Elements of Algebra I: Homework #3

Due on January 31st, 2017

Professor Deepam Patel Section 161

Yao Xiao

Problem 1

1)

- 1. Not commutative, when x = 1 y = 0, x * y = 1 y * x = 0
- 2. Not associative, when

$$(x + 2y + xy) + 2z + (x + 2y + xy)z = x + 2y + xy + 2z + xz + 2yz + xyz$$

 $x + 2(y + 2z + yz) + x(y + 2z + yz) = x + 2y + z4 + 2yz + xy + 2xz + xyz$

- 3. There's no identity due to $0^*y \neq x^*0$ and $2y \neq y$
- 4. There's no inverse due to 3

2)

- 1. It's commutative, since when x > y |x y| = x y |y x| = -(y x) = x y when y > x |y x| = y x |x y| = -(x y) = y x
- 2. It's not associative, when x=2,y=1,z=1

$$||2-1|-1|=0$$

while

$$|2 - |1 - 1|| = 2$$

- 3. There's no identity since when x < 0, the result must be positive so there would be no e satisfied
- 4. There's no inverse due to 3

3)

- 1. It's commutative since maxx, y = maxy, x
- 2. It's associative since max(x, max(y, z)) = max(x, y, z) = max(max(x, y), z)
- 3. There's no identity, If $e \in \mathbb{R}$ were an identity, then we can choose an integer x < e and for this integer and we could get $max(x,e) = e \neq x$. So there's no identity
- 4. There's no inverse due to 3

Problem 2

$$g \in G$$

$$e = g^{-1} * g$$

$$(g^{-1})^{-1} * e = (g^{-1})^{-1} * (g^{-1} * g)$$

$$= ((g^{-1})^{-1} * g^{-1}) * g)$$

Since $g^{-1} * g = e$ Let $g' = g^{-1}$ $g'^{-1} * g' = e$ So the formula above becomes

$$(g^{-1})^{-1} * e = (e) * g)$$

 $(g^{-1})^{-1} = g$

In order to show $(gh)^{-1} = h^{-1}g^{-1}$ We just need to show the right hand side is the inverse of gh.

$$gh(h^{-1}g^{-1}) = g(h^{-1}h)g^{-1}$$

= geg^{-1}
= gg^{-1}

So $(h^{-1}g^{-1})$ is the inverse of gh, as a result, $gh^{-1}=h^{-1}g^{-1}$

Problem 3

Using the theory of Problem 2, we could get

$$g^{-1}h^{-1} = (hg)^{-1}$$

= $(gh)^{-1}$
= $h^{-1}g^{-1}$

So its inverse commutes as well.

Problem 4

By Problem 2, we have

$$(ab)^{-1} = b^{-1}a^{-1} = a^{-1}b^{-1}$$

If it commutes So we could get

$$(ab)^n = ((ab)^{-1})^{-n} = (a^{-1}b^{-1})^{-n} = a^nb^n$$

Problem 5

1. Closure. By the definition, If $x, y \in G$

$$\exists x^{-1}, y^{-1} \in S$$

From problem 2, we know $y^{-1} * x^{-1} = (xy)^{-1}$. If xy has an inverse, so it must be in G. We proved that $x * y \in G$

- 2. Associative, since G is a subset of S and S , it must hold
- 3. Identity, since $e \in S$, e has an inverse e, $e \in G$ must hold
- 4. Inverse, let $x \in G$, there must be an inverse $x^{-1} \in S$ since $x \in S$. We know that $(x^{-1})^{-1} = x$ and $x \in G$. There must be an element $x^{-1} \in G$

Problem 6

	id	r1	r2	r3	f	fr	fr2	fr3
id	id	r1	r2	r3	f	fr	fr2	fr3
r1	r1	r2	r3	id	fr	fr2	fr3	f
r2	r2	r3	id	r1	fr2	fr3	f	fr
r3	r3	id	r1	r2	fr3	f	fr	fr2
f	f	fr3	fr2	fr	id	r3	r2	r1
fr	fr	f	fr3	fr2	r1	id	r3	r2
fr2	fr2	fr	f	fr3	r2	r1	id	r3
fr3	fr3	fr2	fr	f	r3	r2	r1	id

Problem 7

We assume set \mathbb{Z}_n , which 2 has an inverse. So $\exists k, l \in \mathbb{Z}_n$ such that 2k+1=nl so 2k=nl-1, nl-1 is even, nl must be odd, which means n and l must be odd. n is odd.

Problem 8

(12)(13) doesn't commute. (12)(13)=(132). (13)(12)=(123)