# 分类与回归

#### 崔雨豪

摘 要分类与回归是机器学习中的基本问题。本文共做了三个实验: 1.房价的回归问题。利用线性回归算法对房价进行预测。2.Mnist 分类。利用多项式回归进行分类。3.乳腺癌检测。利用感知机对乳腺癌数据进行分类,讨论过拟合问题,解决方案利用 L2 或 PCA 方法。 关键词 感知机; 回归; 分类; 机器学习

## **Image Classification Based On KNN**

**Abstract** Classification and regression are fundamental issues in machine learning. This paper has done three experiments: 1. The return of housing prices. The house price is predicted using a linear regression algorithm. 2. Mnist classification. Classification is performed using polynomial regression. 3. Breast cancer testing. The breast cancer data was classified using a perceptron and the fitting problem was discussed, use L2 Regularization or PCA to solve the problem.

Key words Perceptron; Regression; Classification; Machine Learning

# 1 引言

分类和回归是机器学习的基本问题,都是对现有的数据分布进行拟合。分类一般是对伯努利分布或是多项式分布进行拟合,而回归则是对高斯分布进行拟合。 感知机模型是神经网络的基础模型,利用仿射函数来提高模型容量,利用激活函数来增加非线性能力。

## 2 本文算法

#### 2.1 感知机

感知机算法可以描述为一个三层的线性模型:输入层,隐含层,输出层。隐含层作为特征提取层,对高维数据可以进行降维,对低维数据可以进行充分学习。

$$:t = f(\sum_{i=1}^{n} w_i x_i + b) = f(\mathbf{w}^T \mathbf{x})$$
(2.1)

#### 2.2 正则化

正则化是防止过拟合或加大稀疏度的有效手段分为 L1 正则化和 L2 正则化。 L1 正则化:

$$C = C_0 + \frac{\lambda}{n} \sum_{w} |w|. \tag{2.2}$$

L1 更新规则:

$$w \to w' = w - \frac{\eta \lambda}{n} \operatorname{sgn}(w) - \eta \frac{\partial C_0}{\partial w},$$
 (2.3)

L2 正则化:

$$C = C_0 + \frac{\lambda}{2n} \sum_{w} w^2, \tag{2.4}$$

L2 更新规则:

$$w \to w - \eta \frac{\partial C_0}{\partial w} - \frac{\eta \lambda}{n} w$$

$$= \left(1 - \frac{\eta \lambda}{n}\right) w - \eta \frac{\partial C_0}{\partial w}.$$
(2.5)

## 3 实验

实验环境: Ubuntu16.04+Python3.6.5

#### 3.1 Price Prediction

## 3.1.1 loss 下降曲线



## 3.2 Softmax Regression On Mnist

3.2.1 对比试验变量

变量 1: Hidden层Activation Function: Sigmoid, Leaky Relu

变量 2: Learning Rate: 0.01, 0.001, 0.0001

变量 3: Hidden层隐含节点数量: 512, 128, 32

变量 4: Batch Size: 10, 50, 100

3.2.2 Activation Function

不变量: Batch Size=50, Hidden层=512, Weight Initialization=0均值1方差高斯分布/100.

Learning Rate=0.001, Iteration=10000



图 3.1 Sigmoid结果



图 3.2 LRelu结果

| Method  | ACC    | Train Loss | Validation Loss |
|---------|--------|------------|-----------------|
| Sigmoid | 0.9189 | 14.15      | 13.83           |
| LRelu   | 0.9486 | 7.88       | 8.98            |

LRelu由于本身梯度较大在 10000 次迭代中收敛速度远高于Sigmoid

## 3.2.3 Batch Size

不变量: Activation Function =Sigmoid, Hidden层=512, Weight Initialization=0 均值 1 方差高斯分布/100. Learning Rate=0.001, Iteration=10000



图 3.3 Batch Size=10 结果



图 3.4 Batch Size=100 结果

Loss由于批次不同, Loss和不同, 只看ACC曲线, 明显 100 比 10 更加平滑, 收敛更快。

| Batch Size | ACC   |
|------------|-------|
| 10         | 0.905 |
| 50         | 0.918 |
| 100        | 0.933 |

# 3.2.4 Hidden层隐含节点数量

不变量: Batch Size=50, Activation Function = Sigmoid, Weight Initialization=0 均值 1 方差高斯分布/100.Learning Rate=0.001, Iteration=10000



图 3.5 Hidden层=128 结果



图 3.6 Hidden层=32 结果

| Hidden | ACC    | Train Loss | Validation Loss |
|--------|--------|------------|-----------------|
| 32     | 0.9283 | 15.14      | 12.15           |
| 128    | 0.9296 | 25.73      | 11.89           |
| 512    | 0.9189 | 14.15      | 13.83           |

Hidden层并不是越多越好,越多TrainLoss可以下降很低但是在Validation上并不能有很好的效果,反而是 128 时虽然TrainLoss很大但是Validation上结果很不错

## 3.2.5 Learning Rate

不变量: Batch Size=50, Activation Function =Sigmoid, Weight Initialization=0 均值 1 方差高斯分布/100.Hidden Size=512, Iteration=10000



图 3.7 lr=0.01 结果



图 3.8 lr=0.0001 结果

从图中可以看出学习率小时训练曲线非常平滑,大时会波动甚至无法训练

| Lr     | ACC    | Train Loss | Validation Loss |
|--------|--------|------------|-----------------|
| 0.01   | 0.1028 | 678.65     | 726.76          |
| 0.001  | 0.9189 | 14.15      | 13.83           |
| 0.0001 | 0.8633 | 40.01      | 26.77           |

学习率在适中时才有更快的收敛

## 3.3 Softmax Regression On Breast Cancer

# 3.3.1 实验结果



图 3.9 随机试验结果 1



图 3.10 随机试验结果 2

两次具有代表性的随机试验,1完全过拟合,可以发现虽然TrainLoss在下降但是ValidationLoss已经在上升且ACC突然变低。2 虽然ValidationLoss在后续趋势在上升,但是总体ACC一直在变大即虽然过拟合但并没有陷入局部最小值

| Result | ACC  | Train Loss | Validation Loss |
|--------|------|------------|-----------------|
| 1      | 0.84 | 22.58      | 49.81           |
| 2      | 0.95 | 22.56      | 28.43           |

# 3.3.2 L2 正则化



图 3.11 比例为 0.0001



图 3.12 比例为 0.00001



图 3.13 比例为 0.0000001

| Ratio     | ACC   | Train Loss | Validation Loss |
|-----------|-------|------------|-----------------|
| 0.0001    | 0.923 | 26.05      | 37.23           |
| 0.00001   | 0.952 | 22.72      | 28.85           |
| 0.0000001 | 0.846 | 22.69      | 50.14           |

当Ratio大时难以训练,当Ratio小时正则化不起作用,只有设置合适才能有较好的效果。

## 3.3.3 PCA



图 3.14 PCA取前 2 维



图 3.15 PCA取前 5 维



图 3.16 PCA取前 10 维



图 3.17 PCA取前 15 维

| PCA | ACC   | Train Loss | Validation Loss |
|-----|-------|------------|-----------------|
| 2   | 0.905 | 27.27      | 37.45           |
| 5   | 0.89  | 22.25      | 39.96           |
| 10  | 0.93  | 21.88      | 29.99           |
| 15  | 0.84  | 21.88      | 48.44           |

PCA在取前 15 的时候,已经过拟合了,当取 10 效果比较好,2,5 时特征丢失过多,效果不明显。