Operations Management I

Material Requirement Planning

Dong-Ho Lee
Department of Industrial Engineering
Hanyang University

® All rights reserved

Material Requirement Planning

Introduction <----Inputs, Outputs, and Procedure
Further Considerations

- ----- Developer and Extensions
 - Key Insight
 - Prerequisites
 - Basic MRP Procedure

- Special Topics
- Problems

Hopp and Spearman, 2008, Factory Physics, McGraw Hill. (Section 3.1)
Krajewski and Ritzman, 2005, Operations Management, Prentice Hall. (Chapter 16)

Introduction

Developer and Extensions

- Developer
 - ✓ Josef Orlicky (IBM, early 1960s)

Use of computer in production control

- Tremendous boost in 1970s (MRP crusade)
 - ✓ APICS (American Production and Inventory Control Society)
 - ✓ Principal production control paradigm in the United States
- Extensions

Independent demand

Demand Uncertain Certain (relatively)

Estimation Forecasting Compute from independent demand

Methods Inventory models MRP

Introduction

Key Insight (1)

Dependent demand inventory -----

Raw materials, components, and subassemblies that are used in the production of the parent or the final products

✓ Prediction ← Concept of requirement (全요)
(Material requirement planning:MRP)

e.g. demand of keyboards depends on the demand for computers parent item

Independent demand inventory

Finished products, service parts, and other items whose demand arises more directly from uncertain market environment

✓ Forecasting ← Concept of replenishment (보충) (general inventory models)

e.g. computers as final product

♦ Introduction

Key Insight (2)

- Dependent and indepedent demands
 - ✓ MRP (Material Requirement Planning)
 <---- push system
 </p>
 - > Add the link between independent and dependent demand purchase orders

jobs

> MRP is used to coordinate orders from within the plant and from outside.

Two basic dimensions

- > Timing
- Quantity

Independent demand (Forecasting)

Dependent demand (MRP)

Planning horizon and discrete time periods

Introduction

Prerequisites (1)

Bucket ◀----- period in the planning horizon

Interval used to break time and demand into discrete chunks

demand

_	Mon	Tue	Wed	Thu	Fri
_	250	300	200	100	150

demand of this bucket = 1000

Bill of Material (BOM)

Relationship between end items and lower level items

Master Production Schedule (MPS)
 Information concerning independent demand (end-items)

lower level

Introduction

Prerequisites (3)

• Master Production Schedule (MPS) – Example

		Арі	ril		May					
	1	2	3	4	5	6	7	8		
Ladder-back chair	150					150				
Kitchen chair				120			120			
Desk chair		200	200		200			200		
Aggregate production plan for chair family		67	0							

- End-items ← MPS
- Lower level items ← previous MRP operations

Introduction

net requirement = {0, gross requirement - on-hand inventory - scheduled receipts}

Basic Procedure (1)

Overview

For each level in the BOM, begining with end items, MRP does the following for each part

1) Netting

Determine the net requirement ◀-

2) Lot sizing

Divide the netted demand into appropriate Iot sizes to form jobs

3) Time Phasing

Offset the due dates of the jobs with lead times to determine the start times

4) BOM explosion

Generate gross requirements of any required components at the next level

- Wagner-Whitin algorithm
- Lot-for-lot
- Fixed order quantity (EOQ)
- Fixed order period
- Part-period balancing, etc.

✓ Data

Item A		1	2	3	4	5	6	7	8
Gross require	ments	15	20	50	10	30	30	30	30

- ➤ Initial on-hand inventory = 30 units
- > No scheduled receipts
- ➤ Lot size = 75 units
- ➤ Lead time = 1 week

•	Bill	of	materia	l (BOM)

Introduction

MRP

Basic Procedure (2)

- Example
 - ✓ Netting

Determine the net requirement (Initial on-hand inventory = 30 units)

Item A	1	2	3	4	5	6	7	8
Gross requirements	15	20	50	10	30	30	30	30
Projected on-hand	15	-5						
Net requirement	0	5	50	10	30	30	30	30

Projected on-hand

= on-hand inventory + scheduled receipts - gross requirement

$$= 30 + 0 - 15 = 15$$

Net requirement

= max { 0, gross requirement – on-hand inventory – scheduled receipts }

 $= \max \{0, 15 - 30 - 0\} = 0$

✓ Data

➤ Demand (planning horizon = 8 weeks) <---- master production schedule (MPS)

Item A		1	2	3	4	5	6	7	8
Gross requi	rements	15	20	50	10	30	30	30	30

- ➤ Initial on-hand inventory = 30 units
- > No scheduled receipts
- ➤ Lot size = 75 units
- ➤ Lead time = 1 week

Basic Procedure (3)

Introduction

MRP

Example

✓ Lot sizing (lot size = 75 units)

 Bill (of mat	erial (BOM)

Item A	1	2	3	4	5	6	7	8
Gross Requirements	15	20	50	10	30	30	30	30
Projected on-hand	15	-5		4 X	,_		,	
Net requirements	0	5	50	10	30	30	30	30
Planned order receipts		75			75		75	

$$75 = 5 + 50 + 10 + 10$$

20 units remain in period 5.

$$75 = 20 + 30 + 25$$

5 units remain in period 7.

✓ Data

Item A		1	2	3	4	5	6	7	8
Gross requi	rements	15	20	50	10	30	30	30	30

- ➤ Initial on-hand inventory = 30 units
- > No scheduled receipts
- ➤ Lot size = 75 units
- ➤ Lead time = 1 week

• Bill of material (BOM)

Introduction

MRP

Basic Procedure (4)

- Example
 - ✓ Time Phasing

Item A	11	2	3	4	5	6	7	8
Gross Requirements	15	20	50	10	30	30	30	30
Projected on-hand	15	-5						4 X
Net requirements	0	5	50	10	30	30	30	30
Planned order receipts		. 75			75		-75	
Planned order releases	75 🐣			75 👗		75		

lead time = 1 week

✓ BOM explosion

Generate gross requirements of items 100 and 200 (Items 300 and 400)

MRP

Inputs, Outputs and Procedure

Inputs (1)

- Item Mater File
 - ✓ Description of part/product
 - ✓ Bill of material (BOM) data

MRP accumulates all the demand of a part before it processes that part

✓ Lot sizing rule (LSR)

How the job will be sized?

balance the competing desires of reducing inventory (by using smaller lots) and increasing capacity (by using larger lots to avoid frequent setups)

e,g, EOQ, Wagner-Whitin, etc.

PLT is used to determine job start times

MRP – fixed (deterministic) ◀-----

Actual lead times vary and are never known in advance. (→ safety lead time)

Inputs, Outputs and Procedure

Inputs (2)

- Master Production Schedule (MPS)
 - ✓ Quantity and due dates of all parts that have independent demand (demand for all end items and external demand for lower-level parts)
 - ✓ Information
 - Part number
 - Needed quantity
 - > Due date for each purchase order

gı

gross requirements that initiate the

MRP procedure

- Inventory Status File
 - ✓ On-hand inventory

Information describing the part, where it is located, and how many are currently on hand

✓ Scheduled receipts

Planned order release that has actually been released (Identifier, due date, release date, quantity needed, and current quantity, etc.)

