On the theory and practice of Markov chain Monte Carlo methods

Vivekananda Roy

Iowa State University

Young Statisticians' Meet : Data Science in action Indian Statistical Institute, Kolkata March 6, 2021

Outline

- Monte Carlo integration
- Markov chain Monte Carlo
- Metropolis-Hastings —one idea many variants
- Spatial GLMMs

Markov chain Monte Carlo

Metropolis-Hastings —one idea many variants

Spatial GLMMs

Monte Carlo methods

We Want to know:

$$\lambda = \int_{S} h \, d\pi,$$

which is analytically intractable. Here π is a prob. measure and h is integrable. Ordinary Monte Carlo is the method of using IID simulations X_1, \ldots, X_n from π to approximate expectations by sample averages

$$\overline{h}_n = \frac{1}{n} \sum_{i=1}^n h(X_i).$$

By law of large numbers (LLN), if $E_{\pi}|h| < \infty$, $\overline{h}_n \stackrel{\text{as}}{\to} E_{\pi}h \equiv \lambda$ as $n \to \infty$. **Toy example:** Let $\pi = \exp(-x^2/2)/\sqrt{2\pi}$, h(x) = x (or h(x) = l(x > 1)).

Let n = 50, $\overline{h}_n = -0.06$ (or $\overline{h}_n = 0.16$).

Monte Carlo error

By SLLN, $\overline{h}_n \stackrel{\text{as}}{\to} E_{\pi} h$ as $n \to \infty$.

How do we compute an associated standard error?

By CLT if $E_{\pi}h^2 < \infty$,

$$\sqrt{n} \Big(\overline{h}_n - \mathsf{E}_\pi h \Big) \overset{d}{ o} \mathsf{N}(0, \sigma_h^2).$$

$$s_h^2 = \frac{1}{n} \sum_{i=1}^n (h(X_i) - \overline{h}_n)^2.$$

The sample variance s_h^2 is a consistent estimator of σ_h^2 .

How large should *n* **be?**

Asymptotic 95% CI for $E_{\pi}h$: $\overline{h}_n \pm 1.96s_h/\sqrt{n}$.

If
$$h(x) = x$$
, CI is (-0.31, 0.18). If $h(x) = I(x > 1)$, CI is (0.057, 0.26).

When n = 500, the Cl's are (-0.04, 0.14) and (0.14, 0.21), respectively.

Markov chain Monte Carlo

Metropolis-Hastings —one idea many variants

Spatial GLMMs

Markov chain Monte Carlo

We Want to know:

$$\lambda = \int_{S} h \, d\pi,$$

which is analytically intractable. Here π is a prob. measure and h is integrable.

Ordinary Monte Carlo is the method of using IID simulations X_1, \dots, X_n from π to approximate expectations by sample averages

$$\overline{h}_n = \frac{1}{n} \sum_{i=1}^n h(X_i).$$

Markov chain Monte Carlo (MCMC) replaces IID simulations with realizations X_1, \ldots, X_n of a Markov chain that has stationary distribution π and is appropriately irreducible.

By SLLN for Markov chains, if $E_{\pi}|h| < \infty$, $\overline{h}_n \stackrel{\text{as}}{\to} E_{\pi}h$ as $n \to \infty$.

Markov chain Monte Carlo

Metropolis-Hastings —one idea many variants

Spatial GLMMs

- Let $\pi(x)$ be the target pdf.
- Let x_n be the current value of the Markov chain.

The Metropolis-Hastings algorithm performs the following.

- Propose $y \sim q(\cdot|x_n)$.
- 2 Accept $X_{n+1} = y$ with probability

$$\alpha(x_n, y) = \min \left\{ \frac{\pi(y)q(x_n|y)}{\pi(x_n)q(y|x_n)}, 1 \right\},\,$$

otherwise, set $X_{n+1} = x_n$.

- Random walk proposal q(y|x) = f(y x)
- Independence proposal q(y|x) = f(y)

Random walk chains

In the chain is currently at x, propose an increment I according to a fixed density f. Accept or reject the candidate point y = x + I. Thus here q(y|x) = f(y - x) for all x, y. If f is symmetric, that is, f(-t) = f(t) for all t, the acceptance probability is

$$\alpha(x_n, y) = \min \left\{ \frac{\pi(y)}{\pi(x_n)}, 1 \right\}.$$

Independence chains

Here q(y|x) = f(y) for all x.

The acceptance probability is

$$\alpha(x_n,y)=\min\Bigl\{\frac{\pi(y)f(x_n)}{\pi(x_n)f(y)},1\Bigr\}.$$

Example: Random walk chains

Let

$$\pi(y) = \frac{1}{\sqrt{2\pi}} \exp(-y^2/2)$$
 and $f(y) = \frac{1}{\sqrt{2\pi}\sigma} \exp(-y^2/[2\sigma^2]),$

that is, the target density is N (0,1) and the proposal density is N $(0,\sigma^2)$ for some known σ^2 . So

$$\alpha(x,y) = \min\left\{\frac{\pi(y)}{\pi(x)},1\right\} = \min\left\{\exp\left[-\frac{1}{2}(y^2 - x^2)\right],1\right\}.$$

Example: Random walk chains

Figure: Markov chain vs. iteration (top) and autocorrelation vs. lag (bottom). Acceptance rates are 0.96, 0.06 and 0.47, respectively.

MALA algorithms

Random Walk: proposal density N(x, h).

