

Optimisation linéaire

Recherche opérationnelle GC-SIE

Algorithme du simplexe Phase I

Introduction

- Algorithme du simplexe :
 - Soit x₀ une solution de base admissible
- Comment déterminer x₀ ?
- Comment déterminer le tableau initial ?
- C'est le rôle de la Phase I.
- Cas simple:
 - problème en forme canonique tel que $b \ge 0$.
- Cas difficile:
 - problème général en forme standard.

Phase I du simplexe

Michel Bierlaire

3

Forme canonique

$$\begin{aligned} \min c^T x \\ \text{s.c.} \quad Ax & \leq b \\ x & \geq 0 \end{aligned}$$

avec $b \ge 0$ (hypothèse non générale).

On introduit les variables d'écart y. On obtient un problème en forme standard.

$$\min c^T x
\text{s.c. } Ax + y = b
x, y \ge 0$$

Phase I du simplexe

Michel Bierlaire

Forme canonique

$$\min c^T x$$
 s.c. $Ax + y = b$ $x, y \ge 0$

- Solution de base admissible :
 - -x=0
 - -y=b
 - Matrice de base : B = I

Phase I du simplexe

Michel Bierlaire

5

Forme canonique

• Forme canonique :

$$\begin{array}{llll} \min \ z = -10x_1 - 12x_2 - 12x_3 \\ \text{s.c.} & x_1 + 2x_2 + 2x_3 \le 20 \\ 2x_1 + x_2 + 2x_3 \le 20 \\ 2x_1 + 2x_2 + x_3 \le 20 \\ x_1, x_2, x_3 > 0 \end{array}$$

Forme standard :

Phase I du simplexe

Michel Bierlaire

Forme canonique
$$A = \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{pmatrix} \qquad b = \begin{pmatrix} 20 \\ 20 \\ 20 \end{pmatrix}$$

$$\uparrow \uparrow \uparrow \uparrow$$

$$B(1)=4, B(2)=5, B(3)=6$$

$$B=B^{-1}=1$$

$$c_{B}=0$$

$$C = \begin{pmatrix} -10 \\ -12 \\ -12 \\ 0 \\ 0 \end{pmatrix}$$

$$O$$
Phase I du simplex
$$C = \begin{pmatrix} -10 \\ -12 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{array}{ll} \min \ c^T x \\ \text{s.c.} \ Ax = b \\ x \geq 0 \end{array}$$

- On peut supposer, sans perte de généralité, que b
 ≥ 0.
- Si b_i < 0, on remplace la contrainte

$$a_i^T x_i = b_i$$

par

$$-a_i^Tx_i = -b_i$$

Phase I du simplexe

Michel Bierlaire

9

Forme standard

Idée:

- On résoud un problème auxiliaire tel que :
 - il soit lié au problème initial,
 - il soit trivial d'identifier une solution de base admissible pour ce problème auxiliaire.
- Pour cela, on introduit une variable auxiliaire par contrainte, et on remplace la fonction de coût.

Phase I du simplexe

Michel Bierlaire

$$\min y_1 + y_2 + \cdots + y_m$$
 s.c. $Ax + y = b$ $x, y \ge 0$

- Solution de base admissible :
 - -x=0
 - -y=b
 - Matrice de base : B = I

Phase I du simplexe

Michel Bierlaire

11

Forme standard

• Appelons P1 le problème original

min
$$c^T x$$

s.c.
$$Ax = b$$

 $x \ge 0$

• et P2 le problème auxiliaire

$$\begin{aligned} \min y_1 + y_2 + \cdots + y_m \\ \text{s.c.} \ \ Ax + y &= b \\ x, y &\geq 0 \end{aligned}$$

Phase I du simplexe

Michel Bierlaire

- Le coût optimal de P2 ne peut être négatif.
- Supposons que x₀ soit une solution admissible de P1.
- Dans ce cas, $Ax_0=b$ et $x_0 \ge 0$.
- x=x₀ et y=0 est une solution admissible de P2.
- Le coût associé est 0. C'est donc une solution optimale.

Phase I du simplexe

Michel Bierlaire

13

Forme standard

- Si P1 possède une solution admissible
- Alors le coût optimal de P2 est 0.

Contraposée:

- Si le coût optimal de P2 est strictement positif
- Alors P1 ne possède pas de solution admissible.

