AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

1-58. (canceled)

59. (currently amended) An assembly comprising:

a suction source;

an instrument to be positioned in or around a passage surrounded by vascular tissue; and

a <u>stabiliser stabilizer</u> for <u>stabilising stabilizing</u> said vascular tissue surrounding said passage with respect to the instrument, wherein,

the stabiliser stabilizer is provided with one or more suction nozzles running in the shape of a loop, which suction nozzles can be are operationally connected to the suction means source in order to suck tightly to tissue close to and around said passage, which may still have to be made,

the instrument has a head section for performing operations on vascular tissue,

the stabiliser stabilizer and the instrument are provided with, respectively, an instrument stop provided on the stabilizer stabilizer and a stabiliser stabilizer stop provided on the instrument, which, in the stop position when they are in

contact with one another, unambiguously define the position of the head section with respect to the position of the loop shape, and

the instrument is removably positioned in the stabiliser <u>stabilizer</u> such that the instrument and the stabiliser <u>stabilizer</u> can be separated into distinct elements.

- 60. (previously presented) The assembly according to claim 59, wherein the instrument is an applicator for positioning and fixing a fixing device in or around the passage, the head section being equipped for carrying and releasing the fixing device.
- 61. (currently amended) The assembly according to claim 59, wherein the stabiliser stabilizer is provided with a guide on which the instrument stop is provided such that it can slide along the guide and with respect to which the instrument stop can be locked, wherein the guide has a direction of extension essentially transverse to the loop shape, and wherein the one or more suction nozzles running in the shape of a loop and the guide are firmly linked to one another in such a way that the mutual positions of the loop shape and guide are fixed with respect to one another.
- 62. (currently amended) The assembly according to claim 61 wherein the guide is provided with a scale with a zero point and wherein the distance from the zero point to the loop shape is

chosen such that when, the instrument stop is aligned with the zero point and the instrument stop and stabiliser stabilizer stop are in the stop position, the head section, or at least a fixing device provided thereon, is located at the distal bottom end of the stabiliser stabilizer.

- 63. (currently amended) The assembly according to claim 61, wherein the stabiliser stabilizer comprises a working duct with the one or more suction nozzles running in the shape of a loop at the distal end.
- 64. (previously presented) The assembly according to claim 63, wherein the guide is provided at the proximal end of the working duct.
- 65. (currently amended) The assembly according to claim 63, wherein at least one axial suction duct that joins the suction means source to said one or more suction nozzles has been made is located in the wall of the working duct.
- 66. (previously presented) The assembly according to claim 59, wherein the one or more suction nozzles running in the shape of a loop comprise one or more axial suction nozzles opening in the axial direction viewed with respect to the loop shape.

67. (previously presented) The assembly according to claim 59, wherein the one or more suction nozzles running in the shape of a loop comprise one or more radial suction nozzles opening in the radially outward direction, viewed with respect to the loop shape.

68. (previously presented) The assembly according to claim 59, wherein the one or more suction nozzles running in the shape of a loop comprise one or more inclined suction nozzles opening outwards obliquely with respect to the axial direction, viewed with respect to the loop shape.

69. (previously presented) The assembly according to claim 59, wherein the one or more suction nozzles running in the shape of a loop comprise one or more radial suction nozzles opening in the radially inward direction, viewed with respect to the loop shape.

70. (currently amended) The assembly according to claim 59, wherein the part of the stabiliser stabilizer that comprises the one or more suction nozzles running in the shape of a loop has a shape adapted to the shape of the tissue where the suction nozzle has to be positioned.

71. (previously presented) The assembly according to claim 59, wherein all or some of the one or more suction nozzles running in the shape of a loop are provided with segments that can be coupled to one another.

72. (currently amended) The assembly according to claim 59, wherein the part of the stabiliser stabilizer that comprises the one or more suction nozzles running in the shape of a loop comprises at least two groups of suction nozzles that are not connected to one another, such that vacuum can be applied to the groups independently of one another.

73. (currently amended) The assembly according to claim 59, wherein the part of the stabiliser stabilizer that comprises to one or more suction nozzles running in the shape of a loop can be completely or partially uncoupled from the rest of the stabiliser stabilizer.

74. (previously presented) The assembly according to claim 59, wherein the suction nozzles are provided on at least two segments defining the loop shape and wherein more than one of said segments are adjustable in the radial direction, viewed with respect to the loop shape, by means of an adjustment mechanism in order to constrict or widen the passage, after having sucked the tissue close to the passage tightly all round, by adjusting more

than one of the adjustable segments inwards or outwards, respectively.

- 75. (previously presented) The assembly according to claim 59, wherein the suction nozzles are provided on at least two segments defining the loop shape and wherein more than one of said segments can be adjusted with respect to one another by means of an adjustment mechanism, the movement of the adjustable segments describing a straight or curved line in order to move the adjustable segments towards one another or away from one another by adjusting more than one the adjustable segments towards one another or, respectively, away from one another.
- 76. (previously presented) The assembly according to claim 59, wherein the loop shape has a ring-shaped or circular or ellipsoidal or oval-like or tubular or saddle-shaped or 3-fold sine shaped or bean- or kidney-shaped contour.
- 77. (previously presented) The assembly according to claim 60, comprising an applicator for a fixing device of the type having a tubular member, which member is provided with flange fingers arranged distributed around the periphery of the tubular member which flange fingers can be or have been reversibly bent, against a resilient force, from a position projecting outwards with respect to the tubular member into a

straightened position in which the projection of the respective flange fingers on a radial transverse surface of the tubular member is essentially on or within the periphery of said tubular member.

- 78. (currently amended) The assembly according to claim
 77, wherein the flange fingers are provided with openings 4316).
- 79. (previously presented) The assembly according to claim 60, comprising an applicator for, in particular provided with, a fixing device of the type comprising a tubular member provided with pins arranged distributed around the periphery, each pin being arranged on an arm that is attached by one end to the tubular member in a manner which permits swinging about a hinge axis, and the arms and pins being movable, by swinging about the hinge axis, from an insertion position, in which they are located essentially inside the tubular member, into a fixing position in which at least the pins, viewed in the radial direction, project outside the tubular member in order to penetrate the surrounding vessel wall tissue.
- 80. (previously presented) The assembly according to claim 77, wherein the applicator comprises:
 - an elongated support member with, at the distal end thereof, a support ring that fits inside the tubular

member of the fixing device, which support ring has an external peripheral surface suitable for supporting the tubular member;

- an obstructing member that can be moved parallel
 to the elongated support member from an obstructing position
 at least partially overlapping at least the straightened,
 distal flange fingers into a release position completely
 exposing said flange fingers.
- 81. (previously presented) The assembly according to claim 59, wherein at least one sensor is provided on, in or at one or more components of the assembly.
- 82. (currently amended) The assembly according to claim 81, wherein the at least one sensor is in the shape of a loop on, at or close to the stabiliser stabilizer and/or instrument.
- 83. (previously presented) The assembly according to claim 59, wherein at least one marker for interaction with navigation means is provided on, in or at one or more components of the assembly and/or tissues in or around a passage surrounded by vascular tissue.
- 84. (previously presented) The assembly according to claim 83, wherein the at least one marker is provided in the shape

of a loop, and/or in or around a passage surrounded by vascular tissue.

- 85. (currently amended) The assembly according to claim 59, wherein the stabilizer stabilizer is provided with a ring shaped suction body comprising said one or more suction nozzle running in the shape of said loop, wherein the loop extends in circumferential direction of the suction body, and wherein the suction means source comprise a suction line opening into a suction passage formed in the interior of the suction body, which suction passage, in turn, is in communication with the suction nozzle.
 - 86. (currently amended) An assembly comprising:

a suction source;

- a first instrument to be positioned in or around a passage surrounded by vascular tissue; and
- a <u>stabilizer</u> stabilizer for <u>stabilizing</u> stabilizing vascular tissue surrounding a passage with respect to the first instrument, wherein,

the stabiliser stabilizer is provided with one or more suction nozzles running in the shape of a loop, which suction nozzles ean be are operationally connected to the suction means source in order to suck tightly to tissue close to and around said passage, which may still have to be made,

the first instrument has a head section for performing operations on vascular tissue,

the <u>stabiliser</u> <u>stabilizer</u> and the first instrument are provided with, respectively, an instrument stop provided on the <u>stabilizer</u> stabilizer and a <u>stabilizer</u> stop provided on the first instrument, which, in the stop position when they are in contact with one another, unambiguously define the position of the head section with respect to the position of the loop shape, and

the first instrument is removably positioned in the stabilizer such that the first instrument and the stabilizer stabilizer can be separated so that at least a second instrument can be removably positioned in the stabilizer stabilizer.

87. (currently amended) An assembly comprising:

a suction source;

an instrument to be positioned in or around a passage surrounded by vascular tissue; and

a stabilizer stabilizer for stabilizing said vascular tissue surrounding said passage with respect to the instrument, wherein,

the stabiliser stabilizer is provided with one or more suction nozzles running in the shape of a loop, which suction nozzles ean be are operationally connected to the suction means

<u>source</u> in order to suck tightly to tissue close to and around said passage, which may still have to be made,

the instrument has a head section for performing operations on vascular tissue,

the stabiliser stabilizer and the instrument are provided with, respectively, an instrument stop provided on the stabiliser stabilizer and a stabiliser stabilizer stop provided on the instrument, which, in the stop position when they are in contact with one another, unambiguously define the position of the head section with respect to the position of the loop shape, and

at least one of (i) a guide on the stabilizer on which the instrument stop is provided such that it can slide along the guide and with respect to which the instrument stop can be locked and (ii) a guide on the instrument on which the stabilizer stabilizer stop is fitted such that it can slide along the instrument and with respect to which the stabilizer stabilizer stop can be locked.

88. (currently amended) An assembly comprising:

a suction source;

an instrument to be positioned in or around a passage $\mbox{surrounded}$ by vascular tissue; and

a stabiliser stabilizer for stabilising stabilizing said vascular tissue surrounding said passage with respect to the instrument, wherein,

the stabiliser stabilizer is provided with one or more suction nozzles running in the shape of a loop, which suction nozzles can be are operationally connected to the suction means source in order to suck tightly to tissue close to and around said passage, which may still have to be made,

the instrument has a head section for performing operations on vascular tissue.

the stabiliser stabilizer and the instrument are provided with, respectively, an instrument stop provided on the stabiliser stabilizer and a stabiliser stabilizer stop provided on the instrument, which, in the stop position when they are in contact with one another, unambiguously define the position of the head section with respect to the position of the loop shape, and

the instrument and the stabilizer are both fixed in the longitudinal direction in the stop position such that such that the instrument and the stabilizer cannot move longitudinally with respect to one another.

89. (currently amended) An assembly comprising:

a suction source;

an instrument to be positioned in or around a passage surrounded by vascular tissue; and stabilising stabilizing said

vascular tissue surrounding said passage with respect to the instrument, wherein,

the <u>stabiliser</u> <u>stabilizer</u> is provided with one or more suction nozzles running in the shape of a loop, which suction nozzles <u>can be are</u> operationally connected to <u>the</u> suction <u>means</u> <u>source</u> in order to suck tightly to tissue close to and around said passage, which may still have to be made,

the instrument has a head section for performing operations on vascular tissue,

the stabiliser stabilizer and the instrument are provided with, respectively, an instrument stop provided on the stabiliser stabilizer and a stabiliser stabilizer stop provided on the instrument, which, in the stop position when they are in contact with one another, unambiguously define the position of the head section with respect to the position of the loop shape, and

the instrument and the stabilizer are both fixed in the an angular direction in the stop position such that the instrument and the stabilizer cannot rotate with respect to one another.