Exercice 57: File aléatoire

57.1) Oui ex: si on fait p,=1, pz=0, pz=0

57.2). 6 états possible :
$$\begin{pmatrix} a \\ b \end{pmatrix}$$
, $\begin{pmatrix} a \\ c \\ b \end{pmatrix}$, $\begin{pmatrix} c \\ a \\ c \end{pmatrix}$, $\begin{pmatrix} c \\ a \\ c \end{pmatrix}$, $\begin{pmatrix} c \\ b \\ a \end{pmatrix}$, $\begin{pmatrix} c \\ b \\ a \end{pmatrix}$

. c'est une draine de Markou car l'état suivant ne dépend que de l'état où on est · périodiq de période 3

matrice de transition:

_	١	2	3	Ц	2	6
ſ	P 3	P 1	0	Pz	0	0
2	0	P 3	۲,	0	82	0
3	P,	0	P ₃	0	0	P ₂
Ų	9ء	0	0	6 3	0	۴,
S	0	<u>و</u> ء	0	6,	83	0
6	P3 0 P1 P2 0	0	6 2	0	۴,	P3

- 57.4), iRRéductible
 - · apériodiq
 - . états récurrents

57.5) Symétrie: \hat{m} proba sortante, \hat{m} proba entrante et \hat{m} proba de baceler danc proba stationnaire = $(\frac{1}{6}, \frac{1}{6})$

57.6)
$$p_3^3 + p_1^3 + p_2^2 p_3 + p_3 p_2^2 + p_2 p_3 p_2$$

= $p_3^3 + p_1^3 + 3 (p_2^2 p_3)$

Exercice 58: Mono-Bestiole aléatoire

58.1) état suivant dépend que de l'état où an est (état précédent dépend que de la transition)

	0	١	2	3
0	L	0	R	0
ı	L	0	0	R
2	L	0	0	A
3	0	L	0	R

58.3) irréductible et apériodit donc converge

symétrie sur les extrémités:

$$q_0 = q_3$$
 et $q_1 = q_2$ si $L = R$

$$\begin{cases} \alpha_0 L + \alpha_1 L + \alpha_2 L = \alpha_0 \\ \alpha_3 L = \alpha_1 \end{cases} \tag{2}$$

$$\alpha_3 L = \alpha_1$$
 (2)

$$\alpha_0 R = \alpha_2$$
 (3)

$$\alpha_1 R + \alpha_2 R + \alpha_3 R = \alpha_3$$
 (4)

$$\begin{cases} \alpha_3 & 2 & \alpha_1 \\ \alpha_0 & R = \alpha_2 \\ \alpha_1 & R + \alpha_2 & R + \alpha_3 & R = \alpha_3 \\ \alpha_0 + \alpha_1 + \alpha_2 + \alpha_3 & = 0 \end{cases}$$

$$(3)$$

(1)
$$\rightarrow \alpha_0 L + \alpha_3 L^2 + \alpha_0 RL = \alpha_0$$

 $\langle - \rangle \alpha_3 = \alpha_0 \left(\frac{1 - L - RL}{\sqrt{2}} \right)$

$$(L) \rightarrow \alpha_0 + \alpha_0 \left(\frac{1-L-AL}{L}\right) + \alpha_0 R + \alpha_0 \left(\frac{1-L-AL}{L^2}\right) = 1$$

$$(=> \alpha_0 \left(\frac{1+\frac{1-L-AL}{L}}{L} + \frac{1+\frac{1-L-AL}{L^2}}{L^2}\right) = 1$$

$$(=> \alpha_0 \left(\frac{L^2 + L - L^2 - BL^2 + BL^2 + 1 - L - RL}{L^2}\right) = L^2$$

$$(=> \alpha_0 \left(\frac{1-RL}{L}\right) = L^2$$

$$(=> \alpha_0 \left(\frac{1-RL}{L}\right) = L^2$$

$$(3) \rightarrow \alpha_2 = \frac{L^2 R}{1 - RL}$$

par symétrie:
$$\alpha_3 = \frac{R^2}{1-LR}$$
 et $\alpha_1 = \frac{R^2L}{1-LR}$

Exercice 61: Vanes aléatoires

Noir: $X_n = Nb_n$ $N - X_n$

Blanc: Yn = N-Xn Xn

61.2)

		B: 66 i	B: 60 N-i
A : bb	N ~i	; (N-i) N ²	(N-i)2 N2
A: 6n	<u>``</u>	12 N ²	(N-i) i N ²

car event ingep

$$\rho_2 = \frac{i^2}{N^2}$$

61.3) irréductible

 b_{n} , n > (j-i), $p_{n}(i,j) > 0$

61.4.1) $\pi(i) = K(C_N^i)^2$ OA $C_N^i = C_N^{N-i}$

CNCN= n6 config possible à l'état i donc it (i) donne propo d'être pare l'état i

61. (4.2)
$$P(X_{n+2}=i) = \sum_{j=1}^{N} P(X_{n+1}=i | X_{n}=j) P(X_{n}=j)$$

$$= P(X_{n+1}=i | X_{n}=i-1) P(X_{n}=i-1) + P(X_{n+1}=i | X_{n}=i) P(X_{n}=j) + P(X_{n+1}=i | X_{n}=i+1) P(X_{n}=i+1)$$

$$= P(X_{n}+1=i | X_{n}=i+1) P(X_{n}=i+1)$$

$$= P(X_{n}+1=i | X_{n}=i+1) P(X_{n}=i+1)$$

FIN