cdfr2020BaseRoulanteRework

Generated by Doxygen 1.8.18

1 Todo List	1
2 Module Index	3
2.1 Modules	3
3 File Index	5
3.1 File List	5
4 Module Documentation	7
4.1 motor_tim	7
4.1.1 Detailed Description	7
4.2 motor_a	8
4.2.1 Detailed Description	8
4.3 motor_b	9
4.3.1 Detailed Description	9
5 File Documentation	11
5.1 lowlevel/include/clock.h File Reference	11
5.1.1 Detailed Description	11
5.1.2 Function Documentation	12
5.1.2.1 clock_setup()	12
5.1.2.2 delay ms()	12
5.2 lowlevel/include/gpio.h File Reference	12
5.2.1 Detailed Description	12
5.2.2 Function Documentation	13
5.2.2.1 gpio_setup_pin_af()	13
5.3 lowlevel/include/motor.h File Reference	13
5.3.1 Detailed Description	14
5.3.2 Macro Definition Documentation	15
5.3.2.1 PWM_PERIOD	15
5.3.2.2 PWM_PRESCALE	15
5.3.3 Enumeration Type Documentation	15
5.3.3.1 motor_sel	15
5.3.4 Function Documentation	15
5.3.4.1 motor_set()	15
5.3.4.2 motor_setup()	16
5.4 lowlevel/include/timer.h File Reference	16
5.4.1 Detailed Description	16
5.4.2 Function Documentation	17
5.4.2.1 timer_setup()	17
5.4.2.2 timer_setup_output_c()	17
5.4.2.3 timer_start()	17
Index	19
mwv.	13

Todo List

Member motor_set (enum motor_sel sel, int8_t value)

we chosse that 0 is forward and 1 is backward, it should be defined in a macro and adjustable for the motors

2 Todo List

Module Index

2.1 Modules

Here is a list of all modules:

motor_	_tim	1																								7
motor_	a							 				 	 													8
motor	b							 				 	 													ç

4 Module Index

File Index

3.1 File List

Here is a list of all documented files with brief descriptions:

lowlevel/include/clock.h

This implements the setup of the system clock, acces fonction (debug) and temporal fonction (delay)

11

lowlevel/include/gpio.h

This implements the setup of a gpio pin

12

lowlevel/include/motor.h

This implements the functions required to pilot the propulsion motors of the robot

13

lowlevel/include/timer.h

This implements the functions required setup a timer and its output channel

16

6 File Index

Module Documentation

4.1 motor_tim

Internal timer used to pilot the motors.

Macros

- #define **MOTOR_TIM_RCC** RCC_TIM3
- #define MOTOR_TIM TIM3

4.1.1 Detailed Description

Internal timer used to pilot the motors.

Two channels are used for the MOTOR_A and MOTOR_B

8 Module Documentation

4.2 motor_a

Definition for the MOTOR_A.

Macros

- #define MOTOR_A_GPIO_RCC_EN RCC_GPIOA
- #define MOTOR A PORT EN GPIOA
- #define MOTOR_A_PIN_EN GPIO4
- #define MOTOR A AF GPIO AF2
- #define MOTOR_A_OC_ID TIM_OC2
- #define MOTOR_A_OC_MODE TIM_OCM_PWM1
- #define MOTOR_A_GPIO_RCC_DIR RCC GPIOA
- #define MOTOR_A_PORT_DIR GPIOA
- #define MOTOR A PIN DIR GPIO3
- #define MOTOR_A_INIT_DIR 0
- #define MOTOR_A_INVERT_DIR (-1)

4.2.1 Detailed Description

Definition for the MOTOR_A.

EN stands for enable (output of the PWM signal)

We use OC_ID to select a specific channel of the output comparator as a PWM_output

DIR stands for direction (boolean value)

INIT_DIR is the initial direction of the motor INVERT_DIR allows to define the forward direction in motor_set (must be 1 or -1) Pinmap used here: EN on PA4 (with TIM3_CH2), DIR on PA3

4.3 motor_b

4.3 motor b

Definition for the MOTOR_B.

Macros

- #define MOTOR_B_GPIO_RCC_EN RCC_GPIOA
- #define MOTOR B PORT EN GPIOA
- #define **MOTOR_B_PIN_EN** GPIO6
- #define MOTOR B AF GPIO AF2
- #define MOTOR_B_OC_ID TIM_OC1
- #define **MOTOR_B_OC_MODE** TIM_OCM_PWM1
- #define MOTOR_B_GPIO_RCC_DIR RCC_GPIOA
- #define MOTOR B PORT DIR GPIOA
- #define MOTOR B PIN DIR GPIO7
- #define MOTOR_B_INIT_DIR 0
- #define MOTOR_B_INVERT_DIR (1)

4.3.1 Detailed Description

Definition for the MOTOR_B.

