#### 2025科研方法与论文写作大作业-PPT

1024040807-顾许磊

南京邮电大学计算机学院、软件学院、网络空间安全学院

#### Table of contents

- Chapter4 Value Iteration and Policy Iteration Algorithms
  - Value iteration algorithm
  - Policy iteration algorithm
  - Truncated policy iteration algorithm

#### Table of contents

- Chapter4 Value Iteration and Policy Iteration Algorithms
  - Value iteration algorithm
  - Policy iteration algorithm
  - Truncated policy iteration algorithm

- 如何求解 Bellman optimality equation
  - ▶ 回顾一下 BOE

$$v = f(v) = \max_{\pi} \pi (r_{\pi} + \gamma P_{\pi} v)$$

▶ 实际上我们可以通过迭代的方式来进行求解

$$v_{k+1} = f(v_k) = \max_{\pi} \pi(r_{\pi} + \gamma P_{\pi} v_k)$$

▶ 其中  $v_0$  可以任意初始化,通过迭代我们最终可以得到最优策略,这个算法就称为 value iteration



$$v_{k+1} = f(v_k) = \max_{\pi} \pi(r_{\pi} + \gamma P_{\pi} v_k)$$

#### 算法可以分两步

• policy update, 对于一个给定的  $v_k$ , 我们希望能够找到一个最优的  $\pi$ 

$$\pi_{k+1} = \arg\max_{\pi} \pi(r_{\pi} + \gamma P_{\pi} v_k)$$

• value update, 将我们得到的  $\pi$  代入, 求解  $v_{k+1}$ 

$$v_{k+1} = r_{\pi_{k+1}} + \gamma P_{\pi_{k+1}} v_k$$



#### Pseudocode: Value iteration algorithm

**Initialization:** The probability model p(r|s, a) and p(s'|s, a) for all (s, a) are known. Initial guess  $v_0$ .

**Aim:** Search the optimal state value and an optimal policy solving the Bellman optimality equation. While  $v_k$  has not converged in the sense that  $\|v_k-v_{k-1}\|$  is greater than a predefined small threshold, for the kth iteration, do

- For every state  $s \in \mathcal{S}$ , do
  - ▶ For every action  $a \in A(s)$ , do
    - $\star$  q-value:  $q_k(s,a) = \sum_r p(r|s,a)r + \gamma \sum_{s'} p(s'|s,a)v_k(s')$
  - ▶ Maximum action value:  $a_k^*(s) = \arg \max_a q_k(a, s)$
  - ▶ Policy update:  $\pi_{k+1}(a|s) = 1$  if  $a = a_k^*$ , and  $\pi_{k+1}(a|s) = 0$  otherwise
  - ▶ Value update:  $v_{k+1}(s) = \max_a q_k(a, s)$



环境的奖励设置为  $r_{boundary} = r_{forbidden} = -1, r_{target} = 1, discount rate <math>\gamma = 0.9$ ,我们把所有状态的 v 值都初始化为 0



| q-value | $a_1 \uparrow$ | $a_2 \rightarrow$ | $a_3 \downarrow$ | $a_4 \leftarrow$ | $a_5(stay)$ |
|---------|----------------|-------------------|------------------|------------------|-------------|
| $s_1$   | -1             | -1                | 0                | -1               | 0           |
| $s_2$   | -1             | -1                | 1                | 0                | -1          |
| $s_3$   | 0              | 1                 | -1               | -1               | 0           |
| $s_4$   | -1             | -1                | -1               | 0                | 1           |

• Step 1: Policy update:

$$\pi_1(a_5|s_1) = 1, \pi_1(a_3|s_2) = 1, \pi_1(a_2|s_3) = 1, \pi_1(a_5|s_4) = 1$$

