Rappels et compléments sur les nombres réels

I. Inégalités dans $\mathbb R$

1. Droite achevée $\overline{\mathbb{R}}$

On admet l'existence d'un ensemble \mathbb{R} contenant \mathbb{Q} muni d'une relation d'ordre total notée \leq compatible avec les lois + et \times et qui prolonge celles définies sur \mathbb{Q} . Plus précisément, $\forall (x, x', y, y') \in \mathbb{R}^4$,

$$\begin{cases} x \le x' \\ y \le y' \end{cases} \Rightarrow x + y \le x' + y'$$

Pour "multiplier des inégalités", il faut faire attention aux signes :

$$\begin{cases} 0 \le x \le x' \\ 0 \le y \le y' \end{cases} \Rightarrow xy \le x'y'$$

Attention à changer le sens de l'inégalité lorsqu'une inégalité est multipliée par un réel négatif.

On prolonge $\mathbb R$ en la droite réelle achevée $\overline{\mathbb R}=\mathbb R\cup\{-\infty,\infty\}$ et les opérations + et \times par :

+	$-\infty$	$y \in \mathbb{R}$	$+\infty$
$-\infty$	$-\infty$	$-\infty$?
$x \in \mathbb{R}$	$-\infty$	x+y	$+\infty$
$+\infty$?	$+\infty$	$+\infty$

×	$-\infty$	$y \in \mathbb{R}^{-*}$	0	$y \in \mathbb{R}^{+*}$	$+\infty$
$-\infty$	$+\infty$	$+\infty$?	$-\infty$	$-\infty$
$x \in \mathbb{R}^{-*}$	$+\infty$	$x \times y$	0	$x \times y$	$-\infty$
0	?	0	0	0	?
$x \in \mathbb{R}^{+*}$	$-\infty$	$x \times y$	0	$x \times y$	$+\infty$
$+\infty$	$-\infty$	$-\infty$?	$+\infty$	$+\infty$

La relation d'ordre total \leq sur $\mathbb R$ est prolongée sur $\overline{\mathbb R}$ par :

$$\forall x \in \mathbb{R}, \quad -\infty \le x \le +\infty$$

2. Majorant et maximum

Définition. Soit A une partie de \mathbb{R} .

— On dit que $m \in E$ est un minorant de A si $\forall x \in A : m \leq x$

et

— On dit que $M \in E$ est un majorant de A si $\forall x \in A : x \leq M$

Définition. Soit A une partie de \mathbb{R} .

- On dit que A est minorée si elle admet un minorant.
- On dit que A est majorée si elle admet un majorant.
- On dit que A est bornée si elle est majorée et minorée.

Définition. On dit qu'une partie A de \mathbb{R} admet un plus grand élément ou un maximum s'il existe un majorant de A qui appartienne à A c'est-à-dire si

$$\exists a \in A : \forall x \in A, \ x \leq a.$$

Définition. On dit qu'une partie A de \mathbb{R} admet un plus petit élément ou un minimum s'il existe un minorant de A qui appartienne à A c'est-à-dire si

$$\exists a \in A : \forall x \in A, \ a \leq x.$$

Proposition. Si A admet un plus grand élément (respectivement plus petit élément) alors celui-ci est unique. Il est noté MaxA (respectivement MinA).

Remarque: Tous ces éléments n'existent pas forcément.

Par exemple, la partie \mathbb{R}^+ n'est pas majorée et ne possède donc pas de plus grand élément. Mais une partie de \mathbb{R} majorée n'admet pas forcément de plus grand élément. Par exemple, l'intervalle]0,1[est majoré, mais ne possède pas de plus grand élément. En revanche, dans certains cas leur existence est assurée :

- 1. lorsque la partie est finie et non vide;
- 2. lorsque l'on considère une partie non vide de Z majorée ou minorée.

II. Théorèmes d'existence de maximum et conséquences

1. Théorèmes

Théorème. (*) Toute partie finie non vide de \mathbb{R} possède un plus petit et un plus grand élément. Ainsi, pour tout $(x_1,...,x_n) \in \mathbb{R}^n$, on peut définir les quantités $Min\{x_1,...,x_n\}$ et $Max\{x_1,...,x_n\}$.

Théorème. (*)

- Toute partie non vide de N admet un plus petit élément.
- Toute partie non vide et majorée de N admet un plus grand élément.

