CEE 260/MIE 273: Probability and Statistics in Civil Engineering Lecture M3c: Lognormal and Exponential Distributions

Jimi Oke

UMassAmherst

College of Engineering

September 28, 2025

Outline

- Introduction
- 2 The lognormal distribution
- Secondary Exponential distribution
- Outlook

Exponential distribution

Recap of normal distribution

• The PDF of the normal distribution (parameters: mean μ and variance σ^2) is given by

• The PDF of the normal distribution (parameters: mean μ and variance σ^2) is given by

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$$
 (1)

• The PDF of the normal distribution (parameters: mean μ and variance σ^2) is given by

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$$
 (1)

There is no closed-form solution to the integral of the normal CDF

• The PDF of the normal distribution (parameters: mean μ and variance σ^2) is given by

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$$
 (1)

- There is no closed-form solution to the integral of the normal CDF
- Instead, it is customary to standardize a normal variable to its "Z-score":

• The PDF of the normal distribution (parameters: mean μ and variance σ^2) is given by

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$$
 (1)

- There is no closed-form solution to the integral of the normal CDF
- Instead, it is customary to standardize a normal variable to its "Z-score":

$$Z = \frac{X - \mu}{\sigma} \tag{2}$$

• The PDF of the normal distribution (parameters: mean μ and variance σ^2) is given by

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$$
 (1)

- There is no closed-form solution to the integral of the normal CDF
- Instead, it is customary to standardize a normal variable to its "Z-score":

$$Z = \frac{X - \mu}{\sigma} \tag{2}$$

 The mean and variance of the standard normal distribution are 0 and 1, respectively.

• The PDF of the normal distribution (parameters: mean μ and variance σ^2) is given by

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$$
 (1)

- There is no closed-form solution to the integral of the normal CDF
- Instead, it is customary to standardize a normal variable to its "Z-score":

$$Z = \frac{X - \mu}{\sigma} \tag{2}$$

- The mean and variance of the standard normal distribution are 0 and 1, respectively.
- The symbol Φ ("phi") is used to represent the CDF of the standard normal distribution, whose values can be looked up in a table.

• The PDF of the normal distribution (parameters: mean μ and variance σ^2) is given by

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$$
 (1)

- There is no closed-form solution to the integral of the normal CDF
- Instead, it is customary to standardize a normal variable to its "Z-score":

$$Z = \frac{X - \mu}{\sigma} \tag{2}$$

- The mean and variance of the standard normal distribution are 0 and 1, respectively.
- The symbol Φ ("phi") is used to represent the CDF of the standard normal distribution, whose values can be looked up in a table.
- In Python, the norm.cdf(x, mu, sigma) and norm.ppf(p, mu, sigma)
 can be used to compute probabilities and inverse CDFs of the normal
 distribution, respectively.

• First convert the random variable to its *Z*-score

Introduction

0.00

- First convert the random variable to its Z-score
- Find the corresponding value in the table

Introduction

- First convert the random variable to its *Z*-score
- Find the corresponding value in the table

Introduction

0.00

Objectives of today's lecture

Objectives of today's lecture

Lognormal distribution

- Lognormal distribution
- Relationship between lognormal and normal distributions

The lognormal distribution

Objectives of today's lecture

- Lognormal distribution
- Relationship between lognormal and normal distributions
- Exponential distribution

Objectives of today's lecture

- Lognormal distribution
- Relationship between lognormal and normal distributions
- Exponential distribution
- Memoryless property of exponential distribution

PDF

PDF

PDF

$$f_X(x) = \frac{1}{(\sigma x)\sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{\ln(x) - \mu}{\sigma}\right)^2\right] \quad x \ge 0$$
 (3)

PDF

$$f_X(x) = \frac{1}{(\sigma x)\sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{\ln(x) - \mu}{\sigma}\right)^2\right] \quad x \ge 0$$
 (3)

PDF

$$f_X(x) = \frac{1}{(\sigma x)\sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{\ln(x) - \mu}{\sigma}\right)^2\right] \quad x \ge 0$$
 (3)

PDF

$$f_X(x) = \frac{1}{(\sigma x)\sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{\ln(x) - \mu}{\sigma}\right)^2\right] \quad x \ge 0$$
 (3)

Let X be a lognormally distributed random variable with parameters μ and σ : $X \sim \mathcal{LN}(\mu, \sigma^2)$

Let X be a lognormally distributed random variable with parameters μ and σ : $X \sim \mathcal{LN}(\mu, \sigma^2)$

• The **mean** of *X* is given by

Let X be a lognormally distributed random variable with parameters μ and σ : $X \sim \mathcal{LN}(\mu, \sigma^2)$

• The **mean** of *X* is given by

$$\mathbb{E}(X) = \exp\left[\mu + \frac{1}{2}\sigma^2\right] \tag{4}$$

Let X be a lognormally distributed random variable with parameters μ and σ : $X \sim \mathcal{LN}(\mu, \sigma^2)$

• The **mean** of *X* is given by

$$\mathbb{E}(X) = \exp\left[\mu + \frac{1}{2}\sigma^2\right] \tag{4}$$

• The **median** of X is:

Let X be a lognormally distributed random variable with parameters μ and σ : $X \sim \mathcal{LN}(\mu, \sigma^2)$

• The **mean** of *X* is given by

$$\mathbb{E}(X) = \exp\left[\mu + \frac{1}{2}\sigma^2\right] \tag{4}$$

The median of X is:

$$Median(X) = \exp(\mu) \tag{5}$$

Let X be a lognormally distributed random variable with parameters μ and σ : $X \sim \mathcal{LN}(\mu, \sigma^2)$

• The **mean** of *X* is given by

$$\mathbb{E}(X) = \exp\left[\mu + \frac{1}{2}\sigma^2\right] \tag{4}$$

The median of X is:

$$Median(X) = \exp(\mu) \tag{5}$$

Let X be a lognormally distributed random variable with parameters μ and σ : $X \sim \mathcal{LN}(\mu, \sigma^2)$

• The **mean** of *X* is given by

$$\mathbb{E}(X) = \exp\left[\mu + \frac{1}{2}\sigma^2\right] \tag{4}$$

The median of X is:

$$Median(X) = \exp(\mu) \tag{5}$$

$$\mathbb{V}(X) =$$

Let X be a lognormally distributed random variable with parameters μ and σ : $X \sim \mathcal{LN}(\mu, \sigma^2)$

• The **mean** of *X* is given by

$$\mathbb{E}(X) = \exp\left[\mu + \frac{1}{2}\sigma^2\right] \tag{4}$$

The median of X is:

$$Median(X) = \exp(\mu) \tag{5}$$

$$\mathbb{V}(X) = (\exp\left[\sigma^2\right] - 1)\exp\left[2\mu + \sigma^2\right] \tag{6}$$

Let X be a lognormally distributed random variable with parameters μ and σ : $X \sim \mathcal{LN}(\mu, \sigma^2)$

• The **mean** of *X* is given by

$$\mathbb{E}(X) = \exp\left[\mu + \frac{1}{2}\sigma^2\right] \tag{4}$$

The median of X is:

$$Median(X) = \exp(\mu) \tag{5}$$

$$\mathbb{V}(X) = (\exp\left[\sigma^2\right] - 1)\exp\left[2\mu + \sigma^2\right] \tag{6}$$

Mean, median and variance of a lognormal distribution

Let X be a lognormally distributed random variable with parameters μ and σ : $X \sim \mathcal{LN}(\mu, \sigma^2)$

• The **mean** of *X* is given by

$$\mathbb{E}(X) = \exp\left[\mu + \frac{1}{2}\sigma^2\right] \tag{4}$$

The median of X is:

$$Median(X) = \exp(\mu) \tag{5}$$

• The **variance** of *X* is given by:

$$\mathbb{V}(X) = (\exp\left[\sigma^2\right] - 1)\exp\left[2\mu + \sigma^2\right] \tag{6}$$

Notes

• μ and σ are the mean and standard deviation of the associated normal distribution of $\ln(X)$.

