Wie kann man Inhalte messen?

Archimedes approximierte den Flächeninhalt einer Kreisscheibe durch Vielecke, deren Flächeninhalt man leicht berechnen kann (250 v. Chr.).

$$\frac{223}{71} < \pi < \frac{22}{7}$$

Figure: Quelle: Wikipedia:

https://en.wikipedia.org/wiki/File:Archimedes_pi.svg

Stochastik Lebesgue Maß

Idee

• Überdecke komplizierte Mengen mit einfachen Mengen, deren Inhalt man leicht berechnen kann.

Idee

- Überdecke komplizierte Mengen mit einfachen Mengen, deren Inhalt man leicht berechnen kann.
- Mit Hilfe eines Grenzwertprozesses konstruiert man eine beliebig genaue Überdeckung.

Figure: Grobe Überdeckung

Figure: Feinere Überdeckung

Quader

Für offene Intervalle $(a_i,b_i)\subset\mathbb{R}$ mit $a_i\leq b_i$ nennen wir

$$I:=(a_1,b_1)\times\cdots\times(a_n,b_n)$$

einen n-dimensionalen Quader und

$$\bar{I} := [a_1, b_1] \times \cdots \times [a_n, b_n]$$

seinen Abschluss. Wir definieren das Volumen

$$\operatorname{vol}(I) := \prod_{i=1}^n (b_i - a_i) .$$

Quader

Mit

$$\mathbb{I}(n) := \{(a_1, b_1) \times \cdots \times (a_n, b_n) \mid (a_i, b_i) \subset \mathbb{R}\}$$

bezeichnen wir die Menge aller n-dimensionalen Quader.

Degenerierte Quader

Mit

$$\mathbb{I}^0(n):=\{(a_1,b_1) imes\cdots imes(a_n,b_n)\mid (a_i,b_i)\subset\mathbb{R} ext{ und } a_k=b_k ext{ für ein k}\}$$

bezeichnen wir die Menge aller *n*-dimensionalen degenerierten Quader.

Hüllquader

Für eine Menge $A \subset \mathbb{R}^n$ bezeichnen wir eine Menge von Quadern $\{I_j \mid I_j \in \mathbf{I}(n)\}$ mit $A \subset \bigcup_j I_j$ als Hüllquader für A.

Lebesguesche äußere Maß

Für eine Menge $A \subset \mathbb{R}^n$ definieren wir das Lebesguesche äußere Maß durch

$$\mu(A) := \inf \left\{ \sum_{j=1}^{\infty} \operatorname{vol}(I_j) \; ; \; I_j \in \mathbb{I}(n); A \subset \bigcup_{j=1}^{\infty} I_j \right\}$$

Infimum

Größte untere Schranke.

Angewandte Mathematik

Monotonie

Für $A \subset B \subset \mathbb{R}^n$ ist $\mu(A) \leq \mu(B)$.

Beweis

Da $A \subset B$ Teilmenge ist, sind Hüllquader von B auch Hüllquader von A und damit $\mu(A) \leq \mu(B)$.

σ -subadditivität

Sei $A_j \subset \mathbb{R}^n$ eine Folge von Mengen. Dann gilt

$$\mu(\bigcup_{j}^{\infty}A_{j})\leq\sum_{i=1}^{\infty}\mu(A_{j})$$

Beweis

Für jedes A_j und $\epsilon > 0$ können wir eine geeignete Überdeckung $A_j \subset \bigcup_k K_{j,k}$ mit Hüllquadern $K_{j,k}$ finden, so dass $\sum_k \operatorname{vol}(K_{j,k}) \leq \mu(A_j) + \frac{\epsilon}{2^{j+1}}$. Da $\bigcup_j A_j \subset \bigcup_j \bigcup_k K_{j,k}$ eine Überdeckung mit Hüllquadern ist, folgt

$$\mu\left(\bigcup A_{j}\right) \leq \sum_{j} \sum_{k} \operatorname{vol}(K_{j,k}) \leq \left(\sum_{j} \mu(A_{j}) + \frac{\epsilon}{2^{j+1}}\right)$$
$$= \left(\sum_{j} \mu(A_{j})\right) + \epsilon$$

(Die letzte Gleichung beruht auf dem Wert der geometrischen Reihe). Da die letzte Aussage für beliebiges $\epsilon>0$ gilt, folgt die Behauptung.

Stochastik Meßbare Mengen

Meßbare Menge

Für einen Quader I gilt $\mu(I) = \text{vol.}$

Maßproblem

Es gibt disjunkte Mengen $A, B \in \mathcal{P}(\mathbb{R}^n)$ mit $\mu(A \cup B) \neq \mu(A) + \mu(B)$. Konstruiert werde diese mit Hilfe der Vitali Mengen. Hierfür wird das Auswahlaxiom benötigt.

Lösung

 μ Einschränken auf "kleinere" σ -Algebren.

Meßbare Menge

Eine Menge A heißt Lebesgue meßbar, wenn für alle $Q \subset \mathbb{R}^n$

$$\mu(Q) = \mu(Q \cap A) + \mu(Q \cap A^c)$$

gilt. Die Menge der Lebesgue meßbaren Mengen wird mit \mathcal{L}^n bezeichnet.

Meßbare Menge

 \mathcal{L}^n ist eine σ -Algebra und für zwei Lebesgue meßbare Mengen $A,B\in\mathcal{L}^n$ ist

$$\mu(A \cup B) = \mu(A) + \mu(B)$$

Reelle Zufallsvariablen

Eine Menge $U \subset \mathbb{R}^n$ heißt offen, falls für jeden Punkt $x \in U$ ein Radius $\epsilon > 0$ existiert, so dass der Ball $B_{\epsilon}(x)$ in U enthalten ist, also $B_{\epsilon}(x) \subset U$ gilt.

Figure: Quelle: Wikipedia

Stochastik Meßbare Mengen

Meßbare Menge

Eine Menge ist genau dann Lebesgue meßbar, wenn es für jedes $\epsilon>0$ eine offene

Zufallsvariablen

Borel'sche Sigma-Algebra

Die Borel'sche σ -Algebra $\mathcal{B}(\mathbb{R}^n)$ über \mathbb{R}^n ist die kleinste σ -Algebra, die alle offenen Mengen \mathcal{U} enthält, also

$$A_{\sigma}(\mathcal{U}) := \bigcap \{ \mathcal{A} \subset \mathcal{P}(\mathbb{R}^n); \ \mathcal{U} \subset \mathcal{A}, \ \mathcal{A} \ \text{ist} \ \sigma\text{-Algebra} \}$$

Existenz

Die Borel'sche σ -Algebra existiert, da die Potenzmenge eine σ -Algebra ist.

Messbarkeit

Die Borel'sche σ -Algebra ist in der σ -Algebra der Lebesgue messbaren Mengen enthalten.

Stochastik Meßbare Mengen

Meßbare Menge