Ej 1.

Ej 2.

- **Ej 3.** Sea $f: A \to B$ en una categoría \mathscr{C} , así:
 - a) si f es un split-epi y monoformismo, entonces f es un isomorfismo;
 - b) si $F:\mathscr{C}\to\mathscr{D}$ es un funtor y f es un isomorfismo, split-mono o split-epi, entonces F(f) también lo es.

Demostración. (a) Como f es un split-epi $\exists g \in Hom_{\mathscr{C}}(B,A)$ tal que $fg = 1_B$. Notemos que

$$f(gf) = (fg) f = 1_B f = f = f1_A$$

 $\implies gf = 1_A,$ f es mono
 $\therefore f$ es un isomorfismo.

b) Supongamos que f es un split-mono, entonces $\exists g: B \to A$ en $\mathscr C$ tal que $gf = 1_A$, con lo cual $Ff: FA \to FB, Fg: FB \to FA$ en $\mathscr D$ y

$$F(g) F(f) = F(gf) = F(1_A) = 1_{F(A)}$$

 $\Longrightarrow F(f)$ es un split-mono.

Supongamos ahora que f es un split-epi, luego $\exists g: B \to A$ en $\mathscr C$ tal que $fg=1_B$, con lo cual $Ff: FA \to FB, Fg: FB \to FA$ en $\mathscr D$ y

$$F(f) F(g) = F(fg) = F(1_B) = 1_{F(B)}$$

 $\Longrightarrow F(f)$ es un split-epi.

De lo anterior, en conjunto a la equivalencia dada en el Ej. 1 (f), se sigue que si f es un isomorfismo en $\mathscr C$ entonces F(f) lo es en $\mathscr D$.

Ej 4. Sean \mathscr{A} y \mathscr{B} categorías.

- a) Sea $\eta \in Nat_{[\mathscr{A},\mathscr{B}]}(F,G)$. Si $\forall A \in \mathscr{A} \ \eta_A : FA \to GA$ es un isomorfismo en $\mathscr{B} \ y \ \eta^{-1} := \left\{ \left(\eta^{-1} \right)_A \right\}_{A \in \mathscr{A}}, \ \operatorname{con} \left(\eta^{-1} \right)_A := \left(\eta_A \right)^{-1}, \ \operatorname{entonces} \ \eta^{-1} \in Nat_{[\mathscr{A},\mathscr{B}]}(G,F).$
- b) Si $\eta \in Nat_{[\mathscr{A},\mathscr{B}]}(F,G)$, $\rho \in Nat_{[\mathscr{A},\mathscr{B}]}(G,H)$ entonces la composición de transformaciónes naturales, con $\rho\eta$ dada por $(\rho\eta)_A := \rho_A \circ \eta_A$ $\forall A \in \mathscr{A}$, es una operación asociativa.
- c) Si $T \in [\mathscr{A}, \mathscr{B}]$ y $1_T : T \to T$ está dada por $(1_T)_A := 1_{T(A)} \ \forall \ A \in \mathscr{A}$, entonces $1_T \in Nat_{[\mathscr{A},\mathscr{B}]}(T,T)$.
- d) Si $\alpha \in Nat_{[\mathscr{A},\mathscr{B}]}(F,G)$, entonces

$$\alpha 1_F = \alpha = 1_G \alpha$$
.

Demostración. a) Dado que $\forall A \in \mathcal{A} \ \eta_A : FA \to GA$ es un isomorfismo en \mathcal{B} , se tiene que $(\eta_A)^{-1} \in Hom_{\mathcal{B}}(GA, FA)$ y que si $\alpha : A \to A'$ está en \mathcal{A} , entonces

$$G(\alpha) \eta_{A} = \eta_{A'} F(\alpha), \qquad \eta \in Nat_{[\mathscr{A},\mathscr{B}]}(F,G)$$

$$\Longrightarrow F(\alpha) (\eta_{A})^{-1} = (\eta_{A'})^{-1} G(\alpha).$$

Así $\eta^{-1}:G\to F$ es una transformación natural, pues lo anterior garantiza que el siguiente diagrama conmuta

$$G(A) \xrightarrow{(\eta_A)^{-1}} F(A)$$

$$G(\alpha) \downarrow \qquad \qquad \downarrow^{F(\alpha)} \cdot$$

$$G(A') \xrightarrow{(\eta_{A'})^{-1}} F(A')$$

b) Notemos que $\forall A \in \mathscr{A}$ se tiene que $\rho_A \eta_A \in Hom_{\mathscr{B}}(F(A), G(A))$. Además si $\alpha : A \to A'$ está en \mathscr{A} , por ser η y ρ transformaciones naturales, se tiene que $G(\alpha) \eta_A = \eta_{A'} F(\alpha)$ y $H(\alpha) \rho_A = \rho_{A'} G(\alpha)$, con lo cual

$$H(\alpha) (\rho_{A} \eta_{A}) = (H(\alpha) \rho_{A}) \eta_{A} = (\rho_{A'} G(\alpha)) \eta_{A}$$
$$= \rho_{A'} (G(\alpha) \eta_{A}) = \rho_{A'} (\eta_{A'} F(\alpha))$$
$$= (\rho_{A'} \eta_{A'}) F(\alpha),$$

de modo que el siguiente diagrama conmuta

$$F(A) \xrightarrow{\rho_{A}\eta_{A}} H(A)$$

$$F(\alpha) \downarrow \qquad \qquad \downarrow_{G(\alpha)},$$

$$F(A') \xrightarrow{\rho_{A'}\eta_{A'}} H(A')$$

y por lo tanto $\rho \eta : F \to H$ es una tranformación natural.

Verificaremos ahora que la composición de transformaciones naturales es asociativa. Si ρ y η están dados como al comienzo, $I \in [\mathscr{A}, \mathscr{B}]$ y $\chi : H \to I$ es una transformación natural, entonces si $A \in \mathscr{A}$

$$\chi_A(\rho_A \eta_A) = (\chi_A \rho_A) \, \eta_A \in (\chi \rho) \, \eta,$$
$$\Longrightarrow \chi(\rho \eta) \subseteq (\chi \rho) \, \eta.$$

En forma análoga se verifica la otra contención, y así se tiene que $\chi\left(\rho\eta\right)=\left(\chi\rho\right)\eta.$

c) Si $\alpha: A \to A'$ está en \mathscr{A} , entonces

$$T(\alpha) 1_{T(A)} = T(\alpha)$$

= $1_{T(A')} T(\alpha)$,

luego

$$T(A) \xrightarrow{1_{T(A)}} T(A)$$

$$T(\alpha) \downarrow \qquad \qquad \downarrow T(\alpha)$$

$$T(A') \xrightarrow{1_{T(A')}} T(A')$$

conmuta, y por tanto $1_T:T\to T$ es una transformación natural.

d) Se tiene que $\forall A \in \mathscr{A} \ \alpha_A 1_{F(A)} = \eta_A$, con lo cual $(\alpha 1_F)_A = \alpha_A$ y por tanto $\alpha 1_F = \alpha$. Análogamente se verifica que $1_G \alpha = \alpha$.

Ej 5.

Ej 6.

Ej 7. Si los siguientes diagramas conmutativos en una categoría $\mathscr C$

$$\begin{array}{cccc} P & \xrightarrow{\beta_2} & A_2 & P' & \xrightarrow{\beta_2'} & A_2 \\ \downarrow^{\beta_1} & & \downarrow^{\alpha_2} & \downarrow^{\alpha_1} & & \downarrow^{\alpha_2} \\ A_1 & \xrightarrow{\alpha_1} & A & A_1 & \xrightarrow{\alpha_1} & A \end{array}$$

son pull-backs, entonces $\exists \ \gamma: P \to P'$ en $\mathscr C$ un isomorfismo tal que $\beta_i=\beta_i'\gamma, \ \forall \ i\in [1,2].$

Demostración. Por la propiedad universal del pull-back aplicada a P', se tiene el siguiente diagrama conmutativo

mientras que la propiedad universal del pull-back aplicada a P grantiza que el siguiente diagrama conmuta

Así

$$\beta_{1} (\gamma' \gamma) = (\beta'_{1}) \gamma$$

$$= \beta_{1},$$

$$\beta_{2} (\gamma' \gamma) = (\beta'_{2}) \gamma$$

$$= \beta_{2},$$

$$(*)$$

de modo que los diagramas

y por lo tanto, empleando la propiedad universal del pull-back para P, se tiene que $\gamma'\gamma=1_P$. En forma análoga, empleando ahora la propiedad universal del pull-back para P', se verifica que $\gamma\gamma'=1_{P'}$, de modo que $\gamma:P\to P'$ es un isomorfismo en $\mathscr C$. Con lo anterior y (*) se tiene lo deseado.

Ej 8. Sea el siguiente diagrama conmutativo en una categoría $\mathscr C$

$$P \xrightarrow{\beta_2} A_2$$

$$\beta_1 \downarrow \qquad \qquad \downarrow \alpha_2$$

$$A_1 \xrightarrow{\alpha_1} A$$

un pull-back, entonces

- a) si α_1 es un monomorfismo, entonces β_2 también lo es;
- b) β_2 es un split-epi si y sólo si α_2 se factoriza a través de α_1 .

Demostración. [a] Supongamos que α_1 es un monomorfismo y que $f,g: B \to P$ son morfismos en $\mathscr C$ tales que $\beta_2 f = \beta_2 g$. Notemos primeramente que así

$$\alpha_1 (\beta_1 f) = (\alpha_2 \beta_2) f = \alpha_2 (\beta_2 g) = (\alpha_1 \beta_1) g$$

$$= \alpha_1 (\beta_1 g)$$

$$\Rightarrow \beta_1 f = \beta_1 g, \qquad \alpha_1 \text{ es un mono}$$

con lo cual se tiene el siguiente diagrama conmutativo

y así la propiedad universal del pull-back garantiza que f=g, con lo cual β_2 es un mono.

 $b) \implies$ Dado que β_2 es un split-epi $\exists \ \gamma: A_2 \to P \ {\rm tal} \ {\rm que} \ \beta_2 \gamma = 1_{A_2},$ así

$$\alpha_1 (\beta_1 \gamma) = (\alpha_2 \beta_2) \gamma = \alpha_2 (1_{A_2})$$

= α_2 ,

 $\implies \alpha_2$ se factoriza a través de α_1 .

b) \Leftarrow Se tiene que $\exists \alpha : A_2 \to A_1$ en $\mathscr C$ tal que $\alpha_2 = \alpha_1 \alpha$, con lo cual a partir de la propiedad universal del pull-back se obtiene el siguiente diagrama commutativo

del cual se deduce que en partícular $\beta_2\gamma=1_{A_2},$ y así se tiene lo deseado.

Г

Ej 9.

Ej 10.

Ej 11. Enunciaremos y probaremos la proposición dual al Ej. 8. Notemos primeramente que

Pull-back:

PBI) $\exists \ \beta_1: P \to A_1, \beta_2: P \to A_2 \text{ tales que } \alpha_1\beta_1 = \alpha_2\beta_2.$

PBII) $\forall P' \in \mathscr{C} \text{ y } \forall \beta_1' : P' \to A_1, \beta_2' : P' \to A_2 \text{ tales que } \alpha_1 \beta_1' = \alpha_2 \beta_2', \exists ! \ \gamma : P' \to P \text{ tal que } \beta_1' = \beta_1 \gamma \text{ y } \beta_2' = \beta_2 \gamma.$

Pull-back^{op}:

PB^{op}I) $\exists \beta_1^{op}: A_1 \to P, \beta_2^{op}: A_2 \to P \text{ tales que } \alpha_1^{op}\beta_1^{op} = \alpha_2^{op}\beta_2^{op}.$

PB^{op}II) $\forall P' \in \mathscr{C} \text{ y } \forall \beta_1^{\prime op} : A_1 \to P', \beta_2^{\prime op} : A_2 \to P' \text{ tales que } \alpha_1^{op} \beta_1^{\prime op} = \alpha_2^{op} \beta_2^{\prime op}, \exists ! \gamma^{op} : P \to P' \text{ tal que } \beta_1^{\prime op} = \beta_1^{op} \gamma^{op} \text{ y } \beta_2^{\prime op} = \beta_2^{op} \gamma^{op}.$

Pull-back*:

 PB^*I) $\exists \beta_1 : A_1 \to P, \beta_2 : A_2 \to P$ tales que $\beta_1 \alpha_1 = \beta_2 \alpha_2$.

