11.0 تمرینهای فصل ۵

۱ - مسألهی مقدار اولیهی زیر را در نظر بگیرید

$$y' = e^{xy}$$
 , $y(\circ) = 1$

با استفاده از روش سری تیلور مرتبه ی $y(\circ.1)$ و با $h=\circ.1$ ، تخمینی برای $y(\circ.1)$ به دست آورید. ۲ – مسأ لهی مقدار اولیهی زیر را در نظر بگیرید

$$y' = x^{\Upsilon} + y^{\Upsilon}$$
, $y(\circ) = \Upsilon$

(h = 0.1) را با روش اویلر محاسبه کنید. y(0.1) را با روش اویلر محاسبه کنید. (-) مقدار تقریبی $y(\circ.7)$ را با روش رانگ $y(\circ.7)$ مقدار تقریبی دو محاسبه کنید. $(h = \circ.1)$

 $(\psi) - z$ تقریبی برای $y(\circ. T)$ و $y(\circ. T)$ با روش آدامس – بشفورتس دوگامی به دست (h = 0.1) آورید.

۳ - مسأله ي مقدار اوليه ي زير را باروش رانگ - كوتاي مرتبه ي دو حل كنيد.

$$y' = \frac{1}{1 + x^{\gamma} + y^{\gamma}}$$
, $y(\circ) = 1$

(ابا $y(\circ.۲)$ تقریب بزنید.) را با $y(\circ.۲)$

h = 0.1 جواب مسا لهی مقدار اولیهی زیر را با روش رانگِ - کوتای مرتبهی دو و با - ۴ از x = 0.7 تا x = 0.7 تعیین کنید.

$$y' = \sin x + \sin y$$
, $y(\circ) = 1$

۵ - مسألهی مقدار اولیهی زیر را در نظر بگیرید

$$y' = 1 + x \sin(xy)$$
, $y(\circ) = \circ$

(h = 0.1) را با روش اویلر محاسبه کنید. y(0.1) را با روش اویلر محاسبه کنید. (-, -) مقدار تقریبی y(0.1) را با روش رانگ – کوتای مرتبه ی دو محاسبه کنید. $(h = \circ. \land)$

مسأله ی زیر را در x=1 با طول گام a=0 با روش اویلر بهسازی شده x=1 با روش اویلر بهسازی شده

محاسبه كنيد.

$$y' = x^{\mathsf{T}} + y^{\mathsf{T}}$$
 , $y(\circ) = 1$

۷ - در مسألهى مقدار اوليهى

$$y' = -y \ln y$$
 , $y(\circ) = \frac{1}{7}$

تقریبی برای $y(\circ. 770)$ با روش (AB7) و با $h=\frac{1}{\lambda}$ بهدست آورید، و نتیجه را با مقدار واقعی مقایسه کنید.

۸ - جواب مسألهي مقدار اوليهي

$$y' = y^{\mathsf{T}}$$
 , $y(\circ) = \mathsf{T}$

را در x=1 با روش رانگ - کوتای مرتبه ی ۴ و با طول گام x=1 به دست آورید. نشان دهید که جواب عددی در نزدیک x=1 بیکران می شود. دلیل آن را بیان کنید. x=1 در مسأله ی

$$y' = -xy^{\mathsf{r}}$$
 , $y(\circ) = \mathsf{l}$

را با استفاده از روش نقطه ی میانی و $h = \circ.1$ تقریب بزنید. y_1 را با روش اویلر بهسازی شده بیابید.

 $y(1) = \frac{7}{7}$ نشان دهید جواب تحلیلی چنین است $y = \frac{7}{x^7 + 7}$ ، و

۱۰ - مسألهی مقدار اولیهی زیر را در نظر بگیرید

$$y' = \sin(xy) + \cos(y^{\dagger}) + e^{-x^{\dagger}} , \quad y(\circ) = 1$$

با استفاده از طول گام $h = \circ . \circ 1$ ، $y(1\circ)$ را با هر یک از دو روش زیر تخمین بزنید. (الف) — روش رانگ — کوتای مرتبه ی ۴

(-) (-)

زمان کامپیوتری را در دو روش با هم مقایسه کنید.

