Compilation of Henry's Law Constants for Inorganic and Organic Species of Potential Importance in Environmental Chemistry

http://www.mpch-mainz.mpg.de/~sander/res/henry.html

Rolf Sander
Air Chemistry Department
Max-Planck Institute of Chemistry
PO Box 3060
55020 Mainz
Germany
e-mail: sander@mpch-mainz.mpg.de

Version 3 (April 8, 1999) © Rolf Sander (non-commercial reproduction permitted)

Contents

1	Introduction	3
2	The physical quantity of solubility	3
3	Temperature dependence	3
4	Unit conversions	3
5	How to use the Tables	4
6	Further Sources of Information	4
7	Data Table (Inorganic)	6
	oxygen (O)	6
	hydrogen (H)	6
	nitrogen (N)	7
	fluorine (F) \dots	8
	chlorine (Cl)	9
	bromine (Br)	10
	iodine (I)	11
	sulfur (S)	12
	rare gases	13
	other elements	19

8	Data Table (Organic)	14
	alkanes (C and H only)	14
	cycloalkanes (C and H only)	27
	aliphatic alkenes and cycloalkenes (C and H only) $\ \ldots \ \ldots$	28
	aliphatic alkynes (C and H only) $\ \ldots \ \ldots$	30
	mononuclear aromatics (C and H only)	31
	terpenes and polynuclear aromatics (C and H only)	35
	alcohols (ROH) (C, H, and O only)	37
	polyols $(R(OH)_n)\ (C, H, and O only)$	41
	peroxides (ROOH) and peroxy radicals (ROO) (C, H, and O only) $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	43
	aldehydes (RCHO) (C, H, and O only)	44
	ketones (RCOR) (C, H, and O only) \hdots	46
	carboxylic acids (RCOOH) and peroxy carboxylic acids (RCOOOH) (C, H, and O only)	48
	esters (RCOOR) (C, H, and O only) \hdots	50
	ethers (ROR) (C, H, and O only)	54
	miscellaneous, e.g. multiple functional groups (C, H, and O only)	55
	compounds with nitrogen: amines (RNH2) (C, H, O, and N only)	58
	compounds with nitrogen: amino acids (RCHNH2COOH)	59
	compounds with nitrogen: heterocycles (C, H, O, and N only)	59
	compounds with nitrogen: nitrates (RONO ₂) (C, H, O, and N only) $\dots \dots \dots \dots \dots \dots \dots \dots$	61
	compounds with nitrogen: nitriles (RCN) (C, H, O, and N only)	65
	compounds with nitrogen: nitro (RNO2) (C, H, O, and N only)	66
	compounds with fluorine	68
	aliphatic compounds with chlorine	71
	aromatic compounds with chlorine	82
	compounds with chlorine and fluorine	84
	compounds with bromine	86
	compounds with iodine	89
	compounds with sulfur	90
	polychlorobiphenyls (PCB's), pesticides, etc.	92
9	Notes	96
10	Acknowledgements	99
Re	eferences	99

1 Introduction

Henry's law constants (solubilities) of trace gases of potential importance in environmental chemistry (atmospheric chemistry, waste water treatment, ...) have been collected and converted into a uniform format.

Disclaimer: Although this compilation has been edited with greatest care the possibility of errors cannot be excluded. If you use data from this table it is recommended that you also check the original literature. If you find an error in this table, please tell me about it!

2 The physical quantity of solubility

There are several ways of describing the solubility of a gas in water. Usually the Henry's law constant $k_{\rm H}$ is defined as:

$$k_{\rm H} \stackrel{\rm def}{=} c_{\rm a}/p_{\rm g} \tag{1}$$

Here, $c_{\rm a}$ is the concentration of a species in the aqueous phase and $p_{\rm g}$ is the partial pressure of that species in the gas phase. If $k_{\rm H}$ refers to standard conditions ($T^{\ominus}=298.15$ K) it will be denoted as $k_{\rm H}^{\ominus}$.

Henry's law constant can also be expressed as the dimensionless ratio between the aqueous-phase concentration c_a of a species and its gas-phase concentration c_g :

$$k_{\rm H}^{cc} \stackrel{\rm def}{=} c_{\rm a}/c_{\rm g} = k_{\rm H} \times RT$$
 (2)

where R = gas constant and T = temperature. To distinguish these different physical quantities, this constant has been named k_{H}^{cc} here.

Sometimes the reciprocal value $k_{H,inv}^{px}$ is used, representing the volatility instead of the solubility. The usual definition is:

$$k_{\mathrm{H,inv}}^{px} \stackrel{\text{def}}{=} p_{\mathrm{g}}/x_{\mathrm{a}} = \frac{\varrho_{\mathrm{H_2O}}}{M_{\mathrm{H_2O}} \times k_{\mathrm{H}}}$$
(3)

where $x_a = \text{molar mixing ratio}$ in the aqueous phase, $\varrho_{\text{H}_2\text{O}} = \text{density of water}$, and $M_{\text{H}_2\text{O}} = \text{molar mass of water}$.

3 Temperature dependence

A simple way to describe Henry's law as a function of temperature is:

$$k_{\rm H} = k_{\rm H}^{\ominus} \times \exp\left(\frac{-\Delta_{\rm soln} H}{R} \left(\frac{1}{T} - \frac{1}{T^{\ominus}}\right)\right)$$
 (4)

where $\Delta_{\rm soln}H=$ enthalpy of solution. Here, the temperature dependence is:

$$\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)} = \frac{\Delta_{\mathrm{soln}}H}{R} \tag{5}$$

4 Unit conversions

Detailed information about the conversion between different units and definitions of Henry's law constants is given by Sander [1999]. Here is a short summary:

The commonly used unit for $k_{\rm H}$ is $[{\rm M/atm}] = [\frac{{\rm mol_{aq}/dm_{aq}^3}}{{\rm atm}}]$. The official SI unit is $[\frac{{\rm mol_{aq}/m_{aq}^3}}{{\rm Pa}}]$. The conversion is:

$$\frac{k_{\rm H}}{[{
m M/atm}]} = 101.325 \times \frac{k_{\rm H}}{[({
m mol}_{aq}/{
m m}_{aq}^3)/{
m Pa}]}$$
 (6)

The relation between $k_{\rm H}$ and $k_{\rm H}^{cc}$ is:

$$\frac{T}{[\mathrm{K}]} \times \frac{k_{\mathrm{H}}}{[\mathrm{M/atm}]} = 12.2 \times k_{\mathrm{H}}^{cc} \tag{7}$$

At T = 298.15 K this leads to:

$$\frac{k_{\rm H}}{[{
m M/atm}]} = 0.0409 \times k_{
m H}^{cc}$$
 (8)

The commonly used unit for $k_{\rm H,inv}^{px}$ is [atm]. The product of $k_{\rm H}$ and $k_{\rm H,inv}^{px}$ is constant:

$$\frac{k_{\rm H}}{[{\rm M/atm}]} \times \frac{k_{\rm H,inv}^{px}}{[{\rm atm}]} = 55.3 \tag{9}$$

5 How to use the Tables

Inorganic substances are sorted according to the elements they contain. The order chosen is: O, H, N, F, Cl, Br, I, S, rare gases, others.

Organic substances (i.e. everything with carbon, including CO and CO₂) are sorted somewhat arbitrarily by increasing chain length and complexity. Hetero atoms (N, F, Cl, Br, I, and S) are sorted in the same way as for inorganic compounds.

The column labeled 'substance' gives the systematic name, the chemical formula, trivial names (if any), and in several cases the CAS registry number (in square brackets).

The column labeled ${}^{i}k_{H}^{\ominus}$ contains the Henry's law constants as defined in equation (1), rounded to two significant digits and given in the unit [M/atm].

The column labeled ' $-d \ln k_{\rm H}/d(1/T)$ ' contains the temperature dependence of the Henry's law constants as defined in equations (4) and (5), rounded to two significant digits and given in the unit [K].

For each table entry the column labeled 'type' denotes how the Henry's law constant was obtained in the given reference. Literature reviews are usually most reliable, followed by original publications of experimental determinations of $k_{\rm H}$. Other data has to be treated more carefully. The types listed here are roughly ordered by decreasing reliability:

'L'	The cited paper is a literature review.
'M'	Original publication of a measured value (e.g. head-space or bubble column technique as explained by <i>Betterton</i> [1992]).
'V'	Vapor pressure of the pure substance is used to determine the Henry's law constant (c/p) for a saturated solution).
'R'	The cited paper presents a recalculation of previously published material (e.g. extrapolation to a different temperature or concen- tration range).
'T'	Thermodynamical calculation ($\Delta_{\rm soln}G = -RT \ln k_{\rm H}$, see Sander [1999] for details).
'C'	The paper that is cited here refers to another reference which I could not obtain (e.g. personal communication, Ph.D. theses, internal papers etc.).
'X'	I haven't seen the paper that I cite here. I found it referenced by another paper or I know about it through others.
'?'	The cited paper doesn't clearly state how the value was obtained.
'E'	The value is estimated. Estimates are only listed if no reliable measurements are available for that compound.

In some cases there might be good agreement between different authors. However, if the original work they refer to is not known one has to be careful when evaluating the reliability. It is possible that they were recalculating data from the same source. The similarity in that case would not be due to independent investigations.

6 Further Sources of Information

Further important references:

• monoaromatic hydrocarbons, chlorobenzenes, and PCBs: Mackay et al. [1992a]

- polynuclear aromatic hydrocarbons, polychlorinated dioxins, and dibenzofuranes: Mackay et al. [1992b]
- volatile organic chemicals: Mackay et al. [1993]
- oxygen, nitrogen, and sulfur containing compounds: Mackay et al. [1995]
- pestizides, PCB's, etc.: Westcott et al. [1981]; Burkhard et al. [1985]; Hassett and Milicic [1985]; Yin and Hassett [1986]; Murphy et al. [1987]; Shiu et al. [1988]; Rice et al. [1997]; Fendinger and Glotfelty [1988]; Fendinger et al. [1989]; De Maagd et al. [1998]; Duce et al. [1991]
- additional references that are not (yet) included: Lide and Frederikse [1995]; Shiu et al. [1994]; Watts and Brimble-combe [1987]; Wright et al. [1992a]; Tse et al. [1992]; Kolb et al. [1992]; Ettre et al. [1993]; Gan and Yates [1996]; Peng and Wan [1997]; Roberts and Dändliker [1983]; Economou et al. [1997]; Wong and Wang [1997]; Suleimenov and Krupp [1994]; Heron et al. [1998]; Becker et al. [1998]; Leuenberger et al. [1985]
- predictive methods for Henrys law coefficients (QSPRs): Russell et al. [1992]; Nirmalakhandan et al. [1997]; Brennan et al. [1998]

On the Internet:

- The NIST Chemistry WebBook at http://webbook.nist.gov/chemistry
- The Pesticide Properties Database (PPD) at http://www.arsusda.gov/rsml/ppdb2.html

7 Data Table (Inorganic)

substance	$k_{ m H}^{\ominus}$	$\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}$	referer	nce type	note
Substance	[M/atm]	[K]		lice type	11000
	0.	xygen (C		001 W	1
oxygen	1.3×10^{-3}	1700	Loomis [19		1
O_2	1.2×10^{-3}	1800	Carpenter [19]	-	
[7782-44-7]	1.3×10^{-3}	1500	Wilhelm et al. [19	-	0
	$\begin{array}{c} 1.3 \times 10^{-3} \\ 1.3 \times 10^{-3} \end{array}$	1700	Dean [19]	-	2
	1.3×10^{-3} 1.2×10^{-3}	1500	Lide and Frederikse [19]	,	9
	1.2×10^{-2} 1.2×10^{-2}	1700	Kavanaugh and Trussell [19		3
ozone	1.2×10^{-2} 1.3×10^{-2}	2300	Loomis [19:	3	1
03	1.3×10^{-2}	2000	Briner and Perrottet [19]	,	
[10028-15-6]	1.3×10^{-2} 1.2×10^{-2}	2000	Wilhelm et al. [19	-	
	1.2×10^{-2} 1.1×10^{-2}	9200	Durham et al. [196		
	1.1×10^{-2} 1.2×10^{-2}	2300	Kosak-Channing and Helz [19	-	
	9.4×10^{-3}	2700	Chameides [19]	-	4
	1.1×10^{-2}	2500	Hoffmann and Jacob [19]		4
	9.4×10^{-3}	2400 2400	Jacob [19] Seinfeld [19]	-	
	8.9×10^{-3}	2900	Kavanaugh and Trussell [19]		3
			H)	00] A	J
hydrogen	7.8×10^{-4}		Hine and Weimar [19	65] R	
H_2	7.8×10^{-4}	490	Wilhelm et al. [19	-	
[1333-74-0]	7.8×10^{-4}	640	Dean [19	-	2
[1999 1 1 0]	7.8×10^{-4}	500	Lide and Frederikse [19	,	_
hydroxyl radical	2.9×10^{1}	3100	Berdnikov and Bazhin [19	-	5
OH	3.2×10^{1}	3100	Mozurkewich [19	-	
[3352-57-6]	2.5×10^{1}	5300	Jacob [19	-	6
[3332 3. 3]	2.5×10^{1}		Lelieveld and Crutzen [19		
	2.0×10^{2}		Lelieveld and Crutzen [19	-	
	9.0×10^{3}		Lelieveld and Crutzen [19		
	3.0×10^{1}	4500	Hanson et al. [19		
hydroperoxy radical	4.6×10^{3}	4800	Berdnikov and Bazhin [19	70] T	5
HO_2	9.0×10^{3}		Chameides [19	84] T	
[3170-83-0]	1.2×10^{3}		Schwartz [19	84] T	7
		6600	Jacob [19	86] E	
	9.0×10^{3}		Weinstein-Lloyd and Schwartz [19	91] T	
	4.0×10^{3}	5900	Hanson et al. [19	92] T	
	5.7×10^{3}		Régimbal and Mozurkewich [19	97] R	
hydrogen peroxide	7.1×10^4	7000	Martin and Damschen [19	81] T	
$\mathrm{H_2O_2}$	7.1×10^4	7300	Hoffmann and Jacob [19	84] ?	4
[7722-84-1]	1.4×10^5		Yoshizumi et al. [19	84] M	8
	$9.7{ imes}10^4$	6600	Chameides [19	84] T	
	6.9×10^4	7900	Hwang and Dasgupta [19	85] M	
	1.0×10^{5}	6300	Lind and Kok [19	94] M	9
	8.3×10^4	7400	O'Sullivan et al. [19	96] M	
	1.1×10^5	7500	Staffelbach and Kok [19	93] M	10
	8.6×10^4	6500	Zhou and Lee [19	92] M	

substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	$\mathrm{not}\epsilon$
	nit	rogen (N)		<u>'</u>	
ammonia	5.9×10^{1}	4100	Sillen and Martell [1964]	X	1
NH_3	5.7×10^{1}	4100	Robinson and Stokes [1970]	X	1
[7664-41-7]	1.0×10^{1}	1500	Wilhelm et al. [1977]	${ m L}$	
	6.1×10^{1}	4200	Edwards et al. [1978]	${ m L}$	
	7.6×10^{1}	3400	Hales and Drewes [1979]	${ m M}$	
	5.8×10^{1}	4100	Chameides [1984]	${ m T}$	
	7.8×10^{1}		Holzwarth et al. [1984]	${ m M}$	
	5.8×10^{1}	4100	Hoffmann and Jacob [1984]	?	4
	5.6×10^{1}	4100	Dasgupta and Dong [1986]	${ m M}$	
	5.6×10^{1}	4200	Dasgupta and Dong [1986]	${ m T}$	
	6.1×10^{1}	4200	Clegg and Brimblecombe [1989]	${ m M}$	
	2.7×10^{1}	2100	Dean [1992]	?	2
	6.2×10^{1}		Van Krevelen et al. [1949]	X	11
	5.4×10^{1}		Bone et al. [1983]	?	12
	6.0×10^{1}	4400	Kavanaugh and Trussell [1980]	X	3
hydrazoic acid	9.9	3100	Wilhelm et al. [1977]	L	
HN ₃	0.0	0100	**************************************		
[7782-79-8]					
dinitrogen monoxide	2.5×10^{-2}		Loomis [1928]	X	1
$ m N_2O$	2.6×10^{-2}		Liss and Slater [1974]	?	1
(nitrous oxide, laughing gas)	2.4×10^{-2}	2600	Wilhelm et al. [1977]	$\stackrel{\cdot}{ m L}$	
[10024-97-2]	2.5×10^{-2}	2000	Seinfeld [1986]	?	13
[10024-97-2]	2.4×10^{-2}	2800	Dean [1992]	?	2
	2.4×10 2.5×10^{-2}	2600	Lide and Frederikse [1995]	$\stackrel{:}{ m L}$	14
	2.3×10 2.4×10^{-2}			X	14
•,	6.5×10^{-4}	2700	Perry [1963]		
nitrogen	6.5×10^{-4} 6.1×10^{-4}	1300	Wilhelm et al. [1977]	L	9
N ₂	0.1×10	1300	Kavanaugh and Trussell [1980]	X	3
[7727-37-9]	7.010-7	2000	117:11 1 1 [1077]	т	
nitrogen monoxide	7.9×10^{-7}	3800	Wilhelm et al. [1977]	L	
NO	1.4×10^{-3}	1500	Zafiriou and McFarland [1980]	M	
(nitric oxide)	1.9×10^{-3}	1500	Schwartz and White [1981]	L	
[10102-43-9]	1.9×10^{-3}	1,700	Durham et al. [1981]	C	0
	1.9×10^{-3}	1700	Dean [1992]	?	2
	1.9×10^{-3}	1400	Lide and Frederikse [1995]	L	
nitrogen dioxide	3.4×10^{-2}	1800	Berdnikov and Bazhin [1970]	Т	5
NO_2	7.0×10^{-3}		Lee and Schwartz [1981]	M	15
[10102-44-0]	4.0×10^{-2}		Lee and Schwartz [1981]	С	
	2.4×10^{-2}		Lee and Schwartz [1981]	С	
	1.2×10^{-2}		Schwartz and White [1981]	L	
	4.1×10^{-2}		Durham et al. [1981]	С	
	1.2×10^{-2}	2500	Chameides [1984]	T	
nitrogen trioxide	3.4×10^{-2}	2000	Berdnikov and Bazhin [1970]	$_{-}^{\mathrm{T}}$	5
NO_3	1.2×10^{1}	1900	Chameides [1986]	T	
(nitrate radical)	2.0	2000	Thomas et al. [1993]	M	
[12033-49-7]	6.0×10^{-1}		Rudich et al. [1996]	M	16
	see note		Seinfeld and Pandis [1998]	M	17
	1.8		Thomas et al. [1998]	\mathbf{M}	

		$-\mathrm{d} \ln k_{\mathrm{H}}$		1	I
substance	$rac{k_{ m H}^{\ominus}}{ m [M/atm]}$	$\frac{\frac{-\operatorname{d} \operatorname{II} \kappa_{\mathrm{H}}}{\operatorname{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
dinitrogen trioxide	6.0×10^{-1}		Schwartz and White [1981]	L	
N_2O_3	2.6×10^{1}		Durham et al. [1981]	$^{\mathrm{C}}$	
[10544-73-7]					
dinitrogen tetroxide	1.4		Schwartz and White [1981]	L	
N_2O_4	1.6		Durham et al. [1981]	С	
[10544-72-6]					
dinitrogen pentoxide	∞		Jacob [1986]	E	18
N_2O_5	2.1	3400	Fried et al. [1994]	E	19
(nitric anhydride)	∞		Sander and Crutzen [1996]	E	18
[10102-03-1]					
nitrous acid	4.9×10^{1}	4800	Schwartz and White [1981]	L	
HNO_2	3.7×10^{1}		Durham et al. [1981]	С	
[7782-77-6]	4.9×10^{1}	4800	Chameides [1984]	\mathbf{T}	
	4.8×10^{1}	4700	Martin [1984]	\mathbf{T}	
	4.9×10^{1}	4900	Park and Lee [1988]	M	
	5.0×10^{1}	4900	Becker et al. [1996]	M	
nitric acid	2.1×10^{5}		Schwartz and White [1981]	Т	
HNO_3	8.9×10^{4}		Durham et al. [1981]	С	
[7697-37-2]	2.6×10^{6}	8700	Chameides [1984]	${f T}$	
[]	$3.5 \times 10^5 / K_{\rm A}$	8700	Hoffmann and Jacob [1984]	?	20, 4
	$2.4 \times 10^6 / K_{\rm A}$	8700	Brimblecombe and Clegg [1989]	Т	20, 21
	2.1×10^{5}	8700	Lelieveld and Crutzen [1991]	R	22
pernitric acid	2.0×10^4	0	Jacob et al. [1989]	С	
HNO ₄	1.0×10^{5}		Möller and Mauersberger [1992]	E	23
[26404-66-0]	1.2×10^4	6900	Régimbal and Mozurkewich [1997]	$^{-}$	
[4.0×10^{3}		Amels et al. [1996]	M	
		rine (F)	11///000 00 00 (1000)	1,1	
fluorine atom	2.1×10^{-2}	400	Berdnikov and Bazhin [1970]	Т	5
F	2.17/10	100	Berannot and Bashin [1010]	_	
[14762-94-8]					
hydrogen fluoride	$9.6/K_{ m A}$	7400	Brimblecombe and Clegg [1989]	Т	20, 21
HF	5.0/11 _A	1400	Drinioteconioc and Cicyg [1303]	_	20, 21
[7664-39-3]					
nitrogen trifluoride	7.9×10^{-4}	1900	Wilhelm et al. [1977]	L	
NF ₃	1.3~10	1300	**************************************		
[7783-54-2]					
dinitrogen tetrafluoride	8.5×10^{-4}	2500	Wilhelm et al. [1977]	L	
N_2F_4	0.9×10	2500	vrimeim et at. [1977]		
(tetrafluorohydrazine)					
[10036-47-2]					
[10030-47-2]					

substance	$k_{ m H}^{\ominus}$	$\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}$	reference	tymo	note
substance	$\overline{ m [M/atm]}$	[K]	reference	type	поте
	chlor	· /	7 . [1000]		
hydrogen chloride	1.9×10^{1}	9000	Loomis [1928]	X	1
HCl	$1.7 \times 10^5 / K_{\rm A}$		Loomis [1928]	X	1,20
[7647-01-0]	1.5×10^{3}		Chen et al. [1979]	X	1
	2.0×10^{1}		Graedel and Goldberg [1983]	$^{\mathrm{C}}$	
	1.1	2000	Marsh and McElroy [1985]	${ m T}$	
	2.5×10^{3}		Seinfeld [1986]	?	13
	$2.0 \times 10^6 / K_{\rm A}$	9000	Brimblecombe and Clegg [1989]	${ m T}$	20, 2
	1.9×10^{1}	600	Dean~[1992]	?	2
	$2.0 \times 10^6 / K_{\rm A}$	9000	$Wagman\ et\ al.\ [1982]$	${ m T}$	
hypochlorous acid	7.3×10^2		Holzwarth et al. [1984]	Μ	
HOCl	4.8×10^{2}		Hanson and Ravishankara [1991]	M	24
[7790-92-3]	9.3×10^{2}		Blatchley et al. [1992]	Μ	
	6.6×10^2	5900	Huthwelker et al. [1995]	L	
	2.6×10^{2}	5100	Wagman et al. [1982]	${ m T}$	
nitrosyl chloride	> 0.05	0100	Scheer et al. [1997]	M	
NOCl	<i>y</i> 0.00			111	
[2696-92-6]					
nitryl chloride	2.4×10^{-2}		Behnke et al. [1997]	E	25
ClNO ₂	4.6×10^{-2}			E	20
-	4.0×10		Frenzel et al. [1998]	Ŀ	
[13444-90-1]				Б	10
chlorine nitrate	∞		Sander and Crutzen [1996]	E	18
$CINO_3$					
[14545-72-3]					
molecular chlorine	see note		Kruis and May [1962]	?	26
Cl_2	9.1×10^{-2}	2500	Wilhelm et al. [1977]	L	
[7782-50-5]	6.2×10^{-2}	2800	Wagman et al. [1982]	Τ	
	9.3×10^{-2}	2300	Dean~[1992]	?	2
	6.3×10^{-2}	3200	Brian et al. [1962]	L	
	9.5×10^{-2}	2100	Lide and Frederikse [1995]	L	
	8.6×10^{-2}	2000	Kavanaugh and Trussell [1980]	X	3
dichlorine monoxide	1.7×10^{1}	1800	Wilhelm et al. [1977]	L	
Cl_2O	1.7×10^{1}	1700	Lide and Frederikse [1995]	${ m L}$	
[7791-21-1]					
chlorine dioxide	1.0	3300	Wilhelm et al. [1977]	L	
ClO ₂	1.0	3300	Lide and Frederikse [1995]	L	14
[10049-04-4]	8.5×10^{-1}	3400	Kavanaugh and Trussell [1980]	X	3
chlorine atom	1.5×10^{-2}	1500	Berdnikov and Bazhin [1970]	T	5
Cl Cl	2.0×10^{-1}	1900	Mozurkewich [1986]	${ m T}$	9
[22537-15-1]	2.0 \(10		1410241KeWiCii [1980]	1	
	0.4101	4000	II.1	3. AT	
chloramide	9.4×10^{1}	4800	Holzwarth et al. [1984]	Μ	
NH ₂ Cl					
[10599-90-3]	0 - 1				
dichloroamine	2.9×10^{1}	4200	Holzwarth et al. [1984]	Μ	
NHCl ₂					
(chlorimide)					
[3400-09-7]					
nitrogen trichloride	1.0×10^{-1}	4100	Holzwarth et al. [1984]	M	
NCl_3					
[10025-85-1]					

substance	$k_{ m H}^{\ominus}$	$\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}$	reference	type	note
	[M/atm]	[K]		0.1	
1 1 1 1		ine (Br)	D : 11 1 1 01 [1000]	TT.	20 21
hydrogen bromide	$1.3 \times 10^9 / K_{\rm A}$	10000	Brimblecombe and Clegg [1989]	Т	20, 21
HBr	7.2×10^{-1}	6100	Chameides and Stelson [1992]	С	27
[10035-10-6]	2.5×10^{1}	370	Dean [1992]	?	2
	$7.2 \times 10^8 / K_{\rm A}$	10000	Wagman et al. [1982]	Т	
hypobromous acid	$>1.9\times10^{3}$		Blatchley et al. [1992]	M	
HOBr	1.8		Mozurkewich [1995]	${ m T}$	28
[13517-11-8]	9.3×10^{1}		Vogt et al. [1996]	E	
	see note		<i>Fickert</i> [1998]	M	29
	6.1×10^3		Frenzel et al. [1998]	Ε	
nitryl bromide	3.0×10^{-1}		Frenzel et al. [1998]	\mathbf{E}	
$BrNO_2$					
[13536-70-4]					
bromine nitrate	∞		Sander and Crutzen [1996]	Ε	18
$BrNO_3$					
[40423-14-1]					
molecular bromine	7.9×10^{-1}	3600	Winkler [1899]	X	30
Br_2	7.1×10^{-1}	4100	Kelley and Tartar [1956]	M	
[7726-95-6]	9.7×10^{-1}		Jenkins and King [1965]	M	8
	8.0×10^{-1}	3900	Jenkins and King [1965]	R	
	6.9×10^{-1}		Hill et al. [1968]	M	
	7.3×10^{-1}	4000	Wagman et al. [1982]	${ m T}$	
	7.6×10^{-1}	4100	Dean [1992]	?	2
	1.8	3300	Dubik et al. [1987]	M	31
bromine chloride	4.2	3700	Dubik et al. [1987]	M	31
BrCl	1.1		see note	${ m T}$	32
[13863-41-7]	7.4×10^{-1}		see note	${f T}$	33
- -	5.2		Disselkamp et al. [1998]	M	34
	9.4×10^{-1}	5600	Bartlett and Margerum [1998]	M	
	5.9×10^{-1}		Frenzel et al. [1998]	\mathbf{E}	
bromine atom	3.4×10^{-2}	1800	Berdnikov and Bazhin [1970]	Т	5
Br	1.2		Mozurkewich [1986]	${ m T}$	
[10097-32-2]			. ,		

		. , , , ,			
substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
	L / 1	ine (I)			
hydrogen iodide	$2.5 \times 10^9 / K_{\rm A}$	9800	Brimblecombe and Clegg [1989]	T	20, 21
HI	$2.2{ imes}10^9/K_{ m A}$	9800	$Wagman\ et\ al.\ [1982]$	${ m T}$	
[10034-85-2]					
hypoiodous acid	$>4.5\times10^{1}$		Thompson and Zafiriou [1983]	Ε	
HOI	$<4.5 \times 10^{4}$		Thompson and Zafiriou [1983]	E	
[14332-21-9]	$>4.1\times10^{2}$		$Palmer\ et\ al.\ [1985]$	$^{\mathrm{C}}$	
molecular iodine	3.1	4600	Berdnikov and Bazhin [1970]	R	
I_2	3.3	4800	$Wagman\ et\ al.\ [1982]$	${ m T}$	
[7553-56-2]	1.1		Thompson and Zafiriou [1983]	$^{\mathrm{C}}$	35
	3.0	4400	$Palmer\ et\ al.\ [1985]$	R	
iodine atom	6.3×10^{-3}	2300	Berdnikov and Bazhin [1970]	Т	5
I	8.0×10^{-2}		Mozurkewich [1986]	${ m T}$	
[14362-44-8]					
iodine chloride	1.1×10^2		Wagman et al. [1982]	Т	
ICl					
[7790-99-0]					
iodine bromide	2.4×10^{1}		Wagman et al. [1982]	Т	
IBr					
[7789-33-5]					

substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
	. , .	ılfur (S)			
hydrogen sulfide	1.0×10^{-3}	2300	Loomis [1928]	X	1
$_{\mathrm{H_2S}}$	1.0×10^{-1}		Hine and Weimar [1965]	R	
[7783-06-4]	1.0×10^{-1}	2100	Wilhelm et al. [1977]	$_{ m L}$	
	1.0×10^{-1}	2100	Edwards et al. [1978]	$_{ m L}$	
	1.0×10^{-1}	2200	Carroll and Mather [1989]	$_{ m L}$	
	1.0×10^{-1}	2300	Dean [1992]	?	2
	1.0×10^{-1}	2000	Lide and Frederikse [1995]	$_{ m L}$	
	8.7×10^{-2}	2100	De Bruyn et al. [1995]	M	
	9.8×10^{-2}	2200	Kavanaugh and Trussell [1980]	X	3
sulfur dioxide	1.2	3200	Sillen and Martell [1964]	X	1
SO_2	1.2	3100	Hales and Sutter [1973]	$^{\mathrm{c}}$	
[7446-09-5]	1.1		Liss and Slater [1974]	c	
	1.2	3100	Smith and Martell [1976]	X	1
	1.4	2800	Wilhelm et al. [1977]	$_{ m L}$	
	1.2	3000	Edwards et al. [1978]	$_{ m L}$	
	1.2		Durham et al. [1981]	$^{\mathrm{C}}$	
	1.2	3100	Chameides [1984]	${ m T}$	
	1.2	3100	Hoffmann and Jacob [1984]	?	4
	1.2	3200	Jacob~[1986]	$^{\mathrm{C}}$	
	1.2	3100	Pandis and Seinfeld [1989]	$^{\mathrm{C}}$	
	1.5	2900	Dean [1992]	?	2
	1.2		Maahs~[1982]	X	11
	1.2	3200	Maahs~[1982]	X	1
	1.4	2900	Lide and Frederikse [1995]	${ m L}$	
	1.3	2800	Kavanaugh and Trussell [1980]	X	3
sulfur trioxide	∞		Sander and Crutzen [1996]	Е	18
SO_3					
[7446-11-9]					
sulfuric acid	see note		Gmitro and Vermeulen [1964]	M	36
H_2SO_4					
[7664-93-9]					
sulfur hexafluoride	2.4×10^{-4}	2400	Wilhelm et al. [1977]	L	
SF_6					
[2551-62-4]					

substance	$rac{k_{ m H}^{\ominus}}{ m [M/atm]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{\left[\mathrm{K}\right]}$	reference	type	note
	ra	re gases			
helium	3.7×10^{-4}	360	Morrison and Johnstone [1954]	Μ	37
Не	3.8×10^{-4}	92	Wilhelm et al. [1977]	$_{\rm L}$	
[7440-59-7]					
neon	4.5×10^{-4}	530	Morrison and Johnstone [1954]	Μ	37
Ne	4.5×10^{-4}	450	Wilhelm et al. [1977]	$_{ m L}$	
[7440-01-9]					
argon	1.4×10^{-3}	1100	Morrison and Johnstone [1954]	Μ	
Ar	1.4×10^{-3}	1500	Wilhelm et al. [1977]	$_{ m L}$	
[7440-37-1]			. ,		
krypton	2.4×10^{-3}	1500	Morrison and Johnstone [1954]	M	
Kr	2.5×10^{-3}	1900	Wilhelm et al. [1977]	$_{ m L}$	
[7439-90-9]			. ,		
xenon	4.3×10^{-3}	1900	Morrison and Johnstone [1954]	Μ	
Xe	4.3×10^{-3}	2200	Wilhelm et al. [1977]	L	
[7440-63-3]			. ,		
radon	9.3×10^{-3}	2600	Wilhelm et al. [1977]	L	
Rn			. ,		
[10043-92-2]					
	othe	r element	ts		
selenium hydride	8.4×10^{-2}	1900	Wilhelm et al. [1977]	L	
$_{1}^{2}$ Se			. ,		
[7783-07-5]					
phosphorus trihydride	8.1×10^{-3}	2000	Wilhelm et al. [1977]	L	
PH_3			. ,		
(phosphine)					
[7803-51-2]					
arsenic hydride	8.9×10^{-3}	2100	Wilhelm et al. [1977]	L	
AsH ₃					
(arsine)					
[7784-42-1]					
mercury	9.3×10^{-2}		Brimblecombe [1986]	?	38
Hg					
[7439-97-6]					

8 Data Table (Organic)

substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
	alkanes	(C and H	only)		
methane	9.2×10^{-3}		Butler and Ramchandani [1935]	V	
CH_4	1.4×10^{-3}		Hine and Weimar [1965]	R	
- -	9.7×10^{-4}		Liss and Slater [1974]	C	
	1.5×10^{-3}		Hine and Mookerjee [1975]	V	
	1.4×10^{-3}	1700	Wilhelm et al. [1977]	L	
	1.3×10^{-3}	1100	Mackay and Shiu [1981]	L	
	1.3×10^{-3}	1900	Dean [1992]	?	2
	1.4×10^{-3}	1600	Lide and Frederikse [1995]	L	14
	1.5×10^{-3}	1000	$Yaws \ and \ Yang \ [1992]$?	39
	1.3×10^{-3}	1800	Kavanaugh and Trussell [1980]	X	3
ethane	1.1×10^{-2}	1000	Butler and Ramchandani [1935]	V	
C_2H_6	2.0×10^{-3}		Hine and Mookerjee [1975]	V	
C_{2}^{11} 6	1.8×10^{-3}	2400	Wilhelm et al. [1977]	L	
	2.0×10^{-3}	2400	Mackay and Shiu [1981]		
	1.9×10^{-3}	2300	Lide and Frederikse [1995]	L	
	2.0×10^{-3}	2500		L ?	20
	2.0×10^{-3} 1.4×10^{-3}		Yaws and Yang [1992]		39
propane		9700	Hine and Mookerjee [1975]	V	
C_3H_8	1.5×10^{-3}	2700	Wilhelm et al. [1977]	L	
	1.4×10^{-3}	2500	Mackay and Shiu [1981]	L	
	1.5×10^{-3}	2700	Lide and Frederikse [1995]	L	90
1	1.4×10^{-3}		Yaws and Yang [1992]	?	39
butane	4.9×10^{-3}		Butler and Ramchandani [1935]	V	
C_4H_{10}	1.1×10^{-3}	2422	Hine and Mookerjee [1975]	V	
	1.2×10^{-3}	3100	Wilhelm et al. [1977]	L	
	1.1×10^{-3}		Mackay and Shiu [1981]	L	
	1.1×10^{-3}		Yaws and Yang [1992]	?	39
2-methylpropane	8.5×10^{-4}		Hine and Mookerjee [1975]	V	
$HC(CH_3)_3$	8.1×10^{-4}	2700	Wilhelm et al. [1977]	L	
(isobutane)	8.4×10^{-4}		Mackay and Shiu [1981]	L	
	8.7×10^{-4}		Yaws and Yang [1992]	?	39
dimethylpropane	4.6×10^{-4}		Hine and Mookerjee [1975]	V	
$C(CH_3)_4$	5.9×10^{-4}	3400	Wilhelm et al. [1977]	L	
(neopentane)	2.7×10^{-4}		Mackay and Shiu [1981]	L	
pentane	8.0×10^{-4}		Hine and Mookerjee [1975]	V	
C_5H_{12}	8.1×10^{-4}		Mackay and Shiu [1981]	L	
	7.9×10^{-4}		Yaws and Yang [1992]	?	39
2-methylbutane	7.3×10^{-4}		Mackay and Shiu [1981]	L	
C_5H_{12}	7.3×10^{-4}		$Yaws \ and \ Yang \ [1992]$?	39
(isopentane)	. 5=5				
2,2-dimethylpropane	4.7×10^{-4}		Yaws and Yang [1992]	?	39
C_5H_{12}	4.17.10		1 www with 1 wing [1992]		90
C ₅ H ₁₂					

substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{\left[\mathrm{K}\right]}$	reference	type	$not\epsilon$
hexane	5.5×10^{-4}		Hine and Mookerjee [1975]	V	
C_6H_{14}	6.0×10^{-4}		Mackay and Shiu [1981]	${ m L}$	
	7.7×10^{-4}		Yaws and Yang [1992]	?	39
	1.0×10^{-3}	7500	Ashworth et al. [1988]	X	3
2-methylpentane	5.8×10^{-4}		Hine and Mookerjee [1975]	V	
C_6H_{14}	6.0×10^{-4}		Mackay and Shiu [1981]	${ m L}$	
(isohexane)	5.8×10^{-4}		Yaws and Yang [1992]	?	39
[107-83-5]	1.3×10^{-1}	960	Ashworth et al. [1988]	X	3
3-methylpentane	5.9×10^{-4}		Hine and Mookerjee [1975]	V	
C_6H_{14}	5.9×10^{-4}		Mackay and Shiu [1981]	${ m L}$	
V 11	8.9×10^{-4}		Yaws and Yang [1992]	?	39
2,2-dimethylbutane	5.1×10^{-4}		Hine and Mookerjee [1975]	V	
$\mathrm{C_6H_{14}}$	5.9×10^{-4}		Mackay and Shiu [1981]	L	
-0 14	6.6×10^{-4}		Yaws and Yang [1992]	?	39
2,3-dimethylbutane	7.8×10^{-4}		Mackay and Shiu [1981]	L	
$ m C_6H_{14}$	7.7×10^{-4}		Yaws and Yang [1992]	?	39
00-14	,,,,,,				
heptane	4.9×10^{-4}		Hine and Mookerjee [1975]	V	
C_7H_{16}	4.4×10^{-4}		Mackay and Shiu [1981]	L	
	1.2×10^{-3}	3700	Hansen et al. [1995]	${ m L}$	
	3.7×10^{-4}		Yaws and Yang [1992]	?	39
	1.2×10^{-3}	3700	Hansen et al. [1993]	X	3
2-methylhexane	2.9×10^{-4}		Mackay and Shiu [1981]	L	
C_7H_{16}	1.9×10^{-3}	-3600	Hansen et al. [1995]	\mathbf{M}	40
	2.9×10^{-4}		Yaws and Yang [1992]	?	39
	1.9×10^{-3}	-3500	Hansen et al. [1993]	X	3
3-methylhexane	4.2×10^{-4}		Mackay and Shiu [1981]	L	
C_7H_{16}	3.2×10^{-4}		Yaws and Yang [1992]	?	39
2,2-dimethylpentane	3.2×10^{-4}		Mackay and Shiu [1981]	L	
$\mathrm{C_{7}H_{16}}$	3.1×10^{-4}		Yaws and Yang [1992]	?	39
O71116	5.1 \ 10		$Taws\ ana\ Tany\ [1552]$	•	33
2,3-dimethylpentane	5.8×10^{-4}		Mackay and Shiu [1981]	L	
C_7H_{16}	5.8×10^{-4}		Yaws and Yang [1992]	?	39
2,4-dimethylpentane	3.2×10^{-4}		Hine and Mookerjee [1975]	V	
C_7H_{16}	3.4×10^{-4}		Mackay and Shiu [1981]	L	
	3.4×10^{-4}		Yaws and Yang [1992]	?	39
3,3-dimethylpentane	5.4×10^{-4}		Mackay and Shiu [1981]	L	
$\mathrm{C_{7}H_{16}}$	5.5×10^{-4}		Yaws and Yang [1992]	?	39
3-ethylpentane	3.9×10^{-4}		Yaws and Yang [1992]	?	39
C_7H_{16}	0.3 \ 10		1 wwo with 1 wity [1332]	•	99
. **					
2,2,3-trimethylbutane	4.1×10^{-4}		Yaws and Yang [1992]	?	39
C_7H_{16}					

