Mathematisches Seminar Prof. Dr. Jan Kallsen Giso Jahncke

Sheet 05

Risk Management

Exercises for participants of the programme Quantitative Finance

T-Exercise 9

Let L be the random loss of a portfolio of the form

$$L = -s\left(e^X - 1\right),\,$$

where s > 0 is a constant and X has a normal distribution with mean $\mu \in \mathbb{R}$ and standard deviation $\sigma > 0$. Compute $\mathrm{ES}_{\alpha}(L)$ for $\alpha \in (0,1)$.

C-Exercise 10

(a) Write a scilab-function

that computes the estimates \widehat{VaR}_{α} and \widehat{ES}_{α} of the variance covariance method for the one-dimensional linearized loss operator

$$l^{\Delta}(x) = -(c + w \cdot x),$$

 $c, w \in \mathbb{R}$ and given historical risk factor changes $x_data = (x_1, \dots, x_n) \in \mathbb{R}^n$.

(b) Compute the logarithmic returns $x_2, ..., x_{6816}$ of the DAX time series, that we use as risk factor changes. Compute for each trading day m = 254, ..., 6816 the estimates for *value at risk* and *expected shortfall* at level $\alpha = 0.98$. Apply the function from (a) on the last n = 252 risk factor changes $(x_m, x_{m-1}, ..., x_{m-n+1})$. Plot your results.

Hint: You may use the function *RiskMan_*2017_18_*WS_VaR_log_normal.sci* from C-Exercise 3 as well as Example 1.13 from the lecture.