را در مسأله ی مقدار y(1) ، h=0.1 گام y(1) ، h=0.1 مقدار اولیه ی زیر تقربب بزنید.

$$y''(t) + f(t) = \circ$$
, $y(\circ) = 1$, $y'(\circ) = \circ$

مقدار واقعی y(1) را نیز بیابید.

۱۲ - فرمول (AM۴) را به دست آورید و نشان دهید که خطأی برشی آن عبارت است از

$$E = -\frac{\operatorname{Yh}^{\Diamond}}{\operatorname{YY} \circ} y^{(\Diamond)}(\eta)$$

۱۳ - در مسأله ی مقدار اولیه ی زیر، x(1) و y(1) را با روش اویلر و اویلر بهسازی شده تخمین بزنید.

$$x'(t) = x(t) + \Upsilon y(t) - \Upsilon \quad , \quad x(\circ) = \Upsilon$$
$$y'(t) = x(t) - \Upsilon y(t) + t \quad , \quad y(\circ) = \Upsilon$$

طول گام را h = 0.1 بگیرید.

۱۴ - فرمول میلن برای حل مسألهی مقدار اولیهی

$$y' = f(x, y) , a \le x \le b$$
$$y(x_\circ) = y_\circ, (x_\circ = a)$$

به صورت زیر است

$$y_{i+1} - y_{i-1} = \frac{\mathbf{f} h}{\mathbf{f}} (\mathbf{f}_i - f_{i-1} + \mathbf{f} f_{i-1}) + \frac{\mathbf{f} \mathbf{A}}{\mathbf{q} \circ} h^{\Delta} y^{(\Delta)}(\xi) \quad , \quad x_{i-1} < \xi < x_{i+1}$$

این فرمول را به دست آورید.

۱۵ - در مسأله ی مقدار اولیه ی زیر، y(1) را با روش رانگ - کوتای مرتبه ی ۴ و با طول گام $h=\circ.1$ تخمین بزنید و آن را با جواب واقعی مقایسه کنید

$$y'' - \Delta y' + \Im y = \circ$$
, $y(\circ) = \Im$, $y'(\circ) = \Upsilon$

۱٦ - در مسألهي مقدار اوليهي

$$y' = x^{\Upsilon} - y^{\Upsilon}$$
, $y(1.\Delta) = 1.A$

 $y(\mathsf{T})$ را با روش رانگ - کوتای مرتبه ی T و با هریک از طول گامهای زیر تقریب بزنید. با کدام طول گام نتیجه بهتر است T

$$h = \circ . \Delta$$
, $h = \circ . 1$, $h = \circ . \circ \Delta$, $h = \circ . \circ 1$

$$y' = \sin x + \sin y$$
 , $y(\circ) = \$

را با روش پیش بینی – تصحیح و با انتخاب $h=\circ.1$ از $\circ=x$ تا $x=\circ.7$ بهدست آورید. ($\epsilon=\circ.\circ\circ=\circ$ بگیرید)

۱۸ - جواب مسألهي مقدار اوليهي زير را

$$\frac{dy}{dt} = e^{t^{\mathsf{T}}} - \frac{y}{t} \; , \; y(\mathsf{Y}) = \frac{e}{\mathsf{Y}} \; , \; \mathsf{Y} \leq t \leq \mathsf{Y}$$

(الف) - با روش اویلر و با <math>h = 0.1 محاسبه کنید.

(-) با روش رانگ – کوتای مرتبه ی ۲ و با ۱. ه h = 0.1 محاسبه کنید.

