# Africast-Time Series Analysis & Forecasting Using R

6. Forecasting with regression, how to represent temporal structure with regressors



#### **Outline**

- 1 The linear model with time series
- 2 Evaluating the regression model
- 3 Selecting predictors
- 4 Forecasting with regression
- 5 Correlation, causation and forecasting
- 6 Some useful predictors for regression models

#### **Outline**

- The linear model with time series
- 2 Evaluating the regression model
- 3 Selecting predictors
- 4 Forecasting with regression
- 5 Correlation, causation and forecasting
- 6 Some useful predictors for regression models

## **Regression models**

- To **explain**
- To forecast

- Simple linear regression model(SLR)
- Multiple linear regression model (MLR)

#### **SLR model in thoery**

Regression model allows for a linear relationship between the forecast variable y and a single predictor variable x.

$$y_t = \beta_0 + \beta_1 x_t + \varepsilon_t.$$

- $y_t$  is the variable we want to predict: the response variable
- lacksquare Each  $x_t$  is numerical and is called a predictor
- lacksquare  $eta_0$  and  $eta_1$  are regression coefficients

#### SLR model in practice

In practice, of course, we have a collection of observations but we do not know the values of the coefficients  $\hat{\beta}_0$ ,  $\hat{\beta}_1$ . These need to be estimated from the data.

$$y_t = \hat{\beta}_0 + \hat{\beta}_1 x_t.$$

- $\blacksquare y_t$  is the response variable
- lacktriangle Each  $x_t$  is a predictor
- $\hat{\beta}_0$  is the estimated intercept
- lacksquare  $\hat{eta}_1$  is the estimated slope

#### What is the best fit

- There are many ways that a straight line can be laid on the scatter
- Best known criterion is called Ordinary Least Squares(OLS)



#### **Estimation of the model**

That is, we find the values of  $\beta_0$  and  $\beta_1$  which minimize

$$\sum_{i=1}^{N} e_i^2 = \sum_{i=1}^{N} (y_i - \beta_0 - \beta_1 x_i)^2.$$

- This is called *least squares* estimation because it gives the least value of the sum of squared errors.
- Finding the best estimates of the coefficients is often called *fitting* the model to the data.
- We refer to the *estimated* coefficients using the notation  $\hat{\beta}_0, \hat{\beta}_1$ .

8

```
us_change %>%
  gather("Measure", "Change", Consumption, Income) %>%
  autoplot(Change) +
  ylab("% change") + xlab("Year")
```





```
fit_cons <- us_change %>%
  model(lm = TSLM(Consumption ~ Income))
report(fit cons)
Series: Consumption
Model: TSLM
Residuals:
  Min 10 Median 30 Max
-2.408 - 0.318  0.026  0.300  1.452
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.5451 0.0557 9.79 < 2e-16 ***
       0.2806 0.0474 5.91 1.6e-08 ***
Income
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.603 on 185 degrees of freedom
```

Multiple Pesquared: 0 150 Adjusted Pesquared: 0 154

1

## **Multiple regression**

- In multiple regression there is one variable to be forecast and several predictor variables.
- The basic concept is that we forecast the time series of interest y assuming that it has a linear relationship with other time series  $x_1$ ,  $x_2$ , ....,  $x_K$
- We might forecast daily A&E attendnace y using temperature  $x_1$  and GP visits  $x_2$  as predictors.

## How many variable can we add?

You can add as many as you want but be aware of:

- Overfitting
- Multicollinearity

## Multiple regression and forecasting

$$y_t = \beta_0 + \beta_1 x_{1,t} + \beta_2 x_{2,t} + \dots + \beta_k x_{k,t} + \varepsilon_t.$$

- $y_t$  is the variable we want to predict: the response variable
- Each  $x_{j,t}$  is numerical and is called a predictor. They are usually assumed to be known for all past and future times.
- The coefficients  $\beta_1, \dots, \beta_k$  measure the effect of each predictor after taking account of the effect of all other predictors in the model.

That is, the coefficients measure the **marginal effects**.