• Step 2: Value update:

$$v_1(s_1) = 0, v_1(s_2) = 1, v_1(s_3) = 1, v_1(s_4) = 1$$



| q-value               | $a_1 \uparrow$ | $a_2 \rightarrow$ | $a_3 \downarrow$ | $a_4 \leftarrow$ | $a_5(stay)$ |
|-----------------------|----------------|-------------------|------------------|------------------|-------------|
| $s_1$                 | -1             | -1                | 0                | -1               | 0           |
| $s_2$                 | -1             | -1                | 1                | 0                | -1          |
| $s_3$                 | 0              | 1                 | -1               | -1               | 0           |
| <i>S</i> <sub>4</sub> | -1             | -1                | -1               | 0                | 1           |

• 根据新的 v 值继续进行计算, $v_1(s_1)=0,v_1(s_2)=1,v_1(s_3)=1,v_1(s_4)=1$ 

| q-table               | $a_1$           | $a_2$           | $a_3$           | $a_4$           | $a_5$           |
|-----------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| $s_1$                 | $-1 + \gamma 0$ | $-1+\gamma 1$   | $0 + \gamma 1$  | $-1 + \gamma 0$ | $0 + \gamma 0$  |
| $s_2$                 | $-1 + \gamma 1$ | $-1 + \gamma 1$ | $1 + \gamma 1$  | $0 + \gamma 0$  | $-1 + \gamma 1$ |
| <i>s</i> <sub>3</sub> | $0 + \gamma 0$  | $1 + \gamma 1$  | $-1 + \gamma 1$ | $-1 + \gamma 1$ | $0 + \gamma 1$  |
| $s_4$                 | $-1 + \gamma 1$ | $-1 + \gamma 1$ | $-1 + \gamma 1$ | $0 + \gamma 1$  | $1 + \gamma 1$  |

• Step 1: Policy update:

$$\pi_1(a_3|s_1) = 1, \pi_1(a_3|s_2) = 1, \pi_1(a_2|s_3) = 1, \pi_1(a_5|s_4) = 1$$

• Step 2: Value update:

$$v_2(s_1) = \gamma 1, v_2(s_2) = 1 + \gamma 1, v_2(s_3) = 1 + \gamma 1, v_2(s_4) = 1 + \gamma 1$$









#### 给定一个随机初始化的策略 $\pi_0$ ,

Step 1: policy evaluation (PE)
 这一步是为了计算在策略 π<sub>k</sub> 下的 state value:

$$v_{\pi_k} = r_{\pi_k} + \gamma P_{\pi_k} v_{\pi_k}$$

• Step 2: policy improvement (PI) 根据  $v_{\pi k}$ , 我们可以得到一个新的策略

$$\pi_{k+1} = \arg\max_{\pi} (r_{\pi} + \gamma P_{\pi} v_{\pi_k})$$



#### Pseudocode: Policy iteration algorithm

**Initialization:** The probability model p(r|s,a) and p(s'|s,a) for all (s,a) are known.

Initial guess  $\pi_0$ .

**Aim:** Search for the optimal state value and an optimal policy. While the policy has not converged, for the *k*th iteration, do

- Policy evaluation:
  - **1** Initialization: an arbitrary initial guess  $v_{\pi_k}^{(0)}$
  - 2 While  $v_{\pi_k}^{(j)}$  has not converged, for the jth iteration, do
    - **1** For every state  $s \in \mathcal{S}$ , do

$$v_{\pi_k}^{(j+1)}(s) = \sum_{a} \pi_k(a|s) \left[ \sum_{r} p(r|s, a)r + \gamma \sum_{s'} p(s'|s, a)v_{\pi_k}^{(j)}(s') \right]$$

- Policy improvement:
  - $\bullet \quad \text{For every state } s \in \mathcal{S}, \text{ do}$ 
    - **1** For every action  $a \in \mathcal{A}(s)$ , do

$$q_{\pi_k}(s, a) = \sum_r p(r|s, a)r + \gamma \sum_{s'} p(s'|s, a)v_{\pi_k}(s')$$

- $a_k^*(s) = \arg\max_a q_{\pi_k}(s, a)$
- $\bullet$   $\pi_{k+1}(a|s)=1$  if  $a=a_k^*$ , and  $\pi_{k+1}(a|s)=0$  otherwise



- The reward setting is  $r_{\rm boundary} = -1$  and  $r_{\rm target} = 1$ . The discount rate is  $\gamma = 0.9$ .
- Actions:  $a_\ell, a_0, a_r$  represent go left, stay unchanged, and go right.
- Aim: use policy iteration to find out the optimal policy.

