Chapter 7 Functions of Several Variables

Overview

- Introduction
 - □ Functions of 2 variables
 - □ Domain of 2 variables
- Geometric Representation
- Partial Derivatives
 - □ Geometric Interpretation
 - Higher Order Partial Derivatives

Overview

■ The Chain Rule

- Directional Derivatives
 - Geometric Meaning
 - Physical Meaning
 - □ Functions of Three Variables

Overview

- Maximum and Minimum Values
 - □ Local Maximum and Minimum
 - Critical Points

Introduction

Introduction

Objective:

To extend some methods of single-variable differential calculus to functions of several variables.

In many practical situations, the value of a quantity may depend on more than one variable.

Introduction - Example

$$V = \pi r^2 h$$

Output of a factory

---- amount of capital invested and the size of manpower.

Current in electrical circuit

----- capacitance, electromotive force,

impedance and resistance in the circuit.

Functions of 2 Variables

f(x, y) ----- a rule that assigns to each (x, y) a real number f(x, y), where x and y are real.

z = f(x, y) ----- z is a function of x and y

x and y ----- independent variables

z ----- dependent variables

In general, $z = f(x_1, x_2, \dots, x_n)$ ----- function of n variables

Domain of 2 Variables

Domain of
$$f = D_f$$

= $\{(x, y) | f(x, y) \text{ is defined}\}$

Domain of 2 Variables - Example

Let
$$f(x, y) = 3 + x \sin y - x^2 y^5$$
.

$$D_f = \{(x, y) | x, y \text{ are real}\}$$

Domain of 2 Variables - Example

Let
$$f(x, y) = \sqrt{x^2 + y^2 - 1}$$
.

√Positive

$$x^2 + y^2 - 1 \ge 0$$

$$D_f = \{(x, y) | x^2 + y^2 \ge 1\}$$

Domain of 2 Variables - Example

Let
$$f(x, y) = \frac{1}{xy}$$
.

$$D_f = \{(x, y) | x \neq 0 \text{ and } y \neq 0\}$$

Geometric Representation

Geometric Representation

$$y = f(x)$$
 ----- a curve in xy-plane

$$z = f(x, y)$$
 ----- a surface in 3-D space

Cartesian Equation of plane:

$$ax + by + cz = d$$
, where $d = ax_0 + by_0 + cz_0$.

$$z = f(x, y)$$
 ----- a surface in 3-D space

Pause and Think !!!

Question: How to "plot" the surface

$$\left|z = x^2 + y^2\right|$$

 $x^{2} + y^{2} = r^{2}$ circle center (0,0) with radius r.

$$z = f(x, y)$$
 ----- a surface in 3-D space

Pause and Think !!!

Question: How to "plot" the surface

$$z = x^2 + y^2$$

Fix
$$z = 1$$

Fix
$$z = 2$$

$$1 = x^2 + y^2$$

$$2 = x^2 + y^2$$

Circles

$$z = x^2 + y^2$$

For a fix value of z, we get a circle

Any plane parallel to the xy – plane intersects the surface ——— a circle

 $y = x^2$ parabola

$$z = f(x, y)$$
 ----- a surface in 3-D space

Pause and Think !!!

Question: How to "plot" the surface

$$z = x^2 + y^2$$

Fix
$$y = 0$$

Fix
$$y = 1$$

$$z = x^2$$

$$z = x^2 + 1$$

Parabola

$$z = x^2 + y^2$$

For a fix value of y, we get a parabola

Any plane parallel to xz – plane intersects the surface ----- a parabola

$$z = 9 - x^2 - y^2$$

Fix
$$z = 0$$

$$x^2 + y^2 = 9$$

Fix
$$z = 2$$

$$x^2 + y^2 = 7$$

Circles

Fix
$$y = 0$$

$$z = 9 - x^2$$

Parabola

Inverted

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 ellipse

For a fix value of z, we get an ellipse

Any plane parallel to xy – plane intersects the surface —— an ellipse

$$z = 8x^2 + 2y^2$$

Parabola _

Fix y = 0 $|z = 8x^2|$

$$z = 8x^2$$

Parabola

For a fix value of y, we get a parabola

Any plane parallel to xz – plane intersects the surface ----- a parabola

Let
$$f(x, y) = x^2 - 2xy + 3y^3$$
.

If we fix y = 2, we get:

$$f(x,2) = x^2 - 4x + 24$$

a function in x

We may think of f(x,2) as $g(x) = x^2 - 4x + 24$

We may find g'(x) = 2x - 4

Let
$$f(x, y) = x^2 - 2xy + 3y^3$$
.