#### **Estimation of the model**

We find the values of  $\hat{\beta}_0, \dots, \hat{\beta}_k$  which minimize

$$\sum_{i=1}^{N} e_i^2 = \sum_{i=1}^{N} (y_i - \beta_0 - \beta_1 x_{1,i} - \dots - \beta_k x_{k,i})^2.$$

- This is called *least squares* estimation because it gives the least value of the sum of squared errors
- Finding the best estimates of the coefficients is often called *fitting* the model to the data
- We refer to the *estimated* coefficients using the notation  $\hat{\beta}_0, \dots, \hat{\beta}_k$ .

## Useful predictors in linear regression

#### **Linear trend** [ x\_t = t ]

- $t = 1, 2, \dots, T$
- Strong assumption that trend will continue.
- use special function trend()

#### Seasonality

- Seasinality will be considered based on the interval of index
- use special fucntion season()





```
fit consMR <- us change %>%
  model(lm = TSLM(Consumption ~ Income + Production + Unemployment + Savings))
report(fit consMR)
Series: Consumption
Model: TSLM
Residuals:
  Min
      10 Median 30
                          Max
-0.883 - 0.176 - 0.037 0.153 1.206
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.26729 0.03721 7.18 1.7e-11 ***
Income
      0.71448 0.04219 16.93 < 2e-16 ***
Production 0.04589 0.02588 1.77 0.078.
Unemployment -0.20477 0.10550 -1.94 0.054 .
Savings -0.04527 0.00278 -16.29 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 0.329 on 182 degrees of freedom Multiple R-squared: 0.754, Adjusted R-squared: 0.749







#### **Outline**

- 1 The linear model with time series
- 2 Evaluating the regression model
- 3 Selecting predictors
- 4 Forecasting with regression
- 5 Correlation, causation and forecasting
- 6 Some useful predictors for regression models

## Multiple regression and forecasting

For forecasting purposes, we require the following assumptions:

- lacksquare  $\varepsilon_t$  are uncorrelated and zero mean
- lacksquare  $\varepsilon_t$  are uncorrelated with each  $x_{j,t}$ .

## Multiple regression and forecasting

For forecasting purposes, we require the following assumptions:

- lacksquare  $\varepsilon_t$  are uncorrelated with each  $x_{j,t}$ .

It is **useful** to also have  $\varepsilon_t \sim {\sf N}(0,\sigma^2)$  when producing prediction intervals or doing statistical tests.

#### **Residual diagnostics**

There are a series of plots that should be produced in order to check different aspects of the fitted model and the underlying assumptions.

- check if residuls are uncorrelated using ACF
- Check if residuals are normally distributed

#### Residual scatterplots

Useful for spotting outliers and whether the linear model was appropriate.

- lacksquare Scatterplot of residuals  $\varepsilon_t$  against each predictor  $x_{j,t}$ .
- lacksquare Scatterplot residuals against the fitted values  $\hat{y}_t$
- Expect to see scatterplots resembling a horizontal band with no values too far from the band and no patterns such as curvature or increasing spread.