substance	$rac{k_{ m H}^{\ominus}}{{ m [M/atm]}}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
octane	3.1×10^{-4}		Hine and Mookerjee [1975]	V	
C_8H_{18}	3.4×10^{-4}		Mackay and Shiu [1981]	${ m L}$	
	2.0×10^{-4}		Yaws and Yang [1992]	?	39
	2.9×10^{-3}	7800	Hansen et al. [1993]	X	3
2-methylheptane	2.7×10^{-4}		Hoff et al. [1993]	?	13
$\mathrm{C_8H_{18}}$	2.7×10^{-4}		Yaws and Yang [1992]	?	39
3-methylheptane	2.7×10^{-4}		Mackay and Shiu [1981]	L	
$\mathrm{C_8H_{18}}$	2.7×10^{-4}		Yaws and Yang [1992]	?	39
			3 []		
4-methylheptane	2.7×10^{-4}		Yaws and Yang [1992]	?	39
$\mathrm{C_8H_{18}}$					
00-10					
2,2-dimethylhexane	2.9×10^{-4}		Yaws and Yang [1992]	?	39
C_8H_{18}					
0,1110					
2,3-dimethylhexane	2.6×10^{-4}		Yaws and Yang [1992]	?	39
C_8H_{18}					
00-10					
2,4-dimethylhexane	2.8×10^{-4}		Yaws and Yang [1992]	?	39
C ₈ H ₁₈	2.07(10		1446 4114 14119 [1002]	•	30
081118					
2,5-dimethylhexane	3.0×10^{-4}		Yaws and Yang [1992]	?	39
C_8H_{18}	0.07(10		1446 4114 14119 [1002]	•	30
081118					
3,3-dimethylhexane	2.6×10^{-4}		Yaws and Yang [1992]	?	39
C_8H_{18}	2.07.10		1 a a c a a a a a a a a a a a a a a a a	•	30
00210					
3,4-dimethylhexane	2.4×10^{-4}		Yaws and Yang [1992]	?	39
C_8H_{18}	2.17.10		1 4 4 5 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	•	
C0110					
	1				

substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
3-ethylhexane	2.6×10^{-4}		Yaws and Yang [1992]	?	39
C_8H_{18}					
2,2,3-trimethylpentane	2.6×10^{-4}		Yaws and Yang [1992]	?	39
C_8H_{18}					
2,2,4-trimethylpentane	3.3×10^{-4}		Hine and Mookerjee [1975]	V	
C_8H_{18}	3.1×10^{-4}		Mackay and Shiu [1981]	L	
	3.0×10^{-4}		Yaws and Yang [1992]	?	39
2,3,3-trimethylpentane	2.4×10^{-4}		Yaws and Yang [1992]	?	39
C_8H_{18}					
2,3,4-trimethylpentane	5.3×10^{-4}		Mackay and Shiu [1981]	L	
$\mathrm{C_{8}H_{18}}$	5.7×10^{-4}		Yaws and Yang [1992]	?	39
3-ethyl-2-methylpentane	2.6×10^{-4}		Yaws and Yang [1992]	?	39
C_8H_{18}					
3-ethyl-3-methylpentane	2.3×10^{-4}		Yaws and Yang [1992]	?	39
C_8H_{18}					
2,2,3,3-tetramethylbutane	2.6×10^{-4}		Yaws and Yang [1992]	?	39
$\mathrm{C_8H_{18}}$					

substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
nonane	2.0×10^{-4}		Mackay and Shiu [1981]	L	
C_9H_{20}	1.7×10^{-4}		Yaws and Yang [1992]	?	39
	2.4×10^{-3}	210	Ashworth et al. [1988]	X	3
2-methyloctane	2.1×10^{-4}		Yaws and Yang [1992]	?	39
C_9H_{20}					
3-methyloctane	2.0×10^{-4}		Yaws and Yang [1992]	?	39
C_9H_{20}					
4-methyloctane	1.0×10^{-4}		Mackay and Shiu [1981]	L	
C_9H_{20}	1.0×10^{-4}		Yaws and Yang [1992]	?	39
2,3-dimethylheptane C_9H_{20}	1.9×10 ⁻⁴		Yaws and Yang [1992]	?	39
2,2-dimethylheptane C_9H_{20}	2.1×10^{-4}		Yaws and Yang [1992]	?	39
$2,4$ -dimethylheptane C_9H_{20}	2.1×10 ⁻⁴		Yaws and Yang [1992]	?	39
$2,5$ -dimethylheptane C_9H_{20}	2.0×10^{-4}		Yaws and Yang [1992]	?	39
2,6-dimethylheptane C_9H_{20}	2.1×10^{-4}		Yaws and Yang [1992]	?	39
$3,3$ -dimethylheptane C_9H_{20}	1.9×10^{-4}		Yaws and Yang [1992]	?	39
$3,4$ -dimethylheptane C_9H_{20}	1.8×10 ⁻⁴		Yaws and Yang [1992]	?	39
3,5-dimethylheptane C_9H_{20}	2.0×10^{-4}		Yaws and Yang [1992]	?	39
4,4-dimethylheptane C_9H_{20}	1.9×10^{-4}		Yaws and Yang [1992]	?	39
3-ethylheptane C_9H_{20}	1.9×10^{-4}		Yaws and Yang [1992]	?	39
4 -ethylheptane C_9H_{20}	1.9×10^{-4}		Yaws and Yang [1992]	?	39

substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
$2,2,3$ -trimethylhexane C_9H_{20}	1.9×10 ⁻⁴	[**]	Yaws and Yang [1992]	?	39
$2,2,4$ -trimethylhexane C_9H_{20}	2.1×10^{-4}		Yaws and Yang [1992]	?	39
2,2,5-trimethylhexane C_9H_{20}	$\begin{array}{c} 2.9 \times 10^{-4} \\ 1.9 \times 10^{-4} \end{array}$		Mackay and Shiu [1981] Yaws and Yang [1992]	L ?	39
$2,3,3$ -trimethylhexane C_9H_{20}	1.7×10^{-4}		Yaws and Yang [1992]	?	39
$2,3,4$ -trimethylhexane C_9H_{20}	1.8×10^{-4}		Yaws and Yang [1992]	?	39
$2,3,5$ -trimethylhexane C_9H_{20}	2.0×10^{-4}		Yaws and Yang [1992]	?	39
$2,4,4$ -trimethylhexane C_9H_{20}	1.9×10^{-4}		Yaws and Yang [1992]	?	39
$3,3,4$ -trimethylhexane C_9H_{20}	1.7×10^{-4}		Yaws and Yang [1992]	?	39
3-ethyl-2-methylhexane C_9H_{20}	1.9×10^{-4}		Yaws and Yang [1992]	?	39
4-ethyl-2-methylhexane C_9H_{20}	2.1×10^{-4}		Yaws and Yang [1992]	?	39
3-ethyl-3-methylhexane C_9H_{20}	1.7×10^{-4}		Yaws and Yang [1992]	?	39
3-ethyl-4-methylhexane C_9H_{20}	1.8×10^{-4}		Yaws and Yang [1992]	?	39
$2,2,3,3$ -tetramethylpentane C_9H_{20}	1.6×10^{-4}		Yaws and Yang [1992]	?	39
$2,2,3,4$ -tetramethylpentane C_9H_{20}	1.7×10^{-4}		Yaws and Yang [1992]	?	39
$2,2,4,4$ -tetramethylpentane C_9H_{20}	1.9×10^{-4}		Yaws and Yang [1992]	?	39
$2,3,3,4$ -tetramethylpentane C_9H_{20}	1.6×10^{-4}		Yaws and Yang [1992]	?	39

substance	$\kappa_{\rm H}$ d(1	$\frac{\ln k_{ m H}}{(T)}$ reference	type	note
3-ethyl-2,2-dimethylpentane C_9H_{20}	1.8×10 ⁻⁴	Yaws and Yang [1992]	?	39
3-ethyl-2,3-dimethylpentane C_9H_{20}	1.5×10 ⁻⁴	Yaws and Yang [1992]	?	39
3-ethyl-2,4-dimethylpentane C_9H_{20}	1.8×10 ⁻⁴	Yaws and Yang [1992]	?	39
$3,3$ -diethylpentane C_9H_{20}	1.5×10^{-4}	Yaws and Yang [1992]	?	39
decane $C_{10}H_{22}$	$\begin{array}{c} 1.4 \times 10^{-4} \\ 2.1 \times 10^{-4} \end{array}$	Mackay and Shiu [1981] Yaws and Yang [1992]	L ?	39
2-methylnonane $C_{10}H_{22}$	1.8×10^{-4}	Yaws and Yang [1992]	?	39
3-methylnonane $C_{10}H_{22}$	1.7×10^{-4}	Yaws and Yang [1992]	?	39
4-methylnonane $C_{10}H_{22}$	1.7×10^{-4}	Yaws and Yang [1992]	?	39
5-methylnonane $C_{10}H_{22}$	1.7×10^{-4}	Yaws and Yang [1992]	?	39
$2,2$ -dimethyloctane $C_{10}H_{22}$	1.7×10^{-4}	Yaws and Yang [1992]	?	39
2,3-dimethyloctane $C_{10}H_{22}$	1.5×10 ⁻⁴	Yaws and Yang [1992]	?	39
$_{2,4}$ -dimethyloctane $_{10}H_{22}$	1.7×10 ⁻⁴	Yaws and Yang [1992]	?	39
2,5-dimethyloctane $C_{10}H_{22}$	1.6×10^{-4}	Yaws and Yang [1992]	?	39
$_{2,6\text{-dimethyloctane}}$ $_{C_{10}H_{22}}$	1.6×10^{-4}	Yaws and Yang [1992]	?	39

substance	$rac{k_{ m H}^{\ominus}}{ m [M/atm]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
2,7-dimethyloctane $C_{10}H_{22}$	1.7×10 ⁻⁴		Yaws and Yang [1992]	?	39
3,3-dimethyloctane $C_{10}H_{22}$	1.5×10 ⁻⁴		Yaws and Yang [1992]	?	39
3,4-dimethyloctane $C_{10}H_{22}$	1.5×10 ⁻⁴		Yaws and Yang [1992]	?	39
3,5-dimethyloctane $C_{10}H_{22}$	1.6×10 ⁻⁴		Yaws and Yang [1992]	?	39
3,6-dimethyloctane $C_{10}H_{22}$	1.6×10 ⁻⁴		Yaws and Yang [1992]	?	39
4,4-dimethyloctane $C_{10}H_{22}$	1.5×10 ⁻⁴		Yaws and Yang [1992]	?	39
4,5-dimethyloctane $C_{10}H_{22}$	1.5×10 ⁻⁴		Yaws and Yang [1992]	?	39
3-ethyloctane $C_{10}H_{22}$	1.6×10 ⁻⁴		Yaws and Yang [1992]	?	39
4-ethyloctane $C_{10}H_{22}$	1.6×10 ⁻⁴		Yaws and Yang [1992]	?	39
$2,2,3$ -trimethylheptane $C_{10}H_{22}$	1.5×10 ⁻⁴		Yaws and Yang [1992]	?	39
$2,2,4$ -trimethylheptane $C_{10}H_{22}$	1.6×10 ⁻⁴		Yaws and Yang [1992]	?	39

substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
2,2,5-trimethylheptane $\rm C_{10}H_{22}$	1.6×10 ⁻⁴		Yaws and Yang [1992]	?	39
$2,2,6$ -trimethylheptane $C_{10}H_{22}$	1.7×10 ⁻⁴		Yaws and Yang [1992]	?	39
$2,3,3$ -trimethylheptane $C_{10}H_{22}$	1.4×10^{-4}		Yaws and Yang [1992]	?	39
$2,3,4$ -trimethylheptane $C_{10}H_{22}$	1.4×10^{-4}		Yaws and Yang [1992]	?	39
$2,3,5$ -trimethylheptane $C_{10}H_{22}$	1.4×10^{-4}		Yaws and Yang [1992]	?	39
$2,3,6$ -trimethylheptane $C_{10}H_{22}$	1.6×10^{-4}		Yaws and Yang [1992]	?	39
$2,4,4$ -trimethylheptane $C_{10}H_{22}$	1.5×10^{-4}		Yaws and Yang [1992]	?	39
$2,4,5$ -trimethylheptane $C_{10}H_{22}$	1.5×10^{-4}		Yaws and Yang [1992]	?	39
$2,4,6$ -trimethylheptane $C_{10}H_{22}$	1.8×10 ⁻⁴		Yaws and Yang [1992]	?	39
$2,5,5$ -trimethylheptane $C_{10}H_{22}$	1.5×10^{-4}		Yaws and Yang [1992]	?	39
$3,3,4$ -trimethylheptane $C_{10}H_{22}$	1.3×10 ⁻⁴		Yaws and Yang [1992]	?	39
$3,3,5$ -trimethylheptane $C_{10}H_{22}$	1.4×10^{-4}		Yaws and Yang [1992]	?	39
$3,4,4$ -trimethylheptane $C_{10}H_{22}$	1.3×10 ⁻⁴		Yaws and Yang [1992]	?	39
$3,4,5$ -trimethylheptane $C_{10}H_{22}$	1.4×10 ⁻⁴		Yaws and Yang [1992]	?	39

substance	$rac{k_{ m H}^{\ominus}}{ m [M/atm]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
3-ethyl-2-methylheptane $C_{10}H_{22}$	1.5×10^{-4}	r 1	Yaws and Yang [1992]	?	39
4-ethyl-2-methylheptane $\rm C_{10}H_{22}$	1.6×10 ⁻⁴		Yaws and Yang [1992]	?	39
5-ethyl-2-methylheptane $\mathrm{C}_{10}\mathrm{H}_{22}$	1.6×10 ⁻⁴		Yaws and Yang [1992]	?	39
3-ethyl-3-methylheptane $C_{10}H_{22}$	1.4×10 ⁻⁴		Yaws and Yang [1992]	?	39
4-ethyl-3-methylheptane $C_{10}H_{22}$	1.4×10^{-4}		Yaws and Yang [1992]	?	39
3-ethyl-5-methylheptane $C_{10}H_{22}$	1.6×10^{-4}		Yaws and Yang [1992]	?	39
3-ethyl-4-methylheptane $C_{10}H_{22}$	1.4×10 ⁻⁴		Yaws and Yang [1992]	?	39
4-ethyl-4-methylheptane $C_{10}H_{22}$	1.4×10 ⁻⁴		Yaws and Yang [1992]	?	39
4-propylheptane $C_{10}H_{22}$	1.7×10 ⁻⁴		Yaws and Yang [1992]	?	39
4-isopropylheptane $C_{10}H_{22}$	1.5×10^{-4}		Yaws and Yang [1992]	?	39
$2,2,3,3$ -tetramethylhexane $C_{10}H_{22}$	1.2×10 ⁻⁴		Yaws and Yang [1992]	?	39
$2,2,3,4$ -tetramethylhexane $C_{10}H_{22}$	1.2×10 ⁻⁴		Yaws and Yang [1992]	?	39

substance	$rac{k_{ m H}^{\ominus}}{ m [M/atm]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
2,2,3,5-tetramethylhexane $C_{10}H_{22}$	1.6×10 ⁻⁴		Yaws and Yang [1992]	?	39
$2,2,4,4$ -tetramethylhexane $C_{10}H_{22}$	1.2×10^{-4}		Yaws and Yang [1992]	?	39
$2,2,4,5$ -tetramethylhexane $C_{10}H_{22}$	1.5×10 ⁻⁴		Yaws and Yang [1992]	?	39
$2,2,5,5$ -tetramethylhexane $C_{10}H_{22}$	1.8×10 ⁻⁴		Yaws and Yang [1992]	?	39
$2,3,3,4$ -tetramethylhexane $C_{10}H_{22}$	1.2×10 ⁻⁴		Yaws and Yang [1992]	?	39
$2,3,3,5$ -tetramethylhexane $C_{10}H_{22}$	1.4×10 ⁻⁴		Yaws and Yang [1992]	?	39
$2,3,4,4$ -tetramethylhexane $C_{10}H_{22}$	1.2×10 ⁻⁴		Yaws and Yang [1992]	?	39
$2,3,4,5$ -tetramethylhexane $C_{10}H_{22}$	1.4×10 ⁻⁴		Yaws and Yang [1992]	?	39
$3,3,4,4$ -tetramethylhexane $C_{10}H_{22}$	1.0×10^{-4}		Yaws and Yang [1992]	?	39
3-ethyl-2,2-dimethylhexane $C_{10}H_{22}$	1.4×10 ⁻⁴		Yaws and Yang [1992]	?	39
4-ethyl-2,2-dimethylhexane $C_{10}H_{22}$	1.6×10^{-4}		Yaws and Yang [1992]	?	39
3-ethyl-2,3-dimethylhexane $C_{10}H_{22}$	1.3×10^{-4}		Yaws and Yang [1992]	?	39
4-ethyl-2,3-dimethylhexane $\rm C_{10}H_{22}$	1.4×10 ⁻⁴		Yaws and Yang [1992]	?	39
3-ethyl-2,4-dimethylhexane $C_{10}H_{22}$	1.4×10 ⁻⁴		Yaws and Yang [1992]	?	39
4-ethyl-2,4-dimethylhexane $C_{10}H_{22}$	1.3×10 ⁻⁴		Yaws and Yang [1992]	?	39
3-ethyl-2,5-dimethylhexane $C_{10}H_{22}$	1.5×10^{-4}		Yaws and Yang [1992]	?	39

substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
4-ethyl-3,3-dimethylhexane $C_{10}H_{22}$	1.3×10 ⁻⁴		Yaws and Yang [1992]	?	39
3-ethyl-3,4-dimethylhexane $C_{10}H_{22}$	1.3×10^{-4}		Yaws and Yang [1992]	?	39
3,3-diethylhexane $C_{10}H_{22}$	1.3×10 ⁻⁴		Yaws and Yang [1992]	?	39
$_{3,4}$ -diethylhexane $_{10}\mathrm{H}_{22}$	1.4×10^{-4}		Yaws and Yang [1992]	?	39
3-isopropyl-2-methylhexane $C_{10}H_{22}$	1.1×10^{-4}		Yaws and Yang [1992]	?	39
$2,2,3,3,4$ -pentamethylpentane $C_{10}H_{22}$	1.0×10^{-4}		Yaws and Yang [1992]	?	39
$2,2,3,4,4$ -pentamethylpentane $C_{10}H_{22}$	1.0×10 ⁻⁴		Yaws and Yang [1992]	?	39
3-ethyl-2,2,3-trimethylpentane $\rm C_{10}H_{22}$	1.0×10^{-4}		Yaws and Yang [1992]	?	39
3-ethyl-2,2,4-trimethylpentane $C_{10}H_{22}$	1.3×10 ⁻⁴		Yaws and Yang [1992]	?	39
3-ethyl-2,3,4-trimethylpentane $C_{10}H_{22}$	1.1×10^{-4}		Yaws and Yang [1992]	?	39
3,3-diethyl-2-methylpentane $C_{10}H_{22}$	1.1×10 ⁻⁴		Yaws and Yang [1992]	?	39
2,4-dimethyl-3-isopropylpentane $C_{10}H_{22}$	1.3×10 ⁻⁴		Yaws and Yang [1992]	?	39

substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\mathrm{d} \ln k_{\mathrm{H}}}{(1/T)}$ reference [K]	type	note
undecane	5.5×10^{-5}	Mackay and Shiu [1981]	L	
$C_{11}H_{24}$	5.5×10^{-4}	Yaws and Yang [1992]	?	39
dodecane	1.4×10^{-4}	Mackay and Shiu [1981]	L	
$C_{12}H_{26}$	1.4×10^{-4}	Yaws and Yang [1992]	?	39
tridecane	4.3×10^{-4}	Yaws and Yang [1992]	?	39
$C_{13}H_{28}$				
tetradecane	8.8×10^{-4}	Yaws and Yang [1992]	?	39
$C_{14}H_{30}$				
pentadecane	2.1×10^{-3}	Yaws and Yang [1992]	?	39
$C_{15}H_{32}$				
hexadecane	4.3×10^{-3}	Yaws and Yang [1992]	?	39
$C_{16}H_{34}$				
heptadecane	1.8×10^{-2}	Yaws and Yang [1992]	?	39
$C_{17}H_{36}$				
octadecane	1.1×10^{-1}	Yaws and Yang [1992]	?	39
$C_{18}H_{38}$				
nonadecane	3.4×10^{-1}	Yaws and Yang [1992]	?	39
$C_{19}H_{40}$				
eicosane	3.1	Yaws and Yang [1992]	?	39
$C_{20}H_{42}$				

substance	$\frac{k_{ m H}^{\ominus}}{}$	$\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}$	reference	type	note
	[M/atm] cycloalkanes	[K] s (C and F	H only)		
cyclopropane	$\frac{\text{cycloarkanes}}{1.1 \times 10^{-2}}$	1700	Wilhelm et al. [1977]	L	
C_3H_6	1.1×10^{-2} 1.3×10^{-2}	1700	Yaws and Yang [1992]	?	39, 41
C3116	1.5×10		1 aws and 1 ang [1992]		55, 4.
cyclopentane	5.4×10^{-3}		Hine and Mookerjee [1975]	V	
C_5H_{10}	5.5×10^{-3}		Mackay and Shiu [1981]	${ m L}$	
	6.6×10^{-3}	3400	Hansen et al. [1995]	\mathbf{M}	
	5.4×10^{-3}		Yaws and Yang [1992]	?	39
	6.6×10^{-3}	3300	Hansen et al. [1993]	X	3
cyclohexane	5.1×10^{-3}		Hine and Mookerjee [1975]	V	
C_6H_{12}	5.6×10^{-3}		Mackay and Shiu [1981]	L	
	5.2×10^{-3}		Yaws and Yang [1992]	?	39
	5.6×10^{-3}	3200	Ashworth et al. [1988]	X	3
	6.3×10^{-3}	710	USEPA [1982]	X	3
cycloheptane	1.6×10^{-1}		Hoff et al. [1993]	?	13
$\mathrm{C_7H_{14}}$	1.1×10^{-2}		Yaws and Yang [1992]	?	39
cyclooctane	9.9×10^{-3}		Hoff et al. [1993]	?	13
C_8H_{16}	9.6×10^{-3}		Yaws and Yang [1992]	?	39
methylcyclopentane	2.8×10^{-3}		Hine and Mookerjee [1975]	V	
$C_5H_9CH_3$	2.8×10^{-3}		Mackay and Shiu [1981]	L	
051190113	2.8×10^{-3}		Yaws and Yang [1992]	?	39
methylcyclohexane	2.3×10^{-3}		Hine and Mookerjee [1975]	V	
$C_6H_{11}CH_3$	2.5×10^{-3}		Mackay and Shiu [1981]	L	
	9.7×10^{-3}	9400	Hansen et al. [1995]	M	
	2.3×10^{-3}	0 100	Yaws and Yang [1992]	?	39
	9.4×10^{-3}	9100	Hansen et al. [1993]	X	3
cis-1,2-dimethylcyclohexane	2.8×10^{-3}	0 - 0 0	Hine and Mookerjee [1975]	V	
$C_6H_{10}(CH_3)_2$	2.8×10^{-3}		Mackay and Shiu [1981]	L	
010(03/2	2.8×10^{-3}		Yaws and Yang [1992]	?	39
trans-1,2-dimethylcyclohexane	2.1×10^{-3}		Yaws and Yang [1992]	?	39
$\mathrm{C_6H_{10}(CH_3)_2}$					
trans-1,4-dimethylcyclohexane	1.1×10^{-3}		Mackay and Shiu [1981]	L	
$C_6H_{10}(CH_3)_2$	1.1×10^{-3}		Yaws and Yang [1992]	?	39
C ₆ H ₁₀ (CH ₃) ₂	1.1×10		$[1aws\ ana\ Tany\ [1992]\]$	•	39
1,1,3-trimethylcyclopentane	6.4×10^{-4}		Mackay and Shiu [1981]	L	
$C_5H_7(CH_3)_3$					
propylcyclopentane	1.1×10^{-3}		Mackay and Shiu [1981]	L	
$\mathrm{C}_{5}\mathrm{H}_{9}\mathrm{C}_{3}\mathrm{H}_{7}$	1.1×10^{-3}		Yaws and Yang [1992]	?	39
~ 59 ~ 51			1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	.	50
pentylcyclopentane	5.5×10^{-4}		Mackay and Shiu [1981]	L	
$\mathrm{C_5H_9C_5H_{11}}$	5.5×10^{-4}		Yaws and Yang [1992]	?	39
decahydronaphthalene	7.3×10^{-3}	4100	Ashworth et al. [1988]	X	3
$\mathrm{C}_{10}\mathrm{H}_{18}$			1		
(decalin)					
[91-17-8]					

substance	$\frac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
alip	hatic alkenes and o		es (C and H only)		
ethene	4.9×10^{-3}		Loomis [1928]	X	1
C_2H_4	4.7×10^{-3}		Hine and Mookerjee [1975]	V	
(ethylene)	4.7×10^{-3}	1800	Wilhelm et al. [1977]	$_{ m L}$	
,	4.7×10^{-3}		Mackay and Shiu [1981]	$_{ m L}$	
	4.9×10^{-3}		Seinfeld [1986]	?	13
	4.8×10^{-3}		Yaws and Yang [1992]	?	39
propene	4.8×10^{-3}		Hine and Mookerjee [1975]	V	
C_3H_6	7.4×10^{-3}	3400	Wilhelm et al. [1977]	L	
(propylene)	4.8×10^{-3}		Mackay and Shiu [1981]	L	
	4.8×10^{-3}		Yaws and Yang [1992]	?	39
1-butene	4.0×10^{-3}		Hine and Mookerjee [1975]	V	
C_4H_8	1.3×10^{-2}	6400	Wilhelm et al. [1977]	L	
	1.4×10^{-3}		Mackay and Shiu [1981]	L	
	4.0×10^{-3}		Yaws and Yang [1992]	?	39
cis-2-butene	4.3×10^{-3}		Irrmann [1965]	X	42
C_4H_8					
trans-2-butene	4.4×10^{-3}		<i>Irrmann</i> [1965]	X	42
C_4H_8					
2-methylpropene	4.7×10^{-3}		Hine and Mookerjee [1975]	V	
C_4H_8	5.7×10^{-3}	3000	Wilhelm et al. [1977]	L	
(isobutene)	1.6×10^{-3}		Mackay and Shiu [1981]	L	
	4.8×10^{-3}		Yaws and Yang [1992]	?	39
1-pentene	2.5×10^{-3}		Hine and Mookerjee [1975]	V	
C_5H_{10}	2.5×10^{-3}		Mackay and Shiu [1981]	L	
	2.5×10^{-3}		Yaws and Yang [1992]	?	39
cis-2-pentene	4.4×10^{-3}		Mackay and Shiu [1981]	L	
$\mathrm{C_5H_{10}}$	4.4×10^{-3}		Yaws and Yang [1992]	?	39
trans-2-pentene	4.3×10^{-3}		Hine and Mookerjee [1975]	V	
C_5H_{10}	4.3×10^{-3}		Yaws and Yang [1992]	?	39
2-methyl-2-butene	4.5×10^{-3}		Hine and Mookerjee [1975]	V	
C_5H_{10}					
3-methyl-1-butene	1.9×10^{-3}		Hine and Mookerjee [1975]	V	
C_5H_{10}	1.9×10^{-3}		Mackay and Shiu [1981]	L	
	1.9×10^{-3}		Yaws and Yang [1992]	?	39

substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
1-hexene	2.4×10^{-3}		Hine and Mookerjee [1975]	V	
C_6H_{12}	2.4×10^{-3}		Mackay and Shiu [1981]	L	
·	3.3×10^{-3}		Yaws and Yang [1992]	?	39
2-methyl-1-pentene	3.6×10^{-3}		Mackay and Shiu [1981]	L	
$\mathrm{C_6H_{12}}$	3.6×10^{-3}		Yaws and Yang [1992]	?	39
4-methyl-1-pentene	1.6×10^{-3}		Hine and Mookerjee [1975]	V	
C_6H_{12}	1.6×10^{-3}		Mackay and Shiu [1981]	L	
	1.6×10^{-3}		Yaws and Yang [1992]	?	39
1 -heptene C_7H_{14}	2.5×10^{-3}		Yaws and Yang [1992]	?	39
trans-2-heptene	2.5×10^{-3}		Hine and Mookerjee [1975]	V	
C_7H_{14}	2.4×10^{-3}		Mackay and Shiu [1981]	L	
1-octene	1.1×10^{-3}		Hine and Mookerjee [1975]	V	
C_8H_{16}	1.1×10^{-3}		Mackay and Shiu [1981]	L	
	1.6×10^{-3}		Yaws and Yang [1992]	?	39
1-nonene	1.2×10^{-3}		Yaws and Yang [1992]	?	39
C_9H_{18}					
1,3-butadiene	1.6×10^{-2}		Hine and Mookerjee [1975]	V	
C_4H_6	1.4×10^{-2}	4500	Wilhelm et al. [1977]	L	
	1.4×10^{-2}		Mackay and Shiu [1981]	L	
	1.4×10^{-2}		Yaws and Yang [1992]	?	39
methylbutadiene	1.3×10^{-2}		Hine and Mookerjee [1975]	V	
C_5H_8	1.3×10^{-2}		Mackay and Shiu [1981]	L	
(isoprene)	2.8×10^{-2}		Karl and Lindinger [1997]	M	43
	1.3×10^{-2}		Yaws and Yang [1992]	?	39
1,4-pentadiene	8.3×10^{-3}		Hine and Mookerjee [1975]	V	
C_5H_8	8.4×10^{-3}		Mackay and Shiu [1981]	L	
	8.5×10^{-3}		Yaws and Yang [1992]	?	39
1,5-hexadiene C_6H_{10}	7.4×10^{-3}		Hine and Mookerjee [1975]	V	
2,3-dimethyl-1,3-but adiene $\mathrm{C}_6\mathrm{H}_{10}$	2.1×10 ⁻²		Hine and Mookerjee [1975]	V	
cyclopentene	1.6×10^{-2}		Hine and Mookerjee [1975]	V	
$\mathrm{C_{5}H_{8}}$	1.5×10^{-2}		Yaws and Yang [1992]	?	39
cyclohexene	2.2×10^{-2}		Hine and Mookerjee [1975]	V	
C_6H_{10}	2.6×10^{-2}		Nielsen et al. [1994]	M	
	2.2×10^{-2}		Yaws and Yang [1992]	?	39
$\begin{array}{l} \text{1-methylcyclohexene} \\ \text{C}_6\text{H}_9\text{CH}_3 \end{array}$	1.3×10^{-2}		Hine and Mookerjee [1975]	V	
$1,3,5$ -cycloheptatriene C_7H_8	2.1×10^{-1}		Yaws and Yang [1992]	?	39

substance	$rac{k_{ m H}^{\ominus}}{ m [M/atm]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
	aliphatic alkyr		d H only)		
ethyne	$\frac{4.2 \times 10^{-2}}{4.2 \times 10^{-2}}$	105 (0 4110	Hine and Mookerjee [1975]	V	
C_2H_2	4.1×10^{-2}	1800	Wilhelm et al. [1977]	L	
(acetylene)	3.9×10^{-2}		Yaws and Yang [1992]	?	39
propyne	9.2×10^{-2}		Hine and Mookerjee [1975]	V	
$\mathrm{CH_{3}CCH}$	9.1×10^{-2}		Mackay and Shiu [1981]	L	
(methylacetylene)	9.4×10^{-2}		Yaws and Yang [1992]	?	39
	see note		Wilhelm et al. [1977]	?	44
1-butyne	5.4×10^{-2}		Hine and Mookerjee [1975]	V	
C_2H_5CCH	7.6×10^{-2}	1900	Wilhelm et al. [1977]	L	
(ethylacetylene)	5.3×10^{-2}		Mackay and Shiu [1981]	L	
	5.5×10^{-2}		Yaws and Yang [1992]	?	39
1-pentyne	4.0×10^{-2}		Hine and Mookerjee [1975]	V	
$\mathrm{C_{3}H_{7}CCH}$	4.1×10^{-2}		Mackay and Shiu [1981]	L	
	2.0×10^{-2}		Yaws and Yang [1992]	?	39
1-hexyne	2.5×10^{-2}		Hine and Mookerjee [1975]	V	
C_4H_9CCH	4.6×10^{-2}		Yaws and Yang [1992]	?	39
1-heptyne	1.5×10^{-2}		Hine and Mookerjee [1975]	V	
$C_5H_{11}CCH$	1.4×10^{-2}		Yaws and Yang [1992]	?	39
1-octyne	1.2×10^{-2}		Hine and Mookerjee [1975]	V	
$C_6H_{13}CCH$	1.2×10^{-2}		Yaws and Yang [1992]	?	39
1-nonyne	6.9×10^{-3}		Hine and Mookerjee [1975]	V	
$C_7H_{15}CCH$	7.0×10^{-3}		Yaws and Yang [1992]	?	39
3-buten-1-yne	3.8×10^{-2}	1700	Wilhelm et al. [1977]	L	
CH_2CHCCH (vinylacetylene)					
butadiyne C_4H_2 (biacetylene)	1.9×10 ⁻¹		Yaws and Yang [1992]	?	39

substance	$\frac{k_{\mathrm{H}}^{\ominus}}{}$	$\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}$	refer	rence	type	note
	[M/atm]	[K]			V 1	
	nuclear arc	matics (C	and H only)	40=e1	**	
benzene	1.8×10^{-1}		Hine and Mookerjee [1		V	
C ₆ H ₆	1.8×10^{-1}		Mackay et al. [1	-	M	
[71-43-2]	1.8×10^{-1}		Mackay et al. [1	-	Т	
	1.8×10^{-1}		Mackay and Shiu [1	,	L	, .
	1.8×10^{-1}	2000	Ettre et al. [1	-	X	45
	1.9×10^{-1}	3800	Robbins et al. [1	-	M	
	2.1×10^{-1}		Nielsen et al. [1	-	M	
	2.1×10^{-1}	3600	Dewulf et al. [1	- 1	\mathbf{M}	
	1.8×10^{-1}		Vitenberg et al. [1		\mathbf{M}	
	1.6×10^{-1}	4500	Wasik and Tsang [1	-	M	
	1.8×10^{-1}		Bohon and Claussen [1		V	
	1.7×10^{-1}		Hoff et al. [1	-	M	
	2.2×10^{-1}	4200	Hartkopf and Karger [1	-	M	
	1.8×10^{-1}		Karl and Lindinger [1	1997]	M	43
	1.8×10^{-1}		Yaws and Yang [1	1992]	?	39
	1.7×10^{-1}	3900	Cooling et al. [1	1992]	X	3
	1.8×10^{-1}	2200	USEPA [1	1982]	X	3
	1.9×10^{-1}	4300	Kavanaugh and Trussell [1	1980]	X	3
	1.2×10^{-1}	5300	Ervin et al. [1	1980]	X	3
	1.6×10^{-1}	4100	Staudinger and Roberts [1	1996]	${ m L}$	
	1.6×10^{-1}	4300	Bissonette et al. [1	1990]	X	3
	1.8×10^{-1}	3200	Ashworth et al. [1	1988]	X	3
	1.8×10^{-1}	4000	Leighton and Calo [1	1981]	X	3
	1.8×10^{-1}		Allen et al. [1	-	\mathbf{E}	
methylbenzene	1.5×10^{-1}		McAuliffe [1	1971]	X	45
$C_6H_5CH_3$	1.5×10^{-1}		Hine and Mookerjee [1	1975]	V	
(toluene)	1.5×10^{-1}		Mackay et al. [1	-	M	
[108-88-3]	1.5×10^{-1}		Mackay et al. [1		${ m T}$	
	1.5×10^{-1}		Mackay and Shiu [1	-	${ m L}$	
	1.6×10^{-1}		Kolb et al. [1	-	X	45
	1.6×10^{-1}		Ettre et al. [1	- 1	X	45
	1.5×10^{-1}	3400	Robbins et al. [1	- 1	\mathbf{M}	
	1.6×10^{-1}	0 200	Nielsen et al. [1	-	\mathbf{M}	
	1.8×10^{-1}	4100	Dewulf et al. [1	- 1	\mathbf{M}	
	1.9×10^{-1}		Vitenberg et al. [1	- 1	\mathbf{M}	
	1.7×10^{-1}	5900	Wasik and Tsang [1		M	
	1.8×10^{-1}	3000	Bohon and Claussen [1		V	
	1.3×10^{-1}		Hoff et al. [1	-	M	
	2.1×10^{-1}	4600	Hartkopf and Karger [1	-	M	
	1.6×10^{-1}	4000	Yaws and Yang [1	- 1	?	39
	1.5×10^{-1} 1.5×10^{-1}	1900	USEPA [1	- 1	X	3
	1.5×10 1.5×10^{-1}	4000	Staudinger and Roberts [1	-	L	J
	1.3×10 1.4×10^{-1}	5000	Bissonette et al. [1	- 1	X	ર
	1.4×10^{-1} 1.5×10^{-1}					3
	1.5×10^{-1} 1.5×10^{-1}	3000 3700	Ashworth et al. [1	- 1	X	3
	1.5×10^{-1} 1.5×10^{-1}	3700 4000	Leighton and Calo [1		X	3
		4900	Ervin et al. [1	- 1	X	3
	1.7×10^{-1}	8400	Lamarche and Droste [1	- 1	X	3
	1.6×10^{-1}		Allen et al. [1	1998]	Е	

substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
1,2-dimethylbenzene	1.9×10^{-1}		Hine and Mookerjee [1975]	V	
$C_6H_4(CH_3)_2$	2.0×10^{-1}		Mackay and Shiu [1981]	L	
(o-xylene)	1.9×10^{-1}	3400	Robbins et al. [1993]	M	
[95-47-6]	2.5×10^{-1}	4200	Dewulf et al. [1995]	M	
[55 11 5]	2.9×10^{-1}	5400	Wasik and Tsang [1970]	M	
	2.4×10^{-1}	0400	Yaws and Yang [1992]	?	39
	1.9×10^{-1}	3200	Ashworth et al. [1988]	X	3
	1.9×10^{-1}	4000	Staudinger and Roberts [1996]	L	0
	2.1×10^{-1}	5600	Bissonette et al. [1990]	X	3
1,3-dimethylbenzene	1.6×10^{-1}	0000	Hine and Mookerjee [1975]	V	-
$C_6H_4(CH_3)_2$	1.4×10^{-1}		Mackay and Shiu [1981]	L	
(m-xylene)	1.4×10 1.6×10^{-1}	4000	Dewulf et al. [1995]	M	
[108-38-3]	1.0×10 1.7×10^{-1}	4000	Bohon and Claussen [1951]	V	
[100-30-3]	1.7×10 1.5×10^{-1}		Yaws and Yang [1992]	?	39
	1.3×10 1.3×10^{-1}	3300	Ashworth et al. [1988]	X	39
	1.3×10 1.3×10^{-1}	4200			3
	1.3×10 1.4×10^{-1}		Staudinger and Roberts [1996]	L	3
1 4 1: 41 11		6000	Bissonette et al. [1990]	X	3
1,4-dimethylbenzene	1.6×10^{-1}		Hine and Mookerjee [1975]		
$C_6H_4(CH_3)_2$	1.4×10^{-1}	4500	Mackay and Shiu [1981]		
(p-xylene)	1.7×10^{-1}	4500	Dewulf et al. [1995]		
[106-42-3]	1.6×10^{-1}	F 400	Bohon and Claussen [1951]	1] L 5] M 1] V 0] M 2] ?	
	2.3×10^{-1}	5400	Wasik and Tsang [1970]		90
	1.6×10^{-1}	0000	Yaws and Yang [1992]		39
	1.2×10^{-1}	3000	Hansen et al. [1993]		3
	1.2×10^{-1}	5300	Bissonette et al. [1990]	X	3
	1.3×10^{-1}	3500	Ashworth et al. [1988]	X	3
	1.3×10^{-1}	3800	Staudinger and Roberts [1996]	L	
1,2,3-trimethylbenzene	3.1×10^{-1}		Mackay and Shiu [1981]	L	
$C_6H_3(CH_3)_3$ [526-73-8]	2.7×10^{-1}		Yaws and Yang [1992]	?	39
1,2,4-trimethylbenzene	1.7×10^{-1}		Hine and Mookerjee [1975]	V	
$C_6H_3(CH_3)_3$	1.7×10^{-1}		Mackay and Shiu [1981]	L	
[95-63-6]	1.5×10^{-1}	4300	Hansen et al. [1995]	\mathbf{M}	
	1.8×10^{-1}		Yaws and Yang [1992]	?	39
	1.5×10^{-1}	4200	Hansen et al. [1993]	X	3
1,3,5-trimethylbenzene	1.7×10^{-1}		Mackay and Shiu [1981]	L	
$C_6H_3(CH_3)_3$	1.2×10^{-1}		Yaws and Yang [1992]	?	39
(mesitylene)	1.4×10^{-1}	3600	Ashworth et al. [1988]	X	3
[108-67-8]					
1,2,4,5-tetramethylbenzene	4.0×10^{-2}		Mackay and Shiu [1981]	L	
$C_6H_2(CH_3)_4$	3.9×10^{-2}		Yaws and Yang [1992]	?	39
			J . 1		

substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	$not\epsilon$
ethylbenzene	1.2×10^{-1}	. ,	Hine and Mookerjee [1975]	V	
$C_6H_5C_2H_5$	1.2×10^{-1}		Mackay et al. [1979]	${ m M}$	
[100-41-4]	1.1×10^{-1}		Mackay et al. [1979]	${ m T}$	
	1.3×10^{-1}		Mackay and Shiu [1981]	${ m L}$	
	1.3×10^{-1}	4600	Robbins et al. [1993]	${ m M}$	
	1.5×10^{-1}	4600	Dewulf et al. [1995]	M	
	1.5×10^{-1}	1000	Bohon and Claussen [1951]	V	
	1.1×10^{-1}		Hoff et al. [1993]	?	13
	1.7×10^{-1}	6100	Hartkopf and Karger [1973]	$^{\cdot}$ M	10
	1.2×10^{-1}	0100	Yaws and Yang [1992]	?	39
	1.2×10^{-1}	5100	Staudinger and Roberts [1996]	L	33
	1.6×10^{-1}	1700	USEPA [1982]	X	3
	1.0×10 1.1×10^{-1}		L 3	X	3
	1.1×10 1.2×10^{-1}	5500	Bissonette et al. [1990]		
		5000	Ashworth et al. [1988]	X	3
	1.4×10^{-1}	5500	Ervin et al. [1980]	X	3
	1.3×10^{-1}		Allen et al. [1998]	Е	
propylbenzene	1.0×10^{-1}		Hine and Mookerjee [1975]	V	
$C_6H_5C_3H_7$	1.4×10^{-1}		Mackay and Shiu [1981]	L	
[103-65-1]	9.8×10^{-2}		Yaws and Yang [1992]	?	39
	9.1×10^{-2}	3700	Ashworth et al. [1988]	X	3
(2-propyl)-benzene	6.8×10^{-2}		Hine and Mookerjee [1975]	V	
$C_6H_5C_3H_7$	7.8×10^{-1}		Mackay and Shiu [1981]	L	
(isopropylbenzene, cumene)	6.9×10^{-2}		Hoff et al. [1993]	?	13
[98-82-8]	6.9×10^{-2}		Yaws and Yang [1992]	?	39
	8.8×10^{-2}	3200	Hansen et al. [1993]	X	3
1-ethyl-2-methylbenzene	2.4×10^{-1}		Mackay and Shiu [1981]	L	
$C_6H_4CH_3C_2H_5$	2.3×10^{-1}		Yaws and Yang [1992]	?	39
(o-ethyltoluene)					
[611-14-3]					
1-ethyl-4-methylbenzene	2.0×10^{-1}		Mackay and Shiu [1981]	L	
$C_6H_4CH_3C_2H_5$	2.0×10^{-1}		Yaws and Yang [1992]	?	39
(p-ethyltoluene)					
[622-96-8]					
butylbenzene	8.0×10^{-2}		Hine and Mookerjee [1975]	V	
$C_6H_5C_4H_9$	7.8×10^{-2}		Mackay and Shiu [1981]	L	
[104-51-8]	7.6×10^{-2}		Yaws and Yang [1992]	?	39
2-methylpropylbenzene	3.1×10^{-2}		Mackay and Shiu [1981]	L	- 00
$ m C_6H_5C_4H_9$	0.1 × 10		Mackay and Shia [1301]	L	
[538-93-2]					
sec-butylbenzene	8.7×10^{-2}		Hine and Mookerjee [1975]	V	
· ·	7.2×10^{-2}				
$C_6H_5C_4H_9$	1.2×10 -		Mackay and Shiu [1981]	L	
[135-98-8]	0 5. 10-2		Time 1 M 1 · [40FF]	T 7	
tert-butylbenzene	8.5×10^{-2}		Hine and Mookerjee [1975]	V	
$C_6H_5C_4H_9$	8.4×10^{-2}		Mackay and Shiu [1981]	L	
[98-06-6]				_	
1-isopropyl-4-methylbenzene	1.3×10^{-1}		Mackay and Shiu [1981]	L	
$C_6H_4CH_3C_3H_7$					

substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{\left[\mathrm{K}\right]}$	reference	type	note
pentylbenzene	1.7×10^{-1}		Mackay and Shiu [1981]	L	
$C_6H_5C_5H_{11}$	6.0×10^{-2}		Yaws and Yang [1992]	?	39
hexylbenzene $C_6H_5C_6H_{13}$	4.6×10^{-2}		Yaws and Yang [1992]	?	39
$C_6H_5C_5H_{11}$ (tert-amylbenzene)	5.5×10^{-2}		Hine and Mookerjee [1975]	V	
ethenylbenzene	3.7×10^{-1}		Yaws and Yang [1992]	?	39
C_8H_8	2.9×10^{-1}	4800	Bissonette et al. [1990]	X	3
(styrene)	3.8×10^{-1}	4200	USEPA [1982]	X	3
1-ethenyl-3-methylbenzene C_9H_{10} (m-methylstyrene)	2.6×10^{-1}		Yaws and Yang [1992]	?	39
1-ethenyl-4-methylbenzene C_9H_{10} (p-methylstyrene)	3.5×10^{-1}		Yaws and Yang [1992]	?	39

substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
terpene	. , ,	ar aromat	cics (C and H only)		
pinene $C_{10}H_{16}$ [127-91-3]	4.9×10^{-2}		Karl and Lindinger [1997]	М	43
naphthalene	2.4		Hine and Mookerjee [1975]	V	
$C_{10}H_8$	2.1		Mackay et al. [1979]	${ m M}$	
	2.1		Mackay et al. [1979]	${ m T}$	
	2.4		Mackay and Shiu [1981]	L	
	1.9		Bohon and Claussen [1951]	V	
	8.1×10^{-1}		Yaws and Yang [1992]	?	39
	2.0		Meylan and Howard [1991]	X	3
	2.1	3600	<i>USEPA</i> [1982]	X	3
1-methylnaphthalene	2.3		Mackay and Shiu [1981]	L	
$C_{10}H_7CH_3$	3.9		Mackay and Shiu [1981]	${ m M}$	
	2.7		Yaws and Yang [1992]	?	39
2-methylnaphthalene	2.5		Mackay and Shiu [1981]	L	
$\mathrm{C}_{10}\mathrm{H}_7\mathrm{CH}_3$	5.1×10^{-3}	1200	Hansen et al. [1995]	M	
	2.0		Yaws and Yang [1992]	?	39
	5.1×10^{-3}	1200	Hansen et al. [1993]	X	3
1-ethylnaphthalene	2.7		Mackay and Shiu [1981]	L	
$\mathrm{C}_{10}\mathrm{H}_7\mathrm{C}_2\mathrm{H}_5$	2.7		Yaws and Yang [1992]	?	39
2-ethylnaphthalene	1.2		Mackay and Shiu [1981]	L	
$\mathrm{C}_{10}\mathrm{H}_7\mathrm{C}_2\mathrm{H}_5$	1.6		Yaws and Yang [1992]	?	39
1,3-dimethylnaphthalene $C_{12}H_{12}$	1.4		Yaws and Yang [1992]	?	39
1,4-dimethylnaphthalene $C_{12}H_{12}$	2.0		Yaws and Yang [1992]	?	39
1,5-dimethylnaphthalene $C_{12}H_{12}$	1.6		Yaws and Yang [1992]	?	39
2,3-dimethylnaphthalene $C_{12}H_{12}$	1.7		Yaws and Yang [1992]	?	39
$2,6$ -dimethylnaphthalene $C_{12}H_{12}$	8.3×10 ⁻¹		Yaws and Yang [1992]	?	39
biphenyl	2.5		Mackay et al. [1979]	M	
$(C_6H_5)_2$	3.6		Mackay and Shiu [1981]	L	
	3.3		Mackay and Shiu [1981]	M	
	1.2		Bohon and Claussen [1951]	V	
	1.2		Yaws and Yang [1992]	?	39

substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
acenaphthene	1.3×10^{1}	. ,	Hine and Mookerjee [1975]	V	
$C_{12}H_{10}$	6.8		Mackay et al. [1979]	M	
[83-32-9]	4.2		Mackay and Shiu [1981]	${ m L}$	
	6.5×10^{-1}		Mackay and Shiu [1981]	M	
	4.1	2800	USEPA [1982]	X	3
	6.5		Meylan and Howard [1991]	X	3
phenanthrene	3.9×10^{1}		Hine and Mookerjee [1975]	V	
$C_{14}H_{10}$	2.5×10^{1}		Mackay et al. [1979]	M	
- 14 10	2.5×10^{1}		Mackay and Shiu [1981]	${ m L}$	
	2.8×10^{1}		Mackay and Shiu [1981]	M	
	2.8×10^{1}		Meylan and Howard [1991]	X	3
	9.5	4700	USEPA [1982]	X	3
2,3-benzindene	1.2×10^{1}	1,00	Mackay and Shiu [1981]	L	
$C_{13}H_{10}$	1.0×10^{1}		Mackay and Shiu [1981]	M	
(fluorene)	8.5	3000	USEPA [1982]	X	3
[86-73-7]	1.0×10^{1}	3000	Meylan and Howard [1991]	X	3
anthracene	5.6×10^{1}		Hine and Mookerjee [1975]	V	<u> </u>
			, ,		
$C_{14}H_{10}$	1.7×10^{1}		Mackay and Shiu [1981]	L	
[120-12-7]	1.4		Mackay and Shiu [1981]	M	0
	1.5×10^{1}	4000	Meylan and Howard [1991]	X	3
	3.5×10^{1}	4000	USEPA [1982]	X	3
pyrene	8.4×10^{1}		Mackay and Shiu [1981]	L	
$C_{16}H_{10}$	9.2×10^{1}		Mackay and Shiu [1981]	M	
[129-00-0]					
fluoranthene	4.6×10^{-1}		Mackay and Shiu [1981]	L	
$C_{16}H_{10}$	1.1×10^2	6900	tenHulscher et al. [1992]	X	3
[206-44-0]					
benzo[a]fluoranthene	1.7×10^{3}	5900	tenHulscher et al. [1992]	X	3
	9.7×10^{-1}	1900	USEPA [1982]	X	3
benzo[b]fluoranthene	1.5×10^{3}	5500	tenHulscher et al. [1992]	X	3
benzo[k]fluoranthene	1.7×10^3	5900	tenHulscher et al. [1992]	X	3
indeno[1,2,3-cd]pyrene	2.9×10^{3}	3600	tenHulscher et al. [1992]	X	3
benzo[a]pyrene	1.6×10^{-1}	110	USEPA [1982]	X	3
$C_{20}H_{12}$	2.2×10^{3}	4700	tenHulscher et al. [1992]	X	3
[50-32-8]					
benzo[ghi]perylene	3.0×10^{3}	3200	tenHulscher et al. [1992]	X	3
$C_{22}H_{12}$					
[191-24-2]					
1,2,3,4-tetrahydronaphthalene	5.3×10^{-1}	5400	Ashworth et al. [1988]	X	3
$C_{10}H_{12}$					
(tetralin)					
[119-64-2]					

substance	$\frac{k_{ m H}^{\ominus}}{2}$	$\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}$	reference	type	note
	[M/atm] alcohols (ROH	[K]	nd () only)	V £ -	
methanol	$\frac{\text{alcohols (ROII)}}{2.3 \times 10^2}$	f(0, n, a)	Butler et al. [1935]	M	46
CH ₃ OH	2.3×10^{2} 2.3×10^{2}		Burnett [1963]	M	40
C113O11	2.3×10^{2} 2.1×10^{2}		Timmermans $[1960]$		47
	2.1×10 2.2×10^2			M,X X	48
	2.2×10^{2} 2.2×10^{2}	5200	Gaffney and Senum [1984] Snider and Dawson [1985]	M M	48
	1.4×10^{2}	5200	Yaws and Yang [1992]	?	39
	1.4×10 1.6×10^2	5600	Schaffer and Daubert [1969]	X	
	2.2×10^{2}	5600	Meylan and Howard [1991]	X	3 3
-411	$\frac{2.2 \times 10^{2}}{1.9 \times 10^{2}}$, ,		<u> </u>
ethanol			Butler et al. [1935]	M	
C_2H_5OH	2.2×10^2		Burnett [1963]	M	47
	1.6×10^2		Timmermans [1960]	M,X	47
	2.0×10^{2}	6600	Gaffney and Senum [1984]	X	48
	1.9×10^2	6600	Snider and Dawson [1985]	M	
	2.3×10^2		Rohrschneider [1973]	M	90
	1.2×10^2	6.400	Yaws and Yang [1992]	?	39
	1.5×10^2	6400	Schaffer and Daubert [1969]	X	3
1	2.0×10^{2}		Meylan and Howard [1991]	X	3
1-propanol	1.4×10^2		Butler et al. [1935]	M	46
C ₃ H ₇ OH	1.6×10^2		Burnett [1963]	M	
[71-23-8]	1.3×10^2	7500	Snider and Dawson [1985]	M	
	1.5×10^2		Snider and Dawson [1985]	С	20
	1.1×10^2		Yaws and Yang [1992]	?	39
2-propanol	1.2×10^2		Butler et al. [1935]	M	
C ₃ H ₇ OH	1.7×10^2		Hine and Weimar [1965]	R	
(isopropanol)	1.3×10^2	7500	Snider and Dawson [1985]	M	
[67-63-0]	8.9×10^{1}		Yaws and Yang [1992]	?	39
1-butanol	1.2×10^2		Butler et al. [1935]	M	46
C_4H_9OH	1.1×10^2		Buttery et al. [1969]	M	
[71-36-3]	1.4×10^2		Burnett [1963]	${ m M}$	
	1.3×10^2	7200	Snider and Dawson [1985]	M	
	1.2×10^2		Snider and Dawson [1985]	С	
	5.4×10^{1}		Friant and Suffet [1979]	M	49
2-butanol	9.8×10^{1}		Butler et al. [1935]	${ m M}$	
$C_4H_{10}O$	9.8×10^{1}		Butler et al. [1935]	V	
(sec-butanol)	1.1×10^2	7300	Snider and Dawson [1985]	${ m M}$	
[78-92-2]					
2-methyl-1-propanol	8.4×10^{1}		Butler et al. [1935]	${ m M}$	
$C_4H_{10}O$	1.0×10^2		Snider and Dawson [1985]	M	
(isobutanol)					
[78-83-1]					
2-methyl-2-propanol	8.4×10^{1}		Butler et al. [1935]	M	
$C_4H_{10}O$	7.0×10^{1}	8300	Snider and Dawson [1985]	${f M}$	
(tert-butanol)	see note		Koga [1995]	\mathbf{M}	50
[75-65-0]					

substance	$rac{k_{ m H}^{\ominus}}{ m [M/atm]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{\left[\mathrm{K}\right]}$	reference	type	note
1-pentanol	7.7×10^{1}		Butler et al. [1935]	M	
$C_5H_{11}OH$	7.9×10^{1}		Butler et al. [1935]	V	
(amylalcohol)	8.2×10^{1}		Yaws and Yang [1992]	?	39
[71-41-0]	1				
2-pentanol	6.8×10^{1}		Butler et al. [1935]	M	
$C_5H_{12}O$					
(sec-pentanol)					
[6032-29-7]	7.1×10^{1}		D // / [109F]	λſ	
2-methyl-1-butanol	1.1×10 ⁻¹		Butler et al. [1935]	M	
$C_5H_{12}O$ (isopentanol)					
[137-32-6]					
2-methyl-2-butanol	7.3×10^{1}		Butler et al. [1935]	M	
$C_5H_{12}O$	7.5×10		Damer et at. [1330]	111	
(tert-pentanol)					
[75-85-4]					
2,2-dimethyl-1-propanol	5.0×10^{1}		Saxena and Hildemann [1996]	Е	51
$\mathrm{C_{5}H_{12}O}$					
[75-84-3]					
1-hexanol	6.5×10^{1}		Butler et al. [1935]	V	
$C_6H_{13}OH$	5.9×10^{1}		Buttery et al. [1969]	M	
[111-27-3]	6.5×10^{1}		Hine and Mookerjee [1975]	V	
	5.4×10^{1}		Yaws and Yang [1992]	?	39
3-hexanol	2.0×10^{1}		Hine and Mookerjee [1975]	V	
$C_6H_{14}O$					
[623-37-0]					
2-methyl-2-pentanol	3.1×10^{1}		Hine and Mookerjee [1975]	V	
$C_6H_{14}O$					
[590-36-3]	1				
4-methyl-2-pentanol	2.2×10^{1}		Hine and Mookerjee [1975]	V	
C ₆ H ₁₄ O					
[108-11-2]	2.0. 101		TT: 136 1 : [4088]	T 7	
2-methyl-3-pentanol	2.9×10^{1}		Hine and Mookerjee [1975]	V	
C ₆ H ₁₄ O					
[565-67-3] 2,3-dimethyl-2-butanol	3.0×10^{1}		Hine and Mookerjee [1975]	V	
$C_6H_{14}O$	3.0×10		11the ana Mookerjee [1915]	v	
[594-60-5]					
1-heptanol	5.3×10^{1}		Butler et al. [1935]	V	
C ₇ H ₁₅ OH	5.4×10^{1}		Hine and Mookerjee [1975]	V	
[110-70-6]	8.6×10^{1}		Yaws and Yang [1992]	?	39
1-octanol	4.1×10^{1}		Butler et al. [1935]	V	
C ₈ H ₁₇ OH	4.2×10^{1}		Hine and Mookerjee [1975]	V	
[111-87-5]	4.0×10^{1}		Buttery et al. [1969]	${\bf M}$	
	6.3×10^{1}		Yaws and Yang [1992]	?	39

substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
1-nonanol	6.1×10^{1}		Yaws and Yang [1992]	?	39
$\mathrm{C_{9}H_{19}OH}$					
1-decanol	3.7×10^{1}		Yaws and Yang [1992]	?	39
$\mathrm{C}_{10}\mathrm{H}_{21}\mathrm{OH}$					
1-dodecanol	1.1×10^{1}		Yaws and Yang [1992]	?	39
$\mathrm{C}_{12}\mathrm{H}_{25}\mathrm{OH}$					
1-tetradecanol	3.9×10^{5}		Yaws and Yang [1992]	?	39
$\mathrm{C}_{14}\mathrm{H}_{29}\mathrm{OH}$					
1-pentadecanol	3.0×10^{5}		Yaws and Yang [1992]	?	39
$\mathrm{C}_{15}\mathrm{H}_{31}\mathrm{OH}$					
1-hexadecanol	6.0×10^{1}		Yaws and Yang [1992]	?	39
$\mathrm{C}_{16}\mathrm{H}_{33}\mathrm{OH}$					
1-heptadecanol	1.2×10^3		Yaws and Yang [1992]	?	39
$\mathrm{C}_{17}\mathrm{H}_{35}\mathrm{OH}$					
1-octadecanol	9.2×10^{1}		Yaws and Yang [1992]	?	39, 52
$\mathrm{C}_{18}\mathrm{H}_{37}\mathrm{OH}$					
cyclohexanol	1.7×10^2		Hine and Mookerjee [1975]	V	
$C_6H_{11}OH$					
[108-93-0]					
2-propen-1-ol	2.0×10^{2}		Pierotti et al. [1957]	X	53
C_3H_5OH	1.8×10^2		Yaws and Yang [1992]	?	39
(allyl alcohol)	2.0×10^{2}		Meylan and Howard [1991]	X	3
[107-18-6]	4.4×10^2	7200	<i>USEPA</i> [1982]	X	3
2-buten-1-ol	3.0×10^2		Saxena and Hildemann [1996]	E	51
CH₃CHCHCH₂OH					
2-methyl-3-buten-2-ol	6.5×10^{1}		Iraci et al. [1998]	M	49
[115-18-4]					

substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
hydroxybenzene	4.9×10^{2}		Hine and Weimar [1965]	R	
C ₆ H ₅ OH	3.0×10^{3}		Gaffney and Senum [1984]	X	48
(phenol)	2.9×10^{3}	6800	Parsons et al. [1971]	M	54
(phonor)	7.8×10^{-2}	0000	Howe et al. [1987]	X	11
	1.9×10^{2}	3600	Janini and Quaddora [1986]	X	3
	3.0×10^{3}	5000	Meylan and Howard [1991]	X	3
	1.9×10^{3}	7300	USEPA [1982]	X	3
	1.6×10^{3}	1900	Tremp et al. [1993]	X	55,8
(hydroxymethyl)benzene	9.0×10^{3}		Saxena and Hildemann [1996]	E	51
C ₆ H ₅ CH ₂ OH	3.0 \(10		Sazena ana Imaemann [1550]	L	01
(benzyl alcohol)					
[100-51-6]					
4-tert-butylphenol	9.0×10^{2}	7700	Parsons et al. [1972]	M	56
$(CH_3)_3CC_6H_4OH$	3.0×10	1100	1 4/30/13 Ct 46. [13/2]	111	
(0113)3006114011					
1-hydroxy-2-methylbenzene	8.3×10^2		Gaffney and Senum [1984]	X	48
$HOC_6H_4CH_3$	8.3×10^{2}	7300	Parsons et al. [1972]	M	56
(2-cresol, o-cresol)	1.2×10^{3}		Yaws and Yang [1992]	?	39, 8
[95-48-7]	2.6×10^{2}	4600	Janini and Quaddora [1986]	X	3
	8.3×10^{2}		Meylan and Howard [1991]	X	3
1-hydroxy-3-methylbenzene	1.4×10^{3}		Yaws and Yang [1992]	?	39, 8
$HOC_6H_4CH_3$	6.3×10^2	7700	Janini and Quaddora [1986]	X	3
(3-cresol, m-cresol)			, ,		
[108-39-4]					
1-hydroxy-4-methylbenzene	1.0×10^{3}		Gaffney and Senum [1984]	X	48
$HOC_6H_4CH_3$	1.3×10^{3}	7200	Parsons et al. [1972]	M	56
(4-cresol, p-cresol)	2.5×10^{3}		Yaws and Yang [1992]	?	39, 8
[106-44-5]	1.1×10^{3}		Meylan and Howard [1991]	X	3
	5.3×10^{2}	4600	Janini and Quaddora [1986]	X	3
1,3-dimethyl-4-hydroxybenzene	1.9×10^{-1}	-3300	Ashworth et al. [1988]	X	3
$C_8H_{10}O$	4.1×10^{2}	6600	USEPA [1982]	X	3
(2,4-dimethylphenol)					
[105-67-9]					

substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
p	olyols (R(OH) _n)) (C, H, a	and () only)		
1,2-ethanediol	1.7×10^4		Butler and Ramchandani [1935]	M	57
$HO(CH_2)_2OH$	4.0×10^{6}		Bone et al. [1983]	\mathbf{M}	8
(ethylene glycol)					
[107-21-1]					
1,2-propanediol	$> 1.0 \times 10^5$		Saxena and Hildemann [1996]	Е	51
$C_3H_8O_2$	$< 6.0 \times 10^6$		Saxena and Hildemann [1996]	E	51
$1,3$ -propanediol $C_3H_8O_2$	9.2×10^{5}		Bone et al. [1983]	М	8
1,2,3-propanetriol	6.0×10^4		Butler and Ramchandani [1935]	M	57
$C_3H_8O_3$	$> 6.0 \times 10^8$		Saxena and Hildemann [1996]	\mathbf{E}	51
(glycerol)	$< 4.0 \times 10^{11}$		Saxena and Hildemann [1996]	Ε	51
1,3-butanediol $C_4H_{10}O_2$	5.0×10^{6}		Saxena and Hildemann [1996]	Е	51
1,4-butanediol	$> 1.0 \times 10^5$		Saxena and Hildemann [1996]	E	51
$\mathrm{C_4H_{10}O_2}$	$< 5.0 \times 10^6$		Saxena and Hildemann [1996]	E	51
2,3-butanediol	$> 4.0 \times 10^4$		Saxena and Hildemann [1996]	E	51
$\mathrm{C_4H_{10}O_2}$	$< 4.0 \times 10^{6}$		Saxena and Hildemann [1996]	E	51
$1,2,3$ -butanetriol $C_4H_{10}O_3$	3.0×10^{11}		Saxena and Hildemann [1996]	Е	51
$1,2,4$ -butanetriol $C_4H_{10}O_3$	3.0×10^{11}		Saxena and Hildemann [1996]	Е	51
$1,2,3,4$ -tetrahydroxy butane $C_4H_{10}O_4$	2.0×10^{16}		Saxena and Hildemann [1996]	Е	51
1,5-pentanediol $C_5H_{12}O_2$	4.0×10^{6}		Saxena and Hildemann [1996]	Е	51
2,3-pentanediol $C_5H_{12}O_2$	3.0×10^{6}		Saxena and Hildemann [1996]	Е	51
$2,4$ -pentanediol $C_5H_{12}O_2$	3.0×10^{6}		Saxena and Hildemann [1996]	Е	51
$1,2,3,4,5$ -pentahydroxy pentane $C_5H_{12}O_5$	9.0×10^{20}		Saxena and Hildemann [1996]	Е	51
1,6-hexanediol $C_6H_{14}O_2$	3.0×10^{6}		Saxena and Hildemann [1996]	Е	51

substance	$\frac{k_{\rm H}^{\ominus}}{[{\rm M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{\left[\mathrm{K}\right]}$	reference	type	note
2,5-hexanediol $C_6H_{14}O_2$	2.0×10^{6}	2 2	Saxena and Hildemann [1996]	Е	51
2-methyl-1,3-pentanediol $C_6H_{14}O_2$	3.0×10^{6}		Saxena and Hildemann [1996]	Е	51
2-methyl-2,4-pentanediol $C_6H_{14}O_2$	2.0×10^{6}		Saxena and Hildemann [1996]	Е	51
1,2,6-hexanetriol $C_6H_{14}O_3$	2.0×10^{11}		Saxena and Hildemann [1996]	Е	51
1,2,3,4,5,6-hexahydroxy hexane $C_6H_{14}O_6$	4.0×10^{25}		Saxena and Hildemann [1996]	Е	51
1,2,4,5-tetrahydroxy cyclohexane $C_6H_{12}O_4$	4.0×10^{16}		Saxena and Hildemann [1996]	Е	51
1,2,3,4,5,6-hexahydroxy cyclohexane $C_6H_{12}O_6$	1.0×10^{26}		Saxena and Hildemann [1996]	Е	51
1,7-heptanediol $C_7H_{16}O_2$	2.0×10^6		Saxena and Hildemann [1996]	Е	51
$_{2,4}$ -heptanediol $_{C_{7}H_{16}O_{2}}$	2.0×10^6		Saxena and Hildemann [1996]	Е	51
2,3-diethyl-1,3-propanediol ${\rm C_7H_{16}O_2}$	2.0×10^{6}		Saxena and Hildemann [1996]	Е	51
2-ethyl-1,3-hexanediol $C_8H_{18}O_2$	2.0×10^{6}		Saxena and Hildemann [1996]	Е	51
$1,2,3,4,5$ -pentahydroxy heptane $C_7H_{16}O_5$	5.0×10^{20}		Saxena and Hildemann [1996]	Е	51
$1,2,3,4,6$ -pentahydroxy heptane $C_7H_{16}O_5$	4.0×10^{20}		Saxena and Hildemann [1996]	Е	51
$1,2,3,5,7$ -pentahydroxy heptane $C_7H_{16}O_5$	5.0×10^{20}		Saxena and Hildemann [1996]	E	51
$1,2,3,4,5,6$ -hexahydroxy heptane $C_7H_{16}O_6$	3.0×10^{25}		Saxena and Hildemann [1996]	Е	51

substance	$k_{ m H}^{\ominus}$	$\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}$	reference	type	note
4.0.1111	[M/atm]	[K]	15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
1,2-dihydroxybenzene	4.6×10^3		Mackay et al. [1995]	V	
$C_6H_4(OH)_2$					
(pyrocatechol)					
[120-80-9]					
1,3-dihydroxybenzene	8.3×10^6	6300	USEPA [1982]	X	3
$C_6H_4(OH)_2$					
(resorcinol)					
[108-46-3]					
1,4-dihydroxybenzene	2.6×10^7		Meylan and Howard [1991]	X	58
$C_6H_4(OH)_2$	1.7×10^7		Meylan and Howard [1991]	X	58
(hydroquinone)	2.5×10^{7}		Mackay et al. [1995]	V	
[123-31-9]					
peroxides (ROC	OH) and peroxy	radicals	(ROO) (C, H, and O only)		
methyl hydroperoxide	3.0×10^{2}	5300	Lind and Kok [1994]	M	9
$\mathrm{CH_{3}OOH}$	3.1×10^2	5200	O'Sullivan et al. [1996]	M	
(methylperoxide)					
[3031-73-0]					
ethyl hydroperoxide	3.4×10^2	6000	O'Sullivan et al. [1996]	Μ	
C_2H_5OOH					
(ethylperoxide)					
hydroxymethyl hydroperoxide	1.7×10^{6}	9700	O'Sullivan et al. [1996]	M	
$HOCH_2OOH$	1.6×10^{6}	10000	Staffelbach and Kok [1993]	M	
(HMHP,HMP) [15932-89-5]	4.8×10^{5}	1500	Zhou and Lee [1992]	M	
bis(hydroxymethyl)peroxide	$>1.0\times10^{7}$		Staffelbach and Kok [1993]	M	
HOCH ₂ OOCH ₂ OH	4.5×10^{5}	8400	Zhou and Lee [1992]	M	
(BHMP)	4.5×10	0400	Znou una Lee [1992]	1/1	
[17088-73-2]					
-	C 0	5000	I 1 [100c]	T.	
methylperoxy radical	6.0	5600	Jacob [1986]	Е	59
$\mathrm{CH_{3}OO}$	2.0×10^{3}	6600	Lelieveld and Crutzen [1991]	Е	60
peroxyacetyl radical	< 0.1		Villalta et al. [1996]	M	
$\mathrm{CH_{3}C(O)O_{2}}$					
[36709-10-1]					

substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
a	ldehydes (RCE		, and O only)		
methanal	see note	(0, 11	Ledbury and Blair [1925]	M	61
НСНО	6.0×10^{3}		Gaffney and Senum [1984]	X	48
(formaldehyde)	7.0×10^{3}	6400	Chameides [1984]	$^{\mathrm{T}}$	10
[50-50-0]	see note	0100	Dong and Dasgupta [1986]	M	62
[00 00 0]	6.3×10^{3}		Seinfeld [1986]	?	13
	3.0×10^{3}	7200	Betterton and Hoffmann [1988]	М	63
	1.4×10^4	1200	Warneck [1988]	C	00
	3.1×10^{3}	6500	Zhou and Mopper [1990]	M	64
	3.0×10^{3}	7200	Möller and Mauersberger [1992]	c	04
	3.2×10^{3}	6800	Staudinger and Roberts [1996]	L	
ethanal	$\frac{3.2 \times 10^{-1}}{1.5 \times 10^{1}}$	0000	Buttery et al. [1969]	M	
CH ₃ CHO	1.5×10^{1} 1.5×10^{1}		Gaffney and Senum [1984]	X	48
	1.3×10^{-1} 1.3×10^{1}	F000	Snider and Dawson [1984]		48
(acetaldehyde)		5800	r 1	M	CO.
[75-07-0]	1.1×10^{1}	6300	Betterton and Hoffmann [1988]	M	63
	1.7×10^{1}	5000	Zhou and Mopper [1990]	M	64
	1.3×10^{1}	5700	Benkelberg et al. [1995]	M	
	1.5×10^{1}		Pierotti et al. [1957]	X	65
	9.9	4=00	Yaws and Yang [1992]	?	39
	1.7×10^{1}	4700	USEPA [1982]	X	3
	1.7	4500	Janini and Quaddora [1986]	X	3
	1.4×10^{1}	5600	Staudinger and Roberts [1996]	L	
propanal	1.3×10^{1}		Buttery et al. [1969]	M	
C_2H_5CHO	1.3×10^{1}		Snider and Dawson [1985]	С	
(propionaldehyde)	1.3×10^{1}	5700	Zhou and Mopper [1990]	M	64
[123-38-6]	2.8	2400	Janini and Quaddora [1986]	X	3
	5.3	5600	Schaffer and Daubert [1969]	X	3
butanal	9.6	6200	Zhou and Mopper [1990]	M	64
C_3H_7CHO	8.7		Buttery et al. [1969]	M	
(butyraldehyde)	5.5	4000	Janini and Quaddora [1986]	X	3
[123-72-8]					
pentanal	6.4	6300	Zhou and Mopper [1990]	M	64
C_4H_9CHO	6.8		Buttery et al. [1969]	M	
(valeraldehyde)	4.4		Yaws and Yang [1992]	?	39, 49
[110-62-3]					
hexanal	4.9	6500	Zhou and Mopper [1990]	M	64
$C_5H_{11}CHO$	4.7		Buttery et al. [1969]	M	
	1.9		Yaws and Yang [1992]	?	39, 49
heptanal	3.3	7500	Zhou and Mopper [1990]	M	64
$C_6H_{13}CHO$	3.7		Buttery et al. [1969]	M	
	2.3		Yaws and Yang [1992]	?	39, 49
octanal	2.1	7400	Zhou and Mopper [1990]	M	64
$C_7H_{15}CHO$	1.9		Buttery et al. [1969]	Μ	
	2.1×10^{2}		Yaws and Yang [1992]	?	39, 49
nonanal	1.0	6700	Zhou and Mopper [1990]	M	64
C ₈ H ₁₇ CHO	1.3	0.00	Buttery et al. [1969]	M	V-1
~o1/ ~	7.0×10^{-1}		Yaws and Yang [1992]	?	39, 49
decanal	6.1×10^{-1}	8700	Zhou and Mopper [1990]	M	64
C ₉ H ₁₉ CHO	0.1 \ 10	0100	2110 a ana 1410 pper [1990]	1/1	04
∪91119U11 U				1	

substance	$rac{k_{ m H}^{\ominus}}{ m [M/atm]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
propenal	8.2	[11]	Gaffney and Senum [1984]	X	48
CH ₂ CHCHO	7.4	5100	Snider and Dawson [1985]	M	10
(acrolein)	1.0×10^{1}	3800	USEPA [1982]	X	3
[107-02-8]	8.2		Meylan and Howard [1991]	X	3
2-methylpropenal	4.3	5300	Allen et al. [1998]	Е	
C_4H_6O	6.5		Iraci et al. [1998]	M	
(methacrolein)					
[78-85-3]					
trans-2-butenal	5.2×10^{1}		Buttery et al. [1971]	M	
CH ₃ CHCHCHO	5.1×10^{1}		Gaffney and Senum [1984]	X	48
(crotonaldehyde)	5.1×10^{1}		Meylan and Howard [1991]	X	3
(6.0×10^{1}	3600	USEPA [1982]	X	3
trans-2-hexenal	2.0×10^{1}		Buttery et al. [1971]	M	
C ₃ H ₇ CHCHCHO	2.07.10		2 4000, 9 00 400 [20,1]	1.1	
trans-trans-2,4-hexadienal	1.0×10^{2}		Buttery et al. [1971]	M	
CH ₃ CHCHCHCHCHO					
trans-2-octenal	1.3×10^{1}		Buttery et al. [1971]	M	
$C_5H_{11}CHCHCHO$	see note		see note	?	66
0 11					
benzaldehyde	3.6×10^{1}		Hine and Mookerjee [1975]	V	
C_6H_5CHO	3.6×10^{1}		Gaffney and Senum [1984]	X	48
[100-52-7]	3.7×10^{1}	5100	Betterton and Hoffmann [1988]	${ m M}$	63
	4.2×10^{1}	4600	Zhou and Mopper [1990]	${ m M}$	64
	3.9×10^{1}	4800	Staudinger and Roberts [1996]	${ m L}$	
	3.5×10^{1}	7000	Allen et al. [1998]	\mathbf{E}	
3-hydroxybenzaldehyde	4.0×10^{5}		Gaffney and Senum [1984]	X	48
$C_6H_4(OH)CHO$					
(3-formylphenol)					
,					
4-hydroxybenzaldehyde	1.9×10^{6}	8600	Parsons et al. [1971]	M	54
$C_6H_4(OH)CHO$					
(4-formylphenol)					
,					
generic aldehyde	4.2×10^{3}		Graedel and Goldberg [1983]	С	
RCHO					
ethanedial	$>3.0 \times 10^5$		Betterton and Hoffmann [1988]	M	63
ОНССНО	3.6×10^{5}		Zhou and Mopper [1990]	M	
(glyoxal)					
		l			L

substance	$\frac{k_{\mathrm{H}}^{\ominus}}{[\mathrm{M}/\mathrm{stree}]}$	$\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}$	refe	erence	type	note
koto	[M/atm] nes (RCOI	[K]	and () only)			
	3.0×10^{1}	t) (O, 11,	Butler and Ramchandani	[1025]	R	
propanone	3.0×10^{-1} 2.8×10^{1}					
CH ₃ COCH ₃			Burnett		M	
(acetone)	3.1		Hine and Weimar		R	
[67-64-1]	2.5×10^{1}		Buttery et al.		M	40
	3.0×10^{1}	4000	Gaffney and Senum		X	48
	2.6×10^{1}	4800	Snider and Dawson		M	0.4
	3.5×10^{1}	3800	Zhou and Mopper		M	64
	3.2×10^{1}	5800	Betterton		M	
	2.7×10^{1}	5300	Benkelberg et al.		M	
	2.5×10^{1}		Vitenberg et al.		M	
	2.5×10^{1}		Vitenberg et al.		X	67
	2.7×10^{1}		Hoff et al.		M	
	2.3×10^{1}		Yaws and Yang		?	39
	2.2×10^{1}	5000	$Schaffer\ and\ Daubert\ $	[1969]	X	3
	3.0	3300	$Janini\ and\ Quaddora$	[1986]	X	3
	3.0×10^{1}	4600	Staudinger and Roberts	[1996]	L	
2-butanone	7.1		Hine and Weimar	[1965]	R	
$C_2H_5COCH_3$	1.8×10^{1}	5700	$Snider\ and\ Dawson\ $	[1985]	\mathbf{M}	
(methyl ethyl ketone, MEK)	2.1×10^{1}		Buttery et al.	[1969]	\mathbf{M}	
[78-93-3]	7.7		$Ashworth\ et\ al.$	[1988]	X	68
	2.0×10^{1}	5000	Zhou and Mopper	[1990]	\mathbf{M}	64
	4.17.7		Howe et al.	[1987]	X	11
	1.8×10^{1}		Vitenberg et al.		\mathbf{M}	
	1.9×10^{1}		Rohrschneider		\mathbf{M}	
	1.7×10^{1}		Vitenberg et al.		X	67
	1.0×10^{1}		Friant and Suffet		Μ	49
	2.0×10^{1}	5000	Staudinger and Roberts		${ m L}$	
	6.9	-5200	Ashworth et al.		X	3
	7.2	5800	Janini and Quaddora		X	3
2-pentanone	1.6×10^{1}		Buttery et al.	,	Μ	
C ₃ H ₇ COCH ₃	1.2×10^{1}		Meylan and Howard		X	3
[107-87-9]	9.2	4600	Janini and Quaddora		X	3
3-pentanone	2.0×10^{1}	9200	Janini and Quaddora		X	3
$C_2H_5COC_2H_5$	2.07.10	0200		[-000]		Ŭ
2-heptanone	7.0		Buttery et al.	[1969]	M	
$C_5H_{11}COCH_3$	3.5×10^{1}	4500	Janini and Quaddora		X	3
	6.3		Meylan and Howard		X	3

substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
2-octanone	5.4		Buttery et al. [1969]	M	
$C_6H_{13}COCH_3$					
2-nonanone	2.7		Buttery et al. [1969]	M	
$C_7H_{15}COCH_3$					
2-undecanone	1.6		Buttery et al. [1969]	M	
$C_9H_{19}COCH_3$					
4-methyl-2-pentanone	2.65.2		Howe et al. [1987]	X	11
$(CH_3)_2CHCH_2COCH_3$	2.2	170	Ashworth et al. [1988]	X	3
(methyl isobutyl ketone, MIBK)					
[108-10-1]					
3-buten-2-one	2.1×10^{1}	7800	Allen et al. [1998]	Е	
C_4H_6O	4.4×10^{1}		Betterton [1991]	?	
(methyl vinyl ketone, MVK)	4.1×10^{1}		Iraci et al. [1998]	M	
[78-94-4]					
1-phenylethanone	9.4×10^{1}		Hine and Mookerjee [1975]	V	
$C_6H_5COCH_3$	1.1×10^{2}	6000	Betterton [1991]	M	
(acetophenone)	9.8×10^{1}	12000	Allen et al. [1998]	\mathbf{E}	
[98-86-2]					
3,5,5-trimethyl-2-cyclohexen-1-one	1.7×10^2	3900	USEPA [1982]	X	3
$C_9H_{14}O$					
(isophorone)					
[78-59-1]					
2,3-butanedione	1.9×10^2		Gaffney and Senum [1984]	X	48
$\mathrm{CH_{3}COCOCH_{3}}$	5.7×10^{1}		Snider and Dawson [1985]	M	
(biacetyl, dimethylglycol)	7.4×10^{1}	5700	Betterton [1991]	M	

substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	e type	note
carboxylic acids (RCOO			ic acids (RCOOOH) (C, H	, and O	only)
methanoic acid	6.0×10^{3}		Gaffney and Senum [1984		48
НСООН	3.7×10^{3}	5700	Chameides [1984	Γ	
(formic acid)	3.7×10^{3}	5700	Jacob [1986	C	
[64-18-6]	5.6×10^{3}		Keene and Galloway [1986	·	
,		5700	Winiwarter et al. [1988		
	3.5×10^{3}	5700	Pandis and Seinfeld [1989		
	3.7×10^3	5700	Lelieveld and Crutzen [1991		
	1.3×10^4		Servant et al. [1991	·	69
	7.6×10^{3}		Johnson [1990	·	11
	5.2×10^{3}		Keene et al. [1995	·	
	5.5×10^{3}		Khan et al. [1995]	,	
	5.4×10^{3}		Keene et al. [1995	·	
	8.9×10^{3}	6100	Johnson et al. [1996		
	5.2×10^3		Johnson et al. [1996]	-	
	9.0×10^2		Yaws and Yang [1992		39
	5.4×10^{3}	5700	Staudinger and Roberts [1996	,	70
ethanoic acid	3.4×10^{3}		Butler and Ramchandani [1935	-	
CH ₃ COOH	3.3×10^{3}		Hine and Mookerjee [1975		
(acetic acid)	1.0×10^4		Gaffney and Senum [1984	,	48
[64-19-7]	8.8×10^{3}		Keene and Galloway [1986		
[01101]	0.07.10	6400	Winiwarter et al. [1988	,	
	8.8×10^{3}	6400	Jacob et al. [1989	'	
	9.3×10^{3}	0100	Servant et al. [1991	,	69
	5.5×10^{3}		Khan et al. [1995]	·	
	5.2×10^{3}		Keene et al. [1995		
	8.6×10^{3}		Keene et al. [1995		
	4.1×10^{3}	6300	Johnson et al. [1996	·	
	5.2×10^{3}		Johnson et al. [1996]	·	
	8.3×10^{2}		Yaws and Yang [1992		39
	5.5×10^{3}	6300	Staudinger and Roberts [1996	,	70
	9.8×10^{2}	4900	<i>USEPA</i> [1982	,	3
propanoic acid	2.3×10^{3}		Butler and Ramchandani [1935	,	-
C ₂ H ₅ COOH	2.2×10^{3}		Hine and Mookerjee [1975	,	
(propionic acid)	6.2×10^{3}		Servant et al. [1991	,	69
[79-09-4]	5.7×10^3		Khan et al. [1995]	*	
butanoic acid	1.9×10^{3}		Butler and Ramchandani [1935	·	
C ₃ H ₇ COOH	1.9×10^{3}		Hine and Mookerjee [1975	·	
(butyric acid)	4.7×10^{3}		Khan et al. [1995	·	
[107-92-6]	1., /\10		11 00 00. [1000	1	
2-methyl propanoic acid	5.7×10^3		Servant et al. [1991] M	69
(CH ₃) ₂ CHCOOH	1.1×10^3		Khan et al. [1995]		
pentanoic acid	2.2×10^{3}	6583	Khan et al. [1995]] M	
C_4H_9COOH	2.2×10^{3}	6900	Staudinger and Roberts [1996]	?	70
[109-52-4]					

substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
3-methyl butanoic acid $(CH_3)_2CHCH_2COOH$	1.2×10^3	[]	Khan et al. [1995]	М	
2,2-dimethyl propanoic acid $(CH_3)_3CCOOH$	3.5×10^2		Khan et al. [1995]	М	
hexanoic acid	1.4×10^{3}	6304	Khan et al. [1995]	M	
$C_5H_{11}COOH$ [142-62-1]	1.2×10^3	5900	Staudinger and Roberts [1996]	?	70
propenoic acid $C_3H_4O_2$ (acrylic acid) [79-10-7]	2.4×10^{3}		Yaws and Yang [1992]	?	39
2-Methyl-2-propenoic acid $C_4H_6O_2$ (methacrylic acid) [79-41-4]	2.6×10^{3}		Khan et al. [1992]	M	
benzoic acid C_6H_5COOH	$\begin{array}{c} 2.4 \times 10^4 \\ 1.4 \times 10^4 \end{array}$	6500	Yaws and Yang [1992] USEPA [1982]	? X	39 3
ethanedioic acid	7.0×10^{6}		Gaffney and Senum [1984]	X	48
HOOCCOOH (oxalic acid)	5.0×10^{8}		Saxena and Hildemann [1996]	Е	51
propanedioic acid HOOCCH ₂ COOH (malonic acid)	4.0×10 ⁸		Saxena and Hildemann [1996]	Е	51
butanedioic acid $HOOC(CH_2)_2COOH$ (succinic acid)	3.0×10^{8}		Saxena and Hildemann [1996]	Е	51
pentanedioic acid $HOOC(CH_2)_3COOH$ (glutaric acid)	2.0×10 ⁸		Saxena and Hildemann [1996]	Е	51
hexanedioic acid HOOC(CH ₂) ₄ COOH (adipic acid)	$ \begin{array}{c} 2.0 \times 10^8 \\ 1.8 \times 10^7 \end{array} $	11000	Saxena and Hildemann [1996] USEPA [1982]	E X	51 3
cis-butenedioic acid $HOOC(CH)_2COOH$ (maleic acid)	1.0×10 ⁹		Saxena and Hildemann [1996]	E	51
ethanoic peroxyacid CH ₃ COOOH (peroxyacetic acid)	$\begin{array}{c} 6.7 \times 10^2 \\ 8.4 \times 10^2 \end{array}$	5900 5300	Lind and Kok [1994] O'Sullivan et al. [1996]	M M	9

substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
	esters (RCOOR	(C, H, a	and O only)		
methyl methanoate	4.5		Hine and Mookerjee [1975]	?	71
$HCOOCH_3$	4.5		Betterton [1992]	?	71
(methyl formate)	4.1		Hoff et al. [1993]	M	
	4.1	3800	Hartkopf and Karger [1973]	M	
methyl ethanoate	1.1×10^{1}		Butler and Ramchandani [1935]	M	
$\mathrm{CH_{3}COOCH_{3}}$	7.8	5000	Kieckbusch and King [1979]	M	
(methyl acetate)	8.7		Buttery et al. [1969]	M	
methyl propanoate	6.2		Hine and Mookerjee [1975]	V	
$C_2H_5COOCH_3$	5.8		Buttery et al. [1969]	M	
(methyl propionate)					
methyl butanoate	4.8		Buttery et al. [1969]	M	
$C_3H_7COOCH_3$					
(methyl butyrate)					
methyl pentanoate	3.1		Buttery et al. [1969]	M	
$C_4H_9COOCH_3$					
methyl hexanoate	2.7		Buttery et al. [1969]	M	
$C_5H_{11}COOCH_3$					
methyl octanoate	1.3		Buttery et al. [1969]	M	
$C_6H_{13}COOCH_3$					
methyl decanoate	1.4		Krop et al. [1997]	V	
$\mathrm{C}_{11}\mathrm{H}_{22}\mathrm{O}_2$					
(methyl caprate)					
[110-42-9]					
methyl dodecanoate	8.4×10^{-1}		Krop et al. [1997]	V	
$C_{13}H_{26}O_2$					
(methyl laurate)					
[111-82-0]					
methyl tetradecanoate	5.1×10^{-1}		Krop et al. [1997]	V	
$C_{15}H_{30}O_2$					
(methyl myristate)					
[124-10-7]					
methyl hexadecanoate	3.0×10^{-1}		Krop et al. [1997]	V	
$C_{17}H_{34}O_2$					
(methyl palmitate)					
[112-39-0]					
methyl octadecanoate	1.7×10^{-1}		Krop et al. [1997]	V	
$C_{19}H_{38}O_2$					
(methyl stearate)					
[112-61-8]				<u> </u>	

substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
methyl arachidate	1.0×10^{-1}		Krop et al. [1997]	V	
methyl behenate	6.0×10^{-2}		Krop et al. [1997]	V	
(Z,Z,Z) -9,12,15-octadecatrienoic acid methyl ester $C_{19}H_{32}O_2$ (methyl linolenate)	2.8×10^{1}		Krop et al. [1997]	V	
$\begin{array}{c} [301\text{-}00\text{-}8] \\ \hline (Z,Z)\text{-}9,12\text{-}octade cadienoic acid methyl} \\ ester \\ C_{19}H_{34}O_2 \\ (methyl linolate) \\ \end{array}$	6.3		Krop et al. [1997]	V	
$[112\text{-}63\text{-}0]$ (Z)-9-octadecenoic acid methyl ester $C_{19}H_{36}O_{2}$ (methyl oleate)	1.3		Krop et al. [1997]	V	
[112-62-9] (Z)-13-docosenoic acid methyl ester $C_{23}H_{44}O_2$ (methyl erucate) [1120-34-9]	5.3×10^{-1}		Krop et al. [1997]	V	
methyl benzoate $C_6H_5COOCH_3$	5.6×10^{1}		Hine and Mookerjee [1975]	V	
ethyl methanoate $HCOOC_2H_5$ (ethyl formate)	$3.6 \\ 1.4 \times 10^{-1} \\ 2.0 \times 10^{-1}$	4300	Hine and Mookerjee [1975] Hoff et al. [1993] Hartkopf and Karger [1973]	V ? M	13
ethyl ethanoate ${\rm CH_3COOC_2H_5}$ (ethyl acetate)	7.6 5.9 9.0 4.7	5300 5700	Butler and Ramchandani [1935] Kieckbusch and King [1979] Hoff et al. [1993] Janini and Quaddora [1986]	M M ? X	13 3
ethyl propanoate $C_2H_5COOC_2H_5$ (ethyl propionate)	6.5	9700	Meylan and Howard [1991] Hine and Mookerjee [1975]	X V	3
ethyl butanoate $C_3H_7COOC_2H_5$ (ethyl butyrate)	2.8		Hine and Mookerjee [1975]	V	
ethyl pentanoate $C_4H_9COOC_2H_5$	2.9		Hine and Mookerjee [1975]	V	

substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
ethyl heptanoate	2.0		Hine and Mookerjee [1975]	V	
$C_6H_{13}COOC_2H_5$					
ethyl dodecanoate	7.8×10^{-1}		Krop et al. [1997]	V	
$C_{14}H_{28}O_2$					
(ethyl laurate)					
[106-33-2]					
propyl methanoate	2.7		Hine and Mookerjee [1975]	V	
$HCOOC_3H_7$					
(propyl formate)					
propyl ethanoate	5.0		Butler and Ramchandani [1935]	V	
$\mathrm{CH_3COOC_3H_7}$	5.0		Hine and Mookerjee [1975]	V	
(propyl acetate)	4.6	5500	Kieckbusch and King [1979]	\mathbf{M}	
•	4.4	6000	Janini and Quaddora [1986]	X	3
	4.5		Meylan and Howard [1991]	X	3
propyl propanoate	2.6		Hine and Mookerjee [1975]	V	
$C_2H_5COOC_3H_7$					
(propyl propionate)					
propyl butanoate	1.9		Hine and Mookerjee [1975]	V	
$C_3H_7COOC_3H_7$					
(propyl butyrate)					
propyl dodecanoate	7.8×10^{-1}		Krop et al. [1997]	V	
$\mathrm{C}_{15}\mathrm{H}_{30}\mathrm{O}_{2}$					
(propyl laurate)					
[3681-78-5]					
isopropyl methanoate	1.2		Hine and Mookerjee [1975]	V	
$\mathrm{HCOOC_3H_7}$					
(isopropyl formate)					
isopropyl ethanoate	3.6		Hine and Mookerjee [1975]	V	
CH ₃ COOC ₃ H ₇	2.9	5500	Janini and Quaddora [1986]	X	3
(isopropyl acetate)					
isopropyl propanoate	1.7		Hine and Mookerjee [1975]	V	
$C_2H_5COOC_3H_7$					
(isopropyl propionate)					
butyl ethanoate	3.0		Hine and Mookerjee [1975]	V	
$\mathrm{CH_{3}COOC_{4}H_{9}}$	3.6	6000	Kieckbusch and King [1979]	M	
(butyl acetate)	3.5		Meylan and Howard [1991]	X	3
	3.5	7500	Janini and Quaddora [1986]	X	3
	2.1	3200	USEPA [1982]	X	3
butyl dodecanoate	7.2×10^{-1}		Krop et al. [1997]	V	
$C_{16}H_{32}O_2$					
(butyl laurate)					
[106-18-3]					

substance	$k_{ m H}^\ominus$	$\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}$	reference	type	note
	[M/atm]	[K]			
2-methylpropyl methanoate	1.7		Hine and Mookerjee [1975]	V	
HCOOC ₄ H ₉					
(isobutyl formate)					
2-methylpropyl ethanoate	2.2		Hine and Mookerjee [1975]	V	
$\mathrm{CH_{3}COOC_{4}H_{9}}$					
(isobutyl acetate)					
[110-19-0]					
pentyl ethanoate	2.6		Hine and Mookerjee [1975]	V	
$\mathrm{CH_{3}COOC_{5}H_{11}}$	2.8	6500	Kieckbusch and King [1979]	\mathbf{M}	
(amyyl acetate)					
pentyl propanoate	1.2		Hine and Mookerjee [1975]	V	
$C_2H_5COOC_5H_{11}$					
(amyyl propionate)					
isopentyl methanoate	1.5		Hine and Mookerjee [1975]	V	
$\mathrm{HCOOC}_5\mathrm{H}_{11}$					
(isoamyyl formate)					
isopentyl ethanoate	1.7		Hine and Mookerjee [1975]	V	
$\mathrm{CH_{3}COOC_{5}H_{11}}$	2.4	5000	USEPA [1982]	X	3
(isoamyyl acetate)			. ,		
hexyl ethanoate	1.9		Hine and Mookerjee [1975]	V	
$\mathrm{CH_{3}COOC_{6}H_{13}}$					
(hexyl acetate)					
2-ethylhexyl dodecanoate	3.1×10^{-1}		Krop et al. [1997]	V	
(2-ethylhexyl laurate)					
ethenyl ethanoate	1.7	2600	USEPA [1982]	X	3
$CH_3COOCHCH_2$					
(vinyl acetate)					
dimethyl phthalate	3.0×10^{3}	5700	USEPA [1982]	X	3
$C_{10}H_{10}O_4$					
[131-11-3]					
diethyl phthalate	1.2×10^3	5600	USEPA [1982]	X	3
$C_{12}H_{14}O_4$					
[84-66-2]					

substance	$rac{k_{ m H}^{\ominus}}{{ m [M/atm]}}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{\left[\mathrm{K}\right]}$	reference	type	note
	ethers (ROR)	(C, H, ar	nd O only)	Į.	
dimethyl ether	9.9×10^{-1}		Hine and Weimar [1965]	R	
$\mathrm{CH_{3}OCH_{3}}$	1.0		Hine and Mookerjee [1975]	V	
ethyl methyl ether	9.0×10^{-1}		Saxena and Hildemann [1996]	E	51
$C_2H_5OCH_3$					
diethyl ether	1.1		Butler and Ramchandani [1935]	V	
$C_2H_5OC_2H_5$	1.1		Hine and Weimar [1965]	V	
	8.0×10^{-1}		Signer et al. [1969]	\mathbf{M}	
	1.2		Nielsen et al. [1994]	${f M}$	
	7.8×10^{-1}		Hoff et al. [1993]	?	13
	7.9×10^{-1}	5300	Lamarche and Droste [1989]	X	3
methyl propyl ether $\mathrm{CH_3OC_3H_7}$	6.8×10 ⁻¹		Hine and Mookerjee [1975]	V	
methyl 2-propyl ether ${\rm CH_3OC_3H_7}$	1.2		Hine and Mookerjee [1975]	V	
methyl <i>tert</i> -butyl ether	1.7		Guthrie [1973]	V	
$\mathrm{CH_3OC}(\mathrm{CH_3})_3$	1.6	7700	Robbins et al. [1993]	М	
ethyl propyl ether	8.7×10^{-1}		Butler and Ramchandani [1935]	V	
$\mathrm{C_2H_5OC_3H_7}$	8.7×10^{-1}		Hine and Mookerjee [1975]	V	
dipropyl ether	2.8×10^{-1}		Butler and Ramchandani [1935]	V	
$C_3H_7OC_3H_7$	2.9×10^{-1}		Hine and Mookerjee [1975]	V	
	1.9×10^{-1}		Hoff et al. [1993]	?	13
	2.3×10^{-1}	8900	Hartkopf and Karger [1973]	\mathbf{M}	
	4.5×10^{-1}		Yaws and Yang [1992]	?	39
diisopropyl ether	9.9×10^{-2}		Hine and Weimar [1965]	V	
$C_3H_7OC_3H_7$	1.0×10^{-1}		Hine and Mookerjee [1975]	V	
	4.9×10^{-1}		Nielsen et al. [1994]	\mathbf{M}	
	5.8×10^{-1}		Yaws and Yang [1992]	?	39
dibutyl ether $C_4H_9OC_4H_9$	1.7×10^{-1}		Pierotti et al. [1957]	X	53
methoxybenzene	2.4×10^{-1}		Hine and Weimar [1965]	R	
$C_6H_5OCH_3$ (anisole) [100-66-3]	2.4×10^{-1}		Hine and Mookerjee [1975]	V	

substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
miscellaneous, e.			groups (C, H, and O only)		
1,2-epoxypropane	5.3	3500	USEPA [1982]	X	3
C_3H_6O					
(propyleneoxide)					
[75-56-9]					
2-methoxyethanol	2.2×10^{-2}	-870	Ashworth et al. [1988]	X	3
$C_3H_8O_2$					
[109-86-4]					
dimethoxymethane	5.8		Pierotti et al. [1957]	X	53
CH ₃ OCH ₂ OCH ₃					
trimethoxymethane $HC(OCH_3)_3$	7.0×10^{1}		Guthrie [1973]	V	
1,1-diethoxyethane $(C_2H_5O)_2CHCH_3$	1.0×10^{1}		Hine and Mookerjee [1975]	V	
1,2-diethoxyethane	1.6×10^{1}		Hine and Mookerjee [1975]	V	
$C_2H_5OC_2H_4OC_2H_5$					
1,1,1-trimethoxyethane	6.5×10^{1}		Guthrie [1973]	V	
$\mathrm{CH_{3}C(OCH_{3})_{3}}$					
3-oxapentane-1,5-diol	2.0×10^{9}		Saxena and Hildemann [1996]	Е	51
$HO(CH_2)_2O(CH_2)_2OH$					
(diethylene glycol)					
[111-46-6]					
3,6-dioxaoctane-1,8-diol	9.0×10^{11}		Saxena and Hildemann [1996]	E	51
$HO(CH_2CH_2O)_3H$					
(triethylene glycol)					
[112-27-6]					
propanonal	3.7×10^{3}	7500	Betterton and Hoffmann [1988]	M	63
CH ₃ COCHO	3.2×10^4		Zhou and Mopper [1990]	\mathbf{M}	
(methylglyoxal, pyruvaldehyde)					
2-hydroxyethanal	4.1×10^4	4600	Betterton and Hoffmann [1988]	M	63
HOCH ₂ CHO					
(hydroxyacetaldehyde)					
oxoethanoic acid	9.0×10^{3}		Saxena and Hildemann [1996]	Е	51
ОНССООН					
(glyoxylic acid)					
[298-12-4]	_				
2-oxopropanoic acid	3.1×10^{5}	5100	Khan et al. [1995]	M	
$\mathrm{CH_{3}COCOOH}$	3.0×10^{5}	5200	Staudinger and Roberts [1996]	?	70
(pyruvic acid)	3.1×10^{5}		Khan et al. [1992]	${ m M}$	

substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
3-oxopropanoic acid $\mathrm{OHCCH_2COOH}$	7.0×10^{3}		Saxena and Hildemann [1996]	Е	51
4-oxobutanoic acid $OHC(CH_2)_2COOH$	5.0×10^{3}		Saxena and Hildemann [1996]	Е	51
5-oxopentanoic acid $OHC(CH_2)_3COOH$	4.0×10^3		Saxena and Hildemann [1996]	Е	51
oxacyclopentadiene C_4H_4O (furan, furfuran) [110-00-9]	1.8×10 ⁻¹		Yaws and Yang [1992]	?	39
tetrahydrofurane	1.4×10^{1}	5700	Cabani et al. [1971a]	M	
C ₄ H ₈ O (THF)	2.2×10^{1}		Signer et al. [1969]	М	
2-methyltetrahydrofurane ${\rm CH_3C_4H_7O}$	1.1×10 ¹	6200	Cabani et al. [1971a]	M	
$2,5$ -dimethyltetrahydrofurane $(CH_3)_2C_4H_6O$	5.7	6800	Cabani et al. [1971a]	M	
tetrahydropyran $C_5H_{10}O$ (THP)	8.0	5900	Cabani et al. [1971a]	М	
$1,3$ -dioxolane $C_3H_6O_2$	4.0×10^{1}	4800	Cabani et al. [1971a]	M	
1,4-dioxane	2.1×10^{2}		Cabani et al. [1971a]	X	11
$C_4H_8O_2$	2.2×10^{2}		Rohrschneider [1973]	M	
(dioxane)	1.4×10^2		Friant and Suffet [1979]	M	49
	2.0×10^{2}	5800	Cabani et al. [1971a]	\mathbf{M}	
	1.4×10^2		Yaws and Yang [1992]	?	39
1,3-dimethoxy-2-hydroxybenzene $C_8H_{10}O_3$ (2,6-dimethoxyphenol) [91-10-1]	4.9×10^3	6700	Sagebiel et al. [1992]	X	3
1-hydroxy-2-methoxybenzene $C_7H_8O_2$ (guaicol) [90-05-1]	9.1×10^{2}	7500	Sagebiel et al. [1992]	X	3
4-methyl-2-methoxyphenol	7.2×10^2	7400	Sagebiel et al. [1992]	X	3
hydroxybutanedioic acid HOOCCH ₂ CHOHCOOH (malic acid)	2.0×10^{13}		Saxena and Hildemann [1996]	Е	51

substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{\left[\mathrm{K}\right]}$	reference	type	note
2-hydroxy-1,2,3-propanetricarboxylic acid	3.0×10^{18}		Saxena and Hildemann [1996]	Е	51
$C_6H_8O_7$					
(citric acid)					
[77-92-9]					
2-oxopentanedioic acid	1.0×10^9		Saxena and Hildemann [1996]	Е	51
$HOOC(CH_2)_2COCOOH$					
$(\alpha$ -keto glutaric acid)					
[328-50-7]					
2-hydroxypropanoic acid	7.0×10^7		Saxena and Hildemann [1996]	E	51
$CH_3CHOHCOOH$					
(lactic acid)					
2,3-dihydroxybutanedioic acid	1.0×10^{18}		Saxena and Hildemann [1996]	E	51
НООССНОНСНОНСООН					
(tartaric acid)					
[87-69-4]					
2,3-dihydroxypropanal	2.0×10^{10}		Saxena and Hildemann [1996]	E	51
$C_3H_6O_3$					
(glyceraldehyde)					
carbon monoxide	7.4×10^{-3}		Meadows and Spedding [1974]	M	
CO	8.2×10^{-4}		Liss and Slater [1974]	c	
	9.5×10^{-4}	1300	Wilhelm et al. [1977]	L	
	9.5×10^{-4}	1600	Dean [1992]	?	2
	9.9×10^{-4}	1300	Lide and Frederikse [1995]	L	
	8.7×10^{-4}		Yaws and Yang [1992]	?	39
carbon dioxide	3.4×10^{-2}	2400	Morgan and Maass [1931]	M	
CO_2	3.4×10^{-2}	2400	Sillen and Martell [1964]	X	1
	3.4×10^{-2}	2400	Wilhelm et al. [1977]	L	
	3.5×10^{-2}	2400	Edwards et al. [1978]	L	
	3.4×10^{-2}	0.400	Durham et al. [1981]	С	
	3.1×10^{-2} 3.4×10^{-2}	2400	Chameides [1984]	T	4
	3.4×10^{-2} 3.4×10^{-2}	2400	Hoffmann and Jacob [1984]	?	4
	3.4×10 3.4×10^{-2}	2400	Jacob [1986]	С	
	3.4×10^{-2} 3.4×10^{-2}	$2400 \\ 2400$	Pandis and Seinfeld [1989] Lelieveld and Crutzen [1991]	C C	
	3.4×10 3.5×10^{-2}	2300	Carroll et al. [1991]	L	
	3.4×10^{-2}	2600	Dean [1992]	?	2
	3.4×10 3.5×10^{-2}	2400	Lide and Frederikse [1995]	L	4
	4.5×10^{-2}	2400	Yaws and Yang [1992]	?	39
	3.2×10^{-2}	2400	Kavanaugh and Trussell [1980]	X	3
	3.6×10^{-2}	2200	Zheng et al. [1997]	M	Š

substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
compounds	with nitrogen: a		NH ₂) (C, H, O, and N only)		
methylamine	3.6×10^{1}	2600	Wilhelm et al. [1977]	L	
$\mathrm{CH_3NH_2}$	9.0×10^{1}		Christie and Crisp [1967]	M	
052	1.4×10^{2}		Bone et al. [1983]	?	12
ethylamine	1.0×10^{2}		Butler and Ramchandani [1935]	M	
$C_2H_5NH_2$	3.5×10^{1}	3600	Wilhelm et al. [1977]	L	
[75-04-7]	8.1×10^{1}	3000	Christie and Crisp [1967]	M	
propylamine	8.0×10^{1}		Butler and Ramchandani [1935]	M	
$C_3H_7NH_2$	6.7×10^{1}		Christie and Crisp [1967]	M	
[107-10-8]	0.1 × 10			111	
butylamine	6.6×10^{1}		Butler and Ramchandani [1935]	M	
$C_4H_9NH_2$	5.8×10^{1}		Christie and Crisp [1967]	M	
[109-73-9]	5.6×10			101	
pentylamine	4.1×10^{1}		Christie and Crisp [1967]	M	
$C_5H_{11}NH_2$	4.1 \(10			111	
C51111N112					
hexylamine	3.7×10^{1}		Christie and Crisp [1967]	M	
$C_6H_{13}NH_2$	0.1 × 10			111	
06111311112					
dimethylamine	3.1×10^{1}	4000	Wilhelm et al. [1977]	L	
$(CH_3)_2NH$	5.7×10^{1}	4000	Christie and Crisp [1967]	M	
[124-40-3]	5.7 × 10			111	
diethylamine	3.9×10^{1}		Christie and Crisp [1967]	M	
$(C_2H_5)_2NH$	1.5×10^{1}		Yaws and Yang [1992]	?	39
	1.3×10^{2} 1.3×10^{2}	10000	USEPA [1982]	X	3
[109-89-7]	3.9×10^{1}	10000		X X	ა 3
1. 1 .	3.9×10^{1} 1.9×10^{1}		Meylan and Howard [1991]		3
dipropylamine			Christie and Crisp [1967]	M	cc
$(C_3H_7)_2NH$	see note		see note	?	66
dibutylamine	1.1×10^{1}		Christie and Crisp [1967]	M	
$(C_4H_9)_2NH$	1.1/10			111	
(04119)21111					
trimethylamine	9.6		Christie and Crisp [1967]	M	
$(CH_3)_3N$	3.0			111	
[75-50-3]					
triethylamine	6.7		Christie and Crisp [1967]	M	
$(C_2H_5)_3N$	0.7			111	
(02115)311					
ethylenediamine	5.9×10^{5}		Westheimer and Ingraham [1956]	M	
H ₂ NCH ₂ CH ₂ NH ₂	0.0710		comount [1000]	111	
1121,011201121,1112					
hexamethyleneimine	1.6×10^{2}	8200	Cabani et al. [1971b]	M	
$(CH_2)_6NH$	1.0 \ 10	0200	Cuvani et al. [13110]	171	
(~113/01111					
ethanolamine	6.2×10^{6}		Bone et al. [1983]	M	8
HOC ₂ H ₄ NH ₂	0.2/10		Done et ut. [1000]	141	9
[141-43-5]					
[121, 40-0]					

substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{\left[\mathrm{K}\right]}$	reference	type	note
compounds w	ith nitroger	n: amino	acids (RCHNH ₂ COOH)		
glutamic acid	1.0×10^{13}		Saxena and Hildemann [1996]	Е	51
asparagine	1.0×10^{13}		Saxena and Hildemann [1996]	E	51
serine	4.0×10^{12}		Saxena and Hildemann [1996]	Е	51
glutamine	1.0×10^{13}		Saxena and Hildemann [1996]	Е	51
glycine	9.0×10^{7}		Saxena and Hildemann [1996]	Е	51
arginine	1.0×10^{17}		Saxena and Hildemann [1996]	Е	51
alanine	6.0×10^7		Saxena and Hildemann [1996]	Е	51
leucine	2.0×10^{7}		Saxena and Hildemann [1996]	E	51
compounds with	nitrogen: h	neterocyc	les (C, H, O, and N only)		
pyrrolidine	4.2×10^{2}	7600	Cabani et al. [1971b]	M	
C ₄ H ₈ NH	1.2/(10	1000	Cuotani et di. [1011b]	141	
N -methyl-pyrrolidine $C_4H_8NCH_3$	3.3×10^{1}	7600	Cabani et al. [1971b]	М	
$\begin{array}{c} \text{piperidine} \\ \text{C}_5\text{H}_{10}\text{NH} \end{array}$	2.2×10^2	7900	Cabani et al. [1971b]	М	
N-methyl-piperidine $C_5H_{10}NCH_3$	2.9×10^{1}	7900	Cabani et al. [1971b]	М	
pyridine	1.1×10^2	5900	Andon et al. [1954]	M	
C ₅ H ₅ N [110-86-1]	9.0×10^{1}	3300	Yaws and Yang [1992]	?	39
2-methylpyridine $C_5H_4NCH_3$ (2-picoline, α -picoline) [109-06-8]	$3.4 \times 10^{1} \\ 1.0 \times 10^{2}$	6400	Yaws and Yang [1992] Andon et al. [1954]	? M	39
3-methylpyridine $C_5H_4NCH_3$ (3-picoline, β -picoline) [108-99-6]	5.5×10^{1} 1.3×10^{2}	6400	Yaws and Yang [1992] Andon et al. [1954]	? M	39
4-methylpyridine $C_5H_4NCH_3$	1.7×10^2	6600	Andon et al. [1954]	M	
2-ethylpyridine $C_5H_4NC_2H_5$	6.1×10^{1}	6700	Andon et al. [1954]	М	

substance	$rac{k_{ m H}^{\ominus}}{ m [M/atm]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
3 -ethylpyridine $C_5H_4NC_2H_5$	9.6×10^{1}	6500	Andon et al. [1954]	М	
4-ethylpyridine $C_5H_4NC_2H_5$	1.2×10^2	6300	Andon et al. [1954]	M	
2,3-dimethylpyridine $C_5H_3N(CH_3)_2$ [583-61-9]	1.4×10^2	700	Andon et al. [1954]	M	
$2,4$ -dimethylpyridine $C_5H_3N(CH_3)_2$	1.5×10^2	7100	Andon et al. [1954]	M	
2,5-dimethylpyridine $C_5H_3N(CH_3)_2$	1.2×10^2	7100	Andon et al. [1954]	М	
2,6-dimethylpyridine $C_5H_3N(CH_3)_2$	9.5×10^{1}	7300	Andon et al. [1954]	М	
$3,4$ -dimethylpyridine $C_5H_3N(CH_3)_2$	2.7×10^2	6900	Andon et al. [1954]	М	
$3,5$ -dimethylpyridine $C_5H_3N(CH_3)_2$	1.4×10^2	6800	Andon et al. [1954]	М	
2-methylpyrazine $C_4N_2H_3CH_3$	4.5×10^2		Buttery et al. [1971]	М	
2-ethylpyrazine $C_4N_2H_3(C_2H_5)$	4.0×10^2		Buttery et al. [1971]	M	
2-isobutylpyrazine $C_4N_2H_3C_4H_9$	2.0×10^2		Buttery et al. [1971]	M	
2-ethyl-3-methoxypyrazine $C_4N_2H_3(C_2H_5)OCH_3$	6.8×10^{1}		Buttery et al. [1971]	M	
2-isobutyl-3-methoxypyrazine $C_4N_2H_3(C_4H_9)OCH_3$	$\begin{array}{c} 2.0 \times 10^{1} \\ 1.3 \times 10^{1} \end{array}$		Buttery et al. [1971] Karl and Lindinger [1997]	M M	43
benzo[b]pyridine C_9H_7N (quinoline) [91-22-5]	3.7×10^3	5400	USEPA [1982]	X	3

substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{\left[\mathrm{K}\right]}$	reference	type	note
compounds with 1	nitrogen: niti	rates (RON	$\mathrm{NO}_2)$ (C, H, O, and N only	7)	
methyl nitrate	2.0	4700	Kames and Schurath [1992]	\mathbf{M}	
$\mathrm{CH_{3}ONO_{2}}$					
ethyl nitrate	1.6	5400	Kames and Schurath [1992]	M	
$C_2H_5ONO_2$					
1-propyl nitrate	1.1	5500	Kames and Schurath [1992]	M	
$C_3H_7ONO_2$	1.1		Hauff et al. [1998]	V	
[627-13-4]	7.9×10^{-1}		Hauff et al. [1998]	\mathbf{M}	
2-propyl nitrate	7.9×10^{-1}	5400	Kames and Schurath [1992]	M	
$C_3H_7ONO_2$	6.2×10^{-1}		Hauff et al. [1998]	${ m M}$	
	8.3×10^{-1}		Hauff et al. [1998]	V	
1-butyl nitrate	1.0	6000	Luke et al. [1989]	M	
$C_4H_9ONO_2$	1.0	5800	Kames and Schurath [1992]	${ m M}$	
[928-45-0]	6.5×10^{-1}		Hauff et al. [1998]	\mathbf{M}	
	8.6×10^{-1}		Hauff et al. [1998]	V	
2-butyl nitrate	6.5×10^{-1}	5600	Luke et al. [1989]	M	
$C_4H_9ONO_2$	6.5×10^{-1}	5400	Kames and Schurath [1992]	${\bf M}$	
(isobutyl nitrate)	4.4×10^{-1}		Hauff et al. [1998]	${\bf M}$	
[543-29-3]	6.5×10^{-1}		Hauff et al. [1998]	V	
tert-butyl nitrate	7.0×10^{-1}	5200	Kames and Schurath [1992]	M	
$C_4H_9ONO_2$					
1-pentyl nitrate	1.2		Kames and Schurath [1992]	M	8
$C_5H_{11}ONO_2$	4.1×10^{-1}		Hauff et al. [1998]	V	
(amyl nitrate)	6.0×10^{-1}		Hauff et al. [1998]	\mathbf{M}	
[1002-16-0]					
2-pentyl nitrate	3.7×10^{-1}	6300	Kames and Schurath [1992]	M	
$C_5H_{11}ONO_2$	3.4×10^{-1}		Hauff et al. [1998]	\mathbf{M}	
[21981-48-6]	4.9×10^{-1}		Hauff et al. [1998]	V	
3-pentyl nitrate	3.7×10^{-1}		Hauff et al. [1998]	M	
$C_5H_{13}ONO_2$	4.9×10^{-1}		Hauff et al. [1998]	V	
3-methyl-1-butanol nitrate	4.5×10^{-1}		Hauff et al. [1998]	M	
$C_5H_{11}ONO_2$					
(isoamyl nitrate)					
[543-87-3]					
1-hexyl nitrate	3.7×10^{-1}		Hauff et al. [1998]	V	
$C_6H_{13}ONO_2$	6.7×10^{-1}		Hauff et al. [1998]	${ m M}$	

