

Daffodil International University

Department of Computer Science and Engineering

Faculty of Science and Information Technology

Mid-Term Examination, Semester: Fall, 2017		
Sections: All	Course Title: Ordinary and Partial	Differential Equation
Time: 1.5 Hours		Course Teachers: Al
Note: (i) Answer all the questions from Part-A an options for question no. 1 in your answer script: (d any FIVE (05) questions from Bart D. (2	Total Marks: 25
options for question no. 1 in your answer script; (iii) Figures in the right margin indicate fi	i) write only the corre
1. a) Which one is separable asserting	Part-A	
when one is separable editation;		[1]
i. $\frac{dy}{dx} = 1 + e^{x+y}$	ii. $\frac{dy}{dx} = \frac{x+1}{y-1}$	(*)
$ \lim_{x \to \infty} \frac{dy}{dx} - y = x $	iv. $\frac{dy}{dx} = 2x - y$	
b) Which one is Bernouli equation?	ux -	
b) Which one is Bernouli equation? $\frac{dy}{dx} + 2xy = \sqrt{y} \frac{1}{\sqrt{2}}$ iii. $\frac{dy}{dx} - \frac{y}{y} = x$	ii. $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 0$	[1]
dy y		
m = x	iv. $\frac{dy}{dx} - y \cot x = 0$	
If e^x is the integrating factor of $\frac{dy}{dx} + P$.	y = Q, then $P = ?$	[1]
i. In x	ii. x	
· iii. 1/x	, iv. 1	
d) Which of the followings is not a homogen	enus differential accessor	
dy x-y	oods unetendal equation?	[1]
i. $\frac{dy}{dx} = \frac{x - y}{2y}$	ii. $\frac{dy}{dx} = x^2 - y^2$	
iii. $\frac{dy}{dx} = \frac{x-y}{x+y}$, 444	
$\frac{dx}{dx} = \frac{1}{x+y}$	iv. $\frac{dy}{dx} = \frac{x}{y}$	
e) Identify the order and dames (c)	dy	
e) Identify the order and degree of the differ	ential equation $\int \frac{dy}{dx} + xy = 0$.	[1]
	i. order 1, degree 1	
order 2, degree 1		ارده وقعد الدور الدورون
	iv. order $\frac{1}{2}$, degree 2	
· Pi	art-B	•
Solve the following differential		

Solve the following differential equation by separating the variables:

$$\frac{dy}{dx} = \frac{xy + 2y - x - 2}{xy - 3y + x - 3}$$

[4]

$$\frac{dy}{dx} = \tan^2(x + y).$$

4. Solve the following homogeneous differential equation:

$$\frac{dy}{dx} = y + \sqrt{x^2 - y^2}.$$

5. Solve the following first-order linear differential equation:

न्द्री वि**श्वद**्वकर

$$(x+1)\frac{dy}{dx} + (x+2)y = 2xe^{-x}$$

6. Transform the following Bernoulli equation to a linear differential equation:

$$\frac{dy}{dx} = y(xy^3 - 1).$$

Check whether the following differential equation is exact or not, then solve:

[4]

$$(\sin y - y \sin x)dx + (\cos x + x \cos y - y)dy = 0.$$

Page 2 of 2