

Beschreibung

Verfahren zur Aufwandsbeschränkung bei der Übertragung von unidirektionalen Informationsströmen

5

Die Erfindung betrifft ein Verfahren zur Reduzierung des Aufwands der Bearbeitung von in Richtung einer Kommunikationsvorrichtung übertragenen Nutzdaten in Fällen, bei denen im Rahmen eines Dienstes eine bidirektionale Verbindung zwischen 10 der Kommunikationsvorrichtung und einer Kommunikationspartnerinstanz eingerichtet wird, obwohl der Dienst keine Nutzdatenübertragung zu der Kommunikationsvorrichtung erfordert.

Die Erfindung liegt auf dem Gebiet der Sprach- und Datenkommunikation und berührt insbesondere Aspekte der Vermittlungs-technik.

In der Kommunikationstechnik gibt es ein stetiges Streben nach Ressourceneffizienz. Dabei spielen Einsparungen bei Kommunikationsvorrichtungen zum Vermitteln und Verteilen von Nutzdaten eine wichtige Rolle. Bei der Reduzierung des Aufwands und der Komplexität derartiger Einrichtungen ist jedoch zu berücksichtigen, dass Standards einzuhalten und die Kompatibilität zu anderen Kommunikationsvorrichtungen gewahrt werden soll. Diese Anforderungen stehen der Reduktion der eingesetzten Mittel bzw. Ressourcen häufig im Wege.

Ein wichtiges Beispiel für Kommunikationsvorrichtungen mit einem Potential für Einsparungen sind Vorrichtungen, deren 30 Funktionalität keine Bearbeitung von eingehenden Nutzdaten erfordert. Beispiele für derartige Kommunikationsvorrichtungen sind:

- Reine Informationsausgabesysteme, z.B. reine Ansagensysteme. Bei Informationsausgabesystemen, welche nur die Ausgabe von Informationen (z.B. Sprachinformationen) vorsehen und nicht evtl. durch extern zugeführte Informationen steuerbar sind (wie z.B. Systeme zum interaktiven Sprach-

dialog), können die Ressourcen zur Bearbeitung von zu dem System übermittelten Informationen reduziert werden.

- Reine Verteilsysteme. Verteilsysteme beschränken sich häufig auf das Weiterleiten bzw. Weitervermitteln von Informationen bzw. Nutzdaten. Ressourcen für die Interpretation bzw. Bearbeitung von Nutzdaten können in reduziertem Umfang vorgesehen werden.
5

Die oben beschriebenen Einsparungsmaßnahmen sind dadurch begrenzt, dass Kompatibilität bei der Kommunikation mit anderen Vorrichtungen bzw. Endgeräten gegeben sein muss. So gibt es Kommunikationsinstanzen (z.B. Endgeräte, Vermittlungsvorrichtungen oder Gateways), bei welchen im Rahmen eines Kommunikationsvorgangs eine bidirektionale Verbindung vorgesehen ist, 10 unabhängig davon, ob tatsächlich Nutzdaten zu der Kommunikationspartnerinstanz gesendet werden. Für Verbindungen zur Nutzdatenübermittlung zu einer derartigen Kommunikationsinstanz müssen von Informationsausgabesystemen bzw. Kommunikationsverteilsystemen Ressourcen für die Bearbeitung von der 15 Kommunikationspartnerinstanz übermittelten Informationen vorgesehen werden, um eine bidirektionale Verbindung zu ermöglichen.
20

Ein Beispiel für eine derartiges Szenario ist der Informationsaustausch zwischen einem reinen Ansagesystem und einem 25 Endgerät, bei dem von dem Endgerät nur eine bidirektionale Verbindung unterstützt wird. Obwohl nur in einer Richtung (von dem Ansagesystem zu dem Endgerät) relevante Informationen übertragen werden, kommt auch in der anderen Richtung eine Nutzdatenübertragung zustande, die z.B. in der Übertragung von von einem Mikrophon des Endgerätes aufgenommenen Hintergrundgeräuschen besteht. Der von dem Endgerät zu dem Ansagesystem übertragene Nutzdatenstrom bzw. Bearer-Strom ist dann 30 für den Dienst irrelevant, erfordert aber Bearbeitungsressourcen auf Seiten des Ansagesystems.
35

Zudem wird häufig bei einer bidirektionalen Verbindung von den verwendeten Protokollen vorgesehen, dass Informationen in beide Richtungen gesendet werden, welche statistische Aussagen über die Qualität der Verbindung enthalten. Diese Informationen werden z.B. dazu verwendet, die Senderate zu regulieren. Eine beteiligte Kommunikationsvorrichtung muss daher über Mittel zur Generierung dieser Informationen verfügen.

Ein wichtiges Protokoll, bei dem die oben beschriebene Situation vorkommen kann, ist das RTP (real time protocol) Protokoll, welches in Verbindung mit dem RTCP (real time control protocol) verwendet wird. Das RTP Protokoll ermöglicht die Übertragung von Sprache als Nutzdaten bzw. Bearer. Die Übertragung des Bearers wird durch das RTCP Protokoll gesteuert.

Wenn beispielsweise ein Ansagesystem mittels dem RTP/RTCP Protokollstapel Sprachinformationen an ein Endgerät ausgibt, welches nur bidirektionale RTP Verbindungen unterstützt, werden mittels des RTCP Protokolls statistische Informationen über die Verbindung in beiden Richtungen übermittelt.

Die Erfindung hat zur Aufgabe, eine Aufwandsreduzierung bei Kommunikationsvorrichtungen zu ermöglichen.

Die Aufgabe wird durch die Gegenstände der unabhängigen Ansprüche gelöst.

Die Erfindung beruht auf der Beobachtung, dass für Kommunikationsvorrichtungen, welche generell oder für bestimmte Dienste keine Nutzdatenübertragung an eine Kommunikationspartnerinstanz vorsehen, in Fällen, in denen trotzdem eine bidirektionale Verbindung zu der Partnerinstanz aufgebaut wird, beispielsweise weil die Kommunikationspartnerinstanz nur bidirektionale Verbindungen mit dem verwendeten Protokoll unterstützt, der Aufwand bei der Bearbeitung, der von der Kommunikationspartnerinstanz übertragenen Nutzdaten reduziert werden kann, indem zumindest ein Teil dieser von der Kommunikations-

partnerinstanz in Richtung der Kommunikationsvorrichtung übertragenen Nutzdaten verworfen werden.

Beispiele für Vorrichtungen bzw. Dienste, für die in der Regel nur Nutzdatenübertragung in einer Richtung, d.h. unidirektional vorgesehen ist, sind Informationsausgabesysteme (z.B. Ansagesysteme) und Verteilsysteme bzw. Informationsausgaben-dienste (z.B. Ansagedienste) und Verteildienste. Die Kommunikationspartnerinstanz kann beispielsweise durch ein Endgerät oder ein Gateway gegeben sein.

Die Erfindung hat den Vorteil von im Vergleich zur herkömmlichen Systemen größerer Ressourceneffizienz. Der Bearbeitungsaufwand wird reduziert, indem übertragene Nutzdaten, die für den Dienst irrelevant sind, verworfen werden. Ein eventuell bei einer Sprachverbindung übertragenes irrelevantes Hintergrundgeräusch wird in der Kommunikationsvorrichtung nicht vollständig ausgewertet. Ein Teil der Hardware bzw. Softwareressourcen, die in der Kommunikationsvorrichtung herkömmlich zur Bearbeitung von an die Kommunikationsvorrichtung übertragenen Nutzdaten vorgesehen sind, können eingespart werden. Dies kann teure spezielle Hardware, wie DSPs (DSP: digital signalling processor) oder ASICs (ASIC: application specific integrated circuit) betreffen.

