<u>Notes</u>

Discussion

<u>Course</u>

<u>Dates</u>

<u>Help</u>

sandipan_dey >

Next >

☆ Course / Unit 3: Optimization / Problem Set 3A

You are taking "Exam (Timed, No Correctness Feedback)" as a timed exam. Show more

<u>Calendar</u>

End My Exam

Previous

Progress

43:32:20

□ Bookmark this page

Problem Set A due Sep 13, 2021 20:30 IST Completed

Practice

2(a)

1/1 point (graded)

1/1 point (graded)

Here is a picture of the gradient of a function f. Let R denote the region inside and on the boundary of the circle.

If you start at the point (1,-1) and move slightly to the right, how does the value of $m{f}$ change?

it increases		
it decreases		
it stays the same		
~		
Submit	You have used 1 of 2 attempts	
Answers are displayed within the problem		
2(b)		

Here is a picture of the gradient of a function $m{f}$. Let $m{R}$ denote the region inside and on the boundary of the circle.

☐ Calculator

Hide Notes

What is the approximate location of the minimum of the function f in the region R? Choose the point that the minimum is closest to below.

 \bigcirc (0,0)

 \bigcirc (0,1)

 $\bigcirc \ (0,2)$

 $\bigcirc \ (0,-1)$

 $\bigcirc \ (0,-2)$

 $\bigcirc \ \ (-2,0)$

~

Submit

You have used 1 of 2 attempts

• Answers are displayed within the problem

2(c)

1/1 point (graded)

Here is a picture of the gradient of a function f. Let R denote the region inside and on the boundary of the circle.

If you start at the point (2,0) on the boundary of the circle, and follow the circle counterclockwise, does fincrease, decrease, or stay the same?

it increases

it decreases

it stays the same

Submit

You have used 2 of 2 attempts

1 Answers are displayed within the problem

2(d)

0/1 point (graded)

Here is a picture of the gradient of a function f. Let R denote the region inside and on the boundary of the circle.

If we follow the circle clockwise starting at the point (2,0) does f increase, decrease

it increases

it stays the same

Submit You have used 2 of 2 attempts

↑ Answers are displayed within the problem

2(e)

1/1 point (graded)

 $\bigcirc \ (-2,0)$

Here is a picture of the gradient of a function f. Let R denote the region inside and on the boundary of the circle.

What is the approximate location of the maximum of the function f in the region R? Choose the point that the maximum is closest to below.

○ (0,0)	
○ (0,1)	
\bigcirc (0,2)	
$\bigcirc \ (0,-1)$	
left(0,-2)	

Hide Notes

⊞ Calculator

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

<u>Blog</u>

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>