Notes on Set Theory

Thomas Jech

December 23, 2019

Contents

1	Ordinal		2
	1.1	Linear and partial ordering	2
	1.2	Well-Ordering	2
	1.3	Ordinal Numbers	3
	1.4	Induction and Recursion	4
	1.5	Ordinal Arithmetic	6
	1.6	Well-Founded Relations	8
	1.7	Exercise	8
2	Models of Set - Sertraline		9
	2.1	Some mathematical logic	9
	2.2	Cumulative Hierarchy	9
	2.3	Relativization	11
	2.4	Absoluteness	12
	2.5	Relative consistence of the axiom of foundation	14
	2.6	Induction and recursion based on well-order relation	15
	2.7	Absoluteness under the axiom of foundation	16
	2.8	Unaccessible cardinal and models of ZFC	17
	2.9	Reflection theorem	19
3	Constructable Set - Venlafaxine		20
	3.1	Definablity and Gödel operation	20
	3.2	Gödel's L	21
	3.3	Axiom of constructibility and relativization	22
4	The	e end	24

1 Ordinal

1.1 Linear and partial ordering

options []

Definition 1.1. A binary relation < on a set *P* is a **partial ordering** of *P* if:

- 1. $p \not< p$ for any $p \in P$
- if p < q and q < r then p < r
 (P,<) is called a partial ordered set. A partial ordering < of P is a linear ordering if moreover
- 3. p < q or q < p or p = q for all $p, q \in P$

If (P,<) and (Q,<) are poset and $f:P\to Q$, then f is **order-preserving** if x< y implies f(x)< f(y). If P and Q are linearly ordered, then f is also called **increasing**

1.2 Well-Ordering

Definition 1.2. A linear ordering < of a set P is a **well-ordering** if every nonempty subset of P has a least element

Lemma 1.3. If (W, <) is a well-ordering set and $f: W \to W$ is an increasing function, then $f(x) \ge x$ for each $x \in W$

Proof. Assume that the set $X = \{x \in W \mid f(x) < x\}$ is nonempty and let z be the least element of X. Hence f(f(x)) < f(x) and $f(x) \in X$, a contradiction.

Corollary 1.4. *The only automorphism of a well-ordered set is the identity*

Corollary 1.5. If two well-ordered sets W_1, W_2 are isomorphic, then the isomorphism of W_1 onto W_2 is unique

If W is a well-ordered set and $u \in W$, then $\{x \in W : x < u\}$ is an **initial** segment of W

Lemma 1.6. No well-ordered set is isomorphic to an initial segment of itself

Proof. If
$$ran(f) = \{x : x < u\}$$
, then $f(u) < u$, contrary to lemma 1.3

Theorem 1.7. *If* W_1 *and* W_2 *are well-ordered sets, then exactly one of the following three cases holds:*

1.
$$W_1 \cong W_2$$

- 2. W_1 is isomorphic to an initial segment of W_2
- 3. W_2 is isomorphic to an initial segment of W_1

Proof. For $u \in W_i$, (i = 1, 2), let $W_i(u)$ denote the initial segment of W_i given by u. Let

$$f = \{(x, y) \in W_1 \times W_2 \mid W_1(x) \cong W_2(y)\}\$$

If $W_1(x) \cong W_w(y)$ and $W_1(x) \cong W_2(y')$, then $W_2(y) \cong W_1(y')$. According to lemma 1.6, y = y'. Hence it's easy to see that f is a one-to-one function.

If h is an isomorphism between $W_1(x)$ and $W_2(y)$ and x' < x, then $W_1(x') \cong W_2(h(x'))$. It follows that f is order-preserving.

If $dom(f) = W_1$ and $ran(f) = W_2$, then case 1 holds.

If $y_1 < y_2$ and $y_2 \in \operatorname{ran}(f)$, then $y_1 \in \operatorname{ran}(f)$. If there is some $y < y_2$ and $y \notin \operatorname{ran}(f)$. Consider the least element y' of $\{y \in W_2 \mid y < y_2 \land y \notin \operatorname{ran}(f)\}$. Let $x' = \sup\{x \in W_1 \mid \exists y \in W_2(W_1(x) \cong W_2(y) \land y < y')\}$, then $W_1(x') \cong W_2(y')$, a contradiction.

If $\operatorname{ran}(f) \neg W_2$ and y_0 is the least element of $W_2 - \operatorname{ran}(f)$. We have $\operatorname{ran}(f) = W_2(x_0)$. Necessarily, $\operatorname{dom}(f) = W_1$, for otherwise we could have $(x_0, y_0) \in f$ where x_0 =least element of $W_1 - \operatorname{dom}(f)$. Thus case 2 holds. Similarly, case 3 holds.

If $W_1 \cong W_2$, we say that they have the same **order-type**

1.3 Ordinal Numbers

The idea is to define ordinal numbers so that

$$\alpha < \beta \Leftrightarrow \alpha \in \beta \land \alpha = \{\beta : \beta < \alpha\}$$

Definition 1.8. A set *T* is **transitive** if every element of *T* is a subset of *T*

Definition 1.9. A set is an **ordinal number** (an **ordinal**) if it's transitive and well-ordered by \in

The class of all ordinals is denoted by Ord We define

$$\alpha < \beta \Leftrightarrow \alpha \in \beta$$

Lemma 1.10. 1. $0 = \emptyset$ is an ordinal

- 2. If α is an ordinal and $\beta \in \alpha$, then β is an ordinal
- 3. If $\alpha \neq \beta$ are ordinals and $\alpha \subset \beta$, then $\alpha \in \beta$
- *4.* If α, β are ordinals, then either $\alpha \subset \beta$ or $\beta \subset \alpha$

Proof. 1. definition

- 2. definition
- 3. If $\alpha \subset \beta$, let γ be the least element of the set $\beta \alpha$. Since α is transitive, it follows that α is the initial segment of β given by γ . Thus $\alpha = \{\xi \in \beta \mid \xi < \gamma\} = \gamma \in \beta$
- 4. Clearly $\alpha \cap \beta$ is an ordinal γ . We have $\gamma = \alpha$ or $\gamma = \beta$, for otherwise $\gamma \in \alpha$ and $\gamma \in \beta$ by 3. Then $\gamma \in \gamma$ which contradicts the definition of an ordinal

Using lemma 1.10 one gets the following facts about ordinal numbers

- 1. < is a linear ordering of the class Ord
- 2. For each α , $\alpha = \{\beta : \beta < \alpha\}$
- 3. If C is a nonempty class of ordinals, then $\bigcap C$ is an ordinal, $\bigcap C \in C$ and $\bigcap C = \inf C$
- 4. If X is a nonempty set of ordinals, then $\bigcup X$ is an ordinal and $\bigcup X = \sup X$
- 5. For every α , $\alpha \cup \{\alpha\}$ is an ordinal and $\alpha \cup \{\alpha\} = \inf\{\beta : \beta > \alpha\}$ We thus define $\alpha + 1 = \alpha \cup \{\alpha\}$ (the **succesor** of α)

Theorem 1.11. Every well-ordered set is isomorphic to a unique ordinal number

Proof. The uniqueness follows from lemma 1.6. Given a well-ordered set W, we find an isomorphic ordinal as follows: Define $F(x) = \alpha$ if α is isomorphic to the initial segment of W given by x. If such an α exists, then it's unique. By the replacement axiom, F(W) is a set. For each $x \in W$, such an α exists. Otherwise consider the least x such that α doesn't exist. Let $\alpha = \sup\{F(x') \mid x' \in W \land x' < x\}$ and $F(x) = \alpha$. If γ is the least $\gamma \not\in F(W)$, then $F(W) = \gamma$ and we have an isomorphism of W onto γ

If $\alpha=\beta+1$, then α is a **succesor ordinal**. If α is not a succesor ordinal then $\alpha=\sup\{\beta:\beta<\alpha\}=\bigcup\alpha$ is called a **limit ordinal**. We also consider 0 a limit ordinal and define $\sup\emptyset=0$.

