

2020 年 10 月 汇报 山东大学数学与交叉科学研究中心 兰宇恒

目录

1	课程以及看书总结		
	1.1	泛函分析教程	2
	1.2	非线性泛函分析	2
	1.3	函数论	2
	1.4	高等概率论	3
	1.5	常微分方程	3
2	讨论班		
	2.1	plateau 问题讨论班(郭常予)	4
3		与解决	5
	3.1	实变函数中的问题(《实变函数论,周民强》)	5
	3.2	泛函分析中的问题(《泛函分析,第二版,江泽坚》)	6
	3.3	函数论	6
	3.4	非线性泛函分析中的问题(《非线性泛函分析,郭大钧》)	11
	3.5	plateau 问题讨论班中的问题(郭常予讨论班)	11

1 课程以及看书总结

1.1 泛函分析教程

本月主要学习的内容有以下两个方面

空间理论 度量空间的定义,完备性与完备化,度量空间的拓扑,稠密与无处稠密,完备度量空间的性质,赋范线性空间的定义及性质,cauchy-schwart不等式,Hilbert空间,正交投影,投影算子,线性泛函以及 H 上线性泛函的性质,riez表示定理,泛函的范数,将基的概念从有限维推广到无限维,正交基的概念,空间直和。

算子理论 Hilbert 空间上的线性算子, 算子的范数, 线性算子构成的空间, 伴随算子, 正规算子, 投影算子与幂等算子, 不变子空间与约化子空间, 紧算子, 有限秩算子, 紧算子以及 H上线性算子的关联, 对角算子, 谱算子, 下有界与值域和核

1.2 非线性泛函分析

本月主要学习的内容包括以下两个方面

看书方面 非线性算子的例子, Caratheodory 条件, 以及满足 caratheodory 算子的充分必要条件

视频方面 山路定理, P.S 条件 (对 Banach 流形上泛函的紧性要求)

1.3 函数论

本门课题目为平面上的拟共形映射,主要目的是为了证明 Riemann 映射定理,现在所学总共分为三个部分

第一部分,主要介绍了,一些基本的概念 包括黎曼映射定理的叙述/可测黎曼映射定理的叙述,共形映射的定义/拟共形映射的定义,同胚映射是共形映射的充分必要条件,复扩张的定义,格罗蒋茨问题及其证明,径向拉伸的例子。

第二部分,主要介绍了 sobolev 空间以及相关的一些概念和性质 Lp 空间的性质, Lp 空间上的 holder 不等式与 minkowski 不等式, 证明了 Lp 空间按 P 范数是一个 banach 空间/Wk, p 空间按 k, p, Ω 范数为 banach 空间, 介绍了磨光核的概念及其性质/被磨光核作用后函数的性质, 证明了变分法基本引理, 介绍弱导数并引出了 sobolev 空间, 单位分解定理, 光滑函数局部逼近定理, 直线上绝对连续 (ACL) 的定义以及相关的定理证明。

第三部分,正在逐步介绍拟共形映射的基本性质 微分性质,主要证明了W1,1 (loc)空间上连续开映射是几乎处处可微的,变量替换性质,主要证明了W1,2 (loc)空间上连续开映射,把零测集映到零测集,弱拟对称映射的定义以及性质,拟对称则一定是拟共形映射,拟共形映射则是局部拟对称的。

1.4 高等概率论

本月主要学习了以下几个概念,集合及其运算,映射与势,可数集与不可数集,距离空间定义以及例子,开集闭集,完备性,可分性,列紧性与紧性,距离空间上的映射与函数,连续函数的几个等价条件,半集代数,集代数, σ 代数, λ 系, Π 系,单调类,以及这几种代数系之间的关联。

1.5 常微分方程

本月主要复习了以下几个方面

初等积分法 变量分离的方程,一阶线性方程,初等变换法,积分因子法

存在和唯一性定理 皮卡存在和唯一性定理,皮亚诺存在定理,解的延拓,比较定理及应用

高阶微分方程 解对初值和参数的连续依赖性

线性微分方程组 齐次线性微分方程组, 非齐次线性微分方程组, 矩阵指数函数的定义和性质, 基解矩阵

2 讨论班

2.1 plateau 问题讨论班(郭常予)

本月讨论班主要介绍了以下内容

欧氏空间上的 plateau 问题

参数化的 plateau 问题 对于度量空间上一个 jordan 曲线 Γ ,是否存一个单位圆盘类型曲面使得其在所有以 Γ 曲线为边界的表面中面积最小?

