Chandkheda Ahmedabad

Sem-3 Probability & Statistics (3130006)

	QUESTIONS	
	UNIT NO- 1:	
	Basic Probability	
	TOPIC: Probability	
Sr. No	DESCRIPTIVE QUESTIONS	Marks
1	Define Mutually exclusive events and Exhaustive events with suitable examples [V.G.E.C]	03
2	Two students <i>x</i> and <i>y</i> work independently on a problem. The probability that <i>x</i> will solve it is 3/4 and the probability that <i>y</i> will solve it is 2/3. What is the probability that problem will be solved? [V.G.E.C]	02
3	In a bolt factory, three machines <i>A</i> , <i>B</i> & <i>C</i> manufacture 25%, 35% and 40% of the total product respectively. Of these outputs 5%, 4% and 2% respectively, are defective bolts. A bolt is picked up at random and found to be defective. What are the probabilities that it was manufactured by machines <i>A</i> , <i>B</i> & <i>C</i> ? [V.G.E.C]	06
4	A person is known to hit the target 3 out of 4 shots, whereas another person is known to hit the target in 2 out of 3 shots. Find the probability of the target being hit at all when they both try. [V.G.E.C]	03
5	A multiple choice test consist of 8 questions with 3 answer to each question (of which only one is correct). A student answers each question by rolling a balanced dice and checking the first answer if he gets 1 or 2, the second answer if he gets 3 or 4 and the third answer if he gets 5 or 6. To get a distinction, the student must secure at least 75% correct answers. If there is no negative marking, what is the probability that the student secure a distinction? [V.G.E.C]	07
6	A company has two plants to manufacture hydraulic machine. Plant I manufactures 70% of the hydraulic machines and Plant II manufactures 30%. At plant I, 80% of hydraulic machines are rated standard quality and at plant II, 90% of hydraulic machines are rated standard quality. A machine is picked up at random and is found to be of standard quality. What is the chance that it has come from plant I? [V.G.E.C]	03,07
7	Four cards are drawn from a pack of cards. Find the probability that (i) all are diamonds (ii) there is one card of each suit (iii) there are two spades and two hearts. [V.G.E.C]	03
8	State Baye's theorem. A microchip company has two machines that produce the chips. Machine I produces 65% of the chips, but 5% of its chips are defective. Machine II produces 35% of the chips and 15% of its chips are defective. A chip is selected at random and found to be defective. What is the probability that it came from Machine I?[V.G.E.C]	04
9	An urn contains 10 white and 3 black balls, while another urn contains 3 white and 5 black balls. Two balls are drawn from the first urn and put into the second urn and then a ball is drawn from the latter. What is the probability that it is a white ball? [V.G.E.C]	07
10	Potholes on a highway can be a serious problem. The past experience suggests that there are, on the average, 2 potholes per mile after a certain amount of usage. It is assumed that the Poisson process applies to the random variable "number of potholes." What is the probability that no more than 4 potholes will occur in a given section of 5 miles?[V.G.E.C]	03
11	In a certain assembly plant, three machines, B1, B2, and B3, make 30%, 45%, and 25%, respectively, of the products. It is known from past experience that 2%, 3%, and 2% of the products made by each machine, respectively, are defective. Now, suppose that a finished product is randomly selected. What is the probability that it is defective?[V.G.E.C]	04
12	In producing screws, let A mean "screw too slim" and B "screw too short". Let $P(A)=0.1$ and let the conditional probability that a slim screw is also too small be $P(B/A)=0.2$. What is the probability that the screw that we pick randomly from the lot produced will be both too slim	03

Chandkheda Ahmedabad

Sem-3 Probability & Statistics (3130006)

	and too short?[V.G.E.C]	
13	Three boxes contain 10%, 20% and 30% of defective finger joints. A finger joint is selected at random which is defective. Determine the probability that it comes from i) 1 st box ii) 2 nd box iii) 3 rd box.[V.G.E.C]	07
14	If 3 of 12 car drivers do not carry driving license, what is the probability that a traffic inspector who randomly checks 3 car drivers, will catch 1 for not carrying driving license (use binomial dist.) [V.G.E.C]	03
15	A room has three lamp sockets. From a collection of 10 light bulbs of which only 6 are good. A person selects 3 at random and puts them in the socket. What is the probability that the room will have light? [V.G.E.C]	04
16	A diagnostic test has a probability of 0.95 of giving a positive result when applied to a person suffering from a certain disease, and a probability 0.10 of giving a (false) positive when applied to a non – sufferer. It is estimated that 0.5 % of the population are sufferers. Suppose that the test is now administered to a person about whom we have no relevant information relating to the disease (apart from the fact that he/she comes from this population). Calculate the following probabilities: (a) That the test result will be positive; (b) That, given a positive result, the person is a sufferer; (c) That, given a negative result, the person is a non – sufferer; (d) That the person will be misclassified. [V.G.E.C]	07
17	In a box, 100 bulbs are supplied out of which 10 bulbs have defects of type A, 5 bulbs have defects of type B and 2 have defects of both types. Find the probabilities that a bulb to be drawn at random has a B type defect under the condition that it has an A type defect. [V.G.E.C]	03
18	In how many different ways can the director of a research laboratory choose 2 chemists from among 7 applicants and 3 physicists from among 9 applicants? [V.G.E.C]	03
19	A class consists of 6 girls and 10 boys. If a committee of three is chosen at random from the class, find the probability that, (i) three boys are selected; (ii) exactly two girls are selected. [V.G.E.C]	04
20	An unbiased coin is tossed 6 times. Find the probability of getting (i) exactly 4 heads, (ii) at least 4 heads. [V.G.E.C]	04
21	Define and give an example of: (i) Exhaustive Events, (ii) Mutually Exclusive Events. [V.G.E.C]	03
22	The average grade of male students in the class was 6.2 and that of females was 7.3. The mean grade of all the students was 6.53. Find the percentage of male and female students. [V.G.E.C]	03
23	If 6 of 18 new buildings in a city violate the building code, what is the probability that a building inspector, who randomly selects 4 of the new buildings for inspection, will catch (i) None, (ii) One, (iii) at least 3, of the new buildings that violate the building code? [V.G.E.C]	04

