0.1 Protocol BA' (= Do Lev-Strong')

Nested Signatures When a user X digitally signs the digital signature of another user Y, $SIG_Y(m)$, the resulting $SIG_X(SIG_Y(m))$ is a level-2 nested signature, by signers X and Y, of value m. Generalizing, if X_k, \ldots, X_1 are distinct users, then $s = SIG_{X_k}(\cdots(SIG_{X_1}(m)\cdots))$ is a level-k nested signature, by signers X_1, \ldots, X_k , of value m. Due to the retrievability property of digital signatures, anyone receiving s easily computes m. To highlight the first signer of s, we may refer to s as a (k, X_1) -signature of m.

A Classical Protocol in Our Notation. Except for the notation adopted and for the fact that messages are propagated in our network model, rather than sent to all players in a synchronous network, BA' coincides with the mentioned BA protocol of Dolev and Strong. Accordingly, the protocol is a slightly more specialized BA protocol, but perfectly adequate in our Algorand application. Namely, it makes use of digital signatures, and the initial value v_X of a player X is not an arbitrary value, but the value he has actually received from a distinguished player, the leader, ℓ . More precisely, prior to the start of the protocol, ℓ is supposed to have propagated $SIG_{\ell}(v)$.

Accordingly, "Step 0" is not technically part of BA'. (In our Algorand application, if BA' is indeed the chosen BA protocol, Step 0 has already been executed by the round-r leader, when protocol ROUND(r) calls the execution of the chosen BA protocol.)

Remark As for protocol ROUND(r), in describing BA' we omit to include, in each message m, a full specification of the "context" in which m is sent.¹

For each player X, the set S_X is initially (reset to be) empty.

$Protocol\ BA'$

Communication Step 0. For some value v, leader ℓ propagates $SIG_{\ell}(v)$.

Communication Step i (for i = 1 to t + 1). For each player X:

- For each value $x \notin S_X$ for which, in Step i-1, he receives a (i,ℓ) -signature of x, by signers other than himself, X arbitrarily chooses one such signature, s, and propagates $SIG_X(s)$.
- For each (i, ℓ) -signature of a value x received in Step i 1, $S_X := S_X \cup \{x\}$.

Computation Step t + 2. For each player X:

- If S_X contains exactly one value, $S_X = \{x\}$, then X sets $OUT_X = x$.
- Else, X sets $OUT_X = \bot$.