Sistemi Operativi: Prof.ssa A. Rescigno

Anno Acc. 2015-2016

Esercitazione

Università di Salerno

Scheduling dei processi

 Considerate il seguente insieme di processi, con durata della sequenza di operazioni della CPU espressa in ms e prioritá

Processo	Durata della sequenza	Prioritá
P_1	10	3
P_2	1	1
P_3	2	3
P_4	1	4
P_5	5	2

supponiamo che i processi siano tutti arrivati al tempo 0 esattamente nell'ordine P_1, P_2, P_3, P_4, P_5 .

- a) Disegnare lo schema di Gantt per ciascuno dei 4 algoritmi di scheduling: FCFS, SJF, prioritá senza prelazione (un numero di prioritá piú picoolo implica una prioritá maggiore), e RR (con quanto di tempo =1).
- b) Quale é il tempo di touraround di ciascun processo per ciascuno degli algoritmi di scheduling considerati in a)?
- c) Quale é il tempo di attesa di ciascun processo per ciascuno degli algoritmi di scheduling considerati in a)?
- d) Quale tra gli algoritmi considerati ha il miglior tempo di attesa medio?

- 2. Quale trai seguenti algoritmi di cheduling puó causare starvation?
 - a) FSFC;
 - b) SJF;
 - c) RR;
 - d) a prioritá.

- 3. Si consideri un sistema in cui ci sono:
 - 10 processi I/O bound, che richiedono un'operazione I/O ogni ms (millisecondo) di tempo di CPU e dove ogni operazione I/O richiede 10 ms;
 - 1 processo CPU bound.

Si assuma che il cambio di contesto richiede 0.1 ms e che ciascun processo dura molto tempo.

Quanto é utilizzata la CPU per uno scheduler RR quando:

- a) il quanto di tempo = 1 ms;
- b) il quanto di tempo = 10 ms.

4. In Unix un numero di prioritá alto é assegnato a processi con bassa prioritá. Lo scheduler ricalcola le prioritá ogni secondo in base alla seguente formula:

dove base=60 e uso recente della CPU si riferisce a quanto spesso un processo utilizza la CPU. Si assuma che

Processo	uso recente della CPU
P_1	40
P_2	18
P_3	10

- a) quale sará la nuova prioritá di questi processi?
- b) in base a tale scelta della prioritá dire se la prioritá di un processo CPU bound aumenta a diminuisce ?

5. Si supponga che dei processi arrivino per l'esecuzione ai tempi sotto indicati

Processo	istante di arrivo	Burst time
P_1	0.0	8
P_2	0.4	4
P_3	1.0	1

- a) Quale é il tempo medio di turnaround per questi processi se é usato FCFS per lo scheduling?
- b) Quale é il tempo medio di turnaround per questi processi se é usato SJF per lo scheduling?
- c) Si supponga di far aspettare sia il processo P_1 che il processo P_2 per 1 unitá di tempo cosí da avere tutti e 3 i processi prima di comincia e calcolare il tempo medio di turnaround per questi processi nel caso sia usato SJF per lo scheduling.

6. Si consideri la seguente coda di processi

Processo	CPU burst time (msec)
P_1	2
P_2	3
P_3	7
P_4	18

Ciascun processo esegue il proprio CPU burst, quindi richiede unoperazione di I/O della durata di 10 msec, esegue un altro CPU burst della stessa lunghezza del precedente, ed infine termina.

Supponiamo inoltre che le operazioni di I/O possano procedere in parallelo. Si disegnino i diagrammi di Gantt relativi alle politiche di scheduling

- a) RR, con quanto di tempo pari a 2 msec,
- b) SJF preemptive.

In entrabi i casi, si valuti il tempo medio di attesa.