Modelling the fake news impact on the spreading of measles in the Italian commuting network

Life Data Epidemiology

Braghetto, Maniscalco, Schimmenti February 10, 2020

Outline

- 1 Introduction
- 2 A model for vaccination
- 3 Epidemic spreading
- 4 Fake news spreading
- 5 Simulation
- 6 Results
- **7** Conclusions

The research question

The starting point of this work are two facts:

- Fake news became a crucial factor into influencing people opinions even for delicate matters such as health.
- The percentage of people immunized for measles dropped in the last few years (Italy 2013-2016 -5% OECD).

We are gonna build a suitable model to describe the spreading of measles which can take into account the possibility of a varying vaccination propensity.

The model

The model

SIR with vaccination

$$\begin{split} \frac{dS}{dt} &= \lambda (1-x)N - \frac{\beta SI}{N} - \nu S \\ \frac{dI}{dt} &= \frac{\beta SI}{N} - \frac{\nu + \mu}{1 - \rho}I \\ \frac{dR}{dt} &= \lambda xN + \frac{\mu}{1 - \rho}I - \nu R \\ \frac{dN}{dt} &= (\lambda - \nu)N - \frac{\rho \nu}{1 - \rho}I \; . \end{split}$$

The parameters

- $\nu = (80 \times 365 \text{ days})^{-1} \text{ death rate}$
- \blacksquare $\mu = (14 \text{ days})^{-1} \text{ recovery rate}$
- lacksquare $x \in [0,1]$ fraction of vaccinated among the newborns
- $R_0 = 18$ basic reproductive ratio
- $\ \ \ \rho =$ 0.002 probability of death by disease factors
- $\beta = \frac{R_0(\mu+\nu)}{(1-\rho)} \approx 1.29 \text{ days}^{-1} \text{ transmissibility}$

Single patch simulations

Using Euler's method we simulated the differential equations above stated and by varying x (constant in time) we have that the infected number either dies out (x=1) or takes a damped oscillatory behaviour towards the endemic phase:

Phase diagram

Epidemic threshold

By varying x we found a family of curves describing the endemic status of the system; as in the basic SIR we have a phase transition between the disease-free and endemic phase however the transition point R_0^* depends on x in the following way:

$$R_0^* = \frac{1}{1-x}$$

Phase diagram

Figure: Portion of the phase diagram for the R_0 's we are interested.

Commuting network

- From the single patch SIR we move to a SIR with commuting mobility model.
- The commuting network was taken from ISTAT.
- The network originally described commuting between any two cities however we aggregated the ≈ 8000 cities from the same provincia (which are 110) to simplify the simulation.

Commuting network

Figure: The italian commuting network; each node is a provincia

Commuting network

Metapopulation equilibrium

$$\sigma_{ij}=$$
 leaving rate
$$\gamma=$$
 return rate
$$X_{ii}=rac{X_i}{1+\sigma_i/\gamma}\quad X_{ij}=rac{\sigma_{ij}X_i/\gamma}{1+\sigma_i/\gamma}\quad X_i=S_i,I_i,R_i$$

SIR on commuting network

SIR equations

$$\begin{aligned} \partial_t I_{ii} &= \phi_{ii} S_{ii}(t) - \frac{(\mu + \nu)}{1 - \rho} I_{ii}(t) \\ \partial_t I_{ij} &= \phi_{ij} S_{ij}(t) - \frac{(\mu + \nu)}{1 - \rho} I_{ij}(t) \\ \phi_{ij} &= \frac{\beta_j}{N_j^*} \left[I_{jj} + \sum_l I_{lj} \right] \forall i, j \end{aligned}$$

- The opinion network is an Erdős-Rényi random network with arbitrary p; we chose p to be either 0.7 or 1.0.
- Each node in the network corresponds to a *provincia*.
- The opinion dynamics are modeled using a modified version of the Deffuant model.
- The Deffuant model is modified by adding a stochastic part that changes randomly the opinion of a random subset of the nodes (impurities creation)

Random pairs of neighbour nodes are selected and their opinions updated:

Opinion update rules

$$x_i(t+1) = x_i(t) + f_{\mu}(x_i(t), x_j(t))$$

$$x_j(t+1) = x_j(t) + f_{\mu}(x_j(t), x_i(t))$$

Update policies

$$f_{\min}(x_i, x_j) = \Theta(|x_i - x_j| - \epsilon)\mu_D\left(\min(x_i, x_j) - x_i\right)$$

$$f_{\max}(x_i, x_j) = \Theta(|x_i - x_j| - \epsilon)\mu_D\left(\max(x_i, x_j) - x_i\right)$$

$$f_{\text{mean}}(x_i, x_j) = \Theta(|x_i - x_j| - \epsilon)\mu_D\left(\frac{x_i + x_j}{2} - x_i\right)$$

Min-policy: opinion exchange and a random change:

Simulation

- We fix the initial fraction of infected and recovered for each node (hence the susceptible).
- We distribute the initial population (for each compartment) among nodes according to the commuting network equilibrium equations.
- We fix the initial opinions for each node.
- For the same time period we both evolve the opinions and the epidemics.
- Effectively, the opinions act as an external stochastic time-dependent force on the SIR model.

Simulation

Fixed simulation parameters

ϵ	0.1
μ_{D}	0.01
<i>x</i> ₀	$[0, 10^{-5}]$
r_0	[0.9, 0.95]
<i>S</i> ₀	$1 - x_0 - r_0$
Infected provinces	110
No-vax provinces	10
Start no-vax provinces opinion	[0.7, 0.9]
Start pro-vax provinces opinion	1
Simulation length	10 y
Simulation time step δ	0.5 days

Results

We have two kind of simulations:

- 5 different parameters configurations; the no-vax nodes are randomly chosen
- Default parameters configuration with no impurities; the chosen nodes are the one with the highest and lowest degree (targeted initialization)

(a) Trend of the opinion for p=1, (b) Number of infected for p=1, $p_{imp}=0.005,\ n_{imp}=1.$ $p_{imp}=0.005,\ n_{imp}=1.$

(c) Trend of the opinion for p=0.7, (d) Number of infected for p=0.7, $p_{imp}=0.005$, $n_{imp}=1$. $p_{imp}=0.005$, $n_{imp}=1$.

(e) Trend of the opinion for p=1, (f) Number of infected for p=1, $p_{imp}=0.5,\ n_{imp}=1.$ $p_{imp}=0.5,\ n_{imp}=1.$

(g) Trend of the opinion for p=1, (h) Number of infected for p=1, $p_{imp}=0.005,\ n_{imp}=10.$ $p_{imp}=0.005,\ n_{imp}=10.$

(i) Trend of the opinion for p=1, (j) Number of infected for p=1, $p_{imp}=0.5$, $n_{imp}=10$. $p_{imp}=0.5$, $n_{imp}=10$.

Targeted initialization

(k) Trend of the opinion; min-policy (I) Number of infected; min-policy with no impurities; p=0.7; max with no impurities; p=0.7; max and min degrees and min degrees

Conclusions

- The model effectively captures the dependence between the vaccination behaviour (due to fake news spreading) and the epidemic dynamics
- The policy is a very important factor into determining the epidemic state; the policy approach can be extended towards a more complex model where the policy would become time dependent (thus simulating the authorities intervention into the fake news spreading).
- The observed outbreaks are delayed with respect to the opinion dropping: this is meaningful since, after having settled in a small vaccination opinion, one has to wait some time in order to have a sustained number of non-vaccinated newborns.