AN INTRODUCTION TO ABSTRACT INTERPRETATION

P. Cousor

Patrick.Cousot@ens.fr http://www.di.ens.fr/~cousot

Biarritz IFIP-WG 2.4 meeting (1)

23 — 28 mars 2003, Hotel Miramar, Biarritz, France

© P. Cousot, all rights reserved

3. Application to Static Analysis

3.5 FIXPOINT APPROXIMATION WITH CONVERGENCE ACCELERATION BY WIDENING/NARROWING

P. Cousot, R. Cousot: Comparing the Galois Connection and Widening/Narrowing Approaches to Abstract Interpretation. PLILP, LNCS 631, 1992: 269-295, Springer.

WIDENING OPERATOR

A widening operator $\nabla \in \overline{L} \times \overline{L} \longmapsto \overline{L}$ is such that:

• Correctness:

- $orall x,y\in \overline{L}: \gamma(x) \;\sqsubseteq\; \gamma(x \;\overline{\bigvee}\; y)$

• Convergence:

- for all increasing chains $x^0 \sqsubseteq x^1 \sqsubseteq \ldots$, the increasing chain defined by $y^0 = x^0, \ldots, y^{i+1} = y^i \nabla x^{i+1}, \ldots$ is not strictly increasing.

FIXPOINT APPROXIMATION WITH WIDENING

The upward iteration sequence with widening:

•
$$\tilde{X}^0 = \overline{\perp}$$
 (infimum)

•
$$\tilde{X}^{i+1} = \tilde{X}^i$$
 if $\overline{F}(\tilde{X}^i) \sqsubseteq \tilde{X}^i$

$$= \tilde{X}^i \nabla F(\tilde{X}^i)$$
 otherwise

is ultimately stationary and its limit \tilde{A} is a sound upper approximation of $\overline{\text{Ifp}}^{\perp}$ \overline{F} :

$$\operatorname{lfp}^{\overline{\perp}} \overline{F} \sqsubseteq \tilde{A}$$

FIXPOINT APPROXIMATION WITH WIDENING/NARROWING

An Introduction to Abstract Interpretation, ⓒ P. Cousot, 24/3/03—3:60/121 —≪ < ▷ ▷ ► Idx, Toc

Interval Widening

- $\bullet \ \ \overline{L} = \{\bot\} \cup \{[\ell, \ u] \mid \ell \in \mathbb{Z} \cup \{-\infty\} \land u \in \mathbb{Z} \cup \{+\infty\} \land \ell \leq u\}$
- The widening extrapolates unstable bounds to infinity:

$$egin{array}{c} igtherdown & igtherdown & X \ X \ igtherdown & X \ \end{bmatrix} = X \ [\ell_0, \ u_0] \ igtherdown & [\ell_1, \ u_1] = [\mathrm{if} \ \ell_1 < \ell_0 \ \mathrm{then} \ - \infty \ \mathrm{else} \ \ell_0, \ \mathrm{if} \ u_1 > u_0 \ \mathrm{then} \ + \infty \ \mathrm{else} \ u_0] \end{array}$$

Not monotone. For example $[0, 1] \sqsubseteq [0, 2]$ but $[0, 1] \nabla [0, 2] = [0, +\infty] \not\sqsubseteq [0, 2] = [0, 2] \nabla [0, 2]$

INTERVAL WIDENING WITH THRESHOLD SET

- The threshold set T is a finite set of numbers (plus $+\infty$ and $-\infty$),
- $egin{aligned} ullet [a,b] \ orall_T [a',b'] &= [\mathit{if} \ a' < a \ then \ \max\{\ell \in T \mid \ell \leq a'\} \ else \ a, \ \mathit{if} \ b' > b \ then \ \min\{h \in T \mid h \geq b'\} \ else \ b] \ . \end{aligned}$
- Examples (intervals):
 - sign analysis: $T = \{-\infty, 0, +\infty\};$
 - strict sign analysis: $T = \{-\infty, -1, 0, +1, +\infty\};$
- T is a parameter of the analysis.

