Test 1: Take Home

Huan Q. Bui

- 1. Let X denote the set of all irrational numbers x with $\sqrt{2} \le x \le 2\sqrt{2}$, and with the usual metric d(x, y) = |x y|. Prove that X is not compact.
- 2. Let (X, d) denote any metric space. The metric space X is called "totally bounded" when, for every $\epsilon > 0$, there exists finitely many neighborhoods $N_{\epsilon}(x_i)$ (i = 1, ..., n) such that $X \subseteq \bigcup_{i=1}^{n} N_{\epsilon}(x_i)$. The metric space is "bounded" when $\{d(x, y) | x, y \in X\}$ is a bounded subset of \mathbb{R} .
 - (a) Give an example of a bounded metric space that is not totally bounded.
 - (b) Prove that every totally bounded metric space is bounded
 - (c) Prove that a metric space is compact if and only if it is both complete and totally bounded.
- 3. Let \mathbb{R}^n denote the usual n-dimensional Euclidean space, with its Euclidean norm

$$||x|| = \sqrt{\sum_{i=1}^{n} |x_i|^2}$$

and corresponding metric d(x, y) = ||x - y||, with $x, y \in \mathbb{R}^n$. Given an $n \times n$ matrix T, define

$$||T|| \equiv \sup\{||Tx|| : ||x|| \le 1\}.$$

- (a) Prove that, for all $n \times n$ matrices X and Y, that $||XY|| \le ||X|| ||Y||$.
- (b) Prove that

$$||T|| = \inf\{M \in \mathbb{R} : ||Tx|| \le M||x|| \text{ for all } x \in \mathbb{R}^n\}.$$

- (c) With $x \in \mathbb{R}^n$, find $||C_x||$ when C_x is the $n \times n$ matrix with the coordinates of x in the first column and zeros elsewhere.
- (d) With $x \in \mathbb{R}^n$, find $||D_x||$ when D_x is the $n \times n$ diagonal matrix with the coordinates of x on the main diagonal, and zeros elsewhere.
- (e) With $x \in \mathbb{R}^n$, find $||R_x||$ when R_x is the $n \times n$ matrix with the coordinates of x in the first row and zeros elsewhere.
- 4. Let T be an $n \times n$ matrix, with ||T|| defined as in the previous problem. Prove that

1

$$\inf\{\|T^m\|^{\frac{1}{m}}: m \in \mathbb{N}\} = \sup\{|\alpha|: \alpha \text{ an eigenvalue of } T\}$$

Test 1: Solution

1. Let *X* denote the set of all irrational numbers *x* with $\sqrt{2} \le x \le 2\sqrt{2}$, and with the usual metric d(x, y) = |x - y|. Prove that *X* is not compact.

Proof: Since $X \subset \mathbb{R}$, it suffices to show X is either not bounded or not closed (or neither). X is evidently bounded, so we will show X is not closed. To this end, we claim X^c is not open, where

$$X^{c} = \underbrace{\left(\mathbb{R} \setminus \left[\sqrt{2}, 2\sqrt{2}\right]\right)}_{A} \cup \underbrace{\left\{r \in \mathbb{Q} | \sqrt{2} < r < 2\sqrt{2}\right\}}_{B}.$$

We note that $A \cap B = \emptyset$ and let $\epsilon > 0$ be given. Consider $r \in B \subset X^c$ and $\mathcal{N}_{\epsilon}(r)$. We want to show that $\mathcal{N}_{\epsilon}(r) \not\subset X^c$, i.e., $\exists x \in X$ such that $x \in \mathcal{N}_{\epsilon}(r)$.

Because \mathbb{Q} is dense in \mathbb{R} , $\exists r' \in B$ such that $r' \in \mathcal{N}_{\epsilon}(r)$. Without loss of generality, suppose r' < r. Let an irrational number \bar{x} be given. By the denseness of \mathbb{Q} , there is a rational number $q \in (r'/\bar{x}, r/\bar{x})$ such that $\bar{x}q \in (r', r)$, hence contained in $\mathcal{N}_{\epsilon}(r)$. Call $x = \bar{x}q$. Since x is a product of an irrational number and a rational number, x is irrational, hence $x \notin B \subset X^c$. Because $\mathcal{N}_{\epsilon}(r) \not\subset B \subset X^c$ and $A \cap B = \emptyset$, $\mathcal{N}_{\epsilon}(r) \not\subset X^c$. So, X^c is not open \iff X is not closed, which implies X is not compact.

