Métodos de diseño de filtros FIR (Parte 1)

Procesamiento de señales

Método de ventaneo

Diseño de Filtros FIR: Ventaneo

¿Qué etapas de diseño necesitamos resolver con el método de ventanas?

Diseño de Filtros FIR: Ventaneo

Ventana rectangular

Diseño de Filtros FIR: Ventaneo

Respuesta temporal de las ventanas

Diseño de Filtros FIR: Ventaneo

Espectro de las ventanas

Diseño de Filtros FIR: Ventaneo

Espectro de FILTROS PASA BAJOS ventaneados

Diseño de Filtros FIR: Ventaneo

Espectro de FILTROS PASA BAJOS ventaneados

Diseño de Filtros FIR: Ventaneo

Características de las ventanas

Tipo de ventana	Anchura aproximada del lóbulo principal	Pico del lóbulo secundario (dB)
Rectangular	$4\pi/M$	-13
Bartlett	$8\pi/M$	-25
Hanning	$8\pi/M$	-31
Hamming	$8\pi/M$	-41
Blackman	$12\pi/M$	-57

Espectro de la ventana (ejemplo rectangular)

Características de un filtro pasa bajos con distinta ventanas

Ventana	ω_m	δ	$20\log_{10}(\delta)$
Rectangular	$4\pi/M$	0,09	-21 dB
Bartlett	$8\pi/M$	0,05	-25 dB
Hann	$8\pi/M$	0,0063	-44 dB
Hamming	$8\pi/M$	0,0022	$-53~\mathrm{dB}$
Blackman	$12\pi/M$	0,0002	-74 dB

Espectro del filtro ventaneado (ejemplo rectangular)

 $20\log(\delta)$

Ventana de Kaiser

Ventana de Kaiser

Parámetros

Ventana: Función de Matlab/Octave para generar la ventana de Kaiser *(devuelve una columna)*

Parámetros: Fórmula *empírica* para determinar el largo M (o el orden N=M-1) y β a partir de las especificaciones del **ripple** y **ancho de transición**:

$$A = -20 \log_{10}(\delta) \qquad \Delta \omega = \omega_s - \omega_p \qquad M = \frac{A - 8}{2,285 \Delta \omega} + 1$$

$$\beta = \begin{cases} 0.1102(A - 8.7) & A > 50 \\ 0.5842(A - 21)^{0.4} + 0.07886(A - 21) & 21 \le A \le 50 \\ 0 & A < 21 \end{cases}$$

Ventana de Kaiser

Parámetros

Filtro ideal deseado

Combinación de filtros FLG

Sean dos filtros FIR FLG conectados en **paralelo**. El filtro $H(\omega) = H_1(\omega) + H_2(\omega)$ equivalente, ¿preserva la condición de FLG? en qué casos? Encuentre el orden equivalente, su función amplitud y su fase inicial. Explore la preservación de la fase lineal en el caso de una conexión en cascada.

$$H_1(\omega) = A_1(\omega)e^{j(-\omega\tau_1 + \phi_{01})}$$

$$H_2(\omega) = A_2(\omega)e^{j(-\omega\tau_2 + \phi_{02})}$$

$$H_2(\omega) = A_2(\omega)e^{j(-\omega\tau_2 + \phi_{02})}$$

Combinación de filtros FLG

Sean dos filtros FIR FLG conectados en **paralelo**. El filtro $H(\omega) = H_1(\omega) + H_2(\omega)$ equivalente, ¿preserva la condición de FLG? en qué casos? Encuentre el orden equivalente, su función amplitud y su fase inicial. Explore la preservación de la fase lineal en el caso de una conexión en cascada.

Combinación de filtros FLG

¿Cómo obtenemos un filtro **pasa altos** con frecuencia de corte $\omega_{\rm c}$ a partir del $h_{\rm d}[n]$ de un pasabajos genérico?

$$h_d[n] = \frac{\omega_c}{\pi} \operatorname{sinc}\left(\frac{\omega_c}{\pi}(n-N/2)\right)$$
 pasa bajos prototipo

Combinación de filtros FLG

¿Cómo obtenemos un filtro **pasa altos** con frecuencia de corte $\omega_{\rm c}$ a partir del $h_{\rm d}[n]$ de un pasabajos genérico?

$$h_d[n] = h_{d1}[n] - h_{d2}[n] =$$

$$\text{Hsinc } \left(n - \frac{N}{2}\right) - \frac{\omega_c}{\pi} \operatorname{sinc}\left(\frac{\omega_c}{\pi}(n - \frac{N}{2})\right)$$
 AP
 LP

Combinación de filtros FLG

¿Cómo obtenemos un filtro **pasa banda** de frecuencias de corte $\omega_{\rm c1}$ y $\omega_{\rm c2}$ a partir de dos respuestas $h_{\rm d}[n]$ pasabajos?

