

FUNDAMENTOS DE OPTIMIZACIÓN

ALAN REYES-FIGUEROA MÉTODOS NUMÉRICOS II

(AULA 16) 05.SEPTIEMBRE.2023

Optimización

Comenzamos ahora el tema de Optimización numérica. Más precisamente, vamos a trabajar, optimización continua no restricta.

Problema de Optimización:

Resolvemos el problema

$$\min_{\mathbf{x}\in\Omega}f(\mathbf{x}),\tag{1}$$

donde $f: \mathbb{R}^n \to \mathbb{R}$ es la función objetivo.

Además, $\mathbf{x} = (x_1, \dots, x_n)^T \in \mathbb{R}^n$ es un vector de variables independientes. Estas variables usualmente se llaman las **variables de decisión**.

EL conjunto $\Omega \subseteq \mathbb{R}^n$ se llama *conjunto factible* o **conjunto de restricciones**. En el caso de optimización no restricta, Ω es el dominio de la función f, (por lo general $\Omega = \mathbb{R}^n$).

Casi siempre, requerimos que f posea alguna propiedad de interés. Por ejemplo, f es diferenciable, f es convexa, etc. Por lo general, en la **optimización continua** se diseñan métodos y algoritmos para optimizar funciones diferenciables f diferenciables (aunque esto no es un requisito indispensable).

Optimización

Ejemplos:

$$\min_{\mathbf{x}} \frac{\mathbf{x}^T A \mathbf{x}}{\mathbf{x}^T \mathbf{x}}, \quad \text{donde } A \in \mathbb{R}^{n \times n} \text{ es simétrica.}$$

(cociente de Rayleigh)

$$\min_{\mathbf{x} \in \mathbb{R}^n} \sum_{i=1}^n (x_i - y_i)^2 + \lambda \sum_{i=1}^{n-1} (x_{i+1} - x_i)^2.$$

(mínimos cuadrados con regularización de Tychonoff)

$$\min_{\mathbf{x}\in\mathbb{R}^n}\sum_{i=1}^{n-1}\left[(X_{i+1}-X_i^2)^2+(1-X_i)^2\right].$$

(función de Rosenbrock).

Tipos de Extremos

Definición

Suponga que $f:\Omega\subseteq\mathbb{R}^n\to\mathbb{R}$ es una función con valaores reales, definida sobre Ω . Un punto $\mathbf{x}^*\in\Omega$ es un **mínimo local** o **minimizador local** de f si existe $\varepsilon>0$ tal que

$$f(\mathbf{x}) \geq f(\mathbf{x}^*), \qquad ext{para todo } \mathbf{x} \in \Omega - \{\mathbf{x}^*\} \ ext{con } ||\mathbf{x} - \mathbf{x}^*|| < \varepsilon.$$

Definición

Suponga que $f:\Omega\subseteq\mathbb{R}^n\to\mathbb{R}$ es una función con valaores reales, definida sobre Ω . Un punto $\mathbf{x}^*\in\Omega$ es un **mínimo global** o **minimizador global** de f sobre Ω si

$$f(\mathbf{x}) \ge f(\mathbf{x}^*), \qquad \textit{para todo } \mathbf{x} \in \Omega - \{\mathbf{x}^*\}.$$

Obs! Reemplazando \geq con > en las definiciones anteriores obtenemos el concepto de un **mínimo local estricto** y de un **mínimo global estricto**, respectivamente.

Notación

A lo largo de este tema, vamos a utilizar algunas notaciones comunes:

• Todos los vectores se consideran vectores columna. Esto es

$$\mathbf{x} = (x_1, x_2, \dots, x_n)^T \in \mathbb{R}^n$$
 significa $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$.

•
$$\mathbf{1} = (1, 1, \dots, 1)^T \in \mathbb{R}^n$$
, $\mathbf{0} = (0, 0, \dots, 0)^T \in \mathbb{R}^n$, $\mathbf{I} = \begin{pmatrix} 1 & 1 & 1 \\ & \ddots & 1 \end{pmatrix} \in \mathbb{R}^{n \times n}$.

