2) Measurement Error

Vitor Kamada

July 2018

1/13

Measurement Error in the Dependent Variable

$$y^* = \beta_0 + \beta_1 x_1 + ... + \beta_k x_k + v$$
 $e_0 = y - y^*$
 $y = \beta_0 + \beta_1 x_1 + ... + \beta_k x_k + v + e_0$
 $Var(v + e_0) = \sigma_v^2 + \sigma_0^2 > \sigma_v^2$

< □ ▶ < □ ▶ < 重 ▶ < 重 ▶ ● ■ 9 へ © ●

2 / 13

Measurement Error in Firm Scrap Rates

$$egin{aligned} &log(\mathit{scrap}^*) = eta_0 + eta_1 \mathit{grant} + \mathit{v} \ &log(\mathit{scrap}) = log(\mathit{scrap}^*) + e_0 \ &log(\mathit{scrap}) = eta_0 + eta_1 \mathit{grant} + \mathit{v} + e_0 \end{aligned}$$

If a firm receiving a grant is more likely to underreport its scrap rate:

$$Cov(v + e_0, grant) < 0$$

3/13

Measurement Error in an Explanatory Variable

$$y = \beta_0 + \beta_1 x_1 + ... + \beta_k x_k^* + v$$
 $e_k = x_k - x_k^*$
 $y = \beta_0 + \beta_1 x_1 + ... + \beta_k x_k + (v - \beta_k e_k)$
 $Cov(x_k, e_k) = 0$
 $Var(v - \beta_k e_k) = \sigma_v^2 + \beta_k^2 \sigma_{e_k}^2$

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ ■ 900

4 / 13

Classical Errors-in-Variables (CEV)

$$y = \beta_0 + \beta_1 x_1 + ... + \beta_k x_k + (v - \beta_k e_k)$$
 $Cov(x_k^*, e_k) = 0$

$$Cov(x_k, e_k)$$

$$E(x_k e_k)$$

$$E(x_k^*e_k) + E(e_k^2) = \sigma_{e_k}^2$$

CEV - Special Case

$$y = \beta_0 + \beta_1 x_1 + (u - \beta_1 e_1)$$

$$plim \hat{\beta}_1 = \beta_1 + \frac{Cov(x_1, u - \beta_1 e_1)}{Var(x_1)}$$

$$= \beta_1 - \frac{\beta_1 \sigma_{e_1}^2}{\sigma_{x_1^*}^2 + \sigma_{e_1}^2}$$

$$= \beta_1 (1 - \frac{\sigma_{e_1}^2}{\sigma_{x_1^*}^2 + \sigma_{e_1}^2})$$

$$= \beta_1 (\frac{\sigma_{x_1^*}^2}{\sigma_{x_1^*}^2 + \sigma_{e_1}^2})$$

6/13

CEV - General Case

$$y = \beta_0 + \beta_1 x_1 + ... + \beta_k x_k + (v - \beta_k e_k)$$

 $x_k^* = \delta_0 + \delta_1 x_1 + ... + \delta_{k-1} x_{k-1} + r_k^*$
 $Corr(x_k^*, x_j) = 0 \text{ for } j \neq k$

$$plim\hat{\beta}_{k} = \beta_{k} \left(\frac{\sigma_{r_{k}}^{2}}{\sigma_{r_{k}}^{2} + \sigma_{e_{k}}^{2}} \right)$$

Measurement Error in Family Income

$$CoIGPA = G_0 + eta_1 faminc^* + eta_2 hsGPA + eta_3 SAT + v$$
 $faminc = faminc^* + e_1$
 $H_0: eta_1 = 0$
Type II error

◆□▶◆□▶◆豆▶◆豆▶ 豆 めので

8 / 13

Violation of CEV

$$smoked = smoked^* + e_1$$

People who do not smoke marijuana: $smoked^* = 0$ and smoked = 0

When $smoked^* > 0$, it more likely that someone miscounts

$$Corr(smoked^*, e_1) \neq 0$$

Simulation

$$y = eta x^* + u$$
 $x^* \sim N(0,9); \quad u \sim N(0,1)$
 $x = x^* + v; \quad v \sim N(0,1)$
 $s = rac{\sigma_v^2}{\sigma_v^2 + \sigma_{x^*}^2} = rac{1}{1+9} = 0.1$
 $plim\hat{eta} = eta - seta$
 $1 - 0.1 imes 1 = 0.9$

quietly set obs 10000

```
set seed 10101
matrix mu = (0,0,0)
matrix sigmasq = (9,0,0,0,1,0,0,0,1)
drawnorm xstar u v, means(mu) cov(sigmasq)
generate y = 1*xstar + u
generate x = xstar + v
regress y x, noconstant
```

x	900366	.0043202	208 17
У	Coef.	Std. Err.	t

Errors-in-Variables Regression (EIV)

$$\hat{\beta}_{EIV} = (Q'Q - C)^{-1}Q'Y$$

eivreg y x, r(x.9)

У	Coef.	Std. Err.	t	P> t
x	.9992973	.0034565	289.11	0.000
_cons	.0027368	.0099535	0.27	0.783

$$Var(\hat{eta}_{EIV}) = Var(E[\hat{eta}_{EIV}|D]) + E[Var(\hat{eta}_{EIV}|D)]$$

Lockwood et al. (2017): eivreg ignores the first term

12 / 13

Structural Equation Model

sem (x<-X) (y<-X), reliability(x.9)

		Coef.	OIM Std. Err.	Z	P> z
Measu	ırement				
x					
	X	1	(constraine	ed)	
	_cons	0082131	.031996	-0.26	0.797
У					
	X	. 9992973	.0050504	197.87	0.000
	_cons	0054706	.0319238	-0.17	0.864
	var(e.x)	1.023744	(constrained)		
	<pre>var(e.y)</pre>	.9905133	.0284656		
	var(X)	9.213694	.1447792)

Vitor Kamada