$Exercices\ MP/MP^*$   $Algèbre\ Générale$ 

**Exercice 1.** Soit  $(G,\cdot)$  un groupe tel que  $\exists p \in \mathbb{N}$  tel que  $f_p, f_{p+1}, f_{p+2}$  soient des morphismes où

$$\begin{array}{cccc}
f_p: & G & \to & G \\
& x & \mapsto & x^p
\end{array} \tag{1}$$

Montrer que G est un groupe abélien.

Exercice 2. Soit  $(G, \cdot)$  un groupe fini. Soit  $A = \{x \in G, \ \omega(x) \ est \ impair\}$  où  $\omega(x)$  désigne l'ordre de x. Montrer que A est non vide, et que  $x \mapsto x^2$  est une permutation de A.

Exercice 3. Soit  $\sigma \in \Sigma_n$ . On note  $\theta(\sigma)$  le nombre d'orbite de  $\sigma$ . Montrer que le nombre minimal de transposition dont  $\sigma$  est le produit est  $n - \theta(\sigma)$ .

**Exercice 4.** Soit  $(n,m) \in (\mathbb{N}^*)^2$ . Combien y a-t-il de morphismes de groupe de  $(\mathbb{Z}/n\mathbb{Z},+) \rightarrow (\mathbb{Z}/m\mathbb{Z},+)$ ?

**Exercice 5.** Soit  $(G,\cdot)$  un groupe abélien fini. Soit  $P = \prod_{x \in G} x$ . Montrer que  $P = e_G$  (élément neutre de G) sauf dans un cas très particulier.

**Exercice 6.** Soit G un sous-groupe additif de  $\mathbb{R}$ . On suppose qu'il existe un nombre fini n d'ensembles de la forme  $(x+G)_{x\in\mathbb{R}}$  avec  $x+G=\{x+y,\ y\in G\}$ . Montrer que  $G=\mathbb{R}$ .

**Exercice 7.** Soit  $n \in \mathbb{N}^*$ . Combien y a-t-il d'automorphismes de  $(\mathbb{Z}/n\mathbb{Z}, +)$ ?

Exercice 8. Soit  $(G, \cdot)$  un groupe fini et  $\varphi$  un morphisme de  $G \to G$ . Montrer que  $|G| = |\operatorname{Im} \varphi| \times |\operatorname{ker} \varphi|$ . En déduire que  $\operatorname{ker} \varphi = \operatorname{ker} \varphi^2$  si et seulement si  $\operatorname{Im} \varphi = \operatorname{Im} \varphi^2$ .

**Exercice 9.** Soit  $(G, \cdot)$  un groupe fini d'ordre n, et  $m \in \mathbb{N}$  tel que  $n \wedge m = 1$ . Montrer que pour tout  $y \in G$ , il existe un unique  $x \in G$  tel que  $x^m = y$ .

**Exercice 10.** Soit  $(G, \cdot)$  un groupe fini. Pour  $g \in G$ , on note

$$C(g)=\{hgh^{-1},\ h\in G\}$$

et

$$S_g = \{x \in G, \ xg = gx\}$$

1. Montrer que  $S_g$  est un sous-groupe de G.

- 2. Montrer que  $|G| = |S_g| \times |C(g)|$ .
- 3. On note  $Z(G) = \{x \in G, \forall y \in G, xy = yx\}$ . Montrer que Z(G) est un sous-groupe de G, et que pour tout  $g \in G$ ,  $Z(G) \subset S_g$ .
- 4. On suppose que  $|G| = p^{\alpha}$  où p est premier et  $\alpha \geqslant 1$ . Montrer que  $|Z(G)| \neq 1$ . On pourra utiliser le fait que  $x\mathcal{R}y$  si et seulement si il existe  $h \in G$  tel que  $y = hxh^{-1}$  est une relation d'équivalence.
- 5. On suppose que  $|G| = p^2$ . Montrer que G est abélien et qu'il est isomorphe à  $\mathbb{Z}/p^2\mathbb{Z}$  ou à  $\left(\mathbb{Z}/p\mathbb{Z}\right)^2$ .

