MAS115 Calculus I 2006-2007

Problem sheet for exercise class 6

- Make sure you attend the excercise class that you have been assigned to!
- The instructor will present the starred problems in class.
- You should then work on the other problems on your own.
- The instructor and helper will be available for questions.
- Solutions will be available online by Friday.

- (*) Problem 1: Sketch the graph of $f(x) = \frac{(x+1)^2}{1+x^2}$.
 - Problem 2: Sketch the graph of $f(x) = \frac{x^3}{3x^2+1}$.
 - Problem 3: The sum of two non-negative numbers is 20. Find the numbers
 - a. if the product of one number and the square root of the other is to be as large as possible.
 - b. if one number plus the square root of the other is to be as large as possible.

Extra: The family of straight lines y = ax + b (a, b arbitrary constants) can be characterised by the relation y'' = 0. Find a similar relation satisfied by the family of all circles

$$(x-h)^2 + (y-h)^2 = r^2$$
,

where h and r are arbitrary constants.

Strategy for Graphing y = f(x)

- 1. Identify the domain of f and any symmetries the curve may have.
- Find y' and y''.
- Find the critical points of f, and identify the function's behavior at each one.
- Find where the curve is increasing and where it is decreasing.
- Find the points of inflection, if any occur, and determine the concavity of the
- 6. Identify any asymptotes.
- Plot key points, such as the intercepts and the points found in Steps 3-5, and sketch the curve.

Problem 1

EXAMPLE 7 Using the Graphing Strategy

Sketch the graph of
$$f(x) = \frac{(x+1)^2}{1+x^2}$$
.

Solution

- 1. The domain of f is $(-\infty, \infty)$ and there are no symmetries about either axis or the origin (Section 1.4).
 - 2. Find f' and f".

$$f(x) = \frac{(x+1)^2}{1+x^2}$$

$$f'(x) = \frac{(1+x^2) \cdot 2(x+1) - (x+1)^2 \cdot 2x}{(1+x^2)^2}$$

$$f''(x) = \frac{2(1-x^2)}{(1+x^2)^2}$$

$$f''(x) = \frac{2(1-x^2)}{(1+x^2)^2}$$

$$f'''(x) = \frac{4x(x^2-3)}{(1+x^2)^3}$$

$$f'''(x) = \frac{4x(x^2-3)}{(1+x^2)^3}$$
After some algebra

(Step 2) since f' exists everywhere over the domain of f. At x = -1, f''(-1) = 1 > 0 yielding a relative minimum by the Second Derivative Test. At x = 1, f''(1) = -1 < 0 yielding a relative maximum by the Second Derivative Test. Behavior at critical points. The critical points occur only at $x = \pm 1$ where f'(x) = 0We will see in Step 6 that both are absolute extrema as well.

- f'(x) < 0, and the curve is decreasing. On the interval (-1, 1), f'(x) > 0 and the Increasing and decreasing. We see that on the interval $(-\infty, -1)$ the derivative curve is increasing; it is decreasing on $(1, \infty)$ where f'(x) < 0 again.
 - each point is a point of inflection. The curve is concave down on the interval $(-\infty, -\sqrt{3})$, concave up on $(-\sqrt{3}, 0)$, concave down on $(0, \sqrt{3})$, and concave Inflection points. Notice that the denominator of the second derivative (Step 2) is always positive. The second derivative f'' is zero when $x=-\sqrt{3},0,$ and $\sqrt{3}.$ The positive on $(-\sqrt{3}, 0)$, negative on $(0, \sqrt{3})$, and positive again on $(\sqrt{3}, \infty)$. Thus second derivative changes sign at each of these points: negative on $(-\infty, -\sqrt{3})$ up again on $(\sqrt{3}, \infty)$. Ś
- Asymptotes. Expanding the numerator of f(x) and then dividing both numerator and denominator by x^2 gives و.

$$f(x) = \frac{(x+1)^2}{1+x^2} = \frac{x^2 + 2x + 1}{1+x^2}$$
 Expanding numerator
$$= \frac{1 + (2/x) + (1/x^2)}{(1/x^2) + 1}.$$
 Dividing by x^2

We see that $f(x) \to 1^+$ as $x \to \infty$ and that $f(x) \to 1^-$ as $x \to -\infty$. Thus, the line y = 1 is a horizontal asymptote.

