Architecture du module Counter_unit

Counter_Unit

Le module Counter_unit compte Cte =10^8 cycles d'horloge (correspondant à 1 s pour l'horloge de 100 MHz).

Le compteur atteint de la value Cte-1 (il commence de 0), le signal end_counter =1 et le compteur revient à zéro à l'aide d'un multiplexeur.

Architecture du module Counter_Cycle

Le premier multiplexeur permet d'augmenter la valeur du cycle de counter_cycle lorsque le signal end_counter =1. Le second multiplexeur permet de remettre à zéro la valeur de counter_cycle lorsqu'elle atteint la valeur maximale du cycle allumé/éteint.

End_counter_cycle = 1 lorsque le compteur finit de compter le nombre de cycle allumé/éteint.

Architecture avec les signaux

Chronogramme de simulation pour 100 cycle horloge de counter_unit

Counter_cycle compte de 0 à 5, il est égal à 2 fois le nombre de clignotements de la LED . Il est ensuite remis à zéro. End_counter _cyle prend 1 lorsque counter_cycle atteint la valeur maximale.

Le singal valide =1 lorsque la LED a fini de clignoter 3 fois.

La LED change de couleur après 3 clignotements.

Schéma de synthèse

Rapport de synthèse

Report Cell Usage:

_		-
+	-+	++
I	Cell	Count
+	-+	++
1	BUFG	1
12	CARRY4	1 71
13	LUT2	32
4	LUT3	2
15	LUT4	6
16	LUT5	3
17	LUT6	3
18	FDCE	33
19	LD	3
10	IBUF	3
11	OBUF	3

Rapport sur le nombre de registre:

28 registres pour le module counter_unit

2 registres pour la machine à états

3 registres pour le compteur counter_cycle

3 registres pour les signaux de sortie led_out

Total: 36 registres = 33 FDCE + 3 LD

NB: Vivado a utilisé 3 Latch, normalement il faut écrire le code de façon à éviter l'utilisation de Latch.

3 IBUF (input buffer : resetn, restart, clk)

3 OBUF (output buffer : led_out)

La machine à états avec 4 états: idle, rouge, blue, vert

New Encoding	Previous Encoding
	-
00	00
01	01
10	10
11	11
	10

Rapport de timming

Design Timing Summary												
j												
						_						
WNS (ns)	TNS (ns)	TNS Failing Endpoints	TNS Total Endpoints	WHS (ns)	THS (ns)	THS Failing Endpoints	THS Total Endpoints	WPWS (ns)	TPWS (ns)	TPWS Failing Endpoints	TPWS Total Endpoints	
4.709	0.000	0	33	0.313	0.000	0	33	4.500	0.000	0	34	

Le nombre de total négative slack (TNS) est 0, le nombre de total hold slack est 0, donc il n'y a pas problème de timming

Point départ du chemin critique Q_reg (23) du module counter_unit

```
4.709ns (required time - arrival time)
Slack (MET) :
 Source:
                        uut/Q reg[23]/C
                          (rising edge-triggered cell FDCE clocked by sys clk pin {rise@0.000ns fall@5.000ns period=10.000ns})
 Destination:
                        uut/Q reg[25]/D
                          (rising edge-triggered cell FDCE clocked by sys clk pin {rise@0.000ns fall@5.000ns period=10.000ns})
 Path Group:
                        sys clk pin
 Path Type:
                       Setup (Max at Slow Process Corner)
 Requirement:
                       10.000ns (sys clk pin rise@10.000ns - sys clk pin rise@0.000ns)
                                                                                                  Point d'arrivée du
 Data Path Delay:
                      5.294ns (logic 2.282ns (43.108%) route 3.012ns (56.892%))
 Logic Levels:
                      10 (CARRY4=7 LUT2=1 LUT6=2)
                                                                                                  chemin critique
 Clock Path Skew:
                  -0.024ns (DCD - SCD + CPR)
                                                                                                  Q_reg (25) du module
   Destination Clock Delay (DCD): 4.910ns = (14.910 - 10.000)
   Source Clock Delay
                        (SCD): 5.362ns
                                                                                                  counter unit
   Clock Pessimism Removal (CPR): 0.429ns
 Clock Uncertainty:
                      0.035ns ((TSJ^2 + TIJ^2)^1/2 + DJ) / 2 + PE
   Total System Jitter (TSJ): 0.071ns
   Total Input Jitter
                        (TIJ): 0.000ns
   Discrete Jitter
                         (DJ): 0.000ns
   Phase Error
                          (PE):
                                   0.000ns
```