Desafio de Ciencia de Dados da Gerdau - Data & Analytics

Introdução

O time de Data Science da Gerdau usa Inteligência Artificial e Advanced Analytics para resolver problemas diversos dentro da nossa empresa. Nesse desafio você terá contato com algumas das tarefas diárias de um Cientista de Dados do time e como ele avaliaremos, como suas competências estão conectadas com nossos pilares técnicos e do negócio.

Guiaremos você ao longo do problema, e sua senioridade, de acordo com nossos padrões e pilares, será definida pela maneira como você resolverá cada item.

O que você deve levar em consideração

- Descrever a abordagem utilizada na resolução do desafio
- Trechos de códigos deverão ter comentários essenciais
- O desafio deverá ser feito com a linguagem de programação Python + bibliotecas que você achar necessário
- Soluções utilizando Excel, R e outras linguagens serão desconsideradas
- Recomendamos utilizar Jupyter Lab ou Notebook.

Prazo de entrega

• De acordo conforme combinado com o time de Data & Analytics

Desclassificação Automática

- · Entregar fora do prazo
- Compartilhar sua solução com outras pessoas
- Compartilhar sua solução em repositórios públicos. Exemplo: GitHub

Objetivo

A produção de uma empresa de aço envolve a fabricação de vários tipos de componentes, incluindo bobinas e placas. As informações sobre o consumo de energia são registradas em um sistema de armazenamento em nuvem. O monitoramento do consumo energético desta indústria está disponível nos dados fornecidos. Desta forma, gostariamos que você preveja o consumo elétrico em uma perspectiva mensal.

Tratamento dos Dados

Apesar dos dados recebidos ja foram entregues tratados, pessoalmente gosto de dar uma explorada inicial e converter o tipo dos dados para otimização do espaço de memória.

```
import numpy as np
In [ ]:
          import pandas as pd
          df = pd.read_csv('../datasets/raw.csv')
In [ ]:
          df.head()
                                                        ٧4
                                                              ۷5
                                                                    V6
                                                                             ۷7
                                                                                       ۷8
                                                                                              V9
                                        V1
                                            V2
                                                 ٧3
                  Data
                        Energia_usada
Out[]:
            01/01/2018
                                                                                 Segunda-
                                                                          Dia da
                                                                                           Carga
          0
                                       2.95
                                            0.0
                                                 0.0
                                                     73.21
                                                            100.0
                                                                   900
                 00:15
                                                                        Semana
                                                                                     feira
                                                                                            leve
             01/01/2018
                                                                                 Segunda-
                                                                          Dia da
                                                                                           Carga
                                       4.46
                                            0.0
                                                 0.0
                                                     66.77
                                                            100.0
                                                                  1800
                 00:30
                                                                        Semana
                                                                                     feira
                                                                                            leve
             01/01/2018
                                                                          Dia da
                                                                                 Segunda-
                                                                                           Carga
          2
                                       3.28
                                            0.0
                                                 0.0
                                                     70.28
                                                            100.0
                                                                  2700
                                  3.24
                 00:45
                                                                        Semana
                                                                                     feira
             01/01/2018
                                                                          Dia da
                                                                                 Segunda-
                                                                                           Carga
                                       3.56
                                            0.0
                                                 0.0
                                                     68.09
                                                            100.0
                                                                  3600
                 01:00
                                                                        Semana
                                                                                     feira
                                                                                            leve
            01/01/2018
                                                                          Dia da
                                                                                 Segunda-
                                                                                           Carga
                                                           100.0 4500
                                  3.82 4.50
                                            0.0
                                                 0.0 64.72
                 01:15
                                                                        Semana
                                                                                     feira
                                                                                            leve
          df.columns = ['data', 'consumo_energia', 'corrente_atrasada', 'corrente_p
In [ ]:
          memory_before = df.memory_usage(deep=True).sum()
          memory_before
          11722932
Out[ 1:
          df.info(memory_usage='deep')
```

```
<class 'pandas.core.frame.DataFrame'>
         RangeIndex: 35040 entries, 0 to 35039
         Data columns (total 11 columns):
              Column
                                           Non-Null Count Dtype
         - - -
                                           -----
          0
              data
                                           35040 non-null object
                                          35040 non-null float64
          1
              consumo_energia
                                         35040 non-null float64
35040 non-null float64
35040 non-null float64
35040 non-null float64
              corrente_atrasada
          2
             corrente_principal
          3
          4
             co2
          5
             potencia_principal
              potencia_atrasado
                                          35040 non-null float64
             segundos_depois_meia_noite 35040 non-null int64
          7
                                          35040 non-null object
35040 non-null object
          8
              estado_semana
          9
              dia_semana
          10 tipo_carga
                                           35040 non-null object
         dtypes: float64(6), int64(1), object(4)
         memory usage: 11.2 MB
In [ ]: df.nunique()
Out[]: data
                                        35040
        consumo_energia
                                         3343
                                         1954
        corrente_atrasada
        corrente_principal
                                          768
        co2
                                            8
                                         5079
         potencia_atrasado
        potencia_principal
                                         3366
        segundos_depois_meia_noite
                                          96
                                            2
        estado_semana
                                            7
        dia_semana
                                            3
        tipo_carga
         dtype: int64
In [ ]: | df.data = df.data.astype('datetime64[ns]')
         df.co2 = df.co2.astype('float16')
         df.segundos_depois_meia_noite = df.segundos_depois_meia_noite.astype('int
         df.estado_semana = df.estado_semana.astype('category')
         df.dia_semana = df.dia_semana.astype('category')
         df.tipo_carga = df.tipo_carga.astype('category')
In [ ]: memory_after = df.memory_usage(deep=True).sum()
         memory_after
        1998745
Out[]:
In [ ]: df.info(memory_usage='deep')
```

Tino Variável

```
<class 'pandas.core.frame.DataFrame'>
         RangeIndex: 35040 entries, 0 to 35039
         Data columns (total 11 columns):
              Column
                                            Non-Null Count Dtype
              data
                                            35040 non-null datetime64[ns]
              consumo_energia
                                           35040 non-null float64
          1
                                           35040 non-null float64
35040 non-null float64
35040 non-null float16
              corrente_atrasada
          2
              corrente_principal
          3
          4
              co2
          5
              potencia_atrasado
                                           35040 non-null float64
          6 potencia_principal
                                           35040 non-null float64
              segundos_depois_meia_noite 35040 non-null int32
          7
                                            35040 non-null category
          8
              estado_semana
                                            35040 non-null category
35040 non-null category
          9
              dia_semana
          10 tipo_carga
         dtypes: category(3), datetime64[ns](1), float16(1), float64(5), int32(1)
         memory usage: 1.9 MB
In [ ]: print (f'{memory_after/memory_before*100: .2f}% da memória original')
          17.05% da memória original
In [ ]: df.to_pickle('../datasets/processed.pkl')
```

Análise Exploratória e Qualidade dos Dados

Gostariamos que nesta primeira etapa do processo, use sua curiosidade e criatividade, além de experiência, para extrair informação de cada variável ou relação entre as variáveis do dataset. Nesta etapa, podem surgir insights que gerem valor para o negócio, além de ajudar ao entendimento do problema. Esperamos que você gere estatísticas, gráficos, visualizações que descrevam os dados e como eles estão conectados com o problema.

Temos acesso aos dados de consumo elétrico da empresa, referentes a um período de 1 ano, sendo que a medição é realizada em intervalos de 15 minutos.

