Harnessing Deep Neural Networks with Logic Rules

Reporter: HE WEINAN

School of Data and Computer Science Sun Yat-sen University

cura4ho@gmail.com

May 8, 2017

- Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard Hovy, and Eric Xing. 2016. Harnessing deep neural networks with logic rules. In Proc. of ACL.
- http://www.cs.cmu.edu/~zhitingh/data/ acl16harnessing_slides.pdf

Cited by

- Alashkar et al. (2017). Examples-Rules Guided Deep Neural Network for Makeup Recommendation. In Thirty-First AAAI Conference on Artificial Intelligence.
- Hu et al. (2016). Deep neural networks with massive learned knowledge. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing (EMNLP).

Overview

- Motivation
- Neural Network
- Knowledge Distillation
 - Soft Logic
 - Distillation
- Applications and Experiments
 - Experiments
- Conclusion

Motivation

Deep neural networks (DNN) is a powerful mechanism for learning patterns from massive data, achieving great performance on many problem domains such as $image\ classification$ and $machine\ translation$.

But they still have limitations:

- Relying heavily on massive labeled training data
- The resulting parameters are often uninterpretable
- Hard to encode human knowledge and intention

Learn from Humans

On contrary, humans learn from

- concrete examples just like DNN do
- general knowledge

Logic rules is a flexible way to express structured knowledge. Integrating logic rules into DNNs might help to transfer human intention and domain knowledge the DNN models.

The authors propose an **knowledge distillation** framework to train a neural network using both examples and rules. A "teacher" is iteratively constructed to "teach" the student network.

Firstly, we need to know how traditional $neural\ networks$ works. Consider an example of a classification problem.

Classification Problem: Loan Defaults

Given a *training set* of records of clients who take a loan, we'd like to predict whether an unseen client will default (not paying the loan).

Tid	Home Owner	Marital Status	Annual Income	Defaulted Borrower	$ _{L}$
1	Yes	Single	125K	No	
2	No	Married	100K	No	10
3	No	Single	70K	No	
4	Yes	Married	120K	No	no
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	90K	Yes	

Label Class

not default default

Training set for predicting borrowers who will default on loan payments.

If the client *John* has no home, is divorced and makes 50K a year, how likely will he default?

Neural Network for Classification

A **neural network** (NN) classifier is a computational model that classifies client records into two **classes**: default or not default. These are called class **label**s

For example, suppose we have already trained such a NN classifier, then for the two training example

Neural Network Classifier

For an input record x with its actual label y, a NN classifier is a function that maps x into a soft prediction vector σ_{θ} :

$$f_{\boldsymbol{\theta}}(\boldsymbol{x}) = \boldsymbol{\sigma}_{\boldsymbol{\theta}}(\boldsymbol{x})$$

 $m{ heta} = (heta_1, heta_2, ..., heta_n)$: the parameters of the NN $m{x} = (a_1, a_2, a_3)$: input variable, a_i is the i^{th} attribute of $m{x}$ $m{\sigma}_{\theta} = (p(y = \mathrm{default}|m{x}), \ p(y = \mathrm{not} \ \mathrm{default}|m{x}))$: soft prediction vector

Note that the prediction vector $\sigma_{\theta}(x)$ forms a probability distribution $p_{\theta}(y|x)$.

Parameters or Weights

The **parameters** θ , or **weights** of the NN are the result of training on labeled data. θ determines the performance of the NN.

Example (Classifying A Record)

For the record $\boldsymbol{x}=(\text{no home},\text{divorced},95\text{K})$ which actually defaults,

$$f_{\theta}(\boldsymbol{x}) = \boldsymbol{\sigma}_{\theta}(\boldsymbol{x}) = (0.9, 0.1)$$

The NN predicts that the probability of \boldsymbol{x} default is 0.9. If the NN is perfect, the prediction should be $(1,\ 0)$.

We use a *label vector* (1, 0) to represent default, (0, 1) for not default.

4□ > 4□ > 4 = > 4 = > = 9 < ○</p>

NN Training: Loss and Objective

To measure the performance: compare the prediction $(0.9,\ 0.1)$ with the actual label y=(1,0).

Loss Function

The loss function $\ell(y, \sigma_{\theta}(x))$ measures the difference between the prediction vector and the label vector for every training example.

To improve the performance: change parameters θ to minimize the loss function. (*Gradient Descent*)

Objective

Iteratively change parameters $oldsymbol{ heta}$ to \min to all training examples.