Phase I du simplexe

Michel Bierlaire

- Si (x*,y*) est solution optimale de P2.
- Si le coût optimal associé est 0.
- Alors

$$-y_1^*+y_2^*+...+y_m^* = 0$$

$$-y_1^*=y_2^*=...=y_m^*=0$$

- Donc Ax*=b et x*≥0
- x* est solution admissible de P1.

Phase I du simplexe

Michel Bierlaire

15

Format standard

Tableau initial du problème auxiliaire :

Pour les variables originales i : c_i=0

Phase I du simplexe

Michel Bierlaire

• Problème initial P1:

$$\begin{array}{llll} \min & x_1 + x_2 + x_3 \\ \text{s.c.} & x_1 + 2x_2 + 3x_3 & = 3 \\ -x_1 + 2x_2 + 6x_3 & = 2 \\ & 4x_2 + 9x_3 & = 5 \\ & 3x_3 + x_4 = 1 \\ x_1 & x_2 & x_3 & x_4 \ge 0 \end{array}$$

• Problème auxiliaire P2 :

Phase I du simplexe

Michel Bierlaire

		Forme standard									
1	3	æ ₈	2 7	26 0	$\frac{x_5}{1}$	0	2 3 3	2 2	2 ₁		
	2	0	0	1	n	0	6	2	-1		
	5	n	1	Ō	n	0	9	4	0		
θ=	1	1	0	0	0	1	3	0	0		
10-	-11	0	0	0	0	-1	-21	-8	0		
		æ ₈	267	æ ₀	x_5	x_4	æ ₃	æ 2	z 1		
θ=	3	0	0	0	1	0	3	2	1		
θ=	2	0	0	1	0	0	6	2	-1		
θ=	5	0	1	0	0	0	9	4	0		
θ=	1	1	0	0	0	1	3	0	0		
	-10	1	0	0	0	0	-18	-8	0		

	æ	2 7	æ	x_5	x_4	æ ₃	x 2	x ₁
3 θ:	0	0	0	1	0	3	2	1
2 θ:	0	0	1	0	0	6	2	-1
5 θ:	0	1	0	0	0	9	4	0
1 -10	1	0	0	0	0	-18	-8	0
-10						-10	-0	
	æ.	257	Z e	æ _K	24	æa.	2 2	251
2 θ:	-1	2 7	x ₆	x_5	x ₄	x ₃	2	x ₁
ο θ:								
	-1	0	0	1	-1	0	2	1
ο θ:	-1 -2	0	0 1	1 0	-1 -2	0	2	1 -1

	$oldsymbol{x_1}$	Z 2	₹ 3	26 4	x_5	æ ₆	267	25 8		
	2	0	0	1	1	-1	0	1	2	θ =1
	-1/2	1	0	-1	0	1/2 -2	0	-1 1	0	
	2	0	0	1	0 0	- 2	1	1	2	θ =1
	0	0	1			0	0	1/3	1/3	
ı	-4	0	0	-2	0	4	0	-1	-4	

	x_1	x_2	x_3	x_4	x_5	x_6	267	æ ₈	
Г	1	0	0	1/2	1/2	-1/2	0	1/2	1
	0	1	0	-3/4	1/4	1/4	0	-3/4	1/2
	0	0	0	Ó	-1	-1	1	Ó	0
	0	0	1	1/3	0	0	0	1/3	1/3
Г	0	0	0	0	2	2	0	1	0

Phase I du simplexe

Michel Bierlaire

21

Forme standard

• Solution optimale du problème auxiliaire P2:

$$x^{T}=(1 \ 1/2 \ 1/3 \ 0 \ 0 \ 0 \ 0)$$

- Coût optimal = 0
- Solution admissible du problème P1

$$x_0^T = (1 \ 1/2 \ 1/3 \ 0)$$

Attention:

• Il reste une variable artificielle en base (x₇)

Phase I du simplexe

Michel Bierlaire

• Comment éliminer les variables artificielles hors de la base ?

Note:

- Si (x*,y*) est solution optimale à coût nul du problème auxiliaire
- Alors la variable artificielle en base est forcément nulle
- Donc la solution est dégénérée.

