Exercices du Cours d'Analyse 1 Filière SMIA Suites numériques et Fonctions

> Mme S. AMRAOUI 2015 / 2016

Table des matières

Ι	Enoncés des exercices	5
1	Nombres réels	7
2	Suites numériques	9
3	Continuité et dérivabilité des fonctions numériques d'une variable réelle	11
II	Corrigé des exercices	13
4	Nombres réels	15
5	Suites numériques	21
6	Continuité et dérivabilité des fonctions numériques d'une variable réelle	29

Première partie

Enoncés des exercices

Chapitre 1 NOMBRES RÉELS

Exercice 1. Montrer que $\sqrt{2} + \sqrt{3} \notin Q$

Exercice 2

- 1. Montrer que $\sqrt{6}$ est un nombre irrationnel.
- 2. Montrer qu' un entier naturel q tel que q^2 soit un multiple de 3 est aussi un multiple de 3. En déduire que $\sqrt{3}$ est irrationnel.
- 3. Soient a, b et c trois entiers relatifs tels que $a + b\sqrt{2} + c\sqrt{3} = 0$. Montrer que a = b = c = 0.

Exercice 3 . Résoudre sur
$$\mathbb R$$
 le système d'inéquations $|x+1|<\frac{5}{2}$ et $\sqrt{x^2+x-2}>1+\frac{x}{2}$

Exercice 4. Déterminer (s'ils existent): les majorants, les minorants, la borne supérieure, la borne inférieure, le plus grand élément, le plus petit élément des ensembles suivants:

$$\mathbf{A} = [0, 1] \cap \mathbb{Q}, \ \mathbf{B} =]0, 1[\cap \mathbb{Q}, \ \mathbf{C} = \left\{ (-1)^n + \frac{1}{n^2} \ / \ n \in \mathbb{N}^* \right\}.$$

Exercice 5. Soient A et B deux parties bornées de \mathbb{R} . On note

$$A + B = \{a + b \mid a \in A, b \in B\}$$

- 1. Montrer que sup $A + \sup B$ est un majorant de A + B.
- 2. Montrer que sup $(A + B) = \sup A + \sup B$.

Exercice 6. Soient A et B deux parties bornées de \mathbb{R} .

Répondre en justifiant par Vrai ou faux

- 1. $A \subset B \Rightarrow \sup A \leq \sup B$,
- 2. $A \subset B \Rightarrow \inf A < \inf B$,
- 3. $\sup (-A) = -\inf A$;
- 4. $\sup A + \inf B \le \sup (A + B)$.

Exercice 7 Soient a et b deux nombres réels donnés. Démontrer les équivalences:

https://sigmoid.ma

1.
$$a \le b \Leftrightarrow (\forall \varepsilon > 0, a \le b + \varepsilon)$$

2. $a = 0 \Leftrightarrow (\forall \varepsilon > 0, |a| \le \varepsilon)$

Exercice 8.

1. Montrer que pour tout entier $n \geq 1$ on a l'encadrement :

$$2(\sqrt{n+1} - \sqrt{n}) < \frac{1}{\sqrt{n}} < 2(\sqrt{n} - .\sqrt{n-1})$$

2. En déduire un encadrement de la somme $\sum_{n=1}^{p} \frac{1}{\sqrt{n}}$ pour tout $p \in \mathbb{N}^*$

3. Quelle est la partie entière de
$$1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{10000}}$$
?

Exercice 9. Montrer que

 $i) \ \forall x, y \in \mathbb{R}, (x \le y \Rightarrow E(x) \le E(y)...$

 $ii) \ \forall x \in \mathbb{R} - \mathbb{Z}, E(-x) = -E(x) - 1.$

 $iii) \ \forall x \in \mathbb{R}, \forall a \in \mathbb{Z}, E(x+a) = E(x) + a.$

Exercice 10 Soit $n \in \mathbb{N}^*, x \in \mathbb{R}$. Montrer que : $E(\frac{E(nx)}{n}) = E(x)$.

Exercice 11

1. Montrer que : $\forall x \in \mathbb{R}$,

$$E(x) + E(-x) = -1$$
 si $x \notin Z$ et $E(x) + E(-x) = 0$ si $x \in Z$.

2. En déduire que si p et q sont deux entiers naturels premier entre eux alors :

$$\sum_{k=1}^{q-1} E\left(\frac{kp}{q}\right) = \frac{(p-1)(q-1)}{2}.$$

Chapitre 2 SUITES NUMÉRIQUES

Exercice 1. Soient (u_n) et (v_n) deux suites convergentes. Etudier la convergence de la suite (w_n) définie par $w_n = \max(u_n, v_n)$.

Exercice 2. Montrer qu'une suite d'entiers relatifs (u_n) converge si et seulement si elle est stationnaire.

Exercice 3. Soit (u_n) une suite convergente et l sa limite on suppose que $l \notin \mathbb{N}$

- 1. Montrer que $E(l) < u_n < E(l) + 1$ a partir d'un certain rang.
 - 2. En déduire que $(E(u_n))$ converge vers E(l).

Exercice 4. Moyenne de Cesaro :

Soient (u_n) une suite réelle et (v_n) la suite définie par : $v_n = \frac{u_1 + ... + u_n}{r}$

- 1. Montrer que si la suite (u_n) converge vers un réel l, la suite (v_n) converge et a pour limite l. A t'on la réciproque?
- 2. Montrer que si la suite (u_n) est bornée, la suite (v_n) est bornée. A t'on la réciproque?
 - 3. Montrer que si la suite (u_n) est croissante alors la suite (v_n) l'est aussi.

Exercice 5. Déterminer si elle existent les limites des suites suivantes

a)
$$u_n = \sqrt{n + \sqrt{n}} - \sqrt{n}$$
, b) $u_n = \sqrt[n]{n}$, c) $u_n = \sqrt[n]{n!}$,

a)
$$u_n = \sqrt{n + \sqrt{n}} - \sqrt{n}$$
, b) $u_n = \sqrt[n]{n}$, c) $u_n = \sqrt[n]{n!}$, d) $u_n = \frac{3^n - (-2)^n}{3^n + (-2)^n}$ et e) $u_n = \frac{\sin n}{n + (-1)^{n+1}}$.

Exercice 6. Etudier la convergence des suites (u_n) définies par :

i)
$$u_n = \sum_{k=1}^n \frac{1}{k}$$
, ii) $u_n = \sum_{k=1}^n \sqrt{k}$, iii) $u_n = \sum_{k=1}^n \frac{1}{n^2 + k^2}$.

Exercice 7. Soit θ un réel de l'intervalle $]0, \frac{\pi}{2}[$

https://sigmoid.ma

Montrer que les suites (u_n) et (v_n) définies par :

$$u_n = 2^{n+1} \sin \frac{\theta}{2^n}$$

$$v_n = 2^{n+1} \tan \frac{\theta}{2^n}$$

sont adjacentes. Calculer leur limite.

Exercice 8. Moyenne arithmico-géometrique :

Soit $(a,b) \in (\mathbb{R}^{*+})^2$ tel que a > b, on pose $a_0 = a, b_0 = b, a_{n+1} = \frac{a_n + b_n}{2}, b_{n+1} = \frac{a_n + b_n}{2}$ $\sqrt{a_n b_n}$

- 1. Montrer que ces suites sont bien définies
- 2. Montrer qu'elles sont adjacentes, on note par M(a,b) leurs limite communes appelle moyenne arithmico - géométrique de a et b
 - 3. Calculer M(a, a) et M(a, 0).
 - 4. Montrer que $M(\lambda a, \lambda b) = \lambda M(a, b)$ pour $\lambda \in \mathbb{R}^+$.

Exercice 9. Soit (u_n) une suite telle que $(u_{2n}), (u_{2n+1}), (u_{3n})$ convergent. Montrer que (u_{2n}) et (u_{2n+1}) convergent vers la même limite. En déduire que (u_n) converge.

Exercice 10. Justifier que la suite (u_n) définie par $u_n = \sin n$ diverge.

Exercice 11. Soient a et b deux réels, a < b. On considère la fonction $f:[a,b] \to [a,b]$ supposée continue et une suite récurrente (u_n) définie par : $\begin{cases} u_0 \in [a,b] & et \\ u_{n+1} = f(u_n) \text{ pour tout } n \in \mathbb{N}. \end{cases}$

$$\begin{cases} u_0 \in [a, b] & et \\ u_{n+1} = f(u_n) \text{ pour tout } n \in \mathbb{N}. \end{cases}$$

- 1. On suppose ici que f est croissante. Montrer que (u_n) est monotone et en déduire sa convergence vers une solution de l'équation f(x) = x.
 - 2. Application. Calculer la limite de la suite définie par :

$$\begin{cases} u_0 = 4 & et \\ u_{n+1} = \frac{4u_n + 5}{u_n + 3} \text{ pour tout } n \in \mathbb{N}. \end{cases}$$

- 3. On suppose maintenant que f est décroissante. Montrer que les suites (u_{2n}) et (u_{2n+1}) sont monotones et convergentes.

