

集贤新烧录器开发说明文档 V1.0.4

变更记录

日期	版本号	作者	变更内容
2021. 09. 13	V1. 0. 1	陈德驹/李鹏	初版
2021. 10. 15	V1. 0. 2	陈德驹	增加 zigbee 芯片系列烧录
2021. 11. 24	V1. 0. 3	李鹏	添加滚码烧录设置
2022. 02. 10	V1. 0. 4	李鹏	添加在线 7120B 芯片烧录

目录

集贤新焓	^長 录器开发说明文档 V1.0.4	1
一、	项目背景	2
	1、老 SOC 烧录器版本较多,而且代码较难维护	2
=,	烧录下位机	2
	1、烧录器功能需求:	2
	(1) 烧录器下位机与电脑上位机与待烧录芯片通信示意图:	2
	(2) 功能需求说明:	2
	2、 烧录器下位机和待烧录模块接口:	3
	(1) 待烧录芯片 IO 对应烧录器接口	3
	(2) 烧录座对应接口	3
	(3) 待烧录芯片和烧录器的连接要求	4
	3、烧录器下位机烧录原理	4
	(1) MAC 地址烧录	4
	(2) 固件加密烧录	
	(3) 三元组加密/不加密烧录	
	(4) 新增滚码烧录功能	
三、	烧录上位机	
	1、UI 界面(离线):	
	(1) 烧录界面:(以 4*5 示例)	
	(2) 设置主界面:	
	2、UI 界面(在线):	
	(1) 烧录界面:	
	(2) 设置主界面:	
	3、配置文件说明:	
	(1) 配置文件目录:	
	(2) data 目录:	11

一、项目背景

1、老 SOC 烧录器版本较多,而且代码较难维护

为提升产测效率,降低生产成本,现基于国民技术 N32G455xx 单片机重新开发烧录器。

二、烧录下位机

- 1、烧录器功能需求:
- (1) 烧录器下位机与电脑上位机与待烧录芯片通信示意图:

(2) 功能需求说明:

- 1、离线烧录:上位机把固件传给下位机,下位机把固件保存在 flash,最大支持(20)个,或者(4)x(5)
- 2、 离线三元组烧录: 把三元组授权文件传给下位机, 下位机把授权文件保存 flash (授权文件已包含 mac 地址)
- 3、支持设置模块保存三元组和 mac 的 flash 地址
- 4、支持三元组是否加密写入
- 5、支持固件是否加密
- 6、在线烧录: 只支持串口协议的模块,不需要下位机,电脑的串口直接接待烧录模块, 支持一拖多,最大支持(20)个,或者(4)x(5)(暂不支持,但是先预留),<mark>烧录完成后需要加底板复位模块,再用指令写码</mark>
- 7、支持固件和三元组同时烧录
- 8、记录测试过程 log
- 9、记录 csv
- 10、 记录数据库
- 11、 下位机驱动程序更新(暂不支持,但是先预留)

2、烧录器下位机和待烧录模块接口:

(1) 待烧录芯片 ○ 对应烧录器接口

序号	烧录器	BK3431q	BK3432	BK3633	EFRM32M
1	VPP	RESET	RESET	/	/
2	3V3	3V	3V	3V	3V3
3	GND	GND	GND	GND	GND
4	MISO	P05	P05	P05	/
5	MOSI	P04	P04	P04	SWDAT
6	SCK	P06	P06	P06	SWCLK
7	NSS	P07	P07	P07	/
8	3V3	P02	/	/	/
9	3V3	P03	/	/	/

备注: bk3431q 必须把 P02 和 P03 拉高

(2) 烧录座对应接口

(3) 待烧录芯片和烧录器的连接要求

目前烧录器走的是高速 SPI 烧录(速率最高高达 36MHZ),如果是一拖多烧录,待烧录芯片和烧录器座子的连接线尽量选用屏蔽线,并且尽可能短,不能绕线,避免每路 SPI 会有干扰,造成烧录失败率偏高。

3、烧录器下位机烧录原理

(1) MAC 地址烧录

烧录器基于授权文件上的 6 字节设备 MAC 地址 (char szMac[IOT2_MAC];详细看授权文件格式) 来烧录到待烧芯片的 flash 地址。

烧录设置					
жжжш					
	芯片型号:	BK3432	▼	□ 是否加密固件	=
	烧录方式:	离线	~	□ 是否烧录三元	组
Mac在f	flash起始地址:	0x27ff0		□ 是否加密三元	组
license在	flash起始地址:	0x7d000		_	
在约	线烧录波特率:	1000000	▼		

(2) 固件加密烧录

烧录器基于不同的待烧芯片有不同的固件加密算法,保护固件 bin 不被轻易读取并且生产利用,bk3432 的加密是通用的,其他则为集贤科技定制的加密算法,需要配合固件代码使用,详细请咨询集贤科技。

- 烧录设置		
芯片型号:	EFR32MG ▼	□ 加密固件
Mac在flash起始地址:	0x400e3	☑ 烧录三元组
license在flash起始地址:	0x7d000	□ 加密三元组
滚码烧录起始值:	0x3873eae83e45	□ 滚码烧录
烧录个数:	9999999	

(3) 三元组加密/不加密烧录

烧录器上可以基于授权文件上的文件来给待烧芯片烧录三元组,为了三元组信息安全,可以勾选加密三元组,烧录三元组/解密三元组都需要固件代码配合使用。解密三元组为集贤科技定制的加密算法,详细请咨询集贤科技,烧录三元组是一次性把 334 字节的授权文件(sizeof(iot2_config_t)=334byte)烧录到 license 在 flash 地址上。

(加密字段网关加密(szJxPid、szJxDid), 阿里加密(szAliDn、szAliDs), 京东加密 (szJdMac、szJdKey), 腾讯加密(szTxDn、szTxDs))

(4) 新增滚码烧录功能

支持设置烧录起始值和烧录个数,修改设置保存后需要回烧录界面更新授权文件。以将设 置信息设置到底板。

授权文件格式为以下(结构体的任意变量可以配合授权文件的内容任意变换):

```
#define IOT2 PRODUCT JX PID
                               (8+1)
#define IOT2 PRODUCT JX DID
                               (19+1)
#define IOT2 PRODUCT ALI PK
                               (11+1)
#define IOT2 PRODUCT ALI PS
                               (32+1)
#define IOT2 PRODUCT ALI PID
                               (12+1)
#define IOT2 PRODUCT ALI DN
                               (20+1)
#define IOT2 PRODUCT ALI DS
                               (32+1)
#define IOT2_PRODUCT_JD_SSID
                               (32+1)
#define IOT2 PRODUCT JD UUID
                               (6+1)
#define IOT2 PRODUCT JD MAC
                               (12+1)
#define IOT2 PRODUCT JD KEY
                               (64+1)
#define IOT2 PRODUCT TX PID
                               (12+1)
#define IOT2 PRODUCT TX DN
                                (20+1)
#define IOT2_PRODUCT_TX_DS
                               (32+1)
#define IOT2 MAC
                               (12+1)
typedef struct iot2 config struct
                                                   /*序列号, 二进制*/
   int seq;
   char szJxPid[IOT2 PRODUCT JX PID];
                                                   /*集贤平台产品 ID*/
   char szJxDid[IOT2 PRODUCT JX DID];
                                                   /*集贤平台设备 ID*/
                                                       /*阿里平台 product
   char szAliPk[IOT2 PRODUCT ALI PK];
key*/
   char szAliPs[IOT2 PRODUCT ALI PS];
                                                       /*阿里平台 product
secret*/
                                                           /*阿里平台 product
   char szAliPid[IOT2 PRODUCT ALI PID];
id*/
   char szAliDn[IOT2 PRODUCT ALI DN];
                                                           /*阿里平台 device
name*/
                                                           /*阿里平台 device
   char szAliDs[IOT2_PRODUCT_ALI_DS];
secret*/
                                                   /*京东平台 ssid*/
   char szJdSsid[IOT2 PRODUCT JD SSID];
   char szJdUUID[IOT2 PRODUCT JD UUID];
                                                   /*京东平台 uuid*/
   char szJdMac[IOT2 PRODUCT JD MAC];
                                                   /*京东平台 mac*/
                                                   /*京东平台 key*/
    char szJdKey[IOT2_PRODUCT_JD_KEY];
```



```
char szTxPid[IOT2_PRODUCT_TX_PID];
char szTxDn[IOT2_PRODUCT_TX_DN];
char szTxDs[IOT2_PRODUCT_TX_DS];
char szMac[IOT2_MAC];
unsigned char used;
} iot2_config_t;
```

/*腾讯平台 product id*/
/*腾讯平台 device name*/
/*腾讯平台 device secret*/
/*设备 mac*/
/*0:未使用 1: 已使用*/

三、烧录上位机

1、UI 界面(离线):

(1) 烧录界面:(以 4*5 示例)

主界面主要分五部分:

① 左侧的信息预览窗口(显示部分设置信息):

设置修改后会自动刷新信息,包括一个主动开始烧录按钮。

② 中间上方的是底板状态窗口(显示部分底板信息,可参看底板 LED 显示屏):

打开串口并与烧录底板握手成功会高亮显示,并读取已连接底板烧录信息,包括底板的 UID、烧录的芯片型号、使用的固件和授权文件信息以及总 license 个数、剩余 license 个数等。插入新的串口后需要点击刷新串口进行刷新。

底板右边区域显示的编号对应关系是:底板烧录口编号-显示编号。

底板右下角有显示各底板一次烧录完 5 个芯片所使用的时间,以及输出的 log 文件。一般烧录完成后成功生成 log 文件后点击有效。

③ 中间的烧录状态窗口(对应底板烧录口指示灯状态):

烧录时会显示烧录进度和状态,橙色表示烧录中、绿色表示烧录成功、红色表示烧录失败,并显示失败的具体原因。每个烧录口还会显示当前烧录模组的 mac。

注意烧录状态窗口的<mark>逻辑编号规则</mark>,这个在配置烧录口时需要用到(对应配置烧录口的界面位置编号,这个比较重要,可能会影响到界面布局)。逻辑编号规则是从上往下、从左往右进行编号。

④顶部的菜单栏

烧录/设置菜单可切换烧录/设置界面。

⑤底部的状态栏

显示数据库的连接状态和烧录统计信息: 总烧录数、成功数、失败数、计算成功率。 重置统计信息按钮。

(2) 设置主界面:

设置界面分六部分设置

① 固件:

选择需要烧录的固件,显示固件相关信息: 名称、文件大小,固件版本号,固件 CRC32

② 授权文件:

选择需要使用的授权文件,显示授权文件相关信息:名称、文件大小、license 个数,授权文件 CRC32

授权文件配置界面:

主要功能是对比较大的授权文件进行分割。License 个数可编辑,现阶段暂不支持多个底板同时更新固件和授权文件,故第四项底板号设置是无效的。分割会在同一目录下生成分割后的授权文件,需要手动重新选择然后单个底板进行更新操作。

③ 烧录设置:

主要设置跟下位机相关:

烧录的芯片型号;

烧录方式(现阶段只支持离线烧录)一般不用改;

mac 在 flash 起始地址、license 在 flash 起始地址,已根据各芯片型号给定了默认值,一般不用改。若有新增芯片或需要修改默认设置可修改目录下的配置文件,具体可咨询相

关开发人员。

在线烧录波特率: 1000000, 一般不用改;

是否加密固件、是否烧录三元组、是否加密三元组:根据生产需要进行设置。

④底板设置:

略

⑤一拖多设置:

底板个数,底板显示列数:为美观,建议显示列数设置与底板个数相同;

配置烧录口界面:

配置烧录口(离线烧录有效)	_		×
底板烧录口编号	界面位置编号(显示编号)			
■ 底板1	1(0), 2(0), 3(0), 4(0), 5(0)			
1	1(0)			
2	2(0)			
3	3(0)			
4	4(0)			
5	5(0)			
∃ 底板2	6(0), 7(0), 8(0), 9(0), 10(0)			
1	6(0)			
2	7(0)			
3	8(0)			
4	9(0)			
5	10(0)			
⊞ 底板3	11(0), 12(0), 13(0), 14(0), 15(0)			
並 底板4	16(0), 17(0), 18(0), 19(0), 20(0)			
			保存	设置

配置烧录口,左侧为底板接口号,右侧每行有两个编号,第一个编号是界面位置编号就是上面所说的烧录口逻辑编号(这个比较重要,会影响界面布局,不能随便填,如果界面出现紊乱,可如上配置默认值)。第二个为显示的编号(因为工厂夹具上面事先已标记好编号,且每个夹具可能编号方式不一致,为便于生产人员查找,故添加此项配置,这个可以根据需要进行编号,不会影响界面布局)

⑥是否启用数据库:

根据生产需要进行设置,修改后保存设置,需要重启上位机软件。

2、UI 界面 (在线):

(1) 烧录界面:

(2) 设置主界面:

3、配置文件说明:

(1) 配置文件目录:

配置文件一般不用修改,仅用作界面调整。

给生产人员使用时建议将下面的配置项配置为 0 来关闭设置和更新固件、license 功能;关闭读取 hex 格式固件时生成中间 bin 文件

setting_fireware=G:\win7_software\Alipeng\GIT_new\JX\product_tools\JX_BurnToolsetting_license=G:\win7_software\Alipeng\GIT\JX - 副本\product_tools\JX_BurnToolsetting_fireware_dir=C\win7_software\Alipeng\GIT_new\JX\product_tools\JX_BurnToolsetting_fireware_dir=C\win7_software\Alipeng\GIT_new\JX\product_tools\JX_BurnToolsetting_fireware_dir=C\win7_software\Alipeng\GIT_new\JX\product_tools\JX_BurnToolsetting_fireware_dir=C\win7_software\Alipeng\GIT_new\JX\product_tools\JX_BurnToolsetting_fireware_dir=C\win7_software\Alipeng\GIT_new\JX\product_tools\JX_BurnToolsetting_fireware_dir=C\win7_software\Alipeng\GIT_new\JX\product_tools\JX_BurnToolsetting_fireware_dir=C\win7_software\Alipeng\GIT_new\JX\product_tools\JX_BurnToolsetting_fireware_dir=C\win7_software\Alipeng\GIT_new\JX\product_tools\JX_BurnToolsetting_fireware\Alipeng\GIT_new\JX\product_tools\JX_BurnToolsetting_fireware\Alipeng\GIT_new\JX\product_tools\JX_BurnToolsetting_fireware\Alipeng\GIT_new\JX\product_tools\JX_BurnToolsetting_fireware\Alipeng\GIT_new\JX\product_tools\JX_BurnToolsetting_fireware\Alipeng\GIT_new\JX\product_tools\JX_BurnToolsetting_fireware\Alipeng\GIT_new\JX\product_tools\JX_BurnToolsetting_fireware\Alipeng\GIT_new\JX\product_tools\JX_BurnToolsetting_fireware\Alipeng\GIT_new\JX\product_tools\JX_BurnToolsetting_fireware\Alipeng\GIT_new\JX\product_tools\JX_BurnToolsetting_fireware\Alipeng\GIT_new\JX\product_tools\JX_BurnToolsetting_fireware\Alipeng\GIT_new\JX\product_tools\JX_BurnToolsetting_fireware\Alipeng\GIT_new\JX\product_tools\JX_BurnToolsetting_fireware\Alipeng\GIT_new\JX\product_tools\JX_BurnToolsetting_fireware\Alipeng\GIT_new\JX\product_tools\JX_BurnToolsetting_fireware\Alipeng\GIT_new\JX\product_tools\JX_BurnToolsetting_fireware\Alipeng\GIT_new\JX\product_tools\JX_BurnToolsetting_fireware\Alipeng\GIT_new\JX\product_tools\JX_BurnToolsetting_fireware\Alipeng\GIT_new\JX\product_tools\JX_BurnToolsetting_fireware\Alipeng\Alipeng\Alipeng\Alipeng\Alipeng\Alipeng\Alipeng\Alipeng\Alipeng\Alipeng\Alipeng\Alipeng\Alipeng\Alipeng\Alipeng\Alipen

(2) data 目录:

*暂不支持多个底板同时更新固件和授权文件,请逐个选择文件,逐个底板进行更新。