1.4 Induction and Recursion

Theorem 1.12 (Transfinite Induction). *Let C be a class of ordinals and assume*

- 1. $0 \in C$
- 2. if $\alpha \in C$, then $\alpha + 1 \in C$
- 3. if α is a nonzero limit ordinal and $\beta \in C$ for all $\beta < \alpha$, then $\alpha \in C$ Then C is the class of all ordinals

Proof. Otherwise let α be the least ordinal $\alpha \notin C$ and apply 1, 2 or 3

A function whose domain is the set \mathbb{N} is called an {(infinite) sequence} (A **sequence** in X is a function $f: \mathbb{N} \to X$). The standard notation for a sequence is

$$\langle a_n : n < \omega \rangle$$

A finite sequence is a function s s.t. $dom(s) = \{i : i < n\}$ for some $n \in \mathbb{N}$; then s is a sequence of length n

A transfinite sequence is a function whose domain is an ordinal

$$\langle a_{\xi} : \xi < \alpha \rangle$$

It is also called an α -sequence or a sequence of length α . We also say that a sequence $\langle a_{\xi} : \xi < alpha \rangle$ is an **enumeration** of its range $\{a_{\xi} : \xi < \alpha\}$. If s is a sequence of length α , then $s \hat{\ } x$ or simply sx denotes the sequence of length $\alpha + 1$ that extends s and whose α th term is x:

$$s^{\hat{}}x = sx = s \cap \{(\alpha, x)\}$$

Theorem 1.13 (Transfinite Recursion). Let G be a function, then 1 below defines a unique function F on Ord s.t.

$$F(\alpha) = G(F \upharpoonright \alpha)$$

for each α

In other words, if we let $a_{\alpha} = F(\alpha)$, then for each α

$$a_{\alpha} = G(\langle a_{\xi} : \xi < \alpha \rangle)$$

Corollary 1.14. Let X be a set and θ be an ordinal number. For every function G on the set of all transfinite sequences in X of length $< \theta$ s.t. $\operatorname{ran}(G) \subset X$ there exists a unique θ -sequence in X s.t. $a_{\alpha} = G(\langle a_{\xi} : \xi < \theta \rangle)$ for every $\alpha < \theta$

Proof. Let

$$F(\alpha) = x \leftrightarrow \text{there is a sequence } \langle a_{\xi} : \xi < \alpha \rangle \text{ such that}$$

$$1. \ (\forall \xi < \alpha) a_{\xi} = G(\langle a_n \eta : \eta < \xi \rangle)$$

$$2. \ x = G(\langle a_{\xi} : \xi < \alpha \rangle)$$

For every α , if there is an α -sequence that satisfying 1, then such a sequence is unique. Thus $F(\alpha)$ is determined uniquely by 2 and therefore F is a function.

Definition 1.15. Let $\alpha > 0$ be a limit ordinal and let $\langle \gamma_{\xi} : \xi < \alpha \rangle$ be a **nondecreasing** sequence of ordinals (i.e., $\xi < \eta$ implies $\gamma_{\xi} \leq \gamma_{e}ta$). We define the **limit** of the sequence by

$$\lim_{\xi \to \alpha} \gamma_{\xi} = \sup \{ \gamma_{\xi} : \xi < \alpha \}$$

A sequence of ordinals $\langle \gamma_{\alpha} : \alpha \in Ord \rangle$ is **normal** if it's increasing and **continuous**, i.e., for every limit α , $\gamma_{\alpha} = \lim_{\xi \to \alpha} \gamma_{\xi}$

1.5 Ordinal Arithmetic

Definition 1.16 (Addition). For all ordinal numbers α

- 1. $\alpha + 0 = \alpha$
- 2. $\alpha + (\beta + 1) = (\alpha + \beta) + 1$, for all β
- 3. $\alpha + \beta = \lim_{\xi \to \beta} (\alpha + \xi)$ for all limit $\beta > 0$

Definition 1.17 (Multiplication). For all ordinal numbers α

- 1. $\alpha \cdot 0 = 0$
- 2. $\alpha \cdot (\beta + 1) = (\alpha \cdot \beta) + \alpha$, for all β
- 3. $\alpha \cdot \beta = \lim_{\xi \to \beta} (\alpha \cdot \xi)$ for all limit $\beta > 0$

Definition 1.18 (Exponentiation). For all ordinal numbers α

- 1. $\alpha^0 = 1$
- 2. $\alpha^{\beta+1} = \alpha^{\beta} \cdot \alpha$, for all β
- 3. $\alpha^{\beta} = \lim_{\xi \to \beta} \alpha^{\xi}$ for all limit $\beta > 0$

Lemma 1.19. *For all ordinals* α *,* β *and* γ

- 1. $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$
- 2. $\alpha \cdot (\beta \cdot \gamma) = (\alpha \cdot \beta) \cdot \gamma$

Neither + nor \cdot are commutative

$$1 + \omega = \omega \neq \omega + 1, \ 2 \cdot \omega = \omega \neq \omega \cdot 2$$

Definition 1.20. Let $(A, <_A)$ and $(B, <_B)$ be disjoint linearly ordered sets. The **sum** of these linear orders is the set $A \cup B$ with the ordering defined as follows: x < y if and only if

- 1. $x, y \in A$ and $x <_A y$
- 2. $x, y \in B$ and $x <_B y$
- 3. $x \in A$ and $y \in B$

Definition 1.21. Let (A, <) and (B, <) be linearly ordered sets. The **product** of these linear orders is the set $A \times B$ with the ordering defined by

$$(a_1, b_1) < (a_2, b_2) \Leftrightarrow b_1 < b_2 \text{ or } (b_1 = b_2 \land a_1 < a_2)$$

Lemma 1.22. For all ordinals α and β , $\alpha + \beta$ and $\alpha \cdot \beta$ are respectively isomorphic to the sum and to the product of α and β

Proof. Suppose $(A, <_A) \cong \alpha$ and $(B, <_B) \cong \beta$.

