## PROPOSED MARKING GUIDE PURE MATHEMATICS

P425/1 2023

| NO | SOLUTION                                                                                  | MKS  | COMMENT  |
|----|-------------------------------------------------------------------------------------------|------|----------|
| 1  | $1^{2} + 2^{2} + \dots + n^{2} = \frac{1}{6}n(2n+1)(n+1)$                                 | 1853 | 25       |
|    | Solution                                                                                  |      |          |
|    | For $n = 1$ ;                                                                             |      |          |
|    | L.H.S = $1^2 = 1$ , R.H.S = $\frac{1}{6} \times 1 \times (3)(2) = 1$                      |      |          |
|    | It holds                                                                                  |      |          |
|    | For $n=2$ ;                                                                               |      |          |
|    | $L.H.S = 1^2 + 2^2 = 5$                                                                   |      |          |
|    | R.H.S = $\frac{1}{6} \times 2 \times (5)(3) = 5$                                          |      |          |
|    | It holds                                                                                  |      |          |
|    | Assume the result holds for $n = k$                                                       |      |          |
|    | $1^2 + 2^2 + 3^2 + \dots + k^2 = \frac{1}{6}k(2k+1)(k+1)$                                 |      |          |
|    | For $n = k + 1$ ;                                                                         |      |          |
|    | $1^{2} + 2^{2} + 3^{2} + \dots + k^{2} + (k+1)^{2} = \frac{1}{6}k(2k+1)(k+1) + (k+1)^{2}$ |      |          |
|    | R.H.S = $\frac{1}{6}k(2k+1)(k+1) + (k+1)^2$                                               |      |          |
|    | $=\frac{k+1}{6}[2k^2+k+6k+6]$                                                             |      |          |
|    | $=\frac{k+1}{6}[2k^2+7k+6]$                                                               |      |          |
|    | $= \frac{1}{6}(k+1)(2k+3)(k+2)$                                                           |      |          |
|    | It holds for $n = k + 1$                                                                  |      |          |
|    |                                                                                           | 05   |          |
| 2  | If $y = mx + c$ is a tangent to $4x^2 + 3y^2 = 12$ , then                                 |      |          |
|    | $4x^2 + 3(mx + c)^2 = 12$                                                                 |      | <u> </u> |

Prepared by Mr. AGABA ALEX @ 0751476403/0789863084

|   | 4.2 : 2(-2.2 : 2 : -2) 42                                                                                                                                     |    | 1 |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|
|   | $4x^2 + 3(m^2x^2 + 2mcx + c^2) = 12$                                                                                                                          |    |   |
|   | $4x^2 + 3m^2x^2 + 6mcx + 3c^2 = 12$                                                                                                                           |    |   |
|   | $(4+3m^2)+6mcx+3c^2-12=0$                                                                                                                                     |    |   |
|   | For tangency, $b^2 = 4ac$                                                                                                                                     |    |   |
|   | $(6mc)^2 = 4(4+3m^2)(3c^2-12)$                                                                                                                                |    |   |
|   | $36m^2c^2 = 4(12c^2 - 48 + 9m^2c^2 - 36m^2)$                                                                                                                  |    |   |
|   | $9m^2c^2 = 12c^2 - 48 + 9m^2c^2 - 36m^2$                                                                                                                      |    |   |
|   | $12c^2 = 48 + 36m^2$                                                                                                                                          |    |   |
|   | $\therefore c^2 = 4 + 3m^2$                                                                                                                                   |    |   |
| - |                                                                                                                                                               | 05 |   |
| 3 | $y = e^x \cos 3x$                                                                                                                                             |    |   |
|   | $\frac{dy}{dx} = -3e^x \sin 3x + e^x \cos 3x$                                                                                                                 |    |   |
|   | $\frac{dy}{dx} = -3e^x \sin 3x + y$                                                                                                                           |    |   |
|   | $\frac{d^2y}{dx^2} = -3[3e^x \cos 3x + e^x \sin 3x] + \frac{dy}{dx}$                                                                                          |    |   |
|   | $= -9y - 3e^x \sin 3x + \frac{dy}{dx}$                                                                                                                        |    |   |
|   | $= -9y + \frac{dy}{dx} - y + \frac{dy}{dx}$                                                                                                                   |    |   |
|   | $=2\frac{dy}{dx}-10y$                                                                                                                                         |    |   |
|   | $\therefore \frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 10y = 0$                                                                                                     |    |   |
|   |                                                                                                                                                               | 05 |   |
| 4 | Let $d = 3i + 12j + 4k$ and $n = -i + 2j + 2k$                                                                                                                |    |   |
|   | Let $\theta$ = required angle                                                                                                                                 |    |   |
|   | Using $\mathbf{d} \cdot \mathbf{n} =  \mathbf{d}   \mathbf{n}  \sin \theta$                                                                                   |    |   |
|   | $\begin{pmatrix} 3 \\ 12 \\ 4 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 2 \\ 2 \end{pmatrix} = \sqrt{3^2 + 12^2 + 4^2} \sqrt{(-1)^2 + 2^2 + 2^2} \sin \theta$ |    |   |
|   | $-3 + 24 + 8 = \sqrt{169} \sqrt{9} \sin \theta$                                                                                                               |    | ç |

