

Sistemas de Microprocessadores

DEP. DE ENG.ª ELECTROTÉCNICA E DE COMPUTADORES
FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE DE COIMBRA

Lab 10 – Utilização do MIPS como sistema embutido numa FPGA

Neste trabalho de laboratório vamos continuar a trabalhar com o MIPS descrito em VHDL e implementado na FPGA Quartus II¹, introduzido no trabalho anterior, usando-o como um sistema embutido em circuitos digitais implementados na FPGA.

1. MIPS embutido utilizado como contador

No projecto dado, existe um esquemático MIPS_EMB que recorre ao módulo TOP_MIPSIO para embutir o MIPS num circuito digital (fig. 6).

Fig. 6. Projecto com módulo TOP_MIPS_IO.VHD e componentes do UP Core.

O Módulo TOP_MIPSIO tem dois portos de entrada e saída da memória interna.

Neste esquemático o MIPS tem dois portos de entrada ligados aos interruptores da placa, e o PC, ALU, e portos de saída (MEM[0],MEM[1]) ligados a visores de 7 segmentos.

¹ Altera Quartus II disponível em: http://www.deec.uc.pt/~jlobo/altera/

Lab10 SMP DEEC-FCTUC

Para carregar um registo com o estado dos interruptores basta ler as posições de memória 2 e 3, que se encontra "mapeada" para os portos A e B). Por exemplo fazendo:

ficamos com \$6=SW[7..0] e \$7=SW[15..8]. Para escrever nos portos de saída ligados aos visores de 7 segmentos basta escrever nas células de memoria MEM[0] e MEM[1], i.e:

Adapte o código feito no ponto 4 do Trabalho Laboratorial 10 para, com base no esquemático TOP_MIPS, por um MIPS a contar de 0-F no visor de 7 segmentos, com o outro a indicar o PC.

2. Luz do pátio com MIPS embutido

Programe um MIPS para integrar um circuito digital para controlar a iluminação do pátio de uma residência. A luz só deve acender quando: a entrada de um sensor de luz D é **0** (indicando que não é de dia), e a entrada de um sensor de movimento M é **1** (indicando movimento). Temos ainda a entrada de um interruptor I que quando é **1** indica que a luz deve ficar ligada, independentemente dos valores de D e M. Para ligar a luz deve-se colocar a saída L a **1**. A figura 7 mostra o diagrama de blocos do sistema a implementar.

Fig. 7. Diagrama de blocos do controlador da luz do pátio.

O primeiro passo do projecto é capturar o comportamento do circuito por uma equação Booleana, que indica o valor da saída em função das entradas. Este comportamento pode ser descrito através da equação Booleana L=M.D'+I, em que D' representa "não D" (não é de dia), '.' E (*AND*) e '+' OU (*OR*).

O segundo passo é identificar o mapeamento entre as entradas e saídas do circuito e as entradas e saídas do processador. Neste caso deve considerar D=SW[0], M=SW[1] e I=SW[2], ou seja o porto A mapeado no endereço 2 fica com D,M e I nos 3 bits menos significativos, e a saída L fica ligada ao bit menos significativo do endereço de memória 0.

Pág. 2/4

Lab10 SMP DEEC-FCTUC

O terceiro passo é escrever um programa para o processador que assegure o funcionamento desejado, ficando em ciclo infinito a ler as entradas e escrever nas saídas.

3. MIPS embutido como temporizador I

A partir do código feito no ponto 1, programe o MIPS para contar de 0 a 9, com cada iteração do contador a demorar 10 ciclos de processador, e com o botão SW[0] a funcionar como *start/stop* do contador. Num novo esquemático², coloque um MIPS embutido a contar segundos controlado por SW[0], mantendo o *reset* (geral) em KEY[0].

4. MIPS embutido como temporizador II

Num novo esquemático, coloque dois MIPS embutidos a executar o mesmo código, cada um a contar uma casa decimal, para ter uma contagem de dois dígitos nos visores de 7 segmentos. Deve utilizar as saídas convenientes do módulo CLOCK_DIV para cada um dos processadores para contar segundos e décimas de segundo.

5. MIPS embutido como temporizador III (opcional)

Altere a programação dos processadores para ter contagem ascendente ou descendente em função de SW[0].

² não esquecer de indicar o novo esquemático como o principal do seu projecto (top-level entity), seleccionando essa opção com o botão do lado direito do rato sobre o ficheiro respectivo na janela do Project Navigator.

