Complex Analysis

Yashas.N

1 Power Series

- $\bullet P(z) = a_0 + a_1 z + a_2 z^2 + a_3 z^3 \cdots = \sum_{n=0}^{\infty} a_n z^n.$
- If P(z) converges at z = a then it converges absolutely for all |z| < |a|.
- If P(z) diverges at z = d then it diverges absolutely for all |d| < |z|.
- If two power series $A(z) = \sum_{n=0}^{\infty} a_n z^n$,

$$\begin{split} B(z) &= \sum_{n=0}^{\infty} b_n z^n \text{ agree on an infinite sequence} \\ (\neq o) \text{ converging to zero then they are same i.e.} \\ \alpha_i &= b_i \ \forall i. \end{split}$$

- In general for $P_b(z) \sum_{n=0}^{\infty} a_n (z-b)^n$ above holds as in displacement or translation of b to o i.e. $P_b(z) = P(w)$ for w = z b.
- Radius of convergence of $P(z) = \sum_{n=0}^{\infty} a_n z^n$ is

R then:

$$\blacksquare R = \lim_{i \to \infty} \left| \frac{a_n}{a_{n+1}} \right|.$$

$$\blacksquare \ R = lim_{i \to \infty} \left| \frac{1}{{}^{n} \sqrt{|\alpha_{n}|}} \right|.$$

$$\blacksquare R = lim_{i \to \infty} \left| \frac{1}{limsup \, \sqrt{|a_n|}} \right|.$$

• Radius of convergence of the power series of f(z) at k is equal to distance between k and closest singularity of f(z) to k.

2 Transformations

2.1 Zⁿ.

- $w = z^n = r^n e^{in\theta}$.
- so from above each z is magnified $|z|^n$ times and rotated $n \arg(z)$ times in the plane i.e.

- Images of circles are circle (with expanded or contracted radius), lines are lines
- Most geometric shapes just expand/diminished (amplified) and gets rotated (twist)

2.2 e^z .

1

- $w = e^z = e^x e^{iy} = e^x \cos y + i e^x \sin y = u + iv$.
- u + iv. • $e^z = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots$ and radius of convergence $=\infty$.
- e^z takes all values in \mathbb{C} infinitely many times except zero i.e. range(e^z)= $\mathbb{C} \{\mathbf{0}\}$.
- if x is constant then $u^2 + v^2 = e^x = r$ \implies horizontal lines are mapped to circle.
- if y is constant then $\frac{v}{u} = \tan y$ or v = cu \implies vertical lines are mapped to lines passing through origin (not including the origin).
- every other line is mapped to a spiral centred at origin (not including).

2.3 Trigonometric functions

$$\cos(z) = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} \dots$$

$$= \frac{e^{iz} + e^{-iz}}{2}$$

$$\sin(z) = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} \dots$$

$$= \frac{e^{iz} - e^{-iz}}{2i}$$

- $\cos(z-\pi/2) = \sin(z)$.
- $\cosh(z) = \cos(iz)$.
- $\sinh(z) = -i \sin(iz)$.
- so exploring only one of trigonometric functions namely **cos** *z* is sufficient
- now $\cos(x + iy) = \frac{e^{ix}e^{-y} + e^{-ix}e^{y}}{2}$ = $\frac{e^{y} + e^{-y}}{2}\cos(x) - i\frac{e^{y} - e^{-y}}{2}\sin(x)$ = $\cosh y \cos x - i \sinh y \sin x = u + iv$.
- for z = x + iy and $w = \cos(z) = u + iv$ if $y = y_0$, is kept constant then $\frac{u^2}{\cosh^2 y_0} + \frac{v^2}{\sinh^2 y_0} = 1$.
- ullet so every horizontal line is transformed to an ellipse with foci's ± 1 .

(as $\alpha = \sinh y_0$ $b = \cosh y_0 \implies c = b^2 - \alpha^2 = 1$ (unit from origin) so foci's = (1,0), (-1,0).)

- similarly $x=x_0$. is kept constant then $\frac{u^2}{\cos^2 x_0} \frac{v^2}{\sin^2 x_0} = \mathbf{1}.$
- so every vertical line is transformed to hyperbola with foci's ± 1 .

- 2.4 $\log(z)$.
- it denotes the inverse function of exponential
- $log(re^{i\theta}) = ln(r) + i\theta$.
- Clearly \log is a multifunction as $\log(re^{i\theta}) = \ln(r) + i(\theta + 2n\pi)$.
- properties of multifunctions:
- a region in range where multifunction takes ordinary single value is called a branch.
- typically branches are connected regions (simply or multiply)
- q is branch point of multifunction if after a revolution around the point in domain the multifunction changes its values on the original observed point
- **q** is algebraic branch point of f(z) if f(z) returns to original observed value after N revolutions around q, its order is N-1, a simple branch point has order 1.
- ullet q is logarithmic branch point if order is ∞ i.e. the original value is not restored by any number of revolution around the point.
- any curve drawn from branch point to ∞ is called a branch cut, typically is -ve real axis.
- eg: $z^{\frac{m}{n}}$ is one—n mutifunction has branch point o of order n-1, z^{τ} for τ irrational has logarithmic branch point of o.,
- a function can have more than one branch point eg: $\sqrt{z^2 + 1} = \sqrt{(z i)(z + i)}$ has $\pm i$ as simple branch points.
- if a complex function or a branch of multifunction can be expressed as power series then the **radius of convergence** is distance to the nearest singularity or branch point.
- log(z) has logarithmic branch point at **o**.

- Log(z) = $\ln |z| + i \operatorname{Arg}(z)$ where the branch cut is -ve real axis and $-\pi < \operatorname{Arg}(z) \le \pi$ is called principle branch.
- continuity of Log(z) breaks down at $Arg(z) = \pi$.
- Log(1+z) = $z \frac{z^2}{2} + \frac{z^3}{3} \frac{z^4}{4} + ...$ is a power series centered at 1 with radius of convergence 1 converges on this unit circle except for z = -1.
- other branches of log(z) can be explored by writing $log(z) = Log(z) + 2n\pi i$.
- $z^k = e^{k\log(z)} = e^{2n\pi ki}e^{k\log(z)} = e^{2n\pi ki}[z^b]$ where $[z^k]$ denotes root in principle branch. thus
- $z^{p/q} = e^{p/q 2n\pi i} [z^{p/q}].$
- Now for complex powers

$$[z^{a+ib}] = e^{(a+ib)(Log(z))}$$

$$= e^{(a+ib)(ln(r)+i\theta)}$$

$$= e^{a ln(r)} e^{-b\theta} e^{i(a\theta+b ln(r))}$$

so
$$[z^{a+ib}] = |z|^a e^{-b \operatorname{Arg}(z)} e^{i(a \operatorname{Arg}(z) + b \ln |z|)}$$

