

AD-A201 549

TECHNICAL REPORT RD-TE-88-2

Douglas Hoskins
Robert Snead
Test and Evaluation Directorate
Research, Development, and
Engineering Center

MAY 1988

U.S. ARMY MISSILE COMMAND

Redetone Arsenal, Alabama 35898-5000

Cleared for public release; distribution is unlimited.

DISPOSITION INSTRUCTIONS

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

DISCLAIMER

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.

TRADE NAMES

USE OF TRADE NAMES OR MANUFACTURERS IN THIS REPORT DOES NOT CONSTITUTE AN OFFICIAL INDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL HARDWARE OR SOFTWARE. INCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION				N PAGE		Form Approved OMB No 0704-0188		
1a. REPORT S	1a. REPORT SECURITY CLASSIFICATION				1b. RESTRICTIVE MARKINGS			
	UNCLASSIFIED 2a. SECURITY CLASSIFICATION AUTHORITY				2 DISTRIBUTION	/AVAILABILITY O	. 050001	
						or public re		
2b. DECLASSIF	FICATION / DOV	VNGRADING	SCHEDU	LE		ion unlimite	-	
4. PERFORMIN	IG ORGANIZAT	ION REPORT	NUMBE	R(S)	5. MONITORING	ORGANIZATION R	EPORT NI	UMBER(S)
TR-RD-T	E-88-2							
6a. NAME OF	PERFORMING	ORGANIZATI	ON	6b. OFFICE SYMBOL (If applicable)	7a. NAME OF M	ONITORING ORGA	NIZATION	
Test &	Evaluation	n Directo	orate	AMŠMI-RD-TĒ				
	(City, State, an	-		-	7b. ADDRESS (Ci	ty, State, and ZIP	Code)	
Redston	e Arsenal	, AL 35	898-52	250				
8a. NAME OF ORGANIZA	FUNDING/SPO ATION	NSORING		8b. OFFICE SYMBOL (If applicable)	9. PROCUREMEN	T INSTRUMENT ID	ENTIFICAT	TION NUMBER
8c. ADDRESS (City, State, and	i ZIP Code)		<u> </u>	10 SOURCE OF	FUNDING NUMBER	s	
					PROGRAM	PROJECT	TASK	WORK UNIT
					ELEMENT NO.	NO.	NO.	ACCESSION NO
ELECTRO	ude Security C MAGNETIC ITROL ASSE	COMPATIB		TEST REPORT FOR	THE TETHER	ED SATELLITE	DATA	ACQUISITION
12. PERSONAL	. AUTHOR(S) : Hoskins	and Robo		and				
13a. TYPE OF			TIME CO	OVERED		ORT (Year, Month,	Day) 15	. PAGE COUNT
Final			OM	to	1988/May/	/17		74
16. SUPPLEME	NTARY NOTAT	TION						
17.	COSATI	CODES		18. SUBJECT TERMS (C	ontinue on reven	se if necessary and	identify	by block number)
FIELD	GROUP	SUB-GRO	DUP		c Interference, MIL-STD-461, EMI, EMC,			
				Tethered Satell	lite, TSAT,	DACA, Space	Shuttl	le
19. ABSTRACT	(Continue on	reverse if ne	cessary	and identify by block n	umber)			
This report details the results of an electromagnetic compatibility test on the SCI Systems Data Acquisition and Control Assembly (DACA). This assembly is an electronic processor which controls the central communication link from the Tethered Satellite System (TSS) to the Space Transportation System Orbiter (Space Shuttle).								
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION								
	SIFIED/UNLIMIT	244		RPT. DTIC USERS	UNCLASSIF		1 22- 0	SEICE SYMBOL
Douglas	F RESPONSIBLE Hoskins	: INDIVIDUAL			205-876-341	(Include Area Code 5	AMSM:	I-RD-TE

DD FORM 1473, 84 MAR

83 APR edition may be used until exhausted. All other editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

i/(ii Blank)

UNCLASSIFIED

CONTENTS

		Page No.
LIST	OF ABBREVIATIONS	vii
ı.	INTRODUCTION	1
	A. Description of the Equipment Under Test	1
	B. Test Objective	1
	C. Test Facility	2
II.	TEST CONFIGURATION	2
III.	TEST PROCEDURES	3
	A. General Information	3
	B. Procedure CEO1	3
	C. Procedure CEO3	4
	D. Procedure CS01	5
	E. Procedure CS03	6
	F. Procedure CS06	7
	G. Procedure REO2	8
	H. Procedure RS03	9
IV.	TEST RESULTS	14
	A. Procedure CE01	14
	B. Procedure CE03	14
	C. Procedure CS01	14
	D. Procedure CS02	14
	E. Procedure CS06	14
	F. Procedure RE02	14
	G. Procedure RS03	15
v.	CONCLUSIONS	15

Acces	sion For	
NTIS	GRA&I	
DTIC	TAB	Ō
Unann	ounced	
Justi	fication_	
By		
Distr	ibution/	
Aval	lability (Codes
	Avail and	/or
Dist	Spacial	
1		
01	!!	
r		

LIST OF ILLUSTRATIONS

Figure	<u>Title</u>	Page No.
_		16
1.	CEO1 test equipment configuration	16
2.	CEO3 test equipment configuration	17
3.	CSO1 test equipment configuration	18
4.	Procedure CSO1 specification limits	19
5.	CSO2 test equipment configuration	20
6.	Procedure CS02 specification limits	21
7.	CS06 test equipment configuration	22
8.	CSO6 test specification limits	23
9.	RE02 test equipment configuration	24
10.	RS03 test equipment configuration	25
11.	CEO1 measured emissions - line #4 28 volt input -	
	ambient	26
12.	CEO1 measured emissions ~ line #5 28 volt return -	
	ambient	27
13.	CEO1 measured emissions ~ line #6 28 volt input -	
	ambient	28
14.	CEO1 measured emissions - line #7 28 volt return -	
	ambient	29
15.	CEO1 measured emissions - line #8 28 volt input -	
	ambient	30
16.	CEO1 measured emissions - line #9 28 volt return -	
	ambient	31
17.	CEO1 measured emissions - line #4 28 volt input -	
	active	32
18.	CEO1 measured emissions - line #5 28 volt return -	J _
10.	active	33
19.	CEO1 measured emissions - line #6 28 volt input -	33
17.	active	34
20.	CEO1 measured emissions - line #7 28 volt return -	34
20,	active	35
21.	CEO1 measured emissions - line #8 28 volt input -	33
21.	active	36
22.	CEO1 measured emissions - line #9 28 volt return -	50
22.		37
22	active CE03 measured emissions - line #4 28 volt input -	37
23.	•	20
0.4	NB ambient	38
24.	CE03 measured emissions - line #4 28 volt input -	20
0.5	BB ambient	39
25.	CE03 measured emissions - line #5 28 volt return -	4.0
0.6	NB ambient	40
26.	CE03 measured emissions - line #5 28 volt return -	
	BB ambient	41
27.	CE03 measured emissions - line #6 28 volt input -	
	NB ambient	42
28.	CE03 measured emissions - line #6 28 volt input -	
	BB ambient	43
29.	CE03 measured emissions - line #7 28 volt return -	
	NB ambient	44