Phase I du simplexe

Michel Bierlaire

23

Forme standard

- Supposons que la k^{ième} variable de base soit artificielle.
- Examinons la kième ligne du tableau.
- Choisir l'élément en colonne j de cette ligne tel que
 - j soit l'indice d'une variable du problème original
 - l'élément soit non nul.
- k sort de base. j rentre en base
- Pivotage du tableau.

Phase I du simplexe

Michel Bierlaire

- Mais...
- Que se passe-t-il si aucun élément de la sorte n'existe ?

$oldsymbol{x_1}$	x_2	x_3	x_4	x_5	x_6	267	æ ₈	
1	0	0	1/2	1/2	-1/2	0	1/2	1
0	1	0	-3/4	1/4	1/4	0	-3/4	1/2
0	0	0	Ó	-1	-1	1	Ó	0
0	0	1	1/3	0	0	0	1/3	1/3
0	0	0	0	2	2	0	1	0
1	1	1	1					

Phase I du simplexe

Michel Bierlaire

25

Forme standard

Cela signifie que

- la matrice A n'est pas de rang plein
- la ligne en question correspond à une contrainte redondante
- elle peut être supprimée.

$$x_1 + 2x_2 + 3x_3 = 3$$
 $-x_1 + 2x_2 + 6x_3 = 2$
 $4x_2 + 9x_3 = 5$

Phase I du simplexe

Michel Bierlaire

- Une fois que le tableau optimal du problème auxilaire est obtenu,
- et que toutes les variables artificielles ont quitté la base,
- on obtient le tableau initial du problème P1 en
 - supprimant les colonnes relatives aux variables artificielles;
 - calculant les coûts réduits initiaux.

Phase I du simplexe

Michel Bierlaire

27

Exemple

```
P1 min 2x_1 + 3x_2 + 3x_3 + x_4 - 2x_5

s.c. x_1 + 3x_2 + 4x_4 + x_5 = 2

x_1 + 2x_2 - 3x_4 + x_5 = 2

-x_1 - 4x_2 + 3x_3 = 1

x_1 \cdot x_2 \cdot x_3 \cdot x_4 \cdot x_5 > 0
```

P2

x1	x2	х3	x4	х5	х6	х7	8 x	
1	3	0	4	1	1	0	0	2 6
1	2	0	-3	1	0	1	0	2
-1	-4	3	0	0	0	0	1	1
-1	-1	-3	-1	-2	0	0	0	-5
						_	= -sc	mme
					ère l olon	_	= -80	mme
x1	x2	x3				_	= -SC	omme
x1 1	x2 3	x3 0	C	les c	olon	nes		omme
			x4	les c	olon	nes x7	x8	2 0
1	3	0	x4 4	x5	olon x6 1	x7	x8 0	2

	x1	x2	х3	x4	x5	x6	x7	8 x	
	1	0	0	-17	1	-2	3	0	2
	0	1	0	7	0	1	-1	0	0
	0	0	1	3.67	0.33	0.67	-0.33	0.33	1
	0	0	0	0	0	1	1	1	0
P1:	tab	leau 3	ı init	tial 1	-2				
				tial 1 x4	-2 x5				
	2	3	3	1	_	2			
	2 x1	3 x2	3 x3	1 x4	_	2 0			
	2 x1 1	3 x2 0	3 x3 0	1 x4	x5	0			
	2 x1 1 0	3 x2 0 1	3 x3 0	1 x4 -17 7	x5 1 0				

Algorithme du simplexe

 Nous avons maintenant un algorithme complet pour résoudre tout programme linéaire en forme standard

Phase I

1. En multipliant certaines contraintes par -1, modifier le problème pour que $b \ge 0$.

Phase I du simplexe

Michel Bierlaire

33

Algorithme complet du simplexe

Phase I (suite)

2. Introduire les variables artificielles y₁,...,y_m, et appliquer la méthode du simplexe au problème auxiliaire

$$\min \sum_{i=1}^{m} y_i$$
s.c. $Ax + y = b$
 $x > 0$

Phase I du simplexe

Michel Bierlaire

Algorithme complet du simplexe

Phase I (suite)

- 3. Si le coût optimal est strictement positif, le problème original n'est pas admissible. STOP.
- 4. Si la k^{ième} variable de base est une variable artificielle, examiner la ligne k du tableau. Choisir l'élément en colonne j de cette ligne tel que
 - j soit l'indice d'une variable du problème original
 - l'élément soit non nul.