and $z^{a+ib} = e^{i2\pi na} e^{-2\pi nb} [z^{a+ib}]$

2.5 Geometric transforms

- translation by $v: J_v(z) = z + v$ translates $0 \rightarrow v$.
- rotation about origin by θ : $R_o^{\theta}(z) = e^{i\theta}z$.
- rotation about w by θ . : $R_w^{\theta} = J_w \circ R_o^{\theta} \circ J_{-w}(z)$.
- Properties:
- $\{J_w\}$ forms a group under composition
- $\mathbf{R}_{w}^{\theta} = \mathbf{J}_{v} \circ \mathbf{R}_{o}^{\theta} \text{ where } \mathbf{v} = \mathbf{w}(\mathbf{1} \mathbf{e}^{\theta})$
- i.e. rotation about any point is equal to a rotation around origin proceeded by translation.
- if $\theta + \phi = 2n\pi$ then $R_a^{\theta} \circ R_b^{\phi} = J_v$ where $v = (b a)(1 e^{i\phi})$.
- Reflection about a line $L_1 = \Re_{L_1}$.
- Reflection about real axis $\Re_{y=0} = \overline{z}$.

• Reflection about line ax + by = c is

$$\mathfrak{R}_{ax+by=c} = \frac{(b-ia)\overline{z} + 2ic}{b+ia}.$$

(can be done by transforming line to real axis by translation and rotation then conjugation and followed by inverse back to same line transformation).

- Properties:
- If L1 and L2 intersect at O, and the angle from L1 to L2 is ϕ , then $\mathfrak{R}_{L_2} \circ \mathfrak{R}_{L_1}$ is a rotation of 2ϕ about O i.e. $R_O^{2\phi}$.
- If L₁ and L₂ are parallel, and v is the perpendicular vector to both lines, connecting L₁ to L₂ (i.e. distance vector), then $\mathfrak{R}_{L_2} \circ \mathfrak{R}_{L_1}$ is a translation of 2v i.e. J_{2v} .

2.6
$$\frac{1}{7}$$

- before studying $\frac{1}{z}$ we can study inversion about a circle :
- ullet ${\mathfrak J}_{c}(z)$ is the inversion of points in circle c centered at ${\mathfrak q}$ with radius ${\mathfrak R}$ i.e. it transforms interior of circle to exterior and points on circle remain fixed
- some defining properties of \mathfrak{J}_c (inversion of about circle c of radius R and centred at q.):
 - $\blacksquare q \to \infty$.
- if z is at distance ρ from q then it is moved to distance R^2/ρ along same direction as z from q i.e.

$$\mathfrak{J}_{c}(z) = \frac{R^{2}}{\overline{z} - \overline{q}}$$

(as
$$\overline{(z-q)}(\mathfrak{F}_c(z)-q)=R^2$$
.)

- Properties of inversion (\mathfrak{J}_c centred q radius R.):
- inversion is involutory i.e. $\mathfrak{J}_c \circ \mathfrak{J}_c(z) = z$ or $\mathfrak{J}_c^2 = I$.
- if $\tilde{\mathfrak{a}} = \mathfrak{J}_c(\mathfrak{a})$ and $\tilde{\mathfrak{b}} = \mathfrak{J}_c(\mathfrak{b})$ then $\triangle \tilde{\mathfrak{a}} q \tilde{\mathfrak{b}}$ is similar to $\triangle \mathfrak{a} q \mathfrak{b}$.
- every line that does not pass through q is mapped to a circle passing through q.
- \blacksquare as inversion is involutory it swaps the above point i.e. a circle passing through q is mapped to a line not passing through q.
- A circle not passing through **q** is mapped to another circle not passing through **q** i.e. **inversion preserves circles**.
- if a circle k cuts circle c at a and b at right angles i.e. k is orthogonal to c then k is mapped to itself i.e. inversion maps orthogonal circles to c to itself.
- Inversion in a circle is anticonformal map
- If $\mathfrak a$ and $\mathfrak b$ are symmetric with respect to circle k then their inversion images $\tilde{\mathfrak a}$ and $\tilde{\mathfrak b}$ are also symmetric with respect to the inversion image circle \tilde{k} of k.
- i.e. Inversion maps any pair of orthogonal circles to another pair of orthogonal circles.
- also if α and b are symmetric w.r.t line L_1 (i.e. are reflections) then their inversion images are also symmetric to the inversion line $\tilde{L_1}$.
- now $\frac{1}{z} = \overline{\left(\frac{1}{\overline{z}}\right)}$ so $\frac{1}{z}$ is reflection of inversion centered at origin with unit radius on real axis, so all properties of inversion holds as reflection preserves shapes.
- now as both inversion and conjugation are anticonformal implies 1/z is a conformal map
- define inverse point w.r.t. circle $C_{(z_0,R)} = \{z | |z-z_0| = R\}$ as α and α^* are inverse points w.r.t $C_{(z_0,R)}$ if $\alpha \mapsto \alpha^*$ under $\mathfrak{F}_{C_{(z_0,R)}}(z)$ i.e. if $\alpha^* = z_0 + \frac{R^2}{\alpha z_0}$ or $(\alpha^* z_0)\overline{(\alpha z_0)} = R^2$.

2.7 Mobius Transforms

$$M(z) = \frac{az + b}{cz + d}$$

$$= \frac{a}{c} - \frac{ad - bc}{c^2} \left(\frac{1}{z + \frac{d}{c}} \right)$$

$$= J_{a/c} \circ Az \circ \overline{\mathfrak{J}}_{u} \circ J_{d/c}(z)$$

where $A = \frac{ad - bc}{-c^2}$, $u \equiv \{|z| = 1\}$.

- ullet The only shape changing transformation in M(z) is conjugate inversion, so all symmetries and properties of inversion follow to mobius transform.
- Properties
- every mobius transform maps circles and straight lines onto circles and straight lines.
- above point may not be same order i.e. some circles can be mapped to straight lines and visa-viz. namely a straight line or a circle maps onto a straight line if it passes through the point z = -d/c, and onto a circle if it does not (also lines not passing trough -d/c.).
- mobius transform is conformal
- more over mobius transforms are the only transforms that **map circles to circles**
- To be specific A Mobius transformation maps an oriented circle $\tilde{\mathbf{C}}$ to an oriented circle $\tilde{\mathbf{C}}$ in such a way that the region to the left of $\tilde{\mathbf{C}}$ is mapped to the region to the left of $\tilde{\mathbf{C}}$.
- Symmetric principle: If two points are symmetric with respect to a circle i.e. inverse points w.r.t a circle, then their images under a Mobius transformation are symmetric with respect to the image circle. transformation are symmetric with respect to the image circle.
- every mobius transform has only 2 fixed points
- there exist a unique mobius transform sending any three points to any three points.
- the coefficients of a mobius transform $\{a, b, c, d\}$ are not unique as any $k \neq o$. $\{ka, kb, kc, kd\}$ gives same mobius transform
- cross ration $[z, a, b, c] = \frac{(z-a)(b-c)}{(z-c)(b-a)}$

• if p, q, r, s are mapped to $\tilde{p}, \tilde{q}, \tilde{r}, \tilde{s}$ by a Mobius Transformation iff

$$[p, q, r, s] = [\tilde{p}, \tilde{q}, \tilde{r}, \tilde{s}].$$

i.e. Mobius transforms are cross-ratio invariant.

