

ANÁLISIS MATEMÁTICO II Examen final 20/02/2024

Apellido y nombre:

Corrigió:

Revisó:

T1	T2	P1	P2	Р3	P4	Calificación

Todas las respuestas deben ser justificadas adecuadamente para ser tenidas en cuenta. No resolver el examen en lápiz. Duración del examen: 2 horas

Condición de aprobación (6 puntos): tres ejercicios correctamente resueltos (uno de T1 o T2 y dos de P1, P2, P3 o P4).

- T1. a) Sea $f: \mathbb{R}^2 \to \mathbb{R}$. Demuestre que si f es diferenciable en (x_0, y_0) entonces f es continua en (x_0, y_0) .
 - b) Determine si a función definida por $f(x,y) = \begin{cases} \frac{x}{y}, & \text{si } y \neq 0, \\ 0, & \text{si } y = 0, \end{cases}$ es diferenciable en el origen.
- T2. Determine si las siguientes proposiciones son verdaderas o falsas. Justifique su respuesta.
 - a) El máximo de f(x,y)=x-y en $D:\left\{(x,y):x^2+y^2\leq 2\right\}$ vale 2 y se alcanza en el punto $\mathbf{X}_0=(1,-1)$.
 - $b) \ \ \text{El área de la región} \ \ D: \left\{ \begin{array}{l} x^2+3y^2 \leq 3, \\ 0 \leq x \leq y \end{array} \right., \ \text{utilizando el cambio de varible} \ \ \left\{ \begin{array}{l} x = \sqrt{3}r\cos(\theta), \\ y = r\sin(\theta) \end{array} \right.,$ está dada por la integral $\int_0^1 \left[\int_0^{\pi/4} \sqrt{3}r \, d\theta \right] dr \ .$
- P1. Halle una función $g: \mathbb{R} \to \mathbb{R}$, $g \in C^2$, tal que el flujo del campo $\vec{f}(x,y,z) = (xg'(y), g'(y), g(y) 2yz)$ a través de toda esfera sea nulo y se verifique $\vec{f}(1,0,0) = (-2,-2,1)$.
- P2. Sean $h: \mathbb{R} \to \mathbb{R}$ una función C^1 , $\vec{f}(x,y) = (x^2 3y, \ h(y))$ y C la curva formada por la unión de dos segmentos, uno de extremos (0,0) y (2,2) y el otro de extremos (2,2) y (4,0). Calcule la circulación de \vec{f} a lo largo de C orientada de (4,0) a (0,0).
- P3. Calcule la masa del cuerpo $V = \{(x,y,z): x+z \leq 4, \ x+y \leq 4, \ x \geq 0, \ y \geq 0, \ z \geq 0 \}$ sabiendo que en cada punto de V la función densidad es proporcional a la distancia del punto al plano xy.
- P4. Calcule la circulación de $\vec{f}(x,y,z)=(x^3+2y,\ y^6-x-z,\ z^{12}+y)$ a lo largo del borde de la porción del **plano tangente a** $S: x^2y+y^3+z^2+z=4$ en $\mathbf{P}=(1,1,1)$, que verifica la condición $x^2+y^2\leq 2y$. Indique claramente la orientación elegida para el cálculo.