CM5 : Noyau-image, Injection-surjection-bijection, Changement de bases

L3 UPSSITECH

Mercredi 15 septembre 2021

Objectifs de cette séance

- ► Savoir exprimer les *noyau* et *image*
 - ▶ d'une application linéaire,
 - ou d'une matrice.
- Savoir déterminer si une application linéaire est injective, surjective, bijective.
- ➤ Savoir effectuer des *changements de base* pour exprimer la matrice d'une application linéaire dans d'autres bases que les bases canoniques.

Hypothèses de la section

- ightharpoonup E et F sont deux \mathbb{R} -espaces vectoriels;
- ightharpoonup dim(E) = n, dim(F) = m;
- ▶ $\mathcal{E} = \{e_1, e_2, ..., e_n\}$ est une base de E et $\mathcal{F} = \{f_1, f_2, ..., f_m\}$ est une base de F.
- ▶ On note 0_E l'élément neutre de E et 0_F celui de F.

Noyau et image d'une application linéaire

Soit $f: E \to F$ une application linéaire.

Définition

▶ On appelle *noyau de f* et on note Ker(f) l'ensemble des éléments de E dont l'image par f est 0_F :

$$Ker(f) = \{u \in E : f(u) = 0_F\}.$$

C'est un s.e.v. de E.

➤ On appelle image de f et on note Im(f) l'ensemble des images des éléments de E :

$$Im(f) = \{f(u) : u \in E\} = \{y \in F : \exists x \in E \text{ tels que } f(x) = y\}.$$

C'est un s.e.v. de F.

Pratique ...

 $\operatorname{Im}(f)$ est le s.e.v. engendré par les images d'une famille génératrice de E.

Exercice-méthode : noyau et image de l'application linéaire L de \mathbb{R}^2 dans \mathbb{R}^3 définie par L(x,y)=(x+y,y,x-y).

Théorème du rang

Pour une application linéaire f de E dans F, on a

$$dim(E) = dim(Ker(f)) + dim(Im(f)).$$

Remarque

Cette relation peut être vérifiée sur l'exemple précédent.

Définition

On appelle rang de f et on note rang(f) la dimension de l'image de f.

Noyau et image d'une matrice

Noyau d'une matrice

On appelle *noyau de* $A \in \mathcal{M}_{m,n}(\mathbb{R})$ et on note $\operatorname{Ker}(A)$ l'ensemble

$$\operatorname{Ker}(A) = \{ u \in \mathbb{R}^n : Au = 0_{\mathbb{R}^m} \}.$$

Image d'une matrice

On appelle *image de* $A \in \mathcal{M}_{m,n}(\mathbb{R})$ et on note $\operatorname{Im}(A)$ le s.e.v. engendré par les colonnes de A.

Soit f une application de E dans F, pas nécessairement linéaire.

Application injective, surjective, bijective

- ▶ $f: E \to F$ est dite *injective* si $f(u) = f(u') \Rightarrow u = u'$.
- ▶ $f: E \rightarrow F$ est dite *surjective* si tout élément de F admet au moins un antécédent dans E par f.
- ▶ $f: E \rightarrow F$ est dite **bijective** si elle est à la fois injective et surjective.

Active quizz

...

Active quizz

...

Construisons une application injective g définie par $g(u) = u^2$:

Construisons une application surjective h définie par $h(u) = u^2$:

Si maintenant $f: E \to F$ est une application | linéaire |.

Application linéaire injective, surjective

- ▶ $f: E \to F$ linéaire est injective si et seulement si $Ker(f) = \{0_E\}$.
- ▶ $f: E \to F$ linéaire est surjective si et seulement si Im(f) = F.

Théorème

Si dim(E) = dim(F), alors f est injective ssi f est surjective.

Exercice-méthode : *L* est injective ? surjective ? bijective ?

Rappel :
$$L(x, y) = (x + y, y, x - y)$$
.

Matrice de changement de base

On considère \mathcal{E}' une autre base de E.

Matrice de changement de base (ou matrice de passage)

On appelle *matrice de changement de base de* \mathcal{E} à \mathcal{E}' la matrice P de taille n dont la colonne j contient les composantes de e'_i dans la base \mathcal{E} .

Remarque

P est en fait la matrice de l'identité relativement aux bases \mathcal{E}' et \mathcal{E} .

