

Breaking the ion trap speed limit: fast entangling gates using standing wave optical lattices

Ion Trap Quantum Computing Group, Department of Physics, University of Oxford

Scalable trapped-ion quantum computation relies on the development of high-fidelity fast entangling gates in a many ion crystal. Conventional geometric phase gates either suffer from scattering errors or off-resonant carrier excitations. A potential route to achieve fast entanglement is creating a standing wave which can suppress the unwanted carrier coupling.

Non-Adiabatic Mølmer Sørenson Gates

- Two qubit gates are implemented by coupling spin with shared motion of the ions.
- Fast entangling gates enable deeper quantum computational circuits for a given level of incoherent error.
- Mølmer Sørenson (MS) interaction is common two-qubit gate which requires a bichromatic field incident on the ions. Using a quadropole transition, travelling wave to interact with the ions gives the Hamiltonian

standard MS

cnulled MS

 $2\Omega/\delta$

 $\hat{H}_{MS-TW} = \hbar \Omega \hat{S}_{\phi-\pi/2} \cos{(\delta t)} + \hbar \Omega \eta \hat{S}_{\phi} \cos{(\delta t)} (\hat{a} e^{-i\omega_z t} + \hat{a}^{\dagger} e^{i\omega_z t})$ with the first term being the carrier whilst the second is the desired coupling.

• As these terms do not commute, in the interaction picture this Hamiltonian may be expressed as [1]:

$$\hat{H}_{MS-TW} = \hbar \eta \Omega (J_0(2\Omega/\delta) + J_2(2\Omega/\delta)) \cdot \cos(\delta t) \hat{S}_{\phi}(\hat{a}e^{-i\omega_z t} + \hat{a}^{\dagger}e^{i\omega_z t})$$

- Carrier term: causes the spin dependent force coupling to be modulated by (JO+J2).
- Imperfectly transferring to the interaction frame leads to drop in fidelities.

Standing Wave Single and MS Gates

- Using standing wave gives complete control over phase visible to ions.
- Bichromatic standing wave Hamiltonian where ions are seperated by $n\lambda/2$:

 $\hat{H}_{MS-SW} = \hbar 2\Omega \hat{S}_{\phi} \cos{(\delta t)} \sin{(\Delta \phi/2)} + \hbar 2\Omega \eta \hat{S}_{\phi} \cos{(\delta t)} (\hat{a}e^{-i\omega_z t} + \hat{a}^{\dagger}e^{i\omega_z t}) \cos{(\Delta \phi/2)}$

- Setting $\Delta \phi = 0$ (ions sitting at antinodes) we suppress the carrier term and maximise sideband coupling.
- This extra freedom allows fast gates by preventing the saturation effect seen in the travelling MS.
- Requires standing wave phase stable with respect to the ion position for coherent interactions.
- Additional errors as Non-Adiabatic (fast) gates excite multiple motional modes ("spectator modes").
- Spectator excitation: Amplitude shaped pulses [2, 3] effectively remove "spectator" error by closing phase loops of all excited modes.

Phase Stabilization

Optical lattice driven two qubit gates

Single Qubit monochromatic

standing wave

effective gate duration (μs)

854 nm

866 nm

397 nm

⁴⁰Ca[†]

 $-^{2}D_{3/2}$

729 nm

Qubit transition | Carrier Nulled

- Experimental demonstration of gates at carrier null point with ⁸⁸Sr⁺ and 674 nm laser.
- Standard Randomized Benchmarking of single qubit rotations found gate errors of $\epsilon=0.173(3)\%$ for travelling wave, $\epsilon=0.144(3)\%$ for standing wave.
- Universal gate set with phase stabilized standing-waves.
- Carrier suppression by 26 dB.

12.5

• Standing wave MS maintains $\geq 95\%$ fidelity at short gate durations in contrast to travelling wave MS sharp drop off at $\sim 25~\mu s$.

New Platform

12.5

 New ⁴⁰Ca⁺ ion trap experiment in development for exploring fast gate regime using 729 nm quadropole laser.

effective gate duration (μs)

- Two high NA lenses create an array of singly addressing standing waves.
- 3D segmented trap design from NPL facilitates low heating rates (expected: $<10~\rm q/s \ @ 1.5~\rm MHz)$ whilst enabling ion shuttling and crystal rotations.
- ullet MuMetal shield and permanent magnets for stable B field.

