(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 26 April 2001 (26.04.2001)

PCT

(10) International Publication Number WO 01/29082 A1

(51) International Patent Classification⁷: C07K 14/47, 14/72

(21) International Application Number: PCT/FI00/00913

(22) International Filing Date: 20 October 2000 (20.10.2000)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 09/422,985 22 October 1999 (22.10.1999) US

(71) Applicant (for all designated States except US): OY JU-VANTIA PHARMA LTD [FI/FI]; Tykistökatu 6 A, FIN-20520 Turku (FI).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SNAPIR, Amir [IL/FI]; Ritzinkuja 1 K 63, FIN-20380 Turku (FI). HEINONEN, Paula [FI/FI]; Puutarhakatu 6 A 10, FIN-20100 Turku (FI). ALHOPURO, Pia [FI/FI]; Sirkkalankatu 6 C 35, FIN-20520 Turku (FI). KARVONEN, Matti [FI/FI]; Sirkkalankatu 16 A a 7, FIN-20500 Turku (FI). KOULU, Markku [FI/FI]; Kotikatu 4 B 8, FIN-20700 Turku (FI). PESONEN, Ullamari [FI/FI]; Luodikkokuja 6, FIN-20900 Turku (FI). SCHEININ, Mika [FI/FI]; Mannerheiminkatu 23, FIN-21100 Naantali

(FI). SALONEN, Jukka, T. [FI/FI]; Karjalanharjunniementie 68, FIN-70940 Jännevirta (FI). TUOMAINEN, Tomi-Pekka [FI/FI]; Orsitie 3 F 15, FIN-70820 Kuopio (FI). LAKKA, Timo, A. [FI/FI]; Kuntokuja 6 A 1, FIN-70200 Kuopio (FI). NYYSSÖNEN, Kristiina [FI/FI]; Rinnekatu 2-4 B 17, FIN-70600 Kuopio (FI). SALONEN, Riitta [FI/FI]; Karjalanharjunniementie 68, FIN-70940 Jännevirta (FI). KAUHANEN, Jussi [FI/FI]; Lehtikuusikontie 3 B 6, FIN-70620 Kuopio (FI). VALKONEN, Veli-Pekka [FI/FI]; Kaartokatu 17 C 32, FIN-70620 Kuopio (FI).

(74) Agent: TURUN PATENTTITOIMISTO OY; P.O. Box 99, FIN-20521 Turku (FI).

(81) Designated States (national): CA, IN, JP, US, ZA.

(84) Designated States (regional): European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published:

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

◀

(54) Title: A DNA MOLECULE ENCODING A VARIANT α2B-ADRENOCEPTOR PROTEIN, AND USES THEREOF

(57) Abstract: This invention relates to a DNA sequence comprising a nucleotide sequence encoding a variant α_{2B} -adrenoceptor protein and to said variant α_{2B} -adrenoceptor protein as well as a method for screening a subject to determine if said subject is a carrier of a variant gene that encodes said variant α_{2B} -adrenoceptor. Further this invention relates to a method for treating a mammal suffering from vascular contraction of coronary arteries, said method comprising the step of administering a selective α_{2B} -adrenoceptor antagonist to said mammal and to transgenic animals comprising a human DNA molecule encoding human α_{2B} -adrenoceptor or said variant α_{2B} -adrenoceptor.

A DNA MOLECULE ENCODING A VARIANT α_{2B} -ADRENOCEPTOR PROTEIN, AND USES THEREOF

FIELD OF THE INVENTION

This invention relates to a DNA molecule encoding a variant human α_{2B} -adrenoceptor, said variant α_{2B} -adrenoceptor protein and a method to assess the risk of individuals to suffer from vascular contraction of coronary arteries in mammals as well as a method for the treatment of vascular contraction of coronary arteries. This invention also relates to transgenic animals comprising a human DNA molecule encoding human α_{2B} -adrenoceptor or said variant α_{2B} -adrenoceptor.

10 BACKGROUND OF THE INVENTION

The publications and other materials used herein to illuminate the background of the invention, and in particular, cases to provide additional details respecting the practice, are incorporated by reference.

The α_2 -adrenoceptors (α_2 -ARs) mediate many of the physiological effects of the catecholamines norepinephrine and epinephrine. Three genetic subtypes of α_2 -adrenoceptors are known in humans and other mammals, denoted as α_{2A} -, α_{2B} - and α_{2C} -adrenoceptors. The human genes encoding the receptors are located on chromosomes 10, 2 and 4, respectively. No splice variants are known to exist of these receptors, as the genes are intronless. The tissue distributions and physiological and pharmacological functions of the receptor subtypes have been reviewed e.g. by MacDonald et al. (1997) and Docherty (1998). Based on recent studies with gene-targeted and transgenic mice, α_{2A} -adrenoceptors mediate most of

15

WO 01/29082 PCT/FI00/00913

the pharmacological actions ascribed to currently available α_2 -adrenoceptor agonists, including inhibition of neurotransmitter release, central hypotensive and bradycardic effects, sedation and anesthesia, and analgesia. The same studies indicate that α_{2B} -adrenoceptors mediate peripheral vasoconstriction in response to agonist activation (Link et al. 1996, Macmillan et al. 1996). Other physiological or pharmacological effects have not been associated with certainty with this receptor subtype. The α_{2C} -adrenoceptor subtype appears to be involved in regulation of complex behaviors. It is not known that this subtype would have important functions in peripheral tissues outside the central nervous system or in cardiovascular regulation.

2

Coronary heart disease (CHD), like many other common disorders, arises from complex interactions between genetic and environmental factors. It is reasonable to assume that functionally important genetic variation in mechanisms important for the regulation of vascular functions, including the coronary vasculature, will be found to be associated with the pathogenesis and therapy of CHD. A variant form of the human α_{2B} -AR gene was recently identified (Heinonen et al., 1999). The variant allele encodes a receptor protein with a deletion of three glutamate residues in an acidic stretch of 18 amino acids (of which 15 are glutamates) located in the third intracellular loop of the receptor polypeptide. This acidic stretch is a unique feature in the primary structure of α_{2B} -AR in comparison to α_{2A} -AR and α_{2C} -AR, suggesting that the motif has a distinct role in the function of α_{2B} -AR. Amino acid sequence alignment of α_{2B} -AR polypeptides of different mammals reveals that the acidic stretch is highly conserved among the α_{2B} -ARs of mammals and that the acidic stretch is long in humans in comparison to other species. This suggests that the motif is important for the functionality of the receptor, and that the short form (D for "deletion") probably represents the ancestral form and the long form (I for "insertion") could well represent a more recent allelic variant in humans. Jewell-Motz and Liggett (1995) studied the in vitro functions of this stretch using site-

5

10

15

20

directed mutagenesis to delete as well as to substitute 16 amino acids of the stretch. Their results suggest that this acidic motif is necessary for full agonist-promoted receptor phosphorylation and desensitization.

Based on the vasoconstrictive property of α_{2B} -AR in mice and the involvement of this acidic region in the desensitization mechanism of the receptor, we hypothesized that the deletion variant confers reduced receptor desensitization and therefore augmented vasoconstriction that could be associated with cardiovascular pathologies. To test this hypothesis, we carried out a 4-year prospective study in 912 middle-aged Finnish men.

10 OBJECT AND SUMMARY OF THE INVENTION

One object of this invention is to provide a DNA sequence of a variant human α_{2B} -adrenoceptor gene and the corresponding variant α_{2B} -adrenoceptor protein.

Another object of the invention is to provide a method for screening a subject to assess if an individual is at risk to suffer from vascular contraction of coronary arteries.

A third object of the invention is to provide a method for the treatment of vascular contraction of coronary arteries of mammals.

A fourth object of the invention is to provide a transgenic animal with a gene encoding a human α_{2B} -adrenoceptor or said variant thereof.

Thus, according to one aspect the invention concerns a DNA sequence comprising a nucleotide sequence encoding a variant α_{2B} -adrenoceptor protein with a deletion of at least 1 glutamate from a glutamic acid repeat element of 12 glutamates, amino

WO 01/29082

5

10

15

PCT/FI00/00913

4

acids 298-309, in an acidic stretch of 18 amino acids 294-311, located in the 3rd intracellular loop of the receptor polypeptide.

The invention further concerns a variant α_{2B} -adrenoceptor protein with a deletion of at least 1 glutamate from a glutamic acid repeat element of 12 glutamates, amino acids 298–309, in an acidic stretch of 18 amino acids 294–311, located in the 3rd intracellular loop of the receptor polypeptide.

According to another aspect the invention concerns a method for screening a subject to determine if said subject is a carrier of a said variant gene with both alleles encoding a said variant α_{2B} -adrenoceptor, i.e. to determine if said subject's genotype of the human α_{2B} -adrenoceptor is of the deletion/deletion (D/D) type, comprising the steps of

- a) providing a biological sample of the subject to be screened,
- b) providing an assay for detecting in the biological sample the presence of
 - i) the insertion/insertion (I/I) or deletion/insertion (D/I) genotypes of the human α_{2B} -adrenoceptor, or
 - ii) the D/D genotype of the human α_{2B} -adrenoceptor, and
- c) assessing at least one of the two following
 - i) an individual's risk to develop a disease involving vascular contraction of coronary arteries, or
- 20 ii) an individual's need for α_{2B} -selective or α_{2B} -nonselective α_{2} -adrenoceptor antagonist therapy,

based on whether said subject is of said D/D genotype or not.

According to a third aspect the present invention concerns a method for treating a mammal suffering from vascular contraction of coronary arteries, said method

10

comprising the step of administering a selective α_{2B} -adrenoceptor antagonist to said mammal.

According to a fourth aspect the present invention concerns a transgenic animal which carries a human DNA sequence comprising a nucleotide sequence encoding a human α_{2B} -adrenoceptor protein or a variant thereof.

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to a DNA molecule encoding a variant human α_{2B} -adrenoceptor, said variant α_{2B} -adrenoceptor protein and a method to assess the risk of individuals to suffer from vascular contraction of coronary arteries in mammals as well as a method for the treatment of vascular contraction of coronary arteries. The present invention also relates to transgenic animals comprising a human DNA molecule encoding a human α_{2B} -adrenoceptor or said variant α_{2B} -adrenoceptor protein.

The word treating shall also be understood to include preventing.

The concept "a deletion of at least 1 glutamate from a glutamic acid repeat element of 12 glutamates" refers to any deletion of 1 to 12 glutamates irrespective of the specific location in, or how many glutamates from said repeat element of 12 glutamates, amino acids 298–309 (SEQ ID NO: 4), in an acidic stretch of 18 amino acids 294–311 located in the 3rd intracellular loop of the receptor polypeptide are deleted.

The concept "deletion/deletion (D/D) genotype of the human α_{2B} -adrenoceptor", in short "D/D genotype", refers to a genotype of an individual having both α_{2B} -adrenoceptor alleles code for a variant α_{2B} -adrenoceptor with a deletion of at least 1 glutamate from a glutamic acid repeat element of 12 glutamates, amino

WO 01/29082 PCT/F100/00913

acids 298–309, in an acidic stretch of 18 amino acids 294–311 (SEQ ID NO: 4), located in the 3^{rd} intracellular loop of the receptor polypeptide. Correspondingly "deletion/insertion (D/I) genotype" refers to a genotype having one of the gene alleles code for an α_{2B} -adrenoceptor with a said deletion and the other without a said deletion, i.e. with a respective insertion, and thus the "insertion/insertion (I/I) genotype" refers to a genotype having both alleles code for an α_{2B} -adrenoceptor without said deletion or deletions.

6

We recently identified a common variant form (SEQ ID NO: 1) of the human α_{2B}-AR gene (SEQ ID NO: 3). This variant gene encodes a receptor protein (SEQ ID NO: 2) with a deletion of 3 glutamates, amino acids 307-309, from a glutamic acid (Glu) repeat element of 12 glutamates, amino acids 298–309, in an acidic stretch of 18 amino acids 294–311 (SEQ ID NO: 4), located in the 3rd intracellular loop of the receptor polypeptide. This variant gene (SEQ ID NO: 1) was associated with decreased basal metabolic rate (BMR) in a group of obese Finnish subjects (Heinonen et al. 1999). Of the 166 obese subjects, 47 (28 %) were homozygous for the long 12 glutamate repeat element (Glu¹²/Glu¹²), whereas 90 (54 %) were heterozygous (Glu¹²/Glu⁹) and 29 (17 %) were homozygous for the short form (Glu⁹/Glu⁹).

The results to be presented below show that in a population-based cohort of 912 Finnish middle-aged men subjects homozygous for the short form (Glu^9/Glu^9) described above, thus representing a deletion/deletion (D/D) genotype of the α_{2B} -adrenoceptor, have a significantly elevated risk for acute coronary events in a four-year follow-up study. The risk for an acute coronary event, defined as definite or possible acute myocardial infarction (AMI) or prolonged (>20 min) chest pain requiring hospitalization, was increased 2.5 fold in subjects who had this D/D genotype. This increase in the risk for acute coronary events is as great as so far observed for any other genetic risk factor for acute coronary events or acute

5

10

15

20

15

myocardial infarction in a prospective population study. Also the frequency of a study subject having a history of coronary heart disease (CHD) as well as CHD in an exercise test was associated with this D/D genotype. Based on these results and previous publications referred to above it can be postulated that this D/D genotype is related to an impaired capacity to downregulate α_{2B} -adrenoceptor function during sustained receptor activation. Since altered α_{2B} -adrenoceptor function seems to be of relevance in the pathogenesis of a significant fraction of all cases of acute coronary events in subjects with this D/D genotype (homozygous Glu9/Glu9) we believe it could also be of relevance in subjects with the insertion/deletion (I/D) (heterozygous Glu¹²/Glu⁹) and insertion/insertion (I/I) (homozygous Glu¹²/Glu¹²) genotypes when other risk factors for AMI are present. Further, since this specific deletion of 3 glutamates, amino acids 307-309, from said glutamic acid repeat element of 12 glutamates, amino acids 298-309, in said acidic stretch of 18 amino acids 294-311, located in the 3rd intracellular loop of the receptor polypeptide seems to be of relevance in cases of AMI we believe that also other deletions, i.e. deletions of at least 1 glutamate, from said glutamic acid repeat element of 12 glutamates, amino acids 298-309, could be of relevance in the pathogenesis of AMI, because the 3rd intracellular loop of the receptor polypeptide it is located in seems to have an essential role in the downregulation of the α_{2B} -adrenoceptor.

Thus based on the results to be presented below and the publications referred to above an α_{2B} -adrenoceptor antagonist would be useful for treating a mammal suffering from vascular contraction of coronary arteries.

Furthermore, an α_{2B} -adrenoceptor antagonist selective for the α_{2B} -adrenoceptor subtype would be therapeutically beneficial for the treatment of a disease involving said vascular contraction of coronary arteries. Such a disease could be clinically expressed as chronic angina pectoris, specifically e.g. AMI, unstable angina pectoris or Prinzmetal's variant form of angina pectoris. If α_{2B} -adrenoceptor dependent

WO 01/29082 PCT/FI00/00913

vasoconstriction is a causative factor in some cases of AMI, then antagonism of these receptors should restore coronary circulation and reduce the ischemic myocardial damage. An α_{2B} -adrenoceptor antagonist will relieve the vasoconstrictive component in the sustained ischemic episode of unstable angina pectoris, thus alleviating the symptoms and preventing AMI. Vasoconstriction is a key factor in the pathogenesis of Prinzmetal's angina, and an α_{2B} -adrenoceptor antagonist may resolve and prevent attacks. An α_{2B} -adrenoceptor antagonist will help to alleviate the vasoconstrictive component in all types of CHD, providing both symptomatic relief and protection from AMI.

8

 α_{2B} -adrenoceptors mediate vascular contraction of coronary arteries, and genetic polymorphism present in the α_{2B} -adrenoceptor gene renders some subjects more susceptible to α_{2B} -adrenoceptor mediated vasoconstriction of coronary arteries and associated clinical disorders. These subjects will especially benefit from treatment with an α_{2B} -adrenoceptor antagonist, and will be at increased risk for adverse effects if subtype-nonselective α_2 -agonists are administered to them. Therefore, a gene test recognizing subjects with a deletion variant of the α_{2B} -adrenoceptor gene will be useful in diagnostics and patient selection for specific therapeutic procedures. A gene test recognizing the D/D genotype of the α_{2B} -adrenoceptor is useful in assessing an individual's risk to develop AMI and other clinical disorders involving vascular contraction of coronary arteries related to the D/D genotype. A gene test recognizing the D/D genotype of the α_{2B} -adrenoceptor is useful in selecting drug therapy for patients with diseases involving vascular contraction of coronary arteries associated with the D/D genotype; subjects with the D/D genotype will especially benefit from therapy with α_2 -adrenoceptor antagonists (α_{2B} -selective or nonselective). A gene test recognizing the D/D genotype of the α_{2B} -adrenoceptor is useful in selecting drug therapy for patients who might be at increased risk for adverse effects of α_2 -adrenergic agonists; either, it will be possible to avoid the use

10

15

20

of α_2 -agonists in such patients, or it will be possible to include a specific α_{2B} -antagonist in their therapeutic regimen.

The DNA sequence can be used for screening a subject to determine if said subject is a carrier of a variant gene. The determination can be carried out either as a DNA analysis according to well known methods, which include direct DNA sequencing of the normal and variant gene, allele specific amplification using the polymerase chain reaction (PCR) enabling detection of either normal or variant sequence, or by indirect detection of the normal or variant gene by various molecular biology methods including e.g. PCR-single stranded conformation polymorphism (SSCP) method or denaturing gradient gel electrophoresis (DGGE). Determination of the normal or variant gene can also be done by using a restriction fragment length polymorphism (RFLP) method, which is particularly suitable for genotyping large numbers of samples. Similarly, a test based on gene chip technology can be easily developed in analogy with many currently existing such tests for single-nucleotide polymorphisms. Thus such an test could be an assay carried out using a gene chip, microarray, strip, panel or similar combination of more than one genes, mutations or RNA expressions to be assayed.

The determination can also be carried out at the level of RNA by analyzing RNA expressed at tissue level using various methods. Allele specific probes can be designed for hybridization. Hybridization can be done e.g. using Northern blot, RNase protection assay or in situ hybridization methods. RNA derived from the normal or variant gene can also be analyzed by converting tissue RNA first to cDNA and thereafter amplifying cDNA by an allele specific PCR method.

As examples of useful α_{2B}-adrenoceptor antagonists can be mentioned imiloxan [2-(1-ethyl-2-imidazoyl)methyl-1,4-benzodioxan, ARC-239 [2-[2-(4-(2-methoxy-phenyl)piperazin-1-yl)ethyl]-4,4-dimethyl-1,3-(2H,4H)-isoquinolindione], prazosin

10

15

WO 01/29082

5

10

[1-(4-amino-6,7-dimethoxy-2-quinazolinyl)-4-(2-furanylcarbonyl)piperazine] and chlorpromazine [2-chloro-N,N-dimethyl-10H-phenothiazine-10-propanamine].

The required dosage of the compounds will vary with the particular condition being treated, the severity of the condition, the duration of the treatment, the administration route and the specific compound being employed. A typical therapeutically effective daily dose administered, e.g. orally or by infusion, can vary from e.g. 0.1 µg to 10 mg per kilogram body weight of an adult person.

Influence of the variant gene sequence can be investigated in transgenic animals. A transgenic animal can be generated e.g. using targeted homologous recombination methodology. This will provide an ideal preclinical model to investigate and screen new drug molecules, which are designed to modify the influence of the variant gene.

The invention will be described in more detail in the experimental section.

EXPERIMENTAL SECTION

Determination of genomic alleles encoding the α_{2B}-adrenoceptor

15 PCR-SSCA analysis

The polymerase chain reaction-single stranded conformational analysis (PCR-SSCA) used to identify the genomic alleles encoding the α_{2B} -adrenoceptor was carried out as follows: The genomic DNA encoding the α_{2B} -adrenergic receptor was amplified in two parts specific for the intronless α_{2B} -adrenoceptor gene sequence (Lomasney et al. 1990). The PCR primer pairs for PCR amplification were as follows: Pair 1: 5'-GGGGCGACGCTCTTGTCTA-3' (SEQ ID NO: 5) and 5'-GGTCTCCCCCTCCTTC-3' (SEQ ID NO: 6) (product size 878 bp),

pair 2: 5'-GCAGCAACCGCAGAGGTC-3' (SEQ ID NO: 7) and 5'-GGGCAA-GAAGCAGGGTGAC-3' (SEQ ID NO: 8) (product size 814 bp). The primers were delivered by KeboLab (Helsinki, Finland). PCR amplification was conducted in a 5 μl volume containing 100 ng genomic DNA (isolated from whole blood), 2.5 mmol/l of each primer, 1.0 mmol/l deoxy-NTPs, 30 nmol/l ³³P-dCTP and 0.25 U AmpliTaq DNA polymerase (Perkin Elmer Cetus, Norwalk, CT). PCR conditions were optimized using the PCR OptimizerTM kit (Invitrogen, San Diego, CA). Samples were amplified with a GeneAmp PCR System 9600 (Perkin Elmer Cetus). PCR products were digested with restriction enzymes for SSCA analysis. The product of primer pair 1 was digested with Dde I and Dra III (Promega Corp., 10 Madison, WI). The product of primer pair 2 was digested with Alu I and Hinc II (Promega Corp.). The digested samples were mixed with SSCA buffer containing 95 % formamide, 10 mmol/l NaOH, 0.05 % xylene cyanol and 0.05 % bromophenol blue (total volume 25 μ l). Before loading, the samples were denatured for 5 min at 95 °C and kept 5 min on ice. Three microliters of each sample were loaded on 15 MDETM high-resolution gel (FMC, BioProducts, Rockland, MA). The gel electrophoresis was performed twice, at two different running conditions: 6 % MDE gel at +4 °C and 3 % MDE gel at room temperature, both at 4 W constant power for 16 h. The gels were dried and autoradiography was performed by apposing to Kodak BioMax MR film for 24 h at room temperature. 20

Sequencing and genotyping

DNA samples migrating at different rates in SSCA were sequenced with the Thermo SequenaseTM Cycle Sequencing Kit (Amersham Life Science, Cleveland, OH).

For genotyping the identified 3-glutamic acid deletion, DNA was extracted from peripheral blood using standard methods. The α_{2B} -AR I/D genotype was determined by separating PCR-amplified DNA fragments with electrophoresis. Based on the

nature of the I/D variant, identification of the long and short alleles was achieved by their different electrophoretic migration rates due to their 9 bp size difference.

The region of interest was amplified using a sense primer 5'-AGGGTGTTTGTG-GGGCATCT-3' (SEQ ID NO: 9) and an anti-sense primer 5'-CAAGCTGAGGCC-GGAGACACT-3' (SEQ ID NO: 10) (Oligold, Eurogentec, Belgium), yielding a 5 product size of 112 bp for the long allele (I) and 103 bp for the short allele (D). PCR amplification was conducted in a 10 µL volume containing ~100 ng genomic DNA, 1x buffer G (Invitrogen, San Diego, CA, USA), 0.8 mM dNTPs, 0.3 µM of each primer and 0.25 units of AmpliTaq DNA polymerase (Perkin Elmer Cetus, Norwalk, CT, USA). Samples were amplified with a GeneAmp PCR 10 System 9600 (Perkin Elmer Cetus). After initial denaturation at 94 °C for 2 minutes, the samples were amplified over 35 cycles. PCR amplification conditions were 96 °C (40 s), 69 °C (30 s) and 72 °C (30 s) followed by final extension at 72 °C for 6 minutes. The PCR products representing the long and short alleles were identified by two alternative methods. 15

- 1) The amplified samples were mixed with 4 µl of stop solution (Thermo SequenaseTM Cycle Sequencing kit), heated to 95 °C for 2 min, and loaded hot onto sequencing gels (Long RangerTM, FMC). The gels were dried and autoradiography was performed as previously described.
- 2) Separation of the amplified PCR products was performed with electrophoresis on a high-resolution 4 % Metaphor agarose gel (FMC Bioproducts, Rockland, Maine) and the bands were visualized by ethidium bromide staining. In both methods, the long (Glu¹²) and short (Glu⁹) alleles were identified based on their different electrophoretic migration rates.

Follow-up study

The above referred four-year follow-up study of 912 Finnish middle-aged men subjects including 192 subjects with a specific deletion/deletion (D/D) genotype of the α_{2B} -adrenoceptor is described in more detail in the following:

5 Knowing the vasoconstrictive property of α_{2B}-AR in mice and the possible involvement of the investigated acidic region in the desensitization mechanism of the receptor we hypothesized that the observed insertion/deletion allelic variation could be associated with cardiovascular pathologies such as AMI. To test this hypothesis, we carried out a four-year follow-up study in 912 middle-aged Finnish men with no prior history of AMI. The study was carried out as part of the Kuopio Ischemic Heart Disease Risk Factor Study (KIHD), which is an ongoing population-based study designed to investigate risk factors for cardiovascular diseases and related outcomes in men from eastern Finland (Salonen 1988). This area is known for its homogenous population (Sajantila et al. 1996) and high coronary morbidity and mortality rates (Keys 1980).

Of the 912 subjects, 192 (21%) had the D/D genotype, 256 (28%) had the I/I genotype and 464 (51%) were heterozygous i.e. I/D. This genotype distribution is in Hardy-Weinberg equilibrium (p = 0.46).

Of the 37 cases that had an acute coronary event during the follow-up, 18 were classified as definite AMI, 12 as possible AMI and seven as prolonged chest pain. Among the subjects with the D/D genotype, 15 (8 %) had an acute coronary event during the follow-up time. The corresponding incidences for the I/I and the heterozygous genotypes i.e. I/D were 10 (4 %) and 12 (3 %). The observed cumulative incidence of acute coronary events differed significantly among the different genotypes (p = 0.008). No significant difference in the cumulative incidence of acute coronary events was found between the I/D and the I/I genotypes

(p = 0.4) (table 1). There was a significant difference (log-rank p = 0.0045) between the D/D subgroup and the other two genotypes combined in the cumulative event-free time in the Kaplan-Meier survival function, demonstrating that there is a consistently increased incidence of acute coronary events in the D/D subgroup.

The D/D genotype was associated with a 2.5 fold increased risk for an acute coronary event (95% CI = 1.3-4.8, p = 0.006) in comparison to the other two genotypes combined. The relative risk remained above 2 after adjustment for major CHD risk factors (table 2).

The D/D subgroup was not significantly different from the I/D + I/I subgroup in terms of many known major risk factors for CHD. From 87 variables in the study database only 5 were significantly different between the D/D and the I/D + I/I genotype subgroups: 1. there were more acute coronary events in the D/D subgroup (8 % vs. 3 %, p = 0.006), 2. history of CHD was more prevalent in the D/D subgroup (37 % vs. 29 %, p = 0.043), 3. the prevalence of CHD in exercise test was higher in the D/D subgroup (30 % vs. 22 %, p = 0.036), 4. mean hemoglobin level was higher in the D/D subgroup (149.0 g/l vs. 146.8 g/l, p = 0.005) and 5. mean dietary cholesterol intake (4-days) was lower in the D/D subgroup (411.6 mg vs. 440.1 mg, p = 0.033) (table 3). The first four observed differences support our hypothesis that the D/D genotype confers reduced receptor desensitization and therefore augmented vasoconstriction. This augmented vasoconstriction is the reason for the increased incidence of acute coronary events, the higher prevalence of CHD in exercise and history of CHD. We hypothesize that the increased level of hemoglobin is due to relative anoxia of tissues because of this augmented vasoconstriction.

To examine the possibility that the D/D genotype is a genetic marker for acute coronary events rather than a causative factor, we have searched the literature for known genetic risk factors for acute coronary events and AMI and their

WO 01/29082

10

15

10

chromosomal localization. All but one (Apo-B) are on different chromosomes than the α_{2B} -AR gene (chromosome 2) and the gene for Apo-B is neither in the physical nor the genetic vicinity of the α_{2B} -AR gene. Cox regression analysis revealed that the increased RR for acute coronary events in the D/D subgroup is not affected by the serum Apo-B concentration.

Taken together, the known biological properties of the α_{2B} -AR, the homogeneity of the Finnish population with its relatively high incidence of CHD, the study design, the relatively large representative study population and the clustering of the findings around one trait suggest that the D/D receptor allele is a causal genetic risk factor for acute coronary events.

Table 1: The cumulative incidence of acute coronary events among men with different genotypes of the α_{2B} -AR (p values are stated below)

Genotype		Events (% of men at risk)	Men at risk (% of all)
D/D	observed	15 (8)	192 (21)
	expected	7.8	
I/D	observed	12 (3)	464 (51)
	expected	18.8	
I\[\cdot \c	observed	10 (4)	256 (28)
	expected	10.4	
I/D + I/I	observed	22 (3)	720 (79)
	expected	29.2	
Total	observed	37 (4)	912 (100)

P values for the above table:

p = 0.008
p = 0.002
p = 0.038
p = 0.389
p = 0.005

Table 2: Relative risk (RR) and its 95% confidence interval (CI) for an acute coronary event – a comparison of each of the genotypes with the other two combined. Results of a Cox regression model for 37 acute coronary events in a population sample of 912 subjects

Genotype	Events/men at risk	RR (95% CI)	Adjusted RR (95% CI)
		p	р
D/D	15/192	2.5 (1.3-4.8)	2.3 (1.2–4.5)
		0.006	0.014
ND	12/464	0.44 (0.2–0.9)	0.5 (0.2–1.0)
		0.020	0.052
M	10/256	1.03 (0.5–2.1)	0.96 (0.5–2.0)
	`	0.940	0.901

Adjustment was done for age, CHD in the family, high cholesterol in the family, hypertension and smoking

Table 3: List of all significant differences (p<0.05) between the D/D and the I/D+I/I genotype subgroups among 87 variables in the study database

Variable	D/D	I/D + I/I	p
Acute coronary events [event/n (%)]	15/192 (8)	22/720 (3)	0.006
Ischemic findings in exercise test [case/n (%)]	57/192 (30)	160/720 (22)	0.036
History of CHD [case/n (%)]	71/192 (37)	209/720 (29)	0.043
Mean blood haemoglobin [g/L]	149.0	146.8	0.005
Mean 4 day dietary cholesterol intake [mg]	411.6	440.1	0.033

^{% =} Percent of men at risk

It will be appreciated that the methods of the present invention can be incorporated in the form of a variety of embodiments, only a few of which are disclosed herein. It will be apparent for the specialist in the field that other embodiments exist and do not depart from the spirit of the invention. Thus, the described embodiments are illustrative and should not be construed as restrictive.

REFERENCES

Docherty JR: Subtypes of functional α_1 - and α_2 -receptors. Eur J Pharmacol 1998;361:1-15

Heinonen P, Koulu M, Pesonen U, Karvonen M, Rissanen A, Laakso M, Valve R, Uusitupa M, Scheinin M: Identification of a three amino acid deletion in the alpha-2B-adrenergic receptor which is associated with reduced basal metabolic rate in obese subjects. *J Clin Endocrinol Metab* 1999;84:2429-2433

Jewell-Motz E, Liggett SB: An acidic motif within the third intracellular loop of the alpha2C2 adrenergic receptor is required for agonist- promoted phosphorylation and desensitization. *Biochemistry* 1995;34:11946-11953

Keys A: Seven Countries: A Multivariate Analysis of Death and Coronary Heart Disease. Cambridge, Mass, Harvard University Press, 1980

Link RE, Desai K, Hein L, Stevens ME, Chruscinski A, Bernstein D, Barsh GS, Kobilka BK: Cardiovascular regulation in mice lacking alpha2-adrenergic receptor subtypes b and c. Science 1996;273:803-805

Lomasney JW, Lorenz W, Allen LF, King K, Regan JW, Yang-Feng TL, Caron MC, Lefkowitz RJ: Expansion of the alpha-2 adrenergic receptor family: cloning and characterization of a human alpha-2 adrenergic receptor subtype, the gene for which is located on chromosome 2. *Proc Natl Acad Sci USA*. 1990;87:5094-5098.

MacDonald E, Kobilka BK, Scheinin M: Gene targeting - homing in on α₂-adrenoceptor subtype function. Trends Pharmacol Sci 1997;18:211-219

MacMillan LB, Hein L, Smith MS, Piascik MT, Limbird LE: Central hypotensive effects of the alpha2a-adrenergic receptor subtype. *Science* 1996;273:801-803

Sajantila A, Salem AH, Savolainen P, Bauer K, Gierig C, Paabo S: Paternal and maternal DNA lineages reveal a bottleneck in the founding of the Finnish population. *Proc.Natl.Acad.Sci.U.S.A.* 1996;93:12035-12039

Salonen JT: Is there a continuing need for longitudinal epidemiologic research? The Kuopio Ischaemic Heart Disease Risk Factor Study. *Ann. Clin Res* 1988;20:46-50

CLAIMS

- 1. A DNA sequence comprising a nucleotide sequence encoding a variant α_{2B} -adrenoceptor protein with a deletion of at least 1 glutamate from a glutamic acid repeat element of 12 glutamates, amino acids 298–309, in an acidic stretch of 18 amino acids 294–311, located in the 3rd intracellular loop of the receptor polypeptide.
- The DNA sequence according to claim 1 comprising a nucleotide sequence encoding a variant α_{2B}-adrenoceptor protein with a deletion of 3 glutamates, amino acids 307-309, from said glutamic acid repeat element of 12 glutamates, amino acids 298-309, in said acidic stretch of 18 amino acids 294-311, located in the 3rd intracellular loop of the receptor polypeptide.
 - 3. The DNA sequence according to claim 2 comprising the genomic nucleotide sequence of SEQ ID NO: 1.
- 4. The DNA sequence according to claim 1 wherein said DNA sequence is cDNA.
 - 5. An RNA sequence comprising an RNA sequence corresponding to the DNA sequence of claim 1.
- A variant α_{2B}-adrenoceptor protein having a deletion of at least 1 glutamate from said glutamic acid repeat element of 12 glutamates, amino acids 298–309, in said acidic stretch of 18 amino acids 294–311, located in the 3rd intracellular loop of the receptor polypeptide.
 - 7. A variant α_{2B} -adrenoceptor protein according to claim 6 having a deletion of 3 glutamates, amino acids 307-309, from said glutamic acid repeat element of

- 12 glutamates, amino acids 298-309, in said acidic stretch of 18 amino acids 294-311, located in the 3rd intracellular loop of the receptor polypeptide.
- 8. The variant protein according to claim 7 comprising the amino acid sequence of SEQ ID NO: 2.
- 5 9. An assay for determining the presence or absence of a variant gene as defined in claim 1.
 - 10. An assay according to claim 9 wherein said assay is carried out using a gene chip, microarray, strip, panel or similar combination of more than one genes, mutations or RNA expressions to be assayed.
- 10 11. The assay according to claim 9 wherein the assay is a DNA-assay.
 - 12. A method for determining the presence or absence in a biological sample of a DNA sequence as defined in claim 1, wherein said DNA, which appears in single stranded form (target nucleic acid), is brought into contact with a capturing nucleic acid probe and a detector nucleic acid probe, after which the complex "capturing probe-target nucleic acid-detector probe" is detected.
 - 13. The method according to claim 12, wherein the capturing nucleic acid probe is attached or capable of attaching to a solid phase, and comprises the cDNA sequence according to claim 4, wherein a detected signal from the solid phase is an indication of the presence in the sample of a DNA as defined in claim 1.
- 14. The method according to claim 12, wherein the capturing nucleic acid probe is attached or capable of attaching to a solid phase, and comprises the cDNA corresponding to the gene coding an α_{2B}-adrenoceptor without the deletion defined in claim 1, wherein a detected signal from the solid phase is an indication of the absence in the sample of a DNA as defined in claim 1.

- 15. A method for screening a subject to determine if said subject is a carrier of a said variant gene with both alleles encoding a said variant α_{2B} -adrenoceptor , i.e. to determine if said subject's genotype of the human α_{2B} -adrenoceptor is of the deletion/deletion (D/D) type, comprising the steps of
- 5 a) providing a biological sample of the subject to be screened,
 - b) providing an assay for detecting in the biological sample the presence of
 - i) the insertion/insertion (I/I) or deletion/insertion (D/I) genotypes of the human α_{2B} -adrenoceptor, or
 - ii) the D/D genotype of the human α_{2B} -adrenoceptor, and
- 10 c) assessing at least one of the two following
 - i) an individual's risk to develop a disease involving vascular contraction of coronary arteries, or
 - ii) an individual's need for α_{2B} -selective or α_{2B} -nonselective α_{2} -adrenoceptor antagonist therapy,
- based on whether said subject is of said D/D genotype or not.
 - 16. The method according to claim 15 wherein the assay is a DNA-assay.
 - 17. A capturing probe which comprises a single strand of the cDNA according to claim 4.
- 18. A capturing probe which comprises a single strand of the cDNA corresponding
 to the α_{2B}-adrenoceptor without the deletion defined in claim 1
 - 19. A method for treating a mammal suffering from vascular contraction of coronary arteries, said method comprising administering a selective α_{2B} -adrenoceptor antagonist to said mammal.

- 20. The method according to claim 19 wherein said mammal suffers from a disease involving said vascular contraction of coronary arteries.
- 21. The method according to claim 20 wherein said disease is clinically expressed as coronary heart disease or chronic angina pectoris.
- 5 22. The method according to claim 20 wherein said disease is clinically expressed as acute myocardial infarction.
 - 23. The method according to claim 21 wherein said chronic angina pectoris is unstable.
- 24. The method according to claim 21 wherein said chronic angina pectoris is clinically expressed as Prinzmetal's variant form.
 - 25. A transgenic animal which carries a human DNA sequence comprising a nucleotide sequence encoding a variant α_{2B} -adrenoceptor protein with a deletion of at least 1 glutamate from a glutamic acid repeat element of 12 glutamates, amino acids 298–309, in an acidic stretch of 18 amino acids 294–311, located in the 3^{rd} intracellular loop of the receptor polypeptide.
 - 26. A transgenic animal according to claim 25 encoding a variant α_{2B} -adrenoceptor protein with a deletion of 3 glutamates, amino acids 307–309.
- 27. A transgenic animal which carries a human DNA sequence encoding a α_{2B}-adrenoceptor protein without said deletion of at least 1 glutamate from a
 20 glutamic acid repeat element of 12 glutamates, amino acids 298–309, in an acidic stretch of 18 amino acids 294–311, located in the 3rd intracellular loop of the receptor polypeptide.

SEQUENCE LISTING <110> Snapir, Amir Heinonen, Paula Alhopuro, Pia Karvonen, Matti Koulu, Markku Pesonen, Ullamari Scheinin, Mika Salonen, Jukka T Tuomainen, Tomi-Pekka Lakka, Timo A Nyyssönen, Kristiina Salonen, Riitta Kauhanen, Jussi Valkonen, Veli-Pekka <120> A DNA molecule encoding a variant alpha-2B-adrenoceptor protein, and uses thereof <130> Alpha-2B-AR variant <140> <141> <160> 10 <170> PatentIn Ver. 2.1 <210> 1 <211> 1344 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)..(1341) <223> Coding sequence for variant human alpha-2B-adrenoceptor protein <400> 1 15 10

atg gac cac cag gac ccc tac tcc gtg cag gcc aca gcg gcc ata gcg Met Asp His Gln Asp Pro Tyr Ser Val Gln Ala Thr Ala Ala Ile Ala gcg gcc atc acc ttc ctc att ctc ttt acc atc ttc ggc aac gct ctg 96 Ala Ala Ile Thr Phe Leu Ile Leu Phe Thr Ile Phe Gly Asn Ala Leu 30 25 gtc atc ctg gct gtg ttg acc agc cgc tcg ctg cgc gcc cct cag aac 144 Val Ile Leu Ala Val Leu Thr Ser Arg Ser Leu Arg Ala Pro Gln Asn 40 35 ctg ttc ctg gtg tcg ctg gcc gcc gcc gac atc ctg gtg gcc acg ctc 192 Leu Phe Leu Val Ser Leu Ala Ala Ala Asp Ile Leu Val Ala Thr Leu 60 55 50 atc atc cct ttc tcg ctg gcc aac gag ctg ctg ggc tac tgg tac ttc 240 Ile Ile Pro Phe Ser Leu Ala Asn Glu Leu Leu Gly Tyr Trp Tyr Phe 75 70 65 cgg cgc acg tgg tgc gag gtg tac ctg gcg ctc gac gtg ctc ttc tgc 288 Arg Arg Thr Trp Cys Glu Val Tyr Leu Ala Leu Asp Val Leu Phe Cys 90 85

										agc Ser						336
	-									aag Lys		_				384
	_	_					_			atc Ile						432
ctg Leu 145																480
cgc Arg																528
agc Ser																576
ctg Leu	cgc Arg	atc Ile 195	tac Tyr	ctg Leu	atc Ile	gcc Ala	aaa Lys 200	cgc Arg	agc Ser	aac Asn	cgc Arg	aga Arg 205	ggt Gly	ccc Pro	agg Arg	624
gcc Ala																672
cat His 225			_	_	_		_		_			_	-			720
gct Ala		_	-	_								_	-	_		768
gag Glu																816
agt Ser		_	_							ggc Gly						864
tgt Cys	ggg Gly 290	gca Ala	tct Ser	cca Pro	gag Glu	gat Asp 295	gaa Glu	gct Ala	gaa Glu	gag Glu	gag Glu 300	gaa Glu	gag Glu	gag Glu	gag Glu	912
gag Glu 305																960
										cgg Arg						1008
										ggt Gly						1056

tgg Trp	tgg Trp	cgt Arg 355	cga Arg	cgg Arg	gcg Ala	cag Gln	ctg Leu 360	acc Thr	cgg Arg	gag Glu	aag Lys	cgc Arg 365	ttc Phe	acc Thr	ttc Phe	1104
gtg Val	ctg Leu 370	gct Ala	gtg Val	gtc Val	att Ile	ggc Gly 375	gtt Val	ttt Phe	gtg Val	ctc Leu	tgc Cys 380	tgg Trp	ttc Phe	ccc Pro	ttc Phe	1152
ttc Phe 385	ttc Phe	agc Ser	tac Tyr	agc Ser	ctg Leu 390	ggc Gly	gcc Ala	atc Ile	tgc Cys	ccg Pro 395	aag Lys	cac His	tgc Cys	aag Lys	gtg Val 4 00	1200
ccc Pro	cat His	ggc Gly	ctc Leu	ttc Phe 405	cag Gln	ttc Phe	ttc Phe	ttc Phe	tgg Trp 410	atc Ile	ggc Gly	tac Tyr	tgc Cys	aac Asn 415	agc Ser	1248
tca Ser	ctg Leu	aac Asn	cct Pro 420	gtt Val	atc Ile	tac Tyr	acc Thr	atc Ile 425	ttc Phe	aac Asn	cag Gln	gac Asp	ttc Phe 430	cgc Arg	cgt Arg	1296
gcc Ala	ttc Phe	cgg Arg 435	agg Arg	atc Ile	ctg Leu	tgc Cys	cgc Arg 440	ccg Pro	tgg Trp	acc Thr	cag Gln	acg Thr 445	gcc Ala	tgg Trp	tga	1344
<21 <21	0> 2 1> 4 2> P 3> H	47	sapi	ens												
<40 Met 1	0> 2 Asp	His	Gln	Asp 5	Pro	Tyr	Ser	Val	Gln 10	Ala	Thr	Ala	Ala	Ile 15	Ala	
Ala	Ala	Ile	Thr		Leu	Ile	Leu	Phe 25	Thr	Ile	Phe	Gly	Asn 30	Ala	Leu	
Val	Ile	Leu 35		Val	Leu	Thr	Ser 40	Arg	Ser	Leu	Arg	Ala 45	Pro	Gln	Asn	
Let	ı Phe		ı Val	. Ser	Leu	55		Ala	Asp	Ile	Leu 60	Val	Ala	Thr	Leu	
Ile 65		e Pro	Phe	e Ser	Leu 70	 Ala		Glu	Leu	Leu 75	Gly	Tyr	Trp	туг	Phe 80	
Arg	g Ar	g Thi	c Tr	o Cys 85		ı Val	L Туз	c Lev	Ala 90	Leu	a Asp	Val	. Leu	Phe 95	Cys	
Th	r Se	r Se	r Il		l His	s Le	ı Cys	s Ala 105	ı Ile	e Ser	Lev	a Asp	Arg 110	Tyr)	Trp	
Al	a Va	1 Se:		g Ala	a Lei	ı Gl	ц Ту: 12	r Asr 0	n Sei	Lys	s Arg	Thr 125	Pro	Arg	g Arg	
Il	e Ly 13		s Il	e Il	e Le	u Th	r Va	l Tr) Le	ı Ile	e Ala 140	a Ala	a Val	l Ile	e Ser	
Le 14	u Pr		o Le	u Il	е Ту 15	r Ly 0	s Gl	y Ası	o Gli	n Gly 159	y Pro	o Gli	n Pro	o Arg	Gly 160	
		o Gl	n Cy	rs Ly 16	s Le 5	u As	n Gl	n Gli	u Ala 17	a Trj	р Ту	r Ile	e Lei	17:	a Ser 5	
Se	er Il	le Gl	y Se	er Ph		e Al	a Pr	o Cy 18	s Le	u Il	e Me	t Il	e Le	u Vai 0	l Tyr	

