

Uso do TF-IDF na Comparação de Dados para Detecção de Ransomware

Augusto Parisot, Lucila M. S. Bento, Raphael C. S. Machado

> Universidade Federal Fluminense Universidade do Estado do Rio de Janeiro

Motivação

20%

Incidentes em todo o mundo causados por ransomware

92h

Duração média de um ataque de ransomware \$ 1.82 M

Custo médio para se recuperar de ataques de ransomware

Problema

Métodos tradicionais têm dificuldade em acompanhar a evolução rápida dessas ameaças.

Necessidade de soluções simples e computacionalmente eficientes para grandes volumes de dados.

Relatórios de análise dinâmica, como do Cuckoo Sandbox, contêm dados textuais complexos.

Contribuições

Dataset

Comportamento das famílias de ransomware Ryuk, Revil, NetWalker, MountLocker, LockBit, Egregor, Conti e Clop obtido com o Cuckoo SandBox.

TF-IDF

Uso dessa técnica de processamento de linguagem natural para identificar padrões nos dados de comportamento obtidos.

Exploração

Comparação dos dados de rede, assinatura, chamadas de API e strings presentes no dataset para identificar os mais eficazes para a detecção.

Scripts

Criação e compartilhamen to de códigos para obtenção de amostras de malwares em fontes públicas e gratuitas.

TF-IDF

$$\operatorname{TF}(t,d) = \frac{\text{número de ocorrências do termo } t \text{ no documento } d}{\text{número total de termos no documento } d}$$

$$IDF(t, D) = \log \left(\frac{\text{número total de documentos no } corpus \ D}{\text{número de documentos que contêm o termo } t} \right) - Corpus Co$$

$$TF-IDF(t,d,D) = TF(t,d) \times IDF(t,D)$$

Frequência de Termo Inverso da Frequência de documentos

Abordagem

Tratamento dos dados

Métricas

$$\frac{TP}{TP + FP}$$

F1-Score

$$\times \frac{Precision \times Recall}{Precision + Recall}$$

Recall

 $\frac{TP}{TP+FN}$

Acurácia

 $\frac{TP+TN}{TP+TN+FP+FN}$

REAL TRUE POSITIVE **FALSE POSITIVE** FP O MODELO PREVÊ O MODELO PREVÊ **CORRETAMENTE A ERRONEAMENTE A CLASSE POSITIVA CLASSE POSITIVA FALSE NEGATIVE** TRUE NEGATIVE FN O MODELO PREVÊ O MODELO PREVÊ **ERRONEAMENTE A CORRETAMENTE A CLASSE NEGATIVA CLASSE NEGATIVA**

Avaliação - Precision (70:30)

Avaliação - Recall (70:30)

Avaliação (70:30)

	Normal			StandardScaler			PCA			Normal			StandardScaler			PCA		
Algoritmo	Pr	Re	F1	Pr	Re	F1	Pr	Re	F1	Pr	Re	F1	Pr	Re	F1	Pr	Re	F1
	Assinatura									Rede								
KNN	0,85	0,83	0,84	0,95	0,90	0,91	0,95	0,90	0,92	0,85	0,90	0,85	0,91	0,81	0,83	0,86	0,83	0,83
SVM	0,88	0,88	0,82	0,86	0,79	0,81	0,94	0,85	0,88	0,91	0,91	0,89	0,87	0,92	0,87	0,91	0,93	0,89
NB	0,76	0,93	0,80	0,69	0,91	0,72	0,77	0,81	0,74	0,67	0,85	0,69	0,66	0,85	0,68	0,70	0,70	0,64
DT	0,93	0,85	0,88	0,93	0,85	0,88	0,93	0,85	0,88	0,86	0,88	0,85	0,86	0,88	0,85	0,86	0,88	0,85
RF	0,94	0,92	0,91	0,94	0,93	0,91	0,87	0,93	0,89	0,87	0,90	0,84	0,88	0,92	0,88	0,68	0,83	0,73
MLP	0,43	0,49	0,49	0,74	0,80	0,77	0,92	0,93	0,91	0,39	0,39	0,32	0,89	0,90	0,88	0,86	0,88	0,86
	String									API								
KNN	0,94	0,85	0,88	0,78	0,91	0,81	0,84	0,92	0,85	0,69	0,75	0,71	0,73	0,43	0,50	0,69	0,48	0,55
SVM	0,74	0,69	0,71	0,98	0,97	0,97	0,94	0,97	0,95	0,65	0,76	0,68	0,87	0,71	0,77	0,84	0,77	0,79
NB	0,94	0,97	0,95	0,94	0,91	0,92	0,76	0,97	0,81	0,82	0,81	0,80	0,75	0,75	0,71	0,85	0,84	0,83
DT	0,83	0,97	0,88	0,83	0,97	0,88	0,83	0,97	0,88	0,88	0,85	0,85	0,88	0,85	0,85	0,88	0,85	0,85
RF	0,89	0,96	0,91	0,91	0,98	0,93	0,89	0,98	0,93	0,90	0,84	0,86	0,90	0,84	0,86	0,80	0,77	0,77
MLP	0,53	0,51	0,49	0,76	0,99	0,82	0,67	0,81	0,73	0,25	0,37	0,30	0,82	0,67	0,67	0,71	0,76	0,73

Avaliação (70:30)

String - Melhor desempenho médio com PCA e StandardScaler

Avaliação (50:50)

- A distribuição das métricas Precision e Recall foram semelhantes àquelas da divisão 70:30.
- O desempenho médio geral o RF se destaque em todas as métricas e tipos de dados
 - Destaque para os dados de Assinatura e String
- Os dados de String continuam sendo os mais eficazes
- As famílias NetWalker e Revil apresentaram resultados robustos e consistentemente altos

Considerações finais

- Os dados de String tratados com StandardScaler e analisados com RF e SVM formaram as combinações mais eficazes.
- O dataset possui mais amostras maliciosas do que benignas, potencialmente contribuindo para os resultados obtidos.
- No futuro, pretendemos usar arquiteturas de aprendizagem profunda para comparar com os indutores rasos usados.
- Também pretendemos realizar novos experimentos em ambientes Windows 10 e 11.

Augusto Parisot aparisot@id.uff.br

Lucila M. S. Bento lucila.bento@ime.uerj.br

Raphael C. S. Machado raphaelmachado@ic.uff.br