Skripta za algebro2

Filip Koprivec

15. oktober 2015

— C. S. Lewis

Kazalo

1	Osn	novne algebrske strukture
	1.1	Binarne operacije
	1.2	Polgrupe in monoidi
	1.3	Grupe
	1 4	Kolobarii

1 Osnovne algebrske strukture

1.1 Binarne operacije

Definicija 1: Binarna Operacija (tudi dvočlena operacija) \circ na množici \mathcal{S} je preslikava iz $\mathcal{S} \times \mathcal{S}$ v \mathcal{S} .

 $Torej \circ : \mathcal{S} \times \mathcal{S} \rightarrow \mathcal{S}$

Primer:

Osnovna zgleda binranih operacij na \mathbb{Z} sta:

- 1. Seštevanje: $(n, m) \mapsto n + m$
- 2. Množenje: $(n, m) \mapsto n \times m$

Skalarni produkt v \mathbb{R}^2 ni binarna operacija. Vektorski produkt v \mathbb{R}^3 je binarna operacija.

Definicija 2: Operacija o je asociativna, če ustreza enačbi

$$\forall x, y, z \in \mathcal{S}. \ (x \circ y) \circ z = x \circ (y \circ z) \tag{1}$$

Enakost 1 imenujemo Zakon o asociativnosti

Operacije, ki jih bomo obravnavali bodo praviloma asociativne.

Definicija 3: Elementa $x, y \in \mathcal{S}$ komutirata, če velja

$$\forall x, y \in \mathcal{S}.x \circ y = y \circ x \tag{2}$$

Enakost 2 imenujemo **Zakon o komutativnosti**

Opomba: Kadar je iz konteksta razvidno, o kateri operaciji govorimo, pogosto namesto " \circ je komutativna rečemo tudi $\mathcal S$ je komutativna"

Primer:

- 1. Operacija + na $\mathbb Z$ je tako asociatitivna in komutativna
- 2. Operacija * na $\mathbb Z$ je tako asociatitivna in komutativna
- 3. Operacija na \mathbb{Z} ni niti asociativna niti komutativna

Opomba: Na opracijo odštevanja gledamo kot na izpeljano operacijo in ne kot na samostojna operacijo, saj jo vpeljemo preko seštevanja in pojma nasprotnega elementa.

4. Naj bo $\mathcal X$ poljubna neprazna množica. Z $F(\mathcal X)$ označimo množico vseh preslikav iz $\mathcal X$ v $\mathcal X$. Naj bosta $f,g\in\mathcal X,$ potem je $(f,g)\mapsto f\circ g$ (kompozitum funkcij) binarna operacija na $F(\mathcal X).$

Opomba: Operacija je asociativna, in kadar $|\mathcal{X}| \geq 2$ ni komutativna

Definicija 4: Naj bo o binarna operacija na na S in $e \in S$. e se imenuje nevtralni element, če velja

$$\forall x \in \mathcal{S}.e \circ x = x \circ e = x \tag{3}$$

Primer:

- 1. 0 je nevtralni element za seštevanje na \mathbb{Z} .
- 2. 1 je nevtralni element za množenje na \mathbb{Z} .
- 3. id_x (identična preslikava) je nevtralni element za $F(\mathcal{X})$

Opomba: Nevtralni element nima zagotovljenega obstoja (recimo + na \mathbb{N} ali * na sodih celih številih).

Trditev 1: Če nevtralni element obstaja je en sam

Dokaz. Naj bosta $f, e \in \mathcal{S}$ nevtralna elementa.

 $e=e\circ f$ // Ker je f
 nevtralni element $e\circ f=f$ // Ker je e nevtralni element

e = f

Definicija 5: Element e' je levi nevtralni element, če velja:

$$\forall x \in \mathcal{S}.e' \circ x = x \tag{4}$$

Definicija 6: Element e" je desni nevtralni element, če velja:

$$\forall x \in \mathcal{S}.x \circ e'' = x \tag{5}$$

Opomba: Levih in desnih nevtralnih elementov je lahko več **Primer:**

 $1. \ \circ : (x,y) \mapsto y.$

Vsak element je levi nevtralni element

2. 0 je desni nevtralni element za odštevanje v $\mathbb Z$

Trditev 2: Naj bo za operacijo $\circ e'$ levi nevtralni element, e'' pa desni nevtralni element. Tedaj velja $e' = e'' = e(\text{Sta si levi in desni nevtralni element enaka in je(sta) nevtralni element)$

Dokaz.

$$e' = e' \circ e'' = e''$$

Definicija 7: Naj bo \circ operacija na \mathcal{S} in naj bo $\mathcal{T} \subseteq \mathcal{S}$. Rečemo, da je \circ notranja operacija na \mathcal{T} ali da je množica \mathcal{T} zaprta za \circ na \mathcal{T} , če velja

$$\forall t, t' \in \mathcal{T}.t \circ t' \in \mathcal{T} \tag{6}$$

Primer:

Množica \mathbb{N} je zaprta za operaciji + in *, ni pa zaprta za operacijo -.

