Contents

1	Ove	erview and Descriptive Statistics
	1.1	Populations and Samples
	1.2	Pictorial and Tabular Methods in Descriptive Statistics
	1.3	Measures of Location
	1.4	Measures of Variability
2	Probability	
	2.1	Sample Spaces and Events
	2.2	Axioms, Interpretations, and Properties of Probability
	2.3	Counting Techniques
	2.4	Conditional Probability
	2.5	Independence
3	Dis	crete Random Variables and Probability Distributions
	3.1	Random Variables
	3.2	Probability Distributions for Discrete Random Variables

Chapter 1

Overview and Descriptive Statistics

1.1 Populations and Samples

1.2 Pictorial and Tabular Methods in Descriptive Statistics

Procedure 1 (Steps for constructing a stem-and-leaf display). 1. Select one or more leading digits for the stem values. The trailing digits becomes the leaves.

- 2. List possible stem values in a vertical column.
- 3. Record the leaf for every observation beside the corresponding stem value.
- 4. Order the leaves from smallest to largest on each line.
- 5. Indicate the units for stems and ;eaves someplace in the display.

Procedure 2 (A histogram for counting data). First, determine the frequency and relative frequency of each x value. Then mark possible x values on a horizontal scale. Above each calue, draw a rectangle whose height is the relative frequency (or alternatively, the frequency of that value).

Procedure 3 (A histogram for measurement data: equal class widths). Determine the frequency and relative frequency for each class. Mark the class boundaries on a horizontal measurement axis. Above each class interval, draw a rectangle whose height is the corresponding relative frequence (or frequency).

Procedure 4 (A histogram for measurement data: unequal class widths). After determining frequencies and relative frequencies, calculate the height of each rectangle using the formula

$$rectangle \ height = \frac{relative \ frequency \ of \ the \ class}{class \ width}$$

The resulting rectangle heights are usually called *densities*, and the vertical scale is the **density scale**. This prescription will also work when class widths are equal.

1.3 Measures of Location

Definition 1. The sample mean \bar{x} of observations x_1, x_2, \ldots, x_n is given by

$$\bar{x} = \frac{x_1 + x_2 + \ldots + x_n}{n} = \frac{\sum_{i=1}^{n} x_i}{n}.$$
 (1.1)

The numerator of \bar{x} can be written more informally as $\sum x_i$ where the summation is over all sample observations.

Definition 2. The **sample mean** is obtained by first ordering the n observations from smallest to largest (with any repeated values included so that every sample observation appears in the ordered list). Then,

$$\bar{x} = \begin{cases} & \text{The single middle value if } n \text{ is odd} \\ & \text{The average of the two middle values if } n \text{ is even} \end{cases}$$

1.4 Measures of Variability

Definition 3. The sample variance, denoted by s^2 , is given by

$$s^{2} = \frac{\left(\sum (x_{i} - \bar{x})^{2}\right)}{n - 1} = \frac{S_{xx}}{n_{1}}$$

The **sample standard deviation**, denoted by s, is the (positive) square root of the variance:

$$s = \sqrt{s^2}$$

Proposition 1. Let x_1, x_2, \ldots, x_n be a sample and c be a constant.

1. If
$$y_1 = x_1 + c$$
, $y_2 = x_2 + c$, ..., $y_n = x_n + c$, then $s_n^2 = s_n^2$, and

2. If
$$y_1 = cx_1, \dots, y_n = cx_n$$
, then $s_y^2 = c^2 s_x^2$, $sy = |c| s_x$,

where s_x^2 is the sample variance of the x's and s_y^2 is the sample variance of the y's.

