Magtek Incorporated

ADDENDUM TEST REPORT TO 93565-28

IPAD EMV Model:

30056015 (uses 30019320 USB cable) 30056017 (uses 30019319 Ethernet/USB combo cable)

Tested To The Following Standards:

FCC Part 15 Subpart C Sections 15.225 and RSS 210 Issue 8

Report No.: 93565-28B

Date of issue: July 18, 2013

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 87 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	4
Test Report Information	4
Revision History	4
Report Authorization	4
Test Facility Information	5
Software Versions	5
Site Registration & Accreditation Information	5
Summary of Results	6
Conditions During Testing	6
Equipment Under Test	7
Peripheral Devices	7
FCC Part 15 Subpart C	8
15.207 AC Conducted Emissions	8
15.225(a) RF Power Output	39
-20dBc & 99% Occupied Bandwidth	45
15.249(b)(c) Field Strength of Spurious Radiated Emissions	48
15.225(d)(e) Radiated Emissions / Frequency Stability	58
Appendix A: Modified EUT Test Results	73
Revision History	74
Report Authorization	74
Test Facility Information	75
Software Versions	75
Site Registration & Accreditation Information	75
Summary of Results	76
Conditions During Testing	76
Equipment Under Test	77
Peripheral Devices	77
FCC Part 15 Subpart C	78

15.225(a) RF Power Output	78
15.225(d)Radiated Emissions	81
Supplemental Information	86
Measurement Uncertainty	86
Emissions Test Details	86

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

Magtek Incorporated Joyce Walker

1710 Apollo Court CKC Laboratories, Inc.
Seal Beach, CA 90740 5046 Sierra Pines Drive
Mariposa, CA 95338

Representative: Alireza Ashani Project Number: 93565

Customer Reference Number: 96283

DATE OF EQUIPMENT RECEIPT: April 11, 2013 **DATE(S) OF TESTING:** April 11-18, 2013

Revision History

Original: Testing of IPAD EMV, 30056015 (uses 30019320 USB cable) and 30056017 (uses 30019319 Ethernet / USB combo cable) to FCC Part 15 Subpart C Sections 15.225 and RSS 210 Issue 8.

Addendum A: To add new partial 15.225 test data for the IPAD EMV, Model: 30056017 (uses 30019319 Ethernet/USB combo cable) due to modifications made to the EUT after the original testing had been completed. See appendix A for listing of modifications.

Addendum B: This change adds 15.207 test data and the equipment list used for frequency stability testing that were left out in the original testing, report 93565-28. In addition, to reduce confusion, the additional partial testing that appears in report 93565-28A was combined in Appendix A of this report in order to have one test report with all of the original testing and the testing that was performed after modifications were made to the EUT.

Note: the schematic that was in report 93565-28A was removed for confidentiality purposes.

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm

Steve J Be

Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Page 4 of 87 Report No.: 93565-28B

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 110 Olinda Place Brea, CA 92823

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.00.14
Immunity	5.00.07

Site Registration & Accreditation Information

Location	CB#	TAIWAN	CANADA	FCC	JAPAN	
Brea A	US0060	SL2-IN-E-1146R	3082D-1	90473	A-0147	

Page 5 of 87 Report No.: 93565-28B

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C 15.225 & RSS 210 Issue 8

Description	Test Procedure/Method	Results
Conducted Emissions	FCC Part 15 Subpart C Section 15.207	Pass
RF Power Output	FCC Part 15 Subpart C Section 15.225(a) / 2.1046	Pass
-20 dBc & 99% Occupied Bandwidth	FCC Part 15 Subpart C Section 15.225 / 2.1049 / RSS 210	Pass
Field Strength of Spurious Radiated Emissions	FCC Part 15 Subpart C Section 15.225(b)(c) / 2.1053	Pass
Radiated Emissions / Frequency Stability	FCC Part 15 Subpart C Section 15.225 (d)(e) / 2.1055(d) / 15.209 / ANSI C63.4 (2003)	Pass

Conditions During Testing

This list is a summary of the conditions noted for or modifications made to the equipment during testing.

Summary of Conditions

Modifications during testing with Ethernet Interface: Copper tape shield installed into bottom cover over interface connections. Shield covers entire internal surface of the cover.

15.207 Testing: There were two test configurations: USB cable and Ethernet/USB combo cable. Since this EUT is transmitting at 13.56MHz that fundamental emissions can be seen within the conducted emissions sweep (150kHz to 30MHz). Since the fundamental emission exceeds the limit line for 15.207 it is allowed to replace the transmit antenna with an equivalent resistive load and repeat the test to show that it is not conducted. Therefore, the test was performed a second time with the transmitter output terminated into an equivalent resistor load.

Modifications during 15.225(d) radiated emissions testing with USB Interface: Jumper wire added on top of PCBA from sense line of stylus pen from board jack to signature capture screen.

Modification during 15.225(d) radiated emissions testing with Ethernet Interface: Conductive paint over entire inside surface of back cover. Added jumper wire on top of PCBA from sense line of stylus pen from board jack to signature capture screen.

Page 6 of 87 Report No.: 93565-28B

EQUIPMENT UNDER TEST (EUT)

EQUIPMENT UNDER TEST

IPAD EMV AC to 5VDC Power Supply

Manuf: Magtek Incorporated Manuf: DVE

Model: 30056017 Model: DSA-12PFA-05 FUS 050200

Serial: 30 Serial: NA

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

<u>Laptop Computer</u> <u>Fast Ethernet Switch</u>

Manuf:Dell CorporationManuf:NetgearModel:Latitude D520Model:FS105

Serial: H2JFYC1 Serial: 1D52173U01B60

Page 7 of 87 Report No.: 93565-28B

FCC PART 15 SUBPART C

This report contains EMC emissions test results under United States Federal Communications Commission (FCC) 47 CFR 15C requirements for Unlicensed Radio Frequency Devices, Subpart C - Intentional Radiators.

15.207 AC Conducted Emissions

Test Data Sheets

Test Location: CKC Laboratories, Inc • 110 North Olinda Place • Brea, CA 92823 • 7149936112

Customer: Magtek Incorporated
Specification: 15.207 AC Mains - Average

Work Order #: 93565 Date: 4/16/2013
Test Type: Conducted Emissions Time: 10:00:34
Equipment: IPAD EMV Sequence#: 2

Manufacturer: Magtek Incorporated Tested By: S. Yamamoto Model: 30056017 Tested By: D. Yamamoto 110V 60Hz

S/N: 30

Test Equipment:

I	D Asse	et#	Description	Model	Calibration Date	Cal Due Date
Γ	`1 AN0	2672	Spectrum Analyzer	E4446A	9/4/2012	9/4/2014
Т	C2 ANO	02610	High Pass Filter	gh Pass Filter HE9615-150K- 50-720B		11/21/2013
Γ	'3 ANF	P04358	Cable	RG142	4/10/2012	4/10/2014
Γ	'4 ANF	P06084	Attenuator	SA18N10W-06	12/14/2012	12/14/2014
Т	5 AN0	00848.1	50uH LISN-Line 1 (L1) (dB)	3816/2nm	3/14/2013	3/14/2015
	AN0	00848.1	50uH LISN-Line 2 (L2) (dB)	3816/2nm	3/14/2013	3/14/2015
	AN0	00969A	50uH LISN-Line 1 (L1) (dB)	3816/2NM	3/12/2013	3/12/2015
	AN0	00969A	50uH LISN-Line 2 (L2) (dB)	3816/2NM	3/12/2013	3/12/2015

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
IPAD EMV*	Magtek Incorporated	30056017	30
AC to 5Vdc Power Supply	DVE	DSA-12PFA-05 FUS 050200	

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop Computer	Dell Corporation	Latitude D520	H2JFYC1
Fast Ethernet Switch	Netgear	FS105	1D52173U01B60

Page 8 of 87 Report No.: 93565-28B

Test Conditions / Notes:

The equipment under test (EUT) is stand alone on the Styrofoam tabletop. The EUT USB port is connected to a remotely located laptop. The AC to 5Vdc power adapter is connected to the interface cable and providing power to the EUT. The EUT wireless 13.56 MHz is on and continuously transmitting. Frequency range of this data sheet: 9kHz to 1000MHz. 9kHz to 150kHz, RBW=VBW=200Hz. 150kHz to 30MHz, RBW=VBW=9kHz. 30MHz to 1000MHz, RBW=VBW=120kHz. Highest fundamental frequency is 13.56MHz. Temperature: 20°C, Humidity: 50%, Pressure: 100kPa. Site A. EUT with integral antenna.

Ext	Attn:	0 d	lΒ
-----	-------	-----	----

	ttn: 0 aB rement Data:	Reading listed by margin. Test Lead: L1(L)									
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	-		T5						-		
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	13.562M	55.8	+0.0	+0.2	+0.3	+5.8	+0.0	62.4	50.0	+12.4	L1(L)
			+0.3						Fundamen	ıtal	
									emission		
2	6.743M	40.6	+0.0	+0.1	+0.2	+5.8	+0.0	46.9	50.0	-3.1	L1(L)
			+0.2								
3	232.900k	43.0	+0.0	+0.2	+0.0	+5.8	+0.0	49.0	52.3	-3.3	L1(L)
	4.0003.6	26.7	+0.0	0.1	0.0	. .	0.0	42.7	4.5.0		T 4 (T)
4	4.892M	36.5	+0.0	+0.1	+0.2	+5.8	+0.0	42.7	46.0	-3.3	L1(L)
	204 1 671	40.2	+0.1	.0.2	. 0.1	. 5.0	. 0. 0	46.2	50 1	2.0	I 1/I)
5	304.167k	40.2	$+0.0 \\ +0.0$	+0.2	+0.1	+5.8	+0.0	46.3	50.1	-3.8	L1(L)
6	285.987k	40.2	+0.0	+0.2	+0.1	+5.8	+0.0	46.3	50.6	-4.3	L1(L)
0	203.907K	40.2	+0.0	+0.2	+0.1	+3.6	+0.0	40.5	30.0	-4.3	LI(L)
7	3.501M	35.4	+0.0	+0.1	+0.2	+5.8	+0.0	41.6	46.0	-4.4	L1(L)
,	3.30111	33.1	+0.1	10.1	10.2	13.0	10.0	11.0	10.0		LI(L)
8	7.067M	39.1	+0.0	+0.1	+0.2	+5.8	+0.0	45.4	50.0	-4.6	L1(L)
	71007111	0,,1	+0.2				. 0.0		20.0		21(2)
9	5.045M	39.0	+0.0	+0.1	+0.2	+5.8	+0.0	45.2	50.0	-4.8	L1(L)
			+0.1								` '
10	9.409M	38.6	+0.0	+0.2	+0.2	+5.8	+0.0	45.1	50.0	-4.9	L1(L)
			+0.3								
11	5.175M	38.8	+0.0	+0.1	+0.2	+5.8	+0.0	45.0	50.0	-5.0	L1(L)
			+0.1								
12	3.289M	34.7	+0.0	+0.1	+0.2	+5.8	+0.0	40.9	46.0	-5.1	L1(L)
			+0.1								
13	5.011M	38.5	+0.0	+0.1	+0.2	+5.8	+0.0	44.7	50.0	-5.3	L1(L)
			+0.1						= 0 0		
14	9.481M	38.2	+0.0	+0.2	+0.2	+5.8	+0.0	44.7	50.0	-5.3	L1(L)
1.5	5.07514	20.4	+0.3	. 0.1	.0.0	. 7.0	. 0. 0	44.6	50.0	<i>5</i> 4	T 1/T)
15	5.075M	38.4	+0.0	+0.1	+0.2	+5.8	+0.0	44.6	50.0	-5.4	L1(L)
1.0	0.70714	20.1	+0.1	10.2	10.2	1 F O	+ O O	11 (<i>5</i> 0.0	-5.4	I 1/I)
16	9.707M	38.1	+0.0 +0.3	+0.2	+0.2	+5.8	+0.0	44.6	50.0	-5.4	L1(L)
17	3.382M	34.3	+0.0	+0.1	+0.2	+5.8	+0.0	40.5	46.0	-5.5	L1(L)
1 /	J.J021VI	J4.J	+0.0	+0.1	±0.∠	±3.6	+0.0	+0.3	+0.0	-3.3	LI(L)
18	5.274M	38.3	+0.1	+0.1	+0.2	+5.8	+0.0	44.5	50.0	-5.5	L1(L)
	J.2/ TIVI	50.5	+0.1	10.1	10.2	13.0	10.0	i=.J	50.0	3.3	LI(L)
19	3.340M	33.8	+0.0	+0.1	+0.2	+5.8	+0.0	40.0	46.0	-6.0	L1(L)
	2.2 10111	22.0	+0.1	. 0.1	. 0.2		. 3.0	.0.0	10.0	0.0	21(2)

20 A	4.977M ve	24.3	+0.0 +0.1	+0.1	+0.2	+5.8	+0.0	30.5	46.0	-15.5	L1(L)
٨	4.977M	38.8	+0.0	+0.1	+0.2	+5.8	+0.0	45.0	46.0	-1.0	L1(L)
			+0.1						see average	data	` ′
									above		
22	4.777M	24.0	+0.0	+0.1	+0.2	+5.8	+0.0	30.2	46.0	-15.8	L1(L)
A			+0.1								` /
٨	4.777M	38.1	+0.0	+0.1	+0.2	+5.8	+0.0	44.3	46.0	-1.7	L1(L)
			+0.1						see average		(-)
									above		
24	4.705M	23.7	+0.0	+0.1	+0.2	+5.8	+0.0	29.9	46.0	-16.1	L1(L)
A			+0.1					_, ,,			(-)
٨	4.705M	37.9	+0.0	+0.1	+0.2	+5.8	+0.0	44.1	46.0	-1.9	L1(L)
	.,,		+0.1						see average		(-)
									above		
26	8.112M	27.3	+0.0	+0.2	+0.2	+5.8	+0.0	33.7	50.0	-16.3	L1(L)
A		27.0	+0.2	. 3.2	. 3.2		. 0.0	20.,	20.0	10.0	21(2)
٨	8.112M	41.5	+0.0	+0.2	+0.2	+5.8	+0.0	47.9	50.0	-2.1	L1(L)
	0.112111	11.5	+0.2	10.2	10.2	13.0	10.0	17.5	see average		LI(L)
			10.2						above	autu	
28	4.313M	23.1	+0.0	+0.1	+0.2	+5.8	+0.0	29.3	46.0	-16.7	L1(L)
A		23.1	+0.1	10.1	10.2	13.0	10.0	27.3	10.0	10.7	LI(L)
٨	4.313M	37.4	+0.0	+0.1	+0.2	+5.8	+0.0	43.6	46.0	-2.4	L1(L)
	4.515111	37.4	+0.1	10.1	10.2	13.0	10.0	43.0	see average		LI(L)
			10.1						above	autu	
30	7.355M	26.9	+0.0	+0.2	+0.2	+5.8	+0.0	33.3	50.0	-16.7	L1(L)
A		20.9	+0.2	10.2	10.2	13.0	10.0	55.5	20.0	10.7	LI(L)
٨	7.355M	41.3	+0.0	+0.2	+0.2	+5.8	+0.0	47.7	50.0	-2.3	L1(L)
	7.333111	11.5	+0.2	10.2	10.2	13.0	10.0	17.7	see average		LI(L)
			. 0.2						above		
32	6.995M	26.7	+0.0	+0.1	+0.2	+5.8	+0.0	33.0	50.0	-17.0	L1(L)
A ¹		20.7	+0.2	10.1	10.2	13.0	10.0	33.0	20.0	17.0	LI(L)
٨	6.995M	41.8	+0.0	+0.1	+0.2	+5.8	+0.0	48.1	50.0	-1.9	L1(L)
	0.775111	11.0	+0.2	10.1	10.2	13.0	10.0	10.1	see average		LI(L)
			10.2						above	autu	
34	6.950M	26.7	+0.0	+0.1	+0.2	+5.8	+0.0	33.0	50.0	-17.0	L1(L)
A ₁		20.7	+0.2	10.1	10.2	13.0	10.0	55.0	50.0	17.0	LI(L)
۸	6.950M	41.0	+0.0	+0.1	+0.2	+5.8	+0.0	47.3	50.0	-2.7	L1(L)
	0.750111	71.0	+0.0	10.1	10.2	13.0	10.0	ਜ1.3	see average		LI(L)
			10.2						above	auu	
36	6.815M	26.5	+0.0	+0.1	+0.2	+5.8	+0.0	32.8	50.0	-17.2	L1(L)
A ₁		20.3	+0.0	10.1	10.2	13.0	10.0	22.0	50.0	17.2	LI(L)
٨	6.815M	41.8	+0.0	+0.1	+0.2	+5.8	+0.0	48.1	50.0	-1.9	L1(L)
	0.013111	71.0	+0.0	10.1	10.2	13.0	10.0	70.1	see average		LI(L)
			10.2						above	auu	
38	161.634k	28.8	+0.0	+0.5	+0.0	+5.8	+0.0	35.1	55.4	-20.3	L1(L)
A.		20.0	+0.0	10.5	10.0	13.0	10.0	55.1	<i>55.</i> 4	-20.3	LI(L)
	161.634k	50.6	+0.0	+0.5	+0.0	+5.8	+0.0	56.9	55.4	+1.5	L1(L)
	101.034K	50.0	+0.0 +0.0	±0.5	±0.0	±3.6	±0.0	50.7	see average		LI(L)
			±0.0						above	uata	
									above		

40	195.813k	24.8	+0.0	+0.2	+0.0	+5.8	+0.0	30.8	53.8	-23.0	L1(L)
1	Ave		+0.0								
^	195.813k	46.1	+0.0	+0.2	+0.0	+5.8	+0.0	52.1	53.8	-1.7	L1(L)
			+0.0			see average data					
						above					

CKC Laboratories, Inc Date: 4/16/2013 Time: 10:00:34 Magtek Incorporated WO#: 93565 15:207 AC Mains - Average Test Lead: L1(L) 110V 60Hz Sequence#: 2 Ext ATTN: 0 dB IPAD EMV

Customer: Magtek Incorporated
Specification: 15.207 AC Mains - Average

 Work Order #:
 93565
 Date: 4/16/2013

 Test Type:
 Conducted Emissions
 Time: 10:36:18

Equipment: **IPAD EMV** Sequence#: 4

Manufacturer: Magtek Incorporated Tested By: S. Yamamoto Model: 30056017 Tested By: D. Yamamoto 110V 60Hz

S/N: 30

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02672	Spectrum Analyzer	E4446A	9/4/2012	9/4/2014
T1	AN02610	High Pass Filter	HE9615-150K-	11/21/2011	11/21/2013
			50-720B		
T2	ANP04358	Cable	RG142	4/10/2012	4/10/2014
Т3	ANP06084	Attenuator	SA18N10W-06	12/14/2012	12/14/2014
T4	AN00848.1	50uH LISN-Line 1	3816/2nm	3/14/2013	3/14/2015
		(L1)(dB)			
	AN00848.1	50uH LISN-Line 2	3816/2nm	3/14/2013	3/14/2015
		(L2) (dB)			
	AN00969A	50uH LISN-Line 1	3816/2NM	3/12/2013	3/12/2015
		(L1)(dB)			
	AN00969A	50uH LISN-Line 2	3816/2NM	3/12/2013	3/12/2015
		(L2) (dB)			

Equipment Under Test (* = EUT):

=quipinent entire zest (
Function	Manufacturer	Model #	S/N
IPAD EMV*	Magtek Incorporated	30056017	30
AC to 5Vdc Power Supply	DVE	DSA-12PFA-05 FUS	
		050200	

Support Devices:

Support Devices.			
Function	Manufacturer	Model #	S/N
Laptop Computer	Dell Corporation	Latitude D520	H2JFYC1
Fast Ethernet Switch	Netgear	FS105	1D52173U01B60

Test Conditions / Notes:

The equipment under test (EUT) is stand alone on the styrofoam tabletop. The EUT USB port is connected to a remotely located laptop. The AC to 5Vdc power adapter is connected to the interface cable and providing power to the EUT. The EUT wireless 13.56 MHz is on and continuously transmitting. Frequency range of this data sheet: 9kHz to 1000MHz. 9kHz to 150kHz, RBW=VBW=200Hz. 150kHz to 30MHz, RBW=VBW=9kHz. 30MHz to 1000MHz, RBW=VBW=120kHz. Highest fundamental frequency is 13.56MHz. Temperature: 20°C, Humidity: 50%, Pressure: 100kPa. Site A. EUT with integral antenna replaced with 82.8 ohm resistor.

Ext Attn: 0 dB

Measu	rement Data:	Re	eading lis	ted by ma	argin.						
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	302.713k	40.2	+0.2	+0.1	+5.8	+0.0	+0.0	46.3	50.2	-3.9	L1(L)
2	257.626k	41.5	+0.2	+0.0	+5.8	+0.0	+0.0	47.5	51.5	-4.0	L1(L)

Page 12 of 87 Report No.: 93565-28B

3	2.931M	35.5	+0.2	+0.2	+5.8	+0.1	+0.0	41.8	46.0	-4.2	L1(L)
4	2.842M	35.4	+0.2	+0.2	+5.8	+0.1	+0.0	41.7	46.0	-4.3	L1(L)
5	2.770M	34.8	+0.2	+0.2	+5.8	+0.1	+0.0	41.1	46.0	-4.9	L1(L)
6	2.340M	34.7	+0.2	+0.2	+5.8	+0.1	+0.0	41.0	46.0	-5.0	L1(L)
7	2.685M	34.2	+0.2	+0.2	+5.8	+0.1	+0.0	40.5	46.0	-5.5	L1(L)
8	2.076M	33.7	+0.2	+0.1	+5.8	+0.1	+0.0	39.9	46.0	-6.1	L1(L)
9	2.595M	33.5	+0.2	+0.2	+5.8	+0.1	+0.0	39.8	46.0	-6.2	L1(L)
10	10.238M	37.3	+0.2	+0.2	+5.8	+0.3	+0.0	43.8	50.0	-6.2	L1(L)
11	4.790M Ave	25.2	+0.1	+0.2	+5.8	+0.1	+0.0	31.4	46.0	-14.6	L1(L)
^	4.790M	40.0	+0.1	+0.2	+5.8	+0.1	+0.0	46.2	46.0 see average above	+0.2 data	L1(L)
13	7.923M Ave	28.6	+0.2	+0.2	+5.8	+0.2	+0.0	35.0	50.0	-15.0	L1(L)
^	7.923M	42.6	+0.2	+0.2	+5.8	+0.2	+0.0	49.0	50.0 see average above	-1.0 data	L1(L)
15	4.513M Ave	24.7	+0.1	+0.2	+5.8	+0.1	+0.0	30.9	46.0	-15.1	L1(L)
٨	4.513M	39.2	+0.1	+0.2	+5.8	+0.1	+0.0	45.4	46.0 see average above	-0.6 data	L1(L)
17	4.343M Ave	24.4	+0.1	+0.2	+5.8	+0.1	+0.0	30.6	46.0	-15.4	L1(L)
^	4.343M	38.7	+0.1	+0.2	+5.8	+0.1	+0.0	44.9	46.0 see average above	-1.1 data	L1(L)
19	7.211M Ave	28.2	+0.2	+0.2	+5.8	+0.2	+0.0	34.6	50.0	-15.4	L1(L)
^	7.211M	42.5	+0.2	+0.2	+5.8	+0.2	+0.0	48.9	50.0 see average above	-1.1 data	L1(L)
21	4.224M Ave	24.0	+0.1	+0.2	+5.8	+0.1	+0.0	30.2	46.0	-15.8	L1(L)
٨	4.224M	37.5	+0.1	+0.2	+5.8	+0.1	+0.0	43.7	46.0 see average above	-2.3 data	L1(L)
23	4.139M Ave	24.0	+0.1	+0.2	+5.8	+0.1	+0.0	30.2	46.0	-15.8	L1(L)
٨	4.139M	39.0	+0.1	+0.2	+5.8	+0.1	+0.0	45.2	46.0 see average above	-0.8 data	L1(L)