Since f decreases on $(-\infty, -1)$ and then increases on (-1, 1), we know that f(-1)=0 is a local minimum. Although f decreases on $(1,\infty)$, it never crosses the horizontal asymptote y = 1 on that interval (it approaches the asymptote from above). So the graph never becomes negative, and f(-1) = 0 is an absolute minimum as well. Likewise, f(1) = 2 is an absolute maximum because the graph never crosses the asymptote y = 1 on the interval $(-\infty, -1)$, approaching it from below. Therefore, there are no vertical asymptotes (the range of f is $0 \le y \le 2$)

The graph of f is sketched in Figure 4.31. Notice how the graph is concave down as it approaches the horizontal asymptote y = 1 as $x \to -\infty$, and concave up in its approach to y = 1 as $x \to \infty$

FIGURE 4.31 The graph of $y = \frac{(x+1)^2}{1+x^2}$ (Example 7).

Poble 2

When
$$y = \frac{x^3}{3x^2 + 1}$$
, then $y' = \frac{3x^2(3x^2 + 1) - x^3(6x)}{(3x^2 + 1)^2}$
= $\frac{3x^2(x^2 + 1)}{(3x^2 + 1)^2}$ and

$$y'' = \frac{(12x^3 + 6x)(3x^2 + 1)^2 - 2(3x^2 + 1)(6x)(3x^4 + 3x^2)}{(3x^2 + 1)^4}$$

$$= \frac{6x(1 - x)(1 + x)}{(3x^2 + 1)^3}. \text{ The curve is rising on } (-\infty, \infty) \text{ so}$$

there are no local extrema. The curve is concave up on $(-\infty, -1)$ and (0, 1), and concave down on (-1, 0) and $(1, \infty)$. There are points of inflection at x = -1, x = 0, and x = 1.

poble 3

- $\frac{20-3x}{2\sqrt{x}} = 0 \Rightarrow x = 0$ and $x = \frac{20}{3}$ are critical points; f(0) = f(20) = 0 and $f\left(\frac{20}{3}\right) = \sqrt{\frac{20}{3}}\left(20 \frac{20}{3}\right)$ (a) Maximize $f(x) = \sqrt{x}(20 - x) = 20x^{1/2} - x^{3/2}$ where $0 \le x \le 20 \implies f'(x) = 10x^{-1/2} - \frac{3}{2}x^{1/2}$ $=\frac{40\sqrt{20}}{3\sqrt{3}} \Rightarrow \text{ the numbers are } \frac{20}{3} \text{ and } \frac{40}{3}.$
- $\Rightarrow \sqrt{20-x} = \frac{1}{2} \Rightarrow x = \frac{79}{4}$. The critical points are $x = \frac{79}{4}$ and x = 20. Since $g\left(\frac{79}{4}\right) = \frac{81}{4}$ and g(20) = 20, (b) Maximize $g(x) = x + \sqrt{20 - x} = x + (20 - x)^{1/2}$ where $0 \le x \le 20 \Rightarrow g'(x) = \frac{2\sqrt{20 - x} - 1}{2\sqrt{20 - x}} = 0$ the numbers must be $\frac{79}{4}$ and $\frac{1}{4}$.

上 以 以

We have that $(x-h)^2 + (y-h)^2 = r^2$ and so $2(x-h) + 2(y-h) \frac{dy}{dx} = 0$ and $2 + 2\frac{dy}{dx} + 2(y-h)\frac{d^2y}{dx^2} = 0$ hold.

Thus $2x + 2y\frac{dy}{dx} = 2h + 2h\frac{dy}{dx}$, by the former. Solving for h, we obtain $h = \frac{x + y\frac{dy}{dx}}{1 + \frac{dy}{dx}}$. Substituting this into the second

equation yields $2 + 2\frac{dy}{dx} + 2y\frac{d^2y}{dx^2} - 2\left(\frac{x+y\frac{dy}{dx}}{1+\frac{dy}{dx}}\right) = 0$. Dividing by 2 results in $1 + \frac{dy}{dx} + y\frac{d^2y}{dx^2} - \left(\frac{x+y\frac{dy}{dx}}{1+\frac{dy}{dx}}\right) = 0$.