Introducción a Logica formal

Prof. Ernesto Rodriguez

Universidad del Itsmo erodriguez@unis.edu.gt

La Situación:

- Un sistema tiene una lista de requisitos.
- El sistema debe cumplir con reglas, estas se pueden expresar como invariantes.
- Cada vez que el sistema cambia su estado, se debe asegurar que las invariantes se cumplan.
- Ejemplos:
 - Un usuario transfiere fondos a otro usuario.
 - El saldo de todos los usuarios es mayor o igual a cero.
 - El saldo de todos los usuarios es la suma de las transacciones.
 - Un tren debe ser colocado en el riel que lo lleve a su destino.
 - Jamas deben haber dos trenes en la misma posición.
 - El tren debe alcanzar su destino en tiempo finito.

La Situación:

- El sistema puede tener cientos de requisitos e invariantes.
- En el sistema trabajan muchas personas.
- Es altamente costoso verificar que los requisitos e invariantes se cúmplen cada vez que se actualiza el codigo.
- El sistema esta distribuido.
- El sistema evoluciona constantemente.
- El lenguaje natural es ambigüo

Incluso si el sistema esta bien definido:

- No es possible correr el sistema en todos los casos posibles (no habria necesidad del sistema)
- El halting problemño es decidible.
- Las propiedades de comportamiento de un programa no son decidibles: Teorema de Rice.
- No importa que metodo utilizemos para validar el sistema, el método debe hacerlo en tiempo finito.

¿Podemos hacer algo?

Verificación automatizada

- Se ejecutan continuamente.
- Existen varios metodos:
 - Pruebas:
 - Casos individuales
 - Casos aleatoreos
 - Casos construidos inductivamente
 - Verificación formal:
 - Analisis de flujo
 - Theorem provers: Z3, Coq
 - Lenguajes de modelación (Promela)
 - Sistemas de tipos:
 - Sistemas de primer orden
 - Sistemas de orden superior
 - Sistemas de categorias superiores (Higher kinds)
- Pueden validar numerosas condiciones en poco tiempo.

Métodos formales vs. Pruebas automatizadas

Metodos formales	Pruebas automatizadas
Verifican todos los casos	Verifican numero finito de casos
No decidibles	Decidibles
Dificiles de implementar	Faciles de implementar
Alto costo a cambios en el sis-	Mediano costo a cambios en el
tema	sistema

La base de todo metod de verificación es: Logica formal

Logica Formal: Ejemplos

- Lenguaje formal para describir objetos
- Consiste de:
 - Predicados
 - Igualdad
 - Negación
 - Operadores boleanos
 - Cuantificadores
- Ejemplos:
 - Representación de cuentas
 - Representación de un banco
 - Abonar cuenta

Sematicas operacionales

- Se utilizan para describir el comportamiento de un sistema.
- Describen como se transforma el estado de un sistema.
- Ejemplos:
 - Transferir fondos
 - Abonar cuenta
 - Retirar fondos