Premier University, Department of CSE

Spring 2025, 7th Semester, Assignment, September 13, 2025 Course Title: Theory of Computation, Course Code: CSE 309

Course Outcome: CO3, Total Marks: 10

Problem Scenario: Username Validation

You are tasked with implementing a username validation system for a new messaging app. The system should ensure that usernames are easy to remember and meet specific formatting requirements.

The username requirements are as follows:

- 1. The username must be exactly 5 characters long.
- 2. It must start with a capital letter.
- 3. It can only contain letters (A-Z, a-z) and digits (0-9).
- 4. It must contain at least one digit.

Examples of Valid Usernames:

- User1
- A1b2C
- Z9xY8

Examples of Invalid Usernames:

- Hey (less than 5 characters)
- longUsername (more than 5 characters)
- 12345 (does not start with a letter)
- NoDigits (no digits)
- Invalid! (contains a special character like #,&,@,*,\$)

Now, answer the following questions for the given scenario and constraints:

- 1. How will you design an NFA state transition diagram for username validation during sign-in or sign-up?
- 2. Convert the NFA for username validation into an equivalent DFA.

Objectives:

- Demonstrate advanced knowledge of formal computation for email validation.
- Apply the basic concept of DFA to design the related state transition diagram.
- Distinguish the approach of NFA from DFA through NFA to DFA conversion.

Evaluation:

- Follow the rules for drawing DFA state transition diagram and ensure all possible paths to validate a acceptable username or invalidate otherwise.
- Provide step-by-step process to convert email validation NFA to its equivalent DFA.

Design:

Students' solution design must achieve the given objectives.

Deliverables:

A hand-written assignment reporting the following tasks:

- (i) Provide clear explanations of your work, including the graphical representations of the social network graph, implementation details, test results, and analysis addressing the given assignment tasks.
- (ii) Briefly address the complex problem-solving questions:
 - a. Does the solution need in-depth engineering knowledge?
 - b. Does the solution involve wide-ranging or conflicting technical, engineering, and other issues?
 - c. Is the solution well-known, or does it require abstract thinking and analysis to formulate?
 - d. Does the solution involve infrequently encountered issues?
 - e. Does the solution need adherence to standards and codes of practice?
 - f. Does the solution involve stakeholders with conflicting technical requirements?
 - g. Does the solution involve interdependence between sub-problems or parts?

Rubrics for Assignment marking:

Task	Criteria	Good (4-5)	Moderate (2-3)	Poor (1)
i.	Problem solution	Properly or near appropriately reasoned solution	Appropriate solution for some cases	Inappropriate or no solution
ii.	Problem analysis	In-depth analysis	Shallow analysis	Incomplete analysis