CMPE 200 HW#3

Computer Engineering Department, San Jose State University

Name: Akshata Deo SJSU ID: 012565761

1. (a). Consider the following code.

```
L1: lw $t4, 0($t1) // I1
lw $t5, 4($t1) // I2
addi $t1, $t1, 4 // I3
sll $t1, $t1, 2 // I4
add $t2, $t4, $t5 // I5
beq $t2, $zero, L1 // I6
sw $t4, 0($t1) // I7
sw $t5, -4($t1) // I8
```

	CC1	CC2	CC3	CC4	CC5	CC6	CC7	CC8	CC9	CC10	CC11	CC12	CC13
I1	IF	ID	EXE	MEM	WB								
12		IF	ID	EXE	MEM	WB							
13			IF	ID	EXE	MEM	WB						
14				IF	D	EXE	MEM	WB					
15					IF	ID	EXE	MEM	WB				
16						IF	ID	EXE	MEM	WB			
17							IF						
11								IF	ID	EXE	MEM	WB	
12									IF	ID	EXE	MEM	WB

(b).

W/O branch delay slot		With branch delay slot				
L1: lw \$t4, 0(\$t1)	// I1	L1: lw \$t4, 0(\$t1) // I1				

```
lw $t5, 4($t1)
                        I2
                                    lw $t5, 4($t1)
                                                            I2
                                   addi $t1, $t1, 4
addi $t1, $t1, 4
                                                         // I3
                     // I3
sll $t1, $t1, 2
                     // I4
                                    add $t2, $t4, $t5
                                                         // I4
add $t2, $t4, $t5
                                   beg $t2, $zero, L1
                                                         // I5
                     // I5
beg $t2, $zero, L1
                     // I6
                                    sll $t1, $t1, 2
                                                         // I6
                                                         // I7
sw $t4, 0($t1)
                     // I7
                                    sw $t4, 0($t1)
sw $t5, -4($t1)
                     // I8
                                    sw $t5, -4($t1)
                                                         // I8
```

I4 instruction must be executed regardless of branch outcome and is independent of branch instruction. Hence, we can reduce stall cycle by placing I4 instruction in branch delay slot (right after branch instruction as shown in table).

- **2. (a).** Misprediction for always taken: 04 Misprediction for always not taken: 04
- **(b).** Misprediction rate = 4/8 = 50%

One bit branch	Predicted Outcomes	Actual Outcomes	Misprediction
predictor			
0	NT	NT	FALSE
0	NT	T	TRUE
1	T	T	FALSE
1	T	NT	TRUE
0	NT	NT	FALSE
0	NT	T	TRUE
1	T	T	FALSE
1	T	NT	TRUE

3. (a). Misprediction for b1: 7/9 Misprediction for b2: 2/9

Ite	eration	1	2	3	4	5	6	7	8	9
	X	2	5	6	11	13	18	5	6	11
b1's predictor		00	00	01	00	01	10	01	10	01
b2's	b2's predictor		01	10	11	11	11	11	11	11
b1	Predicted	NT	NT	NT	NT	NT	T	NT	T	NT
	Actual	NT	T	NT	T	T	NT	T	NT	T
b2	Predicted	NT	NT	T	T	T	T	T	T	T
	Actual	T	T	T	T	T	T	T	T	T

(b). Misprediction for b1: 5/9 Misprediction for b2: 3/9

ite	ration	1	2	3	4	5	6	7	8	9
X		2	5	6	11	13	18	5	6	11
global	Initial	0	1	1	1	1	1	1	1	1
history	After b1	0	1	0	1	1	0	1	0	1
1. 1	Predicted	NT	NT	T	NT	Т	T	T	Т	T
b1	Actual	NT	T	NT	T	T	NT	T	NT	T
b2	Predicted	NT	NT	NT	T	T	T	T	T	T
	Actual	T	T	T	T	T	T	T	T	T

Predictor buffer 0	$00 \rightarrow 00 \rightarrow 01 \rightarrow 10 \rightarrow 11$
Predictor buffer 1	$00 \rightarrow 01 \rightarrow 10 \rightarrow 01 \rightarrow 10 \rightarrow 11 \rightarrow 10 \rightarrow 11 \rightarrow 10 \rightarrow 11$