Chandkheda Ahmedabad

Sem-3 Probability & Statistics (3130006)

	UNIT NO- 2:														
	Some Special Probability Distributions TOPIC: Probability Distributions NUMERICALS														
	TOPIC: Probability Distributions														
	NUMERICALS														
1	A book contains 100 misprints distributed randomly throughout its 100 pages. What is the probability that a page observed at least two misprints? Assume Poisson Distribution. [V.G.E.C]	07													
2	The average percentage of failure in a certain examination is 40. What is the probability that out of a group of 6 candidates, at least 4 passed in examination? [V.G.E.C]	04													
3	In a sampling a large number of parts manufactured by a machine, the mean number of defectives in a sample of 20 is 2. Out of 1000 such sample, how many would be expected to contain exactly two defective parts?[V.G.E.C] A machine produces on average of 500 items during first week of the month and on average of														
4	A machine produces on average of 500 items during first week of the month and on average of 400 items during the last week of the month. The probability for these being 0.68 and 0.32. Determine the expected value of the production. [HINT: Use Mathematical expectation for discrete random variable. V.G.E.C]														
5	[HINT: Use Mathematical expectation for discrete random variable. V.G.E.C] Assume that on the average one telephone number out of fifteen called between 1 p.m. and 2 p.m. on week days is <u>busy</u> . What is the probability that if 6 randomly selected telephone numbers are called (i) not more than three, (ii) at least three of them would be busy? [V.G.E.C]														
6															
7	In a photographic process, the developing time of prints may be looked upon as a random variable having the normal distribution with a mean of 16.28 seconds and a standard deviation of 0.12 second. Find the probability that it will take (i) anywhere from 16.00 to 16.50 seconds to develop one of the prints; (ii) at least 16.20 seconds to develop one of the prints; (iii) at most 16.35 seconds to develop one of the prints. [$P(z = 1.83) = 0.9664$, $P(z = 0.66) = 0.7454$, $P(z = 0.58) = 0.7190$][V.G.E.C]	07													
8	The compressive strength of samples of cement can be modelled by a normal distribution with a mean 6000kg/cm² and a standard deviation of 100kg/cm². 1) What is the probability that a sample's strength is less than 6250 kg/cm². 2) What is the probability if sample strength is between 5800 and 5900 kg/cm². 3) What strength is exceeded by 95% of the samples? [P(z = 2.5) = 0.9938, P(z = 1) = 0.8413, P(z = 2) = 0.9772, P(z = 1.65) = 0.9][V.G.E.C]	07													
9	The following table gives the probabilities that a certain computer will malfunction 0,1,2,3,4,5 or 6 times on any one day:	06													
	No. of malfunctions $\begin{bmatrix} No. of \\ malfunctions \\ x \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$														
	Prob. $f(x)$ 0.17 0.29 0.27 0.16 0.07 0.03 0.01														
	Find the mean and standard deviation of this probability distribution. [V.G.E.C]														
10	The breaking strength X[kg] of a certain type of plastic block is normally distributed with a mean of 1250 kg and a standard deviation of 55 kg. What is the maximum load such that we can expect no more than 5% of the block to break? [V.G.E.C]	04													

Chandkheda Ahmedabad

Sem-3 Probability & Statistics (3130006)

