

Laboration 2

Differentialekvationer och numerisk integration

Före redovisningen ska ni skicka in Matlab-filerna ni skrivit till alla uppgifterna i Canvas. På redovisningen ska ni (båda i laborationsgruppen om ni är två) kunna redogöra för teori och algoritmer som ni använt. Ni ska kunna svara på frågorna i uppgifterna och förklara hur era Matlab-program fungerar. Kom väl förberedda!

1. Olinjär modellanpassning

Den här uppgiften är en fortsättning på uppgift 3 i Lab 1. Där bestämde ni skärningspunkterna till två cirklar genom att lösa ett olinjärt ekvationssystem

$$(x_A - x_P)^2 + (y_A - y_P)^2 = L_A^2,$$

$$(x_B - x_P)^2 + (y_B - y_P)^2 = L_B^2.$$

Mittpunkternas positioner var givna till A = (93, 63) och B = (6, 16), och avstånden är $L_A = 55.1$ och $L_B = 46.2$. Antag nu att vi har ännu en cirkel:

$$(x_A - x_P)^2 + (y_A - y_P)^2 \approx L_A^2,$$

 $(x_B - x_P)^2 + (y_B - y_P)^2 \approx L_B^2,$
 $(x_C - x_P)^2 + (y_C - y_P)^2 \approx L_C^2.$

Låt
$$C = (20, 83)$$
 och $L_C = 46.2$.

- (a) Skriv ned Gauss-Newton-iterationen för detta problem. Varför använder vi Gauss-Newtons metod och inte Newtons metod?
- (b) Kör Gauss-Newton med en startgissning som motsvarar lösningen på Lab 1. Ange lösningen och antalet iterationer som behövdes.
- (c) Rita upp cirklarna och lösningspunkterna i en figur. Går cirklarna genom punkterna? Vad förväntar vi oss?

2. Numerisk integration

Följande integral ska beräknas

$$I = \int_{-1}^{1} \sqrt{x+2} \, dx.$$

(a) Rita en graf över integranden. Beräkna integralens värde analytiskt: I=

- (b) Approximera integralen med (sammansatta) trapetsregeln. Låt T(h) vara approximationen med steglängd h. Beräkna T(h) för $h=1,\,0.5,\,0.25,\,0.125$ och 0.0625. Verkar approximationen konvergera när $h\to 0$?
- (c) Beräkna felet |T(h) I| i trapetsregeln. Vad säger teorin om felet? Med vilken faktor förväntar vi oss att felet förändras när man halverar steglängden? Stämmer det?
- (d) Approximera nu integralen med (sammansatta) Simpsons formel¹ istället. Beräkna felet för h-värdena ovan. Vad säger teorin i detta fall om felets avtagande när $h \to 0$?
- (e) Plotta felet som funktion av h för trapetsregeln och för Simpsons metod i samma figur. Plotta i log-skala. Använd MATLABS kommando loglog, gärna tillsammans med grid-kommandot. Uppskatta båda metodernas noggrannhetsordning med hjälp av plotten. Stämmer det med teorin?

3. Generatorn 2

Detta är en fortsättning på uppgift 2 i Lab 1. Generatorföretaget har kommit på att man inte känner till θ exakt. Man betraktar istället θ som en stokastisk variabel som följer en trunkerad normalfördelning med väntvärde $\bar{\theta}$ i intervallet $\bar{\theta} \pm s$. För att beräkna väntvärdet för den maximala magnetiseringen \bar{m} behöver man då beräkna

$$\bar{m} = \frac{\int_{-s}^{s} e^{-\beta t^{2}} m(\bar{\theta} + t) dt}{\int_{-s}^{s} e^{-\beta t^{2}} dt},$$

där $m(\theta)$ är samma maximala magnetisering som beräknades i Lab 1, dvs $m(\theta) = \max(\mathbf{u})$ när u beräknats via generator.m med argumentet θ . Använd parametrarna s = 2, $\beta = 1$ och $\bar{\theta} = 40$. (Ni behöver alltså använda filerna generator.m och generator_data.mat från Lab 1 i denna uppgift.)

