Biometric Reaguition SIGNALS IN 20 AND 20

Labexuese 1

If the input signal is between O and I, then: }-distance between consecutive values is $\frac{1}{2^8-1}$ - LSP

- average error in the disable tron 15 eq = + 1 LSB least hymiticent Bit

(minimum change in the jupit signal required to guarantee a change in the discretized signal)

-> Signals from the "real" world change with time in
x(t) [-have values all the time -can love ony value between two hunts, eg [0,1]
I this cannot be represented with a computer! (would counse infinite memory)
Eg. Squals from (minophone (voice) Sensois (temperature, pressure)
-) Making a squal directe both in amphibode and time (-) "Sampling" (ADC) ** Analog to Pigital Conversion
x[n]=[x, x, x] = vector $x[0]$ $x[1]$ $x[2]$ $x[2]$ $x[2]$ $x[2]$ $x[2]$ $x[2]$
$\begin{array}{c c} x(t) & x(t) \\ \hline \\ x(t) & x(t) \\ x(t) & x(t) \\ \hline \\ x(t) & x(t) \\ x(t) & x(t) \\ \hline \\ x(t) & x(t) \\ x(t) & x(t) \\ \hline \\ x(t) & x(t) \\ x(t) & x(t) \\ \hline \\ x(t) & x(t) \\ x(t) & x(t) \\ \hline \\ x(t) $
$f_s = 1/T$

bunary samples, 8 bits each

* COSINE/SIME SIGNALS * (SINUSOIDS)

I choose to dometice) ??

tromple lab exercise			
	f =	$\frac{1}{15} = \frac{200}{1000} = \frac{2}{100}$	
>> n=0:199			
F=200; freg of the	Sinusoid N:	= 50 (see figure obtained in	98
75=10000; Simpling 1	ale	= 50 (see figure obtained in your exercise!)	
>) cos: 1 + cos (2+ pi typre(21); subplo		ø) n, 105)	
Show in the same for	are		
1) charge in frequent 2) charge in phase 3) charge in ampl	angle of the sinus	F=300; F=100	
* SCALAR PRODUCT:	COMPARSON OF-	TWO SIGNALS &	
- Compare two Signals (mvst have the	with the Morm	chited scalar product	
51	1) element - Wise 2) Sum of all	multiplication (** in Metle	
×n * tyn		1 + Xzyzt. + Xnyn PRODU	oct
		tisa number!	
- to make the result 1	independent of t	the "energy" of the signal	1
it is divided by t	he "length"/"hor	m of Spand 32	
$ S_{1} = \sqrt{x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2}}$ $ S_{2} = \sqrt{y_{1}^{2} + y_{2}^{2} + \dots + y_{n}^{2}}$	=> (251, 52) SA S2	PRODUCT	
-	l	the ussA is closerys a [-1	1]

Another interpretation of 15,151 15 as cosciption where up is the angle between 5, and 52

* SIGNALS IN TWO DIMENSIONS (2D): LMAGES * image () matrix (anay in two dimensions) data structure Exemple 256x256 photo X = point of the image (pixel) Hack white · Gray-scale imager: x € [0, 255] 6 Color mages (RGB): three volves per muel i.e. "three images" each mxel = [] with R,G,B = [0,255] In Matleb: how to index (access to pretures) Column

and the same 8 x 8

In Mallet: assign values to an image

I=ones(8,8) => image of 8x8 with all 1's

I(5=6,3:5)= Zeros(2,3) => modify on area and set it
to all 0's

* COMPARISON OF IMAGES WITH SCALAR PRODUCT *

Some idea as before

1) pirele wise purplication 2) sum of all products [BALL-1B2]

ly Matlat

(B1, B2>=) Sum (Sum (B1. * B2))

11BA => norm (BA)

Exemple

I = ones (8,8);

 $T_A = I$

In (5:6, 3:5) = teros (2,3);

Skelprod = Sum (Sum (I. * In));

Norm SP = Skal Prol/horm(I)/norm(II);