Module 4: Quantitative traits and local adaptation

Olivier Cotto Frédéric Guillaume Max Schmid

DPPS-303 - Tvärminne Zoological Station - University of Helsinki

March 2023

Module 4

Modelling quantitative trait variation and local adaptation

OUTLINE

- Genetic architecture of quantitative traits
- Selection on quantitative traits: the adaptive landscape
- Modelling local adaptation
- Eco-evolutionary dynamics: adaptation to environmental variation
- Adaptation to a shifting environmental gradient

Quantitative traits

Quantitative traits are traits that are influenced by their genes and the environment.

Phenotypic value:

$$\mathbf{P} = \mathbf{G} + \mathbf{E}$$

Phenotype (\mathbf{P}) = Genotype effect (\mathbf{G}) + Environmental effect (\mathbf{E})

$$\mathbf{G} = \sum_{i=1}^{L} (a_{X,i} + a_{Y,i} + d_{XY,i}) + \xi$$

The genotype is the sum over *all loci* of the **additive** a, **dominance** d and **epistatic** ξ effects.

DPPS-303 (Tvärminne) Module 4 March 2023

Trait variation

Quantitative traits are continuously distributed in a population. The **phenotypic distribution** of the a trait is often *Normal* on some scale: $\sim N(\bar{\mathbf{P}}, \sqrt{V_P})$, with average $\bar{\mathbf{P}}$ and variance V_P .

$$\bar{\mathbf{P}} = \bar{\mathbf{G}} + \bar{\mathbf{E}} = \bar{\mathbf{G}}$$

where $\mathbf{E} \sim N(0, \sigma_E)$ is a random deviation caused by the environment with mean of $\bar{\mathbf{E}} = 0$ when evaluated across all individuals.

Trait variation

Because environmental effects contribute to the *phenotypic* variation among individuals, they also contribute to the *variance* of the phenotypic distribution.

$$V_P = V_G + V_E$$

Trait variation

Phenotypic variance:

$$V_P = V_G + V_E + 2 \text{cov}(\mathbf{G}, \mathbf{E})$$

under the assumption of no plasticity, no $\mathbf{G} \times \mathbf{E}$ and no correlation between genotypes and environments (\mathbf{G} and \mathbf{E} are independent):

$$\text{cov}(\boldsymbol{G},\boldsymbol{E})=0$$

DPPS-303 (Tvärminne) Module 4 March 2023

Decomposition of the genetic variance

Genetic variance:

$$V_G = V_A + V_D + V_I$$

with:

 V_A : additive genetic variance, contributed by additive effects of loci

V_D: **dominance** variance (from dominance effects <u>within</u> loci)

V_I: epistatic variance (from epistatic effects between loci)

Decomposition of the genetic variance

Genetic variance:

$$V_G = V_A + V_D + V_I$$

with:

 V_A : additive genetic variance, contributed by additive effects of loci

V_D: dominance variance (from dominance effects within loci)

V_I: epistatic variance (from epistatic effects between loci)

 \Rightarrow V_A is the most important genetic component because inherited.

 \Rightarrow V_D and V_I are not, or only partially inherited (in closely related ind.)

Additive genetic variance:

$$V_A = \sum_{i=1}^{L} var(a_i) + 2 \sum_{i=1}^{L} \sum_{j\neq i}^{L} cov(a_i, a_j)$$

where $var(a_i)$ is the *genic* variance at locus $i = 2a_i^2$ if a_i is the additive effect of the locus), and $cov(a_i, a_j)$ is the covariance between the additive allelic effects at locus i and j. The covariance is contributed by *linkage disequilibrium* between loci.

Additive genetic variance:

$$V_A = \sum_{i=1}^{L} var(a_i) + 2 \sum_{i=1}^{L} \sum_{j \neq i}^{L} cov(a_i, a_j)$$

where $var(a_i)$ is the *genic* variance at locus $i = 2a_i^2$ if a_i is the additive effect of the locus), and $cov(a_i, a_j)$ is the covariance between the additive allelic effects at locus i and j. The covariance is contributed by *linkage disequilibrium* between loci.

