Laporan Tugas Besar Pembelajaran Mesin

Tahap 1: Clustering

Kaenova Mahendra Auditama 1301190324 CII3C3-IF-43-02

Pendahuluan

Tugas Besar pada Mata Kuliah Pembelajaran Mesin (CII3C3-IF-43-02) merupakan tugas pertama dari dua projek tugas yang ada. Pada tugas ini, saya diminta untuk membuat suatu sistem atau **model yang dapat mengklusterisasi** dari dataset yang disediakan.

Permasalahan

Pada kasus ini kami diberikan suatu dataset terkait ketertarikan pelanggan dengan beberapa atribut-atribut. Data yang diberikan sebesar **285.831** *records*. Adapun beberapa atribut seperti *id, Jenis_Kelamin, Umur, SIM, Kode_Daerah, Sudah_Asuransi, Umur_Kendaraan, Kendaraan_Rusak, Premi, Kanal_Penjualan, Lama_Berlangganan,* dan *Tertarik*.

Dengan data tersebut, akhirnya dipilihlah **K-means** sebagai model yang digunakan untuk melakukan pengklusterisasian data

Eksplorasi dan Pra-Pemrosesan Data

[]		<pre>1 df_raw = pd.read_csv("https://raw.githubusercontent.com/kaenova/Malin_Tubes1/main/data/raw/kendaraan_train.csv") 2 df_raw.head()</pre>													
		id	Jenis_Kelamin	Umur	SIM	Kode_Daerah	Sudah_Asuransi	Umur_Kendaraan	Kendaraan_Rusak	Premi	Kanal_Penjualan	Lama_Berlangganan	Tertarik		
	0	1	Wanita	30.0	1.0	33.0	1.0	< 1 Tahun	Tidak	28029.0	152.0	97.0	0		
	1	2	Pria	48.0	1.0	39.0	0.0	> 2 Tahun	Pernah	25800.0	29.0	158.0	0		
	2	3	NaN	21.0	1.0	46.0	1.0	< 1 Tahun	Tidak	32733.0	160.0	119.0	0		
	3	4	Wanita	58.0	1.0	48.0	0.0	1-2 Tahun	Tidak	2630.0	124.0	63.0	0		
	4	5	Pria	50.0	1.0	35.0	0.0	> 2 Tahun	NaN	34857.0	88.0	194.0	0		
[]	1 1	.en(df_raw)												
	2858	31													

Pertama, lakukan penghilangan data yang terlihat jelas sebagai data categorical seperti *Jenis_Kelamin, SIM, Sudah_Asuransi, Umur_Kendaraan*, dan *Kendaraan_Rusak*

Kedua, melakukan penghilangan *records* jika pada salah satu data ada yang kosong atau *NaN*

Eksplorasi dan Pra-Pemrosesan Data (cont.)

Setelah Dilakukan Penghilangan Outlier

Ketiga, melakukan penghilangan outlier pada tipe data tertentu. Digunakan metode *interquartile range* sebagai penghilang data outlier dengan ketentuan seperti di bawah:

ValidData
$$\in (x \geq (Q_1 - 1.5 \cdot IQR))$$
 and $(x \leq (Q_3 + 1.5 \cdot IQR))$

Eksplorasi dan Pra-Pemrosesan Data (cont.)

Melakukan pemeriksaan nilai korelasi terhadap atribut-atribut yang ada.

	id	Umur	Kode_Daerah	Premi	Kanal_Penjualan	Lama_Berlangganan	Tertarik
id	1.000000	0.002691	0.000597	0.002643	-0.001621	0.001875	0.000203
Umur	0.002691	1.000000	0.044503	0.046519	-0.574807	-0.001055	0.108781
Kode_Daerah	0.000597	0.044503	1.000000	-0.004068	-0.044871	-0.003771	0.010484
Premi	0.002643	0.046519	-0.004068	1.000000	-0.105819	0.001831	0.019686
Kanal_Penjualan	-0.001621	-0.574807	-0.044871	-0.105819	1.000000	0.000017	-0.139186
Lama_Berlangganan	0.001875	-0.001055	-0.003771	0.001831	0.000017	1.000000	0.001819
Tertarik	0.000203	0.108781	0.010484	0.019686	-0.139186	0.001819	1.000000

Setelah dilakukan eksplorasi dan pra-pemrosesan data, tersisa 166.395 *records* yang siap dimasukkan ke dalam model. Hal ini tidak menjadi masalah karena secara keseluruhan data yang tersisa tetap berjumlah besar.

```
[ ] 1 describe = df_dropna_dropcategorical.describe()
2 describe
3 iqr_premi = float(describe["Premi"].loc["75%"] - describe["Premi"].loc["25%"])
4 q1_bound = float(describe["Premi"].loc["25%"]) - (iqr_premi * 1.5)
5 q2_bound = float(describe["Premi"].loc["75%"]) + (iqr_premi * 1.5)
6 final_df = df_dropna_dropcategorical.copy()
7 final_df.reset_index(drop=True, inplace=True)
8 final_df = final_df[(final_df["Premi"] > q1_bound) & (final_df["Premi"] < q2_bound)]
9 len(final_df)</pre>
```

Pemodelan

Secara sederhana model yang dibuat memiliki algoritma seperti berikut

Algorithm 1 Algoritma K-Means

```
Require: k\_value, max\_step, convergence\_threshold, data
 1: convergence \leftarrow False
 2: step \leftarrow 0
 3: normalize\_data \leftarrow min\_max\_normalization(data)
    centroid \leftarrow initialize\_centroids(data)
    while (not convergence) and (step < max_step) do
        initial\_point \leftarrow centroid
 6:
        distance \leftarrow calculate\_euclidean(normalize\_data, initial\_point)
 7:
        cluster \leftarrow clustering(distance)
 8:
        new\_point \leftarrow centroid\_normalization(data, point, cluster)
 9:
        convergence \leftarrow convergence\_check(initial\_point, new\_point, convergence\_threshold)
10:
        if convergence then
11:
            point \leftarrow new\_point
12:
            break
13:
        else
14:
            point \leftarrow new\_point
15:
            step \leftarrow step + 1
16:
        end if
17:
18: end while
19: inertia \leftarrow calculate\_inertia(data, cluster, point)
20: point \leftarrow min\_max\_denormalization(point, data)
21: return cluster, point, inertia
```

Pemodelan(cont.)

Pengimplementasian

Python dapat dilihat melalui link referensi:

https://kaenova-link.pages.dev/school/malin_tubes1

atau

https://bit.ly/KaenovaMalinTubes1

Hasil_(utama)

Dengan melihat korelasi pada eksplorasi dan pra-pemrosesan data, saya melakukan klusterisasi terhadap *Kanal_Penjualan* dan *Umur*

Inertia Scores on K runs

Silhouette Score on K = 3 runs

Scatter Plot Clustering on K = 3 runs

Hasil (eksperimen)

Saya mencoba melihat performa atribut lain dengan korelasi yang rendah. Pada gambar di bawah merupakan atribut *Lama_Berlangganan* dan *Umur*

Silhouette Score Across All Clustered Data

2
1
0
0
0.2
0.4
0.6
0.8
10

Silhouette Score on K = 4 runs

Hasil (eksperimen)

Saya mencoba melihat performa atribut lain dengan korelasi yang rendah. Pada gambar di bawah merupakan atribut *Lama_Berlangganan* dan Premi

Silhouette Score Across All Clustered Data

2

1

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Silhouette Score on K = 3 runs

Hasil (eksperimen)

Saya mencoba melihat performa atribut lain dengan korelasi yang rendah. Pada gambar di bawah merupakan atribut Umur dan Premi

Silhouette Score Across All Clustered Data

2

1

0

0

0.2

0.4

0.6

0.8

1.0

Silhouette Score on K = 3 runs

Kesimpulan

Model **K-Means** dapat melakukan klusterisasi dengan baik pada dataset yang sudah disediakan. Dengan beberapa eksplorasi dan pra-pemrosesan data, model ini dapat mengklusterisasi dengan baik menggunakan atribut *Umur* dan *Kanal_Penjualan*.

Selain itu, **K-means** tidak baik dalam melakukan klusterisasi dengan nilai korelasi antar atribut yang rendah.

Scatter Plot Clustering on K = 3 runs with Kanal_Penjualan and Umur Attributes

Referensi

Arthur, D. and Vassilvitskii, S. (2007). K-means++: The ad vantages of careful seeding. In *Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms*, SODA '07, page 1027–1035, USA. Society for Industrial and Applied Mathematics.

Brownlee, J. (2020). 10 Clustering Algorithms With Python.

Brus, P. (2021). Clustering: How to find hyperparameters using inertia.

Hu´n, H. X. and Huong, N. T. X. (2012). An extension of the k-means algorithm for mixed data. *Journal of Computer Science and Cybernetics*, 22(3):267–274.

Patel, V. R. and Mehta, R. G. (2011). Impact of outlier removal and normalization approach in modified k-means clustering algorithm. *International Journal of Computer Science Issues (IJCSI)*, 8(5):331.

Shahapure, K. R. and Nicholas, C. (2020). Cluster quality analysis using silhouette score. In 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA), pages 747–748. IEEE.

Tabak, J. (2004). Geometry: the language of space and form. Facts On File, New York.