25 A	6.851M Ave	27.8	+0.1	+0.2	+5.8	+0.2	+0.0	34.1	50.0	-15.9	L1(L)
٨	6.851M	42.2	+0.1	+0.2	+5.8	+0.2	+0.0	48.5	50.0	-1.5	L1(L)
									see average		(-)
									above		
27	9.508M	27.4	+0.2	+0.2	+5.8	+0.3	+0.0	33.9	50.0	-16.1	L1(L)
A	Ave										
٨	9.508M	41.3	+0.2	+0.2	+5.8	+0.3	+0.0	47.8	50.0	-2.2	L1(L)
									see average	data	
									above		
29	4.016M	23.7	+0.1	+0.2	+5.8	+0.1	+0.0	29.9	46.0	-16.1	L1(L)
	Ave										
^	4.016M	37.2	+0.1	+0.2	+5.8	+0.1	+0.0	43.4	46.0	-2.6	L1(L)
									see average	data	
									above		
31	3.977M	23.5	+0.1	+0.2	+5.8	+0.1	+0.0	29.7	46.0	-16.3	L1(L)
	Ave	25.5	0.1	0.0	~ 0	0.1	0.0	40.5	450		T 4 (T)
^	3.977M	37.5	+0.1	+0.2	+5.8	+0.1	+0.0	43.7	46.0	-2.3	L1(L)
									see average	aata	
33	5.932M	27.0	+0.1	+0.2	+5.8	+0.2	+0.0	33.3	above 50.0	-16.7	L1(L)
	3.932WI Ave	27.0	+0.1	+0.2	+3.6	+0.2	+0.0	33.3	30.0	-10.7	LI(L)
^	5.932M	41.0	+0.1	+0.2	+5.8	+0.2	+0.0	47.3	50.0	-2.7	L1(L)
	3.73211	71.0	10.1	10.2	13.0	10.2	10.0	71.3	see average		LI(L)
									above	data	
35	5.986M	27.0	+0.1	+0.2	+5.8	+0.2	+0.0	33.3	50.0	-16.7	L1(L)
	Ave	_,,,,									(-)
٨	5.986M	41.6	+0.1	+0.2	+5.8	+0.2	+0.0	47.9	50.0	-2.1	L1(L)
									see average	data	` '
									above		
37	3.718M	23.0	+0.1	+0.2	+5.8	+0.1	+0.0	29.2	46.0	-16.8	L1(L)
A	Ave										
^	3.718M	37.4	+0.1	+0.2	+5.8	+0.1	+0.0	43.6	46.0	-2.4	L1(L)
									see average	data	
									above		
39	3.607M	22.9	+0.1	+0.2	+5.8	+0.1	+0.0	29.1	46.0	-16.9	L1(L)
	Ave										
^	3.607M	37.1	+0.1	+0.2	+5.8	+0.1	+0.0	43.3	46.0	-2.7	L1(L)
									see average	data	
A 1	2 40014	22.6	LO 1	10.2	, F O	₁ () 1	ι Ο Ο	20.0	above	17.0	T 1/T \
41	3.488M	22.6	+0.1	+0.2	+5.8	+0.1	+0.0	28.8	46.0	-17.2	L1(L)
^	Ave 3.488M	36.8	+0.1	+0.2	+5.8	+0.1	+0.0	43.0	46.0	-3.0	L1(L)
	J.400WI	50.0	+0.1	+0.∠	+3.0	+0.1	+0.0	43.0	see average		LI(L)
									above	aata	
43	3.454M	22.5	+0.1	+0.2	+5.8	+0.1	+0.0	28.7	46.0	-17.3	L1(L)
	Ave	22.5	10.1	10.2	13.0	10.1	10.0	20.7	10.0	11.5	L1(L)
٨	3.454M	36.9	+0.1	+0.2	+5.8	+0.1	+0.0	43.1	46.0	-2.9	L1(L)
									see average		(-)
									above		
45	5.175M	25.9	+0.1	+0.2	+5.8	+0.1	+0.0	32.1	50.0	-17.9	L1(L)
A	Ave										
	_										

٨	5.175M	40.9	+0.1	+0.2	+5.8	+0.1	+0.0	47.1	50.0	-2.9	L1(L)
									see average	data	
									above		
47	172.543k	27.9	+0.4	+0.0	+5.8	+0.0	+0.0	34.1	54.8	-20.7	L1(L)
A	Ave										
٨	172.543k	48.6	+0.4	+0.0	+5.8	+0.0	+0.0	54.8	54.8	+0.0	L1(L)
									see average	data	
									above		
49	213.994k	25.1	+0.2	+0.0	+5.8	+0.0	+0.0	31.1	53.0	-21.9	L1(L)
l A	Ave										
^	213.994k	44.3	+0.2	+0.0	+5.8	+0.0	+0.0	50.3	53.0	-2.7	L1(L)
									see average	data	
									above		

CKC Laboratories, Inc Date: 4/16/2013 Time: 10:36:18 Magtek Incorporated WO#. 93565 15:207 AC Mains - Average Test Lead: L1(L) 110V 60Hz Sequence#: 4 Ext ATTN: 0 dB IPAD EMV

Customer: Magtek Incorporated
Specification: 15.207 AC Mains - Average

 Work Order #:
 93565
 Date: 4/16/2013

 Test Type:
 Conducted Emissions
 Time: 10:04:18

Equipment: **IPAD EMV** Sequence#: 3

Manufacturer: Magtek Incorporated Tested By: S. Yamamoto Model: 30056017 Tested By: D. Yamamoto 110V 60Hz

S/N: 30

Test Equipment:

ID		Description	M = 1-1	Calibratian Data	Cal Day Data
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	9/4/2012	9/4/2014
T2	AN02610	High Pass Filter	HE9615-150K-	11/21/2011	11/21/2013
		-	50-720B		
Т3	ANP04358	Cable	RG142	4/10/2012	4/10/2014
T4	ANP06084	Attenuator	SA18N10W-06	12/14/2012	12/14/2014
	AN00848.1	50uH LISN-Line 1	3816/2nm	3/14/2013	3/14/2015
		(L1)(dB)			
T5	AN00848.1	50uH LISN-Line 2	3816/2nm	3/14/2013	3/14/2015
		(L2) (dB)			
	AN00969A	50uH LISN-Line 1	3816/2NM	3/12/2013	3/12/2015
		(L1) (dB)			
	AN00969A	50uH LISN-Line 2	3816/2NM	3/12/2013	3/12/2015
		(L2) (dB)			

Equipment Under Test (* = EUT):

=quipinent entire zest (
Function	Manufacturer	Model #	S/N
IPAD EMV*	Magtek Incorporated	30056017	30
AC to 5Vdc Power Supply	DVE	DSA-12PFA-05 FUS	
		050200	

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop Computer	Dell Corporation	Latitude D520	H2JFYC1
Fast Ethernet Switch	Netgear	FS105	1D52173U01B60

Test Conditions / Notes:

The equipment under test (EUT) is stand alone on the Styrofoam tabletop. The EUT USB port is connected to a remotely located laptop. The AC to 5Vdc power adapter is connected to the interface cable and providing power to the EUT. The EUT wireless 13.56 MHz is on and continuously transmitting. Frequency range of this data sheet: 9kHz to 1000MHz. 9kHz to 150kHz, RBW=VBW=200Hz. 150kHz to 30MHz, RBW=VBW=9kHz. 30MHz to 1000MHz, RBW=VBW=120kHz. Highest fundamental frequency is 13.56MHz. Temperature: 20°C, Humidity: 50%, Pressure: 100kPa. Site A. EUT with integral antenna.

Page 16 of 87 Report No.: 93565-28B

Ext Attn: 0 dB

	ttn: 0 aB rement Data:	. P.	eading lis	ted by me	aroin	Test Lead: (N)L2						
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar	
If	1104	Rung	T5	1 4	13	1-7	ואוכו	C011	Spec	14141 5111	1 0141	
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant	
1	13.562M	55.1	+0.0	+0.2	+0.3	+5.8	+0.0	61.7	50.0	+11.7	(N)L2	
1	13.302111	55.1	+0.3	10.2	10.5	15.0	10.0	01.7	Fundamen		(11)22	
			. 0.0						Emission			
2	4.994M	36.2	+0.0	+0.1	+0.2	+5.8	+0.0	42.4	46.0	-3.6	(N)L2	
			+0.1								,	
3	9.211M	39.9	+0.0	+0.2	+0.2	+5.8	+0.0	46.4	50.0	-3.6	(N)L2	
			+0.3								, ,	
4	256.899k	40.8	+0.0	+0.2	+0.0	+5.8	+0.0	46.8	51.5	-4.7	(N)L2	
			+0.0								, ,	
5	8.265M	38.6	+0.0	+0.2	+0.2	+5.8	+0.0	45.0	50.0	-5.0	(N)L2	
			+0.2								, ,	
6	303.440k	38.8	+0.0	+0.2	+0.1	+5.8	+0.0	44.9	50.1	-5.2	(N)L2	
			+0.0								` '	
7	280.897k	39.3	+0.0	+0.2	+0.0	+5.8	+0.0	45.3	50.8	-5.5	(N)L2	
			+0.0								` '	
8	4.620M	34.3	+0.0	+0.1	+0.2	+5.8	+0.0	40.5	46.0	-5.5	(N)L2	
			+0.1									
9	8.734M	38.0	+0.0	+0.2	+0.2	+5.8	+0.0	44.5	50.0	-5.5	(N)L2	
			+0.3									
10	4.832M	34.2	+0.0	+0.1	+0.2	+5.8	+0.0	40.4	46.0	-5.6	(N)L2	
			+0.1									
11	7.436M	38.0	+0.0	+0.2	+0.2	+5.8	+0.0	44.4	50.0	-5.6	(N)L2	
			+0.2									
12	6.553M	37.9	+0.0	+0.1	+0.2	+5.8	+0.0	44.2	50.0	-5.8	(N)L2	
			+0.2									
13	7.562M	37.7	+0.0	+0.2	+0.2	+5.8	+0.0	44.1	50.0	-5.9	(N)L2	
			+0.2									
14	7.770M	37.7	+0.0	+0.2	+0.2	+5.8	+0.0	44.1	50.0	-5.9	(N)L2	
			+0.2									
15	320.166k	37.6	+0.0	+0.2	+0.1	+5.8	+0.0	43.7	49.7	-6.0	(N)L2	
			+0.0									
16	7.166M	37.6	+0.0	+0.2	+0.2	+5.8	+0.0	44.0	50.0	-6.0	(N)L2	
			+0.2									
17	8.400M	37.6	+0.0	+0.2	+0.2	+5.8	+0.0	44.0	50.0	-6.0	(N)L2	
			+0.2									
18	7.292M	37.5	+0.0	+0.2	+0.2	+5.8	+0.0	43.9	50.0	-6.1	(N)L2	
			+0.2									
19	7.625M	37.4	+0.0	+0.2	+0.2	+5.8	+0.0	43.8	50.0	-6.2	(N)L2	
			+0.2									
20	6.643M	37.2	+0.0	+0.1	+0.2	+5.8	+0.0	43.5	50.0	-6.5	(N)L2	
			+0.2									
21	8.580M	37.1	+0.0	+0.2	+0.2	+5.8	+0.0	43.5	50.0	-6.5	(N)L2	
			+0.2									
22	4.160M	33.2	+0.0	+0.1	+0.2	+5.8	+0.0	39.4	46.0	-6.6	(N)L2	
			+0.1									

23	3.863M	32.9	+0.0 +0.1	+0.1	+0.2	+5.8	+0.0	39.1	46.0	-6.9	(N)L2
24	4.003M	32.9	+0.1 +0.1	+0.1	+0.2	+5.8	+0.0	39.1	46.0	-6.9	(N)L2
25	6.707M	36.8	+0.0 +0.2	+0.1	+0.2	+5.8	+0.0	43.1	50.0	-6.9	(N)L2
26	4.471M	32.7	+0.0 +0.1	+0.1	+0.2	+5.8	+0.0	38.9	46.0	-7.1	(N)L2
27	4.220M	32.5	+0.0 +0.1	+0.1	+0.2	+5.8	+0.0	38.7	46.0	-7.3	(N)L2
28	4.237M	32.5	+0.0 +0.1	+0.1	+0.2	+5.8	+0.0	38.7	46.0	-7.3	(N)L2
29	195.087k Ave	22.4	+0.0 +0.0	+0.2	+0.0	+5.8	+0.0	28.4	53.8	-25.4	(N)L2
^	195.087k	44.3	+0.0 +0.0	+0.2	+0.0	+5.8	+0.0	50.3	53.8 see average above	-3.5 data	(N)L2
31	168.180k Ave	22.9	+0.0 +0.0	+0.4	+0.0	+5.8	+0.0	29.1	55.0	-25.9	(N)L2
٨	168.180k	48.5	+0.0 +0.0	+0.4	+0.0	+5.8	+0.0	54.7	55.0 see average above	-0.3 data	(N)L2

CKC Laboratories, Inc Date: 4/16/2013 Time: 10:04:18 Magtek Incorporated WO#: 93565 15:207 AC Mains - Average Test Lead: (N)L2 110V 60Hz Sequence#: 3 Ext ATTN: 0 dB IPAD EMV

Customer: Magtek Incorporated
Specification: 15.207 AC Mains - Average

 Work Order #:
 93565
 Date: 4/16/2013

 Test Type:
 Conducted Emissions
 Time: 10:40:40

Equipment: **IPAD EMV** Sequence#: 5

Manufacturer: Magtek Incorporated Tested By: S. Yamamoto Model: 30056017 Tested By: D. Yamamoto 110V 60Hz

S/N: 30

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02672	Spectrum Analyzer	E4446A	9/4/2012	9/4/2014
T1	AN02610	High Pass Filter	HE9615-150K-	11/21/2011	11/21/2013
			50-720B		
T2	ANP04358	Cable	RG142	4/10/2012	4/10/2014
Т3	ANP06084	Attenuator	SA18N10W-06	12/14/2012	12/14/2014
	AN00848.1	50uH LISN-Line 1	3816/2nm	3/14/2013	3/14/2015
		(L1)(dB)			
T4	AN00848.1	50uH LISN-Line 2	3816/2nm	3/14/2013	3/14/2015
		(L2) (dB)			
	AN00969A	50uH LISN-Line 1	3816/2NM	3/12/2013	3/12/2015
		(L1)(dB)			
	AN00969A	50uH LISN-Line 2	3816/2NM	3/12/2013	3/12/2015
		(L2) (dB)			

Equipment Under Test (* = EUT):

=quipilient cities zest (
Function	Manufacturer	Model #	S/N
IPAD EMV*	Magtek Incorporated	30056017	30
AC to 5Vdc Power Supply	DVE	DSA-12PFA-05 FUS	
		050200	

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop Computer	Dell Corporation	Latitude D520	H2JFYC1
Fast Ethernet Switch	Netgear	FS105	1D52173U01B60

Test Conditions / Notes:

The equipment under test (EUT) is stand alone on the Styrofoam tabletop. The EUT USB port is connected to a remotely located laptop. The AC to 5Vdc power adapter is connected to the interface cable and providing power to the EUT. The EUT wireless 13.56 MHz is on and continuously transmitting. Frequency range of this data sheet: 9kHz to 1000MHz. 9kHz to 150kHz, RBW=VBW=200Hz. 150kHz to 30MHz, RBW=VBW=9kHz. 30MHz to 1000MHz, RBW=VBW=120kHz. Highest fundamental frequency is 13.56MHz. Temperature: 20°C, Humidity: 50%, Pressure: 100kPa. Site A. EUT with integral antenna replaced with 82.8 ohm resistor.

