PAC Statistical Model Checking for Markov Decision Processes and Stochastic Games

Pranav Ashok, Jan Křetínský, Maximilian Weininger

Technical University of Munich

July 16, 2019

Given biased coin with
$$P(H) = p$$

How does one reasonably estimate p?

Given biased coin with
$$P(H) = p$$

$$\bar{p} = \frac{\#H}{\#H + \#T}$$

Given biased coin with
$$P(H) = p$$

Hoeffding Inequality

$$P(\bar{p}-p\geq c)\leq e^{-2c^2N}$$

Given biased coin with
$$P(H) = p$$

Hoeffding Inequality

 $P(\bar{p}-p\geq c)\leq e^{-2c^2N}\leq \delta$ error tolerance

Example: Stochastic Game

Objective

 \bigcirc player: minimize $P(\lozenge_1)$

Problem Statement

Given: 2 player limited information stochastic game (SG) Find: max prob of reaching target over infinite horizon

Problem Statement

Given: 2 player limited information stochastic game (SG) Find: max prob of reaching target over infinite horizon

Problem Statement

Given: 2 player limited information stochastic game (SG) Find: max prob of reaching target over infinite horizon

$$V(s_{init}) = \max_{\sigma} \min_{\tau} P^{\sigma,\tau}_{s_{init}}(\lozenge \mathfrak{1}) = \min_{\tau} \max_{\sigma} P^{\sigma,\tau}_{s_{init}}(\lozenge \mathfrak{1})$$

Solution Methods

Full information setting

- Quadratic programming
- Strategy iteration
- ► Value iteration

Challenge: Black-box (limited information setting)

Problem statement

Compute $V(s_0)$ for unbounded case with guarantees

Related work

- Statistical Model Checking for limited information settings
- Successful in models without non-determinism
- Some work on MDPs, but not much in Stochastic Games

Related work

- Statistical Model Checking for limited information settings
- Successful in models without non-determinism
- Some work on MDPs, but not much in Stochastic Games
 - ▶ 2011: Bogdoll et al., **spurious non-det.**, unbounded
 - ▶ 2012: Henriques et al., **bounded** LTL
 - ▶ 2013: Legay et al., strategy sampling, **bounded**
 - 2014: Fu et al., PAC guarantee, require mixing time
 - ▶ 2014: Brazdil et al., PAC, theoretical

Idea

Progression

- 1. ATVA14: MDPs, full and partial information, unbounded
- 2. CAV18: SGs, full information, unbounded
- 3. This work: SGs, partial information, unbounded

The Algorithm

while U-L is large

- 1. Simulate and estimate
- 2. Back-propagate

Objective

Objective

Objective

Objective

 \square player: maximize P(F 1)

 \bigcirc player: minimize $P(F_1)$

Objective

 \square player: maximize P(F 1)

 \bigcirc player: minimize $P(F_1)$

O player: minimize P(F 1)

□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ◆ ○ ○ ○ ○ 13/23

O player: minimize P(F 1)

Infinite horizon and end-components

Sink states - end-components which cannot reach target

▶ Lift idea of Daca et. al. 2016 from SCC to EC

End-components promising false numbers to each other

Adapt 'deflate' idea of Kelemendi et. al. 2018

Algorithm Summary

- 1. Simulate (action with best U)
- 2. Estimate prob (coin toss idea)
- 3. Realize stuck in end-components (sinks)
- 4. Back-propagate
- 5. Handle false promises
- 6. (PAC) $\hat{V} \in [V \epsilon, V + \epsilon]$ with prob. δ

► Closest competitor (ATVA14): ≥ age of universe for 10 states

¹only actions oracle

²number of successors known

- ightharpoonup Closest competitor (ATVA14): \geq age of universe for 10 states
- ▶ 16 model-property pairs (11 MDP, 5 SG)
- $\delta = 10^{-8}$, timeout = 30 minutes

¹only actions oracle

²number of successors known

- ▶ Closest competitor (ATVA14): \geq age of universe for 10 states
- ▶ 16 model-property pairs (11 MDP, 5 SG)
- $\delta = 10^{-8}$, timeout = 30 minutes
- ▶ Limited-information (black-box)¹: $\varepsilon \leq 0.1$ on 6 benchmarks
- ▶ 5 benchmarks were 'hard' (no result)

¹only actions oracle

²number of successors known

- ightharpoonup Closest competitor (ATVA14): \geq age of universe for 10 states
- ▶ 16 model-property pairs (11 MDP, 5 SG)
- $\delta = 10^{-8}$, timeout = 30 minutes
- ▶ Limited-information (black-box)¹: $\varepsilon \leq 0.1$ on 6 benchmarks
- ▶ 5 benchmarks were 'hard' (no result)
- Grey-box²: $\varepsilon \le 0.1$ on 14 benchmarks within 6 mins

¹only actions oracle

²number of successors known

Conclusion

- ▶ PAC algorithm for reachability in limited information MDP/SG
- First algorithm to do so for SG
- ► First practical algorithm for MDPs

Handling infinite horizon

Identifying sink states

- ▶ 2016: Daca et. al. fast SCC detection
- Extend to EC detection