The probability that a person catch swine flu virus is 0.001. find the probability that out of 3000 persons (i) exactly 3, (ii) more than 2 persons will catch the virus. (F (2; λ) = 0.42) [V.G.E.C] A random variable having the normal distribution with $\mu = 18.2$ and $\sigma = 1.25$, find the probabilities that it will take on a value (i) less than 16.5 And 18.8 (F (0.48) = 0.3156, F (-1.36) = 0.0869) [V.G.E.C] For the following probability distribution X	03		G.E.C]	, find k. [V.G.]	$=\frac{k}{1+x^2}$, $-\infty < \chi < \infty$	ity function $f(x)$	For the probabilit	11
A random variable having the normal distribution with $\mu = 18.2$ and $\sigma = 1.25$, find the probabilities that it will take on a value (i) less than 16.5 (ii) between 16.5 And 18.8 ($F(0.48) = 0.3156$, $F(-1.36) = 0.0869$ [IV.G.E.C.] For the following probability distribution $\frac{X}{X} = \frac{X}{X} $	03		the probability that	is 0.001. find th	h swine flu virus	that a person cate	The probability the 3000 persons (i)	12
14 $ $	03		s than	value (i) less t	at it will take on a between	ne probabilities th	A random variable $\sigma = 1.25$, find the 16.5	13
Find the mean and variance (ii) Find the distribution function. [V.G.E.C] Weights of 500 students of a college are normally distributed with average weight 95 lbs and standard deviation 7.5. find how many students have the weight between 100 and 110 lbs. ($P(X \le 2) = 0.9772$, $P(X \le 0) = 0.5$, $P(X \le 0.67) = 0.7486$) [V.G.E.C] Write formula for binomial distribution when $P(X \le 1) = 0.5$, $P(X \le 1) = 0.67$) and $P(X \le 1) = 0.5$, $P(X \le 1) = 0.7486$) [V.G.E.C] Three coins are tossed to gather and let random variable $P(X = 1) = 0.2$, then in the probabilities that (i) At most 3 will arrive in any given minute (ii) At least 3 will arrive during an interval of 4 minutes (iii) At most 10 will arrive during an interval of 6 minutes. [V.G.E.C] Define: Mathematical Expectation. Given that $P(X = 1) = 0.2$, $P(X =$	07					g probability dist		
Weights of 500 students of a college are normally distributed with average weight 95 lbs and standard deviation 7.5. find how many students have the weight between 100 and 110 lbs. $(P (X \le 2) = 0.9772, P(X \le 0) = 0.5, P(X \le 0.67) = 0.7486)$ [V.G.E.C] Write formula for binomial distribution when n and p is known. If $n = 4$ and $p = 0.2$, then prepare binomial distribution for the random variable X . Also , find $E(x), V(X), E(3X + 7)$ and $V(3X + 7)$.[V.G.E.C] Three coins are tossed to gather and let random variable X be the number of heads in each outcome. Then find (a) Probability distribution, (b) Mean and (c) standard deviation. [V.G.E.C] At checkout counter customers arrive at an average of 2.0 per minute. Find the probabilities that (i) At most 3 will arrive in any given minute (ii) At least 3 will arrive during an interval of 4 minutes. [V.G.E.C] Define: Mathematical Expectation. Given that $f(x) = k/2^x$ is probability distribution for a random variable that can take on the values $x = 0, 1, 2, 3, 4$. Find k . [V.G.E.C] A car hire firm has two cars which it hires out day to day. The number of demands for a car on each day is distributed as Poisson variate with mean 1.5. Calculate the proportion of days on which (i) neither car is used, and (ii) some demand is refused. [V.G.E.C] The Probability distribution of a random variable x is given below $ \frac{x}{p(x)} = \frac{1}{12} = \frac{1}{3} = \frac{1}{p} = \frac{1}{4} = \frac{1}{6} = \frac{1}{p} = \frac{1}{p} = \frac{1}{4} = \frac{1}{6} = \frac{1}{p} = \frac{1}{p} = \frac{1}{2} = \frac{1}{2} = \frac{1}{p} = \frac{1}{p} = \frac{1}{2} = \frac{1}{2} = \frac{1}{p} = \frac{1}{2} = \frac{1}{2} = \frac{1}{p} = \frac{1}{2} = \frac{1}{$		+ +				0.1		14
standard deviation 7.5. find how many students have the weight between 100 and 110 lbs. $(P(X \le 2) = 0.9772, P(X \le 0) = 0.5, P(X \le 0.67) = 0.7486)$ [V.G.E.C] Write formula for binomial distribution when n and p is known. If $n = 4$ and $p = 0.2$, then prepare binomial distribution for the random variable X . Also, find $E(x), V(X), E(3X + 7)$ and $V(3X + 7)$ [V.G.E.C] Three coins are tossed to gather and let random variable X be the number of heads in each outcome. Then find (a) Probability distribution, (b) Mean and (c) standard deviation. [V.G.E.C] At checkout counter customers arrive at an average of 2.0 per minute. Find the probabilities that (i) At most 3 will arrive in any given minute (ii) At least 3 will arrive during an interval of 4 minutes. [V.G.E.C] Define: Mathematical Expectation. Given that $f(x) = k/2^x$ is probability distribution for a random variable that can take on the values $x = 0, 1, 2, 3, 4$. Find k. [V.G.E.C] A car hire firm has two cars which it hires out day to day. The number of demands for a car on each day is distributed as Poisson variate with mean 1.5. Calculate the proportion of days on which (i) neither car is used, and (ii) some demand is refused. [V.G.E.C] The Probability distribution of a random variable x is given below 21 x x x x x x x x						. ,		
Write formula for binomial distribution when n and p is known. If $n=4$ and $p=0.2$, then prepare binomial distribution for the random variable X . Also, find $E(x)$, $V(X)$, $E(3X+7)$ and $V(3X+7)$.[V.G.E.C] Three coins are tossed to gather and let random variable X be the number of heads in each outcome. Then find (a) Probability distribution, (b) Mean and (c) standard deviation. [V.G.E.C] At checkout counter customers arrive at an average of 2.0 per minute. Find the probabilities that (i) At most 3 will arrive in any given minute (ii) At least 3 will arrive during an interval of 4 minutes (iii) At most 10 will arrive during an interval of 6 minutes. [V.G.E.C] Define: Mathematical Expectation. Given that $f(x) = k/2^x$ is probability distribution for a random variable that can take on the values $x = 0, 1, 2, 3, 4$. Find k . [V.G.E.C] A car hire firm has two cars which it hires out day to day. The number of demands for a car on each day is distributed as Poisson variate with mean 1.5. Calculate the proportion of days on which (i) neither car is used, and (ii) some demand is refused. [V.G.E.C] The Probability distribution of a random variable x is given below	04		between 100 and 11	ve the weight be	nany students hav	on 7.5. find how i	standard deviation	15