Lab10 SMP DEEC-FCTUC

DE2_pin_assignments.csv

# Altera's DE2 board	LEDR[16],PIN_AE12	# hex4
# Cyclone II	LEDR[17],PIN_AD12	HEX4[0],PIN_U9
# EP2C35F672C6	# Green LEDs	HEX4[1],PIN_U1
#	LEDG[0],PIN_AE22	HEX4[2],PIN_U2
To,Location	LEDG[1],PIN_AF22	HEX4[3],PIN_T4
# push-buttons	LEDG[2],PIN_W19	HEX4[4],PIN_R7
KEY[0],PIN_G26	LEDG[3],PIN_V18	HEX4[5],PIN_R6
KEY[1],PIN_N23	LEDG[4],PIN_U18	HEX4[6],PIN_T3
KEY[2],PIN_P23	LEDG[5],PIN_U17	# hex5
KEY[3],PIN_W26	LEDG[6],PIN_AA20	HEX5[0],PIN_T2
# Switches	LEDG[7],PIN_Y18	HEX5[1],PIN_P6
SW[0],PIN_N25	LEDG[8],PIN_Y12	HEX5[2],PIN_P7
SW[1],PIN_N26	#	HEX5[3],PIN_T9
SW[2],PIN_P25	# 7 segments	HEX5[4],PIN_R5
SW[3],PIN_AE14	# hex0	HEX5[5],PIN_R4
SW[4],PIN_AF14	HEX0[0],PIN_AF10	HEX5[6],PIN_R3
SW[5],PIN_AD13	HEX0[1],PIN_AB12	# hex6
SW[6],PIN_AC13	HEX0[2],PIN_AC12	HEX6[0],PIN_R2
SW[7],PIN_C13	HEX0[3],PIN_AD11	HEX6[1],PIN_P4
SW[8],PIN_B13	HEX0[4],PIN_AE11	HEX6[2],PIN_P3
SW[9],PIN_A13	HEX0[5],PIN_V14	HEX6[3],PIN_M2
SW[10],PIN_N1	HEX0[6],PIN_V13	HEX6[4],PIN_M3
SW[11],PIN_P1	# hex1	HEX6[5],PIN_M5
SW[12],PIN_P2	HEX1[0],PIN_V20	HEX6[6],PIN_M4
SW[13],PIN_T7	HEX1[1], PIN_V21	# hex7
SW[14],PIN_U3	HEX1[2],PIN_W21	HEX7[0],PIN_L3
SW[15],PIN_U4	HEX1[3], PIN_Y22	HEX7[1],PIN_L2
SW[16],PIN_V1	HEX1[4],PIN_AA24	HEX7[2],PIN_L9
SW[17],PIN_V2	HEX1[5],PIN_AA23	HEX7[3],PIN_L6
# Red LEDs	HEX1[6],PIN_AB24	HEX7[4],PIN_L7
LEDR[0],PIN_AE23	# hex2	HEX7[5],PIN_P9
LEDR[1],PIN_AF23	HEX2[0],PIN_AB23	HEX7[6],PIN_N9
LEDR[2],PIN_AB21	HEX2[1],PIN_V22	# 50MHz clock
LEDR[3],PIN_AC22	HEX2[2],PIN_AC25	CLOCK_50,PIN_N2
LEDR[4],PIN_AD22	HEX2[3], PIN_AC26	# PS2
LEDR[5],PIN_AD23	HEX2[4],PIN_AB26	PS2_CLK,PIN_D26
LEDR[6],PIN_AD21	HEX2[5],PIN_AB25	PS2_DAT,PIN_C24
LEDR[7],PIN_AC21	HEX2[6],PIN_Y24	# VGA
LEDR[8],PIN_AA14	# hex3	VGA_R[9],PIN_E10
LEDR[9],PIN_Y13	HEX3[0],PIN_Y23	VGA_G[9],PIN_D12
LEDR[10],PIN_AA13	HEX3[1],PIN_AA25	VGA_B[9],PIN_B12
LEDR[11],PIN_AC14	HEX3[2],PIN_AA26	VGA_HS,PIN_A7
LEDR[12],PIN_AD15	HEX3[3],PIN_Y26	VGA_VS,PIN_D8
LEDR[13],PIN_AE15	HEX3[4],PIN_Y25	VGA_CLK, PIN_B8
LEDR[14],PIN_AF13	HEX3[5],PIN_U22	VGA_BLANK, PIN_D6
LEDR[15],PIN_AE13	HEX3[6],PIN_W24	_
_	-	