If we fix x = -1, we get:

$$f(-1, y) = 1 + 2y + 3y^3$$

a function in y

We may think of f(-1, y) as $h(y) = 1 + 2y + 3y^3$

We may find $h'(y) = 2 + 9y^2$

Given f(x, y), to find its derivative w.r.t one of the 2 variables when the other is held constant.

Recall that for a single variable function f(x),

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

The *partial derivative* of f(w,r,t) at (a,b) is defined as

$$\lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h}$$

With respect to x, we fix y = b

We write

$$\left. \frac{\partial f}{\partial x} \right|_{(a,b)} = f_x(a,b) = \lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h}$$

if the limit exists.

Geometric Interpretation

Likewise, the *partial derivative* of f w.r.t(y) at (a,b) is defined as

$$\lim_{h\to 0} \frac{f(a, b+h) - f(a, b)}{h}$$

With respect to y, we fix x = a

We write

$$\left. \frac{\partial f}{\partial y} \right|_{(a,b)} = f_y(a,b) = \lim_{h \to 0} \frac{f(a,b+h) - f(a,b)}{h}$$

if the limit exists.

If z = f(x, y), we also write

$$f_x = \frac{\partial f}{\partial x} = \frac{\partial z}{\partial x}$$
 & $f_y = \frac{\partial f}{\partial y} = \frac{\partial z}{\partial y}$

Given z = f(x, y), how to compute f_x and f_y ?

Given z = f(x, y), how to compute f_x and f_y ?

Let
$$f(x, y) = (x^3 + y)\cos(y^2)$$
.

Find $f_x(2,0)$ and $f_y(2,0)$.

Given z = f(x, y), to compute f_x , we treat y terms as constants.

$$f_x(x, y) = \frac{d}{dx} \left((x^3 + y) \cos(y^2) \right)$$

$$= \cos(y^2) \frac{d}{dx} ((x^3 + y))$$

$$=\cos(y^2)(3x^2+0)$$

$$=3x^2\cos(y^2)$$

Thus,
$$f_x(2,0) = 3(2)^2 \cos(0^2) = 12$$

$$\frac{d}{dx} \left((k f(x)) = k \frac{d}{dx} (f(x)) \right)$$

Given z = f(x, y), how to compute f_x and f_y ?

Let $f(x, y) = (x^3 + y)\cos(y^2)$.

Find $f_{y}(2,0)$ and $f_{y}(2,0)$.

Given z = f(x, y), to compute f_y , we treat x terms as constants.

$$f_{y}(x, y) = \frac{d}{dy} \left((x^{3} + y)\cos(y^{2}) \right)$$

$$= (x^{3} + y)\frac{d}{dy}(\cos(y^{2})) + \cos(y^{2})\frac{d}{dy}((x^{3} + y))$$

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$= (x^3 + y) \left(-\sin(y^2)\right) 2y + \cos(y^2) (0+1)$$

$$= -2y(x^3 + y)\sin(y^2) + \cos(y^2)$$

Thus,
$$f_y(2,0) = 0 + \cos(0^2) = 1$$

Product Rule

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$

Note that : $f_{x}(2,0) \neq f_{y}(2,0)$

Let
$$z = x^3 \sin(y^2 + x)$$
.
Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

$$\frac{\partial z}{\partial x} = \frac{d}{dx} \left(x^3 \sin(y^2 + x) \right)$$
$$= x^3 \cos(y^2 + x) + 3x^2 \sin(y^2 + x)$$

treat y terms as constants

$$\frac{\partial z}{\partial y} = \frac{d}{dy} \left(x^3 \sin(y^2 + x) \right)$$
$$= x^3 \cos(y^2 + x) \cdot (2y)$$
$$= 2x^3 y \cos(y^2 + x)$$

treat x terms as constants

Let
$$z = e^{xy} \ln y$$
.
Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

$$\frac{\partial z}{\partial x} = (\ln y)e^{xy} \cdot y$$

treat y terms as constants

$$\frac{\partial z}{\partial y} = e^{xy} \left(\frac{1}{y} \right) + xe^{xy} \ln y$$

treat x terms as constants

Higher Order Partial Derivatives

The **2nd order partial derivatives** of f are:

$$f_{xx} = (f_x)_x = \frac{\partial^2 f}{\partial x^2}$$

$$f_{yy} = (f_y)_y = \frac{\partial^2 f}{\partial y^2}$$

$$f_{yy} = (f_y)_y = \frac{\partial^2 f}{\partial y^2}$$

$$f_{xy} = (f_x)_y = \frac{\partial^2 f}{\partial y \partial x}$$

$$f_{yx} = (f_y)_x = \frac{\partial^2 f}{\partial x \partial y}$$

$$f_{yx} = (f_y)_x = \frac{\partial^2 f}{\partial x \partial y}$$

Higher Order Partial Derivatives

If z = f(x, y), we also have the following notation:

$$f_{xx} = \frac{\partial^2 z}{\partial x^2}$$

$$f_{yy} = \frac{\partial^2 z}{\partial y^2}$$

$$f_{xy} = \frac{\partial^2 z}{\partial y \partial x}$$

$$f_{yx} = \frac{\partial^2 z}{\partial x \partial y}$$

Higher Order Partial Derivatives

Notation:

$$f_{xy} = (f_x)_y = \frac{\partial}{\partial y}(f_x) = \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right) = \frac{\partial^2 f}{\partial y \partial x}$$

$$f_{xy}$$
 --- do from left to right

$$\frac{\partial^2 f}{\partial y \partial x} \quad --- \quad \text{do from right to left}$$

Let
$$f(x, y) = 4x^3 + x^2y^3 - 6y^2$$
.

constants
$$f_{xy} = \frac{\partial}{\partial y} (12x^2 + 2xy^3)$$

$$= 0 + 2x(3y^2)$$

$$= 6xy^2$$

constants $f_{y} = \frac{\partial}{\partial y} (4x^{3} + x^{2} y^{3} - 6y^{2})$ $= 0 + x^{2} 3y^{2} - 12y$ $= 3x^{2} y^{2} - 12y$

constants $f_{yx} = \frac{\partial}{\partial y} (3x^2 y^2 - 12y)$ $= 6xy^2 - 0$ $= 6xy^2$

Note that : In this example, we have $f_{xy} = f_{yx}$.

Let
$$z = f(x, y) = x^3 \sin(y^2 + x)$$
.

$$f_x = x^3 \cos(y^2 + x) + 3x^2 \sin(y^2 + x)$$

$$f_y = 2x^3 y \cos(y^2 + x)$$

$$f_{xy} = -2x^3 y \sin(y^2 + x) + 6x^2 y \cos(y^2 + x)$$

$$f_{yx} = -2x^3 y \sin(y^2 + x) + 6x^2 y \cos(y^2 + x)$$

Note that: In this example, again we have $f_{xy} = f_{yx}$.

Question:

Is it true that

$$f_{xy}(a,b) = f_{yx}(a,b)$$
 ???

Note

Let f(x, y) be a function defined on a region D containing (a,b). If f_x, f_y, f_{xy}, f_{yx} are all continuous in D, then

$$f_{xy}(a,b) = f_{yx}(a,b).$$

Let
$$f(x, y) = xy + \frac{e^y}{y^2 + 1}$$
.

Find f_{yx} .

$$f_{y} = \frac{\partial}{\partial y} (xy + (\frac{e^{y}}{y^{2} + 1}))$$

needs Quotient Rule to differentiate

Difficult !!!

Let
$$f(x, y) = xy + \frac{e^y}{y^2 + 1}$$
.

Find f_{yx} .

$$f_{xy} = f_{yx}$$

$$f_{x} = \frac{\partial}{\partial x} (xy + \left(\frac{e^{y}}{y^{2} + 1}\right))$$

$$= y$$

treated as constant since differentiating with respect to *x*

Easy !!!

$$f_{xy} = \frac{\partial}{\partial y}(f_x) = \frac{\partial}{\partial y}(y) = 1$$

$$f_{yx} = f_{xy} = 1$$

Let
$$f(x, y) = xy^3 + \frac{\ln y}{\sin y}$$
.

