Demostración:

Para demostrar esta identidad, se puede utilizar la definición de dy_i como una aplicación lineal que asigna a cada vector $v \in \mathbb{R}^n$ un escalar $dy_i(v)$.

$$dy_i(v) = \frac{\partial f_i}{\partial x_1} v_1 + \frac{\partial f_i}{\partial x_2} v_2 + \dots + \frac{\partial f_i}{\partial x_n} v_n$$

Ahora, se puede expresar $dy_i(v)$ en términos de los elementos básicos del espacio vectorial dx_j :

$$dy_i(v) = \sum_{j=1}^{n} \frac{\partial f_i}{\partial x_j} v_j$$

Finalmente, se puede reescribir esta expresión en términos de los elementos básicos del espacio vectorial dx_j :

$$dy_i = \sum_{j=1}^n \frac{\partial f_i}{\partial x_j} dx_j$$