Module 02: Finding roots

Starting Monday, January 13

Given a function f(x), computationally find x^* such that $f(x^*) = 0$.

- Possible computational problems:
 - $-fl(x^*)$ may not be exact
 - $-f(f(x^*))$ may not be exactly 0
- Additionally:
 - $-x^*$ may be complex
- Realistically, find \hat{x} such that $f(f(\hat{x})) \leq \varepsilon$, for some tolerance ε .
- Assume *f* is continuous.

We will examine ...

- Computational techniques for finding roots
- Termination conditions (how do we know when to stop?)
- Convergence properties

Technique #1: Bisection

- Background: Assume a < b, $f(a) \cdot f(b) < 0$
- By Intermediate Value Theorem: $\exists x^* \in [a, b]$, $s.t. f(x^*) = 0$
- Goal: Find smaller and smaller interval containing root:
 - Start with a_0, b_0 where $f(a_0) \cdot f(b_0) < 0$
 - Repeat
 - Determine $c_k = (a_k + b_k)/2$
 - If $f(c_k) = 0$, done
 - If $f(a_k)f(c_k) < 0$: $a_{k+1} = a_k$, $b_{k+1} = c_k$
 - Else: $a_{k+1} = c_k$, $b_{k+1} = c_k$

- How to find a and b?
- Suppose $|a_0 b_0| = 5$. How many steps will it take until $|a_k b_k| \le 10^{-5}$?

• In our example, c_0 is pretty close to the actual root π . Can we get reach the actual root faster?

Technique #2: Regula Falsi

- A different approach to bracketing the root.
- Again, start with a_0, b_0 where $f(a_0) \cdot f(b_0) < 0$
- Repeat
 - Determine the line $y = m_k x + d_k$, connecting $(a_k, f(a_k))$ to $(b_k, f(b_k))$.
 - Find c_k satisfying $m_k c_k + d_k = 0$.
 - If $f(c_k) = 0$, done
 - If $f(a_k)f(c_k) < 0$: $a_{k+1} = a_k$, $b_{k+1} = c_k$
 - Else: $a_{k+1} = c_i$, $b_{k+1} = c_k$

Technique #3: Newton's Method (or Newton-Raphson Method)

- Start with an initial guess x₀
- Repeat
 - Consider the tangent line at x_k : $y = m_k x + b_k$
 - Choose x_{k+1} as the x-intercept of the tangent line

Equivalent derivation: Approximate f(x) using the first terms of the Taylor expansion.

About Newton's method

- If "close" to the root, converges pretty quickly (more later)
- If not "close" to the root, may not converge
- No apriori way to determine if "close"
- Computational issues when f'(x) is close to 0
- Also, requires calculation of derivative (which can be more expensive than function calculations)

Technique #4: Secant Method

- Like Newton, but avoid direct calculation of f'
- Approximate $f'(x_k)$ using x_k and x_{k-1} :

$$f'(x_k) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$

• Now, x_{k+1} will depend on previous two values:

$$x_{k+1} = x_k - f(x_k) \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})}$$

• Corresponds to finding root of the secant line connecting x_k and x_{k-1}

(Note: This looks very much like Regula Falsi, but isn't used for bracketing the root.)

About secant method

- Like Newton, concerns about "closeness" of initial guesses
- Computational concerns when two iterates or their function values are very close to each other (cancellation errors)
- When initial guesses are "close", generally converges more quickly than bisection, but not quite as fast as Newton.

Technique #5: Fixed Point Method

- Consider the function differently.
- Define g(x) = x f(x)
- If x* is a root of f, then it is a fixed point of g,
 i.e. x* = g(x*).
- Choose x₀
- Repeat

$$-x_{k+1} = g(x_k)$$

Find root of $f(x) = \sin(x)$

- Choose $g(x) = x \sin(x)$
- Start with $x_0 = 2$
- $x_1 = x_0 \sin(x_0) = 1.0907$
- ...
- How about $h(x) = x + \sin(x)$
- Start with $x_0 = 2$
- $x_1 = x_0 + \sin(x_0) = 2.9092$
- ...
- What is the difference?

About Fixed Point Method

- Any function g for which $x^*=g(x^*)$ if and only if $f(x^*) = 0$ can be used in this approach.
- g must be continuous
- If |g'(x)| < 1, and x0 is "close enough", this
 approach will converge to the fixed point

When to stop?

Stop when:

- $| f(x_{k+1})| \le tol$, for some pre-determined tol > 0.
 - Small $f(x_{k+1})$ does not always imply x_{k+1} is close to a root
- $-|x_{k+1}-x_k| \le \text{tol}$, for some pre-determined tol > 0
 - Small difference does not mean x_{k+1} is close to root
- k >= some pre-determined maximum number of step
 - Steps may not have converged to a root
- Neither is ideal. Often a combination is used.

Convergence Properties

More to come ...