Module # 1.2

INTRODUCTION What to Control?

Lectures on

CHEMICAL PROCESS CONTROL
Theory and Practice

What to Control

- A key decision
- # of MVs in a process is fixed and limited
 - Limits # of PVs that may be controlled
 - N MVs control up to N PVs and no more
 - What PVs are controlled must be chosen 'wisely'

SISO Feedback Control

Single PV (input to controller)

controlled using

Single MV (output of controller)

More Complex Control: MISO

Control T but RH < RH^{MIN} not allowed

More Complex Control: MIMO

Control both T and RH Need additional MV to hold RH

2 SISO Controllers

2x2 Multivariable Controller

Control for Good Economics

ECONOMIC OBJECTIVE

MINIMIZE J over dofs **u** subject to process contraints

ROOM EXAMPLE

T^{SP}=T^{MIN} & RH^{SP}=RH^{MIN} minimizes utility bill

Control for Good Economics

Tightly control active constraints

Choose their setpoint at constraint limit

Need back-off to avoid constraint violation

Track optimum value for sharp curves

The Need for Tight Constraint Control

SQUEEZE & SHIFT

The Need for Tight Constraint Control

Managing Unconstrained Optimum

Optimum remains "nearly" the same

Find those "magic" PVs with invariant optimum

Constrained vs Unconstrained Optimum

100 m Sprint

J = min,, Race Completion Time

40 km Marathon

 $J = min_u$ Race Completion Time

The Skogestad Example

NEED PROCESS INSIGHT FOR DEVELOPING OPTIMAL OPERATING POLICY

Image taken from: https://www.vectorstock.com

11

Solving Process Control Problems

- What to control
 - Limited by # of MVs
 - What constitutes 'desirable' process behaviour
 - Control objectives and their prioritization
- Economics is usually a major consideration
 - Control all active constraints
 - Squeeze and shift
 - Control near 'invariants' for unconstrained dofs
- Process understanding is crucial