2020 Adicionales

Van estos ejercicios para aquellos que tengan ganas de pensar con papel y lápiz, y dispongan de un marco teórico previo que les permita abordar estos temas.

Y algo para implementar...

Ejercicio 1: Suavizando una discreta

Sea W discreta tomando los valores w_i con puntual p_i . Sea T independiente de W con densidad K. Definimos $S_h = W + hT$.

- 1. Obtener la función de densidad de S_h .
- 2. Considerar ahora el caso en el que W es una variable aleatoria discreta tomando los valores x_1, \ldots, x_n con probabilidad 1/n. Indicar cómo es la función de densidad de S_h en este caso.
- 3. Implemente la función suavizado(t, datos, h) que tenga por input un valor t, un conjunto de datos x_1, \ldots, x_n un valor de h y devuelva el valor de la densidad de S_h evaluada en t, siendo que $T \sim \mathcal{N}(0,1)$.
- 4. Utilizar los datos de altura estudiados en el curso y graficar la función suavizado implementada en el item anterior, con diferentes posibles valores de h. Comparar con el correspondiente histograma. Repita utilizando ahora las alturas de hombres y las alturas de mujeres.
- 5. Considerando las distribuciones notmales utilizadas para modelar las alguras de hombres y mujeres, proponga una nueva curva para modelar el conjunto de todas las alturas juntas.
- 6. Comparar visualmente los gráficos obtenidos en los items 4 y 5.

Ejercicio 2: Estimación no paramétrica de la densidad Sean $(X_i)_{i\geq 1}$ i.i.d., con función de densidad f. Sea

$$\widehat{f}_n(t) = \frac{1}{nh} \sum_{i=1}^n K\left(\frac{t - X_i}{h}\right)$$

- 1. Sea K la densidad de $U \sim \mathcal{U}(-1,1)$
 - (a) Calcule $\mathbb{E}(\widehat{f}_n(t))$
 - (b) Calcule $\mathbb{V}(\widehat{f}_n(t))$
 - (c) Estudie el comportamiento asintótico de $\widehat{f}_n(t)$, indicando condiciones para n y h y otros supuestos requeridos.

2.	Procure reproducir los resultados obtenidos en los items anteriores considerando ahora una densidad K acotada. Incluya los supuestos necesarios para caracterizar el comportamiento asintótico de $\hat{f}_n(t)$