Die Erfindung ist beispielsweise anwendbar in paketorientierten Netzen, über welche Nutzdaten als Nutzdatenpakete in Richtung der Kommunikationsvorrichtung übertragen werden. In diesem Fall lässt sich der Verwurf der Pakete z.B. auf folgende zwei Weisen realisieren:

- Ein der Kommunikationsvorrichtung vorgelagerter Router verwirft die zu der Kommunikationsvorrichtung übertragenen Nutzdaten.
- In der Kommunikationsvorrichtung werden eintreffende Datenpakete gefiltert, z.B. anhand der UDP-Portadressen (UDP: user datagram protocol), und Nutzdatenpakete, welche von der Kommunikationspartnerinstanz gesendet wurden, wer-

den verworfen. Dieses Herausfiltern der nicht für den Dienst relevanten Nutzdaten kann auf den unteren Schichten des Protokollstapels vorgenommen werden. Eine Bearbeitung auf den oberen Schichten des Kommunikationsprotokolls oder 5 eine Auswertung bzw. Interpretation übermittelter Nutzdaten ist nicht erforderlich, so dass dafür keine Ressourcen vorgesehen werden müssen.

Die Nutzdatenpakete werden im Falle von Echtzeitverkehr bei-
10 spielsweise mittels des RTP-Protokolls übertragen. Für die Steuerung von RTP-Verbindungen wird das RTCP-Protokoll ver-
wendet. Gemäß dem RTCP-Protokoll werden statistische Infor-
mationen zwischen den Kommunikationsinstanzen übertragen, wel-
che sich häufig auf die Übertragungsqualität der Nutzdaten-
15 übertragen der Kommunikationsinstanzen bezieht. Herkömmlich erfordert die Generierung solcher statistischer Informationen oder generell von Kontrollinformationen zur Verbindungsquali-
tät die Auswertung der übersendeten Nutzdaten. Die vorliegen-
de Erfindung sieht allerdings vor, dass für die angesproche-
20 nen Fälle ein Teil der Nutzdaten verworfen, also nicht auf
die Übertragungsqualität hin ausgewertet werden. Entsprechend einer vorteilhaften Weiterbildung kann verhindert werden,
dass die Kontrollpartnerinstanz wegen ausbleibender oder ir-
reführender Meldungen bzw. Informationen über die zur Kommu-
25 nikationsvorrichtung aufgebauten Verbindung zu ungewünschten Reaktionen - im Extremfall der Beendigung der bidirektionalen Verbindung - veranlasst wird. Dabei sendet die Kommunikati-
onsvorrichtung Informationen bzw. Meldungen an die Kommunika-
tionspartnerinstanz, die ein einwandfreies Funktionieren der
30 Nutzdatenübertragung von der Kontrollpartnerinstanz zu der
Kommunikationsvorrichtung simuliert. Dabei kann z.B. ein be-
kannter Wertebereich für die Kontrollinformationen benutzt
werden, welcher einer störungsfreien Nutzdatenübertragung
entspricht. Weiter ist es möglich, dass man einen kleinen
35 Teil der Nutzdaten nicht verwirft, sondern für die Berechnung
statistischer Informationen bzw. Kontrollinformationen aus-

wertet und die erhaltenen Ergebnisse für die gesamte Menge an Nutzdaten extrapoliert.

Die Erfindung wird im Folgenden im Rahmen eines Ausführungs-
5 beispiels anhand von Figuren näher erläutert. Es zeigen:

Figur 1: Eine Kommunikationsvorrichtung und eine Kommunikationspartnerinstanz, die miteinander kommunizieren,
10 wobei von der Kommunikationspartnerinstanz zu der Kommunikationsvorrichtung übertragenen Nutzdaten von einem Router herausgefiltert werden.

Figur 2: Eine Kommunikationsvorrichtung und eine Kommunikationspartnerinstanz in Kommunikationsbeziehung, wo-
15 bei von der Kommunikationspartnerinstanz an die Kommunikationsvorrichtung gesendete Nutzdaten in der Kommunikationsvorrichtung herausgefiltert und verworfen werden.