Description

Nome

Nome	Description.	ripo variavei
Data	Data de registro do consumo	Continua
Energia_usada	Consumo de energia da empresa [kWh]	Continua
V1	Corrente atrasada [kVarh]	Continua
V2	Corrente principal [kVarh]	Continua
V3	Medições de C02 [ppm]	Continua
V4	Fator de potência atual atrasado	Continua
V5	Fator de potência atual principal	Continua
V6	Número de segundos a partir da meia-noite [S]	Continua
V7	Estado da semana (Final de semana ou dia da semana)	Categorica
V8	Dia da semana (Terça-feira, Sábado, etc)	Categorica
V9	Tipo de carga (Carga leve, Carga média, Carga máxima)	Categorica

Imports

```
In []: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    from statsmodels.tsa.seasonal import seasonal_decompose

    sns.set(style='darkgrid')
    palette = 'mako'
    sns.set_theme(style="ticks", rc={"axes.spines.right": False, "axes.spines")
```

Análise inicial

Visão inicial dos dados

```
In [ ]: df = pd.read_pickle('../datasets/processed.pkl')
    df.head()
```

Out[]:		data	consumo_energia	corrente_atrasada	corrente_principal	co2	potencia_atrasad
	0	2018-01-01 00:15:00	3.17	2.95	0.0	0.0	73.2
	1	2018-01-01 00:30:00	4.00	4.46	0.0	0.0	66.7
	2	2018-01-01 00:45:00	3.24	3.28	0.0	0.0	70.2
	3	2018-01-01 01:00:00	3.31	3.56	0.0	0.0	68.0
	4	2018-01-01 01:15:00	3.82	4.50	0.0	0.0	64.7

```
In [ ]: | df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 35040 entries, 0 to 35039
Data columns (total 11 columns):

memory usage: 1.9 MB

```
#
    Column
                                  Non-Null Count Dtype
- - -
     -----
                                  _____
0
    data
                                  35040 non-null datetime64[ns]
                                 35040 non-null float64
 1
    consumo_energia
                                 35040 non-null float64
35040 non-null float64
35040 non-null float16
 2
     corrente_atrasada
 3
    corrente_principal
 4
    co2
                                 35040 non-null float64
5
    potencia_atrasado
    potencia_principal
                                  35040 non-null float64
 7
    segundos_depois_meia_noite 35040 non-null int32
                                  35040 non-null category
8
     estado_semana
                                  35040 non-null category
9
    dia_semana
10 tipo_carga
                                  35040 non-null category
dtypes: category(3), datetime64[ns](1), float16(1), float64(5), int32(1)
```

Observação dos dados numéricos

Foram desconsideradas as variáveis referente a data e segundos depois da meia noite, por serem medidas de tempo

In []:	df.drop(column	<pre>lf.drop(columns=['data', 'segundos_depois_meia_noite']).describe().T.</pre>							
Out[]:		mean	std	min	25%	50%	75%	max	
	consumo_energia	27.386892	33.444380	0.0	3.20	4.57	51.237500	157.180000	
	corrente_atrasada	13.035384	16.306000	0.0	2.30	5.00	22.640000	96.910000	
	corrente_principal	3.870949	7.424463	0.0	0.00	0.00	2.090000	27.760000	
	co2	0.011520	0.016144	0.0	0.00	0.00	0.020004	0.070007	
	potencia_atrasado	80.578056	18.921322	0.0	63.32	87.96	99.022500	100.000000	
	potencia_principal	84.367870	30.456535	0.0	99.70	100.00	100.000000	100.000000	

Observação dos dados categóricos

dtype: int64

