

第七章 数值积分与数值微分

第三节 Romberg求积公式

逐次分半梯形求积法算法简单,但精度较差,收敛速度较慢,但可以利用梯形法算法简单的优点,形成一个新算法,这就是Romberg(龙贝格)求积公式。龙贝格公式又称逐次分半加速法。

7.3.1 Richardson外推法

复合梯形公式的截断误差。

$$I[f] - T_n = R_{T_n}[f] = a_1 h^2 + a_2 h^4 + \dots + a_k h^{2k} + \dots$$
 (7.3.1)

其中系数 a_k ($k=1,2,\cdots$) 与步长 h 无关,称为**欧拉-麦克劳林**(Euler-Maclaurin) 公式。

截断误差公式(7.3.1)表明其误差为 $O(h^2)$ 。

若记
$$I = I[f]$$
, $I_1(h) = T_n$, 上式可记为

$$I - I_1(h) = a_1 h^2 + a_2 h^4 + \dots + a_k h^{2k} + \dots$$
 (7.3.2)

若用 αh 代替(7.3.2)式中的h,可得 ω

$$I - I_1(\alpha h) = a_1(\alpha h)^2 + a_2(\alpha h)^4 + \dots + a_k(\alpha h)^{2k} + \dots$$
 (7.3.3)

将式 (7.3.3) 减去式 (7.3.2) 的 α^2 倍, 可得。

$$I - I_1(\alpha h) - \alpha^2 [I - I_1(h)] = a_2(\alpha^4 - \alpha^2)h^4 + a_3(\alpha^6 - \alpha^2)h^6 + \dots + a_k(\alpha^{2k} - \alpha^2)h^{2k} + \dots$$

取 α 满足 $|\alpha| \neq 1$,将上式两边除以 $1-\alpha^2$,可得 ω

$$I - \frac{I_1(\alpha h) - \alpha^2 I_1(h)}{1 - \alpha^2} = b_2 h^4 + b_3 h^6 + \dots + b_k h^{2k} + \dots$$

记
$$I_2(h) = \frac{I_1(\alpha h) - \alpha^2 I_1(h)}{1 - \alpha^2}$$
,则上式可记为 $I - I_2(h) = b_2 h^4 + b_3 h^6 + \dots + b_k h^{2k} + \dots$ (7.3.5) \bullet

式(7.3.5)表明:以 $I_2(h)$ 作为计算量I的近似值,其误差至少为 $O(h^4)$ 。

定理 7.3.1: 若I(h) 是要计算量I 的近似值, 其误差可表示为 ϕ

$$I - I(h) = a_1 h^{P_1} + a_2 h^{P_2} + \dots + a_k h^{P_k} + \dots$$

其中自然数 $P_1, P_2, \dots, P_k, \dots$ 与 h 无关,且满足 $P_1 < P_2 < \dots < P_k < \dots$ 。定义算法序列 $\{I_m(h)\}$ 如下: \downarrow

$$I_1(h) = I(h), I_m(h) = \frac{I_{m-1}(\alpha h) - \alpha^{P_{m-1}}I_{m-1}(h)}{1 - \alpha^{P_{m-1}}} (m = 2, 3, \dots)$$

其中 α 满足 $|\alpha|\neq 1$ 。则以 $I_m(h)$ 作为计算量I的近似值,其误差至少为 $O(h^{P_m})$ 。 \downarrow

定理 7.3.1 表明:随着m 的增大,收敛到计算量I 的速度越来越快。这种方法就称为理查森(Richardson)外推法。4

7.3.2 Romberg求积公式

$$I_{m+1}(h) = \frac{I_{m}(\alpha h) - \alpha^{P_{m}} I_{m}(h)}{1 - \alpha^{P_{m}}}$$

把**理查森(Richardson)外推法**应用到式(7.3.1)(这里 $P_k = 2k$),取 $\alpha = \frac{1}{2}$ 可得。

$$I_{m+1}\left(\frac{b-a}{2^{k}}\right) = \frac{I_{m}\left(\frac{b-a}{2^{k+1}}\right) - \left(\frac{1}{2}\right)^{2m}I_{m}\left(\frac{b-a}{2^{k}}\right)}{1 - \left(\frac{1}{2}\right)^{2m}} = \frac{4^{m} \cdot I_{m}\left(\frac{b-a}{2^{k+1}}\right) - I_{m}\left(\frac{b-a}{2^{k}}\right)}{4^{m} - 1} + \frac{1}{4^{m} - 1}$$

记
$$T_m^{(k)} = I_{m+1}\left(\frac{b-a}{2^k}\right)$$
,则上式可记为 ϕ

$$T_m^k = \frac{4^m \cdot T_{m-1}^{(k+1)} - T_{m-1}^{(k)}}{4^m - 1} \tag{7.3.8}$$

其中
$$m=1,2,\cdots$$
, $k=0,1,2,\cdots$,且有 $I-I_{m+1}\left(h\right)=O(h^{2(m+1)})$ 。式 (7.3.8) 就称为 Romberg

求积公式。₽

Romberg求积公式

其中 T_0^k ($k=0,1,2,\cdots$),序列值 $\left\{T_0^{(k)}\right\}$ 就是 T 值序列 T_{2^k} ,用逐次分半复合梯形计算公式计算。 ℓ

$$S_{2^k} = \frac{4T_0^{(k+1)} - T_0^{(k)}}{3} = T_1^{(k)}$$
,序列值 $\{T_1^{(k)}\}$ 就是 Simpson 值序列 $\{S_{2^k}\}$ 。

$$\stackrel{?}{\cancel{1}}: T_1 = \frac{b-a}{2} (f(a) + f(b)), T_2 = \frac{b-a}{4} (f(a) + 2f(\frac{a+b}{2}) + f(b))$$

$$S_1 = \frac{4T_2 - T_1}{3} = \frac{b-a}{6} (f(a) + 4f(\frac{a+b}{2}) + f(b))$$

$$C_{2^k} = \frac{4^2 S_{2^{k+1}} - S_{2^k}}{4^2 - 1} = \frac{4^2 T_1^{(k+1)} - T_1^{(k)}}{4^2 - 1} = T_2^{(k)} \,, \quad \text{IPF 列值}\left\{T_2^{(k)}\right\} \, \text{就是 Cotes 值序列}\left\{C_{2^k}\right\} \,.$$

$$S_1 = \frac{b-a}{6}(f(a)+4f(\frac{a+b}{2})+f(b)), \quad S_2 = \frac{b-a}{12}(f(a)+4f(a+h)+2f(a+2h)+4f(a+3h)+f(b))$$

$$C_1 = \frac{16S_2 - S_1}{15} = \frac{b - a}{90} (7f(a) + 32f(a + h) + 12f(a + 2h) + 32f(a + 3h) + 7f(b))$$

Romberg 求积公式的计算过程可列表如下:

表 7-3-1: Romberg 求积公式的计算过程表 4

5 T W W W W W W W W W W W W W W W W W W										
k ₽	$T_0^{(k)}$ $arphi$	$T_1^{(k-1)}$ φ	$T_2^{(k-2)} \circ$	$T_3^{(k-3)} opla$	٩	+				
043	① $T_0^{(0)}$ (T_1) $_{\circ}$		₽.	¢.	٠	¢				
1₽	② $T_0^{(1)}$ (T_2) $_{\circ}$	$\ \ \ \ \ $	Þ	₽	Þ	¢				
24	$\textcircled{4} T_0^{(2)} \ (T_4) \varphi$	$\textcircled{5}T_{1}^{(1)} \ (S_{2})$,	$\textcircled{6}T_2^{(0)}(C_1^{})_{arphi}$	Þ	Þ	þ				
3₽	${f \widehat{T}}_0^{(3)} \ (T_8^{}) \varphi$	$\otimes T_1^{(2)}$ (S_4) φ	$\ \ \ \ \ \ \ \ \ \ \ \ \ $	$\textcircled{1} T_3^{(0)} (R_1) \varphi$	÷	¢				
••••	٠٠٠٠	•••₽	٠٠٠٠	٠٠	٠٠	þ				

表 7-3-1 中的计算次序是: 按行从上到下,每行是从左至右,即先后次序为 $T_0^{(0)}$, $T_0^{(1)}$, $T_1^{(0)}$,

$$T_0^{(2)}, T_1^{(1)}, \cdots$$

若 $\left|T_{k}^{(0)}-T_{k-1}^{(0)}\right|\leq \varepsilon$,则输出 $T_{k}^{(0)}$ 终止(**停止准则**)

例 7.3.1: 利用 Romberg 求积公式计算例 7.2.2 中积分 $I[f] = \int_0^1 \frac{\sin x}{x} dx$ 的近似值。

解:由函数表 7-2-1,按算法 7.1 可计算: $T_0^{(0)}=0.920735492$, $T_0^{(1)}=0.939793285$, $T_0^{(2)}=0.944513522$, $T_0^{(3)}=0.945690864$ 。按算法 7.3 可得下表。 \mathcal{C}

表 7-3-2: 例 7.3.1 中 Romberg 求积公式的计算过程表 4

	8 + ***********************************					
k ∘	$T_0^{(k)}$ $_{arphi}$	$T_1^{(k-1)} \circ$	$T_2^{(k-2)} otin $	$T_3^{(k-3)} otin $	¢)	
0₽	①0.920735492₽	₽	₽.	٥	¢)	
1₽	②0.939793285₽	③0.946145882₽	₽.	¢	Þ	
2₽	④0.944513522₽	⑤0.946086934₽	©0.946083004₽	Þ	Þ	
3₽	⑦0.945690864₽	®0.946083311₽	③0.946083069 ₄	@0.94608307₽	Þ	

 $T_3^{(0)}$ 具有 8 位有效数字, 这比复合梯形公式的计算结果 $T_0^{(3)}$ 只有 3 位有效数字的精度提高了

很多。↓

例1 用龙贝格算法计算定积分 $I = \int_0^1 \frac{4}{1+x^2} dx$ 要求相邻两次龙贝格值的偏差不超过 10^{-5}

解:由题意
$$a=0,b=1,f(x)=\frac{4}{1+x^2}$$

$$T_{1} = \frac{1}{2} [f(0) + f(1)] = \frac{1}{2} (4 + 2) = 3$$

$$T_{2} = \frac{1}{2} T_{1} + \frac{1}{2} f(\frac{1}{2}) = \frac{1}{2} \times 3 + \frac{1}{2} \times \frac{16}{5} = 3.1$$

$$S_{1} = \frac{4}{3} T_{2} - \frac{1}{3} T_{1} = 3.1333$$

$$T_4 = \frac{1}{2}T_2 + \frac{1}{4}\left[f(\frac{1}{4}) + f(\frac{3}{4})\right] = \frac{1}{2} \times 3.1 + \frac{1}{4}(3.764 + 2.56) = 3.13118$$

$$S_2 = \frac{4}{3}T_4 - \frac{1}{3}T_2 = 3.14157$$

$$C_1 = \frac{16}{15}S_2 - \frac{1}{15}S_1 = 3.14212$$

$$T_8 = \frac{1}{2}T_4 + \frac{1}{8}\left[f(\frac{1}{8}) + f(\frac{3}{8}) + f(\frac{5}{8}) + f(\frac{7}{8})\right] = 3.13899$$

$$S_4 = \frac{4}{3}T_8 - \frac{1}{3}T_4 = 3.14159$$

$$C_2 = \frac{16}{15}S_4 - \frac{1}{15}S_2 = 3.14159$$

$$R_1 = \frac{64}{63}C_2 - \frac{1}{63}C_1 = 3.14158$$

$$T_{16} = \frac{1}{2}T_8 + \frac{1}{16}\left[f(\frac{1}{16}) + f(\frac{3}{16}) + f(\frac{5}{16}) + f(\frac{7}{16}) + f(\frac{9}{16}) + f(\frac{11}{16}) + f(\frac{13}{16}) + f(\frac{15}{16})\right] = 3.14094$$

$$S_8 = \frac{4}{3}T_{16} - \frac{1}{3}T_8 = 3.14159$$

$$C_4 = \frac{16}{15}S_8 - \frac{1}{15}S_4 = 3.14159$$

$$R_2 = \frac{64}{63}C_4 - \frac{1}{63}C_2 = 3.14159$$

由于
$$|R_2 - R_1| \le 0.00001$$
 , 于是有

$$I = \int_0^1 \frac{4}{1+x^2} \, \mathrm{d}x \approx 3.14159$$