Page 19 of 87 Report No.: 93565-28B

Ext Attn: 0 dB

Heatswerent Data:		IIII: U UB romant Datas	. D.	ading lie	ted by me	rain			Test I ear	4. (N)I 2		
MHz							Т/	Dict		. ,	Morgin	Dolor
1 5.716M 40.7 +0.1 +0.2 +5.8 +0.1 +0.0 46.9 50.0 -3.1 (N)L2 2 4.913M 36.5 +0.1 +0.2 +5.8 +0.1 +0.0 42.7 46.0 -3.3 (N)L2 3 4.845M 35.7 +0.1 +0.2 +5.8 +0.1 +0.0 41.9 46.0 -4.1 (N)L2 4 7.616M 39.4 +0.2 +0.2 +5.8 +0.2 +0.0 45.8 50.0 -4.2 (N)L2 5 8.058M 39.4 +0.2 +0.2 +5.8 +0.2 +0.0 45.8 50.0 -4.2 (N)L2 6 8.373M 39.4 +0.2 +0.2 +5.8 +0.2 +0.0 45.6 50.0 -4.2 (N)L2 7 8.616M 39.2 +0.2 +0.2 +5.8 +0.2 +0.0 45.6 50.0 -4.4 (N)L2 10 6.923M <t< td=""><td>#</td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>_</td><td></td></t<>	#		_							-	_	
2 4.913M 36.5 +0.1 +0.2 +5.8 +0.1 +0.0 42.7 46.0 -3.3 (N)L2 3 4.845M 35.7 +0.1 +0.2 +5.8 +0.1 +0.0 41.9 46.0 -4.1 (N)L2 4 7.616M 39.4 +0.2 +0.2 +5.8 +0.2 +0.0 45.8 50.0 -4.2 (N)L2 5 8.058M 39.4 +0.2 +0.2 +5.8 +0.2 +0.0 45.8 50.0 -4.2 (N)L2 6 8.373M 39.4 +0.2 +0.2 +5.8 +0.2 +0.0 45.8 50.0 -4.2 (N)L2 7 8.616M 39.2 +0.2 +0.2 +5.8 +0.2 +0.0 45.6 50.0 -4.4 (N)L2 9 4.637M 35.1 +0.1 +0.2 +5.8 +0.1 +0.0 41.5 46.0 -4.7 (N)L2 10 6.923M <t< td=""><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td></t<>	1									•		
3 4.845M 35.7 +0.1 +0.2 +5.8 +0.1 +0.0 41.9 46.0 -4.1 (N)L2 4 7.616M 39.4 +0.2 +0.2 +5.8 +0.2 +0.0 45.8 50.0 -4.2 (N)L2 5 8.058M 39.4 +0.2 +0.2 +5.8 +0.2 +0.0 45.8 50.0 -4.2 (N)L2 6 8.373M 39.4 +0.2 +0.2 +5.8 +0.2 +0.0 45.8 50.0 -4.2 (N)L2 7 8.616M 39.2 +0.2 +0.2 +5.8 +0.2 +0.0 45.6 50.0 -4.4 (N)L2 8 4.394M 35.3 +0.1 +0.2 +5.8 +0.1 +0.0 41.5 46.0 -4.5 (N)L2 9 4.637M 35.1 +0.1 +0.2 +5.8 +0.1 +0.0 41.3 46.0 -4.7 (N)L2 10 6.923M 39.0 +0.1 +0.2 +5.8 +0.2 +0.0 45.3 50.0 -4.9 (N)L2 11 6.544M 38.8 +0.1 +0.2 +5.8 +0.2 +0.0 45.1 50.0 -4.9 (N)L2 12 218.357k 41.4 +0.2 +0.0 +5.8 +0.0 +0.0 47.4 52.9 -5.5 (N)L2 13 6.211M 38.2 +0.1 +0.2 +5.8 +0.2 +0.0 44.3 50.0 -5.7 (N)L2 14 307.076k 38.2 +0.2 +0.1 +5.8 +0.2 +0.0 44.3 50.0 -5.7 (N)L2 15 6.725M 38.0 +0.1 +0.2 +5.8 +0.2 +0.0 44.3 50.0 -5.7 (N)L2 17 5.616M 37.8 +0.1 +0.2 +5.8 +0.2 +0.0 44.1 50.0 -5.9 (N)L2 18 9.779M 37.3 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.0 (N)L2 20 7.085M 37.2 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2 21 10.103M 37.1 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2 22 9.634M 36.9 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2 22 9.634M 36.9 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2	1	5./16M	40.7	+0.1	+0.2	+5.8	+0.1	+0.0	46.9	50.0	-3.1	(N)L2
3 4.845M 35.7 +0.1 +0.2 +5.8 +0.1 +0.0 41.9 46.0 -4.1 (N)L2 4 7.616M 39.4 +0.2 +0.2 +5.8 +0.2 +0.0 45.8 50.0 -4.2 (N)L2 5 8.058M 39.4 +0.2 +0.2 +5.8 +0.2 +0.0 45.8 50.0 -4.2 (N)L2 6 8.373M 39.4 +0.2 +0.2 +5.8 +0.2 +0.0 45.8 50.0 -4.2 (N)L2 7 8.616M 39.2 +0.2 +0.2 +5.8 +0.2 +0.0 45.6 50.0 -4.4 (N)L2 8 4.394M 35.3 +0.1 +0.2 +5.8 +0.1 +0.0 41.5 46.0 -4.5 (N)L2 9 4.637M 35.1 +0.1 +0.2 +5.8 +0.1 +0.0 41.3 46.0 -4.7 (N)L2 10 6.923M 39.0 +0.1 +0.2 +5.8 +0.2 +0.0 45.3 50.0 -4.9 (N)L2 11 6.544M 38.8 +0.1 +0.2 +5.8 +0.2 +0.0 45.1 50.0 -4.9 (N)L2 12 218.357k 41.4 +0.2 +0.0 +5.8 +0.0 +0.0 47.4 52.9 -5.5 (N)L2 13 6.211M 38.2 +0.1 +0.2 +5.8 +0.2 +0.0 44.3 50.0 -5.7 (N)L2 14 307.076k 38.2 +0.2 +0.1 +5.8 +0.2 +0.0 44.3 50.0 -5.7 (N)L2 15 6.725M 38.0 +0.1 +0.2 +5.8 +0.2 +0.0 44.3 50.0 -5.7 (N)L2 17 5.616M 37.8 +0.1 +0.2 +5.8 +0.2 +0.0 44.1 50.0 -5.9 (N)L2 18 9.779M 37.3 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.0 (N)L2 20 7.085M 37.2 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2 21 10.103M 37.1 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2 22 9.634M 36.9 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2 22 9.634M 36.9 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2		4.01234	26.5	. 0.1	. 0. 2	. 5.0	. 0. 1	. 0. 0	10.7	16.0	2.2	(NDL 2
4 7.616M 39.4 +0.2 +0.2 +5.8 +0.2 +0.0 45.8 50.0 -4.2 (N)L2 5 8.058M 39.4 +0.2 +0.2 +5.8 +0.2 +0.0 45.8 50.0 -4.2 (N)L2 6 8.373M 39.4 +0.2 +0.2 +5.8 +0.2 +0.0 45.8 50.0 -4.2 (N)L2 7 8.616M 39.2 +0.2 +0.2 +5.8 +0.2 +0.0 45.6 50.0 -4.4 (N)L2 8 4.394M 35.3 +0.1 +0.2 +5.8 +0.1 +0.0 41.5 46.0 -4.5 (N)L2 9 4.637M 35.1 +0.1 +0.2 +5.8 +0.1 +0.0 41.3 46.0 -4.7 (N)L2 10 6.923M 39.0 +0.1 +0.2 +5.8 +0.2 +0.0 45.3 50.0 -4.7 (N)L2 11 6.544M 38.8 +0.1 +0.2 +5.8 +0.2 +0.0 45.1 50.0 -	2	4.913M	36.5	+0.1	+0.2	+5.8	+0.1	+0.0	42.7	46.0	-3.3	(N)L2
4 7.616M 39.4 +0.2 +0.2 +5.8 +0.2 +0.0 45.8 50.0 -4.2 (N)L2 5 8.058M 39.4 +0.2 +0.2 +5.8 +0.2 +0.0 45.8 50.0 -4.2 (N)L2 6 8.373M 39.4 +0.2 +0.2 +5.8 +0.2 +0.0 45.8 50.0 -4.2 (N)L2 7 8.616M 39.2 +0.2 +0.2 +5.8 +0.2 +0.0 45.6 50.0 -4.4 (N)L2 8 4.394M 35.3 +0.1 +0.2 +5.8 +0.1 +0.0 41.5 46.0 -4.5 (N)L2 9 4.637M 35.1 +0.1 +0.2 +5.8 +0.1 +0.0 41.3 46.0 -4.7 (N)L2 10 6.923M 39.0 +0.1 +0.2 +5.8 +0.2 +0.0 45.3 50.0 -4.7 (N)L2 11 6.544M 38.8 +0.1 +0.2 +5.8 +0.2 +0.0 45.1 50.0 -		4.04534	25.7	. 0.1	. 0. 2	. 5.0	. 0. 1	. 0. 0	41.0	16.0	4.1	(NDL 2
5 8.058M 39.4 +0.2 +5.8 +0.2 +0.0 45.8 50.0 -4.2 (N)L2 6 8.373M 39.4 +0.2 +0.2 +5.8 +0.2 +0.0 45.8 50.0 -4.2 (N)L2 7 8.616M 39.2 +0.2 +0.2 +5.8 +0.2 +0.0 45.6 50.0 -4.4 (N)L2 8 4.394M 35.3 +0.1 +0.2 +5.8 +0.1 +0.0 41.5 46.0 -4.5 (N)L2 9 4.637M 35.1 +0.1 +0.2 +5.8 +0.1 +0.0 41.3 46.0 -4.7 (N)L2 10 6.923M 39.0 +0.1 +0.2 +5.8 +0.2 +0.0 45.3 50.0 -4.7 (N)L2 11 6.544M 38.8 +0.1 +0.2 +5.8 +0.2 +0.0 45.1 50.0 -5.5 (N)L2 13 6.21IM 38.2	3	4.845M	35.7	+0.1	+0.2	+5.8	+0.1	+0.0	41.9	46.0	-4.1	(N)L2
5 8.058M 39.4 +0.2 +5.8 +0.2 +0.0 45.8 50.0 -4.2 (N)L2 6 8.373M 39.4 +0.2 +0.2 +5.8 +0.2 +0.0 45.8 50.0 -4.2 (N)L2 7 8.616M 39.2 +0.2 +0.2 +5.8 +0.2 +0.0 45.6 50.0 -4.4 (N)L2 8 4.394M 35.3 +0.1 +0.2 +5.8 +0.1 +0.0 41.5 46.0 -4.5 (N)L2 9 4.637M 35.1 +0.1 +0.2 +5.8 +0.1 +0.0 41.3 46.0 -4.7 (N)L2 10 6.923M 39.0 +0.1 +0.2 +5.8 +0.2 +0.0 45.3 50.0 -4.7 (N)L2 11 6.544M 38.8 +0.1 +0.2 +5.8 +0.2 +0.0 45.1 50.0 -5.5 (N)L2 13 6.21IM 38.2		7.0101	20.4	0.0	0.0	7 0	0.2	0.0	45.0	5 0.0	4.0	(ADI O
6 8.373M 39.4 +0.2 +0.2 +5.8 +0.2 +0.0 45.8 50.0 -4.2 (N)L2 7 8.616M 39.2 +0.2 +0.2 +5.8 +0.2 +0.0 45.6 50.0 -4.4 (N)L2 8 4.394M 35.3 +0.1 +0.2 +5.8 +0.1 +0.0 41.5 46.0 -4.5 (N)L2 9 4.637M 35.1 +0.1 +0.2 +5.8 +0.1 +0.0 41.3 46.0 -4.7 (N)L2 10 6.923M 39.0 +0.1 +0.2 +5.8 +0.2 +0.0 45.3 50.0 -4.7 (N)L2 11 6.544M 38.8 +0.1 +0.2 +5.8 +0.2 +0.0 45.1 50.0 -4.9 (N)L2 12 218.357k 41.4 +0.2 +0.0 +5.8 +0.0 +0.0 47.4 52.9 -5.5 (N)L2 13 6.211M 38.2 +0.1 +0.2 +5.8 +0.2 +0.0 44.5 50.0 -5.5 (N)L2 14 307.076k 38.2 +0.2 +0.1 +5.8 +0.0 +0.0 44.3 50.0 -5.7 (N)L2 15 6.725M 38.0 +0.1 +0.2 +5.8 +0.2 +0.0 44.3 50.0 -5.7 (N)L2 16 6.337M 37.8 +0.1 +0.2 +5.8 +0.2 +0.0 44.1 50.0 -5.9 (N)L2 17 5.616M 37.8 +0.1 +0.2 +5.8 +0.2 +0.0 44.1 50.0 -6.0 (N)L2 18 9.779M 37.3 +0.2 +0.2 +5.8 +0.3 +0.0 43.8 50.0 -6.2 (N)L2 20 7.085M 37.2 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2 21 10.103M 37.1 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2 22 9.634M 36.9 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2 22 9.634M 36.9 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2	4	/.616M	39.4	+0.2	+0.2	+5.8	+0.2	+0.0	45.8	50.0	-4.2	(N)L2
6 8.373M 39.4 +0.2 +0.2 +5.8 +0.2 +0.0 45.8 50.0 -4.2 (N)L2 7 8.616M 39.2 +0.2 +0.2 +5.8 +0.2 +0.0 45.6 50.0 -4.4 (N)L2 8 4.394M 35.3 +0.1 +0.2 +5.8 +0.1 +0.0 41.5 46.0 -4.5 (N)L2 9 4.637M 35.1 +0.1 +0.2 +5.8 +0.1 +0.0 41.3 46.0 -4.7 (N)L2 10 6.923M 39.0 +0.1 +0.2 +5.8 +0.2 +0.0 45.3 50.0 -4.7 (N)L2 11 6.544M 38.8 +0.1 +0.2 +5.8 +0.2 +0.0 45.1 50.0 -4.9 (N)L2 12 218.357k 41.4 +0.2 +0.0 +5.8 +0.0 +0.0 47.4 52.9 -5.5 (N)L2 13 6.211M 38.2 +0.1 +0.2 +5.8 +0.2 +0.0 44.5 50.0 -5.5 (N)L2 14 307.076k 38.2 +0.2 +0.1 +5.8 +0.0 +0.0 44.3 50.0 -5.7 (N)L2 15 6.725M 38.0 +0.1 +0.2 +5.8 +0.2 +0.0 44.3 50.0 -5.7 (N)L2 16 6.337M 37.8 +0.1 +0.2 +5.8 +0.2 +0.0 44.1 50.0 -5.9 (N)L2 17 5.616M 37.8 +0.1 +0.2 +5.8 +0.2 +0.0 44.1 50.0 -6.0 (N)L2 18 9.779M 37.3 +0.2 +0.2 +5.8 +0.3 +0.0 43.8 50.0 -6.2 (N)L2 20 7.085M 37.2 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2 21 10.103M 37.1 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2 22 9.634M 36.9 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2 22 9.634M 36.9 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2		0.05014	20.4	.0.0	. 0. 2	. 7.0	. 0. 2	. 0. 0	45.0	50.0	4.0	(ADLO
7 8.616M 39.2 +0.2 +0.2 +5.8 +0.2 +0.0 45.6 50.0 -4.4 (N)L2 8 4.394M 35.3 +0.1 +0.2 +5.8 +0.1 +0.0 41.5 46.0 -4.5 (N)L2 9 4.637M 35.1 +0.1 +0.2 +5.8 +0.1 +0.0 41.3 46.0 -4.7 (N)L2 10 6.923M 39.0 +0.1 +0.2 +5.8 +0.2 +0.0 45.3 50.0 -4.7 (N)L2 11 6.544M 38.8 +0.1 +0.2 +5.8 +0.2 +0.0 45.1 50.0 -4.9 (N)L2 12 218.357k 41.4 +0.2 +0.0 +5.8 +0.0 +0.0 47.4 52.9 -5.5 (N)L2 13 6.211M 38.2 +0.1 +0.2 +5.8 +0.2 +0.0 44.5 50.0 -5.7 (N)L2 14 307.076k 38.2 +0.2 +0.1 +5.8 +0.0 +0.0 44.3 50.0 -5.7 (N)L2 15 6.725M 38.0 +0.1 +0.2 +5.8 +0.2 +0.0 44.3 50.0 -5.7 (N)L2 16 6.337M 37.8 +0.1 +0.2 +5.8 +0.2 +0.0 44.1 50.0 -5.9 (N)L2 17 5.616M 37.8 +0.1 +0.2 +5.8 +0.1 +0.0 44.0 50.0 -6.0 (N)L2 18 9.779M 37.3 +0.2 +0.2 +5.8 +0.3 +0.0 43.8 50.0 -6.2 (N)L2 20 7.085M 37.2 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2 21 10.103M 37.1 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2 22 9.634M 36.9 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2 22 9.634M 36.9 +0.2 +0.2 +5.8 +0.3 +0.0 43.4 50.0 -6.6 (N)L2	5	8.058M	39.4	+0.2	+0.2	+5.8	+0.2	+0.0	45.8	50.0	-4.2	(N)L2
7 8.616M 39.2 +0.2 +0.2 +5.8 +0.2 +0.0 45.6 50.0 -4.4 (N)L2 8 4.394M 35.3 +0.1 +0.2 +5.8 +0.1 +0.0 41.5 46.0 -4.5 (N)L2 9 4.637M 35.1 +0.1 +0.2 +5.8 +0.1 +0.0 41.3 46.0 -4.7 (N)L2 10 6.923M 39.0 +0.1 +0.2 +5.8 +0.2 +0.0 45.3 50.0 -4.7 (N)L2 11 6.544M 38.8 +0.1 +0.2 +5.8 +0.2 +0.0 45.1 50.0 -4.9 (N)L2 12 218.357k 41.4 +0.2 +0.0 +5.8 +0.0 +0.0 47.4 52.9 -5.5 (N)L2 13 6.211M 38.2 +0.1 +0.2 +5.8 +0.2 +0.0 44.5 50.0 -5.7 (N)L2 14 307.076k 38.2 +0.2 +0.1 +5.8 +0.0 +0.0 44.3 50.0 -5.7 (N)L2 15 6.725M 38.0 +0.1 +0.2 +5.8 +0.2 +0.0 44.3 50.0 -5.7 (N)L2 16 6.337M 37.8 +0.1 +0.2 +5.8 +0.2 +0.0 44.1 50.0 -5.9 (N)L2 17 5.616M 37.8 +0.1 +0.2 +5.8 +0.1 +0.0 44.0 50.0 -6.0 (N)L2 18 9.779M 37.3 +0.2 +0.2 +5.8 +0.3 +0.0 43.8 50.0 -6.2 (N)L2 20 7.085M 37.2 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2 21 10.103M 37.1 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2 22 9.634M 36.9 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2 22 9.634M 36.9 +0.2 +0.2 +5.8 +0.3 +0.0 43.4 50.0 -6.6 (N)L2		0.27214	20.4	.0.0	. 0. 2	. 7.0	. 0. 2	. 0. 0	45.0	50.0	4.0	(ADLO
8 4.394M 35.3 +0.1 +0.2 +5.8 +0.1 +0.0 41.5 46.0 -4.5 (N)L2 9 4.637M 35.1 +0.1 +0.2 +5.8 +0.1 +0.0 41.3 46.0 -4.7 (N)L2 10 6.923M 39.0 +0.1 +0.2 +5.8 +0.2 +0.0 45.3 50.0 -4.7 (N)L2 11 6.544M 38.8 +0.1 +0.2 +5.8 +0.2 +0.0 45.1 50.0 -4.9 (N)L2 12 218.357k 41.4 +0.2 +0.0 +5.8 +0.0 +0.0 47.4 52.9 -5.5 (N)L2 13 6.211M 38.2 +0.1 +0.2 +5.8 +0.2 +0.0 44.5 50.0 -5.5 (N)L2 14 307.076k 38.2 +0.2 +0.1 +5.8 +0.0 +0.0 44.3 50.0 -5.7 (N)L2 15 6.725M 38.0 +0.1 +0.2 +5.8 +0.2 +0.0 44.3 50.0 -5.7 (N)L2 16 6.337M 37.8 +0.1 +0.2 +5.8 +0.2 +0.0 44.1 50.0 -5.9 (N)L2 17 5.616M 37.8 +0.1 +0.2 +5.8 +0.2 +0.0 44.1 50.0 -5.9 (N)L2 18 9.779M 37.3 +0.2 +0.2 +5.8 +0.1 +0.0 44.0 50.0 -6.0 (N)L2 19 10.067M 37.2 +0.2 +0.2 +5.8 +0.3 +0.0 43.8 50.0 -6.2 (N)L2 20 7.085M 37.2 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2 21 10.103M 37.1 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2 22 9.634M 36.9 +0.2 +0.2 +5.8 +0.3 +0.0 43.4 50.0 -6.6 (N)L2	6	8.3/3M	39.4	+0.2	+0.2	+5.8	+0.2	+0.0	45.8	50.0	-4.2	(N)L2
8 4.394M 35.3 +0.1 +0.2 +5.8 +0.1 +0.0 41.5 46.0 -4.5 (N)L2 9 4.637M 35.1 +0.1 +0.2 +5.8 +0.1 +0.0 41.3 46.0 -4.7 (N)L2 10 6.923M 39.0 +0.1 +0.2 +5.8 +0.2 +0.0 45.3 50.0 -4.7 (N)L2 11 6.544M 38.8 +0.1 +0.2 +5.8 +0.2 +0.0 45.1 50.0 -4.9 (N)L2 12 218.357k 41.4 +0.2 +0.0 +5.8 +0.0 +0.0 47.4 52.9 -5.5 (N)L2 13 6.211M 38.2 +0.1 +0.2 +5.8 +0.2 +0.0 44.5 50.0 -5.5 (N)L2 14 307.076k 38.2 +0.2 +0.1 +5.8 +0.0 +0.0 44.3 50.0 -5.7 (N)L2 15 6.725M 38.0 +0.1 +0.2 +5.8 +0.2 +0.0 44.3 50.0 -5.7 (N)L2 16 6.337M 37.8 +0.1 +0.2 +5.8 +0.2 +0.0 44.1 50.0 -5.9 (N)L2 17 5.616M 37.8 +0.1 +0.2 +5.8 +0.2 +0.0 44.1 50.0 -5.9 (N)L2 18 9.779M 37.3 +0.2 +0.2 +5.8 +0.1 +0.0 44.0 50.0 -6.0 (N)L2 19 10.067M 37.2 +0.2 +0.2 +5.8 +0.3 +0.0 43.8 50.0 -6.2 (N)L2 20 7.085M 37.2 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2 21 10.103M 37.1 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2 22 9.634M 36.9 +0.2 +0.2 +5.8 +0.3 +0.0 43.4 50.0 -6.6 (N)L2		0.61634	20.2	0.0	0.0	7 0	0.2	0.0	15.6	50.0	4.4	(ADL 2
9 4.637M 35.1 +0.1 +0.2 +5.8 +0.1 +0.0 41.3 46.0 -4.7 (N)L2 10 6.923M 39.0 +0.1 +0.2 +5.8 +0.2 +0.0 45.3 50.0 -4.7 (N)L2 11 6.544M 38.8 +0.1 +0.2 +5.8 +0.2 +0.0 45.1 50.0 -4.9 (N)L2 12 218.357k 41.4 +0.2 +0.0 +5.8 +0.0 +0.0 47.4 52.9 -5.5 (N)L2 13 6.211M 38.2 +0.1 +0.2 +5.8 +0.2 +0.0 44.5 50.0 -5.5 (N)L2 14 307.076k 38.2 +0.2 +0.1 +5.8 +0.0 +0.0 44.3 50.0 -5.7 (N)L2 15 6.725M 38.0 +0.1 +0.2 +5.8 +0.2 +0.0 44.3 50.0 -5.7 (N)L2 16 6.337M 37.8 +0.1 +0.2 +5.8 +0.2 +0.0 44.1 50.0 -5.9 (N)L2 17 5.616M 37.8 +0.1 +0.2 +5.8 +0.2 +0.0 44.0 50.0 -6.0 (N)L2 18 9.779M 37.3 +0.2 +0.2 +5.8 +0.3 +0.0 43.8 50.0 -6.2 (N)L2 20 7.085M 37.2 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2 21 10.103M 37.1 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2 22 9.634M 36.9 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2	7	8.616M	39.2	+0.2	+0.2	+5.8	+0.2	+0.0	45.6	50.0	-4.4	(N)L2
9 4.637M 35.1 +0.1 +0.2 +5.8 +0.1 +0.0 41.3 46.0 -4.7 (N)L2 10 6.923M 39.0 +0.1 +0.2 +5.8 +0.2 +0.0 45.3 50.0 -4.7 (N)L2 11 6.544M 38.8 +0.1 +0.2 +5.8 +0.2 +0.0 45.1 50.0 -4.9 (N)L2 12 218.357k 41.4 +0.2 +0.0 +5.8 +0.0 +0.0 47.4 52.9 -5.5 (N)L2 13 6.211M 38.2 +0.1 +0.2 +5.8 +0.2 +0.0 44.5 50.0 -5.5 (N)L2 14 307.076k 38.2 +0.2 +0.1 +5.8 +0.0 +0.0 44.3 50.0 -5.7 (N)L2 15 6.725M 38.0 +0.1 +0.2 +5.8 +0.2 +0.0 44.3 50.0 -5.7 (N)L2 16 6.337M 37.8 +0.1 +0.2 +5.8 +0.2 +0.0 44.1 50.0 -5.9 (N)L2 17 5.616M 37.8 +0.1 +0.2 +5.8 +0.2 +0.0 44.0 50.0 -6.0 (N)L2 18 9.779M 37.3 +0.2 +0.2 +5.8 +0.3 +0.0 43.8 50.0 -6.2 (N)L2 20 7.085M 37.2 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2 21 10.103M 37.1 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2 22 9.634M 36.9 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2												
10 6.923M 39.0 +0.1 +0.2 +5.8 +0.2 +0.0 45.3 50.0 -4.7 (N)L2 11 6.544M 38.8 +0.1 +0.2 +5.8 +0.2 +0.0 45.1 50.0 -4.9 (N)L2 12 218.357k 41.4 +0.2 +0.0 +5.8 +0.0 +0.0 47.4 52.9 -5.5 (N)L2 13 6.211M 38.2 +0.1 +0.2 +5.8 +0.2 +0.0 44.5 50.0 -5.5 (N)L2 14 307.076k 38.2 +0.2 +0.1 +5.8 +0.0 +0.0 44.3 50.0 -5.7 (N)L2 15 6.725M 38.0 +0.1 +0.2 +5.8 +0.2 +0.0 44.3 50.0 -5.7 (N)L2 16 6.337M 37.8 +0.1 +0.2 +5.8 +0.2 +0.0 44.1 50.0 -5.9 (N)L2 17 5.616M 37.8 +0.1 +0.2 +5.8 +0.1 +0.0 43.6 50.0	8	4.394M	35.3	+0.1	+0.2	+5.8	+0.1	+0.0	41.5	46.0	-4.5	(N)L2
10 6.923M 39.0 +0.1 +0.2 +5.8 +0.2 +0.0 45.3 50.0 -4.7 (N)L2 11 6.544M 38.8 +0.1 +0.2 +5.8 +0.2 +0.0 45.1 50.0 -4.9 (N)L2 12 218.357k 41.4 +0.2 +0.0 +5.8 +0.0 +0.0 47.4 52.9 -5.5 (N)L2 13 6.211M 38.2 +0.1 +0.2 +5.8 +0.2 +0.0 44.5 50.0 -5.5 (N)L2 14 307.076k 38.2 +0.2 +0.1 +5.8 +0.0 +0.0 44.3 50.0 -5.7 (N)L2 15 6.725M 38.0 +0.1 +0.2 +5.8 +0.2 +0.0 44.3 50.0 -5.7 (N)L2 16 6.337M 37.8 +0.1 +0.2 +5.8 +0.2 +0.0 44.1 50.0 -5.9 (N)L2 17 5.616M 37.8 +0.1 +0.2 +5.8 +0.1 +0.0 43.6 50.0												
11 6.544M 38.8 +0.1 +0.2 +5.8 +0.2 +0.0 45.1 50.0 -4.9 (N)L2 12 218.357k 41.4 +0.2 +0.0 +5.8 +0.0 +0.0 47.4 52.9 -5.5 (N)L2 13 6.211M 38.2 +0.1 +0.2 +5.8 +0.2 +0.0 44.5 50.0 -5.5 (N)L2 14 307.076k 38.2 +0.2 +0.1 +5.8 +0.0 +0.0 44.3 50.0 -5.7 (N)L2 15 6.725M 38.0 +0.1 +0.2 +5.8 +0.2 +0.0 44.3 50.0 -5.7 (N)L2 16 6.337M 37.8 +0.1 +0.2 +5.8 +0.2 +0.0 44.1 50.0 -5.9 (N)L2 17 5.616M 37.8 +0.1 +0.2 +5.8 +0.1 +0.0 44.0 50.0 -6.0 (N)L2 18 9.779M 37.3 +0.2 +0.2 +5.8 +0.3 +0.0 43.8 50.0 -6.2 (N)L2 20 7.085M 37.2 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2 21 10.103M 37.1 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2 22 9.634M 36.9 +0.2 +0.2 +5.8 +0.3 +0.0 43.4 50.0 -6.6 (N)L2	9	4.637M	35.1	+0.1	+0.2	+5.8	+0.1	+0.0	41.3	46.0	-4.7	(N)L2
11 6.544M 38.8 +0.1 +0.2 +5.8 +0.2 +0.0 45.1 50.0 -4.9 (N)L2 12 218.357k 41.4 +0.2 +0.0 +5.8 +0.0 +0.0 47.4 52.9 -5.5 (N)L2 13 6.211M 38.2 +0.1 +0.2 +5.8 +0.2 +0.0 44.5 50.0 -5.5 (N)L2 14 307.076k 38.2 +0.2 +0.1 +5.8 +0.0 +0.0 44.3 50.0 -5.7 (N)L2 15 6.725M 38.0 +0.1 +0.2 +5.8 +0.2 +0.0 44.3 50.0 -5.7 (N)L2 16 6.337M 37.8 +0.1 +0.2 +5.8 +0.2 +0.0 44.1 50.0 -5.9 (N)L2 17 5.616M 37.8 +0.1 +0.2 +5.8 +0.1 +0.0 44.0 50.0 -6.0 (N)L2 18 9.779M 37.3 +0.2 +0.2 +5.8 +0.3 +0.0 43.8 50.0 -6.2 (N)L2 20 7.085M 37.2 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2 21 10.103M 37.1 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2 22 9.634M 36.9 +0.2 +0.2 +5.8 +0.3 +0.0 43.4 50.0 -6.6 (N)L2												
12 218.357k 41.4 +0.2 +0.0 +5.8 +0.0 +0.0 47.4 52.9 -5.5 (N)L2 13 6.211M 38.2 +0.1 +0.2 +5.8 +0.2 +0.0 44.5 50.0 -5.5 (N)L2 14 307.076k 38.2 +0.2 +0.1 +5.8 +0.0 +0.0 44.3 50.0 -5.7 (N)L2 15 6.725M 38.0 +0.1 +0.2 +5.8 +0.2 +0.0 44.3 50.0 -5.7 (N)L2 16 6.337M 37.8 +0.1 +0.2 +5.8 +0.2 +0.0 44.1 50.0 -5.9 (N)L2 17 5.616M 37.8 +0.1 +0.2 +5.8 +0.1 +0.0 44.0 50.0 -6.0 (N)L2 18 9.779M 37.3 +0.2 +0.2 +5.8 +0.3 +0.0 43.8 50.0 -6.2 (N)L2 19 10.067M 37.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4	10	6.923M	39.0	+0.1	+0.2	+5.8	+0.2	+0.0	45.3	50.0	-4.7	(N)L2
12 218.357k 41.4 +0.2 +0.0 +5.8 +0.0 +0.0 47.4 52.9 -5.5 (N)L2 13 6.211M 38.2 +0.1 +0.2 +5.8 +0.2 +0.0 44.5 50.0 -5.5 (N)L2 14 307.076k 38.2 +0.2 +0.1 +5.8 +0.0 +0.0 44.3 50.0 -5.7 (N)L2 15 6.725M 38.0 +0.1 +0.2 +5.8 +0.2 +0.0 44.3 50.0 -5.7 (N)L2 16 6.337M 37.8 +0.1 +0.2 +5.8 +0.2 +0.0 44.1 50.0 -5.9 (N)L2 17 5.616M 37.8 +0.1 +0.2 +5.8 +0.1 +0.0 44.0 50.0 -6.0 (N)L2 18 9.779M 37.3 +0.2 +0.2 +5.8 +0.3 +0.0 43.8 50.0 -6.2 (N)L2 19 10.067M 37.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4												
13 6.211M 38.2 +0.1 +0.2 +5.8 +0.2 +0.0 44.5 50.0 -5.5 (N)L2 14 307.076k 38.2 +0.2 +0.1 +5.8 +0.0 +0.0 44.3 50.0 -5.7 (N)L2 15 6.725M 38.0 +0.1 +0.2 +5.8 +0.2 +0.0 44.3 50.0 -5.7 (N)L2 16 6.337M 37.8 +0.1 +0.2 +5.8 +0.2 +0.0 44.1 50.0 -5.9 (N)L2 17 5.616M 37.8 +0.1 +0.2 +5.8 +0.1 +0.0 44.0 50.0 -6.0 (N)L2 18 9.779M 37.3 +0.2 +0.2 +5.8 +0.3 +0.0 43.8 50.0 -6.2 (N)L2 19 10.067M 37.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.3 (N)L2 20 7.085M 37.2 +0.2 +5.8 +0.2 +0.0 43.6 50.0 -6.4 (N)L2	11	6.544M	38.8	+0.1	+0.2	+5.8	+0.2	+0.0	45.1	50.0	-4.9	(N)L2
13 6.211M 38.2 +0.1 +0.2 +5.8 +0.2 +0.0 44.5 50.0 -5.5 (N)L2 14 307.076k 38.2 +0.2 +0.1 +5.8 +0.0 +0.0 44.3 50.0 -5.7 (N)L2 15 6.725M 38.0 +0.1 +0.2 +5.8 +0.2 +0.0 44.3 50.0 -5.7 (N)L2 16 6.337M 37.8 +0.1 +0.2 +5.8 +0.2 +0.0 44.1 50.0 -5.9 (N)L2 17 5.616M 37.8 +0.1 +0.2 +5.8 +0.1 +0.0 44.0 50.0 -6.0 (N)L2 18 9.779M 37.3 +0.2 +0.2 +5.8 +0.3 +0.0 43.8 50.0 -6.2 (N)L2 19 10.067M 37.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.3 (N)L2 20 7.085M 37.2 +0.2 +5.8 +0.2 +0.0 43.6 50.0 -6.4 (N)L2												
14 307.076k 38.2 +0.2 +0.1 +5.8 +0.0 +0.0 44.3 50.0 -5.7 (N)L2 15 6.725M 38.0 +0.1 +0.2 +5.8 +0.2 +0.0 44.3 50.0 -5.7 (N)L2 16 6.337M 37.8 +0.1 +0.2 +5.8 +0.2 +0.0 44.1 50.0 -5.9 (N)L2 17 5.616M 37.8 +0.1 +0.2 +5.8 +0.1 +0.0 44.0 50.0 -6.0 (N)L2 18 9.779M 37.3 +0.2 +0.2 +5.8 +0.3 +0.0 43.8 50.0 -6.2 (N)L2 19 10.067M 37.2 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.3 (N)L2 20 7.085M 37.2 +0.2 +5.8 +0.2 +0.0 43.6 50.0 -6.4 (N)L2 21 10.103M 37.1 +0.2 +5.8 +0.3 +0.0 43.4 50.0 -6.6 (N)L2	12	218.357k	41.4	+0.2	+0.0	+5.8	+0.0	+0.0	47.4	52.9	-5.5	(N)L2
14 307.076k 38.2 +0.2 +0.1 +5.8 +0.0 +0.0 44.3 50.0 -5.7 (N)L2 15 6.725M 38.0 +0.1 +0.2 +5.8 +0.2 +0.0 44.3 50.0 -5.7 (N)L2 16 6.337M 37.8 +0.1 +0.2 +5.8 +0.2 +0.0 44.1 50.0 -5.9 (N)L2 17 5.616M 37.8 +0.1 +0.2 +5.8 +0.1 +0.0 44.0 50.0 -6.0 (N)L2 18 9.779M 37.3 +0.2 +0.2 +5.8 +0.3 +0.0 43.8 50.0 -6.2 (N)L2 19 10.067M 37.2 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.3 (N)L2 20 7.085M 37.2 +0.2 +5.8 +0.2 +0.0 43.6 50.0 -6.4 (N)L2 21 10.103M 37.1 +0.2 +5.8 +0.3 +0.0 43.4 50.0 -6.6 (N)L2												
15 6.725M 38.0 +0.1 +0.2 +5.8 +0.2 +0.0 44.3 50.0 -5.7 (N)L2 16 6.337M 37.8 +0.1 +0.2 +5.8 +0.2 +0.0 44.1 50.0 -5.9 (N)L2 17 5.616M 37.8 +0.1 +0.2 +5.8 +0.1 +0.0 44.0 50.0 -6.0 (N)L2 18 9.779M 37.3 +0.2 +0.2 +5.8 +0.3 +0.0 43.8 50.0 -6.2 (N)L2 19 10.067M 37.2 +0.2 +0.2 +5.8 +0.3 +0.0 43.7 50.0 -6.3 (N)L2 20 7.085M 37.2 +0.2 +0.2 +5.8 +0.2 +0.0 43.6 50.0 -6.4 (N)L2 21 10.103M 37.1 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2 22 9.634M 36.9 +0.2 +0.2 +5.8 +0.3 +0.0 43.4 50.0 -6.6 (N)L2	13	6.211M	38.2	+0.1	+0.2	+5.8	+0.2	+0.0	44.5	50.0	-5.5	(N)L2
15 6.725M 38.0 +0.1 +0.2 +5.8 +0.2 +0.0 44.3 50.0 -5.7 (N)L2 16 6.337M 37.8 +0.1 +0.2 +5.8 +0.2 +0.0 44.1 50.0 -5.9 (N)L2 17 5.616M 37.8 +0.1 +0.2 +5.8 +0.1 +0.0 44.0 50.0 -6.0 (N)L2 18 9.779M 37.3 +0.2 +0.2 +5.8 +0.3 +0.0 43.8 50.0 -6.2 (N)L2 19 10.067M 37.2 +0.2 +0.2 +5.8 +0.3 +0.0 43.7 50.0 -6.3 (N)L2 20 7.085M 37.2 +0.2 +0.2 +5.8 +0.2 +0.0 43.6 50.0 -6.4 (N)L2 21 10.103M 37.1 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2 22 9.634M 36.9 +0.2 +0.2 +5.8 +0.3 +0.0 43.4 50.0 -6.6 (N)L2												
16 6.337M 37.8 +0.1 +0.2 +5.8 +0.2 +0.0 44.1 50.0 -5.9 (N)L2 17 5.616M 37.8 +0.1 +0.2 +5.8 +0.1 +0.0 44.0 50.0 -6.0 (N)L2 18 9.779M 37.3 +0.2 +0.2 +5.8 +0.3 +0.0 43.8 50.0 -6.2 (N)L2 19 10.067M 37.2 +0.2 +5.8 +0.3 +0.0 43.7 50.0 -6.3 (N)L2 20 7.085M 37.2 +0.2 +5.8 +0.2 +0.0 43.6 50.0 -6.4 (N)L2 21 10.103M 37.1 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2 22 9.634M 36.9 +0.2 +5.8 +0.3 +0.0 43.4 50.0 -6.6 (N)L2	14	307.076k	38.2	+0.2	+0.1	+5.8	+0.0	+0.0	44.3	50.0	-5.7	(N)L2
16 6.337M 37.8 +0.1 +0.2 +5.8 +0.2 +0.0 44.1 50.0 -5.9 (N)L2 17 5.616M 37.8 +0.1 +0.2 +5.8 +0.1 +0.0 44.0 50.0 -6.0 (N)L2 18 9.779M 37.3 +0.2 +0.2 +5.8 +0.3 +0.0 43.8 50.0 -6.2 (N)L2 19 10.067M 37.2 +0.2 +5.8 +0.3 +0.0 43.7 50.0 -6.3 (N)L2 20 7.085M 37.2 +0.2 +5.8 +0.2 +0.0 43.6 50.0 -6.4 (N)L2 21 10.103M 37.1 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2 22 9.634M 36.9 +0.2 +5.8 +0.3 +0.0 43.4 50.0 -6.6 (N)L2												
17 5.616M 37.8 +0.1 +0.2 +5.8 +0.1 +0.0 44.0 50.0 -6.0 (N)L2 18 9.779M 37.3 +0.2 +0.2 +5.8 +0.3 +0.0 43.8 50.0 -6.2 (N)L2 19 10.067M 37.2 +0.2 +0.2 +5.8 +0.3 +0.0 43.7 50.0 -6.3 (N)L2 20 7.085M 37.2 +0.2 +0.2 +5.8 +0.2 +0.0 43.6 50.0 -6.4 (N)L2 21 10.103M 37.1 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2 22 9.634M 36.9 +0.2 +0.2 +5.8 +0.3 +0.0 43.4 50.0 -6.6 (N)L2	15	6.725M	38.0	+0.1	+0.2	+5.8	+0.2	+0.0	44.3	50.0	-5.7	(N)L2
17 5.616M 37.8 +0.1 +0.2 +5.8 +0.1 +0.0 44.0 50.0 -6.0 (N)L2 18 9.779M 37.3 +0.2 +0.2 +5.8 +0.3 +0.0 43.8 50.0 -6.2 (N)L2 19 10.067M 37.2 +0.2 +0.2 +5.8 +0.3 +0.0 43.7 50.0 -6.3 (N)L2 20 7.085M 37.2 +0.2 +0.2 +5.8 +0.2 +0.0 43.6 50.0 -6.4 (N)L2 21 10.103M 37.1 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2 22 9.634M 36.9 +0.2 +0.2 +5.8 +0.3 +0.0 43.4 50.0 -6.6 (N)L2												
18 9.779M 37.3 +0.2 +0.2 +5.8 +0.3 +0.0 43.8 50.0 -6.2 (N)L2 19 10.067M 37.2 +0.2 +0.2 +5.8 +0.3 +0.0 43.7 50.0 -6.3 (N)L2 20 7.085M 37.2 +0.2 +5.8 +0.2 +0.0 43.6 50.0 -6.4 (N)L2 21 10.103M 37.1 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2 22 9.634M 36.9 +0.2 +5.8 +0.3 +0.0 43.4 50.0 -6.6 (N)L2	16	6.337M	37.8	+0.1	+0.2	+5.8	+0.2	+0.0	44.1	50.0	-5.9	(N)L2
18 9.779M 37.3 +0.2 +0.2 +5.8 +0.3 +0.0 43.8 50.0 -6.2 (N)L2 19 10.067M 37.2 +0.2 +0.2 +5.8 +0.3 +0.0 43.7 50.0 -6.3 (N)L2 20 7.085M 37.2 +0.2 +5.8 +0.2 +0.0 43.6 50.0 -6.4 (N)L2 21 10.103M 37.1 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2 22 9.634M 36.9 +0.2 +5.8 +0.3 +0.0 43.4 50.0 -6.6 (N)L2												
19 10.067M 37.2 +0.2 +0.2 +5.8 +0.3 +0.0 43.7 50.0 -6.3 (N)L2 20 7.085M 37.2 +0.2 +0.2 +5.8 +0.2 +0.0 43.6 50.0 -6.4 (N)L2 21 10.103M 37.1 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2 22 9.634M 36.9 +0.2 +0.2 +5.8 +0.3 +0.0 43.4 50.0 -6.6 (N)L2	17	5.616M	37.8	+0.1	+0.2	+5.8	+0.1	+0.0	44.0	50.0	-6.0	(N)L2
19 10.067M 37.2 +0.2 +0.2 +5.8 +0.3 +0.0 43.7 50.0 -6.3 (N)L2 20 7.085M 37.2 +0.2 +0.2 +5.8 +0.2 +0.0 43.6 50.0 -6.4 (N)L2 21 10.103M 37.1 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2 22 9.634M 36.9 +0.2 +0.2 +5.8 +0.3 +0.0 43.4 50.0 -6.6 (N)L2												
20 7.085M 37.2 +0.2 +0.2 +5.8 +0.2 +0.0 43.6 50.0 -6.4 (N)L2 21 10.103M 37.1 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2 22 9.634M 36.9 +0.2 +0.2 +5.8 +0.3 +0.0 43.4 50.0 -6.6 (N)L2	18	9.779M	37.3	+0.2	+0.2	+5.8	+0.3	+0.0	43.8	50.0	-6.2	(N)L2
20 7.085M 37.2 +0.2 +0.2 +5.8 +0.2 +0.0 43.6 50.0 -6.4 (N)L2 21 10.103M 37.1 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2 22 9.634M 36.9 +0.2 +0.2 +5.8 +0.3 +0.0 43.4 50.0 -6.6 (N)L2												
21 10.103M 37.1 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2 22 9.634M 36.9 +0.2 +0.2 +5.8 +0.3 +0.0 43.4 50.0 -6.6 (N)L2	19	10.067M	37.2	+0.2	+0.2	+5.8	+0.3	+0.0	43.7	50.0	-6.3	(N)L2
21 10.103M 37.1 +0.2 +0.2 +5.8 +0.3 +0.0 43.6 50.0 -6.4 (N)L2 22 9.634M 36.9 +0.2 +0.2 +5.8 +0.3 +0.0 43.4 50.0 -6.6 (N)L2												
22 9.634M 36.9 +0.2 +0.2 +5.8 +0.3 +0.0 43.4 50.0 -6.6 (N)L2	20	7.085M	37.2	+0.2	+0.2	+5.8	+0.2	+0.0	43.6	50.0	-6.4	(N)L2
22 9.634M 36.9 +0.2 +0.2 +5.8 +0.3 +0.0 43.4 50.0 -6.6 (N)L2												
	21	10.103M	37.1	+0.2	+0.2	+5.8	+0.3	+0.0	43.6	50.0	-6.4	(N)L2
	22	9.634M	36.9	+0.2	+0.2	+5.8	+0.3	+0.0	43.4	50.0	-6.6	(N)L2
23 5.535M 37.0 +0.1 +0.2 +5.8 +0.1 +0.0 43.2 50.0 -6.8 (N)L2												
	23	5.535M	37.0	+0.1	+0.2	+5.8	+0.1	+0.0	43.2	50.0	-6.8	(N)L2

24	5.463M	36.7	+0.1	+0.2	+5.8	+0.1	+0.0	42.9	50.0	-7.1	(N)L2
25	3.233M	32.6	+0.1	+0.2	+5.8	+0.1	+0.0	38.8	46.0	-7.2	(N)L2
26	5.028M	35.9	+0.1	+0.2	+5.8	+0.1	+0.0	42.1	50.0	-7.9	(N)L2
27	8.725M Ave	24.7	+0.2	+0.2	+5.8	+0.3	+0.0	31.2	50.0	-18.8	(N)L2
^	8.725M	40.6	+0.2	+0.2	+5.8	+0.3	+0.0	47.1	50.0	-2.9	(N)L2
									see average above	e data	
29	4.871M Ave	20.2	+0.1	+0.2	+5.8	+0.1	+0.0	26.4	46.0	-19.6	(N)L2
٨	4.871M	36.8	+0.1	+0.2	+5.8	+0.1	+0.0	43.0	46.0	-3.0	(N)L2
									see average		` '
									above		
31	4.815M	20.0	+0.1	+0.2	+5.8	+0.1	+0.0	26.2	46.0	-19.8	(N)L2
A	Ave										
^	4.815M	37.6	+0.1	+0.2	+5.8	+0.1	+0.0	43.8	46.0	-2.2	(N)L2
									see average	data	
									above		
33	174.725k	25.2	+0.4	+0.0	+5.8	+0.0	+0.0	31.4	54.7	-23.3	(N)L2
I	Ave										
^	174.725k	45.6	+0.4	+0.0	+5.8	+0.0	+0.0	51.8	54.7	-2.9	(N)L2
									see average	data	
									above		

CKC Laboratories, Inc Date: 4/16/2013 Time: 10:40:40 Magtek Incorporated WO#: 93565 15:207 AC Mains - Average Test Lead: (N)L2 110V 60Hz Sequence#: 5 Ext ATTN: 0 dB IPAD EMV

Customer: Magtek Incorporated
Specification: 15.207 AC Mains - Average

 Work Order #:
 93565
 Date: 4/11/2013

 Test Type:
 Conducted Emissions
 Time: 14:50:42

Equipment: **IPAD EMV** Sequence#: 3

Manufacturer: Magtek Incorporated Tested By: S. Yamamoto Model: 30056017 Tested By: D. Yamamoto 110V 60Hz

S/N: 30

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	9/4/2012	9/4/2014
T2	AN02610	High Pass Filter	HE9615-150K-	11/21/2011	11/21/2013
			50-720B		
T3	ANP04358	Cable	RG142	4/10/2012	4/10/2014
T4	ANP06084	Attenuator	SA18N10W-06	12/14/2012	12/14/2014
T5	AN00848.1	50uH LISN-Line 1	3816/2nm	3/14/2013	3/14/2015
		(L1)(dB)			
	AN00848.1	50uH LISN-Line 2	3816/2nm	3/14/2013	3/14/2015
		(L2)(dB)			

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
IPAD EMV*	Magtek Incorporated	30056017	30
AC to 5Vdc Power Supply	DVE	DSA-12PFA-05 FUS 050200	

Support Devices:

Try or - creek			
Function	Manufacturer	Model #	S/N
Laptop Computer	Dell Corporation	Latitude D520	H2JFYC1
Fast Ethernet Switch	Netgear	FS105	1D52173U01B60

Test Conditions / Notes:

The equipment under test (EUT) and its AC to DC adapter are stand alone on the Styrofoam tabletop. The EUT ethernet port is connected to a remotely located switch. Also connected to the remotely located switch is the laptop computer. The AC to 5Vdc power adapter is connected to the interface cable and providing power to the EUT. The EUT wireless 13.56 MHz is on and continuously transmitting. Frequency range of this data sheet: 9kHz to 30MHz. 150kHz to 30MHz, RBW=VBW=9kHz. Temperature: 20°C, Humidity: 36%, Pressure: 100kPa. Site A OATS. Modification: Copper tape shield installed into bottom cover over interface connections. Shield covers entire internal surface of the cover. Voltage to EUT is 110Vac 60Hz. EUT transmitting ON into normal antenna.

Ext Attn: 0 dB

Measur	rement Data:	Re	ading lis	ted by ma	ırgin.	Test Lead: L1(L)					
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	13.562M	64.1	+0.0	+0.2	+0.3	+5.8	+0.0	70.7	50.0	+20.7	L1(L)
			+0.3						Fundamen	ıtal	
									Frequency	7	
2	11.896M	39.9	+0.0	+0.2	+0.2	+5.8	+0.0	46.4	50.0	-3.6	L1(L)
			+0.3								
3	11.959M	39.9	+0.0	+0.2	+0.2	+5.8	+0.0	46.4	50.0	-3.6	L1(L)
			+0.3								

+0.1 5 10.247M 39.6 +0.0 +0.2 +0.2 +5.8 +0.0 46.1 50.0 -3.9 L												
5 10.247M 39.6 +0.0 +0.2 +0.2 +5.8 +0.0 46.1 50.0 -3.9 L 6 11.463M 39.6 +0.0 +0.2 +0.2 +5.8 +0.0 46.1 50.0 -3.9 L 7 11.589M 39.5 +0.0 +0.2 +0.2 +5.8 +0.0 46.0 50.0 -4.0 L 8 11.706M 39.5 +0.0 +0.2 +0.2 +5.8 +0.0 46.0 50.0 -4.0 L 9 11.652M 39.1 +0.0 +0.2 +0.2 +5.8 +0.0 45.6 50.0 -4.4 L 10 7.238M 39.1 +0.0 +0.2 +0.2 +5.8 +0.0 45.5 50.0 -4.5 L 11 12.202M 38.9 +0.0 +0.2 +0.2 +5.8 +0.0 45.4 50.0 -4.6 L 11 12.202M 38.5	4	4.194M	4M 35.9		+0.1	+0.2	+5.8	+0.0	42.1	46.0	-3.9	L1(L)
6 11.463M 39.6 +0.0 +0.2 +0.2 +5.8 +0.0 46.1 50.0 -3.9 L +0.3	5	10.247M	7M 39.6	+0.0	+0.2	+0.2	+5.8	+0.0	46.1	50.0	-3.9	L1(L)
7 11.589M 39.5 +0.0 +0.2 +0.2 +5.8 +0.0 46.0 50.0 -4.0 L 8 11.706M 39.5 +0.0 +0.2 +0.2 +5.8 +0.0 46.0 50.0 -4.0 L 9 11.652M 39.1 +0.0 +0.2 +0.2 +5.8 +0.0 45.6 50.0 -4.4 L 10 7.238M 39.1 +0.0 +0.2 +0.2 +5.8 +0.0 45.6 50.0 -4.4 L 11 12.202M 38.9 +0.0 +0.2 +0.2 +5.8 +0.0 45.4 50.0 -4.6 L 12 3.994M 35.0 +0.0 +0.1 +0.2 +5.8 +0.0 45.4 50.0 -4.6 L 13 8.283M 38.6 +0.0 +0.1 +0.2 +5.8 +0.0 45.0 50.0 -5.0 L 14 7.400M 38.6 +0.0 +0.2 +0.2 +5.8 +0.0 45.0 50.0 -5.0 L<	6	11.463M	3M 39.6	+0.0	+0.2	+0.2	+5.8	+0.0	46.1	50.0	-3.9	L1(L)
8 11.706M 39.5 +0.0 +0.2 +0.2 +5.8 +0.0 46.0 50.0 -4.0 L 9 11.652M 39.1 +0.0 +0.2 +0.2 +5.8 +0.0 45.6 50.0 -4.4 L 10 7.238M 39.1 +0.0 +0.2 +0.2 +5.8 +0.0 45.5 50.0 -4.5 L 11 12.202M 38.9 +0.0 +0.2 +0.2 +5.8 +0.0 45.4 50.0 -4.6 L +0.3 12 3.994M 35.0 +0.0 +0.1 +0.2 +5.8 +0.0 45.4 50.0 -4.6 L 13 8.283M 38.6 +0.0 +0.1 +0.2 +5.8 +0.0 45.0 50.0 -5.0 L 14 7.400M 38.6 +0.0 +0.2 +0.2 +5.8 +0.0 45.0 50.0 -5.0 L 15 9.697M 38.5 +0.0 +0.2 +0.2 +5.8 +0.0 45.0 50.0 -5	7	11.589M	9M 39.5	+0.0	+0.2	+0.2	+5.8	+0.0	46.0	50.0	-4.0	L1(L)
9 11.652M 39.1 +0.0 +0.2 +0.2 +5.8 +0.0 45.6 50.0 -4.4 L	8	11.706M	6M 39.5	+0.0	+0.2	+0.2	+5.8	+0.0	46.0	50.0	-4.0	L1(L)
10	9	11.652M	2M 39.1	+0.0	+0.2	+0.2	+5.8	+0.0	45.6	50.0	-4.4	L1(L)
11 12.202M 38.9 +0.0 +0.2 +0.2 +5.8 +0.0 45.4 50.0 -4.6 L 12 3.994M 35.0 +0.0 +0.1 +0.2 +5.8 +0.0 41.2 46.0 -4.8 L 13 8.283M 38.6 +0.0 +0.2 +0.2 +5.8 +0.0 45.0 50.0 -5.0 L 14 7.400M 38.6 +0.0 +0.2 +0.2 +5.8 +0.0 45.0 50.0 -5.0 L 15 9.697M 38.5 +0.0 +0.2 +0.2 +5.8 +0.0 45.0 50.0 -5.0 L 16 8.652M 38.6 +0.0 +0.2 +0.2 +5.8 +0.0 45.0 50.0 -5.0 L 17 8.085M 38.5 +0.0 +0.2 +0.2 +5.8 +0.0 44.9 50.0 -5.1 L 18 8.121M 38.5 +0.0 +0.2 +0.2 +5.8 +0.0 44.9 50.0 -5.1 L<	10	7.238M	8M 39.1	+0.0	+0.2	+0.2	+5.8	+0.0	45.5	50.0	-4.5	L1(L)
12 3.994M 35.0 +0.0 +0.1 +0.2 +5.8 +0.0 41.2 46.0 -4.8 L 13 8.283M 38.6 +0.0 +0.2 +0.2 +5.8 +0.0 45.0 50.0 -5.0 L 14 7.400M 38.6 +0.0 +0.2 +0.2 +5.8 +0.0 45.0 50.0 -5.0 L 15 9.697M 38.5 +0.0 +0.2 +0.2 +5.8 +0.0 45.0 50.0 -5.0 L 16 8.652M 38.6 +0.0 +0.2 +0.2 +5.8 +0.0 45.0 50.0 -5.0 L 17 8.085M 38.5 +0.0 +0.2 +0.2 +5.8 +0.0 44.9 50.0 -5.1 L 18 8.121M 38.5 +0.0 +0.2 +0.2 +5.8 +0.0 44.9 50.0 -5.1 L 19 9.941M 38.4 +0.0 +0.2 +0.2 +5.8 +0.0 44.9 50.0 -5.1 L </td <td>11</td> <td>12.202M</td> <td>2M 38.9</td> <td>+0.0</td> <td>+0.2</td> <td>+0.2</td> <td>+5.8</td> <td>+0.0</td> <td>45.4</td> <td>50.0</td> <td>-4.6</td> <td>L1(L)</td>	11	12.202M	2M 38.9	+0.0	+0.2	+0.2	+5.8	+0.0	45.4	50.0	-4.6	L1(L)
13 8.283M 38.6 +0.0 +0.2 +0.2 +5.8 +0.0 45.0 50.0 -5.0 L 14 7.400M 38.6 +0.0 +0.2 +0.2 +5.8 +0.0 45.0 50.0 -5.0 L 15 9.697M 38.5 +0.0 +0.2 +0.2 +5.8 +0.0 45.0 50.0 -5.0 L 16 8.652M 38.6 +0.0 +0.2 +0.2 +5.8 +0.0 45.0 50.0 -5.0 L 17 8.085M 38.5 +0.0 +0.2 +0.2 +5.8 +0.0 44.9 50.0 -5.1 L 18 8.121M 38.5 +0.0 +0.2 +0.2 +5.8 +0.0 44.9 50.0 -5.1 L 19 9.941M 38.4 +0.0 +0.2 +0.2 +5.8 +0.0 44.9 50.0 -5.1 L 20 10.734M 38.3 +0.0 +0.2 +0.2 +5.8 +0.0 44.8 50.0 -5.2 L<	12	3.994M	4M 35.0	+0.0	+0.1	+0.2	+5.8	+0.0	41.2	46.0	-4.8	L1(L)
14 7.400M 38.6 +0.0 +0.2 +0.2 +5.8 +0.0 45.0 50.0 -5.0 L 15 9.697M 38.5 +0.0 +0.2 +0.2 +5.8 +0.0 45.0 50.0 -5.0 L 16 8.652M 38.6 +0.0 +0.2 +0.2 +5.8 +0.0 45.0 50.0 -5.0 L 17 8.085M 38.5 +0.0 +0.2 +0.2 +5.8 +0.0 44.9 50.0 -5.1 L 18 8.121M 38.5 +0.0 +0.2 +0.2 +5.8 +0.0 44.9 50.0 -5.1 L 19 9.941M 38.4 +0.0 +0.2 +0.2 +5.8 +0.0 44.9 50.0 -5.1 L 20 10.734M 38.3 +0.0 +0.2 +0.2 +5.8 +0.0 44.8 50.0 -5.2 L 21 7.995M 38.2 +0.0 +0.2 +0.2 +5.8 +0.0 44.6 50.0 -5.5 L<	13	8.283M	3M 38.6	+0.0	+0.2	+0.2	+5.8	+0.0	45.0	50.0	-5.0	L1(L)
15 9.697M 38.5 +0.0 +0.2 +0.2 +5.8 +0.0 45.0 50.0 -5.0 L +0.3 +0.3 +0.2 +0.2 +5.8 +0.0 45.0 50.0 -5.0 L 16 8.652M 38.6 +0.0 +0.2 +0.2 +5.8 +0.0 45.0 50.0 -5.0 L +0.2 +0.2 +0.2 +5.8 +0.0 44.9 50.0 -5.1 L +0.3 +0.3 +0.0 +0.2 +0.2 +5.8 +0.0 44.9 50.0 -5.1 L +0.3 +0.3 +0.0 +0.2 +0.2 +5.8 +0.0 44.8 50.0 -5.2 L +0.3 +0.3 +0.0 +0.2 +0.2 +5.8 +0.0 44.6 50.0 -5.4 L +0.2 +0.2 +0.3 +5.8 +0.0 44.5 50.0 -5.5 L +0.3 +0.3 +5.8 +0.0 44.5 50.0 -5.5 L	14	7.400M	OM 38.6	+0.0	+0.2	+0.2	+5.8	+0.0	45.0	50.0	-5.0	L1(L)
16 8.652M 38.6 +0.0 +0.2 +0.2 +5.8 +0.0 45.0 50.0 -5.0 L 17 8.085M 38.5 +0.0 +0.2 +0.2 +5.8 +0.0 44.9 50.0 -5.1 L 18 8.121M 38.5 +0.0 +0.2 +0.2 +5.8 +0.0 44.9 50.0 -5.1 L 19 9.941M 38.4 +0.0 +0.2 +0.2 +5.8 +0.0 44.9 50.0 -5.1 L 20 10.734M 38.3 +0.0 +0.2 +0.2 +5.8 +0.0 44.8 50.0 -5.2 L 40.3 21 7.995M 38.2 +0.0 +0.2 +0.2 +5.8 +0.0 44.6 50.0 -5.4 L 22 12.752M 37.9 +0.0 +0.2 +0.3 +5.8 +0.0 44.5 50.0 -5.5 L 40.3 23 1.192M 30.6 +0.0 +0.2 +0.1 +5.8 +0.	15	9.697M	7M 38.5	+0.0	+0.2	+0.2	+5.8	+0.0	45.0	50.0	-5.0	L1(L)
17 8.085M 38.5 +0.0 +0.2 +0.2 +5.8 +0.0 44.9 50.0 -5.1 L 18 8.121M 38.5 +0.0 +0.2 +0.2 +5.8 +0.0 44.9 50.0 -5.1 L 19 9.941M 38.4 +0.0 +0.2 +0.2 +5.8 +0.0 44.9 50.0 -5.1 L 20 10.734M 38.3 +0.0 +0.2 +0.2 +5.8 +0.0 44.8 50.0 -5.2 L +0.3 21 7.995M 38.2 +0.0 +0.2 +0.2 +5.8 +0.0 44.6 50.0 -5.4 L +0.2 +0.2 +5.8 +0.0 44.6 50.0 -5.4 L +0.2 +0.2 +5.8 +0.0 44.6 50.0 -5.5 L +0.3 +0.0 +0.2 +0.3 +5.8 +0.0 44.5 50.0 -5.5 L +0.3 +0.3 +0.0 +0.2 +0.1 +5.8 +0.0 <td>16</td> <td>8.652M</td> <td>2M 38.6</td> <td>+0.0</td> <td>+0.2</td> <td>+0.2</td> <td>+5.8</td> <td>+0.0</td> <td>45.0</td> <td>50.0</td> <td>-5.0</td> <td>L1(L)</td>	16	8.652M	2M 38.6	+0.0	+0.2	+0.2	+5.8	+0.0	45.0	50.0	-5.0	L1(L)
18 8.121M 38.5 +0.0 +0.2 +0.2 +5.8 +0.0 44.9 50.0 -5.1 L 19 9.941M 38.4 +0.0 +0.2 +0.2 +5.8 +0.0 44.9 50.0 -5.1 L 20 10.734M 38.3 +0.0 +0.2 +0.2 +5.8 +0.0 44.8 50.0 -5.2 L 21 7.995M 38.2 +0.0 +0.2 +0.2 +5.8 +0.0 44.6 50.0 -5.4 L 22 12.752M 37.9 +0.0 +0.2 +0.3 +5.8 +0.0 44.5 50.0 -5.5 L 40.3 +0.3 +0.3 +0.2 +0.1 +5.8 +0.0 36.8 46.0 -9.2 L Ave +0.1 ^ 1.192M 39.4 +0.0 +0.2 +0.1 +5.8 +0.0 45.6 46.0 -0.4 L	17	8.085M	5M 38.5	+0.0	+0.2	+0.2	+5.8	+0.0	44.9	50.0	-5.1	L1(L)
19 9.941M 38.4 +0.0 +0.2 +0.2 +5.8 +0.0 44.9 50.0 -5.1 L 20 10.734M 38.3 +0.0 +0.2 +0.2 +5.8 +0.0 44.8 50.0 -5.2 L 21 7.995M 38.2 +0.0 +0.2 +0.2 +5.8 +0.0 44.6 50.0 -5.4 L 40.2 +0.2 +0.2 +0.3 +5.8 +0.0 44.5 50.0 -5.5 L 40.3 +0.3 +0.0 +0.2 +0.1 +5.8 +0.0 36.8 46.0 -9.2 L Ave +0.1 ^1.192M 39.4 +0.0 +0.2 +0.1 +5.8 +0.0 45.6 46.0 -0.4 L	18	8.121M	1M 38.5	+0.0	+0.2	+0.2	+5.8	+0.0	44.9	50.0	-5.1	L1(L)
20 10.734M 38.3 +0.0 +0.2 +0.2 +5.8 +0.0 44.8 50.0 -5.2 L 21 7.995M 38.2 +0.0 +0.2 +0.2 +5.8 +0.0 44.6 50.0 -5.4 L 22 12.752M 37.9 +0.0 +0.2 +0.3 +5.8 +0.0 44.5 50.0 -5.5 L 40.3 +0.3 +0.0 +0.2 +0.1 +5.8 +0.0 36.8 46.0 -9.2 L Ave +0.1 ^ 1.192M 39.4 +0.0 +0.2 +0.1 +5.8 +0.0 45.6 46.0 -0.4 L	19	9.941M	1M 38.4	+0.0	+0.2	+0.2	+5.8	+0.0	44.9	50.0	-5.1	L1(L)
21 7.995M 38.2 +0.0 +0.2 +0.2 +5.8 +0.0 44.6 50.0 -5.4 L 22 12.752M 37.9 +0.0 +0.2 +0.3 +5.8 +0.0 44.5 50.0 -5.5 L +0.3 23 1.192M 30.6 +0.0 +0.2 +0.1 +5.8 +0.0 36.8 46.0 -9.2 L Ave +0.1 ^ 1.192M 39.4 +0.0 +0.2 +0.1 +5.8 +0.0 45.6 46.0 -0.4 L	20	10.734M	4M 38.3	+0.0	+0.2	+0.2	+5.8	+0.0	44.8	50.0	-5.2	L1(L)
22 12.752M 37.9 +0.0 +0.2 +0.3 +5.8 +0.0 44.5 50.0 -5.5 L +0.3 +0.3 +5.8 +0.0 36.8 46.0 -9.2 L Ave +0.1 +0.1 +5.8 +0.0 45.6 46.0 -0.4 L	21	7.995M	5M 38.2	+0.0	+0.2	+0.2	+5.8	+0.0	44.6	50.0	-5.4	L1(L)
Ave +0.1 ^ 1.192M 39.4 +0.0 +0.2 +0.1 +5.8 +0.0 45.6 46.0 -0.4 L	22	12.752M	2M 37.9	+0.0	+0.2	+0.3	+5.8	+0.0	44.5	50.0	-5.5	L1(L)
^ 1.192M 39.4 +0.0 +0.2 +0.1 +5.8 +0.0 45.6 46.0 -0.4 L			2M 30.6	+0.0	+0.2		+5.8	+0.0	36.8	46.0	-9.2	L1(L)
above			2M 39.4	+0.0	+0.2	+0.1	+5.8	+0.0	45.6	see average		L1(L)
25 1.111M 29.2 +0.0 +0.2 +0.1 +5.8 +0.0 35.4 46.0 -10.6 L Ave +0.1			1M 29.2		+0.2	+0.1	+5.8	+0.0	35.4	46.0	-10.6	L1(L)
			1M 38.8	+0.0	+0.2	+0.1	+5.8	+0.0	45.0	see average		L1(L)
			7M 31.5		+0.3	+0.5	+5.8	+0.0	39.3		-10.7	L1(L)
	28	829.210k	10k 28.3	+0.0	+0.2	+0.0	+5.8	+0.0	34.4	46.0	-11.6	L1(L)

