See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231542650

## Experimental Critical Constants, Vapor Pressures, and Vapor and Liquid Densities for Pentafluoroethane (R-125)

ARTICLE in JOURNAL OF CHEMICAL & ENGINEERING DATA · JULY 1997

Impact Factor: 2.04 · DOI: 10.1021/je960362f

| CITATIONS | READS |
|-----------|-------|
| 21        | 16    |

## 4 AUTHORS, INCLUDING:



Kenneth R. Hall
Texas A&M University

251 PUBLICATIONS 3,997 CITATIONS

SEE PROFILE



James C. Holste

Texas A&M University

132 PUBLICATIONS 1,306 CITATIONS

SEE PROFILE

# Experimental Critical Constants, Vapor Pressures, and Vapor and Liquid Densities for Pentafluoroethane (R-125)

Horacio A. Duarte-Garza,† Carleton E. Stouffer, Kenneth R. Hall, and James C. Holste\*

Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122

#### Kenneth N. Marsh<sup>‡</sup> and Bruce E. Gammon

Thermodynamics Research Center, The Texas A&M University System, College Station, Texas 77843-3111

This paper presents measurements of vapor pressure from 220 K to 338 K, liquid density from 180 K to 350 K and up to 70 MPa and vapor density from 310 K to 480 K and up to 12 MPa for pentafluoroethane (R-125). Extrapolating the observed vapor pressures to the measured critical temperature (339.41  $\pm$  0.01) K provides a critical pressure of (3.6391  $\pm$  0.002) MPa. Using these values with the law of rectilinear diameters indicates a critical density of (4768  $\pm$  7) mol·m<sup>-3</sup>. Correlations provide values which agree with the measured values for the vapor densities within  $\pm$  0.05%, the liquid densities within  $\pm$ 0.1%, and the vapor pressures within  $\pm$ 0.05%. The results are compared with values from the literature.

#### Introduction

Fully halogenated chlorofluorocarbons (CFC) have been identified as a primary cause of the depletion of the stratospheric ozone layer. Because of their detrimental effect upon the environment, international agreements have restricted or terminated the production of CFC in the near future. This represents a major challenge to the refrigeration industry because several of these fluids are common working fluids for refrigeration equipment. A large scale application is in commercial freezers where the azeotrope R-502 has been the refrigerant of choice. One possible replacement for such applications which appears to have appropriate physical properties is pentafluoroethane (R-125) or mixtures containing R-125. This paper presents experimental PVT values which include vapor pressures, vapor densities and liquid densities (between 180 K and 480 K at pressures up to 70 MPa) and the critical temperature for R-125.

## **Experimental Section**

The measurements included in this work are vapor pressures, the critical temperature, and vapor and liquid densities for R-125. A brief summary of each of the experimental methods used appears below; detailed descriptions of these apparatus appear elsewhere.

*Materials.* The samples of R-125 used for the measurements came from Allied Signal and E. I. du Pont Nemours & Co. The purity of the du Pont sample was reported by the manufacturer to be 99.2+ mol %, based upon gas chromatography measurements, with the most significant impurities shown as R-23 (trifluoromethane) at 0.34 mol % and R-218 (perfluoroethane) at 0.16 mol %. The Allied Signal sample came from a lot specially prepared for research purposes. The supplier provided the following statement with the sample: "Our analysis shows a purity of 99.999+ area % by GC with FID. Further GC mass spec. could not identify any impurities. The moisture in this sample was measured as 2 ppm by wt." We did not perform a separate analysis on our sample, but a similar sample



**Figure 1.** Schematic of critical point apparatus.

used by NIST was tested by Bruno (1994) and found to be free of other refrigerant impurities. The Allied Signal sample was used to measure the vapor pressures, critical point, and most of the liquid densities. The du Pont sample was used for some of the liquid density measurements and for the superheated vapor phase measurements where impurity effects were less important. A comparison of liquid density results for the different samples confirmed agreement within the accuracy of the experiment, and an error analysis of the vapor phase measurements indicated that the impurities did not affect the results significantly. Three freeze/thaw cycles were employed attempting to remove the dissolved air from the samples.

**Vapor Pressure Measurements.** The vapor pressure measurements utilize an isochoric apparatus. Yurttas et al. (1994) provide a detailed description of this apparatus which consists of a sample cell surrounded by an isothermal vessel. Temperatures are measured with a MINCO platinum resistance thermometer with a precision of  $\pm~0.001$ K and an accuracy of  $\pm 0.01$  K on IPTS-68. Temperatures have been converted to ITS-90. Pressures are measured with a DH Instruments Model 26000 automatic pressure standard (dead weight gauge) certified accurate to  $\pm 0.005\%$ combined with a differential pressure indicator of our own design which is an integral part of the isochoric cell. The differential pressure indicator has an accuracy of  $\pm 200$  Pa. Sample loading into the cell occurs at an overall density slightly higher than the critical density to avoid errors caused by adsorption of sample on the cell wall. The estimated accuracy of the vapor pressure measurements is the greater of  $\pm 0.05\%$  or  $\pm 200$  Pa (assuming a pure sample).

<sup>\*</sup> Corresponding author.

<sup>†</sup> Current address: Texas A&M University—Kingsville, Kingsville, TX 78363.

<sup>&</sup>lt;sup>‡</sup> Current address: University of Canterbury, Private Bag 4800, Christchurch, New Zealand.

**Critical Temperature Measurement.** The cylindrical sapphire cell shown in Figure 1, which has an internal volume of about 4 cm3, was used to determine the critical temperature of R-125 by observing visually the appearance or disappearance of the meniscus. The cell was immersed in a well-stirred bath where the temperature was measured and controlled to within  $\pm 0.001$  K. A Rosemount platinum resistance thermometer, located adjacent to the sample cell, provided the temperature with a precision of  $\pm 0.001$  K and an accuracy of  $\pm 0.01$  K on IPTS-68 (subsequently converted to ITS-90). The initial measurements established the critical temperature within  $\pm 0.050$  K. This value was improved by observing the state of the meniscus following increasing temperature increments of 0.010 K until the meniscus disappeared. The state of the meniscus was observed 24 h after each 0.010 K increment in temperature because we observed that often the meniscus appeared or disappeared as much as 8 h after a temperature change. This procedure was repeated for decreasing temperature increments to observe the appearance of the meniscus. Thus the observed value for the critical temperature should be accurate within  $\pm 0.010$  K.

The critical temperature uncertainty includes that associated with observing the meniscus disappearance. The critical pressure results from extrapolating the vapor pressure measurements to the observed critical temperature. The critical density involves extrapolating the saturated vapor and liquid densities using the law of rectilinear diameters.

Vapor Density Measurement. A Burnett apparatus and an isochoric apparatus provide the vapor density measurements. The isochoric apparatus is the same as that used for the vapor pressure measurements, while Stouffer (1992) describes the Burnett apparatus. It consists of two cylindrical, stainless steel cells with polished interiors housed in an aluminum enclosure insulated by vacuum and controlled to provide an isothermal environment. The essence of the experiment is to expand repeatedly the fluid sample from one volume into a second, evacuated volume. The temperature and pressure are measured after each expansion. The densities before and after the expansions are related by the geometry of the apparatus, i.e., the ratio of the volume of the first cell to the total volume of the two cells. The sequence of expansions during the Burnett experiment produces a series of pressures related by a constant ratio of densities. A nonlinear, statistical analysis utilizing the virial equation of state then provides the densities and virial coefficients without requiring direct measurement of the mass or total volume. The methods for measuring the pressure and temperature and measurement accuracies are similar to those described for the isochoric apparatus. The estimated accuracy of the vapor densities varies between  $\pm 0.02\%$  and  $\pm 0.04\%$  from the lowest to the highest pressure.

**Liquid Density Measurements.** The liquid density measurements utilize a continuously weighed pycnometer described by Lau (1986). It consists of a sample cell suspended from an electronic balance and surrounded by an isothermal helium bath and copper shield. The mass of the sample cell comes from weighing, while the volume of the cell results from calibration at several temperatures and pressures with degassed, deionized liquid water. The electronic balance (Arbor Model 507) has a capacity of 0.5 kg and a resolution of 0.1 mg. The sample cell volume is approximately 10 cm³. The pressure of the sample is measured with a strain gauge pressure transducer (Rosemount, Model 1333G10) with an accuracy of  $\pm 0.01$  MPa. The temperature of the sample cell is measured with a

MINCO platinum resistance thermometer (Model S-1069). The temperature measurements are precise to  $\pm 0.001~K$  and accurate to  $\pm 0.01~K$  after conversion from IPTS-68 to ITS-90. The liquid densities are accurate within  $\pm 0.1\%$ .

#### Results

The measurements of this work include vapor pressures, compressed liquid densities, the critical temperature, and vapor densities of R-125. The distribution of the measurements as a function of temperature and pressure constitutes Figure 2.

