

Mokslo naujienos

Google moves closer to a universal quantum computer

Combining the best of analog and digital approaches could yield a full-scale multipurpose quantum computer.

Philip Ball

08 June 2016 | Corrected: 09 June 2016

Kas yra kvantinis kompiuteris?

- Kas yra kompiuteris?
- Ką reiškia "kvantinis"?
- Kaip šiuos dalykus sujungti?

Kas yra kompiuteris?

Kompiuteris yra įrenginys priimantis informaciją ir ją apdorojantis pagal iš anksto užduotą

instrukcijų seką

Kompiuterių rūšys

Analoginiai

Skaitmeniniai

Analoginiai kompiuteriai

Analoginis kompiuteris duomenis atvaizduoja **tolydžiai** kintančiais dydžiais: elektros įtampa, vandens slėgiu, mechaniniu sukimu, ...

Analoginiai kompiuteriai

Privalumai:

Dažnai yra greitesnis už skaitmeninį kompiuterį

 Idealizuotas (be klaidų) analoginis kompiuteris gali išspręsti problemas, neišsprendžiamas skaitmeniniu

kompiuteriu

Analoginiai kompiuteriai

Trūkumai

- Skaičiavimo tikslumą riboja paklaidos ir triukšmas
- Galimų klaidų rūšių yra be galo daug

Skaitmeniniai kompiuteriai

- Leidžia apeiti problemas su paklaidomis analoginiuose kompiuteriuose
- Informacija skaitmeniniuose kompiuteriuose atvaizduojama 1 ir 0 (bitų) seka
- Yra tik viena klaidos rūšis: bito apsivertimas

Klaidų korekcija

Idėja: įvesti perteklinius bitus

Pavyzdžiui: vieną bitą atvaizduoti 3 bitais Tegu turime seką 111 Jei dėl klaidos vienas bitas apsivertė: 110 Galime tą nustatyti, žiūrėdami į daugumą

Ką reiškia "kvantinis"?

Kas yra kvantinė mechanika?

Kvantinė mechanika – tai teorija, aprašanti mikroskopinių objektų judėjimą

Klausimai

Ką reiškia pavadinimas "Kvantinė mechanika"?

Kas yra mikroskopiniai objektai?

- Elektronai
- Atomai
- Molekulės
- Ir ne tik...

Kokia nauda iš kvantinės mechanikos?

Kodėl kvantinė mechanika yra reikalinga?

Kaip atrodo mikroskopinių objektų judėjimas?

https://youtu.be/1LVkQfCptEs

Išvados apie judėjimą

"Dievas nežaidžia kauliukais" A. Einstein

Išvados apie judėjimą

Kai kurių matavimų rezultatai yra atsitiktiniai:
Dievas kauliukais žaidžia!

Išvados apie judėjimą

- Mikroskopinio objekto judėjimas yra šiek tiek panašus
 - Ir į rutuliuko (dalelės) judėjimą
 - Ir į bangos sklidimą
- Nėra analogų mūsų kasdieninėje patirtyje

Banginės savybės

de Broglie bangos ilgis

$$\lambda = \frac{h}{mv}$$

 $h = 6.62606896(33) \times 10^{-34} J \cdot s yra Planck'o konstanta$

Superpozicija

Kuriuo keliu juda elektronas?

Problema

"Niekas nesupranta kvantinės mechanikos" R. P. Feynman

Išeitis

Kvantinė mechanika – tai **formalios** taisyklės, kaip reikia skaičiuoti, kad gautum teisingas prognozes.

Dvi dalelės

Ligi šiol nagrinėjome tik vieną dalelę.

Kas naujo bus, jei imsime daugiau?

Kvantinis supynimas (entanglement)

Dvi dalelės: įprasta situacija

Dvi dalelės: kvantinis supynimas

Riba tarp kvantinio ir klasikinio pasaulio

Dekoherencija

Kas yra kvantinis kompiuteris?

Kas yra kvantinis kompiuteris?

