ECE 863 Analysis of Stochastic Systems

Part III.2: Multiple Random Processes & Examples of Discrete- & Continuous-Time Processes

Hayder Radha
Associate Professor
Michigan State University
Department of Electrical & Computer Engineering

ECE 863

- Reading assignment
 - Sections 6.1 6.5
 - Section 6.7

Boo 2

Multiple Random Processes

- Two random processes $X(t,\zeta)$ and $Y(t,\zeta)$ can be generated by the random outcomes ζ .
- These two random processes, X(t) and Y(t), have joint statistics:

cross-correlation

cross-covariance

orthogonality

863: Part TTT 2 Page 3 Prof Hauder Par

Multiple Random Processes

■ The <u>cross-correlation function</u> is defined as:

$$\boxed{\mathsf{R}_{\mathsf{X},\mathsf{Y}}\left(\mathsf{t}_{\mathsf{1}},\mathsf{t}_{\mathsf{2}}\right) \; = \; \mathsf{E}\!\left[\mathsf{X}\left(\mathsf{t}_{\mathsf{1}}\right)\mathsf{Y}\left(\mathsf{t}_{\mathsf{2}}\right)\right]}.$$

■ When Y=X, the cross-correlation function is the same as the autocorrelation function:

$$R_{X,Y}\left(t_{1},t_{2}\right) \; = \; R_{X,X}\left(t_{1},t_{2}\right) = R_{X}\left(t_{1},t_{2}\right).$$

t: Dart TTT 2 Pogs 4 Ponf Woulder Dadha

Multiple Random Processes

■ The <u>cross-covariance function</u> is defined as:

$$\begin{split} & C_{X,Y}\left(\boldsymbol{t}_{\!1},\boldsymbol{t}_{\!2}\right) &= \\ & E\left[\left\{X\left(\boldsymbol{t}_{\!1}\right) \,-\, m_{\!_{X}}\left(\boldsymbol{t}_{\!_{1}}\right)\right\}\!\left\{Y\left(\boldsymbol{t}_{\!_{2}}\right) \,-\, m_{\!_{Y}}\left(\boldsymbol{t}_{\!_{2}}\right)\right\}\right] \end{split}$$

$$C_{X,Y}\left(\dagger_{1},\dagger_{2}\right)=R_{X,Y}\left(\dagger_{1},\dagger_{2}\right)-\ m_{X}\left(\dagger_{1}\right)m_{Y}\left(\dagger_{2}\right)$$

ECE 863: Part III.2 Page 5 Prof. Hayder Radha

Multiple Random Processes

The two random processes X(t) and Y(t) are orthogonal if:

$$R_{X,Y}(t_1,t_2) = 0$$

$$\forall t_1 \text{ and } t_2$$

■ When X(t) and Y(t) are orthogonal:

$$C_{XY}(t_1, t_2) = - m_X(t_1) m_Y(t_2)$$

Part III,2 Page 6 Prof. Hayder Radha

Multiple Random Processes

The two random processes X(t) and Y(t) are uncorrelated when:

$$C_{X,Y}(t_1,t_2) = 0$$

$$\forall t_1 \text{ and } t_2$$

■ When X(t) and Y(t) are uncorrelated:

$$\mathsf{R}_{\mathsf{X},\mathsf{Y}}\left(\mathsf{t}_{\mathsf{1}},\mathsf{t}_{\mathsf{2}}\right) \,=\, \mathsf{m}_{\mathsf{X}}\left(\mathsf{t}_{\mathsf{1}}\right)\mathsf{m}_{\mathsf{Y}}\left(\mathsf{t}_{\mathsf{2}}\right)$$

863: Part III,2 Page 7 Prof. Hayder Rad

Example: Sinusoidal Amplitude

■ Let ζ be a random variable, and let $X(t,\zeta)$ and $Y(t,\zeta)$ be two random processes:

$$X\big(\text{t},\zeta\big) \,=\, \zeta\cos\big(\text{t}\big) \qquad \, Y(\text{t},\zeta) \,=\, \zeta\sin\big(\text{t}\big)$$

Find the cross-covariance of $X(t,\zeta)$ and $Y(t,\zeta)$

$$\textit{C}_{xy}\left(\textbf{t}_{1},\textbf{t}_{2}\right) \; = \; \textit{R}_{xy}\left(\textbf{t}_{1},\textbf{t}_{2}\right) \, - \, \textit{m}_{x}\left(\textbf{t}_{1}\right) \textit{m}_{y}\left(\textbf{t}_{2}\right)$$

863: Don't TTT 2 Page 8 Prof. Litarrian Darka

Example: Sinusoidal Amplitude

■ First lets find the means:

$$m_x(t) = E[\zeta \cos(t)]$$

$$m_y(t) = E[\zeta \sin(t)]$$

$$m_x(t) = E[\zeta] \cos(t)$$

$$m_y(t) = E[\zeta] \sin(t)$$

E 863: Part III.2 Page 9 Prof. Hayder Rac

Example: Sinusoidal Amplitude

■ The cross-correlation function

$$R_{xy}(t_1, t_2) = E[\zeta \cos(t_1) \zeta \sin(t_2)]$$

$$R_{xy}(t_1, t_2) = E[\zeta^2] \cos(t_1) \sin(t_2)$$

CE 863: Part III, 2 Page 10 Prof. Hayder Radha

Example: Sinusoidal Amplitude

■ The cross-covariance function:

$$C_{xy}\left(t_{1},t_{2}\right) = R_{xy}\left(t_{1},t_{2}\right) - m_{x}\left(t_{1}\right)m_{y}\left(t_{2}\right)$$

$$= \left\{ \mathsf{E} \left[\zeta^2 \right] - \left(\mathsf{E} \left[\zeta \right] \right)^2 \right\} \mathsf{cos} \left(\mathsf{t}_1 \right) \mathsf{s} \, \mathsf{in} \left(\mathsf{t}_2 \right)$$

$$C_{xy}(t_1, t_2) = VAR(\zeta) cos(t_1) sin(t_2)$$

E 863: Part III.2 Page 11 Prof. Hayder Radh

Example: Sinusoidal Phase

■ Let Θ be a uniform random variable over the interval $(-\pi, \pi)$, and let the two random processes:

$$X(t) = \cos(t + \Theta)$$
 & $Y(t) = \sin(t + \Theta)$,

Find the cross-covariance function of $X(t,\Theta)$ and $Y(t,\Theta)$

FOE 863: Dant TTT 2 Page 12 Proof Idealder Dadha

Example: Sinusoidal Phase

■ The mean values $m_X(t)$ and $m_Y(t)$:

$$m_x(t) = E[\cos(t + \Theta)]$$

$$m_{x}(t) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \cos(t + \theta) d\theta$$

$$|\mathbf{m}_{x}(t)| = 0$$
 similarly $|\mathbf{m}_{y}(t)| = 0$

ECE 863: Part III.2 Page 13 Prof. Hayder Radha

Example: Sinusoidal Phase

■ The cross-covariance function:

$$C_{xy}(t_1, t_2) = R_{xy}(t_1, t_2) - m_x(t_1) m_y(t_2)$$

$$C_{xy}(t_1, t_2) = R_{xy}(t_1, t_2)$$

$$\mathcal{C}_{\mathsf{x}\mathsf{y}}\left(\mathsf{t}_{\mathsf{1}},\mathsf{t}_{\mathsf{2}}\right) = \mathsf{E}\!\left[\mathsf{cos}\!\left(\mathsf{t}_{\mathsf{1}} + \Theta\right)\!\mathsf{s}\!\mathsf{in}\!\left(\mathsf{t}_{\mathsf{2}} + \Theta\right)\right]$$

863: Part III,2 Page 14 Prof. Hayder Radha

Example: Sinusoidal Phase

$$R_{X,Y}(t_1, t_2) = E\left[\cos(t_1 + \Theta)\sin(t_2 + \Theta)\right]$$
$$= E\left[-\frac{1}{2}\sin(t_1 - t_2) + \frac{1}{2}\sin((t_1 + t_2) + 2\Theta)\right]$$

Since Θ is uniformly distributed $[-\pi,\pi]$

$$\Rightarrow$$
 $E\left[\sin\left(\left(\dagger_1+\dagger_2\right)+2\Theta\right)\right]=0.$

$$C_{xy}(t_1, t_2) = R_{xy}(t_1, t_2) = -\frac{1}{2}\sin(t_1 - t_2)$$

CE 863: Part III.2 Page 15 Prof. Hayder Radhi

Independent Random Processes

Let the two random processes X(t) and Y(t) generates the two random-variable vectors:

$$(X_{1},...,X_{k}) = (X(t_{1}),...,X(t_{k}))$$
$$(Y_{1},...,Y_{j}) = (Y(t'_{1}),...,Y(t'_{j}))$$

The two random processes X(t) and Y(t) are independent when the two vectors are independent for all values of k, j, and time-indexes: t_1, \ldots, t_k & t_1', \ldots, t_i' .

2: Part TTT 2 Page 16 Prof. Idauder Dalha

Independent Random Processes

■ Therefore, the two random processes X(t) and Y(t) are independent when:

$$\begin{bmatrix} F_{X_{1},...,X_{k},Y_{1},...,Y_{j}} \left(x_{1},...,x_{k},y_{1},...,y_{j} \right) \\ = F_{X_{1}} \left(x_{1} \right) ... F_{X_{k}} \left(x_{k} \right) F_{Y_{1}} \left(y_{1} \right) ... F_{Y_{j}} \left(y_{j} \right) \end{bmatrix}$$

$$\forall \quad k, \quad j, \quad t_{1},...,t_{k} \quad \& \quad t'_{1},...,t'_{j}$$

Example: Independent Noise & Signal

Let X(t) be a random signal generated at the transmitter of a communication system with mean $m_X(t)$ and autocorrleation function $R_{x}(t_{1},t_{2})$. Let N(t) be a zero-mean additive noise (random) process, that corrupts the signal X(t). (The two processes N(t) and X(t) are independent.)

Find the cross-correlation function between the received and transmitted signals.

Example: Independent Noise & Signal

The channel has an input X(t) and output Y(t) The cross-correlation function is a measure

Example: Independent Noise & Signal

■ The additive noise N(t) leads to the process Y(t) = X(t) + N(t)

at the receiver.

$$R_{X,Y}(t_1,t_2) = E[X(t_1)Y(t_2)]$$
$$= E[X(t_1)\{X(t_2) + N(t_2)\}]$$

Example: Independent Noise & Signal

$$\begin{split} &R_{X,Y}\left(t_{1},t_{2}\right) = \\ &E\left[X\left(t_{1}\right)X\left(t_{2}\right)\right] + E\left[X\left(t_{1}\right)N\left(t_{2}\right)\right] \\ &= R_{X}\left(t_{1},t_{2}\right) + E\left[X\left(t_{1}\right)\right]E\left[N\left(t_{2}\right)\right] \end{split}$$

$$R_{X,Y}(t_1, t_2) = R_X(t_1, t_2) + m_X(t_1) m_N(t_2)$$

CE 863: Part III.2 Page 21 Prof. Hayder Radha

Example: Independent Noise & Signal

■ Since N(t) is a zero-mean random process:

$$\mathbf{m}_{N}(\mathbf{t}) = 0 \quad \forall \mathbf{t}$$

Then

$$R_{X,Y}\left(t_{1},t_{2}\right)=R_{X}\left(t_{1},t_{2}\right)\,+\,m_{X}\left(t_{1}\right)m_{N}\left(t_{2}\right)$$

$$\Rightarrow \qquad \boxed{\mathsf{R}_{\mathsf{X},\mathsf{Y}}\left(\mathsf{t}_{\mathsf{1}},\mathsf{t}_{\mathsf{2}}\right) = \mathsf{R}_{\mathsf{X}}\left(\mathsf{t}_{\mathsf{1}},\mathsf{t}_{\mathsf{2}}\right)}$$

863: Part III,2 Page 22 Prof. Hayder Radha

Example: Independent Noise & Signal

- Therefore, for a "zero-mean, independent, additive noise process", the cross-correlation function between the input and output processes is the same as the auto-correlation function of the input process.
- What's about the cross-covariance $C_{X,y}(t_1,t_2)$?

53: Part III.2 Page 23 Prof. Hayder

Discrete-Time Random Processes

A discrete-time random process X_{ni} is a RP with countable time index-set:

$$\{n_1, n_2,\}$$

To simplify the notation, let the countable time indexes be integers:

$$\{n_1, n_2,\} = \{1, 2, ...\}$$

■ Therefore, a discrete-time process X_n generates a sequence of random variables:

$$X_1$$
 , X_2 ,

Post TTT 2 Page 24 Post House Padha

IID Random processes

A discrete-time random process X_n is an iid process when the sequence:

$$X_1$$
 , X_2 ,

is a set of independent-identicallydistributed random variables

■ Therefore, the sequence have the same cdf:

$$F_{X_{1}}(x) = F_{X_{2}}(x)... = F_{X_{k}}(x) \triangleq F_{X}(x)$$

CE 863: Part III.2 Page 26 Prof. Hayder Radha

IID Random processes

■ Therefore, the joint cdf of an iid process:

$$F_{X_1,\dots,X_k}\left(x_1,x_2,\dots,x_k\right) \ = \ P\big[X_1 \, \leq \, x_1,X_2 \, \leq \, x_2,\dots,X_k \, \leq \, x_k\big]$$

$$F_{X_{1},...,X_{k}}\left(x_{1},x_{2},...,x_{k}\right)=\ F_{X}\left(x_{1}\right)F_{X}\left(x_{2}\right)...F_{X}\left(x_{k}\right)$$

By evaluating the joint cdf at the same value x:

$$\left| \mathsf{F}_{\mathsf{X}_{1},\ldots,\mathsf{X}_{\mathsf{k}}} \left(\mathsf{x},\mathsf{x},\ldots,\mathsf{x} \right) \right| = \left(\mathsf{F}_{\mathsf{X}} \left(\mathsf{x} \right) \right)^{\mathsf{k}}$$

ECE 863: Part III.2 Page 27 Prof. Hayder Radha

IID Random processes

• For an iid process X_n :

$$E[X_n] = m_X(n) = m \qquad \forall n$$

$$C_X\left(n_1,n_2\right) \ = \ E\Big[\Big(X_{n_1}-m\Big)\Big(X_{n_2}-m\Big)\Big]$$

$$\begin{array}{ccc} \forall \ n_1 \neq n_2 \\ \mathcal{C}_X \left(n_1, n_2 \right) = \ \mathsf{E} \left\lceil \left(X_{n_1} - \mathsf{m} \right) \right\rceil \mathsf{E} \left\lceil \left(X_{n_2} - \mathsf{m} \right) \right\rceil \end{array}$$

'F 863' Dant TTT 2 Page 28 Pant Hauder Darba

IID Random processes

 \blacksquare Therefore, for an iid process X_n :

$$\begin{array}{ccc} & \forall & n_1 \neq n_2 \\ & \mathcal{C}_X \left(n_1, n_2 \right) = & \mathsf{E} \left[\left(X_{n_1} - m \right) \right] \mathsf{E} \left[\left(X_{n_2} - m \right) \right] \end{array}$$

$$C_X(n_1,n_2) = 0 \forall n_1 \neq n_2$$

ECE 863: Part III,2 Page 29 Prof. Hayder Radha

IID Random processes

■ However, for an iid process X_n :

$$C_X(n_1,n_2) = E[(X_{n_1} - m)(X_{n_2} - m)]$$

$$\forall n_1 = n_2 = n$$

$$C_X(n,n) = E[(X_n - m)^2] = \sigma^2$$

CE 863: Part III.2 Page 30 Prof. Hayder Radha

IID Random processes

■ Therefore, for an iid process X_n :

$$\label{eq:continuous_continuous$$

CC 863: Part III.2 Page 31 Prof. Hayder Radh

IID Random processes

 \blacksquare Moreover, for an iid process X_n :

$$R_{X}\left(n_{\!\scriptscriptstyle 1},n_{\!\scriptscriptstyle 2}\right) \,=\, C_{X}\left(n_{\!\scriptscriptstyle 1},n_{\!\scriptscriptstyle 2}\right) + m^2$$

$$R_{X}(n_{1},n_{2}) = \sigma^{2} \delta(n_{1},n_{2}) + m^{2}$$

ECE 863: Part TTT 2 Page 32 Prof. Havder Badha

IID Sum Random Processes

- Special cases of iid sum processes are the "random walk" and binomial "counting" processes
- Similar to the sum of sequences of iid RVs. the sum process:

$$S_n = X_1 + X_2 + \dots + X_n$$

$$n = 1, 2, ...$$

IID Sum Random Processes

Also similar to the sum of iid RVs, if

$$E[X_1] = E[X_2] = ... = E[X_n] = E[X] = m$$
, then:

$$m_{S}(n) = E[S_n]$$

$$m_{S}(n) = nm$$

Similarly for the variance of S_n :

$$VAR(S_n) = nVAR(X) \overline{VAR(S_n) = n\sigma^2}$$

$$VAR(S_n) = n\sigma^2$$

IID Sum Random Processes

■ Note that:

$$\begin{split} S_{n-1} &= X_1 + X_2 + \dots + X_{n-1} \\ \hline \left[S_n &= S_{n-1} + X_n \right] \end{split}$$

$$n = 1, 2, \dots$$
 and where $S_0 = 0$

Therefore, at any "discrete-time instance" n, the sum process S_n depends on the past only through the the previous instance (n-1): S_{n-1}

Example: Binomial Process

■ If $X_n = I_n$ is a Bernoulli process with probability $p = P[I_n=1]$ ($P[I_n=0] = 1-p$), then the sum:

$$\boldsymbol{S}_n = \boldsymbol{I}_1 + \boldsymbol{I}_2 \, \cdots \, \boldsymbol{I}_n$$

is a "Binomial Process":

$$P[S_n = j] = \binom{n}{j} p^j (1 - p)^{n-j}$$
$$\forall 0 \le j \le n$$

IID Sum Proc. - Covariance

■ The autocovariance of the sum process S_n can be found using:

$$\boldsymbol{\mathcal{C}_{S}}\left(\boldsymbol{n}_{\!\scriptscriptstyle 1},\boldsymbol{n}_{\!\scriptscriptstyle 2}\right) \ = \ \boldsymbol{E}\!\left[\!\left(\boldsymbol{S}_{\!\boldsymbol{n}_{\!\scriptscriptstyle 1}} - \boldsymbol{E}\!\left[\boldsymbol{S}_{\!\boldsymbol{n}_{\!\scriptscriptstyle 1}}\right]\!\right)\!\left(\boldsymbol{S}_{\!\boldsymbol{n}_{\!\scriptscriptstyle 2}} - \boldsymbol{E}\!\left[\boldsymbol{S}_{\!\boldsymbol{n}_{\!\scriptscriptstyle 2}}\right]\!\right)\!\right]$$

$$C_{S}(n_{1},n_{2}) = E[(S_{n_{1}}-n_{1}m)(S_{n_{2}}-n_{2}m)]$$

FCF 863: Part TTT 2 Page 39 Prof. Hawden Radha

$$\begin{split} & \textbf{IID Sum Proc.} - \textbf{Covariance} \\ & \textbf{C}_{S}\left(\textbf{n}_{1},\textbf{n}_{2}\right) = \textbf{E}\Big[\big(\textbf{S}_{\textbf{n}_{1}}-\textbf{n}_{1}\textbf{m}\big)\big(\textbf{S}_{\textbf{n}_{2}}-\textbf{n}_{2}\textbf{m}\big)\Big] \\ & \textbf{C}_{S}\left(\textbf{n}_{1},\textbf{n}_{2}\right) = \textbf{E}\Big[\left\{\sum_{i=1}^{\textbf{n}_{1}}\left(\textbf{X}_{i}-\textbf{m}\right)\right\}\left\{\sum_{j=1}^{\textbf{n}_{2}}\left(\textbf{X}_{j}-\textbf{m}\right)\right\}\right] \\ & \textbf{C}_{S}\left(\textbf{n}_{1},\textbf{n}_{2}\right) = \sum_{i=1}^{\textbf{n}_{1}}\sum_{j=1}^{\textbf{n}_{2}}\textbf{E}\Big[\big(\textbf{X}_{i}-\textbf{m}\big)\big(\textbf{X}_{j}-\textbf{m}\big)\Big] \end{split}$$

IID Sum Proc. - Covariance

$$C_{S}(\mathbf{n}_{1},\mathbf{n}_{2}) = \sum_{i=1}^{\mathbf{n}_{1}} \sum_{j=1}^{\mathbf{n}_{2}} E[(\mathbf{X}_{i} - \mathbf{m})(\mathbf{X}_{j} - \mathbf{m})]$$

