

Performance Measurements of Virtual Reality Systems: Quantifying the Timing and Positioning Accuracy

Chun-Ming Chang¹, Cheng-Hsin Hsu², Chih-Fan Hsu¹, Chun-Ying Huang³, and Kuan-Ta Chen¹ ¹Academia Sinica ²National Tsing Hua University ³National Chiao Tung University

Motivation

- Commodity VR systems are usually with limited accessibility of hardware and software
- Existing methods are hard to generalize because they require code instruments or assuming the existence of a specific virtual object
- The performance of VR systems has not been discussed in aspect of timing and positioning accuracy in the literature

Considered VR Systems

Type	Desktop VR Systems		Mobile VR Systems†	
Brand	3Glasses D2 (3GD2)	Oculus Rift DK2 (ORDK2)	Google Cardboard (GC)	Samsung Gear VR (SGVR)
FoV (°)	110	100	96	96
Display	2560 x 1440 60Hz	2560 x 1440 75 Hz	2560 x 1440 60 Hz	
CPU	Intel i7-4790 CPU 3.6 GHz		4-core Cortex-A57 2.1 GHz and 4-core Cortex-A53 1.5 GHz	
GPU	NVIDIA GeForce GTX 645		Mali-T760 MP8	
RAM	32 GB		3 GB	

[†] Samsung S6 is used in mobile VR systems

Measurement Testbed

- A rotating platform to emulate head (HMD) movements
- An external display that mirrors the view in the HMD
- A high-speed camera that captures the HMD device and its view

(a) With Oculus Rift DK2

(a) With Google Cardboard

(the last K frames)

Performance Metrics

Timing accuracy

(the first K frames)

Precision = Percentage of pixels *changed* between initial reference frame and settled reference frame; where a pixel is *changed* if its gray-level difference greater than 30

Sensitivity = Ratio of *sensible rounds* in all the rounds; where a round is considered as *sensible* if found any changed pixels

Methodology

Apply the change point detection algorithm to identify: 1. t₀ and t₁ based on initial reference frame

- 2. t₂ and t₃ based on settled reference frame

- With the above timestamps, initial and settling delays are easily obtained
- Precision and sensitivity can be measured with both initial and settled reference frames

Experiment Results

- Default setting: angle=90°, velocity=180%s; APP: Titans of Space (v1.8)
- Timing accuracy

Precision

Sensitivity

Trade-off in positioning accuracy

Correction effect while settling

Conclusion

- We proposed a system-wide measurement methodology to quantify the timing and positioning accuracy
- Our methodology is generalizable to any applications without code instruments and system modification