Definicija 8: Preslikavi iz $K \times S$ v S kjer K! = S rečemo **Zunanja binarna** operacija

Primer:

1. Množenje vektorja s skalarjem

$$(\lambda, \vec{x}) \mapsto \lambda \vec{x}$$
, kjer je $(K = \mathbb{R}, S = \mathbb{R}^n)$
 $\lambda(x_1, x_2, \dots, x_n) = (\lambda x_1, \lambda x_2, \dots, \lambda x_n)$

1.2 Polgrupe in monoidi

Definicija 9: Algebrska struktura je množica, opremljena z eno ali več operacijami (notranjimi ali zunanjimi), ki im ajo določene lastnosti

Definicija 10: Polgrupa je par množice S skupaj z asociativno binarno operacijo. Pišemo: (S, \circ)

Opomba: Kadar je jasno o kateri operaciji govorimo, pogosto govorimo kar o polgrupi $\mathcal S$

Primer:

1.
$$(\mathbb{N},+), (\mathbb{Z},+), (\mathbb{Q},+), (\mathbb{R},+), (\mathbb{C},+), (\mathbb{N},*), \dots$$
Niso samo polgrupe ampak kar grupe

Naj bo (S, \circ) polgrupa, po zakonu 1 o asociativnosti velja:

$$\forall x, y, z \in \mathcal{S}. (x \circ y) \circ z = x \circ (y \circ z)$$

zato lahko okepaje spuščamo in vse to pišemo kot $x\circ y\circ z$. Kaj pa če imamo več kot tri elemente. Ali velja tudi:

$$(x_1 \circ x_2) \circ (x_3 \circ x_4) = ((x_1 \circ x_2) \circ x_3) \circ x_4 = x_1 \circ (x_2(\circ x_3 \circ x_4)) = \dots$$

Trditev 3: Naj bo (S, \circ) polgrupa, $n \in \mathbb{N}$ in naj bo $x_1, x_2, \ldots, x_n \in S$. Tedaj je za vsak n enakost izpolnjena na glede na postavitev oklepajev (izraz ima smisel, tudi kadar ne pišemo oklepajev).

$$x_1 \circ x_2 \circ \cdots \circ x_n = (\dots (x_1 \circ x_2) \circ \cdots \circ x_n) = x_1 \circ (x_2 (\circ \cdots \circ x_n) \dots) = \dots$$

Dokaz.Zgolj skica dokaza

Definirajmo: $x := x_1 \circ (x_2(\circ \cdots \circ x_n) \dots)$ in

y := naj bo kombinacija elementov $x_1 \dots x_n$, z drugače postavljenimi oklepaji Indukcija na n:

 $n \leq 3$: Očitno

Ker
$$n \le 2$$
 velja $y = \underbrace{(u)}_{x_1, \dots, x_k} \circ \underbrace{(v)}_{x_{k+1}, \dots, x_n}$ Iz $k < n$ sledi:
 $y = (x_1 \circ w) \circ v = x_1 \circ (w \circ v)$

Po I.P.
$$(w \circ v \text{ ima } n-1 \text{ elementov}): x = x_1 \circ (x_2 \circ \cdots \circ x_{n-1})$$

Zato lahko oklepaje izpuščamo in pišemo kar: $x_1 \circ x_2 \circ \cdots \circ x_4$

Definicija 11: *Potenca elementa x.* Naj bo $n \in \mathbb{N} - \{0\}$ in $x \in \mathcal{S}$

$$x^n := \underbrace{x \circ x \circ \dots \circ x}_{nelementov} \tag{7}$$

Opomba: Brez asociativnosti ni definirano niti x^3

Opomba:

Očitno velja:

 $\forall n, m \in \mathbb{N}.x^n \circ x^m = x^{n+m}$ in $\forall n, m \in \mathbb{N}.(x^n)^m = x^{nm}$

Definicija 12: Polgrupa z nevtralnim elementom se imenuje monoid.

Primer:

- 1. $(\mathbb{N},+)$ ni monoid, $(\mathbb{N}\cup\{0\},+)$ pa je.
- 2. $(\mathbb{N}, *)$ je monoid
- 3. $(F(\mathcal{X}), \circ)$ je monoid, nevtralni element je $id_{\mathcal{X}}$

Definicija 13: Naj bo (S, \circ) monoid z nevtralnim elementom e. Element y je levi inverz elementa x, če velja: $y \circ x = e$.

Definicija 14: Naj bo (S, \circ) monoid z nevtralnim elementom e. Element y je desni inverz elementa x, če velja: $x \circ y = e$.

