Anmerkungen zu "Principles of Quantum Mechanics, Shankar" [1]

Jürgen Womser-Schütz, https://github.com/JW-Schuetz

Vektoren

Notation

Darstellung des Spalten ("bra")-Vektors $\ < \ V \ |$ in der Basis $\ < \ i \ |$

$$<$$
 V $|$ $=$ $\sum_{i} v_{i}$ $<$ i $|$

Darstellung des Zeilen ("ket")-Vektors $\mid W >$ in der Basis $\mid j >$

$$| \quad W \quad > \quad = \quad \sum_j w_j \ | \quad j \quad > \quad$$

Inneres Produkt

 $Axiome^1$

Symmetrie

$$\langle V \mid W \rangle = \langle W \mid V \rangle^* \tag{1}$$

Semidefinitheit

$$< V | V > > 0$$
 if $| V > \neq 0$
 $< V | V > = 0$ if $| V > = 0$

¹* meint die komplexe Konjugation.

Linearität

$$+b \mid Z >) = a < V \mid W > +b < V \mid Z (3)$$

Definitionen

Allgemeine Basen

$$< V \mid W > = \sum_{i} \sum_{j} v_{i}^{*} w_{j} < i \mid j >$$

Orthogonale Basen

$$< \quad V \quad | \quad W \quad > \ = \sum_i \sum_j v_i^* w_j$$

Norm

$$| V |^2 = \langle V | V \rangle$$

Orthogonale Basen

Schwarzsche Ungleichung

$$<$$
 V $|$ W $>$ \leq $|$ V $|$ $|$ W $|$

Dreiecksungleichung

$$\mid V+W \mid \leq \mid V \mid + \mid W \mid$$

Adjungierte

Lineare Operatoren

Kommutator

$$[\Omega, \Lambda] = \Omega \Lambda - \Lambda \Omega$$

Regeln

$$[\Omega, \Theta \Lambda] = \Theta[\Omega, \Lambda] + [\Omega, \Theta] \Lambda \tag{4}$$

$$[\Theta\Omega, \Lambda] = \Theta[\Omega, \Lambda] + [\Theta, \Lambda] \Omega$$
 (5)

Beweise

Regel 4

$$\begin{split} \Omega\Theta \boldsymbol{\varLambda} - \Theta \boldsymbol{\varLambda} \Omega & = & \Theta \left(\Omega \boldsymbol{\varLambda} - \boldsymbol{\Lambda} \boldsymbol{\Omega} \right) + \left(\Omega \boldsymbol{\Theta} - \boldsymbol{\Theta} \boldsymbol{\Omega} \right) \boldsymbol{\Lambda} \\ & = & \left(\Theta \boldsymbol{\Omega} \boldsymbol{\varLambda} - \Theta \boldsymbol{\Lambda} \boldsymbol{\Omega} \right) + \left(\Omega \boldsymbol{\Theta} \boldsymbol{\Lambda} - \boldsymbol{\Theta} \boldsymbol{\Omega} \boldsymbol{\Lambda} \right) \\ & = & \Omega \boldsymbol{\Theta} \boldsymbol{\Lambda} - \Theta \boldsymbol{\Lambda} \boldsymbol{\Omega} + \Theta \boldsymbol{\Omega} \boldsymbol{\Lambda} - \boldsymbol{\Theta} \boldsymbol{\Omega} \boldsymbol{\Lambda} \\ & = & \Omega \boldsymbol{\Theta} \boldsymbol{\Lambda} - \boldsymbol{\Theta} \boldsymbol{\Lambda} \boldsymbol{\Omega} \end{split}$$

Regel 5 dito

Literatur

[1] Principles of Quantum Mechanics; Shankar, R.; Springer Science+Business Media; 1980