Find $f_{yx}(1, 3)$.

$$f_{xy} = f_{yx}$$

$$f_x = y^3$$

$$f_{xy} = 3y^2$$

$$f_{yx}(1, 3) = f_{xy}(1, 3) = 27$$

Remark

For function in three variables f(x, y, z), we can similarly define :

$$f_x = \frac{\partial f}{\partial x}$$
, $f_y = \frac{\partial f}{\partial y}$ and $f_z = \frac{\partial f}{\partial z}$

Ideal Gas Law: pV = kT, where

p is the pressure of the gas

V is the volume of the gas

k is a constant

T is the temperature of the gas

The Chain Rule - Example

Ideal Gas Law: pV = kT

$$p = \frac{kT}{V} \qquad \Rightarrow \qquad \frac{\partial p}{\partial V} = -\frac{kT}{V^2}$$

$$V = \frac{kT}{p} \qquad \Rightarrow \qquad \frac{\partial V}{\partial T} = \frac{k}{p}$$

$$T = \frac{pV}{k} \implies \frac{\partial T}{\partial p} = \frac{V}{k}$$

Pause and Think !!!

What is the value of

$$\frac{dz}{dy}\frac{dy}{dx}\frac{dx}{dz} = ???$$

Answer:

The Chain Rule - Example

Ideal Gas Law: pV = kT

$$p = \frac{kT}{V} \implies \frac{\partial p}{\partial V} = -\frac{kT}{V^2}$$

$$V = \frac{kT}{p} \qquad \Rightarrow \qquad \frac{\partial V}{\partial T} = \frac{k}{p}$$

$$T = \frac{pV}{k} \implies \frac{\partial T}{\partial p} = \frac{V}{k}$$

Note:
$$\frac{\partial p}{\partial V} \cdot \frac{\partial V}{\partial T} \cdot \frac{\partial V}{\partial p} = -\frac{kT}{VP} = -1$$
 but $\frac{dz}{dy} \frac{dy}{dx} \frac{dx}{dz} = 1$.

Chain rule for functions of 1 variable

If w = f(x), then w is a function in x.

Suppose
$$x = g(t)$$
, then $w = f(g(t))$ is a function in t .

$$\frac{dw}{dt} = \frac{dw}{dx} \cdot \frac{dx}{dt}$$

Chain rule for functions of 2 variables

If z = f(x, y), then z is a function in 2 variables x and y.

Suppose
$$x = x(t)$$
 and $y = y(t)$, then
$$z = f(x(t), y(t))$$

is a function in one variable t.

From two variables x and y becomes one variable t.

We may now find $\frac{dz}{dt}$.

Given that $z = 3xy^2 + x^4y$, where $x = \sin 2t$ and $y = \cos t$. Find $\frac{dz}{dt}$.

$$z = 3xy^{2} + x^{4}y$$

$$= 3(\sin 2t)(\cos t)^{2} + (\sin 2t)^{4}(\cos t)$$

$$= 3\sin 2t \cos^{2} t + \sin^{4} 2t \cos t$$

Find $\frac{dz}{dt}$ by differentiating with respect to t

Given that $z = 3xy^2 + x^4y$, where $x = \sin 2t$ and $y = \cos t$. Find $\frac{dz}{dt}$.

$$z = 3xy^{2} + x^{4}y$$

$$= 3(\sin 2t)(\cos t)^{2} + (\sin 2t)^{4}(\cos t)$$

$$= 3\sin 2t \cos^{2} t + \sin^{4} 2t \cos t$$

Instead of writing z in terms of t and find $\frac{dz}{dt}$ by differentiating with respect to t, we want to have a chain rule instead.

Chain rule for functions of more than 1 variable.

$$z = f(x, y)$$
 and $x = x(t)$, $y = y(t)$, so z is a function of t.

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}$$

Given that $z = 3xy^2 + x^4y$, where $x = \sin 2t$ and $y = \cos t$.

$$z = 3xy^2 + x^4y$$

$$z = 3xy^2 + x^4y \qquad \frac{\partial z}{\partial x} = 3y^2 + 4x^3y \qquad \frac{\partial z}{\partial y} = 6xy + x^4$$

$$\frac{\partial z}{\partial y} = 6xy + x^2$$

$$x = \sin 2t$$

$$x = \sin 2t \qquad \frac{dx}{dt} = 2\cos 2t$$

$$y = \cos t$$

$$\frac{dy}{dt} = -\sin t$$

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}$$

$$\left| \frac{dz}{dt} = (3y^2 + 4x^3y)(2\cos 2t) + (6xy + x^4)(-\sin t) \right|$$

The Chain Rule - Example

Let
$$z = x^2 + xy + y^2$$
, where $x = \cos t$ and $y = \sin t$.

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}$$
$$= (2x + y)(-\sin t) + (x + 2y)\cos t$$

$$w = f(x, y, z)$$
 and $x = x(t)$, $y = y(t)$, $z = z(t)$, so w is a function of t .