LIST OF ILLUSTRATIONS (Concluded)

Figure	<u>Title</u>	Page No.
30.	CE03 measured emissions - line #7 28 volt return -	
	BB ambient	45
31.	CEO3 measured emissions - line #8 28 volt input -	
	NB ambient	46
32.	CEO3 measured emissions - line #8 28 volt input -	
	BB ambient	47
33.	CEO3 measured emissions - line #9 28 volt return -	
	NB ambient	48
34.	CEO3 measured emissions - line #9 28 volt return -	
	BB ambient	49
35.	CEO3 measured emissions - line #4 28 volt input -	
	NB active	50
36.	CEO3 measured emissions - line #4 28 volt input -	
	BB active	51
37.	CE03 measured emissions - line #5 28 volt return -	
	NB active	52
38.	CEO3 measured emissions - line #5 28 volt return -	
	BB active	53
39.	CE03 measured emissions - line #6 28 volt input -	
	NB active	54
40.	CE03 measured emissions - line #6 28 volt input -	
	BB active	55
41.	CE03 measured emissions - line #7 28 volt return -	
	NB active	56
42.	CE03 measured emissions - line #7 28 volt return -	
	BB active	57
43.	CE03 measured emissions - line #8 28 volt input -	
	NB active	58
44.	CE03 measured emissions - line #8 28 volt input -	
	BB active	59
45.	CE03 measured emissions - line #9 28 volt return -	
	NB active	60
46.	CE03 measured emissions - line #9 28 volt return -	<i>(</i> 1
	BB active	61
47.	RE02 emissions - NB active - vertical polarization	62
48.	RE02 emissions - BB active - vertical polarization	63
49.	RE02 emissions - NB active - horizontal polarization	64
50.	RE02 emissions - BB active - horizontal polarization	65
51.	RE02 emissions - NB active - 1.7 GHz to 2.3 GHz	66

LIST OF TABLES

TABLE	TITLE	Page No.
1	Procedure CEO1 Equipment List	3
2	Procedure CEO3 Equipment List	4
3	Procedure CS01 Equipment List	5
4	Procedure CS02 Equipment List	6
5	Procedure CS06 Equipment List	7
6	Procedure RE02 Equipment List	8
7	Procedure RS03 Equipment List	9
8	Radiared Electric Field Criteria - Receive Frequencies	11
9	RS03 Equipment vs Frequency Matrix	12

ABBREVIATIONS

ATE automated test equipment

DACA data acquisition and control assembly

EMC electromagnetic compatibility

electromagnetic interference EMT

ESD electrostatic discharge

ETP equipment test procedure

FRA SCI failure report analysis, form B40-115A

GSE ground support equipment

IRIG interrange instrumentation group

JQAT joint qualification and acceptance test

MMC any individual qualified by the contract to act on behalf of Martin Marietta Corporation

SCI any individual qualified by the contract to act on behalf of

SCI Technology, Inc.

quality assurance plan QAP

IPT in-process test

TSS tethered satellite system

EUT equipment under test

radiated susceptibility RS

CS conducted susceptibility

RE radiated emissions

CE conducted emissions

MMARS -Martin Marietta Automatic Reporting System

I. INTRODUCTION

The purpose of this test was to establish the electromagnetic compatibility profile of the SCI Systems Data Acquisition and Control Assembly (DACA). The results from this electromagnetic interference test on the DACA subsystem must be evaluated within the context of electromagnetic interference/compatibility test results from colocated electronic systems and subassemblies to establish the degree of electromagnetic compatibility of the DACA with other electronic systems and subassemblies located within the same electromagnetic environment.

This report presents the test results and a description of the test procedures used to accomplish this profile during the period 28 October 1987 to 6 November 1987. The test was performed by personnel of the Electromagnetic and Nuclear Effects Group, Test and Evaluation Directorate, Research, Development, and Engineering Center, US Army Missile Command, located at Redstone Arsenal, Alabama. The tests were witnessed by Brant McCulley and Dave Gould of SCI, Bob Howe of Martin-Marietta, and personnel of the EM&N Group.

The tests that were performed are as follows:

PROCEDURE	DESCRIPTION
CEO1	Power line conducted emissions, 30 Hz to 20 kHz
CE03	Power line conducted emissions, 20 kHz to 50 MHz
CS01	Power line conducted susceptibility, 30 Hz to 50 kHz
CS02	Power line conducted susceptibility, 50 kHz to 400 MHz
CS06	Conducted susceptibility to power line transients
RE02	Electric field radiated emissions, 14 kHz to 10 GHz
RS03	Electric field radiated susceptibility, 14 kHz to 10 GHz

A. Description of the Equipment Under Test

The Equipment Under Test (EUT) is the Data Acquisition and Control Assembly, an electronic processor which controls the central communication link from the Tethered Satellite System (TSS) to the Space Transportation System Orbiter (Space Shuttle). The DACA is produced by SCI Technology, Inc. In order to perform its mission, the DACA is required to accept and process analog, discrete, digital word, and pulse code modulated, formatted wavetrain signals. The DACA also issues commands to control the TSS and provides the Orbiter crew with TSS status information and malfunction indications.

