

PLATINUM SPONSOR

GOLD SPONSORS

SILVER SPONSOR

BRONZE SPONSOR

Projektowanie dla LUDZI.

Projektowanie wizualizacji w Power BI zgodne z ludzką percepcją

Paulina Sanak-Listwan

Paulina Sanak-Listwan

- Ekspertka ds. wizualizacji danych, konsultantka BI, analityk biznesowy i kierowniczka projektów w Elitmind
- Absolwentka krakowskiej Akademii Górniczo-Hutniczej na wydziale zarządzania
- Doświadczony praktyk, od lat związana z procesem wspierania decyzji biznesowych w oparciu o dane
- Pracowała w działach analitycznych HSBC, T-Mobile, RBS, Cisco
- Uczestniczka i prelegentka w grupach związanych z wizualizacją danych

Agenda

- Percepcja
- Zasady Gestalt
- Znajdowanie informacji
- Odkodowywanie wizualnej informacji
- Case study

Figure 2: Colin Ware Illustration of Visual Processing (Ware, 2004).

Etap 1 Dekompozycja obrazu Etap 2 Odnajdywanie wzorców Etap 3 Interpretacja obrazu

Pamięć robocza

- Ograniczona wydajność. Zdolność przechowywania tylko 7 +/- 2 elementów w jednej chwili (G.A.Miller 1956)
- W odróżnieniu do pamięci długotrwałej jest aktywna.
 Nie tylko przechowuje informację, ale również manipuluje i przekształca ją.
- Aktualizuje się na bieżąco o informacje zabiegające o uwagę.

Zasady Gestalt

Zbiór praw wynikających z wrodzonych mechanizmów percepcji (nienabywanych z czasem) mające na celu organizację percepcji poprzez odnajdywanie wzorców.

Ludzie zazwyczaj postrzegają obiekty poprzez:

- grupowanie podobnych elementów,
- rozpoznawanie wzorców
- i upraszczanie złożonych obrazów.

Zasada Bliskości (Proximity)

Obiekty znajdujące się blisko siebie widziane są jako jedna grupa

Zasada Podobieństwa (Similarity)

Obiekty, które mają podobne atrybuty (rozmiar, kolor, kształt) widziane są jako jedna grupa

Zasada Grodzenia (Enclosure)

Obiekty, które mająwspólnie zakreśloną przestrzeń (ramka, kolor tła etc), widziane są jako jedna grupa

Zasada Ciągłości (Continuity)

Ludzkie oko podąża za wskazanym kierunkiem, liniami.

Zasada Połaczenia(Conection)

Ludzkie oko gdy widzi obiekty połaczone wspolną linią interpretuje je jako grupę / powiązane nawet jeśli w innym wypadku traktowane by były rozdzielnie.

Zasada Symetrii (Symmetry)

Ludzkie oko poszukuje symetrii.

Zasada Domknięcia (Closure)

Ludzkie oko preferuje pełne kształty i w pierwszej kolejności poszukuje całości.

Zasada Figura / Tło (Figure / Ground)

Ludzkie oko ma tendencje do poszukiwaniu w obrazie kształtów. Czesciej spostrzega to co jest na pierwszym planie, niż w tle.

Podświadome przetwarzanie informacji

Source: Ware, Colin, "Information Visualization. Perception for design." $\label{eq:colored} % \[\mathcal{L}_{\mathcal{L}} = \mathcal$

Podświadome przetwarzanie informacji

Średni względny błąd percepcji

Rekomendacja

https://www.youtube.com/watch?v=hsfWtPH2kDg

Podsumowanie

- Każda nasza wizualizacja, raport, dashboard powinien być robiony w duchu minimalizmu by **nieprzytloczyć odbiorcy ilością informacji**.
- Ludzki mózg w sposób ciagły grupuje obiekty po kolorze, kształcie, kierunku, bliskości i wspólnych ramach.
- Ludzki mózg preferuje proste, symetryczne, łatwe w identyfikacji kształty.
- Jeśli chcemy aby jakaś informacja była widoczna w pierwszej kolejności, wyróżnijmy ją poprzez kolor lub kształt.
- Do porownywania wielkości najlepsza pozycja lub dlugość, najgorszy kolor i powierzchnia elementu.

Źródła

- Prezentacja i test percepcji Jeffrey'a Heer:
 https://www.youtube.com/watch?v=hsfWtPH2kDg
- "Odkrywać! Ujawniać! Objaśniać! Zbiór esejów o sztuce prezentowania danych", Przemysław Biecek
- "Information Visualization: Perception for Design", Colin Ware
- "Graphical Perception: The Visual Decoding of Quantitative Information on Statistical Graphs." William Cleveland i Robert McGill, Journal of the Royal Statistical Society Series A, 150:"192 – 229", 1987
- "Storytelling with data", Cole Nussbaumer

Dziekuję za uwagę!

PLATINUM SPONSOR

GOLD SPONSORS

SILVER SPONSOR

BRONZE SPONSOR