Iteration k=0: Step 1: policy evaluation  $\pi_0$  is selected as the policy in Figure (a). The Bellman equation is

$$v_{\pi_0}(s_1) = -1 + \gamma v_{\pi_0}(s_1), v_{\pi_0}(s_2) = 0 + \gamma v_{\pi_0}(s_1)$$

Solve the equations directly:

$$v_{\pi_k} = (I - \gamma P_{\pi_k})^{-1} r_{\pi_k}$$

$$v_{\pi_0}(s_1) = -10, \quad v_{\pi_0}(s_2) = -9$$

$$\mathbf{I} - \gamma \mathbf{P}_{\pi_0} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - 0.9 \times \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0.1 & 0 \\ -0.9 & 1 \end{bmatrix}$$

$$(\mathbf{I} - \gamma \mathbf{P}_{\pi_0})^{-1} = \begin{bmatrix} 10 & 0 \\ 9 & 1 \end{bmatrix}$$

$$\mathbf{v}_{\pi_0} = \begin{bmatrix} 10 & 0 \\ 9 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 0 \end{bmatrix} = \begin{bmatrix} -10 \\ -9 \end{bmatrix}$$

• Solve the equations iteratively. Select the initial guess as  $v_{\pi_0}^{(0)}(s_1) = v_{\pi_0}^{(0)}(s_2) = 0$ :

$$\begin{cases} v_{\pi_0}^{(1)}(s_1) = -1 + \gamma v_{\pi_0}^{(0)}(s_1) = -1, \\ v_{\pi_0}^{(1)}(s_2) = 0 + \gamma v_{\pi_0}^{(0)}(s_1) = 0, \end{cases}$$

$$\begin{cases} v_{\pi_0}^{(2)}(s_1) = -1 + \gamma v_{\pi_0}^{(1)}(s_1) = -1.9, \\ v_{\pi_0}^{(2)}(s_2) = 0 + \gamma v_{\pi_0}^{(1)}(s_1) = -0.9, \end{cases}$$

$$\begin{cases} v_{\pi_0}^{(3)}(s_1) = -1 + \gamma v_{\pi_0}^{(2)}(s_1) = -2.71, \\ v_{\pi_0}^{(3)}(s_2) = 0 + \gamma v_{\pi_0}^{(2)}(s_1) = -1.71, \end{cases}$$

$$\begin{cases} \dots \end{cases}$$

Iteration k=0: Step 2: policy improvement  $q_{\pi_k}(s,a)$ :

| $q_{\pi_k}(s,a)$ | $a_{\ell}$                   | $a_0$                       | $a_r$                        |
|------------------|------------------------------|-----------------------------|------------------------------|
| $s_1$            | $-1 + \gamma v_{\pi_k}(s_1)$ | $0 + \gamma v_{\pi_k}(s_1)$ | $1 + \gamma v_{\pi_k}(s_2)$  |
| $s_2$            | $0 + \gamma v_{\pi_k}(s_1)$  | $1 + \gamma v_{\pi_k}(s_2)$ | $-1 + \gamma v_{\pi_k}(s_2)$ |

Substituting  $v_{\pi_0}(s_1) = -10, v_{\pi_0}(s_2) = -9$  and  $\gamma = 0.9$  gives

| $q_{\pi_0}(s,a)$ | $a_{\ell}$ | $a_0$ | $a_r$ |
|------------------|------------|-------|-------|
| $s_1$            | -10        | -9    | -7.1  |
| $s_2$            | -9         | -7.1  | -9.1  |

By seeking the greatest value of  $q_{\pi_0}$ , the improved policy is:

$$\pi_1(a_r|s_1) = 1, \quad \pi_1(a_0|s_2) = 1.$$



#### Truncated policy iteration algorithm

The two algorithms are very similar:

Policy iteration: 
$$\pi_0 \xrightarrow{PE} v_{\pi_0} \xrightarrow{PI} \pi_1 \xrightarrow{PE} v_{\pi_1} \xrightarrow{PI} \pi_2 \xrightarrow{PE} v_{\pi_2} \xrightarrow{PI} \cdots$$
  
Value iteration:  $u_0 \xrightarrow{PU} \pi_1' \xrightarrow{VU} u_1 \xrightarrow{PU} \pi_2' \xrightarrow{VU} u_2 \xrightarrow{PU} \cdots$ 

PE=policy evaluation. PI=policy improvement.

