Project Title: Car Price Classification

1. Introduction:

The automotive industry increasingly relies on data-driven strategies to assess market dynamics and customer preferences. In this project, we develop a machine learning-based system to classify car prices as either **high** or **low**, helping dealerships, platforms, and customers make smarter pricing decisions. Our solution employs advanced data preprocessing techniques and evaluates multiple classification algorithms to determine the most accurate model.

2. Objective:

To design and evaluate machine learning models capable of predicting whether a car's price is above or below the median value based on features such as brand, model, year, mileage, and condition.

3. Dataset Description:

Source: Internal dataset CarPricesPrediction.csv

• Records: 1000 entries

Features:

Make: Manufacturer of the car (e.g., Toyota, Ford)

Model: Model name (e.g., Civic, Altima)

Year: Manufacturing year

Mileage: Distance driven in miles

Condition: Condition of the vehicle (e.g., Excellent, Good)

Price: Numerical price in USD

4. Data Preprocessing:

4.1. Exploratory Data Analysis (EDA)

- Checked for missing values and data types
- Reviewed statistical summary and feature distributions

4.2. Outlier Handling

 Applied Interquartile Range (IQR) method to remove outliers in Mileage and Price

4.3. Normalization

Used MinMaxScaler to scale Mileage and Price to a [0, 1] range

4.4. Label Encoding

 Transformed categorical columns (Make, Model, Condition) into numeric labels using Label Encoder

4.5. Target Variable

- Created a new column Price Class:
 - 0: Low (below median price)
 - 1: High (above median price)

4.6. Class Balancing

 Applied SMOTE (Synthetic Minority Over-sampling Technique) to balance the binary classes

5. Model Development:

5.1. Train-Test Split

 Dataset was split into 80% training and 20% testing with stratified sampling

5.2. Models Evaluated

- Logistic Regression
- Support Vector Machine (SVM)
- K-Nearest Neighbors (KNN)

6. Performance Evaluation Metrics:

Each model was evaluated using:

- Accuracy
- Precision, Recall, F1-Score
- Confusion Matrix
- ROC-AUC Score
- Matthews Correlation Coefficient (MCC)

• 7. Results:

Model	Test Accuracy	Precision	Recall	F1-Score	ROC-AUC
Logistic Regression	100%	1.00	1.00	1.00	1.00
SVM	90%	0.90	0.90	0.90	0.50
KNN	93%	0.93	0.93	0.93	0.97

- Best Model: Logistic Regression with perfect classification metrics
- KNN showed strong performance as a non-parametric alternative
- SVM had a relatively lower ROC AUC due to class probability estimation limitations

Visualizations

Correlation Heatmaps

• Boxplots (Before Outlier Removal)

Boxplots (after outlier removal)

• Pair Plot colored by Condition

• Class Distribution Graph (Pre-SMOTE)

• Class Distribution Graph (Post-SMOTE)

• Confusion Matrices and ROC Curves for each model

1. Logistic Regression

2. Support Vector Machine

3. K-Nearest Neighbors Model

4. SVM-Confusion Matrices

9. Conclusion

This project successfully developed a binary classification model to distinguish between high and low-priced cars with outstanding performance. Logistic Regression emerged as the top performer, achieving perfect precision and recall after robust preprocessing and balancing techniques.