1991

vol. 25, N 7

PHYSICS AND TECHNICS OF SEMICONDUCTORS

НА ЭКСИТОННУЮ И ПРИМЕСНУЮ ЛЮМИНЕСЦЕНЦИЮ CdTe

ВЛИЯНИЕ УЛЬТРАЗВУКОВОЙ ОБРАБОТКИ

КРАТКИЕ СООБЩЕНИЯ

Бабенцов Б. Н., Горбань С. И., Городецкий И. Я., Корсунская Н. Е., Раренко И. М., Шейнкман М. К.

Ранее было показано [1], что ультразвуковая обработка (УЗО) определенной мощности приводит в монокристаллах ${\rm Zn}_x{\rm Cd}_{1-x}{\rm Te}$ (0 $\leqslant x \leqslant$ 1) к изменению равновесной проводимости кристалла и их фотоэлектрических свойств. Предло-

жена модель, объясняющая эти изменения, которая основывается на том. что под действием УЗ волны происходит «захват» или выброс подвижных акцепторов с дислокаций, которые являются для них «стоками». Первый процесс доминирует в малодислокационных кристаллах, в которых ультразвук существенно увеличивает концентрацию дислокаций. При высокой концентрации дислокаций в исходных кристаллах, когда размножение их под действием УЗ мало заметно, преобладает второй процесс. Однако однозначных доказательств акцепторной природы подвижного дефекта эти данные получить не позволяют,

так как равновесная проводимость и заполнение рекомбинационных центров

зависят от суммарной концентрации как доноров, так и акцепторов.

Для выяснения природы подвижного дефекта нами были проведены низкотемпературные исследования примесной и экситонной фотолюминесценции (ФЛ) при 4.2 К. Поскольку экситонный спектр кристаллов CdTe достаточно хорошо изучен, можно было считать, что такие исследования позволят не только установить, являются ли эти дефекты акцепторами, но и выяснить их химическую

природу. Исследовались объемные специально нелегированные

монокристаллы CdTe p-типа. УЗ колебания возбуждались в кристаллах путем приклеивания их к пластине пьезоэлектрика, к которому прикладывалось напряжение опре-

деленной частоты, соответствующее резонансу пластины. Напряжение составляло 30 В, длительность обработки — 1 ч. Для измерения спектров ФЛ использовалась установка, собранная на базе КСВУ-23. В качестве источника возбуждения применялись лазеры: гелийнеоновый ЛГ-126 с $\lambda_{\text{мал}} = 6328$ А и гелий-кадмиевый ЛПМ-11 с $\lambda_{\text{мал}} = 4416$ А, а также ксеноновая лампа ДКСШ-150. Люминесценция наблюдалась со стороны возбуждаемой поверхности. Приемниками излучения служили фото-

Экспериментальные результаты

электронные умножители ФЭУ-100 и охлаждаемые ФЭУ-83.

950 нм, бесфононная линия — 850 нм) (рис. 1, 2).

В спектрах излучения исследованных образцов в исходном состоянии наблюдались, как правило, линии излучения экситонов, связанных на донорах I_2 и акцепторах I_1 (778—782 нм), «краевая» $\Phi \Pi$, обусловленная рекомбинацией в парах ДА (798-825 нм); полоса ФЛ, связанная с рекомбинацией неравновесных носителей через центры фоточувствительности кристаллов (850—

По спектрам ФЛ исследованные образцы можно разделить на две группы. В спектрах ФЛ кристаллов первой группы наблюдалась краевая серия с поло-

Рис. 2. Спектр фотолюминесценции кристаллов CdTe второй группы.

появлялась новая «дислокационная» полоса с λ_m =840 нм, что свидетельствует о размножении дислокаций под действием УЗ. Наряду с этим в образцах первого типа значительно уменьшались интенсивности краевой полосы λ_m =850 нм, линии I_1 =780 нм (\sim в 100 раз) и $I_2 \sim$

После обработки спектры ФЛ существенно изменялись: во всех образцах

в 80 раз, в то же время интенсивность полосы 850—950 нм практически не изменялась.

В образцах второго типа интенсивность полосы 850—950 нм уменьшалась более чем на порядок, уменьшились и интенсивности линий I_1 с $\lambda_m=779.8$ (в 6 раз), I_1' с $\lambda_m=780.3$ (до 8 раз), I_2 с $\lambda_m=778.2$ нм (до 3 раз).

Обсуждение результатов

Как видно из приведенных выше результатов, общим для обеих исследованных групп кристаллов является то, что после УЗО наиболее существенно уменьшается интенсивность линий I_1 и примесных полос люминесценции (примерно в одинаковое число раз). В то же время интенсивность линий I_2 , уменьшается значительно слабее. Этот факт свидетельствует о том, что УЗО приводит к уменьшению в кристалле концентрации акцепторов. При этом общее уменьшение интенсивности экситонной и примесной ФЛ может быть связано с появлением нового дислокационного канала рекомбинации.

Известно [2], что краевая полоса ДА излучения CdTe с $\lambda_m = 805$ нм обусловлена наличием в кристалле таких акцепторных примесей, как Li, Na на месте Сd. Этот же акцептор обусловливает и линию ФЛ I_1 ($\lambda_m = 779.95$ нм [2]). Тот факт, что в кристаллах первой группы примерно в равной степени уменьшаются интенсивности полосы ДА и линии I_1 (730.0 нм), в то время как интенсивность примесной полосы 850 нм уменьшается в значительно меньшей степени, означает, что при этом режиме УЗО происходит выбывание из процесса рекомбинации указанных выше акцепторов.

В кристаллах второго типа после УЗО преимущественно уменьшаются интенсивности линий I_1 ($\lambda_m = 779.8$ нм), I'_1 ($\lambda_m = 780.3$ нм) и примесной полосы 850 нм. Известно, что I_1 ($\ddot{\lambda}_m = 779.8$ нм) связана, как и примесная полоса 850 нм, с наличием в кристалле Cu_{Cd} , а I_1' ($\lambda_m = 780.3$ нм) — с наличием Ag_{Cd} [2]. Таким образом, в образцах второй группы после УЗО в кристалле уменьшается концентрация Cucd и Agcd. При этом уход из рекомбинационного процесса Cucd происходит быстрее, чем Ag_{Cd} , так как I_1 ($\lambda_m = 779.8$ нм) уменьшается быстрее, чем Ag_{Cd} (I_1 $\lambda_m = 779.8$ нм уменьшается почти на порядок, а I_1' $\lambda_m = 780.3$ нм менее чем в 6 раз).

Поскольку в нашем случае имел место процесс существенного размножения дислокаций, о чем свидетельствует существенный рост интенсивности дислокационной полосы, как показано в [1], выбывание из рекомбинации акцепторов связано с их уходом на дислокации. Это может быть связано с тем, что все наблюдавшиеся на эксперименте акцепторы — легко диффундирующие примеси. Поскольку они являются примесями, замещающими Cd, возможно, диффузия идет по вакансиям кадмия, концентрация которых достаточно высока в исследованных кристаллах CdTe.

Список литературы

[1] Агаев Я. А., Гарягдыев Г., Городецкий И. Я., Тальянский Э. В., Нурмухамедов К., Суханов С. С. // Изв. АН ТССР. Сер. ФТН и ГН. 1989. № 5. С. 40—44.

[2] Chamonal J. P., Molva E., Pautat J. L. // Phys. St. Sol. (b). 1982. V. 109. N 2. P. 635— 642.

Институт полупроводников АН УССР

Получено 8.01.1991 Принято к печати 11.01.1991