Lecture 02

Nearest Neighbor Methods

STAT 479: Machine Learning, Fall 2018
Sebastian Raschka
http://stat.wisc.edu/~sraschka/teaching/stat479-fs2018/

1-Nearest Neighbor

1-Nearest Neighbor

Training Step

$$\langle \mathbf{x}^{[i]}, y^{[i]} \rangle \in \mathcal{D} \quad (|\mathcal{D}| = n)$$

1-Nearest Neighbor Prediction Step

```
closest_point := None
closest_distance := \infty
   • for i = 1, ..., n:
          \circ current_distance := d(\mathbf{x}^{[i]}, \mathbf{x}^{[q]})
          if current_distance < closest_distance:</li>
                 closest_distance := current_distance
                 • closest_point := \mathbf{x}^{[i]}
    return f(closest_point)
closest_point is the label of \langle \mathbf{x}^{[i]}, f(\mathbf{x}^{[i]}) \rangle
```

Commonly used: Euclidean Distance (L2)

$$d(\mathbf{x}^{[a]}, \mathbf{x}^{[b]}) = \sqrt{\sum_{j=1}^{m} \left(x_j^{[a]} - x_j^{[b]}\right)^2}$$

Nearest Neighbor Decision Boundary

Decision Boundary Between (a) and (b)

Decision Boundary Between (a) and (c)

Decision Boundary Between (a) and (c)

Decision Boundary 1NN

Decision Boundary 1-NN

Which Point is Closest?

Depends on the Distance Measure!

Continuous Distance Measures

Euclidean

Manhattan

Minkowski:
$$d(\mathbf{x}^{[a]}, \mathbf{x}^{[b]}) = \left[\sum_{j=1}^{m} \left(\left| x^{[a]} - x^{[b]} \right| \right)^{p} \right]^{\frac{1}{p}}$$

Mahalanobis

- - -

Discrete Distance Measures

Hamming:
$$d(\mathbf{x}^{[a]}, \mathbf{x}^{[b]}) = \sum_{j=1}^{m} \left| x^{[a]} - x^{[b]} \right|$$

Jaccard/Tanimoto

Cosine similarity

Dice

Feature Scaling

k-Nearest Neighbors

Majority vote:

Purality vote:

B y: • • • • • • • • • •

Majority vote: None

Purality vote:

kNN for Classification

$$\mathcal{D}_k = \{ \langle \mathbf{x}^{[1]}, f(\mathbf{x}^{[1]}) \rangle, \dots, \langle \mathbf{x}^{[k]}, f(\mathbf{x}^{[k]}) \rangle \} \qquad \mathcal{D}_k \subseteq \mathcal{D}$$

kNN for Classification

$$\mathcal{D}_k = \{ \langle \mathbf{x}^{[1]}, f(\mathbf{x}^{[1]}) \rangle, \dots, \langle \mathbf{x}^{[k]}, f(\mathbf{x}^{[k]}) \rangle \} \qquad \mathcal{D}_k \subseteq \mathcal{D}$$

$$h(\mathbf{x}^{[q]}) = arg \max_{y \in \{1,...,t\}} \sum_{i=1}^{k} \delta(y, f(\mathbf{x}^{[i]}))$$

$$\delta(a,b) = \begin{cases} 1, & \text{if } a = b, \\ 0, & \text{if } a \neq b. \end{cases}$$

kNN for Classification

$$\mathcal{D}_k = \{ \langle \mathbf{x}^{[1]}, f(\mathbf{x}^{[1]}) \rangle, \dots, \langle \mathbf{x}^{[k]}, f(\mathbf{x}^{[k]}) \rangle \} \qquad \mathcal{D}_k \subseteq \mathcal{D}$$

$$h(\mathbf{x}^{[q]}) = arg \max_{y \in \{1,...,t\}} \sum_{i=1}^{k} \delta(y, f(\mathbf{x}^{[i]}))$$

$$\delta(a,b) = \begin{cases} 1, & \text{if } a = b, \\ 0, & \text{if } a \neq b. \end{cases}$$

$$h(\mathbf{x}^{[t]}) = \mathsf{mode}(\left\{f(\mathbf{x}^{[1]}), ..., f(\mathbf{x}^{[k]})\right\})$$

kNN for Regression

$$\mathcal{D}_k = \{ \langle \mathbf{x}^{[1]}, f(\mathbf{x}^{[1]}) \rangle, ..., \langle \mathbf{x}^{[k]}, f(\mathbf{x}^{[k]}) \rangle \} \qquad \mathcal{D}_k \subseteq \mathcal{D}$$

$$h(\mathbf{x}^{[t]}) = \frac{1}{k} \sum_{i=1}^{k} f(\mathbf{x}^{[i]})$$

Categories (Last Lecture)

- eager vs lazy;
- batch vs online;
- parametric vs nonparametric;
- discriminative vs generative.

Big-O

f(n)	Name
1	Constant
$\log n$	Logarithmic
n	Linear
$n \log n$	Log Linear
n^2	Quadratic
n^3	Cubic
n^c	Higher-level polynomial
2^n	Exponential

Big-O

$\overline{f(n)}$	Name
1	Constant
$\log n$	Logarithmic
n	Linear
$n \log n$	Log Linear
n^2	Quadratic
n^3	Cubic
n^c	Higher-level polynomial
$\frac{2^n}{n}$	Exponential

Big-O Example 1

$$f(x) = 14x^2 - 10x + 25$$

Big-O Example 2

$$f(x) = (2x + 8)\log_2(x + 9)$$

Big-O Example 3

```
A = [[1, 2, 3],
    [2, 3, 4]]
B = [[5, 8],
    [6, 9],
     [7, 10]]
def matrixmultiply (A, B):
    C = [[0 \text{ for row in range(len(A))}]
          for col in range(len(B[0]))]
    for row a in range(len(A)):
        for col_b in range(len(B[0])):
            for col_a in range(len(A[0])):
                C[row a][col b] += \
                     A[row_a][col_a] * B[col_a][col_b]
    return C
matrixmultiply(A, B)
```

```
Out[16]:
[[38, 56], [56, 83]]
```

Big O of kNN

Naive Nearest Neighbor Search

Variant A

$$\mathcal{D}_k = \{\}$$
 while $|\mathcal{D}_k| < k$:

- ullet closest_distance := ∞
- for i = 1, ..., n:
 - current_distance $:= d(\mathbf{x}^{[i]}, \mathbf{x}^{[q]})$
 - if current_distance < closest_distance:</pre>
 - * closest_distance := current_distance
 - * closest_point $:= \mathbf{x}^{[i]}$
- ullet add closest_point to \mathcal{D}_k

Naive Nearest Neighbor Search

O(_____)

Variant B

$$\mathcal{D}_k = \mathcal{D}$$
 while $|\mathcal{D}_k| > k$:

- \bullet largest_distance := 0
- for i = 1, ..., n:
 - current_distance $:= d(\mathbf{x}^{[i]}, \mathbf{x}^{[q]})$
 - if current_distance > largest_distance:
 - * largest_distance := current_distance
 - $* \ \mathtt{farthest_point} := \mathbf{x}^{[i]}$
- ullet remove farthest_point from \mathcal{D}_k

Naive Nearest Neighbor Search

Using a priority queue

O(_____)

Data Structures

Dimensionality Reduction

Editing / "Pruning"

Prototypes

Improving Predictive Performance

Hyperparameters

- Value of *k*
- Scaling of the feature axes
- Distance measure
- Weighting of the distance measure

$k \in \{1,3,7\}$

Sebastian Raschka STAT 479: Machine Learning

Feature-Weighting via Euclidean Distance

$$d_{w}(\mathbf{x}^{[a]}, \mathbf{x}^{[b]}) = \sqrt{\sum_{j=1}^{m} w_{j} \left(x_{j}^{[a]} - x_{j}^{[b]}\right)^{2}}$$

As a dot product:

$$\mathbf{c} = \mathbf{x}^{[a]} - \mathbf{x}^{[a]}, \quad (\mathbf{c}, \mathbf{x}^{[a]} \mathbf{x}^{[b]} \in \mathbb{R}^m)$$
$$d(\mathbf{x}^{[a]}, \mathbf{x}^{[b]}) = \sqrt{\mathbf{c}^t \mathbf{c}}$$

$$d_w(\mathbf{x}^{[a]}, \mathbf{x}^{[b]}) = \mathbf{c}^T \mathbf{W} \mathbf{c}, \quad \mathbf{W} \in \mathbb{R}^{m \times m} = \mathbf{diag}(w_1, w_2, \dots, w_m)$$

Distance-weighted kNN

$$h(\mathbf{x}^{[t]}) = \arg \max_{j \in \{1, \dots, p\}} \sum_{i=1}^{k} w^{[i]} \delta(j, f(\mathbf{x}^{[i]}))$$

$$w^{[i]} = \frac{1}{d(\mathbf{x}^{[i]}, \mathbf{x}^{[t]})^2}$$

Small constant to avoid zero division or set $h(\mathbf{x}) = f(\mathbf{x})$

kNN in Python

DEMO

Reading Assignments

- Lecture notes (will be uploaded after this lecture!)
- Elements of Statistical Learning, Ch 02, Sections 2.0-2.3 (https://web.stanford.edu/~hastie/ElemStatLearn/)

Ungraded Homework Assignment

For those who are new to Python, I highly recommend getting some practice. E.g., by solving some interactive learning exercises on

https://www.codecademy.com/learn/learn-python