B. Test Objective

The objective of this test was to determine the electromagnetic compatibility profile of the DACA. This was accomplished by measuring the

conducted and radiated emissions as specified in PD 6400695. The requirements used to determine the degree of electromagnetic compatibility are also found in PD 6400695. Conducted and radiated susceptibility profiles were also determined. The procedures of MIL-STD 461 were used to perform the required tests.

C. Test Facility

The test was performed in the facilities of the EM&N Effects Group located in Building 8975 at Redstone Arsenal, Alabama. This group provides engineering, design, and technical support in the area of electromagnetic phenomena to MICOM Project Management Offices, R&D Organizations, and Contractors. This support includes testing and analysis services for Electromagnetic Interference (EMI), Electromagnetic Compatibility (EMC), Lightning Electrostatic Discharge (ESD), Electromagnetic Radiation Effects (EMR), and Nuclear Electromagnetic Pulse (NEMP) phenomena.

This qualification effort utilized the EMI facility which includes a 13 x 10 x 8 foot double-shielded screen enclosure providing a minimum of 40 dB attenuation of external plane wave electric fields. All power entering the enclosure was filtered by FILTRON PDS409E line filters. The enclosure also includes a shielded anteroom for placement of the measurement equipment. A copper ground plane meeting the requirements of MIL-STD-461 was located in the measurement enclosure to simulate a ground plane as required by the specification. This copper plane is bonded to the enclosure walls as specified in MIL-STD-461.

II. TEST CONFIGURATION

The item under test in this effort was the SCI Data Acquisition and Control Assembly (DACA), serial number 0001 (referred to as the DACA). Test signals to operate the DACA were generated by a dedicated digital test controller supplied by SCI. Proper operation of the DACA was also monitored by this device. Cable shielding was violated by necessity during the conducted emissions and conducted susceptibility testing by connecting the power line under test to a breakout box so that each line could be tested individually. The DACA was tested while mounted on an aluminum vibration plate on the enclosure ground plane.

III. TEST PROCEDURES

A. General Information

The DACA was tested on the ground plane described previously. Power was supplied through 10 microfarad feedthrough capacitors for the Conducted Emissions (CE) and Conducted Susceptibility (CS) tests. Bonding impedance measurements were performed for both items and the EUT was found to meet the MIL-STD-461 requirement of 2.5 milliohms or less from EUT case to ground plane. The bonding impedance was measured by using a Smalltronix No. 670A Bonding Impedance Meter, Serial Number 1135, and Calibration Date 31 July 1987. Detailed information concerning the test procedures is contained in the following sections of this document.

B. Procedure CE01

This procedure was designed to test for conducted emissions on the power leads in the 30 Hz to 20 kHz frequency band.

The EUT was placed on the ground plane and power was applied to the EUT through the 10 microfarad feedthrough capacitor. A breakout box was used to separate each of the DACA's power and return lines. The current probe was positioned around the first DACA 28 volt power line. The DACA was energized and the automated data processing equipment (ADPE) was used to record, analyze, and plot the emissions on the line under test. The procedure was then repeated for each of the DACA's power and return lines. For the frequency band from 30 Hz to 100 Hz, the ADPE could not be used; therefore, a Hewlett-Packard 8556A Spectrum Analyzer was used and the data was taken manually. A block diagram of the CEO1 test equipment configuration is found in Figure 1. Table 1 contains a list of the equipment used for this test.

TABLE 1. Procedure CEO1 Equipment List

	Nomenclature	Manufacturer/Model	Serial Number	Cal Date	
!	10 uF feedthrus	Solar 6512-106R	NSN	CNR	1
!	Spectrum Analyzer	HP 8566B	2115A00841	16 Feb 87	;
;	Spectrum Analyzer	HP 8556A	1615A15294	5 Aug 87	1
!	Current Probe	Solar 6741-1	774105	CNR	1
:	Computer	HP 9825T	1547A02253	CNR	;
1 1	Plotter	HP 9872A	1810A01754	CNR	;

C. Procedure CE03

This procedure was designed to test for conducted emissions on the power leads in the 20 kHz to 50 MHz frequency band.

The EUT was placed on the ground plane and power was applied to the EUT through the 10 microfarad feedthrough capacitors. A breakout box was used to separate each of the DACA's power and return lines. The current probe was positioned around the first DACA 28 volt power line. The DACA was energized and the ADPE was used to record, analyze, and plot the emissions on the line under test. The procedure was then repeated for each of the DACA's power and return lines. A block diagram of the CEO3 test equipment configuration is found in Figure 2. Table 2 contains a list of the equipment used for this test.

TABLE 2. Procedure CEO3 Equipment List

1	Nomenclature	Manufacturer/Model	Serial Number	Cal Date	!
i 	10 uF feedthrus	Solar 6512-106R	NSN	CNR	;
!	Spectrum Analyzer	HP 8566B	2115A 00 841	16 Feb 87	i
1	Current Probe	Solar 6741-1	774105	CNR	1
	Computer	HP 9825T	1547A02253	CNR	1
!	Plotter	HP 9872A	1810A01754	CNR	† †

D. Procedure CS01

The purpose of this procedure was to determine the susceptibility of the EUT to signals injected on the EUT power lines. This test procedure is applicable to the frequency band from 30 Hz to 50 kHz.

The EUT was placed on the ground plane and power was applied to the EUT through the 10 microfarad feedthrough capacitors. The secondary of a SOLAR 6220-1 audio isolation transformer was placed in series with a DACA 28 volt power line. The test output was connected to the oscilloscope. The output from the SOLAR 6550-1 Power Sweep Oscillator was applied to the primary of the audio isolation transformer. The EUT was energized and the oscillator was tuned through the applicable frequency band maintaining a minimum level equal to the specification limits outlined in Figure 4. The test was then repeated for the other DACA power and return lines. Figure 3 presents a block diagram of the CSO1 test equipment configuration. Table 3 contains the CSO1 test equipment list.

TABLE 3. Procedure CS01 Equipment List

!	Nomenclature	Manufacturer/model	Serial Number	Cal date
;	10 uF Feedthrus	Solar 6512-106R	NSN	CNR
1	Power Oscillator	Solar 6550-1	762814	CNR :
1 1	Audio Isolation Transformer	Solar 6220-1	NSN	CNR
!	Oscilloscope	Tektronix 485	B111657	26 Aug 87

E. Procedure CS02

The objective of this procedure was to determine the susceptibility level of the EUT to electromagnetic energy injected on the dc power leads. The applicable frequency band of the CSO2 procedure is 50 kHz to 400 MHz.

