Tuesday, March 2, 2021

Dynamic Przyvaminy

example. Rod cutting



input: leggth n and prices pi for is 1, -, n

output; maximum revenue

| leigh 0  | \        | 2 | 3 | 4 | ς  | 6  | 7  | 8  |
|----------|----------|---|---|---|----|----|----|----|
| price Po | <u> </u> | 5 | 4 | 9 | 10 | 17 | 17 | 20 |

for size n > 2 different mys to cut it

|          | (e)               | (f)           | (g)      | (h) |
|----------|-------------------|---------------|----------|-----|
| )<br>i i | man nevewe)<br>Vi | optimb Soluti | <u>~</u> |     |
| 1        |                   | no cuts       |          |     |
| 2        | 5                 | N             |          |     |
| 3        | 8                 | N             |          |     |
| 4        | 10                | 2 + 2         |          |     |
| 5        | 13                | 2+3           |          |     |
| 6        | 17                | no Cuts       |          |     |
| 7        | 16                | 1+6 01        | , 2+2+3  |     |
| <b>x</b> | 22                | 2+6           |          |     |

νη = man (ρη, γ, + νη-ι, --, νη-ι + ν,)

simplify this

$$r_n = man \left( p_i + v_{n-i} \right)$$

Rich

Cut-Rod(p, n)

**if** n == 0 **return** 0





```
Cut-Rod(p,n)
                                                    if n == 0
   return 0
 q = -\infty
 for i = 1 to n
   q = \max(q, p[i] + \text{Cut-Rod}(p, n - i))
 return q
inefficient: T(n) > \begin{cases} 1 & n=0 \\ 1+\sum_{j=0}^{n-1} T(j) & n>0 \end{cases} \implies T(n) = 2^n
 avoid repeditions ___ dynamic pregramming
          - rather than reco-puting subproblems, store & reuse
                                               Top-down Solution
MEMOIZED-CUT-ROD(p, n)
 let r[0..n] be a new array
 for i = 0 to n
    r[i] = -\infty
 return MEMOIZED-CUT-ROD-AUX(p, n, r)
MEMOIZED-CUT-ROD-AUX(p, n, r)
  if r[n] \geq 0
                - lookup step
     return r[n]
  if n == 0
    q = 0
  else q = -\infty
     for i = 1 to n
       q = \max(q, p[i] + \text{MEMOIZED-CUT-ROD-AUX}(p, n - i, r))
  r[n] = q
  return q
Botton-up Solution
  let r[0..n] be a new array r[0] = 0 for j = 1 to n
 BOTTOM-UP-CUT-ROD(p, n)
      q = -\infty
                                                    = 9 ( n2)
      for i = 1 to j
         q = \max(q, p[i] + r[j - i])
      r[j] = q
  return r[n]
```

Subproblem graph a condensed version of recursion tree

Directed Acydia Graph



Theorem: Let 
$$2 \le \langle z_1, ..., z_k \rangle$$
 be any LCS of  $X$  and  $Y$ .

$$\begin{cases} \text{if } x_m = y_n + \text{hen } z_k = x_m = y_n \text{ and } Z_{k-1} \text{ is in LCS of } X_{m-1} \text{ and } y_{m-1} \\ \text{if } x_m \neq y_n + \text{hen } \text{if } z_k \neq y_m \implies Z \text{ is an LCS of } X_{m-1} \text{ and } Y \\ \text{if } x_m \neq y_k + \text{hen } \text{if } z_k \neq y_m \implies Z \text{ is an LCS of } X \text{ and } Y_{m-1} \end{cases}$$

Recursive formulation: 
$$c(i,j)$$
: length of LCS at X1 k Yj

$$c(i,j) = \begin{cases} 0 & \text{if } i \leq 0 \text{ or } j = 0 \\ c(i-1,j-1]+1 & \text{if } i,j \geq 0 \text{ , } ni = yj \end{cases}$$

$$c(i,j) = \begin{cases} 0 & \text{constraint} \\ c(i-1,j-1]+1 & \text{if } i,j \geq 0 \text{ , } ni = yj \end{cases}$$

$$c(i,j) = \begin{cases} 0 & \text{constraint} \\ c(i-1,j-1]+1 & \text{if } i,j \geq 0 \text{ and } u_i \neq y_j \end{cases}$$

example: 
$$X = a + on$$
 m=4  
 $Y = a + on$  n=3



```
LCS-LENGTH(X, Y, m, n)

let b[1...m, 1...n] and c[0...m, 0...n] be new tables

for i = 1 to m

c[i, 0] = 0

for j = 0 to n

c[0, j] = 0

for i = 1 to m

for j = 1 to n

if x_i = y_j

c[i, j] = c[i - 1, j - 1] + 1

b[i, j] = \text{``}\text{``}

else if c[i - 1, j] \ge c[i, j - 1]

c[i, j] = c[i - 1, j]

b[i, j] = \text{``}\text{``}

else c[i, j] = c[i, j - 1]

b[i, j] = \text{``}\text{``}

else c[i, j] = c[i, j - 1]

c[i, j] = c[i, j - 1]

c[i, j] = c[i, j - 1]

c[i, j] = \text{``}\text{``}

return c and c
```

(mn)





Problem: Optimal Binary Search Tree

a - blalc /

probability of each key being searched is different, Pi

God; expected source Gd is minimum

- for key 
$$ki$$
: (sot of sourch: depth  $(ki)$  +  $(ki)$  +



| ι | e |      |            |
|---|---|------|------------|
| 1 | 1 | .25  |            |
| 2 | 0 | 0    |            |
| 3 | 2 | .1   |            |
| 4 | 1 | .2   |            |
| 5 | 2 | . 6  |            |
|   |   | 1.15 | → E 3 2.15 |



| -   | depth (Ki) | depth (K:).Pi |         |
|-----|------------|---------------|---------|
| - 1 |            | .25           |         |
| 2   | C          | 0             |         |
| 3   | 3          | . 15          |         |
| 4   | 2          | . 4           |         |
| 5   | [          | . 3           |         |
|     |            | 1.1 -9        | E = 2.1 |

exhastine search for optimal solution \_, SL (4"/" 12) BSTs

Optimal Substructure:



if T is optimal BST, subtrace T' should be also optimal

>(k1, -kj) 

> Prove by cut-and pupe structury

\_ a subtree (ki, - kj)

- we need to pick one key as not, ky

[left subtree of ky, \lambda ki, -k, ]

Vyht subtree of ky, \lambda k, -, kj \rangle \frac{K\_1}{K\_1} \rangle \frac{K\_2}{K\_1}



recursive subhims

$$\begin{cases} \text{find optimal BST for } (k: - k_i) & : j \neq i \\ \text{base case} : \text{ empty tree} & : j = i - 1 \end{cases}$$

e(ini) = expected cost of searding optimal BST for king, kj

Let's chose  $k_r$  as root for  $k_3 ... - k_j$ ;

Let's chose  $k_r$  as root for  $k_3 ... - k_j$ ;

Let's chose  $k_r$  as root for  $k_3 ... - k_j$ ;

Let's chose  $k_r$  as root for  $k_3 ... - k_j$ ;

Let's chose  $k_r$  as root for  $k_3 ... - k_j$ ;

Let's chose  $k_r$  as root for  $k_3 ... - k_j$ ;

Let's chose  $k_r$  as root for  $k_3 ... - k_j$ ;

Let's chose  $k_r$  as root for  $k_3 ... - k_j$ ;

Let's chose  $k_r$  as root for  $k_3 ... - k_j$ ;

Let's chose  $k_r$  as root for  $k_3 ... - k_j$ ;

Let's chose  $k_r$  as root for  $k_3 ... - k_j$ ;

Let's chose  $k_r$  as root for  $k_3 ... - k_j$ ;

Let's chose  $k_r$  as root for  $k_3 ... - k_j$ ;

Let's chose  $k_r$  as root for  $k_3 ... - k_j$ ;

Let's chose  $k_r$  as root for  $k_3 ... - k_j$ ;

Let's chose  $k_r$  as root for  $k_3 ... - k_j$ ;

Let's chose  $k_r$  as root for  $k_3 ... - k_j$ ;

Let's chose  $k_r$  as root for  $k_3 ... - k_j$ ;

Let's chose  $k_r$  as root for  $k_3 ... - k_j$ ;

Let's chose  $k_r$  as root for  $k_3 ... - k_j$ ;

Let's chose  $k_r$  as root for  $k_3 ... - k_j$ ;

Let's chose  $k_r$  as root for  $k_3 ... - k_j$ ;

Let's chose  $k_r$  as root for  $k_3 ... - k_j$ ;

Let's chose  $k_r$  as root for  $k_3 ... - k_j$ ;

Let's chose  $k_r$  as root for  $k_3 ... - k_j$ ;

Let's chose  $k_r$  as root for  $k_3 ... - k_j$ ;

Let's chose  $k_r$  as root for  $k_3 ... - k_j$ ;

Let's chose  $k_r$  as root for  $k_3 ... - k_j$ ;

Let's chose  $k_r$  as root for  $k_3 ... - k_j$ ;

Let's chose  $k_1 ... -$ 

```
OPTIMAL-BST(p,q,n)
let e[1..n + 1, 0..n], w[1..n + 1, 0..n], and root[1..n, 1..n] be new tables
 for i = 1 to n + 1
    e[i,i-1]=0
                     ______ Subtree with 1 Keys
                                                                w[i, i-1] = 0
 for l = 1 to n
   for i = 1 to n - l + 1
      i = i + l - 1
       e[i,j] = \infty
       w[i,j] = w[i,j-1] + p_j finding optimal rest
          t = e[i, r-1] + e[r+1, j] + w[i, j]
          if t < e[i, j]
             e[i, j] = t
             root[i,j] = r
 return e and root
```

```
Construct-Optimal-BST(root)
r = root[1, n]
print "k", "is the root"
Construct-Opt-Subtree(1, r - 1, r, "left", root)
Construct-Opt-Subtree(r + 1, n, r, "right", root)
Construct-Opt-Subtree(i, j, r, dir, root)
if i \leq j
t = root[i, j]
print "k", "is" dir "child of k",
Construct-Opt-Subtree(i, t - 1, t, "left", root)
Construct-Opt-Subtree(t + 1, j, t, "right", root)
```

|   | j |   |        |     |     |      |      |   | j |   |     |     |     |     |     |  |      | j |   |   |   |   |  |
|---|---|---|--------|-----|-----|------|------|---|---|---|-----|-----|-----|-----|-----|--|------|---|---|---|---|---|--|
|   | e | 0 | 1      | 2   | 3   | 4    | 5    |   | w | 0 | 1   | 2   | 3   | 4   | 5   |  | root | 1 | 2 | 3 | 4 | 5 |  |
|   | 1 | 0 | (.25   | .65 | .8  | 1.25 | 2.10 |   | 1 | 0 | .25 | .45 | .5  | .7  | 1.0 |  | 1    | 1 | 1 | 1 | 2 | 2 |  |
|   | 2 |   | 0      | .2  | 3   | .75  | 1.35 |   | 2 |   | 0   | .2  | .25 | .45 | .75 |  | 2    |   | 2 | 2 | 2 | 4 |  |
|   | 3 |   | 1      | 0   | .05 | 3    | .85  |   | 3 |   |     | 0   | .05 | .25 | .55 |  | i 3  |   |   | 3 | 4 | 5 |  |
| 1 | 4 |   | $p_i'$ |     | 0   | 2    | .7   | ı | 4 |   |     |     | 0   | .2  | .5  |  | 4    |   |   |   | 4 | 5 |  |
|   | 5 |   |        |     |     | 0    | 3)   |   | 5 |   |     |     |     | 0   | .3  |  | 5    |   |   |   |   | 5 |  |
|   | 6 |   |        |     |     |      | 0    |   | 6 |   |     |     |     |     | 0   |  |      |   |   |   |   |   |  |
|   |   |   |        |     |     |      |      |   |   |   |     |     |     |     |     |  |      |   |   |   |   |   |  |