DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CE--ETC F/G 20/4 ANALYSIS OF WAKE SURVEY EXPERIMENTAL DATA FOR MODEL 5365 REPRES--ETC(U) OCT 80 R B HURWITZ, L B CROOK DTMSRDC/SPD-0833-04 AD-A092 246 UNCLASSIFIED I ≈ 3 60 A 09224F **3** . Ď.

DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER

Bethesda, Maryland 20084

AD A 092246

ANALYSIS OF WAKE SURVEY EXPERIMENTAL DATA FOR MODEL 5365 REPRESENTING THE R/V ATHENA IN THE DTNSRDC TOWING TANK

bу

Rae B. Hurwitz and L. Bruce Crook

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

SHIP PERFORMANCE DEPARTMENT REPORT

October 1980

DTNSRDC/SPD-0833-04

80 1291 055

MAJOR DTNSRDC ORGANIZATIONAL COMPONENTS

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
DTNS RDC/SPD-0833-04 DTNS RDC/SPD-0833-04	3. RECIPIENT'S CATALOG NUMBER
VI 012	2.46
ANALYSIS OF WAKE SURVEY EXPERIMENTAL DATA FOR	5. TYPE OF REPORT & PERIOD COVERE
MODEL 5365 REPRESENTING THE R/V ATHENA IN	9) FINAL PEPTIS /
THE DINSRDC TOWING TANK	6: PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(#)
10 Rae B. Hurwitz and L. Bruce/Crook	19/11
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASH AREA & WORK UNIT NUMBERS
David W. Taylor Naval Ship R&D Center (Ship Performance Department) Task Area, S0379001
Bethesda, MD 20084	Work Unit 1524-641 1524-684
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Naval Sea Systems Command (NAVSEA 05R) Washington DC 20362	October 1980
Hashington bo 20002	13. NUMBER OF PAGES 212 + XX
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)
(1/2) EB 379 /	UNCLASSIFIED
	15a. DECLASSIFICATION/DOWNGRADING
6. DISTRIBUTION STATEMENT (of this Report)	<u> </u>
17. DISTRIBUTION STATEMENT (of the ebetract entered in Block 20, if different fro	m Report)
18. SUPPLEMENTARY NOTES	
9. KEY WORDS (Continue on reverse side if necessary and identify by block number)	
Wake survey Shallow Water R/V Athena	
Model 5365	
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)	usted on Medal 5265
A series of wake survey experiments were conding the R/V ATHENA in the DTNSRDC towing tank. Longadial velocity components for experiments at model	gitudinal, tangential, and speeds of 2.87 knots
(1.48 m/s),5.22 knots (2.68 m/s), 6.96 knots (3.58 m/s), are presented. Several comparisons are	
lifferent water depths, trims, and speeds. A compa	rison of full-scale and
nodel-scale towing tank wake survey measurements is	
maiyses of the circumferential distribution of the	velocity component ratios
D FORM 1473 EDITION OF 1 NOV 65 15 OBSOLETE 1	UNCLASSIFIED
	BEIFICATION OF THIS PAGE (When Date Brit

387614 ex

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) were performed on the model experimental data and the results are reported. herein.

TABLE OF CONTENTS

Pa	age
LIST OF FIGURES	iv
LIST OF TABLES	хi
NOTATION	cvi
ABSTRACT	1
ADMINISTRATIVE INFORMATION	1
INTRODUCTION	1
DESCRIPTION OF MODEL AND INSTRUMENTATION	3
EXPERIMENTS	4
PRESENTATION OF RESULTS OF VELOCITY SURVEYS	5
PHASE ONE - EXPERIMENTS 2, 3, 4, 5, 6, 7, 8, AND 9	5
PHASE TWO - EXPERIMENTS 19 AND 21	7
DISCUSSION OF RESULTS	7
ACCURACY OF INSTRUMENTATION	7
EFFECT OF HIGHER MODEL SPEED - EXPERIMENTS 2 AND 4	8
EFFECT OF OPERATING PORT PROPELLER - EXPERIMENTS 2 AND 8	8
EFFECT OF SHALLOW WATER AND STRUT BARREL - EXPERIMENTS 8, 19, AND 21	8
DIFFERENCES IN VELOCITY COMPONENT RATIOS BETWEEN EXPERIMENTS	9
COMPARISON OF MODEL- AND FULL-SCALE DATA	10
CONCLUSIONS	11
REFERENCES	13
APPENDIX A - VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS FOR EXPERIMENTS 2 AND 7	51
APPENDIX B - VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS FOR EXPERIMENTS 3 AND 9	81
APPENDIX C - VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS FOR EXPERIMENT 4	uı.
iii Dist	11 11 11
Avail a Special	
dom/ cm/ cm/ ecial	

F	?age
APPENDIX D - VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS FOR EXPERIMENT 5	
APPENDIX E - VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS FOR EXPERIMENT 6	154
APPENDIX F - VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS FOR EXPERIMENT 8	159
APPENDIX G - VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS FOR EXPERIMENT 19	175
APPENDIX H - VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS FOR EXPERIMENT 21	191
APPENDIX I - VELOCITY COMPONENT RATIOS FOR R/V ATHENA AND MODEL EXPERIMENTS 8 AND 21	207
LIST OF FIGURES	
1 - Profile Lines and Body Plan for the R/V ATHENA Represented by Model 5365	15
2 - Controllable Pitch Propeller Geometry	16
3 - Afterbody of Hull Showing Radii of Wake Survey Measurements	17
4 - Fitting Room Photographs of DTNSRDC Model 5365 Representing the R/V ATHENA	18
5 - After End View of DTNSRDC Model 5365 Fitted with a Rake of Five-Hole Pitot Tubes on the Starboard Shaft	19
6 - Afterbody Quarter View of DTNSRDC Model 5365 Fitted with a Rake of Five-Hole Pitot Tubes on the Starboard Shaft	20
7 - Afterbody Profile View of DTNSRDC Model 5365 Fitted with a Rake of Five-Hole Pitot Tubes on the Starboard Shaft	21
8 - Starboard Afterbody Profile View of DTNSRDC Model 5365 Showing Strut Barrel Extension	22
9 - Starboard Quarter View of DTNSRDC Model 5365 Showing Strut Barrel Extension	23
10 - Port Afterbody Profile View of DTNSRDC Model 5365 Showing Propeller and Rudder	24

		LIST OF FIGURES (Continued)	Page
11	-	Bow Wave Profile of DTNSRDC Model 5365 in Shallow Water at the Shallow Water Trim Setting at a Speed Corresponding to 15 Knots, Full-Scale	25
12	-	Stern Wave Profile of DTNSRDC Model 5365 in Shallow Water at the Shallow Water Trim Setting at a Speed Corresponding to 15 Knots, Full-Scale	26
13	-	Bow Wave Profile of DTNSRDC Model 5365 in Deep Water at the Shallow Water Trim Setting at a Speed Corresponding to 15 Knots, Full-Scale	27
14	-	Stern Wave Profile of DTNSRDC Model 5365 in Deep Water at the Shallow Water Trim Setting at a Speed Corresponding to 15 Knots, Full-Scale	28
15	-	Composite Plot of Velocity Component Ratios from R/V ATHENA and Model Experiments 2 and 8 for the 0.456 Radius	29
16	-	Composite Plot of Velocity Component Ratios from R/V ATHENA and Model Experiments 2 and 8 for the 0.633 Radius	30
17	-	Composite Plot of Velocity Component Ratios from R/V ATHENA and Model Experiments 2 and 8 for the 0.781 Radius	. 31
18	-	Composite Plot of Velocity Component Ratios from R/V ATHENA and Model Experiments 2 and 8 for the 0.963 Radius	32
19	-	Composite Plot of Mean Longitudinal, Tangential, and Volumetric Mean Wake from R/V ATHENA and Experiments 2 and 8	33
20	-	Composite Plot of Mean Advance Angle (Beta) and Maximum Variation of Advance Angle from R/V ATHENA and Experiments 2 and 8	s 34
21	-	Velocity Component Ratios of Experiments 2 and 4 for Two Model Speeds for the 0.456 Radius	35
22	-	Velocity Component Ratios of Experiments 2 and 4 for Two Model Speeds for the 0.633 Radius	36
23	-	Velocity Component Ratios of Experiments 2 and 4 for Two Model Speeds for the 0.781 Radius	37
24	-	Velocity Component Ratios of Experiments 2 and 4 for Two Model Speeds for the 0.963 Radius	38
25	-	Composite Plot of Mean Longitudinal, Tangential, and Volumetric Mean Wake of Experiments 2 and 4	39
26	-	Composite Plot of Mean Advance Angle (Beta) and Maximum	40

and the second of the second o

		LIST OF FIGURES (Continued)	Page
27	-	Composite Plot of Velocity Component Ratios for Experiments 8, 19, and 21 for the 0.456 Radius	41
28	-	Composite Plot of Velocity Component Ratios for Experiments 8, 19, and 21 for the 0.633 Radius	42
29	-	Composite Plot of Velocity Component Ratios for Experiments 8, 19, and 21 for the 0.781 Radius	43
30	-	Composite Plot of Velocity Component Ratios for Experiments 8, 19, and 21 for the 0.963 Radius	44
31	-	Composite Plot of Mean Longitudinal, Tangential, and Volumetric Mean Wake of Experiments 8, 19, and 21	45
32	-	Composite Plot of Mean Advance Angle (Beta) and Maximum Variations of Advance Angle of Experiments 8, 19, and 21	46
A-1	. -	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiment 2	52
A-2	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiment 2	53
A-3	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiment 2	54
A-4		Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiment 2	55
A –5	· –	Radial Distribution of the Mean Velocity Component Ratios for Experiment 2	56
A-6	, –	Radial Distribution of the Mean Advance Angle and Advance Angle Variations of Experiment 2	57
A-7	1 -	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiment 7	
A-8	8 _	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiment 7	59

		LIST OF FIGURES (continued)	Page
A-9	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiment 7	60
		Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiment 7	61
A-11	_	Radial Distribution of the Mean Velocity Component Ratios for Experiment 7	62
A-12	-	Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 7	63
B-1	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiments 3 and 9	82
B-2	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiments 3 and 9	83
B-3	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiments 3 and 9	84
B-4	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiments 3 and 9	85
B-5	-	Radial Distribution of the Mean Velocity Component Ratios for Experiment 3	86
B-6	-	Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 3	87
B-7	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiment 9	88
B-8	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiment 9	89
B-9	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiment 9	90

80, 1201 055

		LIST OF FIGURES (Continued)	age
B-10	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiment 9	91
B-11	-	Radial Distribution of the Mean Velocity Component Ratios for Experiment 9	92
B-12	-	Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 9	93
C-1	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiment 4	112
C-2	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiment 4	113
C-3	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiment 4	114
C-4	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiment 4	115
C-5	-	Radial Distribution of the Mean Velocity Component Ratios for Experiment 4	116
C-6		Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 4	117
D-1	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiment 5	128
D-2	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiment 5	129
D-3	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiment 5	130
D-4	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiment 5	131
D-5	-	Radial Distribution of the Mean Velocity Component Ratios	132

		LIST OF FIGURES (Continued)	Page
n-6	-	Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 5	133
E-1	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiment 6	144
E-2	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiment 6	145
E-3		Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiment 6	146
E-4	_	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiment 6	1 ⊹7
E- 5	-	Radial Distribution of the Mean Velocity Component Ratios for Experiment 6	148
E-6	-	Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 6	149
F-1	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiment 8	160
F-2	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiment 8	1/1
F-3	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781	161
F-4		for Experiment 8	162
79 E		For Experiment 8	163
C- 1	_	Radial Distribution of the Mean Velocity Component Ratios for Experiment 8	164
F-6	-	Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 8	165
G-1	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456	.=.

LIST OF FIGURES (Continued)	Page
G-2 - Circumferential Distribution of the Longitudinal, Tangenti and Radial Velocity Component Ratios - Radius Ratio = 0.63 for Experiment 19	33
G-3 - Circumferential Distribution of the Longitudinal, Tangenti and Radial Velocity Component Ratios - Radius Ratio = 0.78 for Experiment 19	31
G-4 - Circumferential Distribution of the Longitudinal, Tangenti and Radial Velocity Component Ratios - Radius Ratio = 0.96 for Experiment 19	53
G-5 - Radial Distribution of the Mean Velocity Component Ratios for Experiment 19	180
G-6 - Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 19	181
H-1 - Circumferential Distribution of the Longitudinal, Tangenti and Radial Velocity Component Ratios - Radius Ratio = 0.45 for Experiment 21	56
H-2 - Circumferential Distribution of the Longitudinal, Tangenti and Radial Velocity Component Ratios - Radius Ratio = 0.63 for Experiment 21	33
H-3 - Circumferential Distribution of the Longitudinal, Tangenti and Radial Velocity Component Ratios - Radius Ratio - 0.78 for Experiment 21	31
H-4 - Circumferential Distribution of the Longitudinal, Tangenti and Radial Velocity Component Ratios - Radius Ratio = 0.96 for Experiment 21	53
H-5 - Radial Distribution of the Mean Velocity Component Ratios for Experiment 21	196
H-6 - Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 21	197
I-1 - Composite Plot of Velocity Component Ratios for R/V ATHENA and Model Experiments 8 and 21 for the 0.456 Radius	A
I-2 - Composite Plot of Velocity Component Ratios for R/V ATHENA and Model Experiments 8 and 21 for the 0.633 Radius	
I-3 - Composite Plot of Velocity Component Ratios for R/V ATHENA and Model Experiments 8 and 21 for the 0.781 Radius	
I-4 - Composite Plot of Velocity Component Ratios for R/V ATHENA	A 211

LIST OF TABLES

		I	?age
1 -	S1 Mo	hip and Model Data for R/V ATHENA Represented by DTNSRDC odel 5365	47
2 -	Ca	atalog of Experiments Performed	48
3 -	St	ummary of Wake Survey Experimental Data	49
4 -	E f	ffect of Speed on the Circumferential Mean Velocities, Mean dvance Angle and its Variations, and the First Four Harmonics	50
A-1	~	Input Data for Harmonic Analysis for R/V ATHENA, Model 5365, Experiment 2	64
A-2	-	Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and other Derived Quantities at the Experimental and Interpolated Radii for Experiment 2	l · 65
A-3	-	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Experimental Radii for Experiment 2	66
A-4	-	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Interpolated Radii for Experiment 2	67
A- 5	-	Harmonic Analyses of Tangential Velocity Component Ratios at the Experimental Radii for Experiment 2	e 69
A-6	-	Harmonic Analyses of Tangential Velocity Component Ratios at the Interpolated Radii for Experiment 2	70
A- 7	-	Input Data for Harmonic Analysis for R/V ATHENA, Model 5365, Experiment 7	72
A- 8	-	Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and Other Derived Quantities at the Experimental and Interpolated Radii for Experiment 7	73
A- 9	-	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Experimental Radii for Experiment 7	74
A-10	-	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Interpolated Radii for Experiment 7	75
A-11	-	Harmonic Analyses of Tangential Velocity Component Ratios at the Experimental Radii for Experiment 7	77
A-12	-	Harmonic Analyses of Tangential Velocity Component Ratios at the Interpolated Radii for Experiment 7	78

Pag
B-1 - Input Data for Harmonic Analysis for R/V ATHENA, Model 5365, Experiment 3
B-2 - Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and other Derived Quantities at the Experimental and Interpolated Radii for Experiment 399
B-3 - Harmonic Analyses of Longitudinal Velocity Component Ratios at the Experimental Radii for Experiment 396
B-4 - Harmonic Analyses of Longitudinal Velocity Component Ratios at the Interpolated Radii for Experiment 397
B-5 - Harmonic Analyses of Tangential Velocity Component Ratios at the Experimental Radii for Experiment 399
B-6 - Harmonic Analyses of Tangential Velocity Component Ratios at the Interpolated Radii for Experiment 3100
B- 7 - Input Data for Harmonic Analysis for R/V ATHENA, Model 5365, Experiment 9
B- 8 - Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and Other Derived Quantities at the Experimental and Interpolated Radii for Experiment 9 103
B- 9 - Harmonic Analyses of Longitudinal Velocity Component Ratios at the Experimental Radii for Experiment 9 104
B-10 - Harmonic Analyses of Longitudinal Velocity Component Ratios at the Interpolated Radii for Experiment 9 105
B-11 - Harmonic Analyses of Tangential Velocity Component Ratios at the Experimental Radii for Experiment 9
B-12 - Harmonic Analyses of Tangential Velocity Component Ratios at the Interpolated Radii for Experiment 9

	Page
C-1 -	Input Data for Harmonic Analysis for R/V ATHENA, Model 5365, Experiment 4118
C-2 -	Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and other Derived Quantities at the Experimental and Interpolated Radii for Experiment 4119
C-3 -	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Experimental Radii for Experiment 4120
C-4 -	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Interpolated Radii for Experiment 4121
C-5 -	Harmonic Analyses of Tangential Velocity Component Ratios at the Experimental Radii for Experiment 4123
C-6 -	Harmonic Analyses of Tangential Velocity Component Ratios at the Interpolated Radii for Experiment 4124
D-1 -	Input Data for Harmonic Analysis for R/V ATHENA, Model 5365, Experiment 5134
D-2 -	Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and other Derived Quantities at the Experimental and Interpolated Radii for Experiment 5
D-3 -	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Experimental Radii for Experiment 5
D-4 -	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Interpolated Radii for Experiment 5137
D-5 -	Harmonic Analyses of Tangential Velocity Component Ratios at the Experimental Radii for Experiment 5
D-6 -	Harmonic Analyses of Tangential Velocity Component Ratios at the Interpolated Radii for Experiment 5140
E-1 -	Input Data for Harmonic Analysis for R/V ATHENA, Model 5365, Experiment 6
E-2 -	Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and other Derived Quantities at the Experimental and Interpolated Radii for Experiment 6
E-3 -	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Experimental Radii for Experiment 6

		Page
E-4	-	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Interpolated Radii for Experiment 6
E-5	-	Harmonic Analyses of Tangential Velocity Component Ratios at the Experimental Radii for Experiment 6
E-6	-	Harmonic Analyses of Tangential Velocity Component Ratios at the Interpolated Radii for Experiment 6
F-1	-	Input Data for Harmonic Analysis for R/V ATHENA, Model 5365, Experiment 8
F-2	-	Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and other Derived Quantities at the Experimental and Interpolated Radii for Experiment 8
F-3	-	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Experimental Radii for Experiment 8 168
F-4	-	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Interpolated Radii for Experiment 8169
F-5	-	Harmonic Analyses of Tangential Velocity Component Ratios at the Experimental Radii for Experiment 8
F-6	-	Harmonic Analyses of Tangential Velocity Component Ratios at the Interpolated Radii for Experiment 8
G-1	-	Input Data for Harmonic Analysis for R/V ATHENA, Model 5365, Experiment 19
G-2	-	Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and other Derived Quantities at the Experimental and Interpolated Radii for Experiment 19
G-3	-	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Experimental Radii for Experiment 19
G-4	-	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Interpolated Radii for Experiment 19 185
G-5	-	Harmonic Analyses of Tangential Velocity Component Ratios at the Experimental Radii for Experiment 19

	rage
G-6 -	Harmonic Analyses of Tangential Velocity Component Ratios at the Interpolated Radii for Experiment 19188
H-1 -	Input Data for Harmonic Analysis for R/V ATHENA, Model 5365, Experiment 21
H-2 -	Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and other Derived Quantities at the Experimental and Interpolated Radii for Experiment 21
H-3 -	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Experimental Radii for Experiment 21200
H-4 -	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Interpolated Radii for Experiment 21201
H-5 -	Harmonic Analyses of Tangential Velocity Component Ratios at the Experimental Radii for Experiment 21203
н-6 -	Harmonic Analyses of Tangential Velocity Component Ratios at the Interpolated Radii for Experiment 21204
I-1 -	Input Data for Harmonic Analysis of Wake Data for R/V ATHENA212

NOTATION

CONVENTIONAL SYMBOL	SYMBOL APPEARING ON PLOTS	DEFINITION		
A _N	COS COEF	The cosine coefficient of the N th harmonic*		
^B N	SIN COEF	The sine coefficient of the N th harmonic*		
c	C	Pressure reading at center hole of 5-hole pitot tube		
D		Propeller diameter		
$J_{\mathbf{V}}$	$J_{\mathbf{V}}$	Apparent advance coefficient $J_V = \frac{V}{nD}$		
N	N	Harmonic number		
n	~	Propeller revolutions		
P	P	Pressure		
r/R or x	Radius or RAD.	Distance (r) from the propeller axis expressed as a ratio of the propeller radius (R)		
R _n	R _n	Reynolds number		
R1, R2	R1, R2	Pressure reading at radial holes of 5-hole pitot tube		
T1, T2	T1, T2	Pressure reading at tangential holes of 5-hole pitot tube		
บ/บ _∞	ַט/ט	Non-dimensional longitudinal velocity measured by means of boundary layer pitot tubes		
V	٧	Actual model or ship velocity		
$V_{b}(x,\theta)$		Resultant inflow velocity to blade for a given point		
<u>v</u> _b (x)		Mean resultant inflow velocity to blade for a given radius		
V _r (x,θ)	VR	Radial component of the fluid velocity for a given point (positive toward the shaft centerline)		
("see footnote on page xviii) snart centerline)				

NOTATION (CONTINUED)

CONVENTIONAL SYMBOL	SYMBOL APPEARING ON PLOTS	DEFINITION
v _r (x)		Mean radial velocity component for a given radius
V _r (x,θ)/V	VR/V	Radial velocity component ratio for a given point
<u>v</u> r(x)/v	VRBAR	Mean radial velocity component ratio for a given radius
V _t (x,θ)	Vī	Tangential component of the fluid velocity for a given point (positive in a counterclockwise direction looking forward)
$\overline{V}_{t}(x)$		Mean tangential velocity component for a given radius
V _t (x,θ)/V	VT/V	Tangential velocity component ratio for a given point
$\overline{V}_{t}(x)/V$	VTBAR	Mean tangential velocity component ratio for a given radius
(v _t (x)/v) _N	AMPLITUDE	Amplitude (B_N for single screw symmetric; C_N otherwise) of Nth harmonic of the tangential velocity component ratio for a given radius*
V _x (x,θ)	VX	Longitudinal (normal to the plane of survey) component of the fluid velocity for a given point (positive in the astern direction)
v _{x} (x)		Mean longitudinal velocity component for a given radius
V _x (x,θ)/V	vx/v	Longitudinal velocity component ratio for a given point
V _x (x)/V	VXBAR	Mean longitudinal velocity component ratio for a given radius
(V _x (x)/V) _N	AMPLITUDE	Amplitude (A _N for single screw symmetric; C _N otherwise) of Nth harmonic of the longitudinal velocity component ratio for a given radius*

NOTATION CONTINUED)

CONVENTIONAL SYMBOL	SYMBOL APPEARING ON PLOTS	DEFINITION
x/L _{WL}	×/L _{WL}	Non-dimensional longitudinal location of boundary layer pitot tubes
φ _N	PHASE ANGLE	Phase angle of Nth harmonic*

f (θ) are the coefficients of the Fourier Series:

$$f(\theta) = A_0 + \sum_{N=1}^{M} A_N \cos(N\theta) + \sum_{N=1}^{M} B_N \sin(N\theta)$$

$$= A_0 + \sum_{N=1}^{M} C_N \sin(N\theta + \phi_N)$$

The harmonic amplitudes of any circumferential velocity distribution

NOTATION (CONTINUED)

CONVENTIONAL SYMBOL

SYMBOL APPEARING ON PLOTS

DEFINITION

1-w(x)

1-WX

Volumetric mean velocity ratio from the hub to a given radius

$$1-w(r/R) = \begin{bmatrix} 2 \cdot \int_{-\infty}^{r/R} (\overline{v}_{x_c}(x)/v) \cdot x \cdot dx \\ \frac{r_{hub}/R}{(r/R)^2 - (r_{hub}/R)^2} \end{bmatrix}$$

where
$$\overline{V}_{\mathbf{x}_{\mathbf{c}}}(\mathbf{x})/V = \int_{0}^{2\pi} \left[\frac{V_{\mathbf{x}_{\mathbf{c}}}(\mathbf{x},\theta)}{2\pi V} \right] d\theta$$

and $V_{\mathbf{x}_{\mathbf{c}}}(\mathbf{x},\theta)/V = (V_{\mathbf{x}}(\mathbf{x},\theta)/V)$
 $-(V_{\mathbf{c}}(\mathbf{x},\theta)/V) \tan (\beta(\mathbf{x},\theta))$

1-w_y(x)

1-WVX

Volumetric mean velocity ratio from the hub to a given radius (without the tangential velocity correction)

$$1-w(r/R) = \begin{bmatrix} r/R \\ 2 \cdot \int (\overline{V}_{x}(x)/V) \cdot x \cdot dx \\ r_{hub}/R \\ \hline (r/R)^{2} - (r_{hub}/R)^{2} \end{bmatrix}$$

 $\beta(x,\theta)$

-

Advance angle in degrees for a given point

β(x)

BBAR

Mean advance angle in degrees for a given radius

+Δβ

BPOS

Variation of the maximum advance angle from the mean for a given radius

NOTATION (CONTINUED)

VELOCITY DIAGRAM OF BETA ANGLES

ENGLISH/SI EQUIVALENTS

ENGLISH	SI	
1 inch	25.400 millimetres [0.0254 m (metres]	
1 foot	0.3048 m (metres)	
1 foot per second	0.3048 m/sec (metres per second)	
1 knot	0.5144 m/sec (metres per second)	
1 degree (angle)	0.01745 rad (radians)	
1 inch Water (60°F)	248.8 na (pascals)	

ABSTRACT

A series of wake survey experiments were conducted on Model 5365 representing the R/V ATHENA in the DTNSRDC towing tank. Longitudinal, tangential, and radial velocity components for experiments at model speeds of 2.87 knots (1.48 m/s), 5.22 knots (2.68 m/s), 6.96 knots (3.58 m/s), and 13.5 knots (6.94 m/s) are presented. Several comparisons are made between wake surveys with different water depths, trims, and speeds. A comparison between full-scale and model-scale towing tank wake survey measurements is also presented. Harmonic analyses of the circumferential distribution of the velocity component ratios were performed on the model experimental data and the results are reported herein.

ADMINISTRATIVE INFORMATION

This work was performed under the Controllable Pitch Propeller Research Program sponsored by the Naval Sea Systems Command (NAVSEA 05R) and administered by the David W. Taylor Naval Ship R&D Center (DTNSRDC). The project was funded under Task Area S0379001 and DTNSRDC Work Unit Numbers 1524-641 and 1524-684.

INTRODUCTION

The David W. Taylor Naval Ship R&D Center (DTNSRDC) conducted a full-scale wake survey aboard the R/V ATHENA as part of its overall project to adapt controllable pitch propellers to high speed combatant ships. The primary project goal was to obtain propeller disk velocity component ratios in the wake of a full-scale ship. A description of the R/V ATHENA full-scale measurements, instrumentation, trial procedures, and measured data was presented by Day et al. The full-scale propeller disk measurements were followed by model wake survey experiments in a wind tunnel and a towing tank. The wind tunnel experiments and correlation with full-scale measurements were presented by Hurwitz and Jenkins.

A series of wake surveys were conducted on Model 5365 representing the R/V ATHENA in the towing tank at DTNSRDC. The velocity component

References are listed on page 13.

ratios were measured at radii corresponding exactly to the full-scale wake survey radii, allowing a direct one-to-one comparison between model and full-scale data. These experiments were designed to evaluate the differences in the model wake in the starboard propeller plane with and without the port propeller operating. The initial wake survey was conducted at a model speed corresponding to the Froude-scaled speed of the ship without the operating propeller. The model propeller was removed from the shafting and replaced by a dummy hub during the wake surveys. The initial model correlation data with the R/V ATHENA data were not particularly good. Additional wake surveys were run to try to improve the model correlation by varying the speed with and without the port propeller operating.

The effects of Reynolds number were investigated on the model-scale wake by running at an increased speed. The speed chosen was the highest speed for which steady data could be obtained. These variations made no significant improvement in the correlation of the tangential velocity components.

In addition, wake surveys were conducted with and without the Bass Dynamometer Boat, Model 5271, mounted behind Model 5365. This information was needed for the Bass Dynamometer Boat effect on the flow into the propeller disk area. The results of these Bass Dynamometer Boat wake surveys will be presented in a future report.

Finally, in an attempt to further improve the correlation of modeland full-scale data, another group of experiments was run to investigate the water depth and trim effects on the R/V ATHENA. These wake surveys were conducted in deep water, and at a water depth scaled to the fullscale trial water depth. The term shallow water will be used only to differentiate between the scaled water depth and the normal (deep) water depth used experimentally in this report. Shallow water can change the wave system due to the model and possibly affect the flow pattern around the model hull.

The results of the model wake survey conducted on Model 5365 representing the R/V ATHENA in deep and shallow water are also presented in this report. Comparisons are made between the shallow and deep water wake surveys with different speeds and trims. Full-scale data are presented as a comparison with the data obtained from the towing tank

experiments.

DESCRIPTION OF MODEL AND INSTRUMENTATION

Model 5365, representing the R/V ATHENA, was constructed of fiber-glass having a scale ratio of one to 8.25. The model principal dimensions are listed with the ship dimensions in Table 1. During the wake survey experiments, the model was appended with shafts, main Vee-struts, roll stabilizer fins, and a centerline skeg. Model rudders were not installed during the first group of experiments. Figure 1 shows the body plan and bow and stern profiles of the model.

The full-scale parameters for the model experiments were at a displacement of 263 tons (267 metric ton) salt water and a mean draft of 5.63 feet (1.72 meters). The velocity surveys were conducted in the propeller plane located 146.2 feet (44.56 meters) aft of the forward perpendicular on the starboard shaft. Figure 2 shows a drawing of the Controllable Pitch Propeller.

The full-scale propeller disk was six feet (1.83 meters) in diameter. The radii at which the measurements were made were expressed as ratios of the propeller radius (r/R), and were 0.456, 0.633, 0.781, and 0.963 as shown in Figure 3. The model details during the deep water wake survey experiments are shown in Figures 4 through 7. The photographs indicate the relationship of the pitot tube rake, in the propeller plane, to the hull and its appendages for these wake surveys.

Figures 8 through 10 present the model details for the shallow water wake surveys. During these experiments, Model 5365 was appended with the port rudder and starboard strut barrel extension to better represent the R/V ATHENA configuration. Wave profiles for a ship speed corresponding to 15 knots (7.72 m/s) full-scale in shallow and deep water from Experiments 19 and 21 are shown in Figures 11 through 14.

The shape of the pitot tube rake was such that the rake could possibly change the hull trim or heel while the model was towed. In order to insure the proper trim throughout an individual or group of similar experiments, the model was locked into either a deep water trim as in Experiments 1 through 12, or the shallow water trim for Experiments 17 through 22.

The model wake measurement system consisted of the rake, a set of four differential pressure gages, a stepping motor, and an angle indicator. Experiments 1 through 16 had one set of gages and Experiments 17 through 22 had two sets. The base pressure for each tube was the center hole. A description of the use and calibration of five-hole pitot tubes is given by Hadler and Cheng³, Hale and Norris⁴, and Pien⁵. The carriage computer integrated, over a 5-second period, the four pressure signals from each pitot tube, the model speed, and the angular rake position. Digital voltmeters and frequency counters were used to monitor the values obtained by the computer. The pressure data were collected and processed according to established procedures.

The first phase of the data analysis consists of changing the pressure data into velocity component ratios. The velocity component ratios are double interpolated in both the radial and circumferential directions. This process yields interpolated data at every 2.5 degrees (0.044 radian) for the experimental radii and any additional selected radii. The second phase consists of a harmonic analysis of these interpolated data which determines a Fourier Series, with the results presented as amplitudes and phase angles of a sine series.

EXPERIMENTS

The experimental program consisted of a series of twenty-two experiments in deep and shallow water performed in two phases. Phase one wake measurements were made on the starboard shaft with and without the port propeller operating. These included Experiments 1 through 16 which were conducted in deep water at the static initial trim of 0.58 feet (0.18 meters) full-scale by the stern without rudders fitted to the model. The calibration of the pressure gages and a check-out of the entire measurement system was Experiment 1. Experiments 2, 3, 4, 5, 6, 8, 9, and 10 were deep water wake survey experiments for model speeds of 2.87 knots (1.48 m/s), 5.22 knots (2.68 m/s), 6.96 knots (3.58 m/s), and 13.5 knots (6.94 m/s). Experiment 7 was a short check of values obtained in Experiment 2. Wake survey experiments conducted with the bass dynamometer boat and Model 5365 with a wake screen at various inclined angles were designated Experiments 11 through 16. The results from Experiments 10 through 16

will be presented in a separate report.

In phase two, Experiments 17 through 22 were performed with the model ballasted to a static initial trim of 0.58 feet (0.18 meters) full-scale by the stern. The model was then run in shallow water at the desired speed, allowed to assume a shallow water running trim, and locked in place at this shallow water trim. Experiment 17 consisted of the calibration of the pressure gages and Experiment 18 was a shallow and deep water wake survey for four radii at twenty degree (0.349 radian) increments around the propeller disk. Experiments 20 and 22 were run in deep water only for two radii for a full disk and twenty degree (0.349 radian) increments, respectively. Experiment 19 was a wake survey in deep water at the shallow water trim setting and Experiment 21 was a wake survey in shallow water at the shallow water trim setting. Table 2 presents the experimental program with notes identifying each specific wake survey experiment. Variations in model speed, trim setting, with or without port propeller, and water depth for each experiment are included in this table.

PRESENTATION OF RESULTS OF VELOCITY SURVEYS PHASE ONE - EXPERIMENTS 2, 3, 4, 5, 6, 7, 8, AND 9

The velocity component ratios were measured at radii corresponding exactly to the full-scale wake survey on the R/V ATHENA. This allowed a direct one-to-one comparison of the data as presented in Reed and Day⁶. Experiments 2, 7, and 8 were performed at a 5.22 knot (2.68 m/s) speed, corresponding to a Froude-scaled speed of 15 knots (7.72 m/s) full-scale. Experiments 2 and 7 were performed without the port propeller. Experiment 7 was an abbreviated repeat of Experiment 2. Experiment 3 was performed without the operating port propeller.

Appendices A and F present the velocity component ratios from Experiments 2, 7, and 8. Composite plots have been produced which show Experiments 2 and 8, along with the full-scale data on one grid. These composite plots presented in Figures 15 through 18 show the effect of the operating propeller on the velocity components for the four experimental radii.

Experiment 3 was conducted at a model speed of 6.96 knots (3.58 m/s) without the port propeller. Experiment 9 was a check of Experiment 3 with

data obtained at least every 45 degrees (0.785 radians). The results of Experiments 3 and 9 are shown in Appendix B.

Experiment 4 investigated the effect of Reynolds number on the model wake. This wake survey was run at a speed of 13.5 knots (6.94 m/s) without the port propeller. This was the highest speed for which steady state data could be obtained. The trim was locked at the running trim assumed at the 5.22 knot (2.68 m/s) speed. This experiment also investigated the scaling laws of wake as close to full-scale conditions as possible. The data from this wake survey, Experiment 4, are presented in Appendix C. The velocity component ratios from Experiment 2 at 5.22 knots (2.68 m/s) and Experiment 4 at 13.5 knots (6.94 m/s) have been plotted together and are presented in Figures 21 through 24.

Wake survey Experiments 5 and 6 were run at a model speed of 2.87 knots (1.48 m/s) with and without the port propeller operating. Appendices D and E present the data for Experiments 5 and 6, respectively.

Harmonic analyses have been performed on the longitudinal and tangential velocity component ratios for the experiments of phase one. Figures 19, 20, 25, and 26 have been prepared as composites which show the results of Experiments 2 and 8, and 2 and 4. Tables of the individual harmonic amplitudes and phase angles are presented in Appendices A, B, C, D, E, and F for Experiments 2 and 7, 3 and 9, 4, 5, 6, and 8, respectively. In each of these appendices, the complete set of sixteen harmonics calculated for each experiment are presented for the four experimental radii and eight interpolated radii.

The mean longitudinal (VXBAR), tangential (VTBAR), radial (VRBAR) component ratios of the velocity vectors, and the volumetric mean wake velocity ratio (1-WX) are presented in each Appendix. These quantities except the radial component (VRBAR) are also shown graphically in each Appendix.

The calculated mean values of the advance angle (BBAR), and the maximum variations thereof (BPOS) and (BNEG) are shown in tables and figures plotted as a function of radius in the Appendices. The advance angles were calculated using an advance coefficient, J_V , of 0.739. A diagram showing the relationship between the longitudinal and tangential

velocity vectors, the advance coefficient, and the advance angles is presented on page xx.

PHASE TWO - EXPERIMENTS 19 AND 21

Wake survey experiments were conducted in shallow and deep water at the shallow water trim setting. Experiments 19 and 21 were run from west to east on Carriage One at a model speed of 5.22 knots (2.68 m/s) with the propeller operating. The R/V ATHENA trial depth of 55.7 feet (17.0 meters) was determined from a Coast and Geodetic Survey Chart and could be considered less than "deep water." The corresponding model-scale water depth was 6.75 feet (2.06 meters). The data from Experiments 19 in deep water and 21 in shallow water are presented in Appendices G and H, respectively. Experiment 21 data have an integration time of one second at three locations in the shallow water basin. These points were at 90 feet (27.4 meters), 60 feet (18.3 meters), and 30 feet (9.14 meters) from the end of the shallow water basin. The data from Experiments 8, 19, and 21 have been plotted together in Figures 27 through 30 to show the effects of shallow water and shallow water trim.

