1/1 WPAT - ©Thomson Derwent

Accession Nbr:

2002-519245 [55]

Sec. Acc. CPI:

C2002-146880

Title:

Liquid printing inks useful for flexographic or deep printing and for binders contain solvent and hyperbranched polymers carrying functional groups

Derwent Classes:

A28 A97 G02

Patent Assignee:

(BADI) BASF AG

(BADI) BASF DRUCKSYSTEME GMBH

(BEDA/) BEDAT J

(BRUC/) BRUCHMANN B

(KACZ/) KACZUN J

(POGA/) POGANIUCH P

Inventor(s):

BEDAT J; BRUCHMANN B; KACZUN J; POGANIUCH P

Nbr of Patents:

6

Nbr of Countries:

99

Patent Number:

₩**O200236697** A1 20020510 DW2002-55 C09D-011/10 Ger 26p *

AP: 2001WO-EP12520 20011030

DSNW: AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

DSRW: AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW MZ NL OA PT SD SE SL SZ TR TZ UG ZW

🖾 AU200221784 A 20020515 DW2002-58 C09D-011/10

FD: Based on WO200236697 AP: 2002AU-0021784 20011030

图EP1335956 A1 20030820 DW2003-62 C09D-011/10 Ger

FD: Based on WO200236697

AP: 2001EP-0992745 20011030; 2001WO-EP12520 20011030

DSR: AL AT BE CH CY DE DK ES FI FR GB GR IE IT LI LT LU LV MC MK NL PT RO SE SI TR

BR200114934 A 20040106 DW2004-09 C09D-011/10

FD: Based on WO200236697

AP: 2001BR-0014934 20011030; 2001WO-EP12520 20011030

©US20040024087 A1 20040205 DW2004-11 C03C-017/00 AP: 2001WO-EP12520 20011030; 2003US-0399255 20030414

🖾 JP2004513208 W 20040430 DW2004-30 C09D-011/10 44p

FD: Based on WO200236697

AP: 2001WO-EP12520 20011030; 2002JP-0539446 20011030

Priority Details:

2001DE-1026201 20010530; 2000DE-1053862 20001031

IPC s:

C03C-017/00 C09D-011/10 C08G-018/10 C08G-018/32 C08G-018/34 C08G-083/00 C09D-005/00 C09D-201/00

Abstract:

WO200236697 A

NOVELTY - A liquid printing ink containing a solvent or a solvent mixture, at least one colorant, one or more binders and optional additives, at least one binder being a hyperbranched polymer having functional groups.

DETAILED DESCRIPTION - An INDEPENDENT CLAIM is also included for printing ink for priming unprinted over for overprinting of printed material, containing a solvent or solvent mixture and optional additives as above.

USE - The polymers mentioned above are useful for the preparation of printing inks and pastes, as binders (all claimed).

ADVANTAGE - The printing inks show excellent adhesion even without the use of adhesive agents, and are simple and easy to prepare. (Dwg.0/0)

Manual Codes:

CPI: A12-W07D G02-A04A

Update Basic:

2002-55

Update Basic (Monthly):

2002-08

Update Equivalents:

2002-58; 2003-62; 2004-09; 2004-11; 2004-30

Update Equivalents (Monthly):

2002-09; 2003-09; 2004-02; 2004-05

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 10. Mai 2002 (10.05.2002)

PCT

(10) Internationale Veröffentlichungsnummer WO 02/36697 A1

AKTIENGE-

(51) Internationale Patentklassifikation⁷: C09D 11/10, 201/00, C08G 18/10, 18/32, 18/34, 83/00

(74) Gemeinsamer Vertreter: BASF A SELLSCHAFT; 67056 Ludwigshafen (DE).

(21) Internationales Aktenzeichen:

PCT/EP01/12520

(22) Internationales Anmeldedatum:

30. Oktober 2001 (30.10.2001)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

100 53 862.2 31. Oktober 2000 (31.10.2000) DE 101 26 201.9 30. Mai 2001 (30.05.2001) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BASF DRUCKSYSTEME GMBH [DE/DE]; 70469 Stuttgart (DE). BASF AKTIENGESELLSCHAFT [DE/DE]; 67056 Ludwigshafen (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): BRUCHMANN, Bernd [DE/DE]; Bahnhofstr. 58, 67251 Freinsheim (DE). BEDAT, Joelle [FR/FR]; Rue des Orchidees, 67000 Strasbourg (FR). KACZUN, Jürgen [DE/DE]; Hauptstr. 43, 67150 Niederkirchen (DE). POGANIUCH, Peter [DE/DE]; Winterbergstr. 18, 67434 Neustadt (DE).

(81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU,

SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- mit internationalem Recherchenbericht
- vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Ansang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: LIQUID PRINTING INKS FOR FLEXOGRAPHIC AND/OR INTAGLIO PRINTING COMPRISING HYPER-BRANCHED POLYMERS AS THE VEHICLE

(54) Bezeichnung: FLÜSSIGDRUCKFARBEN FÜR DEN FLEXO- UND/ODER TIEFDRUCK MIT HYPERVERZWEIGTEN POLYMEREN ALS BINDEMITTEL

(57) Abstract: The invention relates to liquid printing inks for flexographic and/or intaglio printing that comprise solvents, colorants, optionally additives, and, as the vehicle, at least one hyperbranched polymer that contains functional groups. The invention also relates to printing lacquers for priming unprinted materials or for coating printed materials, which comprise solvents, optionally additives, and, as the vehicle, at least one hyperbranched polymer that contains functional groups. The invention further relates to the use of such hyperbranched polymers for producing printing inks and printing lacquers.

(57) Zusammenfassung: Flüssigdruckfarben für den Flexo- und/oder Tiefdruck aus Lösemittel, Farbmittel, gegebenenfalls Zusatzstoffen, sowie mindestens einem hyperverzweigten, funktionelle Gruppen aufweisenden Polymeren als Bindemittel. Drucklacke zum Grundieren von unbedruckten oder Überlackieren von bedruckten Bedruckstoffen aus Lösemittel, ggf. Zusatzstoffen, sowie mindestens einem funktionelle Gruppen aufweisenden hyperverzweigten Polymeren als Bindemittel. Verwendung derartiger hyperverzweigter Polymerer zur Herstellung von Druckfarben und von Drucklacken.

Flüssigdruckfarben für den Flexo- und/oder Tiefdruck mit hyperverzweigten Polymeren als Bindemittel

5 Beschreibung

Die vorliegende Erfindung betrifft Flüssigdruckfarben für den Flexo- und/oder Tiefdruck aus Lösemittel, Farbmittel, ggf.
Zusatzstoffen, sowie mindestens einem funktionelle Gruppen auf10 weisenden hyperverzweigten Polymeren als Bindemittel. In einem zweiten Aspekt betrifft die Erfindung Drucklacke zum Grundieren von unbedruckten oder zum Überlackieren von bedruckten Bedruckstoffen aus Lösemittel, ggf. Zusatzstoffen, sowie mindestens einem funktionelle Gruppen aufweisenden hyperverzweigten Polymeren als Bindemittel. Die Erfindung betrifft weiterhin die Verwendung von funktionelle Gruppen aufweisenden hyperverzweigten Polymeren zur Herstellung von Druckfarben oder Drucklacken.

Bei den sogenannten mechanischen Druckverfahren wie Offsetdruck,
20 Hochdruck, Flexodruck oder Tiefdruck wird die Druckfarbe durch
Kontakt einer mit Druckfarbe versehenen Druckplatte oder Druckform mit dem Bedruckstoff auf den Bedruckstoff übertragen. Druckfarben für diese Anwendungen umfassen üblicherweise Lösemittel,
Farbmittel, Bindemittel sowie ggf. verschiedene Additive. Binde25 mittel dienen zur Bildung des Farbfilms und der Verankerung der
Bestandteile wie beispielsweise Pigmente oder Füllstoffe im Farbfilm. Je nach Konsistenz enthalten Druckfarben für diese Anwendungen üblicherweise zwischen 10 und 50 Gew. % Bindemittel. Die
geschilderten Druckverfahren eignen sich insbesondere zum Drucken
30 von großen Auflagen bzw. großen Stückzahlen. Auflagen von mehreren 100 000 Exemplaren sind keine Seltenheit. Neben den verschiedensten technischen Anforderungen müssen Druckfarben für diese
Anwendungen daher auch sehr preisgünstig sein.

