Chapitre 2

Vecteurs aléatoires

I Introduction

Définition 2.1 - variable aléatoire

Soit $(\Omega, \mathcal{T}, \mathbb{P})$ un espace de probabilité. On appelle *vecteur aléatoire* sur Ω une application de Ω dans \mathbb{R}^n . Pour n = 1, on parle de *variable aléatoire*.

Remarque 2.2 - notation associée

Pour $A \in \mathbb{R}^n$, on notera $\{X \in A\}$ l'évènement :

$$\{\omega \in \Omega, X(\omega) \in A\}$$

Définition 2.3 - vecteur aléatoire discret

Soit $(\Omega, \mathcal{T}, \mathbb{P})$ un espace de probabilité. Un vecteur aléatoire X sur Ω est dit discret s'il existe $F \subset \mathbb{R}^n$ au plus dénombrable tel que :

$$\mathbb{P}\Big(\{X\in F\}\Big)=1$$

Nous émettrons dans le cadre du cours l'hypothèse suivante.

Remarque 2.4 - en lien avec la définition

Si X est un vecteur aléatoire sur $(\Omega, \mathcal{T}, \mathbb{P})$, pour tout ouvert A de \mathbb{R}^n :

$$\{\omega \in \Omega, X(\omega) \in A\} = \{X \in A\} \in \mathcal{T}$$

Définition 2.5 - vecteur aléatoire à densité

X est un vecteur aléatoire définie sur $(\Omega, \mathcal{T}, \mathbb{P})$ à valeurs dans \mathbb{R}^n s'il il existe $p : \mathbb{R}^n \to \mathbb{R}_+$ qui vérifie :

$$\forall \epsilon > 0, \forall a \in \mathbb{R}^n, \exists r > 0, \mathbb{P}\Big(\{X \in B(a,r)\}\Big) = \int_A p(x) \, \mathrm{d}x$$

Autrement dit, pour tout A ouvert de \mathbb{R}^n :

$$\mathbb{P}\Big(\{X\in A\}\Big) = \int_A p(x) \,\mathrm{d}x$$

Remarque 2.6 - à ce propos

Pour $A = \mathbb{R}^n$, la probabilité précédemment évoquée vaut :

$$P(X \in \mathbb{R}^n) = 1$$

II Lois usuelles

Définition 2.7 - Loi d'une variable aléatoire

La loi d'une variable aléatoire discret X à valeurs dans F (i.e. $\mathbb{P}(\{X \in F\}) = 1$) est entièrement définie par la famille de réels positifs :

$$\left(\mathbb{P}\Big(\{X=x\}\Big)\right)_{x\in F}$$

de somme 1.

Exemple 2.8 - loi de Bernoulli

Pour une loi de Bernoulli :

- $F = \{0, 1\}$
- $\mathbb{P}(X=1) = p \text{ et } \mathbb{P}(X=0) = 1-p$

Une telle variable aléatoire mesure la probabilité de succès d'une épreuve de Bernoulli (succès de probabilité p, échec de probabilité 1-p).

Exemple 2.9 - loi binomiale

Pour une loi binomiale:

- $F = \llbracket 0, \, n \rrbracket$ où $n \in \mathbb{N}^*$
- $\bullet \ \forall k \in \llbracket 0, \, n \rrbracket, \, \mathbb{P} \Big(\{ X = k \} \Big) = {k \choose n} p^k (1-p)^{n-k}$

Une telle variable aléatoire mesure le nombre de succès au terme de la répétition indépendante de n épreuves de Bernoulli du même paramètre p.

Exemple 2.10 - loi géométrique

Pour une loi géométrique :

- $F = \mathbb{N}^*$.
- $\forall k \in \mathbb{N}^*, \mathbb{P}(\lbrace X = k \rbrace) = p(1-p)^{k-1}$

En numérotant à partir de 1 une suite d'épreuves de Bernoulli répétées indépendamment et indéfiniment, une telle variable aléatoire mesure l'indice du premier succès.

Exemple 2.11 - Loi de Poisson

Pour une loi de Poisson :

- $F = \mathbb{N}$
- $\forall k \in \mathbb{N}$, $\mathbb{P}(\{X = k\}) = \frac{\lambda^k}{k!}e^{-\lambda}$ Une loi de Poisson a des intérêts multiples, comme celui d'approximer sous certaines conditions une loi binomiale

Remarque 2.12 - sur ces lois

On retrouve par dénombrement l'expression de telles lois. Par exemple dans le cas de la loi géométrique, $\{X=k\}$ correspond à l'évènement "L'épreuve n°k est la première à réussir.". Cela revient à avoir vu échouer les k-1 épreuves précédentes :

$$\mathbb{P}\Big(\{X=k\}\Big) = p(1-p)^{k-1}$$

III Lois marginales

Proposition 2.13 - Formules des lois marginales

Questions de cours

1. Lois usuelles (de Bernoulli, binomiale, géométrique, de Poisson)