Exercice 11. Trouver tous les morphismes de  $(\mathbb{Z},+)$  (respectivement  $(\mathbb{Q},+)$ ) dans  $(\mathbb{Q}_+^*,\times)$ . On pourra poser, pour p premier et  $n \in \mathbb{Z}$ ,  $\nu_p(n)$  la puissance de p dans la décomposition en produit de facteurs premiers de n.

Exercice 12. Soit G un groupe engendré par deux éléments  $x, y \neq e_G$  tels que  $x^5 = e_G$  et  $xy = y^2x$ . Montrer que  $|G| = 155 = 5 \times 31$  et qu'il est unique à un isomorphisme près.

Exercice 13. Soit  $(G,\cdot)$  un groupe abélien fini. On note  $N = \bigvee_{x \in G} \omega(x)$  (ppcm des ordres des éléments de G) appelé exposant de G, caractérisé par  $\forall k \in \mathbb{Z}, (\forall x \in G, x^k = e)$  si et seulement si  $(\forall x \in G, \omega(x) \mid k)$  si et seulement si (N|k). En particulier,  $N \mid |G|$ .

On pose  $N = p_1^{\alpha_1} \dots p_r^{\alpha_r}$  la décomposition en nombres premiers de N.

- 1. Soit  $i \in \{1, ..., r\}$ . Justifier qu'il existe  $y_i \in G$ , tel que  $p_i^{\alpha_i} \mid \omega(y_i)$ .
- 2. Soit  $i \in \{1, ..., r\}$ . Justifier qu'il existe  $x_i \in G$ , tel que  $\omega(x_i) = p_i^{\alpha_i}$ .
- 3. Montrer qu'il existe  $x \in G$  tel que  $\omega(x) = N$ .

Exercice 14. Soit  $\mathbb{K}$  un corps fini commutatif,  $(\mathbb{K}^*, \times)$  est un groupe abélien fini. Soit  $N = \bigvee_{x \in \mathbb{K}^*} \omega(x)$  (ordre multiplicatif). On sait d'après l'exercice précédent qu'il existe  $x_0 \in \mathbb{K}^*$  tel que  $\omega(x_0) = N$ . En étudiant le polynôme  $X^N - 1_K$ , montrer que  $(\mathbb{K}^*, \times)$  est cyclique.

En exemple, soit  $(\mathbb{Z}/13\mathbb{Z}, +, \times)$  (c'est un corps). Trouver un générateur du groupe  $(\mathbb{Z}/13\mathbb{Z}^*, \times)$ .

**Exercice 15.** Soit  $(G, \cdot)$  un groupe tel que  $\forall x \in G, \ x^2 = e_G$ .

- 1. Montrer que G est abélien.
- 2. Montrer que si G est fini, il existe  $n \in \mathbb{N}$  tel que G soit isomorphe à  $\left(\left(\mathbb{Z}/2\mathbb{Z}\right)^n, +\right)$ . On pourra considérer une famille génératrice minimale.

Exercice 16 (Groupe des commutateurs). Soit  $(G, \cdot)$  un groupe, on appelle groupe dérivé de G et on note

$$D(G) = \{xyx^{-1}y^{-1}, (x,y) \in G^2\}$$

•

- 1. Si G est abélien, que vaut D(G)?
- 2. Montrer que pour  $n \ge 3$ , les 3-cycles engendrent  $\mathcal{A}_n$  (groupe des permutations de signature égale à 1).
- 3. Montrer que deux 3-cycles  $(a_1, a_2, a_3)$  et  $(b_1, b_2, b_3)$  sont conjugués dans  $\Sigma_n$  (c'est-à-dire qu'il existe  $\sigma \in \Sigma_n$  telle que  $(b_1, b_2, b_3) = \sigma \circ (a_1, a_2, a_3) \circ \sigma^{-1}$ ). Est-ce encore vrai dans  $\mathcal{A}_n$ ?
- 4. En déduire  $D(\Sigma_n)$ .

