Sliding Window Protocol | Flow Control

Computer Networks

Flow Control Protocols-

In computer networking, there are various flow control protocols-

In this article, we will discuss about sliding window protocol.

Sliding Window Protocol-

- Sliding window protocol is a flow control protocol.
- It allows the sender to send multiple frames before needing the acknowledgements.
- Sender slides its window on receiving the acknowledgements for the sent frames.
- This allows the sender to send more frames.
- It is called so because it involves sliding of sender's window.

Maximum number of frames that sender can send without acknowledgement

= Sender window size

Optimal Window Size-

In a sliding window protocol, optimal sender window size = 1 + 2a

Derivation-

We know,

Free 60-Day Trial

Ad Collaborate with your t any location, on any device

Avaya Spaces

Sign Up

Efficiency (η) =
$$\frac{T_t}{T_t + 2 \times T_p}$$

To get 100% efficiency, we must have-

$$\eta = 1$$

$$T_t / (T_t + 2T_p) = 1$$

$$T_t = T_t + 2T_p$$

Thus,

- To get 100% efficiency, transmission time must be T_t + $2T_p$ instead of T_t
- This means sender must send the frames in waiting time too.
- Now, let us find the maximum number of frames that can be sent in time $T_t + 2T_p$.

We have-

Only on Mango TV

- \bullet In time T_t , sender sends one frame.
- Thus, In time T_t + $2T_p$, sender can send $(T_t$ + $2T_p)$ / T_t frames i.e. 1+2a frames.

Thus, to achieve 100% efficiency, window size of the sender must be 1+2a.

Required Sequence Numbers-

- Each sending frame has to be given a unique sequence number.
- Maximum number of frames that can be sent in a window = 1+2a.
- So, minimum number of sequence numbers required = 1+2a.

To have 1+2a sequence numbers,

Minimum number of bits required in sequence number field = $\lceil \log_2(1+2a) \rceil$

NOTE-

- When minimum number of bits is asked, we take the ceil.
- When maximum number of bits is asked, we take the floor.

Choosing a Window Size-

The size of the sender's window is bounded by-

1. Receiver's Ability-

- Receiver's ability to process the data bounds the sender window size.
- If receiver can not process the data fast, sender has to slow down and not transmit the frames too fast.

2. Sequence Number Field-

- Number of bits available in the sequence number field also bounds the sender window size.
- If sequence number field contains n bits, then 2ⁿ sequence numbers are possible.
- Thus, maximum number of frames that can be sent in one window = 2^n .

For n bits in sequence number field, Sender Window Size = $min (1+2a, 2^n)$

Implementations of Sliding Window Protocol-

The two well known implementations of sliding window protocol are-

- 1. Go back N Protocol
- 2. Selective Repeat Protocol

Efficiency-

Efficiency of any flow control protocol may be expressed as-

OR

OR

Example-

In <u>Stop and Wait ARQ</u>, sender window size = 1. Thus, Efficiency of Stop and Wait ARQ = 1 / 1+2a PRACTICE PROBLEMS BASED ON SLIDING WINDOW PROTOCOL-Problem-01: If transmission delay and propagation delay in a sliding window protocol are 1 msec and 49.5 msec respectively, then-1. What should be the sender window size to get the maximum efficiency? 2. What is the minimum number of bits required in the sequence number field? 3. If only 6 bits are reserved for sequence numbers, then what will be the efficiency? Solution-Given-• Transmission delay = 1 msec • Propagation delay = 49.5 msec Part-01: To get the maximum efficiency, sender window size = 1 + 2a $= 1 + 2 \times (T_p / T_t)$ $= 1 + 2 \times (49.5 \text{ msec} / 1 \text{ msec})$ $= 1 + 2 \times 49.5$ = 100 Thus, For maximum efficiency, sender window size = 100 Part-02:

Minimum number of bits required in the sequence number field

 $= [\log_2(1+2a)]$

 $= [\log_2(100)]$

= [6.8]

= 7

Thus,

Minimum number of bits required in the sequence number field = 7

Part-03:

If only 6 bits are reserved in the sequence number field, then-

Maximum sequence numbers possible = $2^6 = 64$

Efficiency
= Sender window size in the protocol / Optimal sender window size
= 64 / 100
= 0.64
= 64%
Problem-02:
If transmission delay and propagation delay in a sliding window protocol are 1 msec and 99.5 msec respectively, then-
 What should be the sender window size to get the maximum efficiency? What is the minimum number of bits required in the sequence number field? If only 7 bits are reserved for sequence numbers, then what will be the efficiency?
Solution-
Given-
Transmission delay = 1 msec
Propagation delay = 99.5 msec
<u>Part-01:</u>
To get the maximum efficiency, sender window size
= 1 + 2a
$= 1 + 2 \times (T_p / T_t)$
= 1 + 2 x (99.5 msec / 1 msec)
$= 1 + 2 \times 99.5$
= 200
Thus,
For maximum efficiency, sender window size = 200
<u>Part-02:</u>
Minimum number of bits required in the sequence number field
$= \lceil \log_2(1+2a) \rceil$
$= [\log_2(200)]$
= [7.64]
= 8
Thus,
Minimum number of bits required in the sequence number field = 8

Part-03:

Now,

If only 6 bits are reserved in the sequence number field, then-

Maximum sequence numbers possible = $2^7 = 128$

Now,

Efficiency

- = Sender window size in the protocol / Optimal sender window size
- = 128 / 200
- = 0.64

Free 60-Day Trial

Ad Collaborate with your t any location, on any device

Avaya Spaces

Sign Up

= 64%

To gain better understanding about sliding window protocol,

Watch this Video Lecture

Next Article- Practice Problems On Sliding Window Protocol

Get more notes and other study material of **Computer Networks**.

Watch video lectures by visiting our YouTube channel **LearnVidFun.**

Sliding Window TCP in Networking 3 Way Handshake Protocol | Practice | TCP Protocol | TCP Connection Problems

TCP Header | TCP Header Format | TCP Flags

Stop and Wait ARQ DNS | SMTP Vs | Go back N | SR

Protocol

POP3 | HTTP Vs

Flow Control Protocols |

Нур Tran | HT

FTP

Practice Problems