Metropolis Adjusted Langevin algorithms (MALA)

proposal density:
$$N\left(x + \frac{1}{2}h\nabla \log \pi(x), hI\right)$$

The Langevin diffusion X_t is defined as

$$dX_t = \frac{1}{2}\nabla \log \pi(X_t)dt + dW_t.$$

Fokker-Planck equation for the SDE $dX_t = b(X_t)dt + \sigma(X_t)dW_t$ is

$$\frac{\partial}{\partial t}u(x,t) = -\sum_{i}\frac{\partial}{\partial x_{i}}[b_{i}(x)u(x,t)] + \frac{1}{2}\sum_{ij}\frac{\partial^{2}}{\partial x_{i}\partial x_{j}}[D_{ij}(x)u(x,t)]$$

with
$$D(x) = \sigma(x)\sigma(x)^{\top}/2$$
.

MALA algorithms

Random Walk: proposal density N(x, h).

Metropolis Adjusted Langevin algorithms (MALA)

proposal density: $N\left(x+\frac{1}{2}h\nabla\log\pi(x),hI\right)$

Pre-conditioned MALA

proposal density: $N\left(x + \frac{1}{2}hG\nabla \log \pi(x), hG\right)$

Manifold MALA

proposal density: $N\left(x + \frac{1}{2}hG(x)\nabla \log \pi(x) + h\Omega(x), hG(x)\right)$

Markov chain Monte Carlo

- Metropolis-Hastings —one idea many variants
- Spatial GLMMs

Spatial GLMMs

Suppose \mathcal{D} is a spatial domain of interest. Let $\{X(s), s \in \mathcal{D}\}$ be a Gaussian random field with known mean E(X(s)), and covariance function cov(X(s), X(s')).

Conditional on the latent process $\{x(s), s \in \mathcal{D}\}$, and for any $s_1, \ldots, s_m \in \mathcal{D}$, the corresponding measurement random variables $Y(s_1), \ldots, Y(s_m)$ are independent, that is, $Y(s_i)|x(s_i) \stackrel{ind}{\sim} \text{Binomial}(\ell_i, p_i)$ with $\log(p_i/[1-p_i]) = x(s_i)$.

Denoting the observed data by $y = (y_1, \dots, y_m)$, the likelihood function is

$$L(y) = \int_{\mathcal{R}^m} \left[\prod_{i=1}^m p(y_i|x_i,\nu) \right] \phi_m(x) dx.$$

Simulation example: The domain for the simulations is fixed to $\mathcal{D}=[0,1]^2$ and the Gaussian random field x is considered at an 21 \times 21 square grid covering \mathcal{D} . A realization of the data y consists of observations from the binomial spatial model at n=350 randomly chosen sites with number of trials $\ell_i=250$ for all $i=1,\ldots,350$. The mean of the random field is set to 1.7 for the left half of the domain and to -1.7 for the right half and while its covariance function is exponential.

MALA for Spatial GLMMs

Table: ESS for $(x(s_1), x(s_{175}), x(s_{350}))$ and mESS for $(x(s_1), \dots, x(s_{350}))$

Algorithm	Matrix	ESS	ESS/min.	mESS
Random Walk	I	(414,415,404)	(1.84,1.84,1.80)	915
	Σ	(423,402,398)	(1.74, 1.65, 1.64)	909
	$diag(\hat{\mathcal{I}}^{-1})$	(406,419,410)	(1.67, 1.73, 1.69)	905
	$\hat{\mathcal{I}}^{-1}$	(410,403,409)	(1.68, 1.66, 1.68)	909
Pre- cond MALA	ı	(390,390,389)	(1.76,1.76,1.75)	903
	Σ	(390,387,388)	(2.07, 2.06, 2.06)	899
	$diag(\hat{\mathcal{I}}^{-1})$	(565,561,572)	(2.98, 2.95, 3.02)	1,076
	$\hat{\mathcal{I}}^{-1}$	(9,156,8,215,8,930)	(48.46, 43.48, 47.26)	18,886
MMALA		(393,392,392)	(1.17,1.17,1.17)	910

Source: Lijin Zhang's PhD thesis

MALA for Spatial GLMMs

Figure: ACF plots of MMALA, RW and pre-conditioned MALA for $x(s_{350})$ with G=I, diag($\hat{\mathcal{I}}^{-1}$) and $\hat{\mathcal{I}}^{-1}$, respectively.

Markov chain Monte Carlo

By SLLN for Markov chains, $\overline{h}_n \stackrel{\text{as}}{\to} E_\pi h$ as $n \to \infty$.

How do we compute an associated standard error?

An answer to this question requires

$$\sqrt{n} \Big(\overline{h}_n - \mathsf{E}_\pi h \Big) \overset{d}{\to} \mathsf{N}(0, \sigma_{h,P}^2)$$

and a consistent estimator of $\sigma_{h,P}^2$, say, $\hat{\sigma}_{h,P}^2$.

How large should *n* be?

Asymptotic 95% CI for $E_{\pi}h$: $\overline{h}_n \pm 2\hat{\sigma}_{h,P}/\sqrt{n}$

Problem: $E_{\pi}h^2 < \infty$ *does not* guarantee a CLT.

If $\{X_n\}_{n=0}^{\infty}$ is *geometrically ergodic* then CLT holds for all h s.t. $E_{\pi}h^2 < \infty$.

$$\sigma_{h,P}^2 = Var_{\pi}(h(X_0)) + 2\sum_{i=1}^{\infty} Cov_{\pi}(h(X_0), h(X_i))$$

How do we construct a consistent estimator of $\sigma_{h,P}^2$?