1.⊖	$-\mathrm{d} \ln k_{\mathrm{H}}$			
$\frac{\kappa_{\rm H}}{[{ m M/atm}]}$	$\frac{\mathrm{d}(1/T)}{[\mathrm{K}]}$	reference	type	note
4.0×10^4		Kames and Schurath [1992]	M	8
3.9×10^4	8600	Shepson et al. [1996]	M	
7.3×10^3		Kames and Schurath [1992]	M	8, 72
6.7×10^3		Kames and Schurath [1992]	M	8, 72
1.1×10^4	10000	Shepson et al. [1996]	M	
4.5×10^3	8800	Shepson et al. [1996]	M	
1.0×10^4	9500	Shepson et al. [1996]	M	
5.8×10 ³	9200	Shepson et al. [1996]	M	
6.0×10^3	9600	Shepson et al. [1996]	М	
1.0×10^3		Kames and Schurath [1992]	M	8
	4.0×10^{4} 3.9×10^{4} 7.3×10^{3} 6.7×10^{3} 1.1×10^{4} 4.5×10^{3} 1.0×10^{4} 5.8×10^{3} 6.0×10^{3}	$\begin{array}{c ccccc} \kappa_{\widetilde{H}} & & & & & & & \\ \hline [M/atm] & & & & & & \\ \hline [M/atm] & & & & & & \\ \hline 4.0 \times 10^4 & & & & & \\ \hline 3.9 \times 10^4 & & & & & \\ \hline 7.3 \times 10^3 & & & & \\ 6.7 \times 10^3 & & & & \\ \hline 1.1 \times 10^4 & & & & & \\ \hline 1.0 \times 10^4 & & & & & \\ \hline 5.8 \times 10^3 & & & & & \\ \hline 6.0 \times 10^3 & & & & & \\ \hline \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
1,2-ethanediol dinitrate	6.4×10^2		Kames and Schurath [1992]	M	8
$O_3NCH_2CH_2ONO_2$	7.9×10^{1}		Fischer and Ballschmiter [1998b]	M	73
(1,2-ethane dinitrate)					
[628-96-6]					
1,2-propanediol dinitrate	1.8×10^2		Kames and Schurath [1992]	M	8
$C_3H_6(ONO_2)_2$	3.2×10^{1}		Fischer and Ballschmiter [1998b]	M	73
(1,2-propane dinitrate)					
[6423-43-4]					
1,2-propanediol dinitrate					
1,3-propanediol dinitrate	1.3×10^2		Fischer and Ballschmiter [1998b]	M	73
$C_3H_6N_2O_6$					
[3457-90-7]					
1,2-butanediol dinitrate	2.1×10^{1}		Fischer and Ballschmiter [1998b]	M	73
1,3-butanediol dinitrate	5.8×10^{1}		Fischer and Ballschmiter [1998b]	M	73
1,4-butanediol dinitrate	1.6×10^2		Fischer and Ballschmiter [1998b]	M	73
2,3-butanediol dinitrate	1.2×10^{1}		Fischer and Ballschmiter [1998b]	M	73
1,2-pentanediol dinitrate	1.3×10^{1}		Fischer and Ballschmiter [1998b]	M	73
1,4-pentanediol dinitrate	3.9×10^{1}		Fischer and Ballschmiter [1998b]	M	73
1,5-pentanediol dinitrate	1.2×10^2		Fischer and Ballschmiter [1998b]	M	73
c-2,4-pentanediol dinitrate	2.2×10^{1}		Fischer and Ballschmiter [1998b]	M	73
t-2,4-pentanediol dinitrate	1.5×10^{1}		Fischer and Ballschmiter [1998b]	M	73
1,2-hexanediol dinitrate	9.7×10^{0}		Fischer and Ballschmiter [1998b]	M	73
1,5-hexanediol dinitrate	2.8×10^{1}		Fischer and Ballschmiter [1998b]	M	73
1,6-hexanediol dinitrate	1.5×10^2		Fischer and Ballschmiter [1998b]	M	73
2,5-hexanediol dinitrate	3.2×10^{1}		Fischer and Ballschmiter [1998b]	M	73

substance	$k_{ m H}^{\ominus}$	$\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}$	reference	type	note
	[M/atm]	[K]			
cis-1,2-cyclohexanediol dinitrate	1.3×10^2		Fischer and Ballschmiter [1998b]	M	73
trans-1,2-cyclohexanediol dinitrate	5.2×10^{1}		Fischer and Ballschmiter [1998b]	M	73
cis-1,3-cyclohexanediol dinitrate	3.5×10^2		Fischer and Ballschmiter [1998b]	M	73
trans-1,3-cyclohexanediol dinitrate	6.9×10^{1}		Fischer and Ballschmiter [1998b]	M	73
1,7-heptanediol dinitrate	1.2×10^2		Fischer and Ballschmiter [1998b]	M	73
trans-1,2-cycloheptanediol dinitrate	8.9×10^{1}		Fischer and Ballschmiter [1998b]	M	73
1,2-octanediol dinitrate	5.3×10^{0}		Fischer and Ballschmiter [1998b]	M	73
1,8-octanediol dinitrate	7.9×10^{1}		Fischer and Ballschmiter [1998b]	M	73
1,2-decanediol dinitrate	2.0×10^{0}		Fischer and Ballschmiter [1998b]	M	73
1,10-decanediol dinitrate	4.3×10^{1}		Fischer and Ballschmiter [1998b]	M	73
peroxyacetyl nitrate	3.6		Gaffney and Senum [1984]	X	48
CH ₃ COOONO ₂	5.0		Holdren et al. [1984]	M	74
(PAN)	2.9	5900	Pandis and Seinfeld [1989]	$^{\mathrm{C}}$	
	2.8	6500	Kames et al. [1991]	M	
	4.1		Kames and Schurath [1995]	M	8
	see note		Warneck et al. [1996]	?	75
	see note		Schurath et al. [1996]	?	76
peroxypropionyl nitrate	2.9		Kames and Schurath [1995]	M	8
$C_2H_5COOONO_2$	see note		Warneck et al. [1996]	?	75
(PPN)	see note		Schurath et al. [1996]	?	76
peroxy-n-butyryl nitrate	2.3		Kames and Schurath [1995]	M	8
$C_3H_7COOONO_2$	see note		Warneck et al. [1996]	?	75
(PnBN)	see note		Schurath et al. [1996]	?	76
peroxy-2-propenoyl nitrate	1.7		Kames and Schurath [1995]	M	8
$\mathrm{CH_{2}C}(\mathrm{CH_{3}})\mathrm{COOONO_{2}}$	see note		Warneck et al. [1996]	?	75
(peroxymethacryloyl nitrate, MPAN)	see note		Schurath et al. [1996]	?	76
peroxy-isobutyryl nitrate	1.0		Kames and Schurath [1995]	M	8
$C_3H_7COOONO_2$	see note		Warneck et al. [1996]	?	75
031000002			I		

substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
compound	ds with nitrogen: n		(CN) (C, H, O, and N only)		
cyanide radical	8.0×10^{-2}	1400	Berdnikov and Bazhin [1970]	Т	5
CN					
hydrocyanic acid	9.3		Hine and Weimar [1965]	R	
HCN	1.2×10^{1}	5000	Edwards et al. [1978]	L	
	7.5		Gaffney and Senum [1984]	X	48
ethane nitrile	2.9×10^{1}		Hine and Weimar [1965]	R	
CH_3CN	2.9×10^{1}		Gaffney and Senum [1984]	X	48
(acetonitrile)	5.4×10^{1}	4100	Hamm et al. [1984]	${\bf M}$	
[75-05-8]	4.9×10^{1}	4000	Snider and Dawson [1985]	${\bf M}$	
-	4.8×10^{1}	3500	Arijs and Brasseur [1986]	L	
	5.3×10^{1}	4100	Benkelberg et al. [1995]	${\bf M}$	
	4.9×10^{1}		Yaws and Yang [1992]	?	39
propane nitrile	2.7×10^{1}		Butler and Ramchandani [1935]	Μ	
C_2H_5CN					
(propionitrile)					
[107-12-0]					
butane nitrile	1.9×10^{1}		Butler and Ramchandani [1935]	M	
C_3H_7CN					
(butyronitrile)					
benzenenitrile	1.8		Yaws and Yang [1992]	?	39, 77
C_6H_5CN					
(benzonitrile)					
[100-47-0]					
ethanedinitrile	1.9×10^{-1}		Yaws and Yang [1992]	?	39, 8
C_2N_2					
(cyanogen)					
[460-19-5]					
2-propenenitrile	1.1×10^{1}	2800	USEPA [1982]	X	3
C_3H_3N	7.3		Meylan and Howard [1991]	X	3
(acrylonitrile)					
[107-13-1]					

substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
compounds with	L /	itro (RNC	(C, H, O, and N only)		
nitromethane	3.5×10^{1}	Ì	Gaffney and Senum [1984]	X	48
$\mathrm{CH_{3}NO_{2}}$	4.5×10^{1}		Rohrschneider [1973]	\mathbf{M}	
	3.6		Yaws and Yang [1992]	?	39
nitroethane	2.1×10^{1}		Hine and Mookerjee [1975]	V	
$C_2H_5NO_2$	2.1×10^{1}		Gaffney and Senum [1984]	X	48
	1.4×10^{2}		Friant and Suffet [1979]	\mathbf{M}	49
1-nitropropane	1.2×10^{1}		Hine and Mookerjee [1975]	V	
$C_3H_7NO_2$	1.6×10^{1}		Yaws and Yang [1992]	?	39, 8
2-nitropropane	8.2		Hine and Mookerjee [1975]	V	
$\mathrm{CH_{3}CH(NO_{2})CH_{3}}$	1.1×10^{1}		Yaws and Yang [1992]	?	39, 8
nitrobenzene	4.3×10^{1}		Hine and Mookerjee [1975]	V	
$C_6H_5NO_2$	4.1×10^{1}		Meylan and Howard [1991]	X	3
[98-95-3]	4.7×10^{1}	4500	USEPA [1982]	X	3
2-nitrotoluene	1.7×10^{1}		Hine and Mookerjee [1975]	V	
$C_6H_4(NO_2)CH_3$	7.8	2900	<i>USEPA</i> [1982]	X	3
[88-72-2]					
3-nitrotoluene	1.4×10^{1}		Hine and Mookerjee [1975]	V	
$C_6H_4(NO_2)CH_3$	1.4×10^{1}	3200	USEPA [1982]	X	3
4-nitrotoluene	1.6×10^{1}	3100	USEPA [1982]	X	3
$C_6H_4(NO_2)CH_3$					
1-methyl-2,4-dinitrobenzene $C_7H_6N_2O_4$ (DNT)	2.1×10 ¹	2900	USEPA [1982]	X	3
[121-14-2]					

	$k_{ m H}^\ominus$	$\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}$		4	
substance	$\overline{\mathrm{[M/atm]}}$	[K]	reference	type	note
2-nitrophenol	7.0×10^{1}	4600	USEPA [1982]	X	3
$HOC_6H_4(NO_2)$	7.4×10^{1}		Schwarzenbach et al. [1988]	V	8
[88-75-5]	7.9×10^{1}		Tremp et al. [1993]	X	55,8
3-nitrophenol	5.0×10^5		Gaffney and Senum [1984]	X	48
$HOC_6H_4(NO_2)$					
4-nitrophenol	2.6×10^{6}	9100	Parsons et al. [1971]	M	54
$HOC_6H_4(NO_2)$	9.9×10^{2}	6000	USEPA [1982]	X	3
[100-02-7]	3.0×10^{4}		Schwarzenbach et al. [1988]	V	8
	7.9×10^4		Tremp et al. [1993]	X	55,8
3-methyl-2-nitrophenol	2.5×10^{2}		Schwarzenbach et al. [1988]	V	8
$C_7H_7NO_3$			-		
[4920-77-8]					
4-methyl-2-nitrophenol	6.2×10^{1}		Schwarzenbach et al. [1988]	V	8
$C_7H_7NO_3$			-		
[119-33-5]					
5-methyl-2-nitrophenol	6.8×10^{1}		Schwarzenbach et al. [1988]	V	8
$C_7H_7NO_3$					
[700-38-9]					
4-(1-methylpropyl)-2-nitrophenol	2.4×10^{1}		Schwarzenbach et al. [1988]	V	8
$C_{10}H_{13}NO_3$					
[3555-18-8]					
4-methoxy-2-nitrophenol	2.3×10^{1}		Schwarzenbach et al. [1988]	V	8
$C_7H_7NO_4$					
[1568-70-3]					
4-hydroxy-3-nitro-benzaldehyde	9.5×10^{2}		Schwarzenbach et al. [1988]	V	8
$C_7H_5NO_4$					
[3011-34-5]					
2,4-dinitrophenol	3.5×10^{3}		Schwarzenbach et al. [1988]	V	8
$C_6H_4N_2O_5$	1.2×10^4		Tremp et al. [1993]	X	55,8
[51-28-5]					
2,5-dinitrophenol	1.5×10^{3}		Schwarzenbach et al. [1988]	V	8
$C_6H_4N_2O_5$					
[329-71-5]					
2-methyl-4,6-dinitrophenol	2.3×10^{3}		Schwarzenbach et al. [1988]	V	8
$C_7H_6N_2O_5$	4.6×10^{3}		Tremp et al. [1993]	X	55,8
(dinitro-o-cresol, DNOC)					
[534-52-1]					

substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
	compoun		luorine		
fluoromethane	5.9×10^{-2}	ds With I	Hine and Mookerjee [1975]	V	
CH ₃ F	5.9×10^{-2}	2200	Wilhelm et al. [1977]	L L	
CH31	5.3×10^{-2} 5.2×10^{-2}	2200	Mackay and Shiu [1981]	L	
	7.2×10^{-2}		Yaws and Yang [1992]	?	39, 38
difluoromethane	8.7×10^{-2}		Yaws and Yang [1992]	?	39, 30
$\mathrm{CH_2F_2}$	0.7×10		1 aws and 1 ang [1992]	<u>;</u>	39
trifluoromethane	1.1×10^{-2}		Hine and Mookerjee [1975]	V	
CHF_3	1.3×10^{-2}	3200	Wilhelm et al. [1977]	L	
(R23)	1.3×10^{-2}		Yaws and Yang [1992]	?	39
	1.4×10^{-2}	2200	Zheng et al. [1997]	M	
tetrafluoromethane	2.0×10^{-4}		Hine and Mookerjee [1975]	V	
CF ₄	2.0×10^{-4}	1500	Morrison and Johnstone [1954]	M	
(carbontetrafluoride)	2.1×10^{-4}	1800	Wilhelm et al. [1977]	L	
(1.1. 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	1.9×10^{-4}	1000	Yaws and Yang [1992]	?	39
fluoroethane	4.4×10^{-2}		Yaws and Yang [1992]	?	39
$\mathrm{C_2H_5F}$	1.1/\10		Tatao and Tang [1552]		50
1,1-difluoroethane	4.9×10^{-2}		Hine and Mookerjee [1975]	V	
$C_2H_4F_2$	3.7×10^{-2}		Yaws and Yang [1992]	?	39, 78
(R152a)	5.4×10^{-2}	2600	Zheng et al. [1997]	М	
1,1,1,2-tetrafluoroethane	1.8×10^{-2}	2700	Zheng et al. [1997]	M	
$C_2H_2F_4$ (R134a)					
hexafluoroethane	5.9×10^{-5}		Yaws and Yang [1992]	?	39
C_2F_6					
1-fluoropropane	6.2×10^{-2}		Yaws and Yang [1992]	?	39, 79
C_3H_7F					
2-fluoropropane	5.9×10^{-2}		Yaws and Yang [1992]	?	39, 38
$\mathrm{C_{3}H_{7}F}$					
octafluorocyclobutane	2.5×10^{-4}		Yaws and Yang [1992]	?	39
C_4F_8					
1,1-difluoroethene	2.5×10^{-3}		Yaws and Yang [1992]	?	39
$C_2H_2F_2$					
tetrafluoroethene	1.6×10^{-3}	2100	Wilhelm et al. [1977]	L	
C_2F_4	1.6×10^{-3}		Yaws and Yang [1992]	?	39
hexafluoropropene	2.9×10^{-4}	2400	Wilhelm et al. [1977]	L	
nexamuoropropene			[]		

substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
carbonyl fluoride	2.0×10^{1}		Kanakidou et al. [1995]	С	
COF_2	3.5×10^{1}		Mirabel et al. [1996]	M	
formyl fluoride FCHO	3.0		Kanakidou et al. [1995]	Е	
2,2,2-trifluoroethanol ${\rm CF_3CH_2OH}$	5.9×10 ¹	5900	Rochester and Symonds [1973]	М	
1,1,1-trifluoro-2-propanol ${\rm CF_3CHOHCH_3}$	4.5×10^{1}	6300	Rochester and Symonds [1973]	М	
2,2,3,3-tetrafluoro-1-propanol $\mathrm{CHF_2CF_2CH_2OH}$	1.6×10^2	6700	Rochester and Symonds [1973]	М	
2,2,3,3,3-pentafluoro-1-propanol ${\rm CF_3CF_2CH_2OH}$	4.5×10^{1}	6000	Rochester and Symonds [1973]	M	
$1,1,1,3,3,3$ -hexafluoro-2-propanol $\mathrm{CF_3CHOHCF_3}$	2.4×10^{1}	6700	Rochester and Symonds [1973]	М	
trifluoroacetylfluoride	3.0		Kanakidou et al. [1995]	С	
CF ₃ COF	3.0		Mirabel et al. [1996]	M	
$1,1,1$ -trifluoro- 2 -propanone CF_3COCH_3	1.4×10^2	8900	Betterton [1991]	М	
fluoroethanoic acid CH ₂ FCOOH (fluoroacetic acid) [144-49-0]	8.1×10 ⁴		Bowden et al. [1998b]	M	
difluoroethanoic acid CHF ₂ COOH (difluoroacetic acid) [381-73-7]	3.0×10^4	6900	Bowden et al. [1998b]	M	
trifluoroethanoic acid CF ₃ COOH (trifluoroacetic acid) [76-05-1]	8.9×10 ³	9300	Bowden et al. [1996]	M	
generic peroxide with fluorine ROOH	3.0×10^{1}		Kanakidou et al. [1995]	Е	80

substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{\left[\mathrm{K}\right]}$	reference	type	note
fluorobenzene	1.6×10^{-1}		Mackay and Shiu [1981]	L	
C_6H_5F	1.2×10^{-1}		Hoff et al. [1993]	?	13
	1.6×10^{-1}	4100	Hartkopf and Karger [1973]	\mathbf{M}	
	1.6×10^{-1}		Yaws and Yang [1992]	?	39
1,2-difluorobenzene	1.4×10^{-1}		Yaws and Yang [1992]	?	39
$C_6H_4F_2$					
(o-difluorobenzene)					
1,3-difluorobenzene	1.3×10^{-2}		Yaws and Yang [1992]	?	39
$C_6H_4F_2$	1107110		1 a a a a a a a a a a a a a a a a a a a	·	30
(m-difluorobenzene)					
1,4-difluorobenzene	1.3×10^{-1}		Yaws and Yang [1992]	?	39
$C_6H_4F_2$					
(p-difluorobenzene)					
(trifluoromethyl)-benzene	6.3×10^{-2}		Mackay and Shiu [1981]	L	
$C_6H_5CF_3$	6.2×10^{-2}		Yaws and Yang [1992]	?	39
$(\alpha, \alpha, \alpha$ -trifluorotoluene)					
5-fluoro-2-nitrophenol	5.9×10^2		Schwarzenbach et al. [1988]	V	8
$C_6H_4FNO_3$					
[446-36-6]					

substance	$\frac{k_{\mathrm{H}}^{\ominus}}{}$	$\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}$	reference	type	note
	[M/atm]	[K]		J I	
	aliphatic comp	ounds wi		T	
chloromethane	1.3×10^{-1}		Pearson and McConnell [1975]	M	81,8
CH ₃ Cl	1.0×10^{-1}		Hine and Mookerjee [1975]	V	
(methylchloride)	1.0×10^{-1}	2800	Wilhelm et al. [1977]	L	
	1.1×10^{-1}		Mackay and Shiu [1981]	L	
	1.2×10^{-1}	4200	Gossett [1987]	M	
	9.4×10^{-2}	3000	Moore et al. [1995]	M	
	1.1×10^{-1}		Dilling [1977]	V	
	1.2×10^{-1}		Dilling [1977]	V	8
	1.2×10^{-1}		Yaws and Yang [1992]	?	39
	2.9×10^{-2}	-630	<i>USEPA</i> [1982]	X	3
	1.0×10^{-1}	2900	Kavanaugh and Trussell [1980]	X	3
dichloromethane	3.3×10^{-1}		Pearson and McConnell [1975]	M	81,8
$\mathrm{CH_{2}Cl_{2}}$	4.4×10^{-1}		Hine and Mookerjee [1975]	V	
[75-09-2]	3.9×10^{-1}		Mackay and Shiu [1981]	L	
	3.5×10^{-1}	4200	Lincoff and Gossett [1984]	M	
	4.7×10^{-1}	3800	Gossett [1987]	M	
	4.0×10^{-1}	3800	Wright et al. [1992b]	M	
	4.0×10^{-1}		<i>Dilling</i> [1977]	V	
	1.2		<i>Dilling</i> [1977]	V	82
	3.7×10^{-1}		Dilling [1977]	С	
	4.1×10^{-1}		Hoff et al. [1993]	M	
	4.4×10^{-1}	4100	Hartkopf and Karger [1973]	M	
	4.0×10^{-1}		Yaws and Yang [1992]	?	39
	3.1×10^{-1}	3600	<i>USEPA</i> [1982]	X	3
	3.6×10^{-1}	4100	Staudinger and Roberts [1996]	L	
	8.6×10^{-1}	4200	Kavanaugh and Trussell [1980]	X	3
	3.1×10^{-1}	3700	Leighton and Calo [1981]	X	3
	3.4×10^{-1}	4300	Ashworth et al. [1988]	X	3
	3.5×10^{-1}	4200	Gossett et al. [1985]	X	3
	3.8×10^{-1}	3500	Tse et al. [1992]	X	3
	3.9×10^{-1}	4500	Gossett et al. [1985]	X	3
	4.0×10^{-1}	3900	Wright et al. [1992a]	X	3

substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	not
trichloromethane	3.5×10^{-1}		Pearson and McConnell [1975]	M	81,8
CHCl ₃	2.3×10^{-1}		Hine and Mookerjee [1975]	V	01,0
(chloroform)	2.7×10^{-1}		Mackay and Shiu [1981]	L	
[67-66-3]	2.0×10^{-1}	3900	Hunter-Smith et al. [1983]	M	83
[01-00-0]	3.3×10^{-1}	9300	Nicholson et al. [1984]	M	00
	2.8×10^{-1}		Nicholson et al. [1984]	C	
	3.2×10^{-1}		Nicholson et al. [1984]	$^{\rm C}$	
	2.1×10^{-1}		Nicholson et al. [1984]	C	
	2.4×10^{-1}	4200	Lincoff and Gossett [1984]	M	
	2.8×10^{-1}	4600	Gossett [1987]	M	
	4.9×10^{-1}	7300	Tancrède and Yanagisawa [1990]	M	
	2.6×10^{-1}	3900	Wright et al. [1992b]	M	
	2.7×10^{-1}	4100	Dewulf et al. $[1995]$	M	
	2.3×10^{-1}	3800	Moore et al. [1995]	M	
	2.5×10^{-1}		Dilling [1977]	V	
	9.1×10^{-1}		Dilling [1977]	V	82
	3.1×10^{-1}		Dilling [1977]	С	
	2.5×10^{-1}		Hoff et al. [1993]	M	
	2.9×10^{-1}	4800	Hartkopf and Karger [1973]	M	
	2.4×10^{-1}		Yaws and Yang [1992]	?	39
	2.5×10^{-1}	4100	Barr and Newsham [1987]	X	3
	2.5×10^{-1}	4600	Kavanaugh and Trussell [1980]	X	3
	2.6×10^{-1}	4000	Wright et al. [1992a]	X	3
	3.0×10^{-1}	4400	USEPA [1982]	X	3
	1.5×10^{-1}	5600	Ervin et al. [1980]	X	3
	2.3×10^{-1}	4200	Gossett et al. [1985]	X	3
	2.3×10^{-1}	5000	Ashworth et al. [1988]	X	3
	2.4×10^{-1}	2200	Lamarche and Droste [1989]	X	3
	2.5×10^{-1}	4100	Leighton and Calo [1981]	X	3
	2.5×10^{-1}	4300	Gossett et al. [1985]	X	3
	2.5×10^{-1}	4500	Staudinger and Roberts [1996]	L	
	2.6×10^{-1}	4300	Munz and Roberts [1987]	X	3

substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
tetrachloromethane	3.8×10^{-2}		Liss and Slater [1974]	С	
CCl_4	4.5×10^{-2}		Pearson and McConnell [1975]	${ m M}$	81,8
(carbontetrachloride)	3.5×10^{-2}		Hine and Mookerjee [1975]	V	
[56-23-5]	5.1×10^{-2}		Mackay and Shiu [1981]	L	
-	4.2×10^{-2}	3200	Hunter-Smith et al. [1983]	Μ	
	3.3×10^{-2}	4400	Gossett [1987]	${ m M}$	
	3.5×10^{-2}	4100	Tancrède and Yanagisawa [1990]	Μ	
	3.0×10^{-2}	4200	Wright et al. [1992b]	Μ	
	3.8×10^{-2}	4100	Dewulf et al. [1995]	M	
	3.4×10^{-2}	3600	Hansen et al. [1995]	Μ	
	3.4×10^{-2}		Dilling [1977]	V	
	4.7×10^{-2}		Dilling [1977]	С	
	3.6×10^{-2}		Hoff et al. [1993]	Μ	
	3.9×10^{-2}	4900	Hartkopf and Karger [1973]	M	
	3.4×10^{-2}		Yaws and Yang [1992]	?	39
	3.1×10^{-2}	4200	Wright et al. [1992a]	X	3
	3.3×10^{-2}	1100	<i>USEPA</i> [1982]	X	3
	3.3×10^{-2}	4700	Kavanaugh and Trussell [1980]	X	3
	3.8×10^{-2}	3600	Tse et al. [1992]	X	3
	2.8×10^{-2}	5600	$Bissonette\ et\ al.\ [1990]$	X	3
	3.2×10^{-2}	3400	Hansen et al. [1993]	X	3
	3.3×10^{-2}	4000	Ashworth et al. [1988]	X	3
	3.3×10^{-2}	4300	Munz and Roberts [1987]	X	3
	3.4×10^{-2}	4200	Standinger and Roberts [1996]	L	0
	3.6×10^{-2}	4400	Leighton and Calo [1981]	X	3
chloroethane	1.2×10^{-1}	1100	Hine and Mookerjee [1975]	V	
C ₂ H ₅ Cl	5.1×10^{-1}		Mackay and Shiu [1981]	L	
[75-00-3]	8.9×10^{-2}	3100	Gossett [1987]	M	
[10 00 0]	8.9×10^{-2}	0100	Dilling [1977]	V	
	1.4×10^{-1}		Yaws and Yang [1992]	?	39,
	6.9×10^{-2}	750	USEPA [1982]	X	3
	8.5×10^{-2}	2900	Staudinger and Roberts [1996]	L	9
	8.1×10^{-2}	2600	Ashworth et al. [1988]	X	3
1,1-dichloroethane	1.7×10^{-1}	2000	Hine and Mookerjee [1975]	V	
CHCl ₂ CH ₃	1.7×10^{-1} 1.7×10^{-1}		Mackay and Shiu [1981]	L L	
	1.7×10^{-1} 1.8×10^{-1}	4100	Gossett [1987]		
[75-34-3]	1.7×10^{-1}	3600		М	
	2.0×10^{-1}		Wright et al. [1992b]	М	
		4000	Dewulf et al. [1995]	M	
	1.7×10^{-1}		Dilling [1977]	V	20
	1.7×10^{-1}	2000	Yaws and Yang [1992]	?	39
	1.6×10^{-1}	3600	Wright et al. [1992a]	X	3
	1.7×10^{-1}	3800	Barr and Newsham [1987]	X	3
	1.8×10^{-1}	1700	USEPA [1982]	X	3
	1.8×10^{-1}	3300	Tse et al. [1992]	X	3
	1.8×10^{-1}	4400	Kavanaugh and Trussell [1980]	X	3
	1.3×10^{-1}	4900	Ervin et al. [1980]	X	3
	1.5×10^{-1}	3100	Ashworth et al. [1988]	X	3
	1.6×10^{-1}	3600	Staudinger and Roberts [1996]	L	_
	1.7×10^{-1}	2100	Lamarche and Droste [1989]	X	3

substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
1,2-dichloroethane	1.1		Pearson and McConnell [1975]	Μ	81,8
CH_2ClCH_2Cl	7.6×10^{-1}		Hine and Mookerjee [1975]	V	
[107-06-2]	9.2×10^{-1}		Mackay and Shiu [1981]	${ m L}$	
	8.7×10^{-1}	3900	Wright et al. [1992b]	\mathbf{M}	
	9.5×10^{-1}	4300	Dewulf et al. [1995]	${ m M}$	
	8.2×10^{-1}		Dilling [1977]	V	
	1.0		Dilling [1977]	$^{\mathrm{C}}$	
	8.4×10^{-1}		Hoff et al. [1993]	${ m M}$	
	8.4×10^{-1}	4100	Hartkopf and Karger [1973]	${\bf M}$	
	8.5×10^{-1}		Yaws and Yang [1992]	?	39
	8.3×10^{-1}	3800	Tse et al. [1992]	X	3
	8.6×10^{-1}	3900	Wright et al. [1992a]	X	3
	8.7×10^{-1}	3700	Barr and Newsham [1987]	X	3
	9.1×10^{-1}	2400	USEPA [1982]	X	3
	6.5×10^{-1}	1500	Ashworth et al. [1988]	X	3
	6.5×10^{-1}	4500	Bissonette et al. [1990]	X	3
	7.0×10^{-1}	4700	Lamarche and Droste [1989]	X	3
	7.3×10^{-1}	4200	Staudinger and Roberts [1996]	${ m L}$	
	8.5×10^{-1}	3500	Leighton and Calo [1981]	X	3
1,1,1-trichloroethane	2.9×10^{-2}		Pearson and McConnell [1975]	M	81,8
CH ₃ CCl ₃	6.2×10^{-2}		Hine and Mookerjee [1975]	V	01,0
(methylchloroform, MCF)	3.6×10^{-2}		Mackay and Shiu [1981]	L	
[71-55-6]	7.7×10^{-2}	3200	Hunter-Smith et al. [1983]	M	
[11-55-0]	5.9×10^{-2}	4300	Lincoff and Gossett [1984]	M	
	5.9×10^{-2}	4100	Gossett [1987]	M	
	8.7×10^{-2}	4100	Kolb et al. [1992]	X	45
	6.1×10^{-2}	3500	Wright et al. [1992b]	M	40
	5.7×10^{-2}	3200	Robbins et al. [1993]	M	
	7.1×10^{-2}	4700	Kanakidou et al. [1995]	$\stackrel{\mathbf{M}}{\mathbf{C}}$	
	6.8×10^{-2}	3800	Dewulf et al. [1995]	М	
	6.0×10^{-2}	3100	Hansen et al. [1995]	M	
	3.4×10^{-2}	3100	Dilling [1977]	V	
	4.0×10^{-2}				0
	1.1×10^{-1}		Dilling [1977] Dilling [1977]	V V	8 82
	5.4×10^{-2}				02
		4600	Hoff et al. [1993]	M	9
	1.1×10^{-1}	4600	Kavanaugh and Trussell [1980]	X	3
	2.2×10^{-1}	1700	USEPA [1982]	X	3
	5.9×10^{-2}	3400	Wright et al. [1992a]	X	3
	5.9×10^{-2}	4000	Barr and Newsham [1987]	X	3
	6.4×10^{-2}	3700	Tse et al. [1992]	X	3
	2.7×10^{-2}	7000	Ervin et al. [1980]	X	3
	5.1×10^{-2}	4400	Leighton and Calo [1981]	X	3
	5.2×10^{-2}	5200	Bissonette et al. [1990]	X	3
	5.8×10^{-2}	3400	Ashworth et al. [1988]	X	3
	5.9×10^{-2}	3900	Staudinger and Roberts [1996]	L	~
	5.9×10^{-2}	4200	Gossett et al. [1985]	X	3
	6.0×10^{-2}	3200	Hansen et al. [1993]	X	3
	6.0×10^{-2}	4100	Munz and Roberts [1987]	X	3
	6.0×10^{-2}	4300	Gossett et al. [1985]	X	3

substance	$rac{k_{ m H}^{\ominus}}{ m [M/atm]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
1,1,2-trichloroethane	1.1	[11]	Hine and Mookerjee [1975]	V	
CHCl ₂ CH ₂ Cl	8.4×10^{-1}		Mackay and Shiu [1981]	L	
[79-00-5]	1.2	3900	Wright et al. [1992b]	M	
[10 00 0]	1.3	5900	Hansen et al. [1995]	M	
	1.1	3000	Dilling [1977]	V	
	1.0		Yaws and Yang [1992]	?	39
	1.2	2700	USEPA [1982]	X	3
	1.2	3800	Wright et al. [1992a]	X	3
	1.2	4000	Tse et al. [1992]	X	3
	1.2	4300	Barr and Newsham [1987]	X	3
	1.0	4800	Ashworth et al. [1988]	X	3
	1.1	4900	Staudinger and Roberts [1996]	L	3
	1.1	3700		X	9
			Leighton and Calo [1981]		3
11104-4	1.3 2.2	6100	Hansen et al. [1993]	X	3
1,1,1,2-tetrachloroethane			Hine and Mookerjee [1975]	V	
CCl ₃ CH ₂ Cl	3.6×10^{-1}	4000	Mackay and Shiu [1981]	L	
[630-20-6]	4.0×10^{-1}	4800	Wright et al. [1992b]	M	
	3.7×10^{-1}	4500	Dilling [1977]	V	0
	3.4×10^{-1}	4500	Wright et al. [1992a]	X	3
	4.5×10^{-1}	4600	Tse et al. [1992]	X	3
1,1,2,2-tetrachloroethane	2.1		Mackay and Shiu [1981]	L	
$\mathrm{CHCl_2CHCl_2}$	2.0	5000	Wright et al. [1992b]	M	
[79-34-5]	2.1		Dilling [1977]	V	
	3.0		Yaws and Yang [1992]	?	39
	1.8	4200	Barr and Newsham [1987]	X	3
	1.9	4700	Wright et al. [1992a]	X	3
	2.2	2800	Ashworth et al. [1988]	X	3
	2.3	3000	USEPA [1982]	X	3
	2.4	3200	Staudinger and Roberts [1996]	L	
	2.4	4800	Tse et al. [1992]	X	3
	2.8	3600	Leighton and Calo [1981]	X	3
pentachloroethane	4.1×10^{-1}		Hine and Mookerjee [1975]	V	
$\mathrm{CHCl_2CCl_3}$	4.6×10^{-1}		Mackay and Shiu [1981]	L	
[76-01-7]	4.0×10^{-1}		Dilling [1977]	V	
	5.5×10^{-1}		Yaws and Yang [1992]	?	39
hexachloroethane	4.4×10^{-1}		Hine and Mookerjee [1975]	V	
$\mathrm{C_2Cl_6}$	7.8×10^{-2}		Mackay and Shiu [1981]	L	
[67-72-1]	8.2×10^{-1}		Dilling [1977]	V	
•	4.4×10^{-2}		Yaws and Yang [1992]	?	39
	1.0×10^{-1}	2100	USEPA [1982]	X	3
	2.5×10^{-1}	5600	Staudinger and Roberts [1996]	L	
	1.2×10^{-1}	2600	Ashworth et al. [1988]	X	3
	2.5×10^{-1}	5600	Munz and Roberts [1987]	X	3

substance	$rac{k_{ m H}^{\ominus}}{ m [M/atm]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
1-chloropropane	7.4×10^{-2}		Hine and Mookerjee [1975]	V	
C_3H_7Cl	9.2×10^{-2}		Mackay and Shiu [1981]	L	
[540-54-5]	9.3×10^{-2}		Yaws and Yang [1992]	?	39, 8
2-chloropropane	6.2×10^{-2}		Hine and Mookerjee [1975]	V	
C_3H_7Cl	6.9×10^{-2}		Yaws and Yang [1992]	?	39, 8
[75-29-6]			<u> </u>		
1,2-dichloropropane	3.4×10^{-1}		Hine and Mookerjee [1975]	V	
$C_3H_6Cl_2$	3.7×10^{-1}	3800	Wright et al. [1992b]	M	
[78-87-5]	3.7×10^{-1}		Yaws and Yang [1992]	?	39
	3.4×10^{-1}	2100	USEPA [1982]	X	3
	3.4×10^{-1}	3600	Wright et al. [1992a]	X	3
	4.0×10^{-1}	3700	Tse et al. [1992]	X	3
	3.0×10^{-1}	3800	Bissonette et al. [1990]	X	3
	3.4×10^{-1}	4300	Staudinger and Roberts [1996]	L	
	3.5×10^{-1}	4300	Leighton and Calo [1981]	X	3
	3.8×10^{-1}	4700	Ashworth et al. [1988]	X	3
1,3-dichloropropane	1.0		Hine and Mookerjee [1975]	V	
$C_3H_6Cl_2$	1.0		Yaws and Yang [1992]	?	39
[142-28-9]	1.0	3900	Leighton and Calo [1981]	X	3
1,2,3-trichloropropane	4.4	4000	Tancrède and Yanagisawa [1990]	M	
$C_3H_5Cl_3$	3.1		Dilling [1977]	V	
[96-18-4]	2.9		Yaws and Yang [1992]	?	39
	2.8	3500	Leighton and Calo [1981]	X	3
	3.4	3700	Staudinger and Roberts [1996]	L	
1-chloro-2-methylpropane	8.4×10^{-1}		Mackay and Shiu [1981]	L	
C_4H_9Cl	6.4×10^{-2}		Yaws and Yang [1992]	?	39, 8
[513-36-0]					,
1-chlorobutane	5.1×10^{-2}		Hine and Mookerjee [1975]	V	
C_4H_9Cl	5.7×10^{-2}		Hoff et al. [1993]	?	13
[109-69-3]	5.9×10^{-2}		Yaws and Yang [1992]	?	39
	6.0×10^{-2}	3500	Leighton and Calo [1981]	X	3
2-chlorobutane	5.4×10^{-2}		Yaws and Yang [1992]	?	39
C_4H_9Cl	4.1×10^{-2}	4500	Leighton and Calo [1981]	X	3
[78-86-4]					
1,1-dichlorobutane	1.3×10^{-1}		Hine and Mookerjee [1975]	V	
$\mathrm{C_4H_8Cl_2}$, L		
[541-33-3]					
1,4-dichlorobutane	2.0	3100	Leighton and Calo [1981]	X	3
$ m C_4H_8Cl_2$		0_00			
04002					
1-chloropentane	4.6×10^{-2}		Hine and Mookerjee [1975]	V	
C ₅ H ₁₁ Cl	2.0×10^{-2}		Yaws and Yang [1992]	?	39
[543-59-9]	4.2×10^{-2}	4700	Leighton and Calo [1981]	X	3
2-chloropentane	3.6×10^{-2}	1100	Hine and Mookerjee [1975]	V	
$C_5H_{11}Cl$	0.0 \ 10		Time and mountific [1919]	,	
[625-29-6]					
[020 20 0]					

