DrosEU Phenotyping Effort Updates

Esra Durmaz - Envel Kerdaffrec University of Fribourg

13 June 2022

Genetic variation in Europe

- Longitudinal / latitudinal population structure
- Continent-wide selective sweeps
- Candidate genes for local climate adaptation

Collaborative phenotyping effort

17 Countries
26 Research groups
>100 Researchers

Sampling locations

9 Locations (173 isofemale lines)

- Turkey
 - collected in Yesiloz (Banu Onder)
- Portugal
 - collected in Recarei (Jorge Vieira)
- Spain
 - collected in Gimenells (Josefa Gonzalez)
- Germany
 - collected in Munich (Amanda Glaser-Schmitt)
- Austria
 - collected in Mauternbach (Andrea Betancourt)
- Ukraine
 - collected in Uman (Iryna Kozeretska)
- Denmark
 - collected in Karensminde (Mads Schou)
- Russia
 - collected in Valday (Elena Pasyukova)
- Finland
 - collected in Akaa (Maaria Kankare)

Élio Sucena, IGC

Phenotyped traits

Viability Development time Dry weight Thorax length Wing area Circadian eclosion timing **Pigmentation** Fecundity Diapause Locomotor activity Parasitoid resistance Chill-coma recovery time Cold-shock mortality Heat-shock mortality Starvation resistance Lifespan

Phenotyped traits

Viability Development time Dry weight Thorax length Wing area Circadian eclosion timing **Pigmentation** Fecundity Diapause Locomotor activity Parasitoid resistance Chill-coma recovery time Cold-shock mortality Heat-shock mortality Starvation resistance Lifespan

> 400K observations (flies)

Raw data curation

Master Sheets

Summary stats

(by trait, supervisor.PI, population)

Summary stats

(by trait, supervisor.PI, population, line)

LS2_Line

→

More data to come

Genotyping of all DrosEU isofemale lines for cosmopolitan inversions

Flatt lab

Genotyping of all DrosEU isofemale lines for Wolbachia presence / absence Sucena, Pasyukova, Kapun, Vieira and Kozeretska Labs

	Country	\$	Population	\$	Line	\$	Wolbachia 🖣	Spp 💠	
21	Portugal	GI		GI1			0 n	nel	
22	Portugal	GI		GI2			0 n	nel	
23	Portugal	GI		GI3			1 n	nel	
24	Portugal	GI		GI4			1 n	nel	
25	Portugal	GI		GI5			0 n	nel	
26	Portugal	GI		GI6		Country	Population	Wolbachi	a_Freq
27	Portugal	GI		GI7	1	Finland	AK	100	.00000
28	Portugal	GI		GI8	2	Portugal Denmark	GI KA		.66667 .00000
29	Portugal	GI		GI9	4	Austria	MA		.00000
30	Portugal	GI		GI10	5	Germany	MU	94	.73684
					- 6	Spain	RE	47	.05882
					7	Ukraine	UM	69	.23077
					8	Russia	VA	75	.00000
					9	Turkey	YE	85	.00000

Data structure is often very different between labs for a given trait

By lab linear models

Effect of **Population**

```
Trait \sim Pop + (1|Batch) + (1|Pop:Line) + (1|Pop:Line:Rep)
```