4. Application. Soit
$$(u_n)$$
 la suite définie par
$$\begin{cases} u_0 = \frac{1}{2} & et \\ u_{n+1} = (1 - u_n)^2 & \text{pour tout } n \in \mathbb{N}. \end{cases}$$

Calculer les limites des suites (u_{2n}) et (u_{2n+1}) .

Chapitre 3

CONTINUITÉ ET DÉRIVABILITÉ DES FONCTIONS NUMÉRIQUES D'UNE VARIABLE RÉELLE

Exercice 1. Soit $f: \mathbb{R}^* \to \mathbb{R}$ la fonction définie par $f(x) = xE\left(x - \frac{1}{x}\right)$. Montrer que f admet une limite en 0 et déterminer cette limite.

Exercice 2. Soit $f:[0,+\infty[\to [0,+\infty[$ une fonction continue, qui tend vers 0 quand x tend vers $+\infty$.

- 1. Montrer que f est bornée et atteint sa borne supérieure.
- 2. Atteint-elle toujours sa borne inférieure?

Exercice 3. Montrer que toute fonction polynôme de \mathbb{R} dans \mathbb{R} , de degré impair, s'annule en au moins un point.

Exercice 4

- 1. Soit $f:[a,b] \to [a,b]$ une fonction continue. Montrer qu'il existe $x_0 \in [a,b]$ tel que $f(x_0) = x_0$.
- 2. Montrer que l'équation $\cos x = x$ admet une solution comprise entre 0 et 1.
- 3. Donner un exemple de fonction continue $g:]0,1[\to]0,1[$ qui n'admet pas de point fixe.

Exercice 5. Soit $f: \mathbb{R}^* \to \mathbb{R}$, la fonction définie par : $f(x) = x^2 \sin \frac{1}{x}$. Montrer que f est prolongeable par continuité en 0; on note encore f la fonction prolongée. Montrer que f est dérivable sur \mathbb{R} mais que f' n'est pas continue en 0.

Exercice 6. Montrer que le polynôme défini par $P_n(x) = x^n + ax + b$,(a et b réels) admet au plus trois racines réelles.

Exercice 7

1. Montrer que
$$\forall x > 0, \frac{1}{1+x} < \ln(x+1) - \ln(x) < \frac{1}{x}$$
.

2. En déduire, pour
$$k \in \mathbb{N} \setminus \{0,1\}$$
, $\lim_{n \to +\infty} \sum_{p=n+1}^{kn} \frac{1}{p}$.

Exercice 8. Dans l'application du théorème des accroissements finis à la fonction f définie par $f(x) = \alpha x^2 + \beta x + \gamma$ sur l'intervalle [a, b] préciser le nombre "c" de [a, b]. Donner une interprétation géométrique.

Exercice 9. Soit $f: \mathbb{R}^+ \to \mathbb{R}$ une fonction définie continue telle que $\lim_{x\to +\infty}f\left(x\right) =\lim_{x\to -\infty}f\left(x\right) =+\infty.$ Montrer que f admet un minimum absolu.

Exercice 10.

Soit
$$f: [-1, +\infty[\to \mathbb{R} \text{ la fonction définie par } f(x) = \frac{1}{\sqrt{x^2 + 2x + 2}}$$
.

Montrer que f réalise une bijection de $[-1, +\infty[$ sur son image, que l'on déterminera. Expliciter la bijection réciproque.

Exercice 11.

Exercice 11.
Etablir les relations

$$\arccos(x) + \arcsin(x) = \frac{\pi}{2};$$

$$\arctan(x) + \arctan\left(\frac{1}{x}\right) = \frac{x}{|x|}\frac{\pi}{2} \text{ pour } x \neq 0;$$

$$\cos(\arctan x) = \frac{1}{\sqrt{1+x^2}};$$

$$\sin(\arctan x) = \frac{x}{\sqrt{1+x^2}} \text{ et}$$

$$\sin(2 \arcsin x) = 2x\sqrt{1-x^2}$$

Exercice 12.

Calculer les limites suivantes en utilisant la règle de l'Hospital après avoir vérifié sa validité :

$$\lim_{x \to 0} \frac{x}{\sqrt{1+x^2} - \sqrt{1+x}}; \lim_{x \to -\infty} \frac{2ch^2x - sh(2x)}{x - \ln(chx) - \ln(2)} \text{ et } \lim_{x \to 1^-} \frac{\arccos x}{\sqrt{1-x^2}}.$$

Deuxième partie

Corrigé des exercices

Chapitre 4

NOMBRES RÉELS

Exercice 1.

Montrons que $\sqrt{2} + \sqrt{3} \notin \mathbb{Q}$.

Supposons que
$$\sqrt{2} + \sqrt{3} \in \mathbb{Q}$$
. Alors $\sqrt{2} - \sqrt{3} \in \mathbb{Q}$ car $\sqrt{2} - \sqrt{3} = \frac{-1}{\sqrt{2} + \sqrt{3}}$.

Or
$$\sqrt{2} = \frac{1}{2} ((\sqrt{2} + \sqrt{3}) + (\sqrt{2} - \sqrt{3}))$$

On aurait donc aussi $\sqrt{2} \in \mathbb{Q}$.

Exercice 2

1. Montrons que $\sqrt{6}$ est un nombre irrationnel.

Supposons que $\sqrt{6} = \frac{p}{q}, q \neq 0$ avec $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$, p et q premiers entre eux.

On a alors $p^2 = 6q^2$. Par conséquent, p^2 est pair, donc p l'est aussi et ainsi p = 2k. D'où $p^2 = 4k^2 = 6q^2$ et $2k^2 = 3q^2$. Par suite q est pair. Ce qui contredit le fait que p et q sont premiers entre eux.

2. Supposons que q^2 soit un multiple de 3 et q n'est pas un multiple de 3. On a alors q=3k+1 ou q=3k+2.

Si q = 3k + 1, alors $q^2 = 9k^2 + 6k + 1 = 3(3k^2 + 2k) + 1$. Donc q^2 ne serait pas un multiple de 3.

Si q = 3k + 2, alors $q^2 = 9k^2 + 12k + 4 = 3(3k^2 + 4k + 1) + 1$. Donc q^2 ne serait pas un multiple de 3.

Application

Supposons que $\sqrt{3} = \frac{p}{q}, q \neq 0$ avec $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$, p et q premiers entre eux.

Alors $3q^2 = p^2$ et donc p^2 est un multiple de 3 et donc p est aussi un multiple de 3, c'est à dire p = 3k. D'où $p^2 = 9k^2 = 3q^2$, donc $q^2 = 3k$.

Par suite q est un multiple de 3 . Ce qui contredit le fait que p et q sont premiers entre eux.

3. Supposons que a, b et c trois entiers relatifs tels que $a+b\sqrt{2}+c\sqrt{3}=0$ et $a\neq 0, b\neq 0$ ou $c\neq 0$.

On a
$$a + b\sqrt{2} + c\sqrt{3} = 0 \Rightarrow a = -b\sqrt{2} - c\sqrt{3} \Rightarrow a^2 = 2b^2 + 2bc\sqrt{6} + 3c^2 \Rightarrow a^2 - 2b^2 - 3c^2 = 2bc\sqrt{6}$$
.

■ Si
$$b \neq 0$$
 et $c \neq 0$ alors $\sqrt{6} = \frac{a^2 - 2b^2 - 3c^2}{2bc}$.
Ce qui n'est pas possible car $\sqrt{6} \notin \mathbb{Q}$ et $\frac{a^2 - 2b^2 - 3c^2}{2bc} \in \mathbb{Q}$.

- Si b=0 et $c\neq 0$ alors $a-c\sqrt{3}=0$, d'où $\sqrt{3}=\frac{a}{c}$ Ce qui n'est pas possible car $\sqrt{3}\notin\mathbb{Q}$ et $\frac{a}{c}\in\mathbb{Q}$.
- De même si $b \neq 0$ et c = 0 alors $\sqrt{2} = \frac{a}{b}$ Ce qui n'est pas possible car $\sqrt{2} \notin \mathbb{Q}$ et $\frac{a}{b} \in \mathbb{Q}$.