Harmonic analyses of the circumferential distribution of the longitudinal and tangential velocities have been performed. The amplitudes and phase angles for the experimental and interpolated radii are shown in tabular form in Appendices G and H. Circumferential mean velocity component ratios, volumetric mean velocities and the advance angles for each survey are presented in both tabular and graphical form in these Appendices. Figures 31 and 32 present the composite results of the harmonic analyses of Experiments 8, 19, and 21. The advance angles were calculated using an advance coefficient, $J_{\rm W}$, of 0.739.

DISCUSSION OF RESULTS

ACCURACY OF INSTRUMENTATION

The measurement system used in these velocity surveys has been described by Grant and Lin^7 . The accuracy of the pressure transducer system is approximately plus or minus three hundredths of an inch of water pressure (7.5 pascal). The accuracy of the entire velocity survey apparatus is estimated to be \pm 1 percentage point on the longitudinal

velocity component ratio (VX/V), except in areas where steep velocity gradients occur. In these areas, such as behind a shaft strut, the accuracy is significantly less.

EFFECT OF HIGHER MODEL SPEED - EXPERIMENTS 2 AND 4

The data from the wake surveys at 5.22 knots (2.68 m/s), Experiment 2, and 13.5 knots (6.94 m/s), Experiment 4, are presented in Figures 21 through 26. The longitudinal and radial velocity component ratios at these two speeds show no significant difference except at the 0.781 radius. This may be due to the roll stabilizer fins not being properly aligned at the higher speed. The tangential velocity component ratios obtained from Experiment 4 have peaks which are 4 to 6 percent lower than those obtained from Experiment 2. The VXBAR shows the same trend, but with a higher value at the 0.781 radius for Experiment 4 than for Experiment 2. The VTBAR, 1-WX, and 1-WVX values are all the same.

EFFECT OF OPERATING PORT PROPELLER - EXPERIMENTS 2 AND 8

No significant differences were observed with the longitudinal and radial velocity component ratios of both these experiments. Generally, however, the longitudinal velocity component ratios are higher for Experiment 8 than Experiment 2 especially for the outer two radii - which would be affected more by the propeller operating on the port side. The tangential velocity component ratios for all four radii of Experiment 8 are lower than those from Experiment 2 from 80 to 240 degrees. Except at the extrapolated values for VXBAR, VTBAR, 1-WX, and 1-WVX near the hub, the two experiments show no significant differences.

As previously stated, the experimental set-up of Experiments 19 and 21 differed from that of Experiment 8 by the extension of the starboard strut barrel and the addition of the port rudder. The results from Experiments 19 and 21 indicate that there are no appreciable differences in the wake due to the water depth of the towing tank at the same trim setting. However, the setting of the shallow water trim does affect the results of the wake survey conducted in deep water. The three velocity

components from Experiments 19 and 21 show differences when compared to those of Experiment 8. The longitudinal velocity component ratios are lower for Experiments 19 and 21 than those for Experiment 8, except for the 0.781 radius ratio. The tangential velocity component ratios are generally lower for Experiments 19 and 21 than those of Experiment 8, except for the outermost radius ratio of 0.963. These differences in the data are just beyond experimental accuracy. Mixed conclusions are drawn from results with the radial velocity component ratios. For radius ratios of 0.456 and 0.781, the values are marginally lower; while for radius ratios of 0.633 and 0.963, the ratios are significantly higher for the shallow water trim experiments. The VTBAR shows no marked difference due to trim. However, the VXBAR, 1-WX, and 1-WVX show trends of lower values for shallow water trim with the shallow water results being the lowest.

DIFFERENCES IN VELOCITY COMPONENT RATIOS BETWEEN EXPERIMENTS

Table 3 presents some of the results from harmonic analysis of the data from Experiments 2, 7, 3, 9, 4, 8, 19, and 21 for the 0.781 radius. The analysis of experimental data for these wake surveys shows a trend toward a higher circumferential mean longitudinal velocity component ratio for the model trimmed in shallow water with the port propeller turning. The repeatability of this quantity is good between the R/V ATHENA model experiments. There is little difference in mean longitudinal velocity due to the port propeller turning for Experiments 2 and 8. There are no differences in this quantity for Experiments 19 and 21 due to water depth at the same trim setting. For Experiments 2 and 4, the difference in mean longitudinal velocity is about 2%. This difference is explained by the increased Froude number and change in wave pattern while restraining the trim to a set value.

The trend in the mean longitudinal data is clearly an increase with increasing speed-length ratio. Table 4 presents the data for mean velocity components and advance angles for four speeds at a radius ratio of 0.781. The trend of increasing mean longitudinal velocity with ship speed is clearly shown in Table 4.

The data from Experiment 2 without the port propeller operating were compared to that of Experiment 8 with the propeller operating. No

significant differences were observed in the longitudinal and radial velocity component ratios. However, the tangential velocity component ratio shows about a 2% change due to the propeller operating. The agreement is considered to be within experimental accuracy with the present instrumentation.

COMPARISON OF MODEL- AND FULL-SCALE DATA

Experiments 2 and 8 were performed to provide model-scale data for correlation with full-scale wake survey data. The velocity component ratios computed from ship and model data are presented in Figures 15 through 18. Table I-l presents the velocity component ratios for the full-scale wake survey experiment.

The data from model experiments agree with the full-scale measurements reasonably well for the outer radii. The large differences in the longitudinal velocity component in the innermost radius are most probably due to difficulties measuring model velocities in the vicinity of the large propeller hub, which is at a significant angle to the flow due to the shaft angle. The differences between full-scale and model-scale measurements of the tangential velocity components are also larger for the innermost radius measured.

The results of the model experiments in deep water at the deep water trim setting, Experiment 8, and in shallow water at the shallow water trim setting, Experiment 21, are presented in Figures I-1 through I-4 along with the full-scale data. A study of the velocity component ratios presented in these figures shows that the degree of scatter of the full-scale data is higher than that of the model data in deep and shallow water. In particular, the full-scale data for the longitudinal velocity component ratios at the innermost radius of 0.456 show the largest scatter, and the greatest deviation from the model-scale wake. In part, this scatter is also due to the fact that the longitudinal velocity component ratios presented are an average of the longitudinal component calculated from the radial and tangential velocity component ratios. This tends to magnify any scatter in the radial and tangential velocity component ratios. Another possible contributing factor to the scatter

of the innermost radius is the close proximity of the pitot tube to the strut bossings.

The longitudinal velocity component ratios at the innermost radius are about 10% lower for the ship than for the model, while the peaks of the tangential velocity component ratios are about 10% higher for the ship than for the model. At the two outer radii of 0.781 and 0.963, the longitudinal velocity component ratios for the ship are 2 to 4 percent lower than those for the model. The peaks of the tangential velocity component ratios at the outer radii are 8 to 10 percent higher for the ship than for the model. The radial velocity component ratios at the two outermost radii are about 8 to 10 percent lower for the ship than for the model.

The periodic propeller blade loads on high speed transom stern vessels such as the R/V ATHENA arise primarily from the first harmonic of the tangential velocity component ratio. Calculations of periodic blade loads by the method of Kerwin and Lee⁸ indicate that the periodic blade loads in the wake as measured full-scale would be approximately 27 percent higher than in the wake as measured model-scale.

CONCLUSIONS

- 1. No significant effect on the mean wake distribution due to the operating port propeller was observed.
- 2. The longitudinal and radial velocity component ratios between wake surveys at 5.22 knots (2.68 m/s) and 13.5 knots (6.94 m/s) show no difference except at the 0.781 radius due to the change in model speed above 5.22 knots (2.68 m/s) when the trim was held the same. The tangential velocity component ratios obtained at 13.5 knots (6.94 m/s) have peaks which are 4 to 6 percent lower than those obtained at 5.22 knots (2.68 m/s).
- 3. The mean longitudinal velocity component increases with increasing speed when the trim is fixed. The velocity defect from the shafts is less with increasing speed. Only slight increases occur in the radial velocity components with a change in speed.

- 4. No appreciable difference in the wake is shown due to the water depth of the towing tank when the model is fixed at the same trim setting.
- 5. The setting of the shallow water trim does seem to affect the results of the wake survey conducted in deep water. However, this difference is not significant enough to explain the differences between the previous model and full-scale experiments.

REFERENCES

- 1. Day, W. G., A. M. Reed, and R. B. Hurwitz, "Full-Scale Propeller Disk Wake Survey and Boundary Layer Velocity Profile Measurements on the 154-Foot Ship R/V ATHENA," DTNSRDC Ship Performance Department Report, DTNSRDC/SPD-0833-01 (Sep 1980).
- 2. Hurwitz, R. B. and D. S. Jenkins, "Analysis of Wake Survey and Boundary Layer Measurements for the R/V ATHENA Represented by Model 5366 in the Anechoic Wind Tunnel," DTNSRDC Ship Performance Department Report, DTNSRDC/SPD-0833-02 (Jul 1980).
- 3. Hadler, J. B. and H. M. Cheng, "Analysis of Experimental Wake Data in Way of Propeller Plane of Single- and Twin-Screw Ship Models," Trans. Soc. Naval Arch. and Mar. Eng., Vol. 73, pp. 287-414 (1965).
- 4. Hale, M. R. and D. H. Norris, "The Analysis and Calibration of the Five-Hole Spherical Pitot Tube," ASME Paper 67-WA/FE-24, 8p, (1967).
- 5. Pien, P. C., "Five-Hole Spherical Pitot Tube," DTNSRDC Report 1229, (May 1958).
- 6. Reed, A. M. and W. G. Day, "Wake Scale Effects on a Twin-Screw Displacement Ship," Twelfth Symposium on Naval Hydrodynamics, (Jun 1978).
- 7. Grant, J. W. and A. C. M. Lin, "The Effects of Variations of Several Parameters on the Wake in Way of the Propeller Plane for Series 60 0.60 C_R Models," Appendices A and D, NSRDC Report 3024, pp 105, (Jun 1969).
- 8. Kerwin, J. E. and C. S. Lee, "Prediction of Steady and Unsteady Marine Propeller Performance by Numerical Lifting Surface Theory," Transactions of the Society of Naval Architects and Marine Engineers, V-1. 86, pp. 218-253, (1978).

Figure 1 - Profile Lines and Body Plan for the R/V ATHENA Represented by Model 5365

METTION LENGTH MODEL AT 70 PCT.	1.9.33	119.33	- ∞ر∞ا ما اما ما ما ما ما ما ما
			100 100 100 100 100 100 100 100 100 100
8	ī.	r . it	DUTLINE
	0.000	0.000	34E P1 001L146
:	0.048	0.048	
:E	0.670	0.670	
Ħ	25871.1	25871.1	
•	:	0.443	
:	377.0	2.75	
ži	29908.6		34- 35-
j. į		•	
2114 8118 174 61 18	11	111	
Bulle Bulle Bulle Britter	2032 00	2032.00	
5 2	246.30	9 697 246 30	
-	1626.80 246.30	1828.90	1
a Ž	8.727	221.67	
\$ 0 1 2 3	057.6	052.0	
;	9110	117.	
- ₹	⊥	1 ME HE 3	MILITUR G3733cR-19

878 18695 116 6.384 0.35 6.745 0.90 3.27

Figure 2 - Controllable Pitch Propeller Geometry

M 7575

N 565.5

0.31 1.353

0.60 2.619

9.70 1.055

Figure 3 - Afterbody of Hull Showing Radii of Wake Survey Measurements

Figure ha - Fitting Room Photograph of Model 5365 Representing the R/V ATHENA for Experiments 2,3, 4 , 5, 7, and 9 without Propeller

PSD-0604-5-78-2

Figure 4b - Fitting Room Photograph of Model 5365 Representing the R/V ATHENA for Experiments 6 and 8 with Propeller

Figure 4 - Fitting Room Photographs of DTNSRDC Model 5365 Representing the R/V ATHENA

Figure 5 - After End View of DTNSRDC Model 5365 Fitted with a Rake of Five-Hole Pitot Tubes on the Starboard Shaft

Figure 6 - Afterbody Quarter View of DTNSRDC Model 5365 Fitted with a Rake of Five-Hole Pitot Tubes on the Starboard Shaft

Figure 7 - Afterbody Profile View of DWNGRDC Model Carl Pitter with a Sake of

Figure 8 - Starboard Afterbody Profile View of DTNSRDC Model 5365 Showing Strut Barrel Extension

Figure 9 - Starboard Quarter View of DTNSRDC Model 5365 Showing Strut Barrel Extension

Figure 10 - Port Afterbody Profile View of DTNSRDC Model 5365 Showing Propeller and Rudder

Figure 11 - Bow Wave Profile of DTNSRDC Nodel 5365 in Shallow Water at the Shallow Water Trim Setting at a Speed Corresponding to 15 Knots, Full-Scale

Figure 12 - Stern wave Profile of DYNSKDC well 3365 in Shaffow Water at the Shaffow Mater Frim Setting at a Speed Corresponding to 15 Knots, Full-Scale

Figure 13 - Bow wave Profile of DTMSKDC Model 5365 in Deep Water at the Shallow Water Trim Setting at a Speed Corresponding to 15 Knots, Full-Scale

Figure 14 - Stern Wave Profile of DTNSRDC Model 5365 in Deep Water at the Shallow Water Trim Setting at a Speed Corresponding to 15 knots, Full-Scale

- MODEL 5365, EXPERIMENT 2 WITHOUT PROPELLER
- △ MODEL 5365, EXPERIMENT 8 WITH PROPELLER
- o full-scale R/V athena

0.456 R D.

Figure 15 - Composite Plot of Velocity Component Ratios from R/V ATHENA and Model Experiments 2 and 8 for the 0.456 Radius

- model 5365, experiment 2 without propeller
- 4 MODEL 5365, EXPERIMENT 8 WITH PROPELLER
- FULL-SCALE R/V ATHENA

0.533 RAD

Figure 16 - Composite Plot of Velocity Component Ratios from R/V ATHENA and Model Experiments 2 and 8 for the 0.633 Radius

- m MODEL 5365, EXPERIMENT 2 WITHOUT PROPELLER
- MODEL 5365, EXPERIMENT 8 WITH PROPELLER
- FULL-SCALE R/V ATHENA

0 - 781 RAD -

Figure 17 - Composite Plot of Velocity Component Ratios from R/V ATHENA and Model Experiments 2 and 8 for the 0.781 Radius

- model 5365, experiment 2 without propeller
- MODEL 5365, EXPERIMENT 8 WITH PROPELLER
- FULL-SCALE R/V ATHENA

0.963 RAD.

Figure 18 - Composite Plot of Velocity Component Ratios from R/V ATHENA and Model Experiments 2 and 8 for the 0.963 Radius

Figure 19 - Composite Plot of Mean Longitudinal, Tangential, and Volumetric Mean Wake from R/V ATHENA and Experiments 2 and 8

Figure 20 - Composite Plot of Mean Advance Angle (Beta) and Maximum Variations of Advance Angle from R/V ATHENA and Experiments 2 and 8

* VELOCITY COMPONENT RATIOS FOR MODEL 5365 CORRELATION WITH R/V ATHENA 2 + VELOCITY COMPONENT RATIOS FOR MODEL 5365 CORRELATION WITH R/V ATHENA 4

0.456 RAD.

Figure 21 - Velocity Component Ratios of Experiments 2 and 4 for Two Model Speeds for the 0.456 Radius

× VELOCITY COMPONENT RATIOS FOR MODEL 5365 CORRELATION WITH R/V ATHENA 2 + VELOCITY COMPONENT RATIOS FOR MODEL 5365 CORRELATION WITH R/V ATHENA 4

0.633 RAD.

Figure 22 - Velocity Component Ratios of Experiments 2 and 4 for Two Model Speeds for the 0.633 Radius

× VELOCITY COMPONENT RATIOS FOR MODEL 5365 CORRELATION WITH R/V ATHENA 2 + VELOCITY COMPONENT RATIOS FOR MODEL 5365 CORRELATION WITH R/V ATHENA 4

0.781 RAD.

Figure 23 - Velocity Component Ratios of Experiments 2 and 4 for Two Model Speeds for the 0.781 Radius

× VELOCITY COMPONENT RATIOS FOR MODEL 5365 CORRELATION WITH R/V ATHENA 2 + VELOCITY COMPONENT RATIOS FOR MODEL 5365 CORRELATION WITH R/V ATHENA 4

0.963 RAD.

Figure 24 - Velocity Component Ratios of Experiments 2 and 4 for Two Model Speeds for the 0.963 Radius

Figure 25 - Composite Plot of Mean Longitudinal, Tangential, and Volumetric Mean Wake of Experiments 2 and 4

Figure 26 - Composite Plot of Mean Advance Angle (Beta) and Maximum Variations of Advance Angle of Experiments 2 and 4

- × CORRELATION WAKE SURVEY MODEL 5365 EXP 8 DTDW POST CAL
- ◆ SHALLOW WATER WAKE SURVEY MODEL 5365 EXP 19 STDW POST CAL

 □ SHALLOW WATER WAKE SURVEY MODEL 5365 EXP 21 STSW POST CAL
 - 0.456 RAD.

Figure 27 - Composite Plot of Velocity Component Ratios for Experiments 8, 19, and 21 for the 0.456 Radius

- CORRELATION WAKE SURVEY MODEL 5365 EXP 8 DTDW POST CAL SHALLOW WATER WAKE SURVEY MODEL 5365 EXP 19 STDW POST CAL
- SHALLOW WATER WAKE SURVEY MODEL 5365 EXP 21 STSW POST CAL

0.633 RAD.

Figure 28 - Composite Plot of Velocity Component Ratios for Experiments 8, 19, and 21 for the 0.633 Radius

- CORRELATION WAKE SURVEY MODEL 5365 EXP 8 DTDW POST CAL SHALLOW WATER WAKE SURVEY MODEL 5365 EXP 19 STDW POST CAL
- SHALLOW WATER WAKE SURVEY MODEL 5365 EXP 21 STSW POST CAL

0.781 RAD.

Figure 29 - Composite Plot of Velocity Component Ratios for Experiments 8, 19, and 21 for the 0.781 Radius

- CORRELATION WAKE SURVEY
 MODEL 5365 EXP 8 DIDW POST CAL
 SHALLOW WATER WAKE SURVEY MODEL 5365 EXP 19 STDW POST CAL
 SHALLOW WATER WAKE SURVEY MODEL 5365 EXP 21 STSW POST CAL

0.963 RAD.

Figure 30 - Composite Plot of Velocity Component Ratios for Experiments 8, 19, and 21 for the 0.963 Radius

Figure 31 - Composite Plot of Mean Longitudinal, Tangential, and Volumetric Mean Wake of Experiments 8, 19, and 21

Figure 32 - Composite Plot of Mean Advance Angle (Beta) and Maximum Variations of Advance Angle of Experiments 8, 19, and 21

TABLE 1

SHIP AND MODEL DATA FOR R/V ATHENA REPRESENTED BY DINSRDC MODEL 5365

Shafts, Vee-Struts, Rudder, Centerline Skeg, Stabilizer Fins Appendages:

	S	Ship	Model
Length Overall	165.0 ft	.65.0 ft (50.3 m	20.01 ft (6.10 m)
Length on Waterline	154.2 ft	(47.0 m)	18.70 ft (5.70 m)
Length Between Perpendiculars	153.9 ft	(* 6.94)	18.67 ft (5.69 m)
Beam (Maximum)	21.9 ft	(6.68 F)	2.66 ft (0.81 m)
Draft (Mean)	5.63 ft	5.63 ft (1.72 m)	0.682 ft (0.208 m)
Displacement	263 ton ((267 t)	1020 lbs(463 kg)
Wetted Surface	3,413 ft ²	3,413 ft ² (317.1 Fe ²)	50.16 ft ² (4.66 m ²)

STATIONS 0 0.5 1.0 1.5 2 3 4 5 6 7 8 9 10 11 1 4 AA_v 0 .0% .08 .14 .18 .28 .39 .50 .60 .70 .79 .87 .94 .99 1 $\lambda/A_{\rm X}$

TABLE 2

CATALOG OF EXPERIMENTS PERFORMED

EXPERIMENT NUMBER	MODEL SPEED	WATER DEPTH	TRIM SETTING SPEED	DESCRIPTION	DAÍA IN APPENDIX
2	5.22 knots (2.68 m/s) Deep	Deep	5.22 knots (2.68 m/s)	Without Port Propeller	Ą
3	\sim	Deep	6.96 knots (3.58 m/s)	Without Port Propeller	В
7	13.50 knots (6.94 m/s) Deep	Deep	5.22 knots (2.68 m/s)	Without Port Propeller	C
2	2.87 knots (1.48 m/s)	Deep	5.22 knots (2.68 m/s)	5.22 knots (2.68 m/s) Without Port Propeller	Q
Ó	2.87 knots (1.48 m/s)	Deep	5.22 knots (2.68 m/s)	With Port Propeller	ш
7	5.22 knots (2.68 m/s)	Deep	5.22 knots (2.68 m/s)	Repeat of Experiment 2	А
∞	5.22 knots (2.68 m/s)	Deep	5.22 knots (2.68 m/s)	With Port Propeller	Ŀц
6	6.96 knots (3.58 m/s)	Deep	96 knots	Repeat of Experiment 3	В
10	6.96 knots (3.58 m/s)	Deep	6.96 knots (3.58 m/s)	With Port Propeller	*
18	5.22 knots (2.68 m/s) Shallow	Shallow	5.22 knots (2.68 m/s)	5.22 knots (2.68 m/s) With Port Propeller 20	**
		and Deep	Shallow Water	deg (0.349 rad) Increments	ıts
19	5.22 knots (2.68 m/s) Deep	Deep	5.22 knots (2.68 m/s) With Port Propeller	With Port Propeller	O
			Shallow Water	-	
20	5.22 knots (2.68 m/s) Deep	Deep	5.22 knots (2.68 m/s)	5.22 knots (2.68 m/s) Without Port Propeller	
			Shallow Water	Two Radii	*
21	5.22 knots (2.68 m/s) Shallow	Shallow	5.22 knots (2.68 m/s) With Port Propeller	With Port Propeller	H
			Shallow Water		
22	5.22 knots (2.68 m/s) Deep	Deep	5.22 knots (2.68 m/s) With Port Propeller	With Port Propeller	
			Shallow Water	Two Radii 20 deg	**
		:		(0.349 rad) Increments	

Experiments 1 through 17 were run Experiments 1 and 17 were calibrations of the pressure gages. in April 1978. Experiments 11 through 16 inclusive were deep water towing tank wake surveys with the bass dynamometer boat and the wake screen.

Experiments 18 through 22 were run in October 1978 with a new starboard strut barrel fairing.

* The data from Experiment 10 will be presented in DINSRDC Report SPD-0833-06.

**Experiments 18 and 22 were abbreviated experiments determining the effects of shallow water trim and an operating propeller. Experiment 22 was a repeat of Experiment 18.

TABLE 3

	SUMMARY OF WAKE SURVEY EXPERIMENTAL DATA	SURVEY	EXPERIMEN	TAL DATA				,
EXPERIMENT NUMBER	2	7	3	6	7	8	19	21
CIRCUMERENTIAL MEAN LONGITUDINAL VELOCITY, $\mathbf{v_X}/\mathbf{v}$	1.059	1.044	1.080	1.064	1.079	1.059	1.080	1.080
CIRCUMFERENTIAL MEAN TANGENTIAL VELOCITY, V _T /V	-0.009	-0.002	-0.008	000.0	-0.001	900.0-	-0.017	-0.016
MEAN ADVANCE ANGLE, B	17.73	17.45	18.05	17.76	20.84	17.72	18.11	18.09
MAXIMUM POSITIVE ADVANCE ANGLE, +23	1.48	1.14	1.42	1.13	1.56	1.45	2.21	2.12
MAXIMUM NEGATIVE ADVANCE ANGLE, -AB	-1.87	-0.84	-2.31	-0.98	-1.95	-2.15	-3.04	-3.14
FIRST LONGITUDINAL HARMONIC	0.0182	0.0152	0.0103	0.0196	0.0279	0.0102	0.0456	0.0512
SECOND LONGITUDINAL HARMONIC	0.0143	0.0191	0.0147	0.0151	0.0122	0.0145	0.0139	0.0105
THIRD LONGITUDINAL HARMONIC	0.0093	0.0075	0.0093	0.0069	0.0099	0.0066	0.0031	0.0059
FOURTH LONGITUDINAL HARMONIC	0.0017	0.0022	0.0025	0.0056	0.0043	0.0024	0.0144	0.0124
FIRST TANGENTIAL HARMONIC	0.1950	0.1885	0.1932	0.1873	0.1404	0.1981	0.2111	0.2092
SECOND TANGENTIAL HARMONIC	0.0016	0.0030	0.0037	0.0015	0.0094	0.0070	0.0030	0.0014
THIRD TANGENTIAL HARMONIC	0.0022	0.0020	0.0042	0.0044	0.0049	0.0035	0.0039	0.0044
FOURTH TANGENTIAL HARMONIC	0.0019	0.0016	0.0027	0.0021	0.0010	0.0022	0.0013	0.0028

All data for r/R = 0.781 Radius

TABLE 4
EFFECT OF SPEED ON THE CIRCUMFERENTIAL MEAN VELOCITIES, MEAN ADVANCE
ANGLE AND ITS VARIATIONS, AND THE FIRST FOUR HARMONICS

	<u> </u>	,	· · · · · · · · · · · · · · · · · · ·	r
EXPERIMENT NUMBER	5	2	3	4
SPEED CONDITIONS	2.87 knots (1.48 m/s)	5.22 knots (2.68 m/s)	6.96 knots	13.5 knots
CIRCUMFERENTIAL MEAN LONGITUDINAL VELOCITY, V _X /V	1.030	1.059	1.080	1.079
CIRCUMFERENTIAL MEAN TANGENTIAL VELOCITY, V _T /V	-0.002	-0.009	-0.008	-0.001
MEAN ADVANCE ANGLE, β	17.24	17.73	18.05	20.84
MAXIMUM POSITIVE ADVANCE ANGLE, $+\Delta\beta$	1.10	1.48	1.42	1.56
MAXIMUM NEGATIVE ADVANCE ANGLE, -Δβ	-1.85	-1.87	-2.31	-1.95
FIRST LONGITUDINAL HARMONIC	0.0248	0.0182	0.0103	0.0279
SECOND LONGITUDINAL HARMONIC	0.0185	0.0143	0.0147	0.0122
THIRD LONGITUDINAL HARMONIC	0.0079	0.0093	0.0093	0.0099
FOURTH LONGITUDINAL HARMONIC	0.0047	0.0017	0.0025	0.0043
FIRST TANGENTIAL HARMONIC	0.1966	0.1950	0.1932	0.1404
SECOND TANGENTIAL HARMONIC	0.0054	0.0016	0.0037	0.0094
THIRD TANGENTIAL HARMONIC	0.0021	0.0022	0.0042	0.0049
FOURTH TANGENTIAL HARMONIC	0.0022	0.0019	0.0027	0.0010
	<u></u>	<u> </u>		<u> </u>

All data for r/R = 0.781 Radius

APPENDIX A

VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS

FOR EXPERIMENTS 2 AND 7

VELOCITY COMPONENT RATIOS FOR MODEL 5365 CORRELATION WITH R/V ATHENA 2 0.456 RAD.

Figure A-1 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiment 2

VELOCITY COMPONENT RATIOS FOR MODEL 5365 CORRELATION WITH R/V ATHENA 2 0.633 RAD.

Figure A-2 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiment 2

VELOCITY COMPONENT RATIOS FOR MODEL 5365 CORRELATION WITH R/V ATHENA 2 0.781 RAD.

Figure A-3 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiment 2

VELOCITY COMPONENT RATIOS FOR MODEL 5365 CORRELATION WITH R/V ATHENA 2 $0.963\,\text{RAD}_\odot$

Figure A-4 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiment 2

Figure A-5 - Radial Distribution of the Mean Velocity Component Ratios for Experiment 2

Figure A-6 - Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 2

VELOCITY COMPONENT RATIOS FOR MODEL 5365 FROM EXP. 7 0.456 RAD.

Figure A-7 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiment 7

0.633 RAD.

Figure A-8 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiment 7

VELOCITY COMPONENT RATIOS FOR MODEL 5365 FROM EXP. 7 0.781 RAD.

Figure A-9 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiment 7

VELOCITY COMPONENT RATIOS FOR MODEL 5365 FROM EXP. 7 0.963 RAD.

Figure A-10 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiment 7

Figure A-11 - Radial Distribution of the Mean Velocity Component Ratios for Experiment 7

Figure A-12 - Radial Distribution of the Mean Advance Angle and Advance Angle Variations of Experiment 7

TABLE A-1

INPUT DATA FOR HARMONIC ANALYSIS FOR R/V ATHENA,
MODEL 5365, EXPERIMENT 2

	PARTIE				*#0105	433			PADEUS	.741			RANTUS	963	
4 16LE -1.0	.941	44.46	161	ANGLE -1.7	VX/V	97/V	V9/V 079	ANGLE -2.8	VE/V	018	V9/V	ANGLE 0.4	.980	VT/V	40/4 145
1.0	.972	.613	986	3.1	975	034	473 476	1.2	. 994	078 037	106 165	1.5	984	. 0 37	141
11 . 8	. 95 9	826	037	11.1	. 98 2	053	046	9.1	1.006	644	194	1.4	. 962	.837	146 136
14.8	- 411	1 % 1 35	876	19.2	1.845	851	895 899	13.1	1.024	868	112	11.4	. 957 . 942 . 947	. 906 559	~.134 ~.135
18.9	. 96 7 . 95 A	179	389	19.2	1.827 .953 .994	849 836	167	16.8 14.6	1.039	868	117 118	15.4	. 94.7 . 95.7	048	141 146
28.8	1.825	167 158	185 183	27.2 24.0	1.841	131 118	130 133	19.1 21.1	1.854	063	114	21.1	. 942	964	158
26.A 28.9	1.121	126	994	31.6	1.041	106 107	133 131	21.1 25.1	1.868	-,837	111	25.4	1.867	54A 847	156 167
30.E	1.115	177	091	35.0 17.2	1.035	10m 112	124	27.1 27.1	.965	131 131	136 136	27.4	.457 .474 .939	64F 173	151
34.7	1.116	138 145	998	14.2	1.074	112	119	29.0	1.848	-, (34	144	31.3	1.671	103	174
34.7 38.8	1.115	143 153	086	39.2	1.041	126	12%	31.1 31.1	1.845	112	162	35.4	1.826	103 103 105	171 167
44.7	1.113	166	087	49.8	1.036	176 137 166	114 107	32.0 36.9 37.1	1.074	14A 110	137 137	39.5 41.0	1.032	118	~.162 ~.157
42.7 44.8	1.189	164 173	886 886	57.2 59.2	1.845	165 173	699 487	37.1 38.8	1.847	120	134	41.1	1.829	115	~.159 ~.168
44.7 58.8	1.174	177	0A1 076	65.2 73.1	1.052	14t 198	071	39.1 39.1	1.854	125	129 127	64.8 57.8	1.825	148 156	139 118
54.6 55.8	1.115	211 234	865 851	A1.8	1.066	-,197 -,281 -,288	035	60.0	1.061	136 135	-, 124 -, 117	61.1	1.039	157 169	184
74.7	1.171	245	841	97.0	1.865	289 198	. 396	45.8 45.8	1.078 1.053 1.054	143 148	117	73.0	1.843	179	~.076
42.6	1.123	252 253	423 019	1 64.4	1.867	194	. 124	50.0	1.050	157	102	41.3	1.842	187 185	847 055
99.4	1.125	748	. 184	112.9	1.859	176	.045	54.1 59.8	1.860	166	042	89.1 97.2	1.847 1.858 1.856	189	~.831 ~.073
106.6	1.131	252 245	. 824	120.9 120.8	1.857	172 153	. 043	59.2 47.1	1-072	175 190	679 058	10.0	1.856	18# 187	.897 .817
1 14.6	1.132	233	. 842 . 851	134.0	1.841	136	.097	74.8 74.8	1.874	199 200	034	184.1	1.447	162	. 824
130.6	1.173	214 195	. 857 . 869	152.7	1.039	111 483	. 184	43.6	1.896	205 288	010	120.7	1.837	163 168	.072
179.0	1.121	171 169	. 898	150.6	1.832	056	.126	94.6	1.848 1.847 1.864	202	. 636	121.0	1.047	145	. 643
146.5	1.127	139	. 961 - 971 - 1 <i>88</i>	164.6	1.824	424	.173	1 06.0	1.168	199	. 059	148.5	1.839	120	.116
158.6	1.123	895 87b	. 101	176.6	1.832		. 132	114.7	1.876	-,196 -,181	, 988 888	152.4	1.071	189	. 131
178.6	1.173	842	-183 -187	192.6	1.026	.877	.137	177.0	1.077 1.074 1.054	177	.100	168.8 168.8 168.8	1.840	864	.156
174.5	1.122	027 014	- 148	198.6	1.024	.073	. 127	1 3A . 7	1.861	148	. 134	164.8 176.7 178.8	1.836	038	.160
170.0	1.129	815 828	• 112 • 185	2 (4.8	1.022	.189	. 110	155.0	1.071	113 090	- 149	178.8 188.8	1.842	086	. 165 . 164
179.3	1.126	612 405	-110	216.5 214.5 224.4	1.815	.137	. 697 . 895 . 882	154.7	1.064	079	.168 .157	188.5	1.045	. 000	. 165
161.0	1.121	085	. 110	232.4	1.832	176	. 866	171.4	1.869	066	. 177	184.8	1.848	.014	. 163 . 167
191.3	1.111	. 682	- 189	248.4	1.823	.192	.853	178.6	1.876	612	.174	8.005	1.844	.836	. 159
199.8 194.2	1.117	. \$67 . \$69	- 186 - 185	246.4	1.634	. 205 . 214	.426	179.3	1.073	é 10 . e e n	.178 .173	2 60 . A 2 66 . B	1.043	.043	. 156 . 148 . 135
247.3 215.2	1.171	.097	-100	258.2	1.839	.218 .215	. 613 . 861	191.6	1.876	.020	. 171	7 16.7 2 20.0	1.043	-104	. 135
214.2	1.117	-148	.989	264.2	1.845	.214	DBA B23	199.9	1.072	.049	. 16A	724.6 237.4	1.845	-174	.114
223.2	1.125	•152 •173	.865 .873	798.3 249.3	1.453	.215	964	199.6	1.072	.851	. 169	240.3 240.6	1.847	.157	. 0 9 2
239.3 247.8	1.179	.192 .207	- 962	296.2	1.942	.196	842	211.5 213.2	1.059	- 098	.151	255.6	1.848	. 1 78	.867 .939 .829
255.2	1.174	.217 .272	.032	298.4 384.3	1.848	. 181	699	215.5	1.054	. 149	. 146	264.5	1.650	.181 .183	.016
271.7	1.130	.271	. 043	368.6	1.041	.172	167 113	217.4	1.056	.105	. 143	264.5 272.4 240.1	1.041	. 146	00A E50
271.3 279.2	1.140	.229	012	3 16 . 4 7 18 . 0	1.035	.143	121	219.1 221.5 223.8	1.067 1.057 1.055	.184 .117	.134	280.4 244.7	1.836	.185 .181	071 052
247.1 245.1	1.122	. 292 295	927 842	3 58 . 4 3 20 . 6	1.824	.146	124	227.4	1.045	.124	• 131 • 125	294, b 299. 0	1.854	•172 •171	874
299.2 363.2	1.127	•195 •187	84A 855	3 22 . 6	1.031	.135	131 132	231.6	1.869	.138 .155	.112	394,4	1.836	-167 -156	194
307.1	1.114	.177	661	3 26.6 3 26.5 324.5	1.032	.123	135 137	239.4 247.8	1.854	. 154	.893	310.0	1.042	- 151	118
3 15 . 1	1.116	· 154	074	3 38 . 8	1.642	. 176	144	255.6	1.846	.166	. 853	315.0	1.834	. 141	125
314.6 314.6 321.1	1.116	.143	077 079	332.6	1.078	.141	148	254.2	1.862	.105	. 832	116.6 314.5	1.032	- 140	174
327.8	1.106	.124	981	334.6 334.0	. 92 9 . 97 2 . 96 6	.100	135	271.6 278.8	1,863 1,868	.187	005	320.2	1.831	.171	134
327.4	1.107	·177	982 982	338.5 348.6	1.986	. 036	114	279.8	1.877	.191	011	327.0	1.032	-119	146
324.8	1.125	-113	861 867	342.0	1.672	.853	125	293.5	1.843	.170	854	324.5 124.5 124.3	1.837	.114	169
331.3	1.125	-114	847 891	144.4	1.003	.449	120	3 83.0	1.842	.150	077	130.6 230.6	1.814	.198	193
\$35.1 335.0	1.110	•124 •148	898	344.7 357.8 794.7	. 9A 7 . 97 2	.848 -817 884	19A 185	311.2	1.046	.142	89A 100	116.6 366.3	1.835	. 871	158
317.1	1.011	.14	963	354.7	.944	019	479	317.0	1.054	. 176	110	74 8 . 6 744 . 7	1.832	. 244	169
334.4	.969	-107	478	394.3	.977	617	079	319.5	1.861	.171	113	344.0	1.040	.943 .977 .867	178 176
343.6	1.001	·111	867 838					321.4	1.841	.118	121	357.8	1.017	. 143	166
347.0	1.011	.039 .844 .029	655					354.3	1.054	.110	129	364.4	. 984	.037	161
341.8	1.001	.829	010 0.000					327.0	1.842	.111	128				••••
394.0	.984	- 478 - 822	- 001					131.1 311.3	. 966 . 987	.141	122				
	• • • •							939.2 337.3	1.031	.824	131				
								124.0	1.872	. 844	167				
								341.0	1.844	.043	167				
								349.7	1.074	.873	134				
								354.0	1.611	895 018	112				

LISTING OF THE MEAN VELOCITY COMPONENT RATIOS, THE MEAN ADVANCE ANGLES AND OTHER DERIVED QUANTITIES AT THE EXPERIMENTAL AND INTERPOLATED RADII FOR EXPERIMENT 2 TABLE A-2

VELOCITY COMPONENT RATIOS FOR MODEL 5365 FROM EXP. 2 WITHOUT PROPELLER PROPELLER DIAMETER = 6.00 FEET JA = .739

RADIUS = .456	.633	.781	.963	.312	.350	.400	.500	.600	.700	.800	006.	1.000
VXBAR = 1.105	1.032	1.059	1.033	1.247	1.202	1.151	1.076	1.037	1.050	1.059	1.049	1.033
VTBAR =010	.007	600	.004	055	041	025	002	.007	003	009	005	.004
VRBAR = .009	007	.014	006	.055	.040	.023	.001	007	.007	.014	.007	006
1-WVX = 1.162	1.098	1.075	1.065	0.000	1.223	1.195	1.145	1.107	1.085	1.076	1.071	1.065
1-WX = 1.207	1.115	1.086	1.073	0.000	1.294	1.2.18	1,176	1.126	1.099	1.088	1.081	1.073
BBAR = 29.80	20.93	17.73	14,14	44.43	39.70	34.47	ું. પ્રઉ	22.07	19.44	17.34	15.35	13.64
BFOS = 3.98 THETA = 90.00	3.98 2.25 1.48 1.05 10.60 7.41 4.95 5.41 2.49 1.83 1.40 1.06 .99 90.00 92.50 82.50 105.00 22.50 22.50 87.53 92.50 92.50 82.50 82.50 95.00 105.00	1.48	1.05	10.60	7.41	4.95 87.50	5.50	2.49	1.83	1.40	1.06	.99
BNEG = -4.06 THETA =340.00	-1.90	-1.87	-1.10	-11.10 340.00	-8.69 340.00	-6.16 340.00	-3.23	-2.22	-1.68	-1.85	332.50	12.50

VXBAR VTEA9 VRBAR 1-WVK

^{1-%}X BCAR BPOS BNEG THETA

IS CIRCUMFERENTIAL MEAN LONGITUDINAL VELOCITY.