- 1. if $\beta = 0$, then $B = \emptyset$, $A \cup B = A$
- 2. if $(A \cup B, <_{A \cup B}) \cong \alpha + \beta$, let $B' = B \cup \{c\}$ s.t. $\{c\} \cap A = \{c\} \cap B = \emptyset$ all for all $b \in B$, b < c. Hence

$$\alpha + (\beta + 1) = (\alpha + \beta) + 1 \cong (A \cup B) \cup \{c\} = A \cup B'$$

3. if β is a limit ordinal and for all $\xi < \beta$ and $B_{\xi} \cong \xi$, $(A \cup B_{\xi}, <_{A \cup B_{\xi}}) \cong \alpha + \xi$,

$$A \cup B = A \cup \sup B_{\xi} = \sup(A \cup B_{\xi}) \cong \sup(\alpha + \xi) = \alpha + \beta$$

Lemma 1.23. *1. If* $\beta < \gamma$ *then* $\alpha + \beta < \alpha + \gamma$

- 2. If $\alpha < \beta$ then there exists a unique δ s.t. $\alpha + \delta = \beta$
- 3. If $\beta < \gamma$ and $\alpha > 0$, then $\alpha \cdot \beta < \alpha \cdot \gamma$
- 4. If $\alpha > 0$ and γ is arbitrary, then there exist a unique β and a unique $\rho < \alpha$ s.t. $\gamma = \alpha \cdot \beta + \rho$
- 5. If $\beta < \gamma$ and $\alpha > 1$, then $\alpha^{\beta} < \alpha^{\gamma}$

Proof. 2. Let δ be the order-type of the set $\{\xi : \alpha \leq \xi < \beta\}$

4. Let β be the greatest ordinal s.t. $\alpha \cdot \beta \leq \gamma$

Theorem 1.24 (Cantor's Normal Form Theorem). *Every ordinal* $\alpha > 0$ *can be represented uniquely in the form*

$$\alpha = \omega^{\beta_1} \cdot k_1 + \dots + \omega^{\beta_n} \cdot k_n$$

where $n \geq 1$, $\alpha \geq \beta_1 > \cdots > \beta_n$ and k_1, \ldots, k_n are nonzero natural numbers.

Proof. By induction on α . For $\alpha=1$ we have $1=\omega^0+1$; for arbitrary $\alpha>0$, let β be the greatest ordinal s.t. $\omega^\beta\leq\alpha$. The uniqueness of the normal form is proved by induction

1.6 Well-Founded Relations

A binary relation E on a set P is **well-founded** if every nonempty $X \subset P$ has an E-**minimal** element.

Given a well-founded relation E on a set P, we can define the **height** of E and assign to each $x \in P$ and ordinal number, the **rank** of x in E

Theorem 1.25. If E is a well-founded relation on P, then there exists a unique function ρ from P into the ordinals s.t. for all $x \in P$

$$\rho(x) = \sup \{ \rho(y) + 1 : yEx \}$$

The range of ρ is an initial segment of the ordinals, thus an ordinal number. This ordinal is called the **height** of E

Proof. By induction, let

$$P_0 = \emptyset$$

$$P_{\alpha+1} = \{x \in P : \forall y (yEx \to y \in P_\alpha)\} \cup P_\alpha$$

$$P_\alpha = \bigcup_{\xi < \alpha} P_\xi \text{ if } \alpha \text{ is a limit ordinal}$$

Let θ be the least ordinal s.t. $P_{\theta+1} = P_{\theta}$. We claim that $P_{\theta} = P$

1.7 Exercise

1. Every normal sequence $\langle \gamma_\alpha:\alpha\in Ord\rangle$ has arbitrarily large fixed points, i.e., α s.t. $\gamma_\alpha=\alpha$

Proof. From StackExchange.

A limit ordinal $\gamma > 0$ is called **indecomposable** if there exist no $\alpha < \gamma$ and $beta < \gamma$ s.t. $\alpha + \beta = \gamma$

2. A limit ordinal $\gamma>0$ is indecomposable if and only if $\alpha+\gamma=\gamma$ for all $\alpha<\gamma$ if and only if $\gamma=\omega^{\alpha}$ for some α

Proof. (a) (3) \rightarrow (1). Assume $\gamma_1, \gamma_2 < \gamma = \omega^{\alpha}$. By Cantor's normal form theorem, there exist α' and k s.t. $\gamma_1, \gamma_2 < \omega^{\alpha'} \cdot k$

(b) (2) \rightarrow (3). Assume that γ can't be written as ω^{α} . Then by Cantor's theorem, $\gamma = \omega^{\beta_1} \cdot k_1 + \cdots + \omega^{\beta_n} \cdot k_n$. But then $\omega^{\beta_1} < \gamma$ and $\omega^{\beta_1} + \gamma > \gamma$

2 Models of Set - Sertraline

2.1 Some mathematical logic

Theorem 2.1 (Gödel's second incompleteness theorem). *If a consistent recursive axiom set* T *contains* \mathbf{ZFC} *, then*

$$T \not\vdash Con(t)$$

especially, **ZFC** \forall *Con*(**ZFC**)

Definition 2.2. Suppose (M, E_M) and (N, E_N) are two models of set theory, then

- 1. if for any formula σ , $M \models \sigma$ if and only if $N \models \sigma$, then M and N are elementary equivalent, denoted by $M \equiv N$
- 2. If bijection $f: M \to N$ satisfies: for any $a, b \in M$, $aE_M b$ iff $f(a)E_N f(b)$, then $f: M \cong N$ is an **isomorphism**
- 3. If $M \subseteq N$ and $E_M = E_N \upharpoonright M$, then M is N's submodel
- 4. If M is isomorphic to a submodel of N by injection f, and for any formula $\varphi(x_1,\ldots,x_n)$, for any $a_1,\ldots,a_n\in M$, $M\models\varphi[a_1,\ldots,a_n]$ iff $N\models\varphi[f(a_1),\ldots,f(a_n)]$, then f is called an **elementary embedding** from M to N, written as $f:M\prec N$
- 5. If $M \subseteq N$ and $M \prec N$, then M is a **elementary submodel** of N

Lemma 2.3. Suppose $N \models \mathbf{ZFC}$, $M \subseteq N$, then $M \prec N$ iff $\forall \varphi(x, x_1, \ldots, x_n)$, $\forall (a_1, \ldots, a_n) \in M$, if $\exists a \in N \text{ s.t. } N \models \varphi[a, a_1, \ldots, a_n]$, then $\exists a \in M \text{ s.t. } M \models \varphi[a, a_1, \ldots, a_n]$

Definition 2.4. Suppose $(M, E) \models \mathbf{ZFC}$

- 1. $h_{\varphi}: M^n \to M$ is φ 's **Skolem function** if $\forall a_1, \ldots, a_n \in M$, if $\exists a \in M$ s.t. $M \models \varphi[a, a_1, \ldots, a_n]$, then $M \models \varphi[h_{\varphi}(a_1, \ldots, a_n), a_1, \ldots, a_n]$. requires **AC**
- 2. Let $\mathcal{H} = \{h_{\varphi} \mid \varphi \text{ is a formula on set theory}\}$. For any $S \subseteq M$, **Skolem** hull $\mathcal{H}(S)$ is the smallest set consisting of S and closed under \mathcal{H}

Lemma 2.5. $N \models \mathbf{ZFC}$, $S \subseteq N$, if $M = \mathcal{H}(S)$, then $M \prec N$

Theorem 2.6 (Löwenheim-Skolem theorem). Suppose $N \models \mathbf{ZFC}$ and is infinite, then there is a model M s.t. $|M| = \omega$ and $M \prec N$

2.2 Cumulative Hierarchy

This section works in \mathbf{ZF}^- (a.k.a. \mathbf{ZF} – axiom of foundation)

Definition 2.7. For any α , define sequence V_{α}

- 1. $V_0 = \emptyset$
- 2. $V_{\alpha+1} = \mathcal{P}(V_{\alpha})$
- 3. For any limit ordinal λ , $V_{\lambda} = \bigcup_{\beta < \lambda} V_{\beta}$

And **WF** =
$$\bigcup_{\alpha \in \mathbf{On}} V_{\alpha}$$

Lemma 2.8. For any ordinal α

- 1. V_{α} is transitive
- 2. if $\xi \leq \alpha$, then $V_{\xi} \subseteq V_{\alpha}$
- 3. *if* κ *is inaccessible cardinal, then* $|V_{\kappa}| = \kappa$

Proof. 1. Obviously $\kappa \leq V_{\kappa}$. Since κ is inaccessible, then for any $\alpha < \kappa$, $|V_{\alpha}| < \kappa$.

Definition 2.9. For any set $x \in WF$,

$$\operatorname{rank}(x) = \min\{\beta \mid x \in V_{\beta+1}\}\$$

Lemma 2.10. 1. $V_{\alpha} = \{x \in WF \mid rank(x) < \alpha\}$

- 2. **WF** is transitive
- 3. For any $x, y \in \mathbf{WF}$, if $x \in y$, then rank(x) < rank(y)
- 4. for any $y \in WF$, $rank(y) = \sup\{rank(x) + 1 \mid x \in y\}$

Lemma 2.11. *Supoose* α *is an ordinal*

- 1. $\alpha \in WF$ and $rank(\alpha) = \alpha$
- 2. $V_{\alpha} \cap \mathbf{On} = \alpha$

Lemma 2.12. 1. If $x \in WF$, then $\bigcup x, \mathcal{P}(x), \{x\} \in WF$, and their ranks are all less than $rank(x) + \omega$

- 2. If $x, y \in WF$, then $x \times y, x \cup y, x \cap y, \{x, y\}, (x, y), x^y \in WF$, and their ranks are all less than $rank(x) + rank(y) + \omega$
- 3. $\mathbb{Z}, \mathbb{Q}, \mathbb{R} \in V_{\omega+\omega}$
- *4.* for any set x, $x \in WF$ iff $x \subset WF$

Lemma 2.13. Suppose AC

- 1. for any group G, there exists group $G' \cong G$ in **WF**
- 2. for any topological space T, there exists $T' \cong T$ in **WF**

Definition 2.14. Binary relation < on set A is **well-founded** if for any nonempty $X \subseteq A$, X has minimal element under <

Theorem 2.15. If $A \in WF$, then \in is a well-founded relation on A

Lemma 2.16. *If set* A *is transitive and* \in *is well-founded on* A*, then* $A \in WF$

Lemma 2.17. For any set x, there is a smallest transitive set trcl(x) s.t. $x \subseteq trcl(x)$ *Proof.*

$$x_0 = x$$

$$x_{n+1} = \bigcup x_n$$

$$\operatorname{trcl}(x) = \bigcup_{n < \omega} x_n$$

trcl(x) is called **transitive closure** of x

Lemma 2.18. Without axiom of power set

- 1. *if* x *is transitive, then* trcl(x) = x
- 2. if $y \in x$, then $trcl(y) \subseteq trcl(x)$
- 3. $\operatorname{trcl}(x) = x \cup \bigcup \{\operatorname{trcl}(y) \mid y \in x\}$

Theorem 2.19. For any set X, the following are equivalent

- 1. $X \in WF$
- 2. $\operatorname{trcl}(X) \in WF$
- 3. \in is a well-founded relation on trcl(X)

Theorem 2.20. The following propositions are equivalent

- 1. Axiom of foundation
- 2. For any set X, \in is a well-founded relation on X
- 3. V = WF

2.3 Relativization

Definition 2.21. Let **M** be a class φ a formula, the **relativization** of φ to **M** is $\varphi^{\mathbf{M}}$ defined inductively

$$(x \in y)^{\mathbf{M}} \leftrightarrow x = y$$
$$(x \in y)^{\mathbf{M}} \leftrightarrow x \in y$$
$$(\varphi \to \psi)^{\mathbf{M}} \leftrightarrow \varphi^{\mathbf{M}} \to \psi^{\mathbf{M}}$$
$$(\neg \varphi)^{\mathbf{M}} \leftrightarrow \neg \varphi^{\mathbf{M}}$$
$$(\forall x \varphi)^{\mathbf{M}} \leftrightarrow (\forall x \in \mathbf{M}) \varphi^{\mathbf{M}}$$

Note
$$\varphi^{\mathbf{V}} = \varphi$$
 and

$$f^{\mathbf{M}} = \{(x_1, \dots, x_n, x_{n+1}) \in \mathbf{M} \mid \varphi^{\mathbf{M}}(x_1, \dots, x_n, x_{n+1})\}$$

Definition 2.22. For any theory T , any class ${\bf M}$, ${\bf M} \models T$ iff for any axiom φ of T , $\varphi^{\bf M}$ holds

Theorem 2.23 (ZF $^-$). $WF \models ZF$

Proof. • Axiom of existence

 $(\exists x(x=x))^{\mathbf{M}} \leftrightarrow \exists x \in \mathbf{M} (x=x)$, which is equivalent to \mathbf{M} being nonempty

• Axiom of extensionality

$$\forall X \forall Y \forall u ((u \in X \leftrightarrow u \in Y) \to X = Y)^{\mathbf{M}} \Leftrightarrow$$

$$\forall X \in \mathbf{M} \ \forall Y \in \mathbf{M} \ \forall u \in \mathbf{M} \ ((u \in X \leftrightarrow u \in Y) \to X = Y)$$

Lemma 2.24. *If* M *is transitive, then axiom of extensionality holds in* M

• Axiom schema of specification

$$\forall X \in \mathbf{M} \ \exists Y \in \mathbf{M} \ \forall u \in \mathbf{M} \ (u \in Y \leftrightarrow u \in X \land \varphi^{\mathbf{M}} (u))$$

Since for any $X \in \mathbf{WF}$, $\mathcal{P}(X) \subseteq \mathbf{WF}$

- Axiom of paring
- Axiom of union
- Axiom of power set

$$\forall X \in \mathbf{M} \ \exists Y \in \mathbf{M} \ \forall u \in \mathbf{M} \ (u \in Y \leftrightarrow (u \subseteq X)^{\mathbf{M}})$$

and

$$(u \subseteq X)^{\mathbf{M}} \leftrightarrow \forall x \in \mathbf{M} \ (x \in u \to x \in X) \leftrightarrow u \cap \mathbf{M} \subseteq X$$

- Axiom of foundation
- Axiom schema of replacement

2.4 Absoluteness

Definition 2.25. For any formula $\psi(x_1,\ldots,x_n)$ and any class ${\bf M}$, ${\bf N}$, ${\bf M}\subseteq {\bf N}$, if

$$\forall x_1 \dots \forall x_n \in \mathbf{M} \left(\psi^{\mathbf{M}} \left(x_1, \dots, x_n \right) \leftrightarrow \psi^{\mathbf{N}} \left(x_1, \dots, x_n \right) \right)$$

then $\psi(x_1,\dots,x_n)$ is absolute for ${\bf M}$,cn. If ${\bf N}={\bf V}$, then ψ is absolute for ${\bf M}$

Lemma 2.26. *Suppose* $M \subseteq N$ *and* φ, ψ *are formulas, then*

- 1. *if* φ , ψ *are absolute for* M ,cn, then so are $\neg \varphi$, $\varphi \rightarrow \psi$
- 2. *if* φ *doesn't contain any quantifiers, then* φ *is absolute for any* M
- 3. *if* M ,N *are transitive and* φ *is absolute for them, then so are* $\forall x \in y\varphi$

Definition 2.27. Δ_0 formula

- 1. $x = y, x \in y$ are Δ_0 formulas
- 2. if φ , ψ are Δ_0 , then so are $\neg \varphi$, $\varphi \rightarrow \psi$
- 3. if φ is Δ_0 , y is any set, then $(\forall x \in y)\varphi$ is Δ_0 If φ is Δ_0 , then $\exists x_1 \dots \exists x_n \varphi$ is Σ_1 formula, $\forall x_1 \dots \forall x_n \varphi$ is Π_1

Lemma 2.28. $M \subseteq N$ are both transitive, $\psi(x_0, \ldots, x_n)$ is a formula, then

- 1. if ψ is Δ_0 , then it's absolute for M ,cn
- 2. *if* ψ *is* Σ_1 , then

$$\forall x_1 \dots x_n (\psi^{\mathbf{M}}(x_1, \dots, x_n) \to \psi^{\mathbf{N}}(x_1, \dots, x_n))$$

3. *if* ψ *is* Π_1 , then

$$\forall x_1 \dots x_n (\psi^{\mathbf{N}}(x_1, \dots, x_n) \to \psi^{\mathbf{M}}(x_1, \dots, x_n))$$

Lemma 2.29. *If* $M \subseteq N$, $M \models \Sigma$, $N \models \Sigma$ *and*

$$\Sigma \vdash \forall x_1 \dots \forall x_n (\varphi(x_1, \dots, x_n) \leftrightarrow \psi(x_1, \dots, x_n))$$

then φ is absolute for M ,N if and only if ψ is absolute for M ,N

Definition 2.30. Suppose $\mathbf{M} \subseteq \mathbf{N}$, $f(x_1, \dots, x_n)$ is a function. f is **absolute** for \mathbf{M} and \mathbf{N} if and only if $\varphi(x_1, \dots, x_n, x_{n+1})$ defining f is absolute.

Theorem 2.31. Following relations and functions can be defined in \mathbf{ZF}^- – Pow – Inf and are equivalent to some Δ_0 formulas. So they are absolute for any transitive model \mathbf{M} on \mathbf{ZF}^- – Pow – Inf

- 1. $x \in y$
- 2. x = y
- 3. $x \subset y$
- 4. $\{x, y\}$
- 5. $\{x\}$
- 6. (x, y)
- 7. Ø
- 8. $x \cup y$
- 9. x y
- 10. $x \cap y$

- 11. x^+
- 12. x is a transitive set
- 13. LJ x
- 14. $\bigcap x (\bigcap \emptyset = \emptyset)$

Lemma 2.32. Absoluteness is closed under operation composition

Theorem 2.33. Following relations and functions are absolute for any transitive model M on $\mathbf{ZF}^- - Pow - Inf$

- 1. z is an ordered pair
- 2. $A \times B$
- 3. R is a relation
- 4. dom(R)
- 5. ran(R)
- 6. *f* is a function
- 7. f(x)
- 8. f is injective

2.5 Relative consistence of the axiom of foundation

Lemma 2.34. *Suppose transitive class* $M \models \mathbf{Z}\mathbf{F}^- - Pow - inf$ *and* $\omega \in M$ *, then the axiom of infinity is true in* M *. Hence the axiom of infinity is true in* $W\mathbf{F}$

Theorem 2.35. Let T be a theory of set theory language and Σ a set of sentences. Suppose M is a class and $T \vdash M \neq \emptyset$, then if $M \models_T \Sigma$, then

- 1. for any sentences φ , if $\Sigma \vdash \varphi$, then $T \vdash \varphi^{\mathbf{M}}$
- 2. *if* T *is consistent, then so is* $Cn(\Sigma)$

Theorem 2.36. The axiom of foundation is consistent with $\mathbf{Z}\mathbf{F}^-$.

Proof. By 2.35, let T be
$$\mathbf{ZF}^-$$
, Σ be \mathbf{ZF} and \mathbf{M} be \mathbf{WF}

Lemma 2.37 (ZF $^-$). Suppose transitive model $M \models \mathbf{ZF}^- - Pow - Inf$. If $X, R \in M$ and R is a well-order on X, then

$$(R \text{ is a well-order on } X)^{M}$$

Theorem 2.38 (ZF⁻).
$$V_{\omega} \models \mathbf{ZFC} - \mathbf{Inf} + \neg \mathbf{Inf}$$

Proof. For any $X \in V_{\omega}$, X is finite hence there is a well-ordering on X

Corollary 2.39.
$$Con\mathbf{Z}\mathbf{F}^- \to Con\mathbf{Z}\mathbf{F}\mathbf{C} - Inf + \neg Inf$$

2.6 Induction and recursion based on well-order relation

Definition 2.40. *R* is a well-founded relation on *X* if and only if

$$\forall U \subset \mathbf{X}(U \neq \emptyset \rightarrow \exists y \in U(\neg \exists z \in U(z\mathbf{R}y)))$$

Definition 2.41. Relation \boldsymbol{R} is **set-like** on \boldsymbol{X} iff for any $x \in \boldsymbol{X}$, $\{y \in \boldsymbol{X} \mid y\boldsymbol{R}x\}$ is a set

Definition 2.42. If R is a set-like relation on X and $x \in X$, define

$$\begin{split} \operatorname{pred}^0(\boldsymbol{X},x,\boldsymbol{R}) &= \{y \in \boldsymbol{X} \mid y\boldsymbol{R}x\} \\ \operatorname{pred}^{n+1}(\boldsymbol{X},x,bR) &= \bigcup \{\operatorname{pred}(\boldsymbol{X},y,\boldsymbol{R}) \mid y \in \operatorname{pred}^n(\boldsymbol{X},x,\boldsymbol{R})\} \\ \operatorname{cl}(\boldsymbol{X},x,\boldsymbol{R}) &= \bigcup_{n \in \omega} \operatorname{pred}^n(\boldsymbol{X},x,\boldsymbol{R}) \end{split}$$

Lemma 2.43. If \mathbf{R} is a set-like relation on \mathbf{X} , then for any $y \in cl(\mathbf{X}, x, \mathbf{R})$, $pred(\mathbf{X}, y, \mathbf{R}) \subseteq cl(\mathbf{X}, x, \mathbf{R})$

Theorem 2.44 (Induction on well-founded set-like relation). *If* R *is a well-founded set-like relation on* X, *then every nonempty* $Y \subseteq X$ *has minimal element under* R

Theorem 2.45. Suppose R is a well-founded set-like relation on X. If $F: X \times V \to V$, then there is a unique $G: X \to V$ s.t.

$$\forall x \in \boldsymbol{X}(\boldsymbol{G}(x) = \boldsymbol{F}(x, \boldsymbol{G}|pred(\boldsymbol{X}, x, \boldsymbol{R})))$$

Definition 2.46. If R is a set-like well-founded relation on X, define

$$rank(x, \boldsymbol{X}, \boldsymbol{R}) = \sup\{rank(y, \boldsymbol{X}, \boldsymbol{R}) + 1 \mid y\boldsymbol{R}x \wedge y \in \boldsymbol{X}\}\$$