**Exercice 17.** Soit  $(G, \cdot)$  un groupe fini de cardinal n.

1. Soit  $g \in G$  et

$$\tau_g: G \to G 
 x \mapsto g \cdot x$$
(2)

Montrer que

$$\tau: G \to \Sigma(G) 
g \mapsto \tau_g$$
(3)

(où  $\Sigma(G)$  est le groupe des permutations de G) est un morphisme injectif. En déduire que G est isomorphe à un sous-groupe de  $(\Sigma_n, \circ)$ .

2. Montrer que G est isomorphe à un sous-groupe de  $(GL_n(\mathbb{C}), \times)$ .

**Exercice 18.** Montrer qu'il n'existe pas  $(x, y, z, t, n) \in \mathbb{N}^5$  tel que  $x^2 + y^2 + z^2 = (8t + 7) \times 4^n$ .

**Exercice 19.** Montrer que  $10^{10^n} \equiv 4[7]$  pour tout  $n \in \mathbb{N}^*$ .

**Exercice 20.** Pour  $n \in \mathbb{N}$ , on pose  $F_n = 2^{2^n} + 1$ .

1. Montrer que pour tout  $n \ge 1$ ,  $F_n = 2 + \prod_{k=0}^{n-1} F_k$ .

2. En déduire qu'il existe une infinité de nombres premiers.

Exercice 21. Soit U le groupe des inversibles de  $\mathbb{Z}/32\mathbb{Z}$ .

- 1. Quel est l'ordre de  $\overline{5}$ ?
- 2. Montrer que  $U = gr\{\overline{-1}, \overline{5}\}$  (groupe engendré) et qu'il est isomorphe à un groupe produit.

Exercice 22. On note, pour  $n \in \mathbb{N}^*$ ,  $G_n = \{e^{\frac{2ik\pi}{n}}, k \wedge n = 1\}$  l'ensemble des racines n-ièmes de l'unité, on définit  $\mu(n) = \sum_{\xi \in G_n} \xi$ .

- 1. Montrer que si  $n \wedge m = 1$ , alors  $\mu(nm) = \mu(m)\mu(n)$ .
- 2. Calculer  $\mu(1)$ . Que vaut  $\mu(n)$  si  $n = p_1^{\alpha_1} \dots p_r^{\alpha_r}$  (décomposition en nombres premiers)?
- 3. Soit  $\mathbb{C}^{\mathbb{N}^*}$  muni de

$$f \star g: \mathbb{N}^* \to \mathbb{C}$$
  
 $n \mapsto (f \star g)(n) = \sum_{d|n} f(d)g(n/d)$  (4)

Montrer que  $\star$  est une loi associative et commutative, qu'elle admet un élément neutre noté e. Déterminer l'inverse de  $\mu$  pour  $\star$ . On pourra calculer, pour  $n \geqslant 2$ ,  $\sum_{d|n} \mu(d)$ .

4. Que vaut pour  $n \in \mathbb{N}^*$ ,  $\sum_{d|n} d\mu(d/n)$ ?

Exercice 23. Soit p premier. Montrer que

$$\sum_{k=0}^{p} \binom{p}{k} \binom{p+k}{k} \equiv 2^p + 1[p^2]$$

## Exercice 24.

- 1. Montrer que les sous-groupes finis de  $(\mathbb{U}, \times)$  sont cycliques (où  $\mathbb{U}$  est le cercle unité).
- 2. Quels sont les sous-groupes finis de  $SO_2(\mathbb{R})$ ?
- 3. Soit G un sous-groupe fini de  $SL_2(\mathbb{R})$ . On définit

$$\varphi: \mathbb{R}^2 \to \mathbb{R}$$

$$(X,Y) \mapsto \sum_{M \in G} \langle MX, MY \rangle$$
(5)

où  $\langle \cdot, \cdot \rangle$  est le produit scalaire canonique de  $\mathbb{R}$ . Montrer que  $\varphi$  est un produit scalaire pour lequel les matrices de M sont des isométries. En déduire que G est cyclique.