Three coins are tossed to gather and let random variable X be the number of heads in each outcome. Then find (a) Probability distribution, (b) Mean and (c) standard deviation. [V.G.E.C] At checkout counter customers arrive at an average of 2.0 per minute. Find the probabilities that (i) At most 3 will arrive in any given minute (ii) At least 3 will arrive during an interval of 4 minutes. [iii) At most 10 will arrive during an interval of 6 minutes. [V.G.E.C] Define: Mathematical Expectation. Given that $f(x) = k/2^x$ is probability distribution for a random variable that can take on the values $x = 0, 1, 2, 3, 4$. Find k. [V.G.E.C] A car hire firm has two cars which it hires out day to day. The number of demands for a car on each day is distributed as Poisson variate with mean 1.5. Calculate the proportion of days on which (i) neither car is used, and (ii) some demand is refused. [V.G.E.C] The Probability distribution of a random variable x is given below 21 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	07		If $n = 4$ and $p = 0$	$\frac{1}{p}$ is known. If	oution when n and	or binomial distribution for	Write formula for prepare binomial	16
At checkout counter customers arrive at an average of 2.0 per minute. Find the probabilities that (i) At most 3 will arrive in any given minute (ii) At least 3 will arrive during an interval of 4 minutes (iii) At most 10 will arrive during an interval of 6 minutes. [V.G.E.C] 19 Define: Mathematical Expectation. Given that $f(x) = k/2^x$ is probability distribution for a random variable that can take on the values $x = 0, 1, 2, 3, 4$. Find k. [V.G.E.C] A car hire firm has two cars which it hires out day to day. The number of demands for a car on each day is distributed as Poisson variate with mean 1.5. Calculate the proportion of days on which (i) neither car is used, and (ii) some demand is refused. [V.G.E.C] The Probability distribution of a random variable x is given below 21 $ \frac{x}{p(x)} = \frac{-2}{1} = \frac{1}{3} = \frac{1}{4} = \frac{1}{6} $ Find (i) $E(x)$ (ii) $E(2x+3)$ (iii) $E(x^2+2)$. [V.G.E.C] Find the expectation for the following discrete probability distribution: [V.G.E.C] 22 $ \frac{x}{p(x)} = \frac{10}{14} = \frac{14}{18} = \frac{25}{35} = \frac{35}{35} $ $ \frac{x}{p(x)} = 0.125 = 0.225 = 0.325 = 0.200 = 0.125 $ Find the third moment about mean for the following frequency distribution: [V.G.E.C] 23 $ \frac{x}{p(x)} = \frac{5}{14} = \frac{7}{10} = \frac{18}{18} = \frac{26}{36} $ $ \frac{frequency}{frequency} = \frac{5}{14} = \frac{14}{22} = \frac{6}{6} = \frac{3}{3} $	04					tossed to gather a	Three coins are to outcome. Then fin	17
Define: Mathematical Expectation. Given that $f(x) = k/2^x$ is probability distribution for a random variable that can take on the values $x = 0, 1, 2, 3, 4$. Find k. [V.G.E.C] A car hire firm has two cars which it hires out day to day. The number of demands for a car on each day is distributed as Poisson variate with mean 1.5. Calculate the proportion of days on which (i) neither car is used, and (ii) some demand is refused. [V.G.E.C] The Probability distribution of a random variable x is given below $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	07	abilities	•	ninutes	given minute an interval of 4	will arrive in any will arrive during	At checkout counthat (i) At most 3 v (ii) At least 3 v	18
A car hire firm has two cars which it hires out day to day. The number of demands for a car on each day is distributed as Poisson variate with mean 1.5. Calculate the proportion of days on which (i) neither car is used, and (ii) some demand is refused. [V.G.E.C] The Probability distribution of a random variable x is given below 21 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	03	n for a	robability distributio	$= k/2^x$ is prob	n. Given that $f(x)$	natical Expectation	Define: Mathema	19
The Probability distribution of a random variable x is given below $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	03		number of demands fate the proportion of	to day. The nur n 1.5. Calculate	n it hires out day variate with mea	nas two cars which ributed as Poisson	A car hire firm ha each day is distrib	20
P(x) $\frac{1}{12}$ $\frac{1}{3}$ P $\frac{1}{4}$ $\frac{1}{6}$ Find (i) $E(x)$ (ii) $E(2x+3)$ (iii) $E(x^2+2)$. [V.G.E.C]	07							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2	1	0	-1	-2	х	21
Find the expectation for the following discrete probability distribution: [V.G.E.C] $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 6	$\frac{1}{4}$		$\frac{1}{3}$			21
p(x) 0.125 0.225 0.325 0.200 0.125 Find the third moment about mean for the following frequency distribution: [V.G.E.C] x 5 7 10 18 26 $frequency$ 5 14 22 6 3	03		bution: [V.G.E.C]					
Find the third moment about mean for the following frequency distribution: [V.G.E.C] 23 $\begin{array}{ c c c c c c c c c c c c c c c c c c c$								22
frequency 5 14 22 6 3 - f 3 3 3 3 3	04		distribution:	g frequency dis	n for the followin	oment about mea	Find the third mo [V.G.E.C]	
y-?								23
Which of the following define probability distribution (i) $f(x) = \frac{x-2}{10}$, $x = 0,1,2,3,4$	04		$\frac{x-2}{10}$, x = 0,1,2,3,4	$\frac{1}{100} = \frac{x}{10}$	bability distribut	llowing define pro	Which of the following	24

