMuons (strip only)	Survey	Transfer Lines
	M. Schmitt (8 June)	J. Pivarski	R. Goudard	J. Bellinger (19 June)
+1/2 to +2/2				
x (mm)	-0.2	-1.6	-0.1	1.9
y (mm)	1.1	2.7	1.0	2.7
phiz (mrad)		-0.1	0.0	-0.4
+2/2 to +3/2				
x (mm)	0.7	-0.7		
y (mm)	3.8	-0.5		
phiz (mrad)		0.1		
+3/1 to +4/1				
x (mm)	0.6		-1.6	0.4
y (mm)	-1.7		0.8	1.1
phiz (mrad)			0.9	0.8
-1/2 to -2/2				
x (mm)	1.1	1.2	0.2	
y (mm)	3.9	3.6	0.6	
phiz (mrad)		0.4	1.0	
-2/2 to -3/2				
x (mm)	-2.3	-0.5		
y (mm)	0.9	-0.8		
phiz (mrad)		0.1		
-3/1 to -4/1				
x (mm)	-3.7		-1.4	
y (mm)	-1.6		1.6	
phiz (mrad)			-0.9	

Segments (strip+wire): means of the histograms (ignores sine trend from ϕ_z)

- ightharpoonup globalMuons (strip only): station 2 ightharpoonup 3 are residuals differences
- Survey: soon-to-be-published note, Raphaël says they are preliminary, but x, y, ϕ_z are fairly well established
- ► Transfer lines: table in presentation

- ▶ These are like the maps of the barrel (showing all MEn/2)
 - raw hit distribution is the blue scale
 - black points are the means
 - dashed lines are the chamber boundaries
- Note agreement between 2/2 and 3/2 in x (not ϕ_y)

ME-1/2 x positions

- ▶ These are like the maps of the barrel (showing all MEn/2)
 - raw hit distribution is the blue scale
 - black points are the means
 - dashed lines are the chamber boundaries
- Note agreement between 2/2 and 3/2 in x (not ϕ_v)

ME-2/2 x positions

Jim Pivarski 11/25

- ▶ These are like the maps of the barrel (showing all MEn/2)
 - ▶ raw hit distribution is the blue scale
 - black points are the means
 - dashed lines are the chamber boundaries
- Note agreement between 2/2 and 3/2 in x (not ϕ_y)

ME-3/2 x positions

- ▶ These are like the maps of the barrel (showing all MEn/2)
 - ▶ raw hit distribution is the blue scale
 - black points are the means
 - dashed lines are the chamber boundaries
- Note agreement between 2/2 and 3/2 in x (not ϕ_y)

ME+1/2 x positions

- ▶ These are like the maps of the barrel (showing all MEn/2)
 - raw hit distribution is the blue scale
 - black points are the means
 - dashed lines are the chamber boundaries
- Note agreement between 2/2 and 3/2 in x (not ϕ_v)

ME+2/2 x positions

- ▶ These are like the maps of the barrel (showing all MEn/2)
 - raw hit distribution is the blue scale
 - black points are the means
 - dashed lines are the chamber boundaries
- Note agreement between 2/2 and 3/2 in x (not ϕ_v)

ME+3/2 x positions

Jim Pivarski 15/25

- ▶ These are like the maps of the barrel (showing all MEn/2)
 - ▶ raw hit distribution is the blue scale
 - black points are the means
 - dashed lines are the chamber boundaries
- Note agreement between 2/2 and 3/2 in x (not ϕ_y)

Jim Pivarski 16/25

- raw hit distribution is the blue scale
 - black points are the means
 - dashed lines are the chamber boundaries
- ▶ Note agreement between 2/2 and 3/2 in x (not ϕ_y)

Jim Pivarski 17/25

- ▶ These are like the maps of the barrel (showing all MEn/2)
 - ▶ raw hit distribution is the blue scale
 - black points are the means
 - dashed lines are the chamber boundaries
- Note agreement between 2/2 and 3/2 in x (not ϕ_y)

Jim Pivarski 18/25

- ▶ These are like the maps of the barrel (showing all MEn/2)
 - raw hit distribution is the blue scale
 - black points are the means
 - dashed lines are the chamber boundaries
- Note agreement between 2/2 and 3/2 in x (not ϕ_v)

- ▶ These are like the maps of the barrel (showing all MEn/2)
 - raw hit distribution is the blue scale
 - black points are the means
 - dashed lines are the chamber boundaries
- Note agreement between 2/2 and 3/2 in x (not ϕ_v)

- ▶ These are like the maps of the barrel (showing all MEn/2)
 - raw hit distribution is the blue scale
 - black points are the means
 - dashed lines are the chamber boundaries
- Note agreement between 2/2 and 3/2 in x (not ϕ_v)

Comparison with beam-halo

Jim Pivarski 21/25

- Difficult to actually compare tracker-to-disk and beam-halo directly. because very few cosmic rays connect ME-2/1 with the tracker
- Nevertheless, we can try: these are ϕ_v with beam-halo overlaid

- ▶ To allow for tracker distortions and propagator errors, we can focus on the discontinuities at the chamber boundaries
- ▶ The discontinuities do not agree in detail with beam-halo: can form an argument that chambers have rotated between $\vec{B}=0$ and CRAFT

- ▶ Collisions MC (5 pb⁻¹): tracks uniform in ϕ but not more numerous
- ▶ Much easier to fit const + sine + cosine, accurate results
- Roughly the same residuals widths

Cosmic-ray MC (full sample): zero tracks (probably a generator-level cut)

- With φ-symmetric collisions, how much data do we need to align the disks?
- ► Includes residual misalignments after CSC Overlaps alignment (assuming same resolution as 2008)
- ▶ Independent samples scale with \sqrt{N}

➤ This is a walk-through of what we'll need to do after CSC Overlaps

- Now and CRAFT-2009
 - ▶ validate cosmic ray tracker-to-disk procedures with CRAFT-2008 and -2009
 - automate all procedures and monitoring for CRAFT-2009, then simply run them
- ▶ Month of beam-halo only
 - re-run beam-halo procedure on new samples
 - kludge incomplete rings if necessary
 - any corrections needed for $\vec{B} \neq 0$?
 - one-time layer alignment with full dataset (low-statistics 2008 pilot study on right)
- ▶ First collisions: 5 pb⁻¹

- run Overlaps procedure on collisions data, compare with beam-halo result
- use tracker-to-disk method to connect internally-aligned rings to tracker
- ► Later collisions: 50 pb⁻¹
 - run Baseline procedure with same tracks: do they agree? If not, do track-by-track comparisons to diagnose the problem
 - do collisions alignments agree with cosmic rays in the barrel?

- Cosmics-during-collisions trigger is important, and it's getting built
- No clear convergence on endcap alignment yet, but hints of regional agreement
- globalMuons ME2/2 and ME3/2 agree with each other
- \triangleright ϕ_{ν} misalignments clearly seen, on the scale of what we saw in beam-halo, but not a good correlation: movement when $\vec{B} \rightarrow 3.8 \text{ T}?$
- \triangleright Collisions MC yields a much easier-to-fit disk due to ϕ symmetry of hits