Analize Matemática I

Felipe B. Pinto 61387 - MIEQB 5 de julho de 2021

Conteúdo

I 15/03 - Conceitos Básicos I	2	3 Sucessão Convergente	7
1 Majorante		3.1 Exemplo	
 2 Minorante	. 2 . 2 . 2	VI~26/03 - Demonstrações para sucessões	8
5 Minimo		1 Sucessão convergente \Longrightarrow Limitada . 2 Sucessão é monótona e limitada \Longrightarrow	0
7 Conjunto Limitado	. 2	convergente	8
9 Interior	. 3	VII $29/03$ - Lemas de Desigualdades	9
11 Fronteira	. 3	1 Lema $\lim_{n\to\infty} u_{(n)} \le \lim_{n\to\infty} v_{(n)} \dots \dots$	9
II $16/03$ - Conceitos Básicos II	4	2 Lema das sucessões enquadradas 2.1 Exemplo: $u_{(n)} = \sin(n)/n$	9 9
1 Conjunto Aberto		3 Lema $u_{(n)} * v_{(n)} \rightarrow 0$	9
2 Conjunto Fechado		3.1 Exemplo: $S_{(n)} = \sum_{k=1}^{n} \frac{\sqrt{k}}{n^2} \dots$	9
3 Feixe		3.2 Exercicio: $\frac{2^{n}-n}{3^{n}+1}$	9 9
III $19/03$ - Indução por igualdade	5	VIII 30/03	10
1 Exemplo	. 5	1	
IV 22/03 - Indução por Desigual-		2 Sucessão que tende para o infinito	10
dade	6	3 Indeterminações	10
1 Exemplo 1		4 Exercicios	
2 Exemple 2		IX 06/04 - Subsucessões	11
V 23/03 - Sucessões	7	1 Exemple: $u_{(n)} = (-1)^n \dots \dots$	
1 Sucessão monótona	. 7	2 Exemplo: $u_{(n)} = \sin(n \pi/4)$ 3 Subsusecção convergente	
1.1 Decrescente	. 7	4 Lema	
1.2 Crescente	. 7	5	
2 Sucessão limitada	. 7	6	11

X = 09/04 - Limites	12	1 Teorema de Bolzano	
1 Lema geral das funções enquadradas .	12	2 Teorema de Weierstrass	
1.1 Exemplo	12	3 Corolário de Bolzano e Weirestrass	
2 Lema	12	3.1 Exemplo Aplicação	
		3.2 Exemplo Aplicação	19
XI 12/04 - Sucessão de Cauchy	13	XVII 26/04 - Funções Inversas	20
1 Criterio suficiente para uma sucessão			
ser Cauchy	13	1 Exemplo	
1.1 Exemplo	13	2 Exemplo	
2 Convergencia	13	3 Exemplo	20
VII 19/04 C	1.4	4 Exemplo	20
XII 13/04 - Sucessões de Cauchy II		XVIII 27/04 - Derivadas	21
1		1 Definição	21
2	14	2 Definição Alternativa	21
2.1 Limite	14	3 Definição derivada para funções de	
2.2 Visualização gráfica do limite	14	imagens abertas	21
XIII 16/04	15		
1	15	XIX 30/04 - Regras de Derivação	22
2 Definição derivada	15	1 Derivação da Soma	22
3 Existencia de limite	15	2 Derivação do Produto	22
4 Exemplo	15	3 Derivada da Divisão	22
5 Exemplo	15	3.1 Previa	22
5.1 Usando sucessões para encontrar li-	-0	4 Derivada de Conjugada	22
mites	15	4.1 Exemplo	
6	16	4.2 Exemplo	22
		5 Tecnica de encontrar derivações	22
XIV 19/04 - Limites	17	$5.1 \ln'(x) = 1/x \dots \dots \dots \dots$	22
1 Limite notável: $\sin(x)/x$	17	5.2 $\arctan'(x) = 1/(1+x^2) \dots \dots$	22
1.1 Exemplo		5.3 $\arcsin'(x) = 1/\sqrt{1-x^2} \dots \dots$	23
1.2 Exemplo		7777 00 /07 m	
1.3 Exemplo	17	XX 03/05 - Teoremas da diferenci-	0.4
1.4 Exemplo	17	abilidade	24
2 Limite notável: $(e^x - 1)/x \dots$	17	1 Teorema de Rolle	24
		2 Teorema de Lagrange	24
XV = 20/04 - Funções continuas	18	2.1 Corolário	24
1	18	2.2 Ideia de Demonstração do teorema	
2 Continuidade	18	de Lagrange	24
2.1 Exemplo	18	WWI 17/00 D	
2.2 Exemplo	18	XXI $15/06$ - Exercícios para o	25
3 Continuidade segundo Cauchy	18	Teste	25
		Q0 - a)	25
XVI 23/04 - Continuidade: Teore-	10		
mas	19		

Formulas de Recorrência

1.
$$\int \sin^n(a\,u)\,du = -\frac{\sin^{n-1}(a\,u)\,\cos(a\,u)}{a\,n} + (n-1)/n\,\int \sin^{n-2}(a\,u)\,du$$

2.
$$\int \cos^n(a u) du = \frac{\sin(a u) \cos^{n-1}(a u)}{a n} + (n-1)/n \int \cos^{n-2}(a u) du$$

3.
$$\int \tan^n(a u) du = \frac{\tan^{n-1}(a u)}{a(n-1)} - \int \tan^{n-2}(a u) du$$

4.
$$\int \cot^n(a u) du = -\frac{\cot^{n-1}(a u)}{a(n-1)} - \int \cot^{n-2}(a u) du$$

5.
$$\int \sec^n(a u) du = \frac{\sec^{n-2}(a u) \tan(a u)}{a(n-1)} + \frac{n-2}{n-1} \int \sec^{n-2}(a u) du$$

