Stat 510: Exam 3

Moulinath Banerjee

December 11, 2017

Announcement: The exam carries 55 points but the maximum possible score is 45 points.

Problem 1: Let $\underline{X} = (X_1, X_2, \dots, X_p)$ be a random vector and assume that $M_{\underline{X}}(\mathbf{t}) = E(e^{\mathbf{t}^T\underline{X}})$ exists for all sufficiently small \mathbf{t} , i.e. $\|\mathbf{t}\| < h_0$, for some $h_0 > 0$. Show that \underline{X} is exchangeable, i.e. any permutation of the co-ordinates of \underline{X} has the same distribution as \underline{X} , if and only if $M_{\underline{X}}(\mathbf{t})$ is symmetric in its arguments, i.e. $M_{\underline{X}}(\mathbf{t}) = M_{\underline{X}}(\tilde{\mathbf{t}})$ for any \mathbf{t} , where $\tilde{\mathbf{t}}$ is formed by an arbitrary permutation of the co-ordinates of \mathbf{t} . [10] **Hint:** To get a feel for the problem, it might help to consider p = 2 first.

Problem 2: Consider a random vector (X,Y) that has a joint distribution of the form:

$$f(x,y) = C_{a,b} g\left(\frac{x^2}{a^2} + \frac{y^2}{b^2}\right) 1((x,y) \in \mathbb{R}^2),$$

where $g:[0,\infty)\to [0,\infty)$ satisfies $\int_0^\infty g(u)du=1$, and a,b are positive constants. Define random variables (R,Θ) by $X=aR\cos(\Theta)$ and $Y=bR\sin(\Theta)$, where $0< R<\infty$ and $0<\Theta<2\pi$.

- (i) What is the geometric interpretation of (R, Θ) ?
- (ii) Find the joint distribution of (R, Θ) and show that R and Θ are independent. Compute their marginal densities.
- (iii) Calculate explicitly the constant $C_{a,b}$ in terms of a and b. [3 + 12 + 5 = 20]

Problem 3: Let $X \sim \operatorname{Exp}(\lambda)$ [failure time] and $T \sim \operatorname{Exp}(\mu)$ [observation time] and suppose that X and T are independent. We observe the pair (Δ, T) where $\Delta = 1(X \leq T)$. This type of observed data is called 'current-status' data. [Note: The symbol := should be interpreted as 'is defined as'.]

(a) Calculate $f_{\Delta|T}(\delta|T=t) := P(\Delta=\delta|T=t)$ for $\delta=0,1$ (this is the conditional p.m.f. of Δ given T=t, where t>0) and hence deduce that the 'mixed' joint density of (Δ,T) , say $f_{T,\Delta}(\delta,t)$, is given by the expression:

$$f_{T,\Delta}(\delta,t) := f_{\Delta|T}(\delta|T=t) g_T(t) = (1 - e^{-\lambda t})^{\delta} e^{-\lambda t(1-\delta)} \mu e^{-\mu t}$$
.

(b) Calculate $f_{\Delta}(\delta) := P(\Delta = \delta)$, the marginal p.m.f of Δ and $f_{T|\Delta}(t|\Delta = \delta)$, i.e. the conditional p.d.f. of T given $\Delta = \delta$ for the two possible values of δ . Show that

$$E(T|\Delta=1)=rac{1}{\lambda}\left[rac{\lambda+\mu}{\mu}-rac{\mu}{\mu+\lambda}
ight] \ \ ext{and} \ \ E(T|\Delta=0)=rac{1}{\lambda+\mu}\,.$$

(c) Find the bigger of the two. Does this conform to intuition? [8 + 12 + 5 = 25].