

第19章 服务质量

南京大学计算机系 黄皓教授 2007年11月30日星期二

Contents

- 1. Integrated Services Architecture
- 2. Resource Reservation
- 3. Differentiated Services

1. Integrated Services Architecture

Integrated Services Architecture

- (1) Elastic Traffic
- (2) Inelastic Traffic
- (3) ISA Approach
- (4) ISA Components

(1) Type of Internet Traffic – Elastic

- Can adjust to changes in delay and throughput
- e.g. common TCP and UDP application
 - □ FTP: user expect delay proportional to file size, sensitive to changes in throughput
 - □ SNMP: delay not a problem, except when caused by congestion
 - □ Web, Telnet: sensitive to delay
 - EMail: insensitive to delay and throughput
- Not per packet delay total elapsed time concerned
 - e.g. web page loading time, ftp file transfer time
 - ☐ For small items, **delay** across internet dominates
 - ☐ For large items it is **throughput** over connection
- QOS based internet service could be benefit.
 - Without QoS, routers are dealing evenhandedly with arriving IP packets, with no concern for the type of application and whether this packet is part of a large transfer element or a small one. It is unlikely that the resources will be allocated fairly.

- Not easily adapt to changes in delay and throughput
 - e.g. real-time traffic

Throughput

A given minimum throughput required

Delay

Delay sensitive application, e.g. stock trading

Jitter

- Magnitude of delay variation, a maximum limit need to be defined
- ☐ More jitter requires a bigger buffer

Packet loss

 Some are sensitive, e.g. stock trading; some are not, e.g. online video

Traffic Requirements of Internet Apps

Application	Data Loss	Bandwidth	Time Sensitive
File transfer	no loss	elastic	no
Email	no loss	elastic	no
Web documents	no loss	elastic	no
Real-time audio/video	loss-tolerant	audio: 5k~1Mbps video: 10k~5Mbps	100's msec
Stored audio/video	loss-tolerant	same as above	few secs
Interactive games	loss-tolerant	few kpbs up	100's msec
Instant messaging	no loss	elastic	yes and no

Requirements for Inelastic Traffic

- Difficult to meet requirements on network with variable queuing delays and congestion
 - Require preferential treatment
- Applications need to be able to state their requirements
 - Ahead of time, using some sort of resource reservation functions (preferred)
 - Or on the fly, using fields in IP header
- Require elastic traffic to be supported as well
 - Inelastic application do not back off and reduce the demand in face of congestion
 - Elastic traffic may be crowded off the internet
 - Deny service requests that leave too few resources

- Inelastic applications typically do not back off and reduce demand in the face of congestion, in contrast to TCP-based applications.
- In times of congestion, inelastic traffic will continue to supply a high load, and elastic traffic will be crowded off the internet.
- A reservation protocol can help control this situation by denying service requests that would leave too few resources available to handle current elastic traffic.

(3) ISA Approach (1)

- The purpose
 - Providing QOS support over IP-based internets
 - One central issue is to share the available capability in times of congestion
 - An overall architecture, a number of enhancements to the traditional best-effort mechanisms
- Traditional congestion control
 - Routing algorithms: minimize delay
 - □ Packet discard: buffer overflows on router
 - Inadequate for traffic now on Internet

(3) ISA Approach (2)

- ISA is a overall architecture
 - A number of enhancements to the traditional best-effort mechanisms are being developed.

Flow

- Distinguishable stream of related IP packets that resulted from a single user activity and requires the same QoS.
- A flow might consist of one transport connection or one video stream.
- A flow differs from a TCP connection
 - A flow is unidirectional;
 - Can be multicast
- An IP packet is identified as a member of flow on the basis of source and destination IP addresses and port number and protocol type.

(3) ISA Approach (3) — ISA Functions

Admission Control

- ISA requires that a reservation be made for a new flow.
- □ Routers collectively determine whether the resources is sufficient.
- RSVP is used to make reservations.

Routing Algorithm

The routing decision may be based on a variety of QOS parameters, not just delay.

Queuing discipline

A vital element of the ISA: effective queuing policy that take account of different flow requirements.

Discard policy

Selective discard instead of just new comings.

(4) ISA Components — ISA in a Router

(4) ISA Components – Background Functions

- Reservation protocol
 - Reserves resource for new flow at a given level of QOS
- Admission control
 - Determines if sufficient resources are available for the flow at the requested QOS
- Management agent
 - Modifies the traffic control database
 - Directs the admission control module to set policies

Traffic control database

(4) ISA Components – Background Functions

- Routing protocol
 - Maintaining a routing database
 - For each destination address and each flow.

(4) ISA Components – Forwarding

- Classifier and route selection.
 - Incoming packets mapped to classes
 - A class maybe a single flow or set of flows with same QOS requirements.
 - e.g. all video flows or all flows attributable to a particular organization may be treated identically.
 - Determines next hop based on packet's clsss and destination.
- Packet scheduler
 - Manages one or more queues for each output
 - Order queued packets sent, based on class, traffic control database etc.
 - Policing for packet priority, discard etc.

(5) ISA Services

- Traffic specification (TSpec) defined as service for flow of packets
- Defined on 2 levels
 - □ General categories of service
 - Guaranteed
 - Controlled load
 - Best effort (default)
 - Particular flow within each category
 - Specified by the values of certain parameters
- TSpec is part of the contract between the data flow and the service after reservation accepted

(5) ISA Services

- Traffic specification (TSpec) defined as service for flow of packets
- Defined on 2 levels
 - ☐ General categories of service
 - Guaranteed
 - Controlled load
 - Best effort (default)
 - Particular flow within each category
 - Specified by the values of certain parameters
- TSpec is part of the contract between the data flow and the service after reservation accepted

(5) ISA Services — Token Bucket

- A way of charcaterizing traffic
- Three advantages in the context of ISA
 - Many traffic sources can be defined by token bucket scheme
 - Provides concise description of load imposed by a flow
 - Easy to determine resource requirements
 - Provides input parameters to policing function

Token Bucket Traffic Specification

- 2 parameters defined
- Token replenishment rate R
 - Continually sustainable data rate
- Bucket size B
 - Amount that data rate can exceed R for short period
- During time period T amount of data sent can not exceed "RT + B"

(5) ISA Services — Token Bucket Diagram

(5) ISA Services — Token Bucket Scheme

(5) ISA Services — Guaranteed Service

Key elements

- Assured capacity level or data rate
- Specifies upper bound on queuing delay through network
 - Must be added to propagation delay or latency to get total delay
 - Set high to accommodate rare long queue delays
- No queuing losses
 - i.e. no buffer overflow

Application

- Real-time play back
 - Uses delay buffer and retains time pattern for incoming message which will not tolerate packet loss

(5) ISA Services — Controlled Load

Key elements

- Tightly approximates to best efforts under unloaded network
- No upper bound on queuing delay
 - High percentage of packets do not experience delay over minimum transit delay
 - i.e. propagation plus router processing with no queuing delay
- Very high percentage delivered
 - Almost no queuing loss

Application

- Adaptive real-time applications
 - Receiver measures jitter and sets playback point
 - Video can drop a frame or delay output slightly
 - Voice can adjust silence periods

(5) ISA Services — Queuing Discipline

Traditional

- First in first out (FIFO) or first come first served (FCFS) at each router port
- No special treatment to high priority packets or flows
- Small packets held up by large packets ahead of them in queue
 - Larger average delay for smaller packets
 - □ Flows of larger packets get better service
- Greedy TCP connection can crowd out altruistic connections
 - ☐ If one connection does not back off, others may back off more

(5) ISA Services — Queuing Discipline – Fair

Fair

- One for each source or flow
 - Packet placed in queue for its flow
- Round robin servicing
 - □ Each busy queue (flow) gets exactly one packet per cycle
 - □ Short packets penalized as each queue sends one packet per cycle
 - Skip empty queues
 - Load balancing among flows
- No advantage to being greedy
 - Your queue gets longer, increasing your delay, whereas other flows are unaffected by his greedy behavior.
- Can have weighted fair queuing

(5) ISA Services — FIFO and Fair Queue

2. Resource Reservation

Resource Reservation: RSVP

- RFC 2205, allows receiver to request a special end to end QOS for its data flows
 - An internet control protocol, designed to operate with current and future unicast and multicast routing protocols
- Unicast applications can reserve resources in routers to meet QOS
 - If router can not meet request, application informed
- Multicast is more demanding, and maybe reduced
 - Some group members may not require delivery from particular source over given time
 - Some group members may only be able to handle a portion of the transmission

RSVP

■ Goals

- Ability for receivers to make reservations
- Deal with changes in multicast group membership
- Enable receivers to select one source
- Deal with changes in routes
- Independent of routing protocol

Features

- ☐ Maintain soft state (periodically renewed) on each router
- Provide different reservation styles
- Transparent operation through non-RSVP routers
- □ Support for IPv4 and IPv6

Data Flows

Session

- A data flow with a particular destination and transport layer protocol
- Defined by the triple: <DestAddress, Protocol ID, DstPort>

Reservation Model

- An RSVP request consists of a flow descriptor: <flowspec, filterspec>
- Flowspec: specifies a desired QOS, used to set parameters in a node's packet scheduler
 - Flowspec contains the following elements
 - Service class, Rspec (R for reservation) parameter defines the desired QoS, and Tspec(T for traffic) parameter describes the data flow.
- Filterspec: defines the set of data packets under QOS, used to set the packet classifier.
 - the filter spec together with the session define the set of packets, or flow, that are to receive the desired QoS.
 - Filterspec consisting of the elements of source address and source port

Illustration of Data Flows

Data distribute to multicast group

Filtering by Source

Filtering by Substream

William Stalling, Computer Networking with Internet Protocols and Technology.

Reservation Process

Receivers

- Make RSVP msgs carrying reservation requests
- Pass the msgs upstream towards the senders

At each intermediate node

- The RSVP module passes the request to Admission and Policy control and the check is executed
- Reservation request is propagated

Scope of the request

The set of sender hosts to which a reservation request is propagated

RSVP Mechanisms (1)

- 2 fundamental RSVP messages
 - Path: from sender, pass downstream
 - Resv: from receiver, pass upstream
- Path message
 - Each RSVP sender transmits a Path message downstream, store the path state in each router along the way
 - The path state includes the IP address of the previous hop which is used for reverse directing
 - May gather information that can be used to predict the end to end QOS

RSVP Mechanisms (2)

Resv message

- □ Each receiver sends a Resv message upstream towards the senders
- Follows the exact reverse path the data will use (path state)
- Creates and maintains the reservation state in each node along the path

RSVP host model

Soft State

- Manage the reservation state and/or path state in routers and hosts
- A soft state is created and periodically refreshed by Path and Resv messages
- Must interact with dynamic routing strategy of Internet
- When the route changes, the resource reservation must be changed
- Applications must periodically renew requests during transmission, or the state info will expired
- Teardown msgs can be used to remove path or reservation state immediately

RSVP Operation for Multicast (2)

- Receiver joins a multicast group (IGMP)
- Potential sender issues Path message
- Receiver gets the message identifying sender
- Receiver has reverse path info and may start sending Resv messages
- Resv messages propagate through distribution tree and is delivered to sender
- Sender starts transmitting data packets
- Receiver starts receiving data packets

3. Differentiated Services

Differentiated Services

- ISA and RSVP complex to deploy now
- May not scale well for large volumes of traffic
 - Amount of control signals
 - Maintenance of state information at routers
- DS architecture designed
 - Provide simple, easy to implement, low overhead tool
 - Support range of network services differentiated on basis of performance
- RFC 2475

Characteristics of DS

- Use IPv4 header Type of Service or IPv6 Traffic Class field
 - No change to IP
- Service Level Agreement (SLA)
 - Established between provider (internet domain) and customer prior to use of DS
 - DS mechanisms not needed in applications
- Build in aggregation
 - All traffic with same DS field treated same
 - e.g. multiple voice connections
- DS implemented in individual routers by queuing and forwarding based on DS field
 - State information on flows need not saved by routers

DS Services

- Defined within DS domain
 - Contiguous portion of internet over which consistent set of DS policies administered
 - Typically under control of one organization
- Defined in SLA
 - Customer may be user organization or other DS domain
 - Packet class marked in DS field
- Service provider configures forwarding policies routers
 - Ongoing measure of performance provided for each class
 - □ Destination within the DS domain, provides the agreed service internally
 - If destination in another domain, attempts to forward packets matching the most appropriate service

SLA Parameters

- Detailed service performance parameters
 - Expected throughput
 - Drop probability
 - Latency
- Constraints on ingress and egress points
 - Indicate scope of service
- Traffic profiles to be adhered to
 - e.g. token bucket parameters
- Disposition of traffic in excess of profile