- 20 Beide Figuren zeigen eine Kommunikationsvorrichtung IVR (IVR: Interactive Voice Response) und eine Kommunikationspartnerinstanz KPI, welche über eine bidirektionale Verbindung mittels des RTP-Protokolls Nutzdaten miteinander austauschen. Gesteuert bzw. kontrolliert werden diese Verbindungen mittels des
25 RTCP-Protokolls. In Figur 1 ist ein Router R gezeigt, der mit Hilfe eines Filters F an die Kommunikationsvorrichtung IVR übertragene Nutzdaten herausfiltert, so dass diese nicht zu der Kommunikationsvorrichtung IVR gelangen. In Figur 2 wird diese Filterfunktion von der Kommunikationsvorrichtung IVR
30 selber vorgenommen, welche mit Hilfe eines Filters F von der Kommunikationspartnerinstanz KPI übertragene Nutzdaten herausfiltert und verwirft, welche so nicht durch höhere Protokollschichten bearbeitet werden müssen.
35 Bei der Kommunikationsvorrichtung IVR handelt es sich beispielsweise um ein Software-basiertes VoIP (VoIP: voice over IP) Ansagesystem auf Basis des RTP und des RTCP Protokolls.

Im Folgenden wird beispielhaft für ein Ansagesystem beschrieben, wie man statt bidirektional betriebener RTP/RTCP Kanäle mit unidirektional betriebenen Kanälen arbeiten kann.

5

Bei dem ersten Beispiel entsprechend Fig. 1 verwirft ein vorgelagerter Router die RTP Pakete in Richtung Ansagesystem, so dass trotz bidirektionaler Durchschaltung das Ansagesystem nicht mit RTP-Last beaufschlagt wird.

10

Im Fall der Behandlung der Nutzdaten in dem Ansagesystem (Beispiel entsprechend Fig. 2) schaltet der die Verbindung steuernde Call Controller oder der entfernte Endpunkt einen symmetrischen RTP Strom durch das IP Netz zum Ansagesystem 15 durch. Oberhalb des IP Stacks, d.h. des IP Protokollstapels im Ansagesystem, wird ein statischer Filter eingerichtet, der alle zum Ansagesystem führenden mittels des RTP Protokolls übertragenen IP Pakete anhand der durch diese Protokolle verwendeten UDP (user datagramm protocol) Ports erkennt und verwirft. Die höheren Protokoll Layer, die rechenzeitaufwendigere Aufgaben für diese Pakete durchführen müssten, werden dadurch nicht mehr belastet und müssen nur noch ausgehende Datenströme behandeln.

25 Da in einem Software-basierten Ansagesystem ein sehr hoher Anteil der Performance auf die Behandlung von RTP Protokoll-abläufe entfällt, kann das frei werdende Rechenzeit Budget nun z.B. zur Behandlung weiterer Ansage Ports verwendet werden.

30

RTCP sender reports werden wie in RFC 1889 (RFC: request for comments) vorgesehen ausgesendet. Der Standard sieht bereits vor, dass diese relativ selten ausgesendet werden, so dass es keines großen Rechenzeitaufwandes bedarf. Daher kann der Filter 35 RTCP Pakete an den RTCP Rrotokollstapel des Ansagesystems weiterleiten.

Entsprechend einer Weiterbildung des Anmeldegegenstands kann auf Ebene des RTCP Protokolls ein einwandfreies Funktionieren einer bidirektionalen Verbindung simuliert werden. Das RTCP Protokoll sieht das optionale Aussenden von sogenannten Receiver Reports vom Ansagesystem zum entfernten Anwender vor.