Combinación de filtros FLG

¿Cómo obtenemos un filtro **pasa banda** de frecuencias de corte $\omega_{\rm c1}$ y $\omega_{\rm c2}$ a partir de dos respuestas $h_{\rm d}[n]$ pasabajos?

$$h_d[n] = h_{d2}[n] - h_{d1}[n] =$$

$$= \frac{\omega_{c2}}{\pi} \operatorname{sinc}\left(\frac{\omega_{c2}}{\pi}(n - \frac{N}{2})\right) - \frac{\omega_{c1}}{\pi} \operatorname{sinc}\left(\frac{\omega_{c1}}{\pi}(n - \frac{N}{2})\right)$$

$$LP$$

Filtros FLG Óptimos

Filtros FLG Óptimos

Equiripple y Cuadrados mínimos

Cuadrados mínimos (LS, *Least Squares*)

Equirriple

$$\min_{h(n)\in\mathcal{F}}\int_0^{+\pi}E^2(\omega)d\omega$$

Función costo

$$\min_{h(n)\in\mathcal{F}}\max_{\omega\in\mathcal{S}}|E(\omega)|,$$

Error Ponderado

$$E(\omega) = V(\omega)|A_d(\omega) - A(\omega)|,$$

DampITUJES

Grado L del polinomio para distintos tipos FLG

$$A(\omega) = Q(\omega)P(\omega) \quad \text{donde} \quad P(\omega) = \sum_{k=0}^{L} \alpha_k \cos(\omega k) = \sum_{k=0}^{L} \alpha_k'(\cos(\omega))^k, \quad \text{Polinomio de orden L}$$

$$M \text{ impar} \quad M \text{ par}$$

$$\alpha_k = \begin{cases} h\left(\frac{M-1}{2}\right) & k = 0 \\ 2h\left(\frac{M-1}{2}-k\right) & 1 \le k \le \frac{M-1}{2} \end{cases}$$

$$Q(\omega) = 1 \quad , \quad L = \frac{M-1}{2}$$

$$\alpha_k = \begin{cases} h\left(\frac{M}{2}-1\right) & k = 0 \\ 4h\left(\frac{M}{2}-k\right) - \alpha_{k-1} & 1 \le k \le \frac{M}{2} - 2 \\ 4h(0) & k = \frac{M}{2} - 1 \end{cases}$$

$$Q(\omega) = \cos(\frac{\omega}{2}) \quad , \quad L = \frac{M}{2} - 1$$

$$\alpha_k = \begin{cases} 2h(0) & k = \frac{M-3}{2} \\ 4h(1) & k = \frac{M-3}{2} \\ \alpha_{k+2} + 4h\left(\frac{M-3}{2} - k\right) & 1 \le k \le \frac{M-7}{2} \\ \frac{1}{2}\alpha_2 + 2h\left(\frac{M-3}{2}\right) & k = 0 \end{cases}$$

$$Q(\omega) = \sin(\omega) \quad , \quad L = \frac{M-3}{2}$$

$$Q(\omega) = \sin(\omega) \quad , \quad L = \frac{M-3}{2} \quad , \quad L = \frac{M}{2} - 1$$

Número de alternancias en la condición óptima: $r \ge L+2$

Teorema de las alternancias

Las alternancias deben cumplir:

- Máximos y mínimos locales que llegan al mismo error dentro de cada banda
- Puntos de cruce en las frecuencias límites (wp y ws).
- Eventualmente en 0 y pi (si es que allí se llega al máximo error)

EJEMPLO (FLG, N=14)

Si el filtro está en la condición óptima, debe cumplir

Herramientas disponibles

Equirriple

```
h = firpm(N,F,A,V) MATLAB
h = remez(N,F,A,V) OCTAVE
h = scipy.signal.remez(...) PYTHON
```

Parámetros

F=[**0** F1 F2 F3 F4 F5 F6 **1**]
A=[A0 A1 A2 A3 A4 A5 A6 A7]
V=[1/d1 1/d2 1/d3 1/d4]

Orden del filtro aproximado

¿Qué orden debe tener el filtro?

Existen algunas fórmulas empíricas para comenzar el diseño. Una es la aproximación de Kaiser (que nada tiene que ver con la ventana de Kaiser)

$$\hat{M} = \frac{-20\log_{10}\left(\sqrt{\delta_1\delta_2}\right) - 13}{14.6 \,\Lambda f} + 1 \qquad ; \Delta f = \Delta \omega / 2\pi$$

Luego puede ajustarse hasta alcanzar las especificaciones deseadas

Teorema de las alternancias

Actividad 1

Diseño de un pasa bajos

 Diseñar un filtro pasa bajos que cumpla con las especificaciones indicadas abajo. Determine la ventana adecuada y el orden que cumplen con las especificaciones.

$$0.9 \le |H(\omega)| \le 1.1$$
 $0 \le |\omega| \le 0.42\pi$ $|H(\omega)| \le 0.02$ $0.7\pi \le |\omega| \le \pi$

2) A partir de la ventana y la expresión de $h_{d}[n]$, implemente en Matlab h[n]. Compute $|H(\omega)|$ y $A(\omega)$ y grafíquelos en el intervalo $\omega \in [0,\pi)$. Verifique si se satisfacen las especificaciones. Use un largo de fft de al menos 8192 puntos.

$$[A, w, phi] = zerophase(h,1,w)$$

3) Grafique *h*[*n*] y el diagrama de polos y ceros. ¿Qué tipo FLG resultó el filtro implementado?