**Vapor Pressures.** Vapor pressure measurements range from 220 K to 338.5 K. The vapor pressure measurements have been correlated with the equation proposed by Iglesias-Silva *et al.* (1987)

$$p(t) = [p_0(t)^N + p_{\infty}(t)^N]^{1/N}$$
 (1)

where

$$p(t) = 1 + (P - P_t)/(P_c - P_t)$$

$$t = (T - T_t)/(T_c - T_t)$$

$$p_0(t) = a_0 + a_1(a_3t + 1)^{b_0/R} \exp[(-a_2 + b_0/R)/(a_3t + 1)]$$

$$p_{\infty}(t) = 2 - a_4(1 - t) + a_5(1 - t)^{2-\theta} + a_6(1 - t)^3 + a_7(1 - t)^4$$

$$a_0 = 1 - P_t/(P_c - P_t)$$

$$a_1 = (1 - a_0) \exp(a_2 - b_0/R)$$

$$a_2 = b_1/RT_t$$

$$a_3 = (T_c - T_t)/T_t$$

$$a_5 = -0.115\ 991\ 04 + 0.295\ 062\ 58a_4^2 - 0.000\ 212\ 22a_4^5$$
 
$$a_6 = -0.015\ 460\ 28 + 0.089\ 781\ 6a_4^2 - 0.053\ 221\ 99a_4^3$$
 
$$a_7 = 0.057\ 257\ 57 - 0.068\ 176\ 87a_4 + 0.000\ 471\ 88a_4^5$$
 
$$N = 87\ T_{\rm t}/T_{\rm c}$$
 
$$\theta = 0.2$$

where  $T_t$  is the triple point temperature,  $T_c$  is the critical temperature,  $P_t$  is the triple point pressure, and  $P_c$  is the critical pressure.

The experimental vapor pressures appear in Table 1. The parameters that give the best fit of eq 1 are given in Table 2. Figure 3 shows the deviations from eq 1 of the present results along with values reported in the literature by other workers.

*Critical Temperature.* The measured critical temperature of R-125 was (339.410  $\pm$  0.010) K by direct observation of the disappearance and reappearance of the vapor—liquid interface. The critical pressure, (3.6391  $\pm$  0.0002) MPa, resulted from extrapolating the vapor pressure curve developed in this work to the measured critical temperature. The critical density, (4768  $\pm$  7) mol·m $^{-3}$ , resulted from extrapolating the saturated vapor and liquid densities to the critical temperature using the law of rectilinear diameters.

**Vapor Densities.** The vapor density measurements consist of two replications each of Burnett isotherms at



**Figure 2.** Distribution of *PVT* and vapor pressure measurements for R-125 . The symbols denote: ●, vapor pressure and isochoric measurements; ○, Burnett measurements; □, continuously weighed pycnometer measurements.

Table 1. Vapor Pressure Measurements for R-125

| <i>T</i> /K | P/kPa   | P <sub>calc</sub> /kPa | $100(P-P_{\rm calc})/P$ |
|-------------|---------|------------------------|-------------------------|
| 220.004     | 79.23   | 79.27                  | -0.050                  |
| 230.000     | 128.94  | 128.85                 | 0.070                   |
| 239.998     | 200.31  | 200.35                 | -0.021                  |
| 249.999     | 299.97  | 299.75                 | 0.073                   |
| 260.001     | 433.25  | 433.36                 | -0.026                  |
| 290.000     | 1106.04 | 1106.39                | -0.032                  |
| 299.998     | 1447.57 | 1447.28                | 0.020                   |
| 309.999     | 1862.55 | 1862.29                | 0.014                   |
| 319.997     | 2362.39 | 2362.43                | -0.002                  |
| 329.999     | 2961.95 | 2962.17                | -0.007                  |
| 331.998     | 3095.43 | 3095.69                | -0.009                  |
| 333.997     | 3234.34 | 3234.34                | -0.000                  |
| 335.999     | 3378.63 | 3378.72                | -0.003                  |
| 336.997     | 3453.02 | 3452.94                | 0.002                   |
| 337.999     | 3529.18 | 3529.10                | 0.002                   |
|             |         |                        |                         |

Table 2. Parameters for Equation 1 for the Vapor Pressure of R-125<sup>a</sup>

 $a_4 = 3.736 171$  $b_0 = -36.049 \ 408 \ \text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$  $b_1 = 22 \ 105.014 \ 689 \ J \cdot mol^{-1}$  $T_{\rm t} = 170.0 \; {\rm K}$  $P_{\rm t} = 2.565 \; {\rm kPa}$  $T_c = 339.410 \text{ K}$  $P_{\rm c} = 3639.1 \text{ kPa}$  $R = 8.314 \ 48 \ J \cdot mol^{-1} \cdot K^{-1}$ 

350.0 K and at 400.0 K and seven isochores at temperatures ranging from 310.0 K to 480.0 K up to 4 MPa. The Burnett measurements are in Table 3 and the isochoric measurements are in Table 4. At 350 K and 400.0 K, the second virial coefficients, B, for R-125 are respectively  $(-2.478 \times 10^{-4} \text{ and } -1.727 \times 10^{-4}) \text{ m}^3 \cdot \text{mol}^{-1}$ ; the third virial coefficients are respectively (2.333  $\times$  10<sup>-8</sup> and 1.675  $\times$  10<sup>-8</sup>) m<sup>6</sup>·mol<sup>-2</sup>. These virial coefficients compare to those of Boyes and Weber (1995) at 350 K,  $B = -2.482 \times$  $10^{-4} \text{ m}^3 \cdot \text{mol}^{-1}$  and  $C = 2.3541 \times 10^{-8} \text{ m}^6 \cdot \text{mol}^{-2}$ , and to

Table 3. Burnett Isotherms for R-125

| 14010 01 24 |               | 01 10 100                              |             |
|-------------|---------------|----------------------------------------|-------------|
| <i>T</i> /K | <i>P∕</i> MPa | $ ho/\mathrm{mol}\cdot\mathrm{m}^{-3}$ | Z           |
|             | 350 K: Is     | otherm 1                               |             |
| 350.000     | 6.353 813     | 8030.5                                 | 0.271 89    |
| 350.000     | 4.615 296     | 5435.1                                 | 0.291 80    |
| 349.993     | 4.274 686     | 3678.5                                 | $0.399\ 34$ |
| 349.998     | 3.823 185     | 2489.6                                 | 0.527 71    |
| 350.012     | 3.181 706     | 1684.97                                | 0.648 86    |
| 350.000     | 2.481 779     | 1140.40                                | 0.747 83    |
| 349.996     | 1.847 886     | 771.82                                 | 0.822 73    |
| 349.996     | 1.333 240     | 522.37                                 | 0.877 06    |
| 350.002     | 0.941 893     | 353.54                                 | 0.915 49    |
| 349.998     | 0.656 113     | 239.28                                 | 0.942 26    |
| 349.997     | 0.452 764     | 161.946                                | 0.960 73    |
| 350.000     | 0.310 354     | 109.605                                | 0.973 02    |
| 350.002     | 0.211 686     | 74.181                                 | 0.980 60    |
| 349.994     | 0.144 019     | 50.206                                 | 0.985 75    |
|             | 350 K: Is     | otherm 2                               |             |
| 349.997     | 5.562 216     | 7431.9                                 | 0.257 19    |
| 349.994     | 4.537 092     | 5030.0                                 | 0.309 97    |
| 349.998     | 4.204 211     | 3404.3                                 | 0.424 38    |
| 349.994     | 3.706 630     | 2304.0                                 | 0.552 83    |
| 349.984     | 3.041 136     | 1559.38                                | 0.670 19    |
| 349.997     | 2.347 519     | 1055.40                                | 0.764 35    |
| 349.989     | 1.735 270     | 714.30                                 | 0.834 83    |
| 349.994     | 1.245 887     | 483.44                                 | 0.885 61    |
| 349.989     | 0.877 460     | 327.19                                 | 0.921 58    |
| 349.996     | 0.609 912     | 221.45                                 | 0.946 46    |
| 350.001     | 0.420242      | 149.875                                | 0.963 53    |
|             | 400 K: Is     |                                        |             |
| 400.000     | 12.044 877    | 6426.72                                | 0.563 53    |
| 399.997     | 8.093 511     | 4346.37                                | 0.559 91    |
| 400.003     | 6.230 916     | 2939.43                                | 0.637 37    |
| 399.999     | 4.782 627     | 1987.93                                | 0.723 37    |
| 399.997     | 3.568 101     | 1344.48                                | 0.797 80    |
| 399.997     | 2.589 756     | 909.287                                | 0.856 34    |
| 399.998     | 1.839 762     | 614.960                                | 0.899 68    |
| 399.999     | 1.287 182     | 415.901                                | 0.930 71    |
| 399.996     | 0.890 518     | 281.276                                | 0.952 48    |
| 399.999     | 0.611 806     | 190.227                                | 0.967 56    |
| 400.004     | 0.418 195     | 128.651                                | 0.977 92    |
| 399.994     | 0.284 933     | 87.0063                                | 0.985 00    |
| 399.998     | 0.193 708     | 58.8422                                | 0.989 83    |
|             | 400 K: Is     | otherm 2                               |             |
| 399.998     | 14.446 066    | 7132.61                                | 0.608 99    |
| 400.001     | 8.746 958     | 4823.76                                | 0.545 22    |
| 399.995     | 6.651 912     | 3262.30                                | 0.613 10    |
| 399.999     | 5.137 173     | 2206.28                                | 0.700 11    |
| 400.000     | 3.866 949     | 1492.10                                | 0.779 45    |
| 399.998     | 2.826 770     | 1009.13                                | 0.842 33    |
| 399.996     | 2.019 241     | 682.484                                | 0.889 47    |
| 400.000     | 1.417 708     | 461.569                                | 0.923 47    |
| 399.997     | 0.983 858     | 312.161                                | 0.947 43    |
| 399.997     | 0.677 175     | 211.115                                | 0.964 07    |
| 399.999     | 0.463 462     | 142.777                                | 0.975 53    |
| 399.998     | 0.315 992     | 96.5601                                | 0.983 37    |
| 399.998     | 0.214 934     | 65.3034                                | 0.988 72    |
|             |               |                                        |             |