Pivoter le tableau autour de cet élément.

Phase I du simplexe

Michel Bierlaire

35

Algorithme complet du simplexe

Phase I (suite)

4. (suite) Si tous ces éléments sont nuls, la ligne correspond à une contrainte redondante et peut être supprimée.

Répéter le point 4 jusqu'à ce qu'aucune des variables artificielles ne soient en base.

Phase I du simplexe

Michel Bierlaire

Algorithme complet du simplexe

Phase II

- Les variables artificielles et les colonnes correspondantes sont supprimées du tableau.
- La ligne des coûts est calculée.
- Appliquer la méthode du simplexe au tableau obtenu.

Phase I du simplexe

Michel Bierlaire

37

Algorithme complet du simplexe

Notes:

- Complet car il peut gérer toutes les issues possibles.
- Si le cyclage est empêché (par la règle de Bland), une des 4 possibilités suivantes se passera :
 - Le problème n'est pas admissible. Détecté à la fin de la phase I.
 - Le problème est admissible, mais A n'est pas de rang plein.
 Les contraintes redondantes sont éliminées lors de la phase I.

Phase I du simplexe

Michel Bierlaire

Algorithme complet du simplexe

- Le coût optimal est -∞. Détecté lors de la phase II.
- La phase II se termine avec une solution optimale.

Phase I du simplexe

Michel Bierlaire

39

Méthode du grand M

Motivation:

- Combiner les deux phases en une seule en
 - utilisant les variables artificielles y
 - remplaçant la fonction objectif par

$$c^Tx + M\sum_{i=1}^m y_i$$

où M est une constante positive très grande.

Phase I du simplexe

Michel Bierlaire

Méthode du grand M

- Si la méthode du simplexe se termine avec une solution (x*,y*) telle que y*=0, alors x* est une solution optimale du problème original.
- Si la méthode du simplexe se termine avec une solution (x*,y*) telle que y*≠0, alors le problème original est non admissible.

Phase I du simplexe

Michel Bierlaire

41

Méthode du grand M

- Si la méthode du simplexe identifie que le problème auxiliaire est non borné, le problème initial est non admissible ou non borné (ou les deux).
- En pratique, on n'est pas obligé de donner une valeur à M.
- Chaque fois que M est comparé à un nombre, il sera toujours considéré comme plus grand.

Phase I du simplexe

Michel Bierlaire

Exemple

	x5	x4	х3	x2	x1
1	0	1	0	1	1
2	1	0	1	0	1
-3M	0	0	1-M	2-M	1-2M

	B-1A	B ⁻¹ b
1	$c^{T} - c^{T}_{B}B^{-1}A$	-c ^T _B B ⁻¹ b

Phase I du simplexe

Michel Bierlaire

		x5	x4	х3	x2	x1
	1	0	1	0	1	1
θ=2	2	1	0	1	0	1
	-3M	0	0	1-M	2-M	1-2M

		x5	x4	х3	x2	x1
	1	0	1	0	1	1
θ=1	1	1	-1	1	-1	0
	-M-1	0	2M-1	1-M	M+1	0

x1	x2	х3	x4	x 5	
1	1	0	1	0	1
0	-1	1	-1	1	1
0	2	0	M	M-1	-2

Terminologie

Qu'est-ce qu'un simplexe?

- Un ensemble de vecteurs y₁,...,y_{k+1} dans IRⁿ (k≤n) est indépendant au sens affine si les vecteurs y₁-y_{k+1},y₂y_{k+1}...,y_k-y_{k+1} sont linéairement indépendants.
- L'enveloppe convexe de k+1 vecteurs de IRⁿ indépendants au sens affine est appelée un simplexe à k dimensions.

Phase I du simplexe

Michel Bierlaire

45

Terminologie

- 3 points sont soit
 - colinéaires
 - indépendants au sens affine
- Le triangle est un simplexe à deux dimensions.
- La pyramide est un simplexe à 3 dimensions

Phase I du simplexe

Michel Bierlaire

Terminologie

- Géométriquement, on peut associer un simplexe à chaque base.
- On peut interpréter un pivotage (au sens de l'algorithme) comme le pivotage « physique » de ce simplexe.
- C'est de cette interprétation géométrique que viennent les termes simplexe et pivotage.

Phase I du simplexe

Michel Bierlaire