EN stands for enable (output of the PWM signal)

We use OC_ID to select a specific channel of the output comparator as a PWM_output

DIR stands for direction (boolean value)

INIT_DIR is the initial direction of the motor INVERT_DIR allows to define the forward direction in motor_set (must be 1 or -1) Pinmap used here: EN on PA6 (with TIM3_CH1), DIR on PA7

10 Module Documentation

File Documentation

5.1 lowlevel/include/clock.h File Reference

This implements the setup of the system clock, acces fonction (debug) and temporal fonction (delay)

```
#include <stdint.h>
```

Functions

• void clock_setup ()

This function setup the system clock.

uint32_t clock_get_systicks ()

This function gets the number of systicks since starting.

void delay_ms (uint32_t ms)

This function gets the uptime in ms.

5.1.1 Detailed Description

This implements the setup of the system clock, acces fonction (debug) and temporal fonction (delay)

This file is part of cdfr2020BaseRoulanteRework

Date

06/2020

Licence:

Robotronik Phelma

Author

PhenixRobotik NPXav Benano Trukbidule

5.1.2 Function Documentation

5.1.2.1 clock_setup()

```
void clock_setup ( )
```

This function setup the system clock.

5.1.2.2 delay_ms()

```
void delay_ms ( \mbox{uint32\_t}\ \mbox{\it ms}\ )
```

This function gets the uptime in ms.

This function implements a delay in ms

Parameters

ms value of delay in ms

5.2 lowlevel/include/gpio.h File Reference

This implements the setup of a gpio pin

```
#include <libopencm3/stm32/rcc.h>
#include <libopencm3/stm32/gpio.h>
```

Functions

• void gpio_setup_pin_af (enum rcc_periph_clken rcc_clken, uint32_t gpio_port, uint16_t gpio_pin, uint8_← t gpio_altfun)

This function setup a pin for an alternate function.

5.2.1 Detailed Description

This implements the setup of a gpio pin

This file is part of cdfr2020BaseRoulanteRework

Date

06/2020

Licence:

Robotronik Phelma

Author

NPXav Benano Trukbidule

5.2.2 Function Documentation

5.2.2.1 gpio_setup_pin_af()

This function setup a pin for an alternate function.

Parameters

rcc_clken	reset clock control for the pin (usualy RCC_X with X the gpio_port)					
gpio_port	pio_port port of the selected pin					
gpio_pin	number of the selected pin					
gpio_altfun	identifier for the alternate function (usualy GPIO_AFX with X the number for altfun)					

5.3 lowlevel/include/motor.h File Reference

This implements the functions required to pilot the propulsion motors of the robot

```
#include <libopencm3/stm32/timer.h>
#include "timer.h"
#include "gpio.h"
```

Macros

- #define PWM_PRESCALE (64)
- #define PWM_PERIOD (20000)

- #define MOTOR_TIM_RCC RCC_TIM3
- #define MOTOR TIM TIM3
- #define MOTOR_A_GPIO_RCC_EN RCC_GPIOA
- #define MOTOR_A_PORT_EN GPIOA
- #define MOTOR A PIN EN GPIO4
- #define MOTOR A AF GPIO AF2
- #define MOTOR A OC ID TIM OC2
- #define MOTOR A OC MODE TIM OCM PWM1
- #define MOTOR_A_GPIO_RCC_DIR RCC_GPIOA
- #define MOTOR A PORT DIR GPIOA
- #define MOTOR A PIN DIR GPIO3
- #define MOTOR_A_INIT_DIR 0
- #define MOTOR A INVERT_DIR (-1)
- · #define MOTOR B GPIO RCC EN RCC GPIOA
- #define MOTOR B PORT EN GPIOA
- #define MOTOR B PIN EN GPIO6
- #define MOTOR B AF GPIO AF2
- #define MOTOR_B_OC_ID TIM_ OC1
- #define MOTOR B OC MODE TIM OCM PWM1
- #define MOTOR_B_GPIO_RCC_DIR RCC_GPIOA
- #define MOTOR_B_PORT_DIR GPIOA
- #define MOTOR_B_PIN_DIR GPIO7
- #define MOTOR B INIT DIR 0
- #define MOTOR B INVERT DIR (1)

Enumerations

• enum motor sel { MOTOR A, MOTOR B }

enum of the two motors used to identify them in some functions (like function motor_set)

Functions

void motor setup ()

This function initializes the timers (including the timer output comparator) and GPIOs to pilot by PWM the propulsion motors + the GPIOs for the direction.