PB*II)
$$\forall P' \in \mathscr{C} \text{ y } \forall \beta_1': A_1 \to P', \beta_2': A_2 \to P' \text{ tales que } \beta_1'\alpha_1 = \beta_2'\alpha_2, \exists ! \ \gamma: P \to P' \text{ tal que } \beta_1' = \gamma\beta_1 \text{ y } \beta_2' = \gamma\beta_2.$$

Esto último es la definición de que un objeto P sea un push-out de α_1 : $A \to A_1$ y $\alpha_2 : A \to A_2$. Por lo anterior, y dado que las propiedades duales de mono y split-epi son respectivamente epi y split-mono, la proposición dual del Ej. 8 es:

Sea el siguiente diagrama conmutativo en una categoria $\operatorname{\mathscr{C}}$

$$P \xleftarrow{\beta_2} A_2$$

$$\beta_1 \uparrow \qquad \uparrow \alpha_2$$

$$A_1 \xleftarrow{\alpha_1} A$$

un push-out, entonces

- a) si α_1 es un epimorfismo, entonces β_2 también lo es;
- b) β_2 es un split-mono si y sólo si $\exists \delta : A_1 \to A_2$ en $\mathscr C$ tal que $\alpha_2 = \delta \alpha_1$.

Demostración. a Supongamos que $f: P \to Q$ y $g: P \to Q$ en $\mathscr C$ son tales que $f\beta_2 = g\beta_2$. Notemos que

$$\begin{split} (f\beta_1)\,\alpha_1 &= f\left(\beta_2\alpha 2\right) = (g\beta_2)\,\alpha_2 = g\left(\beta_1\alpha_1\right) \\ &= (g\beta_1)\,\alpha_1 \\ \Longrightarrow f\beta_1 &= g\beta_1, \end{split} \qquad \qquad \alpha_1 \text{ es un epi}$$

con lo cual se tiene el siguiente diagrama conmutativo

y así la propiedad universal del push-out garantiza que f=g, con lo cual β_2 es un epi.

 $b) \Longrightarrow$ Por ser β_2 un split-mono $\exists \ \gamma : P \to A_2 \text{ en } \mathscr{C} \text{ tal que } \gamma \beta_2 = 1_{A_2},$ de modo que si $\delta := \gamma \beta_1$, entonces

$$\delta\alpha_1 = \gamma (\beta_1 \alpha_1) = (\gamma \beta_2) \alpha_2 = 1_{A_2} \alpha_2$$
$$= \alpha_2.$$

 $b) \Leftarrow$ Bajo estas condiciones de la propiedad universal del push-out se obtiene el siguiente diagrama conmutativo

del cual se sigue en partícular que $\gamma \beta_2 = 1_{A_2}$.

Ej 12. Si R es un anillo entonces la categoría Mod(R) tiene pull-backs.

Demostración. Sean $\alpha_1:A_1\to A$ y $\alpha_2:A_2\to A$ morfismos de R-m'odulos y

$$A_1 \times_A A_2 := \{(x, y) \in A_1 \times A_2 \mid \alpha_1(x) = \alpha_2(y)\}$$

Notemos que $A_1 \times_A A_2 \neq \varnothing$, pues si $0_1, 0_2$ y 0 son los neutros aditivos de A_1, A_2 y A, respectivamente, entonces $\alpha_1 (0_1) = 0 = \alpha_2 (0_2)$, con lo cual $(0_1, 0_2) \in A_1 \times_A A_2$. Más aún, $A_1 \times_A A_2 \leq A_1 \times A_2$, con $A_1 \times A_2$ dotado de la estructura usual de R-módulo, pues si $(a,b), (c,d) \in A_1 \times_A A_2$ y $r \in R$, entonces

$$\alpha_{1} (ra - b) = r\alpha_{1} (a) - \alpha_{1} (b)$$

$$= r\alpha_{2} (c) - \alpha_{2} (d)$$

$$= \alpha_{2} (rc - d),$$

$$\implies r (a, b) - (c, d) \in A_{1} \times_{A} A_{2}.$$

Con lo cual $A_1 \times_A A_2 \in Mod(R)$. Así, si π_1 y π_2 son las proyecciones canónicas de $A_1 \times_A A_2$ sobre A_1 y A_2 , respectivamente, y $(x,y) \in A_1 \times_A A_2$, entonces π_1 , π_2 son morfismos de R-módulos y

$$\alpha_{1}\pi_{1}(x,y) = \alpha_{1}(x) = \alpha_{2}(y) = \alpha_{2}(\pi_{2}(x,y))$$

$$= \alpha_{2}\pi_{2}(x,y),$$

$$\implies \alpha_{1}\pi_{1} = \alpha_{2}\pi_{2}.$$

Es decir, se tiene que el siguiente diagrama conmuta

$$\begin{array}{c|c} A_1 \times_A A_2 & \xrightarrow{\pi_2} & A_2 \\ \hline \pi_1 & & & \downarrow \alpha_2 \\ A_1 & \xrightarrow{\alpha_1} & A \end{array}$$

Ahora, si $P\in Mod(R)$ y $\beta_1:P\to A_1,\beta_2:P\to A_2$ son morfismos de R-módulos tales que $\alpha_1\beta_1=\alpha_2\beta_2$, entonces sea

$$\gamma: P \to A_1 \times_A A_2$$

 $p \mapsto (\beta_1(p), \beta_2(p)).$

Notemos que γ es un morfismo de R-m'odulos, puesto que β_1 y β_2 lo son, y que si $p\in P$ entonces

$$\pi_1 \gamma (p) = \pi_1 (\beta_1 (p), \beta_2 (p)) = \beta_1 (p)$$

$$\implies \pi_1 \gamma = \beta_1.$$

Análogamente se verifica que $\pi_2 \gamma = \beta_2$, con lo cual el siguiente diagrama conmuta

Finalmente, si $\gamma':P\to A_1\times_A A_2$ es un morfismo de R-módulos tal que $\pi_1\gamma'=\beta_1$ y $\pi_2\gamma'=\beta_2$ y $p\in P$, entonces

$$\pi_{1}\gamma'(p) = \beta_{1}(p),$$

$$\pi_{2}\gamma'(p) = \beta_{2}(p),$$

con lo cual $\gamma'(p) = (\pi_1(\gamma'(p)), \pi_2(\gamma'(p))) = (\beta_1(p), \beta_2(p)) = \gamma(p)$ y por lo tanto $\gamma' = \gamma$.

- Ej 13.
- Ej 14.

Ej 15. Si $\mathscr C$ es una categoría con pull-backs, entonces $\mathscr C$ tiene intersecciones finitas.

Demostración. Sea $A \in \mathscr{A}$ y $\{\mu_i : A_i \to A\}_{i \in I}$ una familia de subobjetos de A. Si $I = \varnothing$, el resultado es inmediato pues en tal caso $1_A : A \to A$ es una intersección para la familia. Así pues, podemos suponer sin pérdida de generalidad que $I = [1, n] \subseteq \mathbb{N}$, con $n \ge 1$ y proceder por inducción sobre n.

Si n=1, entonces se tiene que $\mu_1:A_1\to A$ es una intersección para la familia $\{\mu_1\}$, puesto que $\mu_1=\mu_11_{A_1}$ y μ_1 satisface en forma inmediata la propiedad universal de la intersección.

Si n=2, el resultado se sigue de la Proposición 1.3.2 en conjunto a que $\mathscr C$ es una categoría con pull-backs.

Así pues supongamos por Hipótesis de Inducción que la proposición es válidad para $n=k,\ k\geq 2,$ y verifiquémosla para k+1. Si $\{\mu_i\}_{i=1}^{k+1}$ es una familia de k+1 subobjetos de A entonces por la Hipótesis de Inducción

la familia $\{\mu_i\}_{i=1}^k$ admite intersecciones, digamos $\nu: \bigcap_{i=1}^k A_i \to A$. Recordemos que ν es un monomorfismo, y por lo tanto, por el caso n=2, se tiene que la familia de subobjetos $\{\nu, \mu_{k+1}\}$ admite intersecciones, diga-

mos $\mu: \left(\bigcap_{i=1}^k A_i\right) \cap A_{k+1} \to A$. Afirmamos que μ es una intersección para

 $\{\mu_i\}_{i=1}^{k+1}$. En efecto, del hecho de que μ sea una intersección para $\{\nu, \mu_{k+1}\}$ se sigue que μ se factoriza a través de μ_{k+1} y a través de ν . Por su parte ν se factoriza a través de μ_i , $\forall i \in [1, k]$, y en consecuencia μ también lo hace; de modo que $\mu \leq \mu_i \ \forall i \in [1, k+1]$. Finalmente, si $\theta : B \to A$ se factoriza a través de $\mu_i \ \forall i \in [1, k+1]$, en partícular se factoriza a través de $\mu_i \ \forall i \in [1, k]$, y así por la propiedad universal de la intersección se sigue que θ se factoriza a través de ν . Así $\theta \leq \nu$ y $\theta \leq \mu_{k+1}$, con lo cual, por la propiedad universal de la intersección, ν se factoriza a través de μ . Con lo cual se ha verificado la afirmación y así se concluye la inducción.

9