```
df.describe(exclude=[np.number, np.datetime64]).T.drop('count', axis=1)
In [ ]:
                       unique
                                       top
                                             freq
Out[]:
                            2 Dia da Semana 25056
         estado_semana
                            7
                               Segunda-feira
            dia_semana
                                            5088
                            3
                                  Carga leve 18072
             tipo_carga
         df.nunique()
In [ ]:
                                          35040
         data
Out[]:
         consumo energia
                                           3343
         corrente_atrasada
                                           1954
         corrente_principal
                                            768
                                              8
         potencia_atrasado
                                           5079
         potencia_principal
                                           3366
         segundos_depois_meia_noite
                                             96
         estado_semana
                                              2
                                              7
         dia_semana
                                              3
         tipo_carga
```

A partir do site do governo foi adquirido as datas referentes as estações do ano

- Verão: 21 dezembro, às (14h28) de 2017 a 20 de março de 2018 (13h14);
- Verão: de 21 de dezembro (20h22) a 20 de março de 2019 (18h58);
- Outono: de 20 de março (13h14) a 21 de junho de 2018 (7h07);
- Inverno: de 21 de junho (7h07) a 22 de setembro de 2018 (22h53);
- Primavera: de 22 de setembro (22h53) a 21 de dezembro de 2018 (20h22).

```
In [ ]: def estacao do ano(data):
            verao_2018_inicio = pd.Timestamp('2017-12-21 14:28:00')
             verao_2018_fim = pd.Timestamp('2018-03-20 13:14:00')
            verao_2019_inicio = pd.Timestamp('2018-12-21 20:22:00')
            verao_2019_fim = pd.Timestamp('2019-03-20 18:58:00')
             outono_inicio = pd.Timestamp('2018-03-20 13:14:00')
             outono_fim = pd.Timestamp('2018-06-21 07:07:00')
             inverno_inicio = pd.Timestamp('2018-06-21 07:07:00')
             inverno_fim = pd.Timestamp('2018-09-22 22:53:00')
             primavera_inicio = pd.Timestamp('2018-09-22 22:53:00')
            primavera_fim = pd.Timestamp('2018-12-21 20:22:00')
             if verao_2018_inicio <= data < verao_2018_fim or verao_2019_inicio <=</pre>
                 return 'Verão'
             elif outono_inicio <= data < outono_fim:</pre>
                 return 'Outono'
             elif inverno_inicio <= data < inverno_fim:</pre>
                return 'Inverno'
             elif primavera_inicio <= data < primavera_fim:</pre>
                 return 'Primavera'
                 return 'Fora do intervalo'
        df['estacao'] = df['data'].apply(estacao_do_ano)
        del estacao_do_ano
```

Observação da variável target em ordem crescente e decrescente

Apesar dos dados não possuirem valores null, foi observado uma linha completamente nula, podendo ser considerado um outlier, ou um erro na medição

In []:	<pre>df.sort_values('consumo_energia', ascending=True).head(10)</pre>									
Out[]:		data	consumo_energia	corrente_atrasada	corrente_principal	co2 p	otencia_atra			
	29855	2018-07-11 00:00:00	0.00	0.00	0.0	0.0				
	25848	2018-09-27 06:15:00	2.45	4.93	0.0	0.0				
	25847	2018-09-27 06:00:00	2.45	4.97	0.0	0.0				
	26234	2018-01-10 06:45:00	2.45	4.36	0.0	0.0				
	25851	2018-09-27 07:00:00	2.45	5.08	0.0	0.0				
	26018	2018-09-29 00:45:00	2.45	4.00	0.0	0.0				
	25820	2018-09-26 23:15:00	2.45	4.64	0.0	0.0				
	25822	2018-09-26	2.45	4.61	0.0	0.0				
	25821	23:45:00 2018-09-26	2.45	4.61	0.0	0.0				
		23:30:00								
	23733	05:30:00	2.48	5.00	0.0	0.0				
In []:	df.so	rt_values	('consumo_energ	ia', ascending=	False).head(10)					
In []: Out[]:	df.so			ia', ascending= corrente_atrasada		cc	o2 potenci			
	df.so				corrente_principal	0.07000				
		data 2018-11-22	consumo_energia	corrente_atrasada	corrente_principal)7			
	31238	data 2018-11-22 09:45:00 2018-01-15	consumo_energia	corrente_atrasada 77.72	corrente_principal 0.0 0.0	0.07000)7			
	31238 1398	data 2018-11-22 09:45:00 2018-01-15 13:45:00 2018-11-27	consumo_energia 157.18 153.14	corrente_atrasada 77.72 70.45	0.0 0.0 0.0	0.07000)7)7)7			
	31238 1398 31723	data 2018-11-22	consumo_energia 157.18 153.14 151.67	77.72 70.45 69.73	0.0 0.0 0.0 0.0	0.07000)7)7)7)7			
	31238 1398 31723 7812	data 2018-11-22 09:45:00 2018-01-15 13:45:00 2018-11-27 11:00:00 2018-03-23 09:15:00 2018-01-18 17:30:00 2018-12-19	consumo_energia 157.18 153.14 151.67 151.31	77.72 70.45 69.73 65.20	corrente_principal 0.0 0.0 0.0 0.0 0.0	0.07000 0.07000 0.07000)7)7)7)7			
	31238 1398 31723 7812 1701	data 2018-11-22	consumo_energia 157.18 153.14 151.67 151.31 149.65	77.72 70.45 69.73 65.20 64.87	corrente_principal 0.0 0.0 0.0 0.0 0.0 0.0	0.07000 0.07000 0.07000 0.07000)7)7)7)7)7			
