DAIICT

Assignment 2

Advanced Image Processing

Kishan Vaishnani - 202011004 Dhyanil Mehta - 202011023 14-2-2021

Table of Contents

Task 1	2
Problem Statement	2
Library Used	2
Method	2
1. Clipped larger object in image	2
Observation	2
Conclusion	2
Task 2	3
Problem Statement	3
Library Used	3
Method	3
1. Find different between 2 images	3
Observation	3
Conclusion	3
Task 3	4
Problem Statement	4
Library used	4
Method	4
1. Template matching function	4
2. Bounding box	5
Observation	5
Conclusion	5

Task 1

Problem Statement

Consider Figure 1 and remove the larger object from the image

Library Used: OpenCV

Method

1. Clipped larger object in image using the function:

cv2.copyTo(image, mask image)

Return:

This function will return clipped image

2. Mask was created by manually setting the values in a numpy array

Observation

Mask:

Conclusion

• The above mask when applied on the image removes the larger object for the given image.

Task 2

Problem Statement

Consider Figure 2, and find out whether a motion has occurred between (a) and (b)

Library Used: OpenCV

Method

1. Find different between 2 images

cv2.absdiff(image 1, image 2)

This function will return an absolute difference between 2 images and if we get a difference value then motion exists else not.

2. To consider only significant change in pixels in images, this function was used with the above function with a threshold of <u>65</u> and maxval of <u>255</u>:

cv2.threshold(diff_image, threshold, maxval, cv2.THRESH_BINARY)

Observation

Result after cv2.absdiff():

Conclusion

• We have detected 4.11% change between the given 2 images which shows that motion exists in given images.

Task 3

Problem Statement

Implement an algorithm to find out the number plate given in Figure 3(a) within the image Figure 3(b)

Figure 3(a)

Figure 3(b)

Library used: OpenCV

Method

1. Template matching function

cv2.matchTemplate(Grey scale image, template image, matching function)

How does the function work?

Template image will work as sliding window and compare with every pixel in the image in give result

Matching Function:

'cv2.TM_CCOEFF', 'cv2.TM_CCOEFF_NORMED', 'cv2.TM_CCORR', 'cv2.TM_CCORR_NORMED', 'cv2.TM_SQDIFF', 'cv2.TM_SQDIFF_NORMED'

Return Value:

Function returns array of size (a-p+1, b-q+1) with the matching score of sliding windows in range of -1 to 1.

2. Bounding box

cv2.rectangle(image, start point (x, y), end point (x, y), color (R, G, B), thickness)

Observation

Detected number plate highlighted by a bounding box:

Conclusion

• Number plate was detected in the main image by using the template matching function of OpenCV library.