

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ КАФЕДРА Информатика и системы управления (ИУ) Информационная безопасность (ИУ8)

Теория игр и исследование операций

Лабораторная работа №2 «Аналитический и численный методы решения непрерывной выпукло-вогнутой игры»

Вариант: 1

Студент:	
Александров Алексей Николаевич, группа ИУ8-104	
(5 курс)	(подпись, дата)
Преподаватель:	
к.т.н., доцент кафедры ИУ8	
Коннова Наталья Сергеевна	(подпись, дата)

Оглавление

Цель ј	работы	3
Задан	ие	3
Ход р	работы	4
1.	Аналитический метод решения	5
2.	Численный метод решения	8
3.	Сравнительная оценка погрешностей вычислений	. 10
Вывод	д	. 11
ПРИЛ	ПОЖЕНИЕ А Листинг реализации решения выпукло-вогнутой игры	. 12
ПРИЛ	ІОЖЕНИЕ Б Ссылка на репозиторий с исходным кодом задачи	. 17

Цель работы

Найти оптимальные стратегии непрерывной выпукло-вогнутой антагонистической игры аналитическим и численным методами.

Задание

Пусть функция выигрыша (ядро) антагонистической игры, заданной на единичном квадрате, непрерывна:

$$H(x,y) \in C(\Pi), \Pi = [0,1] \times [0,1].$$

Тогда существуют нижняя и верхняя цены игры, и, кроме того:

$$h = \overline{h} \equiv \max_{F} \min_{y} E(F, y) = \min_{G} \max_{x} E(x, G) \equiv \underline{h},$$

а для среднего выигрыша игры имеют место равенства:

$$E(x,G) = \int_0^1 H(x,y)dG(y), \ E(F,y) = \int_0^1 H(x,y)dF(x),$$

где F(x), G(y) — произвольные вероятностные меры выбора стратегий для обоих игроков, заданные на единичном интервале.

Теорема. Пусть $\Gamma = (X,Y,H), \ X \subset R^m, \ Y \subset R^n$ —вогнуто-выпуклая игра. Тогда значение игры v равно

$$v = \min_{y} \max_{x} H(x, y) = \max_{x} \min_{y} H(x, y).$$

В игре Γ всегда существует ситуация равновесия (x^*,y^*) , где $x^* \in X$, $y^* \in Y$ — чистые стратегии игроков 1 и 2, на которых достигаются внешние экстремумы в . Если при этом функция H(x,y) строго вогнута (выпукла) по переменной x(y) при любом фиксированном $y \in Y$ $(x \in X)$, то игрок 1 (2) имеет единственную оптимальную стратегию, которая является чистой.

Функция ядра имеет вид:

$$H(x,y) = ax^2 + by^2 + cxy + dx + ey.$$

Параметры функции ядра по варианту, следующие:

а	b	С	d	е
- 5	⁵ / ₁₂	10/3	$-\frac{2}{3}$	-4/3

Ход работы

Для реализации решения лабораторной работы был использован язык программирования Python. К защите представляется интерактивный блокнот Jupyter Notebook в файле continuous_convex-concave.ipynb (см. приложение A).

В исполняемом «ноутбуке» импортируются реализованный модуль *convex_concave.numeric*, инкапсулирующий логику и алгоритм для численного метода решения игры с непрерывным ядром. Ознакомиться со всем исходным кодом данной работы можно, посетив репозиторий, ссылка на который представлена в приложении Б. Задание входных параметров представлено на рисунке 1.

Рисунок 1 – Задание входных параметров игры с непрерывным ядром

1. Аналитический метод решения

Функция ядра имеет следующий вид:

$$H(x,y) = -5x^2 + 0.417y^2 + 3.33xy - 0.667x - 1.33y.$$

На рисунке 2 представлена проверка вторых частных производных для определения, является ли представленная игра выпукло-вогнутой.