Chandkheda Ahmedabad

Sem-3 Probability & Statistics (3130006)

	(ii) f(x	$(x) = \frac{x}{6}, x =$	0,1,2,3	3 [V.G.]	E.C]											
25	Find F	$P(A \cap B)$, §	given th	at $P(A)$	$=\frac{1}{3}$, $P(I)$	$(3) = \frac{1}{4} \&$	$P(A \cup A)$	$B) = \frac{1}{5} [$	V.G.E.C]		03					
	The p	The probability distribution of a commodity is given below.														
26		Demand	5	6	7	8	9	10								
26		Probabil 0.05 0.10 0.30 0.40 0.10 0.05														
		ity														
	Find e	expected de	mand.	[V.G.E.	C]											
27	Obtair	n the binon	nial dist	ribution	for whic	h mean i	s 10 and	variance	is 5 [V.G.E.C]		02					

Chandkheda Ahmedabad

Sem-3 Probability & Statistics (3130006)

					-	UNI	TN)-3	:							
					I	Basic	Sta	tistic	es .							
			TOPI	C:1: N	Mome	ents &	k Ma	them	atical	Ex	pecta	tions	5			
Sr.		SHO	ORT QU												Marks	
No	TT7 11	C	1 6		1.	0	1 577	<u> </u>	71						0.1	
2	Write for							G.E.C	<u> </u>						01 01	
3	Write form														01	
4	Write rela							oments	s. [V.G	.E.C	<u></u>				01	
5	Find arith								_		-				01	
	x:		1	2	<u></u>	1 3	3		4							
	f:															
6		What is mode of the following frequency distribution? [V.G.E.C] Data value 1 2 3 4														
	Data valu	Data value 1 2 3 4														
	X:	x:														
	_	Frequency 4 7 10 8														
7	f:	n of t	emperati	ire reco	rded in	degre	e cent	iorade	during	2 W	zeek in	when	re the		01	
'			-			_		_	_			, wilci	ic uic		01	
8		Find mean of temperature recorded in degree centigrade during a week in, where the emperature recorded are 38.2, 40.9, 39, 44, 39.6, 40.5, 39.5. [V.G.E.C] Which measures are called the measures of central tendency? [V.G.E.C]														
Sr.																
No																
	Obtain the	e Me	dian for	the follo	wing d	listribu	ition:	[V.G.I	E. C]						04	
1	20	Obtain the Median for the following distribution: [V.G.E.C] x 1 2 3 4 5 6 7 8 9														
	$\frac{x}{f}$	8		0	11	16		20	25		15		9	6		
	From the								_			Actu		1	07	
		From the following data calculate moments about (i) Assumed mean (ii) Actual mean 25 (iii) ero. [V.G.E.C]														
2	Varia	able		0-10		1	10-20		20	0-30)		30-40)		
	Frequ			1			3			4			2			
	The quant														07	
3	in certain															
	and 2035. area. [V.			mean a	ina the	IIISt I	our ce	nıraı i	nomeni	ls oi	i the w	ater (ın me	rs) of that		
	Find the f			ents of	the foll	owing	data	about	assume	d m	ean 11	2.45 2	and act	tual	07	
	mean. [V.					· · · · · · · · · · · · · · · · · · ·	,									
4			,													
	Class lin	mit	100-	104.9	105	5-109.9)	110-1		1	115-11	9.9	120	0-124.9		
	Frequen	_		7		13		25			25			30		
	The follow	_	-										compa	ny in	04	
	every 10 c	days	during la	st 2 mo	nths. U	se the	data t	o find	median	ı. [ˈ	V.G.E.	C]				
			<i>x</i> :	0-10	10-	20	20-30	3	0-40	1	0-50	50-6	50			
5			λ.	0-10	10-	20	20-30		U- 1 U	7	0-30	30-0	50			
		N	lo. of	12	18	8	27		20		17	06	;			
			isitors													
		$\int f$														
		,														