• Unique Mobius transform M(z) = w that transforms $a \to r, b \to s, c \to t$ is

$$[w, r, s, t] = [z, a, b, c]$$

or

$$\frac{(z-a)(b-c)}{(z-c)(b-a)} = \frac{(w-r)(s-t)}{(w-t)(s-r)}.$$

2.8 More on Mobius Transforms

• now as coefficients of mobius transform are not unique if ad - bc = 1 in M(z) then

$$M(z) = \frac{ax+b}{cz+d} \longleftrightarrow [M] = \begin{bmatrix} a & b \\ c & d \end{bmatrix}.$$

- Properties:
- $M_3 = M_1 \circ M_2(z)$ them $[M_3] = [M_2][M_1]$.
- if inverse of M(z) is $M^{-1}(z)$ then $[M^{-1}] = [M]^{-1}$.
- identity transform [I] = [1, 0; 0, 1].
- Thus M(z) of form a group (for $ad bc \neq 0$, = 1) as $SL(\mathbb{R}, 2)$ is a subgroup of $GL(\mathbb{R}, 2)$.
- Homogeneous coordinates $z = \frac{v_1}{v_2}$ for $v_i \in \mathbb{C}$.
- [M] is a liner transform on homogeneous coordinates of z transforms to homogeneous coordinates of M(z) i.e if $z = v_1/v_2$, $M(z) = w = \rho_1/\rho_2$. then

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} \rho_1 \\ \rho_2 \end{bmatrix}.$$

(although homogeneous coordinates may not be unique but their ratios ought to be)

- **★** Properties:
- $z = (v_1/v_2)$ is a fixed point of M(z) iff $[v_1 \ v_2]^T$ is an eigenvector of [M].

3 Automorphisms, Conformality and map of unit disks

- any disk or half plain can be mapped to itself using mobius transform i.e. under specified mobius transforms say M_1 we can have $M_1(D) = D$ for a disk $D = \{z | |z a| \le r\}$ and for $M_2(\mathbb{H}) = \mathbb{H}$ for any half plane $\{z = x + iy | ax + by \ge c\}$ (note: this is mere a bijection with restrictions, not the identity map in disk or half plane.)
- more over the only conformal bijections (automorphisms) of disks \mapsto disks, half planes \mapsto half planes are **Mobius Transforms only**.
- ullet Let C be a unit circle in $\mathbb C$ and D be the unit disk it covers then
- mobius transform's are the only automorphisms conformal on this disk
- this mobius automorphism's have 3 degree of freedom (only 3 real numbers specify it)
- Now if two Mobius automorphisms M and N map two interior points to same image points i.e. the agree on two interior points then M=N (as this takes 4 degree of freedom from both transforms)
- if **D** is centered at origin then these 3 degrees of freedom are a point in **D** ($\alpha = (x + iy)$) that maps to origin and 1 is mapped to a point on **C**..
- as α is mapped to 0, and mobius transform preserves symmetry b/w points and their images (inversion) we have the point $1/\overline{\alpha}$ is mapped to ∞ (as C maps to itself, α , $1/\overline{\alpha}$ are symmetric w.r.t C so should be their images $0,\infty$).
- so now $a \mapsto o \implies M(z) = \frac{k(z-a)}{d}$, $\mathbf{1}/\overline{a} \mapsto \infty \implies M(z) = k\frac{z-a}{\overline{a}z-1}$ and as $M(\mathbf{1}) \in C \implies |M(\mathbf{1})| = \mathbf{1} \implies k = e^{\mathbf{i}\phi}$ so the automorphism of unit disk $(|z| \leq \mathbf{1})$ i.e. mobius transform is determined only by $a = x + \mathbf{i}y \mapsto o(|a| < \mathbf{1})$ and $b \mapsto \mathbf{1}(|b| = \mathbf{1})$ this is given by:

$$M_{\alpha}^{\Phi}(z) = e^{i\Phi} \frac{z-\alpha}{\overline{\alpha}z-1}.$$

• now for

$$M(w) = \frac{pz + q}{\overline{q}z + \overline{p}}$$

for |p| > |q| then M(w) is an automorphism of unit disk (transform this to M_{α}^{Φ} for $\alpha = q/p$ and $e^{i\Phi} = p/\overline{p}$.)

- clearly $M_{\alpha}^{\Phi}(z) = e^{i\Phi}M_{\alpha}^{\sigma}(z)$ so is just rotation of $M_{\alpha}^{\sigma} = M_{\alpha}(z)$.
- properties of Ma.
- M_{α} is he only Mobius automorphism that swaps α and σ (i.e. $M_{\alpha}(\alpha) = \sigma$, $M_{\alpha}(\sigma) = \alpha$.)
- now as an inversion about circle c maps circles orthogonal c to themselves (automorphism) thus automorphisms of unit circle can be viewed as inversions about circles orthogonal to unit circle to uncover this we break down that as $a \mapsto o$ and inversion circle is orthogonal to unit circle the center of inversion is on the line b/w a to o and as inversion is symmetric $1/\overline{a} \mapsto \infty$ we conclude that center of inversion is $1/\overline{a}$.
- as M_{α} is conformal the above inversion should be coupled with reflection (on line perhaps) to give the exact map, as this reflection leaves α , σ fixed we conclude this is reflection about line α to σ ($L_{\alpha,\sigma}$.)
- thus $M_{\alpha} = \Re_{L_{\alpha,0}} \circ \mathfrak{J}_{j}$.
- thus fixed points $(\pm \xi)$ of M_{α} is the intersection of $L_{\alpha,o}$ and j.
- M_a is Involutory.

ullet if \mathbb{H}^{\pm} represents the upper or lower half

plane (Im(z) > 0 or < 0), $\delta = \Delta(0,1)$ unit disk at origin and $\partial \Delta = \{|z| = 1\}$ then :

■ for fixed $\beta \in \mathbb{C}$, $\theta \in \mathbb{R}$ if $Im(\beta) > o$ then

$$w = f(z) = e^{i\theta} \frac{z - \beta}{z - \overline{\beta}}.$$

are the only conformal maps that maps $\mathbb{H}^+ \mapsto \delta \text{ , } \beta \mapsto o \text{ and real line} + \infty = \mathbb{R}_\infty \mapsto \frac{\partial \Delta}{|\alpha|} \text{ (to see assume } |w| < \mathbf{1} \iff |z - \overline{\beta}|^2 - |z - \beta|^2 > o \iff -2Re(z(\beta - \overline{\beta})) = \frac{4(Im(z))(Im(\beta)) > o.)}$

• now if we use transform $R_0^{\pi}(z) = e^{i\pi}z = -z$ which rotates \mathbb{H}^+ to \mathbb{H}^- we get $g = f \circ \phi(Z)$.

$$g(z) = e^{i\theta} \frac{z - b}{z - \overline{b}}.$$

for $Im(\mathfrak{b}) < \mathfrak{o}$, are the only conformal maps that map $\mathbb{H}^- \mapsto \mathfrak{d}$, $\mathfrak{b} \mapsto \mathfrak{o}$ and $\mathbb{R}_\infty \mapsto \mathfrak{d}\Delta$.

