4105 Computer Vision

Lecture 2 Dr. Shaimaa Othman

Image Matrix

- Assuming Gray level values: $L = 0 \rightarrow 255$ • If maximum gray level values: $L = 0 \rightarrow 255$ • If maximum gray level $\begin{cases} 130 \rightarrow Dark \ Image \\ 255 \rightarrow Has \ no \ meaning \end{cases}$ • If minimum gray level $\begin{cases} 170 \ bright \\ 0 \ no \ meaning \end{cases}$ • (Max & min) $\begin{cases} (100,150) \ low \ contrast \\ (0,255) \ no \ meaning \end{cases}$ • Average $\begin{cases} 100 \rightarrow Dark \ Image, more \ than \ bright \\ 50 \rightarrow Dark \\ 200 \rightarrow Bright \\ 127 \rightarrow has \ no \ meaning \end{cases}$
 - Standard deviation (Variance) $\begin{cases} Big \\ Low \end{cases}$
 - If (127, Big) as (average, variance): High contrast
 - If (127, Low) as (average, variance): Low contrast

Statistics

max = 255 Min = 0

mean = 101.11 STD DEV 15.9

Histogram

- **Histogram:** count the number of occurrences per gray/color component value within the image matrix/matrices.
- So, histogram is a table of two columns: gray/color, counts.
- The total number of counts should be equal to MxN pixel counts
- Histogram is a base
 - Most of elements of image processing

/ 5	5	4	5 \
10	20	5	4
10	20	5	10
\20	4	5	100/

Gray Value	Count
4	3
5	6
10	3
20	3
100	1
Total count(MxN)	16

Histogram

Example Histogram

Connectivity and Neighboring

Generally objects are group of color/gray connected neighbor pixels

Neighboring

Four Neighbors, N4

$$N_4(f(x,y)) = \{f(x-1,y), f(x+1,y), f(x,y-1), f(x,y+1)\}$$

• Diagonal Neighbors, Nd

$$N_D(f(x,y)) = \{f(x-1,y-1), f(x+1,y-1), f(x-1,y+1), f(x+1,y+1)\}$$

N_D		N_D
	X	
N_D		N_D

• Eight Neighbors, N8

$$N_8(f(x,y)) = \{N_D \cup N_4\}$$

<i>N</i> ₈	<i>N</i> ₈	<i>N</i> ₈
<i>N</i> ₈	\times	<i>N</i> ₈
<i>N</i> ₈	<i>N</i> ₈	<i>N</i> ₈

Connectivity

 $f(x_1, y_1), f(x_2, y_2)$ Pixels are considered connected if and only if:

- They're neighbors "according to some neighboring"
- $f(x_1, y_1), f(x_2, y_2) \in \xi \rightarrow$ Where ξ is the gray levels connectivity set $\xi = \{..., ..., ...\}$.

Connectivity

• Simple Example: find connected pixels for f(1,1) using N4 and connectivity set $\xi = \{3,4,5,6,7,8,9,10\}$. Redo using Nd, N8

Image Path:

•	$f(x_1, y_1)$	→	$f(x_n,$	(γ_n)
	1 ("1) 21/	_	JUN	ノルノ

2	4	7
6	5	100
13	120	9

- The Image path is a sequence of connected pixels starts at the first pixel $f(x_1, y_1)$ and ends at $f(x_n, y_n)$
- This Path sometimes doesn't exist, could be unique, and could be multiple paths
- Path $((f(x_1, y_1), f(x_n, y_n)) is = \{f(x_1, y_1), ..., ..., f(x_n, y_n)\}$ where $\{f(x_i, y_i), f(x_{i+1}, y_{i+1})\}$ are connected pixels.
- The Image Path Length is (n-1)

Connectivity

- Connected region
 - A set of pixels of an image such that
 - Between any two pixels inside there exist at least one image path
 - There exits no image path between any other pixel outside and an inside one
 - An object within an image is a connected region

Labeling of Connected Regions

- Labeling is find out the connected regions of an image matrix.
- As a given to the labeling process beside the image matrix the neighboring N and the connectivity set ξ
- start from top left pixel then Visit Pixels from Left to Right then top to bottom:-
 - For Each pixel $\begin{cases} f(x,y) \notin \xi \\ f(x,y) \in Connectivity \ set \end{cases}$
 - If: $f(x, y) \notin \xi$ action: ignore and move to the next one.
 - If: $f(x, y) \in \xi$ Connectivity set then
 - -A) all neighbor pixels or some connected and all in the same label action: assign the current pixel to same label
 - -B) all or some of neighbors connected but in different labels action: -put the pixel in any label of them
 - - take a note that all these labels are equivalent
 - C:) All Neighbors are not connected
 - Action: start a new label and assign that pixel to the new label
 - *Continue to visit until the last pixel visited
 - *Join all marked equivalent labels to single label

Distance Metrics

Distance between Two pixel points $(f(x_1, y_1), f(x_2, y_2))$:

• 1) Euclidian:
$$\Delta(f(x_1, y_1), f(x_2, y_2)) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

• 2) City Blocks:
$$\Delta(f(x_1, y_1), f(x_2, y_2)) = |x_1 - x_2| + |y_1 - y_2|$$

• 3) Chess Board: $\Delta(f(x_1, y_1), f(x_2, y_2)) = \text{Max}(|x_1 - x_2|, |y_1 - y_2|)$