Decision in multilabel and label ranking settings: some issues

Sebastien Destercke

Heuristic and Diagnosis for Complex Systems (HEUDIASYC) laboratory, Complegne, France

WPMSIIP

Outline

Basic issues

Decision in Multilabel

Decision in label ranking

The basic issue

- IP decision rule in classification with 0/1 losses well-studied
- When looking for more complex framework, problems arise:
 - number of comparisons can explode
 - ▶ 0/1 loss not the only natural one

This talk presents preliminary ideas about these issues

Classical classification

Goal: predict class $y \in \mathcal{W}$ for new instance x

<i>X</i> ₁	X_2	<i>X</i> ₃	X_4	<i>W</i> ₁	W ₂	W ₃	<i>W</i> ₄
107.1	25	Blue	60	1	0	0	0
-50	10	Red	40	0	1	0	0
200.6	30	Blue	58	1	0	0	0
107.1	5	Green	53	0	0	1	0
30	15	Red	62	0	0	0	1
200.4	5	Red	42	?	?	?	?

Multilabel classification

Goal: predict subset $y \in 2^{\mathcal{W}}$ of relevant labels for new instance x

<i>X</i> ₁	X_2	<i>X</i> ₃	X_4	<i>W</i> ₁	W ₂	W ₃	<i>W</i> ₄
107.1	25	Blue	60	1	0	1	0
-50	10	Red	40	0	1	0	0
200.6	30	Blue	58	1	0	1	1
107.1	5	Green	53	0	1	1	0
30	15	Red	62	1	1	0	1
200.4	5	Red	42	?	?	?	?

Multilabel classification

Goal: predict ranking/permutation/order $y \in \mathcal{L}(\mathcal{W})$ of labels for new instance x

<i>X</i> ₁	X_2	<i>X</i> ₃	X_4	<i>W</i> ₁	W ₂	W 3	W ₄
107.1	25	Blue	60	4	3	1	2
-50	10	Red	40	1	3	2	4
200.6	30	Blue	58	4	1	2	3
107.1	5	Green	53	1	2	3	4
30	15	Red	62	2	3	1	4
200.4	5	Red	42	?	?	?	?

Why using IP in such problems?

- data (more) often incomplete (e.g., partial rankings, pairwise comparisons)
- accurate predictions more difficult to do → interest of making partial (but accurate) ones

Some notations

- A set of $W = \{w_1, \dots, w_k\}$ of k labels
- A space \mathcal{Y} of predictions (built from \mathcal{W})
- Convex set \mathcal{P} over \mathcal{Y} (learned from data for a new instance)
- Loss function $L: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ with

$$L(\hat{y}, y)$$

loss of predicting \hat{y} if y true value

Decision problem

- ullet We consider the maximality criterion ${\mathcal M}$
- Under this criterion, prediction $\hat{y} \ge_{\mathcal{M}} \hat{y}'$ iff

$$\underline{\underline{E}}(L(\hat{y}',\cdot)-L(\hat{y},\cdot))=\inf_{P\in\mathcal{P}}\underline{E}(L(\hat{y}',\cdot)-L(\hat{y},\cdot))\geq 0$$

 $\geq_{\mathcal{M}}$ usually partial order over \mathcal{Y}

Decision set

$$D = \{ y \in \mathcal{Y} | \not\exists y' s.t. y' \geq_{\mathcal{M}} y \}$$

maximal elements of $\geq_{\mathcal{M}}$

Decision in classification case

- Space $\mathcal{Y} = \mathcal{W}$
- "classical" 0/1 loss function $L(\hat{y}, y) = \mathbf{1}_{(\hat{y} \neq y)}$
- In this case

$$\underline{\underline{E}}(L(\hat{y}',\cdot) - L(\hat{y},\cdot)) > 0$$

$$\Leftrightarrow$$

$$\underline{\underline{E}}(\mathbf{1}_{(y)} - \mathbf{1}_{(y')}) = \inf(P(\{y\}) - P(\{y'\})) > 0$$

$$\Leftrightarrow$$

$$\inf(P(\{y\})/P(\{y'\})) > 1$$

• k^2 computations/comparisons at most

Outline

Basic issues

Decision in Multilabel

Decision in label ranking

Decision in multilabel: 0/1 loss

- Space $\mathcal{Y} = 2^{\mathcal{W}}$
- 0/1 loss function $L_{0/1}(\hat{y}, y) = \mathbf{1}_{(\hat{y} \neq y)}$
- We still have $\hat{y} \geq_{\mathcal{M}} \hat{y}'$ iff

$$\inf(P(\{y\})/P(\{y'\})) > 1$$

- Getting decision $D_{0/1}$ requires 2^{2k} computations/comparisons at most!
 - ▶ $n = 10 \rightarrow 10^6$ comparisons
 - ▶ $n = 15 \rightarrow 10^9$ comparisons
- Can we derive $D_{0/1}$ (or a good approximation) efficiently?

If y = [0, 0, 1, 1], 0/1 loss does not distinguish between predicting

- $\hat{y} = [1, 1, 0, 0] (L_{0/1}(\hat{y}, y) = 1)$ and
- $\hat{y}' = [0, 0, 1, 0] (L_{0/1}(\hat{y}', y) = 1)$
- → unlike usual classification, other natural "basic" losses
 - Hamming loss

$$L_{H}(\hat{y}, y) = \frac{1}{k} \sum_{i=1,...,k} \mathbf{1}_{(\hat{y}_{i} \neq y_{i})}$$

with y_i the i^{th} component of y.

- $L_H(\hat{y}, y) = 1$
- $L_H(\hat{y}', y) = 1/4$
- under L_H , predicting \hat{y}' is not so bad.

Loss minimizer \hat{y} when $\mathcal{P} = P$

- $\hat{y}_i = 1$ if marginal $P(y_i = 1) > 0.5$
- $\hat{y}_i = 0$ else
- ⇒ easy to compute

Can we obtain something similar to derive D_H with imprecise \mathcal{P} ?

Consider two decisions \hat{y} and $\hat{y'}$ such that

- for a given i, $\hat{y}_i = 1 \neq \hat{y}'_i = 0$
- $\hat{y}_j = \hat{y}'_i$ for $j \neq i$

then we can show

•
$$\underline{P}(y_i = 1) > 0.5 \Rightarrow \underline{E}(L_H(\hat{y}', \cdot) - L_H(\hat{y}, \cdot)) > 0$$

•
$$\underline{P}(y_i = 0) > 0.5 \Rightarrow \underline{E}(L_H(\hat{y}, \cdot) - L_H(\hat{y}', \cdot)) > 0$$

this means that the partial prediction \hat{Y} such that

•
$$\hat{Y}_i = 1$$
 if $\underline{P}(y_i = 1) > 0.5$

•
$$\hat{Y}_i = 0$$
 if $\underline{P}(y_i = 0) > 0.5$

•
$$\hat{Y}_i \in \{0, 1\}$$
 else

is such that $D_H \subseteq \hat{Y}$, with inclusion possibly strict \Rightarrow easy outer-approximation (requires 2k computation)

A short intuition of the result

У	$L_H(110,\cdot)$	$L_H(110,\cdot)$	\bigcirc
000	2	1	1
001	3	2	1
010	1	2	-1
100	1	0	1
011	2	3	-1
101	2	1	1
110	0	1	-1
111	1	2	-1

- 2-valued gamble
- value depends on the changing label

The prediction is an order relation \succ over labels w_1, \ldots, w_k . Ranking loss is

$$L_{R}(\hat{y}, y) = \frac{1}{|y_{i} = 1| \cdot |y_{i} = 0|} \sum_{y_{i} = 1, y_{k} = 0} \mathbf{1}_{((w_{k}, w_{i}) \in \succ)}$$

- $|y_i = 1|$ number of relevant labels
- $|y_i = 0|$ number of irrelevant labels
- $(w_k, w_i) \in \succ \text{ means } w_k \succ w_i$

⇒ loss assumes prediction done in another space (orders)!

If
$$P = P$$
, loss minimizer given by $w_k > w_i$ if $P(y_k = 1) \ge P(y_i = 1)$

If \mathcal{P} , study what happens if $w_k \succ w_i$ when $\underline{P}(y_k = 1) \geq \overline{P}(y_i = 1)$? Need to consider partial orders. How to (easily) derive D_R ?

Outline

Basic issues

Decision in Multilabel

Decision in label ranking

Label ranking: introduction

- Space is set of permutations $\mathcal{Y} = \mathcal{L}(\mathcal{W})$
- 0/1 loss function $L_{0/1}(\hat{y}, y) = \mathbf{1}_{(\hat{y} \neq y)}$
- We still have $\hat{y} \geq_{\mathcal{M}} \hat{y}'$ iff

$$\inf(P(\{y\})/P(\{y'\})) > 1$$

- Getting decision D_{0/1} requires k!² computations/comparisons at most!
 - ▶ $n = 10 \rightarrow 10^{13}$ comparisons
 - ▶ $n = 15 \rightarrow 10^{24}$ comparisons
- Can we derive $D_{0/1}$ (or a good approximation) efficiently?

Label ranking: measuring accuracy

Many possible measures

• Kendall's L_k :

$$L_k(\hat{y},y) = \frac{C-D}{k(k-1)/2}$$

with $C = |(w_i, w_j) \in y \land \hat{y}|$ (concording pairs) and $D = |(w_i, w_j) \in (y \land \neg \hat{y}) \lor (\neg y \land \hat{y})|$ (discording pairs)

Spearman rank L_s:

$$L_s(\hat{y}, y) = 1 - \frac{6D(\hat{y}, y)}{k(k^2 - 1)}$$

where $D(\hat{y}, y) = \sum_{i=1,...,k} (\hat{y}(w_i) - y(w_i))^2$ with $y(w_i)$ rank of w_i

Accuracy: example

$$y=w_1\leq w_2\leq w_3$$

$$\hat{y} = w_1 \le w_3 \le w_2$$

- $A_{0/1} = 0$
- $\tau = 1/3$

$$\hat{y} = w_3 \le w_2 \le w_1$$

- $A_{0/1} = 0$
- $\tau = -1$

Reduce the problem: pairwise decomposition

Use marginal information $P(\{w_i \ge w_j\})$ to infer ranking.

One way: $S(w_i) = \sum_{j=1}^k P(\{w_i \ge w_j\})$ and order according to S (always gives an ordering without cycles)

- \Rightarrow minimize Spearman L_s loss if estimates $P(\{w_i \geq w_j\})$ are perfect
 - +: make the problem tractable (n^2 item of info vs n!)
 - ullet -: loss of information compared to complete space ${\cal Y}$

Pairwise comparison: the precise case

$$\geq$$
 w_1 w_2 w_3 w_4 \sum S w_1 0 0.3 0.4 0.2 0.9 w_2 0.7 0 0.6 0.3 1.6 w_3 0.6 0.4 0 0.4 1.4 w_4 0.8 0.7 0.6 0 2.1

Prediction: $w_1 \leq w_3 \leq w_2 \leq w_4$

Pairwise comparison: the imprecise case

$$\geq$$
 w_1 w_2 w_3 w_4 \sum S w_1 0 [0.2,0.4] [0.3,0.5] [0.1,0.3] [0.6,1.2] w_2 [0.6,0.8] 0 [0.5,0.7] [0.2,0.4] [1.3,1.9] w_3 [0.5,0.7] [0.3,0.5] 0 [0.3,0.5] [1.1,1.7] w_4 [0.7,0.9] [0.6,0.8] [0.5,0.7] 0 [1.8,2.4]

Prediction: $w_1 \le w_4$ and $w_1 \le w_2$

 \Rightarrow provides partial prediction, related to \mathcal{D}_s , the maximal set under Spearman loss? the same way as Hamming in multilabel?

Reduce the problem: use parametric models

Plackett-Luce model order object iteratively (first, second, ...)

 v_{w_i} : "probability" of w_i first in a race with $w_i, w_{i+1} \dots w_k$

Probability w_1 first: $\frac{v_{w_1}}{\sum_{j=1}^k v_{w_j}}$

Probability w_2 second= being first among $w_2 \dots w_k$

$$P(y) = \prod_{i=1}^{m} \frac{v_{w_i}}{v_{w_i} + v_{w_{i+1}} + \ldots + v_{w_k}}$$

 \Rightarrow if precise model, loss minimizer same for $L_{0/1}$, L_s , L_k .

Reduce the problem: use parametric models

Assume parameters v_{w_i} known to lie in $[\underline{v}_{w_i}, \overline{v}_{w_i}]$ define \mathcal{P} if \hat{y} and \hat{y}' such that only w_i, w_j swapped between the two $P(\hat{y})/P(\hat{y}')$ only depends on $[\underline{v}_{w_i}, \overline{v}_{w_i}], [\underline{v}_{w_j}, \overline{v}_{w_j}]$ (thanks Alessandro!) Easy to obtain partial order outer-approximating $D_{0/1}$

$$w_i \succ w_j \text{ if } \underline{v}_{w_i} > \overline{v}_{w_j}$$

Questions:

- is it equal to $D_{0/1}$?
- does loss matter when consider imprecise model?
- how to learn imprecise $[\underline{v}_{w_i}, \overline{v}_{w_i}]$?

Conclusions

- extracting maximal sets of solutions for structured data hard!
- need for efficient (approximate) solution → results from precise case can help (sometimes)
- yet other interesting problems:
 - ordinal classification
 - graded multilabel classification
 - predicting graphs (semantic trees, relational graphs, ...)