数据科学与大数据技术 的数学基础

第九讲

计算机学院 余皓然 2024/5/20

课程内容

Part1 随机化方法

一致性哈希 布隆过滤器 CM Sketch方法 最小哈希 欧氏距离下的相似搜索 Jaccard相似度下的相似搜索

Part2 谱分析方法

主成分分析 奇异值分解 谱图论

Part3 最优化方法

压缩感知

奇异值分解 奇异值分解的概念

本讲内容

奇异值分解 (SVD)

➤ SVD的定义

- 7
- ➤ 对比SVD与特征分解
- > SVD的存在性
- ➤ SVD的计算
- > SVD的等价形式
- ▶ SVD的另一种定义

回顾主成分分析

给定 $x_1, ..., x_m \in \mathbb{R}^n$,先计算 $\mathbf{X}^T\mathbf{X}$,然后计算若干特征值对应的单位特征向量 其中运用到**对称矩阵**的分解: $\mathbf{X}^T\mathbf{X} = \mathbf{Q}\mathbf{D}\mathbf{Q}^T$

能否对非对称矩阵(包括非方阵的矩阵)进行分解? 比如直接对 $m \times n$ 矩阵X分解?

回顾主成分分析

给定 $x_1, ..., x_m \in \mathbb{R}^n$, 先计算 X^TX , 然后计算若干特征值对应的单位特征向量

其中运用到对称矩阵的分解: $X^TX = QDQ^T$

 $n \times m$ 矩阵 X^T

 $n \times n$ 矩阵 $\mathbf{X}^T \mathbf{X}$

奇异值分解(Singular Value Decomposition)

给定 $m \times n$ 矩阵A,将其分解为三个矩阵之积: $A = USV^T$,其中:

- (1) **U**是m×m正交矩阵;
- (2) **V**是n×n正交矩阵;
- (3) **S**是m×n (矩形) 对角矩阵且所有元素非负。

例
$$\begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{2}{\sqrt{6}} & 0 & -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \end{bmatrix} \begin{bmatrix} \sqrt{3} & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$$

奇异值分解(Singular Value Decomposition)

给定 $m \times n$ 矩阵A,将其分解为三个矩阵之积: $A = USV^T$,其中:

- (1) U是m×m正交矩阵; 列向量(行向量)构成标准正交向量组
- (2) **V**是n×n正交矩阵;
- (3) **S**是m×n (矩形) 对角矩阵且所有元素非负。

奇异值分解(Singular Value Decomposition)

给定 $m \times n$ 矩阵A,将其分解为三个矩阵之积: $A = USV^T$,其中:

- (1) **U**是m×m正交矩阵;
- (2) **V**是n×n正交矩阵;
- (3) **S**是m×n (矩形) 对角矩阵且所有元素非负。

*不妨设S的对角线元素由高到低排列 (在调整对角线元素顺序的同时相应调整U的列向量、 V^T 的行向量的顺序,结果不变)

奇异值分解(Singular Value Decomposition)

给定 $m \times n$ 矩阵A,将其分解为三个矩阵之积: $A = USV^T$,其中:

- (1) **U**是m×m正交矩阵;
- (2) **V**是n×n正交矩阵;
- (3) **S**是m×n (矩形) 对角矩阵且所有元素非负。

U的m个列向量称为A的左奇异向量 V的n个列向量(即 V^T 的n个行向量)称为A的右奇异向量 S的对角线元素为A的奇异值

奇异值分解 (Singular Value Decomposition)

给定 $m \times n$ 矩阵A,将其分解为三个矩阵之积: $A = USV^T$,其中:

- (1) **U**是m×m正交矩阵;
- (2) **V**是n×n正交矩阵;
- (3) **S**是m×n (矩形) 对角矩阵且所有元素非负。

SVD号称矩阵分解中的"瑞士军刀"/"劳斯莱斯"

("Bridging the Gap Between Numerical Linear Algebra,

Theoretical Computer Science, and Data Applications")

奇异值分解(Singular Value Decomposition)

给定 $m \times n$ 矩阵A,将其分解为三个矩阵之积: $A = USV^T$,其中:

- (1) **U**是*m*×*m*正交矩阵;
- (2) **V**是n×n正交矩阵;
- (3) **S**是m×n (矩形) 对角矩阵且所有元素非负。

广泛的应用(下讲内容):

- 数据压缩
- 矩阵补全
- 实体嵌入
- 0 ...

