霍尔效应及磁电阻测量

院 系: 自动化系

班 级: 自35班

学生姓名: 夏弘宇

学 号: 2023011004

组 号: 单三晚 L

座 位 号: _____04

目录

1	实验目的	2
2	实验仪器	2
3	实验原理	2
	3.1 霍尔效应	2
	3.1.1 基本物理机制	2
	3.1.2 半导体材料的修正	2
	3.2 霍尔效应的副效应及消除方法	3
	3.3 磁电阻效应	3
	3.3.1 物理机制	3
	3.3.2 正常磁电阻特性	3
4	实验内容及步骤	4
5	数据处理	4
	5.1 霍尔片参数测量	4
	5.2 判断霍尔片载流子类型	6
	5.3 电磁铁磁场标定	7
	5.4 磁场空间分布测量	8
	5.5 测量霍尔元件的载流子迁移率 μ	8
	5.6 磁电阻特性测量	9
6	实验总结	10
7	原始数据	10

1 实验目的

- 1. 了解霍尔效应的产生原理以及副效应的产生原理;
- 2. 掌握霍尔系数的测量方法, 学习消除霍尔副效应的实验方法;
- 3. 研究半导体材料的电阻值随磁场的变化规律。

2 实验仪器

- 霍尔效应实验仪及测试仪
- 数字万用表
- 导线

3 实验原理

3.1 霍尔效应

3.1.1 基本物理机制

霍尔效应由 Edwin Hall 于 1879 年发现。如图 1 所示,在长方形半导体薄片沿 x 轴方向通入工作电流 I,同时在 z 轴方向施加磁场 B 时,载流子受到洛伦兹力作用发生偏转,导致 y 轴方向 1、2 两点间产生电势差 U_H ,这种现象称为霍尔效应。

载流子受力平衡时满足:

$$f_B = f_E \Rightarrow evB = eE = e\frac{U_H}{b} \tag{1}$$

霍尔电压表达式为:

$$U_H = vbB \tag{2}$$

结合电流表达式 I = nevbd, 可得:

$$U_H = \frac{IB}{ned} = R_H \frac{IB}{d} = K_H IB \tag{3}$$

其中关键参数定义为:

$$R_H = \frac{1}{ne}$$
 (霍尔系数,单位: m³/C) (4)

$$K_H = \frac{R_H}{d}$$
 (霍尔灵敏度,单位: V/(A·T)) (5)

3.1.2 半导体材料的修正

对于半导体材料, 需引入霍尔因子 A 修正:

$$R_H = A \frac{1}{ne} \tag{6}$$

其中 A 与散射机制相关:

- 声子散射主导时: $A = 3\pi/8 \approx 1.18$
- 实验简化处理: 取 $A \approx 1$

3.2 霍尔效应的副效应及消除方法

实际测量中存在的副效应及其特性如表 1 所示:

表 1: 霍尔效应副效应特性总结

符号依赖关系	数量级比例
$I \cdot B$	$10^{-3}U_{H}$
B	$10^{-2}U_{H}$
B	$10^{-3}U_{H}$
I	$10^{-1}U_{H}$
	<i>I</i> ⋅ <i>B B</i>

实验中通过组合测量消除副效应:

$$U_H = \frac{1}{4} \left[U(+B, +I) - U(+B, -I) + U(-B, -I) - U(-B, +I) \right]$$
 (7)

其中各分量满足:

$$U_1(+B, +I) = +U_H + U_E + U_N + U_R + U_0 + U_S$$

$$U_2(+B, -I) = -U_H - U_E + U_N + U_R - U_0 + U_S$$

$$U_3(-B, -I) = +U_H - U_E - U_N - U_R - U_0 + U_S$$

$$U_4(-B, +I) = -U_H + U_E - U_N - U_R + U_0 + U_S$$

该组合可完全消除 U_N 、 U_R 和 U_0 , 保留 U_H 与 U_E , 而 U_E 比 U_H 小三个数量级, 因此可以忽略。

3.3 磁电阻效应

3.3.1 物理机制

磁电阻效应表现为材料电阻随磁场变化的现象, 主要机制包括:

- 载流子路径弯曲导致有效导电面积减小
- 自旋相关散射(巨磁电阻效应)
- 量子隧穿效应 (隧道磁电阻)

3.3.2 正常磁电阻特性

实验研究锑化铟材料的正常磁电阻效应, 其特性满足:

$$\frac{\Delta R}{R(0)} = \begin{cases} \alpha B^2 & (B < B_c) \\ \beta B + b & (B \ge B_c) \end{cases} \tag{8}$$

临界磁场 B_c 由材料特性决定,实验中 $B_c \approx 120 \text{mT}$ 。推荐测量条件:

- 电流端恒流: $I_{CD} = 1.50 \text{mA}$
- 电压端短路: $V_{AB}=0$

4 实验内容及步骤

- 1. 安装实验电路,使用位置调整机构使霍尔片位于磁隙中心位置后开始实验。
- 2. 测量霍尔片输出电压 $U_{\rm H}$ 与输入电流 I 的关系曲线。其中,电流源的工作电流 $I_{\rm S}$ 的变化范围为 $2\,{\rm mA}\sim 8\,{\rm mA}$,测量点间隔 $1\,{\rm mA}$,每次均测量 $U_{\rm 1}$ (+B, + $I_{\rm H}$)、 $U_{\rm 2}$ (+B, - $I_{\rm H}$)、 $U_{\rm 3}$ (-B, - $I_{\rm H}$)、 $U_{\rm 4}$ (-B, + $I_{\rm H}$) 四组数据。
- 3. 判断霍尔片载流子的类型。
- 4. 标定激励电流 $I_{\rm M}$ 与磁极间磁场 B 的关系。其中,工作电流 $I_{\rm S}=4.00\,{\rm mA}$,励磁电流 $I_{\rm M}=0\sim1000\,{\rm mA}$ 。
- 5. 测定磁极间隙水平方向磁场的分布曲线 $B\sim x$ 。 $(I_{\rm M}=500\,{
 m mA}\,,\;I_{\rm S}=4.00\,{
 m mA})$
- 6. 测量霍尔片中载流子的迁移率 μ。
- 7. 测量磁阻元件的磁阻特性曲线, 即 $\Delta R/R(0)$ 随磁场的变化规律。

5 数据处理

5.1 霍尔片参数测量

表 2: 霍尔片基本参数及工作条件

L (µm)	b (µm)	d (µm)	$I_M (\mathrm{mA})$	B (mT)	x (mm)	y (mm)
300	100	3	500	122.9	26.5	15.4

表 3: 不同激励电流下的霍尔电压测量

$I_H \text{ (mA)}$	2	3	4	5	6	7	8
$U_1(+B,+I) \text{ (mV)}$	-41.8	-62.5	-83.4	-104.2	-125.0	-145.7	-166.4
$U_2(+B,-I) \text{ (mV)}$	41.9	62.6	83.4	104.3	125.1	145.9	166.6
$U_3(-B,-I) \text{ (mV)}$	-43.0	-64.4	-86.0	-107.4	-129.0	-150.4	-171.8
$U_4(-B,+I) \text{ (mV)}$	43.1	64.5	86.0	107.5	129.1	150.5	171.9
$U_H \text{ (mV)}$	-42.45	-63.50	-84.70	-105.85	-127.05	-148.13	-169.18

其中, U_H 的计算参考

$$U_H = \frac{1}{4} \left[U(+B, +I) - U(+B, -I) + U(-B, -I) - U(-B, +I) \right]$$
(9)

线性回归分析

通过最小二乘法拟合霍尔电压 U_H 与工作电流 I_H 的关系 (图 1), 得到:

$$U_H = -21.135 I_H + 0.024 \quad (R^2 = 0.999998731)$$

图 1: 霍尔电压-电流特性曲线 $(I_M = 500 \,\mathrm{mA})$

灵敏度计算

取标定磁场 $B_0 = 0.1229\,\mathrm{T}$, 霍尔灵敏度为:

$$K_H = \frac{\partial U_H}{\partial I_H} \cdot \frac{1}{B_0} = \frac{-21.135 \times 10^{-3}}{0.1229} = -171.97 \,\text{V/(A \cdot T)}$$

霍尔系数与载流子浓度

已知霍尔片厚度 $d = 3 \mu m$:

$$R_H = K_H \cdot d = -171.97 \times 3 \times 10^{-6} = -5.159 \times 10^{-4} \,\mathrm{m}^3/\mathrm{C}$$

$$n = \frac{1}{|R_H|e} = \frac{1}{5.159 \times 10^{-4} \times 1.602 \times 10^{-19}} = 1.2115 \times 10^{22} \,\mathrm{m}^{-3}$$

• 斜率标准误差:

$$s_k = t_p(n-2) \cdot |k| \cdot \sqrt{\frac{r^{-2} - 1}{n-2}} = 2.571 \times 21.135 \times 0.000503 = 0.027 \,\text{V/A}$$