The EUT was placed on the ground plane and power was applied using the 10 uF feedthroughs. The Solar 7225-1 signal injection network was attached to the first 28 volt power line. The rf source was connected to an amplifier of the appropriate frequency band and applied to the 7225-1 GEN input through a directional coupler. The sample port of the directional coupler was attached to a power meter. The DET port of the 7225-1 was attached to the oscilloscope. The EUT was energized and RF energy was injected onto the lead under test. The frequency of the injected energy was varied over the required frequency band maintaining the required rms voltage level or a minimum power of 1.0 watt while monitoring the EUT for signs of susceptibility or operational anomalies. The test was then repeated for each of the DACA's power and return lines in turn. Figure 5 presents a block diagram of the CSO2 test equipment configuration. Figure 6 presents the CSO2 test specification limits. Table 4 contains the CSO2 test equipment list.

TABLE 4. Procedure CS02 Equipment List

Nomenclature	Manufacturer/model	Serial Number	Cal Date
10 uF feedthrus	Solar 6512-106R	NSN	CNR
Dir. Coupler	Narda 3059-20	207	2 Feb 87
Dir. Coupler	Maury 4098A	187	11 Jun 86
Injection Net.	Solar 7415-1	NSN	CNR
Amplifier	AR 10W1000	5238	CNR
Amplifier	ENI 240L	463	CNR
Synthesizer	HP 8660C	1723AØ1200	CNR
RF Plug In	HP 86601A	1633A00711	CNR
RF Plug In	HP 86603A	2341A02501	CNR
Power Meter	HP 435	45A112496	24 Aug 87
Power Sensor	HP 8482A	2235A06106	29 Sep 87
Oscilloscope	Tek 485	B101608	22 Sep 87

F. Procedure CS06

The objective of procedure CSO6 was to measure the susceptibility level of the EUT to transient voltage pulses injected on the power lines of the EUT. For this procedure, a pulse having the characteristics shown in Figure 8 and a pulse repetition rate of 8 pps was injected on the line under test.

The EUT was placed on the ground plane and power was applied using the feedthrough capacitors. The spike generator output was applied in series with the 28 volt power lead. The spike amplitude was monitored by direct measurement with an oscilloscope as shown in Figure 7. The spike was applied to the EUT and the unit was observed for operational anomalies or degradation of performance. The test was then repeated for each of the DACA's power and return lines. The spike was tested for positive and negative polarity on all lines. Figure 7 contains a block diagram of the test configuration for procedure CSO6. Table 5 contains the CSO6 test equipment list.

TABLE 5. Procedure CS06 Equipment List

:	Nomenclature	Manufacturer/model	Serial Number	Cal Date	!
	10 uF Feedthrus	Solar 6512-106R	NSN	CNR	; ;
1	Oscilloscope ⁻	Tektronix 485	B101608	22 Sep 87	i !
1	Spike Generator	Solar 8282-1	851075	27 Feb 87	; ; ;

G. Procedure RE02

The purpose of this procedure was to determine the electric field emissions from the EUT over the frequency band from 14 kHz to 10 GHz.

The EUT was configured on the ground plane. Cable shields were terminated to the enclosure walls at the exit port. The measurement antenna was placed one meter from the EUT and the emissions were recorded on the spectrum analyzer. The data was then analyzed and plotted by the ADPE. The ADPE could not meet the ambient noise level required in the frequency band from 1.7 GHz to 2.3 GHz. Therefore, the ADPE was modified to meet this noise level and the emissions were recorded separately.

Figure 9 is a block diagram of the test configuration. A list of the equipment used in this procedure is shown as Table 6.

TABLE 6. Procedure RE02 Equipment List

Nomenclature	Manufacturer/model	Serial Number	Cal Date
Spectrum Analyzer	HP 85668	2115A00841	16 Feb 87
Spectrum Analyzer	HP 85688	40A00126	18 Jul 87
Low-Noise Amplifier	HP 8447E	44800574	CNR
Low-Noise Amplifier	HP 8447D	44A00809	CNR
Computer	HP 9825T	1547A02233	CNR
Plotter	HP 9872A	181 0A01 764	CNR.
Antenna	Emco 3301	2034	CNR
Antenna	Emco 3104	2324	CNR
Antenna	Emco 3101	2757	CNR
Antenna	Emco 3102	2511	CNR

H. Procedure RS03

The objective of procedure RS03 was to determine the susceptibility profile of the EUT to radiated electric fields. For this test item, the applicable frequency band is 14 kHz to 15.0 GHz. The DACA should exhibit no operational anomalies or degradation of performance when operating in a radiated electric field environment level of one volt per meter over the frequency band from 14 KHz to 1 GHz, increasing log-linearly to 100 volts per meter at 10 GHz. This environment was modified as shown in Table 8. In the non-operating mode, the DACA should exhibit no signs of component degradation or damage when exposed to a 20 volt per meter electric field environment over the frequency band from 14 KHz to 1 GHz, increasing log-linearly to 200 volts per meter at 10 GHz.

The EUT was placed on the ground plane. The sources and amplifiers for each frequency band were configured to feed sufficient power to an antenna located one meter from the EUT to establish the required environment based on the antenna manufacturers calibration curves. Forward power was monitored with a calibrated power meter to verify field levels. The EUT was monitored for signs of degradation of performance or operational anomalies.

The RS03 test equipment configuration is shown in Figure 10. Table 7 is a list of the equipment used in the test. Table 9 contains a matrix of the equipment used vs frequency to help the reader determine which test equipment configuration applies to each frequency band.

