

Current Situation

- \rightarrow African countries are dealing with increased air pollution
- \rightarrow PM2.5: Key indicator of air quality (as less as possible)
- → Increase risk of health problems (asthma, heart disease, low birth weight)

About the project

Audience:

- cities and municipalities
- raising awareness on air pollution and potential health risk

Value of Product:

- determination/monitoring of ground level air quality based on satellite data of air pollutants without need of expensive measurement equipment
- suitable for developing African countries

Prediction:

- air quality measure (particle size > 2.5nm) based on satellite data of pollutants

Evaluation Metric: RMSE

Baseline Model:

- wind magnitude and air pollution have negative linear relationship

Steps

Preprocessing Data
Baseline Model
Seda

3. Predictive Models Hannes

Understanding the data structure

- Target columns:
- Feature columns:
- Acquisition time:
- Location of Acquisition:

ground measurements of air quality satellite data of air pollutants 3 months various cities in Africa

AIM

Predict the blue time series (line) based on multiple other time series

Data Cleaning

- Feature columns > **80%** missing values: exclude from analysis

- Feature columns **10 - 30 %** missing values: use location specific imputation strategy

- We did not exclude any columns from the model with useless information

Feature Engineering

- log-normal distributions log-transformation, Min-Max scaler

normal distributions Min-Max scaler

Selected Baseline Model

Poisson Regression

Assumption

- Wind blows dust/pollution particles away
- Less wind magnitude \rightarrow higher PM2.5 concentration

Evaluation Metric

- RMSE (Train) = 43.81
- RMSE (Test) = 42.68

Why RMSE?

- easy to interpret
- prediction accuracy
- performance comparison of different models

Selected advanced model: Ensemble Methods

- XGBoost
- Random Forest

Error

- RMSE = 32.65

$\frac{Features}{n = 70}$

Conclusions

Most important features:

Least important features:

- no2 sensor azimuth angle

- aer ai sensor altitude

- so2 column density

- co column density

=> possibility to provide recommendation which pollutants are critical for air quality

Our predictions have improved compared to baseline model

Features with sensor data should be imputed with different strategy

Thank you for your attention

Seda

Tobias

Hannes

Priscila

References

_ _ _

- https://zindi.africa/competitions/zindiweekendz-learning-urban-air-pollution-challenge
- Foto: https://mcgill.on.worldcat.org/