PCT/EP200 4 / 0 5 3 0 2 0

BUNDESREPUBLIK DEUTSCHLAND

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

22. 11. 2004

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

10 2004 009 272.9

Anmeldetag:

26. Februar 2004

Anmelder/Inhaber:

ROBERT BOSCH GMBH, 70469 Stuttgart/DE

Bezeichnung:

Hochdrucksensor zur druckunabhängigen

Temperaturmessung

IPC:

A 9161

G 01 L, G 01 K

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 1. Oktober 2004 Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

Remus

R. 307172

17. Februar 2004

Robert Bosch GmbH

Hochdrucksensor zur druckunabhängigen Temperaturmessung

10

5

Technisches Gebiet

Als Brennraumdrucksensoren kommen heute neben piezoelektrischen Quarzen Sensorchips zum Einsatz. Werden diese zur Erfassung des im Brennraum einer Verbrennungskraftmaschine herrschenden Drucks eingesetzt, ist es erforderlich, dass der Si-Chip nicht unmittelbar den dort herrschenden hohen Temperaturen, die in der Größenordnung von etwa 600°C liegen, ausgesetzt ist. Dies geschieht mit Hilfe einer metallischen Trennmembran und einem angeschweißten Stößel ausreichender Länge. Durch mikromechanisches Aufbringen eines winziges Podests in der Membranmitte wird der Sensor zum Kraftsensor.

20

25

30

35

Stand der Technik

Aus dem Kraftfahrtechnischen Taschenbuch/Bosch [Chefredakteur: Horst Bauer]; 23., aktualisierte und erweiterte Auflage Braunschweig; Wiesbaden: Vieweg 1999, ISBN 3-528-03876-4, Seiten 110/111 ist ein Brennraumdrucksensor bekannt, der als Sensorchip ausgebildet ist. Um zu vermeiden, dass der Si-Chip nicht unmittelbar den hohen Temperaturen von maximal 600°C ausgesetzt ist, ist eine metallische Trennmembran und ein angeschweißter Stößel von einigen Millimetern Länge vorgesehen. Die von der Frontmembran aufgenommenen Druckkräfte werden über den Stößel mit geringer zusätzlicher Verfälschung über das Podest in den Sensorchip eingeleitet. Dieser ist in der zurückgezogenen Montageposition nur noch Betriebstemperaturen unterhalb von 150°C ausgesetzt.

Auf Seite 110, rechte Spalte unten, Abbildung Halbleiter-Drucksensor, ist eine Brückenschaltung bekannt, die durch eine Versorgungsspannung U₀ beaufschlagt ist. Die Brückenschaltung umfasst Messwiderstände R₁, die bei einer Beanspruchung gedehnt sowie Messwiderstände R₂, die bei mechanischer Beanspruchung eines Siliziumsubstrats, auf dem sie aufgebracht sind, gestaucht werden.

Derart ausgebildete, piezoresistive Hochdrucksensoren auf Basis einer Dehnungsmessung, seien sie auf einer Stahlmembran oder seien sie auf einer Siliziummembran aufgetragen, kommen in zahlreichen Systemen im KFZ-Bereich zum Einsatz. Dazu sind die Benzindirekteinspritzung, die Hochdruckspeichereinspritzung (Common Rail), die Fahrdynamikregelung sowie die elektrohydraulische Bremse zu zählen. Eine künftige Anwendung der piezoresistiven Hochdrucksensoren liegt in der zylinderselektiven Druckmessung im Brennraum einer Verbrennungskraftmaschine.

Zur Druckmessung werden auf einer geeignet dimensionierten Stahlmembran mehrere Widerstände angeordnet und in Form einer Wheatstone-Brücke verschaltet. Durch Dehnung bzw. Stauchung der Widerstände wird die Wheatstone-Brücke verstimmt und liefert ein dem Beaufschlagungsdruck proportionales elektrisches Signal. Neben der gewünschten Druckabhängigkeit des Brückensignals weist das Brückensignal jedoch eine Temperaturabhängigkeit auf, die aufgrund der hohen Genauigkeitsanforderungen kompensiert werden muss. Dies erfolgt bei bisher bekannten Ausführungsformen entweder durch direkt auf der Stahlmembran angebrachte zusätzliche Kompensationswiderstände oder durch eine Temperaturmessung im Bereich der Auswerteelektronik mit anschließender Berücksichtigung bei der Ausgangssignalberechnung.

