From Friday Arm Em HALTom is witnessed by imputable function given by Turing machine with high level description (. Check if x=<Mow) for some TM M, string W. " Or . whomp or 2. Build M'= On ingut y. M on y 2. It accepts, accept. 3. Output < M', w> " Why does this forction witness mapping reduction? - Computable ble compited by Toring machine above (must valts and output for each input) - Consider arbitrary Z.

- Consider arbitrary Case 2. X \$ ATM Subcase 2a. 2 = CM, No for any TM M, String W. So output is Colore which is not in HALTEN ble this TM loops on E. Subcase 26 x=< Mou> for some +M M, string w and M 100PS on W. Ortput of function is <M', w> where so M. Toes usy half our m. Subcase 2c. x=< Mous for some +M M, string W and M rejects w. Output of function is <M', w> where Miscambapayer en n 100bs in 246 3 so Mr Lors not natt on w

Monday - Memorial Day

No class today.

Wednesday

Recall: The class of twing recognizate anguages is not closed under complementation.

Recall: A is **mapping reducible to** B, written $A \leq_m B$, means there is a computable function $f: \Sigma^* \to \Sigma^*$ such that for all strings x in Σ^* ,

True or False: $\overline{A_{TM}} \leq_m \overline{HALT_{TM}}$ want a function trat is

(Comprehe (2) for each $x \in \mathbb{Z}^n$, $x \in A_{TM}$ iff for that $\overline{A_{TM}}$ with $\overline{A_{TM}}$ iff $\overline{A_{TM}}$ that $\overline{A_{TM}}$ iff $\overline{A_{TM}}$ iff

Theorem (Sipser 5.28): If $A \leq_m B$ and B is recognizable, then A is recognizable.

Proof:

extra practice

Corollary: If $A \leq_m B$ and A is unrecognizable, then B is unrecognizable.

To vitness HALTIN Sm ATM

a fonction on E* reeds to be

computable and for each or

computable and for each or

string w

Case D it x # < Monor for any TM Monor string w

computable of function must not be infine.

Case 2 (f x = < M, w> for some The M, shingw and M halts on w then output of forction must be < _____ > The string where his The accepts this string.

Case 3) If x = < M, w> for some TM M, SH, N, w and M 100ps on w then output of function must not w in A_{TM} .

Strategy:

- (i) To prove that a recognizable language R is undecidable, prove that $(A_{TM}) \leq_m R$.
- (ii) To prove that a co-recognizable language U is undecidable, prove that $A_{TM} \leq_m U$, i.e. that $A_{TM} \leq_m \overline{U}$.

 $E_{TM} = \{ \langle M \rangle \mid M \text{ is a Turing machine and } L(M) = \emptyset \}$

Example string in E_{TM} is C_{TM} is C_{TM} is C_{TM} is C_{TM} is decidable undecidable and recognizable unrecognizable.

 $\overline{E_{TM}}$ is decidable undecidable and recognizable unrecognizable . In firmally, need to prove

Claim: E_{TM} .

Proof: Need computable function $F: \Sigma^* \to \Sigma^*$ such that $x \in A_{TM}$ iff $F(x) \notin E_{TM}$. Define

F = "On input x,

- 1. Type-check whether $x = \langle M, w \rangle$ for some TM M and string w. If so, move to step 2; if not, output
- 2. Construct the following machine M_r :

M'x = "On input y

1. Ignore input.

3. Run M on w

3. If Maccepts w, accept y."

4. If Mrejects w, reject y." 3. Output $\langle M_r' \rangle$

Verifying correctness:

Input string	Output string
(M, w) where $w \in L(M)$	FON & Em.? L(M2)= E*
$\langle M, w \rangle$ where $w \notin L(M)$	FOR) = ETM? L(M'X)=0
x not encoding any pair of TM and string	FCK) E ETM? Yesblc L(< DOP DE O >)= Ø>

Review: Week 9 Wednesday

Please complete the review quiz questions on Gradescope about mapping reductions.

Pre class reading for next time: Introduction to Chapter 7.

Friday

Recall: A is **mapping reducible to** B, written $A \leq_m B$, means there is a computable function $f: \Sigma^* \to \Sigma^*$ such that for all strings x in Σ^* ,

 $x \in A \qquad \text{if and only if} \qquad f(x) \in B.$ $EQ_{TM} = \{\langle M, M' \rangle \mid M \text{ and } M' \text{ are both Turing machines and } L(M) = L(M')\}$ Example string in EQ_{TM} is _______. Example string not in EQ_{TM} is ______. $EQ_{TM} \text{ is decidable / undecidable and recognizable / unrecognizable .}$ $\overline{EQ_{TM}} \text{ is decidable / undecidable and recognizable / unrecognizable .}$

To prove, show that $\underline{\hspace{1cm}} \leq_m EQ_{TM}$ and that $\underline{\hspace{1cm}} \leq_m \overline{EQ_{TM}}$.

Verifying correctness:

Input string	Output string
$\langle M, w \rangle$ where M halts on w	
$\langle M, w \rangle$ where M loops on w	
x not encoding any pair of TM and string	

In practice, computers (and Turing machines) don't have infinite tape, and we can't afford to wait unboundedly long for an answer. "Decidable" isn't good enough - we want "Efficiently decidable".

For a given algorithm working on a given input, how long do we need to wait for an answer? How does the running time depend on the input in the worst-case? average-case? We expect to have to spend more time on computations with larger inputs.

A language is recognizable if	
A language is decidable if	
A language is efficiently decidable if	
A function is computable if	
A function is efficiently computable if	

Definition (Sipser 7.1): For M a deterministic decider, its **running time** is the function $f: \mathbb{N} \to \mathbb{N}$ given by

 $f(n) = \max \text{ number of steps } M \text{ takes before halting, over all inputs of length } n$

Definition (Sipser 7.7): For each function t(n), the **time complexity class** TIME(t(n)), is defined by $TIME(t(n)) = \{L \mid L \text{ is decidable by a Turing machine with running time in } O(t(n))\}$

An example of an element of TIME(1) is

An example of an element of TIME(n) is

Note: $TIME(1) \subseteq TIME(n) \subseteq TIME(n^2)$

Definition (Sipser 7.12): P is the class of languages that are decidable in polynomial time on a deterministic 1-tape Turing machine

$$P = \bigcup_{k} TIME(n^k)$$

Compare to exponential time: brute-force search.

Theorem (Sipser 7.8): Let t(n) be a function with $t(n) \ge n$. Then every t(n) time deterministic multitape Turing machine has an equivalent $O(t^2(n))$ time deterministic 1-tape Turing machine.

Review: Week 9 Friday

Please complete the review quiz questions on Gradescope about complexity.

Pre class reading for next time: Skim Chapter 7.