• 灵敏度不确定度:

$$\Delta K_H = \frac{s_k}{B_0} = \frac{0.027}{0.1229} = 0.22 \,\text{V/(A \cdot T)}$$

• 霍尔系数不确定度:

$$\Delta R_H = \Delta K_H \cdot d = 0.22 \times 3 \times 10^{-6} = 6.6 \times 10^{-7} \,\mathrm{m}^3/\mathrm{C}$$

• 载流子浓度不确定度:

$$\Delta n = n \cdot \frac{\Delta R_H}{R_H} = 1.211 \times 10^{22} \times \frac{6.6 \times 10^{-7}}{5.159 \times 10^{-4}} = 1.54 \times 10^{19} \,\mathrm{m}^{-3}$$

清华大学 5 物理实验 B(2)

结论

$$K_H = (-171.97 \pm 0.22) \text{ V/(A} \cdot \text{T})$$

 $R_H = (-5.159 \pm 0.007) \times 10^{-4} \text{m}^3/\text{C}$
 $n = (1.2115 \pm 0.0015) \times 10^{22} \text{m}^{-3}$

5.2 判断霍尔片载流子类型

霍尔片载流子应为电子,霍尔片材质为 N 型半导体。

由图 2 (课前预习题图) 可知,我们在测定 U_H 时,正极接在 2 端。假设载流子为电子,电子从电极 4 向电极 3 运动 (对应电流方向 3 \rightarrow 4),根据左手定则,在垂直磁场作用下载流子将受到电极 1 指向电极 2 方向的洛伦兹力 $F_B = -e(\mathbf{v} \times \mathbf{B})$,导致电子在霍尔片 2 端聚集,产生 $U_H = V_2 - V_1 < 0$ 的霍尔电压;实验观测结果与假设相符,因此判定该霍尔片载流子为电子,材料为 N 型半导体。

上面是官方的解释,我并不喜欢这么想,其实不如把电流看成一个整体, $F = I(\mathbf{l} \times \mathbf{B})$,也就是电流会向电极 2 偏移,则载流子带电为正就会使得 $U_H > 0$,载流子带电为负就会使得 $U_H < 0$ 。

图 2: 载流子判断示意图

5.3 电磁铁磁场标定

表 4: 磁感应强度与励磁电流关系完整数据 $(I_H=4.00\,\mathrm{mA})$

参数		霍尔电压测	量值 (mV)		U_H (mV)	B (T)
220	$U_1(+B,+I)$	$U_2(+B,-I)$	$U_3(-B,-I)$	$U_4(-B,+I)$		()
$I_M = 0 \mathrm{mA}$	1.0	-1.0	-0.7	0.7	0.15	-2.18×10^{-4}
$I_M = 100 \mathrm{mA}$	-15.6	15.7	-18.2	17.9	-16.85	2.45×10^{-2}
$I_M = 200\mathrm{mA}$	-32.6	32.6	-35.1	35.2	-33.88	4.92×10^{-2}
$I_M = 300 \mathrm{mA}$	-49.2	49.2	-52.1	52.1	-50.65	7.36×10^{-2}
$I_M = 400 \mathrm{mA}$	-66.3	66.3	-69.0	69.1	-67.68	9.84×10^{-2}
$I_M = 500 \mathrm{mA}$	-83.3	83.4	-85.9	86.0	-84.65	1.23×10^{-1}
$I_M = 600 \mathrm{mA}$	-99.6	99.7	-102.7	102.8	-101.20	1.47×10^{-1}
$I_M=700\mathrm{mA}$	-117.0	117.1	-119.6	119.7	-118.35	1.72×10^{-1}
$I_M = 800 \mathrm{mA}$	-133.3	133.4	-136.3	136.4	-134.85	1.96×10^{-1}
$I_M=900\mathrm{mA}$	-149.8	150.0	-152.9	153.1	-151.45	2.20×10^{-1}
$I_M=1000\mathrm{mA}$	-166.6	166.8	-169.4	169.6	-168.10	2.44×10^{-1}

计算公式:

$$U_H = \frac{1}{4}(U_1 - U_2 + U_3 - U_4)$$

$$B = \frac{U_H}{K_H I_H} = \frac{U_H}{-171.97 \times 4 \times 10^{-3}} \quad (K_H \not = \dot{\mathbb{C}} \colon V/(\mathbf{A} \cdot \mathbf{T}))$$

