Házi feladatok megoldása 4. Konfigurációelemzés

Smahajcsik-Szabó Tamás, M9IJYM

1. A 3.1. alfejezetben leírt módszerrel keress szignifikáns tipikus konfigurációkat a Diener2 és a Diener6 item kétdimenziós terében! Hogyan tudnád jellemezni a kapott típusokat? Van valamilyen közük az előző óra 3. feladatának DP-ihez?

Az alábbi táblázatban összegeztem a legalább p < 0.001 szinten szignifikáns típusokat. Az első csoportba olyan típusokat sorolnék, mint például a 3. óra feladataiban is sűrű pontként megjelenő 7-7, ahol az elvártnál szignifikánsan több egyed áll. Ide sorolom még a 3-3, 3-4, 4-5 típusokat is. Ugyanakkor a lenti táblázatból egy másik csoport is körvonalazódik, ahol az elvártnál szignifikánsan kevesebb személy áll. Ilyen antitípusok például 4-5, 4-7 vagy a 6-5 kombinációk, melyekről bővebben a következő feladatban is írok.

Diener2	Diener6	Megfigyelt	Elvárt	Chi	p
1	1	1	0.012	81.34533	0.0000000
2	2	5	0.238	95.28002	0.0000000
3	3	6	0.800	33.80000	0.0000000
3	4	8	1.900	19.58421	0.0000096
4	5	32	15.640	17.11315	0.0000352
4	7	4	22.610	15.31765	0.0000909
5	7	11	30.058	12.08355	0.0005087
6	5	12	33.856	14.10931	0.0001725
7	7	53	18.620	63.47929	0.0000000

2. A 3.1. alfejezetben leírt módszerrel keress szignifikáns atipikus konfigurációkat a Diener2 és a Diener6 item kétdimenziós terében! Hogyan tudnád jellemezni a kapott antitípusokat?

Az egyes azonosított típusokról és antitípusokról az alábbi táblázat tájékoztat: "+" jellel jelöltem a típusokat, míg a "-" jel a szignifikáns antitípusokat jelöli.

Diener2 / Diener6	1	2	3	4	5	6	7
1	+	+					
2		+		+			
3			+	+			
4					+		-
5					+		-
6				-	-	+	
7					•	•	+

A Bonferrioni módszerrel korrigált alfa érték 0.001 volt a tesztelés során. A szignifikáns antitípusokat két csoportba osztom, azokat akiknélm a Diener2 tétel 6 volt, de a Diener 6 tétel 4 és 5 értékeknél volt jellemző; és egy másik csoportra, ahol épp ellenkezőleg, a Diener6 tétel magasabb értéke (7) mellett a Diener2-nél közepes értékek mutatkoztak (4-5). Általában elmondható, az elvárthoz képest is szignifikánsan ritkább tehát azok aránya a mintában, ahol a két tétel ne szoros együttjárást mutatna.

3. A 3.2. alfejezetben leírt módszerrel keress szignifikáns tipikus konfigurációkat a Diener2 és a Diener6 item kétdimenziós terében! Hogyan tudnád jellemezni a kapott típusokat? Van valamilyen hasonlóság az 1. feladatban kapott eredményekkel?

A főbb eredményeket, így a legalább p < 0.001 szinten szignifikáns típusokat az alábbi táblázat összegzi a binomiális p, illetve a binomiális próbák z-értékeivel.

Diener2	Diener6	Megfigyelt	Elvárt	Binom_p	Z-érték	p_corr
1	1	1	0.012	0.0119284	9.019273	0.0000000
1	2	1	0.084	0.0805752	3.160766	0.0007868
2	2	5	0.238	0.0000051	9.763472	0.0000000
2	4	5	1.292	0.0102942	3.266407	0.0005446
3	3	6	0.800	0.0001802	5.818433	0.0000000
3	4	8	1.900	0.0007680	4.433837	0.0000046
4	5	32	15.640	0.0001424	4.203062	0.0000132
4	7	4	22.610	0.0000014	-4.005387	0.0000310
5	5	35	20.792	0.0022172	3.182789	0.0007293
5	7	11	30.058	0.0000416	-3.585586	0.0001682
6	4	2	13.984	0.0000821	-3.250467	0.0005761
6	5	12	33.856	0.0000085	-3.890253	0.0000501
6	6	107	78.384	0.0004406	3.519830	0.0002159
7	7	53	18.620	0.0000000	8.120018	0.0000000

Az alábbi táblázatban foglaltam össze azon konfigurációk adatait, melyeknél a próba szignifikanciaszintje nem haladja meg a Holm-kritériumot. Markánsan kiemelkedik, és a korábbi feladatokkal összhangban adottak az 55, 66, 77 konfigurációk, mellettük a 45 példaként, vagy az 11, 22 konfigurációk, melyek olyan típusok, ahol a tételek közti együttjárás nyomán elvárható módón olyan személyek vannak nagy számban, akik azonos, vagy szorosan kapcsolódó módon adtak választ a kérdőív tételeire.

Konfiguráció	Megfigyelt	Elvárt	Típus	Holm-kritérium	df	Z-érték	p
1 1	1	0.012	+	0.001	1	9.019	0.000
2 2	5	0.238	+	0.001	1	9.761	0.000
7 7	53	18.620	+	0.001	1	7.967	0.000
3 3	6	0.800	+	0.001	1	5.814	0.000
3 4	8	1.900	+	0.001	1	4.425	0.000
4 5	32	15.640	+	0.001	1	4.137	0.000
4 7	4	22.610	-	0.001	1	-3.914	0.000
6 5	12	33.856	-	0.001	1	-3.756	0.000
5 7	11	30.058	-	0.001	1	-3.476	0.000
2 4	5	1.292	+	0.001	1	3.262	0.001
6 6	107	78.384	+	0.001	1	3.232	0.001
6 4	2	13.984	-	0.001	1	-3.205	0.001
1 2	1	0.084	+	0.001	1	3.161	0.001
5 5	35	20.792	+	0.001	1	3.116	0.001
7 5	2	12.880	-	0.001	1	-3.032	0.001
7 6	14	29.820	•	0.002	1	-2.897	0.002

4. A 3.2. alfejezetben leírt módszerrel keress szignifikáns atipikus konfigurációkat a Diener2 és a Diener6 item kétdimenziós terében! Hogyan tudnád jellemezni a kapott antitípusokat? Van valamilyen hasonlóság a 2. feladatban kapott eredményekkel?

A fenti táblázat értelemzésének folytatásaként, adottak emellett antitípusok, a korábban említett 64, 75 konfiguráció, de ilyenek a 47, 57 konfigurációk is. Ezen antitípusok azt erősítik, hogy szignifikánsan kevesebb személy jellemezhető a mintában olyan válaszmintázattal, ahol a társas kapcsolatok jó értékelése (Diener2) mellett önmaguk értékelése alacsonyabb fokú (Diener6), és fordítva; más szóval, ritka, ha a személy 0nmaga felé mutatott elfogadó, elégedett érzései nem tükröződnek a társas kapcsolatokban megélt jobb minőségben. A 2. feladat eredményeihez képest nem találtam jelentős eltérést, melynek okát abban sejtem, hogy alapvetően sem az elvégzett próbák (C) száma, sem a lehetséges értékkombinációk nem változtak, így akár kereszttáblákon alkalmazott Khi-négyzet, akár binomiális próbával vesszük a típusok elméletitől mért gyakoriságát, a két módszer közel azonos eredményre vezet. A típusbesorolásokat az alábbi ábra veti össze.

