Bootcamp IGTI

Desafio

Módulo 4

Python Avançado

Objetivos

Exercitar os seguintes conceitos trabalhados no Módulo:

- Scikit-Learning.
- ✔ Programação concorrente.
- ✓ Programação reativa.
- ✓ Pygame

Enunciado

Neste desafio são utilizados todos os módulos apresentados durante o módulo 4 deste bootcamp de desenvolvedor Python. Módulos como o scikit-learn, pandas, threading, rx e pygame são empregados para construir aplicações que utilizem conceitos mais avançados da linguagem python. Desse modo, é possível perceber a vasta aplicabilidade desta linguagem para resolver diversos problemas de diferentes complexidades através da computação.

Atividades

Os alunos deverão desempenhar as seguintes atividades:

- Acessar a IDE de desenvolvimento desejada. (recomendável, para as questões de 1 a 12 utilizar o próprio google collaboratory)
- 2. Baixar o dataset presente no link:

https://drive.google.com/drive/folders/1twf6tSeqLqHWviy0vY-R4vwx-NMBZBa3?usp=sharing

3. Responder às questões presentes neste desafio.

Obs:

O dataset utilizado possui as seguintes colunas:

- Sex gênero do paciente ->Homem = 1, Mulher =0
- Age Idade do paciente
- Diabetes Possui diabetes? 0 = Não, 1 = Sim
- Anaemia Possui anemia? 0 = Não, 1 = Sim
- High blood pressure Possui pressão alta? 0 = Não, 1 = Sim
- Smoking É fumante? 0 = Não, 1 = Sim
- DEATH_EVENT evento de morte? 0 = Não, 1 = Sim
- Para as perguntas referentes aos modelos utilize:

Algoritmo KNN:

```
clf KNN = KNeighborsClassifier(n neighbors=5)
```

Algoritmo Árvore de Decisão

```
clf_arvore = DecisionTreeClassifier(random_state=1)
```

Algoritmo Rede MLP

```
clf_mlp = MLPClassifier(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(5,
10), random_state=1)
```

- Para a aplicação dos algoritmos, utilize como entrada as colunas: Sex, Age,
 Diabetes, Anaemia, High_blood_pressure, creatinine_phosphokinase, Smoking,
 ejection_fraction, platelets, serum_creatinine e serum_sodium . A saída para os algoritmos deve ser a coluna DEATH EVENT.
- Utilize, para normalização dos dados, as definições:

```
normaliza = MinMaxScaler() #objeto para a normalização
entradas_normalizadas=normaliza.fit_transform(entradas)
```

Utilize, para divisão entre treinamento e teste do algoritmo, as definições:

```
train_test_split(entradas_normalizadas, saida,
test size=0.30,random state=42)
```

- Utilize esta sequência de operações para chegar no resultado final: divida os dados entre entrada e saída, normalize apenas as entradas utilizando o *MinMaxScaler* e, depois, aplique a divisão entre treinamento e teste com o *train_test_split*.
- Utilize os dados de "teste" para avaliar as previsões de classificação dos modelos.

Para as questões de concorrência, utilize a função abaixo como a "tarefa" a ser realizada pelas threads.

```
def contador():
    x = 1000000000
    while x > 0:
        x -= 1
```

Para as chamadas sequenciais utilize o protótipo:

```
def imple_sequencial():
   contador()
   contador()
```

Para as threads utilize o protótipo:

```
def imple_concorrente():
   thread_1 = threading.Thread(target=contador)
   thread_2 = threading.Thread(target=contador)
```

Para a implementação com o tempo (dormir) das threads, utilize os códigos abaixo.

```
import time
import random

time.sleep(random.randint(1,20))
```

Para as questões de programação reativa, utilize o **observable** recebendo o streaming de dados e a inscrição para o **observer** como abaixo:

```
    source = rx.from_iterable([5,4,3,2,1]) #streaming
    disposable=source.pipe(
    .subscribe(
```

```
on_next=lambda i: print("on_next: {}".format(i)),
    on_completed=lambda: print("on_completed"),
    on_error=lambda e:print("on_error: {}".format(e))
) #inscrição do observer
```

Dica: Utilize, como base, a implementação presente na primeira aula sobre programação reativa.

