Università di Pisa - CdL in Informatica

Correzione secondo compitino

a cura di Alessio Del Vigna

Pisa, 06 Giugno 2019

Esercizio 1. Sia $p(x) = x^6 + 1$.

- (a) Si fattorizzi p(x) in $\mathbb{Q}[x]$ in fattori irriducibili.
- (b) Si fattorizzi p(x) in $\mathbb{R}[x]$ in fattori irriducibili.
- (c) Si fattorizzi p(x) in $\mathbb{Z}/(3)[x]$ in fattori irriducibili.

Soluzione. (a) Si osservi che $x^6 + 1 = (x^2 + 1)(x^4 - x^2 + 1)$ e che i due fattori sono irriducibili in $\mathbb{Q}[x]$. Questo secondo fatto può essere dimostrato direttamente, ma segue anche dal prossimo punto.

(b) Data la fattorizzazione al punto (a), il fattore x^2+1 è irriducibile in $\mathbb{R}[x]$, mentre il secondo è riducibile in quanto di grado > 2. Utilizziamo il fatto che il secondo fattore, $q(x) \coloneqq x^4 - x^2 + 1$, può essere fattorizzato in irriducibili di primo grado in $\mathbb{C}[x]$. Le radici complesse di q(x) si possono determinare risolvendo $x^4 - x^2 + 1 = 0$: si ottiene dapprima $x^2 = \frac{1}{2} + i \frac{\sqrt{3}}{2} \equiv \lambda$ o $x^2 = \frac{1}{2} - i \frac{\sqrt{3}}{2} = \bar{\lambda}$, da cui $x = \pm \mu$ o $x = \pm \bar{\mu}$, dove $\mu^2 = \lambda$ è una delle radici quadrate di λ in \mathbb{C}^1 . Si noti che $|\mu| = 1$, poiché $|\lambda| = 1$. Così

$$q(x) = x^4 - x^2 + 1 = (x + \mu)(x - \mu)(x + \bar{\mu})(x - \bar{\mu})$$

è la fattorizzazione di q(x) in fattori irriducibili di primo grado in $\mathbb{C}[x]$. Moltiplicando il primo e il terzo fattore tra loro e il secondo e il quarto fra loro si ottiene

$$q(x) = (x^2 + 2\operatorname{Re}\mu x + 1)(x^2 - 2\operatorname{Re}\mu x + 1).$$

Svolgendo il prodotto a destra e uguagliando termine a termine con q(x) si ottiene che Re $\mu = \frac{\sqrt{3}}{2}$. Così si ha la fattorizzazione in irriducibili in $\mathbb{R}[x]$

$$p(x) = (x^2 + 1)q(x) = (x^2 + 1)(x^2 + \sqrt{3}x + 1)(x^2 - \sqrt{3}x + 1).$$

(c) Sempre partendo dalla fattorizzazione del punto (a), si può vedere subito che $x^2 + 1$ è irriducibile in $\mathbb{Z}/(3)[x]$. Essendo $x^2 + 1$ di secondo grado, è irriducibile se e solo se non ha radici, e che non ne ha si vede per prova diretta. Per studiare la riducibilità di $q(x) = x^4 - x^2 + 1$ ci sono vari modi.

Primo metodo (forza bruta). Si vede direttamente che q(x) non ha radici in $\mathbb{Z}/(3)[x]$, quindi si potrebbe scrivere al massimo come prodotto di polinomi di secondo grado. Imponendo questa condizione e risolvendo si ottiene

$$q(x) = (x^2 + 1)^2$$
,

da cui $x^6 + 1 = (x^2 + 1)^3$.

Secondo metodo (più furbo). Si osservi che $q(x)=x^4+2x^2+1$ in $\mathbb{Z}/(3)[x]$, da cui la fattorizzazione precedente segue immediatamente.

Terzo metodo (molto furbo). Si osservi che in $\mathbb{Z}/(3)[x]$ si ha $x^6+1=x^6+3x^4+3x^2+1=(x^2+1)^3$.

¹Notare che se $\mu^2 = \lambda$ allora $(\bar{\mu})^2 = \bar{\lambda}$.

Esercizio 2. Consideriamo una matrice reale simmetrica $A = \begin{pmatrix} a & b & c \\ b & d & e \\ c & e & f \end{pmatrix}$ tale che il determi-

nante di A è 12 e

$$\begin{pmatrix} a & b & c \\ b & d & e \\ c & e & f \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 2 & 0 \\ 3 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 4 & 0 \\ 6 & 0 \end{pmatrix}.$$

Si calcolino se possibile:

- (a) gli autovalori di A;
- (b) la dimensione di Ker (A 2I).