一般化的 plateau 问题 寻找带有给定边界的极小曲面

plateau 问题的数学格式 是否存在 Λ (Γ) 内的一个映射 u, 使得其满足以下等式

$$Area(u) = inf\{Area(v) : v \in \Lambda(\Gamma)\} =: m$$

处理这类问题的两种方法 变分法中的直接步骤(十月份讲)与 sobolev 空间上映射的能量(十一月份讲)

变分法中的直接方法步骤

1. 选择 Λ (Γ) 中的一个极小曲面, 比如 $\phi_k \in \Lambda(\Gamma)$ 满足

$$Area(\phi_k) \to m$$

- 2. 在φ中寻找一个子列收敛到某个
- 3. 证明 $\phi \in \Lambda(\Gamma)$ 并且使用面积的低半连续性

变分法中的直接方法两个主要问题

- 1. 在单位圆盘闭包的重新参数化下面积是不变的并且 $\Lambda(\Gamma)$ 上的面积函数没有紧性
- 2. 我们可以达到任意小的面积使得这里不可能存在收敛子列

3 问题与解决

3.1 实变函数中的问题(《实变函数论,周民强》)

- 前言 P3 有界收敛定理的证明? (在数学分析中没有找到相关证明)
- P8 上面充分性的打问号的集合等式推导, 是否是结论证结论
- P21 例 13," R 中任一点都是 E 中某两个点的差? 这是不可能的", 详细证明
- P31 例 4, 证明完全没看懂? 为什么它们前 m 个小数相同? 为什么存在 Z 使得满足不等式?
- P31 例 5, 为什么易知,对任意 t 以及的他存在 a,取 t 等于 1/2,的他等于 1/4 怎么会存在?
- P32 下列简单事实,右侧包含关系可否取 Ek=(0,1/K)
- P40-45, borel 集这一部分完全没看懂
- P72, 下方小字, 为什么倒数第三步到倒数第二步成立, 不应该是等号吗?
- P73,外侧度为零的点集称为零测集的下方的小字中的话,零测集的任意子集是零测集,由此再注意到 cantor 集是零测集这一事实,难道说 cantor 集是有理数集的子集?如果为子集,那有理数的基数为可数的,而 cantor 集为连续基数? cantor 集为零测集在 P68 中有说明是通过外侧度的次可加性直接计算区间长度得到的。
- P73, 同上一样地方的小字, 不难推断可测集的基数大于或等于 2 的连续基数次幂, 但 其基数又不会超过 2 的连续基数次幂, 所以其基数为 2 的连续基数次幂?
- P79, 引理 2.10, 略长
- P89-93, 连续变换部分, 超出研究范围
- P88, 思考题 2, 次可加性不等号不成立的例子
- P113, 注中, 测度不有限下的反例, 为什么均不一致收敛于 f(x) (这一条解决后加入非平凡例子中)
- P116, 定理 3.14 中的证明, 如何从并的极限推到下面的等式, 或者说如何从累和的极限推到等式
- 13、15 定理证明略长、未完全理清楚思路
- P173, 注中为什么对 f(x+y) 求导得到的却只是对 f(y) 求导

3.2 泛函分析中的问题(《泛函分析,第二版,江泽坚》)

- 线性流形? = 子空间
- P8, 本质有界可测函数?
- P12, 连续的定义, 值域中某点邻域存在定义域中某点邻域, 使得当 x 属于 x0 邻域时有 f(x) 属于 y0 的邻域, 此处与将开集映成开集有什么区别
- P14, m空间不可分, c空间可分, Lp空间可分?
- P16, 证明 Lp 空间为完备空间?
- P20, 证明紧性与自列紧性等价
- P21, 证明紧性的常用方法, 对角线方法
- P23, 等度连续这部分与主线有偏离, 暂时不看
- P26, 赋范线性空间中, Lp与lp之间的关联, Ω =1, 2, 3, …, n, …?
- P31, Riesz 引理中, 不等式的倒数第三步 >=d 是如何推出来的?
- P25, 内积空间, 赋范线性空间, 距离空间, 距离线性空间, 拓扑空间是否有如 P25 所显示的关系?
- P48, 定理 1.1 中, 左边书页中写的第一个内积是如何拆开成那个累和的?
- P50,X 能赋以内积的充要条件是 X 中的范数满足平行四边形法则?
- 涉及复变的一些例子,P51-P52, 例子 4,5,P26, 例子 4,5

