Microbial Genetics

Lecture 26 BT 206

м.

Definitions

- Genetics
 - □ the study of heredity, genes and the mechanisms that they carry this information
 - Replication
 - Expression
- Genome
 - Complete genetic information of the cell

Definitions

Chromosome

□ The structures that are composed of DNA that carry the hereditary information

Gene

 Segments of the chromosome that code for a specific product (usually a protein)

Genomics

 Sequencing and molecular characterization of genomes

Definitions

- DNA (deoxyribose nucleic acid)
 - Nucleotides
 - ☐ 3 components
 - Phosphate
 - Deoxyribose sugar
 - Nitrogenous base
 - □ Adenine, thiamine, cytosine or guanine
 - □ Double helix (complementary strands)
 - Base pairs
 - □ A-T
 - □ C-G
 - □ A-U (RNA)
 - Hydrogen bonds

DNA

- Base sequence codes for protein
- 4 letter alphabet (A, T, G and C)
- Genetic code
 - □ Determines how nucleotide sequence is converted into amino acid sequences
- Complementary strand allow precise duplication

DNA to proteins

- Gene on DNA
- Converted to mRNA
- mRNA on ribosome
- tRNA brings amino acids to ribosome for protein synthesis

Definitions

- Genotype
 - □ Genetic information of the organism
 - Information that codes for characteristics of the organism
- Phenotype
 - The expressed or physical characteristics of the organism
 - □ The expression of the genotype

- Bacterial chromosome
 - □ Single
 - □ Circular
 - Attached one or many sites to plasma membrane

- Escherichia coli
 - □ 4.6 million base pairs
 - ☐ 4300 genes
 - □ 1mm long
 - □ 1,000 X length of cell
 - Supercoiled
 - Topoisomerase II
 - DNA gyrase

- Genetic map
 - Mapped in minutes
 - Based on time for chromosome exchanged between two cells

Parental strand

- □ Two new "daughter strands"
- Each strand acts as template for new strands
- Semiconservative replication

DNA Replication

- Carbons in nucleotide numbered 1`-5`
- Complementary sugars are upside down to one another
- Strands run 5`→3` on each side

DNA Replication

- Steps in replication
 - DNA unwinds
 - □ DNA polymerase
 - Adds nucleotides to 3` end
 - □ Replication fork forms
 - Leading strand forms towards the fork
 - **■** 5`→3`

Copyright @ 2004 Pearson Education, Inc., publishing as Benjamin Cummings.

DNA Replication

- DNA replication
 - Lagging strand
 - Needs RNA primer
 - Removed by DNA polymerase
 - Synthesized discontinuously
 - Moves away from fork
 - Okazaki fragments
 - □ 1000 nucleotides
 - DNA ligase fuses segments

Copyright @ 2004 Pearson Education, Inc., publishing as Benjamin Cummings

- Bacterial DNA replication
 - □ *E. coli*
 - Occurs bidirectionally
 - Two replication forks
 - Continues until forks meet

RNA Synthesis

- Transcription
 - □ Process of taking DNA code and converting to RNA code
- Translation
 - Converting RNA (mRNA) with tRNA to form amino acid sequences and proteins
 - Occurs at ribosome

Protein Synthesis

- Three types of RNA
 - mRNA messenger
 - □tRNA transfer
 - □ rRNA ribosomal
- DNA unzips at gene