those of Gillis (1997) at 350 K,  $B = -2.474 \times 10^{-4} \,\mathrm{m}^3 \cdot \mathrm{mol}^{-1}$ , and at 400 K,  $B = -1.739 \times 10^{-4} \text{ m}^3 \cdot \text{mol}^{-1}$  and C = 1.67 $\times~10^{-8}~m^6\text{-}mol^{-2}.~$  The isochoric vapor densities have been calculated from the isochoric measurements using densities derived from the 400.0 K Burnett measurements. For a given isochore, the densities along the isochore have been corrected to account for the distortion of the sample cell volume with temperature and pressure. For the pressure range studied, the pressure distortion correction is negligible and the temperature distortion correction is

$$\rho/\rho(400 \text{ K}) = [1.0 - \alpha(400.0 - T/\text{K})]^{-1}$$
 (2)

where  $\alpha$  is the coefficient of thermal expansion for Type 316 stainless steel (4.8  $\times$  10<sup>-5</sup> K<sup>-1</sup>), *T* is the temperature,

<sup>&</sup>lt;sup>a</sup>  $T_t$  and  $P_t$  have been adjusted slightly from the values reported by Iglesias-Silva et al. (1995) to achieve a better fit.

Table 4. Isochoric Temperatures and Pressures (Measured) and Densities (Derived) for R-125 Vapor

| <i>T</i> /K        | P/MPa                  | $ ho/\mathrm{mol}\cdot\mathrm{m}^{-3}$ | $ ho_{ m calc}/ m mol\cdot m^{-3}$ | $100( ho- ho_{ m calc})/ ho$ |
|--------------------|------------------------|----------------------------------------|------------------------------------|------------------------------|
|                    |                        | Isocho                                 |                                    |                              |
| 339.996            | 3.646 126              | 3427.2                                 | 3411.1                             | 0.4707                       |
| 344.996            | 3.945 027              | 3425.5                                 | 3429.3                             | -0.1110                      |
| 347.000            | 4.062 127              | 3424.7                                 | 3430.8                             | -0.1770                      |
| 349.998            | 4.235 337              | 3424.2                                 | 3432.9                             | -0.2539                      |
| 335.000            | 2.934 405              | Isocho<br>1810.1                       | re 2<br>1808.2                     | 0.1041                       |
| 340.000            | 3.060 715              | 1810.1                                 | 1808.3                             | 0.1041                       |
| 350.000            | 3.306 116              | 1808.8                                 | 1806.9                             | 0.1077                       |
| 360.000            | 3.544 416              | 1807.9                                 | 1805.5                             | 0.1077                       |
| 370.000            | 3.777 227              | 1807.3                                 | 1804.5                             | 0.1347                       |
| 380.000            | 4.005 517              | 1806.2                                 | 1803.8                             | 0.1317                       |
| 390.000            | 4.230 227              | 1805.3                                 | 1803.4                             | 0.1042                       |
|                    |                        | Isocho                                 | re 3                               |                              |
| 419.996            | 4.158 247              | 1468.6                                 | 1468.6                             | -0.0580                      |
| 410.000            | 3.991 427              | 1468.8                                 | 1469.3                             | -0.0588                      |
| 399.996            | 3.822 837              | 1469.1                                 | 1470.0                             | -0.0618                      |
| 389.994            | 3.651 876              | 1469.9                                 | 1470.5                             | -0.0514                      |
| 370.000            | 3.302 576              | 1471.2                                 | 1471.6                             | -0.0283                      |
| 340.000            | 2.753 555              | 1473.3                                 | 1474.3                             | -0.0655                      |
| 330.000            | 2.560 045              | 1474.0                                 | 1474.2                             | -0.0126                      |
|                    |                        | Isocho                                 | re 4                               |                              |
| 479.993            | 4.163 607              | 1159.4                                 | 1159.1                             | 0.0276                       |
| 459.993            | 3.922 687              | 1160.6                                 | 1160.5                             | 0.0090                       |
| 439.994            | 3.679 186              | 1161.7                                 | 1161.8                             | -0.0122                      |
| 430.000            | 3.556 116              | 1162.2                                 | 1162.4                             | -0.0193                      |
| 419.995            | 3.431 876              | 1162.8                                 | 1163.0                             | -0.0136                      |
| 400.000            | 3.180 68               | 1163.9                                 | 1164.2                             | -0.0261                      |
| 369.995            | 2.792 605              | 1165.6                                 | 1166.1                             | -0.0456                      |
| 340.000            | 2.385 344              | 1167.3                                 | 1168.2                             | -0.0762                      |
| 320.000            | 2.095 984              | 1168.4                                 | 1167.3                             | 0.0942                       |
| 470.000            | 0 70 7 00 7            | Isocho                                 |                                    | 0.0000                       |
| 479.992            | 2.785 065              | 749.0                                  | 749.0                              | -0.0032                      |
| 460.000            | 2.640 865              | 749.8                                  | 749.6                              | 0.0256                       |
| 439.994            | 2.495 514              | 750.5                                  | 750.3                              | 0.0248                       |
| 420.000            | 2.348 774              | 751.2                                  | 751.1                              | 0.0093                       |
| 400.000            | 2.199 694              | 751.9                                  | 751.9                              | -0.0028                      |
| 379.994            | 2.048 004              | 752.6                                  | 752.8                              | -0.0233                      |
| 359.997            | 1.893 223              | 753.4                                  | 753.7                              | -0.0432                      |
| 340.000<br>320.004 | 1.734 303<br>1.569 373 | 754.1<br>754.8                         | 754.7<br>755.2                     | $-0.0806 \\ -0.0501$         |
| 320.004            | 1.505 575              | Isocho                                 |                                    | 0.0301                       |
| 479.999            | 2.012 864              | 530.6                                  | 530.8                              | -0.0384                      |
| 459.996            | 1.914 913              | 531.2                                  | 531.1                              | 0.0137                       |
| 439.998            | 1.816 473              | 531.7                                  | 531.6                              | 0.0279                       |
| 420.001            | 1.717 343              | 532.2                                  | 532.1                              | 0.0215                       |
| 399.997            | 1.617 043              | 532.7                                  | 532.7                              | 0.0074                       |
| 379.999            | 1.515 363              | 533.2                                  | 533.3                              | -0.0122                      |
| 360.000            | 1.412 002              | 533.7                                  | 533.9                              | -0.0398                      |
| 339.996            | 1.306 492              | 534.2                                  | 534.6                              | -0.0692                      |
| 309.999            | 1.142 292              | 535.0                                  | 535.0                              | 0.0000                       |
|                    |                        | Isocho                                 | re 7                               |                              |
| 479.996            | 1.265 022              | 327.1                                  | 327.3                              | -0.0600                      |
| 459.997            | 1.206 982              | 327.5                                  | 327.4                              | 0.0236                       |
| 440.001            | 1.149 022              | 327.8                                  | 327.7                              | 0.0375                       |
| 419.999            | 1.090 882              | 328.1                                  | 328.0                              | 0.0230                       |
| 399.998            | 1.032 222              | 328.4                                  | 328.4                              | 0.0052                       |
| 379.997            | 0.972 692              | 328.7                                  | 328.7                              | 0.0133                       |
|                    | 0.912 712              |                                        | 329.0                              | -0.0085                      |
| 359.993            | 0.912 /12              | 329.0                                  | 323.0                              | -0.0063                      |
| 359.993<br>339.997 | 0.851 902              | 329.0                                  | 329.4                              | -0.0083 $-0.0293$            |

 $\rho$  is the density at temperature  $\mathit{T},$  and  $\rho(400~\text{K})$  is the density at 400 K.

