

版本: V1.05 修改日期: 2024-8-8 版权所有@深圳市海凌科电子有限公司

目 录

1	1 通信接口简介	4
	1.1 引脚定义	4
	1.2 使用和配置	5
	1.2.1 典型应用电路	5
	1.2.2 配置参数的作用	5
	1.2.3 可视化配置工具说明	6
2	2 通信协议	7
	2.1 协议格式	7
	2.1.1 协议数据格式	7
	2.1.2 命令协议帧格式	7
	2.2 发送命令与ACK	8
	2.2.1 使能配置命令	8
	2.2.2 结束配置命令	8
	2.2.3 雷达分辨率配置命令	8
	2.2.4 读取分辨率参数命令	9
	2.2.5 基础参数配置命令	
	2.2.6 读取基础参数命令	10
	2.2.7 使能工程模式命令	
	2.2.8 关闭工程模式命令	
	2.2.9 运动灵敏度配置命令	
	2.2.10 运动灵敏度查询命令	
	2.2.11 静止灵敏度配置命令	
	2.2.12 静止灵敏度查询命令	
	2.2.13 进入动态背景校正模式命令	
	2.2.14 查询动态背景校正执行状态命令	
	2.2.15 读取固件版本命令	
	2.2.16 设置串口波特率	
	2.2.17 恢复出厂设置	
	2.2.18 重启模块	
	2.2.19 蓝牙设置	
	2.2.20 获取mac地址	
	2.2.21 光感辅助控制功能配置设置	
	2.2.22 光感辅助控制功能配置查询	
	2.3 雷达数据输出协议	
	2.3.1 上报数据帧格式	
	2.3.2 目标数据组成	
	2.4 雷达命令配置方式	
	2.4.1 雷达命令配置步骤	
	3 修订记录	
4	4 技术支持和联络方式	21

图表索引

表	1	引脚定义表	4
表	2	发送命令协议帧格式	
表	3	发送帧内数据格式	
表	4	ACK命令协议帧格式	
表	5	ACK帧内数据格式	
表	6	分辨率配置值	9
表	7	串口波特率选择	14
表	8	出厂默认配置值	1!
表	9	辅助控制功能设置的命令值	17
表	10	上报数据帧格式	18
表	11	帧内数据帧格式	18
表	12	数据类型说明	18
表	13	目标数据帧组成	
表	14		
表	15	目标数据(工程模式)帧组成	19
冬	1	模块引脚定义图	4
夂	2	雷达命今配置流程	20

1 通信接口简介

1.1 引脚定义

图 1 模块引脚定义图

引脚符号	名称	功能
OUT	目标状态输出	默认为 检测到有人体存在:输出高电平 无人体存在:输出低电平 输出电平可通过指令配置
TX	串口Tx	串口Tx引脚
RX	串口Rx	串口Rx引脚
+5V	5V电源输入	供电输入 5V; 5V和3.3V供电可任选其一
3V3	3.3V电源输入	供电输入 3.3V; 5V和3.3V供电可任选其一
GND	电源地	电源地
G	电源地	电源地

表 1 引脚定义表

1.2 使用和配置

1.2.1 典型应用电路

LD2412模组直接通过一个IO引脚输出检测到的目标状态(电平可配置,默认为有人高电平,无人低电平),同时也可通过串口按照规定的协议进行检测结果数据的输出,串口输出数据中包含有目标状态和距离辅助信息等,用户可根据具体应用场景灵活使用。

模块供电电压可选择5V或3.3V,输入电源的供电能力要求大于200mA。

模块IO输出电平为3.3V。串口默认波特率115200, 1停止位,无奇偶校验位。

1.2.2 配置参数的作用

用户可通过LD2412的串口给模块修改配置参数,来适应不同的应用需求。

可配置的雷达探测参数包括如下几个:

最大距离门

设置最远探测距离,只有在此最远距离内出现的人体目标才会被探测到并输出结果。

以距离门为单位进行设置, 每个距离门为0.75m。

可设置范围为1~13,例如设置最远距离门为2,则只有在1.5m内有人体存在才会有效探测到并输出结果。

最小距离门

设置最近探测距离,到雷达模块大于此距离人体目标才会被探测到并输出结果。

以距离门为单位进行设置, 每个距离门为0.75m。

可设置范围为1~13,例如设置最远距离门为2,则只有到雷模块的距离大于1.5m的人体才会有效探测到并输出结果

灵敏度

探测到的目标能量值(范围0~100)大于灵敏度值时才会判定为目标存在,否则忽略。

灵敏度值可设置范围0~100。每个距离门可独立设置灵敏度,即可对不同距离范围内的探测进行精准调节,局部精准探测或对特定区域干扰源的过滤。

另外如果将某个距离门的灵敏度设置为100时,可达到不识别此距离门下目标的效果。例如将距离门3和距离门4的灵敏度设置为20,其他距离门的灵敏度都设置为100,则可实现仅对距离模块 2.25~3.75m范围内的人体进行探测。

