Заметки курса «Аналитическая механика II»

Семинарист: Сахаров А. В.

Восторженные слушатели: Хоружий К.

Примак Е.

От: 9 февраля 2021 г.

Содержание

1 Малые колебания консервативных систем.

 $\mathbf{2}$

1 Малые колебания консервативных систем.

Запишем уравнения Лагранжа для консервативной голономной системе:

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} = 0, \qquad q \in M^n; \qquad q, \dot{q} \in TM^n.$$

Тогда можно сказать, что

$$L(q, \dot{q}, t) \colon TM^n \times \mathbb{R}^1 \mapsto \mathbb{R}^1.$$

Параллельным переносом выберем q=0 – положение равновесия. Тогда считаем, что $q(t), \dot{q}(t) \in \varepsilon$ – окрестности. В идеале мы хотим всё линеаризовать, тогда

$$T = T_2 + T_1 + T_0 = T_2 = \frac{1}{2} \dot{q}^i \dot{q}^j A_{ij}(q) \approx \frac{1}{2} \dot{q}^{\mathrm{T}} A(0) \dot{q} + \dots, \qquad A(0) = \frac{\partial^2 T(0)}{\partial \dot{q}^{\mathrm{T}} \partial \dot{q}}.$$

т. к. для консервативных систем $T_1 = T_0 = 0$.

Аналогично можем сделать для потенциальной энергии

$$\Pi = \Pi(0) + \frac{\partial \Pi(0)}{\partial q^{\mathrm{T}}} q + \frac{1}{2} q^{\mathrm{T}} \frac{\partial^2 \Pi(0)}{\partial q^{\mathrm{T}} \partial q} q + \dots \approx \frac{1}{2} q^{\mathrm{T}} C(0) q, \qquad C(0) = \frac{\partial^2 \Pi(0)}{\partial q^{\mathrm{T}} \partial q}.$$

Таким образом мы пришли к уравнениям вида

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{q}} - \frac{\partial T}{\partial q} = -\frac{\partial \Pi}{\partial q} \qquad \Rightarrow \qquad \boxed{A\ddot{q} + Cq = 0.}$$

Последнее уравнение называется уравнением малых колебаний. Важно, что A – положительно определена, в силу невырожденности уравнений на \ddot{q} уравнений Лагранжа.

Из линейной алгебры понятно, что существуют координаты $\theta \in M^n$, а также невырожденная матрица перехода к новым координатам $U \colon q = U\theta$, и $U^{\mathrm{T}}AU = E$, $U^{\mathrm{T}}CU = \Lambda$ – диагональная матрица. Тогда верно, что

$$T = \frac{1}{2}\dot{\boldsymbol{q}}A\dot{\boldsymbol{q}} = \frac{1}{2}\dot{\boldsymbol{\theta}}^{\mathrm{T}}U^{\mathrm{T}}AU\dot{\boldsymbol{\theta}} = \frac{1}{2}\sum_{i=1}^{n}\dot{\theta}_{i}^{2}.$$

Аналогично для потенциальной энергии

$$\Pi = \frac{1}{2} \boldsymbol{q}^{\mathrm{T}} C q = \frac{1}{2} \boldsymbol{\theta}^{\mathrm{T}} U^{\mathrm{T}} C U \boldsymbol{\theta} = \frac{1}{2} \boldsymbol{\theta}^{\mathrm{T}} \Lambda \boldsymbol{\theta} = \frac{1}{2} \sum_{i=1}^{n} \lambda_{i} \theta_{i}^{2}.$$

Это ещё сильнее упрощает уравнения Лагранжа:

$$A\ddot{q} + Cq = 0$$
 \rightarrow $\ddot{\theta}_i + \lambda_i \theta_i = 0, \quad i = 1, \dots, n.$

Здесь λ_i – действительные диагональные элементы Λ . При различных λ получаем, что

$$\lambda_{i} > 0 \qquad \Rightarrow \qquad \theta_{i} = c_{i} \sin(\sqrt{\lambda_{i}}t + \alpha_{i});$$

$$\lambda_{i} = 0 \qquad \Rightarrow \qquad \theta_{i} = c_{i}t + \alpha_{i}.;$$

$$\lambda_{i} < 0 \qquad \Rightarrow \qquad \theta_{i} = c_{i} \exp(\sqrt{-\lambda_{i}}t) + \alpha_{i} \exp(-\sqrt{-\lambda_{i}}t).$$

где последние два – уже не колебаниям.

Возвращаясь к удобной форме, получаем, что

$$q = U\theta = \sum_{i=1}^{n} c_i u_i \sin(\sqrt{\lambda_i}t + \alpha_i),$$

где $m{u}_i$ — амплитудный вектор i-го главного колебания. Таким образом консервативная система движется по суперпозиции некоторых главных колебаний (гармонических осцилляций).

Иначе мы можем интерпретировать это так, что кинетическая энергия¹ образует некоторую метрику, а амплитудные вектора образуют некоторый ортонормированный базис.

$$U^{\mathrm{T}}AU = E \quad \Rightarrow \quad \boldsymbol{u}_i^{\mathrm{T}}A\boldsymbol{u}_j = \delta_{ij}$$

Получив матрицы A, C переходим к $[C - \lambda A] \boldsymbol{u} = 0$, получая

$$|C - \lambda A| = 0,$$

что называют вековым уравнением, или уравнением частот. Из него получим $\lambda_1, \ldots, \lambda_n$, и уже перейдём к системе уравнений вида $|C - \lambda_i A| \mathbf{u}_i = 0$.

 $^{^{1}}$ Переписать грамотнее.