SKIN CANCER DETECTION

Students: Nadav Toledo, Niv Shifrin, Eyal Shubeli

The Problem

CASES

Skin cancer is one of the most common cancers globally, with millions of new cases diagnosed every year. melanoma stands out as the most dangerous form, capable of being life-threatening if not detected early. more than 350,000 cases of melanoma were detected worldwide last year.

The Problem DEATHS

Rank	Country	Number	ASR/100,000
	World	58,667	0.53
1	US	7,368	1.0
2	China	5,385	0.20
3	Russia	3,928	1.5
4	Germany	3,303	1.4

The Problem

Causes

Melanoma Risk Factors Pyramid

Motivation

EARLY DETECTION IS KEY

SPECIALIST SHORTAGE

IMPORTANT NOTE

Early detection is critical in the fight against melanoma. When caught in its early stages, the survival rate for melanoma exceeds 95%.

There is a significant shortage of dermatology specialists in many regions, resulting in delayed diagnoses and treatment.

Primary care physicians can perform initial screening, but dermatologists are the specialists for comprehensive skin cancer evaluation.

Motivation

Diagnostic Challenge

Who	Diagnostic Method	Sensitivity	Specificity	False Negative Rate	False Positive Rate	Accuracy
Dermatologists	Clinical exam & images	~76.9%	~89.1%	~23.1%	~10.9%	~89.1%
Dermatologists	Dermoscopy & images	~85.7%	~81.3%	~14.3%	~18.7%	~81.3%
Primary Care Physicians	Clinical exam & images	~37.5%	~84.6%	~62.5%	~15.4%	~84.6%
Primary Care Physicians	Dermoscopy & images	~49.5%	~91.3%	~50.5%	~8.7%	~91.3%

Motivation

Diagnostic Delays

• FROM INASIVE TO METASTIC - WITHIN MONTHES IF NOT DETECTED

Journey to Skin Cancer Diagnosis

2024-2025 Major Breakthroughs

DERMASENSOR

First FDA-authorized AI device for primary care skin cancer detection (Jan 2024)

FRAUNHOFER INSTITUTE

Full-body scanner with 6-minute automated assessment (2025)

The International Skin Imaging

Collaboration

© PRIMARY MISSION

REDUCE MELANOMA-RELATED DEATHS AND UNNECESSARY BIOPSIES BY IMPROVING THE ACCURACY AND EFFICIENCY OF EARLY MELANOMA DETECTION THROUGH AI-ENHANCED DIGITAL IMAGING.

- SUPPORT EARLY DIAGNOSIS WHEN MELANOMA IS MOST TREATABLE
- MINIMIZE UNNECESSARY BIOPSIES (E.G., 500,000+ PEDIATRIC BIOPSIES ANNUALLY FOR ~400 MELANOMAS)
- ADDRESS DIAGNOSTIC CHALLENGES IN TELEDERMATOLOGY

GLOBAL COLLABORATION

ISIC IS A GLOBAL INITIATIVE TO IMPROVE MELANOMA DIAGNOSIS.

DATA SHARING

THEY PROVIDE A LARGE
DATASET OF
DERMOSCOPIC IMAGES
FOR RESEARCH.

INNOVATION

ENCOURAGES
DEVELOPMENT OF AI
ALGORITHMS FOR
DETECTION. 10

Project Workflow

Data ISIC - Dataset

TILES

The location of each lesion on the patient is detected automatically and exported as individual 15x15 mm field-of-view cropped images.

DERMOSCOPY

Dermoscopy refers to the examination of the skin using skin surface microscopy. Dermoscopy requires a high-quality magnifying lens and a powerful lighting system, which illuminate morphologic features not otherwise visible to the naked eye.

Data

ISIC - Metadata

DERMOSCOPIC AND 3D IMAGES

These images provide detailed visual information for analysis.

METADATA

Additional data points that accompany the images, such as patient age, gender, and lesion location.

Data Preparation

DATA SPLITTING:

THE DATA WAS DIVIDED INTO TRAINING, VALIDATION, AND TEST SETS WHILE PRESERVING THE ORIGINAL CLASS DISTRIBUTION.

STRUCTURED DATA PREPROCESSING:

A PIPELINE WAS BUILT TO HANDLE MISSING VALUES, NORMALIZE NUMERICAL FEATURES, AND HANDLE CATEGORICAL VALUES.

IMAGE PROCESSING:

ALL IMAGES WERE STANDARDIZED TO A UNIFORM SIZE AND THEIR PIXEL VALUES WERE NORMALIZED.

Building a Comparative Baseline

To rigorously evaluate our main model, a comparative methodology was adopted. Three distinct baseline models were developed to establish performance benchmarks and isolate the contribution of each data modality.

Main Model Architecture

Learning from Combined Features

By combining visual features with structured data, the model learns complex patterns that are not apparent from a single data type. This integrated structure allows the training error to propagate back to both branches, enabling each one to learn and adapt in the context of the complete data picture.

Advanced Training Strategy

Class Weights

To address the severe data imbalance and improve detection of cancer cases, weights were added to the loss calculation to focus learning on the rare class.

Dropout

The use of high class weights can increase the risk of overfitting. Therefore, Dropout rates of 0.3-0.5 were used to mitigate this.

Early Stopping

Prevents overfitting by stopping training when validation AUC no longer improves, restoring the best model.

Threshold Optimization

Optimizes the final decision boundary post-training to maximize Balanced Accuracy.

Results

Model	AUC (ROC)	Balanced Accuracy	Accuracy	Recall (Class 1)
Baseline 1: Structured Only (XGB)	0.9294	0.6806	0.9892	0.3671
Baseline 2: Image Only (CNN)	0.8071	0.7324	0.8178	0.6456
Baseline 3: Combined Feat. (XGBoost)	0.935	0.6314	0.9912	0.2658
Main: Multimodal (Deep)	0.8516	0.7935	0.8394	0.7468

AUC vs Balanced Accuracy & recall

HIGHEST AUC MODELS

HIGHEST RECALL & BALANCED ACCURACY MODELS

Error Analysis

BASELINE 3: COMBINED FEATURES (XGBOOST)

MAIN MULTIMODAL MODEL

Conclusions & Key Findings

- The Multimodal Deep Learning model achieved the best balanced performance, making it the most suitable for the clinical task.
- Metrics like AUC can be misleading in cases of extreme imbalance; a holistic view including Balanced Accuracy and Recall is essential.
- The project successfully developed a strong Proof-of-Concept model, demonstrating that synergistic information is captured from combining images and structured data.

THANK YOU