Diseño de un pasa bajos: Especificaciones

Diseño de un pasa bajos: Especificaciones

Diseño de un pasa bajos

Diseño de un pasa bajos

Filtro con ventana de Hann

Diseño con ventanas: procedimiento

Para el diseño con "ventanas" elegimos las especificaciones más restrictivas:

- 1. $\delta \leq \min \{\delta_1, \delta_2, \ldots\}$.
- Elegir ventana.
- 3. $\Delta \omega \leq \min \{\Delta \omega_1, \Delta \omega_2, ...\}$.
- 4. Calcular el largo M mínimo que cumple con $\Delta \omega$. Luego el orden N.
- 5. Diseñar respuesta impulsiva deseada $h_d[n]$.
- 6. Implementar h[n].
- 7. Ajustar *N* de ser necesario.

Actividad 2

Pasa altos FLG

- Diseñar un filtro pasa altos que cumpla con las especificaciones indicadas más abajo. Determine la ventana adecuada y el orden que cumplen con las especificaciones.
- 2) Hallar la expresión de $h_d[n]$ e implementarla en Matlab. Graficar $|H(\omega)|$ para $\omega \in [0,\pi)$ y verificar si se satisfacen las especificaciones.
- 3) Graficar *h*[*n*] y el diagrama de polos y ceros. ¿Qué tipo FLG resultó el filtro implementado?
- 4) Modificar el orden *N* en uno y repetir el punto 3). ¿Se siguen cumpliendo las especificaciones?

$$|H(\omega)| \le 0,001 \qquad 0 \le |\omega| \le 0,5\pi$$

$$0,992 \le |H(\omega)| \le 1,008$$
 $0,7\pi \le |\omega| \le \pi$

Pasa altos FLG

1.
$$\delta \leq \delta_{\rm s} = 0.001$$

2.
$$w[n]$$
: Blackman ($\delta = 0.0002$)

3.
$$\Delta \omega = |0.7 - 0.5| \pi = 0.2 \pi$$

4.
$$M \ge 12\pi/\Delta\omega = 60 \text{ (N = 59)}$$

5. Pasa bajos deseado:
$$h_d[n] = \mathrm{sinc}(n-N/2) - \frac{\omega_c}{\pi} \mathrm{sinc}\left(\frac{\omega_c}{\pi}(n-N/2)\right) = 0$$

6. Ventaneo: $h[n] = h_{d}[n]$.w[n]

Pasa altos FLG

Pasa altos FLG

Pasa altos FLG

Break

Actividad 3

Filtros con ventana de Kaiser

- 1) Diseñar un filtro pasa banda que cumpla con las especificaciones indicadas más abajo.
 - a) Utilice una ventana de **Kaiser** y determine el parámetro β y el orden N para cumplir con las especificaciones.
 - b) Implementar el filtro en Matlab. Graficar $A(\omega)$ y verificar si se satisfacen las especificaciones. ¿Qué tipo FLG resultó el filtro implementado?

$$|H(\omega)| \le 0,09$$
 $0 \le |\omega| \le 0,24\pi$ $0,9 \le |H(\omega)| \le 1,1$ $0,28\pi \le |\omega| \le 0,6\pi$ $|H(\omega)| \le 0,03$ $0,7 \le |\omega| \le \pi$

2) Graficar en un mismo plot() A(ω) para los filtros pasa bajos definidos por N=50, ω_c =0.5 π y β = {0; 1; 2; 3; 4}. Observe el máximo ripple en función del parámetro β .

Filtros con ventana de Kaiser

1) Diseño del pasabanda

beta=2.1809 N=79

Actividad 3

Filtros con ventana de Kaiser

2) Variando Beta

0.6

Actividad 4

Actividad 4 (óptimos)

Diseño de un filtro FLG Equiripple

- Implementar un filtro pasa bajos utilizando el método de diseño óptimo Equiripple. Grafique h(n), $|H(\omega)|$ y el diagrama de polos y ceros.
 - Nota: para obtener el orden, utilice la la aproximación de Kaiser y luego vaya modificando el orden hasta cumplir con la especificación.
- 2) Grafique la función amplitud $A(\omega)$ y verifique experimentalmente si se cumple el teorema de las alternancias.

$$0.96 \le |H(\omega)| \le 1.04$$

$$0 \le |\omega| \le 0.45\pi$$

$$|H(\omega)| \leq 0, 1$$

$$0,5\pi \leq |\omega| \leq \pi$$

Actividad 4 (óptimos)

Diseño de un filtro FLG Equiripple

