Report No: CCIS15050030401

FCC REPORT

Applicant: Automotive Data Solutions Inc.

Address of Applicant: 8400 Bougainville, Montreal, Quebec H4P 2G1 Canada

Equipment Under Test (EUT)

Product Name: CAR ALARM(TWO WAY)

Model No.: TR2350AC

FCC ID: 2AEPJ2350A

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.231(a)

Date of sample receipt: 11 May, 2015

Date of Test: 12 May, to 29 May, 2015

Date of report issue: 29 May, 2015

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	29 May, 2015	Original

Prepared By: Date: 29 May, 2015

Report Clerk

Check By: Date: 29 May, 2015

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	
2	VER	RSION	2
3	CON	NTENTS	3
4		ST SUMMARY	
5		NERAL INFORMATION	
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	
	5.3	TEST MODE	_
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	LABORATORY FACILITY	
	5.6	LABORATORY LOCATION	
	5.7	TEST INSTRUMENTS LIST	6
6	TES	T RESULTS AND MEASUREMENT DATA	7
	6.1	ANTENNA REQUIREMENT	7
	6.2	RADIATED EMISSION	8
	6.2.1	· · · · · · · · · · · · · · · · · · ·	
	6.2.2		
	6.3	20dB Bandwidth	
	6.4	DURATION TIME	15
7	TES	ST SETUP PHOTOS	
8	FUT	CONSTRUCTIONAL PHOTOS	18

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203	Pass
Field strength of the fundamental signal	15.231 (a)	Pass
Spurious emissions	15.231 (b)/15.209	Pass
20dB Bandwidth	15.231 (c)	Pass
Dwell time	15.231 (a)	Pass
Conducted Emission	15.107	N/A

Remarks:

N/A: The EUT not applicable of the test item.

Pass: The EUT complies with the essential requirements in the standard.

Test according to ANSI C63.4:2009 and ANSI C63.10:2009.

Report No: CCIS15050030401

5 General Information

5.1 Client Information

Applicant:	Automotive Data Solutions Inc.
Address of Applicant:	8400 Bougainville, Montreal, Quebec H4P 2G1 Canada
Manufacturer/ Factory:	DONGGUAN PORTMAN ELECTRONIC SCIENCE AND TECHNOLOGY CO.,LTD.
Address of Manufacturer/ Factory:	NO.10, LUYI 2 ROAD, TANGXIA TOWN, DONGGUAN CITY, GUANGDONG PROVINCE CHINA

5.2 General Description of E.U.T.

Product Name:	CAR ALARM(TWO WAY)
Model No.:	TR2350AC
Operation Frequency:	433.92MHz
Channel numbers:	1
Modulation type:	FSK
Antenna Type:	Integrated antenna
Antenna gain:	-0.71dBi
Power supply:	DC 3V Lithium Battery(CR2450)

5.3 Test mode

Transmitting mode:	Keep the EUT in tra	Keep the EUT in transmitting mode with modulation (new battery used)						
Pre-Test Mode:								
CCIS has verified the construction and function in typical operation, The EUT was placed on three different polar directions; i.e. X axis, Y axis, Z axis. which was shown in this test report and defined as follows:								
Axis	X	Υ	Z					
Field Strength(dBuV/m)	Field Strength(dBuV/m) 97.73 97.57 97.62							
Final Test Mode:								
According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup": X axis (see the test setup photo)								

5.4 Description of Support Units

	-		
N/	Δ		

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: CCIS15050030401

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

● IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

● CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.7 Test Instruments list

Radiated Emission:										
Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)					
EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016					
BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	03-28-2015	03-28-2016					
Double-ridged waveguide horn antenna	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016					
Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016					
Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016					
Spectrum analyzer	Rohde & Schwarz	FSP	CCIS0023	03-28-2015	03-28-2016					

Conducted Emission:										
Toot Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date	Cal. Date					
Test Equipment	Manufacturer	woder No.	Inventory No.	(mm-dd-yy)	(mm-dd-yy)					
EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016					
LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016					

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone, 186 (0) 755 23116366

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The EUT make use of an integrated antenna, The typical gain of the antenna is -0.71dBi.