٨	020 2101	20.0	. 0. 0	. 0. 2	. 0. 0	. 7. 0	. 0. 0	440	46.0	1.1	T 1 (T)
	829.210k	38.8	+0.0	+0.2	+0.0	+5.8	+0.0	44.9	46.0	-1.1	L1(L)
			+0.1						see average	data	
									above		
30	10.797M	31.5	+0.0	+0.2	+0.2	+5.8	+0.0	38.0	50.0	-12.0	L1(L)
	Ave		+0.3								
^	10.797M	41.1	+0.0	+0.2	+0.2	+5.8	+0.0	47.6	50.0	-2.4	L1(L)
			+0.3						see average	data	
									above		
32	28.687M	29.4	+0.0	+0.3	+0.5	+5.8	+0.0	37.1	50.0	-12.9	L1(L)
	Ave		+1.1								
33	28.684M	27.8	+0.0	+0.3	+0.5	+5.8	+0.0	35.5	50.0	-14.5	L1(L)
	Ave		+1.1								
٨	28.684M	39.4	+0.0	+0.3	+0.5	+5.8	+0.0	47.1	50.0	-2.9	L1(L)
			+1.1						see average	data	
									above		
35	29.233M	26.5	+0.0	+0.3	+0.5	+5.8	+0.0	34.3	50.0	-15.7	L1(L)
	Ave		+1.2								
^	29.233M	40.1	+0.0	+0.3	+0.5	+5.8	+0.0	47.9	50.0	-2.1	L1(L)
			+1.2						see average	data	
									above		
37	4.726M	22.0	+0.0	+0.1	+0.2	+5.8	+0.0	28.2	46.0	-17.8	L1(L)
	Ave		+0.1								` /
٨	4.726M	37.4	+0.0	+0.1	+0.2	+5.8	+0.0	43.6	46.0	-2.4	L1(L)
			+0.1						see average	data	` /
									above		
39	168.907k	24.7	+0.0	+0.4	+0.0	+5.8	+0.0	30.9	55.0	-24.1	L1(L)
	Ave		+0.0								` /
^	168.907k	46.0	+0.0	+0.4	+0.0	+5.8	+0.0	52.2	55.0	-2.8	L1(L)
			+0.0						see average		(-)
									above		

CKC Laboratories, Inc Date: 4/11/2013 Time: 14:50:42 Magtek Incorporated WO#: 93565 15:207 AC Mains - Average Test Lead: L1(L) 110V 60Hz Sequence#: 3 Ext ATTN: 0 dB IPAD EMV

Customer: Magtek Incorporated
Specification: 15.207 AC Mains - Average

Work Order #: 93565 Date: 4/11/2013
Test Type: Conducted Emissions Time: 15:22:40

Equipment: IPAD EMV Sequence#: 5

Manufacturer: Magtek Incorporated Tested By: S. Yamamoto Model: 30056017 Tested By: D. Yamamoto 110V 60Hz

S/N: 30

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02672	Spectrum Analyzer	E4446A	9/4/2012	9/4/2014
T1	AN02610	High Pass Filter	HE9615-150K-	11/21/2011	11/21/2013
			50-720B		
T2	ANP04358	Cable	RG142	4/10/2012	4/10/2014
T3	ANP06084	Attenuator	SA18N10W-06	12/14/2012	12/14/2014
T4	AN00848.1	50uH LISN-Line 1	3816/2nm	3/14/2013	3/14/2015
		(L1)(dB)			
	AN00848.1	50uH LISN-Line 2	3816/2nm	3/14/2013	3/14/2015
		(L2) (dB)			

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
IPAD EMV*	Magtek Incorporated	30056017	30
AC to 5Vdc Power Supply	DVE	DSA-12PFA-05 FUS 050200	

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop Computer	Dell Corporation	Latitude D520	H2JFYC1
Fast Ethernet Switch	Netgear	FS105	1D52173U01B60

Test Conditions / Notes:

The equipment under test (EUT) and its AC to DC adapter are stand alone on the Styrofoam tabletop. The EUT ethernet port is connected to a remotely located switch. Also connected to the remotely located switch is the laptop computer. The AC to 5Vdc power adapter is connected to the interface cable and providing power to the EUT. The EUT wireless 13.56 MHz is on and continuously transmitting. Frequency range of this data sheet: 9kHz to 30MHz. 150kHz to 30MHz, RBW=VBW=9kHz. Temperature: 20°C, Humidity: 36%, Pressure: 100kPa. Site A OATS. Modification: Copper tape shield installed into bottom cover over interface connections. Shield covers entire internal surface of the cover. Voltage to EUT is 110Vac 60Hz. EUT transmitting ON into 82.5 ohm resistive load.

Ext Attn: 0 dB

Measur	rement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: L1(L)		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	4.143M	36.6	+0.1	+0.2	+5.8	+0.1	+0.0	42.8	46.0	-3.2	L1(L)
2	225.629k	43.3	+0.2	+0.0	+5.8	+0.0	+0.0	49.3	52.6	-3.3	L1(L)
3	4.620M	36.5	+0.1	+0.2	+5.8	+0.1	+0.0	42.7	46.0	-3.3	L1(L)

4	4.807M	36.5	+0.1	+0.2	+5.8	+0.1	+0.0	42.7	46.0	-3.3	L1(L)
5	4.841M	36.4	+0.1	+0.2	+5.8	+0.1	+0.0	42.6	46.0	-3.4	L1(L)
6	11.896M	39.5	+0.2	+0.2	+5.8	+0.3	+0.0	46.0	50.0	-4.0	L1(L)
7	11.463M	39.3	+0.2	+0.2	+5.8	+0.3	+0.0	45.8	50.0	-4.2	L1(L)
8	11.706M	39.1	+0.2	+0.2	+5.8	+0.3	+0.0	45.6	50.0	-4.4	L1(L)
9	10.797M	39.0	+0.2	+0.2	+5.8	+0.3	+0.0	45.5	50.0	-4.5	L1(L)
10	11.589M	38.9	+0.2	+0.2	+5.8	+0.3	+0.0	45.4	50.0	-4.6	L1(L)
11	269.262k	40.4	+0.2	+0.0	+5.8	+0.0	+0.0	46.4	51.1	-4.7	L1(L)
12	7.589M	38.5	+0.2	+0.2	+5.8	+0.2	+0.0	44.9	50.0	-5.1	L1(L)
13	11.950M	38.2	+0.2	+0.2	+5.8	+0.3	+0.0	44.7	50.0	-5.3	L1(L)
14	639.410k	34.4	+0.2	+0.0	+5.8	+0.1	+0.0	40.5	46.0	-5.5	L1(L)
15	12.139M	38.0	+0.2	+0.2	+5.8	+0.3	+0.0	44.5	50.0	-5.5	L1(L)
16	3.824M	34.2	+0.1	+0.2	+5.8	+0.1	+0.0	40.4	46.0	-5.6	L1(L)
17	10.734M	37.9	+0.2	+0.2	+5.8	+0.3	+0.0	44.4	50.0	-5.6	L1(L)
18	12.752M	37.5	+0.2	+0.3	+5.8	+0.3	+0.0	44.1	50.0	-5.9	L1(L)
19	3.437M	33.8	+0.1	+0.2	+5.8	+0.1	+0.0	40.0	46.0	-6.0	L1(L)
20	11.652M	37.5	+0.2	+0.2	+5.8	+0.3	+0.0	44.0	50.0	-6.0	L1(L)
21	9.274M	37.4	+0.2	+0.2	+5.8	+0.3	+0.0	43.9	50.0	-6.1	L1(L)
22	12.202M	37.4	+0.2	+0.2	+5.8	+0.3	+0.0	43.9	50.0	-6.1	L1(L)
23	5.096M	37.6	+0.1	+0.2	+5.8	+0.1	+0.0	43.8	50.0	-6.2	L1(L)
24	7.004M	37.4	+0.1	+0.2	+5.8	+0.2	+0.0	43.7	50.0	-6.3	L1(L)
25	1.190M Ave	31.5	+0.2	+0.1	+5.8	+0.1	+0.0	37.7	46.0	-8.3	L1(L)
26	1.192M Ave	30.4	+0.2	+0.1	+5.8	+0.1	+0.0	36.6	46.0	-9.4	L1(L)
٨	1.192M	39.2	+0.2	+0.1	+5.8	+0.1	+0.0	45.4	46.0 see average above	-0.6 data	L1(L)
28	1.111M Ave	29.0	+0.2	+0.1	+5.8	+0.1	+0.0	35.2	46.0	-10.8	L1(L)

٨	1.111M	38.6	+0.2	+0.1	+5.8	+0.1	+0.0	44.8	46.0	-1.2	L1(L)
									see average	data	
									above		
30	829.210k	28.2	+0.2	+0.0	+5.8	+0.1	+0.0	34.3	46.0	-11.7	L1(L)
	Ave	20.2	10.2	10.0	15.0	10.1	10.0	5 1.5	10.0	11.7	DI(D)
		20.0	0.0	0.0	7 0	0.1	0.0	110	46.0		T 1 (T)
^	829.210k	38.8	+0.2	+0.0	+5.8	+0.1	+0.0	44.9	46.0	-1.1	L1(L)
									see average	e data	
									above		
32	4.960M	21.6	+0.1	+0.2	+5.8	+0.1	+0.0	27.8	46.0	-18.2	L1(L)
	Ave										()
٨	4.960M	36.9	+0.1	+0.2	+5.8	+0.1	+0.0	43.1	46.0	-2.9	L1(L)
									see average	data	` '
									above		
34	181.270k	26.4	+0.3	+0.0	+5.8	+0.0	+0.0	32.5	54.4	21.0	I 1/I)
		20.4	+0.5	+0.0	+3.8	+0.0	+0.0	32.3	34.4	-21.9	L1(L)
1	Ave										
^	181.270k	40 A	+0.3	+0.0	+5.8	. 0. 0	. 0 0	~ 4 1	5 A A	-0.3	L1(L)
	101.2/OK	48.0	± 0.5	+0.0	+3.6	+0.0	+0.0	54.1	54.4	-0.5	$L_1(L)$
	101.270K	48.0	+0.3	+0.0	+3.6	+0.0	+0.0	54.1			LI(L)
	101.270K	48.0	+0.5	+0.0	+3.6	+0.0	+0.0	54.1	see average		LI(L)
36									see average above	data	
36	157.272k	16.1	+0.9	+0.0	+5.8	+0.0	+0.0	22.8	see average		L1(L)
1	157.272k Ave	16.1	+0.9	+0.0	+5.8	+0.0	+0.0	22.8	see average above 55.6	-32.8	L1(L)
	157.272k								see average above	data	
1	157.272k Ave	16.1	+0.9	+0.0	+5.8	+0.0	+0.0	22.8	see average above 55.6	-32.8 -0.7	L1(L)
1	157.272k Ave	16.1	+0.9	+0.0	+5.8	+0.0	+0.0	22.8	see average above 55.6	-32.8 -0.7	L1(L)

CKC Laboratories, Inc Date: 4/11/2013 Time: 15:22:40 Magtek Incorporated WO#: 93565 15:207 AC Mains - Average Test Lead: L1(L) 110V 60Hz Sequence#: 5 Ext ATTN: 0 dB IPAD EMV

Customer: Magtek Incorporated
Specification: 15.207 AC Mains - Average

Work Order #: 93565 Date: 4/11/2013
Test Type: Conducted Emissions Time: 14:57:34

Equipment: IPAD EMV Sequence#: 4

Manufacturer: Magtek Incorporated Tested By: S. Yamamoto Model: 30056017 Tested By: D. Yamamoto 110V 60Hz

S/N: 30

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	9/4/2012	9/4/2014
T2	AN02610	High Pass Filter	HE9615-150K-	11/21/2011	11/21/2013
			50-720B		
T3	ANP04358	Cable	RG142	4/10/2012	4/10/2014
T4	ANP06084	Attenuator	SA18N10W-06	12/14/2012	12/14/2014
	AN00848.1	50uH LISN-Line 1	3816/2nm	3/14/2013	3/14/2015
		(L1)(dB)			
T5	AN00848.1	50uH LISN-Line 2	3816/2nm	3/14/2013	3/14/2015
		(L2) (dB)			

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
IPAD EMV*	Magtek Incorporated	30056017	30
AC to 5Vdc Power Supply	DVE	DSA-12PFA-05 FUS	
		050200	

Support Devices:

Tr Tr Tr Tr			
Function	Manufacturer	Model #	S/N
Laptop Computer	Dell Corporation	Latitude D520	H2JFYC1
Fast Ethernet Switch	Netgear	FS105	1D52173U01B60

Test Conditions / Notes:

The equipment under test (EUT) and its AC to DC adapter are stand alone on the Styrofoam tabletop. The EUT ethernet port is connected to a remotely located switch. Also connected to the remotely located switch is the laptop computer. The AC to 5Vdc power adapter is connected to the interface cable and providing power to the EUT. The EUT wireless 13.56 MHz is on and continuously transmitting. Frequency range of this data sheet: 9kHz to 30MHz. 150kHz to 30MHz, RBW=VBW=9kHz. Temperature: 20°C, Humidity: 36%, Pressure: 100kPa. Site A OATS. Modification: Copper tape shield installed into bottom cover over interface connections. Shield covers entire internal surface of the cover. Voltage to EUT is 110Vac 60Hz. EUT transmitting ON into normal antenna.

Ext Attn: 0 dB

Measur	rement Data:	Re	eading lis	ted by ma	argin.	Test Lead: (N)L2					
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	13.562M	64.6	+0.0	+0.2	+0.3	+5.8	+0.0	71.2	50.0	+21.2	(N)L2
			+0.3						Fundamen	tal	
									Frequency		
2	1.111M	36.3	+0.0	+0.2	+0.1	+5.8	+0.0	42.5	46.0	-3.5	(N)L2
			+0.1								
3	4.386M	36.3	+0.0	+0.1	+0.2	+5.8	+0.0	42.5	46.0	-3.5	(N)L2
			+0.1								

4	4.165M	36.2	+0.0	+0.1	+0.2	+5.8	+0.0	42.4	46.0	-3.6	(N)L2
5	4.305M	35.6	+0.1	+0.1	+0.2	+5.8	+0.0	41.8	46.0	-4.2	(N)L2
			+0.1								(- ')==
6	7.427M	39.1	+0.0 +0.2	+0.2	+0.2	+5.8	+0.0	45.5	50.0	-4.5	(N)L2
7	4.475M	35.2	+0.0 +0.1	+0.1	+0.2	+5.8	+0.0	41.4	46.0	-4.6	(N)L2
8	6.833M	38.9	+0.0	+0.1	+0.2	+5.8	+0.0	45.2	50.0	-4.8	(N)L2
9	29.116M	37.4	+0.2	+0.3	+0.5	+5.8	+0.0	45.1	50.0	-4.9	(N)L2
10	4.011M	34.8	+1.1	+0.1	+0.2	+5.8	+0.0	41.0	46.0	5.0	(NDI 2
10	4.011M	34.8	+0.0	+0.1	+0.2	+3.8	+0.0	41.0	40.0	-5.0	(N)L2
11	8.229M	38.5	+0.0	+0.2	+0.2	+5.8	+0.0	44.9	50.0	-5.1	(N)L2
12	11.463M	38.4	+0.2	+0.2	+0.2	+5.8	+0.0	44.9	50.0	-5.1	(N)L2
12	11.100111	55.1	+0.3	. 0.2	10.2	13.0	10.0		20.0	5.1	(11)22
13	11.589M	38.4	+0.0 +0.3	+0.2	+0.2	+5.8	+0.0	44.9	50.0	-5.1	(N)L2
14	174.724k	43.4	+0.0 +0.0	+0.4	+0.0	+5.8	+0.0	49.6	54.7	-5.1	(N)L2
15	6.472M	38.5	+0.0 +0.2	+0.1	+0.2	+5.8	+0.0	44.8	50.0	-5.2	(N)L2
16	7.679M	38.2	+0.0 +0.2	+0.2	+0.2	+5.8	+0.0	44.6	50.0	-5.4	(N)L2
17	4.224M	34.4	+0.0	+0.1	+0.2	+5.8	+0.0	40.6	46.0	-5.4	(N)L2
18	13.355M	38.0	+0.1	+0.2	+0.3	+5.8	+0.0	44.6	50.0	-5.4	(N)L2
19	10.247M	38.1	+0.3	+0.2	+0.2	+5.8	+0.0	44.6	50.0	-5.4	(N)L2
17	10.247W1	30.1	+0.3	10.2	10.2	13.0	10.0	44.0	30.0	-3.4	(1 1) L2
20	3.658M	34.3	+0.0 +0.1	+0.1	+0.2	+5.8	+0.0	40.5	46.0	-5.5	(N)L2
21	4.097M	34.3	+0.0 +0.1	+0.1	+0.2	+5.8	+0.0	40.5	46.0	-5.5	(N)L2
22	3.956M	34.2	+0.1 +0.1	+0.1	+0.2	+5.8	+0.0	40.4	46.0	-5.6	(N)L2
23	12.202M	37.9	+0.1 +0.0 +0.3	+0.2	+0.2	+5.8	+0.0	44.4	50.0	-5.6	(N)L2
24	10.797M	37.8	+0.0	+0.2	+0.2	+5.8	+0.0	44.3	50.0	-5.7	(N)L2
25	13.418M	37.6	+0.3	+0.2	+0.3	+5.8	+0.0	44.2	50.0	-5.8	(N)L2
2.5	13.710111	51.0	+0.0	10.2	10.5	13.0	10.0	77.4	50.0	-3.0	(11)L2
26	29.237M	34.0	+0.0	+0.3	+0.5	+5.8	+0.0	41.7	50.0	-8.3	(N)L2
	Ave	21.2	+1.1	2.2	2 -	- -	0.0		7 0 0	40 -	0575
27	29.239M Ave	31.8	+0.0 +1.1	+0.3	+0.5	+5.8	+0.0	39.5	50.0	-10.5	(N)L2
^	29.239M	40.1	+0.0	+0.3	+0.5	+5.8	+0.0	47.8	50.0	-2.2	(N)L2
			+1.1						see average above	data	

29											
23	28.686M	31.7	+0.0	+0.3	+0.5	+5.8	+0.0	39.4	50.0	-10.6	(N)L2
A	Ave		+1.1								
30	28.684M	30.1	+0.0	+0.3	+0.5	+5.8	+0.0	37.8	50.0	-12.2	(N)L2
A	Ave		+1.1								
٨	28.684M	39.3	+0.0	+0.3	+0.5	+5.8	+0.0	47.0	50.0	-3.0	(N)L2
			+1.1						see average	e data	
									above		
32	1.188M	27.4	+0.0	+0.2	+0.1	+5.8	+0.0	33.6	46.0	-12.4	(N)L2
A	Ave		+0.1								
٨	1.188M	38.4	+0.0	+0.2	+0.1	+5.8	+0.0	44.6	46.0	-1.4	(N)L2
			+0.1						see average	e data	
									above		
34	829.209k	26.2	+0.0	+0.2	+0.0	+5.8	+0.0	32.2	46.0	-13.8	(N)L2
		20.2									
F	Ave	20.2	+0.0								
	Ave 829.209k	39.8	+0.0	+0.2	+0.0	+5.8	+0.0	45.8	46.0	-0.2	(N)L2
				+0.2	+0.0	+5.8	+0.0	45.8	46.0 see average		(N)L2
			+0.0	+0.2	+0.0	+5.8	+0.0	45.8			(N)L2
			+0.0	+0.2	+0.0	+5.8	+0.0	45.8	see average		(N)L2
36	829.209k	39.8	+0.0 +0.0						see average above	e data	
36	829.209k 4.947M	39.8	+0.0 +0.0 +0.0						see average above	e data	
36	829.209k 4.947M Ave	39.8	+0.0 +0.0 +0.0 +0.1	+0.1	+0.2	+5.8	+0.0	28.1	see average above 46.0	-17.9 -2.2	(N)L2

CKC Laboratories, Inc. Date: 4/11/2013 Time: 14:57:34 Magtek Incorporated WO#: 93565 15:207 AC Mains - Average Test Lead: (N)L2 110V 60Hz Sequence#: 4 Ext ATTN: 0 dB IPAD EMV

Customer: Magtek Incorporated
Specification: 15.207 AC Mains - Average

Work Order #: 93565 Date: 4/11/2013
Test Type: Conducted Emissions Time: 15:26:29
Equipment: IPAD EMV Sequence#: 6

Manufacturer: Magtek Incorporated Tested By: S. Yamamoto Model: 30056017 Tested By: D. Yamamoto 110V 60Hz

S/N: 30

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02672	Spectrum Analyzer	E4446A	9/4/2012	9/4/2014
T1	AN02610	High Pass Filter	HE9615-150K-	11/21/2011	11/21/2013
			50-720B		
T2	ANP04358	Cable	RG142	4/10/2012	4/10/2014
T3	ANP06084	Attenuator	SA18N10W-06	12/14/2012	12/14/2014
	AN00848.1	50uH LISN-Line 1	3816/2nm	3/14/2013	3/14/2015
		(L1)(dB)			
T4	AN00848.1	50uH LISN-Line 2	3816/2nm	3/14/2013	3/14/2015
		(L2)(dB)			

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
IPAD EMV*	Magtek Incorporated	30056017	30
AC to 5Vdc Power Supply	DVE	DSA-12PFA-05 FUS 050200	

Support Devices:

Try or - creek			
Function	Manufacturer	Model #	S/N
Laptop Computer	Dell Corporation	Latitude D520	H2JFYC1
Fast Ethernet Switch	Netgear	FS105	1D52173U01B60

Test Conditions / Notes:

The equipment under test (EUT) and its AC to DC adapter are stand alone on the Styrofoam tabletop. The EUT ethernet port is connected to a remotely located switch. Also connected to the remotely located switch is the laptop computer. The AC to 5Vdc power adapter is connected to the interface cable and providing power to the EUT. The EUT wireless 13.56 MHz is on and continuously transmitting. Frequency range of this data sheet: 9kHz to 30MHz. 150kHz to 30MHz, RBW=VBW=9kHz. Temperature: 20°C, Humidity: 36%, Pressure: 100kPa. Site A OATS. Modification: Copper tape shield installed into bottom cover over interface connections. Shield covers entire internal surface of the cover. Voltage to EUT is 110Vac 60Hz. EUT transmitting ON into 82.5 ohm resistive load.

