Single top tW

REBECA GONZALEZ SUAREZ (UNL)

Why tW?

2

 From the three main single top production modes (t-channel, tW, s-channel), the tW associated production is the one that could not be explored before the LHC

σ[pb]	ttbar	t-channel	tW	s-channel
Tevatron (1.96TeV)	7.08	2.08	0.22	1.046

- Like the other single top modes, it is sensitive to new physics, and provides an additional handle to study top properties
- Dilepton signature:
 - \circ 2 opposite sign leptons (e, μ)
 - Substantial MET (2 neutrinos)
 - o 1 b-jet
- Main backgrounds:
 - o ttbar, DY (same flavor), VV...

tW as background

arXiv:1312.1129, JHEP 01 (2014) 096

Top background is a mixture of tt and tW

o-jet bin: 45% of top is tW

1-jet bin: 25%

tt dilepton (TOP-13-004)

Source	Number of $e^{\pm}\mu^{\mp}$ events			
Source	7 TeV	8 TeV		
DY	$22.1 \pm 3.1 \pm 3.3$	$173.3 \pm 25.1 \pm 26.0$		
Non-W/Z	$51.0 \pm 0.7 \pm 15.3$	$145.9 \pm 14.8 \pm 43.8$		
Single top quark (tW)	$204.0 \pm 3.1 \pm 61.2$	$1033.6 \pm 2.9 \pm 313.8$		
VV	$6.9 \pm 0.6 \pm 2.1$	$35.4 \pm 1.9 \pm 11.1$		
Rare (t t V)		$83.6 \pm 1.3 \pm 25.5$		
Total background	$284.0 \pm 16.0 \pm 63.2$	$1471.7 \pm 46.7 \pm 319.1$		
tī dilepton signal	$5008.2 \pm 15.4 \pm 188.0$	$24439.6 \pm 43.6 \pm 956.4$		
Data	4970	25441		

CMS teams involved in Run-1

1+jets

+ perpetual single top contributor

Run-I 7 TeV

• At 7TeV we explored single top tW associated production using the full luminosity (4.9fb⁻¹)

σ[pb]	ttbar	t-channel	tW	s-channel
Tevatron (1.96TeV)	7.08	2.08	0.22	1.046
LHC @ 7TeV	177.31	63.89	15.74	4.29

First PAS, then paper

September 2011 CMS PAS-TOP-11-022

- The analysis used three regions
 - o 1j1tag → signal region
 - 2j1tag → ttbar control region
 - o 2j2tag → ttbar control region

September 2012

Phys. Rev. Lett. 110 (2013) 022003 arXiv:1209.3489

	1j1t	2j1t	2j2t
tW	$336\pm 5\pm 16$	$180 \pm 3 \pm 16$	45±1±6
tĪ	$1263\pm19\pm138$	$2775\pm28\pm205$	$1488 \pm 21 \pm 222$
Z/γ^* +jets	$128 \pm 12 \pm 28$	$113\pm10\pm22$	$8.5{\pm}1.8{\pm}1.8$
Other	19 ± 3	$8.8 \pm 0.7 \pm 0.2$	4 ± 3
Total estimated	$1746\pm23\pm141$	$3077\pm30\pm207$	$1546\pm21\pm222$
Total data	1699	2878	1507

Analysis strategy

- BDT and cut-based analysis as cross-check
- 4 main kinematic variables for separating tW from tt:
 - \circ p_T of the system
 - H_{T}
 - p_{T} of the leading jet
 - $\Delta\Phi_{
 m MET-closest\ lepton}$

Drell-Yan background estimated from the Z mass peak (events vetoed in the analysis) → reweight of the MET distribution

Results

- Observed significance $\mathbf{4.0\sigma}$ (3.6 expected)
- Measured cross section: 16+5-4 pb
- Main uncertainty: **Statistical**, with a 20% effect
 - o followed by theory uncertainties on ttbar (10%) and JES (up to 7%)

Evidence > 3σ Analysis statistically dominated

Run-I 8 TeV

- Analysis repeated and improved
- BDT → different discriminant, more variables
- Additional cross-check \rightarrow shape of the p_T of the system
- Not statistically dominated anymore → not full lumi used 12.2fb⁻¹
- PAS → then paper

July 2013 CMS PAS-TOP-12-040

January 2014

Phys. Rev. Lett. 112 (2014) 231802 arXiv:1401.2942

σ[pb]	ttbar	t-channel	tW	s-channel
Tevatron (1.96TeV)	7.08	2.08	0.22	1.046
LHC @ 7TeV	177.31	63.89	15.74	4.29
LHC @ 8TeV	252.89	84.69	22.2	5.24