3.3 函数论

- P1, 定理 1.1 没有证?
- P1, 三个 by 什么意思?
- P2, 为什么使用 sup,
- P2, 此处如何说明是共形映射
- P2, 度量拟共形映射, 为什么要取这个名字? 这一小节没有有关这个的定义?
- P2, 如果 Hf=3, 则可任意称为 4, 5, 6, 7。。。-拟共形映射
- P2, 如何得到的 L (Z), 为啥这就是 L (z)
- P2, S1 空间是哪一个空间
- P2. 线性映射的行列式

- P2, 最后一句话的翻译
- P3, 可否理解为最大拉伸/最小拉伸
- P3, 如何推定的? 复线性等价于 b=0
- P3. 微分同胚什么意思. 有何等价条件?
- P3, 为什么可以写成这种形式
- P3. 为什么共性等价于后者等于零
- P3, 为何 Hf 可以表示成如上形式?
- P3, 打印错误
- P4, 全纯函数-解析函数?
- P4, 将 h 换成 s 有何区别
- P4, quantity 量? 还是自变量?
- P4, 最后那个推导, 怎么从拟共形映射推到那个等式的?
- P4, 最后那个 as 什么意思? 如何翻译?
- P4, 映射的无穷范数?
- P5, 定理 1.9 没有证?
- P5, 这个问题的翻译是什么意思?
- P5, 问题 1.10 证明里的 1 (f (Iy)) 是什么? 以及此不等式是如何推出来的?
- P5, 左侧与范数有关不等式, 不是只有微分同胚才有此性质吗
- P5, 小于等于号的 (a2, b2) 怎么来的?
- P5, conclude that? 是怎么推导出来的?
- P5, Jacobi 矩阵打印错误?
- P6, 打印错误? u 与 u
- P6, 为什么要分α小于等于1的情况?
- P6, 更一般的情况是什么情况? 为 |z| 的函数?
- P6, strictly, 打印错误
- P7, for each 1 属于 N? 如何对每一个 1 取子列

- P7, dominated convergence theorem 是控制收敛定理? (是滴)
- P7. 如何得到那两项?
- P7, 最后推导步骤中那个极限为什么会等于 fi
- P7. 那个推论为什么放宽子列的收敛范围, 变为几乎处处?
- P7, lebesgue 积分的绝对连续性那个提示, 密度还是稠密性?
- P7, 如何用稠密性证明?
- P8, 最上面那句话, 为什么存在 C0 无穷内一组函数逼近?
- P8, 为什么当 f 是 L1 时, 磨光核是那个? (那个单词不是磨光核而是改变)
- P8, Lloc 空间是什么空间? (局部可积函数的全体?) (在紧集上可积与在某个开集中局部可积?)
- P8, 不等式放缩是怎么得到的?
- P8, 同上一个问题, z 积分区域为, z/伊普西隆积分区域为 B (0, 1)
- P8, 函数等价? 为啥, 证明?
- P8, N2 空间是啥?
- P9, h远小于1? 还是h被1控制?
- P9. 两个包含号连在一起什么意思
- P9, 后一个等式是如何推导的?(□)多了一个伊普西隆?
- P9, 打印右侧缺少一个*号
- P9, V 区域是什么? 这个控制是怎么得到的?
- P9, 如何使用控制收敛定理, 没有序列, 有界就可收敛?
- P9, x, y 地位等价?
- P9, 积分均值是怎么得到的? 为什么把伊普西隆消除掉了?
- P10, (3) 前是否是要证?
- P10, 不等式放缩, 为什么有那个不等式
- P10, 为什么在 Ω 上存在连续 g? 为什么要取闭包?
- P10, remark2.7 中 we call 那句话如何翻译?
- P10, 证明中如何说明其属于 Lp 空间的?

