```
10/4/1
           (Item 1 from file: 351)
DIALOG(R) File 351: Derwent WPI
(c) 2004 Thomson Derwent. All rts. reserv.
AA- 1999-385367/ 199932 |
XR- <XRAM> C99-113346|
TI- Flame-retardant polycarbonate resin composition for electric and
    electronic uses.
PA- SUMITOMO DOW LTD (DOWC ); NEC CORP (NIDE ) |
AU- <INVENTORS> IJI M; SATO I; SERIZAWA S; SHINOMIYA T|
NC- 024|
NP- 010|
PN- WO 9928387
                  A1 19990610 WO 98JP5324
                                                19981126 199932 B<sub>|</sub>
                                             Α
PN- JP 11217494
                 A 19990810 JP 98306366
                                                19981012 199942
                                             Α
                 A1 20000913 EP 98955940
                                                19981126 200046
PN- EP 1035169
    <AN> WO 98JP5324
                        A 19981126
PN- CN 1280597 A 20010117 CN 98811568
                                                19981126 200128
                                             Α
PN- KR 2001032367 A 20010416 KR 2000705603 A
                                                20000523 200163
PN- US 6433050
                 B1 20020813 WO 98JP5324
                                                19981126 200255
                                             Α
    <AN> US 2000555285 A 20000724
PN- MX 2000005250 A1 20011001 MX 20005250
                                             A 20000526 200274
                 B1 20030618 EP 98955940
PN- EP 1035169
                                             A 19981126 200341
    <AN> WO 98JP5324
                        A 19981126
PN- DE 69815708 E 20030724 DE 615708
                                             A 19981126 200356
    <AN> EP 98955940
                       A 19981126
    <AN> WO 98JP5324
                        A 19981126
PN- TW 544462
                 A 20030801 TW 98119157
                                             A 19981119 200411|
AN- <LOCAL> WO 98JP5324 A 19981126; JP 98306366 A 19981012; EP 98955940 A
    19981126; WO 98JP5324 A 19981126; CN 98811568 A 19981126; KR 2000705603
    A 20000523; WO 98JP5324 A 19981126; US 2000555285 A 20000724; MX
    20005250 A 20000526; EP 98955940 A 19981126; WO 98JP5324 A 19981126; DE
    615708 A 19981126; EP 98955940 A 19981126; WO 98JP5324 A 19981126; TW
    98119157 A 199811191
AN- <PR> JP 97343699 A 19971128|
FD- WO 9928387
                 A1 C08L-069/00
    <DS> (National): CN KR MX US
    <DS> (Regional): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE
FD- EP 1035169
                 A1 C08L-069/00
                                   Based on patent WO 9928387
    <DS> (Regional): DE FR GB NL SE
FD- US 6433050
                 B1 C08J-005/10
                                   Based on patent WO 9928387
FD- EP 1035169
                  B1 C08L-069/00
                                   Based on patent WO 9928387
    <DS> (Regional): DE FR GB NL SE
FD- DE 69815708
                 E C08L-069/00
                                   Based on patent EP 1035169
               Based on patent WO 9928387|
LA- WO 9928387(J<PG> 35); JP 11217494(20); EP 1035169(E); EP 1035169(E)|
DS- <NATIONAL> CN KR MX US!
DS- <REGIONAL> AT; BE; CH; CY; DE; DK; ES; FI; FR; GB; GR; IE; IT; LU; MC;
    NL; PT; SEI
AB- <PN> WO 9928387 A1|
AB- <NV> NOVELTY - A flame retardant polycarbonate resin composition
    comprises (pts. wt.):
        (A) a polycarbonate resin (100),
        (B) a silicone compound (0.01 to 8), and either
        (C) a metal salt of an aromatic sulfur compound or
        (D) a metal salt of a perfluoroalkanesulfonic acid ( 0.03 to 5 ).
AB- <BASIC> DETAILED DESCRIPTION - (B) has a main chain having a branched
    structure and organic substituents bearing aromatic groups.
        USE - The polycarbonate resin composition is used for electric,
    electronic uses.
        ADVANTAGE - The composition has an improved flame-retadancy and
```

contains no chlorine or bromine compound, and therefore contributes to

environmental protection.
 pp; 35 DwgNo 0/0|

AB- <TF> TECHNOLOGY FOCUS - POLYMERS - The resin composition, if necessary, contains (E) a fiber-forming fluoropolymer (0.05 to 5). The silicone compound contains 20 mol% or more of RSiO1.5 (T unit) and / or SiO2.0 (Q unit) per the total siloxane unit (R3approximately0 SiO2approximately0.5)

R=organic substituent group

The organic substituents amounting to 20 mol% aromatic group in which the aromatic component is a phenyl group and other component than phenyl is CH3 are terminal group of the silicone compound is at least one group selected from CH3, phenyl, OH and alkoxy. The metal salt of the aromatic sulfur compound is a metal salt of an aromatic sulfone amide or an aromatic sulfonic acid, and the carbon number of the perfluoroalkanesulfonic acid is 1 to 8. The metal salt of the aromatic sulfur compound is at least one salt selected from saccharine, N-(p-trylsulfonyl)-p-toluenesulfoimide, N-(N'-benzylaminocaarbonyl)sulfanylimide, n-(phenylcarboxyl)-sufanylimide, diphenylsulfone-3- sulfonic acid,

diphenylsulfone-3,3'-disulfonic acid and diphenylsulfon-3,4'-disulfonic

Preferred Composition: The composition contains 0.1 to 5 pts. wt. of the silicone compound and 0.02 to 2 pts. wt. of the metal salt of the aromatic sulfur compound acid, and, if necessary, 0.05 to 1 pts. wt. of the fiber-forming fluoropolymer. Another composition contains 0.1 to 5 pts. wt. of the silicone compound and 0.02 to 2 pts. wt. of the metal salt of the perfluoroalkanesulfonic acid, and, if necessary, 0.05 to 1 pts. wt. of the fiber-forming fluoropolymer. The metal in the metal salts of the aromatic sulfur compound or the perfluoroalkanesulfonic acid is an alkali metal. The fiber-forming fluoropolymer is a polytetrafluoroethylene.

- DE- <TITLE TERMS> FLAME; RETARD; POLYCARBONATE; RESIN; COMPOSITION; ELECTRIC; ELECTRONIC|
- DC- A14; A23; A26; A28; A60; A85; E12; E13; E19; Q381
- IC- <MAIN> C08J-005/10; C08K-005/36; C08L-069/00|
- IC- <ADDITIONAL> B66F-007/08; C08K-005/24; C08K-005/42; C08K-005/43; C08L-027/12; C08L-027-12; C08L-083/04; C08L-069/00; C08L-083-04|
- MC- <CPI> A05-E06B; A06-A00E2; A07-A03A; A08-F04C; A12-E01; E06-F01; E10-A08; E10-A09B|
- FS- CPI; EngPI||

PCT

世界知的所有権機関国 際 事 務 局

特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6 C08L 69/00, C08K 5/36 // (C08L 69/00,

83:04, 27:12)

A1

(11) 国際公開番号

WO99/28387

(43) 国際公開日

1999年6月10日(10.06.99)

(21) 国際出願番号

PCT/JP98/05324

(22) 国際出願日

1998年11月26日(26.11.98)

(30) 優先権データ

特願平9/343699

1997年11月28日(28.11.97) JP

(71) 出願人 (米国を除くすべての指定国について) 住友ダウ株式会社(SUMITOMO DOW LIMITED)[JP/JP] 〒103-0027 東京都中央区日本橋2丁目15番3号 Tokyo, (JP)

日本電気株式会社(NEC CORPORATION)[JP/JP]

〒108-8001 東京都港区芝五丁目7番1号 Tokyo, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

四之宮忠司(SHINOMIYA, Tadashi)[JP/JP]

佐藤一郎(SATO, Ichiro)[JP/JP]

〒569-1046 大阪府高槻市塚原二丁目10番1号

住友ダウ株式会社内 Osaka, (JP)

位地正年(IJI, Masatoshi)[JP/JP]

芹澤 慎(SERIZAWA, Shin)[JP/JP]

〒108-8001 東京都港区芝五丁目7番1号

日本電気株式会社内 Tokyo, (JP)

(74) 代理人

油脂工業会館 Tokyo, (JP)

(81) 指定国 CN, KR, MX, US, 欧州特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

添付公開書類

国際調査報告書

(54) Title: FLAME-RETARDANT POLYCARBONATE RESIN COMPOSITION

(54)発明の名称 難燃性ポリカーボネート樹脂組成物

(57) Abstract

A flame-retardant polycarbonate resin composition characterized by comprising 100 parts by weight of a polycarbonate resin (A), about 0.01 to 8 parts by weight of a silicone compound (B) whose main chain has a branched structure and whose organic substituents bear aromatic groups, either about 0.03 to 5 parts by weight of a metal salt (C) of an aromatic sulfur compound or about 0.01 to 5 parts by weight of a metal salt (D) of a perfluoroalkanesulfonic acid and, if necessary, about 0.05 to 5 parts by weight of a fiber-forming fluoropolymer (E). This composition is remarkably improved in flame retardance without impairing the impact resistance and moldability, and is out of danger of generating a halogen-containing gas due to a flame retardant in burning by virtue of its being free from a flame retardant comprising a chlorine or bromine compound, thus being advantageous in respect to environmental protection.

本発明はポリカー・ト樹脂(A)100重量部に対 主鎖が分岐構造でかつ含有する有機置換基中に芳香族基を持つシリコーン化合物(B)約0.01 重量部以上約8重量部以下及び芳香族硫黄化合物の金属塩(C)約0.03重量部以上約5重量部以下若しくはパーフルオロアルカンスルホン酸の金属塩(D)約0.01重量部以上約5重量部以下、又はこれらと繊維形成型の含フッ素ポリマー(E)約0.05重量部以上約5重量部以下を配合してなることを特徴とする難燃性ポリカーボネート樹脂組成物を提供する。本発明の難燃性ポリカーボネート樹脂組成物を提供する。本発明の難燃性ポリカーボネート樹脂組成物は、耐衝撃性や成形性を損なうことなく高度な難燃性を具備し、かつ塩素、臭素化合物等からなる難燃剤を含まないことから燃焼時に当該難燃剤に起因するハロゲンを含むガスの発生の懸念もなく、環境保護の面においても優れた性能も併せ持つ。

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

シンガポール スロヴェニア スロヴァキア シエラ・レオネ

セネガル スワジランド チャード トーゴー

タジキスタン

トルクメニスタン

ッ ソ リズ・キスタン ウズィェースラビア コースラビア 東アフリカ共和 ジンパブエ

トルコ トリニダッド・トバゴ ウクライナ ウガンダ

アラブ首長国連邦 アルバニア アルメニア オーストリア オーストラリア アゼルバイジャン ボズニア・ヘルツェゴビナ スペイン フィンランド フランス ガボン 英国 グレンデア リヒテンシュタイン スリ・ランカ リベリア LRS リルノト アン リルソト アン リレト アン アン リルト アン アン リルラ テナード ヤン MDC AM AT GA GB GD SI. ZABBBBBBBBBCCCCCCCCCCCDD ルクセンブルグ ラトヴィア SZ グルジア GGGGGGHU GGGGGHU クルン/ ガーナ ガンピア ギニア・ビサオ バルバドス ベルベー ベルギー ブルギナ・ファソ ブルガリア TMRTTAG マダガスカル マケドニア旧ユーゴスラヴィア MG MK フルガリア ベナシシル ベラシルシ カナダフー 中央アゴー 共和国マリ МL MN MR MX NE NL スイスコートジボアールカメルーン NO NZ PL PT ポルトガル ルーマロシア -マニア RŬ 神出 カザフスタン セントルシア ŝĎ スーダン スウェーデン

明細書

難燃性ポリカーボネート樹脂組成物

技術分野

本発明は、難燃性ポリカーボネート樹脂組成物に関するものである。更に、詳しくはポリカーボネート樹脂が本来有する優れた耐衝撃性等の機械的性質、流動性ならびに成型品の外観等の性能を損なうことなく難燃性を向上させ、かつ塩素、臭素化合物等のハロゲン系難燃剤ならびにりん系難燃剤を含有しない難燃性ポリカーボネート樹脂組成物に関する。

従来技術

ポリカーボネート樹脂は、透明性、耐衝撃性、耐熱性及び電気的特性に優れた エンジニアリングプラスチックとして電気・電子・〇A分野を始め、広範な分野 にて使用されている。

これら電気・電子・OAの分野では、パーソナルコンピュータ外装部品のように高度な難燃性(UL94V)や耐衝撃性を要求される部品が少なくない。ポリカーボネート樹脂は、自己消火性を備えた難燃性の高いプラスチック材料ではあるが、電気・電子・OA分野では安全上の要求を満たすため、UL94V-0や94V-1相当の一層高い難燃性が求められている。

そこでポリカーボネート樹脂の難燃性を向上するために、従来より臭素化ビスフェノールAのカーボネート誘導体のオリゴマーあるいはポリマーを多量に配合する方法が採用されている。

発明が解決しようとする課題

しかし臭素化ビスフェノールAのカーボネート誘導体のオリゴマーあるいはポリマーを難燃剤として多量に配合した場合には、確かにポリカーボネート樹脂の難燃性は向上するが、耐衝撃性が低下することにより成形品に割れが発生しやすいという問題があった。

一方、臭素を含む多量のハロゲン系化合物を配合することから、燃焼時に当該 ハロゲンを含むガスが発生する懸念もあり、環境面でも塩素、臭素等を含有しな い難燃剤の使用が望まれている。

これに対して、シリコーン化合物は耐熱性が高く、燃焼時に有害ガスを発生し にくく、それ自体の安全性も高いため、これを難燃剤として利用しようとする試 みも数多くなされてきた。

難燃剤としてのシリコーン化合物は、以下に示す4つのシロキサン単位(M単位、D単位、T単位、Q単位)の少なくともいずれかが重合してなるポリマーである。

① M単位

ここで、Rは有機置換基を表す。

② D単位

ここで、Rは有機置換基を表す。

③ T単位

PCT/JP98/05324

ここで、Rは有機置換基を表す。

④ Q単位

この内、特にT単位及び/又はQ単位を含有すると分岐状構造となる。

シリコーン化合物を難燃剤として使用するため、従来より、特開平1-318 069号公報、特公昭62-60421号公報等に記載される如き様々な有機置 換基を持つシリコーン化合物が試されてきた。

しかし、これらは単独の添加では大きな難燃効果を持つものは極めて少なく、 比較的効果が認められたものでも電気電子機器関係の厳しい難燃基準を満たすに は多量に添加する必要があり、その結果、プラスチックスの成形性、混練性及び 他の必要特性に悪影響が生じ、またコスト的にも不利であるため、実用的ではな かった。

これに対して、シリコーン化合物の難燃効果を向上させ、かつ添加量も削減する試みとして、シリコーン化合物と金属塩を併用する方法も報告されている。これについては、ポリジメチルシリコーンと金属水酸化物と亜鉛化合物(特開平2-150436号公報)、ポリジメチルシリコーンと有機酸のⅡa族金属塩(特

開昭 56-100853 号公報)、シリコーンレジン特にM単位とQ単位で表されるものとシリコーンオイル及び有機酸のIIa 族金属塩(特公平 3-48947 号公報)等の併用が挙げられるが、いずれも難燃性の面で効果に劣り、添加量の大幅な削減も困難であるという根本的な問題があった。

さらに、エポキシ基(ャーグリシドキシプロピル基)とフェニル基及び/又は ビニル基を持つオルガノポリシロキサンと有機スルホン酸のアルカリ金属塩及び アルカリ土類金属塩等を併用させたもの(特開平8-176425号公報)も報 告されているが、このシリコーン化合物の場合、反応性の高いエポキシ基やビニ ル基があるため、プラスチックス、特にポリカーボネート樹脂と混練中に高温の ためシリコーン化合物同士の反応が起こり高分子化(ゲル化)してしまうので、 ポリカーボネート樹脂と均一な混練ができにくく、また全体的な粘度も上昇して しまい、その結果、ポリカーボネート樹脂の成形性、特に成形体表面の剥離やヒ ケ、ムラが生じてしまう課題がある。さらに、このゲル化のため、シリコーン化 合物のポリカーボネート樹脂中での分散性が不十分となって、その結果、顕著な 難燃効果を発現するのが困難であり、また成形体の衝撃強度等の強度特性も低下 してしまう問題も生じる。

課題を解決するための手段

本発明者らは、上述の問題点に鑑み鋭意研究した結果、ポリカーボネート樹脂に配合する難燃剤として、特定のシリコーン化合物及び族硫黄化合物の金属塩又はパーフルオロアルカンスルホン酸の金属塩を併用し、さらにこれらに加えて繊維形成型の含フッ素ポリマーを使用することにより、耐衝撃性や成形性を低下させることなく高度な難燃性を備えた難燃性ポリカーボネート樹脂組成物を得ることを見出し、本発明を完成するに至った。

また、本発明の難燃性ポリカーボネート樹脂組成物は臭素系難燃剤等のハロゲン系難燃剤を含有しないことから、燃焼時に当該ハロゲン系難燃剤に起因するハロゲンを含むガスの発生の懸念もなく、環境保護の面においても優れた性能を有する。

すなわち、本発明は、ポリカーボネート樹脂(A)に対し、主鎖が分岐構造で

かつ有機置換基として芳香族基を含有するシリコーン化合物(B)及び芳香族硫 黄化合物の金属塩(C)又はパーフルオロアルカンスルホン酸の金属塩(D)を配合してなることを特徴とする難燃性ポリカーボネート樹脂組成物であり、さらに、この配合に繊維形成型の含フッ素ポリマー(E)を配合してなることを特徴とする難燃性ポリカーボネート樹脂組成物に関するものである。

発明の実施の形態

以下本発明の難燃性ポリカーボネート樹脂組成物につき、詳細に説明する。

本発明に使用されるポリカーボネート樹脂(A)とは、種々のジヒドロキシジアリール化合物とホスゲンとを反応させるホスゲン法、又はジヒドロキシジアリール化合物とジフェニルカーボネートなどの炭酸エステルとを反応させるエステル交換法によって得られる重合体であり、代表的なものとしては、2,2ービス(4ーヒドロキシフェニル)プロパン(ビスフェノールA)から製造されたポリカーボネート樹脂が挙げられる。