Inputs, Outputs and Procedure

Outputs

- Basic
 - ✓ Planned Order Release (POR)
 - ➤ Basic MRP output representing production or purchase orders
 - ➤ Information (material requirements)
 - Part ID
 - Number of units required
 - Due date of the job
- Additional
 - ✓ Change Notices

 ¬---- planning level

Modification of existing job (e.g. changes in due dates or priorities) ◆-----

Expediting: making due date earlier

✓ Exception Reports <---- execution level

Notify the users that there are discrepancies between what is expected and what is done

Deferring: making due date later

Inputs, Outputs and Procedure

Procedure (1)

- Overview
 - (1) Netting ◀---- net requirements (adjust scheduled receipts)
 - (2) Lot sizing <---- planned order receipts
 - (3) Time Phasing <---- planned order release
 - (4) BOM explosion

Notation

- D_t gross requirement (demand) for period t
- S_t scheduled receipt in period t
- I_t projected on-hand inventory at the end of period t
 (I₀ is the initial on-hand inventory)
- N_t net requirement for period t

Projected on-hand = on-hand inventory + scheduled receipts – gross requirement

Adjusts scheduled receipts by expediting (for late scheduled receipts) or deferring

(for early scheduled receipts)

MRP

Inputs, Outputs and Procedure

Procedure (2)

Netting

Step 1. (Adjusting the scheduled receipts)

adjusted scheduled receipt (1) Find the period when the first scheduled receipts should arrive and adjust scheduled receipts (expediting or deferring). ◆---- change notice

$$I_t = I_{t-1} - D_t$$
 Increment t and continue to compute I_t until it becomes less than zero

- $I_t = I_{t-1} + S_t D_t$ (2) Modify the current on-hand inventory using the adjusted scheduled receipts. From the period obtained in Step (1), do Step (1) repeatedly until either we exhaust scheduled receipts or we have reached the end of the time horizon.

Step 2. (Calculating the net requirements) ◆----- The net requirements are used in the lot-sizing procedure.

$$N_t = \begin{cases} 0 & \text{for } t < t^* \\ -I_t & \text{for } t = t^* \\ D_t & \text{for } t > t^* \end{cases}$$

the first period with a negative projected on-hand inventory after all scheduled receipts have been properly adjusted.

Inputs, Outputs and Procedure

Procedure (3)

Initial on-hand -----

inventory (I₀)

- Netting
 - ✓ Example

$I_3 = I_2 - D_3 = 5 - 50 = -45 < 0$
→ Adjust S ₃ (expediting)
$I_3 = S_3 + I_2 - D_3 = 100 + 5 - 50 = 55$

			1))))	1 1		1 1
Item A	1	2	3	4	5	6	7	8
Gross requirements (D _t)	15	20	50	10	30	30	30	30
Scheduled receipts (S _t)	10 、	10		_100		$t^* = 6$		
Adjusted SR (def	erring)	20	100	(exped	iting)			
Projected on-hand (I _t) 20	5	5	55	45	15	-15		
Net requirements (N _t)						15	30	30
Planned order receipts								
Planned order releases	1							

$$I_1 = I_0 - D_1 = 20 - 15 = 5$$

$$I_2 = I_1 - D_2 = 5 - 20 = -15 < 0$$

Adjust S₂ (deferring)

 $I_2 = S_2 + I_1 - D_2 = 20 + 5 - 20 = 5$

Inputs, Outputs and Procedure

Procedure (4)

- Lot sizing
 - ✓ Role

Net requirements $(N_t) \rightarrow \text{planned order receipts}$ (dynamic lot sizing problem)

- ✓ Methods
 - Lot-for-lot
 - > Fixed order quantity
 - > Fixed order period
 - > Part-period balancing, etc.

Inputs, Outputs and Procedure

Procedure (5)

- Lot sizing
 - ✓ Lot-for-lot (L4L)
 - ➤ Lot sizes (planned order recepts)

Amount to be produced in a period is equal to that period's net requirement

$$POR_t = N_t, \ t = 1, 2, ... T$$

- Practical reasons
 - Simple
 - Production smoothing
 - ◆---- Not good for high setup costs

Example

Planned order receipts	į		V	1	15	30	30
Net requirement					15	30	30

Inputs, Outputs and Procedure

Procedure (6)

- Lot sizing
 - ✓ Fixed order quantity (FOQ)
 - Lot sizes (planned order recepts)