1. Аналитическое решение

```
# Входные параметры: коэффициенты функции ядра.
a, b, c, d, e = sympy.var(("a", "b", "c", "d", "e"))
# Переменные.
x, y = sympy.symbols(("x", "y"))
# Задание функции ядра.
kernel_func = sympy.Lambda(
    (x, y),
    a * x ** 2 + b * y ** 2 + c * x * y + d * x + e * y
kernel_func_subs = kernel_func.subs({a: A, b: B, c: C, d: D, e: E})
display(kernel_func)
N(kernel_func_subs, ROUND_CONST)
((x, y) \mapsto ax^2 + by^2 + cxy + dx + ey)
((x, y) \mapsto -5.0x^2 + 3.33xy - 0.667x + 0.417y^2 - 1.33y)
kernel_xx = sympy.diff(kernel_func(x, y), x, 2, evaluate=False)
kernel_xx_eval = kernel_xx.doit()
kernel_xx_subs = kernel_xx_eval.subs({a: A, b: B, c: C, d: D, e: E})
display(Eq(kernel_xx, kernel_xx_eval))
N(Eq(kernel_xx_eval, kernel_xx_subs), ROUND_CONST)
rac{\partial^{2}}{\partial x^{2}}ig(ax^{2}+by^{2}+cxy+dx+eyig)=2a
2.0a = -10.0
kernel_yy = sympy.diff(kernel_func(x, y), y, 2, evaluate=False)
kernel_yy_eval = kernel_yy.doit()
kernel_yy_subs = kernel_yy_eval.subs({a: A, b: B, c: C, d: D, e: E})
display(Eq(kernel_yy, kernel_yy_eval))
N(Eq(kernel_yy_eval, kernel_yy_subs), ROUND_CONST)
rac{\partial^2}{\partial y^2} ig( ax^2 + by^2 + cxy + dx + ey ig) = 2b
2.0b = 0.833
is_convex_concave: bool = kernel_xx_subs < 0 < kernel_yy_subs</pre>
assert is_convex_concave, (
    "Игра не является выпукло-вогнутой, т.к. для функции ядра одновременно не выполняется
    f''H_xx = \{2 * a:.2f\} < 0 \text{ } u \text{ } H_yy = \{2 * b:.2f\} > 0"
```

Рисунок 2 — Вычисление вторых частных производных для проверки выпукло-вогнутой игры

Находим первые частные производные. Приравняв их к нулю, выражаем соответствующие переменные (см. рисунок 3).

Для нахождения оптимальных стратегий найдем производные функции ядра по каждой переменной

```
# Производная по х.
kernel_x = sympy.diff(kernel_func(x, y), x, evaluate=False)
kernel_x_eval = kernel_x.doit()
kernel_x_subs = kernel_x_eval.subs({a: A, b: B, c: C, d: D, e: E})
# Производная по у.
 kernel_y = sympy.diff(kernel_func(x, y), y, evaluate=False)
 kernel_y_eval = kernel_y.doit()
 kernel_y_subs = kernel_y_eval.subs({a: A, b: B, c: C, d: D, e: E})
display(Eq(kernel_x, kernel_x_eval))
N(Eq(kernel_x_eval, kernel_x_subs), ROUND_CONST)
 rac{\partial}{\partial x}ig(ax^2+by^2+cxy+dx+eyig)=2ax+cy+d
2.0ax + cy + d = -10.0x + 3.33y - 0.667
display(Eq(kernel_y, kernel_y_eval))
N(Eq(kernel_y_eval, kernel_y_subs), ROUND_CONST)
\frac{\partial}{\partial y}(ax^2 + by^2 + cxy + dx + ey) = 2by + cx + e
2.0by + cx + e = 3.33x + 0.833y - 1.33
После приравнивания производных к нулю получим
# Выражаем решение производной через х.
 zero_kernel_x, = sympy.solve(Eq(kernel_x_eval, 0), x)
 zero_kernel_x_subs = zero_kernel_x.subs({a: A, b: B, c: C, d: D, e: E})
 # Выражаем решение производной через у.
zero_kernel_y, = sympy.solve(Eq(kernel_y_eval, 0), y)
zero_kernel_y_subs = zero_kernel_y.subs({a: A, b: B, c: C, d: D, e: E})
display(Eq(x, zero_kernel_x))
display(N(Eq(x, zero_kernel_x_subs), ROUND_CONST))
x = \frac{-cy - d}{2a}
x = 0.333y - 0.0667
display(Eq(y, zero_kernel_y))
display(N(Eq(y, zero_kernel_y_subs), ROUND_CONST))
y = \frac{-cx - e}{2b}
y = 1.6 - 4.0x
```

Рисунок 3 — Нахождение частных производных по переменным для определения оптимальных стратегий

Беря во внимание, что x и y принимают неотрицательные значения для оптимальных стратегий, задаём их кусочно. Находим решение игры, решая систему из двух кусочно-заданных выражений для x и y и подставляя полученные значения в функцию ядра H (см. рисунок 4).

Учитывая, что $x, y \ge 0$, для оптимальных стратегий имеем:

```
# Кусочно заданная функция относительно у.
psi_y = sympy.Piecewise(
      (zero_kernel_x, y >= -d / c),
     (0, y < -d / c)
psi_y_subs = psi_y.subs({a: A, b: B, c: C, d: D, e: E})
# Кусочно заданная функция относительно х.
phi_x = sympy.Piecewise(
     (zero_kernel_y, x \leftarrow -e / c),
     (0, x > -e / c)
phi_x_subs = phi_x.subs({a: A, b: B, c: C, d: D, e: E})
display(Eq(abc.psi, psi_y))
display(N(Eq(abc.psi, psi_y_subs), ROUND_CONST))
\psi = egin{cases} rac{-cy-d}{2a} & 	ext{for } y \geq -rac{d}{c} \ 0 & 	ext{otherwise} \end{cases}
\psi = egin{cases} 0.333y - 0.0667 & 	ext{for } y \geq 0.2 \ 0 & 	ext{otherwise} \end{cases}
display(Eq(abc.phi, phi_x))
display(N(Eq(abc.phi, phi_x_subs), ROUND_CONST))
\phi = \begin{cases} \frac{-cx - e}{2b} & \text{for } x \le -\frac{e}{c} \\ 0 & \text{otherwise} \end{cases}
\phi = egin{cases} 1.6 - 4.0x & 	ext{for } x \leq 0.4 \ 0 & 	ext{otherwise} \end{cases}
optimal_solution = sympy.solve((
     Eq(x, zero_kernel_x_subs),
     Eq(y, zero_kernel_y_subs),
x_opt, y_opt = optimal_solution.values()
saddle_point_value = float(kernel_func_subs(x_opt, y_opt))
print(f"Решение игры: \n"
        f"H({x_opt:.2f}, {y_opt:.2f}) = {saddle_point_value:.2f}")
Решение игры:
H(0.20, 0.80) = -0.60
```

Рисунок 4 — Решение системы уравнений и нахождение решения непрерывной выпукло-вогнутой игры аналитическим методом

Таким образом получили точное решение игры: x = 0.2; y = 0.8; H = -0.6.

2. Численный метод решения

Для решения игры с непрерывным ядром используем метод аппроксимации функции выигрышей на сетке. С каждой итерацией алгоритма будем увеличивать шаг сетки. Если в матрице игры, полученной на итерации N, не будет седловой точки, будем применять уже известный численный метод Брауна-Робинсон для отыскания численного решения квадратной матричной игры размерности N+1.

Остановку алгоритма будем производить исходя из суммарного изменения оценки цены игры за k последних итераций (по умолчанию: k=5), которое должно быть не больше заданного значения точности ($\varepsilon=0,1$). С ростом числа итераций, k необходимо увеличивать. Результат работы алгоритма представлен ниже:

N = 2 (war: 0.500)								
Таблица стратегий (игрока А)								
Стратегии	b1	b2	b3	MIN выигрыш А				
a1 a2 a3 МАХ проигрыш В	0.000 -1.583 -5.667 0.000	-0.562 -1.312 -4.562 -0.562	-0.917 -0.833 -3.250 -0.833	-0.917 -1.583 -5.667				

Седловой точки нет. Решение методом Брауна-Робинсон:

x = 0.000; y = 0.500; H = -0.872

N = 3 (war: 0.333)

+								
Стратегии	b1	b2	b3	b4	MIN выигрыш А			
а1 a2 a3 a4 МАХ проигрыш В	0.000 -0.778 -2.667 -5.667 0.000	-0.398 -0.806 -2.324 -4.954 -0.398	-0.704 -0.741 -1.889 -4.148 -0.704	-0.917 -0.583 -1.361 -3.250 -0.583	-0.917 -0.806 -2.667 -5.667			

Седловой точки нет. Решение методом Брауна-Робинсон:

x = 0.000; y = 0.000; H = -0.727

N = 4 (war: 0.250)

Таблица стратегий (игрока А)								
Стратегии	b1	b2	b3	b4	b5	MIN выигрыш А		
a1	0.000	-0.307	-0.562	-0.766	-0.917	-0.917		
a2	-0.479	-0.578	-0.625	-0.620	-0.562	-0.625		
a3	-1.583	-1.474	-1.312	-1.099	-0.833	-1.583		
a4	-3.312	-2.995	-2.625	-2.203	-1.729	-3.312		
a5	-5.667	-5.141	-4.562	-3.932	-3.250	-5.667		
МАХ проигрыш В	0.000	-0.307	-0.562	-0.620	-0.562			

Седловой точки нет. Решение методом Брауна-Робинсон:

x = 0.000; y = 0.500; H = -0.591

N = 5 (war: 0.200)

Таблица стратегий (игрока А)								
Стратегии	b1	b2	b3	b4	b5	b6	MIN выигрыш А	
a1	0.000	-0.250	-0.467	-0.650	-0.800	-0.917	-0.917	
a2	-0.333	-0.450	-0.533	-0.583	-0.600	-0.583	-0.600	
a3	-1.067	-1.050	-1.000	-0.917	-0.800	-0.650	-1.067	
a4	-2.200	-2.050	-1.867	-1.650	-1.400	-1.117	-2.200	
a5	-3.733	-3.450	-3.133	-2.783	-2.400	-1.983	-3.733	
a6	-5.667	-5.250	-4.800	-4.317	-3.800	-3.250	-5.667	
МАХ проигрыш В	0.000	-0.250	-0.467	-0.583	-0.600	-0.583		

Седловая точка найдена:

x = 0.200; y = 0.800; H = -0.600

N = 6 (war: 0.167)

Таблица стратегий (игрока А)									
Стратегии	b1	b2	b3	b4	b5	b6	b7	MIN выигрыш А	
a1	0.000	-0.211	-0.398	-0.562	-0.704	-0.822	-0.917	-0.917	
a2	-0.250	-0.368	-0.463	-0.535	-0.583	-0.609	-0.611	-0.611	
a3	-0.778	-0.803	-0.806	-0.785	-0.741	-0.674	-0.583	-0.806	
a4	-1.583	-1.516	-1.426	-1.312	-1.176	-1.016	-0.833	-1.583	
a5	-2.667	-2.507	-2.324	-2.118	-1.889	-1.637	-1.361	-2.667	
a6	-4.028	-3.775	-3.500	-3.201	-2.880	-2.535	-2.167	-4.028	
a7	-5.667	-5.322	-4.954	-4.562	-4.148	-3.711	-3.250	-5.667	
МАХ проигрыш В	0.000	-0.211	-0.398	-0.535	-0.583	-0.609	-0.583	ĺ	

