المشى بين الأبنية

قام كنان بوضع خطة لبناء مجموعة من الابنية على طول أحد طرفي الشارع الرئيسي لباكو. يوجد هناك n بناء مرقمة 0 الى 1-1 و m ممر مرقمة من 0 الى 1-1. تم رسم الخطة على مستوي ثنائي البعد، حيث تمثل الابنية و الممرات على شكل خطوط عمودية و أفقية بالترتيب.

يتموضع أسفل البناء $i \leq i \leq n-1$ في النقطة (x[i],0) في النقطة (x[i],0) و لكل بناء ارتفاع (x[i],0) , و هكذا يمكن تمثيل البناء بقطعة مستقيمة تصل بين النقطتين (x[i],h[i]) و (x[i],h[i]) .

yتحدد بداية و نهاية الممر $j \leq m-1$ بالبنائين ذوي الرقمين l[j] و l[j] كما يكون له احداثية y-موجبة x[j]. و هكذا يمكن تمثيله بقطعة مستقيمة تصل بين النقطتين x[l[j]],y[j] و هكذا يمكن تمثيله بقطعة مستقيمة تصل بين النقطتين x[l[j]],y[j]

يتقاطع الممر مع البناء اذا كانا يتشاركان بنقطة مشتركة. وهكذا يتقاطع كل ممر مع بنائين في طرفيه و يمكن ان يتقاطع مع ابنية اخرى بين بدايته و نهايته.

يريد كنان إيجاد طول اقصر طريق من أسفل البناء s حتى اسفل البناء g, بافتراض انه لايمكن المشي إلا على الابنية و الممرات, كما يريد معرفة فيما إذا كان لايوجد طريق اساسا. نلاحظ أنه لايمكن المشي على الارض, بمعنى آخر لايمكن المشي على الأفقى الذي إحداثية y الخاصة به 0.

يمكنك أن تمشي من ممر الى بناء و بالعكس عند أي تقاطع. إذا كان أطراف ممرين بنفس النقطة يمكنك الانتقال من الممر الأول الى الثاني مباشرة.

مهمتك هي مساعدة كنان بالإجابة على السؤال.

التفاصيل البرمجية

يجب عليك برمجة التابع التالي. و الذي سيتم استدعائه من قبل الgrader مرة من أجل كل حالة اختبار.

- n و h: مصفوفتا اعداد صحيحة طولها x ullet
- m و y: مصفوفات اعداد صحیحة طولها, r , l
 - و g: عددان صحیحان s
- يجب على التابع أن يعيد طول أقصر طريق بين أسفل البناء s و اسفل البناء g, إذا وجد هذا الطريق. و إلا يجب أن يعيد -1.

امثلة

مثال 1

لنفرض الاستدعاء التالى:

```
min_distance([0, 3, 5, 7, 10, 12, 14],
        [8, 7, 9, 7, 6, 6, 9],
        [0, 0, 0, 2, 2, 3, 4],
        [1, 2, 6, 3, 6, 4, 6],
        [1, 6, 8, 1, 7, 2, 5],
        1, 5)
```

الجواب الصحيح هو 27.

الشكل التالي يوضح المثال 1:

مثال 2

الجواب الصحيح هو 21.

القيود

- $1 \leq n, m \leq 100\,000$ •
- $0 \leq x[0] < x[1] < \ldots < x[n-1] \leq 10^9$
 - $(0 \leq i \leq n-1$ من اجل) $1 \leq h[i] \leq 10^9$ •

- $(0 \leq i \leq m-1$ من اجل $0 \leq l[i] < r[i] \leq n-1$ •
- $(0 \leq i \leq m-1$ من اجل) $1 \leq y[i] \leq \min(h[l[i]], h[r[i]])$
 - $0 \leq s,g \leq n-1$
 - s
 eq g ullet
- لن يكون هناك اي ممرين مشتركين بأي نقطة الا ربما عند الأطراف.

المسائل الجزئية

- $n,m \leq 50$ (نقطة) 10.
- 2. (14 نقطة) كل ممر يتقاطع على الاكثر مع 10 أبنية.
- 3. (15نقطة) g=n-1 ,s=0 وكل الأبنية لها نفس الارتفاع.
 - g=n-1 ,s=0 (18) بانقطة) .4
 - 5. (43 نقطة) لا يوجد اي قيود اضافية.

Sample grader

:The sample grader reads the input in the following format

- n m:1 line •
- $x[i] \;\; h[i]$:(0 $\leq i \leq n-1$) 2+i line ullet
- $l[j] \hspace{0.2cm} r[j] \hspace{0.2cm} y[j] : (0 \leq j \leq m-1) \hspace{0.2cm} n+2+j \hspace{0.2cm} ext{line} \hspace{0.2cm} ullet$
 - $s \ g : n+m+2$ line ullet

.The sample grader prints a single line containing the return value of min_distance