```
df <- left_join(us_change, residuals(fit_consMR), by = "Time")
p1 <- ggplot(df, aes(x=Income, y=.resid)) +
    geom_point() + ylab("Residuals")
p2 <- ggplot(df, aes(x=Production, y=.resid)) +
    geom_point() + ylab("Residuals")
p3 <- ggplot(df, aes(x=Savings, y=.resid)) +
    geom_point() + ylab("Residuals")
p4 <- ggplot(df, aes(x=Unemployment, y=.resid)) +
    geom_point() + ylab("Residuals")
(p1 | p2) / (p3 | p4)</pre>
```



#### **Residual patterns**

- If a plot of the residuals vs any predictor in the model shows a pattern, then the relationship is nonlinear.
- If a plot of the residuals vs any predictor **not** in the model shows a pattern, then the predictor should be added to the model.
- If a plot of the residuals vs fitted values shows a pattern, then there is heteroscedasticity in the errors. (Could try a transformation.)

#### **Outline**

- 1 The linear model with time series
- 2 Evaluating the regression model
- 3 Selecting predictors
- 4 Forecasting with regression
- 5 Correlation, causation and forecasting
- 6 Some useful predictors for regression models

Computer output for regression will always give the  $\mathbb{R}^2$  value. This is a useful summary of the model.

- It is equal to the square of the correlation between y and  $\hat{y}$ .
- It is often called the "coefficient of determination".
- It can also be calculated as follows:  $R^2 = \frac{\sum (\hat{y}_t \bar{y})^2}{\sum (y_t \bar{y})^2}$
- It is the proportion of variance accounted for (explained) by the predictors.

#### However ...

- $\blacksquare$   $R^2$  does not allow for degrees of freedom.
- Adding *any* variable tends to increase the value of  $\mathbb{R}^2$ , even if that variable is irrelevant.

However ...

- $\blacksquare$   $R^2$  does not allow for degrees of freedom.
- Adding *any* variable tends to increase the value of  $\mathbb{R}^2$ , even if that variable is irrelevant.

To overcome this problem, we can use adjusted  $R^2$ :

$$\bar{R}^2 = 1 - (1 - R^2) \frac{T - 1}{T - k - 1}$$

where k = no. predictors and T = no. observations.

However ...

- $\blacksquare$   $R^2$  does not allow for degrees of freedom.
- Adding *any* variable tends to increase the value of  $\mathbb{R}^2$ , even if that variable is irrelevant.

To overcome this problem, we can use adjusted  $R^2$ :

$$\bar{R}^2 = 1 - (1 - R^2) \frac{T - 1}{T - k - 1}$$

where k = no. predictors and T = no. observations.

#### Maximizing $\bar{R}^2$ is equivalent to minimizing $\hat{\sigma}^2$ .

$$\hat{\sigma}^2 = \frac{1}{T - k - 1} \sum_{t=1}^{T} \varepsilon_t^2$$

#### **Cross-validation**

- Remove observation t from the data set, and fit the model using the remaining data. Then compute the error for the omitted observation
- Repeat step 1 for t = 1, ..., T
- Compute the MSE from errors obtained in 1. We shall call this the CV

#### **Akaike's Information Criterion**

$$\mathsf{AIC} = -2\log(L) + 2(k+2)$$

where  ${\cal L}$  is the likelihood and  ${\it k}$  is the number of predictors in the model.

- This is a penalized likelihood approach.
- *Minimizing* the AIC gives the best model for prediction.
- lacksquare AIC penalizes terms more heavily than  $ar{R}^2$ .
- Minimizing the AIC is asymptotically equivalent to minimizing MSE via leave-one-out cross-validation.

### **Corrected AIC**

For small values of T, the AIC tends to select too many predictors, and so a bias-corrected version of the AIC has been developed.

$$\mathsf{AIC_C} = \mathsf{AIC} + \frac{2(k+2)(k+3)}{T-k-3}$$

As with the AIC, the  $AIC_C$  should be minimized.

## **Comparing regression models**

# **Choosing regression variables**

### **Best subsets regression**

- Fit all possible regression models using one or more of the predictors.
- Choose the best model based on one of the measures of predictive ability (CV, AIC, AICc).

# **Choosing regression variables**

### **Backwards stepwise regression**

- Start with a model containing all variables.
- Try subtracting one variable at a time. Keep the model if it has lower CV or AICc.
- Iterate until no further improvement.
- You can also do forward stepwise

### **Outline**

- 1 The linear model with time series
- 2 Evaluating the regression model
- 3 Selecting predictors
- 4 Forecasting with regression
- 5 Correlation, causation and forecasting
- 6 Some useful predictors for regression models

## **Ex-ante versus ex-post forecasts**

- Ex ante forecasts are made using only information available in advance.
  - require forecasts of predictors
- Ex post forecasts are made using later information on the predictors.
  - useful for studying behaviour of forecasting models.
- trend, seasonal and calendar variables are all known in advance, so these don't need to be forecast.

## **Scenario based forecasting**

- Assumes possible scenarios for the predictor variables
- Prediction intervals for scenario based forecasts do not include the uncertainty associated with the future values of the predictor variables.

# **Building a predictive regression model**

If getting forecasts of predictors is difficult, you can use lagged predictors instead.

$$beta_0 + \beta_1 x_{1,t-h} + \dots + \beta_k x_{k,t-h} + \varepsilon_t.$$

 $\blacksquare$  A different model for each forecast horizon h.

## **US Consumption**