Effect of **Geography**

```
Trait ~ Latitude + (1|Pop) + (1|Pop:Line)
```


Lab	Trait	P_pop	P_lat	P_lon	P_alt
Gibert	DT_A_M	0.00411903	0.88586299	0.29072237	0.10448462
Grath	DT_A_M	0.39464922	0.77550126	0.55874592	0.55385116
Hoedjes	DT_A_M	2.33E-06	0.04847065	0.04653388	0.85491073
Schmidt	DT_A_M	0.00157514	0.9907888	0.81421063	0.76507136
Stamenkovic	DT_A_M	1.31E-06	0.42197125	0.91271177	0.87797845
Zwaan	DT_A_M	0.02641181	0.68615383	0.02272286	0.23778133
Schmidt	DT_P	0.00980389	0.30158807	0.98306566	0.75256992
Colinet	DW_F	0.0211077	0.55586596	0.36452327	0.70338226
Hoedjes	DW_F	0.06045045	0.618025	0.59666061	0.38479265
Onder	DW_F	6.17E-06	0.8937399	0.82648224	0.7108751
Colinet	DW_M	2.61E-05	0.59838127	0.30454569	0.28771321
Hoedjes	DW_M	0.75479687	0.47553285	0.43952368	0.28219758
Onder	DW_M	0.05659123	0.65639273	0.89485756	0.85942801
Billeter	Fec	0.00646079	0.03811958	0.65595049	0.34971821
Fricke	Fec	0.88401127	0.68923942	0.74909131	0.70919401
Parsch	HSM_F	4.87E-08	0.05358472	0.55013638	0.00889943
Vieira	HSM_F	4.17E-06	0.82736512	0.83791296	0.80847451
Parsch	HSM_M	4.88E-09	0.01630614	0.41022475	0.22601387
Vieira	HSM_M	0.00245386	0.25095189	0.50219194	0.69866839
Tauber	LA_AbsPhase	0.01006795	0.49832371	0.49832371	0.49832371
Tauber	LA_Activity	0.00014719	0.31475621	0.31475621	0.31475621
Tauber	LA_CircPhase	0.00545289	0.28632657	0.28632657	0.28632657
Tauber	LA_NDlog2	0.01058636	0.37389542	0.96297304	0.16536854
Tauber	LA_Period	0.02883036	0.2525985	0.2525985	0.2525985
Flatt	LS_F	1.23E-24	0.0038713	0.15128734	0.7776521
Parsch	LS_F	6.79E-09	0.09498368	0.3359701	0.45015785
Pasyukova	LS_F	0.01396514	0.31507442	0.15215752	0.27755561
Flatt	LS_M	3.02E-05	0.40399952	0.80184338	0.74218599
Parsch	LS_M	3.13E-06	0.00371864	0.12803162	0.40612978
Pasyukova	LS_M	7.30E-05	0.10035798	0.33658718	0.19604155
Abbott	Pgm_T4	1.33E-17	0.15858666	0.43734048	0.13512441
Gibert	Pgm_T4	0.01649333	0.79644136	0.01946249	0.10358836
Schmidt	Pgm_T4	0.00014264	0.4925767	0.7938205	0.52331487

96 linear models per predictor

67 models significant for Pop
14 models significant for Lat
5 significant for Lon
3 significant for Alt

Data Analyses - Meta Analysis

Using linear models fitted values and SE for Pop

Egg-to-adult Viability (6 labs)

Data Analyses - Meta Analysis

Using linear models fitted values and SE for Pop

Dev. Time Adults - Females (6 labs)

Data Analyses - Meta Analysis

Using linear models fitted values and SE for Pop

Lifespan - Males (3 labs)

Lab correlations - Pop level

Pearson correlation using Pop fitted values

Lab correlations - Pop level

Pearson correlation using Pop fitted values

Lab correlations - Pop level

Correlation Between labs Fitted pop. values

Rank Correlation Between labs Fitted pop. values

as.factor(cor_pa < 0.05)

- FALSE
- TRUE

as.factor(rank_cor_pa < 0.05)

- FALSE
- TRUE

Where is the data / do you want to contribute?

R markdown / HTML summary file

□ DrosEU_PhenotypingWG.Rmd	20220523	18 days ago
□ DrosEU_PhenotypingWG.html	20220528	13 days ago
□ DrosEU_PhenotypingWG.md	20220528	13 days ago

Github repository

https://github.com/esradm/DrosEU_PhenotypingWG

Google drive repository (Github clone) https://drive.google.com/drive/folders/1grL1srM33vUH1DfC-SMj2wwMK-54u3sv

Google Doc – Paper draft https://docs.google.com/document/d/1vyP-
SGSXVkMLqtXXn8FTf3NpYwEPAYL8OI5b8bZYxDo/edit#

Join us @ <u>droseuphenotyping.slack.com</u> https://join.slack.com/t/droseuphenotyping/shared_invite/zt-1afet8zsynAD3nJQxOi5NbFR0uaSGeA