When i \neq j , then we have zero terms since X_i and X_j are uncorrelated (because they are independent)

$$C_{S}(\mathbf{n}_{1},\mathbf{n}_{2}) = \sum_{i=1}^{\min(\mathbf{n}_{1},\mathbf{n}_{2})} C_{X}(i,i)$$

$$C_{S}(n_{1},n_{2}) = \min(n_{1},n_{2}) \sigma^{2}$$

ECE 863: Part III.2 Prof. Hayder Radha

IID Sum Proc. - Non-overlapping Intervals

- \blacksquare Over non-overlapping intervals, the sum process S_n has non-overlapping iid RVs
- Let $S(n_1, n_2) = S_{n2} S_{n1}$ and $S(n_3, n_4) = S_{n4} S_{n3}$ where $n_1 < n_2 < n_3 < n_4$
- Therefore,

$$S(n_1, n_2) = X_{n_1+1} + X_{n_1+2} + \dots + X_{n_2}$$

$$S(n_3, n_4) = X_{n3+1} + X_{n3+2} + \dots + X_{n4}$$

863: Part III, 2 Page 43 Prof. Hayder Ro

IID Sum Proc. - Non-overlapping Intervals

Since S(n₁,n₂) and S(n₃,n₄) are functions of "non-overlapping" independent random variables, then S(n₁,n₂) and S(n₃,n₄) are independent:

$$P[S(n_1,n_2) = k_1, S(n_3,n_4) = k_2]$$

= $P[S(n_1,n_2) = k_1] P[S(n_3,n_4) = k_2]$

The iid sum process S_n has independent increments

863: Part TTT 2 Page 44 Part Hauder Dalha

IID Sum Proc. - Non-overlapping Intervals

■ Since

$$S(n_1,n_2) = S_{n_2} - S_{n_1} = X_{n_1+1} + X_{n_1+2} + .. + X_{n_2}$$

is the sum of (n_2-n_1) iid random variables

$$P[S(n_1,n_2) = k] = P[S_{n_2-n_1} = k]$$

The iid sum process S_n has stationary increments

ECE 863: Part III.2 Page 45 Prof. Hayde

IID Sum Proc. - Non-overlapping Intervals

The "independent increments" and "stationary increments" properties of the iid sum process S_n can be used to compute joint probability functions (e.g., pmf and pdf):

$$\begin{split} & \text{P[} \text{ } \text{S}_{n_1} = \text{ } \text{k}_1, \text{ } \text{S}_{n_2} = \text{ } \text{k}_2 \text{ } \text{]} & = \\ & \text{P[} \text{ } \text{S}_{n_1} = \text{ } \text{k}_1 \text{]} \text{ P[} \text{ } \text{S}_{n_2} - \text{S}_{n_1} = \text{ } \text{k}_2 - \text{k}_1 \text{]} \\ & \text{P[} \text{ } \text{S}_{n_1} = \text{ } \text{k}_1, \text{ } \text{S}_{n_2} = \text{ } \text{k}_2 \text{]} = \\ & \text{P[} \text{ } \text{S}_{n_1} = \text{ } \text{k}_1 \text{]} \text{ P[} \text{ } \text{S}_{n_2 - n_1} = \text{ } \text{k}_2 - \text{k}_1 \text{]} \end{split}$$

Part III,2 Page 46 Prof. Hayder Radha

IID Sum Proc. - Non-overlapping Intervals For example, $P[S_{n_1} = k_1, S_{n_2} = k_2]$

CE 863: Part III.2 Page 47 Prof. Hayder R

IID Sum Proc. - Non-overlapping Intervals

■ In general, for "discrete-valued" X_i of the iid sum process $S_n=X_1+X_2+\cdots\cdots+X_n$,

$$\begin{array}{|c|c|c|c|c|c|}\hline P[\ S_{n_1} = \ k_1, \ S_{n_2} = \ k_2, \ S_{n_m} = \ k_m \] = \\ P[\ S_{n_1} = \ k_1] \prod_{i=2}^m P[\ S_{n_i-n_{i-1}} = \ k_i - k_{i-1} \] \end{array}$$

(See example 6.16)

863: Part TTT 2 Page 48 Prof. Hayder Radha

IID Sum Proc. - Non-overlapping Intervals

■ For "continuous-valued" X_i of the iid sum process $S_n=X_1+X_2+\cdots\cdots+X_n$,

$$f_{S_{n_1}, S_{n_2}, \dots S_{n_m}}(z_1, z_2, \dots z_m) = f_{S_{n_1}}(z_1) \prod_{i=2}^m f_{S_{n_i-n_{i-1}}}(z_i - z_{i-1})$$

(See example 6.17)

E 863: Part III.2 Page 49

The "Random Walk" Process

A person or an object taking a step with a random direction (e.g. +1, -1) generates what is known as the "random walk" process.

The "Random Walk" Process

■ The random outcome D_n (-1 or +1) of the random walk process at any given time-index n, n=1,2,.... can be expressed as a function of the Bernoulli process I_n (0 or +1):

$$D_n = 2I_n - 1$$

E 863: Part III.2 Page 51 Prof. Hayder Radha

The "Random Walk" Process

■ Therefore, when

$$D_n = 2I_n - 1$$

we have:

$$\begin{array}{|c|c|c|c|}\hline D_n & = & \begin{cases} 1 & \text{if } I_n = 1 \\ -1 & \text{if } I_n = 0. \end{cases}$$

$$P[D_n = +1] = P[I_n = 1] = p$$

$$P[D_n = -1] = P[I_n = 0] = 1 - p$$

CF 863: Don't TTT 2 Page 52 Pont Housen Dadha

The "Random Walk" Process

■ The mean D_n :

$$m_D(n) = E[D_n] = E[2I_n - 1]$$

$$m_{D}(n) = 2E[I_{n}] - 1 = 2p - 1.$$

$$\mathsf{m}_{\mathsf{D}}\left(\mathsf{n}\right)\,=\,2\mathsf{p}-\mathsf{1}.$$

CE 863: Part III.2 Page 53 Prof. Hayder Radha

The "Random Walk" Process

■ The variance for D_n :

$$VAR[D_n] = VAR[2I_n - 1]$$

$$VAR[D_n] = 4VAR[I_n]$$

$$VAR[D_n] = 4p(1-p)$$

863: Part III. 2 Page 54 Prof. Hayder Radha

The "Random Walk" Process

■ The random walk process can be expressed as the sum of the iid process D_n:

$$S_{Dn} = D_1 + D_2 + \cdots + D_n$$

Therefore, $S_{\rm Dn}$ represents the position of the object after taking n random steps over a straight line (one-dimensional random walk).