**Exercice 25.** Soit  $E = \{x + y\sqrt{2}, \ x \in \mathbb{N}^*, \ y \in \mathbb{Z}, \ et \ x^2 - 2y = 1\}.$ 

- 1. Montrer que E est un sous-groupe de  $(\mathbb{R}_+^*, \times)$ .
- 2. Montrer que  $E = \{(x_0 + y_0\sqrt{2})^n, n \in \mathbb{Z}\}\ où\ x_0 + y_0\sqrt{2} = \min E \cap ]1, +\infty[.$

**Exercice 26.** Déterminer les entiers  $n \in \mathbb{N}^*$  tels que  $7 \mid n^n - 3$ .

**Exercice 27.** Soit p premier plus grand que 5. Soit  $a \in \mathbb{N}$  tel que  $1 + \frac{1}{2} + \cdots + \frac{1}{p-1} = \frac{a}{(p-1)!}$ . Montrer que  $p^2 \mid a$ .

**Exercice 28.** Soit  $P \in \mathbb{R}[X]$  tel que  $\forall x \in \mathbb{R}$ ,  $P(x) \ge 0$ . Montrer qu'il existe  $(A, B) \in \mathbb{R}[X]^2$  tel que  $P = A^2 + B^2$ .

## Exercice 29.

- 1. Soit  $\alpha \in \mathbb{R}$  tel que  $\alpha \notin \mathbb{Q}$ . Montrer que  $\mathbb{Z} + \alpha \mathbb{Z}$  est dense dans  $\mathbb{R}$ . En déduire que  $\mathbb{Z} + \alpha \mathbb{N}$  est dense dans  $\mathbb{R}$ .
- 2. Soit  $\alpha \in \mathbb{R}$  tel que  $\frac{\alpha}{\pi} \notin \mathbb{Q}$ . Montrer que  $(\sin(n\alpha))_{n \in \mathbb{N}}$  est dense dans [-1,1].
- 3. Montrer qu'il y a une infinité de puissance de 2 qui commencent par 7 en base 10.

**Exercice 30** (Anneau euclidien). Soit A un anneau commutatif intègre, on dit que A est euclidien si et seulement s'il existe  $v: A \setminus \{0\} \to \mathbb{N}$  tels que pour tout  $(a,b) \in A \times A \setminus \{0\}$ , il existe  $(q,r) \in A^2$  tels que a = bq + r et v(r) < v(b) ou r = 0.

- 1. Montrer que  $\mathbb{Z}[i] = \{a + ib, (a, b) \in \mathbb{Z}^2\}$  est euclidien.
- 2. Montrer que tout anneau euclidien est principal.

## Exercice 31.

- 1. Soit p premier plus grand que 3. Soit  $\overline{x} \in \mathbb{Z}/p\mathbb{Z} \setminus \{\overline{0}\}$ . Montrer que  $\overline{x}$  est un carré dans  $\mathbb{Z}/p\mathbb{Z}$  si et seulement  $\overline{x}^{\frac{p-1}{2}} = \overline{1}$ .
- 2. En déduire qu'il existe une infinité de nombres premiers congrus à 1 modulo 4.

**Exercice 32.** Soit  $P = \sum_{i=0}^{n} r_i X^i \in \mathbb{Q}[X] \setminus \{0\}$ . On pose

$$c(P) = \prod_{p \in \mathcal{P}} p^{\min_{0 \le i \le n} (\nu_p(r_i))}$$

où  $\mathcal{P}$  est l'ensemble des nombres premiers. On écrit  $P = c(P) \times P_1$ .

