Aufzeichnungen zur Mathematik

John Smith, 2016

Lizenz: Creative Commons CC0

Inhaltsverzeichnis

1	Log	ik
	1.1	Zerlegung des Allquantors
	1.2	Allquantifizierung über Produktmengen .
2	Analysis	
	2.1	Halley-Verfahren
	2.2	Integral der Potenzfunktion
3	Lineare Algebra	
	3.1	Hodge-Stern-Operator
		3.1.1 Orientierung
	3.2	

1 Logik

1.1 Zerlegung des Allquantors

Eine periodische Funktion f erfüllt die Gleichung

$$f(x) = f(x+T) \tag{1.1}$$

definiert. Macht man eine Substitution x := u - T, so ergibt sich

$$f(u-T) = f((u-T) + T) = f(u). (1.2)$$

Somit gilt auch f(x) = f(x - T). Diese Folgerung war sehr kurz, eigentlich zu kurz um wissenschaftlich zu sein.

Eine Funktion $f\colon \mathbb{R} \to \mathbb{R}$ heißt periodisch mit Periode T, falls die Funktionalgleichung

$$\forall x \in \mathbb{R}: \ f(x) = f(x+T) \tag{1.3}$$

erfüllt ist. Für die Gleichung ergibt sich zunächst der folgende abstrakte Syntaxbaum (AST):

Aber was ist mit dem Allquantor? Der Allquantor ist eigentlich eine Funktion in zwei Variablen. Das erste Argument ist eine Menge M, das zweite ein Prädikat p. Der Allquantor überprüft nun, ob das Prädikat p für alle Elemente von M gültig ist. Wir wandeln nun die Schreibweise durch

$$\forall x \in M \colon \ p(x) \longrightarrow \text{all}(M, p) \tag{1.4}$$

um. Die Funktionalgleichung wird als nun in der Form

$$\operatorname{all}(\mathbb{R}, \lambda x. f(x) = f(x+T)) \tag{1.5}$$

dargestellt. Dazu gehört folgender AST:

Unter einer freien Substitution versteht man nun den Austausch jedes Vorkommens einer freien Variable durch einen AST. Durch den λ -Term wird die Variable x nun gebunden, ist also nicht mehr frei. Daher können wir nicht einfach eine freie Substitution $[x{:=}u{-}T]$ durchführen.

Viel mehr gilt die folgende Regel. Ist g eine passende Bijektion, so gilt

$$all(M, p) = all(g^{-1}(M), p \circ g).$$
 (1.6)

Z.B. wählt man $M := \{1, 2, 3\}$ und p(x) := (x<4) sowie g(x) := x/2. Somit ergibt sich

$$(\forall x \in \{1, 2, 3\}: x < 4)$$

= $(\forall x \in \{2, 4, 6\}: x/2 < 4)$.

Sei nun g(x) := x - T. Nun ist $g^{-1}(\mathbb{R}) = \mathbb{R}$. Wendet man das nun auf (1.5) an, so ergibt sich

$$all(\mathbb{R}, \lambda x. f(x - T) = f(x)). \tag{1.7}$$

Es handelt sich also eigentlich nicht um eine Substitution, sondern um die Verkettung des Prädikats mit einer Funktion. Sicherlich lässt sich eine solche durch eine Substitution darstellen, aber das ist sehr schwammig. Und diese Schwammigkeit fällt erst auf, wenn der Allquantor auch ausgeschrieben wird. Im Allquantor ist ja, wie wir gesehen haben, eine Variablenbindung enthalten.

Doch warum darf man (1.6) eigentlich anwenden? Nun, hierzu zerlegen wir den Allquantor weiter. Es ist nämlich

$$all(M, p) = (p(M) = \{true\}).$$
 (1.8)

Sei id die identische Funktion. Nun ist aber p das selbe wie $p \circ$ id. Außerdem gilt ja id $= g \circ g^{-1}$. Somit ergibt sich

$$p(M) = (p \circ g \circ g^{-1})(M)$$

= $(p \circ g)(g^{-1}(M)).$ (1.9)