- **2.** Let (X, d) denote any metric space. The metric space X is called "totally bounded" when, for every $\epsilon > 0$, there exists finitely many neighborhoods $N_{\epsilon}(x_i)$ (i = 1, ..., n) such that $X \subseteq \bigcup_{i=1}^n N_{\epsilon}(x_i)$. The metric space is "bounded" when $\{d(x,y): x,y \in X\}$ is a bounded subset of \mathbb{R} .
 - 1. Give an example of a bounded metric space that is not totally bounded.
 - 2. Prove that every totally bounded metric space is bounded
 - 3. Prove that a metric space is compact if and only if it is both complete and totally bounded.
 - 1. Consider X = [0, 1] with the metric:

$$d(x,y) = \begin{cases} 1, & x \neq y \\ 0, & x = y \end{cases}$$

By Problem 10, Chapter 2, Baby Rudin, (X, d) is a metric space. Clearly X is bounded because $X \subset \mathcal{N}_{r=2}(0)$. However, X is not totally bounded. Set $\epsilon = 1/2$, then for any x, $\mathcal{N}_{\epsilon}(x) = \{x\}$. It follows that for any finite set $\{x_1, \ldots, x_n\}$,

$$\bigcup_{i=1}^n \mathcal{N}_{\epsilon}(x_i) = \{x_1, \dots, x_n\} \not\supseteq [0, 1].$$

2. Let a totally bounded metric space (X, d) be given. By definition, $\forall \epsilon > 0, \exists n \in \mathbb{N}$ such that $X \subseteq \bigcup_{i=1}^n \mathcal{N}_{\epsilon}(x_i)$. Let $\epsilon > 0$ be given. Consider the points a, b in X where $a \in \mathcal{N}_{\epsilon}(x_i)$ and $b \in \mathcal{N}_{\epsilon}(x_i)$. Then we have

$$d(a,b) \leq d(a,x_i) + d(x_i,x_j) + d(x_j,b) < \epsilon + d(x_i,x_j) + \epsilon.$$

Since there are only finitely many values of $d(x_i, x_j)$, $0 \le d(a, b) < 2\epsilon + \sup\{d(x_i, x_j) | i, j = 1, ..., n\}$. Thus, $\{d(a, b) | a, b \in X\}$ is a bounded subset of \mathbb{R} , which implies (X, d) is bounded.

- 3. (\rightarrow) Let a metric space (X, d) be given. Suppose (X, d) is compact, i.e., each of its open cover has a finite subcover. We want to show (X, d) is complete and totally bounded.
 - (Completeness) To prove: Every Cauchy sequence in X converges. Let a Cauchy sequence $\{x_n\} \subset X$ be given.
 - If the set Γ ⊂ X of the terms of $\{x_n\}$ is finite then $\{x_n\}$ converges to some term $x_k \in \Gamma$, because by definition $x_i, x_j \in \{x_n\}$ get arbitrarily close for sufficiently large i, j.

- If Γ ⊂ X is infinite then Γ contains its limit point p because X is compact (theorem 2.37, Baby Rudin). We want to show $x_n \to p$. To this end, let $\epsilon > 0$ be given and set $\epsilon' = \epsilon/2$. Since $\{x_n\}$ is Cauchy, $\exists N \in \mathbb{N}$ such that whenever $m, n \ge N$,

$$d(x_m, x_n) < \epsilon' = \frac{\epsilon}{2}. \tag{1}$$

We also know p is a limit point of Γ , so for $r = \epsilon' = \epsilon/2 > 0$, $\exists x_m \in \Gamma$ where $m \ge N$ such that $x_m \in \mathcal{N}_{\epsilon'}(p) \setminus \{p\} \ne \emptyset$, which means

$$d(x_m, p) \le \epsilon' = \frac{\epsilon}{2}.$$
 (2)

From (1) and (2), if $n \ge N$, we have that

$$d(x_n, p) \le d(x_n, x_m) + d(x_m, p) < \epsilon' + \epsilon' = \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Thus, the Cauchy sequence $\{x_n\}$ in X converges to p in X, which implies X is complete.

• (Totally boundedness) To prove: $\forall \epsilon > 0, \exists n \in \mathbb{N}, n < \infty$, such that $X \subseteq \bigcup_{i=1}^{n} \mathcal{N}_{\epsilon}(x_i)$.

Let a compact metric space (X, d) be given. Then the collection $\{N_{\epsilon}(x)|x \in X\}$ forms an open cover for X. Since X is compact, there is a finite subcover, i.e., there are (finitely many) points $x_1, \ldots, x_n \in X$ such that

$$X=\cup_{i=1}^n \mathcal{N}_{\epsilon}(x_i).$$

This shows X is totally bounded.

 (\leftarrow) Let (X, d) be given. (X, d) is complete and totally bounded. To prove: (X, d) is compact.

