Lesson 1: Introduction to Databases

CSC430/530 - DATABASE MANAGEMENT SYSTEMS

DR. ANDREY TIMOFEYEV

OUTLINE

- •Introduction.
- Database concept overview.
- Database management system (DBMS).
- Overview of database design process.
- Characteristics of database approach.

INTRODUCTION (1)

•Why study databases?

- Academic.
 - Databases involve many aspects of computer science.
 - Active area of research.
- Developer.
 - A wide array of applications involve using or accessing databases.
- Business.
 - Every organization needs databases.
- Student.
 - Easier to get hired.

INTRODUCTION (2)

- •Databases are everywhere:
 - Bank withdrawal or deposit.
 - Hotel or airline reservation.
 - Groceries shopping.
 - Online shopping.
 - More examples?
- Generally, databases can be divided into two classes:
 - Traditional databases.
 - Store numeric and textual information.
 - Non-traditional databases.
 - Store **information** generated on the **web** (posts, tweets, images, videos, webpages).
 - Big data storage systems and NOSQL (Not Only SQL) databases.

DATABASE CONCEPT OVERVIEW

- Definition 0: Database is a collection of related data.
 - Data known facts that can be recorded and that have implicit meaning.

•Database properties:

- Represents some aspect of the real world (mini-world).
- Logically coherent collection of data with inherent meaning.
- Designed, built, and populated with data for a specific **purpose**.

•Database has:

- Source from which data is derived.
- Interaction with events in the real world.
- Audience that is actively interested in its contents.

DATABASE MANAGEMENT SYSTEM (1)

- •Database management system (DBMS) general-purpose software system that allows users to create and maintain a database.
- •Typical DMBS functionality:
- **Define** database.
- Construct database.
- Manipulate database.
- - Protect database. give
 - Maintain database.

our focus in this class

DBMS

combe thought

of as an IDE

multiple users to query the DB.

different users different permissions; also

protection from hardware/software

problems

DATABASE MANAGEMENT SYSTEM (2)

•Database system = DBMS software + database itself.

DATABASE EXAMPLE

•Five files/tables (each store data records of the same type):

• Student, Course, Section, Prerequisite, and Grade report.

STUDENT

0	CO	^~	464	100	1
---	----	-----------	-----	-----	---

Name	Student_number	Class	Major
Smith	17	1	CS
Brown	8	2	CS

connection

				1
	 _	-	_	
ഹ				

Course_name	Course_number	Credit_hours	Department
Intro to Computer Science	CS1310	4	CS
Data Structures	CS3320	4	CS
Discrete Mathematics	MATH2410	3	MATH
Database	CS3380	3	CS

PREREQUISITE

Course_number	Prerequisite_number
CS3380	CS3320
CS3380	MATH2410
CS3320	CS1310

SECTION

Section_identifier	Course_number	Semester	Year	Instructor
85	MATH2410	Fall	07	King
92	CS1310	Fall	07	Anderson
102	CS3320	Spring	08	Knuth
112	MATH2410	Fall	08	Chang
119	CS1310	Fall	08	Anderson
135	CS3380	Fall	08	Stone

GRADE_REPORT

0.1.2.1.2.1.2.1.2.1.1.1	١.	/	
Student_number		Section_identifier	Grade
17	II	112	В
17	17	119	С
8		85	Α
8		92	А
8		102	В
8		135	А
SW25			

OVERVIEW OF DATABASE DESIGN PROCESS

- •Database design stages:

 - Conceptual design.
 - Entity-relationship and enhanced entity-relationship models.

FER

- Logical design.
 - Relational DBMS.
- Physical design.
- The database is
 - implemented,
 - populated with an actual data, and
 - continuously maintained to reflect the state of the mini-world.

Database design stages:

• Requirements specification and analysis.

Jathar requirements; speak to clients and see what is needed for the database

- Entitity is the object (i.e. Student,

 Section, course, pre-req, grade
 is essentially the table name w/ the heaters.

CHARACTERISTICS OF DATABASE APPROACH (1)

•Characteristics of database approach:

- Self-describing nature.
 - Definition of data is stored in the DBMS catalog (meta-data).
- Insulation between programs and data.
 - · Program-data independence. changes in the program interface
- Data abstraction.
 - Data model is used to hide storage details and present the users with a conceptual view of the database.

Relation_name	No_of_columns
STUDENT	4
COURSE	4
SECTION	5
GRADE_REPORT	3
PREREQUISITE	2

COLUMNS

Column_name	Data_type	Belongs_to_relation
Name	Character (30)	STUDENT
Student_number	Character (4)	STUDENT
Class	Integer (1)	STUDENT
Major	Major_type	STUDENT
Course_name	Character (10)	COURSE
Course_number	XXXXNNNN	COURSE

••••	••••	

Prerequisite_number	XXXXNNNN	PREREQUISITE

CHARACTERISTICS OF DATABASE APPROACH (2)

•Characteristics of database approach (cont.):

- Support of multiple views of the data.
 - User may see a different view of the database, which describes the data of interest to that user.
- Sharing of data and multi-user transaction processing.
 - Allowing a set of concurrent users to retrieve from and to update the database.

TRANSCRIPT

Student_name	Student_transcript				
Student_name	Course_number	Grade	Semester	Year	Section_id
Smith	CS1310	С	Fall	08	119
Sillitii	MATH2410	В	Fall	08	112
	MATH2410	Α	Fall	07	85
Brown	CS1310	Α	Fall	07	92
BIOWII	CS3320	В	Spring	08	102
	CS3380	Α	Fall	08	135

COURSE_PREREQUISITES

Course_name	Course_number	Prerequisites
Database	CS3380	CS3320
Database	C33360	MATH2410
Data Structures	CS3320	CS1310

Two Views Derived From University Database

SUMMARY

- Database definition and properties.
- •DBMS definition and functionality.
- Concept of database system.
- Database design stages.
- Characteristics of database approach.