Einführung ins Sehen

Was ist Licht?

- Elektromagnetische Wellen, die von einer Lichtquelle (z.B. Glühbirne, Kerze) ausgestrahlt bzw. von einem Objekt reflektiert werden
- Photon: kleinstmögliche Einheit von Energie
- Geradlinie Ausbreitung durch den Raum (Ablenkung, Reflektion, Absorption möglich)
- Lichtgeschwindigkeit: Glas (190.000 km/s), Wasser (224.000 km/s), Luft (300.000 km/s)

Photometrische Kenngrößen

3D Winkel einer Kugel, $\Omega = A/r^2$ mit Flächeninhalt A und Radius r

Strahlung, die nach allen Seiten abgegeben wird (Gesamtstrahlung) $\phi_v = L_v/t$ mit Leuchtdichte L_v , Zeit in Stunden t bestimmte
Richtung
abgestrahlter
Lichtstrom, z.B.
Kerze mit 1 cd $I_v = \phi_v / \Omega$ mit
Lichstrom ϕ_v und
Raumwinkel Ω

Maß für das auf eine Fläche auftreffende Licht. Abhängigkeit vom Abstand zur Lichtquelle $E_v = I_v/r^2$ mit Lichstärke I_v und Abstand r^2 Energie (Helligkeitseindruck), die von einer Lichtquelle ausgestrahlt wird $L_v = \phi_v t$ mit Lichtstrom ϕ_v , Zeit in Stunden t

Wirkung von Licht

Bezeichnung	Farbtemperatur [Kelvin]	Beschreibung	Wirkung auf den Menschen
warmweiß	unter 3300 K	gelbweiß	gemütlich und behaglich
neutralweiß	3300 bis 5300 K	weiß	sachliche Atmosphäre, Kunstlichtcharakter
tageslichtweiß	über 5300 K	Tageslicht- ähnliches	wirkt technisch, anregend, passt zu einfallendem Tageslicht

Beleuchtungsstärke E_v im Verhältnis zur Farbtmperatur K (Farbeindruck einer Lichtquelle)

Quelle: Wikipedia

Sichtbares Licht

Der Mensch kann Licht mit einer Wellenlängen von ca. 400 - 770 Nanometer (1nm = 1 Milliardstel Meter) wahrnehmen

Das Auge

- Das reflektierte Licht gelangt durch die Hornhaut, die Pupille, die Linse und den Glaskörper auf die Netzhaut
- Rezeptoren auf der Netzhaut wandeln elektromagnetische Strahlen (Licht) in elektrische Impulse (Transduktion) und der Sehnerv leitet diese an das Gehirn weiter
- Vereinfacht gesehen kann man eine Kamera mit dem menschliche Auge vergleichen
- Linse Linsengruppen des Objektivs (z.B. Sammellinse)
- Iris Blende des Objektivs
- Netzhaut Kamerasensor

Die Linse

 Krümmungsgrade ermöglichen scharfes Sehen im Nah- und Fernbereich (Fokussieren = Akkomodation)

Zu nah – Objekt unscharf – Kamera: konvergenter Lichteinfall nach dem Sensor

Fokussieren - Objekt scharf

Auge – Nahsicht - erfordert Muskelaufwand

Die Linse

Objekt weit entfernt - Bildpunkt liegt vor der Retina (Kurzsichtigkeit (Punkt B)) bzw. vor dem Sensor der Kamera

Auge

Die Fernakkommodation beim Auge ist der entspannte Normalzustand

Kamera

Divergenter Lichteinfall auf Sensor - unscharf

Die Pupille

- Blendenmechanismus des Auges, der den Lichteinfall auf die Retina steuert (Pupillenreflex)
- Lichteinfall wird direkt durch beidseitige Kontraktion oder Dilatation der Irismuskulatur reguliert
- Je nach Lichteinfall variiert ihr Durchmesser zwischen 1,5 und 8-12 Millimeter

Blende und Belichtungszeit bestimmen Schärfentiefe und Helligkeit ______

Regenbogenhaut

Blende: 36 Blende: 8 Blende: 2,8

Blendenwert hoch -> Blendenöffnung klein = wenig Lichteinfall

Schärfentiefe

- Schärfentiefe wird von folgenden 3 Faktoren beeinflusst
 - Blendenwert /-öffnung
 - Entfernung zum Objekt
 - Brennweite (Abstand Linse Sensor)

Niedriger Blendenwert Blendenöffnung groß

Mittlerer Blendenwert Blendenöffnung mittig

Hoher Blendenwert, Blendenöffnung klein

Die Netzhaut

- Wenige Zehntelmillimeter dünne Retina (5 Arten von Neuronen)
- Rezeptoren wandeln Licht in bioelektrische Spannung (Transduktion) - Kamara CCD/CMOS Sensoren wandeln wandeln Licht (Photonen) in elektrische Signale (Elektronen) um
- Zapfen: Für das Farbsehen verantwortlich, Tagessehen (Unschärfe im Dunklen)
- Stäbchen nur Helligkeiten (Grauwerte), Nachtsehen

Aufbau der Netzhaut

Nervenfasern des Sehnervs

Verteilung der Rezeptoren

- Ausschließlich Zapfen in der Fovea (Sehgrube, Gelber Fleck), 1% = ca. 50.000
- Ca. 120 Mio. Stäbchen und ca. 5-6 Mio. Zapfen in der Peripherie
- Blinder Fleck keine Rezeptoren