• similarly if $h(z) = f \circ R_0^{\pi/2}$

$$h(z) = e^{i\theta} \frac{z - \gamma}{z + \overline{\gamma}}.$$

for Re(b) > o, are the only conformally maps that map Right half plane $(Re(z) > o) \mapsto \delta$, $\gamma \mapsto o$.

- a Mobius transform w = az + b/cz + d maps $\mathbb{H}^+ \mapsto \mathbb{H}^+$ iff $a, b, c, d \in \mathbb{R}$, ad bc > o (i.e. automorphisms of \mathbb{H}^+ .)
- similar to above point a Mobius transform w = az + b/cz + d maps $\mathbb{H}^- \mapsto \mathbb{H}^-$ iff $a, b, c, d \in \mathbb{R}$, ad bc < o (i.e. automorphisms of \mathbb{H}^- .)

4 Stereographic projection

- To visually represent the whole complex plane and the point ∞ Riemann project the whole complex plane to a sphere: Riemann sphere (Σ) centered at origin a unit radius in 3 dimensions where the xy plane is \mathbb{C} .
- The point N = (0,0,1) (north pole) maps to ∞ (in a pseudo sense) and every other point (z) is mapped to (\hat{z}) the point of intersection of the Riemann sphere and the line through N and the point.
- Properties:

- Unit circle C = |z| = 1 remains fixed
- interior of C is mapped to Southern hemisphere particularly $\mathbf{o} \mapsto (\mathbf{o}, \mathbf{o}, -\mathbf{1}) = \mathbf{S}.(\text{south pole})$
- exterior of **C** is mapped to Northern hemisphere
- lacktriangle A line in $\Bbb C$ is mapped to circle passing through $\Bbb N$ particularly the tangent of this circle at $\Bbb N$ is parallel to the line (in 3 dimensions)
- It is **conformal map** in accordance to an observer **from inside of** Σ .
- Stereographic projection is can be broken down as inversion in the plane through $\{N, z \mapsto \hat{z}\}$: if **K** is a circle centered at **N** of radius \sqrt{z} in the plane where line through **N** and z passes then \hat{z} is the image $\mathfrak{J}_{K}(z)$ in this plane (this plane is considered as \mathbb{C} for $\mathfrak{J}_{K}(z)$.)
- From above it is clear that Circles are mapped to circles in particular origin centered circles are mapped to horizontal circles (i.e circles in planes parallel to xy. plane)
- Properties related to functions:
- lacktriangle Complex conjugation in $\Bbb C$. induces a reflection of the Riemann sphere in the vertical plane passing through the real axis.
- Inversion of \mathbb{C} in the unit circle induces a reflection of the Riemann sphere in its equatorial plane (i.e. Northern hemisphere \longleftrightarrow Southern Hemisphere).
- The mapping $z \to (\mathbf{1}/z)$ in $\mathbb C$ induces a rotation of the Riemann sphere about the real axis through an angle of π .
- lacktriangle properties functions like conformality at ∞ can be checked through Stereographic projection.
- formulas of Projection
- \blacksquare if $z \mapsto (X, Y, Z)$ then:

$$Z = \frac{|z|^2 - 1}{|z|^2 + 1}, X + iY = \frac{2z}{1 + |z|^2} = \frac{2x + i2y}{1 + x^2 + y^2}.$$

- if $z \mapsto (\theta, \phi)$ for θ angle subtended around z axis in xy plane and ϕ angle subtended at center by N and \hat{z} then:
- $z = \cot(\phi/2)e^{i\theta} \text{ or }$ $\theta = \operatorname{Arg}(z), \quad \phi = 2\cot^{-1}(|z|).$

5 Analyticity

• if $z(x + iy) \mapsto f(z) = w(u + iv)$ then $df = du + idv du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy$ and $dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy$ i.e.

$$\begin{bmatrix} du \\ dv \end{bmatrix} = \begin{bmatrix} \vartheta_x u & \vartheta_y u \\ \vartheta_x v & \vartheta_y v \end{bmatrix} \begin{bmatrix} dx \\ dy \end{bmatrix}.$$

- where the linear transform is the Jacobian matrix of **f**.
- now in \mathbb{C} if df(w) = f'(z)dz to be true f'(z) should not depend on dz i.e. each infinitesimal vector dz at z should transform to dw at w = f(z) by the same factor f'(z) no matter the direction of dz..
- this condition tells us that dw is just the amplification and rotation or twist or together amplitwist of dz (as $f'(z) \in \mathbb{C} \implies dw = f'(z)dz = r'e^{i\theta'}dz$.)
- now if f is diffrentiable at z then f'(z) exist so the infinitesimal map at point z is an amplitwist.
- clearly amplitwist is conformal (as amplification and twist is)
- now for the converse if a map is conformal at z then it is not presupposed to be amplitwist at z as the amplification may vary but if we presuppose that the map is locally conformal at z (i.e in some whole neighborhood) then clearly the map is locally amplitwist at z (as infinitesimal \triangle is mapped to similar infinitesimal \triangle).
- By above we define **Analytic functions**: functions in \mathbb{C} whose effect are locally (infinitesimal) an amplitwist or a function is analytic at z if it is diffrentiable at z and in a neighborhood of z. (as diffrentiable in neighborhood makes it locally conformal).
- Thus we have an **Analytic function is Conformal**.
- Geometric properties of Analytic function:
- infinitesimal circles are mapped to infinitesimal circles
- A mapping between spheres represents an analytic function iff it is conformal.

- Conformality of analytic functions breakdown near critical points (f'(z) = o) and branch points.
- Geometric property of general transform on \mathbb{C} : as jacobian is a linear transform by singular value decomposition of $\mathbf{2} \times \mathbf{2}$ matrices we have the local linear transform by a complex mapping is a stretch in direction (\mathbf{d}) , another stretch in direction perpendicular to in (\mathbf{d}^{\perp}) . and finally a twist. in particular an infinitesimal circle is transformed to an ellipse (may not be conformal).

• C-R equations :

■ now as f is analytic \implies f'(z) ∈ \mathbb{C} so multiplying by Jacobian matrix is equivalent to a complex multiplication now as

$$(a+ib)(x+iy) = (ax-by)+i(bx+ay)$$

$$\longleftrightarrow \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax-by \\ bx+ay \end{bmatrix}$$
. we have $J = \begin{bmatrix} \partial_x u & \partial_y u \\ \partial_x v & \partial_y v \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$. i.e.
$$\partial_x u = \partial_y v, \quad \partial_y u = -\partial_x v.$$

which gives the Cartesian-Cartesian form(C-C) now in Polar-Cartesian (P-C) form we have $f(re^{i\theta}) = u + iv$ and C-R equations are

 $i\partial_x f = \partial_{11} f$.

$$\partial_{\theta} v = r \partial_{r} u, \quad \partial_{\theta} u = -r \partial_{r} v.$$

$$\partial_{\theta} f = i r \partial_{r} f.$$

(P-P) form $f(re^{i\theta}) = Re^{i\Psi}$ C-R equations

$$\partial_{\theta} R = -rR\partial_{r}\Psi, \quad R\partial_{\theta}\Psi = r\partial_{r}R.$$

(C-P) form $f(x + iy) = Re^{i\Psi}$. C-R equations

$$\partial_x \mathbf{R} = \mathbf{R} \partial_y \Psi, \quad \partial_y \mathbf{R} = -\mathbf{R} \partial_x \Psi.$$

- General properties of Analytic functions:
- if f, g are analytic then f + g, $f \times g$, $f \circ g$, f^{-1} are analytic when ever they are defined, in particular as f is amplitwist locally there is a 1-1 correspondence in a neighbourhood of non critical points to their images \implies that local inverse exists.

- \blacksquare if f is analytic in E then so is f' (i.e. f is infinitely differentiable in the defined region)
- every zero or an analytic point is isolated (generally p-point of f or pre-image of p in f doesn't have a limit point.)
- Identity/Uniqueness Theorem: restating the above we have, if f(z) is analytic in D and if S set of zeroes has a limit point in D then $f(o) \equiv o$ in D (in general if p-points of f has a limit point then $f(z) \equiv p$).
- Extending the above we get, if even an arbitrarily small segment of curve is crushed to a point by an analytic mapping, then its entire domain will be collapsed down to that point (i.e. the function is constant) (this property is known as **Rigidity**)
- from above if f, g analytic agree on a curve or more generally $\{a_n\} \mapsto a$ then $f \equiv g$.
- \blacksquare if some identity for f analytic holds when restricted to $\mathbb R$ then it holds for entire $\mathbb C$. (eg: odd and evenness.)

6 Analytic continuation

- an analytic function or a power series can be extended (from defined) to other regions this is analytical so called Analytic continuation.
- Analytic continuation via reflection:
- if f is an generalization of a real function (defined on \mathbb{R}) and is known in upper or lower parts of real axis (in some region with some parts of \mathbb{R} as boundary) then it can be **analytically continued by** $f*(z) = \overline{f(\overline{z})}$ in the other half part (reflection by \overline{z} part of region)(this holds by property of rigidity of analytic functions).
- In general if f maps a line (\hat{L}) to another line (\hat{L}) then we can analytically continue one side of \hat{L} to the other by using the fact that points symmetric in \hat{L} map to points symmetric in \hat{L} .
- similarly if f maps a circle \hat{C} to circle \hat{C} then mobius transforms can be used to translated these to symmetries i.e. $M: C \mapsto L$, $\hat{M}: \hat{C} \mapsto \hat{L}$ (as composition by mobius transfor

ehic are analytic doesnt change the analyticity of $f \mapsto \hat{M} \circ f \circ M^{-1}$).

• Schwarzian Reflection:

- Given a sufficiently smooth curve K, it is possible to find an analytic function $S_K(z)$ such that $z \in K \implies S_K(z) = \overline{z}$ then
- Schwarz function of $K = \tilde{z} = \mathfrak{R}_K(z) = \overline{S_K(z)}$.
- clearly if $q \in K$ $\tilde{q} = \overline{S_K(q)} = \overline{\overline{q}} = q$ i.e. remains unchanged.
- Also as S_K just amplitwists infinitesimal disk at $q \in K$ to infinitesimal disk in $\overline{q} \in \overline{K}$ we observe that for $S_K|qp \mapsto \overline{qp}$ (for $p,q \in K$, qp infinitesimal) amplification = 1 and twist = -2φ where φ is the angle b/w tangent to K at q with horizontal
- so from above we get if $\mathfrak a$ is on infinitesimal circle passing through K then $\tilde{\mathfrak a}=\mathfrak R_K(\mathfrak a)$ is reflection along the tangent of K. i.e $\mathfrak R_K$ near K is sort of like Reflection in K (pseudo).
- \mathfrak{R}_K is anticonformal so $\mathfrak{R}_K \circ \mathfrak{R}_K$ is conformal so analytic (as amplification=1) and as $\mathfrak{R}_K \circ \mathfrak{R}_K$ maps infinitesimal areas around K to itself thus agrees with Identity so is Identity i.e. $\mathfrak{R}_K \circ \mathfrak{R}_K(z) = z$.
- Now if **K** is a smooth enough curve to posses S_K and any analytical map **f** defined on a region bordering **K** such that $\hat{K} = f(K)$ also posses $S_{\hat{K}}$ then we can analytically continue **f** around **K** (reflection of region by **K**) by demanding points symmetric to **K** are mapped to points symmetric to \hat{K} by **f** and this analytic continuation is given by:

$$F = \Re_{\hat{K}} \circ f \circ \Re_{K}$$
.

7 Complex Integration

- ullet we define complex integration as the generalized Riemann Integration over a given path ${\mathfrak a}$ to ${\mathfrak b}$ or as contour integration
- clearly integration here depends on path
- ullet complex integration can be visualized as weighted vector sum : if S is path from a to b and Δ_i 's are vector decomposition (partition

of S and linearly) that form S , $w_j = f(\min \Delta_j)$ i.e $f(\min \text{ points of } \Delta_j.)$ then we can generalize as

$$\int_{S} f(z) dz = \sum_{j \to \infty} w_{j} \Delta_{j}$$

• from above we get: if $|f| \le M$ in image of **K**. then

$$\left| \int_{S} f(z) dz \right| \leq M. \text{length of } K.$$

• Winding number and properties :

- winding number for a closed loop L and a point a = v(L, a) is the number of revolutions z a makes as it traces L (where we fixing a direction for counter-clockwise revolution is +ve and clockwise is -ve by convention)
- A simple loop is a closed curve that doesnt intersect with itself
- now as a point moves from left to right if it crosses a boundary of the loop and the loops direction is downwards (upwards) the winding number increased (decreases) by 1 (here the first entry of the point to loop is made to be in loop moving in downwards direction).
- we define inside of a loop L to be regions (points) where $v[L, \alpha] \neq 0$.
- Hopf's degree Theorem(ristricted to C): A loop K may be continuously deformed into another loop L, without ever crossing the point p, if and only if K and L have the same winding number round p.
- **d** is a **p**-point of a function **f** if set of pre-images of **p** in **f** contains **d** i.e. $\mathbf{d} \in f^{-1}(\mathbf{p}).(\text{pre-image})$
- Argument-Principle theorem: If f(z) is analytic inside and on a simple loop Γ , and N is the number of p-points (counted with their multiplicities) inside Γ , then $N = \nu(f(\Gamma), p]$.
- if f analytic, f(a) p = o and for $\Delta = z a$ $f(a + \Delta) = p + \Omega(Z)\Delta^n$ (obtained by Taylor series) here algebraic multiplicity of a in f is n, for sufficiently small circle C_a around a that doesnt have any other p-points then

$$v(f(C_a), a) = n.$$

i.e. $f(C_{\alpha})$ loops around p exactly n times.

