Modelo a escala del sistema solar en Processing

Presentado por: Juan Sebastián Herrera Maldonado Presentado al Profesor: Jean Pierre Charalambos Hernandez

Objetivo

Construir un modelo a escala virtual desplegado en android del sistema solar, escalando el tamaño, la distancia, el periodo de rotación, el periodo orbital y la inclinación orbital de los objetos que componen el sistema solar, implementando los conocimientos adquiridos durante el curso de Computación Visual de la Universidad Nacional de Colombia. Además de proporcionar interactividad a los objetos de la aplicación desde una fuente de entrada de la manera más 'simple' posible, para este caso como fuente de entrada se utilizaron los dispositivos android.

Sistema solar

Todos los planetas se trasladan alrededor del Sol en órbitas elípticas y, al mismo tiempo, rotan sobre sí mismos. En la mayoría de los casos la dirección de la rotación coincide con la de traslación. Las órbitas de los planetas están casi en el mismo plano, el de la eclíptica, en cambio las órbitas de los cometas suelen tener todo tipo de inclinaciones.

Sistema solar

Planetas	Tamaño (Diámetro)	Radio ecuatorial	Distancia al Sol (km.)	Lunas	Periodo de Rotación	Órbita		Inclinación orbital
MERCURIO	4.880 km.	2.440 km.	57.910.000	0	58,6 dias	87,97 dias	0,00°	7,00°
VENUS	12.104 km.	6.052 km.	108.200.000	0	-243 dias	224,7 dias	177,36°	3,39°
LA TIERRA	12.756 km.	6.378 km.	149.600.000	1	23,93 horas	365,256 dias	23,45°	0,00°
MARTE	6.794 km.	3.397 km.	227.940.000	2	24,62 horas	686,98 dias	25,19°	1,85°
JÚPITER	142.984 km.	71.492 km.	778.330.000	16	9,84 horas	11,86 años	3,13°	1,31°
SATURNO	108.728 km.	60.268 km.	1.429.400.000	18 *	10,23 horas	29,46 años	25,33°	2,49°
URANO	51.118 km.	25.559 km.	2.870.990.000	15	17,9 horas	84,01 años	97,86°	0,77°
NEPTUNO	49.532 km.	24.746 km.	4.504.300.000	8	16,11 horas	164,8 años	28,31°	1,77°
PLUTÓN	2.320 km.	1.160 km.	5.913.520.000	1	-6,39 días	248,54 años	122,72°	17,15°

Modelo virtual

• Escala Radio ecuatorial

Planetas	Radio ecuatorial	Radio ecuatorial escalado (r/1000)		
Mercury	2440	2,44		
Venus	6052	6,052		
Earth	6378	6,378		
Mars 3397		3,397		
Jupiter	71492	71,492		
Saturn	60268	60,268		
Uranus	25559	25,559		
Neptune	24746	24,746		
Pluto 1160		1,16		

• Escala Distancia al sol

Planetas	Distancia al Sol (km.)	Escala distancia (1/3000000)		
Mercury	57.910.000	19,30333333		
Venus	108.200.000	36,06666667		
Earth 149.600.000		49,86666667		
Mars	227.940.000	75,98		
Jupiter	778.330.000	259,4433333		
Saturn 1.429.400.000 476,4666		476,4666667		
Uranus 2.870.990.000 956,9		956,9966667		
Neptune 4.504.300.000 1501,433		1501,433333		
Pluto 5.913.520.000 1971,1733		1971,173333		

• Escala Periodo de rotación (alrededor de su propio eje)

Planetas	Periodo de Rotación (dias)	Escala P. de R. (1/dias/100)	
Mercury	58,60000	0,000171	
Venus -243,00000		-0,000041	
Earth	0,99708	0,010029	
Mars	1,02583	0,009748	
Jupiter	0,41000	0,024390	
Saturn	0,42625	0,023460	
Uranus	0,74583	0,013408	
Neptune	0,67125	0,014898	
Pluto	-6,39000	-0.001565	

• Escala Periodo de rotación orbital (alrededor del sol)

Planetas	Periodo de Rotación orbital (dias)	Escala P. de R. o. (1/dias)	
Mercury	87,97000	0,000114	
Venus	224,70000	0,004450	
Earth	365,25600	0,002738	
Mars	686,98000	0,001456	
Jupiter	4.331,93616	0,000231	
Saturn	10.760,44176	0,000093	
Uranus	30.685,15656	0,000033	
Neptune	60.194,18880	0,000017	
Pluto	90.780,72624	0,000011	
Pluto			

• Escala Periodo de rotación orbital (alrededor del sol)

Planetas	Inclinación orbital Grados	Inclinación orbital Radianes		
Mercury	7	0,12217		
Venus 3,39		0,05917		
Earth 0		0,00000		
Mars	1,85	0,03229		
Jupiter	1,31	0,02286		
Saturn 2,49		0,04346		
Uranus	0,77	0,01344		
Neptune	1,77	0,03089		
Pluto	17,15	0,29932		

Cantidad de lunas por planeta

Planetas	Lunas
Mercury	0
Venus	0
Earth	1
Mars	2
Jupiter	16
Saturn	18 *
Uranus	15
Neptune	8
Pluto	1

 Dispositivo de interfaz humana: Como dispositivo de interfaz humana se utilizaron los dispositivos android. El modelo puede ser desplegado en cualquier dispositivo con android 8.0 o superior.

 Navegación: El usuario puede recorrer el escenario en primera persona de forma libre y autónoma a través de todo el espacio de coordenadas, donde se puede visualizar los distintos tamaños, distancias y rotaciones a escala de los objetos que componen el sistema solar.

Manipulación

- Processing for Android: Es una librería que sirve para crear aplicaciones de Android con facilidad, incluidos fondos de pantalla en vivo, caras de visualización y aplicaciones de realidad virtual.
- Ketai: Es una librería permite crear aplicaciones móviles utilizando Processing, Ketay brinda acceso directo a sensores, cámaras y hardware del dispositivo.

- Reglas de manipulación:
 - El dispositivo debe colocarse de modo horizontal para la correcta lectura de los sensores.

- Reglas de manipulación:
 - Traslación (Avanzar, Retroceder) en el mundo 3D: Para realizar esta traslación se lee el touch de la pantalla. Si el usuario toca la mitad izquierda de la pantalla, la cámara se traslada hacia atrás (retrocede). Si el usuario toca la mitad derecha de la pantalla, la cámara se traslada hacia adelante

- Reglas de manipulación:
 - Rotación de la vista (Arriba , Abajo, Derecha, izquierda) en el mundo 3D: Para realizar estas rotación se utilizó la librería Ketai .KetaiSensor por medio del método void onAccelerometerEvent() nos permite la lectura del giroscopio del dispositivo android, una vez con esto se realizaron un conjunto de reglas para relacionar los movimientos en el móvil con la rotación de la cámara en el modelo 3D.

 Giroscopio de los dispositivos android: En el caso del acelerómetro, los datos consisten en tres números flotantes, que representan la aceleración a lo largo de los ejes X, Y y Z del dispositivo, definidos de la siguiente manera:

• Reglas de manipulación:

Rotación Abajo: Si la parte entera del giroscopio en Z es mayor a 3 (floor(accelerometerZ) > 3), se rotará la cámara en su eje Y 0.1 radianes (5,7 grados) (cam.rotateY(0.1)) y por último se ajustara el objeto que mirara la cámara como contiguo a la posición después de la rotación.

Reglas de manipulación:

Rotación Arriba: Si la parte entera del giroscopio en Z es menor a -2 (floor(accelerometerZ) < -2), se rotará la cámara en su eje Y -0.1 radianes (-5,7 grados) (cam.rotateY(-0.1)) y por último se ajustara el objeto que mirara la cámara como contiguo a la posición después de la rotación.

• Reglas de manipulación:

Rotación Izquierda: Si la parte entera del giroscopio en Y es menor a
-3 (floor(accelerometerY) < -3), se rotará la cámara en su eje X -0.1
radianes (-5,7 grados) (cam.rotateX(-0.1)) y por último se ajustara el
objeto que mirara la cámara como contiguo a la posición después de
la rotación.

• Reglas de manipulación:

Rotación Derecha: Si la parte entera del giroscopio en Y es mayor a 3 (floor(accelerometerY) > 3), se rotará la cámara en su eje X 0.1 radianes (5,7 grados) (cam.rotateX(0.1)) y por último se ajustara el objeto que mirara la cámara como contiguo a la posición después de la rotación.

- Reglas de manipulación:
 - Estado reposo: Para que la cámara se encuentre en reposo debe cumplir que los giroscopios del dispositivo android respeten las siguientes reglas:
 - floor(accelerometerY) <= 3 && floor(accelerometerY) >= 3
 - floor(accelerometerZ) >= -2 && floor(accelerometerZ) <= 3

Conclusiones

- La integración entre "android para processing" y processing facilita la creación y la migración de cualquier modelo que se encuentre desarrollado solo en processing a android, ya que seria solo cuestion de capturar y configurar la interacción que tendrá el usuario en android
- Mediante el desarrollo de la aplicación se observó la importancia de aplicar modelos como el sistema solar en aplicaciones móviles, dado que cualquier persona no importa su edad, puede interactuar, conocer y mejorar su visión respecto a las dimensiones de los planetas, lunas, órbitas, etc.

Conclusiones

 A la hora de interactuar con modelo 3D es de gran importancia tener claro cuáles serán los movimientos que se realizarán en el espacio y como se realizaron. En este punto es importante realizar un análisis detallado (cantidad de grados de libertad, rangos de movimiento, etc) de las características del dispositivo de interfaz humana para así poder definir la interacción con el modelo.

GRACIAS!