Note that

$$F(x,h) = \sup\{\alpha + 1 \mid \alpha \in \operatorname{ran}(h)\}\$$

Lemma 2.47 (ZF $^-$). If X is transitive and \in is well-founded on X, then $X \subseteq WF$ and for any $x \in X$, rank $(x, X, \in) = rank(x)$

Definition 2.48. ${\bf \it R}$ is a set-like well-founded relation on ${\bf \it X}$, Mostowski function ${\bf \it G}$ on $({\bf \it X},{\bf \it R})$ is

$$G(x) = \{G(y) \mid y \in X \land yRx\}$$

 $\mathbf{M} = \operatorname{ran}(\mathbf{G})$ is called the **Mostowski collapse** of (\mathbf{X}, \mathbf{R})

Lemma 2.49. 1. $\forall x, y \in \mathbf{X}(x\mathbf{R}y \to \mathbf{G}(x) \in \mathbf{G}(y))$

- 2. *M* is transitive
- 3. If the axiom of power set holds, $M \subseteq WF$
- 4. if the axiom of power set holds and $x \in X$, then rank(x, X, R) = rank(G(x))

Definition 2.50. R is extensional on X iff

$$\forall x, y \in X (\forall z \in X (zRx \leftrightarrow zRy) \rightarrow x = y)$$

Lemma 2.51. *If* X *is transitive then* \in *is extensional on* X

Lemma 2.52. Let R be a set-like well-founded relation on X, G is a Mostowski function on it. If R is extensional, then G is an isomorphism

Theorem 2.53 (Mostowski collapse theorem). *Suppose* R *is set-like well-founded extensional on* X, *then there are unique transitive class* M *and bijection* $G: X \to M$ *s.t.* $G: (X, R) \cong (M, \in)$

2.7 Absoluteness under the axiom of foundation

Theorem 2.54. The following relations and functions can be defined by formulas in $\mathbf{Z}\mathbf{F}$ – Pow and are equivalent to some Δ_0 formulas

- 1. x is an ordinal
- 2. x is a limit ordinal
- 3. x is a successor ordinal
- $4. \omega$
- 5. x is a finite ordinal
- 6. $0, 1, 2, \ldots, 20, \ldots$

Theorem 2.55. If transitive model $M \models \mathbf{ZF} - Pow$, then every finite subset of M belongs to M

Proof. prove

$$\forall x \subset \mathbf{M} (|x| = n \to x \in \mathbf{M})$$

Theorem 2.56. The following concepts are absolute for any transitive model of $\mathbf{Z}\mathbf{F} - Pow$

- 1. x is finite
- $2. X^n$
- 3. $X^{<\omega}$

- 4. R is a well-ordering on X
- 5. type(X,R)
- 6. $\alpha + 1$
- 7. $\alpha 1$
- 8. $\alpha + \beta$
- 9. $\alpha \cdot \beta$

Class X is in fact a formula X(x). It's absolute for M if and only if $\forall x \in \mathbf{M} \ (\mathbf{X^M} \ (x) \leftrightarrow \mathbf{X}(x))$, which is equivalent to $\{x \in \mathbf{M} \ | \ \mathbf{X}(x)\} = \{x \in \mathbf{M} \ | \ \mathbf{X^M} \ (x)\}$. Hence \mathbf{X} is absolute for \mathbf{M} if and only if $\mathbf{X^M} = \mathbf{M} \ \cap \mathbf{X}$

Theorem 2.57. *Suppose* $m{R}$ *is a well-founded set-like relation on* $m{X}$, $m{F}: m{X} imes m{V} o$ V,

$$\forall x \in \boldsymbol{X}(\boldsymbol{G}(x) = \boldsymbol{F}(x, \boldsymbol{G} | (\boldsymbol{X}, x, \boldsymbol{R})))$$

transitive model $M \models \mathbf{ZF} - Pow$ and

- 1. \mathbf{F} is absolute for \mathbf{M}
- 2. \mathbf{X}, \mathbf{R} are absolute for \mathbf{M} , $(\mathbf{R}$ is set-like on $\mathbf{X})^{\mathbf{M}}$ and

$$\forall x \in M (pred(X, x, R) \subseteq M)$$

then G is absolute for M

Theorem 2.58. The following concept is absolute for any transitive model of ZF - Pow

- 1. α^{β}
- 2. rank(x)
- 3. trcl(x)

Lemma 2.59. *transitive* $M \models ZF$

- 1. if $x \in M$, then $\mathcal{P}^{M}(x) = \mathcal{P}(x) \cap M$ 2. if $\alpha \in M$, then $V_{\alpha}^{M} = V_{\alpha} \cap M$

Unaccessible cardinal and models of ZFC

$$Z = ZF - Rep, ZF^- = ZFC - Rep$$

Theorem 2.60. If $\gamma > \omega$ is a limit ordinal, then $V_{\gamma} \models_{\mathbf{ZF}} \mathbf{Z}$ and $V_{\gamma} \models_{\mathbf{ZFC}} \mathbf{ZC}$

Corollary 2.61. $V_{\omega+\omega}$ doesn't satisfies the axiom of replacement

Theorem 2.62.
$$ZC \not\vdash \exists x(x = V_{\omega}), ZC \not\vdash \forall x \exists y(\operatorname{trcl}(x) = y)$$

Theorem 2.63. If κ is an inaccessible cardinal, then $V_{\kappa} \models_{\mathbf{ZF}^{-}} \mathbf{ZF}$, $V_{\kappa} \models_{\mathbf{ZFC}^{-}} \mathbf{ZFC}$

Proof. Since κ is inaccessible, $|V_{\kappa}| = \kappa$. For any $A \in V_{\kappa}$, $|A| < \kappa$. Since κ is regular, any $f: A \to V_{\kappa}$ is bounded. Hence there exists $\alpha < \kappa$ s.t. $\operatorname{ran}(f) \subseteq V_{\alpha}$

Corollary 2.64. We cannot prove "there is some inaccessible cardinals" in **ZFC**

Proof. Suppose we could. Then we have $V_{\kappa} \models \mathbf{ZFC}$, which contradicts Gödel's second incompleteness theorem

Lemma 2.65. Suppose κ is inaccessible. The following concepts are absolute for V_{κ}

- 1. x is a cardinal
- 2. x is a regular cardinal
- 3. x is an inaccessible cardinal

Lemma 2.66. $Con(\mathbf{ZFC}) \rightarrow Con(\mathbf{ZFC} + "there is no inaccessible cardinal")$

Proof. If κ is the smallest inaccessible cardinal, then

 $V_{\kappa} \models \mathbf{ZFC}$ + "there is no inaccessible cardinal". Define

$$\mathbf{M} = \bigcap \{V_{\kappa} \mid \kappa \text{ is inaccessible}\}\$$

If there are, then $\mathbf{M} = V_{\kappa}$

Corollary 2.67. $Con(ZFC) \rightarrow Con(ZFC+"there are some inaccessible cardinals")$

Definition 2.68. For any infinite cardinal κ , $H_{\kappa} = \{x \mid |\operatorname{trcl}(x)| < \kappa\}$ is the collection of sets which **hereditarily have size less than** κ . Element of H_{ω} is called **hereditarily finite set**. Element of H_{ω_1} is called **hereditarily countable set**