35 Drucklacke werden entweder als Grundierung auf den Bedruckstoff aufgetragen (so genannte "primer") oder nach dem Druckvorgang als Überzug auf den bedruckten Bedruckstoff aufgetragen. Drucklacke werden beispielsweise zum Schutz des Druckbildes, zur Verbesserung der Haftung der Druckfarbe auf dem Bedruckstoff oder zu 40 ästhetischen Zwecken eingesetzt. Die Auftragung erfolgt üblicherweise in-line mittels eines Lackierwerkes an der Druckmaschine. Drucklacke enthalten kein Farbmittel, sind aber abgesehen davon im Regelfalle ähnlich wie Druckfarben zusammengesetzt.

2

Druckfarben für mechanische Druckverfahren umfassen so genannte pastöse Druckfarben mit hoher Viskosität für den Offset- und Hochdruck sowie so genannte Flüssigdruckfarben mit vergleichsweise niedriger Viskosität für den Flexo- und Tiefdruck.

Für pastöse Druckfarben werden als Lösemittel meist hoch siedende Mineralöle eingesetzt. Als Bindemittel kommen häufig Naturstoffe oder modifizierte Naturstoffe zum Einsatz, wie beispielsweise trocknende pflanzliche Öle oder Naturharze wie Kolophoniumharze.

Für Flüssigdruckfarben werden niedrig viskose und vergleichsweise niedrig siedende Lösemittel wie beispielsweise Ethanol, Wasser oder Toluol eingesetzt. Als Bindemittel werden vorzugsweise synthetisch hergestellte Polymere wie beispielsweise Nitrocellulose,

- 15 Polyamide, Polyvinylbutyral oder Polymere eingesetzt. Weitere Einzelheiten sind beispielsweise in ""Printing Inks" Ullmann's Encyclopedia of Industrial Chemistry, Sixth Edition, 1999 Electronic Release" offenbart.
- 20 Eine wichtige Anwendung von Flüssigdruckfarben ist der industrielle Verpackungsdruck. Zur Herstellung von Verpackungsmitteln wie beispielsweise Kartonagen, Tragetaschen, Schwersäcken, Gefriergutverpackungen oder Geschenkpapieren werden eine Vielzahl unterschiedlichster Bedruckstoffe eingesetzt. Beispiele für der-
- 25 artige Bedruckstoffe sind Papier, Karton, Pappe, Wellpappe, Folien aus Polymeren wie beispielsweise Polyethylen, Polypropylen, Polyamid oder Polyethylenterephthalat, Metallfolien wie beispielsweise Aluminiumfolien, sowie außerdem Verbundverpackungen, die aus mehreren Schichten verschiedener Materialien beste30 hen, beispielsweise solche aus PET- und Aluminiumfolien.

Beim Drucken auf nicht saugenden Bedruckstoffen wie beispielsweise Polymer- oder Metallfolien kann die Druckfarbe naturgemäß nicht in den Bedruckstoff eindringen, sondern nach dem Abdampfen

- 35 des Lösungsmittels verbleibt ein getrockneter Film auf dem Bedruckstoff. Druckfarben für derartige Bedruckstoffe müssen daher sehr gute filmbildende Eigenschaften sowie eine ganz besonders gute Abrieb-, Knitter-, Kratz- und Haftfestigkeit aufweisen, damit sich der Druckfilm bei mechanischer Beanspruchung nicht
- 40 wieder vom Untergrund ablöst. Druckfarben mit konventionellen Bindemitteln weisen auf vielen Bedruckstoffen keine ausreichende Haftfestigkeit auf, so dass Haftvermittler wie bestimmte Silane oder Titanate zugegeben werden müssen. Beispielhaft sei hier auf US 5,646,200 verwiesen. Aus ökonomischen Gründen sowie zur Ver-
- 45 einfachung der Rezeptur wäre es wünschenswert, auf diesen Zusatz verzichten zu können. Außerdem ist es generell wünschenswert, den Anteil niedermolekularer und damit prinzipiell migrationsfähiger

3

Komponenten der Druckfarbe möglichst klein zu halten. Weiterhin ist selbst bei Zusatz von Haftvermittlern die Haftung nicht auf allen Bedruckstoffen befriedigend, so dass hier Verbesserungsbedarf besteht.

5

Dendrimere, Arborole, Starburst Polymers oder hyperverzweigte Polymere sind Bezeichnungen für polymere Strukturen, die sich durch eine verzweigte Struktur und eine hohe Funktionalität auszeichnen. Bei Dendrimeren handelt es sich um molekular und strukturell einheitliche Makromoleküle mit einem hoch symmetrischen Aufbau. Sie werden in vielstufigen Synthesen aufgebaut und sind dementsprechend sehr teuer.

Im Gegensatz dazu sind hyperverzweigte Polymere sowohl molekular wie strukturell uneinheitlich. Sie weisen Äste unterschiedlicher Länge und Verzweigung auf. Zur Synthese hyperverzweigter Polymerer eigenen sich insbesondere so genannte AB_x-Monomere. Diese weisen zwei verschiedene funktionelle Gruppen A und B auf, die unter Bildung einer Verknüpfung miteinander reagieren können. Die funktionelle Gruppe A ist dabei nur einmal pro Molekül enthalten und die funktionelle Gruppe B zweifach oder mehrfach. Durch die Reaktion der besagten AB_x-Monomere miteinander entstehen unvernetzte Polymere mit regelmäßig angeordneten Verzweigungstellen. Die Polymere weisen an den Kettenenden fast ausschließlich B-25 Gruppen auf. Nähere Einzelheiten sind beispielsweise in J.M.S. -Rev. Macromol. Chem. Phys., C37(3), 555 - 579 (1997) offenbart.

Dendrimere Amine sind als Hilfsmittel wie Dispergierhilfsmittel oder Stabilisatoren für Ink-Jet-Tinten vorgeschlagen worden, wie offenbart von US 5,120,361, US 5,254,159, US 5,266,106, WO 97/03137, WO 97/49774 oder WO 98/36001. US 6,096,801 offenbart die Verwendung von Dendrimeren als Dispergierhilfsmittel für Pigmentpräparationen bestimmter organischer Pigmente, die ihrerseits als Farbmittel für Druckfarben eingesetzt werden können.

35 Angesichts der geringen Verfügbarkeit und des hohen Preises kommen aber nur geringe Mengen von Dendrimeren bei derartigen Anwendungen zum Einsatz.

EP-A 899 286 offenbart strahlungshärtbare Zusammensetzungen aus 40 Monomeren bzw. Reaktivverdünnern und Präpolymeren, bei denen konventionelle vernetzbare Präpolymere zur Verringerung der Viskosität der Zusammensetzung durch bestimmte vernetzbare Dendrimere mit olefinischen Endgruppen in Kombination mit langkettigen Alkyl-, Polyether- oder Polyester-Endgruppen ersetzt sind, sowie die Verwendung derartiger strahlungshärtbarer Zusammensetzungen

4

zur Herstellung zur Herstellung von Beschichtungen, Klebstoffen oder strahlungshärtbaren Druckfarben.

WO 96/13558 offenbart strahlungshärtbare Zusammensetzungen aus 5 Monomeren und ungesättigten Polyestern, wobei als Polyester ein hyperverzweigter Polyester mit ungesättigten Funktionalitäten als Endgruppen eingesetzt wird, sowie die Verwendung derartiger strahlungshärtbarer Zusammensetzungen zur Herstellung von Beschichtungen wie Autolackierungen, Möbellackierungen oder

- 10 strahlungshärtbarer Druckfarben. UV-härtbare Druckfarben umfassen keine Lösemittel, können jedoch nur auf speziell ausgerüsteten Druckmaschinen verdruckt werden und verursachen somit zusätzliche Investitionskosten. Weiterhin ist bei UV-Farben die Haftung des Farbfilms auf wichtigen Bedruckstoffen wie Polyester, Polyamid
- 15 oder Polypropylen häufig unbefriedigend, so dass viele Anwender Flüssigdruckfarben den Vorzug geben.