本讲内容

奇异值分解 (SVD)

- ➤ SVD的定义
- ▶ 对比SVD与特征分解

- > SVD的存在性
- ➤ SVD的计算
- > SVD的等价形式
- ▶ SVD的另一种定义

奇异值分解与特征分解

m×n矩阵A的奇异值分解

n×n对称矩阵的特征分解

奇异值分解与特征分解

U与V可能不同

m×n矩阵A的奇异值分解

正交矩阵

 \mathbf{S}

 $\mathbf{V^T}$ 正交矩阵

n×n对称矩阵的特征分解

 \mathbf{A}

本讲内容

奇异值分解 (SVD)

- ➤ SVD的定义
- ➤ 对比SVD与特征分解
- > SVD的存在性

- ➤ SVD的计算
- ▶ SVD的等价形式
- ▶ SVD的另一种定义

为什么对任意 $m \times n$ 矩阵A,一定可将其分解成 USV^T

回顾: $n \times n$ 对称矩阵 $A^T A$ 可分解成 QDQ^T , 如何据此说明A可写成 USV^T ?

为什么对任意 $m \times n$ 矩阵A,一定可将其分解成 USV^T

回顾: $n \times n$ 对称矩阵 $\mathbf{A}^T \mathbf{A}$ 可分解成 $\mathbf{Q} \mathbf{D} \mathbf{Q}^T$, 如何据此说明 \mathbf{A} 可写成 $\mathbf{U} \mathbf{S} \mathbf{V}^T$?

若A = $\mathbf{U}\mathbf{S}\mathbf{V}^T$,则有A^TA = $\mathbf{V}\mathbf{S}^T\mathbf{U}^T\mathbf{U}\mathbf{S}\mathbf{V}^T$ = $\mathbf{V}\mathbf{S}^T\mathbf{S}\mathbf{V}^T$

所以可以将V取为Q, S^TS 取为D

如何求矩阵U?

为什么对任意 $m \times n$ 矩阵A,一定可将其分解成 USV^T

回顾: $n \times n$ 对称矩阵 $\mathbf{A}^T \mathbf{A}$ 可分解成 $\mathbf{Q} \mathbf{D} \mathbf{Q}^T$,如何据此说明 \mathbf{A} 可写成 $\mathbf{U} \mathbf{S} \mathbf{V}^T$?

若**A** = **USV**^T ,则有**A**^T**A** = **VS**^T**U**^T**USV**^T = **VS**^T**SV**^T

所以可以将V取为Q, S^T S取为D

如何求矩阵U?

不妨设m ≥ n

 $\langle v_1, ..., v_n \rangle$ 为别为 $q_1, ..., q_n$,即 $A^T A$ 的(标准正交)特征向量

为什么对任意 $m \times n$ 矩阵A,一定可将其分解成 USV^T

回顾: $n \times n$ 对称矩阵 $\mathbf{A}^T \mathbf{A}$ 可分解成 $\mathbf{Q} \mathbf{D} \mathbf{Q}^T$,如何据此说明 \mathbf{A} 可写成 $\mathbf{U} \mathbf{S} \mathbf{V}^T$?

若**A** = **USV**^T ,则有**A**^T**A** = **VS**^T**U**^T**USV**^T = **VS**^T**SV**^T

所以可以将V取为Q, S^TS 取为D

不妨设m ≥ n

 \diamondsuit S对角线元素为 $\sqrt{\lambda_1},...,\sqrt{\lambda_n}$ (非负),即根号下 $\mathbf{A}^T\mathbf{A}$ 特征值(根号下 \mathbf{D} 对角线元素)

为什么对任意 $m \times n$ 矩阵A,一定可将其分解成 USV^T

回顾: $n \times n$ 对称矩阵 $\mathbf{A}^T \mathbf{A}$ 可分解成 $\mathbf{Q} \mathbf{D} \mathbf{Q}^T$,如何据此说明 \mathbf{A} 可写成 $\mathbf{U} \mathbf{S} \mathbf{V}^T$?

若A = $\mathbf{U}\mathbf{S}\mathbf{V}^T$,则有A^TA = $\mathbf{V}\mathbf{S}^T\mathbf{U}^T\mathbf{U}\mathbf{S}\mathbf{V}^T$ = $\mathbf{V}\mathbf{S}^T\mathbf{S}\mathbf{V}^T$

所以可以将V取为Q, S^TS 取为D

不妨设m ≥ n

 \diamondsuit S对角线元素为 $\sqrt{\lambda_1},...,\sqrt{\lambda_n}$ (非负),即根号下 $\mathbf{A}^T\mathbf{A}$ 特征值(根号下 \mathbf{D} 对角线元素)

取 $u_1, ..., u_m$ 为

为什么对任意 $m \times n$ 矩阵A,一定可将其分解成 USV^T

回顾: $n \times n$ 对称矩阵 $\mathbf{A}^T \mathbf{A}$ 可分解成 $\mathbf{Q} \mathbf{D} \mathbf{Q}^T$,如何据此说明 \mathbf{A} 可写成 $\mathbf{U} \mathbf{S} \mathbf{V}^T$?

若A =
$$\mathbf{U}\mathbf{S}\mathbf{V}^T$$
 ,则有A^TA = $\mathbf{V}\mathbf{S}^T\mathbf{U}^T\mathbf{U}\mathbf{S}\mathbf{V}^T$ = $\mathbf{V}\mathbf{S}^T\mathbf{S}\mathbf{V}^T$

所以可以将V取为Q, S^TS 取为D

不妨设m ≥ n

 \diamondsuit S对角线元素为 $\sqrt{\lambda_1},...,\sqrt{\lambda_n}$ (非负),即根号下 $\mathbf{A}^T\mathbf{A}$ 特征值(根号下 \mathbf{D} 对角线元素)

取
$$u_1, ..., u_m$$
为

由A = USV^T可得AV = US =
$$\begin{bmatrix} \sqrt{\lambda_1} u_1 & \dots & \sqrt{\lambda_n} u_n \end{bmatrix}$$
, 即有A $v_i = \sqrt{\lambda_i} u_i$

为什么对任意 $m \times n$ 矩阵A,一定可将其分解成 USV^T

回顾: $n \times n$ 对称矩阵 $\mathbf{A}^T \mathbf{A}$ 可分解成 $\mathbf{Q} \mathbf{D} \mathbf{Q}^T$, 如何据此说明 \mathbf{A} 可写成 $\mathbf{U} \mathbf{S} \mathbf{V}^T$?

若A = $\mathbf{U}\mathbf{S}\mathbf{V}^T$,则有A^TA = $\mathbf{V}\mathbf{S}^T\mathbf{U}^T\mathbf{U}\mathbf{S}\mathbf{V}^T$ = $\mathbf{V}\mathbf{S}^T\mathbf{S}\mathbf{V}^T$

所以可以将V取为Q, S^TS 取为D

不妨设m ≥ n

 \diamondsuit S对角线元素为 $\sqrt{\lambda_1},...,\sqrt{\lambda_n}$ (非负),即根号下 $\mathbf{A}^T\mathbf{A}$ 特征值(根号下 \mathbf{D} 对角线元素)

取
$$u_1, ..., u_n$$
为 $\frac{Av_1}{\sqrt{\lambda_1}}, ..., \frac{Av_n}{\sqrt{\lambda_n}}$

不难证明 $u_1, ..., u_n$ 构成标准正交向量组(证明单位向量时用 $\left\|\frac{\mathbf{A}v_1}{\sqrt{\lambda_1}}\right\| = \sqrt{\frac{(\mathbf{A}v_1)^T}{\sqrt{\lambda_1}}}\frac{\mathbf{A}v_1}{\sqrt{\lambda_1}}$)