Darstellung der Erfindung

10

20

25

30

Nach der erfindungsgemäß vorgeschlagenen Lösung wird durch geeignete Dimensionierung der Membrangeometrie sowie entsprechender Positionierung von Dehnmessstreifen (DMS) auf der Membran die Brückenschaltung so beeinflusst, dass der Gesamtwiderstand der Messbrücke unabhängig von der Auslenkung der Membran wird und der Gesamtwiderstand somit nur von der Temperatur der Membran abhängt. Dadurch kann unabhängig vom zu messenden Druck mit derselben Messbrücke, die als Wheatstone-Brücke ausgebildet ist, die Temperatur der Membran mit der Messbrücke bestimmt werden und zu Kompensationszwecken eingesetzt werden. Dadurch ist eine druckunabhängige Temperaturbestimmung der Membran mit der als Sensorelement dienenden Messbrücke möglich, ohne dass zusätzliche auf der Metallmembran aufzubringende Kompensations- oder Temperaturmesswiderstände erforderlich sind.

In vorteilhafter Weise wird durch die erfindungsgemäß vorgeschlagene Lösung keine zusätzliche Fläche der Metallmembran durch Kompensations- oder Temperaturmesswiderstände sowie deren elektrische Anschlusspunkte mehr benötigt. Dadurch wiederum lässt sich ein höherer Miniaturisierungsgrad erreichen, was bei den heutigen Platzverhältnissen im Zylinderkopfbereich von Verbrennungskraftmaschinen, in denen die Drucksensoren

eingesetzt werden, von nicht unerheblicher Bedeutung ist. Die Miniaturisierung der Sensorelemente bietet wiederum Vorteile hinsichtlich der Herstellkosten. Aufgrund der miniaturisierten Brennraumdrucksensoren werden die Applikationsmöglichkeiten solcher Sensorelemente an Verbrennungskraftmaschinen erheblich erweitert.

5

10

Außerdem entfallen durch die erfindungsgemäß vorgeschlagene Lösung zusätzliche elektrische Kontaktierungspunkte, was einerseits den Fertigungsprozess erheblich vereinfacht und andererseits potentielle Ausfallstellen, etwa durch Kontaktbruch, vermieden werden können. Bei Brennraumdrucksensoren befindet sich die Auswerteelektronik aufgrund maximal zulässigen Temperatur von etwa 140°C weit entfernt von der eigentlichen Druckmessstelle, in deren Bereich Spitzentemperaturen von bis zu 600°C auftreten können. Eine Temperaturmessung im Bereich der Auswerteelektronik gemäß den bisher eingesetzten Drucksensoren liefert somit ein zur Temperaturkompensation der Wheatstone-Messbrücke viel zu ungenaues Signal. Durch die erfindungsgemäß vorgeschlagene Messung und Auswertung des druckunabhängigen Brückenwiderstands kann die Messgenauigkeit des Brennraumdrucksensors erheblich verbessert werden.

Zeichnung

20

Anhand der Zeichnung wird die Erfindung nachstehend eingehender beschrieben.

Es zeigt:

25

Fig. 1a, 1b, 1c, 1d Ausführungsvarianten von auf einer Metallmembran angeordneten

Dehnmessstreifen (DMS),

Fig. 2

eine Metallmembran mit darauf aufgebrachten Dehnmessstreifen im

ausgelenkten Zustand und

30

Fig. 3

einen Querschnitt durch das Membranmaterial mit Dehnungs- und

Stauchungsmaxima.

35

Ausführungsvarianten

Die in der Figurensequenz 1a, 1b, 1c und 1d dargestellten Brückenschaltungen auf einer Stahlmembran repräsentieren den derzeitigen Stand der Technik.

Auf einer Metallmembran 1 ist eine Brückenschaltung 5 aufgebracht, welche als Wheatstone'sche Brückenschaltung ausgebildet sein kann. Die Brückenschaltung 5 umfasst mehrere Widerstände R₁, R₂, R₃ und R₄, gekennzeichnet durch die Bezugszeichen 6, 7, 8 und 9. Bei der Metallmembran 1 handelt es sich bevorzugt um eine Stahlmembran, deren Zentrum durch Bezugszeichen 2 gekennzeichnet ist und die in einem Radius r ausgebildet ist. Die peripheren Bereiche, d.h. die weiter vom Zentrum 2 der Metallmembran 1 entfernter liegenden Bereiche sind jeweils durch Bezugszeichen 3 angedeutet. Der Rand der Metallmembran 1 ist durch Bezugszeichen 4 bezeichnet.

5

10

20

25

30

35

Bei den innerhalb der Brückenschaltung 5 verschalteten Widerständen R₁, R₂, R₃ und R₄ handelt es sich bevorzugt um Dehnmessstreifen. Die Brückenschaltung 5 ist an eine Versorgungsspannung U₀ angeschlossen; der Abgriff der Messspannung U_A liegt zwischen den Widerständen R₁ und R₄ bzw. R₂ und R₃.

Die auf der Metallmembran 1 angeordneten Widerstände R₁, R₂, R₃ und R₄ sind so angeordnet, dass diese bei Druckbeaufschlagung der Metallmembran 1 eine Dehnung bzw. eine Stauchung erfahren. Dadurch wird die Brückenschaltung verstimmt und liefert ein dem die Metallmembran 1 beaufschlagenden Druck proportionales Spannungssignal UA, was einer Auswertungsschaltung zugeführt wird. Dieses Signal UA ist nicht nur druckabhängig, sondern auch temperaturabhängig. Die Druckabhängigkeit ist gewünscht, jedoch macht die Temperaturabhängigkeit des erhaltenen Signals U_A den Einsatz von Kompensationswiderständen RT₁, RT₂ erforderlich, um den hohen Genauigkeitsanforderungen, die bei einem Einsatz als Brennraumdrucksensor gestellt werden, gerecht zu werden. Bei der in Fig. 1 dargestellten Lösung, sind zur Kompensation der Temperaturabhängigkeit des Messsignals U_A auf der Metallmembran 1 zusätzliche Kompensationswiderstände RT₁, RT₂ aufgebracht. Diese Kompensationswiderstände RT₁, RT₂ beeinflussen jedoch nur die Temperaturabhängigkeit der Empfindlichkeit, der Nullpunkt bleibt unkompensiert. Eine weitere Möglichkeit, die die Signalgenauigkeit beeinflussende Temperaturabhängigkeit auszuschalten, liegt darin, eine Temperaturmessung im Bereich der Auswerteelektronik vorzunehmen und das Ausgangssignal UA um den Einfluss der Temperatur zu korrigieren und auf diese Weise die Genauigkeit des Messsignals UA zu verbessern. Beim Einsatz als Brennraumdrucksensor findet sich die Auswerteelektronik aufgrund ihrer Temperaturlimitierung von etwa 140°C jedoch weit entfernt von der eigentlichen Druckmessstelle, in deren Bereich Spitzentemperaturen von bis zu 600°C auftreten. Eine Temperaturmessung im Bereich der Auswerteelektronik liefert somit ein zur Temperaturkompensation der Brückenschaltung viel zu ungenaues Signal, was aus der Temperaturlimitierung der Auswerteelektronik herrührt. Bei den in den Figuren 1a, 1b, 1c und 1d dargestellten Varianten bedingen die zusätzlich gesetzten Kompensationswiderstände RT₁, RT₂ (optional) einen erhöhten Flächenbedarf auf der Metallmembran einerseits und andererseits ein zusätzliches Kontaktierungspad.

Der Darstellung gemäß Fig. 2 ist die erfindungsgemäß vorgeschlagene Konfiguration einer Brückenschaltung, die auf eine Metallmembran aufgebracht ist, zu entnehmen.

5

10

30

35

Die in Fig. 2 dargestellte Metallmembran 1, bei der es sich bevorzugt um eine Stahlmembran handelt, umfasst ein Zentrum 2 sowie Peripheriebereiche 3, die sich in radialer Richtung erstrecken. Die Metallmembran 1 ist durch den Rand 4 begrenzt und mit der Brückenschaltung 5 versehen, die analog zur in Fig. 1 dargestellten, aus dem Stand der Technik bekannten Ausführung, beschaffen ist. Die Brückenschaltung 5 ist ebenfalls als Wheatstone'sche Brücke ausgebildet und umfasst vier miteinander verschaltete Widerstände R₁, R₂, R₃ sowie R₄, die durch die Bezugszeichen 6, 7, 8 und 9 identifiziert sind. Die Brückenschaltung 5 wird durch eine Versorgungsspannung U₀ gespeist; der Spannungsgriff für das erhaltene Messsignal, d.h. die Messspannung U_A, erfolgt zwischen den Widerständen R₁ und R₄ einerseits und den Widerständen R₂ und R₃ andererseits.

Die Widerstände R₁, R₂, R₃ sowie R₄ sind bevorzugt als Dehnmessstreifen ausgebildet. Die Positionen, an denen die Widerstände R₁, R₂, R₃ und R₄ auf der Metallmembran 1 aufgebracht werden, können mit Hilfe der Finite-Elemente-Methode (FEM) bestimmt werden. Nach der Erstellung eines geometrischen Modells der Metallmembran 1 und der Festlegung geeigneter Randbedingungen liefert die Finite-Elemente-Methode als Ergebnis die Dehnungstopologie der Metallmembran 1 unter Druckbeanspruchung.

Die Randbedingungen, unter denen die Finite-Elemente-Methode angewendet wird, berücksichtigen neben weiteren Optimierungsparametern, dass die Radialdehnung der Metallmembran 1 betragsmäßig gleich der Stauchung (ε_{stauch}) der Metallmembran 1 ist. Als Modulationsparameter kann weiterhin der Nenndruck berücksichtigt werden, mit dem die Metallmembran 1 beaufschlagt ist. Als geometrische Randbedingungen wird der Durchmesser der Metallmembran 1 berücksichtigt sowie die Membrandicke. Die Membrandicke kann in radiale Richtung gesehen auch durchaus variieren, was bei der Finite-Elemente-Methode als Einflussparameter berücksichtigt werden kann. Des weiteren können die Membranhöhe der Metallmembran 1 sowie die Werkstoffeigenschaften des Materials berücksichtigt werden, aus denen die Metallmembran 1 gefertigt wird. Neben einer Ausbildung der Membran als Metallmembran 1 können diese beispielsweise auch aus keramischem Werkstoff gefertigt sein.

Aus der Dehnungstopologie der Metallmembran 1 gehen die Bereiche hervor, in denen sowohl die Dehnungsmaxima als auch die Stauchungsmaxima bei Druckbeaufschlagung der Metallmembran 1 auftreten. Üblicherweise liegt das Dehnungsmaximum 12 im Zentrum 2 der Metallmembran 1, da dieses am weitesten von der Einspannstelle, d.h. dem Rand 4 der Metallmembran 1 entfernt liegt und demzufolge durch den die Metallmembran 1 beaufschlagenden Druck am weitesten ausgelenkt werden kann. Die Stauchungsmaxima 13 liegen üblicherweise im Peripheriebereich 3 der Metallmembran 1, d.h. in der Regel im Bereich des Randes 4 der Metallmembran 1, die bevorzugt als Stahlmembran ausgebildet ist. Die Randbedingungen der FEM-Simulation werden in vorteilhafter Weise so gewählt, dass im Zuge einer geometrischen Optimierung das in Zentrum 2 der Metallmembran 1 auftretende Dehnungsmaximum 12 vom Betrag her den Beträgen der im Peripheriebereich 3 der Metallmembran 1 liegenden Stauchungsmaxima 13 entspricht. Aufgrund der am geometrischen Modell ermittelten und durch geeignete Formgebung der Metallmembran 1 optimierten Dehnungstopologie können die Positionen der vier Widerstände R₁, R₂, R₃ sowie R4 so gewählt werden, dass die Absolutwerte der Dehnungen Δl denen der Stauchungen $-\Delta l$ entsprechen.

10

20

25

30

35

In diesen Positionen, die durch Ermittlung der Dehnungstopologie der Metallmembran 1 ermittelt werden, werden die vier Widerstände R₁, R₂, R₃ und R₄, ausgebildet als Dehnmessstreifen, auf der Metallmembran 1 angeordnet. Bei Anordnung der vier Widerstände der Brückenschaltung 5 in den in Fig. 2 dargestellten Positionen auf der Metallmembran 1 ist der Betrag der Widerstandsänderung unter Druckbeanspruchung aller vier Widerstände R₁, R₂, R₃ sowie R₄ betragsmäßig identisch. Aus der Darstellung gemäß Fig. 2 geht hervor, dass die beiden Widerstände R₁ und R₃, identifiziert durch die Bezugszeichen 6 bzw. 8 im zentrumsnahen Bereich der Metallmembran 1, ein zentrumsnahes Widerstandspaar 10 bildend angeordnet sind. Die beiden Widerstände werden aufgrund der im Bereich des Zentrums 2 der Druckbeaufschlagung der Metallmembran 1 herrschenden Dehnungen von ihrer ursprünglichen Länge auf eine Länge l+Δl gestreckt. Die Streckung Δl (d.h. die Dehnung) der beiden als Dehnmessstreifen ausgebildeten Widerstände R1 und R3 ist identisch. Anstelle der in Fig. 2 dargestellten Orientierung der beiden Widerstände R₁ und R₂ könnten diese auch parallel zur Horizontalachse oder auch parallel zur Vertikalachse der Metallmembran 1 angeordnet werden. Demgegenüber liegen die Positionen eines peripheren Widerstandpaares 11 in der Peripherie 3 der Metallmembran 1 und dort in den Bereichen, in denen die Stauchungsmaxima 13 auftreten. Bei einer Druckbeaufschlagung der Metallmembran 1 von einer Seite her, wird das zentrumsnahe Widerstandspaar 10 auf Dehnung beansprucht, d.h. um den Betrag Δl gestreckt.

Das periphere Widerstandspaar 11 wird demgegenüber um die Strecke $-\Delta 1$ gestaucht, angedeutet durch die gestrichelte Widergabe der beiden Widerstände R_2 bzw. R_4 . Die Stau-

chung 1-Δl gibt die Länge an, um die die im Stauchungsbereich der Metallmembran 1 liegenden beiden Widerstände R₂ bzw. R₄ bei Druckbeaufschlagung der Metallmembran 1 gestaucht werden. Die Streckung der beiden zentrumsnah angeordneten Widerstände R₁ und R₃, das zentrumsnahe Widerstandpaar 10 bildend, ist durch l+Δl dargestellt und ebenfalls gestrichelt angedeutet. Durch die Anordnung des zentrumsnahen Widerstandspaares 10 und des peripheren Widerstandspaares 11 ist der absolute Betrag Δl der gestauchten Widerstände R₂ und R₄ identisch zur Länge Δl des zentrumsnah angeordneten Widerstandspaares 10. Aufgrund dieser Tatsache entsprechen die Zugdehnungen Δl der beiden zentrumsnahen Widerstände R₁ und R₃ den Stauchungen –Δl der weiter außen in der Peripherie 3 der Metallmembran 1 liegenden, auf Druck beanspruchten Widerstände R₂ und R₄. In diesem Falle ist der Gesamtwiderstand der Brückenschaltung 5 nur noch von der Temperatur abhängig und somit unabhängig vom anliegenden Druck, welcher über die Auslenkung der Metallmembran 1 zu ermitteln ist. Damit lässt sich durch eine Messung des Gesamtwiderstands R_{GES} die Temperatur der Brückenschaltung 5 bestimmen und zur Kompensation des Temperatureinflusses heranziehen.

5

10

20

25

30

35

Durch die in Fig. 2 anhand eines Beispiels dargestellte Anordnung der Widerstände R₁, R₂, R₃ sowie R₄ wird erreicht, das der Gesamtwiderstand der Brückenschaltung 5 unabhängig von der Auslenkung der Metallmembran 1 wird und somit nur von der Temperatur der Metallmembran 1 abhängt. Dadurch kann unabhängig vom zu messenden Druck mit der Brückenschaltung 5 die Temperatur der Metallmembran 1 durch die Brückenschaltung 5 bestimmt und zu Kompensationszwecken eingesetzt werden. Damit ist sichergestellt, dass die Temperatur, der die Brückenschaltung 5 ausgesetzt ist, die wahre Temperatur ist, um deren Einfluss das erhaltene Messsignal UA der Brückenschaltung 5 zu kompensieren ist. Messungenauigkeiten durch eine Temperaturkompensation im Bereich der Auswerteelektronik, die aus Gründen der thermischen Beanspruchung weit entfernt von der Metallmembran 1 liegt, können durch die erfindungsgemäß vorgeschlagene Temperaturkompensation unmittelbar durch die Auslegung, d.h. die Positionierung der Widerstände R1, R2, R3 und R4 der Brückenschaltung 5, behoben werden. Damit lässt sich durch die erfindungsgemäß vorgeschlagene Lösung eine wesentlich genauere, druckunabhängige Temperaturbestimmung der Metallmembran 1 erreichen. Im Gegensatz zur aus dem Stand der Technik bekannten Lösung kann durch die erfindungsgemäß vorgeschlagene Lösung auf die Anordnung zusätzlicher Kompensations- oder Temperaturmesswiderstände verzichtet werden. Ferner wird die zum Aufbringen der Kompensations- oder Temperaturmesswiderstände erforderliche Brennraumfläche eingespart, wobei die elektrischen Anschlusspunkte für die Kompensations- und Temperaturmesswiderstände ebenfalls entfallen können. Damit lässt sich die Metallmembran 1 insgesamt gesehen wesentlich kleiner auslegen, da wesentlich weniger Fläche benötigt wird. Durch den Entfall der elektrischen Kontaktierungsstellen zusätzlich vorzuhaltender Kompensations- oder Temperaturmesswiderstände gemäß den aus dem Stand

der Technik bekannten Lösungen werden Schwachstellen, die potentielle Ausfallstellen darstellen, vermieden.

Der Darstellung gemäß Fig. 3 ist ein Querschnitt durch das Membranmaterial mit Lage der Dehnungs- bzw. Stauchungsmaxima zu entnehmen.

5

10

20

Die in Fig. 3 teilweise im Querschnitt dargestellte Metallmembran 1 ist symmetrisch zur Symmetrieachse 14. Bei dem Membranmaterial kann es sich einerseits um einen metallischen Werkstoff, andererseits auch um Keramikmaterial handeln. Bei Druckbeaufschlagung der Metallmembran 1 nimmt diese die in Fig. 3 dargestellte Form an. Die Metallmembran 1 wird im Bereich des Zentrums 2 gedehnt und an der Peripherie 3 gestaucht. Die Position des zentrumsnahen Widerstands 10 ist in Fig. 3 durch das Bezugszeichen 16 angedeutet, während die Position des in der Peripherie 3 der Metallmembran 1 angeordneten zentrumsfernen Widerstandspaares 5 durch Bezugszeichen 17 angedeutet ist. Aufgrund der geometrischen Verformung des Membranmaterials 15 erfährt das Zentrum 2 eine Dehnung in radiale Richtung. Die sich im Zentrum 2 der Metallmembran 1 einstellende Radialdehnung $\varepsilon_{r,dehn}$ entspricht betragsmäßig der radialen Stauchung $\varepsilon_{r,stauch}$ im Bereich der Peripherie 3 der Metallmembran 1. Die Dehnung in radiale Richtung im Radialdehnungsbereich 18 entspricht betragsmäßig der Radialstauchung $\varepsilon_{r,stauch}$, angedeutet durch Bezugszeichen 19 im Peripheriebereich 3 der Metallmembran 1.

Bezugszeichenliste

	4	% 6 , 11 1
	1	Metallmembran
	2	Zentrum
5	3	Peripherie
	4	Rand
	U_0	Versorgungsspannung
	U_{A}	Ausgangsspannung U_{ϑ}
	5	Brückenschaltung
10	6	erster DMS (R ₁)
	7	zweiter DMS (R ₂)
	8	dritter DMS (R ₃)
	9	vierter DMS (R ₄)
	RT_1	erster Temperatur-Kompensationswiderstand
	RT_2	zweiter Temperatur-Kompensationswiderstand
	10	zentrumsnahes Widerstandspaar (R1, R3)
	11	peripheres Widerstandspaar (R2, R4)
	Δ1	Dehnung zentrumsnahe Widerstände
	-Δ1	Stauchung periphere Widerstände
20	$ \Delta 1 $	Absolutbetrag Dehnung/Stauchung
	12	Dehnungsmaximum
-	13	Stauchungsmaximum
	14	Symmetrieachse
	15	Membranmaterial
25	$\mathbf{E}_{\mathbf{r}}$	Radialdehnung
	16	Position zentrumsnahes Widerstandspaar
	17	Position peripheres Widerstandspaar
	18	Radialdehnungsbereich $\varepsilon_{r,dehn}$
	19	Radialstauchungsbereich $\varepsilon_{r,stauch}$

Patentansprüche

1. Verfahren zur druckunabhängigen Temperaturbestimmung mittels einer Membran (1), auf der eine Brückenschaltung (5) mit mehreren Widerständen (6, 7, 8, 9) aufgenommen ist, von denen ein Widerstandpaar (10) zentrumsnah und ein Widerstandspaar (11) zentrumsfern angeordnet ist, dadurch gekennzeichnet, dass die Widerstände (6, 7, 8, 9) auf der Membran (1) so angeordnet werden, dass die Zugdehnung Δl des zentrumsnah angeordneten Widerstandspaares (10) der Stauchung –Δl des zentrumsfern angeordneten Widerstandspaares (11) entsprechen.

10

5

- 2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass das zentrumsnah angeordnete Widerstandspaar (10) auf der Metallmembran (1) im Bereich der bei Druckbeaufschlagung der Metallmembran (1) auftretenden Dehnungsmaxima (12) angeordnet wird.
- 3. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass das zentrumsfern angeordnete Widerstandspaar (11) auf der Metallmembran (1) in dem Bereich (3) angeordnet wird, in dem Stauchungsmaxima (13) auftreten.
- 20 4. Verfahren gemäß der Ansprüche 2 und 3, dadurch gekennzeichnet, dass die Bereiche der Metallmembran (1), an denen die Dehnungsmaxima (12) und an denen die Stauchungsmaxima (13) auftreten, mittels der Finite-Elemente-Methode bestimmt werden.
- 5. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass der Absolutbetrag (|Δl|) der Dehnungen (Δl) und der Stauchungen (-Δl) der Brückenschaltung (5) identisch ist.
- 6. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass eine geometrische Optimierung der Konfiguration der Metallmembran (1) im Rahmen der FEM-Simulation erfolgt.
- Verfahren gemäß Anspruch 6, dadurch gekennzeichnet, dass im Rahmen der FEM-Simulation geometrische Randbedingungen wie der Durchmesser der Metallmembran (1), die Dicke der Metallmembran (1) sowie die Höhe der Metallmembran (1) berücksichtigt werden.

8. Verfahren gemäß Anspruch 6, dadurch gekennzeichnet, dass im Rahmen der FEM-Simulation der Nenndruck berücksichtigt wird, mit welchem die Metallmembran 1 beaufschlagt wird.

Zusammenfassung

Die Erfindung bezieht sich auf ein Verfahren zur druckunabhängigen Temperaturbestimmung mittels einer Metallmembran (1). An dieser ist eine Brückenschaltung (5) mit mehreren Widerständen (6, 7, 8, 9) aufgenommen. Ein Widerstandspaar (10) der Widerstände (6, 7, 8, 9) ist zentrumsnah, ein anderes Widerstandspaar (11) der Widerstände (6, 7, 8, 9) ist zentrumsfern angeordnet. Die Widerstände (6, 7, 8, 9) werden auf der Metallmembran so angeordnet, dass die Zugdehnung (Δl) des zentrumsnahen Widerstandspaares (10) der Widerstände (6, 7, 8, 9) betragsmäßig den Stauchungen –Δl des zentrumsfernen Widerstandspaares (11) der Widerstände (6, 7, 8, 9) entsprechen.

(Figur 2)

5

10

Fig. 1a

Fig. 1b

Fig. 1c

Fig. 1d

Fig. 2

Fig. 3