Aufgabe der Erfindung war es, verbesserte Druckfarben, insbesondere verbesserte Flüssigdruckfarben bereitzustellen, die 20 auch ohne Zusatz von Haftvermittlern eine sehr gute Haftung auf den Bedruckstoffen aufweisen, und die einfach und billig herzustellen sind. Aufgabe der Erfindung war es insbesondere, verbesserte Flüssigdruckfarben zum Bedrucken von nicht saugenden Bedruckstoffen wie Kunststoff- oder Metallfolien bereitzustellen.

- 25 Aufgabe der Erfindung war es weiterhin, verbesserte Drucklacke zum Grundieren unbedruckten oder Überlackieren von bedruckten Bedruckstoffen, insbesondere von nicht saugenden Bedruckstoffen, bereitzustellen.
- 30 Überraschenderweise wurde gefunden, dass dieses Ziel durch die Verwendung von funktionelle Gruppen aufweisenden hyperverzweigten Polymeren erreicht werden kann.

Dementsprechend wurden Flüssigdruckfarben für den Flexo- und/oder 35 Tiefdruck aus Lösemittel, Farbmittel, ggf. Zusatzstoffen, sowie mindestens einem funktionelle Gruppen aufweisenden hyperverzweigten Polymeren als Bindemittel gefunden. Außerdem wurden Drucklacke zum Grundieren von unbedruckten oder Überlackieren von bedruckten Bedruckstoffen aus Lösemittel, ggf. Zusatzstoffen, so-

40 wie mindestens einem funktionelle Gruppen aufweisenden hyperverzweigten Polymeren als Bindemittel gefunden. Weiterhin wurde die Verwendung von funktionelle Gruppen aufweisenden hyperverzweigten Polymeren zur Herstellung von Druckfarben und Drucklacken, insbesondere als Bindemittel von Druckfarben und Drucklacken gefun-

45 den.

5

Zu der Erfindung ist im Einzelnen Folgendes auszuführen:

Die vorliegende Erfindung wird mit hyperverzweigten Polymeren im eigentlichen Sinne, d.h. molekular und strukturell uneinheit-

5 lichen Polymeren ausgeführt.

Funktionelle Gruppen aufweisende hyperverzweigte Polymere können in prinzipiell bekannter Art und Weise unter Verwendung von AB_x -, bevorzugt AB_2 -Monomeren synthetisiert werden. Die AB_2 -Monomere

- 10 können dabei einerseits vollständig in Form von Verzweigungen eingebaut sein, sie können als terminale Gruppen eingebaut sein, also noch zwei freie B-Gruppen aufweisen, und sie können als lineare Gruppen mit einer freien B-Gruppe eingebaut sein. Die erhaltenen hyperverzweigten Polymere weisen je nach dem Poly-
- 15 merisationsgrad eine mehr oder weniger große Anzahl von B-Gruppen, entweder terminal oder als Seitengruppen auf. Weitere Angaben zu hyperverzweigten Polymeren und deren Synthese sind beispielsweise in J.M.S. Rev. Macromol. Chem. Phys., C37(3), 555 579 (1997) und der dort zitierten Literatur zu finden.

20

Die Auswahl von hyperverzweigten Polymeren zur Herstellung von Druckfarben ist prinzipiell nicht auf eine bestimmte Polymer-klasse beschränkt. Der Fachmann trifft je nach den gewünschten Eigenschaften der Druckfarbe unter den prinzipiell möglichen

- 25 Polymerklassen eine Auswahl. Als besonders geeignet zur Herstellung von Druckfarben haben sich aber hyperverzweigte Polyester, hyperverzweigte Polyether, hyperverzweigte Polyurethane, hyperverzweigte Polyharnstoffpolyurethane, hyperverzweigte Polyharnstoffe, hyperverzweigte Polyamine, hyperverzweigte Polyamide,
- 30 hyperverzweigte Polyetheramide sowie hyperverzweigte Polyesteramide erwiesen. Ganz besonders bevorzugt sind hyperverzweigte Polyurethane, hyperverzweigte Polyharnstoffpolyurethane, hyperverzweigte Polyester und hyperverzweigte Polyester und hyperverzweigte Polyesteramide.

35

Durch Polymerisation von AB_2 -Molekülen erhaltene hyperverzweigte und hochfunktionelle Polymere können prinzipiell als solche zur Herstellung von Druckfarben eingesetzt werden, vorausgesetzt, die im Zuge der jeweiligen Ausführungsform der Synthese erhaltenen

- 40 funktionellen Gruppen sind für die gewünschte Anwendung geeignet. Die ursprünglich vorhandenen B-Gruppen können vorteilhaft aber auch durch polymeranaloge Umsetzung mit dazu geeigneten Verbindungen umfunktionalisiert werden. Auf diese Art und Weise werden der jeweiligen Anwendung der Druckfarbe besonders ange-
- 45 passte Polymere zugänglich.

Beispiele für geeignete funktionelle Gruppen, die mittels geeigneter Reaktionspartner eingeführt werden können, umfassen insbesondere saure oder basische, H-Atome aufweisende Gruppen sowie deren Derivate wie -COOH, -COOR, -CONHR, -CONH2, -OH, -SH, -NH2, 5 -NHR, -NR2, -SO3H, - SO3R, -NHCOOR, -NHCONH2, -NHCONHR, ohne dass die Aufzählung darauf beschränkt sein soll. Sofern grundsätzlich möglich, können die funktionellen Gruppen auch mit Hilfe geeigneter Säuren oder Basen in die entsprechenden Salze übergeführt werden. Bei den Resten R der besagten Gruppen handelt es sich im 10 Regelfalle um geradkettige oder verzweigte Alkylreste oder um Arylreste, die auch noch weiter substituiert sein können. Beispielsweise handelt es sich um um C1 - C8-Alkylreste oder um C5 - C12 Arylreste. Es können auch andere funktionelle Gruppen wie

15

Die funktionellen Gruppen der hyperverzweigten Polymere können gegebenenfalls auch umfunktionalisiert werden. Zur Umfunktionalisierung eingesetzte Verbindungen können einerseits die gewünschte, neu einzuführende funktionelle Gruppe sowie eine zweite 20 Gruppe enthalten, die mit den B-Gruppen des als Ausgangsmaterial verwendeten hyperverzweigten Polymers unter Bildung einer Bindung zur Reaktion befähigt ist. Ein Beispiel dafür ist die Umsetzung einer Isocyanat-Gruppe mit einer Hydroxycarbonsäure oder einer Aminocarbonsäure unter Bildung einer Säurefunktionalität oder die 25 Umsetzung einer OH-Gruppe mit Acrylsäureanhydrid unter Bildung einer reaktionsfähigen acrylischen Doppelbindung.

beispielsweise -CN oder -OR verwendet werden.

Es können aber auch monofunktionelle Verbindungen eingesetzt werden, mit der vorhandene Gruppen lediglich modifiziert werden.

30 Beispielsweise können Alkylhalogenide zur Quarternisierung vorhandener primärer, sekundärer oder tertiärer Aminogruppen eingesetzt werden.

Die Umfunktionalisierung der hyperverzweigten Polymere kann vor-35 teilhaft unmittelbar im Anschluss an die Polymerisationsreaktion oder in einer separaten Reaktion erfolgen.

Funktionelle Gruppen, die über ausreichend acide H-Atome verfügen, können durch Behandlung mit geeigneten Basen in die ent40 sprechenden Salze übergeführt werden. Analog lassen sich funktionelle basische Gruppen mit geeigneten Säuren in die entsprechenden Salze überführen. Dadurch lassen sich beispielsweise wasserlösliche oder wasserdispergierbare hyperverzweigte Polymere erhalten.

7

Es können auch hyperverzweigte Polymere erzeugt werden, die verschiedenartige Funktionalitäten aufweisen. Dies kann beispiels-weise durch Umsetzung mit einem Gemisch verschiedener Verbindungen zur Umfunktionalisierung erfolgen, oder auch da-5 durch, dass man nur einen Teil der ursprünglich vorhandenen funktionellen Gruppen umsetzt.

Weiterhin lassen sich gemischt funktionelle Verbindungen dadurch erzeugen, indem man Monomere vom Typ ABC oder AB2C für die 10 Polymerisation einsetzt, wobei C eine funktionelle Gruppe darstellt, die unter den gewählten Reaktionsbedingungen mit A oder B nicht reaktiv ist.

Erfindungsgemäß werden die funktionelle Gruppen aufweisenden
15 hyperverzweigten Polymere zur Herstellung von Druckfarben oder
Drucklacken verwendet. Sie sind insbesondere als Bindemittel
geeignet.

Die erfindungsgemäßen Flüssigdruckfarben für den Flexo- und Tief20 druck umfassen mindestens ein Lösemittel oder ein Gemisch verschiedener Lösemittel, mindestens ein Farbmittel, ein oder
mehrere Bindemittel sowie optional weitere Zusatzstoffe.

Die erfindungsgemäßen Drucklacke zum Grundieren von unbedruckten 25 oder zum Überlackieren von bedruckten Bedruckstoffen umfassen mindestens ein Lösemittel oder ein Gemisch verschiedener Lösemittel, ein oder mehrere Bindemittel sowie optional weitere Zusatzstoffe.

- 30 Bei mindestens einem der Bindemittel handelt es sich um ein funktionelle Gruppen aufweisendes hyperverzweigtes Polymer. Es können auch mehrere unterschiedliche hyperverzweigte Polymere als Bindemittel eingesetzt werden.
- 35 Polymerisationsgrad, Molmasse sowie Art und Anzahl funktioneller Gruppen können vom Fachmann je nach der vorgesehenen Anwendung gewählt werden.

Insbesondere bewährt als funktionelle Gruppen haben sich -COOH, 40 -COOR, -CONH₂, -OH, - NH₂, -NHR oder -SO₃H. OH-terminierte oder COOH-terminierte hyperverzweigte Polymere haben sich als ganz besonders vorteilhaft für Verpackungsdruckfarben zum Bedrucken von Polyolefin-, PET- oder Polyamid-Folien erwiesen. Besonders vorteilhaft für diesen Anwendungszweck ist der Einsatz von hypervertweigten Polymeren, die sowohl OH- als auch COOH-Gruppen um-

fassen.

Die verwendeten hyperverzweigten Polymere weisen im Regelfalle im Mittel mindestens 4 funktionelle Gruppen auf. Die Zahl der funktionellen Gruppen ist prinzipiell nicht nach oben beschränkt. Allerdings weisen Produkte mit einer zu hohen Anzahl von funktionellen Gruppen häufig unerwünschte Eigenschaften auf, wie beispielsweise schlechte Löslichkeit oder eine sehr hohe Viskosität. Daher weisen die erfindungsgemäß verwendeten hyperverzweigten Polymere im Regelfalle nicht mehr als im Mittel 100 funktionelle Gruppen auf. Bevorzugt weisen die hyperverzweigten Polymere 10 4 bis 30 und besonders bevorzugt 4 bis 20 funktionelle Gruppen auf.

Die Molmassen der erfindungsgemäß verwendeten hyperverzweigten Polymere richten sich nach der jeweiligen Polymerklasse sowie

15 nach der jeweiligen Anwendung und werden vom Fachmann entsprechend ausgewählt. Bewährt haben sich aber Produkte mit einem Gewichtsmittel MW von 500 bis 50 000 g/mol, bevorzugt 1000 bis 20 000 g/mol, und besonders bevorzugt von 1000-10000 g/mol.

- 20 Die hyperverzweigten Polymere können im Gemisch mit anderen Bindemitteln eingesetzt werden, wobei vorausgesetzt wird, dass durch die Mischung keine unerwünschten Effekte, wie beispielsweise Ausfällungen eintreten. Beispiele für weitere Bindemittel für Flüssigdruckfarben umfassen Polyvinylbutyral, Nitrocellulose,
- 25 Polyamide, Polyacrylate oder Polyacrylat-Copolymere. Besonders vorteilhaft hat sich der Einsatz der hyperverzweigten Polymere im Gemisch mit Nitrocellulose erwiesen. Als Bindemittel werden üblicherweise 5- 30 Gew. % bezüglich der Summe alle Bestandteile eingesetzt.

30

Lösemittel dienen zum Lösen der Bindemittel, sie dienen aber auch zur Einstellung wichtiger Eigenschaften wie der Viskosität oder zur Einstellung der Trocknungsgeschwindigkeit. Die Art des Lösemittels richtet sich nach dem jeweiligen Verwendungszweck der

- 35 Druckfarbe und als Lösemittel oder als Bestandteile von Lösemittelmischungen können prinzipiell in bekannter Art und Weise die für Flüssigdruckfarben üblichen Lösemittel eingesetzt werden. Dies Auswahl ist lediglich dadurch beschränkt, dass das jeweils eingesetzte hyperverzweigte Polymer im Lösemittel eine ausrei-
- 40 chende Löslichkeit aufweisen muss. Beispiele für derartige Lösemittel bzw. Komponenten von Lösemittelgemischen umfassen Kohlenwasserstoffe wie Toluol oder Xylol, Alkohole wie beispielsweise Ethanol, 1-Propanol, 2-Propanol, Ethylenglykol, Propylenglykol, Diethylenglykol, substituierte Alkohole wie beispielsweise
- 45 Ethoxypropanol, Ester wie beispielsweise Ethylacetat, Isopropylacetat, n-Propyl oder n-Butylacetat. Es können auch Gemische verschiedener Lösemittel eingesetzt werden. Als Lösungsmittel ist

9

weiterhin Wasser oder ein Wasser enthaltenes Lösemittelgemisch prinzipiell geeignet. Je nach Art der Druckfarbe werden üblicherweise 50 bis 80 Gew.% Lösemittel bezüglich der Summe aller Bestandteile eingesetzt.

5

Als Farbmittel können die üblichen Farbstoffe, insbesondere übliche Pigmente eingesetzt werden. Beispiele sind anorganische Pigmente wie beispielsweise Titandioxid-Pigmente oder Eisenoxid-pigmente, Interferenzpigmente, Ruße, Metallpulver wie instabesondere Aluminium, Messing oder Kupferpulver, sowie organische

Pigmente wie Azo-, Phthalocyanin- oder Isoindolin-Pigmente. Es können selbstverständlich auch Gemische verschiedener Farbstoffe oder Farbmittel eingesetzt werden sowie außerdem lösliche organische Farbstoffe. Es werden üblicherweise 5 bis 25 Gew.%

15 Farbmittel bezüglich der Summe aller Bestandteile eingesetzt.

Drucklacke weisen naturgemäß keine Farbmittel auf.

Die erfindungsgemäßen Druckfarben bzw. Drucklacke können optional 20 weitere Additive und Hilfsstoffe umfassen. Beispiele für Additive und Hilfsstoffe sind Füllstoffe wie Calciumcarbonat, Aluminiumoxidhydrat oder Aluminium- bzw. Magnesiumsilikat. Wachse erhöhen die Abriebfestigkeit und dienen der Erhöhung der Gleitfähigkeit. Beispiele sind insbesondere Polyethylenwachse, oxidierte Poly-25 ethylenwachse, Petroleumwachse oder Ceresinwachse. Fettsäureamide können zur Erhöhung der Oberflächenglätte eingesetzt werden. Weichmacher dienen der Erhöhung der Elastizität des getrockneten Films. Beispiele sind Phthalsäureester wie Dibutylphthalat, Diisobutylphthalat, Dioctylphthalat, Citronensäureeseter oder 30 Ester der Adipinsäure. Zum Dispergieren der Pigmente können Dispergierhilfsmittel eingesetzt werden. Bei den erfindungsgemäßen Flüssigdruckfarben bzw. Drucklacken kann vorteilhaft auf Haftvermittler verzichtet werden, ohne dass die Verwendung von Haftvermittlern damit ausgeschlossen sein soll. Die Gesamtmenge 35 aller Additive und Hilfsstoffe übersteigt üblicherweise nicht 20 Gew. % bezüglich der Summe aller Bestandteile und beträgt bevor-

Die Herstellung der erfindungsgemäßen Flüssigdruckfarben kann in 40 prinzipiell bekannter Art und Weise durch intensives Vermischen bzw. Dispergieren der Bestandteile in üblichen Apparaturen wie beispielsweise Dissolvern, Rührwerkskugelmühlen oder einem Dreiwalzenstuhl erfolgen. Vorteilhaft wird zunächst eine konzentrierte Pigmentdispersion mit einem Teil der Komponenten hergestellt, die später mit weiteren Bestandteilen und weiterem Lösemittel zur fertigen Druckfarbe weiter verarbeitet wird.

zugt 0 - 10 Gew. %.

