Министерство науки и высшего образования Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ "МЭИ"

Институт информационных и вычислительных технологий

Кафедра математического и компьютерного моделирования

Отчёт по лабораторной работе №1 "Предельные теоремы"

Студент: Симаков А.М.

Преподаватель: Шевченко О.В.

Цель работы: статистически пронаблюдать существо основных предельных теорем.

1 Теорема Бернулли

Если проводится n независимых испытаний случайного события A, такого что P(A) = p, то относительная частота $\frac{\mu}{n}$ появления события A (μ - число появлений A) при большом n приближенно равна вероятности p:

$$\frac{\mu}{n} \approx p$$

Будем писать $\frac{\mu}{n} \to p$ при $n \to \infty$, если

$$\forall \varepsilon > 0 \quad P\left\{ \left| \frac{\mu}{n} - p \right| < \varepsilon \right\} \to 1$$
 при $n \to \infty$

Заметим, что теорема не говорит, что соотношение $\left|\frac{\mu}{n}-p\right|<\varepsilon$ достоверно, однако если n большое, то вероятность его выполнения близка к 1.

Пример. Бросание симметричной монеты

Создадим вектор длины n=1850, заполним его 0 или 1 случайным образом при помощи команды =trunc(rand(1)+0.5) (0 - решка, 1 - орёл).

Определим число появлений орла и его относительную частоту появления в серии из 170 независимых испытаний. Орёл появился 100 раз, относительная частота равна 0.588 $\implies |0.588 - 0.5| = 0.088 < 0.1$

Определим число появлений орла и его относительную частоту появления в серии из 1850 независимых испытаний. Орёл появился 939 раз, относительная частота равна 0.508 $\implies |0.508 - 0.5| = 0.008 < 0.03$

	•
SUM case 1-170	100,000
MEAN case 1-170	,588
SUM case 1-1850	939,000
MEAN case 1-1850	,508

2 Закон больших чисел в форме Чебышёва

Говорят, что $\{\xi_i\}_{i=1}^n$ - последовательность случайных величин подчиняется закону больших чисел, если

$$\forall \varepsilon > 0 \quad P\left\{ \left| \frac{1}{n} \sum_{i=1}^n \xi_i - \frac{1}{n} \sum_{i=1}^n M \xi_i \right| < \varepsilon \right\} \to 1$$
 при $n \to \infty$

Одно из утверждений ЗБЧ состоит в том, что при $M\xi_i=a$ и достаточно большом n $\frac{1}{n}\sum_{i=1}^n \xi_i$ приблизительно равно a:

$$\frac{1}{n} \sum_{i=1}^{n} \xi_i \approx a$$

Будем писать $\frac{1}{n}\sum_{i=1}^n \xi_i \to a$ при $n \to \infty$, если

$$\forall \varepsilon > 0 \quad P\left\{ \left| \frac{1}{n} \sum_{i=1}^{n} \xi_i - a \right| < \varepsilon \right\} \to 1 \text{ при } n \to \infty \quad (1)$$

Теорема Чебышёва

Если $\{\xi_i\}_{i=1}^n$ - последовательность попарно независимых случайных величин, имеющих конечные дисперсии такие, что

$$\exists C : \forall i \in [1, n] \cap \mathbb{N} \quad D\xi_i < C,$$

то ЗБЧ выполняется.

Теорема Маркова

Если $\{\xi_i\}_{i=1}^n$ - последовательность как угодно зависимых случайных величин такова, что

$$\frac{1}{n^2}D\sum_{i=1}^n \xi_i \to 0 \text{ при } n \to \infty,$$

то ЗБЧ выполняется.

Теорема Хинчина

Если $\{\xi_i\}_{i=1}^n$ - последовательность независимых случайных величин с одинаковым распределением и существует математическое ожидание, то ЗБЧ выполнятеся.

Пример. Испытание практически достоверного события.