IS CIRCUMFERENTIAL MEAN TATHENTIAL VELOCITY.

IS CIRCUMFERENTIAL MEAN FADIAL VELOCITY.

IS VALUMETRIC MEAN WAKE VELOCITY WITHOUT TANSENTIAL CORRECTION.

IS STAN ANGLE OF ADVANCE.

IS STAN ANGLE OF ADVANCE.

IS VARIATION BETWEEN THE MAXIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS).

IS VARIATION BETWEEN THE MINIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS).

IS ANGLE IN DEGREES AT WHICH CORRECPONDING BPGS OR BNES OCCURS.

HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL TABLE A-3 -

>	VELOCITY COMPONENT PROPELLER D	COMPONENT RATIOS P PROPELLER DIAMETER	RATIOS IAMETER	.08 #	MODEL 5365 FF 6.00 FEET	FROM EXP.	2 WITHOUT JA = .	.739
HARMONIC	ANALYSES (OF LONGIT	TUDINAL '	LONGITUDINAL VELOCITY COMPGNENT	COMPCNE	IT RATIOS	(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
HARMOVIC =	-	2	'n	प	Z.	မှ	7	80
RADIUS = .456 AMPLITUDE = PHASE ANGLE =	.0381	.0358	.0254	.0197 266.9	.0158	.0108	.0052	,0025 180.9
RADIUS = .633 AMPLITUSE = PHASE ANGLE =	.0143	.0262 258.9	.0103	.0038	.0055	.0025	.0011	.0018
AADIUS = .781 ATPLITUDE = PHASE ANGLE =	.0182	.0143	.0093 258.1	.0017	.0052	.0016	.0040	.0013
RADIUS = .963 A:PLITUDE = FHASE ANGLE =	.0195 200.8	.0192 245.9	0120	.0061 202.4	. 0035 264.3	.0069 168.5	.0070	. 0051 155.1
HARTONIC	ANALYSES (OF LONGI	LONGI FUDINAL	VELOCITY	COMPONENT	T RATIOS	(VXXV)	
HARNOVIC	6	10	1.1	12	13	14	15	<u>19</u>
440105456 47011108 FHASE ANGLE .	.0058	.0071	.00+.2	.0083 110.2	.0072	.0052	.0030	.0018
PADIUS = .633 ATPLITUDE = PHASE ANGLE =	.0030	.0012	.0007 84.7	.0004 302.5	.0022	.0015	.0037	.0035
RADIUS = .781 AMPLITODE = PHASE ANGLE =	.0032	.0022	.0041 251.3	.0027	.0048	.0024	.0032	.0022
RADIUS = .963 ATPLITUDE = PHASE ANGLE =	.0022	.0033	.0018 154.6	.0023	.0030 242.8	.0025	.0007	.001ë 125.9

HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 2 TABLE A-4

2 WITHOUT PROPELLER	£57. = 40
FROW EXP.	
713 JEL 5365	6.CC FEET
VELDCITY COMPOVENT RATION FOR ANDIEL 5365 FROM EXP. 2 WITHOUT PROPER	PROPELLER DIALLTEM : 6

(V X V)
RATIOS
COMPONENT
VELOCITY
LONGITUDIRAL
OF LONG
ANALYSES (
ARE NIC

	8	.0056	.0043	.0031	.0024	.0021 135.8	.0005 282.8	.0013	.0020	.0051
(> < > ·	7	.0153	.0121	.0085	.0033	.0011	.0026	.0043	.0056	.0070
001-42	9	.0238	.0198	.0152	.0079	.0034	.0025	.0012	.0032	6900.
2020000	Ŋ	.0324 266.3	.0273 265.8	.0214 264.8	.0122	.006ê 252.6	.0052	.0053	.0066 216.3	.0085
ניניין	4	.0445 200.6	.0309 261.8	.0281 253.8	.0143	.0056 284.1	.0023	.0019	.0041	.0061
2 1 1 1 1 2 2	ო	.04. 9 272.3	.0418	.0334	.6262 264.0	.0114 204.5	.0097 2 64.1	.0042 255.3	.0100	.0120
19801	7	.0422 283.4	.0404	.0382	.0338	.0284	.0190	.0137	.0147	2610.
ANALINES OF LOWGITOUTHER VELCCIET COMPONENT RAILOS	-	.0898 257.4	.0734	.0548	.0231	.0158	.0164	.0185	.0194	.0195
(1) できるとなり	HARDOVIO =	RADIUS = .312 AMPLITUDE = PLASE AVGLE =	RAPIUS = .350 ATPLITUTE = = PHASE ANGLE =	RADIUS = .400 ATPLITUDE = PHASE ANGLE =	AADIUS500 ATPLITUDE - PHASE AMGLE =	PADIUS = .600 ATPLITUTE = PHASE ASSLE =	PADIUS = .700 AMPLITUDE = PHASE AMGLE =	RADIUS = .800 AWPLITUDE = PHASE ANGLE =	RADIUS = .900 ATPLITUDE = FHASE ANGLE =	RADIUS = 1,000 ATPLITUDE =

TABLE A-4 (Continued)

LER

	VELOCITY COMPONENT PROPELLER D	COMPONENT PROPELLER [RATIOS HAGETER	FCR MIDEL	5365 FEET	FROM EXP.	2 WITHOUT JA =	PROPELL .739
HARMONIC	. ANALYSES	OF LCNGI	LONGI TUDINAL	VELCCITY	COMPONENT	NT RATIOS	(\(\times \(\times \) \(\times \)	
HARMONIC =	6 1	01	:	12	13	4	15	16
RADIUS = .312 AMPLITUDE = PHASE ANGLE =	.0099	.0148	.0120	.0264	.0193	.0135	.0135	.0335 81.6
RADIUS = .350 AMPLITUDE = = PHASE ANGLE = =	.0087	.0125	.0103	.0168	.0157	.0110	.0102	.0061
RADIUS = .400 AMPLITUDE = PHASE ANGLE =	.0072	.0098	.0082	.0125	.0114	.0080	.0064	.0035
PADIUS = .500 AMPLITUDE = PHASE ANGLE =	.0048	.0053	100.1	.0056 109.1	.0044	.0033	.0012	.0020
RADIUS = .600 AMPLITUDE = PHASE ANGLE =	0033	.0020	.0017	.0007 99.3	.0013	.0013	.0031	.0034
RADIUS = .700 AMPLITUDE = = PHASE ANGLE =	.0033	.0014	.0024 2 53.4	.0018 286.3	.0038 282.0	.0019 262.8	.0036	.0028 259.5
RADIUS = .800 AMPLITUDE = PHASE ANGLE =	.0030	.0021	.0642	.0028	.0048 286.3	.0025 282.5	.0030	.0021
RADIUS = .900 AMPLITUSE = PHASE ANGLE =	.0016	.0016	.0627	.0027 202.6	.0039	.0027	.0018 286.5	.0015 175.5
RADIUS = 1.000 AMPLITUDE = PHASE ANGLE =	0022	.0033	.0018	.0023	.0030	.0025	.0007	.0016

HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL TABLE A-5

A-5	1	HAKMON RADII	IC AN FOR E	HARMONIC ANALYSES OF RADII FOR EXPERIMENT		ENTLAL	TANGENTIAL VELOCITY 2	COMPONENT RATIOS	ent rat	AŢ	THE EXPERIM
			VEL	VELOCITY COMPONENT PROPELLER D	MIPONENT	RATIOS IA:ETER	<u>a</u>	MODEL 5365 FR 6.00 FEET	FROM EXP.	2 without	T PROPELLER .739
		HARV	HARWONIC A	ANALYSES	OF TANGE	TANGENTIAL VELOCITY		COMPONENT	RATIOS	(V1/V)	
	HARMONIC	DN I C	"	-	8	ь	4	ហ	Q	7	œ
	RADIUS AMPLITE PHASE	ODE ANGL	. 456 ===	.2388	.0053	.0015	.0049 158.9	.0035	.0044	.0032	.0033
	RADIUS AVP_IT	JDE AMGL	.633 E =	.2093	.0038	.0543	.0040	.0033	.0033	.0026 286.8	.0017 247.8
	RADIUS AMPLITO PHASE	= JDE ANGL	.781 = E =	1950	.0016	.002 2 302.9	2,0019	.0021	.00:2	.0016	.0006
	ANDI PHAS	RADIUS = AMPLITURE PHASE ANGLE	6. a.	.:881	.0083	.0038 113.8	.0037	.0028	.0239	.0016	7,00, 8,50;
		I A C	HARVONIC A	ANALYSES	DF TANGENTIAL	NTIAL VE	VELDCITY CO	COMPONENT	RATIOS	(V TV)	
	HARWD111C	3.41C	ſŧ	6	10	1.1	2	13	14	15	16
	RADIUS AMPLITU PHASE A	# 연호	. 45ô	.0050	.0052	.6661 26.0	.0058 25.2	.0059 22.8	.0036	.0630	.0010 297.5
	RADIUS AMPLITU PHASE A		.633 E = 3	.0018	.0004	.0038 243.7	.0312	.0024	.0030	.0029	.0025
	RADIC AMPL PHASE	RADIUS = AMPLITUDE PHASE ANGLE	.781 E =	.0011	.0305	.0012 208.3	.0017	.0019	.0021	.0010	.0009
	RADIUS = AMPLITUD PHASE AN	w 🥳	. 963 E = 3	.0010	.0611	.0010	. 6659 145.1	.0013	.0014	.0012	.0007

HARMONIC ANALYSES OF TANGENTIAL VELOCITY CONPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 2 TABLE A-6

VELDCITY COMPONENT RATIOS FUR WINEL 5365 FROM EXP. 2 WITHOUT PROPELLER	987. = 4D
SS FROM EXP.	.
JR WINEL 536	- 6.00 FEE
ENT RATIOS F	ER DIAMETER
VELOCITY COMPON	PROPELL

	VELOCITY COMPONENT PROPELLER D	OPELLER C	RATIOS FUR DIANETER :	1JR W.X.E	#10EL 5365 FR: 6.00 FEET	FROM EXP.	2 WITHOUT JA =	T PROPE .739
HARNONIO	C ANALYSES	OF TANGE	TANGENTIAL VE. DOITY	0.00117	COMPONENT	RATIOS	(VI,V)	
HARMONIC	-	~	m	7	ß	Ó	7	œ
RADIUS = .312 AMPLITUDE = EHASE ANGLE =	.2737	.0245	.0124	.0153 129.8	.0148	.0163 125.6	.0138	.0119
RADIUS = .350 AMPLITUDE = PHASE ANGLE = =	.2635	.0184	.0043 109.6	.0129 133.4	.0112	.0125	.0105	.0092 85.8
PADIUS = .400 ATPLITUDE = ENASE = =	.2512	.0115 108.5	.0050	.0036 141.0	.0072	.0082	.0067	.0061
PADIJS = .500 ATPLITUDE = = PHASE ANGLE =	.2302	.0016	.0011	.0032 188.5	.0014	.0024	00100.	.0016
RADIUS = .600 AMPLITUDE = EMASE ANGLE =	.2137	.0033	.0039	.0037	.0028	.0026	.0021	.0013
AADIUS = ,700 ATPLITUBE = = PHASE ANGLE =	.2018	.0319	.0036 291.2	.0032	.0030	.0024	.0023 295.8	.0012
RADIUS = .800 AMPLITUDE = FHASE ANGLE =	.1937	.0022	.0018 305.9	.0015 202.4	.0018	.0009	.0014	.0305
FADIUS = .900 AMPLITUDE = PHASE ANGLE =	.1891	.0058	.3612 96.7	.0015	.0010	.0012	.0003 89.5	.0009
PADIUS = 1.000 AMPLITUDE = FHASE ANGLE =	.1881	.0083	.0036	.0037	.0028	.0029	.0016	.0017

TABLE A-6 (Continued)

VELOCITY COMPONENT RATIOS FOR WODEL 5325 FROM EXP. 2 WITHOUT PROPELLER PROPELLER DIAMOTER 4 0.00 FEET

	C'rd	PROPELLER D	DIATE1ER	00.0	FEET		" AD	.739
HARDONIC	ANALYSES	OF TANGE	TANGENTIAL VE	VELOCITY	COMPONENT	RATIOS	(V1/V)	
HA9TOTIC =	6	0	-	12	13	4	15	1 5
PADDICS = .312 AMPLITCOE = =	.0125	.0133	.0163 30.3	.0164	.0192	.0144	.0144	.0080 331.6
AAD145 - 350 ATPLITCOE = FHASE AVGLE =	.0102	.0103	.0132 29.6	23.3	.0151	.0110 6.7	.0108	.0057 329.9
ANDLICOE - 400 and ANDLICOE - ANDLICOE - ANDLICOE - ANDLICOE - ANDLICE - ANDRICE - ANDLICE - AND	.0075	.0079	.00.5	24.3	.0103	.0071	.0067	.0031
PAD137 = .500 ATT-11 COE = EHA35 ANGLE	.0035	.0334	.0038 22.5	.0034	.0030	.0017	6000. 39.3	201.2
ANDICO = .600 ANDITOUS = EMARISEE ANDICE	332.1	.0007	310.3	.0005	.0017	.0025	.0025	.0024
AND TORREST AND THE REAL PROPERTY OF THE REAL PROPE	.0014	.0006	202.1	. 0016 . 147	.0022	.0025	.0017	,0015
ADVELTINE = PHASE BLOOM	.0010	.0004	.6014 204.8	.0017 184.2	.0018	.0021	.0010	.0008
PADILL900 AMPLITUDE = PHASE AMULE =	.0003	. 0005 155.6	.0010 106.4	.0013	.0014 183.6	.0015	.0009	.0004 213.6
PADDIOS F.1.060 AMPLITORE FRANCES F	.0010	.0011	.0010	.0009	.0013 156.0	.0014	.0012	.0307

TABLE A-7

INPUT DATA FOR HARMONIC ANALYSIS FOR R/V ATHENA,

MODEL 5365, EXPERIMENT 7

INPUT DATA

	RADIUS =	.456			RADIUS =	.781	
ANGLE	VX/V	VT/V	VR/V	ANGLE	VX/V	VT/V	VR. V
-1.1	1.002	.013	003	0.0	.991	002	097
8.9	.970	010	033	46.6	1.037	133	109
18.0	.954	132	086	90.0	1.052	-,196	.011
28.0	1.101	122	094	136.9	1.042	132	.127
38.9	1.105	149	089	179.3	1.043	005	. 175
82.0	1.122	249	026	225.3	1.052	.127	.132
126.0	1.114	206	.056	2 69. 0	1.073	. 185	. 027
179.4	1.109	016	.102	314.9	1.051	.139	092
223.4	1.119	.144	.077	360.0	. 9 91	002	097
267.3	1.124	.217	.007				
310.0	1.113	.166	067		RADIUS =	.963	
319.2	1.104	.143	- .078	ANGLE	V X / V	VT/V	VR/V
329.1	1.114	.114	084	-1.0	1.006	.046	137
338.0	.989	.111	070	19.0	. 96 1	053	144
349.1	1.013	.041	022	39. 3	1.026	108	~.160
358.9	1.002	.013	003	59.3	1.041	151	~.112
				91.1	1.053	184	017
•	RADIUS =	.633		135.1	1.048	128	.107
ANGLE	VX/V	VT/V	VR/V	180.0	1.052	.003	. 159
1.0	1.003	020	069	224.8	1.054	.125	. 113
45.4	1.042	131	109	270.7	1.063	. 184	~.003
91.2	1.067	196	006	291.1	1.057	.178	057
136.0	1.038	129	. 096	310.0	1.056	.150	109
181.0	1.026	-016	.131	331.1	1.025	.154	149
226.0	1.002	.166	.080	351.2	1.030	.074	159
269.1	1.047	.220	021	356.8	1.007	.053	150
270.0	1.047	.220	020	359.0	.991	.049	140
280.3	1.053	.215	045	359.0	1.006	.046	137
304.3	1.040	.181	099				•
317.0	1.036	. 155	113				
338.0	.972	.039	120				
352.0	.972	.017	098				
359.3	.966	019	076				
361.0	1.003	020	069				

LISTING OF THE MEAN VELOCITY COMPONENT RATIOS, THE MEAN ADVANCE ANCLES AND OTHER DERIVED QUANTILIES AT THE EXPERIMENTAL AND THE INTERPOLATED RADII FOR EXPERIMENT 7 ì TABLE A-8

.739 ₹ VELOCITY COMPONENT RATIOS FOR MODEL 5365 FROM EXP. PROPELLER DIAMETER = 6.00 FEET

1.000	1.042	600.	007	1.058	1.064	13.74	77.	00.76	10.00
006.	1.045	.002	.008	1.062	1.070	15.26	. 84	34.50	5.00
800	1.045	003	.018	1.067	1.077	17.08	1.07		0.00
.700	1.038	.002	.010	1.077	1.090	19.20	1.64		-1.13 357.50
.600	1.035	.008	007	1.099	1.118	22.02	2.55	90.06	230.00
. 500	1.072	003	001	1.134	1.163	26.79	3.45	00.06	340.00
.400	1.139	025	.017	1.178	1.227	34.21	4.75	02.20	340.00
.350	1.184	041	.032	1.203	1.268	39.28	5.76	84.50	7.50
.312	1.223	054	.045	000.0	0.000	43.87	6.76	02.20	-10.86 7.50
.963	1.042	600.	007	1.058	1.065	14.24	.82	94.50	10.00
.781	1.044	002	.018	1.067	1.077	17.45	1.14	90.06	0.00
. 633	1.029	600.	900	1.091	1.107	20.86	2.29	90.06	-1.55 227.50
€ .456	VXBAR = 1.098	H011	€000.	1-WVX = 1.149	1.190	* 29.66	3.94	97.50 *	* -3.89
RADIUS =	VXBAR	VTBAR	VRBAR	1-WVX	1 - W.X	BBAR	BPOS	₹ 	BNEG

VXBAR VRBAR VRBAR 1-WXX 1-WX BBBAP BBAP BREG

IS CIRCUMFERENTIAL MEAN LONGITUDINAL VELOCITY.
IS CIRCUMFERENTIAL MEAN TANGENTIAL VELOCITY.
IS CIRCUMFERENTIAL MEAN RADIAL VELOCITY.
IS VOLUMETRIC MEAN WAKE VELOCITY WITH TANGENTIAL CORRECTION.
IS VOLUMETRIC MEAN WAKE VELOCITY WITH TANGENTIAL CORRECTION.
IS MEAN ANGLE OF ADVANCE.
IS SAN ANGLE OF ADVANCE.
IS VARIATION BETWEEN THE MAXIMUM AND MEAN ADVANCE ANGLES (DELTA BIS VARIATION BETWEEN THE MINIMUM AND MEAN ADVANCE ANGLES (DELTA BIS VARIATION BETWEEN THE MINIMUM AND MEAN ADVANCE ANGLES (DELTA BIS ANGLE IN DEGREES AT WHICH CORRESPONDING BPOS OR BNEG OCCURS.

BETA PLUS). BETA MINUS).

INTAL TABLE,

A-9 - HARMONIC A		EXPERIMENT 7	ONCITUD	INAL VE	LONCITUDINAL VELOCITY COMPONENT RATIOS AT 7	OMPONEN	T RATIOS	S AT THE	EXPERIMEN
	>	VELOCITY COMPONENT RATIOS PROPELLER DIAMETER	COMPONENT RATIOS P PROPELLER DIAMETER	RATIOS DIAMETER	FOR	MODEL 5365 FF 6.00 FEET	FROM EXP.	7 a	.739
H	RMONIC	HARMONIC ANALYSES OF		FUDINAL	LONGITUDINAL VELOCITY	COMPONENT	T RATIOS	(v/xv)	
HARMONIC	н		N	Э	4	Z.	9	7	ω
RADIUS = AMPLITUDE PHASE ANG	456 UDE = #	.0343 265.6	.0361	.0230 266.1	.0164	.0103	.0057	.0036 172.8	.0061
RADIUS = . AMPLITUDE PHASE ANGLE	.633 E * GLE *	.0154	.0261 262. 5	.0151	.0061	.0053	.0043	.0031	.0024
RADIUS = AMPLITUDE PHASE ANG	. = .781 UDE = ANGLE =	.0152	.0191	.0075	.0022	.0026	.0018	.0011	.0009 268.8
RADIUS AMPLITUDE PHASE ANGLE	.963 E * GLE *	.0224	.0192 248.7	.0113	.0078	.0068	.0063	.0061	.0049
A H	RMONIC	HARMONIC ANALYSES D	F LONGI	TUDINAL	OF LONGITUDINAL VELOCITY	COMPONENT	4T RATIOS	(VX/V)	
HARMON I C		Ø	10	:	12	13	14	15	16
RADIUS = AMPLITUDE PHASE ANG	. = .456 UDE = ANGLE =	.0089	.0100	.0096 109.5	.0077	.0050	.0019	.0010	.0029 282.8
RADIUS = AMPLITUDE PHASE ANG	. = .633 UDE = = ANGLE =	.0016	.0004	.0008	.0010	.0015	.0015	.0014	.0014
RADIUS = AMPLITUDE PHASE ANG	= .781 UDE = ANGLE =	.0007	.000 6 269.1	.0005	.0003	.0004	.0003	.0002	.6002
RADIUS = AMPLITUDE PHASE ANGLE	. 963 E * GLE *	.0032	.0016	196.5	.0004	.0003	.0004	134.0	.0006

OLATED TABLE

			4 (
207	VELOCITY COMPONENT RATIOS F PROPELLER DIAMETER	PONENT ELLER I	DIAMETER	.0R	MODEL 5365 FF 6.00 FEET	FROM EXP.	7 JA ×	.739
NALY	HARMONIC ANALYSES OF	LONGI	TUDINAL 1	LONGITUDINAL VELOCITY COMPONENT	COMPONE	NT RATIOS	(v/x v)	
	_	CV	m	4	Ŋ	9	7	8
238	.1008 238.3	.0470	.0396 2 36.3	.0503	.0272	.0227	.0172	.0180
242	.0787	.0437	.0338 2 42.9	.0395 250.9	.0216	.0172	.0129	.0142
.0544		.0399 274.8	.0278 2 53.1	.0272	.0154	.0110	.0080	.0099
.0244 284.8	44 8	.0334	.0204	.0102	.0077	.0033	139.8	.0040
331.2		.0278 263.3	,0154 2 95.1	.0059	,0056	.0041	.0028	.0024
.0084		.022 2 266.1	.0108	.0034	.0038 310.9	.0029	.0019 340.8	.0014
.0168	88 .	.0187	.0071	.0025	.0026	.0017	.0011	.0009
.0216		.0178	.0084 2 36.6	.0055	.0047	.0038 181.6	.0034	.0027
.0224 246.8		.0192	.0113	.0078	.0068	.0063	.0061	.0049 152.5

DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CE--ETC F/G 20/4 ANALYSIS OF WAKE SURVEY EXPERIMENTAL DATA FOR MODEL 5365 REPRES--ETC(U) OCT 80 R B HURWITZ- L B CROOK DINSROC/SPD-0833-04 NL AD-A092 246 UNCLASSIFIED 2 ≈ 3 ⁴⁹9⁴/44

TABLE A-10 (Continued)

•	VELOCITY COMPONENT RATIOS PROPELLER DIAMETER	COMPONENT RATIOS Propeller Diameter	RATIOS DIAMETE!	FOR MODEL R = 6.00 f	L 5365 FROM FEET	EXP.	- 45	.739
HARMONIC	HARMONIC ANALYSES OF		TUDINAL	VELOCITY	LONGITUDINAL VELOCITY COMPONENT	RATIOS	(VX/V)	
HARMONIC	•	9	Ξ	12	13	=	ā	16
RADIUS = .312 AMPLITUDE = PHASE ANGLE =	.0219	.0252	.0266	.0222	.0163	138.7	.0043 209.6	.0073
RADIUS = .350 AMPLITUDE = PHASE ANGLE =	.0179	.0206	110.1	.0177	.0128	.0062	.0031	.0059 260.5
RADIUS = .400 AMPLITUDE = PHASE ANGLE =	.0132	.0152	.0153	.0126	.0087	.0039	.0019	.0043 268.8
RADIUS500 AMPLITUDE .	100.	.0067	.0059 109.0	.0047	104.3	.0008 89.2	.0010	.0022 298.6
RADIUS = .600 AMPLITUDE = PHASE ANGLE =	.0021	.0013	91.8	.0006	.0010	.0013 343.5	.0014	340.1
RADIUS = .700 AMPLITUDE = PHASE ANGLE =	.0008	.0004	.0007	.0006 312.8	.0008 308.5	.0008	.0007	.0007
RADIUS = .800 AMPLITUDE = PHASE ANGLE =	.0007	.0007	.0005	.0003	.0004	252.2	.0002	.0002 239.6
RADIUS = .900 AMPLITUDE = PHASE ANGLE =	.0018	.0009	218.4	.0003	.0004	.0004 186.9	.0004	.0004
RADIUS = 1.000 AMPLITUDE = PHASE ANGLE =	. 0032 156.6	.0016	.0007	.0004	201.4	.0004	134.0	.0006

TABLE A-11 - HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL

	7	VELOCITY COMPONENT RATIOS FOR PROPELLER DIAMETER =	MPONENT PELLER (RATIOS DIAMETER	FOR MODE = 6.06	MODEL 5365 FRO 6.00 FEET			.739
HARMON	NIC	ANALYSES	OF TANG	ENTIAL VI	ELOCITY	HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS	RATIOS	(V1/V)	
HARMONIC		-	~	m	4	ĸ	ø	•	6 0
RADIUS = .456 AMPLITUDE = PHASE ANGLE =	9 " "	178.2	.0054 98.9	.0027	.0050 165.5	.0052	.0045	.0036	.0031
RADIUS * .633 AMPLITUDE *	e	.2045 182.8	.0092	308.9	.0051	.0026	.0024	.0022	.0017
RADIUS781 AMPLITUDE .	5"	1885	.0030	.0020	.0016	.0011	.0004	.0005 297.8	.0004 254.8
RADIUS = .963 AMPLITUDE = PHASE ANGLE =	8	.1869	.0133	.0074	.0072	.0055	.0032	265.8	.0012
HARMON	NIC	HARMONIC ANALYSES		ENTIAL V	ELOCITY	OF TANGENTIAL VELOCITY COMPONENT	RATIOS	(V1/V)	
HARMONIC		•	6	=	ũ	13	<u>.</u>	ŭ	16
RADIUS = .456 AMPLITUDE = PHASE ANGLE =	9	.0032	.0043	.0051	.0054	.0052	11.9	.0040	.0031
RADIUS = .633 AMPLITUDE = PHASE ANGLE =	6	.0019	.0016	.0015	.0015	.0012	.0009	.0008	.0006
RADIUS 781 AMPLITUDE - PHASE ANGLE -	5	.0003	.0001	.0002	.0002	240.3	.0001	299.6	.0001
RADIUS963 AMPLITUDE -	2	.0013	.0018 86.8	.0012 81.5	107.7	.0006	132.3	.0002	.0002

TABLE A-12 - HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 7

HARMONIC	HARMONIC ANALYSES	6	TANGENTIAL VELOCITY	L0C1TY	COMPONENT	RATIOS	(V1/V)	
HARMONIC .	-	8	m	4	ហ	9	1	•
5	.2678	.0401	.0216	.0241	.0207	910.	.0064	.0046
PHASE ANGLE .	169.4	113.3	41.9	148.0	161.4	160.7	139.9	45.5
RADIUS = .350 AMPLITUDE = PHASE ANGLE =	.2570	.0289	.0155	.0180	.0158	.0115	.0054 131.6	.0041
RADIUS = .400 AMPLITUDE = PHASE ANGLE =	.2446	.0163	.0087	.0111	.0102	.0077	.0043	.0036
RADIUS = .500 AMPLITUDE = PHASE ANGLE =	.2246	.0020	.0016	.0020	.0022	.0028	.0032	.0028
RADIUS = .600 AMPLITUDE = PHASE ANGLE =	.2090	.0090 301.9	.0060	.0046	.0022 353.1	.0023	.0025	.0020
RADIUS = .700 AMPLITUDE = PHASE ANGLE =	. 195 6 180.8	.0033	.0045 305.5	.0032	.0013	26.5	0.44 0.0	.0007
RADIUS = .800 AMPLITUDE = PHASE ANGLE =	1874	.0043	259.2	.0017	.0015	.0007	.0006	.0005
RADIUS = .900 AMPLITUDE = PHASE ANGLE =	.1853	.0103	.0042	.0046	.0039 194.4	.0023	265.4	.0010
RADIUS = 1.000 AMPLITUDE = PHASE ANGLE =	. 1869	.0133	.0074	.0072	.0055	.0032 212.6	.0017	.0012

TABLE A-12 (Continued)

0079 . 739 HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS (VT/V) VELOCITY COMPONENT RATIOS FOR MODEL 5365 FROM EXP. 7 PROPELLER DIAMETER = 6.00 FEET

.0002
.0004
.0006
.0008
.0012 81.5
.0018 86.98
.0013
RADIUS = 1.000 AMPLITUDE = PHASE ANGLE =

THIS PAGE INTENTIONALLY LEFT BLANK.

APPENDIX B VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS FOR EXPERIMENTS 3 AND 9

VELOCITY COMPONENT RATIOS FOR MODEL 5365 CORRELATION WITH R/V ATHENA 3 0.456 RAD.

Figure B-1 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiments 3 and 9

x : Experiment 3

Experiment 9

VELOCITY COMPONENT RATIOS FOR MODEL 5365 CORRELATION WITH R/V ATHENA 3 0.633 RAD.

Figure B-2 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiments 3 and 9

x : Experiment 3

★ : Experiment 9

VELOCITY COMPONENT RATIOS FOR MODEL 5365 CORRELATION WITH R/V ATHENA 3 $0.781\,\text{RAD}$

Figure B-3 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiments 3 and 9

x : Experiment 3

★ : Experiment 9

VELOCITY COMPONENT RATIOS FOR MODEL 5365 CORRELATION WITH R/V ATHENA 3 0.963 RAD.

Figure B-4 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiments 3 and 9

x : Experiment 3
Experiment 9

Figure B-5 - Radial Distribution of the Mean Velocity Component Ratios for Experiment 3

Figure B-6 - Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 3

VELOCITY COMPONENT RATIOS FOR MODEL 5365 FROM EXP. 9 0.456 RAD.

Figure B-7 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiment 9

VELOCITY COMPONENT RATIOS FOR MODEL 5365 FROM EXP. 9 0.633 RAD.

Figure B-8 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiment 9

VELOCITY COMPONENT RATIOS FOR MODEL 5365 FROM EXP. 9 0.781 RAD.

