Домашнее задание №9

Задание:

$$L=2x_1+3x_2-x_4 o max$$

$$2x_1 - x_2 - 2x_4 + x_5 = 16$$

$$3x_1 + 2x_2 + x_3 - 3x_4 = 18$$

$$-x1 + 3x_2 + 4x_4 + x_6 = 24$$

$$x_1,\ldots,x_6\geq 0$$

Базисные переменные: x_3, x_5, x_6

Решение:

$$L^*=-2x_1-3x_2+x_4 o min$$

Начальная таблица:

Базис	x_1	x_2	x_3	x_4	x_5	x_6	Свободные члены	Симплекс отношения θ_i
x_5	2	-1	0	-2	1	0	16	-
x_3	3	2	1	-3	0	0	18	9
x_6	-1	3	0	4	0	1	24	8*
	-2	-3^*	0	1	0	0		

Выберем столбец с наименьшей оценкой: столбец x_2

Далее выбираем наименьшее положительное отношение столбца свободных членов к стобцу x_2 : строка x_6

Первая итерация

Производим все необходимые вычисления и получаем следующую таблицу:

Базис	x_1	x_2	x_3	x_4	x_5	x_6	Свободные члены	Симплекс отношения $ heta_i$
x_5	5/3	0	0	-2/3	1	1/3	24	72/5
x_3	11/3	0	1	-17/3	0	-2/3	2	$6/11^{*}$
x_2	-1/3	1	0	4/3	0	1/3	8	-
	-3^*	0	0	5	0	1		

Последняя строка содержит отрицательные элементы \Rightarrow нужна еще одна итерация

Выберем столбец с наименьшей оценкой: столбец x_1

Далее выбираем наименьшее положительное отношение столбца свободных членов к стобцу x_1 : строка x_3

Вторая итерация

Производим все необходимые вычисления и получаем следующую таблицу:

Базис	x_1	x_2	x_3	x_4	x_5	x_6	Свободные члены	Симплекс отношения $ heta_i$
x_5	0	0	-5/11	21/11	1	7/11	254/11	
x_1	1	0	3/11	-17/11	0	-2/11	6/11	
x_2	0	1	1/11	9/11	0	3/11	90/11	
	0	0	9/11	4/11	0	5/11		

Последняя строка не содержит отрицательных значений ⇒ минимальное значение найдено

Полученный опорный план: (6/11, 90/11, 0, 0, 254/11, 0) \Rightarrow значение переменных: x_1 = 6/11, x_2 = 90/11, x_4 = 0

Минимальное значение функции $L^* = 282/11 pprox 25.6363636$

Проверка

In []: from scipy.optimize import linprog

```
In [ ]: import warnings
warnings.filterwarnings("ignore")
```

Воспользуемся библиотекой scipy для проверки нашего ответа:

```
In [ ]: result = linprog(c, A_ub=A, b_ub=b, method='revised simplex')
    print("Результат оптимизации:")
    print("Значение целевой функции:", -result.fun)
    print("Значения переменных:", result.x)
```

```
Результат оптимизации:
Значение целевой функции: 25.6363636363637
Значения переменных: [0.54545455 8.18181818 0. ]
```

Как видно из полученных значений, результаты, посчитанные самостоятельно, и результаты которые были получены с помощью библиотеки совпадают, следовательно решение можно считать верным.

Самостоятельная реализация симплекс-метода

```
In [ ]: def simplex method(c, A, b):
            m, _{-} = A.shape
            c = np.concatenate([c, np.zeros(m+1)])
            A = np.hstack([A, np.eye(m), b])
            def index_of_min_positive(arr):
                positive_values = arr[arr > 0]
                if len(positive_values) == 0:
                   return None
                min_positive_index = np.argmin(positive_values)
                return np.where(arr == positive_values[min_positive_index])[0][0]
            table_solution = np.vstack([A, c])
            while np.any(table_solution[-1, :-1] < 0):</pre>
                pivot col = np.argmin(table solution[-1, :-1])
                ratios = table solution[:-1, -1] / table solution[:-1, pivot col]
                pivot_row = index_of_min_positive(ratios)
                table_solution[pivot_row, :] /= table_solution[pivot_row, pivot_col]
                for i in range(m+1):
                   if i != pivot_row:
                       table_solution[i, :] -= table_solution[i, pivot_col] * table_solution[pi
            solution = dict()
            solution['func_value'] = table_solution[-1, -1]
            solution['final_table'] = table_solution
            return solution
In [ ]: result = simplex_method(c, A, b)
In [ ]: result
        {'func_value': 25.636363636363637,
Out[ ]:
                                         , 0.
                                                      , 1.90909091, 1.
         'final_table': array([[ 0.
                                                                              , -0.45454545,
                 0.63636364, 23.09090909],
                [ 1. , 0.
                                        , -1.54545455, 0.
                                                                 , 0.27272727,
                -0.18181818, 0.54545455],
                [0.,1.
                                       , 0.81818182, 0.
                                                                , 0.09090909,
                 0.27272727, 8.18181818],
                [ 0. , 0. , 0.36363636, 0.
                                                                , 0.81818182,
                 0.45454545, 25.63636364]])}
```

Полученное значение оказалось такое же как и в результате использования библиотеки, следовательно реализацию можно считать верной.