- 1. Montrer que  $P_1 \in \mathbb{Z}[X]$ , que ses coefficients sont premiers entre eux dans leur ensemble et qu'une telle écriture est unique.
- 2. Soit  $(P,Q) \in (\mathbb{Q}[X] \setminus \{0\})^2$ . Montrer que c(PQ) = c(P)c(Q). On justifiera en passant dans  $\mathbb{Z}/p\mathbb{Z}[X]$  que si p premier divise tous les coefficients de  $P_1 \times Q_1$ , alors il divise tous les coefficients de  $P_1$  ou tous ceux de  $Q_1$  [Lemme de Gauss].
- 3. En déduire que si  $P \in \mathbb{Z}[X]$  est irréductible sur  $\mathbb{Z}[X]$ , alors il l'est aussi sur  $\mathbb{Q}[X]$ . La réciproque est-elle vraie?
- 4. Trouver tous les  $\theta \in [0, 2\pi[$  tels que  $\frac{\theta}{\pi} \in \mathbb{Q}$  et  $\cos(\theta) \in \mathbb{Q}$ . Si  $\theta \not\equiv 0[\pi]$  et si  $\theta = 2\pi p/q$  avec  $p \wedge q = 1$ , on appliquera ce qui précède à  $A = X^q 1$  et  $P = X^2 (2\cos(\theta))X + 1$ .

Exercice 33. Soit  $P \in \mathbb{R}[X]$  scindé sur  $\mathbb{R}$ .

- 1. Montrer que pour tout  $\alpha \in \mathbb{R}$ ,  $P + \alpha P'$  est scindé sur  $\mathbb{R}$ .
- 2. Soit  $R = \sum_{i=0}^{r} a_i X^i$  scindé sur  $\mathbb{R}$ . Montrer que  $\sum_{i=0}^{r} a_i P^{(i)}$  l'est aussi.

**Exercice 34.** Soit  $P \in \mathbb{R}[X]$  de degré  $n \ge 1$ , scindé sur  $\mathbb{R}$ . Montrer que pour tout  $x \in \mathbb{R}$ ,  $(n-1)(P'^2)(x) \ge nP(x)P''(x)$ .

## Exercice 35.

- 1. Soit  $P \in \mathbb{Q}[X]$  irréductible sur  $\mathbb{Q}[X]$ , montrer que P n'a que des racines simples sur  $\mathbb{C}$ . On pourra évaluer  $P \wedge P'$  sur  $\mathbb{Q}[X]$ .
- 2. Soit  $A \in \mathbb{Q}[X]$  et  $\alpha \in \mathbb{C}$  une racine de A de multiplicité  $m(\alpha) > d(A)/2$  où d(A) est le degré de A. Montrer que  $\alpha \in \mathbb{Q}$ .

**Exercice 36.** Soit  $(G, \cdot)$  un groupe et A une partie finie de G stable pour  $\cdot$ . Montrer que A est en fait un sous-groupe de G.

**Exercice 37.** Soit p premier plus grand que 3. Montrer que pour tout  $\alpha \in \mathbb{N}$ ,

$$(1+p)^{p^{\alpha}} \equiv 1 + p^{\alpha+1}[p^{\alpha+2}]$$

**Exercice 38.** Montrer que pour tout  $(x,y) \in \mathbb{Z}^2$ ,  $7 \neq 2x^2 - 5y^2$ .

Exercice 39. Résoudre  $x^3 = 1$  dans  $\mathbb{Z}/19\mathbb{Z}$ .

Exercice 40. Soit  $n \ge 3$ .

- 1. Combien y a-t-il d'inversibles dans  $(\mathbb{Z}/2^n\mathbb{Z}, +, \times)$ ? On note  $(\mathbb{Z}/2^n\mathbb{Z})^{\times}$  le groupe (multiplicatif) de ses inversibles.
- 2. Montrer que  $5^{2^{n-3}} \equiv 1 + 2^{n-1}[2^n]$ .
- 3. Évaluer l'ordre de 5 dans  $(\mathbb{Z}/2^n\mathbb{Z})^{\times}$ .
- 4. Montrer que  $gr\{-1\} \cap gr\{5\} = \{1\}$  où gr indique le groupe engendré par l'ensemble. En déduire que  $\left(\left(\mathbb{Z}/2^n\mathbb{Z}\right)^{\times}, \times\right)$  est isomorphe à  $\left(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2^{n-1}\mathbb{Z}, +\right)$ .

**Exercice 41.** Soit  $(G,\cdot)$  un ensemble non vide muni d'une loi interne associative. On suppose que

- (i)  $\exists e \in G, \forall x \in G, x \cdot e = x,$
- (ii)  $\forall x \in G, \exists x' \in G, x \cdot x' = e.$

Montrer que  $(G, \cdot)$  est un groupe.