Example Services

Qualitative

- □ Level A low latency
- □ Level B low loss

Quantitative

- □ Level C 90% of traffic < 50ms latency</p>
- □ Level D 95% in profile traffic delivered

Mixed

- □ Level E allotted twice bandwidth of level F traffic
- Level F traffic with drop precedence X higher probability of delivery than that with Y

DS Octet in Detail

- Leftmost 6 bits are DS code-point
 - □ 64 different classes available
- 3 pools defined
 - xxxxx0 : reserved for standards
 - 000000 : default packet class
 - xxx000 : backwards compatibility with IPv4 TOS
 - xxxx11 : reserved for experimental or local use
 - xxxx01 : experimental or local but may be allocated for standards in future
- Rightmost 2 bits unused

Illustration of DS Fields

DS Configuration Diagram

Interior Routers

- Consistent interpretation of DS code-points within domain
- Simple mechanisms to handle packets based on code-points
 - Classifier and Queue management
- Classifier
 - □ Differentiate packets based on DS code-point, src & dst addresses, high-level protocol, etc.
- Queue Management
 - Queuing gives preferential treatment depending on code-point
 - Per Hop Behaviour (PHB)
 - Must be available to all routers
 - Packet dropping rule dictates which to drop when buffer saturated

Boundary Routers

- Traffic conditioning to provide desired service
 - Classifier
 - Separate packets into classes
 - □ Meter
 - Measure traffic for conformance to profile
 - Marker
 - Policing by remarking code-points if required
 - □ Shaper
 - Policing by delaying packets
 - Dropper
 - Drops packets if packets rate exceeds those specified in the profile of the class
- Implement PHB rules

DS Traffic Conditioner

PHB – Expedited Forwarding

- Specific PHBs defined
 - Associated with specific differentiated services (DSs)
- RFC 3246 defines expedited forwarding (EF) PHB
 - Support for premium service
 - Low-loss, low-delay, low-jitter; assured bandwidth, end-to-end service through DS domains
 - Appears to endpoints as point-to-point connection or leased line
- Difficult in internet or packet-switching network
 - Queues (buffers) at each node (router) will result in loss, delays, and jitter
 - Configure nodes so traffic aggregate has well defined minimum departure rate
 - Condition aggregate so arrival rate at any node is always less than minimum departure rate

Handle Expedited Forwarding

- Config minimum departure rate in each node by EF PHB
- Use network boundary conditioners (policing and shaping) to assure arrival rate < minimum departure rate
 - Border nodes control traffic aggregate
 - Limit characteristics (data rate, burstiness) to predefined level
- Interior nodes treat traffic so no queuing effects
 - Aggregate's maximum arrival rate must be less than Aggregate's departure rate.
- No specific queuing policy at interior nodes defined in RFC 3246
 - Use simple priority scheme, EF traffic given absolute priority, but
 - EF traffic must not overwhelm interior node, or packet flows for other PHB traffic disrupted

PHB – Assured Forwarding

- Provides service superior to best-effort, RFC 2597
 - Does not require reservation of resources
 - Does not require detailed discrimination among flows from different users
- Based on explicit allocation
 - Uses offered choice of classes of service
 - Each class describes different traffic profile
 - Aggregate data rate and burstiness
 - Traffic monitored at boundary node
 - Each packet marked in or out of profile
 - Inside network, no separation of traffic from different users
 - Only distinction being whether packet marked in or out
 - □ When congested, out packets are dropped before in packets

Classes of Assured Forwarding

- 4 classes defined
 - □ 4 distinct traffic profiles
 - Select one or more to meet requirements
- Within interior DS node, traffic from different classes treated separately
 - Different amounts of resources (buffer space, data rate)
- Within a class, packets marked by customer or provider with one of 3 drop precedence values
 - Used to determine importance when dropping packets as result of congestion
- Different users will see different levels of service
 - ☐ Have different quantities of in packets in service queues

Assured Forwarding Characteristics

- Level of forwarding assurance depends on
 - How much forwarding resources allocated to AF class that the packet belongs to
 - Current load of class
 - If congested within the class, drop precedence of packet
- Simplicity
 - Very little work required by internal nodes
 - Marking of traffic at boundary nodes based on traffic profiles provides different levels of service to different classes
- Interior nodes use RED algorithm to manage AF traffic

Problems

- **19.6**
- **19.7**