

Draw the free body diagram and calculate the external reactions at A (pin) and B (rocker). Neglect the thickness of the beam. Show directional arrows in your answer.

Draw the free-body diagram and calculate the external support reactions at the pin and the tension in cable BC.

+)
$$\geq M_{R} = 0 = \frac{2}{5}BC(3) + \frac{4}{5}BC(1) - 60(1) - 30$$

 $= 2.6BC = 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$

Determine the components of reaction at the fixed support at A. Indicate direction in your answer with arrows.

FBD:

$$4 \cos 30$$

Ax

 $4 \sin 30$

1.5 $\sin 30 = 0.75 \text{ m}$

Ay

1.5 $\cos 30 = 1.3 \text{ m}$

+3
$$\geq F_{X}=0$$
 = A_{X} + 4 ≤ 50
 $A_{X}=-3.46$ $A_{X}=3.46$ $A_{X}=-3.46$ $A_{X}=$

Draw the free-body diagram and calculate the external support reactions at the pin at A and the pin at B utilizing any 2-force members.

Draw the free-body diagram and calculate the external support reactions at the fixed support at A. The 150 N force is parallel to the z axis and the 200 N force is parallel to the y axis. Assume right hand rule as positive sign convention.

The member is supported by a pin at A and cable BC. If the weight of the cylinder is 350 lb, determine the external support reactions at A and the force in cable BC. Draw the free-body diagram and assume right hand rule positive sign convention.