Two ways of encoding additive loci contributing to continuous traits:

- infinitely large number of (diallelic) loci of infinitesimally small effects (Fisher's infinitesimal model, 1918)
- finite number of multi-allelic loci with normally distributed effects (continuum-of-allele model of Kimura & Crow, 1964)

DPPS-303 (Tvärminne) Module 4 March 2023

In Nemo: trait quant

- diallelic model: symmetrical $\pm a_i$ additive effects, set for each locus i, or asymmetrical $\{a_i, b_i\}$ effects. Mutation swaps alleles between $\pm a_i$ or $\{a_i, b_i\}$
- continuous model: alleles/mutations are drawn from a normal distribution $N(0, \sigma_{a,i})$, with $\sigma_{a,i}^2$ the effect size of the mutation at locus i. Mutations are either added to the existing allele (default) or replace the existing allele (continuous_in_place model).

In Nemo: trait quant

- diallelic model: symmetrical $\pm a_i$ additive effects, set for each locus i, or asymmetrical $\{a_i, b_i\}$ effects. Mutation swaps alleles between $\pm a_i$ or $\{a_i, b_i\}$
- continuous model: alleles/mutations are drawn from a normal distribution $N(0, \sigma_{a,i})$, with $\sigma_{a,i}^2$ the effect size of the mutation at locus i. Mutations are either added to the existing allele (default) or replace the existing allele (continuous_in_place model).

In SLiM:

 \Rightarrow re-interpretation of selection coefficient of mutations as an additive effect. Needs additional scripting to compute phenotypes and change the fitness function. It is thus only a di-allelic model with alleles $\{0, a_i\}$ where a_i is the mutational effect.

Key quantities:

Mutational variance: V_m = per generation mutational input into V_A

$$V_m = 2L\mu\sigma_a^2$$

with L number of loci, μ the per allele mutation rate, σ_a^2 the variance of mutational effects (assumed constant across loci).

Environmental variance: V_E

will be set relative to the heritability of the trait.

Heritability: $h^2 = \frac{V_A}{V_P}$

with $V_P = V_G + V_E$. h^2 is the regression coefficient between parent and offspring genetic values. Thus, $h^2 = 1$ if only additive effects are modeled and $V_E = 0$.

Key quantities:

Mutational variance: V_m = per generation mutational input into V_A

$$V_m = 2L\mu\sigma_a^2$$

with L number of loci, μ the per allele mutation rate, σ_a^2 the variance of mutational effects (assumed constant across loci).

Environmental variance: V_E

will be set relative to the heritability of the trait.

Heritability: $h^2 = \frac{V_A}{V_P}$

with $V_P = V_G + V_E$. h^2 is the regression coefficient between parent and offspring genetic values. Thus, $h^2 = 1$ if only additive effects are modeled and $V_F = 0$.

It is generally assumed that $V_m \simeq 10^{-4}$ to $10^{-3} \times V_E$. We often set $V_m \simeq 10^{-4}$ to 10^{-3} as a general baseline, even if $V_E = 0$.

Basic scaling:

Mutational variance: $V_m = 2L\mu\sigma_a^2 \simeq 10^{-4}$ to 10^{-3}

Environmental variance: $V_E = 0$

Heritability: $h^2 = \frac{V_A}{V_P} = 1$

Continuous loci: one locus spans a whole sequence block, e.g. >1kb, then $\mu \geq 10^{-4}$, which allows for the following scaling: $\sigma_a^2 \simeq 1/2L$ to 10/2L to reach $V_m \simeq 10^{-4}$ to 10^{-3} . Thus for L=100, $\sigma_a^2=\{0.005,0.05\}$.

Basic scaling:

Mutational variance: $V_m = 2L\mu\sigma_a^2 \simeq 10^{-4}$ to 10^{-3}

Environmental variance: $V_E = 0$

Heritability: $h^2 = \frac{V_A}{V_P} = 1$

Continuous loci: one locus spans a whole sequence block, e.g. >1kb, then $\mu \geq 10^{-4}$, which allows for the following scaling: $\sigma_a^2 \simeq 1/2L$ to 10/2L to reach $V_m \simeq 10^{-4}$ to 10^{-3} . Thus for L=100, $\sigma_a^2=\{0.005,0.05\}$.

<u>Diallelic loci:</u> one locus is a nucleotide (SNP), then $\mu \simeq 10^{-8}$ to 10^{-6} . Remembering that for additive effects $\pm a$ (or scaled $\{0,2a\}$), $\sigma_a^2 \simeq 2a^2$, then for $\mu = 10^{-6} \longmapsto a \simeq \sqrt{10^2/2L}$ to $\sqrt{10^3/2L}$, which for L = 10000 would give $a \sim \in [0.07, 0.22]$.