Opomba: Levi in desni inverz nimata zagotovljenega obstoja, če pa obstajata ni nujno, da sta enolično določena.

Primer:

1. $f \in F(\mathcal{X})$ ima levi inverz $\iff f$ je injektivna

Če f ni surjektivna ima lahko več levih inverzov, ki so izven \mathcal{Z}_f lahko poljubno definirani.

- 2. $f \in F(\mathcal{X})$ ima desni inverz $\iff f$ je surjektivna
- 3. $f \in F(\mathcal{X})$ ima levi in desni inverz $\iff f$ je bijektivna

Definicija 15: Element y iz monida S je inverz elementa x Če velja:

$$x \circ y = y \circ x = e \tag{8}$$

Elementu, ki ima inverz rečemo da je **obrnljiv** in njegov inverz označimo z x^{-1} (To ni čisto korektno, saj bomo šele malo naprej pokazali, da ima vsak element en sam inverz). In tako dobimo

$$x \circ x^{-1} = x^{-1} \circ x = e \tag{9}$$

Opomba: Če je operacija o komutativna potem levi inverz, desni inverz in inverz za posamezen element sovpadajo

Trditev 4: Naj bo (S, \circ) monoid, Če je y levi inverz elementa x in je z njegov desni inverz, potem $z = y = x^{-1}$

Dokaz.
$$y = y \circ e = y \circ (x \circ z) = (y \circ x) \circ z = e \circ z = z$$

Posledica: Obrnljiv element monoida ima natanko en inverz.

Posledica: Ce je x obrnljiv element monoida S potem iz $y \circ x = e$ sledi $x \circ y = e$. **Trditev 5:** Če sta x in y obrnljiva, potem je obrnljiv tudi element $(x \circ y)$ in je njegov inverz $y^{-1} \circ x^1$

Dokaz. To je desni inverz:

Dokaz. To je desni inverz:
$$(x\circ y)\circ (y^{-1}\circ x^{-1})=x\circ (y\circ y^{-1})\circ x^{-1}=x\circ e\circ x^{-1}=x\circ x^{-1}=e$$
 in tudi levi inverz:

$$(y^{-1} \circ x^{-1}) \circ (x \circ y) = y^{-1} \circ (x^{-1} \circ x) \circ y = y^{-1} \circ e \circ y = y^{-1} \circ y = e \qquad \Box$$

Opomba: Seveda velja za n elementov

$$(x_1 \circ x_2 \circ \dots \circ x_n)^{-1} = x_n^{-1} \circ \dots \circ x_2^{-1} \circ x_1^{-1}$$
(10)

Primer:

- 1. $(\mathbb{N} \cup \{0\}, +)$: edini obrnljiv element je 0.
- 2. $(\mathbb{N}, *)$: edini obrnljiv element je 1
- 3. $(\mathbb{Z},*)$: edina obrnljiva elementa sta 1 in -1
- 4. $(\mathbb{Q},*)$: Obrnljivi so vsi element razen 0
- 5. $(F(\mathcal{X}), \circ)$: obrnljive so vse bijektivne preslikave

Opomba: Poseben primer zadnje formule kadar je x obrnljiv je tudi: $(x^n)^{-1}$ $(x^{-1})^n$ za $n \in \mathbb{N}$

Definicija 16:

$$n \in \mathbb{N}.x^{-n} := (x^n)^{-1} = (x^{-1})^n$$
 (11)

Definicija 17:

$$x^0 := e \tag{12}$$

Tako kadar je x **obrnljiv** veljata enačbi

$$\forall n, m \in \mathbb{Z}.x^n \circ x^m = x^{n+m} \tag{13}$$

$$\forall n, m \in \mathbb{Z}. (x^n)^m = x^{nm} \tag{14}$$

Trditev 6: Če je x obrnljiv element monida S potem velja pravilo krajšanja:

$$x \circ y = x \circ z \implies y = z \tag{15}$$

In tudi

$$y \circ x = z \circ x \implies y = z \tag{16}$$

Dokaz.

$$x \circ y = x \circ z \implies x^{-1} \circ x \circ y = x^{-1} \circ x \circ z \implies y = z$$

Druga enačba podobno

Opomba: Iz enačbe $x\circ y=z\circ x$ v splošnem **ne** slediy=z

1.3 Grupe

Dogovor: V grupi bomo namesto \circ uporabljali kar operacijo 'krat', torej se bo operacija imanovala kar množenje. Prav tako bomo izpuščali operator, ko bo le mogoče in pisali kar xy.

Tako xyimenujemo 'produkt' x in ynevtrali element pa označimo z 1 in mu rečemo kar enota.

Definicija 18: Monoid v katerem je vsak element obrnljiv, se imenuje grupa. Grupa, v kateri je vsaka operacija komutativna se umenuje komutativna grupa ali Abelova grupa.