Седловой точки нет. Решение методом Брауна-Робинсон:

x = 0.167; y = 0.667; H = -0.642

N = 7 (war: 0.143)

	Таблица стратегий (игрока А)									
Стратегии	b1	b2	b3	b4	b5	b6	b7	b8	MIN выигрыш А	
a1	0.000	-0.182	-0.347	-0.495	-0.626	-0.740	-0.837	-0.917	-0.917	
a2	-0.197	-0.311	-0.408	-0.488	-0.551	-0.597	-0.626	-0.638	-0.638	
a3	-0.599	-0.645	-0.673	-0.685	-0.680	-0.658	-0.619	-0.563	-0.685	
a4	-1.204	-1.182	-1.143	-1.087	-1.014	-0.923	-0.816	-0.692	-1.204	
a5	-2.014	-1.923	-1.816	-1.692	-1.551	-1.393	-1.218	-1.026	-2.014	
a6	-3.027	-2.869	-2.694	-2.502	-2.293	-2.066	-1.823	-1.563	-3.027	
a7	-4.245	-4.019	-3.776	-3.515	-3.238	-2.944	-2.633	-2.304	-4.245	
a8	-5.667	-5.372	-5.061	-4.733	-4.388	-4.026	-3.646	-3.250	-5.667	
МАХ проигрыш В	0.000	-0.182	-0.347	-0.488	-0.551	-0.597	-0.619	-0.563	j j	

Седловой точки нет. Решение методом Брауна-Робинсон:

x = 0.286; y = 0.714; H = -0.645

Таким образом численно найдено решение задачи:

 $x \approx 0.217$; $y \approx 0.727$; $H \approx -0.629$

Численное решение игры: $x \approx 0,217; y \approx 0,727; H \approx -0,629$.

3. Сравнительная оценка погрешностей вычислений

Полученные результаты и их приведены в сводной таблице 1. Таким образом полученное приближенное решение удовлетворяет заданной точности $\varepsilon \leq 0.1$.

Таблица 1 – Сводная таблица сравнительной оценки погрешностей

	Цена игры	Оптимальные стратегии в непрерывной игре				
		х	у			
Аналитический метод	-0,600	0,200	0,800			
Численный метод	-0,629	0,217	0,727			
Абсолютная погрешность вычислений, Δ	0,029	0,017	0,073			
Относительная погрешность вычислений, %	4,6	8,5	9,1			

Вывод

В данной работе была исследована непрерывная антагонистическая выпукло-вогнутая игра двух лиц, а также аналитический и численный методы её решения.

Сначала было получено точное эталонное решение с помощью аналитического метода:

$$x = 0.2$$
; $y = 0.8$; $H = -0.6$.

Численный метод недостатки аналитического метода за счёт уменьшения точности вычислений. Задав погрешность $\varepsilon \leq 0.1$, было получено следующее приближённое решение матричной игры:

$$x \approx 0.217$$
; $y \approx 0.727$; $H \approx -0.629$.

В пункте 3 была рассмотрена сравнительная оценка погрешностей, где была осуществлена повторная проверка, что полученное решение точно с учётом заданного значения ε . Можно сделать вывод, что численный метод хорошо подходит для вычисления приближенного решения непрерывной выпукло-вогнутой игры.

ПРИЛОЖЕНИЕ А

Листинг реализации решения выпукло-вогнутой игры

continuous convex-concave.ipynb

```
#!/usr/bin/env python
# coding: utf-8
# # Лабораторная работа №2
# **"Непрерывные выпукло-вогнутые игры"**
#
# **Выполнил: Александров А. Н., ИУ8-104**
#
# **Вариант: 1**
#
# ## Задание
# Функция ядра имеет вид:
# $$H(x, y) = ax^2 + by^2 + cxy + dx + ey,$$
#
# где:
#
# | a | b | c | d | e |
# |:--:|:----:|:----:|:----:|
# | -5 | 5/12 | 10/3 | -2/3 | -4/3 |
# Найти оптимальные стратегии непрерывной выпукло-вогнутой антагонистической игры аналитическим и
численным методами.
# In[286]:
import logging
import sympy
from sympy import N, Eq, abc
# To represent multiple expressions in output of single cell.
from IPython display import display
from game_theory.utils.continuous_games.convex_concave.numeric import NumericMethod
logging.basicConfig(level=logging.INFO, format='%(message)s')
# In[287]:
ROUND CONST: int = 3
A, B, C, D, E = (
    -5,
5 / 12,
    10 / 3,
-2 / 3,
     -4 / 3
# ## 1. Аналитическое решение
# In[288]:
# Входные параметры: коэффициенты функции ядра.
a, b, c, d, e = sympy.var(("a", "b", "c", "d", "e"))
# Переменные.
x, y = sympy.symbols(("x", "y"))
# Задание функции ядра.
kernel_func = sympy.Lambda(
    (x, y),
    a * x ** 2 + b * y ** 2 + c * x * y + d * x + e * y,
kernel_func_subs = kernel_func.subs({a: A, b: B, c: C, d: D, e: E})
display(kernel_func)
N(kernel_func_subs, ROUND_CONST)
# In[289]:
kernel_xx = sympy.diff(kernel_func(x, y), x, 2, evaluate=False)
kernel_xx_eval = kernel_xx.doit()
```

```
kernel_xx_subs = kernel_xx_eval.subs({a: A, b: B, c: C, d: D, e: E})
display(Eq(kernel_xx, kernel_xx_eval))
N(Eq(kernel_xx_eval, kernel_xx_subs), ROUND_CONST)
# In[290]:
kernel_yy = sympy.diff(kernel_func(x, y), y, 2, evaluate=False)
kernel_yy_eval = kernel_yy.doit()
kernel_yy_subs = kernel_yy_eval.subs({a: A, b: B, c: C, d: D, e: E})
display(Eq(kernel_yy, kernel_yy_eval))
N(Eq(kernel_yy_eval, kernel_yy_subs), ROUND_CONST)
# In[291]:
is_convex_concave: bool = kernel_xx_subs < 0 < kernel_yy_subs</pre>
assert is_convex_concave, (
     "Игра не является выпукло-вогнутой, т.к. для функции ядра одновременно не выполняется оба условия:
    f''H_xx = \{2 * a:.2f\} < 0 \text{ } H_yy = \{2 * b:.2f\} > 0''
)
# Для нахождения оптимальных стратегий найдем производные функции ядра по каждой переменной
# In[292]:
# Производная по х.
kernel_x = sympy.diff(kernel_func(x, y), x, evaluate=False)
kernel_x_eval = kernel_x.doit()
kernel_x_subs = kernel_x_eval.subs({a: A, b: B, c: C, d: D, e: E})
# Производная по у.
kernel_y = sympy.diff(kernel_func(x, y), y, evaluate=False)
kernel_y_eval = kernel_y.doit()
kernel_y_subs = kernel_y_eval.subs({a: A, b: B, c: C, d: D, e: E})
# In[293]:
display(Eq(kernel_x, kernel_x_eval))
N(Eq(kernel_x_eval, kernel_x_subs), ROUND_CONST)
# In[294]:
display(Eq(kernel_y, kernel_y_eval))
N(Eq(kernel_y_eval, kernel_y_subs), ROUND_CONST)
# После приравнивания производных к нулю получим
# In[295]:
# Выражаем решение производной через х.
zero_kernel_x, = sympy.solve(Eq(kernel_x_eval, 0), x)
zero_kernel_x_subs = zero_kernel_x.subs({a: A, b: B, c: C, d: D, e: E})
# Выражаем решение производной через у.
zero_kernel_y, = sympy.solve(Eq(kernel_y_eval, 0), y)
zero_kernel_y_subs = zero_kernel_y.subs({a: A, b: B, c: C, d: D, e: E})
# In[296]:
display(Eq(x, zero_kernel_x))
display(N(Eq(x, zero_kernel_x_subs), ROUND_CONST))