无人持续时间

雷达在输出从有人到无人的结果中,会持续一段时间上报有人,若在此时间段雷达测试范围内持续无人,雷达上报无人;若在此时间段雷达检测到有人,则重刷新此时间,单位秒,最小值为5。相当于无人延时时间,人离开后,保持无人超过此持续时间后才会输出状态为无人。

1.2.3 可视化配置工具说明

为便于用户快速高效的对模块进行测试和配置,提供了PC端的上位机配置工具,用户可使用此工具软件连接模块的串口,对模块进行参数读取和配置,也可接收模块上报的探测结果数据,并进行实时的可视化展示,极大的方便的了用户的使用。

上位机工具使用方法:

- 1.用USB转串口工具正确连接模组串口;
- 2.上位机工具中选中对应的串口号,设置波特率115200,选中工程模式,点击连接设备;
- 3.连接成功后,点击开始按钮,右侧图形界面会显示检测结果和数据;
- 4.在连接上后,未点击开始按钮时,或者开始后点击停止,可对模式参数信息进行读取或设置;

注意:点击开始后不能对参数进行读取和配置,需停止后才可进行配置。

上位机工具的界面和常用功能如下图:

2 通信协议

本通信协议主要供需脱离可视化工具进行二次开发的用户使用。LD2412通过串口 (TTL电平) 与外界通信。雷达的数据输出与参数配置命令均在本协议下进行。雷达串口默认波特率为115200, 1停止位,无奇偶校验位。

2.1 协议格式

2.1.1 协议数据格式

LD2412的串口数据通信使用小端格式,以下表格中所有数据均为十六进制。

2.1.2 命令协议帧格式

协议定义的雷达配置命令和ACK命令格式如表2至表4所示。

表 2 发送命令协议帧格式

帧头	帧内数据长度	帧内数据	帧尾
FD FC FB FA	2字节	见表 3	04 03 02 01

表 3 发送帧内数据格式

命令字 (2字节)	命令值 (N字节)
-----------	-----------

表 4 ACK命令协议帧格式

帧头	帧头 帧内数据长度 帧内数		帧尾
FD FC FB FA	FD FC FB FA 2字节		04 03 02 01

表 5 ACK帧内数据格式

发送命令字 & 0x0100 (2字节)	返回值 (N字节)
----------------------	-----------

2.2 发送命令与ACK

2.2.1 使能配置命令

对雷达下发的任何其他命令必须在此命令下发后方可执行,否则无效。模块启动后默认为未使能配置。

命令字: 0x00FF 命令值: 0x0001

返回值: 2字节ACK状态 (0成功, 1失败) + 2字节协议版本 (0x0001) + 2字节

发送数据:

FD FC FB FA 04 00	FF 00	01 00	04 03 02 01
-------------------	-------	-------	-------------

雷达ACK(成功):

FD FC FB FA	08 00	FF 01	00 00	01 00	00 00	04 03 02 01
	"""		"""			" " " " " " " " " " " " " " " " " " "

2.2.2 结束配置命令

结束配置命令,执行后雷达恢复工作模式。如需再次下发其他命令,需要先发送使能配置命令。

命令字: 0x00FE

命令值:无

返回值: 2字节ACK状态 (0成功, 1失败)

发送数据:

FD FC FB FA	02 00	FE 00	04 03 02 01
-------------	-------	-------	-------------

雷达ACK(成功):

FD FC FB FA	04 00	FE 01	00 00	04 03 02 01
-------------	-------	-------	-------	-------------

2.2.3 雷达分辨率配置命令

可设置雷达的分辨率,即一个距离门对应的距离。更改此设置后需要重启一次后才能生效。

命令字: 0x0001

命令值: 6字节, 第1字节为分辨率值, 其他固定为0

返回值: 2字节ACK状态 (0成功, 1失败)

表 6 分辨率配置值

分辨率配置值	分辨率
0	75cm/距离门
1	50cm/距离门
3	20cm/距离门

发送数据:

FD FC FB FA	08 00	01 00	01 00 00 00 00 00	04 03 02 01
				1

0x01代表设分辨率为50cm/距离门

雷达ACK(成功):

FD FC FB FA 04 00 01 01 00 00 04 03 02 01

2.2.4 读取分辨率参数命令

此命令可以读取雷达当前的分辨率配置。

命令字: 0x0011

命令值:无

返回值: 2字节ACK状态 (0成功, 1失败) +6字节(第1字节为分辨率值)

发送数据:

FD FC FB FA 02 00 11 00 04 03 02 01

雷达ACK: (成功,分辨率为50cm/距离门)

FD FC FB FA	0A 00	11 01	00 00	01 00 00 00 00 00	04 03 02 01
-------------	-------	-------	-------	-------------------	-------------

2.2.5 基础参数配置命令

命令字: 0x0002

命令值: 5字节, 1字节最小距离门 +1字节最大距离门 +2字节无人持续时间(单位秒) +1字节out引脚

输出极性配置 (0 有人输出高电平, 1 有人输出低电平)

返回值: 2字节ACK状态 (0成功, 1失败)

发送数据:

FD FC FB FA	07 00	02 00	01 0C 05 00 00	04 03 02 01
-------------	-------	-------	----------------	-------------

0x0C 代表最大距离门为13; 0x0005代表无人持续时间为5s, 0x00代表out引脚有人输出高电平雷达ACK(成功):

FD FC FB FA 04 00	02 01	00 00	04 03 02 01
-------------------	-------	-------	-------------

2.2.6 读取基础参数命令

此命令可以读取雷达当前的基础参数。

命令字: 0x0012

命令值:无

返回值: 2 字节 ACK 状态(0 成功, 1 失败)+1字节最小距离门+1字节最大距离门+2字节无人持

续时间(单位秒) + 1字节out引脚输出极性配置 (0 有人输出高电平, 1 有人输出低电平)

发送数据:

FD FC FB FA 02 00	12 00	04 03 02 01
-------------------	-------	-------------

雷达ACK: (成功, 最小距离门为1, 最大距离门为13, 无人持续时间为5s, out引脚有人输出高电平)

FD FC FB FA	09 00	12 01	00 00	01 0C 05 00 00	04 03 02 01

2.2.7 使能工程模式命令

此命令打开雷达工程模式。打开工程模式后,雷达上报数据中将添加各距离门能量值,详细格式请参考2.3.2目标数据组成。模块上电后工程模式默认是关闭的,此配置值掉电丢失。

命令字: 0x0062

命令值:无

返回值: 2字节ACK状态 (0成功, 1失败)

发送数据:

FD FC FB FA 02 00	62 00	04 03 02 01
-------------------	-------	-------------

雷达ACK(成功):

FD FC FB FA 04 00 62 01 00 00 04 03 02 01

2.2.8 关闭工程模式命令

此命令关闭雷达工程模式。关闭后,雷达上报数据格式请参考2.3.2目标数据组成。

命令字: 0x0063

命令值:无

返回值: 2字节ACK状态 (0成功, 1失败)

发送数据:

FD FC FB FA	02 00	63 00	04 03 02 01
-------------	-------	-------	-------------

雷达ACK(成功):

FD FC FB FA	04 00	63 01	00 00	04 03 02 01
-------------	-------	-------	-------	-------------

2.2.9 运动灵敏度配置命令

此命令配置每个距离门的运动灵敏度,配置值掉电不丢失。既支持对各个距离门进行单独配置

命令字: 0x0003

命令值: 14字节灵敏度值, 每个字节对应一个距离门的运动灵敏度值

返回值: 2字节ACK状态 (0成功, 1失败)

发送数据:

FD FC FB FA	10 00 03 00	00 23 23 23 19 19 19 19 19 19 19 19 19 19	04 03 02 01
-------------	-------------	---	-------------

雷达ACK (成功):

FD FC FB FA	04 00	03 01	00 00	04 03 02 01
				0 - 0 - 0 -

2.2.10运动灵敏度查询命令

此命令查询每个距离门的运动灵敏度

命令字: 0x0013

命令值:无

返回值: 2字节ACK状态 (0成功, 1失败) + 14字节灵敏度值, 每个字节对应一个距离门的运动灵敏

度值

发送数据:

FD FC FB FA	02 00	13 00	04 03 02 01

雷达ACK (成功):

	FD FC FB FA	12 00	13 01	00 00	00 23 23 23 19 19 19 19 19 19 19 19 19 19	04 03 02 01	
--	-------------	-------	-------	-------	---	-------------	--

2.2.11静止灵敏度配置命令

此命令配置每个距离门的静止灵敏度,配置值掉电不丢失。既支持对各个距离门进行单独配置

命令字: 0x0004

命令值: 14字节灵敏度值,每个字节对应一个距离门的灵敏度值

返回值: 2字节ACK状态 (0成功, 1失败)

发送数据:

FD FC FB FA 10 00 04 00 00 23 23 23 19 19 19 19 19 19 19 19 19 19 19	04 03 02 01
--	-------------

雷达ACK (成功):

FD FC FB FA 04 00	04 01	00 00	04 03 02 01
-------------------	-------	-------	-------------

2.2.12 静止灵敏度查询命令

此命令查询每个距离门的静止灵敏度

命令字: 0x0014

命令值:无

返回值: 2字节ACK状态(0成功,1失败)+14字节灵敏度值,每个字节对应一个距离门的灵敏度值

发送数据:

FD FC FB FA	02.00	14 00	04 03 02 01
IDICIDIA	02 00	1700	07 05 02 01

雷达ACK (成功):

FD FC FB FA 12 00 14 01 00 00 00 23 23 23 19 19 19 19 19 19 19 19 19 19 19 19 19
--

2.2.13 进入动态背景校正模式命令

模块收到指令后,将在10s后开始执行动态背景校正,校正成功后将自动储存配置;

执行动态背景校正过程中,上报数据帧中的目标状态值会有对应的输出,来指示当前的状态,具体请参考<表 14 目标状态值说明>。

命令字: 0x000B

命令值:无

返回值: 2字节ACK状态 (0成功, 1失败)

发送数据:

FD FC FB FA 02 00 0B 00 04 03 02 01

雷达ACK (成功):

	T T T T T T T T T T T T T T T T T T T			1
FD FC FB FA	04 00	0B 01	00 00	04 03 02 01
		v= v=	** **	

2.2.14 查询动态背景校正执行状态命令

此命令查询当前是否正处于动态背景校正模式中

命令字: 0x001B

命令值:无

返回值: 2字节ACK状态 (0成功, 1失败) + 2字节的状态值(0x0001 正在执行中, 0x0000 未在执行中)

发送数据:

FD FC FB FA 02 00 1B 00 04 03 02 01

雷达ACK(成功):

FD FC FB FA	04 00	1B 01	00 00	01 00	04 03 02 01

2.2.15读取固件版本命令

此命令读取雷达固件版本信息。

命令字: 0x00A0

命令值:无

返回值: 2字节ACK状态 (0成功, 1失败) +2字节固件类型 (0x2412) +2字节主版本号 +4字节次

版本号

发送数据:

FD FC FB FA	02 00	A0 00	04 03 02 01
-------------	-------	-------	-------------

雷达ACK(成功):

FD FC FB FA	00 12 24 10 01	10 18 04 24	04 03 02 01
-------------	----------------	-------------	-------------

对应的版本号为V1.10.24041810

2.2.16设置串口波特率

此命令用来设置模块串口的波特率,配置值掉电不丢失,配置值在重启模块后生效。

命令字: 0x00A1

命令值: 2字节波特率选择索引

返回值: 2字节ACK状态 (0成功, 1失败)

表 7 串口波特率选择

波特率选择索引值	波特率
0x0001	9600
0x0002	19200
0x0003	38400
0x0004	57600
0x0005	115200
0x0006	230400
0x0007	256000
0x0008	460800

出厂默认值为0x0005,即115200

发送数据:

FD FC FB FA	04 00	A1 00	07 00	04 03 02 01
雷达ACK(成功):				

FD FC FB FA 04 00 A1 01 00 00	04 03 02 01
-------------------------------	-------------

2.2.17恢复出厂设置

此命令用来将所有配置值恢复为出厂值,配置值在重启模块后生效。

命令字: 0x00A2

命令值:无

返回值: 2字节ACK状态 (0成功, 1失败)

发送数据:

_				
Г				
	FD FC FB FA	02 00	A2 00	04 03 02 01
	IDICIDIA	02 00	A2 00	04 03 02 01

雷达ACK(成功):

FD FC FB FA 04	4 00 A2 01	00 00	04 03 02 01
----------------	------------	-------	-------------

出厂默认配置值如下:

表 8 出厂默认配置值

配置项	默认值
最小距离门	1
最大距离门	14
无人持续时间	5
串口波特率	115200

2.2.18重启模块

模块收到此命令,将会在应答发送完成后自动重启。

命令字: 0x00A3

命令值:无

返回值: 2字节ACK状态 (0成功, 1失败)

发送数据:

FD FC FB FA 02 00	A3 00	04 03 02 01
-------------------	-------	-------------

雷达ACK(成功):

FD FC FB FA 04 00 A3 01 00 00 04 03 02)1
--	----

2.2.19蓝牙设置

此命令用于控制蓝牙的开启或关闭,模块的蓝牙功能默认为开启。配置值掉电不丢失,配置值在重启模块后生效。

命令字: 0x00A4

命令值: 0x0100 打开蓝牙 0x0000关闭蓝牙

返回值: 2字节ACK状态 (0成功, 1失败)

发送数据:

FD FC FB FA	04 00	A4 00	01 00	04 03 02 01
表示打开蓝牙				
雷达ACK(成功):				
FD FC FB FA	04 00	A4 01	00 00	04 03 02 01

2.2.20获取mac地址

此命令用于查询MAC地址

命令字: 0x00A5

命令值: 0x0001

返回值: 2字节ACK状态(0成功, 1失败) +6字节 MAC地址(大端序)

发送数据:

FD FC FB FA	04 00	A5 00	01 00	04 03 02 01
-------------	-------	-------	-------	-------------

雷达ACK(成功):

FD FC FB FA	0A 00	A5 01	00 00	8F 27	2E B8	0F 65	04 03 02 01

查询到的mac地址是: 8F 27 2E B8 0F 65

2.2.21 光感辅助控制功能配置设置

本模块自带光敏二极管,可用来检测输出光感值 (请参考表 15 目标数据(工程模式)帧组成),用户还可配置开启光感辅助控制功能;

开启光感辅助控制功能,OUT脚的输出同时受雷达检测结果和光感辅助控制逻辑的影响:

OUT脚输出从无人变为有人,需要满足:雷达检测到有人且光感辅助控制逻辑条件满足;

OUT脚输出从有人变为无人,需要满足:雷达检测到无人;

光感控制逻辑可选择检测到光感值小于设置的光感阈值,或者检测到光感值大于设置的光感阈值;

命令字: 0x000C

命令值: 2字节的配置值

返回值: 2字节ACK状态 (0成功, 1失败)

表 9 辅助控制功能设置的命令值

第一个字节	说明		
0x00 关闭光感辅助控制功能,OUT脚输出不受光感影响			
0x01	开启光感辅助控功能,当检测光感值小于设置阈值时辅助控制条件满足		
UXU1	第二个字节为要设置的光感阈值(范围0x00~0xFF)		
0x02	开启光感辅助控功能, 当光感检测值大于设置阈值时辅助控制条件满足;		
	第二个字节为要设置的光感阈值(范围0x00~0xFF)		

出厂默认值为0x00,即关闭光感辅助控制功能

第二个字节	说明
0x00 ~ 0xFF	要设置的光感阈值(范围0~255),默认为0x00

例如发送数据:

FD FC FB FA 04 00 0C 00	01 50	04 03 02 01
-------------------------	-------	-------------

表示设置为开启光感辅助控功能,当检测光感值小于设置阈值0x50时辅助控制条件满足

雷达ACK (成功):

FD FC FB FA	04 00	0C 01	00 00	04 03 02 01

2.2.22 光感辅助控制功能配置查询

此命令查询光感辅助控制功能配置值

命令字: 0x001C

命令值:无

返回值: 2字节ACK状态 (0成功, 1失败) + 2字节光感辅助控制功能配置值(参考表 9 辅助控制功能

设置的命令值)

发送数据:

FD FC FB FA	02 00	1C 00	04 03 02 01
-------------	-------	-------	-------------

雷达ACK (成功):

FD FC FB FA 06 0	1C 01	00 00	02 A0	04 03 02 01
------------------	-------	-------	-------	-------------

表示设置为开启光感辅助控功能,当检测光感值大于设置阈值0xA0时辅助控制条件满足

2.3 雷达数据输出协议

LD2412通过串口输出雷达探测结果,默认输出目标基本信息,包括目标状态、运动能量值、静止能量值、运动距离、静止距离等信息。如果配置雷达为工程模式,雷达会额外输出各距离门能量值(运动&静止)。雷达数据按照规定帧格式输出。

2.3.1 上报数据帧格式

协议定义的雷达上报消息帧格式如表10和表11所示。正常工作模式和工程模式下,上报数据类型 值的定义如表12所示。

表 10 上报数据帧格式

帧头部	帧内数据长度	帧内数据	帧尾部
F4 F3 F2 F1	2字节	见表11	F8 F7 F6 F5

表 11 帧内数据帧格式

数据类型	头部	目标数据	尾部	校验
1字节(见表12)	0xAA	见表13	0x55	0x00

表 12 数据类型说明

数据类型值	说明
0x01	工程模式数据
0x02	目标基本信息数据

2.3.2 目标数据组成

雷达上报的目标数据内容会根据雷达的工作模式而改变。正常工作模式下,雷达默认输出目标的基本信息数据;配置为工程模式后,雷达会在目标的基本信息数据之后添加各距离门能量值信息。因此,目标的基本信息总会在雷达上报数据中输出,而距离门能量值信息需要命令使能才会输出。

正常工作模式下,雷达上报的目标数据组成如表13所示,目标状态值的定义如表14所示。工程模式下目标数据帧的组成如表15所示,在正常工作模式上报的数据基础上追加了一些数据。

表 13 目标数据帧组成

目标状态	运动目标距离 (厘米)	运动目标能量 值	静止目标距离 (厘米)	静止目标能量值
1字节 (见表14)	2字节	1字节	2字节	1字节

表 14 目标状态值说明

目标状态值	说明
0x00	无目标
0x01	运动目标
0x02	静止目标
0x03	运动&静止目标
0x04	正在底噪检测中,仅执行底噪检测功能时有效
0x05	底噪检测成功,仅执行底噪检测功能时有效
0x06	底噪检测失败,仅执行底噪检测功能时有效

表 15 目标数据(工程模式)帧组成

 最大运 动距离 门N	最大静 止距离 门N	运动距 离门0 能量值	 运动距 离门N 能量值	静止距 离门0 能量值	 静止距 离门N 能量值	光感测量值	保留
 1字节	1字节	1字节	 1字节	1字节	 1字节	1字节	1字节

光感测量值是通过模块上的光敏二极管测量到的亮度相对值,为无单位相对值,0x00~0xFF对应0~255,值越大表示越亮

数据实例:

正常工作模式上报数据:

帧头部	帧内数据长度	帧内数据	帧尾部
F4 F3 F2 F1	0B 00	02 AA 02 51 00 00 00 00 3B 55 00	F8 F7 F6 F5

工程模式下上报数据:

帧头部	帧内数据长度	帧内数据	帧尾部
F4 F3 F2 F1	2B 00	01 AA 02 00 00 00 00 00 0D 0D 0D 00 03 02 01 00 00 00 00 02 02 02 00 00 00 00 00 04 7E 61 0D 0F 05 05 04 02 01 02 01 E3 00 55 00	F8 F7 F6 F5

2.4 雷达命令配置方式

2.4.1 雷达命令配置步骤

LD2412雷达执行一条配置命令的过程包含上位机"发送命令"与雷达"回复命令ACK"两个环节。若雷达无ACK回复或回复ACK失败,则说明雷达执行配置命令失败。

如前所述,向雷达发送任何其他命令前,开发者需先发送"使能配置"命令,然后在规定时间内发送配置命令。命令配置完成之后,发送"结束配置"命令告知雷达配置已经结束。

例如,若要读取雷达配置参数,首先上位机发送"使能配置"命令;待收到雷达ACK成功后,再发送"读取参数"命令;待收到雷达ACK成功后,最后发送"结束配置"命令;待雷达ACK成功后,表明完整的读取参数动作结束。

雷达命令配置流程如下图所示。

图 2 雷达命令配置流程

3 修订记录

日期	版本	修改内容
2024-4-18	1.01	初始版本
2024-4-23	1.02	增加静止能量系数设置查询命令,增加进入动态背景校正模式和状态查询命令
2024-4-26	1.03	修改上报数据帧内数据格式描述
2024-5-21	1.04	添加光感检测和光感辅助控制功能说明, 修改工程模式模板数据上报格式
2024-8-8	1.05	添加蓝牙开关设置命令 添加动态背景校正执行状态说明 添加雷达分辨率设置相关命令

4 技术支持和联络方式

深圳市海凌科电子有限公司

地址:深圳市龙华区民治街道民乐社区星河WORLD E栋大厦17层1705

电话: 0755-23152658/83575155

网址: www.hlktech.com