Mean, median and variance of a lognormal distribution

Let X be a lognormally distributed random variable with parameters μ and σ : $X \sim \mathcal{LN}(\mu, \sigma^2)$

• The **mean** of *X* is given by

$$\mathbb{E}(X) = \exp\left[\mu + \frac{1}{2}\sigma^2\right] \tag{4}$$

The median of X is:

$$\mathsf{Median}(X) = \mathsf{exp}(\mu) \tag{5}$$

• The **variance** of *X* is given by:

$$\mathbb{V}(X) = (\exp\left[\sigma^2\right] - 1)\exp\left[2\mu + \sigma^2\right] \tag{6}$$

Notes

- μ and σ are the mean and standard deviation of the associated normal distribution of $\ln(X)$.
- Thus, if $X \sim \mathcal{LN}(\mu, \sigma)$, then $ln(X) \sim \mathcal{N}(\mu, \sigma)$

The incubation period of the COVID-19 infection is assumed to be lognormally distributed with a median of about 5 days and $\sigma^2 = 0.42$. What are the mean and variance of its distribution?

The lognormal distribution

The incubation period of the COVID-19 infection is assumed to be lognormally distributed with a median of about 5 days and $\sigma^2 = 0.42$. What are the mean and variance of its distribution?

Solution

The incubation period of the COVID-19 infection is assumed to be lognormally distributed with a median of about 5 days and $\sigma^2 = 0.42$. What are the mean and variance of its distribution?

Solution

The incubation period of the COVID-19 infection is assumed to be lognormally distributed with a median of about 5 days and $\sigma^2 = 0.42$. What are the mean and variance of its distribution?

Solution

$$Median(X) = e^{\mu}$$

The incubation period of the COVID-19 infection is assumed to be lognormally distributed with a median of about 5 days and $\sigma^2 = 0.42$. What are the mean and variance of its distribution?

Solution

$$Median(X) = e^{\mu}$$
$$5 = e^{\mu}$$

The incubation period of the COVID-19 infection is assumed to be lognormally distributed with a median of about 5 days and $\sigma^2 = 0.42$. What are the mean and variance of its distribution?

Solution

$$\begin{array}{rcl} \mathsf{Median}(X) & = & e^{\mu} \\ & 5 & = & e^{\mu} \\ \implies \mathsf{In}(5) & = & \end{array}$$

The incubation period of the COVID-19 infection is assumed to be lognormally distributed with a median of about 5 days and $\sigma^2 = 0.42$. What are the mean and variance of its distribution?

Solution

$$Median(X) = e^{\mu}$$

$$5 = e^{\mu}$$

$$\implies ln(5) = \mu$$

The incubation period of the COVID-19 infection is assumed to be lognormally distributed with a median of about 5 days and $\sigma^2 = 0.42$. What are the mean and variance of its distribution?

Solution

First, we find the parameter μ :

$$Median(X) = e^{\mu}$$

$$5 = e^{\mu}$$

$$\implies ln(5) = \mu$$

... The mean is given by

The incubation period of the COVID-19 infection is assumed to be lognormally distributed with a median of about 5 days and $\sigma^2 = 0.42$. What are the mean and variance of its distribution?

Solution

First, we find the parameter μ :

$$Median(X) = e^{\mu}$$

$$5 = e^{\mu}$$

$$\implies ln(5) = \mu$$

... The mean is given by $\mathbb{E}(X) = e^{\mu + \frac{1}{2}\sigma^2}$

The incubation period of the COVID-19 infection is assumed to be lognormally distributed with a median of about 5 days and $\sigma^2 = 0.42$. What are the mean and variance of its distribution?

Solution

First, we find the parameter μ :

$$Median(X) = e^{\mu}$$

$$5 = e^{\mu}$$

$$\implies ln(5) = \mu$$

... The mean is given by $\mathbb{E}(X) = e^{\mu + \frac{1}{2}\sigma^2} = e^{\ln(5) + 0.21}$

The incubation period of the COVID-19 infection is assumed to be lognormally distributed with a median of about 5 days and $\sigma^2 = 0.42$. What are the mean and variance of its distribution?

Solution

First, we find the parameter μ :

$$\begin{array}{rcl} \mathsf{Median}(X) & = & e^{\mu} \\ & 5 & = & e^{\mu} \\ \Longrightarrow & \mathsf{In}(5) & = & \mu \end{array}$$

... The mean is given by $\mathbb{E}(X) = e^{\mu + \frac{1}{2}\sigma^2} = e^{\ln(5) + 0.21} = e^{\ln(5)} \times e^{0.21}$

The incubation period of the COVID-19 infection is assumed to be lognormally distributed with a median of about 5 days and $\sigma^2 = 0.42$. What are the mean and variance of its distribution?

Solution

$$\begin{array}{rcl} \mathsf{Median}(X) & = & e^{\mu} \\ & 5 & = & e^{\mu} \\ \Longrightarrow & \mathsf{In}(5) & = & \mu \end{array}$$

... The mean is given by
$$\mathbb{E}(X) = e^{\mu + \frac{1}{2}\sigma^2} = e^{\ln(5) + 0.21} = e^{\ln(5)} \times e^{0.21}$$

= $5(e^{0.21})$

The incubation period of the COVID-19 infection is assumed to be lognormally distributed with a median of about 5 days and $\sigma^2 = 0.42$. What are the mean and variance of its distribution?

Solution

$$Median(X) = e^{\mu}$$

$$5 = e^{\mu}$$

$$\implies ln(5) = \mu$$

∴ The mean is given by
$$\mathbb{E}(X) = e^{\mu + \frac{1}{2}\sigma^2} = e^{\ln(5) + 0.21} = e^{\ln(5)} \times e^{0.21}$$

= $5(e^{0.21}) = \boxed{6.17 \text{ days}}$

```
Solution (cont.)
```

Solution (cont.)

Solution (cont.)

$$\mathbb{V}(X) = (\exp(\sigma^2) - 1) (\exp[2\mu + \sigma^2])$$

Solution (cont.)

$$V(X) = (\exp(\sigma^2) - 1) (\exp[2\mu + \sigma^2])$$

= (\exp(0.42) - 1)(\exp(2 \ln(5) + 0.42))

Solution (cont.)

$$V(X) = (\exp(\sigma^2) - 1) (\exp[2\mu + \sigma^2])$$

$$= (\exp(0.42) - 1)(\exp(2\ln(5) + 0.42))$$

$$= 19.86 \text{ days}^2$$

• A random variable X is lognormally distributed with the parameters μ and σ^2 if $\ln(X)$ is normally distributed with the same parameters.

• A random variable X is lognormally distributed with the parameters μ and σ^2 if $\ln(X)$ is normally distributed with the same parameters.

$$X \sim \mathcal{LN}(\mu, \sigma^2)$$

• A random variable X is lognormally distributed with the **parameters** μ and σ^2 if $\ln(X)$ is normally distributed with the same parameters.

$$X \sim \mathcal{LN}(\mu, \sigma^2) \implies \ln(X) \sim \mathcal{N}(\mu, \sigma^2)$$
 (7)

• A random variable X is lognormally distributed with the parameters μ and σ^2 if $\ln(X)$ is normally distributed with the same parameters.

$$X \sim \mathcal{LN}(\mu, \sigma^2) \implies \ln(X) \sim \mathcal{N}(\mu, \sigma^2)$$
 (7)

• A random variable X is lognormally distributed with the parameters μ and σ^2 if $\ln(X)$ is normally distributed with the same parameters.

$$X \sim \mathcal{LN}(\mu, \sigma^2) \implies \ln(X) \sim \mathcal{N}(\mu, \sigma^2)$$
 (7)

$$X \sim \mathcal{N}(\mu, \sigma^2)$$

• A random variable X is lognormally distributed with the parameters μ and σ^2 if $\ln(X)$ is normally distributed with the same parameters.

$$X \sim \mathcal{LN}(\mu, \sigma^2) \implies \ln(X) \sim \mathcal{N}(\mu, \sigma^2)$$
 (7)

$$X \sim \mathcal{N}(\mu, \sigma^2) \implies$$

• A random variable X is lognormally distributed with the **parameters** μ and σ^2 if $\ln(X)$ is normally distributed with the same parameters.

$$X \sim \mathcal{LN}(\mu, \sigma^2) \implies \ln(X) \sim \mathcal{N}(\mu, \sigma^2)$$
 (7)

$$X \sim \mathcal{N}(\mu, \sigma^2) \implies e^X \sim \mathcal{L}\mathcal{N}(\mu, \sigma^2)$$
 (8)

• A random variable X is lognormally distributed with the parameters μ and σ^2 if $\ln(X)$ is normally distributed with the same parameters.

$$X \sim \mathcal{LN}(\mu, \sigma^2) \implies \ln(X) \sim \mathcal{N}(\mu, \sigma^2)$$
 (7)

• Conversely, a random variable X is normally distributed with the parameters μ and σ^2 then e^X is lognormally distributed with the same parameters.

$$X \sim \mathcal{N}(\mu, \sigma^2) \implies e^X \sim \mathcal{L}\mathcal{N}(\mu, \sigma^2)$$
 (8)

• If $X \sim \mathcal{N}(\mu, \sigma^2)$, then $\mu = \mathbb{E}(X)$ and $\sigma^2 = \mathbb{V}(X)$

• A random variable X is lognormally distributed with the parameters μ and σ^2 if $\ln(X)$ is normally distributed with the same parameters.

$$X \sim \mathcal{LN}(\mu, \sigma^2) \implies \ln(X) \sim \mathcal{N}(\mu, \sigma^2)$$
 (7)

$$X \sim \mathcal{N}(\mu, \sigma^2) \implies e^X \sim \mathcal{L}\mathcal{N}(\mu, \sigma^2)$$
 (8)

- If $X \sim \mathcal{N}(\mu, \sigma^2)$, then $\mu = \mathbb{E}(X)$ and $\sigma^2 = \mathbb{V}(X)$
- However, $X \sim \mathcal{LN}(\mu, \sigma^2)$, then $\mu = \mathbb{E}(\ln(X))$ and $\sigma^2 = \mathbb{V}(\ln(X))$

• A random variable X is lognormally distributed with the parameters μ and σ^2 if $\ln(X)$ is normally distributed with the same parameters.

$$X \sim \mathcal{LN}(\mu, \sigma^2) \implies \ln(X) \sim \mathcal{N}(\mu, \sigma^2)$$
 (7)

$$X \sim \mathcal{N}(\mu, \sigma^2) \implies e^X \sim \mathcal{L}\mathcal{N}(\mu, \sigma^2)$$
 (8)

- If $X \sim \mathcal{N}(\mu, \sigma^2)$, then $\mu = \mathbb{E}(X)$ and $\sigma^2 = \mathbb{V}(X)$
- However, $X \sim \mathcal{LN}(\mu, \sigma^2)$, then $\mu = \mathbb{E}(\ln(X))$ and $\sigma^2 = \mathbb{V}(\ln(X))$

Relationship between normal and lognormal (cont.)

Exponential distribution

Positive skewness of lognormal distribution

The lognormal distribution is positively skewed

- The lognormal distribution is positively skewed
- Its mean is always greater than its median

- The lognormal distribution is positively skewed
- Its mean is always greater than its median

- The lognormal distribution is positively skewed
- Its mean is always greater than its median

$$P(a < X \le b) =$$

$$P(a < X \le b) = \frac{1}{\sigma x \sqrt{2\pi}}$$

$$P(a < X \le b) = \frac{1}{\sigma x \sqrt{2\pi}} \int_{a}^{b} \exp\left[-\frac{1}{2} \left(\frac{\ln(x) - \mu}{\sigma}\right)^{2}\right] dx \tag{9}$$

$$P(a < X \le b) = \frac{1}{\sigma x \sqrt{2\pi}} \int_{a}^{b} \exp\left[-\frac{1}{2} \left(\frac{\ln(x) - \mu}{\sigma}\right)^{2}\right] dx \tag{9}$$

Figure: Lognormal distribution with $\mu=0$, $\sigma=1$, showing P(a < X < b) where a=2 and b=4

Substituting
$$z = \frac{\ln(x) - \mu}{\sigma}$$

Substituting
$$z = \frac{\ln(x) - \mu}{\sigma} \implies$$

Substituting $z = \frac{\ln(x) - \mu}{\sigma} \implies dx = \sigma x dz$, we obtain:

Substituting
$$z = \frac{\ln(x) - \mu}{\sigma} \implies dx = \sigma x dz$$
, we obtain:

$$P(a < X \leq b)$$

Substituting $z = \frac{\ln(x) - \mu}{\sigma} \implies dx = \sigma x dz$, we obtain:

$$P(a < X \le b) = \frac{1}{\sqrt{2\pi}} \int_{(\ln(a) - \mu)/\sigma}^{(\ln(b) - \mu)/\sigma}$$

Substituting $z = \frac{\ln(x) - \mu}{\sigma} \implies dx = \sigma x dz$, we obtain:

$$P(a < X \le b) = \frac{1}{\sqrt{2\pi}} \int_{(\ln(a) - \mu)/\sigma}^{(\ln(b) - \mu)/\sigma} \exp\left[-\frac{1}{2}z^2\right] dz \tag{10}$$