• Una función $f:\mathbb{R}^n o\mathbb{R}^m$ se representará como $f=(f_1,f_2,\ldots,f_m)^T\in\mathbb{R}^m.$ Así

$$f(\mathbf{x}) = egin{pmatrix} f_1(\mathbf{x}) \ f_2(\mathbf{x}) \ dots \ f_m(\mathbf{x}) \end{pmatrix}.$$

Algunos resultados

Lema (Preservación del signo)

Sea $f : \mathbb{R}^n \to \mathbb{R}$ continua en **a**, y tal que $f(\mathbf{a}) \neq 0$. Entonces, existe un $\delta > 0$ tal que para todo punto $\mathbf{x} \in \mathbb{D}_{\delta}(\mathbf{a})$, $f(\mathbf{x})$ tiene el mismo signo que $f(\mathbf{a})$.

<u>Prueba</u>: Sin pérdida, suponga que $f(\mathbf{a}) >$ O. Tome $\varepsilon >$ O. Usando la continuidad de f, existe $\delta >$ O tal que

$$||\mathbf{x} - \mathbf{a}|| < \delta \implies |f(\mathbf{x}) - f(\mathbf{a})| < \varepsilon$$
 $\implies -\varepsilon < f(\mathbf{x}) - f(\mathbf{a}) < \varepsilon$
 $\implies f(\mathbf{a}) - \varepsilon < f(\mathbf{x}) < f(\mathbf{a}) + \varepsilon.$

Tomando, o $< arepsilon < f(\mathbf{a})$, por ejemplo $arepsilon = rac{f(\mathbf{a})}{2}$, se obtiene que

$$||\mathbf{x} - \mathbf{a}|| < \delta \implies f(\mathbf{x}) > f(\mathbf{a}) - \varepsilon > 0,$$

de modo que $f(\mathbf{x}) >$ o tiene el mismo signo que $f(\mathbf{a})$ en el disco $\mathbb{D}_{\delta}(\mathbf{a})$. \square

En muchos métodos de optimización, se requiere información sobre la primera o segunda derivada de f.

Recordemos que si $f: \mathbb{R}^n \to \mathbb{R}$, es de clase C^1 , entonces f tiene primeras derivadas continuas. La **derivada** o **Jacobiana** de f en el punto $\mathbf{p} \in \mathbb{R}^n$, es el mapa lineal $Df: \mathbb{R}^n \to \mathbb{R}$ dado por

$$Df(\mathbf{p}) = Jf(\mathbf{p}) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(\mathbf{p}) & \frac{\partial f}{\partial x_2}(\mathbf{p}) & \dots & \frac{\partial f}{\partial x_n}(\mathbf{p}) \end{pmatrix}.$$

Si f es de clase C^2 , f tiene segundas derivadas parciales continuas. El **Hessiano** de f es

$$D^2 f(\mathbf{p}) = H f(\mathbf{p}) = egin{pmatrix} rac{\partial^2 f}{\partial \mathbf{x}_1^2}(\mathbf{p}) & rac{\partial^2 f}{\partial \mathbf{x}_1 \partial \mathbf{x}_2}(\mathbf{p}) & \dots & rac{\partial^2 f}{\partial \mathbf{x}_1 \partial \mathbf{x}_n}(\mathbf{p}) \\ rac{\partial^2 f}{\partial \mathbf{x}_2 \partial \mathbf{x}_1}(\mathbf{p}) & rac{\partial^2 f}{\partial \mathbf{x}_2^2}(\mathbf{p}) & \dots & rac{\partial^2 f}{\partial \mathbf{x}_2 \partial \mathbf{x}_n}(\mathbf{p}) \\ dots & dots & \ddots & dots \\ rac{\partial^2 f}{\partial \mathbf{x}_n \partial \mathbf{x}_1}(\mathbf{p}) & rac{\partial^2 f}{\partial \mathbf{x}_n \partial \mathbf{x}_2}(\mathbf{p}) & \dots & rac{\partial^2 f}{\partial \mathbf{x}_n^2}(\mathbf{p}) \end{pmatrix}.$$

Obs! Si $f \in C^2$, vale la igualdad de las segundas parciales mixtas, y $D^2 f(\mathbf{p})$ es simétrica.

