The geometry of topological graphs, and its algorithmic applications

Anastasios Sidiropoulos (Toyota Technological Institute)

Metric embeddings

[Bourgain '85]

[Alon, Karp, Peleg, West'91], [Bartal'96], [Bartal'98], [Fakcharoenphol, Rao, Talwar'03]

Topological simplification

- Topological simplification of a metric space M=(X,D)
- Low distortion embeddings
 - Mapping $f: X \rightarrow Y$
 - Preserve distances up to small distortion
- Relaxation: Stochastic embeddings
 - Random mapping $f: X \rightarrow Y$
 - Preserve distances in expectation

Stochastic embeddings: example

Deterministic embedding of the cycle into R¹

Randomization: Cut an edge at random!

- Pr[edge is cut] = 1/nIf {x,y} is cut, then
- D'(x,y)=n-1

Stochastic embeddings

- Finite metric space M=(X,D)
- Distribution $\Phi = \{(M_1, f_1), \dots, (M_k, f_k)\}$
 - $-M_i=(X_i,D_i)$
 - $-f_i: X \rightarrow X_i$

such that for all u, v in X

- for all M_i in F, $D_i(u,v) \ge D(u,v)$
- $-\mathbf{E}_{N}\left[D_{N}(f(u), f(v))\right] \leq \mathbf{\alpha} \cdot D(u,v)$

α: distortion

Stochastic embeddings

- n×n grid → tree: Ω(log n)
 [Alon, Karp, Peleg, West'91]
- planar → O(1)-treewidth: Ω(log n)
 [Carroll,Goel'04]
- genus-g → planar:
 - 2^{O(g)} [Indyk, S '07]
 - g^{O(1)} [Borradaile, Lee, S '09]
 - O(log g) [S '10]
 - $-\Omega(\log g)$ [Borradaile, Lee, S '09]

Implications: Approximations algorithms

Let A be a minimization problem, s.t. the objective depends linearly on the distances of the input metric.

(e.g. Distance Oracles, MST, TSP, k-Median, Clustering, Metric Labeling, etc.)

Theorem [S'10]

If there exists an α -approx. for A on planar graphs, then there exists an $O(\alpha \log g)$ -approx. on genus-g graphs.

Implications

- O(log g)-approx for uniform Sparsest-cut [KPR'93]
- $O(((\log g) \cdot (\log n))^{1/2})$ -approx for Non-uniform Sparsest-cut [Krauthgamer,Lee,Mendel,Naor'04]
- O(log g)-approx for treewidth [Feige, Hajiaghayi, Lee'05]
- k-th Laplacian eigenvalue: O(kg/n)·(log g)²
 [Kelner,Lee,Price,Teng'09]
- O(log g)-approx for 0-extension [Lee,Naor'04],[Calinescu,Karloff,Rabani'01]
- Similar improvements for Lipschitz extensions [Lee,Naor'04]
- Vertex Sparsifiers [Leighton, Moitra '10]
- Similar improvements for Minimum Crossing Number [Even,Guha,Schieber'02]

Orientable surfaces

Random cuts

Random cuts

Shortest non-separating cycle
Can be computed e.g. by [Cabello, Chambers'07]

Claim: $|P| \ge |C|/2$

Random cuts

Random cuts: analysis

Consider edge e={u,v}

- $Pr[e \text{ is cut}] \leq 2D(u,v) / |P|$
- If e is cut, then

$$D'(u,v) \le D'(u,z) + |P_1| + |P_2|$$

$$\le D(u,z) + |P| + |P|$$

$$\le 2|P| + |P|/2 + |P|/2$$

$$= O(|P|)$$

Thus,

$$E[D'(u,v)] = D(u,v) Pr[e not cut] + O(|P|) Pr[e is cut]$$
$$=O(D(u,v))$$

For arbitrary paths, apply linearity of expectation.

Random cuts: summary

- •Pr[edge is cut] = 1/L
- •If $\{x,y\}$ is cut, then D'(x,y)=O(L)

- Repeating g times gives a planar graph [Indyk,S'07]
- Distortion 2^{O(g)}
- Can we cut all the handles at once?

The Graph Minor Theorem

How to construct any non-trivial minor-closed graph family [Robertson, Seymour '99]

Multi-flows in minor-free graphs

Conjecture:

[Gupta, Newman, Rabinovich, Sinclair'99] For every nontrivial minor-closed graph family, the multi-flow/cut gap is O(1).