Figure B-9 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiment 9

0.963 RAD.

Figure B-10 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiment 9

Figure B-11 - Radial Distribution of the Mean Velocity Component ratios for Experiment 9

Figure B-12 - Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 9

TABLE B-1

INPUT DATA FOR HARMONIC ANALYSIS FOR R/V ATHENA,

MODEL 5365, EXPERIMENT 3

									940105	701			eantus -	. 443	
	PANTUS .	. 456			#40fUS =	.631		44617	1.838	UT/U	101	a wild C	VE/V	V17V	W0/W
AMELF	VE/V	41/4	44/4	AMELE	41/4	41/4	40/4	3.5	1.834	034	699	7:1	1.003	881	136 138
1.7	.987	.877	617	-2.0	1.014	835	674	11.6	1.043	861	184	15.4	- 94.7	144	189
1.6	984	.883	821	,	1.007	637	874	15.0	1.062		112	17.4	. 971	854 861	148 158
7.6	. 48 1	819	627	3.1	1.000	852	877	15.5	1.061	867	115 115	19.9	. 908 L. 885	164	157
11.0	.991	842	049		1.071	859	083	19.4	1.878	678	115	21.0	1.005	866	154 195
13.4	1.602	162	854	11.7	1.677	867 868	193 193	21.0 23.0	1.004	BAZ EAB	116	23.4	1.619	165	197
14.6	1.604	848	843	19.8	1.054	844	166	23.1	1.874	838	115 113	55.6 27.6	1.823	844	196 198
17.5 19.0	1.000	497 176	874	19.8	1.000	8%6	192	23.4 25.0	1.012	035	113	79.4	. 972	196	166
19.3	1.017	132	097	83.3	. 944	027	100	25.3	1.003	041	113	31 . 8 59 . 8	1.846	113 187	175
23.1	1.114	158 150	187 189	25.3 27.8	1.015	091 131	122 135	27.0 27.7	1.822	177 134	127	77.4	1.846	187	159
24.7	1.144	132	997	29.3	1.044	114	136	29.1	1.043	124	108	67.8 95.9	1.854	175	140 170
27.0	1.101	123	- 194	11.0	1.071	896	176	11.0 33.2	1.092	110	142	59.9	1.153	150	110
11.5	1.127	174	691	35.1 37.3	1.065	181	129	16.7	1.884	-,1 66	134	61.6 71.7	1.861	154	099
33.4 35.7	1.134	171 134	890	37.3	1.861	108	128 123	70.2	L.881	171	128	79.4	1.948	175	051
17.7	1.137	145	000	39.4	1.043	114	124	91.4	1.040	133 154	117	79.4	1.849	176 176	851
39. 6 19. 6	1.127	152	000	41.3	1.871	118	119	59.8 59.6	1.092	169 171	001	99.7	1.875	177	602
41.4	1.172	159	886	47.0	1.072	139	189	67.4	1.092	184	055	99.7	1.873	176	. 824
43.8 51.9	1.134	154	061 076	49.3 51.4	1.073	149	105	74.9 78.9	1.291	195	637	111.5	1.078	165	. 242
34.8	1.176	284	865	53.3	1.878	151	~. 190	43.4	1.895	~. 200	180	119.5	1.056	154	. 875
67.0	1.178	218	#62 P40	55.1 57.0	1.076	157	~. 993 ~. 886	91.7	1.101	200	. 017	127.4	1.058	141	. 296
79.9	1.145	238	83%	59.6	1.874	1 64	644	99.9	1.103	198	. 639	130.4	1.050	174	. 119
74.8 83.9	1.147	241	829	59.5 63.3	1.875	161 169		1.67.4	1.891	197	.96?	107.8	1.051	1.05	- 134
91.9	1.144	247	082	65.3	1,001	173	876	115.4	1.007	143 177	. 865 . 898 . 185	191.2	1.856	843	. 16P
99.8	1.148	244	.010	77.2	1.007	170	061	1 23. 3	1.049	149	- 105	199.3	1.061	459	.198
187.9	1.100	237	. 636	85.0	1.007	187 191	6 01	137.1 139.8 147.9	1.005	192	. 124	167.2	1.067	834	. 164
115.4	1.143	274	. 649	101.0	1.894	198 148	104	147.9	1.001	111	- 196	179.3	1.854	.001	. 171
123.6	1.146	286	. 868	107.1	1.004	191	. 914 . 839	169,3	1.000	8AF 874	. 144	191.3	1.040	.615	. 169 . 166
171.8	1.140	164	. 874	117.0	1.107	147	. 856	164.0	1-001	161	-176	199.3	1.854	. 843	. 162
179.9	1.142	148	. 006	1 12 . 0	1.077	154 136	.075	172.0	1.879	432 445	. 101 . 165	194.4 287.8	1.040	. 644	. 162
147.6	1.143	144	. 196	130.1	1.854	119	. 183	179.5	1.007	887	. 107	2 15 . 2	1,059	.110	. 139
151.6	1.139	116	. 100	140.9	1.850	118 115	. 189 . 189	197.9	1.884	004	- 103	214.2	1.842	.119	.132
155.7 159.6	1.140	100	- 184	144.8	1.850	848	. 129	194.3	1.847	. 6 30	. 176	231.1	1.058	.150	. 106
143.4	1.140		- 189	159.0	1.855	853	. 131	100.0	1.087	.857	.177	230.0	1.644	.163	. 245 . 246
164.2	1.144	898 833	.111	164.8	1.052	834	- 139	241.9	1.084	. 644	- 164	144.1	1.856	.177	.043
176.2	1.140	819	. 114	179.1	1.092	.614	.139	219.9	1.679	.116	. 197	254.8	1.067	. 186	.010
174.7	1.136	104	. 115 . 116	100.9	1.854	. 822	.130 .136	237.0	1.673	-137 -154	. 178 . 188	262.9	1.168	-192	. 014
144.6	1.148	.612	.115	194.0	1.840	.476		239.9	1.070	.163	. 298	278.9 278.8	1.064	.1%	011 011
197.8	1.141	.815	. 11 J	194.0 294.9 294.9	1.849	.107	-116	243.0	1.007	.167	.067	274.9	1.060	.196	
266.4	1.143	- 100 - 134	. 163	212.4	1.843	. 137	. 104	259.0	1.888	.149	. 843	246.6 246.6	1.060	. 198	056
216.5	1.144	.194	. 894	220.0 224.0	1.044	.196 .176	. 671 . 674	259.8	1.849	.195	. 614	102.9	1.067	- 1 76	097
232.9	1.153	. 161	. 071	236.7 236.7	1.051	.199	. 655	279.0	1.844	. 107	864	111.4	1.856	.169	189
2 30.9 244.6	1.151	.199	. 656	276.7	1.060	. 1 92	. 056	279.8	1.000	. 189	017	319.1	1.896	-178	153
254.6	1.161	.220	. 626	252.6	1.464	.213	. 616	291.0	1.806	.176	894	314.5	1.053	.110	154 167
259.0	1.141	.224	.021	766.6	1.044	. 223	006	299.8 299.5	1.092	.161	075	126.0	1.059	-117	169
270.0	1.145	.224	864	274.5	1.068	. 223		3 67.0	1.006	. 147	100	327.7	1.065	.117	169
279.6	1.156	.219	017	284.5	1.062	.216	864 106	317.0	1.001	.175	121 176	\$31.4 \$37.7	. 97 8	. 143	170
296.8	1.149	.211	697	100.4 100.7	1.050	. 191	103	3 19.7	1.674	.114	131	335.0	1.068	.079	194 199
299.4	1.145	.198	012 016	3 W. 7	1.044	.172	130 130	323.3	1.088	.103	136 139	3 35 . 2	1.069	. 643	195
102.3	1.139	.101 .174	064	324.0	1.854	- 1 20	106	327.3	1.096	. 191	147	337.6	1.072	.842	177
306.7	1.141	.169	072	324.6	1.043	-115	149 151	379.6 371.7	1.041	.171	146 148	341.6	1.054	.001	100
100.2 111.9	1.138	.154	875	330.4	1.044	.117	199	1 13 . 1	. 961	.131	149	391.3	1.075	. 881 . 885	161
314.1	1.143	.158	677	134.8	1.947	.176	168 157	339.2	1.002	.019	149 196	359.0	1.007	.036 .036 .036 .034	135
714.8	1.135	. 144	007	374.0	. 994	74	148	129.1	1.091	.854	156	354.6	1.001	.136	125 124
317.8 317.8	1.134	. 130 . 132	004	334.4	1.000	. 631 . 635	178	339.3 361.2	1.891	.843	196	374.4	1.001	.834	134
319.0 322.1	1.131	. 133	005	348.8	1.034	. 844	170	341.7	1.879		193				
10.1	1.148	.174	907 900	344.4	1.076	. 6 39	126	363.7	1.067	.642	191 147				
320.0	1.139	.113	666	349.4	1.611	.612	107	344.1	1.061	. 2 37	107				
3 17.0	1.144	.100 .117	009 097	251.0	1.016	. 105 1 66	101	347.8 347.7 345.4	1.068 1.099	.876 .877 817	146 139				
371.4	1.176	. 178	697	397.1	1.016	027	898 879	395.4	1.027	017	111				
136.1	1.025	.139	893 877	354.8	1.014	834	074 074	397.4	1.034	010	111				
317.0	1.811	.043	- 099	799.3 399.3	1.007	637	874								
348.2	1.000	.092	645												
345.4	1.439	.042	129												
347.7	1.014	. 837	625												
347.7	1.834	.839	010												
351.0 351.7	1.021	.034	-,011 -,010												
196.6 257.6	1.010	. 824	410												
379.1	. 948		611												

- LISTING OF THE MEAN VELOCITY COMPONENT RATIOS, THE MEAN ADVANCE ANGLES AND OTHER DERIVED QUANTITIES AT THE EXPERIMENTAL AND INTERPOLATED RADII FOR EXPERIMENT 3 TABLE B-2

-

VELOCITY COMPONENT RATIOS FOR MODEL 5365 CORRELATION WITH R/V ATHENA PROPELLER DIAMETER 6.00 FEET

	1.000	1.052	600.	008	1.086	1.093	13.87	06.	95.00	-1.26 332.50
	. 900	1.069	002	900.	1.093	1.101	15.61	1.06	95.00	-1.90
ć	. 800	1.080	008	.015	1.098	1.108	17.65	1.35	92.00	-2.32
e C	.703	1.073	001	.007	1.107	1.119	19.82	1.82	95.00	-1.88 332.50
3	. 600	1.062	.012	600	1.128	1.146	22.51	2.52	92.50	335.00
1	C to a	1 003	.002	000	1.163	1,193	27.31	3.39	92.50	337.50
4	.	1.169	023	.023	1.210	1.263	34.87	63.4	92. co	0.00
ć	. 350	1.217	041	.041	1.237	1.308	40.05	6.77	22.50	-9.07
	.312 .350	1.259 1.217	057041	.056 .041	0.000 1.237	0.000 1.308	44.74 40.05	10.21 6.77		
Č									22.50	-1.31 -11.67 -9.07 332.50 0.00 0.00
	312	1.259	057	950.	0.000	000.0	44.74	10.21	95.00 22.50	0.00
	. 963	1.052 1.259	.009057	950. 800	1.086 0.000	1.093 0.000	14.38 44.74	.95 10.21	95.00 95.00 22.50	-1.31 -11.87 332.50 0.00
	.781 .963 .312	1.080 1.052 1.259	008057	.015008 .056	1.097 1.086 0.000	1.107 1.093 0.000	18.05 14.38 44.74	1.42 .95 10.21	92.50 95.00 95.00 22.50	-2.31 -1.31 -11.67 332.50 332.50 0.00

VXBAH VTBAR VRBAR

¹⁻W×X 1-WX BBAR

¹⁵ CIRCUMPERENTIAL MEAN LONGITUDINAL VELUCITY.
15 CIRCUMFERENTIAL MEAN TANGENTIAL VELUCITY.
15 JIRCHMFERENTIAL MEAN RADIAL VELUCITY.
15 JIRCHMFERENTIAL MEAN MAKE VELUCITY WITHOUT TANGENTIAL CURPECTION.
15 VOLUMETRIC MEAN WAKE VELUCITY WITH TANGENTIAL CORRECTION.
15 MTAN ANGLE OF ADVANCE.
15 VARIATION PETWEEN THE MAXIMUM AND MEAN ADVANCE ANGLES (DELTA BETA PLUS).
15 VARIATION PETWEEN THE MINIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS).
15 ANGLE IN DEGREES AT WHICH CORRESPONDING BPOS OR BNEG OCCIRS. BPOS BNEG THE TA

TABLE B-3 - HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL RADII FOR EXPERIMENT 3

TH R/V ATHENA 3	. 739
CORRELATION W	
5365	FEET
MODEL	= 6.00 FEET
RATICS FOR	DIAMETER :
VELOCITY COMPONENT RATICS FOR MODEL 5365 CORRELATION WITH R/V ATHENA	PROPELLER DIAMETER

>	VELOCITY (COMPONENT	NENT	RATICS FOR DIAMETER =	RATICS FOR MODEL DIAMETER = 6.00	5365 COR	CORRELATION WITH R/V ATHENA JA = .739	WITH R/	/ ATHENA . 739
HARMONIC	HARMONIC ANALYSES OF		LONGI	TUDIMAL	LONGITUDINAL VELOCITY	COMPONENT	IT RATIOS	(\(\times \(\times \)	
HARMONIC	-		8	e	4	S	g	7	ω
RADIUS = .456 AMPLITUDE = PHASE ANGLE =	.0367		.0358	.0234	.0193	.0143	.0099	.0050	.0026
RADIUS = .633 AMPLITUDE = FHASE ANGLE =	.0150		. 0224	.0068 255.5	2002	.005 <i>6</i> 202.2	.0013	.0010	31.2
RADIUS = .781 AMPLITUDE = PHASE ANGLE =	.0103	•••	.0147	.0073 204.3	306.2	.0029	.0040	.0007	.0012
RADIUS = .963 AMPLITUDE = PHASE ANGLE =	.0187		.0193	.0152	.0067	.0083	.0070	.0058	.0038
HARMONIC	ANALYSES	96	LONGI	LONGITUDINAL	VELCETTY	COMPONENT	IT RATIOS	(VX./V)	
HARMONIC =	g.		10	=	12	13	4	15	16
RADIUS = .456 AMPLITUDE = FHASE ANGLE =	.0044	• •	.0058 30.5	.0008 130.9	.0057	.0054	.0030	0.000.	.0019 296.1
RADIUS = .633 ATPLITUDE = FHASE ANGLE =	0034	•	.0021	1.6012	0.985 882.0	.0033	.0032	.0039 252.6	.0034
RADIUS = .781 AMPLITUDE = PMASE ANGLE =	.9007		.0027	.0019	.0016	.0038 296.6	.0027	.0628 319.3	.0003
RADIUS = .963 AMPLITUDE = PHASE ANGLE =			. 0026	.0012 196.8	.0026	.0020	.0017	.0010	.0014

TABLE B-4 - HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 3

ო	
ATHENA	. 739
>	·
~	#
3	A D
FOR MODEL 5365 CORRELATION WITH R/V ATHENA 3	
5365	FEET
MODEL	6.00
FÖ	H CZ
RATIOS	DIAMETE
COMPONENT	PROPELLER DIAMETER = 6.00
DOLLY	

			!					
HARMONIC	HARMONIC ANALYSES	90	TUDINAL	LONGITUDINAL VELUCITY	COMPUNENT	AT RATIOS	(VX/V)	
HARMONIC *	-	a	က	4	ស	g	7	æ
RADIUS = .312 AMPLITUDE = PHASE ANGLE =	.0900	.0499	.0535 2 75.9	.0462	.0258	.0265 262.5	.0155	.0146 201.9
RADIUS = .350 AMPLITUDE = PHASE ANGLE =	.0730	.0459	.0441	.0378 269.0	.0224	.0213	.0122	.0108
RADIUS = .400 AMPLITUDE = PHASE ANGLE =	.0537	.0409	.0333	.0281	.0183 270.5	.0153	.0085	.0064
RADIUS = .500 AMPLITUDE = PHASE ANGLE =	.0269	.0320	.0172 208.5	.0130	.0116 268.0	.0065 264.9	.0029	.0005
RADIUS = .600 AMPLITUDE = PHASE ANGLE =	0162	.0246 269.9	.0082 258.7	.0038	,0068 263.9	.0019	.0008	.0025
RADIUS = .700 AMPLITUDE = PHASE ANGLE =	.0116	.0177	.0080	.0026	.0039 268.6	.0032	.0006	.0008
PADIUS = .800 AMPLITUDE = FHASE ANGLE =	. 0106 284.5	.0144	.00%5	.0023	.0029	.0040	.0010	.0015
RADIUS = .900 AMPLITUDE = PHASE ANGLE =	.0145	.0159	.0112 249.5	.0029	.0051 220.8	.0046 223.6	.0036	.0031
RADIUS = 1.000 AMPLITUDE = PHASE ANGLE =		.0193	.3132	.0067	.0083	.0070	.0058	.0038

TABLE B-4 (Continued)

i,

6

VELOCITY COMPONENT RATIOS FOR MODEL 8365 CORRELATION WITH R/V ATHENA PROPELLER DIAMETER = 6.00 FEET .0044 53.8 .0012 .0028 282.9 .0036 .0017 .0010 .0014 172.1 5 (\/ \X \/) .0082 71.5 .0055 .0025 88.2 .0038 .0030 288.6 .0012 .0010 .0021 .0027 5 HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS .0017 298.0 .0107 .0082 .0054 .0020 .0028 .0030 .0026 .0021 4 .0020 .0185 .0145 .0098 120.6 .0025 .0039 292.8 .0036 .0020 .0027 13 .0156 .0091 .0035 129.8 .0012 289.2 .0017 281.3 .0022 268.9 .0026 260.4 .0128 .0002 228.2 ~ 137.6 .0009 268.4 .0020 196.8 130.7 .0052 131.5 .0014 254.6 130.7 .0113 .0012 .0157 .0125 .0089 .0042 .0024 58.5 .0029 .0026 169.4 0 .0100 .0078 .0057 .0040 79.3 53.8 .0069 .0017 .0027 PADIUS = 1.000
AMPLITUDE =
PHASE ANGLE = .350 .400 .600 .800 .312 RADIUS = .500 AMPLITUDE = RADIUS = .900 AMPLITUDE = . 700 PHASE ANGLE PHASE ANGLE PHASE ANGLE PHASE ANGLE FHASE ANGLE PHASE ANGLE PHASE ANGLE FHASE ANGLE RADIUS = AMPLITUDE HARMON I C

TABLE B-5 - HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL RADII FOR EXPERIMENT 3

VELOCITY COMPONENT RATIOS FOR MODEL 5365 CORRELATION WITH R/V ATHENA 3 PROPELLER DIAMETER - 6.00 FEET JA = .739

.0031 84.2 .0026 282.0 .0013 .0012 (VT/V) 292.2 .0034 .0027 HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS .0036 .0041 .0020 .0044 9 .0046 .0047 .0034 279.0 .0044 106.3 Ŋ .0040 150.6 .0059 .0027 263.2 .0042 4 .0027 285.4 296.2 .0026 .0054 .0088 289.5 .0037 283.4 .0031 .2359 .2069 163.6 .1868 178.5 .1932 180.5 RADIUS = .633 AMPLITUDE = PHASE ANGLE = RADIUS = .456 AMPLITUDE = PHASE ANGLE = RADIUS = .963 AMPLITUDE = PHASE ANGLE = RAPIUS = .78 AMPLITUDE PHASE ANGLE HARMON 1C

•	HARMONIC	ANALYSES	OF TANG	ENTIAL V	ELCCI 1Y	MARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS (VITVY)	RATIOS	(V1/V)	
HARMONIC	11	6	10		2	13	4	15	16
RADIUS = .456 AMPLITUDE = FHASE ANGLE =	= .456 DE = VGLE =	.0050	.0045	46.2	.0051 49.6	.0042	.0026	.0012	.0010
RADIUS = .633 AMPLITUDE =	633 E . =	. 0025	.0024	8000.	0000	.0016	.0030	.0030	.0034
PHASE ANGLE	*GLE =	297.0	287.0	200.2	211.6	167.1	163.9	163.1	156.5
RADIUS = .781 AMPLITUDE =	781 3E =	. 0019	8000.	2000.	9060.	. 0013	8100.	.0014	.0015
RADIUS = .963	963 963	330.4	31.0	88. 6 6. 6		135.3	158.7	147.9	168.7
PHASE ANGLE	GLE =	21.6	212.2	206.4	191.3	172.3	153.9	124.6	46.0

TABLE B-6 - HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 3

က	
ATHENA	.739
<u>></u>	
WITH	" "
VELOCITY COMPONENT RATIOS FOR MODEL 5365 CORRELATION WITH R/V ATHENA	
5365	L L L
MODEL	: 6.00 FEE
FOR	 ¥
RATIOS	D1A ::E1E
COMPONENT RATIOS FC	ייטיטיי
VELOCITY	

	× E	VELOCITY CC	COMPONENT PROPELLER	RATIOS FOR DIAMETER :	MODEL 6.00	536 5 FEET	CORRELATION	WITH R/V JA =	ATHENA
HA	HARMONIC	AHALYSES	90	TANGENTIAL VEL	VELOCITY	COMPONENT	RATIOS	(V1/V)	
HARMOR I C	If	-	61	т	·3	ហ	9	7	80
RADIUS = . AMPLITUDE PHASE ANGLE	.312 	.2717	.0308	.0212 111.6	.6213	.0196	.0165	.0161	.0137 88.8
RADIUS = . AMPLITUDE PHASE ANGLE	,350 ≥ LE ≥	.2610 !76.3	.0226	.0154	.0157	.0149	.0124	.0121	.0104
RADIUS = . AMPLITUDE PHASE ANGLE	.400 LE =	.2483	.0134	.0087 115.9	.0095 131.5	.0095 129.8	.0077	.0076	.0066
RADIUS = . AMPLITUDE PHASE ANGLE	.500 	.2273	.0027	.0016 2 52.7	.0021	.0020	.0019	.0008	0010 69.3
RADIUS ≈ . AMPLITUDE PHASE ANGLE	.600 = LE =	.2113	.0080	.0956 283.6	.0054	.0040	.9037 268.4	.0031	.0021
RADIUS ≈ . AMPLITUDE FHASE ANGLE	.700 	.1997	.0065	.0061	.0047	.0047	.0034	.0033	.0020
RADIUS = . AMPLITUDE PHASE ANGLE	.800 = =	.1920	.0031	.0037	.0023	.0029	.0015	.0019 296.8	.0012
RADIUS = . AMPLITUDE PHASE ANGLE	.900. #	.1878	.0014	.0002	.0019	.0010	.0019	.0008	.0008
RADIUS = 1. AMPLITUDE PHASE ANGLE	1.000 = LE =	. 1868 178. 5	.0031	.0026	.0042	.0044	.0044	.0027	.0012

TABLE B-6 (Continued)

>	VELOCITY CO	COMPONENT	RATIOS FOR DIAMETER =	1'4 MODEL = 6.00	536 5 Feet	CORRELATION	WITH R/V	V ATHEI
HARMONIC	HARMONIC ANALYSES	OF TANS	OF TANGENTIAL VELOCITY COMPONENT	LOC11Y	COMPONENT	RATIOS	(VT/V)	
HARMONIC =	თ	10	1.	12	61	14	15	16
RADIUS = .312 AMPLITUDE = = CHASE ANGLE =	.0169	.0162	.0189	.0154	.0136	.0096 30.8	6200,	.0047
RADIUS = .350 AMPLITUDE = PHASE ANGLE =	.0132	.0124	.0143	.0122	.0107	.0073	.0057	.0029
RADIUS = .400 AAPLITUDE = PHASE ANGLE =	.0089	.0082	.0101	.0085	.0073	.0047	.0031	.0009
FADIUS = .500 AMPLITUDE = PHASE ANGLE =	.0027	.0025	.0037	.0030	.0024	.0020	.0013 129.8	.0020
RADIUS = .600 AMPLITUDE = PHASE ANGLE =	306.2	.0022	.0005	.0003 188.6	.0013	.0028	.0028 161.4	.0033
RADIUS = .700 AMPLITUDE = PHASE ANGLE =	.0022	.0011	.0003	.0004	.0013	.0023	.0021	.0025
RADIUS = .800 AMPLITUDE = FHASE ANGLE =	.0018	.0009 .40.8	.0002	.0006	.0013	.0018	.0013	.0013
RADIUS = .900 AMPLITUDE = PHASE ANGLE =	.0010 348.9	.0004	.0006	.0013	.0017	.0019	.0013	.0005
RADIUS = 1.000 AMPLITUDE = PHASE ANGLE =	.0002	.0008	206.4	.0073	.0025	.0022	.0016 124.6	.0014

TABLE B-7

INPUT DATA FOR HARMONIC ANALYSIS FOR R/V ATHENA, MODEL 5365, EXPERIMENT 9

INPUT DATA

	DADIUS -	. 456			RADIUS =	.781	
451010	RADIUS =	.456 VT/V	VR/V	ANGLE	VX/V	VT/V	VR/V
ANGLE	VX/V	.023	010	2.9	1.015	025	092
-1.0	1.014	098	076	48.7	1.052	137	104
17.6	1.003	168	084	89.1	1.063	190	.007
45.2	1.122	217	053	94.6	1.070	188	.023
63.6	1.121	216	058	133.2	1.058	136	.127
63.6	1.124	216	007	140.0	1.054	117	. 142
91.1	1.137		.031	179.0	1.075	.002	. 182
109.0	1.132	228 170	.076	179.0	1.076	.002	.182
135.0	1.129	097	.099	225.5	1.075	.134	. †35
155.6	1.136	003	.111	271.4	1.092	.191	.013
179.7	1.131	.055	. 10B	316.0	1.072	.128	116
193.0	1.136	.159	.081	349.3	1.024	.025	127
224.2	1.138	.196	.055	351.3	1.020	.016	121
240.0	1.145	.225	.002	355.6	1.027	017	1:11
269.6	1.137	.225	002	362.9	1.015	~.025	092
269.7	1.145	.215	034				
286.1	1.143	.148	081				
315.0	1.131	.116	093		RADIUS =	.963	
331.0	1.121	.023	010	ANGLE	VX/V	VT/V	VR/V
359.0	1.014	.023	010	~.5	1.011	.036	-,135
361.0	1.014	.023		-1.0	1,009	.036	137
	RADIUS =	.633		45.5	1.050	120	-,145
4110.5	VX/V	.633 VT/V	VR/V	91.2	1.071	177	014
ANGLE	1.013	035	070	135.1	1.056	124	,115
3		035 133	111	180.9	1.066	.009	,169
46.0	1.048 1.091	133 189	007	225.1	1.066	.133	.119
91.7	1.053	~.122	102	271.0	1.074	. 193	-,011
137.0	1.056	121	.101	316.0	1.063	.135	146
137.0	1.049	.032	.136	359.0	1.009	.036	137
183.4 225.5	1.047	.168	.080	359.5	1.011	.036	-, 135
	1.047	. 225	032	360.5	1.011	.036	135
271.0	1.059	. 152	-,129	300.3			
315.7	1.059	.117	-, 155				
330.8	1.047	.035	-,126				
340.0	1,016	.005	-, 101				
351.0	1.014	~.035	074				
358.0		035	070				
359.7	1.013	035	.0.0				

- LISTING OF THE MEAN VELOCITY COMPONENT RATIOS, THE MEAN ADVANCE ANGLES AND OTHER DERIVED QUANTITIES AT THE EXPERIMENTAL AND INTERPOLATED RADII FOR EXPERIMENT 9 TABLE B-8

5 VELOCITY COMPONENT RATIOS FOR MODEL 5365 FROM EXP. 9 PROPELLER DIAMETER = 6.00 FEET

1.000	1.057	.008	008	1.077	1.082	13.93	.79	352.50
. 900	1.061	.002			1.088	15.49	.84	357.50
.800	1.064	000	.016	1.088	1.095	17.37	1.07	8499 245.00 357.50
.700		.004		1.097	1.107	19.58	1.57	84 245.00
.600		.011	010		1.132 1.107	22.48	1 2.49 1.57 1.07 0 92.50 97.50 102.50	247.50
.500	1.094	.001	002	1.147	1.172	27.20	3.34	-1.89
.400	1.152	020	.021	1.185	.229	34.42	4.50 95.00	-4.55 357.50
.350	1.191	034	.038	1.207	1.265	3 39.31 3	5.44 102.50	-6.94 -4.55 357.50 357.50
.312	1.224	047	.054	0.000	0.00	43.73	6.42	-9.28 357.50
.963	1.057	.008	•	1.077	1.082	14.44	.84	352.50
.781	1.064	000	910.	1.088	1.095	17.76	1.13	357.50
.633	1.055	.011	009	1.109	1.122	21.31	2.23	-1.26 242.50
a .456	= 1.116	007	900.	1-WVX = 1.160	= 1.196	= 30.01	= 3.79	-2.69
RADIUS =	VXBAR	VTBAR	VRBAR	1-WVX	1-WX	BBAR	BPOS THETA	ENEG

CIRCUMFERENTIAL MEAN LONGITUDINAL VELOCITY.
CIRCUMFERENTIAL MEAN TANGENTIAL VELOCITY.
CIRCUMFERENTIAL MEAN RADIAL VELOCITY.
CIRCUMFIRIC MEAN WAKE VELOCITY WITHOUT TANGENTIAL CORRECTION.
VOLUMETRIC MEAN WAKE VELOCITY WITH TANGENTIAL CORRECTION.
MEAN ANGLE OF ADVANCE.
VARIATION BETWEEN THE MAXIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS).
VARIATION BETWEEN THE MINIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS).
ANGLE IN DEGREES AT WHICH CORRESPONDING BPOS OR BNEG OCCURS. VXBAR VRBAR 1-WVX 1-WX BBBAR BBBAR BNEG

8 B-9	- HARMONIC ANALYSES OF RADII FOR EXPERIMENT	ALYSE:		ONGITUD	INAL VI	LONGITUDINAL VELOCITY COMPONENT RATIOS 9	COMPONEN	T RATIOS	AT	THE EXPERIMEN
		VELO	CITY CO	VELOCITY COMPONENT RATIOS FOR PROPELLER DIAMETER =	RATIOS DIAMETE	FOR MODE	MODEL 5365 FI 6.00 FEET	FROM EXP. 9	. A.	.739
	HARMONI	C ANA	LYSES 0	F LONGI	TUDINAL	HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT	COMPONE	AT RATIOS	(vx/v)	
	HARMONIC		-	ď	က	ব	Ø	φ	7	80
	RADIUS = .456 AMPLITUDE = PHASE ANGLE =		.0379	.0328 256.8	.0226 2 47.0	.0159	.0098	.0063	.0031 179.6	.0006
	RADIUS = .633 AMPLITUDE = PHASE ANGLE =		.0079 298.9	.0222	.0093	.0027	.0042	.0033	.0019	.0016
	RADIUS = .781 AMPLITUDE = PHASE ANGLE =		.0196 228.3	.0151	.0069 2 69.9	.0056	.0063	.0014	.0014	.0012
	RADIUS = .963 AMPLITUDE = PHASE ANGLE =		.0165	273.1	.0095 269.1	.0029	.0033	344.8 344.8	19.9	39.5
	HARMONIC ANALYSES	C ANA		F LONGI	TUDINAL	OF LONGITUDINAL VELOCITY		COMPONENT RATIOS	(VX/V)	
	HARMONIC		o n	0	=	12	±	4	5	16
	RADIUS = .456 AMPLITUDE = PHASE ANGLE =		.0021	.0014	.0006	.0005	.0007	.0008 133.8	.0008	.0004
	RADIUS = .633 AMPLITUDE = PHASE ANGLE =		.0013	.0010 353.7	29.4	.0008	.0002	.0001	.0002	.0001
	RADIUS = .781 AMPLITUDE = PHASE ANGLE =		.0013	.0007	.0007	.0005	.0008 267.3	.0004 268.9	.0005	.0004
	RADIUS = .963 AMPLITUDE = PHASE ANGLE =		.0002	.0001	.0003	.0001	310.6	.0002	.0001	.0001

TABLE B-10 - HARMONIC ANALYSES OF LONGITUDINA

RADII FOR EXPERIMENT 9	EXPERIMENT	r 9	LUDINAL	VELOCII	T COMPO	NENI KAT		THE INTER
	VELOCITY COMPONENT RATIOS FOR PROPELLER DIAMETER =	MPONENT DPELLER	RATIDS DIAMETER		MODEL 5365 FI 6.00 FEET	FROM EXP. 9	- 40	.739
HARMONIC	HARMONIC ANALYSES (OF LONGI	TUDINAL	LONGITUDINAL VELOCITY COMPONENT	COMPONE	NT RATIOS	(VX/V)	
HARMONIC	-	n	m	4	w	ø	7	œ
RADIUS = .312 AMPLITUDE = PHASE ANGLE =	.1039	.0435 265.5	.0460	.0400	.0203	.0132	.0106	.0022
RADIUS = .350 AMPLITUDE = PHASE ANGLE =	.0828	.0404	.0386	.0324	.0170	.0109	.0083	.0015 125.8
RADIUS = .400 AMPLITUDE = PHASE ANGLE =	.0590	.0367	.0302	.0238	.0133	.0084	.0056 169.5	.0007 97.8
RADIUS = .500 AMPLITUDE = PHASE ANGLE =	.0254 262.8	.0300	.0180	.0110	.0076	.0051	.0017	.0009 356.1
RADIUS * .600 AMPLITUDE *	.0101	.0240 252.6	.0109	.0040	.0046	.003 6 263.1	.0016 292.8	.0015 334.6
RADIUS = .700 AMPLITUDE * PHASE ANGLE *	.0129	.0179	.0070	.0023	.0057 266.6	.0023	.0018 296.4	.0014
RADIUS = .800 AMPLITUDE = PHASE ANGLE =	.0204	.0147 269.6	.0071	.0060	.0063	.0012 260.6	.0013	.0012 290.6
RADIUS = .900 AMPLITUDE = FHASE ANGLE =	.0197	.0150	.0085 276.8	.0054 339.5	.0048 291.6	.0008	.0008	.0005
RADIUS = 1.000 AMPLITUDE = PHASE ANGLE =	.0165 256.5	.0167	.0095 269.1	.0029	.0033	.0019	19.9	.0005

TABLE B-10 (Continued)

	VELOCITY COMPONENT PROPELLER C	COMPONENT PROPELLER	RATIOS (FOR MODE	L 5365 FROM FEET	EXP.	4 Y	.739
HARMONIC	HARMONIC ANALYSES OF		TUDINAL	LONGITUDINAL VELOCITY	COMPONENT	RATIOS	(VX/V)	
HARMONIC .	6	10	=	12	13	4	15	9
RADIUS = .312 AMPLITUDE = PHASE ANGLE =	.0035	.0012	.0003	.0014	.0016	.0016	.0015.	.0008 176.8
RADIUS = .350 AMPLITUDE = PHASE ANGLE =	.0031	.0013	.0001	.0009	.0013	.0014	.0013	.0007
RADIUS = .400 AMPLITUDE = PHASE ANGLE =	.0026	.0014	.0004	.0003	.0010	.0011	.0010	.0005
RADIUS = .500 AMPLITUDE = PHASE ANGLE =	.0018 35.5	.0014	.0007	.0007	.0006	.0006	.0006	.0003
RADIUS = .600 AMPLITUDE = PHASE ANGLE =	4100. 4.1.	. 0011	.0007	.0009	.0004	.0002	.0003 100.6	.0002 84.8
RADIUS = .700 AMPLITUDE = PHASE ANGLE =	304.5	301.3	.0005	.0003	. 0004	.0002	.0002	.0002
RADIUS = .800 AMPLITUDE = PHASE ANGLE =	.0013	.0007	.0008	.0006	.0008	.0004	.0005	.0004
RADIUS = .900 AMPLITUDE = PHASE ANGLE =	.0007	.0005	.0006	.0005	.0006	.0003	.0003	.0002
RADIUS = 1.000 AMPLITUDE = PHASE ANGLE =	.0002	. 0001 200 . g	.0003	.0001	. 0003	.0002 340.6	.0001	.0001

TABLE B-11 - HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL RADII FOR EXPERIMENT 9

HARMON	IC ANAL	YSES (DF TANGE	INTIAL VE	LOC1 TY	HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS	RATIOS	(V1/V)	
HARMONIC		-	a	e	4	ſſ	φ	•	60
RADIUS = .456		2333	2000	0030	0030	0046	, 000A	.0022	00
ш		81.0	95.4	170.2	161.9	161.4	166.2	127.5	69.0
RADIUS * .633		7047		4200	6900	8400	96.00	2600	4000
щ	••	184.2	281.9	271.3	263.9	275.6	303.8	334.7	80
RADIUS * .781 AMPLITUDE * PHASE ANGLE *		. 1873	. 0015	.0044	.0021	. 0022	.0020	.0011	.0012
RADIUS # .963 AMPLITUDE # PHASE ANGLE #		.1813	.0025 39.5	.0037	.0032	.0023 53.6	.0022 58.4	.0022	.0017 82.4
HARMON	HARMONIC ANALYSES		OF TANG	ENTIAL V	ELOCITY	OF TANGENTIAL VELOCITY COMPONENT	. RAT10S	(V1/V)	
HARMONIC	a	o	5	=	12	13	4	2	9
RADIUS = .456 AMPLITUDE = PHASE ANGLE =	•	.0022	.001 6 63.1	.0014 83.8	.0011 95.8	100,	.0010	.0009	.0006
RADIUS = .633 AMPLITUDE = PHASE ANGLE =		.0017	.0015	.0013	.0013	175.7	.0014 205.6	.0013	.0012
RADIUS = .781 AMPLITUDE = PHASE ANGLE =		.0010	.000 8 293.1	.0008	.0006 305.1	.0006	.0005	.0005	.0005
RADIUS = .963 AMPLITUDE = PHASE ANGLE =		.0013	.0008	.0005 98.6	.0004	.0004	.0004 78.87	.0004	.0004

TABLE B-12 - HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED

	VELOCITY	VELOCITY COMPONENT RATIOS FOI PROPELLER DIAMETER =	RATIOS FOR DIAMETER =	œ	MODEL 5365 FR 6.00 FEET	FROM EXP.	9 47	. 739
HARMON	HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS	S OF TANG	ENTIAL VE	ELOCITY	COMPONENT	RATIOS	(V1/V)	
HARMONIC	-	7	ო	4	ĸ	9	7	80
RADIUS = .312 AMPLITUDE = PHASE ANGLE =	2 .2652 = 174.9	.0329	.0179	.0191	.0190	.0154	.0139	.0050
RADIUS = .350 AMPLITUDE = PHASE ANGLE =		.0232	112.9	.0139	.0144	.0113	.0101 145.8	.0035
RADIUS = .400 AMPLITUDE = PHASE ANGLE =	.2446 = .2446 = 178.9	.0124	124.3	.0082	142.1	.0068 152.5	.0059	.0020
RADIUS = .500 AMPLITUDE = PHASE ANGLE =	. 2253 182.3	.0031	.0035	.0033	.0028	.0011	.0008 36.6	.0017
RADIUS = .600 AMPLITUDE = PHASE ANGLE =	2094 184.1	.0101	.0070	.0060	.0044	.0035	.0034	.0024
RADIUS = .700 AMPLITUDE = PHASE ANGLE =	.1954 182.8	.0056	.0059 283.5	.0043	.0037	.0030	.0022	.0016
RADIUS = .800 AMPLITUDE = PHASE ANGLE =	1859 * 180.9	.0010 329.6	310.3	.0016	270.9	.0018	.0009	.0011
FADIUS = .900 AMPLITUDE = PHASE ANGLE =	. 1815 179.5	.0021	.0032 355.4	.0015 39.6	.0007 25.8	.0003 79.8	.0006	.0002
RADIUS = 1.000 AMPLITUDE = PHASE ANGLE =	. 1813 178.8	.0025	.0037	.0032	.0023 53.6	.0022	.0022	.0017

TABLE B-12 (Continued)

>	VELOCITY COMPONENT RATIOS FOR MODEL 5365 PROPELLER DIAMETER = 6.00 FEET	MPONENT	COMPONENT RATIOS FOR	OR MODEL	EL 5365 FRO	FROM EXP.	9 4)	.739
HARMONIC	HARMONIC ANALYSES OF TANGENTIAL VELOCITY	OF TANGE	ENTIAL VE	ELOCI TY	COMPONENT	RATIOS	(V1/V)	
HARMONIC *	ø	0	Ξ	12	13	4	5	9
RADIUS = .312 AMPLITUDE = PHASE ANGLE =	.0020	.0008 320.3	350.3	.0028	.0036 33.8	.0041	.0047	.0042 84.8
RADIUS = .350 AMPLITUDE = PHASE ANGLE =	.0019 4.09.9	18.0	.0011	.0019	.0025	.0030	.0034	.0030
RADIUS = .400 AMPLITUDE = PHASE ANGLE =	.0020	.0012 52.6	.0011	.0012	.0015	.0018	.0020	.0017
RADIUS = .500 AMPLITUDE = PHASE ANGLE =	.0022	.0019	93.0	118.3	.0012	.0010	173.4	.0004
RADIUS = .600 AMPLITUDE = PHASE ANGLE =	45.2	.0018 66.8	.0015	.0015	.0015	.0014	230.9	.0012
RADIUS = ,700 AMPLITUDE = PHASE ANGLE =	335.8	. 00005 6.7	.0002	.0002	. 0005 215.9	.0007	.0007	.0008
RADIUS = .800 AMPLITUDE = PHASE ANGLE =	.0010	.0008	303.0	.0007	311.6	.0006	.0005 328.0	.0005
RADIUS = .900 AMPLITUDE = PHASE ANGLE =	.0003	.0003	.0004 309.8	.0004	.0004	.0004 359.0	20.2	33.2
RADIUS = 1.000 AMPLITUDE = PHASE ANGLE =	.0013	. 000B	.000 80 8.6	.0004 4004	.000. 88.0	78.8	.0004	.0004

THIS PAGE INTENTIONALLY LEFT BLANK.

APPENDIX C VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS FOR EXPERIMENT 4

VELOCITY COMPONENT RATIOS FOR MODEL 5365 CORRELATION WITH R/V ATHENA 4 0.456 RAD.

Figure C-1 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiment 4

VELOCITY COMPONENT RATIOS FOR MODEL 5365 CORRELATION WITH $\mbox{R/V}$ ATHENH 4 $$\mbox{O+}633\mbox{ RAD}$.

Figure C-2 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiment 4

VELOCITY COMPONENT RATIOS FOR MODEL 5365 CORRELATION WITH R/V ATHENA 4 $$0.781\ \text{RAD}_{\star}$$

Figure C-3 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiment 4

VELOCITY COMPONENT RATIOS FOR MODEL 5365 CORRELATION WITH R/V ATHENA 4 $0.963\,\mathrm{RAD}$.

Figure C-4 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiment 4

Figure C-5 - Radial Distribution of the Mean Velocity Component Ratios for Experiment 4

Figure C-6 - Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 4

TABLE C-1

INPUT DATA FOR HARMONIC ANALYSIS FOR R/V ATHENA,

MODEL 5365, EXPERIMENT 4

	#ADTUS #				PARTUS :				BANTUS :		_		RATEUS		
AMELE	44/4	41/4	40/4	AMGLE	41/4	VT/V	46/4	AMGLE	4414	41/4	40/4	AMILE	41/4	41/4	40/4
	.998	007	(13	3	. 985	684	078	0.0	1.031	605	074	••?	, 997	. [67	146
18.8	. 979	025	057	2.1	. 994	832	076	10.0	1.030	075	***	2.1	. 951		1 17
14 . 8	. 975	149	058	19.9	1.850	618	199	20.4	1.057	045	047	20.1	94.2	[6.7	153
14.6	. 475	100	074	54.0	. 979	015	107	24 · A	1.812	011	094	75.9	1.011	034	153
20.7	. 999	175	096	5.9	. 947	053	118	24.8	1.029	614	095	29.0	.931	09-	158
22.7	1.055	100	0 94	27.9	993	104	176	24.7	. 46.4	[64	102	11.1	1.309	1 *4	~ . 167
24.6	1-118	118	111	31.0	1.044	0 61	131	54.8	1.033	114	114	13.7	1.075		166
10.6	1-110	167	192	39.4	1.036	042	117	30.9	1.056	(49	111	35.7	1.322	0 74	147
48.7	1.103	175	040	51.0	1.619	187	094	40.3	1.054	098	591	40.2	1.027	690	149
60.6	1.109	166	157	59.4	1.936	119	87A	58.9	1.051	185	567	49.0	1. 524	695	177
40.6	1.117	187	024	71.9	1.046	131	050	40.4	1.067	123	(44	50.7	1.037	100	181
1.00.6	1.170	185	.011	79.0	1.049	1 75	034	70.0	1.074	: 36	014	64.4	1.842	110	174
1 50 . 0	1.126	161	. 046	91.4	1.053	117	707	48.4	1.040	142	.010	79.0	1.045	175	
140.0	1.170	+.177	. 074	99.6	1.050	134	. 109	90.0	1.046	147		44.4	1.944	177	015
140.0	1.170	8 6 9	. 645	1 19.4	1.041	114	. 05 3	1 60 . 5	1.045	1 *9	. 066	99.9	1.040	175	.C10
174.8	1-117	655	. 194	139.4	1.029	079	. 089	1 20 - 6	1.045	119	.115	1 09.7	1.046	117	. 040
149.8	1.119	.010	.099	154.2	1.056	+.035	- 111	140.5	1.095	CA7	. 155	119.4	1.048	104	. 055
149.3	1.170	. 0 13	.097	141.8	1.624	.019	. 120	1 48 . 5	1.845	DA7	. 155	129.7	1.843	004	.099
219.3	1.172		.047	2 00 . 0	1+224	. CFF	.110	150.0	1.100	[47	. 174	1 79.6	1.045	676	- 104
2 19. 3	1.125	. 1 30	. 059	251.1	1.023	. 109	. 0.94	190.0	1.118	6 05	.189	149.5	1.348	[67	-125
259.1	1.127	.155	.026	2 21 . 1	1.055	.154		148.8	1.096	089	. 186	169.5	1.0-1	[6.2	. 124
274.1	1.175	-151	017	248.7	1.029	. 1 6 3	. 058	190.8	1.111	.017	. 197	159.4	1.046		. 157
294.9	1.113	.141	052	268.6	1-839	.155	. 99 P	561.5	1.696	.071	. 176	159.2	1.043		. 144
3 14 . 9	1.104	. 697	078	244.0	1.039	.171	011	2 21 • 2	1.090	. 875	. 157	179.0	1.073	.003	- 157
127.4	1.146	7	042	291.0	1.840	. 1 72	039	241.3	1.043	. 184	. 120	179.0	1.044	. 68 %	. 1
372.0	1.115	. 094	048	249.4	1.040	. 167	961	241.3	1.093	-110	. 178	149.1	1.643	.616	. 147
1 32 . 0	1.107	.111	695	3 00 . 7	1.036	. 152	090	241.1	1.897	-131	. 876	199.4	1.048	. 0	- 147
336.4	1.657	.122	897	384.4	1.014	- 1 15	110	271.0	1.109	. 1 - 6	. 057	209.0	1.047	. 657	. 1 13
350.0	1.003	.054	065	320.0	1.037	.107	138	241.0	1 - 10 7	.152	- 671	719.4	1.047	.041	. 119
347.9	1.010	.037	045	3 32 . 0	3.846	. 189	158	290.0	1.180	.151	(14	224.8	1.0%	.047	. 134
346.7	1.604	. 674	030	334.2	1.873	. 1 75	153	1 60 . 0	1.890	. 135	056	2 79.4	1.050	.110	. 083
158.7	1.806	.00*	019	135.2	. 95 3	. 106	146	3 68 . 7	1.889	.111	050	249.4	1.044	-119	. 047
354.5	. 99A	80%	017	3 37 . 2	1 40	.015	178	311.0	1.679	-115	***	25A.O	1.855	- 1 *1	. 041
360.0	. 99 8	687	C13	337.2	. 96.6	. 0.16	129	120.6	1.875	. 0 40	996	764.5	1.755	. 1 . 0	. "17
				341.8	1.037	.011	126	110.0	. 982	. 107	117	279.5	1.050	-158	704
				349.1	1-907	. 934	112	110.0	. 946	.164	117	244.5	1.014	. 156	(44
				359.7	. 985	004	078	992.4	1.010	.018	107	299.0	1.841	-145	187
								116.6	1.043	.039	118	4 (4 . 0	1.637	.175	175
								340.5	1.071	.051	111	114.1	1.037	.105	1 - 7
								150.0	1.042	. 6 71	183	129.7	1.047	.109	168
								360.0	1.831	6 15	7 7	3 97. 1	. 96 9	7	147
												3 35 . 1	1.839	. 879	153
												119.2	1.037	. 666	16.7
												1 10. 1	1.037		1+1
												144.7	1.877	. 541	167

- LISTING OF THE MEAN VELOCITY COMPONENT RATIOS, THE MEAN ADVANCE ANGLES AND OTHER DERIVED QUANTITIES AT THE EXPERIMENTAL AND INTERPOLATED RADII FOR EXPERIMENT 4 TABLE C-2

٠; VELOCITY COMPONENT RATIOS FOR MODEL 5365 CORRELATION WITH RAY ATHENA PROPELLER DIAGRER - 6.00 FEET

	1.000	1.034	600.	500·1	1.073	1.078	13.64	62	-1.27
,	006.		.002			1.086	15.51	.66 100.00	-1.47
,	. Bco	1.080	-, 001	680.	1.081	1,089	17.61 15.51	.81 92.50	-2.07 327.50
i	.700	1.062	.004	.016 .053 .028055012 .022 .039	1.085	1.090	21.93 19.60	1.17	327.50
,	. 600	1.002 1.002 1.062	.012	012	1.105	1.123	21.93	1.74	-2.18 ~1.53 335.00 327.50
	00%	010:	003	005	1.117	1.177	24.74	5.4.7 0.3.4.2	337,00
,	.4co	1.153	033	870.	1.203	1.25.7	34.65	3.55	-5.0562 342.50 337.00
,	.350 .400	1.212	+.054033003	.053	1.236	1.309	40.18	5.76 3.55 7.42 25.00 25.00 4.50	-7.90 342.50
:	312	1.204	072	9:0:	000.0	0.000	45.21	7,54	-10.56
5	995.	1.034	600.	600	1.672	1.077	18.00 14.14 45.21	100.00	-1.32
,	. 781	1.079	001	.038	1.077	1.085	18.00	.86 92.50	-2.09 327.50
!	. 533	1.0.0	.013	600	1.096	1.111	20.84	1.56	-1.35
	. 456	VXBAR - 1.101	014	. 007	1-35 x 1.167	1.212	24.77	2.82	: -2 07 :337.50
,	* 67 10v8	3 A :	A SHAR	явая	¥ 7 5	1 - 5 X	ввая	BFOS THETA	BNE G THE FA

IS CIRCUMPERFORMED MEAN LONGINOPHAL VELOCITY.

18 PROUMERCATING MEAN TANDENTIAL VELOCITY.

19 CONCUMERCATING MEAN ARE VELOCITY.

19 VOLUMETR'S GRAY WARE VELOCITY WITH TANGENTIAL CORRECTION.

19 VOLUMETR'S GRAY WARE VELOCITY WITH TANGENTIAL CORRECTION.

19 VOLUMETR'S GRAY WARE VELOCITY WITH TANGENTIAL CORRECTION.

19 VARIATION ENTRE OF ANAMORE.

10 VARIATION RETWEEN THE MAXIGUM AND MEAN ADVANCE ANGLES OF LAR BETA MINUS).

11 VAGLE IN DEGREES AT WHICH CORRESTONDING BROS OR BNEG OCCHYS. VXBA2 VYBA2 VYBA2 1-80 1-83 BBA8 BBA8 BBA8 BBA8 BBL0

TABLE C-3 - HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE EXPEKIMENTAL RADII FOR EXPERIMENT 4

₹.	VETOLITY COL	COMPONENT PROPELLER	RATIOS FOR DIATETER	0.00 PE U	534.5 FEET	CORRELATION WITH	€ B	V ATHENA
HARMONIC	HARMONIC ANDLISES (05 (0.46)	בסאפו דשפייאב עו נטכודא	100011	COMPONTAT	AT RATIOS	(V × / V)	
HARMOTTC :	-	8	n	7	(ب	9	7	æ
RADICT = 1456 AMPLITUD. = PHASE ANGLE =	.0368 8.3-19	. 6369 270.3	.0201	01599 207.8	.0114 264.2	.0386 259.9	.6037 239.8	.6024
RADIUS = .633 ADMUTTUUL = PHASE ANGLE =	1200.	.0167	251.1	.0035	. 0062	.0038	.0015	.0019
RADIUS781 AMPLITUNE = PHASC ANGLE =	.027 <u>9</u> 256.8	.0122 262.8	200349 2003.3	5.55 7.55	.0011	.0020	.0049 179.4	.0032
GADIUS = .963 ABPLITUDE = FHASE ANGLE =	.0184	.0169 249.3	2.6.05 276.2	.0076 202.3	.0080	.3047	, 6039 157.5	.0038
HARMONIC	ANALYSES	OF LONG1	LOWGITUDINAL V	1601IY	COMPUNENT	VT RATIOS	(A·XA)	
HARMONIC	6	10	-	12	13	7	15	16
RADIUS = .456 AMPLITUDE = PHASE ANGLE =	122.0	.0065 112.8	,0072 159.2	\$ 100°	101.8	.0029 92.4	.0010	.0018 320.4
RADIUS = ,633 ACPLITUDE = FHASE AUGLE =	0013	.0017	318.0	8. 00. 8. 8.49	. 00%2	. 004.3 268.9	.00% 267.2	268.7
RIDIUS : ,781 ATPLITUDE = FHASE ANGLE =	.0049	.0044	270.3	0.000 2004.9	.00%2 308.1	.0050	.0023 4.J	.0021 85.5
WADIUS = .963 ARPLITUSE = = PHASE ANGIE =	.0036	.0031	6.0019 9.001	.0026	.0035 206.0	.0031 239.5	.0007 208.2	.0005

TABLE C-4 - HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 4

1.0993 25.7.7 20.0999 25.1.2 27.2.1 27.2.1 27.3.6 27.3.6 27.3.6 27.3.6 27.3.6

TABLE C-4 (Continued)

4 VELOCITY COMPONENT RATIOS FOR MODEL 5365 CORRELATION WITH RIV AIHENA PROPELLER DIAMETER : 6.00 FEET .0147 .0006 70.5 00.12 57.8 270.0 .0038 282.1 271.5 .0024 85.7 .0020 83.2 .0005 9 (\ \ \ \ \ \ .0197 .0136 76.1 .0069 .0026 269.5 .0065 265.8 .0031 296.9 .0023 13.8 .0015 39.5 .0007 5 HARMONIC ANALYSES OF LONGITUDINAL V' LOCITY COMPONENT RATIOS .0211 .0154 .0088 83.8 .0009 .0057 264.8 .0052 299.8 .0348 .0029 .0031 14 .0223 .0170 .0108 96.0 .0015 123.3 .0043 .0055 .0050 308.1 .0026 276.4 .0035 13 100.7 .0159 101.5 102 7 0033 .0053 298.4 .0058 249.0 .0036 279.7 .0026 217.6 .0021 5 .0153 118.1 .0112 .0010 3.2 .0187 120.1 .0046 fr2.1 .0036 241.6 .0047 208.1 2.13.8 .0019 Ξ .0136 132.6 .0168 .0099 .0045 37.2 .0026 269.7 .0046 246.9 .0041 .0031 5 .0180 .0136 148.9 0080 .0033 96.2 .0023 32.8 .0022 .0053 197.5 .0050 .0036 161.8 S) RADIUS - .500 AMPLITUUE = RHASE ANGLE = PADIUS : .600 AMPLITUDE : FHASE ANGLE = PADIUS = .800 AGPLIFUDE = E FHASE ANGLE = .250 .400 .312 AMPLITUDE = PHASE ANGLE = .700 :) B H 11 RADIUS = .900 AMPLITUDE = = RADIUS = 1.000 AMPLITUDE = ASPLITUDE = PHASE ANGLE = RADIUS = .400 AMPLITUDE = = PHASE ANGLE = PADIUS = .250 AMPLITUBE : FHASE ANGLE : RADIUS - .70 AMPLITUDE FHASE ANGLE PHASE ANGLE RADIUS = HARMON IC

TABLE C-5 - HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL RADII FOR EXPERIMENT 4

V	VELOCITY CO	COMPONENT PROPELLER	RATIOS FOL DIAMETER :	37, MODEL 5,000	5365 FEET	RELATION	WITH P	CORRELATION WITH P/V ATHEMA 4
HARMONIC	HARMONIC ANALYSES	90	TANGENTIAL VELOCITY COMPONENT	E-0011Y	COMPONENT	RATIOS	(V1/V)	
HARMONIC =	-	2	m	7	ស	9	7	æ
RADIUS = .456 AMPLITUDE = PHASE ANGLE =	1734	.0061	.0005 18.0.6	.0012	.0035	.0029	.0002	.0023
RADIUS = .633 AMPLITUDE = = PHASE AMGLE =	.1521	,0060 228.3	2 10.5	.0620	. 0011	.0012	303.0	.0015 333.0
PADDIUS = .781 AMPLITUDE = EHASE ANGLE =	1404	.0094	9+0). 311.7	319.5	.0006	.0008	.0018	.0627
RADIUS = ,963 PAPLITUDE = = PHASE ANGLE =	.1365 175.8	.0108	204.1	.0033 i 1.6	.0055	.0042	.0017	.0024
HARMONIC	ANALYSES		OF TANGENTIAL VE	0.0113	COMPCAENT	RATIOS	1.VT.V.	
HARMONIC =	6	10	•	۲. • ·	۳ +	4	÷.	16
RADIUS : .456 AMPLITUDE = FHASE ANGLE =	.0042	.0054 15.8	6.65	11.7	.00 %	.0020	.000A	. 3019 37. 4
RADIUS = .633 ATPLITUDE = EHASE ANGLE =	.0014	.0009 P.1	2.52. 2.15		160 157.5	0.545 88.25.	.0042	95.00.1 8.00.1
RADIUS = .781 AMPLITUDE = EPPASE ANGLE =	.0015	.0064	4.0.2		. 0034 191.0	20032	230.2	.0016 307.9
HADIUS = .963 AMPLITUDE = E FHASE AKGLE =	.0031 64.5	.0026		. CG.24 1 to . 8	. C024 216.1	.0020	.0014 258.1	.0012 338.1

TABLE C-6 - HARMONIC ANALYSES OF TANGFNTIAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 4

VELOCITY COMPONENT RATIOS FOR MODEL 5365 CORRELATION WITH R.V ATHENA 4 PROPELLER DIAMETER . 6.00 FEET .00134 .005.0 0.654 .0035 30.6 .0018 3333.1 .0021 35∺.0 .00.77 32.8 8 .0004 2017.7 (V1/V) ,0008 115.5 315.3 .0017 96.6 .0011 109.8 130.2 .0017 328.6 7 MARMONIC ANALYSES OF TANGENTIAL VE OCITY COMPOSENT RATIOS .06.32 .0096 155.0 .0075 .0050 162.5 .0018 192.4 .0012 266.5 .0009 . 6010 154.5 .0027 9 .0091 160.0 .0073 163.4 00053 . 9924 192. 7 .0007 .000H .0033 244.2 . 3055 97. 7 S . C 1 45. 16.3 . 4 .0113 164.7 .0033 - 1.6 .0076 117.8 4.00° .001n 3:3.8 .001h 306.3 र⊘८३. ४ ४४.⊁ 0017 7 .0043 114.6 .6758 118.6 .0016 00.30 20042 .0052 306.5 312.1 .0028 307.1 . 0011 21.i.1 7) .0108 177.9 .0171 .0132 .0091 .0051 .0357 .0075 190.8 .0108 0 .1980 174.7 177.0 .1673 180.5 1457 . 1395 176.5 . 1566 .1365 175.8 . 1555 181.8 ATPLITTOS - .000 RADIUS = ,400 ATPLITUDE = = FHASE ANGLE = RADIUS = .600 ABPLIFURE = EHASE ANGLE = RADIUS = ,700 AMPLITUDE = PHASE ANGLE = RADIUS = .800 AUPLITODE = FHASE ANGLE = RADIUS = .312 FADIUS = .350 FHASE ANGLE = RADIUS = .500 AUPLITUDE = FHASE ANGLE = RADIUS = 1.000 ATPLITUDE = EPHASE ANGLE = PHASE ANGLE PHASE ANGLE AMPLITUDE AND LITUDE OINOMETE

TABLE C-6 (Continued)

1000 5365 CORPETATION WITH A VATHINA H .0103 318.5 . COT? 312. 3 . ec 45. 000.5 121.3 . 001. 205. a 327.7 .00:5 338.1 .001 31.4. 9 324.6 324.6 .0116 329.7 0.000 3.80.0 .6.017 176.8 , 6625 18813 . Co 14 269.8 262.3 . 0014 258.1 , 0041 196.6 1 V 1 V 15 THE COMPOSENT RATIOS .0179 338.7 50 to 3 3.0°5 3.13. H .0006 43.2 .0034 154.6 .0033 185.5 21031 .0020 .0027 221.8 .1 .0121 352.8 4.55.8 .00.3 , ag 15. 33. 4 . 905.4 147.0 . 0034 193.2 . 6024 216. : 90 th 178.0 . 00 /3 204. T .:10. 1.23.1 5. V.3. ج : .0041 4.4 112.7 . 0032 144.5 VELDCITY COMPONENT RATION (3) HARMONIC ANALYSES OF TAN JUMINING ME ည်း က များ (၁) ရ 17.0 18.5 18.5 .0011 35.0 61.5 Fr. 1.2 1.0.1 1.0.1 .0026 1.4.7 1000. 1100. .0130 .0108 .0083 18.2 .0043 .0016 7.8 .0005 .0011 .0020 . 0030 107.3 .0030 26.0 .0075 24.0 .0058 20.8 . 0032 11.3 .0016 .0013 .0016 47,4 .0031 64.5 60.7 G PADIUS = .350 AMPLITUDE = F FHASE ANGLE = RADIUS = .400 AMPLITUDE = FHASE NOTE = RADIUS = .700 AMPLITODE = FHASE ANGLE = .500 в 312 н В RADIUS = .600 n 11 RADIUS - .800 ASPLITUDE = RADIUS = .900 AVPLITOSE = HASE ANGLE . RAD195 - 1,035 CHASE ANGLE FHASE ANGLE AWPLITUDE FHASE ANGLE CHASE ANGLE AMPLITUDE PHASE ANGLE EMASE ANGLE AMPLITURE = SOICVB HARMONIC

THIS PAGE INTENTIONALLY LEFT BLANK.

APPENDIX D VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS EXPERIMENT 5

VELOCITY COMPONENT RATIOS FOR MODEL 5365 CORRELATION WITH R/V ATHENA 5 0.456 RAD.

Figure D-1 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiment 5

VELOCITY COMPONENT RATIOS FOR MODEL 5365 CORRELATION WITH R/V ATHENA 5 0.633 RAD.

Figure D-2 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiment 5

VELOCITY COMPONENT RATIOS FOR MODEL 5365 CORRELATION WITH R/V ATHENA S 0.781 RAD.

Figure D-3 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiment 5

VELOCITY COMPONENT RATIOS FOR MODEL 5365 CORRELATION WITH R/V ATHENA 5 0.963 RAD.

Figure D-4 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiment 5

Figure D-5 - Radial Distribution of the Mean Velocity Component Ratios for Experiment 5

Figure D-6 - Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment $\bf 5$

TABLE D-1

INPUT DATA FOR HARMONIC ANALYSIS FOR R/V ATHENA,
MODEL 5365, EXPERIMENT 5

	PAREUS o	556													
AMBLE	44/4	4174	44/4	44647	*****	.433	40/4	AMELE	PANTUS :	741 VT/U	40/4	AMPLE	#401US	EAP	V9/V
-1.0	1.043		847		. 476	694	471	4.6	, 456	.444	666	9.9	. 944	. 834	179
.::	.940	805 019	014	1.4	. 979	194	804	1.8	, 44.7		091	1.1	.446	.675	167
7.1	. 963		010	1.8	. 98 9	676	064	11.9	.978	642	100	1.3	. 956 . 938	. 234	137
4.4	. 954	664	652	3.3	. 465	656	947	14.8	. 94.8	~. 057	100 100	4.3	487	.015	13P 130
10.0	. 953	018	(11.5	. 444	835	549	17.0	. 996	853	111	7.4	. 924	.007	130
17.4	912	425	643 851	17.5	.979	641	077	11.0	. 998	098	114	11-4	1973	# 10	137
16.9	. 695	684	455	17.5 19.6	471	847	884	21.6	1.889	~. [49 ~. 8 47	110	11.5	. 40 9	075 037	134
14.0	. 935	158	046	19.4	, 965	648	+.846	23.0	1.010	629	-, 113	15.5	. 40 4	844	141
14.4	.957	144	577	21.5	. 464	-, 64.2	091	25.1	. 945	844	103	17.3	.915	854	144
20.4	. 975	184	-, 093	21.4	. 979	867	181 128	24.4	.963	114	115	21 - 0 23 - 5	. 937	864 864	198
22.9	1.004	1 - 1	098	27.0	1.000	134	124	11.0	1.010	131	131 129	5.4	. 464	656	157 158
55.4	1.054	141	108	29.6	1.844	114	129	20.0	1.630	165	-,179	27.5	.975	544	150
1.5 1.5	1.841	15A -, 182	- , 644 - , 698	4.05	1.848	119	124		1.514	122	116	29.8	, 44 3	171	150
24.0	1.101	143	194	19.0	1.032	167	123	51.0	1.816	173	11 *	71 - 4 31 - 4	. 446	174	178
24.8	1.093	~, 179	195	19.6	1.828	178	117	41.9	1.010	172	894	11.	. 999	-, 107	169
29.8 34.8	1.100	~.137 ~.151	944	49.0	1.162	146	199	79.0	1.036	167	845	33.0	1.004	1 05	170
70.0	1.075	163	(45	\$9.8 \$9.8	1.058	144	748 748	48.9 91.1	1.005	209	614	15.8 17.4	1.007	184	164
34.4	1.654	169	044	79.4	1.050	2 6 0	3 -	1.04.4	1.621	784 194	.012	34.4	1.017	-,189	167 159
42.4	1.085	176	671	14.8	1.842	203	617	111.2	1.024	148	. 866	41.0	1.004	114	151
54.5	1.194	**192	042	99.3	1.854	782	-010	124.0	1.874	178	.649	51.5	1.027	142	128
49.8	1.104	- 247	051	19.0	1.854	145	. 234	101.1	1.020	341	.113	61.6 71.8	1.024	168	181
79.8	1.185	258	633	129.2	1.845	157	. 477	151.3	1.036	160	. 136	41.1	1.030	-,147	075
94.8	1.196	26A 264	(17	1 34 . 1	1.034	176	.090	161.2	1.914	867	. 156	41.3	1.874	193	816
100.1	1.114	- 271	.773	150.0	1.841	804	.185	171.6	1.532	031	. 169	101.2	1.835	187	
1 19.0	1.103	~,279	.041	144.1	1.017	674	.127	191.8	1.011	.032	.163	111.2	1.042	177	. 841
124.2	1.112	223	. 846	174.4	1.016	.624	.126	201.0	1.853	.643	.147	130.0	1.641	139	.194
119.1	1.124	215	.847	144.4	1.022	.005	.173	211.4	1.875		. 148	141.0	1.014	119	- 116
167.2	1.111	151	. CPA	194.4 204.4	1.029	- 074	. 114	271.0	1.849	.114	. 193	151.6	1.633	842	- 1.56
149.0	1.117	144	. 177	214.9	1.013	- 148	.417	241.0	1.866	.154	.116	170.4	1.005	632	- 141
199.7	1.116	164	. 44 P	279.8	1.617	. 144	. 064	251.0	1.641	.175	. 678	198.6	1.041	000	. 156
159.3	1.107	643	.000	236.9 238.8	1.074	.194	. 857	761.1 771.5	1.464	146	. 868	290.A	1.042	.827	. 240
179.3	1.162	677	. 196	214.9	1.04	.109	. 846	PR1.0	1.075	. 146	000	210.0	1.039	. 006	• 142 • 131
179.3	1 - 197	671	. 096	248.9	1.010	. 1 94	.047	241.3	1.846	. 196	- 829	0.033	1.047	.111	. 115
199.6	1.117	.016	EP1.	262.4 766.8	1.871	.147	. 039	311.7	1.664	. 164	694	219.0	1.838	. 135	. 894
200.4	1.547	.101	. 643	244.0	1.030	.284	.021	319.2	1.047	.134	100	230.0 248.7	1.034	. 136	. 999
719.8	1.118	.177	. 174	254.8	1.637	.714	.047	123.2	1.348	.176	104	250.6	1.040	.169	. 051
279.4 219.8	1.110	.147	207.	264.0	1.819	. 271	611	127.1	1.857	. 174	112	268.7	1.061	.178	- 824
749.4	1.117	.206	.030	769.8 278.8	1.845	.729	017	176.6	. 443 1.004	.155	122	276.4 286.6	1.034	.187	663
254.4	1.114	. 214	. 717	244.1	1.434	.216	767	3 99. 1	. 444	311.	171	290.0	1.041	.191	676
264.3 274.0	1.126	.274	606 617	244.0	1.478	. 285	044	3 74.1	. 992	. 847	~.115	360.7	1.837	.178	043
249.7	1.112	. 213	034	300.2	1.835	.178 .156	124	341.1	1.874	. 873	132	310.0	1.032	. 1 5 5	* - 109
299.7	1.595	. 708	053	329.2	1.636	.137	136	101.1	1.613	. 877	138	3 27.0	1.039	.132	191
3 14. 1	1.107	. 176	76.5	111.2	1.009	4169	191	164.1	1.812	. 647	174	5 50 . 0	1.033	. 131	- 187
323.1	1.345	.174	093 097	3 37.7	.973	.122	131	364.0	. 997	. 892	115	2 24 . 6	1.676	.174	- 187
327.1	1.111	.178	584	319.3	.455	.677	129	394.4	. 94 3	.644	11*	329.0	1.875	.177	154 148
332.1	1-171	.114	041	343.0	- 984	.056	117	165.4	. 994	.035	110	133.6	. 95 8	.118	134
332.0	1.171	.174	595 889	344. 1	.997	. 856	110	757.8	- 96 9	.610	694	335.6	. 938	. 254	139
344.6	1.077	166	044	349.3	1.817	. 640	187 898	141.0	. 956		666	334.0	1.835	.063	130
335.0	1.041	.147	188	351.3	. 99 2	. 4 78	993		• 497	. ***	941	139.1	1.036	. 879	156 168
114.8 134.8	1.014	.144	646	75 1 . 5	. 97A	. 576	487					341.9	1.033		168
554.6	1.071	.176	044 644	144.3	. 97 1	.067	(4.1					341.1	1.036	. 61%	178
318.0	. 474	. 1 76	074	154.8 354.3	.472	001	076					342.8	1.036	.003	178
339.0	. 956	. 1 **	677	344.3	474	084	471					351.1	1,000	. 671	178 157
348.8	.947	.091	154									394.8	1.007	. 854	153
744.0	.941	.842	145 148									357.1 168.6	. 444	. 647	100
346.4	. 947		811									.04.5		. 0 34	134
344.8	. 966	.667	927												
157.9	. 948	898. 483	024												
744.0	. 99.7		010												
154.8	1.863	689	167												

LISTING OF THE MEAN VELOCITY COMPONENT RATIOS, THE MEAN ADVANCE ANGLES AND OTHER DERIVED QUANTITIES AT THE EXPERIMENTAL AND INTERPOLATED RADII FOR EXPERIMENT 5 ı TABLE D-2

ស VELOCITY COMPONENT RATIOS FOR MODEL 5365 CORRELATION WITH 8/V ATHENA PROPELLER DIAMETER = 6.00 FEET

1-WX

CIRCUMFERENTIAL MEAN LONGITUDINAL VELGCITY. CIRCUMFERENTIAL MEAN TANGENTIAL VELOCITY. CIRCUMFERENTIAL MEAN RADIAL VELOCITY. VIBER

VOLUMETRIC MEAN WAKE VELOCITY WITHOUT TANGENTIAL CORRECTION. VOLUMETRIC MEAN WAKE VELOCITY WITH TANGENTIAL CORRECTION. MEAN ANGLE OF ADVANCE. 750AR 1-NVX

BBAR

TABLE D-3 - HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL RADII FOR EXPERIMENT 5

3 >	VELOLITY COME	COMPONENT R	COMPONENT RATIOS +0 PROPELLER DIACEER =	#005L	5365 FEET	CORRELATION	ALTH R	V ATHENA
HARMONIC	HARMONIC ANALYSES OF	: LONGIT	OF LONGITUDINAL VELOCITY	F11.01°	COMPONEN	COMPONENT RATIOS	(\(\(\(\(\(\(\(\) \) \) \)	
HARMONIC =	-	2	3	-7	ហ	9	7	30
RADIUS = .456 AMPLITUDE = PHASE ANGLE =	.0421	.0330	.6235	, 6200 244.2	.0134	.0070	. 0018 254.6	.0031 99.6
RADIUS = .633 AMPLITUDE = = PHASE ANGLE =	297.7	.0241	.0004 258.8	. 0055 3.7.5	.0058 241.8	.0030	.0026	.0049 86.1
RADIUS = .781 AMPLITUDE = PHASE ANGLE =	.0248	.0185 271.4	.0079 2 80.6	. 0047 294.3	, 005° 266.2	.0004 66.4	.0010	.0013
RADIUS = .963 AMPLITUDE = PHASE ANGLE =	.0293	.0218	227.7	.0088 192.2	.0096 19 6. 2	.0095 166. 5	.0058	.0073
HAPMONIC	ANALYSES	OF LONGI	LONGITUDINAL	V. EDCITY	COMPONENT	NT RATIOS	(VX.V)	
HARMONIC =	6	10	=	·	13	4	15	د
RADIUS = ,456 AMPLITUDE = PHASE ANGLE =	.0076	.0104	.0113	. e092 111.8	.0109	.0057 98.3	.0040	.0097
RADIUS = .633 AMPLITUDE = PHASE ANGLE =	.0042	.0018	.0018	9.19	.0027	.0041	.0038 313.0	.0067 267.6
RADIUS = ,781 AMPLITUDE = FHASE ANGLE =	.0035	.0011	.6019 1.11	.6037	.0042	.0040	.0039	.0038 305.9
ANDIUS = .963 AMPLITUDE = FHASE ANGLE =	.0035	.0027 159.8	.0039	.0027 256.5	.0015	.0015	.0032 289.8	.0015

TABLE D-4 - HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 5

NA 5

V ATHEN . 739		80	.0047	.0022	.0010	.0043	.0052	.0025	.0010	.0029	.0073
WITH R/V	(\ \ \ \ \ \ \ \	7	.0107	.0079	.0047	.0004 181.8	.0023	.0012	.0013	.0035	.0058
CORRELATION	T RATIOS	9	.0121	.0106	270.0	.0059 254.6	.0036	.0010	.0007	.0648	.0095 156. 5
5365 CDF FEET	COMPONENT	ט	.0271	.0223 269.1	.0179	.0106	. 0686 243. 6	.0059	.0058 263.0	.0064	.0036 196.2
MODEL 6.00	V: LOCITY	4	.9420 255.3	.0353 256.1	25.57 25.6.0	.0151 256.3	.0071 282.6	.0051 291.3	.0044 290.9	.0043 276.8	. 6083 192.2
RATIUS FOR DIAMETER =	LONGITUDINAL	m	.0455 2 79.1	.0.388 2.7.4	.0309	2017.7	.0111 260.0	.0081 277.8	277.5	.6104 215.4	. C 156
COMPONENT PROPELLER	OF LONGI	8	.0429	.0400	.0365 269.2	.0305	.0256 260.1	.0266	.0183	.0190	. 0218 250.2
VELOCITY CON	ANALYSES D	1	. 1003 246.1	.0810 244.8	.0599	.0323	.0190 297.8	.0157	.0263 212.8	.0286 226.6	. 0293 244.1
VE	HARMONIC	HARMONIC =	RADIUS = .312 ASPLITUDE = FHASE ANGLE =	PADIUS = .350 AMPLITUDE = * FHASE ANGLE =	AADIUS = .400 AMPLITUDE = PHASE ANGLE =	FADIUS = .500 AMPLITUDE = PHASE ANGLE =	RADIUS = .600 AMPLITUDE = EHASE ANGLE =	PADIUS 3 .700 AMPLITUDE 3 FHASE ANGLE =	AADIUS = .800 AMPLITUDE = FHASE ANGLE =	RADIUS = .900 AMPLITUDE = FHASE ANGLE =	RADIUS = 1.000 AMPLITUDE = PHASE ANGLE =

TABLE D-4 (Continued)

VELOUITY COMPONENT RATIOS FOR MODEL 5365 CORRELATION WITH R/V ATHENA 5 DEPOPELLED DIAMETED - 6 ON FEET

	>	S L COLLA	PROPELLER	DIAGETER =	4 = 6.00		FEET UNACERSION WITH KAY	# Y T T M	.739
1	HARMONIC	ANALYSES	OF LONG	ITUDINAL	LONGITUDINAL VILUCITY	COMPONENT	T RATIOS	(VX/V)	
HARMONIC	= 01	G,	0	:-	÷	13	4	15	16
PADIUS = . AMPLITUDE PHASE ANGLE	= .312 JUSE = =	.0159	.0221	.0252 94.7	.0163 116.8	.0235	.0237	.0148	.0133
RADIUS = . AMPLITUSE PHASE ANGLE	= .350 JOE = ANGLE =	.0130	.0186 95.9	.0210 98.6	115.5	.0197	.0180	.0115	.0089
RADIUS ≈ . AMPLITUDE FHASE ANGLE	= ,400 UDE = ANGLE =	.0099	.0144	.0161	.0117	.0153	.0116	.0075	.0040
PADIUS = AMPLITUDE PHASE ANGL	ode = UDE = ANGLE =	.0065	.0076	.00n2	.0073	.0080	.0021	.0021	.0031
RADIUS = . AMPLITUDE PHASE ANGLE	= .600• JDE = =	.0048 H0.4	.0029	.0030	.0034	.0033	.0033	.0031	.0064
RADIUS = Amplitude Phase angl	700 UDE = ANGLE =	.0028	.0005	.0018 37.3	.0012	.0028 320.0	.0036 243.3	.0040	.0051
RADIUS = AMPLITUDE FHASE ANG	= .800 UDE = ANGLE =	.0037	.0012	.0017	.0033 305.4	.0044	.0039	.0039	.0036
PADIUS = AMPLITUDE PHASE ANGL	= .900 UDE = = ANGLE =	.0039	.0019	.0039 204.4	.0034 2×1.0	.0034	.0023	,0035 304.5	.0018
RADIUS = 1 AMPLITUDE FHASE ANGL	= 1.000 JUE = = ANGLE =	.0035	.0027	,0039 189.2	.6027 258.5	.0015	.0015	.0032 289.8	.0015

ERIMENTAL TABI

BLE	D-5 -	HARMONIC RADII FO	HARMONIC ANALYSES OF RADII FOR EXPERIMENT		TANGENTIAL VELOCITY COMPONENT RATIOS AT 5	VELOC	ITY COM	ONENT R	ATIOS AT	THE EXPE
		VEL	VELOCITY COM	COMPONENT R	RATIOS FOR MODEL DIAMETER = 6.00	0019 1300#	5365 FEET	CORRELATION WITH	WITH R/ CA =	R/V ATHENA 5
		HARMONIC	HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS	OF TANGE	INTIAL VE	001179 (COMPONENT	RATIOS	(V/1/V)	
	HARMONIC	# 211	7-	~	£~,	٠,	'n	9	1	မ
	RADIUS = . AMPLITUDE PHASE ANGLE	; = .456 .ude = ANGLE =	.2469	.0040	# 1 9 + 2 N	. (0) ; 1 ; 8 ; 9	.0021	.0008 87.3	52.0	.00:2 35.4
	RADIUS = . A:PLITUDE PHASE ANGLE	; = .633 .UDE	.2132	.0035	2.0.7	3.0 × 3.0 3.4.0 × 9.	.0021	.0013	,0017 291.8	.0030 339.6
	RADIUS = . AMPLITUDE PHASE ANGLE	; = .781 UDE = ANGLE =	.1966	.0054	.0021 200.2	2.11.1	.0023	.0013	.0016	.0011
	RADIUS = AAPLITUDE PHASE ANGLE	. = .963 .ude = = Angle =	.1877	.0082	.0025 99.1	124.0	.0032	.0036	.0022	.0022
		HARMON1C	ANALYSES	OF TANG	OF TANGENTIAL VELOCITY		COMPONENT	r RATIOS	(VI/V)	
	HARMONIC	# 01z	σ	9	-	<u>:•</u>	13	14	15	16
	RADIUS = AMPLITUDE PHASE ANG	RADIUS = .450 AMPLITUDE = PHASE ANGLE =	.0078 8.61	.0070	.0031	. 06.73 18.0	.006.2	.0036	.0023	.0018
	RADIUS = AAPLITUDE PHASE ANG	RADIUS = .633 AAPLITUDE = EPHASE ANGLE =	541.2	.0035 335.8	.0020 3 38.0	3.5.3	.0005	.0014	.0031	.0031
	RADIUS = AMPLITUBE PHASE ANGL	S = .781 TUDE = ANGLE =	.0007	.0005	.0007	.0013	.0021 214.6	.0027	.0016	.0009 195.8
	RADIUS = AMPLITUDE PHASE ANG	RADIUS = .963 AMPLITUDE = # PHASE ANGLE =	9100. 8.101	.0012	.0018	9019	.0017	.0013	.0011	.0007

HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 5 TABLE D-6

S	
ATHENA	739
WITH R/V	PS7. = 41.
VELOCITY COMPONENT RATIOS FOR MODEL 5365 CORRELATION WITH R/V ATHENA 5	
5365	FFET
MODEL	6.00
RATIOS FOR	DIAMETER -
COMPONENT	PROPELLER
VELOCITY	

	VELOCITY		COMPONENT	RATIOS FOR DIAMETER -	1300W -	5365 FEET	CORRELATION	WITH R/V	АТНЕ . 739
HARMONIC		ANALYSES		OF TANGENTIAL VELOCITY	LOCITY	COMPONENT	RATIOS	(V//V)	
HARMONIC	"	-	~	ъ	43	ហ	9	7	8
RADIUS = .31: ASPLITUDE PHASE ANGLE	0 11 11	.2862 175.4	.0148 86.7	.0011	0000.	.0075	.0060	77,00.	.0093 72. 2
RADIUS = .39 AYPLIJUDE PHASE ANGLE	.350 E = 1	.2747	.0112 89.8	231.9	.0051	.0057 115.9	0043 99.9	.005.3	.0076 65.7
RADIUS = .400 AMPLITUDE = PHASE ANGLE =		.2608	.0072	.0020 247.5	, 0043 171.0	.0038 121.4	.0024	,0036 6 5 .5	.0057 53.9
FADIUS = .500 AMPLITUDE = EHASE ANGLE =		.2371	.0028	260.8	. 0 03 4 213.0	.0013	.0003	3000° 3000°	.0036
RADIUS = .600 AMPLITUDE = PHASE ANGLE =		.2183	.0033	.0030 208.4	.0(31	.6018 235.9	.0013	.0015	.0031 345.4
RADIUS = .700 AMPLITUDE = PHASE ANGLE =	·	.2046 179.1	.0038	2, 11, Q	.0027 269.9	.0025	.0009 218.6	.0017	.0021
RADIUS = .600 AMPLITUDE = FHASE ANGLE =		.1951	.0058	.c018 240.6	.0020 294.5	.0022	.0014	.6010 357.3	.0009 355.
RADIUS = .900 AMPLITUDE = PHASE ANGLE =		.1394 176.8	.0075	.0000 70.3	.0001	.0018 154.8	.0026	.0016	.0012 88.4
RADIUS = 1.000 ACPLITUDE = PHASE ANGLE =		.1877	2000.	.0025 99.1	.022	.0032	.0038 67.3	0022 87.3	.0022 90.7

TABLE D-6 (Continued)

VELOUTY CUTPONENT RATIOS FOR MODEL 5365 CORRELATION WITH RIVIATHENA 5 PAGRELLER DIATETER = 6.00 FEET

	€:	DELLER E	PASPELLER DIATETER	11	6.00 FEET		4 K	734
T. C.	ANA. 41.85	0.0	ENTIAL VE) A.1501	TANGENTIAL VELOCITY COMPONENT	RATIOS	. ^	
	3	Ç:	11	<u>;</u> ;	5	*	ć.	\$
2.80 - 10.00 mm - 10.00 mm - 10.00 mm - 10.00 mm	<u>a</u> ! - 1	0.1 0.1 0.1 0.1	6 J	0.0100	210. 0.10	0.0 10.03 10.03	.010	0.0
₩,				•	93.0	.0081	1.000	
1 37558 35#H1	7	30.1	· ·		352.7	250.4	4. H. J	32 2
ACOUNTY ACOUNT	10101	4 T 12 12 12 12 12 12 12 12 12 12 12 12 12		Carrier Total		8:00·	1.00	3.4.3
3,175,000 3,175,000 4,175,000 1,175,		0.000.	~ ₹ % ₹	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	8.75 6.3	.0002 2010	.000. 53.0	0010 224.8
##2105 () 600 #W. 1708 ### ### ###		. 0041 340. 9	30 c. 2	4.5	6 7 5 6 6 7	0.0010	.0027	.000.8 173.4
0000 - 100000 30000000000000000000000000000000	00-30 01-89-0	.0014 244.2	2 M		2012	.0021 185.6	.6624 173.9	. 0019 178.8
#ADIDS 860 FIDELTONE - FUASS DV RE -	1030. 8.8	.0007 12H.7	\$ 4. 4.4	. 015 1+3,4	.0022	10027	.0014	.0007
44010	103.7	.0014	. € 0 1 H 142.3	7 (A)	265.3	.0022 146.9	530g.	.0006 280.1
A40175 = 1.000 A7017103E = FHASE ANG E =	, (() 14 6, 1, 5	.0012 156.8	.0018	.0019	. 0017 146.4	.0013 186.6	.0011 264.6	.0007 244.3

THIS PAGE INTENTIONALLY LEFT BLANK.

APPENDIX E

VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS

FOR EXPERIMENT 6

VELOCITY COMPONENT RATIOS FOR MODEL 5365 CORRELATION WITH R/V ATHENA 5

Figure E-1 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiment 6

VELOCITY COMPONENT RATIOS FOR MODEL 5365 CORRELATION WITH R/V ATHENA 5 0. $^{\circ}$.AD.

Figure E-2 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiment 6

VELOCITY COMPONENT RATIOS FOR MODEL 5365 CORRELATION WITH R/V ATHENA 5 0.781 R9D+ $\,$

Figure E-3 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiment 6

VELOCITY COMPONENT RATIOS FOR MODEL 5365 CORRELATION WITH R/V ATHENA 6 $$0.963\,\text{RAO}_{\odot}$$

Figure E-4 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiment 6

Figure E-5 - Radial Distribution of the Mean Velocity Component Ratios for Experiment 6

Figure E-6 - Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment $\mathbf{6}$

TABLE E-1

INPUT DATA FOR HARMONIC ANALYSIS FOR R/V ATHENA,

MODEL 5365, EXPERIMENT 6

	PADEUS .				-				BARTUS #	.781			RADIUS =	. 963	
AMGLE -1.0	. 995	011	004	AMSLE	ASA	41/4	40/4	4 MGL	41/4	VT/V	4674	AMELE	41/4	VT/V	44/4
0.4	. 944	016	105	1.1	.971	-618	~.977	-7.8	.943 .971	022	091	1.3	.986	.847	139 168
4.0	.981	~.005		19.6	. 95 4	834	081	18.9	. 979	674	09k	4.4	. 476	. 806	134
9.9	.974	007	025	21.4	. 94.0	614	AA3	14.9	. 971	039	114	21.5	. 94 1	854	147
11.0	.978	~. 6 64	025	21.5 23.5	.926	035	045 647	18.6	1.827	051	114	23.5	. 965 . 941	857	154 154
13.0	.941	006	015	25.0	. 924	114	~.120	27.0	1.008	074	104	27.5	. 95 7	029	148
14.0	.915	017	040	27.5	.974	133	~.136	27.9	1.012	655	187 185	29.1	.986	847	159
14.4	.907	691	064	29.6 29.5	1.040	114	136	25.9	.969	071	171	79.6 31.0	. 48 4	097	168 185
19.0	- 91 5	105	044	31.5	1.049	106	-,197	28 . 8	. 496	174	133	31.5	1.064	187	148
75.6	1.067	150 171	074	11.5	1.045	163	-,134	24.4 18.4	.942	177 189	13R	35.4	1.011	-, 695	178
24.6	1.039	166	093	34.5	1.051	184	-, (34	16.4	1.024	090	138	37.8	1.072	100 106	173
26.9 24.0	1.042	145	0 92	19.4	1.075	170	-,133	34.4	1.874	106	133	41.4	1.017	110	168
24.0	1.100	1 58	095	34.5	1.044	114	129	38.4	1.879	107	156	****	1.040	131 161	147
24.9	1.104	161	895	49.0	1.037	137	173	42.4	1.01	122	130	61.f	1.874	182	124
30.9	1.110	- 1 16	97	59.5	1.041	179	69A	44.8	1.017	14	110	01.0	1.843	197	064
34.A 44.0	1.110	147	09A	69.4	1.055	1 96	675	54.9 69.8	1.057	144	096	11.	1.846	199	864
47.9	1.097	155	196	74.0	1.071	214	057	74.4	1.044	204	143	44.3 101.8	1.056	203	842
.6.0	1.105	179	792	99.6	2.07A	276	009	49.0	1.671	214	004	1 69 . 2	1.035	282	. 125
49.0	1.095	190 147	098	1 (9.7	1.075	209		189.1	1.814	274 214	. 621	120.0	1.473	1 98	. 060
56.0	1.098	215	041	119.2	1.059	263 176	.045	119.0	1.045	205	.079	129.1	1.042	166	.985 .113
11.9	1.112	217		139.1	1.0 17	1 bR	. 044	129.2	1.034	176	.103	144.8	1.038	111	. 179
44.0	1.099	745	^46 061	169.0	1.044	116	. 107	1 39 - 1	1.615	152	-130	160.9	1.038	876	. 146
76.8	1.096	243	(47	158.0	1.077	C#1	.127	149.2 159.2	1.823	174	. 144	169.9	1.048	049	.157
74.4	1.107	24.5	862	174.9	1.023	683	1 11	169.3	1.844	052	.167	198.8	1.647	.015	. 154
79.8 49.8	1.291	249	76 3	144.0	1.079	.079	, <u>1</u> 2R	179.3	1.051	016	. 171	184.0	1.056	.016	. 152
99.0	1.112	275	C20 173	194.6	1.077		-171	199.9	1.347	413.	178 - 159	2 00 . 7 2 00 . 8	1-954	. 653	169
1 69.1	1.109	256	.621	2 CR.A ≥18.7	1.070	.102	. 199	249.0	1.0 2	. CAL	-156	550.6	1.839	.149	.121
109-1	1.189	-,277	.019	7 24 . 4	1.0%	- 162	. 076	719-8	1.057	.169	-143	228.7	1.049	:X:	. 184
1.18.8	1.109	- 276	.03A .057	214.7	1.033	-147	. 955	2 39.5	1.849	.137 .159	.125	248.6	1.941	• 155 • 168	.0%
1 19.2	1.105	202	. 374	744.0 254.6	1.041	.707	.031	249.6	1.064	-169	.002	260.6	1.047	.179	.061
149.7	1.101	164	. 097	250.0	1.044	.274	017	259.4	1.058	.185	. 668	260.9	1.057	-146	. 984
159,1	1.112	[A5	. 095	274.6	1.879	. 238	: 34	269.3	1.051	-195	-036	240.6	1.058	. 1 96	050
149.0	1.117	677	.039	29A.9 29A.7	1.042	.219 405.	05A 07B	279.3	1.865	.196	-017	244.9 3 00. 7	1.051	.176	045
159. 1	1-173	079	. 101	389.0	1.039	.145	102	249.3	1.859	. 195	614	309.6	1.850	.166	099
179.5	1-175	031	. 125	3 14 . 4	1.071	.165	117	544.0	1.864	.177	065	319.2	1.040	. 146	127
199.0	1.101	.055	-101	3 19 . ?	1.010	-152	115	3 19 . E	1.050	.166	073	323.2	1.441	- 140	132
239.4	1.103	. 690	407.	321.0	1.029	.159 .158	128 123	378.0	1.051	179	100	325.2	1.043	. 1 33	13A
219.0	1-115	.174	. CA5	325.2	1.813	. 145	124	325.1	1.055	.174	104	327.8	1.840	+129	146
729.4 239.5	1.114	.154	.068	127.0	1.025	.142	155	324.0	1.615	.136	114	329.0	1.042	-135	148
744.4	1.127	. 267	. 000	327.3	1.041	.140	128	331.1	1.071	.158	114	331.3	1-827	.14A	137
259.0	1.115	. 771	. 027	129.3	1.047	. 1 76	137	753.1	. 930	.143	112	134.3	, en 2	. 657	175
259.8 279.7	1.110	.279	.178	351.3	1.325	-144	~.139	354.0	1.812	.058	111	337.3	1.431	. 071	~.149
749.7	1.146	.715	026	377,3	1.053	.148	145	339.0	1.057	076	125	379.4	1.067	.092	-, 164 -, 169
294.0	1.112	.254	147	135.3	1.010	. 143	168	3 39 . 0	1.854	.076	127	341.0	1.041	.893	+.165
309.7 319.1	1.099	.145	367	337.3	- 95 7	.147	~.150	141.0 547.0	1.017	.047	131	349.1	1.872	- 986	167
320.0	1.103	156	79	119.0 341.1	. 95 9	.078	129	344.8	1.676	.645	129	350.1	. 94.9	. 555	-,167
324.0	1.111	-141	087	347.0	1.003	.055	- 124	346.4	1.877	.074	126	361.3	975	.051	148
*7A.0 3円.1	1.097	1 17	AR]	145.4	1.010	. C . 5	~.119	344.0	1.015	.CAR	125				
131.1	1.107	126	087	149.1	. 99 E	.DFA	(15	351.8	1.077	.071	127				
331.1	1.10*	.179	*47	349.6	. 992	.054	113	354.9	. 997	.036	LBR				
133.0	1.096	. 1 34	097	354.0	. 97 1	-014	079	154.0	.443		648				
114.0	1.644	.149	699	154.8	. 96.9	.004	041								
****	94.4	.157	085												
1 34 . 0	. 96 3	.149	188												
114.0	. 957 . 966	. 149	198												
161.0	971	.151	668												
141.0	- 971	. 847	157												
344.0	. 997	.013													
344.8	.997	. 074	621												
149.0	. 98 7	. 621	023												
150.7	. 974 1. 806	.075	019												
752.0	. 98 9	.002	013												
156.0	. 44 1	005	004												
354.8 354.8	7 PP .	013	086												
144.0	, 445	011	104												
140.0	44 1	0 04	205												

LISTING OF THE MEAN VELOCITY COMPONENT RATIOS, THE MEAN ADVANCE ANGLES AND OTHER DERIVED QUANTITIES AT THE EXPERIMENTAL AND INTERPOLATED RADII FOR EXPERIMENT 6 TABLE E-2

9 VELOCITY COMPONENT RATIOS FOR MODEL 5365 CCRRELATION AITH R/V ATHENA PROPELLER DIAMETER = 6.00 FEET

1.000	1.032	.001	010		1.059	13.64	1.04	15.00
006.	1.033	004				15.12	00.08	332.50
. 800	1.034	005	.017	1.0.12	1.075	16.93	1.18 80.00	-1.60 332.50
.700		001	B00.	1.073	1.091	19.14	1.79	-1.28 335.00
609.		.005	010	1.092	1.118	22.08	3.25	52 -9.1.1 -7.79 -6.17 -1.32 -2.82 -1.28 -1.60 -1.59 00 340.00 340.00 337.50 337.50 337.50 335.00 332.50 332.50
004.	1.031	600 -	503	1.121	1.161	282	3.92	337.50
.400	1.127	037	.021	1.153	1.221	34.10	5.02	-6.17 337.50
.350	1.163	056	620.	1.178	1.260	39.07	6.03	340.00
.312	1.145	072	.055	0.000	0.00.0	43.61	7.01	-9.1.1 340.00
.963	1.032	9.	ij	1.05	1.06	14.14	1.16	-1.52
.781	1.034	005	.017	1.062	1.076	17.31	1.27	-1.56 332.50
.633	1.031	900.	600	1.085	1.107	20.91	2.71	337.50
456	VXBAR = 1.092	- 020	005	1-WVX = 1.134	= 1.187	= 29.65	= 4.28 = 97.50	= -5.17
RADIUS =	VXBAR	VTBAR	VRBAR	1-W\X	1 – W.X	BBAR	BPOS THETA	BNEG

5155155 VXBBAR VRBBAR VRBBAR 1-WX 1-WX BBBAR BBDOS BNEG

CIRCUMFERENTIAL MEAN LONGITUDINAL VELOCITY.
CIRCUMFERENTIAL MEAN TANGENTIAL VELOCITY.
CIRCUMFERENTIAL MEAN RADIAL VELOCITY.
CIRCUMETPIC MEAN MAKE VELOCITY WITH TANGENTIAL CORRECTION.
VOLUMETPIC MEAN WAKE VELOCITY WITH TANGENTIAL CORRECTION.
MAN ANGLE OF ADVANCE.
VARIATION BETWEEN THE MAXITUM AND WEAN ADVANCE ANGLES (DELTA BETA PLUS).
VARIATION BETMEEN THE MINIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS).
VARIATION BETMEEN THE MINIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS).
ANGLE IN DEGREES AT WHICH CORPESPONDING BROS OR BNEG OCCURS.

A CONTRACTOR OF THE PROPERTY O

HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL RADII FOR EXPERIMENT 6 TABLE E-3

	VELOCITY COMPONENT RATILS FOR TOLEL BROS CORFELATION ALTH R.V. AMENA PROPELLER DIAVELER - 5.00 FEET	APONENT A	RATE S FO	30.00 00.00	5355 CCF	ree allow	л174 ж. л АО	V ATHEN.
1.038vH	HARBICATE ANALYSES OF LONGITUDINAL VOLUMITY COMPUTENT RATIOS (VX 2)	OF LONGIT	rubinal v	>	COMPUNE	T RATIOS		
HARMONIC	·-	2 3	3	**	ស	9	t-	හ
44D1US = 1458 4.Pel1TUDE			π.		.0135		£600.	
HASE PAGIE	3	267.7	2,5.3	٠ :	272.2	205.9	229.4	109.7
		. 0281	:	™ 0 2	8440.			.0025
FLASE STALLE	30,003	257.6	2 5	0.535	242.1	176.0	135.1	121.4
440105 - 741			ن ن ن		. 000a	0200.		
1.4.4 Jehn		255.7	2.11.3	;	210.8	66.3	272.3	210.3
100000 1000000000000000000000000000000	2. C.	.0238	220.9 10.16	- 9 	1800.	9400. 9400.	1.0097	.0079

11.50	0.10	HANTOHIC ANALYSES OF LONGITUDINAL C	CF LONGI	TUD: .A		TOTAL COMPONENT RATIOS TIVE TO	RAT105	1 × × × 1	
9140aban	и	*		10 11	,\ <u>`</u>	13	7-	15 16	16
Add 1985 - Add 1886 -	\$ 10 m		.0115 94.6	10041 10115 1118 1011 10041 10041 10041 10041 10041 10041 10041 10041 10041 10041 10041 10041 10041 10041 10041			.0025 .6023 58.2 319.7	5.6021	.0018 209.5
ASSTUS - 1633 ASSULTIOF FRASE AS LE	я н , 8 9	1467. 1407.	. 2054 1.2.9 6.21				.6011 .00.7 224.5 369.5	7, 20. 3, 808.	, 00! 0 258.7
PAD105788 ACPLITUDE : FMAEE ANGLE :	22 22 23 24 4 4 4 4 4 4 4 4 4 4 4 4 4 4	. CC 0.2 4 - 3	.3304	.(562 . 3064h 054 4.8 .167.2 .2.5.4 .).6.2	5 G 5 G	.0015 238.0	.0050 .0054 272.9 279.1	.0054	.0031
640119 = 1963 44011995 = 4	. 463	700	.0018	.0049	3 - 5 - 5 -	0013 - 0004 - 0004 - 0013 - 0004 - 0004 - 00013 - 00013 - 0004 - 0004 - 0013 -	.0016 9.65.9	.0018	.0013

ALCO FELT GRAPELATION BLY BY ATHENA 6 ALCO FELT

VELOCITY COMPONENT RATIOS FOR FROMELLER DIAMETER

HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 6 TABLE E-4

VELOCITY COMPONENT RATIOS FOR WODEL SOME COMPELATION AITH 9/V ATHENA 6 PROPELLER DIAMETER 4 6.00 FEET

	E	PROPELLER I	DIAGETER	00.0	E E) A D	.739
HARMON1C	ANALYSES	OF LONGI	TUDINAL	LONGITUDINAL VELOCITY	COMPONENT	T RATIOS	(VXV)	
HARWENIC	-	7	٣	4	S	٤	1	ω
PADIUS = .312 ATPLICUS FHASE ANDLS =	.0051 234.9	.0389	.0558 205.9	0.880.	.0254	.0196	.0208 274.9	.0098 129.2
FADIUS : .350 ATRL1700E = FHASE ANDLE =	. 0756 230.4	.0383	.0454 2 92.4	.0304 255.6	.0221	.0170	.0150	.0087
RADIUS = .400 ATPLITUDE = :	.6564 247.6	.0375	.6.538 200.0	25237	.0177	.0137 209.4	.0089 250.7	.0075
RADIUS - ,500 AUPLIUSE - FMASE ANGLE =	.0310 273.5	.0348 264.5	20 10.3	,0131 260.3	.0108 258.4	.0083 202.1	.0035	.0053
A30105600 A3011068 PHASE A301E =	. (. 565 2 - 48 - 7	.0302 258 9	.0125 234.6	.0066	.0055	.0043 186.0	.6051	.0031
RADJUS - 700 ATPLITTER - PHASE ANGLE -	. 0156 262 - 5	.0202	.0106 2 53.9	. 6055 232.5	.0058 228.2	.0016	. 0014 2.40.0	.0031
RAD105 = .869 ATCLITCTE : 5-445E ATGLE =	0.529 2.5.0	.015 0 255.0	.0119 264.3	.00. .11.	.0066	.0020	. 3034 208.8	.0049
AUDIUS - 1960 AUDITUSE - 1 FHASE ANGLE -	. (264 2 0.3	.0179	.0142 2 46.9	.0077	0000.	.0040 162.5	.0037	.0051 161.6
PADIUS - 1.600 ATPLITUDE FHASE ATGLE =	5.490 5.440 5.440	.0238	.0179	.0081 189.6	1.0091	.0080 179.9	.0097 146.8	.0079 124.9

TABLE E-4 (Continued)

9 VELOCITY COMPONENT RATIOS FOR MOREL 5365 CORRELATION WITH R/V ATHENA PROPELLER DIAMETER 8 6.00 FEET JA 34 .0056 .0033 .00.19 258.3 .0009 .0032 .00.11 253.9 .0028 274.8 .0018 294.7 9 (\ \ \ \ \ \) .0015 .0011 263.8 .0014 304.6 .0034 313.6 .0053 278.6 . 0025 321.7 .0048 .0036 205.9 5 HARMONIC ANALYSES OF LONGITUDINAL V. LCCITY COMPONENT RATIOS .0052 .0044 33.0 .00.18 39.5 320.7 .0038 274.5 .0050 271.E 256.2 4 .0112 80.4 .0090 .000H 347.3 20011 . 0016 234. 4 .0065 74.9 . 692. 59.3 .0016 223.2 3 .0075 7100.5 2100.5 . 66 cs 231. + .0158 .0133 108.7 .0114 .0037 5 .0239 114.9 9.00°. .0008 171.8 .0053 202.4 .005.6 185.0 .0205 .0132 83.8 .0182 .0161 .0137 .0100 .0069 .0026 .0007 .0018 212.0 0 .0046 38.7 .0075 .0067 68.7 .0004 97.5 .0057 .0020 3:9.4 .0011 175.5 'n, HADIUS = .800 ATPLITUDE = FHASE ANGLE = RADIUS = ,500 ATPL:TUDE = F FHASE ANGLE = .600 .400 .700 .350 6401US = .900 #MPLITURE = HADIUS = .60 AMPLITUDE FHASE ANGLE RADIUS = .70 AMPLITUDE PHANE AMGLE PHASE ANGLE AMPLITUDE HASE ANGLE HASE ANGLE PHASE ANGLE RADIUS = AMPLITUDE ATPLITURE RADIUS = PADIUS = HARWENTC

.0013

.0018 325.2

.0016 175.9

216.4

.0018 229.5

.00.19

.0018

.0033

HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL RADII FOR EXPERIMENT 6 ı TABLE E-5

				ENTIAL VE	0 11007	LNUNDOMON	HARVONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS (VITV)	(71.4)	
H44770716	٠,	-	7	ю	'7	ស	ç,	1-	æ
RADIUS = .456	56	ć	0		,		8000	0.00	, ,
PHASE ANGLE	ot to	177.7	96.8	237.9	10 to	236.1	112.0	29.60 29.60	9 M 5 5 5 7
RADIUS = .633	633		5000			000	o o		6
PHASE ANGLE	: u	176.4	105.4	2.43.2	2000	222.8	306.2	3.0.4	347.1
RADIUS = .781 AMPLITUDE =	.81	.2051	3900.	t:00.	6700.	.0014	.0012	.0023	.0007

233.0 .0043 168.3 .0024 184.5 16 .0022 305.8 .0040 143.9 .0031 V . T . V ÷5 HARIONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS .0042 .0023 180.9 .0025 194.5 7 .0061 349.9 . 0013 204. 6 .0632 5 , 0015):2:1 .0082 352.3 .0029 205.0 12 . 60% 348.8 ადია. მ27. ო 210.8 = .0072 355.8 .0024 351.8 .0022 0 .0060 355.4 34.3.3 .0014 c. RADIUS = .456 ADPLITUDE = PHASE ATOLE = RADIUS = .633 ATPLITUDE = HHASE ANGLE = RADIUS = .7m1 AGPLITUDE = FHASE AMOLE = HARMONIC

VELOCITY COMPONENT RATIOS FOR TODEL 5355 CORRELATION WITH R V ATHENA 6 PROPELLER DIAMETER = 6.00 FEET

.0021

.0026 97.9

.0027

.0027 91.6

.0024

.0006

.0107

1.13.1

RADIUS = .963 AMPLITUDE = PHASE ANGLE = Below to a selection of the second

.0006

.0005 166.3

.0014

.0016

.0012

.0013

.0010

.0015

PADIUS = .963 AMPLITUDE = = PHASE ANGLE =

HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 6 TABLE E-6

VELOUITY COMPONENT RATIOS FOR COMPUBLICAN MITHER VATHENA 6 PROPELLER DIAGETER FOR 6.000 FEET

(>-1>)	7 8	.007 .00044 26.3 89.8	•	33.7	•	. 0034 . 0033 880. 851.0	002 .0015		7 (9) (1) (9) (8) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	1000 0000
RAT105	φ	. 0042 133.5	.0031 131.0	,0013 \$8.8	. 6003 . 60	803. 803.	2012 2013		180.0	
COMPOVENT RATIOS	9	. 3533	060% 235 1	. (55). 2 of e	1.30.	227.6	20.44		121.1	
VE.G'17+ ('5	## 7 12 - 4 64 12 8	. 00 sta		36.35. 27.15.0				.(515 174.9	
TANGENTIAL VE	m	2.1.4	.0063 219.5	224.9	2.000	25	25.9.4	043 2 - 1	2 020 2 04.9	96000. 84.44
0 F	2	. соно	.0064 81.4	. 2047 88. H	. 0029 106.3	.0625	. 0045 81.5	.0070 7.87	. 005.2 97.8	.0107
444, 45ES	-	2840 172.6		15027	50 ° .	0.77.0	138	9 <u>*</u> 7. <u>7</u>	 	1972
HARMONIC	51 8008 55	842108312 377017000 24458 44308 -	273 (1708) 273 (1708) 28708 - 44308	#1010S460 #19417075 Frass Ange	000 - 00120 - 00120 - 0000 - 0	747175 - 600 479-170-6 -	##5105 . 700 #PP.177	1.010. 1.000. 1.000. 1.000. 1.000.		4357. 1.06g

FASts E-6 (Continued)

OF CHARLATION ATTHEMS OF STREET OF	· · · · · ·
40114.345° 29	•
THE PROPERTY OF STREET HAND STREET, ST	ELLER DIATETER - 19.50 FIF
	ā:::

	•	ייין זורונא פי)				
4 01% (0/8)	At 1, 1 45 S. (DE TANGE	DE TANGENTIAL VESCULITY	0 4:170	12.0% 400	S 77 17 17 17 17 17 17 17 17 17 17 17 17		
#	r*	0	11	2	.n	.1	51	٥.
	87.53% 38.53%	. 0113 0.113				.0146 544.1	900	# 5 5 7 6 7 7 7
	\$ 6. 6	6 d 6 3 6 3 6 7 8	3.7 	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		344.0	0 3 0 5 0 5	5 C
00 to 10 to		*************************************	1. d	5 5 5 4	4.092 4.092	. 500. 4.8.8	. 60,000 50,300	स्या १८५ १८५
	7 ti	5.00	, T		5 00 to 50 t	\$1.70 m	200 200 200 200 200	# B 12.2 2.3 2.4
	\$7. 9.4 1.4	6.638 8.638	9 4 0 4		1,000 1,000 1,000 1,000	. 00:7 4.5.81	197.	. 004 2 \$66.6
1000 - 10	. 100. 6.708	269.5	\$ 7 7 7 7 8	# O . C . C	. 002% 205. 3	1.0.6	1,33.8	,0034 474,9
SADIOS S SAGO ASSITTOR SHAKE ASSIES	0.00 6.00 6.00 6.00	.0024	211.2 211.2	6. C.	202.1	10024	1987	.0022 187.1
1.11.05 - 1.10.05 1.11.12 E 1.18.18 A	2003	.0019	7.037 (4.36)	187.2	4.500 1.001 3.001	.0019 :84.8	,0018 1ed.	.0011
610100 11.600 APPLITON 1 AHASE ANDE	\$ 0.	.0010	.0013	.0012	.001 173.6	. c0'4 181.7	56.00. The co	. 0006 240.4

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX F VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS FOR EXPERIMENT 8

VELOCITY COMPONENT RATIOS FOR MODEL 5365 CORRELATION WITH R/V ATHENA 9 0.456~RAD .

Figure F-1 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiment 8

VELOCITY COMPONENT RATIOS FOR MODEL 5365 CORRELATION WITH R/V ATHENA 8 $0.633\,\mathrm{RAD}$.

Figure F-2 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiment 8

VELOCITY COMPONENT RATIOS FOR MODEL 5365 CORRELATION WITH R/V ATHENA 8 0.781 RAD.

