

Beijing-Dublin International College

SEMESTER II FINAL EXAMINATION - 2016/2017

FACULTY OF INFORMATION (School of Software Engineering)

MODULE COMP2001J: SOFTWARE SYSTEMES ARCHITECTURE

HEAD OF FACULTY OF INFORMATION: Junfei QIAO MODULE COORDINATOR NAME*: Zhang Jian

Time Allowed: 95 minutes

Instructions for Candidates

All questions carry equal marks. The distribution of marks in the right margin shown as a percentage gives an approximate indication of the relative importance of each part of the question.

Instructions for Invigilators

Non-programmable calculators are permitted.

No rough-work paper is to be provided for candidates.

Obtained score

Question 1: Fill in the Blank (30 Points, 1 Point Per Each Blank)

1.	Designed and developed by the professional engineering specialists, a software			
	system/application is referred as to a product that delivers computing device potential, and			
	is the logical & structural organization of;			
2. Software Architecture – is a meaningful representation of design concept and a mod				
	blueprint for the software product that is to be built, is a skeleton plan of and the			
	decision of, embodied in its components (building blocks, parts, and structural			
	elements):			
	A decision on the division of;			
	A design specification to guide and aid in the following step of software procedures;			
3.	Issues faced by software building: 1) a software is complex; 2) a software is uncertainly			
	developed; 3) a software is long life-cycle, high-cost, poor-quality; Software architecture			
	design is one of the most fundamental techniques and the most important procedure,			
	bridging the gap between software's and system implementation (coding).			
4.	Software Product/System's production-line manufacturing: adapts a production-line of			
	software products, i.e. by means of, standardized specification and behaviour			
	code to develop and implement the software's that exposes to all kinds of			
	application scenario, such a pattern is used to deploy the components into the open			
	framework, to composite into the expected products			
5.	The design methodology of software architecture evolves from the following stages:			
	Functionality program design;			

-- Structure program design;

--_____

--_____

- -- SOA program design.
- 6. Modern software production is depicted as the following diagram, fill the blank in the name of related item _____ in the textbox.

7. The connecting topologies among the components are depicted as the below diagram, in figure A, the connecting mechanism is called as software architecture with ______ connecting while in figure B, the connecting mechanism is named as software architecture with _____ connecting.

Figure

Figure

- 9. Evaluation & Analysis of Software Architecture review on design documents, design procedure, code, and implementation procedure, to detect ______ of software, promote the quality of software, and ______ ahead of the disaster caused by error of design, and choose the better one or ______ design.
- 11. Graphic representation is a simple and a widespread of tool for software architecture representation, within this scope, Rectangle items (with arrow, without arrow, with solid-arrow, with dash-arrow,) is used as the model notation of component and
- 12. Graphic User Interface (GUIs): is an interactive interface between the user and the computer models, GUIs offer the user user-friendly, ease-use, helpful media to the end users:

 Generally speaking, GUIs are characterized by the

items etc..

Obtained
score

BDIC

Question 2: True/False Choice (10 Points , 1 Point Per Question, If Choice of True, Fill√ in the Blank; If Choice of False, Fill X in the Blank)

- Software architecture is not only the representation and modelling description of software system/application, but also the runnable software application();
- 2. Within the scope of structural software architecture design, the entry point of principle component is a main () function ();
- 3. N-Tiers software architecture style is referred to as a structure of software system components, each layer will offer interactive service for the above layer, and non-neighbouring layers will not interoperate ();
- 4. In software architecture, middleware component will not be allowed ().
- 5. The style and patter of a software architecture can be applied to the scenario of design for other software systems ();
- 6. In the field of designing software architecture with object-oriented analysis and design method, the fundamental units of a system is the functions ();
- 7. The method of representation and description of software architecture includes formal and informal approaches: UML is an informal method while ADL is a formal one ();
- 8. With the design method and approach of distributed software architecture, it's possible to implement inter-connecting, interactive and interoperating among the components of heterogeneous platform ();
- 9. The evaluation and analysis methods of software architecture include SAAM, ATAM and ARID etc... ();

10 In MVC patterns, there are presentation layer, model, and controller modular();

Obtained score

Question 3: Question and Answer (20 Pints, 5 Points Per Question)

- 1 (5 points) What's software architecture? Describe the principle content and fundamental elements.
- 2 (5 points) What's the distributed software application? Describe the benefits and shortages of distributed software architecture patterns.
- 3 (5 points) Describe the software architecture connected by the middleware container with the demo diagram.
- 4 (5 points) Describe the roles and tasks of a component in software architecture.

