Matplotlib:

Pyplot

```
Instalación
```

Desde la terminal corremos

```
mambda install matplotlib
Una vez lo ejecutamos procedemos a importarlo:
```

ona vez lo ejecularilos procedentos a importante

```
import matplotlib.pyplot as plt
import numpy as np
```

```
In [ ]: import matplotlib.pyplot as plt
import numpy as np
```

Una vez se importa, procedemos a trabajar con las variables.

```
In []: #Trabajando con Pyplot

#Generando gráfica
plt.plot(x,y)
#Mostrando gráfica
plt.show()
```


Cambiando los colores de la gráfica

Podemos cambiar los colores de la gráfica mediante el comando:

```
plt.plot(x,y,'character')
#Ejemplo
plt.plot(x,y,'r') #Nos muestra en color rojo
```

character	color
ʻb'	blue
ʻgʻ	green
'm'	magenta

character	color
'r'	red
'c'	cyan
'y'	yellow
'k'	black
'w'	white

```
In [ ]: plt.plot(x,y,'c')
plt.show
```

Out[]: <function matplotlib.pyplot.show(close=None, block=None)>

Cambiar más parámetros

Format Strings

character	description
	point marker
,	pixel marker
'x'	x marker
'o'	circle marker
'V'	triangle_down marker
'A'	triangle_up marker
' <'	triangle_left marker
'>'	triangle_right marker

character	description
'1'	tri_down marker
'2'	tri_up marker
'3'	tri_left marker
'4'	tri_right marker
'8'	octagon marker
's'	square marker
'p'	pentagon marker
'P'	plus (filled) marker
1*1	star marker

character	description
'h'	hexagon1 marker
'H'	hexagon2 marker
'+'	plus marker
'X'	x marker
'X'	x (filled) marker
'D'	diamond marker
'd'	thin_diamond marker
η.	vline marker
_	hline marker

Line Styles

character	description
'_'	solid line style
'_'	dashed line style
''	dash-dot line style
1.1	dotted line style

Aplicando en código

plt.plot(x,y, 'yD:') #grafica de color amarillo, con diamantes y puntos consecutivos plt.show()

```
In [ ]: plt.plot(x,y,'yD:')
plt.show
```

Out[]: <function matplotlib.pyplot.show(close=None, block=None)>


```
In []: #Rojo-Squares-Continuidad
    plt.plot(x,y,'rs-')
    #Graficando
    plt.show
```

Out[]: <function matplotlib.pyplot.show(close=None, block=None)>

NOTA:

Esta sintaxis es muy similar a la usada en Matlab

```
In [ ]: #Graficando histograma con 2 variables
plt.hist(x,y)
plt.show()
```


Nota:

Una buena práctica es que cuando estés haciendo histogramas, siempre explora multiples anchos de bins

```
1. bins = 1
```

2. bins = 3

3. bins = 5

4. bins = 15

```
In []: #Graficando histograma con 1 variable
#Con los 10 datos de X
plt.hist(x)
plt.show()
```


In []: #Graficando gráfica tipo pastel
 #Con Los 10 datos de X
 plt.pie(x)
 plt.show()


```
In [ ]: #Grafica de relacion (Scatter)
plt.scatter(x,y)
plt.show
```

Out[]: <function matplotlib.pyplot.show(close=None, block=None)>


```
In [ ]: #Ver la distribución de los datos
plt.boxplot(x)
plt.show()
```


Referencias:

- Plot types
- Cheat sheet 1
- Cheat sheet 2
- Cheat sheet 3
- Cheat sheet 4
- Cheat sheet 5