		$-\mathrm{d} \ln k_{\mathrm{H}}$			
substance	$rac{k_{ m H}^{\ominus}}{ m [M/atm]}$	$\frac{\frac{\mathrm{d} \mathrm{H} \kappa_{\mathrm{H}}}{\mathrm{d} (1/T)}}{[\mathrm{K}]}$	reference	type	note
3-chloropentane	3.8×10^{-2}		Hine and Mookerjee [1975]	V	
$C_5H_{11}Cl$					
[616-20-6]					
1,5-dichloropentane	1.8	1600	Leighton and Calo [1981]	X	3
$C_5H_{10}Cl_2$					
2-chloro-2-methylbutane	3.1×10^{-1}		Yaws and Yang [1992]	?	39
$C_5H_{11}Cl$					
[594-36-5]					
1-chlorohexane	4.1×10^{-2}	4500	Leighton and Calo [1981]	X	3
$C_6H_{13}Cl$					
1,10-dichlorodecane	2.0×10^{-1}		Drouillard et al. [1998]	V	
$\mathrm{C}_{10}\mathrm{H}_{20}\mathrm{Cl}_2$					
1,2,9,10-tetrachlorodecane	5.7		Drouillard et al. [1998]	M	
$\mathrm{C}_{10}\mathrm{H}_{18}\mathrm{Cl}_{4}$					
pentachlorodecane isomers	2.1×10^{1}		Drouillard et al. [1998]	M	
$\mathrm{C}_{10}\mathrm{H}_{17}\mathrm{Cl}_{5}$	3.9×10^{1}		Drouillard et al. [1998]	M	
1,2,10,11-tetrachloroundecane	1.6×10^{1}		Drouillard et al. [1998]	M	
$\mathrm{C}_{11}\mathrm{H}_{20}\mathrm{Cl}_4$					
pentachloroundecane isomers	6.9×10^{1}		Drouillard et al. [1998]	M	
$\mathrm{C}_{11}\mathrm{H}_{19}\mathrm{Cl}_{5}$	1.5×10^2		Drouillard et al. [1998]	M	
1,12-dichlorododecane	1.6×10^{-1}		Drouillard et al. [1998]	V	
$C_{12}H_{24}Cl_2$					
polychlorinated dodecane isomers	7.4×10^{1}		Drouillard et al. [1998]	M	
$\mathrm{C_{12}H_{x}Cl_{y}}$					

substance	$rac{k_{ m H}^{\ominus}}{ m [M/atm]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
chloroethene	8.2×10^{-4}		Pearson and McConnell [1975]	M	81,74
CH ₂ CHCl	1.8×10^{-2}		Hine and Mookerjee [1975]	V	,
(vinyl chloride)	4.6×10^{-2}	3000	Wilhelm et al. [1977]	${ m L}$	
[75-01-4]	3.8×10^{-2}	3300	Gossett [1987]	M	
	9.5×10^{-4}		Dilling [1977]	V	
	4.3×10^{-2}		Dilling [1977]	V	
	4.4×10^{-2}		Yaws and Yang [1992]	?	39
	3.9×10^{-2}	3100	Staudinger and Roberts [1996]	L	
	4.0×10^{-2}	2900	Ashworth et al. [1988]	X	3
1,1-dichloroethene	6.5×10^{-3}		Pearson and McConnell [1975]	M	81,8
$\mathrm{CH_{2}CCl_{2}}$	7.6×10^{-3}		Mackay and Shiu [1981]	${ m L}$	
[75-35-4]	3.9×10^{-2}	3700	Gossett [1987]	M	
	5.3×10^{-3}		Dilling [1977]	V	
	6.2×10^{-3}		Dilling [1977]	V	8
	4.3×10^{-2}		Yaws and Yang [1992]	?	39
	3.7×10^{-2}	3100	Tse et al. [1992]	X	3
	6.6×10^{-2}	1200	<i>USEPA</i> [1982]	X	3
	1.4×10^{-2}	6600	Ervin et al. [1980]	X	3
	2.7×10^{-2}	4600	Leighton and Calo [1981]	X	3
	3.4×10^{-2}	4000	Staudinger and Roberts [1996]	${ m L}$	
	3.4×10^{-2}	4500	Bissonette et al. [1990]	X	3
	3.7×10^{-2}	2900	Ashworth et al. [1988]	X	3
(Z)-1,2-dichloroethene	3.0×10^{-1}		Hine and Mookerjee [1975]	V	
CHClCHCl	1.3×10^{-1}		Mackay and Shiu [1981]	L	
(cis-1, 2-dichloroethene)	2.7×10^{-1}	4200	Gossett [1987]	M	
[156-59-2]	2.4×10^{-1}	3800	$Wright\ et\ al.\ [1992b]$	M	
	1.3×10^{-1}		Dilling [1977]	V	
	1.3×10^{-1}		$Yaws \ and \ Yang \ [1992]$?	39
	2.1×10^{-1}	3100	Ashworth et al. [1988]	X	3
	2.2×10^{-1}	4100	Ervin et al. [1980]	X	3
	2.3×10^{-1}	4000	$Wright\ et\ al.\ [1992a]$	X	3
	2.4×10^{-1}	3900	Staudinger and Roberts [1996]	L	
	2.5×10^{-1}	4200	Bissonette et al. [1990]	X	3
	2.6×10^{-1}	3400	Tse et al. [1992]	X	3

substance	$rac{k_{ m H}^{\ominus}}{ m [M/atm]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{\left[\mathrm{K}\right]}$	reference	type	note
(E)-1,2-dichloroethene	1.5×10^{-1}		Hine and Mookerjee [1975]	V	
CHClCHCl	1.5×10^{-1}		Mackay and Shiu [1981]	L	
(trans-1,2-dichloroethene)	1.1×10^{-1}	4200	Gossett [1987]	M	
[156-60-5]	1.0×10^{-1}	4000	Wright et al. [1992b]	M	
	9.9×10^{-2}	3400	Hansen et al. [1995]	M	
	1.5×10^{-1}		Dilling [1977]	V	
	1.5×10^{-1}		Yaws and Yang [1992]	?	39
	1.0×10^{-1}	3000	Ashworth et al. [1988]	X	3
	1.1×10^{-1}	3400	Tse et al. [1992]	X	3
	1.1×10^{-1}	4300	Wright et al. [1992a]	X	3
	1.9×10^{-1}	1700	USEPA [1982]	X	3
	7.1×10^{-2}	5400	Ervin et al. [1980]	X	3
	8.6×10^{-2}	4800	Bissonette et al. [1990]	X	3
	9.1×10^{-2}	4100	Staudinger and Roberts [1996]	L	9
	9.8×10^{-2}	4100	Cooling et al. [1992]	X	3
	9.9×10^{-2}	3300	Hansen et al. [1993]	X	3
trichloroethene	1.1×10^{-1}	9900	Pearson and McConnell [1975]	M	81,8
C ₂ HCl ₃	8.5×10^{-2}		Hine and Mookerjee [1975]	V	01,0
(trichloroethylene)	8.2×10^{-2}		Mackay and Shiu [1981]	L	
[79-01-6]	9.9×10^{-2}	4900	Lincoff and Gossett [1984]	M	
[13-01-0]	1.1×10^{-1}	4800	Gossett [1987]	M	
	1.1×10 1.3×10^{-1}	5200	Tancrède and Yanagisawa [1990]	M	
	1.3×10^{-1} 1.1×10^{-1}	4200	Wright et al. [1992b]	M	
	9.7×10^{-2}	3500	Robbins et al. [1993]	M	
	1.3×10^{-1}	3300	Nielsen et al. [1994]	M	
	1.3×10^{-1} 1.2×10^{-1}	3600	Dewulf et al. [1994]	M	
	8.4×10^{-2}	3000	Dilling [1977]	V	
	1.0×10^{-1}		Dilling [1977] Dilling [1977]	V	8
	2.4×10^{-1}		Dilling [1977] Dilling [1977]	V	82
	2.4×10 1.1×10^{-1}				02
	8.6×10^{-2}		Hoff et al. [1993]	M ?	20
	1.0×10^{-1}	4100	Yaws and Yang [1992]		39
	1.0×10 1.1×10^{-1}		Wright et al. [1992a]	X	3
	1.1×10 1.2×10^{-1}	4400	Cooling et al. [1992]	X	3
		3900	Tse et al. [1992]	X	3
	8.2×10^{-2}	4000	Kavanaugh and Trussell [1980]	X	3
	8.9×10^{-2}	1600	USEPA [1982]	X	3
	1.0×10^{-1}	4600	Staudinger and Roberts [1996]	L	0
	1.0×10^{-1}	4700	Leighton and Calo [1981]	X	3
	1.0×10^{-1}	5200	Bissonette et al. [1990]	X	3
	1.1×10^{-1}	4300	Gossett et al. [1985]	X	3
	7.5×10^{-2}	4800	Ervin et al. [1980]	X	3
	9.7×10^{-2}	3700	Ashworth et al. [1988]	X	3
	9.7×10^{-2}	4700	Munz and Roberts [1987]	X	3
	9.9×10^{-2}	2100	Lamarche and Droste [1989]	X	3
	9.9×10^{-2}	4900	Gossett et al. [1985]	X	3

substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
tetrachloroethene	5.0×10^{-2}		Pearson and McConnell [1975]	M	81,8
C_2Cl_4	3.7×10^{-2}		Hine and Mookerjee [1975]	V	
(tetrachloroethylene)	4.4×10^{-2}		Mackay and Shiu [1981]	L	
[127-18-4]	5.7×10^{-2}	5100	Lincoff and Gossett [1984]	M	
[]	5.7×10^{-2}	4900	Gossett [1987]	M	
	6.0×10^{-2}	5500	Tancrède and Yanagisawa [1990]	M	
	8.2×10^{-2}	3300	Kolb et al. [1992]	X	45
	5.6×10^{-2}	3600	Robbins et al. [1993]	M	10
	7.0×10^{-2}	4500	Dewulf et al. [1995]	M	
	3.4×10^{-2}	4500	Dewaif et al. [1995] Dilling [1977]	V	
	4.0×10^{-2}			V	8
	1.2×10^{-1}		Dilling [1977]		
			Dilling [1977]	V	82
	8.2×10^{-2}		Dilling [1977]	С	
	6.4×10^{-2}		Hoff et al. [1993]	M	
	3.7×10^{-2}		Yaws and Yang [1992]	?	39
	3.6×10^{-2}	1500	USEPA [1982]	X	3
	4.0×10^{-2}	5000	Kavanaugh and Trussell [1980]	X	3
	5.9×10^{-2}	4800	Staudinger and Roberts [1996]	L	
	5.5×10^{-2}	4400	Ashworth et al. [1988]	X	3
	5.5×10^{-2}	4400	Munz and Roberts [1987]	X	3
	5.8×10^{-2}	5100	Gossett et al. [1985]	X	3
	5.8×10^{-2}	5200	Ervin et al. [1980]	X	3
	6.2×10^{-2}	4700	Leighton and Calo [1981]	X	3
	6.3×10^{-2}	5300	Bissonette et al. [1990]	X	3
	6.6×10^{-2}	4600	Gossett et al. [1985]	X	3
3-chloro-1-propene	1.1×10^{-1}	1000	Hine and Mookerjee [1975]	V	
C ₃ H ₅ Cl	9.3×10^{-2}		Dilling [1977]	V	
[107-05-1]	1.1×10^{-1}		Yaws and Yang [1992]	?	39
1,3-dichloropropene	6.5×10^{-1}	4200	Wright et al. [1992b]	M	99
					9
C ₃ H ₄ Cl ₂	2.8×10^{-1}	1500	USEPA [1982]	X	3
[542-75-6]	5.2×10^{-1}		Meylan and Howard [1991]	X	3
cis-1,3-dichloropropene	4.2×10^{-1}		Mackay and Shiu [1981]	L	
$C_3H_4Cl_2$	4.3×10^{-1}		Dilling [1977]	V	
[10061-01-5]					
trans-1,3-dichloropropene	5.6×10^{-1}		Mackay and Shiu [1981]	L	
$C_3H_4Cl_2$	5.7×10^{-1}		Dilling [1977]	V	
2,3-dichloropropene	2.8×10^{-1}		Mackay and Shiu [1981]	L	
$C_3H_4Cl_2$	2.7×10^{-1}		<i>Dilling</i> [1977]	V	
hexachlorobutadiene	4.0×10^{-2}		Pearson and McConnell [1975]	M	81,8
$CCl_2CClCClCCl_2$	9.7×10^{-2}		Meylan and Howard [1991]	X	3
[87-68-3]	9.9×10^{-2}	4700	<i>USEPA</i> [1982]	X	3
trichloroethanal	3.4×10^{5}	3500	Betterton and Hoffmann [1988]	M	63
CCl ₃ CHO			[]		
(trichloroacetaldehyde)					
(
chloro-2-propanone	5.9×10^{1}	5400	Betterton [1991]	M	
$CH_2ClCOCH_3$					

		11 7			
substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{\left[\mathrm{K}\right]}$	reference	type	note
chloroethanoic acid	1.1×10^{5}	9700	Bowden et al. [1998b]	M	
CH ₂ ClCOOH					
(chloroacetic acid)					
[79-11-8]					
dichloroethanoic acid	1.2×10^5	8000	Bowden et al. [1998b]	M	
CHCl ₂ COOH					
(dichloroacetic acid)					
[79-43-6]					
trichloroethanoic acid	7.4×10^4	8700	Bowden et al. [1998a]	M	
CCl ₃ COOH					
(trichloroacetic acid)					
[76-03-9]					
trichloroacetylchloride	2.0		Mirabel et al. [1996]	M	
CCl ₃ COCl					
1-chloro-2,3-epoxypropane	2.8×10^{1}	3700	USEPA [1982]	X	3
2-chloroethylvinylether	3.1	2500	USEPA [1982]	X	3
bis(2-chloroethoxy)methane	2.6×10^{3}	5500	USEPA [1982]	X	3
$C_5H_{10}Cl_2O_2$					
[111-91-1]					
1,5-dichloro-3-oxapentane	4.7×10^{1}	4100	USEPA [1982]	X	3
$C_4H_8Cl_2O$					
(bis(2-chloroethyl)ether)					
[111-44-4]					
bis(2-chloroisopropyl)ether	6.6	2800	USEPA [1982]	X	3
$C_6H_{12}Cl_2O$					
[108-60-1]					

substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
	aromatic comp		th chlorine		
chlorobenzene	2.2×10^{-1}		Hine and Mookerjee [1975]	V	
C_6H_5Cl	2.7×10^{-1}		Mackay et al. [1979]	M	
[108-90-7]	2.7×10^{-1}		Mackay et al. [1979]	${ m T}$	
	2.9×10^{-1}		Mackay and Shiu [1981]	L	
	3.2×10^{-1}		Mackay and Shiu [1981]	M	
	2.6×10^{-1}		Hoff et al. [1993]	M	
	2.9×10^{-1}	4600	Hartkopf and Karger [1973]	${ m M}$	
	2.2×10^{-1}		Yaws and Yang [1992]	?	39
	2.5×10^{-1}	2100	<i>USEPA</i> [1982]	X	3
	3.2×10^{-1}	1900	Cooling et al. [1992]	X	3
	2.4×10^{-1}	4700	Bissonette et al. [1990]	X	3
	2.6×10^{-1}	2700	Ashworth et al. [1988]	X	3
	2.7×10^{-1}	3800	Staudinger and Roberts [1996]	L	J
	2.9×10^{-1}	4200	Ervin et al. [1980]	X	3
	3.0×10^{-1}	3500	Leighton and Calo [1981]	X	3
1,2-dichlorobenzene	4.1×10^{-1}	0000	Hine and Mookerjee [1975]	V	
C ₆ H ₄ Cl ₂	5.3×10^{-1}		Mackay and Shiu [1981]	L	
(o-dichlorobenzene)	5.3×10^{-1}		Mackay and Shiu [1981]	M	
[95-50-1]	3.3×10^{-1}		Yaws and Yang [1992]	?	39
[30-30-1]	5.3×10^{-1}	2800	USEPA [1982]	X	3
	5.5×10^{-1}	5900	Staudinger and Roberts [1996]	L	3
	4.9×10^{-1}	5100	Bissonette et al. [1990]	X	3
	5.4×10^{-1}	1400	Ashworth et al. [1988]	X	3
	6.0×10^{-1}	6700	Gossett et al. [1985]	X	3
1,3-dichlorobenzene	2.1×10^{-1}	0700	Hine and Mookerjee [1975]	V	
C ₆ H ₄ Cl ₂	2.1×10 2.8×10^{-1}		Mackay and Shiu [1981]	L V	
(m-dichlorobenzene)	3.4×10^{-1}		Маскау ина Shra [1981] Hoff et al. [1993]	M	
[541-73-1]	3.0×10^{-1}		Yaws and Yang [1992]	?	39
[341-73-1]	3.9×10^{-1}	2400	USEPA [1982]	X	3
	3.9×10 3.0×10^{-1}	$\frac{2400}{2600}$	Ashworth et al. [1982]	X	3
1 4 1:-11	3.0×10^{-2} 2.2×10^{-1}	2000	,	V	
1,4-dichlorobenzene	6.3×10^{-1}		Hine and Mookerjee [1975]		
$C_6H_4Cl_2$			Mackay and Shiu [1981]	L	
(p-dichlorobenzene)	4.2×10^{-1}		Mackay and Shiu [1981]	M	20
[106-46-7]	2.3×10^{-1}	9700	Yaws and Yang [1992]	?	39
	3.1×10^{-1}	2700	Ashworth et al. [1988]	X	3
	3.8×10^{-1}	2700	USEPA [1982]	X	3
100.4111.1	3.1×10^{-1}	2700	Ashworth et al. [1988]	X	3
1,2,3-trichlorobenzene	4.3×10^{-1}		Mackay and Shiu [1981]	L	
C ₆ H ₃ Cl ₃	8.0×10^{-1}		Mackay and Shiu [1981]	M	
[87-61-6]	2 F 10-1		14 1 100 (4004)	_	
1,2,4-trichlorobenzene	2.7×10^{-1}	2500	Mackay and Shiu [1981]	L	6
$C_6H_3Cl_3$	7.1×10^{-1}	2500	USEPA [1982]	X	3
[120-82-1]	4.6×10^{-1}	4000	Ashworth et al. [1988]	X	3
1,3,5-trichlorobenzene	6.3×10^{-1}		Mackay and Shiu [1981]	L	
$C_6H_3Cl_3$					
[108-70-3]					

substance	$rac{k_{ m H}^{\ominus}}{ m [M/atm]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
1,2,3,4-tetrachlorobenzene	3.9×10^{-1}		Mackay and Shiu [1981]	L	
$C_6H_2Cl_4$	1.3	4800	tenHulscher et al. [1992]	X	3
[634-66-2]					
1,2,3,5-tetrachlorobenzene	1.7×10^{-1}		Mackay and Shiu [1981]	L	
$C_6H_2Cl_4$	6.4×10^{-1}		Mackay and Shiu [1981]	M	
[634-90-2]					
1,2,4,5-tetrachlorobenzene	3.9×10^{-1}		Mackay and Shiu [1981]	L	
$C_6H_2Cl_4$					
[95-94-3]					
pentachlorobenzene	1.0×10^{-1}		Mackay and Shiu [1981]	L	
C_6HCl_5	1.4	5200	tenHulscher et al. [1992]	X	3
hexachlorobenzene	2.0×10^{1}		Mackay and Shiu [1981]	L	
C_6Cl_6	2.4×10^{-3}		Yaws and Yang [1992]	?	39
	2.1	5800	tenHulscher et al. [1992]	X	3
	5.9×10^{-1}	1600	USEPA [1982]	X	3
α -chlorotoluene	1.6		Mackay and Shiu [1981]	L	
$C_6H_5CH_2Cl$					
1-chloro-2-methylbenzene	1.9	3000	USEPA [1982]	X	3
C_7H_7Cl	2.8×10^{-1}	3500	Leighton and Calo [1981]	X	3
(o-chlorotoluene) [95-49-8]					
1-chloronaphthalene	2.9×10^{-1}	+	Mackay and Shiu [1981]	L	
$C_{10}H_7Cl$	2.9×10^{-1}		Mackay and Shiu [1981]	M	
2-chloronaphthalene	3.2		Mackay and Shiu [1981]	L	
$C_{10}H_7Cl$	3.2		Mackay and Shiu [1981]	M	
	1.6	3800	USEPA [1982]	X	3
	3.1		Meylan and Howard [1991]	X	3
hydroxypentachlorobenzene	1.1×10^{1}	1300	USEPA [1982]	X	3
C_6HCl_5O	4.0×10^{4}		Meylan and Howard [1991]	X	3
(pentachlorophenol)					
[87-86-5]	1.0.102	1000	HGDD4 [4000]	37	
2-hydroxychlorobenzene	1.2×10^2	4600	<i>USEPA</i> [1982]	X	3
C ₆ H ₅ ClO					
(2-chlorophenol)					
[95-57-8]	1 7 102	1000	HGDB4 [1000]	37	- 0
2.4-dichlorophenol	1.5×10^2	4900	USEPA [1982]	X	3
4-chloro-2-nitrophenol	7.9×10^{1}		Schwarzenbach et al. [1988]	V	8
$C_6H_4CINO_3$					
[89-64-5]					
4-chloro-5-methyl-2-nitrophenol	3.6×10^{1}		Schwarzenbach et al. [1988]	V	8
$C_7H_6CINO_3$					
(4-chloro-6-nitro-m-cresol)					
[7147-89-9]					

substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
cor	. , ,		and fluorine		
chlorofluoromethane	1.5×10^{-1}		Hine and Mookerjee [1975]	V	
CH ₂ FCl	1.5×10^{-1}	2600	Wilhelm et al. [1977]	L	
(R31)	1.5×10^{-1}	2000	Yaws and Yang [1992]	?	39
(1651)	1.0/10		1445 4114 14119 [1552]	•	00
chlorodifluoromethane	3.4×10^{-2}		Hine and Mookerjee [1975]	V	
$\mathrm{CHF_{2}Cl}$	3.4×10^{-2}	3400	Wilhelm et al. [1977]	${ m L}$	
(R22)	2.4×10^{-1}		Kanakidou et al. [1995]	\mathbf{C}	84
(===)	3.3×10^{-2}		$Yaws \ and \ Yang \ [1992]$?	39
	3.1×10^{-2}	3400	Kavanaugh and Trussell [1980]	X	3
	3.7×10^{-2}	2700	Zheng et al. [1997]	M	J
dichlorofluoromethane	1.9×10^{-1}	2100	Yaws and Yang [1992]	?	39
CHFCl ₂	1.0 × 10		1 a a 3 a a a a a a a a a a a a a a a a	•	00
(R21)					
(1021)					
chlorotrifluoromethane	5.8×10^{-4}		Hine and Mookerjee [1975]	V	
CF ₃ Cl	9.4×10^{-4}	1600	Wilhelm et al. [1977]	${f L}$	
(R13)	8.9×10^{-4}		Yaws and Yang [1992]	?	39
			2 []		
dichlorodifluoromethane	2.5×10^{-3}		Pearson and McConnell [1975]	M	81,8
CF_2Cl_2	2.4×10^{-3}		Hine and Mookerjee [1975]	V	,
(R12)	2.1×10^{-3}	1800	Wilhelm et al. [1977]	L	
	2.3×10^{-3}		Mackay and Shiu [1981]	${ m L}$	
	2.5×10^{-3}		Yaws and Yang [1992]	?	39
	3.1×10^{-3}	3500	Munz and Roberts [1987]	X	3
	3.5×10^{-4}	-210	USEPA [1982]	X	3
trichlorofluoromethane	8.2×10^{-3}		Liss and Slater [1974]	C	
CFCl ₃	1.2×10^{-3}		Pearson and McConnell [1975]	M	81,8
(R11)	9.2×10^{-3}		Mackay and Shiu [1981]	L	01,0
(1011)	1.1×10^{-2}	2700	Hunter-Smith et al. [1983]	M	
	8.2×10^{-3}	2.00	$Yaws \ and \ Yang \ [1992]$?	39
	1.0×10^{-2}	3100	Staudinger and Roberts [1996]	L L	90
	1.7×10^{-2}	740	USEPA [1982]	X	3
	1.0×10^{-2}	3500	Ashworth et al. [1988]	X	3
1,1,2,2-tetrachlorodifluoroethane	1.0×10^{-2}	9000	Hine and Mookerjee [1975]	V	-
$C_2F_2Cl_4$	1.0/10		Time and moonerjee [1010]	•	
(R112)					
(10112)					
1,1,2-trichlorotrifluoroethane	2.0×10^{-3}		Hine and Mookerjee [1975]	V	
$C_2F_3Cl_3$	2.0×10^{-3}		$Yaws \ and \ Yang \ [1992]$?	39
(R113)	3.4×10^{-3}	3200	Ashworth et al. [1988]	X	3
(10110)	0.4/10	0200	113111001111 Ct ut. [1300]	71	0
1,1-dichlorotetrafluoroethane	5.9×10^{-4}		Hine and Mookerjee [1975]	V	
C ₂ F ₄ Cl ₂	3131110			·	
(R114)					
1,2-dichlorotetrafluoroethane	8.2×10^{-4}		Hine and Mookerjee [1975]	V	
$C_2F_4Cl_2$	8.3×10^{-4}		Yaws and Yang [1992]	?	39
(R114)			2 [-]		
,					

substance	$k_{ m H}^\ominus$	$\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}$	reference	typo	note
	[M/atm]	[K]		type	посе
chloropentafluoroethane	3.2×10^{-4}		Hine and Mookerjee [1975]	V	
C ₂ F ₅ Cl	3.4×10^{-4}	2800	Wilhelm et al. [1977]	L	20
(R115)	3.8×10^{-4}		Yaws and Yang [1992]	?	39
dichlorotrifluoroethane	2.9×10^{-2}	2600	Kanakidou et al. [1995]	С	
$C_2HF_3Cl_2$					
(R123)					
1-chloro-1,2,2,2-tetrafluoroethane	1.1×10^{-2}	3200	Kanakidou et al. [1995]	С	
C_2HF_4Cl					
(R124)					
2-chloro-1,1,1-trifluoroethane	3.7×10^{-2}		Hine and Mookerjee [1975]	V	
$C_2H_2F_3Cl$, L 1		
(R133)					
1,1-dichloro-1-fluoroethane	7.9×10^{-3}	5200	Kanakidou et al. [1995]	C	
CH ₃ CFCl ₂					
(R141B)					
1-chloro-1,1-difluoroethane	1.4×10^{-2}	2500	Kanakidou et al. [1995]	С	
CH ₃ CF ₂ Cl					
(R142B)					
chlorodifluoroethanoic acid	2.5×10^4	10000	Bowden et al. [1998b]	M	
CF ₂ ClCOOH					
(chlorodifluoroacetic acid)					
[76-04-0]					
chlorodifluoroethanoic peroxyacid	3.0×10^{3}		Kanakidou et al. [1995]	E	
CClF ₂ COOOH					
dichlorofluoroethanoic peroxyacid	3.0×10^{3}		Kanakidou et al. [1995]	Е	
CCl ₂ FCOOOH					
carbonic chloride fluoride	1.0×10^{1}		Kanakidou et al. [1995]	С	
COFCI					
trifluoroacetylchloride	2.5		Kanakidou et al. [1995]	С	
CF ₃ COCl	2.0		Mirabel et al. [1996]	M	
generic peroxide with fluorine and/or	3.0×10^{1}		Kanakidou et al. [1995]	E	80
chlorine					
ROOH					
chlorodifluoronitrooxymethane	2.9	5900	Kanakidou et al. [1995]	Е	85
CClF ₂ OONO ₂					

$\frac{k_{\mathrm{H}}^{\ominus}}{k_{\mathrm{H}}^{\ominus}}$	$\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}$	reference	type	note
L /			<i>,</i> 1	
	is with bi		3.7	
	2100			
	3100	2 3		0
				8
	200			39
	300			3
	2000			
		-		
		2 3		0
				3
	4000			3
		2 3		
1.8	2700	2 3	X	3
1.9	4300	2 3	X	3
2.0	5200	Wright et al. [1992a]	X	3
1.7	5200	Staudinger and Roberts [1996]	L	
1.9	4700	Munz and Roberts [1987]	X	3
1.3×10^{-1}		Hine and Mookerjee [1975]	V	
1.3×10^{-1}		Yaws and Yang [1992]	?	39
1.4		Hine and Mookerjee [1975]	V	
1.4		Yaws and Yang [1992]	?	39
1.1	1900	<i>USEPA</i> [1982]	X	3
1.5	3900	Ashworth et al. [1988]	X	3
1.1×10^{-1}		Hine and Mookerjee [1975]	V	
1.4×10^{-1}		Yaws and Yang [1992]	?	39, 8
9.2×10^{-2}		Hine and Mookerjee [1975]	V	
1.0×10^{-1}		Yaws and Yang [1992]	?	39, 8
		, ,		
1.1		Hine and Mookerjee [1975]	V	
6.8×10^{-1}		Yaws and Yang [1992]	?	39
		2 []		
1.1		Hine and Mookeriee [1975]	V	
			•	
		$ \begin{array}{ c c c c } \hline \text{M/atm} & \hline \text{K} \\ \hline \textbf{compounds} & \textbf{with br} \\ \hline 1.6 \times 10^{-1} & & & & & \\ 1.6 \times 10^{-1} & & & & \\ 1.9 \times 10^{-1} & & & & \\ 1.5 \times 10^{-1} & & & & \\ 4.4 \times 10^{-3} & & & & \\ \hline 1.1 & & & & & \\ 3.2 & & & & \\ 1.1 & & & & & \\ 3.2 & & & & \\ 1.1 & & & & & \\ 3.2 & & & & \\ 1.1 & & & & & \\ 3.2 & & & & \\ 1.1 & & & & \\ 3.2 & & & & \\ 1.1 & & & & \\ 3.2 & & & & \\ 1.1 & & & & \\ 3.2 & & & & \\ 1.1 & & & & \\ 3.2 & & & & \\ 1.1 & & & & \\ 3.2 & & & & \\ 1.1 & & & & \\ 3.2 & & & & \\ 1.1 & & & & \\ 3.2 & & & & \\ 1.1 & & & & \\ 3.3 & & & & \\ 3.3 & & & & \\ 1.7 & & & & \\ 2.3 & & & & & \\ 2.3 & & & & \\ 1.7 & & & & \\ 2.3 & & & & \\ 3.4 & & & & \\ 2.3 & & & & \\ 1.7 & & & & \\ 2.3 & & & & \\ 5.700 & & & \\ 1.4 & & & & \\ 1.9 & & & & \\ 4300 & & & \\ 2.0 & & & & \\ 5200 & & & \\ 1.7 & & & & \\ 5200 & & & \\ 1.3 \times 10^{-1} & & \\ 1.3 \times 10^{-1} & & \\ 1.3 \times 10^{-1} & & \\ 1.4 & & & \\ 1.4 & & & \\ 1.4 & & & \\ 1.1 & & & & \\ 1.1 \times 10^{-1} & & \\ 1.2 \times 10^{-2} & & \\ 1.0 \times 10^{-1} & & \\ \hline \end{array}$	$ \begin{array}{ c c c c } \hline \text{Compounds with bromine} \\ \hline \textbf{1}.6 \times 10^{-1} & 3100 & Withelm et al. [1977] \\ \hline \textbf{1}.6 \times 10^{-1} & 3100 & Withelm et al. [1977] \\ \hline \textbf{1}.9 \times 10^{-1} & Mackay and Shiu [1981] \\ \hline \textbf{1}.5 \times 10^{-1} & Yaws and Yang [1992] \\ \hline \textbf{4}.4 \times 10^{-3} & 360 & USEPA [1982] \\ \hline \textbf{1}.1 & Mackay and Shiu [1981] \\ \hline \textbf{1}.1 & 3900 & Wright et al. [1992b] \\ \hline \textbf{9}.3 \times 10^{-1} & 4400 & Moore et al. [1992b] \\ \hline \textbf{1}.1 & 3700 & Wright et al. [1992b] \\ \hline \textbf{1}.1 & 3700 & Wright et al. [1992a] \\ \hline \textbf{1}.1 & 4000 & Tse et al. [1992] \\ \hline \textbf{1}.5 & Hine and Mookerjee} [1975] \\ \hline \textbf{1}.6 & Mackay and Shiu [1981] \\ \hline \textbf{2}.3 & Nicholson et al. [1984] \\ \hline \textbf{1}.7 & Nicholson et al. [1984] \\ \hline \textbf{2}.3 & 5700 & Wright et al. [1992b] \\ \hline \textbf{1}.4 & 5000 & Moore et al. [1992b] \\ \hline \textbf{1}.8 & 2700 & USEPA [1982] \\ \hline \textbf{1}.9 & 4300 & Tse et al. [1992b] \\ \hline \textbf{1}.0 & 5200 & Wright et al. [1992a] \\ \hline \textbf{1}.7 & 5200 & Wright et al. [1992a] \\ \hline \textbf{1}.7 & 5200 & Wright et al. [1992a] \\ \hline \textbf{1}.1 & 1990 & Munz and Roberts [1987] \\ \hline \textbf{1}.3 \times 10^{-1} & Hine and Mookerjee} [1975] \\ \hline \textbf{1}.3 \times 10^{-1} & Hine and Mookerjee} [1975] \\ \hline \textbf{1}.4 & & Hine and Mookerjee} [1975] \\ \hline \textbf{1}.4 & & Hine and Mookerjee} [1975] \\ \hline \textbf{1}.4 & & Hine and Mookerjee} [1975] \\ \hline \textbf{1}.4 & & Hine and Mookerjee} [1975] \\ \hline \textbf{1}.4 \times 10^{-1} & & Hine and Mookerjee} [1975] \\ \hline \textbf{1}.4 \times 10^{-1} & & Hine and Mookerjee} [1975] \\ \hline \textbf{1}.4 \times 10^{-1} & & Hine and Mookerjee} [1975] \\ \hline \textbf{1}.4 \times 10^{-1} & & Yaws and Yang} [1992] \\ \hline \textbf{1}.1 & 1900 & & & & & & & & & & & & & & & & & & $	$ \begin{array}{ c c c c } \hline \text{M/atm} & \hline \text{K} \\ \hline \textbf{compounds with bromine} \\ \hline \hline 1.6 \times 10^{-1} \\ 1.6 \times 10^{-1} \\ 1.9 \times 10^{-1} \\ 1.9 \times 10^{-1} \\ \hline \hline 1.6 \times 10^{-1} \\ 1.9 \times 10^{-1} \\ \hline 1.9 \times 10^{-1} \\ \hline 1.5 \times 10^{-1} \\ \hline 1.5 \times 10^{-1} \\ \hline 1.1 \\ \hline 1.$

substance	$\frac{k_{ m H}^{\ominus}}{[{ m M}/{ m atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
1-bromobutane	$[M/atm]$ 8.2×10^{-2}	[N]	Hine and Mookerjee [1975]	V	
C_4H_9Br	4.7×10^{-2}		Hoff et al. [1993]	M	
[109-65-9]	8.3×10^{-2}		Yaws and Yang [1992]	?	39
1-bromo-2-methylpropane	4.3×10^{-2}		Hine and Mookerjee [1975]	V	
C_4H_9Br				·	
[78-77-3]					
2-bromo-2-methylpropane	3.1×10^{-2}		Yaws and Yang [1992]	?	39, 86
$\mathrm{C_4H_9Br}$					
1-bromo-3-methylbutane	2.9×10^{-2}		Hine and Mookerjee [1975]	V	
$C_5H_{11}Br$					
[107-82-4]	7.1.10.9		77 77 [1000]	2	
1-bromopentane	5.1×10^{-2}		Yaws and Yang [1992]	?	39
$C_5H_{11}Br$					
3-bromo-1-propene	1.7×10^{-1}		Yaws and Yang [1992]	?	39
C_3H_5Br			· ····· · ···· · · · · · · · · · · · ·		
bromoethanoic acid	1.5×10^{5}	9300	Bowden et al. [1998b]	M	
$\mathrm{CH_{2}BrCOOH}$					
(bromoacetic acid)					
[79-08-3]					
dibromoethanoic acid	2.3×10^5	8900	Bowden et al. [1998b]	M	
CHBr ₂ COOH					
(dibromoacetic acid)					
[631-64-1]					
tribromoethanoic acid	3.0×10^5	9000	Bowden et al. [1998b]	M	
CBr ₃ COOH					
(tribromoacetic acid)					
[75-96-7] bromobenzene	4.8×10^{-1}		Hine and Mookerjee [1975]	V	
C_6H_5Br	4.8×10^{-1}		Mackay and Shiu [1981]	$_{ m L}^{ m v}$	
[108-86-1]	4.1×10^{-1}		Mackay and Shiu [1981]	M	
[100-00-1]	5.4×10^{-1}	5300	Hansen et al. [1995]	M	
	4.7×10^{-1}	9900	Yaws and Yang [1992]	?	39
	5.4×10^{-1}	5400	Hansen et al. [1993]	X	3
1,3-dibromobenzene	5.1×10^{-1}		Mackay and Shiu [1981]	L	
$ m C_6H_4Br_2$					
[108-36-1]					
1,4-dibromobenzene	2.0		Hine and Mookerjee [1975]	V	
$C_6H_4Br_2$	4.9×10^{-1}		Mackay and Shiu [1981]	L	
[106-37-6]					
1-bromo-4-methylbenzene	4.3×10^{-1}		Hine and Mookerjee [1975]	V	
$\mathrm{BrC}_6\mathrm{H}_4\mathrm{CH}_3$					
(p-bromotoluene)					
1-bromo-2-ethylbenzene	3.0×10^{-1}		Hine and Mookerjee [1975]	V	
BrC ₆ H ₄ C ₂ H ₅	0.0710		11000 and 11100mer jee [1010]	,	
U**4 ~ Z**J					

substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
1-bromo-2-(2-propyl)-benzene	1.7×10^{-1}		Hine and Mookerjee [1975]	V	
$\mathrm{BrC_6H_4C_3H_7}$					
(o-bromocumene)					
,					
4-bromophenol	7.0×10^{3}	8200	Parsons et al. [1971]	M	54
$\mathrm{HOC_6H_4Br}$					
bromotrifluoromethane	2.0×10^{-3}		Hine and Mookerjee [1975]	V	
$\mathrm{CHF_{3}Br}$					
bromodichloromethane	6.3×10^{-1}		Nicholson et al. [1984]	M	
$\mathrm{CHCl_2Br}$	4.3×10^{-1}		Nicholson et al. [1984]	$^{\mathrm{C}}$	
	4.8×10^{-1}		Nicholson et al. [1984]	С	
	4.0×10^{-1}	4700	Moore et al. [1995]	M	
	4.6×10^{-1}	1200	<i>USEPA</i> [1982]	X	3
	5.2×10^{-1}	3900	Tse et al. [1992]	X	3
	3.5×10^{-1}	5200	Ervin et al. [1980]	X	3
	4.0×10^{-1}	5200	Staudinger and Roberts [1996]	L	
dibromochloromethane	1.1		Nicholson et al. [1984]	\mathbf{M}	
$CHClBr_2$	1.2		Nicholson et al. [1984]	\mathbf{C}	
	1.1		Nicholson et al. [1984]	\mathbf{C}	
	7.3×10^{-1}	4900	Moore et al. [1995]	${ m M}$	
	1.2	2500	<i>USEPA</i> [1982]	X	3
	9.8×10^{-1}	4000	Tse et al. [1992]	X	3
	8.6×10^{-1}	6400	Ashworth et al. [1988]	X	3
	8.7×10^{-1}	5000	Ervin et al. [1980]	X	3
	8.7×10^{-1}	5500	Staudinger and Roberts [1996]	L	
1-chloro-2-bromoethane	1.1		Hine and Mookerjee [1975]	V	
C_2H_4BrCl					
[107-04-0]					
1-bromo-4-chlorobenzene	6.9×10^{-1}		Mackay and Shiu [1981]	L	
ClC_6H_4Br					

substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
	compoun	ds with io	dine		
iodomethane	1.7×10^{-1}		Liss and Slater [1974]	С	
CH_3I	1.8×10^{-1}		Hine and Mookerjee [1975]	V	
[74-88-4]	1.9×10^{-1}	3800	Hunter-Smith et al. [1983]	${\bf M}$	
	1.4×10^{-1}	4300	Moore et al. [1995]	${\bf M}$	
	3.5×10^{-1}		Yaws and Yang [1992]	?	39
diiodomethane	2.3	5000	Moore et al. [1995]	M	
$\mathrm{CH_{2}I_{2}}$	2.8		Yaws and Yang [1992]	?	39
[75-11-6]					
triiodomethane	3.4×10^{-1}		Yaws and Yang [1992]	?	39
CHI_3					
(iodoform)					
[75-47-8]					
iodoethane	1.4×10^{-1}		Hine and Mookerjee [1975]	V	
C_2H_5I	1.8×10^{-1}		Yaws and Yang [1992]	?	39, 8
[75-03-6]					
1-iodopropane	1.1×10^{-1}		Hine and Mookerjee [1975]	V	
C_3H_7I	1.2×10^{-1}		Yaws and Yang [1992]	?	39
[107-08-4]					
2-iodopropane	8.9×10^{-2}		Hine and Mookerjee [1975]	V	
C_3H_7I	1.1×10^{-1}		Yaws and Yang [1992]	?	39, 8
[75-30-9]					
1-iodobutane	6.3×10^{-2}		Hine and Mookerjee [1975]	V	
C_4H_9I					
[542-69-8]					
iodobenzene	7.8×10^{-1}		Mackay and Shiu [1981]	L	
C_6H_5I	7.5×10^{-1}		Yaws and Yang [1992]	?	39
[591-50-4]					
chloroiodomethane	8.9×10^{-1}	4300	Moore et al. [1995]	M	
$\mathrm{CH_{2}ClI}$					
[593-71-5]					

substance	$k_{ m H}^{\ominus}$	$\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}$	reference	type	note
	[M/atm]	[K]		9, 50	
41 41:1	compound	as with si		3.0	
methanethiol	3.3×10^{-1}	9100	Hine and Weimar [1965]	M	
CH ₃ SH	3.9×10^{-1}	3100	Przyjazny et al. [1983]	M	~=
(methyl mercaptan)	7.1×10^{-1}	2000	Russell et al. [1992]	Е	87
	2.0×10^{-1}	2800	De Bruyn et al. [1995]	M	
	2.6×10^{-1}	1600	USEPA [1982]	X	3
ethanethiol	3.6×10^{-1}		Hine and Mookerjee [1975]	V	
C_2H_5SH	2.8×10^{-1}	3400	Przyjazny et al. [1983]	M	
(ethyl mercaptan)	2.2×10^{-1}		Vitenberg et al. [1975]	M	
[75-08-1]	2.6×10^{-1}		Karl and Lindinger [1997]	M	43
	3.4×10^{-1}		Yaws and Yang [1992]	?	39
1-propanethiol	2.5×10^{-1}	3600	Przyjazny et al. [1983]	M	
C_3H_7SH					
1-butanethiol	2.2×10^{-1}	3800	Przyjazny et al. [1983]	M	
C ₄ H ₉ SH	1.1×10^{-1}		Yaws and Yang [1992]	?	39
[109-75-5]					-
thiophenol	3.0		Hine and Weimar [1965]	V	
C_6H_5SH	3.0		Hine and Mookerjee [1975]	v	
~ 0 0~				·	
thioanisole	4.1		Hine and Weimar [1965]	V	
$C_6H_5SCH_3$	4.1		Hine and Mookerjee [1975]	V	
dimethyl sulfide	5.5×10^{-1}		Hine and Weimar [1965]	V	
CH ₃ SCH ₃	1.6×10^{-1}		Lovelock et al. [1972]	M	
(DMS)	6.2×10^{-1}		Vitenberg et al. [1975]	${ m M}$	8
	7.1×10^{-1}		Vitenberg et al. [1975]	$_{\mathrm{R}}$	8
	5.6×10^{-1}	3700	Przyjazny et al. [1983]	M	
	4.4×10^{-1}		Cline and Bates [1983]	$^{\mathrm{C}}$	88, 83
	6.2×10^{-1}		Gaffney and Senum [1984]	X	48
	5.6×10^{-1}	3500	Dacey et al. [1984]	\mathbf{M}	
	4.8×10^{-1}	3500	Aneja and Overton [1990]	X	89
	8.0×10^{-2}		Russell et al. [1992]	E	87
	4.8×10^{-1}	3100	De Bruyn et al. [1995]	M	
diethyl sulfide	4.6×10^{-1}		Hine and Mookerjee [1975]	V	
$C_2H_5SC_2H_5$	5.6×10^{-1}	4600	Przyjazny et al. [1983]	M	
dipropyl sulfide	3.3×10^{-1}	4200	Description at al [102]	M	
dipropyi suinde $C_3H_7SC_3H_7$	3.3×10 1	4200	Przyjazny et al. [1983]	1/1	
C31175C3117					
di-(2-propyl)-sulfide	3.0×10^{-1}	4700	Przyjazny et al. [1983]	M	
$(C_3H_7)_2S$					
dimethyl disulfide	8.4×10^{-1}		Vitenberg et al. [1975]	M	8
CH_3SSCH_3	9.2×10^{-1}		Vitenberg et al. [1975]	R	8
	9.6×10^{-1}	4000	Przyjazny et al. [1983]	${ m M}$	
diethyl disulfide	4.7×10^{-1}		Vitenberg et al. [1975]	M	8
$C_2H_5SSC_2H_5$	6.5×10^{-1}	4000	Przyjazny et al. [1983]	M	
-	5.8×10^{-1}		Yaws and Yang [1992]	?	39, 8

substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
thiophene	$\frac{[M/atm]}{4.4 \times 10^{-1}}$	3700	Przyjazny et al. [1983]	M	
C ₄ H ₄ S	3.4×10^{-1}	3100	Yaws and Yang [1992]	?	39
[110-02-1]	3.4×10		$[1aws\ ana\ [1any\ [1992]\]$	•	39
2-methyl-thiophene	4.2×10^{-1}	4000	Przyjazny et al. [1983]	M	
CH ₃ C ₄ H ₃ S	1.2/10	1000	1 1293 42119 61 41. [1000]	111	
dimethylsulfoxide	1.4×10^{3}		Gmehling et al. [1981]	X	11
CH ₃ SOCH ₃	$>5.0\times10^4$		De Bruyn et al. [1994]	С	
(DMSO)					
dimethylsulfone	$>5.0 \times 10^4$		De Bruyn et al. [1994]	E	
CH ₃ SO ₂ CH ₃	, , , , , ,			_	
(DMSO2)					
methanesulfonic acid	$6.5 \times 10^{13} / K_{\rm A}$		Brimblecombe and Clegg [1988]	Т	20
$\mathrm{CH_{3}SO_{3}H}$,				
(MSA)					
carbon oxide sulfide	3.3×10^{-2}		Hempel [1901]	X	30, 79
OCS	2.1×10^{-2}	3300	Winkler [1906]	X	30
(carbonyl sulfide)	2.1×10^{-2}	3300	Winkler [1907]	X	90
	2.2×10^{-2}		Stock and Kuss [1917]	X	30, 8
	2.1×10^{-2}	3000	$Wilhelm\ et\ al.\ [1977]$	${ m L}$	
	1.5×10^{-2}	3600	Hoyt [1982]	X	91, 83
	2.2×10^{-2}	2100	De Bruyn et al. [1995]	M	
	1.9×10^{-2}		Yaws and Yang [1992]	?	39
carbon disulfide	5.6×10^{-2}	4000	Rex~[1906]	X	30
CS_2	4.4×10^{-2}	4100	Booth and Jolley [1943]	X	30
	5.5×10^{-2}	2800	De Bruyn et al. [1995]	M	
	5.2×10^{-2}		Yaws and Yang [1992]	?	39
	7.6×10^{-2}	1200	USEPA [1982]	X	3
2,2'-dichlorodiethylsulfide	3.0×10^{1}		Hine and Mookerjee [1975]	V	
$(ClCH_2CH_2)_2S$					
(mustard gas)					

substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
polychlor			pesticides, etc.		
2,7-dichlorodibenzo[b,e][1,4]dioxin	1.7×10^{1}	())	Santl et al. [1994]	M	
$\mathrm{C_{12}H_6O_2Cl_2}$	1.2×10^{1}		Shiu et al. [1988]	X	92
(2,7-DiCDD)					
[33857-26-0]					
1,2,4-trichlorodibenzo[b,e][1,4]dioxin	2.8×10^{1}		Santl et al. [1994]	Μ	
$C_{12}H_5O_2Cl_3$	2.6×10^{1}		Shiu et al. [1988]	X	92
(1,2,4-TriCDD)					
$1,2,3,4\text{-tetrachlorodibenzo[b,e][1,4]} \\ \text{dioxin}$	5.1×10^{1}		Santl et al. [1994]	M	
$\mathrm{C}_{12}\mathrm{H}_4\mathrm{O}_2\mathrm{Cl}_4$	2.7×10^{1}		Shiu et al. [1988]	X	92
(1,2,3,4-TCDD)					
[30746-58-8]					
aroclor1221	4.4	6700	Burkhard et al. [1985]	X	3
aroclor1242	2.0	10000	Murphy et al. [1987]	X	3
	2.4	5900	USEPA [1982]	X	3
	3.0	7300	Burkhard et al. [1985]	X	3
aroclor1248	2.3	7500	Burkhard et al. [1985]	X	3
aroclor1254	1.2×10^{-1}	4700	USEPA [1982]	X	3
	3.0	9700	Murphy et al. [1987]	X	3
	3.6	8000	Burkhard et al. [1985]	X	3
aroclor1260	3.1	8300	Burkhard et al. [1985]	X	3
	3.3	9700	Murphy et al. [1987]	X	3
	8.6×10^{-2}	4400	USEPA [1982]	X	3
aroclor1268	2.5	8700	Burkhard et al. [1985]	X	3
2,2'-PCB	4.5		Murphy et al. [1983]	X	93, 94
$C_{12}H_8Cl_2$	1.8		Burkhard et al. [1985]	X	93
(IUPAC-4)	2.9		Dunnivant et al. [1988]	M	
[13029-08-8]					
2,5-PCB	3.0		Burkhard et al. [1985]	X	93
$C_{12}H_8Cl_2$	2.6		Dunnivant et al. [1988]	M	
(IUPAC-9)	2.3	5700	tenHulscher et al. [1992]	X	3
[34883-39-1]	7 5		D1.1.1.1.1.1.1.00Fl	v	02
3,3'-PCB	7.5		Burkhard et al. [1985]	Х	93
$C_{12}H_8Cl_2$ (IUPAC-11)	4.2		Dunnivant et al. [1988]	M	
[2050-67-1]					
[2050-07-1] 3,4'-PCB	1.0×10^{1}		Burkhard et al. [1985]	X	93
5,4 - F C B C ₁₂ H ₈ Cl ₂	4.8		Dunnivant et al. [1983]	M M	90
$C_{12}H_8C_{12}$ (IUPAC-12)	4.0		Dannivani et al. [1988]	IVI	
[2974-92-7]					

substance	$rac{k_{ m H}^{\ominus}}{ m [M/atm]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
4,4'-PCB	3.3		Murphy et al. [1983]	X	93, 94
$C_{12}H_8Cl_2$	6.9		Coates [1984]	X	93
(IUPAC-15)	9.2		Burkhard et al. [1985]	X	93
[2050-68-2]	5.1		Dunnivant et al. [1988]	\mathbf{M}	
2,3',5-PCB	3.5		Burkhard et al. [1985]	X	93
$C_{12}H_7Cl_3$	3.0		Dunnivant et al. [1988]	${\bf M}$	
(IUPAC-26)					
[38444-81-4]					
2,4,6-PCB	2.7		Burkhard et al. [1985]	X	93
$C_{12}H_7Cl_3$	1.5		Dunnivant et al. [1988]	M	
(IUPAC-30)	1.4×10^{2}	5000	USEPA [1982]	X	3
[35693-92-6]			[]		
2,4,4'-PCB	3.6	6000	tenHulscher et al. [1992]	X	3
$C_{12}H_7Cl_3$	3.0	0000	[200 2]		
012117 013					
2,2',3,3'-PCB	8.3		Oliver [1985]	X	93, 8
$C_{12}H_6Cl_4$	4.9		Burkhard et al. [1985]	X	93
(IUPAC-40)	4.9		Dunnivant et al. [1988]	M	90
[38444-93-8]	4.3		Danmoum et al. [1986]	IVI	
2,2',5,5'-PCB	>1.9		Westcott et al. [1981]	X	93
	<3.2		Westcott et al. [1981] Westcott et al. [1981]	X	93
$C_{12}H_6Cl_4$	3.8			X	
(IUPAC-52)	8.3		Murphy et al. [1983]	X	93, 94
[35693-99-3]			Oliver [1985]		93, 8
	4.0×10^{1}		Hassett and Milicic [1985]	X	93
	1.9		Burkhard et al. [1985]	X	93
	2.9	21.00	Dunnivant et al. [1988]	M	0
	4.2	6100	tenHulscher et al. [1992]	X	3
2,2',6,6'-PCB	6.8		Coates [1984]	X	93
$C_{12}H_6Cl_4$	5.4×10^{-1}		Burkhard et al. [1985]	X	93
(IUPAC-54)	1.8		Dunnivant et al. [1988]	M	
[15968-05-5]			-		
2,2',5,6'-PCB	3.9		Burkhard et al. [1985]	X	93
$\mathrm{C}_{12}\mathrm{H}_6\mathrm{Cl}_4$	2.4		Dunnivant et al. [1988]	M	
(IUPAC-53)					
[41464-41-9]					
3,3',4,4'-PCB	2.3×10^{1}		Burkhard et al. [1985]	X	93
$C_{12}H_6Cl_4$	1.1×10^{1}		Dunnivant et al. [1988]	M	
(IUPAC-77)					
[32598-13-3]					
2,2',4,5,5'-PCB	>2.8		Westcott et al. [1981]	X	93
$\mathrm{C}_{12}\mathrm{H}_5\mathrm{Cl}_5$	< 9.1		Westcott et al. [1981]	X	93
(IUPAC-101)	1.4×10^{1}		Oliver [1985]	X	93, 8
[37680-73-2]	3.1		Burkhard et al. [1985]	X	93
. 1	3.9		Dunnivant et al. [1988]	M	

substance	$rac{k_{ m H}^{\ominus}}{[{ m M/atm}]}$	$\frac{\frac{-\mathrm{d}\ln k_{\mathrm{H}}}{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	reference	type	note
2,2',4,6,6'-PCB	5.5×10^{-1}	[]	Burkhard et al. [1985]	X	93
$C_{12}H_5Cl_5$	1.1		Dunnivant et al. [1988]	${ m M}$	
(IUPAC-104)					
[56558-16-8]					
2,2',3,3',4,4'-PCB	2.0		Murphy et al. [1983]	X	93, 94
$C_{12}H_4Cl_6$	1.5×10^{1}		Burkhard et al. [1985]	X	93
(IUPAC-128)	3.3×10^{1}		Dunnivant et al. [1988]	${\bf M}$	
[38380-07-3]					
2,2',4,4',5,5'-PCB	2.8		Murphy et al. [1983]	X	93, 94
$C_{12}H_4Cl_6$	8.1		Coates [1984]	X	93
(IUPAC-153)	1.6×10^{1}		Oliver [1985]	X	93, 8
[35065-27-1]	5.7		Burkhard et al. [1985]	X	93
	7.6		Dunnivant et al. [1988]	${\bf M}$	
2,2',4,4',6,6'-PCB	8.7		Coates [1984]	X	93
$C_{12}H_4Cl_6$	6.5×10^{-1}		Burkhard et al. [1985]	X	93
(IUPAC-155)	1.3		Dunnivant et al. [1988]	M	
[33979-03-2]					
hexachlorocyclopentadiene	3.7×10^{-2}		Meylan and Howard [1991]	X	3
C_5Cl_6	6.1×10^{-2}	1500	<i>USEPA</i> [1982]	X	3
[77-47-4]					
α -1,2,3,4,5,6-hexachlorocyclohexane	1.3×10^2	6500	Kucklick et al. [1991]	X	3
$C_6H_6Cl_6$					
γ -1,2,3,4,5,6-hexachlorocyclohexane	3.2×10^2		Mackay and Shiu [1981]	L	
$C_6H_6Cl_6$	2.2×10^{3}		Brimble combe [1986]	?	38
(lindane)	2.8×10^{2}	5500	Kucklick et al. [1991]	X	3
[58-89-9]					
dodecachloropentacyclodecane	1.2	11000	Yin and Hassett [1986]	X	3
$C_{10}Cl_{12}$			-		
(mirex)					
[2385-85-5]					

substance	$\overline{\mathrm{[M/atm]}}$	d(1/T)		+	mata.
	[1/1/a/111]	[K]	reference	type	note
aldrin	3.6×10^{1}		Mackay and Shiu [1981]	L	
$C_{12}H_8Cl_6$	8.5×10^{1}		Brimblecombe [1986]	?	38
[309-00-2]					
dieldrin	9.2×10^{1}		Mackay and Shiu [1981]	L	
$C_{12}H_8OCl_6$	5.8×10^3		Brimblecombe [1986]	?	38
[60-57-1]					
1,1,1-trichloro-2,2-bis-(4- chlorophenyl)ethane	1.9×10^{1}		Mackay and Shiu [1981]	L	
$C_{14}H_9Cl_5$	2.8×10^{1}		Brimblecombe [1986]	?	38
(DDT)					
[50-29-3]					
molinate	1.7×10^2	7300	Sagebiel et al. [1992]	X	3
$C_9H_{17}NOS$			3		
parathion	8.2×10^2		Mackay and Shiu [1981]	L	
$C_{10}H_{14}NO_5PS$					
[56-38-2]					
malathion	2.7×10^{3}		Mackay and Shiu [1981]	L	
$C_{10}H_{19}O_6PS_2$					
[121-75-5]					
methylchlorpyrifos	3.3×10^{2}		Mackay and Shiu [1981]	L	
C ₇ H ₇ NO ₃ Cl ₃ PS	0.0		1.24.00.00	_	
[5598-13-0]					
fenitrothion	2.7×10^3		Mackay and Shiu [1981]	L	
$C_9H_{12}NO_5PS$			1.24.00.00	_	
[122-14-5]					
dicapthon	4.4×10^{3}		Mackay and Shiu [1981]	L	
C ₈ H ₉ NO ₅ ClPS	111/110				
[2463-84-5]					
ronnel	4.8×10^{1}		Mackay and Shiu [1981]	L	
C ₈ H ₈ O ₃ Cl ₃ PS	1.07.10			-	
[299-84-3]					
leptophos	3.8×10^{2}		Mackay and Shiu [1981]	L	
$C_{13}H_{10}O_3BrCl_2P$	5.5710		Tracional and Divide [1001]	-	
[21609-90-5]					

9 Notes

- 1) The value is taken from the compilation of solubilities by W. Asman (unpublished).
- 2) Only the tabulated data between T=273 K and T=303 K from Dean [1992] was used to derive $k_{\rm H}$ and $-\Delta_{\rm soln}H/R$. Above T=303 K the tabulated data could not be parameterized by equation (4) very well. The partial pressure of water vapor (needed to convert some Henry's law constants) was calculated using the formula given by $Sander\ et\ al.$ [1994]. The quantities A and α from Dean [1992] were assumed to be identical.
- 3) Value given here as quoted by Staudinger and Roberts [1996].
- 4) Hoffmann and Jacob [1984] refer to several references in their list of Henry's law constants but they don't assign them to specific species.
- 5) Calculated from correlation between the polarizabilities and solubilities of stable gases. The temperature dependence is an estimate of the upper limit.
- 6) Jacob [1986] assumed the temperature dependence to be the same as for water.
- 7) Schwartz [1984] gives an upper limit of $k_{\rm H}=6.8\times10^3$ M/atm. In the abstract a range of 1×10^3 M/atm $< k_{\rm H} < 3\times10^3$ M/atm is given. The mean value of this range $(2\times10^3$ M/atm) has been used by Lelieveld and Crutzen [1991], Pandis and Seinfeld [1989], and Jacob [1986].
- **8)** Value at T = 293 K.
- 9) This value is a correction of the solubility published by Lind and Kok [1986].
- 10) This value was measured at low pH. It is superseded by a later publication of the same group [Lind and Kok, 1994].
- 11) Value given here as quoted by Betterton [1992].
- 12) Bone et al. [1983] gives Carter et al. [1968] as the source for the data. However, no data was found in that reference.
- 13) Several references are given in the list of Henry's law constants but not assigned to specific species.
- 14) The parametrization given by Lide and Frederikse [1995] (parameters A, B, C) doesn't fit the data in the same paper for this substance. Therefore the parametrization of the solubility data (X_1) was recalculated.
- **15)** Value at T = 295 K.
- **16)** Value obtained by estimating the diffusion coefficient for NO₃ to be $D = 1.0 \times 10^{-5}$ cm²/s.
- 17) The value given by Seinfeld and Pandis [1998] is wrong.
- 18) The assumption of irreversible hydrolysis is equivalent to an infinite effective Henry's law constant.
- 19) This value was extrapolated from data at $T=230~\mathrm{K}$ and $T=273~\mathrm{K}$.
- **20)** For strong acids, the solubility is often expressed as $k_{\rm H} = ([{\rm H}^+] + [{\rm A}^-])/p({\rm HA})$. To obtain the physical solubility of HA, the value has to be divided by the acidity constant $K_{\rm A}$.
- 21) Brimblecombe and Clegg [1989] corrects erroneous data from Brimblecombe and Clegg [1988].
- **22)** Lelieveld and Crutzen [1991] assume the temperature dependence to be the same as for $a(\mathrm{H^+})a(\mathrm{NO_3^-})/p(\mathrm{HNO_3})$ in Schwartz and White [1981].
- 23) Möller and Mauersberger [1992] assumed the solubility to be comparable to HNO₃.
- **24)** This value was extrapolated from data at T=215 K and T=263 K.
- 25) fitting parameter used in numerical modeling.
- **26)** Kruis and May [1962] claim that Cl_2 does not obey Henry's law. Looking at their interpolation formula, however, it seems that this is only because they did not consider the equilibrium $Cl_2 + H_2O \rightleftharpoons HOCl + HCl$.
- 27) Chameides and Stelson [1992] refer to Jacob [1986] and Chameides [1984] but this value cannot be found there.
- 28) Data from Table 1 in preprint of the paper. J. Geophys. Res. forgot to print the tables.
- **29)** Fickert [1998] extracted a value for HOBr from wetted-wall flow tube experiments. However, it was later discovered that under the experimental conditions no evaluation of $k_{\rm H}$ is possible (J. Crowley, pers. comm., 1999).
- **30)** As quoted by *Kruis and May* [1962].
- **31)** Dubik et al. [1987] measured the solubility in concentrated salt solutions (natural brines).

- **32)** This work, using data from Wagman et al. [1982] and the aqueous-phase equilibrium $Cl_2 + Br_2 \rightleftharpoons 2$ BrCl from Wang et al. [1994].
- **33)** Calculated by R. Vogt (pers. comm., 1996), using data from Wagman et al. [1982] and the aqueous-phase equilibrium $BrCl + Br^- \rightleftharpoons Br_2Cl^-$ from Wang et al. [1994].
- **34)** Value at T = 290 K.
- 35) Thompson and Zafiriou [1983] quote a paper as the source that gives only the solubility but not the Henry's law constant.
- **36)** Gmitro and Vermeulen [1964] give partial pressures of H_2SO_4 over a concentrated solution (e.g. 10^{-7} mmHg for 70 weight-percent at 298 K). Extrapolating this to dilute solutions can only be considered an order-of-magnitude approximation for k_H .
- **37)** Interpolation of the original data at T < 300 K. According to Morrison and Johnstone [1954] the solubility increases at higher temperatures.
- **38)** Value at T = 288 K.
- 39) Yaws and Yang [1992] give several references for the Henry's law constants but don't assign them to specific species.
- 40) Hansen et al. [1995] found that the solubility of 2-methylhexane increses with temperature.
- **41)** Value at T = 294 K.
- **42)** Value given here as quoted by Wasik and Tsang [1970].
- 43) Karl and Lindinger [1997] also measured solubilities in salt solutions.
- **44)** The value given by Wilhelm et al. [1977] is wrong.
- **45)** Value given here as cited in *Dewulf et al.* [1995].
- 46) This paper supersedes earlier work with more concentrated solutions [Butler et al., 1933].
- **47)** Value given here as quoted by *Hine and Weimar* [1965].
- **48)** Value given here as quoted by Gaffney et al. [1987].
- **49)** Value at T = 303 K.
- **50)** Koga [1995] found that tert-butanol does not obey Henry's law at c > 3.8 mM.
- 51) Value obtained by Saxena and Hildemann [1996] using the group contribution method.
- **52)** Value at T = 307 K.
- **53)** Value given here as quoted by *Hine and Mookerjee* [1975].
- **54)** It is assumed here that the thermodynamic data in *Parsons et al.* [1971] refers to the units $[mol dm^{-3}]$ and [atm] as standard states.
- **55)** Value given here as quoted by Lüttke and Levsen [1997].
- **56)** It is assumed here that the thermodynamic data in *Parsons et al.* [1972] refers to the units $[mol dm^{-3}]$ and [atm] as standard states.
- 57) Saxena and Hildemann [1996] say that this value is unreliable.
- **58)** Value given here as quoted by *Mackay et al.* [1995].
- **59)** Jacob [1986] assumes $k_{\rm H}({\rm CH_3OO}) = k_{\rm H}({\rm CH_3OOH}) \times k_{\rm H}({\rm HO_2})/k_{\rm H}({\rm H_2O_2})$.
- **60)** Lelieveld and Crutzen [1991] assume $k_{\rm H}({\rm CH_3OO}) = k_{\rm H}({\rm HO_2})$.
- 61) Ledbury and Blair [1925] (and also Blair and Ledbury [1925]) measured the solubility of HCHO at very high concentrations around 5 to 15 M. Their value of $k_{\rm H}$ increases with HCHO concentration. Lelieveld and Crutzen [1991], Hough [1991], and Pandis and Seinfeld [1989] all use these solubility data but do not specify how they extrapolated to lower concentrations. Since the concentration range is far away from typical values in atmospheric chemistry the data is not reproduced here.
- **62)** Dong and Dasgupta [1986] found that the Henry's law constant for HCHO is not a true constant but increases with increasing concentration. They recommend the expression

$$[HCHO] = 10^{(4538/T - 11.34)} \times p(HCHO)^{(252.2/T + 0.2088)}$$

with [HCHO] = aqueous-phase concentration in [mol/l], p(HCHO) = partial pressure in [atm], and T = temperature in [K]. At T = 298.15 K and a partial pressure of p(HCHO) = 10^{-9} atm, for example, this equation results in $k_{\rm H} = 2.5 \times 10^3$ M/atm. It should be noted that this expression does not converge asymptotically to a constant value at infinite dilution.

63) Betterton and Hoffmann [1988] list effective values that take into account hydration of the aldehydes:

$$k_{\rm H} = ([{\rm RCHO}] + [{\rm RCH(OH)_2}])/p({\rm RCHO})$$

- **64)** The data from Table 1 by *Zhou and Mopper* [1990] was used to redo the regression analysis. The data for acetone in their Table 2 is wrong.
- 65) Value given here as quoted by Bone et al. [1983].
- **66)** The value citet by *Betterton* [1992] is wrong.
- **67)** Value given here as quoted by *Vitenberg et al.* [1975].
- **68)** Value given here as cited in Saxena and Hildemann [1996].
- **69)** The value given here was measured at a liquid phase volume mixing ratio of 10^{-6} . Servant et al. [1991] found that the Henry's law constant changes at higher concentrations.
- **70)** Staudinger and Roberts [1996] give 'Khan & Brimblecombe' as the reference but don't include this paper in their list of references.
- 71) Pecsar and Martin [1966] is quoted as the source. However, there only activity coefficients and no vapor pressures are listed.
- 72) Kames and Schurath [1992] couldn't assign the values to the isomers.
- 73) The same data was also published in Fischer and Ballschmiter [1998a].
- **74)** Value at T = 283 K.
- **75)** The value given by Warneck et al. [1996] is wrong.
- **76)** The value given by Schurath et al. [1996] is wrong.
- **77)** Value at T = 373 K.
- **78)** Value at T = 301 K.
- **79)** Value at T = 287 K.
- 80) Estimate for R = haloalkylgroup.
- 81) The same data was also published in McConnell et al. [1975].
- **82)** Value at T = 275 K.
- 83) Solubility in sea water.
- 84) The temperature dependence (after a unit conversion) is given as:

$$k_{\rm H} = \exp(-8.689 + 205.9/(T - 255.1)) \times 11.7 \text{ M/atm}$$

This can obviously only be valid for T >> 255.1 K.

- **85)** Kanakidou et al. [1995] assume $k_{\rm H}({\rm CClF_2OONO_2}) = k_{\rm H}({\rm PAN})$.
- **86)** Value at T = 291 K.
- 87) Calculated molecular structure relationship.
- 88) Cline and Bates [1983] refer to an unpublished manuscript; no details are available.
- 89) Value given here as quoted by De Bruyn et al. [1995].
- **90)** Value given here as quoted by *Loomis* [1928].
- **91)** Value given here as quoted by Rasmussen et al. [1982].
- **92)** Value given here as quoted by Santl et al. [1994].
- **93)** Value given here as quoted by *Dunnivant et al.* [1988].
- 94) Value at 'room temperature'.

10 Acknowledgements

Compiling this data set would not have been possible without the help I received. For valuable discussions and for pointing out additional references to me I would like to thank C. Allen, W. Asman, M. Barth, E. Betterton, S. Clegg, N. Couffin, P. J. Crutzen, F. Dentener, D. J. Jacob, H.-W. Jacobi, W. C. Keene, J. Matthijsen, J. Montgomery, R. M. Moore, M. Mozurkewich, F. Müller, O. Pahl, S. Pandis, J. Perlinger, J.-M. Régimbal, S. E. Schwartz, W. Y. Shiu, T. A. Staffelbach, G. Tyndall, C. Verlinde, R. Vogt, and P. Warneck.

References

- Allen, J. M., W. X. Balcavage, B. R. Ramachandran, and A. L. Shrout. Determination of Henry's Law constants by equilibrium partitioning in a closed system using a new in situ optical absorbance method. *Environ. Toxicol. Chem.*, 17, 1216–1221, 1998.
- Amels, P., H. Elias, U. Götz, U. Steingens, and K. J. Wannowius. Chapter 3.1: Kinetic investigation of the stability of peroxonitric acid and of its reaction with sulfur(IV) in aqueous solution. In P. Warneck, editor, *Heterogeneous and Liquid-Phase Processes*, pages 77–88. Springer Verlag, Berlin, 1996.
- Andon, R. J. L., J. D. Cox, and E. F. G. Herington. Phase relationships in the pyridine series. Part V. The thermodynamic properties of dilute solutions of pyridine bases in water at 25 $^{\circ}$ and 40 $^{\circ}$. J. Chem. Soc., pages 3188–3196, 1954.
- Aneja, V. P. and J. H. Overton. The emission rate of dimethyl sulfide at the atmospheric oceanic interface. *Chem. Eng. Comm.*, 98, 199–209, 1990.
- Arijs, E. and G. Brasseur. Acetonitrile in the stratosphere and implications for positive ion composition. J. Geophys. Res., 91D, 4003–4016, 1986.
- Ashworth, R. A., G. B. Howe, M. E. Mullins, and T. N. Rogers. Air-water partitioning coefficients of organics in dilute aqueous solutions. *J. Hazard. Mater.*, 18, 25–36, 1988.
- Barr, R. S. and D. M. T. Newsham. Phase equilibria in very dilute mixtures of water and chlorinated hydrocarbons. I. Experimental results. Fluid Phase Equil., 35, 189–205, 1987.
- Bartlett, W. B. and D. W. Margerum. The temperature dependence of the Henry's law constant and the dissociation equilibrium constants of bromine chloride. *Eos, Trans. AGU (Abstract Supplement)*, 79/45, F97, 1998.
- Becker, K. H., J. Kleffmann, R. Kurtenbach, and P. Wiesen. Solubility of nitrous acid (HONO) in sulfuric acid solutions. J. Phys. Chem., 100, 14984–14990, 1996.
- Becker, K. H., J. Kleffmann, R. M. Negri, and P. Wiesen. Solubility of nitrous acid (HONO) in ammonium sulfate solutions. J. Chem. Soc. Faraday Trans., 94, 1583–1586, 1998.
- Behnke, W., C. George, V. Scheer, and C. Zetzsch. Production and decay of ClNO₂ from the reaction of gaseous N₂O₅ with NaCl solution: Bulk and aerosol experiments. *J. Geophys. Res.*, 102D, 3795–3804, 1997.
- Benkelberg, H.-J., S. Hamm, and P. Warneck. Henry's law coefficients for aqueous solutions of acetone, acetaldehyde and acetonitrile, and equilibrium constants for the addition compounds of acetone and acetaldehyde with bisulfite. *J. Atmos. Chem.*, 20, 17–34, 1995.

- Berdnikov, V. M. and N. M. Bazhin. Oxidation-reduction potentials of certain inorganic radicals in aqueous solutions. Russ. J. Phys. Chem., Engl. Transl., 44, 395–398, 1970.
- Betterton, E. A. The partitioning of ketones between the gas and aqueous phases. *Atmos. Environ.*, 25A, 1473–1477, 1991.
- Betterton, E. A. Henry's law constants of soluble and moderately soluble organic gases: Effects on aqueous phase chemistry. *Adv. Environ. Sci. Technol.*, 24, 1–50, 1992.
- Betterton, E. A. and M. R. Hoffmann. Henry's law constants of some environmentally important aldehydes. *Environ. Sci. Technol.*, 22, 1415–1418, 1988.
- Bissonette, E. M., J. J. Westrick, and J. M. Morand. Determination of Henry's coefficient for volatile organic compounds in dilute aqueous systems. In *Proceedings of the Annual Conference of the American Water Works Association, Cincinnati, OH, June 17-21*, pages 1913–1922. 1990.
- Blair, E. W. and W. Ledbury. The partial formal dehyde vapour pressures of aqueous solutions of formal dehyde. Part I. J. Chem. Soc., 127, 26–40, 1925.
- Blatchley, E. R., III, R. W. Johnson, J. E. Alleman, and W. F. McCoy. Effective Henry's law constants for free chlorine and free bromine. Wat. Res., 26, 99–106, 1992.
- Bohon, R. J. and W. F. Claussen. The solubility of aromatic hydrocarbons in water. *J. Am. Chem. Soc.*, 73, 1571–1578, 1951.
- Bone, R., P. Cullis, and R. Wolfenden. Solvent effects on equilibria of addition of nucleophiles to acetaldehyde and the hydrophilic character of diols. *J. Am. Chem. Soc.*, 105, 1339–1343, 1983.
- Booth, N. and L. J. Jolley. ? J. Chem. Soc. Ind., 62, 87, 1943.
- Bowden, D. J., S. L. Clegg, and P. Brimblecombe. The Henry's law constant of trifluoroacetic acid and its partitioning into liquid water in the atmosphere. *Chemosphere*, 32, 405–420, 1996.
- Bowden, D. J., S. L. Clegg, and P. Brimblecombe. The Henry's law constant of trichloroacetic acid. Water Air Soil Pollut., 101, 197–215, 1998a.
- Bowden, D. J., S. L. Clegg, and P. Brimble combe. The Henry's law constants of the haloacetic acids. *J. Atmos. Chem.*, 85–107, 1998b.
- Brennan, R. A., N. Nirmalakhandan, and R. E. Speece. Comparison of predictive methods for Henrys law coefficients of organic chemicals. *Wat. Res.*, 32, 1901–1911, 1998.
- Brian, P. L. T., J. E. Vivian, and A. G. Habib. The effect of the hydrolysis reaction upon the rate of absorption of chlorine into water. *AIChE J.*, 8, 205–209, 1962.
- Brimblecombe, P. Air Composition & Chemistry. Cambridge University Press, Cambridge, 1986.

- Brimblecombe, P. and S. L. Clegg. The solubility and behaviour of acid gases in the marine aerosol. *J. Atmos. Chem.*, 7, 1–18, 1988.
- Brimblecombe, P. and S. L. Clegg. Erratum. *J. Atmos. Chem.*, 8, 95, 1989.
- Briner, E. and E. Perrottet. Détermination des solubilités de l'ozone dans l'eau et dans une solution aqueuse de chlorure de sodium; calcul des solubilités de l'ozone atmosphérique dans les eaux. Helv. Chim. Acta, 22, 397–404, 1939.
- Burkhard, L. P., D. E. Armstrong, and A. W. Andren. Henry's law constants for the polychlorinated biphenyls. *Environ. Sci. Technol.*, 19, 590–596, 1985. (data in supplement).
- Burnett, M. G. Determination of partition coefficients at infinite dilution by the gas chromatographic analysis of the vapor above dilute solutions. *Anal. Chem.*, 35, 1567–1570, 1963.
- Butler, J. A. V. and C. N. Ramchandani. The solubility of nonelectrolytes. Part II. The influence of the polar group on the free energy of hydration of aliphatic compounds. *J. Chem.* Soc., pages 952–955, 1935.
- Butler, J. A. V., C. N. Ramchandani, and D. W. Thomson. The solubility of non-electrolytes. Part I. The free energy of hydration of some aliphatic alcohols. *J. Chem. Soc.*, pages 280–285, 1935.
- Butler, J. A. V., D. W. Thomson, and W. H. Maclennan. The free energy of the normal aliphatic alcohols in aqueous solution. Part I. The partial vapour pressures of aqueous solutions of methyl, n-propyl, and n-butyl alcohols. Part II. The solubilities of some normal aliphatic alcohols in water. Part III. The theory of binary solutions, and its application to aqueous alcoholic solutions. J. Chem. Soc., pages 674–686, 1933.
- Buttery, R. G., J. L. Bomben, D. G. Guadagni, and L. C. Ling. Some considerations of volatilities of organic flavor compounds in foods. J. Agric. Food Chem., 19, 1045–1048, 1971.
- Buttery, R. G., L. C. Ling, and D. G. Guadagni. Volatilities of aldehydes, ketones, and esters in dilute water solutions. *J. Agric. Food Chem.*, 17, 385–389, 1969.
- Cabani, S., G. Conti, and L. Lepori. Thermodynamic study on aqueous dilute solutions of organic compounds. Part 2.—Cyclic ethers. *Trans. Faraday Soc.*, 67, 1943–1950, 1971a.
- Cabani, S., G. Conti, and L. Lepori. Thermodynamic study on aqueous dilute solutions of organic compounds. Part 1. Cyclic amines. *Trans. Faraday Soc.*, 67, 1933–1942, 1971b.
- Carpenter, J. H. New measurements of oxygen solubility in pure and natural water. *Limnol. Oceanogr.*, 11, 264–277, 1966.
- Carroll, J. J. and A. E. Mather. The solubility of hydrogen sulphide in water from 0 to 90 °C and pressures to 1 MPa. *Geochim. Cosmochim. Acta*, 53, 1163–1170, 1989.
- Carroll, J. J., J. D. Slupsky, and A. E. Mather. The solubility of carbon dioxide in water at low pressure. J. Phys. Chem. Ref. Data, 20, 1201–1209, 1991.
- Carter, G. B., M. C. McIver, and G. J. Miller. Evidence for the formation of a hexahydrotriazine in the condensation of acetaldehyde with methylamine. J. Chem. Soc. C, pages 2591– 2592, 1968.

- Chameides, W. L. The photochemistry of a remote marine stratiform cloud. J. Geophys. Res., 89D, 4739–4755, 1984.
- Chameides, W. L. Reply. *J. Geophys. Res.*, 91D, 14571–14572, 1986.
- Chameides, W. L. and A. W. Stelson. Aqueous phase chemical processes in deliquescent sea-salt aerosols: A mechanism that couples the atmospheric cycles of S and sea salt. *J. Geophys. Res.*, 97D, 20565–20580, 1992.
- Chen, C. C., H. I. Britt, J. F. Boston, and L. B. Evans. Extenson and application of the Pitzer equation for vapor liquid equlibrium of aqueous electrolyte systems with molecular solutes. *AIChE J.*, 25, 820–831, 1979.
- Christie, A. O. and D. J. Crisp. Activity coefficients on the *n*-primary, secondary and tertiary aliphatic amines in aqueous solution. *J. Appl. Chem.*, 17, 11–14, 1967.
- Clegg, S. L. and P. Brimblecombe. Solubility of ammonia in pure aqueous and multicomponent solutions. *J. Phys. Chem.*, 93, 7237–7238, 1989.
- Cline, J. D. and T. S. Bates. Dimethyl sulfide in the equatorial Pacific Ocean: A natural source of sulfur to the atmosphere. *Geophys. Res. Lett.*, 10, 949–952, 1983.
- Coates, J. T. ?. Ph.D. thesis, Clemson University, Clemson, SC, USA, 1984.
- Cooling, M. R., B. Khalfaoui, and D. M. T. Newsham. Phase equilibria in very dilute mixtures of water and unsaturated chlorinated hydrocarbons and of water and benzene. *Fluid Phase Equil.*, 81, 217–229, 1992.
- Dacey, J. W. H., S. G. Wakeham, and B. L. Howes. Henry's law constants for dimethylsulfide in freshwater and seawater. *Geophys. Res. Lett.*, 11, 991–994, 1984.
- Dasgupta, P. G. and S. Dong. Solubility of ammonia in liquid water and generation of trace levels of standard gaseous ammonia. *Atmos. Environ.*, 20, 565–570, 1986.
- De Bruyn, W. J., J. A. Shorter, P. Davidovits, D. R. Worsnop, M. S. Zahniser, and C. E. Kolb. Uptake of gas-phase sulfur species methanesulfonic acid, dimethylsulfoxide, and dimethyl sulfone by aqueous surfaces. J. Geophys. Res., 99D, 16927– 16932, 1994.
- De Bruyn, W. J., E. Swartz, J. H. Hu, J. A. Shorter, P. Davidovits, D. R. Worsnop, M. S. Zahniser, and C. E. Kolb. Henry's law solubilities and Śetchenow coefficients for biogenic reduced sulfur species obtained from gas-liquid uptake measurements. *J. Geophys. Res.*, 100D, 7245–7251, 1995.
- De Maagd, P. G.-J., D. T. E. M. Ten Hulscher, H. van den Heuvel, A. Opperhuizen, and D. T. H. M. Sijm. Physicochemical properties of polycyclic aromatic hydrocarbons: Aqueous solubilities, n-octanol/water partition coefficients, and Henry's law constants. *Environ. Toxicol. Chem.*, 17, 251–257, 1998.
- Dean, J. A. Lange's Handbook of Chemistry. McGraw-Hill, Inc., 1992.
- Dewulf, J., D. Drijvers, and H. van Langenhove. Measurement of Henry's law constant as function of temperature and salinity for the low temperature range. *Atmos. Environ.*, 29, 323–331, 1995.

- Dilling, W. L. Interphase transfer processes. II. Evaporation rates of chloro methanes, ethanes, ethylenes, propanes, and propylenes from dilute aqueous solutions. Comparisons with theoretical predictions. *Environ. Sci. Technol.*, 11, 405–409, 1977.
- Disselkamp, R. S., C. D. Howd, E. G. Chapman, W. R. Barchet, and S. D. Colson. BrCl production in NaBr/NaCl/HNO₃/O₃ solutions representative of sea-salt aerosols in the marine boundary layer. *Geophys. Res. Lett.*, 1998. (submitted).
- Dong, S. and P. G. Dasgupta. Solubility of gaseous formaldehyde in liquid water and generation of trace standard gaseous formaldehyde. *Environ. Sci. Technol.*, 20, 637–640, 1986.
- Drouillard, K. G., G. T. Tomy, D. C. G. Muir, and K. J. Friesen. Volatility of chlorinated n-alkanes (C₁₀-C₁₂): Vapor pressures and Henry's law constants. *Environ. Toxicol. Chem.*, 17, 1252– 1260, 1998.
- Dubik, N. A., G. M. Titova, and E. I. Loshakova. Partition coefficients of bromine and bromine chloride between air and natural brines. *Issled. v Obl. Poluch. Magniya, Ioda, Broma i ikh Soed.*, M., pages 53–57, 1987. (in Russian, see also *Chem. Abstr.*, 109, 213154j).
- Duce, R. A., P. S. Liss, J. T. Merrill, E. L. Atlas, P. Buat-Menard,
 B. B. Hicks, J. M. Miller, J. M. Prospero, R. Arimoto, T. M.
 Church, W. Ellis, J. N. Galloway, L. Hansen, T. D. Jickells,
 A. H. Knap, K. H. Reinhardt, B. Schneider, A. Soudine, J. J.
 Tokos, S. Tsunogai, R. Wollast, and M. Zhao. The atmospheric input of trace species to the world oceans. Global Biogeochem. Cycles, 5, 193–259, 1991.
- Dunnivant, F. M., J. T. Coates, and A. W. Elzerman. Experimentally determined Henry's law constants for 17 polychlorobiphenyl congeners. *Environ. Sci. Technol.*, 22, 448–453, 1988.
- Durham, J. L., J. H. Overton, Jr., and V. P. Aneja. Influence of gaseous nitric acid on sulfate production and acidity in rain. Atmos. Environ., 15, 1059–1068, 1981.
- Economou, I. G., J. L. Heidman, C. Tsonopoulos, and G. M. Wilson. Mutual solubilities of hydrocarbons and water: III. 1-hexene, 1-octene, C₁₀-C₁₂ hydrocarbons. *AIChE J.*, 43, 535–546, 1997.
- Edwards, T. J., G. Maurer, J. Newman, and J. M. Prausnitz. Vapor-liquid equilibria in multicomponent aqueous solutions of volatile weak electrolytes. AIChE J., 24, 966–976, 1978.
- Ervin, A. L., M. A. Mangone, and J. E. Singley. Trace organics removal by air stripping. In *Proceedings of the Annual Confer*ence of the American Water Works Association, pages 507–530. 1980.
- Ettre, L. S., C. Welter, and B. Kolb. Determination of gas-liquid partition coefficients by automatic equilibrium headspace gas chromatography utilizing the phase ratio variation method. *Chromatographia*, 35, 73–84, 1993.
- Fendinger, N. J. and D. E. Glotfelty. A laboratory method for the experimental determination of air-water Henry's law constants for several pesticides. *Environ. Sci. Technol.*, 22, 1289–1293, 1988.
- Fendinger, N. J., D. E. Glotfelty, and H. P. Freeman. Comparison of two experimental techniques for determining air/water Henry's law constants. *Environ. Sci. Technol.*, 23, 1528–1531, 1989.