图 3: 磁感应强度 励磁电流关系图线

线性拟合所得直线为 $B=0.245I_M+0.231(mT)$ 相关系数 $R^2=0.999981$,表明线性相关系数强,与理论分析相符。

5.4 磁场空间分布测量

表 5: 磁场沿 x 轴分布 $(I_H = 4 \text{ mA}, I_M = 500 \text{ mA}, y = 15.4 \text{ mm})$

x (mm)	0	2.5	5	7.5	10	12.5	15	17.5	20	25	30	35	40	45	47.5	50
U_H (mV)	-38.60	-51.40	-68.55	-80.73	-83.90	-84.38	-84.45	-84.50	-84.55	-84.55	-84.65	-84.68	-84.45	-74.85	-58.00	-43.15

图 4: 磁场分布

磁感应强度在 x 轴上的分布呈现两边低,中间匀强的特点,由此估计在水平方向上磁隙中间匀强磁场的分布范围: [12.5,40]mm

5.5 测量霍尔元件的载流子迁移率 µ

表 6: 电流-电压特性测量数据

I (mA)	0	1	2	3	4	5	6	7	8	9
U(V)	0.001	0.729	1.458	2.2	2.946	3.699	4.474	5.275	6.094	6.946

公式推导:

$$E = U/l, v = \frac{K_H I}{b}, \mu = \frac{v}{E} = \frac{K_H I l}{bU}$$

在这个公式中,I/U 这部分可以单独拿出来,用线性回归得出来: $slope = 1.301 \times 10^{-3}$

图 5: I-l 特性线性回归

$$\mu = \frac{v}{E} = \frac{|K_H|l}{b} * \frac{I}{U} = \frac{171.97 * 300}{100} * 1.301 \times 10^{-3} = 0.671 m^2 / (V \cdot s)$$

5.6 磁电阻特性测量

表 7: 磁阻特性测量数据 ($I_{CD} = 1.5 \,\mathrm{mA}, x = 40 \,\mathrm{mm}, y = 15.4 \,\mathrm{mm}$)

I_M (mA)		测量与记	算结果	
IM (IIIA)	B (mT)	$R(B) (\Omega)$	$\Delta R/R(0)$	拟合区域
0	0.10	340.73	0.0000	
50	12.33	345.60	0.0143	
100	24.57	359.13	0.0540	弱磁场区
150	36.80	379.93	0.1150	
200	49.04	406.27	0.1923	
250	61.27	436.07	0.2798	
300	73.51	467.53	0.3721	
400	97.98	518.73	0.5224	
500	122.45	548.27	0.6091	
600	146.92	572.87	0.6813	
700	171.39	595.60	0.7480	强磁场区
800	195.85	616.67	0.8098	7里燃物区
900	220.32	637.67	0.8715	
1000	244.79	658.53	0.9327	

其中, UCD 为万用表直接测得电压值, 相关参数计算公式为:

$$R(B) = \frac{U_{CD}}{I_{CD}} = \frac{U_{CD}}{1.5 \text{ mA}}$$

$$\Delta R/R(0) = \frac{R(B) - R(0)}{R(0)} \quad (R(0) = 340.73 \,\Omega)$$

$$B = 0.245 I_M + 0.231 \quad (\text{mT})$$

图 6: 磁阻特性曲线 $(\Delta R/R(0) \sim B$ 关系)

根据实验数据分析:

- 弱磁场区 $(B \le 60 \,\mathrm{mT})$: 前 5 个数据点符合 $\Delta R/R(0) \propto B^2$, 二次拟合得 $R^2 = 0.9975$
- 强磁场区 $(B \ge 120\,\mathrm{mT})$: 后 6 个数据点符合 $\Delta R/R(0)$ 与 B 成线性关系,线性拟合得 $R^2=0.9989$

6 实验总结

本次实验总体比较顺利,电路搭建有明确的指示,仪器读数也特别方便,助教指导也很贴心。 总体而言,本次实验中我有如下收获:

- 1. 重温了霍尔效应,了解了其副效应与磁电阻效应,并在实验中加深了认知。
- 2. 加深了物理实验中误差消除方法的认知,通过测正负情况下的值从而抵消!
- 3. 在测迁移率的过程中,万用表显示的电压值突然特别大,在助教的帮助下,简化了电路连接, 上述问题就解决了。所以尽可能简单的电路可以减少问题的出现。

最后,再次感谢助教的悉心指导!