6.
$$\int \csc^n(a \, u) \, du = -\frac{\csc^{n-2}(a \, u) \cot(a \, u)}{a \, (n-1)} + \frac{n-2}{n-1} \int \csc^{n-2}(a \, u) \, du$$

Identidades Trigonométricas

1.
$$\sin^2(x) + \cos^2(x) = 1$$

2.
$$1 + \tan^2(x) = \sec^2(x)$$

3.
$$1 + \cot^2(x) = \csc^2(x)$$

4.
$$\sin^2(x) = \frac{1 - \cos(2x)}{2}$$

5.
$$\cos^2(x) = \frac{1 + \cos(2x)}{2}$$

$$6. \sin(2x) = 2\sin(x)\cos(x)$$

7.
$$2\sin(x)\cos(y) = \sin(x-y) + \sin(x+y)$$

8.
$$2\sin(x)\sin(y) = \cos(x-y) - \cos(x+y)$$

9.
$$\cos(x) \cos(y) = \cos(x - y) + \cos(x + 1)$$

10.
$$1 \pm \sin(x) = 1 \pm \cos(\pi/2 - x)$$

Tabela de Derivadas

1.
$$(u^n)' = n u^{n-1} u'$$

2.
$$(uv)' = u'v + v'u$$

3.
$$(u/v)' = \frac{u'v - v'u}{v^2}$$

4.
$$(a^u)' = a^u \ln(a) u'$$
 $(a > 0, a \ne 1)$ 14. $\csc'(u) = -u' \csc(u) \cot(u)$

5.
$$(e^u)' = e^u u'$$

6.
$$\log_a'(u) = \frac{u'}{u} \log_a(e)$$

7.
$$\ln'(u) = \frac{1}{u}u'$$

8.
$$(u^v)' = v u^{v-1} u' + u^v \ln(u) v'$$

$$9. \sin'(u) = u' \cos(u)$$

10.
$$\cos'(u) = -u' \sin(u)$$

11.
$$\tan'(u) = u' \sec^2(u)$$

12.
$$\cot'(u) = -u' \csc^2(u)$$

13.
$$\sec'(u) = u' \sec(u) \tan(u)$$

14.
$$\csc'(u) = -u' \csc(u) \cot(u)$$

15.
$$\arcsin'(u) = u'/\sqrt{1-u^2}$$

16.
$$\arccos'(u) = -u'/\sqrt{1-u^2}$$

17.
$$\arctan'(u) = u'/\sqrt{1+u^2}$$

18.
$$\operatorname{arccot}'(u) = -u'/\sqrt{1+u^2}$$

19.
$$\operatorname{arcsec}'(u) = u'/(|u|\sqrt{u^2-1}) \dots (|u| > 1)$$

20.
$$\operatorname{arccsc}'(u) = -u'/(|u|\sqrt{u^2-1}) \dots (|u| > 1)$$

Tabela de Integrais

1.
$$\int du = u + c$$

2.
$$\int u^n du = \frac{u^{n+1}}{n+1} + c$$
 $(n \neq -1)$ 13. $\int \csc(u) \cot(u) du = -\csc(u) + c$

$$3. \int \frac{\mathrm{d}u}{u} = \ln|u| + c$$

4.
$$\int a^u du = \frac{a^u}{\ln a} + c, a > 0$$
 $(a \neq 1)$ 15. $\int \csc^2(u) du = -\cot(u) + c$

$$5. \int e^u du = e^u + c$$

6.
$$\int \sin(u) du = -\cos u + c$$

7.
$$\int \cos(u) \, \mathrm{d}u = \sin u + c$$

8.
$$\int \tan(u) du = \ln|\sec(u)| + c$$

9.
$$\int \cot(u) du = \ln|\sin(u)| + c$$

10.
$$\int \sec(u) du = \ln|\sec(u) + \tan(u)| + c$$

11.
$$\int \csc(u) du = \ln|\csc(u) - \cot(u)| + c$$

12.
$$\int \sec(u) \tan(u) du = \sec(u) + c$$

13.
$$\int \csc(u) \cot(u) du = -\csc(u) + c$$

14.
$$\int \sec^2(u) \, \mathrm{d}u = \tan(u) + c$$

15.
$$\int \csc^2(u) du = -\cot(u) + c$$

16.
$$\int du/(u^2 + a^2) = \arctan(u/a)/a + c$$

17.
$$\int du/(u^2 - a^2) = \ln \left| \frac{u-a}{u+a} \right| / 2a + c \quad (u^2 > a^2)$$

18.
$$\int du/\sqrt{u^2 + a^2} = \ln|u + \sqrt{u^2 + a^2}| + c$$

19.
$$\int du/\sqrt{u^2 - a^2} = \arcsin(u/a) + c \quad (u^2 < a^2)$$

20.
$$\int du/\sqrt{a^2 - u^2} = \arcsin(u/a) + c \quad (u^2 < a^2)$$

21.
$$\int du/(u\sqrt{a^2-u^2}) = \operatorname{arcsec} |u/a|/a + c$$

I | 15/03 - Conceitos Básicos I

1 Majorante

$$m \in \text{Majorante}(X) \iff m \in \mathbb{R} \land x \le m \ \forall x \in X$$

3 Infimo

(i) Standalone

$$Inf(X) = i \iff i \in \mathbb{R} \land x \ge m \ \forall x \in X \land \land \nexists y \in \mathbb{R} \backslash X : i < y < x \ \forall x \in X$$

(ii) Usando Vizinhança

$$Inf(X) = i \iff i \in \mathbb{R} \land x > i \ \forall \ x \in X \land V_{\delta}(i) \cap X \neq \emptyset$$

5 Minimo

(i) Standalone

$$Min(X) = m \iff m \in X \land m \le y \ \forall \ y \in m$$

(ii) Usando Minorante

$$Min(X) = m \iff$$

 $\iff m \in X \land m \in Minorante(X)$

7 Conjunto Limitado

X é um conjunto limitado \iff \iff $\{m_1 \le x \le m_2 \mid \forall x \in X : m_1 \in \text{Minorante}(X), m_2 \in \text{Majorante}(X)\}$