Par conséquent b = 0 et c = 0. Par suite a = 0.

$$\begin{aligned} & \textbf{Exercice 3} \cdot \textbf{On a} \\ & |x+1| < \frac{5}{2} \Leftrightarrow -\frac{5}{2} < x+1 < \frac{5}{2} \Leftrightarrow -\frac{3}{2} < x < 3 \Leftrightarrow x \in \left] -\frac{3}{2}, 3 \right[. \\ & \sqrt{x^2+x-2} > 1 + \frac{x}{2} \Leftrightarrow \left\{ \begin{array}{c} x^2+x-2 > \left(1+\frac{x}{2}\right)^2 \\ x^2+x-2 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} x^2+x-2 > \frac{x^2}{4} + x + 1 \\ x^2+x-2 > 0 \end{array} \right. \\ & \Leftrightarrow \left\{ \begin{array}{c} x^2+x-2 > 0 \\ x \in \left] -\infty, -2[\cup]2, +\infty[\end{array} \right. \Leftrightarrow x \in x \in \left. \left[-\infty, -2[\cup]1, +\infty[\right] \right. \\ & \Rightarrow \left\{ \begin{array}{c} x \in \left[-\infty, -2[\cup]1, +\infty[\right] \\ x \in \left[-\infty, -2[\cup]1, +\infty[\right] \end{array} \right. \end{aligned} \right. \end{aligned}$$

Exercice 4.

Les majorants de $\mathbf{A} = [0,1] \cap \mathbb{Q}$ sont $[1,+\infty[$ et ses minorants sont $]-\infty,0]$, donc sa borne supérieure est 1, sa borne inférieure est 0, son plus grand élément est 1 et son plus petit élément est 0.

Les majorants de $\mathbf{B}=]0,1[\cap\mathbb{Q} \text{ sont }]1,+\infty[$ et ses minorants sont $]-\infty,0[$, donc sa borne supérieure est 1, sa borne inférieure est 0, B n'admet pas de plus grand élément ni de plus petit élément.

Les majorants de $\mathbf{C} = \left\{ (-1)^n + \frac{1}{n^2} \ / \ n \in \mathbb{N}^* \right\}$ sont $\left[\frac{5}{4}, +\infty \right[$ et ses minorants sont $]-\infty, -1]$, donc sa borne supérieure est $\frac{5}{4}$, sa borne inférieure est -1, son plus grand élément est $\frac{5}{4}$, mais n'a pas de plus petit élément .

Exercice 5.

Soient A et B deux parties bornées de \mathbb{R} . On note

$$A + B = \{a + b \mid a \in A, b \in B\}$$

1. $\sup A$ est un majorant de A , donc pour tout $a\in A, a\leq \sup A.$ De même, pour tout $b\in B, b\leq \sup B.$

 $x\in A+B,$ il existe alors $a\in A$ et $b\in B$ tel que x=a+b, d'où $x\leq \sup A+\sup B?$

C'est à dire que sup $A + \sup B$ est un majorant de A + B.

2. Soit $\varepsilon > 0$, $\exists a \in A$ et $b \in B$ tel que $\sup A - \frac{\varepsilon}{2} < a \leq \sup A$ et $\sup B - \frac{\varepsilon}{2} < a \leq \sup A$ $b \leq \sup B$

d'où $\sup A + \sup B - \varepsilon < a + b \le \sup A + \sup B$

On a donc : $\sup A + \sup B$ est un majorant de A + B et $\forall \varepsilon > 0$, $\exists x = a + b \in$ A + B tel que $\sup A + \sup B - \varepsilon < a + b \le \sup A + \sup B$.

D'après la caractérisation de la borne supérieure sup $(A + B) = \sup A + \sup B$.

Exercice 6.

Soient A et B deux parties bornées de \mathbb{R} .

1. Vrai.

En effet si $a \in A, a \in B$, donc $a \leq \sup B$, c'est à dire sup B est un majorant de A. Or $\sup A$ est le plus petit des majorants donc $\sup A \leq \sup B$.

2. Faux. Par exemple, soit $A = \left[\frac{1}{2}, 1\right[$ et $B = \left]0, 1\right[$. On a $A \subset B, \inf A = \frac{1}{2}$ et inf B = 0.

3. Vrai . En effet ;
$$M = \sup(-A) \Leftrightarrow \begin{cases} i) \ \forall x \in -A, \ x \leq M \\ ii) \ \forall \varepsilon > 0, \ \exists x \in -A: \ M - \varepsilon < x \leq M \end{cases}$$

$$\Leftrightarrow \begin{cases} i) \ \forall x \in -A, -x \geq -M \\ ii) \ \forall \varepsilon > 0, \ \exists x \in -A: -M < -x \leq -M + \varepsilon \\ \Leftrightarrow \inf A = -M. \end{cases}$$

4. Vrai . En effet;

On a inf $B \le \sup B$, donc $\sup A + \inf B \le \sup A + \sup B = \sup (A + B)$.

Exercice 7

1.
$$a \le b \Leftrightarrow (\forall \varepsilon > 0, a \le b + \varepsilon)$$

$$\Rightarrow$$
) $a \le b \Rightarrow a \le b + \varepsilon, \forall \varepsilon > 0$

$$\Leftarrow$$
)
 Supposons que $\forall \varepsilon>0$, $a\leq b+\varepsilon$ et
 $a>b.$

Pour $\varepsilon = \frac{a-b}{2} > 0$, on aurait $a \le b + \frac{a-b}{2}$, D'où $(a-b) - \left(\frac{a-b}{2}\right) \le 0$ et par suite $a - b \le 0$.

2.
$$a = 0 \Leftrightarrow (\forall \varepsilon > 0, |a| \le \varepsilon)$$
.

⇒) immédiat

 \Leftarrow) Supposons que $\forall \varepsilon > 0$, $|a| \leq \varepsilon$ et $a \neq 0$.

Pour $\varepsilon = \frac{|a|}{2} > 0$, on aurait $|a| \le \frac{|a|}{2}$, d'où a = 0.

Exercice 8.

1. Montrons que pour tout entier $n \ge 1$, l'encadrement :

$$2(\sqrt{n+1} - \sqrt{n}) < \frac{1}{\sqrt{n}} < 2(\sqrt{n} - \sqrt{n-1}).$$

On a:
$$\sqrt{n+1} - \sqrt{n} = \frac{1}{\sqrt{n+1} + \sqrt{n}} < \frac{1}{2\sqrt{n}}$$
. De même $\sqrt{n} - \sqrt{n-1} = \frac{1}{\sqrt{n} + \sqrt{n-1}} > \frac{1}{2\sqrt{n}}$.

2. Encadrement de la somme $\sum_{n=1}^{p} \frac{1}{\sqrt{n}}$ pour tout $p \in \mathbb{N}^*$.

On écrit
$$\sum_{n=1}^{p} \frac{1}{\sqrt{n}} = 1 + \sum_{n=2}^{p} \frac{1}{\sqrt{n}}$$
.
Or $2\sqrt{2} - 2 < 1 = 2 - 1$ (1)

 et

et
$$\sum_{n=2}^{p} \left(\sqrt{n+1} - \sqrt{n} \right) = -\sum_{n=2}^{p} \left(\sqrt{n} - \sqrt{n+1} \right)$$

$$= -\left(\left(\sqrt{2} - \sqrt{3} \right) + \left(\sqrt{3} - \sqrt{4} \right) + \dots + \left(\sqrt{p} - \sqrt{p+1} \right) \right)$$

$$= \sqrt{p+1} - \sqrt{2}$$

$$= -\left(\left(\sqrt{2} - \sqrt{3}\right) + \left(\sqrt{3} - \sqrt{4}\right) + \dots + \left(\sqrt{p} - \sqrt{p} + 1\right)\right)$$

$$= \sqrt{p+1} - \sqrt{2}$$
De même
$$\sum_{n=2}^{p} \left(\sqrt{n} - \sqrt{n-1}\right) = -\sum_{n=2}^{p} \left(\sqrt{n-1} - \sqrt{n}\right)$$

$$= -\left(\left(\sqrt{1} - \sqrt{2}\right) + \left(\sqrt{2} - \sqrt{3}\right) + \dots + \left(\sqrt{p-1} - \sqrt{p}\right)\right)$$

$$= \sqrt{p} - 1$$

Ainsi

$$2\sqrt{p+1} - 2\sqrt{2} \le \sum_{n=2}^{p} \frac{1}{\sqrt{n}} \le 2\sqrt{p} - 2 \quad (2)$$

On additionnant membre à membre (1) et (2), on obtient

$$2\sqrt{p+1} - 2 \le \sum_{n=1}^{p} \frac{1}{\sqrt{n}} \le 2\sqrt{p} - 1$$

3. Pour p = 10000, on a

$$2\sqrt{10001} - 2 \le \sum_{n=1}^{10000} \frac{1}{\sqrt{n}} \le 2\sqrt{10000} - 1$$

Or $2\sqrt{10000} - 1 = 199$ et $2\sqrt{10001} - 2 = 198,0099 > 198$, Donc

$$198 \le \sum_{n=1}^{10000} \frac{1}{\sqrt{n}} \le 199$$

et par suite
$$E\left(\sum_{n=1}^{10000} \frac{1}{\sqrt{n}}\right) = 198$$

Exercice 9.

i) Montrons que $x \le y \Rightarrow E(x) \le E(y)$

$$x \le y \Rightarrow E(x) \le x \le y$$
.

Donc E(x) est un entier relatif inférieur ou égal à y, Comme E(y) est le plus grand entier relatif inférieur ou égal à y, on a donc $E(x) \leq E(y)$.

$$ii) \ \forall x \in \mathbb{R} - \mathbb{Z}, E(-x) = -E(x) - 1.$$

Soit
$$f(x) = E(x) + E(-x)$$

On a
$$f(x+1) = E(x+1) + E(-x-1) = E(x) + 1 + E(-x) - 1 = f(x)$$
.

Donc la fonction f est périodique de période 1.

Or si
$$x \in (0, 1)$$
, on a $f(x) = -1$ et $f(0) = 0$.

$$iii) \ \forall x \in \mathbb{R}, \forall a \in \mathbb{Z}, E(x+a) = E(x) + a.$$

On traite d'abords le cas a = 1M

$$E(x) \le x < E(x) + 1 \Rightarrow E(x) + 1 \le x + 1 < (E(x) + 1) + 1$$

Donc
$$E(x + 1) = E(x) + 1$$

Si
$$a \in \mathbb{N}$$
, $E(x+a) = E(x+(a-1)) + 1 = E(x+(a-2)) + 2 = \dots = E(x) + a$.

Si
$$a < 0, E(x) = E((x+a) - a) = E(x+a)$$
 (puisque $-a > 0$)

Exercice 10

Soit $n \in \mathbb{N}^*, x \in \mathbb{R}$.

On a

$$\begin{split} E(x) & \leq & x < E(x) + 1 \Rightarrow nE(x) \leq nx < nE(x) + n \\ & \Rightarrow & nE(x) \leq nx < nE(x) + n \Rightarrow nE(x) \leq & E(nx) < nE(x) + n \\ & \Rightarrow & E(x) \leq \frac{E(nx)}{n} < E(x) + 1 \end{split}$$

Donc
$$E(\frac{E(nx)}{n}) = E(x)$$
.

Exercice 11

1. Montrons que : $\forall x \in \mathbb{R}$,

$$E(x) + E(-x) = -1$$
 si $x \notin Z$ et $E(x) + E(-x) = 0$ si $x \in Z$.

Soit
$$f(x) = E(x) + E(-x)$$

On a
$$f(x+1) = E(x+1) + E(-x-1) = E(x) + 1 + E(-x) - 1 = f(x)$$
.

Donc la fonction f est périodique de période 1.

Or si
$$x \in [0, 1]$$
, on a $f(x) = -1$ et $f(0) = 0$.

2. En déduire que si p et q sont deux entiers naturels premier entre eux alors :

$$\sum_{k=1}^{q-1} E\left(\frac{kp}{q}\right) = \sum_{k=1}^{q-1} E\left((q-k)\frac{p}{q}\right) = \sum_{k=1}^{q-1} E\left(p-k\frac{p}{q}\right)$$

$$= \sum_{k=1}^{q-1} E\left(-k\frac{p}{q}\right) + p = \sum_{k=1}^{q-1} \left(-E\left(k\frac{p}{q}\right) - 1\right) + p$$

$$= -\sum_{k=1}^{q-1} E\left(k\frac{p}{q}\right) + (p-1)(q-1)$$

Ainsi

$$2 \sum_{k=1}^{q-1} E\left(\frac{kp}{q}\right) = (p-1)(q-1).$$

https://sigmoid.ma

Chapitre 5 SUITES NUMÉRIQUES

Exercise 1. On pose
$$\lim_{n \to +\infty} (u_n) = l$$
 et $\lim_{n \to +\infty} (v_n) = l'$
On sait que $\max(a, b) = \frac{1}{2} ((a + b) + |a - b|)$
donc $\max(u_n, v_n) = \frac{1}{2} ((u_n + v_n) + |u_n - u_n|) \to \frac{1}{2} ((l + l') + |l - l'|) = \max(l, l').$

Exercice 2. Montrer qu'une suite d'entiers (u_n) converge si et seulement si elle est stationnaire.

Si (u_n) est stationnaire, il est clair que cette suite converge.

Réciproquement, supposons que (u_n) converge et notons l sa limite. Montrons que $l \in \mathbb{Z}$. Par l'absurde, si $l \notin \mathbb{Z}$ alors E(l) < l < E(l) + 1 donc à partir d'un certain rang $E(l) < u_n < E(l) + 1$. Ce qui est en contradiction avec $u_n \in \mathbb{Z}$. Ainsi $l \in \mathbb{Z}$.

Puisque $u_n \to l$ et l-1 < l < l+1, à partir d'un certain rang $l-1 < u_n < l+1$. Or $u_n \in \mathbb{Z}$ et $l \in \mathbb{Z}$ donc $u_n = l$.

Exercice 3.

Puisque
$$\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = 0$$
, il existe un entier N tel que $n > N \Rightarrow \left| \frac{u_{n+1}}{u_n} \right| < \frac{1}{2}$

D'où
$$n>N \Rightarrow |u_{n+1}|<\frac{1}{2}\,|u_n|$$

On a alors par récurrence $\forall n > N, |u_{n+1}| < \frac{1}{2^{n-N}} |u_N|$ et donc par comparaison $\lim_{n \to +\infty} u_n = 0$.

Exercice 4.

Soit (u_n) une suite convergente et l sa limite on suppose que $l \notin \mathbb{Z}$

1. Montrons que $E(l) < u_n < E(l) + 1$ à partir d'un certain rang.

On a
$$E(l) \leq l < E(l) + 1$$

On a
$$\lim_{n \to +\infty} u_n = l \Leftrightarrow \forall \varepsilon > 0, \exists N / (n > N \Rightarrow l - \varepsilon < u_n < l + \varepsilon)$$

D'où
$$\forall \varepsilon > 0, \exists N \ / \ n > N \Rightarrow E(l) - \varepsilon < u_n < E(l) + 1 + \varepsilon$$

Ainsi $E(l) < u_n < E(l) + 1$ à partir d'un certain rang.

https://sigmoid.ma

2. Du fait que $E(l) < u_n < E(l)+1$, on a $E\left(E(l)\right) \le E\left(u_n\right) < E\left(E(l)+1\right)$ Ainsi $E(l) \le E\left(u_n\right) < E(l)+1$

Or $E(u_n)$ étant un entier, donc $E(u_n) = E(l)$, c'est à dire que la suite $(E(u_n))$ est une suite d'entiers stationnaire à partir d'un certain rang, donc $(E(u_n))$ converge d'après l'exercice 2 et sa limite est E(l). converge vers E(L).

Exercice 5. Moyenne de Cesaro :

Soient (u_n) une suite réelle et (v_n) la suite définie par : $v_n = \frac{u_1 + ... + u_n}{n}$.

1. Soit $\varepsilon > 0$. Il existe un entier naturel N tel que, si n > N alors $|u_n - l| < \frac{\varepsilon}{2}$. On a

$$|v_{n} - l| = \left| \frac{(u_{1} + \dots + u_{n}) - nl}{n} \right| \leq \frac{1}{n} (|u_{1} - l| + |u_{2} - l| + \dots + |u_{n} - l|)$$

$$\leq \frac{1}{n} \left(\sum_{k=1}^{N} |u_{k} - l| + \sum_{k=N+1}^{n} |u_{k} - l| \right)$$

$$\leq \frac{1}{n} \left(\sum_{k=1}^{N} |u_{k} - l| + \sum_{k=N+1}^{n} \frac{\varepsilon}{2} \right)$$

$$\leq \frac{1}{n} \sum_{k=1}^{N} |u_{k} - l| + \frac{1}{n} \sum_{k=1}^{n} \frac{\varepsilon}{2}$$

$$\leq \frac{1}{n} \sum_{k=1}^{N} |u_{k} - l| + \frac{\varepsilon}{2}$$

Or $\sum_{k=1}^{N} |u_k - l|$ est une constante, donc $\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{N} |u_k - l| = 0$.