```
fit_consBest <- us_change %>%
  model(
    TSLM(Consumption ~ Income + Savings + Unemployment)
down future <- new data(us change, 4) %>%
  mutate(Income = -1, Savings = -0.5, Unemployment = 0)
fc_down <- forecast(fit_consBest, new_data = down_future)</pre>
up_future <- new_data(us_change, 4) %>%
  mutate(Income = 1, Savings = 0.5, Unemployment = 0)
fc_up <- forecast(fit_consBest, new_data = up_future)</pre>
```

## **US Consumption**

```
us_change %>% autoplot(Consumption) +
  ylab("% change in US consumption") +
  autolayer(fc_up, series = "increase") +
  autolayer(fc_down, series = "decrease") +
  guides(colour = guide_legend(title = "Scenario"))
```



### **Outline**

- 1 The linear model with time series
- 2 Evaluating the regression model
- 3 Selecting predictors
- 4 Forecasting with regression
- 5 Correlation, causation and forecasting
- 6 Some useful predictors for regression models

## **Correlation does not imply causation**

### Check out https://www.tylervigen.com/spurious-correlations



### **Correlation is not causation**

- When x is useful for predicting y, it is not necessarily causing y.
- e.g., predict number of drownings y using number of ice-creams sold x.
- Correlations are useful for forecasting, even when there is no causality.
- Better models usually involve causal relationships (e.g., temperature x and people z to predict drownings y).

## **Multicollinearity**

In regression analysis, multicollinearity occurs when:

- Two predictors are highly correlated (i.e., the correlation between them is close to  $\pm 1$ ).
- A linear combination of some of the predictors is highly correlated with another predictor.
- A linear combination of one subset of predictors is highly correlated with a linear combination of another subset of predictors.

## **Multicollinearity**

### If multicollinearity exists...

- the numerical estimates of coefficients may be wrong (worse in Excel than in a statistics package)
- don't rely on the *p*-values to determine significance.
- there is no problem with model predictions provided the predictors used for forecasting are within the range used for fitting.
- omitting variables can help.
- combining variables can help.

### **Outliers and influential observations**

### Things to watch for

- Outliers: observations that produce large residuals.
- *Influential observations*: removing them would markedly change the coefficients. (Often outliers in the *x* variable).
- Lurking variable: a predictor not included in the regression but which has an important effect on the response.
- Points should not normally be removed without a good explanation of why they are different.

# **Modern regression models**

- Suppose instead of 3 regressor we had 44.
  - ▶ For example, 44 predictors leads to 18 trillion possible models!
- Stepwise regression cannot solve this problem due to the number of variables.
- We need to use the family of Lasso models: lasso, ridge, elastic net

### **Outline**

- 1 The linear model with time series
- 2 Evaluating the regression model
- 3 Selecting predictors
- 4 Forecasting with regression
- 5 Correlation, causation and forecasting
- 6 Some useful predictors for regression models

# **Dummy variables**

If a categorical variable takes only two values (e.g., 'Yes' or 'No'), then an equivalent numerical variable can be constructed taking value 1 if yes and 0 if no. This is

called a dummy variable.

|    | / \ |  |
|----|-----|--|
| 1  | Yes |  |
| 2  | Yes |  |
| 3  | No  |  |
| 4  | Yes |  |
| 5  | No  |  |
| 6  | No  |  |
| 7  | Yes |  |
| 8  | Yes |  |
| 9  | No  |  |
| 10 | No  |  |
| 11 | No  |  |
| 12 | No  |  |
| 13 | Yes |  |
| 14 | No  |  |

## **Dummy variables**

If there are more than two categories, then the variable can be coded using several dummy variables (one fewer than the total number of categories).

|    | Α         | В | С | D | Е |
|----|-----------|---|---|---|---|
| 1  | Monday    | 1 | 0 | 0 | 0 |