The vapor densities for temperatures between 390 K and  $480.0\,$  K have been correlated using a truncated virial equation of state

$$Z = \frac{P}{\rho RT} = 1 + B\rho + C\rho^2 \tag{3}$$



**Figure 3.** Deviations of experimental vapor pressures for R-125 from values calculated using eq 1 and the parameters listed in Table 2. The symbols denote ●, this work; ▼, Oguchi *et al.* (1996); ▽, Ye *et al.* (1995); ■, Tsvetkov *et al.* (1995); □, Weber and Silva (1994); △, Widiatmo *et al.* (1994); □, Boyes and Weber (1995); ◆, Sagawa *et al.* (1994); ◇, Baroncini *et al.* (1993); ○, Magee (1996); ▲, Singh (1994). The plot utilizes the technique proposed by Holste *et al.* (1996) for the ordinate.



**Figure 4.** Deviations of the measured superheated vapor densities for R-125 from values calculated using eq 3 using the parameters listed in Table 5. The symbols denote: ●, this work; ∇, Tsvetkov *et al.* (1995); ○, Oguchi *et al.* (1996); △, Sagawa *et al.* (1994); ◇, Ye *et al.* (1995); □, Zhang *et al.* (1996). The plot utilizes the technique proposed by Holste *et al.* (1996) for the ordinate.

where

$$B = b_0 + \frac{b_1}{T^{1/2}} + \frac{b_2}{T} + \frac{b_3}{T^2}$$

$$C = c_0 + \frac{c_1}{T^{1/2}} + \frac{c_2}{T} + \frac{c_3}{T^2}$$

Z is the compressibility factor, P is the pressure, R is the gas constant, T is the temperature, and B and C are the second and third virial coefficients respectively, with  $b_i$  and

Table 5. Parameters for Equation 3 for the Vapor Density of R-125

 $b_0 = -3.528~89 \times 10^{-4}~\mathrm{m}^3 \cdot \mathrm{mol}^{-1}$  $b_1 = 1.972 \ 686 \times 10^{-2} \ \text{m}^3 \cdot \text{K}^{0.5} \cdot \text{mol}^{-1}$  $b_2 = -0.254 \ 077 \ \mathrm{m}^3 \cdot \mathrm{K} \cdot \mathrm{mo}^{l-1}$  $\tilde{b_3} = -27.3083 \text{ m}^3 \cdot \text{K}^2 \cdot \text{mol}^{-1}$  $c_0 = 1.569 \ 744 \times 10^{-6} \ m^6 \cdot mol^{-2}$  $c_1 = -8.184 63 \times 10^{-5} \,\mathrm{m}^6 \cdot \mathrm{K}^{0.5} \cdot \mathrm{mol}^{-2}$  $c_2 = 1.195 \ 3541 \times 10^{-3} \ \text{m}^6 \cdot \text{K} \cdot \text{mol}^{-2}$   $c_3 = -0.071 \ 909 \ \text{m}^6 \cdot \text{K}^2 \cdot \text{mol}^{-2}$ 

 $c_i$  being the parameters of the fit. The values of the parameters which give the best fit of eq 3 to the vapor densities of R-125 are in Table 5. Figure 4 shows the deviations of the vapor density measurements from eq 3.

Liquid Densities. The liquid densities for R-125 at temperatures ranging from 180 K to 350 K at pressures from slightly above the vapor pressure up to about 70 MPa appear in Table 6. At 180 K, the sample solidifies at about 20 MPa. The 151 measured liquid densities have been correlated using a modified Benedict-Webb-Rubin equa-

$$\frac{P}{\rho RT} - 1.0 = \sum_{n=1}^{8} a_n \rho_r^n + \exp(-\rho_r^2) \sum_{n=9}^{14} a_n \rho_r^{2n-16}$$
 (4)

where the coefficients are functions of temperature

$$\begin{aligned} a_1 &= b_1 + b_2 T_{\rm r}^{-0.5} + b_3 T + b_4 T_{\rm r}^{-2} + b_5 T_{\rm r}^{-3} \\ a_2 &= b_6 + b_7 T_{\rm r}^{-1} + b_8 T_{\rm r}^{-2} + b_9 T_{\rm r}^{-3} \\ a_3 &= b_{10} + b_{11} T_{\rm r}^{-1} + b_{12} T_{\rm r}^{-2} \\ a_4 &= b_{13} T_{\rm r}^{-1} \\ a_5 &= b_{14} T_{\rm r}^{-2} + b_{15} T_{\rm r}^{-3} \\ a_6 &= b_{16} T_{\rm r}^{-2} \\ a_7 &= b_{17} T_{\rm r}^{-2} + b_{18} T_{\rm r}^{-3} \\ a_8 &= b_{19} T_{\rm r}^{-3} \\ a_9 &= b_{20} T_{\rm r}^{-3} + b_{21} T_{\rm r}^{-4} \\ a_{10} &= b_{22} T_{\rm r}^{-3} + b_{23} T_{\rm r}^{-5} \\ a_{11} &= b_{24} T_{\rm r}^{-3} + b_{25} T_{\rm r}^{-5} \\ a_{12} &= b_{26} T_{\rm r}^{-3} + b_{27} T_{\rm r}^{-5} \\ a_{13} &= b_{28} T_{\rm r}^{-3} + b_{29} T_{\rm r}^{-4} \\ a_{14} &= b_{30} T_{\rm r}^{-3} + b_{31} T_{\rm r}^{-4} + b_{32} T_{\rm r}^{-5} \end{aligned}$$

and  $T_{\rm r}$  is  $T/T_{\rm c}$ ,  $T_{\rm c}=339.41$  K,  $\rho_{\rm r}$  is  $\rho/\rho_{\rm c}$ , and  $\rho_{\rm c}$  is 4768 mol·m<sup>-3</sup>. The fit parameters of eq 4 which describe the experimental liquid densities of R-125 within  $\pm 0.1\%$  appear in Table 7. The values of the vapor densities calculated from this equation agree with the experimental values within  $\pm 0.05\%$ . Figure 5 shows the deviations of the liquid density measurements from eq 4.

#### Discussion

**Vapor Pressures.** Figure 3 shows the deviations of our experimental values and literature values from eq 1 (which has been fit using only the current measurements). The estimated uncertainty of our vapor pressure measurements is  $\pm 0.05\%$  at temperatures above 290 K with the largest uncertainty of  $\pm 0.3\%$  at 220 K. The measurements by Oguchi et al. (1996) agree with our values within  $\pm 0.2\%$ over the entire temperature range. Their estimated uncertainty is about  $\pm 0.6\%$  in the temperature range 220 K to 260 K and  $\pm 0.3\%$  from 260 K to 339 K. The measurements of Ye et al. (1995) agree with our data within  $\pm 0.06\%$ . The estimated uncertainty of their vapor pressure values is  $\pm 0.15\%$ . Our values agree with those of Tsvetkov et al. (1995) within  $\pm 0.2\%$ , which is their estimated uncertainty. Our vapor pressure values are slightly higher than those of Boyes and Weber (1995) and Magee (1996). but the three sets agree within  $\pm 0.2\%$  (our estimated uncertainty over the temperature range 275 K to 339 K is  $\pm 0.05\%$  as is theirs, both assuming pure sample). Our vapor pressures are 0.2% to 0.6% higher than those of Widiatmo et al. (1994), whose estimated uncertainty is  $\pm 0.2\%$ . Our results deviate from those of Weber and Silva (1994) by as much as  $\pm 1.0\%$  at temperatures below 240 K and by about  $\pm 0.2\%$  at temperatures above 240 K. Their estimated uncertainty is less than  $\pm 0.05\%$  over the entire temperature range. Measurements by Sagawa et al. (1994) agree with our values within  $\pm 0.15\%$ , which corresponds to their estimated uncertainty. Most of the values reported by Baroncini et al. (1993) agree with our values within  $\pm$ 0.2%, which again is their estimated uncertainty. The measurements of Monluc et al. (1991) agree with our measurements within  $\pm 0.15\%$  while their estimated uncertainty is  $\pm 0.2\%$ . These deviations do not appear in Figure 3. Singh (1994) measured the vapor pressure of a sample produced in the same batch as ours. His values are about 0.07% higher than ours. Given that our results are about 0.1% higher than the majority of reported values. it is conceivable that our sample was contaminated by a small amount of volatile impurity such as air or helium during the loading process, but Singh (1994) would also then have approximately the same amount of volatile impurity introduced into his sample. The samples used by most of the other investigations contain R-115 as a contaminant which would cause their measurements to be low. While the investigators attempted to correct for this effect, it is also conceivable that some of the effect

Wilson et al. (1992) have published a correlation based upon their measurements for the vapor pressure of R-125 from 195.0 K to the critical temperature. Because they do not report their experimental values, they cannot be compared to ours, but they report an average absolute deviation between their measured vapor pressures and values calculated from their correlation of  $\pm 0.25\%$  with a maximum deviation of  $\pm 1.3\%$ .