Chandkheda Ahmedabad

Sem-3 Probability & Statistics (3130006)

	Find stand	dard de	viati	on fro	m th	e follo	owin	g data	ı. [V	.G.	E.C]						03
6			Class	S	9)-11		12-	14		15-	-17	1	8-20			
		Fre	que	ncy		2		3	3		۷	1		1			
	Find Aritl	nmetic	meai	n from	the	follov	ving	table.	[V.	.G.E	C.C]						03
7	x		35	5		45		5:	5		60)	7	75		80	
	f		12	2		18		10	0		6			3		11	
8	Find the r		_									G.E.	C]			_	03
0	Find the a		ic m		or the					.G.I			75		0	7	03
9	-	<u> </u>		35 12		45 18		5:			60		75 3	1	1		
		J								<u> </u> - 1							07
10	A continu		. X l	nas a p	odf f((x) =	0 (0	; els	ewh	≥ 1 .ere	Obta	in th	e first f	our cen	ıtral n	noments.	07
	Find the r		freq	uency	whe	n med	lian	is 24	[V.(G.E.	<u>C]</u>						04
11		Mark			-10		10-2			20-3		30	-40	40-5	50		
		Stude			15		20			X			.4	16	5		
	Wages ea			ees pe	er day	y by tł	ne la	boure	rs ar	e gi	ven be	elow	the tabl	e:			04
	Wages in	n 10-	20	2	20-30)	30	-40		40-5	50	50)-60				
12	Rs.						10			1.0							
	No. of	5		8	3		13			10		8					
	Laboure Find the r		of th	A diet	ributi	ion [V C	F Cl									
	Find the r								V.G.	E.C]						04
13	Class	0-10	1	0-20	20)-30	30.	-40	40-	50	50-	60	60-70				
	f	4	7		8		12		25	50	18	00	10				
	From the									varia	_	[V. G					04
14	x	1		2	2		3			4		5					
	f(x)	0.1		().1		0.2	2		0.3		0.	3				
	Calculate	the firs	t fou	ır mon	nents	of th	e fol	lowin	g dis	strib	ution	abou	t the m	ean. [V	/.G.E	C.C]	07
15	X	0		1	2	3		4	5		6	7	8	1			
	f(x			8	28	5		70	5		28	8					
	Find the r	,		_								Ü	1 1				07
16	Classes:	0-3	0	30 –	60	60 –	90	90-	120		20 –		50 –				
	F:	8		13		22		27		13	50	7	30				
	1.	O		13		44		41		10	,	/					
	<u> </u>																

Chandkheda Ahmedabad

Sem-3 Probability & Statistics (3130006)

Sr.		SHOI	RT QU	ESTIC	NS (1	Mark	() / I	MCQ	/ True-	False/Fil	l in the	blanks		Marks		
No																
1	The valu Answer	ie of coe	efficien	t of cor	relatio	n lies l	betv	veen _		and	· ['	V.G.E.	C]	01		
2				nac ara i	narnan	dicula	r to	anch (other th	an the co	affician	t of cor	relation is	01		
	ii tile tw	_	G.E.C]	-	perpen	uicuia	1 10	cacii	omer, m	en the co	emeren	t of cor	iciation is	U1		
	Answer		0,2,0]	l												
3			coeffic	cients a	re -0.1	and -().9 t	hen va	alue of r	=	[V.G	.E.C]		01		
_	Answer													01		
4	If Coefficient of correlation $r = 0$, the two lines of regression are [V.G.E.C] Answer: Perpendicular to each other															
5	Define coefficient of correlation. [V.G.E.C]															
6	For the two data sets represented by x and y , write the regression co-efficient of y on x .															
U	[V.G.E.C]															
Sr.	[V.G.E.C] DESCRIPTIVE QUESTIONS															
No																
	Find cor	Find correlation coefficient for the data given below: [V.G.E.C]														
1																
	x 4 5 9 14 18 22 24 y 16 22 11 16 7 3 17															
			_				olur		_	at differ	ent hou	rs(Y) is		04		
	The number of bacterial cells(X) per unit volume in a culture at different hours(Y) is given below: [V.G.E.C]															
	below: [V.G.E.C]															
2	X															
	Y	43	46	82		98		23	167	199	213	245				
	Fit a line	e of regr	ession	of Y on	X and	l estim	ate	the nu	ımber of	bacteria	l cells at	tter 15 I	nours.			
	Obtain t	he two r	egressi	on lines	s from	the fo	llow	ving da	ata and l	nence fin	d the co	rrelatio	n	07		
2	coefficie							6								
3		χ	;	6		2			10	4		8				
		\mathcal{Y}		9		11			5	8		7				
													ls to find	07		
										ficient be domly se						
	[V.G.E	_	nessur	e ox seri	illi Cilo	nester	JI 10	veis o	10 Tali	donny se	rected p	CISOIIS.				
4	5Per		1	2	3	4		5	6	7	8	9	10			
	Chole	sterol	307	259	341	31	7	274	416	267	320	274	336			
	Dias		80	75	90	74	ļ.	75	110	70	85	88	78			
	В.	Ρ.									<u> </u>					
	Find the	coeffici	ent of	correlat	ion bv	speari	man	's me	thod fro	m the fol	lowing	data & o	comment	07		
	on the re				5	- r					<i>5</i> ··· <i>6</i>					
	.		1													
5	$IQ X_i$	106	86	10		101		99	103	97	113	112	110			
	Hours	7	0	27	7	50	2	28	29	20	12	6	17			
	The obe	uo dota :	home	tha a===	alatia	hater	20=	the IO) of a ===	roon and	numl ::	ofhar	ra anantin			
	front of								or a per	ison and	number	or noul	rs spent in			
<u> </u>	11011101	···· 1	701 7700	I of pe	-10011.	,,,,,,,,								<u> </u>		

Chandkheda Ahmedabad

Sem-3 Probability & Statistics (3130006)

6	From the [V.G.E.		ring data o	btain	the two	regress	ion l	lines a	nd C	Correlatio	on coef	ficient	:		07
	х		100	98		78		85		110		93		80	
	y		85	90		70		72		95		81		74	
	Find the	correla	tion coeff	icient	from the	e follow	ing	data:	[V.G.	.E.C]				,	07
7	X	50	50	55	60) (55	65	5	65	60	60	0	50	
	Y	11	13	14	16		16	15		15	14	13	3	13	
8	Find the	equatio	on of the li	ine of	regressi	on base	d on	the fo	ollow	ing data	ı: [V.G	.E.C]			07
0	x		<u>4</u> 2		2			2			4		<u>2</u>		
	Compute	e the co	rrelation o	coeffic			and		.G.E.	.C1					07
9										,					
9	X		2		4		5		6		8			l 1	
-10	Y		18		12		10		8		7			5	
10			departme											1 1	03
			m to solve n in the fo												
			elation co					egree (or ag.	recificin	DCIWC	cii tiic	twoji	uuges	
		Is	t 3	5	8	- 1	7	10	2	1	6	9			
		Jud II ⁿ	d 6	4	9	8	1	2	3	10	5	7			
11	Find the	Jud regress	ige ion line X	on Y	from th	e follov	ving	table.	[V.(G.E.Cl					07
	X	1	2	3	4	5		6		7	8	9	1	0	
	Y	10	12	16	28	25		36	4	41	49	40	5	60	
12	Compute	e correl	ation coef		for the	data gi							ı		04
	x	4	5		9		14		1		22		24		
	У	16		22	11		16		7		3		17		
		\	x = 96,	y =	92, \	$x^2 = 1$	702	,) [y	2 =	1464,	xy =	= 1047	7		
13			o-efficient [V.G.E.(of co										in the	07
	x		54	57		55		57		56	4	52	5	59	
	y		36	35		32		34		36	_	38		35	
14		on coef	26 and 62 ficient be												07
15	Find the	coeffic	ient of co		on from	the dat	a: x=	=7,8,9,	,11,1	0,13,12					04
16			V [V.G.E efficient of		elation	for the	follo	wing	distri	bution.	[V.G.F	E.C]			07
		5	0	1.5	. 	10	24		20	20	,				
	x	5	9	15		19 21	24		28 29	32					
	y f	6	9	13		21 20	16		11	7					
17	Obtain t		elation coe							-					07
1,	_						, 111g			<u></u>					07
		X	100	98	78	8	5	110		93	80				

Chandkheda Ahmedabad

Sem-3 Probability & Statistics (3130006)

			у		85	5	90		70)	72	,	98	3	81		74		
18	Raw	mat	eria	l us	ed ir	n the	pro	duct	tion	of a	syn	theti	c fil	ber i	is sto	ored	in a j	place which has no	07
	humi	dity	con	trol.	Me	asure	emer	its o	f the	rela	itive	hun	nidit	y in	the s	stora	ige pla	ce and the moisture	
	conte	nt o	f a s	samp	ole of	f the	raw	mat	erial	(bot	th in	%)(on 7	day	s yie	ldec	the fo	ollowing results:	
										`									
	Hun	nid	42		35	5	50	0	4	13		48		62		31			
	ity																		
	(x):																		
	Moi	st	12		8		14	4	9)		11		16		7			
	ure																		
	cont																		
	t(y):		<u> </u>					T 7	•			* 7	F T 7 (~	<u> </u>				
	Find 1	the	lines	s of 1	regre	ess10	n of	Y or	n X a	and 2	X on	Y.	[V.(÷.E.	C]				
19	The r	ank	s of	cam	<u>е</u> 16	etud	ente	in N	/lath	c and	1 MC) C at	re ac	foll	OWE	•			04
	THE	ank	3 01	Sam	C 10	stud	ichts	111 11	yrauri,	s and	J 1VI) S a	ic as	1011	lows	•			V -
	M	1	2	3	4	5	6	7	8	9	1	1	1	1	1	1	1		
	at										0	1	2	3	4	5	6		
	h																		
	s:																		
	M	1	1	3	4	5	7	2	6	8	1	1	9	1	1	1	1		
	O		0								1	5		4	2	6	3		
	S:																		
	Calcu	ılate	the	rar	nk co	orrel	ation	co	effic	ient	for	prof	icier	ncies	of	this	group	in given subjects.	
	[V.G.	.E.(<u>[]</u>																

Chandkheda Ahmedabad

Sem-3 Probability & Statistics (3130006)

	UNIT NO- 4:	
	Applied Statistics	
	TOPIC :Hypothesis and tests	
Sr.	DESCRIPTIVE QUESTIONS	Marks
No		
1	What is a statistical hypothesis? [V.G.E.C]	03
2	What are simple and composite statistical hypothesis?[V.G.E.C]	04
3	Explain the terms Null Hypothesis and Alternative Hypothesis.[V.G.E.C]	04
4	Explain t- Test for single mean.[V.G.E.C]	07
5	Describe F- test for ratio of variances [V.G.E.C]	07
6	Describe briefly Chi- square test for goodness of fit and independence of attributes. [V.G.E.C]	07
7	What are the applications of Chi- square test?[V.G.E.C]	04

Chandkheda Ahmedabad

Sem-3 Probability & Statistics (3130006)

				U	NIT	NO-	5: (CO	: 5							
			Cu	rve Fitti	ng b	y the	Num	eri	cal M	etho	ods					
							ing of									
Sr. No		SHO	RT QU	ESTIONS	(1 Ma	ark) / N	MCQ / '	True	e-False/I	Fill ir	the bla	nks		Marks		
1	Write the	norma	al equa	tions to fit s	traight	t line. [V.G.E.	<u>C1</u>						01		
2				olynomial of					sing thro	ugh t	he point	s (1,	-3),	01		
			-	.39) [V.G.]			, ()	•			•	•				
3	Write the	norma	al equa	tions for the	straig	ht line	y = ak	^x . [\	V.G.E.C]				01		
4				tions for the						E.C]				01		
5				tions for the										01		
6				tions for the										01		
7				tions for the				- <i>by</i> .	[V.G.E	.C]				01 01		
8	What is m	What is meant by the curve of best fit? [V.G.E.C] DESCRIPTIVE QUESTIONS														
Sr.																
No	Fit a etrai															
1	Fit a straight line for the data. [V.G.E.C] y 12 15 21 25															
1																
	Find the 1	onst se		approximati							_	I C E	' C 1	04		
2	ring the i		$\frac{1}{x}$	-2		-1	1 degree	2 101	1	WIIIE	y data. [v	V.G.E	C]	V 4		
2			f(x)	15		1	1		3		19					
	Fit a seco	-		lynomial usi	ing lea	ast saua	are metl	nod t	_	iven 1	_	V.G.	E.C 1	07		
3		_	x	0		1	2	1000	3	., 011	4		_,,	0,7		
			y	1	1	.8	1.3	3	2.5	5	6.3					
	Fit a poly	nomia	l of deg	gree two usi	ng lea	st squa	re meth	od fo	or the fo	llowi	ng expe	rimen	tal data.	07		
4	Also estin	na <u>te y</u>	(2.4).	V.G.E.C]												
"			x:	1		2	3		4		5					
			<u>y:</u>	5		12	26		60	1 0	97			0=		
			Square	Method fit	secon	d degre	e polyn	omia	al using	the fo	ollowing	data:		07		
5	[V.G.E.C	/ <u> </u>	-3	-2		-1	0		1		2		3			
	Y		12	4		- <u>1</u> 1	2		7		15		30			
	_	he ni		ired to lift	a lo	ad W	_	eans	•	ullev		find		03		
				orm $P = m$										00		
6	F			13			8		23			27				
	И	7		51		7	5		102	2		11	9			
	Where P	and V	V are ta	ken in <i>kg</i> . v	vt. [V	.G.E.0	C]									
	Fit a seco	nd deg	gree pai	abola y = a	$a + \overline{b}$	$c + \overline{cx^2}$	to the	follo	wing da	ta:				07		
7	X		1.0	1.5		2.0	2.5		3.0		3.5		4.0			
'	у		1.2	1.4	-	1.9	2.4		2.8		3.3		4.2			
	[V.G.E.C			2.11												
	<u> </u>			e following	data:	[V.G.E	L.C]		1.2		T 4		ו ז	04		
8		X		0	1 0		2		3		4		1			
		y nd dag		l mbolo to 41	1.8	min ~ 1	3.3	CE	4.5		6.3			07		
9		na aeg	gree pai	rabola to the	2.0		2.5		3.0	3.5		1.0		07		
	X		1	1.3	۷.۱	<i></i>	2.3		5.0	ر. د		r.U				

Chandkheda Ahmedabad

Sem-3 Probability & Statistics (3130006)

		y	1.1	1.3	1.6	2.0	2.7	3.4	4.1		
	Fit a second degree parabola to the following data: [V.G.E.C]										07
10		κ	0	1	2	3	4				
	1	ν ν	1	1.8	1.3	2.5	6.	.3			
	Fit a second degree polynomial to the following data using least square method. [V.G.E.C										04
11											
		У	-3	-2	-1 0	1	2	3			
		X	12	4	1 2	7	15	30			
	Fit the curve $y = ae^{bx}$ to the following data using least square technique.[V.G.E.C]										07
12	,										
12	x:		1	2	3	4	5				
	y:		7	11	17	27	43				