Soluzione. Il teorema spettrale garantisce la diagonalizzabilità di A, in quanto matrice simmetrica a coefficienti reali. Si osservi poi che la condizione sul prodotto ci dice che

$$A \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix} \quad \text{e} \quad A \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix},$$

ossia che $\lambda_1 = 2$ è un autovalore di A, con due autovettori indipendenti, quindi con molteplicità geometrica ≥ 2 . Ma allora la molteplicità algebrica di λ_1 , coincidendo con la molteplicità geometrica perché A è diagonalizzabile, sarà ≥ 2 . La molteplicità algebrica di λ_1 però non può essere 3, altrimenti il determinante di A, dato dal prodotto degli autovalori, sarebbe $2^3 = 8$. Così λ_1 è un autovalore di A con molteplicità algebrica 2 e c'è un altro autovalore λ_2 , necessariamente di molteplicità algebrica 1. Dalla conoscenza del determinante si ha

$$12 = \det(A) = \lambda_1^2 \lambda_2,$$

da cui $\lambda_2=3$. La dimensione di Ker(A-2I) è per definizione la molteplicità geometrica di $\lambda_1=2$, che è 2.

Esercizio 3. Consideriamo in \mathbb{R}^4 i vettori u=(1,-1,2,-1) e $v=(2,\lambda,4,-2)$, dove $\lambda\in\mathbb{R}$ è un parametro. Sia U il sottospazio ortogonale a u e V il sottospazio ortogonale a v in \mathbb{R}^4 .

- (a) Per quali valori di λ l'intersezione $U \cap V$ ha dimensione 2?
- (b) Per quali valori di λ si ha $U + V \neq \mathbb{R}^4$?

Soluzione. Dato che u e v generano spazi di dimensione 1, si ha dimU=3 e dimV=3 per ogni $\lambda \in \mathbb{R}$. Dalla formula di Grassmann si ha

$$\dim(U+V) = \dim U + \dim V - \dim(U \cap V) = 6 - \dim(U \cap V),$$

da cui segue che vi sono solo due possibilità per le dimensioni di U+V e $U\cap V$: o $\dim(U\cap V)=3$ e $\dim(U+V)=3$, o $\dim(U\cap V)=2$ e $\dim(U+V)=4$. Si osservi che se $\lambda=-2$ allora u e v sono linearmente dipendenti: in questo caso U=V e $\dim(U\cap V)=3$, da cui $\dim(U+V)=3$. Se invece $\lambda\neq -2$ allora u e v sono linearmente indipendenti, così che $U\neq V$. Poiché $U\neq V$ non può essere $\dim(U\cap V)=3$, e quindi deve essere $\dim(U\cap V)=2$.

- (a) Dall'argomento precedente segue che per $\lambda \neq -2$ si ha $\dim(U \cap V) = 2$.
- (b) Dall'argomento precedente segue che per $\lambda = -2$ si ha dim(U+V) = 3 < 4, così $U+V \neq \mathbb{R}^4$.

Esercizio 4. Consideriamo l'insieme \mathbb{N}_{30} dei numeri interi da 1 a 30 inclusi e una coppia ordinata (A, B) di sottoinsiemi di $A \subseteq \mathbb{N}_{30}$ e $A \subseteq \mathbb{N}_{30}$.

- (a) Quante sono tutte le possibili coppie (A, B)?
- (b) Quante sono le coppie (A, B) tali che A e B hanno entrambi cardinalità 5 e la loro intersezione ha un solo elemento?
- (c) Quante sono le coppie (A, B) tali che nessun elemento di $A\pounds$ è congruo modulo 3 a qualche elemento di B.

Soluzione. (a) Il numero di sottoinsiemi di \mathbb{N}_{30} è 2^{30} , così che le coppie ordinate di sottoinsiemi sono $2^{30} \cdot 2^{30}$.

- (b) Per fissare un coppia (A, B) con le caratteristiche richieste è sufficiente fissare l'unico elemento di $A \cap B$, poi i quattro elementi di A e i quattro elementi di B. La prima scelta si fa in 30 modi, la seconda in $\binom{29}{4}$ e la terza in $\binom{25}{4}$. In conclusione, il numero di coppie è $30\binom{29}{4}\binom{25}{4}$.
- (c) Si osservi che le classi di congruenza modulo 3 sono esattamente tre, e che in \mathbb{N}_{30} ci sono 10 elementi per classe di congruenza. Iniziamo contando le coppie (A,B) con $A,B\neq\emptyset$ e che soddisfano la condizione data. Ci sono $2^{10}-1$ modi di scegliere un sottoinsieme non vuoto dei numeri $\equiv 0 \pmod{3}$ e 2 modi per decidere se metterli in A o in B. Analogamente per i numeri $\equiv 1 \pmod{3}$ e per i numeri $\equiv 2 \pmod{3}$. Quindi in tutto si hanno $2^3(2^{10}-1)^3$ modi per scegliere le coppie con A e B non vuoti. Rimangono i casi in cui uno dei due tra A e B è vuoto: sono $2^{30}-1$ quando $A=\emptyset$ e $2^{30}-1$ quando $B=\emptyset$. Da ultimo, abbiamo anche la coppia in cui A e B sono entrambi vuoti. In totale si hanno

$$2^{3}(2^{10}-1)^{3}+2\cdot(2^{30}-1)+1$$

possibili coppie (A, B) che soddisfano le richieste.