

Uni.lu HPC School 2020 PS7: Introduction to GPU programming with CUDA (Part I)

Big Data Services hpc.uni.lu hpc@uni.lu @ULHPC LU EMBOURG

Uni.lu High Performance Computing (HPC) Team F. Pinel

University of Luxembourg (UL), Luxembourg

http://hpc.uni.lu

Latest versions available on Github:

UL HPC tutorials:

UL HPC School:

PS7 tutorial sources:

https://github.com/ULHPC/tutorials

http://hpc.uni.lu/hpc-school/

ulhpc-tutorials.rtfd.io/en/latest/cuda/

2020

Objectives

- Minimum CUDA knowledge to start development
 - \hookrightarrow Single GPU, Unified Memory
- On the iris cluster
 - \hookrightarrow interactive and passive jobs
- Error handling
- Profiling

Out of scope (but useful)

- Streams
- Multi-GPU
- Profiling for performance improvement (information available)
- Fine-tuning memory access

Software overview

CUDA C++ Programming Guide

GPU Computing Applications										
Libraries and Middleware										
cuDNN TensorRT	cuFFT, cuBLAS, cuRAND, cuSPARSE		CULA MAGMA		Thrust NPP	VSIPL, SVM, OpenCurrent		PhysX, OptiX, iRay		MATLAB Mathematica
Programming Languages										
С	C++		Fortran		Java, Python, Wrappers		DirectCompute		Directives (e.g., OpenACC)	
CUDA-enabled NVIDIA GPUs										
Turing Architecture (Compute capabilities 7.x)		DRIVE/JETSON AGX Xavier		Ge	GeForce 2000 Series		Quadro RTX Series		Tesla T Series	
Volta Architecture (Compute capabilities 7.x)		DRIVE/JETSON AGX Xavier							Т	esla V Series
Pascal Architecture (Compute capabilities 6.x)		Tegra X2		GeForce 1000 Series		es	Quadro P Series		Tesla P Series	
Maxwell Architecture (Compute capabilities 5.x)		Tegra X1		Ge	GeForce 900 Series		Quadro M Series		Tesla M Series	
Kepler Architecture (Compute capabilities 3.x)		Tegra K1		Ge	GeForce 700 Series GeForce 600 Series		Quadro K Series		Tesla K Series	
		EMBEDDED		CO	CONSUMER DESKTOP, LAPTOP		PROFESSIONAL WORKSTATION		DATA CENTER	

Hardware/Software overview

CUDA C++ Programming Guide

Thread Hierarchy and Memory overview

CUDA C++ Programming Guide

Accelerating Applications with CUDA

Your Turn!

Hands-on GPU programming with CUDA

▶ url ◀ | github | src

si-gpu

nvcc

- Understanding CUDA thread hierarchy
 - → Accelerating for loops
- Understanding Memory allocation
 - → application to array manipulation on both the host and device
 - → management of data sets larger than the grid
- Performance evaluation and Profiling of your GPU application.

Thank you for your attention...

Questions?

High Performance Computing @ Uni.lu

University of Luxembourg, Belval Campus Maison du Nombre, 4th floor 2, avenue de l'Université L-4365 Esch-sur-Alzette mail: hpc@uni.lu

https://hpc.uni.lu