Let the collection $\{N_{\epsilon}\}$ be an open cover for X. Assume (to get a contradiction) that $\{N_{\epsilon}\}$ has no finite subcover for X. Let $\alpha = \operatorname{diam}(X)$, which exists because X is (totally) bounded. Since X is totally bounded, X can be covered by finitely many closed ball $\mathcal{B}_{\alpha/4}(x_i)$ with $x_i \in X$. It follows from our assumption that at least one $\mathcal{B}_{\alpha/4}(x_j)$ intersected with X cannot be finitely covered by $\{N_{\epsilon}\}$. Call $X_1 = \mathcal{B}_{\alpha/4}(x_j) \cap X$, then X_1 is a closed subset of X with $\operatorname{diam}(X_1) \leq \alpha/2$ (X_1 closed by theorems 2.24(b) and 2.34, Baby Rudin). Repeating this argument gives us a nested sequence of closed sets $X_n \subset X$ with $\operatorname{diam}(X_n) \leq \alpha/2^n$ where each X_n cannot be finitely covered by $\{N_{\epsilon}\}$.

Now, for each n, consider $x_n \in X_n$. Then $\{x_n\}$ is Cauchy, by the construction of the closed subsets X_n . Because X is complete, $\{x_n\}$ converges with some limit $p \in X$. Since each X_n is closed, we have that $p \in \bigcap_{n=1}^{\infty} X_n$. Further, because $\text{diam}(X_n) \to 0$ as

 $n \to \infty$, we must have that $\bigcap_{n=1}^{\infty} A_n = \{p\}$, the set with a single element p. Consider any $N \in \{N_{\epsilon}\}$ with $p \in N$. N is open, so there exists r > 0 such that $N_r(p) \subset N$. Take $n \in \mathbb{N}$ such that $d(p, x_n) < r/2$ and $diam(X_n) < r/2$, then $X_n \subset N_r(p) \subset N \in \{N_{\epsilon}\}$, which contradicts the assumption that X_n cannot be finitely covered by $\{N_{\epsilon}\}$. So, $\{N_{\epsilon}\}$ has a finite subcover for X, so $\{X, d\}$ is compact.

Reference

For part 3. of this problem, I used the approach given by Anton R. Schep, which is presented in *Compact sets in metric spaces*, *Notes for Math* 703, link <u>here</u>. I also found different versions of this proof which show compactness via the convergence subsequences, but I like Schep's approach best because it uses the definition of compactness.

3. Let \mathbb{R}^n denote the usual n-dimensional Euclidean space, with its Euclidean norm

$$||x|| = \sqrt{\sum_{i=1}^{n} |x_i|^2}$$

and corresponding metric d(x, y) = ||x - y||, with $x, y \in \mathbb{R}^n$. Given an $n \times n$ matrix T, define

$$||T|| \equiv \sup\{||Tx|| : ||x|| \le 1\}.$$

- 1. Prove that, for all $n \times n$ matrices X and Y, that $||XY|| \le ||X|| ||Y||$.
- 2. Prove that

$$||T|| = \inf\{M \in \mathbb{R} : ||Tx|| \le M||x|| \text{ for all } x \in \mathbb{R}^n\}.$$

- 3. With $x \in \mathbb{R}^n$, find $||C_x||$ when C_x is the $n \times n$ matrix with the coordinates of x in the first column and zeros elsewhere.
- 4. With $x \in \mathbb{R}^n$, find $||D_x||$ when D_x is the $n \times n$ diagonal matrix with the coordinates of x on the main diagonal, and zeros elsewhere.
- 5. With $x \in \mathbb{R}^n$, find $||R_x||$ when R_x is the $n \times n$ matrix with the coordinates of x in the first row and zeros elsewhere.
- 1. To prove: $||XY|| \le ||X|| ||Y||$.

We first show that $||Yx|| \le ||Y|| ||x||$. Suppose (to get a contradiction) that ||Yx|| > ||Y|| ||x||, then it follows that

$$\frac{1}{\|x\|}\|Yx\| > \|Y\| \implies \|Y\frac{x}{\|x\|}\| > \|Y\|.$$

Because $x/\|x\|$ is a unit vector, this contradicts the definition of $\|Y\|$. Thus, $\|Yx\| \le \|Y\|\|x\|$. It follows that

$$||XY|| = \sup\{||XYx|| : ||x|| \le 1\}$$

$$\le \sup\{||X|| ||Yx|| : ||x|| \le 1\}$$

$$= ||X|| \sup\{||Yx|| : ||x|| \le 1\}$$

$$= ||X|| ||Y||$$

2. To prove: $\sup\{\|Tx\| : \|x\| \le 1\} = \inf\{M \in \mathbb{R} : \|Tx\| \le M\|x\| \forall x \in \mathbb{R}^n\}.$

Let

$$a = \inf\{M \in \mathbb{R} : ||Tx|| \le M||x|| \forall x \in \mathbb{R}^n\}$$

$$b = \sup\{||Tx|| : ||x|| \le 1\}$$

We want to show $a \le b$ and $b \le a$.

- By definition, $||Tx|| \le a||x|| \ \forall x \in \mathbb{R}^n$. In particular, this holds for $||x|| \le 1$. And so, $b \ge ||Tx|| \le a||x|| \le a$, i.e., $b \le a$.
- Consider the quantity

$$c = \sup \left\{ \frac{\|Tx\|}{\|x\|} : x \in \mathbb{R}^n \setminus \{0\} \right\}.$$

Clearly, $||Tx|| \le d||x||$ for all nonzero $x \in \mathbb{R}^n$. So, $a \le c$, by the definition of a. Consider another quantity:

$$d = \sup\{\|Tx\| : \|x\| = 1\}.$$

For any nonzero $x \in \mathbb{R}^n$, $x/\|x\|$ is a unit vector, which means $\|Tx\|/\|x\| = \|T(x/\|x\|)\| \le d$. By the definition of c, we have that $c \le d$ and thus $a \le c \le d$. Finally, $d \le b$ clearly because d is a supremum taken over fewer terms than b. Thus, $a \le c \le d \le b \le a$, which implies a = b.

3. Let $x = (x_1 \dots x_n)^{\top} \in \mathbb{R}^n$ be given. Then C_x has the form

$$C_x = \begin{pmatrix} x_1 & 0 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ x_n & 0 & \dots & 0 \end{pmatrix}_{n \times n}.$$

Let $y = (y_1 \dots y_n)^{\top} \in \mathbb{R}^n$ be given, then clearly $C_x y = y_1 x \implies ||C_x y|| = |y_1|||x||$. By definition,

$$||C_x|| = \sup \{||C_x y|| : ||y|| \le 1\}$$

$$= \sup \{|y_1|||x|| : ||y|| \le 1\}$$

$$= ||x|| \sup \{|y_1| : ||y|| \le 1\}$$

$$= ||x||, \text{ attained when taking } y = \begin{pmatrix} 1 & 0 & \dots & 0 \end{pmatrix}^\top.$$

Thus, $||C_x|| = ||x||$.

4. Let $x = (x_1 \dots x_n)^{\top} \in \mathbb{R}^n$ be given. Then D_x has the form

$$D_x = \operatorname{diag}(x_1, \ldots, x_n).$$

Let $y = (y_1 \ldots y_n)^{\top} \in \mathbb{R}^n$ be given, then clearly

$$||D_x y|| = ||(x_1 y_1 \dots x_n y_n)^{\top}|| = \sqrt{\sum_{i=1}^n |x_i y_i|^2} = \sqrt{\sum_{i=1}^n x_i^2 y_i^2}.$$

By definition,

$$||D_x|| = \sup \{||D_x y|| : ||y|| \le 1\}$$

= $\sup \{||D_x y|| : ||y|| = 1\}$

where we have used the previous result: $a \le c \le d \le b \le a$ in the second equality. With this,

$$||D_{x}|| = \sup \left\{ \sqrt{\sum_{i=1}^{n} x_{i}^{2} y_{i}^{2}} : ||y|| = 1 \right\}$$

$$\leq \sup \left\{ \sqrt{\sum_{i=1}^{n} \left(\max_{1 \leq i \leq n} |x_{i}| \right)^{2} y_{i}^{2}} : ||y|| = 1 \right\}$$

$$= \sup \left\{ \max_{1 \leq i \leq n} |x_{i}| \sqrt{\sum_{i=1}^{n} y_{i}^{2}} : ||y|| = 1 \right\}$$

$$= \max_{1 \leq i \leq n} |x_{i}| \cdot \sup_{||y|| = 1} ||y||$$

$$= \max_{1 \leq i \leq n} |x_{i}|,$$

with equality occurring when $y = e_{(m(i))}$ where $e_{(j)}$ is one of the standard basis vectors with 1 at the jth coordinate and zero elsewhere, and m(i) is the index of the largest coordinate (in magnitude) of x. In other words, $||D_x||$ is the absolute value of the largest coordinate of x (in magnitude). Thus, $||D_x|| = \max_{1 \le i \le n} |x_i|$.

