You can use the steps described below to form an isosceles triangle. Refer to the diagrams shown.

- (1) Fold a sheet of paper in half.
- (2) Cut off a double-thickness corner piece along the dashed line.
- (3) Open the corner piece and lay it flat. You will have a triangle, which is labeled $\triangle PRS$ in the diagram. The fold line is labeled \overline{PQ} .
- (4) Since \overline{PR} and \overline{PS} were formed by the same cut line, you can conclude that they are congruent segments and that $\triangle PRS$ is isosceles.

$$\frac{\angle PRS \cong \angle PSR}{\overline{PQ}} \text{ bisects } \frac{\angle RPS.}{\overline{RS}}.$$

$$\frac{\overline{PQ}}{\overline{PQ}} \perp \frac{\overline{RS}}{\overline{RS}} \text{ at } Q.$$

$$\Delta POR \cong \Delta POS$$

These observations suggest some of the following results.

Theorem 4-1 The Isosceles Triangle Theorem

If two sides of a triangle are congruent, then the angles opposite those sides are congruent.

Given:
$$\overline{AB} \cong \overline{AC}$$

Prove: $\angle B \cong \angle C$

Plan for Proof: You can show that $\angle B$ and $\angle C$ are corresponding parts of congruent triangles if you draw an auxiliary line that will give you such triangles. For example, draw the bisector of $\angle A$.

Theorem 4-1 is often stated as follows: Base angles of an isosceles triangle are congruent. The following corollaries of Theorem 4-1 will be discussed as classroom exercises.

Corollary 1

An equilateral triangle is also equiangular.

Corollary 2

An equilateral triangle has three 60° angles.

Corollary 3

The bisector of the vertex angle of an isosceles triangle is perpendicular to the base at its midpoint.