需要U是 $m \times m$ 矩阵,即m个列向量,该如何选取 $u_{n+1}, ..., u_m$?

$$\begin{bmatrix}
 1 & 0 \\
 1 & 1 \\
 0 & 1
 \end{bmatrix} = \begin{bmatrix}
 \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\
 \frac{2}{\sqrt{6}} & 0 & -\frac{1}{\sqrt{3}} \\
 \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}}
 \end{bmatrix} \begin{bmatrix}
 \sqrt{3} & 0 \\
 0 & 1 \\
 0 & 0
 \end{bmatrix} \begin{bmatrix}
 \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
 \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
 \end{bmatrix}$$

为什么对任意 $m \times n$ 矩阵A,一定可将其分解成 USV^T

回顾: $n \times n$ 对称矩阵 $\mathbf{A}^T \mathbf{A}$ 可分解成 $\mathbf{Q} \mathbf{D} \mathbf{Q}^T$,如何据此说明 \mathbf{A} 可写成 $\mathbf{U} \mathbf{S} \mathbf{V}^T$?

若**A** = **USV**^T ,则有**A**^T**A** = **VS**^T**U**^T**USV**^T = **VS**^T**SV**^T

所以可以将V取为Q, S^TS 取为D

不妨设m ≥ n

 \diamondsuit S对角线元素为 $\sqrt{\lambda_1},...,\sqrt{\lambda_n}$ (非负),即根号下 $\mathbf{A}^T\mathbf{A}$ 特征值(根号下 \mathbf{D} 对角线元素)

取
$$u_1, ..., u_n$$
为 $\frac{Av_1}{\sqrt{\lambda_1}}, ..., \frac{Av_n}{\sqrt{\lambda_n}}$

不难证明 $\mathbf{u}_1, \dots, \mathbf{u}_n$ 构成标准正交向量组(证明单位向量时用 $\left\| \frac{\mathbf{A} \mathbf{v}_1}{\sqrt{\lambda_1}} \right\| = \sqrt{\frac{(\mathbf{A} \mathbf{v}_1)^T}{\sqrt{\lambda_1}}} \frac{\mathbf{A} \mathbf{v}_1}{\sqrt{\lambda_1}}$)

选取 $u_{n+1},...,u_m$ 令与 $u_1,...,u_n$ 共同构成标准正交向量组即可。找到用于奇异值分解的U,S,V

为什么对任意 $m \times n$ 矩阵A,一定可将其分解成 USV^T

回顾: $n \times n$ 对称矩阵 $\mathbf{A}^T \mathbf{A}$ 可分解成 $\mathbf{Q} \mathbf{D} \mathbf{Q}^T$, 如何据此说明 \mathbf{A} 可写成 $\mathbf{U} \mathbf{S} \mathbf{V}^T$?

若A = $\mathbf{U}\mathbf{S}\mathbf{V}^T$,则有A^TA = $\mathbf{V}\mathbf{S}^T\mathbf{U}^T\mathbf{U}\mathbf{S}\mathbf{V}^T$ = $\mathbf{V}\mathbf{S}^T\mathbf{S}\mathbf{V}^T$

所以可以将V取为Q, S^TS 取为D

不妨设m ≥ n

 \diamondsuit S对角线元素为 $\sqrt{\lambda_1},...,\sqrt{\lambda_n}$ (非负),即根号下 $\mathbf{A}^T\mathbf{A}$ 特征值(根号下 \mathbf{D} 对角线元素)

取
$$u_1, \dots, u_n$$
为 $\frac{Av_1}{\sqrt{\lambda_1}}, \dots, \frac{Av_n}{\sqrt{\lambda_n}}$

不难证明 $\mathbf{u}_1, \dots, \mathbf{u}_n$ 构成标准正交向量组(证明单位向量时用 $\left\| \frac{\mathbf{A} \mathbf{v}_1}{\sqrt{\lambda_1}} \right\| = \sqrt{\frac{(\mathbf{A} \mathbf{v}_1)^T}{\sqrt{\lambda_1}}} \frac{\mathbf{A} \mathbf{v}_1}{\sqrt{\lambda_1}}$)

选取 $u_{n+1}, ..., u_m$ 令与 $u_1, ..., u_n$ 共同构成标准正交向量组即可。找到用于奇异值分解的U, S, V

矩阵的奇异值分解是否唯一?