# In[297]:
display(Eq(y, zero_kernel_y))
display(N(Eq(y, zero_kernel_y_subs), ROUND_CONST))
# Учитывая, что $x,y \ge 0$, для оптимальных стратегий имеем:
```

```
# In[298]:
# Кусочно заданная функция относительно у.
psi_y = sympy.Piecewise(
    (zero\_kernel\_x, y >= -d / c),
    (0, y < -d / c)
psi_y_subs = psi_y.subs({a: A, b: B, c: C, d: D, e: E})
# Кусочно заданная функция относительно х.
phi_x = sympy.Piecewise(
    (zero_kernel_y, x <= -e / c),
(0, x > -e / c)
phi_x_subs = phi_x.subs({a: A, b: B, c: C, d: D, e: E})
# In[299]:
display(Eq(abc.psi, psi_y))
display(N(Eq(abc.psi, psi_y_subs), ROUND_CONST))
# In[300]:
display(Eq(abc.phi, phi_x))
display(N(Eq(abc.phi, phi_x_subs), ROUND_CONST))
# In[301]:
optimal_solution = sympy.solve((
    Eq(x, zero_kernel_x_subs),
    Eq(y, zero_kernel_y_subs),
))
x_opt, y_opt = optimal_solution.values()
saddle_point_value = float(kernel_func_subs(x_opt, y_opt))
# ## 2. Численное решение
# Для решения игры с непрерывным ядром используем метод аппроксимации функции выигрышей на сетке.
# In[302]:
numeric_method = NumericMethod(kernel_func_subs)
# In[303]:
x_opt, y_opt, game_price_estimate = numeric_method.solve()
# In[304]:
print(f"Решение игры: \n"
      f''x \approx \{x_{opt}:.2f\}, y \approx \{y_{opt}:.2f\}; H \approx \{game_{price}=stimate:.2f\}''
```

```
"""Численный метод решения выпукло-вогнутых игр с непрерывным ядром."""
import logging
from collections import deque
import numpy as np
import sympy
from sympy.core import function
from game_theory.utils.continuous_games.exceptions import ContinuousGameException
from game_theory.utils.continuous_games.types import SizeType, ValueType
from game_theory.utils.matrix_games.brown_robinson.brown_robinson import BrownRobinson
from game theory.utils.matrix games.game matrix import GameMatrix
_logger = logging.getLogger(__name_
class NumericMethod:
    Численный метод решения выпукло-вогнутых игр с непрерывным ядром.
    def __init__(self, kernel_func: function.Lambda, accuracy: float = 0.1, deltas_count: SizeType =
3):
         # Функция ядра непрерывной выпукло-вогнутой игры.
         self.kernel_func: function.Lambda = kernel_func
         # Точность численного метода.
         self.accuracy: float = accuracy
         # Разности между соседними вычисленными значениями цены игры на итерациях.
         max_len: SizeType = deltas_count
         self.__deltas: deque[float] = deque(maxlen=max_len)
         self.__estimates: deque[tuple[float, float, ValueType]] = deque(maxlen=max_len)
         # Проверяем, что игра является выпукло-вогнутой. x, y = sympy.symbols(("x", "y")) kernel_xx = sympy.diff(self.kernel_func(x, y), x, 2) kernel_yy = sympy.diff(self.kernel_func(x, y), y, 2)
         if not (kernel_xx < 0 < kernel_yy):</pre>
              err_msg = (
                  "Игра не является выпукло-вогнутой, "
                  "т.к. для функции ядра одновременно не выполняется оба условия: \n"f"H_xx = {kernel_xx:.2f} < 0 и H_yy = {kernel_yy:.2f} > 0"
              raise ContinuousGameException(err_msg)
    def solve(self) -> tuple[float, float, ValueType]:
         prev_game_price_estimate, game_price_estimate = None, None
         while len(self.__deltas) == 0 or sum(self.__deltas) > self.accuracy:
              _logger.info(f"N = {n} (war: {1 / n:.3f})")
grid_game_matrix = GameMatrix(self._generate_grid_approximation_matrix(n))