En el caso general de $f:\mathbb{R}^n o\mathbb{R}^m$, con $f=(f_1,\ldots,f_m)^T\in\mathbb{R}^m$, la derivada de f es

$$Df(\mathbf{p}) = Jf(\mathbf{p}) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(\mathbf{p}) & \frac{\partial f_1}{\partial x_2}(\mathbf{p}) & \dots & \frac{\partial f_1}{\partial x_n}(\mathbf{p}) \\ \frac{\partial f_2}{\partial x_1}(\mathbf{p}) & \frac{\partial f_2}{\partial x_2}(\mathbf{p}) & \dots & \frac{\partial f_2}{\partial x_n}(\mathbf{p}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(\mathbf{p}) & \frac{\partial f_m}{\partial x_2}(\mathbf{p}) & \dots & \frac{\partial f_m}{\partial x_n}(\mathbf{p}) \end{pmatrix}.$$

Valen las propiedades ya conocidas del cálculo. En particular, vale la pena recordar la

Regla de la Cadena:

Si $f: \mathbb{R}^m \to \mathbb{R}^k$ y $g: \mathbb{R}^n \to \mathbb{R}^m$, osn funciones diferenciables en $g(\mathbf{p}) \in \mathbb{R}^m$ y $\mathbf{p} \in \mathbb{R}^m$, respectivamente, entonces $f \circ g: \mathbb{R}^n \to \mathbb{R}^k$ es diferenciable en \mathbf{p} y

$$D(f \circ g)(\mathbf{p}) = Df(g(\mathbf{p})) \cdot Dg(\mathbf{p}).$$

Revisamos algunas propiedades útiles de derivadas vectoriales y matriciales.

Sea $\mathbf{x} = (x_1, \dots, x_n)^T \in \mathbb{R}^n$. Si $f : \mathbb{R}^n \to \mathbb{R}$ es diferenciable, recordemos que su gradiente es el vector $\nabla_{\mathbf{x}} f(\mathbf{p}) = \left(\frac{\partial f}{\partial \mathbf{x}_n}(\mathbf{p}), \frac{\partial f}{\partial \mathbf{x}_n}(\mathbf{p}), \dots, \frac{\partial f}{\partial \mathbf{x}_n}(\mathbf{p})\right)^T \in \mathbb{R}^n$.

En ocasiones, representaremos $\nabla_{\mathbf{x}} f(\mathbf{p})$ como la aplicación lineal $Df(\mathbf{p}) : \mathbb{R}^n \to \mathbb{R}$.

La derivada direccional de f enla dirección del vector unitario $\mathbf{u} \in \mathbb{R}^n$ es $\frac{\partial f}{\partial \mathbf{u}}(\mathbf{p}) = \nabla_{\mathbf{x}} f(\mathbf{p}) \cdot \mathbf{u}$.

Si $f: \mathbb{R}^n \to \mathbb{R}^m$ es diferenciable, recordemos que su derivada o gradiente es la aplicación lineal $\nabla_{\mathbf{x}} f: \mathbb{R}^n \to \mathbb{R}^m$

$$abla_{\mathbf{x}} f(\mathbf{p}) = egin{pmatrix} rac{\partial f_1}{\partial \mathbf{x}_1}(\mathbf{p}) & rac{\partial f_1}{\partial \mathbf{x}_2}(\mathbf{p}) & \dots & rac{\partial f_1}{\partial \mathbf{x}_n}(\mathbf{p}) \\ rac{\partial f_2}{\partial \mathbf{x}_1}(\mathbf{p}) & rac{\partial f_2}{\partial \mathbf{x}_2}(\mathbf{p}) & \dots & rac{\partial f_2}{\partial \mathbf{x}_n}(\mathbf{p}) \\ dots & dots & \ddots & dots \\ rac{\partial f_m}{\partial \mathbf{x}_1}(\mathbf{p}) & rac{\partial f_m}{\partial \mathbf{x}_2}(\mathbf{p}) & \dots & rac{\partial f_m}{\partial \mathbf{x}_n}(\mathbf{p}) \end{pmatrix} \in \mathbb{R}^{m imes n}.$$

Observe que, en este caso, la matriz derivada de f puede verse como

$$abla_{\mathbf{x}} f(\mathbf{p}) = \left(egin{array}{ccc} &
abla_{\mathbf{x}} f_1(\mathbf{p})^{\mathsf{T}} & & \
abla_{\mathbf{x}} f_2(\mathbf{p})^{\mathsf{T}} & & \
\vdots & & \
abla_{\mathbf{x}} f_m(\mathbf{p})^{\mathsf{T}} & & \
abla_{\mathbf{$$

o bien

$$abla_{\mathbf{x}} f(\mathbf{p}) = \left(
abla_{\mathsf{x}_1} f(\mathbf{p}) \quad
abla_{\mathsf{x}_2} f(\mathbf{p}) \quad \dots \quad
abla_{\mathsf{x}_n} f(\mathbf{p})
ight).$$