Kvantinis kompiuteris yra kompiuteris informacijos apdorojimui naudojantis kvantinius reiškinius tokius kaip superpoziciją ir supynimą

Kvantinių kompiuterių rūšys

Analoginiai

Skaitmeniniai

Analoginiai kvantiniai kompiuteriai

- Kvantiniai simuliatoriai
- Bet kokia gerai kontroliuojama kvantinė sistema
- Labai šaltos atomų dujos optinėse gardelėse

Skaitmeniniai kvantiniai kompiuteriai

- Panašiai kaip įprastame skaitmeniniame kompiuteryje informacija užrašoma bitais, skaitmeninio kvantinio kompiuterio būsena atvaizduojama qubit'ais – dviejų būsenų kvantinėmis sistemomis
- Skirtingai nuo bito, qubit'as gali būti dviejų būsenų superpozicijoje

Skaitmeniniai kvantiniai kompiuteriai

- Galimų klaidų tipų yra daugiau negu bitui ne vien apsivertimas, bet ir superpozicijos fazės pasikitimas
- Kaip ir įprastame skaitmeniniame kompiuteryje, klaidas galime taisyti įvedę pertekliškumą, vieną qubit'ą atvaiduodami keliais qubit'ais
- Perteklinių qubit'ų klaidų korekcijai reikia daugiau negu perteklinių bitų įprastiniame kompiuteryje

Skaitmeniniai kvantiniai kompiuteriai

- Įprastiniame skaitmeniniame kompiuteryje visas galima operacijas su duomenimis galime užrašyti pasinaudoję keliomis loginėmis operacijomis: NOT, AND, OR
- Kvantiniame skaitmeniniame kompiuteryje taip pat visas galimas operacijas galima išreikšti per dvi:
 - Vieno qubit'o bet kokios superpozicijos sukūrimą
 - Dviejų qubit'ų operaciją, tokią kaip controlled-NOT (CNOT)

Klausimai

- Kokia nauda iš kvantinių kompiuterių?
- Kaip programuoti kvantinį kompiuterį?
- Kaip atrodo kvantinis kompiuteris?
- Kas trukdo kvantinio kompiuterio sukūrimui?
- Kokia dabartinė kvantinio kompiuterio kūrimo stadija?
- Kada kvantinis kompiuteris bus sukurtas?

Kokia nauda iš kvantinių kompiuterių?

- Kvantines sistemas labai sunku modeliuoti įprastiniais kompiuteriais.
- Pavyzdžiui, jei turime N dalelių, kiekviena iš kurių gali būti dviejų būsenų, tai pilnai sistemos būsenai aprašyti reikia
 2^N kompleksinių skaicių
- Jei turime 100 dalelių (pvz, vidutinio dydžio molekulė) tai 2¹⁰⁰~10³⁰
- Sudėtingumas labai sparčiai auga didėjant dalelių skaičiui!
- Idėja: naudoti kvantines sistemas kitų sistemų modeliavimui

Pasiekimai

Kokia nauda iš kvantinių kompiuterių?

Manoma, kad kvantinis kompiuteris gali būti iš esmės **greitesnis** už įprastinį kompiuterį

Pavzdžiui:

- Shor'o algoritmas kvantiniam kompiuteriui leidžia faktorizuoti sveiką skaičių naudojant žingsnių skaičių didėjantį polinomiškai didėjant skaitmenų skaičiui
- Grover'io algoritmas leidžia atlikti paiešką nerūšiuotoje duomenų bazėje turinčioje N elementų naudojant √N veiksmų (įpratiniam kompiuteriui gali prireikti N veiksmų)

Kaip programuoti kvantinį kompiuterį?

- Nors kvantinis kompiuteris gali atlikti viską, ką gali įpratinis kompiuteris, nėra naudos programuoti kvantinį kompiuterį taip pat, kaip ir įprastinį
- Niekas nežino, kaip bendru atveju programuoti kvantinį kompiuterį, kad jis būtų greitesnis už įprastinį!
- Yra surasti tik atskiri algoritmai (pvz: Shor'o algortimas, Grover'io algortimas)

Kas trukdo kvantinio kompiuterio sukūrimui?

Dekoherencija!

Kaip atrodo kvantinis kompiuteris?

Niekas nežino, kaip atrodys ateityje

Šiuo metu daugiausiai pasiekta naudojant:

- Jonų gaudykles
- Superlaidininkus
- Kvantinius taškus

Jonų gaudyklės kvantinis kompiuteris

Superlaidininkų kvantinis kompiuteris

Priemaišos deimante

Pabaigai

- Kvantiniai kompiuteriai ne pakeis, bet papildys įprastinius kompiuterius
- Kvantiniai kompiuteriai galės žymiai pagreitinti sudėtingas fizikines ir chemines simuliacijas, padės spręsti optimizacijos uždavinius
- Tačiau jų sukūrimo dar teks gerokai palaukti

https://plus.google.com/+quantumailab

Ačiū už dėmesį!