Figure F-3 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiment 8

VELOCITY COMPONENT RATIOS FOR MODEL 5365 CORRELATION WITH R/V ATHENA 8 $0.963\,\mathrm{RAD}$

Figure F-4 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiment 8

Figure F-5 - Radial Distribution of the Mean Velocity Component Ratios for Experiment 8

Figure F-6 - Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment $8\,$

TABLE F-1

INPUT DATA FOR HARMONIC ANALYSIS FOR R/V ATHENA,
MODEL 5365, EXPERIMENT 8

	GAOIVE -				#401US =	. 633							RADIUS		
AMELE	4x/4	.456 VT/V .812	VR/V 842	ANGLE	9x/9 1.007	47/V	VR/V 876	AMBLE	AT\A STOIRS =	AL\A	46/4	AHELE 8	1.425	47/V	VR/V
5.1	.996	.847	010	1.4	-997	445	~.473	-1:1	1.922	-:011 -:001	186	13.4	.963	613	136
13.1	.968	007 019	644	5.5	1.003	021	867 867	7.4	1.027	617	697 188	15.4	.967	022 036	141
17.1	.936	079	073	9.5	1.317	629	869 872	15.0	1.629	-, 643 -, 646	189 189	19.5	.987	344	145
19.2	1.812	137 171	- 100	13.6	.991	642	673 661	10.0	1.831	051	113	23.4 25.4	1.611	856	156 159
23.2	1.496	163	109	17.4	1.007	058	090 192	18. 0 21.8	1.075	652	116 116	27.6 31.6	1.023	424	156 187
27.1	1.131	124	899	19.5	1.013	846	299	22.9 24.9	1.057	026	113	33.4	1.848	844 891	186 185
30.4	1.124	119	899 896	21.8 21.5	1.004	033	897 896	26.9	.953	402	126	37.4 39.8	1.042	494 398	144
33.1 35.1	1.123	127 133	699	25.4 25.6	.464	457	172	34.4	1.054	-,090 -,091	192	41.4	1.849	104	176
38.9	1.118	149 163	696	25.5	-951 -981	584	125	36.9	1.049	187	143	43.8 51.5	1.043	116	169 153
91.1 90.9	1.117	191 215	698 648	29.0 31.4	1.043	115	141 143	18.9	1.859 1.855 1.854	117	148	59.1 59.3	1.052	151	173
59.1	1.114	216	879	33.4	1.861	894	141	51.8 58.7	1.050	142	119	47.5 75.5	1.044	168	114
47-1 75-1	1.119	239	046	33.5	1.052	894	142	59.0	1.854	164	101 601	79.1	1.054	169	699
78.7	1.135	244	845 836	37.4	1.051	163	158 155	75.0	1.055	199	858	43.4 91.8	1.859	195 198	864
83.1	1.131	268	824	41.0	1.657	116	131	4.58	1.065	4.2(8	034	99.8	1.866 1.869	568	-,611 -,613
94.8 94.7	1.136	272	063	57.A 59.B	1.065	161	10J	91.8 98.8	1.070	214	868 . 818	187.4	1.649	197 189	.817
107.2	1.129	247	.814	45.1	1.070	103	386	116.8	1.091	213	.817	119.4	1.050	106 100	.057
115.2	1.135	257 258	.631	73.4 79.4	1.075	197	867 85?	114.6	1.854	253	. 069	131.3	1.652	149	.694
173.3 131.6	1.133	243	. 848 . 863	81.5	1.678	212	846	123.1	1.054	100	. 194	139.8	1.849	146	.116
130.8	1.127	197	. 874	97.5	1.091	213	886	123.1	1.061	171	.095 -114	167.8	1.044	121	.135
167.3	1.524	176	. 144	165.4	1.041	217	.815	130.0	1.859	158 158	.115	150.3	1.858	182	+151 +157
199.3 199.3	1.173	148	-103	113.4	1.861	254	.837 .851	147.1	1.057	127	.147	171-1	1.062	642	. 162
163.6	1.125	176	-163 -167	121.0	1.063	153	.458	159.1	1.052	073	.166	170.0	1.857	016	-166 -166
179.8	1.110	633	119	137.0	1.062	153	.893	171.0	1.646	846	.171	194.8	1.849	.010	.169
163.5	1.170	019	.104	139.1	1.852	146	. 399	179.8	1.849	918	.181	190.0	1.847	-844	.156
199.5	1.114	.649	-107	153.2	1,042	104	.121	191.5	1.060	.622	.176	210.4 210.4	1.952	.662	.147
199.6 267.6	1.124	.845	.185	159.8	1.858 1.858	674	.125	199.5	1.043	.044	.174	210.7	1.040	.194	.136
219.6 219.4	1.116	.189	. 871	169.2	1.055	644	.138	215.0	1.065	.096	.155	234.9	1.857	.125 .141	.119
223.4	1.122	.134	.071	177-1	1.848	613	.137	223.1	1.059	.119	.143	238.6	1.857	.158	. 664
234.6 234.6	1.131	.101	.865	105-1	1.844	.016	.134	223.4	1.063	.117	.142	251.0	1.065	-166	.859
247.6	1.132	.198	.144	193.1	1.042	.056	.127	239.5	1.873	.152	.110	269.5	1.469	.177	.835
255.6 259.8	1.136	.212	.835	200.0	1.636	. 148	.129	247.5	1.875	.164	.848	275.8	1.664	.103	034
263.6 271.5	1.134	.217	. 576 . 664	216.0	1.870	.127	.102	255.8 259.2	1.869	.175	.878	274.8 203.4	1.050	.185 .183	81R 829
279.3	1.174	.216	009	218.9	1,326	.132	. 639	263.0	1.872	. 183	. 056	291.1	1.469	.174	852
207.5	1.139	.214	024	232.6 238.6	1.840	.178	.071	271.5 278.0	1.077	.186	.026	299.1 387.1	1.666	.173	874
290.0	1.127	.199	844	241.1	1.847	.147	. 842	279.4	1.848	.184	814	715.1	1.057	.147	115
383.4 311.7	1.174	.192	853	249.1	L.056 1.059	.261	.613	295.3	1.002	.179	837	310.9	1.044	.179	127
319.1	1.114	.158	875 874	250.7 265.1	1.065	115.	015	299.0 303.0	1.076	.170	844	329.1 327.1	1.845	.125	148
321.0	1.124	.154	677	273.1 274.7	1.859	.226	022	311.3	1.374	.151	663	320.4 331.2	1.851	-132	147
329.3 327.1	1.114	.133	011 001	200.0	1.061	.217	0 w0 259	313.2	1.846	.167	194	333.1	1.432	.187	131 135
329.2 331.4	1.171	.123	083	297.2	1.056	.781	876	319.8	1.864	.136	171	391.1	1.079	.477	159
333.2	1.125	.127	006	294.9 385.3	1.855	.194	008 095 118	321.2	1.864	-129 -125	183	367.0	1.859	. 100	165
135.2 137.3	1.427	.142	893 899	313.3 313.3	1.855	.149	116	325.2	1.064	.111	111	357.5	1.443	.479	166
330.6	1.010	.121	874	313.3 317.2	1.055	.159	108	329.4	1.076	. 136	118				
141.2	1.015	.072	894	121.3	1.841	.146	121	311.7	1.911	.171	175				
344.0	1.043	. 841	6 30 6 35	329.3	1.000	.129	139	335.1 337.1	1.647	.671	126				
347.2	1.044	.056	617	331.3 313.3	1.050	.114	141	338.9 339.1	1.805	.073	136				
393.1 397.6	1.673	.836	012	139.0 319.3	.978	.148	144	341-1	1.973	.881	176 131				
361.1 365.1	.999	.012	015	335.3 337.0	100.	.165	147	167.1	1.853	.367	(33				
*****	****	,		537.3 539.5	.914	.143	126	154.0	1.05	. 148	127				
				339.1	. 996	. 935	115	344.8	1.070	.629 113.	119				
				319.7	1.059	.639	113								
				343.3	1.024	.040	126								
				399.1	1.017	.048	117								
				897.0 399.0	. 996	.415	447								
				399.0	.996 .997 .997		001								
				369.3 369.8	1.007	-:668	474								

LISTING OF THE MEAN VELOCITY COMPONENT RATIOS, THE MEAN ADVANCE ANGLES AND OTHER DERIVED QUANTITIES AT THE EXPERIMENTAL AND INTERPOLATED RADII FOR EXPERIMENT 8 ı TABLE F-2

VELOCITY COMPONENT RATIOS FOR MODEL 5365 FROM EXP. 8 WITH PROPELLER PROPELLER 5.00 FEET 6.00 FEET JA = 739

	1.000	1.049	.001	600	1.071	1.080	13.86	.95	-1.07
	006.	1.056	004	.007	1.076	1.087	15.44	1.05	-1.66
ć	. 800	1.060	007	.017	1.081	1.095	17.33	1.36	-2.14
1	00/.	1.055	002	600.	1.090	1.109	19.53	1.95	-1.78
	. 600	1.052	.003	008	1.110	1.136	22.39	2.92	-2.85
ć L	. 500	1.086	010	002	1.141	1.180	27.16	3.78	-3.57
	. 004	1.146	036	.020	1.181	1.244	34.53	5.29	-5.52 15.00
	. 350	1.186	053	.036	1.203	1.285	39.58	6.59	
Ċ	312	1.221	069	.051	0.000	0.000	44.15	9.53	-9.63
c o	906.	1.049	.001	600	1.071	1.081	14.37	1.01	12.50
Ġ	./8/	1.059	006	.017	1.081	1.095	17.72	1.45	-2.15 332.50
c c	.633	1.047	.004	007	1.102	1.125	21.22	2.65	-2.45 337.50
	. 456	VXBAR = 1.109	=020	900. =	= 1.155	= 1.208	= 30.02	= 4.24 = 97.50	= -3.82
	#ADIUS =	VXBAR	VIBAR	VRBAR	1-WVX	1-WX	BBAR	BPOS THETA	BNEG THETA

VXBAR VTBAR VRBAR 1-WVX

IS CIRCUMFERENTIAL MEAN LONGITUDINAL VELOCITY.

IS CIRCUMFERENTIAL MEAN TANGENTIAL VELOCITY.

IS CIRCUMFERENTIAL MEAN RADIAL VELOCITY.

IS VOLUMETRIC MEAN WAKE VELOCITY WITH TANGENTIAL CORRECTION.

IS MCAN ANGLE OF ADVANCE.

IS MEAN ANGLE OF ADVANCE.

IS VARIATION BETWEEN THE MAXIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS).

IS VARIATION BETWEEN THE MINIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS).

IS ANGLE IN DEGREES AT WHICH CORRESPONDING BPOS OR BNEG OCCURS. BBAR BPOS BNEG THETA

HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL RADII FOR EXPERIMENT 8 TABLE F-3

8 WITH PROPELLER	. 739 a
S FROM EXP.	
MODEL 5365	6.00 FEET
VELOCITY COMPONENT RATIOS FOR MODEL 5365 FROM EXP. 8 WITH PROPELLER	PROPELLER DIAMETER =

	ů.	OPELLER (JIAMETER	PROPELLER DIAMETER = 6.00 FEET	FEET		# 4)	.739
HARMONIC	ANALYSES	OF LONGI	TUDINAL	VELOCITY	HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIDS	RATIDS	(\(\times \(\times \(\times \) \)	
HARMONIC	-	8	ო	4	ហ	9	7	80
RADIUS = .456 AMPLITUDE =	.0334	.0351	.0211		.0142	6600.	.0065	.0059
PHASE ANGLE =	266.3		269.0	257.4	255.5	240.3	216.8	172.9
RADIUS = .633			•		(6	
AMPLITUDE =	.0132		.0114		.0061	.0016	.0039	.0041
PHASE ANGLE =	312.9	258.2	247.8	203.1	244.7	248.0	109.4	104.1
RADIUS = .781								
AMPLITUDE = =	.0102		.0061		. 0019	.0033	.0048	.0001
PHASE ANGLE =	218.6	254.5	246.8	328.9	257.7	211.1	164.9	223.0
RADIUS = .963								
AMPLITUDE =	.0138	.0167	.0086	.0048	6900.	.0085	.0070	.0060
PHASE ANGLE =	246.1	251.9	219.6		210.7	184.3	162.7	175.0

HARMONIC	HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS (VX/V)	F LUNGI1	rud i NAL	VELOCITY	COMPONENT	RATIOS	(^ / x ^)	
HARMONIC =	6	10	Ξ	12	13	14	÷5	16
RADIUS = .456	.0061	.0082	.0086				.0027	.0027
PHASE ANGLE =	130.1	121.7	111.8	104.9	91.7	80.3	53.7	340.3
RADIUS = .633								
AMPLITUDE =	.0029	.0029	.0019				.0047	.0038
PHASE ANGLE =	68.9	106.2	90.4	310.5	257.9	272.4	260.6	272.9
RADIUS = .781								
AMPLITUDE =	6000.	.0030	.0025				.0021	.0029
PHASE ANGLE =	172.8	239.5	263.0	301.7	279.5	297.3	299.6	302.3
RADIUS = .963								
AMPLITUDE =	.0033	.0028	.0007				.0022	.0027
PHASE ANGLE =	174.2	153.2	12.0	192.4	319.5	320.5	341.1	65.8

HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 8 TABLE F-4

	VELOCITY COMPONENT RATIOS FOR PROPELLER DIAMETER =	CCMPONENT PROPELLER O	RATIOS F DIAMETER	FOR MODEL	MODEL 5365 FR 6.00 FEET	FROW EXP.	8 WITH 9	PROPELLER . 739
HARMONIC	ANALYSES	OF LONGI	FUDINAL	EDNGITUDINAL VELOCITY COMPONENT	COMPONEN	IT RATIOS	(\(\times \) \) \)	
HARMONIC		8	ო	4	ι'n	9	7	ω
RADIUS = .312 AMPLITUDE = PHASE ANGLE =	2 .0775 = 241.8	.0380	.0343	.0393 269.4	.0235	.0247	.0235	.0153
RADIUS = .350 AMPLITUDE = PHASE ANGLE =	0 = .0630 = 246.3	.0376	.0303	.0321	.0208	.0201	.0181	.0120
RADIUS = .400 AMPLITUDE = PHASE ANGLE =	0 = .0470 = 254.2	.0367	.0256	.0238 263.4	.0175 258.6	.0148	.0119	.0085
RADIUS = .500 AMPLITUDE = PHASE ANGLE =	0 = .0257 = 278.5	.0334	.0181 2 63.8	.0112	.0118	.0068 242.8	.0035	.0049
RADIUS = .600 AMPLITUDE = PHASE ANGLE =	0 = .0157 = 307.4	.0283	.0128	.0041	.0074	.0023	.0034	.0043
RADIUS = .700 AMPLITUDE = PHASE ANGLE =	0 = .0073 = 263.8	.0194	.0083 249.9	.0015	.0035	.0022	.0037	.0016 88.7
RADIUS = .800 AMPLITUDE = EHASE ANGLE =	.0110	.0139	.0059	.0023 329.8	.0018	.0037	.0051	.0005
RADIUS = .900 AMPLITUDE = PHASE ANGLE =	0 = .0131 = 224.5	.0138	.0065 22 7.8	.0009	.0037	.0063	.0064 168.0	.0031
RADIUS = 1.000 AMPLITUDE = PHASE ANGLE =	.0138	.0167	.0086 219.6	.0048	.0069	.0085	.0070	.0060

TABLE F-4 (Continued)

8 WITH PROPELLER JA = .739 .0068 .0043 .0026 33.4 .0037 .0036 285.9 .0027 .0016 .0027 9 $(\Lambda/\chi\Lambda)$.0175 .0128 63.3 .0008 .0043 260.6 .0032 .0020 .0020 ī HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS VELOCITY COMPONENT RATIOS FOR MODEL 5365 FROM EXP. PROPELLER DIAMETER = 6.00 FEET .0196 80.8 .0149 81.0 81.0 .0014 74.3 .0033 .0039 .0034 .0024 .0015 14 .0198 .0157 .0109 88.6 .0035 .0015 .0031 .03**2** .0021 .0008 13 .0200 .0164 .0122 .0052 .0005 .0026 .003. 299.i .0026 .0025 2 .0162 .0140 .0113 .0067 107.8 .0029 96.1 .0009 .0026 **2**64.0 .0018 .0007 _ .0120 .0101 .0068 .0039 106.4 .0013 .0032 .0025 .0028 .0137 0 .0148 .0119 .0087 .0047 .0012 .0012 .0025 .0033 .0032 თ .600 .312 = = .350 = E .800 900 H H RADIUS = 1.000 RADIUS = .700 AMPLITUDE = : PHASE ANGLE = RADIUS = .400 AMPLITUDE = : PHASE ANGLE = : RADIUS ± .500 AMPLITUDE : PHASE ANGLE : RADIUS = .600 AMPLITUDE : PHASE ANGLE : AMPLITUDE PHASE ANGLE RATIUS = .80 AMPLITUDE PHASE ANGLE PADIUS = .3: AMPLITUDE PHASE ANGLE RADIUS = .90 AMPLITUDE PHASE ANGLE PHASE ANGLE RADIUS = AMPLITUGE HARMONIC

RADII FOR EXPERIMENT 8

E.R

	>	VELOCITY COMPOVENT RAYIOS FOR MODEL 5365 FROM EXP. 8 WITH PROPELLE PROPELLER DIAMETER = 6.00 FEET JA = .739	NPONENT PELLER D	COMPONENT RAKIOS FUR MODEL 5365 PROPELLER DIAMETER = 6.00 FEET	.∪R MODE = 6.00	L 5365 FR	OM EXP.	8 WITH 18	ITH PROPELLE JA = .739
HAR	ONONIC	HARBONIC ANALYSES OF TANGENTIAL VELOCITY COMPOVENT RATIOS	OF TANGE	ENTIAL VE	1001TY	COMPONENT	RATIOS	(V1/V)	
HARMONIC	н	-	'n	м	4	ហ	Q	7	æ
RADIUS = AMPLITUDE	.456	.2463	.0063	.0016	. 0042	.0033	.0035	.0026	.0032
PHASE ANGLE	H LE	175.1	82.8	193.0	157.1		132.0	97.0	64.6
RADIUS = .633 AMPLITUDE =	. 633	.2161	.0029	.00.15	.0031	.0023	8100.	1100.	1100.
PHASE ANGLE	# W	177.0	358.5	269.0	240.0	255.7	234.6	270.7	329.6
RADIUS = .781	. 781	1981	.0070	,0035	,0022		.0011	. 0011	.0003
PHASE ANGLE	w L	174.9	6.99	316.7	263.9	271.5	241.2	268.5	130.9
RADIUS = .963	.963		ti C	000	6		6	9	0
AMPLI I UDE PHASE ANGLE	# # []	0.671	82.3	140.3	136.4	125.5	115.0	114.7	112.2

HARDO	ONIC	ANALYSES	OF TANGE	ENTIAL	VELOCITY	HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS (VT/V)	RATIOS	(V1/V)	
HARMONIC	n	თ	10		11 12	13	4	15	91
RADIUS = .456 AMPLITUDE = PHASE ANGLE =	456 ==	.0042		.0059 7.5	.0048 .0059 .0055 27.5 7.5 7.0	.0045	.0035	.0023	.0019
RADIUS = .633 AMPLITUDE = PHASE AMGLE =		.0018	333.8	305.0	.0008	.0012	.0021	.0025	.0023
RADIUS = .781 AMPLITUDE = PHASE ANGLE =	. " "	.0008	.0009 .0017	.0017	192.9	.0024	.0020	.0017	,0010
RADIUS = .963 AYPLITUDE = =	636	. 0011	.0011 .0016 .0017 .0017 .727 4 .727	7100.	7100.	.0022	.0018 .0018		.0009

MICROCOPY RESOLUTION TEST CHART

HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 8 TABLE F-6

	LOCITY CO		RATIOS F IAMETER	FOR MODE 2 = 6.00	MODEL S365 FROM 6.00 FEET	OM EXP.	8 WITH P	WITH PROPELLER JA = .739
HARMONIC ANALYSES	10		NTIAL VE	ELOCITY	OF TANGENTIAL VELOCITY COMPONENT	RATIOS	(V1/V)	
-		7	m	4	ស	9	2	co
.2789		.0231	.0085	.0110	.0095	.0104	.0086 96.0	.0093
.2695		.0176	.0058	.0087	.0075	.0082	.0068	.0073
.2580		91.8	.0029	.0062	.0052	.0057	.0047	.0051
.2379	•	.0035 64.5	.0025 2 36.9	.0032	.0023	.0022	.0014	.0021
. 2210 . 177.0	• m	.0027 356.6	.0043 263.5	.0030	.0021	.0017	.0007	.0012
.2065 .	•	.0044	.0040	.0028	.0023	.0017	.0013	.0004
.1967	•	.0075 69.2	.0033	.0019 262.7	.0016	.0010	.0010	.0004
.1921	•	.0093	.0014	.0010	.0006 165.8	.0010	.0005	.0010
. 1919 .	•	.0096 82.3	.0008	.0029	.0022	.0022	.0016	.0012

TABLE F-6 (Continued)

₩ >	VELOCITY COMPONENT PROPELLER	HELLER C	DIATETER =	3R M33E। = 6.00	MODEL 8365 FR 6.00 FEET	FROM EXP.	8 X 13 8 8 1 4 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3	PROPELLER : .739
HARMONIC	ANALYSES	OF TANGE	TANGENTIAL VE	VELOCITY (COMPONENT	RATIOS	(V1/V)	
HARMONIC	თ	0	1.1	12	13	4	51	16
RADIUS = .312 AMPLITUDE = PHASE ANGLE =	.0087	.0108	.0132	.0145	.0127	.0127	.0110	.0081
RADIUS = .350 AMPLITUDE = PHASE ANGLE =	.0073	.0090 36.9	.0110	7.8	,0103 359.8	.0098 338.6	,0083	.0059
RADIUS = .400 AMPLITUDE = PHASE ANGLE =	.0057	.0069	.0084 13.1	.0086	.0073	.0066 338.8	.0052	.0036
RADIUS = .500 AUPLITUDE = PHASE ANGLE =	.0034	.0035	.0043	.0035	.0027	.0015	.0007	.0016
RADIUS = .600 AUPLITUDE = PHASE ANGLE =	.0021	.0013	331.4	.0002	.0005	.0015	.0021	.0023
RADIUS = .700 AMPLITUDE = PHASE ANGLE =	.0011	.0003	.0007	.0016	9100.	.0020	.0020	.0013
RADIUS = .800 AMPLITUDE = PHASE ANGLE =	.0007	.0011	9100.	.0022	.0024	.0020	.0017	.0010
RADIUS = .900 AMPLITUDE = PHASE ANGLE =	.0008	.0015	.0020	.0021 183.8	.0024	.0019	.0017	.0009
RADIUS = 1.000 AMPLITUDE = PHASE ANGLE =	.0011	.0016	.0017	.0017	.0022	.0018	.0018	.0009

THIS PAGE INTENTIONALLY LEFT BLANK.

APPENDIX G VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS FOR EXPERIMENT 19

SHALLOW WATER WAKE SURVEY MODEL 5365 POST CAL NOV 78 EXP 19 $0.456\ \mathrm{RAD}$.

Figure G-1 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiment 19

Figure G-2 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiment 19

Figure G-3 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiment 19

SHALLOW WATER WAKE SURVEY MODEL 5365 POST CAL NOV 78 EXP 19 0.963 RAD.

Figure G-4 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiment 19

Figure G-5 - Radial Distribution of the Mean Velocity Component Ratios for Experiment 19

Figure G-6 - Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 19

INPUT DATA FOR HARMONIC ANALYSIS FOR R/V ATHENA, MODEL 5365, EXPERIMENT 19

TABLE G-1

ANGLE	RADIUS :	-456 VT/V	VR/V		RADIUS				RACTUS				RADIUS		
-2.0	.954	.429	624	-5.9 9.30	48/4 1.814	. 166	056	ANGLE	AXAA	41/4	VR/V	AWGLF -2.9	.993	47/V	VR/V
<u>:-:</u>	.952	.814	824	1.1	.967	014	843	-2.6	1.031	015 016	121	i.i	.950	.855	132
7.6 18.9	.948	866	646	1.0	1.003	017 032	639 639	.7.0	1.038	~.875	197	1.4	.901	.057	116
14.9	.952	067	654	1.9	1.011	042	637	10.9	1.842	862	111 115	7.5	.978	.632	118 187
16.9 19.8	.954	063 110	8% 877	12.6	1.051	258	842	16.9	1.844	062	119	12.6	.941	.006	187
21.8	- 447	146	896	16.8	1.042	-, 855 -, 858	854 862	19.0	1.859	878	122	16.8 10.9	.945	829	198
22.9 24.9	1.845	162 149	101 094	19.0	1.948	855	062	22.9	1.892	861	178	19.6	.956	8 28	110
26.9	1.126	136	844	55-0	1.051	~. 0 46 ~. 0 31	063 065	24.9	1.877	#27 #54	122	22.6	.953	446 462	114
76.6 36.4	1.116	136 139	045 645	24.0	1.706	638	878	28.0	.985	144	154	24.0	.904		125
32.9	1-100	~.147	119	26.8 24.7	.952	078	007 102	38.9 32.9	1.863	137	163	26.5 26.7	.979	444	121
34.9 36.9	1.106	153 156	093	30.0	1.004	105	199	34.4	1.869	120	166 162	36.6	.915	124	133
39.0	1.073	162	694 106	32.0	1.046	092 009	111 1 00	36.9 39.8	1.441	126	108	36.6	1.006	699	147 147
46.4	1.091	173 184	102	36.7	1.862	894	107		1.062	141	154	36.7	1.020	899	145
40.9	1.092	195	198 998	30.0	1.003	899 184	184 182	45.8	1.843	155	145	36.0	1.023	182 187	141 138
52.9 56.9	1.046	2(5	894	44.8	1.886	1 16	093	52.9	1.066	174	137	44.5	1.031	116	126
66.6	1.007	225	090	92.0	1.485	178 178	8% 878	56.4	1.077	-,193	122	48.9 52.8	1.637	127	116 107
44.9 68.8	1.043	237	675	56,8	1.090	147	070	64.9	1.079	197 199	-,109 -,099	56.6	1.646	146	897
72.9	1.062	252	048 059	64.8 64.7	1.692 1.689	159	062	68.1	1.700	263	607	68.A 66.7	1.057	153	104
76.5	1.887	259	851	64.1	1.007	166 170	854 847	72.9 74.8	1.094	212	875 962	68.8	1.050 1.063	167	874
88.9 84.7	1.043	266 278	042	72.0	1.076	166	848	88.9	1.103	222	~.848	72.8 74.7	1.061	172	856
#8.6	1.095	273	626	44.6	1.000	198 196	033	84.9 88.8	1.115	225	633 016	80.0	1.079	161 185	823 834
96.8	1.090	274 26 9	013 661	84.7	1.875	262	619	96.6	1.136	227	.817	84.7	1.090	185	884
112.9	1.073	261	. 897	96.7	1.069	207	614 686	194.9 112.9	1-146	226 228	.051	96.7	1.116	187 189	. 816
121.0	1.897	-,249 -,229	.033	184.6	1.075	212	. 141	121.0	1-120	289	.867	104.6	1.100	100	. 845
134.7	1.699	200	.847 .848	112.6	1.043	287 199	.045 .043	128.8 136.0	1.112	197	-000	112.4	1.888	183 178	.872
144.9	1.090	100	. 876	120.0	1.644	186	.106	144.9	1.005	162	.197 .122	178.0	1.875	154	.122
141.0	1.043	153 121	. 841 . 848	136.6	1.643 1.631	166	-150	153.1 161.8	1-111	179	-143	136.8 144.6	1.872	136	-139
177.0	1.696	666	. 696	192,5	1.829	125	.135	166.0	1.110	102	.152	157.5	1.063	[14	.172 .172
100.0	1.894	651 633	.092	140.6	1.033	892	.195	177.0	1-116	439	.144	168.6 168.6	1.049	964	-193
104.0	1-102	622	.090	176.6	1.033	864	.165	106.0	1.195	822	.145	176.6	1.874	875	•198 •195
190.2	1.091	80 S	. 864	192.6	1.625	006	.144	109.2	1.120	011	-166	104.4	1.000	.129	. 194
205-1	1.099	.071	.879	200.6	1.070	.022	.164 .150	196.8	1.114	.056	.163 .166	192.4	1.053	.965	. 194 . 188
211.2 221.2	1.092	.699 .138	. 072	216.4	1.010	. 656	.156	812.0	1.000	-88Z	-148	500-6	1.866	.863	- 196
250.5	1.697	.153	. 852	200.6 214.4	1.895 1.893	.113	-199 -138	\$21.2 \$20.0	1.000	.189	.135	200.4 214.4	1.023	.000 .114	.170
237-1 245-1	1.196	.175	.036	224.6	.992	.100	.126	237-1	1.005	. 146	.194	220.6	1-014	.135	.192
293-1	1.444	.193	. 826	232.6 24 0. 6	.983 .987	.166	-111	245.1 251.1	1.961	.159	. 867	232.6	1.009 1.009	• 154 • 167	-133 -112
****	1.004	.216	~.663	246.4	.994	.195	.072	260.9	1.000	.178	. 851	248.8	1.014	-179	.892
	1.000	.221	014	254.6 264.6	1.001	.211	. 632 . 632	268.6 272.8	1.892	.104	.847	256.6	1.015	•186 •194	.045
	1.097	.222	827	272.5	•983	.213	000	277.0	1.879	.168		272.5	1.021	-197	.022
<84.0	1.895	.221	634	274.5 200.0	.996 1.818	.213 .211	011	284.0	1.847 1.862	.107	6.450	276.5	1.463	· 196 • 193	.040
292.5	1.090	.214	~.647	204.6	1.013	.289	653	218.8	1.095	.104	626	284.6	1.029	.192	0.000
296.8	1.076	.210	857 864	248.6	1.027	.285	020	292.8 296.8	1.636	-104	049	200.4	1.824	-167	
301.4 304.6	1.074	. 196	~.871	296.6	1.033	.196	678 645	301.0	1.076	.101	076	294.6	1.000	-105	035 040
300.0	1.071	. 189 . 175	878 884	304.6	1.931 1.943	-194 -187	895	304.0	1.020	-169	899	360.6	1.000	-179	064
312.0	1.474	. 267	~. 090	364.0	1.045	.170	861 878	312.4	1.024	.160	112	300.0	.999	.17? .168	074
310.0	1.005	.197	095 096	111.1	1.023	-172	677	316.4	1.035	.143	122	311.1	.998	-167	009
320.0	1.071	.156	*. 575	312.7 314.9	1.845	-176 -163	276 085	328.A 324.4	1.433	.132	128 148	312.7	1.091	.148 .158	896 899
332.9	1.492	.120	074	319.1	1.037	.151	096	324.9	1.435	.124	148	319-1	1.000	-158	110
324.9	1.070	.119	~-100	322.9	1.843	-192	898 895	120.0	1.036	.127	147	322.9 322.9	1.010	.147	111
334.1	1.076	.139	199 198	326.9	1.044	-129	102	134.9	.914	.061	156	324.9	1.007	-131	125
240.7	.964		~.078	330.0 331.0	1.855	.124	110 100	336.6 336.9	1.050	.814	133	320.0 331.9	1.009	.146	137 135
343. 0 343.0	1.000	.061 .061	057	334.0	1.836	.147	126	340.9	1-937	.073	178	934.8	.914	.065	197
344.7 390.0	1.614	.050	057 052	179.1 343.1	.93 <u>1</u> 1.636	-801 -837	165	343.0	1.044	.671	160	779. <i>8</i> 343.6	1.030	.093	134
390.0	.901	.048	041	344.0	1.022	.857	900 900	346.9	1.039	.071	158 157	348.0	1.010	.098	139 143
390.0	.994	.030	827	354.0 358.2	.993 .997	.819	862	350.6	1.076	.050	198	354.8 355.2	.994	.879	136
			****	347.1	1.516	.612	061	394.4	1.832	.98. 71 9. -	138	197.1	.993	.976 .972	1% 1%
				300.0	-967	15	043					366.8	. 958	-055	181

LISTING OF THE MEAN VELOCITY COMPONENT RATIOS, THE MEAN ADVANCE ANGLES AND OTHER DERIVED QUANTITIES AT THE EXPERIMENTAL AND INTERPOLATED RADII FOR EXPERIMENT 19 1 TABLE G-2

1 3 4.0

. 739 SMALLOW WATER WAKE SURVEY MUCEL 5365 POST CAL NOV 78 EXP 19 PROPELLER DIAMETER = 6.00 FEET

1.000	1.034	.01	.023	1.066	1.078	13.64	1.73	-1.53 335.00
006.	1.083	005	.010	1.071	1.085	15.55	1.89	-2.33 332.50
. 800	1.081	017	. 003	1.070	1.087	17.71	2.16	-3.05 332.50
.700	1.063	012	.010	1.068	1.089	19.73	2.39	-2.32
.600	1.032	001	.021	1.080	1.107	22.02	2.80 72.50	-2.46 272.50
. 500	1.055	012	. 005	1.108	1.150	26.51	3.34	-3.09
.400	1.113	038	031	1.149	1.21	33.76	9.56 92.50	 6.00
_								
.35(1.155	057	056	1.173	1.260	38.89	7.60	-8.08 357.50
.312	1.193			0.000 1.173	0.000 1.260	43.57 38.89	10.18 7.60 25.00 25.00	-8.08 357.50
	1.193				1.077 0.000 1.280	14.14 43.57 38.89	10.18 25.00	-10.63 -8.08 7.50 357.50
.312	1.193	073	.023078	0.000	0.000	43.57	2.21 1.82 10.18 7.60 105.00 90.00 25.00 25.00	-8.08 357.50
.963 .312	1.034 1.193	.011073	.023078	1.065 0.000	1.077 0.000	14.14 43.57	1.82 to.18 90.00 25.00	-1.59 -10.63 -8.08 335.60 7.50 357.50
.781 .983 .312	1.080 1.034 1.193	017 .011073	.003 .023078	1.065 1.065 0.000	1.082 1.077 0.000	18.10 14.14 43.57	105.00 90.00 25.00	-3.04 -1.59 -10.63 -8.08 332.50 335.00 7.50 357.50

CIRCUMFERENTIAL MEAN LONGITUDINAL VELOCITY.

CIRCUMFERENTIAL MEAN TANGENTIAL VELOCITY.

CIRCUMFERENTIAL MEAN RADIAL VELOCITY.

VOLUMETRIC MEAN WAKE VELOCITY WITH TANGENTIAL CORRECTION.

VOLUMETRIC MEAN WAKE VELOCITY WITH TANGENTIAL CORRECTION.

MEAN ANGLE OF ADVANCE.

VARIATION BETWEEN THE MAXIMUM AND MEAN ADVANCE ANGLES (DELTA BETA PLUS).

VARIATION BETWEEN THE MINIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS).