Conséquence importante

Si P est la matrice de changement de base de $\mathcal E$ à $\mathcal E'$, on a $P=[I]_{\mathcal E'}^{\mathcal E}$ et donc

$$P[v]_{\mathcal{E}'} = [v]_{\mathcal{E}}$$

Exercice-méthode : matrice de passage

On considère $E = \mathbb{R}^2$, \mathcal{E} la base canonique de \mathbb{R}^2 et

$$\mathcal{E}' = \left\{ \left(\begin{array}{c} 1 \\ 2 \end{array} \right), \left(\begin{array}{c} 0 \\ 1 \end{array} \right) \right\}.$$

Que vaut la matrice P de changement de base de \mathcal{E} à \mathcal{E}' ? et Q la matrice de changement de base de \mathcal{E}' à \mathcal{E} ? Calculer PQ.

On considère aussi une autre base \mathcal{F}' de F.

Théorème de changement de base

Si on note

- \blacktriangleright M la matrice représentative de f relativement aux bases \mathcal{E} et \mathcal{F} ,
- ightharpoonup P la matrice de changement de base de \mathcal{E} à \mathcal{E}'
- ightharpoonup et Q la matrice de changement de base de \mathcal{F} à \mathcal{F}' ,

alors la matrice M' représentative de f relativement aux bases \mathcal{E}' et \mathcal{F}' est donnée par

$$[f]_{\mathcal{E}'}^{\mathcal{F}'} = M' = Q^{-1}MP = [f]_{\mathcal{F}}^{\mathcal{F}'}[f]_{\mathcal{E}}^{\mathcal{F}}[f]_{\mathcal{E}'}^{\mathcal{E}}.$$

Un dessin récapitulatif

Exercice-méthode : matrice dans les bases canoniques

On considère l'application linéaire $f:\mathbb{R}^3 \to \mathbb{R}^2$ définie par

$$f(x,y,z) = \begin{pmatrix} x-y \\ x+z \end{pmatrix}.$$

Quelle est la matrice M_0 représentative de f relativement aux bases canoniques?

Exercice-méthode : changement de base 1

Rappel : $f: \mathbb{R}^3 \to \mathbb{R}^2$ définie par $f(x, y, z) = \begin{pmatrix} x - y \\ x + z \end{pmatrix}$.

On note ${\mathcal F}$ la base canonique de ${\mathbb R}^2$ et ${\mathcal E}'$ une base de ${\mathbb R}^3$:

$$\mathcal{E}' = \left\{ \left(\begin{array}{c} 1 \\ 1 \\ 0 \end{array} \right), \left(\begin{array}{c} 1 \\ 0 \\ 1 \end{array} \right), \left(\begin{array}{c} 0 \\ 1 \\ 1 \end{array} \right) \right\}.$$

Quelle est $M_1 = [f]_{\mathcal{E}'}^{\mathcal{F}}$, la matrice représentative de f relativement aux bases \mathcal{E}' et \mathcal{F} ?

Exercice-méthode : changement de base 1 (suite)

Exercice-méthode : changement de base 2

Rappel : $f: \mathbb{R}^3 \to \mathbb{R}^2$ définie par $f(x, y, z) = \begin{pmatrix} x - y \\ x + z \end{pmatrix}$.

On note ${\mathcal E}$ la base canonique de ${\mathbb R}^3$ et ${\mathcal F}'$ une base de ${\mathbb R}^2$:

$$\mathcal{F}' = \left\{ \left(\begin{array}{c} 1 \\ 1 \end{array} \right), \left(\begin{array}{c} 1 \\ 2 \end{array} \right) \right\}$$

Quelle est $M_2 = [f]_{\mathcal{E}}^{\mathcal{F}'}$, la matrice représentative de f relativement aux bases \mathcal{E} et \mathcal{F}' ?

Exercice-méthode : changement de base 2 (suite)

Exercice-méthode : changement de base 3

Rappel : $f: \mathbb{R}^3 \to \mathbb{R}^2$ définie par

$$f(x,y,z) = \begin{pmatrix} x-y \\ x+z \end{pmatrix}.$$

Quelle est $M_3 = [f]_{\mathcal{E}'}^{\mathcal{F}'}$, la matrice représentative de f relativement aux bases \mathcal{E}' et \mathcal{F}' ?

Exercice-méthode : changement de base 3 (suite)