# 03/03/2025: Functions

CSCI 246: Discrete Structures

Textbook reference: Sec 24, Scheinerman

#### Graded Quiz Pickup

Quizzes are in the front of the room, grouped into four bins (A-G, H-L, M-R, S-Z) by last name. The quizzes are upside down with your last name on the back. Come find yours before, during, or after class. Only turn the quiz over if it's yours.

#### Announcement: How to be sure you're reading the right section

- Check the current version of the syllabus to confirm the reading for the next course meeting sometime during (or after) class.
- The most current version of the syllabus can always be found at the course repo.

#### Today's Agenda

- Reading quiz (5 mins)
- Mini-lecture ( $\approx$  25 mins)
- Group exercises ( $\approx$  15 mins)

Feedback on Friday's Quizzes

# Scores On Reading Quiz (Partitions)(Extra Credit)



**Figure 1:** Median Score = 1.75/2 (87.5%)

#### Rubric.

- 1 point if correct. Any partition works. The first page of the text has 3 examples.
- 1 point if correct. The correct solution is 8!/(3!2!)

# Scores On Problems Quiz (Relations)



Figure 2: Median Score = 8/8 (100%)

#### Rubric.

- (4 points) 4 point for an example that is correct. See group exercises from the relations day for one example.
- (4 points) 1 point for correct answer (yes, it's an equivalence relation), 1 point
  for naming a property that is one of the 3 properties of an equivalence relation
  (transitivity, reflexivity, and symmetry), and 2 points for a correct proof.

#### Reading Quiz (Functions)

Let  $A=\{0,1,2,3,4\}$  and  $B=\{5,6,7,8,9\}$ . Let  $f:A\to B$  be defined by

$$f = \{(0,5), (1,7), (2,8), (3,9), (4,7)\}$$

So

$$f^{-1} = \{(5,0), (7,1), (8,2), (9,3), (7,4)\}$$

The figure on top shows f, and the figure on the bottom shows  $f^{-1}$ .

- 1. Is  $f^{-1}$  a function from B to A?
- 2. Give one reason for your answer to #1 .
- 3. (Extra credit.) Give a second reason for your answer to #2.





# Q & A on Group Exercises (Equivalence

**Relations and Partitions)** 

# Overview of functions

#### Remark

A function is a special type of a binary relation.

#### Definition (Hampkins pp. 128)

We say that f is **function** from A to B, written  $f:A\to B$ , if f is a set of pairs  $f\subseteq A\times B$  exhibiting the <u>function property</u>: for every  $a\in A$ , there is a unique  $b\in B$  with  $(a,b)\in f$ . This object b is denoted by f(a) and is called the value of the function at a.

#### Characterization

We can think of a **function** as a rule that assigns each element of a set A to exactly one element in another set B.

We can think of a **function** as a rule that assigns each element of a set A to exactly one element in another set B.

#### Poll

Let  $A = \{a, b, c, d\}$  and  $B = \{e, f, g\}$ . Consider a relation R depicted below.



Is R a function?

We can think of a **function** as a rule that assigns each element of a set A to exactly one element in another set B.

#### Poll

Let  $A = \{a, b, c, d\}$  and  $B = \{e, f, g\}$ . Consider a relation R depicted below.



Is R a function? Yes.

We can think of a **function** as a rule that assigns each element of a set A to exactly one element in another set B.

#### Poll

Let  $A = \{a, b, c, d\}$  and  $B = \{e, f, g\}$ . Consider a relation R depicted below.



Is R a function?

We can think of a **function** as a rule that assigns each element of a set A to exactly one element in another set B.

#### Poll

Let  $A = \{a, b, c, d\}$  and  $B = \{e, f, g\}$ . Consider a relation R depicted below.



Is R a function? No. Element d does not get mapped to anything.

We can think of a **function** as a rule that assigns each element of a set A to exactly one element in another set B.

#### Poll

Let  $A = \{a, b, c, d\}$  and  $B = \{e, f, g\}$ . Consider a relation R depicted below.



Is R a function?

We can think of a **function** as a rule that assigns each element of a set A to exactly one element in another set B.

#### Poll

Let  $A = \{a, b, c, d\}$  and  $B = \{e, f, g\}$ . Consider a relation R depicted below.



Is R a function? No. Element d gets mapped to both e and f.

Domain, co-domain, and range

Let f be a function from A to B. We call A the **domain** of the function, and we call B the **codomain** (or **target**) of the function.

The **range** (or **image**) of the function, in contrast, is the set of all b that arise as f(a) for some a in the domain. (It is the set of all elements in B that are actually "hit" by f).

#### Poll

Let  $A = \{a, b, c, d\}$  and  $B = \{e, f, g\}$ . Consider the function below.



What are the domain, codomain and range?

Let f be a function from A to B. We call A the **domain** of the function, and we call B the **codomain** (or **target**) of the function.

The **range** (or **image**) of the function, in contrast, is the set of all b that arise as f(a) for some a in the domain. (It is the set of all elements in B that are actually "hit" by f).

#### Poll

Let  $A = \{a, b, c, d\}$  and  $B = \{e, f, g\}$ . Consider the function below.



What are the domain, codomain and range? The domain is  $A = \{a, b, c, d\}$ , the codomain is and  $B = \{e, f, g\}$ , and the range is  $\{e, f\}$ . Note that the range is smaller than B.



A function  $f:A\to B$  is said to be **surjective** (or **onto**) if the range of f is all of B. (That is, all of B is "hit" by the function.)

The function f is said to be **injective** (or **one-to-one**) if whenever  $a \neq a'$ , we have  $f(a) \neq f(a')$ . (That is, distinct inputs always lead to distinct outputs.)

The function f is said to be **bijective** if it is both surjective and injective.

# Poll

A function  $f:A\to B$  is said to be **surjective** (or **onto**) if the range of f is all of B. (That is, all of B is "hit" by the function.)

The function f is said to be **injective** (or **one-to-one**) if whenever  $a \neq a'$ , we have  $f(a) \neq f(a')$ . (That is, distinct inputs always lead to distinct outputs.)





Not injective Not surjective

A function  $f: A \to B$  is said to be **surjective** (or **onto**) if the range of f is all of B. (That is, all of B is "hit" by the function.)

The function f is said to be **injective** (or **one-to-one**) if whenever  $a \neq a'$ , we have  $f(a) \neq f(a')$ . (That is, distinct inputs always lead to distinct outputs.)



A function  $f:A\to B$  is said to be **surjective** (or **onto**) if the range of f is all of B. (That is, all of B is "hit" by the function.)

The function f is said to be **injective** (or **one-to-one**) if whenever  $a \neq a'$ , we have  $f(a) \neq f(a')$ . (That is, distinct inputs always lead to distinct outputs.)



A function  $f:A\to B$  is said to be **surjective** (or **onto**) if the range of f is all of B. (That is, all of B is "hit" by the function.)

The function f is said to be **injective** (or **one-to-one**) if whenever  $a \neq a'$ , we have  $f(a) \neq f(a')$ . (That is, distinct inputs always lead to distinct outputs.)



A function  $f:A\to B$  is said to be **surjective** (or **onto**) if the range of f is all of B. (That is, all of B is "hit" by the function.)

The function f is said to be **injective** (or **one-to-one**) if whenever  $a \neq a'$ , we have  $f(a) \neq f(a')$ . (That is, distinct inputs always lead to distinct outputs.)



A function  $f:A\to B$  is said to be **surjective** (or **onto**) if the range of f is all of B. (That is, all of B is "hit" by the function.)

The function f is said to be **injective** (or **one-to-one**) if whenever  $a \neq a'$ , we have  $f(a) \neq f(a')$ . (That is, distinct inputs always lead to distinct outputs.)



A function  $f:A\to B$  is said to be **surjective** (or **onto**) if the range of f is all of B. (That is, all of B is "hit" by the function.)

The function f is said to be **injective** (or **one-to-one**) if whenever  $a \neq a'$ , we have  $f(a) \neq f(a')$ . (That is, distinct inputs always lead to distinct outputs.)



A function  $f:A\to B$  is said to be **surjective** (or **onto**) if the range of f is all of B. (That is, all of B is "hit" by the function.)

The function f is said to be **injective** (or **one-to-one**) if whenever  $a \neq a'$ , we have  $f(a) \neq f(a')$ . (That is, distinct inputs always lead to distinct outputs.)



A function  $f:A\to B$  is said to be **surjective** (or **onto**) if the range of f is all of B. (That is, all of B is "hit" by the function.)

The function f is said to be **injective** (or **one-to-one**) if whenever  $a \neq a'$ , we have  $f(a) \neq f(a')$ . (That is, distinct inputs always lead to distinct outputs.)





#### Definition (Scheinerman Def. 14.4)

Let R be a relation. The **inverse relation** of R, denoted  $R^{-1}$ , is the relation formed by reversed the order of all the ordered pairs of R.

#### Theorem (Scheinerman Thm 24.21)

Let A and B be sets and let  $f:A\to B$ . The inverse relation  $f^{-1}$  is a function from B to A if and only if f is a bijection.



## Solution to reading quiz

Let  $A = \{0, 1, 2, 3, 4\}$  and  $B = \{0, 1, 2, 3, 4\}$  $\{5, 6, 7, 8, 9\}$ . Let  $f : A \to B$  be defined

by 
$$f = \{(0,5), (1,7), (2,8), (3,9), (4,7)\}$$

 $f^{-1} = \{(5,0), (7,1), (8,2), (9,3), (7,4)\}$ 

So

Is 
$$f^{-1}$$
 a function from  $B$  to  $A$ ?





#### Solution to reading quiz

Let  $A=\{0,1,2,3,4\}$  and  $B=\{5,6,7,8,9\}$ . Let  $f:A\to B$  be defined by

$$f = \{(0,5), (1,7), (2,8), (3,9), (4,7)\}$$

So

$$f^{-1} = \{(5,0), (7,1), (8,2), (9,3), (7,4)\}$$

Is  $f^{-1}$  a function from B to A? No, f is not bijective. In particular:

- 1. *f* is not surjective. So the input 6 doesn't map to *any* outputs.
- 2. *f* is not injective. So the input 7 maps to *multiple* outputs.







aaron loomis: 20 adam.wyszynski: 18 alexander.goetz: 9 alexander knutson: 1 anthony.mann: 4 blake leone: 5 bridger.voss: 21 caitlin hermanson: 1 cameron wittrock: 5 carsten brooks: 6 carver wambold: 5 colter.huber: 13 conner reed1: 1 connor.mizner: 8 connor.yetter: 16 derek.price4: 12 devon.maurer: 2 emmeri.grooms: 10 erik.moore3: 21 ethan.iohnson18: 17 evan.barth: 11

evan.schoening: 19 griffin.short: 20 jack.fry: 11 jacob.ketola: 14 iacob.ruiz1: 13 jacob.shepherd1: 17 iada.zorn: 16 jakob.kominsky: 10 iames.brubaker: 16 jeremiah.mackey: 12 jett.girard: 14 john.fotheringham: 2 ionas.zeiler: 8 joseph.mergenthaler: 7 joseph.triem: 10 julia.larsen: 9 justice.mosso: 8 kaden.price: 19 lucas.jones6: 19 luka.derry: 13 luke donaldson1: 2

lynsey.read: 15 mason.barnocky: 7 matthew.nagel: 18 micaylyn.parker: 14 michael oswald: 3 nolan.scott1: 3 owen obrien: 4 pendleton.johnston: 20 peter.buckley1: 6 reid.pickert: 15 ryan.barrett2: 6 samuel hemmen: 15 samuel mosier: 4 samuel.rollins: 17 sarah.periolat: 11 timothy.true: 3 tristan.nogacki: 21 tyler.broesel: 7 william.elder1: 18 yebin.wallace: 9 zeke.baumann: 12

### **Group exercises**

1. Let  $A = \{1, 2, 3, 4\}$  and  $B = \{5, 6, 7\}$ . Let f be the relation  $f = \{(1, 5), (2, 5), (3, 6), (?, ?)\}$ 

Find replacements for (?,?) so that each of the following is true.

- a. The relation f is not a function from A to B.
- b. The relation f is a function from A to B but is not onto B.
- c. The relation f is a function from A to B and is onto B.
- 2. Let  $f: \mathbb{Z} \to \mathbb{N}$  by f(x) = |x|. (a) Is f one-to-one? (b) Is f onto?
- 3. Consider the "shifting" (or translation) function  $f: \mathbb{Z} \to \mathbb{Z}$  given by f(z) = z + k for some fixed  $k \in \mathbb{Z}$ . For instance f(z) = z + 2 shifts all integers two units to the right.
  - a. Prove that f is a bijection.
  - b. Express the inverse function  $f^{-1}$  with an explicit formula.
- 4. (Extra credit.) Consider the "zigzag" function  $f:\mathbb{N} \to \mathbb{Z}$  given by

$$f(n) = \begin{cases} \frac{n}{2}, & \text{if } n \text{ is even} \\ -\frac{n+1}{2}, & \text{if } n \text{ is odd} \end{cases}$$

This function "zigzags" the integers like this

$$0 \to 0, 1 \to -1, 2 \to 1, 3 \to -2, \dots$$

Prove that f is a bijection.

# Solution to group exercise #1

**Problem.** Let  $A = \{1, 2, 3, 4\}$  and  $B = \{5, 6, 7\}$ . Let f be the relation  $f = \{(1, 5), (2, 5), (3, 6), (?, ?)\}$ 

Find replacements for (?,?) so that each of the following is true.

- a. The relation f is not a function from A to B.
- b. The relation f is a function from A to B but is not onto B.
- c. The relation f is a function from A to B and is onto B.

#### Solution.

- a. The choice (1,6) means that  $1 \in A$  is related to two different elements in B, which is not allowed. Moreover  $4 \in A$  is not related to anything. Note that there are many possible other solutions. [In fact, any  $(x,b) \not\in \{(1,5),(2,5),(3,6)\}$  where  $x \in \{1,2,3\}$  and  $b \in B$  will work.]
- b. The choice (4,5) means that  $7 \in B$  is not "hit" by f. Note that (4,6) would work as well.
- c. (4,7).

# Solution to group exercise #2

**Problem.** Let  $f: \mathbb{Z} \to \mathbb{N}$  by f(x) = |x|. (a) Is f one-to-one? (b) Is f onto? Solution.



- a. No. For example, f(1) = f(-1) = 1. Hence, distinct inputs map to the same output.
- b. Yes. Recall that  $\mathbb{N} \triangleq \{0,1,2,3,\ldots\}$ . We can see from the plot that all of  $\mathbb{N}$  is "hit" by f. For a more formal argument, we need to show that for each  $n \in \mathbb{N}$ , there is a  $z \in \mathbb{Z}$  such that f(z) = n. This is easily satisfied by taking z = n (or, for that matter z = -n).

## Solution to group exercise #3

**Problem.** Consider the "shifting" (or translation) function  $f: \mathbb{Z} \to \mathbb{Z}$  given by f(z) = z + k for some fixed  $k \in \mathbb{Z}$ . For instance f(z) = z + 2 shifts all integers two units to the right. (a) Prove that f is a bijection. (b) Express the inverse function  $f^{-1}$  with an explicit formula.

#### Solution.

- a. To show that f is a bijection, we need to show that it is injective and surjective.
  - Injective. By definition, a function f is injective if  $a \neq a'$  implies  $f(a) \neq f(a')$ . We verify this statement by contraposition. That is, we prove the logically equivalent statement that f(a) = f(a') implies a = a'. Now

$$f(a) = f(a') \implies a + k = a' + k \implies a = a'.$$

- Surjective. By definition, a function f is surjective if for any b in the codomain of the function, there is an a in the domain such that f(a) = b. Now note that we can obtain any  $b \in \mathbb{Z}$  as b = f(a) by setting a = b k.
- b. We can define  $f^{-1}$  by the mapping  $f^{-1}(z) = z k$ .

#### Remark: Proof by contraposition

Earlier in the course, we showed that  $A \implies B$  is logically equivalent to (not B)  $\implies$  (not A). (For example, this can be shown by truth tables.) The transformed proposition is called the <u>contrapositive</u>. It may be easier to prove the contrapositive form of the statement, as we did above.

# Solution (Part I) to group exercise #4

**Problem.** Consider the "zigzag" function  $f:\mathbb{N} \to \mathbb{Z}$  given by

$$f(n) = egin{cases} rac{n}{2}, & ext{if } n ext{ is even} \\ -rac{n+1}{2}, & ext{if } n ext{ is odd} \end{cases}$$

This function "zigzags" the integers like this

$$0 \rightarrow 0, 1 \rightarrow -1, 2 \rightarrow 1, 3 \rightarrow -2, \dots$$



Prove that f is a bijection.

**Solution.** To show that f is a bijection, we need to show that it is injective and surjective.

- Injective. As with exercise #3a, to prove that f is injective, we show that f(n) = f(n') implies n = n'. First note that if f(n) = f(n'), then n and n' must have the same parity, or else f(n) and f(n') would have different signs. Now
  - Suppose n and n' are both even. Then

$$f(n) = f(n') \implies \frac{n}{2} = \frac{n'}{2} \implies n = n'.$$

Suppose n and n' are both odd. Then

$$f(n) = f(n') \implies -\frac{n+1}{2} = -\frac{n'+1}{2} \implies n = n'.$$

• Surjective. See next page.

# Solution (Part II) to group exercise #4

**Problem.** Consider the "zigzag" function  $f:\mathbb{N} \to \mathbb{Z}$  given by

$$f(n) = \begin{cases} \frac{n}{2}, & \text{if } n \text{ is even} \\ -\frac{n+1}{2}, & \text{if } n \text{ is odd} \end{cases}$$

This function "zigzags" the integers like this

$$0 \rightarrow 0, 1 \rightarrow -1, 2 \rightarrow 1, 3 \rightarrow -2, \ldots$$



Prove that f is a bijection.

**Solution.** To show that f is a bijection, we need to show that it is injective and surjective.

- Injective. See previous page.
- Surjective. By definition, a function f is surjective if for any  $z \in \mathbb{Z}$ , there is an  $n \in \mathbb{N}$  such that f(n) = z. We proceed by cases. If z = 0, then we take n = 0. If z > 0, then we take n = 2z. If z < 0, then we take n = -2z 1.

#### Remark: The strangeness of infinity

Sets with infinitely many members have some strange properties. If  $f:A\to B$  where A and B are finite, then f being a bijection requires |A|=|B|. Intuitively, each member in A can't have exactly one "buddy" in B unless A and B are the same size. Here, however, we see that f gives a bijection between  $\mathbb N$  and  $\mathbb Z$ , even though  $\mathbb N$  is "smaller" than  $\mathbb Z$  (in the sense that  $\mathbb N \subseteq \mathbb Z$ ).