ANGLE IN DEGREES AT WHICH CORRESPONDING BPOS OR BNEG OCCURS. VXBAR VYBAR VRBAR 1-WX 1-WX BBAR BBAR BRAR THETA

HARMONIC ANALYSES OF LONCITUDINAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL RADII FOR EXPERIMENT 19 TABLE G-3

CONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS (VX/V) 456 456 456 456 456 456 457 456 456			PROPELLER DIAMETER =	E SURVEY DIAMETE	<u> </u>	L 5365 POST 6.00 FEET	CAL NOV 78	EXP 1	9 .739
## 1 2 3 4 5 6 7 7 ## 267.6	HARMONIC	ANALYSES	Ę	TUDINAL	VELOCITI	COMPONE			
		-	Cf	ო	4	'n			•
### 10350	RADIUS = .456 AMPLITUDE = PHASE ANGLE =				.0223	.0153	.0138	. 0117	.0022
### 1.0456	RADIUS633 AMPLITUDE .	•	.0114	.0179	.0077	.0050	.0026	00000	.0024
### 311.5 239.9 114.6 190.6 174.8 190.7 10042 ##################################	RADIUS = .781 AMPLITUDE = PHASE ANGLE =		.0139 285.1	.0031 135.3	.0144	.0073	.0017	.0020	.0015
### SHALLOW WATER WAKE SURVEY MODEL 5365 POST CAL NOV 78 EXP 19 PROPELLER DIAMETER = 8.00 FEET JA = NIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS (VX/V) 1			.0247	233.9	.0110	190.6	.0074	.0042	.0053
## 9 to 11 12 13 14 15 456 456 .0035 .0058 .0063 .0073 .0047 .0030 .0035 ## 126.4 149.5 108.4 95.5 88.6 87.4 68.8 633 .0022 .0047 .0005 .0038 .0032 .0044 .0062 ## 27.5 65.3 132.0 247.1 216.8 244.1 228.4 ## 175.5 255.7 213.2 279.9 258.8 303.7 308.2 ## 383.6 149.5 228.7 275.0 261.0 248.6 239.3	•	SHALLOW WA	WAKE		MODEL 53		CAL NOV :	EXP	
456 .0035 .0058 .0063 .0073 .0047 .0030 .0035 833 .0022 .0047 .0005 .0038 .0032 .0044 .0062 27.5 85.3 132.0 247.1 216.8 244.1 228.4 781 .0037 .0019 .0041 .0032 .0041 .0033 .0014 175.5 255.7 213.2 279.9 258.8 303.7 308.2 983 .0032 .0048 228.7 275.0 241.0 248.6 239.3	HARMONIC	ANALYSES	DF LONGI	TUDINAL	VELOCITY				
#56 .0035 .0058 .0063 .0073 .0047 .0030 .0035 83.8 83.8 87.4 68.8 83.3 .0022 .0047 .0005 .0038 .0032 .0044 .0062		6	0	=	12	13	,	ř.	4
633 .0022 .0047 .0005 .0038 .0032 .0044 .0062 .781 .0037 .0019 .0041 .0032 .0041 .0033 .0014 .0062 175.5 255.7 213.2 279.9 258.8 303.7 308.2 982 .0032 .0043 .0027 .0023 .0035 .0041 88.8 149.8 228.7 275.0 261.0 248.6 239.3 :	RADIUS = .456 AMPLITUDE = PHASE ANGLE =	.0035	.0058	.0063 108.4	.0073	.0047	.0030	.0035 8.8	0015
781 10037 .0019 .0041 .0032 .0041 .0033 .0014 175.5 255.7 213.2 279.9 258.8 303.7 308.2 982 0032 .0028 .0043 .0027 .0023 .0035 .0041 88.8 149.8 228.7 275.0 261.0 248.6 239.3	RADIUS = .633 AMPLITUDE = PHASE ANGLE =	.0022	.0047	.0005	.0038	.0032	.0044	.0062	.0059
962 .0032 .0028 .0043 .0027 .0023 .0035 .0041 88.6 149.5 228.7 275.0 261.0 248.6 239.3	TUDE ANGL	.0037 175.5	.0019	.0041	. 0032	.0041	.0033	.0014	.0019
	RADIUS = .963 Amplitude = Phase angle =	.0032	. 0028 149.5	.0043 228.7	.0027	.0023	.0035 248.6	.0041	.0021

HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 19 TABLE G-4

	SHALLOW WA	ITER WAKE	SURVEY DIAMETE!	WATER WAKE SURVEY MODEL 5365 POST CAL NOV PROPELLER DIAMETER = 6.00 FEET	L 5365 POST C/ 6.00 FEET	91 NON 18	EXP 15	.739
HARMONIC	ANALYSES	DF LONGI	TUDINAL	LONGITUDINAL VELOCITY	COMPONENT	RATIOS	(VX/V)	
HARMONIC	-	8	ო	4	'n	9	7	80
RADIUS = .312 AMPLITUDE = PHASE ANGLE =	.1565	.0505	.0042 302.8	.0259 260.8	.0342	.0422 253.8	.0337	.0049
RADIUS = .350 AMPLITUDE = PHASE ANGLE =	.1150	.0424	.0094	.0257	.0283	.0334	.0270	.0035
RADIUS = .400 AMPLITUDE = PHASE ANGLE =	.0691	.0332 280.8	.0153	.0246	.0215 254.6	.0233	.0191	.0024
RADIUS = .500 AMPLITUDE = PHASE ANGLE =	.0165 318.8	.0198 272.1	.0215	.0197	255.9	.0078	.0070	.0024
RADIUS600 AMPLITUDE .	.0327	.0126	.0201 2 63.8	.0112	, 0058 258.8	.0011	.0008 118.5	.0024
RADIUS × .700 AMPLITUDE *	.0328	.0122	.0054	.0064	.0068	91.16	.0024	.0004
RADIUS800 AMPLITUDE	.0480	.0143	.0037	.0153	.0072	.0020	.0018	.0019
RADIUS900 AMPLITUDE .	.0514	.0184	.0064	.0147	.0061	.0049	.0019	.0040
RADIUS * 1.000 AMPLITUDE *	.0470	.0247	233.9	.0110	.0065	.0074	.0042	.0053

TABLE G-4 (Continued)

.0058 18.8 .0032 .0061 .0014 28.0 .0025 .0021 29.3 . 739 9 SHALLOW WATER WAKE SURVEY MODEL 5365 POST CAL NOV 78 EXP 19 PROPELLER DIAMETER = 6.00 FEET (VX/V).0242 52.8 .0012 .0058 225.9 .0026 246.7 .0014 239.3 HARMONIC AMALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS .0168 .0039 .0033 .0033 .0029 .0035 .0074 .0011 .0080 .0023 .0148 .0116 68.8 .0029 .0027 .0037 243.8 .0042 260.7 .0035 5 .0032 282.0 .0030 .0027 .0196 85.7 .0132 88.7 .0036 .0029 .0034 264.8 .0251 5 .0012 99.2 .0023 205.6 214.4 .0048 221.4 .0043 228.7 121.3 118.4 114.1 103.4 .0192 176.4 .0049 33.6 .002**2** 250.8 .0021 209.9 .0028 149.8 118.8 .0032 156.9 .0003 1.81.4 .0023 31.3 167.2 .0039 146.7 RADIUS = .900 AMPLITUDE = # PHASE ANGLE = RADIUS = 1.000 AMPLITUDE = PHASE ANGLE = MADIUS = .400 AMPLITUDE = PHASE ANGLE = RADIUS = .500 AMPLITUDE = PHASE ANGLE = RADIUS . . 600 AMPLITUDE .. PHASE ANGLE .. RADIUS . .700 Amplitude ... Phase angle ... PHASE ANGLE .. RADIUS = .31: AMPLITUDE PHASE ANGLE RADIUS = .35 Amplitude Phase angle HARMONIC

HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL RADII FOR EXPERIMENT 19 TABLE G-5

HARM	ONIC	HARMONIC ANALYSES OF		NTIAL VE	LOCITY (TANGENTIAL VELOCITY COMPONENT	RATIOS	(V1/V)	
HARMON I C	•	-	8	6	•	ſΩ	9	,	∞
RADIUS = Amplitude Phase angle	80	.2496	. 0040 4.4	.0044	.0045	.0055	.0038	.0027 99.6	.0024
RADIUS = .(AMPLITUDE PHASE ANGLE	.633	.2115	310.4	266.9	.0063 244.5	.0045	.0026 245.9	.0026	.0012
RADIUS AMPLITUDE PHASE ANGLE	.781	174.8	10030	207.0	. 0013 254.5	. 0017 298.7	.0021	.0023	.0020
RADIUS = Amplitude Phase angle		1941	4.	10032	.0054 104.2	.0034	.0052	.0025 68.8	.0046
	•	SHALLOW WA.		SURVEY	MODEL 5:	MODEL 5365 POST (IL NOV	8	. 739
HARMONIC		HANMUNIC ANALYSES OF		ENTIAL V	12	TANGENTIAL VELOCITY COMPONENT 0 11 12 13	14	15 (1/V)	5
RADIUS = AMPLITUDE PHASE ANGLE	4. A	.0029 29.6	28.2	18.1	.0036	.0036	10.2	. 0020 354.6	.0005
RADIUS = . AMPLITUDE PHASE ANGLE	. 633	.0014	.0010	111.4	.0010	.0025	.0025	.0032	.0022
RADIUS AMPLITUDE PHASE ANGLE		.0014 325.7	100.	.000 121 8.12	151.3	.0021	.0035	. 0018 208.6	9.061
RADIUS AMPLITUDE PHASE ANGLE	3	00. 21.4	6100.		0000	9100.	20012	. 00.0 1.00.0	. 0014 8. 188

HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 19 TABLE G-6

	. 739
19	;1
9. 1.	JA :
(5	
100 TB EXP 19	
CAL	
-	ET
5365 POST	9.00
MODEL	A = 6.00 FEET
CRVEY	AMETER
WAKES	LER DI
WATER	PROPEL
SHALLOW WATER WAKE SURVEY MODEL	

HARMONIC	ANALYSES	OF TANG	ENTIAL	VELDCITY	HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS	RATIOS	(V1/V)
HARMONIC .	-	~	e	4	ĸ	9	7
RADIUS = .312 AMPLITUDE = PHASE ANGLE =	.3109	.0379	.0228 124.5	.0202	.0224	.0131	.0121
RADIUS = .350 AMPLITUDE = PHASE ANGLE =	176.4	.0268	.0167	.0148	.0170	.0102	.0092
RADIUS = .400 AMPLITUDE = PHASE ANGLE =	.2702	.0145	.0100	.0089	.0109	116.0	.0058
RADIUS = .500 AMPLITUDE = PHASE ANGLE =	.2363	.0033	211.2	.0038 194.0	.0027	.0022	.0008

.0072

.0057

.0040 81.3 .001**4** 58.6 .0009

.0022 272.8

.0022

.0039 266.2

239.9

.0021

.0027 293.5

.0030 244.8

.0033

251.1

.0017

318.5

235.1

308.9

.0007 248.1 .0014

22.7

90.2

.0017

.0029 99.9 .0046

.0025 68.8

.0052

. 3034

.0054

TABLE G-6 (Continued)

,	PROPELLER DIAMETER 6.00 FEET	PELLER	JAMETER .	#00cL 33	FEET	A	6- 47 # 4 7	. 739
HARMONIC	HARMONIC ANALYSES	DF TANGE	TANGENTIAL VELOCITY		COMPONENT	1 RATIOS	(VT/V)	
HARMONIC	6	0	÷	2	13	4	15	9
RADIUS = .312 AMPLITUDE = PHASE ANGLE =	.0091 45.0	.0087	.0122	10097	.0129	.0086 349.8	.0121	. 0051
RADIUS = .350 AMPLITUDE = PHASE ANGLE =	.0071	.0070	.0099 18.1	.0079 10.4	.0100	.0067	.0088 334.6	.0036 330.8
RADIUS = .400 AMPLITUDE = PHASE ANGLE =	.0049 39.0	.0050	18.0	.0057	.0066 359.5	.0045	.0052	.0018
RADIUS = .500 AMPLITUDE = PHASE ANGLE =	.0018 4.61	.0021	18.9	.0022	.0018	39.88	.0008	.0009
RADIUS = .600 AMPLITUDE = PHASE ANGLE =	.0013	. 0009 301.8	.0005 80.8	.0005	139.7	.0020 139.4	.0029	.0021
RADIUS = .700 AMPLITUDE = PHASE ANGLE =	309.7	231.4	.0006	.0021	.0023	.0033	.0022	.0020
PADIUS = .800 AMPLITUDE = PHASE ANGLE =	.0013	190.8	.0008	.0026	.0021	.0034	.0018	.0015
RADIUS = .900 AMPLITUDE = PHASE ANGLE =	.0007	.0013	.0011	.0019	.0019	.0022	.0015	.0007
RADIUS = 1.600 AMPLITUDE = PMASE ANGLE =	.0012 4.49	8: 4	.0013	164.2	.0019	237.4	.0011	. 001A

THIS PAGE INTENTIONALLY LEFT BLANK.

APPENDIX H VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS FOR EXPERIMENT 21

SHALLOW WATER WAKE SURVEY MODEL 5365 POST CAL NOV 78 EXP 21 0.456 RAD.

Figure H-1 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiment 21

SHALLOW WATER WAKE SURVEY MODEL 5365 POST CAL NOV 78 EXP 21 0.633 RAD.

Figure H-2 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiment 21

SHALLOW WATER WAKE SURVEY MODEL 5365 POST CAL NOV 78 EXP 21 $0.781\;\mathrm{RAD}$.

Figure H-3 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiment 21

SHALLOW WATER WAKE SURVEY MODEL 5365 POST CAL NOV 78 EXP 21 0.963 RAD.

Figure H-4 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiment 21

Figure H-5 - Radial Distribution of the Mean Velocity Component Ratios for Experiment 21

Figure H-6 - Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 21

TABLE H-1

INPUT DATA FOR HARMONIC ANALYSIS FOR R/V ATHENA,

MODEL 5365, EXPERIMENT 21

					#49TUS =	. 655			eantus =	.701					
				AMELE	41/4	VT/V	44/4	AWGLE	AAVA	¥7/¥	46/4	ANGLE	P477U\$ 1		
	#401US .	. 454		3	. 966	030	849	-3.4	1.036	001	129		45.4	41/4	ASIA
BHGLF	44.4	¥1/¥	49/4	7.0	. 990	0 22	419	1.0	1.040	634	116	3.3	. 988	.071	158
-3.4	977	,010	824	19.9	,965	001	853	4.3	1.033	032	105	15.	. 973	.457	120
1.4	.966	.016	419	17.6	477	006	457	7.7	1.051	656	106	17.6	. 937	011	186
4.4	.957		828	19.6	1.684	905	865	13.6	1.036	061	112	19.4	.437	625	114
4.4	.951	878	135	20.1	1.071	860	859	16.9	1.050	047	116		.959	815	110
13.0	.951	067	849	21.0	1.000	976	072	10.9	1.858	072	120	24.0 21.0	.955	030	100
16.7	.963	091	862	23.6	.932	074	101	71.0	1.064	+,073	121		.957	144	111
16.9	.970	115	666	25.0	947	050	477	22.0	1.001	657	120	23.6 25.5	. 935	157	123
21.7	.903	148	897	27.0	. 899	115	103	24.9	1.072		118	27.0	.965	462	126
22.0	1.457	166	101	29.8	. 146	143	114	24.9	989	-,857	129	29.0	-991	040	129
24.4	1.114	150	197	31.7	1.005	137	126	20.9	.985	142	157	31.7	.968	625	122
26.9	1.110	130	884	13.0	1.010	119	120	79.6	.983	146	159	33.0	.985	171	137
78.4	1.151	135	042	34.4	1.824	111	120	31.0	1.050	139	166	35.4	1.000	124	149
29.6	1.125	- 143	073	37.7	1.876	112	115	33.5	1.069	151	165	37.7	1.825	100	156
31.0	1.114	140	075	39.6	1.052	164	194	35.5	1.665	114	161	39.0	1.027	098	145
33.4	1.115	**152	000	41.0	1.012	137	114	37.6	1.850	123	157		1.930	165	140
95.5	1.109	156	687	19.9	1.069	143	066	39.6	1.059	129	152	41.8 59.9	1.025	166	170
37.4	1.161	14 5	097	79.8	1.855	286	427	59.4	1.069	186		79.4	1.858	151	891
19.5	1.107	167	097	99.0	1.052	219	-926	79.6	1.090	211	047	99.0	1.070	145	029
59.6	1.045	274	007	119.0	1.042	205	. 102	99.6	1.136	224	.034	119.0	1.000	-,195	.024
79.6	1.109	760	846	179.6	1.631	144	-124	121.0	1.132	286	.977	139.6	1.042	179	.047
99.6	1.006	276		149.4	1.031	1 65	-196	141.7	1.120	161	125	159.6	1.047	134	.144
121.0	1.107	242	.633	179.6	1.924	839	.178	161.0	1.113		.156	179.6	1.854	073	.160
141.7	1.102	100	.165	179.7	1.015	858	.176	171.6	1.110	161	.163	179.7	1,850		- 196
161.1	1.101	112	. 144	199.6	1.070	.031	.102	179.1	1.119	024	.167	199.6	1.027	.807	-194
171.9	1.187	074	. 109	219.6	.997	-110	.140	101.0	1.124	019	.147	219.6	1.504	.165	- 1 92
179.1	1.697	641	. 005	239.6	.991	.165	.100	199.2	1.100	.037	.161	279.4	1,005	-174	-166
141.0	1.096	0.20		259.7	.999	.190	. 044	£19.1	1.006	.103	.137	249.7	1.014	.17?	.170
199.2	1.007	.141	.867	279.4	1.014	.190	015	239.2	1.000	.151	. 191	279.6	1,053	.244	. 868
719-1	1.097	1115	. 062	299.7	1.031	. 100	952	269.1	1.000	.163	. 036	299.7	1,019	.109	059
239.2	1-105	1177	.032	319.7	1.047	.146	195	200.9	1.868	.198	861	319.7	1.000	.153	115
248.8	1.589	.269	005	325.7	1.621	. 897	117	300.0	1.874	.176	974	325.7	1.000	.136	130
788.9	1.164	-759	837	327.7	1.014		124	120.0	1.024	.131	130	327.7	. 996	.117	134
100.0	1.005	. 104	874	320.7	1.070	. 00 Z	125	175.6	1.826	.174	191	129.7	1.009	133	1%
378.6	1.090	.170	-,191	371.0	1.830	.001	128	327.6	1.030	.120	147	331.0	,997	147	147
175.6	1.092	.132	897	313.7	1.041	.002	131	329.5	1.029	.125	151	373.7	. 966	148	147
177.4	1.698	.126	895	135.8	. 999	.100	151	332.6	.925	.170	164	375.0	.946	. 061	117
329.4	1-182	1119	693	337.7	.957	.185	147	334.9	.926	.872	1 36	317.7	1.979		179
317.4	1.116	.104	093	344.8	.917	.043	119	336.5	1.066	.012	138	319.0	1.027	.095	144
334.9	1.128	1109	181	341.7	. 94 7		199	130.0	1.658	.453	155	341.7	1.011	.161	144
316.4	1.091	.170	100	342.0	. 991		189	348.6	1.839	. 871	163	347.4	,949	.103	146
110.3	1.919	-170	186	345.0	.991	. 616	116	341.6	1.637	.078	162	345.0	999	198	148
140.8	. 96 3		861	344.8	.989	086	402	344.9	1.029	.064	-,101	356.8	200	.006	137
141.5	1.011	.854	646	359.7	.900	030	844	348.9	1.031	.846	157	359.7	98.0	.071	120
344.9	1 - 0 71	. 541	649					342.0	1.024	. 010	141				
148.9	1.010	. 645	043					344.6	1.075	661	179				
352.4	. 484	. 634	672					361.8	1.040	475	116				
356.4	. 477	.010	024												

LISTING OF THE MEAN VELOCITY COMPONENT RATIOS, THE MEAN ADVANCE ANGLES AND OTHER DERIVED QUANTITIES AT THE EXPERIMENTAL AND INTERPOLATED RADII FOR EXPERIMENT 21 TABLE H-2

WAKE A PROGRA	WAKE ANALYSIS PROGRAM VERSION OF 08/	~	91/14		SHALLOW	WATER WAKE SURVEY MODEL 5365 POST CAL NOV 78 EXP 21 PROPELLER DIAMETER = 6.00 FEET JA =	E SURVEY DIAMETEI	MODEL 9	1365 POST 10 FEET	CAL NOV	78 EXP JA	21 . 739	
RADIUS .	. 456	.633	.781	.963	.312	.350	400	. 500	.600	.700	. 800	006.	1.000
VXBAR	= 1.082	1.018	1.080	1.025	1.245	1.192		1.052	1.019	1.058	1.081	1.060	1.025
VTBAR	026	015	016	.013	044	038	032	022	016	018	015	001	.013
VRBAR	010	.021	. 004	.021	077	056	032	.003	.020	.010	.004	.010	.021
1-WX	= 1.148	1.079	1.065	1.063	000.0	1.217		1.128		1.070	1.070	1.071	1.065
1-WX	= 1.195	1.104	1.083	1.076	000.0	1.284		1.164	1.114	1.091	1.088	1.086	1.077
BBAR	= 29.49	20.82	18.09	14.01	44.14	39.43		26.56	21.89	19.61	17.69	15.49	13.52
BPOS THETA	. 3.59 .110.00	2.23	2.12	1.49	11.27	8.85		3.05			2.07	1.73	1.41
BNEG	-3.60	-1.93	-3.14	-1.63 335.00	5.00	5.00	10.00 400	-2.91 340.00	337.50	-2.32 332.50	-3.16 332.50	-2.43 332.50	-1.57 335.00

CIRCUMFERENTIAL MEAN LONGITUDINAL VELOCITY.
CIRCUMFERENTIAL MEAN TANGENTIAL VELOCITY.
CIRCUMFERENTIAL MEAN RADIAL VELOCITY.
CIRCUMETRIC MEAN WAKE VELOCITY WITHOUT TANGENTIAL CORRECTION.
VOLUMETRIC MEAN WAKE VELOCITY WITH TANGENTIAL CORRECTION.
MEAN ANGLE OF ADVANCE.
VARIATION BETWEEN THE MAXIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS).
VARIATION BETWEEN THE MINIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS).
ANGLE IN DEGREES AT WHICH CORRESPONDING BPOS OR BNEG OCCURS. VXBAR VTBAR VRBAR 1-WX 1-WX BBBAR BBCS BNEG

LINENTAL TABLE

Е н-3	ı	ANA R EX	HARMONIC ANALYSES OF RADII FOR EXPERIMENT		UDINAL V	LONGITUDINAL VELOCITY CC-PONENT RATIOS 21	CC. PON	IENT RAT	AT	THE EXPERI
		G,	SHALLOW WA	TER WAKE Opeller	WATER WAKE SURVEY MOI PROPELLER DIAMETER =	SURVEY MODEL 5365 POST		CAL NOV 78	78 EXP 21	.739
	HARMO	N IC	HARMONIC ANALYSES	DF LONGI	TUDINAL	OF LONGITUDINAL VELOCITY	COMPONENT	NT RATIOS	(V X / V)	
	HARMONIC	*	-	N	ო	4	īŪ	9	7	60
	RADIUS =	456	.0277	.0230	.0202	.0225	.0168	.0131	.0106	.0045 198.6
	RADIUS = . AMPLITUDE PHASE ANGLE	.633 E *	.0188 331.3	.0224	.0210 239.5	.0045	.0013	.0050	.0059	.0026 90.0
	RADIUS = . AMPLITUDE PHASE ANGLE	.781 E =	.0512	.0105	.0059	.0124	.0038 230.9	.0017 67.8	.0024	.0040 69.8
	RADIUS = AMPLITUDE P!ASE ANGLE	.963 *	.0321	.0299	.0169 247.8	.0092	.0066	.0084	.0029	.0051 109. 5
		u	SHALLOW WATER WAKE SURVEY M PROPELLER DIAMETER	TER WAKE	SURVEY (SURVEY MODEL 5365 POST		CAL NOV 78	78 EXP 21	.739
	HARMO	NIC	HARMONIC ANALYSES (OF LONGS	TUDINAL	LONGITUDINAL VELOCITY COMPONENT	COMPONE	NT RATIOS	(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	HARMONIC	*	6	10	Ξ	12	13	4	15	16
	RADIUS ≈ AMPLITUDE PHASE ANGLE	456 # #	.0053	.0058	.0051	.0059 103.5	.0057 94.8	.0043 87.9	.0026	.0009
	RADIUS = . AMPLITUDE PHASE ANGLE	.633 E =	.0053	.0043	.0036	.0024	.0028	.0036	.0048	.0052
	RADIUS = . AMPLITUDE PHASE ANGLE	. 781	.0023	.0012	.0030	.0030	.0029 238.9	.0022	.0004	29.2
	RADIUS = . AMPLITUDE PHASE ANGLE	. 963 E	.0049	.0022	.0019 253.4	.0024	.0031	.0025	.0016	.0002

TABLE

H-4	1	HARMONIC A RADII FOR	HARMONIC ANALYSES OF RADII FOR EXPERIMENT		UDINAL	LONGITUDINAL VELOCITY COMPONENT RATIOS 21	COMPO	NENT RAT	AT	THE INTERP
			SHALLOW WAT	ER WAKE PELLER D	SURVEY !	WATER WAKE SURVEY MODEL 5365 POST PROPELLER DIAMETER * 6.00 FEET	S POST (CAL NOV 7	78 EXP 21	.739
		HARMON I C	HARMONIC ANALYSES OF	F LONG11	UDINAL 1	LONGITUDINAL VELOCITY	COMPONENT	IT RATIOS	(VX/V)	
	HAR	HARMONIC .	-	a	· (C)	4	ľ	9	7	æ
	RAC	RADIUS = .312 AMPLITUDE = PHASE ANGLE =	. 0951 255.9	.0383	.0359	.0382	.0504	.0451	.0412	.0120 215.5
	RAPE	RADIUS = .350 AMPLITUDE = PHASE ANGLE =	.0728	.0308	.0262	.0339	.0399	.0351	.0317	.0097
	RAC	RADIUS = .400 AMPLITUDE = PHASE ANGLE =	.0484	.0249	310.8	.0284	.0279	.0237	.0207	.0070 208.5
	ANE	RADIUS = .500 AMPLITUDE = PHASE ANGLE =	.0172	.0234 249.9	.0226 259.9	.0180	.0100	.0066	.0044	.0029
	RAE	RADIUS = .600 AMPLITUDE = PHASE ANGLE =	.0157	.0235 233.8	.0232	.0079	.0003	.0036	.0046	.0022
	RAE	RADIUS = .700 AMPLITUDE = PHASE ANGLE =	.0377	249.9	.0038	.0056 60.9	.0018	.0035	,0038 76.0	.0033
	RAC AME PHA	RADIUS = .800 AMPLITUDE = PHASE ANGLE =	.0524	.0109	.0064	.0131 65.8	.0041	.0015 90.0	.0023	.0040
	AME	RADIUS = .900 AMPLITUDE = # PHASE ANGLE =	.0462	.0186	.0023	.0121	.0052	.0048	.0026	.0045
	RAE	RADIUS = 1.000 AMPLITUDE = PHASE ANGLE =	.0321	. 0299	.0169	.0092	.0066	.0084	. 0029	. 0051 109.5

TABLE H-4 (Continued)

.0168 .0116 16.8 14.5 .0022 .0053 196.2 28.0 28.4 . 739 SMALLOW WATER WAKE SURVEY MODEL 5365 POST CAL NOV 78 EXP 21 PROPELLER DIAMETER = 6.00 FEET (VXV) .0181 56.3 .0075 .0012 223.2 .0022 .0002 .0004 .0016 .0131 HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS .0185 .0090 4.001 .0030 .0021 .0021 .0025 .0027 .0141 .0194 .0023 .0023 .0030 .0031 110.4 .0101 75.7 .0146 .0118 .0086 .0044 86.7 33.3 .0017 295.8 .0032 260.8 .0032 .0083 .0062 .0049 .0042 B3.0 .0017 .0031 175.4 .0032 .0070 .0064 .0048 119.0 .0023 128.9 .0013 165.5 .0022 .0060 .0056 170.4 .0072 203.6 .0060 .0052 .0056 118.9 .0023 .0029 138.0 .0049 130.7 138.7 RADIUS . .700 AMPLITUDE ... PHASE ANGLE ... RADIUS = .900 AMPLITUDE = PHASE ANGLE = RADIUS = 1.000 AMPLITUDE = PHASE ANGLE = . 800 . 600 . 500 RADIUS = .3 AMPLITUDE PHASE ANGLE RADIUS . . 4 AMPLITUDE PHASE ANGLE RADIUS = .6 Amplitude Phase angle HARMONIC

Ã

exper imen	_			46	9 7	2 8	84				e ro	m m	m	~ "
THE EX	. 739		60	.0034	.0006	.0022 280.8	.0030	.739		16	316.5	.0028	.0008	.0002
	78 EXP 21	(V1/V)	7	.0024 101.8	.0023	.0033	.0025	8 EXP 21	(V1/V)	15	.0009	.0020	.0021	.0010
NT RATI	CAL NOV	T RATIOS	ø	130.4	.0026 54.8	.0027	.0052 87.6	AL NOV 7	RATIOS	4	7100.	.0007	.0031	.0016
TANGENTIAL VELOCITY COMPONENT RATIOS AT 21	SS POST (FEET	TANGENTIAL VELOCITY COMPONENT RATIOS	r.	.0054	.0042	.0038	.0037	SURVEY MODEL 5365 POST CAL NOV 78	DMPONENT	13	.0016 38.3	19.3	.0033	.0018
SLOCI TY	MUDEL 53	LOCITY (4	.0066	.0059	.0028	.0055	DEL 536	LOCITY C	2	.0038 30.6	.0015	.0025	.0017
NTIAL VI	SURVEY P	ENTIAL VE	က	.0031	.0065	.0044	.0023 113.8	SURVEY ME	VTIAL VE	=	.0040 40.8	.0007	.0018	.0010 178.7
	TER WAKE SPELLER (9	n	.0046 83.6	.0124	.0014	.0107	WATER WAKE SURVEY MOI PROPELLER DIAMETER =	JF TANGE!	0	.0060	.0004	.0007	119.4
HARMONIC ANALYSES OF RADII FOR EXPERIMENT	SMALLOW WATER WAKE SURVEY MUDEL 5365 POST CAL NOV 78 PROPELLER DIAMETER = 6.00 FEET	HARMONIC ANALYSES	-	.2407	.2084	.2092	.2004	SHALLOW WAT	HARMONIC ANALYSES OF TANGENTIAL VELDCITY COMPUNENT RATIOS	6	.0043 38.5	.0010	.0024	.0011
IC AN	¥,	MONIC		. 456 	. 633 	.781 	. 963	SHA	IONIC A	•	. 456 	.633 E = =	. 781 E =	693
- HARMON		HAH	HARMONIC	RADIUS = AMPLITUDE PHASE ANGLE	RADIUS = AMPLITUDE PHASE ANGLE	RADIUS = . AMPLITUDE PHASE ANGLE	RADIUS = AMPLITUDE PHASE ANGLE		HAR	HARMON I C	RADIUS = . AMPLITUDE PHASE ANGLE	RADIUS = . AMPLITUDE PHASE ANGLE	RADIUS = . AMPLITUDE PHASE ANGLE	RADIUS = AMPLITUDE PHASE ANGLE
ABLE H-5										_		- · •	-	-

1 TABLE H-6

PARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 21 .0010 90.6 274.3 .0065 .0049 28.6 .0024 .0021 .0006 .0030 .0081 . 739 SMALLOW WATER WAKE SURVEY MODEL 5365 POST CAL NOV 78 EXP 21 PROPELLER DIAMETER = 6.00 FEET (V1/V) .0053 195.1 .0018 .0036 .0028 82.0 .0027 .0025 .0024 HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS .0056 .0113 174.3 .0032 .0029 .0012 .0026 132.3 .0052 9 .0232 .0174 .0109 .0026 .0037 .0030 .0040 .0038 254.7 205.5 Į, .0273 .0207 .0132 .0033 .0052 .0048 .0022 .0055 120.7 4 .0197 110.6 223.8 .0058 .0059 271.0 .0039 264.8 219.5 .0023 113.8 .0144 115.9 m .0451 .0321 .0175 .0033 .0120 .0054 .0028 93.5 .0107 N .2939 176.8 176.7 .2293 .2117 .2097 175.8 .2088 175.4 .2004 174.5 RADIUS = .500 AMPLITUDE = PHASE ANGLE = RADIUS = .600 AMPLITUDE = PHASE ANGLE = RADIUS = .800 AMPLITUDE = PHASE ANGLE = RADIUS = .900 AMPLITUDE = PHASE ANGLE = RADIUS = .350 AMPLITUDE = PHASE ANGLE = RADIUS = .400 AMPLITUDE = PHASE ANGLE = RADIUS = .700 AMPLITUDE = PHASE ANGLE = . 312 RADIUS * 1.000 AMPLITUDE PHASE ANGLE AMPLITUDE PHASE ANGLE RADIUS = HARMONIC

TABLE H-6 (Continued)

S	SMALLOW WAT	WATER WAKE Propeller o		MODEL 53	SURVEY MODEL 5365 POST CAL NOV 78	AL NOV 7	8 EXP 21	.739
HARMONIC	HARMONIC ANALYSES OF TANGENTIAL VELCCITY COMPONENT	OF TANGE	ENTIAL VI	LCCI TY	COMPONENT	RATIOS	(V1/V)	
HARMONIC	G)	0	=	12	13	4	6	9
RADIUS = .312 AMPLITUDE = PHASE ANGLE =	.0120	.0162 20.6	.0070	.0054	.0029	.0019	.0060	.0097 318.0
RADIUS = .350 AMPLITUDE = PHASE ANGLE =	.0096	21.7	.0061	.0049 8.43	.0019	.0020	.0044	.0070
RADIUS = .400 AMPLITUDE = PHASE ANGLE =	.0068	23.4	.0051 43.5	.0043	.0013	.0019	.0025	.0040
RADIUS = .500 AMPLITUDE = PHASE ANGLE =	.0028	.0038	.0031 38.6	.0034 22.8	.0018	.0014	.0003	.0004
RADIUS = .600 AMPLITUDE = PHASE ANGLE =	.0011	.0006	33.6	11.4	.0014	59.1	.0018 133.4	.0026
RADIUS = .700 AMPLITUDE = PHASE ANGLE =	.0015 263.8	.0005	.0008 201.8	.0009	.0016	.0021	.0020	.0017
RADIUS = .800 AMPLITUDE = PHASE ANGLE =	.0025	.0007	202.3	.0027 166.7	.0035	.0032	.0020	.0007
RADIUS = .900 AMPLITUDE = PHASE ANGLE =	.0011	.0001	.0017	167.7	.0032	.0028	.0015	.0003 209.0
RADIUS = 1.000 AMPLITUDE = PHASE ANGLE =	.0011	.0010 4.914	.0010	.0017	.0019	.0016	.0010	.0002

APPENDIX I VELOCITY COMPONENT RATIOS FOR R/V ATHENA AND MODEL EXPERIMENTS 8 AND 21

- VELOCITY COMPONENT RATIOS FOR R/V ATHENA
- VELOCITY COMPONENT RATIOS FOR MODEL 5365 DEEP WATER AND TRIM EXP. B VELOCITY COMPONENT RATIOS FOR MODEL 5365 SHALLOW WATER AND TRIM EXP. 21

0.455 RAD.

Figure I-1 - Composite Plot of Velocity Component Ratios for R/V ATHENA and Model Experiments 8 and 21 for the 0.456 Radius

- X
- VELOCITY COMPONENT RATIOS FOR R/V ATHENA VELOCITY COMPONENT RATIOS FOR MODEL 5365 DEEP WATER AND TRIM EXP. 8 VELOCITY COMPONENT RATIOS FOR MODEL 5365 SHALLOW WATER AND TRIM EXP. 21

0 633 RAD.

Figure I-2 - Composite Plot of Velocity Component Ratios for R/V ATHENA and Model Experiments 8 and 21 for the 0.633 Radius

- VELOCITY COMPONENT RATIOS FOR R/V ATHENA
- × VELOCITY COMPONENT RATIOS FOR MODEL 5365 DEEP WATER AND TRIM EXP. 8
- **WELOCITY COMPONENT RATIOS FOR MODEL 5365 SHALLOW HATER AND TRIM EXP 21**

0.781 RAD.

Figure I-3 - Composite Plot of Velocity Component Ratios for R/V ATHENA and Model Experiments 8 and 21 for the 0.781 Radius

- VELOCITY COMPONENT RATIOS FOR R/V ATHENA
- × VELOCITY COMPONENT RATIOS FOR MODEL 5365 DEEP WATER AND TRIM EXP. 8
- ${\tt m}$ -VELOCITY COMPONENT RATIOS FOR MODEL 5365 SHALLOW WATER AND TRIM EXP ${\tt 21}$

0.963 RAD.

Figure I-4 - Composite Plot of Velocity Component Ratios for R/V ATHENA and Model Experiments 8 and 21 for the 0.963 Radius

TABLE I-1

INPUT DATA FOR HARMONIC ANALYSIS
OF WAKE DATA FOR R/V ATHENA

74/4						
	VR/V ANGLE	VX/V V1/V	VR/V ANGLE	LE VX/V	٧٦/٧	VR/V
					1.04]	130
					091	154
					103	179
					102	12 · ·
001 00.0 1.008276 10.0 1.006276 10.0 1.007					- 1 A O	1 36
					201	- 003
1107 100.0 1.000271 111 150.0 1.003107 1103 100.0 1.004079 1032 170.0 1.004031 1032 170.0 1.007001 1034 100.0 1.007001 1034 100.0 1.00701 1055 200.0 1.00701 1056 300.0 1.00707 1057 200.0 1.00707 1058 300.0 1.00707 1058 300.0 1.00707 1059 300.0 1.00707 1059 300.0 1.00707 1059 300.0 1.00707 1059 300.0 1.007 1059 300.0 1.007 1059 300.0 1.007 1059 300.0 1.007 1059 300.0 1.007 1059 300.0 1.007					713	700
111 120,0 1038187 114 150,0 1005070 105 1100,0 1005070 105 170,0 1001071 105 170,0 1005071 106,0 100,0 1005075 100,0 100,0 1005075 100,0 100,0 1005075 100,0 100,0 1005075 100,0 100,0 100575 100,1 20,0 1					201	, n 1 3
114 150.0 1062079 .035 100.0 1.006031 .035 170.0 1.007031 .037 170.0 1.007007 .037 170.0 1.007007 .037 170.0 1.007067037 200.0 1.002066037 200.0 1.002066001 200.0 1.002222001 200.0 1.002226003 300.0 1.00376004 330.0995076047 330.0995075047 350.0995075053 350.0995075063 350.0902014063 350.0902014064 360.0902014					153	40.
					033	137
			•		.040	.120
			•		512.	410°
.032 170.0 1.007			•		. 253	1.047
007 1:00.0 1:022 .064 037 1:00.0 1:021 .136 037 2:00.0 1:021 .136 001 2:00.0 1:024 .727 001 2:00.0 1:024 .727 001 2:00.0 1:022 .724 003 2:00.0 1:003 .726 004 3:30.0 1:003 .726 004 3:30.0 1:003 .726 004 3:30.0 0:023 .726 047 3:00.0 0:023 .726					¥02.	050-
037 190.0 1.021 .055 036 200.0 1.027 .107 001 200.0 1.022 .227 001 200.0 1.022 .227 001 200.0 1.022 .274 001 200.0 1.023 .274 063 330.0 .993 .014 047 330.0 .993 .014 047 350.0 .995 .007 053 .007 .902 .014 053 .902 .014			•		. 196	166
-134 190.0 1.027 .107 .1070.01			•		• 056	197
-,084 200.0 1.031 .136			• •		[£0.	191
035 227.0 1.024 .222 .242			• •		560.	171
001 >-0.0 1.022242			•		1.031	-164
067 2-0.0 1.067 .274 001 2-0.0 1.023 .250 063 330.0 1.053 .250 064 340.0 .993 .068 340.0 .995 .014 350.0 .905 .014 350.0 .902 .014 360.0 .902 .014			•		.003	1.51.
-,001 2-0,0 1.023 ,250 -,063 330,0 1.064 ,219 -,047 330,0 9063 ,014 -,047 330,0 9063 ,014 -,047 350,0 902 ,014 -,055,0 902 ,014 -,055,0 902 ,014			•		1.0	146
063 300.n 1.054 .719 067 330.n .993 .068 067 360.n .944 .047 350.u .905 .047 350.u .905 .075 350.u .905 .014			•		.003	15%
047 330.n .993 .068 460.n .949 .047 390.n .949 .047 450.u .975 .075 450.u .902 .014 35.u .925 .014 360.0 .894 .005	•		•		1.00-	194
### ### ### ### ### ### ### ### ### ##						
			167			
. 905 . 907 . 908 . 908 . 908 . 908			1 A B			
. 902 .014 . 925 .025 . 902 .014 . 894 .006			127			
6 .925 .025 5 .902 .014 5 .894 .004			105			
5 .902 .034 5 .894 .006			127			
100° 484° 0014			-106			
			ددا			
100. 100.			-115			

DTNSRDC ISSUES THREE TYPES OF REPORTS

- 1. DTNSRDC REPORTS, A FORMAL SERIES, CONTAIN INFORMATION OF PERMANENT TECHNICAL VALUE. THEY CARRY A CONSECUTIVE NUMERICAL IDENTIFICATION REGARDLESS OF THEIR CLASSIFICATION OR THE ORIGINATING DEPARTMENT.
- 2. DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES, CONTAIN INFORMATION OF A PRELIMINARY, TEMPORARY, OR PROPRIETARY NATURE OR OF LIMITED INTEREST OR SIGNIFICANCE. THEY CARRY A DEPARTMENTAL ALPHANUMERICAL IDENTIFICATION.
- 3. TECHNICAL MEMORANDA, AN INFORMAL SERIES, CONTAIN TECHNICAL DOCUMENTATION OF LIMITED USE AND INTEREST. THEY ARE PRIMARILY WORKING PAPERS INTENDED FOR INTERNAL USE. THEY CARRY AN IDENTIFYING NUMBER WHICH INDICATES THEIR TYPE AND THE NUMERICAL CODE OF THE ORIGINATING DEPARTMENT. ANY DISTRIBUTION OUTSIDE DTNSRDC MUST BE APPROVED BY THE HEAD OF THE ORIGINATING DEPARTMENT ON A CASE-BY-CASE BASIS.