13158

Architecture des ordinateurs - EPITA - S1 - 2017/2018

Partiel S1 Architecture des ordinateurs

Durée: 1 h 30

Nom:	Prénom :	Groupe	
Nom:	Prenom:	Groupe	·

Répondre exclusivement sur le sujet. Ne pas détailler les calculs sauf si cela est explicitement demandé. Ne pas écrire à l'encre rouge.

Exercice 1 (2 points)

Convertissez les nombres suivants de la forme de départ vers la forme d'arrivée. Ne pas écrire le résultat sous forme de fraction ou de puissance (p. ex. écrire 0,25 et non pas ¼ ou 2 ²).

Nombre à convertir	Forme de départ	Forme d'arrivée	Résultat
11011001,0011	Binaire	Décimale	
BC,3	Hexadécimale	Décimale	
18	Décimale	Base 5	
1111000111,11011 Binaire		Hexadécimale	

Exercice 2 (5 points)

Effectuez les opérations suivantes en binaire (les deux opérandes et le résultat sont codés sur 8 bits). Convertissez le résultat en une valeur décimale non signée et signée. Si un dépassement apparaît, écrire « ERREUR » à la place de la valeur décimale.

Opération	Résultat binaire	Valeur décimale			
Operation	Resultat Dinaire	Non signée	Signée		
01100010 - 10011010					
11111111 + 111111111					
01111111 + 00000001					
10010010 - 10000101					
1111)111 - 1111]111					

Partiel S1

Exercice 3 (6 points)

On souhaite réaliser un circuit qui multiplie par 4 un nombre N (= DCBA) écrit en code BCD sur un seul chiffre. Le résultat doit être obtenu directement en code BCD et donc sur 2 chiffres (H'G'F'E' pour le chiffre des dizaines et D'C'B'A' pour celui des unités, le poids fort étant toujours à gauche). Complétez la table de vérité et les tableaux de Karnaugh ci-dessous (<u>les bulles doivent être clairement repérées</u>). Puis donnez les expressions les plus simplifiées de chaque sortie (<u>pas de simplification à l'aide de OU EXCLUSIF</u>). Trois solutions sont évidentes et ne nécessitent pas de tableaux de Karnaugh. Une solution évidente ne comporte aucune opération logique hormis la complémentation (par ex. A' = I, $A' = \overline{A}$).

					Dizaines		Unités					
N	D	С	В	A	H'	G'	F'	E'	D'	C'	B'	A'
0	0	0	0	0						:		
1	0	0	0	1								
2	0	0	1	0								
3	0	0	1	1								
4	0	1	0	0								
5	0	1	0	1								
6	0	1	1	0								
7	0	1	1	1								
8	1	0	0	0								
9	1	0	0	1						-		

Solutions évidentes					
H'	G'	A'			

F' =

D' =

D' 00 01 11 10
00 01 11 10
10 10 11 10

		BA					
	C,	00	01	11	10		
	00						
DC	01						
	11						
	10						

 $\mathbf{E}' = \mathbf{B}' =$

C' =

Pour finir, simplifiez une des sorties à l'aide de l'opérateur OU EXCLUSIF :

Exercice 4 (4 points)

Soit les deux expressions suivantes :

$$S1 = Y.(X + \tilde{Z}) + (X + Z).(X + Z)$$

$$S2 = (\overline{Y} + Z).(\overline{X} + \overline{Z}).(\overline{X} + Y + Z)$$

1. Donnez les expressions les plus simplifiées de S1 et de S2. Le résultat devra être sous la forme d'une somme de produits.

S1 =

S2 =

2. Donnez la première forme canonique de SI (à partir de la forme la plus simplifiée).

S1 =

3. Donnez la seconde forme canonique de S2.

S2 =

Exercice 5 (3 points)

Soit le nombre suivant : 2²²

1. Combien faut-il de bits au minimum pour le représenter en binaire non signé ?

2. Combien faut-il de bits au minimum pour le représenter en binaire signé ?

Soit le nombre suivant : -222

3. Combien faut-il de bits au minimum pour le représenter en binaire signé ?