8 Vizinhanca

$$V_{\delta}(x) = (x - \delta, x + \delta) \quad \delta \in \mathbb{R} \setminus \{0\}$$

2 Minorante

$$m \in \text{Minorante}(X) \iff m \in \mathbb{R} \land x \ge m \ \forall x \in X$$

4 Supremo

(i) Standalone

$$Sup(X) = s \iff \\ \iff s \in \mathbb{R} \land x \le s \ \forall \ x \in X \land \\ \land \nexists \ y \in \mathbb{R} \backslash X : x < y < s$$

(ii) Usando Vizinhança

$$Sup(X) = s \iff \\ \iff s \in \mathbb{R} \land x < s \ \forall \ x \in X \land V_{\delta}(s) \cap X \neq \emptyset$$

6 Maximo

(i) Standalone

$$Max(X) = m \iff m \in X \land m \ge y \ \forall \ y \in m$$

(ii) Usando Majorante

$$= \operatorname{Max}(X) = m \iff \\ \iff m \in X \land m \in \operatorname{Majorante}(X)$$

9 Interior

(i) Standalone

$$x \in \text{Int}(X) \iff$$

 $\iff \exists \, \delta > 0 : (x - \delta, x + \delta) \subseteq X$

(ii) Usando Vizinhança

$$x \in Int(X) \iff V_{\delta}(x) \subseteq X$$

11 Fronteira

$$f \in \operatorname{Fr}(X) \iff V_{\delta}(f) \cap X \neq \emptyset \land V_{\delta}(f) \cap \mathbb{R} \backslash X \neq \emptyset$$

10 Exterior

(i) Standalone

$$x \in \operatorname{Ext}(X) \iff \\ \iff \exists \, \delta \in \mathbb{R} \setminus \{0\} : (x - \delta, x + \delta) \cap X = \emptyset$$

(ii) Usando Vizinhança

$$x \in \operatorname{Ext}(X) \iff$$

 $\iff V_{\delta}(x) \cap X = \emptyset$

II | 16/03 - Conceitos Básicos II

1 Conjunto Aberto

$$X$$
 é um conjunto aberto \iff $X = Int(X)$

3 Feixe

$$\bar{X} = \operatorname{Int}(X) \cup \operatorname{Fr}(X)$$

2 Conjunto Fechado

$$X$$
 é um conjunto fechado \iff $X = Int(X) \cup Fr(X)$

4 Ponto de Acumulação

$$x$$
 é um ponto de acumulação de $X \iff V_{\delta}(x) \cap (X \setminus \{x\}) \neq \emptyset$

III | 19/03 - Indução por igualdade

- 1. Prove que algum numero pertence ao conjunto
- 2. Prove que o proximo pertence ao conjunto

Seja
$$V = \{P_{(n)} \mid \forall n \in \text{Dominio}\}$$

 $P_{(x)} \in V; P_{(x+1)} \in V$

1 Exemplo

$$\sum_{i=0}^n rac{1}{2^i} = 2 - rac{1}{2^n} \quad orall \, n \in \mathbb{N}_0$$

(i)
$$n = 0$$

(ii)
$$n = m + 1$$

$$\sum_{i=0}^{0} \frac{1}{2^i} = 1 = 2 - \frac{1}{2^0} = 2 - 1 = 1$$

$$\sum_{i=0}^{m+1} \frac{1}{2^i} = \sum_{i=0}^{m} \frac{1}{2^i} + \frac{1}{2^{m+1}} =$$

$$= 2 - \frac{1}{2^m} + \frac{1}{2^{m+1}} = 2 - \frac{1}{2^{m+1}}$$

IV | 22/03 - Indução por Desigualdade

1 Exemplo 1

$$n \leq 2^{n-1} \quad orall \, n \in \mathbb{N}$$

(i)
$$n = 1$$

$$1 \le 2^{1-1} = 1$$

(ii)
$$n = m + 1$$

$$m+1 \le 2^{m-1}+1 = \frac{2^m+2}{2} \le 2^{m+1-1} = 2^m \implies$$

 $\implies 2 \le 2^{m+1}-2^m = 2^m(2-1) = 2^m$

2 Exemplo 2

$$n^2 \leq 2^n \quad orall \, n \in \mathbb{N} \wedge n \geq 4$$

(i)
$$n = 4$$

$$4^2 \le 2^4 = 4^2$$

(ii)
$$n = m + 1$$

$$(m+1)^{2} = m^{2} + 2m + 1 \le$$

$$\le 2^{m} + 2m + 1 \le 2 * 2^{m} = 2^{m+1} \implies$$

$$\implies 2m + 1 \le 2^{m};$$

$$\begin{cases} m = 4 \implies 2 * 4 + 1 = 9 \le 2^{4} = 16 \\ m = n + 1 \implies 2 * (n+1) + 1 = 2n + 1 + 2 \le \\ \le 2^{n} + 2 \le 2 * 2^{n} = 2^{n+1} \implies 2 \le 2^{n} \end{cases}$$

$m V \mid 23/03$ - Sucessões

 $u_{(n)}:\mathbb{N} o \mathrm{Imagem}$

1 Sucessão monótona

1.1 Decrescente

 $u_{(n)} \ge u_{(n+1)} \quad \forall n \in \mathbb{N}$

2 Sucessão limitada

 $u_{(n)}$ é limitada \iff $m_1 \le u_{(n)} \le m_2 \quad \forall n \in \mathbb{N}$

3 Sucessão Convergente

 $u_{(n)}$ converge para $l \in \mathbb{R} \iff$ $\iff \exists p \in \mathbb{N} : u_{(n)} \in V_{\delta}(l) \quad \forall n > p$

Nota:

$$u_{(n)} \in V_{\delta}(l) \iff |u_{(n)} - l| < \delta \iff$$

 $\iff l - \delta < u_{(n)} < l + \delta$

1.2 Crescente

 $u_{(n)} \le u_{(n+1)} \quad \forall n \in \mathbb{N}$

3.1 Exemplo

$$u_{(n)} = 1/\sqrt{2 n - 1};$$

 $u_{(n)} > 0; \ \delta = 1/10$

$$\iff 0 < \frac{1}{\sqrt{2n-1}} < \frac{1}{10} \iff$$

$$\iff 0 < \frac{1}{2n-1} < \frac{1}{100}; \ 2n-1 > 100 \implies$$

$$\implies \lfloor 101/2 \rfloor < n$$

VI | 26/03 - Demonstrações para sucessões

1 Sucessão convergente \implies Limitada

```
u_{(n)} é uma sucessão convergente \iff u_{(n)} \in V_{\varepsilon}(l) \quad \forall \, \varepsilon > 0 \iff l - \varepsilon < u_{(n)} < l + \varepsilon \iff \exists \, \{m_1, m_2\} \subset \mathbb{R} : m_1 < u_{(n)} < m_2 \quad \forall \, n \in \mathbb{N} \iff u_{(n)} \text{ é uma sucessão limitada}
```

2 Sucessão é monótona e limitada \implies convergente

```
u_{(n)} é uma sucessão monotona e limitada \iff \Leftrightarrow (u_{(n)} < u_{(n+1)} \lor u_{(n)} > u_{(n+1)}) \land \exists \{m_1, m_2\} \subset \mathbb{R} : m_1 < u_{(n)} < m_2 \quad \forall n \in \mathbb{N} \implies \exists \operatorname{Sup}(u_{(n)}) \in \mathbb{R} \backslash u_{(n)} \iff u_{(n)} é uma sucessão convergente
```

VII | 29/03 - Lemas de Desigualdades

1 Lema $\lim_{n\to\infty} u_{(n)} \leq \lim_{n\to\infty} v_{(n)}$

$$u_{(n)}$$
 e $v_{(n)}$ são convergentes \land
 $\land u_{(n)} \le v_{(n)} \quad \forall n \in \mathbb{N} \implies$
 $\implies \lim_{n \to \infty} u_{(n)} \le \lim_{n \to \infty} v_{(n)}$

2 Lema das sucessões enquadradas

$$\{u_{(n)}, v_{(n)}, w_{(n)}\} : \mathbb{N} \to \mathbb{R} \land$$

$$\land v_{(n)} \le u_{(n)} \le w_{(n)} \quad \forall n \in \mathbb{N} \land$$

$$\land \exists l \in \mathbb{R} : \{v_{(n)}, w_{(n)}\} \xrightarrow{\text{converge}} l \implies$$

$$\implies u_{(n)} \xrightarrow{\text{converge}} l$$

2.1 Exemplo: $u_{(n)} = \sin(n)/n$

$$\frac{-1}{n} \le \frac{\sin(n)}{n} \le \frac{1}{n}; \ \left\{ \frac{-1}{n}, \frac{1}{n} \right\} \to 0 \implies \frac{\sin(n)}{n} \to 0$$

3 Lema
$$u_{(n)} * v_{(n)} \to 0$$

$$u_{(n)}$$
 é limitada $\wedge v_{(n)} \to 0 \implies$
 $\implies 0 \le |u_{(n)} * v_{(n)}| = |u_{(n)}| * |v_{(n)}| \le$
 $\le \text{Majorante}(u_n) * 0 = 0 \implies$
 $\implies u_{(n)} * v_{(n)} \to 0$

3.1 Exemplo: $S_{(n)} = \sum_{k=1}^{n} \frac{\sqrt{k}}{n^2}$

$$0 \le S_{(n)} = \sum_{k=1}^{n} \frac{\sqrt{k}}{n^2} \le \frac{n\sqrt{n}}{n^2} = \frac{1}{\sqrt{n}} \to 0 \implies$$

$$\implies S_{(n)} \to 0$$

3.2 Exercicio: $\frac{2^n-n}{3^n+1}$

$$0 \le \frac{2^n - n}{3^n + 1} \le \frac{2^n}{3^n} = (2/3)^n \to 0 \implies$$

$$\implies \frac{2^n - n}{3^n + 1} \to 0$$

4 Lema

$$u_{(n)} \to l_1 \wedge v_{(n)} \to l_2 \implies$$

$$\implies u_{(n)} + v_{(n)} \to l_1 + l_2 \implies$$

$$\implies |u_{(n)} + v_{(n)} - (l_1 + l_2)| =$$

$$= |u_{(n)} - l_1 + v_{(n)} - l_2| \le |u_{(n)} - l_1| + |v_{(n)} - l_2| < \varepsilon$$

$VIII \mid 30/03$

1

$$u_{(n)} \to l_1 \wedge v_{(n)} \to l_2 \implies$$

$$\implies 0 \le |u_{(n)} v_{(n)} - l_1 l_2| =$$

$$= |(u_{(n)} - l_1) v_{(n)} + v_{(n)} l_1 - l_1 l_2| =$$

$$= |(u_{(n)} - l_1) v_{(n)} + l_1 (v_{(n)} - l_2)| \le$$

$$\le |(u_{(n)} - l_1)| |v_{(n)}| + |l_1| |(v_{(n)} - l_2)| \to 0 \implies$$

$$\implies u_{(n)} * v_{(n)} \to l_1 * l_2$$

3 Indeterminações

- (i) $u_{(n)} v_{(n)} : u_{(n)} \to 0 \land v_{(n)} \to \infty$
- (ii) $u_{(n)}/v_{(n)}:u_{(n)}\to\infty\wedge v_{(n)}\to\infty$
- (iii) $u_{(n)} + v_{(n)} : u_{(n)} \to \infty \land v_{(n)} \to -\infty$
- (iv) $(1+1/n)^n : n \to \infty$

4 Exercicios

(i)
$$u_{(n)} = \sqrt{n^2 + 2n} - n$$

$$= \frac{n^2 + 2n - n^2}{\sqrt{n^2 + 2n + n}} = \frac{2}{\sqrt{1 + 2/n + 1}} \to \frac{2}{\sqrt{1 + 1}} \to \frac{2}{\sqrt{1 + 1}} = 1$$

(ii)
$$a_{(n)} = \frac{n + \cos(n)}{n \ln(n+1)}$$

$$\lim_{n \to \infty} a_{(n)} = \lim_{n \to \infty} \frac{1}{\ln(n+1)} + \lim_{n \to \infty} \frac{\cos(n)}{n} *$$

$$* \lim_{n \to \infty} \frac{1}{\ln(n+1)} = 0 + 0 * 0 = 0$$

(iii)
$$b_{(n)} = \left(\frac{n^2 - 2n + 1}{n^2 + 2n + 1}\right)^n$$

$$\lim_{n \to \infty} b_{(n)} = \lim_{n \to \infty} \left(\frac{(n-1)^2}{(n+1)^2} \right)^n = \lim_{n \to \infty} \left(\frac{n-1}{n+1} \right)^{2n} =$$

$$= \left(\frac{\lim_{n \to \infty} (1 - 1/n)^n}{\lim_{n \to \infty} (1 + 1/n)^n} \right)^2 = \left(\frac{e^{-1}}{e^1} \right)^2 = e^{-4}$$

2 Sucessão que tende para o infinito

$$u_{(n)} \to \infty \iff$$

 $\iff u_{(n)} > m \quad \forall m \in \mathbb{R} \land \forall \{n, p\} \subset \mathbb{N} : n > p$

IX | 06/04 - Subsucessões

$$u\circ i_{(n)}=u_{(i_{(n)})}$$

1 Exemplo: $u_{(n)} = (-1)^n$

(i)
$$i_{(n)} = 2n$$

$$u \circ i_{(n)} = (-1)^{2n} = 1$$

(ii)
$$j_{(n)} = 2n - 1$$

$$u \circ j_{(n)} = (-1)^{2n-1} = -1$$

2 Exemplo: $u_{(n)} = \sin(n \pi/4)$

(i)
$$i_{(n)} = 4 n$$

$$u \circ i_{(n)} = \sin(4 \, n \, \pi/4) = \sin(n \, \pi) = 0$$

3 Subsusecção convergente

$$u_{(n)}$$
 é uma sucessão convergente \Longrightarrow $u_{(n)} \in V_{\varepsilon}(l) \quad \forall \{n,p\} \subset \mathbb{N} : n > p;$ $i_{(p)} \geq p \implies u \circ i_{(n)} \in V_{\varepsilon}(l)$ $\forall \{n,p\} \subset \mathbb{N} : n > p \implies$ $\Longrightarrow u \circ i_{(n)}$ é uma sucessão convergente

$$u: \mathbb{N}
ightarrow \mathbb{R} \wedge i: \mathbb{N}
ightarrow \mathbb{N} \wedge \ \wedge i_{(n)} < i_{(n+1)} \ \ orall \, n \in \mathbb{N}$$

4 Lema

$$u \circ i_{(n)}$$
 é uma sucessão monotona \Longrightarrow
 $\Longrightarrow u \circ i_{(n)} < u \circ i_{(m)} \quad \forall \{m,n\} \in \mathbb{N} : m > n$

5

"Qualquer Sucessão possui pelo menos uma subsucessão monótona"

6

"Qualquer sucessão limitada possui pelo menos uma subsucessão monótona convergente"

 $u_{(n)}$ é limitada \Longrightarrow $u \circ i_{(n)}$ é uma sucessão convergente

$X \mid 09/04$ - Limites

$$\limsup u_{(n)} = \sup\{l: l \text{ \'e sublimite de } u\}$$

 $\liminf u_{(n)} = \inf\{l: l \text{ \'e sublimite de } u\}$

$$u_{(n)} \to l \iff \limsup u_{(n)} = \liminf u_{(n)} = l$$

1 Lema geral das funções enquadradas

$$\{u_{(n)}, v_{(n)}, w_{(n)}\} : \mathbb{N} \to \mathbb{R} : w_{(n)} \le u_{(n)} \le v_{(n)} \Longrightarrow$$
$$\implies \liminf w_{(n)} \le \liminf u_{(n)} \le \limsup u_{(n)} \le \limsup v_{(n)}$$

1.1 Exemplo

$$u_{(n)} = \left(1 + \frac{1 + (-1)^n}{n}\right)^n$$

$$1^n = 1 \le u_{(n)} \le \left(1 + \frac{2}{n}\right)^n \to e^2$$

2 Lema

"Se
$$u_{(n)} \to l$$
 então a sucessão $s_{(n)} = \frac{\sum_{i=0}^n u_{(n)}}{n} \to l$ "

XI | 12/04 - Sucessão de Cauchy

$$u_{(n)}:|u_{(m)}-u_{(n)}|p\wedge n>p$$

1 Criterio suficiente para uma sucessão ser Cauchy

$$\begin{aligned} |u_{(n+2)} - u_{(n+1)}| &\leq \alpha |u_{(n+1)} - u_{(n)}| \\ \forall \, n \in \mathbb{N} : n > p \wedge \alpha \in (0,1) \implies \\ &\implies u_{(n)} \,\, \text{\'e Cauchy} \end{aligned}$$

1.1 Exemplo

$$u_{(n)} = \begin{cases} 0 & n = 1\\ (2/3) u_{(n-1)} + 1 & n > 1 \end{cases}$$

$$|u_{(n+2)} - u_{(n+1)}| =$$

$$= |(2/3) u_{(n+1)} + 1 - (2/3) u_{(n)} - 1| =$$

$$= (2/3) |u_{n+1} - u_{(n)}|$$

$$\therefore u_{(n)} \text{ \'e Cauchy}$$

2 Convergencia

$$u_n \begin{cases} 0 & n = 1 \\ u_{(n-1)} 2/3 + 1 & n > 1 \end{cases}$$

$$u_n \to l$$
; $u_n 2/3 + 1 \to l 2/3 + 1$ $\therefore l = l 2/3 + 1 \Longrightarrow$
 $\Longrightarrow l = 3$