The Chain Rule - Example

Let $w = z - \sin xy$, where x = t, $y = \ln t$ and $z = e^{t-1}$.

$$\frac{dw}{dt} = \frac{\partial w}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial w}{\partial y} \cdot \frac{dy}{dt} + \frac{\partial w}{\partial z} \cdot \frac{dz}{dt}$$

$$= (-\cos xy)y \cdot 1 + (-\cos xy)x \cdot \frac{1}{t} + 1 \cdot e^{t-1}$$

$$\frac{dw}{dt} = \frac{\partial f}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial f}{\partial y} \cdot \frac{dy}{dt} + \frac{\partial f}{\partial z} \cdot \frac{dz}{dt}$$

If z = f(x, y), then z is a function in 2 variables x and y.

Suppose
$$x = x(s,t)$$
 and $y = y(s,t)$, then $z = f(x(s,t),y(s,t))$ is a function in two variables s and t .

Let
$$z = e^{2x} \cos 3y$$
, where $x = st^2$ and $y = s^2t$.
Find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$.

$$z = e^{2x} \cos 3y$$

$$= e^{2(st^2)} \cos 3(s^2t)$$

$$= e^{2st^2} \cos(3s^2t)$$

$$\frac{\partial z}{\partial s} \qquad \frac{\partial z}{\partial t}$$

Chain rule for functions of 2 variables

$$z = f(x, y)$$
 and $x = x(s,t)$, $y = y(s,t)$, so z is a function of s and t .

$$\frac{\partial z}{\partial s} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial s}$$

and

$$\frac{\partial z}{\partial t} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial t}$$

Let
$$z = e^{2x} \cos 3y$$
, where $x = st^2$ and $y = s^2t$.

Find
$$\frac{\partial z}{\partial s}$$
 and $\frac{\partial z}{\partial t}$.

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s} = (2e^{2x} \cos 3y)t^2 + (-3e^{2x} \sin 3y)(2st).$$

$$\frac{\partial z}{\partial s} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial s}$$

$$\frac{\partial z}{\partial s} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial s}$$

$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t} = (2e^{2x} \cos 3y)(2st) + (-3e^{2x} \sin 3y)(s^2).$$

$$\frac{\partial z}{\partial t} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial t}$$

$$\frac{\partial z}{\partial t} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial t}$$

$$w = f(x, y, z)$$
 and $x = x(s,t)$, $y = y(s,t)$, $z = z(s,t)$, so w is a function of s and t .

$$\frac{\partial w}{\partial s} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial s} + \frac{\partial f}{\partial z} \cdot \frac{\partial z}{\partial s}$$

and

$$\frac{\partial w}{\partial t} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial t} + \frac{\partial f}{\partial z} \cdot \frac{\partial z}{\partial t}$$

Directional Derivatives

Directional Derivatives

Let
$$z = f(x, y)$$
.

$$\left. \frac{\partial f}{\partial x} \right|_{(a,b)} = f_x(a,b)$$
 is the *rate of change* of f w.r.t x (along direction of x -axis) at (a,b) .

$$\left. \frac{\partial f}{\partial y} \right|_{(a,b)} = f_y(a,b)$$
 is the *rate of change* of f w.r.t y (along direction of y -axis) at (a,b) .

Question:

How about the rate of change of f along an arbitrary direction ???

The directional derivative of f at (a,b) in the direction of unit vector $(\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j})$ is

$$D_{\mathbf{u}}f(a,b) = \lim_{h \to 0} \frac{f(a + hu_1, b + hu_2) - f(a,b)}{h}$$

if the limit exists.

For directional derivative, we need to specify

- (1) the point we are interested in (a,b),
- (2) the direction we are looking at **u**.

Directional Derivatives - Geometrical

 $D_{u}f(a,b)$ = gradient of the tangent line of curve C at the point (a, b, f(a, b))

Geometrical Meaning

 $D_u f(a,b)$ gives the gradient of the tangent line to the curve C at the point (a,b).

 $D_{\mathbf{u}}f(a,b)$: Directional derivative of f at point (a,b) in the direction \mathbf{u} .

Note: **u** is a unit vector.

At the same point (a,b), we can have directional derivative in different directions u.

The directional derivative of f at (a,b) in the direction of unit vector $(\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j})$ is

$$D_{\mathbf{u}}f(a,b) = \lim_{h \to 0} \frac{f(a + hu_1, b + hu_2) - f(a,b)}{h}$$

if the limit exists.