	31238 1398 31723 7812 1701 33848	data 2018-11-22 09:45:00 2018-01-15 13:45:00 2018-11-27 11:00:00 2018-03-23 09:15:00 2018-01-18 17:30:00 2018-12-19 14:15:00 2018-02-01 16:45:00 2018-05-03	consumo_energia 157.18 153.14 151.67 151.31 149.65 149.18	77.72 70.45 69.73 65.20 64.87 74.56	corrente_principal 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.07000 0.07000 0.07000 0.07000)7)7)7)7)7			
	31238 1398 31723 7812 1701 33848 162 6111	data 2018-11-22 09:45:00 2018-01-15 13:45:00 2018-11-27 11:00:00 2018-03-23 09:15:00 2018-01-18 17:30:00 2018-12-19 14:15:00 2018-02-01 16:45:00 2018-05-03 16:00:00 2018-01-18	consumo_energia 157.18 153.14 151.67 151.31 149.65 149.18 147.46 146.88	corrente_atrasada 77.72 70.45 69.73 65.20 64.87 74.56 65.27 70.49	corrente_principal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.07000 0.07000 0.07000 0.07000 0.07000 0.07000)7)7)7)7)7)7			
	31238 1398 31723 7812 1701 33848 162	data 2018-11-22 09:45:00 2018-01-15 13:45:00 2018-11-27 11:00:00 2018-03-23 09:15:00 2018-01-18 17:30:00 2018-12-19 14:15:00 2018-02-01 16:45:00 2018-05-03 16:00:00	consumo_energia 157.18 153.14 151.67 151.31 149.65 149.18 147.46	corrente_atrasada 77.72 70.45 69.73 65.20 64.87 74.56 65.27	corrente_principal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.07000 0.07000 0.07000 0.07000 0.07000)7)7)7)7)7)7			

Análise referente aos meses

Out[]:		consumo	_energia	corrente_	atrasada	corrente_	principal		co2	р
		mean	median	mean	median	mean	median	mean	median	
	data									
	January	33.876300	13.68	15.136035	5.18	4.520719	0.00	0.014759	0.010002	85
	February	29.330588	5.15	12.377035	4.86	4.434911	0.00	0.011741	0.000000	83
	March	27.107282	4.46	11.852571	4.57	3.993380	0.00	0.011476	0.000000	81
	April	25.923153	4.12	12.074792	4.28	4.427858	0.00	0.010879	0.000000	81
	Мау	28.636166	4.21	13.803901	5.15	3.579778	0.00	0.012218	0.000000	78
	June	25.909760	4.21	12.484104	5.18	3.726187	0.00	0.010903	0.000000	78
	July	27.497762	4.05	12.963784	5.08	3.508673	0.00	0.011698	0.000000	80
	August	28.021788	4.43	14.766176	5.47	2.888901	0.00	0.011912	0.000000	76
	September	20.581271	3.42	11.048615	5.11	3.855295	0.00	0.008431	0.000000	76
	October	27.564022	4.46	14.895481	5.98	3.486727	0.00	0.011573	0.000000	76
	November	30.867705	5.11	14.681601	5.15	3.175757	0.00	0.013087	0.000000	81
	December	23.312893	4.25	10.217043	3.31	4.898138	0.04	0.009550	0.000000	85

Apenas com esse agrupamento foi observada uma forte correlação referente ao consumo de energia e a corrente atrasada, então ordenamos os meses referentes as duas variaveis e comparamos

Out[]:		consumo_energia	corrente_atrasada
_	0	January	January
	1	November	October
	2	February	August
	3	May	November
	4	August	May
	5	October	July
	6	July	June
	7	March	February
	8	April	April
	9	June	March
	10	December	September
	11	September	December

In []: # Median
 pd.DataFrame(data=[consumo_energia[1], corrente_atrasada[1]], index=['con

Out[]:		consumo_energia	corrente_atrasada
	0	January	October
	1	February	August
	2	November	January
	3	March	June
	4	October	May
	5	August	November
	6	December	September
	7	May	July
	8	June	February
	9	April	March
	10	July	April
	11	September	December

Análise gráfica

Histograma

Inicialmente vamos observar o histograma desses dados, assim observando como sua distribuição se comporta.

Para tal foram desconsiderados elementos:

- categóricos
 - Estado da semana
 - Dia da semana
 - Tipo de carga
- temporais
 - Data
 - Estação
 - Segundos após a meia noite

Foi observado que apesar do seu valor flutuante a variável co2 se comporta de maneira categórica, por possuir apenas 8 elementos únicos.

