Seminární úlohy 11

1. V experimentu byla měřena závislost napětí na prodloužení při tahové deformaci kovového drátu. Byly zjištěny následující hodnoty relativního prodloužení ε a napětí σ . Chyba určení ε byla minimálně o řád menší než chyba určení σ a proto ji zanedbáváme.

ε (%)	σ (GPa)
0.10	0.11 ± 0.03
0.20	0.16 ± 0.02
0.30	0.18 ± 0.02
0.40	0.22 ± 0.03
0.50	0.33 ± 0.02
0.60	0.39 ± 0.03
0.70	0.42 ± 0.02
0.80	0.51 ± 0.03
0.90	0.63 ± 0.03
1.00	0.65 ± 0.02

Vyneste do grafu závislost σ na ε a proveďte lineární fit této závislosti metodou nejmenších čtverců. Z lineárního fitu určete Youngův modul pružnosti měřeného vzorku a jeho chybu.

[řešení: Youngův modul pružnosti $E=(65\pm1)$ GPa]

2. Niob je kov s kubickou prostorově centrovanou krystalickou strukturou. Při teoretických výpočtech elektronové struktury Nb byly zjištěny následující hodnoty energie připadající na 1 atom pro různé hodnoty mřížové konstanty a. Relativní chyba vypočítaných hodnot energie je 0.1%.

Proveďte parabolický fit této závislosti metodou nejmenších čtverců a z fitu najděte rovnovážnou mřížovou konstantu Nb, tj. hodnotu a, pro kterou má systém nejnižší energii.

[řešení: parabolická závislost $a=81.11-57.11E+8.823E^2,$ rovnovážná hodnota mřížové konstanty je $a_0=(3.2\pm0.1)$ Å]