不唯一, A^TA 的特征向量不唯一

奇异值分解的存在性

为什么对任意 $m \times n$ 矩阵A,一定可将其分解成 USV^T

回顾: $n \times n$ 对称矩阵 $\mathbf{A}^T \mathbf{A}$ 可分解成 $\mathbf{Q} \mathbf{D} \mathbf{Q}^T$,如何据此说明 \mathbf{A} 可写成 $\mathbf{U} \mathbf{S} \mathbf{V}^T$?

若**A** = **USV**^T ,则有**A**^T**A** = **VS**^T**U**^T**USV**^T = **VS**^T**SV**^T

所以可以将V取为Q, S^TS 取为D

不妨设m ≥ n

 \diamond S对角线元素为 $\sqrt{\lambda_1},...,\sqrt{\lambda_n}$ (非负),即根号下 $\mathbf{A}^T\mathbf{A}$ 特征值(根号下 \mathbf{D} 对角线元素)

取
$$u_1, \dots, u_n$$
为 $\frac{Av_1}{\sqrt{\lambda_1}}, \dots, \frac{Av_n}{\sqrt{\lambda_n}}$

不难证明 $u_1, ..., u_n$ 构成标准正交向量组(证明单位向量时用 $\left\|\frac{\mathbf{A}v_1}{\sqrt{\lambda_1}}\right\| = \sqrt{\frac{(\mathbf{A}v_1)^T}{\sqrt{\lambda_1}}}\frac{\mathbf{A}v_1}{\sqrt{\lambda_1}}$)

选取 $u_{n+1}, ..., u_m$ 令与 $u_1, ..., u_n$ 共同构成标准正交向量组即可。找到用于奇异值分解的U, S, V

本讲内容

奇异值分解 (SVD)

- ➤ SVD的定义
- ➤ 对比SVD与特征分解
- > SVD的存在性
- ➤ SVD的计算

- ▶ SVD的等价形式
- ▶ SVD的另一种定义

给定 $m \times n$ 矩阵A $(m \ge n)$, 计算其分解USV^T的基本方法:

- (1) 计算 $\mathbf{A}^T\mathbf{A}$
- (2) 对 $\mathbf{A}^T \mathbf{A}$ 进行特征分解: $\mathbf{A}^T \mathbf{A} = \mathbf{Q} \mathbf{D} \mathbf{Q}^T$, $\mathbf{p} \mathbf{V} = \mathbf{Q}$
- (3) 计算AV
- (4) 取 $s_i = \|\mathbf{A}\boldsymbol{v}_i\|$ 且 $\boldsymbol{u}_i = \frac{\mathbf{A}\boldsymbol{v}_i}{\|\mathbf{A}\boldsymbol{v}_i\|}$
- (5) 补齐正交矩阵

给定 $m \times n$ 矩阵A $(m \ge n)$, 计算其分解USV^T的基本方法:

- (1) 计算 $\mathbf{A}^T\mathbf{A}$
- (2) 对 $A^T A$ 进行特征分解: $A^T A = QDQ^T$, 取V = Q
- (3) 计算AV
- (4) 取 $s_i = \|\mathbf{A}\boldsymbol{v}_i\| \mathbf{H}\boldsymbol{u}_i = \frac{\mathbf{A}\boldsymbol{v}_i}{\|\mathbf{A}\boldsymbol{v}_i\|}$
- (5) 补齐正交矩阵

若
$$\mathbf{A} = \begin{bmatrix} 3 & 0 \\ 4 & 5 \end{bmatrix}$$
,可得 $\mathbf{A}^T \mathbf{A} = \begin{bmatrix} 25 & 20 \\ 20 & 25 \end{bmatrix}$

$$\mathbf{A}^{T}\mathbf{A}$$
的特征值满足 $\begin{vmatrix} 25 & 20 \\ 20 & 25 \end{vmatrix} - \lambda \mathbf{I} = 0$,即 $\lambda_1 = 45$, $\lambda_2 = 5$,有 $x_1 = \sqrt{45}$, $x_2 = \sqrt{5}$

 λ_1, λ_2 对应特征向量满足 $\mathbf{A}^T \mathbf{A} \boldsymbol{v} = \lambda \boldsymbol{v}$,即 $\boldsymbol{v}_1, \boldsymbol{v}_2$ 满足 $\boldsymbol{v}_{11} = \boldsymbol{v}_{12}, \boldsymbol{v}_{21} = -\boldsymbol{v}_{22}$

化为单位向量得
$$\mathbf{v}_1 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$, 继而有 $\mathbf{u}_1 = \begin{bmatrix} \frac{1}{\sqrt{10}} \\ \frac{3}{\sqrt{10}} \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} -\frac{3}{\sqrt{10}} \\ \frac{1}{\sqrt{10}} \end{bmatrix}$

给定 $m \times n$ 矩阵 $A (m \ge n)$, 计算其分解 USV^T 的基本方法:

- (1) 计算A^TA
- (2) 对 $A^T A$ 进行特征分解: $A^T A = QDQ^T$, $\mathbf{p}V = \mathbf{Q}$
- (3) 计算**AV**
- (4) $\mathfrak{N}s_i = \|\mathbf{A}\boldsymbol{v}_i\| \underline{\mathbf{L}}\boldsymbol{u}_i = \frac{\mathbf{A}\boldsymbol{v}_i}{\|\mathbf{A}\boldsymbol{v}_i\|}$

若
$$\mathbf{A} = \begin{bmatrix} 3 & 0 \\ 4 & 5 \end{bmatrix}$$
,可得 $\mathbf{A}^T \mathbf{A} = \begin{bmatrix} 25 & 20 \\ 20 & 25 \end{bmatrix}$

$$\begin{vmatrix} (4) & \mathbf{A} \mathbf{X} \mathbf{S}_{i} & - || \mathbf{A} \mathbf{D}_{i} || \mathbf{E}_{i} \mathbf{U}_{i} & - \frac{1}{|| \mathbf{A} \mathbf{D}_{i} ||} \\ (5) & \text{补齐正交矩阵} \\ \mathbf{E} \mathbf{A} = \begin{bmatrix} 3 & 0 \\ 4 & 5 \end{bmatrix}, \quad \mathbf{T} \mathbf{A} \mathbf{A} = \begin{bmatrix} 25 & 20 \\ 20 & 25 \end{bmatrix} \qquad \mathbf{A} = \begin{bmatrix} \frac{1}{\sqrt{10}} & -\frac{3}{\sqrt{10}} \\ \frac{3}{\sqrt{10}} & \frac{1}{\sqrt{10}} \end{bmatrix} \begin{bmatrix} \sqrt{45} & 0 \\ 0 & \sqrt{5} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

 $\mathbf{A}^T \mathbf{A}$ 的特征值满足 $\begin{bmatrix} 25 & 20 \\ 20 & 25 \end{bmatrix} - \lambda \mathbf{I} = 0$,即 $\lambda_1 = 45, \lambda_2 = 5$,有 $s_1 = \sqrt{45}, s_2 = \sqrt{5}$

 λ_1, λ_2 对应特征向量满足 $\mathbf{A}^T \mathbf{A} \mathbf{v} = \lambda \mathbf{v}$, 即 $\mathbf{v}_1, \mathbf{v}_2$ 满足 $\mathbf{v}_{11} = \mathbf{v}_{12}, \mathbf{v}_{21} = -\mathbf{v}_{22}$

化为单位向量得
$$\mathbf{v}_1 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$, 继而有 $\mathbf{u}_1 = \begin{bmatrix} \frac{1}{\sqrt{10}} \\ \frac{3}{\sqrt{10}} \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} -\frac{3}{\sqrt{10}} \\ \frac{1}{\sqrt{10}} \end{bmatrix}$

给定 $m \times n$ 矩阵 $A (m \ge n)$, 计算其分解 USV^T 的基本方法:

(1) 计算
$$\mathbf{A}^T\mathbf{A}$$

$$(O(mn^2))$$

(2) 对
$$\mathbf{A}^T \mathbf{A}$$
进行特征分解: $\mathbf{A}^T \mathbf{A} = \mathbf{Q} \mathbf{D} \mathbf{Q}^T$, $\mathbf{p} \mathbf{V} = \mathbf{Q}$ ($O(n^3)$)

$$(O(mn^2))$$

(4) 取
$$s_i = \|\mathbf{A}\boldsymbol{v}_i\| \mathbf{L}\boldsymbol{u}_i = \frac{\mathbf{A}\boldsymbol{v}_i}{\|\mathbf{A}\boldsymbol{v}_i\|}$$

(5) 补齐正交矩阵

 $k_1 \times k_2$ 矩阵乘 $k_2 \times k_3$ 矩阵的复杂度 $O(k_1 k_2 k_3)$

复杂度: O(mn²) 对于实际应用场景太大

实际中采用更快的方法计算(如无需计算 A^TA)

本讲内容

奇异值分解 (SVD)

- ➤ SVD的定义
- ➤ 对比SVD与特征分解
- > SVD的存在性
- ➤ SVD的计算
- ▶ SVD的等价形式

▶ SVD的另一种定义

等价形式

m×n矩阵A的奇异值分解

等价形式

m×n矩阵A的奇异值分解

等价形式

m×n矩阵A的奇异值分解

奇异值分解将 $m \times n$ 矩阵A展成 $min\{m,n\}$ 个秩为1的矩阵的非负线性组合

等价形式的证明

等价形式的证明

等价形式的证明

 $\sum_{k=1}^{n} s_k(\mathbf{u}_k \hat{\mathbf{x}} i \pi \hat{\mathbf{x}}) (\mathbf{v}_k \hat{\mathbf{x}} j \pi \hat{\mathbf{x}})$

第i行第j列为

相乘得到矩阵的第i行第j列为

 $\sum_{k=1}^{n} s_k(\mathbf{u}_k \hat{\mathbf{x}} i \pi \mathbf{x}) (\mathbf{v}_k \hat{\mathbf{x}} j \pi \mathbf{x})$

第k列为 s_k **u** $_k$ (仅n列)

本讲内容

奇异值分解 (SVD)

- ➤ SVD的定义
- ➤ 对比SVD与特征分解
- > SVD的存在性
- ➤ SVD的计算
- ▶ SVD的等价形式
- ▶ SVD的另一种定义

$$\mathbf{A} = \mathbf{U}\mathbf{S}\mathbf{V}^T$$
等价于 $\mathbf{A} = \sum_{i=1}^{\min\{m,n\}} s_i \cdot \mathbf{u}_i \mathbf{v}_i^{\mathsf{T}}$

$$\mathbf{A} = \mathbf{U}\mathbf{S}\mathbf{V}^T$$
等价于 $\mathbf{A} = \sum_{i=1}^{\min\{m,n\}} s_i \cdot \mathbf{u}_i \mathbf{v}_i^{\mathsf{T}}$

回顾: $m \ge n$ 时, $s_1, ..., s_n 为 \sqrt{\lambda_1}, ..., \sqrt{\lambda_n}$, 即根号下 $\mathbf{A}^T \mathbf{A}$ 特征值

若恰有 $r \le n$ 个非零特征值(即 $\lambda_1, ..., \lambda_r > 0, \lambda_{r+1}, ..., \lambda_n = 0$),则 $\mathbf{A} = \sum_{i=1}^r s_i \cdot \mathbf{u}_i \mathbf{v}_i^{\mathsf{T}}$

$$\mathbf{A} = \mathbf{U}\mathbf{S}\mathbf{V}^T$$
等价于 $\mathbf{A} = \sum_{i=1}^{\min\{m,n\}} s_i \cdot \mathbf{u}_i \mathbf{v}_i^{\mathsf{T}}$