Analysis strategy

- The main challenge (as at 7TeV), is the ttbar background
 - o ttbar with 1 jet outside acceptance or miss-reconstructed → signal
- We **maintained the 2 ttbar control regions** and improved the BDT
- 13 variables
 - o Key upgrade: adding variables related to 'loose jets' → jets not fulfilling the main requirements for jets in the analysis but close to

Variable	Description
Nloosejets	Number of loose jets, $p_T > 20$ GeV, $ \eta < 4.9$
NloosejetsCentral	Number of loose jets, $p_T > 20$ GeV, $ \eta < 2.4$
NbtaggedLoosejets	Number of loose jets, $p_T > 20$ GeV, CSVM btagged
$p_{T,sys}$	Vector sum of p_T of leptons, jet, and E_T^{miss}
H_{T}	Scalar sum of p_T of leptons, jet, and E_T^{miss}
Jet p_T	p_T of the leading, tight, b-tagged jet
Loose jet p_T	p_T of leading loose jet, defined as 0 for events with no loose jet present
$p_{T,sys}/H_T$	Ratio of $p_{T,sys}$ to H_T for the event
Msys	Invariant mass of the combination of the leptons, jet, and E_T^{miss}
centralityJLL	Centrality of jet and leptons
$H_{T,leptons}/H_T$	Ratio of scalar sum of p_T of the leptons to the H_T of full system
p_T -jll	Vector sum of p_T of jet and leptons
$E_{ m T}^{ m miss}$	Missing transverse energy in the event

Distributions

As for 7 TeV, he analysis performs a binned likelihood fit on the shape of the BDT

Results

- Excess of events above the expected background with a significance of 6.1σ (5.4 expected)
 - → First observation of the process
- The measured cross section is 23.4±5.4 pb
- Main uncertainty:
 - o choice of thresholds for the matrix element and parton showering (ME/PS) matching in simulation of ttbar and renormalization/factorization scales

Cross-section and |V_{tb}|

- From the inclusive production cross section of single top (**t-channel**, **tW**), a value of the **CKM matrix element**, $|V_{tb}|$, can be extracted
- Considering $|V_{td}|$, $|V_{ts}| \ll |V_{tb}|$
- Cross section $\sim |V_{tb}|^2$

$$7 \, \mathrm{TeV}$$
 8TeV $|V_{\mathrm{tb}}| = 1.01$ $|V_{\mathrm{tb}}| = 1.03$

ATLAS

- Meanwhile ATLAS has been following a parallel route:
- In may 2012 they submitted the (first) evidence at 7TeV
 - o http://arxiv.org/abs/1205.5764
- Last week they submitted the observation at 8TeV
 - o http://arxiv.org/abs/1510.03752v2
- Together, we made a combination a while ago (with an ATLAS CONF note)

Energy	Predicted	CMS	ATLAS	LHC
7TeV	15.6±0.4±1.1	16+5-4	16.8±2.9±4.9	nope
8TeV	22.2±0.6±1.4	23.4±5.4	23.0±1.3+3.2-3.5±1.1	25.0±1.4±4.4±0.7

In the latest ATLAS paper

- Something new was reported:
 - Fiducial cross section
 - \circ 1jet-1tag region \rightarrow **tW** + **ttbar**

- Fiducial measurements are interesting on their own:
 - more robust comparison to the theoretical prediction reducing the sensitivity to theory modeling uncertainties
- But especially, the study of the tW-tt interplay is interesting

ttbar and tW

- tt production is the main background for the tW analysis
 - o ~10X the cross-section (depending on the center of mass energy)
 - o able to provide identical final states when one of the b-quarks is outside acceptance
- But there is something more:
 - At NLO tW mixes with ttbar, sharing initial/final states → this causes theoretical problems in the signal definition

ttbar in tW

- Two alternative solutions → none of them theoretically sound
 - o diagram removal (DR): the problematic diagrams are removed
 - diagram subtraction (DS): resonant diagrams cancelled with the introduction of a gauge-invariant term
 - http://arxiv.org/abs/0908.0631
- In practice this means:
 - o tW is defined at LO \rightarrow O(20%) accuracy

 Traditional workarounds suffer from conceptual issues → systematic theoretical uncertainty that cannot be reduced

tW+tt unified description

- Recently (2013), several papers suggested an unified description at NLO, 4FS (massive b):
 - Frederix:
 - <u>http://arxiv.org/abs/1311.4893</u>
 - o F. Cascioli, S. Kallweit, P. Maierhöfer, S. Pozzorini:
 - <u>http://arxiv.org/abs/1312.0546</u>
 - o G. Heinrich, A. Maier, R. Nisius, J. Schlenk, J. Winter:
 - http://arxiv.org/abs/1312.6659
- Topic discussed in the single top workshop:
 - 2013 (Frederix):
 https://indico.cern.ch/event/275626/session/o/contribution/2/attachments/499458/689961/frederix.pdf
 - 2014 (Caola):
 https://indico.cern.ch/event/331154/session/1/contribution/20/attachments/644959/887235/singletop_napoli.pdf

Going into more details

- Frederix (for example) proposes the unified studied of the processes for a specific problem: top background to Higgs searches (1 jet bin)
 - o This is relevant in the H→WW channel
 - It applies in the same way to the tt dilepton measurements
- The idea is to achieve a unified description that does not separate tt and tW, keeping all their interference effects
 - o Requires NLO calculation to the pp \rightarrow 2l2nubb+X in the 4FS
- **5FS**: the mass of the b is neglected, the process (pp \rightarrow 2l2nubb+X) is not finite in fixed-order perturbation theory without requiring phase-space cuts on the final state b jets
 - \circ \rightarrow cannot be used for tW
- **4FS**: b massive with a finite value, includes:
 - double quark resonant production (tt)
 - single top-quark resonant contributions (tW)
 - o non top-quark resonant contributions

What does this mean?

Means that we could describe a set of processes accurately at NLO including ttbar and tW:

- The fixed order NLO the combined pp → bb2l2nu+X is possible and has been done already (in Madgraph5_AMC@NLO)
- For a more exclusive description of the final state, matching to the parton shower would be required
 - o The parton shower is not yet available. It will take at least a couple of more months → Maybe sometime early next year?

Run-2

• In terms of cross section, is the single top process that will grow the most (similar increase as ttbar)

σ [pb]	ttbar	t-channel	tW	s-channel
LHC @ 8TeV	252.89	84.69	22.2	5.24
LHC @ 13TeV	831.76	216.99	71.2	10.32
From 8 to 13TeV	3.3	2.6	3.2	1.9

- The process has been already established
 - Still interesting to check it at 13TeV
- In Run-2 the role of tW as background will become particularly relevant
 - o For H→WW (obvious)
 - And especially for tt dilepton precision measurements
- The study of ttbar and tW together will therefore be very important and should be done either like ATLAS → fiducial region(s), or directly with the appropriate full NLO simulation

Measuring tt+tW

- Common measurement of tW and tt:
 - o 1j1t (tW signal region)
 - o 2j2t (ttbar and interference region)
 - o Fiducial (like in ATLAS) or not
- Once the region to perform the analysis is defined:
 - \circ If there is MC for the unified description \rightarrow compare directly
 - If the MC is not available yet → make a simultaneous fit of tt and tW using separated samples (neglecting interference)
- This can be done either within the tW or ttbar analyses, or by teams from both working together (depending on amount of people)
 - Use the same objects/selections from the start of the tW and tt analyses

tW in the l+jets channel

- There has been an effort with Run-1 data on exploring the l+jets signature that is ongoing
- Signature:
 - o 1 lepton and MET from a W decay
 - o 1 b quark from the top
 - o 2 light quarks from a W decay
- Not only ttbar background, also W+jets
- Cons:
 - Smaller S/B,
 - o separation between ttbar and tW even more difficult
- Pros:
 - Higher statistics, potential reconstruction of angular variables

top polarization, angular distributions

- Top polarization can also be measured in the tW channel:
 - sensitive to anomalous couplings
 - o sensitive to charged Higgs pp → tH⁻
- More challenging than in the t-channel:
 - The polarization is 0.25 (0.9 in the t-channel)
 - signal over background ratio worse in tW
 - Requires top quark reconstruction:
 - Maybe a study for the l+jets decay
- Other options :
 - measure angular distributions in the lab frame :
 - \times $\Delta\Phi_{ll}$: (Is it worth it?)
 - \star Φ₁: lepton azimuthal angle. Need to determine the lepton from top.

Summary

- Run-1 was good for singlet top tW associated production
 - We achieved first evidence at 7 TeV, then observation at 8TeV, and measured the cross section
- A key role for tW lays on its contribution to other analyses as background
 - Higgs is the classic case
 - Ttbar dilepton is also important
- The main issue when studying tW is the ttbar background
 - Large contribution, similar final states, mixing at NLO
- A common description of tt and tW at NLO could be used → both processes studied together, that could have an immediate use case in H→WW