Note that:

$$D_{\mathbf{i}}f(a,b) = f_{x}(a,b)$$

$$D_{\mathbf{j}}f(a,b) = f_{\mathbf{y}}(a,b)$$

Question:

How to compute $D_{\mathbf{u}}f(a,b)$???

Formula:

$$D_{\mathbf{u}}f(a,b) = f_x(a,b)u_1 + f_y(a,b)u_2$$
where $\mathbf{u} = u_1\mathbf{i} + u_2\mathbf{j}$ is a *unit* vector.

Let
$$f(x, y) = x^2 - 3xy^2 + 2y^3$$
.

Let
$$f(x, y) = x^2 - 3xy^2 + 2y^3$$
.
Find $D_{\mathbf{u}} f(2,1)$, where $\mathbf{u} = \frac{\sqrt{3}}{2} \mathbf{i} + \frac{1}{2} \mathbf{j}$.

$$f_x = 2x - 3y^2$$
 and $f_y = -6xy + 6y^2$

$$f_x(2,1) = 1$$
 and $f_y(2,1) = -6$

Thus,
$$D_{\mathbf{u}}f(2,1) = (1)\left(\frac{\sqrt{3}}{2}\right) + (-6)\left(\frac{1}{2}\right) = \frac{\sqrt{3} - 6}{2}$$
.

$$D_{\mathbf{u}}f(a,b) = f_{x}(a,b)u_{1} + f_{y}(a,b)u_{2}$$
where $\mathbf{u} = u_{1}\mathbf{i} + u_{2}\mathbf{j}$ is a *unit* vector.

Physical Meaning

The directional derivative $D_{\mathbf{u}}f(a,b)$ measures the change in the value df of a function f when we move a small distance dt from the point (a,b) in the direction of the vector \mathbf{u} :

$$df = D_{\mathbf{u}}f(a,b) \cdot dt$$

Let $f(x, y) = x^2y^3 + 1$. Estimate how much the value of f will change if a point Q moves 0.1 unit from (2,1) towards (3,0).

First need to find the unit vector parallel to the vector that starts at (2,1) and ends at (3,0).

Q moves in the direction $(3\mathbf{i} + 0\mathbf{j}) - (2\mathbf{i} + \mathbf{j}) = \mathbf{i} - \mathbf{j}$.

u is parallel to
$$\mathbf{i} - \mathbf{j}$$
.

$$\|\mathbf{i} - \mathbf{j}\| = \sqrt{1^2 + (-1)^2} = \sqrt{2}$$
Unit vector $\mathbf{u} = \frac{1}{\sqrt{2}} (\mathbf{i} - \mathbf{j})$

$$D_{\mathbf{u}}f(a,b) = f_x(a,b)u_1 + f_y(a,b)u_2$$
where $\mathbf{u} = u_1\mathbf{i} + u_2\mathbf{j}$ is a *unit* vector.

Let $f(x, y) = x^2y^3 + 1$. Estimate how much the value of f will change if a point Q moves 0.1 unit from (2,1) towards (3,0).

u is parallel to
$$\mathbf{i} - \mathbf{j}$$
. Unit vector $\mathbf{u} = \frac{1}{\sqrt{2}}(\mathbf{i} - \mathbf{j})$

$$f_x = 2xy^3 \quad \text{and} \quad f_y = 3x^2y^2$$

$$f_x(2,1) = 4$$
 and $f_y(2,1) = 12$

Thus,
$$D_{\mathbf{u}}f(2,1) = (4)\left(\frac{1}{\sqrt{2}}\right) + (12)\left(-\frac{1}{\sqrt{2}}\right) = -\frac{8}{\sqrt{2}}$$

$$D_{\mathbf{u}}f(a,b) = f_{x}(a,b)u_{1} + f_{y}(a,b)u_{2}$$
where $\mathbf{u} = u_{1}\mathbf{i} + u_{2}\mathbf{j}$ is a *unit* vector.

