Estimadores de máxima verosimilitud Clase del 12/11/2024

Contenidos

- Definición
- 2 Binomial
- Poisson
- 4 Exponencial
- Mormal
- 6 Uniforme
- Una distribución cualquiera

Introducción

Por regla general nos enfrentaremos a problemas donde se quiere averiguar la característica de una determinada población contando con información acerca de una muestra de esa población. Este proceso es lo que se conoce como inferencia.

Inferir

La R.A.E. lo define como: Deducir algo o sacarlo como conclusión de otra cosa.

Definición

Definición

Los estimadores de máxima verosimilitud (MLE, *maximum likelihood estimator*) son métodos para estimar los parámetros de una distribución probabilística que maximizan la probabilidad de observar los datos dados.

Nos enfrentaremos a situaciones en las que

- Se tiene una m.a.s. $\{x_1, x_2, ..., x_n\}$ de una v.a.X. (Observaciones)
- Dicha variable aleatoria X tendrá una función de probabilidad o de densidad de probabilidad que dependerá de determinado/s parámetro/s.
- Se planteará el objetivo de obtener una estimación (o inferencia) para dicho/s parámetro/s.

Estimador insesgado

Así se define a aquel estimador cuyo valor esperado es el del propio parámetro.

$$\mathbb{E}[\hat{\theta}] = \theta$$

Distribución Binomial

• Función de masa de probabilidad (fmp):

$$f(k; n, p) = \binom{n}{k} p^k (1-p)^{n-k}$$

- Parámetro a estimar: Probabilidad de éxito p
- MLE de *p*:

$$\hat{p} = \frac{k}{n}$$

donde k es el número de éxitos observados y n es el número total de ensayos.

Distribución Binomial

- También podríamos tener una muestra de K variables aleatorias binomiales $X_i \sim B(n_i, p)$ i = 1, 2, ..., K. La muestra se representaría como: $\{x_1, x_2, ... x_k\}$
- MLE de p:

$$\hat{p} = \frac{\sum_{i=1}^{K} x_i}{\sum_{i=1}^{K} n_i}$$

Distribución de Poisson

Función de masa de probabilidad (fmp):

$$f(k;\lambda) = \frac{\lambda^k e^{-\lambda}}{k!}$$

- Parámetro a estimar: Tasa de eventos λ
- MLE de λ:

$$\hat{\lambda} = \frac{\sum_{i=1}^{n} k_i}{n}$$

donde k_i es el número de eventos en la i-ésima observación y nes el número total de observaciones.

Distribución Exponencial

• Función de densidad de probabilidad (fdp):

$$f(x; \lambda) = \lambda e^{-\lambda x}$$
 para $x \ge 0$

- Parámetro a estimar: Tasa λ
- MLE de λ :

$$\hat{\lambda} = \frac{1}{\bar{x}}$$

donde \bar{x} es el promedio de los datos observados.

Distribución Normal

• Función de densidad de probabilidad (fdp):

$$f(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- Parámetros a estimar: Media μ y varianza σ^2
- MLE de μ :

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

• MLE de σ^2 :

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \hat{\mu})^2$$

Distribución Uniforme U(0, b)

• Función de densidad de probabilidad (fdp):

$$f(x;b) = \frac{1}{b}$$
 para $0 \le x \le b$

- Parámetro a estimar: Límite superior b
- MLE de b:

$$\hat{b} = \text{máx}(x_1, x_2, \dots, x_n)$$

Se puede demostrar que no es un estimador insesgado pues

$$\mathbb{E}[\hat{b}] = \frac{n}{n+1} \cdot b$$

Estimador insesgado de mínima varianza

Existencia de varios estimadores insesgados

En ocasiones podría resultar que tenemos dos estimadores insesgados. En esa ocasión podría ser interesante considerar aquel que tenga mínima varianza. Lo denominaríamos **Estimador** insesgado de mínima varianza

Distribución Uniforme U(0, b)

- El estimador $\mathbb{E}[\hat{b}] = \frac{n}{n+1} \cdot b$ sí es insesgado
- $\hat{b_2} = 2\overline{X}$ también es un estimador insesgado. Pero este es el que tiene la varianza menor.

Estimador Insesgado de la Media

Para una distribución cualquiera, los estimadores insesgados de la media y la varianza se obtienen basándose en una muestra de datos. Dada una muestra X_1, X_2, \ldots, X_n de una variable aleatoria con media poblacional μ , el estimador insesgado de la media es simplemente el promedio muestral:

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Este estimador es insesgado porque su esperanza matemática es igual a la media poblacional, es decir, $\mathbb{E}[\hat{\mu}] = \mu$.

Estimador Insesgado de la Varianza

Dada una muestra X_1, X_2, \dots, X_n de una variable aleatoria con varianza poblacional σ^2 , el estimador insesgado de la varianza es:

$$\hat{\sigma}^2 = S_{n-1} = \frac{1}{n-1} \sum_{i=1}^n (X_i - \hat{\mu})^2$$

donde $\hat{\mu}$ es el promedio muestral. Este estimador es insesgado porque su esperanza matemática es igual a la varianza poblacional, es decir, $\mathbb{E}[\hat{\sigma}^2] = \sigma^2$.

Este ajuste de $\frac{1}{n-1}$ en lugar de $\frac{1}{n}$ es necesario para compensar el sesgo que se introduce al utilizar la media muestral $\hat{\mu}$ en lugar de la media poblacional μ en el cálculo de la varianza.