Machine Learning for IoT

Lab 2 – Pre-processing

Exercise 1: Timeseries pre-processing

- On the RPI, continuously run the T/H monitoring script developed in LAB 1 Exercise 2.
- 2 Set the following retention rules on your Redis TimeSeries database:
- a. Set the retention period of the *mac_address*:temperature and *mac_address*:humidity timeseries to 1 day.
- b. Create two timeseries with a chunk size of 128 bytes, called *mac_address*:temperature _avg and *mac_address*:humidity _avg, that store the average over every 30s of *mac_address*:temperature and *mac_address*:humidity , respectively. Set the retention period of the two timeseries to 30 days.
- c. Create a timeseries with a chunk size of 128 bytes, called *mac_address*:temperature _min, that stores the minimum over every 1 minute of *mac_address*:temperature . Set the retention period of the timeseries to 30 days.
- d. Create a timeseries with a chunk size of 128 bytes, called *mac_address*:temperature _max that stores the maximum over every 1 minute of *mac_address*:temperature . Set the retention period of the timeseries to 30 days.
- e. For all the timeseries, check the number of samples and their memory size after at least 15 minutes of monitoring.
- f. Repeat the steps a., b., c., and e., disabling compression (create new timeseries for each step adding "_uncompressed" to the original names). Report the results in the following table and discuss the collected statistics:

Timeseries Name	# of Samples	Compressed Size (KB)	Uncompres. Size (KB)
mac_address:temperature			
mac_address:humidity			
mac_address:temperature _avg			
mac_address:humidity _avg			
mac_address:temperature _min			
mac_address:temperature _max			

- g. For each timeseries, estimate the maximum number of samples and the maximum memory size, considering both the compressed and the uncompressed versions. Report the results in a table.
- h. Plot the created timeseries in Deepnote.

Exercise 2: Profiling Audio Features Extraction on the edge

- 1. On the RPI, create and run a script to measure the execution time (i.e., the latency) needed to process audio feature extraction methods.
- a) Download to the RPI the *preprocessing.py* script from Deepnote. Store the script in your working directory.
- b) Use the script *lab2_ex2.py* (available in the Portale della Didattica, under the folder *Labs/lab2-preprocessing*) to measure the latency for computing the spectrogram.
- c) Modify the script to measure the latency for processing the log-Mel Spectrogram and MFCC.
- d) For all the three feature extraction methods, try different hyperparameters values in the following ranges
 - STFT frame length ∈ [10, 50] ms. Try also with power-of-two values like 8ms, 16ms, 32ms, and comment the results.
 - STFT frame step such that overlap $\in \{0\%, 25\%, 50\%, 75\%\}$.
 - # of mel bins $\in [10, 128]$.
 - Mel lower frequency $\in [0, 80]$ Hz.
 - Mel upper frequency \in [2000, 8000] Hz.
 - # of MFCCs \in [10, # of mel bins].
- e) Report the collected values in a table, following this template:
- f) Discuss the collected results.

Method	Hyperparams values	Latency (ms)
Spectrogram	frame_length=10, frame_step=50%	
Spectrogram	frame_length=10, frame_step=75%	
MelSpectrogram		
MFCC		