Vapor Densities. Figure 4 shows the deviation from eq 3 of our measured vapor densities and those of Tsvetkov et al. (1995), Baroncini et al. (1993), Oguchi et al. (1996), Sagawa et al. (1994), Ye et al. (1995), and Zhang et al. (1996). Wilson et al. (1992) present vapor densities over a temperature range from 195 K to 450 K along with a correlation which reproduces their results within  $\pm 1\%$ , but these results have not been included in the figure because of the narrow region of overlap.

For adsorbing fluids, significant inaccuracies in vapor density measurements may result from adsorption effects

Table 6. Pycnometric Measurements of Liquid Densities for  $R-125^a$ 

|         | - 3 0110111011 | · 1/10415411 01110111             | .5 01 =1qu1u = 0.                       |        |             |         |                                         |                                   |        |
|---------|----------------|-----------------------------------|-----------------------------------------|--------|-------------|---------|-----------------------------------------|-----------------------------------|--------|
| T/K     | P/MPa          | $ ho_{ m exp}/ m mol\cdot m^{-3}$ | $ ho_{ m cal}/{ m mol}\cdot{ m m}^{-3}$ | % dev  | <i>T</i> /K | P/MPa   | $ ho_{ m exp}/{ m mol}\cdot{ m m}^{-3}$ | $ ho_{ m cal}/ m mol\cdot m^{-3}$ | % dev  |
| 180.000 | 19.0497        | 14 152.9                          | 14 152.3                                | 0.005  | 180.000     | 6.9596  | 13 992.2                                | 13 991.7                          | 0.004  |
| 180.000 | 16.4838        | 14 119.8                          | 14 119.5                                | 0.002  | 180.000     | 4.6819  | 13 958.9                                | 13 959.5                          | -0.005 |
| 180.000 | 13.0966        | 14 115.8                          | 14 115.5                                | 0.002  | 180.000     | 2.4942  | 13 927.5                                | 13 928.0                          | -0.003 |
|         |                |                                   |                                         |        |             |         |                                         |                                   |        |
| 180.000 | 10.1578        | 14 036.7                          | 14 035.7                                | 0.007  | 180.000     | 1.2898  | 13 908.7                                | 13 910.4                          | -0.012 |
| 205.000 | 65.8285        | 14 158.9                          | 14 161.1                                | -0.015 | 205.000     | 17.5843 | 13 522.8                                | 13 524.2                          | -0.010 |
| 205.000 | 51.7934        | 14 000.9                          | 14 000.9                                | 0.000  | 205.000     | 8.8870  | 13 372.6                                | 13 373.7                          | -0.008 |
| 205.000 | 38.9736        | 13 839.3                          | 13 839.0                                | 0.002  | 205.000     | 1.3673  | 13 227.4                                | 13 228.7                          | -0.010 |
| 205.000 | 27.6557        | 13 680.5                          | 13 680.7                                | -0.001 | 200.000     | 1.00.0  | 10 ##111                                | 10 22011                          | 0.010  |
|         |                |                                   |                                         |        |             |         |                                         |                                   |        |
| 230.000 | 67.5358        | 13 697.1                          | 13 695.3                                | 0.013  | 230.000     | 22.9295 | 13 012.4                                | 13 009.6                          | 0.022  |
| 230.000 | 54.8481        | 13 531.9                          | 13 529.1                                | 0.020  | 230.000     | 14.8669 | 12 846.4                                | 12 842.2                          | 0.032  |
| 230.000 | 42.9669        | 13 359.2                          | 13 356.0                                | 0.024  | 230.000     | 7.2919  | 12 668.4                                | 12 663.0                          | 0.042  |
| 230.000 | 32.4505        | 13 186.4                          | 13 184.4                                | 0.015  | 230.000     | 1.3720  | 12 510.4                                | 12 502.3                          | 0.065  |
|         |                |                                   |                                         |        |             |         |                                         |                                   |        |
| 250.000 | 67.7798        | 13 311.1                          | 13 316.7                                | -0.042 | 250.000     | 1.2975  | 11 863.4                                | 11 864.2                          | -0.007 |
| 250.000 | 54.9040        | 13 120.0                          | 13 126.4                                | -0.049 | 250.000     | 67.3366 | 13 317.4                                | 13 310.5                          | 0.052  |
| 250.000 | 44.7122        | 12 951.7                          | 12 957.7                                | -0.047 | 250.000     | 52.2951 | 13 090.3                                | 13 085.0                          | 0.041  |
| 250.000 | 35.4535        | 12 777.8                          | 12 786.5                                | -0.069 | 250.000     | 39.5909 | 12 869.1                                | 12 865.5                          | 0.028  |
| 250.000 | 27.1043        | 12 606.4                          | 12 613.0                                | -0.053 | 250.000     | 27.9594 | 12 634.5                                | 12 631.8                          | 0.021  |
| 250.000 | 20.0319        | 12 438.8                          | 12 447.3                                | -0.068 | 250.000     | 18.3935 | 12 408.0                                | 12 405.8                          | 0.017  |
| 250.000 | 13.5524        | 12 269.5                          | 12 275.1                                | -0.045 | 250.000     | 10.0476 | 12 175.0                                | 12 171.3                          | 0.030  |
| 250.000 | 7.4493         | 12 082.9                          | 12 088.2                                | -0.044 | 250.000     | 5.5224  | 12 027.4                                | 12 022.7                          | 0.039  |
| 250.000 | 2.4978         | 11 910.3                          | 11 911.6                                | -0.011 | 250.000     | 1.3564  | 11 871.1                                | 11 866.6                          | 0.039  |
|         |                |                                   |                                         |        |             |         |                                         |                                   |        |
| 270.000 | 67.5786        | 12 937.6                          | 12 937.7                                | -0.001 | 270.000     | 18.5660 | 11 874.0                                | 11 880.6                          | -0.055 |
| 270.000 | 57.4266        | 12 768.6                          | 12 770.6                                | -0.015 | 270.000     | 13.3732 | 11 698.9                                | 11 703.8                          | -0.042 |
| 270.000 | 47.6582        | 12 588.7                          | 12 591.5                                | -0.022 | 270.000     | 8.8055  | 11 522.8                                | 11 524.6                          | -0.015 |
| 270.000 | 38.9281        | 12 407.7                          | 12 411.9                                | -0.034 | 270.000     | 4.8224  | 11 343.8                                | 11 342.3                          | 0.013  |
| 270.000 | 31.2426        | 12 228.6                          | 12 233.8                                | -0.043 | 270.000     | 1.2415  | 11 151.4                                | 11 147.9                          | 0.031  |
| 270.000 | 24.4974        | 12 050.8                          | 12 057.1                                | -0.053 |             |         |                                         |                                   |        |
|         |                |                                   |                                         |        | 000 000     | 40.4070 | 44.040.0                                | 44.00%.0                          | 0.047  |
| 290.000 | 66.2920        | 12 544.0                          | 12 546.0                                | -0.016 | 290.000     | 18.4676 | 11 319.9                                | 11 325.2                          | -0.047 |
| 290.000 | 57.5571        | 12 380.2                          | 12 383.4                                | -0.026 | 290.000     | 14.4676 | 11 149.4                                | 11 154.2                          | -0.043 |
| 290.000 | 48.8664        | 12 199.8                          | 12 203.7                                | -0.032 | 290.000     | 10.7979 | 10 970.1                                | 10 974.1                          | -0.036 |
| 290.000 | 41.3978        | 12 025.9                          | 12 031.1                                | -0.043 | 290.000     | 7.8473  | 10 803.3                                | 10 806.7                          | -0.032 |
| 290.000 | 34.8216        | 11 855.6                          | 11 861.2                                | -0.047 | 290.000     | 5.0718  | 10 621.7                                | 10 623.1                          | -0.013 |
| 290.000 | 28.3085        | 11 664.9                          | 11 671.3                                | -0.055 | 290.000     | 2.7440  | 10 438.7                                | 10 440.2                          | -0.015 |
| 290.000 | 23.0354        | 11 490.8                          | 11 496.7                                | -0.051 | 290.000     | 1.2741  | 10 305.1                                | 10 304.5                          | 0.006  |
|         |                |                                   |                                         |        |             |         |                                         |                                   |        |
| 300.000 | 56.0143        | 12 165.3                          | 12 158.7                                | 0.055  | 300.000     | 12.3362 | 10 739.8                                | 10 729.3                          | 0.098  |
| 300.000 | 45.7916        | 11 934.3                          | 11 926.1                                | 0.069  | 300.000     | 8.7202  | 10 510.4                                | 10 501.6                          | 0.084  |
| 300.000 | 37.6842        | 11 719.6                          | 11 713.6                                | 0.051  | 300.000     | 5.7554  | 10 279.6                                | 10 274.0                          | 0.055  |
| 300.000 | 29.5628        | 11 472.9                          | 11 466.1                                | 0.059  | 300.000     | 3.1145  | 10 025.7                                | 10 019.0                          | 0.067  |
| 300.000 | 23.3498        | 11 245.9                          | 11 243.6                                | 0.020  | 300.000     | 1.7785  | 9 861.6                                 | 9 858.2                           | 0.035  |
| 300.000 | 18.0901        | 11 024.7                          | 11 022.7                                | 0.018  | 300.000     | 65.1245 | 12 343.5                                | 12 341.3                          | 0.018  |
| 300.000 | 13.3784        | 10 788.8                          | 10 787.7                                | 0.010  | 300.000     | 55.1812 | 12 141.4                                | 12 140.9                          | 0.004  |
| 300.000 | 9.7116         | 10 569.1                          | 10 568.5                                | 0.006  | 300.000     | 44.5333 | 11 895.2                                | 11 894.9                          | 0.002  |
| 300.000 | 6.2950         | 10 318.5                          | 10 319.1                                | -0.006 | 300.000     | 35.6664 | 11 658.1                                | 11 655.9                          | 0.019  |
| 300.000 | 3.6831         | 10 079.5                          | 10 079.7                                | -0.002 | 300.000     | 28.5261 | 11 432.1                                | 11 431.3                          | 0.007  |
| 300.000 | 1.8000         | 9 860.0                           | 9 861.0                                 | -0.010 | 300.000     | 21.9576 | 11 189.3                                | 11 188.5                          | 0.007  |
| 300.000 | 54.9117        | 12 147.8                          | 12 135.1                                | 0.104  | 300.000     | 16.7252 | 10 956.1                                | 10 958.9                          | -0.025 |
| 300.000 | 44.0422        | 11 896.2                          | 11 882.6                                | 0.114  | 300.000     | 12.2195 | 10 720.6                                | 10 722.6                          | -0.019 |
| 300.000 | 35.8493        | 11 672.3                          | 11 661.2                                | 0.095  | 300.000     | 8.5448  | 10 485.7                                | 10 489.3                          | -0.035 |
| 300.000 | 28.5495        | 11 443.4                          | 11 432.1                                | 0.093  | 300.000     | 5.3802  | 10 238.3                                | 10 465.3                          | -0.033 |
|         |                |                                   |                                         |        | 300.000     |         |                                         |                                   |        |
| 300.000 | 22.1816        | 11 209.7                          | 11 197.5                                | 0.109  |             | 2.7652  | 9 976.3                                 | 9 979.6                           | -0.033 |
| 300.000 | 16.9198        | 10 978.0                          | 10 968.2                                | 0.089  | 300.000     | 1.8022  | 9 853.6                                 | 9 861.3                           | -0.078 |
| 310.000 | 66.1014        | 12 174.6                          | 12 179.1                                | -0.037 | 310.000     | 14.8807 | 10 548.7                                | 10 552.1                          | -0.032 |
| 310.000 | 57.0760        | 11 985.6                          | 11 989.9                                | -0.036 | 310.000     | 11.6469 | 10 341.5                                | 10 345.5                          | -0.038 |
| 310.000 | 41.6433        | 11 600.8                          | 11 605.5                                | -0.041 | 310.000     | 8.2980  | 10 079.9                                | 10 086.1                          | -0.061 |
| 310.000 | 35.0844        | 11 404.7                          | 11 408.8                                | -0.036 | 310.000     | 5.8919  | 9 845.7                                 | 9 853.8                           | -0.082 |
| 310.000 | 28.6621        | 11 184.6                          | 11 187.8                                | -0.028 | 310.000     | 4.0957  | 9 629.0                                 | 9 637.3                           | -0.087 |
| 310.000 | 24.0299        | 11 001.0                          | 11 004.7                                | -0.034 | 310.000     | 2.1673  | 9 322.1                                 | 9 326.0                           | -0.042 |
| 310.000 | 19.0939        | 10 775.5                          | 10 779.4                                | -0.036 | 010.000     | 2.1070  | 0 022.1                                 | 0 020.0                           | 0.012  |
|         |                |                                   |                                         |        |             |         | _                                       | _                                 |        |
| 330.000 | 66.3514        | 11 838.9                          | 11 830.7                                | 0.069  | 330.000     | 4.0360  | 8 273.4                                 | 8 247.8                           | 0.309  |
| 330.000 | 57.9342        | 11 643.5                          | 11 635.4                                | 0.070  | 330.000     | 3.4757  | 8 020.2                                 | 7 994.6                           | 0.320  |
| 330.000 | 49.8890        | 11 433.0                          | 11 425.0                                | 0.070  | 330.000     | 3.0919  | 7 768.0                                 | 7 791.9                           | -0.308 |
| 330.000 | 42.7054        | 11 219.3                          | 11 211.4                                | 0.070  | 330.000     | 59.6817 | 11 677.5                                | 11 677.8                          | -0.003 |
| 330.000 | 36.1854        | 10 988.7                          | 10 989.6                                | -0.008 | 330.000     | 49.7645 | 11 424.5                                | 11 421.5                          | 0.026  |
| 330.000 | 30.4841        | 10 767.7                          | 10 766.0                                | 0.016  | 330.000     | 41.4361 | 11 171.4                                | 11 170.6                          | 0.007  |
| 330.000 | 25.7099        | 10 551.1                          | 10 549.6                                | 0.014  | 330.000     | 34.1157 | 10 912.9                                | 10 912.1                          | 0.007  |
| 330.000 | 21.5737        | 10 335.1                          | 10 332.4                                | 0.026  | 330.000     | 27.8885 | 10 654.3                                | 10 652.2                          | 0.019  |
| 330.000 | 18.0465        | 10 118.2                          | 10 116.7                                | 0.020  | 330.000     | 22.1463 | 10 369.0                                | 10 364.5                          | 0.013  |
| 330.000 | 15.0089        | 9 899.2                           | 9 898.6                                 | 0.013  | 330.000     | 17.8569 | 10 108.2                                | 10 104.0                          | 0.043  |
| 330.000 | 12.5104        | 9 684.8                           | 9 686.6                                 | -0.018 | 330.000     | 14.1189 | 9 825.4                                 | 9 827.1                           | -0.041 |
|         |                |                                   |                                         |        |             |         |                                         |                                   |        |
| 330.000 | 10.1953        | 9 446.0                           | 9 450.1                                 | -0.043 | 330.000     | 11.0280 | 9 536.9                                 | 9 540.7                           | -0.040 |
| 330.000 | 8.3086         | 9 206.7                           | 9 211.9                                 | -0.057 | 330.000     | 8.4886  | 9 231.5                                 | 9 237.1                           | -0.061 |
| 330.000 | 6.9503         | 8 993.8                           | 8 998.7                                 | -0.055 | 330.000     | 6.5.59  | 8 916.2                                 | 8 927.6                           | -0.128 |
| 330.000 | 5.7103         | 8 752.5                           | 8 751.3                                 | 0.014  | 330.000     | 5.0195  | 8 578.9                                 | 8 576.9                           | 0.024  |
| 330.000 | 4.7442         | 8 508.8                           | 8 496.4                                 | 0.146  | 330.000     | 3.8756  | 8 206.3                                 | 8 181.1                           | 0.308  |
|         |                |                                   |                                         |        |             |         |                                         |                                   |        |

**Table 6. Continued** 

| <i>T</i> /K | P/MPa   | $ ho_{ m exp}/ m mol\cdot m^{-3}$ | $ ho_{ m cal}/ m mol\cdot m^{-3}$ | % dev  | T/K     | P/MPa   | $ ho_{ m exp}/ m mol\cdot m^{-3}$ | $ ho_{ m cal}/ m mol\cdot m^{-3}$ | % dev  |
|-------------|---------|-----------------------------------|-----------------------------------|--------|---------|---------|-----------------------------------|-----------------------------------|--------|
| 350.000     | 67.8479 | 11 513.0                          | 11 524.5                          | -0.100 | 350.000 | 6.2747  | 7 377.3                           | 7 476.8                           | -1.349 |
| 350.000     | 58.7174 | 11 283.1                          | 11 293.4                          | -0.091 | 350.000 | 5.8635  | 7 131.1                           | 7 340.3                           | -2.934 |
| 350.000     | 50.2498 | 11 037.6                          | 11 047.7                          | -0.091 | 350.000 | 67.9473 | 11 522.5                          | 11 526.8                          | -0.037 |
| 350.000     | 43.2639 | 10 806.6                          | 10 814.4                          | -0.072 | 350.000 | 58.6113 | 11 289.0                          | 11 290.5                          | -0.013 |
| 350.000     | 37.2857 | 10 580.0                          | 10 585.0                          | -0.047 | 350.000 | 50.0793 | 11 041.0                          | 11 042.4                          | -0.012 |
| 350.000     | 31.9454 | 10 345.3                          | 10 348.6                          | -0.032 | 350.000 | 42.5324 | 10 789.9                          | 10 788.0                          | 0.018  |
| 350.000     | 27.1785 | 10 100.2                          | 10 102.8                          | -0.026 | 350.000 | 36.3412 | 10 546.9                          | 10 545.6                          | 0.012  |
| 350.000     | 23.3198 | 9 868.3                           | 9 870.2                           | -0.019 | 350.000 | 30.7480 | 10 293.9                          | 10 290.4                          | 0.034  |
| 350.000     | 20.0759 | 9 638.5                           | 9 641.5                           | -0.031 | 350.000 | 25.8716 | 10 034.4                          | 10 028.0                          | 0.064  |
| 350.000     | 17.2215 | 9 400.1                           | 9 404.1                           | -0.042 | 350.000 | 21.8780 | 9 775.9                           | 9 773.0                           | 0.030  |
| 350.000     | 14.7569 | 9 154.7                           | 9 158.6                           | -0.043 | 350.000 | 18.4714 | 9 516.6                           | 9 513.1                           | 0.037  |
| 350.000     | 12.6878 | 8 905.4                           | 8 908.1                           | -0.030 | 350.000 | 15.6090 | 9 250.8                           | 9 248.8                           | 0.022  |
| 350.000     | 10.9421 | 8 649.2                           | 8 647.0                           | 0.026  | 350.000 | 13.0007 | 8 953.1                           | 8 949.4                           | 0.042  |
| 350.000     | 9.4943  | 8 384.3                           | 8 375.7                           | 0.102  | 350.000 | 10.8581 | 8 641.1                           | 8 632.8                           | 0.096  |
| 350.000     | 8.3961  | 8 132.8                           | 8 120.2                           | 0.155  | 350.000 | 8.9765  | 8 278.5                           | 8 261.6                           | 0.204  |
| 350.000     | 7.4768  | 7 868.0                           | 7 863.6                           | 0.056  | 350.000 | 7.6945  | 7 941.8                           | 7 928.1                           | 0.173  |
| 350.000     | 6.7895  | 7 617.0                           | 7 647.1                           | -0.395 | 350.000 | 6.7931  | 7 615.6                           | 7 648.3                           | -0.429 |

<sup>&</sup>lt;sup>a</sup> A molecular weight of 120.0200 was used to convert the measured mass densities to the molar densities listed in this table.

Table 7. Parameters of Equation 4 for the Liquid Density of R-125. All  $b_i$  Values Not Listed Explicitly Are **Equal to Zero** 

 $b_3 = 0.08588886$  $b_5 = 0.396 287 939$  $b_{13} = 0.286 640 635$  $b_{15} = 0.041 \ 239 \ 614$  $b_{16} = -0.117046818$  $b_{17} = 0.029 683 657$  $b_{19} = -0.000859869$  $b_{21} = -9.082 \ 368 \ 767$  $b_{23} = 3.931751612$  $b_{26} = -1.343450734$  $b_{27} = -0.074098578$  $b_{28} = 0.315\ 005\ 759$  $b_{29} = 0.028\ 504\ 544$  $b_{30} = -0.079\ 010\ 346$  $b_{31} = 0.041 \ 381 \ 424$  $b_{32} = -0.011 656 952$ 

at temperatures near and below the critical temperature. The excellent agreement of the virial coefficients derived from Burnett measurements in this work and by Boyes and Weber (1995) with those derived by Gillis (1997) from sound speed measurements suggests that the Burnett measurements are not effected significantly by adsorption above the critical temperature. Table 8 contains an analysis which examines the possible effects of adsorption on the isochoric measurements. The column labeled  $\rho_{400}$ can be assumed to be free of adsorption because the 400 K isotherm is supercritical and compares well to data reported from other laboratories. The densities in this column come from the isochore pressure at 400 K and the virials derived from Burnett measurements at 400 K. The densities in the two columns labeled  $\rho_{350}$  (at 350 K) and  $\rho_{BW}$  (at 363 K) have been calculated at the isochore pressures at 350 K and 363.15 K respectively using the virial coefficients at 350 K and 363.15 K respectively and then corrected for volume distortions to provide densities at 400 K. Thus, the entries in these three columns should be identical. While the columns are not exactly identical, they are sufficiently close that any adsorption effects can be assumed to be minor. Had significant adsorption occurred along an isochore upon lowering the temperature, the measured pressure at 350 K would be smaller than that at the same temperature without adsorption. If the density at the measured pressure is calculated using correct parameters from a Burnett isothermal analysis, the calculated density would be significantly smaller than the



Figure 5. Deviations of the measured compressed liquid densities for R-125 from values calculated using eq 4 and the parameters listed in Table 7. Only the liquid density values measured in this work were used to determine the fitting parameters. The symbols denote: ●, this work; ▽, Defibaugh and Morrison (1992); ○, Magee (1996). Plotted as a function of pressure, a; plotted as a function of temperature, b.

**Table 8. Comparison of Burnett Isotherms Using Isochoric Coupling** 

| isochore | $ ho_{350}$ /mol· $m^{-3}$ | $ ho_{ m BW}/ m mol$ $ ho^{-3}$ | $ ho_{400}$ /mol· $m^{-3}$ | $100( ho_{ m BW} -  ho_{350})/ ho_{350})$ | $100((\rho_{400} - \rho_{350})/\rho_{350})$ |
|----------|----------------------------|---------------------------------|----------------------------|-------------------------------------------|---------------------------------------------|
| 3        | 1474.8                     | 1475.1                          | 1469.1                     | 0.04                                      | -0.14                                       |
| 4        | 1165.6                     | 1166.2                          | 1163.9                     | 0.05                                      | -0.15                                       |
| 5        | 752.8                      | 752.9                           | 751.9                      | 0.02                                      | -0.11                                       |
| 6        | 533.1                      | 533.3                           | 532.7                      | 0.03                                      | -0.08                                       |
| 7        | 328.5                      | 328.5                           | 328.4                      | 0.02                                      | -0.02                                       |

value calculated at 400 K. The observed discrepancies are slightly larger than expected from an uncertainty analysis for this experiment, and they suggest that the isochoric densities below 350 K probably are accurate to

Critical Temperature. Critical temperature measurements have been reported by various workers. A summary

Table 9. Critical Constants  $T_c$ ,  $P_c$ ,  $\rho_c$ ,  $Z_c$  and Acentric Factor  $\omega$  for R-125

|                             | $T_{ m c}/{ m K}$ | $P_{\rm c}/{ m kPa}$ | $ ho_{ m c}/{ m mol}\cdot{ m m}^{-3}$ | $Z_{\mathrm{c}}$    | ω      |
|-----------------------------|-------------------|----------------------|---------------------------------------|---------------------|--------|
| This work                   | $339.41\pm0.01$   | $3639.1\pm0.2$       | $4768.4\pm7$                          | $0.2704 \pm 0.0004$ | 0.3038 |
| Shankland et al. (1992)     | 339.4             | 3631.0               | 4766.7                                | 0.2699              | 0.2986 |
| Wilson et al. (1992)        | 339.19            | 3595.0               | 4759.6                                | 0.2678              | 0.3025 |
| Du Pont (1991)              | 339.4             |                      |                                       |                     |        |
| Higashi (1994)              | 339.17            | 3620.0               | 4766                                  | 0.2694              |        |
| Sagawa <i>et al.</i> (1994) |                   | 3619                 |                                       |                     |        |
| Schmidt and Moldover (1994) | 339.33            |                      |                                       |                     |        |
| Boyes and Weber (1995)      |                   | 3626.8               |                                       |                     |        |
| Kuwabara et al. (1995)      | 339.165           |                      | 4733                                  |                     |        |
| Tsvetkov et al. (1995)      |                   | 3629                 |                                       |                     |        |
| Ye et al. (1995)            |                   | 3619                 |                                       |                     |        |
| Yata et al. (1996)          | 339.22            |                      |                                       |                     |        |
| Gillis (1997)               | 339.45            | 3630.6               |                                       |                     |        |

of critical and reducing parameters for R-125 appears in Table 9. Our critical temperature agrees with those of Shankland et al. (1992) (who used a sample of the same high purity, 99.997+ mol %, as ours) and du Pont (1991) within the combined estimated experimental uncertainties. The values reported by Schmidt and Moldover (1994) and Gillis (1997) bracket our value. Our critical temperature is significantly higher than those reported by Wilson et al. (1992), Kuwabara et al. (1995), Ye et al. (1995), and Higachi (1994). The trends in the critical pressures and densities derived from the assigned critical temperatures given in Table 9 are as expected.

Liquid Densities. The two sets of density measurements using the two, different samples agree within  $\pm 0.1\%$ . Near the critical region, both sets of results deviate substantially from eq 4. This is a result of the inadequacy of the equation to describe fluid behavior near the critical region and not of inaccuracy in the experimental values. Figure 5a,b presents a comparison of our values to those reported by Defibaugh and Morrison (1992) who report liquid density measurements for R-125 over a temperature range of 275.0 K to 369.0 K with pressures up to 6.3 MPa and with Magee who reports densities between 178 K and 398 K up to 35 MPa. Wilson et al. (1992) report a correlation for the liquid density of R-125 based upon measurements over the temperature range of 198.0 K to 448.0 K with pressures up to 10.0 MPa. These results are not included in the figure because they do not report their experimental values, but they do note that the average deviation between their measured liquid densities and those calculated from their fitting equation is  $\pm 0.29\%$  with a maximum deviation of  $\pm 1.0\%$ .

## **Conclusions**

This paper presents accurate measurements of vapor pressures, liquid densities, vapor densities, and the critical temperature for R-125. Our measurements cover temperatures ranging from 180.0 K to 480.0 K with pressures up to 68 MPa. The vapor pressure measurements are estimated to be accurate within  $\pm 0.05\%$ , but our values differ systematically by 0.1 to 0.2% from several other precise data sets over most of the range. Our virial coefficients derived from Burnett measurements agree very well with values derived by other workers from both Burnett and sound speed measurements, and our isochoric vapor densities are internally consistent with the Burnett measurements and in reasonable agreement with other isochoric measurements. The liquid densities have an estimated uncertainty of  $\pm 0.1\%$ . Our reported values agree with those of Defibaugh and Morrison (1992) and with Magee (1996) within the combined experimental uncertainties.

Our critical temperature agrees well with values reported by several investigators, but it is significantly higher than values reported by several others.

### Acknowledgment

The authors acknowledge gratefully Allied Signal and E. I. du Pont Nemours & Company for providing the samples used in this work.

#### **Literature Cited**

Baroncini, C.; Giuliani, G.; Latini, G.; Polonara, F.; Camporese, R. Experimental evaluation of thermodynamic properties of refrigerant R125 (CHF<sub>2</sub>CF<sub>3</sub>). Sci. Tech. Froid 1993, 2, 207-213.

Boyes, S. J.; Weber, L. A. Vapor pressures and gas-phase (p,  $\rho$ , T) values for CF<sub>3</sub>CHF<sub>2</sub> (R125). *J. Chem. Thermodyn.* **1995**, *27*, 163–

Defibaugh, D.; Morrison, G. Compressed liquid densities and saturation densities of pentafluoroethane (R-125). Fluid Phase Equilib. 1992,

E. I. du Pont Nemours & Company. Private communication, 1991. Gillis, K. A. Thermodynamic properties of seven gaseous halogenated hydrocarbons from acoustic measurements: CHClFCF<sub>3</sub>, CHF<sub>2</sub>CF<sub>3</sub>, ČF<sub>3</sub>CH<sub>3</sub>, CHF<sub>2</sub>CH<sub>3</sub>, CF<sub>3</sub>CHFCHF<sub>2</sub>, CF<sub>3</sub>CH<sub>2</sub>CF<sub>3</sub>, CHF<sub>2</sub>CF<sub>2</sub>CH<sub>2</sub>F. Int. J. Thermophys. 1997, 18, 73.

Higashi, Y. Critical parameters for HFC134a, HFC32 and HFC125. *Int. J. Refrig.* **1994**, *17*, 524–531.

Holste, J. C.; Hall, K. R.; Iglesias-Silva, G. A. Log-linear plots for data representation. *AIChE J.* **1996**, *42*, 296.

Iglesias-Silva, G. A.; Holste, J. C.; Eubank, P. T.; Marsh, K. N.; Hall, K. R. A vapor pressure equation from extended asymptotic behavior. AIChE J. 1987, 33, 1550.

Iglesias-Silva, G. A.; Miller, R. C.; Ceballos, A. D.; Hall, K. R.; Holste, J. C. Accurate vapor pressure equation for refrigerants. *J. Fluid Phase Equilib.* **1995**, *111*, 203.

Kuwabara, S.; Aoyama, H.; Sato, H.; Watanabe, K. Vapor-liquid coexistence curves in the critical region and the critical temperatures and densities of difluoromethane and pentafluoroethane. Chem. Eng. Data 1995, 40, 112-116.

Lau, R. A continuously weighed pycnometer providing densities for carbon dioxide + ethane mixtures between 240 and 350 K at pressures up to 35 MPa. Ph.D. Dissertation, Texas A&M University, College Station, TX, 1986.

Magee, J. W. Isochoric p- $\rho$ -T measurements on difluoromethane (R32) from 142 to 396 K and pentafluoroethane (R125) from 178 to 398 K at pressures to 35 MPa. Int. J. Thermophys. 1996, 17, 803.

Monluc, Y.; Sagawa, T.; Sato, H; Watanabe, K. Thermodynamic properties of HFC-125. Symp. Thermophys. Prop. 1991, B101, 65-

Oguchi, K.; Murano, A.; Omata, P.; Yada, N. Experimental study of PVT properties of HFC-125 (CHF<sub>2</sub>CF<sub>3</sub>). Int. J. Thermophys. 1996, 17, 55-64

Sagawa, T.; Sato, H.; Watanabe, K. Thermodynamic properties of HFC-125 based on (p, V, T) measurements. High Temp.-High Pressures **1994** 26 193-201.

Shankland, I. R. Allied Signal, private communication, 1992.

Singh, R. Private communication of unpublished data from Allied Signal, 1994.

Stouffer, C. E. Densities of mixtures of carbon dioxide and hydrogen sulfide from 200 to 450 K to 23 MPa by the Burnett-isochoric method. Ph.D. Dissertation, Texas A&M University, College Station,

Tsvetkov, O. B.; Kletskii, A. V.; Laptev, Yu. A.; Asambaev, A. J.; Zausaev, I. A. Thermal conductivity and PVT measurements of pentafluoroethane (refrigerant HFC-125). Int. J. Thermophys. 1995, 16. 1185-1192.

- Weber L. A.; Silva A. M. Measurements of the vapor pressures of difluoromethane, 1-chloro-1,2,2,2-tetrafluoroethane, and pentafluo-
- ditluoromethane, 1-chloro-1,2,2,2-tetrafluoroethane, and pentafluoroethane. *J. Chem. Eng. Data* **1994**, *39*, 808–812.

  Widiatmo, J. V.; Sato, H.; Watanabe, K. Saturated-liquid densities and vapor pressures of 1,1,1-trifluoroethane, difluoromethane, and pentafluoroethane. *J. Chem. Eng. Data* **1994**, *39*, 304–308.

  Wilson, L. C.; Wilding, W. V.; Wilson, G. M.; Rowley, R. L.; Felix, V. M.; Chilsom-Carter T. Thermophysical properties of HFC-125. *Fluid Phase Equilib.* **1992**, *80*, 167–177.

  Yata, J.; Hori M.; Kawakatsu, H.; Minamiyama, T. Magayromanta of
- Yata, J.; Hori, M.; Kawakatsu, H.; Minamiyama, T. Measurements of refractive index of alternative refrigerants. *Int. J. Thermophys.*
- 1996, 17, 65-74.
  Ye, F.; Sato, H.; Watanabe, K. Gas-phase PVT properties and vapor pressure of pentafluoroethane (HFC-125) determined according to the Burnett method. J. Chem. Eng. Data 1995, 40, 148-152.
- Yurttas, L. A new isochoric apparatus with applications to *P-V-T* measurements and phase equilibria studies. Ph.D. Dissertation. Texas A&M University, College Station, TX, 1988.

Zhang, H.-L.; Sato, H.; Watanabe, K. Gas phase PVT properties for the difluoromethane + pentafluoroethane (R32 + 125)system. *J. Chem. Eng. Data* **1996**, *41*, 1401–1408.

Received for review November 18, 1996. Accepted May 1, 1997.<sup>⊗</sup> The American Society of Heating, Refrigerating and Air Conditioning Engineers has provided the majority of the funding for this work. Additional support has come from the Governor's Energy Management Center-State of Texas Energy Research in Applications (Contract No. 5217), the Center for Energy and Mineral Resources at Texas A&M University and the Texas Engineering Experiment Station.

#### JE960362F

<sup>®</sup> Abstract published in Advance ACS Abstracts, June 1, 1997.