Fixed amount to be produced in each period

$$POR_t = \text{constant}$$
, for some t

- Methods
 - Lot size = production capacity
 - Economic order quantity (EOQ) based method
 - ◄---- Modification

Lot size = exact demand of one or more periods (choose the number of periods closest to the desired fixed lot size)

Example (Q = 50)65 55 Net requirement 15 15 60 15 20 10 55 **Planned order receipts** 30 60 65 45

MRP

Inputs, Outputs and Procedure

Procedure (7)

- Lot sizing
 - √ Fixed order period (FOP)
 - ➤ Lot sizes (planned order recepts)

Amount to be produced in a period is the sum of the net requiremens of P periods

$$POR_t = \text{demand for}[t, t+1, ..., t+P-1]$$

P periods (fix)

- √---- lot-for-lot when P = 1
- ➤ How to select P?
 - e.g., using the EOQ formula

Example
$$(P = 3)$$

Net requirement	15	45		25	15	20	15
Planned order receipts	60			60			15

Inputs, Outputs and Procedure

Procedure (8)

- Lot sizing
 - ✓ Part-period balancing
 - > Basic idea

Balance the inventory carrying cost and setup cost while satisfying the Wagner-Whitin property

- ◄---- EOQ: average inventory carrying cost = setup cost
- Computation of inventory cost (using part-period)

inventory cost = number of part-periods × inventory cost

Part-period

Number of parts in a lot × number of periods they are carried in inventory

e.g., 1 part carried for 10 period = 5 parts carried for 2 periods

→ 10 part-period (same inventory carrying cost)

Inputs, Outputs and Procedure

Lot sizing

Procedure (9)

Net requirement	15	45		25	15	20	15
Planned order receipts	60			60			15

✓ Part-period balancing

Example: A = 150, h = 2

period	1	2	3	4	5	6	7	8	9
Net requirement		15	45			25	15	20	15

Period 2

Lot size	Setup cost	Part-period	Inventory cost
15	150	0	0
60	150	45	90 (45 × 2)
85	150	145	290 (145 × 2)

Period 6

Lot size	Setup cost	Part-period	Inventory cost
 25	150	0	0
40	150	15	30
60	150	55	110
75	75 150		200

25

♦ Inputs, Outputs and Procedure

Procedure (10)

Time Phasing (offsetting)

Consideration of lead times (constant)

Examples

Lead time = 1 period

Planned order receipts				45		30
Planned order releases			45 👗		30 🖍	

Lead time = 2 periods

Planned order receipts		X X X X X X X X X X X X X X X X X X X		45	30
Planned order releases			45	 30 4	

Inputs, Outputs and Procedure

Procedure (11)

BOM Explosion – Example

Gross requirements

Gross requirements

Item 200

Item A (lot sizing: fixed order period (P = 2), lead time = 2 periods)

2 units

Item A Gross requirements Scheduled receipts (SR) Initial inventory = 20 Adjusted SR Projected on-hand -15 Net requirements Planned order receipts Planned order releases 2 units of part 100 for Part A Planned order Item 100

release generated for item A creates gross requirements for items 100 and 200.

1 unit of part 200 for Part A

Item A → item B

-30

Inputs, Outputs and Procedure

Procedure (12)

BOM Explosion – Example

Item B (lot sizing: fixed order period (P = 2), lead time = 2 periods)

No scheduled receipts Initial inventory = 40

Item B	1	2	3	4	5	6	7	8
Gross requirements	10	15	10	20	20	15	15	15
Scheduled receipts (SR)		H	- 					
Adjusted SR								
Projected on-hand 40	30	15	5	-15	-	-	-	-
Net requirements		-}		15	20	15	15	15
Planned order receipts				35		- 30		15
Planned order releases		35		30 4		15 🛂		

Item 500 (lot sizing: lot-for-lot, lead time = 4 periods)