Goal

Find θ that minimize the loss ℓ on N training examples.

$$\boldsymbol{\theta} = \arg\min_{\theta \in \Theta} \frac{1}{N} \sum_{n=1}^{N} \ell(\boldsymbol{y}_n, \boldsymbol{\sigma}_{\theta}(\boldsymbol{x}_n))$$

Input: labeled training data $\mathcal{D} = \{(\boldsymbol{x}_n,\ y_n)\}_{n=1}^N$ **Output**: parameters (weights) $\boldsymbol{\theta}$ and prediction $p_{\boldsymbol{\theta}}$ Initialize the params $\boldsymbol{\theta}^{(0)}$, at iteration t, **repeat**:

- $\textbf{ 9 Sample a subset } (\boldsymbol{X},\boldsymbol{Y}) \subset \mathcal{D}$
- 2 Compute the loss on (X, Y)
- **1** Update the params $\boldsymbol{\theta}^{(t)}$ from the previous params $\boldsymbol{\theta}^{(t-1)}$

until $oldsymbol{ heta}^{(t)}$ converges, then let $oldsymbol{ heta} = oldsymbol{ heta}^{(t)}$.

Note: the traditional NNs ONLY train θ using labeled training data.

Idea

- Encode the knowledge rules using Soft Logic
- Change the loss function to incorporate logic rules
- lacktriangledown When updating, $oldsymbol{ heta}$ is influenced by the rules

- In *first order logic*, propositions are evaluated to truth value True or False.
- In $soft\ logic$, propositions and groundings (expressions with all variables being instantiated) evaluate to a continuous truth value from the interval $[0,\ 1]$.

The Boolean operators are extended as:

$$A\&B = max\{A + B - 1, 0\}$$

$$A \lor B = min\{A + B, 1\}$$

$$\neg A = 1 - A$$
(1)

Soft Logic Rule

Denote

- ullet R_l as the l^{th} rule over the input target label space,
- λ_l as confidence level of rule R_l , with $\lambda_l = \infty$ indicating all groundings must be true.

Example

Rule: "People who earn less than 100K and are not married will default"

$$R \equiv (less_{100}(\boldsymbol{x}) \& \neg married(\boldsymbol{x})) \rightarrow default(\boldsymbol{x})$$

Now consider using the extracted rules to influence the loss function.

Combining The Rules

- NN maps the input x into prediction vector $\sigma_{\theta}(x)$ that forms probability $p_{\theta}(y|x)$.
- Project $\sigma_{\theta}(x)$ into s(x), a rule-regularized prediction that forms probability q(y|x).
- Then q(y|x) contains information of the rules.

Example (Rule-regularized Projection)

For a client x that $less_{100}(x)$ & $\neg married(x)$, the NN outputs a prediction $\sigma_{\theta}(x) = [0.7, 0.3]$, the projected prediction might be s(x) = [0.8, 0.2]. The new loss function l' will also consider the difference between $\sigma_{\theta}(x)$ and s(x).

Knowledge Distillation

- Prediction $p_{\theta}(y|x)$ based only on examples (student)
- Prediction q(y|x) also considers rules (teacher)
- **Distillation**: training θ to imitate the outputs that consider the rules. (train the *student* p_{θ} to imitate the *teacher* q)

at iteration t:

true hard label soft prediction of

$$m{ heta}^{(t+1)} = rg\min_{ heta \in \Theta} rac{1}{N} \sum_{n=1}^N (1-\pi) \ell(m{y}_n, m{\sigma}_{ heta}(m{x}_n))$$
 student $p_{ heta}$

balancing parameter -

$$+\pi\ell(oldsymbol{s}_n^{(t)},oldsymbol{\sigma}_{ heta}(oldsymbol{x}_n))$$

soft prediction of the teacher network q

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Construct Teacher: Projection

With the set of rules $\mathcal{R} = \{(R_l, \lambda_l)\}_{l=1}^L$, the goal is to construct the teacher q at each iteration from p_{θ} such that:

- $\mathbf{0}$ q fits the rules
- **2** q stays close to p_{θ}

Essentially we can compute such a \boldsymbol{q} by solving the optimization problem:

$$\begin{split} \min_{q, \boldsymbol{\xi} \geq 0} & \operatorname{KL}(q \| p_{\theta}(\boldsymbol{Y} | \boldsymbol{X})) + C \sum_{l} \xi_{l} & \text{close to } p_{\theta} \\ & \text{s.t.} & \lambda_{l} (1 - \mathbb{E}_{q}[r_{l}(\boldsymbol{X}, \boldsymbol{Y})]) \leq \xi_{l} \\ & l = 1, \dots, L & \text{rule constraints} \end{split}$$