• void motor_set (enum motor_sel sel, int8_t value)

This function pilots the sel (MOTOR_A or MOTOR_B) with a value between -100(backward full speed) and +100 (forward full speed). The forward direction depends on the sign of $MOTOR_X_INVER_DIR$.

5.3.1 Detailed Description

This implements the functions required to pilot the propulsion motors of the robot

This file is part of cdfr2020BaseRoulanteRework

Date

06/2020

Licence:

Robotronik Phelma

Author

NPXav Benano Trukbidule

5.3.2 Macro Definition Documentation

5.3.2.1 PWM_PERIOD

```
#define PWM_PERIOD (20000)
```

We need a 50 Hz period (1000 / 20ms = 50), thus divide 100000 by 50 = 20000 (us).

5.3.2.2 PWM_PRESCALE

```
#define PWM_PRESCALE (64)
```

Prescale 64000000 Hz system clock by 64 = 1000000 Hz.

5.3.3 Enumeration Type Documentation

5.3.3.1 motor_sel

```
enum motor_sel
```

enum of the two motors used to identify them in some functions (like function motor_set)

5.3.4 Function Documentation

5.3.4.1 motor_set()

This function pilots the sel (MOTOR_A or MOTOR_B) with a value between -100(backward full speed) and +100 (forward full speed). The forward direction depends on the sign of MOTOR_X_INVER_DIR.

Parameters

sel	The motor that will be piloted (eg MOTOR_A)
value	value is between -100 and +100, controls the speed and direction of the motor sel (eg +54)

Todo we chosse that 0 is forward and 1 is backward, it should be defined in a macro and adjustable for the motors

5.3.4.2 motor_setup()

```
void motor_setup ( )
```

This function initializes the timers (including the timer output comparator) and GPIOs to pilot by PWM the propulsion motors + the GPIOs for the direction.

5.4 lowlevel/include/timer.h File Reference

This implements the functions required setup a timer and its output channel

```
#include <stdint.h>
#include <libopencm3/stm32/timer.h>
#include <libopencm3/stm32/rcc.h>
```

Functions

void timer_setup (enum rcc_periph_clken rcc_clken, uint32_t timer_peripheral, uint32_t prescaler, uint32_t period)

This function setup an internal timer with the given parameters.

 void timer_setup_output_c (uint32_t timer_peripheral, enum tim_oc_id oc_id, enum tim_oc_mode oc_mode, uint32_t oc_value)

This function configure the output comparator of a channel for the timer specified.

void timer_start (uint32_t timer_peripheral)

This function starts the given timer.

5.4.1 Detailed Description

This implements the functions required setup a timer and its output channel

This file is part of cdfr2020BaseRoulanteRework

Date

06/2020

Licence:

Robotronik Phelma

Author

NPXav Benano Trukbidule

5.4.2 Function Documentation

5.4.2.1 timer_setup()

This function setup an internal timer with the given parameters.

Parameters

rcc_clken	reset and clock control enable for the timer (clock tree)
timer_peripheral	timer selected
prescaler	the input frequency of the timer (sys_clk) is divided by this factor
period	period of the timer in us

5.4.2.2 timer_setup_output_c()

This function configure the output comparator of a channel for the timer specified.

Parameters

timer_peripheral	selected timer
oc_id	selected channel of the output comparator
oc_mode	different mode used for the timer
oc_value	initial value of the duty cycle

5.4.2.3 timer_start()

This function starts the given timer.

Parameters

timer_peripheral selected timer

Index

```
clock.h
    clock_setup, 12
    delay_ms, 12
clock_setup
    clock.h, 12
delay_ms
    clock.h, 12
gpio.h
    gpio_setup_pin_af, 13
gpio_setup_pin_af
    gpio.h, 13
lowlevel/include/clock.h, 11
lowlevel/include/gpio.h, 12
lowlevel/include/motor.h, 13
lowlevel/include/timer.h, 16
motor.h
    motor_sel, 15
    motor_set, 15
    motor_setup, 16
    PWM_PERIOD, 15
    PWM_PRESCALE, 15
motor_a, 8
motor_b, 9
motor_sel
    motor.h, 15
motor_set
    motor.h, 15
motor_setup
    motor.h, 16
motor_tim, 7
PWM PERIOD
    motor.h, 15
PWM_PRESCALE
    motor.h, 15
timer.h
    timer_setup, 17
    timer_setup_output_c, 17
    timer_start, 17
timer_setup
    timer.h, 17
timer_setup_output_c
    timer.h, 17
timer_start
    timer.h, 17
```