Exercice 42. Montrer qu'il existe une infinité de multiples de 21 qui s'écrivent avec uniquement des 1 en base 10.

**Exercice 43.** Soit  $\mathbb{K}$  un corps commutatif fini. Soit  $n = |\mathbb{K}^*|$ .

- 1. Soit d'un diviseur de n, on suppose qu'il existe  $x_0 \in \mathbb{K}^*$  d'ordre (multiplicatif) d'dans le groupe  $(\mathbb{K}^*, \times)$ . Montrer qu'il existe exactement  $\varphi(d)$  éléments d'ordre d'dans  $(\mathbb{K}^*, \times)$  ( $\varphi$  indique la fonction d'Euler). On pourra s'intéresser au polynôme  $X^d 1_{\mathbb{K}}$ .
- 2. En utilisant  $n = \sum_{d|n} \varphi(d)$ , montrer que  $(\mathbb{K}^*, \times)$  est cyclique.

**Exercice 44.** Soit p premier plus grand que 5. et  $M = \mathbb{Z}/p\mathbb{Z} \setminus \{0,1\}$ .

1. Montrer que

$$f: M \to M$$

$$x \mapsto 1 - x^{-1}$$
(6)

est bien définie et calculer  $f^3$ .

- 2. Montrer que -3 est un carré dans  $\mathbb{Z}/p\mathbb{Z}$  si et seulement si f admet un point fixe.
- 3. Montrer que -3 est un carré dans  $\mathbb{Z}/p\mathbb{Z}$  si et seulement si  $p \equiv 1[3]$  (on pourra décomposer f en produit de cycles de supports disjoints).

**Exercice 45.** Soit  $x \in \mathbb{R}$  avec  $x = \pm b_m b_{m-1} \dots b_0, a_1 a_2 \dots a_n \dots$  (écriture décimale). Montrer que  $x \in \mathbb{Q}$  si et seulement si  $\exists n_0 \in \mathbb{N}, \exists T \in \mathbb{N}^*, \forall n \geqslant n_0, \ a_{n+T} = a_n$  (la suite des décimales et périodique à partir du rang  $n_0$ ).

**Exercice 46.** On définit  $H_0 = 1$  et pour tout  $n \ge 1$ ,  $H_n = \frac{X(X-1)...(X-n+1)}{n!}$ .

- 1. Montrer que  $H_n(\mathbb{Z}) \subset \mathbb{Z}$ .
- 2. Soit  $P \in \mathbb{C}[X]$ . Montrer que  $P(\mathbb{Z}) \subset \mathbb{Z}$  et et seulement si  $\exists n \in \mathbb{N}, \exists (a_0, \dots, a_n) \in \mathbb{Z}^{n+1}$  avec  $P = \sum_{k=0}^{n} a_k H_k$ .

Exercice 47. Soit  $P \in \mathbb{Q}[X]$  irréductible sur  $\mathbb{Q}[X]$ ,  $\alpha \in \mathbb{C} \setminus \mathbb{Q}$  racine de P. Montrer que  $\alpha$  est racine simple de P. On pourra se demander, si le degré de P est n et  $P = (X - \alpha)(a_0 + a_1X + \cdots + a_{n-1}X^{n-1})$ , quels sont les coefficients  $a_k$  tels que  $a_k \in \mathbb{Q}$ .

Exercice 48. Soit  $P \in \mathbb{Q}[X]$  de degré 5 tel que P admette une racine complexe  $\alpha$  d'ordre plus grand que 2. Montrer que P admet au moins une racine rationnelle.