Let $f(x, y) = x^2y^3 + 1$. Estimate how much the value of f will change if a point Q moves 0.1 unit from (2,1) towards (3,0).

u is parallel to $\mathbf{i} - \mathbf{j}$. Unit vector $\mathbf{u} = \frac{1}{\sqrt{2}}(\mathbf{i} - \mathbf{j})$

$$f_x = 2xy^3 \quad \text{and} \quad f_y = 3x^2y^2$$

$$f_x(2,1) = 4$$
 and $f_y(2,1) = 12$

Thus,
$$D_{\mathbf{u}}f(2,1) = (4)\left(\frac{1}{\sqrt{2}}\right) + (12)\left(-\frac{1}{\sqrt{2}}\right) = -\frac{8}{\sqrt{2}}$$

$$df = D_{\mathbf{u}}f(2,1) \cdot dt = \left(-\frac{8}{\sqrt{2}}\right)(0.1) \approx 0.57$$
 $df = D_{\mathbf{u}}f(a,b) \cdot dt$

$$df = D_{\mathbf{u}}f(a,b) \cdot dt$$

Past Exam Question

Let f(x, y) be a differentiable function of two variables such that f(2,1) = 1506 and $\frac{\partial f}{\partial x}(2,1) = 4$. It was found that if the point moved from (2,1) a distance 0.1 unit towards (3,0), the value of f became 1505. Estimate the value of $\frac{\partial f}{\partial y}(2,1)$.

Functions of Three Variables

We can also define directional derivatives for functions of three variables. Let f be a function of x, y and z. The directional derivative of f at (a,b,c) in the direction of a unit vector $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k}$ in the xyz space is

$$D_{\mathbf{u}}f(a,b,c) = \lim_{h \to 0} \frac{f(a+hu_1,b+hu_2,c+hu_3) - f(a,b,c)}{h}$$

if this limit exists.

Functions of Three Variables

Similarly, we have the formula

$$D_{\mathbf{u}}f(a,b,c) = f_{x}(a,b,c)u_{1} + f_{y}(a,b,c)u_{2} + f_{z}(a,b,c)u_{3}$$

since $df = D_{\mathbf{u}} f(a, b, c) \cdot dt$.

Maximum and Minimum Values

Local Maximum and Minimum

f(x, y) has a *local maximum* at (a, b) if $f(x, y) \le f(a, b)$ for all points (x, y) near (a, b). The number f(a, b) is called a *local maximum value*.

Local Maximum and Minimum

f(x, y) has a *local minimum* at (a, b) if $f(x, y) \ge f(a, b)$ for all points (x, y) near (a, b). The number f(a, b) is called a *local minimum value*.

A point (a,b) is called a critical point of f if

- (i) $f_x(a,b) = 0$ and $f_y(a,b) = 0$; or
- (ii) $f_x(a,b)$ or $f_y(a,b)$ does not exist.

Suppose
$$f_x(a,b) = 0$$
 and $f_y(a,b) = 0$.

Question:

What can you say about $D_{\mathbf{u}}f(a,b)$???

Suppose
$$f_x(a,b) = 0$$
 and $f_y(a,b) = 0$.

Question:

What can you say about $D_{\mathbf{u}}f(a,b)$???

Answer:

Suppose
$$f_x(a,b) = 0$$
 and $f_y(a,b) = 0$.

Question:

Must the point (a,b) be a local maximum / minimum of f???

Suppose
$$f_x(a,b) = 0$$
 and $f_y(a,b) = 0$.

Question:

Must the point (a,b) be a local maximum / minimum of f???

Answer:

local maximum

Let (a,b) be a point of f with $f_x(a,b) = 0$ and $f_y(a,b) = 0$.

We say (a,b) is a saddle point of f

if there are some directions

along which f has a local maximum at (a,b)

and some directions

along which f has a local minimum at (a,b).

Fix
$$x = 0$$
 $z = 2y^2$ local minimum

Fix
$$y = 0$$
 $z = -3x^2$ local maximum

f may have a local maximum or minimum at (a,b), where $f_x(a,b)$ or $f_y(a,b)$ does not exist.

Let
$$z = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

z has a local minimum at (0,0)

but $\frac{\partial z}{\partial x}\Big|_{(0,0)}$ does not exist.

Let f(x) = |x|.

Show that f is differentiable for $x \ne 0$ and has no derivative at x = 0.

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$

Let
$$z = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

z has a local minimum at (0,0)

but $\frac{\partial z}{\partial x}\Big|_{(0,0)}$ does not exist.

Second Derivative Test:

Assume that f and its first and second partial derivatives are continuous in a region containing (a,b) such that $f_x(a,b) = 0$ and $f_y(a,b) = 0$.