Die erfindungsgemäßen Flüssigdruckfarben bzw. Drucklacke weisen gegenüber den entsprechenden Produkten mit konventionellen Bindemitteln eine deutlich verbesserte Haftung insbesondere auf nicht saugenden Bedruckstoffen wie Metallfolien oder Kunststofffolien 5 auf, sowohl beim Konter- wie beim Frontaldruck. Dre Zusatz von Haftvermittlern ist im Regelfalle nicht erforderlich. Aufgrund dieser Eigenschaften eignen sie sich auch hervorragend zum Herstellen von Verbundverpackungen.

- 10 Die Verwendung von hyperverzweigten, funktionelle Gruppen aufweisenden Polymeren ist nicht auf Flüssigdruckfarben beschränkt. Selbstverständlich können die funktionelle Gruppen aufweisenden hyperverzweigten Polymere auch zur Herstellung von pastösen Druckfarben beispielsweise für den Offset-, Hoch- oder Siebdruck 15 verwendet werden. Hierfür werden in prinzipiell bekannter Art und Weise anstelle der niedrig siedender Lösemittel hochsiedende Lösemittel wie beispielsweise Mineralöle oder pflanzliche Öle wie beispielsweise Sojaöl eingesetzt.
- 20 Die folgenden Beispiele sollen die Erfindung näher erläutern, ohne dass dadurch deren Umfang eingeschränkt wird:

Für die Beispiele wurden die folgenden hyperverzweigten Polymere eingesetzt:

25

Polymer 1: Hyperverzweigtes Polyharnstoff-polyurethan aus Hexa-methylendiisocyanat (HDI) und Diethanolamin (DEA), OH-terminiert

30 672 g HDI, gelöst in 672 g Dimethylacetamid (DMAc), wurden unter Stickstoffbedeckung vorgelegt und auf 0°C abgekühlt. Bei dieser Temperatur wurde anschließend unter gutem Rühren eine Lösung aus 422 g Diethanolamin in 422 g DMAc innerhalb von 120 min zugegeben. Nach der Zugabe wurde die Reaktionslösung auf 50°C erwärmt und die Abnahme des NCO-Gehaltes titrimetrisch verfolgt. Bei Erreichen eines NCO-Gehaltes von 3,4 Gew.% wurde auf 20°C abgekühlt, nochmals 162 g Diethanolamin, gelöst in 162 g DMAc, zugesetzt, und 30 min nachgerührt. Die Reaktionslösung wurde anschließend am Rotationsverdampfer im Vakuum vom Lösemittel befreit. Das Reakti-40 onsprodukt wies folgende Parameter auf:

Mittlere Molmasse calc.: 1840 g/mol

Mittlere Funktionalität: ca. 9 OH

Polymer 2: Hyperverzweigtes Polyharnstoff-polyurethan aus Hexamethylendiisocyanat (HDI) und Diisopropanolamin (DIIPA), OH-terminiert

- 5 672 g HDI, gelöst in 672 g trockenem Tetrahydrofuran (THF), wurden unter Stickstoffbedeckung vorgelegt und auf 0°C abgekühlt. Bei dieser Temperatur wurde unter gutem Rühren eine Lösung aus 532 g DIIPA in 532 g THF innerhalb von 60 min zugegeben. Nach der Zugabe wurde die Reaktionsmischung auf 50°C erwärmt und die Abnahme
- 10 des NCO-Gehaltes titrimetrisch verfolgt. Bei Erreichen eines NCO-Gehaltes von 2,2 Gew.% wurde auf 20°C abgekühlt, nochmals 180 g DIIPA, gelöst in 180 g THF, zugegeben und 30 min nachgerührt. Die Reaktionslösung wurde anschließend am Rotationsverdampfer im Vakuum vom Lösemittel befreit. Das Reaktionsprodukt wies folgende 15 Parameter auf:

Mittlere Molmasse calc.: 1037 g/mol

Mittlere Funktionalität: ca. 6 OH

20

Polymer 3: Hyperverzweigtes Polyurethan aus Isophorondiisocyanat (IPDI), Trimethylolpropan (TMP) und ß-Alanin , COOH-terminiert

- 25 1000 g IPDI wurden unter Stickstoffbedeckung vorgelegt und innerhalb 1 min 300g TMP, gelöst in 1300 g Ethylacetat, unter gutem Rühren zugegeben. Nach Zudosierung von 0,2 g Dibutylzinn-dilaurat wurde die Reaktionsmischung bei 50°C gerührt und die Abnahme des NCO-Gehaltes titrimetrisch verfolgt. Bei Erreichen eines NCO-Ge-
- 30 haltes von 4,2 Gew.% wurden 75g Tosylisocyanat als Stopper zugesetzt. Es wurd noch 1 h nachgerührt und anschliessend das Lösemittel am Rotationsverdampfer entfernt. Das Reaktionsprodukt wies eine mittlere Funktionalität bezüglich NCO von 7 auf.
- 35 400g dieses NCO-Gruppen enthaltenden Reaktionsproduktes wurden in 400 g trockenem Aceton gelöst und auf 50°C erwärmt. Anschließend wurde eine Mischung bestehend aus 16 g NaOH in 160 g Wasser und 36 g B-Alanin in 80 g Aceton zugegeben. Nach der Zugabe fiel ein Feststoff aus. Die Suspension wurde noch 30 min bei 50°C gerührt
- 40 und anschließend das Lösemittelgemisch am Rotationsverdampfer im Vakuum entfernt. Der Rückstand wurde in 2000 ml Wasser gelöst und mit verdünnter Salzsäure neutralisiert. Das ausgefallene Endprodukt wurde abgesaugt und im Vakuum getrocknet.
- 45 Mittlere Molmasse calc.: 3758 g/mol

PCT/EP01/12520

12

Mittlere Funktionalität: ca. 7 COOH

Polymer 4: Hyperverzweigtes Polyurethan aus Isophorondiisocyanat 5 (IPDI), Trimethylolpropan (TMP), HDI-Polymer und 8-Alanin, COOH-terminiert

500 g IPDI wurden unter Stickstoffbedeckung vorgelegt und innerhalb 1 min 150g TMP, gelöst in 650 g Ethylacetat, unter gutem

- 10 Rühren zugegeben. Nach Zudosierung von 0,2 g Dibutylzinndilaurat wurde die Reaktionsmischung bei 50°C gerührt und die Abnahme des NCO-Gehaltes titrimetrisch verfolgt. Bei Erreichen eines NCO-Gehaltes von 5,8 Gew.% wurden 172g BASONAT HI 100 (Polyisocyanat auf HDI-Basis, BASF AG, NCO-Gehalt 22 Gew.%) als Stopper zuge-
- 15 setzt. Es wurde noch 3 h nachgerührt und anschließend das Lösemittel am Rotationsverdampfer entfernt. Das Reaktionsprodukt wies eine mittlere Funktionalität bezüglich NCO von ca. 13 auf.
- 1000g dieses NCO-Gruppen enthaltenden Reaktionsproduktes wurden
 20 in 1000 g trockenem Aceton gelöst. Anschließend wurde eine
 Mischung bestehend aus 47 g NaOH in 470 g Wasser und 105 g ßAlanin in 235 g Aceton zugegeben, die Reaktionsmischung noch 30
 min bei 40°C gerührt und anschließend das Lösemittelgemisch am
 Rotationsverdampfer im Vakuum entfernt. Der Rückstand wurde in
 25 Wasser gelöst und mit verdünnter Salzsäure neutralisiert, das

ausgefallene Endprodukt abgesaugt und im Vakuum getrocknet.

Mittlere Molmasse calc.: 7248 g/mol

30 Mittlere Funktionalität: ca. 13 COOH

Polymer 5: Hyperverzweigtes Polyurethan aus 2,4-Toluylendiisocyanat (TDI), Trimethylolpropan, 4,4'-Diphenylmethandiisocyanat 35 (MDI) und Hydroxypivalinsäure, COOH-terminiert

400 g 2,4-TDI wurden unter Stickstoffbedeckung vorgelegt und unter gutem Rühren innerhalb 1 min 155 g TMP, gelöst in 555 g 2-Butanon, zugegeben. Nach Zudosierung von 0,2 g Dibutylzinn-

- 40 dilaurat wurde die Reaktionsmischung bei 60°C gerührt und die Abnahme des NCO-Gehaltes titrimetrisch verfolgt. Bei Erreichen eines NCO-Gehaltes von 6,5 Gew.% wurden 94 g 4,4'-Diphenylmethan-diisocyanat, gelöst in 94 g 2-Butanon, zugegeben und 3 h bei 60°C gerührt. Dann wurden 114 g Hydroxypivalinsäure, gelöst in 280 g
- 45 2-Butanon, und 0,1 g Dibutylzinndilaurat zugegeben, 8 h bei 60°C nachgerührt, und abschließend 100 g Methanol zugefügt. Das Löse-

13

mittelgemisch wurde am Rotationsverdampfer entfernt und das Produkt im Vakuum getrocknet.

Mittlere Molmasse calc.: 2723 g/mol

•

Mittlere Funktionalität: ca. 6 COOH

Polymer 6: Hyperverzweigtes Polyurethan aus Hexamethylen10 diisocyanat (HDI), Dimethylolpropionsäure (DMPA) und Trimethylolpropan (TMP), COOH- und OH-terminiert

100 g HDI, gelöst in 250 g Dimethylacetamid (DMAc), wurden unter Stickstoffbedeckung vorgelegt. Anschliessend wurde unter gutem
15 Rühren innerhalb von 1 min 79,7g Dimethylolpropionsäure, gelöst in 115g DMAc, zugegeben. Nach Zudosierung von 0,2 g Dibutylzinndilaurat wurde die Reaktionsmischung auf 70°C erwärmt und die Abnahme des NCO-Gehaltes titrimetrisch verfolgt. Bei Erreichen eines NCO-Gehaltes von 1,5 Gew.% wurden 13,5 g Trimethylolpropan, gelöst in 50 g DMAc zugesetzt und noch 1h bei 70°C nachgerührt. Anschließend wurde das Produkt am Rotationsverdampfer im Vakuum vom Lösemittel befreit.

Mittlere Molmasse calc.: 2793 g/mol

25

Mittlere Funktionalität: ca. 9 COOH und 3 OH

Polymer 7: Hyperverzweigtes Polyurethan aus Isophorondiisocyanat 30 (IPDI), Dimethylolpropionsäure (DMPA), Trimethylolpropan (TMP) und Polytetrahydrofuran, COOH- und OH-terminiert

222 g IPDI wurden unter Stickstoffbedeckung vorgelegt. Anschliessend wurde innerhalb 1 min die Mischung aus 67 g TMP und 35 67 g Dimethylolpropionsäure, gelöst in 356 g DMAc, unter gutem Rühren zugegeben. Nach Zudosierung von 0,4 g Dibutylzinndilaurat wurde die Reaktionsmischung auf 60°C erwärmt, bei dieser Temperatur gerührt und die Abnahme des NCO-Gehaltes titrimetrisch verfolgt. Bei Erreichen eines NCO-Gehaltes von 1,0 Gew.% wurden 40 32 g PolyTHF 250 (Polytetrahydrofuran, mittlere Molmasse 250 g/mol, BASF AG) zugesetzt und 3 h bei 60°C nachgerührt. Während dieser Zeit sank der NCO-Gehalt der Mischung auf 0%. Das Produkt wurde anschließend am Rotationsverdampfer bei 60°C im Vakuum von Lösungsmittel befreit.

45

Mittlere Molmasse calc.: 4408 g/mol

14

Mittlere Funktionalität: ca. 6 COOH und 8 OH

Polymer 8: Hyperverzweigtes Polyurethan aus Hexamethylen-5 diisocyanat (HDI), Dimethylolpropionsäure (DMPA) und Trimethylolpropan (TMP), COOH- und OH-terminiert

400 g HDI wurden bei Raumtemperatur unter Stickstoffbedeckung vorgelegt. Anschließend wurde unter gutem Rühren innerhalb von 2

10 min eine Mischung aus 160 g Dimethylolpropionsäure, 160g Trimethylolpropan und 720 g DMAc zugegeben. Nach Zudosierung von 0,5 g Dibutylzinndilaurat wurde die Reaktionsmischung auf 70°C erwärmt und die Abnahme des NCO-Gehaltes titrimetrisch verfolgt. Bei Erreichen eines NCO-Gehaltes von 0,9 Gew.% wurden 100 g Methanol

15 zugesetzt und noch 30 min bei 70°C nachgerührt. Anschließend wird das Produkt am Rotationsverdampfer im Vakuum vom Lösemittel befreit.

Mittlere Molmasse calc.: 2451 g/mol

20

Mittlere Funktionalität: ca. 4 COOH und 5 OH

Polymer 9: Hyperverzweigtes Polyesteramid, HYBRANE H 1500, DSM 25 N.V., OH-terminiert

Mittlere Molmasse calc.: 1500 g/mol

Mittlere Funktionalität: ca. 8 OH

30

Erfindungsgemäße Druckfarben mit hyperverzweigten Polymeren

Die Qualität der erfindungsgemäßen Flüssigdruckfarben wurde an-35 hand der Haftfestigkeit der Druckfarbe bestimmt.

Es wurde die Haftfestigkeit des Druckfarbenfilms auf verschiedenen Bedruckstoffen bestimmt.

40 Beispiele 1 - 18

Bestimmung von Haftfestigkeiten der hyperverzweigte Polymere enthaltenden Druckfarbensysteme auf verschiedenen Bedruckstoffen im Vergleich zu einem Standard-System

45

Messmethode Tesafestigkeit

15

Das Prüfverfahren "Tesafestigkeit" dient zur Bestimmung der Haftung eines Druckfarbenfilms auf dem Bedruckstoff.

Herstellen der Proben

5

Die auf Druckviskosität verdünnte Farbe wird auf dem vorgeschriebenen Bedruckstoff angedruckt oder mit einem 6 μ m-Rakel aufgezogen.

10 Durchführung der Prüfung

Ein Tesabandstreifen (Klebeband mit 19 mm Breite (Artikel BDF 4104, Beiersdorf AG) wird auf den Druckfarbenfilm aufgeklebt, gleichmäßig angedrückt und nach 10 Sekunden wieder abgerissen.

15 Dieser Vorgang wird auf derselben Stelle des Prüflings jeweils mit einem neuen Tesabandstreifen 4 mal wiederholt. Jeder Tesastreifen wird nacheinander auf ein weißes Papier, bei weißen Farben auf Schwarzpapier aufgeklebt. Die Prüfung erfolgt sofort nach Applikation der Farbe.

20

Auswertung

Es erfolgt eine visuelle Prüfung der Oberfläche des Prüflings auf 25 Beschädigung. Die Benotung erfolgt von 1 (sehr schlecht) bis 5 (sehr gut).

Für die Beispiele wurde folgende Standard-Rezeptur (Gew. Teile) gewählt:

30

	70,0	Pigment Präparation (BASF Drucksysteme)
	8,0	Nitrocellulose (Wolf)
	1,0	Oleamid (Croda)
	0,5	PE-Wachse (BASF AG)
35	2,0	Dibutylphthalat (Brenntag)
•	10,5	Ethanol
	6,0*	Hyperverzweigtes Polymer als Co-Binder (gemäß
		Tabellen 1 und 2)
	2,0**	Titanchelat (Du Pont)

40

- Das hyperverzeigte Polymer wurde als 75%ige Lösung in
 Ethanol zubereitet
- ** = Titanchelat wurde in der zweiten Versuchsreihe
 45 (Tabelle 2) weggelassen.