Par suite, il existe un entier N' tel que si n > N' alors $\frac{1}{n} \sum_{k=1}^{N} |u_k - l| < \frac{\varepsilon}{2}$.

Par suite si $n > \max(N, N')$, alors $|v_n - l| < \varepsilon$

Ainsi si la suite (u_n) converge vers un réel l, la suite (v_n) converge et a pour limite l.

La réciproque est fausse. Pour n dans \mathbb{N} , posons $u_n = (-1)^n$. La suite (u_n) est divergente. D'autre part, $\sum_{k=0}^{n} (-1)^k$ vaut 0 ou 1 suivant la parité de n et donc,

dans tous les cas, $|v_n| < \frac{1}{n}$. Par suite, la suite (v_n) converge et a pour limite 0.

2. Si la suite (u_n) est bornée, il existe un réel M tel que, $|u_n| \le M$. On a alors $|v_n| \le \frac{1}{n} \sum_{k=1}^n |u_k| \le \frac{M \times n}{n} = M$.

La réciproque est fausse. Soit (u_n) la suite définie par $u_n = (-1)^n E\left(\frac{n}{2}\right) = \begin{cases} p \text{ si } n = 2p \\ -p \text{ si } n = 2p + 1 \end{cases}$

La suite (u_n) n'est pas bornée car la suite extraite (u_{2n}) tend vers $+\infty$. Or, si n est impair, $v_n = 0$, et si n est pair, $v_n = \frac{n}{2n}$.

3. Si la suite (u_n) est croissante alors la suite (v_n) l'est aussi.

Exercice 6.

i)

$$u_n = \sqrt{n + \sqrt{n}} - \sqrt{n} = \frac{\left(\sqrt{n + \sqrt{n}} - \sqrt{n}\right)\left(\sqrt{n + \sqrt{n}} + \sqrt{n}\right)}{\sqrt{n + \sqrt{n}} + \sqrt{n}}$$
$$= \frac{\sqrt{n}}{\sqrt{n + \sqrt{n}} + \sqrt{n}} = \frac{1}{\left(\sqrt{1 + \frac{1}{\sqrt{n}}} + 1\right)}$$

D'où (u_n) converge vers $\frac{1}{2}$.

ii) On a $\ln v_n = \frac{1}{n} \ln n$. Ainsi $\lim_{n \to +\infty} \ln v_n = 0$, donc $\lim_{n \to +\infty} u_n = 1$.

iii) Dans le produit $n! = \frac{n}{\pi} k$, il y a au moins $\frac{n}{2}$ termes qui sont supérieurs us à $\frac{n}{2}$. ou égaus à $\frac{n}{2}$.

Ainsi $n! \ge \left(\frac{n}{2}\right)^{\frac{n}{2}}$ et $w_n \ge \sqrt{\frac{n}{2}}$, donc $\lim_{n \to +\infty} w_n = +\infty$.

d)
$$u_n = \frac{3^n - (-2)^n}{3^n + (-2)^n} = \frac{1 - (\frac{-2}{3})^n}{1 + (\frac{-2}{3})^n} \to 1,$$

e)
$$u_n = \frac{\sin n}{n + (-1)^{n+1}}$$

On a Pour $n \in N^*$, $0 \le n-1 \le n+(-1)^{n+1} \le n+1$, d'où $\frac{1}{n+1} \le n+1$ $\frac{1}{n + (-1)^{n+1}} \le \frac{1}{n-1}$ Ainsi $\left| \frac{\sin n}{n + (-1)^{n+1}} \right| \le \frac{1}{n-1} \to 0.$

Exercice 7.

Etudier la convergence des suites (u_n) définies par :

i)
$$u_n = \sum_{k=1}^n \frac{1}{k}$$
,

On a l'inégalité $u_{2n} - u_n > \frac{1}{2}$. La suite n'est pas de Cauchy, elle ne converge donc pas.

ii)
$$u_n = \sum_{k=1}^n \sqrt{k} \ge \sum_{k=1}^n 1 = n$$
. Donc (u_n) ne converge pas.,

iii)
$$u_n = \sum_{k=1}^n \frac{1}{n^2 + k^2}$$
.
On a $\frac{n}{n^2 + n} \le \sum_{k=1}^n \frac{1}{n^2 + k^2} \le \frac{n}{n^2 + 1}$
Donc $u_n \to 0$

Exercice 8

 θ est un réel de l'intervalle $\left]0,\frac{\pi}{2}\right[$

On considère les suites définies par :

$$u_n = 2^{n+1} \sin \frac{\theta}{2^n}$$
$$v_n = 2^{n+1} \tan \frac{\theta}{2^n}$$

Comme
$$\sin 2x = 2\sin x \cos x$$
, on obtient $u_n = 2^{n+2}\sin\frac{\theta}{2^{n+1}}\cos\frac{\theta}{2^{n+1}} \le 2^{n+2}\sin\frac{\theta}{2^{n+1}} = u_{n+1}$.

Donc la suite (u_n) est croissante

Comme $\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$, on obtient

$$v_n = 2^{n+1} \tan \frac{\theta}{2^n} = 2^{n+2} \frac{\tan \frac{\theta}{2^{n+1}}}{1 - \tan^2 \frac{\theta}{2^{n+1}}} \ge v_{n+1}.$$
Donc la suite (v_n) est décroissante.

Donc la suite (v_n) est décroissante.

$$v_n - u_n = 2^{n+1} \left(\sin \frac{\theta}{2^n} - \tan \frac{\theta}{2^n} \right) = 2\theta \left(\frac{\sin \frac{\theta}{2^n}}{\frac{\theta}{2^n}} - \frac{\tan \frac{\theta}{2^n}}{\frac{\theta}{2^n}} \right) \to 0.$$

$$u_n = 2^{n+1} \sin \frac{\theta}{2^n} = 2\theta \frac{\sin \frac{\theta}{2^n}}{\frac{\theta}{2^n}} \to 2\theta$$

La limite comune est 2θ .

Exercice 9. Moyenne arithmico-géometrique :

Soit
$$(a, b) \in (\mathbb{R}^{*+})^2$$
 tel que $a > b$, on pose $a_0 = a, b_0 = b, a_{n+1} = \frac{a_n + b_n}{2}, b_{n+1} = \frac{a_n + b_n}{2}$

 $\sqrt{a_n b_n}$ 1. Montrons par récurrence que $a_n > 0$ et $b_n > 0$.

On a $a_0 > 0$ et $b_0 > 0$.

Supposons que $a_n > 0$ et $b_n > 0$ alors $a_{n+1} = \frac{a_n + b_n}{2} > 0$ et b_{n+1} est bien définie, de plus $b_{n+1} > 0$.

2. Pour tout
$$(x,y) \in (\mathbb{R}^+)^2$$
 on a $\sqrt{xy} \leq \frac{x+y}{2}$, en effet Pour $(x,y) \in (\mathbb{R}^+)^2$
 $\sqrt{xy} \leq \frac{x+y}{2} \Leftrightarrow 4xy \leq (x+y)^2 \Leftrightarrow (x-y)^2 \geq 0$.
On en déduit que $b_n \leq a_n$.

Suites numériques 25

Il en résulte que : $b_{n+1}=\sqrt{a_nb_n}\geq \sqrt{b_n^2}=|b_n|=b_n$ et $a_{n+1}-a_n=\frac{b_n-a_n}{2}\leq 0$.

De plus $a_{n+1} - b_{n+1} \le a_{n+1} - b_n = \frac{a_n + b_n}{2} - b_n = \frac{a_n - b_n}{2}$.

Ainsi par récurrence, on a $a_n - b_n \le \frac{a-b}{2^n}$. Or $a_n - b_n \ge 0$ et $\lim_{n \to +\infty} \frac{a-b}{2^n} = 0$, donc $\lim_{n \to +\infty} a_n - b_n = 0$

Les suites (a_n) et (b_n) sont adjacentes, on note par M(a,b) leurs limite communes appelle moyenne arithmico - géométrique de a et b

3.Si a = b, alors les deux suites (a_n) et (b_n) sont constantes égales à a et donc M(a, a) = a.

Si b = 0, alors la suite (b_n) est constante égales à 0 et donc M(a, 0) = 0.

e) Notons (a'_n) et (b'_n) les suites définies par le procédé précédent à partir de $a'_0 = \lambda a$ et $b'_0 = \lambda b$.

Par récurrence, on montre $a'_n = \lambda a_n$ et $b'_n = \lambda b_n$ donc $M(\lambda a, \lambda b) = \lambda M(a, b)$ pour $\lambda \in \mathbb{R}^+$.

Exercice 10.

Soit (u_n) une suite telle que $(u_{2n}), (u_{2n+1}), (u_{3n})$ convergent.

Montrons que (u_{2n}) et (u_{2n+1}) convergent vers la même limite

Supposons que $\lim_{n \to +\infty} u_{2n} = l$, $\lim_{n \to +\infty} u_{2n+1} = l'$ et $\lim_{n \to +\infty} u_{3n} = l''$.

La suite (u_{6n}) est extraite de (u_{2n}) et de (u_{3n}) , donc l = l''.

De même La suite (u_{6n+3}) est extraite de (u_{2n+1}) et de (u_{3n}) , donc l'=l''.

Ainsi l = l' = l''

Par conséquent (u_{2n}) et (u_{2n+1}) convergent vers la même limite.

Montrons que (u_n) converge.

Soit $\varepsilon > 0$.Il existe $N \in \mathbb{N}$ tel que pour tout $n \in \mathbb{N}$, $n > N \Rightarrow |u_{2n} - l| < \varepsilon$ et Il existe $N' \in \mathbb{N}$ tel que pour tout $n \in \mathbb{N}$, $n > N \Rightarrow |u_{2n+1} - l| < \varepsilon$.

donc si $m \in \mathbb{N}$, m est soit pair ou impair,

$$m > \max(N, N') \Rightarrow |u_m - l| < \varepsilon.$$

Exercice 11.

Par l'absurde, supposons $\lim_{n \to +\infty} \sin n = l \in \mathbb{R}$.

On a
$$\sin(p) - \sin(q) = 2\sin\frac{p-q}{2}\cos\frac{p+q}{2}$$

D'où $\sin(n+1) - \sin(n-1) = 2\sin 1 \cos n$

En passant à la limite, on obtient $\lim_{n\to+\infty} \cos n = 0$.

Or $\cos 2n = 2\cos^2 n - 1$, on aurait alors $\lim_{n \to +\infty} \cos 2n = -1$. Ce qui est absurde, donc la suite (u_n) définie par $u_n = \sin n$ diverge.

Exercice 12. Soient a et b deux réels, a < b. On considère la fonction f: $[a,b] \rightarrow [a,b]$ supposée continue et une suite

https://sigmoid.ma

récurrente
$$(u_n)$$
 définie par :
$$\begin{cases} u_0 \in [a,b] & et \\ u_{n+1} = f(u_n) \text{ pour tout } n \in \mathbb{N}. \end{cases}$$

1. On suppose ici que f est croissante. Montrer que (u_n) est monotone et en déduire sa convergence vers une solution de l'équation f(x) = x.

Si $u_0 < u_1$, Puisque f est croissante, on montre par récurrence que $u_n \le u_{n+1}$. Ainsi la suite (u_n) est croissante.

Comme f est à valeurs dans $[a,b],(u_n)$ est majorée par b. Donc (u_n) est convergente.

Si $u_0 > u_1$, Puisque f est croissante, on montre par récurrence que $u_n \ge u_{n+1}$. Ainsi la suite (u_n) est décroissante.

Comme f est à valeurs dans [a,b], (u_n) est minorée par a. Donc (u_n) est convergente.

Notons l la limite de (u_n) . Comme f est continue alors $(f(u_n))$ tend vers f(l). En passant à la limite dans l'expression $u_{n+1} = f(u_n)$, on obtient l'égalité l = f(l).

2. Application.

Soit $f(x) = \frac{4x+5}{x+3}$, f est continue, dérivable sur $]-3, +\infty[$. $f'(x) = \frac{7}{(x+3)^2} > 0$, donc f est strictement croissante sur $]-3, +\infty[$, de plus

Comme $u_0 = 4$ et $u_1 = 2, 25$, la suite (u_n) est décroissante. Calculons la valeur de sa limite l. Elle est solution de l'équation f(x) = x. Soit 4x + 5 = x(x + 3) ou encore $x^2-x-5=0$. Or $u_n>0$ pour tout n, donc l>0. La seule solution positive de l'équation est $l=\frac{1+\sqrt{21}}{2}$

- 3. Si f est décroissante alors $f \circ f$ est croissante . On applique alors la première question avec la fonction $f \circ f$. La suite (u_{2n}) définie par $\begin{cases} u_0 \\ u_{2n+2} = f \circ f(u_{2n}) \end{cases}$ est monotone et convergente. De même pour la suite (u_{2n}) définie par $\begin{cases} u_1 \\ u_{2n+1} = f \circ f(u_{2n-1}) \end{cases}$.
- 4. La fonction f définie par $f(x) = (1-x)^2$ est continue et dérivable de [0,1]dans [0,1]. Elle est décroissante sur cet intervalle. Nous avons $u_0 = \frac{1}{2}, u_1 = \frac{1}{4}, u_2 = \frac{1}{4}$ $\frac{9}{16}$, $u_3 = \left(\frac{15}{16}\right)^2 \simeq 0, 19,...$ Donc la suite (u_{2n}) est croissante et elle est convergente. Soit l sa limite. la suite (u_{2n+1}) est décroissante et elle est convergente. Soit l' sa limite.

Les limites l et l' sont des solutions de l'équation $f \circ f(x) = x$. Cette équation s'écrit $(1 - (1 - x)^2)^2 = x$.

Soit $x^2(2-x)^2 = x$, ou encore $x^4 - 4x^3 + 4x^2 - x = 0$. If y a deux solutions évidentes 0 et 1. On factorise le

polynôme par x(x-1). On obtient alors $x(x-1)(x^2-3x+1)=0$

$$(x^2 - 3x + 1) = 0 \Leftrightarrow x = \frac{3 - \sqrt{5}}{2} \simeq 0,38 \text{ ou } x = \frac{3 + \sqrt{5}}{2} > 1.$$

Suites numériques 27

Comme (u_{2n}) est croissante et que $u_0 = \frac{1}{2}$, alors (u_{2n}) converge vers l = 1 qui est le seul point fixe de [0,1] supérieur à $\frac{1}{2}$. Comme (u_{2n+1}) est décroissante et que $u_1 = \frac{1}{4}$ alors (u_{2n+1}) converge vers l' = 0 qui est le seul point fixe de [0,1] inférieur à $\frac{1}{4}$.

28 Suites numériques

Chapitre 6

CONTINUITÉ ET DÉRIVABILITÉ DES FONCTIONS NUMÉRIQUES D'UNE VARIABLE RÉELLE

Exercice 1 Soit $f: \mathbb{R}^* \to \mathbb{R}$ la fonction définie par $f(x) = xE\left(x - \frac{1}{x}\right)$. Montrons que f admet une limite en 0 et déterminons cette limite.

Supposons d'abord que x > 0.

On a
$$E\left(\frac{1}{x}\right) \le \frac{1}{x} < E\left(\frac{1}{x}\right) + 1$$

On pose
$$n = E\left(\frac{1}{x}\right)$$
. On a donc $n \le \frac{1}{x} < n+1$

On déduit que
$$-n-1 < -\frac{1}{x} \le -n$$
 et $\frac{1}{n+1} < x \le \frac{1}{n}$

On a
$$E\left(\frac{1}{x}\right) \leq \frac{1}{x} < E\left(\frac{1}{x}\right) + 1$$
On pose $n = E\left(\frac{1}{x}\right)$. On a donc $n \leq \frac{1}{x} < n + 1$
On déduit que $-n - 1 < -\frac{1}{x} \leq -n$ et $\frac{1}{n+1} < x \leq \frac{1}{n}$
Donc $\frac{1}{n+1} - n - 1 < x - \frac{1}{x} \leq \frac{1}{n} - n$. Ce qui équivaut à $\frac{-n}{n+1} - n < x - \frac{1}{x} \leq \frac{1}{n}$

 $\frac{1}{n}-n$.