Let
$$D = f_{xx}(a,b)f_{yy}(a,b) - f_{xy}(a,b)^2$$

We will use the value of D to test for local maximum / minimum and saddle points

$$D = f_{xx}(a,b)f_{yy}(a,b) - f_{xy}(a,b)^{2}$$

- (a) If D > 0 and $f_{xx}(a,b) > 0$, then f has a **local minimum** at (a,b).
- (b) If D > 0 and $f_{xx}(a,b) < 0$, then f has a **local maximum** at (a,b).
- (c) If D < 0, then f has a **saddle point** at (a,b).
- (d) If D = 0, then *no conclusion* can be drawn.

Given a function f(x, y) and point (a, b) such that $f_x(a, b) = 0 = f_y(a, b)$.

$$D = f_{xx}(a,b)f_{yy}(a,b) - f_{xy}(a,b)^{2}$$

$$D > 0$$

$$D = 0$$

$$D = 0$$

$$D = 0$$
Min
$$D = 0$$
Max
Saddle Point
$$D = 0$$
No conclusion

Find and classify all the critical points of

$$f(x, y) = x^3 + y^3 + 3x^2 - 3y^2 - 8.$$

$$f_x = 3x^2 + 6x = 0$$

$$x^2 + 2x = 0$$

$$x(x+2) = 0$$

$$x = 0, -2$$

$$f_y = 3y^2 - 6y = 0$$
$$y^2 - 2y = 0$$
$$y(y - 2) = 0$$
$$y = 0,2$$

4 critical points : (0,0), (0,2), (-2,0), (-2,2).

Find and classify all the critical points of

$$f(x, y) = x^3 + y^3 + 3x^2 - 3y^2 - 8.$$

$$f_x = 3x^2 + 6x$$

$$f_x = 3x^2 + 6x$$
 $f_y = 3y^2 - 6y = 0$ $f_{xy} = 0$

$$f_{xy} = 0$$

At
$$(0,0)$$
, $D = -36 < 0$
saddle point at $(0,0)$

$$D = f_{xx}(a,b) f_{yy}(a,b) - f_{xy}(a,b)^{2}$$

At (0,2),
$$D = 36 > 0$$
 and $f_{xx}(0,2) = 6 > 0$ local minimum at (0,2)

At
$$(-2,0)$$
, $D = 36 > 0$ and $f_{xx}(-2,0) = -6 < 0$ local maximum at $(-2,0)$

At
$$(-2,2)$$
, $D = -36 < 0$
saddle point at $(-2,-2)$

Find and classify all the critical points of
$$f(x, y) = y^3 + 3x^2y - 3x^2 - 3y^2 + 2.$$

$$f_x = 6xy - 6x$$
 $f_y = 3y^2 + 3x^2 - 6y$

$$6xy - 6x = 0$$
 ---- (1)

$$3y^2 + 3x^2 - 6y = 0$$
 ---- (2)

Solve (1) and (2): simultaneous equations

Solving
$$\begin{cases} f_x = 0 \\ f_y = 0 \end{cases}$$
 yields 4 critical points: (0,0), (0,2), (1,1), (-1,1).

Find and classify all the critical points of $f(x, y) = y^3 + 3x^2y - 3x^2 - 3y^2 + 2.$

$$f(x, y) = y^3 + 3x^2y - 3x^2 - 3y^2 + 2.$$

$$f_{xx} = 6y - 6$$
, $f_{yy} = 6y - 6$ and $f_{xy} = 6x$

$$D = f_{xx} f_{yy} - f_{xy}^2$$

	(0,0)	(0,2)	(1,1)	(-1,1)
f_{xx}	-6	6	0	0
f_{yy}	-6	6	0	0
f_{xy}	0	0	6	-6
D	36	36	-36	-36
	Max	Min	Saddle Points	

$$D = f_{xx}(a,b)f_{yy}(a,b) - f_{xy}(a,b)^{2}$$

- (a) If D > 0 and $f_{xx}(a,b) > 0$, then f has a **local minimum** at (a,b).
- (b) If D > 0 and $f_{xx}(a,b) < 0$, then f has a **local maximum** at (a,b).
- (c) If D < 0, then f has a **saddle point** at (a,b).
- (d) If D = 0, then *no conclusion* can be drawn.

$$D = f_{xx}(a,b) f_{yy}(a,b) - f_{xy}(a,b)^{2}$$

- (a) If D > 0 and $f_{xx}(a,b) > 0$, then f has a **local minimum** at (a,b).
- (b) If D > 0 and $f_{xx}(a,b) < 0$, then f has a **local maximum** at (a,b).

Note that:

the value of D depends on f_{yy} but we don't "ask" f_{yy} when checking for local maximum / minimum of f.

Why ???

End