LINEAR ALGEBRA -II

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 10: Adjoint of a linear map

ightharpoonup Recall: In the following the field $\mathbb F$ would be either $\mathbb R$ or $\mathbb C$.

Lecture 10: Adjoint of a linear map

- ightharpoonup Recall: In the following the field $\mathbb F$ would be either $\mathbb R$ or $\mathbb C$.
- ▶ Definition 9.1: Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Two vectors u, v in V are said to be mutually orthogonal if $\langle u, v \rangle = 0$.

Lecture 10: Adjoint of a linear map

- ightharpoonup Recall: In the following the field $\mathbb F$ would be either $\mathbb R$ or $\mathbb C$.
- ▶ Definition 9.1: Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Two vectors u, v in V are said to be mutually orthogonal if $\langle u, v \rangle = 0$.
- ▶ More generally, two subsets S, T of V are said to be mutually orthogonal if

$$\langle u, v \rangle = 0, \quad \forall u \in S, v \in T.$$

Proposition 9.3: Suppose $\{v_1, v_2, \ldots, v_m\}$ is an orthogonal collection of non-zero vectors in an inner product space $(V, \langle \cdot, \cdot \rangle)$. Then the collection $\{v_1, v_2, \ldots, v_n\}$ is linearly independent.

- Proposition 9.3: Suppose $\{v_1, v_2, \ldots, v_m\}$ is an orthogonal collection of non-zero vectors in an inner product space $(V, \langle \cdot, \cdot \rangle)$. Then the collection $\{v_1, v_2, \ldots, v_n\}$ is linearly independent.
- ▶ Proof. Suppose $c_1v_1 + \cdots + c_mv_m = 0$.

- ▶ Proposition 9.3: Suppose $\{v_1, v_2, \ldots, v_m\}$ is an orthogonal collection of non-zero vectors in an inner product space $(V, \langle \cdot, \cdot \rangle)$. Then the collection $\{v_1, v_2, \ldots, v_n\}$ is linearly independent.
- Proof. Suppose $c_1v_1 + \cdots + c_mv_m = 0$.
- For any j, $1 \le j \le m$, taking inner product with v_j , as $\langle v_j, v_i \rangle = \delta_{ij} \langle v_j, v_j \rangle$, we get

$$0 = \langle v_j, c_1 v_1 + \cdots + c_n v_n \rangle = c_j \langle v_j, v_j \rangle.$$

- ▶ Proposition 9.3: Suppose $\{v_1, v_2, \ldots, v_m\}$ is an orthogonal collection of non-zero vectors in an inner product space $(V, \langle \cdot, \cdot \rangle)$. Then the collection $\{v_1, v_2, \ldots, v_n\}$ is linearly independent.
- Proof. Suppose $c_1v_1 + \cdots + c_mv_m = 0$.
- For any j, $1 \le j \le m$, taking inner product with v_j , as $\langle v_j, v_i \rangle = \delta_{ij} \langle v_j, v_j \rangle$, we get

$$0 = \langle v_j, c_1 v_1 + \cdots + c_n v_n \rangle = c_j \langle v_j, v_j \rangle.$$

▶ Therefore $c_j = 0$, $\forall j$, as $\langle v_j, v_j \rangle \neq 0$. ■

- ▶ Proposition 9.3: Suppose $\{v_1, v_2, \ldots, v_m\}$ is an orthogonal collection of non-zero vectors in an inner product space $(V, \langle \cdot, \cdot \rangle)$. Then the collection $\{v_1, v_2, \ldots, v_n\}$ is linearly independent.
- ▶ Proof. Suppose $c_1v_1 + \cdots + c_mv_m = 0$.
- For any j, $1 \le j \le m$, taking inner product with v_j , as $\langle v_j, v_i \rangle = \delta_{ij} \langle v_j, v_j \rangle$, we get

$$0 = \langle v_j, c_1 v_1 + \cdots + c_n v_n \rangle = c_j \langle v_j, v_j \rangle.$$

- ▶ Therefore $c_j = 0$, $\forall j$, as $\langle v_j, v_j \rangle \neq 0$. ■
- Corollary 9.4: Suppose $\{v_1, \ldots, v_m\}$ is a set of mutually orthogonal non-zero vectors in an inner product space V, then

$$m \leq \dim V$$
.

