

CHƯƠNG 2

KÉT NÓI MẠNG Ở LỚP 2

(Data Link Layer Switching/Bridging)

TS. TRẦN QUANG VINH

MỘT SỐ KHÁI NIỆM

Miền xung đột (bandwidth domain)

- Vùng mạng mà trong đó các khung phát ra có thể gây xung đột với nhau.
- Càng nhiều trạm trong cùng một miền xung đột → tăng sự xung đột và làm giảm tốc độ truyền
- các trạm trong cùng miền này sẽ chia sẻ băng thông của miền miền băng thông

Miền quảng bá (broadcast domain)

- Miền gồm các thiết bị mà trong đó khi một thiết bị phát đi một khung quảng bá thì tất cả các thiết bị còn lại đều nhận được.
 - Khi sử dụng các thiết bị kết nối khác nhau, ta sẽ phân chia mạng thành các miền xung đột và miền quảng bá khác nhau

MŲC TIÊU

Mục đích

- Kết nối nhiều mạng LAN, mở rộng vùng hoạt động của mạng LAN
- Phân chia băng thông hợp lý đáp ứng nhu cầu của các ứng dụng trong mạng
- Tăng hiệu suất hoạt động, tăng băng thông chia sẻ cho một nút bằng cách chia nhỏ một mạng lớn thành nhiều vùng quảng bá nhỏ

Các thiết bị kết nối mạng LAN

- Lớp Vật lý: Hub, Repeater
- Lóp MAC: Bridge, Switch
 - Bridge: IEEE802.1D
- Lớp Mạng: Router

Hub/ Repeater

Khuyếch đại tín hiệu

- Mở rộng chiều dài kênh truyền
- Mở rộng miền xung đột
- Không có cơ chế kiểm tra trạng thái kênh

• Ưu điểm:

– Tăng chiều dài kênh

Nhược điểm:

- Chiều dài kênh truyền lớn → hiệu suất kênh truyền giảm do xác suất va đập tăng
- Cùng miền quảng bá → số nút lớn dẫn đến băng thông chia sẻ cho một nút giảm
 - Giả sử 8 trạm nối cùng một hub 10BaseT tốc độ 10Mb/s, vì tại một thời điểm chỉ có một trạm được truyền nên băng thông trung bình cho mỗi trạm là:

10 Mb/s : 8 tram = 1,25 Mbps / 1 tram

Hub/ Repeater

■ Tram A→B:

Hub/ Repeater

Passive hub

- Kết nối tất cả các công giao tiếp trên nó, chuyển tín hiệu điện từ cổng này đến cổng khác
- Không có chức năng khuếch đại và xử lý tín hiệu

Active hub

 Khuếch đại và làm sạch tín hiệu trước khi chuyển đến các cổng giao tiếp khác

Bridge (cầu nối)

- Kết nối nhiều mạng LAN có công nghệ khác nhau
 - Ví dụ: Ethernet, Token Ring .v.v.
- Phân mảnh LAN lớn → segment (nhiều vùng quảng bá)
 - Tăng phạm vi hoạt động về mặt địa lý
 - Tăng hiệu suất sử dụng kênh truyền
 - Tăng thông lượng của từng trạm

Switches

Kết nối các devide

Mỗi cổng là một collision domain

Router

Gateways

Firewall

- Thiết bị phần cứng và/hoặc phần mềm
- Kiểm soát thông tin vào / ra giữa hai vùng mạng khác nhau
 - Dựa trên bộ chính sách an ninh (security policy) và mô hình kết nối
- Phân loại

KÉT NỐI MẠNG SỬ DỤNG BRIDGE

Cơ chế hoạt động:

- "Store-and-Forward", kiểm tra trạng thái kênh trước khi gửi gói sang một segment khác (no-frill bridge)
- Tự "học" (learning bridge)
- Cho phép tạo cây bắc cầu tối thiểu (MPT minimum spanning tree)

Kết nối nhiều công nghệ LAN

Bridges from 802.x to 802.y

Phân mảnh mạng LAN

Bridge bị giới hạn bởi quy tắc 80/20

- Bridge chỉ hoạt động hiệu quả khi chỉ có 20% tải của phân đoạn đi
 qua cầu, 80% là tải trong nội bộ phân đoạn
- Ngược lại, hai phân đoạn kết nối bởi cầu có thể xem như cùng một phân đoạn mạng, không được lợi gì về băng thông

Nhận xét:

– Địa chỉ MAC có dạng phẳng (flat address), không có cấu trúc ->
 không định tuyến được bằng địa chỉ MAC khi gửi khung MAC liên
 mạng LAN

"No-frill bridge"

Flooding Mode

- Là chức năng đơn giản nhất theo chuẩn IEEE 802.1d
- Khi nhận được khung dữ liệu trên một giao diện, bridge kiểm tra trạng thái các kênh nằm trên các giao diện còn lại, nếu kênh truyền rỗi → gửi dữ liệu

Learning Mode

- sử dụng cơ chế lọc gói (frame filtering) → Để tăng hiệu xuất kênh
- Frame tới một trạm trong cùng 1 segment sẽ không được gửi sang các segment khác

C gửi một khung tới D

- C gửi khung
- B1 nhận khung trên cổng 1
- B1 không có thông tin về vị trí của D
- B1 chuyển tiếp khung qua cổng 2 và 3
- B1 cập nhật vị trí của C ở cổng 1
- segment 3 bỏ qua khung
- D nhận khung

Bảng chuyển tiếp (Forwarding table)

MAC Addr.	Port	ΠL
С	1	60

D trả lời một khung dữ liệu tới C

- D gửi khung
- B1 nhận khung trên cống 2
- B1 cập nhật vị trí của D
- B1 tìm vị trí của C ở bảng chuyển tiếp
- B1 chuyển tiếp khung qua cổng 1
- C nhận khung

Bảng chuyển tiếp (Forwarding table)

MAC Addr.	Port	ΠL
С	1	60
D	2	60

Nhận xét:

- Cơ chế lọc gói chỉ hoạt động khi đồ hình mạng (topology) không xuất hiện vòng lặp
- Trong thực tế, để tăng độ tin cậy, có thể thiết lập các đường liên kết dự trữ → vòng lặp (vật lý)

Spanning Tree Bridges

Cấu trúc bản tin STP

- Root ID: số hiệu nhận dạng bridge gốc
- Cost: khoảng cách từ bridge gửi bản tin STP (transmitting bridge)
 đến bridge gốc
- Transmitter: bridge gửi bản tin STP

Spanning tree protocol

Bước 1: lựa chọn bridge gốc

Bridge gốc là bridge có giá trị ID tối thiểu trong các bản tin nhận được

Bước 2: tính toán khoảng cách từ B tới bridge gốc:

- Nếu B là bridge gốc à khoảng cách tới chính nó là 0
- Nếu B không phải bridge gốc: khoảng cách từ B à bridge gốc là khoảng cách trên bản tin tốt nhất cộng với khoảng cách từ B đến transmitter
- B chọn cổng ngắn nhất đến bridge đích à cổng gốc (root port)
- Chú ý: nếu bridge có 2 cổng đến bridge gốc với khoảng cách như nhau:
 công nào có transmitter nhỏ hơn sẽ được chọn làm cổng gốc

Bước 3: lựa chọn bridge ủy quyền

Bridge ủy quyền gửi các khung dữ liệu trong mạng LAN đến bridge gốc,
 Bridge B tính toán bản tin cấu hình mà nó sẽ quảng bá trên các cổng còn lại

Bước 4: Lựa chọn cổng nằm trong cây bắc cầu

 Các cổng được lựa chọn vào cây (cổng ủy quyền) là cổng nhận được bản tin tốt nhất

Ví dụ

Bridge B-92 (ID=92) có 5 cổng và nhận được bản tin cấu hình sau

- Giả thiết khoảng cách từ B-92 đến tất cả các LAN liền kề là 1
- Bản tin tốt nhất: 41.12.111 trên port 4
- B-92 đặt cổng 4 là cổng gốc
- Tính toán bản tin cấu hình: {41.13.92}

Ví dụ

- So sánh bản tin {41.13.92} với các bản tin nhận được trên cổng 1,
 2, 3, 5
- {41.13.92} tốt hơn các bản tin nhận được trên cổng 1 và 2
- B-92 là bridge ủy quyền trên các cổng 1 và 2

Ví dụ

- B-92 chọn cổng 4 (cổng gốc) và cổng 1, 2 vào cây bắc cầu
- Chuyển cổng 3, 5 sang trạng thái không hoạt động

Remote Brigde

Remote bridges can be used to interconnect distant LANs

Review

Application layer	Application gateway	
Transport layer	Transport gateway	Packet (supplied by network layer)
Network layer	Router	Frame Packet TCP User cRC header header header data
Data link layer	Bridge, switch	Frame (built by data link layer)
Physical layer	Repeater, hub	
,	(a)	(b)

- 1. Một nhóm N trạm cùng chia sẻ một kênh pure ALOHA 56 kbps. Trung bình mỗi trạm phát đi 1000 bits mỗi 100 giây. Tính số trạm tối đa?
- 2. Xét một mạng dùng giao thức CSMA/CD tố độ 1 Gbps qua khoảng cách 1 km, không dùng trạm lặp, tốc độ lan truyền tín hiệu trên cáp là 200.000 km/giây. Tính kích thước khung tối thiểu.

■ 3. A 1-km-long, 10-Mbps CSMA/CD LAN (not 802.3) has a propagation speed of 200 m/µsec. Repeaters are not allowed in this system. Data frames are 256 bits long, including 32 bits of header, checksum, and other overhead. The first bit slot after a successful transmission is reserved for the receiver to capture the channel in order to send a 32-bit acknowledgement frame. What is the effective data rate, excluding overhead, assuming that there are no collisions?

- 4. Xét hai host A và B cách nhau *m* mét, được kết nối với nhau bởi một link có tốc độ *R* (bps), tốc độ truyền lan trên link là *s* (m/s), host A cần gửi một gói tin có kích thước *L* bít đến host B. Tính các thông số sau:
- a) Trễ lan truyền d_{prop} và trễ phục vụ gói d_{trans}
- b) Nếu bỏ qua trễ xử lý và trễ hàng đợi, tính trễ đầu cuối d_{end-to-end}
- c) Giả thiết host A bắt đầu truyền gói tin đi tại thời điểm t=0, tại thời điểm t= d_{trans} bít cuối cùng của gói tin đang ở đâu?
- d) Giả thiết d_{prop} lớn hơn d_{trans} , Tại thời điểm $t=d_{trans}$, bít đầu tiên của gói tin nằm ở đâu?
- e) Giả thiết d_{prop} nhỏ hơn d_{trans} , Tại thời điểm $t=d_{trans}$, bít đầu tiên của gói tin nằm ở đâu?
- f) Giả thiết s=2.5x10 8 , L=120 bít. R=56 kbps. Tính khoảng cách m giữa hai host để d_{prop} bằng d_{trans} .