Exercice 49. On définit  $\mathbb{Z}[i] = \{a + ib \mid (a, b) \in \mathbb{Z}^2\}.$ 

- 1. Montrer que c'est le plus petit sous-anneau de  $\mathbb C$  contenant i.
- 2. On définit, pour  $z = a + ib \in \mathbb{Z}[i]$ ,  $|z|^2 = a^2 + b^2$ . Montrer que z est inverse dans  $\mathbb{Z}[i]$  si et seulement si  $|z|^2 = 1$ . En déduire l'ensemble U des inversibles.
- 3. (a) Montrer que pour tout  $z_0 = x_0 + iy_0 \in \mathbb{C}$ , il existe  $z = a + ib \in \mathbb{Z}[i]$ ,  $|z z_0|^2 \leqslant \frac{1}{2}$ .
  - (b) Soit  $(z_1, z_2) \in \mathbb{Z}[i]^2$  avec  $z_2 \neq 0$ . Montrer qu'il existe  $(q, r) \in \mathbb{Z}[i]^2$  tel que  $z_1 = qz_2 + r$  et  $|r| < |z_1|$ . A-t-on unicité?
  - (c) En déduire que  $\mathbb{Z}[i]$  est principal.
- 4. Montrer que tout élément  $z \in \mathbb{Z}[i] \setminus \{0\}$  peut se décomposer en  $z = u \times \prod_{\rho \in \mathcal{P}_0} \rho^{\nu_{\rho}(z)}$  où  $u \in U$  et  $\mathcal{P}_0$  est un ensemble d'irréductibles tel que tout élément de  $\mathcal{P}$  (irréductibles de  $\mathbb{Z}[i]$ ) est associé à un unique élément de  $\mathcal{P}_0$  (on pourra raisonner par récurrence sur  $|z|^2 \in \mathbb{N}$ ). Montrer l'unicité de cette décomposition.

**Exercice 50.** Soit p premier plus grand que 3. On note  $\mathbb{F}_p$  le corps  $(\mathbb{Z}/p\mathbb{Z}, +, \times)$ . On dit que  $\overline{x} \in \mathbb{F}_p^*$  est un résidu quadratique si et seulement si il existe  $\overline{y} \in \mathbb{F}_p^*$  tel que  $\overline{x} = \overline{y}^2$ . On note R l'ensemble des résidus quadratiques.

- 1. Montrer que R est un sous-groupe de  $(\mathbb{F}_p, \times)$  de cardinal  $\frac{p-1}{2}$  et  $a \in R$  si et seulement si  $a^{\frac{p-1}{2}} = 1$ .
- 2. Montrer que si  $p=a^2+b^2$  avec  $(a,b)\in\mathbb{N}^2$ , alors  $p\equiv 1[4]$ . On pourra montrer que  $\overline{-1}\in R$ .
- 3. Montrer que, pour  $k \in \{1, \dots, p-1\}$ ,

$$f: \{0, \dots E(\sqrt{p})\}^2 \to \mathbb{F}_p$$

$$(a, b) \mapsto a - kb$$

$$(7)$$

n'est pas injective. En déduire qu'il existe  $(a_0, b_0) \in \{1, \dots E(\sqrt{p})\}^2$  tel que  $k = a_0 \times b_0^{-1}$ .

4. Soit p premier tel qe  $p \equiv 1[4]$ . Montrer que p est somme de deux carrés.

**Exercice 51** (Fermat). Soit p premier. On sait, d'après l'exercice précédent, que p est somme de deux carrés si et seulement si p=2 ou  $p\equiv 1[4]$ . On note  $A=\{n\in\mathbb{N}^*\mid \exists (a,b)\in\mathbb{N}^2,\ n=a^2+b^2\}$ .

- 1. Montrer que A est stable par produit. On note alors  $P_1 = \{p \text{ premier } | p = 2oup \equiv 1[4]\}$  et  $P_2 = \{p \text{ premier } | p \equiv 3[4]\}$ .
- 2. Soit  $n \in \mathbb{N}^*$ . On suppose que pour tout  $p \in P_2$ ,  $\nu_p(n)$  est pair (où  $\nu_p(n)$  la puissance de p dans la décomposition en produit de facteurs premiers de n). Montrer que  $n \in A$ .
- 3. Montrer la réciproque (pour  $n \in A$ , pour  $p \in P_1 \cup P_2$  tel que  $\nu_p(n)$  est impair, on montrera que -1 est un carré dans  $\mathbb{F}_p$ ).