- **Proposition 9.3:** Suppose $\{v_1, v_2, \dots, v_m\}$ is an orthogonal collection of non-zero vectors in an inner product space $(V, \langle \cdot, \cdot \rangle)$. Then the collection $\{v_1, v_2, \dots, v_n\}$ is linearly independent.
- Proof. Suppose $c_1v_1 + \cdots + c_mv_m = 0$.
- For any j, $1 \le j \le m$, taking inner product with v_i , as $\langle v_i, v_i \rangle = \delta_{ii} \langle v_i, v_i \rangle$, we get

$$0 = \langle v_j, c_1 v_1 + \cdots + c_n v_n \rangle = c_j \langle v_j, v_j \rangle.$$

- ► Therefore $c_i = 0$, $\forall j$, as $\langle v_i, v_i \rangle \neq 0$.
- ► Corollary 9.4: Suppose $\{v_1, \ldots, v_m\}$ is a set of mutually orthogonal non-zero vectors in an inner product space V, then

$$m \leq \dim V$$
.

▶ Proof. This is clear, as the dimension of V is same as the maximum possible size of linearly independent sets. ■

A vector v in V is said to be a unit vector if ||v|| = 1. Note that if $y \in V$ is non-zero then $v := \frac{y}{||v||}$ is a unit vector.

- A vector v in V is said to be a unit vector if ||v|| = 1. Note that if $y \in V$ is non-zero then $v := \frac{y}{||v||}$ is a unit vector.
- ▶ If $\{v_1, \ldots, v_n\}$ is a collection of mutually orthogonal non-zero vectors, then $\{\frac{v_1}{\|v_1\|}, \ldots, \frac{v_n}{\|v_n\|}\}$ is a collection of mutually orthogonal unit vectors.

- ▶ A vector v in V is said to be a unit vector if ||v|| = 1. Note that if $y \in V$ is non-zero then $v := \frac{y}{||y||}$ is a unit vector.
- ▶ If $\{v_1, \ldots, v_n\}$ is a collection of mutually orthogonal non-zero vectors, then $\{\frac{v_1}{\|v_1\|}, \ldots, \frac{v_n}{\|v_n\|}\}$ is a collection of mutually orthogonal unit vectors.
- ▶ Definition 9.5: Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Then a basis $\{v_1, v_2, \dots, v_n\}$ is said to be an orthonormal basis if

$$\langle v_i, v_j \rangle = \left\{ \begin{array}{ll} 1 & \text{if } i = j; \\ 0 & \text{if } i \neq j. \end{array} \right.$$

- ▶ A vector v in V is said to be a unit vector if ||v|| = 1. Note that if $y \in V$ is non-zero then $v := \frac{y}{||y||}$ is a unit vector.
- ▶ If $\{v_1, \ldots, v_n\}$ is a collection of mutually orthogonal non-zero vectors, then $\{\frac{v_1}{\|v_1\|}, \ldots, \frac{v_n}{\|v_n\|}\}$ is a collection of mutually orthogonal unit vectors.
- ▶ Definition 9.5: Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Then a basis $\{v_1, v_2, \dots, v_n\}$ is said to be an orthonormal basis if

$$\langle v_i, v_j \rangle = \begin{cases} 1 & \text{if } i = j; \\ 0 & \text{if } i \neq j. \end{cases}$$

In other words, an orthonormal basis is a basis consisting of mutually orthogonal unit vectors.

- ▶ A vector v in V is said to be a unit vector if ||v|| = 1. Note that if $y \in V$ is non-zero then $v := \frac{y}{\|v\|}$ is a unit vector.
- If $\{v_1, \dots, v_n\}$ is a collection of mutually orthogonal non-zero vectors, then $\{\frac{v_1}{\|v_1\|}, \dots, \frac{v_n}{\|v_n\|}\}$ is a collection of mutually orthogonal unit vectors.
- ▶ Definition 9.5: Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Then a basis $\{v_1, v_2, \dots, v_n\}$ is said to be an orthonormal basis if

$$\langle v_i, v_j \rangle = \begin{cases} 1 & \text{if } i = j; \\ 0 & \text{if } i \neq j. \end{cases}$$

- In other words, an orthonormal basis is a basis consisting of mutually orthogonal unit vectors.
- **Example** 9.6: For \mathbb{R}^n (or \mathbb{C}^n) the standard basis $\{e_1, e_2, \dots, e_n\}$, where e_i is the vector whose j-th coordinate is one and all other coordinates are equal to zero, is an orthonormal basis with respect to the standard inner product.

