Cryptanalysis of RadioGatún

Thomas Fuhr ¹ Thomas Peyrin ²

 $^{1}\mbox{Direction}$ Centrale de la Sécurité des Systèmes d'Information $^{2}\mbox{Ingenico}$

FSE 2009 - February 22-25 - Leuven

Outline

- Description of RadioGatún
- Symmetric differential cryptanalysis
- Path search algorithm
- Collision search algorithm

Hash functions - Definition and security

Definition

A hash function is a function $\mathcal{H}: \{0,1\}^* \to \{0,1\}^n$

Security against...

- Collision attacks: find $M \neq M'$ s.t. $\mathcal{H}(M) = \mathcal{H}(M')$
- 2^{nd} -preimage attacks: given M, find $M' \neq M$ s.t. $\mathcal{H}(M) = \mathcal{H}(M')$
- Preimage attacks: given h, find M s.t. $\mathcal{H}(M) = h$

Hash functions - Definition and security

Definition

A hash function is a function $\mathcal{H}: \{0,1\}^* \to \{0,1\}^n$

Security against...

- Collision attacks: find $M \neq M'$ s.t. $\mathcal{H}(M) = \mathcal{H}(M')$
- 2^{nd} -preimage attacks: given M, find $M' \neq M$ s.t. $\mathcal{H}(M) = \mathcal{H}(M')$
- Preimage attacks: given h, find M s.t. $\mathcal{H}(M) = h$

Overview of RadioGatún

- A family of *stream-oriented* hash functions
- Designed by Bertoni et al. (2006)
- Based on a round permutation of a large internal state
- Parameters: w (size of variables), n (digest length)
 - Notation: RadioGatún[w]
 - Usually 32 or 64
 - Word: w-bit variable
- Three stages

The belt-and-mill structure

- State (58 words) = Belt $(3 \times 13 \text{ words}) + \text{Mill } (19 \text{ words})$
- Message block: 3 words
- Mill to belt and belt to mill x-ors
- Rotation of the belt
- Nonlinear update of the mill

The *mill* function

- 5 steps, the first one is nonlinear
- Permutation, rotation, diffusion and disymmetry

Security claims and previous results on RadioGatún

- Maximum digest size: 19w
 - Collisions: birthday bound in 2^{9.5w}
- Best generic collision search: 2^{27.5w}
- Bouillaguet and Fouque: 2^{24.5} hash computations for RadioGatún[1] (SAC2008)
- Khovratovich (2008): semi-free-start collisions in 2^{18w}

Our attack

- Collision on the internal state before the blank rounds
- A symmetric differential path
- Independent from w
- Collision search complexity: 2^{11w} computations of the state update function
- A 148-block collision for RadioGatún[2]

Differential cryptanalysis

- Choose equal-length message pairs $\{M, M'\}$ with a specific *difference*
 - Our paper: x-or difference
- Find a differential path
 - Probabilistic propagation through elementary operations
 - For each pair of equivalent variables: a set of admissible differences
 - Succession of admissible differences = differential path
 - No difference on the digests

RadioGatún and differential cryptanalysis

- RadioGatún properties:
 - Blank rounds → No freedom degrees to control difference propagation
 - Large internal state → No easy automated search for differential path
 - Shorter digests → Security margin on the internal state

Symmetric differential cryptanalysis

- A tool introduced by Bertoni et al.
- Restriction to a *linear subspace* of the differential path space
- Improving a probabilistic search for a differential path
- For each word: no difference, or differences on all bits

X	X'	$X \oplus X'$	Δ_X
01100011	01100011	00000000	0 ^w
10100110	01011001	11111111	1 ^w
01011010	11001100	10010110	

Symmetric differential propagation for RadioGatún

- Deterministic differential propagation through linear functions
- Nonlinear part of the mill: $c = a \lor \bar{b}$

Δ_a	Δ_b	$\Delta_{aee \overline{b}}$	Probability	Condition
0w	0 <i>w</i>	0 <i>w</i>	1	
0 ^w	1^w	0 ^w	2^{-w}	$a=1^w$
0 <i>w</i>	1 ^w	1 ^w	2 ^{-w}	$a=0^w$
1^w	0 <i>w</i>	0 ^w	2^{-w}	$b=0^w$
1^w	0 ^w	1^w	2^{-w}	$b=1^w$
1 ^w	1 ^w	0 <i>w</i>	2^{-w}	$a \oplus b = 0^w$
1 ^w	1 ^w	1 ^w	2 ^{-w}	$a \oplus b = 1^w$

- Meet-in-the-middle technique to find a path
- Elimination of too complex paths
 - Computation of a list of differential transitions for the mill function
 - Use of the entropy to evaluate the path complexity

- Computation of 2²⁷ forward paths
 - Width-first search
- Depth-first search for a matching backward path
 - Collision on a 55-bit variable
 - Cost: $2^{55-27} = 2^{28}$

- Computation of 2²⁷ forward paths
 - Width-first search
- Depth-first search for a matching backward path
 - Collision on a 55-bit variable
 - Cost: $2^{55-27} = 2^{28}$

- Computation of 2²⁷ forward paths
 - Width-first search
- Depth-first search for a matching backward path
 - Collision on a 55-bit variable
 - Cost: $2^{55-27} = 2^{28}$

Entropy

- Evaluation of the path complexity
- Defined recursively from the last step of a differential path
- $H_k = max(H_{k+1} + c_k 3, 0), H_\ell = 0$
- $oldsymbol{c}_k$ conditions on the mill words before round permutation k
 - Logarithmic value of the expected number of prefixes of length k to get a collision
 - Computing forward: the expected number of available prefixes of length k (logarithmic value)
- No path with a maximum entropy below 8

Entropy bounds

- Backward search: maximum entropy of 8
- Forward search: entropy 8 at the starting point

Summary of the collision search algorithm

- Block per block computation of colliding messages
- Backtracking when no suitable block can be found
- Round k complexity:
 - $B_k \times P_k$
 - P_k : Number of prefixes of length k
 - B_k : Cost of the message blocks search

- Influence of message insertion k:
 - After message insertion, round k
 - After message insertion, round k+1
 - After message insertion, round k + 2

Variable	M _O	$M_0 \oplus M_1$	M ₁	$M_1 \oplus M_2$	M ₂	$M_2 \oplus M_3$	M ₃	M ₃ ⊕ M ₄
Round	k+2	k+1	k+1	k+1	k+1	k+1	k+2	k + 1
Variable	M ₄	$M_4 \oplus M_5$	M ₅	$M_5 \oplus M_6$	M ₆	M ₆ ⊕ M ₇	M ₇	M ₇ ⊕ M ₈
Round	k+1	k+1	k+1	k+1	k+2	k+1	k+2	k+2
Variable	M ₈	M ₈ ⊕ M ₉	Mg	$M_9 \oplus M_{10}$	M ₁₀	M ₁₀ ⊕ M ₁₁	M ₁₁	M ₁₁ ⊕ M ₁₂
Round	k+1	k+1	k+1	k+1	k+2	k+2	k+2	k + 1
Variable	M ₁₂	$M_{12} \oplus M_{13}$	M ₁₃	M ₁₃ ⊕ M ₁₄	M ₁₄	M ₁₄ ⊕ M ₁₅	M ₁₅	M ₁₅ ⊕ M ₁₆
Round	k+1	k+1	k+1	k+1	k + 2	k+1	k+2	k
Variable	M ₁₆	M ₁₆ ⊕ M ₁₇	M ₁₇	M ₁₇ ⊕ M ₁₈	M ₁₈	M ₁₈ ⊕ M ₀		
Round	lc	k	k	k	k	k		

- Influence of message insertion k:
 - After message insertion, round k
 - After message insertion, round k+1
 - After message insertion, round k + 2

Variable	Mo	$M_0 \oplus M_1$	M ₁	$M_1 \oplus M_2$	M ₂	M ₂ ⊕ M ₃	M ₃	$M_3 \oplus M_4$
Round	k+2	k + 1	k+1	k + 1	k+1	k+1	k+2	k + 1
Variable	M ₄	$M_4 \oplus M_5$	M ₅	$M_5 \oplus M_6$	M ₆	M ₆ ⊕ M ₇	M ₇	M ₇ ⊕ M ₈
Round	k+1	k+1	k+1	k+1	k+2	k+1	k + 2	k+2
Variable	M ₈	M ₈ ⊕ M ₉	M ₉	$M_9 \oplus M_{10}$	M ₁₀	M ₁₀ ⊕ M ₁₁	M ₁₁	$M_{11} \oplus M_{12}$
Round	k+1	k+1	k+1	k+1	k+2	k+2	k+2	k + 1
Variable	M ₁₂	$M_{12} \oplus M_{13}$	M ₁₃	M ₁₃ ⊕ M ₁₄	M ₁₄	M ₁₄ ⊕ M ₁₅	M ₁₅	M ₁₅ ⊕ M ₁₆
Round	k + 1	k+1	k+1	k+1	k+2	k + 1	k + 2	k
Variable	M ₁₆	M ₁₆ ⊕ M ₁₇	M ₁₇	M ₁₇ ⊕ M ₁₈	M ₁₈	M ₁₈ ⊕ M ₀		
Round	k	k	k	k	k	k		

