APPENDIX A PROOF OF LEMMA 1

Proof. Since G(V, E, F) is modeled as the realistic road map, the feasible paths to reach the target position must be found.

Therefore, we denote the paths from the source s to the destination d as:

$$L_{sd} = \{l_{sd}^1, l_{sd}^2, ..., l_{sd}^n\}, \quad n > 0$$
(1)

where n represents the number of paths. As for L_{sd} we have:

$$l_{max} = max(l_{sd}^k), \quad k = 1...n \tag{2}$$

since the condition n > 0 is always valid. Hence for any path from s to d has the longest length l_{max} .

APPENDIX B PROOF OF LEMMA 2

Proof. According to the principle of relax operation, we can learn: only when $N_Q(x)$.dist $+w(x, v) < N_Q(v)$.dist, for $x \in V$.preds Q_R will update $N_Q(v)$.dist and $N_Q(v)$. s p . Based on this equation, we prove:

Case 1 Δ w(u, v)>0

Since w(u, v) is increased, Eq.(B) is certainly not satisfied. Thus Q_R remains self-ordered and no changes will occur in Q , only w(u, v) will update to w'(u,v).

Case 2 Δ w(u, v)<0

If w'(u,v) cannot satisfy Eq.(B), it is the same situation with Case 1 . Else, if satisfying, through w'(u,v) we can obtain the updated value:

$$N_O(v) \cdot d i s t = N_O(u) \cdot d i s t + w'(u, v)$$

APPENDIX C PROOF OF LEMMA 3

Proof. We use dist $\min_{\min}(v)$ to denote the minimum value currently calculated from V_s to v. According to the meaning of $N_T(v)$.dist, the value is always keep in accordance with dist $\min_{\min}(v)$. Based on these characteristics, we prove:

 $N_T(v)$ dist. Therefore:

dist
$$_{\min}(v) = N_T(v).\text{dist}$$

 $\leq N_T(u).\text{dist} + w(u, v)$

Assume that we update dist $\min(v)$ to $dist'_{\min}(v)$ instead of doing nothing: $\frac{dist'_{\min}(v) = N_T(u) \cdot dist + w'(u,v)}{> N_T(u) \cdot dist + w(u,v)}$ However,

currently dist $\min_{\min}(v) > dist_{\min}(v)$, there is no need to update the value, hence violating our assumption. Case & $\Delta w(u,v) < 0$: When $N_T(u)$.dist $+w'(u,v) < N_T(v)$.dist, it will trigger rollback operation, modifying relevant values to maintain dist $\min(v) = N_T(v)$.dist.

Therefore, there has $N_T'(v)$.dist $=N_T(u)$.dist + w'(u,v) . Assume the current time t_c , $t_e>N_T(v)$. t . Hence: T=T+v.suces, for $t\in [N_T(v).t,t_e]$ At $t_c,N_T(v)$.dist has updated to $N_T'(v)$.dist. $x\in v.suces$ satisfies the relax condition Eq.(30), the rollback operation will be performed as follows:

 $N_T(x)$.dist $\leftarrow N_T'(x)$,dist, for $x \in v$. succs

Hence the proof is complete.