上記ジヒドロキシジアリール化合物としては、ピスフェノールAの他に、ピス (4-ヒドロキシフェニル)メタン、1, 1-ピス(4-ヒドロキシフェニル) エタン、2, 2-ピス(4-ヒドロキシフェニル) ブタン、2, 2-ピス(4-ヒドロキシフェニル) ブタン、2, 2-ピス(4-ヒドロキシフェニル) ブロパン、2, 2-ピス(4-ヒドロキシフェニル) プロパン、2, 2-ピス(4-ヒドロキシフェニル 20 プロパン、20 、20 ピス(4-ヒドロキシー20 第三プチルフェニル) プロパン、20 とこのは、21 のようなピス(4-ヒドロキシー21 のようなピス(4-ヒドロキシー22 のようなピス(4-ヒドロキシアリール) プロパンのようなピス(4-ヒドロキシアリール) アルカン類、11 のようなピス(4-ヒドロキシフェニル) ジクロペンタン、11 のようなピス(4-ヒドロキシフェニル) シクロペンタン、11 のようなピス(4-ヒドロキシフェニル) シクロペンタン、11 のようなピス(4-ヒドロキシフェニル) シクロペトサンのようなピス(ヒドロキシアリール) シクロアルカン類、41 のようなピス(ヒドロキシアリールカン類、42 のようなピス(ヒドロキシジフェニルエーテルのようなジヒドロキシジアリールスルフィドのようなジヒドロキシジアリールスルフィドのようなジヒドロキシジアリールスルフィドのようなジヒドロキシジアリールスルフィド類、41 のようなジヒドロキシジアリールスルフィド類、41 のようなジヒドロキシジフェニル

スルホキシド、4, 4 $^{\prime}$ $^{\prime$

これらは、単独又は2種類以上混合して使用されるが、ハロゲンで置換されていない方が燃焼時に懸念される当該ハロゲンを含むガスの環境への排出防止の面から好ましい。これらの他に、ピペラジン、ジピペリジルハイドロキノン、レゾルシン、4,4′-ジヒドロキシジフェニル等を混合して使用してもよい。

さらに、上記のジヒドロキシアリール化合物と以下に示すような3価以上のフェノール化合物を混合使用してもよい。

3価以上のフェノールとしてはフロログルシン、4,6ージメチルー2,4,6ートリー(4ーヒドロキシフェニル)ーヘプテン、2,4,6ージメチルー2,4,6ートリー(4ーヒドロキシフェニル)ーヘプタン、1,3,5ートリー(4ーヒドロキシフェニル)ーベンゾール、1,1,1ートリー(4ーヒドロキシフェニル)ーエタン及び2,2ーピスー[4,4ー(4,4'ージヒドロキシジフェニル)ーシクロヘキシル]ープロパンなどが挙げられる。

ポリカーボネート樹脂(A)の粘度平均分子量は通常約10000以上約10000以下、好ましくは約15000以上約35000以下である。かかるポリカーボネート樹脂を製造するに際し、分子量調節剤、触媒等を必要に応じて使用することができる。

本発明にて使用されるシリコーン化合物 (B) としては、下記一般式 (1) に示されるような、主鎖が分岐構造でかつ R 1 ~R 3 の有機置換基として芳香族基を含有するものである。

一般式(1)

ここで、 R^1 、 R^2 及び R^3 は主鎖の有機置換基を、Xは末端の置換基、n、m及び R^3 は それぞれのユニットのモル数を表す。

すなわち、分岐単位として T単位及び/又はQ単位を持つことを特徴とする。これらは全体のシロキサン単位の約20mol%以上含有することが好ましい。約20mol%未満であると、シリコーン化合物(B)の耐熱性が低下してその難燃性の効果が下がり、またシリコーン化合物(B)自体の粘度が低すぎてポリカーボネート樹脂(A)との混練性や成形性に悪影響を及ぼす場合がある。さらに好ましくは約30mol%以上、約95mol%以下である。約30mol%以上だとシリコーン化合物(B)の耐熱性が一層上がり、これを含有したポリカーボネート樹脂の難燃性が大幅に向上する。しかし約95mol%を越えるとシリコーンの主鎖の自由度が減少して、燃焼時の芳香環の縮合が生じにくくなる場合があり、顕著な難燃性を発現しにくくなる場合がある。

また、シリコーン化合物 (B) は、含有される有機置換基のうち芳香族基が約20mol%以上であることが好ましい。この範囲以下であると、燃焼時に芳香環同士の縮合が起こりにくくなり難燃効果が低下する場合がある。さらに好ましくは約40mol%以上、約95mol%以下である。約40mol%以上だと燃焼時の芳香族基が一層効率的に縮合できると同時に、ポリカーボネート樹脂(A)中でのシリコーン化合物(B)の分散性が大幅に改良され、極めて良好な難燃効果を発現できる。しかし約95mol%以上だと芳香族基同士の立体障害により、これらの縮合が生じにくくなる場合があり、顕著な難燃効果を発現できにくくなる場合がある。

この含有される芳香族基としては、フェニル、ビフェニル、ナフタレン、又はこれらの誘導体であるが、シリコーン化合物(B)の健康上の安全面からは、特にフェニル基が好ましい。本シリコーン化合物(B)中の有機置換基で、主鎖や分岐した側鎖に付いたもののうち、芳香族基以外の有機基としてはメチル基が好

ましく、さらに、末端基はメチル基、フェニル基、水酸基、アルコキシ基(特にメトキシ基)の内から、選ばれた1種又はこれらの2種から4種までの混合物であることが好ましい。これらの末端基の場合、反応性が低いため、ポリカーボネート樹脂(A)とシリコーン化合物(B)の混練時に、シリコーン化合物(B)のゲル化(架橋化)が起こりにくいので、シリコーン化合物(B)がポリカーボネート樹脂(A)中に均一に分散でき、その結果、一層良好な難燃効果を持つことができ、さらに成形性も向上する。特に好ましくはメチル基である。これの場合、極端に反応性が低いので、分散性が極めて良好になり、難燃性をさらに向上することができる。

シリコーン化合物 (B) の平均分子量(重量平均)は、好ましくは約5000以上約50万以下である。約5000未満だとシリコーン化合物自体の耐熱性が低下して難燃性の効果が低下し、さらに溶融粘度が低すぎて成形時にポリカーボネート樹脂 (A) の成形体表面にシリコーン化合物が浸み出して成形性を低下させる場合があり、また約50万を超えると溶融粘度が増加してポリカーボネート樹脂 (A) 中での均一な分散が損なわれ難燃性の効果や成形性が低下する場合がある。さらに特に好ましくは約1000以上約27万以下である。この範囲ではシリコーン化合物 (B) の溶融粘度が最適となるため、ポリカーボネート樹脂 (A) 中でシリコーン化合物 (B) が極めて均一に分散でき、表面への過度な浸みだしもないため、一層良好な難燃性と成形性を達成できる。

シリコーン化合物 (B) の配合量は、ポリカーボネート樹脂 (A) 100重量 部あたり約0.01重量部以上約8重量部以下が好ましい。配合量が約0.01 重量部未満では難燃効果が不十分な場合があり、また約8重量部を超えると成形品表面に表層剥離が発生し外観に劣る場合がある。より好ましくは、約0.1重量部以上約5重量部以下、更に好ましくは約0.5重量部以上約2重量部以下の範囲である。この範囲では難燃性と成形性、さらに衝撃強度のバランスが一層良好となる。

本発明にて使用される芳香族硫黄化合物の金属塩(C)としては、下記一般式(2)又は一般式(3)に示される芳香族スルホンアミドの金属塩又は下記一般式(4)に示される芳香族スルホン酸の金属塩である。

WO 99/28387 PCT/JP98/05324

一般式(2)

(一般式(2)において、Arはフェニル基又は置換フェニル基を、Mは金属陽イオンを表わす。)

一般式(3)

(一般式(3)において、Arはフェニル基又は置換フェニル基を、R'はスルホニル又はカルボニルを含有してもよい有機基を表すか、又はArがフェニレン基であってArとR'とが結合してもよく、Mは金属陽イオンを表わす。)

一般式(4)

$$A_{0\sim6}-R" = \begin{cases} 0\\ 11\\ 8\\ 11\\ 0 \end{cases}$$
 $R"-A_{1\sim6}$

(一般式(4)において、R"及びR"は、同じか又は異なってもよく、炭素原子が $1\sim6$ 個の脂肪族基、フェニル基、ピフェニリル基又置換フェニル基若しくはピフェニリル基を表し、Aは SO_3M (Mは、金属陽イオン)基を表わす。)

芳香族スルホンアミドの金属塩の好ましい例としては、サッカリンの金属塩、N-(p-トリルスルホニル)-p-トルエンスルホイミドの金属塩、N-(N

ゲーベンジルアミノカルボニル)スルファニルイミドの金属塩及びNー(フェニルカルボキシル)-スルファニルイミドの金属塩が挙げられる。また、芳香族スルホン酸の金属塩としては、ジフェニルスルホン-3-スルホン酸の金属塩、ジフェニルスルホン-3,3ゲージスルホン酸の金属塩及びジフェニルスルフォン-3,4ゲージスルホン酸の金属塩が挙げられる。これらは、一種もしくはそれ以上を併用して使用しても良い。

好適な金属としては、ナトリウム、カリウム等の I 族の金属 (アルカリ金属)、 I I 族の金属 (アルカリ土類金属)、銅、アルミニウム等が挙げられ、特にアルカリ金属が好ましい。

これらのうちでも特に、N-(p-h)リルスルホニル)-p-hルエンスルホイミドのカリウム塩、N-(N'-ペンジルアミノカルボニル) スルファニルイミドのカリウム塩又はジフェニルスルホン-3-スルホン酸のカリウム塩が好適に用いられ、さらに好ましくは、N-(p-h)リルスルホニル)-p-hルエンスルホイミドのカリウム塩、N-(N'-ペンジルアミノカルボニル) スルファニルイミドのカリウム塩である。

芳香族硫黄化合物の金属塩(C)の配合量は、ポリカーボネート樹脂(A) 1 0 0 重量部に対し約 0. 0 3 重量部以上約 5 重量部以下が好ましい。配合量が約 0. 0 3 重量部未満の場合には顕著な難燃効果を得るのが困難な場合があり、また約 5 重量部を超えると射出成形時の熱安定性に劣る場合があるため、その結果、成形性及び衝撃強度に悪影響を及ぼす場合がある。より好適には、約 0. 0 5 重量部以上約 2 重量部以下、更に好適には約 0. 0 6 重量部以上約 0. 4 重量部以下の範囲である。この範囲では特に、難燃性、成形性及び衝撃強度のバランスが一層良好となる。

本発明にて使用されるパーフルオロアルカンスルホン酸の金属塩(D)としては、下記一般式(5)に示されるパーフルオロアルカンスルホン酸の金属塩である。

一般式(5)

(式中、Mは金属陽イオン、nは1~8の整数を表わす。)

パーフルオロアルカンスルホン酸の金属塩(D)の好ましい例としては、パーフルオロメタンスルホン酸の金属塩、パーフルオロエタンスルホン酸の金属塩、パーフルオロブタンスルホン酸の金属塩、パーフルオロペンタンスルホン酸の金属塩、パーフルオロペキサンスルホン酸の金属塩、パーフルオロペプタンスルホン酸の金属塩、パーフルオロオクタンスルホン酸の金属塩が挙げられる。これらは、一種もしくはそれ以上を併用して使用しても良い。また、パーフルオロアルカンスルホン酸の金属塩(D)は、前述の芳香族硫黄化合物の金属塩(C)と併用して使用しても良い。

パーフルオロアルカンスルホン酸の金属塩(D)に用いられる好適な金属としては、ナトリウム、カリウム等の I 族の金属(アルカリ金属)、 I I 族の金属(アルカリ土類金属)、銅、アルミニウム等が挙げられ、特にアルカリ金属が好ましい。これらのうちでも特に、パーフルオロブタンスルホン酸のカリウム塩が好適に用いられる。

パーフルオロアルカンスルホン酸の金属塩(D)の配合量は、ポリカーボネート樹脂(A)100重量部に対し約0.01重量部以上約5重量部以下が好ましい。配合量が約0.01重量部未満の場合には顕著な難燃効果を得るのが困難な場合があり、また約5重量部を超えると射出成形時の熱安定性に劣る場合があるため、その結果、成形性及び衝撃強度に悪影響を及ぼす場合がある。より好適には、約0.02重量部以上約2重量部以下、更に好適には約0.03重量部以上約0.2重量部以下の範囲である。この範囲では特に、難燃性、成形性及び衝撃強度のバランスが一層良好となる。

本発明にて使用される、繊維形成型の含フッ素ポリマー(E)としては、ポリカーボネート樹脂(A)中で繊維構造(フィブリル状構造)を形成するものがよ

く、ポリテトラフルオロエチレン、テトラフルオロエチレン系共重合体 (例えば、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体、等)、米国特許第4379910号に示される様な部分フッ素化ポリマー、フッ素化ジフェノールから製造されるポリカーボネート等が挙げられる。これらは、本発明のシリコーン化合物 (B) 及び芳香族硫黄化合物の金属塩 (C)、又はシリコーン化合物 (B) 及びパーフルオロアルカンスルホン酸の金属塩 (D) の併用系に併せて使用した場合、従来のドリッピング防止効果だけでなく、特異的に燃焼時間の低減にも効果がある。

繊維形成型の含フッ素ポリマー(E)の配合量は、ポリカーボネート樹脂(A)100重量部に対し、約0.05重量部以上約5重量部以下である。配合量が約0.05重量部未満では燃焼時のドリッピング防止効果に劣る場合があり、かつ5重量部を超えると造粒が困難となることから安定生産に支障をきたす場合がある。より好適には、約0.05重量部以上約1重量部以下、更に好適には約0.1重量部以上約0.5重量部以下の範囲である。この範囲では、難燃性、成形性及び衝撃強度のバランスが一層良好となる。

更に、本発明の効果を損なわない範囲で、ポリカーボネート樹脂(A)に各種の熱安定剤、酸化防止剤、着色剤、蛍光増白剤、充填材、離型剤、軟化材、帯電防止剤、等の添加剤、衝撃性改良材、他のポリマーを配合しても良い。

熱安定剤としては、例えば硫酸水素ナトリウム、硫酸水素カリウム、硫酸水素 リチウム等の硫酸水素金属塩及び硫酸アルミニウム等の硫酸金属塩等が挙げられ る。これらは、ポリカーボネート樹脂(A)100重量部に対して、通常約0重 量部以上約0.5重量部以下の範囲で用いられる。

充填材としては、例えばガラス繊維、ガラスビーズ、ガラスフレーク、炭素繊維、タルク粉、クレー粉、マイカ、チタン酸カリウムウィスカー、ワラストナイト粉、シリカ粉等が挙げられる。

衝撃性改良材としては、例えばアクリル系エラストマー、ポリエステル系エラストマー、コアシェル型のメチルメタクリレート・ブタジエン・スチレン共重合体、メチルメタクリレート・アクリロニトリル・スチレン共重合体、エチレン・プロピレン系ゴム、等が挙げられる。

他のポリマーとしては、例えばポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル;ポリスチレン、ハイインパクトポリスチレン、アクリロニトリル・スチレン共重合体とこれのアクリルゴム変成物、アクリロニトリル・ブタジエン・スチレン共重合体、アクリロニトリル・エチレンープロピレンージエン系ゴム(EPDM)・スチレン共重合体等のスチレン系ポリマー、ポリプロピレン、さらにポリカーボネート樹脂とアロイ化して通常使用されるポリマーが挙げられる。

本発明の難燃性ポリカーボネート樹脂組成物中の各種配合成分の混合方法には、特に制限はなく、公知の混合機、例えばタンブラー、リボンブレンダー 等による混合や押出機による溶融混練が挙げられる。

本発明の難燃性ポリカーボネート樹脂組成物を成形する方法としては、特に制限はなく、公知の射出成形法、射出・圧縮成形法等を用いることができる。

実施例

以下に本発明を実施例により具体的に説明するが、本発明はそれら実施例に制限されるものではない。尚、「部」は重量基準に基づく。

実施例1~61及び比較例1~30

ビスフェノールAから製造されたポリカーボネート樹脂100部に対し、硫酸水素カリウム0.03部と各種配合物を表2~13に示す配合量に基づき37mm径の二軸押出機(神戸製鋼所製KTX-37)を用いて、シリンダー温度280℃にて溶融混練し、各種ペレットを得た。

使用された原料の詳細は、それぞれ次のとおりである。

- ポリカーボネート樹脂(A):
 住友ダウ社製カリバー 200-20(粘度平均分子量19000)
- 2. シリコーン化合物 (B):

シリコーン化合物(B)は、一般的な製造方法に従って製造した。すなわち、シリコーン化合物成分の分子量及びシリコーン化合物を構成するM単位、D単位、T単位及びQ単位の割合に応じて、適量のジオルガノジクロロシラン、モノオルガノトリクロロシラン及びテトラクロロシラン、あるいはそれらの部分加水分解

縮合物を有機溶剤中に溶解し、水を添加して加水分解して、部分的に縮合したシリコーン化合物を形成し、さらにトリオルガノクロロシランを添加して反応させることによって、重合を終了させ、その後、溶媒を蒸留等で分離した。上記方法で合成された19種のシリコーン化合物の構造特性を表1に示す。

表 1

	主鎖構造の	全有機置換基	末端基の	分子量
シリコーン	D/T/Q比率	中のフェニル基 キ	構造と比率	(重量平均) **
	(mol比)	の比率(mol	(mol比)	
		%)		
a	0.7/9.3/0	60	メチル基のみ	12,000
b	2/8/0	60	メチル基のみ	7,000
С	2/8/0	60	メチル基のみ	12,000
d	2/8/0	60	メチル基のみ	70,000
е	2/8/0	60	メチル基のみ	250,000
f	2/8/0	60	メチル基のみ	300,000
g	2/8/0	60	水酸基のみ	250,000
h	5/5/0	40	メチル基	80,000
i	6.5/3.5/0	50	メチル基のみ	50,000
j	6.5/1.5/2	50	メチル基のみ	50,000
k	6.5/3.5/0	50	メチル基/メトキシ基=1/1	50,000
1	7.5/2.5/0	50	メチル基のみ	50,000
m	9/1/0	50	メチル基のみ	50,000
n	10/0/0	50	メチル基のみ	50, 000
0	2/8/0	90	フェニル基のみ	70,000
p	2/8/0	45	メチル基のみ	70,000
q	2/8/0	25	メチル基のみ	70,000
r	2/8/0	10	メチル基のみ	70,000
S	2/8/0	0	メチル基のみ	70,000

- *:フェニル基は、T単位を含むシリコーン中ではT単位にまず含まれ、残った場合がD単位に含まれる。D単位にフェニル基が付く場合、1個付くものが優先し、さらにフェニル基が残余する場合に2個付く。末端基を除き、有機置換基は、フェニル基以外は全てメチル基である。
- **: 重量平均分子量は、有効数字2桁である。
- 3. 芳香族硫黄化合物の金属塩 (C):
 - ・ N-(p-h)リルスルホニル)-p-hルエンスルホイミドのカリウム塩(以下、C-1と略記する。)

- ・ $N-(N^2-4)$ ・ $N-(N^2-4)$
- ・ ジフェニルスルホンー3-スルホン酸カリウム(以下、C-3と略記する。)
- 4. パーフルオロアルカンスルホン酸の金属塩(D):
 - ・パーフルオロブタンスルホン酸のカリウム塩(以下、金属塩Dと略記)
- 5. 繊維形成型の含フッ素ポリマー(E):
 - ・ポリテトラフルオロエチレン(ダイキン社製ポリフロンFA-500)(以下、PTFEと略記する。)
- 6. テトラプロモビスフェノールAのカーボネート・オリゴマー:
- ・ グレート・レイクス・ケミカルズ社製BC-52 (以下、Br系オリゴマ

ーと略記する。)

得られた各種ペレットを125℃で4時間、乾燥した後に、射出成形機(日本 製鋼社製J100-E-C5)を用いて280℃、射出圧力1600Kg/cm ²にて難燃性評価用の試験片(125x13x1.6mm及び125x13x3 .2mm)を成形した。

該試験片を温度23℃、湿度50%の恒温室の中で48時間放置し、アンダーライターズ・ラボラトリーズが定めているUL94試験(機器の部品用プラスチック材料の燃焼性試験)に準拠した難燃性の評価を行った。UL94Vとは、鉛直に保持した所定の大きさの試験片にバーナーの炎を10秒間接炎した後の残炎時間やドリップ性から難燃性を評価する方法であり以下のクラスに分けられる。

	V-0	V - 1	V-2
各試料の残炎時間	10秒以下	30秒以下	3 0 秒以下
5 試料の全残炎時間	50秒以下	250秒以下	250秒以下
ドリップによる綿の着火	なし	なし	あり

上に示す残炎時間とは、着火源を遠ざけた後の、試験片が有炎燃焼を続ける時間の長さであり、ドリップによる綿の着火とは、試験片の下端から約300mm下にある標識用の綿が、試験片からの滴下(ドリップ)物によって着火されるかどうかによって決定される。結果を表2~13に示す。

また、得られた各種ペレットを用いて、同様に射出成形を行い、衝撃強度評価 用試験片 $(3.2 \times 12.7 \times 63.5 \text{mm})$ を作成した。この試験片を用いて、ASTMD-256に準じてノッチ付き衝撃強度を測定した。また、成形品の外観についても衝撃強度測定の前に試験片を目視判定し、表層剥離や表面のヒケの有無を評価した。結果をそれぞれ表 $2\sim 13$ に示す。

なお表2~13の中で、Brオリゴマー、シリコーン、金属塩及びPTFEの数値は、ポリカーボネート樹脂100部に対する添加量(重量部)を示す。また、難燃性の評価結果で、()値は5試料の残炎時間(着火後の燃焼時間)の合計(秒)を示し、[]値はドリップによる標識綿の着火発生の個数(5試料中の発生試料数)を示す。また、成形性は、成形試験片の表層剥離や表面のムラ、ヒケの発生を評価した(○は発生せず、△は5試料中1~2試料で発生、×は5試料中3試料以上で発生、を表わす。)。

表 2

						実	施	例				
		1	2	3	4	5	6	7	8	9	1 0	1 1
シリコ・	ーンa	2	_	-	_	_	_	_	-	_	_	-
シリコ・	ーンb	_	2	_		-		!	_	_	_	-
シリコ・	ーンc	_	_	2		-	_		-	_	-	-
シリコ・	ーンd	_	_	_	4	4	4	4	4	1	1	1
金属塩	C-1	0.1	0.1	0.1	0.04	0.1	0.4	4	0.1	0.06	0.2	2
PTF	E	0.3	0.3	0.3	_		_	-	0.2	0.2	0.2	0.2
難燃	3.2mm	V-0	V-0	V-0	V-0	V-0	V-0	V-1	V-0	V-0	V-0	V-0
性	厚み	(26)	(25)	(20)	(44)	(29)	(31)	(65)	(19)	(34)	(14)	(37)
UL94	1.6mm	V-0	V-0	V-0	V-1	V-0	V-0	V-1	V-0	V-0	V-0	V-1
	厚み	(33)	(34)	(25)	(59)	(37)	(40)	(83)	(24)	(48)	(17)	(53)
成形性	1	0	Δ	0	0	0	0	Δ	0	0	0	0
ノッチ付き	衝擊強	62	61	63	63	63	63	59	63	63	64	61
度(kg·	cm/cm)											

表 3

						_					
					実	施	例				
	Ì	1 2	1 3	1 4	1 5	1 6	1 7	1 8	1 9	2 0	2 1
シリニ	1ーンe	0.5	4	7	0.02	0.5	4	7	_	_	_
	iーンf	_		_	_	-	_	_	4	_	_
	1ーンg	_	_	_	_		-	_	_	4	4
	ĭ C-1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
PTF				_	0.3	0.3	0.3	0.3	0.3	-	0.3
難燃	3.2mm	V-0	V-0	V-0	V-1	V-0	V-0	V-0	V-0	V-0	V-0
性	厚み	(31)	(25)	(40)	(70)	(16)	(13)	(28)	(25)	(33)	(19)
UL94	1.6mm	V-0	V-0	V-0	V-1	V-0	V-0	V-0	V-0	V-0	V-0
0201	厚み	(39)	(35)	(49)	(95)	(21)	(17)	(37)	(34)	(43)	(26)
成形性		0	0	0	0	0	0	0	Δ	0	0
	き衝撃	63	64	63	54	63	64	62	62 .	63	63
ł	kg·cm/c		ļ								
m)								<u> </u>			<u> </u>

表 4

			実	施	例			
		2 2	2 3	2 4	2 5	2 6	2 7	2 8
シリコー	・ンh	2	2	2	2	2	2	2
金属塩C	:-1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
PTFE	,	_	0.06	0.1	0.3	0.5	1	4
難燃性	3.2mm	V-0						
UL94	厚み	(38)	(29)	(20)	(18)	(19)	(31)	(35)
l l	1.6mm	V-1	V-0	V-0	V-0	V-0	V-0	V-0
	厚み	(51)	(40)	(28)	(26)	(27)	(35)	(48)
成形性	 	0	0	0	0	0	0	0
ノッチ付き衝撃強		62	62	62	62	62	61	60
1	度(kg·cm/cm)							

表 5

				実	施	例			
		2 9	3 0	3 1	3 2	3 3	3 4	3 5	3 6
シリコー	-ン i	2	2	-	_	_	_	1	_
シリコー	-ン j	_	_	2	_	_	_	-	_
シリコー	-ン k	_	_	_	2	_	_	-	_
シリコー	-ンI	-	_	_	-	2	2		_
シリコー	- ン m	_	_	_	_		_	2	2
金属塩C	:-1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
PTFE	,	-	0.3	0.3	0.3	_	0.3		0.3
難燃性	3.2mm	V-0	V-0	V-0	V-0	V-0	V-0	V-1	V-1
UL94	厚み	(33)	(21)	(18)	(29)	(46)	(34)	(64)	(55)
	1.6mm	V-0	V-0	V-0 .	V-0	V-1	V-0	V-2	V-1
	厚み	(48)	(28)	(27)	(39)	(75)	(50)	[1]	(81)
成形性		0	0	0	0	0	0	Δ	Δ
リッチ付き	衝擊強	61	61	62	61	60	60	58	58
度(kg・	cm/cm)				<u> </u>	<u> </u>			

表 6

				実	施	例			
		3 7	3 8	3 9	4 0	4 1	4 2	4 3	4 4
シリコー	ンの	2	2	_	_	_	_	-	_
シリコー	ンp	_	_	2	2	_	_	_	-
シリコー	ンq	_	_	_	_	2	2	_	-
シリコー	ンr	_	_	_	_	_	_	2	2
金属塩C	-1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
PTFE		-	0.3	_	0.3	-	0.3	-	0.3
難燃性	3.2mm	V-0	V-0	V-0	V-0	V-0	V-0	V-1	V-1
UL94	厚み	(32)	(21)	(30)	(16)	(44)	(31)	(62)	(53)
	1.6mm	V-0	V-0	V-0	V-0	V-1	V-0	V-2	V-1
	厚み	(44)	(33)	(43)	(24)	(68)	(46)	[1]	(78)
成形性	1	0	0	0	0	0	0	Δ	Δ
ノッチ付き	衝撃強	65	65	63	63	61	61	56	55
度(kg・	cm/cm)	<u></u>	<u></u>		<u> </u>		<u> </u>		<u> </u>

表 7

					実	施	例			
		4 5	4 6	4 7	4 8	4 9	5 0	5 1	5 2	5 3
シリコー	-ン d	1	1	1	_		-	_	_	_
シリコ-	-ン e	_	_	_	4	4	4	_	-	-
シリコー	-ン h	-	-	_	_	_	-	2	2	2
金属塩	C - 1	0.1	-	1	0.2	_	_	0.1	1	
金属塩	C - 2	-	0.1	-	-	0.2		-	0.1	_
金属塩	C - 3	_	_	0.1	-	_	0.2	-		0.1
PTFI	Ξ	0.3	0.3	0.3	-	_	-	0.2	0.2	0.2
難燃性	3.2mm	V-0								
UL94	厚み	(9)	(10)	(19)	(25)	(27)	(36)	(19)	(21)	(29)
	1.6mm	V-0								
	厚み	(11)	(11)	(20)	(36)	(38)	(49)	(28)	(29)	(40)
成形性		0	0	0	0	0	0	0	0	0
ノッチ付き	衝擊強	64	64	64	63	64	63	62	62	62
度(kg・	cm/cm)						-			

表8

					実	施 侈	ij		
		5 4	5 5	5 6	5 7	5 8	5 9	6 0	6 1
シリコー	ーン d	4	4	4	4	4	1	1	1
金属塩	D	0.02	0.07	0.2	4	0.07	0.03	0.1	2
PTFI	E		_	-	_	0.3	0.3	0.3	0.3
難燃性	3.2mm	V-0	V-0	V-0	V-1	V-0	V-0	V-0	V-0
UL94	厚み	(49)	(36)	(42)	(76)	(24)	(39)	(16)	(45)
	1.6mm	V-1	V-0	V-0	V-1	V-0	V-0	V-0	V-1
:	厚み	(90)	(40)	(55)	(109)	(31)	(48)	(18)	(61)
成形性		0	0	0	Δ	0	0	0	0
リッチ付き	き衝撃強	62	63	63	57	63	62	63	60
度(kg·	cm/cm)								

表 9

<u> </u>					比	較	例		
		1	2	3	4	5	6	7	8
Br系オリ)ゴマー	_	_	_	_	5		-	
シリコー	-ン d	_		_	_	1	1	1	4
金属塩	C-1	-	0.1	_	0.1	-	0.02	6	6 .
PTFE	 E	_	_	0.3	0.3	0.3	0.2	0.2	
難燃性	3.2mm	V-2	V-2	V-1	V-1	V-0	V-1	V-1	V-1
UL94	厚み	[5]	[5]	(151)	(147)	(38)	(81)	(94)	(118)
į	1.6mm	V-2	V-2	V-2	V-2	V-0	V-1	V-1	V-1
	厚み	[5]	[5]	[2]	[2]	(45)	(101)	(111)	(127)
成形性		0	0	0	0	0	0	Δ	Δ
リッチ付き	き衝撃強	68	60	41	40	28	63	46	49
度(kg·	cm/cm)				<u> </u>		<u> </u>		

表10

			比較	例	٠
		9	1 0	1 1	1 2
シリコー	-ン e	0.005	0.005	10	10
金属塩	C-1	0.1	0.1	0.1	0.1
PTFE	<u> </u>	_	0.3		0.3
難燃性	3.2mm	V-1	V-1	V-0	V-0
UL94	厚み	(124)	(106)	(45)	(34)
	1.6mm	V-2	V-2	V-1	V-0
	厚み	[5]	[2]	(57)	(45)
成形性		0	0	×	×
ノッチ付き衝撃強度		61	43	60	60
(kg·cm	/cm)		<u> </u>		

表11

					比	較	例			
		1 3	1 4	1 5	1 6	1 7	1 8	1 9	2 0	2 1
シリコー	-ン h	2	_	_	-	-			-	-
シリコー		_	2		_	_ '	-	-	-	_
シリコー		-		2	-		-	_	-	-
シリコー		-		_	2	2	2	_	- '	
シリコー		_	_	_	_		-	2	_	_
シリコー			_	_	-	_	_	_	2	_
シリコー	-	_	_		_	_	_	_		2
金属塩	C-1	_	_	_	-	0.1	0.1		_	
PTFF	<u> </u>	-		_	_	_	0.3	_		_
難燃性	3.2mm	V-1	V-1	V-1	V-2	V-1	V-1	V-1	V-1	V-1
UL94	厚み	(79)	(80)	(92)	[4]	(124)	(111)	(95)	(78)	(87)
	1.6mm	V-2	V-2	V-2	V-2	V-2	V-2	V-2	V-2	V-2
	厚み	[2]	[2]	[3]	[5]	[5]	[3]	[3]	[2]	[3]
成形性		0	0	0	×	×	×	0	0	
	衝擊強	62	61	60	47	46	47	64	63	61
度(kg・										

表12

			比	較	例	
		2 2	2 3	2 4	2 5	2 6
シリコー	ンr	2	_			_
シリコー	ンs	_	2	2	2	2
金属塩(C-1		_	0.1	0.1	
金属塩(C −3	_	_			0.1
PTFE		-	_	-	0.3	0.3
難燃性	3.2mm	V-1	V-2	V-2	V-1	V-1
UL94	厚み	(116)	[4]	[4]	(136)	(131)
	1.6mm	V-2	V-2	V-2	V-2	V-2
	厚み	[4]	[5]	[5]	[3]	[3]
成形性		Δ	×	×	×	×
ノッチ付き衝撃強		55	47	46	46	45
度(kg・cm/cm)						

表13

		比 較 例			
		2 7	2 8	2 9	3 0
シリコーンd		1	1	4	4
金属塩 D		0.005	6	0.005	6
PTFE		0.2	0.2	_	
難燃性	3.2mm	V-1	V-1	V-1	V-1
UL94	厚み	(94)	(106)	(90)	(140)
0201	1.6mm	V-1	V-1	V-2	V-2
	厚み	(130)	(132)	[2]	[2]
成形性		0	Δ	0	Δ
ノッチ付き衝撃強度		63	44	58	45
(kg·cm/cm)					

実施例1~61に示すように、主鎖が分岐構造でかつ芳香族基を持つシリコーン化合物(B)約0.01重量部以上約8重量部以下、及び芳香族硫黄化合物の金属塩(C)約0.03重量部以上約5重量部以下又はパーフルオロアルカンスルホン酸の金属塩(D)約0.01重量部以上約5重量部以下を添加してなることを特徴とするポリカーボネート樹脂組成物、又はこれらの配合にさらに繊維形成型の含フッ素ポリマー(E)約0.05重量部以上約5重量部以下を添加したポリカーボネート樹脂組成物は、これらの添加剤の全てを含まないポリカーボネート樹脂単独(比較例1)又はシリコーン化合物(B)と芳香族硫黄化合物の金属塩(C)を併せ持たないポリカーボネート樹脂組成物(比較例2~4、13~15、19~22)又は本発明以外の構造のシリコーン化合物を添加したポリカーボネート樹脂組成物(比較例16~18、23~26)よりも極めて大きな難燃効果を発揮した。さらに比較例5に示すような、従来の臭素系難燃剤を添加した際に問題となっているポリカーボネート樹脂組成物の衝撃強度の低下については、本実施例に示すように著しく改善されている。

シリコーン化合物 (B) の添加量としては、実施例12~18及び比較例9~12に示すように、約0.01重量部未満であると難燃性が低下し(比較例9~10)、約8重量部より多くなると特に成形性が低下(比較例11~12)する

芳香族硫黄化合物の金属塩 (C) の添加量としては、実施例4~11及び比較

例6~8に示すように、約0.03重量部未満であると難燃性が低下(比較例6)し、約5重量部より多くなると成形性及び衝撃強度が低下(比較例7~8)する。

シリコーン化合物 (B) 及び芳香族硫黄化合物の金属塩 (C) と併用して使用される繊維形成型の含フッ素ポリマー (E) は、実施例22~28、実施例2.9と30、33と34、35と36、37と38、39と40、41と42、43と44に示すように、これを添加すると燃焼時のポリカーボネート樹脂組成物のドリップ防止効果が向上するだけでなく燃焼時間の低減にも大きな効果があり、本含フッ素ポリマー (E) は単なるドリップ防止剤としての機能だけでなく本シリコーン化合物 (B) と本金属塩 (C) の併用系に対して特有な難燃化全体の向上への相乗効果がある。また、実施例22の配合に本含フッ素ポリマー (E) を6重量部添加した組成物を作製しようとしたところ、造粒が困難になり評価ができなかった。

パーフルオロアルカンスルホン酸の金属塩(D)の添加量としては、実施例54~57および比較例29~30に示すように、約0.01重量部未満であると 難燃性が低下(比較例29)し、約5重量部より多くなると難燃性、成形性及び 衝撃強度が低下(比較例30)する。

シリコーン化合物(B) およびパーフルオロアルカンスルホン酸の金属塩(D) と併用して使用される繊維形成型の含フッ素ポリマー(E) は、実施例55と実施例58に示すように、これを添加すると燃焼時のポリカーボネート樹脂組成物のドリップ防止効果が向上するだけでなく燃焼時間の低減にも大きな効果があり、本含フッ素ポリマー(E) は単なるドリップ防止剤としての機能だけでなく本シリコーン化合物(B) と本金属塩(D)の併用系に対して特有な難燃化全体の向上への相乗効果がある。また、実施例55の配合に本含フッ素ポリマー(E)を6重量部添加した組成物を作製しようとしたところ、造粒が困難になり評価ができなかった。

また、このシリコーン化合物の構造としては、実施例 $29 \sim 36$ と比較例 $16 \sim 18$ に示すように、主鎖の分岐単位、すなわち式 $RSiO_{1.5}$ の単位(T 単位)及び/又は式 $SiO_{2.0}$ の単位(Q 単位)が含まれると、これらが含まれないシリ