回顾: $m \ge n$ 时, $s_1, ..., s_n 为 \sqrt{\lambda_1}, ..., \sqrt{\lambda_n}$, 即根号下 $\mathbf{A}^T \mathbf{A}$ 特征值

若恰有 $r \leq n$ 个非零特征值(即 $\lambda_1, ..., \lambda_r > 0, \lambda_{r+1}, ..., \lambda_n = 0$),则 $\mathbf{A} = \sum_{i=1}^r s_i \cdot \mathbf{u}_i \mathbf{v}_i$

$$\mathbf{A} = \mathbf{U}\mathbf{S}\mathbf{V}^T$$
等价于 $\mathbf{A} = \sum_{i=1}^{\min\{m,n\}} s_i \cdot \mathbf{u}_i \mathbf{v}_i^{\mathsf{T}}$

回顾: $m \ge n$ 时, $s_1, ..., s_n 为 \sqrt{\lambda_1}, ..., \sqrt{\lambda_n}$, 即根号下 $\mathbf{A}^T \mathbf{A}$ 特征值

若恰有 $r \leq n$ 个非零特征值(即 $\lambda_1, ..., \lambda_r > 0, \lambda_{r+1}, ..., \lambda_n = 0$),则 $\mathbf{A} = \sum_{i=1}^r s_i \cdot \mathbf{u}_i \mathbf{v}_i^{\mathsf{T}}$

其余列/行向量是 为了凑成正交矩阵

SVD的另一种定义

$$\mathbf{A} = \mathbf{U}\mathbf{S}\mathbf{V}^T$$
等价于 $\mathbf{A} = \sum_{i=1}^{\min\{m,n\}} s_i \cdot \mathbf{u}_i \mathbf{v}_i^{\mathsf{T}}$

回顾: $m \ge n$ 时, $s_1, ..., s_n$ 为 $\sqrt{\lambda_1}, ..., \sqrt{\lambda_n}$, 即根号下 $\mathbf{A}^T \mathbf{A}$ 特征值

若恰有 $r \le n$ 个非零特征值(即 $\lambda_1, ..., \lambda_r > 0, \lambda_{r+1}, ..., \lambda_n = 0$),则 $\mathbf{A} = \sum_{i=1}^r s_i \cdot \mathbf{u}_i \mathbf{v}_i^{\mathsf{T}}$

SVD的另一种定义

可以证明r为矩阵A的秩

奇异值分解(Singular Value Decomposition)

给定秩为r的 $m \times n$ 矩阵A,将其分解为三个矩阵之积: $A = USV^T$,其中:

- (1) $U \stackrel{\cdot}{=} m \times r$ 矩阵,r个列向量构成标准正交向量组;
- (2) V是 $n \times r$ 矩阵,r个列向量构成标准正交向量组;
- (3) **S**是r×r对角矩阵且所有对角线上元素为正。

定义一

奇异值分解(Singular Value Decomposition)

给定 $m \times n$ 矩阵A,将其分解为三个矩阵之积: $A = USV^T$,其中:

- (1) U是m×m正交矩阵; 方阵 矩形矩阵 方阵
- (2) **V**是n×n正交矩阵;
- (3) **S**是m×n (矩形) 对角矩阵且所有元素非负。

定义二

奇异值分解(Singular Value Decomposition)

给定秩为r的 $m \times n$ 矩阵A,将其分解为三个矩阵之积: $A = USV^T$,其中:

- (1) $U \stackrel{\cdot}{=} m \times r$ 矩阵,r个列向量构成标准正交向量组; 矩形矩阵 方阵 矩形矩阵
- (2) $V = n \times r$ 矩阵,r个列向量构成标准正交向量组;
- (3) **S**是r×r对角矩阵且所有对角线上元素为正。

本讲小结

- **奇异值分解的两种定义及等价形式**
- **一** 奇异值分解的存在性与计算

主要参考资料

Tim Roughgarden and Gregory Valiant <CS 168 - The Modern Algorithmic Toolbox> Lecture Notes

Cameron Musco <COMPSCI 514 - Algorithms for Data Science> Slides

谢谢!