- P10, 打印错误
- P11, C1 空间和 C01 空间哪一个更大, C1 空间相比 C01 是不是只是少了紧支集这个条件
- P11, 为啥 C01 空间内一个函数与 C1 空间一个函数复合, 得到的函数属于 C01 空间?
- P11, 为何复合函数的支集在定义域函数的支集内
- P11, 为何积分等于零? 与分布积分公式的异同?
- P11, remark2.9, (1) 想说明什么
- P11, remark2.9, (2) 如何证明? (证明见 P12, 使用变分法基本引理)
- P11, 引理 2.10, 只需要证明是为什么?
- P12, 打印错误
- P12, full measure 全测度什么意思?
- P12, 如何把那两项消除为零?
- P13, 如何消去常数项的?
- P13, Ω (1/2) 空间是什么?
- P13, 推出来 0=-1 所以矛盾?
- P13. 这样推导, 极限和积分可以换序吗?
- P13, 为什么不直接写 Ck 属于 Wk, p
- P13, Lp 空间属于 Lq 空间? 当 q 小于 p 的时候?
- P13, question2.14?
- P14, 几个推导过程的理由是否合理
- P14, 与 P9 推导过程之间的异同?
- P14, 打印错误?
- P15, 不是 fi 属于这个函数类吗? 累和为 1 是什么意思?
- P15, 引理 2.17 的证明?
- P15, 为什么要 k+1, k-1
- P15, 为什么后一个要闭包
- P15, 函数空间复合后的函数所属空间的原因?

- P15, 为什么存在伊普西隆 k
- P15, 为什么卷积后支集属于 Vk
- P15. 磨光核变小还是变大? 再结合老师说的扩大范围?
- P15, 引理 2.6 的应用?
- P15, 为什么f伊普西隆属于C无穷
- P15, remark 是什么意思?
- P15, Ω属于R, 一维?
- P15, up to another 这句话如何翻译?
- P16, 其函数列逼近有导数列逼近是为什么?
- P16, 为何映射 g 是绝对连续的?
- P16, 与 u (x) 一致什么意思?
- P16, 光滑函数?
- P16, 直线上绝对连续是对区间考虑而不是逐点考虑?
- P16, by fubini 定理? 是怎么推出偏导数几乎处处存在的?
- P16, n-测度什么意思?
- P16, 几乎处处 well defined? 几乎处处是良定义 (合理的)?
- P17, 不等式推论 1, 如何推出的? 2, 与 fatou 引理矛盾?
- P17, 验证函数 g 满足要求的性质?
- P18, 定理 2.26 是如何被证明的?
- P18.c 无穷与1无穷?
- P19, 为什么行列式可以如此表示?
- P19, 3.1 中定理以及推论未证明?

3.4 非线性泛函分析中的问题(《非线性泛函分析,郭大钧》)

- P2, 易知, f(x(n)) 趋于 f(x)? 哪里易知了?(详细证明见书侧)-(利用 holder 不等式)
- P2, 那个算子如何读?
- P3, 显然是有界闭集? 为啥显然? 因为 Fn 是有界闭集?
- P3, 为啥二元连续函数的定义写成如上形式?
- P3. 为啥测度用的是次可加性而不是可数可加性
- P4, 为何上面要 u2 小于等于 n0
- P4, 有理数的稠密行还可以这样用?

3.5 plateau 问题讨论班中的问题(郭常予讨论班)

- P1, 弱共形映射是什么?
- P2, moreover 后面那句话是什么意思?
- P2, 三条 remark 是什么意思?
- P2, dougles, 改变条件解决更强?
- P2, to overcome difficulty? 克服了什么困难?
- P3, area (f) 是什么?
- P3, 符号是什么意思, 这个积分表示的是什么?
- P3, 自然办法? (直接办法), 这是为了什么?
- P3, 为什么要加上面积小于等于 AΓ
- P3, 弱紧性是什么?
- P3, enters naturally?
- P4, 区域的变化是怎么得到的
- P4, example 讲的是什么?
- P4, 不完备和不连续?