Prepared by Mr. . AGABA ALEX @751476403/0789863084

|   | $29 = 13 \times 3 \sin \theta$                                                              |    |    |
|---|---------------------------------------------------------------------------------------------|----|----|
|   | $\sin\theta = \frac{29}{39}$                                                                |    |    |
|   | $\theta = \sin^{-1}\left(\frac{29}{39}\right)$                                              |    |    |
|   | $\theta = 48.04^{\circ}$                                                                    |    |    |
|   |                                                                                             | 05 | 0  |
| 5 | $\frac{7-2x}{(x+1)(x-2)} > 0$                                                               |    | 21 |
|   | Critical values                                                                             |    |    |
|   | $x = -1, x = 2, x = \frac{7}{2}$                                                            |    |    |
|   | x $ x < -1  -1 < x < 2   2 < x < 3.5   x > 3.5$                                             |    |    |
|   | (7-2x) + + -                                                                                |    |    |
|   | (x+1)(x-2) + - + + + $-$ - + -                                                              |    |    |
|   | $\therefore \text{ The range of values of } x \text{ are: } x < -1, 2 < x < 3.5$            |    |    |
|   | " The range of values of x are. x < -1, 2 < x < 5.5                                         | 05 | 8  |
| 6 | $\int_0^{\pi/3} (1 + \cos 3y)^2  dy = \int_0^{\pi/3} (1 + 2\cos 3y + \cos^2 3y)  dy$        |    |    |
|   | $= \int_0^{\pi/3} \left[ 1 + 2\cos 3y + \frac{1}{2}(\cos 6y + 1) \right] dy$                |    |    |
|   | $= \left[ y + \frac{2}{3} \sin 3y + \frac{1}{12} \sin 6y + \frac{1}{2} y \right]_0^{\pi/3}$ |    |    |
|   | $= \left[\frac{3}{2}y + \frac{2}{3}\sin 3y + \frac{1}{12}\sin 6y\right]_0^{\pi/3}$          |    |    |
|   | $= \left(\frac{\pi}{2} + \frac{2}{3}\sin \pi + \frac{1}{12}\sin 2\pi\right) - 0$            |    |    |
|   | $=\frac{\pi}{2}$ or 1.5708                                                                  |    |    |
|   |                                                                                             | 05 |    |
| 7 | Let $2 \sin \theta + 3 \cos \theta \equiv R \sin(\theta + \alpha)$                          |    |    |
|   | $2\sin\theta + 3\cos\theta \equiv R\sin\theta\cos\alpha + R\cos\theta\sin\alpha$            |    |    |
|   | $\equiv (R\cos\alpha)\sin\theta + (R\sin\alpha)\cos\theta$                                  |    |    |
|   | Comparing coefficients of;                                                                  |    |    |
|   | $\sin \theta$ ; $R \cos \alpha = 2$ (i)                                                     |    |    |

