Chapter 1

Review

Read the definitions, prove the theorems and do the exercises.

Definitions 1. Suppose *A* and *B* are subsets of a set *X*. We define the following:

- 1. $A \cup B := \{x \mid x \in A \text{ or } x \in B\};$
- 2. $A \cap B := \{x \mid x \in A \text{ and } x \in B\};$
- 3. $A \setminus B := \{x \mid x \in A \text{ and } x \notin B\}.$

Theorem 2. Let *A* be a subset of the set *X*. Then $X \setminus (X \setminus A) = A$.

Theorem 3. (DeMorgan's Laws) Let A and B be subsets of a set X. Then

- 1. $X \setminus (A \cup B) = (X \setminus A) \cap (X \setminus B)$ and
- 2. $X \setminus (A \cap B) = (X \setminus A) \cup (X \setminus B)$.

Definition 4. Let *I* be an indexing set. For each $\delta \in I$, let A_{δ} be a set. We define the following two sets:

- 1. $\bigcup_{\delta \in I} A_{\delta} = \{ s \mid \text{ there exists } \delta \in I \text{ such that } s \in A_{\delta} \}$ and
- 2. $\bigcap_{\delta \in I} A_{\delta} = \{ s \mid s \in A_{\delta} \text{ for all } \delta \in I \}.$

Theorem 5. (Generalised DeMorgan's Laws) Let $\{A_{\delta} \mid \delta \in I\}$ be a collection of subsets of a set X. Then

1.
$$X \setminus (\bigcup_{\delta \in I} A_{\delta}) = \bigcap_{\delta \in I} (X \setminus A_{\delta})$$
 and

2 Review

2.
$$X \setminus (\bigcap_{\delta \in I} A_{\delta}) = \bigcup_{\delta \in I} (X \setminus A_{\delta}).$$

Theorem 6. Let *A* and *B* be subsets of a set *X*. Then $A \setminus B = A \cap (X \setminus B)$.

Definitions 7. Let *X* and *Y* be sets and $f \subseteq X \times Y$.

- 1. We say f is a function if for each $x \in X$ there is a unique $y \in Y$ such that $(x,y) \in f$. In this case, we write $f: X \to Y$ and f(x) = y for the pairs $(x, y) \in f$.
- 2. Suppose $f: X \to Y$ and $A \subseteq X$ and $B \subseteq Y$. Then the *image* of A under f is the set

$$f(A) := \{ y \in Y \mid y = f(x) \text{ for some } x \in A \}.$$

The *inverse image* of *B* under *f* is the set

$$f^{-1}(B) := \{x \mid f(x) \in B\}.$$

Theorem 8. Let $f: X \to Y$ be a function and let B and C be subsets of Y. Then

- 1. $f^{-1}(B \cup C) = f^{-1}(B) \cup f^{-1}(C)$,
- 2. $f^{-1}(B \cap C) = f^{-1}(B) \cap f^{-1}(C)$,
- 3. $f^{-1}(Y \setminus C) = X \setminus f^{-1}(C)$,
- 4. $f^{-1}(B \setminus C) = f^{-1}(B) \setminus f^{-1}(C)$.

Definition 9. Let $f: X \to Y$ and $g: Y \to Z$ be a functions. Then g composed with f denoted $g \circ f$, is the function $g \circ f : X \to Z$ such that for each $x \in X$, $f \circ g(x) = f(g(x)).$

Theorem 10. Let $f: X \to Y$ and $g: Y \to Z$ be a functions and let B be a subset of Y. Then

$$(g \circ f)^{-1}(B) = f^{-1}(g^{-1}(B).)$$

Theorem 11. Let $f: X \to Y$ be a function and let A_1 and A_2 be subsets of X. Then

- 1. $A_1 \subseteq A_2 \implies f(A_1) \subseteq f(A_2)$,
- 2. $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$,

Lisa Orloff Clark www.jiblm.org