No scheduled receipts Initial inventory = 40

									1 1
	Item 500	1	2	3	4	5	6	7	8
3	Gross requirements		35		30		15		
	Scheduled receipts (SR)								
	Adjusted-SR						Ž		()
	Projected on-hand 40	40	5	5	-25				
	Net requirements				25		15		k
	Planned order receipts	Late sta	rt		25		15		-
	Planned order releases	25	15 ◀						

2 units 100 200 300 500 300 600 300 400

Item 100 → Item 300

Inputs, Outputs and Procedure

Procedure (13)

BOM Explosion – Example

Item 100 (lot sizing: lot-for-lot, lead time = 2 periods)

Planned order releases (A)				45		30		
Planned order releases (500)	25	15		◄ 2	units	•		
Item 100	1	2	3	4	5	6	7	8
Gross requirements Scheduled receipts (SR) Adjusted SR	▼ 25	15		90		60		
Projected on-hand Net requirements Planned order receipts	15	0	0	-90 90 90		- 60 60	-	-
Planned order releases		90		60				

No scheduled receipts

Initial inventory = 40

2 units 100 200 300 500 300 600 300 400

Inputs, Outputs and Procedure

Procedure (14)

BOM Explosion – Example

Item 300 (lot sizing: lot-for-lot, lead time = 1 period)

Planned order releases (B)		35		30		15		
Planned order releases (100)		90		60				
Item 300	1	2	3	4	5	6	7	8
Gross requirements		125		90		15		
Scheduled receipts (SR)		100						
Adjusted-SR		/ 100						
Projected on-hand 50	50 ,	25	25	-65		-15		ļ <u>-</u> ļ
Net requirements	/			65		15		
Planned order receipts	/			- 65		15		
Planned order releases	//		65	,	15 🔭			

Initial inventory = 50 --

scheduled receipts (100 in period 2)

Inputs, Outputs and Procedure

Procedure (15)

- BOM Explosion Example
 - ✓ Summary of MRP output

Transaction	Item Number	Old Due date Release Date	New Due Date	Quantity	Notice
Change notice	А	1	-> 2	10	Defer
Change notice	Α	4	▶ 3	100	Expedite
Planned order release	Α	4	6	45	OK
Planned order release	A	6	8	30	OK
Planned order release	В	2	4	35	OK
Planned order release	В	4	6	30	OK
Planned order release	В	6	8	15	OK
Planned order release	100	2	4	90	OK
Planned order release	100	4	6	60	OK
Planned order release	300	3	4	65	OK
Planned order release	300	5	6	15	OK
Planned order release	500	1	4	25	Late
Planned order release	500	2	6	15	OK

Further Considerations

Special Topics (1) ◀----- Improving the performance of MRP

- Updating frequency

 - ✓ Infrequent update ◀----We can end up with old plans that are often out of date
- Firm Planned Order
 - ✓ Planned order release that held fixed (release regardless of changes in the system)
 - ◆---- The MRP procedure consider it as scheduled receipts.
 - ✓ Why

Minimize schedule disruptions due to changes (useful for reducing system nervousness)

Balancing (trade-off)

Further Considerations

Special Topics (2)

- Troubleshooting
 - ✓ Pegging

Allows the planner to see the source of demand that results in a given planned order release

ample	Item B Item100 → Items A						and 50	
Planned order releases (B)		35		30		15		
Planned order releases (100)		90		60				
Item 300	1	2	3	4	5	6	7	8
Gross requirements		125		90		15		
·				T				
Planned order receipts				65		15		
Planned order releases			65		15			

Further Considerations

Special Topics (3)

- Troubleshooting
 - ✓ Bottom-up replanning (based on pegging)

Adjusted SR

Projected on-hand

Example

		_	-					
Planned order releases (A)				45 ₂	<u>,</u>	30		
Planned order releases (500)	25	15						
Item 100	1	2	3	4	5	6	7	8
Gross requirements	25	15		90		60		
Planned order receipts				90		60	X X X X	
Planned order releases		90	0	60				

satisfy requirements of item B or 100? - if we select to satisfy item 100 (50)

50

Planned order releases (B)		35		30		15		
Planned order releases (100)		4 90 ₅₀		60				
Item 300	1 /	2	3	4	5	6	7	8
Gross requirements		125		90		15		
Scheduled receipts (SR)		100	sched	ules rece	ipts canr	ot arrive	on-time	

Call vendor, place the order immediately, etc.