D'où
$$E\left(\frac{-n}{n+1}-n\right) \le E\left(x-\frac{1}{x}\right) \le E\left(\frac{1}{n}-n\right)$$

Donc
$$E\left(x-\frac{1}{x}\right)=-n-1$$
 ou $-n$, ce qu'on peut écrire : $-n-1\leq$

$$E\left(x - \frac{1}{x}\right) \le -n.$$

on a alors
$$0 \le n \le -E\left(x - \frac{1}{x}\right) \le n + 1$$
, or $0 \le \frac{1}{n+1} < x \le \frac{1}{n}$

On multiplie membre à membre ces deux inégalités, on obtient :
$$1 \le -xE\left(x - \frac{1}{x}\right) \le \frac{n+1}{n}$$
, d'où $-\frac{n+1}{n} \le xE\left(x - \frac{1}{x}\right) \le -1$.

On en déduit que
$$\lim_{x\to 0^+} xE\left(x-\frac{1}{x}\right) = -1$$
.

Supposons x < 0,

On sait que si y n'est pas un entier on a
$$E(-y) = -E(-y) - 1$$

Donc $f(x) = xE\left(x - \frac{1}{x}\right) = x\left(-E\left(-x + \frac{1}{x}\right) - 1\right) = -xE\left(-x + \frac{1}{x}\right) - 1$

$$x = f\left(-x\right) - x$$

Donc
$$\lim_{x \to 0^{-}} f(x) = \lim_{y \to 0^{+}} f(y) = -1.$$

Exercice 2 Soit $f: [0, +\infty[\to [0, +\infty[$ une fonction continue, qui tend vers 0 quand x tend vers $+\infty$.

1. Montrons que f est bornée et atteint sa borne supérieure.

On distingue deux cas : ou bien f est la fonction nulle, dans ce cas il n'y a rien à montrer, ou bien f n'est pas toujours nulle, dans ce cas il existe $x_0 \in [0, +\infty[$ tel que $f(x_0) > 0$. D'autre part, on sait que f tend vers 0 quand x tend vers $+\infty$, donc en appliquant la définition de la limite avec $\varepsilon = \frac{f(x_0)}{2}$, on trouve qu'il existe un réel A > 0 tel que $\forall x \in [0, +\infty[, x \ge A \Rightarrow |f(x)| \le \frac{f(x_0)}{2}$

Comme f est à valeurs dans $[0, +\infty[$, on obtient : $\forall x \in [A, +\infty[$, $f(x) \le \frac{f(x_0)}{2}$

Donc f est bornée sur l'intervalle $[A, +\infty[$. D'autre part, le théorème des bornes montre que f est bornée sur l'intervalle [0, A], plus précisément il existe des réels $0 \le m \le M$ tels que f([0, A]) = [m, M]. Il en résulte que f est majorée sur $[0, +\infty[$ par $\max\left(\frac{f(x_0)}{2}, M\right)$. Or on constate que $x_0 \in [0, A]$ (sinon la propriété $\forall x \in [A, +\infty[$, $f(x) \le \frac{f(x_0)}{2}$ serait contredite), donc $M \ge \frac{f(x_0)}{2}$. Il en résulte que f est majorée par M sur $[0, +\infty[$. Or, toujours d'après le théorème de bornes, il existe $c \in [0, A]$ tel que f(c) = M, donc f atteint sa borne supérieure.

2. La fonction $f: [0, +\infty[\to [0, +\infty[$ définie par $f(x) = \frac{1}{x+1}$ satisfait les hypothèses de l'énoncé, mais n'atteint pas sa borne inférieure (qui est 0).

Exercice 3.

Soit n=2k+1 le degré de P, alors le terme de plus haut degré de P est de la forme ax^{2k+1} avec $a\neq 0$. On a donc $\lim_{x\to -\infty} P\left(x\right) = \lim_{x\to -\infty} ax^{2k+1} = a\times (-\infty)$ et $\lim_{x\to -\infty} P\left(x\right) = \lim_{x\to +\infty} ax^{2k+1} = a\times (+\infty)$

Or $a \times (-\infty)$ et $a \times (+\infty)$ sont deux infinis de signes contraires. La fonction $P : \mathbb{R} \to \mathbb{R}$ étant continue, le théorème des valeurs intermédiaires prouve que l'image de \mathbb{R} par la fonction P est l'intervalle $]-\infty, +\infty[$. Donc il existe au moins un réel $c \in \mathbb{R}$, tel que P(c) = 0.

Exercice 4

1. Considérons la fonction $f:[a,b]\to\mathbb{R}$ définie par g(x)=f(x)-x.

Comme f est continue, g l'est aussi. Il est clair par construction de g que notre problème se ramène à montrer l'existence d'un réel $x_0 \in [a, b]$ tel que $g(x_0) = 0$. On a $f(a) \in [a, b]$, donc $f(a) \ge a$ et $f(b) \in [a, b]$, donc $f(b) \le b$. Donc $g(a) = f(a) - a \ge a$

0 et $g(b) = f(b) - b \le 0$. D'après le théorème des valeurs intermédiaires, il existe

donc $x_0 \in [a,b]$ tel que $g(x_0) = 0$. 2. Comme $\cos\left(\left[0,\frac{\pi}{2}\right]\right) = [0,1]$ et que $[0,1] \subset \left[0,\frac{\pi}{2}\right]$, on en déduit que $\cos\left([0,1]\right)\subset\left[0,1\right]$. Il suffit d'appliquer le résultat de la question précédente à la function $\cos: [0,1] \rightarrow [0,1]$.

3. Il suffit de considérer la fonction $x \mapsto x^2$.

Exercice 5. On a $\left|\sin\frac{1}{x}\right| \le 1$, donc $\left|x^2\sin\frac{1}{x}\right| \le x^2$. On en déduit que $\lim_{x\to 0} f(x) = 0$, donc f est prolongeable par continuité en 0 en posant f(0) = 0

La fonction f est dérivable sur R* comme produit et composé de fonctions dérivables sur \mathbb{R}^* . Sa dérivée est $f'(x) = 2x \sin \frac{1}{x} - \cos \frac{1}{x}$

En
$$0$$
: $\lim_{x\to 0} \frac{f(x)-f(0)}{x} = \lim_{x\to 0} x \sin\frac{1}{x} = 0$ car $\left|x\sin\frac{1}{x}\right| \le x$. Ainsi f est dérivable sur \mathbb{R} et $f'(x) = \begin{cases} 2x\sin\frac{1}{x} - \cos\frac{1}{x} & \text{sin } x \ne 0 \\ 0 & \text{si } x = 0 \end{cases}$ On a $\lim_{x\to 0} 2x\sin\frac{1}{x} = 0$ et $\lim_{x\to 0} \cos\frac{1}{x}$ n'existe pas, donc f' n'est pas continue en 0 .

Par l'absurde on suppose qu'il y a (au moins) quatre racines distinctes pour $P_n(x)$. On les note par $x_1 < x_2 < x_3 < x_4$. Par le théorème de Rolle appliqué trois fois (sur $[x_1, x_2]$, $[x_2, x_3]$ et $[x_3, x_4]$), il existe $\alpha_1 < \alpha_2 < \alpha_3$ des racines de $P'_n(x) = nx^{n-1} + a$. On applique deux fois le théorème Rolle sur $[\alpha_1, \alpha_2]$, $[\alpha_2, \alpha_3]$.

On obtient deux racines distinctes pour $P''_n(x) = n(n-1)x^{n-2}$ qui ne peut avoir que 0 comme racines. Donc nous avons obtenu une contradiction.

Exercice 7

1. La fonction $x \mapsto \ln(x)$ étant continue et dérivable sur $[0, +\infty[$, on lui applique le théorème des accroissements finis entre x et x+1. Il existe $c \in [x, x+1]$ tel que $\ln(x+1) - \ln(x) = \frac{1}{c}$

Or
$$x < c < x + 1$$
 donne $\frac{1}{1+x} < \frac{1}{c} < \frac{1}{x}$. D'où $\frac{1}{1+x} < \ln(x+1) - \ln(x) < \frac{1}{x}$

2. D'après 1., on a
$$\sum_{p=n+1}^{kn} \left(\ln (p+1) - \ln (p) \right) < \sum_{p=n+1}^{kn} \frac{1}{p} \text{ et } \sum_{p=n+1}^{kn} \frac{1}{p} < \sum_{p=n+1}^{kn} \left(\ln (p) - \ln (p-1) \right).$$

Donc
$$\ln\left(\frac{kn+1}{n+1}\right) < \sum_{p=n+1}^{kn} \frac{1}{p} < \ln(k)$$

Par le théorème des gendarmes $\lim_{n \to +\infty} \sum_{n=n+1}^{kn} \frac{1}{p} = \ln(k)$.

Exercice 8. La fonction f est continue et dérivable sur \mathbb{R} donc en particulier sur [a,b]. Le théorème des accroissements finis assure l'existence d'un nombre $c \in [a,b]$ tel que f(b) - f(a) = f'(c)(b-a). Pour cette fonction particulière nous pouvons expliciter ce c. En effet

$$f(b) - f(a) = f'(c)(b - a) \Leftrightarrow \alpha(b^2 - a^2) + \beta(b - a) = (2\alpha c + \beta)(b - a)$$
$$\Leftrightarrow (b + a) = 2c \Leftrightarrow c = \frac{a + b}{2}.$$

Géométriquement, le graphe \mathcal{P} de f est une parabole. Si l'on prend deux points A = (a, f(a)) et B = (b, f(b)) appartenant à cette parabole, alors la droite (AB) est parallèle à la tangente en \mathcal{P} qui passe en $M\left(\frac{a+b}{2}, f\left(\frac{a+b}{2}\right)\right)$. L'abscisse de M étant le milieu des abscisses de A et B.

Exercice 9.

Posons M = f(0) + 1.

Puisque $\lim_{x\to +\infty} f(x) = \lim_{x\to -\infty} f(x) = +\infty$, il existe $A,B\in\mathbb{R}$ tels que $\forall x\leq A, \forall x\geq B, \ f(x)>M$

On a $A \le 0 \le B$ car f(0) < M.

Sur [A, B], f admet un minimum en un point $a \in [A, B]$ car continue sur un segment.

On a f(a) < f(0) car $0 \in [A, B]$ donc f(a) < M.

Pour tout $x \in [A, B]$, on a f(x) > f(a) et pour tout $x \in]-\infty, A[\cup]B, +\infty[$, f(x) > M > f(a).

Ainsi f admet un minimum absolu en a.

Exercice 10.

La fonction $x \mapsto x^2 + 2x + 2$ étant strictement croissante sur $[-1, +\infty[$, à valeurs positives, la fonction $x \mapsto \sqrt{x^2 + 2x + 2}$ l'est aussi. Par conséquent, la fonction f est strictement décroissante sur $[-1, +\infty]$. D'après le théorème de la bijection, la fonction f étant continue strictement décroissante, elle réalise une bijection de l'intervalle

$$[-1, +\infty[$$
 sur son image. De plus : $f([-1, +\infty[) =] \lim_{x \to +\infty} f(x), f(-1)] =]0, 1].$

Il nous reste à déterminer la bijection réciproque f^{-1} . Pour cela, on se donne $y \in [0,1]$, et on cherche à déterminer (en fonction de y) l'unique $x \in [-1,+\infty[$ tel que f(x) = y. Cette équation s'écrit : $\frac{1}{\sqrt{x^2 + 2x + 2}} = y$. Comme y est strictement positif, cette équation équivaut à : $x^2 + 2x + 2 = y^2$, c'est-à-dire : $(x+1)^2 = \frac{1}{y^2} - 1$. Comme x + 1 est positif, on en déduit que $x + 1 = \sqrt{\frac{1}{y^2} - 1}$. Ainsi : $f^{-1}(y) = \sqrt{\frac{1}{y^2} - 1} - 1$.

Exercice 11.

$$\blacksquare \text{ On pose } f(x) = \arccos(x) + \arcsin(x)$$

$$f$$
 est dérivable sur]-1,1[de dérivée $f'(x) = \frac{-1}{\sqrt{1-x^2}} + \frac{-1}{\sqrt{1-x^2}} = 0$

Ainsi f est constante sur]-1,1[, donc sur [-1,1] (car continue aux extrémités). Or $f(0) = \arccos 0 + \arcsin(0) = \frac{\pi}{2}$,

Par conséquent $f(x) = \frac{\pi}{2}$ pour tout $x \in [-1, 1]$.

■ On pose $g(x) = \arctan(x) + \arctan(\frac{1}{x})$ g est définie dérivable sur $]-\infty,0[$ et sur $]0,+\infty[$ de dérivée

$$g'(x) = \frac{1}{1+x^2} + \left(\frac{-1}{x^2}\right) \frac{1}{\sqrt{1-\left(\frac{1}{x}\right)^2}} = \frac{1}{1+x^2} - \frac{1}{1+x^2} = 0.$$

donc g est constante sur chacun de ses intervalles de définition : $g(x) = c_1$ sur $]-\infty, 0[$ et $g(x) = c_2$ sur $]0, +\infty[$. Sachant $\arctan(1) = \frac{\pi}{4}$ et $\arctan(-1) = -\frac{\pi}{4}$, on obtient : $c_1 = \frac{\pi}{2}$ et $c_2 = -\frac{\pi}{2}$ Pour rout $x \in \mathbb{R}$, on a

$$\cos^{2}(\arctan x) = \frac{1}{1+x^{2}}$$
$$\cos(\arctan x) = \pm \frac{1}{1+x^{2}}$$

d'où

$$\cos(\arctan x) = \pm \frac{1}{1+x^2}$$

Or $\arctan(x) \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\cot \cos y \ge 0 \text{ si } y \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, \text{ donc} \right]$

$$\cos(\arctan x) = \frac{1}{1+x^2}$$

Pour rout $x \in \mathbb{R}$, on a

$$\sin^2(\arctan x) = 1 - \cos^2(\arctan x) = 1 - \frac{1}{1 + \tan^2(\arctan x)}$$
$$= 1 - \frac{1}{1 + x^2} = \frac{x^2}{1 + x^2}$$

D'où $|\sin(\arctan x)| = \frac{|x|}{\sqrt{1+x^2}}$. Or $\arctan(x) \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\text{ et } \sin y \text{ et du même signe que } y \text{ sur} \right] -\frac{\pi}{2}, \frac{\pi}{2} \left[\text{, donc} \right]$

$$\sin\left(\arctan x\right) = \frac{x}{1+x^2}.$$

Pour rout $x \in [-1, 1]$, on a: $\sin(2 \arcsin x) = 2\sin(\arcsin x)\cos(\arcsin x)$

Or $\sin(\arcsin x) = x$ et $\cos^2(\arcsin x) = 1 - \sin^2(\arcsin x) = 1 - x^2$, donc $\cos\left(\arcsin x\right) = \pm\sqrt{1-x^2}$

Mais $\arcsin x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ et $\cos \ge 0$ sur cet intervalle, donc $\cos(\arcsin x) =$ $\sqrt{1-x^2}$.

Ainsi $\sin(2 \arcsin x) = 2x\sqrt{1-x^2}$.

Exercice 12.

 $\lim_{x \to 0} \frac{x}{\sqrt{1+x^2} - \sqrt{1+x}} = \lim_{x \to 0} \frac{1}{\frac{x}{\sqrt{1+x^2}} - \frac{1}{2\sqrt{1+x}}} = \frac{1}{-\frac{1}{2}} = -2.$

$$2ch^{2}x - sh(2x) = 2\left(\frac{e^{x} + e^{-x}}{2}\right)^{2} - \frac{e^{2x} - e^{-2x}}{2}$$

$$= \frac{e^{2x} + e^{-2x} + 2}{2} - \frac{e^{2x} - e^{-2x}}{2}$$

$$= e^{-2x} + 1.$$
et
$$x - \ln(chx) - \ln(2) = x - \ln\left(\frac{e^{x} + e^{-x}}{2}\right) - \ln(2)$$

$$x - \ln(chx) - \ln(2) = x - \ln\left(\frac{e^x + e^{-x}}{2}\right) - \ln(2)$$

$$= x - \ln\left(e^x + e^{-x}\right) = x - \ln\left(e^x \left(1 + e^{-2x}\right)\right)$$

$$= x - \ln\left(e^x\right) - \ln\left(1 + e^{-2x}\right) = -\ln\left(1 + e^{-2x}\right)$$

Ainsi

$$\lim_{x \to -\infty} \frac{2ch^2x - sh(2x)}{x - \ln(chx) - \ln(2)} = \lim_{x \to -\infty} \frac{e^{-2x} + 1}{-\ln(1 + e^{-2x})} = \lim_{x \to -\infty} \frac{2e^{-2x}}{\frac{2e^{-2x}}{1 + e^{-2x}}}$$
$$= \lim_{x \to -\infty} 1 + e^{-2x} = -\infty$$

$$\lim_{x \to 1^{-}} \frac{\arccos x}{\sqrt{1 - x^2}} = \lim_{x \to 1^{-}} \frac{\frac{-1}{\sqrt{1 - x^2}}}{\frac{-x}{\sqrt{1 - x^2}}} = \lim_{x \to 1^{-}} \frac{1}{x} = 1$$