Fázisátalakulások

Klasszikus fizika laboratórium, Csütörtöki csoport

Márton Tamás

2017.Szeptember 28

Bevezetés

A mérés során egy ólom minta fáziátalakulását vizsgáltam. A mérést két szakaszra bonta végeztem, a különböző szakaszokban különböző sebességgel fűtöttem a mintát. A mérés során a fázisátalakulásokról készült grafikonokat a mellékleteknél találhatók.

I. Elméleti áttekintés

A mérés kiértékeléséhez szükség van néhány képeletre, amit a mérési jegyzőkönyvből emeltem át, utána a mérés elméleti hátterét fogom bemutatni

A mintánkat egy kályhába helyezve, olvadási hőmérséklet fölé fütöm, hogy az olvadási és a dermedési folyamatot is meg tudjam figyelni. A mintám ólom volt, így a fázisátalakulás nagyjából 330°C foknál ment végbe. A számítások során a rendszert egytest rendszerként viselkedik így érvényes rá a Newton-féle lehűlési törvény:

$$\frac{dQ}{dt} = -h(T - T_k)$$

Ahol T_k a környezet hőmérséklete, T pedig a mintatartóé, h pedig a hőátadási együttható. A mérés során a hőmérsékletet lineárisan változtatjuk.

$$T_k = T_0 + t/\alpha$$

Hűlés során α természetesen negatív. A Newton-törvényt integrálva idő szerint kapjuk, hogy a felvett hő, arányos a hőmérsékletkülönbség, és az alapvonal által bezárt görbe A területével.

$$L = \frac{Q}{m} = \frac{hA}{m}$$

A hőátadási tényezőhöz tartozó helyes hőmérsékletet $T^{\#}$ -val jelölöm és a jegyzetben megadott eljárással határoztam meg. A mérés 4 részre különül:

II. Mérési eredmények, kiértékelés

Az ólom minta tömege precíziós mérleggel mérve: $m=1.4898\pm0.00005~g$ -nak adódott. Az alábbi táblázatban az egyes mérési részekhez (gyors fűtés, gyors hűtés, lassú fűtés, lassú hűtés) adatait közlöm, valamint A értékeit a mellékletekben közölt függvények különbsége ábráknál látható, lineáristól való eltérésgörbe alatti terület integrálásával adjuk meg:

-	$T_{olv.}$ [°C]	$T_h[^{\circ}C]$	$A[^{\circ}C*perc]$
Fast heating	329.6 ± 0.5	340.58 ± 0.5	32.7 ± 0.1
Fast cooling	329.1 ± 0.5	317.59 ± 0.5	35.4 ± 0.1
Slow heating	331.2 ± 0.5	339.33 ± 0.5	32.4 ± 0.1
Slow cooling	328.4 ± 0.5	318.00 ± 0.5	34.4 ± 0.1

Adott T_h hőmérséklethez tartozó hőátadási tényezőt az alábbi, mérés során mellékelt grafikon alapján lehet meghatározni:

Így a következő táblázatban az értékek leolvashatóak:

-	$T_h[^{\circ}C]$	h [J/Kp]
Fast heating	340.58 ± 0.5	1.10 ± 0.05
Fast cooling	317.59 ± 0.5	0.93 ± 0.05
Slow heating	339.33 ± 0.5	0.98 ± 0.05
Slow cooling	318.00 ± 0.5	0.93 ± 0.05

Így már az összes mérésrészre számolhatok olvadáshőt. Ennek hibájának számításához a következő képletet használom majd:

$$\delta L = \sqrt{(\delta A)^2 + (\delta h)^2 + (\delta m)^2} m = 0.002558$$

Experiment	L [J/kg]
Fast heating	24144.18 ± 61.77
Fast cooling	22098.27 ± 56.53
Slow heating	21312.93 ± 54.52
Slow cooling	21474.02 ± 54.76

Az olvadáshő tehát:

$$L_{olv.} = 22257.35 \pm 56.93 \ \frac{J}{kg}$$

III. Összegzés

A mérés során nagy pontossággal meghatároztam az olvadáshő értékét.

A mérés végeredménye az irodalmi értéktől eltér, ami adódhat az illesztések pontatlanságából, valamint abból, hogy a hűlés grafikonjánál nem a fázisátalakulás elötti szakaszra illesztettem a segédvonalat, ugyan ideális esetben az átalakulás utáni görbe a válltozás elötti egyenes meghosszabbítása, de a mérésünk során látható, hogy eltérések vannak a két hőmérséklet között. Emiatt a két segédvonal metszéspontja nem a legmegfelelőbb értéket adta, valamint a hőátadási tényezőhöz tartoző hőmérséklet leolvasásánál is eltérést mutathat.

IV. Melléklet