| 2  | Tuesday   | 0 | 1 | 0 | 0 |
| 3  | Wednesday | 0 | 0 | 1 | 0 |
| 4  | Thursday  | 0 | 0 | 0 | 1 |
| 5  | Friday    | 0 | 0 | 0 | 0 |
| 6  | Monday    | 1 | 0 | 0 | 0 |
| 7  | Tuesday   | 0 | 1 | 0 | 0 |
| 8  | Wednesday | 0 | 0 | 1 | 0 |
| 9  | Thursday  | 0 | 0 | 0 | 1 |
| 10 | Friday    | 0 | 0 | 0 | 0 |
| 11 | Monday    | 1 | 0 | 0 | 0 |
| 12 | Tuesday   | 0 | 1 | 0 | 0 |
| 13 | Wednesday | 0 | 0 | 1 | 0 |
| 14 | Thursday  | 0 | 0 | 0 | 1 |
| 15 | Friday    | 0 | 0 | 0 | 0 |

# Beware of the dummy variable trap!

- Using one dummy for each category gives too many dummy variables!
- The regression will then be singular and inestimable.
- Either omit the constant, or omit the dummy for one category.
- The coefficients of the dummies are relative to the omitted category.

# **Uses of dummy variables**

#### **Seasonal dummies**

- For quarterly data: use 3 dummies
- For monthly data: use 11 dummies
- For daily data: use 6 dummies

## Uses of dummy variables

#### **Seasonal dummies**

- For quarterly data: use 3 dummies
- For monthly data: use 11 dummies
- For daily data: use 6 dummies

#### **Outliers**

If there is an outlier, you can use a dummy variable to remove its effect.

## Uses of dummy variables

#### **Seasonal dummies**

- For quarterly data: use 3 dummies
- For monthly data: use 11 dummies
- For daily data: use 6 dummies

#### **Outliers**

If there is an outlier, you can use a dummy variable to remove its effect.

### **Public holidays**

■ For daily data: if it is a public holiday, dummy=1, otherwise dummy=0.

## **Intervention variables**

### **Spikes**

Equivalent to a dummy variable for handling an outlier.

### **Intervention variables**

#### **Spikes**

Equivalent to a dummy variable for handling an outlier.

### **Steps**

Variable takes value 0 before the intervention and 1 afterwards.

### **Intervention variables**

#### **Spikes**

Equivalent to a dummy variable for handling an outlier.

### **Steps**

Variable takes value 0 before the intervention and 1 afterwards.

### Change of slope

- Variables take values 0 before the intervention and values  $\{1, 2, 3, ...\}$  afterwards.
- this could be also handled using trend()

# Include special event using dummies

- lacktriangle Christmas Eve,  $v_t=1$ ,  $v_t=0$  otherwise
- $\blacksquare$  New year's Day: if New year's Day,  $v_t=1$ ,  $v_t=0$  otherwise.
- and more: Ramadan and Chinese new year, school holiday, etc

### Interactions

For example, sometimes the effect of a partiucluar event might be different if it is on a weekend or a week day or its efect might be different in each shift:

- you need to introduce an interaction variable
- you can use a new dummy as: v1\*v2

## **Lagged predictors**

The model include present and past values of predictor:

$$x_t, x_{t-1}, x_{t-2}, \dots$$

$$[y_{t}] = a + \sqrt{0} x_{t} + \sqrt{1} x_{t-1} + ... + \sqrt{k} x_{t-k} + \sqrt{1} x_{t-1}]$$

 $\blacksquare$  x can influence y, but y is not allowed to influence x.

# **Lagged predictors**

- Lagged values of a predictor:
  - Create new variables by shifting the existing variable backwards

Example: x is advertising which has a delayed effect

```
x_1 = {\it advertising for previous month;} x_2 = {\it advertising for two months previously;} :
```

 $x_m = {\it advertising for } m {\it months previously.}$ 

#### insurance

```
# A tsibble: 40 x 3 [1M]
     Month Quotes TVadverts
     <mth>
            <dbl>
                      <dbl>
 1 2002 Jan 13.0
                       7.21
2 2002 Feb 15.4
                       9.44
3 2002 Mar 13.2
                       7.53
4 2002 Apr 13.0
                       7.21
5 2002 May
            15.4
                       9.44
 6 2002 Jun
             11.7
                       6.42
 7 2002 Jul
             10.1
                       5.81
8 2002 Aug
            10.8
                       6.20
9 2002 Sep 13.3
                       7.59
10 2002 Oct 14.6
                       8.00
```

II - 20 ......