Prepared by Mr. . AGABA ALEX @0751476403/0789863084

|   | $\cos \theta$ ; $R \sin \alpha = 3$ (ii)                                             |    |  |
|---|--------------------------------------------------------------------------------------|----|--|
|   | $(R\cos\alpha)^2 + (R\sin\alpha)^2 = 2^2 + 3^2$                                      |    |  |
|   | $R^2(\cos^2\alpha + \sin^2\alpha) = 4 + 9 = 13$                                      |    |  |
|   | $R^2 = 13$                                                                           |    |  |
|   | $R = \sqrt{13}$                                                                      |    |  |
|   | (ii)÷(i); $\tan \alpha = \frac{3}{2}$                                                |    |  |
|   | $\alpha = \tan^{-1}(1.5)$                                                            |    |  |
|   | $\alpha = 56.31^{\circ}$                                                             |    |  |
|   | $\therefore 2\sin\theta + 3\cos\theta = \sqrt{13}\sin(\theta + 56.31^{\circ})$       |    |  |
|   |                                                                                      | 05 |  |
| 8 | Let $f(x) = \ln(2+x), f(0) = \ln 2$                                                  |    |  |
|   | $f'(x) = \frac{1}{2+x}, f'(0) = \frac{1}{2}$                                         |    |  |
|   | $f''(x) = -(2+x)^{-2} \cdot 1 = \frac{-1}{(2+x)^2}, f''(0) = -\frac{1}{4}$           |    |  |
|   | Using $f(x) = f(0) + xf'(0) + \frac{x^2f''(0)}{2!} + \frac{x^3f'''(0)}{3!} + \cdots$ |    |  |
|   | $\therefore \ln(2+x) = \ln 2 + \frac{1}{2}x - \frac{1}{8}x^2 + \cdots$               |    |  |
|   |                                                                                      | 05 |  |
| 9 | a) Let $f(z) = z^3 - 7z^2 + 19z - 13$                                                |    |  |
|   | Putting $z = 1$                                                                      |    |  |
|   | $f(1) = 1^3 - 7(1)^2 + 19(1) - 13$                                                   |    |  |
|   | f(1) = 0                                                                             |    |  |
|   | z = 1 is a root and then $z - 1$ is a factor                                         |    |  |

$$z^{2} - 6z + 13$$

$$z^{3} - 7z^{2} + 19z - 13$$

$$z^{3} - z^{2}$$

$$-6z^{2} + 19z - 13$$

$$-6z^{2} + 6z$$

$$-13z - 13$$

$$13z - 13$$

$$z^{2} - 6z + 13 = 0$$

$$z = \frac{6 \pm \sqrt{(-6)^{2} - 4 \times 1 \times 13}}{2 \times 1}$$

$$z = \frac{6 \pm \sqrt{-16}}{2}$$

$$z = \frac{6 \pm 4i}{2} = 3 \pm 2i$$

The values of z are 1, 3 + 2i and 3 - 2i

b) 
$$8(-\sqrt{3}+i) = -8\sqrt{3}+8i$$

Let 
$$z = -8\sqrt{3} + 8i$$

$$r = |z| = \sqrt{(-8\sqrt{3})^2 + 8^2} = 16 \text{ units}$$



$$arg(z) = \theta = 180^{\circ} - tan^{-1} \left( \frac{8}{8\sqrt{3}} \right) = 180^{\circ} - 30^{\circ} = 150^{\circ} = \frac{5\pi}{6}$$

Using 
$$z = r^{\frac{1}{n}} \left[ \cos \left( \frac{\theta + 2\pi k}{n} \right) + i \sin \left( \frac{\theta + 2\pi k}{n} \right) \right]$$

$$z = 16^{\frac{1}{4}} \left[ \cos \left( \frac{\frac{5\pi}{6} + 2\pi k}{4} \right) + i \sin \left( \frac{\frac{5\pi}{6} + 2\pi k}{4} \right) \right]$$