Definition 4. Order the n observations from smallest to largest and separate the samllest half from the largest half; the median \bar{x} is included in both halves if n is odd. Then the **lower fourth** is the median of the smallest half and the **upper fourth** is the median of the largest half. A measure of spread that is resistant to outliers is the **fourth spread** f_s , given by

$$f_s = \text{upper fourth} - \text{lower fourth}$$

Definition 5. Any observation farthen than $1.5f_s$ from the closts fourth is an **outlier**. An outlier is **extreme** if it is more than $3f_s$ from the nearest fourth, and it is **mild** otherwise.

Chapter 2

Probability

2.1 Sample Spaces and Events

Definition 6. The **sample space** of an experiment, denoted by S, is the set of all possible outcomes of that experiment.

Definition 7. An **event** is any collection (subset) of outcomes contained in the sample space S. An event is said to be **simple** if it consists of exactly one outcome and **compound** if it consists of more than one outcome.

Definition 8. Some relations from set theory:

- 1. The **union** of two events A and B, denoted by $A \cup B$ and read "A or B" is the event consisting of all outcomes that are *either in* A or in B or in both events (so that the union includes outcomes for which both A and B occur as well as the outcomes for which exactly one occurs) that is, all outcomes in at least one of the events.
- 2. The **intersection** of two events A and B, denoted by $A \cap B$ and read " A and B" is the event consisting of all outcomes that are in both A and B.
- 3. The **complement** of an event A, denoted by A', is the set of all outcomes in S that are not contained in A.

Definition 9. When A and B have no outcomes in common, they are said to be **disjoint** or **mutually exclusive** events. Mathematicians write this compactly as $A \cup B = \emptyset$ where \emptyset denotes the event consisting of no outcomes whatsoever (the "null" or "empty" event).

2.2 Axioms, Interpretations, and Properties of Probability

Definition 10. Basic properties of probability:

- 1. For any event $A, P(A) \geq 0$.
- 2. P(S) = 1.

3. If A_1, A_2, A_3, \cdots is an infinite collection of disjoint events, then

$$P(A_1 \cup A_2 \cup \cdots) = \sum_{i=1}^{\infty} P(A_i).$$

Proposition 2. $P(\emptyset) = 0$ where \emptyset is the null event. This in turn implies that the property contained in Axiom 3 is valid for a finite collection of events.¹

Proposition 3. For any event $A, P(A) = 1 - P(A')^2$.

Proposition 4. For any event $A, P(A) \leq 1$.

Proposition 5. For any events A and B,

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).^{3}$$

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C)$$

$$- P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$$

2.3 Counting Techniques

Proposition 6. If the first element or object of an ordered pair can be selected in n_1 ways, and for each of these n_1 ways the second element of the pair can be selected in n_2 ways, then the number of pairs is n_1n_2 .

Proposition 7 (Product rule for K-tuples). Suppose a set consists of ordered collections of k elements (k-tuples) and that there are n_1 possible choices for the first element; for each choice of the first element, there are n_2 possible choices of the second element;...; for each possible of the first k-1 elements, there are n_k choices for kth element. Then there are $n_1 n_2 \cdots n_k$ possible k-tuples.

Definition 11. Any ordered sequence k objects taken from a set of n distinct objects is called a **permutation** of size k of the objects. The numbers of permutations of size k that can be constructed from the n objects is denoted $P_{k,n}$.

Definition 12. For any positive integer m, m! is read "m factorial" and is defined by m! = m(m-1)(m-2)...(2)(1). Also, 0! = 1.

Definition 13. Given a set of n distinct objects, any unordered subset of size k of the objects is colled a **combination**. The number of combinations of size k that can be formed from n will be denoted by $\binom{n}{k}$. This notation is more common in probability than $C_{k,n}$, which would be analogous to notation for permutations.

2.4 Conditional Probability

Definition 14. For any two events A and B with P(B) > 0, the **conditional** probability of A given B that has occurred is defined by

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}.$$

¹Proof page 57.

²Proof page 60.