- now we define $\mathbf{v}(\mathfrak{a})$ for a continuous function \mathbf{h} as : if $\mathbf{h}(\mathfrak{a}) = \mathbf{p}$, $\Gamma_{\mathfrak{a}}$ is the loop having only \mathfrak{a} and no other \mathfrak{p} -points then topological multiplicity $\mathbf{v}(\mathfrak{a}) = \mathbf{v}(\mathbf{h}(\Gamma_{\mathfrak{a}}), \mathfrak{a})$.
- clearly as analytical maps are conformal we have $\nu(\alpha)$ is always +ve ($\neq 0$.) for analytic functions
- $v(a) = \text{sign of } \det(J(a))$ where J is Jacobian
- Topological Argument-Principle theorem: for a continuous map h the total number of p-points inside Γ . (counted with their topological multiplicities) is equal to the winding number of $h(\Gamma)$ round p..
- **Darboux's Theorem**: If an analytic function h maps Γ onto $h(\Gamma)$ in one-to-one fashion, then it also maps the interior of Γ onto the interior of $h(\Gamma)$ in one-to-one fashion.
- Rouche's Theorem : for f, g analytic in and on Γ , If |g(z)| < |f(z)| on Γ , then (f+g) must have the same number of zeros inside Γ as f.
- Brouwer's Fixed Point Theorem: any continuous mapping of the disc to itself will have a fixed point.

In general there must be a fixed point if the disc is mapped into its interior and there are at most a finite number of fixed points. (now if the map is analytic then the number of fixed points inside the disk is only one).

- If f is analytic inside and on a simple loop Γ then no point outside $f(\Gamma)$ can have a preimage inside Γ .(i.e interior of Γ maps to interior of $f(\Gamma)$.)
- Maximum Modulus Theorem: The maximum (minimum respectively if $f(z) \neq 0$ inside the closed boundary) of |f(z)| on a region where f is analytic is always achieved by points on the boundary, never ones inside.
- Schwarz's Lemma: If an analytic mapping of the disc to itself leaves the center fixed, then either every interior point moves nearer to the center, or else the transformation is a simple rotation. (i.e. them map is contractive towards the center).

• General Schwarz's Lemma :

If $f : \Delta(\{|z| < 1\}) \mapsto \overline{\Delta}$ is analytic and has a zero of order n at origin then:

$$|f(z)| \le |z|^n \ \forall z \in \Delta.$$

 $|f^n(o)| < n!$

- if Equality holds (any one) for any point inside Δ other than $\mathbf{0}$ then $\mathbf{f}(z) = \alpha z^n$, $|\alpha| = \mathbf{1}$.
- modifying Schwarz's lemma we get for f analytic in $\Delta(\alpha,R)$, $|f(z)| \leq M$ in $\Delta(\alpha,R)$ and $f(\alpha) = o$ then (applying Schwarz's lemma for $g(z) = f(Rz + \alpha)/M$ i.e. $z \rightarrow Rz + \alpha$ for |z| < 1)

$$|f(z)| \le \frac{M|z - a|}{R}$$

for every $z \in \Delta(\alpha, R)$.

 $|f'(\alpha)| \leq \frac{M}{R}.$

- and if equality holds for any two then $f = M\varepsilon(z-\alpha)/R$ for some $|\varepsilon| = 1$.
- Schwarz-Pick Lemma: Unless an analytic mapping of the unit disc to itself is a automorphism the hyperbolic separation of every pair of interior points decreases.

i.e.

if **f** is analytic on Δ , $|\mathbf{f}(z)| \leq \mathbf{1} \forall z \in \Delta$ and $\mathbf{f}(\alpha) = \mathbf{b}$ for some $\alpha, \mathbf{b} \in \Delta$, then

$$|f'(\alpha)| \leq \frac{1 - |f(\alpha)|^2}{1 - |\alpha|^2}.$$

and for $\alpha, \alpha' \in \Delta$

$$\rho(f(\alpha), f(\alpha')) \leq \rho(\alpha, \alpha').$$

where $\rho(z, \alpha) = |(z - \alpha)/(\overline{\alpha}z - 1)|$.

- Liouville's Theorem :An analytic mapping cannot compress the entire plane into a region lying inside a disc of finite radius without crushing it all the way down to a point, i.e. a bounded entire function is constant or bounded harmonic function is constant (by Taylor series)
- Generalized Liouville's Theorem: if f is an entire function such that $|f(z)| \leq M|z|^{\alpha}$ for all sufficiently large |z| and $\alpha \geq 0$, M > 0 then f

reduces to a polynomial of maximum degree n closest integer to α .

- Generalized Argument-principle theorem :Let f be analytic on a simple loop Γ and analytic inside except for a finite number of poles. If N and M are the number of interior p-points and poles, both counted with their multiplicities, then $\nu(f(\Gamma), p) = N M$.
- for any closed loop L $\oint_L \frac{1}{z} dz = 2\pi i \nu(L, 0)$ in general

$$\oint_{L} \frac{1}{z-p} dz = 2\pi i \nu(L, p).$$

• now as $Im(a\overline{b}) \equiv a \times b$ it gives $2 \times$ the area enclosed by triangle formed by sides a and b vectors so we have for a simple loop L:

$$\oint_{\mathbf{L}} \overline{z} dz = 2i \times \text{area enclosed by } \mathbf{L}.$$

for general loop L

$$\oint_{L} \overline{z} dz = 2i \times \sum_{\text{inside}} v_{j} A_{j}.$$

where A_j is the area enclosed by points which have $v_j = v(L, p) = \alpha \neq 0$ constant (i.e form a part of loop).