|    | $z = 2\left[\cos\left(\frac{5\pi + 12\pi k}{24}\right) + i\sin\left(\frac{5\pi + 12\pi k}{24}\right)\right]$         | 7  |  |
|----|----------------------------------------------------------------------------------------------------------------------|----|--|
|    | For $k = 0$ , $z_1 = 2 \left[ \cos \left( \frac{5\pi}{24} \right) + i \sin \left( \frac{5\pi}{24} \right) \right]$   |    |  |
|    | = 2(0.7934 + 0.6088i)                                                                                                |    |  |
|    | = 1.5868 + 1.2176i                                                                                                   |    |  |
|    | For $k = 1, z_2 = 2 \left[ \cos \left( \frac{17\pi}{24} \right) + i \sin \left( \frac{17\pi}{24} \right) \right]$    |    |  |
|    | = 2(-0.6088 + 0.7934)                                                                                                |    |  |
|    | =-1.2176+1.5868i                                                                                                     |    |  |
|    | For $k = 2$ , $z_3 = 2 \left[ \cos \left( \frac{29\pi}{24} \right) + i \sin \left( \frac{29\pi}{24} \right) \right]$ |    |  |
|    | = 2(-0.7934 - 0.6088i)                                                                                               |    |  |
|    | =-1.5868-1.2176i                                                                                                     |    |  |
|    | For $k = 3$ , $z_4 = 2 \left[ \cos \left( \frac{41\pi}{24} \right) + i \sin \left( \frac{41\pi}{24} \right) \right]$ |    |  |
|    | = 2(0.6088 - 07934i)                                                                                                 |    |  |
|    | = 1.2176 - 1.5868i                                                                                                   |    |  |
|    |                                                                                                                      | 12 |  |
| 10 | Method I<br>Let $\frac{3x^3 + 2x^2 - 3x + 1}{x(1-x)} \equiv Ax + B + \frac{C}{x} + \frac{D}{1-x}$                    |    |  |
|    | $3x^3 + 2x^2 - 3x + 1 \equiv x(Ax + B)(1 - x) + C(1 - x) + Dx$                                                       |    |  |
|    | Putting $x = 1$ ; $3 = D$ $\therefore D = 3$                                                                         |    |  |
|    | Putting $x = 0$ ; $1 = C$ $\therefore C = 1$                                                                         |    |  |
|    | Comparing coefficients of;                                                                                           |    |  |
|    | $x^3; 3 = -A \qquad \therefore A = -3$                                                                               |    |  |
|    | $x^2; 2 = A - B$                                                                                                     |    |  |
|    | $2 = -3 - B \qquad \qquad \therefore B = -5$                                                                         |    |  |
|    | $\therefore \frac{3x^3 + 2x^2 - 3x + 1}{x(1 - x)} \equiv -3x - 5 + \frac{1}{x} + \frac{3}{1 - x}$                    |    |  |
|    | Hence;                                                                                                               |    |  |

Prepared by Mr. AGABA ALEX @0751476403/0789863084

| <u> </u> | a 1                                                                                                                                                                                               | _   |  |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|
|          | $\int f(x)  dx = \int (-3x - 5)  dx + \int \frac{1}{x} dx + \int \frac{3}{1 - x} dx$                                                                                                              |     |  |
|          | $= -\frac{3}{2}x^2 - 5x + \ln x - 3\ln(1-x) + c$                                                                                                                                                  |     |  |
|          | Method II                                                                                                                                                                                         |     |  |
|          | $\frac{3x^3 + 2x^2 - 3x + 1}{x(1 - x)} = \frac{3x^3 + 2x^2 - 3x + 1}{x - x^2}$                                                                                                                    |     |  |
|          | $ \begin{array}{r} -3x - 5 \\ (-x^2 + x) \overline{\smash{\big)} 3x^3 + 2x^2 - 3x + 1} \\ \underline{3x^3 - 3x^2} \\ \underline{-5x^2 - 3x + 1} \\ \underline{-5x^2 - 5x} \\ 2x + 1 \end{array} $ |     |  |
|          | $\frac{3x^3 + 2x^2 - 3x + 1}{x(1 - x)} = -3x - 5 + \frac{2x + 1}{x(1 - x)}$                                                                                                                       |     |  |
|          | Let $\frac{2x+1}{x(1-x)} \equiv \frac{A}{x} + \frac{B}{1-x}$                                                                                                                                      |     |  |
|          | $2x+1\equiv A(1-x)+Bx$                                                                                                                                                                            |     |  |
|          | Putting $x = 1$ ; $3 = B$ $\therefore B = 3$                                                                                                                                                      |     |  |
|          | Putting $x = 0$ ; $1 = A$ $\therefore A = 1$                                                                                                                                                      |     |  |
|          | $\therefore \frac{3x^3 + 2x^2 - 3x + 1}{x(1 - x)} \equiv -3x - 5 + \frac{1}{x} + \frac{3}{1 - x}$                                                                                                 |     |  |
|          | Hence;                                                                                                                                                                                            |     |  |
|          | $\int f(x)  dx = \int (-3x - 5)  dx + \int \frac{1}{x} dx + \int \frac{3}{1 - x} dx$                                                                                                              |     |  |
|          | $= -\frac{3}{2}x^2 - 5x + \ln x - 3\ln(1-x) + c$                                                                                                                                                  |     |  |
|          |                                                                                                                                                                                                   | 12  |  |
| 11       | a) Equation of a line through E(2,0,-1)                                                                                                                                                           |     |  |
|          | $r = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix} + \mu \begin{pmatrix} -2 \\ 1 \\ 2 \end{pmatrix}$                                                                                                 |     |  |
|          | Let $r = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$                                                                                                                                               |     |  |
| á        | $ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \tilde{2} \\ 0 \\ -1 \end{pmatrix} + \mu \begin{pmatrix} -2 \\ 1 \\ 2 \end{pmatrix} $                                               | ni. |  |

