Les grandeurs physiques liées à la quantité de matière

Exercice 1:

1. Calculer les masses molaires moléculaires des molécules suivantes :

$$CO_2$$
 - $NaCl$ - H_2SO_4 - H_2 - SO_2 - $Al_2(SO_4)_3$ - N_2O_4 - Na_2SO_4 - $Pb[NO_3]_2$

- 2. Déterminer la quantité de matière contenue dans un échantillon de fer (Fe) de masse 11, 2g.
- 3. Déterminer la quantité de matière que renferme 11, 2L de gaz CO_2 .
- 4. Déterminer la quantité de matière contenue dans 0, 1kg de chlorure de sodium (NaCl).
- 5. Déterminer la quantité de matière contenue dans un échantillon de nitrate de plomb $(Pb(NO_3)_2)$ de masse 9,93q.
- 6. Déterminer la masse de 0,6 mole d'acide sulfurique (H_2SO_4) .
- 7. Déterminer le volume de 3, 2 moles de gaz dihydrogène (H_2) .
- 8. Déterminer le volume molaire du mercure sachant que $100cm^3$ de ce liquide possèdent une masse de 1,36kg.

Exercice 2:

- 1. La molécule du butane se compose de 4 atomes de carbone (C) et de 10 atomes d'hydrogène (H).
 - (a) Donner la formule de cette molécule.
 - (b) Le butane est-il un corps pur composé ou simple? Justifier la réponse.
- 2. La masse d'un atome de carbone est $m_C = 1,99.10^{-23}g$ et la masse d'un atome d'hydrogène est $m_H = 1,67.10^{-24}g$.
 - (a) Calculer la masse d'une molécule de butane.
 - (b) Déterminer la masse de 4 moles de molécules de butane.
 - (c) Déterminer le nombre de moles de molécules de butane contenues dans un échantillon de masse 100 g.

Exercice 3:

Un pneu de voiture est gonflé à la température de 20,0°C sous la pression de 2,10 bar. Son volume intérieur, supposé constant, est de 30 L.

- 1. Quel quantité d'air contient-il?
- 2. Après avoir roulé un certain temps, une vérification de la pression est effectuée: la pression est alors de 2,30 bar. Quelle est alors la température de l'air enfermé dans le pneu ? Exprimer le résultat dans l'échelle de température usuelle.
- 3. Les valeurs de pression conseillées par les constructeurs pour un gonflage avec de l'air sont-elles différentes pour un gonflage à l'azote ?

Données: constante du gaz parfait, R= 8,314 SI

Exercice 4:

- 1. L'alcool utilisé comme antiseptique local peut être considéré comme de l'éthanol C_2H_6O pur de masse molaire M=46,0g/mol et de masse volumique $\rho=0,780g/ml$. Quelle quantité d'éthanol contient un flacon d'alcool pharmaceutique de volume V=250ml.
- 2. L'éther éthylique de formule $C_4H_{10}O$ était jadis utilisé comme anesthésique. Sa masse molaire vaut M=74,0g/mol et sa densité est égale à d=0,710. On souhaite disposer d'une quantité n=0,200mol. Quel volume faut-il prélever ?

Donnée : masse volumique de l'eau : $\rho_{eau} = 1,00g/ml$

Exercices Supplémentaires

Exercice 4:

Le vinaigre contient de l'acide éthanoïque de formule CH_3CO_2H . On réalise la réaction entre l'hydrogénocarbonate de sodium et un vinaigre de 6°. Il se forme du dioxyde de carbone et de l'eau.

- 1. Déterminer la concentration molaire en acide éthanoïque de ce vinaigre.
- 2. Écrire l'équation de la réaction.
- 3. On utilise un volume V=14mL de vinaigre. Sachant que l'acide éthanoïque est le réactif limitant, déterminer le volume de dioxyde de carbone formé dans les condition normales de température et de pression.

Donnée : Un vinaigre de x degrés contient x% en masse d'acide éthanoïque et sa densité est égale à 1.

Exercice 5:

Un flacon de déboucheur pour évier porte les indications suivantes :

Produit corrosif. Contient de l'hydroxyde de sodium (soude caustique). Solution à 20%.

Le pourcentage indiqué représente le pourcentage massique d'hydroxyde de sodium (NaOH) contenu dans le produit. La densité du produit est d=1,2.

- 1. Calculer la masse d'hydroxyde de sodium contenu dans 500 mL de produit.
- 2. En déduire la concentration Co en soluté hydroxyde de sodium de la solution commerciale.
- 3. On désire préparer un volume V1 de solution S1 de déboucheur 20 fois moins concentré que la solution commerciale.
- 3.1. Quelle est la valeur de la concentration C1 de la solution?
- 3.2. Quelle est la quantité de matière d'hydroxyde de sodium contenu dans 250 mL de solution S1?
- 3.3. Quel volume de solution commerciale a-t-il fallu prélever pour avoir cette quantité de matière d'hydroxyde de sodium ?

Exercice 6

Á température $t = 20 \circ C$ et sous une pression $P = 1,01310^5 Pa$ un hydrocarbure gazeux de formule $C_n H_{2n+2}$ a une densité par rapport à l'air d = 2,00

- 1. Calculer le volume molaire des gaz dans les conditions étudiées.
- 2. Déterminer la masse molaire de l'hydrocarbure.
- 3. En déduire sa formule brute . La masse volumique de l'air dans les conditions de l'étude $\rho air=1,21g/l$