PU=policy update. VU=value update.

#### Truncated policy iteration algorithm

#### ▶ Let's compare the steps:

| Let's compare the steps. |                                                                |                                                          |                                                     |  |  |
|--------------------------|----------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|--|--|
|                          | Policy iteration algorithm                                     | Value iteration algorithm                                | Comments                                            |  |  |
| 1) Policy:               | $\pi_0$                                                        | N/A                                                      |                                                     |  |  |
| 2) Value:                | $v_{\pi_0} = r_{\pi_0} + \gamma P_{\pi_0} v_{\pi_0}$           | $v_0 := v_{\pi_0}$                                       |                                                     |  |  |
| 3) Policy:               | $\pi_1 = \arg \max_{\pi} (r_{\pi} + \gamma P_{\pi} v_{\pi_0})$ | $\pi_1 = \arg\max_{\pi} (r_{\pi} + \gamma P_{\pi} v_0)$  | The two policies are the same                       |  |  |
| 4) Value:                | $v_{\pi_1} = r_{\pi_1} + \gamma P_{\pi_1} v_{\pi_1}$           | $v_1 = r_{\pi_1} + \gamma P_{\pi_1} v_0$                 | $v_{\pi_1} \ge v_1$ since $v_{\pi_1} \ge v_{\pi_0}$ |  |  |
| 5) Policy:               | $\pi_2 = \arg\max_{\pi} (r_{\pi} + \gamma P_{\pi} v_{\pi_1})$  | $\pi_2' = \arg\max_{\pi} (r_{\pi} + \gamma P_{\pi} v_1)$ |                                                     |  |  |
|                          |                                                                |                                                          |                                                     |  |  |
| :                        | •                                                              | 1:                                                       | :                                                   |  |  |
|                          |                                                                | I *                                                      |                                                     |  |  |

- They start from the same initial condition.
- The first three steps are the same.
- The fourth step becomes different:
  - ▶ In policy iteration, solving  $v_{\pi_1} = r_{\pi_1} + \gamma P_{\pi_1} v_{\pi_1}$  requires an iterative algorithm (an infinite number of iterations)
  - ▶ In value iteration,  $v_1 = r_{\pi_1} + \gamma P_{\pi_1} v_0$  is a one-step iteration

# Truncated policy iteration algorithm

Consider the step of solving  $v_{\pi_1} = r_{\pi_1} + \gamma P_{\pi_1} v_{\pi_1}$ :

$$\begin{aligned} v_{\pi_{1}}^{(0)} &= v_{0} \\ \text{value iteration} \leftarrow v_{1} \leftarrow v_{\pi_{1}}^{(1)} &= r_{\pi_{1}} + \gamma P_{\pi_{1}} v_{\pi_{1}}^{(0)} \\ v_{\pi_{1}}^{(2)} &= r_{\pi_{1}} + \gamma P_{\pi_{1}} v_{\pi_{1}}^{(1)} \\ &\vdots \\ \text{truncated policy iteration} \leftarrow \bar{v}_{1} \leftarrow v_{\pi_{1}}^{(j)} &= r_{\pi_{1}} + \gamma P_{\pi_{1}} v_{\pi_{1}}^{(j-1)} \\ &\vdots \\ \text{policy iteration} \leftarrow v_{\pi_{1}} \leftarrow v_{\pi_{1}}^{(\infty)} &= r_{\pi_{1}} + \gamma P_{\pi_{1}} v_{\pi_{1}}^{(\infty)} \end{aligned}$$