TABLE 7. Procedure RS03 Equipment List

Nomenclature	Manufacturer/model	Serial Number	Cal Date
RF Plug In	HP 86601A	234A02501	CNR
RF Plug In	HP 96503A	53A007111	CNR
RF Plug In	HP 8 699B	11 05A0 1315	CNR
RF Plug In	HP 8693	0984A 0 5336	CNR
RF Plug In	HP 8694	0984A05300	CNR
Synthesizer	HP 8660C	1723AØ1200	CNR
Synthesizer	HP 8690	1349A0S00S	CNR
RF Amplifier	ENI 240L	463	CNR
RF Amplifier	IFI 404	M000642	CNR
RF Amplifier	MPD ELWA 3013-52	2844-1 P/A	CNR
RF Amplifier	AR 10W1000	5236	CNR
RF Amplifier	Hughes 1277H-L	019	CNR
RF Amplifier	Hughes 1277H-S	019	CNR

TABLE 7. Procedure RS03 Equipment List (Concluded)

		 	
RF Amplifier	Hughes 1277H-C	015	CNR
RF Amplifier	Hughes 1277H-X	021	CNR
Dir. Coupler	Maury 4098A	182	28 Apr 87
Dir. Coupler	NARDA 3059-20	207	15 Sep 87
Dir. Coupler	NARDA 3020A	90156	15 Sep 87
Dir. Coupler	NARDA 3022	50426	25 Aug 87
Dir. Coupler	NARDA 3024	50138	20 Feb 87
Dir. Coupler	NARDA 3045C	20034	20 Feb 87
Dir. Coupler	HP 116920	12A 00 773	15 Sep 87
Power Meter	HP 435	45A12496	24 Aug 87
l Power Sensor	HP 8481A	155 0 A 09 319	3 Mar 87
: 1 Antenna	EMCO 3107	2047	CNR
i Antenna 	EMCO 3104	2324	CNR
: Antenna	EMCO 3106	2056	CNR
: Antenna 	NARDA 645	7018	CNR
i Antenna 	NARDA 644	NSN	CNR
: ! Antenna :	NARDA 643	181	CNR
: Antenna 	NARDA 642	8063	CNR
: ! Antenna :	NARDA 640	6	CNR
: ! Antenna	NARDA 639	207	CNR

TABLE 8. Radiated Electric Field Criteria - Receive Frequencies

1	Frequency Range (GHz)	RF Power Density (Watts per Square Meter)	Electric Field : Strength : (Volts per Meter)
i		- Square never	
} }	1.255 - 1.295	0.25 peak	10
		2.0 avg	27
;	2.2 - 2.302	5.0 avg	43
1	5.6 - 5.8	40.0 peak (! microsecond pulses)	125 ;
ŧ	8.4 - 8.434	0.25 avg	10 :
ł	13.0 - 15.0	0.25 avg	10
١_			

TABLE 9. RS03 Equipment Vs Frequency Matrix

TABLE 9. RS03 Equipment Vs Frequency Matrix (Concluded)

		_					
AF Plug in	HP 86603	- 1	НР 8699	HP 8693	83	HP 8694 HP 8695	HP 8695
AF Source	HP 8660C	O		HP 8690	06		
RF Amplifier	Hughes 1277H-L 1.0-2.0	Hugh 1277 GHz 2.0-	Hughes 1277H-S 2.0-4.0 GHz	Hughes 1277H-C 4.0-8.0 GHz	HZ	Hughes 1277H-X	Hughes 1277H- Ku
Directional Coupler		Narda 3022		Narda 3024	54	Narda 3045C	HP 11692D
Power Meter				HP 435			
Power Sensor				HP 8481	-		
				EMCO 3105			Narda
Antenna	Narda 646	Narda 645	Narda 644	Nerda 643 Nerda 642	Narda 642	Nar.640	629
. ZH9	1.0 1.7	7 2.6	.6 4.0	5.8		B.2 12.4	- 4 - 18

IV. TEST RESULTS

A. Procedure CE01

No emissions were recorded in excess of the specification limit during test procedure CEO1. Over the frequency band from 30 Hz to 100 Hz, the noise floor was found to be between 50 dBuA and 60 dBuA, which is under the specification limits. No manual data was recorded, this was verified visually on the spectrum analyzer.

B. Procedure CE03

Although the graphs indicate a failure using the MIL-STD-461 specification limits, no failures were evident when following the NASA criteria which allow a 60 dB relaxation of the MIL-STD-461 limits. This difference in limits was not realized until after MMARS H29264 was issued. The EUT test data from procedure CE03 is recorded in Figures 23 through 46.

C. Procedure CS01

No operational anomalies were found or degradation of performance noted when the DACA's forward power line was exposed to the specified CSO1 environment. However, the DACA did fail when the return power line was exposed to approximately 3.6 Vpp in the frequency band of 800 Hz to 1200 Hz. This failure was found to be in the power supply of the digital test controller, not the DACa. The test procedure was repeated after the power supply was replaced and no failures occurred. The EUT met the CSO1 requirement.

D. Procedure CS02

No operational anomalies were found or degradation of performance noted when the EUT was exposed to the specified CS02 environment. The EUT met the CS02 requirement.

E. Procedure CS06

No operational anomalies were found or degradation of performance noted when the EUT was exposed to the specified CS06 environment. The EUT met the CS06 requirement.

F. Procedure RE02

No emissions in excess of the specification limits were recorded during procedure RE02. The data is presented in $dB\mu V/m$, which can be converted to V/m by using this formula:

$$E(V/m) = 10$$

$$\frac{dB\mu V/m - 120}{20}$$

The EUT met the RE02 requirement.

G. Procedure RS03

No operational anomalies were found or degradation of performance noted when the EUT was exposed to the RS03 requirement. The EUT met the RS02 requirements.

V. CONCLUSIONS

The SCI Data Acquisition and Control Assembly meets the JSC-SL-E-0002 requirements.

Figure 1. CEOI test equipment configuration.

Figure 2. CE03 test equipment configuration.

Figure 3. CSO1 test equipment configuration.

Figure 4. Procedure CSO1 specification limits.

Figure 5. CS02 test equipment configuration.

Figure 6. Procedure CS02 specification limits.

Pigure 7. CS06 test equipment configuration.

Figure 9. RE02 test equipment configuration.

Figure 10. RS03 test equipment configuration.

CONDUCTED EXISSIONS (188Ha-88HHa) NS DATA

SYSTEM NAME, SCI TEAT DACA
JEST DATE, 30 DCT S7
MIGOM/AMBMI-RD-TE-8
NAME, DOUG HOSKINS
JEST NUMBER: 1
HODE, AMBIENT LINE \$4 20 VOLTS IN
POLARIZATION, N/A
JEST CONFIGURATION, CED1

Figure 11. CEO1 measured emissions - line #4 28 volt input - ambient.