A formula for coefficients

▶ What is the advantage of having an orthonormal basis instead of ordinary basis? This is answered by the following theorem.

A formula for coefficients

- ▶ What is the advantage of having an orthonormal basis instead of ordinary basis? This is answered by the following theorem.
- ▶ It gives a formula for the coefficients in the expansion of any vector in terms of the basis.

A formula for coefficients

- ▶ What is the advantage of having an orthonormal basis instead of ordinary basis? This is answered by the following theorem.
- ▶ It gives a formula for the coefficients in the expansion of any vector in terms of the basis.
- ▶ Theorem 9.7: Let $\{v_1, v_2, \dots, v_n\}$ be an orthonormal basis of an inner product space $(V, \langle \cdot, \cdot \rangle)$. Then for any vector $w \in V$,

$$w=\sum_{j=1}^n\langle v_j,w\rangle v_j.$$

We recall how we define a matrix for a linear map from one finite dimensional space to another on fixing bases for these spaces.

- We recall how we define a matrix for a linear map from one finite dimensional space to another on fixing bases for these spaces.
- Let V, W be finite dimensional vector spaces over a field \mathbb{F} . Suppose $\mathcal{B} = \{v_1, \ldots, v_n\}$ is a basis for V and $\mathcal{C} = \{w_1, \ldots, w_m\}$ is a basis for W. In particular, the dimension of V is n and the dimension of W is m.

- We recall how we define a matrix for a linear map from one finite dimensional space to another on fixing bases for these spaces.
- Let V, W be finite dimensional vector spaces over a field \mathbb{F} . Suppose $\mathcal{B} = \{v_1, \ldots, v_n\}$ is a basis for V and $\mathcal{C} = \{w_1, \ldots, w_m\}$ is a basis for W. In particular, the dimension of V is n and the dimension of W is m.
- ▶ Let $T: V \to W$ be a linear map. We associate an $m \times n$ matrix A to T as described below and call it the matrix of T in bases \mathcal{B}, C

- We recall how we define a matrix for a linear map from one finite dimensional space to another on fixing bases for these spaces.
- Let V, W be finite dimensional vector spaces over a field \mathbb{F} . Suppose $\mathcal{B} = \{v_1, \ldots, v_n\}$ is a basis for V and $\mathcal{C} = \{w_1, \ldots, w_m\}$ is a basis for W. In particular, the dimension of V is n and the dimension of W is m.
- Let T: V → W be a linear map. We associate an m × n matrix A to T as described below and call it the matrix of T in bases B, C
- Fix any $j, 1 \le j \le n$ and consider the basis vector v_j .

- We recall how we define a matrix for a linear map from one finite dimensional space to another on fixing bases for these spaces.
- Let V, W be finite dimensional vector spaces over a field \mathbb{F} . Suppose $\mathcal{B} = \{v_1, \ldots, v_n\}$ is a basis for V and $\mathcal{C} = \{w_1, \ldots, w_m\}$ is a basis for W. In particular, the dimension of V is n and the dimension of W is m.
- Let T: V → W be a linear map. We associate an m × n matrix A to T as described below and call it the matrix of T in bases B, C
- Fix any $j, 1 \le j \le n$ and consider the basis vector v_j .
- Now Tv_i is a vector in W and C is a basis for W.

