VECTOR SPACE MODEL

Submitted by

PAULAMI DAS

BAB, BANGALORE

WHAT IS VECTOR SPACE MODEL:

- Another name is Term Vector Model or Vector Processing
- It represents both docs and queries by term sets and compare global similarities between query and documents
- It was first used by SMART information Retrieval System
- Used to compare different texts and relevant records similar to the queries
- Terms are single words/key words or phrases
- The dimentionality of the vector is the no of words in
- A text can be represented by the words it contains
- Bag of Words representation
- It is used in NLP, information retrieval and Document
- It is used to determine which doc is more similar to a
- Documents and queries are represented in a same sp
- Formula's:

i and j are two documents ,k - term and t- last term

(the sum of weight of all properties or a vector) **∑** Term[ik]

k=1

Term[ik]. Term[jk] (the sum of product of term weights for two vector)

k=1

∑min(Term[ik],Term[jk]) (minimum of the sum of prodt of term weights for two vector

k=1

Similarity coefficient

Similarity Measure Sim (X,Y)	Binary Term Vectors	Weighted Term Vectors
Dice coefficient	$2\frac{ X \cap Y }{ X + Y }$	$\frac{2\sum_{i=1}^{r}x_{i}.y_{i}}{\sum_{i=1}^{r}x_{i}^{2} + \sum_{i=1}^{r}y_{i}^{2}}$
Cosine		$\frac{\sum_{i=1}^{r} x_{i}.y_{i}}{\sqrt{\sum_{i=1}^{r} x_{i}^{2}.\sum_{i=1}^{r} y_{i}^{2}}}$
Jaccard coefficient	$\frac{ X \cap Y }{ X + Y - X \cap Y }$	$\frac{\sum_{i=1}^{r} x_{i}.y_{i}}{\sum_{i=1}^{r} x_{i}^{2} + \sum_{i=1}^{r} y_{i}^{2} - \sum_{i=1}^{r} x_{i}.}$

Calculation of Dice Coefficient

- Sim(doci,doci)=
- 2 x [ΣTk=1 Termik*Termjk)]/TΣk=1Termik+TΣk=1Termjk
- Doci=[3,2,10,0,0,1,1]
- Docj=[1,1,1,0,01,0,0]
- 2x[(3x1)+(2x1)+(1x1)+(0x0)+(0x0)+(0x1)
 +(1x0)+(1x0)]/
 (3+2+1+0+0+0+1+1)+(1+1+1+0+0+1+0
 +0)

Calculation of Jacard Coefficient

- Sim(doci,docj)=
- ΣTk=1 (Termik*Termjk)/TΣk=1Termik+TΣk=1Te rmjk+(TΣk=1Termik-TΣk=1Termjk)
- Doci=[3,2,10,0,0,1,1]
- Docj=[1,1,1,0,01,0,0]

copyrights are reserved **4-6** =**6/6** =**1**

BAG OF WORDS MODEL

WORDS

It is a puppy .it is cute

Text preprocessing for modelling, Text are generating from different types of source	word	Freq count s
Take full set of documents what you want to quantify	they	0
TOKENIZATION: break out avery single alement into a comput so that	puppy	1
TOKENIZATION:break out every single element into a corpus,so that we can have a look at them,	and	1
Filtering out the stop words(most common word which does not contain rele	cat	0
information Like SO,WHO,OR,A,AN,THE and then take the remaining token	good	0
Stem and lemmitizing it to get the root words	cute	1

Cosine Similarities

- To measure the similarities between documents irespecively of their sizes
- Mathematically it measures the cosine of the angle between two vectors projecting in a multidimentional space
- The angle between two vectors or rather than cosine of that angle is used as a proxy for the similarity of the documents
- Smallar angle means larger similarity
- As the range of $cos\alpha=[-1,1]$, but text count cant be negetive, so the range is [0,1]

$$\mathbf{cosim}(A, B) \stackrel{def}{=} \frac{\sum_{i=1}^{n} (A_i * B_i)}{\sqrt{\sum_{i=1}^{n} A_i^2} * \sqrt{\sum_{i=1}^{n} B_i^2}}$$

Contd...

Document 1: IBAB has bigdata course for biology

Document 2: learning biology is easy

Document 3: bigdata is a vast subject

nuery: hindata hinlogy

	IBAB	lear nin g	has	big dat a	cou rse	for	biol ogy	is	а	vas t	sub ject	eas y
doc 1	1	0	1	1	1	1	1	0	0	0	0	0
doc 2	0	1	0	0	0	0	1	1	0	0	0	1
doc 3	0	0	0	1	0	0	0	1	1	1	1	0
que ry	0	0	0	1	0	0	1	0	0	0	0	0

Cossim(doc1,query)=((1x1)+(1x1))/2.44=0.81

Cossim(doc2, query) = 1/3.74 = 0.26

Cossim(doc3, query)=1/3.74=0.26

as we see doc1 is our relevant docs

Tf-idf Model

is computed

- Term Frequency also known (TF) measures the number of times word w occurs in a document/total number of words in a documents.
- Inverse Document Frequency (IDF) measures log (no of documents /no of docs that contaains word w)
- In information retrieval, tf-idf or TFIDF is a numerical statistic that is intended to reflect how important a word is to a document in a collection or corpus.
- It is often used as a weighting factor in searches of information retrieval, text mining, and user modeling.
- tf-idf is one of the most popular termweighting schemes today; 83% of text-based recommender systems in digital libraries use tf-idf.
- Variations of the tf-idf weighting scheme are often used by search engines(google) as a central tool in scoring and ranking a document's relevance given a user query.
- tf-idf can be successfully used for stop-words filtering in various subject fields, including text summarization and classification.