6.2 Radiated Emission

Test Degratement	F00 P==45 0	Continu 45	224(2) 5::1 45 2	200					
Test Requirement:	FCC Part15 C Section 15.231(a) and 15.209								
Test Method:	ANSI C63.4:2009								
Test Frequency Range:	30MHz to 5000MHz Macaurament Distance: 2m (Sami Anachais Chamber)								
Test site:	Measurement Distance: 3m (Semi-Anechoic Chamber) Frequency Detector RBW VBW Remark								
Receiver setup:	Frequency	Detector	VBW	/ Remark					
	30MHz-1GHz	Quasi-peal	Iz Quasi-peak Value						
	Above 1GHz	Peak	1MHz	3MH:					
Limit:	Frequer	ncy	Limit (dBuV/m	@3m)	Remark				
(Field strength of the	433.92 M	1Hz –	80.8		Average Value				
fundamental signal)	_		100.8		Peak Value				
Limit:	Frequen		Limit (dBuV/m @	@3m)	Remark				
(Spurious Emissions)	30MHz-88		40.0		Quasi-peak Value				
	88MHz-216		43.5		Quasi-peak Value				
	216MHz-96		46.0		Quasi-peak Value				
	960MHz-1	GHZ	54.0		Quasi-peak Value				
	Above 1G	Hz –	54.0		Average Value				
	On The areas in		74.0	.::	Peak Value evel is 20 dB below the				
Test Procedure:	strength. a. The EUT of the ground 360 degree b. The EUT of antenna, of tower. c. The antennaground to horizontal the measured the measured. For each so and then tower and the measured for the test-results of the EUT have 10dE	was placed of at a 3 meters of at a 3 meters of at a 3 meters of a mergin word of a mergin w	on the top of a representation of a representation of the position of the top	otating ta c cambe of the h the inter op of a v e meter to ue of the the ante T was ar ights from 0 degree old Mode k mode oe stopper vise the e one by c	limit permits higher field able 0.8 meters above r. The table was rotated ighest radiation. rference-receiving ariable-height antenna of four meters above the effield strength. Both enna are set to make ranged to its worst case m 1 meter to 4 meters rees to 360 degrees to ect Function and e. was 10dB lower than ed and the peak values emissions that did not one using peak, quasi- a reported in a data				

6.2.1 Field Strength Of The Fundamental Signal

	Peak value											
Frequency (MHz)	Read Level (dBuV		Antenna Factor (dB/m)	Cable Loss (dB)		₋evel BuV/m)	Limit Line (dBuV/m)				Over Limit (dB)	Polarization
433.92	72.84		15.53	3.16	9	1.53	100.8	0	-9.27	Vertical		
433.92	79.04		15.53	3.16	9	7.73	100.8	0	-3.07	Horizontal		
				Average	val	ue						
Frequency (MHz)		Level Duty Cycle Average value Limit Lin (dBuV/m) factor (dBuV/m) (dBuV/m)					Polarization					
433.92	91.5	3	-19.32	72.21		80	.80 -8.59		-8.59	Vertical		
433.92	97.73	3	-19.32	78.41		80	0.80		-2.39	Horizontal		
		Average value=Peak value + Duty Cycle Factor										
Calculate For	mula:	Duty	Duty cycle factor = 20log(Duty cycle)									
		Duty cycle = on time/100 milliseconds or period, whichever is less										
		T on time = 10.82(ms)										
		Тре	eriod = 100(ms)									
Test data:		Duty	y cycle = 10.82	%								
		Duty	y cycle factor =	20log(Duty cy	cle) =	= -19.32						

T on time slot-1:

T period:

6.2.2 Spurious Emissions

Below 1GHz (30MHz-1000MHz)												
Frequency (MHz)	Read Level (dBuV/m)	Anter Fact (dB/i	tor	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m	n)	Limit Line (dBuV/m)	Over Limit (dB)	Detect	or	polarization
44.90	18.00	13.5	55	1.28	0.00	32.83		40.00	-7.17	QP		Vertical
101.64	18.60	13.0)2	1.95	0.00	33.57		43.50	-9.93	QP		Vertical
867.84	19.78	20.7	78	4.02	0.00	44.58		80.80	-36.22	-36.22 PK		Vertical
44.90	18.01	13.5	55	1.28	0.00	32.84		40.00	-7.16	QP		Horizontal
103.81	18.83	12.7	78	1.99	0.00	33.60		43.50	-9.90	QP		Horizontal
867.84	20.25	20.7	78	4.02	0.00	45.05		80.80	-35.75	PK		Horizontal
					Avera	age value	Э					
Frequency (MHz)			Average (dBuV		Limit Line (dBuV/m)		Over Limit (dB)		Po	olarization		
867.84	867.84 44.58 -19.32		25.26		60.80		-35	.54	Vertical			
867.84	867.84 45.05 -19.32		25.7	3		60.80	-35.07		Horizontal			