▶ Therefore, Tv_j is a linear combination of w_i 's. Denote the corresponding coefficients as a_{ij} 's. That is, a_{ij} is determined by requiring:

$$Tv_j = \sum_{i=1}^m a_{ij}w_i, \quad 1 \leq j \leq n.$$

▶ Therefore, Tv_j is a linear combination of w_i 's. Denote the corresponding coefficients as a_{ij} 's. That is, a_{ij} is determined by requiring:

$$Tv_j = \sum_{i=1}^m a_{ij}w_i, \quad 1 \leq j \leq n.$$

▶ Therefore, Tv_j is a linear combination of w_i 's. Denote the corresponding coefficients as a_{ij} 's. That is, a_{ij} is determined by requiring:

$$Tv_j = \sum_{i=1}^m a_{ij}w_i, \quad 1 \leq j \leq n.$$

▶ This defines the $m \times n$ matrix $A = [a_{ij}]_{1 \le i \le m; 1 \le j \le n}$ and is denoted as $_{\mathcal{C}}[T]_{\mathcal{B}}$. Observe that if $x = \sum_{j=1}^{n} x_j v_j$ then by linearity

$$Tx = \sum_{j=1}^{n} x_{j}(Tv_{j})$$

$$= \sum_{j=1}^{n} \sum_{i=1}^{m} x_{j}(a_{ij}w_{i})$$

$$= \sum_{i=1}^{m} [\sum_{j=1}^{n} a_{ij}x_{j}]w_{i}.$$

▶ Conclusion: For a linear map $T: V \to W$, the matrix of T in bases \mathcal{B}, C is the unique matrix A which satisfies

$$Tx = \sum_{i=1}^{m} \left[\sum_{j=1}^{n} a_{ij} x_{j}\right] w_{i}.$$

for
$$x = \sum_{j=1}^{n} x_j v_j$$
.

Consider the set up as above, with additional assumptions that V, W are inner product spaces and \mathcal{B}, \mathcal{C} are orthonormal bases.

- ▶ Consider the set up as above, with additional assumptions that V, W are inner product spaces and \mathcal{B}, \mathcal{C} are orthonormal bases.
- ▶ Recall that for any vector $x \in V$, if $x = \sum_{j=1}^{n} x_j v_j$ then $x_j = \langle v_j, x \rangle$ so that $x = \sum_{j=1}^{n} \langle v_j, x \rangle v_j$.

- ▶ Consider the set up as above, with additional assumptions that V, W are inner product spaces and \mathcal{B}, \mathcal{C} are orthonormal bases.
- Recall that for any vector $x \in V$, if $x = \sum_{j=1}^{n} x_j v_j$ then $x_j = \langle v_j, x \rangle$ so that $x = \sum_{j=1}^{n} \langle v_j, x \rangle v_j$.
- Similarly, considering the orthonormal basis C in W, for fixed j, $Tv_j = \sum_{i=1}^m a_{ij}w_i$ implies that $a_{ij} = \langle w_i, Tv_j \rangle$.

- ▶ Consider the set up as above, with additional assumptions that V, W are inner product spaces and \mathcal{B}, \mathcal{C} are orthonormal bases.
- Recall that for any vector $x \in V$, if $x = \sum_{j=1}^{n} x_j v_j$ then $x_j = \langle v_j, x \rangle$ so that $x = \sum_{j=1}^{n} \langle v_j, x \rangle v_j$.
- ▶ Similarly, considering the orthonormal basis C in W, for fixed j, $Tv_j = \sum_{i=1}^m a_{ij}w_i$ implies that $a_{ij} = \langle w_i, Tv_j \rangle$.
- ightharpoonup For general $x \in V$, we get

$$Tx = \sum_{i=1}^{m} \left[\sum_{j=1}^{n} \langle w_i, Tv_j \rangle \langle v_j, x \rangle \right] w_i$$

- ▶ Consider the set up as above, with additional assumptions that V, W are inner product spaces and \mathcal{B}, \mathcal{C} are orthonormal bases.
- Recall that for any vector $x \in V$, if $x = \sum_{j=1}^{n} x_j v_j$ then $x_j = \langle v_j, x \rangle$ so that $x = \sum_{j=1}^{n} \langle v_j, x \rangle v_j$.
- ▶ Similarly, considering the orthonormal basis C in W, for fixed j, $Tv_j = \sum_{i=1}^m a_{ij}w_i$ implies that $a_{ij} = \langle w_i, Tv_j \rangle$.
- ▶ For general $x \in V$, we get

$$Tx = \sum_{i=1}^{m} \left[\sum_{j=1}^{n} \langle w_i, Tv_j \rangle \langle v_j, x \rangle \right] w_i$$

We summarize this as a theorem.

