Real-Time Operating System Chapter 8

Embedded System Design
UCS614

USE F5 to listen the audio embedded in PPT

- Off Time Scheduling
 - Generate scheduling information prior to system execution
 - Scheduling is based on knowledge of release time, deadlines and execution time for all the tasks
 - This is deterministic system model
 - Characteristics of the tasks are known 'a priori'
 - Disadvantage is the inflexibility

- On Line Scheduling
 - Parameters of the task and the number and types of tasks are not known a priori
 - Scheduler must accommodate dynamic changes in the user demand and availability of resources.
 - Possibly not able to make best use of all resources

Example:

Tasks	Priority	Period	CPU Burst
T ₁	1 .	7	2
T ₂	2	17	4
T ₃	3	24	8

Schedule the tasks

- i) Without pre-emption
- ii) With pre-emption

Solution

Without pre-emption

Solution
With pre-emption

Solution
With pre-emption

- Assigning priorities as a monotonic function of the rate of a (periodic) process
 - Period increases, the priority decreases
 - Process of lowest period will get the highest priority
- Sufficient condition for 'scheduling' using the RM algorithm

$$\sum_{i=1}^{n} C_{i} / P_{i} \leq n(2^{1/n} - 1)$$

$$\sum_{i=1}^{n} C_{i} / P_{i} \leq n(2^{1/n} - 1)$$

Task Set Size (n)	Schedulable Bound
1	1
2	0.828
3	0.780
4	0.757
5	0.743
6	0.735
able nations and page for	W-0-10-10
infinity	ln2

 RM algorithm uses static priority with preemption.

Example 2:

Tasks	Period	CPU Burst
T ₁	12	5
T,	(7)	3 ,

Solution:

CPU Utilization 5/12 + 3/7 = 0.844

RHS of inequality = 0.828

Example 3:

Tasks	Period	CPU Burst
Т,	15	4
, T	12	2
, T	20	5

Solution:

CPU Utilization 4/15 + 2/12 + 5/20 = 0.684RHS of inequality = 0.782

Since LHS < RHS, sufficient condition is satisfied. The task set is definitely schedulable.

Solution:

Solution:

Example 4:

Tasks	Period	CPU Burst	Release Time
T ₁	3	1	0
T ₂	10	3	1
T ₃	15	4	3

Solution:

- Dynamic priority allocation
- Priority changes at run time
- Highest priority task is one that has closest deadline
- Task that can not be scheduled using RM, can be scheduled by EDF

Example 5:

Tasks	Period	CPU Burst
Τ,	4	1
T ₂	6	2
T ₃	9	4

Solution: Not schedulable using RM

Solution: Not schedulable using EDF also. Wrong solution in Book.

Solution: Not schedulable using EDF also. Wrong solution in Book.

Solution:

