Plots for Alpha Formation in Mostly Neutron Matter

Cody L. Petrie

January 25, 2019

Contents

1	Total Energy Plots for Alpha, 14n, and 14n2p	2
2	Breakdown of AV6' Potential Pieces with Linear Correlations	3
3	Breakdown of AV6' Potential Pieces with IP Correlations	4
4	Breakdown of AV6' Potential Pieces with Both Linear and IP Correlations	5
5	Distribution Functions for Linear and IP Correlations	6

1 Total Energy Plots for Alpha, 14n, and 14n2p

(a) Alpha energy calculated as $16\epsilon_{14n2p}-12\epsilon_{14n}$ where $\epsilon=E/A.$

(b) Energy/particle for 14 neutrons.

(c) Energy/particle for 14 neutrons + 2 protons.

2 Breakdown of AV6' Potential Pieces with Linear Correlations

(c) Energy/particle for 14 neutrons + 2 protons.

3 Breakdown of AV6' Potential Pieces with IP Correlations

(c) Energy/particle for 14 neutrons + 2 protons.

4 Breakdown of AV6' Potential Pieces with Both Linear and IP Correlations

(a) Alpha energy calculated as $16\epsilon_{14n2p} - 12\epsilon_{14n}$ where $\epsilon = E/A$.

(b) Energy/particle for 14 neutrons.

(c) Energy/particle for 14 neutrons + 2 protons.

5 Distribution Functions for Linear and IP Correlations Here we're looking at the pp distribution function, like they used in here to look for alpha clusters.

high r.