En particular, si $\nabla_{\mathbf{x}} = (\nabla_{x_1}, \dots, \nabla_{x_n})^\mathsf{T}$ y $f = (f_1, f_2, \dots, f_m)^\mathsf{T} \in \mathbb{R}^m$, tenemos que

$$abla_{\mathbf{x}} f(\mathbf{p}) = \begin{pmatrix} \nabla_{\mathbf{x}_1} \\ \dots \\ \nabla_{\mathbf{x}_n} \end{pmatrix} \begin{pmatrix} f_1(\mathbf{p}) & \dots & f_m(\mathbf{p}) \end{pmatrix}.$$

Ejemplo: $f: \mathbb{R}^n \to \mathbb{R}^m$ dada por $f(\mathbf{x}) = A\mathbf{x}$, con $A = (a_{ij}) \in \mathbb{R}^{n \times m}$.

$$f(\mathbf{x}) = \begin{pmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{pmatrix} \implies \nabla_{\mathbf{x}} f(\mathbf{x}) = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}.$$

En consecuencia, $\nabla_{\mathbf{x}} (A\mathbf{x}) = A$.

Ejemplo: $f: \mathbb{R}^n \to \mathbb{R}^m$ dada por $f(\mathbf{x}) = \mathbf{x}^T A$, con $A = (a_{ii}) \in \mathbb{R}^{m \times n}$.

nemos
$$f(\mathbf{x}) = \begin{pmatrix} a_{11}X_1 + a_{21}X_2 + \dots + a_{n1}X_n \\ a_{12}X_1 + a_{22}X_2 + \dots + a_{n2}X_n \\ \vdots \\ a_{1m}X_1 + a_{2m}X_2 + \dots + a_{nm}X_n \end{pmatrix} \implies \nabla_{\mathbf{x}} f(\mathbf{x}) = \begin{pmatrix} a_{11} & a_{21} & \dots & a_{n1} \\ a_{12} & a_{22} & \dots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1m} & a_{2m} & \dots & a_{nm} \end{pmatrix}.$$

En consecuencia, $\nabla_{\mathbf{x}} (\mathbf{x}^T A) = A^T$.

En general,

$$\nabla_{\mathbf{x}} (A\mathbf{x} + \mathbf{b}) = A,$$

$$\nabla_{\mathbf{x}} (\mathbf{x}^{\mathsf{T}} A + \mathbf{b}^{\mathsf{T}}) = A^{\mathsf{T}} = (\nabla_{\mathbf{x}} (A^{\mathsf{T}} \mathbf{x} + \mathbf{b})^{\mathsf{T}}) = (\nabla_{\mathbf{x}} (A^{\mathsf{T}} \mathbf{x} + \mathbf{b}))^{\mathsf{T}}.$$

Otra forma de verlo. Recordemos que el producto matriz-vector, puede verse como el producto punto $A\mathbf{x} = \langle A^T, \mathbf{x} \rangle$.

Tenemos la siguientes propiedades:

$$\nabla_{\mathbf{x}} \langle A^{\mathsf{T}}, \mathbf{x} \rangle = A, \qquad \nabla_{\mathbf{x}} \langle A, \mathbf{x} \rangle = A^{\mathsf{T}},
\nabla_{\mathbf{x}} \langle \mathbf{x}, A^{\mathsf{T}} \rangle = A, \qquad \nabla_{\mathbf{x}} \langle \mathbf{x}, A \rangle = A^{\mathsf{T}}.$$

Otras propiedades:

$$abla_{\mathbf{x}} \mathbf{b} = \mathbf{o}, \qquad \nabla_{\mathbf{x}} \mathbf{y}^{\mathsf{T}} \mathbf{x} = \mathbf{y}^{\mathsf{T}}, \\
\nabla_{\mathbf{x}} \mathbf{x} = I, \qquad \nabla_{\mathbf{x}} c \mathbf{x} = cI.$$

Ejemplo: Sea $f : \mathbb{R}^n \to \mathbb{R}$ dada por $f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$, con $A \in \mathbb{R}^{n \times n}$. El gradiente es

$$\nabla_{\mathbf{x}} f(\mathbf{x}) = \nabla_{\mathbf{x}} \langle \mathbf{x}, A\mathbf{x} \rangle = \langle \nabla_{\mathbf{x}} \mathbf{x}, A\mathbf{x} \rangle + \langle \mathbf{x}, \nabla_{\mathbf{x}} A\mathbf{x} \rangle = \langle \mathbf{I}, A\mathbf{x} \rangle + \langle \mathbf{x}, A \rangle = \langle \mathbf{I}, A\mathbf{x} \rangle + \langle \mathbf{A}, \mathbf{x} \rangle$$
$$= A\mathbf{x} + A^{\mathsf{T}}\mathbf{x} = (A + A^{\mathsf{T}})\mathbf{x}.$$

