

An Example to Conquer them All

- The original formulation of Lazy Code Motion was published in a paper by Knoop et al^o.
- The authors used a complex example to illustrate all the phases of their algorithm.
- Many papers are build around examples.
 - That is a good strategy to convey ideas to readers.

: Lazy Code Motion, PLDI (1992)

Available Expressions

Available Expressions

Anticipable Expressions

Anticipable Expressions

 $EARLIEST(i, j) = IN_{ANTICIPABLE}(j) \cap \frac{OUT_{AVAILABLE}(i)}{OUT_{ANTICIPABLE}(i)} \cap (KILL(i) \cup \frac{OUT_{ANTICIPABLE}(i))}{OUT_{ANTICIPABLE}(i)}$

 $EARLIEST(i, j) = IN_{ANTICIPABLE}(j) \cap OUT_{AVAILABLE}(i) \cap (KILL(i) \cup OUT_{ANTICIPABLE}(i))$

Latest

 $IN_{LATER}(j) = \bigcap_{i \in pred(j)} LATER(i, j)$ $LATER(i, j) = EARLIEST(i, j) \cup \bigcup_{d_j : x = a + b} \bigcup_{d_j$

The goal now is to compute the latest IN sets, and the latest edges. Can you do it?

$INSERT(i, j) = LATER(i, j) \cap \overline{IN_{LATER}(j)}$

We must now find the sites where we can insert new computations of a + b. Can you compute INSERT(i, j)?

Latest

We must now delete redundant computations that exist at program points p. Can you determine DELETE(p)?