Non-Existence of Finite Abstractions

Let us consider the infinite family of programs parameterized by the mathematical constants n_1 , n_2 ($n_1 \le n_2$):

```
X := n_1;
while X \le n_2 do
X := X + 1;
od
```

- An interval analysis with widening/narrowing will discover the loop invariant $X \in [n_1, n_2]$;
- To handle all programs in the family without false alarm, the abstract domain must contain all such intervals;
 - ⇒ No single finite abstract domain will do for all programs!

3.8 APPLICATION TO THE STATIC ANALYSIS OF CRITICAL REAL-TIME SYNCHRONOUS EMBEDDED SOFTWARE

3.8.1 General-Purpose versus Specializable Static Program Analysis

GENERAL-PURPOSE STATIC PROGRAM ANALYZERS

- To handle infinitely many programs for non-trivial properties, a general-purpose analyser must use an infinite abstract domain ²⁰;
- Such analyzers are huge for complex languages hence very costly to develop but reusable;
- There are always programs for which they lead to false alarms;
- Although incomplete, they are very useful for verifying/testing/debugging.

P. Cousot & R. Cousot. Comparing the Galois Connection and Widening/Narrowing Approaches to Abstract Interpretation. PLILP'92. LNCS 631, pp. 269–295. Springer.

PARAMETRIC SPECIALIZABLE STATIC PROGRAM ANALYZERS

- The abstraction can provably be tailored to one program without any false alarm [SARA '00];
- So, may be, the abstraction can be tailored to significant classes of programs (e.g. critical synchronous real-time embedded systems);
- This would lead to *very efficient analyzers* with *zero (or almost no) false alarm* even for large programs.

<u>Reference</u>

[SARA '00] P. Cousot. Partial Completeness of Abstract Fixpoint Checking, invited paper. In 4th Int. Symp. SARA '2000, LNAI 1864, Springer, pp. 1–25, 2000.

THE CLASS OF PERIODIC SYNCHRONOUS PROGRAMS

declare volatile input, state and output variables;
initialize state variables;

- loop forever
 - read volatile input variables,
 - compute output and state variables,
 - write to volatile output variables;

wait for next clock tick; end loop

- All computations originates from non-linear control theory;
- The only allowed interrupts are clock ticks;
- Execution time of loop body less than a clock tick [4].

Reference

[4] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt, H. Theiling, S. Thesing, and R. Wilhelm. Reliable and precise WCET determination for a real-life processor. ESOP (2001), LNCS 2211, 469-485.

3.8.2 FIRST EXPERIENCE

Reference

[5] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. Design and implementation of a special-purpose static program analyzer for safety-critical real-time embedded software. *The Essence of Computation: Complexity, Analysis, Transformation. Essays Dedicated to Neil D. Jones*, LNCS 2566, pages 85–108. Springer, 2002.

A FIRST EXPERIENCE OF PARAMETRIC SPECIALIZABLE STATIC PROGRAM ANALYZERS

- C programs: safety critical embedded real-time synchronous software for non-linear control of complex systems;
- 10 000 LOCs, 1300 global variables (booleans, integers, floats, arrays, macros, non-recursive procedures);
- Implicit specification: absence of runtime errors (no integer/floating point arithmetic overflow, no array bound overflow);
- Comparative results (commercial software):
 - 70 false alarms, 2 days, 500 Megabytes;

FIRST EXPERIENCE REPORT

- Initial design: 2h, 110 false alarms (general purpose intervalbased analyzer);
- Main redesign:
 - Reduced product with weak relational domain with time;
- Parametrisation:
 - Hypotheses on volatile inputs;
 - Staged widenings with thresholds;
 - Local refinements of the parameterized abstract domains;
- Results: No false alarm, 14s, 20 Megabytes.