→ Bottom-up replanning (if they are impossible)

requested, the remaining quantity later

Further Considerations

Problems (1)

- Capacity Infeasibility

 capacity = maximum output of a production (service) system (measures by units or time)
 - ✓ MRP assumes infinite capacity
 - ✓ Problems when production levels are at or near capacity.
 - Development of MRP II (manufacturing resource planning)
 - Rough-cut capacity planning (RCCP) for master production schedule
 - Capacity requirement planning (CRP) for detailed capacity assessment
- Long Planned Lead Times

MRP uses the constant and long lead time (pessimistic).

Uncertainties in production systems

- Demand (quantity and timing)
- 2) Processing time
- 3) Machine breakdowns
- 4) Quality problems, etc.

Lead time = 2 periods
Fixed order period lot sizing rule (P = 5)

1 unit

Component

B Lead time = 4 periods Lot-for-lot lot sizing rule

Further Considerations

Problems (2)

System Nervousness

A small change in the master production schedule results in a large change in planned order releases.

Example

MRP calculations for Item A (before change in demand)

No scheduled receipts

Item A	1	2	3	4	5	6	7	8
Gross requirements	2	24	3	5	1	3	4	50
Projected on-hand 28	26	2	-1	-	- 1	_	1/4	-
Net requirements			1	5	1	3	4	50
Planned order receipts			14					50
Planned order releases	14					_! 50		

MRP calculations for item B (before change in demand)

Item B	1	2	3	4	5	6	7	8
Gross requirements	▼ 14	1				50		
Scheduled receipts (SR)	14							
Adjusted SR	14					X X		
Projected on-hand 2	2	2	2	2	2	-48		
Net requirements						48		
Planned order receipts						48		
Planned order releases		48						

Lead time = 2 periods
Fixed order period lot sizing rule (P = 5)

1 unit

Component

Lead time = 4 periods
Lot-for-lot lot sizing rule

Further Considerations

Problems (3)

System Nervousness

Example

demand change: $24 \rightarrow 23$

MRP calculations for Item A (after change in demand)

Item A	1	2	_3	4	5	6	7	8
Gross requirements	2	23	3	5	1	3	4	50
Projected on-hand 28	26	3	0					
Net requirements				5	1	3	4	50
Planned order receipts		Big	change	63				
Planned order releases		63						

MRP calculations for item B (before change in demand)

Item B	11	2	3	4	5	6	7	8
Gross requirements		63						
Scheduled receipts (SR)	14					X X		
Adjusted SR		14						ļ
Projected on-hand 2	2	-47	-	-			-	-
Net requirements		47						
Planned order receipts		47				X		1
Planned order releases	47							

Late start (almost impossible)

Further Considerations

Problems (3)

- System Nervousness
 - ✓ Methods to reduce system nervousness
 - Proper use of lot sizing rule
 Lot-for-lot reduces nervousness, but results in too many setups
 - ➤ Frozen zone (≡ time fence) ←----- before MRP calculations

 Initial number of periods in the MPS in which changes are not permitted e.g.,

Item A	1_	2	3_	_ 4	5	6	7	8
Gross requirements	2	24	3	5	<u> </u>	3	4	50
Scheduled receipts (SR)	4	† 	fro	 ozen zon	е.			

➤ Firm planned order ←---- after MRP calculations

Planned order release that held fixed (release regardless of changes in the system)