Substituting $z = \frac{\ln(x) - \mu}{\sigma} \implies dx = \sigma x dz$, we obtain:

$$P(a < X \le b) = \frac{1}{\sqrt{2\pi}} \int_{(\ln(a)-\mu)/\sigma}^{(\ln(b)-\mu)/\sigma} \exp\left[-\frac{1}{2}z^2\right] dz \tag{10}$$

Substituting $z = \frac{\ln(x) - \mu}{\sigma} \implies dx = \sigma x dz$, we obtain:

$$P(a < X \le b) = \frac{1}{\sqrt{2\pi}} \int_{(\ln(a)-\mu)/\sigma}^{(\ln(b)-\mu)/\sigma} \exp\left[-\frac{1}{2}z^2\right] dz \tag{10}$$

$$P(a < X \le b)$$

Substituting $z = \frac{\ln(x) - \mu}{\sigma} \implies dx = \sigma x dz$, we obtain:

$$P(a < X \le b) = \frac{1}{\sqrt{2\pi}} \int_{(\ln(a)-\mu)/\sigma}^{(\ln(b)-\mu)/\sigma} \exp\left[-\frac{1}{2}z^2\right] dz \tag{10}$$

$$P(a < X \le b) = \Phi\left(\frac{\ln b - \mu}{\sigma}\right)$$

Substituting $z = \frac{\ln(x) - \mu}{\sigma} \implies dx = \sigma x dz$, we obtain:

$$P(a < X \le b) = \frac{1}{\sqrt{2\pi}} \int_{(\ln(a)-\mu)/\sigma}^{(\ln(b)-\mu)/\sigma} \exp\left[-\frac{1}{2}z^2\right] dz \tag{10}$$

$$P(a < X \le b) = \Phi\left(\frac{\ln b - \mu}{\sigma}\right) -$$

Substituting $z = \frac{\ln(x) - \mu}{\sigma} \implies dx = \sigma x dz$, we obtain:

$$P(a < X \le b) = \frac{1}{\sqrt{2\pi}} \int_{(\ln(a)-\mu)/\sigma}^{(\ln(b)-\mu)/\sigma} \exp\left[-\frac{1}{2}z^2\right] dz \tag{10}$$

$$P(a < X \le b) = \Phi\left(\frac{\ln b - \mu}{\sigma}\right) - \Phi\left(\frac{\ln a - \mu}{\sigma}\right) \tag{11}$$

Substituting $z = \frac{\ln(x) - \mu}{\sigma} \implies dx = \sigma x dz$, we obtain:

$$P(a < X \le b) = \frac{1}{\sqrt{2\pi}} \int_{(\ln(a)-\mu)/\sigma}^{(\ln(b)-\mu)/\sigma} \exp\left[-\frac{1}{2}z^2\right] dz \tag{10}$$

$$P(a < X \le b) = \Phi\left(\frac{\ln b - \mu}{\sigma}\right) - \Phi\left(\frac{\ln a - \mu}{\sigma}\right)$$
 (11)

15 / 32

The lifetime X of a major oil platform equipment is lognormally distributed with a Median(X) = 6 months and σ = 0.30. To ensure 95% reliability, determine the desired interval x_0 for maintenance.

The lifetime X of a major oil platform equipment is lognormally distributed with a Median(X) = 6 months and σ = 0.30. To ensure 95% reliability, determine the desired interval x_0 for maintenance.

The lifetime X of a major oil platform equipment is lognormally distributed with a Median(X) = 6 months and σ = 0.30. To ensure 95% reliability, determine the desired interval x_0 for maintenance.

$$P(X > x_0) = 1 - P(X \le x_0) =$$

The lifetime X of a major oil platform equipment is lognormally distributed with a Median(X) = 6 months and σ = 0.30. To ensure 95% reliability, determine the desired interval x_0 for maintenance.

$$P(X > x_0) = 1 - P(X \le x_0) = 0.95$$

The lifetime X of a major oil platform equipment is lognormally distributed with a Median(X) = 6 months and σ = 0.30. To ensure 95% reliability, determine the desired interval x_0 for maintenance.

$$P(X > x_0) = 1 - P(X \le x_0) = 0.95$$

Figure: Standard normal distribution showing $P(\ln(2) < Z < \ln(4))$

Example 2: Probability of incubation period

The incubation period of the COVID-19 infection is assumed to be lognormally distributed with a median of about 5 days and $\sigma^2 = 0.42$. What is the probability that a randomly selected person will show symptoms within 7 days of exposure (i.e., $P(X \le 7)$)?

Example 2: Probability of incubation period

The incubation period of the COVID-19 infection is assumed to be lognormally distributed with a median of about 5 days and $\sigma^2 = 0.42$. What is the probability that a randomly selected person will show symptoms within 7 days of exposure (i.e., $P(X \le 7)$)?

Figure: Lognormal distribution with $\mu = \ln(5)$, $\sigma^2 = 0.42$, showing P(X < 7)

Solution (using Python)

Solution (using Python)

We want to find: $P(X \le 7) = F(7)$; thus we use the scipy.stats.lognorm.cdf function:

Solution (using Python)

We want to find: $P(X \le 7) = F(7)$; thus we use the scipy.stats.lognorm.cdf function:

```
from scipy import stats
import numpy as np
p = stats.lognorm.cdf(7, s=0.648, scale=5)
```

Solution (using Python)

We want to find: $P(X \le 7) = F(7)$; thus we use the scipy.stats.lognorm.cdf function:

```
from scipy import stats
import numpy as np
p = stats.lognorm.cdf(7, s=0.648, scale=5)
```

where:

- s = σ = 0.648 = $\sqrt{0.42}$ (shape parameter/standard deviation of underlying normal)
- $scale = exp(\mu) = exp(ln(5)) = 5$ (scale parameter/median)

The result is: p = 0.691, i.e., about 69.1% of the people will show symptoms within 7 days of exposure.

Solution (using tables)

Solution (using tables)

We want to find: $P(X \le 7) = F(7)$; thus we use the relationship:

Example 2: (cont.)

Solution (using tables)

We want to find: $P(X \le 7) = F(7)$; thus we use the relationship:

$$P(X \le x) = \Phi\left(\frac{\ln x - \mu}{\sigma}\right)$$

Example 2: (cont.)

Solution (using tables)

We want to find: $P(X \le 7) = F(7)$; thus we use the relationship:

$$P(X \le x) = \Phi\left(\frac{\ln x - \mu}{\sigma}\right)$$

where $\mu = \ln(5) = 1.609$ and $\sigma = \sqrt{0.42} = 0.648$. Thus:

Example 2: (cont.)

Solution (using tables)

We want to find: $P(X \le 7) = F(7)$; thus we use the relationship:

$$P(X \le x) = \Phi\left(\frac{\ln x - \mu}{\sigma}\right)$$

where $\mu = \ln(5) = 1.609$ and $\sigma = \sqrt{0.42} = 0.648$. Thus:

$$P(X \le 7) = \Phi\left(\frac{\ln 7 - 1.609}{0.648}\right)$$
$$= \Phi(0.539)$$
$$\approx 0.7054 \text{ (from standard normal table)}$$

Jimi Oke (UMass Amherst)

Solution (using tables)

We want to find: $P(X \le 7) = F(7)$; thus we use the relationship:

$$P(X \le x) = \Phi\left(\frac{\ln x - \mu}{\sigma}\right)$$

where $\mu = \ln(5) = 1.609$ and $\sigma = \sqrt{0.42} = 0.648$. Thus:

$$P(X \le 7) = \Phi\left(\frac{\ln 7 - 1.609}{0.648}\right)$$
$$= \Phi(0.539)$$
$$\approx 0.7054 \text{ (from standard normal table)}$$

The result is: $P(X \le 7) \approx 0.7054$, i.e., about 70.54% of the people will show symptoms within 7 days of exposure.

The lifetime X of a major oil platform equipment is lognormally distributed with a Median(X) = 6 months and σ = 0.30. To ensure 95% reliability, determine the desired interval x_0 for maintenance.

The lifetime X of a major oil platform equipment is lognormally distributed with a Median(X) = 6 months and σ = 0.30. To ensure 95% reliability, determine the desired interval x_0 for maintenance.

The lifetime X of a major oil platform equipment is lognormally distributed with a Median(X) = 6 months and σ = 0.30. To ensure 95% reliability, determine the desired interval x_0 for maintenance.

$$P(X > x_0) = 1 - P(X \le x_0) =$$

The lifetime X of a major oil platform equipment is lognormally distributed with a Median(X) = 6 months and σ = 0.30. To ensure 95% reliability, determine the desired interval x_0 for maintenance.

$$P(X > x_0) = 1 - P(X \le x_0) = 0.95$$

The lifetime X of a major oil platform equipment is lognormally distributed with a Median(X) = 6 months and σ = 0.30. To ensure 95% reliability, determine the desired interval x_0 for maintenance.

$$P(X > x_0) = 1 - P(X \le x_0) = 0.95 \implies P(X \le x_0) = 0.05$$

The lifetime X of a major oil platform equipment is lognormally distributed with a Median(X) = 6 months and σ = 0.30. To ensure 95% reliability, determine the desired interval x_0 for maintenance.

$$P(X > x_0) = 1 - P(X \le x_0) = 0.95 \implies P(X \le x_0) = 0.05$$

Figure: Lognormal CDF showing the 5th percentile at $x = x_0 = 3.66$

```
Solution (using Python)
```

Solution (using Python)

 $P(X \le x_0) = 0.05$

Solution (using Python)

$$P(X \le x_0) = 0.05$$
 implies:

$$x_0 = F^{-1}(0.05)$$

Solution (using Python)

$$P(X \le x_0) = 0.05$$
 implies:

$$x_0 = F^{-1}(0.05)$$

Code:

```
from scipy import stats
import numpy as np
x0 = stats.lognorm.ppf(q=0.05, s=0.30, scale=6)
```

Solution (using Python)

$$P(X \le x_0) = 0.05$$
 implies:

$$x_0 = F^{-1}(0.05)$$

Code:

```
from scipy import stats
import numpy as np
x0 = stats.lognorm.ppf(q=0.05, s=0.30, scale=6)
```

Note the following about the *arguments*stats.lognorm.ppf function:

- The first, q, is the cumulative probability or quantile (0.05)
 - The second, s, is the shape parameter σ (0.30)
 - The third, scale, is e^{μ} (median) (6)

This returns $x_0 = 3.66$ months.

Solution (using tables)

Solution (using tables)

$$\Phi\left(\frac{\ln(x_0)-1.792}{0.30}\right) =$$

Solution (using tables)

$$\Phi\left(\frac{\ln(x_0) - 1.792}{0.30}\right) = 0.05$$

$$\frac{\ln x_0 - 1.792}{0.30} = \Phi^{-1}(0.05)$$

Solution (using tables)

$$\Phi\left(\frac{\ln(x_0) - 1.792}{0.30}\right) = 0.05$$

$$\frac{\ln x_0 - 1.792}{0.30} = \Phi^{-1}(0.05)$$
$$\ln x_0 - 1.792 =$$

Solution (using tables)

$$\Phi\left(\frac{\ln(x_0) - 1.792}{0.30}\right) = 0.05$$

$$\begin{array}{rcl} \frac{\ln x_0 - 1.792}{0.30} & = & \Phi^{-1}(0.05) \\ \ln x_0 - 1.792 & = & 0.30[-\Phi^{-1}(0.95)] \end{array}$$

Solution (using tables)

$$\Phi\left(\frac{\ln(x_0) - 1.792}{0.30}\right) = 0.05$$

$$\begin{array}{ccc} \frac{\ln x_0 - 1.792}{0.30} & = & \Phi^{-1}(0.05) \\ \ln x_0 - 1.792 & = & 0.30[-\Phi^{-1}(0.95)] \\ & \ln x_0 & = & 1.792 + 0.30(-1.65) \end{array}$$

Solution (using tables)

$$\Phi\left(\frac{\ln(x_0) - 1.792}{0.30}\right) = 0.05$$

$$\frac{\ln x_0 - 1.792}{0.30} = \Phi^{-1}(0.05)$$

$$\ln x_0 - 1.792 = 0.30[-\Phi^{-1}(0.95)]$$

$$\ln x_0 = 1.792 + 0.30(-1.65)$$

$$\ln x_0 = 1.792 - 0.495 =$$

Solution (using tables)

$$\Phi\left(\frac{\ln(x_0) - 1.792}{0.30}\right) = 0.05$$

$$\frac{\ln x_0 - 1.792}{0.30} = \Phi^{-1}(0.05)$$

$$\ln x_0 - 1.792 = 0.30[-\Phi^{-1}(0.95)]$$

$$\ln x_0 = 1.792 + 0.30(-1.65)$$

$$\ln x_0 = 1.792 - 0.495 = 1.297$$

Solution (using tables)

Thus:

$$\Phi\left(\frac{\ln(x_0) - 1.792}{0.30}\right) = 0.05$$

$$\frac{\ln x_0 - 1.792}{0.30} = \Phi^{-1}(0.05)$$

$$\ln x_0 - 1.792 = 0.30[-\Phi^{-1}(0.95)]$$

$$\ln x_0 = 1.792 + 0.30(-1.65)$$

$$\ln x_0 = 1.792 - 0.495 = 1.297$$

Therefore, the required inspection interval is:

$$x_0 =$$

Solution (using tables)

Thus:

$$\Phi\left(\frac{\ln(x_0) - 1.792}{0.30}\right) = 0.05$$

$$\frac{\ln x_0 - 1.792}{0.30} = \Phi^{-1}(0.05)$$

$$\ln x_0 - 1.792 = 0.30[-\Phi^{-1}(0.95)]$$

$$\ln x_0 = 1.792 + 0.30(-1.65)$$

$$\ln x_0 = 1.792 - 0.495 = 1.297$$

Therefore, the required inspection interval is:

$$x_0 = e^{1.297} =$$

Solution (using tables)

Thus:

$$\Phi\left(\frac{\ln(x_0) - 1.792}{0.30}\right) = 0.05$$

$$\frac{\ln x_0 - 1.792}{0.30} = \Phi^{-1}(0.05)$$

$$\ln x_0 - 1.792 = 0.30[-\Phi^{-1}(0.95)]$$

$$\ln x_0 = 1.792 + 0.30(-1.65)$$

$$\ln x_0 = 1.792 - 0.495 = 1.297$$

Therefore, the required inspection interval is:

$$x_0 = e^{1.297} = 3.66$$
 months

Consider the random variable X which represents the *number of arrivals* at a restaurant within a given time interval.

Consider the random variable X which represents the *number of arrivals* at a restaurant within a given time interval.

Consider the random variable X which represents the *number of arrivals* at a restaurant within a given time interval.

• The probability of X in t time units can be modeled by the Poisson distribution with a rate parameter λt

Consider the random variable X which represents the *number of arrivals* at a restaurant within a given time interval.

• The probability of X in t time units can be modeled by the Poisson distribution with a rate parameter λt

Now consider the variable Y representing the **elapsed time** between successive arrivals.

Consider the random variable X which represents the *number of arrivals* at a restaurant within a given time interval.

• The probability of X in t time units can be modeled by the Poisson distribution with a rate parameter λt

Now consider the variable Y representing the **elapsed time** between successive arrivals.

• What is the probability the time between the third and fourth arrivals is less than *y* minutes, for instance?

Modeling probabilities of elapsed times

Consider the random variable X which represents the *number of arrivals* at a restaurant within a given time interval.

• The probability of X in t time units can be modeled by the Poisson distribution with a rate parameter λt

Now consider the variable Y representing the **elapsed time** between successive arrivals.

- What is the probability the time between the third and fourth arrivals is less than *y* minutes, for instance?
- This is modeled by the **exponential distribution** with parameter λ .

Definition

Definition

Definition

$$f_X(x) =$$

Definition

$$f_X(x) = \lambda e^{-\lambda x}$$

Definition

A random variable X that is exponentially distributed with parameter λ has the PDF:

$$f_X(x) = \lambda e^{-\lambda x} \qquad x > 0 \tag{12}$$

Exponential distribution

Definition

$$f_X(x) = \lambda e^{-\lambda x} \qquad x > 0 \tag{12}$$

$$F_X(x) =$$

$$F_X(x) = P(X \le x)$$

$$F_X(x) = P(X \le x) = \int_0^x \lambda e^{-\lambda t} dt$$

$$F_X(x) = P(X \le x) = \int_0^x \lambda e^{-\lambda t} dt$$

 $F_X(x) = 1 - e^{-\lambda x}$

$$F_X(x) = P(X \le x) = \int_0^x \lambda e^{-\lambda t} dt$$

 $F_X(x) = 1 - e^{-\lambda x}$

The CDF of the exponential distribution is derived as:

$$F_X(x) = P(X \le x) = \int_0^x \lambda e^{-\lambda t} dt$$

 $F_X(x) = 1 - e^{-\lambda x}$

Note that $P(X \le x) = 1 - e^{-\lambda x}$,

CDF of the exponential distribution

The CDF of the exponential distribution is derived as:

$$F_X(x) = P(X \le x) = \int_0^x \lambda e^{-\lambda t} dt$$

 $F_X(x) = 1 - e^{-\lambda x}$

Note that $P(X \le x) = 1 - e^{-\lambda x}$, while $P(X > x) = 1 - (1 - e^{-\lambda x}) = e^{-\lambda x}$

Let $X \sim \text{Exponential}(\lambda)$.

Let $X \sim \mathsf{Exponential}(\lambda)$.

Mean

The mean of X is given by:

Let $X \sim \mathsf{Exponential}(\lambda)$.

Mean

The mean of X is given by:

 $\mathbb{E}(X)$

(13)

Mean and variance of the exponential distribution

Let $X \sim \text{Exponential}(\lambda)$.

Mean

The mean of X is given by:

$$\mathbb{E}(X) = rac{1}{\lambda}$$

Let $X \sim \mathsf{Exponential}(\lambda)$.

Mean

The mean of X is given by:

$$\mathbb{E}(X) = \frac{1}{\lambda}$$

(13)

Variance

The variance of X is given by:

Let $X \sim \mathsf{Exponential}(\lambda)$.

Mean

The mean of X is given by:

$$\mathbb{E}(X) = \frac{1}{\lambda}$$

(13)

Variance

The variance of X is given by:

$$\mathbb{V}(X)$$

Let $X \sim \mathsf{Exponential}(\lambda)$.

Mean

The mean of X is given by:

$$\mathbb{E}(X) = \frac{1}{\lambda}$$

(13)

Variance

The variance of X is given by:

$$\mathbb{V}(X) =$$

Let $X \sim \mathsf{Exponential}(\lambda)$.

Mean

The mean of X is given by:

$$\mathbb{E}(X) = \frac{1}{\lambda}$$

Variance

The variance of X is given by:

$$\mathbb{V}(X) = \frac{1}{\lambda^2}$$

(14)

(13)

Example 3: Waiting for a flight

The delay time T of a flight is exponentially distributed wtih $\lambda=2$ (delays per hour).

Example 3: Waiting for a flight

The delay time T of a flight is exponentially distributed wtih $\lambda=2$ (delays per hour). Answer the following questions:

- (a) What is the mean delay (waiting) time, $\mathbb{E}(T)$?
- **(b)** What is the variance of the delay time V(T)?
- (c) Find the probability that a flight will be delayed by no more than 10 minutes.
- (d) Assuming you have been waiting for a flight for an hour, what is the probability that the flight will be delayed for an additional 30 minutes? (i.e. Find P(T>1.5|T>1)).

27 / 32

The lognormal distribution

Solution

Exponential distribution 00000 • 0000

Solution

$$\mathbb{E}(T) =$$

Solution

$$\mathbb{E}(T) = \frac{1}{\lambda}$$

Solution

$$\mathbb{E}(T) = \frac{1}{\lambda} = \frac{1}{2}$$

Solution

$$\mathbb{E}(T) = \frac{1}{\lambda} = \frac{1}{2} = \boxed{0.5 \text{hr}}$$

Solution

(a) The mean delay is given by

$$\mathbb{E}(T) = \frac{1}{\lambda} = \frac{1}{2} = \boxed{0.5 \text{hr}}$$

(b) The variance is:

Solution

(a) The mean delay is given by

$$\mathbb{E}(T) = \frac{1}{\lambda} = \frac{1}{2} = \boxed{0.5 \text{hr}}$$

(b) The variance is:

$$\mathbb{V}(T) = \frac{1}{\lambda^2}$$

Solution

(a) The mean delay is given by

$$\mathbb{E}(T) = \frac{1}{\lambda} = \frac{1}{2} = \boxed{0.5 \text{hr}}$$

(b) The variance is:

$$\mathbb{V}(T) = \frac{1}{\lambda^2} = \frac{1}{2^2} =$$

Solution

(a) The mean delay is given by

$$\mathbb{E}(T) = \frac{1}{\lambda} = \frac{1}{2} = \boxed{0.5 \text{hr}}$$

(b) The variance is:

$$\mathbb{V}(T) = \frac{1}{\lambda^2} = \frac{1}{2^2} = \boxed{0.25 \text{hr}^2}$$

Solution

Solution

$$P\left(T \le \frac{1}{6}\right) = 1 - \exp\left[-\lambda \cdot \frac{1}{6}\right]$$

Solution

$$P\left(T \leq \frac{1}{6}\right) = 1 - \exp\left[-\lambda \cdot \frac{1}{6}\right] = 1 - \exp\left[-2\left(\frac{1}{6}\right)\right] = 1$$

Solution

$$P\left(T \leq \frac{1}{6}\right) \quad = \quad 1 - \exp\left[-\lambda \cdot \frac{1}{6}\right] \\ = 1 - \exp\left[-2\left(\frac{1}{6}\right)\right] \\ = 1 - \exp\left[-\frac{1}{3}\right]$$

Solution

$$\begin{split} P\left(T \leq \frac{1}{6}\right) &= 1 - \exp\left[-\lambda \cdot \frac{1}{6}\right] = 1 - \exp\left[-2\left(\frac{1}{6}\right)\right] = 1 - \exp\left[-\frac{1}{3}\right] \\ &= \boxed{0.283} \end{split}$$

Solution

$$\begin{split} P\left(T \leq \frac{1}{6}\right) &= 1 - \exp\left[-\lambda \cdot \frac{1}{6}\right] = 1 - \exp\left[-2\left(\frac{1}{6}\right)\right] = 1 - \exp\left[-\frac{1}{3}\right] \\ &= \boxed{0.283} \end{split}$$

Solution

(c) In python, we can use the scipy.stats.expon.cdf function to find $P(T \le 1/6)$:

Solution

(c) In python, we can use the scipy.stats.expon.cdf function to find $P(T \le 1/6)$:

```
from scipy import stats
import numpy as np
p = stats.expon.cdf(1/6, scale=1/2)
```

where:

- 1/6 is the value at which we want to evaluate the CDF
- scale = $1/\lambda = 1/2$ (scale parameter/mean)

This returns p = 0.283, i.e., about 28.3% probability that the flight will be delayed by no more than 10 minutes.

Solution

(c) In python, we can use the scipy.stats.expon.cdf function to find $P(T \le 1/6)$:

```
from scipy import stats
import numpy as np
p = stats.expon.cdf(1/6, scale=1/2)
```

where:

- 1/6 is the value at which we want to evaluate the CDF
- scale = $1/\lambda = 1/2$ (scale parameter/mean)

This returns p = 0.283, i.e., about 28.3% probability that the flight will be delayed by no more than 10 minutes.

Solution

Solution

$$P(T > (0.5+1)|T > 1) = P(T > 1.5|T > 1)$$

Solution

$$P(T > (0.5+1)|T > 1) = P(T > 1.5|T > 1)$$

$$= \frac{P((T > 1.5) \cap (T > 1))}{P(T > 1)}$$

Solution

$$P(T > (0.5 + 1)|T > 1) = P(T > 1.5|T > 1)$$

$$= \frac{P((T > 1.5) \cap (T > 1))}{P(T > 1)}$$
 (mult. rule)

Solution

$$P(T > (0.5 + 1)|T > 1) = P(T > 1.5|T > 1)$$

$$= \frac{P((T > 1.5) \cap (T > 1))}{P(T > 1)}$$
 (mult. rule)
$$= \frac{P(T > 1.5)}{P(T > 1)}$$

Solution

$$P(T > (0.5 + 1)|T > 1) = P(T > 1.5|T > 1)$$

$$= \frac{P((T > 1.5) \cap (T > 1))}{P(T > 1)}$$
 (mult. rule)
$$= \frac{P(T > 1.5)}{P(T > 1)}$$

$$= \frac{e^{-2(1.5)}}{e^{-2(1)}}$$

Solution

$$P(T > (0.5 + 1)|T > 1) = P(T > 1.5|T > 1)$$

$$= \frac{P((T > 1.5) \cap (T > 1))}{P(T > 1)}$$
 (mult. rule)
$$= \frac{P(T > 1.5)}{P(T > 1)}$$

$$= \frac{e^{-2(1.5)}}{e^{-2(1)}} = e^{-2[1.5 - 1.0]}$$

Solution

$$\begin{split} P(T > (0.5+1)|T > 1) &= P(T > 1.5|T > 1) \\ &= \frac{P((T > 1.5) \cap (T > 1))}{P(T > 1)} \quad \text{(mult. rule)} \\ &= \frac{P(T > 1.5)}{P(T > 1)} \\ &= \frac{e^{-2(1.5)}}{e^{-2(1)}} = e^{-2[1.5-1.0]} \\ &= e^{-2(0.5)} \quad (= P(T > 0.5)) \end{split}$$

Solution

$$P(T > (0.5 + 1)|T > 1) = P(T > 1.5|T > 1)$$

$$= \frac{P((T > 1.5) \cap (T > 1))}{P(T > 1)}$$
 (mult. rule)
$$= \frac{P(T > 1.5)}{P(T > 1)}$$

$$= \frac{e^{-2(1.5)}}{e^{-2(1)}} = e^{-2[1.5 - 1.0]}$$

$$= e^{-2(0.5)}$$
 (= $P(T > 0.5)$)
$$= e^{-1}$$

Solution

$$P(T > (0.5 + 1)|T > 1) = P(T > 1.5|T > 1)$$

$$= \frac{P((T > 1.5) \cap (T > 1))}{P(T > 1)}$$
 (mult. rule)
$$= \frac{P(T > 1.5)}{P(T > 1)}$$

$$= \frac{e^{-2(1.5)}}{e^{-2(1)}} = e^{-2[1.5 - 1.0]}$$

$$= e^{-2(0.5)}$$
 (= $P(T > 0.5)$)
$$= e^{-1} = \boxed{0.37}$$

Solution

(d) The probability that the flight will be delayed by a further 0.5hr after 1hr of waiting is given by:

$$P(T > (0.5 + 1)|T > 1) = P(T > 1.5|T > 1)$$

$$= \frac{P((T > 1.5) \cap (T > 1))}{P(T > 1)}$$
 (mult. rule)
$$= \frac{P(T > 1.5)}{P(T > 1)}$$

$$= \frac{e^{-2(1.5)}}{e^{-2(1)}} = e^{-2[1.5 - 1.0]}$$

$$= e^{-2(0.5)} (= P(T > 0.5))$$

$$= e^{-1} = \boxed{0.37}$$

In Python: p = 1 - stats.expon.pdf(.5, scale=1/2) also returns p = 0.37.

000000000

Memorylessness of the exponential distribution

This leads us to an important property of the exponential distribution

This leads us to an important property of the exponential distribution

Memoryless property

$$P(T > t + s | T > s) =$$

This leads us to an important property of the exponential distribution

Memoryless property

$$P(T > t + s | T > s) = P(T > t)$$

$$\tag{15}$$

This leads us to an important property of the exponential distribution

Memoryless property

$$P(T > t + s | T > s) = P(T > t)$$

$$\tag{15}$$

That is, it does not matter from which time the waiting begins (i.e. conditioning); the probability of an elapsed time remains the same.

• Lognormal distribution: $X \sim \mathcal{LN}(\mu, \sigma^2)$ CDF: $F_X(x) = P(X \le x) = \Phi((\ln(x) - \mu)/\sigma)$

• **Lognormal distribution:** $X \sim \mathcal{LN}(\mu, \sigma^2)$ CDF: $F_X(x) = P(X \le x) = \Phi((\ln(x) - \mu)/\sigma)$

• Lognormal distribution: $X \sim \mathcal{LN}(\mu, \sigma^2)$ CDF: $F_X(x) = P(X \le x) = \Phi((\ln(x) - \mu)/\sigma)$ Mean:

$$\mathbb{E}(X) = e^{\left(\mu + \frac{1}{2}\sigma^2\right)} \tag{16}$$

• Lognormal distribution: $X \sim \mathcal{LN}(\mu, \sigma^2)$ CDF: $F_X(x) = P(X \le x) = \Phi((\ln(x) - \mu)/\sigma)$ Mean:

$$\mathbb{E}(X) = e^{\left(\mu + \frac{1}{2}\sigma^2\right)} \tag{16}$$

Variance:

$$\mathbb{V}(X) =$$

• Lognormal distribution: $X \sim \mathcal{LN}(\mu, \sigma^2)$ CDF: $F_X(x) = P(X \le x) = \Phi((\ln(x) - \mu)/\sigma)$ Mean:

$$\mathbb{E}(X) = e^{\left(\mu + \frac{1}{2}\sigma^2\right)} \tag{16}$$

Variance:

$$V(X) = (e^{\sigma^2} - 1)e^{(2\mu + \sigma^2)}$$
(17)

• Lognormal distribution: $X \sim \mathcal{LN}(\mu, \sigma^2)$ CDF: $F_X(x) = P(X \le x) = \Phi((\ln(x) - \mu)/\sigma)$ Mean:

$$\mathbb{E}(X) = e^{\left(\mu + \frac{1}{2}\sigma^2\right)} \tag{16}$$

Variance:

$$V(X) = (e^{\sigma^2} - 1)e^{(2\mu + \sigma^2)}$$
(17)

Exponential distribution: X ~ Exponential(λ)

PDF:
$$f_X(x) =$$

• Lognormal distribution: $X \sim \mathcal{LN}(\mu, \sigma^2)$ CDF: $F_X(x) = P(X \le x) = \Phi((\ln(x) - \mu)/\sigma)$ Mean:

$$\mathbb{E}(X) = e^{\left(\mu + \frac{1}{2}\sigma^2\right)} \tag{16}$$

Variance:

$$V(X) = (e^{\sigma^2} - 1)e^{(2\mu + \sigma^2)}$$
(17)

PDF:
$$f_X(x) = \lambda e^{-\lambda x}$$
,

• Lognormal distribution: $X \sim \mathcal{LN}(\mu, \sigma^2)$ CDF: $F_X(x) = P(X \le x) = \Phi((\ln(x) - \mu)/\sigma)$ Mean:

$$\mathbb{E}(X) = e^{\left(\mu + \frac{1}{2}\sigma^2\right)} \tag{16}$$

Variance:

$$V(X) = (e^{\sigma^2} - 1)e^{(2\mu + \sigma^2)}$$
(17)

PDF:
$$f_X(x) = \lambda e^{-\lambda x}, \quad x > 0$$
 (18)
CDF: $F_X(x) = P(X < x) =$

• Lognormal distribution: $X \sim \mathcal{LN}(\mu, \sigma^2)$ CDF: $F_X(x) = P(X \le x) = \Phi((\ln(x) - \mu)/\sigma)$ Mean:

$$\mathbb{E}(X) = e^{\left(\mu + \frac{1}{2}\sigma^2\right)} \tag{16}$$

Variance:

$$V(X) = (e^{\sigma^2} - 1)e^{(2\mu + \sigma^2)}$$
(17)

PDF:
$$f_X(x) = \lambda e^{-\lambda x}, \quad x > 0$$
 (18)
CDF: $F_X(x) = P(X < x) = 1 - e^{-\lambda x},$

• Lognormal distribution: $X \sim \mathcal{LN}(\mu, \sigma^2)$ CDF: $F_X(x) = P(X \le x) = \Phi((\ln(x) - \mu)/\sigma)$ Mean:

$$\mathbb{E}(X) = e^{\left(\mu + \frac{1}{2}\sigma^2\right)} \tag{16}$$

Variance:

$$V(X) = (e^{\sigma^2} - 1)e^{(2\mu + \sigma^2)}$$
(17)

PDF:
$$f_X(x) = \lambda e^{-\lambda x}, \quad x > 0$$
 (18)

CDF:
$$F_X(x) = P(X \le x) = 1 - e^{-\lambda x}, \quad x > 0$$
 (19)

• Lognormal distribution: $X \sim \mathcal{LN}(\mu, \sigma^2)$ CDF: $F_X(x) = P(X \le x) = \Phi((\ln(x) - \mu)/\sigma)$ Mean:

$$\mathbb{E}(X) = e^{\left(\mu + \frac{1}{2}\sigma^2\right)} \tag{16}$$

Variance:

$$V(X) = (e^{\sigma^2} - 1)e^{(2\mu + \sigma^2)}$$
(17)

• **Exponential distribution**: $X \sim \text{Exponential}(\lambda)$

PDF:
$$f_X(x) = \lambda e^{-\lambda x}, \quad x > 0$$
 (18)

CDF:
$$F_X(x) = P(X \le x) = 1 - e^{-\lambda x}, \quad x > 0$$
 (19)

Mean:

$$\mathbb{E}(X) = \frac{1}{\lambda} \tag{20}$$

Lognormal distribution: $X \sim \mathcal{LN}(\mu, \sigma^2)$ CDF: $F_X(x) = P(X \le x) = \Phi((\ln(x) - \mu)/\sigma)$ Mean:

$$\mathbb{E}(X) = e^{\left(\mu + \frac{1}{2}\sigma^2\right)} \tag{16}$$

Variance:

$$V(X) = (e^{\sigma^2} - 1)e^{(2\mu + \sigma^2)}$$
(17)

Exponential distribution: $X \sim \text{Exponential}(\lambda)$

PDF:
$$f_X(x) = \lambda e^{-\lambda x}, \quad x > 0$$
 (18)

CDF:
$$F_X(x) = P(X \le x) = 1 - e^{-\lambda x}, \quad x > 0$$
 (19)

Mean:

$$\mathbb{E}(X) = \frac{1}{\lambda} \tag{20}$$

Variance:

$$\mathbb{V}(X) = \frac{1}{\sqrt{2}} \tag{21}$$