Part 2c: Simulating multivariate normal vectors

Textbook: p. 44

The	e Ch	ole	sky	dec	omp	oosi	tior	1 (W	/ikip	edi	a)													
The	Cho	lesky	deco	ompo	sition	of a	Hern	nitian	posi	tive-c	defini	te ma	ıtrix A	ı, is a	a dec	ompo	sitio	n of tl	ne fo	rm				
	$\mathbf{A} =$			Ċ										,		Ċ								
whe	ere L	is a l	ower	trian	gular	matr	ix wit	h rea	l and	posi	tive c	liagor	nal er	ntries	, and	L * d	enote	es the	con	jugat	e trar	nspos	e of l	L. Ever
	mitiai ompo			defin	ite m	atrix	(and	thus	also (every	real	-value	ed syı	mme	tric p	ositiv	e-de	finite	matr	ix) ha	ıs a u	ınique	e Cho	lesky
				s trivi	ally: i	if A c	an be	e writ	ten a	s LL '	for s	some	inver	tible	L, lo	wer tr	iangı	ular c	r oth	erwis	e, the	en A	is He	rmitian
and	posi	tive c	lefinit	e.																				
				natrix	(hen	ce sy	mme	tric p	ositiv	e-de	finite), the	facto	rizat	ion m	ay b	e writ	ten						
	$\mathbf{A} =$							111						[4][5]	161									
wne	ere L	is a r	eal Ic	wert	riang	ular	matri	x witr	ı pos	itive	diago	nai e	ntries	3,[*][][∨]									

The Cholesky decomposition (an example)

$$\Sigma = \begin{pmatrix} 6 & 15 & 55 \\ 15 & 55 & 225 \\ 55 & 225 & 979 \end{pmatrix} = \begin{pmatrix} 6 \\ 15 \end{pmatrix}$$

$$L_{11} = \sqrt{6_{11}} = \sqrt{6} = 2.4495, L_{12} = L_{12} = 0$$

$$L_{21} = \frac{6_{21}}{L_{11}} = \frac{15}{2.4455} = 6.1237$$

$$L_{22} = \sqrt{6_{22} - L_{21}^2} = \sqrt{65 - (6.1237)^2} = 4.1833, L_{23} = 0$$

$$L_{31} = \frac{6_{31}}{L_{11}} = \frac{55}{2.4455} = 22.4537$$

$$L_{32} = \sqrt{6_{32} - L_{31}^2 L_{21}} = 20.9165$$

$$L_{33} = \sqrt{6_{32} - L_{31}^2 L_{21}} = 20.9165$$

$$L_{33} = \sqrt{6_{32} - L_{31}^2 L_{21}} = 6.1101$$

$$\lambda = \begin{pmatrix} 2.4495 & 0 & 0 \\ 6.1277 & 4.1233 & 0 \\ 0.1277 & 4.1233 & 0 \\ 22.4537 & 20.9165 & 6.1101$$

$$\lambda = L \vec{X} + \vec{J} \Rightarrow \vec{Y} \sim N(\vec{J}^2, \vec{\Sigma})$$

The spectral decomposition

Every real symmetric $n \times n$ matrix can be factored as

$$\Sigma = U\Lambda U^T$$

- U = orthogonal matrix of eigenvectors.
- Λ = diagonal matrix of eigenvalues.

$$P(\lambda) = dit(\Sigma - \lambda I) \Rightarrow P(\lambda) = 0, \quad 1 \leq i \leq d$$

$$U = (\vec{U}_{i}, \vec{U}_{2}, ..., \vec{U}_{d}), \quad \Sigma \vec{u}_{i} = \lambda_{i} \vec{u}_{i}$$

$$also, \quad \vec{U}_{i}^{T} \vec{U}_{i}^{J} = 0, \quad i \neq j, \quad ||\vec{U}_{i}^{T}||^{2} = 1$$

$$A = \begin{pmatrix} \lambda_{i} & 0 \\ 0 & \lambda_{d} \end{pmatrix}$$

$$\Sigma^{1/2} = U A^{1/2} U^{T}, \quad A^{2} = \begin{pmatrix} \sqrt{\lambda_{i}} (\vec{\lambda}_{2}) & 0 \\ 0 & \sqrt{\lambda_{d}} & \sqrt{\lambda_{d}} \\ 0 & \sqrt{\lambda_{d}} & \sqrt{\lambda_{d}} \end{pmatrix}$$

$$\Sigma^{1/2} (\Sigma^{1/2})^{T} = (\Sigma^{1/2})^{2} = \Sigma$$

$$\vec{y} = \Sigma^{1/2} \vec{x} + \vec{\mu} = \lambda \vec{y} \wedge N(\vec{\mu}_{i}, \vec{z})$$

The	spe	ctral	decc	mp	osit	ion	(an	exa	mp	le)							
	_	-	6		12		23	- \	\								
	ے	_=	(6)		55 25	-	2z 97	5									
								<u> </u>					\				
		Λ			34.			- 7) 41		ט ט						
	J	1	=		0		٥	, 0	77		n	72	1				
	l) =	, /	~ 8	20.05	5	۔	0.6	84		д. А	72	8\				
			-	- 0 - 0	.22	24 3		10.7 0,2	02		0,	72. .67 115	Ø J				
		1/2		(32 J	56			<i>7</i>			0					
	_	الم	-		O		2	(2	50		ſ	0					
				L .	O			Ç			Ø	.8	2 9 >				
					_				1.6	19		1.0	79	ĵ	1,48	38	\
	Σ	— ¥2 ⁄	- ()_	1/h	U	آ ت		1.0	79		3.1	36	6	· 6	33	
								(1	. 4	88		6 Q	33	3	o,5	(42	/