CONDUCTED EMISSIONS (1884a-5844a) NO DATA

SYSTEM NAME, SCI TRAT DACA
TEST DATE, 30 OCT 67
MICOM/AMBINE PRO-TE-8
HAME, DOUG HOSKINS
TEST NUMBER, 2
HODE, AMBIENT LINE #5 20 VOLT RETURN
POLARIZATION, N/A
TEST CONFIGURATION, CED1

Figure 12. CE01 measured emissions - line #5 28 volt return - ambient.

CONDUCTED EMISSIONS (1984a-9844a) NB DATA

SYSTEM NAME. SCI TEAT DACA JEST DATE. 20 OCT ST MICOM/AMSNI-RD-TE-S NAME. DOUG HOSKING JEST NAMES. 3 MODE. AMSIENT LINE MS 28 VOLT IN POLARIZATION. N/A JEST CONFIGURATION. CEO1

Figure 13. CEO1 measured emissions - line #6 28 volt input - ambient.

CONDUCTED EMISSIONS (188Ha-58kHa) NO DATA

SYSTEM NAME, SCI TRAT DACA JEST DATE, 20 OCT 87 MICOM/AMBMI-RD-TE-8 NAME, DOUG HOSKINS JEST NUMBER, 4 HODE, AMBIENT LINE #7 20 VOLT RETURN POLARIZATION, N/A JEST CONFIGURATION, CEO1

Figure 14. CEO1 measured emissions - line #7 28 volt return - ambient.

CONDUCTED EMISSIONS (1884--- BENNE) NO DATA

SYSTEM NAME, SCI TEAT DACA TEST DATE, 20 OCT ST MICOM/AMSNI-RD-TE-S NAME, DOUG HOSKING TEST NAMEER, S MODE, AMBIENT LINE SO 20 VOLT IN POLARIZATION, N/A JEST CONFIGURATION, CEO1

Figure 15. CEO1 measured emissions - line #8 28 volt input - ambient.

CONDUCTED EMISSIONS (1884=-5844=) NB DATA

SYSTEM NAME, SCI TEAT DACA JEST DATE, 20 OCT 67 MICOM/AMBNI-RD-TE-8 NAME, DOUG HOCKING JEST NUMBER, 0 MODE, AMBIENT LINE #9 20 VOLT RETURN POLARIZATION, N/A JEST CONFIGURATION, CEO1

Figure 16. CEO1 measured emissions - line #9 28 volt return - ambient

CONDUCTED EMISSIONS (188Ha-SSIGHa) NO DATA

SYSTEM NAME, SCI TRAT DACA JEST DATE, 20 OCT 87 MICOM/AMBMI-RD-TE-8 NAME, DOUG HOSKING JEST NAMER, 7 MODE, ACTIVE LIME #4 20 VOLT IN POLARIZATION, N/A JEST CONFIGURATION, CEO1

Figure 17. CEO1 measured emissions - line #4 28 volt input - active.

CONDUCTED EMISSIONS (1984a-5544a) NO DATA

SYSTEM NAME: SCI TSAT DACA JEST DATE: 28 DCT 87 MICOM/AMBMI-RD-TE-8 NAME: DOUG HOSKINS JEST NUMBER: 8 MODE: ACTIVE LINE #5 28 VOLT RETURN POLARIZATION: N/A JEST CONFIGURATION: CEO1

Figure 18. CEO1 measured emissions - line #5 28 volt return - active.

CONDUCTED EMISSIONS (188Ha-88HHa) NB DATA

SYSTEM NAME SCI TEAT DACA TEST DATE 20 OCT 87 MICOM/AMEMI-RD-TE-8 NAME DOUG HOSKING TEST NUMBER 9 MODE, ACTIVE LIME #8 20 VOLT IN POLARIZATION N/A TEST CONFIGURATION CED1

Figure 19. CE01 measured emissions - line #6 28 volt input - active.

CONDUCTED EMISSIONS (188Ha-58kHa) NB DATA

SYSTEM NAME, SCI TEAT DACA
TEST DATE, 20 OCT ST
MICOM/AMBMI-RD-TE-S
NAME, DOUG HORKINS
TEST NUMBER, 18
HODE, ACTIVE LINE ST 20 VOLT RETURN
POLARIZATION, N/A
TEST CONFIGURATION, CEO1

Figure 20. CE01 measured emissions - line #7 28 volt return - active.

CONDUCTED EMISSIONS (1884-SSI44) NO DATA

SYSTEM NAME: SCI TSAT DACA TEST DATE: 20 OCT 87 MICOM/AMBMI-RD-TE-8 NAME: DOUG HOSKING TEST NUMBER: 11 MODE: ACTIVE LINE #0 20 VOLT IN POLARIZATION: N/A TEST CONFIGURATION: CEO1

Figure 21. CE01 measured emissions - line #8 28 volt input - active.

CONDUCTED EMISSIONS (1884-------------- NO DATA

SYSTEM NAME. SCI TEAT DACA
TEST DATE: 20 OCT 57
MICOM/AMBNI-RD-TE-8
NAME: DOUG HOSKINS
TEST NUMBER: 12
HODE: ACTIVE LINE #9 20 VOLT RETURN
POLARIZATION: N/A
TEST CONFIGURATION: CEO1

Figure 22. CEO1 measured emissions - line #9 28 volt return - active.

CONDUCTED EMISSIONS (254Ha-584Ha) NO DATA

SYSTEM NAME, SCI TRAT DACA TEST DATE, 20 OCT 57 MICOM/AMBMI-RD-TE-8 NAME, DOUG HORKING TEST NUMBER, 1 MODE, AMBIENT LINE #4 20 VOLT IN POLARIZATION, N/A JEST CONFIGURATION, CEOS

Figure 23. CE03 measured emissions - line #4 28 volt input - NB ambient.

CONDUCTED EMISSIONS (25HH=-58HH=) BB DATA

SYSTEM NAMES SCI TEAT DACA
JEST DATES 28 OCT 57
MICOM/AMBNI-RD-TE-8
NAMES DOUG HOSKINS
JEST NUMBERS 1
HODES AMBIENT LINE #4 28 VOLT IN
POLARIZATIONS N/A
JEST CONFISURATIONS CEOS

Figure 24. CE03 measured emissions - line #4 28 volt input - BB ambient.