```
fit <- insurance |>
  # Restrict data so models use same fitting period
  mutate(Quotes = c(NA, NA, NA, Quotes[4:40])) |>
  model(
    ARIMA(Ouotes ~ pdq(d = 0) + TVadverts),
    ARIMA(Ouotes \sim pdq(d = 0) + TVadverts +
      lag(TVadverts)),
    ARIMA(Quotes \sim pdq(d = 0) + TVadverts +
      lag(TVadverts) +
      lag(TVadverts, 2)),
    ARIMA(Quotes \sim pdq(d = 0) + TVadverts +
      lag(TVadverts) +
      lag(TVadverts, 2) +
      lag(TVadverts, 3))
```

glance(fit)

| Lag order | sigma2 | log_lik | AIC  | AICc | BIC  |
|-----------|--------|---------|------|------|------|
| 0         | 0.265  | -28.3   | 66.6 | 68.3 | 75.0 |
| 1         | 0.209  | -24.0   | 58.1 | 59.9 | 66.5 |
| 2         | 0.215  | -24.0   | 60.0 | 62.6 | 70.2 |
| 3         | 0.206  | -22.2   | 60.3 | 65.0 | 73.8 |

```
# Re-fit to all data
fit <- insurance |>
  model(ARIMA(Ouotes ~ TVadverts + lag(TVadverts) + pdq(d = 0)))
report(fit)
Series: Quotes
Model: LM w/ ARIMA(1,0,2) errors
Coefficients:
      ar1
            mal ma2 TVadverts lag(TVadverts) intercept
     0.512 0.917 0.459 1.2527
                                      0.1464
                                                  2.16
s.e. 0.185 0.205 0.190 0.0588 0.0531
                                                  0.86
sigma^2 estimated as 0.2166: log likelihood=-23.9
ATC=61.9 ATCc=65.4
                   BTC=73.7
```

```
# Re-fit to all data
fit <- insurance |>
  model(ARIMA(Ouotes ~ TVadverts + lag(TVadverts) + pdq(d = 0)))
report(fit)
Series: Ouotes
Model: LM w/ ARIMA(1,0,2) errors
Coefficients:
       ar1
                ma2 TVadverts lag(TVadverts) intercept
            ma1
     0.512 0.917 0.459 1.2527
                                       0.1464
                                                  2.16
s.e. 0.185 0.205 0.190 0.0588
                                                  0.86
                                       0.0531
sigma^2 estimated as 0.2166: log likelihood=-23.9
ATC=61.9 ATCc=65.4
                   BTC=73.7
```

$$y_t = 2.16 + 1.25x_t + 0.15x_{t-1} + \eta_t,$$
  

$$\eta_t = 0.512\eta_{t-1} + \varepsilon_t + 0.92\varepsilon_{t-1} + 0.46\varepsilon_{t-2}.$$

```
advert_a <- new_data(insurance, 20) |>
  mutate(TVadverts = 10)
forecast(fit, advert_a) |> autoplot(insurance)
```



```
advert_b <- new_data(insurance, 20) |>
  mutate(TVadverts = 8)
forecast(fit, advert_b) |> autoplot(insurance)
```



```
advert_c <- new_data(insurance, 20) |>
  mutate(TVadverts = 6)
forecast(fit, advert_c) |> autoplot(insurance)
```



## **Lead predictors**

Sometimes a change in the predictor  $x_t$  that will happen in the future will affect the value of  $y_t$  in the past. We say  $x_t$  is a leading indicator.

- Lead values of a predictor:
  - Create new variables by shifting the existing variable forwards
- lacksquare  $y_t = \mathrm{sales}$ ,  $x_t = \mathrm{tax}$  policy announcement