- Cauchy's Theorem :If an analytic mapping has no singularities "inside" a loop, its integral round the loop vanishes (i.e. = 0).
- from above we get in integral of analytic functions are **path independent**.
- Morera's Theorem : If all the loop integrals of f are known to vanish in a region then f is analytic in that region.
- if $m \neq -1$ then

$$\int_{A}^{B} z^{m} dz = \frac{1}{m+1} (B^{m+1} - A^{m+1})$$

• clearly from above we have

$$\oint z^{\mathbf{m}} dz = \mathbf{0} \text{ if } \mathbf{m} \neq -\mathbf{1}.$$

- **Deformation Theorem**: If a contour sweeps only through analytic points as it is deformed, the value of the integral does not change.
- Cauchy's formula : if f(z) is analytic inside a simple loop L then

$$f^{n}(\alpha) = \frac{n!}{2\pi i} \oint_{L} \frac{f(z)}{(z-\alpha)^{n+1}} dz.$$

• General Cauchy's theorem : if L is not simple then

$$\nu(L,\alpha)f^{n}(\alpha) = \frac{n!}{2\pi i} \oint_{L} \frac{f(z)}{(z-\alpha)^{n+1}} dz.$$

• Taylor Series: If f(z) is analytic, and a is neither a singularity nor a branch point, then f(z) may be expressed as the following power series, which converges to f(z) within the disc whose radius is the distance from $\mathfrak a$ to the nearest singularity or branch point:

$$f(z) = \sum_{n=0}^{\infty} c_n (z - a)^n$$
, where

$$c_n = \frac{f^n(a)}{n!} = \frac{1}{2\pi i} \oint_L \frac{f(z)}{(z-a)^{n+1}} dz.$$

ullet Laurent Series: if f is analytic inside an annulus centered at ${\mathfrak a}$ then f an be expressed as the following series (for any simple loop K inside the annulus)

$$f(z) = \sum_{-\infty}^{\infty} a_n (z - a)^n$$
, where

$$a_n = \frac{1}{2\pi i} \oint_L \frac{f(z)}{(z-a)^{n+1}} dz.$$

• General Residue Theorem : from Laurent series and integral of z^m we have if f is analytic then for a loop L containing only isolated singularities $\{\alpha_k\}$ of f, we have:

$$\oint_{L} f(z) dz = 2\pi i \sum_{k} v[L, a_{k}] Res(f, a_{k}).$$

where $Res(f, a_i) = a_{-1}$ or coefficient of $1/(z - a_i)$ when f is written as Laurent series centered at a_i containing no other singularity.

• if α is a pole of f of order m. (i.e. $\lim_{z\to\alpha}(z-\alpha)^m f(z)=c$ defined) then $\operatorname{Res}(f(z),\alpha)$

$$= \lim_{z \mapsto a} \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} (z-a)^m f(z).$$

• if P/Q has a simple pole (order 1) at α then

Res
$$\left(\frac{P}{Q}(z), \alpha\right) = \frac{P(\alpha)}{Q'(\alpha)}$$
.

• Gauss mean value theorem : for a harmonic function ϕ ($\partial_x^2 \phi + \partial_y^2 \phi = o$) the mean value of ϕ on a circle is equat to the vale of function at center of the circle i.e.

if f(z) is analytic then

$$\frac{1}{2\pi} \int_{0}^{2\pi} f(\alpha + re^{i\theta}) d\theta = f(\alpha)$$

• Residue at infinity: for analytic f we have

$$\operatorname{Res}(f(z), \infty) = -\operatorname{Res}\left(\frac{f(\mathbf{1}/z)}{z^2}, \mathbf{0}\right).$$

= $\frac{1}{2\pi i} \oint_{C^-} f(z) dz = -a_{-1}$, where C^- is a circle oriented —vely covering all singularities $(\neq \infty)$ of f(z).

• Extended Residue theorem: for analytic f we have

$$\operatorname{Res}\left(\frac{f(1/z)}{z^2}, o\right) = \sum_{k} \operatorname{Res}(f, a_k)$$

where $a_k \neq \infty$ also if simple loop γ includes all finite singularities of f(z) then

$$\oint_{\gamma} f(z) dz = 2\pi i \operatorname{Res} \left(\frac{f(1/z)}{z^2}, o \right).$$

• Argument-Principle theorem (integral form) : if f(z) is a meromorphic function in domain $D \subseteq \mathbb{C}$, has finitely many zeroes and poles in D, C is any simple loop in D such that no pole or zero lie 'on' C then

$$\oint_C \frac{f'(z)}{f(z)} dz = 2\pi i (N - P).$$

where N and P denote the number of zeroes and poles of f inside C (counted with their multiplicities and order).

• General Rouche's Theorem : for f, g analytic in and on C with finite number of poles and zeroes inside the Domain covering C, If |g(z)| < |f(z)| on C, then

$$N_{f+q} - P_{f+q} = N_f - P_f$$

where N_h , P_h denote the number of zeroes and poles of h inside C (counted with their multiplicities and order).

• Alternative form of Rouche's Theorem : if same conditions as above hold for g - f(z), f(z) and |g(z) - f(z)| < |f(z)| then

$$N_g - P_g = N_f - P_f$$
.

(can used for calculating the number of zeroes of polynomial in a give loop)

- Application of Rouche's Theorem to polynomials
- eg: consider the polynomial $g(z) = z^6 5z^4 + 7$
- * now $|g(z) 7| \le |z|^6 + 5|z|^4 \le 7$ if $|z| \le 1$ (as $6 + 1 \le 7$) thus g(z) has same number of zeroes as f(z)7 in $|z| \le 1$ i.e. g(z) has no zeroes inside $|z| \le 1$.
- * similarly if $f(z) = -5z^4$ we have $|g(z) f(z)| \le |z|^6 + 7 \le 5|z|^4$ if $|z| \le 2$ (as $z^6 + 7 = 71 \le 5$.24 = 80) thus g(z) has 4 zeroes in $|z| \le 2$.
- * similarly if $f(z) = z^6$ we have $|g(z) f(z)| \le 5|z|^4 + 7 \le |z|^6$ if $|z| \le 3$ (as 5.3⁴ + 7 = 412 $\le 3^6$ = 729) thus all zeroes of g(z) lie inside $|z| \le 3$.

8 Mics Properties

- A real valued function of a complex variable $f: \mathbb{C} \mapsto \mathbb{C}$ has derivative zero or non existent i.e if f is analytic the is a constant.
- for an analytic function in domain D if one of : |f|, Re(f), Im(f), Arg(f) is constant in D then f is constant.
- Harmonic functions:

- $\phi(x, y)$ a real valued function is harmonic iff $\nabla^2 \phi = \mathbf{0}$.
- real and imaginary parts of analytical function's are harmonic (in the defined "Domain"(a connected open set)) (converse is not true).
- f(z) is analytic in Domain D iff real and imaginary parts of both f(z) and zf(z) are harmonic.
- if ϕ is a harmonic function in a Domain the $f = \phi_x i\phi_u$ is analytic in the domain.
- Harmonic conjugate of harmonic function φ is another harmonic function ψ such that f = φ + iψ (i.e ψ is the imaginary part od anlytic function whose real part is φ).
- $lue{\bullet}$ if $lue{\varphi}$ is harmonic in a simply connected region then it has a harmonic conjugate in this region.
- if f is analytic in a simply connected region Ω and $f(z) \neq 0$ in Ω then $\exists h$ analytic in Ω such that

$$e^{h(z)} = f(z)$$
.