Obtained score

Question 4: Programming of Design and Coding Comprehension (20 Points, 5 Points Per Question)

- 1 (5 points) Design and implement the software architecture of a software application with 4-tier pattern, including client-side layer, presentation layer, business logic layer, and data resource management layer by using MFC VC++/Java/C#/C programming language. You are request to describe the components of each layer and call procedure.
- 2 (5 points) A CRC (Component Responsibility Card) is depicted as follow , you are required to implement the specification of the card by using C/ C++/C# or Java programming language.

component name: Rocket		
super classes:		
subclasses:		
Responsibilities	Collaborators	
1 Take charge of describing basic attributes,	class Rocket_Display	
InitInstance, Launch, Fly, ExitInstance,		
of A Rocket		
Model		
Attributes	class Rocket_Display	
int H, V	{	
int x, y, z,	Rocket_Display()	
Responsibilities	{	
C Rocket(CRocket_Display rocket); // Constructor		
void DrawRocket(); // Drawing Rock	}	
void InitInstance(); // Initial handling		
void ExitInstance (); // exiting handling	}	
void Launcher(); //Launching handling		
void Fly(); // Flying handling		

3 (5 points) The software architecture of an application system is depicted as follows, write the results of running the application with Java programming language.

class Exam_App {

BDIC

```
public static void main() {
  new Exam_Frame();
 }
}
class Exam_Frame extends JFrame {
 Container contentPane;
 Display display;
 Model model;
 Exam_Frame() {
   contentPane = this.getContentPane();
   display = new Display();
   model = new Model(display);
   setSize(1024,768);
   setVisible(true);
 }
}
class Display {
 BufferedImage buffer = null;
 Display()
 {
   buffer = new BufferedImage(1024,768, BufferedImage.TRANSLUCENT);
 }
 public void paintComponent(Graphics g)
        {
                g.drawlmage(buffer,0,0, null);
```

```
}
}
class Model
{
 BufferedImage image;
  Graphics g;
 Display panel = null;
  Model(Display pane)
 {
    this.panel = pane;
    g = panel.buffer.getGraphics();
    g.drawString("I am participating the final exam of Software Systems Architecture", 10, 10);
    g.drawString("I will Success!!", 10, 50);
 }
}
```

The results are:

4 (5 points) The software architecture (time-sequence diagram) of a VC++ MFC application program is described as follows, please complete the code in the blank according to the requirement. Exam_App component as a main component is used to assembly the GUIs component: Exam_DIg; GUIs component as a visual user interface is used to call and capture the data from the Model component: Model, via a function: Model_Display).


```
#include<afxwin.h>
class Exam_App : CWinApp
{
  public:
    virtual BOOL InitInstance();
};
Exam_App app;
class Exam_Dlg: CDialog
{
  Public:
    Model *model;
```

public:

BDIC

```
void OnInitDialog();
  void Model_Display();
};
class Model
{
 public:
  Model();
  String model_data();
};
Giving and coding the function: Model_Display in class Exam_Dlg, in which
      Model_Display call and return data from model_data() in class Model.
void Exam_Dlg::OnInitDialog()
{
// Giving and coding the pointer to the class Model;
}
void Exam_Dlg::Model_Display(){
// Giving and coding the procedure of calling and returning the data from String
  model_data() in the class Model.
```


1 (10 points) The software architecture of pipeline-filter style application is depicted as the diagram, A::A_Fun, B::B_Fun, C::C_Fun, D::D_Fun represent the function of A, B, C, D (input / output is string type, S as an original input String, and O as a final output result String.

- (1) Coding the components A, B, C, and D by C, or VC++ MFC, or Java programming language
- (2) Design the software architecture, including a main component to assemble the component A, B, C, D)
- 2 (10 points) A Smart Home is depicted as the following diagram

A user could utilize the PC Desktop as the terminal, to remotely control the TVSet, Refrigerator, Home Robotics etc. via Internet. You are required to design the software architecture of a software system, which could control the TVSet, Refrigerator, HomeRobotic etc.

- (1) Design a software architecture for the software application that control the condition of the TVSet, Refrigerator, HomeRobotic from the remote pc desktop. You are required to include the system-level's module, component-level's components such as TVSet, Refrigerator, HomeRobotics components);
- (2) Using VC++ MFC or Java programming language to implement and coding the design of above system;
- (3) In the environment of VC++ MFC or Java programming language, design and implement an assembly line, to assembling the components into the system.

BDIC	Semester Two	Academic Year (2016 – 2017)
BDIC	Semester 1 wo	Academic Year (2010 – 2017)

Appendix: