BeliakovKA 30112024-105800

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Ко входу гетеродина двойного балансного смесителя подключён генератор синусоидального колебания частотой $4851~\mathrm{MF}$ ц с внутренним сопротивлением $50~\mathrm{Om}$ и доступной мощностью плюс $4~\mathrm{дБм}$.

Колебание ПЧ формируется с помощью генератора меандра частотой 1325 МГц с внутренним сопротивлением 50 Ом и доступной мощностью первой гармоники минус 3 дБм. Между выходом генератора и входом ПЧ включён фильтр нижних частот, имеющий прямоугольную частотную характеристику с частотой среза 15970 МГц. РЧ выход смесителя подключён в анализатору спектра с входным сопротивлением 50 Ом. Диапазон частот анализа от 3439 МГц до 3525 МГц.

Какова будет мощность наибольшей побочной составляющей, наблюдаемой на экране анализатора спектра? Варианты ОТВЕТА:

1) -60 дБм 2) -63 дБм 3) -66 дБм 4) -69 дБм 5) -72 дБм 6) -75 дБм 7) -78 дБм 8) -81 дБм 9) -84 дБм

Ко входам ПЧ квадратурного смесителя подключён согласованный по всем плечам делитель мощности. Развязанные плечи 2 и 3 делителя подключены соответственно к синфазному и квадратурному входам ПЧ. Известно, что:

$$s_{21} = -0.34576 - 0.27569i, s_{31} = -0.27817 + 0.34887i.$$

Внутри смесителя квадратура выдержана идеально точно.

Какой относительный уровень мощности будет иметь верхняя боковая составляющая при преобразовании частоты вверх?

Варианты ОТВЕТА:

- 1) -37 дБн 2) -39 дБн 3) -41 дБн 4) -43 дБн 5) -45 дБн 6) -47 дБн 7) -49 дБн
- 8) -51 дБн 9) 0 дБн

Ко входу РЧ двойного балансного смесителя подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью минус 3.2 дБм.

В смесителе использованы диоды с сопротивлением в открытом состоянии 28 Ом. На выходе смесителя путём преобразования на первой гармонике гетеродина получено колебание промежуточной частоты. Мощность колебания промежуточной частоты измерена с помощью анализатора спектра с входным сопротивлением 50 Ом, и получено значение минус 16.6 дБм.

Какова величина потерь в трансформаторе? (Это потери при передаче мощности от генератора с внутренним сопротивлением 50 Ом, подключённого в первичной обмотке, в нагрузку 50 Ом, подключённую к одной из половин вторичной обмотке при условии, что цепь второй половины вторичной обмотки разомкнута. Схема дана на рисунке 1.)

Рисунок 1 – Схема измерения потерь в трансформаторе

Варианты ОТВЕТА:

- 1) 7.4 дБ 2) 8 дБ 3) 8.6 дБ 4) 9.2 дБ 5) 9.8 дБ 6) 10.4 дБ 7) 11 дБ 8) 11.6 дБ
- 9) 12.2 дБ

При преобразовании частоты вверх с использованием двойного балансного смесителя, получен спектр на выходе РЧ, изображённый на рисунке 2. Как известно, в общем случае он содержит комбинационные составляющие вида $|nf_r + mf_{\Pi \Psi}|$ Какой комбинацией $\{n; m\}$ нельзя было бы объяснить наличие в спектре составляющей, отмеченной маркером 1?

(Значения частот, считываемые с экрана анализатора, округлять до единиц МГц.)

Рисунок 2 – Экран анализатора спектра

Варианты ОТВЕТА:

$$1) \ \{16; -57\} \quad 2) \ \{16; -57\} \quad 3) \ \{26; -93\} \quad 4) \ \{26; -93\} \quad 5) \ \{16; -111\} \quad 6) \ \{11; -39\}$$

7) $\{11; -39\}$ 8) $\{11; -39\}$ 9) $\{6; -21\}$

На рисунке 3 изображён двойной балансный смеситель. Диоды в этом смесителе представляют собой разрыв при подаче отрицательного напряжения и сопротивление r_i - при положительном смещении. Известно, что $r_1=r_2$ и что сопротивления двух других диодов также равны. Колебание гетеродина переключает диоды из открытого в закрытое состояние и обратно меновенно.

Рисунок 3 – Двойной балансный смеситель

Частота гетеродина 206 МГц, частота ПЧ 37 МГц.

Колебание какой частоты отсутствует на выходе РЧ?

Варианты ОТВЕТА:

- 1) 169 MΓ_{II}
- 2) 412 MΓ_{II}
- 3) 581 МГц
- 4) 37 MΓ_{II}.

Для выделения только **нижней** боковой составляющей при преобразовании вверх используются квадратурный смеситель и согласованный по всем плечам делитель мощности. Плечи 2 и 3 делителя развязаны. Известно, что: $s_{21} = s_{31}$.

Плечо 2 подключено непосредственно к синфазному входу ПЧ. Между плечом 3 и квадратурным входом ПЧ включён фазовращатель. В качестве фазовращателя используется симметричный реактивный П-образный четырёхполюсник, выполненный с помощью сосредоточенных компонентов. Известно, что между синфазным и квадратурным колебаниями гетеродина внутри смесителя существует ошибка квадратуры равная плюс 32 градусов.

Чему равна индуктивность компонента фазовращателя, если частота $\Pi \Psi$ равна 199 М Γ_{Π} ?

Варианты ОТВЕТА:

1) 33.9 нГн 2) 47.2 нГн 3) 72.1 нГн 4) 22.2 нГн