In der letzten Gleichung wurde $(f \circ g)(M) = f(g(M))$ verwendet. Das soll noch schnell gezeigt werden. Es gilt

$$(f \circ g)(M) = \{(f \circ g)(x) | x \in M\} = \{f(y) | y = g(x) \land x \in M\} = \{f(y) | y \in g(M)\} = f(g(M)).$$
 (1.10)

Nun gut, das ist auch ein Pseudobeweis. Wir können hier noch

$$\bigcup_{i \in I} f(A_i) = f(\bigcup_{i \in I} A_i) \tag{1.11}$$

verwenden. Dann gilt aber

$$\begin{split} &(f\circ g)(M)=\bigcup_{x\in M}\{f(g(x))\}=\bigcup_{x\in M}f(\{g(x)\})\\ &=f(\bigcup_{x\in M}\{g(x)\})=f(g(M)). \end{split}$$

Für den Existenzquantor gilt analog

$$\exists x \in A: p(x) \quad \text{gdw.} \quad \text{true} \in p(A).$$
 (1.12)

Für die Beschreibung von Mengen gilt außerdem

$$\{x \in A \mid p(x)\} = \text{filter}(A, p)$$

= $p^{-1}(\{\text{true}\}).$ (1.13)

Die Beschreibung von Mengen lässt sich also als Urbildmenge darstellen.

Für den Anzahlquantor gilt außerdem

$$\exists^{=n} x \in A: p(x) \quad \text{gdw.} \quad \#\text{filter}(A, p) = n. \tag{1.14}$$

1.2 Allquantifizierung über Produktmengen

Sei $M := A \times B$. Sei $M_x := \pi_1^{-1}(\{x\})$, das ist die Faser von x für die Projektion $\pi_1(x,y) := x$. Es gilt nun

$$M = \bigcup_{x \in A} M_x. \tag{1.15}$$

Es gilt außerdem (was zu zeigen ist)

$$\forall t \in \bigcup_{i \in I} A_i [P(t)] \iff \forall i \in I \ \forall t \in A_i [P(t)]. \tag{1.16}$$

Daher ist

$$\forall (x,y) \in M [P(x,y)] \\ \iff \forall x \in A \, \forall (x,y) \in M_x [P(x,y)].$$

$$(1.17)$$

Wegen

$$M_x = \{x\} \times B$$

= \{(x, y) | x \in \{x\} \land y \in B\}
= \{(x, y) | y \in B\}

gilt nun

$$(x,y) \in M_x \iff y \in B.$$
 (1.19)

Somit gilt

$$\forall (x,y) \in M [P(x,y)] \\ \iff \forall x \in A \ \forall y \in B [P(x,y)].$$
 (1.20)

Verwendet man π_2 anstelle von π_1 , so gelangt man zu der Erkenntnis $\forall x \forall y \iff \forall y \forall x$.

Betrachten wir nun (1.16) für endliche Zerlegungen. Sei dazu $I(n) := \{1, ..., n\}$ und $U_n := U_{n-1} \cup A_n$ mit Anfang $U_1 := A_1$. Nun gilt $U_n = \bigcup_{i \in I(n)} A_i$.

Es ist nun

$$\forall t \in U_n [P(t)]$$

$$\iff \forall t \in U_{n-1} \cup A_n [P(t)]$$

$$\iff \forall t \in U_{n-1} [P(t)] \land \forall t \in A_n [P(t)]$$
(1.21)

Falls (1.16) für n-1 gilt (Induktionsvoraussetzung), so ist

$$\forall t \in U_{n-1}[P(t)]$$

$$\iff \forall i \in I(n-1) \ \forall t \in A_i[P(t)].$$

$$(1.22)$$

Zusammenführen, d.h.

$$\forall t \in A_n [P(t)] \land \forall i \in I(n-1) \forall t \in A_i [P(t)] \\ \iff \forall i \in I(n) \forall t \in A_i [P(t)],$$

$$(1.23)$$

bringt (1.16) für n. Die Induktion beginnen wir zunächst bei n=1, um möglichen Problemen mit der leeren Menge aus dem Weg zu gehen.

Im allgemeinen Fall verwenden wir zunächst die prädikatenlogische Definition der Vereinigungsmenge:

$$\bigcup_{i \in I} A_i := \{ x \mid \exists i \in I \ [x \in A_i] \}. \tag{1.24}$$

Nun gilt

$$\forall t \in \bigcup_{i \in I} A_i [P(t)]$$

$$\iff \forall t [t \in \bigcup_{i \in I} A_i \implies P(t)]$$

$$\iff \forall t [\exists i [t \in A_i] \implies P(t)]$$

$$\iff \forall t [\forall i [t \in A_i \implies P(t)]]$$

$$\stackrel{?!}{\iff} \forall i \forall t [t \in A_i \implies P(t)]$$

$$\iff \forall i \forall t [A_i \implies P(t)]$$

$$\iff \forall i \forall t \in A_i [P(t)].$$

$$(1.25)$$

Was noch zu zeigen ist, ist die Regel

$$\forall x \forall y \left[P(x,y) \right] \iff \forall y \forall x \left[P(x,y) \right]. \tag{1.26}$$

2 Analysis

2.1 Halley-Verfahren

Im Folgenden wird die Herleitung des Halley-Verfahrens unter Verwendung einer Padé-Approximation dargestellt. Die Padé-Approximation R[m,0] ist die Taylorreihe. Sei

$$a_k = \frac{1}{k!} f^{(k)}(x_0). (2.1)$$

Die Taylorreihe ist

$$R[m,0] = \sum_{k=0}^{m} a_k (x - x_0)^k.$$
 (2.2)

Set
$$A = \begin{vmatrix} a_{m-n+1} & a_{m-n+2} & \dots & a_{m+1} \\ \dots & \dots & \dots & \dots \\ a_m & a_{m+1} & \dots & a_{m+n} \\ \sum_{i=n}^m a_{i-n} x^i & \sum_{i=n-1}^m a_{i-n+1} x^i & \dots & \sum_{i=0}^m a_i x^i \end{vmatrix}$$
und
$$\begin{vmatrix} a_{m-n+1} & a_{m-n+2} & \dots & a_{m+1} \\ \end{vmatrix}$$

$$B = \begin{vmatrix} a_{m-n+1} & a_{m-n+2} & \dots & a_{m+1} \\ \dots & \dots & \dots \\ a_m & a_{m+1} & \dots & a_{m+n} \\ x^n & x^{n-1} & \dots & x^0 \end{vmatrix}$$

Es ist R[m, n] = A/B. Ersetze dann x gegen $x - x_0$. Es ist

$$R[1,1] = \frac{a_1(a_0 + a_1x) - a_0a_2x}{a_1 - a_2x}$$

$$= \frac{a_0a_1 + (a_1^2 - a_0a_2)x}{a_1 - a_2x}.$$
(2.3)

Die Nullstelle von f ist gesucht, und die Approximation muss dort auch ungefähr null sein. Setzt man also R[1,1](x)=0, so folgt

$$0 = a_0 a_1 + (a_1^2 - a_0 a_2)x. (2.4)$$

Ersetzt man noch x gegen $x-x_0$ und formt danach um, so erhält man

$$x = x_0 - \frac{a_0 a_1}{a_1^2 - a_0 a_2}. (2.5)$$

Ausgeschrieben bekommt man also $x = \varphi(x_0)$ mit

$$\varphi(x) = x - \frac{2f(x)f'(x)}{2f'(x)^2 - f(x)f''(x)}.$$
(2.6)

Das Halley-Verfahren ist dann die Fixpunktiteration $x_{n+1} = \varphi(x_n)$. Man sieht, dass das Halley-Verfahren in das Newton-Verfahren übergeht, wenn man f(x)f''(x) verschwinden lässt.

2.2 Integral der Potenzfunktion

Ich will eine ungewöhnliche Methode zur Berechnung des Integrals

$$\int x^n \, \mathrm{d}x \tag{2.7}$$

vorführen. Wähle die Substitution $x = e^u$. Es gilt nun

$$\frac{\mathrm{d}x}{\mathrm{d}u} = \frac{\mathrm{d}}{\mathrm{d}x}\mathrm{e}^u = \mathrm{e}^u \tag{2.8}$$

und somit $dx = e^u du$. Man hätte auch

$$x^n = e^{\ln(x)n} = e^{un} \tag{2.9}$$

rechnen können, was vielleicht eher

$$\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x}\ln(x) = \frac{1}{x} \tag{2.10}$$

suggeriert hätte. Hier muss man bedenken, dass die Substitution nochmals ausgeführt werden kann, dass also

$$\frac{1}{x} = \frac{1}{e^u} \tag{2.11}$$

gilt. Nach Substitutionsregel ergibt sich nun

$$\int x^{n} dx = \int e^{nu} e^{u} du = \int e^{(n+1)u} du$$

$$= \frac{1}{n+1} e^{(n+1)u} = \frac{x^{n+1}}{n+1}.$$
(2.12)