The closed-form solution:

$$q^*(\boldsymbol{Y}|\boldsymbol{X}) \propto p_{\theta}(\boldsymbol{Y}|\boldsymbol{X}) \exp \left\{ -\sum_{l} C \lambda_{l} (1 - r_{l}(\boldsymbol{X}, \boldsymbol{Y})) \right\}$$

Training NN with Rules

Goal

Given \mathcal{R} , find $\boldsymbol{\theta}$ that minimize the loss ℓ' on N training examples.

$$\boldsymbol{\theta} = \arg\min_{\theta \in \Theta} \frac{1}{N} \sum_{n=1}^{N} (1 - \pi) \ell(\boldsymbol{y}_n, \boldsymbol{\sigma}_{\theta}(\boldsymbol{x}_n)) + \pi \ell(\boldsymbol{s}_n(\boldsymbol{x}_n), \boldsymbol{\sigma}_{\theta}(\boldsymbol{x}_n))$$

Input: Training data $\mathcal{D} = \{(\boldsymbol{x}_n, \ y_n)\}_{n=1}^N$,

The rule set $\mathcal{R} = \{(R_l, \lambda_l)\}_{l=1}^L$,

 π :imitation parameter, C: regularization strength

Output: student network p_{θ} and teacher network q Initialize the parameters θ , then **repeat**:

- $\textbf{ 9 Sample a subset } (\boldsymbol{X},\boldsymbol{Y}) \subset \mathcal{D}$
- **2** Compute student p_{θ}
- lacktriangle Construct teacher network q
- **1** Transfer knowledge into $p_{m{ heta}}$ by updating the params $m{ heta}$

until heta converges

Application: Sentiment Classification

- Sentiment classification: sentence -> positive / negative
- Base neural network: CNN with accuracy about 87% (SST2)

For example, the sentence "This soup is good, but I don't like it" has negative sentiment although the first part seems to be positive. Notice "but" changes the sentiment, we thus consider a simple rule:

If a sentence S has a structure "A-but-B", then

$$sentiment(S) = sentiment(B)$$

Using the above rule and the knowledge distillation method, the authors observe a boost on accuracy.

Sentiment Classification with But-Rule

Accuracy (%) of Sentiment Classification with all labeled data

	Model	SST2	MR	CR
1	CNN (Kim, 2014)	87.2	81.3±0.1	84.3±0.2
2	CNN-Rule-p	88.8	81.6 ± 0.1	85.0 ± 0.3
3	CNN-Rule-q	89.3	$\textbf{81.7} {\pm} \textbf{0.1}$	85.3 ± 0.3
4	MGNC-CNN (Zhang et al., 2016)	88.4	_	_
5	MVCNN (Yin and Schutze, 2015)	89.4	_	_
6	CNN-multichannel (Kim, 2014)	88.1	81.1	85.0
7	Paragraph-Vec (Le and Mikolov, 2014)	87.8	_	_
8	CRF-PR (Yang and Cardie, 2014)	_	_	82.7
9	RNTN (Socher et al., 2013)	85.4	_	_
10	G-Dropout (Wang and Manning, 2013)	-	79.0	82.1

Row 2 and 3 are networks enhanced by the knowledge distillation, they outperform the base CNN and achieve better or comparable result with others.

Accuracy (%) of Sentiment Classification on SST2 dataset with varying sizes size of labeled data and semi-supervised learning.

	Data size	5%	10%	30%	100%
1	CNN	79.9	81.6	83.6	87.2
2	-Rule- p	81.5	83.2	84.5	88.8
3	-Rule- q	82.5	83.9	85.6	89.3
4	-semi-PR	81.5	83.1	84.6	_
5	-semi-Rule- p	81.7	83.3	84.7	_
6	-semi-Rule- q	82.7	84.2	85.7	_

Row 1 to 3 use only labeled data, while row 4 to 6 use the remaining data as unlabeled examples to train the NN. Row 2, 3, 5, 6 are results of the authors.

Conclusion

Contributions:

- Combine DNNs with logic rules to integrate knowledge
- Iteratively atransfer knowledge
- General applicability: CNNs/RNNs
- Better performance using only one rule

Drawbacks:

- We have to feed rules to the NN
- For many tasks other than NLP (such as CV), clear rules are difficult to come up with
- Can more rules lead to better performance?

Possible future work:

- Derive rules from data?
- In another domain of problems? (QA / Image QA / Vision)