7

$$x = 2 - 2\mu$$

$$y = \mu$$

$$z = -1 + 2\mu$$
At point B;
$$2 - 2\mu + 2\mu - 2(-1 + 2\mu) = 8$$

$$2 + 2 - 4\mu = 8$$

$$-4\mu = 4 \qquad \therefore \mu = -1$$

$$\Rightarrow x = 2 - 2(-1) = 4$$

$$y = -1$$

$$z = -1 + 2(-1) = -3$$

$$\therefore B(4, -1, -3)$$
b)
$$E(2,0, -1)$$

$$n = i + 2j - 2k$$
Equation of the perpendicular from E to the plane;
$$r = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix} + t \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$$
Let  $r = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ 

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix} + t \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$$

$$x = 2 + t$$

$$y = 2t$$

$$z = -1 - 2t$$

At point C;

8

|    | 2 + t + 4t - 2(-1 - 2t) = 8                                                  |    |  |
|----|------------------------------------------------------------------------------|----|--|
|    | 2 + 5t + 2 + 4t = 8                                                          |    |  |
|    | 9t = 4                                                                       |    |  |
|    | $t=\frac{4}{9}$                                                              |    |  |
|    | $\Rightarrow x = 2 + \frac{4}{9} = \frac{22}{9}$                             |    |  |
|    | $y = 2\left(\frac{4}{9}\right) = \frac{8}{9}$                                |    |  |
|    | $z = -1 - 2\left(\frac{4}{9}\right) = -\frac{17}{9}$                         |    |  |
|    | $\therefore C\left(\frac{22}{9}, \frac{8}{9}, -\frac{17}{9}\right)$          |    |  |
|    |                                                                              | 12 |  |
| 12 | a) No. of ways = $10! = 3,628,800$ ways                                      |    |  |
|    | b) No. of ways = ${}^{9}C_{6} \times {}^{7}C_{5} = 84 \times 21 = 1764$ ways |    |  |
|    | $c)^{20}C_r = {}^{20}C_{r-2}$                                                |    |  |
|    | $\frac{20!}{(20-r)!r!} = \frac{20!}{(20-(r-2))!(r-2)!}$                      |    |  |
|    | (20-r)!r! = (20-(r-2))!(r-2)!                                                |    |  |
|    | (20-r)!r! = (22-r)!(r-2)!                                                    |    |  |
|    | (20-r)! r(r-1)(r-2)! = (22-r)(21-r)(20-r)! (r-2)!                            |    |  |
|    | r(r-1) = (22-r)(21-r)                                                        |    |  |
|    | $r^2 - r = 462 - 22r - 21r + r^2$                                            |    |  |
|    | -r = 462 - 43r                                                               |    |  |
|    | 42r = 462                                                                    |    |  |
|    | r = 11                                                                       |    |  |
|    | Alternatively:                                                               |    |  |
|    | $If^{n}C_{x} = {}^{n}C_{y} \Longrightarrow x + y = n$                        |    |  |
|    | Then ${}^{20}C_r = {}^{20}C_{r-2}$                                           |    |  |
|    | r + r - 2 = 20                                                               |    |  |
|    | 2r = 22                                                                      |    |  |