The matrix of a linear transformation under orthonormal bases

▶ Theorem 10.1: Let V, W be inner product spaces with orthonormal bases $\mathcal{B} = \{v_1, \dots, v_n\}$ and $\mathcal{C} = \{w_1, \dots, w_m\}$ for some $m, n \in \mathbb{N}$. Let $T: V \to W$ be a linear map. Then the matrix of T in these bases is given by the $m \times n$ matrix $A = [a_{ij}]_{1 \le i \le m; 1 \le j \le n}$ where

$$a_{ij} = \langle w_i, Tv_j \rangle.$$

The matrix of a linear transformation under orthonormal bases

▶ Theorem 10.1: Let V, W be inner product spaces with orthonormal bases $\mathcal{B} = \{v_1, \dots, v_n\}$ and $\mathcal{C} = \{w_1, \dots, w_m\}$ for some $m, n \in \mathbb{N}$. Let $T: V \to W$ be a linear map. Then the matrix of T in these bases is given by the $m \times n$ matrix $A = [a_{ij}]_{1 \le i \le m; 1 \le j \le n}$ where

$$a_{ij} = \langle w_i, Tv_j \rangle.$$

▶ Conversely, given any $m \times n$ matrix $A = [a_{ij}]$, there exists unique linear map $T : V \to W$ satisfying

$$a_{ij} = \langle w_i, Tv_j \rangle, \quad 1 \le i \le m; 1 \le j \le n.$$

The matrix of a linear transformation under orthonormal bases

▶ Theorem 10.1: Let V, W be inner product spaces with orthonormal bases $\mathcal{B} = \{v_1, \dots, v_n\}$ and $\mathcal{C} = \{w_1, \dots, w_m\}$ for some $m, n \in \mathbb{N}$. Let $T: V \to W$ be a linear map. Then the matrix of T in these bases is given by the $m \times n$ matrix $A = [a_{ij}]_{1 \le i \le m; 1 \le j \le n}$ where

$$a_{ij} = \langle w_i, Tv_j \rangle.$$

► Conversely, given any $m \times n$ matrix $A = [a_{ij}]$, there exists unique linear map $T: V \to W$ satisfying

$$a_{ij} = \langle w_i, Tv_j \rangle, \quad 1 \le i \le m; 1 \le j \le n.$$

Note that here:

$$Tv_j = \sum_{i=1}^m \langle w_i, Tv_j \rangle w_i = \sum_{i=1}^m a_{ij} w_i.$$

(Hermitian) adjoint

▶ Theorem 10.2: Let V, W be finite dimensional inner product spaces and let $T: V \to W$ be a linear map. Then there exists a unique linear map $S: W \to V$ satisfying

$$\langle Sy, x \rangle = \langle y, Tx \rangle, \ \forall x \in V, y \in W.$$

▶ Theorem 10.2: Let V, W be finite dimensional inner product spaces and let $T: V \to W$ be a linear map. Then there exists a unique linear map $S: W \to V$ satisfying

$$\langle Sy, x \rangle = \langle y, Tx \rangle, \ \forall x \in V, y \in W.$$

▶ Proof. Choose an orthonormal basis $\mathcal{B} = \{v_1, \dots, v_n\}$ for V and an orthonormal basis $\mathcal{C} = \{w_1, \dots, w_m\}$ for W. (Note that such orthonormal bases exist as we can apply Gram-Schmidt orthogonalization on some bases).

▶ Theorem 10.2: Let V, W be finite dimensional inner product spaces and let $T: V \to W$ be a linear map. Then there exists a unique linear map $S: W \to V$ satisfying

$$\langle Sy, x \rangle = \langle y, Tx \rangle, \quad \forall x \in V, y \in W.$$

- ▶ Proof. Choose an orthonormal basis $\mathcal{B} = \{v_1, \dots, v_n\}$ for V and an orthornormal basis $\mathcal{C} = \{w_1, \dots, w_m\}$ for W. (Note that such orthonormal bases exist as we can apply Gram-Schmidt orthogonalization on some bases).
- ▶ Let $A = [a_{ii}]$ be the matrix of T in this bases.