Further scaling:

Mutational variance: $V_m = 2L\mu\sigma_a^2 \simeq 10^{-4}$

Gaussian model: assumes many mutations of small effects, for instance $\mu = 10^{-3}$ and $\sigma_a^2 = 0.001$ for L = 100 (Lande).

House-of-Cards model: assumes few mutations of larger effects, for

instance $\mu = 10^{-5}$ and $\sigma_a^2 = 0.1$ for L = 100 (Turelli).

Further scaling:

Mutational variance: $V_m = 2L\mu\sigma_a^2 \simeq 10^{-4}$

Gaussian model: assumes many mutations of small effects, for instance $\mu = 10^{-3}$ and $\sigma_a^2 = 0.001$ for L = 100 (Lande).

House-of-Cards model: assumes few mutations of larger effects, for instance $\mu = 10^{-5}$ and $\sigma_a^2 = 0.1$ for L = 100 (Turelli).

 \Rightarrow It is recommended to match the House-of-Card model rather than the Gaussian model.

Validation of quant trait

Expectations:

mutation-drift equilibrium all models:

$$2V_{\rm m}N_{\rm e}$$

mutation-(drift)-selection equilibrium: depends on mutational model

Gaussian model: no drift

$$2L\sqrt{\mu\sigma_a^2V_S}$$

House-of-Cards model: with drift

$$\frac{2V_{\rm m}N_{\rm e}}{1+N_{\rm e}\sigma_{\rm a}^2/V_{\rm S}}$$

14/23

 \Rightarrow V_S is the *inverse* of the strength of stabilizing selection.

Validation of quant trait

Expectations:

mutation-drift equilibrium all models:

$$2V_{\rm m}N_{\rm e}$$

mutation-(drift)-selection equilibrium: depends on mutational model

Gaussian model: no drift

$$2L\sqrt{\mu\sigma_a^2V_S}$$

House-of-Cards model: with drift

$$\frac{2V_{\rm m}N_{\rm e}}{1+N_{\rm e}\sigma_{\rm a}^2/V_{\rm S}}$$

14/23

 \Rightarrow V_S is the *inverse* of the strength of stabilizing selection.

 \Rightarrow The stochastic House-of-Card expectation is more general than the Gaussian model.

The Gaussian model:

$$W(z_i) = exp[-\frac{(z_i - \theta_j)^2}{2\omega^2}],$$

with z_i the phenotypic value of individual i, θ_i the phenotypic optimum in patch i, ω^2 the width (variance) of the selection surface. Note that $V_S = \omega^2 + V_E$. The strength of selection is *inversely* proportional to ω^2 (V_S).

The Gaussian model:

$$W(z_i) = exp[-\frac{(z_i - \theta_j)^2}{2\omega^2}],$$

with z_i the phenotypic value of individual i, θ_j the phenotypic *optimum* in patch j, ω^2 the width (variance) of the selection surface. Note that $V_S = \omega^2 + V_E$. The *strength* of selection is *inversely* proportional to ω^2 (V_S).

 With this model of stabilizing selection on an optimum trait value, we can simulate local adaptation within a patch.

The Gaussian model:

$$W(z_i) = exp[-\frac{(z_i - \theta_j)^2}{2\omega^2}],$$

with z_i the phenotypic value of individual i, θ_j the phenotypic *optimum* in patch j, ω^2 the width (variance) of the selection surface. Note that $V_S = \omega^2 + V_E$. The *strength* of selection is *inversely* proportional to ω^2 (V_S).

- With this model of stabilizing selection on an optimum trait value, we can simulate local adaptation within a patch.
- By setting different optimum values in different patches, we can also simulate adaptation to variable environments.

The Gaussian model:

$$W(z_i) = exp[-\frac{(z_i - \theta_j)^2}{2\omega^2}],$$

with z_i the phenotypic value of individual i, θ_j the phenotypic *optimum* in patch j, ω^2 the width (variance) of the selection surface. Note that $V_S = \omega^2 + V_E$. The *strength* of selection is *inversely* proportional to ω^2 (V_S).