Example of a Simple Idea That Does Not Scale Up

- Represent abstract environments $\overline{\mathcal{M}} = \mathbb{X} \longmapsto \overline{\mathcal{D}}$ where $\overline{\mathcal{D}}$ is the abstract domain as arrays/functional arrays;
- $\mathcal{O}(1)$ to access/change the abstract value of an identifier <u>but</u>, most variables are locally unchanged so a lot of time is lost in unions $P \cup P = P$ and widenings $P \vee P = P$;
- Solution: shared balanced binary tree (maps in CAML);
- $\mathcal{O}(\ln n)$ among n to access/change the abstract value of an identifier <u>but</u>, most of the tree is unchanged in unions and widenings (gained factor 7 in time).

Example of refinement: trace partitionning

Control point partitionning:

Trace partitionning:

PERFORMANCE: SPACE AND TIME

Space = $\mathcal{O}(LOCs)$ Time = $\mathcal{O}(LOCs \times (ln(LOCs))^{1.5})$

3.8.3 SECOND EXPERIENCE

Reference

[6] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. A static analyzer for large safety critical software. *ACM PLDI'03*, San Diego, CA, June 2003, to appear.

A SECOND EXPERIENCE OF PARAMETRIC SPECIALIZABLE STATIC PROGRAM ANALYZERS

- Same C programs for synchronous non-linear control of very complex systems;
- 132,000 lines of C, 75,000 LOCs after preprocessing, 10,000 global variables, over 21,000 after expansion of small arrays;
- Same implicit specification: absence of runtime errors + no modulo arithmetic;
- Analyzer of first experience: 30mn, 1,200 false alarms;

Some Difficulties (Among Others)

- Ignoring the value of any variable at any program point creates false alarms;
- Most precise abstract domains (e.g. polyhedra [7]) simply do not scale up;
- Tracing the fixpoint computation will produce huge log files crashing usual text editors;

Reference

^[7] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a program. In 5th POPL, pages 84–97, Tucson, AZ, 1978. ACM Press. 101

Example of Difficulty: Semantics Problems

- For C programs, the abstract transfer functions have to take the machine-level semantics into account;
- For example:
 - floating-point arithmetic with rounding errors as opposed to real numbers (e.g. $A + B < C \land D B \le C \not\Rightarrow A + D < 2 \times C$);
 - ESC is simply unsound with respect to modulo arithmetics [8].

Reference

^[8] Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J., Stata, R.: Extended static checking for Java. PLDI'02, ACM SIGPLAN Not. 37(5), (2002) 234-245. 102

Example of Refinement: Octagons

$$egin{cases} 1 \leq x \leq 9 \ x+y \leq 78 \ 1 \leq y \leq 20 \ x-y \leq 03 \end{cases}$$

Reference

[9] A. Miné. A New Numerical Abstract Domain Based on Difference-Bound Matrices. In *PADO'2001*, LNCS 2053, Springer, 2001, pp. 155–172.

DIFFICULTY 1 WITH OCTAGONS

• Most operations are $\mathcal{O}(n^2)$ in space and $\mathcal{O}(n^3)$ in time, so does not scale up;

• Solution:

- Parameterize with packs of variables/program points where to use octagons,
- Automatize the determination of the packs by experimentation (to eliminate the useless ones);

DIFFICULTY 2 WITH OCTAGONS 21

- Must be correct with respect to the IEEE 754 floating-point arithmetic norm;
- Solution: sophisticated algorithmics to correctly handle concrete and abstract rounding errors

²¹ An opened problem with polyhedra.

SECOND EXPERIENCE (PRELIMINARY) REPORT

- Comparative results (commercial software): 2,000 (false?) alarms, 3 days;
- Results: 20 (false?) alarms, 1h30mn, 500 Megabytes.

BENCHMARKS

MASTERING INVARIANT SIZE EXPLOSION

The main loop invariant: a textual file over 4.5 Mb with

- 6,900 boolean interval assertions ($x \in [0;1]$)
- 9,600 interval assertions $(x \in [a; b])$
- 25,400 clock assertions $(x + \text{clk} \in [a; b] \land x \text{clk} \in [a; b])$
- 19,100 additive octagonal assertions $(a \le x + y \le b)$
- 19,200 subtractive octagonal assertions $(a \le x y \le b)$
- 100 decision trees
- etc, ...

involving over 16,000 floating point constants (only 550 appearing in the program text) \times 75,000 LOCs.