Quantum Computation Introduction

Truong-Son Van

Fulbright University Vietnam Reading Group

September 26, 2022

Logistics

Helpful videos:

```
https://www.tsvan.xyz/reading.html
Follow John Preskill's notes
http:
//theory.caltech.edu/~preskill/ph219/ph219_2021-22.html
```

Info (dates, speakers, references) is hosted on:

- Preskill's class: https://www.youtube.com/playlist?list= PLOojjrEqIyPy-1RRD8cTD_1F1hflo89Iu
 - UC Berkeley Vazirani's class: https://www.youtube.com/ playlist?list=PLXEJgM3ycgQW5ysL69uaEdPoof4it6seB

Basics: Complex Vector Space

A complex vector space is a non-empty set \mathbb{V} , whose elements we call vectors, with three operations

- **1** Addition $+: \mathbb{V} \times \mathbb{V} \to \mathbb{V}$
- 2 Negation $-: \mathbb{V} \to \mathbb{V}$
- **3** Scalar multiplication: $\cdot : \mathbb{C} \times \mathbb{V} \to \mathbb{V}$

and a distinguished element called zero vector $0 \in \mathbb{V}$. The operations above obey usual rules with the scalar multiplication obeys rules for complex numbers.

In QM, vectors will be donoted by $|\varphi\rangle$.

Example 1

 \mathbb{C}^n , space of complex polynomials $\mathbb{C}[x]$, space of complex-valued square integrable functions $L^2(\mathbb{R};\mathbb{C})$.

(Un)fortunately, we do have to work with complex numbers...

Basics: Inner Product

Definition 2

Given a vector space \mathbb{V} , an $inner\ product$ (dot product or scalar product) is a function

$$\langle \cdot, \cdot \rangle : \mathbb{V} \times \mathbb{V} \to \mathbb{C}$$

that satisfies

- $\langle V, V \rangle \geq 0$ and $\langle V, V \rangle = 0$ iff V = 0.

Basics: Hilbert Space

Definition 3

A Hilbert space is a complete vector space with an inner product.

Example 4

- lacktriangledown \mathbb{C}^n wiht the usual inner product

$$\langle f, g \rangle = \int \overline{f}g$$

Fact: finite dimensional Hilbert spaces are isomorphic to \mathbb{R}^n . This concept is more useful in infinite dimensional spaces.

Basics: Hilbert Space

Definition 5

Given a Hilbert space \mathcal{H} , a hermitian operator is a mapping $A:\mathcal{H}\to\mathcal{H}$ such that $A=A^\dagger$, where $A^\dagger:\mathrm{Dom}(A^\dagger)\subset\mathcal{H}\to\mathcal{H}$ is defined by the following relation

$$\langle Ax, y \rangle = \langle x, A^{\dagger}y \rangle$$
.

- For a bounded operator or in finite dimensions, hermitian is the same with self-adjoint. Issues come up when we deal with unbounded operators in infinite dimensions.
- We mostly deal with finite dimensions, however. So this is not an issue. Just get used to the terminology of physicists.

Basics: Quantum Mechanics

Basics: Quantum Mechanics (đểu)

We approach this from the axiomatic point of view.

Axiom 1 (States)

A state is a complete description of a physical system. In quantum mechanics, a state is a ray in a Hilbert space.