Оглавление

	0.1	Угол между прямыми	1	
	0.2		2	
	0.3			
		других	3	
1	Пло	оскости в пространстве	4	
	1.1	Уравнение плоскости	4	
	1.2	Угол между плоскостями	5	
	1.3	Плоскость через прямую пересечения двух плоскостей	6	
	1.4	Плоскость через точку пересечения трех плоскостей	6	
2	Пря	ямая в пространстве	7	
	2.1	Уравнение прямой	7	
		ия 7: Прямые на плоскости. Плоскости в простран	[-	
['ن	ве			06.11.2023

0.1 Угол между прямыми

Определение 1 (Угол между прямыми). Даны прямые
$$l_1, l_2$$
:
$$l_1: a_1x+b_1y+c_1=0$$

$$l_2: a_2x+b_2y+c_2=0$$

$$\angle(l_1,l_2)=\angle(\mathbf{n}_1,\mathbf{n}_2)$$

$$\cos\angle(l_1,l_2)=\frac{a_1a_2+b_1b_2}{\sqrt{a_1^2+b_1^2}+\sqrt{a_2^2+b_2^2}}$$

$$l_1\perp l_2\Leftrightarrow a_1a_2+b_1b_2=0$$

$$l_1\parallel l_2\Leftrightarrow \frac{a_1}{a_2}=\frac{b_1}{b_2}$$

Определение 2. (другое определение)

$$l_1: \frac{x - x_0}{v_1} = \frac{y - y_0}{v_2} \qquad l_2: \frac{x - x_1}{w_1} = \frac{y - y_1}{w_2}$$

$$\mathbf{v} = (v_1, v_2) \qquad \mathbf{w} = (w_1, w_2)$$

$$\cos \angle (l_1, l_2) = \frac{v_1 w_1 + v_2 w_2}{\sqrt{v_1^2 + v_2^2} \sqrt{w_1^2 + w_2^2}}$$

$$l_1 \perp l_2 \Leftrightarrow v_1 w_1 + v_2 w_2 = 0$$

$$l_1 \parallel l_2 \Leftrightarrow \frac{v_1}{w_1} = \frac{v_2}{w_2}$$

0.2 Уравнение нормали

Определение 3. $(a,b) = \mathbf{n}$ называется вектором нормали к прямой

$$ax+by+c=0 \qquad |: \sqrt{a^2+b^2}$$
 $a'x+b'y+c'=0$ — Нормальное уравнение прямой $a'^2+b'^2=1 \qquad a'=rac{a}{\sqrt{a^2+b^2}} \qquad b'=rac{b}{\sqrt{a^2+b^2}}$ (a',b') — единичный вектор

 $|c'|=|rac{c}{\sqrt{a^2+b^2}}|$ — расстояние от начала координат до прямой. (?) (a',b') называют направляющими косинусами, т.к.

$$|\mathbf{n}| = 1$$
 $a'^2 + b'^2 = 1$
 $a' = \cos \alpha$
 $b' = \sin \alpha = \cos \beta$

Теорема 1. Насстояние от точки (x_1, y_1) до прямой ax + by + c = 0 – это

$$d = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$$

Доказательство. $M + \lambda \mathbf{n} \in l$ – прямая \mathbf{n} – нормаль $(\mathbf{a}, \, \mathbf{b})$

0.3 Уравнение прямой, проходящей через точку пересечения двух других

Определение 4. Есть 2 прямые: $l_1:a_1x+b_1y+c_1=0$ и $l_2:a_2x+b_2y+c_2=0$ и точка M – точка пересечения. Тогда $\exists \lambda_1,\lambda_2:$

 $l_3: \lambda_1(a_1x+b_1y+c_1)+\lambda_2(a_2x+b_2y+c_2)=0$ прямая, проходящая через М

Эта прямая проходит через M, т.к. при подстановке координат M в уравнение, первое и второе слагаемые обращаются в 0.

Оглавление

Глава 1

Плоскости в пространстве

1.1 Уравнение плоскости

 $\dim V = 3$

Определение 5 (Плоскость по 3 точкам). Пусть $e_1,e_2,e_3\in E,$ $\mathbf{v}_1=\overrightarrow{e_1e_2};\mathbf{v}_2=\overrightarrow{e_1e_3}$ Плоскость – множество точек $\{e_1+\alpha\mathbf{v}_1+\beta\mathbf{v}_2:\alpha,\beta\in\mathbb{R}\}$

Определение 6. Плоскость – множество решений линейного уравнения:

$$Ax + By + Cz + D = 0$$

Теорема 2. Определение 1 равносильно определению 2.

Теорема 3. $(A, B, C) = \mathbf{n} \perp$ плоскости

Доказательство.

$$e_1 = (x_0, y_0, z_0)$$

 $\mathbf{n} \perp \mathbf{v}_1$ $\mathbf{n} \perp \mathbf{v}_2$ $\mathbf{n} = \mathbf{v}_1 \times \mathbf{v}_2$ $\mathbf{n} = (A, B, C)$

D такое число, что

$$Ax_{0} + By_{0} + Cz_{0} + D = 0 (D = -Ax_{0} - By_{0} - Cz_{0})$$

$$- \frac{Ax + By + Cz + D = 0}{Ax_{0} + By_{0} + Cz_{0} + D = 0}$$

$$\overline{A(x - x_{0}) + B(y - y_{0}) + C(z - z_{0}) = 0}$$

$$(A; B; C) \cdot (x - x_{0}, y - y_{0}, z - z_{0}) = 0$$

$$(x - x_{0}, y - y_{0}, z - z_{0}) = \alpha \mathbf{v}_{1} + \beta \mathbf{v}_{2}$$

$$(x, y, z) = e_{1} + \alpha \mathbf{v}_{1} + \beta \mathbf{v}_{2}$$

Определение 7 (Нормальное уравнение плоскости).

$$Ax + By + Cz + D = 0$$
 $|: \sqrt{A^2 + B^2 + C^2} \neq 0$
 $A'x + B'y + C'z + D' = 0$
 $A'^2 + B'^2 + C'^2 = 1$

A', B', C' – направляющие косинусы

Теорема 4. (доказательство аналогично прямой на плоскости) Пусть Ax+By+Cz+D=0 – плоскость, а (x_0,y_0,z_0) – точка, тогда расстояние от точки до плоскости:

$$d = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$$

Определение 8 (Уравнение плоскости в отрезках).

$$\frac{x}{p} + \frac{y}{q} + \frac{z}{r} = 1$$

p,q,r – отрезки высекаемые плоскостью на OX,OY,OZ

1.2 Угол между плоскостями

Определение 9 (Угол между плоскостями).

$$A_1x + B_1y + C_1z + D_1 = 0 = \alpha_1$$

$$A_2x + B_2y + C_2z + D_2 = 0 = \alpha_2$$

$$\cos \angle(\alpha_1, \alpha_2) = \frac{A_1A_2 + B_1B_2 + C_1C_2}{\sqrt{A_1^2 + B_1^2 + C_1^2}\sqrt{A_2^2 + B_2^2 + C_2^2}}$$

$$\alpha_1 \perp \alpha_2 : A_1A_2 + B_1B_2 + C_1C_2 = 0$$

$$\alpha_1 \parallel \alpha_2 : \frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}$$

1.3 Плоскость через прямую пересечения двух плоскостей

Определение 10. $\alpha_1:A_1x+B_1y+C_1z+D_1=0$ $\alpha_2:A_2x+B_2y+C_2z+D_2=0$ $\alpha_3:\lambda_1(A_1x+B_1y+C_1z+D_1)+\lambda_2(A_2x+B_2y+C_2z+D_2)=0$

1.4 Плоскость через точку пересечения трех плоскостей

```
Определение 11. \alpha_1:A_1x+B_1y+C_1z+D_1=0 \alpha_2:A_2x+B_2y+C_2z+D_2=0 \alpha_3:A_3x+B_3y+C_3z+D_3=0 \alpha_4:\lambda_1(A_1x+\ldots+D_1)+\lambda_2(A_2x+\ldots+D_2)+\lambda_3(A_3x+\ldots+D_3)=0
```

Глава 2

Прямая в пространстве

2.1 Уравнение прямой

Определение 12. Прямая – пересечение двух не параллельных плоскостей.

Определение 13 (Каноническое уравнение прямой в пространстве). Если есть (x_0,y_0,z_0) и (x_1,y_1,z_1) , то прямая через эти точки задается уравнением:

$$\frac{x - x_0}{x_1 - x_0} = \frac{y - y_0}{y_1 - y_0} = \frac{z - z_0}{z_1 - z_0}$$

Определение 14 (Каноническое уравнение прямой в пространстве). Если есть 2 уравнения плоскости, то прямая задается как

$$\begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}$$

$$\mathbf{n}_1 = (A_1, B_1, C_1) \qquad \mathbf{n}_2 = (A_2, B_2, C_2)$$

$$\mathbf{v} \perp \mathbf{n}_1 \qquad \mathbf{v} \perp \mathbf{n}_2 \qquad \mathbf{v} = \mathbf{n}_1 \times \mathbf{n}_2$$

$$\mathbf{v} = (v_1, v_2, v_3)$$

$$\frac{x - x_0}{v_1} = \frac{y - y_0}{v_2} = \frac{z - z_0}{v_3}$$

Определение 15. $\mathbf{v} = (v_1, v_2, v_3)$ – направляющий вектор

Определение 16 (Параметрическое уравнение прямой в пространстве).

$$\frac{x - x_0}{v_1} = \frac{y - y_0}{v_2} = \frac{z - z_0}{v_3} = t \Leftrightarrow \begin{cases} x = x_0 + v_1 t \\ y = y_0 + v_2 t \\ z = z_0 + v_3 t \end{cases}$$

Теорема 5. Любая прямая – прямая пересечения двух непараллельных плоскостей, и наоборот.

Доказательство.

⇒: каноническое уравнение:

$$\left\{ egin{array}{l} rac{x-x_0}{v_1} = rac{y-y_0}{v_2} - ext{плоскость} \ rac{y-y_0}{v_2} = rac{z-z_0}{v_3} - ext{плоскость} \end{array}
ight.$$

 \Leftarrow : пусть есть 2 плоскости:

$$\begin{cases} A_1 x + B_1 y + C_1 z + D_1 = 0 \\ A_2 x + B_2 y + C_2 z + D_2 = 0 \end{cases} \Rightarrow \begin{cases} x = x_0 + v_1 z \\ y = y_0 + v_2 z \end{cases} \Rightarrow \frac{x - x_0}{v_1} = \frac{y - y_0}{v_2} = \frac{z - z_0}{v_3}$$