Ki je ekvivalenta bolj čisti definiciji:

Definicija 19: Množica \mathbb{G} skupaj z binarno operacijo $*: \mathbb{G} \times \mathbb{G} \to \mathbb{G}$, $(x,y) \mapsto xy$ je **grupa** če zanjo velja:

 G_1 :

$$\forall x, y, z \in \mathbb{G}. (xy)z = x(yz)$$

 G_2 :

$$\exists 1 \in \mathbb{G}. \ \forall x \in \mathbb{G}. \ 1x = x1 = x$$

 G_3 :

$$\forall x \in \mathbb{G}. \ \exists x^{-1} \in \mathbb{G}. \ xx^{-1} = x^{-1}x = 1$$

Če velja tudi:

$$\forall x, y \in \mathbb{G}. \ xy = yx$$

Potem grupo G imanujemo **Abelova** grupa.

Grupe delim na komutativne in nekomutativne(glede na lastnosti operacije) ter na končne in neskončne(glede na število elementov).

Primer:

- 1. $(\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{R}, +), (\mathbb{C}, +)$
- 2. $(\mathbb{N} \cup \{0\}, +)$ **ni** grupa
- 3. $(\mathbb{R},*)$: **ni** grupa, ker 0 ni obrnljiv

Opomba: Vsak monoid 'skriva' grupo.

Definicija 20: $S S^*$ označujemo množico vseh obrnljivih elementov monoida S

Trditev 7: Če je S monoid je S grupa.

 $Dokaz.~x,y\in\mathcal{S}^*\implies x\circ y\in\mathcal{S}^*~//$ Obrn
ljiv je tudi njun produkt, torej je množica je zaprta za *

Ker je * asociativen na ${\mathcal S}$ je asociativen tudi na ${\mathcal S}^*$

 $e \in \mathcal{S}^*$ saj je enota inverz sami sebi

$$x \in \mathcal{S}^* \implies x^{-1} \in \mathcal{S}^*$$
 // Inverz inverza je kar element sam

Primer:

- 1. $(\mathbb{N} \cup \{0\}, +)$: $(\mathbb{N} \cup \{0\}, +)^* = 0$
- 2. $(\mathbb{Z}, +)$: $(\mathbb{Z}, +)^* = -1, 1$
- 3. $(\mathbb{Q}, *)$: $(\mathbb{Q}, *)^* = \mathbb{Q} 0$

Opomba: Grupam z enim elementom pravimo trivialne grupe.

4. $(F(\mathcal{X}), \circ)$: $(F(\mathcal{X}), \circ)^* = \{f : \mathcal{X} \to \mathcal{X} | f \text{ je bijekcija}\}$

Definicija 21: $Množico\ Sim(\mathcal{X})\ imenujemo\ simetrična\ grupa\ (množice\ \mathcal{X}).$

$$Sim(\mathcal{X}) := \{ f : \mathcal{X} \to \mathcal{X} | f \text{ je bijekcija} \}$$
 (17)

Njene emelente(bijektiven preslikave iz \mathcal{X} v \mathcal{X} pa imenujemo **permutacaije** (množice \mathcal{X}).

Opomba: Če je množica končna jo praviloma označimo z $\{1, 2, \ldots, n\}$, njej pripadajočo grupo permutacij pa z

$$S_n := Sim(\{1, 2, \dots, n\}) \tag{18}$$

Včasih bomo operacije na grupah vendarle označevali s + ('seštevanje'). Taki grupi bomo rekli **aditivna grupa**. Nevtralni element bomo označevali z 0 in inverzni element pa bom oimenovali 'nasprotni element' in ga označevali z -x. Namesto x + (-y) bom tako pisali x - y (razlika x in y). S tem smo v aditivno grupo vpeljeli odštevanje. Prav tako bom namesto x^n pisali nx. Primer takih grup so Abelove grupe. (x + y = y + x)

1.4 Kolobarji

 $\mathbb{Z},\mathbb{Q},\mathbb{R},\mathbb{C}$ so aditivne grupe, v katerih je naravno definirano tudi množenje, za katerega so monoidi.

Definicija 22: Množica K, skupaj z binarnima operacijama seštevanja + : $(x,y) \mapsto x + y$ in množenja * : $(x,y) \mapsto xy$ se imenuje **kolobar** če velja

 K_1 : (K, +) je **Abelova grupa**

 K_2 : (K,*) je monoid

 K_3 : Izpolnjena sta oba distributivnostna zakona

$$\forall x, y, z \in \mathcal{K}. \ z(x+y) = zx + zy \tag{19}$$

$$\forall x, y, z \in \mathcal{K}. \ (x+y)z = xz + yz \tag{20}$$

 ${\it Opomba:}$ Oba zakona potrebujemo zaradi ne nujne komutativnosti množenja v monoidu