コーンに比べ (比較例 $16\sim18$)、添加したポリカーポネート樹脂組成物の難燃性、成形性及び衝撃強度が大幅に向上し、特に全体のシロキサン単位 ($R_{3\sim0}$ SiO $_{2\sim0.5}$) に対して約 $20\,\mathrm{mo}1\%$ 以上含有するもの (実施例 $29\sim34$)では、これらの特性が一層良好となる。さらに、特に実施例 29×30 と実施例 33×34 の比較から明らかなように、これらの分岐単位が特に約 $30\,\mathrm{mo}1\%$ 以上含有するシリコーン化合物 (実施例 29×30) は、難燃性及び衝撃性がさらに良くなっている。また、これらの分岐単位が約 $95\,\mathrm{mo}1\%$ より多くなると顕著な難燃効果を発現しにくくなる場合がある。このように、分岐単位すなわち、式RSiO $_{1.5}$ の単位 (T 単位)及び/又は式SiO $_{2.0}$ の単位 (Q 単位) は、全体のシロキサン単位 ($R_{3\sim0}$ SiO $_{2\sim0.5}$) に対して約 $20\,\mathrm{mo}1\%$ 以上が好ましく、特に約 $30\,\mathrm{mo}1\%$ 以上約 $95\,\mathrm{mo}1\%$ 以下が、難燃性、成形性及び衝撃強度に対して好ましい。

さらに、実施例 30、31に示すように、分岐単位として式 $SiO_{1.0}$ の単位(Q単位)を含むものは、式 $RSiO_{1.5}$ の単位(T単位)だけのものに比べ、同等以上の難燃性を示す。

また、シリコーン化合物(B)の有機置換基中の芳香族基(フェニル基)は、実施例37~42と、実施例43~44及び比較例23~26に示すように、これらがが含有されると、含有されないものに比べ(比較例23~26)、添加したポリカーボネート樹脂組成物の難燃性、成形性及び衝撃強度が向上し、特に20mo1%以上含有(実施例37~42)されると難燃性、成形性及び衝撃強度は一層良好となり、さらに実施例37~40と、実施例41~42に示すように、約40mo1%以上(実施例37~40)で難燃性を大幅に向上することができる。また、有機置換基中の芳香族基(フェニル基)が約95mo1%より多くなると顕著な難燃効果が発現しにくくなる場合がある。このように、シリコーン化合物(B)の有機置換基中の芳香族基(フェニル基)は、約20mo1%以上が好ましく、特に約40mo1%以上約95mo1%以下が、難燃性、成形性及び衝撃強度から好ましい。

シリコーン化合物 (B) の末端基については、実施例13と17、20~21、30と32、37~38に示すように、メチル基(実施例13、17、30)

、フェニル基(実施例37~38)、水酸基(実施例20~21)、アルコキシ基(メトキシ基)(実施例32)を含むものが良好な難燃性、成形性及び衝撃強度を示すことがわかる。さらに、実施例13と17、20と21に示すように、末端基が水酸基よりもメチル基が、また実施例30と32に示すように、アルコキシ基よりもメチル基が難燃性に良好である。さらに、フェニル基よりもメチル基のほうが難燃性に良好である。また、エポキシ基(アーグリシドキシプロピル基)やビニル基を含むものは、特に反応性が強いため、ポリカーボネート樹脂との混練の際にシリコーン化合物同士の反応が起こり、シリコーン化合物(B)がゲル化してしまい、ポリカーボネート樹脂の成形性が大幅に低下し、さらにシリコーン化合物(B)のポリカーボネート樹脂中での分散性も低下するため、十分な難燃効果や衝撃強度が得られなくなる。よって、シリコーン化合物(B)の末端基はメチル基が最も好ましい。

本シリコーン化合物(B)の分子量は、実施例2、3、17、19からわかるように、成形性と難燃性の点から約5000以上約50万以下、特に約10000以上約27万以下が好ましい。

また、この芳香族硫黄化合物の金属塩(C)の構造としては、実施例 $45 \sim 5$ 3に示されるように、N-(p-h) ルスルホニル)-p-h ルエンスルホイミドのカリウム塩(C-1)、N-(N'-ベンジルアミノカルボニル)スルファニルイミドのカリウム塩(<math>C-2)又はジフェニルスルホン-3-スルホン酸のカリウム塩(C-3)が好適に用いられ、特に好ましくは、N-(p-h) ルホニル)-p-h ルエンスルホイミドのカリウム塩及びN-(N'-ベンジルアミノカルボニル)スルファニルイミドのカリウム塩である。

以上の結果により、本発明のシリコーン化合物(B)約0.01重量部以上約8重量部以下と、本発明の芳香族硫黄化合物の金属塩(C)約0.03重量部以上約5重量部以下又はパーフルオロアルカンスルホン酸の金属塩(D)約0.01重量部以上約5重量部以下を組み合わせて用いると、ポリカーボネート樹脂(A)の難燃化に対して本シリコーン化合物(B)単独では成し得ない極めて大きな難燃効果を発揮した。これは、これらの組合せの系においてのみに認められた特有の相乗効果である。

さらに、繊維形成型の含フッ素ポリマー(E)約0.05重量部以上約5重量部以下とこれらを組み合わせて用いると、燃焼時のポリカーボネート樹脂組成物に対するドリップ防止効果が向上するだけでなく燃焼時間の低減にも大きな効果があり、本シリコーン化合物(B)と本金属塩(C)、又は本シリコーン化合物(B)と本金属塩(D)の併用系に対してのみに特有な難燃化全体の向上への相乗効果がある。

本発明の難燃性ポリカーボネート樹脂組成物は、耐衝撃性や成形性を損なうことなく高度な難燃性を具備し、かつ塩素、臭素化合物等からなる難燃剤を含まないことから燃焼時に当該難燃剤に起因するハロゲンを含むガスの発生の懸念もなく、環境保護の面においても優れた性能も併せ持つ。

請 求 の 範 囲

- 1. ポリカーボネート樹脂100重量部に対し、主鎖が分岐構造でかつ含有する有機置換基中に芳香族基を持つシリコーン化合物約0.01重量部以上約8重量部以下を含み、かつ芳香族硫黄化合物の金属塩約0.03重量部以上約5.重量部以下又はパーフルオロアルカンスルホン酸の金属塩約0.01重量部以上約5 重量部以下を含む難燃性ポリカーボネート樹脂組成物。
- 2. 更に繊維形成型の含フッ素ポリマー約0.05重量部以上約5重量部以下を含む請求項1に記載の難燃性ポリカーボネート樹脂組成物。
- 3. 前記シリコーン化合物の配合量が約0.1重量部以上約5重量部以下及び 前記芳香族硫黄化合物の金属塩の配合量が約0.05重量部以上約2重量部以下 である請求項1に記載の難燃性ポリカーボネート樹脂組成物。
- 4. 前記シリコーン化合物の配合量が約0.1重量部以上約5重量部以下及び 前記パーフルオロアルカンスルホン酸の金属塩の配合量が約0.02重量部以上 約2重量部以下である請求項1に記載の難燃性ポリカーボネート樹脂組成物。
- 5. 前記シリコーン化合物の配合量が約0.1重量部以上約5重量部以下、前記芳香族硫黄化合物の金属塩の配合量が約0.05重量部以上約2重量部以下、及び前記繊維形成型の含フッ素ポリマーの配合量が約0.05重量部以上約1重量部以下である請求項2に記載の難燃性ポリカーボネート樹脂組成物。
- 6. 前記シリコーン化合物の配合量が約0.1 重量部以上約5 重量部以下、前記パーフルオロアルカンスルホン酸の金属塩の配合量が約0.02 重量部以上約2 重量部以下及び前記繊維形成型の含フッ素ポリマーの配合量が約0.05 重量部以上約1 重量部以下である請求項2 に記載の難燃性ポリカーボネート樹脂組成物。
- 7. 前記シリコーン化合物が、式RSiO $_{1.5}$ の単位(T単位)及び/又は式SiO $_{2.0}$ の単位(Q単位)を全体のシロキサン単位(R $_{3\sim0}$ SiO $_{2\sim0.5}$)(式中、Rは有機置換基を表わす。)に対して約20mol%以上含有する請求項1に記載の難燃性ポリカーボネート樹脂組成物。
- 8. 前記シリコーン化合物が、式RSi〇 $_{1..5}$ の単位(T単位)及び/又は式S