Théorème. (*)

- Toute partie non vide et majorée de Z admet un plus grand élément.
- Toute partie non vide et minorée de \mathbb{Z} admet un plus petit élément.

2. Quelques conséquences

Définition. Soit x un réel, on appelle parties positive et négative de x, les réels positifs

$$x^{+} = Max(0, x)$$
 et $x^{-} = Max(0, -x)$

On appelle valeur absolue de x le réel positif |x| = Max(-x, x).

Proposition. Pour tout réel x, on a

$$x^{+} + x^{-} = |x|, \quad x^{+} - x^{-} = x, \quad x^{+} = \frac{x + |x|}{2} \quad et \quad x^{-} = \frac{|x| - x}{2}.$$

Proposition. (*) Existence de la partie entière.

Pour tout réel x, il existe un unique entier relatif n tel que $n \le x < n+1$. Cette entier relatif est appelé la partie entière de x et est notée |x| ou E(x).

Corolaire. (*) Soit x un réel et n un entier non nul alors

$$\exists ! p_n \in \mathbb{Z} : p_n 10^{-n} \le x < (p_n + 1)10^{-n}$$

Le rationnel $p_n 10^{-n}$ est la valeur décimale approchée de x à 10^{-n} près par défaut et le rationnel $(p_n + 1)10^{-n}$ est la valeur décimale approchée de x à 10^{-n} près par excès.

Théorème. (*) L'ensemble des rationnels \mathbb{Q} et l'ensemble des rationnels $\mathbb{R} \setminus \mathbb{Q}$ sont denses i.e.

$$\forall (x,y) \in \mathbb{R}^2, \quad x < y \implies \exists q \in \mathbb{Q} : x < q < y$$

$$\forall (x,y) \in \mathbb{R}^2, \quad x < y \implies \exists i \in \mathbb{R} \setminus \mathbb{Q} : x < i < y$$

III. Théorème de la borne supérieure et une première conséquence

1. Définition de la borne supérieure et caractérisation

Contrairement à ce qui se passe dans \mathbb{Z} , il existe des parties non vides et majorées de \mathbb{R} n'admettant pas de plus grand élément comme A = [0,1[. Néanmoins, le réel 1 joue un rôle particulier pour la partie A: c'est le plus petit des majorants de A. On dit que 1 est la borne supérieure de A.

Définition. On dit qu'une partie A de \mathbb{R} admet une borne supérieure si l'ensemble de ses majorants possède un plus petit élément. On appelle alors borne supérieure de A et on note Sup A ce plus petit élément.

On définit de même la borne inférieure de A, si elle existe.

Proposition. Les deux propositions suivantes sont équivalentes

- A admet un plus grand élément a.
- SupA existe et $SupA \in A$.

Proposition (Caractérisation de la borne supérieure dans \mathbb{R}). (*) Soit A une partie de \mathbb{R} alors

$$s = Sup \ A \Leftrightarrow \begin{cases} \forall a \in A : a \le s \\ \forall \varepsilon > 0, \ \exists a \in A : s - \varepsilon < a \end{cases}$$

Proposition (Caractérisation de la borne inférieure dans \mathbb{R}). Soit A une partie de \mathbb{R} alors

$$i = Inf A \Leftrightarrow \begin{cases} \forall a \in A : i \leq a \\ \forall \varepsilon > 0, \ \exists a \in A : a < i + \varepsilon \end{cases}$$

Remarque: En général, on est pas assuré de l'existence de la borne supérieure d'une partie. Par exemple, la partie $\{x \in \mathbb{Q}, x^2 < 2\}$ n'admet pas de borne supérieure dans \mathbb{Q} alors qu'elle est majorée. En revanche, dans l'ensemble des nombres réels \mathbb{R} , on dispose "par construction" de la propriété de la borne supérieure.

2. Théorème de la borne supérieure et caractérisation des intervalles

Théorème. de la borne supérieure [Admis] Toute partie non vide majorée de \mathbb{R} admet une borne supérieure

Théorème. (*) Une partie I de \mathbb{R} est un intervalle de \mathbb{R} si et seulement si

$$\forall (a,b) \in I^2, [a,b] \subset I$$

On dit que les intervalles de \mathbb{R} sont les convexes de \mathbb{R} .