```
In [ ]: def plot_histograms(df: pd.DataFrame, columns: list, n_rows: int, n_cols:
    fig = plt.figure(figsize=(20, 16))
    for i, column in enumerate(columns):
        ax = fig.add_subplot(n_rows, n_cols, i + 1)
        sns.histplot(data=df, x=column, ax=ax, bins=20, kde=True, color=':
        for value in ax.containers:
            ax.bar_label(value, label_type='edge', fontsize=9, family='monoxiset_xlabel(None)
        ax.set_ylabel('Contagem', fontsize='large', family='monospace')
        ax.set_title(title[i], fontsize='large', fontweight='bold', stylefig.tight_layout()

columns = df.drop(['data', 'estado_semana', 'dia_semana', 'tipo_carga', 'title=['Consumo de Energia (kWh)', 'Corrente Atrasada (kVarh)', 'Corrente plot_histograms(df=df, columns=columns, n_rows=3, n_cols=2, title=title)
    plt.show()
```

4/19/23, 17:26

Gráficos de Barra

Iremos agora analisar o comportamento das variáveis referentes a média de consumo energético

```
In [ ]: | def create_bar(df_: pd, columns: list, n_rows: int, n_cols: int, rot=45):
            y_ = 'consumo_energia'
            fig = plt.figure(figsize=(20, 30))
            for i, column in enumerate(columns):
                for j in range (0, 2):
                     ax = fig.add_subplot(n_rows, n_cols, 2*i + j + 1)
                         df = df_.groupby(by=column, as_index=False, sort=False)[y]
                    else:
                        df = df_.qroupby(by=column, as_index=False, sort=False)[y]
                    try:
                         df[column] = df[column].str.capitalize()
                    except:
                        pass
                    sns.barplot(data=df, x=column, y=y_, palette=palette, ax=ax)
                    for value in ax.containers:
                         ax.bar_label(value)
                     ax.tick_params(axis='x', labelrotation=rot, size=12)
                    ax.tick_params(axis='y', size=12)
                    ax.set_xlabel(column.capitalize(), fontsize='large', family='
                     ax.set_ylabel("Consumo de Energia (kWh)", fontsize='large', f
                    if j:
                         ax.set_title(f"Mediana de Consumo de Energia por {column.
                                      style='italic', family='monospace')
                    else:
                         ax.set_title(f"Média de Consumo de Energia por {column.ca
                                     style='italic', family='monospace')
            fig.tight_layout()
```

Para tal observação foi considerada as variáveis categóricas

- Co2 (Por possuir comportamento categórico)
- Estação do ano
- Dia da semana
- Estado da semana
- Tipo de carga

Algumas observações com os gráficos de barra

Em ordem de plotagem

- 1. Co2
 - O consumo de energia cresce conforme a emissão de Co2
- 2. Estações do ano
 - O agrupamento a partir das estações do ano deu-se por conta da hipótese de que em épocas mais quentes (verão) seria necessário mais energia que em épocas mais frias (inverno);
 - Apesar dessa hipótese se mostrar verdadeira, a diferença representada pela média é baixa.
- 3. Dia da semana e Estado da semana
 - Uma grande fábrica produtora de aço necessita de funcionamento diário, porém a carga dos funcionários aos fins de semana seria diminuida.
- 4. Tipo de carga
 - Temos um ponto importante a salientar, apesar da baixa demanda energética para objetos com carga leve, a quantidade de elementos contabilizados como carga leve são exponencialmente maiores.
 - Um dos fatores pode ser que o tempo para processar uma carga seja proporcional ao seu tamanho

Gráficos de caixa

Novamente iremos observar as variáveis categóricas

Algumas observações com os gráficos de caixa

Conforme aumentamos as observações temos maiores outliers, também podemos notar as diferenças entre os ranges de consumo energético.

Agora iremos ver na prática a quantidade de outliers a partir do intervalo interquantil.

Nos casos analisados existe apenas outlier em um dos lados (superior ou inferior).

```
In [ ]: def calculate_outliers(x: pd.Series) -> list:
            q1 = x.quantile(.25)
            q3 = x.quantile(.75)
            iqr = q3 - q1
            lower_bound = q1 - 1.5 * iqr
            upper_bound = q3 + 1.5 * iqr
            return x[(x < lower_bound)].index.tolist(), <math>x[(x > upper_bound)].index
        for column in df.drop(['data', 'estado_semana', 'dia_semana', 'segundos_d
            lower, upper = calculate_outliers(df[column])
            column = column.replace('_', ' ')
            column = column.capitalize()
            print(f"{column}: Lower = {len(lower)}, Upper = {len(upper)}, Total =
        del calculate_outliers
        Consumo energia: Lower = 0, Upper = 328, Total = 328
        Corrente atrasada: Lower = 0, Upper = 1059, Total = 1059
        Corrente principal: Lower = 0, Upper = 7759, Total = 7759
        Co2: Lower = 0, Upper = 437, Total = 437
        Potencia atrasado: Lower = 1, Upper = 0, Total = 1
        Potencia principal: Lower = 8327, Upper = 0, Total = 8327
In [ ]: def calculate_amplitude(x: pd.Series) -> float:
            return x.max() - x.min()
        for column in df.drop(['data', 'estado_semana', 'dia_semana', 'segundos_d
            amplitude = calculate_amplitude(df[column])
            column = column.replace('_', ' ')
            column = column.capitalize()
            print(f"{column}: Amplitude = {amplitude:.2f}")
        del calculate_amplitude
        Consumo energia: Amplitude = 157.18
        Corrente atrasada: Amplitude = 96.91
        Corrente principal: Amplitude = 27.76
        Co2: Amplitude = 0.07
        Potencia atrasado: Amplitude = 100.00
        Potencia principal: Amplitude = 100.00
```

Gráfico de dispersão

Algumas observações

- Confirmação da alta correlação (linear) positiva entre o consumo de energia e a corrente atrasada
- 2. Observada uma correlação (linear) negativa entre corrente principal e potencia principal
- 3. Correlação (não linear) positiva entre potencia principal e corrente atrasada

```
In [ ]: sns.pairplot(df, hue="estado_semana", palette=palette, markers=["o", "s"]
plt.show()
```

4/19/23, 17:26

Matriz de correlação

Agora para confirmar as observações das correlações lineares foi plotado a matriz de correlação utilizando os três métodos:

- Pearson (linear)
- Kendall (não linear)
- Spearman (não linear)

Análise temporal

Apenas por curiosidade foi feita uma análise básica temporal

```
df_groupby_day = df.set_index('data').resample('D').agg(
In [ ]:
                 'consumo_energia': 'sum',
                 'corrente_atrasada': 'sum'
                 'corrente_principal': 'sum',
                 'co2': 'mean',
                 'potencia_atrasado': 'mean',
                 'potencia_principal': 'mean',
                 'dia_semana': lambda x: x.mode()[0],
                 'tipo_carga': lambda x: x.mode()[0],
                 'estacao': lambda x: x.mode()[0],
        ).copy()
In []: plt.figure(figsize=(15, 5))
        df_groupby_day['consumo_energia'].plot()
        plt.xlabel('Meses')
        plt.ylabel('Média de consumo de energia (kWh)')
        plt.title('Quantidade de vendas por mês')
        plt.show()
```

4/19/23, 17:26

Conclusão do EDA

Foram realizadas diversas análises para compreender melhor a distribuição dos dados, identificar possíveis anomalias e outliers. Além disso, foram exploradas as relações entre as variáveis e como elas se correlacionam com a variável alvo.

Durante o processo de análise, foi possível identificar algumas questões importantes que precisam ser levadas em consideração durante a criação do modelo. Se duas variáveis estão altamente correlacionadas, isso pode indicar que elas estão medindo essencialmente a mesma coisa.

Correlações fortes (>=0.9)

Variável 1	Variável 2	Tipo de Correlação
Consumo de Energia	Corrente atrasada	Linear Positiva
Consumo de Energia	Co2	Linear Positiva
Co2	Corrente atrasada	Linear Positiva
Potência principal	Corrente atrasada	Não Linear Positiva
Corrente principal	Potência principal	Não Linear Negativa

Portanto as variáveis que não possuem uma alta correlação com a variável target podem ser eliminadas para criação do modelo, deve-se entretanto observar a performance por conta do problema de multicolinearidade.

Potência principal

Outro ponto importante é o outlier presente no index = 29855, deve-se entender o motivo de sua aparição, afinal caso o medidor esteja enviesado será necessário avaliar melhor os dados.

É importante levar em consideração todos os insights e padrões identificados, bem como as questões que precisam ser tratadas, a fim de desenvolver um modelo preciso e eficiente.

2. Modelo de aprendizado de máquina

Finalmente a etapa de modelagem. Mostre o processo de desenvolvimento, as técnicas utilizadas, os algoritmos, sempre justificando suas escolhas. O modelo final é aquele que você teria confiança para usar na vida real.

In []:	

2.2 Avaliação e escolha do modelo

Descreva a(s) métrica(s) que você usou para avaliar o modelo. Lembre-se do objetivo do desafio, **Prever o consumo elétrico em uma perspectiva mensal**

In []:			

3. Uso do modelo

21 of 22 4/19/23, 17:26

Nesse ponto não há margem para mudança, é de fato o modelo final. Se bem apresentado e trazendo bons resultados, certamente o cliente da área de negócio perguntará: "Ok, como a gente pode usar esse modelo?" (Não precisa implementar)

- 1. Como será utilizado o modelo: entra base, sai status?
- 2. Qual é a entrega de valor deste modelo
- 3. Quais tecnologias você usaria
- 4. Como será a implementação do modelo? API, Docker, etc