Herbst 13 Themennummer 3 Aufgabe 2 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Gegeben sei das lineare Differentialgleichungssystem $\dot{x} = A_a x$ mit der reellen 3×3 -Matrix

$$A_{\alpha} = \begin{pmatrix} -1 & a & 0 \\ -a & 1 & 0 \\ 1 & 0 & a \end{pmatrix},$$

wobei a ein reeller Parameter ist. Bestimmen Sie alle $a \in \mathbb{R}$, für die es eine nichttriviale Lösung x(t) gibt mit $\lim_{t\to\infty} |x(t)| = 0$.

Lösungsvorschlag:

Die gesuchten a sind genau die Werte $a \in (-\infty,1)$. Wir unterscheiden einige Fälle:

a < 0: Die Funktion $x(t) = (0,0,e^{at})$ ist eine Lösung $\neq 0$ mit $\lim_{t\to\infty} |x(t)| = 0$.

a=0: Die Funktion $x(t)=(e^{-t},0,-e^{-t})$ ist eine Lösung $\neq 0$ mit $\lim_{t\to\infty}|x(t)|=0$.

0 < a < 1: Das charakteristische Polynom von A lautet $-(\lambda - a)(\lambda - \sqrt{1 - a^2})(\lambda + \sqrt{1 - a^2})$. Die Eigenwerte sind paarweise verschieden und $-\sqrt{1 - a^2}$ ist ein negativer Eigenwert. Wir können A diagonalisieren, d. h. wir finden eine invertierbare 3×3 -Matrix T mit

$$T \begin{pmatrix} a & 0 & 0 \\ 0 & \sqrt{1 - a^2} & 0 \\ 0 & 0 & -\sqrt{1 - a^2} \end{pmatrix} T^{-1} = A.$$

Aus der allgemeinen Theorie ist bekannt, dass die Funktion $x(t) = \exp(tA)T(0,0,1)$ eine Lösung darstellt. Es gilt $x(t) = T(0,0,e^{-\sqrt{1-a^2}t})$, was wegen der Stetigkeit von T für $t \to \infty$ gegen 0 konvergiert und daher ein Beispiel für eine nichttriviale Lösung mit $\lim_{t\to\infty} |x(t)| = 0$ liefert.

a=1: Wir geben ein Fundamentalsystem an: Die Funktionen $x_1(t)=(1,1,0), x_2(t)=(t,t+1,0)$ und $x_3(t)=(0,0,e^t)$ sind Lösungen der Differentialgleichung. Weil $x_1(0)=(1,1,0), x_2(0)=(0,1,0)$ und $x_3(0)=(0,0,1)$ linear unabhängig sind, bilden diese ein Fundamentalsystem. Die allgemeine Lösung hat also die Form $x(t)=(a+bt,a+b+bt,ce^t)$. Damit diese für $t\to\infty$ gegen 0 konvergiert, muss c=0=b sein, sonst sind die dritte oder die ersten beiden Komponenten unbeschränkt. Es ergibt sich $x(t)\equiv(a,a,0)$, was genau für a=0 gegen 0 konvergiert. Dann folgt aber $x(t)\equiv0$. In diesem Fall existiert also keine nichttriviale Lösung mit $\lim_{t\to\infty}|x(t)|=0$.

a>1: Wir geben wieder ein Fundamentalsystem an, nämlich die Funktionen

$$x_1(t) = (\cos(\sqrt{a^2 - 1}t), \frac{1}{a}\cos(\sqrt{a^2 - 1}t) - \frac{\sqrt{a^2 - 1}}{a}\sin(\sqrt{a^2 - 1}t, 0))$$

$$x_2(t) = (\sin(\sqrt{a^2 - 1}t), \frac{\sqrt{a^2 - 1}}{a}\cos(\sqrt{a^2 - 1}t) + \frac{1}{a}\sin(\sqrt{a^2 - 1}t), 0)$$

$$x_3(t) = (0, 0, e^{at})$$

Analog zu a = 1 existiert hier keine Lösung mit $\lim_{t\to\infty} |x(t)| = 0$.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$