

TFAWS Aerothermal Paper Session

Optical Diagnostic Imaging of Multi-Rocket Plume-Induced Base Flow Environments

Manish Mehta and Darrell E. Gaddy
NASA Marshall Space Flight Center

Paul M. Danehy, Jennifer A. Inman and Ross A. Burns
NASA Langley Research Center

Ron Parker and Aaron T. Dufrene
CUBRC Inc.

Presented By
Dr. Manish Mehta

Thermal & Fluids Analysis Workshop
TFAWS 2017
August 21-25, 2017
NASA Marshall Space Flight Center
Huntsville, AL

Launch Vehicle Failures Due to Base Heating

- Launch vehicles with multi-rocket engine base region
- Highly complex base flows due to changing multi-plume interactions and freestream flow
 - Difficulty in numerically predicting such environments
 - No analytical solution of this flow regime
- Base thermal protection system (TPS) protects avionics, wiring, engine gimbal actuators, turbomachinery, etc.
- Led to the failures of many launch vehicles due to vehicle control loss by not adequately predicting base environments

Rocket	Date	Outcome	Cause
JUPITER AM-1A	3/1/57	Failure	Base heating - Control Loss
ATLAS SM-65 A	6/11/57	Failure	Base heating - Control Loss
ATLAS SM-65 A	9/25/57	Failure	Base heating - Control Loss
THOR 114	1/1/58	Failure	Base heating - Control Loss
POLARIS A-1	12/30/58	Failure	Base heating - Control Loss
POLARIS A-1	1/9/59	Failure	Base heating - Control Loss
SATURN I	10/21/61	Concern	Base heating - Base Flow
SATURN IB	2/26/66	Concern	Base heating - Base Flow
SATURN V	11/6/67	Concern	Base heating - Base Flow
N-1 (SOVIET)	2/1/72	Failure	Base Flow - Roll Control
MAXUS (GERMAN)	5/1/91	Failure	Base heating - Control Loss
PROSPECTOR	6/19/91	Failure	Base heating - Control Loss

Short-Duration Base Heating Tests

- Both test programs were conducted at CUBRC Large Energy National Shock Tunnel I (LENS I) facility in 2016 to investigate launch vehicle base and plume flows
- FY16 TIP – 2% model; EUS – 3.23% model
- Rekindled NASA ground test techniques from the 1970s¹
- Simulate >150,000 ft altitude conditions

Space Launch System (SLS) Core Stage Base
(FY16 Technology Innovation Program – FY16 TIP)

Exploration Upper Stage Base
(EUS Base Heating Test Program - EUS)

Short-Duration Test Propulsion Models

- NASA Marshall & CUBRC developed propulsion models for the SLS and EUS base heating test programs in a shock tunnel²
- Hydroxyl radical - planar laser induced fluorescence (OH-PLIF) and infrared (IR) imaging were used for the **first time** to visualize both base flow and plume environments

- TIP main objective was to determine the feasibility to visualize and characterize base and plume environments for launch vehicle ascent flight using non-intrusive diagnostics in shock tunnel facility
- NCL = nozzle centerline, BCL = base centerline
- GO₂-GH₂ rocket engine performance (a,b,e,f)
- Base environments for sea-level and high altitude (~170,000 feet) conditions (c,d,g,h)
 - Thin-film heat transfer gauges
 - Piezo-resistive pressure sensors

FY16 TIP Base Environments

- GO₂-GH₂ rocket engine performance (a,b,e,f)
- Base environments for sea-level and high altitude (~170,000 feet) conditions (c,d,g,h)
 - Thin-film heat transfer gauges
 - Piezo-resistive pressure sensors

FY16 TIP IR Imaging

- Long-wave IR ($7.5\mu\text{m} – 14\mu\text{m}$) camera
 - Focused on the far-field
 - Calibrated for surface wall temperature characterization
- Mid-wave IR ($3\mu\text{m} – 5\mu\text{m}$) camera
 - Focused on the near-field
 - Ideal to visualize base flows
 - Low and medium temperature sensitive to distinguish flow features
- Different plume flow structures between high altitude and sea-level conditions

Planar Laser-Induced Fluorescence (PLIF)³⁻⁴

- Hydroxyl radical (OH) used as naturally occurring fluorescent tracer
 - Combustion intermediate species
- 10 ns Nd:YAG dye laser sheet at 20 mJ/pulse excites OH at 285.53 nm for flow visualization
 - Flow freezing images
- Two intensified CCD cameras with OH LIF transmitting filters were positioned normal to the laser sheet
- Different base flow structures observed between high altitude and sea-level conditions
 - Base flow structures not observed with CO₂– MWIR or schlieren imaging

- Base flow structures were successfully visualized using OH-PLIF
 - Shows OH emission intensity
 - Assuming constant mole fraction, frozen flow, extract **qualitative** gas temperature map
- Observe good qualitative agreement between test data and computational results
- Complex base flow structures
 - Stagnation shock
 - Reverse jet
 - Reflected shocks
 - Wall jet

- Need to assess stagnation shock RS-25 nozzle impingement region
- Shock impingement can augment heating by a factor of ~10
- Interaction first discovered by PLIF imaging

CFD solutions provided by F. Canabal (MSFC-EV33)

- Near-field plume flow structures were successfully visualized using OH-PLIF
- Observe good qualitative agreement between test data and computational results
- Complex plume flow structures
 - Hot boundary layer
 - Throat shock (cooler core flow)
 - P-M expansion waves

CFD

OH-PLIF

NCL

CFD solutions provided by F. Canabal (MSFC-EV33)

High-Altitude 4-Engine Base Flow Model

- Based on FY16 TIP imaging data analysis, 4-engine base flow model developed and builds upon existing base flow theories⁵
- Many unsteady flow structures lead to changes in the imaging data

- EUS test main objective was to predict base convective heating environments and visualize base/plume flows using ground test data
- MWIR imaging of sub-scale EUS propulsion model start-up
- Observe differences in plume structure between sea-level and high-altitude conditions (~240,000 ft) within steady-state regime
- Need optically thick hot gas to be observed with IR

- IR imaging is spatially averaged data taken between 100 Hz and 180 Hz
- Good qualitative agreement observed between IR data and computational solutions
- Major feature observed is the 4-lobed reflected shocks and their wake

- Good qualitative agreement observed between PLIF data & computational solutions
- All major base flow structures observed
 - Similar to SLS core-stage base flow (TIP) and confirms 4-engine base flow model
- Similar flow structures and qualitative trends observed between ground test data and CFD

- Observe similar flow structures between ground test PLIF imaging, test model CFD and flight CFD solutions
 - Similar concave stagnation shock structure, stand-off distance and shock diameter
 - Similar in-plane reflected shock contours
 - Similar expanding reverse jet
- Suggests sub-scale ground test simulates appropriate flow physics to flight
 - Provides further confidence in plume-induced flight environments based on ground test
- Need to assess stagnation shock - RL10 nozzle impingement

- $\ln\left(\frac{\lambda I}{Ag_u}\right) = \frac{-E_u}{kT} + C_1$ where $\lambda, A, g_u, E_u, k, C_1, I$

and T are the targeted wavelength, transition probability (Einstein coefficient), multiplicity of the upper state, excited state energy, Boltzmann constant, linear equation constant, measured line intensity and excitation temperature

- $S = \lambda I; C = Ag_u$
- $m = \frac{-1}{kT}$ (slope of $\ln\left(\frac{S}{C}\right)$ vs. E_u plot)
- A, g_u, E_u, k are determined from handbooks of spectroscopic constants, chemistry and physics
- λ, I are obtained from the test program
- From the slope of the Boltzmann plot, temperature of the targeted gas can be estimated

5 test runs were used at three λ targets

Run #	name	J	λ (nm)
39	Low J	Q2(6)	283.380
22	mid J	Q1(8)	283.553
23	High J 1	Q2(12)	285.545
24	High J 2	Q2(12)	285.545
8	mid J	Q1(8)	283.553

PLIF Thermometry

EUS Thermometry – Interrogation – Window 2×2

Temperature [K]

Boltzmann Plots

EUS GT Base Static Temperature Distribution

T1 = Temp Pre Stagnation Shock
 T2 = Temp Post Stagnation Shock

- Temperature distribution taken along the center of the plume shield to just past the nozzle exit as shown in the dotted white line
- Binning was conducted to obtain mean values and uncertainty statistics of the thermometry PLIF 2D data
- 2x2 binning = uncertainty statistics and mean value were obtained from surrounding 4 pixels
- Dark solid lines are mean distributions and dashed lines are the uncertainty distributions for three binning techniques (2x2, 4x4 and 8x8)

Conclusions

- TIP & EUS test programs provided for the first time proof-of-concept and technical maturation of non-intrusive diagnostics of visualizing and characterizing complex reacting plume-induced base flows in a ground test facility
- Led to an increase in the technology readiness level (TRL) for short-duration hot-fire test technique and improves confidence in plume-induced flight convective environment predictions
- In the process of developing EUS and SLS base gas temperature maps from PLIF thermometry
 - Historically, experimental base gas temperature data has the highest uncertainty and limited flight data and no temperature map has been obtained to date
 - First time develop a temperature data map of this region to increase the fidelity of base convective heating predictions

References

- ¹Bender, RL, Lee, YC (1978), IH-39 Base Heating Test Data Analysis, NASA CR NAS8-29270, RemTech Inc., Huntsville, AL
- ²Mehta, M, (2014), Space Launch System Base Heating Test: Sub-Scale Rocket Engine/Motor Design, Development and Performance Analysis, AIAA 2014-1255, 52nd AIAA SCITECH, National Harbor, MD.
- ³Johansen, CT, McRae, CD, Danehy, PM, Gallo, E., Magnotti, G., Cutler, A., Rockwell, RD, Goyne, CP, McDaniel, JC (2014), OH PLIF Visualization of the UVa Supersonic Combustion Experiment: Configuration A, *Journal of Visualization*
- ⁴Danehy, PM, Inman, JA, Alderfer, DW, Buck, GM and Bathel, B (2008), Visualization of Flowfield Modification by RCS Jets on a Capsule Entry Vehicle, AIAA 2008-1231, 46th AIAA SCITECH, Reno, NV.
- ⁵Brewer, EB and Craven, CE (1969), Experimental Investigation of Base Flow Field at High Altitude for a Four-Engine Clustered Nozzle Configuration, NASA Technical Note, NASA TN D-5165. Led to an increase in the technology readiness level (TRL) for short-duration hot-fire test technique and improves confidence in plume-induced flight convective environment predictions