XII | 13/04 - Sucessões de Cauchy II

1

$$u_n = 1/2^n$$

$$|u_m - u_n| = \left| u_m + \sum_{k=n+1}^{m-1} (-u_k + u_k) - u_n \right| =$$

$$= \left| \sum_{k=n}^{m-1} u_{k+1} - u_k \right| \le \sum_{k=n}^{m-1} |u_{k+1} - u_k|$$

2

$$u_n = egin{cases} 1 & n=1 \ 1+1/u_{n-1} & n>1 \end{cases}$$

$$1 \le u_n \le 2 \quad \forall n \in \mathbb{N} \implies 1 \le u_{n+1} \le 2 \quad \forall n \in \mathbb{N} \implies 2 \ge 1 + 1/u_n \ge 3/2 \ge 1$$

2.1 Limite

$$u_{n+1} = 1 + 1/u_n \implies l = 1 + 1/l \implies$$

 $\implies l^2 - l - 1 = 0 \implies l = \frac{1 + \sqrt{5}}{2}$

2.2 Visualização gráfica do limite

XIII | 16/04

1

$$H(x) = egin{cases} 1 & x \geq 0 \ -1 & x < 0 \end{cases}$$

2 Definição derivada

$$\lim_{x o a}rac{f(x)-f(a)}{x-a}$$

- (i) f não é obrigada a estar definida em x = a
- (ii) (x_n) é uma sucessão que aproxima de a por valores diferentes de a

3 Existencia de limite

$$\exists \lim_{x o a} f(x) \quad \iff \quad$$

$$\iff \begin{cases} \exists \lim_{x \to a^{-}} f(x) \\ \exists \lim_{x \to a^{+}} f(x) \\ \lim_{x \to a^{+}} f(x) = \lim_{x \to a^{-}} f(x) \end{cases}$$

4 Exemplo

$$g(a) = egin{cases} x^2 & x < 0 \ x & x \geq 0 \end{cases}$$

$$\exists \lim_{x \to 0} g(x) \iff \lim_{x \to 0^{-}} g(x) = 0; \ \lim_{x \to 0^{+}} g(x) = 0$$

5 Exemplo

5.1 Usando sucessões para encontrar limites

$$x(n) = 1/(n \pi)$$
 $n \in \mathbb{N} \setminus \{0\}$

$$f(x(n)) = \sin\left(\frac{1}{1/(n\pi)}\right) = \sin(n\pi) \quad n \in \mathbb{N} \setminus \{0\}$$

$$h(x) = x \, \sin(1/x) \quad x \in \mathbb{R} ackslash \{0\}$$

$$h(x) = x \sin(1/x) = \frac{\sin(1/x)}{1/x}$$

$\overline{\rm XIV}$ | 19/04 - Limites

 $f:\overline{\mathrm{D}}\subseteq\mathbb{R} o\mathbb{R}$ $f ext{ está definida em }V_{\delta}(a)ackslash\{a\}$

$$\lim_{x \to a} f(x) = L \in \mathbb{R} \iff \lim f(x(n)) = L \quad \forall x(n) : x(n) \to a$$

1 Limite notável: $\sin(x)/x$

graph missing

area triangulo menor = x/2 <

< area triangulo maior $= \tan(x)/2 \implies$

$$\implies x < \frac{\sin(x)}{\cos(x)} \implies \cos(x) < \frac{\sin(x)}{x} < 1 \implies$$

$$\implies \lim_{x \to 0} \cos(x) = 1 < \lim_{x \to 0} \frac{\sin(x)}{x} < \lim_{x \to 0} 1 = 1$$

$$\therefore \lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

1.1 Exemplo

$$\lim_{x o 0} \sin(x^2)/x^2$$

= 1

1.2 Exemplo

$$\lim_{x\to 0}\sin(x^2)/x$$

$$= \lim_{x \to 0} x \left(\frac{\sin(x^2)}{x^2} \right) = 0$$

1.3 Exemplo

$$\lim_{x \to 0} \sin(2x)/x$$

$$=\lim_{x\to 0} 2\left(\frac{\sin(2\,x)}{2\,x}\right) = 2$$

1.4 Exemplo

$$\lim_{x\to 0}\frac{1-\cos(x)}{x}$$

$$= \lim_{x \to 0} \frac{1 - \cos^2(x)}{x (1 + \cos(x))} = \lim_{x \to 0} \frac{x}{1 + \cos(x)} \frac{\sin^2(x)}{x^2} = 0$$

2 Limite notável: $(e^x - 1)/x$

$$\lim_{x\to 0}\frac{e^x-1}{x}=1$$

$$= \lim_{x \to 0} \frac{\left(1 + \sum_{n=1}^{\infty} \frac{x^n}{n!}\right) - 1}{x} =$$

$$= \lim_{x \to 0} \sum_{n=1}^{\infty} \frac{x^{(n-1)}}{n!} = \lim_{x \to 0} 1 + \sum_{n=2}^{\infty} \frac{x^{(n-1)}}{n!} = 1$$

XV | 20/04 - Funções continuas

1

$$f: \mathrm{I} o \mathbb{R} \ \ \ a \in \mathrm{int}(\mathrm{I})$$

f é continua em $x=a\iff\exists\lim_{x\to a}f(x)=L\land f(a)=L$

2 Continuidade

f é continua em x = a

$$\iff \exists \lim_{x \to a^+} = L^+ \land \exists \lim_{x \to a^-} = L^- \land L^+ = L^- = f(a)$$

$$\exists \ \lim_{x o a} f(x) \wedge
etin f(a)$$

$$\overline{f} = \begin{cases} f(x) & x \neq a \\ L & x = a \end{cases}$$

2.1 Exemplo

$$h(x) = \sin(x)/x$$

$$\overline{h} = \begin{cases} \sin(x)/x & x \neq 0 \\ 1 & x = 0 \end{cases}$$

2.2 Exemplo

$$g(x)=e^{-1/|x|}$$

$$\overline{g} = \begin{cases} e^{-1/|x|} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