Проверим выполнение соотношения (1) для экспоненциально распределённых слагаемых с $M\xi = 1$. Принять $\varepsilon_1 = 0.2$, $\varepsilon_2 = 0.05$. При произвольном ε и выборе n из условия $n \geq \frac{9D\xi}{\varepsilon^2}$ (2) выполняется с p = 0.997. Если же $n \geq \frac{5.4D\xi}{\varepsilon^2}$, то p = 0.98. Второе нас устраивает в качестве достоверного события.

$$\varepsilon_1 = 0.2 \implies n_1 = 135; \quad \varepsilon_2 = 0.05 \implies n_2 = 2160; \quad (M\xi = D\xi = 1)$$

Для заполнения вектора используем формулу =-Log(rnd(1))

Среднее для 135 испытаний равно $0.974 \implies |1-0.974| = 0.026 < 0.2$ Среднее для 2160 испытаний равно $0.631 \implies |1-1.012| = 0.012 < 0.05$

Как видно, все условия выполняются.

MEAN	case	1-135	,974
MEAN	case	1-2160	1,012

Пример. Невыполнение закона больших чисел.

Рассмотрим случайную величину, распределённую по закону Коши с плотностью

$$p(x) = \frac{1}{\pi} \frac{1}{1 + x^2}$$

У данного распределения нет ни математического ожидания, ни дисперсии \implies не выполнено условие теоремы Чебышева.

Сделаем 7 выборок объёма n=1000 с распределением Коши по формуле $=VCauchy(rnd(1);\ 0;\ 1)$ и определим по каждой среднее значение.

	4,735	,083	4,508	,533	2,379	-1,706	-,249
MEAN case 1-1000	,173	-1,103	621940E7	,857	2,020	-,026	621940E7
							₹
∢							•

Видим, что хотя бы в одной выборке модуль среднего превосходит 1(например, выборка 2).

Рассмотрим график 2 выборки из распределения Коши. Заметим, что есть редкие наблюдения, отстоящие очень далеко от центра рассеивания - точки 0.

Пример. Сжатие распределения с ростом числа слагаемых.

ЗБЧ в форме Чебышёва означает, что распределение случайной величины $\bar{\xi}_n = \frac{1}{n} \sum_{i=1}^n \xi_i$ сжимается с ростом n. Если $M\xi_i = a$, то сжатие происходит в окрестности точки a.

а) Графики плотностей

Сжатие можно, если распределение $\bar{\xi}_n$ легко выписывается. Пусть $\xi_i \sim \mathcal{N}(a, \sigma^2)$, тогда получаем $\bar{\xi}_n \sim \mathcal{N}(a, \sigma^2/n)$. Построим графики для n=1,4 и $\sigma=1,a=1$.

б)Разброс данных

Сгенерируем 20 выборок размером 640 из распределения $\mathcal{R}[0,1]$. По всем выборкам для n=10,40,160,640 определим средние, а затем вычислим среднеквадратичное отклонение для них.

Средние:

												•								
MEAN case 1-10	,393	,399	,594	,602	,443	,440	,515	,388	,483	,521	,324	,514	,513	,642	,424	,380	,533	,603	,413	,486
MEAN case 1-40	,465	,476	,529	,482	,521	,429	,541	,441	, 489	,493	,415	,586	,568	,545	,475	,469	,460	,509	,448	,514
MEAN case 1-160	,502	,488	,525	,531	,471	,503	,501	,498	,509	,520	,471	,521	,512	,507	,480	,515	,496	, 495	,453	,528
MEAN case 1-640	,487	,498	,511	, 495	, 499	,502	,506	,500	,503	,527	,507	,504	,507	,506	,492	,522	,492	,506	,487	,500
•																				

Отклонения, минимальное и максимальное значения соответственно:

,087				,324				,642			
	,046				,415				,586		
		,021				,453				,531	
			,010				,487				,527

Видно, что распределение сжимается по мере увеличения n. Изобразим сжатие на графике:

3 Усиленный закон больших чисел

Говорят, что последовательность случайных величин $\{\xi_i\}_{i=1}^n$ подчиняется усиленному ЗБЧ, если

$$P\left\{\lim_{n\to\infty} \left(\frac{1}{n}\sum_{i=1}^{n} \xi_i - \frac{1}{n}\sum_{i=1}^{n} M\xi_i\right) = 0\right\} = 1 \qquad (2)$$

Или же, если $M\xi_i = a$

$$P\left\{\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n\xi_i=a\right\}=1$$

Теорема Бореля

Относительная частота $f_n = \frac{\mu_n}{n}$ появления случайного события стремится к истинной вероятности p с вероятностью 1 при росте n независимых испытаний.

Теорема Колмогорова (Достаточное условие выполнения (2))

Если последовательность взаимно независимых случайных величин $\{\xi_i\}$ подчиняется условию

$$\frac{1}{n^2} \sum_{n=0}^{\infty} D\xi_n < \infty,$$

то она подчиняется усиленному ЗБЧ.

Теорема

Усиленный ЗБЧ применим к последовательности независимых одинаково распределённых случайных величин тогда и только тогда, когда существует математическое ожидание.

Пример. Эксперименты с монетой.

Сгенерируем 3 последовательности по 500 бросаний монеты в первые 3 столбца таблицы $6\nu \times 500c$. Назовём столбцы $x_1, x_2, x_3, f_1, f_2, f_3$, где

$$f_1 = x_1, \quad f_n = \frac{(n-1)f_{n-1} + x_n}{n}, \quad n \in [2, N] \cap \mathbb{N}$$

Рассмотрим на графиках зависимость $f_n(n)$ в различных диапазонах: от 1 до 25, до 50, до 100, до 500. Приведены графики для 50 и 500, соответственно.

Частота выпадения герба f_n с ростом n приближается к вероятности выпадения герба p=0.5.

Пример. Эксперименты со случайными числами $\mathcal{R}[0,1]$.

Действия аналогичны предыдущему пункту. Убедимся в том, что последовательность среднеарифметических стремится к 0.5 - математическому ожиданию. Приведу графики для случаев n=50 и n=500.

Пример. Невыполнение закона.

Рассмотрим $\{\xi_i\}$, распределённых по закону Коши. Сделаем 3 выборки. Учтём, что $\tan \pi \xi$ имеет распределение Коши, если $\xi \sim \mathcal{R}[0,1]$. Выполним преобразования и повторим действия из предыдущих примеров.

Видим, что есть скачки, где значения далеки от 0 - центра распределения.

4 Теорема Гливенко - основная теорема статистики.

 $\{x_i\}_{i=1}^n$ - выборка из n независимых наблюдений над случайной величиной X с функцией распределения F(x). Получим вариационный ряд $x_1 \leq x_2 \leq ... \leq x_n$. Определим функцию эмпирического распределения

$$F_n^*(x) = F_n^*(x; x_1, x_2, ..., x_n) = \frac{\mu_n(x)}{n},$$

где $\mu_n(x)$ - число тех наблюдений, для которых $x_i < x$. Ясно, что $F_n^*(x)$ - ступенчатая функция; это функция распределения, которое получается, если значениям $x_1, ..., x_n$ присвоить вероятности, равные $\frac{1}{n}$. $F_n^*(x)$ - случайная, так как зависит от $x_1, ..., x_n$.

Теорема Гливенко

$$\sup_x |F_n(x) - F(x)| \to 0$$
 при $n \to \infty$ с вероятностью 1.

Пример. Наблюдение над случайной величиной, имеющей распределение $\mathcal{R}[0,1]$.

В первом столбце сделаем выборку объёма n с $\mathcal{R}[0,1]$ с сортировкой по возрастанию. Во втором столбце получим значения функции эмпирического распределения по формуле $=\nu/n$. В третьем же столбце запишем два значения: 0 и 1, чтобы построить функции теоретического распределения.

Пусть n = 10, 40, 160, 640.