**CS** CamScanner

|    | $\Delta r = 11$                                            | ]  | in a |
|----|------------------------------------------------------------|----|------|
|    |                                                            | 12 |      |
| 13 | a) $x = t^2 - 3, y = t(t^2 - 3)$                           |    |      |
|    | From $x = t^2 - 3$                                         |    |      |
|    | $t = \sqrt{x+3}$                                           |    |      |
|    | $\Rightarrow y = \sqrt{x+3}(x)$                            |    |      |
|    | Squaring both sides gives                                  |    |      |
|    | $y^2 = x^2(x+3)$                                           |    |      |
|    | $y^2 = x^3 + 3x^2$ or $x^3 = y^2 - 3x^2$                   |    |      |
|    | Alternatively:                                             |    |      |
|    | $y = tx => t = \frac{y}{x}$                                |    |      |
|    | Using $x = t^2 - 3$                                        |    |      |
|    | $\Rightarrow x = \frac{y^2}{x^2} - 3$                      |    |      |
|    | $\therefore x^3 = y^2 - 3x^2 \text{ or } y^2 = x^3 + 3x^2$ |    |      |
|    | b) (i)                                                     |    |      |
|    | ↑ <sup>y</sup>                                             |    |      |
|    |                                                            |    |      |
|    | P(x,y)                                                     |    |      |
|    |                                                            |    |      |
|    |                                                            |    |      |
|    |                                                            |    |      |
|    | O(0,0) A(12,0) x                                           |    |      |
|    |                                                            |    |      |
|    | $\overline{OP} = 5\overline{PA}$                           |    |      |
|    | $\overline{OP}^2 = 25\overline{PA}^2$                      |    |      |
|    | $(x-0)^2 + (y-0)^2 = 25[(x-12)^2 + (y-0)^2]$               |    |      |
|    | $x^2 + y^2 = 25(x^2 - 24x + 144 + y^2)$                    |    |      |

Prepared by Mr. AGABA ALEX 0751476403/0789863084

|    | $x^2 + y^2 = 25x^2 + 25y^2 - 600x + 3600$                                                                                              | 11:1 |  |
|----|----------------------------------------------------------------------------------------------------------------------------------------|------|--|
|    | $24x^2 + 24y^2 - 600x + 3600 = 0$                                                                                                      |      |  |
|    | $x^2 + y^2 - 25x + 150 = 0$ hence a circle                                                                                             |      |  |
|    | (ii) Completing squares                                                                                                                |      |  |
|    | $x^2 + y^2 - 25x = -150$                                                                                                               |      |  |
|    | $\left(x - \frac{25}{2}\right)^2 + (y - 0)^2 = -150 + \left(\frac{25}{2}\right)^2$                                                     |      |  |
|    | $\left(x - \frac{25}{2}\right)^2 + (y - 0)^2 = \frac{25}{4}$                                                                           |      |  |
|    | $\therefore$ Centre, $C\left(\frac{25}{2},0\right)$ and radius, $r=\sqrt{\left(\frac{25}{4}\right)}=\frac{5}{2}=2.5$ units             |      |  |
|    |                                                                                                                                        | 12   |  |
| 14 | a) Turning points                                                                                                                      |      |  |
|    | $\frac{dy}{dx} = \frac{(4x^2 - 1) \cdot 0 - 1 \cdot 8x}{(4x^2 - 1)^2} = 0$                                                             |      |  |
|    | $\theta x = 0$                                                                                                                         |      |  |
|    | x = 0                                                                                                                                  |      |  |
|    | When $x = 0$ , $y = \frac{1}{0-1} = -1$                                                                                                |      |  |
|    | ∴ (0,−1)                                                                                                                               |      |  |
|    | Nature;                                                                                                                                |      |  |
|    | $\frac{d^2y}{dx^2} = \frac{(4x^2 - 1)^2 - 8 + 8x \cdot 2(4x^2 - 1) \cdot 8x}{(4x^2 - 1)^4} = \frac{(4x^2 - 1)(96x + 8)}{(4x^2 - 1)^4}$ |      |  |
|    | When $x = 0$ , $y = \frac{(0-1)(0+8)}{(0-1)^4} = -8 < 0$                                                                               |      |  |
|    | $\therefore (0,-1)_{max}$                                                                                                              |      |  |
|    | b) Asymptotes                                                                                                                          |      |  |
|    | Vertical asymptote                                                                                                                     |      |  |
|    | $4x^2 - 1 = 0$                                                                                                                         |      |  |
|    | $4x^2=1$                                                                                                                               |      |  |
|    | $x=\pm \frac{1}{2}$                                                                                                                    |      |  |