Lemma 2.69. For any infinite cardinal κ , $H_{\kappa} \subseteq V_{\kappa}$

Lemma 2.70. If κ is regular, then $H_{\kappa} = V_{\kappa}$ if and only if κ is inaccessible

Proof. which implies
$$|V_{\kappa}| = \kappa$$

Lemma 2.71. *For any infinite cardinal* κ

- 1. H_{κ} is transitive
- 2. $H_{\kappa} \cap \mathbf{On} = \kappa$

- 3. If $x \in H_{\kappa}$, then $\bigcup x \in H_{\kappa}$
- 4. If $x, y \in H_{\kappa}$, then $\{x, y\} \in H_{\kappa}$
- 5. If $x \in H_{\kappa}, y \subseteq x$, then $y \in H_{\kappa}$
- 6. if κ is regular, then $\forall x(x \in H_{\kappa} \leftrightarrow x \subset H_{\kappa} \land |x| < \kappa)$

Theorem 2.72. *If* κ *is uncountable regular cardinal, then* $H_{\kappa} \models_{\mathbf{ZFC}} \mathbf{ZFC} - Pow$

Theorem 2.73. *If* κ *is uncountable regular cardianl, then the following propositions are equivalent*

- 1. $H_{\kappa} \models \mathbf{ZFC}$
- 2. $H_{\kappa} = V_{\kappa}$
- 3. κ is inaccessible

Corollary 2.74. $Con(\mathbf{ZFC}) \rightarrow Con(\mathbf{ZFC} - pow + \forall x(x \text{ is countable}))$

2.9 Reflection theorem

Lemma 2.75. $M \subseteq N$ are classes. $\varphi_1, \ldots, \varphi_n$ is a sequence closed under subformula, then the following propositions are equivalent

- 1. $\varphi_1, \ldots, \varphi_n$ are absolute for **M** and **N**
- 2. if $\varphi_i = \exists \varphi_i(x, y_1, \dots, y_m)$, then

$$\forall y_1, \dots, y_m \in \mathbf{M} \ (\exists x \in \mathbf{N} \ \varphi_i^{\mathbf{N}} \ (x, y_1, \dots, y_m) \to \exists x \in \mathbf{M} \ \varphi_i^{\mathbf{M}} \ (x, y_1, \dots, y_m))$$

Theorem 2.76 (reflection theorem(**ZF**)). For any finite formula set $F = \{\varphi_1, \dots, \varphi_n\}$, for any V_{α} , there exists V_{β} s.t. $V_{\alpha} \subseteq V_{\beta}$ and $\varphi_1, \dots, \varphi_n$ are absolute for V_{β}

Corollary 2.77 (ZF). $F = \{\sigma_1, \dots, \sigma_n\}$ are finite subsets of **ZF**, then

$$\forall \alpha \exists \beta > \alpha(\sigma_1^{V_\beta} \land \dots \land \sigma_n^{V_\beta})$$

Corollary 2.78. $F = \{\sigma_1, \dots, \sigma_n\}$ is a finite subset of **ZF**. Unless **ZF** is unconsistent, F cannot prove all axioms of **ZF**

Theorem 2.79 (ZFC). For any finite formula set $F = \{\varphi_1, \dots, \varphi_n\}$, for any set N, there exists set M s.t.

- 1. $N \subseteq M$
- 2. $\varphi_1, \ldots, \varphi_n$ are absolute for (M, \in)
- 3. $|M| \leq |N| \cdot \omega$

Corollary 2.80 (ZFC). For any finite formula set $F = \{\varphi_1, \dots, \varphi_n\}$, for any set N, there exists set M s.t.

- 1. $N \subseteq M$
- 2. $\varphi_1, \ldots, \varphi_n$ are absolute for (M, \in)
- 3. $|M| \leq |N| \cdot \omega$
- 4. M is transitive

3 Constructable Set - Venlafaxine

3.1 Definablity and Gödel operation

Definition 3.1. M is a set, $\psi(x_1,\ldots,x_n,y_1,\ldots,y_m)$ is a formula, $X\subseteq M^n$ is **definable in** M **from parameters from** ψ if and only if there are $y_1,\ldots,y_m\in M$ s.t.

$$X = \{(x_1, \dots, x_n) \mid (\psi^M(x_1, \dots, x_n, y_1, \dots, y_m))\}$$

$$\mathsf{Def}(M) = \{X \subseteq M \mid \exists \psi, X \text{ is definable in } M \text{ from } \psi\}$$

Definition 3.2. Gödel operation

- 1. $G_1(X,Y) = \{X,Y\}$
- $2. \ G_2(X,Y) = X \times Y$
- 3. $G_3(X,Y) = \in \uparrow X \times Y$
- 4. $G_4(X,Y) = X Y$
- 5. $G_5(X,Y) = X \cap Y$
- 6. $G_6(X,Y) = \bigcap X$
- 7. $G_7(X,Y) = dom(X)$
- 8. $G_8(X,Y) = \{(x,y) \mid (y,x) \in X\}$
- 9. $G_9(X,Y) = \{(x,y,z) \mid (x,z,y) \in X\}$
- 10. $G_{10}(X,Y) = \{(x,y,z) \mid (y,z,x) \in X\}$

Class C is closed under Gödel operation if for any $X, Y, X, Y \in \mathbb{C}$ \$ implies $G_i(X,Y) \in C$. For any set M, $\operatorname{cl}_G(M)$ is the closure under Gödel operation

Definition 3.3. ψ is a **normal form** if

- 1. only \neg , \land , \exists are logical symbol
- 2. = doesn't appear
- 3. if $x_i \in x_i$ then $i \neq j$
- 4. \exists only shown as: $\exists x_{m+1} \in x_i \varphi(x_1, \dots, x_{m+1}), 1 \leq i \leq m$

Lemma 3.4. Any Δ_0 formula can be transformed into normal form

Theorem 3.5. For any Δ_0 formula $\psi(x_1, \ldots, x_n)$, there is Gödel operations' composition G s.t. for any X_1, \ldots, X_n

$$G(X_1, \dots, X_n) = \{(x_1, \dots, x_n) \mid x_1 \in X_1 \land \dots \land x_n \in X_n \land \psi(x_1, \dots, x_n)\}$$

Corollary 3.6. If M is transitive and $M = cl_G(M)$, then for any Δ_0 formula $\psi(x, y_1, \ldots, y_m)$, any set $X \in M$, any $y_1, \ldots, y_m \in M$ if

$$Y = \{x \in X \mid \psi(x, y_1, \dots, y_m)\}\$$

then $Y \in M$. Hence Δ_0 schema of specification holds in M

Lemma 3.7. If $G(X_1, ..., X_n)$ is Gödel operations' composition, then $Z = G(X_1, ..., X_n)$ is equivalent to a Δ_0 formula

Theorem 3.8. For any transitive set M, $Def(M) = cl_G(M \cup \{M\}) \cap \mathcal{P}(M)$

Lemma 3.9. *If transitive* $M \models \mathbf{Z}\mathbf{F}$, then for any transitive set $M \in \mathbf{M}$, Def(M) is absolute for \mathbf{M}

Lemma 3.10. For any transitive set M

- 1. $Def(M) \subseteq \mathcal{P}(M)$
- 2. $M \subseteq Def(M)$
- 3. for any $X \subseteq M$, if X is finite, then $X \in Def(M)$
- 4. assume AC and $|M| \ge \omega$, then |Def(M)| = |M|