              _logger.info(grid_game_matrix)
              # Проверка седла.
              i, lgp_value = grid_game_matrix.lowest_game_price
              j, hgp_value = grid_game_matrix.highest_game_price
              if lgp_value == hgp_value:
                  game_price_estimate = lgp_value
                  x_estimate, y_estimate = i / n, j / n
_logger.info("Седловая точка найдена:")
              else:
                  br_method = BrownRobinson(grid_game_matrix, accuracy=self.accuracy)
                  br_method.solve()
                  game_price_estimate = br_method.game_price_estimation
                  # _logger.info(f"Оценка для цены игры: {game_price_estimate}")
                  x_mixed_strategies, y_mixed_strategies = br_method.mixed_strategies # _logger.info(f"Смешанные стратегии:\n X = {x_mixed_strategies}\n Y =
{y_mixed_strategies}")
                  x_estimate, y_estimate = (np.argmax(x_mixed_strategies) / n,
np.argmax(y_mixed_strategies) / n) __logger.info("Седловой точки нет. Решение методом Брауна-Робинсон:")
              _logger.info(f''x = \{x_estimate:.3f\}; y = \{y_estimate:.3f\}; H =
{game_price_estimate:.3f}\n")
              if prev_game_price_estimate is not None:
                  # Добавляем разность между оценками цен игры на текущей и предыдущей итерации в deque.
                  self.__push_estimates(
                       delta=np.abs(game_price_estimate - prev_game_price_estimate),
                       x_est=x_estimate,
                       y_est=y_estimate,
                       game_price_est=game_price_estimate,
              prev_game_price_estimate = game_price_estimate
```

```
n += 1
          x_estimate, y_estimate, game_price_estimate = (
    np.mean([est_tuple[i] for est_tuple in self.__estimates]) for i in range(3)
          _logger.info(
                'Таким образом численно найдено решение задачи:\n"
               f''x \approx \{x_estimate:.3f\}; y \approx \{y_estimate:.3f\}; H \approx \{game_price_estimate:.3f\}''
          return x_estimate, y_estimate, game_price_estimate
     def _generate_grid_approximation_matrix(self, iteration_number: int) -> np.ndarray:
          Генерирует квадратную матрицу аппроксимации функции ядра (выигрышей) на сетке. Матрица имеет размерность `iteration_number` + 1 Элемент матрицы a_ij = H(i / iteration_number; j / iteration_number), где H - функция ядра от
двух переменных.
          :param int iteration_number: Размерность сетки.
          :return: Матрица сетки.
          return np.array(
               ſ
                    [
                         float(self.kernel_func(i / iteration_number, j / iteration_number))
                         for j in range(iteration_number + 1)
                    for i in range(iteration_number + 1)
               ]
     def __push_estimates(self, delta: float, x_est: float, y_est: float, game_price_est: ValueType) ->
None:
          """Добавляем оценки результатов и разностей прироста цены игры в deque-контейнеры.""" if len(self.__deltas) == self.__deltas.maxlen:
               self.__deltas.popleft()
               self.__estimates.popleft()
          self.__deltas.append(delta)
          self.__estimates.append((x_est, y_est, game_price_est))
```

приложение б

Ссылка на репозиторий с исходным кодом задачи

https://github.com/aaaaaaalesha/10-game_theory