Leu Arg Ile Tyr Leu Ile Ala Lys Arg Ser Asn Arg Arg Gly Pro Arg Ala Lys Gly Gly Pro Gly Gln Gly Glu Ser Lys Gln Pro Arg Pro Asp His Gly Gly Ala Leu Ala Ser Ala Lys Leu Pro Ala Leu Ala Ser Val Ala Ser Ala Arg Glu Val Asn Gly His Ser Lys Ser Thr Gly Glu Lys Glu Glu Gly Glu Thr Pro Glu Asp Thr Gly Thr Arg Ala Leu Pro Pro Ser Trp Ala Ala Leu Pro Asn Ser Gly Gln Gly Gln Lys Glu Gly Val Cys Gly Ala Ser Pro Glu Asp Glu Ala Glu Glu Glu Glu Glu Glu Glu Glu Glu Cys Glu Pro Gln Ala Val Pro Val Ser Pro Ala Ser Ala Cys Ser Pro Pro Leu Gln Gln Pro Gln Gly Ser Arg Val Leu Ala Thr Leu Arg Gly Gln Val Leu Leu Gly Arg Gly Val Gly Ala Ile Gly Gly Gln Trp Trp Arg Arg Arg Ala Gln Leu Thr Arg Glu Lys Arg Phe Thr Phe Val Leu Ala Val Val Ile Gly Val Phe Val Leu Cys Trp Phe Pro Phe Phe Phe Ser Tyr Ser Leu Gly Ala Ile Cys Pro Lys His Cys Lys Val Pro His Gly Leu Phe Gln Phe Phe Phe Trp Ile Gly Tyr Cys Asn Ser Ser Leu Asn Pro Val Ile Tyr Thr Ile Phe Asn Gln Asp Phe Arg Arg Ala Phe Arg Arg Ile Leu Cys Arg Pro Trp Thr Gln Thr Ala Trp

<210> 3

<211> 1353

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(1350)

<223> Coding sequence for human alpha-2B-adrenoceptor protein

<400> 3

atg gac cac cag gac ccc tac tcc gtg cag gcc aca gcg gcc ata gcg
Met Asp His Gln Asp Pro Tyr Ser Val Gln Ala Thr Ala Ala Ile Ala
1 5 10 15

gcg (gcc Ala	atc Ile	acc Thr 20	ttc Phe	ctc Leu	att Ile	ctc Leu	ttt Phe 25	acc Thr	atc Ile	ttc Phe	ggc Gly	aac Asn 30	gct Ala	ctg Leu	96
gtc Val	atc Ile	ctg Leu 35	gct Ala	gtg Val	ttg Leu	acc Thr	agc Ser 40	cgc Arg	tcg Ser	ctg Leu	cgc Arg	gcc Ala 45	cct Pro	cag Gln	aac Asn	144
ctg Leu	ttc Phe 50	ctg Leu	gtg Val	tcg Ser	ctg Leu	gcc Ala 55	gcc Ala	gcc Ala	gac Asp	atc Ile	ctg Leu 60	gtg Val	gcc Ala	acg Thr	ctc Leu	192
atc Ile 65	atc Ile	cct Pro	ttc Phe	tcg Ser	ctg Leu 70	gcc Ala	aac Asn	gag Glu	ctg Leu	ctg Leu 75	ggc Gly	tac Tyr	tgg Trp	tac Tyr	ttc Phe 80	240
cgg Arg	cgc Arg	acg Thr	tgg Trp	tgc Cys 85	gag Glu	gtg Val	tac Tyr	ctg Leu	gcg Ala 90	ctc Leu	gac Asp	gtg Val	ctc Leu	ttc Phe 95	tgc Cys	288
acc Thr	tcg Ser	tcc Ser	atc Ile 100	gtg Val	cac His	ctg Leu	tgc Cys	gcc Ala 105	atc Ile	agc Ser	ctg Leu	gac Asp	cgc Arg 110	tac Tyr	tgg Trp	336
gcc Ala	gtg Val	agc Ser 115	cgc Arg	gcg Ala	ctg Leu	gag Glu	tac Tyr 120	aac Asn	tcc Ser	aag Lys	cgc Arg	acc Thr 125	ccg Pro	cgc Arg	cgc Arg	384
atc Ile	aag Lys 130	tgc Cys	atc Ile	atc Ile	ctc Leu	act Thr 135	gtg Val	tgg Trp	ctc Leu	atc Ile	gcc Ala 140	gcc Ala	gtc Val	atc Ile	tcg Ser	432
ctg Leu 145	ccg Pro	ccc Pro	ctc Leu	atc Ile	tac Tyr 150	aag Lys	ggc Gly	gac Asp	cag Gln	ggc Gly 155	ccc Pro	cag Gln	ccg Pro	cgc Arg	ggg Gly 160	480
cgc Arg	ccc Pro	cag Gln	tgc Cys	aag Lys 165	ctc Leu	aac Asn	cag Gln	gag Glu	gcc Ala 170	tgg Trp	tac Tyr	atc Ile	ctg Leu	gcc Ala 175	tcc Ser	528
agc Ser	atc Ile	gga Gly	tct Ser 180	Phe	ttt Phe	gct Ala	cct Pro	tgc Cys 185	Leu	atc Ile	atg Met	atc Ile	ctt Leu 190	gtc Val	tac Tyr	576
ctg Leu	cgc Arg	atc Ile 195	Tyr	ctg Leu	atc Ile	gcc Ala	aaa Lys 200	Arg	agc Ser	aac Asn	cgc Arg	aga Arg 205	ggt Gly	ccc Pro	agg Arg	624
gcc Ala	aag Lys 210	Gly	ggg Gly	cct Pro	ggg Gly	cag Gln 215	Gly	gag Glu	tcc Ser	aag Lys	cag Gln 220	Pro	cga Arg	ccc Pro	gac Asp	672
cat His 225	Gly	Gly	g gct 7 Ala	ttg Lev	gco Ala 230	a Ser	gcc Ala	aaa Lys	ctg Leu	cca Pro 235	Ala	ctg Leu	gcc Ala	tct Ser	gtg Val 240	720
gct Ala	tct Ser	gco Ala	aga Arg	a gag g Glu 245	ı Val	aac L Asn	gga Gly	a cac	tcg Ser 250	Lys	tco Ser	act Thr	ggg	gag Glu 255	aag Lys	768
gag Glu	gag Gli	ı Gly	g gag y Glu 260	1 Thi	c cct	t gaa o Glu	a gat 1 Asp	act Thr 265	Gly	aco Thr	cgg Arg	g gcc g Ala	ttg Leu 270	cca Pro	ccc Pro	816

WO 01/29082 PCT/FI00/00913

_		_	_					_	_			aag Lys 285	_		gtt Val	864
														_	gag Glu	912
_	_		_	_				_	_	_		gtg Val			gcc Ala 320	960
	_	_			_					_		tcc Ser				1008
_	_				_	_			_		_	gtg Val		_	_	1056
												cgg Arg 365				1104
ttc Phe	acc Thr 370	ttc Phe	gtg Val	ctg Leu	gct Ala	gtg Val 375	gtc Val	att Ile	ggc Gly	gtt Val	ttt Phe 380	gtg Val	ctc Leu	tgc Cys	tgg Trp	1152
					-			_				tgc Cys				1200
_	_						_					tgg Trp				1248
-		_		_			_	_				ttc Phe		_	_	1296
								_				tgg Trp 445		_	_	1344
gcc Ala	tgg Trp 450	tga														1353
<212	> 45 > PR	_	apie	ens												
<400 Met 1		His	Gln	Asp 5	Pro	Tyr	Ser	Val	Gln 10	Ala	Thr	Ala	Ala	Ile 15	Ala	
Ala	Ala	Ile	Thr 20	Phe	Leu	Ile	Leu	Phe 25	Thr	Ile	Phe	Gly	Asn 30	Ala	Leu	
Val	Ile	Leu 35	Ala	Val	Leu	Thr	Ser 40	Arg	Ser	Leu	Arg	Ala 45	Pro	Gln	Asn	
Leu	Phe 50	Leu	Val	Ser	Leu	Ala 55	Ala	Ala	Asp	Ile	Leu 60	Val	Ala	Thr	Leu	

Ile 65	Ile	Pro	Ph	e S	er I	Leu 70	Ala	Asn	Gl	u I	Leu	Leu 75	Gly	Ту	r 1	rp	Tyr	Phe 80
Arg	Arg	Thr	Tr	D C	ys (85	Glu	Val	Tyr	Le	u A	Ala 90	Leu	Asp	Va	l I	Leu	Phe 95	Cys
Thr	Ser	Ser	11 10	e V	al 1	His	Leu	Cys	A1 10	.a :	Ile	Ser	Leu	As	sp 2	Arg 110	Tyr	Trp
Ala	Val	Ser 115	AI	g A	la:	Leu	Glu	Туг 120	As	sn (Ser	Lys	Arg	Th 12	r :	Pro	Arg	Arg
	130						132										Ile	
Leu 145	Pro	Pro) Le	eu I	lle	Tyr 150	Lys	Gly	As	ge	Gln-	Gly 155	Pro	G.	ln	Pro	Arg	Gly 160
Arg	Pro	Glr	ı Cy	ys I 1	Lys 165	Leu	Asn	Gln	G.	lu	Ala 170	Trp	Tyr	ı.	le	Leu	Ala 175	Ser
Ser	Ile	Gly	y S	er 1 80	Phe	Phe	Ala	Pro	C:	ys 85	Leu	Ile	Met	. I	le	Leu 190	Val	Tyr
		19	5					200	,					_				Arg
	210)					215)					22					Asp
225	•					230						2.3.						Val 240
					245						250							
			2	260					2	.05								Pro
		27	75					28	U					•				v Val
	29	0					29	5					50	•				ı Glu
30	5					31	U					J.	_					320
					325)					7.7	•						
				340						343	•							a Ile
Gl	.y G]	ly G 3	ln 55	Trp	Tr	p Ar	g Ar	g Ai 36	cg 60	Ala	a Gl	n Le	u Tl	ır	Arg 365	g Gl	u Ly	s Arg
Ph		nr F 70	he	Val	. Le	u Al	a Va 37	al Va 75	al	Ile	e Gl	y Va	al Pl 3	ne 30	Va]	L Le	и Су	s Trp
	ne P: 85	ro E	he	Phe	e Ph	e Se	er Ty	yr S	er	Lei	u Gl	у А] 39	la I 95	le	Суя	s Pr	o Ly	s His
C	ys L	ys V	/al	Pro	о Ні 40	.s G] 15	ly L	eu P	he	Gl	n Ph 41	ne Pl	ne P	he	Tr	p Il	e Gl 41	.у Тут .5

```
Cys Asn Ser Ser Leu Asn Pro Val Ile Tyr Thr Ile Phe Asn Gln Asp
            420
                                 425
Phe Arg Arg Ala Phe Arg Arg Ile Leu Cys Arg Pro Trp Thr Gln Thr
                             440
                                                 445
        435
Ala Trp
    450
<210> 5
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: PCR primer
      pair
<400> 5
                                                                    19
ggggcgacgc tcttgtcta
<210> 6
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: PCR primer
      pair
<400> 6
                                                                    19
ggtctccccc tcctccttc
<210> 7
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: PCR primer
      pair
<400> 7
                                                                    18
gcagcaaccg cagaggtc
<210> 8
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: PCR primer
      pair
<400> 8
                                                                    19
gggcaagaag cagggtgac
```

<210> 9 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: PCR primer pair	
<400> 9 agggtgtttg tggggcatct	20
<210> 10 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: PCR primer pair	
<400> 10 caagetgagg ceggagaeae t	21

International application No.

PCT/FI 00/00913

A. CLASSIFICATION OF SUBJECT MATTER IPC7: C07K 14/47, C07K 14/72 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC7: CO7K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched SE,DK,FI,NO classes as above Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category* 1-18 The Journal of Clinical Endocrinology & Metabolism, X Volume 84, No 7, 1999, PAULA HEINONEN et al, "Identification of a Three-Amino Acid Deletion in the Adrenergic Receptor That Is Associated with Reduced Basal Metabolic Rate in Obese Subjects", page 2430, column 2, line 33 - line 39, figures 1,2, page 2429 - 2433 19-27 Y US 5595880 A (RICHARD L. WEINSHANK ET AL), 18 X 21 January 1997 (21.01.97), column 2, line 46 - column 3, line 19, figure 2 1-17,19-24 A Further documents are listed in the continuation of Box C. See patent family annex. Special categories of cited documents: later document published after the international filing date or priority date and not in conflict with the application but cited to understand document defining the general state of the art which is not considered the principle or theory underlying the invention to be of particular relevance earlier application or patent but published on or after the international document of particular relevance: the claimed invention cannot be filing date considered novel or cannot be considered to involve an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other document of particular relevance: the claimed invention cannot be special reason (as specified) considered to involve an inventive step when the document is document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination being obvious to a person skilled in the art document published prior to the international filing date but later than "&" document member of the same patent family the priority date claimed Date of mailing of the international search report Date of the actual completion of the international search 0 1 -03- 2001 28 February 2001 Name and mailing address of the ISA? Authorized officer **Swedish Patent Office** Frida Plym Forshell/mj Box 5055, S-102 42 STOCKHOLM Telephone No. + 46 8 782 25 (10) Facsimile No. + 46 8 666 02 86

International application No. PCT/FI 00/00913

	PCT/FI 00/	/00913
· // ·····time	ation). DOCUMENTS CONSIDERED TO BE RELEVANT	
	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
ategory*	J Am Coll Cardiol, Volume 33, No 6, 1999, Julius BK, "Alpha-adrenoceptor blockade prevents exercise-induced vasoconstriction of stenotic coronary arteries" page 1499 - page 1505	19-24
Y	US 5861309 A (JONATHAN A. BARD ET AL), 19 March 1999 (19.03.99), column 4, line 35 - line 54	25-27
		·
	And the second s	••••••

International application No. PCT/FI00/00913

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: see extra sheet
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

International application No. PCT/FI 00/00913

Claims 15 and 16 relate to a diagnostic method practised on the human or animal body, and claims 19 -24 relate to a method for treatment of the human or animal body by therapy. Thus, the International Search Authority is not required to carry out an international search for these claims (Rule 39.1(iv)). Nevertheless, a search has been executed for claims 15,16 and 19-24.

Form PCT/ISA/210 (patent family annex) (July 1992)

Information on patent family members

05/02/01

International application No.
PCT/FI 00/00913

Patent document cited in search report			Publication date	Patent family member(s)		Publication date
US	5595880	A	21/01/97	US	5053337 A	01/10/91
US	5861309	A	19/03/99	AU	677968 B	15/05/97
				AU	5165693 A	26/04/94
				DE	663014 T	10/10/96
				EP	0663014 A	19/07/95
				GR	95300067 T	31/01/96
				JP	8505044 T	04/06/96
				ΑU	718197 B	06/04/00
				ΑU	3420797 A	29/01/98
				CA .	2145182 A	14/04/94
				EP	1063291 A	27/12/00
				EP	1063292 A	27/12/00
				ES	2085247 T	01/06/96
				US	5556753 A	17/09/96
				US	5714381 A	03/02/98
				US	6083705 A	04/07/00
				US	6156518 A	05/12/00
				WO	9408040 A	14/04/94

. • •