What Is Association Mining?

Association Rule Mining

 Finding frequent patterns, associations, correlations, or causal structures among item sets in transaction databases, relational databases, and other information repositories

Applications

 Market basket analysis (marketing strategy: items to put on sale at reduced prices), cross-marketing, catalog design, shelf space layout design, etc

Examples

- Rule form: Body → Head [Support, Confidence].
- buys(x, "Computer") \rightarrow buys(x, "Software") [2%, 60%]
- major(x, "CS") $^$ takes(x, "DB") \rightarrow grade(x, "A") [1%, 75%]

Market Basket Analysis

Typically, association rules are considered interesting if they satisfy both a minimum support threshold and a minimum confidence threshold.

Assocaition Rule Mining

- Data Mining Task
- Find frequent itemset
- Find interesting association or correlation relationship between a large set of data item.
- Rule based association learning method

Association Rule Mining

 Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

```
{Diaper} ■ {Beer},
{Milk, Bread} ■ {Eggs,Coke},
{Beer, Bread} ■ {Milk},
```

Implication means co-occurrence, not causality!

Definition: Frequent Itemset

Itemset

- A collection of one or more items
 - Example: {Milk, Bread, Diaper}
- k-itemset
 - An itemset that contains k items

Support count (##)

- Frequency of occurrence of an itemset
- E.g. \boxplus ({Milk, Bread, Diaper}) = 2

Support

- Fraction of transactions that contain an itemset
- E.g. $s(\{Milk, Bread, Diaper\}) = 2/5$

Frequent Itemset

 An itemset whose support is greater than or equal to a *minsup* threshold

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Definition: Association Rule

Association Rule

- An implication expression of the form
 X \equiv Y, where X and Y are itemsets
- Example: {Milk, Diaper} ■ {Beer}

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Rule Evaluation Metrics

- Support (s)
 - Fraction of transactions that contain both X and Y
- Confidence (c)
 - Measures how often items in Y appear in transactions that contain X

Example:

 ${Milk, Diaper} \Rightarrow {Beer}$

$$s = \frac{\sigma(\text{Milk, Diaper, Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk, Diaper, Beer})}{\sigma(\text{Milk, Diaper})} = \frac{2}{3} = 0.67$$

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support ≥ minsup threshold
 - confidence ≥ minconf threshold

- Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the *minsup* and *minconf* thresholds
 - Computationally prohibitive!

Mining Association Rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

Observations:

- *All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- * Thus, we may decouple the support and confidence requirements

Mining Association Rules

Find interesting association or correlation relationship between a large set of data item

- Two-step approach:
 - 1. Frequent Itemset Generation
 - Generate all itemsets whose support minsup

2. Rule Generation

- Generate high confidence rules from each frequent itemset,
 where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

Frequent Itemset Generation

Frequent Itemset Generation

- Brute-force approach:
 - Each itemset in the lattice is a candidate frequent itemset
 - Count the support of each candidate by scanning the database

- Match each transaction against every candidate
- Complexity \sim O(NMw) => Expensive since M = 2^d !!!

Apriori Algorithm

- Algorithm for mining frequent item sets
- Uses prior knowledge of frequent itemset properties
- Iterative approach known as level-wise search
- K-itemset are used to explore (k+1)itemsets
- First, the set of frequent 1-itemsets is found and collect those items that support minimum support.
 This resulting set is denoted by L1.
- Next L1 is used to find L2, the set of frequent 2itemsets, which is used to finf L3 and so on, until no more k-iremset can be found.

Illustrating Apriori Principle

Illustrating Apriori Principle

TID	items
T1	11, 12 , 15
T2	12,14
T3	12,13
T4	11,12,14
T5	11,13
Т6	12,13
T7	11,13
T8	11,12,13,15
Т9	11,12,13

Step1...

K=1

(I) Create a table containing support count of each item present in dataset - Called **C1(candidate set)**

Itemset	sup_count
l1	6
12	7
13	6
14	2
15	2

(II) compare candidate set item's support count with minimum support count(here min_support=2 if support_count of candidate set items is less than min_support then remove those items). This gives us **itemset L1**.

p_count
6
7
6
2
2

Step2

K=2

- Generate candidate set C2 using L1 (this is called join step). Condition of joining L_{k-1} and L_{k-1} is that it should have (K-2) elements in common.
- Check all subsets of an itemset are frequent or not and if not frequent remove that itemset.(Example subset of{I1, I2} are {I1}, {I2} they are frequent. Check for each itemset)
- Now find support count of these itemsets by searching in dataset

Itemset	sup_count
11,12	4
11,13	4
11,14	1
11,15	2
12,13	4
12,14	2
12,15	2
13,14	0
13,15	1
14,15	0

Step2 Contd...

(II) compare candidate (C2) support count with minimum support count(here min_support=2)

if support_count of candidate set item is less than min_support then remove those items) this gives us itemset L2.

Itemset	sup_count
11,12	4
11,13	4
11,15	2
12,13	4
12,14	2
12,15	2
12,15	2

Step3

Step-3:

- Generate candidate set C3 using L2 (join step). Condition of joining L_{k-1} and L_{k-1} is that it should have (K-2) elements in common. So here, for L2, first element should match.
- So itemset generated by joining L2 is {I1, I2, I3}{I1, I2, I5}{I1, I3, i5}{I2, I3, I4}{I2, I4, I5}{I2, I3, I5}
- Check if all subsets of these itemsets are frequent or not and if not, then remove that itemset.(Here subset of {I1, I2, I3} are {I1, I2},{I2, I3},{I1, I3} which are frequent. For {I2, I3, I4}, subset {I3, I4} is not frequent so remove it. Similarly check for every itemset)
- find support count of these remaining itemset by searching in dataset.

 Itemset sup_count

11,12,13	2
11,12,15	2

Step3 Contd...

(II) Compare candidate (C3) support count with minimum support count(here min_support=2 if support_count of candidate set item is less than min_support then remove those items) this gives us itemset L3.

Itemset	sup_count
11,12,13	2
11,12,15	2

Step 4

Step-4:

- Generate candidate set C4 using L3 (join step). Condition of joining L_{k-1} and L_{k-1} (K=4) is that, they should have (K-2) elements in common. So here, for L3, first 2 elements (items) should match.
- Check all subsets of these itemsets are frequent or not (Here itemset formed by joining L3 is {I1, I2, I3, I5} so its subset contains {I1, I3, I5}, which is not frequent). So no itemset in C4
- We stop here because no frequent itemsets are found further

Apriori Property

All non empty subsets of a frequent itemset must also

be frequent

- If a itemset I doesnot satisfy the minimum support threshold, min sup ,then I is not frequent.
- If an item a is added to a itemset I, the resulting itemset appear more frequent than I
- Antimonotonicity- if a set cannot pass a test, all of its supersets will fall test as well

Apriori Steps

- **1.** The join step: To find find L_k , a set of candidate k-itemsets is generated by joining L_k with itself. This set of candidates is denoted C_k .
- 2. The prune step: C_k is a superset of L_k , that is, its members may or may not be frequent, but all of the frequent k-itemsets are included in C_k

Example

 C_1 Scan D for Itemset Sup. count count of each {I1} candidate {I2} {I3} {I4} {I5}

Compare candidate support count with minimum support count

L_I	
Itemset	Sup. count
{I1}	6
{I2}	7
{I3}	6
{14}	2
{I5}	2

Generate C_3 candidates from L_2

Itemset {I1, I2, I3

 C_3

Scan D for candidate

 C_3 Itemset count of each {I1, I2, I3}

Sup. count CTI TO TEX

Compare candidate support count with minimum support count

 L_3 Sup. cou Itemset {I1, I2, I3}

CTT TO TO

GENERATING ASSOCIATION RULES FROM FREQUENT ITEMSET

- Frequent Itemset X= {I1, I2, I3}
- Non empty subset of X={ I1, I2, I3, {I1,I2}, {I1,I3}, {I2,I3}}
- Confidence(A->B)=Support count(A∪B)/Support_count(A)

items
11, 12 , 15
12,14
12,13
11,12,14
11,13
12,13
11,13
11,12,13,15
11,12,13

$$|11,|2=>|3|$$
 confidence = $2/4=50\%$
 $|11,|3=>|2|$ confidence = $2/4=50\%$
 $|12,|3|=>|11|$ confidence = $2/4=50\%$
 $|11|=>|12,|3|$ confidence $2/6=33\%$
 $|12|=>|11,|3|$ confidence = $2/7=28\%$
 $|13|=>|11,|2|$ confidence = $2/6=33\%$

So if minimum confidence is **50%**, then first 3 rules can be considered as strong association

Apriori Algorithm

- F_k: frequent k-itemsets
- L_k: candidate k-itemsets
- Algorithm
 - Let k=1
 - Generate F₁ = {frequent 1-itemsets}
 - Repeat until F_k is empty
 - **Candidate Generation**: Generate L_{k+1} from F_k
 - Candidate Pruning: Prune candidate itemsets in L_{k+1} containing subsets of length k that are infrequent
 - Support Counting: Count the support of each candidate in L_{k+1} by scanning the DB
 - Candidate Elimination: Eliminate candidates in L_{k+1} that are infrequent, leaving only those that are frequent => F_{k+1}

Algorithm: Apriori. Find frequent itemsets using an iterative level-wise approach based on candidate generation.

Input:

- D, a database of transactions;
- min_sup, the minimum support count threshold.

Output: *L*, frequent itemsets in *D*. **Method:**

```
(1)
        L_1 = \text{find\_frequent\_1-itemsets}(D);
        for (k = 2; L_{k-1} \neq \phi; k++) {
(2)
            C_k = apriori\_gen(L_{k-1});
(3)
           for each transaction t \in D { // scan D for counts
(4)
                 C_t = \text{subset}(C_k, t); // get the subsets of t that are candidates
(5)
                for each candidate c \in C_t
(6)
(7)
                     c.count++;
(8)
           L_k = \{c \in C_k | c.count \ge min\_sup\}
(9)
(10)
(11)
        return L = \bigcup_k L_k;
procedure apriori_gen(L_{k-1}:frequent (k-1)-itemsets)
        for each itemset l_1 \in L_{k-1}
(1)
           for each itemset l_2 \in L_{k-1}
(2)
                if (l_1[1] = l_2[1]) \wedge (l_1[2] = l_2[2])
(3)
                     \wedge ... \wedge (l_1[k-2] = l_2[k-2]) \wedge (l_1[k-1] < l_2[k-1]) then {
                     c = l_1 \bowtie l_2; // join step: generate candidates
(4)
                     if has_infrequent_subset(c, L_{k-1}) then
(5)
(6)
                          delete c; // prune step: remove unfruitful candidate
(7)
                     else add c to C_k;
(8)
(9)
        return Ck;
procedure has_infrequent_subset(c: candidate k-itemset;
           L_{k-1}: frequent (k-1)-itemsets); // use prior knowledge
        for each (k-1)-subset s of c
(1)
(2)
            if s \not\in L_{k-1} then
                return TRUE;
(3)
(4)
        return FALSE;
```

Apriori

Choice of minimum support threshold

Dimensionality (number of items) of the data set

Size of database

Average transaction width