Da im Ausführungsbeispiel ein Bearer bzw. Nutzdaten Strom physikalisch durch das IP Netz geschaltet wurde, kann man versuchen, die vom entfernten Mikrofon aufgenommenen und via der Kommunikationspartnerinstanz übertragenen Sprachströme oder Voice Activity Meldungen zu bewerten, um dem entfernten Anwender, bzw. dessen Bearer Behandlung, einen Duplex Stream, d.h. eine bidirektionale Verbindung, vorzuspiegeln.

Damit das Ziel der Aufwandsreduzierung, die durch Ausführungsbeispiel 1 erreicht wird, nicht konterkariert wird, ist es sinnvoll, auf eine kontinuierliche Berechnung der RTCP Statistiken auf Basis aller empfangenen RTP Pakete zu verzichten. Folgende Lösungsansätze zur Reduzierung des Aufwands bei der Berechnung der RTCP Statistiken können beschritten werden:

a) Aussenden eines default Reception Reports

Da ein hier beschriebenes Ansage- oder Verteilsystem nicht von der Qualität des empfangenen Stroms abhängig ist, können in den Report erfahrungsgemäß akzeptable Standardwerte einge tragen werden. Sollte ein Network Operator diese auswerten bzw. interpretieren, muss ihm der Umstand, dass speziell diese Reports nicht aussagekräftig sind, lediglich im Rahmen der Definition der Standardwerte bewusst sein. Damit wird sichergestellt, dass das entfernte Bearer Treatment keine ungewollten Gegenmaßnahmen einleitet (z.B. die Senderate reduziert oder Fehler Reports generiert). Der Reception Report kann folgende Parameter (entsprechend RFC 1889) enthalten:

35

- SSRC (Synchronization source) der sendenden Quelle (kann aus beliebigen empfangenen RTP Paketen, z.B. mittels ei-

nes RTP Sniffers bzw. Filters, welcher wenigstens zu Beginn des Rufes/der Session einige Pakete auswertet, ermittelt werden oder aus dem letzten empfangenen Sender Report ermittelt werden)

- 5 • Lost Fraction : hier wird 256 eingetragen, was einem idealen Empfang entspricht.
 - Cumulated number of lost packages: hier wird 0 oder ein sehr geringer Wert eingetragen
 - Highest received sequence number: die Anzahl der Sequence Number Cycles und der Highest Sequence Number Received wird aus einer Rundung einer algorithmischen Berechnung aus
- 10
- 15 - der Zeit seit dem letzten Reception Report (alternativ kann der Beginn der Bearer Durchschaltung zugrunde gelegt werden)
 - dem Codec Type und seiner Bandbreite und
 - den verwendeten Paketisierungsgrößen (Ergebnisse der Codec Negotiation)
- 20
- mittels der zu erwartenden RTP Paketanzahl ermittelt. Diese Parameter sind bei Ansagesystemen pro Ruf/Session stabil und es ist daher eine derartige Berechnung / Folge von Divisionen möglich.
- 25 • Interarrival Jitter: hier wird ein unverdächtiger Wert, der 1 ms entspricht, eingetragen.
 - Last (arrived) SR: der Zeitstempel des letzten Sendereports wird von der RTCP Statistik Funktion für Sender Reports übernommen.
 - 30 • Delay since last (arrived) SR: die im letzten Sendereport eingetragene Verzögerung wird von der RTCP Statistik Funktion für Sender Reports übernommen.

35 b) Reduktion der Anzahl der RTP Pakete, die von der RTCP Statistik Funktion bearbeitet werden muss

Kontrolliert über einen geeigneten, zeitlich gesteuerten dynamischen Filter oberhalb des IP stacks (der auf RTP Port Adressen sensibilisiert ist), werden der RTCP Statistik Funktion nur RTP Pakete über einen beschränkten Zeitabschnitt (z.B. die Dauer eines Ansage-Rufs), z.B. über mehrere gleichverteilte 100 ms Intervalle der im Mittel 10 Sekunden lang dauernden Ansageverbindung zugestellt. Die RTCP ports sind hier prinzipiell offen.

10

Hier kann im Wesentlichen eine kommerzielle RTCP Statistik wiederverwendet werden, die eine längere Messung als tatsächlich erfolgt vortäuscht. Der Parameter "Highest Received Sequence Number" muss aber wie unter a) approximativ berechnet werden. Für den "Interarrival Jitter und Lost Fraction" Parameter können dagegen die aus der 100 ms Messung erzeugten Werte als die ‚realen‘ Messwerte in den Reception Report eingetragen werden. Der Parameter "Cumulated number of lost packages" muss ebenfalls extrapoliert werden.

15
20

Geht man z.B. von 1 Sekunde dauernden Intervallen für das Aussenden der Reception Reports aus und misst man darin jeweils nur 100 ms, so wäre der zu sendende Wert um den Faktor 10 zu multiplizieren. Man trifft hier die Annahme einer
25 Gleichverteilung der Paketverluste über die Rufdauer.

Patentansprüche

1. Verfahren zur Reduzierung des Aufwands der Bearbeitung von
in Richtung einer Kommunikationsvorrichtung (IVR) übertrage-
nen Nutzdaten in Fällen, bei denen im Rahmen eines Dienstes
5 eine bidirektionale Verbindung zwischen der Kommunikations-
vorrichtung (IVR) und einer Kommunikationspartnerinstanz
(KPI) eingerichtet wird, obwohl der Dienst keine Nutzdaten-
übertragung zu der Kommunikationsvorrichtung (IVR) erfordert,
10 demzufolge
zumindest ein Teil der Nutzdaten vor Durchführung zumindest
eines Teils der im Rahmen einer Bearbeitung von Nutzdaten
vorgesehenen Arbeitsschritten verworfen wird.
- 15 2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass
die Kommunikationsvorrichtung (IVR) durch ein Informations-
ausgabesystem oder ein Verteilsystem gegeben ist.
- 20 3. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
die Kommunikationspartnerinstanz (KPI) durch ein Endgerät o-
der ein Gateway gegeben ist.
- 25 4. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
die Nutzdaten als Nutzdatenpakete über ein paketorientiertes
Netz in Richtung der Kommunikationsvorrichtung (IVR) übertra-
gen werden.
- 30 5. Verfahren nach Anspruch 4,
dadurch gekennzeichnet, dass
in einem der Kommunikationsvorrichtung (IVR) vorgelagerten
Router (R) zumindest ein Teil der Nutzdatenpakete verworfen
35 werden.

12

6. Verfahren nach Anspruch 4,
dadurch gekennzeichnet, dass
bei der Kommunikationsvorrichtung (IVR) ankommende Datenpake-
te gefiltert werden und zumindest ein Teil der von der Kommu-
nikationspartnerinstanz (KPI) übertragenen Nutzdatenpakete
verworfen werden.
7. Verfahren nach Anspruch 6,
dadurch gekennzeichnet, dass
10 die von der Kommunikationspartnerinstanz (KPI) übertragenen
Nutzdatenpakete anhand ihrer Port Adressen identifiziert und
herausgefiltert werden.
8. Verfahren nach einem der vorhergehenden Ansprüche 4 bis 7,
15 dadurch gekennzeichnet, dass
die Nutzdatenpakete mittels des RTP Protokolls übertragen
werden.
9. Verfahren nach einem der vorhergehenden Ansprüche,
20 dadurch gekennzeichnet, dass
von der Kommunikationsvorrichtung (IVR) an die Kommunikati-
onspartnerinstanz (KPI) Informationen übertragen werden, wel-
che eine einwandfreie Übertragung der Nutzdaten von der von
der Kommunikationspartnerinstanz (KPI) an die Kommunikations-
vorrichtung (IVR) simulieren.
10. Verfahren nach Anspruch 9,
dadurch gekennzeichnet, dass
die Informationen die Übertragungsqualität der Nutzdatenüber-
30 tragung von der Kommunikationspartnerinstanz (KPI) zu der
Kommunikationsvorrichtung (IVR) betreffen.
11. Verfahren nach Anspruch 9 oder 10,
dadurch gekennzeichnet, dass
35 die Informationen mittels des RTCP Protokolls übertragen wer-
den.