	Above 1GHz								
	Peak value								
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBu\		Over Limit (dB)	polarization
1331.76	38.95	25.52	4.49	40.92	28.04	74.0	00	-45.96	Vertical
1775.68	56.80	25.04	5.31	40.98	46.17	80.8	30	-34.63	Vertical
2219.60	41.53	27.66	6.14	40.28	35.05	74.0	00	-38.95	Vertical
2663.52	46.25	27.80	7.09	40.18	40.96	80.8	30	-39.84	Vertical
3107.44	46.42	28.65	7.91	40.55	42.43	80.8	30	-38.37	Vertical
3551.36	41.85	28.76	8.74	39.46	39.89	80.8	30	-40.91	Vertical
3995.28	46.96	29.77	9.48	40.89	45.32	74.0	00	-28.68	Vertical
4439.20	42.25	30.47	10.04	40.83	41.93	80.8	30	-38.87	Vertical
1331.76	38.65	25.52	4.49	40.92	27.74	74.0	00	-46.26	Horizontal
1775.68	52.42	25.04	5.32	40.98	41.80	80.8	30	-39.00	Horizontal
2219.60	41.36	27.66	6.14	40.28	34.88	74.0	00	-39.12	Horizontal
2663.52	46.32	27.80	7.09	40.18	41.03	80.8	30	-39.77	Horizontal
3107.44	47.66	28.59	7.89	40.55	43.59	80.8	30	-37.21	Horizontal
3551.36	41.87	28.76	8.74	39.46	39.91	80.8	30	-40.89	Horizontal
3995.28	48.35	29.77	9.48	40.89	46.71	74.0	00	-27.29	Horizontal
4439.20	42.36	30.47	10.04	40.83	42.04	80.8	30	-38.76	Horizontal
				Average va	lue				
Frequency (MHz)	Level (dBuV/m)	Duty c		verage value (dBuV/m)	Limit Line (d	BuV/m)	Ove	r Limit (dB)	polarization
1331.76	28.04	-19.3	32	8.72	54.00)		-45.28	Vertical
1775.68	46.17	-19.3	32	26.85	60.80)		-33.95	Vertical
2219.60	35.05	-19.3	32	15.73	54.00)		-38.27	Vertical
2663.52	40.96	-19.3	32	21.64	60.80)		-39.16	Vertical
3107.44	42.43	-19.3	32	23.11	60.80)		-37.69	Vertical
3551.36	39.89	-19.3	32	20.57	60.80)		-40.23	Vertical
3995.28	45.32	-19.3	32	26.00	54.00)		-28.00	Vertical
4439.20	41.93	-19.3	32	22.61	60.80)		-38.19	Vertical
1331.76	27.74	-19.3	32	8.42	54.00)		-45.58	Horizontal
1775.68	41.80	-19.3	32	22.48	60.80)		-38.32	Horizontal
2219.60	34.88	-19.3	32	15.56	54.00)		-38.44	Horizontal
2663.52	41.03	-19.3	32	21.71	60.80)		-39.09	Horizontal
3107.44	43.59	-19.3	32	24.27	60.80)		-36.53	Horizontal
3551.36	39.91	-19.3	32	20.59	60.80)		-40.21	Horizontal
3995.28	46.71	-19.3	32	27.39	54.00)		-26.61	Horizontal
4439.20	42.04	-19.3	32	22.72	60.80)		-38.08	Horizontal

6.3 20dB Bandwidth

Test Requirement:	FCC Part15 C Section 15.231 (c)		
Test Method:	ANSI C63.4:2009		
Receiver setup:	RBW=1kHz, VBW=3kHz, detector: Peak		
Limit:	The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.		
Test Procedure:	 According to the follow Test-setup, keep the relative position between the artificial antenna and the EUT. Set the EUT to proper test channel. Max hold the radiated emissions, mark the peak power frequency point and the -20dB upper and lower frequency points. Read 20dB bandwidth. 		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

20dB bandwidth (MHz)	Limit (MHz)	Results
0.095	1.0848	Passed

Note: Limit= Fundamental frequency × 0.25% = 433.92 × 0.25% = 1.0848 MHz

Test plot as follows:

6.4 Duration Time

Test Requirement:	FCC Part15 C Section 15.231 (a) (1)		
Test Method:	ANSI C63.4:2009		
Receiver setup:	RBW=100kHz, VBW=300kHz, span=0Hz, detector: Peak		
Limit:	Not more than 5 seconds		
Test mode:	Transmitting mode		
Test Procedure:	 According to the follow Test-setup, keep the relative position between the artificial antenna and the EUT. Set the EUT to proper test channel. Single scan the transmission, and read the transmission time. 		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

Duration time (second)	Limit (second)	Result
0.681	<5.0	Pass

Test plot as follows:

7 Test Setup Photos

Radiated Emission(below 1G)

