Evaluación de Recuperación 3

Problema 1

Considere los siguientes polinomios: $s(x) = x^4 + x^3 + x^2 + x + 1$ y $t(x) = x^5 - 1$.

1.1) Encuentre las raíces quintas de la unidad.

10 puntos

1.2) Muestre que s(x) divide a t(x).

5 puntos

1.3) Determine la factorización de s(x) en polinomios irreducibles en $\mathcal{P}(\mathbb{R})$.

20 puntos

Solución

1.1) Este ejercicio consiste en encontrar todos los números complejos cuya potencia quinta es igual 1. La manera más simple de enfrentar este problema es usando la forma polar y el teorema de Moivre.

Sea $z = r \operatorname{cis}(\theta)$ tal que

$$z^5 = 1 \tag{1}$$

Por el teorema de Moivre y considerando que la forma polar de 1 es 1 = cis(0), la Ecuación (1) se escribe como:

$$r^5 \operatorname{cis}(5\theta) = \operatorname{cis}(0) \tag{2}$$

La Ecuación (2) tiene 5 soluciones diferentes, las que son las 5 raíces de la unidad.

$$z_k = \operatorname{cis}(\frac{2k\pi}{5}) \quad \text{con} \quad k \in \{0, 1, 2, 3, 4\}$$
 (3)

10 puntos

1.2) Basta dividir t(x) por s(x) y verificar que el resto es 0.

Tambien se puede dividir por (x-1) si se adivina que es una raíz.

5 puntos

1.3) Las raíces de t(x) son las raíces de la unidad y están descritas en la ecuación (3). Por la parte 1.2) sabemos que t(x) comparte 4 de sus raíces con s(x). Al mirar el cuociente entre estos dos polinomios nos damos cuenta que la única raíz que no comparten es $z_0 = 1$. De esto concluimos que las raíces de s(x) son todas complejas y que su factorización en $\mathcal{P}(\mathbb{R})$ consiste en dos polinomios de orden 2. 12 puntos

Para encontrar la factorización identificamos, en (3), las raíces que son conjugadas entre si, y vemos que:

$$\overline{z_1} = \overline{\operatorname{cis}(\frac{2\pi}{5})} = \operatorname{cis}(\frac{8\pi}{5}) = z_4$$
 y $\overline{z_2} = \overline{\operatorname{cis}(\frac{4\pi}{5})} = \operatorname{cis}(\frac{6\pi}{5}) = z_3$

Así, los factores irreducibles de s(x) en $\mathcal{P}(\mathbb{R})$ son:

$$(x-z_1)(x-\overline{z_1}) = (x^2 - 2x\cos(\frac{2\pi}{5}) + 1) \qquad y \qquad (x-z_2)(x-\overline{z_2}) = (x^2 - 2x\cos(\frac{4\pi}{5}) + 1)$$

8 puntos

Problema 2

2.1) Sean A y B dos matrices invertibles y tales que A+B también es invertible. Demuestre que: $(A^{-1}+B^{-1})^{-1}=A(A+B)^{-1}B$

15 puntos

2.2) Verifique la parte 2.1) cuando $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ y $B = A^t$.

10 puntos

Solución:

2.1) Basta multiplicar $(A^{-1} + B^{-1})$ por $A(A + B)^{-1}B$ y verificar que el resultado es la matriz Identidad.

$$(A^{-1}+B^{-1})A(A+B)^{-1}B = (A^{-1}A+B^{-1}A)(A+B)^{-1}B$$

 $= (I+B^{-1}A)(A+B)^{-1}B$ 6 puntos
 $= (B^{-1}B+B^{-1}A)(A+B)^{-1}B$ 6 puntos
 $= B^{-1}(A+B)(A+B)^{-1}B$
 $= B^{-1}B$
 $= I$ 3 puntos

2.2) Necesitamos calcular la inversa de A, B, A+B y $A^{-1}+A^{-1}$. Esto se puede hacer ya sea por la fórmla de Cramer, por triangulación o simplemente verificando que efectivamente cumple con ser la inversa. El resultado es:

$$A^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \qquad y \qquad B^{-1} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \qquad \mathbf{2 \text{ puntos}}$$

$$(A+B) = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \qquad \mathbf{y} \qquad (A+B)^{-1} = \frac{1}{3} \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \qquad \mathbf{2 \text{ puntos}}$$

$$A^{-1} + B^{-1} = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \qquad \mathbf{y} \qquad (A^{-1} + B^{-1})^{-1} = \frac{1}{3} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \qquad \mathbf{2 \text{ puntos}}$$

$$(4)$$

La Ecuación (4) expresa el lado izquierdo de la igualdad. Ahora calculemos el lado derecho.

$$A(A+B)^{-1}B = \frac{1}{3}\begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix}B = A(A+B)^{-1}B = \frac{1}{3}\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$
 4 puntos

De donde se verifica la igualdad.