

École Polytechnique de l'Université de Tours 64, Avenue Jean Portalis 37200 TOURS, FRANCE Tél. +33 (0)2 47 36 14 14 www.polytech.univ-tours.fr

Département Informatique 5^{e} année 2014 - 2015

Décomposition pyramidale du filtre bilatéral

Développement d'un outil de traitement d'images par filtrage bilatéral

Encadrants
Moncef HIDANE
moncef.hidane@insa-cvl.fr

INSA, Blois DI5 2014 - 2015

Table des matières

1	Déc	sition pyramidale	4	
	1.1	Métho	${ m odes}$	4
		1.1.1	Méthode n°1	4
		1.1.2	Méthode n°2	4
	1.2	Straté	ègies	4
2	Rés	ultats		5
Bi	bliog	raphie	e	8

1. Décomposition pyramidale

Les différentes méthodes et stratégies misent en place ci-dessous se basent sur l'article [1].

En appliquant le filtre bilatéral sur une image, on peut la décomposer ensuite en une couche de base, c'est à dire l'image résultant du filtre et une couche de détails qui correspond à la différence entre l'image originale et la couche de base.

On notera g l'image originale, u la couche de base et v correspondra à la couche de détails. $BF[\bullet]$ désigne le filtre bilatéral. Soit une décomposition à (k+1) niveau, on aura $u^1, ..., u^k$ les versions filtrées obtenues de g. La dernière version u^k sera notée b et correspondra à la couche de base. La couche de détail est définie comme suit :

$$v^{i} = u^{i-1} - u^{i}$$
, avec $i = 1..k$ et $u^{0} = g$ (1.1)

L'image original g est retrouvé à l'aide de l'équation suivante :

$$g = b + \sum_{i=1}^{k} v^{i} \tag{1.2}$$

1.1 Méthodes

La pyramide basée sur le filtre bilatéral peut être construite de deux façons différentes. Ces deux méthodes sont présentées ci-dessous. Les images sont ensuite reconstruite en utilisant l'équation 1.2.

1.1.1 Méthode n°1

Cette méthode consiste à itérer le filtre bilatéral sur l'image originale en modifiant uniquement les paramètres σ_s et σ_r . Les séquences u^1 , ..., u^k sont obtenues en résolvant k fois le système suivant :

$$u^{i+1} = BF[g] (1.3)$$

1.1.2 Méthode n° 2

La deuxième méthode que l'on peut mettre en place consiste à appliquer le filtre bilatéral sur la dernière séquence obtenue, ce qui va donner la formule suivante :

$$u^{i+1} = BF[u^i] (1.4)$$

1.2 Stratégies

L'article [1] présente deux stratégies à mettre en place afin de réaliser un pyramide basée sur le filtre bilatéral. La première consiste à augmenter σ_s et σ_r à chaque itération. La seconde stratégie consiste à utiliser la méthode n° 2 (équation 1.4) et faire décroître σ_r à chaque itération.

2. Résultats

Les résultats présentés ci-dessous montrent les différentes séquences obtenues ainsi que leur couche de détails et l'image reconstruite.

FIGURE 2.1 – Décomposition pyramidale (méthode 1 et stratégie 2 - σ_r divisé par 2), paramètre de départ $\sigma_s{=}36$ et $\sigma_r{=}100$

FIGURE 2.2 – Décomposition pyramidale (méthode 2 et stratégie 2 - σ_r divisé par 2), paramètre de départ $\sigma_s{=}36$ et $\sigma_r{=}100$

FIGURE 2.3 – Décomposition pyramidale (méthode 1 et stratégie 1 - facteur 2), paramètre de départ σ_s =4 et σ_r =10

Bibliographie

[1] Dani Lischinski Richard Szeliski Zeev Farbman, Raanan Fattal. Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Transactions on Graphics, 27(3), 2008.

Développement d'un outil de traitement d'images par filtrage bilatéral

Département Informatique 5^{e} année 2014 - 2015

Décomposition pyramidale du filtre bilatéral

Résumé:

Mots clefs:

Abstract:

Keywords:

Encadrants
Moncef HIDANE
moncef.hidane@insa-cvl.fr

INSA, Blois DI5 2014 - 2015