5. Let $x = \begin{pmatrix} x_1 & \dots & x_n \end{pmatrix}^{\top} \in \mathbb{R}^n$ be given. Then C_x has the form

$$R_{x} = \begin{pmatrix} x_{1} & \dots & x_{n} \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_{n \times n}.$$

Let $y = (y_1 \ldots y_n)^{\top} \in \mathbb{R}^n$ be given, then clearly,

$$||R_x y|| = ||(\sum_{i=1}^n x_i y_i \ 0 \ \dots \ 0)^\top|| = ||\sum_{i=1}^n x_i y_i \ (1 \ 0 \ \dots \ 0)^\top|| = ||\sum_{i=1}^n x_i y_i||.$$

By definition,

$$||R_{x}|| = \sup \{||R_{x}y|| : ||y|| \le 1\}$$

$$= \sup \{||R_{x}y|| : ||y|| = 1\}$$

$$= \sup \{||R_{x}y|| : ||y|| = 1\}$$

$$= \sup \{\left|\sum_{i=1}^{n} x_{i} y_{i}\right| : ||y|| = 1\}$$

$$\leq \sup \left\{\sqrt{\sum_{i=1}^{n} x_{i}^{2} \sum_{j=1}^{n} y_{j}^{2}} : ||y|| = 1\right\}, \quad \text{Cauchy-Schwartz}$$

$$= ||x||,$$

where equality occurs if and only if y is a multiple of x, under the constraint ||y|| = 1. This means equality is attained if and only if y = x/||x||. Thus, $||R_x|| = ||x||$.

Reference

For Part 2. of this problem, I referred to Proposition 2.1, Chapter III: Banach Spaces, in John Conway's *A Course in Functional Analysis*, 2nd Edition, to define the quantities *c*, *d* for the proof.

4. Let *T* be an $n \times n$ matrix, with ||T|| defined as in the previous problem. Prove that

$$\inf\{||T^m||^{\frac{1}{m}}: m \in \mathbb{N}\} = \sup\{|\alpha|: \alpha \text{ an eigenvalue of } T\}.$$

Note to Ben: the proof below is a combination of Internet/book search and my notes from Prof. Livshits's MA353: Matrix Analysis from S'19. The statement of the problem is similar to the statement of the Beurling-Gelfand spectral radius theorem. However, the proof found in Rudin's *Functional Analysis*, section 10.13, is too advanced for me. I found another approach by Joel E. Tropp (Prof. of Mathematics at Caltech), here, which uses Jordan canonical form (which I learned in MA353) and the fact that all norms on a finite-dimensional vector space are equivalent (which I learned from Prof. Randles) to prove the above statement. However, instead of showing the statement holds for the ∞ -norm like Joel E. Tropp did, I will be using the $||\cdot||_{HS}$ norm, since I have done this in MA353.

Before getting to the proof, I want to give a lemma which is useful later in the proof.

Lemma 4.1. Suppose that $\{x_{1_n}\}, \{x_{2_n}\}, \dots, \{x_{k_n}\}$ are sequences of positive numbers such that $\{(x_{i_n})^{1/n}\} \to \alpha_i$ for each $i = 1, 2, \dots, k$. Then

$$\left\{ (\alpha_1^n + \alpha_2^n + \dots + \alpha_k^n)^{1/n} \right\} \to \sup_i \{\alpha_i\}.$$

It follows that

$$\{(x_{1_n} + x_{2_n} + \dots + x_{k_n})^{1/n}\} \to \sup_i \{\alpha_i\}.$$

Proof of Lemma 4.1.: We assume (without loss of generality) that $\sup_i \alpha_i = \alpha_1$. Then, any α_i can be written as $\delta_i \alpha_1$ where δ_i is some positive number less than or equal to 1. It follows that

$$(\alpha_1^n + \alpha_2^n + \dots + \alpha_k^n)^{1/n} = \alpha_1(1 + \delta_2^n + \dots + \delta_k^n)^{1/n}.$$

The number $(1 + \delta_2^n + \dots + \delta_k^n)$ is at most k. Thus, when $n \to \infty$, $(1 + \delta_2^n + \dots + \delta_k^n)$ tends to 1. Therefore, $\lim_{n \to \infty} (\alpha_1^n + \alpha_2^n + \dots + \alpha_k^n)^{1/n} = \alpha_1$, i.e., $\{(\alpha_1^n + \alpha_2^n + \dots + \alpha_k^n)^{1/n}\} \to \sup_i \{\alpha_i\}$. Since $\{(x_{i_n})^{1/n}\} \to \alpha_i$ for each $i = 1, 2, \dots, k$, it follows that $\{(x_{1_n} + x_{2_n} + \dots + x_{k_n})^{1/n}\} \to \sup_i \{\alpha_i\}$.

Proof of problem statement:

I will use (without proving) the fact that the Hilbert-Schmidt norm $\|\cdot\|_{HS}$ and the operator norm $\|\cdot\|$ are equivalent, i.e., there are positive numbers a,b>0 such that for any $n\times n$ matrix T, $a\|T\|_{HS} \le \|T\| \le b\|T\|_{HS}$. (A general theorem about equivalence of norms

on finite-dimensional vector spaces is provided by theorem 2.4-5, Erwin Kreyszig's *Introductory Functional Analysis with Applications*). The fact about "equivalence of norms" allows me to translate my result using the Hilbert-Schmidt norm to the operator norm defined in Problem 3. In other words, if I could show that the problem statement holds for the Hilbert-Schmidt norm, then I could argue that it also holds when the operator norm is used.