3.2 Gödel's L

Definition 3.11. for any α

- 1. $L_0 = \emptyset$
- 2. $L_{\alpha+1} = \text{Def}(L_{\alpha})$
- 3. For any limit α , $L_{\alpha} = \bigcup_{\beta < \alpha} L_{\beta}$
- $\mathbf{L} = \bigcup_{\alpha \in \mathbf{On}} L_{\alpha}$. Element of GLis called constructible set

Lemma 3.12. For any ordinal α

- 1. L_{α} is transitive
- 2. If $\alpha < \beta$, then $L_{\alpha} \subseteq L_{\beta}$
- 3. $L_{\alpha} \subseteq V_{\alpha}$

Definition 3.13. $x \in \mathbf{L}$

$$\operatorname{rank}_{\mathbf{L}}(x) = \min\{\beta \mid x \in \mathbf{L}_{\beta+1}\}\$$

Lemma 3.14. For any α

$$L_{\alpha} = \{ x \in \mathbf{L} \mid rank_{\mathbf{L}}(x) < \alpha \}$$

Lemma 3.15. For any ordinal α

- 1. $L_{\alpha} \cap \mathbf{On} = \alpha$
- 2. $\alpha \in \mathbf{L} \cap rank_{\mathbf{L}}(\alpha) = \alpha$

Proof. since " α is a cardinal" is absolute for any transitive set.

$$\alpha = L_{\alpha} \cap \mathbf{On} = \{ \eta \in L_{\alpha} \mid \eta \text{ is a ordinal} \}$$
$$= \{ \eta \in L_{\alpha} \mid (\eta \text{ is an ordinal}^{L_{\alpha}}) \} \in \text{Def}(L_{\alpha})$$

Lemma 3.16. *for any ordinal* α

- 1. $L_{\alpha} \in L_{\alpha+1}$
- 2. any finite subset of L_{α} belongs to $L_{\alpha+1}$

Lemma 3.17.
$$1. \ \forall n \in \omega(L_n = V_n)$$

2. $L_{\omega} = V_{\omega}$

Lemma 3.18. *If AC, then for any* $\alpha \ge \omega, |L_{\alpha}| = |\alpha|$

Theorem 3.19. $L \models ZF$

3.3 Axiom of constructibility and relativization

Theorem 3.20 (Axiom of constructibility). V = L

Lemma 3.21. function $\alpha \mapsto L_{\alpha}$ is absolute for any transitive model of **ZF**

Theorem 3.22.
$$L \models ZF + V = L$$

Proof.
$$(\mathbf{V} = \mathbf{L})^{\mathbf{L}}$$
 is $\forall x \in \mathbf{L} \exists \alpha \in \mathbf{L} (x \in L_{\alpha})^{\mathbf{L}}$. By 3.21, $(x \in L_{\alpha})^{\mathbf{L}} \Leftrightarrow x \in L_{\alpha}$. Hence $\mathbf{L} \models \mathbf{V} = \mathbf{L}$

Hence

Theorem 3.23. $Con(\mathbf{Z}\mathbf{F}) \to Con(\mathbf{Z}\mathbf{F} + \mathbf{V} = \mathbf{L})$

Theorem 3.24. Suppose transitive proper class $M \models \mathbf{ZF} - Pow$, then $L = L^M \subseteq M$

Proof. For any ordinal α , since \mathbf{M} is proper, $\mathbf{M} \not\subseteq V_{\alpha}$. Hence there is $x \in \mathbf{M}$ s.t. $\mathrm{rank}(x) \geq \alpha$. Since rank is absolute, $\mathrm{rank}(x) \in \mathbf{M}$. And \mathbf{M} is transitive, hence $\alpha \in \mathbf{M}$. By 3.21, $L_{\alpha} \in \mathbf{M}$

$$\mathbf{L}^{\mathbf{M}} = \{ x \in \mathbf{M} \mid (\exists \alpha \in \mathbf{On} \ (x \in L_{\alpha}))^{\mathbf{M}} \}$$

$$= \{ x \mid \exists \alpha \in \mathbf{On} \ \cap \mathbf{M} (x \in L_{\alpha} \cap \mathbf{M}) \}$$

$$= \{ x \mid \exists \alpha \in \mathbf{On} \ (x \in L_{\alpha}) \}$$

$$= \mathbf{L}$$

Definition 3.25. If transitive model $M \models \mathbf{ZF}$ contains all ordinals, then it's an **inner model**

Lemma 3.26. there is a finite set of axioms $\{\psi_1, \ldots, \psi_n\}$ of $\mathbf{ZF} - Pow \ s.t.$ ordinals, rank and L_{α} are absolute for any model of $\{\psi_1, \ldots, \psi_n\}$

Lemma 3.27. If set M is transitive, then $M \cap \mathbf{On}$ is a ordinal and is the least that doesn't belong to M, denoted by α^M

Theorem 3.28. There is a finite subset $\{\psi_1, \ldots, \psi_n\}$ of axioms of $\mathbf{ZF} - Pow$ satisfying

$$\forall M(M \text{ is transitive } \land \psi_1^M \land \dots \land \psi_n^m \rightarrow (L_{\alpha^M} = \mathbf{L}^M \subseteq M))$$

Theorem 3.29. The is a finite subset $\{\psi_1, \dots, \psi_{n+1}\}$ of axioms of $\mathbf{ZF} - Pow + \mathbf{V} = \mathbf{V}$ L satisfying

- 1. If M is a transitive proper class and $\psi_1^M \wedge \cdots \wedge \psi_{n+1}^M$, then M = L2. $\forall M(M \text{ is transitive } \wedge \psi_1^M \wedge \cdots \wedge \psi_n^m \rightarrow (L_{\alpha^M} = M))$

Theorem 3.30. *There is a well-ordering on* L*. Hence* $V = L \rightarrow AC$

If
$$V = L$$
, hence $\aleph_{\alpha} \subseteq L_{\aleph_{\alpha+1}}$. Because $|L_{\alpha_{\alpha+1}}| = \aleph_{\alpha+1}, 2^{\aleph_{\alpha}} \leq \aleph_{\alpha+1}$

Theorem 3.31. If V = L, then for any infinite ordinal α , $\mathcal{P}(L_{\alpha}) \subseteq L_{|\alpha|^+}$

Corollary 3.32 (ZF). $(AC + GCH)^L$

Theorem 3.33 (ZF). $Con(\mathbf{ZF}) \rightarrow Con(\mathbf{ZFC} + \mathbf{GCH})$

Theorem 3.34 (ZF). *Suppose* $S_0 = \{\psi_1, \dots, \psi_n\} \subseteq \mathbf{ZF} + \mathbf{V} = \mathbf{L}$, then

$$\mathbf{ZF} \vdash \exists M (|M| = \omega \land M \text{ is transitive } \land (\psi_1^M \land \dots \land \psi_n^M))$$

Lemma 3.35. *Suppose* V = L. *For any uncountable regular cardinal* κ , $L_{\kappa} = H_{\kappa}$

Corollary 3.36. *If* κ *is a uncountable regular cardinal, then* $_{\kappa} \models \mathbf{ZF} - Pow + \mathbf{V} = \mathbf{L}$. *If* κ *is inaccessible, then* $L_{\kappa} \models \mathbf{ZF} + \mathbf{V} = \mathbf{L}$

4 The end

Learn and forget