(h'(z) = f'(z)/f(z) claim $f.e^{-h(z)} = c = e^k$ prove by differentiating) (domain can be whole \mathbb{C}).

- if f satisfies the above conditions then $\exists g$ analytic in Ω such that $g^2(z) = f(z)$ in Ω (choose $g(z) = e^{h(z)/2}$).
- Cauchy's Inequality : if f is analytic in an open disk centered at a of radius $R = \Delta(\alpha,R) = |z-\alpha| < R$ and $|f(z)| \le M$ on boundary $\overline{\Delta(\alpha,r)}$ for $o < r < R, \zeta \in \partial \Delta(\alpha,r)$ we have

$$|f^k(\alpha)| \leq \frac{M.k!}{r^k}.$$

(use estimation of Cauchy integral).

- ullet for an open set D if $f_n:D\mapsto\mathbb{C}$ are analytic for each n and if $f_n\mapsto f$ uniformly on each compact subset of D then f is analytic and more over $f_n^k\mapsto f^k$ uniformly in the compact subsets, the same is true for series also if all conditions hold.
- every zero of an analytical function is isolated.
- from above we have if a_n are the zeros of analytical map f, $a_n \mapsto a \in \mathbb{C}$ then $f \equiv o$.

- in general if if q_n are p-points of analytical map f, $q_n \mapsto q \in \mathbb{C}$ then $f \equiv p$ (use $h(q_n) = f(q_n) p = o$.)
- also if f, g analytic in Domain D , f g has set S of zeroes that has a limit point then f \equiv g in D (in general if f g has set Q of p-points that has a limit point then f(z) = g(z) + p.)
- four distinct points in \mathbb{C}_{∞} all lie on a circle or line iff their cross ratio is real.
- a singularity at z_0 of f(z) is removable if f can be defined at z_0 so that it is analytic at z_0 .
- Riemann's Removable Singularity theorem: if f has an isolated singularity at z_0 then z_0 is removable iff one of the below holds.
- f is bounded in deleted neighborhood of z_0 .
- $\blacksquare \lim_{z \mapsto z_0} f(z)$. exists
- **Picard's Little Theorem**: every non constant entire function only omits at most one value from this we get if a entire function omits two value then it is a constant.
- **Picard's Great theorem**: if z_0 is the essential singularity of f(z) analytic in then $\Delta(z_0, r) z_0$ then $\mathbb{C} f(\Delta(z_0, r) z_0)$ is a singleton set.
- Picards little theorem for meromorphic functions: A meromorphic function omits three distinct values then it is a constant.
- if f is an even anlytic function (i.e. f(-z)=f(z)) then for z_0 isolated singularity of f $Res(f(z), z_0) = 0$. (there are no odd power terms in Laurent series expansion).
- if analytic function f is such that $f(z) = f(z + z_1) = f(z + z_2)$ (doubly periodic)and if $z_1/z_2 \notin \mathbb{R}$ then f is a constant (as z_1, z_2 will be linearly independent).
- if p(z) is a polynomial of degree $n \ge 1$ then every zero of p'(z): (z'_k) lies in the complex hull of zeroes of p(z): (z_k) i.e $z'_k = \sum_{k=1}^n \lambda_k z_k$, for $\sum_{k=1}^n \lambda_k = 1$.
- if f is analytic in |z| < M iff $\overline{f(\overline{z})}$ is also analytic in |z| < M (as amplitwistness of f(z) doesnt change).
- if $p(z) = a_0 + a_1 z + a_2 z^2 + \cdots + a_{n-1} z^{n-1} + z^n$, simple loop C covers all ze-

roes of p(z) then

$$\oint_{C} \frac{z f'(z)}{f(z)} = -2\pi i a_{n-1}.$$

$$\oint_C \frac{z^2 f'(z)}{f(z)} = 2\pi i (\alpha_{n-1}^2 - 2\alpha_{n-2}).$$

• z_1, z_2 and z_3 are vertices of equilateral triangle iff

$$\frac{1}{z_1-z_2}+\frac{1}{z_2-z_3}+\frac{1}{z_3-z_1}=0.$$

i.e.

$$z_1^2 + z_2^2 + z_3^2 = z_1 z_2 + z_2 z_3 + z_3 z_1$$
.

• z_1, z_2 and z_3 iff

$$z_3 = \mathbf{t}(z_1) + (\mathbf{1} - \mathbf{t})z_2$$
 for $\mathbf{t} \in \mathbb{R}$

(i.e equation of line in 2D.)

- if analytic function f(z) is real on real line and purely imaginary on imaginary axis then f(-z) = -f(z) i.e. f is odd.
- for **f**(*z*) analytic in Domain **D** then:
- if f is even i.e. f(z) = f(-z) then $\exists g(z)$ analytic in D such that $f(z) = g(z^2)$.
- if f is odd i.e. -f(z) = f(-z) then $\exists g(z)$ analytic in D such that $f(z) = zg(z^2)$.
- \blacksquare Every meromorphic function in \mathbb{C} can be represented as quotient of two entire functions.
- Open mapping Theorem : if f(z) is a non constant analytic function in Domain D then it is open mapping i.e. f(O) is open for every open set $O \in \mathbb{C}$.

- Clearly if f is analytic in D a Domain (open connected set) then f(D) is also a Domain.
- Hurwitz's Theorem : if $\{f_n\}$ are non vanishing $(\neq 0)$ in a Domain D and converges uniformly to f on every compact subset of D then either f has no zeroes or $f \equiv 0$.
- Local mapping theorem : if f is analytic at α the there exist a neighborhood of α where f is one-one iff $f'(\alpha) \neq 0$. or
- if f is univalent and analytic in a Domain D then $f'(z) \neq 0$ in D.
- if f is meromorphic at pole α and is one-one in neighborhood of α iff α is a simple pole.
- from above if f is meromorphic and univalent in D then f has only simple poles in D.
- for f analytic at ∞ is univalent at ∞ (in its nbd) iff $Res(f, \infty) \neq 0$.
- Riemann mapping theorem : every simply connected domain which is a proper subset of $\mathbb C$ is Conformally equivalent to a unit disk i.e. if Ω is a simply Connected open set then there exist a function f analytic in Ω such that $f(\Omega) = \Delta$.

References

- [1] Needham T.: Visual Complex Analysis, Oxford University press,(2023).
- [2] Ponnusamy S.: Foundations of Complex Analysis, Narosa pubsishing house, (2011).