Tabelle 1: Standard-Bindemittel im Vergleich zu hyperverzweigten Polymeren

5	Beispiel	Co-Binder	В	edruckstoff (Folie)
			PP	PET Melinex 800	PA Walomid XXL
	1 (Ver- gleich)	Standard-Polyure- than (PUR 7313, BASF)	5	3	1
10	2	Polymer 1	4	5 '	4,5
	3	Polymer 2	5	5	4,5
\	4	Polymer 3	3,5	4,5	3,5
;	5	Polymer 5	5	3	4
15	6	Polymer 6	5	5	5
	7	Polymer 7	5	4	5
	8	Polymer 8	5	5	3
	9	Polymer 9	5	5	1

Tabelle 2: Systeme ohne Titanchelat als Haftvermittler 20

	Beispiel	Polymer		Bedruckstoff (Folie)
	<u> </u>		PP	PET Melinex 800	PA Walomid XXL
25	10 (Ver- gleich)	Standard-Polyure- than (PUR 7313, BASF)	1	1	1
	11	Polymer 1	4	4,5	4,5
	12	Polymer 3	4	4,5	4
	13	Polymer 4	5	4,5	4,5
30	14	Polymer 5	5	5	3
	15	Polymer 6	5	5	5
	16	Polymer 7	5	4	5
	17	Polymer 8	5	5	5
ſ	18	Polymer 9	4	4,5	4,5

35

PP = Polypropylen

PET = Polyethylenterephthalat

PA = Polyamid

Die Beispiele zeigen, dass die Haftung der erfindungsgemäßen Flüssigdruckfarbe auf verschiedenen Substraten erheblich besser ist, als bei Verwendung von konventionellen, nicht hyperverzweigten Polymeren als Bindemittel. Bei der Verwendung konventioneller Bindemittel muss ein Haftvermittler zwingend zugegeben werden, um zumindest in einigen Fällen brauchbare Ergebnisse erzielen zu können. Auf PA ist die Haftung trotz Haftvermittler unbefriedi-

gend. Durch den Ersatz der konventionellen Bindemittel durch hyperverzweigte Polymere kann die Haftfestigkeit gesteigert werden. Besonders vorteilhaft kann auf Haftvermittler verzichtet werden. Mit hyperverzweigten Polymeren wird dennoch in allen Fällen eine hervorragende Haftung erzielt.

35

Patentansprüche

- Flüssigdruckfarbe für den Flexo- und/oder Tiefdruck, mindestens umfassend ein Lösemittel oder ein Gemisch verschiedener Lösemittel, mindestens ein Farbmittel, ein oder mehrere Bindemittel sowie optional weitere Zusatzstoffe, dadurch gekennzeichnet, dass es sich bei mindestens einem der Bindemittel um ein hyperverzweigtes Polymeres handelt, welches funktionelle Gruppen aufweist.
- Flüssigdruckfarbe gemäß Anspruch 1, dadurch gekennzeichnet, dass es sich bei den funktionellen Gruppen des hyperverzweigten Polymeren um gleichartige oder verschiedenartige funktionelle Gruppen, ausgewählt aus der Gruppe von -COOH, -COOR, -CONHR, -CONH2, -OH, -SH, -NH2, -NHR, -NR2, -SO3H, SO3R, -NHCOOR, -NHCONH2, -NHCONHR oder -falls möglich- um Salze dieser Gruppen handelt.
- 20 3. Flüssigdruckfarbe gemäß Anspruch 2, dadurch gekennzeichnet, dass es sich bei den funktionellen Gruppen um -OH und/oder -COOH handelt.
- Flüssigdruckfarbe gemäß einem der Ansprüche 1 bis 3, dadurch
 gekennzeichnet, dass das hyperverzweigte Polymere im Mittel mindestens 4 funktionelle Gruppen aufweist.
- Flüssigdruckfarbe gemäß Anspruch 4, dadurch gekennzeichnet, dass das hyperverzweigte Polymere 4 bis 30 funktionelle
 Gruppen aufweist.
 - 6. Flüssigdruckfarbe gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das hyperverzweigte Polymere wasserlöslich oder wasserdispergierbar ist.
 - 7. Flüssigdruckfarbe gemäß einem der Ansprüche 1 bis 6 dadurch gekennzeichnet, dass es sich bei dem hyperverzweigten Polymeren um ein hyperverzweigtes Polyurethan handelt.
- 40 8. Flüssigdruckfarbe gemäß einem der Ansprüche 1 bis 6 dadurch gekennzeichnet, dass es sich bei dem hyperverzweigten Polymeren um ein hyperverzweigtes Polyharnstoffpolyurethan handelt.
- Flüssigdruckfarbe gemäß einem der Ansprüche 1 bis 6 dadurch
 gekennzeichnet, dass es sich bei dem hyperverzweigten Polymeren um einen hyperverzweigten Polyharnstoff handelt.

- 10. Flüssigdruckfarbe gemäß einem der Ansprüche 1 bis 6 dadurch gekennzeichnet, dass es sich bei dem hyperverzweigten Polymeren um einen hyperverzweigten Polyester handelt.
- 5 11. Flüssigdruckfarbe gemäß einem der Ansprüche 1 bis 6 dadurch gekennzeichnet, dass es sich bei dem hyperverzweigten Polymeren um einen hyperverzweigten Polyether handelt.
- 12. Flüssigdruckfarbe gemäß einem der Ansprüche 1 bis 6 dadurch 10 gekennzeichnet, dass es sich bei dem hyperverzweigten Polymeren um ein hyperverzweigtes Polyamin handelt.
- 13. Flüssigdruckfarbe gemäß einem der Ansprüche 1 bis 6 dadurch gekennzeichnet, dass es sich bei dem hyperverzweigten Polymeren um ein hyperverzweigtes Polyamid handelt.
 - 14. Flüssigdruckfarbe gemäß einem der Ansprüche 1 bis 6 dadurch gekennzeichnet, dass es sich bei dem hyperverzweigten Polymeren um ein hyperverzweigtes Polyesteramid handelt.

20

- 15. Flüssigdruckfarbe gemäß einem der Ansprüche 1 bis 6 dadurch gekennzeichnet, dass es sich bei dem hyperverzweigten Polymeren um ein hyperverzweigtes Polyetheramid handelt.
- 25 16. Drucklack zum Grundieren von unbedruckten oder Überlackieren von bedruckten Bedruckstoffen, mindestens umfassend ein Lösemittel oder ein Gemisch verschiedener Lösemittel, ein oder mehrere Bindemittel sowie optional weitere Zusatzstoffe, dadurch gekennzeichnet, dass es sich bei mindestens einem der Bindemittel um ein hyperverzweigtes Polymeres handelt, welches funktionelle Gruppen aufweist.
- Verwendung von funktionelle Gruppen aufweisenden hyperverzweigten Polymeren zur Herstellung von Druckfarben und Drucklacken.
 - 18. Verwendung von hyperverzweigten Polymeren gemäß Anspruch 17, dadurch gekennzeichnet, dass das hyperverzweigte Polymere als Bindemittel eingesetzt wird.

40

45

19. Verwendung von hyperverzweigten Polymeren gemäß Anspruch 17 oder 18, dadurch gekennzeichnet, dass es sich bei den funktionellen Gruppen um gleichartige oder verschiedenartige funktionelle Gruppen, ausgewählt aus der Gruppe von -COOH, -COOR, -CONHR, -CONH₂, -OH, -SH, -NH₂, -NHR, -NR₂, -SO₃H, -

20

 SO_3R , -NHCOOR, -NHCONH₂, -NHCONHR oder -falls möglich- um Salze dieser Gruppen handelt.