|    | $x=-\frac{1}{2}, x=\frac{1}{2}$                                                                                                                       |    |  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
|    | Horizontal asymptote                                                                                                                                  |    |  |
|    | $y = \frac{\frac{1}{x^2}}{4 - \frac{1}{x^2}}$                                                                                                         |    |  |
|    | As $x \to \pm \infty, y \to 0$                                                                                                                        |    |  |
|    | i.e $y = 0$                                                                                                                                           |    |  |
|    | Intercepts                                                                                                                                            |    |  |
|    | When $y = 0, x = ?$                                                                                                                                   |    |  |
|    | 0 = 1, x is undefined                                                                                                                                 |    |  |
|    | When $x = 0, y = ?$                                                                                                                                   |    |  |
|    | $y=\frac{1}{0-1}=-1,(0,-1)$                                                                                                                           |    |  |
|    | $x = -\frac{1}{2}$ $y = \frac{1}{4x^2 - 1}$ $x$ $(0, +1)$                                                                                             |    |  |
|    |                                                                                                                                                       | 12 |  |
| 15 | a) $\tan 3\theta = \tan(2\theta + \theta)$                                                                                                            |    |  |
|    | $= \frac{\tan 2\theta + \tan \theta}{1 - \tan 2\theta \tan \theta}$                                                                                   |    |  |
|    | But $\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}$                                                                                          |    |  |
|    | $\Rightarrow \tan 3\theta = \frac{\frac{2\tan\theta}{1-\tan^2\theta} + \tan\theta}{1 - \left(\frac{2\tan\theta}{1-\tan^2\theta}\right) + \tan\theta}$ |    |  |
|    | $=\frac{2\tan\theta+\tan\theta-\tan^3\theta}{1-\tan^2\theta-2\tan^2\theta}$                                                                           |    |  |

Prepared by Mr. AGABA ALEX @0751476403/0789863084

$$= \frac{3 \tan \theta - \tan^3 \theta}{1 - 3 \tan^2 \theta}$$

$$\therefore \tan 3\theta = \frac{\tan \theta (3 - \tan^2 \theta)}{(1 - 3 \tan^2 \theta)}$$

## ALT:

From De Movoire's theorem;

$$\cos 3\theta + i \sin 3\theta = (\cos \theta + i \sin \theta)^3$$
$$= \cos^3 \theta + 3i\cos^2 \theta \sin \theta - 3\cos \theta \sin^2 \theta - i\sin^3 \theta$$

Equating components;

Real: 
$$\cos 3\theta = \cos^3 \theta - 3 \cos \theta \sin^2 \theta$$
 .....(i)

Imaginary; 
$$\sin 3\theta = 3\cos^2\theta \sin \theta - \sin^3\theta$$
....(ii)

(ii)÷(i); 
$$\tan 3\theta = \frac{3\cos^2\theta\sin\theta - \sin^3\theta}{\cos^3\theta - 3\cos\theta\sin^2\theta}$$

Dividing through the R.H.S by  $\cos^3\theta$ 

$$\tan 3\theta = \frac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta}$$

$$\therefore \tan 3\theta = \frac{\tan \theta (3 - \tan^2 \theta)}{(1 - 3\tan^2 \theta)}$$

b) 
$$\cos 6x + \cos 2x + \cos 4x = 0$$

$$2\cos 4x\cos 2x + \cos 4x = 0$$

$$\cos 4x \left(2\cos 2x + 1\right) = 0$$

Either 
$$\cos 4x = 0$$
 or  $2\cos 2x + 1 = 0$ 

For 
$$\cos 4x = 0$$

$$4x = \cos^{-1}(0)$$

$$4\ddot{x} = 90^{\circ}, 270^{\circ}, 450^{\circ}, 630^{\circ}$$

$$x = 22.5^{\circ}, 67.5^{\circ}, 112.5^{\circ}, 157.5^{\circ}$$

For 
$$2\cos 2x + 1 = 0$$

$$\cos 2x = -\frac{1}{2}$$

$$2x = \cos^{-1}\left(\frac{1}{2}\right)$$

$$2x = 120^{\circ}, 240^{\circ}$$

|    | 0-10                                                                                               |    | - |
|----|----------------------------------------------------------------------------------------------------|----|---|
|    | $x = 60^{\circ}, 120^{\circ}$                                                                      |    |   |
|    | $\therefore x = 22.5^{\circ}, 60^{\circ}, 67.5^{\circ}, 112.5^{\circ}, 120^{\circ}, 157.5^{\circ}$ |    |   |
|    |                                                                                                    | 12 |   |
| 16 | a) Let T be the body's temperature                                                                 |    |   |
|    | $\frac{dT}{dt} \propto (T-25)$                                                                     |    |   |
|    | $\frac{dT}{dt} = -k(T - 25)$                                                                       |    |   |
|    | $\int \frac{dT}{T-25} = -\int k  dt$                                                               |    |   |
|    | $\ln(T-25) = -kt + c$                                                                              |    |   |
|    | $T - 25 = e^{-kt+c}$                                                                               |    |   |
|    | $T-25=e^{-kt}\cdot e^c$                                                                            |    |   |
|    | $T-25 = Ae^{-kt}, A = e^c$                                                                         |    |   |
|    | $T = 25 + Ae^{-kt}$                                                                                |    |   |
|    | When $t = 0, T = 90^{\circ}$ C                                                                     |    |   |
|    | $90 = 25 + A \qquad \qquad \therefore A = 65$                                                      |    |   |
|    | $T = 25 + 65e^{-kt}$                                                                               |    |   |
|    | When $t = 6 mins$ , $T = 60^{\circ}$ C                                                             |    |   |
|    | $60 = 25 + 65e^{-6k}$                                                                              |    |   |
|    | $e^{-6k} = \frac{35}{65}$                                                                          |    |   |
|    | $-6k = \ln\left(\frac{35}{65}\right)$                                                              |    |   |
|    | $k = \frac{1}{6} \ln \left( \frac{65}{35} \right)$                                                 |    |   |
|    | $\therefore T = 25 + 65e^{-\frac{1}{6}\ln\left(\frac{65}{35}\right) \cdot t}$                      |    |   |
|    | b) When $T = 40^{\circ}, t = ?$                                                                    |    |   |
|    | $40 = 25 + 65e^{-\frac{1}{6}\ln\left(\frac{65}{35}\right) \cdot t_1}$                              |    |   |
|    | $-\frac{1}{6}\ln\left(\frac{65}{35}\right) \cdot t_1 = \ln\left(\frac{15}{65}\right)$              |    |   |

$$t_1 = \frac{-6 \ln(\frac{15}{65})}{\ln(\frac{65}{35})} = 14.2124 \text{ minutes}$$
When T = 30°, t =?
$$30 = 25 + 65e^{-\frac{1}{6}\ln(\frac{65}{35})}t_2$$

$$-\frac{1}{6}\ln(\frac{65}{35}) \cdot t_2 = \ln(\frac{5}{65})$$

$$t_2 = \frac{-6 \ln(\frac{5}{65})}{\ln(\frac{65}{35})} = 24.8606 \text{ minutes}$$

$$\therefore \text{ Time taken} = 24.8606 - 14.2124$$

$$= 10.6482 \approx 11 \text{ minutes}$$

$$Alternatively:$$
Using  $\ln(T - 25) = -kt + c$ 
Set  $t = t_1$  at  $T = 40 \Rightarrow \ln 15 = -kt_1 + c$ 
Set  $t = t_2$  at  $T = 30 \Rightarrow \ln 5 = -kt_2 + c$ 
Subtracting:  $\ln 15 - \ln 5 = k(t_2 - t_1)$ 
The required time,  $t_2 - t_1 = \frac{\ln 3}{k}$ 

$$= \ln 3 \div \frac{1}{6} \ln(\frac{65}{35})$$

$$= \frac{6 \ln 3}{\ln(\frac{65}{35})}$$

$$= \frac{6 \ln 3}{\ln(\frac{65}{35})}$$

$$= 10.6482 \approx 11 \text{ minutes}$$