Experimento com o HPC da GSU

Henrique Becker Brum

Caso Teste

- Versão 2 (Paralelismo no loop de n_probs, 1º loop)
- Population = 150
- N° Trials = 100
- N° Probs = 100

Resultados

Usando HPC da GSU

Pop.	N.	N.
Size	Trials	Probs
150	100	100

N. Threads	Time (seg)	Speedup (seg)
1	260.3	-
2	170.3	1.53
4	120	2.17
6	127	2.05

Intel i7 4-Cores 8-Threads

Pop.	N.	N.
Size	Trials	Probs
150	100	100

N. Threads	Time (seg)	Speedup (seg)
1	209	-
2	148	1.41
4	118	1.77
6	116	1.8

Comparação Entre os Speedups Testes

Gráfico de Speedup

Conclusões

Conclusão

Como pode ser visto pelo gráfico o speedup aumentou em todos as configurações de testes, mas houve duas surpresas.

- 1. O tempo de execução piorou em todos os casos quando foi usado o HPC da GSU comparado ao meu PC.
- 2. Usando o HPC da GSU, o tempo de 6 threads foi pior que o de 4 threads.

Em relação à essas surpresas a primeira possui uma solução trivial, ou não, de ser compreendida já que os processadores do HPC podem ser mais lentos e tempo o tempo de comunicação entre eles e a memória maior.

Mas a segunda surpresa eu fiquei sem entender. Uma possível resposta seja que a minha solução não foi projetada para escalar mais do que certo número de threads, porém para essas tese ter certo embasamento esse resultado deveria ter acontecido com o teste no meu PC, logo a questão fica em aberto.