POLITECNICO DI MILANO

FONDAMENTI DI AUTOMATICA (Ingegneria Gestionale) Prof. Fredy O. Ruiz-Palacios

Anno Accademico 2022/23 Appello del 09/06/2023

COGNOME
NOME
CODICE PERSONA
FIRMA

- Consegnare esclusivamente il presente fascicolo.
- Utilizzare, per la minuta, i fogli bianchi forniti in aggiunta a questo fascicolo.
- Non si possono consultare libri, appunti, dispense, ecc.
- Si raccomandano chiarezza, precisione e concisione nelle risposte.

Fondamenti di Automatica (Ing. Gestionale) Prof. Fredy Ruiz Appello del 9 giugno 2023

ESERCIZIO 1

Si consideri il sistema dinamico descritto dalle seguenti equazioni

$$\dot{x_1}(t) = \alpha x_2^2(t) - \beta x_1(t) + u(t)
\dot{x_2}(t) = 3x_1(t)
\dot{x_3}(t) = -5x_1(t)
y(t) = x_2(t) + x_3(t)$$

dove α e β e sono costanti reali diverse da zero.

1. Classificare il sistema

2. Determinare i punti di equilibrio del sistema per un ingresso costante $u(t) = \bar{u}$. È possibile trovare degli equilibri per un qualsiasi valore di \bar{u} ?

3.	Determinare denti a $\bar{u} = 0$	-	i del siste	ema linearizz	ato attorno	o agli sta	ati di equilib	rio corrisp	on-
4	Studiare la s			1				, .	1.

parametri α e β . Se possibile, determinare la stabilità del movimento di equilibrio del

sistema non lineare di partenza.

ESERCIZIO 2

Si consideri il sistema dinamico descritto dalle seguenti equazioni

$$\begin{cases} x_1(k+1) = -\alpha x_2(k) + u_1(k) - u_2(k) \\ x_2(k+1) = -\alpha x_1(k) + u_2(k) \\ y_1(k) = x_1(k) + u_1(k) \\ y_2(k) = x_2(k) + u_2(k) \end{cases}$$

1. Scrivere in forma matriciale e classificare il sistema.

2. Studiare la stabilità del sistema al variare del parametro α .

3. Posto $\alpha=0.5$ determinare i modi del sistema.

4. Fissato $\alpha=0.5$, determinare gli stati di equilibrio per un ingresso costante $u_1(k)=\bar{u}_1$ e $u_2(k)=0$.

5. Fissato $\alpha=0.5$, calcolare i primi 5 campioni del movimento dello stato e dell'uscita per $u_1(k)=0, u_2(k)=0, \forall k\geq 0$ e $x(0)=\begin{bmatrix}1\\0\end{bmatrix}$.

ESERCIZIO 3

Si consideri il seguente schema:

1. Determinare la funzione di trasferimento equivalente $G_E(s)$ da U(s) a Y(s).

2. Posto $G_1(s) = 100/(s+100)$, $G_2(s) = k/(s+2)$, $G_3(s) = 5/(s+2)$ e $G_4(s) = 1$, valutare la funzione di trasferimento e determinare i valori del parametro k per i quali la $G_E(s)$ è asintoticamente stabile.

3. È possibile trarre conclusioni sulla stabilità del sistema complessivo analizzando solo la funzione di trasferimento $G_E(s)$ appena ricavata? Giustificare.

4. Posto k=5, per un ingresso u(t) tipo scalino determinare la trasformata di Laplace dell'uscita Y(s) e i valori di y(0), y'(0) e $y(\infty)$. Tracciare qualitativamente l'andamento dell'uscita. È possibile fare una approssimazione a poli dominanti? Giustificare la risposta.

ESERCIZIO 4

Si consideri la seguente funzione di trasferimento

$$G(s) = \frac{3}{(s+1)(0.2s+1)}$$

di un sistema lineare tempo invariante senza poli nascosti e il sistema di controllo in figura:

1. Calcolare guadagno, tipo, poli e zeri di G(s) e studiare la stabilità del sistema con funzione di trasferimento G(s).

2. Tracciare i diagrammi di Bode di modulo e fase della risposta in frequenza associata alla funzione di trasferimento G(s). Usare la carta semilogaritmica fornita.

3. Per un regolatore $R_1(s) = 1$, determinare le proprietà di stabilità del sistema retroazionato e trovare in maniera approssimata i margini di fase e di guadagno.

4. Per un regolatore

$$R_2(s) = \frac{1}{3} \frac{s+1}{s},$$

determinare le proprietà di stabilità del sistema retroazionato e trovare in maniera approssimata i margini di fase e di guadagno.

5.	Considerando i due regolatori analizzati in precedenza, discutere quale dei due sistemi di
	controllo garantisce un minore errore a regime $ e_{\infty} $ a fronte di:

controllo garantisce un minore errore a regime $|e_{\infty}|$ a fro a) Un ingresso di riferimento tipo scalino $y^{0}(t) = sca(t)$.

b) Un ingresso di disturbo $d(t)=\sin(0.1t).$