Let $\rho(T) = \sup\{|\alpha| : \alpha \text{ an eigenvalue of } T\}$ denote the *spectral radius* of T. For any $n \times n$ matrix T, we want to first show that

$$\rho(T) = \lim_{n \to \infty} ||T^n||_{HS}^{1/n}.$$

Any $n \times n$ matrix T can be written as a direct sum of Jordan blocks following a similarity transformation. Suppose that $\mathcal{J} = S^{-1}TS = \bigoplus_{i=1}^s \mathcal{J}_i$, where each \mathcal{J}_i is a Jordan block. Clearly, $\rho(T) = \rho(\mathcal{J})$ because $T \sim \mathcal{J}$. Now, we want to consider the relationship between $\|T^n\|^{1/n}$ and $\|\mathcal{J}^n\|^{1/n}$:

$$\|T^n\|^{1/n} = \left\| (S^{-1}\mathcal{J}S)^n \right\|^{1/n} = \left\| S\mathcal{J}^n S^{-1} \right\|^{1/n} \leq \left(\|S\| \left\| S^{-1} \right\| \right)^{1/n} \left\| \mathcal{J}^n \right\|^{1/n}$$

and

$$\|T^n\|^{1/n} = \|(S^{-1}\mathcal{J}S)^n\|^{1/n} = \left(\frac{\|S^{-1}\|\|S\mathcal{J}^nS^{-1}\|\|S\|}{\|S\|\|S^{-1}\|}\right)^{1/n} \ge (\|S\|\|S^{-1}\|)^{-1/n} \|\mathcal{J}^n\|^{1/n}$$

where we have used results from Problem 3 and the fact that $||S^{-1}|| ||S\mathcal{J}^n S^{-1}|| ||S|| \ge ||\mathcal{J}^n||$ when S and S^{-1} are "absorbed" into the term in the middle. Further, in each inequality, the term $(||S|| ||S^{-1}||)^{\pm 1/n} \to 1$ as $n \to \infty$. Thus, it suffices to consider only the behavior of $||\mathcal{J}^n||^{1/n}$ rather than $||T^n||^{1/n}$ itself, i.e., it suffices to show

$$\rho(T) = \lim_{n \to \infty} \|\mathcal{J}^n\|_{HS}^{1/n}.$$

Since \mathcal{J} is block-diagonal, \mathcal{J}^n is a direct sum of the powers of the Jordan blocks of T, i.e., $\mathcal{J}^n = \bigoplus_{i=1}^s (\mathcal{J}_i)^n$. Consider a Jordan block \mathcal{J}_i . Let us write $\mathcal{J}_i \equiv \mathcal{J}_{\lambda,m}$ where λ is the associated eigenvalue and m is the size of \mathcal{J}_i . Further, we write $\mathcal{J}_{\lambda,m} = \lambda \mathcal{I} + \mathcal{N}$ where \mathcal{I} is the $m \times m$ identity matrix and \mathcal{N} is a nilpotent of order m. With these, we can write $(\mathcal{J}_{\lambda,m})^n$ as a sum

$$(\mathcal{J}_{\lambda,m})^n = (\lambda \mathcal{I} + \mathcal{N})^n = \lambda^n \mathcal{I} + \binom{n}{1} \lambda^{n-1} \mathcal{N} + \dots$$

which is truncated at the term with $N^m = O$, the zero matrix. Since N has the form

$$\mathcal{N} = \begin{bmatrix} 0 & 1 & & & \\ & \ddots & \ddots & & \\ & & \ddots & 1 \\ & & & 0 \end{bmatrix},$$

we recognize that $(\mathcal{J}_{\lambda,m})^n$ can be written as

$$(\mathcal{J}_{\lambda,m})^n = \begin{bmatrix} \lambda^n & \binom{n}{1} \lambda^{n-1} & & \binom{n}{m-1} \lambda^{n-(m-1)} \\ & \lambda^n & \ddots & \\ & & \ddots & \binom{n}{1} \lambda^{n-1} \\ & & \lambda^n \end{bmatrix}.$$

With this, we can write the formula for the Hilbert-Schmidt norm for $(\mathcal{J}_{\lambda,m})^n$ as

$$\left\| (\mathcal{J}_{\lambda,m})^n \right\|_{\mathrm{HS}}^2 = m(|\lambda|^2)^n + (m-1) \binom{n}{1}^2 (|\lambda|^2)^{(n-1)} + \dots + \binom{n}{m-1}^2 (|\lambda|^2)^{(n-(m-1))}.$$

If $|\lambda| = 0$ then $\|(\mathcal{J}_{\lambda,m})^n\|_{HS} = 0$, which implies

$$\lim_{n\to\infty} \left(\left\| \left(\mathcal{J}_{\lambda,m} \right)^n \right\|_2 \right)^{\frac{1}{n}} = \lim_{n\to\infty} 0 = 0 = |\lambda|.$$

If $|\lambda| > 0$, by factoring out $|\lambda|^n$, we get

$$\|(\mathcal{J}_{\lambda,m})^n\|_{HS} = |\lambda|^n \left(m + \frac{(m-1)\binom{n}{1}^2}{|\lambda|^2} + \dots + \frac{\binom{n}{m-1}^2}{|\lambda|^{2(m-1)}}\right)^{\frac{1}{2}}.$$

Therefore,

$$\left(\left\| \left(\mathcal{J}_{\lambda,m} \right)^{n} \right\|_{HS} \right)^{\frac{1}{n}} = |\lambda| \left[\left(m + \frac{(m-1)\binom{n}{1}^{2}}{|\lambda|^{2}} + \dots + \frac{\binom{n}{m-1}^{2}}{|\lambda|^{2(m-1)}} \right)^{\frac{1}{2}} \right]^{\frac{1}{n}}$$

$$= |\lambda| \left[\left(m + \frac{(m-1)\binom{n}{1}^{2}}{|\lambda|^{2}} + \dots + \frac{\binom{n}{m-1}^{2}}{|\lambda|^{2(m-1)}} \right)^{\frac{1}{n}} \right]^{\frac{1}{2}}.$$

Let

$$f(n) = m + \frac{(m-1)\binom{n}{1}^2}{|\lambda|^2} + \dots + \frac{\binom{n}{m-1}^2}{|\lambda|^{2(m-1)}}.$$

We recognize that f(n) is a polynomial in n. Using logarithms and l'Hopital's rule we find $\lim_{n\to\infty} (f(n))^{\frac{1}{n}} = 1$. Thus, $\lim_{n\to\infty} \sqrt{(f(n))^{\frac{1}{n}}} = 1$, and it follows that

$$\lim_{n\to\infty} \left(\left\| \left(\mathcal{J}_{\lambda,m} \right)^n \right\|_{\mathrm{HS}} \right)^{\frac{1}{n}} = |\lambda| \cdot \lim_{n\to\infty} \sqrt{(f(n))^{\frac{1}{n}}} = |\lambda| \cdot 1 = |\lambda|.$$

Back to $\mathcal{J} = \bigoplus_{i=1}^{s} \mathcal{J}_i = \bigoplus_{i=1}^{s} \mathcal{J}_{\lambda_i, m_i}$. We wish to evaluate the limit:

$$\lim_{n\to\infty} (\|\mathcal{J}^n\|_{\mathrm{HS}})^{1/n}.$$

We have that

$$\lim_{n\to\infty} \left(\|\mathcal{J}^n\|_{\mathrm{HS}}\right)^{\frac{1}{n}} = \lim_{n\to\infty} \sqrt[n]{\left\|\bigoplus_{i=1}^s \left(\mathcal{J}_{\lambda_i,m_i}\right)^n\right\|_{\mathrm{HS}}} = \lim_{n\to\infty} \sqrt{\sum_{i=1}^s \left(\left\|\left(\mathcal{J}_{\lambda_i,m_i}\right)^n\right\|_{\mathrm{HS}}^2\right)^{\frac{1}{n}}}.$$

From an earlier argument, we know $\lim_{n\to\infty} \left(\left\| \left(\mathcal{J}_{\lambda_i,m_i} \right)^n \right\|_2 \right)^{\frac{1}{n}} = |\lambda_i|$. So,

$$\lim_{n\to\infty} \left(\left\| \left(\mathcal{J}_{\lambda_i,m_i} \right)^n \right\|_{\mathrm{HS}} \right)^{\frac{2}{n}} = \lim_{n\to\infty} \left(\left(\left\| \left(\mathcal{J}_{\lambda_i,m_i} \right)^n \right\|_{\mathrm{HS}} \right)^2 \right)^{\frac{1}{n}} = |\lambda_i|^2.$$

If $\|\left(\mathcal{J}_{\lambda_{j},m_{j}}\right)^{n}\|_{\mathrm{HS}}$ is zero for some j, then $\lambda_{j}=0$, and we can drop this term from the direct sum of operators (sum to \mathcal{J}). Then, we can treat the positive $\|\left(\mathcal{J}_{\lambda_{i},m_{i}}\right)^{n}\|_{\mathrm{HS}}^{2}$'s as elements of the sequences $\left\{\left(\left\|\left(\mathcal{J}_{\lambda_{i},m_{i}}\right)^{n}\right\|_{\mathrm{HS}}\right)^{2}\right\}$, each converging to a corresponding $|\lambda_{i}|^{2}$, $i=1,2,\ldots,k\leq s$. Using the result from Lemma 4.1., we get

$$\lim_{n\to\infty} (\|\mathcal{J}^n\|_{\mathrm{HS}})^{\frac{1}{n}} = \lim_{n\to\infty} \sqrt{\left(\sum_{i=1}^s \|(\mathcal{J}_{\lambda_i,m_i})^n\|_{\mathrm{HS}}^2\right)^{\frac{1}{n}}} = \sqrt{\sup_i (|\lambda_i|^2)} = \sup_i (|\lambda_i|) \equiv \rho(\mathcal{J}) = \rho(T).$$

We have also argued that $\lim_{n\to\infty} (\|\mathcal{J}^n\|_{HS})^{\frac{1}{n}} = \lim_{n\to\infty} (\|T^n\|_{HS})^{\frac{1}{n}}$, so we have

$$\lim_{n \to \infty} (\|T^n\|_{HS})^{\frac{1}{n}} = \rho(T).$$

With this we are done with the first part of the proof. Next, we want to show

$$\lim_{n \to \infty} (\|T^n\|_{HS})^{\frac{1}{n}} = \inf\{\|T^m\|^{\frac{1}{m}} : m \in \mathbb{N}\}.$$

To this end, we first translate our result from using the Hilbert-Schmidt norm to using the operator norm. We do this by the equivalence of norms. Since $\|\cdot\|$ is equivalent to $\|\cdot\|_{HS}$, there exist positive numbers a, b such that

$$a||T^n||_{HS} \le ||T^n|| \le b||T^n||_{HS}.$$

Taking the *n*th root of this inequality and taking the limit as $n \to \infty$, we have

$$\lim_{n\to\infty} \sqrt[n]{a} \|T^n\|_{\mathrm{HS}}^{1/n} \leq \lim_{n\to\infty} \|T^n\|^{1/n} \leq \lim_{n\to\infty} \sqrt[n]{b} \|T^n\|_{\mathrm{HS}}^{1/n}.$$

Of course, $\lim_{n\to\infty} \sqrt[n]{a} = \lim_{n\to\infty} \sqrt[n]{b} = 1$, so we are left with

$$\lim_{n \to \infty} \|T^n\|_{\mathrm{HS}}^{1/n} \le \lim_{n \to \infty} \|T^n\|^{1/n} \le \lim_{n \to \infty} \|T^n\|_{\mathrm{HS}}^{1/n} \implies \lim_{n \to \infty} \|T^n\|_{\mathrm{HS}}^{1/n} = \lim_{n \to \infty} \|T^n\|^{1/n} = \rho(T).$$
(3)

To finish the proof, we want to show

$$\lim_{n \to \infty} ||T^n||^{1/n} = \inf\{||T^m||^{\frac{1}{m}} : m \in \mathbb{N}\}.$$

Consider an eigenvalue λ of T. $\lambda \in \sigma(T)$, the spectrum of T. By the spectral mapping theorem, $\lambda^n \in \sigma(T^n)$. Since $||T^n|| = \sup\{M \in \mathbb{R} : ||T^nx|| \le M||x||, \forall x \in \mathbb{R}^n\}$ (by Problem 3), we see that $|\lambda^n| \le ||T^n||$, which implies $|\lambda| \le ||T^n||^{1/n}$, for all $n \in \mathbb{N}$. This means $|\lambda| \le \inf\{||T^n||^{1/n} : n \in \mathbb{N}\}$. Now, with $\rho(T) \equiv \sup_i(|\lambda_i|)$, we have

$$\lim_{n \to \infty} ||T^n||^{1/n} = \rho(T) \le \inf\{||T^n||^{1/n} : n \in \mathbb{N}\}$$

But of course, we also have by definition

$$\inf\{\|T^n\|^{1/n}: n \in \mathbb{N}\} \le \lim_{n \to \infty} \|T^n\|^{1/n}.$$

So, as desired:

$$\lim_{n \to \infty} ||T^n||^{1/n} = \inf\{||T^m||^{\frac{1}{m}} : m \in \mathbb{N}\}$$
 (4)

From (3) and (4),

$$\inf\{\|T^m\|^{1/m}: m \in \mathbb{N}\} = \rho(T) \equiv \sup\{|\alpha|: \alpha \text{ an eigenvalue of } T\}.$$

Reference

I found the statement of the theorem in section 10.13 of Rudin's *Functional Analysis* (1991), and a less advanced approach to proving it in J.A. Tropp's *An Elementary Proof of the Spectral Radius Formula for Matrices*, link here. My proof, which I actually did as an exercise in MA353, uses Jordan canonical form (like Tropp's except I used the Hilbert-Schmidt norm). The statement about the equivalence of norms is theorem 2.4-5, Erwin Kreyszig's *Introductory Functional Analysis with Applications*.