E 863: Part III.2 Page 55 Prof. Hayder Radh

The "Random Walk" Process

Now, the probability that "the object is d steps away from the origin after taking n random steps":

$$P[S_{Dn}=d]$$

is the same as the probability that the object takes k positive steps (+1) and n-k negative steps (-1): d = k-(n-k) = 2k-n

$$P[S_{Dn}=d] = P[S_{Dn}=2k-n]$$

+ TTT 2 Page 56

The "Random Walk" Process

■ The event "S_{Dn}=2k-n" is equivalent to the event that there are k "successes" after n "trials" of a binomial process:

$$P \Big[S_{Dn} \ = \ d \Big] = P \Big[S_{Dn} \ = \ 2k - n \Big]$$

$$\boxed{P \Big[S_{Dn} \ = \ 2k - n \Big] \ = P \Big[S_n \ = \ k \Big]} \quad \forall \ k \! \in \! \big\{ 0, 1, \ldots, n \big\}$$

where S_n is the binomial process (i.e. sum of Bernoulli iid RVs)

CE 863: Part III.2 Page 57 Prof. Hayder Radh

The "Random Walk" Process

■ Therefore,:

$$P[S_{Dn} = d] = P[S_{Dn} = 2k - n]$$
$$= {n \choose k} p^{k} (1 - p)^{n-k}$$

$$\forall k \in \{0,1,\ldots,n\}$$

E 863: Part III. 2 Page 58 Prof. Hayder Radha

The "Random Walk" Process

Since d=2k-n where k=0,1,2,...n then:

when n is even \Rightarrow d is even \Rightarrow d \in {0, \pm 2, \pm 4,... \pm n}

when n is odd \Rightarrow d is odd \Rightarrow d $\in \{\pm 1, \pm 3, ... \pm n\}$

E 863: Part TTT 2 Page 59 Prof. Idea/der Dadi

The "Random Walk" Process

■ Therefore:

$$P[S_{bn} = d] = P[S_{bn} = 2k - n]$$

$$= {n \choose \left(\frac{n+d}{2}\right)} p^{(n+d)/2} (1-p)^{(n-d)/2}$$

CF 8.63: Dant TTT 2 Page 60 Ponf Hourder Dallha

The "Random Walk" Process

$$P[S_{Dn} = d] = {n \choose \left(\frac{n+d}{2}\right)} p^{(n+d)/2} (1-p)^{(n-d)/2}$$

It is important to note that:

$$\left(\frac{\mathsf{n}+\mathsf{d}}{2}\right)$$
 and $\left(\frac{\mathsf{n}-\mathsf{d}}{2}\right)$ are always integer

FCE 863: Part III 2 Page 61 Prof. Hayder Radha

The "Random Walk" Process

Since the random walk process is an iid sum process, then its covariance:

$$C_{S_D}(n_1, n_2) = VAR[D_n] min(n_1, n_2)$$

$$\boxed{C_{S_D}(n_1, n_2) = 4p(1-p)\min(n_1, n_2)}$$

863: Part III.2 Page 62 Prof. Hayder Radha

Continuous-Time Processes

- Continuous-time processes arises in many applications and systems (e.g. queueing systems)
- Important continuous-time processes include:

The Wiener Process (related to Random Walk)

The Poisson Process (related to Binomial proc.)

Other processes are derived from the above (e.g., Random Telegraph Signal from Poisson)

3: Part III, 2 Page 63

The Wiener Processes

- The "random walk" process can be extended to a continuous-time process under certain conditions
- First, let the step size be of size h
- Second, let the probability of a "+h" step is the same as a "-h" step (i.e., p=1/2)
- Third, let the object takes a step (+h or -h) every δ time-units (e.g. seconds)

ECE 863: Part III,2

Page 64

Prof. Hayder Radha

- Now, we can define the sum process, $X_{\delta}(t)$ which represents the position of the object at time t
- Therefore, by time t, the object takes n steps, where:

 $n = \left| \frac{t}{\delta} \right|$

 $\lfloor x \rfloor$ is the largest integer smaller than or equal to x

The Wiener Processes

■ Therefore, $X_{\delta}(t)$ is also a sum process:

$$X_{\delta}(t) = h(D_1 + D_2 + \cdots + D_{|t/\delta|})$$

$$X_{\delta}(t) = h(D_1 + D_2 + \cdots + D_n)$$

$$X_{\delta}(t) = hS_{Dn}$$

The Wiener Processes

Now, we can evaluate the mean and variance of $X_{\delta}(t)$ using results from the "random walk" process: $X_{\delta}(t) = hS_{Dn}$

$$X_{\delta}(t) = hS_{Dn}$$

$$\boxed{E\left[X_{\delta}\left(t\right)\right] = hE\left[S_{Dn}\right] = 0}$$

$$VAR[X_{\delta}(t)] = h^{2}n VAR[D_{n}] = h^{2}n$$

remember
$$VAR[D_n] = 4p(1-p)$$

The Wiener Processes

- Now, we would like to express the variance (hn2) as a function of time (t) rather than as a function of the integer (n): $n = | \uparrow / \delta |$
- We are also going to make the object takes very small steps (h gets very small) and much more often (δ gets very small)
- Therefore, both h and δ get small simultaneously