- 20. Verwendung von hyperverzweigten Polymeren gemäß einem der Ansprüche 17 bis 19, dadurch gekennzeichnet, dass es sich bei dem hyperverzweigten Polymeren um ein hyperverzweigtes Polyurethan handelt.
- 21. Verwendung von hyperverzweigten Polymeren gemäß einem der Ansprüche 17 bis 19, dadurch gekennzeichnet, dass es sich bei dem hyperverzweigten Polymeren um ein hyperverzweigtes Polyharnstoffpolyurethan handelt.
- 22. Verwendung von hyperverzweigten Polymeren gemäß einem der Ansprüche 17 bis 19, dadurch gekennzeichnet, dass es sich bei dem hyperverzweigten Polymeren um einen hyperverzweigten Polyharnstoff handelt.
- 23. Verwendung von hyperverzweigten Polymeren gemäß einem der An-20 sprüche 17 bis 19, dadurch gekennzeichnet, dass es sich bei dem hyperverzweigten Polymeren um einen hyperverzweigten Polyester handelt.
- 24. Verwendung von hyperverzweigten Polymeren gemäß einem der Ansprüche 17 bis 19, dadurch gekennzeichnet, dass es sich bei dem hyperverzweigten Polymeren um einen hyperverzweigten Polyether handelt.
- 25. Verwendung von hyperverzweigten Polymeren gemäß einem der Ansprüche 17 bis 19, dadurch gekennzeichnet, dass es sich bei dem hyperverzweigten Polymeren um ein hyperverzweigtes Polyamin handelt.
- 26. Verwendung von hyperverzweigten Polymeren gemäß einem der Ansprüche 17 bis 19, dadurch gekennzeichnet, dass es sich bei dem hyperverzweigten Polymeren um ein hyperverzweigtes Polyamid handelt.
- 27. Verwendung von hyperverzweigten Polymeren gemäß einem der Ansprüche 17 bis 19, dadurch gekennzeichnet, dass es sich bei dem hyperverzweigten Polymeren um ein hyperverzweigtes Polyetheramid handelt.

28. Verwendung von hyperverzweigten Polymeren gemäß einem der Ansprüche 17 bis 19, dadurch gekennzeichnet, dass es sich bei dem hyperverzweigten Polymeren um ein hyperverzweigtes Polyesteramid handelt.

INTERNATIONAL SEARCH REPORT

Inte al Application No PCT/EP 01/12520

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C09D11/10 C09D201/00 C08G18/10 C08G18/32 C08G18/34 C08G83/00 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) C09D C08G Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) PAJ, WPI Data, EPO-Internal C. DOCUMENTS CONSIDERED TO BE RELEVANT Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X EP 0 451 657 A (BASF LACKE & FARBEN) 1-3,7,16 October 1991 (1991-10-16) 14,20 examples 1,6 page 4, line 27-29 EP 0 882 772 A (CIBA GEIGY AG) Α 1-28 9 December 1998 (1998-12-09) page 2, line 13,14; claim 1 P,X WO OO 77070 A (MICHELI PHILIPPE DE 1-5.10.; VANOVERVELT JEAN CLAUDE (BE); UCB SA 17 - 19,23(BE); VE) 21 December 2000 (2000-12-21) page 5, line 5,6; claims 1,4; examples 2,4,7-10; table 1 Further documents are listed in the continuation of box C. . Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but 'A' document defining the general state of the art which is not considered to be of particular relevance cited to understand the principle or theory underlying the "E" earlier document but published on or after the international *X* document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. *O* document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed *&* document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 14 March 2002 27/03/2002 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Lanz, S Fax: (+31-70) 340-3016

INTERNATIONAL SEARCH REPORT

Inte al Application No
PCT/EP 01/12520

						01/ L1	01/12320
	nt document search report		Publication date		Patent family member(s)		Publication date
EP O	451657	Α	16-10-1991	DE	4011376	Al	10-10-1991
				ΑT	129721	T	15-11-1995
				AU	. 635119	B2	11-03-1993
				AU	7411191	Α	10-10-1991
				BR	9101375	Α	26-11-1991
				CA	2039902		08-10-1991
				CS	9100970	A3	19-02-1992
				CZ	9600242	A3	12-02-1997
				DE	59106792	D1	07-12-1995
				DK	451657		18-12-1995
				ΕP	0451657	A2	16-10-1991
				ES		T3	16-01-1996
				FI	911639	Α	08-10-1991
				JP	4225013	Α	14-08-1992
				MX	25217	Α	01-12-1993
				PL			31-05-1996
				PL	169631		30-08-1996
				SK	278984		06-05-1998
				RU	2002774		15-11-1993
				TR	25200		01-01-1993
				US	5319052	A	07-06-1994
EP 0	882772	Α	09-12-1998	US	6096801	A	01-08-2000
				ΕP	0882772	A1	09-12-1998
				JP	11001660	A	06-01-1999
WO 0	077070	- -	21-12-2000	AU	5970200	A	02-01-2001
				WO	0077070		21-12-2000
				ΕP	1144479		17-10-2001

INTERNATIONALER RECHERCHENBERICHT

Inte ales Aktenzeichen PCT/EP 01/12520

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 C09D11/10 C09D201/00 C08G18/10 C08G18/34 CO8G18/32 C08G83/00 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK B. RECHERCHIERTE GEBIETE Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 C09D C08G Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der Internationalen Recherche konsultlerte elektronische Datenbank (Name der Datenbank und eytl. verwendete Suchbegriffe) PAJ, WPI Data, EPO-Internal C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezelchnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Kategorie* Betr. Anspruch Nr. X EP 0 451 657 A (BASF LACKE & FARBEN). 1-3,7, 16. Oktober 1991 (1991-10-16) 14,20 Beispiele 1,6 Seite 4, Zeile 27-29 EP 0 882 772 A (CIBA GEIGY AG) 1 - 289. Dezember 1998 (1998-12-09) Seite 2, Zeile 13,14; Anspruch 1 P,X WO 00 77070 A (MICHELI PHILIPPE DE 1-5,10, ; VANOVERVELT JEAN CLAUDE (BE); UCB SA 17-19,23 (BE); VE) 21. Dezember 2000 (2000-12-21) Seite 5, Zeile 5,6; Ansprüche 1,4; Beispiele 2,4,7-10; Tabelle 1 Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu Siehe Anhang Patentfamilie Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundellegenden Prinzips oder der ihr zugrundellegenden Theorie angegeben ist Besondere Kategorien von angegebenen Veröffentlichungen 'A' Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist 'E' älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden 'L' Veröffentlichung, die geeignet ist, einen Priorit\u00e4tsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Ver\u00f6fentlichungsdatum einer anderen im Recherchenbericht genannten Ver\u00f6ffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgef\u00fchrt) Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahellegend ist "O' Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht Veröffentlichung, die vor dem internationalen Anmekledatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist Datum des Abschlusses der internationalen Recherche Absendedatum des Internationalen Recherchenberichts 14. März 2002 27/03/2002 Name und Postanschrift der Internationalen Recherchenbehörde Bevollmächtigter Bediensteter Europäisches Patentamt, P.B. 5818 Patentiaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl. Fax: (+31–70) 340–3016 Lanz, S

INTERNATIONALER RECHERCHENBERICHT

Inte des Aktenzeichen
PCT/EP 01/12520

		_			1 101/2	1 01/12320
	Recherchenbericht nrtes Patentdokum		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
EP	0451657	Α	16-10-1991	DE	4011376 A1	10-10-1991
				ΑT	129721 T	15-11-1995
				ΑU	635119 B2	11-03-1993
				ΑU	7411191 A	10-10-1991
				BR	9101375 A	26-11-1991
				CA	2039902 A1	08-10-1991
				CS	9100970 A3	19-02-1992
				CZ	9600242 A3	12-02-1997
				DE	59106792 D1	.07-12-1995
				DK	451657 T3	18-12-1995
				ΕP	0451657 A2	16-10-1991
				ES	2079503 T3	16-01-1996
				FΙ	911639 A	08-10-1991
				JP	4225013 A	14-08-1992
				MX	25217 A	01-12-1993
				PL	169051 B1	31-05-1996
				PL	169631 B1	30-08-1996
			•	SK	278984 B6	06-05-1998
			,	RU	2002774 C1	15-11-1993
				TR	25200 A	01-01-1993
~				US	5319052 A	07-06-1994
EP	0882772	Α	09-12-1998	US	6096801 A	01-08-2000
				ΕP	0882772 A1	09-12-1998
				JP	11001660 A	06-01-1999
WO	0077070	A	21-12-2000	AU	5970200 A	02-01-2001
			== ===================================	WO	0077070 A2	21-12-2000
				EP	1144479 A2	17-10-2001