- $\mathbf{tf}(t,d) = \frac{f_d(t)}{\max f_d(w)}$
- $\mathbf{idf}(t, D) = \ln\left(\frac{|D|}{|\{d \in D : t \in d\}|}\right)$
- $\mathbf{tfidf}(t, d, D) = \mathbf{tf}(t, d) \cdot \mathbf{idf}(t, D)$
- $\mathbf{tfidf}'(t, d, D) = \frac{\mathbf{idf}(t, D)}{|D|} + \mathbf{tfidf}(t, d, I)$

 $f_d(t) :=$ frequency of term t in document d

- One of the simplest ranking functions(page rank algorithm)
- by summing the tf-idf for each query term.

D := corpus of documentsTF-PDF (Term Frequency * Proportional Document Frequency).

TF-PDF was introduced in 2001 in the context of identifying emerging topics in the media. The PDF component measures the difference of how often a term occurs in different domains.

 Another derivate is TF-IDuF. In TF-IDuF, idf is not calculated based on the document corpus that is to be searched or recommended. Instead, idf is calculated on users' personal document collections. The authors report that TF-IDuF was equally effective as tf-idf but could also be applied in situations when, e.g., a user modeling system has no access to a global document corpus. copyrights are reserved

Contd..

Document 1: IBAB has bigdata course for biology

Document 2: learning biology is easy

Document 3: bigdata is a vast subject

query: bigdata biology

Normalised TF for all the documents: TF=(NO OF TIMES WORD APPEAR IN A DOCS/NO OF WORDS IN A DOCS)

doc s	lear nin g	biol ogy	IBA B	has	big dat a	cou rse	for	eas y	is	a	sub ject	vas t
Doc 1	0	1/6 =0. 16	1/6 =0. 16	1/6 =0. 16	1/6 =0. 16	1/6 =0. 16	1/6 =0. 16	0	0	0	0	0
Doc 2	1/ ₄ = 0.2 5	1/ ₄ = 0.2 5	0	0	0	0	0	1/ ₄ = 0.2 5	1/ ₄ = 0.2 5	0	0	0
Doc 3	0	0	0	0	1/5 =0. 2	0	0	0	1/5 =0. 2	1/5 =0. 2	1/5 =0. 2	1/5 =0. 2

IDF: log(no of docs/no of docs that contains query word)

learni ng	biol ogy	IBA B	ha s	bigd ata	cour se	for	eas y	is	а	sub ject	va st
Log(3/ 1)=0. 477	log(3/2) =0. 17	Log (3/1)=0 .47 7	Lo g(3 /1) =0 .47 7	Log(3 /2)=0 .17	Log(3/1) =0.4 77	Log(3 /1)=0 .477	Log (3/1)=0 .47 7	Lo g(3 /2) =0 .17	Lo g(3/ 1) = 0. 47 7	Log (3/1)=0 .47 7	Lo g(3/ 1) =0 .4 77

Calculation of TF x IDF ,to fond out relevant doc for the query: bigdata biology:

query	doc1	doc2	doc3
bigdata	0.17*0.16=0.0 272	0.17*0=0	0.17*0=0
biology	0.17*0.16	0.17*0=0	0.17*0=0

Thus we can say that doc1 is relevant to the query

Pros and Cons of VSM:

· Pros.

- Allows documents with partial match to be also identified
- The cosine formula gives u a score which can be used to order documents
- If two documents are far apart by Euclidean distance due to huge size of a particular documents, Chances are still there as they may still be oriented closer together, as it captures the orientation of the documents not the magnitude

Cons

- As documents are treated as Bag of words model so no positional information will be there
- It lacks the guidance of details of how weighting and ranking algo are related to relevance

Application of VSM in BioInformatics

- DNA sequence searching
- Particular gene which is highly up regulated or downregulated in some RNA sequence (by counting the frequency of that gene sequences)
- PSSM
- Sequence encoding using term document matrix
- Clustering
- Database search
- Pattern classification
- Sequence alignment
- Finding consensus sequence

Implementation in python

 https://github.com/PAUL-8274/semin ar on vector space model

Reference:

- www.machinelearningplus.com
- Vector Space Information Retrieval Techniques for Bioinformatics Data Mining Eric Sakk and Iyanuoluwa E. Odebode Department of Computer Science, Morgan State University, Baltimore, MD USA
- https://janav.wordpress.com/2013/10/27/tf-idf-and-cosine-similarity/
- https:// pdfs.semanticscholar.org/eb1e/5b5e264e34b0fdd786b064208581e36c6cc 5.pdf
- http://bscit.berkeley.edu/cgi-bin/pl_dochome?query_src=& format=html&collection=Wilensky_papers&id=3&show_doc=yes
- http://

 http://

 lucene.apache.org/core/3_6_1/api/all/org/apache/lucene/search/Similarity.html
- http:// scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.T fidfTransformer.html#sklearn.feature_extraction.text.TfidfTransformer
- https://www.opinosis-analytics.com/knowledge-base/what-is-term-frequenc

THANK YOU