 \blacksquare Hence, h is "proportional to" δ :

$$h = \sqrt{\alpha \delta}$$

you can think of $\sqrt{\alpha}$ as a "proportionality" constant

■ Also, as δ gets very small,

$$n=\big|\,\text{t/}\delta\,\big|\cong\text{t/}\delta$$

$$\overline{ \left[\begin{matrix} \text{lim VAR} \left[X_{\delta} \left(\tau \right) \right] = \underset{ \substack{h \rightarrow 0 \\ \delta \rightarrow 0}}{\text{lim }} h^2 n = \alpha \ \tau \right] }$$

ECE 863: Part III,2 Page 69 Prof. Hayder Radha

The Wiener Processes

■ Therefore, the resulting process:

$$X\left(\dagger\right) = \lim_{\substack{h \to 0 \\ \delta \to 0}} X_{\delta}\left(\dagger\right)$$

has a variance (αt) and zero-mean

- Also, X(t) results from a sum of a very large number (n→∞) of iid RVs
- Therefore, X(t) is a Gaussian process

T 0 C 2 Dark TT 2

The Wiener Processes

■ Therefore, the Wiener Process has a pdf:

$$f_{X(t)}(x) = \frac{1}{\sqrt{2\pi\alpha t}} e^{-x^2/2\alpha t}$$

ECE 863: Part III, 2 Prof. Hayder Radha

The Wiener Processes

■ The Wiener Process meets the "independent increments" and "stationary increments" properties:

$$\begin{split} f_{X(t_1),\dots,X(t_k)} \big(x_1, x_2 \dots x_{k-1}, x_k \big) = \\ f_{X(t_1)} \big(x_1 \big) \, f_{X(t_2-t_1)} \big(x_2 - x_1 \big) \dots f_{X(t_k-t_{k-1})} \big(x_k - x_{k-1} \big) \end{split}$$

E/E 863: Dant TTT 2 Page 72 Pant Liturator Dadha

■ Therefore,

$$\begin{split} &f_{X(t_1),\dots,X(t_k)}\left(x_1,x_2\dots x_{k-1},x_k\right) = \\ &\underbrace{exp\left\{-\frac{1}{2}\Bigg[\frac{x_1^2}{\alpha t_1} + \frac{\left(x_2 - x_1\right)^2}{\alpha \left(t_2 - t_1\right)} + \dots + \frac{\left(x_k - x_{k-1}\right)^2}{\alpha \left(t_k - t_{k-1}\right)}\right]\right\}}_{\sqrt{\left(2\pi\alpha\right)^k} \, t_1\left(t_2 - t_1\right) \dots \left(t_k - t_{k-1}\right)} \end{split}$$

ECE 863: Part III,2 Page 73 Prof. Hayder Radha

The Wiener Processes

- Is the Wiener process a Gaussian process?
- A random process X(t) is a Gaussian process when the RVs X(t₁), X(t₂), X(t_k) are jointly Gaussian
- For the Wiener process X(t), the RVs: $X(t_1)$, ($X(t_2)$ - $X(t_1)$), ($X(t_k)$ - $X(t_{k-1})$) are independent Gaussian RVs

863: Part III. 2 Page 74 Prof. Hayder Radha

The Wiener Processes

■ Since the RVs:

 $X(t_1)$, ($X(t_2)$ - $X(t_1)$), ($X(t_k)$ - $X(t_{k-1})$) are independent Gaussian RVs

it can be shown that:

 $X(t_1)$, $X(t_2)$, $X(t_k)$ are jointly Gaussian

Therefore:

the Wiener process is a Gaussian process

163: Part III.2 Page 75 Prof. Hayder

The Wiener Processes

■ The "independent and stationary increment" property enables us to compute the covariance:

$$\textit{C}_{X}\left(\textbf{t}_{1},\textbf{t}_{2}\right) \ = \ \mathsf{E}\!\left[X\left(\textbf{t}_{1}\right)X\left(\textbf{t}_{2}\right)\right]$$

First let's assume that $t_1 \le t_2$

$$\boldsymbol{C}_{\boldsymbol{X}}\left(\boldsymbol{t}_{\!1},\boldsymbol{t}_{\!2}\right) \;\; = \;\; \boldsymbol{E}\left[\boldsymbol{X}\left(\boldsymbol{t}_{\!1}\right)\!\left\{\!\left(\boldsymbol{X}\left(\boldsymbol{t}_{\!2}\right)-\boldsymbol{X}\left(\boldsymbol{t}_{\!1}\right)\right)+\boldsymbol{X}\left(\boldsymbol{t}_{\!1}\right)\!\right\}\right]$$

F 863: Part TTT 2 Page 76 Part Librarier Darlin

$$\begin{split} C_X\left(t_1,t_2\right) &= E\left[X\left(t_1\right)\left\{\left(X\left(t_2\right)-X\left(t_1\right)\right)+X\left(t_1\right)\right\}\right] \\ C_X\left(t_1,t_2\right) &= E\left[X\left(t_1\right)\left(X\left(t_2\right)-X\left(t_1\right)\right)\right] \\ &+ E\left[\left(X\left(t_1\right)\right)^2\right] \end{split}$$

$$\begin{split} \mathcal{C}_{X}\left(t_{1},t_{2}\right) &= & E\left[X\left(t_{1}\right)\right]E\left[X\left(t_{2}\right)-X\left(t_{1}\right)\right] \\ &+ & E\left[\left(X\left(t_{1}\right)\right)^{2}\right] \end{split}$$