Приведу полученные графики, по которым видно, что по мере увеличения n функция эмпирического распределения приближается к теоретической.

5 Центральная предельная теорема.

Рассмотрим сумму случайных величин $S_n = \sum_{i=1}^n \xi_i$. Оказывается, что при широких условиях по мере увеличения числа слагаемых эта сумма приблизительно распределена по нормальному закону

$$S_n = \sum_{i=1}^n \xi_i \sim \mathcal{N}(a = MS_n, \sigma_n^2 = DS_n)$$

Если говорить более точно, то

$$P\left\{\zeta_n \equiv \frac{\sum_{i=1}^n \xi_i - M \sum_{i=1}^n \xi_i}{\sqrt{D \sum_{i=1}^n \xi_i}} < x\right\} \to \Phi(x) \equiv \int_{-\infty}^x \frac{e^{\frac{-t^2}{2}}}{\sqrt{2\pi}} dt, \qquad n \to \infty$$
 (ЦПТ)

Нормировка состоит в вычитании математического ожидания и делении на корень из дисперсии; нормированная сумма ζ_n имеет $M\zeta_n=0, D\zeta_n=1$.

Говорят, что к $\{\xi_i\}_{i=1}^n$ применима центральная предельная теорема, если выполнятся (ЦПТ).

(ЦПТ) выполняется при различных условиях, например, при следующих:

Теорема.

Если $\{\xi_i\}_{i=1}^n$ - последовательность независимых случайных величин, причем их дисперсии равномерно ограничены с двух сторон, т.е. $0 < c1 \le D\xi_i \le c2 < \infty$, то (ЦПТ) выполняется.

Теорема*.

Если $\{\xi_i\}_{i=1}^n$ - последовательность независимых случайных величин, причем $M\xi_i=a, D\xi_i=\sigma^2$, то (ЦПТ) выполняется.

Пример. Одинаково распределенные слагаемые.

Убедимся статистически в том, что сумма нескольких случайных величин распределена приближенно по нормальному закону. Сделаем это на примере суммы $S = \sum_{k=1}^m \xi_i, m = 6$ независимых случайных величин, имеющих $\mathcal{B}(a,b)$ - бета-распределение с плотностью

$$p(x|a,b) = \frac{x^{a-1}(x-1)^{b-1}}{B(a,b)} = \frac{1}{\pi} \frac{1}{\sqrt{x(1-x)}}, \qquad B(a,b) = \int_{0}^{1} t^{a-1}(1-t)^{b-1} dt$$

Чтобы статистически оценить закон распределения для S, следует многократно промоделировать суммирование: получим $S_1, S_2, ..., S_N$ - выборку для суммы. Для неё построим гистограмму и сравним ее с нормальной плотностью. Создадим 6 выборок, имеющих $\mathcal{B}(a,b)$ с параметрами a=b=0.5, и 3 столбца, в которые запишем суммы:

$$S_2 := X_1 + X_2, \quad S_4 := S_2 + X_3 + X_4, \quad S_6 := S_4 + X_5 + X_6$$

Пример. Различно распределенные слагаемые.

Распределение суммы сходится к нормальному и в том случае, когда слагаемые распределены по различным законам. Оценим экспериментально распределение для $S = \sum_{k=1}^{6} \xi_i$, где $\xi_i \sim \mathcal{B}(a_i, b_i)$, где $a_i \in \{1, 0.5, 1, 1, 2, 2\}$, $b_i \in \{0.5, 1, 1, 2, 1, 2\}$. Приведу гистограмму.

Видно, что получается желаемый результат.

Если же добавить к $S = \sum_{k=1}^{6} \xi_i$ седьмое слагаемое, дисперсия которого существенно превышает все остальные дисперсии из суммы, то приближённая нормальность не имеет места. Пусть $\xi_7 \sim 1000 * \mathcal{B}(0.5,1)$. Приведу полученную гистограмму.

Очевидно, что приближённой нормальности нет.