▶ Theorem 10.2: Let V, W be finite dimensional inner product spaces and let $T: V \to W$ be a linear map. Then there exists a unique linear map $S: W \to V$ satisfying

$$\langle Sy, x \rangle = \langle y, Tx \rangle, \quad \forall x \in V, y \in W.$$

- ▶ Proof. Choose an orthonormal basis $\mathcal{B} = \{v_1, \dots, v_n\}$ for V and an orthornormal basis $\mathcal{C} = \{w_1, \dots, w_m\}$ for W. (Note that such orthonormal bases exist as we can apply Gram-Schmidt orthogonalization on some bases).
- Let $A = [a_{ij}]$ be the matrix of T in this bases.
- ▶ Consider the $n \times m$ matrix A^* defined by

$$(A^*)_{ji} = \overline{a_{ij}}, \quad 1 \leq i \leq m; 1 \leq j \leq n.$$

▶ Theorem 10.2: Let V, W be finite dimensional inner product spaces and let $T: V \to W$ be a linear map. Then there exists a unique linear map $S: W \to V$ satisfying

$$\langle Sy, x \rangle = \langle y, Tx \rangle, \quad \forall x \in V, y \in W.$$

- ▶ Proof. Choose an orthonormal basis $\mathcal{B} = \{v_1, \dots, v_n\}$ for V and an orthornormal basis $\mathcal{C} = \{w_1, \dots, w_m\}$ for W. (Note that such orthonormal bases exist as we can apply Gram-Schmidt orthogonalization on some bases).
- Let $A = [a_{ij}]$ be the matrix of T in this bases.
- ▶ Consider the $n \times m$ matrix A^* defined by

$$(A^*)_{ji} = \overline{a_{ij}}, \quad 1 \le i \le m; 1 \le j \le n.$$

 $lackbox{ We know that } A^*$ determines a linear map S:W o V satisfying

$$\langle v_j, Sw_i \rangle = (A^*)_{ji} = \overline{a_{jj}}.$$

lacktriangle Taking complex conjugation, we have, $\langle Sw_i, v_j
angle = a_{ij}$ or

$$\langle Sw_i, v_j \rangle = \langle w_i, Tv_j \rangle, \quad \forall 1 \le i \le m; 1 \le j \le n.$$

▶ Taking complex conjugation, we have, $\langle Sw_i, v_j \rangle = a_{ij}$ or

$$\langle Sw_i, v_j \rangle = \langle w_i, Tv_j \rangle, \quad \forall 1 \le i \le m; 1 \le j \le n.$$

▶ By linearity of *S*, *T* we have

$$\langle Sy, x \rangle = \langle y, Tx \rangle, \quad \forall x \in V, y \in W.$$

lacktriangle Taking complex conjugation, we have, $\langle Sw_i, v_j \rangle = a_{ij}$ or

$$\langle Sw_i, v_j \rangle = \langle w_i, Tv_j \rangle, \quad \forall 1 \leq i \leq m; 1 \leq j \leq n.$$

By linearity of S, T we have

$$\langle Sy, x \rangle = \langle y, Tx \rangle, \ \forall x \in V, y \in W.$$

► This proves the existence.

▶ Taking complex conjugation, we have, $\langle Sw_i, v_j \rangle = a_{ij}$ or

$$\langle Sw_i, v_j \rangle = \langle w_i, Tv_j \rangle, \quad \forall 1 \leq i \leq m; 1 \leq j \leq n.$$

By linearity of S, T we have

$$\langle Sy, x \rangle = \langle y, Tx \rangle, \quad \forall x \in V, y \in W.$$

- ► This proves the existence.
- The uniqueness is clear,as we can see that any linear map S with required property has the matrix A* as the matrix in the given bases. ■

lacktriangle Taking complex conjugation, we have, $\langle Sw_i, v_j \rangle = a_{ij}$ or

$$\langle Sw_i, v_j \rangle = \langle w_i, Tv_j \rangle, \quad \forall 1 \leq i \leq m; 1 \leq j \leq n.$$

By linearity of S, T we have

$$\langle Sy, x \rangle = \langle y, Tx \rangle, \ \forall x \in V, y \in W.$$

- This proves the existence.
- The uniqueness is clear, as we can see that any linear map S with required property has the matrix A* as the matrix in the given bases. ■
- ▶ Definition 10.3: Let V, W be finite dimensional inner product spaces and let $T: V \to W$ be a linear map. Then the unique linear map $S: W \to V$ satisfying

$$\langle Sy, x \rangle = \langle y, Tx \rangle, \quad x \in V, y \in W,$$

is known as the (Hermitian) adjoint of \mathcal{T} and is denoted by \mathcal{T}^* .

▶ Theorem 10.4: Let V, W be finite dimensional inner product spaces over a field \mathbb{F} . Let $T_1: V \to W$ and $T_2 \to W$ be linear maps. Then

- ▶ Theorem 10.4: Let V, W be finite dimensional inner product spaces over a field \mathbb{F} . Let $T_1: V \to W$ and $T_2 \to W$ be linear maps. Then
- (i) For $c_1, c_2 \in \mathbb{F}$, $(c_1 T_1 + c_2 T_2)^* = \overline{c_1} T_1^* + \overline{c_2} T_2^*$. (Anti-linearity).

- ▶ Theorem 10.4: Let V, W be finite dimensional inner product spaces over a field \mathbb{F} . Let $T_1: V \to W$ and $T_2 \to W$ be linear maps. Then
- (i) For $c_1, c_2 \in \mathbb{F}$, $(c_1T_1 + c_2T_2)^* = \overline{c_1}T_1^* + \overline{c_2}T_2^*$. (Anti-linearity).
- (ii) $((T_1)^*)^* = T_1$. (Involution property).

- ▶ Theorem 10.4: Let V, W be finite dimensional inner product spaces over a field \mathbb{F} . Let $T_1: V \to W$ and $T_2 \to W$ be linear maps. Then
- (i) For $c_1, c_2 \in \mathbb{F}$, $(c_1 T_1 + c_2 T_2)^* = \overline{c_1} T_1^* + \overline{c_2} T_2^*$. (Anti-linearity).
- (ii) $((T_1)^*)^* = T_1$. (Involution property).
- Proof. Exercise.

▶ Theorem 10.5: Let U, V, W be finite dimensional inner product spaces over a field \mathbb{F} . Let $S: U \to V$ and $T: V \to W$ be linear maps. Then

$$(TS)^* = S^*T^*.$$

▶ Theorem 10.5: Let U, V, W be finite dimensional inner product spaces over a field \mathbb{F} . Let $S: U \to V$ and $T: V \to W$ be linear maps. Then

$$(TS)^* = S^*T^*.$$

▶ Proof. For $x \in U$ and $z \in W$,

$$\langle S^*T^*z, x \rangle = \langle T^*z, Sx \rangle = \langle z, TSx \rangle.$$

▶ Theorem 10.5: Let U, V, W be finite dimensional inner product spaces over a field \mathbb{F} . Let $S: U \to V$ and $T: V \to W$ be linear maps. Then

$$(TS)^* = S^*T^*.$$

▶ Proof. For $x \in U$ and $z \in W$,

$$\langle S^*T^*z, x\rangle = \langle T^*z, Sx\rangle = \langle z, TSx\rangle.$$

Now from the uniqueness of the adjoint, we get $(TS)^* = S^*T^*$.

▶ Theorem 10.5: Let U, V, W be finite dimensional inner product spaces over a field \mathbb{F} . Let $S: U \to V$ and $T: V \to W$ be linear maps. Then

$$(TS)^* = S^*T^*.$$

▶ Proof. For $x \in U$ and $z \in W$,

$$\langle S^*T^*z, x\rangle = \langle T^*z, Sx\rangle = \langle z, TSx\rangle.$$

- Now from the uniqueness of the adjoint, we get $(TS)^* = S^*T^*$.
- ► END OF LECTURE 10.