13

12. Kommunikationssystem (IVR) zur Durchführung eines Verfahrens nach einem der Ansprüche 1 bis 11,
gekennzeichnet durch
einen Filter zur Identifizierung von von der Kommunikations-
5 partnerinstanz (KPI) zu der Kommunikationsvorrichtung (IVR)
übertragenen Nutzdaten.
13. Router (R) zur Durchführung eines Verfahren nach einem
der Ansprüche 5 bis 11
10 gekennzeichnet durch
Mittel zur Verwerfung von von der Kommunikationspartnerin-
stanz (KPI) zu der Kommunikationsvorrichtung (IVR) übertrage-
nen Nutzdatenpaketen.

1/1

FIG 1

FIG 2

Claims

1. Method for reducing the costs of processing useful data transmitted in the direction of a communication device (IVR) in cases in which, within the framework of a service, a bidirectional connection is set up between the communication device (IVR) and a communication partner entity (KPI), although the service does not require any transmission of useful data to the communication device (IVR), in which at least a part of the useful data is discarded before execution of at least a part of the working steps provided within the context of processing useful data, characterized in that, information is transmitted from the communication device (IVR) to the communication partner entity (KPI) which simulates trouble-free transmission of the useful data from the communication partner entity (KPI) to the communication device (IVR).
2. Method in accordance with claim 1, characterized in that the communication device (IVR) is in the form of an information output system or a distribution system.
3. Method in accordance with one of the previous claims. characterized in that the communication partner entity (KPI) is in the form of a terminal or a gateway.
4. Method in accordance with one of the previous claims, characterized in that the useful data is transmitted as useful data packets over a packet-oriented network in the direction of the communication device (IVR).

5. Method in accordance with claim 4,
characterized in that
at least a part of the useful data is discarded in a router
(R) upstream from the communication device (IVR).

6. Method in accordance with claim 4,
characterized in that
data packets arriving at the communication device (IVR) are
filtered and at least a part of the useful data packets
transmitted by the communication partner entity is discarded.

7. Method in accordance with claim 6,
characterized in that
the useful data packets transferred by the communication
partner entity (KPI) are identified and filtered out on the
basis of their port addresses.

8. Method in accordance with one of the previous claims 4 to
7,
characterized in that
the useful data packets are transmitted by means of the RTP
protocol.

9. Method in accordance with one of the previous claims.
characterized in that
the information relates to the transmission quality of the
useful data transmission from the communication partner entity
(KPI) to the communication device (IVR).

10. Method in accordance with one of the previous claims,
characterized in that,
the information is transmitted by means of the RTCP protocol.

11. Communication system (IVR) for executing a method in
accordance with one of the claims 1 to 10,

with

- a filter for identifying useful data transmitted from the communication partner entity (KPI) to the communication device (IVR), and
- Means for transmission of information to the communication partner entity (KPI), which simulates a trouble-free transmission of the payload data from the communication partner entity (KPI) to the communication device (IVR).

12. Router (R) for executing a method in accordance with one of the claims 5 to 10

with

- Means for discarding useful data packets transmitted from the communication partner entity (KPI) to the communication device (IVR), and
- Means for transmission of information to the communication partner entity (KPI), which simulates a trouble-free transmission of the payload data from the communication partner entity (KPI) to the communication device (IVR).

