HW 6

3.2.9

a

We can rewrite S as $S = \{(x_1, \dots x_{p-1}, (x_1 \dots x_{p-1})^{-1}) | x_i \in G\}$. Since there are no restrictions on the x_i and there are p-1 choices of the x_i , the size of this set is $|G|^{p-1}$.

b

We prove this for the cyclic permutation $x_k x_{k-1}, k \in [1, p)$ by induction on k, where the base case k = 1 holds by definition of S. For the inductive step, we are given $x_k x_{k-1} = 1$. Multiplying by x_k^{-1} on the left, we have $x_{k+1} x_{k-1} = x_k^{-1}$. Multiplying by x_k on the right, we have $x_{k+1} x_k = 1$.

\mathbf{c}

Notation: let S_p (the symmetric group on [1,p]) act on S by permuting the indices, that is for $\tau \in S_p$ we have $\tau \cdot (x_1, \dots x_p) = (x_{\tau(1)}, \dots x_{\tau(p)})$.

I will assume that a cyclic permutation of $(x_1, \ldots x_p)$ is $\sigma^j \cdot (x_1, \ldots x_p) = (x_{\sigma^j(1)}, \ldots x_{\sigma^j(p)})$ where σ^j is some power of the *p*-cycle $\sigma = (1, \ldots p)$.

Reflexive: this holds because σ^0 is the identity.

Symmetric: this holds because $\sigma^{-1} = \sigma^{p-1}$.

Transitive: this holds because $\sigma^a \sigma^b = \sigma^{a+b}$.

d

 \Leftarrow : clearly $(x, \dots x) \in S$. Every cyclic permutation is also of the form $(x, \dots x)$. Hence the equivalence class has exactly 1 element.

 \implies : let $E = \{(x_1, \dots x_k)\}$ be the equivalence class. For any $k \in [1, p)$ we have $(x_1, \dots x_k) = (x_k, \dots x_{k-1})$ since both the LHS and RHS belong to E, hence $x_1 = x_k$. Hence $x_1 = x_2 \dots = x_p$.

\mathbf{e}

Let E be the equivalence class, and fix some $X=(x_1,\ldots x_p)\in E$. Let j be the smallest positive integer such that $\sigma^j\cdot X=X$. We have $j\leq p$ since $\sigma^j=e$. If j=p then all p cyclic permutations are distinct and |E|=p. Otherwise, j and p are coprime so the sequence $\sigma,\sigma^j,\sigma^{2j},\ldots$ contains every

power of σ . Every cyclic permutation of X is $\sigma^k \cdot X$, and there exists t such that $\sigma^k = \sigma^{jt}$, and $\sigma^k \cdot X = \sigma^{jt} \cdot X = \sigma^j \cdot \sigma^j \dots X = X$.

Since S is a disjoint union of its equivalence classes, we have $|S| = |G|^{p-1} = \sum_{E,|E|=1} |E| + \sum_{E,|E|=p} |E| = k + pd$ where the summation is over equivalence classes.

\mathbf{f}

Consider the equation $|G|^{p-1} = k + pd$ modulo p. The LHS is 0 since p divides |G| and the RHS is k. Hence p|k. Since $p \ge 2$ and $k \ge 1$ (since we have at least one equivalence class of size 1) we have k > 1, hence there are at least two equivalence classes of size 1, hence at least one of the form $\{x, \ldots x\}$ where $x \ne 1$. By the definition of G, x satisfies $x^p = 1$.

3.2.11

We know that the left cosets of H partition K (and that the left cosets have equal cardinality) and the left sets of K partition G. Let P_c be the partition of G by H. There are two natural finer partitions on G to consider:

- 1. By left cosets of K, i.e. by the equivalence relation $g_1 \sim g_2 \iff g_1 K = g_2 K$.
- 2. By translating the partition of H by K to cover G.

It suffices to show that these are the same partitions (call them P_1 and P_2 respectively).

We will work out what is the equivalence relation in (2); let g_1, g_2 be in the same part of P_2 . Then they are in the same part of P_c , hence $g_1H = g_2H$.

3.2.16

Notation: let $U = (\mathbb{Z}/pZ)^x$. We have |U| = p - 1 because the p - 1 elements $1, \ldots p - 1$ are distinct modulo p, and coprime to p. Let $a \in U$. By Lagrange's theorem, ord(a) divides |U| = p - 1. We have $a^{ord(a)} = 1$ hence $a^{p-1} = (a^{ord(a)})^{\frac{p-1}{ord(a)}} = 1$ hence $a^p = a$.