- With this model of stabilizing selection on an optimum trait value, we can simulate local adaptation within a patch.
- By setting different optimum values in different patches, we can also simulate adaptation to variable environments.
- We can also vary the optimum values through time to simulate <u>adaptation to changing</u> environmental conditions.

The Gaussian model:

$$W(z_i) = exp[-\frac{(z_i - \theta_j)^2}{2\omega^2}],$$

with z_i the phenotypic value of individual i, θ_j the phenotypic *optimum* in patch j, ω^2 the width (variance) of the selection surface. Note that $V_S = \omega^2 + V_E$. The *strength* of selection is *inversely* proportional to ω^2 (V_S).

- With this model of stabilizing selection on an optimum trait value, we can simulate local adaptation within a patch.
- By setting different optimum values in different patches, we can also simulate adaptation to variable environments.
- We can also vary the optimum values through time to simulate <u>adaptation to changing</u> environmental conditions.
- Nemo can model adaptation to many climatic conditions via selection on many traits.

Practice: basic models for validation

- 1 Mutation-drift model in one WF pop:
 - Re-use previous simulation file for a single WF pop without selection.
 - Replace the ntrl trait parameter with those for the quant trait.

• Make multiple replicates and check that stat adlt.q1.Va equilibrates around the neutral expectation of $V_A = 2V_m N_e$.

Practice: basic models for validation

- 2 Mutation-selection-drift model in one WF pop:
- Add selection parameters to the previous simulation:

• Make multiple replicates and check that stat adlt.q1.Va equilibrates around the HoC expectation of $V_A = 2 V_m N_e / (1 + N_e \sigma_a^2 / V_S)$, where V_S is given by selection_variance, and σ_a^2 by quanti_mutation_variance.

Exercise 1: local adaptation with migration on a gradient

- 1 Build a lattice model with gradual variation of local conditions
 - Create a 10x10 lattice with patch of size = 100, range = 1, border = absorbing, rate = 0.001.
 - Local optimum trait value increases gradually from left to right, column-wise.
 - Initialize the trait so that patches start at their optimum (quanti_init LCE).

same with quanti_init_trait_values

19/23

• Set $V_S = 10$ in all patches.

Exercise 1: local adaptation with migration on a gradient

- 1 Monitor the demography and local adaptation
 - Run 5000 generations.
 - Population model in non-WF (demographic stochasticity). Specify mean_fecundity
 ≥ 3.
 - Record patch sizes, mean trait and fitness values within patches, after selection but before dispersal. Adjust the life cycle accordingly.
 - Record patch state every 100 generations. Record within patch size, mean fitness and trait values, V_A and global quant stats.
- Show how population density, mean fitness and trait values (=local adaptation) vary with the dispersal_rate = 0.001 ... 0.1 across the whole range. Plot spatial variation of those stats.

Exercise 2: persistence on a shifting gradient

- Implement a constant shift of the gradient over time
- Use parameter selection_rate_environmental_change.
- Do a burn-in of 5000 generations before starting the shift for 5000 more generations.
- Monitor population density and persistence across the range. Do all population persists? How does persistence depend on the rate of change, the migration rate and the additive variance?

Exercise 3: range expansion on a gradient

And the genetics of adaptation

- 3 Create a model of range expansion on the grid
 - Run 10000 generations.
- Run a burn-in of 5000 generation in the first habitat with $\theta = 0$. The other habitats are empty.
- ⇒ use a temporal argument to change patch sizes @generation 5000

```
Initialize K=100 in the first column and K=0 otherwise generations 10000 patch_capacity (@g0 {{rep(q(c(100,rep(0,9))))}}}, @g5000 100)
```

Model di-allelic loci on a genetic map:

```
quant trait
quanti_trait 1
quanti_loci 100
quanti_mutation_rate 1e-4
quanti_allele_model diallelic_HC
quanti_allele_value 0.1
quanti_random_genetic_map {{rep(10,5)}} #5 chromosomes 10cM each
quanti_genetic_map_resolution 0.1 #min rec rate = 1e-3
quanti_init_model 2 # "polarized" loci, mean trait=0
```

Exercise 3: range expansion on a gradient

And the genetics of adaptation (continued)

Save the allele frequencies at the end of the simulation for further analyses.

- Monitor expansion and local adaptation across the range.
- Find loci which show a cline in allele frequency across habitats.

