

§ 2.8 同态基本定理

[本节主要内容]

- 1) 群的同态的定义;
- 2) 群的同态的性质定理;
- 3) 群的同态基本定理;

4

定义1 同态:设 (G_1,\circ) 与 $(G_2,*)$ 为群

若存在映射 $\varphi:G_1\to G_2$, 使得

对 $\forall a, b \in G_1$ 有 $\varphi(a \circ b) = \varphi(a) * \varphi(b)$

则称 φ 为 G_1 到 G_2 上的一个同态。

满同态: 若 φ 为满射,记为 $G_1 \sim G_2$

单同态: 若 φ 为单射

同构: 若 ϕ 既为满射又为单射

例1 设(Z,+)为整数加法群,

 $S = \{1,-1\}$ 关于通常乘法构成群 (S,*)

 $\varphi: Z \to S$ 对 $\forall a \in Z$ 有:

$$\varphi(a) = \begin{cases} 1 & \text{if } a = 2k, k \in \mathbb{Z} \\ -1 & \text{if } a = 2k + 1, k \in \mathbb{Z} \end{cases}$$

则对 $\forall a,b \in \mathbb{Z}$ 有:

$$\varphi(a+b) = \varphi(a) * \varphi(b)$$

定理1 设 (G_1, \circ) 与 $(G_2, *)$ 为群,

$$\varphi: G_1 \to G_2$$
 的同态,则对 $\forall a \in G_1$

有:
1)
$$\varphi(e_1) = e_2$$

2)
$$\varphi(a^{-1}) = (\varphi(a))^{-1}$$

定理2 设 (G_1, \circ) 为群, $(G_2, *)$ 是一个具有二元代数运算的代数系, $\varphi: G_1 \to G_2$ 的满射,且对 $\forall a, b \in G_1$ 有 $\varphi(a \circ b) = \varphi(a) * \varphi(b)$

则为 $(G_2,*)$ 群。

4

定理3 设 (G_1, \circ) 与 $(G_2, *)$ 为群,

 $\varphi: G_1 \to G_2$ 的满同态,

$$\operatorname{Im} \varphi^{-1}(e_2) = \{ x \mid \varphi(x) = e_2, x \in G_1 \}$$

是 G_1 的一个正规子群。

定义2 设(G_1 , \circ)与 (G_2 , *)为群, $\varphi: G_1 \to G_2$ 的满同态,则 G_1 的正规

子群 $\varphi^{-1}(e_2)$ 称为同态 φ 的核,记为 $\operatorname{Ker} \varphi$. $\varphi(G_1)$ 称为在 φ 不 G_1 的同态象.

定理4 设 (G_1, \circ) 与 $(G_2, *)$ 为群,

- $\varphi: G_1 \to G_2$ 的满同态,则:
 1) 若 $H \not\in G_1$ 子群,则 $\varphi(H) \not\in G_2$ 的子群:
- 2) 岩 N是 G_1 的正规子群,则 $\varphi(N)$ 是 G_2 的正规子群;

3) 若 \overline{H} 是 G_2 子群,则 φ^{-1} (\overline{H}) 是 G_1 的子群;

4) 若N是 G_2 的正规子群,

则 $\varphi^{-1}(\overline{N})$ 是 G_1 的正规子群;

定理5 设N是G的正规子群,则有: $G \sim G/N$ (自然同态)。若 φ 是 G到G/N的同态,则Ker φ = N

定理6 群的同态基本定理:

设 φ 为群 G_1 到 G_2 的满同态, E=Ker φ ,则:

$$G_1/E \cong G_2$$

4

例2对例1中的满同态运用同态基本定理可得:

$$E = Ker \varphi = \varphi^{-1}(1) = \{a \mid a = 2k, k \in Z\}$$

 $Z/E = \{E, F\}$ 其中 $F = \{a \mid a = 2k+1, k \in Z\}$
则同构映射为 $\alpha: Z/E \to S$ 且有:
 $\alpha(E) = 1, \alpha(F) = -1$

定理7 群G的任一满同态 φ 均可分解成一个自然同态 γ 与一个同构 f 的合成。即 $\varphi = f \circ \gamma$ 并且 f 是唯一的。

例 设群 $G = \{e, x, y, z\}$

O e x y ze e x y z

G上的乘法。由右表给出:

x x e z y

1)构造出与其同构的 置换群:

 y
 y
 z
 e
 x

 z
 z
 y
 x
 e

2) 若 $G_1 = \{e_1, a\}$, G_1 中的乘法 *定义如下:

 $e_1 * e_1 = e_1, e_1 * a = a * e_1 = a, a * a = e_1$ 证明 $(G_1,*)$ 是一个群,若 $\varphi: G \to G_1$,使得

 $\varphi(e) = \varphi(x) = e_1, \varphi(y) = \varphi(z) = a$ 则 φ 是一个同态,并且指出同态基本定理

中的映射 γ 和 $\overline{\phi}$