- $iO_{2.0}$ の単位(Q単位)を全体のシロキサン単位($R_{3\sim0}$ Si $O_{2\sim0.5}$)(式中、Rは有機置換基を表わす。)に対して約20mol%以上含有する請求項2に記載の難燃性ポリカーボネート樹脂組成物。
- 9. 前記有機置換基のうちの前記芳香族基の比率が約20mol%以上である 請求項1に記載の難燃性ポリカーボネート樹脂組成物。
- 10. 前記有機置換基のうちの前記芳香族基の比率が約20mol%以上である請求項2に記載の難燃性ポリカーボネート樹脂組成物。
- 11. 前記芳香族基がフェニル基であり、前記芳香族基以外の前記有機置換基がメチル基であり、前記シリコーン化合物の末端基がメチル基、フェニル基、水酸基及びアルコキシ基から成る群から選択される少なくとも1種である請求項1に記載の難燃性ポリカーボネート樹脂組成物。
- 12. 前記芳香族基がフェニル基であり、前記芳香族基以外の前記有機置換基がメチル基であり、前記シリコーン化合物の末端基がメチル基、フェニル基、水酸基及びアルコキシ基から成る群から選択される少なくとも1種である請求項2に記載の難燃性ポリカーボネート樹脂組成物。
- 13. 前記芳香族硫黄化合物の金属塩が、芳香族スルホンアミドの金属塩又は 芳香族スルホン酸の金属塩であり、前記パーフルオロアルカンスルホン酸の炭素 数が1~8である請求項1に記載の難燃性ポリカーボネート樹脂組成物。
- 14. 前記芳香族硫黄化合物の金属塩が、芳香族スルホンアミドの金属塩又は 芳香族スルホン酸の金属塩であり、前記パーフルオロアルカンスルホン酸の炭素 数が1~8である請求項2に記載の難燃性ポリカーボネート樹脂組成物。
- 15. 前記芳香族硫黄化合物の金属塩が、サッカリン、N-(p-h)リスルホニル)-p-hルエンスルホイミド、N-(N'-d)ンジルアミノカルボニル)スルファニルイミド、N-(D)エニルカルボキシル)-スルファニルイミド、ジフェニルスルホン-3-スルホン酸、ジフェニルスルホン-3, 3'-ジスルホン酸及びジフェニルスルホン-3, 4'-ジスルホン酸から成る群から選択される少なくとも1種の金属塩である請求項13に記載の難燃性ポリカーボネート樹脂組成物。
- 16. 前記芳香族硫黄化合物の金属塩が、サッカリン、N- (p-トリルスル

- 17. 前記芳香族硫黄化合物の金属塩及び前記パーフルオロアルカンスルホン酸の金属塩の金属がアルカリ金属である請求項1に記載の難燃性ポリカーボネート樹脂組成物。
- 18. 前記芳香族硫黄化合物の金属塩及び前記パーフルオロアルカンスルホン酸の金属塩の金属がアルカリ金属である請求項2に記載の難燃性ポリカーボネート樹脂組成物。
- 19. 前記芳香族硫黄化合物の金属塩及び前記パーフルオロアルカンスルホン酸の金属塩の金属がアルカリ金属である請求項13に記載の難燃性ポリカーボネート樹脂組成物。
- 20. 前記芳香族硫黄化合物の金属塩及び前記パーフルオロアルカンスルホン酸の金属塩の金属がアルカリ金属である請求項14に記載の難燃性ポリカーボネート樹脂組成物。
- 21. 前記繊維形成型の含フッ素ポリマーがポリテトラフルオロエチレンである請求項2に記載の難燃性ポリカーボネート樹脂組成物。
- 22. 前記繊維形成型の含フッ素ポリマーがポリテトラフルオロエチレンである請求項5に記載の難燃性ポリカーボネート樹脂組成物。
- 23. 前記繊維形成型の含フッ素ポリマーがポリテトラフルオロエチレンである請求項6に記載の難燃性ポリカーボネート樹脂組成物。

INTERNATIONAL SEARCH REPORT

International application No.

A. CLASSIFICATION OF SUBJECT MATTER Int.C16 C08L69/00, C08K5/36 // (C08L69/00, C08L83:04, C08L27:12)					
According to	o International Patent Classification (IPC) or to both na	tional classification and IPC			
	S SEARCHED				
Minimum de Int.	Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁶ C08L69/00, C08K5/36-5/47, C08L83/00-83/16, C08L27/12-27/20				
Jitsu Kokai	ion searched other than minimum documentation to the ayo Shinan Koho 1926-1998 L Jitsuyo Shinan Koho 1971-1998	Toroku Jitsuyo Shinan Koh Jitsuyo Shinan Toroku Koh	o 1994-1998 o 1996-1998		
Electronic d	ata base consulted during the international search (nan	ne of data base and, where practicable, so	earch terms used)		
C. DOCUI	MENTS CONSIDERED TO BE RELEVANT		•		
Category*	Citation of document, with indication, where ap	•	Relevant to claim No.		
X	JP, 59-500099, A (General El 19 January, 1984 (19. 01. 84		1, 3		
Y	Claims; page 7, upper left of page 8, upper right column, & US, 4387176, A & WO, 8303 & AU, 8312242, A & NO, 8303 & EP, 100349, Al	column, line 20 to line 7 2751, A	1-23		
Y	JP, 9-111109, A (Mitsubishi Corp.), 28 April, 1997 (28. 04. 97), Claims; page 4, right column, line 33; page 5, left column, column, lines 10 to 17 (Fami	line 5 to left column, lines 15 to 31, right	1-23		
× Further	er documents are listed in the continuation of Box C.	See patent family annex.			
"A" docume conside "E" earlier docume cited to special "O" docume means "P" docume the prior	categories of cited documents: ent defining the general state of the art which is not cred to be of particular relevance. document but published on or after the international filing date ent which may throw doubts on priority claim(s) or which is o establish the publication date of another citation or other reason (as specified) ent referring to an oral disclosure, use, exhibition or other ent published prior to the international filing date but later than ority date claimed	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family			
Date of the actual completion of the international search 22 February, 1999 (22. 02. 99) Date of mailing of the international search report 2 March, 1999 (02. 03. 99)			rch report 03. 99)		
	nailing address of the ISA/ anese Patent Office	Authorized officer			
Facsimile No.		Telephone No.			

INTERNATIONAL SEARCH REPORT

International application No.
PMI JP98/05324

C (Continua	ation). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	JP, 2-214728, A (The Dow Chemical Co.), 27 August, 1990 (27. 08. 90), Claims; page 3, lower right column, line 10 to page 4, left column, line 6 & EP, 374816, A1 & AU, 8946976, A & CA, 2005962, A & BR, 8906572, A & US, 5041479, A & DE, 68925794, E	1-23
Y	JP, 6-329894, A (Idemitsu Petrochemical Co., Ltd.), 29 November, 1994 (29. 11. 94), Claims; Par. Nos. [0021] to [0026] & EP, 625547, A1 & BR, 9401992, A & US, 5449710, A & DE, 69413877, E	1-23
	·	

電話番号 03-3581-1101 内線 3457

	国际确定 牧 古	国际山嶼番グ ドビエグ ゴドラ	0/00024
Int. Cl	属する分野の分類(国際特許分類(IPC)) ・ C08L69/00、C08K5/36 08L69/00、C08L83:04、C0	8 L 2 7 : 1 2)	
Int. Cl6	Tった分野	/47、 2-27/20	
日本国第 日本国第 日本国第	公開実用新案公報 1971- 其用新案登録公報 1996-	- 1 9 9 8 年 - 1 9 9 8 年 - 1 9 9 8 年 - 1 9 9 8 年	
	用した電子データベース(データベースの名称、 	調査に使用した用語)	
C. 関連する 引用文献の カテゴリー*	ると認められる文献 引用文献名 及び一部の箇所が関連すると	したは、この眼中ナス体系の妻子	関連する 請求の範囲の番号
X Y	JP, 59-500099, A(ゼンパニイ)19.1月.1984(19時許請求の範囲、第7頁左上欄第20をUS, 4387176, A&V&AU, 8312242, A&BEP, 100349, A1	ネラル・エレクトリック・カン 9. 01.84) 0行〜第8頁右上欄第7行	1, 3 1~23
Y	JP, 9-111109, A(三菱-株式会社) 28. 4月. 1997(特許請求の範囲、第4頁右欄第5行 15行〜第31行、第5頁右欄第1 ファミリーなし	28.04.97) ~左欄第33行、第5頁左欄第	1~23
X C欄の続	きにも文献が列挙されている。	□ パテントファミリーに関する □	川紙を参照。
もの 「E」国後 以後先権 「L」優先権 文献 「O」口頭に	のカテゴリー 連のある文献ではなく、一般的技術水準を示す 願日前の出願または特許であるが、国際出願日 公表されたもの 主張に疑義を提起する文献又は他の文献の発行 くは他の特別な理由を確立するために引用する 理由を付す) よる開示、使用、展示等に言及する文献 願日前で、かつ優先権の主張の基礎となる出願	の日の後に公表された文献 「T」国際出願日又は優先日後に公表 て出願と矛盾するものではなく 論の理解のために引用するもの 「X」特に関連のある文献であって、 の新規性又は進歩性がないと考 「Y」特に関連のある文献であって、 上の文献との、当業者にとって よって進歩性がないと考えられ 「&」同一パテントファミリー文献	、発明の原理又は理 当該文献のみで発明 えられるもの 当該文献と他の1以 自明である組合せに
国際調査を完	了した日 22.02.99	国際調査報告の発送日 02.03	99
日本	の名称及びあて先 国特許庁 (ISA/JP) 郵便番号100-8915	特許庁審査官(権限のある職員) 林 美穂 ・ F	

東京都千代田区霞が関三丁目4番3号

国際調査報告

国際出願番号 PCT/JP98/05324

C (続き).	関連すると認められる文献	
引用文献の カテゴリー*		関連する 請求の範囲の番号
Y	JP, 2-214728, A (ザ・ダウ・ケミカル・カンパニー) 27. 8月. 1990 (27. 08. 90) 特許請求の範囲、第3頁右下欄第10行〜第4頁左欄第6行 &EP, 374816, A1 &AU, 8946976, A &CA, 2005962, A &BR, 8906572, A &US, 5041479, A &DE, 68925794, E	1~23
Y	JP, 6-329894, A(出光石油化学株式会社)29.11 月.1994(29.11.94) 特許請求の範囲、段落[0021]~[0026] &EP, 625547, A1 &BR, 9401992, A &US, 5449710, A &DE, 69413877, E	1~23
	<u>-</u>	
	·	