- Fickert, S. Laboruntersuchungen zur Freisetzung photoreaktiver Halogenverbindungen aus Seesalzaerosol. Ph.D. thesis, Johannes Gutenberg-Universität, Mainz, FRG, 1998.
- Fischer, R. G. and K. Ballschmiter. Determination of vapor pressure, water solubility, gas-water partition coefficient $P_{\rm GW}$, Henry's law constant, and octanol-water partition coefficient $P_{\rm OW}$ of 26 alkyl dinitrates. Chemosphere, 36, 2891–2901, 1998a.
- Fischer, R. G. and K. Ballschmiter. Prediction of the environmental distribution of alkyl dinitrates Chromatographic determination of vapor pressure p^0 , water solubility $S_{\rm H_2O}$, gas-water partition coefficient $K_{\rm GW}$ (Henry's law constant) and octanolwater partition coefficient $K_{\rm OW}$. Fresenius J. Anal. Chem., 360, 769-776, 1998b.
- Frenzel, A., V. Scheer, R. Sikorski, C. George, W. Behnke, and C. Zetzsch. Heterogeneous interconversion reactions of BrNO₂, ClNO₂, Br₂, and Cl₂. J. Phys. Chem. A, 102, 1329–1337, 1998.
- Friant, S. L. and I. H. Suffet. Interactive effects of temperature, salt concentration, and pH on head space analysis for isolating volatile trace organics in aqueous environmental samples. *Anal. Chem.*, 51, 2167–2172, 1979.
- Fried, A., B. E. Henry, J. G. Calvert, and M. Mozurkewich. The reaction probability of N_2O_5 with sulfuric acid aerosols at stratospheric temperatures and compositions. *J. Geophys. Res.*, 99D, 3517–3532, 1994.
- Gaffney, J. S. and G. I. Senum. ? In L. Newman, editor, Gas-Liquid Chemistry of Natural Waters, pages 5-1-5-7. NTIS TIC-4500, UC-11, BNL 51757 Brookhaven National Laboratory, 1984.
- Gaffney, J. S., G. E. Streit, W. D. Spall, and J. H. Hall. Beyond acid rain. *Environ. Sci. Technol.*, 21, 519–524, 1987.
- Gan, J. and S. R. Yates. Degradation and phase partition of methyl iodide in soil. J. Agric. Food Chem., 44, 4001–4008, 1996.
- Gmehling, J., P. Rasmussen, and A. Fredenslund. Vapor-liquid equilibria by UNIFAC group contribution. Revision and extension. 2. Ind. Eng. Chem. Process Des. Dev., 21, 118, 1981.
- Gmitro, J. I. and T. Vermeulen. Vapor-liquid equilibria for aqueous sulfuric acid. AIChE J., 10, 740–746, 1964.
- Gossett, J. M. Measurement of Henry's law constants for C₁ and C₂ chlorinated hydrocarbons. *Environ. Sci. Technol.*, 21, 202–208, 1987.
- Gossett, J. M., C. E. Cameron, B. P. Eckstrom, C. Goodman, and A. H. Lincoff. Mass transfer coefficients and Henry's constants for packed-tower air stripping of volatile organics: Measurements and Correlations. Final Report ESL-TR-85-18, Engineering and Services Laboratory, Tyndall Air Force Base, FL, 1985.
- Graedel, T. E. and K. I. Goldberg. Kinetic studies of raindrop chemistry 1. Inorganic and organic processes. J. Geophys. Res., 88C, 10865–10882, 1983.
- Guthrie, J. P. Hydration of carboxylic acids and esters. Evaluation of the free energy change for addition of water to acetic and formic acids and their methyl esters. *J. Am. Chem. Soc.*, 95, 6999–7003, 1973.

- Hales, J. M. and D. R. Drewes. Solubility of ammonia in water at low concentrations. Atmos. Environ., 13, 1133-1147, 1979.
- Hales, J. M. and S. L. Sutter. Solubility of sulfur dioxide in water at low concentrations. Atmos. Environ., 7, 997–1001, 1973.
- Hamm, S., J. Hahn, G. Helas, and P. Warneck. Acetonitrile in the troposphere: residence time due to rainout and uptake by the ocean. *Geophys. Res. Lett.*, 11, 1207–1210, 1984.
- Hansen, K. C., Z. Zhou, C. L. Yaws, and T. M. Aminabhavi. Determination of Henry's law constants of organics in dilute aqueous solutions. J. Chem. Eng. Data, 38, 546-550, 1993.
- Hansen, K. C., Z. Zhou, C. L. Yaws, and T. M. Aminabhavi. A laboratory method for the determination of Henry's law constants of volatile organic chemicals. J. Chem. Educ., 72, 93–96, 1995.
- Hanson, D. R., J. B. Burkholder, C. J. Howard, and A. R. Ravishankara. Measurement of OH and HO₂ radical uptake coefficients on water and sulfuric acid surfaces. *J. Phys. Chem.*, 96, 4979–4985, 1992.
- Hanson, D. R. and A. R. Ravishankara. The reaction probabilities of ClONO₂ and N_2O_5 on 40 to 75% sulfuric acid solutions. *J. Geophys. Res.*, 96D, 17307–17314, 1991.
- Hartkopf, A. and B. L. Karger. Study of the interfacial properties of water by gas chromatography. Acc. Chem. Res., 6, 209–216, 1973.
- Hassett, J. P. and E. Milicic. Determination of equilibrium and rate constants for binding of a polychlorinated biphenyl congener by dissolved humic substances. *Environ. Sci. Technol.*, 19, 638–643, 1985.
- Hauff, K., R. G. Fischer, and K. Ballschmiter. Determination of C₁-C₅ alkyl nitrates in rain, snow, white frost, and tap water by a combined codistillation head-space gas chromatography technique. Determination of Henry's law constants by head-space GC. Chemosphere, 37, 2599–2615, 1998.
- Hempel, W. Ueber Kohlenoxysulfid. Z. Angew. Chem., 14, 865–868, 1901.
- Heron, G., T. H. Christensen, and C. G. Enfield. Henry's law constant for trichloroethylene between 10 and 95 °C. *Environ. Sci. Technol.*, 32, 1433–1437, 1998.
- Hill, J. O., I. G. Worsley, and L. G. Hepler. Calorimetric determination of the distribution coefficient and thermodynamic properties of bromine in water and carbon tetrachloride. J. Phys. Chem., 72, 3695–3697, 1968.
- Hine, J. and P. K. Mookerjee. The intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contributions. J. Org. Chem., 40, 292–298, 1975.
- Hine, J. and R. D. Weimar, Jr. Carbon basicity. J. Am. Chem. Soc., 87, 3387–3396, 1965.
- Hoff, J. T., D. Mackay, R. Gillham, and W. Y. Shiu. Partitioning of organic chemicals at the air-water interface in environmental systems. *Environ. Sci. Technol.*, 27, 2174–2180, 1993.
- Hoffmann, M. R. and D. J. Jacob. Kinetics and mechanisms of the catalytic oxidation of dissolved sulfur dioxide in aqueous solution: An application to nighttime fog water chemistry. In J. G. Calvert, editor, SO₂, NO and NO₂ Oxidation Mechanisms: Atmospheric Considerations, pages 101–172. Butterworth Publishers, Boston, MA, 1984.

- Holdren, M. W., C. W. Spicer, and J. M. Hales. Peroxyacetyl nitrate solubility and decomposition rate in acidic water. Atmos. Environ., 18, 1171–1173, 1984.
- Holzwarth, G., R. G. Balmer, and L. Soni. The fate of chlorine and chloramines in cooling towers. Wat. Res., 18, 1421–1427, 1984.
- Hough, A. M. Development of a two-dimensional global tropospheric model: Model chemistry. J. Geophys. Res., 96D, 7325–7362, 1991.
- Howe, G. B., M. E. Mullins, and T. N. Rogers. Evaluation and prediction of Henry's law constants and aqueous solubilities for solvents and hydrocarbon fuel components. Vol. 2. Experimental Henry's law data. Tech. Rep. NTIS ADA-202-262/3, Research Triangle Institute for Engineering and Services Lab., Air Force Engineering and Services Center, Research Triangle Park, NC, USA, 1987.
- Hoyt, S. D. The ocean-air exchange of carbonyl sulfide (OCS) and halocarbons. Ph.D. thesis, Oregon Graduate Center, 1982.
- Hunter-Smith, R. J., P. W. Balls, and P. S. Liss. Henry's law constants and the air-sea exchange of various low molecular weight halocarbon gases. *Tellus*, 35B, 170–176, 1983.
- Huthwelker, T., S. L. Clegg, T. Peter, K. Carslaw, B. P. Luo, and P. Brimblecombe. Solubility of HOCl in water and aqueous $\rm H_2SO_4$ to stratospheric temperatures. *J. Atmos. Chem.*, 21, 81–95, 1995.
- Hwang, H. and P. G. Dasgupta. Thermodynamics of the hydrogen peroxide-water system. Environ. Sci. Technol., 19, 255–258, 1985.
- Iraci, L. T., B. M. Baker, G. S. Tyndall, and J. J. Orlando. Measurements of the Henry's law coefficients of 2-methyl-3-butenol, methacrolein, and methylvinyl ketone. J. Atmos. Chem., 1998. (submitted).
- Irrmann, F. ? Chem.-Ing.-Tech., 37, 789, 1965.
- Jacob, D. J. Chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulfate. J. Geophys. Res., 91D, 9807–9826, 1986.
- Jacob, D. J., E. W. Gottlieb, and M. J. Prather. Chemistry of a polluted cloudy boundary layer. J. Geophys. Res., 94D, 12975– 13002, 1989.
- Janini, G. M. and L. A. Quaddora. Determination of activity coefficients of oxygenated hydrocarbons by liquid-liquid chromatography. J. Liq. Chromatogr., 9, 39–53, 1986.
- Jenkins, J. and M. B. King. Vapor-liquid equilibria for the system bromine/water at low bromine concentrations. *Chem. Eng. Sci.*, 20, 921–922, 1965.
- Johnson, B. J. The carbon isotope content and concentration of ambient formic acid and acetic acid. Ph.D. thesis, University of Arizona, Tucson, AZ, USA, 1990.
- Johnson, B. J., E. A. Betterton, and D. Craig. Henry's law coefficients of formic and acetic acids. J. Atmos. Chem., 24, 113–119, 1996.

- Kames, J. and U. Schurath. Alkyl nitrates and bifunctional nitrates of atmospheric interest: Henry's law constants and their temperature dependencies. J. Atmos. Chem., 15, 79–95, 1992.
- Kames, J. and U. Schurath. Henry's law and hydrolysis-rate constants for peroxyacyl nitrates (PANs) using a homogeneous gasphase source. J. Atmos. Chem., 21, 151–164, 1995.
- Kames, J., S. Schweighoefer, and U. Schurath. Henry's law constant and hydrolysis of peroxyacetyl nitrate (PAN). J. Atmos. Chem., 12, 169–180, 1991.
- Kanakidou, M., F. J. Dentener, and P. J. Crutzen. A global threedimensional study of the fate of HCFCs and HFC – 134a in the troposphere. J. Geophys. Res., 100D, 18781–18801, 1995.
- Karl, T. and W. Lindinger. Henry's law constants (?). 1997. (personal communication).
- Kavanaugh, M. C. and R. R. Trussell. Design of aeration towers to strip volatile contaminants from drinking water. J. Am. Water Works Assoc., 72, 684–692, 1980.
- Keene, W. C. and J. N. Galloway. Considerations regarding sources for formic and acetic acids in the troposphere. J. Geophys. Res., 91D, 14466-14474, 1986.
- Keene, W. C., B. W. Mosher, D. J. Jacob, J. W. Munger, R. W. Talbot, R. S. Artz, J. R. Maben, B. C. Daube, and J. N. Galloway. Carboxylic acids in a high-elevation forested site in central Virginia. J. Geophys. Res., 100D, 9345–9357, 1995.
- Kelley, C. M. and H. V. Tartar. On the system: bromine-water. J. Am. Chem. Soc., 78, 5752–5756, 1956.
- Khan, I., P. Brimblecombe, and S. L. Clegg. The Henry's law constants of pyruvic and methacrylic acids. *Environ. Technol.*, 13, 587–593, 1992.
- Khan, I., P. Brimblecombe, and S. L. Clegg. Solubilities of pyruvic acid and the lower (C₁-C₆) carboxylic acids. Experimental determination of equilibrium vapour pressures above pure aqueous and salt solutions. *J. Atmos. Chem.*, 22, 285–302, 1995.
- Kieckbusch, T. G. and C. J. King. An improved method of determining vapor liquid equilibria for dilute organics in aqueous solution. J. Chromatogr. Sci., 17, 273–276, 1979.
- Koga, Y. Vapor pressures of dilute aqueous t-butyl alcohol: How dilute is the Henry's law region? J. Phys. Chem., 99, 6231–6233, 1995.
- Kolb, B., C. Welter, and C. Bichler. Determination of partition coefficients by automatic equilibrium headspace gas chromatography by vapor phase calibration. *Chromatographia*, 34, 235– 240, 1992.
- Kosak-Channing, L. F. and G. R. Helz. Solubility of ozone in aqueous solutions of 0–0.6 M ionic strength at 5–30 °C. *Environ. Sci. Technol.*, 17, 145–149, 1983.
- Krop, H. B., M. J. M. van Velzen, J. R. Parsons, and H. A. J. Govers. n-Octanol-water partition coefficients, aqueous solubilities and Henry's law constants of fatty acid esters. *Chemosphere*, 34, 107–119, 1997.
- Kruis, A. and A. May. Lösungsgleichgewichte von Gasen mit Flüssigkeiten. In K. Schäfer and E. Lax, editors, *Landolt-Börnstein II/2b*, pages (1–1)–(1–210). Springer Verlag, Berlin, 1962.

- Kucklick, J. R., D. A. Hinckley, and T. F. Bidleman. Determination of Henry's law constants for hexachlorocyclohexanes in distilled water and artificial seawater as a function of temperature. Mar. Chem., 34, 197–209, 1991.
- Lamarche, P. and R. L. Droste. Air stripping mass transfer correlations for volatile organics. *J. Am. Water Works Assoc.*, 81, 78–89, 1989.
- Ledbury, W. and E. W. Blair. The partial formal dehyde vapour pressures of aqueous solutions of formal dehyde. Part II. *J. Chem. Soc.*, 127, 2832–2839, 1925.
- Lee, Y.-N. and S. E. Schwartz. Reaction kinetics of nitrogen dioxide with liquid water at low partial pressure. J. Phys. Chem., 85, 840–848, 1981.
- Leighton, D. T. and J. M. Calo. Distribution coefficients of chlorinated hydrocarbons in dilute air-water systems for groundwater contamination applications. J. Chem. Eng. Data, 26, 382–385, 1981.
- Lelieveld, J. and P. J. Crutzen. The role of clouds in tropospheric photochemistry. J. Atmos. Chem., 12, 229–267, 1991.
- Leuenberger, C., M. P. Ligocki, and J. F. Pankow. Trace organic compounds in rain: 4. Identities, concentrations, and scavenging mechanisms for phenols in urban air and rain. *Environ. Sci. Technol.*, 19, 1053–1058, 1985.
- Lide, D. R. and H. P. R. Frederikse, editors. CRC Handbook of Chemistry and Physics, 76th Edition. CRC Press, Inc., Boca Raton, FL, 1995.
- Lincoff, A. H. and J. M. Gossett. The determination of Henry's law constant for volatile organics by equilibrium partitioning in closed systems. In W. Brutsaert and G. H. Jirka, editors, *Gas transfer at water surfaces*, pages 17–25. D. Reidel Publishing Company, Dordrecht-Holland, 1984.
- Lind, J. A. and G. L. Kok. Henry's law determinations for aqueous solutions of hydrogen peroxide, methylhydroperoxide, and peroxyacetic acid. J. Geophys. Res., 91D, 7889–7895, 1986.
- Lind, J. A. and G. L. Kok. Correction to "Henry's law determinations for aqueous solutions of hydrogen peroxide, methylhydroperoxide, and peroxyacetic acid" by John A. Lind and Gregory L. Kok. *J. Geophys. Res.*, 99D, 21119, 1994.
- Liss, P. S. and P. G. Slater. Flux of gases across the air-sea interface. *Nature*, 247, 181–184, 1974.
- Loomis, A. G. Solubilities of gases in water. In E. W. Washburn, C. J. West, N. E. Dorsey, F. R. Bichowsky, and A. Klemenc, editors, *International Critical Tables of Numerical Data, Physics, Chemistry and Technology, Vol. III*, pages 255–261. McGraw-Hill, Inc., 1928.
- Lovelock, J. E., R. J. Maggs, and R. A. Rasmussen. Atmospheric dimethyl sulphide and the natural sulphur cycle. *Nature*, pages 452–453, 1972.
- Luke, W. T., R. R. Dickerson, and L. J. Nunnermacker. Direct measurements of the photolysis rate coefficients and Henry's law constants of several alkyl nitrates. *J. Geophys. Res.*, 94D, 14 905–14 921, 1989.
- Lüttke, J. and K. Levsen. Phase partitioning of phenol and nitrophenols in clouds. *Atmos. Environ.*, 31, 2649–2655, 1997.

- Maahs, H. G. Sulfur-dioxide/water equilibria between 0 $^{\circ}$ and 50 $^{\circ}$ C. An examination of data at low concentrations. In D. R. Schryer, editor, *Heterogeneous Atmospheric Chemistry, Geophysical Monograph 26*, pages 187–195. Am. Geophys. Union, Washington, D.C., 1982.
- Mackay, D. and W. Y. Shiu. A critical review of Henry's law constants for chemicals of environmental interest. *J. Phys. Chem. Ref. Data*, 10, 1175–1199, 1981.
- Mackay, D., W. Y. Shiu, and K. C. Ma. Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, volume I of Monoaromatic Hydrocarbons, Chlorobenzenes, and PCBs. Lewis Publishers, Boca Raton, 1992a.
- Mackay, D., W. Y. Shiu, and K. C. Ma. Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, volume II of Polynuclear Aromatic Hydrocarbons, Polychlorinated Dioxins, and Dibenzofurans. Lewis Publishers, Boca Raton, 1992b.
- Mackay, D., W. Y. Shiu, and K. C. Ma. Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, volume III of Volatile Organic Chemicals. Lewis Publishers, Boca Raton, 1993.
- Mackay, D., W. Y. Shiu, and K. C. Ma. Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, volume IV of Oxygen, Nitrogen, and Sulfur Containing Compounds. Lewis Publishers, Boca Raton, 1995.
- Mackay, D., W. Y. Shiu, and R. P. Sutherland. Determination of air-water Henry's law constants for hydrophobic pollutants. *Environ. Sci. Technol.*, 13, 333–337, 1979.
- Marsh, A. R. W. and W. J. McElroy. The dissociation constant and Henry's law constant of HCl in aqueous solution. *Atmos. Environ.*, 19, 1075–1080, 1985.
- Martin, L. R. Kinetic studies of sulfite oxidation in aqueous solution. In J. G. Calvert, editor, SO₂, NO and NO₂ Oxidation Mechanisms: Atmospheric Considerations, pages 63–100. Butterworth Publishers, Boston, MA, 1984.
- Martin, L. R. and D. E. Damschen. Aqueous oxidation of sulfur dioxide by hydrogen peroxide at low pH. Atmos. Environ., 15, 1615–1621, 1981.
- McAuliffe, C. GC determination of solutes by multiple phase equilibrium. *Chem. Technol.*, 1, 46–51, 1971.
- McConnell, G., D. M. Ferguson, and C. R. Pearson. Chlorinated hydrocarbons and the environment. *Endeavour*, 34, 13–18, 1975.
- Meadows, R. W. and D. J. Spedding. The solubility of very low concentrations of carbon monoxide in aqueous solution. *Tellus*, 26, 143–149, 1974.
- Meylan, W. M. and P. H. Howard. Bond contribution method for estimating Henry's law constants. *Environ. Toxicol. Chem.*, 10, 1283–1291, 1991.
- Mirabel, P., C. George, L. Magi, and J. L. Ponche. Chapter 6.3: Gas-liquid interactions. In P. Warneck, editor, *Heterogeneous and Liquid-Phase Processes*, pages 175–181. Springer Verlag, Berlin, 1996.

- Möller, D. and G. Mauersberger. Aqueous phase chemical reaction system used in cloud chemistry modelling. In A. Flossmann, T. Cvitaš, D. Möller, and G. Mauersberger, editors, EURO-TRAC Special Publication: Clouds: Models and Mechanisms, pages 77–93. 1992.
- Moore, R. M., C. E. Geen, and V. K. Tait. Determination of Henry's law constants for a suite of naturally occurring halogenated methanes in seawater. *Chemosphere*, 30, 1183–1191, 1995.
- Morgan, O. M. and O. Maass. An investigation of the equilibria existing in gas-water systems forming electrolytes. $Can.\ J.\ Res.,\ 5,\ 162–199,\ 1931.$
- Morrison, T. J. and N. B. Johnstone. Solubilities of the inert gases in water. *J. Chem. Soc.*, pages 3441–3446, 1954.
- Mozurkewich, M. Comment on "Possible role of NO_3 in the night-time chemistry of a cloud" by William L. Chameides. *J. Geophys. Res.*, 91D, $14\,569-14\,570$, 1986.
- Mozurkewich, M. Mechanisms for the release of halogens from sea-salt particles by free radical reactions. *J. Geophys. Res.*, 100D, 14199–14207, 1995.
- Munz, C. and P. V. Roberts. Air-water phase equilibria of volatile organic solutes. J. Am. Water Works Assoc., 79, 62–69, 1987.
- Murphy, T. J., M. D. Mullin, and J. A. Meyer. Equilibration of polychlorinated biphenyls and toxaphene with air and water. *Environ. Sci. Technol.*, 21, 155–162, 1987.
- Murphy, T. J., J. C. Pokojowczyk, and M. D. Mullin. ? In D. M. et al., editor, *Physical Behavior of PCBs in the Great Lakes, Chapter 3*, pages 49–58. Ann Arbor Science, Ann Arbor, Mich., 1983
- Nicholson, B. C., B. P. Maguire, and D. B. Bursill. Henry's law constants for the trihalomethanes: Effects of water composition and temperature. *Environ. Sci. Technol.*, 18, 518–521, 1984.
- Nielsen, F., E. Olsen, and A. Fredenslund. Henry's law constants and infinite dilution activity coefficients for volatile organic compounds in water by a validated batch air stripping method. *Environ. Sci. Technol.*, 28, 2133–2138, 1994.
- Nirmalakhandan, N., R. A. Brennan, and R. E. Speece. Predicting Henry's law constant and the effect of temperature on Henry's law constant. *Wat. Res.*, 31, 1471–1481, 1997.
- Oliver, B. ? Chemosphere, 14, 1087–1106, 1985.
- O'Sullivan, D. W., M. Lee, B. C. Noone, and B. G. Heikes. Henry's law constant determinations for hydrogen peroxide, methyl hydroperoxide, hydroxymethyl hydroperoxide, ethyl hydroperoxide, and peroxyacetic acid. *J. Phys. Chem.*, 100, 3241–3247, 1996.
- Palmer, D. A., R. W. Ramette, and R. E. Mesmer. The hydrolysis of iodine: Equilibria at high temperatures. *J. Nucl. Mater.*, 130, 280–286, 1985.
- Pandis, S. N. and J. H. Seinfeld. Sensitivity analysis of a chemical mechanism for aqueous-phase atmospheric chemistry. *J. Geophys. Res.*, 94D, 1105–1126, 1989.
- Park, J.-Y. and Y.-N. Lee. Solubility and decomposition kinetics of nitrous acid in aqueous solution. *J. Phys. Chem.*, 92, 6294–6302, 1988.

- Parsons, G. H., C. H. Rochester, A. Rostron, and P. C. Sykes. The thermodynamics of hydration of phenols. *J. Chem. Soc. Perkin Trans.* 2, pages 136–138, 1972.
- Parsons, G. H., C. H. Rochester, and C. E. C. Wood. Effect of 4-substitution on the thermodynamics of hydration of phenol and the phenoxide anion. J. Chem. Soc. B, pages 533–536, 1971.
- Pearson, C. R. and G. McConnell. Chlorinated C₁ and C₂ hydrocarbons in the marine environment. *Proc. R. Soc. Lond. B*, 189, 305–332, 1975.
- Pecsar, R. E. and J. J. Martin. Solution thermodynamics from gas-liquid chromatography. *Anal. Chem.*, 38, 1661–1669, 1966.
- Peng, J. and A. Wan. Measurement of Henry's constants of high-volatility organic compounds using a headspace autosampler. Environ. Sci. Technol., 31, 2998–3003, 1997.
- Perry, R. H. Perry's Chemical Engineers' Handbook, fourth edition. McGraw-Hill, Inc., 1963.
- Pierotti, G. J., C. H. Deal, and E. L. Derr. ? Ind. Eng. Chem., 51, 95–102, 1957. (data in supplement, document no. 5782, American Documentation Institute, Library of Congress, Washington, D.C.).
- Przyjazny, A., W. Janicki, W. Chrzanowski, and R. Staszewski. Headspace gas chromatographic determination of distribution coefficients of selected organosulphur compounds and their dependence on some parameters. J. Chromatogr., 280, 249–260, 1983.
- Rasmussen, R. A., S. D. Hoyt, and M. A. K. Khalil. Atmospheric carbonyl sulfdide (OCS): Techniques for measurement in air and water. *Chemosphere*, 11, 869–875, 1982.
- Régimbal, J.-M. and M. Mozurkewich. Peroxynitric acid decay mechanisms and kinetics at low pH. *J. Phys. Chem. A*, 101, 8822–8829, 1997.
- Rex, A. Über die Löslichkeit der Halogenderivate der Kohlenwasserstoffe in Wasser. Z. Phys. Chem., 55, 355–370, 1906.
- Rice, C. P., S. M. Chernyak, and L. L. McConnell. Henry's law constants for pesticides measured as a function of temperature and salinity. J. Agric. Food Chem., 45, 2291–2298, 1997.
- Robbins, G. A., S. Wang, and J. D. Stuart. Using the headspace method to determine Henry's law constants. Anal. Chem., 65, 3113–3118, 1993.
- Roberts, P. V. and P. G. Dändliker. Mass transfer of volatile organic contaminants from aqueous solutions to the atmosphere during surface aeration. *Environ. Sci. Technol.*, 17, 484–489, 1983.
- Robinson, R. A. and R. H. Stokes. *Electrolyte Solutions, 2nd ed.*. Butterworth, London, 1970.
- Rochester, H. and J. R. Symonds. Thermodynamic studies of fluoroal cohols. *J. Chem. Soc. Faraday Trans.* 1, 69, 1577–1585, 1973.
- Rohrschneider, L. Solvent characterization by gas-liquid partition coefficients of selected solutes. *Anal. Chem.*, 45, 1241–1247, 1973.

- Rudich, Y., R. K. Talukdar, A. R. Ravishankara, and R. W. Fox. Reactive uptake of NO₃ on pure water and ionic solutions. *J. Geophys. Res.*, 101D, 21 023–21 031, 1996.
- Russell, C. J., S. L. Dixon, and P. C. Jurs. Computer-assisted study of the relationship between molecular structure and Henry's law constant. *Anal. Chem.*, 64, 1350–1355, 1992.
- Sagebiel, J. C., J. N. Seiber, and J. E. Woodrow. Comparison of headspace and gas-stripping methods for determining the Henry's law constant (H) for organic compounds of low to intermediate H. Chemosphere, 25, 1763–1768, 1992.
- Sander, R. Modeling atmospheric chemistry: Interactions between gas-phase species and liquid cloud/aerosol particles. *Surv. Geophys.*, 1999. (in press).
- Sander, R. and P. J. Crutzen. Model study indicating halogen activation and ozone destruction in polluted air masses transported to the sea. J. Geophys. Res., 101D, 9121–9138, 1996.
- Sander, R., J. Lelieveld, and P. J. Crutzen. Modelling of the nighttime nitrogen and sulfur chemistry in size resolved droplets of an orographic cloud. J. Atmos. Chem., 20, 89–116, 1994.
- Santl, H., R. Brandsch, and L. Gruber. Experimental determination of Henry's law constant (HLC) for some lower chlorinated dibenzodioxins. *Chemosphere*, 29, 2209–2214, 1994.
- Saxena, P. and L. M. Hildemann. Water-soluble organics in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds. J. Atmos. Chem., 24, 57–109, 1996.
- Schaffer, D. L. and T. E. Daubert. Gas-liquid chromatographic determination of solution properties of oxygenated compounds in water. *Anal. Chem.*, 41, 1585–1589, 1969.
- Scheer, V., A. Frenzel, W. Behnke, C. Zetzsch, L. Magi, C. George, and P. Mirabel. Uptake of nitrosyl chloride (NOCl) by aqueous solutions. J. Phys. Chem. A, 101, 9359–9366, 1997.
- Schurath, U., A. Bongartz, J. Kames, C. Wunderlich, and T. Carstens. Chapter 6.4: Laboratory determination of physico-chemical rate parameters pertinent to mass transfer into cloud and fog droplets. In P. Warneck, editor, *Heterogeneous and Liquid-Phase Processes*, pages 182–189. Springer Verlag, Berlin, 1996.
- Schwartz, S. E. Gas- and aqueous-phase chemistry of HO_2 in liquid water clouds. *J. Geophys. Res.*, 89D, $11\,589-11\,598$, 1984.
- Schwartz, S. E. and W. H. White. Solubility equilibria of the nitrogen oxides and oxyacids in dilute aqueous solution. In J. R. Pfafflin and E. N. Ziegler, editors, *Advances in Environmental Science and Engineering*, volume 4, pages 1–45. Gordon and Breach Science Publishers, NY, 1981.
- Schwarzenbach, R. P., R. Stierli, B. R. Folsom, and J. Zeyer. Compound properties relevant for assessing the environmental partitioning of nitrophenols. *Environ. Sci. Technol.*, 22, 83–92, 1988.
- Seinfeld, J. H. Atmospheric Chemistry and Physics of Air Pollution. Wiley-Interscience Publication, NY, 1986.
- Seinfeld, J. H. and S. N. Pandis. Atmospheric Chemistry and Physics. John Wiley & Sons, Inc., 1998.
- Servant, J., G. Kouadio, B. Cros, and R. Delmas. Carboxylic monoacids in the air of Mayombe Forest (Congo): Role of the forest as a source or sink. *J. Atmos. Chem.*, 12, 367–380, 1991.

- Shepson, P. B., E. Mackay, and K. Muthuramu. Henry's law constants and removal processes for several atmospheric β -hydroxy alkyl nitrates. *Environ. Sci. Technol.*, 30, 3618–3623, 1996.
- Shiu, W. Y., W. Doucette, F. A. P. C. Gobas, A. Andren, and D. Mackay. Physical-chemical properties of chlorinated dibenzo-p-dioxins. *Environ. Sci. Technol.*, 22, 651–658, 1988.
- Shiu, W.-Y., K.-C. Ma, D. Varhaníčková, and D. Mackay. Chlorophenols and alkylphenols: A review and correlation of environmentally relevant properties and fate in an evaluative environment. *Chemosphere*, 29, 1155–1224, 1994.
- Signer, R., H. Arm, and H. Daenicker. Dampfdrücke, Dichten, thermodynamische Mischfunktionen und Brechungsindices der binären Systeme Wasser-Tetrahydrofuran und Wasser-Diäthyläther bei 25°. Helv. Chim. Acta, 52, 2347–2351, 1969.
- Sillen, L. G. and A. E. Martell. Stability constants of metal-ion complexes, volume Spec. Publ. 17. The Chemical Society, London, 1964.
- Smith, R. M. and A. E. Martell. *Critical Stability Constants. Vol.* 4: Inorganic Complexes. Plenum Press, New York, 1976.
- Snider, J. R. and G. A. Dawson. Tropospheric light alcohols, carbonyls, and acetonitrile: Concentrations in the southwestern United States and Henry's law data. J. Geophys. Res., 90D, 3797–3805, 1985.
- Staffelbach, T. A. and G. L. Kok. Henry's law constants for aqueous solutions of hydrogen peroxide and hydroxymethyl hydroperoxide. J. Geophys. Res., 98D, 12713–12717, 1993.
- Staudinger, J. and P. V. Roberts. A critical review of Henry's law constants for environmental applications. *Crit. Rev. Environ. Sci. Technol.*, 26, 205–297, 1996.
- Stock, A. and E. Kuss. ? Ber. Dtsch. Chem. Ges., 50, 159, 1917.
- Suleimenov, O. M. and R. E. Krupp. Solubility of hydrogen sulfide in pure water and in NaCl solutions, from 20 to 320 °C and at saturation pressures. *Geochim. Cosmochim. Acta*, 58, 2433–2444, 1994.
- Tancrède, M. V. and Y. Yanagisawa. An analytical method to determine Henry's law constant for selected volatile organic compounds at concentrations and temperatures corresponding to tap water use. J. Air. Waste Manage. Assoc., 40, 1658–1663, 1990.
- tenHulscher, T. E. M., L. E. van der Velde, and W. A. Bruggeman. Temperature dependence of Henry's law constants for selected chlorobenzenes, polychlorinated biphenyls and polycyclic aromatic hydrocarbons. *Environ. Toxicol. Chem.*, 11, 1595–1603, 1992.
- Thomas, K., A. Volz-Thomas, and D. Kley. Zur Wechselwirkung von NO₃-Radikalen mit wässrigen Lösungen: Bestimmung des Henry- und des Massenakkomodationskoeffizienten. Ph.D. thesis, Institut für Chemie und Dynamik der Geosphäre 2, Forschungszentrum Jülich GmbH, FRG, 1993.
- Thomas, K., A. Volz-Thomas, D. Mihelcic, H. G. J. Smit, and D. Kley. On the exchange of NO₃ radicals with aqueous solutions: Solubility and sticking coefficient. J. Atmos. Chem., 29, 17–43, 1998.
- Thompson, A. M. and O. C. Zafiriou. Air-sea fluxes of transient atmospheric species. J. Geophys. Res., 88C, 6696–6708, 1983.

- Timmermans, J. The Physico-Chemical Constants of Binary Systems in Concentrated Solutions, Vol. 4. Interscience Publisher, Inc., New York, NY, 1960.
- Tremp, J., P. Mattrel, S. Fingler, and W. Giger. Phenols and nitrophenols as tropospheric pollutants emissions from automobile exhausts and phase-transfer in the atmosphere. *Water Air Soil Pollut.*, 68, 113–123, 1993.
- Tse, G., H. Orbey, and S. I. Sandler. Infinite dilution activity coefficients and Henry's law coefficients of some priority water pollutants determined by a relative gas chromatographic method. *Environ. Sci. Technol.*, 26, 2017–2022, 1992.
- USEPA. Air and steam stripping of toxic pollutants. Tech. Rep. EPA-68-03-002, Industrial Environmental Research Laboratory, Cincinnati, OH, USA, 1982.
- Van Krevelen, D. W., P. J. Hoftijzer, and F. J. Huntjens. Composition and vapor pressures of aqueous solutions of ammonia, carbon dioxide and hydrogen sulfide. *Recl. Trav. Chim. Pays-Bas*, 68, 191, 1949.
- Villalta, P. W., E. R. Lovejoy, and D. R. Hanson. Reaction probability of peroxyacetyl radical on aqueous surfaces. Geophys. Res. Lett., 23, 1765–1768, 1996.
- Vitenberg, A. G., B. V. Ioffe, and V. N. Borisov. ? *Chromatographia*, 7, 610, 1974. (see also *Zh. Anal. Khim.*, **29**, 1795 (1974)).
- Vitenberg, A. G., B. V. Ioffe, Z. S. Dimitrova, and I. L. Butaeva. Determination of gas-liquid partition coefficients by means of gas chromatographic analysis. *J. Chromatogr.*, 112, 319–327, 1975.
- Vogt, R., P. J. Crutzen, and R. Sander. A mechanism for halogen release from sea-salt aerosol in the remote marine boundary layer. *Nature*, 383, 327–330, 1996.
- Wagman, D. D., W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney, and R. L. Nuttall. The NBS tables of chemical thermodynamic properties; Selected values for inorganic and C₁ and C₂ organic substances in SI units. J. Phys. Chem. Ref. Data, 11, suppl. 2, 1982.
- Wang, T. X., M. D. Kelley, J. N. Cooper, R. C. Beckwith, and D. W. Margerum. Equilibrium, kinetic, and UV-spectral characteristics of aqueous bromine chloride, bromine, and chlorine species. *Inorg. Chem.*, 33, 5872–5878, 1994.
- Warneck, P. Chemistry of the Natural Atmosphere. Acad., San Diego, CA, 1988.
- Warneck, P., P. Mirabel, G. A. Salmon, R. van Eldik, C. Vinckier, K. J. Wannowius, and C. Zetzsch. Chapter 2: Review of the activities and achievements of the EUROTRAC subproject HALIPP. In P. Warneck, editor, *Heterogeneous and Liquid-Phase Processes*, pages 7–74. Springer Verlag, Berlin, 1996.
- Wasik, S. P. and W. Tsang. Gas chromatographic determination of partition coefficients of some unsaturated hydrocarbons and their deuterated isomers in aqueous silver nitrate solutions. *J. Phys. Chem.*, 74, 2970–2976, 1970.
- Watts, S. F. and P. Brimblecombe. The Henry's law constant of dimethyl sulphoxide. *Environ. Technol. Lett.*, 8, 483–486, 1987.

- Weinstein-Lloyd, J. and S. E. Schwartz. Low-intensity radiolysis study of free-radical reactions in cloudwater: H₂O₂ production and destruction. *Environ. Sci. Technol.*, 25, 791–800, 1991.
- Westcott, J. W., C. G. Simon, and T. F. Bidleman. Determination of polychlorinated biphenyl vapor pressures by a semimicro gas saturation method. *Environ. Sci. Technol.*, 15, 1375–1378, 1981.
- Westheimer, F. H. and L. L. Ingraham. The entropy of chelation. J. Phys. Chem., 60, 1668–1670, 1956.
- Wilhelm, E., R. Battino, and R. J. Wilcock. Low-pressure solubility of gases in liquid water. Chem. Rev., 77, 219–262, 1977.
- Winiwarter, W., H. Puxbaum, S. Fuzzi, M. C. Facchini, G. Orsi, N. Beltz, K.-H. Enderle, and W. Jaeschke. Organic acid gas and liquid-phase measurements in Po valley fall-winter conditions in the presence of fog. Tellus, 40B, 348–357, 1988.
- Winkler, L. W. Löslichkeit des Broms in Wasser. Chem. Ztg., 23, 687–689, 1899.
- Winkler, L. W. Gesetzmässigkeit bei der Absorption der Gase in Flüssigkeiten. Z. Phys. Chem., 55, 344–354, 1906.
- Winkler, L. W. ? Math. Termesz. Ertesitö, 25, 86, 1907.
- Wong, P. K. and Y. H. Wang. Determination of the Henry's law constant for dimethyl sulfide in seawater. *Chemosphere*, 35, 535–544, 1997.
- Wright, D. A., S. I. Sandler, and D. DeVoll. Infinite dilution activity coefficients and solubilities of halogenated hydrocarbons in water at ambient temperatures. *Environ. Sci. Technol.*, 26, 1828–1831, 1992a.

- Wright, D. A., S. I. Sandler, and D. DeVoll. Infinite dilution activity coefficients and solubilities of halogenated hydrocarbons in water at ambient temperatures. *Environ. Sci. Technol.*, 26, 1828–1831, 1992b.
- Yaws, C. L. and H.-C. Yang. Henry's law constant for compound in water. In C. L. Yaws, editor, *Thermodynamic and Physi*cal Property Data, pages 181–206. Gulf Publishing Company, Houston, TX, 1992.
- Yin, C. and J. P. Hassett. Gas-partitioning approach for laboratory and fiels studies of mirex fugacity in water. *Environ. Sci. Technol.*, 20, 1213–1217, 1986.
- Yoshizumi, K., K. Aoki, I. Nouchi, T. Okita, T. Kobayashi, S. Kamakura, and M. Tajima. Measurements of the concentration in rainwater and of the Henry's law constant of hydrogen peroxide. Atmos. Environ., 18, 395–401, 1984.
- Zafiriou, O. C. and M. McFarland. Determination of trace levels of nitric oxide in aqueous solution. Anal. Chem., 52, 1662–1667, 1980
- Zheng, D.-Q., T.-M. Guo, and H. Knapp. Experimental and modeling studies on the solubility of CO₂, CHClF₂, CHF₃, C₂H₂F₄ and C₂H₄F₂ in water and aqueous NaCl solutions under low pressures. Fluid Phase Equilib., 129, 197–209, 1997.
- Zhou, X. and Y.-N. Lee. Aqueous solubility and reaction kinetics of hydroxymethyl hydroperoxide. *J. Phys. Chem.*, 96, 265–272, 1992.
- Zhou, X. and K. Mopper. Apparent partition coefficients of 15 carbonyl compounds between air and seawater and between air and freshwater; Implications for air-sea exchange. *Environ. Sci. Technol.*, 24, 1864–1869, 1990.