Theorem: [Lee, S '08]

The **only** hard instances for the GNRS conjecture are *essentially* planar graphs, and O(1)-treewidth graphs.

The peeling lemma

The peeling lemma

Peeling Lemma [Lee, S'09]

A U B stochastically O(1)-embeds into 1-sums of A with B

The peeling lemma: removing apices

Homotopy generators

- Greedy system of loops [Erickson, Whittlesey'05]
 - Set H of cycles s.t. G\H is planar

Lemma: [Borradaile, Lee, S'09]

The graph H has dilation O(g).

The peeling lemma

Random retractions [Lee, Naor]

The peeling lemma

The final embedding

Resulting distortion g^{O(1)}

Homotopy generators revisited

- Greedy system of loops [Erickson, Whittlesey'05]
 - Set H of cycles s.t. G\H is planar

Fact: H consists of O(g) shortest paths with a common end-point.

Untangling paths

Fact: The cut graph consists of O(g) shortest paths with a common end-point.

Theorem: [S '10] Let X be the union of g shortest paths in a graph G, with a common end-point.

Then, (X,d) embeds into a random tree with distortion O(log g).

The ultrametric barrier

- Essentially all known tree embeddings:
 - Compute a partition for every scale
 1,2,4,...,2ⁱ,...
 - Merge partitions into a tree.
 - The resulting tree is an ultrametric.

 Any embedding of the n-path into a random ultrametric has distortion Ω(log n).

Key idea: Alternating partitions

- Combine two partitions at every scale:
 - Vertical partition, similar to [Klein, Plotkin, Rao'93].

- Horizontal partition, similar to [Calinescu, Karloff, Rabani'01],

Beyond surfaces

Main message:

- Let X be a space obtained by glueing simple subspaces X₁, X₂, ..., X_k, along geodesics.
- Then, X can be stochastically simplified.

Reverse direction:

 Lee, S '11] By glueing grids along shortest paths, we can construct a "complicated" space.

Constructing a "complicated" space

The diamond-fold

D₀ [0,1]²

D₁

The Laakso-fold

Doubling spaces

- A metric (X, d) is doubling if every ball of radius r can be covered by O(1) balls of radius r/2.
- Metric notion of "bounded dimension"

Distortion of L₁ embeddings

- n-point metrics: O(log n) [Bourgain '85]
- n-vertex expanders: Ω(log n)
 [Linial, London, Rabinovich '95]
- Doubling metrics : O(log n)^{1/2}
 [Gupta,Krauthgamer,Lee '03]
- Doubling metrics : $\Omega(\log n)^{\delta}$, for some $\delta > 0$ [Cheeger, Kleiner, Naor '09]
- Doubling metrics : $\Omega(\log n)^{1/2}$ [Lee, S'11]

Negative type

(X,d) is in **NEG** if $c_2(X,d^{1/2}) = 1$

(X,d) is in **soft-NEG** if $c_2(X,d^{1/2}) = O(1)$

Our result

Theorem [Lee,S]

There exists a doubling space that requires distortion $\Omega((\log n / \log \log n)^{1/2})$ to be embedded into L_1 .

Theorem [Assouad'83]

Every doubling space is in soft-NEG.

Corollary [Lee,S]

There exists a metric in soft-NEG that requires distortion $\Omega((\log n / \log \log n)^{1/2})$ to be embedded into L₁.

Soft negative-type

- All known algorithms for Sparsest-Cut require only optimization over soft-NEG
- This fact is essential for some fast algorithms [Sherman'09]

Corollary [Arora,Lee,Naor'05],[Lee,S'11] The integrality gap of the soft-SDP for Sparsest-Cut is $\widetilde{\Theta}(\sqrt{\log n})$.

Further directions

- Stochastic embeddings of genus-g graphs without knowing the drawing. [Makarychev, S '12]
- Approximate the genus of a graph.
 - Work in progress [Makarychev, Nayyeri, S]
- Optimal embeddings for graphs that exclude a minor H, in terms of |H|.
 - Only $\Omega(\log |H|)$ lower bounds are known.
 - Almost all upper bounds are super-exponential in |H|.
 - Work in progress [Lee, S '12]