- (a) Beräkna nämnaren i uttrycket mycket noggrant med en numerisk metod.
- (b) Använd (sammansatta) trapetsregeln för att beräkna täljaren och \bar{m} . Välj h så att den totala beräkningstiden i programmet blir ca 1 minut. Uppskatta noggrannheten genom att halvera h.
- (c) Använd (sammansatta) Simpsons formel för att beräkna täljaren och \bar{m} . Välj h så att den totala beräkningstiden i programmet blir (ungefär) lika lång som i (b). Uppskatta noggrannheten genom att halvera h. Är det bättre eller sämre att använda Simpson i detta fall? Motivera!

Not: I uppgift 3b-c kan "1 minut" behöva justeras beroende på er dator. Försök använda $h \leq 0.1$ i alla fall.

¹Ni kan antingen implementera Simpson direkt eller genom att göra ett steg med Richardsonextrapolation av trapetsregeln.

4. Robotarm

En robotarm består av två länkar med längden R=1 (se bild). Armens tillstånd definieras utifrån länkarnas vinklar (θ_1,θ_2) som är definierade i förhållande till x-axeln. Dess ändpunkt betecknas (x_e,y_e) och ges av

$$x_e = R\cos\theta_1 + R\cos\theta_2,$$

$$y_e = R\sin\theta_1 + R\sin\theta_2.$$

Robotarmen kan styras med hjälp av ett styrsystem som påverkar robotarmens vinklar.

(a) Bestäm vinklarna $\theta_1 = \theta_1^*$ och $\theta_2 = \theta_2^*$ så att robotarmens ändpunkt (x_e, y_e) landar på position (1.3, 1.3) genom att formulera problemet som ett olinjärt ekvationssystem i två obekanta. Lös problemet med Newtons metod i flera variabler. Felet ska vara mindre än 10^{-10} i båda variablerna.

Plotta robotarmen med funktionen plot_robotarm.m som du hittar i Canvas. Argument till funktionen är en vektor som innehåller de två vinklarna θ_1 och θ_2 .

Vi ska nu studera robotarmens rörelse som en funktion av tiden. Ett styrsystem införs så att vi hamnar i den avsedda positionen. Vinklarna betraktas som funktioner av tiden och uppfyller differentialekvationerna

$$\frac{d^2\theta_1}{dt^2} = -\alpha \cdot (\theta_1(t) - \theta_1^*) - \gamma \frac{d\theta_1}{dt} + \beta \sin(\omega t),
\frac{d^2\theta_2}{dt^2} = -\alpha \cdot (\theta_2(t) - \theta_2^*) - \gamma \left(\frac{d\theta_2}{dt} + \left|\frac{d\theta_1}{dt}\right|\right) + \beta \sin(\omega t),$$

där vinklarna θ_1^* och θ_2^* är de vinklar ni bestämt i (a). Faktorn γ motsvarar en dämpning (friktion) och är här $\gamma=4$. Vibrationerna representeras av amplitud β och en frekvens ω är bestämda till $\beta=0.5$ och $\omega=3\pi$. Styrsystemet beror också på en parameter α som är vald som $\alpha=2$.

- (b) Skriv om den andra ordnings differentialekvation på standardform, dvs ett system av fyra första ordningens differentialekvationer (ODE).
- (c) Lös differentialekvationen med Framåt Euler (för ODE-system), med startvärden $\theta_1(0) = \pi/2$, $\theta'_1(0) = 0$, $\theta_2(0) = \pi/6$ och $\theta'_2(0) = 0$. För denna uppgift kan ni ta hjälp av skelettprogrammet f_robotarm.m som ni hittar i Canvas.

Var är robotarmen efter t=15 tidsenheter? Använd Framåt Euler med steglängd h=0.01. Visualisera lösningen med en animation genom att löpande anropa plot_robotarm.m när ni räknar ut lösningen.

Tips: Det är beäkningskrävande att rita upp lösningen, så det är bättre om man gör det endast i tex vart 10e tidssteg i Framåt Euler. Om ni inför en räknare k i den inre loopen kan ni göra det med kod av typen: