Neuron – Myo Fibril Processing

Recap.

Neuron & Other Cells in Brain Tissue

Recap. Neuronal Transmission

M: Micro-tubules
NF: Neuro-filaments

Recap. (Myo-Fibrils)

excitation-contraction coupling and relaxation

Motor End Plate

contact point between a single axon terminal and the muscle

Basis of Neuromuscular Junction:

Acetylcholine from Synaptic Vesicles

Acetylcholine

Acetyl-choline Channel (Ach)

Only End-plate Potential having normal amplitude (+60 mV) contracts a Muscle

excitation-contraction coupling and relaxation

Transverse Tubule (Tubes of Extracellular Fluid) &

Sarcoplasmic Reticulum Network

Enables Action Potential to Spread deep inside Muscle

Mechanisms of excitation-contraction coupling and relaxation

"Excitation – Contraction" Coupling → Neuron - Muscle Coupling

Action Potential in Sarcolemma membrane lining outside

Ca⁺⁺ Release in Sarcoplasmic Reticulum Network inside

Ca⁺⁺ Pump: Re-uptake & Recycling of ions

Comparison Between Action Potentials of Muscle Vis-a-Vis Nerve

1. Resting membrane potential: about -80 to -90 millivolts in skeletal fibers—the same as in large myelinated nerve fibers.

2. Duration of action potential: 1 to 5 milliseconds in skeletal muscle—about five times as long as in large myelinated nerves.

3. Velocity of conduction: 3 to 5 m/sec—about 1/13 the velocity of conduction in the large myelinated nerve fibers that excite skeletal muscle.