Visuelle Transduktion

- Nach Aufnahme eines Lichtreizes (7
 Photonen) löst sich das Retinal vom
 Opsin (Isomerisation) und die
 Transformation beginnt (Bleichung des
 Sehpigmentes)
- Aufnahme und Transformation neuer Lichtenergie nach erneutem verbinden der beiden Molekühle (Regeneration)

Sehpigmentmolekühl

Sehpigmentmolekühl beim Frosch

Lichtempfindlichkeit beim Auge

- Ca. 200 Helligkeitsstufen unterscheidbar
- Höhere Empfindlichkeit der Stäbchen bei kurzwelligem Licht (500nm), Zapfen mittel- bis langwelliges Licht (560nm)
- Höchste Empfindlichkeit in grün-gelb Bereich
- Auge beim Tagessehen (rote Kurve) und bei Nacht (blaue Kurve)

Empirisch gemessenes Helligkeitsempfinden hell/dunkel

Lichtempfindlichkeit beim Auge

Leuchtdichte cd (Candela)/m²	
$10^{-6} = 0.000001$	Unterste Grenze zur Orientierung
unter 10 ⁻² = 0.01	Nur Dämmerungssehen, kein Farbensehen
$10^{-2} = 0.01$ bis $10^2 = 100$	Übergang vom Dämmerungs – zum Tagessehen, Farbensehen für den Bereich der Fovea
$10^2 = 100 \text{ bis}$ $10^5 = 100.000$	Tagessehen, helligkeitskonstantes Farbensehen
10 ⁵ = 100.000	Beginnende Blendung des hell adaptierten Auges

Neuronale Verschaltung (Lichtempfindlichkeit)

 Höhere Lichtempfindlichkeit bei Stäbchen durch Konvergenz = Verschaltung von Neuronen

Stäbchen links, Zapfen rechts

Dunkeladaption beim Auge

Zapfen adaptieren in den ersten Minuten

Stäbchen übernehmen die Sicht nach ca. 8-10min

(Kohlrausch-Knick)

Farbverarbeitung in der Fernsehtechnik

- In der Fernsehtechnik (PAL, NTSC -Farbübertragungsverfahren) wird Helligkeits- und Farbempfindung beim Menschen genutzt: Helligkeit (Luminanz) und Farben werden getrennt verarbeitet
- Analoges Fernsehen: YUV, Y für Luminanz und UV für die Chrominanz = Farbinformationen
- Digitalfernsehen: YC_bC_r, Y für Luminanz und C_bC_r für die Chrominanz
- Gewichtung der Farbkomponente, da Helligkeitsempfindung abhängig von Farbe (grün heller als rot, rot heller als blau)

Luminanz: Y = 0.3 * R + 0.59 * G + 0,11 * B

Weiterer Ansatz der Luminanzbestimmung:

Mittelwert Y=(R+G+B) / 3

YUV/YCbCr Codierung beim Video

Gamma-Korrektur

- Proportional (d. h. linear) wachsenden Größe in eine nicht linear wachsende Größe (Mensch) überführt Helligkeitsempfinden steigt in dunklen Bereichen steiler und in hellen weniger steil an (Bild mittig γ = 0,5) Stevenssche Potenzfunktion (Gamma von ca. 0,3 bis 0,5)
- Helligkeitswahrnehmung unabhängig vom verwendeten Monitoren und Grafikkarten

Helligkeiten der dunkelsten (0) und hellsten Felder (255) bleiben erhalten

Neuronale Verschaltung (Detailgenauigkeit)

- Detailliertes Sehen (Scharfsehen) in der Fovea (Zapfen)
- Bei Stäbchen (links) kein Hinweis, ob ein, zwei oder mehr Lichtreize, da immer nur eine Antwort

Stäbchen jeweils links, Zapfen jeweils rechts

Minimaler Zeilenabstand und -anzahl

- Erfassung "mit einem Blick" 12° -15° (Betrachtungswinkel)
- Ab einem Raumwinkel von 1,5' (Bogenminute = 1°/60)
 werden zwei Lichtpunkte getrennt wahrgenommen
- Die Zeilenstruktur wird vom Auge gerade nicht mehr wahrgenommen (Grenzauflösung)

Minimaler Zeilenabstand und -zahl

 Anforderung an die minimale Zeilenzahl eines Bildes (Fernsehen, Monitor), 480-600, z.B. im europäischen analogen PAL-Standard mit 625

$$z = \frac{ph}{\Delta y} = \frac{ph}{a} \cdot \frac{a}{\Delta y} = \frac{\tan(\alpha)}{\tan(\delta)} \approx \frac{\alpha}{\delta}$$

pw - sichtbare Bildbreite

ph - sichtbare Bildhöhe

 δ = Raumwinkel

 α = Betrachtungswinkel

 $\Delta Y = Zeilenabstand (Pixel)$

Flimmerwahrnehmung des Auges

- Begrenzte Reaktionsfähigkeit nach Anregung eines Rezeptors (Regeneration des Sehpigmentes)
- Zeitliche Auflösung des Sehsinns: 50ms Darbietung
- Scheinbewegung (Stroboskopische Bewegung)
- Bei der Filmaufzeichnung nutzt man die Trägheit des Auges
- Maximale Reaktionsgeschwindigkeit des Sehsinns liegt (je nach Helligkeit) zwischen 50 und 60 (Halb-) bilder pro Sekunde -> Illusion einer fließenden Bewegung

Fragen!...