CONDUCTED ENISSIONS CORNAL-SONNED NO DATA

Figure 25. CE03 measured emissions - line #5 28 volt return - NB ambient.

CONDUCTED EXISSIONS (SSI-44-SSI44-) BD DATA

Figure 26. CE03 measured emissions - line #5 28 volt return - BB ambient.

CONDUCTED EXISSIONS (28KH=-58MH=) NO DATA

SYSTEM NAME: SCI TEAT DACA JEST DATE: 30 OCT 87 MICOM/AMBMI-RD-TE-8 NAME: DOUG HOSKING JEST NUMBER: 3 MODE: AMBIENT LINE #8 28 VOLT IN POLARIZATION: N/A JEST CONFIGURATION: CEOS

Figure 27. CE03 measured emissions - line #6 28 volt input - NB ambient.

CONDUCTED EMISSIONS (28444-9844) SS DATA

Figure 28. CE03 measured emissions - line #6 28 volt input - BB ambient.

CONDUCTED EMISSIONS (25KH=-58MH=) NB DATA

SYSTEM NAME, SCI TSAT DACA JEST DATE, 29 OCT 87 MICOM/AMBMI-RD-TE-8 NAME, DOUG HOSKING JEST NUMBER, 4 MODE, AMBIENT LINE #7 28 VOLT RETURN POLARIZATION, N/A JEST CONFIGURATION, CEOS

Figure 29. CE03 measured emissions - line #7 28 volt return - NB ambient.

CONDUCTED EMISSIONS (29HH=-55MH=) BB DATA

SYSTEM NAME: SCI TEAT DACA TEST DATE: 29 DCT S7 HICOM/AMSHI-RD-TE-S NAME: DOUG HOSKINS TEST NUMBER: 4 HODE: AMBIENT LINE \$7 29 VOLT RETURN POLARIZATION: N/A TEST CONFIGURATION: CEOS

Figure 30. CE03 measured emissions - line #7 28 volt return - BB ambient.

CONDUCTED EMISSIONS (25kHa-55M4a) NO DATA

SYSTEM NAME SCI TRAT DACA TEST DATE 20 OCT 87 MICOM/AMBNI-ND-TE-8 NAME DOUG HORKING TEST NUMBER 5 MODE AMBIENT LINE #6 20 VOLT IN POLARIZATION N/A JEST CONFIGURATION CEOS

Figure 31. CE03 measured emissions - line #8 28 volt input - NB ambient.

CONDUCTED EMISSIONS (28kH=-58MH=) SS DATA

SYSTEM NAME: SCI TSAT DACA JEST DATE: 29 OCT 87 MICOM/AMBMI-RD-TE-8 NAME: DOUG HOSKINS JEST NUMBER: 5 MODE: AMBIENT LINE #8 28 VOLT IN POLARIZATION: N/A JEST CONFIGURATION: CEDS

Figure 32. CE03 measured emissions - line #8 28 volt input - BB ambient.

CONDUCTED EMISSIONS (25kHa-55HHa) NO DATA

SYSTEM NAME, SCI TEAT DACA JEST DATE: 29 DCT 87 MICOM/AMBMI-RD-TE-8 NAME: DOUG HOSKINS JEST NUMBER: 8 MODE: AMBIENT LINE #9 29 VOLT RETURN POLARIZATION: N/A JEST CONFIGURATION: CEOS

Figure 33. CEO3 measured emissions - line #9 28 volt return - NB ambient.

CONDUCTED EMISSIONS (25kHa-55MHa) 88 DATA

SYSTEM NAME, SCI TEAT DACA TEST DATE, 29 OCT 67 MICOM/AMBMI-RD-TE-8 NAME, DOUG HOSKINS TEST NUMBER, 8 MODE, AMBIENT LINE #9 28 VOLT RETURN POLARIZATION, N/A TEST CONFIGURATION, CEOS

Figure 34. CE03 measured emissions - line #9 28 volt return - BB ambient.

CONDUCTED EMISSIONS (25HH=-58HH=) NO DATA

SYSTEM NAME, SCI TEAT DACA JEST DATE: 29 OCT 87 MICOM/AMBMI-RO-TE-8 NAME: DOUG HOSKINS JEST NUMBER: 7 MODE: ACTIVE LINE #4 29 VOLT IN POLARIZATION: N/A JEST CONFIGURATION: CEOS

Figure 35. CEO3 measured emissions - line #4 28 volt input - NB active.

CONDUCTED EMISSIONS (25kH=-55HH=) BS DATA

SYSTEM NAME, SCI TEAT DACA TEST DATE, 20 OCT 87 MICOM/AMEMI-RD-TE-8 NAME, DOUG HOSKING TEST NUMBER, 7 MODE, ACTIVE LIME #4 28 VOLT IN POLARIZATION, N/A TEST CONFIGURATION, CEOS

Figure 36. CE03 measured emissions - line #4 28 volt input - BB active.

CONDUCTED EMISSIONS (25kH=-55MH=) NO DATA

SYSTEM NAME: SCI TEAT DACA JEST DATE: 29 DCT S7 MICOM/AMBMI-RO-TE-S NAME: DOUG HOSKINS JEST NUMBER: 8 MODE: ACTIVE LINE #5 28 VOLT RETURN POLARIZATION: N/A JEST CONFIGURATION: CEOS

Figure 37. CEO3 measured emissions - line #5 28 volt return - NB active.

CONDUCTED EMISSIONS (28141-98141-) BS DATA

SYSTEM NAME, SCI TRAT DACA JEST DATE: 29 OCT 87 HICOM/AMBNI-RD-TE-8 NAME: DOUG HOSKINS JEST NUMBER: 9 HODE: ACTIVE LIME #5 29 VOLT RETURN POLARIZATION: N/A JEST CONFIGURATION: CEOS

Figure 38. CE03 measured emissions - line #5 28 volt return - BB active.

CONDUCTED ENISSIONS (29HH=-SSHH=) NO DATA

SYSTEM NAME SCI TEAT DACA JEST DATE: 28 OCT 87 MICON/AMENI-RD-TE-8 NAME: DOUG HOSKINS JEST NIMBER: 9 HODE: ACTIVE LINE #8 28 VOLT IN POLARIZATION: N/A

Figure 39. CEO3 measured emissions - line #6 28 volt input - NB active.

CONDUCTED EMISSIONS (28kHz-58MHz) 80 DATA

SYSTEM NAME, SCI TSAT DACA JEST DATE: 29 OCT 97 MICOM/AMSMI-RD-TE-8 NAME: DOUG HOSKINS JEST NAMER: 9 MODE: ACTIVE LINE #8 28 VOLT IN POLARIZATION: N/A JEST CONFIGURATION: CEOR

Figure 40. CE03 measured emissions - line #6 28 volt input - BB active.

CONDUCTED EMISSIONS (2514H=-5514H=) NO DATA

SYSTEM NAME: SCI TEAT DACA TEST DATE: 29 DCT 87 MICOM/AMENI-RD-TE-8 NAME: DOUG HOSKINS TEST NUMBER: 18 MODE: ACTIVE LINE #7 29 VOLT RETURN POLARIZATION: N/A TEST CONFIGURATION: CEOS

Figure 41. CE03 measured emissions - line #7 28 volt return - NB active.

CONDUCTED EMISSIONS (28kH=-56MHs) BB DATA

SYSTEM NAME: SCI TSAT DACA TEST DATE: 28 OCT 87 MICOM/AMSHI-RD-TE-S NAME: DOUG HOSKINS JEST NUMBER: 18 MODE: ACTIVE LINE #7 28 VOLT RETURN POLARIZATION: N/A JEST CONFIGURATION: CEOS

Figure 42. CE03 measured emissions - line #7 28 volt return - BB active.

CONDUCTED EMISSIONS (25kH=-56MH=) NB DATA

SYSTEM NAMES SCI TSAT DACA JEST DATES 29 OCT 87 MICON/AMSMI-RD-TE-8 NAMES DOUG HOSKINS JEST NAMES 11 HODES ACTIVE LINE #8 29 VOLT IN POLARIZATIONS N/A JEST CONFIGURATIONS CEOS

Figure 43. CE03 measured emissions - line #8 28 volt input - NB active.

CONDUCTED EMISSIONS (25kHa-564Ha) BS DATA

SYSTEM NAME SCI TSAT DACA JEST DATE 29 OCT 87 MICOM/AMSMI-RD-TE-8 NAME DOUG HOSKINS JEST NAMER 11 MODE ACTIVE LINE #8 28 VOLT IN POLARIZATION N/A

Figure 44. CE03 measured emissions - line #8 28 volt input - BB active.

CONDUCTED EMISSIONS (28KH=-58MH=) NO DATA

SYSTEM NAME, SCI TSAT DACA JEST DATE: 29 DCT 87 MICOM/AMBMI-RD-TE-8 NAME: DOUG HOSKINS JEST NUMBER: 12 MODE: ACTIVE LINE #9 29 VOLT RETURN POLARIZATION: N/A JEST CONFIGURATION: CEOS

Figure 45. CE03 measured emissions - line #9 28 volt return - NB active.

CONDUCTED EMISSIONS (28kH=-58HH=) 88 DATA

SYSTEM NAMES SCI TEAT DACA
JEST DATES 29 DCT 87
MICOM/AMSMI-RO-TE-8
NAMES DOUG HOSKINS
JEST NUMBERS 12
MODES ACTIVE LINE #9 29 VOLT RETURN
POLARIZATIONS N/A
TEST CONSTGUENTIONS CEOP

Figure 46. CE03 measured emissions - line #9 28 volt return - BB active.

RADIATED EMISSIONS (REO2. 1 14kH=-15. 8GH=) NB DATA

SYSTEM NAME: SCI TSAT DACA JEST DATE: 5 NOV 87 MICOM/DRSMI-RTS NAME: DOUG HOSKINS JEST NUMBER: 2 MODE: ACTIVE POLARIZATION: VERTICAL JEST CONFIGURATION: REO2

Figure 47. RE02 Emissions- B active - vertical polarization.

RADIATED EMISSIONS (REC2 14kHa-18.8GHa) 88 DATA

SYSTEM NAME, SCI TSAT DACA TEST DATE: 5 NOV 87 MICOM/DRSMI-RTS NAME: DOUG HOSKINS TEST NUMBER: 2 MODE: ACTIVE POLARIZATION: VERTICAL TEST CONFIGURATION: REO2

Figure 48. RE02 emissions - BB active - vertical polarization.

RADIATED EMISSIONS (RED2. 1 14kH=-15. BGH=) NB DATA

SYSTEM NAME: SCI TSAT DACA JEST DATE: 5 NOV 87 MICOM/DRSMI-RTS NAME: DOUG HOSKINS JEST NUMBER: 1 MODE: ACTIVE POLARIZATION: HORIZONTAL JEST CONFIGURATION: RED2

Figure 49. RE02 emissions - NB active - horizontal polarization.

RADIATED EMISSIONS (REO2 14kH=-18.8GH=) BS DATA

SYSTEM NAME: SCI TSAT DACA JEST DATE: 5 NOV 87 MICOM/DRSMI-RTS NAME: DOUG HOSKINS JEST NUMBER: 1 MODE: ACTIVE POLARIZATION: HORIZONTAL JEST CONFIGURATION: RED2

Figure 50. RE02 emissions - BB active - horizontal polarization.

Figure 51. RE02 emissions - NB active - 1.7 GHz to 2.3 GHz.

DISTRIBUTION

	No. of <u>Copies</u>
SCI Technology, Inc.	
8600 S. Memorial Parkway	,
Mailstop 3	
ATTN: Brant McCulley	4
Huntsville, AL 35802	
US Army Materiel System Analysis Activity ATTN: AMXSY-MP	
	1
Aberdeen Proving Ground, MD 21005	ı
IIT Research Institute	
ATTN: GACIAC	1
10 W. 35th Street	
Chicago, IL 60616	
AMSMI-RD, Dr. McCorkle	1
Dr. Rhoades	1
AMSMI-RD-TE-S-EM	2
AMSMI-RD-CS-T	1
AMSMI-RD-CS-R	15
AMSMI-GC-IP. Mr. Bush	1