3 Continuidade segundo Cauchy

$$f: \mathrm{I} o \mathbb{R} \wedge a \in \mathrm{int}(\mathrm{I})$$

∴
$$f$$
 é continua em $x = a$ segundo Cauchy \iff $\exists \, \delta_{(\varepsilon)} > 0 \quad \forall \, \varepsilon > 0 : |f(a) - f(x)| < \varepsilon \quad \forall \, |x - a| < \delta$

XVI | 23/04 - Continuidade: Teoremas

f é continua em [a,b]

$$\iff f \text{ \'e continua em } x \in (a,b) \land \\ \land \lim_{x \to a^{-}} f(x) = f(a) \land \lim_{x \to b^{+}} f(x) = f(b)$$

1 Teorema de Bolzano

$$f: [a,b]
ightarrow \mathbb{R} \wedge f ext{ \'e continua em } [a,b] \ : f(a) < f(b) \quad orall \, k: f(a) < k < f(b) \ \implies \exists \, c \in (a,b): f(c) = k$$

2 Teorema de Weierstrass

$$f:[a,b] o \mathbb{R} \wedge f ext{ \'e continua em } [a,b] \ dots \exists \left\{x_{ ext{max}},x_{ ext{min}}
ight\} \subset [a,b]: \ :f(x_{ ext{min}}) \leq f(x) \leq f(x_{ ext{max}})$$

3 Corolário de Bolzano e Weirestrass

$$f:[a,b] o \mathbb{R} \wedge f ext{ \'e continua em } [a,b] \ dots f([a,b]) = [x_{ ext{max}},x_{ ext{min}}]$$

3.1 Exemplo Aplicação

$$e^{-x} = x$$

$$f:[0,1] \to \mathbb{R};$$
 $f(x) = e^{-x} - x \Longrightarrow$
 $\Longrightarrow f(0) = 1;$ $f(1) = 1/e - 1 < 0$
 $\therefore \exists c \in [0,1] : e^{-c} = c$

3.2 Exemplo Aplicação

$$g:[0,\pi] o\mathbb{R};\quad g(x)=x\,\sin(x)$$

$$g(0) = g(\pi) = 0 : \exists x_{\text{max}} \ge 0$$

XVII | 26/04 - Funções Inversas

 $f: \mathcal{I} o \mathcal{J} \wedge \mathcal{I}, \mathcal{J} \subset \mathbb{R} \wedge f$ é injetiva e subjetiva (bijetiva)

$$f^{-1}: \mathrm{J} o \mathrm{I} \quad egin{cases} f^{-1} \circ f(x) = x & & orall \, x \in \mathrm{I} \ f \circ f^{-1}(y) = y & & orall \, y \in \mathrm{J} \end{cases}$$

1 Exemplo

$$egin{aligned} f &: [0,+\infty]
ightarrow [0,+\infty] & f(x) = x^2 \ f^{-1} : [0,+\infty]
ightarrow [0,+\infty] & f^{-1}(x) = \sqrt{x} \end{aligned}$$

2 Exemplo

$$f:[0,1] o\mathbb{R}$$
 $f(x)=2x+1$

- (i) f é injetiva?
- $\iff f$ é estritamente monotona
- (ii) Contradomínio de f

$$= [1, 3]$$

(iii) f^{-1}

$$f^{-1}:[1,3] \to [0,1]$$
 $f^{-1}(y) = \frac{y-1}{2}$

3 Exemplo

$$\sin: [-\pi/2, \pi/2] \to [-1, 1]$$
 $\arcsin: [-1, 1] \to [-\pi/2, \pi/2]$

4 Exemplo

$$an: [-\pi/2, \pi/2] o [-\infty, \infty]$$
 $\arctan: [-\infty, \infty] o [-\pi/2, \pi/2]$

XVIII | 27/04 - Derivadas

1 Definição

$$f: \mathrm{I} o \mathbb{R} \wedge a \in \mathrm{int}(\mathrm{I})$$

$$D \in \mathbb{R}: D = f'(a) = rac{\mathrm{d}f(a)}{\mathrm{d}x} = \lim_{x o a} rac{f(x) - f(a)}{x - a} = \lim_{h o 0} rac{f(a + h) - f(a)}{h}$$

2 Definição Alternativa

$$egin{aligned} \exists\, f'(a) & \Longleftarrow \exists\, \mathrm{D} \in \mathbb{R}, \ Z: V_\delta(0) & o \mathbb{R}: \ f(x) &= f(a) + D\,(x-a) + \ + (x-a)\,Z(x-a) \end{aligned}$$

3 Definição derivada para funções de imagens abertas

$$f: \mathrm{I} o \mathbb{R} \wedge \mathrm{I}
eq ar{\mathrm{I}}$$

$$f': \mathrm{I} o \mathbb{R} \quad f'(x) = \lim_{h o 0} rac{f(x+h)\,f(h)}{h}$$

XIX | 30/04 - Regras de Derivação

1 Derivação da Soma

$$(f+g)'(a) = f'(a) + g'(a)$$

$$(f+g)'(a) = \lim_{x \to 0} \frac{f(x) + g(x) - f(a) - g(a)}{x - a} =$$

$$= \lim_{x \to 0} \left(\frac{f(x) - f(a)}{x - a} + \frac{g(x) - g(a)}{x - a} \right) =$$

$$= f'(a) + g'(a)$$

2 Derivação do Produto

$$(fg)'(a) = f'(a)g(a) + f(a)g'(a)$$

$$(fg)'(a) = \lim_{x \to a} \frac{f(x)g(x) - f(a)g(a)}{x - a} =$$

$$= \lim_{x \to a} \frac{(f(x) - f(a))g(x) + f(a)(g(x) - g(a))}{x - a} =$$

$$= \lim_{x \to a} \left(g(x) \frac{f(x) - f(a)}{x - a} + f(x) \frac{g(x) - g(a)}{x - a} \right) =$$

$$= g(x)f'(x) + f(x)g'(x)$$

3 Derivada da Divisão

3.1 Previa

$$(1/f(x))' = -f'(a)/f^2(a)$$

$$= \lim_{x \to a} \frac{1/f(x) - 1/f(a)}{x - a} = \lim_{x \to a} \frac{f(a) - f(x)}{(x - a) f(x) f(a)} =$$
$$= -f'(a)/f^{2}(a)$$