Es geht noch weiter. Im Fall n = -1 gilt

$$\int \frac{1}{x} dx = \int \frac{1}{e^u} e^u du = \int du = u.$$
 (2.13)

Aber Umformen der Substitution ergibt ja $u = \ln x$.

3 Lineare Algebra

3.1 Hodge-Stern-Operator

3.1.1 Orientierung

Sei V ein \mathbb{R} -Vektorraum und sei $B = (b_k)_{k=1}^n$ eine Basis von V, die wir positiv orientiert nennen. Ist B' eine andere Basis, so gibt es eine Basiswechselmatrix $T_{B'}^B$. Sei nun

$$s := \operatorname{sgn}(\det(T_{B'}^B)). \tag{3.1}$$

Die Basis B' heißt nun positiv orientiert, wenn s > 0 ist und negativ orientiert, wenn s < 0 ist.

Im Koordinatenraum soll natürlich die Standardbasis positiv orientiert sein.

Beachte, dass für das äußere Produkt gilt:

$$\bigwedge_{k=1}^{n} b'_{k} = \det(T_{B}^{B'}) \bigwedge_{k=1}^{n} b_{k}.$$
(3.2)

Angenommen, die Basis B' ist nun eine Permutation von $B = (b_k)$, also die Festlegung

$$B' := (b_{\sigma(k)})_{k=1}^n, \quad \sigma \in \operatorname{Sym}(n). \tag{3.3}$$

Die Basiswechselmatrix ist nun die Permutationsmatrix und somit gilt:

$$\det(T_{B'}^B) = \operatorname{sgn}(\sigma). \tag{3.4}$$

3.2 Skalarprodukträume

Ist V ein Skalarproduktraum und ist $B = (e_k)_{k=1}^n$ eine Orthonormalbasis von V, so ist der Hodge-Stern-Operator eine lineare Abbildung, definiert durch

$$* (e_{\sigma(1)} \wedge \ldots \wedge e_{\sigma(k)})$$

$$:= \operatorname{sgn}(\sigma) s(B) e_{\sigma(k+1)} \wedge \ldots \wedge e_{\sigma(n)}$$

$$(3.5)$$

 $\mathrm{mit} *: \Lambda^k(V) \to \Lambda^{n-k}(V), \, \mathrm{wobei} \,\, 0 \leq k \leq n \,\, \mathrm{gilt}.$

Dabei ist s(B) = +1, wenn B positiv orientiert ist, und s(B) = -1, wenn B negativ orientiert ist.

Sei $B = (b_k)$ nun eine Orthogonalbasis. Man definiert nun $g_{ij} := \langle b_i, b_j \rangle$. Jetzt lassen sich den Basisvektoren durch

$$e_k := \frac{b_k}{\|b_k\|} = \frac{b_k}{\sqrt{g_{kk}}} \tag{3.6}$$

normierte Basisvektoren zuordnen. Damit ergibt sich

$$* (b_{\sigma(1)} \wedge \ldots \wedge b_{\sigma(k)}) =$$

$$= r \operatorname{sgn}(\sigma) s(B) b_{\sigma(k+1)} \wedge \ldots \wedge b_{\sigma(n)}$$
(3.7)

mit

$$r = \frac{\sqrt{g_{\sigma(1)\sigma(1)} \cdots g_{\sigma(k)\sigma(k)}}}{\sqrt{g_{\sigma(k+1)\sigma(k+1)} \cdots g_{\sigma(n)\sigma(n)}}}$$

$$= \frac{g_{\sigma(1)\sigma(1)} \cdots g_{\sigma(k)\sigma(k)}}{\sqrt{\det g}}.$$
(3.8)