Proposition 8 (The multiplication rule). $P(A \cap B) = P(A \mid B) \cdot P(B)$

Proposition 9 (The law of total probability). Let A_1, \ldots, A_k be mutually exclusive and exhaustive events. Then for any other event B.

$$P(B) = P(B \mid A_1) \cdot P(A_1) + \dots + P(B \mid A_k) \cdot P(A_k)$$
$$= \sum_{i=1}^k P(B \mid A_i) P(A_i)$$

Proposition 10 (Bayes' Theorem). Let A_1, \ldots, A_k be a collection of mutually exclusive and exhaustive events with $P(A_i) > 0$ for $i = 0, \ldots, k$. Then for any other event B, for which P(B) > 0

$$P(A_j \mid B) = \frac{P(A_j \cap B)}{P(B)} = \frac{P(B \mid A_j)P(A_j)}{\sum_{i=1}^{k} P(B \mid A_i)P(A_i)} \qquad j = 0, \dots, k$$

2.5 Independence

Definition 15. Two events A and B are **independent** if $P(A \mid B) = P(A)$ and are **dependend** otherwise.

Proposition 11. A and B are independent if and only if

$$P(A \cap B) = P(A) \cdot P(B)$$

Definition 16. Events A_1, \ldots, A_n are **mutually independent** if for every $k(k = 2, 3, \ldots, n)$ and every subset of indices i_1, i_2, \ldots, i_k ,

$$P(A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_k}) = P(A_{i_1}) \cdot P(A_{i_2}) \cdot \dots \cdot P(A_{i_k})$$
 (2.1)

Chapter 3

Discrete Random Variables and Probability Distributions

3.1 Random Variables

Definition 17. For a given sample space S of some experiment, a **random variable (rv)** if any rule that associates a number with each outcome in S. In mathematical language, a random variable is a function whose domain is the sample space and whose range is the set of real numbers.

Definition 18. Any random variable whose only possible values are 0 and 1 is called a **Bernoulli random variable**.

Definition 19. A **discrete** random variable is an rv whose possible values either constitute a finite set or else can be listed in an infinite sequence in which there is a first element, a second element, and so on. A random variable is **continuous** if *both* the following apply:

- 1. Its set of possible values consists either of all numbers in a single interval on the number line (possibly infinite in extent, e.g., from $-\infty$ to ∞) or all numbers in a disjoint union of such intervals (e.g., $[0, 10] \cup [20, 30]$).
- 2. No possible value of the variable has positive probability, that is, P(X=c)=0 for any possible value c.

3.2 Probability Distributions for Discrete Random Variables

Definition 20. The probability distribution or probability mass function (pmf) of a discrete rv is defined for every number x by $p(x) = P(X = x) = P(\text{all } s \in S : X(s) = x.^1)$

 $^{^{1}}P(X=x)$ is read "the probability that the rv X assumes the value x". For example, P(X=2) denotes the probability that the resulting X value is 2.

Definition 21. Suppose p(x) depends on a quantity that can be assigned any one a number of possible values, with each different value determining a different probability distribution. Such a quantity is called a **parameter** of the distribution. The collection of all probability distributions for different values of the parameter is called a **family** of probability distributions.

Definition 22. The cumulative distribution function (cdf) F(x) of a discrete rv X with pmf p(x) is defined for every number x by

$$F(X) = P(X \le x) = \sum_{y:y \le x} p(y)$$

For any number x, F(x) is the probability that the observed value of X will be at most x.

Proposition 12. For any two numbers a and b with $a \leq b$,

$$P(a \le X \le b) = F(b) - F(a-)$$

where F(a-) represents the maximum of F(x) values to the left of a. Equivalently, if a is the limit of values of x approaching from the left, then F(a-) is the limiting value of F(x). In particular, if the only possible values are integers and if a and b are integers, then

$$P(a \le X \le b) = P(X = a \text{ or } a + 1 \text{ or } \dots \text{ or } b)$$

= $F(b) - F(a - 1)$

Taking a = b yields P(X = a) = F(a) - F(a - 1) in this case.