Ext Attn: 0 dB

Measur	rement Data:	Re	Reading listed by margin. Test Lead: (N)L2								
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	4.109M	36.7	+0.1	+0.2	+5.8	+0.1	+0.0	42.9	46.0	-3.1	(N)L2
2	183.451k	44.9	+0.3	+0.0	+5.8	+0.0	+0.0	51.0	54.3	-3.3	(N)L2
3	4.373M	36.5	+0.1	+0.2	+5.8	+0.1	+0.0	42.7	46.0	-3.3	(N)L2

Page 34 of 87 Report No.: 93565-28B

4	4.747M	36.1	+0.1	+0.2	+5.8	+0.1	+0.0	42.3	46.0	-3.7	(N)L2
5	1.111M	35.8	+0.2	+0.1	+5.8	+0.1	+0.0	42.0	46.0	-4.0	(N)L2
6	4.509M	35.8	+0.1	+0.2	+5.8	+0.1	+0.0	42.0	46.0	-4.0	(N)L2
7	155.818k	44.6	+1.2	+0.0	+5.8	+0.0	+0.0	51.6	55.7	-4.1	(N)L2
8	4.080M	35.6	+0.1	+0.2	+5.8	+0.1	+0.0	41.8	46.0	-4.2	(N)L2
9	4.615M	35.2	+0.1	+0.2	+5.8	+0.1	+0.0	41.4	46.0	-4.6	(N)L2
10	4.020M	35.1	+0.1	+0.2	+5.8	+0.1	+0.0	41.3	46.0	-4.7	(N)L2
11	4.122M	35.0	+0.1	+0.2	+5.8	+0.1	+0.0	41.2	46.0	-4.8	(N)L2
12	4.211M	34.9	+0.1	+0.2	+5.8	+0.1	+0.0	41.1	46.0	-4.9	(N)L2
13	11.950M	38.6	+0.2	+0.2	+5.8	+0.3	+0.0	45.1	50.0	-4.9	(N)L2
14	238.719k	40.9	+0.2	+0.0	+5.8	+0.0	+0.0	46.9	52.1	-5.2	(N)L2
15	4.688M	34.5	+0.1	+0.2	+5.8	+0.1	+0.0	40.7	46.0	-5.3	(N)L2
16	3.956M	34.2	+0.1	+0.2	+5.8	+0.1	+0.0	40.4	46.0	-5.6	(N)L2
17	248.900k	40.1	+0.2	+0.0	+5.8	+0.0	+0.0	46.1	51.8	-5.7	(N)L2
18	3.829M	34.0	+0.1	+0.2	+5.8	+0.1	+0.0	40.2	46.0	-5.8	(N)L2
19	4.313M	34.0	+0.1	+0.2	+5.8	+0.1	+0.0	40.2	46.0	-5.8	(N)L2
20	3.573M	33.9	+0.1	+0.2	+5.8	+0.1	+0.0	40.1	46.0	-5.9	(N)L2
21	3.386M	33.8	+0.1	+0.2	+5.8	+0.1	+0.0	40.0	46.0	-6.0	(N)L2
22	3.799M	33.7	+0.1	+0.2	+5.8	+0.1	+0.0	39.9	46.0	-6.1	(N)L2
23	12.139M	37.4	+0.2	+0.2	+5.8	+0.3	+0.0	43.9	50.0	-6.1	(N)L2
24	9.238M	37.2	+0.2	+0.2	+5.8	+0.3	+0.0	43.7	50.0	-6.3	(N)L2
25	10.797M	37.2	+0.2	+0.2	+5.8	+0.3	+0.0	43.7	50.0	-6.3	(N)L2
26	6.265M	37.2	+0.1	+0.2	+5.8	+0.2	+0.0	43.5	50.0	-6.5	(N)L2
27	6.833M	37.2	+0.1	+0.2	+5.8	+0.2	+0.0	43.5	50.0	-6.5	(N)L2
28	11.652M	37.0	+0.2	+0.2	+5.8	+0.3	+0.0	43.5	50.0	-6.5	(N)L2
29	1.190M Ave	29.1	+0.2	+0.1	+5.8	+0.1	+0.0	35.3	46.0	-10.7	(N)L2

Page 35 of 87 Report No.: 93565-28B

30	1.192M	28.1	+0.2	+0.1	+5.8	+0.1	+0.0	34.3	46.0	-11.7	(N)L2
Α	ve										
٨	1.192M	38.9	+0.2	+0.1	+5.8	+0.1	+0.0	45.1	46.0	-0.9	(N)L2
									see average	data	
									above		
32	829.210k	26.4	+0.2	+0.0	+5.8	+0.0	+0.0	32.4	46.0	-13.6	(N)L2
Α	ve										
٨	829.210k	37.8	+0.2	+0.0	+5.8	+0.0	+0.0	43.8	46.0	-2.2	(N)L2
									see average	data	
									above		

CKC Laboratories, Inc Date: 4/11/2013 Time: 15:26:29 Magtek Incorporated WO#: 93565 15:207 AC Mains - Average Test Lead: (N)L2 110V 60Hz Sequence#: 6 Ext ATTN: 0 dB IPAD EMV

USB Setup – Front

USB Setup – Side

Ethernet Setup – Front

Ethernet Setup - Side

15.225(a) RF Power Output

Test Conditions / Setup

Test Location: CKC Laboratories, Inc. • 110 North Olinda Place • Brea, CA 92823 • 7149936112

Customer: Magtek Incorporated

Specification: 15.225(a) Field strength of any emissions within the band 13.553MHz to 13.567MHz

 Work Order #:
 93565
 Date: 4/16/2013

 Test Type:
 Maximized Emissions
 Time: 08:34:50

Equipment: IPAD EMV Sequence#: 1

Manufacturer: Magtek Incorporated Tested By: S. Yamamoto

Model: 30056015 S/N: 30

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	9/4/2012	9/4/2014
T2	ANP05198	Cable-Amplitude 15 to 45°C (dB)	8268	12/11/2012	12/11/2014
Т3	AN00314	Loop Antenna	6502	6/29/2012	6/29/2014

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
IPAD EMV*	Magtek Incorporated	30056015	30
AC to 5VDC Power Supply	DVE	DSA-12PFA-05 FUS	NA
		050200	

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop Computer	Dell Corporation	Latitude D520	H2JFYC1

Test Conditions / Notes:

The equipment under test (EUT) is stand alone on the Styrofoam tabletop. The EUT USB cable is connected to the remotely located laptop. The AC to 5VDC power adapter is connected to the interface cable and providing power to the EUT. The EUT wireless 13.56 MHz is on and continuously transmitting. Frequency range of this data sheet: 13.551MHz to 13.57MHz. 150kHz to 30MHz, RBW=VBW=9kHz. Temperature: 20°C, Humidity: 51%, Pressure: 100kPa. Site A OATS. Voltage to EUT is 110Vac 60Hz.

Page 39 of 87 Report No.: 93565-28B

Test Data

Ext Attn: 0 dB

Measurement Data:		Read	ding listed	d by orde	r taken.		Те	est Distance	e: 10 Meter	`S	
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m \\$	dB	Ant
1	13.560M	37.8	+0.0	+0.6	+8.5		-19.1	27.8	84.0	-56.2	Axis 2
2	13.560M	35.8	+0.0	+0.6	+8.5		-19.1	25.8	84.0	-58.2	Axis 3
3	13.560M	38.3	+0.0	+0.6	+8.5		-19.1	28.3	84.0	-55.7	Axis 1
4	13.560M	38.3	+0.0	+0.6	+8.5		-19.1	28.3	84.0	-55.7	Axis 1
									85% Rated	Voltage	
5	13.560M	38.3	+0.0	+0.6	+8.5		-19.1	28.3	84.0	-55.7	Axis 1
									115% Rate	d	
									Voltage		

Test Location: CKC Laboratories, Inc. • 110 North Olinda Place • Brea, CA 92823 • 7149936112

Customer: Magtek Incorporated

Specification: 15.225(a) Carrier and Spurious Emissions (13.553-13.567 MHz Transmitter)

 Work Order #:
 93565
 Date: 4/11/2013

 Test Type:
 Maximized Emissions
 Time: 08:38:38

Equipment: **IPAD EMV** Sequence#: 3

Manufacturer: Magtek Incorporated Tested By: S. Yamamoto

Model: 30056017

S/N: 30

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	9/4/2012	9/4/2014
T2	ANP05198	Cable-Amplitude 15 to 45°C (dB)	8268	12/11/2012	12/11/2014
T3	AN00314	Loop Antenna	6502	6/29/2012	6/29/2014

Equipment Under Test (* = EUT):

Manufacturer	Model #	S/N
Magtek Incorporated	30056017	30
DVE	DSA-12PFA-05 FUS	NA
	Magtek Incorporated	Magtek Incorporated 30056017

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop Computer	Dell Corporation	Latitude D520	H2JFYC1
Fast Ethernet Switch	Netgear	FS105	1D52173U01B60

Test Conditions / Notes:

The equipment under test (EUT) and its AC to DC adapter are stand alone on the Styrofoam tabletop. The EUT Ethernet port is connected to a remotely located switch. Also connected to the remotely located switch is the laptop computer. The AC to 5VDC power adapter is connected to the interface cable and providing power to the EUT. The EUT wireless 13.56 MHz is on and continuously transmitting. Frequency range of this data sheet: 13.553MHz to 13.567MHz. 150kHz to 30MHz, RBW=VBW=9kHz. Temperature: 20°C, Humidity: 40%, Pressure: 100kPa. Site A OATS. Modification: Copper tape shield installed into bottom cover over interface connections. Shield covers entire internal surface of the cover. Voltage to EUT is 110Vac 60Hz.

Ext Attn: 0 dB

Measure	ement Data:	Re	eading list	ted by ma	argın.		16	est Distance	e: 10 Meter	:S	
#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	13.560M	37.9	+0.0	+0.6	+8.5		-19.1	27.9	84.0	-56.1	Axis 1
2	13.560M	36.3	+0.0	+0.6	+8.5		-19.1	26.3	84.0	-57.7	Axis 2
3	13.560M	34.2	+0.0	+0.6	+8.5		-19.1	24.2	84.0	-59.8	Axis 3

Page 41 of 87 Report No.: 93565-28B

Ethernet

USB, Front View

USB, Front View

Ethernet, Front View

Ethernet, Back View

-20dBc & 99% Occupied Bandwidth

Test Conditions / Setup

Test Location: CKC Laboratories, Inc. • 110 North Olinda Place • Brea, CA 92823 • 7149936112

Customer: Magtek Incorporated

Specification: 2.1049 -20dBc & 99% RSS Occupied Bandwidth

Work Order #: 93565 Date: 4/11/2013

Time: 08:38:38

Equipment: IPAD EMV Sequence#: 3

Manufacturer: Magtek Incorporated Tested By: S. Yamamoto

Model: 30056017 S/N: 30

Test Equipment:

_						
Ī	ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	T1	AN02672	Spectrum Analyzer	E4446A	9/4/2012	9/4/2014
ſ	T2	ANP05198	Cable-Amplitude 15	8268	12/11/2012	12/11/2014
			to 45° C (dB)			
ſ	T3	AN00314	Loop Antenna	6502	6/29/2012	6/29/2014

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
IPAD EMV*	Magtek Incorporated	30056017	30
AC to 5VDC Power Supply	DVE	DSA-12PFA-05 FUS 050200	NA

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop Computer	Dell Corporation	Latitude D520	H2JFYC1
Fast Ethernet Switch	Netgear	FS105	1D52173U01B60

Test Conditions / Notes:

The equipment under test (EUT) and its AC to DC adapter are stand alone on the Styrofoam tabletop. The EUT Ethernet port is connected to a remotely located switch. Also connected to the remotely located switch is the laptop computer. The AC to 5VDC power adapter is connected to the interface cable and providing power to the EUT. The EUT wireless 13.56 MHz is on and continuously transmitting. Temperature: 20°C, Humidity: 40%, Pressure: 100kPa. Site A OATS. Modification: Copper tape shield installed into bottom cover over interface connections. Shield covers entire internal surface of the cover. Voltage to EUT is 110Vac 60Hz.

Page 45 of 87 Report No.: 93565-28B

Test Data

15.249(b)(c) Field Strength of Spurious Radiated Emissions

Test Data

Test Location: CKC Laboratories, Inc. • 110 North Olinda Place • Brea, CA 92823 • 7149936112

Customer: Magtek Incorporated

Specification: 15.225(b) Field strength of any emissions within the band 13.410MHz to 13.553MHz and

13.567MHz to 13.710MHz

Work Order #: 93565 Date: 4/16/2013

Test Type: Maximized Emissions

Equipment: IPAD EMV

Manufacturer: Magtek Incorporated Tested By: S. Yamamoto

Model: 30056015

S/N: 30

Test Equipment:

	ID	Asset #	Description	Model	Calibration Date	Cal Due Date
ľ	T1	AN02672	Spectrum Analyzer	E4446A	9/4/2012	9/4/2014
	T2	ANP05198	Cable-Amplitude 15	8268	12/11/2012	12/11/2014
			to 45°C (dB)			
Ī	Т3	AN00314	Loop Antenna	6502	6/29/2012	6/29/2014

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
IPAD EMV*	Magtek Incorporated	30056015	30
AC to 5VDC Power Supply	DVE	DSA-12PFA-05 FUS 050200	NA

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop Computer	Dell Corporation	Latitude D520	H2JFYC1

Test Conditions / Notes:

The equipment under test (EUT) is stand alone on the Styrofoam tabletop. The EUT USB cable is connected to the remotely located laptop. The AC to 5VDC power adapter is connected to the interface cable and providing power to the EUT. The EUT wireless 13.56 MHz is on and continuously transmitting. Frequency range of this data sheet: 13.4MHz to 13.72MHz. 150kHz to 30MHz, RBW=VBW=9kHz. Temperature: 20°C, Humidity: 51%, Pressure: 100kPa. Site A OATS. Voltage to EUT is 110Vac 60Hz.

Page 48 of 87 Report No.: 93565-28B

USB

Test Location: CKC Laboratories, Inc. • 110 North Olinda Place • Brea, CA 92823 • 7149936112

Customer: **Magtek Incorporated**

Specification: 15.225(b) Field Strength of Emissions within 13.410-13.553MHz and 13.567-13.710MHz

Work Order #: 93565 Date: 4/11/2013 Time: 08:38:38 Test Type: **Maximized Emissions**

Equipment: **IPAD EMV** Sequence#: 3 Manufacturer: Magtek Incorporated Tested By: S. Yamamoto

Model: 30056017

S/N: 30

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	9/4/2012	9/4/2014
T2	ANP05198	Cable-Amplitude 15 to 45°C (dB)	8268	12/11/2012	12/11/2014
T3	AN00314	Loop Antenna	6502	6/29/2012	6/29/2014

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
IPAD EMV*	Magtek Incorporated	30056017	30
AC to 5VDC Power Supply	DVE	DSA-12PFA-05 FUS 050200	NA

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop Computer	Dell Corporation	Latitude D520	H2JFYC1
Fast Ethernet Switch	Netgear	FS105	1D52173U01B60

Test Conditions / Notes:

The equipment under test (EUT) and its AC to DC adapter are stand alone on the Styrofoam tabletop. The EUT Ethernet port is connected to a remotely located switch. Also connected to the remotely located switch is the laptop computer. The AC to 5VDC power adapter is connected to the interface cable and providing power to the EUT. The EUT wireless 13.56 MHz is on and continuously transmitting. Frequency range of this data sheet: 13.40MHz to 13.80MHz. 150kHz to 30MHz, RBW=VBW=9kHz. Temperature: 20°C, Humidity: 40%, Pressure: 100kPa. Site A OATS. Modification: Copper tape shield installed into bottom cover over interface connections. Shield covers entire internal surface of the cover. Voltage to EUT is 110Vac 60Hz.

> Page 50 of 87 Report No.: 93565-28B

Ethernet

Ethernet

Test Location: CKC Laboratories, Inc. • 110 North Olinda Place • Brea, CA 92823 • 7149936112

Customer: Magtek Incorporated

Specification: 15.225(c) Field strength of any emissions within the band 13.110MHz to 13.410MHz and

13.710MHz to 14.010MHz

Work Order #: 93565 Date: 4/16/2013

Test Type: Maximized Emissions

Equipment: **IPAD EMV**

Manufacturer: Magtek Incorporated Tested By: S. Yamamoto

Model: 30056015 S/N: 30

Test Equipment:

_	zest zqui	Pitteritt				
	ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	T1	AN02672	Spectrum Analyzer	E4446A	9/4/2012	9/4/2014
	T2	ANP05198	Cable-Amplitude 15 to 45°C (dB)	8268	12/11/2012	12/11/2014
ı	Т3	AN00314	Loop Antenna	6502	6/29/2012	6/29/2014

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
IPAD EMV*	Magtek Incorporated	30056015	30
AC to 5VDC Power Supply	DVE	DSA-12PFA-05 FUS 050200	NA

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop Computer	Dell Corporation	Latitude D520	H2JFYC1

Test Conditions / Notes:

The equipment under test (EUT) is stand alone on the Styrofoam tabletop. The EUT USB cable is connected to the remotely located laptop. The AC to 5VDC power adapter is connected to the interface cable and providing power to the EUT. The EUT wireless 13.56 MHz is on and continuously transmitting. Frequency range of this data sheet: 13.1MHz to 14.1MHz. 150kHz to 30MHz, RBW=VBW=9kHz. Temperature: 20°C, Humidity: 51%, Pressure: 100kPa. Site A OATS. Voltage to EUT is 110Vac 60Hz.

Page 52 of 87 Report No.: 93565-28B

USB

Test Location: CKC Laboratories, Inc. • 110 North Olinda Place • Brea, CA 92823 • 7149936112

Customer: Magtek Incorporated

Specification: 15.225(c) Field Strength of Emissions within 13.110-13.410MHz and 13.710-14.010MHz

Work Order #: 93565 Date: 4/11/2013
Test Type: Maximized Emissions Time: 08:38:38

Equipment: IPAD EMV Sequence#: 3

Manufacturer: Magtek Incorporated Tested By: S. Yamamoto

Model: 30056017 S/N: 30

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	9/4/2012	9/4/2014
T2	ANP05198	Cable-Amplitude 15	8268	12/11/2012	12/11/2014
		to 45° C (dB)			
Т3	AN00314	Loop Antenna	6502	6/29/2012	6/29/2014

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
IPAD EMV*	Magtek Incorporated	30056017	30
AC to 5VDC Power Supply	DVE	DSA-12PFA-05 FUS 050200	NA

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop Computer	Dell Corporation	Latitude D520	H2JFYC1
Fast Ethernet Switch	Netgear	FS105	1D52173U01B60

Test Conditions / Notes:

The equipment under test (EUT) and its AC to DC adapter are stand alone on the Styrofoam tabletop. The EUT Ethernet port is connected to a remotely located switch. Also connected to the remotely located switch is the laptop computer. The AC to 5VDC power adapter is connected to the interface cable and providing power to the EUT. The EUT wireless 13.56 MHz is on and continuously transmitting. Frequency range of this data sheet: 13.110MHz to 14.10MHz. 150kHz to 30MHz, RBW=VBW=9kHz. Temperature: 20°C, Humidity: 40%, Pressure: 100kPa. Site A OATS. Modification: Copper tape shield installed into bottom cover over interface connections. Shield covers entire internal surface of the cover. Voltage to EUT is 110Vac 60Hz.

Page 54 of 87 Report No.: 93565-28B

Ethernet

Ethernet

USB, Front View

USB, Front View

Ethernet, Front View

Ethernet, Back View

15.225(d)(e) Radiated Emissions / Frequency Stability

Test Data Sheets

Test Location: CKC Laboratories, Inc. • 110 North Olinda Place • Brea, CA 92823 • 7149936112

Customer: Magtek Incorporated
Specification: 15.209 Radiated Emissions

Work Order #: 93565 Date: 4/17/2013
Test Type: Maximized Emissions Time: 14:20:52
Equipment: 1945 FMV

Equipment: IPAD EMV Sequence#: 1

Manufacturer: Magtek Incorporated Tested By: S. Yamamoto

Model: 30056015 S/N: 30

Test Equipment:

_ rest =qttt	Pitteritt				
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	9/4/2012	9/4/2014
T2	ANP05050	Cable	RG223/U	1/21/2013	1/21/2015
Т3	AN00309	Preamp	8447D	3/29/2012	3/29/2014
T4	ANP05198	Cable-Amplitude 15	8268	12/11/2012	12/11/2014
		to 45° C (dB)			
	ANP05198	Cable-Amplitude -15	8268	12/11/2012	12/11/2014
		to 15°C			
T5	AN01995	Biconilog Antenna	CBL6111C	5/16/2012	5/16/2014
	AN00314	Loop Antenna	6502	6/29/2012	6/29/2014

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
IPAD EMV*	Magtek Incorporated	30056015	30
AC to 5VDC Power Supply	DVE	DSA-12PFA-05 FUS 050200	NA

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop Computer	Dell Corporation	Latitude D520	H2JFYC1

Test Conditions / Notes:

The equipment under test (EUT) is stand alone on the Styrofoam tabletop. The EUT USB port is connected to a remotely located laptop. The AC to 5VDC power adapter is connected to the interface cable and providing power to the EUT. The EUT wireless 13.56 MHz is on and continuously transmitting. Frequency range of this data sheet: 9kHz to 1000MHz. 9kHz to 150kHz, RBW=VBW=200Hz. 150kHz to 30MHz, RBW=VBW=9kHz. 30MHz to 1000MHz, RBW=VBW=120kHz. Highest fundamental frequency is 13.56MHz. Modification: Added jumper wire on top of PCBA from sense line of stylus pen from board jack to signature capture screen. Temperature: 19°C, Humidity: 59%, Pressure: 100kPa. Site A OATS. Voltage to EUT is 110Vac 60Hz.

Page 58 of 87 Report No.: 93565-28B

Ext Attn: 0 dB

	rement Data:	Re	eading list	ted by ma	argin.	gin. Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	1104	110115	T5		10		2150	0011	~p**	111111111111111111111111111111111111111	1 0141
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	dBuV/m	dB	Ant
1	911.982M	42.3	+0.0	+0.6	-27.2	+5.8	+0.0	44.8	46.0	-1.2	Horiz
1	QP		+23.3	. 0.0	_,,_		. 0.0		.0.0		110112
٨	911.982M	43.0	+0.0	+0.6	-27.2	+5.8	+0.0	45.5	46.0	-0.5	Horiz
			+23.3								
3	623.988M	46.4	+0.0	+0.4	-27.3	+4.7	+0.0	44.3	46.0	-1.7	Horiz
	QP		+20.1								
٨	623.988M	46.6	+0.0	+0.4	-27.3	+4.7	+0.0	44.5	46.0	-1.5	Horiz
			+20.1								
5	569.505M	46.9	+0.0	+0.4	-27.5	+4.5	+0.0	43.4	46.0	-2.6	Vert
	QP		+19.1								
6	542.386M	47.6	+0.0	+0.4	-27.6	+4.4	+0.0	43.3	46.0	-2.7	Vert
	QP		+18.5								
٨	542.386M	48.5	+0.0	+0.4	-27.6	+4.4	+0.0	44.2	46.0	-1.8	Vert
			+18.5								
8	431.992M	50.4	+0.0	+0.4	-27.8	+3.8	+0.0	43.3	46.0	-2.7	Horiz
	QP		+16.5								
^	431.992M	51.3	+0.0	+0.4	-27.8	+3.8	+0.0	44.2	46.0	-1.8	Horiz
			+16.5								
10	527.991M	47.9	+0.0	+0.4	-27.7	+4.3	+0.0	43.0	46.0	-3.0	Vert
	QP		+18.1								
11	911.982M	40.5	+0.0	+0.6	-27.2	+5.8	+0.0	43.0	46.0	-3.0	Vert
	QP		+23.3								
^	911.982M	41.3	+0.0	+0.6	-27.2	+5.8	+0.0	43.8	46.0	-2.2	Vert
			+23.3						4.5.0		
13	596.624M	45.4	+0.0	+0.4	-27.4	+4.6	+0.0	42.7	46.0	-3.3	Horiz
	522 0003 5		+19.7	0.4	25.0		0.0	12.5	450		**
14		44.7	+0.0	+0.4	-27.3	+4.7	+0.0	42.6	46.0	-3.4	Vert
^	QP	16.0	+20.1	. 0. 4	27.2	. 4.7	. 0. 0	42.0	46.0	2.1	X7 .
	623.989M	46.0	+0.0	+0.4	-27.3	+4.7	+0.0	43.9	46.0	-2.1	Vert
1.0	515 266M	47.7	+20.1	+0.4	27.7	. 1.2	.00	42.4	46.0	2.6	IIi.
16	515.266M	47.7	$+0.0 \\ +17.8$	+0.4	-27.7	+4.2	+0.0	42.4	46.0	-3.6	Horiz
17	461.028M	48.9		+0.4	-27.8	+3.9	+0.0	42.3	46.0	-3.7	Vert
1/	401.028W	40.9	+0.0 +16.9	+0.4	-21.8	+3.9	+0.0	42.3	40.0	-3.1	vert
10	569.505M	45.7	+0.0	+0.4	-27.5	.⊥A 5	+0.0	42.2	46.0	-3.8	Vert
	OP	43.7	+0.0 +19.1	±0.4	-41.3	±4.3	+0.0	42.2	40.0	-3.0	v ei i
	569.505M	47.8	+0.0	+0.4	-27.5	+4.5	+0.0	44.3	46.0	-1.7	Vert
	507.505IVI	77.0	+19.1	10.4	41.3	1 T. J	10.0	7.J	+0.0	-1./	v C1 t
^	569.505M	47.0	+0.0	+0.4	-27.5	+4.5	+0.0	43.5	46.0	-2.5	Vert
	307.303111	۲/۰۵	+19.1	10.4	21.5	17.3	10.0	13.3	10.0	2.5	, 011
2.1	719.986M	42.5	+0.0	+0.5	-27.1	+5.1	+0.0	42.2	46.0	-3.8	Horiz
	QP	.2.0	+21.2	. 0.0	_,		. 0.0			2.0	110112
^	719.986M	43.6	+0.0	+0.5	-27.1	+5.1	+0.0	43.3	46.0	-2.7	Horiz
	, , , , , , , , , , , , , , , , , ,		+21.2	. 0.0	_,,,		. 0.0				
23	949.175M	39.2	+0.0	+0.7	-27.3	+6.0	+0.0	42.1	46.0	-3.9	Horiz
	QP		+23.5							- **	

^	949.175M	39.5	+0.0 +23.5	+0.7	-27.3	+6.0	+0.0	42.4	46.0	-3.6	Horiz
25	719.988M	42.4	+0.0 +21.2	+0.5	-27.1	+5.1	+0.0	42.1	46.0	-3.9	Vert
26	596.625M	44.6	+0.0 +19.7	+0.4	-27.4	+4.6	+0.0	41.9	46.0	-4.1	Horiz
27	515.266M	47.1	+0.0 +17.8	+0.4	-27.7	+4.2	+0.0	41.8	46.0	-4.2	Vert
28	527.990M QP	46.6	+0.0 +18.1	+0.4	-27.7	+4.3	+0.0	41.7	46.0	-4.3	Vert
^	527.991M	50.3	+0.0 +18.1	+0.4	-27.7	+4.3	+0.0	45.4	46.0	-0.6	Vert
٨	527.990M	48.1	+0.0 +18.1	+0.4	-27.7	+4.3	+0.0	43.2	46.0	-2.8	Vert
31	527.991M	46.6	+0.0 +18.1	+0.4	-27.7	+4.3	+0.0	41.7	46.0	-4.3	Horiz
	542.386M QP	45.8	+0.0 +18.5	+0.4	-27.6	+4.4	+0.0	41.5	46.0	-4.5	Horiz
٨	_	47.9	+0.0 +18.5	+0.4	-27.6	+4.4	+0.0	43.6	46.0	-2.4	Horiz
34	677.982M	42.6	+0.0 +20.6	+0.5	-27.1	+4.9	+0.0	41.5	46.0	-4.5	Vert
35	596.624M	44.0	+0.0 +19.7	+0.4	-27.4	+4.6	+0.0	41.3	46.0	-4.7	Vert
	677.983M QP	42.4	+0.0 +20.6	+0.5	-27.1	+4.9	+0.0	41.3	46.0	-4.7	Horiz
٨		44.1	+0.0 +20.6	+0.5	-27.1	+4.9	+0.0	43.0	46.0	-3.0	Horiz
38	959.999M	38.1	+0.0 +23.5	+0.7	-27.3	+6.1	+0.0	41.1	46.0	-4.9	Horiz
39	569.505M	44.4	+0.0 +19.1	+0.4	-27.5	+4.5	+0.0	40.9	46.0	-5.1	Horiz
40	325.432M	51.1	+0.0 +13.9	+0.3	-27.9	+3.3	+0.0	40.7	46.0	-5.3	Horiz
41	650.853M	42.3	+0.0 +20.3	+0.5	-27.2	+4.8	+0.0	40.7	46.0	-5.3	Horiz
42	325.431M	50.8	+0.0 +13.9	+0.3	-27.9	+3.3	+0.0	40.4	46.0	-5.6	Horiz
43	325.432M	50.7	+0.0 +13.9	+0.3	-27.9	+3.3	+0.0	40.3	46.0	-5.7	Vert
44	298.313M	51.3	+0.0 +13.1	+0.3	-27.8	+3.1	+0.0	40.0	46.0	-6.0	Horiz
45	922.055M	37.4	+0.0 +23.3	+0.6	-27.2	+5.9	+0.0	40.0	46.0	-6.0	Horiz
46	863.997M	37.7	+0.0 +23.0	+0.7	-27.2	+5.7	+0.0	39.9	46.0	-6.1	Horiz
47	815.986M	38.3	+0.0 +22.7	+0.6	-27.3	+5.5	+0.0	39.8	46.0	-6.2	Horiz
48	650.862M	41.1	+0.0 +20.3	+0.5	-27.2	+4.8	+0.0	39.5	46.0	-6.5	Vert
49	95.998M	53.5	+0.0 +9.5	+0.1	-28.0	+1.7	+0.0	36.8	43.5	-6.7	Vert

	50	406.789M	46.7	+0.0	+0.4	-27.9	+3.6	+0.0	38.9	46.0	-7.1	Horiz
				+16.1								
	51	119.996M	50.2	+0.0	+0.1	-28.0	+1.9	+0.0	35.9	43.5	-7.6	Vert
				+11.7								
	52	488.147M	44.3	+0.0	+0.4	-27.8	+4.1	+0.0	38.2	46.0	-7.8	Vert
				+17.2								
	53	383.993M	46.5	+0.0	+0.4	-27.9	+3.5	+0.0	38.1	46.0	-7.9	Horiz
				+15.6								
	54	949.174M	34.9	+0.0	+0.7	-27.3	+6.0	+0.0	37.8	46.0	-8.2	Vert
				+23.5								
	55	976.294M	42.4	+0.0	+0.6	-27.3	+6.2	+0.0	45.5	54.0	-8.5	Horiz
				+23.6								
	56	431.975M	44.3	+0.0	+0.4	-27.8	+3.8	+0.0	37.2	46.0	-8.8	Vert
				+16.5								
	57	319.998M	47.4	+0.0	+0.3	-27.8	+3.2	+0.0	36.9	46.0	-9.1	Vert
				+13.8								
	58	239.995M	49.2	+0.0	+0.3	-27.8	+2.8	+0.0	36.3	46.0	-9.7	Vert
				+11.8								
	59	433.909M	42.6	+0.0	+0.4	-27.8	+3.8	+0.0	35.5	46.0	-10.5	Vert
				+16.5								
	60	705.102M	33.8	+0.0	+0.5	-27.1	+5.0	+0.0	33.1	46.0	-12.9	Horiz
				+20.9								
	61	379.671M	40.0	+0.0	+0.4	-27.9	+3.5	+0.0	31.5	46.0	-14.5	Horiz
				+15.5								
1												

CKC Laboratories, Inc. Date: 4/17/2013 Time: 14:20:52 Magtek Incorporated WO#: 93565 15.209 Radiated Emissions Test Distance: 3 Meters. Sequence#: 1 Ext.ATTN: 0 dB IPAD EMV

Test Location: CKC Laboratories, Inc. • 110 North Olinda Place • Brea, CA 92823 • 7149936112

Customer: Magtek Incorporated
Specification: 15.209 Radiated Emissions

 Work Order #:
 93565
 Date: 4/17/2013

 Test Type:
 Maximized Emissions
 Time: 11:25:08

Equipment: **IPAD EMV** Sequence#: 2

Manufacturer: Magtek Incorporated Tested By: S. Yamamoto

Model: 30056017 S/N: 30

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	9/4/2012	9/4/2014
T2	ANP05050	Cable	RG223/U	1/21/2013	1/21/2015
T3	AN00309	Preamp	8447D	3/29/2012	3/29/2014
T4	ANP05198	Cable-Amplitude 15 to 45°C (dB)	8268	12/11/2012	12/11/2014
	ANP05198	Cable-Amplitude -15 to 15degC	8268	12/11/2012	12/11/2014
T5	AN01995	Biconilog Antenna	CBL6111C	5/16/2012	5/16/2014
	AN00314	Loop Antenna	6502	6/29/2012	6/29/2014

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
IPAD EMV*	Magtek Incorporated	30056017	30
AC to 5VDC Power Supply	DVE	DSA-12PFA-05 FUS 050200	NA

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop Computer	Dell Corporation	Latitude D520	H2JFYC1
Fast Ethernet Switch	Netgear	FS105	1D52173U01B60

Test Conditions / Notes:

The equipment under test (EUT) and its AC to DC adapter are stand alone on the Styrofoam tabletop. The EUT Ethernet port is connected to a remotely located switch. Also connected to the remotely located switch is the laptop computer. The AC to 5VDC power adapter is connected to the interface cable and providing power to the EUT. The EUT wireless 13.56 MHz is on and continuously transmitting. Frequency range of this data sheet: 9kHz to 1000MHz. 9kHz to 150kHz, RBW=VBW=200Hz. 150kHz to 30MHz, RBW=VBW=9kHz. 30MHz to 1000MHz, RBW=VBW=120kHz. Highest fundamental frequency is 13.56MHz. Temperature: 20°C, Humidity: 36%, Pressure: 100kPa. Site A OATS. Modification: Conductive paint over entire inside surface of back cover. Added jumper wire on top of PCBA from sense line of stylus pen from board jack to signature capture screen. Voltage to EUT is 110Vac 60Hz.

Page 63 of 87 Report No.: 93565-28B

Ext Attn: 0 dB

	rement Data:	Re	eading list	ted by ma	argin.	n. Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	2104	110115	T5		10		2150	0011	~p**	1,141,8111	1 0141
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	dBµV/m	dB	Ant
1	30.640M	48.1	+0.0	+0.0	-28.1	+0.9	+0.0	38.3	40.0	-1.7	Vert
	QP		+17.4								
2	542.386M	48.6	+0.0	+0.4	-27.6	+4.4	+0.0	44.3	46.0	-1.7	Horiz
	QP		+18.5								
٨	542.386M	49.1	+0.0	+0.4	-27.6	+4.4	+0.0	44.8	46.0	-1.2	Horiz
			+18.5								
4	32.595M	48.7	+0.0	+0.0	-28.1	+1.0	+0.0	38.2	40.0	-1.8	Vert
	QP		+16.6								
^	32.595M	49.3	+0.0	+0.0	-28.1	+1.0	+0.0	38.8	40.0	-1.2	Vert
			+16.6								
6		48.7	+0.0	+0.0	-28.1	+1.0	+0.0	37.9	40.0	-2.1	Vert
	QP		+16.3								
^	33.449M	49.7	+0.0	+0.0	-28.1	+1.0	+0.0	38.9	40.0	-1.1	Vert
			+16.3								
8	107.314M	56.6	+0.0	+0.1	-28.0	+1.8	+0.0	41.1	43.5	-2.4	Vert
	QP		+10.6		• • • •						
^	107.314M	56.9	+0.0	+0.1	-28.0	+1.8	+0.0	41.4	43.5	-2.1	Vert
10	10454034	7.6.0	+10.6	0.1	20.0	1.7	0.0	41.0	10.5	2.5	T. 7 .
10	104.749M	56.8	+0.0	+0.1	-28.0	+1.7	+0.0	41.0	43.5	-2.5	Vert
	QP 54.150M	57.0	+10.4	.0.1	20.2	.1.2	.00	27.4	40.0	2.6	X7
11	54.150M	57.0	+0.0	+0.1	-28.2	+1.2	+0.0	37.4	40.0	-2.6	Vert
٨	QP 54.150M	59.0	+7.3	+0.1	20.2	.1.2	.00	39.4	40.0	0.6	Vert
	34.130M	39.0	+0.0 +7.3	+0.1	-28.2	+1.2	+0.0	39.4	40.0	-0.6	vert
13	104.199M	56.7	+0.0	+0.1	-28.0	+1.7	+0.0	40.8	43.5	-2.7	Vert
	QP	30.7	+10.3	+0.1	-20.0	+1.7	+0.0	40.6	43.3	-2.7	VEIL
^	104.199M	57.8	+0.0	+0.1	-28.0	+1.7	+0.0	41.9	43.5	-1.6	Vert
	104.17711	37.0	+10.3	10.1	-20.0	11.7	10.0	71.7	73.3	-1.0	VCIT
15	542.386M	47.6	+0.0	+0.4	-27.6	+4.4	+0.0	43.3	46.0	-2.7	Vert
	OP	17.0	+18.5	10.1	27.0		10.0	13.3	10.0	2.,	, 011
^	542.386M	49.5	+0.0	+0.4	-27.6	+4.4	+0.0	45.2	46.0	-0.8	Vert
			+18.5								
17	30.580M	47.0	+0.0	+0.0	-28.1	+0.9	+0.0	37.3	40.0	-2.7	Vert
	QP		+17.5								
^	30.640M	49.2	+0.0	+0.0	-28.1	+0.9	+0.0	39.4	40.0	-0.6	Vert
			+17.4								
19	911.987M	40.7	+0.0	+0.6	-27.2	+5.8	+0.0	43.2	46.0	-2.8	Horiz
	QP		+23.3								
^	911.987M	42.3	+0.0	+0.6	-27.2	+5.8	+0.0	44.8	46.0	-1.2	Horiz
			+23.3								
	31.432M	47.3	+0.0	+0.0	-28.1	+0.9	+0.0	37.2	40.0	-2.8	Vert
	QP	:	+17.1								
٨	31.432M	48.1	+0.0	+0.0	-28.1	+0.9	+0.0	38.0	40.0	-2.0	Vert
20	(22.00.00.00.00.00.00.00.00.00.00.00.00.0	47.0	+17.1	0.4	25.2			40.1	450		***
23	623.986M	45.2	+0.0	+0.4	-27.3	+4.7	+0.0	43.1	46.0	-2.9	Vert
			+20.1								

										,
24 58.794M QP	57.6	+0.0 +6.1	+0.1	-28.1	+1.3	+0.0	37.0	40.0	-3.0	Vert
25 33.989M	48.0	+0.0	+0.0	-28.1	+1.0	+0.0	37.0	40.0	-3.0	Vert
		+16.1								
26 569.505M	46.3	+0.0	+0.4	-27.5	+4.5	+0.0	42.8	46.0	-3.2	Vert
QP ^ 569.505M	47.1	+19.1	+0.4	-27.5	+4.5	+0.0	43.6	46.0	-2.4	Vert
309.303WI	47.1	+19.1	+0. 4	-21.3	+4.3	+0.0	43.0	40.0	-2.4	vert
28 59.253M	57.5	+0.0	+0.1	-28.1	+1.3	+0.0	36.8	40.0	-3.2	Vert
QP		+6.0	0.1	20.1			25.0	40.0		**
^ 59.253M	58.5	$+0.0 \\ +6.0$	+0.1	-28.1	+1.3	+0.0	37.8	40.0	-2.2	Vert
30 67.798M	57.3	+0.0	+0.1	-28.1	+1.4	+0.0	36.7	40.0	-3.3	Vert
30 07.796W	37.3	+6.0	+0.1	-20.1	±1. 4	+0.0	30.7	40.0	-3.3	VEIL
31 106.764M	55.7	+0.0	+0.1	-28.0	+1.8	+0.0	40.1	43.5	-3.4	Vert
OP	33.7	+10.5	10.1	20.0	11.0	10.0	40.1	43.3	3.4	VCIT
^ 106.764M	58.3	+0.0	+0.1	-28.0	+1.8	+0.0	42.7	43.5	-0.8	Vert
100,701,172	00.0	+10.5		20.0	. 1.0	. 0.0	,		0.0	, 610
33 34.121M	47.7	+0.0	+0.0	-28.1	+1.0	+0.0	36.6	40.0	-3.4	Vert
QP		+16.0								
34 104.690M	55.8	+0.0	+0.1	-28.0	+1.7	+0.0	40.0	43.5	-3.5	Vert
QP		+10.4								
^ 104.690M	58.2	+0.0	+0.1	-28.0	+1.7	+0.0	42.4	43.5	-1.1	Vert
		+10.4								
^ 104.749M	57.1	+0.0	+0.1	-28.0	+1.7	+0.0	41.3	43.5	-2.2	Vert
		+10.4								
37 569.505M	45.9	+0.0	+0.4	-27.5	+4.5	+0.0	42.4	46.0	-3.6	Horiz
QP		+19.1								
^ 569.505M	46.9	+0.0	+0.4	-27.5	+4.5	+0.0	43.4	46.0	-2.6	Horiz
		+19.1								
39 719.988M	42.5	+0.0	+0.5	-27.1	+5.1	+0.0	42.2	46.0	-3.8	Horiz
		+21.2								
40 56.016M	56.1	+0.0	+0.1	-28.1	+1.3	+0.0	36.2	40.0	-3.8	Vert
QP		+6.8		• • • •			• • • •			
^ 56.016M	58.8	+0.0	+0.1	-28.1	+1.3	+0.0	38.9	40.0	-1.1	Vert
42 507 72514	44.0	+6.8	.0.4	27.4	. 4 .	.00	42.2	16.0	2.0	TT.
42 596.625M	44.9	$+0.0 \\ +19.7$	+0.4	-27.4	+4.6	+0.0	42.2	46.0	-3.8	Horiz
43 58.791M	56.7	+19.7	+0.1	-28.1	+1.3	+0.0	36.1	40.0	-3.9	Vert
QP	50.7	+0.0 +6.1	+0.1	-20.1	+1.3	+0.0	50.1	40.0	-3.9	v en
44 32.899M	46.6	+0.1	+0.0	-28.1	+1.0	+0.0	36.0	40.0	-4.0	Vert
QP	70.0	+16.5	10.0	20.1	11.0	10.0	50.0	TU.U	7.0	V C11
^ 32.899M	48.1	+0.0	+0.0	-28.1	+1.0	+0.0	37.5	40.0	-2.5	Vert
32.07711	.0.1	+16.5	. 5.0	_0.1	. 1.0	. 0.0	20		2.0	. 511
46 677.982M	43.1	+0.0	+0.5	-27.1	+4.9	+0.0	42.0	46.0	-4.0	Vert
		+20.6								
47 623.989M	44.0	+0.0	+0.4	-27.3	+4.7	+0.0	41.9	46.0	-4.1	Horiz
		+20.1								
48 108.817M	54.8	+0.0	+0.1	-28.0	+1.8	+0.0	39.4	43.5	-4.1	Vert
QP		+10.7								
49 105.847M	55.0	+0.0	+0.1	-28.0	+1.8	+0.0	39.4	43.5	-4.1	Vert
QP		+10.5								

^	105.847M	57.5	+0.0 +10.5	+0.1	-28.0	+1.8	+0.0	41.9	43.5	-1.6	Vert
51	949.175M QP	39.0	+0.0 +23.5	+0.7	-27.3	+6.0	+0.0	41.9	46.0	-4.1	Horiz
^	949.175M	40.2	+0.0 +23.5	+0.7	-27.3	+6.0	+0.0	43.1	46.0	-2.9	Horiz
53	596.624M	44.5	+0.0	+0.4	-27.4	+4.6	+0.0	41.8	46.0	-4.2	Vert
54	911.983M	39.3	+19.7	+0.6	-27.2	+5.8	+0.0	41.8	46.0	-4.2	Vert
^	QP 911.983M	40.8	+23.3	+0.6	-27.2	+5.8	+0.0	43.3	46.0	-2.7	Vert
56	200.014M	55.4	+23.3	+0.2	-27.9	+2.5	+0.0	39.3	43.5	-4.2	Horiz
	108.780M	54.7	+9.1 +0.0 +10.7	+0.1	-28.0	+1.8	+0.0	39.3	43.5	-4.2	Vert
^	QP 108.780M	58.1	+0.0 +10.7	+0.1	-28.0	+1.8	+0.0	42.7	43.5	-0.8	Vert
٨	108.817M	56.3	+10.7 +0.0 +10.7	+0.1	-28.0	+1.8	+0.0	40.9	43.5	-2.6	Vert
60	32.002M	46.0	+0.0 +16.9	+0.0	-28.1	+0.9	+0.0	35.7	40.0	-4.3	Vert
61	105.298M	54.9	+0.0 +10.4	+0.1	-28.0	+1.7	+0.0	39.1	43.5	-4.4	Vert
62	719.986M	41.9	+0.0 +21.2	+0.5	-27.1	+5.1	+0.0	41.6	46.0	-4.4	Vert
63	107.070M QP	54.5	+0.0 +10.6	+0.1	-28.0	+1.8	+0.0	39.0	43.5	-4.5	Vert
^	107.070M	55.5	+0.0 +10.6	+0.1	-28.0	+1.8	+0.0	40.0	43.5	-3.5	Vert
65	81.488M	54.4	+0.0 +7.6	+0.1	-28.1	+1.5	+0.0	35.5	40.0	-4.5	Vert
66	58.700M QP	56.1	+0.0 +6.1	+0.1	-28.1	+1.3	+0.0	35.5	40.0	-4.5	Vert
67	108.182M	54.3	+0.0 +10.7	+0.1	-28.0	+1.8	+0.0	38.9	43.5	-4.6	Vert
68	200.014M	55.0	+0.0 +9.1	+0.2	-27.9	+2.5	+0.0	38.9	43.5	-4.6	Vert
69	58.731M QP	55.8	+0.0 +6.1	+0.1	-28.1	+1.3	+0.0	35.2	40.0	-4.8	Vert
70	150.010M QP	53.4	+0.0 +10.9	+0.2	-27.9	+2.1	+0.0	38.7	43.5	-4.8	Vert
٨	150.010M	55.8	+0.0 +10.9	+0.2	-27.9	+2.1	+0.0	41.1	43.5	-2.4	Vert
72	250.017M	53.4	+0.0 +12.4	+0.3	-27.8	+2.8	+0.0	41.1	46.0	-4.9	Horiz
73	58.700M QP	55.7	+0.0 +6.1	+0.1	-28.1	+1.3	+0.0	35.1	40.0	-4.9	Vert
٨	58.700M	60.2	+0.0 +6.1	+0.1	-28.1	+1.3	+0.0	39.6	40.0	-0.4	Vert
٨	58.700M	58.9	+0.0 +6.1	+0.1	-28.1	+1.3	+0.0	38.3	40.0	-1.7	Vert
L											

^	58.731M	57.8	+0.0 +6.1	+0.1	-28.1	+1.3	+0.0	37.2	40.0	-2.8	Vert
٨	58.791M	57.4	+0.0 +6.1	+0.1	-28.1	+1.3	+0.0	36.8	40.0	-3.2	Vert
٨	58.761M	55.9	+0.1 +0.0 +6.1	+0.1	-28.1	+1.3	+0.0	35.3	40.0	-4.7	Vert
79	527.988M	45.9	+0.0 +18.1	+0.4	-27.7	+4.3	+0.0	41.0	46.0	-5.0	Vert
٨	QP 527.988M	47.6	+0.0 +18.1	+0.4	-27.7	+4.3	+0.0	42.7	46.0	-3.3	Vert
81	922.051M	38.3	+10.1 +0.0 +23.3	+0.6	-27.2	+5.9	+0.0	40.9	46.0	-5.1	Horiz
82	103.344M	54.2	+23.3 +0.0 +10.2	+0.1	-28.0	+1.7	+0.0	38.2	43.5	-5.3	Vert
83	325.430M	51.1	+0.0 +13.9	+0.3	-27.9	+3.3	+0.0	40.7	46.0	-5.3	Horiz
84	515.267M	43.4	+0.0 +17.8	+0.4	-27.7	+4.2	+0.0	38.1	43.4	-5.3	Horiz
85	650.862M	41.8	+0.0 +20.3	+0.5	-27.2	+4.8	+0.0	40.2	46.0	-5.8	Horiz
86	106.092M	53.2	+0.0 +10.5	+0.1	-28.0	+1.8	+0.0	37.6	43.5	-5.9	Vert
87	325.431M	50.4	+0.0 +13.9	+0.3	-27.9	+3.3	+0.0	40.0	46.0	-6.0	Vert
88	515.266M	45.3	+0.0 +17.8	+0.4	-27.7	+4.2	+0.0	40.0	46.0	-6.0	Vert
89	55.890M QP	53.8	+0.0 +6.9	+0.1	-28.1	+1.3	+0.0	34.0	40.0	-6.0	Vert
٨	55.890M	57.3	+0.0 +6.9	+0.1	-28.1	+1.3	+0.0	37.5	40.0	-2.5	Vert
91	488.147M	43.5	+0.0 +17.2	+0.4	-27.8	+4.1	+0.0	37.4	43.4	-6.0	Vert
92	677.983M QP	41.0	+0.0 +20.6	+0.5	-27.1	+4.9	+0.0	39.9	46.0	-6.1	Horiz
^	677.983M	44.7	+0.0 +20.6	+0.5	-27.1	+4.9	+0.0	43.6	46.0	-2.4	Horiz
94	527.989M	44.5	+0.0 +18.1	+0.4	-27.7	+4.3	+0.0	39.6	46.0	-6.4	Horiz
95	81.198M	52.5	+0.0 +7.6	+0.1	-28.1	+1.5	+0.0	33.6	40.0	-6.4	Vert
96	102.485M	53.0	+0.0 +10.1	+0.1	-28.0	+1.7	+0.0	36.9	43.5	-6.6	Vert
97	275.019M	51.0	+0.0 +12.8	+0.3	-27.9	+3.0	+0.0	39.2	46.0	-6.8	Horiz
98	894.936M	36.2	+0.0 +23.2	+0.6	-27.2	+5.8	+0.0	38.6	46.0	-7.4	Horiz
99	352.549M	48.0	+0.0 +14.7	+0.3	-27.9	+3.4	+0.0	38.5	46.0	-7.5	Vert
100	98.460M	51.3	+0.0 +9.8	+0.1	-28.0	+1.7	+0.0	34.9	43.5	-8.6	Vert
101	275.003M	49.1	+0.0 +12.8	+0.3	-27.9	+3.0	+0.0	37.3	46.0	-8.7	Vert
L			12.0								

102	319.998M	47.4	+0.0 +13.8	+0.3	-27.8	+3.2	+0.0	36.9	46.0	-9.1	Vert
103	433.910M	43.8	+0.0 +16.5	+0.4	-27.8	+3.8	+0.0	36.7	46.0	-9.3	Vert
104	298.313M	47.7	+0.0 +13.1	+0.3	-27.8	+3.1	+0.0	36.4	46.0	-9.6	Horiz
105	454.621M	43.1	+0.0	+0.4	-27.8	+3.9	+0.0	36.4	46.0	-9.6	Vert
106	239.995M	49.2	+16.8	+0.3	-27.8	+2.8	+0.0	36.3	46.0	-9.7	Vert
107	650.864M	37.6	+11.8	+0.5	-27.2	+4.8	+0.0	36.0	46.0	-10.0	Vert
108	250.016M	48.3	+20.3	+0.3	-27.8	+2.8	+0.0	36.0	46.0	-10.0	Vert
109	976.295M	40.7	+12.4	+0.6	-27.3	+6.2	+0.0	43.8	54.0	-10.2	Horiz
110	786.460M	34.7	+23.6 +0.0 +22.4	+0.6	-27.3	+5.3	+0.0	35.7	46.0	-10.3	Horiz
111	352.551M	44.8	+0.0 +14.7	+0.3	-27.9	+3.4	+0.0	35.3	46.0	-10.7	Horiz
112	832.061M	33.0	+0.0 +22.8	+0.7	-27.2	+5.5	+0.0	34.8	46.0	-11.2	Vert
113	125.006M	46.3	+0.0 +11.6	+0.1	-28.0	+1.9	+0.0	31.9	43.5	-11.6	Vert
114	976.295M	38.1	+0.0 +23.6	+0.6	-27.3	+6.2	+0.0	41.2	54.0	-12.8	Vert
115	275.019M	44.9	+0.0 +12.8	+0.3	-27.9	+3.0	+0.0	33.1	46.0	-12.9	Vert
116	705.102M	33.8	+0.0 +20.9	+0.5	-27.1	+5.0	+0.0	33.1	46.0	-12.9	Horiz
117	488.147M	36.6	+0.0 +17.2	+0.4	-27.8	+4.1	+0.0	30.5	43.4	-12.9	Horiz
118	379.671M	40.0	+0.0 +15.5	+0.4	-27.9	+3.5	+0.0	31.5	46.0	-14.5	Horiz
119	216.955M	45.9	+0.0 +10.3	+0.2	-27.8	+2.6	+0.0	31.2	46.0	-14.8	Horiz
120	230.508M	43.2	+0.0 +11.2	+0.2	-27.8	+2.7	+0.0	29.5	46.0	-16.5	Vert
121	431.983M QP	48.6	+0.0 +16.5	+0.4	-27.8	+3.8	+0.0	41.5	61.4	-19.9	Horiz
٨	431.983M	49.8	+0.0 +16.5	+0.4	-27.8	+3.8	+0.0	42.7	61.4	-18.7	Horiz
123	431.992M	45.3	+0.0 +16.5	+0.4	-27.8	+3.8	+0.0	38.2	61.4	-23.2	Vert
124	150.010M	50.8	+0.0 +10.9	+0.2	-27.9	+2.1	+0.0	36.1	61.4	-25.3	Horiz
125	36.000M	43.8	+0.0 +15.2	+0.0	-28.1	+1.0	+0.0	31.9	61.4	-29.5	Vert
126	35.973M	39.4	+0.0 +15.2	+0.0	-28.1	+1.0	+0.0	27.5	61.4	-33.9	Horiz
<u> </u>											

CKC Laboratories, Inc. Date: 4/17/2013 Time: 11:25:08 Magtek Incorporated WO#: 93565 15:209 Radiated Emissions Test Distance: 3 Meters. Sequence#: 2 Ext ATTN: 0 dB IPAD EMV

Frequency Stability

Test Location: CKC Laboratories, Inc. • 110 North Olinda Place • Brea, CA 92823 • 7149936112

Customer: Magtek Incorporated

Specification: 15.225(e)

Work Order #: 93565 Date: 4/11/2013

Test Type: Frequency Stability

Equipment: **IPAD EMV**

Manufacturer: Magtek Incorporated Tested By: S. Yamamoto

Model: 30056017 S/N: 30

Test Equipment:

resi Equipmeni.				
Asset #	Description	Model	Calibration Date	Cal Due Date
02869/MY46186290	Spectrum Analyzer	E4440A	020613	020615
01878/25-1758-25	Temperature Chamber	S 1.2 Mini-Max	040213	040215
P04358/cable21	Cable	RG142	041012	041014
(none)/(none)	Near field probe	(none)	NCR	NCR
01695/0250	AC Power Source	345AMXT/UPC32	012213	012215
01696/0245				

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
IPAD EMV*	Magtek Incorporated	30056017	30
AC to 5VDC Power Supply	DVE	DSA-12PFA-05 FUS 050200	NA

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop Computer	Dell Corporation	Latitude D520	H2JFYC1
Fast Ethernet Switch	Netgear	FS105	1D52173U01B60

Test Conditions / Notes:

The equipment under test (EUT) is placed inside the temperature chamber. The EUT Ethernet port is connected to a remotely located switch. Also connected to the remotely located switch is the laptop computer. The AC to 5VDC power adapter is connected to the interface cable and providing power to the EUT. Site A. Modification: Copper tape shield installed into bottom cover over interface connections. Shield covers entire internal surface of the cover. Voltage to EUT is 110VAC 60Hz. Near field probe placed on top of EUT to measure frequency and amplitude.

Page 70 of 87 Report No.: 93565-28B

Frequency Stability

APPENDIX A MODIFIED EUT TEST RESULTS

MANUFACTURER'S DESCRIPTION OF CHANGES TO ANTENNA DRIVER BOARD IPAD EMV (30050735.5.01)

Robert Rodriguez Thursday, May 23, 2013

The antenna driver board was modified in order to pass EMVCo load modulation tests. The changes affect mainly capacitors C16, C49.

Capacitors C16, and C49 changed from 130pF to 100pF. This reflects the latest changes to the hardware and MagTek Documentation.

The changes impact load modulation reception for EMVCo specifications, and do not affect power transmission for FCC/CE radiated emissions.

To confirm this change didn't affect the radiated emission, pre-scans were performed on the fundamental frequency (i.e., 13.56MHz) and its harmonics. Test results at CKC laboratory for FCC Class B show there is no performance change when comparing before and after the capacitor magnitude changes.

Page 73 of 87 Report No.: 93565-28B

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

Magtek Incorporated Dianne Dudley
1710 Apollo Court CKC Laboratories, Inc.
Seal Beach, CA 90740 5046 Sierra Pines Drive
Mariposa, CA 95338

Representative: Alireza Ashani Project Number: 93565

Customer Reference Number: 96283

DATE OF EQUIPMENT RECEIPT: May 20, 2013 **DATE(S) OF TESTING:** May 20-23, 2013

Revision History

Original: Testing of IPAD EMV, 30056015 (uses 30019320 USB cable) and 30056017 (uses 30019319 Ethernet / USB combo cable) to FCC Part 15 Subpart C Sections 15.225 and RSS 210 Issue 8.

Addendum A: To add new partial 15.225 test data for the IPAD EMV, Model: 30056017 (uses 30019319 Ethernet/USB combo cable) due to modifications made to the EUT after the original testing had been completed. See appendix A for listing of modifications.

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm
Director of Quality Assurance & Engineering Services
CKC Laboratories, Inc.

Steve of Belon

Page 74 of 87 Report No.: 93565-28B

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 110 Olinda Place Brea, CA 92823

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.00.14
Immunity	5.00.07

Site Registration & Accreditation Information

Location	CB#	TAIWAN	CANADA	FCC	JAPAN	
Brea A	US0060	SL2-IN-E-1146R	3082D-1	90473	A-0147	

Page 75 of 87 Report No.: 93565-28B

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C 15.225 & RSS 210 Issue 8

Description	Test Procedure/Method	Results
RF Power Output	FCC Part 15 Subpart C Section 15.225(a) / 2.1046	Pass
Radiated Emissions / Frequency Stability	FCC Part 15 Subpart C Section 15.225 (d) / 2.1055(d) / 15.209 / ANSI C63.4 (2003)	Pass

Conditions During Testing

This list is a summary of the conditions noted for or modifications made to the equipment during testing.

Summary of Conditions

Modifications 15.225(a) RF Power testing: Copper tape shield installed into bottom cover over interface connections. Shield covers entire internal surface of the cover. Changed values of C16, C49 on the Antenna Driver PCB from 130pf to 100pf. Voltage to EUT is 110Vac 60Hz.

Modifications 15.225(d) radiated emissions testing: Conductive paint over entire inside surface of back cover. Added jumper wire on top of PCBA from sense line of stylus pen from board jack to signature capture screen. Changed values of C16, C49 on the Antenna Driver PCB from 130pf to 100pf. Voltage to EUT is 110Vac 60Hz.

Page 76 of 87 Report No.: 93565-28B

EQUIPMENT UNDER TEST (EUT)

EQUIPMENT UNDER TEST

IPAD EMV AC to 5VDC Power Supply

Manuf: Magtek Incorporated Manuf: DVE

Model: 30056017 Model: DSA-12PFA-05 FUS 050200

Serial: 30 Serial: NA

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

<u>Laptop Computer</u> <u>Fast Ethernet Switch</u>

Manuf:Dell CorporationManuf:NetgearModel:Latitude D520Model:FS105

Serial: H2JFYC1 Serial: 1D52173U01B60

Page 77 of 87 Report No.: 93565-28B

FCC PART 15 SUBPART C

This report contains EMC emissions test results under United States Federal Communications Commission (FCC) 47 CFR 15C requirements for Unlicensed Radio Frequency Devices, Subpart C - Intentional Radiators.

15.225(a) RF Power Output

Test Conditions / Setup

Test Location: CKC Laboratories, Inc. • 110 North Olinda Place • Brea, CA 92823 • 7149936112

Customer: Magtek Incorporated

Specification: 15.225(a) Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

 Work Order #:
 93565
 Date:
 5/23/2013

 Test Type:
 Maximized Emissions
 Time:
 11:34:35

Equipment: IPAD EMV Sequence#: 3

Manufacturer: Magtek Incorporated Tested By: S. Yamamoto

Model: 30056017

S/N: 30

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02672	Spectrum Analyzer	E4446A	9/4/2012	9/4/2014
T1	ANP05198	Cable-Amplitude 15 to 45degC (dB)	8268	12/11/2012	12/11/2014
T2	AN00314	Loop Antenna	6502	6/29/2012	6/29/2014

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
IPAD EMV*	Magtek Incorporated	30056017	30
AC to 5Vdc Power Supply	DVE	DSA-12PFA-05 FUS 050200	NA

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop Computer	Dell Corporation	Latitude D520	H2JFYC1
Fast Ethernet Switch	Netgear	FS105	1D52173U01B60

Test Conditions / Notes:

The equipment under test (EUT) and its AC to DC adapter are stand alone on the Styrofoam tabletop. The EUT Ethernet port is connected to a remotely located switch. Also connected to the remotely located switch is the laptop computer. The AC to 5Vdc power adapter is connected to the interface cable and providing power to the EUT. The EUT wireless 13.56 MHz is on and continuously transmitting. Frequency range of this data sheet: 13.56MHz. 150kHz to 30MHz, RBW=VBW=9kHz. Temperature: 20°C, Humidity: 49%, Pressure: 100kPa. Site A OATS. **Data sheet is only a measurement of the fundamental frequency**. Modification: Copper tape shield installed into bottom cover over interface connections. Shield covers entire internal surface of the cover. Changed values of C16, C49 on the Antenna Driver PCB from 130pf to 100pf. Voltage to EUT is 110Vac 60Hz.

Page 78 of 87 Report No.: 93565-28B

Ext Attn: 0 dB

Measur	rement Data:	Re	eading lis	ted by ma	ırgin.		Τe	est Distance	e: 10 Metei	îs.	
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	13.560M	37.9	+0.6	+8.5			-19.1	27.9	84.0	-56.1	Axis
2	13.560M	36.3	+0.6	+8.5			-19.1	26.3	84.0	-57.7	Axis
3	13.560M	34.1	+0.6	+8.5			-19.1	24.1	84.0	-59.9	Axis

Test Setup Photos

Ethernet, Front View

Ethernet, Back View

15.225(d) Radiated Emissions

Test Data Sheets

Test Location: CKC Laboratories, Inc. • 110 North Olinda Place • Brea, CA 92823 • 7149936112

Customer: Magtek Incorporated
Specification: 15.209 Radiated Emissions

 Work Order #:
 93565
 Date: 5/23/2013

 Test Type:
 Maximized Emissions
 Time: 11:02:26

Equipment: IPAD EMV Sequence#: 2

Manufacturer: Magtek Incorporated Tested By: S. Yamamoto

Model: 30056017 S/N: 30

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	9/4/2012	9/4/2014
T2	ANP05050	Cable	RG223/U	1/21/2013	1/21/2015
T3	AN00309	Preamp	8447D	3/29/2012	3/29/2014
T4	ANP05198	Cable-Amplitude 15	8268	12/11/2012	12/11/2014
		to 45degC (dB)			
	ANP05198	Cable-Amplitude -15	8268	12/11/2012	12/11/2014
		to 15degC			
T5	AN01995	Biconilog Antenna	CBL6111C	5/16/2012	5/16/2014
	AN00314	Loop Antenna	6502	6/29/2012	6/29/2014

Equipment Under Test (* = EUT):

Equipment Citater 1 cst (<u> </u>		
Function	Manufacturer	Model #	S/N
IPAD EMV*	Magtek Incorporated	30056017	30
AC to 5Vdc Power Supply	DVE	DSA-12PFA-05 FUS 050200	NA

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop Computer	Dell Corporation	Latitude D520	H2JFYC1
Fast Ethernet Switch	Netgear	FS105	1D52173U01B60

Page 81 of 87 Report No.: 93565-28B

Test Conditions / Notes:

The equipment under test (EUT) and its AC to DC adapter are stand alone on the Styrofoam tabletop. The EUT Ethernet port is connected to a remotely located switch. The EUT combo interface cable is part number 30019319. Also connected to the remotely located switch is the laptop computer. The AC to 5VDC power adapter is connected to the interface cable and providing power to the EUT. The EUT wireless 13.56 MHz is on and continuously transmitting. Frequency range of this data sheet: 9kHz to 1000MHz. 9kHz to 150kHz, RBW=VBW=200Hz. 150kHz to 30MHz, RBW=VBW=9kHz. 30MHz to 1000MHz, RBW=VBW=120kHz. Highest fundamental frequency is 13.56MHz. This data sheet contains only harmonics of the 13.56MHz fundamental. Temperature: 20°C, Humidity: 49%, Pressure: 100kPa. Site A OATS. Modification: Conductive paint over entire inside surface of back cover. Added jumper wire on top of PCBA from sense line of stylus pen from board jack to signature capture screen. Changed values of C16, C49 on the Antenna Driver PCB from 130pf to 100pf. Voltage to EUT is 110Vac 60Hz.

Ext Attn: 0 dB	
----------------	--

	rement Data:	Re	eading lis	ted by ma	argin.		Те	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	1		T5							6	
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	542.386M	48.3	+0.0	+0.4	-27.6	+4.4	+0.0	44.0	46.0	-2.0	Horiz
	QP		+18.5								
^	542.386M	48.5	+0.0	+0.4	-27.6	+4.4	+0.0	44.2	46.0	-1.8	Horiz
			+18.5								
3	623.743M	45.2	+0.0	+0.4	-27.3	+4.7	+0.0	43.1	46.0	-2.9	Vert
			+20.1								
4	949.178M	39.5	+0.0	+0.7	-27.3	+6.0	+0.0	42.4	46.0	-3.6	Horiz
			+23.5								
5	569.505M	45.8	+0.0	+0.4	-27.5	+4.5	+0.0	42.3	46.0	-3.7	Vert
	QP		+19.1								
^	569.505M	46.9	+0.0	+0.4	-27.5	+4.5	+0.0	43.4	46.0	-2.6	Vert
			+19.1								
7	596.622M	44.7	+0.0	+0.4	-27.4	+4.6	+0.0	42.0	46.0	-4.0	Horiz
			+19.7								
8		45.4	+0.0	+0.4	-27.5	+4.5	+0.0	41.9	46.0	-4.1	Horiz
	QP		+19.1								
^	569.505M	46.3	+0.0	+0.4	-27.5	+4.5	+0.0	42.8	46.0	-3.2	Horiz
			+19.1								
10	677.982M	42.9	+0.0	+0.5	-27.1	+4.9	+0.0	41.8	46.0	-4.2	Vert
			+20.6								
11	623.743M	43.9	+0.0	+0.4	-27.3	+4.7	+0.0	41.8	46.0	-4.2	Horiz
12			+20.1	0.4	25.4		0.0		4.5.0		**
12	596.625M	44.2	+0.0	+0.4	-27.4	+4.6	+0.0	41.5	46.0	-4.5	Vert
12	(7.700M	560	+19.7	. 0.1	20.1	. 1 . 4	.00	25.4	40.0	1.6	X 74
13	67.798M	56.0	+0.0	+0.1	-28.1	+1.4	+0.0	35.4	40.0	-4.6	Vert
14	542.385M	45.5	+6.0	+0.4	-27.6	+4.4	+0.0	41.2	46.0	-4.8	Vert
14	QP	43.3	+0.0	+0.4	-27.0	+4.4	+0.0	41.2	46.0	-4.8	vert
^		48.0	+0.0	+0.4	-27.6	+4.4	+0.0	43.7	46.0	-2.3	Vert
	542.365IVI	40.0	+0.0	+0.4	-27.0	+4.4	+0.0	43.7	40.0	-2.3	vert
16	922.042M	38.1	+0.0	+0.6	-27.2	+5.9	+0.0	40.7	46.0	-5.3	Horiz
10	722.0 4 21 V I	30.1	+23.3	10.0	-21.2	13.9	10.0	70.7	70.0	-5.5	HOHE
17	325.437M	50.5	+0.0	+0.3	-27.9	+3.3	+0.0	40.1	46.0	-5.9	Horiz
'	323.73/WI	50.5	+13.9	10.5	21.7	13.3	10.0	70.1	70.0	3.7	110112
			113.7								

18	515.266M	45.3	+0.0 +17.8	+0.4	-27.7	+4.2	+0.0	40.0	46.0	-6.0	Vert
19	677.982M OP	40.7	+0.0 +20.6	+0.5	-27.1	+4.9	+0.0	39.6	46.0	-6.4	Horiz
٨	677.982M	43.3	+20.0 +0.0 +20.6	+0.5	-27.1	+4.9	+0.0	42.2	46.0	-3.8	Horiz
21	650.866M	40.9	+0.0 +20.3	+0.5	-27.2	+4.8	+0.0	39.3	46.0	-6.7	Horiz
22	81.358M	52.0	+0.0 +7.6	+0.1	-28.1	+1.5	+0.0	33.1	40.0	-6.9	Vert
23	54.239M	52.4	+0.0 +7.3	+0.1	-28.2	+1.2	+0.0	32.8	40.0	-7.2	Vert
24	894.962M	36.1	+0.0 +23.2	+0.6	-27.2	+5.8	+0.0	38.5	46.0	-7.5	Horiz
25	325.429M	48.7	+0.0 +13.9	+0.3	-27.9	+3.3	+0.0	38.3	46.0	-7.7	Vert
26	515.267M	43.3	+0.0 +17.8	+0.4	-27.7	+4.2	+0.0	38.0	46.0	-8.0	Horiz
27	352.547M	47.3	+0.0 +14.7	+0.3	-27.9	+3.4	+0.0	37.8	46.0	-8.2	Vert
28	433.912M	43.2	+0.0 +16.5	+0.4	-27.8	+3.8	+0.0	36.1	46.0	-9.9	Vert
29	488.150M	42.1	+0.0 +17.2	+0.4	-27.8	+4.1	+0.0	36.0	46.0	-10.0	Vert
30	650.863M	37.6	+0.0 +20.3	+0.5	-27.2	+4.8	+0.0	36.0	46.0	-10.0	Vert
31	298.311M	47.2	+0.0 +13.1	+0.3	-27.8	+3.1	+0.0	35.9	46.0	-10.1	Horiz
32	108.477M	48.6	+0.0 +10.7	+0.1	-28.0	+1.8	+0.0	33.2	43.5	-10.3	Vert
33	352.550M	44.8	$+0.0 \\ +14.7$	+0.3	-27.9	+3.4	+0.0	35.3	46.0	-10.7	Horiz
34	786.463M	33.9	+0.0 +22.4	+0.6	-27.3	+5.3	+0.0	34.9	46.0	-11.1	Horiz
35	976.320M	39.7	+0.0 +23.6	+0.6	-27.3	+6.2	+0.0	42.8	54.0	-11.2	Horiz
36	976.294M	38.0	+0.0 +23.6	+0.6	-27.3	+6.2	+0.0	41.1	54.0	-12.9	Vert
37	705.099M	33.7	+0.0 +20.9	+0.5	-27.1	+5.0	+0.0	33.0	46.0	-13.0	Horiz
38	216.954M	45.9	+0.0 +10.3	+0.2	-27.8	+2.6	+0.0	31.2	46.0	-14.8	Horiz
39	379.664M	39.6	+0.0 +15.5	+0.4	-27.9	+3.5	+0.0	31.1	46.0	-14.9	Horiz
40	488.148M	36.4	+0.0 +17.2	+0.4	-27.8	+4.1	+0.0	30.3	46.0	-15.7	Horiz
41	230.514M	42.8	+0.0 +11.2	+0.2	-27.8	+2.7	+0.0	29.1	46.0	-16.9	Vert

CKC Laboratories, Inc. Date: 5/23/2013 Time: 11:02:26 Magtek Incorporated WO#: 93565 15:209 Radiated Emissions Test Distance: 3 Meters. Sequence#: 2 Ext ATTN: 0 dB IPAD EMV

Test Setup Photos

Ethernet, Front View

Ethernet, Front View

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter		
4.73 dB	Radiated Emissions		
3.34 dB	Mains Conducted Emissions		
3.30 dB	Disturbance Power		

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit.

Page 86 of 87 Report No.: 93565-28B

SAMPLE CALCULATIONS					
	Meter reading	(dBμV)			
+	Antenna Factor	(dB)			
+	Cable Loss	(dB)			
-	Distance Correction	(dB)			
-	Preamplifier Gain	(dB)			
=	Corrected Reading	(dBμV/m)			

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE						
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING			
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz			
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz			
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz			

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or carrot ("A") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

Page 87 of 87 Report No.: 93565-28B