ПРИМЕР КОНТРОЛЬНОЙ РАБОТЫ №2

Задание 1

Напишите модуль на языке Verilog HDL, реализующий поведение автомата:

Блок **next state logic** — это комбинационный блок, который формирует значение следующего состояния на основе информации о текущем состоянии и значении входного сигнала **a.** Функциональность данного блока можно выразить с помощью таблицы:

state	a[1]	a[0]	next_state	у
0	1	0/1	1	1
1	0/1	1	0	2
1	1	0/1	2	2
2	0/1	1	3	4
3	0/1	0	1	8
3	1	1	0	8
При остальных комбинациях next_state = state				

Блок **DC** - позиционный дешифратор.

ПОЯСНЕНИЕ: Необходимо написать только логику конечного автомата по схеме на Verilog. Мне главное понимать, что вы знаете, как описывать автомат на Verilog. Написание кода по схеме — это обратное действие, которое вы делали на лабах.

Задание 2

Постройте структурную схему функционального блока по описанию его поведения на языке Verilog HDL. При построении схемы необходимо использовать базовые операционные элементы цифровой схемотехники: мультиплексоры, шифраторы/дешифраторы, сумматоры, регистры, счетчики и т.п.

```
module fblock(
    input clk,
    input rst,
    input wr,
```

```
input [7:0] a,
input [7:0] b,

output y
);

reg [7:0] val_r;
wire [7:0] val_next;

assign y = val_r[0];
assign val_next = (wr)? a + b : val_r >> 1;

always@(posedge clk, posedge rst)
    if(rst) begin
        val_r <= 0;
end else begin
        val_r <= val_next;
end</pre>
```

endmodule

ПОЯСНЕНИЕ: Данное задание показывает, как вы понимаете базовые конструкции Verilog. В коде запрограммировано не много элементов. Для это задания изучите как описываются мультиплексоры, шифраторы/дешифраторы, сумматоры, регистры, счетчики на Verilog.

Задание 3

Напишите модуль на Verilog HDL.

Модуль имеет три одноразрядных входа a, b, c и одноразрядный выход. На выходе формируется значение, которое установлено на большинстве входов. Нарисуйте структурную схему получившегося модуля в терминах базовых операционных элементов цифровой схемотехники.

ПОЯСНЕНИЕ: Заменил задания на попроще, которое займет меньше времени. В этом задании важно показать, что вы знаете формат описания основных элементов модулей в Verilog и можете выбрать правильный способа расчета поставленной задачи. Если вы сделаете незначительные ошибки или опечатки в коде, то это не снизит оценку. Так как модуль получится простым, то и схема будет небольшой.

Задание 4

Для указанного примера изобразите критический путь. Также необходимо рассчитать максимально возможную частоту тактового сигнала (СLK) если: задержка триггера - 5 пс, время удержание - 1 пс, время предустановки - 3 пс, задержка на вентилях - 3 нс и задержка на линиях связи -2 нс.

ПОЯСНЕНИЕ: В данном задании нужно понимать, что такое критический путь в схемах и как рассчитывать задержку в синхронных схемах. Формулы и пояснения можно найти в презентациях

 $https://drive.google.com/drive/folders/1g22a4ATPRDM5zowCWP6JS5gphrfz4a0K?usp=drive_link$