2º Miniteste - A

P1- Considere o circuito da figura.

- a) Determine a resistência equivalente do circuito.
- b) Mostre que a corrente que passa na resistência R_2 é I_2 =0.667 A. Qual a potencia dissipada em R_2 ?
- c) Sabendo que R_2 é constituída por um fio de 2 m de comprimento e secção de raio 0.5 mm, determine a resistividade ρ do fio e a densidade de corrente J que passa nele.

- P2- Quatro condensadores estão ligados conforme aparece na figura.
 - a) Achar a capacidade equivalente entre os pontos a e b.
- b) Calcular a carga no condensador de $20\mu F$ e no de $6\mu F,$ sabendo-se que V_{ab} = 15 V.
- c) O condensador de $20\mu F$ é um condensador de placas planas paralelas quadradas, com um dieléctríco entre as placas cuja permitividade é desconhecida. Sabendo que o lado das placas é 20cm e que a separação entre elas é de 0.01 mm, determine a permitividade relativa do dieléctrico. Qual a energia armazenada nesse condensador ?

2º Miniteste - B

- **P1-** Considere o circuito da figura ao lado $(C_1 = 3 \mu F; C_2 = 2 \mu F, C_3 = 5 \mu F, \epsilon = 12 V)$.
 - a) Qual é a capacidade equivalente do circuito?
 - b) Em estado estacionário, qual a carga e a d.d.p. em cada condensador?
- c) O condensador C_1 é um condensador de placas planas paralelas quadradas, com um dieléctrico entre as placas cuja permitividade é desconhecida. Sabendo que o lado das placas é 20cm e que a separação entre elas é de 0.01 mm, determine a permitividade relativa do dieléctrico. Qual a energia armazenada nesse condensador ?

- **P2** Considere o circuito de corrente contínua representado na figura ($\varepsilon = 4 \text{ V}$, $R_1 = 100 \Omega$, $R_2 = 50 \Omega$ e $R_3 = 30 \Omega$). Determine:
 - a) A resistência equivalente do circuito.
- b) As intensidades de corrente I_1 , I_2 e I_3 que percorrem os ramos do circuito onde estão inseridos, respectivamente, as resistências R_1 , R_2 e R_3 .
- c) Sabendo que R_3 é constituída por um fio de 2 m de comprimento e secção de raio 0.5 mm, determine a resistividade ρ do fio e a densidade de corrente J que passa nele.

2º Miniteste - C

- **P1-** Considere o circuito de corrente contínua representado na figura (onde $\varepsilon_1 = 5 \text{ V}$, $\varepsilon_2 = 2 \text{ V}$, $R_1 = 10 \Omega$, $R_2 = 20 \Omega$ e $R_3 = 30 \Omega$). Determine:
- a) As intensidades de corrente I_1 , I_2 e I_3 que percorrem os ramos do circuito onde estão inseridos, respectivamente, as resistências R_1 , R_2 e R_3 .
 - b) A diferença de potencial entre os pontos *a* e *b*.
- c) Sabendo que R_2 é constituída por um fio de 2 m de comprimento e secção de raio 0.5 mm, determine a resistividade ρ do fio e a densidade de corrente J que passa nele.

- **P2** Considere o circuito que aparece na figura, onde $C_1 = 6 \mu F$, $C_2 = 3\mu F$ e V = 20 V.
- a) O condensador C_1 é inicialmente carregado pelo fecho do interruptor S_1 . Determine a carga no condensador e a energia nele armazenada.
- b) Depois, o interruptor S_1 é aberto e o condensador carregado é ligado ao condensador descarregado pelo fecho do interruptor S_2 . Calcular a carga final em cada um dos dois condensadores.
- c) C₁ é um condensador de placas planas paralelas quadradas, com um dieléctrico entre as placas cuja permitividade é desconhecida. Sabendo que o lado das placas é 20cm e que a separação entre elas é de 0.01 mm, determine a permi

dielectrico entre as placas cuja permitividade e desconhecida. Sabendo que o lado das placas é 20cm e que a separação entre elas é de 0.01 mm, determine a permitividade relativa do dieléctrico. Qual seria a sua capacidade se não tivesse o dieléctrico?