Para as questões referentes ao Pygame, utilize o esboço de código abaixo:


```
# coding: iso-8859-1 -*-
 1
    import pygame
 2
    from pygame.locals import *
    from sys import exit
 4
 5
    pygame.init()
 6
 7
     screen = pygame.display.set_mode((720, 640))
 8
    pygame.display.set_caption("Desafio-Módulo 4")
 9
10
11
12 - while True:
13
         for event in pygame.event.get():
14 -
             if event.type == QUIT:
15 -
                 pygame.quit()
16
                 exit()
17
18
             screen.fill((255,0,255))
19
20
21
             x, y = pygame.mouse.get_pos()
22
             print(x,y)
23
24
         pygame.display.update()
25
```

Respostas Finais

Os alunos deverão desenvolver a prática e, depois, responder às seguintes questões objetivas:

 Sobre as quantidades de instâncias e características presentes no dataset é CORRETO afirmar

Х	Existem 299 instâncias e 13 características
	Existem 13 instâncias e 299 características
	Existem 189 instâncias e 10 características
	Existem 10 instâncias e 189 características

2.	Quantos tipos de dados diferentes existem no dataset? Considerando
apenas a carga utilizando o módulo pandas.	
Х	2 tipos diferentes de dados
	3 tipos diferentes de dados
	4 tipos diferentes de dados
	1 tipo diferente de dado

3.	Qual era a idade (age) média dos pacientes que faleceram	
(DEA	(DEATH_EVENT=1)?	
Х	65,21 anos	
	60,83 anos	
	58,27 anos	
	73,87 anos	

4.	Dentre os pacientes que sobreviveram (DEATH_EVENT=1), quantos
são do sexo feminino (sex=0)?	
Х	71
	114
	87
	65

5.	Após dividir as colunas do <i>dataframe</i> entre entrada e saída, aplicar a		
norm	nalização dos dados como apresentado no enunciado (MinMaxScaler()) e		
divid	lir esses dados entre treinamento e teste, aplique o algoritmo KNN . Qual		
é, ap	é, aproximadamente, a acurácia do modelo?		
Х	x 0,61		
	0,76		
	0,48		

_		
	0.4	
	81	
	,0 1	

6. Após dividir as colunas do *dataframe* entre entrada e saída, aplicar a normalização dos dados como apresentado no enunciado (MinMaxScaler()) e dividir esses dados entre treinamento e teste. Aplique os algoritmos **KNN**, **Árvore de Decisão** e **MLP**. Qual dos algoritmos apresentou maior acurácia?

X MLP

KNN

Árvore de Decisão

Nenhum dos modelos obteve resultado superior a 50% de acurácia

- 7. Utilizando a função mostrada no enunciado, implemente duas chamadas sequenciais e outra chamada sendo realizada por duas threads de maneira concorrente. Sobre essas duas diferentes formas de implementação é **CORRETO** afirmar O tempo de execução através da concorrência é inferior à sequencial, Χ pois cada thread realiza as operações através do chaveamento de contexto. O tempo de execução através da concorrência é inferior à sequencial, pois cada thread realiza as operações através do processamento paralelo. O tempo de execução através da concorrência é superior à sequencial, pois cada thread realiza as operações através do chaveamento de contexto e compartilham recursos. O tempo de execução através da concorrência é superior à sequencial, pois cada thread realiza as operações através do paralelismo, o que sobrecarrega o processador.
- 8. Utilizando a função mostrada no enunciado, implemente as duas chamadas sequenciais e outra chamada sendo realizada por duas threads de maneira concorrente. Adicione à chamada concorrente um tempo randômico para cada thread, como apresentado no enunciado. Após a construção dessas implementações é CORRETO afirmar

	Após a adição desse tempo aleatório sem processamento (dormir),
x	não é possível garantir que a implementação realizada com as duas
	threads seja realizada em um tempo menor.
	Independente do tempo escolhido para deixar as threads sem realizar
	um processamento (dormir), a execução sequencial sempre será mais
	lenta.
	O processamento paralelo não poderia ser utilizado após a adoção
	desse tempo sem processamento (dormir), pois no paralelismo não é
	possível ficar sem realizar um processamento.
	Quando adicionamos um período sem processamento (dormir), o
	sistema operacional não altera o estado da thread, assim, o tempo de
	processamento não é modificado.

9. Utilizando os códigos apresentados no enunciado deste desafio, referente às questões de programação reativa, qual das afirmativas abaixo representa uma possibilidade de transformação sobre os dados enviados pelo **Observable** para que o **Observer** receba apenas números pares?

10. Utilizando os códigos presentes no enunciado deste desafio, referente às questões de programação reativa, se adicionarmos apenas as operações de map e filter abaixo, qual será o resultado?

```
ops.map(lambda i: i if i<3 else 0),
ops.filter(lambda i: i>0),

x  Os valores 2 e 1 seriam exibidos no "on_next"

Nada seria exibido no "on_next"

Apenas os números pares seriam exibidos no "on_next"

Seria exibido uma mensagem no "on_error"
```


11.	Utilizando os códigos presentes no enunciado deste desafio, referente	
às que	às questões de programação reativa, substitua a lista [5,4,3,2,1] pela lista	
[5,4,3,	"2",1]. Adicione apenas a operação de filtro ops.filter(lambda i:	
i%2==	0), ·Qual será a saída apresentada após essas mudanças?	
	Será apresentado no "on_next" o segundo número da lista e um	
X	"on_erro".	
	Será apresentado apenas no "on_next" os valores pares (4 e 2).	
	Será apresentado apenas no "on_next" os valores primos presentes na	
	lista.	
	Será apresentado apenas no "on_error" os valores pares menores que	
	2.	

12.	Sobre o código presente no enunciado, referente às questões do	
Pygan	Pygame, é INCORRETO afirmar	
х	Mesmo que o cursor do mouse seja posicionado fora da tela do jogo,	
^	será exibido um "print" com a posição atual.	
	Para alterar as cores do plano de fundo da tela é necessário modificar	
	os parâmetros do método "fill".	
	No terminal/console será exibida as posições que o cursor do mouse	
	está na tela do jogo.	
	Se retirarmos a linha 25 não ocorre um erro de execução, entretanto, a	
	tela não será atualizada.	

13.	Utilize como base o esboço de código para as questões do Pygame.	
Quais	Quais modificações seriam necessárias para capturar, de maneira contínua,	
os eve	os eventos de teclas digitadas?	
х	Adicionar, entre as linhas 18 e 20, a captura dos eventos através do event.type==KEYDOWN.	
	Retirar a captura e o tratamento dos eventos presentes entre as linhas 15 e 17.	
	Adicionar, entre as linhas 10 e 11, a captura dos eventos através do event.type==KEYDOWN.	

Retirar o código presente entre as linhas 14 e 15 e adicionar a captura de eventos através do event.type==KEYDOWN

14. Utilizando o código referente às questões do Pygame, adicione, à tela, um retângulo vermelho de dimensões 10x10 pixels. Quais alterações devem ser realizadas? Adicionar, entre as linhas 12 e 14, a chamada pygame.draw.rect(screen, (255,0,0), [360,320,10,10]). Adicionar, entre as linhas 9 e 11, a chamada pygame.draw.rect(screen, (255,0,0), [360,320,10,10]). Adicionar, entre as linhas 12 e 14, a chamada pygame.draw.rect(screen, (0,0,0), [720,640,10,10]). Adicionar, entre as linhas 9 e 11, a chamada pygame.draw.rect(screen, (255,0,0), [0,0,10,10]).			
ser realizadas? Adicionar, entre as linhas 12 e 14, a chamada pygame.draw.rect(screen, (255,0,0), [360,320,10,10]). Adicionar, entre as linhas 9 e 11, a chamada pygame.draw.rect(screen, (255,0,0), [360,320,10,10]). Adicionar, entre as linhas 12 e 14, a chamada pygame.draw.rect(screen, (0,0,0), [720,640,10,10]). Adicionar, entre as linhas 9 e 11, a chamada pygame.draw.rect(screen,	14.	Utilizando o código referente às questões do Pygame, adicione, à tela,	
Adicionar, entre as linhas 12 e 14, a chamada pygame.draw.rect(screen, (255,0,0), [360,320,10,10]). Adicionar, entre as linhas 9 e 11, a chamada pygame.draw.rect(screen, (255,0,0), [360,320,10,10]). Adicionar, entre as linhas 12 e 14, a chamada pygame.draw.rect(screen, (0,0,0), [720,640,10,10]). Adicionar, entre as linhas 9 e 11, a chamada pygame.draw.rect(screen,	um ret	um retângulo vermelho de dimensões 10x10 pixels. Quais alterações devem	
pygame.draw.rect(screen, (255,0,0), [360,320,10,10]). Adicionar, entre as linhas 9 e 11, a chamada pygame.draw.rect(screen, (255,0,0), [360,320,10,10]). Adicionar, entre as linhas 12 e 14, a chamada pygame.draw.rect(screen, (0,0,0), [720,640,10,10]). Adicionar, entre as linhas 9 e 11, a chamada pygame.draw.rect(screen,	ser rea	alizadas?	
pygame.draw.rect(screen, (255,0,0), [360,320,10,10]). Adicionar, entre as linhas 9 e 11, a chamada pygame.draw.rect(screen, (255,0,0), [360,320,10,10]). Adicionar, entre as linhas 12 e 14, a chamada pygame.draw.rect(screen, (0,0,0), [720,640,10,10]). Adicionar, entre as linhas 9 e 11, a chamada pygame.draw.rect(screen,	v	Adicionar, entre as linhas 12 e 14, a chamada	
(255,0,0), [360,320,10,10]). Adicionar, entre as linhas 12 e 14, a chamada pygame.draw.rect(screen, (0,0,0), [720,640,10,10]). Adicionar, entre as linhas 9 e 11, a chamada pygame.draw.rect(screen,	X	pygame.draw.rect(screen, (255,0,0), [360,320,10,10]).	
Adicionar, entre as linhas 12 e 14, a chamada pygame.draw.rect(screen, (0,0,0), [720,640,10,10]). Adicionar, entre as linhas 9 e 11, a chamada pygame.draw.rect(screen,		Adicionar, entre as linhas 9 e 11, a chamada pygame.draw.rect(screen,	
pygame.draw.rect(screen, (0,0,0), [720,640,10,10]). Adicionar, entre as linhas 9 e 11, a chamada pygame.draw.rect(screen,		(255,0,0), [360,320,10,10]).	
Adicionar, entre as linhas 9 e 11, a chamada pygame.draw.rect(screen,		Adicionar, entre as linhas 12 e 14, a chamada	
		pygame.draw.rect(screen, (0,0,0), [720,640,10,10]).	
(255,0,0), [0,0,10,10]).		Adicionar, entre as linhas 9 e 11, a chamada pygame.draw.rect(screen,	
		(255,0,0), [0,0,10,10]).	

15.	Utilizando o código referente às questões do Pygame e o retângulo	
criado	criado ao centro da tela, quais alterações poderiam ser realizadas para realizar	
a mov	imentação deste retângulo através das teclas direcionais do teclado?	
	Adicionar, entre as linhas 17 e 19, a captura do evento de pressionar	
x	uma tecla, identificar as teclas pressionadas e atualizar a posição do	
	retângulo.	
	Retirar a linha 14, adicionar, entre as linhas 14 e 17, a captura do	
	evento de pressionar uma tecla, identificar as teclas pressionadas e	
	atualizar a posição do retângulo.	
	Adicionar, entre as linhas 17 e 19, a captura do evento de pressionar	
	uma tecla, identificar as teclas pressionadas e atualizar a posição do	
	retângulo e retirar a linha 25.	
	Retirar a linha 25, adicionar, entre as linhas 14 e 17, a captura do	
	evento de pressionar uma tecla, identificar as teclas pressionadas e	
	atualizar a posição do retângulo.	