IAP12 Rec'd PCT/PTO 28 APR 2006

Patentansprüche

1. Verfahren zur Reduzierung des Aufwands der Bearbeitung von
in Richtung einer Kommunikationsvorrichtung (IVR) übertrage-
nen Nutzdaten in Fällen, bei denen im Rahmen eines Dienstes
eine bidirektionale Verbindung zwischen der Kommunikations-
vorrichtung (IVR) und einer Kommunikationspartnerinstanz
(KPI) eingerichtet wird, obwohl der Dienst keine Nutzdaten-
übertragung zu der Kommunikationsvorrichtung (IVR) erfordert,
5 bei dem zumindest ein Teil der Nutzdaten vor Durchführung zu-
mindest eines Teils der im Rahmen einer Bearbeitung von Nutz-
daten vorgesehenen Arbeitsschritten verworfen wird,
dadurch gekennzeichnet, dass
von der Kommunikationsvorrichtung (IVR) an die Kommunikati-
10 onspartnerinstanz (KPI) Informationen übertragen werden, wel-
che eine einwandfreie Übertragung der Nutzdaten von der von
der Kommunikationspartnerinstanz (KPI) an die Kommunikations-
vorrichtung (IVR) simulieren.
- 20 2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass
die Kommunikationsvorrichtung (IVR) durch ein Informations-
ausgabesystem oder ein Verteilsystem gegeben ist.
- 25 3. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
die Kommunikationspartnerinstanz (KPI) durch ein Endgerät o-
der ein Gateway gegeben ist.
- 30 4. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
die Nutzdaten als Nutzdatenpakete über ein paketorientiertes
Netz in Richtung der Kommunikationsvorrichtung (IVR) übertra-
gen werden.

5. Verfahren nach Anspruch 4,
dadurch gekennzeichnet, dass
in einem der Kommunikationsvorrichtung (IVR) vorgelagerten
5 Router (R) zumindest ein Teil der Nutzdatenpakete verworfen
werden.
6. Verfahren nach Anspruch 4,
dadurch gekennzeichnet, dass
10 bei der Kommunikationsvorrichtung (IVR) ankommende Datenpake-
te gefiltert werden und zumindest ein Teil der von der Kommu-
nikationspartnerinstanz (KPI) übertragenen Nutzdatenpakete
verworfene werden.
- 15 7. Verfahren nach Anspruch 6,
dadurch gekennzeichnet, dass
die von der Kommunikationspartnerinstanz (KPI) übertragenen
Nutzdatenpakete anhand ihrer Port Adressen identifiziert und
herausgefiltert werden.
- 20 8. Verfahren nach einem der vorhergehenden Ansprüche 4 bis 7,
dadurch gekennzeichnet, dass
die Nutzdatenpakete mittels des RTP Protokolls übertragen
werden.
- 25 9. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
die Informationen die Übertragungsqualität der Nutzdatenüber-
tragung von der Kommunikationspartnerinstanz (KPI) zu der
30 Kommunikationsvorrichtung (IVR) betreffen.
10. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass

die Informationen mittels des RTCP Protokolls übertragen werden.

11. Kommunikationssystem (IVR) zur Durchführung eines Verfahrens nach einem der Ansprüche 1 bis 10,
5 mit

- einem Filter zur Identifizierung von der Kommunikationspartnerinstanz (KPI) zu der Kommunikationsvorrichtung (IVR) übertragenen Nutzdaten, und

10 - Mitteln zur Übertragung von Informationen an die Kommunikationspartnerinstanz (KPI), welche eine einwandfreie Übertragung der Nutzdaten von der von der Kommunikationspartnerinstanz (KPI) an die Kommunikationsvorrichtung (IVR) simulieren.

15

12. Router (R) zur Durchführung eines Verfahren nach einem der Ansprüche 5 bis 10

mit

20 - Mitteln zur Verwerfung von von der Kommunikationspartnerinstanz (KPI) zu der Kommunikationsvorrichtung (IVR) übertragenen Nutzdatenpaketen, und

- Mitteln zur Übertragung von Informationen an die Kommunikationspartnerinstanz (KPI), welche eine einwandfreie Übertragung der Nutzdaten von der von der Kommunikationspartnerinstanz (KPI) an die Kommunikationsvorrichtung (IVR) simulieren.