Chapter 15: Comparing means of more than two groups

1

More than two groups

- Thus far, the examples that we've looked at have had two groups (e.g., mutant vs wild type, drug vs placebo)
- How do you compare means of more than two groups?
 - Placebo, drug A, drug B, etc.
 - Species 1, species 2, species 3, etc.

Problem of multiple tests

- Tempting to do all possible pairwise comparisons
- Ex: species 1 vs species 2 vs species 3 vs species 4
 - 1 vs 2
 - 1 vs 3
 - 1 vs 4
 - 2 vs 3
 - 2 vs 4
 - 3 vs 4
- But the problem is that running multiple tests inflates the probability of getting at least one Type I error

3

ANOVA

- Analysis of variance (ANOVA) compares the means of multiple groups simultaneously in a single analysis
 - Tests for variation of means among groups
- H_0 : $\mu_1 = \mu_2 = \mu_3 \dots \mu_n$
- H_A: mean of at least one group is different from at least one other group

ANOVA in a nutshell

- Null assumption that all groups have the same true mean is equivalent to saying that each group sample is drawn from the same population
- But each group sample is bound to have a different mean due to sampling error
- ANOVA determines if there is more variance among sample means than we would expect by sampling error alone

5

ANOVA in a nutshell

- Two measures of variation
- **Group mean square** (MS_{groups}) is proportional to the observed amount of variance among group sample means
 - Variation among groups
- Error mean square (MS_{error}) estimates the variance among subjects that belong to each group
 - Variation within groups
- Test statistic is a ratio:
 - True null: MS_{groups} / MS_{error} = 1
 - False null: MS_{groups} / MS_{error} > 1

Ex 15.1: The knees who say night

- Circadian clock
- Recovering from jet lag involves re-calibration of clock through light detection
- Study found that exposing back of knee to light can reset clock?
- Follow-up: participants awakened from sleep and exposed to three hour treatment of lights to eyes, lights to knees, or no light

Ex 15.1: The knees who say night

- H_0 : $\mu_1 = \mu_2 = \mu_3$
- H_A : at least one μ_i is different from at least one other

TABLE 15.1-1 Raw data and descriptive statistics of phase shift, in hours, for the circadian rhythm experiment.

Treatment	Data (h)	\overline{Y}	s	n
Control	0.53, 0.36, 0.20, -0.37, -0.60, -0.64, -0.68, -1.27	-0.3088	0.6176	8
Knees	0.73, 0.31, 0.03, -0.29, -0.56, -0.96, -1.61	-0.3357	0.7908	7
Eyes	-0.78, -0.86, -1.35 -1.48 -1.52, -2.04, -2.83	-1.5514	0.7063	7

Fig 15.1-1

9

ANOVA calculations

reatment	\overline{Y}	s	n	
Control	-0.3088	0.6176	8	
Knees	-0.3357	0.7908	7	
Eyes	-1.5514	0.7063	7	

 Sums of squares (SS) calculates two sources of variation (among and within groups)

$$SS_{groups} = \sum_{i} n_{i} (\overline{Y}_{i} - \overline{Y})^{2}$$

$$i = group$$

$$\overline{Y}_{i} = mean \ group \ i$$

$$\overline{Y} = mean \ all \ obs \ (grand \ mean)$$

Grand mean

$$\overline{Y} = \frac{\sum_{i} n_{i} \overline{Y}_{i}}{N} = \frac{8(-0.3087) + 7(-0.3357) + 7(-1.5514)}{22} = -0.7127$$

Treatment	\overline{Y}	s	n
Control	-0.3088	0.6176	8
Knees	-0.3357	0.7908	7
Eyes	-1.5514	0.7063	7

Grand mean = -0.7127

 Sums of squares (SS) calculates two sources of variation (among and within groups)

$$SS_{groups} = \sum_{i} n_{i} (\overline{Y}_{i} - \overline{Y})^{2}$$

$$i = group$$

$$\overline{Y}_{i} = mean \ group \ i$$

$$\overline{Y} = mean \ all \ obs \ (grand \ mean)$$

$$SS_{groups} = 8[-0.3087 - (-0.7127)]^2 + 7[-0.3357 - (-0.7127)]^2 + 7[-1.5514 - (-0.7127)]^2$$

= 7.224

11

ANOVA calculations

Treatment	\overline{Y}	s	n
Control	-0.3088	0.6176	8
Knees	-0.3357	0.7908	7
Eyes	-1.5514	0.7063	7

Grand mean = -0.7127SS_{groups} = 7.224

 Sums of squares (SS) calculates two sources of variation (among and within groups)

$$SS_{error} = \sum_{i} \sum_{j} (Y_{ij} - \overline{Y}_i)^2 = \sum_{i} s_i^2 (n_i - 1)$$
 $j = observation$

$$SS_{error} = (0.6176)^2(8-1) + (0.7908)^2(7-1) + (0.7063)^2(7-1)$$

= 9.415

Treatment	\overline{Y}	s	n
Control	-0.3088	0.6176	8
Knees	-0.3357	0.7908	7
Eyes	-1.5514	0.7063	7
Grand r	mean = -	0.7127	
SSgroups	= 7.224		

 $SS_{error} = 9.415$ $SS_{total} = 16.639$

13

Group mean square (MS_{groups}) is variation among groups

Treatment	Y	s	n
Control	-0.3088	0.6176	8
Knees	-0.3357	0.7908	7
Eyes	-1.5514	0.7063	7
Grand r	nean = -	0.7127	
SSgroups	= 7.224		
SS _{error} =	9.415		
SStotal =	16.639		

$$MS_{groups} = \frac{SS_{groups}}{df_{groups}}$$

$$df_{groups} = k - 1$$
 $k = number\ of\ groups$

$$MS_{groups} = \frac{7.224}{3-1} = 3.6122$$

15

ANOVA calculations

Group error square (MS_{error}) is variation among individuals in same group

Treatment	\overline{Y}	s	n		
Control	-0.3088	0.6176	8		
Knees	-0.3357	0.7908	7		
Eyes	-1.5514	0.7063	7		
Grand mean = -0 7127					

 $SS_{groups} = 7.224$ $SS_{error} = 9.415$ $SS_{total} = 16.639$ $MS_{groups} = 3.6122$

$$MS_{error} = \frac{SS_{error}}{df_{error}}$$

$$df_{error} = N - k$$

k = number of groupsN = total number obs

$$MS_{error} = \frac{9.415}{22 - 3} = 0.4955$$

• F-ratio test statistic

Treatment	\boldsymbol{Y}	s	n
Control	-0.3088	0.6176	8
Knees	-0.3357	0.7908	7
Eyes	-1.5514	0.7063	7
Grand n SS _{groups}	nean = -0 = 7.224	0.7127	
SS _{error} = 9.415			
SS _{total} =	16.639		
MSgroups	= 3.612	2	
MS _{error} =	0.4955		

 \overline{Y}

Grand mean = -0.7127 SS_{groups} = 7.224

SS_{error} = 9.415

-0.3088 0.6176 8

-0.3357 0.7908 7 -1.5514 0.7063 7

Treatment

Control

Knees

$$F = \frac{MS_{groups}}{MS_{error}}$$

$$F = \frac{3.6122}{0.4955} = 7.29$$

17

F test statistic

- F statistic has pair of degrees of freedom
 - Numerator and denominator
 - $-F_{2,19} = 7.29$
- Use F-distribution to calculate P-value

TABLE 15.1-3 An excerpt from Statistical Table D, with critical values of the F-distribution corresponding to the significance level $\alpha(l) = 0.05$.

Stats table or computer

 $SS_{total} = 16.639$ $MS_{groups} = 3.6122$ $MS_{error} = 0.4955$ F = 7.291.0 **Probability density** 0.8 7.29 > cutoff 0.6 So reject the null 0.4 3.52 0.2 0.05 8 Fig 15.1-1 F_{2,19}

		Numerator df								
Denominator df	1	2	3	4	5	6	7	8	9	10
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35

ANOVA table

TABLE 15.1-2 ANOVA table for the results of the circadian rhythm experiment (<u>Example 15.1</u>).

Source of variation	Sum of squares	df	Mean squares	<i>F</i> -ratio	P
Groups (treatment)	7.224	2	3.6122	7.29	0.004
Error	9.415	19	0.4955		
Total	16.639	21			

Treatment	\overline{Y}	s	n
Control	-0.3088	0.6176	8
Knees	-0.3357	0.7908	7
Eyes	-1.5514	0.7063	7
SS _{groups} SS _{error} = SS _{total} = MS _{groups}	9.415 16.639 = 3.612 = 0.4955		

19

Variation explained

R² measures the fraction of variation in Y that is explained by group differences

$$R^2 = \frac{SS_{groups}}{SS_{total}}$$

$$R^2 = \frac{7.224}{16.639} = 0.43$$

Treatment	\overline{Y}	s	n
Control	-0.3088	0.6176	8
Knees	-0.3357	0.7908	7
Eyes	-1.5514	0.7063	7
SS _{groups} SS _{error} = SS _{total} =	9.415 16.639 = 3.612 = 0.4955		

Assumptions

- Measurements in every group represent a random sample from the corresponding population
- Variable is normally distributed in each of the k populations
 - Robust to deviations, particularly when sample size is large
- Variance is the same in all k populations
 - Robust to departures if sample sizes are large and balanced, and no more than 10x differences among groups

21

Alternatives

- Test normality with Shapiro-Wilk and test equal variances with Levene's test
- Data transformations can make data more normal and variances more equal
- Nonparametric alternative: Kruskal-Wallis test
 - Similar principle as Mann-Whitney *U*-test

Practice: indigobird repertoire size

Which means are different?

- H_0 : $\mu_1 = \mu_2 = \mu_3 \dots \mu_n$
- H_A: mean of at least one group is different from at least one other group
- Reject the null, now what?

25

Planned comparisons

- A planned comparison is a comparison between means planned during the design of the study, identified before the data are examined
- In circadian clock follow-up study, the planned (a priori) comparison was difference in means between knee and control group

Knee vs control

Difference in means

$$\overline{Y}_2 - \overline{Y}_1 = (-0.336) - (-0.309) = -0.027$$

Standard error of difference

$$SE = \sqrt{MS_{error} \left(\frac{1}{n_1} + \frac{1}{n_2}\right)} = 0.364$$

Treatment \overline{Y} s n Control -0.3088 0.6176 8 Knees -0.3357 0.7908 7 Eyes -1.5514 0.7063 7 Grand mean = -0.7127 SS_{groups} = 7.224 SS_{error} = 9.415 SS_{total} = 16.639 MS_{groups} = 3.6122 MS_{error} = 0.4955 F = 7.29

95% confidence interval of difference

$$\overline{Y}_2 - \overline{Y}_1 - SE \times t_{0.05(2),df} < \mu_2 - \mu_1 < \overline{Y}_2 - \overline{Y}_1 + SE \times t_{0.05(2),df}$$
 $-0.788 < \mu_2 - \mu_1 < 0.734$

Range includes zero, so consistent with no diff in means!

27

Unplanned comparisons

- Comparisons are unplanned if you test for differences among all means
- Problem of multiple tests (increasing probability of Type I error) should be accounted for
- With the **Tukey-Kramer method** the probability of making at least one Type I error throughout the course of testing all pairs of means is no greater than the significance level α

Ex 15.4: Wood wide web

- Most plants have underground mutualistic interactions with mycorrhizae fungi
- Shaded trees might draw more carbon from mycorrhizae than non-shaded trees
- Experiment with three treatments:
 - Deep shade
 - Partial shade
 - No shade
- Transfer quantified using different carbon isotopes

Republished with permission of Nature Publishing Group, fro Mycorhizal fungi, David Read, Nature (vol. 388), issue 6642, Figure 1; 1997; permission conveyed through Copyright Clearance Center, Inc.

29

Ex 15.4: Wood wide web

TABLE 15.4-1 Summary of the net amount of carbon transferred from birch to Douglas-fir (Example 15.4).

Shade treatment	Sample mean \overline{Y}_i (mg)	Sample standard deviation, $oldsymbol{s}_i$	n_i
Deep shade	18.33	6.98	5
Partial shade	8.29	4.76	5
No shade	5.21	3.00	5

TABLE 15.4-2 ANOVA table summarizing results of the Douglas-fir carbon-transfer data (Example 15.4).

Source of variation	Sum of squares	df	Mean squares	$m{F} ext{-ratio}$	P
Groups (treatments)	470.704	2	235.352	8.784	0.004
Error	321.512	12	26.793		
Total	792.216	14			

Republished with permission of Nature Publishing Group, fron Mycorhizal fungi, David Read, Nature (vol. 388), issue 6642, Figure 1; 1997; permission conveyed through Copyright Clearance Center, Inc.

Tukey-Kramer method

- Works like a series of two-sample t-tests, but with a higher critical value to limit the Type I error rate
 - Because multiple tests are done, the adjustment makes it harder to reject the null

No shade	Partial shade	Deep shade
\overline{Y}_3	\overline{Y}_2	\overline{Y}_1
5.21	8.29	18.33

TABLE 15.4-3 Summary of Tukey–Kramer tests carried out on the results of Example 15.4.

Group $oldsymbol{i}$	Group $oldsymbol{j}$	$\overline{m{Y}}_{m{i}} - \overline{m{Y}}_{m{j}}$	SE	Test statistic	Critical value	Conclusion
				$oldsymbol{q}$	$\boldsymbol{q_{0.05,3,12}}$	
Deep	No	13.12	3.2737	4.008	2.67	${\rm Reject} H_0$
Deep	Partial	10.04	3.2737	3.067	2.67	${\rm Reject} H_0$
Partial	No	3.08	3.2737	0.941	2.67	Do not reject \mathbf{H}_0

31

Kruskal-Wallis post-hoc test?

- Suppose that your data...
 - Fail normality even after transformation
 - Generate a significant Kruskal-Wallis result
- So the interpretation is that the distribution of ranks differs for at least one group. But which one?
- Should not use Tukey-Kramer, which is a parametric test
- Dunn's test is the appropriate analysis for a post-hoc analysis of groups following a significant Kruskal-Wallis result
 - Will compare all possible pairs of groups while controlling for multiple tests

Notes

• Skipping sections 15.5 and 15.6