Estimation of incident power from the transient heating of a copper plate

1 Objective

We estimate the incident power received by a small sample from the *indirect* analysis of the transient temperature rise of a copper plate. The radiant source is a tungsten (W) filament lamp.

2 Experimental Setup

A copper plate with side lengths $1 \text{ cm} \times 1 \text{ cm}$ and thickness 1 mm (illuminated area $A = 1 \times 10^{-4} \text{ m}^2$; volume $V = 1 \times 10^{-7} \text{ m}^3$) was used as absorber. Lateral and bottom faces were insulated with mineral wool, so heat exchange occurs mainly through the top face. The temperature was recorded vs. time with a Type-T thermocouple and a datalogger (CR1000X).

3 Physical Model

Given the small thickness and high conductivity of copper, the plate is modeled as a lumped thermal capacity:

$$C\frac{dT}{dt} = P_{\text{abs}} - h_{\text{tot}} A_s (T - T_{\infty}), \tag{1}$$

with $C = \rho V c$, $P_{\text{abs}} = \alpha q'' A$, $A_s = A$ (bottom insulated), and $h_{\text{tot}} = h_{\text{conv}} + h_{\text{rad}}$. Allowing a slow ambient drift $T_{\infty}(t) = T_{\infty,0} + \beta t$, the analytical solution is

$$T(t) = T_{\infty,0} + \beta t + (T_0 - T_{\infty,0})e^{-t/\tau} + \left(\frac{P_{\text{abs}}}{C} - \beta\right)\tau(1 - e^{-t/\tau}),\tag{2}$$

where $\tau = C/(h_{\text{tot}}A_s)$.

4 Material Properties and Geometry

- Copper density: $\rho = 8960 \,\mathrm{kg/m^3}$, specific heat: $c = 385 \,\mathrm{J/(kg \, K)}$
- Volume: $V = 1 \times 10^{-7} \,\mathrm{m}^3$, mass: $m = 8.96 \times 10^{-4} \,\mathrm{kg}$, heat capacity: $C = 0.345 \,\mathrm{J/K}$
- Heat exchange area: $A_s = A = 1.0 \times 10^{-4} \,\mathrm{m}^2$ (bottom insulated)

5 Indirect (Thermal) Method: Fit Results

The temperature trace (N = 1711 samples) was fitted to the model above. Results: The incident flux requires the absorptivity α :

$$q_{\text{incident}}^{"} = \frac{q_{\text{abs}}^{"}}{\alpha}.$$

(With bare copper, α is typically low; painting the plate matte black, $\alpha \approx 0.95$, allows a direct estimate of q''_{incident} .)

Parameter	Symbol	Value
Absorbed power	$P_{ m abs}$	$0.2918{ m W}$
Total heat transfer coefficient	$h_{ m tot}$	$28.02{ m W/m^2K}$
Initial ambient temperature	$T_{\infty,0}$	$133.25^{\circ}\mathrm{C}$
Ambient drift rate	β	$0.03333\mathrm{K/s}$
Initial plate temperature	T_0	$29.45^{\circ}\mathrm{C}$
Time constant	au	$123\mathrm{s}$
Absorbed flux	$q_{\rm abs}^{\prime\prime} = P_{\rm abs}/A$	$2.918 \times 10^3 \mathrm{W/m^2}$

Table 1: Parameters from the lumped-capacity fit.

Incident flux assuming polished copper absorptivity

Assuming a representative absorptivity for polished copper of $\alpha = 0.03$, the incident flux inferred from the thermal method is

$$q_{\rm incident}'' = \frac{q_{\rm abs}''}{\alpha} = \frac{2.918 \times 10^3 \, {\rm W/m^2}}{0.03} = 9.728 \times 10^4 \, {\rm W/m^2}.$$

This value corresponds to the effective radiant power emitted by the tungsten filament and absorbed by the sample, consistent with typical emission levels for incandescent sources at around $2100\,^{\circ}$ C.

6 Conclusions

The main results of the analysis can be summarized as follows:

- The transient heating curve of the copper plate is **accurately represented** by the lumped-capacity model. The residuals are below $0.3\,^{\circ}\text{C}$ and the coefficient of determination is $R^2 > 0.999$.
- The model confirms that the plate behaves as a single thermal node, with negligible internal temperature gradients.
- The fitted parameters are physically consistent: $h_{\rm tot} \approx 28 \, {\rm W/m^2 \, K}$ and $\tau \approx 123 \, {\rm s}$ are typical for small, naturally cooled metallic surfaces.
- The absorbed flux is $q''_{\rm abs} \approx 2.9 \times 10^3 \, {\rm W/m^2}$. Assuming $\alpha = 0.03$ for polished copper, the corresponding incident flux is $q''_{\rm incident} \approx 9.7 \times 10^4 \, {\rm W/m^2}$.
- Using a blackened or oxidized surface ($\alpha \approx 0.9$ –0.95) would reduce the uncertainty and make absorbed and incident flux values converge.

Figure 1: Transient temperature evolution of the copper plate under a tungsten lamp, compared with the fitted lumped-capacity model. Experimental points (symbols) and model prediction (line) overlap almost perfectly.