Pregunta 2: $4: D \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}^n$ PD: f no es uniformemente continua (=)] E0>0, existen (xn) n=1, (yn) n=1 suresiones en D Jales que 11 xn-yn 11 ≤ 1, + n∈N y 11f(xn) - f(yn)11> Eo Denostración: cono f no es unipomenete continuer extonces $\exists \mathcal{E}_0 > 0$ $\exists \mathcal$ Si tomanes S= 1 exteres por definition exister x,, y, € D tales que 11 x, - y, 11 < 1 y 11 f(x,) - f(y,) 11 > E. si tonomes $\delta = \frac{1}{2}$ entonces por definition exister $x_2, y_z \in D$ tales que $||x_1 - y_2|| < \frac{1}{2}$ y $|| + (x_2) - f(y_2)|| \neq E$. En general al tower $S = \frac{1}{n}$, $n \in \mathbb{N}$ por definición exister $x_n, y_n \in \mathbb{D}$ tales que $\|x_n - y_n\| < \frac{1}{n}$ y $\|f(x_n) - f(y_n)\| \ge \varepsilon_0$ Defininos $(X_n)_{n=1}^{\infty}$, $(Y_n)_{n=1}^{\infty}$ cono las sucesiones que toman las valury axieriores. Entonces $\exists E_0 > 0$, $\exists (X_n)_{n=1}^{\infty}$, $(Y_n)_{n=1}^{\infty}$, $\exists color que$ $|| x_n - y_n || \le \frac{1}{n}$ y $|| f(x_n) - f(y_n) || \ge \epsilon_0$.

(antiapositivo Sea E070 Sopongamos que f es unjouverente continua entonces por definición sabenes que 3500 tal que 7x, y e D, $11 \times -y \times (-\delta) = 11 + (x) - +(y) \times (-\delta)$ Seam $(x_n)_{n=1}^{\infty}$, $(y_n)_{n=1}^{\infty}$ successiones en D tales que $||x_n-y_n|| \le \frac{1}{n}$ pour todo neN. Can o $\|x_n - y_n\| \le \frac{1}{n}$ et on cer sabenos que $x_n - y_n \xrightarrow{n \to \infty}$ y por definición sabenes que INOEN 7q. 4n=No, 11xn-xn11<8 y como f es informente continua etoncesi, $|| x_n - y_n || \leq \delta \Rightarrow || f(x_n) - f(x_n) || \leq \epsilon_0,$ Por lo tanto: f mif. continue => ∀ € 070, ∀ (xn/n=1, (Yn)n=1 se tiene que $||x_n - y_n|| \leq \frac{1}{N} \Rightarrow ||f(x_n) - f(x_n)|| < \varepsilon_0.$ $\frac{1}{2} = \frac{1}{2} = \frac{1}$ 4 no es vniformenente continua.