- 1. Шпорцы диффурам Rexhaif
- 1.1. Автономные системы. Основные свойства автономных систем. Положения равновесия.

Автономные системы: Сиситема обыкновенных ДУ называется авто**номной**, когда переменная t явно не входит в систему. $\dot{x} = \frac{dx}{dt} = f(x)$; (1). Иначе, в координатном виде: $\frac{dx_i}{dt}$ = $f_i(x_1,\ldots,x_n), i=\overline{1,n}.$

Свойства автономных систем: 1. Если $x = \varphi(t)$ - решение системы (1), то $\forall C: x = \varphi(t+C)$ - тоже решение

ЭКЗУ системы. Док-во: $\frac{d\varphi(t+C)}{dt} = \frac{d\varphi(t+C)}{d(t+C)} =$ $\mathbf{by} \quad f(\varphi(t+C)).$

- 2. Две фазовые траектории либо не имеют общих точек, либо совпадают. Док-во: Пусть ρ_1, ρ_2 - фазовые траектории. Им отвечает интервал решения $x = \varphi(t), \dots, x = \psi(x)$. И пусть $\varphi(t_1) = x_0 = \psi(t_2)$ (есть общая точка). Рассмотрим векторфункцию $x = \psi(t + (t_2 - t_1)) = X(t)$. В силу св-ва (1) это тоже решение, при-TOM: $X(t_1) = \varphi(t_1) \Rightarrow X(t) = \varphi(t) \Rightarrow$ $\varphi(t) = \psi(t + (t_2 - t_1))$, т.е кривые совпадают.
- 3. Фазовая траектория, отличная от точки, есть гладкая кривая. Док-во: Пусть $X^0 = \varphi(t_0) = \frac{d\varphi(t_0)}{dt}$. Этот вектор - касательная и в каждой точке он не равен нулю. ЧТД.

Положение равновесия: Точка SHIT, BUT I'm TOO LAZY. $a \in \mathbb{R}^4$ называется точкой равновесия авт. системы, если f(a) = $0(\dot{x}(a) = 0).$

1.2. Классификация фазономных систем.

кая кривая (цикл). 3. Точка.

NEED SOME PROOFS FOR THAT $x(-t, x(t, x^0)) = x_0$.

1.3. Групповые свойства решений автономной системы уравнений.

вых траекторий авто- Пусть $x(t, x^0)|_{t=0} = x^0$ - решение системы (1), т.е $x^0 \neq 0$ - нач. условие для системы (1). Тогда $x(t_1+t_2,x^0) =$ Всякая фазовая траектория при- $x(t_2; x(t_1, x^0)) = x(t_1, x(t_2, x^0))$. Докнадлежит к одному из трех ти- во: Пусть вект. функции: $\varphi_1(t) =$ пов(классов): 1. Гладкая кривая без $x(t, x(t_1, x^0)); \varphi_2(t) = x(t+t_1, x^0)$ - это самопересечений. 2. Замкнутая глад- решение для системы 1. При t=0 $: \varphi_1(0) = x(t_1, x^0); \varphi_2(0) = x(t_1, x^0).$ **Теорема**: Если фаз. траектория ре- Т.е $\varphi_1(0) = \varphi_2(0)$. В силу теор. шения $x = \varphi(t)$ есть гладская замкн. о единственности $\varphi_1(t) = \varphi_2(t) \forall t$. кривая, то это решение есть перио- Отсюда следует оба уравнения из дическая ф-я t с периодом T > 0. условия. Из предыдущег оследует: