Промышленная автоматика

Программируемые контроллеры *HIMatrix F60*

CPU 01

Руководство по эксплуатации

HIMA Paul Hildebrandt GmbH Системы промышленной автоматизации

Важные указания

Все упомянутые в настоящем документе продукты фирмы HIMA Paul Hildebrandt GmbH зарегистрированы и защищены законодательством Европейского Союза. Это же действует и в отношении других упомянутых в настоящем документе производителей и их продукции.

Описываемое в настоящем документе изделие сертифицировано в Европейском Союзе и соответствует требованиям Европейской Директивы по электромагнитной совместимости.

Все технические сведения и указания в настоящем документе были разработаны с большой тщательностью и составлены с соблюдением эффективных мер контроля. Тем не менее, не исключается возможность появления ошибок.

Пэтому фирма HIMA Paul Hildebrandt GmbH не гарантирует отсутствие ошибок и не несет юридическую или другую ответственность за возможные последствия, возникшие в результате предоставления в документе ошибочных сведений.

Фирма HIMA Paul Hildebrandt GmbH с благодарностью примет все сообщения о возможных ошибках и неточностях.

Фирма HIMA Paul Hildebrandt GmbH оставляет за собой право на внесение технических изменений без предварительного уведомления.

Дополнительную информацию и техническую поддержку можно получить на сайте фирмы HIMA Paul Hildebrandt GmbH <u>www.hima.com</u> и по адресу:

HIMA Paul Hildebrandt GmbH Postfach 1261 68777 Bruehl Germany

Тел.: +49 6202 709 0 Факс: +49 6202 709 107

Адрес электронной почты: info@hima.com

CPU 01

Модуль процессоров

Содержание

1		Конструкция	4
		.1 Вид спереди	
2		Эксплуатация	5
	2.	.1 Контроль напряжения питания	6
3		Операционная система	6
4		Прикладная программа пользователя	6
5		Системные сигналы CPU 01	6
6		Коммуникация	7
	6.	.1 Подключения для связи Ethernet	7
	6.	.2 Используемые сетевые порты для связи Ethernet	8
		6.2.1 Разъемы для связи с полевой шиной	
		.3 IP-адрес и ID системы (SRS) 1	
	6.	.4 Кнопка сброса 1	10
	6.	.5 Светодиоды модуля CPU 01 1	11
		6.5.1 Индикация состояний модуля процессоров CPU 01 1	11
		6.5.2 Индикация выполнения программы пользователя ПЛК 1	12
		6.5.3 Индикация коммуникации	13
7		Технические характеристики CPU 01	13
8		Установка СРU 01 во взрывоопасной зоне класса 2	14

1 Конструкция

1.1 Вид спереди

Рисунок 1: Вид спереди

1.2 Блок-схема

Рисунок 2: Блок-схема

2 Эксплуатация

В безопасном модуле процессоров **CPU 01** используется структура 1002 архитектуры микропроцессоров, что позволяет обеспечить функциональную безопасность на уровне совокупной безопасности 3 (согласно МЭК 61508), АК 6 (согласно DIN V 19250) и категорий 3, 4 (согласно EN 954-1).

Модуль **СРU 01** сертифицирован обществом технического надзора ФРГ TÜV.

Модуль процессоров **CPU 01** можно устанавливать в контроллер (ПЛК) *HIMatrix* **F60** только в предусмотренный для него слот справа от модуля источника питания. В модуле процессоров **CPU 01** содержатся операционная система и прикладная программа, он выполняет все центральные функции управления и контроля, включая связь с PADT и другими системами. Он также контролирует напряжения питания и температуру внутри ПЛК.

Ошибки модуля отображаются при помощи светодиода «ERR» на передней панели (см. таблицу светодиодов).

Замена модуля может производиться только при выключенном напряжении:

Указание Не допускается извлечение или вставка модуля во время эксплуатации!

Замена имеющегося или вставка нового модуля осуществляется в соответствии с описанием в главе «**Обращение с модулями»** руководства HIMatrix по контроллеру F60.

Изменения или расширения системы, а также замену модулей может выполнять только персонал, ознакомленный с мерами защиты от электростатического разряда.

Электростатический разряд может повредить встроенные электронные компоненты!

- Прикоснитесь к заземленному объекту для снятия электростатического потенциала.
- Выполняйте работу на рабочих местах с антистатическим оснащением и носите заземляющую ленту.
- При неиспользовании предохраняйте модуль от электростатического разряда, например, храните в заводской упаковке.

2.1 Контроль напряжения питания

Модуль процессоров **CPU 01** контролирует напряжение питания ПЛК 24 В DC; реакции происходят в соответствии с уровнями, указанными в таблице:

Уровень напряжения	Реакция модуля процессоров
18 B28,8 B	Реакция отсутствует
< 18,0 B	Аварийное состояние (системные переменные получают значения ошибок)
< 13,0 B	Отключение

Таблица 1: Контроль рабочего напряжения

Сигнал ошибки может анализироваться PADT с помощью **ELOP II Factory** посредством системного сигнала **Power Supply State**.

3 Операционная система

Находящаяся в модуле процессоров **CPU 01** операционная система содержит все *основные* функции ПЛК *HIMatrix* **F60**, в том числе:

- Считывание входов и управление выходами ПЛК,
- Выполнение прикладной программы пользователя,
- Выполнение всех тестовых программ аппаратного и программного обеспечения.
- Контроль времени цикла (сторожевое устройство),
- Коммуникация с другими системами.

Описание функций операционной системы и переменных для конфигурации системы и всех модулей Вы найдете в руководстве по контроллеру *HIMatrix* F60.

4 Прикладная программа пользователя

Какие *пользовательские* операции должны выполняться соответствующим ПЛК, задается в прикладной программе, создаваемой при помощи пакета ПО *ELOP II Factory*. Прикладная программа при помощи генератора кода переводится в машинный код, а этот машинный код передается во флэш-память модуля процессоров **CPU 01**.

5 Системные сигналы CPU 01

В модуле процессоров CPU имеются системные сигналы (работа вентиляторов, состояние электропитания, температурный режим), которые могут анализироваться в прикладной программе.

Коммуникация

Внутри модуля СРU 01 узел коммуникации соединен с узлом микропроцессоров посредством двухпортового ОЗУ.

Узел коммуникации управляет коммуникацией ПЛК с другими ПЛК и ПЭС при помощи высокопроизводительных интерфейсов:

10/100BaseT: Safeethernet, Ethernet/IP, OPC, TCP-SR, SNTP, Modbus-TCP,

PADT

Полевые шины: ведущее/ведомое устройство Profibus DP, ведущее/ведомое устройство Modbus, Interbus

Модуль **CPU 01** контроллера *HIMatrix* **F60** оснащен сетевым коммутатором с четырьмя Ethernet-портами для внешней связи через интерфейсы RJ-45.

- Сетевой коммутатор в отличие от сетевого концентратора в состоянии анализировать пакеты данных и сохранять их на некоторое время, чтобы затем время от времени целенаправленно устанавливать соединение между двумя участниками коммуникации (передатчик/приемник) для передачи данных. Это позволяет избежать обычных для сетевого концентратора конфликтов и разгрузить сеть. При целенаправленной передаче данных для каждого сетевого коммутатора нужна таблица присвоения адреса/порта. Эта таблица автоматически генерируется сетевым коммутатором в процессе самопрограммирования. В ней МАС-адреса присваиваются определенному порту в сетевом коммутаторе. Входящие пакеты данных на основании этой таблицы передаются на соответствующий порт.
- Сетевой коммутатор переключается автоматически как между скоростями передачи 10 и 100 Мбит/с, так и между полнодуплексными и полудуплексными соединениями. Благодаря этому при любом направлении передачи данных используется полная пропускная способность (полнодуплексный режим).
- Сетевой коммутатор управляет связью между различными оконечными устройствами. При этом сетевой коммутатор может опрашивать до 1000 абсолютных МАС-адресов.
- Функция «Autocrossing» распознает подключение кабелей с перекрещенными проводами, на которые сетевой коммутатор автоматически настраивается.

Указание При конфигурации безопасной связи следует соблюдать указания руководства по функциональной безопасности.

6.1 Подключения для связи Ethernet

Обозначение Разъем		Функция
1 10/100BaseT	RJ-45	С обеспечением безопасности: Safe ethernet
		Без обеспечения безопасности:
		OPC, программирующее устройство (PADT),
4 10/100BaseT		Ethernet/IP, TCP-SR, SNTP, Modbus-TCP

Таблица 2: Подключения для связи Ethernet

Четыре разъема RJ-45 со встроенными светодиодами расположены на передней панели модуля. Значение светодиодов описано далее в разделе «Индикация связи».

Считывание параметров соединения основано на «MAC-адресе» (Media Access Control), определяемом при производстве.

МАС-адрес модуля указан на наклейке с обратной стороны пластины. Первый МАСадрес относится к узлу СОМ в модуле СРИ 01, второй – к сетевому коммутатору.

Пример наклейки: MAC-ADR1 00.E0.A1.00.0E.04 (узел COM)

MAC-ADR2 00.E0.A1.00.0E.05 (сетевой коммутатор)

6.2 Используемые сетевые порты для связи Ethernet

Порты UDP/использование

8000: Программирование и управление при помощи ELOP II Factory

8001: Конфигурация удаленного устройства ввода/вывода посредством ПЭС

6010: Safeethernet и ОРС

123: SNTP (синхронизация по времени между ПЛК и устройством удаленного ввода/

вывода, а также внешними устройствами)

6005/

6012: Если в сети НН не выбрано TCS_DIRECT

8895: Ведущее устройство Modbus UDP, если конфигурировано

44818: Ethernet/IP протокол сессии для идентификации устройства

2222: Обмен данными Ethernet/IP

Порты ТСР /использование

502: Modbus (изменяется пользователем)

ххх: TCP-SR задается пользователем

44818: Ethernet/IP Explicit Messaging Services

6.2.1 Разъемы для связи с полевой шиной

Обозначение	Разъем	Протокол обмена данными
FB 1 (RS 485) Гнездо SUB-D		Profibus Master
		Profibus Slave
		Modbus Master RS485
		Modbus Slave RS485
		Interbus Master
FB 2 (RS 485)	Гнездо SUB-D	Profibus Master
		Profibus Slave
		Modbus Master RS485
		Modbus Slave RS485
		Interbus Master

Таблица 3: Подключения для связи Ethernet

Оба 9-полюсных разъема SUB-D расположены на передней панели модуля **СРU 01**.

Используемый в модуле **CPU 01** протокол обмена данными (без обеспечения безопасности) определяется типом установленных внутри модуля **CPU 01** съемных узлов.

Назначение клемм разъемов SUB-D FB1 и FB2

со съемным узлом для ведущего/ведомого устройства Profibus

Разъем Сигнал		Функция	
1			
2			
3	RxD/TxD-A	Принятые/переданные данные А	
4	RTS	Управляющий сигнал	
5	DGND	Минус напряжения питания	
6	VP	5 В, плюс напряжения питания	
7			
8	RxD/TxD-B	Принятые/переданные данные В	
9			

Таблица 4: Назначение клемм разъемов SUB-D Profibus

Назначение клемм разъемов SUB-D FB1 и FB2

со съемным узлом для ведущего/ведомого устройства Modbus (RS 485)

Разъем Сигнал		Функция	
1			
2	RP	5 В, с развязывающими диодами	
3	RxD/TxD-A	Принятые/переданные данные А	
4	CNTR-A	Управляющий сигнал А	
5	DGND	Минус напряжения питания	
6	VP	5 В, плюс напряжения питания	
7			
8	RxD/TxD-B	Принятые/переданные данные В	
9	CNTR-B	Управляющий сигнал В	

Таблица 5: Назначение клемм разъемов SUB-D Modbus

Назначение клемм разъемов SUB-D FB1 и FB2

со съемным узлом для COM USER Task (RS 232)

Разъем	Сигнал	Функция	
1			
2	TxD	Переданные данные	
3	RXD	Принятые данные	
4			
5	DGND	Опорный потенциал данных	
6			
7	RTS	Запрос на отправку (Request to Send)	
8			
9			

Таблица 6: Назначение штырьковых выводов разъемов SUB-D FB1 RS 232

Назначение штырьковых выводов разъемов SUB-D FB1 и FB2

со съемным модулем для INTERBUS (RS 485)

Разъем	Сигнал	Функция	
1	DO	Положительный выход данных	
2	DI	Положительный вход данных	
3	COM	Общая линия 0 В	
4			
5			
6 DO-		Отрицательный вход данных	
7	DI-	Отрицательный выход данных	
8			
9			

Таблица 7: Назначение клемм разъемов SUB-D FB1 и FB2 INTERBUS

6.3 ІР-адрес и ID системы (SRS)

Вместе с модулем процессоров **CPU 01** поставляется прозрачная наклейка, на которой можно написать IP-адрес и ID ПЛК (SRS, System Rack Slot) после установки:

P)		SRS	;	

Значение по умолчанию для ІР-адреса: 192.168.0.99

Значение по умолчанию для SRS: 60000.0.0

Не закрывайте наклейкой вентиляционные прорези на корпусе контроллера.

Установка и изменение IP-адреса и ID ПЛК (SRS) описаны в руководстве «Первые шаги» *ELOP II Factory*.

6.4 Кнопка сброса

В модуле процессоров **CPU 01** имеется кнопка сброса. Нажимать на нее нужно только в том случае, если неизвестны имя пользователя или пароль для доступа администратора. Если установленный IP-адрес ПЛК не подходит к PADT (ПК), то установить соединение позволяет запись «Route add» в ПК.

Доступ к кнопке обеспечивается через маленькое круглое отверстие на передней панели. Чтобы избежать коротких замыканий, нажимать на кнопку следует при помощи стержня из изоляционного материала.

Сброс осуществляется только в том случае, если происходит перезагрузка ПЛК (выключение, включение) и одновременно минимум 20 секунд удерживается нажатой кнопка сброса. Нажатие кнопки во время эксплуатации не дает никакого результата.

Внимание! Возможны нарушения связи по полевой шине!

Перед включением ПЛК **с** нажатой кнопкой сброса необходимо отсоединить все штекеры полевых шин ПЛК, так как в противном случае возможны помехи при связи по полевой шиной других участников.

Вновь вставить штекеры полевой шины можно только тогда, когда ПЛК будет находиться в рабочем состоянии STOP или RUN.

Свойства и поведение ПЛК после перезагрузки с нажатой кнопкой сброса:

- Параметры соединения (IP-адрес и ID ПЛК) устанавливаются на **default values** (значения по умолчанию).
- Деактивируются все доступы пользователя, кроме доступа пользователя по умолчанию **Administrator without password** (администратор без пароля).
- Начиная с версии операционной системы COM 10.42, загрузка прикладной программы или операционной системы с параметрами соединения по умолчанию блокирована! Загрузка станет возможна только после того, как в ПЛК будут заданы параметры соединения и доступ пользователя, и будет произведена перезагрузка ПЛК.

После повторной перезагрузки без нажатия кнопки сброса

- Становятся действительны заданные пользователем параметры соединения (IP-адрес и ID ПЛК) и доступы пользователя.
- Если изменений не было, то вновь действуют параметры соединения и доступы пользователя, введенные перед перезагрузкой **c** нажатием кнопки сброса.

6.5 Светодиоды модуля CPU 01

6.5.1 Индикация состояний модуля процессоров CPU 01

Свето -диод	Состо-яние	Значение
RUN (зел.)	Вкл	Нормальное состояние ПЛК (CPU в состоянии STOP или RUN)
	Мигание	Загружается новая операционная система.
	Выкл	CPU в состоянии ERROR STOP (см. ERR, внизу).
ERR (крас.)	Вкл	 СРU обнаружил ошибку контроллера и переходит в состояние ERROR STOP. К ошибкам контроллера относятся ошибки в СРU, на одном или нескольких входах или выходах или счетчиках. СРU обнаружил ошибку программного обеспечения в операционной системе. Из-за превышения времени цикла сторожевое устройство инициировало ERROR STOP. СРU остановил выполнение прикладной программы, все тесты контроллера и программного обеспечения завершены, все выходы сброшены. Повторный запуск СРU возможен только посредством команды из PADT.
	Мигание	Если одновременно включены все светодиоды: начальный загрузчик обнаружил ошибку в операционной системе; ожидается загрузка новой операционной системы.
	Выкл	Ошибки не могут быть обнаружены.

Таблица 8: Индикация светодиодов ПЛК

6.5.2 Индикация выполнения программы пользователя ПЛК

Индикация светодиодов выполнения прикладной программы

Свето-	Состо-	Значение			
диод	яние				
RUN	Вкл	CPU в режиме работы RUN или STOP.			
(зел.)	Выкл	CPU не в состоянии RUN.			
STOP (красный)	Вкл	• CPU в режиме STOP, прикладная программа не выполняется.			
,		• Все выходы переведены в безопасное обесточенное состояние.			
		• STOP (останов) может быть вызван установкой в			
		прикладной программе системного сигнала			
		EMERCENCY STOP на TRUE или при помощи прямой команды с PADT.			
	Выкл	CPU в состоянии RUN.			
		Загружается новая операционная система.			
PROG	Вкл	В CPU загружается новая конфигурация.			
(желтый) Мигание СРU переходит из состояния II		CPU переходит из состояния INIT в состояние STOP.			
		Во флэш-память загружается новая операционная система.			
	Выкл	Конфигурация или операционная система не загружаются.			
FAULT	Вкл	Ошибка в конфигурации ПЛК.			
(желтый)		При загрузке новой операционной системы возникла ошибка, операционная система работает некорректно.			
	Мигание	Во время цикла записи во флэш-память возникла ошибка.			
		Возникла одна или несколько ошибок ввода/вывода.			
	Выкл	Не произошла ни одна из описанных ошибок.			
		CPU находится в режиме RUN, активирован режим инициализации.			
Мигание ПЛК находится в состоянии STOP, но ини		ПЛК находится в состоянии STOP, но инициализация подготовлена и активируется, когда будет запущен ПЛК.			
Выкл Инициализа		Инициализация не активирована.			
OSL (желтый)	Мигание	Активный аварийный загрузчик операционной системы.			
BL (желтый)	Мигание	СОМ в состоянии INIT_FAIL.			

Таблица 9: Индикация светодиодов программы

6.5.3 Индикация коммуникации

Безопасная связь через safe**ethernet** отображается при помощи двух светодиодов, встроенных во все разъемы RJ-45:

Светодиод	Состояние	Значение	
Соі Вкл Полнодуплексный режим		Полнодуплексный режим	
(зелен.) Мигание		Конфликт	
	Выкл	Полудуплексный режим, конфликт отсутствует	
Тх Вкл Имеется соединение		Имеется соединение	
(желт.)	Мигание	Активность интерфейса	

Таблица 10: Индикация связи safeethernet

Дополнительно имеются гнезда SUB-D и два соответствующих светодиода для индикации ненадежной связи через полевую шину:

Светодиод	Состояние	Значение
FB1	Вкл	RS 485, полевая шина 1 активна
(желтый)	Мигание	Мигает одновременно с FB2: активен аварийный загрузчик
FB2	Вкл	RS 485, полевая шина 2 активна
(желтый)	Мигание	Мигает одновременно с FB1: активен аварийный загрузчик

Таблица 11: Индикация связи с полевой шиной

7 Технические характеристики CPU 01

Модуль процессоров CPU 01				
Пользовательская память	Прикладная программа макс. 500 кБ Данные пользователя макс. 500 кБ			
Время реакции	≥ 20 MC			
Интерфейсы: Ethernet	4 x RJ-45, 10/100BaseT (при 100 Мбит/с) с встроенным сетевым коммутатором			
Ведущее/ведомое устройство Profibus DP, ведущее/ведомое устройство Modbus, ведущее устройство Interbus	SUB-D, 9 выходов (FB1 и FB 2)			
Рабочее напряжение	24 В DC, -15%…+20%, w _{ss} ≤ 15%, от блока питания с безопасным разделени-ем, согласно требованиям МЭК 61131-2			
Эксплуатационные данные	3,3 B DC/1,5 A 5 B DC/0,1 A			
Буфер для даты/времени	Goldcap			
Температура окружающей среды	0 °C+60 °C			
Температура хранения	-40 °C+85 °C			
Занимаемое пространство	6 HE, 4 TE			
Macca	280 г			

Установка СРU 01 во взрывоопасной зоне класса 2 (по ГОСТ Р 52350.10 – 2005 и ГОСТ Р 52350.14 – 2006)

Модуль процессоров **CPU 01** в составе контроллера *HIMAtrix* **F60** допускается устанавливать во взрывоопасной зоне класса 2 по ГОСТ Р 52350.10 – 2005 (МЭК 60079–10:2002) в соответствии с требованиями ГОСТ Р 52350.14 – 2006 (МЭК 60079-14:2002). Декларация изготовителя о соответствии приведена в конце настоящего Руководства.

Маркировка взрывозащиты модуля процессоров CPU 01: Ex nA II T4 X.

При установке и эксплуатации модуля процессоров **CPU 01** необходимо строго соблюдать следующие особые условия (специальные условия **X**):

Специальные условия Х:

1. Модуль процессоров **CPU 01** в составе контроллера *HIMatrix F60* должен находиться внутри корпуса, удовлетворяющего требованиям ГОСТ Р 52350.15-2005 (МЭК 60079-15:2005) и обеспечивающего степень защиты не ниже IP54 по ГОСТ 14254-96. На наружней стороне корпуса должна быть закреплена табличка с предупредительной надписью:

«Предупреждение – не открывать под напряжением»

При гарантированном отсутствии взрывоопасной атмосферы допускается кратковременное открытие и под напряжением.

- 2. Используемый корпус должен надежно отводить выделяемое при работе контроллера тепло. Максимальная мощность возникаемых при работе тепловых потерь зависит от величины питающего напряжения и установленных узлов коммуникации и может достигать 12 Вт.
- 3. Питающее напряжение должно подаваться на контроллер *HIMatrix F60* через предохранитель **10 A** (отдельный предохранитель для каждого питающего входа) от безопасного источника питания в исполнении 3СНН или БСНН.
- 4. Наряду с другими предписаниями должно быть обеспечено безусловное и полное выполнение требований стандартов:

ΓΟCT P 52350.14-2006 (MЭK 60079-14:2002)

ΓΟCT P 52350.15-2005 (M3K 60079.15:2005)

5. Изготовитель оснащает модуль процессоров CPU 01 следующей этикеткой:

HIMA	Paul Hildebrandt GmbH Albert-Bassermann-Straße 28 68782 Brühl Germany	Орган по сертификации НАНИО ЦСВЭ 109377, Москва, а/я 22	
HIMatrix F60	Ex nA II T4 X	Сертификат соответствия	
CPU 01	-25 °C ≤ Ta ≤ 70 °C	POCC GE.ГБ05.В XXXX	
CPUUI	Соблюдать специальные условия Х!		

Konformitätserklärung

Declaration of Conformity

Wir / We

HIMA Paul Hildebrandt GmbH + Co KG Albert Bassermann-Straße 28 - 68782 Brühl Postfach 1261 - 68777 Brühl Telefon 0 62 02 / 709-0

erklären in eigner Verantwortung, dass die Produkte declare under our sole responsibility that the products

HIMatrix F60: GEH 01 PS 01 **CPU 01** AI 8 01 AO 8 01 CIO 2/4 01 DI 24 01 DI 32 01 DIO 24/16 01 MI 24 01

auf die sich diese Erklärung bezieht, mit den folgenden Normen übereinstimmen. to which this declaration relates is in conformity with the following standards.

EN 61000-6-4 (08.02) EN 61000-6-2 (08.02) EN 61131-2 (2003)

EN 60079-15 (2003) Elektrische Betriebsmittel für gasexplosionsgefährdete Breiche - Teil 15: Zündschutzart "n" Electrical apparatus for explosive gas atmospheres - Part 15: Type of protection "n"

Gemäß den Bestimmungen der Richtlinien Following the provisions of Directives

EMV-Richtlinie

89/336/EWG

Ex-Richtlinie

94/9/EG

Brühl, den 04. Mai 2006

ppa.

Prof. Dr. habil. Josef Börcsök Bereichsleiter Entwicklung Vice-President Development

Jürgen Hölzel

Leiter Vorentwicklung und Qualitätswesen Lead Engineer Predevelopment and Quality

Assurance

HIMA ... the safe decision.

HIMA Paul Hildebrandt GmbH Системы промышленной автоматизации

Postfach 1261 • D-68777 Brühl Телефон: +49(06202) 709-0 • Факс: +49(06202) 709-107 Эл. почта: info@hima.com • Интернет: www.hima.de