En el caso en que A es simétrica, obtenemos

$$\nabla_{\mathbf{x}} (\mathbf{x}^{\mathsf{T}} A \mathbf{x}) = 2 A \mathbf{x}.$$

Otras propiedades similares:

$$\nabla_{\mathbf{x}} ||\mathbf{x}||^{2} = 2I,$$

$$\nabla_{\mathbf{x}} \frac{\mathbf{x}^{T} A \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}} = \frac{||\mathbf{x}||^{2} (A + A^{T}) \mathbf{x} - 2(\mathbf{x}^{T} A \mathbf{x}) \mathbf{x}}{||\mathbf{x}||^{4}}.$$

Derivadas Matriciales

Ahora mencionamos algunas derivadas matriciales. Sea $X \in \mathbb{R}^{n \times p}$ una matriz con entradas $X = (x_i)$, y $f : \mathbb{R}^{n \times p} \to \mathbb{R}$ es una función diferenciable. Entonces definimos

$$\nabla_X f(X) = \left(\frac{\partial f}{\partial x_{ij}}\right) = \begin{pmatrix} \frac{\partial f}{\partial x_{11}} & \frac{\partial f}{\partial x_{12}} & \cdots & \frac{\partial f}{\partial x_{1p}} \\ \frac{\partial f}{\partial x_{21}} & \frac{\partial f}{\partial x_{22}} & \cdots & \frac{\partial f}{\partial x_{2p}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f}{\partial x_{n1}} & \frac{\partial f}{\partial x_{n2}} & \cdots & \frac{\partial f}{\partial x_{np}} \end{pmatrix}.$$

Ejemplo: Sea $f: \mathbb{R}^{n \times n} \to \mathbb{R}$, dada por $f(X) = \operatorname{tr} X$. En este caso

$$f(X) = \sum_{j=1}^{n} x_{jj} \implies \nabla_X f(X) = \begin{pmatrix} 1 & & \\ & 1 & \\ & & \ddots & \\ & & & 1 \end{pmatrix} = I.$$

Derivadas Matriciales

Ejemplo: Sea $f: \mathbb{R}^{n \times n} \to \mathbb{R}$, dada por $f(X) = \operatorname{tr}(AX)$, $A \in \mathbb{R}^{n \times n}$.

En este caso, las entradas de AX son de la forma $(AX)_{ij} = \sum_{k=1}^{n} a_{ik} x_{kj}$.

Calculando la traza, obtenemos

$$f(X) = \operatorname{tr}(AX) = \sum_{j=1}^{n} \sum_{k=1}^{n} (AX)_{jj} = \sum_{j=1}^{n} \sum_{k=1}^{n} a_{jk} x_{kj}.$$

De ahí que

$$\nabla_X f(X) = \left(\nabla_{X_{ij}} \sum_{j=1}^n \sum_{k=1}^n a_{jk} x_{kj}\right) = \begin{pmatrix} a_{11} & a_{21} & \dots & a_{n1} \\ a_{12} & a_{22} & \dots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{nn} \end{pmatrix} = A^T.$$

Portanto $\nabla_X \operatorname{tr}(AX) = A^T$. Similarmente, $\nabla_X \operatorname{tr}(XA) = A^T$.

Derivadas Matriciales

Otras propiedades útiles:

- $\nabla_X \mathbf{a}^T X \mathbf{b} = \mathbf{a} \mathbf{b}^T$.
- $\nabla_X \operatorname{tr}(AXB) = \nabla_X \operatorname{tr}(BAX) = A^T B^T$.
- $\nabla_X \operatorname{tr}(X^T A X) = (A + A^T) X$.
- $\nabla_X \operatorname{tr}(X^{-1}) = -(X^{-T})^2$.
- $\nabla_X \operatorname{tr}(AX^{-1}) = \nabla_X \operatorname{tr}(X^{-1}A) = -(X^T)^{-1}A^T(X^{-1})^T$.
- $\nabla_X \det(X) = |X|(X^{-1})^T$.

Ver una lista más completa de propiedades de derivadas vectoriales y matriciales en https://en.wikipedia.org/wiki/Matrix_calculus