- Influence of message insertion k:
 - After message insertion, round k
 - ullet After message insertion, round k+1
 - After message insertion, round k + 2

Variable	Mo	$M_0 \oplus M_1$	M ₁	$M_1 \oplus M_2$	M ₂	$M_2 \oplus M_3$	M ₃	$M_3 \oplus M_4$
Round	k+2	k + 1	k+1	k + 1	k + 1	k + 1	k+2	k + 1
Variable	M ₄	$M_4 \oplus M_5$	M ₅	M ₅ ⊕ M ₆	М ₆	M ₆ ⊕ M ₇	M ₇	M ₇ ⊕ M ₈
Round	k+1	k + 1	k+1	k + 1	k+2	k + 1	k+2	k + 2
Variable	M ₈	M ₈ ⊕ M ₉	M ₉	$M_9 \oplus M_{10}$	M ₁₀	M ₁₀ ⊕ M ₁₁	M ₁₁	$M_{11} \oplus M_{12}$
Round	k+1	k + 1	k + 1	k + 1	k+2	k+2	k+2	k + 1
Variable	M ₁₂	M ₁₂ ⊕ M ₁₃	M ₁₃	M ₁₃ ⊕ M ₁₄	M ₁₄	M ₁₄ ⊕ M ₁₅	M ₁₅	M ₁₅ ⊕ M ₁₆
Round	k+1	k + 1	k+1	k + 1	k+2	k + 1	k + 2	k
Variable	M ₁₆	M ₁₆ ⊕ M ₁₇	M ₁₇	M ₁₇ ⊕ M ₁₈	M ₁₈	M ₁₈ ⊕ M ₀		
Round	k	k	k	k	k	k		

- Influence of message insertion *k*:
 - After message insertion, round k
 - After message insertion, round k+1
 - After message insertion, round k+2

Variable	M ₀	$M_0 \oplus M_1$	M ₁	$M_1 \oplus M_2$	M ₂	$M_2 \oplus M_3$	M ₃	M ₃ ⊕ M ₄
Round	k + 2	k + 1	k+1	k + 1	k+1	k + 1	k + 2	k+1
Variable	M ₄	$M_4 \oplus M_5$	M ₅	$M_5 \oplus M_6$	M ₆	M ₆ ⊕ M ₇	M ₇	M ₇ ⊕ M ₈
Round	k+1	k + 1	k+1	k + 1	k + 2	k + 1	k + 2	k + 2
Variable	M ₈	M ₈ ⊕ M ₉	M ₉	M ₉ ⊕ M ₁₀	M ₁₀	M ₁₀ ⊕ M ₁₁	M ₁₁	M ₁₁ ⊕ M ₁₂
Round	k+1	k + 1	k+1	k + 1	k + 2	k + 2	k + 2	k + 1
Variable	M ₁₂	M ₁₂ ⊕ M ₁₃	M ₁₃	M ₁₃ ⊕ M ₁₄	M ₁₄	M ₁₄ ⊕ M ₁₅	M ₁₅	M ₁₅ ⊕ M ₁₆
Round	k+1	k + 1	k+1	k + 1	k + 2	k + 1	k + 2	k
Variable	M ₁₆	M ₁₆ ⊕ M ₁₇	M ₁₇	M ₁₇ ⊕ M ₁₈	M ₁₈	M ₁₈ ⊕ M ₀		
Round	k	k	k	k	k	k		

Reduction of B_k

- A polynomial system in 3w variables
- Interesting conditions:
 - At round k: linear dependence on the message
 - At round k + 1: bitwise dependence on the message for some conditions
- w 3-variable independent subsystems
- Overall complexity of the collision search algorithm:
 - Sum of the round complexities
 - Approximated by the crowded round complexity

Our Results

- A 143-block path
- The crowded round complexity: 211w
- A RadioGatún[2] collision that confirms the complexity analysis
- More details: http://eprint.iacr.org/2008/515

Towards breaking the designers' security claims?

- Increasing the size of the path space
 - Use $(01)^{w/2}$ and $(10)^{w/2}$ differences
 - May lead to paths with a better complexity
 - Problem: the state space has $2^{2 \times 55}$ elements
- Tradeoff: path search vs minimal complexity

Conclusion and openings

Thank you for your attention