7 原始数据

清华大学 10 物理实验 B(2)

2025 春物理实验 B(2)课程资料

附录:实验测量数据记录参考表格

实验回目: 查尔数方及森电图附置

姓名: **夏子** , 学母20130 | 100 4 , 实验组号: 单三党 L , 实验台号: 04 , 实验日期 2025 OF L

一、润量程尔片的参数:

ая片尺寸: 长 L=300 µm, 宽 b= 100 µm, 厚 d= 3 µm

憲助电流 $I_{\rm M}=500$ mA,对应碰场 B=122.9mT, 霍尔片所在相对位置: x=26.5 mm, y=15.4 mm

			1				
I _H /mA	2.00	3.00	4.00	5.00	6.00	7.00	8.00
$U_{\mathfrak{I}}(+B,+I)$	-41.8	-62.5	-83.4	-104.2	-125.0	-145.7	-166.4
$U_2(+B, -1)$	41.9	62.6	83.4	104.3	125.	145.9	166.6
$U_3(-B,-I)$	-43.0	-64.4	-86.0	-107.4	-129-0	-150.4	-171.8
$U_4(-B, +I)$	43.1	64.5	86-0	107.5	129-1	150.5	171.9
$U_{\rm B}$ mV	-42.45	-63.5	-84.7	-105.8J	-127.05	-148.125	-169.175

二、霍尔片的载流子类型为: 人型 (报告中请面图解释)

三、标定电磁铁磁隙同磁场

霍尔片工作电流 In= 4.00 mA

		11.10									
$I_{\rm M}/{ m mA}$	0	100	200	300	400	500	600	700	800	900	1000
$U_1(+B,+I)$	1.0	-15.6	-32.6	-49.2	-66.3	-83.3	- 99·b	117.0	-1333	-149.8	-166.6
$U_2(+B,-I)$	-1.0	15.7	326	49.2	66.}	83.4	99.7	117.	133.4	150.0	166.8
U ₃ (-B,-I)	-0.7	-18.2	-35.	-52.	-69.0	-85.9	-102.7	-119.6	-136.3	-152.9	
$U_4(-B,+I)$	0.7	179	35.7	51.	69.	86.0	1028	119.7	136.4	153-1	169.6
<i>U</i> _F /mV	0.15	-16.83	-33.875	-50.65	-67.60s	-84.65	-(01.2	-118.35	-134.83	-151.45	-168-1

*四、测定磁极间隙中磁场分布 B~x

														-	,	
x/mm	0.0	2.5	5.0	7.5	10.0	12.5	15.0	17.5	20.0	25.0	30.0	35.0	40.0	45.0	47.5	50.0
$U_{\mathfrak{l}}(+B,+I)$	- 37.5	-49.9	-67.2	-79.4	-82.6	-850	-83-	-83,7	1-832	-82.2	-83.3	-83.3	-83.1	-73.5	-56.7	-41-7
U ₂ (+B,-I)	37.5	50.	67.3	79.5	82.6	83-	83.2	83.2	83.3	83.3	83.4	83.4	83.2	73.6	56.7	41.9
$U_3(-B,-I)$	- 39.7	-52.7	-698	-82,0	-85.7	.28-	8 5.7	85.8	-85.8	-85-8	-85.9	-86.0	-85.	-76		-445
$U_4(-B,+I)$	39-7	52.9	69.9	82.0	82.5	85:	85.8	82.8	85.9	85.9	86.0	26.0	8.28	76.2	59.3	44.5
U _H /mV	-38.6	-51.4	-68.53	-90.78	-83.9	-84.32	-84.48	-845	8455	-845	-84.65	-84.675	84.45	-×2	82-2	-43.15

2025 春物理实验 B(2)课程资料

*五、霍尔片载流子迁移率μ测量

六、磁电阻特性测量 $B\sim\Delta R/R(0)$

磁阻片工作电流: I_{CD} = <u>1.50</u> mA, A、B 端是否短路? 是 ✓ 否 ☐ 磁阻片所在相对位置: x = <u>40.0</u> mm, y = <u>15.4</u> mm 数字万用表量程: <u>2</u> ✓

I _M /mA	0	50	100	150	200	250	300	350	400	500	600	700	800	900	1000
U _{CD} /V	0.511	0,5184	0,5387	0.5699	0.6094	o. 654/	0.7013	0.7438	0.718]	0.8224	0.8593	089H	0.9290	0.9565	0.9878
B/mT	0.10	,		36.30				85.74	1000				185.85		
R(B)/Ω	3%.73	345.60	359.13	379.93	406.27	436.07	467.53	495.87	518.73	548.27	572.87	595.60	616,67	637.67	658.53
AD/D(O)	1 2 7 5	1		10.00											0.9327

吴飘鸠 2025、5.14