Практическая работа 9.

Решение систем обыкновенных дифференциальных уравнений в системе MatLab

Цель работы: приобретение навыков решения систем обыкновенных дифференциальных уравнений с использованием специальных функций-решателей пакета MATLAB.

1. Задание к работе

- 1.1. Решить систему обыкновенных дифференциальных уравнений с заданными начальными условиями согласно варианту (таблица 1). Применить решатели **ode45**, **ode23**, **ode113**. Изменить начальные условия при необходимости. Построить графики. Сравнить результаты.
- 1.2. Решить систему обыкновенных дифференциальных уравнений с заданными начальными условиями согласно варианту (таблица 2). Применить решатели **ode45**, **ode23**, **ode113**. Изменить начальные условия при необходимости. Построить графики. Сравнить результаты.

Таблица 1. Система ОДУ

N	Система ОДУ	N	Система ОДУ
1	$\dot{x}_1 = -3x_1 + 4 \dot{x}_2 = 4x_1^2 - 3x_2$	6	y "+ y '=1
	$x_1(0) = 2$ $x_2(0) = 1$		y (1)=1 y '(0)=0
2	$\dot{x}_1 = -3x_1 + 10$ $\dot{x}_2 = x_1 - 2x_2$ $\dot{x}_3 = 4x_2 - x_3$	7	$y"+y=4e^{x}$
	$x_1(0) = 0$ $x_2(0) = 0$ $x_3(0) = 0$		y(0)=4 $y'(0)=-3$
3	$\dot{x}_1 = -2x_1 + 5$ $\dot{x}_2 = 2x_1 - 3x_2$ $\dot{x}_3 = x_2 - 2x_3$	8	y" - 2 y '=2e ^x
	$x_1(0) = 10$ $x_2(0) = 5$ $x_3(0) = 0$		y(1)=-1 $y'(1)=0$
4	y'' - 4y' + 2y = 0	9	y"+ y=1
	y(0) = 4 $y'(0) = -3$		$y(0)=0$ $y(\pi/2)=0$
5	y'' - y' + 4y = 0	10	y "- y =2 x
	y(0) = -1 $y'(0) = 0$		y(0)=0 $y(1)=-1$

Таблица 2. Система ОДУ

N	Система ОДУ	N	Система ОДУ
1	(4 2 -2)	5	$(-2 \ 1 \ 2)$
	$x'=Ax; A=\begin{bmatrix} 1 & 3 & -1 \end{bmatrix},$		x' = Ax; A =
	$\begin{pmatrix} 3 & 3 & -1 \end{pmatrix}$		$\begin{bmatrix} -2 & 0 & 3 \end{bmatrix}$
	x0=[0, 1, 5]		x0=[0, 0.5, 1]

2	$x'=Ax; A=\begin{pmatrix} 2 & 0 & -1 \\ 1 & -1 & 0 \\ 3 & -1 & -1 \end{pmatrix},$	6	$x'=Ax; A=\begin{pmatrix} 1 & -2 & 2 \\ 1 & 4 & -2 \\ 1 & 5 & -3 \end{pmatrix},$
	x0=[0, 1, 12]		x0=[0, 1, 2]
3	$x'=Ax; A=\begin{pmatrix} -3 & 2 & 2 \\ -3 & -1 & 1 \\ -1 & 2 & 0 \end{pmatrix},$	7	$x'=Ax; A=\begin{pmatrix} 3 & -3 & 1 \\ 3 & -2 & 2 \\ -1 & 2 & 0 \end{pmatrix},$
	x0=[0, 10, 12]		x0=[0, 5, 12]
4	$x'=Ax; A=\begin{pmatrix} 2 & -1 & -1 \\ 1 & 0 & -1 \\ 3 & -1 & -2 \end{pmatrix},$	8	$x'=Ax; A=\begin{pmatrix} 2 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix},$
	x0=[0, 1, 10]		x0=[0, 10, 2]

Контрольные вопросы

- 1. Охарактеризуйте структуру файла-функции.
- 2. Какие разновидности операторов цикла используются в среде MatLab?
- 3. С какого ключевого слова начинается описание файла-функции?
- 4. Перечислите отличия файла-функции от файла-сценария.
- 5. Какая функция реализует алгоритм Рунге Кутта 4–5-го порядка?
- 6. Какие операторы применяются для организации ветвлений внутри выполнения вычислительной процедуры?
- 7. Какая функция реализует алгоритм Рунге Кутта 2–3-го порядка?
- 8. Каким образом осуществляется вызов функции ode45?
- 9. Какой вид имеет первая строка файла-функции?
- 10. Перечислите параметры функции ode23.

Порядок выполнения работы.

- 1. Ознакомиться с теоретическими сведениями.
- 2. Выполнить задание к практической работе (п.1).
- 3. Оформить отчет по проделанной работе. Отчет должен содержать: титульный лист, цель работы, задание, ход выполнения работы, результаты работы, анализ результатов и выводы по работе. Ответить на контрольные вопросы.