```
Tutavial-4
```

1)
$$T(n) = 3T(n|2) + n^2$$

Answer) $a = 3$, $b = 2$, $f(n) = n^2$
 $n \log b^a = n \log \frac{3}{2}$

comparing $n \log 2^3$ and n^2
 $n \log 2^3 < n^2$ (case 3)

 \therefore according to master Theorem

 $T(n) = \delta(n^2)$

2).
$$T(n) = 4T(n|2) + n^2$$

$$a = 4, b = 2$$

$$n \log^{4} = n \log^{2} = n^2 = f(n) \quad (Case 2)$$

$$\therefore accerding to master Theorem
$$T(n) = 0 \quad (n^2 \log n)$$$$

3.)
$$T(n) = T(n|2) + 2^n$$

 $\alpha = 1, b = 2$
 $n \log 2' = n^0 = 1$
 $1 < 2^n (case 3)$

... accounding to master Theorem $T(n) = \theta$ (2n).

4.)
$$T(n) = 2^n + (n/2) + n^n$$

... Master's Theorem is Not applicable as a is function.

5.)
$$T(n) = 16T(n|4) + n$$

 $a = 16$, $b = 4$, $P(n) = n$
 $n \log b^{\alpha} = n \log 4^{16} = n^{2}$
 $n^{2} > P(n)$ (Case 1)

Scanned with CamScanner

6.)
$$T(n) = 8(n^2)$$
 $T(n) = 2T(n|2) + n \cdot \log n$
 $a = 2, b = 2, F(n) = n \cdot \log n$
 $n \cdot \log a = n \cdot \log a = n$

Now, $f(n) > n$

According to mosters Theorem $T(n) = 0 \cdot (n \cdot \log n)$
 $T(n) = \alpha T\left(\frac{n}{2}\right) + \frac{n}{\log n}$
 $a = 2, b = 2, f(n) = \frac{n}{\log n}$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot f(n)$

According to masters Theorem $T(n) = O(n)$

8.) $T(n) = 2T\left(\frac{n}{1}\right) + n$
 $a = 2, b = 4, f(n) = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n \cdot \log a = n$
 $n \cdot \log a = n$
 $n \cdot \log a = n$
 $n \cdot$

11)
$$T(n) = 4T(\frac{n}{4}) + 4agn$$
 $C = 4, b = 2, f(n) = log n$
 $n \log 6^{2} = n \log 2^{2} = n^{2}$
 $n^{2} > 7f(n)$

... According to moster's therewow, $T(n) = O(n^{2})$

12) $T(n) = squt (n) + (n|2) + log n$

... Master's not applicable at a is not constant.

13.) $T(n) = 3T(n|2) + n$
 $a = 3, b = 2$
 $f(n) = n$
 $n \log 6^{2} = n \log 2^{3} = n$
 $n \log 6^{2} = n \log 2^{3} = n$
 $n \log 6^{2} = n \log 2^{3} = n$

14.) $T(n) = 3T(n/3) + \sqrt{n}$
 $a = 3, b = 3, f(n) = \sqrt{n}$
 $n \log 6^{2} = n \log 3^{3} = n$
 $n \log 6^{2} = n \log 3^{3} = n$

... According to master's therewer, $T(n) = O(n)$

15.) $T(n) = 4T(n/2) + cn$
 $a = 4, b = a, f(n) = C + n$
 $n \log 6^{2} = n \log 2^{2} = n^{2}$
 $n^{2} > C + n$

... According to Master's Therewer, $T(n) = O(n^{2})$

16.) $T(n) = 3T(n/4) + n \log n$
 $n \log 6^{2} = n \log 3^{2} = n^{2}$
 $n^{2} > C + n$

... According to Master's Therewer, $T(n) = O(n^{2})$

16.) $T(n) = 3T(n/4) + n \log n$
 $n \log 6^{2} = n \log 3^{2} = n^{2}$

 $n^{0.79} < n \log n$.

... Accounting to Master's theorem, $T(n) = O(n \log n)$ T(n) = 3T(n|3) + n|2 a = 3, b = 3, $f(n) = \frac{n}{2}$ $n \log^3 = n \log^3 = n$ $O(n) = O(\frac{n}{2})$

.. According to Master's thecerem T(n)=0(n logn).

(17

->
$$\alpha = 6$$
, $b = 3$, $f(n) = n^2 \log n$
 $n \log_3^6 = n^{\log_3^6} = n^{1.63}$
 $n^{1.63} < n^2 \log n$

.. Accounting to master's theaven T(n) = 0 (n2 log n)

(9.)
$$T(n) = 4T(n|2) + n|\log n$$
.
 $\alpha = 4$, $b = 2$, $f(n) = n|\log n$.
 $n\log^{2} 3 = n\log^{2} 2 = n^{2}$.
 $n^{2} > n|\log n$.

... Accounting to master's therenom $T(n) = O(n^2)$.

Master's theaven is not applicable as f(n) is not Increasing function.

=>
$$a=7, b=3, f(n)=n^2$$

 $n\log 6 = n\log 3 = n^7$
 $n^7 \le n^2$

- .. According to Master's theorem, T(n) = O(n2)
- Master's Thereworn isn't applicatele since sugularity condition is included in case 3.