4 Derivada de Conjugada

$$(f \circ u)'(a) = f'(u(a)) u'(a)$$

$$(f \circ u)'(a) = \lim_{x \to a} \frac{f(u(x)) - f(u(a))}{x - a} =$$

$$= \lim_{x \to a} \frac{f(u(x)) - f(u(a))}{u(x) - u(a)} \frac{u(x) - u(a)}{x - a} = f'(u(a)) u'(a)$$

4.1 Exemplo

$$(e^{u(x)})' = e^{u(x)} u'(x)$$
 $(e^{x^3})' = e^{x^3} 3 x^2$

4.2 Exemplo

Nota: $(\ln)'(u) = u'/u$

$$(\ln'(1/\cos(x))) = \frac{-\sin(x)/x^2}{\cos(x)} = \frac{1}{\tan(x) x^2}$$

5 Tecnica de encontrar derivações

5.1
$$\ln'(x) = 1/x$$

$$(e^{\ln(x)})' = (x)' \implies e^{\ln(x)} \ln'(x) = x \ln'(x) = 1 \implies$$

 $\implies (\ln)'(x) = 1/x$

5.2
$$\arctan'(x) = 1/(1+x^2)$$

$$(\tan(\arctan(x)))' = (x)' \implies \tan'(\arctan(x)) \arctan'(x) =$$

$$= (1 + \tan^2(\arctan(x))) \arctan'(x) =$$

$$= (1 + x^2) \arctan'(x) = 1 \implies$$

$$\implies \arctan'(x) = \frac{1}{1 + x^2}$$

5.3
$$\arcsin'(x) = 1/\sqrt{1-x^2}$$

$$(\sin(\arcsin(x)))' = (x)' \implies \cos(\arcsin(x)) \arcsin'(x) =$$

= $\sqrt{1 - \sin^2(\arcsin(x))} \arcsin'(x) =$
= $\sqrt{1 - x^2} \arcsin'(x) = 1 \implies \arcsin'(x) = 1/\sqrt{1 - x^2}$

$XX \mid 03/05$ - Teoremas da diferenciabilidade

1 Teorema de Rolle

$$fegin{cases} f:[a,b] o\mathbb{R}\wedge\ f ext{ \'e continua em }[a,b]\wedge\ \exists\,f'(x)\quadorall\,x\in(a,b)\wedge\ f(a)=f(b) \end{cases}$$

$$\exists \, c \in [a,b] : f'(c) = 0 \land \max(f), \min(f) \subset f(c)$$

$$\min(f) = x_0 \in (a,b): \ f(x_0) \leq f(x) \quad orall \, x \in (a,b)$$

$$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \ge 0; \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \le 0$$

$$\therefore f'(x_0) = 0$$

2 Teorema de Lagrange

$$fegin{cases} f:[a,b] o\mathbb{R}\ f ext{ \'e continua em }[a,b]\ \exists\, f'(x)\;orall\,x\in(a,b) \end{cases}$$

$$egin{aligned} \therefore \exists \, c \in (a,b) : f'(c) &= rac{f(b) - f(a)}{b - a}, \ f(b) &= f(a) + f'(c) \, (b - a) \end{aligned}$$

2.1 Corolário

$$fegin{cases} f:[a,b] o\mathbb{R}\,\wedge\ f ext{ \'e continua em }[a,b]\,\wedge\ \exists\,f'(x)\quadorall\,x\in(a,b)\,\wedge\ f'(x)>0\quadorall\,x\in(a,b) \end{cases}$$

 $\therefore f$ é estritamente crescente em (a,b)

$${x,y} \in (a,b): f(x) < f(y) \Longrightarrow$$

 $\Longrightarrow f(y) = f(x) + f'(c)(y-x)$

2.2 Ideia de Demonstração do teorema de Lagrange

Nota: REVER

$$h(x) = (b-a) f(x) - (f(b) - f(a))(x-a)$$

$$\begin{cases} h(a) = (b-a) f(a) \\ h(b) = (b-a) f(b) - (f(b) - f(a))(b-a) \end{cases}$$

$$\implies (b-a) f(a) = (b-a) f(b) - (f(b) - f(a))(b-a) \implies$$

$$\implies f(a) = f(b) - (f(b) - f(a))(b-a)$$

XXI | 15/06 - Exercícios para o Teste

Q0 - a)

$$\int\limits_{arepsilon^3}^{8\,\pi^3} rac{\cos(\sqrt[3]{x})}{3\,\sqrt[3]{x}} \mathrm{d}x = \int\limits_{arepsilon}^{2\,\pi} t\,\cos(t)\,\mathrm{d}t \ (x=t^3)$$

$$\int_{\varepsilon^3}^{8\pi^3} \frac{\cos(\sqrt[3]{x})}{3\sqrt[3]{x}} dx = \int_{\sqrt[3]{\varepsilon^3}}^{\sqrt[3]{8\pi^3}} \frac{\cos(\sqrt[3]{t^3})}{3\sqrt[3]{t^3}} d(t^3) =$$

$$= \int_{\varepsilon}^{2\pi} \frac{\cos(t)}{3t} 3t^2 dt = \int_{\varepsilon}^{2\pi} t \cos(t) dt$$