 $y=rac{e^{t'}}{\gamma_t}$ است. جوابهای عددی در قسمتهای $y=rac{e^{t'}}{\gamma_t}$ اسن جوابهای عددی در قسمتهای (الف) و $y=\frac{e^{t'}}{\gamma_t}$ و $y=\frac{e^{t'}}{\gamma_t}$

۱۹ - در مسالهی مقدار اولیهی

$$y' = \Upsilon x - y$$
, $y(\circ) = -\Upsilon$

y(1) را با روش میلن و با h=0.1 تقریب بزنید. مقادیر آغازین را از فرمول رانگ y(1) کوتای مرتبه y(1) به دست آورید. نتیجه را با مقدار واقعی مقایسه کنید. y(1) - ۲۰ جواب مسأله ی مقدار اولیه ی

$$\frac{d^{\mathsf{Y}}y}{dt^{\mathsf{Y}}} - \mathsf{Y}\frac{dy}{dt} + \mathsf{Y}y = \mathsf{I}e^{\mathsf{Y}t} \; , \; y(\circ) = \mathsf{I} \; , \; y'(\circ) = -\mathsf{I} \; , \; \circ \leq t \leq \mathsf{I}$$

را با روش $(RK^{\mathfrak k})$ و با طول گام $h=\circ.1$ به دست آورید، و نتایج را با جواب واقعی مسأله، $y=-\lambda e^{\Upsilon t}+ \Im e^t+ \Upsilon e^{\Upsilon t}$ مقایسه کنید.

۲۱ - جواب مسأله ی مقدار اولیه ی زیر را در ۵.۰ = t و در t = t با روش رانگِ - کوتای مرتبه ی ۴ و با طول گام t t t t به دست آورید.

$$\frac{dx}{dt} = -\Upsilon x + \Upsilon y + z , \quad x(\circ) = \circ$$

$$\frac{dy}{dt} = -y , \quad y(\circ) = \Upsilon$$

$$\frac{dz}{dt} = \Upsilon x - \Upsilon y - z , \quad z(\circ) = \circ$$

توجه کنید که جواب تحلیلی چنین است

$$x = e^{-t} - e^{-rt}$$
 , $y = e^{-t}$, $z = -e^{-t} + e^{-rt}$

۲۲ - جواب مسألهى مقدار اوليهى

$$y' = -y + e^t$$
, $y(\circ) = \circ$, $\circ \le t \le \land$

را با روش ($AB^{\mathfrak k}$) و با $h=\circ.1$ تعیین کنید. مقادیر آغازین را از جواب واقعی آن $y=te^{-t}$ ، به دست آورید.

۲۳ – معادلات تفاضلی همگن زیر حل کنید.

$$y_{k+1} + y_{k+1} - \Im y_k = 0$$
 (الف)

$$y_{k+1} + y_{k+1} = Yy_k$$
 , $y_{\circ} = \circ$, $y_1 = Y$ (φ

$$x_{k+1} - Yx_{k+1} + x_k = \circ$$
 , $x_0 = Y$, $x_1 = Y$ (\downarrow)

$$y_{k+1} = -y_k$$
 (ت)

$$y_{k+1} - \Upsilon y_{k+1} + \Upsilon y_k = \circ$$
 (ث)

$$y_{k+1} - \Upsilon y_{k+1} + \Upsilon y_{k+1} - y_k = \circ \tag{7}$$

$$y_{k+r} + y_{k+r} - y_{k+1} - y_k = \circ , y_o = r , y_1 = -1 , y_r = r$$
 (7)

$$y_{k+1} + y_{k+1} + y_k = 0 \qquad (7)$$

(خ) (ثابت
$$\alpha$$
) ، $y_{n+1} - (\Upsilon \cos \alpha) y_n + y_{n-1} = \circ$

۲۴ - یک جواب خصوصی برای معادلهی زیر بیابید.

$$\lambda y_{k+1} - \Im y_{k+1} + y_k = \Delta \sin(\frac{k\pi}{7})$$

۲۵ - معادلات تفاضلی ناهمگن زیر را حل کنید.

$$y_{k+1} - \Upsilon y_k = k^{\Upsilon}$$
 (الف)

$$y_{k+1} - y_k = -f^k + f'. Y^k \quad (\varphi)$$

$$y_{k+1} - \Upsilon y_{k+1} + y_k = k \quad (\mathbf{y})$$

$$y_{k+1} - \Im y_{k+1} + Ay_k = \Upsilon k^{\Upsilon} + \Upsilon - \Delta. \Upsilon^k$$
 (ت)

$$y_{k+1} - \Upsilon y_{k+1} + \Upsilon y_{k+1} - y_k = \Upsilon \Upsilon (k+1)$$
 (ث)