ECE 863: Part III.2 Poge 77 Prof. Hayder Radha

The Wiener Processes

$$\begin{aligned} \mathcal{C}_{X}\left(\mathsf{t}_{1},\mathsf{t}_{2}\right) &=& \mathsf{E}\left[\left(\mathsf{X}\left(\mathsf{t}_{1}\right)\right)^{2}\right] = \mathsf{VAR}\left[\mathsf{X}\left(\mathsf{t}_{1}\right)\right] \\ \\ \mathcal{C}_{X}\left(\mathsf{t}_{1},\mathsf{t}_{2}\right) &=& \alpha \; \mathsf{t}_{1} \quad \text{ when } \; \mathsf{t}_{1} \leq \mathsf{t}_{2} \\ \\ \mathcal{C}_{X}\left(\mathsf{t}_{1},\mathsf{t}_{2}\right) &=& \alpha \; \mathsf{t}_{2} \quad \text{ when } \; \mathsf{t}_{2} \leq \mathsf{t}_{1} \end{aligned}$$

$$C_{\mathsf{X}}(\mathsf{t}_{\mathsf{1}},\mathsf{t}_{\mathsf{2}}) = \alpha \min(\mathsf{t}_{\mathsf{1}},\mathsf{t}_{\mathsf{2}})$$

Post 78

The Poisson Process

- Let assume that a random event occurs at an average rate of λ per unit-of-time. Therefore, the average number of occurrences N(t) of the event during a time interval [0,t] is (λt)
- If we divide the interval [0,t] into a large number (n) of subintervals with duration (δ)
- The subinterval (δ) is small enough such that the probability that the event occurs more than once during (δ) is negligible

E 863: Part III,2 Page 79 Prof. Hayder Radh

The Poisson Process

- Therefore, during each subinterval (δ) the event either occurs once or does not occur.
- Hence, the average number of occurrences of the event in these n subintervals is (np), where p is the probability that the event occurs in a given (Bernoulli) trial
- Now, since $n=t/\delta$, then the average number of occurrences is $np=(\lambda t)$

CF 863: Don't TTT 2 Page 80 Ponf Haurien Dadha

The Poisson Process

- This process can be modeled as a binomial process with parameters (n) and (p)
- We have shown that a binomial random variable converges to a Poisson random variable as (n) gets very large and (p) gets very small while np=λt
- Therefore, N(t) is a Poisson process:

$$\boxed{P[N(t) = k] = \frac{(\lambda t)^k}{k!} e^{-\lambda t}} \qquad k = 0, 1, \dots$$

ECE 863: Part III.2 Page 81 Prof. Hayder Radha

The Poisson Process

- Since the Poisson process is derived from the binomial process, then the Poisson process also has the "independent and stationary increments" properties:
- Therefore, for $t_1 < t_2$

863: Part III.2 Page 82 Prof. Hayder Radha

The Poisson Process

$$\begin{split} &P\big[N\big(t_1\big)=k_1,N\big(t_2\big)=k_2\big] = \\ &P\big[N\big(t_1\big)=k_1\big]P\big[N\big(t_2\big)-N\big(t_1\big)=k_2-k_1\big] \end{split}$$

$$\begin{aligned} & P \Big[N (t_1) = k_1, N (t_2) = k_2 \Big] = \\ & P \Big[N (t_1) = k_1 \Big] P \Big[N (t_2 - t_1) = k_2 - k_1 \Big] \end{aligned}$$

CE 863: Part III.2 Page 83 Prof. Hayder Radi

The Poisson Process

The independent and stationary increment property of the Poisson process N(t) can be used to compute the Covariance of N(t) (with parameter λ):

$$C_N(t_1, t_2) = \lambda \min(t_1, t_2)$$

F/F 863: Dant TTT 2 Page 84 Panf Maurien Dadha

The Poisson Process

- The independent and stationary increment property of the Poisson process N(t) can also be used to show that the number of arrivals (k) in a time interval [0,t] are distributed independently and uniformly over that interval
- In particular, given that an event has occurred during [0,t], then the probability that the event has occurred during a smaller interval [0,x], where x ≤ t:

$$P[X \le x] = P[N(x) = 1 | N(t) = 1] = \frac{x}{t}$$

CE 863: Part III,2

Page 85

Prof Hayder Radha

The Poisson Process

It is important to recall that the inter-arrival time T of a Poisson process is an exponential random variable:

$$f_T(t) = \lambda e^{-\lambda t}$$

with mean $(1/\lambda)$

Also recall that the sum of exponential iid RVs: S_n=T₁+T₂+....T_n is an "Erlang" random variable.

ECE 863: Port TTT 2

Page 86

The Poisson Process

Therefore, the sum of the Poisson process's inter-arrival times: S_n=T₁+T₂+....T_n has an Erlang density function:

$$\boxed{f_{S_n}\left(y\right) = \frac{\left(\lambda y\right)^{n-1}}{\left(n-1\right)!} \lambda e^{-\lambda y} \quad y \geq 0}$$

CE 863: Part III,2

Page 87

Prof. Hayder Radho